This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 April 2001 (19.04.2001)

(51) International Patent Classification7:

PCT

G06F 19/00

(10) International Publication Number WO 01/27857 A2

(21) International Application Number: PCT/US00/28413

(22) International Filing Date: 13 October 2000 (13.10.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 60-159.176
 13 October 1999 (13.10.1999)
 US

 60/217.658
 10 July 2000 (10.07.2000)
 US

 60/217.251
 10 July 2000 (10.07.2000)
 US

 60/3.968
 19 September 2000 (19.09.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/159,176 (CIP) Filed on 13 October 1999 (13.10.1999) US 60/217,658 (CIP) Filed on 10 July 2000 (10.07.2000) US 09/663,968 (CIP) Filed on 19 September 2000 (19.09.2000) US 60/217,251 (CIP) Filed on 10 July 2000 (10.07.2000)

- (71) Applicant vior all designated States except US): SE-QUENOM, INC. [US/US]; 11555 Sorrento Valley Road. San Diego, CA 92121-1331 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BRAUN, Andreas [DI/US]. 11237-6 Carmel Creek Road. San Diego. CA 92130 (US). KÖSTER, Hubert [DE/US]: 8636-C Via Mallorca Drive. La Jolla, CA 92037 (US). VAN

DEN BOOM, Dirk [DE/DE]: Eppendorfer Weg 205 D. D-20253 Hamburg (DE). PING, Vip [US/US]: 3641 Copley Avenue. San Diego. CA 92116 (US). RODI, Charlie [US/US]: 13823 Recuerdo Drive, Del Mar. CA 92014 (US). HE, Liyan [CN/US]: 10948 Creek Bridge Place, San Diego, CA 92128 (US). CHIU, Norman [CA/US]: 1128 Caminito Alvarez, San Diego, CA 92126 (US). JURINKE, Christian [DE/DE]; Rombergstrasse 22, 20255 Hamburg (DE).

- (74) Agents: SEIDMAN, Stephanie, L. et al.: Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States (national): AE, AG, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 $\textbf{(54) Title:} \ \ \textbf{METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS$

(57) Abstract: Process and methods for creating a database of genomic samples from healthy human donors, methods that use the database to identify and correlate polymorphic genetic markers and other markers with diseases and conditions are provided.

METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

RELATED APPLICATIONS

Benefit of priority to the following applications is claimed herein: U.S. provisional application Serial No. 60/217,658 to Andreas Braun, Hubert Koster; Dirk Van den Boom, filed July 10, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/159,176 to Andreas Braun, Hubert Koster, Dirk Van den Boom, filed October 10 13, 1999, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS": U.S. provisional application Serial No. 60/217,251, filed July 10, 2000, to Andreas Braun, entitled "POLYMORPHIC KINASE ANCHOR PROTEIN GENE SEQUENCES. POLYMORPHIC KINASE ANCHOR PROTEINS AND METHODS OF DETECTING 15 POLYMORPHIC KINASE ANCHOR PROTEINS AND NUCLEIC ACIDS ENCODING THE SAME"; and U.S. application Serial No. 09/663,968, to Ping Yip, filed September 19, 2000, entitled "METHOD AND DEVICE FOR IDENTIFYING A **BIOLOGICAL SAMPLE."**

Where permitted that above-noted applications and provisional applications are incorporated by reference in their entirety.

FIELD OF THE INVENTION

Process and methods for creating a database of genomic samples from healthy human donors. Methods that use the database to identify and correlate with polymorphic genetic markers and other markers with diseases and conditions are provided.

BACKGROUND

Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these "disease"

25

10

15

20

25

30

markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to treatment.

Currently the pharmaceutical and biotechnology industries find a disease and then attempt to determine the genomic basis for the disease. This approach is time consuming and expensive and in many cases involves the investigator guessing as to what pathways might be involved in the disease.

Genomics

Presently the two main strategies employed in analyzing the available genomic information are the technology driven reverse genetics brute force strategy and the knowledge-based pathway oriented forward genetics strategy. The brute force approach yields large databases of sequence information but little information about the medical or other uses of the sequence information. Hence this strategy yields intangible products of questionable value. The knowledge-based strategy yields small databases that contain a lot of information about medical uses of particular DNA sequences and other products in the pathway and yield tangible products with a high value.

Polymorphisms

Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et al. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (s.,

10

15

20

25

e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There may be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a marker.

Single nucleotide polymorphisms (SNPs)

Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.

Currently, the only available method to identify SNPs in DNA is by sequencing, which is expensive, difficult and laborious. Furthermore, once a SNP is discovered it must be validated to determine if it is a real polymorphism and not a sequencing error. Also, discovered SNPs must then be evaluated to determine if they are associated with a particular phenotype. Thus, there is a need to develop new paradigms for identifying the genomic basis for disease and markers thereof. Therefore, it is an object herein to provide methods for identifying the genomic basis of disease and markers thereof.

SUMMARY

Databases and methods using the databases are provided herein. The databases comprise sets of parameters associated with subjects in populations selected only on the basis of being healthy (i.e., where the subjects are mammals, such as humans, they are selected based upon apparent health and no detectable infections). The databases can be sorted based upon one or more of the selected parameters.

The databas s are preferably relational databases, in which an index that represents each subject serves to relate parameters, which are the data, such as age, ethnicity, sex, medical history, etc. and ultimately genotypic information,

WO 01/27857

10

15

20

25

30

that was inputted into and stored in the database. The database can then be sorted according to these parameters. Initially, the parameter information is obtained from a questionnaire answered by each subject from whom a body tissue or body fluid sample is obtained. As additional information about each sample is obtained, this information can be entered into the database and can serve as a sorting parameter.

The databases obtained from healthy individuals have numerous uses, such as correlating known polymorphisms with a phenotype or disease. The databases can be used to identify alleles that are deleterious, that are beneficial, and that are correlated with diseases.

For purposes herein, genotypic information can be obtained by any method known to those of skill in the art, but is preferably obtained using mass spectrometry.

Also provided herein, is a new use for existing databases of subjects and genotypic and other parameters, such as age, ethnicity, race, and gender. Any database can be sorted according to the methods herein and alleles that exhibit statistically significant correlations with any of the sorting parameters can be identified. It is noted, however, is noted, that the databases provided herein and randomly selected databases will perform better in these methods, since diseasebased databases suffer numerous limitations, including their relatively small size, the homogeneity of the selected disease population, and the masking effect of the polymorphism associated with the markers for which the database was selected. Hence, the healthy database provided herein, provides advantages not heretofore recognized or exploited. However, the methods provided herein can be used with a selected database, including disease-based databases, with or without sorting for the discovery and correlation of polymorphisms. In addition, the databases provided herein represent a greater genetic diversity than the unselected databases typically utilized for the discovery of polymorphisms and thus allow for the enhanced discovery and correlation of polymorphisms.

The databases provided herein can be used for taking an identified polymorphism, and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

20

25

30

One use of these methods is correlating a selected marker with a particular parameter by following the occurrence of known genetic markers and then, having made this correlation, determining or identifying correlations with diseases. Examples of this use are p53 and Lipoprotein Lipase polymorphism. As exemplified herein, known markers are shown to have particular correlation with certain groups, such as a particular ethnicity or race or one sex. Such correlations will then permit development of better diagnostic tests and treatment regimens.

These methods are valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex or some other criteria. This can allow the identification of previously unknown polymorphisms and ultimately a gene or pathway involved in the onset and progression of disease.

The databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings and also permit an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

The methods and databases can be used with experimental procedures, including, but are not limited to, in silico SNP identification, in vitro SNP identification/verification, genetic profiling of large populations, and in biostatistical analyses and interpretations.

Also provided herein, are combinations that contain a database provided herein and a biological sample from a subject in the database, and preferably biological samples from all subjects or a plurality of subjects in the database. Collections of the tissue and body fluid samples are also provided.

Also, provided herein, are methods for determining a genetic marker that correlates with age, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

10

15

20

25

Further provided herein are methods for determining whether a genetic marker correlates with susceptibility to morbidity, early mortality, or morbidity and early mortality, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

Any of the methods herein described can be used out in a multiplex format.

Also provided are an apparatus and process for accurately identifying genetic information. It is another object of the herein that genetic information be extracted from genetic data in a highly automated manner. Therefore, to overcome the deficiencies in the known conventional systems, a method and apparatus for identifying a biological sample is proposed.

Briefly, the method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample. In a particular example, the data set is DNA spectrometry data received from a mass spectrometer. The data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample may be known, expected peak areas may be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample. In a disclosed example, statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data too inconclusive to call.

Advantageously, the method and system for identifying a biological sample accurately makes composition calls in a highly automated manner. In such a manner, complete SNP profile information, for example, may be collected efficiently. More importantly, the collected data is analyzed with highly accurate results. For example, when a particular composition is called, the result may be relied upon with great confidence. Such confidence is provided by the robust computational process employed .

30 DESCRIPTION OF THE DRAWINGS

10

Figure 1 depicts an exemplary sample bank. Panel 1 shows the samples as a function of sex and ethnicity. Panel 2 shows the caucasians as a function of age. Panel 3 shows the Hispanics as a function of age.

Figures 2A and 2C show an age- and sex-distribution of the 291S allele of the lipoprotein lipase gene in which a total of 436 males and 589 females were investigated. Figure 2B shows an age distribution for the 436 males.

Figure 3 is an exemplary questionnaire for population-based sample banking.

Figure 4 depicts processing and tracking of blood sample components.

Figure 5 depicts the allelic frequency of "sick" alleles and "healthy" alleles as a function of age. It is noted that the relative frequency of healthy alleles increases in a population with increasing age.

Figure 6 depicts the age-dependent distribution of ApoE genotypes (see, Schächter et al. (1994) Nature Genetics 6:29-32).

15 Figure 7A-D depicts age-related and genotype frequency of the p53 (tumor suppressor) codon 72 among the caucasian population in the database.

*R72 and *P72 represent the frequency of the allele in the database population.
R72, R72P, and P72 represent the genotypes of the individuals in the population.
The frequency of the homozygous P72 allele drops from 6.7% to 3.7% with
20 age.

Figure 8 depicts the allele and genotype frequencies of the p21 S31R allele as a function of age.

Figure 9 depicts the frequency of the FVII Allele 353Q in pooled versus individual samples.

Figure 10 depicts the frequency of the CETP (cholesterol ester transfer protein) allele in pooled versus individual samples

Figure 11 depicts the frequency of the plasminogen activator inhibitor-1 (PAI-1) 5G in pooled versus individual samples

Figure 12 shows mass spectra of the samples and the ethnic diversity of the PAI-1 alleles.

Figure 13 shows mass spectra of the samples and the ethnic diversity of the CETP 405 alleles.

10

15

20

25

Figure 14 shows mass spectra of the samples and the ethnic diversity of the Factor VII 353 alleles.

Figure 15 shows ethnic diversity of PAI-1, CETP and Factor VII using the pooled DNA samples.

Figure 16 shows the p53-Rb pathway and the relationships among the various factors in the pathway.

Figure 17, which is a block diagram of a computer constructed to provide and process the databases described herein, depicts a typical computer system for storing and sorting the databases provided herein and practicing the methods provided herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases for identifying polymorphic genetic markers.

Figure 19 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-1 locus. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 20 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-5 locus. Bright green bars show frequencies in individuals younger than 40 years; dark green bars show frequencies in individuals older than 60 years.

Figure 21 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the h-msrA locus. Genotype difference between male age groups is significant. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 22A-D is a sample data collection questionnaire used for the healthy database.

Figure 23 is a flowchart showing processing performed by the computing device of Figure 24 wh in performing genotyping of sense strands and antis inse strands from assay fragm. nts.

Figure 24 is a block diagram showing a system in accordance with the present invention;

Figure 25 is a flowchart of a method of identifying a biological sample in accordance with the present invention;

Figure 26 is a graphical representation of data from a mass spectrometer; Figure 27 is a diagram of wavelet transformation of mass spectrometry data;

Figure 28 is a graphical representation of wavelet stage 0 hi data;

Figure 29 is a graphical representation of stage 0 noise profile;

Figure 30 is a graphical representation of generating stage noise standard deviations;

Figure 31 is a graphical representation of applying a threshold to data stages;

Figure 32 is a graphical representation of a sparse data set;

Figure 33 is a formula for signal shifting;

Figure 34 is a graphical representation of a wavelet transformation of a denoised and shifted signal;

Figure 35 is a graphical representation of a denoised and shifted signal;

Figure 36 is a graphical representation of removing peak sections;

Figure 37 is a graphical representation of generating a peak free signal;

Figure 38 is a block diagram of a method of generating a baseline correction;

Figure 39 is a graphical representation of a baseline and signal;

Figure 40 is a graphical representation of a signal with baseline removed;

Figure 41 is a table showing compressed data;

Figure 42 is a flowchart of method for compressing data;

Figure 43 is a graphical representation of mass shifting;

Figure 44 is a graphical representation of determining peak width;

Figure 45 is a graphical representation of removing peaks;

Figure 46 is a graphical representation of a signal with peaks removed;

Figure 47 is a graphical representation of a residual baseline;

Figure 48 is a graphical representation of a signal with residual baseline removed;

Figure 49 is a graphical representation of determining peak height;

Figure 50 is a graphical representation of determining signal-to-noise for 5 each peak;

Figure 51 is a graphical representation of determining a residual error for each peak;

Figure 52 is a graphical representation of peak probabilities;

Figure 53 is a graphical representation of applying an allelic ratio to peak probability;

Figure 54 is a graphical representation of determining peak probability

Figure 55 is a graphical representation of calling a genotype;

Figure 56 is a flowchart showing a statistical procedure for calling a genotype;

Figure 57 is a flowchart showing processing performed by the computing device of Figure 1 when performing standardless genotyping; and

Figure 58 is graphical representation of applying an allelic ratio to peak probability for standardless genotype processing.

DETAILED DESCRIPTION

20 Definitions

25

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other databases referred to herein throughout the disclosure are incorporated by reference in their entirety.

As used herein, a biopolymer includes, but is not limited to, nucleic acid, proteins, polysaccharides, lipids and other macromolecules. Nucleic acids include DNA, RNA, and fragments thereof. Nucleic acids may be derived from genomic DNA, RNA, mitochondrial nucleic acid, chloroplast nucleic acid and other organelles with separate genetic material.

15

20

25

30

As used herein, morbidity refers to conditions, such as diseases or disorders, that compromise the health and well-being of an organism, such as an animal. Morbidity susceptibility or morbidity-associated genes are genes that, when altered, for example, by a variation in nucleotide sequence, facilitate the expression of a specific disease clinical phenotype. Thus, morbidity susceptibility genes have the potential, upon alteration, of increasing the likelihood or general risk that an organism will develop a specific disease.

As used herein, mortality refers to the statistical likelihood that an organism, particularly an animal, will not survive a full predicted lifespan. Hence, a trait or a marker, such as a polymorphism, associated with increased mortality is observed at a lower frequency in older than younger segments of a population.

As used herein, a polymorphism, e.g. genetic variation, refers to a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed. Thus, a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis, expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population. A single nucleotide polymorphism (SNP) refers to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base.

A polymorphic marker or site is the locus at which divergence occurs. Such site may be as small as one base pair (an SNP). Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu. Polymorphic forms also are manifested as different mendelian

-12-

alleles for a gene. Polymorphisms may be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.

As used herein, a healthy population, refers to a population of organisms, including but are not limited to, animals, bacteria, viruses, parasites, plants, eubacteria, and others, that are disease free. The concept of disease-free is a function of the selected organism. For example, for mammals it refers to a subject not manifesting any disease state. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications. For plants, for example, it is a plant population that does not manifest diseases pathology associated with plants. For bacteria it is a bacterial population replicating without environmental stress, such as selective agents, heat and other pathogens.

As used herein, a healthy database (or healthy patient database) refers to a database of profiles of subjects that have not been pre-selected for any particular disease. Hence, the subjects that serve as the source of data for the database are selected, according to predetermined criteria, to be healthy. In contrast to other such databases that have been pre-selected for subjects with a particular disease or other characteristic, the subjects for the database provided herein are not so-selected. Also, if the subjects do manifest a disease or other condition, any polymorphism discovered or characterized should be related to an independent disease or condition. In a preferred embodiment, where the subjects are human, a healthy subject manifests no disease symptoms and meets criteria, such as those set by blood banks for blood donors.

5

10

15

20

25

15

20

25

30

Thus, the subjects for the database are a population of any organism, including, but are not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity that has nucleic acid. Among preferred subjects are mammals, preferably, although not necessarily, humans. Such a database can capture the diversity of the a population, thus providing for discovery of rare polymorphisms.

As used herein, a profile refers to information relating to, but not limited to and not necessarily including all of, age, sex, ethnicity, disease history, family history, phenotypic characteristics, such as height and weight and other relevant parameters. A sample collect information form is shown in Figure 22, which illustrates profile intent.

As used herein, a disease state is a condition or abnormality or disorder that may be inherited or result from environmental stresses, such as toxins, bacterial, fungal and viral infections.

As used herein, set of non-selected subjects means that the subjects have not been pre-selected to share a common disease or other characteristic. They can be selected to be healthy as defined herein.

As used herein, a phenotype refers to a set of parameters that includes any distinguishable trait of an organism. A phenotype can be physical traits and can be, in instances in which the subject is an animal, a mental trait, such as emotional traits. Some phenotypes can be determined by observation elicited by questionnaires (see, e.g., Figures 3 and 22) or by referring to prior medical and other records. For purposes herein, a phenotype is a parameter around which the database can be sorted.

As used herein, a parameter is any input data that will serve as a basis for sorting the database. These parameters will include phenotypic traits, medical histories, family histories and any other such information elicited from a subject or observed about the subject. A parameter may describe the subject, some historical or current environmental or social influence experienced by the subject, or a condition or environm ntal influence on someone related to the subject. Paramaters include, but are n t limited to, any f those described herein, and known to the service of skill in the art.

-14-

As used herein, haplotype refers referes to two or polymorphism located on a single DNA strand. Hence, haplotyping refers to identification of two or more polymorphisms on a single DNA strand. Haplotypes can be indicative of a phenotype. For some disorders a single polymorphism may suffice to indicate a trait; for others a plurality (i.e., a haplotype) may be needed. Haplotyping can be performed by isolating nucleic acid and separating the strands. In addition, when using enzymes such a certain nucleases, that produce, different size fragments from each strand, strand separation is not needed for haplotyping.

As used herein, used herein, pattern with reference to a mass spectrum or mass spectrometric analyses, refers to a characteristic distribution and number of signals (such peaks or digital representations thereof).

As used herein, signal in the context of a mass spectrum and analysis thereof refers to the output data, which the number or relative number of moleucles having a particular mass. Signals include "peaks" and digital representations thereof.

As used herein, adaptor, when used with reference to haplotyping use Fen ligase, refers to a nucleic acid that specifically hybridizes to a polymorphism of insterest. An adaptor can be partially double-stranded. An adaptor complex is formed when an adaptor hybridizes to its target.

As used herein, a target nucleic acid refers to any nucleic acid of interest in a sample. It can contain one or more nucleotides.

As used herein, standardless analysis refers to a determination based upon an internal standard. For example, the frequency of a polymorphism can be determined herein by comparing signals within a single mass spectrum.

As used herein, amplifying refers to means for increasing the amount of a bipolymer, especially nucleic acids. Based on the 5' and 3' primers that are chosen, amplication also serves to restrict and define the region of the genome which is subject to analysis. Amplification can be by any means known to those skilled in the art, including use of the polymerase chain reaction (PCR) etc.

30 Amplification, e.g., PCR must be done quantitatively when the frequency of polymorphism is required to be determined.

10

15

20

As used herein, cleaving refers to non-specific and specific fragmentation of a biopolymer.

As used herein, multiplexing refers to the simultaneous detection of more than one polymorphism. Methods for performing multiplexed reactions,

5 particularly in conjunction with mass spectrometry are known (see, e.g., U.S. Patent Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041).

As used herein, reference to mass spectrometry encompasss any suitable mass spectrometric format known to those of skill in the art. Such formats cinlude, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT application No.99/57318 and U.S. Patent No. 5,118,937), Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the preferred formats.

As used herein, mass spectrum refers to the presentation of data obtained from analyzing a biopolymer or fragment thereof by mass spectrometry either graphically or encoded numerically.

As used herein, a blood component is a component that is separated from blood and includes, but is not limited to red blood cells and platelets, blood clotting factors, plasma, enzymes, plasminogen, immunoglobulins. A cellular blood component is a component of blood, such as a red blood cell, that is a cell. A blood protein is a protein that is normally found in blood. Examples of such proteins are blood factors VII and VIII. Such proteins and components are well-known to those of skill in the art.

As used herein, plasma can be prepared by any method known to those of skill in the art. For example, it can be prepared by centrifuging blood at a force that pellets the red cells and forms an interface between the red cells and the buffy coat, which contains leukocytes, above which is the plasma. For example, typical platelet concentrates contain at least about 10% plasma.

Blood may be separated into its components, including, but not limited to, plasma, platelets and red blood cells by any method known to those of skill in the art. For example, blood can be centrifuged for a sufficient time and at a

10

15

20

25

25

sufficient acceleration to form a pellet containing the red blood cells. Leukocytes collect primarily at the interface of the pellet and supernatant in the buffy coat region. The supernatant, which contains plasma, platelets, and other blood components, may then be removed and centrifuged at a higher acceleration, whereby the platelets pellet.

As used herein, p53 is a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulation gene which control cell growth, DNA repair and apoptosis. The p53 mutations have been found in a wide variety of different cancers, including all of the different types of leukemia, with varying frequency. The loss of normal p53 functions results in genomic instability and uncontrolled growth of the host cell.

As used herein, p21 is a cyclin-dependent kinase inhibitor, associated with G1 phase arrest of normal cells. Expression triggers apoptosis or programmed cell death and has been associated with Wilms' tumor, a pediatric kidney cancer.

As used herein, Factor VII is a serine protease involved the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. Evidence has supported an association between polymorphisms in the gene and increase

20 Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease including myocardial infarction.

As used herein, a relational database stores information in a form representative of matrices, such as two-dimensional tables, including rows and columns of data, or higher dimensional matrices. For example, in one embodiment, the relational database has separate tables each with a parameter. The tables are linked with a record number, which also acts as an index. The database can be searched or sorted by using data in the tables and is stored in any suitable storage medium, such as floppy disk, CD rom disk, hard drive or other suitable medium.

As used herein, a bar codes refers any array of optically readable marks of any desired size and shape that ar arranged in a reference context or frame of, preferably, although not necessarily, one or more columns and one or more

rows. For purposes herein, the bar code refers to any symbology, not necessary "bar" but may include dots, characters or any symbol or symbols.

As used herein, symbology refers to an identifier code or symbol, such as a bar code, that is linked to a sample. The index will reference each such symbology. The symbology is any code known or designed by the user. The symbols are associated with information stored in the database. For example, each sample can be uniquely identified with an encoded symbology. The parameters, such as the answers to the questions and subsequent genotypic and other information obtained upon analysis of the samples is included in the database and associated with the symbology. The database is stored on any suitable recording medium, such as a hard drive, a floppy disk, a tape, a CD ROM, a DVD disk and any other suitable medium.

DATABASES

15

20

25

30

Human genotyping is currently dependent on collaborations with hospitals, tissues banks and research institutions that provide samples of disease tissue. This approach is based on the concept that the onset and/or progression of diseases can be correlated with the presence of a polymorphisms or other genetic markers. This approach does not consider that disease correlated with the presence of specific markers and the absence of specific markers. It is shown herein that identification and scoring of the appearance and disappearance of markers is possible only if these markers are measured in the background of healthy subjects where the onset of disease does not mask the change in polymorphism occurrence. Databases of information from disease populations suffer from small sample size, selection bias and heterogeneity. The databases provided herein from healthy populations solve these problems by permitting large sample bands, simple selection methods and diluted heterogeneity.

Provided herein are first databases of parameters, associated with non-selected, particularly healthy, subjects. Also provided are combinations of the databases with indexed samples obtained from each of the subjects. Further provided are databases produced from the first databases. These contain in addition to the original parameters information, such as genotypic information,

10

15

20

25

30

including, but are not limited to, genomic sequence information, derived from the samples.

The databases, which are herein designated healthy databases, are so-designated because they are not obtained from subjects pre-selected for a particular disease. Hence, although individual members may have a disease, the collection of individuals is not selected to have a particular disease.

The subjects from whom the parameters are obtained comprise either a set of subjects who are randomly selected across, preferably, all populations, or are pre-selected to be disease-free or healthy. As a result, the database is not selected to be representative of any pre-selected phenotype, genotype, disease or other characteristic. Typically the number of subjects from which the database is prepared is selected to produce statistically significant results when used in the methods provided herein. Preferably, the number of subjects will be greater than 100, more preferably greater than 200, yet more preferably greater than 1000. The precise number can be empirically determined based upon the frequency of the parameter(s) that be used to sort the database. Generally the population can have at least 50, at least 100, at least 200, at least 500, at least 1000, at least 500 or at least 10,000 or more subjects.

Upon identification of a collection of subjects, information about each subject is recorded and associated with each subject as a database. The information associated with each of the subjects, includes, but is not limited to, information related to historical characteristics of the subjects, phenotypic characteristics and also genotypic characteristics, medical characteristics and any other traits and characteristics about the subject that can be determined. This information will serve as the basis for sorting the database.

In an exemplary embodiment, the subjects are mammals, such as humans, and the information relates to one or more of parameters, such as age, sex, medical history, ethnicity and any other factor. Such information, when the animals are humans, for example, can be obtained by a questionnaire, and by observations about the individual, such as hair color, eye color and other characteristics. Genotypic information will be obtained from tissue or other body and body fluid samples from the subject.

The healthy genomic database can include profiles and polymorphisms from healthy individuals from a library of blood samples where each sample in the library is an individual and separate blood or other tissue sample. Each sample in the database is profiled as to the sex, age, ethnic group, and disease history of the donor.

The databases are generated by first identifying healthy populations of subjects and obtaining information about each subject that will serve as the sorting parameters for the database. This information is preferably entered into a storage medium, such as the memory of a computer.

The information obtained about each subject in a population used for generating the database is stored in a computer memory or other suitable storage medium. The information is linked to an identifier associated with each subject. Hence the database will identify a subject, for example by a datapoint representative of a bar code, and then all information, such as the information from a questionnaire, regarding the individual is associated with the datapoint. As the information is collected the database is generated.

Thus, for example, profile information, such as subject histories obtained from questionnaires, is collected in the database. The resulting database can be sorted as desired, using standard software, such as by age, sex and/or ethnicity. An exemplary questionnaire for subjects from whom samples are to be obtained is shown in Figures 22A-D. Each questionnaire preferably is identified by a bar code, particularly a machine readable bar code for entry into the database. After a subject provides data and is deemed to be healthy (i.e., meets standards for blood donation), the data in the questionnaire is entered into the database and is associated with the bar code. A tissue, cell or blood sample is obtained from the subject.

Figure 4 exemplifies processing and tracking of blood sample components. Each component is tracked with a bar code, dated, is entered into the database and associated with the subject and the profile of the subject. Typically, the whole blood is centrifuged to produce plasma, red blood cells (which pellet) and leukocytes found in the buffy coat which layers in between.

5

10

15

20

25

-20-

Various samples are obtained and coded with a bar code and stored for use as needed.

Samples are collected from the subjects. The samples include, but are not limited to, tissues, cells, and fluids, such as nucleic acid, blood, plasma, amniotic fluid, synovial fluid, urine, saliva, aqueous humor, sweat, sperm samples and cerebral spinal fluid. It is understood that the particular set of samples depends upon the organisms in the population.

Once samples are obtained the collection can be stored and, in preferred embodiments, each sample is indexed with an identifier, particularly a machine readable code, such as a bar code. For analyses, the samples or components of the samples, particularly biopolymers and small molecules, such as nucleic acids and/or proteins and metabolites, are isolated.

After samples are analyzed, this information is entered into the database in the memory of the storage medium and associated with each subject. This information includes, but is not limited to, genotypic information. Particularly, nucleic acid sequence information and other information indicative of polymorphisms, such as masses of PCR fragments, peptide fragment sequences or masses, spectra of biopolymers and small molecules and other indicia of the structure or function of a gene, gene product or other marker from which the existence of a polymorphism within the population can be inferred.

In an exemplary embodiment, a database can be derived from a collection of blood samples. For example, Figure 1 (see, also Figure 10) shows the status of a collection of over 5000 individual samples. The samples were processed in the laboratory following SOP (standard operating procedure) guidelines. Any standard blood processing protocol may be used.

For the exemplary database described herein, the following criteria were used to select subjects:

No testing is done for infectious agents.

Age: At least 17 years old

Weight: Minimum of 110 pounds

Permanently Disqualified:

History of hepatitis (after age 11)

10

15

20

Leukemia Lymphoma

Human immunodeficiency virus (HIV), AIDS

Chronic kidney disease

Temporarily Disqualified:

Pregnancy - until six weeks after delivery, miscarriage or abortion
Major surgery or transfusions - for one year
Mononucleosis - until complete recovery
Prior whole blood donation - for eight weeks
Antibiotics by injection for one week; by mouth, for forty-eight hours,
except antibiotics for skin complexion;

5 year Deferment:

Internal cancer and skin cancer if it has been removed, is healed and there is no recurrence

These correspond to blood bank criteria for donating blood and represent a healthy population as defined herein for a human healthy database.

Structure of the database

Any suitable database structure and format known to those of skill in the art may be employed. For example, a relational database is a preferred format in which data is stored as matrices or tables of the parameters linked by an indexer that identifies each subject. Software for preparing and manipulating, including sorting the database, can be readily developed or adapted from commercially available software, such as Microsoft Access.

Quality control

Quality control procedures can be implemented. For example, after collection of samples, the quality of the collection in the bank can be assessed. For example, mix-up of samples can be checked by testing for known markers, such as sex. After samples are separated by ethnicity, samples are randomly tested for a marker associated with a particular ethnicity, such as HLA DQA1 group specific component, to assess whether the samples have been properly sorted by ethnic group. An exemplary sample bank is depicted in Figure 4.

20

25

Obtaining genotypic data and other parameters for the database

After informational and historical parameters are entered into the database, material from samples obtained from each subject, is analyzed. Analyzed material include proteins, metabolites, nucleic acids, lipids and any other desired constituent of the material. For example, nucleic acids, such as genomic DNA, can be analyzed by sequencing.

Sequencing can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence among the subjects in the database, the region of interest from each sample can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art and sequenced. For purposes herein, sequencing analysis is preferably effected using mass spectrometry (see, e.g., U.S. Patent Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids can also be sequence by hybridization (see, e.g., U.S. Patent Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Serial Nos. 08/419,994 and 09/395,409).

In other detection methods, it is necessary to first amplify prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 150 and 350 base pairs apart.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially

10

20

25

15

20

25

30

useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

Nucleic acids can also be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Patent No. 5,605,798, 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851 and International PCT application No. WO 99/31273, International PCT application No. WO 98/20019). These methods can be automated (see, e.g., copending U.S. application Serial No. 09/285,481 and published International PCT application No. PCT/US00/08111, which describes an automated process line). Preferred

among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. Patent No. 6,043,031; see, also U.S. application Serial Nos. 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Serial No. 09/074,936, U.S. Patent No. 6,024,925, and U.S. application Serial Nos.

09/074,936, U.S. Patent No. 6,024,925, and U.S. application Serial Nos. 08/746,055 and 08/786,988, and published International PCT application No. WO 98/20020)

A preferred format for performing the analyses is a chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-coated substrate, preferably in the form of an array. More preferably, when analyses are performed using mass spectrometry, particularly MALDI, small nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the signals in the resulting mass spectra ar proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in U.S. Patent No. 6,024,925, co-

-24-

pending U.S. application Serial Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Serial No. PCT/US97/20195, which published as WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAY. MassArray relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments

The methods provided herein permit quantitative determination of alleles. The areas under the signals in the mass spectra can be used for quantitative determinations. The frequency is determined from the ratio of the signal to the total area of all of the spectrum and corrected for background. This is possible because of the PROBE technology as described in the above applications incorporated by reference herein.

associated with genetic variants without tags.

Additional methods of analyzing nucleic acids include amplification-based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using $Q\beta$ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.

Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.

The methods described below provide ways to fragment given amplified or non-amplified nucleotide sequences thereby producing a set of mass signals when mass spectrometry is used to analyze the fragment mixtures.

Amplified fragments are yielded by standard polymerase chain methods (US 4,683,195 and 4,683,202). The fragmentation method involves the use of enzymes that cleave single or double strands of DNA and enzymes that ligate DNA. The cleavage enzymes can be glycosylases, nickases, and site-specific and non site-specific nucleases with the most preferred enzymes being glycosylases, nickases, and site-specific nucleases.

10

15

-25-

Glycosylase Fragmentation Method

5

10

15

20

25

30

DNA glycosylases specifically remove a certain type of nucleobase from a given DNA fragment. These enzymes can thereby produce abasic sites, which can be recognized either by another cleavage enzyme, cleaving the exposed phosphate backbone specifically at the abasic site and producing a set of nucleobase specific fragments indicative of the sequence, or by chemical means, such as alkaline solutions and or heat. The use of one combination of a DNA glycosylase and its targeted nucleotide would be sufficient to generate a base specific signature pattern of any given target region.

Numerous DNA glcosylases are known, For example, a DNA glycosylase can be uracil-DNA glycolsylase (UDG), 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-

Hydroxymethylcytosine DNA glycosylase, or 1,N6-ethenoadenine DNA glycosylase (see, e.g.,, U.S. Patent Nos. 5,536,649, 5,888, 795, 5,952,176 and 6,099,553, International PCT application Nos. WO 97/03210, WO 99/54501; see, also, Eftedal et al. (1993) Nucleic Acids Res 21:2095-2101, Bjelland and Seeberg (1987) Nucleic Acids Res. 15:2787-2801, Saparbaev et al. (1995) Nucleic Acids Res. 23:3750-3755, Bessho (1999) Nucleic Acids Res. 27:979-983) corresponding to the enzyme's modified nucleotide or nucleotide analog target. A preferred glycosylase is uracil-DNA glycolsylase (UDG).

Uracil, for example, can be incorporated into an amplified DNA molecule by amplifying the DNA in the presence of normal DNA precursor nucleotides (e.g. dCTP, dATP, and dGTP) and dUTP. When the amplified product is treated with UDG, uracil residues are cleaved. Subsequent chemical treatment of the products from the UDG reaction results in the cleavage of the phosphate backbone and the generation of nucleobase specific fragments. Moreover, the separation of the complementary strands of the amplified product prior to glycosylase treatment allows complementary patterns of fragmentation to b generated. Thus, the use of dUTP and Uracil DNA glycosylase allows the generation of T specific fragments for the complementary strands, thus providing

20

25

30

information on the T as well as the A positions within a given sequence. Similar to this, a C-specific reaction on both (complementary) strands (i.e. with a C-specific glycosylase) yields information on C as well as G positions within a given sequence if the fragmentation patterns of both amplification strands are analyzed separately. Thus, with the glycosylase method and mass spectrometry, a full series of A, C, G and T specific fragmentation patterns can be analyzed.

Nickase Fragmentation Method

A DNA nickase, or DNase, can be used recognize and cleave one strand of a DNA duplex. Numerous nickases are known. Among these, for example, are nickase NY2A nickase and NYS1 nickase (Megabase) with the following cleavage sites:

NY2A: 5'...R AG...3'

3'...Y TC...5' where R = A or G and Y = C or T

15 NYS1: 5'... CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

Fen-Ligase Fragmentation Method

The Fen-ligase method involves two enzymes: Fen-1 enzyme and a ligase. The Fen-1 enzyme is a site-specific nuclease known as a "flap" endonuclease (US 5,843,669, 5,874,283, and 6,090,606). This enzymes recognizes and cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. This cleavage is highly specific and can recognize single base pair mutations, permitting detection of a single homologue from an individual heterozygous at one SNP of interest and then genotyping that homologue at other SNPs occurring within the fragment. Fen-1 enzymes can be Fen-1 like nucleases e.g. human, murine, and Xenopus XPG enzymes and yeast RAD2 nucleases or Fen-1 endonucleases from, for example, *M. jannaschii*, *P. furiosus*, and *P. woesei*. Among preferred enzymes are the Fen-1 enzymes.

The ligase enzyme forms a phosphodiester bond between two double stranded nucleic acid fragments. The ligase can be DNA Ligase I or DNA Ligase III (see, e.g., U.S. Patent Nos. US 5,506,137, 5,700,672, 5,858,705 and 5,976,806; see, also, Waga, et al. (1994) J. Biol. Chem. 269:10923-10934, Li

et al. (1994) Nucleic Acids Res. 22:632-638, Arrand et al. (1986) J. Biol. Chem. 261:9079-9082, Lehman (1974) Science 186:790-797, Higgins and Cozzarelli (1979) Methods Enzymol. 68:50-71, Lasko et al. (1990) Mutation Res. 236:277-287, and Lindahl and Barnes (1992) Ann. Rev. Biochem. 61:251-281).

Thermostable ligase (Epicenter Technologies), where "thermostable" denotes that the ligase retains activity even after exposure to temperatures necessary to separate two strands of DNA, are among preferred ligases for use herein.

Type IIS Enzyme Fragmentation Method

Restriction enzymes bind specifically to and cleave double-stranded DNA at specific sites within or adjacent to a particular recognition sequence. These enzymes have been classified into three groups (e.g. Types I, II, and III) as known to those of skill in the art. Because of the properties of type I and type III enzymes, they have not been widely used in molecular biological applications.

Thus, for this invention type II enzymes are preferred. Of the thousands of restriction enzymes known in the arts, there are 179 different type II specificities. Of the 179 unique type II restriction endonucleases, 31 have a 4-base recognition sequence, 11 have a 5-base recognition sequence, 127 have a 6-base recognition sequence, and 10 have recognition sequences of greater than six bases (US 5,604,098). Of category type II enzymes, type IIS is preferred.

Type IIS enzymes can be Alw XI, Bbv I, Bce 83, Bpm I, Bsg I, Bsm AI, Bsm FI, Bsa I, Bcc I, Bcg I, Ear I, Eco 57I, Esp 3I, Fau I, Fok I, Gsu I, Hga I, Mme I, Mbo II, Sap I, and the like. The preferred type IIS enzyme is Fok I.

The Fok I enzyme endonuclease is an exemplary well characterized member of the Type IIS class (see, e.g., U.S. Patent Nos. 5,714,330, 5,604,098, 5,436,150, 6,054,276 and 5,871,911; see, also, Szybalski et al. (1991) Gene 100:13-26, Wilson and Murray (1991) Ann. Rev. Genet. 25:585-627, Sugisaki et al. (1981) Gene 16:73-78, Podhajska and Szalski (1985) Gene 40:175-182. Fok I recognizes the sequence 5'GGATG-3' and cleaves DNA accordingly. Type IIS restriction sites can be introduced into DNA targets by incorporating the site into primers used to amplify such targets. Fragments produced by digestion with Fok I are site specific and can be analyzed by mass

25

10

15

20

spectrometry methods such as MALDI-TOF mass spectrometry, ESI-TOF mass spectrometry, and any other type of mass spectrometry well known to those of skill in the art.

Once a polymorphism has been found to correlatate with a parameter such as age. The possibility of false results due to allelic dropout is examined by doing comparative PCR in an adjacent region of the genome.

Analyses

In using the database, allelic frequencies can be determined across the population by analyzing each sample in the population individually, determining the presence or absence of allele or marker of interest in each individual sample, and then determining the frequency of the marker in the population. The database can then be sorted (stratified) to identify any correlations between the allele and a selected parameter using standard statistical analysis. If a correlation is observed, such as a decrease in a particular marker with age or correlation with sex or other parameter, then the marker is a candidate for further study, such as genetic mapping to identify a gene or pathway in which it is involved. The marker may then be correlated, for example, with a disease. Haplotying can also be carried out. Genetic mapping can be effected using standard methods and may also require use of databases of others, such as databases previously determined to be associated with a disorder.

Exemplary analyses have been performed and these are shown in the figures, and discussed herein.

Sample pooling

25 database of such information, substantially the same frequencies that were obtained by examining each sample separately can be obtained by pooling samples, such as in batches of 10, 20, 50, 100, 200, 500, 1000 or any other number. A precise number may be determined empirically if necessary, and can be as low as 3.

-29-

In one embodiment, the frequency of genotypic and other markers can be obtained by pooling samples. To do this a target population and a genetic variation to be assessed is selected, a plurality of samples of biopolymers are obtained from members of the population, and the biopolymer from which the marker or genotype can be inferred is determined or detected. A comparison of samples tested in pools and individually and the sorted results therefrom are shown in Figure 9, which shows frequency of the factor VII Allele 353Q. Figure 10 depicts the frequency of the CETP Allele CETP in pooled versus individual samples. Figure 15 shows ethnic diversity among various ethnic groups in the database using pooled DNA samples to obtain the data. Figures 12-14 show mass spectra for these samples.

Pooling of test samples has application not only to the healthy databases provided herein, but also to use in gathering data for entry into any database of subjects and genotypic information, including typical databases derived from diseased populations. What is demonstrated herein, is the finding that the results achieved are statistically the same as the results that would be achieved if each sample is analyzed separately. Analysis of pooled samples by a method, such as the mass spectrometric methods provided herein, permits resolution of such data and quantitation of the results.

For factor VII the R53Q acid polymorphism was assessed. In Figure 9, the "individual" data represent allelic frequency observed in 92 individuals reactions. The pooled data represent the allelic frequency of the same 92 individuals pooled into a single probe reaction. The concentration of DNA in the samples of individual donors is 250 nanograms. The total concentration of DNA in the pooled samples is also 250 nanograms, where the concentration of any individual DNA is 2.7 nanograms.

It also was shown that it is possible to reduce the DNA concentration of individuals in a pooled samples from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected. Hence low concentrations of sample may be used in the pooling methods.

5

10

15

20

25

WO 01/27857

Use of the databases and markers identified thereby

The successful use of genomics requires a scientific hypothesis (i.e., common genetic variation, such as a SNP), a study design (i.e., complex disorders), samples and technology, such as the chip-based mass spectrometric analyses (see, e.g., U.S. Patent No. 5,605,798, U.S. Patent No. 5,777,324, U.S. Patent No. 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851, International PCT application No. WO 98/20019, copending U.S. application Serial No. 09/285,481, which describes an automated process line for analyses; see, also, U.S. application Serial Nos. 08/617,256, 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 09/266,409, 08/786,988 and 08/787,639; see, also U.S. application Serial No. 09/074,936). All of these aspects can be used in conjunction with the databases provided herein and samples in the collection.

The databases and markers identified thereby can be used, for example, for identification of previously unidentified or unknown genetic markers and to identify new uses for known markers. As markers are identified, these may be entered into the database to use as sorting parameters from which additional correlations may be determined.

Previously unidentified or unknown genetic markers

The samples in the healthy databases can be used to identify new polymorphisms and genetic markers, using any mapping, sequencing, amplification and other methodologies, and in looking for polymorphisms among the population in the database. The thus-identified polymorphism can then be entered into the database for each sample, and the database sorted (stratified) using that polymorphism as a sorting parameter to identify any patterns and correlations that emerge, such as age correlated changes in the frequency of the identified marker. If a correlation is identified, the locus of the marker can be mapped and its function or effect assessed or deduced.

10

15

20

25

15

20

25

Thus, the databases here provide means for:

identification of significantly different allelic frequencies of genetic factors by comparing the occurrence or disappearance of the markers with increasing age in population and then associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing the male with the female population or comparing other selected stratified populations and associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing different ethnic groups and associating the markers with a disease or a biochemical pathway that is known to occur in high frequency in the ethnic group;

profiling potentially functional variants of genes through the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating the contribution of the variant genes to the physical condition of the investigated population;

identification of functionally relevant gene variants by gene disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population;

identification of potentially functional variants of chromosomes or parts of chromosomes by linkage disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population.

Uses of the identified markers and known markers

The databases may also be used in conjunction with known markers and sorted to identify any correlations. For example, the databases can be used for:

determination and evaluation of the penetrance of medically relevant polymorphic markers;

10

15

20

25

30

determination and evaluation of the diagnostic specificity of medically relevant genetic factors;

determination and evaluation of the positive predictive value of medically relevant genetic factors;

determination and evaluation of the onset of complex diseases, such as, but are not limited to, diabetes, hypertension, autoimmune diseases, arteriosclerosis, cancer and other diseases within the general population with respect to their causative genetic factors;

delineation of the appropriate strategies for preventive disease treatment;
delineation of appropriate timelines for primary disease intervention;
validation of medically relevant genetic factors identified in isolated
populations regarding their general applicability;

validation of disease pathways including all potential target structures identified in isolated populations regarding their general applicability; and

validation of appropriate drug targets identified in isolated populations regarding their general applicability.

Among the diseases and disorders for which polymorphisms may be linked include, those linked to inborn errors of metabolism, acquired metabolic disorders, intermediary metabolism, oncogenesis pathways, blood clotting pathways, and DNA synthetic and repair pathways DNA repair/replication/transcription factors and activities, e.g., such as genes related to oncogenesis, aging and genes involved in blood clotting and the related biochemical pathways that are related to thrombosis, embolism, stroke, myocardial infarction, angiogenesis and oncogenesis.

For example, a number of diseases are caused by or involve deficient or defective enzymes in intermediary metabolism (see, e.g., Tables 1 and 2, below) that result, upon ingestion of the enzyme substrates, in accumulation of harmful metabolites that damage organs and tissues, particularly an infant's developing brain and other organs, resulting in mental retardation and other developmental disorders.

15

20

25

30

Identification of markers and genes for such disorders is of great interest. Model systems

Several gene systems, p21, p53 and Lipoprotein Lipase polymorphism (N291S), were selected. The p53 gene is a tumor suppressor gene that is mutated in diverse tumor types. One common allelic variant occurs at codon 72. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in an amino acid exchange, arginine to proline, at codon 72 of the gene.

Using diseased populations, it has been shown that there are ethnic differences in the allelic distribution of these alleles among African-Americans and Caucasians in the U.S. The results here support this finding and also demonstrate that the results obtained with a healthy database are meaningful (see, Figure 7B).

The 291S allele leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer *et al.* (1995) *Nature Genetics 10*:28-34).

Both genetic polymorphisms were profiled within a part of the Caucasian population-based sample bank. For the polymorphism located in the lipoprotein lipase gene a total of 1025 unselected individuals (436 males and 589 females) were tested. Genomic DNA was isolated from blood samples obtained from the individuals.

As shown in the Examples and figures, an exemplary database containing about 5000 subjects, answers to the questionnaire (see Figure 3), and genotypic information has been stratified. A particular known allele has been selected, and the samples tested for the marker using mass spectrometric analyses, particularly PROBE (see the EXAMPLES) to identify polymorphisms in each sample. The population in the database has been sorted according to various parameters and correlations have been observed. For example, FIGURES 2A-C, show sorting of the data by age and sex for the Lipoprotein Lipase gene in the Caucasian population in the database. The results show a decrease in the frequency of the allele with age in males but no such decrease in females. Other

15

20

25

30

alleles that have been tested against the database, include, alleles of p53, p21 and factor VII. Results when sorted by age are shown in the figures.

These examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population. The scientific interpretation of those results allows prediction of medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies, and the general applicability of genetic alterations identified in isolated populations to panmixed populations.

Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

Exemplary computer system for creating, storing and processing the databases Systems

Systems, including computers, containing the databases are provided herein. The computers and databases can be used in conjunction, for example, with the APL system (see, copending U.S. application Serial No. 09/285,481), which is an automated system for analyzing biopolymers, particularly nucleic acids. Results from the APL system can be entered into the database.

Any suitable computer system may be used. The computer system may be integrated into systems for sample analysis, such as the automated process line described herein (see, e.g., copending U.S. application Serial No. 09/285,481).

Figure 17 is a block diagram of a computer constructed in to provide and process the databases described herein. The processing that maintains the database and performs the methods and procedures may be performed on multiple computers all having a similar construction, or may be performed by a single, integrated computer. For example, the computer through which data is added to the database may be separate from the computer through which the database is sorted, or may be integrated with it. In either arrangement, the

WO 01/27857

10

20

25

30

computers performing the processing may have a construction as illustrated in Figure 17.

Figure 17 is a block diagram of an exemplary computer 1700 that maintains the database described above and performs the methods and 5 procedures. Each computer 1700 operates under control of a central processor unit (CPU) 1702, such as a "Pentium" microprocessor and associated integrated circuit chips, available from Intel Corporation of Santa Clara, California, USA. A computer user can input commands and data from a keyboard and display mouse 1704 and can view inputs and computer output at a display 1706. The display is typically a video monitor or flat panel display device. The computer 1700 also includes a direct access storage device (DASD) 1707, such as a fixed hard disk drive. The memory 1708 typically comprises volatile semiconductor random access memory (RAM). Each computer preferably includes a program product reader 1710 that accepts a program product storage device 1712, from which the program product reader can read data (and to which it can optionally write data). The program product reader can comprise, for example, a disk drive, and the program product storage device can comprise removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, or a DVD data disc. If desired, the computers can be connected so they can communicate with each other, and with other connected computers, over a network 1713. Each computer 1700 can communicate with the other connected computers over the network 1713 through a network interface 1714 that enables communication over a connection 1716 between the network and the computer.

The computer 1700 operates under control of programming steps that are temporarily stored in the memory 1708 in accordance with conventional computer construction. When the programming steps are executed by the CPU 1702, the pertinent system components perform their respective functions. Thus, the programming steps implement the functionality of the system as described above. The programming steps can be received from the DASD 1707, through the program product reader 1712, or through the network connection 1716. The storage drive 1710 can receive a program product, read

WO 01/27857

-36-

PCT/US00/28413

programming steps recorded thereon and transfer the programming steps into the memory 1708 for execution by the CPU 1702. As noted above, the program product storage device 1710 can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs. Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation can be embodied on a program product.

Alternatively, the program steps can be received into the operating memory 1708 over the network 1713. In the network method, the computer receives data including program steps into the memory 1708 through the network interface 1714 after network communication has been established over the network connection 1716 by well-known methods that will be understood by those skilled in the art without further explanation. The program steps are then executed by the CPU 1702 to implement the processing of the Garment Database system.

It should be understood that all of the computers of the system preferably have a construction similar to that shown in Figure 17, so that details described with respect to the Figure 17 computer 1700 will be understood to apply to all computers of the system 1700. This is indicated by multiple computers 1700 shown connected to the network 1713. Any one of the computers 1700 can have an alternative construction, so long as they can communicate with the other computers and support the functionality described herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases, such as for identifying polymorphic genetic markers. In particular, the information contained in the database is stored in computers having a construction similar to that illustrated in Figure 17. The first step for maintaining the database, as indicated in Figure 18, is to identify healthy members of a population. As noted above, the population members are subjects that are selected only on the basis of being healthy, and where the subjects are mammals, such as humans, they are preferably selected based upon apparent

10

15

20

25

-37-

health and the absence of detectable infections. The step of identifying is represented by the flow diagram box numbered 1802.

The next step, represented by the flow diagram box numbered 1804, is to obtain identifying and historical information and data relating to the identified members of the population. The information and data comprise parameters for each of the population members, such as member age, ethnicity, sex, medical history, and ultimately genotypic information. Initially, the parameter information is obtained from a questionnaire answered by each member, from whom a body tissue or body fluid sample also is obtained. The step of entering and storing these parameters into the database of the computer is represented by the flow diagram box numbered 1806. As additional information about each population member and corresponding sample is obtained, this information can be inputted into the database and can serve as a sorting parameter.

In the next step, represented by the flow diagram box numbered 1808, the parameters of the members are associated with an indexer. This step may be executed as part of the database storage operation, such as when a new data record is stored according to the relational database structure and is automatically linked with other records according to that structure. The step 1806 also may be executed as part of a conventional data sorting or retrieval process, in which the database entries are searched according to an input search or indexing key value to determine attributes of the data. For example, such search and sort techniques may be used to follow the occurrence of known genetic markers and then determine if there is a correlation with diseases for which they have been implicated. Examples of this use are for assessing the frequencies of the p53 and Lipoprotein Lipase polymorphisms.

Such searching of the database also may be valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex, or some other criteria. This can allow the identification of previously unknown polymorphisms and, ultimately, identification of a gene or pathway involved in the onset and progression of disease.

5

10

15

20

25

-38-

In addition, the database can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

In this way, the databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings, and also an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

Morbidity and/or early mortality associated polymorphisms

A database containing information provided by a population of healthy blood donors who were not selected for any particular disease to can be used to identify polymorphisms and the alleles in which they are present, whose frequency decreases with age. These may represent morbidity susceptibility markers and genes.

Polymorphisms of the genome can lead to altered gene function, protein function or genome instability. To identify those polymorphisms which have a clinical relevance/utility is the goal of a world-wide scientific effort. It can be expected that the discovery of such polymorphisms will have a fundamental impact on the identification and development of novel drug compounds to cure diseases. However, the strategy to identify valuable polymorphisms is cumbersome and dependent upon the availability of many large patient and control cohorts to show disease association. In particular, genes that cause a general risk of the population to suffer from any disease (morbidity susceptibility genes) will escape these case/control studies entirely.

Here described is a screening strategy to identify morbidity susceptibility genes underlying a variety of different diseases. The definition of a morbidity susceptibility gene is a gene that is expressed in many different cell types or tissues (housekeeping gene) and its altered function can facilitate the expression of a clinical phenotype caused by disease-specific susceptibility genes that are involved in a pathway specific for this disorder. In other words, these morbidity

10

15

20

25

15

20

25

30

susceptibility genes predispose people to develop a distinct disease according to their genetic make-up for this disease.

Candidates for morbidity susceptibility genes can be found at the bottom level of pathways involving transcription, translation, heat-shock proteins, protein trafficking, DNA repair, assembly systems for subcellular structures (e.g. mitochondria, peroxysomes and other cellular microbodies), receptor signaling cascades, immunology, etc. Those pathways control the quality of life at the cellular level as well as for the entire organism. Mutations/polymorphisms located in genes encoding proteins for those pathways can reduce the fitness of cells and make the organism more susceptible to express the clinical phenotype caused by the action of a disease-specific susceptibility gene. Therefore, these morbidity susceptibility genes can be potentially involved in a whole variety of different complex diseases if not in all. Disease-specific susceptibility genes are involved in pathways that can be considered as disease-specific pathways like glucose-, lipid, hormone metabolism, etc.

The exemplified method permit, among other things, identification of genes and/or gene products involved in a man's general susceptibility to morbidity and/or mortality; use of these genes and/or gene products in studies to elucidate the genetic underpinnings of human diseases; use of these genes and/or gene products in combinatorial statistical analyses without or together with disease-specific susceptibility genes; use of these genes and/or gene products to predict penetrance of disease susceptibility genes; use of these genes and/or gene products in predisposition and/or acute medical diagnostics and use of these genes and/or gene products to develop drugs to cure diseases and/or to extend the life span of humans.

SCREENING PROCESS

The healthy population stratified by age, gender and ethnicity, etc. is a very efficient and a universal screening tool for morbidity associated genes. Changes of allelic frequencies in the young compared to the old population are expected to indicate putative morbidity susceptibility genes. Individual samples of this healthy population base can be pooled to further increase the throughput. In a proof of principle experiment pools of young and old Caucasian females and

15

20

25

30

males were applied to screen more than 400 randomly chosen single nucleotide polymorphisms located in many different genes. Candidate polymorphisms were identified if the allelic difference was greater than 8% between young and old for both or only one of the genders. The initial results were assayed again in at least one independent subsequent experiments. Repeated experiments are necessary to recognize unstable biochemical reactions, which occur with a frequency of about 2-3% and can mimic age-related allelic frequency differences. Average frequency differences and standard deviations are calculated after successful reproducibility of initial results. The final allelic frequency is then compared to a reference population of Caucasian CEPH sample pool. The result should show similar allelic frequencies in the young Caucasian population. Subsequently, the exact allele frequencies of candidates including genotype information were obtained by analyzing all individual samples. This procedure is straight forward with regard to time and cost. It enables the screening of an enormous number of SNPs. So far, several markers with a highly significant association to age were identified and described below.

In general at least 5 individual in a stratified population need to be screened to produce statistically significant results. The frequency of the allele is determined for an age stratified population. Chi square analysis is then performed on the allelic frequencies to determine if the difference between age groups is statistically significant. A p value less than of 0.1 is considered to represent a statistically significant difference. More preferably the p value should be less than 0.05.

Clinical Trials

The identification of markers whose frequency in a population decreases with age also allows for better designed and balanced clinical trials. Currently, if a clinical trial utilizes a marker as a significant endpoint in a study and the marker disappears with age, then the results of the study may be inaccurate. By using methods provided herein, it can be ascertained that if a marker decreases in frequency with age. This information considered and controlled when designing the study. For, example, an age independent marker could be substituted in its place.

-41-

The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLE 1

This example describes the use of a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to determine the distribution of allelic frequencies of known genetic markers with age and by sex in a Caucasian subpopulation of the database. The results described in this example demonstrate that a disease-related genetic marker or polymorphism can be identified by sorting a healthy database by a parameter or parameters, such as age, sex and ethnicity.

Generating a database

5

10

15

25

Blood was obtained by venous puncture from human subjects who met blood bank criteria for donating blood. The blood samples were preserved with EDTA at pH 8.0 and labeled. Each donor provided information such as age, sex, ethnicity, medical history and family medical history. Each sample was labeled with a barcode representing identifying information. A database was generated by entering, for each donor, the subject identifier and information corresponding to that subject into the memory of a computer storage medium using commercially available software, e.g., Microsoft Access.

20 Model genetic markers

The frequencies of polymorphisms known to be associated at some level with disease were determined in a subpopulation of the subjects represented in the database. These known polymporphisms occur in the p21, p53 and Lipoprotein Lipase genes. Specifically, the N291S polymorphism (N291S) of the Lipoprotein Lipase gene, which results in a substitution of a serine for an asparagine at amino acid codon 291, leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).

The p53 gene encodes a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulating genes that c ntrol cell growth, DNA repair and apoptosis (programmed cell death). Mutations in the

15

20

25

30

p53 gene have been found in a wide variety of different cancers, including different types of leukemia, with varying frequency. The loss of normal p53 function results in genomic instability an uncontrolled cell growth. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in the substitution of a proline for an arginine at amino acid codon 72 of the gene.

The p21 gene encodes a cyclin-dependent kinase inhibitor associated with G1 phase arrest of normal cells. Expression of the p21 gene triggers apoptosis. Polymorphisms of the p21 gene have been associated with Wilms' tumor, a pediatric kidney cancer. One polymorphism of the p21 gene, the S31R polymorphism, results in a substitution of an arginine for a serine at amino acid codon 31.

Database analysis

Sorting of subjects according to specific parameters

The genetic polymorphisms were profiled within segments of the Caucasian subpopulation of the sample bank. For p53 profiling, the genomic DNA isolated from blood from a total of 1277 Caucasian subjects age 18-59 years and 457 Caucasian subjects age 60-79 years was analyzed. For p21 profiling, the genomic DNA isolated from blood from a total of 910 Caucasian subjects age 18-49 years and 824 Caucasian subjects age 50-79 years was analyzed. For lipoprotein lipase gene profiling, the genomic DNA from a total of 1464 Caucasian females and 1470 Caucasian males under 60 years of age and a total of 478 Caucasian females and 560 Caucasian males over 60 years of age was analyzed.

Isolation and analysis of genomic DNA

Genomic DNA was isolated from blood samples obtained from the individuals. Ten milliliters of whole blood from each individual was centrifuged at 2000 x g. One milliliter of the buffy coat was added to 9 ml of 155 mM NH₄Cl, 10 mM KHCO₃, and 0.1 mM Na₂EDTA, incubated 10 min at room temperature and centrifuged for 10 min at 2000 x g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH₄Cl, 10 mM KHCO₃ and 0.1 mM Na₂EDTA and resuspended in 4.5 ml of 50 mM Tris, 5 mM

15

20

25

30

EDTA and 1% SDS. Proteins were precipitated from the cell lysate by 6 mM ammonium acetate, pH 7.3, and then separated from the nucleic acids by centrifugation at 3000 x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000 x g. The dried nucleic acid pellet was hydrated in 10 mM Tris, pH 7.6, and 1 mM Na₂EDTA and stored at 4° C.

Assays of the genomic DNA to determine the presence or absence of the known genetic markers were developed using the BiomassPROBE™ detection method (primer oligo base extension) reaction. This method uses a single detection primer followed by an oligonucleotide extension step to give products, which can be readily resolved by mass spectrometry, and, in particular, MALDITOF mass spectrometry. The products differ in length depending on the presence or absence of a polymorphism. In this method, a detection primer anneals adjacent to the site of a variable nucleotide or sequence of nucleotides and the primer is extended using a DNA polymerase in the presence of one or more dideoxyNTPs and, optionally, one or more deoxyNTPs. The resulting products are resolved by MALDI-TOF mass spectrometry. The mass of the products as measured by MALDI-TOF mass spectrometry makes possible the determination of the nucleotide(s) present at the variable site.

First, each of the Caucasian genomic DNA samples was subjected to nucleic acid amplification using primers corresponding to sites 5' and 3' of the polymorphic sites of the p21 (S31R allele), p53 (R72P allele) and Lipoprotein Lipase (N291S allele) genes. One primer in each primer pair was biotinylated to permit immobilization of the amplification product to a solid support.

Specifically, the polymerase chain reaction primers used for amplification of the relevant segments of the p21, p53 and lipoprotein lipase genes are shown below: US4p21c31-2F (SEQ ID NO: 9) and US5p21-2R (SEQ ID NO: 10) for p21 gene amplification; US4-p53-ex4-F (also shown as p53-ex4US4 (SEQ ID NO: 2)) and US5-p53/2-4R (also shown as US5P53/4R (SEQ ID NO: 3)) for p53 gene amplification; and US4-LPL-F2 (SEQ ID NO: 16) and US5-LPL-R2 (SEQ ID NO: 17) for lipoprotein lipase gene amplification.

15

20

25

30

Amplification of the respective DNA sequences was conducted according to standard protocols. For example, primers may be used in a concentration of 8 pmol. The reaction mixture (e.g., total volume $50 \,\mu$ l) may contain Taq-polymerase including 10x buffer and dTNPs. Cycling conditions for polymerase chain reaction amplification may typically be initially 5 min. at 95°C, followed by 1 min. at 94°C, 45 sec at 53°C, and 30 sec at 72°C for 40 cycles with a final extension time of 5 min at 72°C. Amplification products may be purified by using Qiagen's PCR purification kit (No. 28106) according to manufacturer's instructions. The elution of the purified products from the column can be done in $50 \,\mu$ l TE-buffer (10mM Tris, 1 mM EDTA, pH 7.5).

The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, the following: $50 \,\mu$ l annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₂, 1% Triton X-100, pH 8) at 50° C for 10 min, followed by washing of the beads three times with 200 μ l washing buffer (40 mM Tris, 1 mM EDTA, 50 mM NaCl, 0.1% Tween 20, pH 8.8) and once in 200 μ l TE buffer.

The PROBE extension reaction was performed, for example, by using some components of the DNA sequencing kit from USB (No. 70770) and dNTPs or ddNTPs from Pharmacia. An exemplary protocol could include a total reaction volume of 45 μ l, containing of 21 μ l water, 6 μ l Sequenase-buffer, 3 μ l 10 mM DTT solution, 4.5 μ l, 0.5 mM of three dNTPs, 4.5 μ l, 2 mM the missing one ddNTP, 5.5 μ l glycerol enzyme dilution buffer, 0.25 μ l Sequenase 2.0, and 0.25 pyrophosphatase. The reaction can then by pipetted on ice and incubated for 15 min at room temperature and for 5 min at 37°C. The beads may be washed three times with 200 μ l washing buffer and once with 60 μ l of a 70 mM NH₄-Citrate solution.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry using 3-hydroxypicolinic acid (3-HPA) as matrix and a UV laser.

WO 01/27857

10

15

20

25

30

Specifically, the primers used in the PROBE reactions are as shown below: P21/31-3 (SEQ ID NO: 12) for PROBE analysis of the p21 polymorphic site; P53/72 (SEQ ID NO: 4) for PROBE analysis of the p53 polymorphic site; and LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site. In the PROBE analysis of the p21 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 31 encodes a serine) and from the reaction conducted on a polymorphic S31R allele template (wherein codon 31 encodes an arginine) are shown below and designated as P21/31-3 Ser (wt) (SEQ ID NO: 13) and P21/31-3 Arg (SEQ ID NO: 14), respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 4900.2 Da for the wild-type product and 5213.4 Da for the polymorphic product).

In the PROBE analysis of the p53 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 72 encodes an arginine) and from the reaction conducted on a polymorphic R72P allele template (wherein codon 72 encodes a proline) are shown below and designated as Cod72 G Arg (wt) and Cod72 C Pro, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5734.8 Da for the wild-type product and 5405.6 Da for the polymorphic product).

In the PROBE analysis of the lipoprotein lipase gene polymorphic site, the extension reaction was performed using a mixture of ddA and ddT. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 291 encodes an asparagine) and from the reaction conducted on a polymorphic N291S allele template (wherein codon 291 encodes a serine) are shown below and designated as 291Asn and 291Ser, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 6438.2 Da for the wild-type product and 6758.4 Da for the polymorphic product).

P53-1 (R72P)

20

25

35

-46-

PCR Product length: 407 bp (SEQ ID NO: 1)

72R

c 72P

US4-p53-ex4-F ctg aggacctggt cctctgactq ctetttteac ceatetacaq tececettge egteceaage aatggatgat ttgatgetgt ccccggacga tattgaacaa tggttcactg aagacccagg tccagatgaa gctcccagaa tgctccccgc gtggcccctg caccagcagc tcctacaccg gcggcccctg

caccageeee etectggeee etgteatett etgteeette ecagaaaace taecagggea 10 gctacggttt ccgtctgggc ttcttgcatt ctgggacagc caagtctgtg acttgcacgg tcagttgccc tgaggggctg gcttccatga gacttcaa US5-p53/2-4R

Primers (SEQ ID NOs: 2-4)

p53-ex4FUS4 ccc agt cac gac gtt gta aaa cgc tga gga cct ggt cct ctg ac

15 US5P53/4R age gga taa caa ttt cac aca ggt tga agt ete atg gaa gee

P53/72 gcc aga ggc tgc tcc cc

Masses

P53/72 tgccagaggc

Allele	Product Termination: ddC	SEQ #	Length	Mass
P53/72	gccagaggctgctcccc	5	17	5132.4
Cod72 G Arg (wt)	gccagaggctgctccccgc	6	19	5734.8
Cod72 C Pro	gccagaggctgctccccc	7	18	5405.6

Biotinylated US5 primer is used in the PCR amplification.

LPL-1 (N291S)

Amino acid exchange asparagine to serine at codon 291 of the lipoprotein lipase gene.

PCR Product length: 251 bp (SEQ ID NO: 15)

US4-LPL-F2 (SEQ ID NO: 16)

gegetecatt catetettea tegaetetet gttgaatgaa gaaaateeaa gtaaggeeta caggtgeagt tegaaggaag cetttgagaa agggetetge ttgagttgta gaaagaaceg 30 LPL-2 291N ctgcaacaat ctqqqctatq aqatcaataa agtcagagcc aaaagaagca gcaaaatgta g 291S

cctgaagact cgttctcaga tgccc US4-LPL-R2

Primers (SEQ ID NOs: 16-18):

US4-LPL-F2 ccc agt cac gac gtt gta aaa cgg cgc tcc att cat ctc ttc US5-LPL-R2 agc gga taa caa ttt cac aca ggg ggc atc tga gaa cga gtc LPL-2 caa tct ggg cta tga gat ca

-47-

Masses

5

Allele	Product Termination: ddA, ddT	Product Termination: ddA, ddT SEQ #		Mass
LPL-2	caatctgggctatgagatca	19	20	6141
291 Asn	caatctgggctatgagatcaa	20	21	6438.2
291 Ser	caatctgggctatgagatcagt	21	22	6758.4

Biotinylated US5 primer is used in the PCR amplification.

P21-1 (S31R)

Amino acid exchange serine to arginine at codon 31 of the tumor suppressor gene p21. Product length: 207 bp (SEQ ID NO: 8)

gtcc gtcagaaccc atgcggcagc p21/31-3 31S

auggeotgee geogeotett eggeocagtg ga<u>caqeqage aqetqag</u>eeg egactgtgat
a 31R
gegotaatgg eggeotgeat ecaggaggee egtgagegat ggaacttega etttgteace
gagacaccac tggaggg
US5p21-2R

Primers (SEQ ID NOs: 9-11)

20 US4p21c31-2F ccc agt cac gac gtt gta aaa cgg tcc gtc aga acc cat gcg g

US5p21-2R age gga taa caa ttt cac aca gge tee agt ggt gte teg gtg ac

P21/31-3 cag cga gca gct gag

Masses

25

Allele	Product Termination: ddC	SEQ #	Length	Mass
p21/31-3	cagcgagcagctgag	12	15	4627
P21/31-3 Ser (wt)	cagcgagcagctgagc	13	16	4900.2
P21/31-3 Arg	cagcgagcagctgagac	14	17	5213.4

Biotinylated US5 primer is used in the PCR amplification.

analyzed by MALDI-TOF mass spectrometry to determine the identity of the nucleotide at the polymorphic sites. The genotypic results of each assay can be entered into the database. The results were then sorted according to age and/or sex to determine the distribution of allelic

35 frequencies by age and/or sex. As d picted in the Figures showing

NSDCCID: <WC 012795742 1 4

-48-

histograms of the results, in each case, there was a differential distribution of the allelic frequencies of the genetic markers for the p21, p53 and lipoprotein lipase gene polymorphisms.

Figure 8 shows the results of the p21 genetic marker assays reveals a statistically significant decrease (from 13.3% to 9.2%) in the frequency of the heterozygous genotype (S31R) in Caucasians with age (18-49 years of age compared to 50-79 years of age). The frequencies of the homozygous (S31 and R31) genotypes for the two age groups are also shown, as are the overall frequencies of the S31 and R31 alleles in the two age groups (designated as 'S31 and 'R31, respectively in the Figure).

Figures 7A-C shows the results of the p53 genetic marker assays and reveals a statistically significant decrease (from 6.7% to 3.7%) in the frequency of the homozygous polymorphic genotype (P72) in Caucasians with age (18-59 years of age compared to 60-79 years of age). The frequencies of the homozygous "wild-type" genotype (R72) and the heterozygous genotype (R72P) for the two age groups are also shown, as are the overall frequencies of the R72 and P72 alleles in the two age groups (designated as 'R72 and 'P72, respectively in the Figure). These results are consistent with the observation that allele is not benign, as p53 regulates expression of a second protein, p21, which inhibits cyclin-dependent kinases (CDKs) needed to drive cells through the cell-cycle (a mutation in either gene can disrupt the cell cycle leading to increased cell division).

Figure 2C shows the results of the lipoprotein lipase gene genetic marker assays reveals a statistically significant decrease (from 1.97% to 0.54%) in the frequency of the polymorphic allele (S291) in Caucasian males with age (see also Reymer et al. (1995) Nature Genetics 10:28-34).

10

15

10

15

The frequencies of this allele in Caucasian females of different age groups are also shown.

EXAMPLE 2

This example describes the use of MALDI-TOF mass spectrometry to analyze DNA samples of a number of subjects as individual samples and as pooled samples of multiple subjects to assess the presence or absence of a polymorphic allele (the 353Q allele) of the Factor VII gene and determine the frequency of the allele in the group of subjects. The results of this study show that essentially the same allelic frequency can be obtained by analyzing pooled DNA samples as by analyzing each sample separately and thereby demonstrate the quantitative nature of MALDI-TOF mass spectrometry in the analysis of nucleic acids.

Factor VII

Factor VII is a serine protease involved in the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. There is evidence that supports an association between polymorphisms in the Factor VII gene and increased Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease, including myocardial infarction. The polymorphism investigated in this study is R353Q (i.e., a substitution of a glutamic acid residue for an arginine residue at codon 353 of the Factor VII gene) (see Table 5).

Analysis of DNA samples for the presence or absence of the 353Q allele of the Factor VII gene

25

30

20

Genomic DNA was isolated from separate blood samples obtained from a large number of subjects divided into multiple groups of 92 subjects per group. Each sample of genomic DNA was analyzed using the BiomassPROBE™ assay as described in Example 1 to determine th presence or absence of the 353Q polymorphism of the Factor VII gene.

15

20

25

First, DNA from each sample was amplified in a polymerase chain reaction using primers F7-353FUS4 (SEQ ID NO: 24) and F7-353RUS5 (SEQ ID NO: 26) as shown below and using standard conditions, for example, as described in Example 1. One of the primers was biotinylated to permit immobilization of the amplification product to a solid support. The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, described in Example 1. The detection primer is shown as F7-353-P (SEQ ID NO: 27) below. The PROBE extension reaction was carried out using conditions, for example, such as those described in Example 1. The reaction was performed using ddG.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry. A matrix such as 3-hydroxypicolinic acid (3-HPA) and a UV laser could be used in the MALDI-TOF mass spectrometric analysis. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 353 encodes an arginine) and from the reaction conducted on a polymorphic 353Q allele template (wherein codon 353 encodes a glutamic acid) are shown below and designated as 353 CGG and 353 CAG, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5646.8 Da for the wild-type product and 5960 Da for the polymorphic product).

The MALDI-TOF mass spectrometric analyses of the PROBE reactions of each DNA sample were first conducted separately on each sample (250 nanograms total concentration of DNA per analysis). The allelic frequency of the 353Q polymorphism in the group of 92 subjects

was calculated based on the number of individual subjects in which it was detected.

Next, the samples from 92 subjects were pooled (250 nanograms total concentration of DNA in which the concentration of any individual DNA is 2.7 nanograms) and the pool of DNA was subjected to MALDITOF mass spectrometric analysis. The area under the signal corresponding to the mass of the 353Q polymorphism PROBE extension product in the resulting spectrum was integrated in order to quantitate the amount of DNA present. The ratio of this amount to total DNA was used to determine the allelic frequency of the 353Q polymorphism in the group of subjects. This type of individual sample vs. pooled sample analysis was repeated for numerous different groups of 92 different samples.

The frequencies calculated based on individual MALDI-TOF mass spectrometric analysis of the 92 separate samples of each group of 92 are compared to those calculated based on MALDI-TOF mass spectrometric analysis of pools of DNA from 92 samples in Figure 9. These comparisons are shown as "pairs" of bar graphs in the Figure, each pair being labeled as a separate "pool" number, e.g., P1, P16, P2, etc. Thus, for example, for P1, the allelic frequency of the polymorphism calculated by separate analysis of each of the 92 samples was 11.41% and the frequency calculated by analysis of a pool of all of the 92 DNA samples was 12.09%.

The similarity in frequencies calculated by analyzing separate DNA samples individually and by pooling the DNA samples demonstrates that it is possible, through the quantitative nature of MALDI-TOF mass spectrometry, to analyze pooled samples and obtain accurate frequency determinations. The ability to analyze pooled DNA samples significantly reduces the time and costs involved in the use of the non-selected, healthy databases as described herein. It has also been shown that it is

15

20

possible to decrease the DNA concentration of the individual samples in a pooled mixture from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected.

5 Factor VII R353Q PROBE Assay

PROBE Assay for cod353 CGG > CAG (Arg > Gln), Exon 9 G > A.

PCR fragment: 134 bp (incl. US tags; SEQ ID Nos. 22 and 23)

Frequency of A allele: Europeans about 0.1, Japanese/Chinese about 0.03-0.05 (Thromb. Haemost. 1995, 73:617-22; Diabetologia 1998,

10 41:760-6):

F7-353FUS4>

1201 GTGCCGGCTA CTCGG<u>ATGGC AGCAAGGACT CCTG</u>CAAGGG GGACAGTGGA GGCC<u>CACATG</u>

F7-353-P> A <F7-353RUS5

1261 <u>CCACCCACTA CC</u>GGGCACG TG<u>GTACCTGA CGGGCATCGT CA</u>GCTGGGGC CAGGGCTGCG

Primers (SEQ ID NOs: 24-26)

Tm⁹

F7-353FUS4 CCC AGT CAC GAC GTT GTA AAA CGA TGG CAG CAA GGA CTC CTG
F7-353-P CAC ATG CCA CCC ACT ACC

20 F7-353RUS5 AGC GGA TAA CAA TTT CAC

F7-353RUS5 AGC GGA TAA CAA TTT CAC ACA GGT GAC GAT GCC CGT CAG GTA C 64°C

Masses

Allele	Product Termination: ddG	SEQ #	Length	Mass	
F7-353-P	atgccacccactacc	27	18	5333.6	
353 CGG	cacatgccacccactaccg	28	19	5646.8	
353 CAG	cacatgccacccactaccag	29	20	5960	
US5-bio bio-	agcggataacaatttcacacagg	30	23	7648.6	

25

Conclusion

The above examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population.

Interpretation of those results allows prediction of the medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies,

10

15

20

25

and the general applicability of genetic alterations identified in isolated populations to panmixed populations. Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

EXAMPLE 3

MORBIDITY AND MORTALITY MARKERS

Sample Band and Initial Screening

Healthy samples were obtained through the blood bank of San Bernardino, CA. Donors signed prior to the blood collection a consent form and agreed that their blood will be used in genetic studies with regard to human aging. All samples were anomymized. Tracking back of samples is not possible.

Isolation of DNA from blood samples of a healthy donor population

Blood is obtained from a donor by venous puncture and preserved with 1mM EDTA pH 8.0. Ten milliliters of whole blood from each donor was centrifuged at 2000x g. One milliliter of the buffy coat was added to 9 milliters of 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA, incubated 10 minutes at room temperature and centrifuged for 10 minutes at 2000x g. The supernatant was removed, and the white cell pellet was washed in 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA and resuspended in 4.5 milliliters of 50mM Tris, 5mM EDTA, and 1% SDS. Proteins were precipitated from the cell lysate by 6M Ammonium Acetate, pH 7.3, and separated from the nucleic acid by centrifugation 3000x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000x g. The dried nucleic acid pellet was hydrated in lOmM Tris pH 7.6 and 1mM Na2EDTA and stored at 4C.

In this study, samples were pooled as shown in Table 1. Both parents of the blood donors were of Caucasian origin.

Table 1

5

Pool ID	Sex	Age-range	# individuals
SP1	Female	18-39 years	276
SP2	Males	18-39 years	276
SP3	Females	60-69 years	184
SP4	Males	60-79 years	368

More than 400 SNPs were tested using all four pools. After one test run 34 assays were selected to be re-assayed at least once. Finally, 10 assays showed repeatedly differences in allele frequencies of several percent and, therefore, fulfilled the criteria to be tested using the individual samples. Average allele frequency and standard deviation is tabulated in Table 2.

Table 2

Assay ID	SP1	SP1-STD	SP2	SP2-STD	SP3	SP3-STD	SP4	SP4-STD
47861	0.457	0.028	0.433	0.042	0.384	0.034	0.380	0.015
47751	0.276	0.007	0.403	0.006	0.428	0.052	0.400	0.097
48319	0.676	0.013	0.627	0.018	0.755	0.009	0.686	0.034
48070	0.581	0.034	0. 0 17	0.045	0.561	n.a.	0.539	0.032
49807	0.504	0.034	0.422	0.020	0.477	0.030	0.556	0.005
49534	0.537	0.017	0.503	n.a.	0.623	0.023	0.535	0.009
49733	0.560	0.006	0.527	0.059	0.546	0.032	0.436	0.016
49947	0.754	0.008	0.763	0.047	0.736	0.052	0.689	0.025
50128	0.401	0.022	0.363	0.001	0.294	0.059	0.345	0.013

25

-55-

63306 0.697 0.012 0.674 0.013 0.712 0.017 0.719 0.0

So far, 7 out of the 10 potential morbidity markers were fully analyzed. Additional information about genes in which these SNPs are located was gathered through publicly databases like Genbank.

. AKAPS

10

15

20

25

Candidate morbidity and mortality markers include housekeeping genes, such as genes involved in signal transduction. Among such genes are the A-kinase anchoring proteins (AKAPs) genes, which participate in signal transduction pathways involving protein phosphorylation. Protein phosphorylation is an important mechanism for enzyme regulation and the transduction of extracellular signals across the cell membrane in eukaryotic cells. A wide variety of cellular substrates, including enzymes, membrane receptors, ion channels and transcription factors, can be phosphorylated in response to extracellular signals that interact with cells. A key enzyme in the phosphorylation of cellular proteins in response to hormones and neurotransmitters is cyclic AMP (cAMP)-dependent protein kinase (PKA). Upon activation by cAMP, PKA thus mediates a variety of cellular responses to such extracellular signals. An array of PKA isozymes are expressed in mammalian cells. The PKAs usually exist as inactive tetramers containing a regulatory (R) subunit dimer and two catalytic (C) subunits. Genes encoding three C subunits (C α , C β and C γ) and four R subunits (RI α , RI β , RII α and RII β) have been identified (see Takio et al. (1982) Proc. Natl. Acad. Sci. U.S. A. 79:2544-2548; Lee et al. (1983) Proc. Natl. Acad. Sci. U.S. A. 80:3608-3612; Jahnsen et al. (1996) J. Biol. Chem. 261:12352-12361; Clegg et al. (1988) Proc. Natl. Acad. Sci. U.S. A. 85:3703-3707; and Scott (1991) Pharmacol. Ther. 50:123-145]. The type I (RI) α and type II (RII) α subunits are distributed ubiquitously, whereas RI β and RII β are present mainly in brain [see. e.g., Miki and Eddy

(1999) J. Biol. Chem. 274:29057-29062]. The type I PKA holoenzyme $(RI\alpha)$ and $RI\beta$) is predominantly cytoplasmic, whereas the majority of type II PKA (RIIa and RIIB) associates with cellular structures and organelles [Scott (1991) Pharmacol. Ther. 50:123-145]. Many hormones and other signals act through receptors to generate cAMP which binds to the R subunits of PKA and releases and activates the C subunits to phosphorylate proteins. Because protein kinases and their substrates are widely distributed throughout cells, there are mechanisms in place in cells to localize protein kinase-mediated responses to different signals. One 10 such mechanism involves subcellular targeting of PKAs through association with anchoring proteins, referred to as A-kinase anchoring proteins (AKAPs), that place PKAs in close proximity to specific organelles or cytoskeletal components and particular substrates thereby providing for more specific PKA interactions and localized responses [see, e.g., Scott et al. (1990) J. Biol. Chem. 265:21561-21566; Bregman et al. (1991) J. Biol. Chem. 266:7207-7213; and Miki and Eddy (1999) J. Biol. Chem. 274:29057-29062]. Anchoring not only places the kinase close to preferred substrates, but also positions the PKA holoenzyme at sites where it can optimally respond to fluctuations in the second messenger 20 cAMP [Mochly-Rosen (1995) Science 268:247-251; Faux and Scott (1996) Trends Biochem. Sci. 21:312-315; Hubbard and Cohen (1993) Trends Biochem. Sci. 18:172-1771.

Up to 75% of type II PKA is localized to various intracellular sites through association of the regulatory subunit (RII) with AKAPs [see, e.g., 25] Hausken et al. (1996) J. Biol. Chem. 271:29016-29022]. RII subunits of PKA bind to AKAPs with nanomolar affinity [Carr et al. (1992) J. Biol. Chem. 267:13376-13382], and many AKAP-RII complexes have been isolated from cell extracts. RI subunits of PKA bind to AKAPs with only micromolar affinity [Burton et al. (1997) Proc. Natl. Acad. Sci. U.S.A.

94:11067-11072]. Evidence of binding of a PKA RI subunit to an AKAP has been reported [Miki and Eddy (1998) J. Biol. Chem 273:34384-34390] in which RIa-specific and RIa/RIIa dual specificity PKA anchoring domains were identified on FSC1/AKAP82. Additional dual specific
5 AKAPs, referred to as D-AKAP1 and D-AKAP2, which interact with the type I and type II regulatory subunits of PKA have also been reported [Huang et al. (1997) J. Biol. Chem. 272:8057-8064; Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189].

More than 20 AKAPs have been reported in different tissues and 10 species. Complementary DNAs (cDNAs) encoding AKAPs have been isolated from diverse species, ranging from Caenorhabditis elegans and Drosophilia to human [see, e.g., Colledge and Scott (1999) Trends Cell Biol. 9:216-221]. Regions within AKAPs that mediate association with RII subunits of PKA have been identified. These regions of approximately 15 10-18 amino acid residues vary substantially in primary sequence, but secondary structure predictions indicate that they are likely to form an amphipathic helix with hydrophobic residues aligned along one face of the helix and charged residues along the other [Carr et al. (1991) J. Biol. Chem. 266:14188-14192; Carr et al. (1992) J. Biol. Chem. 267:13376-13382]. Hydrophobic amino acids with a long aliphatic side chain, e.g., 20 valine, leucine or isoleucine, may participate in binding to RII subunits [Glantz et al. (1993) J. Biol. Chem. 268:12796-12804].

Many AKAPs also have the ability to bind to multiple proteins, including other signaling enzymes. For example, AKAP79 binds to PKA, protein kinase C (PKC) and the protein phosphatase calcineurin (PP2B) [Coghlan et al. (1995) Science 267:108-112 and Klauck et al. (1996) Science 271:1589-1592]. Therefore, the targeting of AKAP79 to neuronal postsynaptic membranes brings together enzymes with opposite catalytic activities in a single complex.

AKAPs thus serve as potential regulatory mechanisms that increase the selectivity and intensity of a cAMP-mediated response. There is a need, therefore, to identify and elucidate the structural and functional properties of AKAPs in order to gain a complete understanding of the important role these proteins play in the basic functioning of cells.

AKAP10

10

15

20

25

30

The sequence of a human AKAP10 cDNA (also referred to as D-AKAP2) is available in the GenBank database, at accession numbers AF037439 (SEQ ID NO: 31) and NM 007202. The AKAP10 gene is located on chromosome 17.

The sequence of a mouse D-AKAP2 cDNA is also available in the GenBank database (see accession number AF021833). The mouse D-AKAP2 protein contains an RGS domain near the amino terminus that is characteristic of proteins that interact with Ga subunits and possess GTPase activating protein-like activity [Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189]. The human AKAP10 protein also has sequences homologous to RGS domains. The carboxy-terminal 40 residues of the mouse D-AKAP2 protein are responsible for the interaction with the regulatory subunits of PKA. This sequence is fairly well conserved between the mouse D-AKAP2 and human AKAP10 proteins. Polymorphisms of the human AKAP10 gene and polymorphic AKAP10 proteins

Polymorphisms of AKAP genes that alter gene expression, regulation, protein structure and/or protein function are more likely to have a significant effect on the regulation of enzyme (particularly PKA) activity, cellular transduction of signals and responses thereto and on the basic functioning of cells than polymorphisms that do not alter gene and/or protein function. Included in the polymorphic AKAPs provided herein are human AKAP10 proteins containing differing amino acid residues at position number 646.

10

Amino acid 646 of the human AKAP10 protein is located in the carboxy-terminal region of the protein within a segment that participates in the binding of R-subunits of PKAs. This segment includes the carboxy-terminal 40 amino acids.

The amino acid residue reported for position 646 of the human AKAP10 protein is an isoleucine. Polymorphic human AKAP10 proteins provided herein have the amino acid sequence but contain residues other than isoleucine at amino acid position 646 of the protein. In particular embodiments of the polymorphic human AKAP10 proteins provided herein, the amino acid at position 646 is a valine, leucine or phenylalanine residue.

An A to G transition at nucleotide 2073 of the human AKAP10 coding sequence

As described herein, an allele of the human AKAP10 gene that

contains a specific polymorphism at position 2073 of the coding

sequence and thereby encodes a valine at position 646 has been detected

in varying frequencies in DNA samples from younger and older segments

of the human population. In this allele, the A at position 2073 of the

AKAP10 gene coding sequence is changed from an A to a G, giving rise

to an altered sequence in which the codon for amino acid 646 changes

from ATT, coding for isoleucine, to GTT, coding for valine.

Morbidity marker 1: human protein kinase A anchoring protein (AKAP10-1)

PCR Amplification and BiomassPROBE assay detection of AKAP10-1 in a healthy donor population

PCR Amplification of donor population for AKAP 10

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50µl PCR reaction with 100ng-1ug of pooled human genomic DNAs in a 50µl PCR reaction. Individual DNA concentrations within the

25

-60-

pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction containing IX PCR buffer (Qiagen, Valencia, CA), 200uM dNTPs, 1U Hotstar Tag polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-TCTCAATCATGTGCATTGAGG-3'(SEQ ID NO: 45), 2pmol of the reverse primer 5'-AGCGGATAACAATTTCACACAGGGATCACACAGCCATCAGCAG-3' (SEQ ID NO: 46), and lopmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCGGATAACAATTTCACACAGG-3'(SEQ ID NO: 47). After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec;

Immobilization of DNA

72° C 3min.

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded amplicons by

10

15

incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for AKAP10-1 (clone 48319)

5 Genotyping using the BiomassPROBE assay methods was carried out by resuspending the DNA coated magnetic beads in 26mM Tris-HCI pH 9.5, 6.5 mM MgCl₂ and 50mM each of dTTP and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham) and 20pmol of a template specific oligonucleotide PROBE 10 primer 5'-CTGGCGCCCACGTGGTCAA-3' (SEQ ID NO: 48) (Operon). Primer extension occurs with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nL each sample to a silicon chip preloaded with 150nL of H3PA matrix material. The sample material was allowed to crystallize and was 15 analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP that is present in AKAP10-1 is a T to C transversion at nucleotide number 156277 of the sequence of a genomic clone of the AKAP10 gene (GenBank Accession No. AC005730) (SEQ ID NO: 36). SEQ ID NO: 35: represents the 20 nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10 gene, and SEQ ID NO: represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10-1 allele. The mass of the primer used in the BioMass probe reaction was 5500.6 daltons. In the presence of the SNP, the primer is extended by 25 the addition of ddC, which has a mass of 5773.8. The wildtype gene results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6101 daltons.

PCT/US00/28413 WO 01/27857

-62-

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males) and 552 individuals between the ages of 60-79 (184 females between the ages of 5 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the non-translated 3'region of AKAP 10. Differences in the frequency of this polymorphism with increasing age groups were observed among healthy individuals. Statistical analysis showed that the significance level for differences in the allelic frequency for alleles between the "younger" and the "older" populations was p = 0.0009 and for genotypes was p = 0.003. Differences between age groups are significant. For the total population allele significance is p = 0.0009, and genotype significance is p = 0.003.

This marker led to the best significant result with regard to allele and genotype frequencies in the age-stratified population. Figure 19 shows the allele and genotype frequency in both genders as well as in the entire population. For latter the significance for alleles was p = 0.0009and for genotypes was p = 0.003. The young and old populations were in Hardy-Weinberg equilibrium. A preferential change of one particular genotype was not seen.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human protein kinase A anchoring protein (AKAP10). The gene is located on chromosome 17. Its structure includes 15 exons and 14 intervening sequences (introns). The encoded protein is responsible for the sub-cellular localization of the cAMP-dependent protein kinase and, therefore, plays a key role in the G-protein mediated receptorsignaling pathway (Huang et al. PNAS (1007) 94:11184-11189). Since its localization is outside the coding region, this polymorphism is most likely in linkage disequilibrium (LD) with other non-synonymous

10

15

20

polymorphisms that could cause amino acid substitutions and subsequently alter the function of the protein. Sequence comparison of different Genbank database entries concerning this gene revealed further six potential polymorphisms of which two are supposed to change the respective amino acid (see Table 3).

Table 3

	Exon	Codon	Nucleotides	Amino acid
	3	100	GCT>GCC	Ala > Ala
	4	177	AGT>GTG	Met > Val
10	8	424	GGG>GGC	Gly > Gly
	10	524	CCG > CTG	Pro>Leu
	12	591	GTG>GTC	Val > Val
Ì	12	599	CGC > CGA	Arg > Arg

15 Morbitity marker 2: human protein kinase A anchoring protein (AKAP10-5)

Discovery of AKAP10-5 Allele (SEQ ID NO: 33)

Genomic DNA was isolated from blood (as described above) of seventeen (17) individuals with a genotype CC at the AKAP10-1 gene locus and a single heterozygous individual (CT) (as described). A target sequence in the AKAP10-1 gene which encodes the C-terminal PKA binding domain was amplified using the polymerase chain reaction. PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10-1 target sequence was carried out in individual 50µl PCR reaction with 25ng of human genomic DNA templates. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, IU Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer (Ex13F) containing the universal primer sequence and the target specific sequence 5'-TCC CAA AGT GCT GGA ATT AC-3' (SEQ ID NO: 53), and 2pmol of the reverse

20

25

-64-

primer (Ex14R) 5'-GTC CAA TAT ATG CAA ACA GTT G-3' (SEQ ID NO: 54). Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (MJ Research, Waltham, MA) (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles; 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min. After amplification the amplicons were purified using a chromatography (Mo Bio Laboratories (Solana Beach, CA)).

The sequence of the 18 amplicons, representing the target region, was determined using a standard Sanger cycle sequencing method with 25nmol of the PCR amplicon, 3.2uM DNA sequencing primer 5'-CCC ACA GCA GTT AAT CCT TC-3'(SEQ ID NO: 55), and chain terminating dRhodamine labeled 2', 3' dideoxynucleotides (PE Biosystems, Foster City, CA) using the following cycling parameters: 96° C for 15 seconds; 25 cycles: 55° C for 15 seconds, 60° C for 4 minutes. The sequencing products precipitated by 0.3M NaOAc and ethanol. The precipitate was centrifuged and dried. The pellets were resuspended in deionized formamide and separated on a 5% polyacrylimide gel. The sequence was determined using the "Sequencher" software (Gene Codes, Ann Arbor, MI).

The sequence of all 17 of the amplicons, which are homozygous for the AKAP10-1 SNP of the amplicons, revealed a polymorphism at nucleotide position 152171 (numbering for GenBank Accession No. AC005730 for AKAP10 genomic clone (SEQ ID NO: 35)) with A replaced by G. This SNP can also be designated as located at nucleotide 2073 of a cDNA clone of the wildtype AKAP10 (GenBank Accession No. AF037439) (SEQ ID NO: 31). The amino acid sequence of the human AKAP10 protein is provided as SEQ ID NO: 32. This single nucleotide polymorphism was designated as AKAP10-5 (SEQ ID NO: 33) and result d in a substitution of a valine for an isoleucine residue at amino

10

10

20

25

30

acid position 646 of the amino acid sequence of human AKAP10 (SEQ ID NO: 32).

PCR Amplification and BiomassPROBE assay detection of AKAP10-5 in a healthy donor population

The healthy population stratified by age is a very efficient and a universal screening tool for morbidity associated genes by allowing for the detection of changes of allelic frequencies in the young compared to the old population. Individual samples of this healthy population base can be pooled to further increase the throughput.

Healthy samples were obtained through the blood bank of San Bernardino, CA. Both parents of the blood donors were of Caucasian origin. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications.

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in a single 50µl PCR reaction with 100ng- 1µg of pooled human genomic DNAs in a 50µl PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction contained 1X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-AGCGGATAACAATTTCACACAGGGAGCTAGCTTGGAAGAT

TGC-3' (SEQ ID NO: 41), 2pmol of the reverse primer 5'-GTCCAATATATGCAAACAGTTG-3' (SEQ ID NO: 54), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon BIO:5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 43).

After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer can then be hybridized and acted as a forward primer thereby introducing a 5' biotin capture moiety into the molecule. The amplification protocol resulted in a 5'-biotinylated double stranded DNA amplicon and dramatically reduced the cost of high throughput genotyping by 10 eliminating the need to 5' biotin label every forward primer used in a genotyping.

Themal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec; 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

The 50 μ I PCR reaction was added to 25 μ L of streptavidin coated magnetic beads (Dynal, Oslo, Norway), which were prewashed three 20 times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The 5' end of one strand of the double stranded PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The hybridized but unbound strand was released from the double stranded amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

Detection of AKAP10-5 using BiomassPROBE™ Assay

BiomassPROBE™ assay of primer extension analysis (see, U.S. Patent No. 6,043,031) of donor population for AKAP 10-5 (SEQ ID NO:

15

33) was performed. Genotyping using these methods was carried out by resuspending the DNA coated magnetic beads in 26mM Tris-HCL pH 9.5, 6.5 mM MgCl₂, 50mM dTTP, 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a 5 template specific oligonucleotide PROBE primer 5'-ACTGAGCCTGCATAA-3' (SEQ ID NO: 44) (Operon). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nL 10 of each sample to a silicon chip preloaded with 150 nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The primer has a mass of 5483.6 daltons. The SNP results in the additional of a ddC to the primer, giving a mass of 5756.8 daltons for the extended product. The wild type results in the addition a T and ddG to the primer giving a mass of 6101 daltons.

The frequency of the SNP was measured in a population of age selected healthy individuals. Seven hundred thirteen (713) individuals under 40 years of age (360 females, 353 males) and 703 individuals over 60 years of age (322 females, 381 males) were tested for the presence of the SNP, AKAP10-5 (SEQ ID NO: 33). Results are presented below in Table 1.

TABLE 1 AKAP10-5 (2073V) frequency comparison in 2 age groups									
	<40 >60 delta G alle								
Female	Alleles	*G	38.6	34.6	4.0				
		*A	61.4	65.4					
	Genotypes	G	13.9	11.8	2.1				
		GA	49.4	45.7					
		А	36.7	42.5					

25

20

	Male	Alleles	*G	41.4	37.0	4.4
i			*A	58.6	63.0	
		Genotypes	G	18.4	10.8	7.7
5			GA	45.9	52.5	
			Α	35.7	36.7	
	Total	Alleles	*G	40.0	35.9	4.1
			*A	60.0	64.1	
10		Genotypes	G	16.1	11.2	4.9
			GA	47.7	49.4	-
			А	36.2	39.4	

Figure 20 graphically shows these results of allele and genotype distribution in the age and sex stratified Caucasian population.

Morbidity marker 3: human methionine sulfoxide reductase A (msrA)

The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

Methionine sulfoxide reductase A (#63306)

PCR Amplification and BiomassPROBE assay detection of the human methioine sulfoxid reductase A (h-msr-A) in a healthy donor population PCR Amplification of donor population for h-msr-A

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50µl PCR reaction with 100ng-1ug of pooled human genomic DNA templates in a 50µl PCR reaction. Individual DNA concentrations within the pooled samples were present in an equal concentration with

the final concentration ranging from 1-25ng. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-TTTCTCTGCACAGAGAGGC-3' (SEQ ID NO: 49), 2pmol of the reverse primer 5'-AGCGGATAACAATTTCACACAGGGCTGAAATCCTTCGCTTTACC-3' (SEQ ID NO: 50), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon

5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 51). After an initial round of amplification of the target with the specific forward and reverse primers, the 5' biotinylated universal primer was then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated
double stranded DNA amplicon and and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded

-70-

amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for h-msr A

Genotyping using the BiomassPROBE assay methods was carried out by resuspending the he DNA coated magnetic beads in 26mM Tris-HCl pH 9.5, 6.5 mM MgCl₂, 50mM of dTTPs and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGAAAAGGGAGAGAAAG-3' (Operon) (SEQ ID NO: 52). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nl each sample to a silicon chip preloaded with 150nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP is represented as a T to C tranversion in the sequence of two ESTs. The wild type is represented by having a T at position 128 of GenBank Accession No. AW 195104, which represents the nucleotide sequence of an EST which is a portion of the wild type human msrA gene (SEQ ID NO: 39). The SNP is presented as a C at position 129 of GenBank Accession No. AW 874187, which represents the nucleotide sequence of an EST which is a portion of an

In a genomic sequence the SNP is represented as an A to G transversion. The primer utilized in the BioMass probe reaction had a mass of 5654.8 daltons. In the presence of the SNP the primer is extended by the incorporation of a ddC and has a mass of 5928. In the presence of the wildtype the primer is extended by adding a dT and a DDC to produce a mass of 6232.1 daltons.

allele of the human msrA gene (SEQ ID NO: 40).

5

20

WO 01/27857

-71-

PCT/US00/28413

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males and 552 individuals between the age of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the nontranslated 3'region of h-msr-A.

Genotype difference between male age group among healthy individuals is significant. For the male population allele significance is p = 0.0009 and genotype significance is p = 0.003. The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human methionine sulfoxide reductase (h-msrA). The exact localization is 451 base pairs downstream the stop codon (TAA). It is very likely that this SNP is in linkage disequilibrium (LD) with another polymorphism more upstream in the coding or promoter region; thus, it is not directly cause morbidity. The enzyme methionine sulfoxide reductase has been proposed to exhibit multiple biological functions. It may serve to repair oxidative protein damage but also play an important role in the regulation of proteins by activation or inactivation of their biological functions (Moskovitz et al. (1990) PNAS 95:14071-14075). It has also been shown that its activity is significantly reduced in brain tissues of Alzheimer patients (Gabbita et al., (1999) J. Neurochem 73:1660-1666). It is scientifically conceivable that proteins involved in the metabolism of reactive oxygen species are associated to disease.

10

15

20

10

15

20

CONCLUSION

The use of the healthy population provides for the identification of morbidity markers. The identification of proteins involved in the G-protein coupled signaling transduction pathway or in the detoxification of oxidative stress can be considered as convincing results. Further confirmation and validation of other potential polymorphisms already identified in *silico* in the gene encoding the human protein kinase A anchoring protein could even provide stronger association to morbidity and demonstrate that this gene product is a suitable pharmaceutical or diagnostic target.

EXAMPLE 4

MALDI-TOF Mass Spectrometry Analysis

All of the products of the enzyme assays listed below were analyzed by MALDI-TOF mass spectrometry. A diluted matrix solution (0.15µL) containing of 10:1 3-hydroxypicolinic acid:ammonium citrate in 1:1 water:acetonitrile diluted 2.5-fold with water was pipetted onto a SpectroChip (Sequenom, Inc.) and was allowed to crystallize. Then, 0.15µL of sample was added. A linear PerSeptive Voyager DE mass spectrometer or Bruker Biflex MALDI-TOF mass spectrometer, operating in positive ion mode, was used for the measurements. The sample plates were kept at 18.2 kV for 400 nm after each UV laser shot (approximate 250 laser shots total), and then the target voltage was raised to 20 kV. The original spectra were digitized at 500 MHz.

EXAMPLE 5

25 Sample Conditioning

Where indicated in the examples below, the products of the enzymatic digestions were purified with ZipTips (Millipore, Bedford, MA). The ZipTips were pre-wetted with 10 μ L 50% acetonitrile and equilibrated 4 times with 10 μ I 0.1 M TEAAc. The oligonucleotide fragments w re

bound to the C18 in the ZipTip material by continuous aspiration and dispension of each sample into the ZipTip. Each digested oligonucleotide was conditioned by washing with 10 μ L 0.1 M TEAAc, followed by 4 washing steps with 10 μ L H₂O. DNA fragments were eluted from the Ziptip with 7 μ L 50% acetonitrile.

Any method for condition the samples may be employed. Methods for conditioning, which generally is used to increase peak resolution, are well known (see, e.g., International PCT application No. WO 98/20019).

EXAMPLE 6

10 DNA Glycosylase-Mediated Sequence Analysis

DNA Glycosylases modifies DNA at each position that a specific nucleobase resides in the DNA, thereby producing abasic sites. In a subsequent reaction with another enzyme, a chemical, or heat, the phosphate backbone at each abasic site can be cleaved.

The glycosylase utilized in the following procedures was uracil-DNA glycosylase (UDG). Uracil bases were incorporated into DNA fragments in each position that a thymine base would normally occupy by amplifying a DNA target sequence in the presence of uracil. Each uracil substituted DNA amplicon was incubated with UDG, which cleaved each uracil base in the amplicon, and was then subjected to conditions that effected backbone cleavage at each abasic site, which produced DNA fragments. DNA fragments were subjected to MALDI-TOF mass spectrometry analysis. Genetic variability in the target DNA was then assessed by analyzing mass spectra.

25 Glycosylases specific for nucleotide analogs or modified nucleotides, as described herein, can be substituted for UDG in the following procedures. The glycosylase methods described hereafter, in conjunction with phosphate backbone cleavage and MALDI, can be used to analyze DNA fragments for the purposes of SNP scanning, bacteria

15

10

15

20

25

typing, methylation analysis, microsatellite analysis, genotyping, and nucleotide sequencing and re-sequencing.

A. Genotyping

A glycosylase procedure was used to genotype the DNA sequence encoding UCP-2 (Uncoupling Protein 2). The sequence for UCP-2 is deposited in GenBank under accession number AF096289. The sequence variation genotyped in the following procedure was a cytosine (C-allele) to thymine (T-allele) variation at nucleotide position 4790, which results in a alanine to valine mutation at position 55 in the UCP-2 polypeptide.

DNA was amplified using a PCR procedure with a 50 μ L reaction volume containing of 5 pmol biotinylated primer having the sequence 5′-TGCTTATCCCTGTAGCTACCCTGTCTTGGCCTTGCAGATCCAA-3′ (SEQ ID NO: 91), 15 pmol non-biotinylated primer having the sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 92), 200 μ M dATP, 200 μ M dCTP, 200 μ M dGTP, 600 μ M dUTP (to fully replace dTTP), 1.5 mM to 3 mM MgCl₂, 1 U of HotStarTaq polymerase, and 25 ng of CEPH DNA. Amplification was effected with 45 cycles at an annealing temperature of 56°C.

The amplification product was then immobilized onto a solid support by incubating 50 μ L of the amplification reaction with 5 μ L of prewashed Dynabeads for 20 minutes at room temperature. The supernatant was removed, and the beads were incubated with 50 μ L of 0.1 M NaOH for 5 minutes at room temperature to denature the double-stranded PCR product in such a fashion that single-stranded DNA was linked to the beads. The beads were then neutralized by three washes with 50 μ L 10 mM TrisHCI (pH 8). The beads were resuspended in 10 μ L of a 60mM TrisHCI/1mM EDTA (pH 7.9) solution, and 1 U uracil DNA glycosylase was added to the solution for 45 minutes at 37 °C to remove uracil nucleotides present in the singl-stranded DNA linked to the beads.

15

20

25

The beads were then washed two times with 25 μ L of 10 mM TrisHCI (pH 8) and once with 10 μ L of water. The biotinylated strands were then eluted from the beads with 12 μ L of 2 M NH₄OH at 60°C for 10 minutes. The backbone of the DNA was cleaved by incubating the samples for 10 min at 95°C (with a closed lid), and ammonia was evaporated from the samples by incubating the samples for 11 min at 80°C.

The cleavage fragments were then analyzed by MALDI-TOF mass spectrometry as described in Example 4. The T-allele generated a unique fragment of 3254 Daltons. The C-allele generated a unique fragment of 4788 Daltons. These fragements were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in UCP-2.

B. Glycosylase Analysis Utilizing Pooled DNA Samples

The glycosylase assay was conducted using pooled samples to detect genetic variability at the UCP-2 locus. DNA of known genotype was pooled from eleven individuals and was diluted to a fixed concentration of 5 ng/ μ L. The procedure provided in Example 3A was followed using 2 pmol of forward primer having a sequence of 5'-CCCAGTCACGACGTTGTAAAACGTCTTGGCCTTGCAGATCCAAG- 3' (SEQ ID NO: 93) and 15 pmol of reverse primer having the sequence 5'-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3' (SEQ ID NO: 94). In addition, 5 pmol of biotinylated primer having the sequence 5'bioCCCAGTCACGACGTTGTAAAACG 3' (SEQ ID NO: 97) may be introduced to the PCR reaction after about two cycles. The fragments were analyzed via MALDI-TOF mass spectroscopy (Example 4). As determined in Example 3A, the T-allele, which generated a unique fragment of 3254 Daltons, could be distinguished in mass spectra from the C-allele, which generated a unique fragment of 4788 Daltons. Allelic frequency in the pooled samples was quantified by integrating the area

WO 01/27857 PCT/US00/28413

-76-

under each signal corresponding to an allelic fragment. Integration was accomplished by hand calculations using equations well known to those skilled in the art. In the pool of eleven samples, this procedure suggested that 40.9% of the individuals harbored the T allele and 59.09% of the individuals harbored the C allele.

C. Glycosylase-Mediated Microsatellite Analysis

A glycosylase procedure was utilized to identify microsatellites of the Bradykinin Receptor 2 (BKR-2) sequence. The sequence for BKR-2 is deposited in GenBank under accession number X86173. BKR-2 includes a SNP in the promoter region, which is a C to T variation, as well as a SNP in a repeated unit, which is a G to T variation. The procedure provided in Example 3A was utilized to identify the SNP in the promotor region, the SNP in the microsattelite repeat region, and the number of repeated units in the microsattelite region of BKR-2. Specifically, a forward PCR primer having the sequence 5'-CTCCAGCTGGCAGGAGTGC-3' (SEQ ID NO: 95) and a reverse primer having the sequence 5'-CACTTCAGTCGCTCCCT-3' (SEQ ID NO: 96) were utilized to amplify BKR-2 DNA in the presence of uracil. The amplicon was fragmented by UDG followed by backbone cleavage. The cleavage fragments were analyzed by MALDI-TOF mass spectrometry as described in Example 4.

With regard to the SNP in the BKR-2 promotor region having a C to T variation, the C-allele generated a unique fragment having a mass of 7342.4 Daltons and the T-allele generated a unique fragment having a mass of 7053.2 Daltons. These fragments were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in the promotor region of BKR-2.

10

15

20

15

20

25

יו במלבסלכים היאים חוניםסלים ו

With regard to the SNP in the BKR-2 repeat region having a G to T variation, the T-allele generated a unique fragment having a mass of 1784 Daltons, which was readily detected in a mass spectrum. Hence, the presence of the T-allele was indicative of the G to T sequence variation in the repeat region of BKR-2.

In addition, the number of repeat regions was distinguished between individuals having two repeat sequences and individuals having three repeat sequences in BKR-2. The DNA of these individuals did not harbor the G to T sequence variation in the repeat sequence as each repeat sequence contained a G at the SNP locus. The number of repeat regions was determined in individual samples by calculating the area under a signal corresponding to a unique DNA fragment having a mass of 2771.6 Daltons. This signal in spectra generated from individuals having two repeat regions had an area that was thirty-three percent less than the area under the same signal in spectra generated from individuals having three repeat regions. Thus, the procedures discussed above can be utilized to genotype individuals for the number of repeat sequences present in BKR-2.

D. Bisulfite Treatment Coupled with Glycosylase Digestion

Bisulfite treatment of genomic DNA can be utilized to analyze positions of methylated cytosine residues within the DNA. Treating nucleic acids with bisulfite deaminates cytosine residues to uracil residues, while methylated cytosine remains unmodified. Thus, by comparing the sequence of a PCR product generated from genomic DNA that is not treated with bisulfite with the sequence of a PCR product generated from genomic DNA that is treated with bisulfite, the degree of methylation in a nucleic acid as well as the positions where cytosine is methylated can be deduced.

Genomic DNA (2 μ g) was digested by incubation with 1 μ L of a restriction enzyme at 37°C for 2 hours. An aliquot of 3 M NaOH was added to yield a final concentration of 0.3M NaOH in the digestion solution. The reaction was incubated at 37°C for 15 minutes followed by treatment with 5.35M urea, 4.44M bisulfite, and 10mM hydroquinone, where the final concentration of hydroquinone is 0.5 mM.

The sample that was treated with bisulfite (sample A) was compared to the same digestion sample that had not undergone bisulfite treatment (sample B). After sample A was treated with bisulfite as described above, sample A and sample B were amplified by a standard PCR procedure. The PCR procedure included the step of overlaying each sample with mineral oil and then subjecting the sample to thermocycling (20 cycles of 15 minutes at 55°C followed by 30 seconds at 95°C). The PCR reaction contained four nucleotide bases, C, A, G, and U. The mineral oil was removed from each sample, and the PCR products were purified with glassmilk. Sodium iodide (3 volumes) and glassmilk (5 μ L) were added to samples A and B. The samples were then placed on ice for 8 minutes, washed with 420 μ L cold buffer, centrifuged for 10 seconds, and the supernatant fractions were removed. This process was 20 repeated twice and then 25 μ L of water was added. Samples were incubated for 5 minutes at 37 °C, were centrifuged for 20 seconds, and the supernatant fraction was collected, and then this incubation/centrifugation/supernatant fraction collection procedure was repeated. 50 μ L 0.1 M NaOH was then added to the samples to denature the DNA. The samples were incubated at room temperature for 5 25 minutes, washed three times with 50 μ L of 10 mM TrisHCl (pH 8), and resuspended in 10 μ L 60mM TrisHCI/1mM EDTA, pH 7.9.

The sequence of PCR products from sample A and sample B wer then treated with 2U of UDG (MBI Fermentas) and then subjected to WO 01/27857 PCT/US00/28413

-79-

backbone cleavage, as described herein. The resulting fragments from each of sample A and sample B were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. Sample A gave rise to a greater number of fragments than the number of fragments arising from sample B, indicative that the nucleic acid harbored at least one methylated cytosine moiety.

EXAMPLE 7

Fen-Ligase-Mediated Haplotyping

Haplotyping procedures permit the selection of a fragment from one of an individual's two homologous chromosomes and to genotype linked SNPs on that fragment. The direct resolution of haplotypes can yield increased information content, improving the diagnosis of any linked disease genes or identifying linkages associated with those diseases. In previous studies, haplotypes were typically reconstructed indirectly through pedigree analysis (in cases where pedigrees were available) through laborious and unreliable allele-specific PCR or through single-molecule dilution methods well known in the art.

A haplotyping procedure was used to determine the presence of two SNPs, referred to as SNP1 and SNP2, located on one strand in a DNA sample. The haplotyping procedure used in this assay utilized Fen-1, a site-specific "flap" endonuclease that cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. The two overlapping oligonucleotides in this example were short arm and long arm allele-specific adaptors. The target DNA was an amplified nucleic acid that had been denatured and contained SNP1 and SNP2.

The short arm adaptor included a unique sequence not found in the target DNA. The 3' distal nucleotide of the short arm adaptor was identical to one of the SNP1 alleles. Moreover, the long arm adaptor included two regions: a 3' region complementary to the short arm and a

10

15

20

15

20

25

5'gene-specific region complementary to the fragment of interest adjacent to the SNP. If there was a match between the adaptor and one of the homologues, the Fen enzyme recognized and cleaved the overlapping flap. The short arm of the adaptor was then ligated to the remainder of the target fragment (minus the SNP site). This ligated fragment was used as the forward primer for a second PCR reaction in which only the ligated homologue was amplified. The second PCR product (PCR2) was then analyzed by mass spectrometry. If there was no match between the adaptors and the target DNA, there was no overlap, no cleavage by Fen-1, and thus no PCR2 product of interest.

If there was more than one SNP in the sequence of interest, the second SNP (SNP2) was found by using an adaptor that was specific for SNP2 and hybridizing the adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures were repeated for the PCR2 product containing the first SNP. If the amplified product yielded a second SNP, then SNP1 and SNP2 were on the same fragment.

If the SNP is unknown, then four allele-specific adaptors (e.g. C, G, A, and T) can be used to hybridize with the target DNA. The substrates are then treated with the Fen-ligase protocol, including amplification. The PCR2 products may be analyzed by PROBE, as described herein, to determine which adaptors were hybridized to the DNA target and thus identify the SNPs in the sequence.

A Fen-ligase assay was used to detect two SNPs present in Factor VII. These SNPs are located 814 base pairs apart from each other. SNP1 was located at position 8401 (C to T), and SNP2 was located at 9215 (G to A) (SEQ ID #).

A. First Amplification Step

A PCR product (PCR1) was g nerated for a known heterozygous individual at SNP1, a short distance from the 5' end of the SNP.

15

20

25

Specifically, a 10 μ L PCR reaction was performed by mixing 1.5 mM MgCl₂, 200 μ M of each dNTP, 0.5 U HotStar polymerase, 0.1 μ M of a forward primer having the sequence 5'-GCG CTC CTG TCG GTG CCA (SEQ ID NO: 56), 0.1 μ M of a reverse primer having the sequence 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 57), and 1 ng of genomic DNA. The annealing temperature was 58°C, and the amplification process yielded fragments that were 861 bp in length.

The PCR1 reaction mixture was divided in half and was treated with an exonuclease 1/SAP mixture (0.22 μ L mixture/5 μ L PCR1 reaction) which contained 1.0 μ L SAP and 0.1 μ L exon1. The exonuclease treatment was done for 30 minutes at 37°C and then 20 minutes at 85°C to denature the DNA.

B. Adaptor Oligonucleotides

A solution of allele-specific adaptors (C and T), containing of one long and one short oligonucleotide per adaptor, was prepared. The long arm and short arm oligonucleotides of each adaptor (10µM) were mixed in a 1:1 ratio and heated for 30 seconds at 95°C. The temperature was reduced in 2°C increments to 37°C for annealing. The C-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTC (SEQ ID NO: 58) and a long arm sequence of 5'-CAG AGA GTA CCC CTC GAC CGT GCA TGC ATG (SEQ ID NO: 59). Hence, the long arm of the adaptor was 30 bp (15 bp gene-specific), and the short arm was 15bp. The T-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTT (SEQ ID NO: 60) and a long arm sequence of 5'-GTA CGT ACG TGC CAA CTC CCC ATG AGA GAC (SEQ ID NO: 61). The adaptor could also have a hairpin structure in which the short and long arm are separated by a loop containing of 3 to 10 nucleotides (SEQ ID NO: 118).

C. FEN-ligase reaction

In two tubes (one tube for each allele-specific adaptor per sample) was placed a solution (Solution A) containing of 3.5 μ l 10 mM 16%PEG/50 mM MOPS, 1.2 μ l 25 mM MgCl₂, 1.5 μ l 10X Ampligase Buffer, and 2.5 μ l PCR1. Each tube containing Solution A was incubated at 95°C for 5 minutes to denature the PCR1 product. A second solution (Solution B) containing of 1.65 μ l Ampligase (Thermostable ligase, Epicentre Technologies), 1.65 μ l 200ng/ μ l MFEN (from *Methanocuccus jannaschii*), and 3.0 μ l of an allele specific adaptor (C or T) was prepared. Thus, different variations of Solution B, each variation containing of different allele-specific adaptors, were made. Solution B was added to Solution A at 95°C and incubated at 55°C for 3 hours. The total reaction volume was 15.0 μ l per adaptor-specific reaction. For a bi-allelic system, 2 x 15.0 μ l reactions were required.

The Fen-ligase reaction in each tube was then deactivated by adding 8.0 μ l 10 mM EDTA. Then, 1.0 μ l exolll/Buffer (70%/30%) solution was added to each sample and incubated 30 minutes at 37°C, 20 minutes at 70°C (to deactivate exolll), and 5 minutes at 95°C (to denature the sample and dissociate unused adaptor from template). The samples were cooled in an ice slurry and purified on UltraClean PCR Clean-up (MoBio) spin columns which removed all fragments less than 100 base pairs in length. The fragments were eluted with 50 μ l H₂0.

D. Second Amplification Step

A second amplification reaction (PCR2) was conducted in each sample tube using the short arm adaptor (C or T) sequence as the forward primer (minus the SNP1 site). Only the ligated homologue was amplified. A standard PCR reaction was conducted with a total volume of $10.0~\mu l$ containing of 1X Buffer (final concentration), 1.5 mM final concentration MgCl₂, 200 μ M final concentration dNTPs, 0.5 U HotStar polymerase, 0.1 μ M final concentration forward primer 5'-CAT GCA TGC ACG GT (SEQ ID

15

20

15

NO: 62), 0.1 μ M final concentration reverse primer 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 63), and 1.0 μ l of the purified FEN-ligase reaction solution. The annealing temperature was 58°C. The PCR2 product was analyzed by MALDI TOF mass spectroscopy as described in Example 4.

5 The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons, representing the C allele.

E. Genotyping Additional SNPs

The second SNP (SNP2) can be found by using an adaptor that is specific for SNP2 and hybridizing that adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures are repeated for the PCR2 product containing the first SNP. If the amplified product yields a second SNP, then SN1 and SN2 are on the same fragment. The mass spectrum of SNP2, representing the T allele, showed a mass of 6359.88 Daltons.

This assay can also be performed upon pooled DNA to yield haplotype frequencies as described herein. The Fen-ligase assay can be used to analyze multiplexes as described herein.

EXAMPLE 8

Nickase-Mediated Sequence Analysis

A DNA nickase, or DNase, was used to recognize and cleave one strand of a DNA duplex. Two nickases usd were NY2A nickase and NYS1 nickase (Megabase) which cleave DNA at the following sites:

NY2A: 5'...R AG...3'

 $3'...Y \downarrow TC...5'$ where R = A or G and Y = C or T

25 NYS1: 5'...↓CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

A. Nickase Digestion

Tris-HCI (10 mM), KCI (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 6 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of double-stranded oligonucleotide template having a sequence of 5'-CGC AGG GTT TCC TCG TCG CAC TGG GCA TGT G-3' (SEQ ID NO: 90, Operon, Alameda, CA) synthesized using standard phosphoramidite chemistry. With a total volume of 20μL, the reaction mixture was incubated at 37°C for 5 hours, and the digestion products were purified using ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALTY-TOM mass spectroscopy as described in Example 1. The nickase Cvi NY2A yielded three fragments with masses 4049.76 Daltons, 5473.14 Daltons, and 9540.71 Daltons. The Cvi NYS1 nickase yielded fragments with masses 2063.18 Daltons, 3056.48 Daltons, 6492.81 Daltons, and 7450.14 Daltons.

B. Nickase Digestion of Pooled Samples

DQA (HLA ClassII-DQ Alpha, expected fragment size = 225bp) was amplified from the genomic DNA of 100 healthy individuals. DQA was amplified using standard PCR chemistry in a reaction having a total volume of 50 μL containing of 10 mM Tris-HCl, 10 mM KCl (pH 8.3), 2.5 mM MgCl₂, 200 μM of each dNTP, 10 pmol of a forward primer having the sequence 5′-GTG CTG CAG GTG TAA ACT TGT ACC AG-3′(SEQ ID NO: 64), 10 pmol of a reverse primer having the sequence 5′-CAC GGA TCC GGT AGC AGC GGT AGA GTT G-3′(SEQ ID NO: 65), 1 U DNA polymerase (Stoffel fragment, Perkin Elme r), and 200ng human genomic DNA (2ng DNA/individual). The template was denatured at 94°C for 5 minutes. Thermal cycling was continued with a touch-down program that included 45 cycles of 20 seconds at 94°C, 30 seconds at 56°C, 1

20

25

minute at 72°C, and a final extension of 3 minutes at 72°C. The crude PCR product was used in the subsequent nickase reaction.

The unpurified PCR product was subjected to nickase digestion. Tris-HCI (10 mM), KCI (10 mM, pH 8.3), magnesium acetate (25mM), BSA (1 mg/mL), and 5 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of the amplified template with a total reaction volume of 20µL. The mixture was then incubated at 37°C for 5 hours. The digestion products were purified with either ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. This assay can also be used to do multiplexing and standardless genotyping as described herein.

To simplify the nickase mass spectrum, the two complementary strands can be separated after digestion by using a single-stranded undigested PCR product as a capture probe. This probe (preparation shown below in Example 8C) can be hybridized to the nickase fragments in hybridization buffer containing 200 mM sodium citrate and 1% blocking reagent (Boehringer Mannheim). The reaction is heated to 95°C for 5 minutes and cooled to room temperature over 30 minutes by using a thermal cycler (PTC-200 DNA engine, MJ Research, Waltham, MA). The capture probe-nickase fragment is immobilized on 140 μ g of streptavidin-coated magnetic beads. The beads are subsequently washed three times with 70 mM ammonium citrate. The captured single-stranded nickase fragments are eluted by heating to 80°C for 5 minutes in 5 μ L of 50 mM ammonium hydroxide.

C. Preparation of Capture Probe

The capture probe is prepared by amplifying the human β -globin gene (3' end of intron 1 to 5' end of exon 2) via PCR methods in a total volume of 50 μ L containing of GeneAmp 1XPCR Buffer II, 10 mM Tris-

HCI, pH 8.3, 50 mM KCI, 2 mM MgCI₂, 0.2 mM dNTP mix, 10pmol of each primer (forward primer 5'-ACTGGGCATGTGGAGACAG-3'(SEQ ID NO: 66) and biotinylated reverse primer bio5'-GCACTTTCTTGCCATGAG-3'(SEQ ID: 67), 2 U of AmpliTaq Gold, and 200 ng of human genomic DNA. The template is denatured at 94°C for 8 minutes. Thermal cycling is continued with a touch-down program that included 11 cycles of 20 seconds at 94°C, 30 seconds at 64°C, 1 minute at 72°C; and a final extension of 5 minutes at 72°C. The amplicon is purified using UltraClean PCR clean-up kit (MO Bio Laboratories, Solano Beach, CA).

10

20

25

EXAMPLE 9

Multiplex Type IIS SNP Assay

A Type IIS assay was used to identify human gene sequences with known SNPs. The Type IIS enzyme used in this assay was Fok I which effected double-stranded cleavage of the target DNA. The assay involved the steps of amplification and Fok I treatment of the amplicon. In the amplification step, the primers were designed so that each PCR product of a designated gene target was less than 100 bases such that a Fok I recognition sequence was incorporated at the 5' and 3' end of the amplicon. Therefore, the fragments that were cleaved by Fok I included a center fragment containing the SNP of interest.

Ten human gene targets with known SNPs were analyzed by this assay. Sequences of the ten gene targets, as well as the primers used to amplify the target regions, are found in Table 5. The ten targets were lipoprotein lipase, prothrombin, factor V, cholesterol ester transfer protein (CETP), factor VII, factor XIII, HLA-H exon 2, HLA-H exon 4, methylenetetrahydrofolate reductase (MTHR), and P53 exon 4 codon 72.

Amplification of the ten human gene sequences were carried out in a single 50 μ L volume PCR reaction with 20 ng of human genomic DNA

template in 5 PCR reaction tubes. Each reaction vial contained 1X PCR buffer (Qiagen), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen), 4 mM MgCl₂, and 10pmol of each primer. US8, having sequence of 5'TCAGTCACGACGTT3'(SEQ ID NO: 68), and US9, having sequence of 5'CGGATAACAATTTC3'(SEQ ID NO: 69), were used for the forward and reverse primers respectively. Moreover, the primers were designed such that a Fok I recognition site was incorporated at the 5' and 3' ends of the amplicon. Thermal cycling was performed in 0.2 mL tubes or a 96 well plate using a MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94°C for 5 minutes; 45 cycles: 94°C for 20 seconds, 56°C for 20 seconds, 72°C for 60 seconds; and 72°C for 3 minutes.

Following PCR, the sample was treated with 0.2 U Exonuclease I (Amersham Pharmacia) and S Alkaline Phosphotase (Amersham Pharmacia) to remove the unincorporated primers and dNTPs. Typically, 0.2 U of exonuclease I and SAP were added to 5 μ L of the PCR sample. The sample was then incubated at 37°C for 15 minutes. Exonuclease I and SAP were then inactivated by heating the sample up to 85°C for 15 minutes. Fok I digestion was performed by adding 2 U of Fok I (New England Biolab) to the 5 uL PCR sample and incubating at 37°C for 30 minutes. Since the Fok I restriction sites are located on both sides of the amplicon, the 5' and 3' cutoff fragments have higher masses than the center fragment containing the SNP. The sample was then purified by anion exchange and analyzed by MALDI-TOF mass spectrometry as described in Example 4. The masses of the gene fragments from this multiplexing experiment are listed in Table 6. These gene fragments were resolved in mass spectra thereby allowing multiplex analysis of sequence variability in these genes.

Table 5
G n s f r Multiplex Typ IIS Assay

30

20

25

	Gene	Sequence	Seq. ID No.	Primers	Seq. ID No.
	Lipoprotein Lipase (Asn291Ser)	cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg agatca[a>q]taa agtcagagcc aaaagaagca gcaaaatgta	98-99	5' caatttcatcgctggatgcaatct gggctatgagatc 3' 5' caatttcacacagcggatgcttct tttggctctgact3'	<u>70</u>
5	Prothrombin	26731 gaattatttttgtgtttcta aaactatggt tcccaataaa aqtgactetc 26781 agc[g>a]agcetc aatgetecca gtgctattca tgggcagetc tctgggetca	100- 101	5' tcagtcacgacgttggatgccaa taaaagtgactctcagc 3' 5' cggataacaatttcggatgcact	72
	Factor V (Arg506Gin)	taataggact acttctaatc tgtaagagca gatccctgga caggclg>a)agga	102- 103	5' tcagtcacgacgttggatgagca gatcectggacggtggatgagca	74 75
				cggataacaatttcggatggaca aaatacctgtattec 3'	/5
10	Cholesterol ester transfer protein (CETP) (I405V)	1261 ctcaccatgg gcatttgatt gcagagcage tccgagtcc[g≻a] tccagagctt 1311 cctgcagtca atgatcaccg ctgtgggcat	104- 105	5' tcagtcacgacgttggat <u>gcaga</u> gcagctccgagtc 3'	76
		ccctgaggtc atgtctcgta		5' cagcggtgatcattggatgcagg	77
	Factor VII (R353Q)	1221 agcaaggact cetgeaaggg ggacagtgga ggc <u>ccacatg ccacccacta</u> 1271 <u>c</u> cla+glgggca <u>cg tqqtacctga</u> <u>cgqqcatcg</u> t cagctggggc cagggctgcg	106- 107	5' tcagtcacgacgttggatgccca catgccacccactac 3' 5' cggataacaatttcggatgcccg	78 79
	Factor XIII (V34L)	111 caataactet aatgeagegg aagatgace <u>t</u> geceacagtg gagetteagg 161 gelg×titggtgee eegggg <u>egte</u> aacetgeaag gtatgageat acceectte	108- 109	5' tcagtcacgacgttggatgccca cagtggagcttcag 3' 5' gctcataccttqcaggatgacg 3'	80
15	HLA-H exon 2 (His63Asp)	361 ttgaagettt gggetaegtg gatgaecage tgttegtgtt etatgat[c+g]at 411 gagagtegee gtgtggagee eegaaeteea tgggttteea gtagaattte	110- 111	5' tcagtcacgacgttggatgacca gctgttcgtgttc 3' 5' tacatggagttcggggatgcaca	82
	HLA-H exon 4 (Cys282Tyr)	1021 ggataacctt ggctgtaccc cctggggaag agcagagata tacgt[g+a]ccag 1071 gtggagcacc caggcctgga tcagcccctc	112- 113	adadcadadatatacdt 3,	84
		attgtgatct gggagccctc		5' gaggggctgatccaggatgggt gctccac 3'	85

-89-

Gene	Sequence	Seq. ID No.	Primers	Seq. ID No.
Methylentetrahy drofolateredctas e (MTHR) (Ala222Val)	761 tgaagcactt gaagga gaag gtgtctgcgg gaglc>t) <u>cgattt catcatcacg</u> 811 <u>cagc</u> ttttct ttgaggctga cacattcttc	114- 115	5' tcagtcacgacgttggatggqt agagcagagatatacgt 3' 5' gaggggctgatccaggatggqt gctcac 3'	86 87
P53 Exon4 Codon 72 (Arg72Pro)	12101 tccagatgaa geteceagaa tgccagagge tgetecec[g>e]c gtggcccctg 12151 caccagcage tectacaceg geggecctg	116- 117	5' gatgaageteesaggatgetgetg ggeg 3' 5' gtge 3'	88 89

Table 6
The mass of Center Fragments for Ten Different SNP Typing by IIS Assay

3000	A, 16	Poo e Ser.										
	יגרו	LFL(291**)	Proth	Prothrombin	FV(*'95069h)	506 ^{ar})	CETP	CETP('405")	FVII(FVII("353°)	FXIII	FXIII("34)
Genotype	<	,										
ad Annua		و	9	٨	ဗ	4	တ	∢	ပ	۵		,
+ strand 6212 6220 rear	6213	0000	, ,									-
mass	25	6770	2845	5829	2677	5661	3388	3372	6128	6112	5677 5661 3388 3372 6128 6112 5058	5033
(Da)								9			2	
								_				
- strand	6129	6114	5949	5964	5773	2407	70,0					
mass			3437 3452 6174 6189 4916 4940	5	7/50	248/	3437	3452	6174	6189	4916	4940
(Da)												

Gene	Ī	Hlah2	Ĩ	Hlah4	MTHR	MTHR(Ab2222Val)	DER	A / Arganopio.
(DYACC	127/ HIDYACC
Genotype	ပ	ၒ	ဖ	∢	ပ	-	ပ	O
+ strand mass (Da)	5889	5929	4392	4376	4392 4376 4400	4415	4586	4546
strand mass (Da)	5836	5796	4319	4319 4334 4368	4368	4352	4724	4764

-90-

EXAMPLE 10

Exemplary use of parental medical history parameter for stratification of healthy datebase

A healthy database can be used to associate a disease state with a specific allele (SNP) that has been found to show a strong association between age and the allele, in particular the homozygous genotype. The method involves using the same healthy database used to identify the age dependent association, however stratification is by information given by the donors about common disorders from which their parents suffered (the donor's familial history of disease). There are three possible answers a donor could give about the health status of their parents: neither were affected, one was affected or both were affected. Only donors above a certain minimum age, depending on the disease, are utilized, as the donors parents must be old enough to to have exhibited clinical disease phenotypes. The genotype frequency in each of these groups is determined and compared with each other. If there is an association of the marker in the donor to a disease the frequency of the heterozyous genotype will be increased. The frequency of the homozygous genotype should not increase, as it should be significantly underrepresented in the healthy population.

ENSDOCID: <WO 012785742 1 >

15

20

25

-91-

EXAMPLE 11

Method and Device for Identifying a Biological Sample Description

In accordance with the present invention, a method and device for identifying a biological sample is provided. Referring now to FIG. 24, an apparatus 10 for identifying a biological sample is disclosed. The apparatus 10 for identifying a biological sample generally comprises a mass spectrometer 15 communicating with a computing device 20. In a preferred embodiment, the mass spectrometer may be a MALDI-TOF mass spectrometer manufactured by Bruker-Franzen Analytik GmbH; however, it will be appreciated that other mass spectrometers can be substituted. The computing device 20 is preferably a general purpose computing device. However, it will be appreciated that the computing device could be alternatively configured, for example, it may be integrated with the mass spectrometer or could be part of a computer in a larger network system.

The apparatus 10 for identifying a biological sample may operate as an automated identification system having a robot 25 with a robotic arm 27 configured to deliver a sample plate 29 into a receiving area 31 of the mass spectrometer 15. In such a manner, the sample to be identified may be placed on the plate 29 and automatically received into the mass spectrometer 15. The biological sample is then processed in the mass spectrometer to generate data indicative of the mass of DNA fragments in the biological sample. This data may be sent directly to computing device 20, or may have some preprocessing or filtering performed within the mass spectrometer. In a preferred embodiment, the mass spectrometer 15 transmits unprocessed and unfiltered mass spectrometry data to the computing device 20. However, it will be appreciated that the analysis in the computing device may be adjusted to accommodate preprocessing or filtering performed within the mass spectrometer.

Referring now to FIG. 25, a general method 35 for identifying a biological sample is shown. In method 35, data is received into a computing device from a test instrument in block 40. Preferably the data is received in a raw, unprocessed and unfiltered form, but alternatively may have some form of

10

15

20

25

30

filtering or processing applied. The test instrument of a preferred embodiment is a mass spectrometer as described above. However, it will be appreciated that other test instruments could be substituted for the mass spectrometer.

The data generated by the test instrument, and in particular the mass spectrometer, includes information indicative of the identification of the biological sample. More specifically, the data is indicative of the DNA composition of the biological sample. Typically, mass spectrometry data gathered from DNA samples obtained from DNA amplification techniques are noisier than, for example, those from typical protein samples. This is due in part because protein samples are more readily prepared in more abundance, and protein samples are more easily ionizable as compared to DNA samples. Accordingly, conventional mass spectrometer data analysis techniques are generally ineffective for DNA analysis of a biological sample. To improve the analysis capability so that DNA composition data can be more readily discerned, a preferred embodiment uses wavelet technology for analyzing the DNA mass spectrometry data. Wavelets are an analytical tool for signal processing, numerical analysis, and mathematical modeling. Wavelet technology provides a basic expansion function which is applied to a data set. Using wavelet decomposition, the data set can be simultaneously analyzed in the time and frequency domains. Wavelet transformation is the technique of choice in the analysis of data that exhibit complicated time (mass) and frequency domain information, such as MALDI-TOF DNA data. Wavelet transforms as described herein have superior denoising properties as compared to conventional Fourier analysis techniques. Wavelet transformation has proven to be particularly effective in interpreting the inherently noisy MALDI-TOF spectra of DNA samples. In using wavelets, a "small wave" or "scaling function" is used to transform a data set into stages, with each stage representing a frequency component in the data set. Using wavelet transformation, mass spectrometry data can be processed, filtered, and analyzed with sufficient discrimination to be useful for identification of the DNA composition for a biological sample.

Referring again to FIG. 25, the data received in block 40 is denoised in block 45. The denoised data then has a baseline correction applied in block 50.

A baseline correction is generally necessary as data coming from the test instrument, in particular a mass spectrometer instrument, has data arranged in a generally exponentially decaying manner. This generally exponential decaying arrangement is not due to the composition of the biological sample, but is a result of the physical properties and characteristics of the test instrument, and other chemicals involved in DNA sample preparation. Accordingly, baseline correction substantially corrects the data to remove a component of the data attributable to the test system, and sample preparation characteristics.

After denoising in block 45 and the baseline correction in block 50, a signal remains which is generally indicative of the composition of the biological sample. However, due to the extraordinary discrimination required for analyzing the DNA composition of the biological sample, the composition is not readily apparent from the denoised and corrected signal. For example, although the signal may include peak areas, it is not yet clear whether these "putative" peaks actually represent a DNA composition, or whether the putative peaks are result of a systemic or chemical aberration. Further, any call of the composition of the biological sample would have a probability of error which would be unacceptable for clinical or therapeutic purposes. In such critical situations, there needs to be a high degree of certainty that any call or identification of the sample is accurate. Therefore, additional data processing and interpretation is necessary before the sample can be accurately and confidently identified.

Since the quantity of data resulting from each mass spectrometry test is typically thousands of data points, and an automated system may be set to perform hundreds or even thousands of tests per hour, the quantity of mass spectrometry data generated is enormous. To facilitate efficient transmission and storage of the mass spectrometry data, block 55 shows that the denoised and baseline corrected data is compressed.

In a preferred embodiment, the biological sample is selected and processed to have only a limited range of possible compositions. Accordingly, it is therefore known where peaks indicating composition should be located, if present. Taking advantage of knowing the location of these expected peaks, in block 60 the method 35 matches putative peaks in the processed signal to the

10

15

20

25

WO 01/27857 PCT/US00/28413

-94-

location of the expected peaks. In such a manner, the probability of each putative peak in the data being an actual peak indicative of the composition of the biological sample can be determined. Once the probability of each peak is determined in block 60, then in block 65 the method 35 statistically determines the composition of the biological sample, and determines if confidence is high enough to calling a genotype.

Referring again to block 40, data is received from the test instrument, which is preferably a mass spectrometer. In a specific illustration, FIG. 26 shows an example of data from a mass spectrometer. The mass spectrometer data 70 generally comprises data points distributed along an x-axis 71 and a y-axis 72. The x-axis 71 represents the mass of particles detected, while the y-axis 72 represents a numerical concentration of the particles. As can be seen in FIG. 26, the mass spectrometry data 70 is generally exponentially decaying with data at the left end of the x-axis 73 generally decaying in an exponential manner toward data at the heavier end 74 of the x-axis 71. However, the general exponential presentation of the data is not indicative of the composition of the biological sample, but is more reflective of systematic error and characteristics. Further, as described above and illustrated in FIG. 26, considerable noise exists in the mass spectrometry DNA data 70.

Referring again to block 45, where the raw data received in block 40 is denoised, the denoising process will be described in more detail. As illustrated in FIG. 25, the denoising process generally entails 1) performing a wavelet transformation on the raw data to decompose the raw data into wavelet stage coefficients; 2) generating a noise profile from the highest stage of wavelet coefficients; and 3) applying a scaled noise profile to other stages in the wavelet transformation. Each step of the denoising process is further described below.

Referring now to FIG. 27, the wavelet transformation of the raw mass spectrometry data is generally diagramed. Using wavelet transformation techniques, the mass spectrometry data 70 is sequentially transformed into stages. In each stage the data is represented in a high stage and a low stage, with the low stage acting as the input to the next sequential stage. For example, the mass spectrometry data 70 is transformed into stage 0 high data

10

15

20

25

WO 01/27857 PCT/US00/28413

-95-

82 and stage 0 low data 83. The stage 0 low data 83 is then used as an input to the next level transformation to generate stage 1 high data 84 and stage 1 low data 85. In a similar manner, the stage 1 low data 85 is used as an input to be transformed into stage 2 high data 86 and stage 2 low data 87. The transformation is continued until no more useful information can be derived by further wavelet transformation. For example, in the preferred embodiment a 24point wavelet is used. More particularly a wavelet commonly referred to as the Daubechies 24 is used to decompose the raw data. However, it will be appreciated that other wavelets can be used for the wavelet transformation. 10 Since each stage in a wavelet transformation has one-half the data points of the previous stage, the wavelet transformation can be continued until the stage n low data 89 has around 50 points. Accordingly, the stage n high 88 would contain about 100 data points. Since the preferred wavelet is 24 points long, little data or information can be derived by continuing the wavelet transformation 15 on a data set of around 50 points.

FIG. 28 shows an example of stage 0 high data 95. Since stage 0 high data 95 is generally indicative of the highest frequencies in the mass spectrometry data, stage 0 high data 95 will closely relate to the quantity of high frequency noise in the mass spectrometry data. In FIG. 29, an exponential fitting formula has been applied to the stage 0 high data 95 to generate a stage 0 noise profile 97. In particular, the exponential fitting formula is in the format $A_0 + A_1 EXP (-A_2 m)$. It will be appreciated that other expediential fitting formulas or other types of curve fits may be used.

Referring now to FIG. 30, noise profiles for the other high stages are determined. Since the later data points in each stage will likely be representative of the level of noise in each stage, only the later data points in each stage are used to generate a standard deviation figure that is representative of the noise content in that particular stage. More particularly, in generating the noise profile for each remaining stage, only the last five percent of the data points in each stage are analyzed to determined a standard deviation number. It will be appreciated that other numbers of points, or alternative methods could be us d to generate such a standard deviation figure.

20

15

20

25

30

The standard deviation number for each stage is used with the stage 0 noise profile (the exponential curve) 97 to generate a scaled noise profile for each stage. For example, FIG. 30 shows that stage 1 high data 98 has stage 1 high data 103 with the last five percent of the data points represented by area 99. The points in area 99 are evaluated to determine a standard deviation number indicative of the noise content in stage 1 high data 103. The standard deviation number is then used with the stage 0 noise profile 97 to generate a stage 1 noise profile.

In a similar manner, stage 2 high 100 has stage 2 high data 104 with the last five percent of points represented by area 101. The data points in area 101 are then used to calculate a standard deviation number which is then used to scale the stage 0 noise profile 97 to generate a noise profile for stage 2 data. This same process is continued for each of the stage high data as shown by the stage n high 105. For stage n high 105, stage n high data 108 has the last five percent of data points indicated in area 106. The data points in area 106 are used to determine a standard deviation number for stage n. The stage n standard deviation number is then used with the stage 0 noise profile 97 to generate a noise profile for stage n. Accordingly, each of the high data stages has a noise profile.

FIG. 31 shows how the noise profile is applied to the data in each stage. Generally, the noise profile is used to generate a threshold which is applied to the data in each stage. Since the noise profile is already scaled to adjust for the noise content of each stage, calculating a threshold permits further adjustment to tune the quantity of noise removed. Wavelet coefficients below the threshold are ignored while those above the threshold are retained. Accordingly, the remaining data has a substantial portion of the noise content removed.

Due to the characteristics of wavelet transformation, the lower stages, such as stage 0 and 1, will have more noise content than the later stages such as stage 2 or stage n. Indeed, stage n low data is likely to have little noise at all. Therefore, in a preferred embodiment the noise profiles are applied more aggressively in the I w r stages and less aggressively in the later stages. For example, FIG. 31 shows that stage 0 high threshold is determined by multiplying

15

20

25

30

the stage 0 noise profile by a factor of four. In such a manner, significant numbers of data points in stage 0 high data 95 will be below the threshold and therefore eliminated. Stage 1 high threshold 112 is set at two times the noise profile for the stage 1 high data, and stage 2 high threshold 114 is set equal to the noise profile for stage 2 high. Following this geometric progression, stage n high threshold 116 is therefore determined by scaling the noise profile for each respective stage n high by a factor equal to (1/2n-2). It will be appreciated that other factors may be applied to scale the noise profile for each stage. For example, the noise profile may be scaled more or less aggressively to accommodate specific systemic characteristics or sample compositions. As indicated above, stage n low data does not have a noise profile applied as stage n low data 118 is assumed to have little or no noise content. After the scaled noise profiles have been applied to each high data stage, the mass spectrometry data 70 has been denoised and is ready for further processing. A wavelet transformation of the denoised signal results in the sparse data set 120 as shown in FIG. 31.

Referring again to FIG. 25, the mass spectrometry data received in block 40 has been denoised in block 45 and is now passed to block 50 for baseline correction. Before performing baseline correction, the artifacts introduced by the wavelet transformation procedure are preferably removed. Wavelet transformation results vary slightly depending upon which point of the wavelet is used as a starting point. For example, the preferred embodiment uses the 24-point Daubechies-24 wavelet. By starting the transformation at the 0 point of the wavelet, a slightly different result will be obtained than if starting at points 1 or 2 of the wavelet. Therefore, the denoised data is transformed using every available possible starting point, with the results averaged to determine a final denoised and shifted signal. For example, FIG. 33 shows that the wavelet coefficient is applied 24 different times and then the results averaged to generate the final data set. It will be appreciated that other techniques may be used to accommodate the slight error introduced due to wavelet shifting.

The formula 125 is generally indicated in FIG. 33. Once the signal has been denoised and shifted, a denoised and shifted signal 130 is generated as

15

20

25

30

shown in FIG. 58. FIG. 34 shows an example of the wavelet coefficient 135 data set from the denoised and shifted signal 130.

FIG. 36 shows that putative peak areas 145, 147, and 149 are located in the denoised and shifted signal 150. The putative peak areas are systematically identified by taking a moving average along the signal 150 and identifying sections of the signal 150 which exceed a threshold related to the moving average. It will be appreciated that other methods can be used to identify putative peak areas in the signal 150.

Putative peak areas 145, 147 and 149 are removed from the signal 150 to create a peak-free signal 155 as shown in FIG. 37. The peak-free signal 155 is further analyzed to identify remaining minimum values 157, and the remaining minimum values 157 are connected to generate the peak-free signal 155.

FIG. 38 shows a process of using the peak-free signal 155 to generate a baseline 170 as shown in FIG. 39. As shown in block 162, a wavelet transformation is performed on the peak-free signal 155. All the stages from the wavelet transformation are eliminated in block 164 except for the n low stage. The n low stage will generally indicate the lowest frequency component of the peak-free signal 155 and therefore will generally indicate the system exponential characteristics. Block 166 shows that a signal is reconstructed from the n low coefficients and the baseline signal 170 is generated in block 168.

FIG. 39 shows a denoised and shifted data signal 172 positioned adjacent a correction baseline 170. The baseline correction 170 is subtracted from the denoised and shifted signal 172 to generate a signal 175 having a baseline correction applied as shown in FIG. 40. Although such a denoised, shifted, and corrected signal is sufficient for most identification purposes, the putative peaks in signal 175 are not identifiable with sufficient accuracy or confidence to call the DNA composition of a biological sample.

Referring again to FIG. 25, the data from the baseline correction 50 is now compressed in block 55, the compression technique used in a preferred embodiment is detailed in FIG. 41. In FIG. 41 the data in the baseline corrected data is presented in an array format 182 with x-axis points 183 having an associated data value 184. The x-axis is index d by the non-zero wavelet

coefficients, and the associated value is the value of the wavelet coefficient. In the illustrated data example in table 182, the maximum value 184 is indicated to be 1000. Although a particularly advantageous compression technique for mass spectrometry data is shown, it will be appreciated that other compression techniques can be used. Although not preferred, the data may also be stored without compression.

In compressing the data according to a preferred embodiment, an intermediate format 186 is generated. The intermediate format 186 generally comprises a real number having a whole number portion 188 and a decimal portion 190. The whole number portion is the x-axis point 183 while the decimal portion is the value data 184 divided by the maximum data value. For example, in the data 182 a data value "25" is indicated at x-axis point "100". The intermediate value for this data point would be "100.025".

From the intermediate compressed data 186 the final compressed data 195 is generated. The first point of the intermediate data file becomes the starting point for the compressed data. Thereafter each data point in the compressed data 195 is calculated as follows: the whole number portion (left of the decimal) is replaced by the difference between the current and the last whole number. The remainder (right of the decimal) remains intact. For example, the starting point of the compressed data 195 is shown to be the same as the intermediate data point which is "100.025". The comparison between the first intermediate data point "100.025" and the second intermediate data point "150.220" is "50.220". Therefore, "50.220" becomes the second point of the compressed data 195. In a similar manner, the second intermediate point is "150.220" and the third intermediate data point is "500.0001". Therefore, the third compressed data becomes "350.000". The calculation for determining compressed data points is continued until the entire array of data points is converted to a single array of real numbers.

FIG. 42 generally describes the method of compressing mass spectrometry data, showing that the data file in block 201 is presented as an array of coefficients in block 202. The data starting point and maximum is determined as shown in block 203, and the intermediate real numbers are

15

20

25

calculated in block 204 as described above. With the intermediate data points generated, the compressed data is generated in block 205. The described compression method is highly advantageous and efficient for compressing data sets such as a processed data set from a mass spectrometry instrument. The method is particularly useful for data, such as mass spectrometry data, that uses large numbers and has been processed to have occasional lengthy gaps in x-axis data. Accordingly, an x-y data array for processed mass spectrometry data may be stored with an effective compression rate of 10x or more. Although the compression technique is applied to mass spectrometry data, it will be appreciated that the method may also advantageously be applied to other data sets.

Referring again to FIG. 25, peak heights are now determined in block 60. The first step in determining peak height is illustrated in FIG. 43 where the signal 210 is shifted left or right to correspond with the position of expected peaks.

As the set of possible compositions in the biological sample is known before the mass spectrometry data is generated, the possible positioning of expected peaks is already known. These possible peaks are referred to as expected peaks, such as expected peaks 212, 214, and 216. Due to calibration or other errors in the test instrument data, the entire signal may be shifted left or right from its actual position, therefore, putative peaks located in the signal, such as putative peaks 218, 222, and 224 may be compared to the expected peaks 212, 214, and 216, respectively. The entire signal is then shifted such that the putative peaks align more closely with the expected peaks.

Once the putative peaks have been shifted to match expected peaks, the strongest putative peak is identified in FIG. 44. In a preferred embodiment, the strongest peak is calculated as a combination of analyzing the overall peak height and area beneath the peak. For example, a moderately high but wide peak would be stronger than a very high peak that is extremely narrow. With the strongest putative peak identified, such as putative peak 225, a Gaussian 228 curve is fit to the peak 225. Once the Gaussian is fit, the width (W) of the Gaussian is determined and will be used as the peak width for future calculations.

25

10

20

25

30

As generally addressed above, the denoised, shifted, and baseline-corrected signal is not sufficiently processed for confidently calling the DNA composition of the biological sample. For example, although the baseline has generally been removed, there are still residual baseline effects present. These residual baseline effects are therefore removed to increase the accuracy and confidence in making identifications.

To remove the residual baseline effects, FIG. 45 shows that the putative peaks 218, 222, and 224 are removed from the baseline corrected signal. The peaks are removed by identifying a center line 230, 232, and 234 of the putative peaks 218, 222, and 224, respectively and removing an area to the left and to the right of the identified center line. For each putative peak, an area equal to twice the width (W) of the Gaussian is removed from the left of the center line, while an area equivalent to 50 daltons is removed from the right of the center line. It has been found that the area representing 50 daltons is adequate to sufficiently remove the effect of salt adducts which may be associated with an actual peak. Such adducts appear to the right of an actual peak and are a natural effect from the chemistry involved in acquiring a mass spectrum. Although a 50 Dalton buffer has been selected, it will be appreciated that other ranges or methods can be used to reduce or eliminate adduct effects.

The peaks are removed and remaining minima 247 located as shown in FIG. 46 with the minima 247 connected to create signal 245. A quartic polynomial is applied to signal 245 to generate a residual baseline 250 as shown in FIG. 47. The residual baseline 250 is subtracted from the signal 225 to generate the final signal 255 as indicated in FIG. 48. Although the residual baseline is the result of a quartic fit to signal 245, it will be appreciated that other techniques can be used to smooth or fit the residual baseline.

To determine peak height, as shown in FIG. 49, a Gaussian such as Gaussian 266, 268, and 270 is fit to each of the peaks, such as peaks 260, 262, and 264, respectively. Accordingly, the height of the Gaussian is determined as height 272, 274, and 276. Once the height of each Gaussian peak is determined, then the method of identifying a biological compound 35 can move into the genotyping phase 65 as shown in FIG. 25.

10

15

20

25

30

An indication of the confidence that each putative peak is an actual peak can be discerned by calculating a signal-to-noise ratio for each putative peak. Accordingly, putative peaks with a strong signal-to-noise ratio are generally more likely to be an actual peak than a putative peak with a lower signal-to-noise ratio. As described above and shown in FIG. 50, the height of each peak, such as height 272, 274, and 276, is determined for each peak, with the height being an indicator of signal strength for each peak. The noise profile, such as noise profile 97, is extrapolated into noise profile 280 across the identified peaks. At the center line of each of the peaks, a noise value is determined, such as noise value 282, 283, and 284. With a signal values and a noise values generated, signal-to-noise ratios can be calculated for each peak. For example, the signal-to-noise ratio for the first peak in FIG. 50 would be calculated as signal value 272 divided by noise value 282, and in a similar manner the signal-to-noise ratio of the middle peak in FIG. 50 would be determined as signal 274 divided by noise value 283.

Although the signal-to-noise ratio is generally a useful indicator of the presence of an actual peak, further processing has been found to increase the confidence by which a sample can be identified. For example, the signal-to-noise ratio for each peak in the preferred embodiment is preferably adjusted by the goodness of fit between a Gaussian and each putative peak. It is a characteristic of a mass spectrometer that sample material is detected in a manner that generally complies with a normal distribution. Accordingly, greater confidence will be associated with a putative signal having a Gaussian shape than a signal that has a less normal distribution. The error resulting from having a non-Gaussian shape can be referred to as a "residual error".

Referring to FIG. 51, a residual error is calculated by taking a root mean square calculation between the Gaussian 293 and the putative peak 290 in the data signal. The calculation is performed on data within one width on either side of a center line of the Gaussian. The residual error is calculated as:

where G is the Gaussian signal value, R is the putative peak value, and N is the number of points from -W to +W. The calculated residual err r is used to generate an adjusted signal-to-noise ratio, as described below.

WO 01/27857 PCT/US00/28413

-103-

An adjusted signal noise ratio is calculated for each putative peak using the formula (S/N) * EXP^(-.1*R), where S/N is the signal-to-noise ratio, and R is the residual error determined above. Although the preferred embodiment calculates an adjusted signal-to-noise ratio using a residual error for each peak, it will be appreciated that other techniques can be used to account for the goodness of fit between the Gaussian and the actual signal.

Referring now to FIG. 52, a probability is determined that a putative peak is an actual peak. In making the determination of peak probability, a probability profile 300 is generated where the adjusted signal-to-noise ratio is the x-axis and the probability is the y-axis. Probability is necessarily in the range between a 0% probability and a 100% probability, which is indicated as 1. Generally, the higher the adjusted signal-to-noise ratio, the greater the confidence that a putative peak is an actual peak.

At some target value for the adjusted signal-to-noise, it has been found that the probability is 100% that the putative peak is an actual peak and can confidently be used to identify the DNA composition of a biological sample. However, the target value of adjusted signal-to-noise ratio where the probability is assumed to be 100% is a variable parameter which is to be set according to application specific criteria. For example, the target signal-to-noise ratio will be adjusted depending upon trial experience, sample characteristics, and the acceptable error tolerance in the overall system. More specifically, for situations requiring a conservative approach where error cannot be tolerated, the target adjusted signal-to-noise ratio can be set to, for example, 10 and higher. Accordingly, 100% probability will not be assigned to a peak unless the adjusted signal-to-noise ratio is 10 or over.

In other situations, a more aggressive approach may be taken as sample data is more pronounced or the risk of error may be reduced. In such a situation, the system may be set to assume a 100% probability with a 5 or greater target signal-to-noise ratio. Of course, an intermediate signal-to-noise ratio target figure can be selected, such as 7, when a moderate risk of error can be assumed. Once the target adjusted signal-to-noise ratio is set for the method,

10

15

20

25

WO 01/27857 PCT/US00/28413

-104-

then for any adjusted signal-to-noise ratio a probability can be determined that a putative peak is an actual peak.

Due to the chemistry involved in performing an identification test, especially a mass spectrometry test of a sample prepared by DNA amplifications, 5 the allelic ratio between the signal strength of the highest peak and the signal strength of the second (or third and so on) highest peak should fall within an expected ratio. If the allelic ratio falls outside of normal guidelines, the preferred embodiment imposes an allelic ratio penalty to the probability. For example, FIG. 53 shows an allelic penalty 315 which has an x-axis 317 that is the ratio between the signal strength of the second highest peak divided by signal strength of the highest peak. The y-axis 319 assigns a penalty between 0 and 1 depending on the determined allelic ratio. In the preferred embodiment, it is assumed that allelic ratios over 30% are within the expected range and therefore no penalty is applied. Between a ratio of 10% and 30%, the penalty is linearly increased until at allelic ratios below 10% it is assumed the second-highest peak is not real. For allelic ratios between 10% and 30%, the allelic penalty chart 315 is used to determine a penalty 319, which is multiplied by the peak probability determined in FIG. 52 to determine a final peak probability. Although the preferred embodiment incorporates an allelic ratio penalty to account for a possible chemistry error, it will be appreciated that other techniques may be used. Similar treatment will be applied to the other peaks.

With the peak probability of each peak determined, the statistical probability for various composition components may be determined. As an example, in order to determine the probability of each of three possible combinations of two peaks, -- peak G, peak C and combinations GG, CC and GC. FIG. 54 shows an example where a most probable peak 325 is determined to have a final peak probability of 90%. Peak 325 is positioned such that it represents a G component in the biological sample. Accordingly, it can be maintained that there is a 90% probability that G exists in the biological sample. Also in the example shown in FIG. 54, the second highest probability is peak 330 which has a peak probability of 20%. Peak 330 is at a position associated

10

15

20

25

WO 01/27857 PCT/US00/28413

-105-

with a C composition. Accordingly, it can be maintained that there is a 20% probability that C exists in the biological sample.

With the probability of G existing (90%) and the probability of C existing (20%) as a starting point, the probability of combinations of G and C existing can be calculated. For example, FIG. 54 indicates that the probability of GG existing 329 is calculated as 72%. This is calculated as the probability of GG is equal to the probability of G existing (90%) multiplied by the probability of C not existing (100% -20%). So if the probability of G existing is 90% and the probability of C not existing is 80%, the probability of GG is 72%.

In a similar manner, the probability of CC existing is equivalent to the probability of C existing (20%) multiplied by the probability of G not existing (100% - 90%). As shown in FIG. 54, the probability of C existing is 20% while the probability of G not existing is 10%, so therefore the probability of CC is only 2%. Finally, the probability of GC existing is equal to the probability of G existing (90%) multiplied by the probability of C existing (20%). So if the probability of G existing is 90% and the probability of C existing is 20%, the probability of GC existing is 18%. In summary form, then, the probability of the composition of the biological sample is:

probability of GG: 72%;

probability of GC: 18%; and

probability of CC: 2%.

Once the probabilities of each of the possible combinations has been determined, FIG. 55 is used to decide whether or not sufficient confidence exists to call the genotype. FIG. 55 shows a call chart 335 which has an x-axis 337 which is the ratio of the highest combination probability to the second highest combination probability. The y-axis 339 simply indicates whether the ratio is sufficiently high to justify calling the genotype. The value of the ratio may be indicated by M 340. The value of M is set depending upon trial data, sample composition, and the ability to accept error. For example, the value M may be set relatively high, such as to a value 4 so that the highest probability must be at least four times greater than the second highest probability before confidence is established to call a genotype. However, if a certain lev 1 of error may be

10

15

20

25

WO 01/27857 PCT/US00/28413

-106-

acceptable, the value of M may be set to a more aggressive value, such as to 3, so that the ratio between the highest and second highest probabilities needs to be only a ratio of 3 or higher. Of course, moderate value may be selected for M when a moderate risk can be accepted. Using the example of FIG. 54, where the probability of GG was 72% and the probability of GC was 18%, the ratio between 72% and 18% is 4.0, therefore, whether M is set to 3, 3.5, or 4, the system would call the genotype as GG. Although the preferred embodiment uses a ratio between the two highest peak probabilities to determine if a genotype confidently can be called, it will be appreciated that other methods may be substituted. It will also be appreciated that the above techniques may be used for calculating probabilities and choosing genotypes (or more general DNA patterns) containing of combinations of more than two peaks.

Referring now to FIG. 56, a flow chart is shown generally defining the process of statistically calling genotype described above. In FIG. 56 block 402 shows that the height of each peak is determined and that in block 404 a noise profile is extrapolated for each peak. The signal is determined from the height of each peak in block 406 and the noise for each peak is determined using the noise profile in block 408. In block 410, the signal-to-noise ratio is calculated for each peak. To account for a non-Gaussian peak shape, a residual error is determined in block 412 and an adjusted signal-to-noise ratio is calculated in block 414. Block 416 shows that a probability profile is developed, with the probability of each peak existing found in block 418. An allelic penalty may be applied in block 420, with the allelic penalty applied to the adjusted peak probability in block 422. The probability of each combination of components is calculated in block 424 with the ratio between the two highest probabilities being determined in block 426. If the ratio of probabilities exceeds a threshold value then the genotype is called in block 428.

In another embodiment of the invention, the computing device 20 (Fig. 24) supports "standardless" genotyping by identifying data peaks that contain putative SNPs. Standardless genotyping is used, for example, where insufficient information is known about the samples to determine a distribution of expect d

10

15

20

WO 01/27857 PCT/US00/28413

peak locations, against which an allelic penalty as described above can be reliably calculated. This permits the computing device to be used for identification of peaks that contain putative SNPs from data generated by any assay that fragments a targeted DNA molecule. For such standardless genotyping, peaks that are associated with an area under the data curve that deviates significantly from the typical area of other peaks in the data spectrum are identified and their corresponding mass (location along the x-axis) is determined.

More particularly, peaks that deviate significantly from the average area of other peaks in the data are identified, and the expected allelic ratio between data peaks is defined in terms of the ratio of the area under the data peaks. Theoretically, where each genetic loci has the same molar concentration of analyte, the area under each corresponding peak should be the same, thus producing a 1.0 ratio of the peak area between any two peaks. In accordance with the invention, peaks having a smaller ratio relative to the other peaks in the data will not be recognized as peaks. More particularly, peaks having an area ratio smaller than 30% relative to a nominal value for peak area will be assigned an allelic penalty. The mass of the remaining peaks (their location along the x-axis of the data) will be determined based on oligonucleotide standards.

Fig. 57 shows a flow diagram representation of the processing by the computing device 20 (Fig. 24) when performing standardless genotyping. In the first operation, represented by the flow diagram box numbered 502, the computing device receives data from the mass spectrometer. Next, the height of each putative peak in the data sample is determined, as indicated by the block 504. After the height of each peak in the mass spectrometer data is determined, a de-noise process 505 is performed, beginning with an extrapolation of the noise profile (block 506), followed by finding the noise of each peak (block 508) and calculating the signal to noise ratio for each data sample (block 510). Each of these operations may be performed in accordance with the description above for denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art.

10

15

20

25

15

20

25

30

The next operation is to find the residual error associated with each data point. This is represented by the block 512 in Figure 57. The next step, block 514, involves calculating an adjusted signal to noise ratio for each identified peak. A probability profile is developed next (block 516), followed by a determination of the peak probabilities at block 518. In the preferred embodiment, the denoise operations of Fig. 57, comprising block 502 to block 518, comprise the corresponding operations described above in conjunction with Fig. 56 for block 402 through block 418, respectively.

The next action for the standardless genotype processing is to determine an allelic penalty for each peak, indicated by the block 524. As noted above, the standardless genotype processing of Fig. 57 determines an allelic penalty by comparing area under the peaks. Therefore, rather than compare signal strength ratios to determine an allelic penalty, such as described above for Fig. 53, the standardless processing determines the area under each of the identified peaks and compares the ratio of those areas. Determining the area under each peak may be computed using conventional numerical analysis techniques for calculating the area under a curve for experimental data.

Thus, the allelic penalty is assigned in accordance with Fig. 58, which shows that no penalty is assigned to peaks having a peak area relative to an expected average area value that is greater than 0.30 (30%). The allelic penalty is applied to the peak probability value, which may be determined according to the process such as described in Fig. 52. It should be apparent from Fig. 58 that the allelic penalty imposed for peaks below a ratio of 30% is that such peaks will be removed from further measurement and processing. Other penalty schemes, however, may be imposed in accordance with knowledge about the data being processed, as determined by those skilled in the art.

After the allelic penalty has been determined and applied, the standardless genotype processing compares the location of the remaining putative peaks to oligonucleotide standards to determine corresponding masses in the processing for block 524. For standardless genotype data, the processing of the block 524 is p rformed to determine mass and genotype, rather than performing the operations corresponding to block 424, 426, and 428 of Fig. 33.

15

20

25

30

Techniques for performing such comparisons and determining mass will be known to those skilled in the art.

In another embodiment, the computing device 20 (Fig. 24) permits the detection and determination of the mass (location along the x-axis of the data) of the sense and antisense strand of fragments generated in the assay. If desired, the computing device may also detect and determine the quantity (area under each peak) of the respective sense and antisense strands, using a similar technique to that described above for standardless genotype processing. The data generated for each type of strand may then be combined to achieve a data redundancy and to thereby increase the confidence level of the determined genotype. This technique obviates primer peaks that are often observed in data from other diagnostic methods, thereby permitting a higher level of multiplexing. In addition, when quantitation is used in pooling experiments, the ratio of the measured peak areas is more reliably calculated than the peak identifying technique, due to data redundancy.

Fig. 23 is a flow diagram that illustrates the processing implemented by the computing device 20 to perform sense and antisense processing. In the first operation, represented by the flow diagram box numbered 602, the computing device receives data from the mass spectrometer. This data will include data for the sense strand and antisense strand of assay fragments. Next, the height of each putative peak in the data sample is determined, as indicated by the block 604. After the height of each peak in the mass spectrometer data is determined, a de-noise process 605 is performed, beginning with an operation that extrapolates the noise profile (block 606), followed by finding the noise of each peak (block 608) and calculating the signal to noise ratio for each data sample (block 610). Each of these operations may be performed in accordance with the description above for the denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art. The next operation is to find the residual error associated with each data point. This is represented by the block 612 in Figure 36.

After the residual error for the data of the sense strand and antisense strand has been performed, processing to identify the genotypes will be

WO 01/27857 PCT/US00/28413

-110-

performed for the sense strand and also for the antisense strand. Therefore, Fig. 23 shows that processing includes sense strand processing (block 630) and antisense strand processing (block 640). Each block 630, 640 includes processing that corresponds to adjusting the signal to noise ratio, developing a probability profile, determining an allelic penalty, adjusting the peak probability by the allelic penalty, calculating genotype probabilities, and testing genotype probability ratios, such as described above in conjunction with blocks 414 through 426 of Fig. 56. The processing of each block 630, 640 may, if desired, include standardless processing operations such as described above in conjunction with Fig. 57. The standardless processing may be included in place of or in addition to the processing operations of Fig. 56.

After the genotype probability processing is completed, the data from the sense strand and antisense strand processing is combined and compared to expected database values to obtain the benefits of data redundancy as between the sense strand and antisense strand. Those skilled in the art will understand techniques to take advantage of known data redundancies between a sense strand and antisense strand of assay fragments. This processing is represented by the block 650. After the data from the two strands is combined for processing, the genotype processing is performed (block 660) and the genotype is identified.

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

10

15

PCT/US00/28413

WHAT IS CLAIMED IS:

5

A subcollection of samples from a target population, comprising:
 a plurality of samples, wherein the samples are selected from the group
 consisting of blood, tissue, body fluid, cell, seed, microbe, pathogen and
 reproductive tissue samples; and

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected 10 for any disease state:

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 2. The subcollection of claim 1, wherein the parameters are selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
 - 3. The subcollection of claim 1, wherein the symbology is a bar code.
 - 4. A method of producing a database, comprising:

25 identifying healthy members of a population;

obtaining data comprising identifying information and obtaining historical information and data relating to the identified members of the population and their immediate family;

entering the data into a database for each member of the population and associating the member and the data with an indexer.

5. The method of claim 4, further comprising: obtaining a body tissue or body fluid sample;

WO 01/27857

5

15

20

analyzing the body tissue or body fluid in the sample; and entering the results of the analysis for each member into the database and associating each result with the indexer representative of each member.

- 6. A database produced by the method of claim 4.
- 7. A database produced by the method of claim 5.
- 8. A database, comprising:

datapoints representative of a plurality of healthy organisms from whom biological samples are obtained,

wherein each datapoint is associated with data representative of the organism type and other identifying information.

- 9. The database of claim 8, wherein the datapoints are answers to questions regarding one or more of a parameters selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
- 10. The database of claim 9, wherein the organisms are mammals and the samples are body fluids or tissues.
- 11. The database of claim 9, wherein the samples are selected from blood, blood fractions, cells and subcellular organelles.
- The database of claim 8, further comprising, phenotypic data from an organism.
 - 13. The database of claim 12, wherein the data includes one of physical characteristics, background data, medical data, and historical data.
- 14. The database of claim 8, further comprising,genotypic data from nucleic acid obtained from an organism.

20

- 15. The database of claim 14, wherein genotypic data includes, genetic markers, non-coding regions, microsatellites, RFLPs, VNTRs, historical data of the organism, medical history, and phenotypic information.
 - 16. The database of claim 8 that is a relational database.
- 17. The database of claim 16, wherein the data are related to an indexer datapoint representative of each organism from whom data is obtained.
- 18. A method of identifying polymorphisms that are candidate genetic markers, comprising:

identifying a polymorphism; and

10 identifying any pathway or gene linked to the locus of the polymorphism, wherein

the polymorphisms are identified in samples associated with a target population that comprises healthy subjects.

- 19. The method of claim 18, wherein the polymorphism is identified by15 detecting the presence of target nucleic acids in a sample by a method,comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid;
 - b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
 - c) ligating the hybridized oligonucleotides; and
 - c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
 - 20. The method of claim 18, wherein the polymorphism is identified by detecting target nucleic acids in a sample by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
 - b) contacting the hybridized first and second oligonucleotides with a cleavage enzyme to form a cleavage product; and
- 30 c) detecting the cleavage product by mass spectrometry as an indication of the pr sence of the target nucleic acid.

15

- 21. The method of claim 20 wherein the samples are from subjects in a healthy database.
- 22. The method of claim 18, wherein the polymorphism is identified by identifying target nucleic acids in a sample by primer oligo base extension (probe).
- 23. The method of 22, wherein primer oligo base extension, comprises:
 - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support,
 to produce an immobilized nucleic acid molecule;
 - c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
- d) contacting the product of step c) with a composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
- e) detecting the extended primer, thereby identifying the target nucleotide.
- 20 24. The method of claim 23, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

25. The method of claim 24, wherein;

samples are presented to the mass spectrometer as arrays on chips; and each sample occupies a volume that is about the size of the laser spot projected by the laser in a mass spectrometer used in matrix-assisted laser desorption/ionization (MALDI) spectrometry.

10

15

20

25

30

26. A combination, comprising:

a database containing parameters associated with a datapoint representative of a subject from whom samples are obtained, wherein the subjects are healthy; and

an indexed collection of the samples, wherein the index identifies the subject from whom the sample was obtained.

- 27 The combination of claim 26, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and ecposure to environmental factors.
- 28. The combination of claim 26, wherein the database further contains genotypic data for each subject.
 - 29. The combination of claim 26, wherein the samples are blood.
 - A data storage medium, comprising the database of claim 8.
- A computer system, comprising the database of claim 8.
 - 32. A system for high throughput processing of biological samples, comprising:
 - a process line comprising a plurality of processing stations, each of which performs a procedure on a biological sample contained in a reaction vessel;
 - a robotic system that transports the reaction vessel from processing station;
 - a data analysis system that receives test results of the process line and automatically processes the test results to make a determination regarding the biological sample in the reaction vessel;
 - a control system that determines when the t st at each processing station is complete and, in response, moves the reaction vess I to

10

20

25

the next test station, and continuously processes reaction vessels one after another until the control system receives a stop instruction; and

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database.

- 33. The system of claim 32, wherein one of the processing stations comprises a mass spectrometer.
- 34. The system of claim 32, wherein the data analysis system processes the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.
- 15 35. A method for high throughput processing of biological samples, the method comprising:
 - transporting a reaction vessel along a system of claim 32, comprising a process line having a plurality of processing stations, each of which performs a procedure on one or more biological samples contained in the reaction vessel;
 - determining when the test procedure at each processing station is complete and, in response, moving the reaction vessel to the next processing station;
 - receiving test results of the process line and automatically processing the test results to make a data analysis determination regarding the biological samples in the reaction vessel; and
 - processing reaction vessels continuously one after another until receiving a stop instruction, wherein the samples tested by the automated process line comprise samples from subjects in the database.
- 36. The method of 35, wherein one of the processing stations comprises a mass spectrometer.

10

15

20

25

30

- 37. The method of claim 36, wherein the samples are analyzed by a method comprising primer oligo base extension (probe).
 - 38. The method of claim 37, further comprising:

processing the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals or numerical values representative of signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.

- 39. The method of claim 37, wherein primer oligo base extension, comprises:
 - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support, to produce an immobilized nucleic acid molecule;
- c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
- d) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
 - e) detecting the primer, thereby identifying the target nucleotide.
- 40. The method of 39, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

- 41. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid;
- b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;

20

- c) ligating then hybridized oligonucleotides; and
- c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
- 42. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
- b) contacting the hybridized first and second oligonucleotides with a
 10 cleavage enzyme to form a cleavage product; and
 - c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.
 - 43. A method of producing a database stored in a computer memory, comprising:
- identifying healthy members of a population;

obtaining identifying and historical information and data relating to the identified members of the population;

entering the member-related data into the computer memory database for each identified member of the population and associating the member and the data with an indexer.

- 44. The method of claim 43, further comprising: obtaining a body tissue or body fluid sample of an identified member; analyzing the body tissue or body fluid in the sample; and entering the results of the analysis for each member into the computer
- 25 memory database and associating each result with the indexer representative of each member.
 - 45. A database produced by the method of claim 43.
 - 46. A database produced by the method of claim 44.
 - 47. The database of claim 8, wherein:
- the organims are selected from among animals, bacteria, fungi, protozoans and parasites and

15

each datapoint is associated with parameters representative of the organism type and identifying information.

- 48. The database of claim 43, further comprising, phenotypic data regarding each subject.
- 49. The database of claim 47 that is a relational database and the parameters are the answers to the questions in the questionnaire.
 - 50. The database of claim 8, further comprising,

genotypic data of nucleic acid of the subject, wherein genotypic data includes, but is not limited to, genetic markers, non-coding regions,

- microsatellites, restriction fragment length polymorphisms (RFLPs), variable number tandem repeats (VNTRs), historical day of the organism, the medical history of the subject, phenotypic information, and other information.
 - 51. A database, comprising data records stored in computer memory, wherein the data records contain information that identifies healthy members of a population, and also contain identifying and historical information and data relating to the identified members.
 - 52. The database of claim 51, further comprising an index value for each identified member that associates each member of the population with the identifying and historical information and data.
- 20 53. A computer system, comprising the database of claim 51.
 - 54. An automated process line, comprising the database of claim 51.
 - 55. A method for determining a polymorphism that correlates with age, ethnicity or gender, comprising:

identifying a polymorphism; and

- determining the frequency of the polymorphism with increasing age, with ethnicity or with gender in a healthy population.
 - 56. A method for determining whether a polymorphism correlates with suceptibility to morbidity, early mortality, or morbidity and early mortality, comprising;
- 30 identifying a polymorphism; and

determining the frequency of the polymorphism with increasing age in a healthy population.

10

15

20

25

57. A high throughput method of determining frequencies of genetic variations, comprising:

selecting a healthy target population and a genetic variation to be assessed;

pooling a plurality of samples of biopolymers obtained from members of the population,

determining or detecting the biopolymer that comprises the variation by mass spectrometry;

obtaining a mass spectrum or a digital representation thereof; and determining the frequency of the variation in the population.

58. The method of claim 57, wherein:

the variation is selected from the group consisting of an allelic variation, a post-translational modification, a nucleic modification, a label, a mass modification of a nucleic acid and methylation; and/or

the biopolymer is a nucleic acid, a protein, a polysaccharide, a lipid, a small organic metabolite or intermediate, wherein the concentration of biopolymer of interest is the same in each of the samples; and/or

the frequency is determined by assessing the method comprising determining the area under the peak in the mass spectrum or digital repesentation thereof corresponding to the mass of the biopolymer comprising the genomic variation.

- 59. The method of claim 58, wherein the method for determining the frequency is effected by determining the ratio of the signal or the digital representation thereof to the total area of the entire mass spectrum, which is corrected for background.
- 60. A method for discovery of a polymorphism in a population, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample; optionally pooling each isolated biopolymer; optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments and comparing the mass spectrum with a control mass spectrum to identify differences between the spectra and thereby identifing any polymorphisms; wherein:

the control mass spectrum is obtained from unsorted samples in the collection or samples sorted according to a different parameter.

- 61. The method of claim 60, wherein cleaving is effected by contacting the biopolymer with an enzyme.
- 62. The method of claim 61, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
 - 63. The method of claim 60, wherein the biopolymer is a nucleic acid or a protein.
- 64. The method of claim 60, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
 - 65. A method for discovery of a polymorphism in a population, comprising:
- obtaining samples of body tissue or fluid from a plurality of organisms; isolating a biopolymer from each sample;

pooling each isolated biopolymer;

optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments;

comparing the frequency of each fragment to identify fragments present in amounts lower than the average frequency, thereby identifying any polymorphisms.

66. The method of claim 65, wherein cleaving is effected by contacting 30 the biopolymer with an enzyme.

- 67. The method of claim 66, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
- 68. The method of claim 65, wherein the biopolymer is a nucleic acid or a protein.
 - 69. The method of claim 65, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
- 10 70. The method of claim 65, wherein the samples are obtained from healthy subjects.
 - 71. A method of correlating a polymorphism with a parameter, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample; pooling each isolated biopolymer;

optionally amplifying the amount of biopolymer;

determining the frequency of the polymorphism in the pooled

20 biopolymers, wherein:

an alteration of the frequency of the polymorphism compared to a control, indicates a correlation of the polymorphism with the selected parameter; and

the control is the frequency of the polymorphism in pooled biopolymers obtained from samples identified from an unsorted database or from a database sorting according to a different parameter.

72. The method claim 71, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smok r, length of time as a smoker, fr quency of smoking, occurrenc of a diseas in immediate family (parent, siblings, children), use of prescription

25

drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.

- 73. The method claim 72, wherein the parameter is occurrence of disease or a particular disease in an immediate family member, thereby correlating the polymorphism with the disease.
- 74. The method of claim 71, wherein the pooled biopolymers are pooled nucleic acid molecules.
- 75. The method of claim 74, wherein the polymorphism is detected by primer oligo base extension (PROBE).
- 76. The method of 75, wherein primer oligo base extension, comprises:
 - a) optionally immobilizing the nucleic acid molecules onto a solid support, to produce immobilized nucleic acid molecules;
- b) hybridizing the nucleic acid molecules with a primer oligonucleotide
 that is complementary to the nucleic acid molecule at a site adjacent to the polymorphism;
 - c) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the polymorphism is extended onto the primer; and
 - d) detecting the extended primer, thereby detecting the polymorphism in nucleic acid molecules in the pooled nucleic acids.
 - 77. The method of claim 76, wherein detecting is effected by mass spectrometry.
- 78. The method of claim 71, wherein the frequency is percentage of nucleic acid molecules in the pooled nucleic acids that contain the polymorphism.
 - 79. The method of claim 78, wherein the ratio is determined by obtaining mass spectra of the pooled nucleic acids.
- 30 80. The method of claim 72, wherein the parameter is age, thereby correlating the polymorphism with suceptibility to morbidity, early mortality or morbidity and early mortality.

- 81. A method for haplotyping polymorphisms in a nucleic acid, comprising:
- (a) sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;
 - (b) isolating nucleic acid from each identified sample:
 - (c) optionally pooling each isolated nucleic acid;
 - (d) amplifying the amount of nucleic acid;
- (e) forming single-stranded nucleic acid and splitting each singlestrand into a separate reaction vessel;
- (f) contacting each single-stranded nucleic acid with an adaptor nucleic acid to form an adaptor complex;
 - (g) contacting the adaptor complex with a nuclease and a ligase;
 - (h) contacting the products of step (g) with a mixture that is capable of amplifying a ligated adaptor to produce an extended product;
- (i) obtaining a mass spectrum of each nucleic acid resulting from step
 (h) and detecting a polymorphism by identifying a signal corresponding to the
 extended product;
 - (j) repeating steps (f) through (i) utilizing an adaptor nucleic acid able to hybridize with another adapter nucleic acid that hybridizes to a different sequence on the same strand; whereby

the polymorphisms are haplotyped by detecting more than one extended product.

- 82. The method of claim 1, wherein the nuclease is Fen-1.
- 83. A method for haplotyping polymorphisms in a population,
- 25 comprising:

20

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a nucleic acid from each identified sample;

pooling each isolated nucleic acid;

30 optionally amplifying the amount of nucl ic acid;

contacting the nucleic acid with at least one enzyme to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments; whereby:

the polymorphisms are detected by detecting signals corresponding to the polymorphisms; and

the polymorphisms are haplotyped by determining from the mass spectrum that the polymorphisms are located on the same strand of the nucleic acid.

- 84. The method of claim 83, wherein the enzyme is a nickase.
- 85. The method of claim 84, wherein the nickase is selected from the group consisting of NY2A and NYS1.
- 10 86. A method for detecting methylated nucleotides within a nucleic acid sample, comprising:

splitting a nucleic acid sample into separate reaction vessels; contacting nucleic acid in one reaction vessel with bisulfite; amplifying the nucleic acid in each reaction vessel;

cleaving the nucleic acids in each reaction vessel to produce fragments thereof:

obtaining a mass spectrum of the resulting fragments from one reaction vessel and another mass spectrum of the resulting fragements from another reaction vessel; whereby:

- cytosine methylation is detected by identifying a difference in signals between the mass spectra.
 - 87. The method of claim 86, wherein:

the step of amplifying is carried out in the presence of uracil; and the step of cleaving is effected by a uracil glycosylase.

25 88. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data;

deleting the baseline from the denoised data to generate an intermediate

30 data

set:

defining putative peaks for the biological sample;

using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate a corrected data set;

locating, responsive to removing the residual baseline, a probable peak in the

corrected data set; and

identifying, using the located probable peak, the biological sample; wherein the generated biological sample data set comprises data from sense

- 10 strands and antisense strands of assay fragments.
 - 89. The method according to claim 88, wherein identifying includes combining

data from the sense strands and the antisense strands, and comparing the data against expected sense strand and antisense strand values, to identify the biological

sample.

15

- 90. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak, in accordance with whether the probable peak is from sense strand data or from antisense strand data.
- 20 91. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak and applying an allelic penalty in response to a

ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data set.

92. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data;

deleting the baseline from the denoised data to generate an intermediate

30 data

set:

а

10

20

25

defining putative peaks for the biological sample; using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate

5 corrected data set:

locating, responsive to removing the residual baseline, a probable peak in the corrected data set; and

identifying, using the located probable peak, the biological sample; wherein identifying includes deriving a peak probability for the probable peak and

applying an allelic penalty in response to a ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data

15 93. The method according to claim 92, wherein identifying includes comparing

data from probable peaks that did not receive an applied allelic penalty to determine their mass in accordance with oligonucleotide biological data.

- 94. The method according to claim 92, wherein the allelic penalty is not applied to probable peaks whose ratio of area under the peak to the expected area value is greater than 30%.
- 95. A method for detecting a polymorphism in a nucleic acid, comprising:

amplifying a region of the nucleic acid to produce an amplicon, wherein the resulting amplicon comprises one or more enzyme restriction sites;

contacting the amplicon with a restriction enzyme to produce fragments; obtaining a mass spectrum of the resulting fragments and analyzing signals in the mass spectrum by the method of claim 88; whereby:

the polymorphism is detected from the pattern of the signals.

30 96. A subcollection of samples from a target population, comprising: a plurality of samples, wherein the samples are selected from the group consisting of nucleic acids, fetal tissue, protein samples; and

20

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 97. The combination of claim 26, wherein the samples are selected selected from the group consisting of nucleic acids, fetal tissue, protein, tissue, body fluid, cell, seed, microbe, pathogen and reproductive tissue samples.
- 98. A combination, comprising the database of claim 8 and a mass spectrometer.
- 99. The combination of claim 98 that is an automated process line for15 analyzing biological samples.
 - 100. A system for high throughput processing of biological samples, comprising:

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database; and a mass spectrometry for analysis of biopolymers in the samples.

DNA Bank

Number	of	Samples	3912

FIG. IA

2/51 Caucasians

Number	of	Samples	2801
Manne	Oi	Sumples	2001

3/51 Hispanics

Niverbar	-4	Camples	405
inumber	OI	Samples	490 1

age— and sex—distribution of the 291S allele of the lipoprotein lipase gene. A total of 436 males and 586 females were investigated.

FIG. 2A

Age— related distribution of the 291S allele of the lipoprotein lipase gene within the male Caucasian population. A total of 436 males were tested.

FIG. 2B

SUBSTITUTE SHEET (RULE 26)

6/51

Questionnaire for Population—Based Sample Banking

		Data Collection Form			
Collection Information					
Time of Sample Initials of Data	ion (MA Collect Collect LETE: (A/DD/YY)//98 ction(nearest hour in 24 hour clock format) torCollecting Agency Affix Barcode Here For Date Entry Only)Sampleintactlostbroken			
less than	do you ighest n 8th (grade you completed in school?			
To the best of	your k	knowledge what is the Ethnic Origin of your:			
Father Mo	other	,			
	0 0 0	Caucasian (please check specific geographic area below if known) Northern Europe (Austria, Denmark, Finland, France, Germany, Netherlands, Norway, Sweden, Switzerland, U.K.) Southern Europe (Greece, Italy, Spain) Eastern Europe (Czechoslovakia, Hungary, Poland, Russia, Yugoslavia) Middle Eastern (Israel, Egypt, Iran, Iraq, Jordan, Syria, other Arab States)			
	0	African-American			
0	0 0 0	Hispanic (please check specific geographic area below if known) Mexico Central America, South American Cuba, Puerto Rico, other Caribbean			
0 0 0 0	0 0 0 0 0 0	Asian (please check specific geographic area below if known) Japanese Chinese Korean Vietnamese other Asian Other			
0		Don't know			
had the followin Disease: Heart Disease Cancer (Specifi Alzheimer's Dis Chronic inflame	Stroke y type sease o matory n Disec	r Dementia or Autoimmune Disease use like Multiple Scierosis			
Additional health information details you would like to provide:					

FIG. 3

F1G. 4

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Significance: Genotype frequencyof SR heterozygous drops from 13.3% to 9.2%; p=0.009

FIG. 8

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 16

FIG. 17

FIG. 18

FIG. 20

methionine sulfoxide reductase A (#63306)

FIG. 21

Collection Info	ormation								
Consent Form	Signed No		Time of Sampl	e [Initials	Initials of Da	ta Collector		
Month Oo JAN	Collection y Yes 2 0 0 min services Collection Collection The collection Collection	0	Collection (nearest hour, 124 hour clock format)				COMPLETE: entry only) Volume (mi)		BAR CODE
Donor Informa	stion								
JAN DEBE	Year	Sex: Male Famale			What Physical activity do you on a regular base. Running Swimming Biking Gymnastics Other None		How many times have constructed you been pregnant?	time	many Barrier did B
To th	e best of	your knowledge	, what is the E	thnic Origin	of your.				
fother 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mother 0 0 0 0 0	Northern Euro Southern Euro Eastern Europ	ease mark spec pe (Austria, Der pe (Greece, Ita ie (Czechoslovak n (Israel, Egypt,	nmark, Finla ly, Spain, Tu lia, Hungary,	nd, France, Ger urkey) , Poland, Russia	many, Netherlar i, Yugaslavia)	ods, Norway, Swe es)	den, Swi	tzertand, UK)
		African-Ameri	con		÷				
n which tate do ou live?	0000	Mexico Central Ameri	ise mark specifi ca, South Ameri Rico, other Car	ca	c area below if	known)			
	000000	Asian (please Japanese Chinese Korean Vietnamese Filipino	mark specific (geographic (orec below if kn	own)			
		Native Americ	an						
	0.0	Other Don't know							
How long have you fived there?		hat is your his by completed in less then 8th 8th 9th, 10th, in high school equivalency same college gradium of graduat degree	n school? n grade or 11th grade graduate or , 2yr degree late,4yr degree	if Yes at what age?		Heart Disease Cancer Stroke Accident Suicide	If Yes at what age?	≥ 29 C 30-39 C 40-49 C 50-59 C	of Death Father: Heart Disease Cancer Streke Accident Suicide Other,

29/51

Have you ever smoked? Yes N	in the past 5 years for more than 6 days at a time? Yes No If yes, how many times? For each haspitalization (if not the same) how long did you stay and for what reason?		Chronic Acciden Other:_ Weeks: Acute C Chronic Acciden Other:_ Weeks: Acute C Chronic Acciden Other:_ Other:_	disorder, i Disorder t disorder, i Disorder t Disorder, i Disorder, i	ancluding The latest	infection of infec	and thrombosis	
Have you or has anyone in your immed Mark all that apply! Disease Heart Disease, including arteriosclerosis Stroke Hypertension Blood clots Diabetes, insulin dependent Diabetes, not insulin-dependent (diet concer: Lung&Bronchus Breasts Prostate Colon&Rectum Skin Lymphoma&Leukemia Other, please specify below:			Mother Commonwealth	Father Communication Communica	following Sister 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		30000000000000000000000000000000000000	
Alzheimer's Disease Epilepsy Schizophrenia		000	000	000	000	000	000	
Bipolar disorder (manic depression) Major depression Chronic Inflammatory or Autoimmune Di Multiple Sclerosis and Rheumatoid Arthri Emphysema Asthma Other, please specify below:	sease including	000 000	00 000	00 000	00 000	00.000	00 000	
Do you take prescription drugs on a re If yes, please specify below: Have you ever donated blood before?	☐ Yes ☐ No Additional he	C Ye			would lik	e to provi	de:	
If yes, how many times: Number of								_
C21C2 C31C3) (1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3					US	FOR FFICE E ONLY	_
	Hardly ever 13 or more times per week		_				30 dS0 80 dS0 80 dS0	

FIG. 22B

Collection	Information)						
Consent For Date of Persons For Date of Person	of Collect	No tion Year O O O	Time of Sample Collection (nearest hour in 24hour clock format)		Initials A R R R R R R R R R R R R R R R R R R	(DO NOT (for data of Sample:	COMPLETE entry only) Volume (m)	
Doror Into	rmatan							
Total Horry AA CI FEB CI HAR	of Berth	Male Display Female State Stat	Ft. Inches 3.00170 00 3.00170 00 5.02190 02 6.03100 03 7.0410 03 6.03100		What physical activity do you on a regular b Running Swimming Biking Gymnastic Other None	☐ Yes ☐ No	If female: How many times have many you been pregnant? 131 151 151 152 153	How many times did myou give birth?
In which si								
		Mother Caucasian Northern Southern Eastern	Europe (Greece, Europe(Czechoslovo Istern (Israel, Egy	pecific geo Denmark, f Italy, Spair Ikia, Hungs	graphic area b Finland, France, n, Turkey) ary, Poland, Ru	Germany, Nether Issia, Yugoslovia)		den, Switzerland, UK)
					-			
How long have you lived there?	Years	How many years have ye been smoking Years 1000000000000000000000000000000000000	? Did y smok	⊒ Yes ⊐ No	If yes, how many years ago? Years Years Colonia (Colonia Colonia Co		a per	Years Years Years Continue Conti
			1 10. 4	ムムし				

What is your highest grade you completed in school? less then 8th grade Yes Stroke S	er: <u>Eather</u> Dec Yes No If Yes at what age?	≤ 2 30–3 40–4 50–5 60–6	9	art Disea ncer oke cident icide			
Health Information				<i>x</i> -11.	•		
Have you or has anyone in your immediate family (parents,brothers,sist Mark all that apply) Disease Heart Disease Stroke Hypertension Bood clots Diabetes, insulin dependent Diabetes, not insulin-dependent Concer: Lung&Bronchus Breasts Prostate Colon&Recturn Sun Lymphoma&Leukemia Other, please specify below:		Mother 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fother COOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Sister 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3000000000000000	
Almerner's Disease Colepsy Schizophrenia	000	000	000	000	000	000	
Hipotar disorder (manic depression) Major depression Chronic Inflammatory or Autoimmune Disease including Multiple Scienosis and Rheumatoid Arthritis Emplysema Astrima Other, please specify below:	00 000	00 000	00 000	00 000	00 000	00 000	
Do you take prescription drugs on a regular basis? If yes, please specify below:	⊏ Yes	s 🗀 Þ	bloo If y	re you evod before res, how my times:	:? Num	d Yes	l N o
Hove you been hospitalized in the past 5 years for more then 6 days at a time? If yes, how many times? For each hospitalization (if not the same) how long did you stay and for what reason? How exist In		######################################					
Do you drink any kind of alcoholic beverage? Never Hardly ever Less than 3 times per week 3 or more times per week Daily Additional health information details you would like to provide:			· —		FOR OF USE OF COMMENTS		

FIG. 22D

FIG. 23

FIG. 25 SUBSTITUTE SHEET (RULE 26)

FIG. 26

FIG. 30

Threshold 0=4XNoiseProfile

Stage 1 - Hi

Threshold 1=2XNoiseProfile

Stage 2 - Hi

Threshold 2=1XNoiseProfile

Stage n - Hi

Threshold n=(1/2 n-2)XNoiseProfile

FIG. 31

Signal (t)=
$$\frac{\text{(Start 0(t) + Start 1(t) + Start 2(t)... + Start 23 (t))}}{24}$$

SHIFT SIGNAL TO ACCOUNT FOR VARIATIONS DUE TO STARTING POINT

FIG. 33

FIG. 34

1500 -234 1500 2000 9000 10000 10733 Mass

FIG. 13-TAKE A MOVING AVERAGE, REMOVE SECTIONS EXCEEDING A THRESHOLD

FIG. 36

40/51

FIG. 37 FIND MINIMA IN REMAINING SIGNALS AND CONNECT TO FORM A PEAK FREE SIGNAL

FIG. 38 GENRATE BASLELINE CORRECTION

FIG. 39

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 46

FIG. 47

272 266 268 274 270 260 262 h 264 h

FIG. 49

FIG. 50

SUBSTITUTE SHEET (RULE 26)

FIG. 54

FIG. 56

FIG. 57

RATIO OF AREA UNDER PEAK

FIG. 58

SEQUENCE LISTING

```
<110> SEQUENOM
         Braun et al.
 <120> METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING
 POLYMORPHIC GENETIC MARKERS
 <130> 24736-2033PC
<140> Not Yet Assigned
<141> 2000-10-13
<150> 60/217,658
<151> 2000-07-10
<150> 60/159,176
<151> 1999-10-13
<150> 60/217,251
<151> 2000-07-10
<150> 09/663,968
<151> 2000-09-19
<160> 118
<170> FastSEQ for Windows Version 4.0
<211> 361
<212> DNA
<213> Homo Sapien
<400> 1
ctgaggacct ggtcctctga ctgctctttt cacccatcta cagtccccct tgccgtccca
                                                                                60
agcaatggat gatttgatgc tgtccccgga cgatattgaa caatggttca ctgaagaccc
                                                                               120
aggtccagat gaagctccca gaatgccaga ggctgctccc cgcgtggccc ctqcaccagc
                                                                               180
agetectaca ceggeggece etgeaceage ececteetgg ecectgteat ettetgteee
                                                                               240
ttcccagaaa acctaccagg gcagctacgg tttccgtctg ggcttcttgc attctgggac agccaagtct gtgacttgca cggtcagttg ccctgagggg ctggcttcca tgagacttca
                                                                               300
                                                                               360
                                                                               361
<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide Primer
cccagtcacg acgttgtaaa acgctgagga cctggtcctc tgac
                                                                                44
<210> 3
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide Primer
agcggataac aatttcacac aggttgaagt ctcatggaag cc
                                                                               42
<210> 4
<211> 17
<212> DNA
```

	<213> Artificial Sequence	
	<220> <223> Probe	
	<400> 4 gccagaggct gctcccc	17
	<210> 5 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Probe	
	<400> 5 gccagaggct gctcccc	17
•	<210> 6 <211> 19 <212> DNA <213> Artificial Sequence	
	<220> <223> Probe	
	<400> 6 gccagaggct gctccccgc	19
<	<210> 7 <211> 18 <212> DNA <213> Artificial Sequence	
	<220> <223> Probe	
	<400> 7 gccagaggct gctcccc	18
<	<210> 8 <211> 161 <212> DNA <213> Homo Sapien	
9 9	<400> 8 gtccgtcaga acccatgogg cagcaaggoo tgccgccgoo tottoggooo agtggacago gagcagotga googogactg tgatgogota atggogggot gcatocagga ggooogtgag ogatggaact togaotttgt cacogagaca coactggagg g	60 120 161
<	<210> 9 <211> 43 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide Primer	
<	<400> 9	

cccagtcacg acgttgtaaa acggtccgtc agaacccatg	cgg 4	. 3
<210 × 10 <211 × 44 ×212 > DNA <213 > Artificial Sequence		
<220> <223> Oligonucleotide Primer		
400> 10 ageggataac aattteacae aggeteeagt ggtgtetegg	tgac 4	4
<pre><210 > 11 <211 - 15 <212 > DNA <213 - Artificial Sequence</pre>		
<220. <223. Sligonucleotide Primer	•	
<400 - 11 cagequaguag ctgag	1	5
<210 / 12 <211 / 15 <212 > DNA <213 > Artificial Sequence		
<220 > <223 > Probe		
<400> 12 cagcgagcag ctgag	19	5
<210> 13 <211> 16 <212> DNA <213> Artificial Sequence		
<220> <223> Probe		
<400> 13 cagcgagcag ctgagc	16	ó
<210> 14 <211> 17 <212> DNA <213> Artificial Sequence		
<220> <223> Probe		
<400> 14 cagcgagcag ctgagac	17	7
<210> 15		
<211> 205 <212> DNA		
THAN WITH		

<213> Homo Sapien	
<400> 15 gcgctccatt catctcttca tcgactctct gttgaatgaa gaaaatccaa gtaaggccta caggtgcagt tccaaggaag cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg agatcaataa agtcagagcc aaaagaagca gcaaaatgta cctgaagact cgttctcaga tgccc	60 120 180 205
<210> 16 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primers	
<pre><400> 16 cccagtcacg acgttgtaaa acggcgctcc attcatctct tc</pre>	42
<pre><210> 17 <211> 42 <212> DNA -213> Artificial Sequence</pre>	
<220> <223> Oligonucleotide Primer	
<400> 17 agcggutaac aatttcacac agggggcatc tgagaacgag tc	42
<210 > 18 <211 > 20 <212 > DNA <213 > Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 18 caatctgggc tatgagatca	20
<210> 19 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 19 caatctgggc tatgagatca	20
<210> 20 <211> 21 <212> DNA <213> Artificial Sequence	
<220><223> Probe	

```
<400> 20
caatctgggc tatgagatca a
                                                                          21
<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe
<400> 21
caatctgggc tatgagatca gt
                                                                            20
<210> 22
<211> 60
<212> DNA
<213> Homo Sapien
<220>
<223> Probe
<400> 22
gtgccggcta ctcggatggc agcaaggact cctgcaaggg ggacagtgga ggcccacatg
                                                                          60
<210> 23
<211> 60
<212> DNA
<213> Homo sapien
ccaccacta ccggggcacg tggtacctga cgggcatcgt cagctggggc cagggctgcg
                                                                          60
<210> 24
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide primer
cccagtcacg acgttgtaaa acgatggcag caaggactcc tg
                                                                          42
<210> 25
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide primer
<400> 25
cacatgccac ccactacc
                                                                          18
<210> 26
<211> 43
<212> DNA
<213> Artificial Sequence
```

	<220> <223> Oligonucleotide primer	
	<400> 26 agcggataac aatttcacac aggtgacgat gcccgtcagg tac	43
	<210> 27 <211> 15 <212> DNA <213> Artificial Sequence	
	<220><223 - Probe	
	<400> 27 atgccaccca ctacc	15
	<210> 28 <211> 19 <212> DNA <213> Artificial Sequence	
	<220> <223> Probe	
	<400> 28 cacatgccac ccactaccg	19
	<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Probe	
	<400> 29 cacatgccac ccactaccag	20
	<210> 30 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <223> Probe	
	<400> 30 agcggataac aatttcacac agg	23
•	<210> 31 <211> 2363 <212> DNA <213> Homo Sapien	
	<220> <221> CDS <222> (138)(2126) <223> AKAP-10	

<300> <308> GenBank AF037439 <309> 1997-12-21 <400> 31 geggettgtt gataatatgg eggetggage tgeetgggea teeeggagg geggtgggge ceaeteeegg aagaagggte eettttegeg etagtgeage ggeeeetetg gaeeeggaag 60 120 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 170 eec ege ace ete egt eec gae eeg gge eec gee atg tee tte tte egg 218 Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Glu Glu Lys Thr Ser Asp Val Lys Ser 266 35 att aaa get tea ata tee gta eat tee eea eaa age aet aaa aat 314 Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn cat gcc ttg ctg gag gct gca gga cca agt cat gtt gca atc aat gcc His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala 362 65 att tot god aac atg gad tod tit toa agt agd agg aca god aca oft Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu 410 aag aag cag cca agc cac atg gag gct gct cat ttt ggt gac ctg ggc Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly 458 aga tct tgt ctg gac tac cag act caa gag acc aaa tca agc ctt tct Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser 506 aag acc ctt gaa caa gtc ttg cac gac act att gtc ctc cct tac ttc Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe 554 att caa ttc atg gaa ctt cgg cga atg gag cat ttg gtg aaa ttt tgg Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp 602 145 tta gag gct gaa agt ttt cat tca aca act tgg tcg cga ata aga gca Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala 650 cac agt cta aac aca atg aag cag agc tca ctg gct gag cct gtc tct His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser 698 180 cca tct aaa aag cat gaa act aca gcg tct ttt tta act gat tct ctt 746 Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu gat aag aga ttg gag gat tot ggo toa goa cag ttg ttt atg act cat 794

Asp	Lys 205	Arg	Leu	Glu	Asp	Ser 210	Gly	Ser	Ala	Gln	Leu 215		Met	Thr	His	
															cac His 235	842
			tcc Ser												gaa Glu	890
			gca Ala 255													938
			ctt Leu													986
			tca Ser													1034
			acc Thr												cca Pro 315	1082
att Ile	aca Thr	gaa Glu	gca Ala	atg Met 320	aga Arg	aat Asn	gac Asp	atc Ile	ata Ile 325	gca Ala	agg Arg	att Ile	tgt Cys	gga Gly 330	gaa Glu	1130
			gtg Val 335													1178
ttt Phe	agt Ser	gca Ala 350	atg Met	gag Glu	caa Gln	gag Glu	cac His 355	ttt Phe	agt Ser	gag Glu	ttt Phe	ctg Leu 360	cga Arg	agt Ser	cac His	1226
cat His	ttc Phe 365	tgt Cys	aaa Lys	tac Tyr	cag Gln	att Ile 370	gaa Glu	gtg Val	ctg Leu	acc Thr	agt Ser 375	gga Gly	act Thr	gtt Val	tac Tyr	1274
ctg Leu 380	gct Ala	gac Asp	att Ile	ctc Leu	ttc Phe 385	tgt Cys	gag Glu	tca Ser	gcc Ala	ctc Leu 390	ttt Phe	tat Tyr	ttc Phe	tct Ser	gag Glu 395	1322
tac Tyr	atg Met	gaa Glu	aaa Lys	gag Glu 400	gat Asp	gca Ala	gtg Val	aat Asn	atc Ile 405	tta Leu	caa Gln	ttc Phe	tgg Trp	ttg Leu 410	gca Ala	1370
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	gly aaa	caa Gln 425	tat Tyr	gat Asp	1418
gga Gly	cag Gln	gag Glu 430	gca Ala	cag Gln	aat Asn	Asp	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	1466
tcc	ctc	caa	gcc	aca	cat	cct	ctt	gga	ttt	gat	gat	gtt	gta	cga	tta	1514

Ser	Leu 445	Gln	Ala	Thr	His	Pro 450	Leu	Gly	Phe	Asp	Asp 455	Val	Val	Arg	Leu	
gaa Glu 460	att Ile	gaa Glu	tcc Ser	aat Asn	atc Ile 465	tgc Cys	agg Arg	gaa Glu	ggt Gly	999 Gly 470	cca Pro	ctc Leu	ccc Pro	aac Asn	tgt Cys 475	1562
ttc Phe	aca Thr	act Thr	cca Pro	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	aca Thr 485	acc Thr	atg Met	gag Glu	aag Lys	gtc Val 490	ttt Phe	1610
_		ggc Gly		_		_							_		_	1658
		cat His 510														1706
ccg Pro	act Thr 525	gct Ala	cct Pro	ggc Gly	tct Ser	gtt Val 530	ggc Gly	cct Pro	cct Pro	gat Asp	gag Glu 535	tct Ser	cac His	cca Pro	Gly aaa	1754
		gac Asp														1802
		ctg Leu														1850
ctg Leu	gat Asp	cca Pro	gaa Glu 575	tct Ser	tta Leu	tat Tyr	caa Gln	cgg Arg 580	aca Thr	tat Tyr	gcc Ala	ggg Gly	aag Lys 585	atg Met	aca Thr	1898
		aga Arg 590														1946
		gat Asp														1994
		tgg Trp														2042
_	-	att Ile		-	:			_	Ξ					= -		2090
		caa Gln									tga *	ctca	aaac	tt		2136
gagataaagg aaatctgctt gtgaaaaata agagaacttt tttcccttgg ttggattctt caacacagcc aatgaaaaca gcactatatt tctgatctgt cactgttgtt tccagggaga gaatggggag acaatcctag gacttccacc ctaatgcagt tacctgtagg gcataattgg atggcacatg atgtttcaca cagtgaggag tctttaaagg ttaccaa											2196 2256 2316 2363					

<210> 32 <211> 662 <212> PRT <213> Homo Sapien <400> 32 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu Asp Lys Arg Leu Glu Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His Ser Glu Gly Ile Asp Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His Leu Leu Leu Ser Gln Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu Met Ala Arg Ala Gly Thr His Gln Val Ser Met Glu Thr Gln Glu Ser Ser Ser Thr Leu Thr Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu Lys Glu Leu Ser Gly Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val Asn Thr Phe Thr Lys Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro Ile Thr Glu Ala Met Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu Asp Gly Gln Val Asp Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val Phe Ser Ala Met Glu Gln Glu His Phe Ser Glu Phe Leu Arg Ser His His Phe Cys Lys Tyr Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr Leu Ala Asp Ile Leu Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu Tyr Met Glu Lys Glu Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala Ala Asp Asn Phe Gln Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp Gly Gln Glu Ala Gln

```
Asn Asp Ala Met Ile Leu Tyr Asp Lys Tyr Phe Ser Leu Gln Ala Thr
         435
                               440
 His Pro Leu Gly Phe Asp Asp Val Val Arg Leu Glu Ile Glu Ser Asn
                           455
                                                 460
 Ile Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys Phe Thr Thr Pro Leu
 465
                       470
                                            475
 Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu
                  485
                                        490
 Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu Ile His Ser Val
             500
                                   505
                                                         510
Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser Pro Thr Ala Pro Gly
                               520
         515
                                                     525
Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser
     530
                           535
                                                 540
Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn
                      550
                                            555
Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser Leu Asp Pro Glu Ser
                  565
                                       570
Lou Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr Phe Gly Arg Val Ser
             580
                                   585
                                                         590
Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg
         595
                               600
                                                     605
Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln
    610
                          615
                                                620
Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys
                     630
                                          635
Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu
                  645
                                       650
Glu Lys Ser Thr Lys Leu
             660
<210> 33
<211> 2363
<212> DNA
<213> Homo Sapien
<220>
<221> CDS
<222> (138)...(2126)
<223> AKAP-10-5
<221> allele
<222> 2073
<223> Single Nucleotide Polymorphism: A to G
gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc
                                                                            60
ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag
tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc
Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser
                                                                            120
                                                                            170
ecc ege acc etc egt ecc gae eeg gge ecc gee atg tee tte tte egg
                                                                           218
Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg
              15
cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc
                                                                           266
Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser
```

		Āla										agc Ser			aat Asn	314
	Äla											gca Ala				362
												aca Thr				410
aag Lys	aag Lys	cag Gln	cca Pro 95	agc Ser	cac His	atg Met	gag Glu	gct Ala 100	gct Ala	cat His	ttt Phe	ggt Gly	gac Asp 105	ctg Leu	ggc Gly	458
												tca Ser 120				506
												ctc Leu				554
												gtg Val				602
												cga Arg				650
												gag Glu				698
												act Thr 200				746
												ttt Phe				794
tca Ser 220	gaa Glu	gga Gly	att Ile	gac Asp	ctg Leu 225	aat Asn	aat Asn	aga Arg	act Thr	aac Asn 230	agc Ser	act Thr	cag Gln	aat Asn	cac His 235	842
ttg Leu	ctg Leu	ctt Leu	tcc Ser	cag Gln 240	gaa Glu	tgt Cys	gac Asp	agt Ser	gcc Ala 245	cat His	tct Ser	ctc Leu	cgt Arg	ctt Leu 250	gaa Glu	890
atg Met	gcc Ala	aga Arg	gca Ala 255	gga Gly	act Thr	cac His	caa Gln	gtt Val 260	tcc Ser	atg Met	gaa Glu	acc Thr	caa Gln 265	gaa Glu	tct Ser	938
tcc Ser	tct Ser	aca Thr 270	ctt Leu	aca Thr	gta Val	gcc Ala	agt Ser 275	aga Arg	aat Asn	agt Ser	ccc Pro	gct Ala 280	tct Ser	cca Pro	cta Leu	986

aaa Lys	gaa Glu 285	Leu	tca Ser	gga Gly	aaa Lys	cta Leu 290	atg Met	aaa Lys	agt Ser	ata Ile	gaa Glu 295	Gln	gat Asp	gca Ala	gtg Val	10	34
aat Asn 300	Thr	ttt Phe	acc Thr	aaa Lys	tat Tyr 305	ata Ile	tct Ser	cca Pro	gat Asp	gct Ala 310	gct Ala	aaa Lys	cca Pro	ata Ile	cca Pro 315	10	82
att Ile	aca Thr	gaa Glu	gca Ala	atg Met 320	aga Arg	aat Asn	gac Asp	atc Ile	ata Ile 325	gca Ala	agg Arg	att Ile	tgt Cys	gga Gly 330	gaa Glu	11	30
gat Asp	gga Gly	cag Gln	gtg Val 335	gat Asp	ccc Pro	aac Asn	tgt Cys	ttc Phe 340	gtt Val	ttg Leu	gca Ala	cag Gln	tcc Ser 345	ata Ile	gtc Val	. 11	78
ttt Phe	agt Ser	gca Ala 350	atg Met	gag Glu	caa Gln	gag Glu	cac His 355	ttt Phe	agt Ser	gag Glu	ttt Phe	ctg Leu 360	cga Arg	agt Ser	cac His	12:	26
cat His	ttc Phe 365	tgt Cys	aaa Lys	tac Tyr	cag Gln	att Ile 370	gaa Glu	gtg Val	ctg Leu	acc Thr	agt Ser 375	gga Gly	act Thr	gtt Val	tac Tyr	12	74
ctg Leu 380	gct Ala	gac Asp	att Ile	ctc Leu	ttc Phe 385	tgt Cys	gag Glu	tca Ser	gcc Ala	ctc Leu 390	ttt Phe	tat Tyr	ttc Phe	tct Ser	gag Glu 395	13:	22
tac Tyr	atg Met	gaa Glu	aaa Lys	gag Glu 400	gat Asp	gca Ala	gtg Val	aat Asn	atc Ile 405	tta Leu	caa Gln	ttc Phe	tgg Trp	ttg Leu 410	gca Ala	13	70
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	ggg Gly	caa Gln 425	tat Tyr	gat Asp	14:	18
gga Gly	cag Gln	gag Glu 430	gca Ala	cag Gln	aat Asn	gat Asp	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	146	56
tcc Ser	ctc Leu 445	caa Gln	gcc Ala	aca Thr	cat His	cct Pro 450	ctt Leu	gga Gly	ttt Phe	gat Asp	gat Asp 455	gtt Val	gta Val	cga Arg	tta Leu	151	L 4
gaa Glu 460	att Ile	gaa Glu	tcc Ser	aat Asn	atc Ile 465	tgc Cys	agg Arg	gaa Glu	ggt Gly	999 Gly 470	cca Pro	ctc Leu	ccc Pro	aac Asn	tgt Cys 475	156	
ttc Phe	aca Thr	act Thr	cca Pro	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	aca Thr 485	acc Thr	atg Met	gag Glu	aag Lys	gtc Val 490	ttt Phe	161	10
ttg Leu	cct Pro	ggc Gly	ttt Phe 495	ctg Leu	tcc Ser	agc Ser	aat Asn	ctt Leu 500	tat Tyr	tat Tyr	aaa Lys	tat Tyr	ttg Leu 505	aat Asn	gat Asp	165	8
ctc Leu	atc Ile	cat His 510	tcg Ser	gtt Val	cga Arg	Gly	gat Asp 515	gaa Glu	ttt Phe	ctg Leu	ggc Gly	999 Gly 520	aac Asn	gtg Val	tcg Ser	170	6

ccg act gct cct ggc tct gtt ggc cct cct gat gag tct cac cca ggg Pro Thr Ala Pro Gly Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly 525 530 535	1754
agt tot gad agd tot gdg tot dag tod agt gtg aaa aaa gdd agt att Ser Ser Asp Ser Ser Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile 540 545 550 555	1802
aaa ata ctg aaa aat ttt gat gaa gcg ata att gtg gat gcg gca agt Lys Ile Leu Lys Asn Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser 560 565 570	1850
ctg gat cca gaa tct tta tat caa cgg aca tat gcc ggg aag atg aca Leu Asp Pro Glu Ser Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr 575 580 585	1898
ttt gga aga gtg agt gac ttg ggg caa ttc atc cgg gaa tct gag cct Phe Gly Arg Val Ser Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro 590 595 600	1946
gaa cct gat gta agg aaa tca aaa gga tcc atg ttc tca caa gct atg Glu Pro Asp Val Arg Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met 605 610 615	1994
aag aaa tgg gtg caa gga aat act gat gag gcc cag gaa gag cta gct Lys Lys Trp Val Gln Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala 620 635	2042
tgg aag att gct aaa atg ata gtc agt gac gtt atg cag cag gct cag Trp Lys Ile Ala Lys Met Ile Val Ser Asp Val Met Gln Gln Ala Gln 640 645 650	2090
tat gat caa ccg tta gag aaa tct aca aag tta tga ctcaaaactt Tyr Asp Gln Pro Leu Glu Lys Ser Thr Lys Leu * 655 660	2136
gagataaagg aaatctgctt gtgaaaaata agagaacttt tttcccttgg ttggattctt caacacagcc aatgaaaaca gcactatatt tctgatctgt cactgttgtt tccagggaga gaatggggag acaatcctag gacttccacc ctaatgcagt tacctgtagg gcataattgg atggcacatg atgtttcaca cagtgaggag tctttaaagg ttaccaa	2196 2256 2316 2363
<210> 34 <211> 662 <212> PRT <213> Homo Sapien	
<400> 34 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg	
Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly 20 25 30	
Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile 35 40 45	
Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu 50 55 60	
Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met 65 70 75 80	
Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser 85 90 95	
His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp	

			100	,				105					110		
Tur	Glr	Thr			Thr	Lvs	Ser			Ser	Lve	Thr	110		Gln
		115	,				120					125			
	130)				135					140			Met	
Leu 145		Arç	Met	Glu	His 150	Leu	Val	Lys	Phe	Trp 155	Leu	Glu	Ala	Glu	Ser 160
Phe	His	Ser	Thr	Thr 165		Ser	Arg	Ile	Arg		His	Ser	Leu	Asn 175	Thr
Met	Lys	Gln	Ser 180	Ser		Ala	Glu	Pro 185	Val		Pro	Ser	Lys	Lys	His
Glu	Thr	Thr 195		Ser	Phe	Leu	Thr 200		Ser	Leu	Asp	Lys 205	Arg	Leu	Glu
Asp	Ser 210	Gly		Ala	Gln	Leu 215	Phe		Thr	His	Ser 220			Ile	Asp
Leu 225	Asn		Arg	Thr	Asn 230	Ser		Gln	Asn	His 235		Leu	Leu	Ser	
		λsp	Ser	Ala 245	His		Leu	Arg	Leu 250		Met	Ala	Arg	Ala 255	240 Gly
Thr	His	Gln	Val 260			Glu	Thr	Gln 265		Ser	Ser	Ser	Thr 270	Leu	Thr
Val	Ala	Ser 275		Asn	Ser	Pro	Ala 280		Pro	Leu	Lys	Glu 285		Ser	Gly
Lys	iæu 290	Met	Lys	Ser	Ile	Glu 295	Gln	Asp	Ala	Val	Asn 300	Thr	Phe	Thr	Lys
Tyr 305	Ilc	Ser	Pro	Asp	Ala 310	Ala	Lys	Pro	Ile	Pro 315	Ile	Thr	Glu	Ala	Met 320
Arg	Asn	Asp	Ile	Ile 325		Arg	Ile	Cys	Gly 330		Asp	Gly	Gln	Val 335	
			340					345					350	Met	
		355					360					365		Lys	
Gln	Ile 370		Val	Leu	Thr	Ser 375	Gly	Thr	Val	Tyr	Leu 380	Ala	Asp	Ile	Leu
385					390					395				Lys	400
Asp	Ala	Val	Asn	Ile 405	Leu	Gln	Phe	Trp	Leu 410	Ala	Ala	Asp	Asn	Phe 415	
Ser	Gln	Leu	Ala 420	Ala	Lys	Lys	Gly	Gln 425	Tyr	Asp	Gly	Gln	Glu 430	Ala	Gln
Asn	Asp	Ala 435	Met	Ile	Leu	Tyr	Asp 440	Lys	Tyr	Phe	Ser	Leu 445	Gln	Ala	Thr
His	Pro 450	Leu	Gly	Phe	Asp	Asp 455	Val	Val	Arg	Leu	Glu 460		Glu	Ser	Asn
Ile 465	Сув	Arg	Glu	Gly	Gly 470	Pro	Leu	Pro	Asn	Cys 475		Thr	Thr	Pro	Leu 480
Arg	Gln	Ala	Trp	Thr 485	Thr	Met	Glu	Lys	Val 490	Phe	Leu	Pro	Gly	Phe	Leu
Ser	Ser	Asn	Leu 500	Tyr	Tyr	Lys	Tyr				Leu	Ile	His 510	Ser	Val
		515					520					525	Ala	Pro	_
	530					535	Ser				540	Ser		Ser	
545					550					555	Lys			Lys	560
				565	Ile				570	Ser				Glu 575	Ser
Leu	Tyr	Gln	Arg	Thr	Tyr	Ala	Gly	Lys	Met	Thr	Phe	Gly	Arg	Val	Ser

16/122

580 585 590 Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 595 600 605 Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 615 610 620 Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625 630 635 Met Ile Val Ser Asp Val Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 645 650 Glu Lys Ser Thr Lys Leu

<210> 35

<211> 162025

<212> DNA

<213> Homo Sapien

· 300>

-308 - GenBank AC005730

<309> 1998-10-22

<400> 35

gaatteetat tteaaaagaa acaaatggge caagtatggt ggeteatace tgtaateeca 60 gcactttggg aggccgaggt gagtgggtca cttgaggtca ggagttccag gccagtctgg 120 ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg 180 geacetgtaa teecagetae teaggagget gaggeaggag aattgettga acetgggaga 240 tggaggitge agigageega gategegeea etgeteteea geetgggitgg cagagigaga 300 ctctgtctca aaaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca aatttgaaat gttaaaggta ttatggtcac tgatatcctg tttcattctt tatataatca 360 420 ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt 480 actgetttta cacaatatat titegtaata tgtatgeact ggtgtttatg taegtgttta 540 tgtttatatc tgttaaaatt agcagtttcc atcttttct attttgtacc atcacatcag ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgagtgg 600 660 cataaataca actotgaaca attaggaggo toactattga otggaactaa actgcaagco 720 agaaagacac atatcctata tgtcaagaga tgtaccaccc aggcagttaa agaagggaag 780 tacacataga aagcacaatg gtgaataatt aaaaaattgg aatttatcag acactggatt catttgctcc taaagtcaga gtcctctatt gtttttttgt ttttgtgggt ttcttttaa 840 900 attttttat tttttgtaga gtcggagtct cactgtgtta cccgggctgg tctagaactc 960 ctggcctcaa acaaacctcc tgcctcagct tcccaaagca ttgggattac agacatgagc cactgagcc agcccagacg ctttagcatt tatgaagctt ctgaaatagt tgtagaaacc 1020 1080 gcataagett tecatgicae titteaaagtt tgatggtete titagtaaac caaccaagtt 1140 attecteaag ggeaaaataa cattteteag tgeaaaaetg atgeaettea ttaceaaaag 1200 gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaaa aggtacaaac acatactaat ggaacattct ttagaagagc cccaaagtta atgataaaca 1260 1320 ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa 1380 acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac 1440 1500 1560 acaggetgga gtgcagtggc acgatcagag etcactgcaa eetgaaaete etgggetcaa 1620 gggatcetce tgeettagee teccaagtag etgggaetae aggeecacea tgeecageta attititaaa tittetatag agatgggate teactageae ettteatgtt tgatgtteat 1680 1740 atacaacgac caaggtacaa tgtggaaaag ggtctcaggg atctaaagtg aaggaggacc 1800 agaaagaaaa ggggttgcta catagagtag aagaagttgc acttcatgcc agtctacaac actgctgtt tcctcagagc agagttgatg atctaaatca ggggtcccca acccccagtt catagcctgt taggaaccgg gccacacagc aggaggtgag caataggcaa gcgagcatta ccacctgggc ttcacctccc gtcagatcag tgatgtcatt agattctcat aggaccatga 1860 1920 1980 2040 accetattgt gaactgagea tgeaagggat gtaggtttte egetetttat gagaetetaa 2100 tgccggaaga tctgtcactg tcttccatca ccctgagatg ggaacatcta gttgcaggaa aacaacctca gggctcccat tgattctata ttacagtgag ttgtatcatt atttcattct 2160 2220 atattacaat gtaataataa tagaaataaa ggcacaatag gccaggcgtg gtggctcaca 2280

cctgtaatcc	cagcacttcg	ggaggccaag	gcaggcggat	cacgaggtca	ggagatcgag	2340
accatectgg	ctaaaacggt	gaaaccccgt	ctactaaaaa	ttcaaaaaaa	aattagccgg	2400
gtgtggtggt	gggcacctgt	agtcccagct	actcgagagg	ctgaggcagg	agaatggtgt	2460
gaacctggga	ggcagagett	gaggtaagcc	gagatcacgo	cactgcactc	cagectggge	2520
gacagagega	tactctqtct	caaaaaaaa	aaaaaaaaa	aaagaaataa	agtgaacaat	2580
aaatgtaatg	tooctoaatc	attccaaaac	aatccccca	CCCCagttca	Cocaaaaatt	2640
CECCCACAAA	accagteest	ggtgccaaaa	aggttgggga	ccactaatet	2221221612	2700
atcttcattc	aatoctaaaa	aatgaataaa	cttttttta	aatacacoot	Ctcacttca	2760
tacccaaact	ggagtacggt	ggcatgatca	cageteacto	tageeteast	Caccacacac	2820
ccaccaatcc	teceacetaa	acttcctgag	tagetedess	tagecceaac	cacccaggcc	
cccacctaat	ttttaaatt	tttatagaga	tagaaatata	acayycacy	caccaccatg	2880
ctcagccaat	gggctcaactt	gatecteect	caaactcctc	accarginge	ccagactggt	2940
cttaaacttt	gggctcaagt	gatttacaag	catactette	tataccaagig	acceteete	3000
ttttaatta	caaagtgctg	ggattacaag	catgagetac	cgcacccage	Lygacaaaca	3060
ctctaagtcg	cactacagte	atggacaatc	aggererea	acatgcagta	tggacagtga	3120
gteeeagggt	etgettttee	atactgaaat	acatgigata	ctaaggagaa	aggtgctcgc	3180
aaggatattt	aaaatgaaga	atatttaaaa	tgaggaaaaa	actgtttctt	catgactttg	3240
ataaggctga	taaagaccat	ttctgtgatc	tcaggtgatt	cactcaagta	gtatatttca	3300
graatcatta	tctggaacag	cctgaatctt	aaccaaaata	ccatgatttt	ttaatgctgt	3360
tatgatacct	tgatgatatg	accaaactgc	aatgtaggca	gctaaatctc	cacgagtttg	3420
acttccccga	gagttgacag	ttttcttcac	aaattaaaga	aatatatttt	ttgatacatg	3480
attggcatat	ttaaaaacta	cactgaaatg	ctgcaaaatg	atataaagaa	acattttcca	3540
gaatcaaatg	caatcaaaga	gtggattagg	aatctactca	ccattatcaa	ctaaatagaa	3600
acacttggac	tgggtgtggt	ggctcacatc	tgtaatctca	gcactttggg	aggccaaggc	3660
aggtggattg	cttgaggcca	ggagctcaag	accagcctga	gcaacatagc	aaaactctgt	3720
ctctacaaaa	aaaaaaaaa	attaaccagg	catggtggca	gatgcttgta	atcccagcta	3780
		ggactgcttg				3840
tggtcatgct	gcgccacagc	ctgagtgaca	gagagagacc	ctgtctcaaa	aacaaaaaca	3900
aacaaaaaac	acttaacctt	cctgttttt	gctgttgttg	ttgttgtttg	tttqttttqa	3960
		cccaggctgg				4020
		cgccattctc				4080
taggcgcccg	ccaccacgcc	cggctacttt	tttgcatttt	tagtagagat	ggggtttcac	4140
cgtgttagcc	aggatggtct	tgatctcctg	acctcgtgat	ccacctqcct	cggcctccca	4200
		tgagccaccg				4260
		agctgaaaga				4320
		atatttaatc				4380
caaaaacact	catcatcatt	cctgatgacc	tctaattcto	atttcaactt	tctatttcaa	4440
tggaaacaga	ataaggaaag	aaatggaagg	gctctggaaa	tttatcctaa	gctatagata	4500
ctatcaaaga	tcaccaacaa	taagatctct	cctataaata	taaaacaagt	ataattaatt	4560
ttttaattat	ttttttctct	tcagaggatt	ttatttcaag	ataaaacata	acttctaccc	4620
atactattga	ttccaaaggt	tagaaaaagt	atttttcctc	atcttatcct	tcaaagaggt	4680
		taaaatgcct				4740
aatcattgaa	aatgcttttc	cattttaagc	ttaggtgagg	tatattaga	acageceaga	4800
		ggaggtaaac				4860
atctcatttt	traggettee	taatcccttg	aaccacaatc	gaaaaagggcc	tagatatat	4920
ttctgcacat	atcatcgcgg	aattcattcg	auguacaace	agetgageet	costastas	4980
acconceted	cccttctcc	gacccattcg	sttastassa	ttaggtagg	toraceatte	
ageggeeteg	actorious	gacgccagtc	cccgccgcgg	ccagccagga	Lgaggggttt	5040
		tctgcgggtt				5100
ggatgttatt	actigitation	gageteetgg	caggergrae	Caatttttta	attatttaat	5160
acciacic	tatatata	tgaatatttt	ggtattetge	tctaaaatag	gcccataaat	5220
gcacagcaga	tatetettgg	aacccacagc	tttccactgg	aagaactaag	tatttttctt	5280
ttaaagatgc	tactaagtct	ctgaaaagtc	cagatectet	acctctttcc	atcccaaact	5340
aagacttgga	acttatgaga	gatctagcta	acagaaatcc	cagacacatc	attggttctt	5400
cccagagtgc	agtcctccta	aagaggctca	gccctaagca	ggcccctgca	ccaggagggt	5460
gggtctgaga	cccacatage	acttcccaag	gtgcatgctc	cagagaggca	ctgaaacagc	5520
tgagcacaag	cctgcaagcc	tggagaactc	tcacagtcag	aacggagggg	gcccagtggg	5580
actaacataa	agagaaaagg	gaacacagag	aaatggatgg	caccaacaac	cagcaaagcc	5640
ttcatggcca	atgaaagcat	cagtgacggg	gccagaaccc	tcatccccaa	agactcttca	5700
ctgcctttag	tgaaaaacaa	tggctagaga	gtgaagttat	gatcatgtat	agagaggtaa	5760
agttacattt	ttatattctg	actctgctaa	tgtgaaattc	cctatctgct	agactaaaaq	5820
tttcagacac	cctgttcaaa	tatcccatta	gttgctagag	acttaaaatg	aacagaacgc	5880
				_		

acattgtcag	gatgactatt	accaaaaaat	caaaagacag	caagtattgg	tgaggatgta	5940
gagaaactgg	aacttttgtg	cactgtttat	gagaatgtaa	aatggagcag	ctqctqtqqa	6000
aaagagtatg	caggttcctc	aaagagtaaa	accaagatgt	ggaaacaact	aaatgcccat	6060
cagtggatga	aggggtagac	aatatgtggt	atatacatac	catggagtac	tattcagcct	6120
ctaaaaaaaa	aaaaggaaat	tctataacat	gcaacagcat	ggatgaatct	tgaggacatt	6180
ttgctaatga	aataaggcag	tcatagaaag	acaaatactg	cacgactcca	cttatatgag	6240
ataccaaaaa	tagacaaatt	catagaatca	aagagtacaa	tggaggttac	ctggagctgc	6300
agggcgggaa	acqaqqaqtt	actaatcaac	gaacataacq	ttgcagttaa	gtaagatgaa	6360
taagetetea	agatcagctg	tacaacactg	tacctagagt	caacaataat	gtattgtaca	6420
cttaaaaatt	tattaagggt	agattaacaa	atgtagtaga	tccacaaato	taattaaata	6480
ttcttaccac	agtaaaataa	aaaaagaata	tcaaqcccaq	gagttcgaga	ctagectogo	6540
taacatggtg	aaaccctgtc	tctacagaaa	atacaaaaat	tagccagctg	tggaggtgca	6600
ctcctaggga	gactgaggtg	ggaggcttgc	ttgagcccag	gaggtcaagg	Ctacaataaa	6660
		tccagcccag				6720
		cattttaaaa				6780
		cctcatctag	_	_		6840
		agtgatgtga				6900
actoragaag	aaacaacgac	tgcctaactt	tcacageaata	dadaaaacat	caaacaatta	6960
atassacct	tccaaaacta	gagagaactg	cacacacaca	atcacagaga	caaacageeg	7020
cataggae	100000000	accggctatt	tttgatgggt	gaacacacta	stanaga	7080
cacadaract	ugaaaggatte	gtgggatgaa	acctcaaaca	gaacaccctg	cigcaggaga	7140
gataggaget	cttgattaac	tctagtcaat	ggggagaatt	gettegettg	accigectaa	7200
tcaaattcac	attttagatt	gatttttat	ggggacaact	caaccaaaga	agaaagatge	7260
		gattttttat				
aagerggag	graagaaact	tgttaagagg	caactgaaac	agreragarg	acaaacaaca	7320
taacegacaga	tastasaaa	aaatcagaac	aggetgaate	aacagacacc	tagatgaaaa	7380
taacaggact	19accaccag	ttgtatcttg	gagaggaagg	agitgittee	ttgettteee	7440
tacgactggg	aacacggaag	gtttgccgtg	cgcactggtt	acacaccegge	gegeageeaa	7500
		gcttaaaaca				7560
		gctggctggt				7620
ccaagatgtc	agetggggtt	gcatcatctg	aaggeteaae	Lggggccgga	gggtccactt	7680
ccaaggagtt	cacteacetg	cctgacaagg	cagtgetggt	tgttggcagg	agateteaat	7740
teattgeeaa	gegageetet	ctatagcatt	gctggaacat	cctccccatc	tggcagttgg	7800
etteteteag	catgagtgat	ctgagagaga	gagcaaggag	gaagccacag	tgttcttcct	7860
actectacte	ctaacactat	ggacctactc	Ctaacactct	cacttctgcc	ttattccatt	7920
agttagaaag	ggaactaagc	tccacctctt	gaaataagaa	gtgtcaaaga	atttgtggat	7980
atatttaaaa	attattatat	tgtggaagtg	gataggggt	tcaattaatg	ctgaacttga	8040
aatgeetgag	acattcaaat	gtccaacagg	caatgaacat	acccatagat	ggtcatgact	8100
ctagcaagaa	tagaggaaga	tcacagaatt	aaggaggaat	tgaaaggtaa	aagaagtgga	8160
greagattee	ccctgaaaag	tgagccatga	aaggaacttt	aactattgag	ttagaggtca	8220
		attcttttt				8280
		gtagacaggg				8340
gttgacaaag	gtettggeag	aatcccttac	ccattgactt	ggggccaaga	gagggacact	8400
tettegttig	agggataagg	aaaataagaa	agaatgggtg	ctatttagtg	tggtcctgtc	8460
		aacaaactgt				8520
		ccattttgtt				8580
gctacatgca	gactgctgtt	ttgtcttcct	ggcctgttcc	aggtttcagc	attctggcat	8640
atctgctacc	ctgttcccaa	acctctctag	agtccatgct	ccttccttgg	atagtgtttg	8700
attgggccac	gtatctaaga	agtgatgcct	tcagttaggc	ctgagaacct	cctctatgga	8760
aatctccatc	agtgaccctg	acagacttgg	tatcttggag	atgtcactgc	tcccagcctg	8820
tggtctagga	gaatctcagc	ctgggcctct	agtagtatgg	ataaggcgtt	aaggtatctt	8880
tgaaccagag	tctgtcatat	tcctcaatgt	gggacagata	aaacagtggt	agtgctggtg	8940
tttctgagct	agaactctgg	tttttggtct	agattctttg	atgtatgacc	tttcagaggt	9000
attaaaattt	gttctaatac	aatgttcaat	acaaatgtag	ttccttttct	gttaggacct	9060
caacaaaaca	tgaccaactg	tagatgaaca	ttaaactatg	acaattcatg	gaaatgaata	9120
cagtaatacc	tgcggttccc	ccattttagc	agtcactatg	gtgacatttg	gcacaaatgg	9180
ctatttaagg	gtgcttttgt	taaaacctac	catcttacta	ggcacatgat	attgaaacta	9240
atgaaataat	ggagaaactt	cttaaaaact	tttaatgaat	aaaqtqatqa	aqtgataata	9300
ttttagctgc	tatttataaa	gtgactatta	caggtcaaac	attcttctag	ggtttttttg	9360
ttgaagttgt	cacatttaat	ccttaataac	ccactatgag	tcaggtattc	ttctctcccc	9420
tttggacagt	tggggaaatg	ggggtcagag	aggttaggta	attigctcag	ggccacacaa	9480
		- -				

			ggaacgtatc			9540
ctattttccc	atgctgcctt	tctaataaaa	ggtaactaat	gctactggat	gctgccccca	9600
aagtgagtca	ctttcacccc	accctacttg	attttctcca	taaaactaat	cacatcctga	9660
caacttattt	attgctgatc	tcccccacta	gattataaac	tcaataaaag	caagatcctt	9720
gtctgctgaa	tatcagtacc	taaaacgctg	tctagcacag	agcaagtaat	taatatttgt	9780
tgaatgaaca	aataaaggaa	aaaaattcaa	aggaagaaaa	agccctaaaa	cagatgttta	9840
cctaaacata	cattttaaaa	gaaagcatat	aacaaattca	ggacagaatt	taaatttgat	9900
tttttaaaga	aataaccaag	tgctagctgg	gcacagtggc	tcacacctgt	aatcctagca	9960
ctctgggagg	ccgaggcagg	cagatcactt	gaggtcaaga	gttcaagacc	agcctggcca	10020
acatggtgaa	acctgtctct	actaaaaata	cagaaattat	ccaggcatgg	tggcaggtcc	10080
ctgtaacccc	agctactcag	gaggctgagt	caggagaatt	gcttgaaccc	aggaggcaga	10140
ggttgcagtg	ggccaagatt	gcaccactgc	actccagcct	gagtaacaaa	gcaagactct	10200
			gaaggaaaga			10260
			gaaagaaaga			10320
			accaagtgct			10380
			agcagttagc			10440
			gtgctttaag			10500
			gtaacttttt			10560
cagettattt	aaccaaagga	ggatgettae	taacatgaag	ttatcaaatg	tgagcctaag	10620
ttgggccagt	ccatgitaat	atactccaga	acaaaaacca	tectactgte	ctctgacaat	10680
			aaggagccag			10740
			aatcaattca			10800
			gaagaatgat			10860
ttaaaaata	ttttaagggt	acaagacttc	tctccaaaat	gatttattg	aatttgcatt	10920
Canadadaca	ctacageee	adattttaaa	aggtttgata	reggeacatg	tatagacaaa	10980
atetaetat	ccagaccaag	cascasates	aaacatatac	aggaatttaa	catacgataa	11040
acctagtatt	ccaaaggaac	cttactccta	tgttcagaca	tanatanaa	cattaggaaa	11100
atttatttat	tttaattata	gttttaagtt	acaccaggag ctagggtacg	tataasaasa	agcaccaaat	11160 11220
attacatacc	tatacatoto	ccatattaat	gaggagcacc	agatatttaa	acgeaggeee	11280
ttaaccaaaa	acastaacte	acacctgtaa	tcccagcact	ttaaaacccaa	aagaaaaaaa	11340
			cctgagcaac			11400
ctaaaaatac	aaaattagcc	aggcatggtg	gcacatgcct	gtaatcccag	ctacttqqqa	11460
ggctgaggca	ggagaatagc	tttaatctoo	gaggcacagg	ttacaataaa	ctgagatatt	11520
gcactccage	ctgggcaaca	agagcaaaac	ttcaactcaa	aaaaattaat	aaataaataa	11580
aaataaagaa	agaaaagaaa	aaaatgaaaa	tagtataatt	agcagaagaa	aacaccataa	11640
			tataatataa			11700
agaaaatcac	ctacatacaa	accaaatctt	tctacatgcc	taaaacatag	cacaaacaca	11760
			aaacaaaact			11820
			ataaacccaa			11880
			gtagttcaca			11940
ggcacataag	atqctcaqac	tgacttttac	ttatttattt	tttgagagac	agggtctcac	12000
gatgttgccc	aggttaggct	caaactcctq	ggctcaaatg	atagtaccag	gactacaggt	12060
gtgcccacc	gcacctggct	cctcaaccac	ctgtattaac	aggaaatgca	aaataaaact	12120
ttcaaatcta	ttttacctat	tagaatggca	aaaatttgaa	aaacttcaaa	catcatcatq	12180
ttggtgagaa	tgtgaggaga	ctggcactct	cattttttgc	tgatagcata	tatatactga	12240
			ctatcaaatg			12300
			ctatatggtt			12360
			atcttcttt			12420
tgttgaattt	tatatactgt	aatatattat	ttttcacaaa	agataatttt	taagcgatat	12480
gtctgggaat	tttttttt	cttttctgag	acagggtctc	actctgtcat	ccaggctgga	12540
atgccatggt	atgatctcag	ctgactgcag	cctcgacctc	ctgggttcaa	gcaatcctcc	12600
cacctcagcc	tcctgagtag	ctgggactac	aggcacgtgc	catcatgcta	atttttgtat	12660
atacagggtc	tcactatgtt	gcccaggcta	atgtcaaact	cctaggctca	agcaatccac	12720
ccacctcagg	ctccaaagtg	ctgggattac	aggcgtgagc	caccgcgcct	ggccctggga	12780
attcttacaa	aagaaaaaat	atctactctc	cccttctatt	aaaqtcaaaa	cagagaagga	12840
aattcaacct	ataatgaaag	tagagaaggg	cctcaaccct	gagcaacaaa	cacaaaggct	12900
atttctgaga	caggaatttg	ctgaacaaaa	tcgagggaag	atqacaaqaa	tcaagactca	12960
cttctcggct	gggcgcagtg	gctcacacct	gtaatcccag	cactttggga	ggccgaggcg	13020
gacagatcac	gaggtcagga	gattgagacc	atactggcta	acacagtgaa	acccagtctc	13080

tactaaaaat	acaaaaaatt	agccgggcgt	ggtggcaggt	gcctgtagtc	ccagctactt	13140
			ccaggaagcg			13200
			gagcaagact			13260
			ttcaaattta			13320
			tgctccttac			13380
			caccattatc			13440
			aagtcagtga			13500
aaatggaata	taggaaatcc	ataaaagtga	ttaaaaagat	gttagagget	ayaacaaaaa	13560
			tggctaacac			13620
			gcaggcacct			13680
			gagacggagc			13740
			gagactccat			13800
						13860
acyayayaca	aagattta	agatataaca	ctgctaattc	ttcctcaaat	taratereta	13920
			ccggaaaact			13980
aatctatage	ttgaaagggt	tragcatatg	ccaagaaaaa	ccagtagagt	ccaaccagca	
			accaacacag			14040
			cttctccaga			14100
			agaaagtgac			14160
tagaatgtca	cgcattattt	aaaggctgca	aaagccatga	aagacatgaa	agaacacaag	14220
catttacaac	atgaaagaac	acaagcattc	tcatactcaa	gaatccttaa	gaaaaatgta	14280
			tacttaatgt			14340
tagcttcaaa	tcagtctggt	cccatctacc	aacatctctc	gcccggcttt	cctgcaatag	14400
tcagcacctt	tccctcctcc	cagtcttgtc	ccctggagtc	tgctctcagc	atagcagagt	14460
gaccacatca	acacccaagt	cagagccctc	cagtgcgcac	tggtctacaa	agcccttccc	14520
acccccacc	ccacgtgccc	tccggatcct	tgtgacgtgt	ctcctgcata	ccctagcagc	14580
cctggcctcc	tcactgcccc	tcctgtacat	caggaaggcg	actccttgag	tcttggctct	14640
ggccgcctcc	tccacctgca	gtgagttaac	tcccttacct	actctaggtc	attgctcaaa	14700
totcaocatc	tcaatggggc	cctccctgac	taccctattt	aaattctaca	tactcccctt	14760
gaccccatgg	acctcactca	ccctattcca	cttttattct	tacaatttag	cacttottct	14820
cttctaacqt	attctaagac	ttactcattt	attacattgt	ttqccacccc	ctctagtaca	14880
taaactccaq	agggggagg	atttctqtct	atttattcat	ttctttatcc	ctaggacata	14940
			tatcaatgaa			15000
			agaattaaat			15060
			gcctagaaag			15120
ataatattaa	tttgataata	ataacaaaaa	ctctgccagg	cactotooct	caaatctgca	15180
			ggatcacttg			15240
acctagacaa	cacaacaaga	aactgtctct	aaaaaaatta	aaacttaaat	ttttaaaaaa	15300
			ttaaggtaca			15360
			aggtataacc			15420
ccatgctaat	agaaagataa	ccetetagaa	caattaacag	addagacttt	aaaggaat	15480
						15540
			gttgaaaaca			15600
			aaaacactac			15660
caccacccca	gacaaagcag	gaaaaaccgc	cacagtetea	aactacaaac	cataaycata	15720
			agtaggagga			
			tgtccctgga			15780
			catatgtgag			15840
			agatgaggaa			15900
			aatatccaca			15960
_			acagcagata			16020
			agaaataatc			16080
			aaccatcaaa			16140
			gaaaacaaac			16200
			gaaaaaaaa			16260
catctgaaag	aacagaaaca	aaactatcag	cagaatattg	agatgttta	ctaagttgta	16320
tatctatact	gcttgtaatt	tttaccccaa	gcaagaatta	ctttttggaa	aaagaaaatt	16380
			gtttaaacaa			16440
			catgcacgca			16500
			tctttccttt			16560
			atgtgccttc			16620
			tcaaagctag			16680
	-	-				

ttcatttgga	acccttatta	aaatgccaca	tacagctcct	tcaaataaaa	acaaacccta	16740
ggacctgaca	ctaggcttcc	tttgttgcta	ctcataatgg	ccaagttctg	tgcttataat	16800
acatettett	tcattttatt	gctacatatc	caagggtttt	atatgttttt	cttattatat	16860
			cagatgaaaa			16920
actgactgac	ttaaaggtca	taaaactata	tagtagcaga	gtcagcaaaa	gaagaaacac	16980
acatetecea	agtagagget	gaaaaccagt	accattcacc	tccagggtga	gctatataca	17040
gattacaaag	tcaccttctc	taaatqttca	aactgaatcc	catacccata	Ctttaccact	17100
acctcgtaag	aacagcctca	gatettgtta	tagccttttt	tttagcatgc	tgaagccaat	17160
aaaatgcttc	ccattcagca	agagaaacaa	gttctgaaac	actgaataat	ctacccaga	17220
cctatgaaca	tttccactat	gagaaatgtt	ctccactgtg	tggagaagat	ccttactctt	17280
			ttggattcta			17340
			ttaaatcctc			17400
			tactctcctg			17460
			gtcacatgaa			17520
aacaaaaacc	taagtcacca	agaatacagt	agcagttgtg	actacqaqta	actactataa	17580
treastactt	tatetteet	tagaaaaactc	ttctcccttg	gazatttatt	tocatttcta	17640
aataccattc	Cttactaaaa	dasadaccc	ctccttgggg	aaatacctact	ttetaeetet	17700
						17760
			acatcccatg			17820
tttassassa	ctaacagagt	therease	ggacctaaga	grgaaccaga	aggageteae	
			acatgacagt			17880
			caaaaggatg			17940
			aaaggaaatg			18000
			catgctaaaa			18060
			tttcacacca			18120
			ccccagcca			18180
			gcccacacag			18240
			ttctgaccat			18300
			gcctctccaa			18360
			aaaagcaagt			18420
			ccagtaagtg			18480
			gaagggaag			18540
			gggttcactg			18600
			acttcaaaac			18660
aagccccaag	aaaagcctgc	cctctctagc	caaaggacca	ggaaggagac	agtctaatga	18720
			tttaccagca			18780
			tacccaacac			18840
gactgcgact	tttatccctg	catggcagta	gtaaggagcc	catccctcac	ccgccagcag	18900
			ccaggagtga			18960
tcatgtcaga	ggaggcctag	tggagattca	gtgacttaac	cttttcccag	agataatgag	19020
gccacctttc	ctccctcttc	ccccatggtg	acagtgaaag	cactgtggca	agcagtaggc	19080
			agggaggcca			19140
acaaccaccc	agcagcaaca	ggggtccccc	accccattgg	gtgtcaatgg	aagcagagcg	19200
gaaagcctgg	atatttaccc	ccatctagaa	gtaacaagct	gatgtccccc	ttcttctact	19260
acaatggtgt	tcaaaacagg	tttaaataag	gtctagagtc	tgataacgta	atacccaaat	19320
cgttgaagtt	ttcattgagg	atcatttata	ccaagagtca	ggaagatccc	aaactgaaag	19380
agagaaaaga	caattgacag	acactagcac	taagagagca	cagatattag	aactacctga	19440
aaggatgtta	aagcacatat	cataagcctc	aacaggctgg	gcgcggtggc	tcacgcctgt	19500
aaccccagca	ctttgggagg	ccgaggcagg	tggatcacaa	gatcaggaga	tcgagaccat	19560
cctggctaac	acggtgaaac	cccgtctcta	ctaaaaatac	aaaaaaaat	agcaaggcat	19620
ggtggtgggc	acctgtagtc	ccagctactc	gggagcctga	ggcaggagaa	tggcatgaac	19680
ctgggaagag	gagcagtgag	ccgagatcgc	accaccgcac	tccagcctgg	gcaacagagc	19740
			aaaaaaagc			19800
			gcaaagaaat			19860
			gcactttggg			19920
			ccaacatgga			19980
			tgcctgtaat			20040
			ggaggttgcg			20100
tgcacattgc	actccadcct	gggcaacaag	agcaaaactc	catctcaaaa	aaatagatac	20160
			atacagtaac			20220
catagaatgg	aggggggaga	caaaataatc	agtgaacttc	aacagaaaat	aatagaaatt	20280
	222220094		-3-3-4-6-6		gaaact	20200

acccaatat	g aagaacagaa	agaaaataga	ctggccaaaa	aataaagaag	aaaaaagagg	20340
agcagcagga	a ggaatgatgg	aaaaagagaa	aggaaggaag	gaagggaagc	agggagggaa	20400
ggagtgaggg	g agaaagtctc	aaagacctct	gagactaaaa	taaaagatct	aacacttgtc	20460
atcagggtc	aggaaagaga	caaaqatqq	acaqctqqaa	acqtattcaa	aaaataatag	20520
	cccaaatttg					20580
aaataaaaa	cccaataaaa	tccacaccaa	aatacatcat	agtcaaactt	ctgaaaagac	20640
gaaaagagaa	aacgtettga	aagcagtgag	tgaaacaaca	cttcatgtat	aagggaaaaa	20700
caatrcaagt	aacadattto	ttacagaaat	taaqqaaqcc	aceacgeac	gacacaatgg	20760
ttttcaagt	g ctgaaagaaa	agaagtgtca	acacaaaatt	ctacattcac	tasasatat	20820
cttcaagaa	caatgggaaa	tcaagegeee	ctcacaaaacc	CCasastas	caaaaatatt	
occagoagaat	ctcccctaaa	gaataaa	aagacaaa	gcaaaacaag	agaacacycc	20880
atrassassas	. ccccccaaa	ggaatggcaa	aaggaagatt	acycaacaga	CCaaaaaatg	20940
totaattac	gaatccagaa	tateteetet	taagaaata	acatagtaag	caaaaataca	21000
cgcaactaca	ataaaattto	taccecce	caagacttct	adactacacc	gatggttgaa	21060
gcaaaaacca	taaccctgtc	tgaagtgett	CLactaaatg	Latgeagaga	actacaaatg	21120
	aggtttctat					21180
acatacacac	: acacacgtaa	gtatatataa	atatatgtgt	gtatatgtgt	gtgtatatat	21240
	ataatgtaat					21300
	tagataaatt					21360
	aaagagaaaa					21420
aatggtagac	ttaagcccta	acttatcaat	aattacataa	atgtaaatga	tctaattata	21480
tcaattaaaa	gacagagata	gcagagttaa	tttaaaaaca	tagctataag	aaacctgctt	21540
tgggctgagt	gcagtgactc	acacttgtaa	tcccagcact	tcgggaggcc	aaggcgggtg	21600
gatcacctga	ggtcaggagt	tccagaccag	cctggacaac	atggtaatac	cccatctcta	21660
ctaaaaatac	aaaaaaatta	gccaggcatg	gtggcacacg	cctgtagtcc	caactactca	21720
ggagget geg	acacaagaac	tgcttgaacc	cgggcagcag	aggtagcagt	gggccaagat	21780
tgcgccactc	cagcctgaac	gacagagtga	gactccacct	caqttqaaaa	acaaaaaaga	21840
aacctgcttt	aaatatacca	acatatette	gttgaaatta	aaagaataaa	atatatcato	21900
aaaacattaa	tcaaaagaaa	ggagtggcta	tattaataac	ataaaataga	cttcagagaa	21960
aaqaaaattt	caagagacag	gaataaaagg	atcaagaaaa	gatcctgaaa	gaaaagcagg	22020
caaatcaatc	attetgettg	gagattcaac	accetetett	aacaactgat	agaacaacta	22080
qacaaaaaaa	tcagcatgga	gttgagaaga	acttaacacc	actgaacaac	aggatctaat	22140
agacatttac	ggaacactct	acccaacaat	agcaaaataa	acattettt	caagtattca	22200
ctgaacatat	ccttagaccc	taccctgggc	cataaaacaa	acctcactac	taattacca	22260
aggettggat	ggacagtgga	agagetgeat	addagaaaa	agoctactag	ttaaagagta	22320
taggatttct	ttttgggata	atgaaaatgt	tccaaaattc	attataata	tattagagag	22380
actotacaaa	tataaaaaag	acgattaaat	tatacatttt	acceceged	ageogegea	22440
atgragatta	tatctaacgc	tttttaaaaa	cttaacacat	ttcaaagaat	aacacacggc	22500
cagaggatta	tctactggaa	tcaaactaca	aagaggtaag	tecaaagaat	agaagicata	
ctccaaatac	ttgaaaactg	ccaaactaga	ttetaaaate	regaggataa	cyagaaaayc	22560
Catttctcat	artcatttt	attatttaat	ctctaaaatc	accegegge	caaayatatt	22620
actorctgat	attcattttt	actycttaat	gtattttaa	aaatttttta	agggaaataa	22680
accgaccaaa	aatgaatatg	gergggrgeg	gragercacg	cctgtgatcc	cagcactttg	22740
ggaggccgag	gctggtggat	cacaagacca	ggagttcgag	accageetgg	ccaagatggt	22800
gaaaccccgt	ctcaactaaa	adactacada	aagtagccaa	gcgcagtggc	gggagcctgt	22860
ggttttagtt	acttgggagg	ctgaggtagg	agaategett	gaacacaggc	agcagaggtt	22920
geagigagee	aagattgtgc	cactgeaege	cageetggge	gacagagact	gcctcaaaaa	22980
aaaaaaaaa	aaaaagaata	tcaaaatttg	tgggacatag	ttaaagcaat	gctgagaggg	23040
aaatttataa	cactaaatgt	ttacattaga	aaagagaaaa	agtttcaaat	caatagtctc	23100
cactcccatc	tcaagaacac	agaagatgaa	gagcaaaata	aacccaaagc	aagcaaaaga	23160
aagaaaatat	aaaaataaat	cagtaaaatt	gaaaacagaa	acacaataaa	gaaaatcagt	23220
gaaacaaagt	actgattctt	cgaaagatta	ataaaattga	caaacctcta	gcaaggctaa	23280
caaacaaaaa	agaaagaaga	cacggattac	cagttattag	aatgaaagca	taattagaaa	23340
caactctaca	cattataaat	ttgacaatgt	agatgaaatg	gactaattac	tgaaaaaaca	23400
caaattacca	caactcaccc	aatatgaaat	agataattgg	gatageetga	taactactga	23460
gaaaattgaa	tttgtaattt	taacactctt	aaaacagaaa	cattaaactt	aatattttat	23520
aaatattaga	taaggtaatt	atacccttcc	ttaacaaata	aaaacgacaa	attattttgc	23580
agctaaagag	atgtatgtac	tgtgaaaaat	atcttcagaa	aaatagaact	ttgtttgaag	23640
aataaggatt	taaaaaatgt	ttttaactct	caagaagcaa	atatctgggc	ccagatggtt	23700
tcactgaaga	attctaccaa	atotttaato	aagaattacc	accaactota	catagratet	23760
ttgagaaaac	tgaagagaag	ggaacatctc	ccagttcatt	ttatgaagtg	agtattecto	23820
tgatactaga	actgtataag	gacagetact	cttgacacac	tocctatocc	tageteteet	23880
J======			Jugacacac	raccialygg	Lagueduget	43000

ctgcaggaac	agtcagaaaa	aaaaaaaaa	gaagcactgg	acaagggcag	tataaaaaaa	23940
gaaaactggg	ccaggtgcag	tggctcacac	ctgtaatctc	agcactttgg	gaggctgacg	24000
ctggtggatc	acctgaggtc	aggagtttga	gactagcctg	gccaacatgg	taaaaccctg	24060
tctctactaa	aatacaaaaa	ttagccaggc	agggtggtgg	ggaaaataaa	aaggaaaaaa	24120
aaacaaaaat	aaactgcaga	ccaatatcct	tcatgagtat	agacacaaaa	ctccttaaac	24180
tccttaacaa	aatattagca	agtagaagca	atatataaaa	ataattatac	accatgatca	24240
agtgggactt	attccagaaa	cgcaagtctg	gttcaacatt	tgaaaacaag	gtaacccact	24300
atatgaacgt	actaaagagg	aaaactacat	aatcacatca	atcaatgcag	aaaaaagcat	24360
ttgccaaaat	ccaatatcca	ttcatgatac	tctaataaga	aaaataagaa	taaaggggaa	24420
attccttgac	ttgataaagc	ttacaaaaga	ctacaaaagc	ttacagctaa	cctatactta	24480
atggtgaaaa	actaaatgct	ttcccctacg	atcaggaaca	aagcaaggat	gttcactctc	24540
attgctctta	tttaacatag	ccctgaagtt	ctaacttgtg	caaaacgata	agaaagggaa	24600
atgaaagacc	tgcagattgg	caaagaagaa	ataaaactgt	tectgtttge	agatgacatg	24660
	agaaaatgta					24720
aaaggatacc	aaatttcagt	taggaggagt	aagttcaaga	tacctattgc	acaacatggt	24780
aactatactt	aatatattgt	attcttgaaa	atactaaaag	agtgggtgtt	aagcgttctc	24840
	tgataactat					24900
	catgttgtac					24960
	gccaggcaca					25020
	aacttgaggt					25080
	ataatacaaa					25140
	ctgaggcacg					25200
	gcattccagc					25260
	ttttcttaaa					25320
	gaggccgagg					25380
caacatggtg	aaaccccatc	tctactaaaa	aatatataaa	ttagccaggc	atgtgtagtc	25440
teagetacte	aggaggctga	ggcaggagaa	tcacttgaac	ccggaggcag	aggttgcagt	25500
gttgagccac	cgcactccag	cctgggtgag	agaacgagac	tccgtctcaa	aaaaaaaag	25560
	taattttaaa					25620 25680
cctaggatat	atgatgaaca ttgaggctgt	acaaaaacc	gattgtggctg	gacaaaggag	gattyttta	25740
	gcataatgag					25800
	taagcacatg					25860
	aatgaaatac					25920
gaaaactaca	aaacgctgat	aaaagaaatc	aaagaagact	taaataggg	gaaatatacc	25980
	gttggaaaac					26040
	ttattactac					26100
	gtatacggaa					26160
agaaaaataa	agtgggaaga	atcagtctat	ccaqtttcaa	gacttacata	gctacagtaa	26220
tcaagactgt	gatattgaca	gagggacagc	tatagatcaa	tgcaaccaaa	tagagaacta	26280
agaaagaagc	acacacaaat	atgcccaaat	gatttctgac	aaaggtgtta	aaacacttca	26340
acgggggaag	atatgtctct	cattaaaggg	tgtagagtca	ttgcacatct	ataggcaaaa	26400
agatgaacct	gaacctcaca	ccctacagaa	aaattaactc	aaaatgactc	aaggactaaa	26460
cataagatat	acatctataa	aacatttaga	aaaaggccac	gcacggtggc	tcacgctcgt	26520
aatcccagca	ctttgggagg	ccaaggcagg	tggatcacct	aaggtcagga	gtttgagacc	26580
	acatggagaa					26640
tggcacatgc	ctgtaatccc	agctacttgg	gaggctgagg	catgagaatc	gcttgaaccc	26700
ggggggcaga	ggttgcggtg	agccaagatc	acaccattgc	actccagcct	gggcaacaag	26760
agcaaaactc	caactcaaaa	aaaaaaaaa	aaaggaaaaa	tagaaaatct	ttgggatgta	26820
aggcgaggta	aagaattctt	acacttgatg	ccaaactaag	atctataagg	ccagtcgtgg	26880
tggctcatgc	ctgtaattcc	agcactttgg	tcaactagat	gaaaggtata	tgggaattca	26940
ctgtattatt	ctttcaactt	ttctgtaggt	ttgacatttt	tttagtaaaa	aattggggga	27000
aagacctgac	gcagtggctc	acacctgtaa	tcccagcact	ttgggaggcc	ggggcaggtg	27060
gatcacacgg	tcaggagttc	gagaccagcc	tggccaacat	ggtgaaaccc	cgtctctacc	27120
	aaaattagcc					27180
ggctgaggca	ggagaatcac	ttgaacctgg	gaggtggaag	ttgcagtgag	ccgagattgt	27240
gccactgcac	tccagccttg	ggtgacagag	cgagactccg	tctcaaaaga	aaaaaaaaa	27300
aaagaatatc	aaacgcttac	tttagaaact	atttaaagga	gccagaattt	aattgtatta	27360
gcatttagag	caatttttat	gctccatggc	attgttaaat	agagcaacca	gctaacaatt	27420
agtggagttc	aacagctgtt	adatttgcta	actgtttagg	aagagagccc	tatcaatatc	27480

actgtcattt	gaggctgaca	ataagcacac	ccaaagctgt	acctccttga	ggagcaacat	27540
			gtttggatat			27600
			ggaggtgggg			27660
gtcatggggg	togcatatee	ctcctgaatg	gtttggtgcc	attettgcag	gaatgagtga	27720
			ttattaaaaa			27780
			cactggttcc			27840
			agatagtgat			27900
						27960
			tctttataaa			
			ggggaaatca			28020
			tccagaagtg			28080
			tccaaccaaa			28140
			actttgggat			28200
			aatatggcaa			28260
			gcctgtaatc			28320
			aggttgcagt			28380
aactccagcc	tgggcaacaa	agtgagactc	cacctcaaaa	aaaaaaaaa	tatacatata	28440
tatatgtgtg	tgtgtgtgtg	tgcgcgcgtg	tgtgtatata	cacatacaca	tatatacata	28500
			gaaaagaaac			28560
			gggggaagta			28620
			aagactttgg			28680
ccacagaatt	aaaqaaaaqc	gtgattaaaa	aaggaaagga	aaqtatcata	acaatattac	28740
tccaaataga	gaatatcaat	aaaggcatag	aaattataaa	atataataca	atggaaattc	28800
			aaaattcact			28860
			acaaatatac			28920
			aaataaacag			28980
caccattaat	cacattaaca	tatocatact	gagagtaccg	gaaggagatg	2022202002	29040
						29100
			ttcctagatt			29160
			gtaggataaa			29220
			aaaacagaga			
			aagaacatca			29280
			atgaatgata			29340
			aagctgtctt			29400
			tgtacatcca			29460
			ggtccatcga			29520
tatgtataca	caatggaatt	tattcagtat	taaaaaggaa	tgaaattctg	acacatgcta	29580
caacatggct	aaaccttgag	aacactatgc	taagtgaaat	aagccagcca	caaaaggaca	29640
			cctagggtag			29700
taaaacagtg	gttgccaagg	gctgagggag	ggagtaacgt	ggagttattg	ttgaatgggt	29760
acagaatttc	agttttgcaa	gataaaaaga	gttctggaga	cagatggtgg	tgagggtggt	29820
acaacaatac	aaatatactt	tatactactg	aacagtatac	ttaaaaatga	ttaacatggt	29880
gaaaccccgt	ctctactaaa	aatacaaaaa	aattagctgg	gtgtggtggc	gggcacctgt	29940
aatcccagct	acttgggagg	ctgaggcagc	agaattgctt	gaaaccagaa	ggcggaggtt	30000
gcagtgagct	gagattgcgc	caccgcactc	tagcctgggc	aataagagca	aaactccqtc	30060
tcaaaaaata	aaaaataaaa	aaaatttaaa	aatgattaag	caggaggcca	ggcacggtgg	30120
ctcacaccta	taatgccagc	actttqqqaq	gccgaggcag	gcgatcactt	gagaccagga	30180
			accetgeete			30240
accagacata	gtggcatata	cttataatcc	cagctactgg	tgagactgag	acacgagaat	30300
tacttgaacc	Caggagggag	agattgcagt	gagtcgagat	cacaccacta	aattccacc	30360
tagacaacaa	agcaagattc	tatatagaaa	aaacaaaaac	222220222	adceccagec	30420
						30480
gastsataass	aagcaggaaa	ttttaaaaaa	gctgaggagg	agaaagatgt	gcaggaccaa	
statatata	agcacaaaac	cittaaaaa	atgtttaatg	attaaaatgg	taaattttat	30540
			gggcaggaaa			30600
			ccttagaaga			30660
aggctgaaaa	caagtgaccc	cagagggtaa	tctgaattct	cacagaaaat	tgaagcatag	30720
cagtaaaggt	tattctgtaa	ctatgacact	aacaatgcat	attttttcct	ttcttctctg	30780
aaatgattta	aaaagcaatt	gcataaaata	ttatatataa	agcctattgt	tgaacctata	30840
acatatatag	aaatatactt	gtaatatatt	tgcaaataac	tgcacaaaag	agagttggaa	30900
caaagctgtt	actaggctaa	agaaattact	acagatagta	aagtaatata	acagggaact	30960
taaaaataaa	attttaaaaa	atttaaaaat	aataattaca	acaataatat	ggttgggttt	31020
gtaatattaa	tagacataat	acaaaaatac	cacaaaaagg	gaagaagaca	atagaactac	31080
	-			- ,	-	

ataggaataa	a cattttggta	tctaactaga	a attaaattat	aaatatgaag	tatattctgg	31140
taagttaaga	a cacacatgtt	aaaccctaga	tactaaaaag	taactcacat	aaatacagta	31200
aaaaaataaa	taaaataatt	aaaatgtttg	; tattagtttc	ctcagggtac	aqtaacaaac	31260
taccacaaat	: tgagtggctt	aacacaactt	: aaatgtattt	tctcccaqtt	ctggaggcta	31320
aacacctgca	ı atcaaggtga	gtacagggco	atgctccctg	tgaaggetet	aqqaaaqaat	31380
cctcccttgt	ctcttccago	: ttccagtggt	tctcagtaac	cctaaqtqct	ccttaactta	31440
tagctatato	: attcctagca	accagaaaga	agaaaataat	aaaqattatq	gcaaaaaata	31500
atgaaatcaa	aaggagaaaa	atggaaaaaa	ataaataaaa	ccaaaaqcta	gttctttgaa	31560
aagatcaaco	aagttaacaa	accttttaac	tagactgaca	aaaaggaggt	aagactcaaa	31620
ttactagaat	cagaaataaa	agagggaca	ttactaatga	gggattagaa	aagaatacta	31680
cgaacaaatg	tgtgccaaca	aattagaaaa	cttagatgaa	atggacaggt	tectaggaca	31740
acatcaacta	ccaaaattta	ctcaagaaga	aagagacaat	ttgaatgagc	tataacaadd	31800
gaagagactg	aattgacaac	caagaaacta	tccacaaaga	aaatcccagg	cccadaadat	31860
ttcactgtga	aattctttca	aacttataaa	tataaattaa	catcagttct	tcacaaactc	31920
ctccaaaaaa	aagaacagat	ctctatttac	aggcgatacg	atctttage	aatcctaacc	31980
gaactactaa	gacactatga	taactgataa	acaagttcag	caacctcca	gastagasa	
ccaatataca	aaaatctatt	atatttctat	acacttgcag	taaaggetgea	ggatagaaaa	32040
ttaagaaaat	aattcaatt	acacttectat	caaaaagaat	Lyaacaaccc	aaaaatgaga	32100
ttattcaagt	aactcaatct	cttatactct	caaaaayaat	aaaaacactc	aaaaataaat	32160
aaacettac	aagegeaaaa	aactateee	agaagctaca	aaacactgtt	aaaagaaatt	32220
aaaggtttat	acaaacgaaa	adctatccca	tgttcatgga	tcaaaagact	tattactggc	32280
tagagataga	adattgatet	ataaattcaa	caaaatcctt	atcaaaatcc	cagatgaggc	32340
rgggggrggc	ggttcatgcc	Lgtaatccca	gcactttggg	aggctgaggc	acgcagatta	32400
cctgaggtcg	ggagetegag	accagectga	ccaacatgga	gaaaccctat	ctcttctaaa	32460
aatacaaaat	tagtcaggcg	tggtggcaca	tgcctataat	cccagctact	cgggaagctg	32520
aggcaggaga	atcgcttgaa	cccaggaggc	agaggttgca	gtgagccaag	atcgtgccat	32580
tgcactccag	cctgggcaac	aagagcaaaa	ttccatctca	aaaaaaaaa	aaaaaaaatc	32640
ccagatgact	tcactgttga	aattgaaaag	attattctaa	aattcacatg	gaattgcaag	32700
accttgagaa	tagccaaaac	aaacttgaaa	aacacgaaca	aaatatagga	tgactcactt	32760
gccaattgca	aatgttacga	cacagcaaca	gtaatcaaga	ctgtgtggta	ctggcaaaag	32820
acacatacat	acatacatat	caatggaata	taattgagag	tacagaaaca	agcctaaaca	32880
tctatggtaa	gtgcttttct	attttttct	tttttttt	cttttttgta	gagatagaat	32940
ctcaccatgt	tgcccaggct	ggtcttcaac	ttctgggctc	aagcaatcct	cccactgtgg	33000
cctcccaaag	tgctgggata	actggcatga	gccaccacat	ccagcccaga	tgattttcaa	33060
aaaagtcaac	aagaccattc	ttttcaacaa	ataggtctgg	gatgatcaga	tagtcacatg	33120
aaaaaaaaa	tgaagttgga	ccctccatca	cactaaagtg	ctgcgattat	aggcatcagc	33180
caccacatcc	agcccaaatg	attttcaaaa	aggtcaacaa	gaccattctt	ttcaacaaat	33240
aggtctggga	taatcagata	gtcacatgaa	aaaaaaaatg	aagttggacc	ctccatcaca	33300
ccatatgcaa	aaattaattc	aaaaatgaat	tgatgactta	aacgtaagag	ttacqactqt	33360
aaaactctta	gaaggaaaca	tacgggtaaa	tcttaaagac	gttaggtttg	acaaagaatt	33420
cttagacatg	acaccaaaag	catgaccaac	taaggtaaaa	tagggtaaat	tgtacctacc	33480
aaaatgaaaa	acctttgtgc	tggaaaggac	accatcaaga	aatggaaagc	caaaatagcc	33540
aaggcaatat	taagcaaaaa	gaacaaagct	ggaggcatca	tactacctga	cttcaaagca	33600
acagtaacca	aaacagcatg	gtactagtag	aaaaacagac	acatagacca	atggaacaga	33660
ataaagaacc	caaaaataaa	tccacatatt	tatagtcaac	tgatttttga	caatgacacc	33720
ccttcaataa	atgatactag	gaaaactgga	tatcgatatg	cagaagaata	aaactagacc	33780
cctatctctc	accatataga	aaaatcaact	cagactgaat	taaagacttg	aatqtaaqac	33840
ccaaaactat	aaaactactg	gtagaaaaca	taaggaaaaa	cacticagga	cattootcca	33900
ggcaaagatc	ttatggctaa	aacctcaaaa	acacaggcaa	caaaaacaaa	aatggaaaaa	33960
tagcacttta	ttaaactaaa	aagctcctgc	acagcaaagg	aaacaacaga	atgaaaagac	34020
aacctgtaga	atqqqaqaaa	atatttqcaa	actatccatc	catcaaggga	ctagtateca	34080
gaacacacaa	qtqactaaaa	caactcaaca	gcaaaaaagc	aaataatcto	gtttttatat	34140
qqqcaaaaqa	tctgaataaa	catteteaaa	ggaagacata	caaatotcac	tatcattctc	34200
ccagtaccac	actotettoa	ttacttotta	gtgtataaat	ttttaaatta	ggaagtgtga	34260
gtcatcctac	actttattcr	tatttttcaa	gtttgttttg	actattetes	gaaguguga gaaguguga	34320
agtataaaat	agccaacaag	tatgaaaaa	tgctcaccat	cactastest	gageettgea	
aaaatcaaga	ccactatoao	atateetete	actccagtta	gaatgggta-	tatassass	34380
acaaaatata	atggatgete	dcaaacatt*	ggagaaaggg	gaarggctac	Laccadaaag	34440
tagggatgca	aattootaat	gaccattata	gyayaaayyg	gaacteetat	acactgtggg	34500
Gaaaatagaa	ctaccatata	atccaccaca	gaaaataata	cegaggeeee	LCaaaaaact	34560
aadtcadtat	actoraces	tatateene	cctactactg	ggtatttatt	caaaggaaag	34620
augicagial	accyaayaaa	cacacgcact	ctcatgttaa	ttgcaacact	gttcacaaca	34680

~~~~~~~					_	
gccaagacag	ggaataaato	taaatgtgca	i tcaacagatg	aatggataaa	gaaaatgtgg	34740
catatacact	caatagaata	ctattcagco	: attaaagaag	aatgaaatco	tgtcatccca	34800
gcaacatgga	tgaacctgga	ggacattata	tttaatgaaa	taagtaaago	acaaaaaqat	34860
aaacagtaca	tgttctcact	cagacatgg	tqctaaaaaq	aaaatqqqqt	cacagaatta	34920
qaaqqqqaqq	cttgggaaaa	gttaatggat	aaaaatttac	agctatotaa	gaagaataag	34980
ttttagtgtt	ctatagaact	gtagggcgag	tatagttacc	aataacttat	tataaatat	
cassageta	gaagaatt	+~~~+~~	cacagecace	aacaacttat	tgracatgit	35040
caaaaagcta	gaagagattt	tggatgttcc	cagcacaaag	gaatgataaa	tgtttgtgat	35100
gatggatatc	ctaattaccc	tgattcaatc	attacacatt	gcatacatgt	atcaaattat	35160
cactctgtac	ctcataaata	tgtataatta	ttacgtcaac	aaaaaaagga	aaaaaagaa	35220
aattaagaca	acccacataa	tggaagaaat	aaaatatctg	caaattatat	atatctqata	35280
aatatttaat	atttataata	tataaagaac	tcctacaact	caaqaacaac	aacaaaacaa	35340
cccaattcaa	aaatqqqtaa	aagccttgaa	tatacactta	tctaaagact	atatacaatt	35400
ggccaataaa	gacacgaaaa	gatgctcaac	atcactagto	atcacccaaa	tataaatcaa	35460
aaccacaato	tagaatgtag	acaccacttc	atatocages	gastagatag	225222	
tastasass	tagaatgtag	acaccaccic	acatgcacta	ggatggttag	aataaaaagg	35520
LaaLaaCaaa	tgttggtaag	gatgtgaaaa	aaccagaaac	ctcattcgct	gctgttggga	35580
atgtaaagtg	atgcagccac	tttggaaaac	agtctggcag	ctcctcaaat	tattaaatac	35640
agagttaccg	tatgacccag	gaatattcct	cctgggtcta	taaccaaaaa	aatgaaaaca	35700
tatatccaca	taaaaacttg	tacatgggca	tttatagcaa	cattattcat	aacagcaaag	35760
gtggtaagaa	cccatatqcc	catcatctga	tgaacaggta	aataacatoc	ggtattatcc	35820
atacactaga	atattatcto	cccatacaag	gagtgacatc	cagctacatg	ctacaaggat	35880
gaatctcgga	aaccttatgo	taagtgaaag	aagccagtca	casatgacca	cadattatda	35940
ttccatgcat	cccaaatcac	cagaataggg	aagtctatac	3030303330	tagattatga	
attagataga	ceteceses	cagaacaggg	adatetatag	agacagaaag	cagaccagcg	36000
900990999	gctgggagga	caggtagtac	actactttt	Cagaactact	ggaacaaagt	36060
accacaacc	ggggagetta	aacatagaaa	ttgatttcct	cacagttctg	gagactagga	36120
cicigagace	aaggugtcag	cagagetggt	tettetgag	ggccctgagg	caaggctctg	36180
teccaggeet	ctctccttgg	ctggcaggtg	gccatcttct	ccctgcgtct	tcacatcatc	36240
ttttctctgt	gtgtgcccat	gtccaaattt	tgattggctc	attctgggtc	atggccaatt	36300
gctatgcaca	aagtgaagtc	tacttccaaa	agaagggaag	agggaacact	gactaggcta	36360
aacttatagt	cattttaatg	teegetttte	ctatgagatt	gtgaacacac	agaagtaggg	36420
tttttatcta	cattgtgcaa	agtttaataa	gaaaaataga	attcaagaga	agcagttcaa	36480
tagcaggaat	ttaatatggg	aactaattac	aaggtttagg	gcaggactaa	aaagccagtt	36540
gggatggtga	gccaacccag	agattagcaa	cagtgggacc	ccatctacct	accacccato	36600
aagctggaag	gataaaggag	gggctattat	cagagtccac	aagccagtgt	cagagtcctf	36660
ggctggagct	gggaccaccc	tagagacact	gtgcaaagca	gaaaacaagg	gggaaaaacc	36720
ctgacttctc	ccttcctccc	acctttcaat	ctcccactag	tacttectac	tagccatact	36780
tagccagaga	cagtgacaag	gaacactgca	aaatraartt	tataaaata	atctccctct	36840
cadacadada	aatatooaa	gateactgca	gaatgaagee	ataaagaacc	acceccece	
gtactatet	atttatett	ggtagaaaat	baaccagagg	ataaayayaa	aaaacccccga	36900
gractatett	acctacctt	gtatctccag	Lgcctaatet	gtctctcaaa	aaaggaaagc	36960
aattyayaya	aactgaaaac	tccaattgaa	atgaaagaat	ggagaattac	tggactagaa	37020
gagaagagaa	aaatttattc	cgcatagagt	aaacaagaat	ggattcacaa	aggacgtgat	37080
gaatgaaaag	ctataatcag	caaagatttg	ccagagaaat	taaaaagtgg	taaactcagc	37140
cacgctgtac	aacctgaagg	cacaatgcat	gaaaacgttt	caagaaatga	caagatttga	37200
agtcaaattc	taagtgcttt	tccagaatct	ctcaagacga	ttatatagct	accccatttt	37260
attaaataaa	atggaaactt	actaaacttt	ccccttgtat	taaactaaca	tatotcctaa	37320
tagcaaacga	ttctggaatt	cctagagtaa	aatatatttc	gtcaaagtgt	attoctcttt	37380
taatattctq	ctgacctcct	tttgctattt	aggatattto	tatacacate	acacgtaaat	37440
ttggtctata	gtttacatct	acgggcttat	actottcttt	ttttcatttt	tttaaaattt	37500
ccaaccccca	gtatccatat	actgctctct	atcagggtta	ttttaaattt	gt 2222t gag	
ctgagatgct	ttccatattt	ttttttta	ttttataaaa	catte	gradaarcag	37560
taccaccatc	anattaant	tatttaaaaa	ttttttgtta	Cattlyaata	gcataggagt	37620
caccaccatc	aaccccggac	tatttaagca	ttcacgattc	cacgtgtgga	ttttttattc	37680
agagicitic	Ligicalice	tgctatcagc	acagaaccca	atctcagctt	tccagctata	37740
CtCtCacccc	atggaatttg	cagatgaagt	tcaaaaggac	ctttgcatta	tcctgcctcg	37800
ccctcttccc	ccttcattta	gacatcacct	tcttctagaa	cgtcttacct	gacatgccct	37860
gctcccaacc	cctgctgccc	aattgtgtgc	tctcccqtqt	cctaacctac	catcctctt	37920
agtaattgcc	tgctccctca	tctgtctccc	cacccagaca	ttaaqctqaa	tagactggat	37980
ttgtgtcttg	tccatcacta	taatctcagc	acctagtacc	tagtaggtag	ttaccatota	38040
ttcattagca	aaatgttatq	tataaccttg	caccttaaaa	acaagagaag	gaagacaaaa	38100
ttaaqtctta	agactatogr	ttagaacatg	gatcagaaac	tacagtetge	acccesser	38160
cagaccaaat	gaagagagga	tgttcattta	catacaacct	atagecege	tcacactaca	
adsacsasac	taagtagtte	caagggaaca	Cacacaacct	acaycaycci	antattact	38220
-3~2~2a2c	Laugeageee	Jaayyyaaca	cacggeeetg	caaagcccaa	aatatttact	38280

ctatagetet teacagaaaa agtttteaga teeetegttt agaactettg tteatatgea 38340 atttcactaa accatagttt titgggttig titggtittt titggcaaaa aggaatgagc 38400 cgatccagaa aaggttgaaa agaatgaatc attactgctg aaagaatgtg cacacagtcc 38460 gicagtatte tgetgecatg etgacaccea tecaatagtg teatgagatg cageagetae 38520 tactgtgttc tcaatgccga gtccacccac tccataacca tgtccaagca atcttgggaa 38580 catcatcacc atgettgttt atcettaagg tattgeetea catacageag tggetggtea 38640 taaagtcaaa tgacactagt ggccaggagg tcaagagaat gagtgaggac aggtgggtag 38700 gcagcccagg ccctagcaac agcaggagct cacccctcag tcactctagc caggactgaa 38760 atacttttca ccctttcaag agagactagg aatctggatt tttatgtgaa atatcttgat 38820 tactanatgt tgtcaacaga catgtcaaaa ggtaaaacta agtaagttca tggggcagat tgactattca ggttatagaa ttaaggattc ttatccaaca cagataccaa ccaaaaagct 38880 38940 gacytutaac atattaggag aaactatgtg cactgtcgaa acatcaacaa ggggctaatg 39000 tctaddatag tctatattgg attccagttg aaacatgggg aaaggacatg aacaggcaac 39060 ttutgicaat ggaaactcaa aaagataaca agcatatata aaagcatict caaattcagt 39120 agthaarcagu Cagatgcaaa taaaaagagg gaaactgctg cogggcacag tggctcacac 39180 ctgtastccc agcactttgg gaggccgagg cgggcggatc atgaagtcag gagatcgaga 39240 coatcotage taacatagta aaacccagte tetactgaaa acacaaaaaa ttagccagge 39300 gtagtostgg gcaccagtag teccagetae teaggaggtt gaggeaggag aatggeatga 39360 acccannagg eggagattge agtgageega gaccatgeea etgeacteea geetgggega 39420 39480 gtaaataat aaaaagagag agactgctaa agtctagaaa gttgaatgat gccaagcgca 39540 tgcaaaaatc agggcettgg gatggeeggg tgeagtgget caegeetgta ateceaceae tttoggage caaggegge ggatcatgag gteaagagat caagaceate etggeegaca 39600 39660 cagt gasacc eggtetetac taaaagtaca aaaaaatata tatatatata tatattatta 39720 tallututa atatatca gagoottggg aatoottgtg tgotgotggg gaaggtagtg 39780 gtgcagreac cettgacage aatetggcag tacttggtta tattaagtat aggcacacac 39840 cacgaccagg cagtoctact cotgggtota aatoccaaag aattotcaca caagtocata 39900 aggagacaty tacgaggete atteageatt actgggagtg ggaateaace tgggtgteea 39960 tctacaggay acgagatgga caaaatgtgg tggatattaa gaccagaatc accaagtaac agagatggt ggtgagtgac aatcctaaga tacagaataa aggctagaac atgatgccat 40020 40080 tcatgtabat taaaaataga tgcacacaaa gcagtatacg cgtgaccctt gaatagcaca 40140 ggtttgaact gcctgtgtcc acttacatgt ggattttctt ccacttctgc tacccccaag acagcaagac caacccctct tcttcctcct ccccctcagc ctactcaaca tgaagatgac 40200 40260 aaggatgaag acttttatga taatccaatt ccaaggaact aatgaaaagt atattttctc 40320 tteettatga ttttetttat etetagetta eattatteta agaatatggt acataataca 40380 catcacacgc aaaataaatg ttaattgact gtttatatta tgggtaaggc ttccactcaa cagtaggctg tcagtagtta agttttggga gtcaaaagtt atacacagat tttcaactgt 40440 40500 gcaggcastc agttcccctg accccctcat tgttcacggg tcaactgtat atacacaaaa 40560 gtattatatg aacctcatta gaatagctgt ctatagggag aagagaatga gagtgggata 40620 aaacgguatg aacaaataaa ccaacaaatg cattaacaag caaaacaaca gaggggcttg catgggccag tgatgataaa gggctaagaa tgagaatata attaattcaa ttcctcacac 40680 40740 ctgaggtcta aaaccaagga aagggagggc caggcgtgga ggctcacgcc tgtaatccca 40800 gcactttggg aggctgaggc gggcggatca caagattagg agtttgagat cagcctggcc aacacagtga aagcccatct ctacaaaaaa tacaagaatt acccaggtgt ggtggcacat gcctgtagtt agctactctg gaggctgagg caggagaatc acttgaaccc aggaggcgga 40860 40920 40980 ggttgcaggg agccgagate acaccattge actecageet gggtgacaga gtaagactet 41040 gtctcaaaaa aataaaaaaa ataaaaaaac agagaaaggg aggaaactag atccaggctg 41100 actagataca gcctttagag ttagaaaaga tgatttgaca atctaagccc acactcagat 41160 tgaatgaaat tgaaaagcct ttcaaactaa aacatttaat tacaccatct gctgcagaca 41220 gaactcagac aactcaaaca ggtaatgtca gcgtggtgtt ttatatcacc accctcaaca 41280 cagaataaaa atcagctgca tgtgaagcag tgactagaat gaagaaaagg ctgcttctta cttccttcta gtggttcttt ccgaaaacat taataggcac cagctctatg catgtcacc 41340 41400 tgcagggaga catggggtat ataactatga cttactgttc attcctcaag gaattcccaa 41460 tettgtggaa gattatacae aatgaggeaa caaaaaetat ecaataaaae caeggaaaag 41520 aagccagtga caaagaagcc agtgatgaaa ggccctgtga gcagagctga tggccatttg gggaagaaag accaacatgg atgggggtga tcagggtggc tccgtgggaa agctggaaga 41580 41640 gaagtggcag atctctgagc tggatgatgg gccactacca tctgtatatg gctaattaaa 41700 gaccatgtgt ggatttttta ttcagctcit tcgtgtcatt cctgctatca gcacagaacc 41760 caateteaae titteeageta tattgageta aaetteteae eteatggaat tigeagataa 41820 agttcaaaag gatccttgcc ttttcaaaat aattttgaat ggttgagtag tccctctgtg 41880

ctctctcact	gacaccctct	caaggctgct	gagcacgtgo	catgctatgg	ctttctccaa	41940
catcaggaaa	tgttctccac	tcagtttcac	: cttaatacaa	atgtgttctc	tcttcagaga	42000
aggcaaaaaa	attcatgaco	: atctgactgo	gagaagtcat	ttctaggtaa	agtgtccatc	42060
tttttctgag	, gaacacagga	ggaaaatctt	: acagaaaaga	gttaacacag	caggcctaag	42120
actgcttttt	aaaataaata	aataaataaa	taaataaata	aataaataaa	taaataaata	42180
aataaatgaa	tgatagggto	ttctgtattg	gccaggctag	tctcaaattc	ctggcttcaa	42240
gagatcctcc	caccttggtc	tcccacagtg	ttgggattat	agacatgago	cattgtgctt	42300
ggcccaagac	tgttattctt	aaaaagtctc	: ataaaaagca	tggttaatcc	ttggctggca	42360
cctgggaact	tagatttcag	aagggttccc	accatccaac	ctggaaagag	ggactcactg	42420
tgcctaaatt	attgtgtggt	ttatgctgaa	ctcctgcttt	tcttcaggta	gcgtggaatg	42480
tggtatgtgc	tgggcaaagg	ı gggcctgcat	gaccagcccc	caataaaaac	cctgggtgtt	42540
gggtctctag	tgagtttccc	tggtagacag	catttcacat	gcgttgtcac	agctccttcc	42600
tcggggagtt	aagcacatac	atcctgtgtg	actgcactgg	gagaggatgc	ttggaagctt	42660
gtgcctggct	tcctttggac	ttggccccat	gcacctttcc	ctttgctgat	tgtgctttgt	42720
atcctttcac	tgtaataaat	tacagccgtg	agtacaccac	atgctgagtc	ttccaagtga	42780
accaccagat	ctgagcatgg	teetggggge	ccccaacaca	gaaataaatt	ataaaagacc	42840
24ddacradd	catggtggcc	catgccggta	atctcagcgc	tttgggaggc	cgaggcagga	42900
gguccagtta	agcccaaaag	ttcaaagtta	cagtgaccta	tgactgcgcc	aatgcactct	42960
aacctgggag	acagagcaag	accetgteee	caaaacaata	aactaaacac	atacttctgc	43020
			gtagaaacat			43080
aguaacctgg	aaaacaagag	tgccgatggc	caactaaaat	gtctaggaaa	tttctgaaaa	43140
graaaagta	ctcagaacca	gattacctga	gcaaaccata	gcccaataca	agcttgggag	43200
gaggetgtta	tgcagaagga	aatggtaaca	ggtttccagg	aacagacttg	taacagcaga	43260
tagracagea	gaggtagaac	ctgacaaggt	gattacctgg	ggaactgcag	tctgaatgac	43320
caggaetgtt	ggaecettee	cctcacatgg	aatacacacg	ccactcagca	gcacaccaca	43380
gototteaae	aatcacagga	ggcacgctac	gcctagtaag	acaggaaaaa	aggaattctc	43440
asacticgaa	gatgaacaca	taaagaatca	ccaagttttt	attcagtatg	atgaaacagg	43500
gacactgaat	caacagaaca	caaacccaag	caaagataat	tactagagca	catagaagaa	43560
talcatet	tetestata	agacctaagg	ggacattata	aagagcaagc	agttggtatg	43620
atoctactat	ttatacasas	caagaaataa	aaacacagga	tgaagaccag	atagagaata	43680
gestgesee	actttccaaa	aaggagaaat	ggagaatctg	atteatattt	gcttgtattt	43740
gcatgaagaa	taagaggag	gracaraagr	aactaacaac	aatggttacc	tacttgtaag	43800
tetteateta	acttogagaca	taaaacata	gaacaccttt	changed	attggtgggt	43860
aggragatata	tetagagtt	cttccttctc	gaccctcgcg atgtttggat	grgagegraa	tagitettaa	43920
ctootooott	catagtetea	staactcaa	agtgaagctg	graces	tttetteett	43980
tacagetett	aaggggggg	atctagagtt	gttcgttcct	cayaccttcg	cggcgagtgt	44040
gctagcttca	agagtgaage	tacagageett	cgaggtgtgt	attacagete	atatagaaga	44100
tacagaccca	aagagtgage	antaataana	acgcattcca	Progrague	acacagacag	44160
tcagcagcgc	adagegage	cacacacat	taccactctt	aacaccaaaa	ggacaaacct	44220
attetettat	Ctggccacac	ccatatecto	ctgattggtc	cattttacac	agagggaagt	44280
gctccatttt	acagagaacc	gattggtcca	tttttcagag	actuation	tccattttca	44340
cagagtocto	attogtocot	ttacaatccc	tgagctagac	agergateg	gactagtata	44400 44460
tttacaatcc	cttagctaga	cataaaggtt	ctcaagtccc	caccagage	accagegea	44520
ctggcttcac	ccagtggatc	cggcatcagt	gccacaggtg	gagetgeetg	ccagtcccag	44580
accetacace	cgcactcctc	agccctctgg	tggtcgatgg	gagtagacac	catageeeege	44640
ggggtggtac	tatcagggag	actcaaacca	cacaggagcc	caggagggg	anataactaa	44700
ggcatggcgg	gccgcaggtc	atgagcgctg	ccccgcaggg	aggcagctaa	gacccaacca	44760
gaaatcgggc	acagcagctg	ctqqcccaqq	tgctaagccc	ctcactgcct	ggggggggg	44820
gggccggctg	accaaccact	cccaqtqcqq	ggcccgccaa	gcccacgccc	accoggaact	44880
cacgetqqce	cqcaaqcacc	acatacaacc	ccggttcccg	cccacacate	tecetecaea	44940
cctccctgca	aagctgaggg	agctggctcc	agccttggcc	agcccagaaa	ggggctccca	45000
cagtgcagcg	gtgggctgaa	qqqctcctca	agcgcggcca	gagtgggcac	taaggetgag	45060
gaggcaccga	gagcgagcga	ggactgccag	cacgctgtca	CCtCtcactt	tcatttatoc	45120
ctttttaata	cagtctqqtt	ttgaacactg	attatcttac	ctattrittr	tttttttt	45180
tgagatggag	tcgctctctq	tcqcccaqac	tggagtgcag	togtoccatc	ctggctcact	45240
gcaagctccq	cctcccqqqt	tcacaccatt	ctcctgcctc	aacctcctga	gtagetggga	45300
ctacaggcaa	tegecaceae	gcccagctaa	ttttttattt	tattttttt	ttagtagaag	45360
cggagtttca	ccatgttagc	cagatggtct	caatctcctd	acctcgtgat	ccatccccct	45420
cggcctccca	aagtgctggq	attacagacq	tgagccactg	caccetacet	atcttaccta	45480
_			J - J = 5	- 5		+00

	·		29/122			
tttcaaaag	t taaactttaa	a gaagtagaaa	a cocataacca	agcataataa	ctcacgcctg	45540
taaccccag	c actttgggad	qccqaqqcq	gcggatcaco	aggtcaggag	atcgagatca	-
tcctqqtta	a cacagtgaaa	a coccatoact	actaaaaata	,	geegggegtg	45600
qtqqtqqqc	a ccaacaatc	tcactactac	gaagactgac	. ccadadace	ggcgtgaacc	45660
tgggaggcag	agcttgcagt	gagecgagat	agtgccattc	cetteeage	tgggcgacag	45720
agcgagact	cacctcaaa	aaaaaaaaa	a aaaatagaga	cccccage	taaaaatatg	45780
ataatcaata	a tttaaaaaca	ctcaagagat	gggctaaaga	attaacaa:	caaatctaaa	45840
tattagatto	g gtgacctgca	aaaccagcc	: aaggaacatc	CCagacygae	gcccataaag	45900
ataaagagag	catttccqct	gggcacagtc	gtatogcago	ggaattgcct	gagtccaaga	45960
gttgcaggt	acattgaaco	acaccatto	actccaddc	tagacaacac	acceatactc	46020 46080
tgtctcaaaa	a aaaaaaaaa	ttaaattaaa	aaagacagaa	tatttgagag	. ageaacaccc	46140
ttatttcaag	g aaacatgaaa	gataaatcaa	gatattctaa	ttcccaagta	agaataatto	46200
cagaagcaga	aaatagaata	gaggcaagga	aacactcaaa	acttctccac	tgccatagaa	46260
atgtgtatta	a atctttagaa	tgaaacggac	taccaaatgc	tgagcaggaa	gaacaaaaga	46320
gatccactct	: taagccagtg	tggtgcccaa	gcacagtagc	tcatacctat	aatcccagca	46380
ctttgggagg	g ccgaggcagg	tggatcacct	gaggtcagga	gtttgagato	acteceagea	46440
acatggtgaa	accetgeetg	tactaaaaat	acaaacatta	gctgggtate	ageouggeeu	46500
tctgtaatco	: caactacttg	ggaggctaag	gcaggagaat	cacttgaaac	caggaggtog	46560
aggitgtagt	gagccgagat	catqccacac	tcccagcctg	gataacaaa	caagattcca	46620
tctcaaaaa	aaaatccact	cctagacaaa	taatagttaa	attttagaac	accaaggaga	46680
aagaaaaaa	attgtaaagc	ttcagagaaa	ataaacatta	actacaaaga	aacgagagtc	46740
agacgcgtgc	acttetteet	agataccage	agataaagca	atatetecaa	aattcagaag	46800
gttttaacgt	agaatcctat	acccaqtcaa	gaatattcac	atggaaaagt	gaaataaaaa	46860
acattgttta	aacatgcaag	ggttcagaaa	gtttaccatt	cacagaatcc	Ctgaaaacaa	46920
aaccaaataa	tcacttaagg	actcattaag	aaaacaaatq	aaataaaagc	accaatgatg	46980
agtaaataat	cagaaaaatt	tacagtttac	ctaaataact	gtttatgcat	aatgtatgaa	47040
aacccaaaaa	tttaatatgg	gacagaatta	aaatcatgat	aagattcttt	tttgctttac	47100
tcatggagag	ttcacataaa	cagattatct	tttaatagca	agagaaaaaa	atgittagat	47160
atgtgtgaaa	aactaagggt	accaaaacag	tgcaaattca	tttatcatca	ggaaaat.cca	47220
aattaaaacc	acagtatcca	ccagaataac	taaaaqqtaa	aagacagaaa	ttaccaagag	47280
ttggcaagaa	tgtggagcaa	ccacatatac	ttctqqqqta	aataagttgg	tacaaccaat	47340
actgaaaact	gtttgctagt	atctactaaa	accgagcaca	tgcacagact	acaaccaagc	47400
agttccactc	ccagatacac	actcaacaga	aatgcacaca	ctcactcaac	aaaagacgtg	47460
tactagagtg	ttcatgtact	tactattcat	aatagtccaa	aaatqcaaac	aaccaactgc	47520
caatcaaagt	caaatgtata	tctatattag	ggatatatac	aatggcatat	acacagcaat	47580
gagaatgaaa	tgaaccagct	cggcacagtg	gttcatqcct	gtaatctcag	cactttgggc	47640
gggtaaggca	ggcagatcac	ttgaggtcag	aaatttgaga	ctaqcctqqc	caacacggtt	47700
aaaacctgtc	cccactaaaa	acacaaaaat	tagccgggca	tagtggttgc	aggcctgtaa	47760
ttccagetae	tcgggaggct	gggttgggag	aatcgtttga	acccgaaagc	cagaggtcgc	47820
agtgagcgga	gatcgtgcca	ctgcactcca	gcctggacga	tagagcaaga	ctccgtctca	47880
aaaaaggaaa	tcaaaaatat	aaaataagat	gacaggaata	atccgcaaaa	gatcagtaat	47940
caaaataaat	ataaatgggc	taaagctacc	tattaaaaga	caaagatttc	acacccataa	48000
ggatagetae	tatcaaaaaa	agagagagaa	taacagatgt	tagcaaggat	gtatggaaac	48060
atactacata	acgcattgct	ggtgagaata	taaaatggtt	cagcctctgc	ggaaaacact	48120
argrapate	atcaaaaaat	taaaaataga	agtactactt	gatccaacaa	ttctacttct	48180
gggtatatat	ccaaataact	gaaagcaggg	tcttgaagag	atatttgtac	acccatgatc	48240
atggcagcac	tattcataat	agetatgatg	tggaaccaac	ataaatatcc	tttgataaat	48300
acacygacaa	gcaaaatgtg	gtgtatacat	tcaatggaat	attaattagc	aataaaaatg	48360
ataagccagt	tgacacatgc	tacaacatgg	atgaaccttg	agggcattac	attaaatgaa	48420
gtacctaaaa	tataaaaaga	caaacactat	atgaggtact	atattagata	ctcatgcaag	48480
gracecaaaa	taggcaaatt	catagagaca	aaaagcagaa	ragragere	caggggctgc	48540
acaatotora	acagagette	actoggass	yargaaaaaa	rcctggagat	tggttgcata	48600
taaaaataat	cacacttaac	ttttatata	Lycadactta	aaagtagtaa	atggtaaaaa	48660
attaactaat	aaataataaa	ccaccata	cctaccaca	acatttatta	aaagacaaag	48720
Cacagaaaat	taaacaaaat	toactacaa	gctaatggta	agagtaacaa	ttaaagaaga	48780
caagtacage	tgaaaatcag aatataaaga	gaatgaagaa	aayatattcc	acataaatgc	taacaaaaag	48840
tcccaaaaaa	tacaattcac	caacaacaa	caadadatt	adataagatg	gctcgtttat	48900
cagcttcaaa	aatacaacat	ttaaaraaa	atatatata	yaacctttaa	gcacataaaa	48960
acccctacaa	gaatcataat	aggagtette	acacacacia	aacatagaaa	cagtacaaaa	49020
	Jacoucaut	2220200000	aacacaaccc	LUCALATEAA	caggtcaaac	49080

agagaaaaa	ı aataagttaa	ı ggatgcagaa	ı aacctgaatt	accatcaata	aacttgagat	49140
taatatagaa	ctgtatacco	: aatatactaa	gagttcaggg	aacagtcgtg	actgacagtg	49200
gactgcaaat	taatctgttc	: ttaatctttg	tttttcttc	agcactgtgg	cagaatagag	49260
atcctaaaaa	ccttccagct	acaaaacato	: tttttaaaaa	tataaaaaaa	tacaaaaata	49320
actctgaaat	caatagaaga	cacatggtga	aaccaaaatt	ctagaataca	gggagaataa	49380
aggcattttc	agatattaca	aaaacagaaa	attgatcatt	gctgaagtaa	tttctaaaga	49440
atgtacttga	gggagaagaa	aaatgttcca	aagaaaagta	tctgtgatac	aaqaaqqaat	49500
ggaaagtgaa	gaaatggtaa	acaggtagat	aaaqctaata	aatgttgacc	tagaaaataa	49560
caaaaacaat	agcaataatg	tctcgttgga	agggttgaag	taaaaataca	attaaggcca	49620
aatgtgaggt	aagtggaatg	aaagaattag	aagtccttgc	cttgttcaca	ggactgatta	49680
aataaatgag	ccaggttttc	cattcaaaca	gttaaaactt	gaacaaaata	aactcaaatt	49740
aagtagaaag	ataaaaaaca	gaaattaatg	tcatagaaaa	ataaaaaatc	aatagaatta	49800
				gattaataaa		49860
agcaagtctg	atcaaaaaaa	aagagaaaag	gtaccaaaaa	aagtactgta	tragaaagag	49920
aacatacaga	tacatacaga	tatgtaagag	tctattttct	tacaccagaa	tactatatac	49980
aacattatoc	tagcatatat	taaatttcaa	taatgttaat	gattttctag	Caccacacac	50040
aatattaaat	ttactttgaa	gaaacagaaa	aactgagaaa	aataaatgat	Catrasassa	50100
atgaaaaggt	aattaaatac	tgatattaac	tocctaaaca	acaccagcag	Cargadada	50160
agtetgeagt	caagetete	caaacttgag	ggaacagata	attettetat	tesacacast	50220
agaaaatgat	ggaaagtttc	ccaatttaat	Cadadaddaca	agcctgatcc	ttettateaa	
cacadataaa	aatoogotaa	actatatacc	aaactcacat	accaaaaccc	tasatasat	50280
actagettat	tartarara	actacatgee	tacattttaa	accaaaaccc	caaataagat	50340
aaagaaaatc	taggegaac	accecaaaay	atottaa	attagcccag ttttaagacg	ggttttagag	50400
tastastata	aatgcaatgcg	accaccacct	atgitaacaa	ttttaagaeg	aaaatctaca	50460
gattatatt	actiguacycu	acacaaaagc	accigggeaa	aaaacccaac	acccaccctt	50520
actecatas	acticitagia	gastgatag	tassagaaatg	tacttaatgt	gatagaatac	50580
ttaaaataa	gatacagagg	gaatgettee	Laaaaccaag	cccaagacaa	agattcctat	50640
222225	ragicaacac	cgcagcgaga	graatctatg	gaagacaagg	aaaaaagtaa	50700
aaacatgaga	gacatetgtt	gittaacaga	caataagatc	acctacttgg	aagaggcaaa	50760
cyaattaagt	gaadaactat	taaaactgag	acaggettta	gtatggaggc	tcagcttcag	50820
ttgtagtttg	ggctaccaaa	tteaactege	ctgcttggag	agttaatcct	gcaaagctaa	50880
cccccccca	ggtattagga	ttgacaagee	tgtgctcctc	cctcctcccc	catcttcaac	50940
actgaaataa	cacggtgttt	ggaactggat	aacagaatct	tccaaaaaca	aaaattgtcc	51000
cgaagggccg	acttgtgccc	ttactcaaaa	aacactttat	ctgctgcctg	cagctcctac	51060
agttgttggt	ggataageet	gccaaccagc	tcggcgtaat	tcttcctgca	gagggcaagg	51120
aagagcactt	tcacaggaaa	attttttcc	gaactgtatg	ccgcttatta	cataaactta	51180
cgtgctggca	aatggagete	cagcaaaata	agatattcag	agtcaaactt	ccttaggaaa	51240
aaaaaaaa	aaaagcaagc	acataacact	aatttccttg	catgggcact	ggggaaggag	51300
gregttaett	ccgcacgccc	gcaggtccgc	accaccggga	aacccacggg	caccgcgcgc	51360
rgcccccggg	ccttccaggt	gcactgcgcc	geggegeeee	agctgacccg	ggatgcgcag	51420
ccctagccct	tecectgtea	ccccggccag	gaaggggcgg	gagcgcggcg	gacgccgagg	51480
gcgaagggct	teteggteet	ctgcaccacg	cagcaccccc	aaggcacaac	agggagggtg	51540
cgggaggctc	ccgagaccca	ggagccgggg	ccgggcgtgc	ccgcgcacct	gtcccactgc	51600
ggcgagggct	ggggtcgcct	ccagggccgc	agctgtcggg	agccacctgg	ctctcagtcc	51660
cgggtccctg	cgacaaccct	cgggcccgga	ggggaggagg	cggccacctg	ccgctgccac	51720
ctgcggcacc	ggtcccaccg	ctccgggccg	ggcaggacag	gccaggacgt	ccctcctggg	51780
ctggggacag	gacacgcgac	gagggaccg	gggcccccgc	ggcgaagacg	cagcacgcct	51840
tcccagaaag	gcagtcccgt	gcccccacga	cggactgccg	gacccccgcg	ctcgcccgcc	51900
catcccttca	gaccacgcgg	ctgaggcgca	aagagccggc	cggcgggcgg	gctggcggcg	51960
cggctagtac	tcaccggccc	cgctggctca	gcgccgccgc	aacccccagc	ggccacggct	52020
ccgggcgctc	actgatgctc	aggagaggga	cccgcgctcc	gccggcgcct	ccaqccatcq	52080
ccgccagggg	gcgagcgcga	gccgcgcggg	gctcgctggg	agatgtagta	cccggaccgc	52140
cgcctgcgcc	gtcctccttc	agccggcggc	cgggggcccc	ctctctccca	gctctcagtg	52200
tctcatctcc	ctatctgctc	atcctctggt	cgcacataat	cgatgtttgg	gcgtcccaag	52260
ccagatgtgg	accccatttc	cgcactctac	actggaggtt	ttctaagggt	ggtgcccaga	52320
ccagcagctt	cagcctcatc	tgggaacttg	agaaaatgca	gattctccgt	cccacccage	52380
ctattcggtt	tttcctgcac	taaaaccatg	aaqqtqqqq	ccaqcaqtcc	acattctcgc	52440
aagcccgtca	agtgattctq	aggcgccctc	cagtttgaga	gctatgctca	cggcctcacc	52500
teegeeeege	aaggagcccq	gtcttgccta	tggcgctagc	cgcacacgga	cacctcatcc	52560
tgcggggccc	gccccccgc	tgcaccetca	ccqcccaaca	cctcctccgg	gatgcagcgg	52620
aggcgcctgq	aagtcggcaa	ggtcaacatc	cccctcagca	tcttccctac	CCtcacggct	52680
						22300

cctcctccag	g gggtgcctca	tggccaggg	g ttagaaagag	ccactgtgtt	tcttgacatg	52740
gaagtggcct	: aagaccttaa	tgaaaactgo	: aggagtggaa	tgacaqaacc	tttggtcata	52800
cttgagggcg	y tgaagctcaa	a atgaggagga	aggaaaggat	ccagggagaa	taaccaaccc	52860
tggcaagttg	g tggcgcccac	g gtagagggg	: gagcctaggc	tagcggttct	cgaccagggc	52920
cggtgttgcc	: cctcctcgcc	: gccccgcgta	catttgggga	gqtctqqaqa	catttttggt	52980
tgtcatgatg	, cgggagttgc	: tactgttgcc	: taagtgggta	gacacgaggg	tgctcctcaa	53040
catcctacct	: gaaggacagg	, actgccccac	: aaggaagaat	gatecqqeec	caaataagaa	53100
accetggget	ggtcagcaac	: aacccctttg	ttctgagaaq	agaggaggaa	agaataaaag	53160
aagtggggtg	, aagttttggt	: ttggtagagg	aaacttgaag	acattttcac	togaaaggaa	53220
gagaggaaga	ggagggagat	gtctgtaagg	acgagcaaac	cgggtgacag	ctgatttcct	53280
catattgaag	taatgagtco	tagttataat	aaattcctaa	taaaaaccca	gtttatccct	53340
gcaataaact	tgtcttttt	tttaaatat	actqcttqat	tctatttact	aatattttat	53400
ttacaggctt	tgcattgata	tgcaaaaatg	agatgggcaa	taattttctt	tttgaatgtc	53460
taatgttgtt	tggtttcaga	atcaatgtta	tgctcacate	ataaaaaatt	tggaaccgag	53520
gcaggaggag	tgcttgaggc	cagaagttcg	agaccagtct	aggaaacaca	gtgagacccc	53580
cccatctcta	caaaaaaaa	aaaagaaaaa	aaaatgggca	tatttacttt	trocttttac	53640
tctquacaat	ttaaqqaqca	ttaaaattat	ctattcttto	aggtttgatc	atttcccagt	53700
tanasatgtt	cctcccagcc	tgatgctttc	tttggggagg	graaatett	taaggetage	53760
asagtttett	ctgtggcaat	tttattattt	acattttaaa	aattattcta	gagttaatt	53820
tgutaaagca	tgtatttctt	aaaacaaatt	atccttttt	tccagatgt	caactctatt	53880
tgcataaagt	tgaggaaagt	agtcttttgt	gaatctttta	acttctccca	aatatottat	53940
titalatatt	tttgcttctt	tattttgtta	acttttaaaa	gratatttt	ttttcaaaga	54000
atcagetett	aggtttatgt	ttttggttat	actogaactt	ttttcttctt	Ctttttaaaa	54060
tatttttct	cctttattt	ttagacgtat	tttgatctaa	cotaatcoca	araarataaa	54120
ttagaatett	ttgttactat	tgtgtttta	tttctcctta	tttctctgga	ctcctcctt	54180
ataaatagta	ccatottatt	tgtgcataaa	tattcatttq	tettatatte	tteeesattt	54240
teccaettea	tcataaaato	accttccttg	teteatttaa	tatattaaaa	ctttgcccta	54300
aatttaactt	totctoatat	tttaccatcc	toctoaattt	tatttattac	cccaaacaac	54360
ctttactatt	ttcgtcttt	ctgaaccctt	tattttaggt	aatcccttga	attagaggag	54420
taagttttgc	tttgtgatta	aatctgaaaa	totttatott	accatagata	actagageae	54480
tattcatoto	acagctatat	tatgctgttt	catageeett	ttaatcettt	tttcactctt	54540
gcattgcata	ttttatattt	attgtgtttt	atatttcttc	toataattto	gaagettat	54600
atttttattc	agggagttgc	cttataatca	tactccccaa	tacacatcot	cctcactttc	54660
ttcagactgt	ctottaacto	cctattctga	ataaaaatga	cattotaatt	tecetettt	54720
ttctttaccc	cttttcttct	cctcacctaa	totaaatoat	treatcette	tttagtattt	54780
gctttttaa	ttaactacat	ttataaatat	ctttatcact	tgatttttaa	atcagcattc	54840
aatgagatat	ttggattcct	agatataaaa	gatgttaatt	ataccatttc	caccttacta	54900
ggtttataaa	atcatacatt	ctgctgtgta	accataatcc	cacctttctt	ttagttagta	54960
tcctacagtt	aaaagattca	gaagtattat	taacacttat	tttcccatac	ttttttcccc	55020
aacccatttt	gtggtaagtt	atgatectge	tttagtttct	taagaataat	ttatagaga	
gagtgtggtg	gctcacgttt	gtaatcccag	cactttggga	racaararat	acagagea	55080 55140
cttgaagcca	gcagttcaag	accaccctga	caccetagga	gacaagaggt	ctctacaaaa	55200
aattttaaaa	tttagccaga	cgtagtggcg	tatacctata	gagacettge	Ctclacaaaa	55260
tgaggcaaga	ggattgctag	agcccagaag	tttgaggetg	cagtgaggta	testatasa	55320
actocacccc	agtctgggca	agaaagtgag	aacctatctc	tttaaaataa	Castastasc	55380
ttatgaaaat	tatattccct	gagtttttca	totttaaaaa	tatttatta	ctttatcctc	55440
taaaagtttg	agtataaatt	cttgggttat	actttattta	ttgaagaatg	tataagtatt	
gtcttctaga	attgagtgtt	gctgtaatga	accedecta	casses	tataaytatt	55500
cagaaatgag	gtaattgccg	gccggacacc	ataactaata	catataataa	caacactttc	55560
ggaggccgag	acaggtggat	cacgaggtca	gragattraag	accatege	caacactttg	55620
gaaaccccgg	ctctactaaa	agtacaaaaa	attactcac	satestests	craacatggt	55680
atcccagcta	cccaaaaaaa	tgaggcagga	greagetggg	carggrages	gacgcctgta	55740 55800
cagagagetg	agategege	actocactoo	acceptoge	aacccgggag	gaggagettg	
aaaaaaaacaa	222222222	actgcactcc	ageeeggggg	tastastast	actecgtete	55860
ctttatctat	maddadadada madadada	aagaagtgaa	yeaarcgcca	tgatgctcca	agaattatct	55920
aatatttcct	gaaaccaya	aatctcactg	tatacattt	rggaactatt	attctgggcc	55980
acagagtete	actocaato	agattgactc	catayattta	acttttttt	ttttttgag	56040
tectacetes	acctcccase	cagettactg	taacccctgc	ccacgggtt	caagcaattc	56100
ttttatatet	ttagtagag	tagctgggac	Lacaggcgcg	tggcaccatg	cctggctaat	56160
aacctcaact	catccacct~	cagggtttca	ccatgttggc	caggetggte	ttgaacgcct	56220
coccaage	gattactig	cctcagcctc	ccaaagtgct	gggattacag	gcgtgagcca	56280

ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttq 56340 ttetaataeg ttattteagt gttettetaa gatgtgtaaa geaecetati eecaggteag 56400 cccccatctt gctagtgagc tcggctggtt cttcacaaga gctctggttt tctcctqctt 56460 aatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttq 56520 ttttttgttt ttgacagagt cttactctgt cacccagget ggagagcagt ggcataatct 56580 cageteactg caacetetgt etcecaggtt tgagegatte teetgeetea geetactgag tagetgggat tacaggegeg tgecaceaca eceggetaat ttttgtattt ttagtagaga 56640 56700 tggggtttca ccatgttggc cagggtggtc ttgaactcct gacctcaggt aatccacctq 56760 ceteageete ccaaagtget gagattacag gegtgageea cegegeetgg catggtttgg 56820 agttttaatc tgtagtttta ataaagatag tgcttatgtt tgtgtttctt atatttcttg gtactcttgg gtaatttgta agatccccat atctacacaa gaagtccatt ttcaattctt 56880 56940 57000 gctgtgtcac ttctggaggc tggagtgcag tggcgcgatc tcaggtcact gcaacctccg 57060 tetecegggt teaageaatt eteetgeete ageeteega gtagetggga ttacaggeae etgecaettt ttaattttt tagagacaga gtetegettt gttgaceagg etggagtgeg gtggtgeaat catggetgae tataacetee aaateetggg eteaagtgat eeteetgeet 57120 57180 57240 cagecteetg agtagetggg actaeaggea catgecaeca tgeecagtta attttaattt 57300 ttttgtagag acagggtctc catatgttgc ccaggctggc ctcctactcc tggcctcaag taatcctcct acctcagcct cccaaattac taggattata agcatgagcc accatgccca 57360 57420 gccttgttct actactttaa tttcatatgt taggtgacca tgtaattgat catccaaacc 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattgttg aatttggagt ttctatttgc aggcttattt caactgggca gccttgatcc 57660 gecetgeeca geaatgetae egttetetee acegggtete tgggaceeet teagteacta 57720 tacttagete agttecceae ceteccaete cetaaaageg taaccaggaa teetgeetea ggtetaetge egtetteegt gggetgttte agttectatt acceagagte aaacteccag 57780 57840 cattecetae etgattecag acttggagte cagagettta acetetteag gecaacteee 57900 cactttgcat ttctgtccct atatcttagt ccatggagat acatttcatg tctttgagtc 57960 tacttacaaa gtaaattttg ctgtttttta atttttttt tgagatggag tcttgcctg tcacccaggc tgtggtgcaa tgacgccatc tcggctcact gcaacctccg cctcctgggt 58020 58080 tcaagcgatt catctgcctc agcctcccaa gtagctgtga ttacagacag gcaccaccac 58140 gcccagctaa ttttttttat cttttagtag agacagggtt tcaccatgtt ggccaggctg 58200 gtcttgaatt cctgacctcg tgatctgccc atctcggcct cccaaagtgc tgagattaca ggcgtgagcc actgtgccca gccaattttg cttttttat atttcattgc tatatgttta 58260 58320 gaggataagt ttacagtgct atatgcattc ccaaatatta gaccaaaaaa atctccaaaa 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagagaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 teaegeetgt aateeeagea etttgggagg eeaaggeggg eagateaeaa ggteaggaat 58620 togagaccag cotggocaat atggtgaaac cocgtttoca ctaaaaatac aaaaattago 58680 caggcatagt gatgtgtgcc tgtaatccag ccacttggga ggctgaggca ggagaatcac 58740 tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg 58800 gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtggac tatgtcagct caccgcaacc tccatctcct ggattcaagc aattctcctg tctcagcctc 58860 58920 58980 ccaagtagct aggattacag gcgcccacca ccagacccag ctagttttta tatttttagt agagatggtg tttcaccatg ttggccaggc tggtctcaaa ctcctgacct caagtgatcc 59040 59100 acctgettea geeteecaaa gtgeteagat tacaggegtg agecacegea eeceaeetag atagaaattt caacatgagg eegggeacaa tggeteaege etgtaatete ageaetteag 59160 59220 gaggetgagg egtgggagga teaettggge ecaggagtte aggaceagea tgggtgaeag 59280 59340 59400 59460 acacctgtaa teceaacact etgggagtee gaatcaagtg gatcatgagg teaggagate 59520 gagaccatcc tggctaacat ggtgaaaccc tgtctctact aaaaatacaa aaaattagct aggcgcggtg gctcatgcct gtaatcccag cactttggga ggctgaggca ggtggatcac ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa 59580 59640 59700 atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga 59760 ggcaggagaa tcgcttgaac ccgggaggcg gaggttgcgg tgagccgaga tcgcaccact 59820 acactecage etgggeaaca geetgggtga cacagtgaga etceatetea aaaaatacaa 59880

aaaattagct	aggratage	acctacacct	. ataataaaa			
adaaccagc	. 999090990	geetgegeet	grayicccas	g ctacceggga	a ggctgaggca	59940
ggagaatgga	grgaacerge	g gaggaggagc	ttgcagtgag	g ccgagatccc	accactgcac	60000
tccagcctgg	, gcgacagago	: aagactcttg	, tctcaaaaa	a aagaaaaaa	aaggaaaaa	60060
gaaccctgat	: aataaagaaa	a ccaaatgttc	: aactctcaaa	qctcqqacac	: tttaaaqaaa	60120
taattaataa	aggcagaagt	taaagggagc	atgataaago	aattttttt	gttggttttt	60180
ttgagatgga	atcttactct	gtcacccago	ctggagtgca	gtgatgcgat	cttggctcac	60240
tgcaacctct	acctecease	ttcaaccaat	tetectacet	caccacacac	agtagctggt	
actacadoro	. cacaccece	. cccaageaa	255555555555555555555555555555555555555	. cagcccccc	agragerggr	60300
accacaggeg	cycyccacci	ggcccagcta	actitiguat	. ccccaccaga	gacggggttt	60360
Caccatattt	graggerge	teteaaacte	ctgatctcag	gtaatctgcc	cacctcggcc	60420
tctcaaagtg	ctgggattac	aggcaggcgc	: caccgcgcct	ggcctaaagc	aaaatattgg	60480
ttctgtgcaa	aaggtcaata	aaaagagcaa	acgtttacaa	actggagcca	qcacccattc	60540
agctcagtgt	gtctggagaa	aaaacaatct	cgcttcagaa	ttcatgatta	COCACCCTT	60600
tttgcttcct	aaaaatccta	ctatgttgct	gttgaccatt	ctctctctr	ctctctctct	60660
tactttctct	ccagaaaagg	: tattcagaca	ttereerer	tecteasee	tccaacactt	
cctcctccat	ccttagcctc	agctgctgac	ctcacttctc	ateatteae	accacacac	60720
3003555330	255522555	ageegeegae	cccaccccca	accaccgaga	aaccaggaga	60780
agcatttaag	agryaactt	cgcctccccg	cacgggcaaa	accacccacc	cacagaattg	60840
tgeeecaatt	ctdcdtcctc	tcctctcacc	atggatggac	ggtccaggct	ccgagccaaa	60900
gccaggcctc	ccctggagct	ctggatccac	cacctgcagc	ttctcaggca	gggccccagc	60960
agctcccctg	ctcccttgta	ccatcaatcc	ctcccctcac	tagatcactc	ccaacaatat	61020
atatatttag	tgatgtttct	cccatgtggt	aaaatcactt	agcctctctc	ctcccccagc	61080
tactatccta	tttgtttctt	tccattctct	gcaaaacttc	tcaaagcatt	gtgtctatgt	61140
gctgactcca	tttatcttct	cccgttctct	gctgagtcct	teccacacac	teteaceca	61200
gractccat	gaaatgacct	ctgcactgcc	acatocaato	atasstatta	acttattaat	
tttattcagt	ctttcaccac	catttcacct	acacccaacg	grgaargee	agttettaat	61260
tttctcage	acceteste	catttgacct	ggccgaccac	LCCCLCEECL	taaaaatact	61320
generates	aggegegatg	gctcacacct	graarcccaa	cactttggga	ggccaaggcg	61380
ggaggaccac	gagageeeag	gagttcaaga	reageerggg	caacatggca	agaccctatc	61440
CCLacadada	ctaaaaagta	gccagtgtga	tggcatgcac	ctgtagtccc	atctacttag	61500
gaggctgagg	cagtaggatg	acttgagcct	gggaaatcaa	ggctgcagtg	agccatgatt	61560
gcaccactgc	actccagcct	gagtgacagc	gagaccctgt	ctcaaaaaga	caaaatagga	61620
aacttttctc	agcatattcc	tctgattctc	ctgctgcttc	tgtctgcaca	gattcagtct	61680
cctttgccgg	ttcttcctca	tcctcctgat	ctcttgacct	tgaagtgccc	cagagtacag	61740
tctttttt	tttttttgag	acgcagtctc	qtctqtcacc	caagetggag	tacaataaca	61800
aggtctcagc	tcatgcaacc	tetgeeteet	gggttcaagc	gattctcctg	cctcagcctc	61860
ccaagtagcc	aggactacag	gcacatgcca	ccatacccaa	caaattotto	tatttttagt	61920
agagacaggg	ttttactata	ttggccacgc	tggtctcaaa	ctcctgaact	catasaccac	61980
ccacctcaac	ctcccaaagt	gctgagatta	caggcatgag	ccaccacacc	caccesas	62040
tacagtettt	agacggcctc	tctacctata	ctteeteee	teatcacacc	cygcccagag	
atggctttaa	ataccatego	tagactgatg	actoristat	ttataaattt	Ctcctgcctc	62100
coggetetaa	atactactgg	tagactgatg	actecedatat	CECECEEEE	tttttggaga	62160
cygagececy	CCCagccccc	caggctggag	tgcagtggcg	cgatctcggc	tcactgcaag	62220
ctccacctge	caagttcaca	ccattctcct	acctcagcct	ctccagtagc	tgggactaca	62280
ggcacccgcc	accacgectg	gctaatttt	ttgtatttt	agtagagatg	gggtttcacc	62340
atgttagcca	ggatggtctc	gatctcctga	cctcgtgatc	cgcccatctc	ggcctcccaa	62400
agtgctggga	ttataggtgt	gagccaccgt	gcccagccga	tgactcccat	atttctatct	62460
cttgctgtgt	gggagttctc	ctcagaactc	catactcata	aatccaactc	tcataaatag	62520
tatctcaaat	gggcaatatg	ctcaaaagtc	aattcctact	tttctcccta	aacttocttt	62580
cctgcagtct	ccaccatctt	aatgtccaat	ctaacattao	gaggcaaaaa	ctttgaagtc	62640
attcttgact	cttctctatt	acacacccta	tccaatcttt	Ctocadatec	agtegacee	62700
caaatccagt	tageteteat	catctcccct	gttacccct	catacagacac	ageegaceee	62760
ctcacctgaa	teactorage	attctcctca	statetet	ggtttaggtt	attittttt	
cttagcatag	tercescage	accetecea	ceggeeeee	rggttetgtt	tteactecae	62820
tecageatag	ccccacaga	gcagtcagag	ggateettt	aaagtgtaat	tcccatcctg	62880
anatabaa	gcccaaaacc	ctgtcgtgat	tcccgtttta	atctgtcaga	ttaaaagcca	62940
gagtetttee	agtgacctac	atgatctgcc	tattatcacc	tcccacttct	ttccccttgc	63000
ccactccact	ccagctctgc	agctgtcctt	tctgtttcct	gaacagccca	gattttgctt	63060
ctttagaacc	tttgtatttg	ctgtcccctc	tqtctqqaat	gtttttccag	gaagtcacct	63120
ggctctctcc	tgcacttcct	tcctgaccac	catqtttaaa	aatcactcaa	acacacttca	63180
ggccggacat	ggtggctcac	gcctgtaatc	ccaqcacttt	gggaggccaa	gatagataga	63240
tcacctgagg	tcaggagttc	gagaccagcc	tggccaacat	ggtgaaactt	catatataat	63300
acaaatacaa	atagtagcca	ggtgtagtgg	cacacacctg	taatctcacc	tactcaccac	63360
gctgaggcag	gagaatcoct	tgaacccaga	aggragagge	agtaceatae	acceaggag	63420
cqccacaaca	ccccagecta	ggtgacagag	-320030000	tetessess	3333333	
J		22-2-04545	Jaugueteta	LLLCadadad	aaaaaayad	63480

aaaaaaacca	cacaaacaca	cttctcttca	tattcctttt	ccaagtttta	tttttctcca	63540
gaatacttta	cattgtttta	atggaagtto	tccgtttccc	cccaactaga	atqqatactt	63600
cctgcaggta	ggcactctag	tcctcccatc	caaqtactaa	ccaggeteaa	ccctgcttag	63660
cttctgagag	caggggagat	caggectgtt	cagggtggta	taacccaaaa	attttgattc	63720
tottttattc	attoctotto	tortoattct	cttttattcc	tectectage	gctgagaaca	63780
ctacttotac	ataataagga	ttcaataaat	atttettea	tasstasta	geegagaaca	
ttaategeac	acaacaagca	ctcaataaat	attegetgaa	Lyaatgactt	gttgaatgaa	63840
traatticag	aaatgcagga	Ciggitata	attagaaaat	ttttcaaggt	cattctctgt	63900
tgtcgtaaca	cattaagaga	ggaaaatttt	gtactctaaa	tcatttgata	aaatacatac	63960
tgatttctgt	tttcaaaaac	tcttagtggc	tgggcgaggt	ggctcacatc	tataatccca	64020
gcattttggg	aggacgaggt	gggcggatca	cttgaggtca	ggagtttgag	accageetgg	64080
ccatcatggt	gaaaccctat	ctctactgaa	aatagaaaaa	ttagccgggt	gtggtggcgc	64140
atgcctgtag	tcccagctac	ctgggaggct	gaggcaggag	aatggcttga	acccgggagg	64200
cggaggttgc	agtgagccaa	gatcatgcca	ttgcactcca	gcctgggtaa	cagagtgaga	64260
ctccatctca	aaagaaaact	cttagtgagt	ttaggaatcc	aaggaagacc	ctcaaactaa	64320
atagataatc	tagctaccag	aagccttcag	taaaccttaa	cactccated	tranaratta	64380
gaaacattcc	ractaaaaga	caddctaada	atgcctgcaa	tetterege	tagaacacca	
antraaaaan	2272221727	caggetalga	acgeeegeaa	ccccacgge	Lagiccaaga	64440
cacacacac	aagaaatgag	tassaasata	aaaaaataaa	Cadacadaaa	actaccgatg	64500
cagaggergg	cagcaaggac	Lyaaggactg	tacagtactt	gcctggagca	ggcggatggc	64560
cacacccctg	cgaagcctgc	tcagctggct	gggggacgct	ccagtgtgtg	agtggcagga	64620
tgcagggtac	ttectetgee	agggagttgc	actggggaga	tcctccccca	ctcacacttt	64680
ggcagctggg	gctttggaat	gtgacttagc	ttctgtcaaa	gggtcaatcc	accctttgat	64740
atatgatgca	aaggcgaaca	tatgatgcaa	aggtgagaga	acagcccaaa	ttaggacttt	64800
taccacaget	gtggaggtgg	acagcgacag	tggtgggccc	tggccagact	tttcatoctc	64860
aaaggtggtg	gttgttcttc	ctacttcttq	tccctccagg	acttecttta	cctatatact	64920
gaacctgctt	cttttaattt	tttttaactt	ttttaaattt	ttaattottt	taattaaaac	64980
aaattttgaa	aactgtctga	acctgctttt	gaaccctgct	atgatttgaa	tatttataac	65040
Ctgccaaact	gattttgaaa	cttaatctcc	aaagtggcaa	tattaaaata	caccttt	
Cagtoactoo	atcatcacac	ctctcacctc	atgagtggat	tactgagatg	gggctttaag	65100
atgggactgg	categogag	tttataaaaa	argagragar	caacggacca	atgagttgtc	65160
cccttcoc	cattagtggt	tttataagag	gaagaattaa	gacctgaget	agcatggtcg	65220
ccccccacc	accigatate	ttacactgcc	taggggctct	gcagagagtc	cccaccaaca	65280
agaaggetet	caccagatac	agetecteaa	ccttgtactt	ctcagcctct	gtaactgtaa	65340
gaaataaatg	ccttttctt	atgaattacc	cagtttcaga	tattctgtta	taaacaatag	65400
aaaacgaact	aaggcaaact	ctcatgattc	tactgccatg	ccattccaat	aaactccctt	65460
tatgcttaag	agagccagag	ttggccaggc	gtggtgactc	acgcctgtaa	ttccagcact	65520
ttgggaggcc	gaggcaggtg	gatcacaagg	tcaggagatc	gagaccatcc	tggctaacac	65580
ggtgaaaccc	cgtctctact	aaaaatacaa	aaaaattagc	taggcatagt	agtagatacc	65640
tgtagtccca	gctactcggg	aggctgaagc	aggaggagaa	tagcatagac	ccaggaggg	65700
gagettgeag	tgagtcgaga	tcgtgccact	gcactccagc	ctgggtgaca	gaatgagact	65760
ccqtctcaaa	aaaaaaqaqa	gccagagttt	atttctgttg	cttgcaacca	agaaatctgg	65820
ctggtgcact	gaagtttcca	taaataatag	caatttaaag	actettteea	20002000	65880
tacctaacct	tatataatcc	ttataataat	acattcattc	attesttes	tanagacaa	
gtgctccaga	gactaagaat	2032332100	gggccgggtg	testestes	ccaaccaacc	65940
cctaccactt	taccacaca	20000000000	9990099909	cygrygerea	Cacciacac	66000
ctaaccaaaa	tootcaaaco	aggeaggeag	atcacctgag	gccaggagcc	cgagaccaac	66060
ccggccaaaa	totastasta	CCCacccac	taaaaataca	aaaaattagc	tgggggtggt	66120
ggcggacacc	cgtaateeea	gctactcgtg	agactgaggc	aggagaatca	cttgaacccg	66180
ggaggcagag	gccgcagcga	gccgagatcg	caccactgca	ctccagcctg	ggcaacaaga	66240
gegaaactee	acctcgaaaa	aaaaaaaaa	aaaaaaagag	ggccggggct	gggcgcagtg	66300
gctcacgcct	gtaatcccag	cactctggga	ggccaaggca	ggagaattac	gaggtcagca	66360
gatcgagacc	agcctgacca	acatggtgaa	accccatctc	tactaaaaat	acaaaaatta	66420
tccgggcgtg	gtggcgcaca	cctctagtcc	cagctacttq	ggaggctgag	gcaggagaat	66480
cgcttgaacc	cgggaggcag	aggttqcaqt	gagccgaaat	catgccactg	cactccagcc	66540
tgggtgacag	agtgagactc	cotctcaaaa	aaaaaataaa	aaaaaaaaa	gaattcaaaa	66600
attgtagagt	tatagtotoc	ttctagttta	gttgagagga	catchetect	tcaaggaagg	66660
ctagaatcta	taccctgagt	ccttactgae	atcaatccag	Cactosasso	atacasass	
cgatcacage	agraagatag	gaagaggaga	tttgtacatt	tagecadade	tanantana	66720
cactgacage	actasacas	get caeset	atacatt	tageceatge	Lyayacaage	66780
aaagtgctaa	geryaayyad	ttestesse=	ctgggttcca	cectteggea	tttaaaaaga	66840
Gagggggggaa	gaaaattegg	Luggicacgg	tggctcacgc	ctgtaatccc	aacactttga	66900
gaggccaagg	cayycagatc	acgaggtcag	gagttcgaaa	ccagcctggc	caacatggtg	66960
aaaccccgtc	cctactaaaa	acagaaaaat	tagccgggca	tggtggcgca	tgcctataat	67020
cccagctact	caggaggctg	aggcaggaga	attgcttgaa	cccgggaggg	ggaggttgca	67080
					=	

gcgagtgaga	gcaggccact	gcactccagc	ctgggagaca	gagcaagact	ctgtctcaaa	67140
aaaaaaaaag	aaaaaaagaa	agaaaggaaa	aaaagaaaga	aaaaaaaga	aaaaagaaaa	67200
ttcaggccag	gccaggcctg	gtggctcaca	cctgtaatcc	caacactttg	ggaggctgaa	67260
gcgagacggt	gccttagccc	aggagtttga	gaccagcctg	agcaacatag	cgagaccctg	67320
tctctataaa	aaaaaatttt	tttttggcca	gacgcagtgg	ctcacgcctg	taatcccagc	67380
actttqqqaq	accaaaacaa	gtggatcacg	aggtcaggag	atggagacca	tecteactea	67440
cacggtgaaa	ccccatctct	actaaaaaat	acaaaaaatt	aaccgggcgt	cctcggctaa	
acctateate	ccacctactc	accadadada	accadadace	tggcgtgaac	ggrggcgggc	67500
geeegeagee	tragerace	ttgcgccact	ggcaggagaa	ctcccccc	ccgggaggcg	67560
gagettgeag	rgageegaga	anananan	gcactctaga	ctgggagaga	grgagactcc	67620
gccccaaaaa	aaaaaaaaa	adadadada	Laactgccag	gtgtgctggc	atgcagctgt	67680
agteetaget	actegggagg	ccgaggcaag	aagategett	gagcccagga	gttcaaggct	67740
gcagtaatag	tgcctctcac	tctaccctgg	gtgacaatga	gaccctctct	caaaaagaaa	67800
gaaaaaaggg	aaagaagaaa	agaaagaaag	aaagagaaga	aaggaaggaa	gaaagaaaga	67860
aaaagaaaag	gaaggaagga	agaagaaaaa	aaaagaaaga	aagaaaagag	agagaagttc	67920
aaagaccaaa	gggtcaggat	cccaaaatag	tttttatgtt	ttatttattt	atttacttat	67980
ttatttttga	gacagtatgg	ctctgtcgcc	caggctggag	tgcagtgatg	cgattgcggc	68040
tcactgcagc	ctccaaactg	ggctcaggtg	gccctcccac	ctcagcctcc	cgagtagctg	68100
ggaccacagg	cacataccac	catgcccagc	taatttttta	attctttgta	gagatgaggt	68160
ctctatatgc	tacccagact	ggtctcgagc	tectagaett	aagccatcca	ccccctaga	68220
cctcccaaag	tactagastt	acagaagtga	accaccacac	ctaatcgggt	catttatta	68280
tttattgacg	agateteact	actacccaaa	ctagagtage	agtggctgtt	specialis	68340
atestagaes	355555555	stattagg	ctagagagaga	teeseeseese	cacaggigea	
greerggage	actigcattag		ctagegatee	tccagagtag	ctgcagctgg	68400
gattecagge	gegeeaeege	geggggetea	gaatgggttt	ttatattgag	ggttatgctg	68460
				ggaggctgag		68520
				caagatttca		68580
aaaaaaaaaa	aaaaaaaaa	aagaattgaa	agtaaggtct	tgaagagata	tttgtgcctg	68640
tatggtcata	gcagtattaa	ctttgaccca	ctagctaaaa	cacaaaagca	acatgtgtct	68700
gtcagcaggt	gaacggataa	acaaaatgtg	gtatatatgt	acaattgaat	attattcagc	68760
				ctgtaatcct		68820
gagactgagg	tgggtggatc	acccgaggtt	aggagtttga	gaacagcctg	gccaacatgg	68880
tgaaacttca	tctctactaa	aaatactaaa	attagccggg	catggtggca	cttgtctgta	68940
				aactcaggag		69000
cagtgagcta	agatggcacc	actgcactcc	agectgggca	acagagtgag	actocatoto	69060
aaaacaaaca	aacaaaaaat	tattatttcc	aaadaaacaa	gaccctgggt	ccatttccca	69120
acceacacct	gatgttgact	Caccacccc	acctactt	gctatgagcc	tasttasttt	69180
aattataacc	ttaacttcac	atcaccatca	agtestages	taactctttg	stanasttt	
tatastasas	catatacata	tecatectea	tanatana	caaccccccg	tractic	69240
cgcgccgagc	catetectate	cogottaacg	tgcagtccct	ctcactgcac	tgagtcaata	69300
				aggctgactc		69360
gggtgetetg	agaceteace	gcatataggc	tttgccccca	ataaactcta	tataatattc	69420
atattatgtg	gcctgggtgt	gtgtagcttt	gcactgtctt	ctcgtgacag	tgccctcaac	69480
				ctgctctgca		69540
gctgcagagt	cccagctccc	tcctttacac	cccacgacgc	agcctcctct	ctcagaaccc	69600
tttaaacaga	gtcttttact	gcagatccca	agaacagcca	caccctctc	tcccacccac	69660
tccagacaca	cccaggtaat	tatagcaccc	agggtaacta	tgtagatgga	gtccctggaa	69720
				tgctggcacc		69780
agggtgacat	ccaggaatca	gagcatgggc	ctctqqqaqq	tagggatgtg	accadacada	69840
				accttccttc		69900
				tcctgggggt		69960
				ccttttcatg		70020
				actataatag		
cacacacaca	Coogcogga	gtaagagaga	anacecease	ccacacag	atttt	70080
22222222	gaaagatgaa	graggaa	tataggett	ccaagcagga	geetteetat	70140
aaaaacaaaa	acguitacaa	gcaaactttt	tataaagggc	tagatagtaa	atattttagg	70200
ctttgagage	cacatagact	tgtttgcagg	gactcaatgt	cgctattgta	gtttgaaagc	70260
ayccatcagg	gctatgtaaa	rgagrgagrc	tgattttgtt	tcagcaaaat	tttatttacc	70320
aaaacagaca	atgagtgggc	tggatttggc	ccatgatcct	tagtttgcca	actcctgctt	70380
rgggctcacc	cagatctgat	tttgaattct	ggctctgcta	ctggttagct	gcaggagctt	70440
ggaaggctct	ctgagcctgt	ttcctcatct	gtaaaattaa	agcaataatt	tctaacactc	70500
aagagtgtta	cctcacgcct	gtaatcccag	cactttggaq	gctgaggcag	gcggatcacc	70560
tgaggtcaga	agttcaagac	cagcgtggcc	aacgtggcaa	aaccctgtct	ctactaaaaa	70620
atacaaaaaq	tagccgggca	tggtggcaca	catctgtaat	cccagctact	tgggaggetg	70680
-	J JJJ. 44	JJ JJ-J-J			JJJ353	

aggcagggat actgctagaa cctgggaggt ggagcgtgca gtgagtggag atcacacctc 70740 70800 ttagaaggtt ttgagataat gaataaaaga tgccttgtgt atactaagta ttcaacaact 70860 gataqctgca ttggtctaat tataacagtt tagaagcgat tgagtcaaca aatgctggat 70920 ttgtcaggga ggacttccta tcaggaggta gatcttgggc tgagtcctga agcaaagata 70980 ggcattggat agaggagttg agagaacacc ctaggactgt tattattatt attcgacacg gagtctcttg ctctgtcacc caggctggag tgcagtggcg cgatctcggc tcactgcaac 71040 71100 ctctgcctcc caggitcaag cgattctcct gcctcctaag tagctgagac tacaggtgtg 71160 tgccaccaca cccggctaat ttttatattt ttagtagaga cagagtttca ccatgttggc 71220 catgotggtc togaactoot gacttoaggt gatcoaccog cotcagcotc coaaagtgct ggaataacag atgtgagcoa cogcaccoag cocagaacca tttttcaatc cttggototg 71280 71340 cottttatta gotgoaagat ctoaggoaat ttatttaaco totocaaaga ctoatttot 71400 cattcacaaa atgaggcaaa taataatatc tactatccca ggttgtcatg agaattaaat 71460 gcaacatgac atttaatgaa atgagaagtc ccttggacat taactggcta aagtatgtgc 71520 tegacaagga tateatttta ggtggataet tageatetea gaaetgatge teacaatgga 71580 atatcattga aacgcattaa aattcatttt aaatgattgt aggtagtgag gcaattgaaa 71640 gaagaagaca agaggactga ttataatgct tcaggctcac tagtctcctt ttaggaggga 71700 aaaacaattt caagttaaat tttaggetet agatttttac ceetgetget cattagaate 71760 accoagatty atgaaatcag agcccatcty aggctytytt tttcatctcc agaatgagag 71820 ctgttgtggg gattaagttt ttgaaaaagt acatctaaca ggtgatcgaa aatgatagtg atattattgc agtgatggtc attattgttg ttattattat actgaaagag gcttcagttt tctgatccat aaagtgaggg aattgcatga gaccattgct aagattcctt ctagctctgt 71880 71940 72000 tttittgttt ttgtttttta gacagagtct ctgtcgccca ggctggagtg caatggcatg 72060 atcttggctc actgcaacct ccgcctcccg ggttcaaatg atcctcctgt ctcagcctcc gaagtagctg ggactacagg cacacaccac catgcccagc taacttttat atttttaata gaggtggggt ttcaccatat tggtcaggct ggtctcaaac tcctgacctc aggtgatcca 72120 72180 72240 cccgcctcgg cctcccaaca tgctgggatt acaggcatga gccactgtgc ccaaccctt 72300 ctagetttet tgateactga tretagggtt etetgetgaa atatatttga gacateetgg 72360 ataaaagatc atgcaagagc tcccaatatg gtattaataa ttgattctgg aggcttagct actcctgatg gattagacat gactcaactg cctctcttat gtgtacaaca caacaacaca 72420 72480 accaagaaag gttattctgg cattccattt attcagttta tttacagccc ttacttccag 72540 cagcacgtta aagatatggc cagggccggg tgcagtggct caagtctgta atcccaggac 72600 tttgggaggc caaggtgggc ggatcacaag gtcaggagtt tgagaatctg gcaattcttc agacttagaa gcaaccagct cgataacaca gtcttgtgtg ggctctccct ctgtccctc 72660 72720 ctcgcttccc tcatttctca tccctgcccc tgagactgtg caccttcaca tagccctgcc 72780 atgagacett cateteagge tttgetttet ggggtaactg aggetaaaca etgagtggee etaaaagagg attgggattt ggaagttaga ttatteacea gagaacagae tttgetgatg 72840 72900 atcaggccca ggttgtaatt gttgaaaaaa agagaggatg catagtctta tctcatctcc 72960 tagtcaaagt caacaccatg ataaataaga gtcaaatcct gagatgtgaa ttggggacat 73020 ttgagtggtt aaccetgaga agettgcace ttcagacece tcaatacece tgetececag agaaggetgg acattgacet cageacagge aggageetg caagatgeca tttgteetac 73080 73140 taaagatgga cccctccact ctgtttctag gtaaataacc aaagtcaagt ctccacacag 73200 cctgagcaag aaagtcagag cctgctacag gagaaaatac cacactggcc aaaggattca 73260 ctagccctgg ccactgtgtg tgggaggaac cagggaatca tgtgtgggag tcaatgttga agctgttgga ctgggggtgg ggtggaatat aagcctggcc ctggggagtt tttcccgttt 73320 73380 gagggccttt acccacaact caagatccag tgctatagca ggagatccca gagctagtcc 73440 taacagatgg tcaggattga acttggccta gagtaaaatg aggaggatag tgccagaact 73500 ttctcaacat actattgagg aagaggtcag aaggcttaag gaggtagtgt aactggaaag gggtcctgat ccagaccca ggagagggtt cttggacctt gcataagaaa gagttcgaga 73560 73620 cgagtccacc cagtaaagtg aaagcaattt tattaaagaa gaaacagaaa aatggctact 73680 ccatagagca gcgacatggg ctgcttaact gagtgttctt atgattattt cttgattcta tgctaaacaa agggtggatt atttgtgagg tttccaggaa aggggcaggg atttcccaga actgatggat cccccactt ttagaccata tagagtaact tcctgacgtt gccatggcgt 73740 73800 73860 ttgtaaactg tcatggccct ggagggaatg tcttttagca tgttaatgta ttataatgtg 73920 tataatgage agtgaggacg gccagaggte gctttcatea ccatcttggt tttggtgggt tttggccgge ttetttatea catcetgttt tatgagcagg gtetttatga cctataactt ctcctgccga cctcctatet cctcctgtga ctaagaatge agcctagcag gtetcagect 73980 74040 74100 cattttacca tggagtcgct ctgattccaa tgcctctgac agcaggaatg ttggaattga 74160 attactatgc aagacetgag aagccattgg aggacacage etteattagg acaetggeat 74220 ctgtgacagg ctgggtggtg gtaattgtct gttggccagt gtggactgtg ggagatgcta 74280

ctactgtaag atatgacaag gtttctcttc aaacaggctg atccgcttct tattctctaa 74340 ttccaagtac cacccccgc ctttcttctc cttttccttc tttctgattt tactacatgc 74400 ccaggcatgc tacggccca gctcacattc ctttccttat ttaaaaatgg actggggctq 74460 ggcgcggtgg ctcatgcctg taatcccagc actttgggag gccgaggcgg gcggatcatg 74520 aggicaggag atcgagacca tcctggctaa cacggtgaaa ccccgtctct actaaaaatg 74580 caaaaacatt agccaggcgt ggttgcaggt gcctgcagtc ccagcggctc aggaggctga 74640 74700 74760 tagetgggea tggtggegeg tgeetgtaat accagetaet etggaggetg aggeaagaga 74820 atogottgaa cocagtaggo ggaagttgca gtgagccgag atottgacac tgcactccag 74880 74940 aaagagcaca gacagagtca caggtatttg cagtaggaag ctgtcaggtt agagtgcacg 75000 gaaatagaaa gtatatttta cacttacagc acatcttcgt ttgattagcc acatttaaaa 75060 tactgaatag caacgtgtgg ctatttagta ttcactaaaa tcttggacag tgcaagtcta aagaatcctt gatccgtccg gcatggtggc tcacgccttt aatcccagca ctttgggagg ccaaggtgga aggatcactt aaggtcagga gttcgagacc agcctggcca acatggtgaa 75120 75180 75240 75300 acctcgtctc tactaataat acaaaaaaaa ttagccgggc atggtggtgc atgcctgtaa teccaggtae ttgggagget gaggeaggag aatagettga atccaggagg egetgeagtg ageeggagate atgceatgee actaetgeae tecageetgg geaacagagt gagaetgtet 75360 75420 caaaaaaaa aaaaaaattg ttgggcgtgg tggctcacgc ctgtaatccc agcactttgg 75480 75540 gaggetgagg ggggtggate acctgggtte tggagttega gaccageetg gecaacatgg tgaaacccca tctctactaa aaatacaaaa attagctggg cgtggtggtg ggcacctgaa 75600 75660 atctcagcta ctcaggaggc tgaggcagga gaatttcttg aacccaggag gcagaggttg cagtgagcca agatcgcgcc tctgcactcc atcctgggtg gcagagcaag actatgtctc 75720 75780 aaaaaaaaaa aaaaaaatac ttgattgtct ggacattctg cagaacatca tatggagaca ctatgttgac gacatcatgc tgattgtaag caagaaatgg caagtgttcc agaaacacag tcaagacaca tacatgccag aaggtgagat ataaactcta ctaagattca gtggcctgcc 75840 75900 acactggtga catttttaaa cctgctagat gtttgtgtag aaaaggattt aaccttgccc 75960 76020 76080 76140 76200 tagagactag aatcaaccac atgggcagac aacccagctt acatgatgga attccaataa agactttgga cacaagggct tgggtaagct ttcctggttg gcaatgctct atactgggaa acccattctg actccatagg gagaggacaa ctggatattc tcatttggta cctccctggg 76260 76320 ctttqcccta tgcatttttc ccttgtctga ttattattat tattatgaga tggaatctcg 76380 76440 ctctgtcacc caggctggag tgcagtggaa tgatctcaac tcactgcaac ctctgcctcc ceggiteaag egatttieet gieteggeet eeegagtage igggaetaca gaigeatace accaeaceg getaattit itgiattit agiagagaeg gggitteaeg itageeagga 76500 76560 tggtctcgat ctcctgacct catgttccgc ctgcctcggc ctctcaaagt gctaggaata 76620 catgtgtgag ccaccgcgcc cagcccctt ggctgattat taaagtgtat ccttgagctg tagtaaatta taaccgtgaa tataacagct tttagtgagt tttgtgagca cttctagcaa 76680 76740 76800 attatcaaac ctaaggatag cettggggac eeetgaactt geagttggtg teagaaataa 76860 gggtgctcat gtgtgtacca tgccctctaa ttttgtagtt aattaacttt cacaacttta ttattaccgc ttacactcaa tgtttattca catttatcca cataccactt attctagtgc cttgcatcaa agactttcta tctcatgtac tttattctgc ttgaagtaaa tcctttagga 76920 76980 tattctttt ttttttaaa ctttgcacat acatactttt atttttatt tatttttaat 77040 tttgttattt ttgtgggtac gtagtagata tatgtattta tggagtacat gagatgtttt 77100 gatacaggca tgcaatgtga aataagcaca tcatggagaa tggggtatcc atcctctcaa gcaatttatc cttcaagtta caaacaatcc aattacactc tttaagttat tttaaaatgt 77160 77220 acatttaatt ttgtattgac tagagtcact ctgttgtgct atcaaatata attttttttt 77280 77340 tttttgagac agagtctcac tcagtggccc agactgaaag tgcagtggca caagctcggc tcacttcaat ctctgcctcc ctggttcaag cgaatctcct gcctcagcct cccacatagc tgggattaca ggcacacacc accatgccca gctaatttt atatttttt agtagagacg 77400 77460 ggttttcgcc atgttggcca ggctggtctt gaactcctgg cctcaaatga tctgaccacc 77520 teagectee aaagtgetag gattacagge atgagecace acacetggee aaaatagaat attetttagt gaggtetget ggtgacaatt titttetit tittgagaet gagteteget gttgteaget tgggetggag tgeaatagea egateteage teaetgeaac etceaectee 77580 77640 77700 cggattccag caattctcct gcctcagcct cccaagtagc tgagagatta caggcaccca 77760 ccaccacacg cggctaattt ttgtattttt agtagaaatg ggggttcacc gtgttggcca ggctggtctc gaactcctga cctcaggtga tccaccacc ttggcctccc aaagtgctgg 77820 77880

	- •					
		: acgcacagcc				77940
tttqtqtcat	ctttgaaata	tatttttgat	ggatataaaa	ttqttqqttq	atagttatta	78000
tcattattat	tattatttto	agacagggtc	tcactctqtt	acctatacta	gggtgtagta	78060
		agacttgacc				
						78120
		tacagatgca				78180
tttgtagaga	tgaggetttg	ccacatttcc	caggctggtc	tctaactcct	gagctctagc	78240
aatccaccca	ccttggcctt	acaaagtgct	gggccatgac	tagccagcag	ttacttttta	78300
		atgaatcttc				78360
gctgtttact	tggcactctt	ttttttt	tttttttga	gacagagtet	taccetatea	78420
cccyaactaa	agtacaataa	cgtgatcttg	actenetaca	3001515001	caccacca	
cccaggeegg	agegeagegg	cycyaccecy	geteactgea	ageteegeet	cccgggccca	78480
cyclaticity	cigocicago	ctccggagta	gergggaera	aaggcgcccg	ccaccacgcc	78540
cggctgattt	ttttgtattt	ttcgtagagt	tggggtttca	ccgtgttagc	caggatggtc	78600
togateteet	gacctcgtga	tctgtccgcc	teggeeteee	aaagtgctgg	gattataggc	78660
gtgagecace	gcgcccagcc	tctttttt	ttttttttag	acggagtctt	actctqtcat	78720
		gtgatctcag				78780
		caggtgcgta				78840
agradatary	gggtttcacc	atgttagaca	ggerggrere	gaactcctgg	ccccaagcga	78900
rerdectiles	ccagectece	aaagattaca	ggcatgagcc	accgcacccg	gccaagtagc	78960
actcctttga	aggtaatctg	cttcccctac	ccctagcaat	ttttaacaat	ttttcttcat	79020
ttttatttcc	tgaagttttg	ttattaataa	tctgtgtgca	gatttctttg	tatttcttt	79080
		cttgaattag				79140
		caaatatttc				79200
		ctaaaaccag				79260
CCaacacttt	gagaggctga	ggcaggtgga	tcacctaagc	tcaggagttc	aagaccagcc	79320
tggccaatat	ggtgaaaccc	cgtctctact	aaaaatacaa	aaattaccag	gcatggtggc	79380
acacutttqt	agtcaggagg	ctgaggcagg	agaattgctt	gaatccagga	ggtggaggtt	79440
		cactgcagtc				79500
totetemaa	aaaaaagtta	tgaatgtttg	ataaactata	tttattagaa	tatttattat	79560
agaatactat	tcattcattt	ttaaacaatg	ttagattaaa	ccattcactc	cattestast	79620
225522455	ccaccgaccc	ctaaacaacg	tragattaaa	ccactcactg	gattigigat	
aattaattta	cigattitac	ctcactgatt	tgttgtaatt	aatacaactg	gtataaaaag	79680
actgtgacga	ggccgggcat	ggtggctccc	gcctataatc	ccagcacttt	gggaggctga	79740
ggcaggcgga	tcacctgagg	tcaggagttc	aagaccagcc	tgaccaacat	ggtgaaaccc	79800
		aattagccgg				79860
		agaatcactt				79920
gatatogogo	cattgcactc	cageetggge	aacaagagcg	aaactccgtc	taaaaaaaaa	79980
333033444	aacacataaa	acaaaacaac	actotoacoo	ttcccaaaaa	ttaggaggat	80040
aattaaaa	accacacaca	acadadcadc	ttatata	tettetaaaaa	ctaggagtat	
aactaaagga	accectgata	aaaattaatt	LLatettaca	igiaaactaa	aatgacttta	80100
tgaagttaat	tcagaaatac	aatgcagggt	attagtttgc	cacagetgeg	tattcagcct	80160
aatgtaatat	tcttgttatt	tttaaattct	tcttttaact	ttactcatat	gtggatcatc	80220
aaatttcaaa	agattaaatg	acaatactct	tagcagcaag	cttccctaaq	catataaaca	80280
ttttaatggg	tgatgattca	gaaggtaccc	gaagaatatg	tactoccaoa	tatcattcac	80340
ccccatatac	ctgcccgaca	gacatcccat	tttgggaccc	togataaato	tataaataa	80400
gagaaagat a	ggagaagtg	gtataagcaa	ateactttee	agteteatte	2929992994	
aaatcctctc	tetacetet	and a desired	testest	agectgateg	acagegateg	80460
aaaccccgcc	CCCaccccc	aacagcctca	tgateetaca	taagttaccc	cgatecteag	80520
ggccacatet	gtaaattggg	ggttgcgatg	gcagccatct	cacagggtct	cttttcgggg	80580
aagggcagga	attatggatt	aagtgagcta	gtaattgtaa	agcacttaat	acaaggaggg	80640
cgcataataa	gtacttcata	aataatgacg	gccattatca	tgactgaggt	gtatgcagct	80700
gtcggggatt	acqqcqactt	cagaatttct	gatagacaga	gctcaaaggc	agcaaatcac	80760
actogaagte	gaggtgaggc	actgcttctg	Cacagactec	ttagctggag	ageatrarra	80820
accettacac	Cacatttaca	ggaacttaga	atactacac	teessetes	agaacgagga	
tooostooos	gagacttaga	ggaacttaga	guccucage	tecaactetg	tgggatetge	80880
ccccgcgcca	gagacattca	ggggatttct	cgcactctcc	cctcccctac	gtccctcccg	80940
ccccatccaa	ctaaccacac	aacacataca	aaatagcccc	tgcgaggttc	tgcacgctgg	81000
aagggaacag	gagaagggcg	ctgcgctttc	ttgctgatgc	cctgtacttg	ggcccctgqt	81060
agacacagcc	acttgtcccc	tcagcctgca	gagaaatccc	acqtagacco	cacccaaatc	81120
Cttqqcttca	gccaatctcc	ctttggtggg	gatagastac	acgaticcaac	attttattaa	81180
ctacagagag	cagagtatas	tccgccaaga	35-3534-36	actaccaag	gentates	
teceteetee	-333355555	accetecace	tacagacig	gereegagg	gcaccccgga	81240
cccciggigg	ggcgccgctc	agcctcccgg	rgcaggcccg	gccgaggcca	ggaggaagcg	81300
gccagaccgc	grccattcgg	cgccagctca	ctccggacgt	ccggagcctc	tgccagcgct	81360
gcttccgtcc	agtgcgcctg	gacgcgctgt	ccttaactgg	agaaaggctt	caccttgaaa	81420
tccaggcttc	atccctagtt	agcgtgtgac	cttgagcagt	tgactttatt	tttcagtgcc	81480
	_		J J	J	9-9	

						~
tagitticca	gataccayya	Cigaciccaa	ggactattac	tcatctggag	ggtttagcac	81540
agtaccgtcg	, catagtaaat	ttccatgtca	gttttggtta	cctttcatgc	acttgcaaac	81600
atgccatgct	ctgaaacgaa	ataggcacat	ctttttttt	tttttttta	aggagtette	81660
ctctcgccca	ggctggagtg	cagtggcgcg	atcttggctc	actgcaacct	ccacctcccq	81720
tqttcqaqat	tctcctqcct	cagcctcctg	attagctggg	actacaggca	taccacgacg	81780
cccagttaat	trrrgrattt	ttagtagaga	cagaatttca	ccatcttggc	Caccetages	
taactcctca	cctcacatca	tetasetasa	teagageteta	2225555	caggeeggee	81840
chacteerga	ccccaggcga	cetgattget	teagettett	aaagtgttgg	gattacagge	81900
ataagccact	gcatctggcc	agaaatgaaa	taagtaaatc	ttttaacctg	ctctaacaat	81960
atagtgaaaa	gaccatatta	ttattagagc	aggttaaggg	atttgcctat	ttcgggttct	82020
agttatagto	ttaaacttgg	acattcttgt	agaaagtaaa	aagtttcctc	ttcaaagttc	82080
cccttcttgt	taaagaatac	atcataagtg	ttagaagtaa	tagtttattt	taaagactaa	82140
ctttcttcaa	gcctccttgc	tttqtqctaa	taactctttq	ttaagcccta	tectatotaa	82200
				atgccccttc		82260
				teteettett		82320
				cggctatcag		82380
				gaggacgacc		82440
				ctcgacatcg		82500
gattgagcac	cctttctgca	gaaagtaaag	attgccttgc	tggagatctt	ttgtctccgt	82560
gctgactttt	cttcgtggca	ccgattatct	atttctaaca	attttggtat	ttctaacatt	82620
				ccccatccgt		82680
				tactattacc		82740
				ctgagcgcac		82800
ttaagaagaa	aaccccaggg	ageagetaca	accicaging	ttgagtgtat	ccgccgggtg	
ccaagaagca	ccaaagacag	ggaggettga	Ligatitige	tttgggagta	gagggtcaga	82860
agattcacag	gaaaaLggca	tttgagcaag	gatgattcac	tggagctagc	ttttaaatac	82920
tggcgaggct	tttatgttgc	agtcccttac	aaagttgagc	attcgcaggg	actgcactcc	82980
gaaataagcc	cgcttcccct	tttcattcgc	taatgatcca	gggagctgct	ggttccgcat	83040
gcggcaggtt	gtgccttttc	ctaatcaggg	ttctgcatcg	cctcgaaccc	gcaggccgtg	83100
				aagctgctcg		83160
cgcctgtgag	caaaactcaa	acggaggagc	aggaggggtc	gagctggagc	gtggcagggt	83220
tgaccctgcc	ttttagaagg	qcacaatttq	aagggtaccc	aggggccgga	agccggggac	83280
ctaaggcccg	ccccqttcca	actactagaa	agactcccac	cccagggagt	tagttttgca	83340
gagactgggt	ctacaacact	ccaccagaga	CCGGCGaCaG	acgccacaaa	acadetacad	83400
				ggcgcgggta		83460
gtcacggtggc	castacaaas	atacacccct	ccadagaaaaa	gagggggatg	geacgegegg	83520
gecacgeggg	cgatgcgggt	gracecce	geaceegegg	gagggggarg	gggaaaaggg	
gegggeegg	cgcttgacct	cccgcgaage	ctagegeggg	gaaggaccgg	aactccgggc	83580
				catcccgagg		83640
gcccactccc	ggaagaaggg	tcccttttcg	cgctagtgca	gcggcccctc	tggacccgga	83700
agtccgggcc	ggttgctgaa	tgaggggagc	cgggccctcc	ccgcgccagt	cccccgcac	83760
cctccgtccc	gacccgggcc	ccgccatgtc	cttcttccgg	cggaaaggta	gctgaggggg	83820
cgccggcggg	gagtcaggcc	gggcctcagg	ggcggcggtg	gggcaggtgg	gcctgcgagg	83880
gctttcccca	aggcggcagc	aaggccttca	gcgagcctcg	acctcggcgc	agatgcccc	83940
tgagtgcctt	actctactcc	gggactcttc	taggaggag	aaggtggcct	tettacacaa	84000
ggtcagagga	gtattgtcgc	actaattcaa	aagcgattgc	taaagcccat	agaagtteet	84060
acctatttaa	ttaagaacag	ttettaggtg	aggattaatt	tttttgtgtt	tetttaaaa	84120
				atggaagtct		84180
aacyccyayy	gttttatgtt	taaaagcaac	acgigaaaaa	attgttttct	teacceageg	84240
etgtetteea	attteetett	cggggggagg	ggtagttact	gctgttacta	aaataaaatt	84300
acttattgct	aaagttcccc	aacaggaaga	ccactacttt	tgatgacttt	ggcaagtttg	84360
ctaactactg	gaaccctaac	ttacaaacga	actacttaca	tttttgattt	ccagttgtat	84420
tacctgccca	atgtttacgt	agaaacagct	taattttgat	tctgggtaac	gttgttgcac	84480
ttcattaaaa	atacatatcc	gaagtgagca	agtatgggtc	tgtggacagc	agtgattttt	84540
cctqtcaatt	cctqttqctt	cagataaaat	gtaccagaca	gaggccgggc	acaataactc	84600
acqcctqtaa	tcccagcact	ttaggagget	taacaaataa	atcacctgag	atcoggagtt	84660
caagaccagc	ctgaccaaca	tggagaaacc	ccatatctac	taaaaataca	aaattagcca	84720
agatagtage	gcatgcctgt	aatoccaoct	acttaggaagg	ctgaagcagg	agastogott	84780
daacetggg		acceptance	accesses and	cogaaycayy	agaaccyctt	
2222222	ageggagget	basss	yayatagcac	cattgcactc	cagootgggc	84840
aaaaayaycg	aaactccgtc	ttaaaaaaaa	agcaccagac	agaaatgggt	tergetteet	84900
-tectetgett	Lyagacggag	tttcgctctt	gttgcccagg	ctcgagtgca	arggcgcgat	84960
cccagtctcg	gctcactgca	acctctgtct	cccaggttta	atcgattctc	ctgcctcagc	85020
ctcccaagta	gctgggatta	cccatgcccc	accatgcccg	gctaattttt	gtatttttag	85080

tagaaacggg	gcttcaccat	gttaggctgg	tcttgaaccc	ctgacctcaa	gtgggctcc	85140
			aggcatgagc			85200
			aacttggttt			85260
			cttttctgtc			85320
atgattccca	aaggcccatt	gaactctgaa	tgactttaaa	tacttcttct	taagtgggta	85380
			aatgcatgaa			85440
			aaggcagggg			85500
			ttttttaagg			85560
			ctgttgtctc			85620
			ggccctcacg			85680
			actggggtag			85740
caaatcttct	ctcttctccc	tttcgctcca	tgtaagtgtg	tgtgtatagg	tgtatactta	85800
			gaggagaaat			85860
			gctgaaggat			85920
			aggcaagaaa			85980
			agatgtaggc			86040
ctctacgggc	catggttagg	ttttattcct	aatgccgaga	tgccaaacat	ggtggttcat	86100
atctgtaatc	ccagtatttt	aggaggccga	ggcaggaata	tagcttgaac	ccaggagttc	86160
aagaccagcc	tgagcaacat	gagacctgta	caaaacattt	aaaaaattgc	tgggtatgat	86220
ggtgcacacc	tgtggtccca	gctactcagg	aggctgaggc	agaaggatca	cttgagccta	86280
			agtcactaca			86340
			gaatattaat			86400
			tctagggcat			86460
			cacctgaggc			86520
			gaaaaaataa			86580
			gagcccagga			86640
atgatcccac	cactgcaaca	cagtgagatc	ttgtctcaaa	aaaaaaaaa	aatcattcta	86700
			gtagaagctg			86760
			ttgagtccca			86820
			ccaactttag			86880
						86940
			cttccctagg			
			taacaatagc			87000
			cgaatttgtg			87060
cctgggccgc	gggatggaca	agcttaatcc	agtagatacc	ttcaacttac	aatatctaaa	87120
attttatgcc	agatttagtc	attttaaacc	tgctcatcag	tttttctcaa	gaagtagtat	87180
tttggctttt	tttcttttct	tttttttgag	atggagtttc	gctcttatcq	ttcaagctgg	87240
			cctccgcctc			87300
			aggcatgcgc			87360
			ctggttttgt			87420
			tacaggcatg			87480
			ctttagtaca			87540
			ctgttaggtc			87600
			acaccctggt			87660
agattgagtg	gttaaggatg	tcctctaagg	agatgacatt	caaatcttag	cttaaatgtc	87720
aagagggagc	tggttttata	aagattgagg	aggcagcatt	attttgccat	aggettecat	87780
			gtatatattc			87840
			gagttcctag			87900
			gcaaaaaata			87960
tateteacat	caccageeat	tttatatt	gcaaaaaata	attectiget	tectteata	88020
caccicagat	caacagactt	cttttgttaa	gggccaaatc	acadatatt	Laggerttee	
agaccatatg	gtttctgtca	Cacteteett	tatccttgaa	gccatagaca	atatgtaaac	88080
aaatgggcat	ggctgtgcta	cgataaaact	ttacttacaa	aaactggtag	tgggccagtt	88140
taggcatggc	cagcactttg	ggaggctaag	gcagatggat	cacttggggt	caggagtttg	88200
agaccagcct	ggccaacatg	gtgaaaccct	gtctctacta	aaaatacaaa	aaatagctgg	88260
gcatggtggt	gggtgtctat	aattccagct	actctggagg	ctaaqacaca	agaatcactt	88320
			gagatagcac			88380
gacggagtct	taaagcaaaa		ggtagtgggt	totattto	ccatoccata	88440
tagtttggcc	atccctcata	Cadaacaaaa	55ca3c353c	atangeret	ccargggcrg	
nagettytta	accordate	tataaacada	ttccaggtaa	acaagageet	ggaatgttaa	88500
addadCaada	cctgaagtca	cgcagaagaa	caggtagggg	gaacaatcct	gatctcagga	88560
taggaaggga	tattgcttaa	aataagacac	aggaaaatat	aatccatgtt	gtgtaaattt	88620
gactacgtta	aaacttaaaa	ctttcgccaa	gcgcggtggc	tcacgcctgt	aataccagta	88680

ctttgggagg	ccgaggtgag	, cagatcacca	ggtcaggaga	ttgagaccat	cctggctaac	88740
acggtgaaac	cccgtctcta	ctaaaaatac	aaaacattag	ccgggcgtgg	taacaaacac	88800
ctgtagtccc	agctacttgg	gaggctgagg	caggagaatg	gcctgaaccc	gggaggggaa	88860
gcttgcagtg	agctgagato	gcgccactgc	actccagcct	gggcgacaga	gtgagattcc	88920
gtctcaaaaa	aacaaaacaa	aacaaagcaa	aaaacctaaa	actttcatac	aataaagtat	88980
acctuagata	cttctagaag	agaagattta	catccaggac	gtgtatggaa	tttctgcaag	89040
taataagtaa	aagacaaggg	acatgaagag	gcagttcaca	aaagaggaag	ccaaaatgac	89100
caataaacat	gaaaggatgt	ttaacctcaa	aggaaacaag	gaaatgaatt	aaaaacatca	89160
aatgccattt	caaaactagt	aagttggcaa	aattaaaaat	accaaggatg	agaatatgaa	89220
gcatggctat	atgagtgcat	ggaatggtac	agtcactttc	attaaaaato	cacataattt	89280
gttttttatt	tattttttq	agacagteta	tatcacccaa	gctagaatgc	agtggcatga	89340
tctcqqctca	ccacaatctc	tgcctcctgg	qttcaaqcaa	ttctcctacc	tcagcctcct	89400
quatagetag	gattacaggo	acatgccaca	acacccaatt	aagttttgta	tttttagtag	89460
aqueummatt	ttgccatgtt	ggccaggctg	gtctcgaact	cctgacctca	agtgagetge	89520
ttcccaaagt	actaggatta	gaggcgtgag	ccaatgctcc	taactaaaaa	aaatgcacat	89580
aatita tac	ctagcaattc	catgtctaga	gottatect	agagaaattc	tracttatat	89640
geatagggag	acgtgtacta	gaatgttcac	tagttgaatg	tttaagtgaa	aattaggaaa	89700
taaadtaast	gttcattaac	aggaaaatga	gtaaaggtat	atttataaaa	casttaagta	89760
		gctgcgtgaa				89820
gattattga	taatacaga	tcagatatgt	atagagtata	atttatata	ttaatttt	89880
rrrirrett	gaatacagg	ctcactctgt	tocccaget	gazataszat	ggggtgatet	89940
cancteacte	casecteese	ctcattctgt	agectagget	tastasetas	ggegegatet	
tagttgggat	tacaccccac	ctcctgggtt	cccacctcat	tttootatt	ttoctcccgag	90000
Cagrettee	cacaggcatg	caccaccatg	ttessetest	CCCCCCACCC	ttagtggcca	90060
acttonecte	ccatgitggt	caggetggte	gegtarge	gaccicaagi	guideaccia	90120
gattttt	ccaaagcgcc	aggattacag	tassassas	cegegereag	ccatttgcgt	90180
acacatttaa	gatgtgtaga	ataatgccat	ctataataat	acacatacat	gtatatatat	90240
		tggctcacac				90300
teteriorie	accigagece	aggtgtacaa	gactageetg	ggcgagatag	caagacccca	90360
gtten atat	tataaaggata	attaggtatg	graggeargag	aggattactt	gageceagga	90420
geeegagege	naticaggeda	ctgcactcta	geetggaeaa	caaagcaaga	cegtgtetea	90480
nhb Jouonban	adladadagi	atttgtatgt	ggtcatagtc	aaaaaacgta	carggaagga	90540
aaatgtettt	atttatttat	ttatttttt	ttttttaaga	cagagtettg	ctctgtcacc	90600
caggergggg	cacaguggug	taatctcagc	teacegeaat	cteggeetee	cgggttcaag	90660
cgattettet	geeteageet	tctaagtagc	Lgggactaca	ggtacccgcc	accacaccct	90720
getaattett	gtgtttcag	tagagacagg	gtttcaccat	gttggcaagg	ctggtctcga	90780
actectgace	ctaagtgage	cacccgcctt	ggcctcccaa	agtcctggga	ttacaggtgt	90840
gagecaetge	gettggeeag	gaaatatcta	atttagtaag	tatttatatc	tgggaaagga	90900
agggtcaggt	ggtgattcat	aggaactcta	aagtctatgt	ataatactta	gggggacaga	90960
aggaaataaa	gcaaaatgct	gatatttgat	tgttgagttg	tgtatatgtt	agaagtataa	91020
cataggagat	ctgattgata	gtaggagaat	gtttttaggt	ggtaaaagtg	gaaccgtggt	91080
ggtttgttt	ggcagtagaa	tcagttggtc	atagtttgta	tgtggaaggt	aataaacaga	91140
ccatgttaag	gatgacttcc	ggaattttgg	tctgagtagt	gggtggatga	cagtgtcatt	91200
catgagggaa	gatgaagact	gaggtaggaa	caggtttggg	agaagatgac	atgttccctt	91260
ttagacaagt	ggaattatgg	aagatggcag	gtaggtggtt	agctatatga	atttgagata	91320
aaagatttag	gatggagata	taaatttagg	agtaacagcg	tatctatggt	attgtaagcc	91380
ttaagaatgg	gtaggatcag	ccaggaaata	cagatgtata	tgcagaagag	aggagtcaag	91440
gaagccaaga	caagttaatg	tttaaagtga	gtgatgtagt	ccatgggcag	atgctgctga	91500
gagggctgca	aacaccagtg	accctacaac	atttttaaat	gtcgtcttcc	tgacagcagt	91560
		ttatttattt				91620
tagacttttt	gaaggcaaaa	tcattgcctt	ttctgagctg	ggagcatgtc	tggcacatac	91680
caagcactca	acagttgatg	tattgacttc	atccagatac	tctgagggcg	agttatttcc	91740
tgctactagc	ctttcacctt	tcaatgttta	agagcacaaa	tacagagatg	ggcacgtttt	91800
ggcatttctt	attttgataa	ccttttcctg	gtaagatttt	ttaatgttga	aaaaaaaaa	91860
caagaaaaga	gggttaaaaa	tagtcttatg	tcagatcctg	tgatagaatt	cacacttggc	91920
ttaagctgct	gggcaccttc	ctatcttgga	tgtcatatta	gcttatctac	agcagaattt	91980
ttactgtttt	atgtagtaag	gaagcaatta	tatgattatt	ttacagacaa	attattcttt	92040
atcttttatt	tttttagacg	gagtctctct	ttgtctccca	ggctggagta	cagtgtcgcg	92100
atctcggctc	actgcaacct	ccgcctcctg	ggttcaagca	attctctgcc	tcagcctccc	92160
aagtagctgg	gcttacaggt	gtccgccacc	acacccagct	cattgttttg	tatttttagt	92220
agagatgggg	tttcaccatg	ttggccaggc	tggtcttgag	ctactgacct	caggtgatcc	92280

WO 01/27857 PCT/US00/28413

acccgccttg	gcatcccaaa	gtgctggaat	tacaggcgtg	agccaccgtg	cctggcccag	92340
acaaattatt	atactctgag	tattagagge	ttaggatgtt	ttcacttgat	gctatgggag	92400
gaataagtaa	taagatatga	tacacaacca	aagacctttc	ttcactatgc	ttctagtagc	92460
tagractarg	gatgacacat	ggtaataata	ttoottagca	tttgtcctca	atttactgtg	92520
ctacttactc	ttctaaccc	cttacaccta	tatattttt	ttcatcaata	atcctctaag	92580
atagtttt	ttattgacct	225555	arcaadaaaa	ttaagaccca	dececcaag	92640
						92700
taacttgtcc	aagatcacat	ggcttataag	tggtagagee	agaatttgac	cccagatgtt	
gtgactacat	tgtctctcca	taagcaggtt	caactcttt	gactggatgc	tgttccaagg	92760
tcacttcctt	agagaagcct	ttgctgacaa	ctaccctcct	gtgccctcct	ccaaggctgt	92820
ccattgttct	agaactttga	atactcatct	tagaataaag	ctggtctaat	ttttacagtg	92880
ttatagaatg	gatctctgac	tgcaaaagtt	ggtcataatt	atctttttat	gttctagtga	92940
aaggcaaaga	acaagagaag	acctcagatg	tgaagtccat	taaaggtaag	ttctgccctt	93000
ggcagtccac	tgcattaaaa	agtgatgtgc	tttgcatttg	tgagttcttt	aatcctgtta	93060
tactctctct	tttqqcatta	atcatttctg	ccttatttta	taattactta	tgattttgat	93120
ttatttccct	ctttaacctq	tataatqctt	taacatctag	catataataa	gtaggctttt	93180
tttttttt	tttttttgga	gacggagtct	tactctatta	cccaggctgg	agtgcagtgg	93240
				caccattctc		93300
				tggctaattt		93360
						93420
				tcgatctcct		
				gtgagccacc		93480
				tggagtcttg		93540
				atccacctcc		93600
				ggtggccgcc		93660
				gttggccagg		93720
actcctgucc	tcaagtgatc	cactcgcctt	ggcctcccaa	agtcctggga	ttacaggcgt	93780
gagccaccat	gcctggccat	aagtaggctt	ttactgagcc	ttgtgtgtat	tggctatcct	93840
agtgattaca	gtgaaccagt	gcccttctta	ttaatcacac	atttaattgt	tccctaaaag	93900
tgattagttc	actttattta	tttagtaaga	caaaaaatga	agaatactct	taactgagca	93960
				agttttctgt		94020
gaagtatggt	toattacagt	ttttactttt	ttatttgaat	gaacaacctt	aatttaaaat	94080
				tgtttataga		94140
				cagtgtacag		94200
				attaatttca		94260
				ttcaaatgtt		94320
						94380
				tggagaagaa		94440
				ccttacagcc		
				actgccttct		94500
				agagacctgt		94560
				agtgagaaca		94620
				gtaactttct		94680
				tctctactgg		94740
tctgtgctta	tactctgatt	atgaagtaca	taatctgtgc	ttaacattca	ctgacttatc	94800
cttaggataa	tacagaagca	gtacaagaaa	cagcccctca	agatgtttgc	agtctggtta	94860
gaaagacaaa	cttatacaca	gaacagtagc	aaatagacca	aaataataat	agctgccatt	94920
				gactataacg		94980
				ggggagagga		95040
				gaagtaaaga		95100
				attattgatt		95160
tataagagag	agggatattt	aagattgata	cctaccttct	ggcttgccta	acagaaccaa	95220
aacaggaaat	tatatottca	gttttgttat	attagataga	aggtgctttt	gagtcattca	95280
				tttaaggtct		95340
ccaaacatta	cacacacac	ttttagagtc	tagcaaac	andttgaaat	cetecetet	95400
				aagttgaaat		
				ttcaacttgt		95460
gectecatet	ctaaaatgag	gadaatatgg	tectacaaga	ttgtcctgag	agatagatga	95520
aataatatcc	aaaaaaaaa	aaggtacata	gagaaactcg	tatagtgcct	ggtatatagt	95580
				agccttcagt		95640
agtcaaactg	agtgaagcac	tgcaaggaat	tcagaggaat	ttgagatcaa	caaatgattt	95700
ctgaagttta	gggaagactt	catggcaatg	acacttacct	tgtataaaag	ttgaagaata	95760
agaaagattt	gaatgagaga	ttctttctct	tctccctacc	agcccagctt	cttatttgag	95820
gatatattgg	gcaaaggggc	cttcagacaa	gtagagggag	atttttacag	aaagattgag	95880
				_		

atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag 95940 ccactgtagg tttttgagca agatattgat gctgtaagta tggtgtttat gaaaggttag 96000 tctggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac 96060 ttgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 96120 gaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat 96180 tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga tgatgtttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg 96240 96300 ggaatgetta gtagegagta atcagtgata caagaccaaa geccaggtea aagacaagte 96360 acagatacag atcagggett tttcatetge tecacagagg tgtaccetag gagetgttge 96420 aaacagtcca tgtggagggt gtgagtaaga tgtttccctt gaatttgcca gaattacttt tttgttgttg ttgttgttt ttctgagaca gattctcgct ctgttgccca ggctggaggg 96480 96540 cagiggegag ategegeage teaetgeaac etetgeetet egggtiegag igattetet 96600 geeteageet eccaagtage tgggattaca ggettgtgee accaageeca getaatttet 96660 tttgtatttt tagtagagat ggggtttcac catgttggcc agactggtct cgaactcctg gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg 96720 96780 cacceggtee ettgttaagt ttattttggt gggaageaaa ggaggtttea gettttaaaa 96840 agtttgaaaa ttattgctct ggtaataatt aaagatttga gagtaaatat gctttctagc 96900 agaaagaata aaagaagaac agatagcete aagaagggga gecaaagaag caggetatat etgacacact gggtgttgat aaatgggtat taaaagaatg agageaatga geagatagaa 96960 97020 319744atta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 97080 tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt acaaatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc 97140 97200 tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgttta 97260 taastaaget aaaaattatt ttgeteeaat tteteatgaa aataaaaata aacettettt 97320 tracattgaa aaaatagttt gaagacagtc actcttcatt ttgtaattcc cacaactatt attgaatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca gactactaaa aatatattt atgaatttt agtgtgcttt atctttttt gttttttt 97380 97440 97500 ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca ctgcaacctt cgcctccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg guttacaggc acctgcccc acacccagct aattttttgt atttttagta gagacagggt 97560 97620 97680 ttcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg 97740 cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatattttt ctaggttccc cccaccccaa gcatttattc tgcaatttta gttttgttcc taaagcaagcaaggtttaag gatttaaaaa taatccgtat tttagaatgc tttctggctt tgttactttt 97800 97860 97920 tatccacagt agaagttoto agagaatgat otocotottt taatttaact tittggcaca 97980 gtailtigag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct 98040 98100 98160 gtctgggaaa aaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat 98220 taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98280 98340 gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac 98400 aaaaaagcac taaaaatcat gccttgctgg aggctgcagg accaagtcat gttgcaatca 98460 98520 98580 98640 ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat 98700 gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaacaa gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac 98760 98820 tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc 98880 atatttttta aagtttgaca atttgaatgt cagtgaagat gcagggaaat acccctccta 98940 tttagtgata atataatctg gtgaagactc tttggaaagc aatttggaaa tcagtataaa atatgcatgt catttaggcc actctttcta agacctagcc ctcagatatg ctcattcata 99000 99060 99120 tatgtatgta tgtatgttga aggctattca ttatagtatt gtttgtgata gcaaaaaatt 99180 atggacaaca tataaatatc tgttataggg aaataaccaa attgtggtat acgcatgctc tggagtataa tatagccatt tgtttctatt tatttattt cttgagacag ggttttactc 99240 99300 tgttgcccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg 99360 gcacaagcca ttctctcgcc tcagcctcca gagttactag gactgcaggc atgtgtcacc acacccagat aattttttaa ttttttgtag agacagggtc tcactatgtt gcctaagctg 99420 99480

gtetcaaact cetggeetea ageaattete ceacacagge eteccaaagt getgggatta 99540 ccaacgtgaa ccaccacacc tggttcagtg tagccattta gaaatctaaa aaagacgtgg 99600 gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt 99660 99720 cagtatttet tacccaaatt tetgeactta gaaaattgea tgtcatgttg teataagttg 99780 aaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct 99840 ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat 99900 99960 cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt 100020 tetttettte ttittttt tettttgag acagggtete actetgttge geaggetgga 100080 gtacagtggc gtgattacaa ctcactgcag cctcaccctc ctcaggttca ggtgatcctc 100140 ceteagiete etgagtaget gggactatag geatgeacea ceaegeetgg ctaatttttg 100200 tatttttttt tttttttt gtagagacgg ggtttcgcca tgtttcccag gctggtctca aactcctgga atcaagcgat ccacttgcgt aggcctcca aagtgctggg attacgggcg tgagctactg tgcctggcct aggcagtttg tttgtttgtt tgtttgtttg tttatttatt 100260 100320 100380 tgtagacgga gtctcacagg ctggagtgca gtggcccaat ttttggctca ctgcaacctc 100440 cgcctcccag gttcaagcta ttctcctgcc tcagcctcct gagtagctgg gatgacaggt 100500 geetgeeata atgeetgget gatttttgta tatttagtag atatggggtt teaceatgtt ggteaggetg gttttgaact eetgacetea ggtgateage eegeetegge etceeaaagt 100560 100620 gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat 100680 gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta 100740 cettecaata aaaacetgtg cacaaatgtt catageaget taatattgaa aaactggatg ttetteagea ggtgaatgaa etggtteatt cataceatgg aataceatte ageaataaaa 100800 100860 aggaacaaac tgttgataca tttaaccacc tggatgaata tcaagggaat tatgctgtca 100920 gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga 100980 aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg tgagaggggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga 101040 101100 agttgtatct tggcagtgga tgcagaaatc tcaatgtgat aaaattacaa agaactaaaa 101160 acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg tcagtatctt agagtgatat tgtactatag ctttgcaaga tgttaccatg ggagaaacta aagtgtacaa gggatctcta ggtattatta tttttttaga gatggggttt cactatgttc 101220 101280 101340 cccaggccgg tettgaacte etgggeteta gtgatecgce tgccccagce tectaaagta 101400 ctggaattac aggcgtgagc gaccatgcct ggccctttca gtattgtatc ttagaacttc atgtgaatct agcattatct catagaattt aattaaaaga aattgtaaac ctcacagaag 101460 101520 atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa 101580 gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga agaactcttt tgacaaattg atgaaaccct cagtcagttt tataagaatg cccatcttta 101640 101700 tgatcatgct atgaaagcca atttttaaaa aaattttttg tctttcctaa caattagctt 101760 gtggttataa tttaaattta gttaaatata agataaatga ttttttatta agtttagttt 101820 catttttcaa ggtacgatct caaagctact ctttaaccta ctatgaatga ataatgctga gttcataaca tctttgtaga tatatccaca attttccctc aggataagtg cctacaagtg 101880 101940 gaattactgg actgaaaata atgcagtttg ctaagacttt gctatctgtt cctgaatgct 102000 cctccaaaaa ggttttgcca gtttacatcc tcatgaccag cgaatgagag tgttgcctat 102060 tttcctgtgc ccttgttact gcttaataat ttttgaaaaa aatctaattt gacagacaaa aatgcatttt atgttaattt gcttttctgg gatttttaat gaggttgagt atagtttta atatttttat tggccccttt ggaactagta tcataagttt tttttcttaa gaatttatgt 102120 102180 102240 agtctgggct gggcgcagtg gctcacgcct gcaatcccag cactttggga ggccgaggtg 102300 ggtggattgc cgaaggtcag gagtttgaga ccatcctgac caacatggtg aaaccgaatc tctactaaaa gtacaaaaac tagctcagcg tggtggcggg tgcctgtaat cccagctact taggaggctg agtcaagaga atcgcttgaa cccgggaggt ggaggttggt tgcattgagc 102360 102420 102480 cgagatcgcg ccattgctct ccagcctagg caacaagagt gaaaagtctc aaaaaaaaa 102540 aaaaaaaaa aaaaaagaat ttacatggtc tgaattgcca ttaaaagaga tatgagaatt attgagtaac aaataacttt ttaataattt aggcaagttt tggacgattg tactttgttt 102600 102660 agaaaccaaa agcatagtat ttgtagtttt tttatttact ttagttgcta ggaagtaaac 102720 tttattcaag gtctctggta ccagttgttg ctaaaagtga ttgactaatc tgtcaatctg 102780 aaattatttg ttgctgaact gctaattctt ttgcttctat cttttaggca gatcttgtct 102840 ggactaccag actcaagaga ccaaatcaag cctttctaag acccttgaac aagtcttgca 102900 cgacactatt gtcctccctt acttcattca attcatggaa cttcggcgaa tggagcattt 102960 ggtgaaattt tggttagagg ctgaaagttt tcattcaaca acttggtcgc gaataagagc 103020 acacagteta aacacagtga agcagagete actggetgag eetgtetete catetaaaaa 103080

gcatgaaact acagcgtctt ttttaactga ttctcttgat aagagattgg aggattctgg 103140 ctcagcacag ttgtttatga ctcattcaga aggaattgac ctgaataata gaactaacag 103200 cactcagaat cacttgctgc tttcccagga atgtgacagt gcccattctc tccgtcttga aatggccaga gcaggaactc accaagtttc catggaaacc caagaatctt cctctacact 103260 103320 tacagtagec agtagaaata gtcccgcttc tccactaaaa gaattgtcag gaaaactaat 103380 gaaaagtgag tatgtgattt tettgtgtgt acatatgtgt eteaetttet ttttttaatt taetaageag aaetteagat gaggaataaa atgattggaa tattttttt eteetetaae 103500 tacttgtaaa tttgggagaa tttggagagt gtagtagagt cagatcagtg tatggaaaag 103560 gagcaggagt gactggacct tctaagaagt gtgttatcag aattagtaaa tgaagggtca 103620 aatgteetae tttteeeete eactgatttt gacateaaae eattateeae atageettat tteeteete ggtettaatt ttattaatat tttaetgeae tttgeagata aaatttttaa 103680 103740 aaaattttta aaaattgcca ataagtgaca tttattaagt tcagtgctta gtgtatattt 103800 ggattttatt tattagicac aagaccittg tgcaggtagt aggcatgatt atctttttt 103860 ttttgagatg gagtettget etgtegeeca ggetggagtg caatggegeg gteteggete actgeaacet eegggtteat gecattetee tgeeteagee teccaaatag etgggaetae 103920 103980 aggogoctgo caccacacco ggotaatttt titgtatitt tagtagagac ggggtttcac 104040 catgiteger aggatggiet cgateteetg actitigigat cegeetgeet eggeeteeca 104100 aagtgctggg attacaggca tgagccaccg cgcccggact gattatctta tttacacatg agaaaaccag ggcttagaaa ggttaggtaa cttcctctag gttgtacagt aaatgtggac ctagaagcat tttgacaaga gcacctgttt tttttcttc tctattagtt tagaaattat 104160 104220 104280 atactettaa ttateacetg ggattttgat tagacageet teatgttett ttteatetta 104340 aatgttett gtgtettaaa gggetaagtg atttetteag atettttagt teaeteatte 104400 teagtgaact aaaatgaggt etaatetget aetgaateaa gtttteagea tgttatttee 104460 ttcctcctc cctcctcct tccttccctc aaccaggctc ccgaggagct gggattacag 104520 gegeeegea ceacteetgg etaatttta tattttagta gagaeggggt tteaceatgt tggteagget gatettgaae teetgacete aagtgaeea cetgeetegg eeteecaaag 104580 104640 tgctgggatt acaggcatga atcaccacac ctgacggcat gttattttca tcgcaaagtt 104700 actgtaagct gggagaagtg gcacacatt gtactcccag ctactcagga agcttaaggt gagaagattg cttgagccca ggagttttga gaccaacctg ggcaacacag caagaccca gctcaaacaa agaaaaaag ttattgaatt ttttatttct atggatcatt ttttgtagtt 104760 104820 104880 tottattoot treacectic atteceacti tigateceat etittattia titagittia 104940 ttaaatgtat attigiciga taattoigot atotacagti tittigiggac cigacicago 105000 attictitgt ticticggat tcagactgtt ggtggcttgt gattitagtg attittggcc gtgaacatgt tictitggact tittgtctgtg ggaattctct gtgtactctg tataaattaa 105060 105120 gttacttcag gtgttttgca ttttcttttg ccatgcacct ggggcctggg tcactaccct 105180 tetggtacca ettaaaactg aatttttgte ttgggtgete gtactgatee tgtatgagta 105240 caggittata citacigtag aaatatggig titgattatg gggtatigte ccagaiggig ciggagtatt aatatgetet cigitaaact taatgigtig teeetgtaaa actecaaaat 105300 105360 tetgaattee agaataetae tggeeecaaa tgtttaagat aagggeaetg eetgtatttg 105420 tttctgcctc ccactatttt ccttagttta acacaaactc acctttttaa aaaacatttt 105480 gagagaattc agtattggga agagtttcta acctgtttct ggaaatggaa gtccaaagtc 105540 tgtttctgta attgtttttt ttttgagatg gagtctcact ctgtcaccca ggctggagtg 105600 caatgacgta ctctcagctc actgcaacct ccacctcccg ggttcaagcg attctcttgc ctcagcccc tgagtagctg ggattacagg tgcccaccac catgcctggc tgatttttgt atttttagaa gagatggggt ttcgccatgt tggccaggct ggtcttgaac tcctgacttt 105660 105720 105780 gtgatctgcc cacctcagcc tcccaaagtg ctaggattat gtttctgtaa ttgtaataca 105840 tttattgttt ttagaaactg tctttgcttt agtggtaatt ttcaataaaa atagaaatag 105900 105960 106020 agatteetgt aactgtcace actataaggg taaagaacag ttagtteett cacetttgaa 106080 gtcaagcccc acctetatec caacacttgg caacegetga tettteteeg tetcaatage tttgeetttt etettett ttettattt tttttttgag acagegtett getetgtege 106140 106200 ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctggqttcaa 106260 gcagttetee tgcettagee tecetagtag etgggattat aggeacgeae caccacace 106320 ggctgatttt tttgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct 106380 caaactettg accteaagtg atceacetge eteggeetee caaagtgetg ggattacagg egtgageeac tgtgeecaat caggaettet tetettaaa tetacatea acttgteatt 106440 106500 tttttcttgt atggattgtg cettcagagt cacacctaag agccctttgc ctaagcaaag 106560 gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg 106620 gettatgeet gtaateteag caetttgaga agetgaggtg ggeagattae gaggteagga 106680

					acaaaaaaa	106740
aaaaaaatta	gccgggcgtg	gtggcgggca	cctgtagtcc	cagctactto	agaggttgag	106800
qcaqqaqaat	agtgtgaacc	caggaggtac	agcttgcagt	gagccgagat	cgcgccactg	106860
cacticcage	tgggcaacac	agtgagactc	catctcaaaa		agtattatgg	106920
ttttacactt	tacatttaaa	tatatatott	ttttaaatta	atataaaaaa	agtattatgg	
thecatacti	tacgittaga	tatatatett	titigagita	acgicgiaca	agtatgaggg	106980
ttacgtcaga	ttttttgtt	tttgtttatt	tttacatatg	gatgtctagt	tgttctaata	107040
ccatttgttg	aaaagacaac	ctttactcca	ttgaattgcc	tttgtacttt	tgccatattt	107100
gtctaggcct	gtttttggac	tcctttttct	gtttcatgat	gtgtgtgtct	attcctttqt	107160
taataccaca	tggtcttaat	tactqtatac	taaqtettaa	aattgggtaa	tgctggcctt	107220
ataaaacgaa	ttgggaagtt	tttatttta	ctcttatttc	cattttctag	aagagattgt	107280
gragaattgg	totcatttct	totttagata	tttaattaaa	ttaggaagtg	atgccatctg	107340
geegeeeegg	tttatttt	atatatasas	cccggccgaa	ctgggaageg	ccaggttgga	
ggcccagggc	anastattaa	gtgtgtgaga	cagagicica	Cttctgtcac	ccaggttgga	107400
gegeagegge	gagatettgg	cttactgcaa	cctctgcctc	ccaggttcaa	gttatcctcc	107460
tgeeteagee	tcccaaatag	ctgggattac	aagcgtgtgc	caccatgccc	gactaatttt	107520
tgtattttta	atgcagacag	ggtttcacca	tgttagccaa	gctggtctcg	aacttgtgac	107580
ctcaagtgat	tagcccacct	tggcctccca	aagtgttagg	attatagatg	tgagccaccg	107640
tgcctggcag	gggcctaggg	ttttctttt	cagagtattt	taaactatga	attcagatta	107700
tttaatagat	ataggactat	ttaagttatc	tatttettet	tgagtgaatt	tttactgtag	107760
tttatggcct	ttgagtaatt	aattotatto	aattotoaaa	tttatgaggg	tetactgtag	107820
tataggett	cogastact	atactataca	tattttatta	cttatgageg	cgcaactact	
tatagtattt	cgggtttgta	geggeacee	tottttatte	crageaceaa	caattgtgtc	107880
ttgtttttt	ttgtcagatt	graragggar	ttattagtct	tttcaaagaa	ctagcttttg	107940
ttttgattt	tetgttgttt	tgttttcaat	tttattgatt	ttctgctctt	tattatttct	108000
tttctattat	ttctgcttgc	tttgggttta	ttttactctt	tttttttct	ccaagttgct	108060
taaagtagaa	acttagattt	ctggtttgag	acctttcttt	tctaagataa	gcatttaata	108120
ctgtaaattt	ccttctaacc	actgctttag	ttacaccccc	acaaattctg	gtattttgaa	108180
ctgagcacaa	atgaaatgtt	ctaatttccc	ttgaatctta	ttcttttacc	aatgaattat	108240
ttagaaatat	gttatttagt	ttqcaaqcaa	ttggagactt	ttttcctatt	atttttctac	108300
catttatttc	tcatttcatt	atattatogt	cagagaatat	attttgaatg	atttcattta	108360
ttaattttta	aaaataacat	taaaaaattt	tttaaaatgt	gaatatacca	catacactet	108420
aaagattgta	cattctgttt	ttggacagtt	ttctataaat	gtcaagttga	tttacttcat	108480
taatgatggt	gttcagtttt	tetttattet	toctoatact	ttatatacaa	ttatatasat	
ttattactca	gaagagtgtt	gaagtttgga	agetgatatt	ttgtatgtag	ttatattatt	108540
agetetatet	gaagagtgtt	gaacttttta	actacaattt	tettetetaa	ttttactttc	108600
ageceeater	ggttttgctt	catgtattt	gaggererge	tgttaggtgt	gtacacattc	108660
aggatgatat	cttctgggtg	aattgeetgt	tttatcatta	tgtaattccc	tctttatggt	108720
aattttcctt	gttctaagat	cagaaatatc	tgttgtccaa	tttatataga	cactgcagct	108780
ttcatttgat	tagtgcttgc	atggcatatc	tttttccatt	tttttacttt	tgatctacct	108840
ttataattet	atttaaaggg	ggcttcttgt	aggcagcata	tagttgggta	gtgttattta	108900
tttatttatt	tatttattta	tttatttatt	tattgagaca	gagttttgct	cttgttgccc	108960
aagctggagt	gcagtggtgc	aatcctggct	taccacaacc	tccacctcct	gggttgcagt	109020
gattctcctg	cctcagcctc	ccaagtagct	gggattacag	qcacqcqcac	catacctage	109080
tgattttttg	tatttttagt	agaaacggat	tttcaccato	ttagccaggc	tegtettgaa	109140
ctcctgacct	caggtgatcc	acctacttta	gcctcccaaa	gtgctgggat	tacaddcdtd	109200
agccactgca	cccggctgag	tcatottatt	tttaatcttt	teteacaata	caccetttt	109260
gttggtaaat	ttaattattt	taatataaat	tttagtataa	ttatttacat	tagggeeee	
tattacacta	gggtatttat	aatototaaa	tataattatt	ccactcacac	taaatytaat	109320
actcataata	3535465646	atttaatt	cataattatt	ggractaata	Laattatatt	109380
tteteetet	atattaatat	ctttggattt	agattaccag	LLLagracat	gettetetgt	109440
toctoctct	ttgatttccc	cttttttget	CCCCCCCCC	ttttaattct	tattttttt	109500
Lagrattegt	tgatcattct	tgggtgtttc	ttggagaggg	ggatttggca	gggtcatagg	109560
acaatagttg	agggaaggtc	agcagataaa	catgtgaaca	aggtctctgg	ttttcctaga	109620
cagaggaccc	tgcggccttc	tgcagtgttt	gtgtccctgg	gtacttgaga	ttagggagtg	109680
gtgatgactc	ttaacgagca	tgctgccttc	aagcatctgt	ttaacaaagc	acatcttgca	109740
ccacccttaa	tccatttaac	cctgagtggt	aatagcacat	gtttcagaga	acaggggatt	109800
gggggtaagg	ttatagatta	acagcatccc	aaggcagaag	aatttttctt	agtacagaac	109860
aaaatqqaqt	ctcccatgtc	tacttctttc	tacacagaca	cagtaacaat	ctgatctctc	109920
tttcttttcc	ccacatttcc	cccttttcta	ttcgacaaaa	ctaccatcat	catcatccc	109980
cgttctcaat	gagctgttgg	gtacacctcc		adcadctage	caccacagec	110040
cctcacttcc	Cadatoooo	322020000	2434433334	Sacaaccaaa	200000000	
adccadacaa	cagatggggc	caccaggiag	aggegeeeee	cacccccag	acggggcagt	110100
32333-33	aggcgcccc	Caccccccc	ccggatgggg	cygotygoog	aacaaaaacc	110160
ceteceses	ctccctcccg	9acgggcgg	cragccaaac	gggggctgac	ccccacctc	110220
cccccagat	ggggcggctg	accaaacaaa	ggctgcccc	cacctccctc	ccggacgggg	110280

eggetgeegg getgagggge teeteaette geagaeeggg eggetgeegg geggagggge 110340 tecteactic teagacgggg eggeegggea gagacgetee teaceteeca gatggggtgg 110400 cggtcgggca gagacactec teagtteeca gaeggggteg eggeegggea gaggegetee 110460 teccatecea gaegggegg eggggeagag gtggteecea cateteagae gatgggetge 110520 cgggcagaga cactecteae tteetagaeg ggatggcage egggaagagg tgeteeteae 110580 ttcccagacg gggcggccgg tcagaggggc tcctcacatc ccagacgatg ggcggctagg 110640 cagagacget ceteacttee eggacggggt ggeggeeggg cagaggetge aateteggea 110700 ctttgggagg ccaaggcagg cggctgggaa gtggaggttg tagggagctg agatcacgcc 110760 actgcactcc agcctgggca acattgagca ttgagtgagc gagactccgt ctgcaatcct 110820 ggcacctcgg gaggccgagg caggcagatc actcgcggtc aggagctgga gaccagcccg 110880 gccaacacag cgaaaccccg tctccaccaa aaaatgcaaa aaccagtcag gtgtggcggc gtgcgcctgc aatcccaggc actctgcagg ctgaggcagg agaatcaggc agggaggttg 110940 111000 cagtgageeg agatggegge agtacagtee agectegget treacaactt tggtggeate 111060 111120 111180 gattetecté ccacagetec caagtagetg ggaetgcagg catgtgccae tacacccage 111240 taattttttt gtatttttag tagagacagg gtttcaccat attggccagg ctggtcttga 111300 actottgace teaagtgate cacetgeete ggeeteecaa agtgetggga ttacaggegt gagecaccat geeetgeett tttetagaat ttatatattg agttettgat tgtatetttt 111360 111420 tatgtagget ttttagtgge ttetetagga attacaatat acataetttt cacagtgtae 111480 tcacatttaa tattttgtaa cttcaagtgg aatgtagaaa acttaaccac cataaaaata 111540 gaactaggga tgaggttaaa aaagagagg aaaagaaatg taataaagat ttaataacac cgttttttt ttttttccc ttttttttt gagacagagt ctctctttct gttaccaggc 111600 111660 tggagtgcag tggcgtgatc ttggctcact gcaaceteeg ceteetgggt tcaagtgttt 111720 ctcctgcctc agcctactga gtagctggga ttacaggtgc gcgccaccat gcccagctaa 111780 tttttgtatt tttagtagag acggtttcac tgtgttggcc aggatggtct cgatttcttg accttgtgat tcgctctcct cagcctccca aagtgctggg attacaggcg tgagccaccg 111840 111900 cgcccggcta agtctttaaa tatttttttg acattgcact ttttctcttt tccttctagg 111960 112020 attttagtaa cccaaatgtt agttttgtta ttgtttggca ggttcctgag gctttcctta cttctttaaa ttttttttc ctgttgttca gcttcgaaaa tttctattca tctgtcttca 112080 aattcactgg ttctttcccg ttatttccat tctgttattg agtctttgta gtgaatttta 112140 aattttgttt attatgtttt ttagttctaa aattttcttt ttttgtgtat gtcttatact 112200 ttgctcctga aactcttatt tgtttcagga gtgatcttat ttcttagagc atggttttag 112260 tagctactta aaatttgttt tatcatccca gcatatgtgt cctcttgatt gtcttttctc 112320 ttgtgagata atgggatttt ctggttcttt atatgacaat taattttgga ttgtatcttg 112380 gacagtttga cttacgttac atgattctga atcttgttta aatcctgtgg aaaatattga 112440 agttittgct ttaacaagca gtigacctag ttaggitcag tccacaaati ctaagcagca ttctgtcggc tctggttcca tcatcagttc agttitgtat cttatctgct tatgtgcctt 112500 112560 tetgigicca gicigggace tggccaatgg teaggiecea aageetitgt acaettitag 112620 aagcagggcc atgcacaccc agctcacgag tggccccggg agtgcacata caactcgacg ttttcatggg ctccttcttt tctgtgatgt ccctgacacg ttctgccttc taagaacctc cctttatccc tttcctgttg tctggctaga aagtcagggc tttagattcc ctatacttca 112680 112740 112800 gcacacttcc tgtagctatg tcaacctctg tggccacgac ttcttcttct tgggactgca 112860 gtttctcttg tcagaaagta ggattcttgg agctgctgtc attgctgctg tggctgctct gatgctgcct gggagtcgaa ggagagaaag gaacaaaaca aaacaacca ggggatttcc tccactctct ttgatccgtg agagcccct ttcctgttcc tcagaccaga aatagagggc 112920 112980 113040 etgtettgga acttettett tgtgeatetg gtgtgeagtt teagettttg agteeaggee 113100 aggaggtgct ggacaaactt gtcaggagta cggaggtact gcaagttctg attacttttc 113160 tcagtccacc tgcttccaag tccttggatg catttgtcca ttgttttgag ttgcattcca tgggagagac agaagagtgt gcttatttca tcttgacata cttattagga tttcatatca 113220 113280 aatcaacgga tgatattctc tatattaatt tgctgttttc cctttagcaa gcacattagg 113340 aaaataacac tttaacaccc gcctttggtg gtttctgtca taattattaa tacttgactt ttttttttt tttgagacgg agtctcactc tgtcctttga ggcattgtcc ccataaactt ttggtaaagc atcaataatt ttatctttca tccacacaag cttcaccata aatttgatgt 113400 113460 113520 ttattettee attttageag aatteatgtt geteeaatag gggetgtett caaactgatg 113580 ttttctcctt cttagtgcct cagagtagat cctgttcaga tacgttataa caggttaata 113640 tgagtttatt ttggtgtaaa agtactttga aattcatgca tagttttttc atcatatgca 113700 ttttccatag ctttgaacac ccccatgtaa ctctcctctt ccacaaacca aacaatgaaa 113760 aagcaccttt gtgatggaag tttattttgc aataggaact cacagtgatc taagccctgc 113820 tattcatgaa tataattcat tactggagtc caagttgctt tttggttttt gaagttctct 113880

		acaagatgca				113940
gatgctgcta	aaccaatacc	: aattacagaa	gcaatgagaa	atgacatcat	aggtaagcag	114000
tgcttgaaac	tatggcaaaa	aaaaaatgac	: aaaaaatgca	cagaactgac	aattttcqtt	114060
attgactaag	ataattttt	cttaacatgg	aatttagcag	ttcccttcct	aatttgtftt	114120
ctgagtattt	tttatatcgg	attatagcto	actttaaaag	tttctcggct	qcattcaqtq	114180
cgagggtctt	tgcctgggcc	agatgggctg	cagtgtagcg	ggtgctcagg	cctacccact	114240
gctgagcagc	caaaccaaca	ggcggctacg	ctaaccggca	Cagaccacca	gatggactgg	114300
ccqqcaqccc	caccaata	cacgaagtgg	qcqqqacaqa	aacttctqqq	gttggaagtc	114360
cagtgaggct	aaaaqccqqt	accaaagtct	ctaggcatca	ggactacaac	ccaagagtet	114420
		atggccagac				114480
gaacttcatc	ccacttctca	gtgggcctga	catccctaaa	caccctggat	gtctacctgc	114540
attagccaga	gccatcacat	ggcctgtgac	ttgcctttt	ttaccagtta	attotoccac	114600
acacagtoto	atttctgtgt	catttggcac	agctggaggt	gcaaggagga	agacaacctc	114660
		gtaactttat				114720
222222222	222222222	agtttttctt	atatottoga	cccaaattct	taggetttaa	114780
cctgaataac	aatgacagca	agatcaataa	atactacaca	tttattaaac	actoactoto	114840
						114940
		actttttatg				
		tttatagatg				114960
accttaactc	graacagere	agatatggca	tastastas	ctgaaactag	acceleacat	115020
		gcagtgtttt				115080
atatatatat	atatatatat	aaaaaaaaa	tatataaaa	adatatatat	atatatatat	115140
atatatatat	alalalalal	aatatatata	Latataaaat	acacacacac	ataaaatata	115200
		tatagtatat				115260
		atatatat				115320
gagtagtaag	gacaaacatt	tcagaaaaat	gttttcatta	tatatacatg	tatgtatgtg	115380
tatgetgatt	caacaaatat	atttcttata	ggttatagca	aaatagtttg	aaagctttta	115440
ctgtgtttta	tcaggaagac	cttaggtgaa	cgtatattca	cagataaaag	aggttattta	115500
ttcattcaat	aaatattaca	ttctcataag	tcctaatatt	atgtatttt	attcttcaaa	115560
aaagttagta	tttgtgattt	atgaaataag	acatgttctt	gcacttttag	cagatctgtc	115620
ccgatgttgg	gcttctttaa	tccttagtgt	gggtgctttg	cactcactca	ctgctgggga	115680
cagcaagacc	cctgttagtc	tcagctgtgt	ttcttaaatt	ggcccactgt	accttccagt	115740
tagctattct	ggggtccatg	tcatgttggc	tccattttcc	ttttctttct	cccacacaga	115800
tacctataac	ggctataaca	taggcctggt	ggctgttggt	ggcttatccc	tatctgcttg	115860
tatttaaggg	gtactgtttc	actgagtttt	gctgacagat	gttgtcatga	gatttgaggt	115920
tttctgtgtt	gttgctctat	ttttatgtgg	gaatttgcta	ctatcatcat	ccctagacca	115980
gcttttccta	gtaatacaac	agggatgttc	tgactgatta	gagtttgcct	gtttgaagaa	116040
ttggttggct	agtgattttt	ttttgagggg	agtctgtacc	agttaatagc	ctgactggcg	116100
tgtggataaa	aaggaagcag	tttcaagtca	aataaaacac	ttaaaatgaa	accacactgc	116160
aactctcttt	cttttactta	agcttaatca	aattaatgat	gatgtaatcc	catgaaggaa	116220
aagtcttctg	aaggatcaag	ttgataacat	tttgtgatca	aagaatttga	gaaaacctct	116280
atcccagtgt	ctatcattat	atattttagg	atgttaatta	cctgtgtggc	tttaggcaag	116340
tcatttttcc	tccttgagcc	ccattcttaa	tcctgtccaa	attatttgtc	tcctcttgca	116400
gttggactat	tttaatatag	ctgtccttca	agtgagtttt	gttcaaagga	gccttcactt	116460
tagctcttac	tgtgtaccca	ctttgcatag	tcttgtttta	aatgtaatcc	ttggattttt	116520
ggtgttgcta	actaattact	gtttttatgt	gaggatttag	agtgatccag	aatctatact	116580
tgcactacct	ccttcatctt	ccacaaatgt	ttgaagtggt	agaattttta	aaaactttga	116640
aggtacagct	gacagaattt	gctgatggtt	tggaagtgag	tggtatgaga	qqqaaaaaaa	116700
ggaataaagc	atgactgcat	tttttgtttg	tttgtttgtt	tgtttttgag	acggagtctc	116760
actctcgcca	ggctggagtg	cagtggcgtg	atcttggctc	acggcaacct	ccgcctcctg	116820
ggttcaagcg	attcccctgc	ctcagcctcc	caagtagctg	ggactacagg	cqctcqccac	116880
cacgcctggc	taatttttt	ttttgtattt	tagtagaaac	ggggtttcac	cgtgttggcc	116940
aggatggtct	ccatctcctg	acctcatgat	ctactcacct	tggcctccca	aagtgctgag	117000
gttacaggca	tatatataag	catataaagt	gtgttatagc	atacaaacag	gtatatatat	117060
aaacatgcag	tccacacagc	tgataggaat	gaggcagtag	tgaaggagaa	gttgatgtag	117120
gagagggac	agttgttaca	ggaaagaagt	ctggaggcag	aagggatgaa	ttccagtgct	117180
cacatagaag	attgcttaga	tgggagcaag	gacaatttat	ctagagtcac	aggaaagaat	117240
gcagtacacq	ggtagagatq	caggtgagtt	gaaagatgtg	agagatgatg	gaaataattt	117300
tctgattgct	tctatattct	caaggaagca	ggaagcaaag	tcctcagcaa	agagaataga	117360
agaggtgtta	aatatttqaq	aaaggagatg	tactgtagaa	aaaaaaaaa	ctcagtttct	117420
ccttctgaac	tctcacaaaa	cagaaccctt	ccatgactct	agttgtgtgg	agttttttcc	117480
2					330000000	

ctgtcagcta ccaattctgc agatgattgt tcagtgaaca ccaactgggt gtcctctaag 117540 tragttragt totracate tttacetgga gatagratra gatecracag attgaggact 117600 ctgtcccaca agactgcctc cacttcagat gccagtctca agtacaagtt gtggcctgtg cttctgactg accttctata aattggagtt cccacagtcc cctccttggg ttcaataaat ttgctagagc agctctcaga actcagggaa atgctttaca tatatttacc catttattat 117660 117720 117780 aaaggatatt acaaaggata cagattgaac aggcagatgg aagagatgca tgggcaaggt 117840 atgggagagg ggcacagagc ttccatgcac tctccaggtc atgccacct ccaagaacct ctacagattt agctattcag aagcccccct ccccattctg tccttttggg ttttttgtgg 117900 117960 agacticatt atataggcat gattgatcat tggctattgg tgatcagctc aaccttcagc 118020 ccctcatcc cgggaggttg gtgggtaggg ctgaaagtcc caaacgtgta attctgcctt ggtctttctg gtgattagcc ctcatcctaa agctctttag aggccacagc cacaagtcat ctcattagcc ttcaaaagaa tccagagatt ccatgaattt taggcgctgt atgctaagaa 118080 118140 118200 actggctaaa ggccagttgc aatgtctcag gcctgtaatc ccagcacttt gggaggctga ggcaggagga tcgtttcagg ccatgagatc aaaaccagcc tggtcaacat agtgagacc ccttacaaaa aatttaaaaa ttggccaggc gtaatagctc ttgtctgtag tctcagctac tcagaaggct gaggatcact gagccctgga gttgaaggca gcagtgagcc atgatcgtgc 118260 118320 118380 118440 cactgactcc ggcttgggtg acaaagtgag accttgtctc agaagaaaaa ggaaaaaaaa 118500 aaaactgggc aaagactaaa taacatattt cacagtatca cagatttgta tigtctagga 118560 aagtgaatgt aaacagacca ggacactagt atgatccctt ggtttcatga aggtcccact aaagtcatga acacaaagtg agactaggca tcatgttata tggtttttcc agccatgtt 118620 118680 aacagetage taaatageta attgtttege tgeagtttat tttageagtt cettatttta 118740 gcacatttca tgttttaaaa tttctaccaa taacatttta ataaactttt ttacagataa 118800 cttcacaaat ccataatttt ttaagttaca atcccagaaa tagaattgct cattgaaagg 118860 gtatgttcat ttttaaagtt atgctagaaa ctgccaaatt gccttcagaa aaaggtgttt 118920 gtatececae taacactagt gttagtttte ttgtgeeett geteaagtat acatattatt 118980 aaaaacaatg ttgggccagt ttactagata aaaggtgtag tgcctcctta ttctaatcta tttgattact agtgagtatg tatgtctttt cacgttggtc attttatgtt tgttcctttg 119040 119100 tggattgtca tgtcctttgc tcatttttct tttggaacat ttcttagtag tttataagag 119160 ctcttggtat tttaatgata gtaacctttt aactgtcatg catgctgcaa atctttttc tgtttgtttg cctttgtatt ttgtttttgg agggtttcta tgtataggaa ttaaattta 119220 119280 tgttgttaaa tcttttgatt tctgcttttg catatgtact tcaaaagact ttctatttta 119340 agatcaagtg ttacctgtat tttcttttag ttctatttaa aacctcttaa tttatatgcc 119400 tgtgctgtta actcccaagt tgattcacaa gtgtgtatac atagtttgaa tttagtggca atttaattat ttacaacttc ttttgcagca aggatttgtg gagaagatgg acaggtggat 119460 119520 cccaactgtt tcgttttggc acagtccata gtctttagtg caatggagca agagtaagtt 119580 agttcatatt ttcacattgt gcatcctagg gaatttgggt tcattgttag gaatgggctt 119640 cactcagcta aaaacaaagt atttttgaga atttaaatat tttggatatt tacaagatca 119700 tataaagcat actotatott ggttaacagt ttottttaaa tataaattat gtgaactott 119760 aaaattttca ttttcatttt caatgttaat atttcctaag ttaaaataat ttgtttttag 119820 ttctgaaata atttggggag tgattgagtc tgtagtgatt atgactatta gaattggttt atttatttaa ataatgcatg tcttcagatg gctctcctaa tttgttagtt aggctttaag ctaaatggat gctatataac taaatccaca tagatttgtt gaaatggctc cagaggtttt 119880 119940 120000 ttagatttat tactgctatg tgcccttaaa aaaaatctat tcattctttc acttaacatt 120060 tatcagaaga gtgctctgtg taagacgtgg ttaggcatag tgccagtctt gaaggaagtt acagcctaat aaaagacata gggcatgttg tttggttact gtaatatgaa gtggcatgtg ttaaaatgtca ggggagaact acaaagtcat aaaaaggtgg gagagattac atacaggtaa 120120 120180 120240 aggaatcagg aatgacacca tggggagtaa ggtagtgttg acctaggcct ttaagataca 120300 atagggacag tatggaaaga gtatattttt cccacttaaa ctctttcctt ggtcgttccc tcaaattttc ccttttgtcc atgtgcaggc actttagtga gtttctgcga agtcaccatt 120360 120420 tetgtaaata ccagattgaa gtgctgacca gtggaactgt ttacctggct gacattetet 120480 totgtgagte agreetett tatttetetg aggtaaagte tgeatttett tteacactet 120540 attogagoat tocagootot aactatoaat gotggggood tgtotatagg aaataacada gaagagooaa gtoatttooa aaaagatgta toattgttto aagttgttto tgatggoaag 120600 120660 agtaatttaa taatatatta gagagaacat gaaaattcaa tgtattaaat aactctaatt 120720 ttgagaaacc taattaaact actgcatgta agagagtgca tgtttttaat tatttggagc 120780 tattttaaaa ccacagaatt tgaaacttgc ttccagtgca taaattgcag accagacttc agaagagaaa aaaagtagta aatttttct tatgctcatc attttactt tagtcacttg 120840 120900 ataggattgc ccagtgaaga agcatttgca acagacaatg agtatattaa tctttttgag 120960 gcatacagtt tagtataatg ctctttgtta ggcttcaaca agtgaaatta ttttgttgga 121020 aagcaaatga ctattaagta gaaagaggat toccagtoto acaaagcagt aatttagaca 121080

ctcgattctg	cctctttaca	agaatacagg	tactcagttg	atttgttttc	tcactccctt	121140
tctttgctat	aagtttaaat	caacaatttg	tttaggttaa	tatgtcctca	tggaatggtg	121200
gaaatgatca	gatataaaat	atttggtttg	gttagtttac	tctttatatq	tttgctggca	121260
agguaccaca	aatccagttt	agtataattt	ttactctagt	tcactaaaaq	tttgcatcca	121320
actatataga	tagtgtttgt	ttcttgttaa	ctttttttc	gtctaaaaga	atactttaaa	121380
actiticaat	ctcaaatgac	tgtaacttgc	tgacaggtgt	taacagaaga	agtagatett	121440
trattttt	gcttatgacc	tgtattttaa	tatttgaget	tatagattag	ageagacece	121500
agaaatctgt	ttatagtett	attttccctt	ototatttt	tetteetagt	agattgtgag	
agadactege	otosatatot	tacaattctg	attageage	gataacttcc	acatggaaaa	121560
tostossaaa	accordent	atratrosca	greggeagea	gataatttcc	agcoccagoc	121620
taranatar	attatatta	atgatggaca	ggaggcacag	aatgatgeca	tgattttata	121680
tgacaagtga	tacaccya	tagatggatt	cagcagacac	ttattgaaca	tttgatatgt	121740
tttgtggaaa	taaayatyaa	taaactcagt	ccctgttgtc	aaggagetea	caggaggcag	121800
cataaaaget	gettetatat	ggtgtttgta	aagetttggg	ggttettaga	acaaaagttt	121860
ctgctgggaa	aggggaggtg	tatgtggggt	aaacaggatg	gcaatggtgg	tgttcaagga	121920
		tttgtttgga				121980
agaqaaqqca	gaaaacaaca	ttctaggcaa	aggcattggc	ccagaagcca	tggaaacgta	122040
ggggaaagtg	gcactttcaa	gaaacttgag	tttagataat	caaaggagtg	gggaataaat	122100
atgaggatige	tggtactaat	tggaatagat	tgtaagggac	cttgaatgcc	tatttatggg	122160
tatattatac	tttctgtata	aatctgctca	ggcacgttgt	taattagttt	tttattagtt	122220
tteactgass	atgagaggat	ggaaacatca	tacagtaaac	aaaattgaaa	atatctggtc	122280
aggeagatga	tgagcttgtg	gccagctctg	taacgtatgg	tattcttttc	atttaacttt	122340
tettactetg	taaaaaaagt	aattcgtggt	cqqqcacqqt	ggctcactcc	tgtaatcaca	122400
acactttq.iq	aggcagaggc	aggtgaatcg	cttgagccca	ggaatttgag	accageetgg	122460
geaacatgre	aaaacccqcc	tttactaaaa	atacaaaaat	tagctgagcg	tgatggcgtg	122520
cacctattat	cctagctact	taggggcctg	aggcagaagg	atcacctgag	ccttgggagg	122580
teganactae	agtgagctgt	gatccactgt	actccaccct	agacagaga	gragagraag	122640
accetatete	caaaaaaaa	aaaaacaaca	aaggtaattt	gttatttgta	teettaagea	122700
aatgctaaag	gagtaacttg	gggatagaga	aaagtccaca	gatattaga	tttgaagea	122760
ctaatagtat	ctaggccagt	ggttcctgaa	cattagtctg	tagactatta	ctogaagaca	122820
tocatagoaa	tcacctgaga	gcttattaaa	aataggtttt	caggeteets	acceptacete	122880
acceptataa	teccageact	ttgggaggct	agaacaaaca	caggeeggee	geggeggeee	122940
traanarran	cctagcaec	atggtaaaac	cccatctcta	gaccacciga	agecaggege	123000
caddcatdat	occacacaca	tgtaatccca	actactcaca	Pagatasaga	aagaactagc	123060
ctcgacccc	ggedededee	attaceatae	gccacccagg	tacasataas	aggagaattg	
cccgageeeg	ggaggcggag	gttgcagtga	geggagatea	rgecaetyca	crecaggerg	123120
cootcasts	agagaccccg	tctcagaaaa	ttaaaaaaaa	ataggtttt	agtetgggta	123180
ccggcggctc	ttasassata	tcccagcact	regggaggee	aaggcaggca	gatcacttga	123240
ggccaggage	regagaacty	cctggccaac	acagegaaac	cttgteteta	ctagaaacta	123300
Caaaaaacta	actgggcatt	ttgacgggtg	cctataatee	cagetactag	ggaggctgag	123360
gcaggagaat	tgettgaace	cgggaggcag	aggactgcat	ctcaaaaaaa	aaaaaaaaa	123420
aaaggtttee	agteeeetg	tctcagaaat	tctgattctg	caggtttgag	gtgtgaccag	123480
gaatettat	ttttagaaga	cataccagat	aattctgata	aatagccagt	ttagggatgt	123540
agtctaattt	tectattttg	caagtaagga	aaataaggcc	cagagaggta	atgattttct	123600
caaagtcaca	gaacaagtta	gtggcagaat	ttggactgga	atgcagttct	taatgttctg	123660
tccagtgttt	attctggtac	agtatgtttg	tagaaggtat	tacgtaagaa	acattgttat	123720
atagatgttg	agataggaag	agtttacatt	tagaaatttg	gtctaaaatg	cctgaacatt	123780
caagtcgtgg	aggagtattg	accaacttac	tcaatacaac	ataggagatt	cacattttgt	123840
tacaaaaatg	ctgatttaaa	aggagagttt	tcttttttt	cttcttttt	attttttgag	123900
atggagtett	gctctgtcac	ccaggctaga	gtgcagtgac	acgatctcag	ctcactgcaa	123960
cctccacctc	ctgggttcaa	gcggttctcc	tgcctcagcc	tcctgagtag	ctgggattac	124020
aggtgggggc	caccacgccc	agctaatttt	tgtattttta	gtagagacag	ggtttcacca	124080
tgttggccag	gccggtcttg	aactcctgac	ctcaagtgat	ccacccacca	ctgcctccca	124140
aagtgctggg	attataggcq	tgagccactg	tgcccagcct	gcttgttttt	gtatcatata	124200
tatgcatcat	cataatcatq	cattatcaac	ctttgtattt	ctgtcaggac	atagaaacca	124260
ttagagtgct	tggaagagag	ccttttttt	tttctcgcat	ttaatocttr	ttttggtatt	124320
catttcataa	tcagcttacc	aaaacattac	ctgcattata	cccatcase	gtagaaatct	124380
ttgtgttatc	aatattggtt	actccctttc	cacaccgagt	catcagtaag	tectatteta	124440
tccaaatagg	tcatatgcat	ctagctcacc	cctcagtgct	atttattt	gaatttgtac	124500
atgtttactc	ctgatgcctt	gtagttatga	tgatgtgttc	ttattttatt	Ctatacatac	124560
aagttctcag	ctcacttttt	agggaaaatg	accatetet	CCtttcctat	apatteett	124580
ctatctatca	agtoctoaac	agagaatagg	tacccatasa	tatotoste	ttagtttgtt	124620
		-3-3-4-699	Lucciacaa	Lacycyatic	ccagetteet	14300V

tgcctcagtt gtagtctgat ccttacagct tttaaacaac agtagagttc accgtcaaga actaaggatg gttggcaggc agatagaaag gtagcaagtt gacccaacta tctctgggga agtgggaaca aagaaaggtt acatcagcac tgtcatcaca tagctctata gttctaggcc 124860 tgcaggetea atcaagtage ettgtataag attetetgga ggaggtgetg aaagttgett 124920 atacttgcta tggaatttga ttttacttcg gatatctttt taccataggt acttctccct ccaagccaca catcctcttg gatttgatga tgttgtacga ttagaaattg aatccaatat ctgcagggaa ggtgggccac tccccaactg tttcacaact ccattacgtc aggcctggac 124980 125100 aaccatggag aaggtaaccc agaacttcaa acgtatcaaa ctacaagaag tittatiggt 125160 agaactcata aaatataagg tgggaaaacc aagcagaata gcacagtgga aattgaagca 125220 gtccagcaaa gtgattaaga gcagaggcct tgagtctggc ctggtatgta cagtcacgtg 125280 ccacataaca ttttagtcaa cagtggactg cgtgtacgat ggtcctgtac gattataatg 125340 gatcaaagct ggtagtgcaa taataacaaa agttagaaaa aataaatttt aataagtaaa 125400 aaagaaaaaa gaaaaactaa aaagataaaa gaataaccaa gaacaaaaca aaaaaaatta 125460 taatggagct gaaaaatctc tgttgcctca tatttactgt actatacttt taatcattat tttagagtgc tccttctact tactaagaaa acagttaact gtaaaacagc ttcagacagg 125520 125580 tccttcagga ggtttccaga aggaggcatt gttatcaaag gagatgacgg ctccatgcgt 125640 gttactgccc ctgaagacct tccagtggga caagatgtgg aggtgaaaga aagtgttatt 125700 gatgatectg accetgigia ggettagget aatgigggig titgiettag tittiaacaa 125760 acaaatttaa aaagaaaaaa aaaattaaaa atagaaaaaa gcttataaaa taaggatata 125820 atgaaaatat ttttgtacag ctgtatatgt ttgtgtttta agctgttatg acaacagagt 125880 caaaaagcta aaaaaagtaa aacagttaaa aagttacagt aagctaattt attattaaag 125940 aaaaaaattt taaataaatt tagtgtagcc taagtgtaca gtgtaagtct acagtagtgt acaataatgt gctaggcctt cacattcact taccactcac tcgctgactc acccagagca 126000 126060 acticcagic tigcaagete catteatggt aagtgeeeta tacagatgta ceattitita 126120 tettttatae tgtattitta etgtgeetit tetgtatttg tgtttaaata cacaaattet 126180 taccattgca atagtggcct acgatattca ttatagtaac atgtgataca ggtttgtagc ccaaaagcaa taggttgtac catatagcca aggggtgtag taggccatac catctaggtt 126240 126300 tgtataagta cactotgtga tgttagcaca atggcaagca gcctaacgga aattotgttt 126360 attgattgat tgattgattg attgattgag acagagtttc actccattgt ccaggctgga gtgcagttgc acagtcttgg cacactgcaa cttctgcctc ccaggttcaa ccaattatcc 126420 126480 tgcctcatcc tcccaagtag ctgggattac aggcaggcac caccatacct ggctaatttt 126540 tgtattttag tagagacagg gtttcaccat tttggccagg ctgttctcga actcctgacc ttaagtgatc tgcctgcttt ggcctccgaa agtgctggga ttacaggcat gagctaccat gcctgggcag taactgaaat tctctaatgc cattttcctt atctgtaaag tgacgataat 126600 126660 126720 atgcacgttt acctcaaagt tactttgatg attaaagtaa ggtaatgtat ataaaataca 126780 tattaacata gtacctgaca catggtaagc atcaaaaaat gttaactact tttattacta 126840 ttattattac gtattttaa ataattagag agcagtatca aaaattagct gggcgtagtg gcatgcacct atagttccag ctactcagga ggctgaagct ggaggattgc atgagcctgg 126900 126960 gaattaaagg ctgcagtgag ccgtgttcat gcccctgcac tccagccttg gtgacagagc 127020 aagaccetgt ettgaacaat taaagaagge attatgeege aaegttaget tagaaatgat ceacatatat caccagtaac tgtcaacagg attggaacce tagttttggg tattatgate acaaggtatt attaataget tattaataat aaagegttgg etaggeacgg egacteacat 127080 127140 127200 ctgtaatccc agcactttgg gaggccgagg tgggtggatc acctgaggtc aggagtttga 127260 gaccagcetg accaacatgg agaaacccca tetetactaa aaatacaaaa ttageeggge gtggtggtgc atgeetgtaa teecagetae ttaggagget gaggcaggaa aatetettga 127320 127380 accegggagg cagaggttge agtgagetga gategeacea ttgcaeteca geetgggcaa 127440 caagagcaaa actccgtctc aaaaatataa ttataataaa taaataaaag taaagtattg 127500 atgtttgtga atgatttatt cttctaatga actagaggag atttttccag gaatttcaga gccagtgagg ttatgttgct tgtatgtgtc atgtgtatcc aggtgaaaaa acttaattaa 127560 127620 acgctattat ataataccat acataaaaac tgaattttag gaatactgaa gaatgacata 127680 tagaagtcaa atcattaaat agctagtagt aaacagaata gagtgtcagc tgttacccaa 127740 tgatgataat attttcacga ttaaaattaa accttttctg attttaaagg aaaagttcag atctgtatca tataaagaat gtaaattttc agggtaataa aattaaaatg cagagagaa 127800 127860 aatgcaaaaa tagttottao tagatgtgtg tatgtaagga acttagacta attttaagaa 127920 cactgtcaag accetggtag ttaggtagga aaaaagacat gaatgattca ttcaacaaaa actttgagta tttctgtgct agatggtagt gttacagtgg taaacaaaat aaatgtgttt ctgctatcct ggagettagt ctacaaaaaa ggtacatatt ggccgggcac ggtggctcac 127980 128040 128100 gcctgtaatc ctagcacttt ggaagatcga ggcgggtgga tcacctgagg tcaggagttc 128160 aagaccaget tggccaacat ggcgaaacec cgtetetaet aaaaatacaa aaattaactg 128220 ggtgtggtgg cggacacctg taatcccagc tactcgggag gctgaggcag gagaatcact 128280

	tgaacctggg	adacadaddt	tecagtgagt	coadatcato	ccactgcatt	ccagcccggg	128340
	C20C2233	agacagagge casasatacat	ctcaaaaaa	. caaaaacaa	caactgeace	acgtattaaa	
	ggacaaaagc	gaaaatacgt	CLCaaaaaaa	Caaaaacaa	Caacaaaggc	acgtattaaa	128400
	tacgaacata	aatatttaca	aattatactg	aataagttet	catgittati	atttgcttgt	128460
	ccagttacaa	acttttcctt	. cgtagaatta	gaaatataaa	taataaacat	gagaactcat	128520
	tcagtataat	taataattat	taaatgtaaa	taaaaacatc	tatgtacaat	taggcattta	128580
	tttaagaatt	atttgaaaaa	aaaacaatgt	ggaaacagat	attttgatat	attgctagtg	128640
	attgaaattg	ataatqttct	tttgaagagt	aaagtgacca	tatatattaa	agttaaaatt	128700
						aagtaaaatc	128760
						ttcaaattat	128820
	atcctatoga	ctattttcto	ctaaaaagta	ttaatatcaa	Ctttatata	tactttcgtg	128880
	acasatatt	tagagagaga	220002250	aattacatgo	attetaatt	ttttttttt	
	rtttttt	cygygyayaa	aacccaacaa	aactacatge	tassatas		128940
	tocctccca	gacagicity	cccagcgcc	caggerggag	rgcagrage	caatctcggc	129000
	teactgeaac	Ctccatctcc	caggttcaag	caatteteet	gcctcaggcc	tcccgagtag	129060
	ctgggattac	aggcgctcac	caccatgcct	agctaatttt	tatagtttt	agtagagatg	129120
	gggtttcatc	atgttggcca	ggctggtctt	gaactcctgg	tctcaagtga	teegtetgee	129180
	teggeeteet	agagtgctga	gattacaggt	gtaagccact	gcacccagcc	ttatgcatta	129240
	taattttaat	ttgtaaactg	tacaaaggga	taatacttgt	agtacaacaa	gaagtaaaaa	129300
	catttqttat	aggtagttaa	catttqtaac	caqtaqaatt	ataggtaaaa	tttatttatt	129360
	taaaacagtt	ttagttggat	ttgatttcaa	ctttaaaata	atgettttea	tctctatcag	129420
	atctttttac	ctaactittt	gtccagcaat	ctttattata	aatatttgaa	tgatctcatc	129480
	catteggtte	gaggagatga	atttctgggc	aggeacatat	cactaectae	tectectet	
	attageeste	ctcatcactc	tereceggge	aggaacgcgc	catchacta	*****	129540
	actosttocc	tetaceatta	ccacccaggg	agticigaca	getetgegte	tcaggtattg	129600
	actgattgcg	tetgecatta	gggagaaaag	catacacatc	CLECCETCA	catcccagta	129660
	acagateeta	ttatttgtaa	attttaagtt	gtggaaaaaa	aagataaaag	ccaggcacag	129720
						acacgaggtc	129780
						aaatacaaaa	129840
	attagccggg	catggtggca	ggcacctgta	atcctagcta	cttgggaggc	tgaggcagga	129900
	gaatcgcttg	aacccaggag	gcagaggttg	caatgaacca	aaatcacgcc	actgcactcc	129960
	agcctgggtg	acaaagtgag	actgtgtctc	aaaaaaaaa	aaaaaagaga	gaaataaaat	130020
	tagcctactt	actatcttct	aatcaaagca	tttqtqqtaa	cttaaaatat	actgtattgt	130080
	aaagtatcat	gctgtttcat	ttaggccatt	attctattto	aatctgtggc	tatttctctt	130140
	aataaatcaa	gtaatatgga	atatattcat	agectetgaa	gagetettta	totaagtatt	130200
			aaataagtga				130260
			cgctgcaacc				
	ccacagagac	ctgaataget	cgctgcaacc	cggaaacccc	gggcccaaac	aacccaccca	130320
	atttttt	cegaacagee	gggactagag	gcatgcacca	ccacgcctgg	CLaattigaa	130380
	22222222	ggccaggcat	gatggttcac	geetgtaate	ccagcacttt	gggagaccga	130440
	ggcaggcaga	LCacgaggtc	gggagatgga	gaccagcctg	gccaacgtgg	tgaaaccccg	130500
	tetetaetaa	aaatacaaaa	attagctggt	tatggtggct	catgcctgta	atcccagcta	130560
•	cttgggaggc	tgaggcagga	gaatggcttc	aaccagggag	tcggaggttg	cagtgagccg	130620
•	agatcacgcc	actgcactcc	tgcatggtga	cagagtgaga	ctccatctca	aaaaaattt	130680
٠	ttttttaaa	tgatggagtc	ttgctgtgtt	gctcaggctg	gtcttgaacc	cctgacctca	130740
į	aatgccgcct	gcttcagcct	aagtttcttt	tttttttgta	aagagacagg	gtcttgctat	130800
9	gttggccagg	gtagtctcaa	actcctggct	tcaagcagtc	ctcccacctt	ggcctctcaa	130860
	agtgctggga	ttacaggcgt	gaaccactac	ctataatgtt	gtgtttcact	caaggccttt	130920
1	tgatttcgtt	ttgcattacc	gtgccacatt	gtgcatttcc	ttgacctttt	ttagatttt	130980
1	tagagtactt	tcatatotta	aaccatacct	gatteteete	aaaatcacac	2227527225	131040
:	atcctaagac	aadaaatcta	accountate	3363361133	ctccttttt	taagtagaat	
•	cactaaatca	tagaaaccca	aggaggcata	ttetettet	ctggtttat	Ladactcaca	131100
`	cagtaaatga	tagagecaga	aatattcccc	Lictagigii	Cttcaccatc	agettaatgt	131160
•	aycalaalaa	LLLLCCAALL	actgttgaca	aataaataac	cctttgaatt	ttcaatactg	131220
9	gccttggat	aaattttcct	aatttgtaag	agagtattat	cgtattgcca	tttacaaagc	131280
1	tctcctgagt	atctttttct	tctgttaagt	ttacctagga	gataaactgc	tgagtatggt	131340
1	tgccattttg	gttttttgat	ataggttaga	atgtcttggt	tttttttt	ttttttttg	131400
ć	gtttttgttg	ttgtcattgt	ttgagacagc	atcttgctct	gtcgcccagg	ctggagtgca	131460
ĕ	atggcacgat	cgtggctcac	tgcaacctcc	acctcccqqq	ttcaaqcaat	tctcctacct	131520
(	cagetteetq	agtagctqqq	attacaggca	tatacaacca	cacctgggta	attttatat	131580
ŧ	tttagtaga	gaaggggttt	caccatgttg	atcagectee	tattgaactg	ctgacctcat	131640
c	raticeacete	cctcggcctc	ccaaagtgct	gggattgg	acatasacca	ctacacatac	
i	tgaatgtct	tatttttat	taggcactta	22222222	acctactace	cataaaatat	131700
;	atttttatac	cttttctta	taggiacita	agaaaggcct	aggraciaac	tacadatat	131760
	zacetterac	antettere	tactatatat	acagaaaact	gcacttatca	taaccttaga	131820
۰	actitigaag	aatgiccaca	agcagaacta	acccatgtga	cccagcatcc	agatcaaaaa	131880

cagcattato	agcccctcta	a gaagccctct	tgggcccctt	ccattcacto	tecttettat	131940
caccagggta	a gctactatco	: tgacttttga	a tggcatagat	tagcattacc	tattettate	132000
attttataaa	a taaaaccata	a ctgtgtatto	: ttttcttgta	cagctttatt	gtgctaattc	132060
acatttacat	: catacaatto	: agtggtttt	: atatggtcac	aqaqttaqqt	aaccattacc	132120
acatcgattt	: tagaacattt	ttttcactco	agatagaaac	cccctttact	taaactccaa	132180
atcccccact	ccaccagccc	: taggcagcca	ctagtctact	ttttatctct	atagagacaa	132240
tagatttgct	: tattctggac	: atttcataaa	catggaacco	l tatattatgt	ggtcttttar	132300
tgccaactgt	: ctttcactta	gcatcatgto	, ttcaaaaqaq	r catcatatta	tccatgfffg	132360
gcatgtatca	gaattttatt	cctcattate	, gccaaatatc	ccattqcaaq	gatttatgac	132420
attttatttg	, aattgtaccc	: tcctttctqc	: catttatcaa	. taatgctact	gtgaccattt	132480
gtgtacaagt	ttttgtgtgg	, atacaggttt	: tctttttgtt	tttaaatttq	aggtggagtc	132540
ttgctctgtc	: gcccaggctg	, gagtgcagtg	gcacaatctc	ggctcactgc	aacctctgtc	132600
teetgaatte	: aagcagttct	cctgcctcag	, cctcccgagt	atctgggact	ataggcacgc	132660
accaccacgo	ccagctaatt	: ttttagtaga	gatggggttt	caccatgttg	accaatctaa	132720
tetegaacte	: ttgacctcaa	gtgatccacc	: catctcggcc	tcccaaagtg	ctgggattac	132780
- aggggt gagc	cactatgccc	ggctgtggtt	ttcatttctt	ttqttqtata	tacataggag	132840
- tugaattget	gagtcaagag	gtaactctta	aacttattga	aaaactgcca	gattgttttc	132900
cgauaayqct	gcaccatttt	gcaatcccac	cagcagtgta	tgagttttac	agcttctcca	132960
catttcuttg	gaacttatta	tctgtttggc	tgtttttaaa	aatqataqtc	attccaataa	133020
gttetactic	agtgtggttt	ttgcacttct	ctgatgagta	atgatgttga	gcatctttc	133080
attigittat	tggcctttgt	tctagctttg	gaaaaatgtt	tattcaaatc	ctttggccat	133140
tttuttt	atttttattt	atttatttt	ttttgagacc	aagtctcact	ctqtcaqcca	133200
-ggctg mgta	caatggtgtg	gtctcagctc	actgcaacct	ccqcctcctq	tattcaaata	133260
attetectge	ctcagcctcc	cgagtagctg	ggattacatt	tcaggcacct	gccagcatgc	133320
cgggctyatt	tttgtatttt	tactagtgac	agggtttcac	catgttagcc	aggctggtca	133380
caaactcctg	acctcaggtg	atctgcctgc	ctaggcttcc	caaagtqctq	ggattacagg	133440
egtgagecut	tgggcccagc	ctagattttc	ttttttctt	tttttttqa	gaaggagtct	133500
tgctcttgtt	gcccaggctg	gagtgcaatg	gcacaatctt	ggctcactgc	aacctctqcc	133560
teetgyytte	aagcgatttt	cctgcctcag	cctccccagt	agctgggatt	acaggtgcct	133620
accaccacac	ccagctaact	tttgtatttt	ttttagagac	agggtttcac	catqttqqcc	133680
aggetggtet	caactcctga	cctcaggtga	tccacctgcc	ttggcctccc	gaagtgctgg	133740
gattaccggc	atgagctacc	aggcccagcc	aattttctca	ttatattqcc	caggetggte	133800
tcaaactcct	gggttcaagt	gatcctcctg	ccttggcctc	ccaaagtgtg	gggagtacag	133860
gcgtgagcca	ccttgctcag	cccctttgcc	catttttaaa	ttagattgcc	tttttatatt	133920
gagtttcagg	agtcctttat	atattctaga	taaatgtccc	ttatcaaatt	atattatttc	133980
caggtattt	cttcattctg	tgagttgtct	ttcctctacc	ttttaaaaaa	ggtgggtttt	134040
tgtttgtttg	tttgtttgtt	tttttaagat	aaggtctcat	tetgetgece	aggctggagt	134100
gcagtggcac	aatcacagct	cactgccacc	tcaacttcct	gggccgaagt	gatcctctta	134160
ctteageete	ctgaataget	agggccatag	atacacacta	tcacacccag	ctttttttt	134220
cigitigtag	agacagatet	tactgtgttg	cccaagttgg	tctcaaactc	taggctcaaa	134280
gtgattetee	cacciciged	tcccagagtg	ctgggattac	aggtgtgagc	cacacgcaac	134340
cogcoccac	actattaata	gratetteet	gcttcagcct	cccgagtagc	tgggattaca	134400
atottores	accatgeetg	gctaattttt	ttgcattttt	agtagagaca	gtgtttcacc	134460
atgeteacee	ggetggtett	gaactcctga	cctcaggtga	ttcacctgcc	atggcctccc	134520
ctattetet	gattatagge	gtgagccact	gcacccggcc	aaaatattgc	cttcttaaca	134580
tcaccacaaat	tttataatt	aacatggatg	tatcttcatg	tatttatgtg	ttctttcatt	134640
tatottttaa	attetttee	ccagagraga	agcctttcac	ctccttgggt	catttattcc	134700
agattotto	atgagagag	attocattat	aaatagaatt	gttttcttaa	tttcattttc	134760
tcaactttga	taaatctcat	tattaaatat	aagtgatttt	tacatgttga	tcttgcaact	134820
tcaatatata	agatoatoto	attatement	aatagttttc	Ligiggatte	tttaggattt	134880
cacaccaata	atgactage	attacasasas	agagatagtt	tetetetegg	ctagaactta	134940
agggaaagct	ttcagtttca	tratttaata	caaaaatctt tgatgttagg	tataaatta	cctatctgac	135000
ctttttcac	attcaccaet	ttccctatca	ttcctgattt	tttaagettt	caataaatgc	135060
ttaaatcato	aaagggtgt+	gaatattete	atgttctttc	tatata		135120
tatagarttt	agattt+++	ctattastat	gaaatattaa	ttanttt-	Laaatgatcc	135180
caacettoca	tacctgagat	gaatctcact	tggtcatggt	gtataatet	gatgttaaac	135240
tactagatte	catttactcc	tattttcttc	aagattttgt	graradecte	ttcaatatgc	135300
atttacactc	tatcagaaat	gaattgacca	taaatgtgag	acceydacge	traagataac	135360
attetettee	attccaaaga	tagacataca	tccgtctgta	tatatatat	raggetettg	135420
		gucacaca	cccycccyca	carriaress	Latyccagta	135480

ccatactctc ttgattacta ttgctttgta ataagttttg aaatcagaaa gtataaatga 135540 gattttggta totgagtaac agtootoata gaattagttg ggaaatatto cotottatt otggtoooto tttottttt gtttaactgt gtatottgga gattgttoot totoacaca 135600 135660 tgagagege tttecetace eteceacece tgetatagag aggtetataa gtgtetgtte 135720 aattatttta tttacttaac ctattactta gtcggggaca ttaagcttgt ttatgtcttt 135780 tattttaaac aatgotgoag tgaataatot tgtatataag toattttoca toaatataag totototgta actgaatttt tagaagtgga atttotaggt caacctatgg ototgtattt 135840 135900 cacaaaaata ccaattotgg tttttcttgt ggaggtgggg agtaggaggt agaatgctgg 135960 aggagaactt getgtaetea getggetagt eattitagaa aggttteett agettettit 136020 tgtcatatgg cctcaccaag aatcaaaaac attcctattt accctgtaaa catggggctt 136080 tactacccaa gatacatatt totggatgta tgacagottt toatattgaa gaaataatgo 136140 tgtgagtaca gcacatttgt tggaacttag gtcgttaaga atgtcttata aattcataca 136200 ttatacattt tattttattt tattttttag tttttgatac agagtcttcc tctgtcgccc aggccagcgt gcagtggtac aatcttggct cactgcgacc tccatctcct gggctcaagt 136260 136320 gatteteatg teteageete cagagtaget atggttacag geatgeacea ceatgeegg etaattttt tattttagt agaaactggg ttteaceata ttgaceatge tggeetegaa 136380 136440 ctcttggcct caagtgatcg gcctgcctca gcctcccaaa gtgctgggat ccttgtattg 136500 ggtaaaagat gaatattgag ggctgcatgg tggctcatac ctgtaatccc agcactttct gagactgagg tgggaggagt cctggagccc aggagggtga ggctgcagtg agttgtgatc 136560 136620 graceattge acticaacet aggaattata ggetteagte actgigeeeg geatgtacat 136680 tttaatattg tgctttcctc ttttagctat agtatgaggt tacatttcag agtcattgtt gttaagcatc ttaatagtga tgaggttgag tgaaagttac ttctatttca aacactgaag 136740 136800 assattttgt acaaatctgt cacattccaa gcccaggact gattgtttca tatacttcta 136860 attitacaat tictatigia giccagigig aaaaaagcca giattaaaat acigaaaaat 136920 tttgatgaag cgataattgt ggatgcggca agtctggatc cagaatcttt atatcaacgg acatatgccg ggtaagctta gctcatgcct agaattttta caagtgtaaa taactttgca 136980 137040 tottttaaat titttaatta aattttacat tittttctaa totattatta tatgoocaga 137100 actttcactt agagtgtgca gtataatgtg gtggttaagt ataaaggctc tggagtgact tcctgggttt taatcttggc tctgccattt attggcagcc gctaacctct tggtatctca gtttcctcat ctgtaaaatg agaataataa agtgaaaaga tgccaacatc atttactctg 137160 137220 137280 gyctgcataa ctgatacttg gaaaaagtat tcctttgagt ttaagaatta agttggttat tcattttagc ttgtaataaa aagatagtga ttcataggat atgccactta ctgaaattta ccacagatcc aatcataaaa tcactttctc ttccctaaag atagcttgat taacatgtaa aggttgtaa aggctgatt acactaccct gatccgtacc ccagttccca gcagcaccat 137340 137400 137460 137520 gaaaaaggga tttcaacata tttaattact ttcagtagaa agtaacagtg gtaggccagg 137580 cgcagtggct cacacctgta atcccagcac tttgggaggc cgaggtgggc ggatcacgag gtcaggagat tgagaccatc ctggctaaca cgatgaaacc ccgtctctac taaaaataca 137640 137700 aaaaattagc cgggcatggt ggcaggcacc tgtagtccca gctacttggg aggctgagac 137760 aggagaatgg cgtgagcccg ggaggcggag cttgcagtga gcttagattg tgccactgca ctccagcctg cgcagtggag cgagactctt gtctcaaaaa aaaagaaagt aacagtggta ttgggagact gaggagccta gaaagtactt gaaggaagta aaaggtttgt ttgaccacat 137820 137880 137940 tgtatttgga aagccagctt tttcagctgt gtcagctttg tgtagtgait tttagttctt 138000 cttttagaaa ataacggaca aggccgggca cggtggctca cgcctgtaat cccaccactt tgggaggccg agacgggcgg attacctgat ctcaggagtt cgagaccagc ctgggcaaca 138060 138120 tggtgaaacc ccgtctctac taaaatacaa aaagttagcc gggcgtggtg gcgtgtgcct 138180 gtagtcccag ctactccgga ggctgaggca ggagaattgc ttgaacccgg gaggcggagg 138240 ttgcagtgag ccaagatcac accattgcac tgcagcctgc gcgacagagt aagactctgt ctcaaaaaat aataataaaa taaaaaagaa tggacagtaa acctaaatga gttcattccc aaagatgatg ttattcttaa gggatggttc atttatttaa gaccttacat aaagtctatc 138300 138360 138420 aattgcgtga tttttcactt ctgtaattgt gtgtatgtat aatgtaaata tatatgtttt 138480 tgttttgttt tggttttttg agacggagtc tcgctctgtt gctcaggctg gaatgcagtg gtgcaatctc agctctctgc aacctctgtc tcccaggttc aagcgtttct tctgcctcat 138540 138600 ceteccaagt agetgggaet acaggeaegt gecaceaege ceggetaatt ttttgtattt 138660 ttagtagaga tggggtttca ccgtgttagc caggatggtc tcaatctcct gacctcgtga 138720 tccacccgcc ttggcttccc aaagtgttgc tattacaggc atgagccacc acacccagca tgtattttt aaatgtataa aatgaagcag aaaagagaaa tgataatttt tcttcatctt 138780 138840 gaaagattat cttcaccagg cgcagtggct cacacttgta atcccagcac tttgggaggc 138900 eteggeagge ggeteacttg agttegaaac cageetggee gacatggtga aacteegtet 138960 ctactaaaaa taaataaata aagatggttt taatatatgt tttagtttta tgattttagc atctttctga aatttttctc aaggcaagta aatttgtatc agttggtata ttggtacca 139020 139080

WO 01/27857 PCT/US00/28413

#### 55/122

totatqaaat aacttattag gaagatatot otaaaataag atcactttgo otaaaataaa ctgatatatt gatgttcaca gaatttttct tttaaccgac ttgataaatg cattattctt 139200 gacgtcaagt gatccacctt cctcagcctc ccaaagtgct gggattacac acatgagcca 139260 ecgcacctgg cattattett ataaaaggtt aaatttetag ttaagtttaa tgteetettt 139320 gttcatgtac cattgcttat tttcttccct tcctactcac agtaatcatt cttatggtat 139380 gcacttttgt ttgcttattt ttatgtaatt gatattacgc tccattctgt acgttgtact 139440 ttcattcaca gtgagttttg gacattccta tgttcatcta tacagactta cttcatttta actacactgt agtattccgt atgtaatatt tactataact catcactgta gcagagcatc 139500 139560 tcatagtgta tgtattactg ttttgccatt ttggtatcaa tgagtattta agtcatttgc 139620 agtttttccc tcttataccc agtattacag aggatctctt tttatatgct tctttgtacc 139680 139740 tcactatgtt gcccaggctg gtctcaaact cctaggctca agcaatcctt ccatcttggc 139800 ctcccaaagt gctggggtta caggcatgag ccaccatgcc tggcctacat tttaaatttt 139860 gatagetett acaatttaet tigtaaagta tetgeateat titatgitet caccagtett taataagaat acticataet titiggetgga cacagtigget cacgeetgta ateccageae 139920 139980 tttgggaggc cgaggcgggc agatcaagag atcgagacca ccctggccaa tatggtgaaa 140040 ccctqtctct actaaaaata caaaaattag ctgggcgtgg tggcgcaccc gtagtcccag 140100 ctactcgaga ggctgagaca ggagaatcac ttgaacccgg gaggtggagg ttgcagtgaa cttagatcac accactgcac tccagcctag caacagagtg agactctgtc tcaaaaaaaa 140160 140220 aaaagaatac ttcaqactta atttttttc cagtcttaag tgtttgctaa tgagattgag 140280 tttcttttgg tatgtctctt gattgttcag gttttttctt ttatgaattg actgttcatc tcttttcac attattctg ttgggtgatt ttattagtga cttgttaaaa ttctgtatat tttttcagca tgacacttca ttattcaaaa aaaaaaaaag attctctatg tttctcgata 140340 140400 140460 ctaatcattg gttggtaata ccttaaaaat aagaccctta ctgtattttt tgctttttt 140520 ttttttttt tttttttt tttgagatag agtcttgctc tgttgcccag gctggagtgc aatggtatga tctcggctct cagctcactg caactgcaac ctctacctcc ctgtttcaag caattctcct gccttagcct cccaagtagc tgggattaca ggcatccacc accacacca 140580 140640 140700 gctaattttt gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa actactggcc tcaagtgatc cgcctgcctc ggcatcccaa agtactggga ttacaggcat gagccacagt gcctagccac tttttgcttt ttaactttgt tttatagtac tatagttta 140760 140820 140880 gtataaacag atgtatgtat acacacaact atggctttat aatatgtttc agtcattgtt 140940 agagcaaggc ctaccttttg ggtgcttctt ttacaaaatt gtcttggcta ttcttgtgcc ttttttctta tttgtgaatt ttagaattgt gaattacctg ttgactcacc atgttttgta aactgaggat tttgaatgga attgcactca attaaagatt atcttgctt ctgtgcagca 141000 141060 141120 atotttatt tcaaataatc cctactttaa attacttagg atagctataa attgtgtttc 141180 tggctttcta gatttagatg aaacgcttta aattgattgt tttctcctaa atttaaaact 141240 gattgttaga agttaaagtc ttctgttcat tcttatttag gaagatgaca tttggaagag tcagtgactt ggggcaattc atccgagaat ctgagcctga acctgatgta aggaaatcaa 141300 141360 aaggtttgtg gtgtttttat acttcatatt aagcctttac tcacattagt gattgactgt 141420 aagtcaaaga ccacttaagg tttaaactgt ttattttgta aagtaaccac tgtatctttc 141480 accttgtgtt tatagtcaga agtaagtaca agggcttcct gtagtcacat ctttatgcaa 141540 totoctotga atcaaaagtt agtgaacttg otttgccact ccagaaggca catgaatatg 141600 aaaaagcatt gtctattttc ttatttaatg gcaaaatacc cgacctaagt tggacttaat 141660 gtttgagacc gtttatttta ttaaattata ttttttctct tttcttttt ttttttgaga 141720 cagticitge tetgteacec agaceggagt geagtggtet gacegeacet caetgeaace tetgetteet aggtteaage gattteetg ecteateete etgagtaget gggactacaa 141780 141840 gtgcgcacca ccacacctgg ctaatttttg tatttttagc agagatgagg tttcaccacg 141900 ttggctaggc tggtctcata ctcctgacct caagcaatcc atccgccttg gcttcccaaa gtgctgggat tacaagtgtg agccaccatg cctggcctta ttaaattatt tttattaaat 141960 142020 ttcctcaaga ttgatgaaag taatgaaata taaaagtaat gaaatatatg tggaaaatag 142080 actggattaa gaaaatgtgg cacatataca ccatggatac tatgcagcca taaaaaagga 142140 tgagttcatg tcctttgtag ggacatggat gaagctggaa accatcattc tgagcaaact gtctcaagga tagaaaacca aacaccgcat gctctcactc ataggtggga attgaacaat 142200 142260 gagaacactt ggacacaggg tggggaacat cacacgctgg ggcctgtcgt ggggtggggg 142320 gctggggag gaatagcatt aggagatata cctaatataa atgacgagtt aatgggtgca 142380 gcacaccaac atggtacatg tatacatatg taacaaagct gcacgttgtg cacatgtacc ctagaactta aagtataata aatttaaaaa aaataaatat atgtggaaaa tattaatagg 142440 142500 tcaaaattca aattgttcat ttaatcagaa gagtagttta gtcaaatcca agggttagac 142560 aacagaaatc ttttttgtca agtgcattct ttgtgactga tttcattttc ttcctggttt 142620 acacaggaag atttcagaaa caaatgtgga tccgtgacag atggtatcta gaagttttta

gtttggttga attgacagta ttttattgag taaaagatac taatttttgt aagaagaaaa attcaatttt gataagtatg tttaagatta agagctattg gccaggcgct gtggctcatg cctgtaatcc tagcactttg ggaagctgga gcaggtgggt cacgaggtca agagattgag accatectgg ccaacatggt gaaaccctgt ctctactaaa ttagccaggc gtggtggcac atgeetgtge accegeetee gggtttaage gateetactg ceteaggete etgagtaget caaagtgctg ggattacagg catgattcac catgtctggc catttatctt attttctttt ttttttttt ttttgtttga gacggagtet tgetgtgteg cecagagetg gagtgeaatg gtgegatete ageteaetge aacetetgee teetgggtte aageaattet cetgeeteag tetteeaagt agetgggatt acaggegett gecaceaet etagetaatt tttgtattt tagtagagac agggtttcac catgttggcc aggctggtct cggaactcct gacctcgtaa tetgeceace teggeeteec aaagtgetga gattacaagt gtgageeact gtgeceagee atcttatttt ctttctttt ttttgtcggg tgggaggggg acagagtcta gctctgtcgc caggcttggc tcactgcaac ctctgccccc caggttctag caattattct gcctcagcct cccaagtage tgggattata ggcacetgee accaegeetg getaattttt tgttattttt agtagagatg gggttttget atgttgacea tgetggeete aagtgateeg eccaeettgg cctcccaaag tactgggctt acaggcgtga gcttgtattg ggtaaaagaa caatattggg ggctgcatgg tggttcatac ctgtaatctg agcactttgt gagactgaga tggaaggagt gttggagccc aggagggtga ggctgcggct gcagtgaatt gtgatcacgc cattgcactt ccacctaggt aatggagcaa gaccatgtet etaaaaaaca aaacacaatt tttttaagga atactgggia gaggtcagtg gtggttttag aacagaggaa gtgccagatg acctttgtga ggcattggcc aggaagaact ctacagtgtc tttaggtagc ttctgtccat aaggataatg gggtctcctc cccagtatta atagaaaatc tctgagctgt tttttttttgt ttgtttgttt tgttttttt tcctgagatg gagtctctct ctgtcggcca ggctggagtg ctgtggcgcg atcttggctc actgcaagct ctgcctccca ggttcacacc attctcctgc ctcagcctcc caagtagetg ggactacagg tgtccaccac cacgeccage taattttttg ttattttag gtcgcccggg ctggagtgta gtggcacgat gtcggctcac tgcaagctct gcctgccaqq ttcaagccat tetectgeet cageeteetg agtageaggg accaeaggeg etegeeacca egeeeggeta attttttgta tttttagaag agaeggggtt teaeegeatt ageeaggatg gtctcgatct cctgatgtcg tgatccgccc acctcggcct cccaaagtgc tgggattaca ggtgtgagcc accgtgcctg gcctgattt ttttttttt taatctggtc tcatacctct gacagctcat gaagaagtgc tcctgcttca tatgtatatg tgttagcata gtgttaacat agcataggtg tccggtgtt gcagtttctg tttgttttat atgaattaag gtgtattatg agcagttgaa gatatatagg aaatttttte ccaaaccact atctctgcte gttctattca ticagicigi traigitati cottoattoa ticattitat agaacagigg agigociaci gtatgcatct attgttctgg gtcctgggga agaaaacaaa gttcctgctt tcatggaact tacattatat tggcggagac agtaacagac aaacaaatgt agcctgtgta catgtgttac atgaaaagca gggtaggggg ctgggagaga gtagtaggga gtgctatttt cgaggtggtt gtcaggaaag gcctcactga ggaggtggca ttttgagtag acctgagcgc agcgggggg taagcccagg cagcatgtgg aggaagagtg ttcttggtga aaggaacaag gatagaggcccgaagctaga gagctcagca tgatcaagga acagcaagcc ccgtgtggct ggaatggagt gagcaaagga atgagcagta gaaggtgagt gagttgggag gtcaccagag accatggcaa ggacttgaaa gtgtcaggga cacattggaa gttggagcag ggaaatgatg ggatttatgt tttgtttttg ttttatgttt agtgttttta agggattgct ctatcagcta tttggaaaat ttagtgtagg gcttcaagaa gagaagcaga gaaacaacat tcttgccata gtcatagtct aagtaaggga tgatggtggt gtggattagg ctggtagtgg aagaccagtc cagttcgggt aagtcaagta ttttttggtg gtgtaggagc ctagagattg aatttattca cccaaaaggc atttgagtga ttactatgtg ccaggcacta tgctgaatgc caaggatgta aataagaggg cgtagtetca gtetgtttta etccagettg gtteettttt aatgaceetg aettgttaag catateagtt atcetacaga atgtttaate ttetgtaett teetggttgt gttatttage ttatttctct ttccttgaca tttcttgtaa actggaagtt acacctatag tcttgatgat togtgttaca cattttagat tagaacacat catgtgttgt atatggtgtt tttgaaagco tototgtata ttggtotgta cattaaaatg ttgootgaat ggatacacat aaaatttaac 

agtgattaca	ttagagatga	gaagaaagag	gtgcctttta	cttttcaata	taccttttcc	146340
tctgcttttt	gaactttctt	gccctatgca	tacgttattg	cttaatcatc	cacctcatct	146400
cttcccctgt	ggctttctgt	tgcatttgga	atgaaatcta	gcctctttqc	tattacctat	146460
ggatgtccct	tgctggcctc	: tatcacctta	. ctttgaacca	ctcctttcat	ggactgagct	146520
ctcattggac	: tatctttat	tcttttgctg	, aagtttcttc	actttgagtc	cctctgcagt	146580
tgctatttca	tggctgtggc	aagccctgcc	: atggctttca	tgcaaggato	gttcctcctt	146640
ctcatctcaa	tattatctct	tcagagaggg	accttcccaa	ctccgatgat	ctaaaatcct	146700
ttgtatatac	cactcactac	cacttcttc	ttttctttc	cttttatctt	tttttttt	146760
tttttttt	gagatagggt	cttgctctgt	tgcccaggct	ggaatcacga	ctcactgcag	146820
cctcatcttc	ttgggctcaa	. atgatcctct	cacctcagcc	tctcgagtag	ctggaactgc	146880
aggcacacac	caccatactt	ggcttattat	tttactttt	gtagagacag	ggtttcacca	146940
aggctggtct	caagctcctg	ccgcaagcaa	tccacatctc	tcagcctccc	aaagtattgg	147000
gattatagga	gtgagccact	actcctggcc	tattttctta	ttcactgtct	aaaattatct	147060
tgttcattta	tttacatact	tgtttatagc	ttatttctca	gctggacatg	gtgcctcaca	147120
cctgtaatct	caatactttg	ggaggctggg	ttggagaatt	ggttgagccc	aggacttcaa	147180
gaccageetg	ggcaacaaag	tgagaccctg	tctataaaaa	attgtttaaa	aattagctgg	147240
gcatggtggc	acatgcctgt	ggtcccagct	acttgggagg	cagaggtggg	agaatcgctt	147300
gygcccagga	ggttgaggcg	acggtgagcc	atgattgtgc	cactgcactc	tagcctagtg	147360
					atgactagaa	147420
tattacctct	atgtgggcag	ggagtttgtc	tatactattt	ggcactatat	ttcctgattc	147480
tgaaattatg	cctagcacat	ggtaagtact	ccttaaatat	ttattgactg	aattatttaa	147540
tucttaagaa	tttcatttgg	gattatctga	gtggtaagat	tacggattat	atttatgtaa	147600
gaaaaatca	ttttttaaac	ttggttgccc	tttgccacac	tgacatagac	actaagtttt	147660
cttagccaga	ttacttccga	ggatactcac	agaggccatt	ctcttctcaa	tccccaaata	147720
attgatattt	cttagcactt	tcaagctaat	gcaattctta	gatgatgtat	ctgtgtatat	147780
tatateetea	ttctacaaat	gtagaaattg	aagtetggge	acagtggctc	tcacctgtaa	147840
tereageage	ttgggaggcc	aaggegageg	gatcactgag	gacaagagtt	aagaccagcc	147900
cost cases	ggtaaagcct	coccetatt	aaaaatacaa	caattagggc	cgggcgtggt	147960
agttcaegec	tataatccca	aacacactca	aggecaagge	aggcagatca	cgaggtcagg	148020
tagecagge	catcctggct	cactacagega	aaccccatct	Ctactaaaaa	tacaaaaaat	148080
tecetteaae	tggtggcacg	gaggttggagt	tagastaga	gggaggetga	ggcaggtgaa	148140
ctootcaaca	ccgggaggcg gagggagact	ctgtctcaaa	asasasasa	aaaaaaaatt	gaactccagc	148200 148260
aataacaaat	acgagtacct	gtaatcccag	ctactaccca	addadadatt	agecaggege	148320
ttaaacccag	gaggtggagt	ttacaacaaa	ctgataatgc	accactacat	tccaacctaa	148380
gcaacagagt	gagactctgt	cttaaaaaaa	aaaaaaagaa	agaaagaaat	tgaggaatgt	148440
ggagattgtg	gtctgtgatt	tattaggaat	cacacagcag	gttagtagca	actacaggg	148500
tttggttcag	aataccacct	tgacaatggt	ttatttacag	tteggeteee	cttcctctac	148560
ctttctctcc	ttccttattg	agggcagctg	gaaagaattt	tcatcattta	ctagcctata	148620
gctttaattt	gagttttgaa	accttgataa	tagagcacag	aggaaaagac	tgagttttct	148680
ttttttgaga	cagtcttgct	ctatggccca	ggctggagtg	cagtgacacc	atctcagctg	148740
gttgcaacct	ctgcctccca	ggttcaagca	attetqeete	agectetega	gtagctgaga	148800
ttacaggcac	gtgtcaccac	gcccagctaa	ttttctgttt	ttgtttcgtt	ttatttttt	148860
ctgagatgga	gtcttgctct	gtcacccagg	ctggagtgca	gtggtgcgat	gttggctcac	148920
tcaaacctct	gtctcctggg	ttcaagcaat	tcttctgcct	caqcctcccc	agtagctggg	148980
actacaggta	cgtgccacca	tccctagttc	atttttgtat	gtttagtaga	gatggggttt	149040
cactatgttg	accaggctgg	tctcgaactc	ctgatctcag	gtgatctact	cgtctcagtt	149100
tcccaaagtg	ctgggattat	tggcacacgc	ctatttttgt	atttttagta	gagacggggt	149160
ttcaccatgt	tggttagact	ggtctcaaac	ttctgacctc	aagtgatttg	cccgccccag	149220
cctcccaaag	tgctgggatt	acaggcgtga	gccaccgtgc	ccagccaaga	ttgagttttg	149280
aaaagagcct	tctgagatta	tgagaagggc	aagcaagata	acttaagaag	ttacattaaa	149340
atcatctaag	agacagtgta	acaagaagga	attgtaaaat	gatgttatga	gcacgtgccc	149400
aatgtagtgg	caatcccttg	tgcttcgata	cattggtggg	agacaaaact	gtacttaaat	149460
tgataaatcc	cttacatgtc	attttaagga	gcttagactg	actcccatca	tgtagacatc	149520
agagatttct	tttttttt	tttttttt	tttttttt	tttgtgacag	agttttgctc	149580
ttgttgccga	ggctggagtg	caatggcgtg	atctcggctc	accacaacct	ccacctccca	149640
ggttcaagca	attctcctgc	ctcagcctcc	cgagtagctg	ggattacagc	catgcaccac	149700
cacgcctggc	taattttgta	ttttagtag	agacggggtt	tctccatgtt	gtggctggtc	149760
COGLECT	gacctcaggt	gatcctcccg	cctcagccac	ccaaagttct	gaaattacag	149820
gcgcgagcca	ccgcgcccag	eccagagatt	tctaaacaga	gttctaacca	gatgcttttc	149880

cctgtcagta	gaatgagaat	gaattggagg	tgggagagac	tggcatgagg	gacaccagtc	149940
agccagtgga	attagctggt	aatqttqata	ggagaagaaa	aagattcaaa	gttaggtagt	150000
ggtagcaaga	attagaggga	aggtcggatt	tatgatatgt	ccaaggttga	attetaaget	150060
ggtagtaga	accagaggga	2555555555	tacassacts	coadggccga	accetaagge	_
gadattiggt	ggcagacttc	acycycaaac	tgggaaggta	garryagere	ttttaacatg	150120
ggttttctaa	catgtcaata	gagtgactct	gcaggggggc	ctgacgagag	aacagtgcat	150180
ggggtgattc	aacagccagt	tgagccttca	tgcagagcat	ttaacactgt	gactctqtaq	150240
			caatatttaa			150300
attgagggaa	aaggatccag	gttttgtatt	ttttatgaat	tragttatto	aattaaacac	150360
Gacetteect	caagaaataa	totaccaaca	attaacttgt	tttaaageaa	201120000	
						150420
Lgagcalgtt	Cadallatta	aacaaaaaay	taagctgtgt	atticattca	tagaaataga	150480
ggctggccta	cttcggatga	ttctcagcat	gtgattacag	atgtgggctt	atacatccta	150540
gggagttaag	gcgtactctg	gcttggatag	agtagagctc	tttgaaactc	ttctctcacc	150600
			atgtagcagc			150660
			aaaacataac			150720
						150780
			tatcctggtt			
			actagatgtt			150840
agagtagaag	aaaagtccag	aactctgaaa	caccttttca	aaagtttttc	aagccatgat	150900
gtttgcaagt	taaatgctct	gttatgtaag	caatataatc	agtttttatt	aatgtaacat	150960
			agaatatcca			151020
			tagtggtttt			151080
			agtggcacga			151140
			cagcctcctg			151200
cctgctacca	tgcctggctg	atttttatta	ttttagtaga	gacaggtttc	accatgttgg	151260
ccaggctggt	cttgaactct	taacctcagg	tgaatcaccc	acctcqqcct	cccaaaqtqc	151320
			gccaaataag			151380
			tgtttactag			151440
			gaggtaaatc			151500
tttctgttta	taagtgccac	cctcatgtaa	gtgaggttta	aaattttcct	tttctttagg	151560
tcccatgttt	aagcagcatg	gcacatttat	gttctcttac	ccagaatgta	ccaagaaagg	151620
gtggtccctt	cttaacatct	aacaattgcc	tggtagtagc	agtgaaggta	tcttcagtca	151680
			attcaagttt			151740
			gtttccttcc			151800
			attaagtaca			151860
22222222	gettgettt	ccaacagcca	totanguaca	ctgagagatg	ggaggcgaaa	
aaaggaaaat	gilliatiti	gaccatctaa	tatgaaagta	gtteggtgtt	aggtatccag	151920
tagttgacac	tggaagacag	ggaatgacat	gttaatattc	atagccagag	ggtggcccag	151980
gttttttcgt	acatgggaat	gaaattctta	tccaaataag	tagaaattat	gtgcgtaagc	152040
catttgttaa	gagcactgag	tatgtgcatc	tcgatccatc	taatgaataa	ccattatcac	152100
cagtttaaat	tattttcttt	aggcccagga	agagctagct	tggaagattg	ctaaaatgat	152160
			tgatcaaccg			152220
aaggatgatt	cegettegeg	caaactaaaa	agtattattt	tecaggigia	addatadaa	152280
agaacataag	agatttett	gcctttgaag	gattaactgc	tgtggggatt	accttcttat	152340
cataagcaac	tagaaaattg	acaaactaaa	tgaaacaact	gtttgcatat	attggacaat	152400
gggcaataca	gggaaaccat	ggaaaccaaa	cagagcccag	tagtcttgct	gaacgaaaga	152460
gttaaatatc	aaaqttcaqq	ccaqqtqcaq	tggctcacgc	ctqtaatccc	agcactttgg	152520
gaggccaagg	caagtgaatc	acttgaggtc	aggagttcaa	gaccagcctg	gccaacatgg	152580
						152640
chanacter	2022490099	gracaacaa	aggcacctgt	aaccccaacc	accegggagg	
ctgaggcagg	agaategett	gaaccaggga	ggcggaggtt	gcagtgagcc	gagatcacac	152700
cactgcactc	cagcctgggc	gacgagcgaa	accccatttc	aaaaaaaaa	tcaaagttca	152760
gagagctcaa	tttgagtaga	agttgtagga	taaggtagca	gaaaagagga	agctgcccag	152820
			tcccatggat			152880
gtatatgtgt	ggggtgaaaa	cacatatata	caggtagaga	acccccaga	aattagtagg	152940
ctgaatgatt	actagaacat	aggargaga	aaagttcatg	accacaaaa	teteesess	153000
ctacacacac	ttagtaata	agggccaaga	adageteatg	gccagaagga	tetggeeaga	
gragagac	LLagradiac	acaaggcatt	gggtagtgtc	ttcacagagg	ttatgcctta	153060
ctactgaaga	taaattagtc	ctagagtaca	agcacctgaa	ccaagtttca	aagcaaattt	153120
ttaaagggtc	aaattaccta	acaactgcat	gccaaaacaa	aggcctaacc	ctctttacag	153180
taacacaaca	aaattcagca	cttcacagtg	taaagttaga	atgtctgacg	tccaggctgg	153240
gcgcagtggc	tcatqcctqt	aatcccadca	ctttgggagg	ccgagggagg	tagatgacct	153300
gaggtcagga	atteaagace	agectegeta	acatggtgca		tattasasat	153360
2-22	acceaccet	agtageeee	acatggtgta	accongrate	caccadada	
acaaaaactt	agecaygeat	ggrggccggc	acctgtgatc	ccggctactt	gggaggctga	153420
yycaggagaa	ttgcctgaac	ccaggaggtg	aaggttgcag	tgagccgaga	tcgcaccact	153480

gcactctggt	ctgggcaaaa	agagcaaaac	: tcaggctcaa	aaaaaaaaa	gaatgtctga	153540
cgtcaatcac	aaattaccaa	gcatgacatg	, aagttgacct	: ataaccagga	gaaaactcaa	153600
tctatagaaa	cagacccaga	tgtgagaaag	, atgatgaatt	: tagcagacaa	agaccatcaa	153660
grggctattt	taaatattaa	aaatatgtto	aaqtqqccao	qtqcaqtqqc	teatgeetgt	153720
aatcccagca	ctttgggagg	ccaaggtggg	taggagttca	agaccagett	ggccaatato	153780
gtgaaacccc	ttctctacta	aaaatacaaa	. aaaattaqct	gaacataata	gcaggtgcct	153840
atagtcccag	ctatatggga	ggctgaggca	caagaatcac	: ttgaacccgg	gaggtggagg	153900
ttgaggttgc	agtaagccga	gattqtqcca	cttqtactcc	agectogaca	acadagtgag	153960
actctgtctc	aaaaaaaaa	aaaaaaaaqt	taaagaaaac	aagagtataa	traraaaaa	154020
gcaaaatagt	tttaaaaqaa	ccaaatggaa	tttcttaaaa	taaaaaatac	Cacaaataca	154080
ggccgggcgt	ggtagctcac	gtctataatc	ccagcacttt	gtagaaacta	acceaces	
atcacctgag	atcogtagtt	caaggccagc	ctgaccaaca	tagagagaca	testetata	154140
taaaaataca	aaattagcro	gacataataa	cgcattgcct	gtaatccca	ctacttetac	154200
gactgaggca	ggagaattgc	ttgaacccgg	gaggcagagg	ttaaccccag	ctacttggga	154260
accagigged	tccaacttaa	ccgaacccgg	tassatas	topoggegag	ctgagattgc	154320
assacantan	actogatege	gccacaagag	tgaaactccg	LCLCaaaaaa	aaaacaaaaa	154380
ttttacaaat	accegaagaa	ctagetgagt	ttttctttac	tttaggcagt	aagtgtgacc	154440
cccigcagge	gactacttta	gtteeteatg	tcctcattag	tagatcagag	aaattcgaca	154500
ccaaaacccc	aaaagaaaaa	ccccttctaa	tcctcattcc	atgattttat	gaatgcatga	154560
agreeragge	ctgcgaagga	atactcattc	tctttatcct	gtgttgatac	ctctctgctt	154620
caacctccaa	ctcgacattt	gcctatagga	tgtacttgga	cattcagcat	aaactacctc	154680
acaccattac	tgaattgctt	catgtgcaca	tgtcccatgc	cacaatacco	gggaccttgt	154740
cttccgtgat	atttgtccgc	agtgctgtga	ctacaggagg	gagtcagtga	atgtctgcat	154800
gtgtgtcttt	accatccctc	ttqaatatqc	tctagggtta	attectagaa	gtagaattac	154860
tctattgaaa	attggcaata	tttttcattc	taatatctat	taccaacata	ggaaagcaag	154920
tctggatgcc	agtccttgtt	atatgcccct	tgggtaagtt	acqtaacctc	tttaagette	154980
tgttcactca	tattttaaca	aggaaaatta	caatatttta	cctcacaaaa	ttgtagtcag	155040
cttctggctg	tcttaaactc	tggtatatag	taaacactaa	atattaatat	ccatccttaa	155100
tttgtaataa	taggtcactt	gttagagaaa	tgcaccttac	cattttcttt	tetttett	155160
tttcagttat	gactcaaaac	ttgagataaa	ggaaatctgc	ttgtgaaaaa	taagagaact	155220
tttttccctt	ggttggattc	ttcaacacag	ccaatgaaaa	cagcactata	tttctgatct	155280
gtcactgttg	tttccaqqaq	agaatgggag	acaatcctag	acttccacca	taatocaott	155340
acctgtaggc	ataattgatg	cacatgatgt	tcacacagtg	agagtettaa	agatagaaaa	155400
tggtattgtt	tacattacta	gaaaattatt	agttttccaa	tagageeteaa	ccatttatca	155460
gagtgtttta	gcctactgga	atagacaggg	accacatcct	ctgggaacaac	cattaga	155520
gaactgatac	ttgatgcaca	ctcataataa	taactcatcc	ctaggaagca	ttetassess	
gataccagaa	ataatttact	ttatacttac	aaagcaggtg	actancagea	rigiaaagca	155580
aggcagcttt	gagtggcagc	ataataataa	cagging	agreageeee	accgagagcc	155640
tatocaotot	tetterere	geggegetag	cagcttcagc	ggaacagggt	gagagttaat	155700
tttcagtgac	ttcctccttc	Statuate	tggaaggaaa	ctgacaagtc	atgggtcaag	155760
tectagegae	Cactatactt	cicigatgge	agtatatagt	tttcacattt	taattcctcc	155820
catttactt	caccacaccc	adadccattc	teteceetge	taacagaagg	gtgtgaatct	155880
tacette	gagcattagg	atttgcccct	ttggaattct	gcactccagt	tacttaactt	155940
ctcccccaga	atacatgtgg	aaagaaagaa	agaaatagcg	atgactccac	ttttgcccct	156000
gtggcacctt	gaacaaagca	gttcttccca	aattatactt	tttttttt	taaataaggt	156060
gagcaggatg	actggggaga	gagaaacatt	tgactttgac	tgcctccccc	attctttgct	156120
grgagergga	aagtgtgcag	ttggtcgtct	ttcttctcct	ttctttagga	tagtaagaga	156180
ctcactcact	gcacttctgc	tcagttggct	tctqcatcqq	gatcacacag	ccatcagcag	156240
gactgcccag	ttggtgagca	cactccattq	accacataac	gccagcgctt	cctcaatgca	156300
catgattgag	aggaaagaaa	gttctcttag	atqttactqc	ttttactcag	actttqcaaa	156360
aaaaaaata	tatatatata	tgtataaata	tataattatt	aatcactttt	gtccttgaga	156420
aagtcttgaa	tgaacagaga	atttattcca	ttqcaatatt	tgattgtata	gaggcacact	156480
gtttcatcga	cagaagaagc	aaaaaggett	tatataaatt	tttggtacta	totaccacct	156540
ctgttattct	tttaaaqctq	aagtattcat	gtacttaaac	Catattatat	ttaattatat	156600
ttgattttaa	aatatata	tatgaattct	atttaaaatt	gtgtcaactt	tetacttte	156660
gggcatttat	agetetteta	ttgaaatata	ttgatctttc	Capatott	cattteette	
Ctaaaaaccc	agaacatgag	Coactactor	actttccctt	atattta	tatata	156720
aaacccaagg	tttttattag	teatetates	tatasttast	yegeegaag taattt	cycatggcat	156780
aatatttcca	tccacttcac	attocttos	tottt	callitigit	CLEECAACAA	156840
agaataaaat	araartttaa	acaactatta	stantata	aadagcaata	Laaaggttat	156900
agaataaaat (	ctadactatt	taaacticity	ctgcccccgc	augutttgga	acaactt	156960
ctacaagact	cattttataa	ttatas	cittcagtta	agataaattc	taatcatttc	157020
tttgtatata	caccinging	LLCLYAGCEA	gagatgccaa	gtagttgtaa	actgcttata	157080

WO 01/27857 PCT/US00/28413

aagagaatag	cagcaaattt	gagactcggc	tactttttc	tgccccacct	gctttgagac	157140
				atatttgatc		157200
ccttqtactc	attttaaagt	tggaatttga	ttcctccaac	attgagcacc	caccatgttc	157260
				tggagttttt		157320
				cattgacaca		157380
				tgatgtgtct		157440
				ccagtgaaca		157500
				cattcagtag		157560
				gtaggaattt		157620
atcattctaa	attotaacaa	agtacaaact	tetttactat	tttatttaag	tactgagage	157680
				tgtttgggta		157740
				tetegecete		157800
				atccagacag		157860
						157920
				catgcctgta		157980
				ttcgaggcca		
				ctgggcatgg		158040
				gcttgaacct		158100
				tgggtgacag		158160
				ggtgcagtgg		158220
taattacagc	attttggaag	gcccaagatg	ggcagatcac	ttgaggacag	gagttcgaga	158280
				agacaaaagt		158340
				gggcaggaga		158400
				tgcactccag		158460
agagcaagac	tctgtctcaa	aaaaaaaga	atttggccag	gcgcagtggt	tcacgcctgt	158520
aatcccagca	ctttgggagg	ccaaggcagg	cagatcacga	ggtcaggaga	tcgagattgt	158580
				aaaacattag		158640
tggtgggcac	ctgtagtccc	agctactagg	gaggctgagg	cagaggaagg	atgtgaaccc	158700
aggaggcgga	gcttgcagta	agccaagatc	gtgccactgc	actacagtct	gggcgacaga	158760
gtgagactcc	gtctcaaaaa	aaaaaagaat	tttggccggg	tgcggtggca	catgcctgta	158820
gtcccagcac	tttgggagac	caaagtgggc	ggattacctg	aggtcaggag	ttcaagacca	158880
gtccggccaa	tatggcgaaa	ccctgtctct	tactaaaaaa	aatacaaaaa	ttagccaggt	158940
				gcttgaaccg		159000
				aagactcttt		159060
				caccatctgg		159120
				acaaacagaa		159180
				ggtttctgca		159240
				ataatgattt		159300
				gtgcaatggc		159360
ctcaccacaa	cctccacctc	ccaggttcaa	qtqattctqc	tgcctcagcc	tcctgagtaa	159420
				gtatttttag		159480
				tcaggtgatc		159540
				acceggictg		159600
				aaggagtttg		159660
				catgtctgca		159720
gatttctgga	gaataatttt	tctttagtaa	acttcactta	agtcgtcatg	tgtattctct	159780
				ttgtttttat		159840
				atgatcacca		159900
gacctagacc	agtgcctttt	catocttctc	agateettee	aaagaataat	gaagattata	159960
accoctttta	gcaattgtaa	taaacccaga	aatagaaagc	tttttggtta	gaatactaat	160020
agaagtttgg	caaaaaaaat	aatttttaca	aaatttotaa	atacctgcca	attctatata	160080
ctadgeeegg	tetetageet	totaaaaccc	ctcaaggtta	caactttggt	ggcccacaca	160140
aatagttacc	cactgaggg	ctctccccct	gaacattgag	cactagagga	ageceatate	160200
				tactgtggat		160260
taaaaaaatt	caycyatyte	caacaaayya	caccygaggg	agcagtgtga	graaaggccc	160320
tacatata	tacetteete	gagggttgct	geeeactgge	ttgcttggca	cacaggagag	160380
				tcctcagtct		160440
tacatacae	terggeacat	teagaatgtc	acagaactca	cctggatgca	treageceet	160500
				ctcataccac		160560
greagactgg	cccagtctgt	gggcaaggag	cctagagagg	gcttagtttc	agcttgaaag	160620
gagctgggat	ttaccaagaa	gcaaatgaga	gacgaggatt	gcaacaactg	tgccatttcc	160680

WO 01/27857 PCT/US00/28413

```
ccagetteag etgacteetg tatattgact gtgeetteag acteateeqt aagtgaceec 160740
 aggotggoot otoccacato acagtaagaa ttocacacao catacaactt ggaaagaggo
 tccagctgaa ggaagcccca cacttettte aagtttttet tagtettete ttettggcaa
                                                                                 160860
 agagtacctt ttgtttcttc taattatgta actattggtt tagtaaatat tcacccattc
                                                                                 160920
agtcaccttg taagtggcag gcactgttta cagggacaca ggaaggaata aaaacttgca ggcaccttgg agcttgcatt ctattgaaga ggtaatggaa gttgggatag cagctaaact atgctggtat tggccaggcg cagtggctca cacctgtaat cccagcactt tggaggccaa ggtgggcaga tcatgaagtc aggagatcga gaccatcctg gctaacatgg tgaaaccccg
                                                                                 160980
                                                                                 161100
                                                                                 161160
tototactaa aagtaaaaaa aaaaattago caggtgtggt ggcgggcgcc tgtagtccca
                                                                                 161220
gctacttggg aggctgaggc aggagaatgg tgtgaaccca ggaggcgaag attgcagtga
                                                                                 161280
gccgagatgg caccactgca ctccagcctg ggtgacagag cgagactctg tctcagaaaa
                                                                                 161340
aaaaaatatg ctggtagttt tgattcaaga tggcctttgg agcccatgat ttaggtctcg
                                                                                 161400
tacccaccaa ggtctactgg aaaacatcag gctctcctgc tatagaccca tagggagagc
tgcagccgag agggggagct gaagagaagt gccccttctg tgtcctgtca gcctcatcct tccgcaagga ccagttgctg tgccactcca ttcacttgct gcaagactgg aggtttttcc
                                                                                 161520
                                                                                 161580
trangetette agraceteget transagate transcatt gatecteag accatraage
                                                                                 161640
caagtototg aacagggott acottagagt aaggottaga agaggoogta aagtoagtot
                                                                                 161700
cagciccgtg gctctgcaga gctttgggac atgtgaattc ttaaaaacaa gactattgta cagttactat atgcatgcag tataaaatta taaccttgga aaatcctagc tagctgttga
                                                                                 161760
                                                                                 161820
gctaattcca taaagtaatc agctcctgag ttctgcagtg gtaataataa tcagcataat
                                                                                 161880
gagtaaacac tgtgtgtgcc aggcagcgtc tcatttgatc cttgtgataa tcttgtaagt
                                                                                 161940
actgattttc tcccttcttt aaacaaagtt ttttttttt ttttagagag ggtctcacta
                                                                                162000
tgttgcccag gctagtcttg aattc
                                                                                 162025
<210> 36
<211> 162025
<212> DNA
<213> Homo Sapien
<2205
<221> mutation
<400> 36
gaattcctat ttcaaaagaa acaaatgggc caagtatggt ggctcatacc tgtaatccca
                                                                                     60
gcactttggg aggccgaggt gagtgggtca cttgaggtca ggagttccag gccagtctgg
                                                                                    120
ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg
                                                                                    180
gcacctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga acctgggaga
                                                                                    240
tggaggttgc agtgagccga gatcgcgcca ctgctctcca gcctgggtgg cagagtgaga ctctgtctca aaaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca
                                                                                    300
                                                                                    360
aatttgaaat gttaaaggta ttatggtcac tgatatcctg tttcattctt tatataatca
                                                                                    420
ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt
                                                                                    480
actgctttta cacaatatat titcgtaata tgtatgcact ggtgtttatg tacgtgttta tgtttatatc tgttaaaatt agcagtttcc atcttttct attttgtacc atcacatcag
                                                                                    540
                                                                                    600
ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgaqtqq
                                                                                    660
cataaataca actctgaaca attaggaggc tcactattga ctggaactaa actgcaagcc
                                                                                    720
agaaagacac atatcctata tgtcaagaga tgtaccaccc aggcagttaa agaagggaag
                                                                                    780
tacacataga aagcacaatg gtgaataatt aaaaaattgg aatttatcag acactggatt
                                                                                    840
catttgctcc taaagtcaga gtcctctatt gtttttttgt ttttgtgggt ttcttttaa
                                                                                    900
attitttat tittigtaga gicggagict cacigigita cccgggcigg tctagaactc ciggcicaa acaaactic tgccicagci tcccaaagca tigggattac agacatgagc
                                                                                    960
                                                                                   1020
cactgagccc agcccagacg ctttagcatt tatgaagctt ctgaaatagt tgtagaaacc
                                                                                   1080
gcataagett tecatgicae titeaaagtt tgatggiete titagtaaae caaceaagtt
                                                                                   1140
attecteaag ggeaaaataa eattteteag tgeaaaaetg atgeaettea ttaceaaaag
                                                                                   1200
gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaaa aggtacaaac acatactaat ggaacattct ttagaagagc cccaaagtta atgataaaca
                                                                                   1260
                                                                                   1320
ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa
                                                                                   1380
acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac
                                                                                   1440
cagtagataa tttcaacttg ctgccgaatg aaacctcttt gcaaggtatg aatcagcact
                                                                                   1500
```

tctcatgttt	gttttgcttt	gttttgttt	gtttttagag	acaggccctt	gctctgtcac	1560
acaggetgga	gtgcagtggc	: acgatcagag	ctcactgcaa	cctgaaactc	ctgggctcaa	1620
gggutcctcc	tgccttagcc	tcccaagtag	ctgggactac	aggcccacca	tgcccagcta	1680
atttttaaa	ttttctatag	agatgggatc	tcactagcac	ctttcatgtt	tgatgttcat	1740
atacaacgac	caaggtacaa	tgtggaaaag	ggtctcaggg	atctaaagtg	aaggaggacc	1800
agaaagaaaa	ggggttgcta	catagagtag	aagaagttgc	acttcatgcc	agtotacaac	1860
actactattt	tcctcagage	agagttgatg	atctaaatca	ggggtcccca	accccagtt	1920
catageetgt	taggaaccgg	gccacacagc	aggaggtgag	caataggcaa	gcgagcatta	1980
ccacctagge	ttcacctccc	gtcagatcag	tgatgtcatt	agattctcat	aggaccatga	2040
accetattet	gaactgagca	tacaagggat	gtaggttttc	cgctctttat	gagactctaa	2100
taccasasaa	totatcacta	tettecatea	ccctgagatg	ggaacatcta	attacadaa	2160
aacaacetca	gggctcccat	tgattctata	ttacagtgag	ttgtatcatt	atttcattct	2220
atattacaat	graaraaraa	tagaaataaa	ggcacaatag	gccaggcgtg	accedecee	2280
				cacgaggtca		2340
accut cot ac	ctageaccect	ggaggccaag	ctactaaaa	ttcaaaaaaa	ggagatcgag	2400
gegeg teage	gggcaccigt	ageceeagee	gacataagagg	ctgaggcagg	agaatggtgt	2460
				cactgcactc		2520
				aaagaaataa		2580
				ccccagttca		2640
				ccgctaatct		2700
				aatacacggt		2760
				tagcctcaat		2820
ccagenitee	teccacetaa	acttcctgag	tagctgggac	tacaggcacg	caccaccatg	2880
cccagetaat	ttttaaattt	tttatagaga	tgggggtctc	accatgttgc	ccagactggt	2940
CTCAAACCCT	gggctcaagt	gatectecet	caaactcctg	gactcaagtg	atcctccttc	3000
				tgtacccagc		3060
tttuaateg	cactacagtc	atggacaatc	aggcttttca	acatgcagta	tggacagtga	3120
gtcccajigt	ctgcttttcc	atactgaaat	acatgtgata	ctaaggagaa	aggtgctcgc	3180
aaggatattt	aaaatgaaga	atatttaaaa	tgaggaaaaa	actgtttctt	catgactttg	3240
ataaggetga	taaagaccat	ttctgtgatc	tcaggtgatt	cactcaagta	gtatatttca	3300
gtaatcatta	tctggaacag	cctgaatctt	aaccaaaata	ccatgatttt	ttaatgctgt	3360
tatgatacct	tgatgatatg	accaaactgc	aatgtaggca	gctaaatctc	cacgagtttg	3420
actteccega	gagttgacag	ttttcttcac	aaattaaaga	aatatattt	ttgatacatg	3480
attggcatat	ttaaaaacta	cactgaaatg	ctgcaaaatg	atataaagaa	acattttcca	3540
gaatcaaatg	caatcaaaga	gtggattagg	aatctactca	ccattatcaa	ctaaatagaa	3600
acacttggac	tgggtgtggt	ggctcacatc	tgtaatctca	gcactttggg	aggccaaggc	3660
aggtggattg	cttgaggcca	ggagctcaag	accagcctga	gcaacatagc	aaaactctgt	3720
				gatgcttgta		3780
ctctggaagc	tgaagtagga	ggactgcttg	agcccaggag	atcaagactg	cagtgagccg	3840
tggtcatgct	gcgccacagc	ctgagtgaca	gagagagacc	ctgtctcaaa	aacaaaaaca	3900
aacaaaaaac	acttaacctt	cctgtttttt	gctgttgttg	ttgttgtttg	tttgttttga	3960
gatggagtct	cactctgttg	cccaggctgg	agtgcagtgg	cgtgatcttg	gctcactgca	4020
agctctgcct	cccgggttca	cgccattctc	ctgcctcagc	ctcccgagta	gctgggacta	4080
taggcgcccg	ccaccacgcc	cggctacttt	tttgcatttt	tagtagagat	ggggtttcac	4140
cgtgttagcc	aggatggtct	tgatctcctg	acctcgtgat	ccacctgcct	cggcctccca	4200
aagtgctggg	attacaggca	tgagccaccg	cacccggcca	acctttctgt	tttttagttt	4260
gatatgcttg	ttaactcagc	agctgaaaga	atgctgaaag	tggccttcag	taaaaaaatt	4320
tcactagaat	ctctacatcc	atatttaatc	tgaatgcata	tccagattga	tcaqttaqaq	4380
caaaaacact	catcatcatt	cctgatgacc	tctaattctq	gtttcggctt	tctatttcaa	4440
tggaaacaga	ataaggaaag	aaatqqaaqq	qctctqqaaa	tttgtcctgg	gctatagata	4500
ctatcaaaga	tcaccaacaa	taagatetet	cctataaata	taaaacaagt	ataattaatt	4560
ttttaattat	ttttttctct	tcagaggatt	ttatttcaag	ataaaacata	acttctaccc	4620
atactattga	ttccaaaggt	tagaaaaagt	gtttttcctc	atcttatcct	tcaaagaggt	4680
cacagcaatq	caaacatcta	taaaatacct	ctqcataatt	gtcagaagct	atagtccaga	4740
aatcattgaa	aatqcttttc	cattttaagc	ttaggtgagg	tgtcttagga	aacctctate	4800
acaacttact	ctatttatto	ggaggtaaac	teceagacte	tcccagggtc	tectatatta	4860
atctcatttt	ttaggettee	taatccctte	aagcacaatc	gaaaaagccc	tggatctct	4920
ttctgcacat	atcatcocoo	aattcattcg	acttccaace	agctgacact	CCatastass	4980
aggggggtgg	cccttctcc	dacaccacca	cttactacca	ttagctagga	taaaaattt	5040
actagaette	agtgcaggct	tetacaaatt	cccaacccc	accaggtggc	ctcacaaaa	
	-3-3-499-6	9-999	cccaageege	accaggigge	ccacagget	5100

ggatgtcacc attgcacact gagctcctgg caggctgtac caatttttta attatttaat 5160 atttattttt aaaattatgg tgaatatttt ggtattctgc tctaaaatag gcccataaat 5220 gcacagcaga tatctettgg aacccacage tttecaetgg aagaactaag tattttett ttaaagatge tactaagtet etgaaaagte cagateetet acctettee atcccaaact 5280 5340 aagacttgga atttatgaga gatctagcta acagaaatcc cagacacatc attggttctt 5400 cccagagtgc agtcctccta aagaggctca gccctaagca ggcccctgca ccaggagggt gggtctgaga cccacatagc acttcccaag gtgcatgctc cagagaggca ctgaaacagc tgagcacaag cctgcaagcc tggagaactc tcacagtcag aacggagggg gcccagtggg 5460 5520 5580 actaacataa agagaaaagg gaacacagag aaatggatgg caccaacaac cagcaaagcc 5640 ttcatggcca atgaaagcat cagtgacggg gccagaaccc tcatccccaa agactcttca 5700 ctgcctttag tgaaaaacaa tggctagaga gtgaagttat gatcatgtat agagaggtaa 5760 agttacattt ttatattotg actotgotaa tgtgaaatto cotatotgot agactaaaag 5820 tttcagacac cctgttcaaa tatcccatta gttgctagag acttaaaatg aacagaacgc 5880 acattgtcag gatgactatt accaaaaaat caaaagacag caagtattgg tgaggatgta gagaaactgg aacttttgtg cactgtttat gagaatgtaa aatggagcag ctgctgtgga 5940 6000 aaagagtatg caggttcctc aaagagtaaa accaagatgt ggaaacaact aaatgcccat 6060 cagtggatga aggggtagac aatatgtggt atatacatac catggagtac tattcagcct 6120 ctaaaaaaaa aaaaggaaat tctataacat gcaacagcat ggatgaatct tgaggacatt ttgctaatga aataaggcag tcatagaaag acaaatactg cacgactcca cttatatgag 6180 6240 ataccaaaaa tagacaaatt catagaatca aagagtacaa tggaggttac ctggagctgc 6300 agggcgggaa acgaggagtt actaatcaac gaacataacg ttgcagttaa gtaagatgaa 6360 taagetetea agateagetg tacaacactg tacetagagt caacaataat gtattgtaca ettaaaaatt tgttaagggt agattaacaa atgtagtaga tecacaaatg tggttaagtg 6420 6480 ttcttaccac agtaaaataa aaaaagaata tcaagcccag gagttcgaga ctagcctggg taacatggtg aaaccctgtc tctacagaaa atacaaaaat tagccagctg tggaggtgca 6540 6600 ctcctaggga ggctgaggtg ggaggcttgc ttgagcccag gaggtcaagg ctgcagtgag ccatgattgc accactgtac tccagcccag atgacagagc aagacaccac ccccccaaa 6660 6720 aaaagaaaaa gaatatcaaa cattttaaaa gatcagatac gcaagaacaa caacaaaaaa 6780 gagatgaaca gagcatcgac cctcatctag tgggattctt ggtctaactg aaaaacagac attgagagac aaacaatgac agtgatgtga tcacagcaat tacacaggta tcccctgggg 6840 6900 actgcagaag aaaggaggaa tgcctaactt tcagaaaata gagaaagcgt caaacagttg 6960 gtgaaagcet tecaaaacta gagagaactg cacaccaa atcacagaaa gaagaaaagc cgtgggagat tetgggacce accggetatt tttgatgget gaacaccetg etgcaggaga gacaggaget ggaaagcatg gtgggatgaa acctcaaaca getttgeetg cattgettaa 7020 7080 7140 gatgactggg citgattaac tctagtcaat ggggacaatt caatcaaaga agaaaqatqc 7200 tcaaattcac attttagaat gatttttat ggcagtatgg ggaatagatt aaaagagagt gaagctggag gcaagaaact tgttaagagg caactgaaac agtctagatg ataaataata aactgacaga gtgactagaa aaatcagaac aggctgaatc aacagatacc tagatgaaaa 7260 7320 7380 taacaggact tgatcaccag ttgtatcttg gagaggaagg agttgtttcc ttgctttccc 7440 tacgactggg aatacggaag gtttgccgtg tgtattggtt atatactggt gtgtagccaa tcactgacaa ccatttagca gcttaaaaca caaaggctta tctcccagtt tctgtgggcc 7500 7560 aggaatctaa gataggctta gctggctggt tctggctcag agtttctcaa gaggttgcaa 7620 tcaagatgtc agctggggtt gcatcatctg aaggctcaac tggggccgga gggtccactt 7680 ccaaggagtt cactcacctg cctgacaagg cagtgctggt tgttggcagg agatctcaat tcattgccaa gtgagcctct ctatagcatt gctggaacat cctccccatc tggcagttgg 7740 7800 cttctctcag catgagtgat ctgagagaga gagcaaggag gaagccacag tgttcttcct 7860 actoctacto ctaacactat ggacctacto ctaacactot cacttotgoo ttattocatt agttagaaag ggaactaago tocacctott gaaataagaa gtgtcaaaga atttgtggat atatttaaaa atcatcacac tgtggaagtg gatagggggt tcaattaatg otgaacttga 7920 7980 8040 aatgootgag acattoaaat gtocaacagg caatgaacat acccatagat ggtoatgact 8100 ttagcaagaa tagaggaaga tcacagaatt aaggaggaat tgaaaggtaa aagaagtgga 8160 gtcagattcc ccctgaaaag tgagccatga aaggaacttt aactattgag ttagaggtca 8220 gagtaggaaa tttcggtgga attcttttt aaagaaagga accatataag catgttttga 8280 ggtagaggga gaataaatca gtagacaggg agaggtaaaa aacataaatg ataggggata 8340 gttgacaaag gtcttggcag aatcccttac ccattgactt ggggccaaga gagggacact 8400 tettegtteg agggataagg aaaataagaa agaatgggtg etatttagtg tegteetete tetagggeaa acgeataggt aacaaactgt gtgtettagg aatatagatg tegaceteaca 8460 8520 ttgagattet caceteaaat ceattttgtt gttacetgta cetteetace ttetetttt 8580 gctacatgca gactgctgtt ttgtcttcct ggcctgttcc aggtttcagc attctggcat atctgctacc ctgttcccaa acctctctag agtccatgct ccttccttgg atagtgtttg 8640 8700

attgggccac gtatctaaga agtgatgcct tcagttaggc ctgagaacct cctctatqqa 8760 aatctccatc agtgaccetg acagacttgg tatettggag atgtcactge teccageetg 8820 tggtctagga gaatctcagc ctgggcctct agtagtatgg ataaggcgtt aaggtatctt tgaaccagag tctgtcatat tcctcaatgt gggacagata aaacagtggt agtgctggtg 8880 8940 tttctgagct agaactctgg tttttggtct agattctttg atgtatgacc tttcagaggt 9000 attaaaattt gttctaatac aatgttcaat acaaatgtag ttccttttct gttaggacct caacaaaaca tgaccaactg tagatgaaca ttaaactatg acaattcatg gaaatgaata 9060 9120 cagtaatacc tgcggttccc ccattttagc agtcactatg gtgacatttg gcacaaatgg 9180 ctatttaagg gtgcttttgt taaaacctac catcttacta ggcacatgat attgaaacta 9240 atgaaataat ggagaaactt cttaaaaact tttaatgaat aaagtgatga agtgataata 9300 ttttagetge tatttataaa gtgactatta caggtcaaac attettetag ggtttttttg ttgaagttgt cacatttaat eettaataac eeactatgag teaggtatte tteteteee 9360 9420 tttggacagt tggggaaatg ggggtcagag aggttaggta atttgctcag ggccacacaa 9480 cctgcatgta gaaaatctga gatttgtaca ggaacgtatc aaactctgaa gtccatgctt ctattttccc atgctgcctt tctaataaaa ggtaactaat gctactggat gctgcccca 9540 9600 aagtgagtca ctttcacccc accctacttg attttctcca taaaactaat cacatcctga 9660 caacttattt attgctgatc tcccccacta gattataaac tcaataaaag caagatcctt 9720 gtctgctgaa tatcagtacc taaaacgctg tctagcacag agcaagtaat taatatttgt tgaatgaaca aataaaggaa aaaaattcaa aggaagaaaa agccctaaaa cagatgttta 9780 9840 cctaaacata cattttaaaa gaaagcatat aacaaattca ggacagaatt taaatttgat 9900 tttttaaaga aataaccaag tgctagctgg gcacagtggc tcacacctgt aatcctagca ctctgggagg ccgaggcagg cagatcactt gaggtcaaga gttcaagacc agcctggcca acatggtgaa acctgtctct actaaaaata cagaaattat ccaggcatgg tggcaggtcc 9960 10020 10080 ctgtaacccc agctactcag gaggctgagt caggagaatt gcttgaaccc aggaggcaga 10140 ggttgcagtg ggccaagatt gcaccactgc actccagcct gagtaacaaa gcaagactct 10200 10260 aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga 10320 aagaaagaaa aagaaagaaa gaaagaaaga accaagtgct tatttgggac ctactatqct 10380 atgittitco atgoacgota tittoagtaa agcagitago aaacitgoaa gatoataaca acaaatatat gottotataa ototaaaati gigottiaag aagitootot tiacoagoto 10440 10500 atgtatgcat tagttttcta agagttacta gtaacttttt ccctggagaa tatccacagc 10560 cagtttattt aaccaaagga ggatgcttac taacatgaag ttatcaaatg tgagcctaag ttgggccagt tcatgttaat atactccaga acaaaaacca tcctactgtc ctctgacaat 10620 10680 tttacctgaa aattcatttt ccacattacc aaggagccag ggtaggagaa tatagaaaga 10740 ccacccaaga atccttactt ctttcagcaa aatcaattca aagtaggtaa ctaaacacat 10800 gccctaacaa tgaatagcag attgtgctca gaagaatgat ctacaacatc ttactgtgaa ggaactactg aaatattcca ataagacttc tctccaaaat gattttattg aatttgcatt 10860 10920 ttaaaaaata ttttaagcct aaattttaaa aggtttgata ttggtacatg aatagacaaa 10980 cagacatgga ctagaccaag aattaggttc aaacatatac aggaatttaa tatacgataa atctagtatt ccaaaggaac caacaaatgg tgttcagaca gcaggatagg catcaggaaa aacacagttg ggcaccctac cttactccta acaccaggag taactgaagg agcaccaaat 11040 11100 11160 atttatttat titaattata gittiaagit ciagggiacg igigcacaac aigcaggiti 11220 attacatagg tatacatgtg ccatgttggt gaggagcacc aaatatttaa aagaaaaaaa ttggccaggg gcggtggctc acacctgtaa tcccagcact ttgggaggcc aaggtgggca gatcacctga ggtcgggagt tcgagaccag cctgagcaac atggagaaac cccatctcta 11280 11340 11400 ctaaaaatac aaaattagcc aggcatggtg gcacatgcct gtaatcccag ctacttggga 11460 ggctgaggca ggagaatagc tttaatctgg gaggcacagg ttgcggtgag ctgagatatt gcactccagc ctgggcaaca agagcaaaac ttcaactcaa aaaaattaat aaataaataa 11520 11580 aaataaagaa agaaaagaaa aaaatgaaaa tagtataatt agcagaagaa aacaccgtag 11640 11700 agaaaatcac ctacatacaa accaaatctt tctacatgcc taaaacatag cacaaacaca 11760 gctaaataat catagctgaa tgaactggga aaacaaaact tgactcatat ccagacagag 11820 ttaattttcc tacacataaa gagtacctat ataaacccaa caaaaaaacc accactaacc 11880 caaaataaaa atgtgacagg taatgaacag gtagttcaca gagaatacaa atggctcttc ggcacataag atgctcagac tgactttac ttatttattt tttgagagac agggtctcac gatgttgccc aggttaggct caaactcctg ggctcaaatg atagtaccag gactacaggt gtgccccacc gcacctggct cctcaaccac ctgtattaac aggaaatgca aaataaaact 11940 12000 12060 12120 ttcaaatcta ttttacctat tagaatggca aaaatttgaa aaacttcaaa catcatcatg 12180 ttggtgagaa tgtgaggaga ctggcactct cattttttgc tgatagcata tatatactga 12240 tggcttctat ggaaagcaat ctggcagcgt ctatcaaatg tacaagtgca tatatccttt 12300

gacaaagcaa	ttccactcta	ggaatgtgtt	ctatatggtt	gtgcttcctg	gggctgggaa	12360
				ccctccttcc		12420
				agataatttt		12480
				actctgtcat		12540
				ctgggttcaa		12600
				catcatgcta		12660
				cctaggctca		12720
				caccgcgcct		12780
				aaagtcaaaa		12840
				gagcaacaaa		12900
				atgacaagaa		12960
cttctcggct	gggcgcagtg	gctcacacct	gtaatcccag	cactttggga	ggccgaggcg	13020
gacagatcac	gaggtcagga	gattgagacc	atactggcta	acacagtgaa	acccagtctc	13080
tactaaaaat	acaaaaaatt	agccgggcgt	ggtggcaggt	gcctgtagtc	ccagctactt	13140
				gagcttgcag		13200
				ctgtctcaaa		13260
aggicatt	tetetagate	ttgagccgta	ttcaaattta	tctcagctta	grgagaggtt	13320
				tgaaggaagg		13380
						13440
				tgatgaacat		13500
				aagcggacat		
				gttagaggct		13560
				ggtgaaaccc		13620
				gtagtcccaa		13680
gactguggca	ggagaatggc	atgaacctgg	gagacggagc	ttgcagtgag	ccgagatcac	13740
gccactgcac	tccagcctgg	gtgacagagt	gagactccat	ctcaaaaaaa	aaagttagat	13800
acgagagata	aagatccaac	agacacacaa	ctgctaattc	tgaacagaac	aaaacaaatg	13860
				ttcctgaaat		13920
				tcagtagagt		13980
				agaaagaagt		14040
				acactggagt		14100
				ccaacacatc		14160
						14220
cagaargeea	cgcattattt	adaggergea	testactess	aagacatgaa	agaacacaag	14280
				gaatccttaa		
				gctcattaat		14340
				gcccggcttt		14400
				tgctctcagc		14460
				tggtctacaa		14520
				ctcctgcata		14580
				actccttgag		14640
ggccgcctcc	tccacctgca	gtgagttaac	tcccttacct	actctaggtc	attgctcaaa	14700
tgtcagcatc	tcaatggggc	cctccctgac	taccctattt	aaattctaca	tactcccctt	14760
				tacaatttag		14820
				ttgccacccc		14880
				ttctttatcc		14940
gaacagggca	tagttcagag	tattcaatqt	tatcaatgaa	tgaactagca	gtagtaccag	15000
				ctcatggtct		15060
				aaaaaattaa		15120
				cactgtggct		15180
				agaccagagt		15240
						15300
				aaacttaaat		
gaatteteaa	agcgtcacaa	aaactggaga	ttaaggtaca	ggaagtgtga	agraatatta	15360
ctatgctaat	ggttttttt	ttttttagaa	aggtataacc	aaaagatttc	tttctcaagt	15420
				agggggagga		15480
				agagtaggag		15540
tcacctcacc	tgtgacctcc	cccagcccaa	aaaacactac	tgataaacag	ggtagaaaag	15600
catcatctca	gataaagcag	gaaaaactgc	cacagtctca	aaccacaaac	tataagcaca	15660
cacctggcca	accctgccaa	gtctgggctc	agtaggagga	acgtgctgag	agctaggatg	15720
taccaactta	gacattctgt	gggatacaga	tgtccctgga	agggtcacac	catctcaaag	15780
gcacctgtaa	tacccacta	ttacagccac	catatotoao	agagaaactc	agggcactta	15840
				tecteageee		15900
J-5-5-0000			-33-3-44		-5	

ccaactettt agaacaactg gcaaaacata aatatecaca acttttgttt cagtaattee 15960 actettagat ateaateeaa agtacatgag acageagata cacacacaaa atggtattta 16020 ctgcagcatt gtttataata gcaaaaaaca agaaataatc catatgtctc aataggatac 16080 tgggtacatg agggtatgta cccatcattc aaccatcaaa aagagtgata tggatgtcca 16140 cagatggaca taaaaagctg tgtgttacgt gaaaacaaac tcaagcagca gcaggatggg 16200 cttatgatag tcagtatgag ctaatttctg gaaaaaaaaa tctagtgtgt gcacagaaaa catctgaaag aacagaaaca aaactatcag cagaatattg agatgtttta ctaagttgta 16260 16320 tatctatact gcttgtaatt tttaccccaa gcaagaatta ctttttggaa aaaqaaaatt 16380 caggaaataa agcatttott taaacttoat gtttaaacaa atggtgatgg aataaaagag 16440 ttettattea teataaacae acacageaca catgeacgea tgtgcgtgag cacaccettt 16500 acttgataaa taccatgttg aatattttag tettteettt taggttetat ceetteacte 16560 assatgeggt tatasatasa tgtactttte atgtgeette tgeetasace caetttaata 16620 taactttaca gtcccattat cattatagtc tcaaagctag actcagcctg aaactaccct ttcatttgga acccttatta aaatgccaca tacagctcct tcaaataaaa acaaacccta 16680 16740 ggacctgaca ctaggettee tttgttgeta cteataatgg ccaagttetg tgettataat 16800 acatettett teattttatt getacatate caagggttit atatgtttt ettattatat 16860 citalticaa aacaccatca cgctcttttc cagatgaaaa taaggaaaag aaattgagca actgactgac ttaaaggtca taaaactata tagtagcaga gtcagcaaaa gaagaaacac 16920 16980 acattecca agtagagget gaaaaccagt accatteace tecagggtga getatataca 17040 guttacaaag teacettete taaatgttea aactgaatee catacecata etttaceaet 17100 acctograag aacagootca gatottgtta tagoottttt tttagoatgo tgaagooaat 17160 17220 cotatgaaca tttccactgt gagaaatgtt ctccactgtg tggagaagat cottactott 17280 ctccacacag gcagaacatt agaaaaattc ttggattcta tgatgcacag cttaggagtc tgtttagcac aatttaagtc caaatagtta ttaaatcctc ctctgttcca gaaacagtgc 17340 17400 tasatactgt gaatataaaa attgaaaaga tactctcctg gctcccaaga aagtcagcca 17460 gatagaggag acacaggcac acaaatcact gtcacatgaa gctctacctc cctaacttca 17520 aacgagggc taagtcacca agaatacagt agcagttgtg actacgagta actactataa ttcaatactt tatcttccct tagaaaactc ttctcccttg gaaatttatt tgcattcta aataccattc cttactaaaa ggaagcaggg ctccttgggg aaatagctga ttctaggtgt 17580 17640 17700 ggactatgaa atgaaaatgg tgagtctggg acatcccatg ttgcccagaa atcaaggaac 17760 tgcccaaaga ttaacagagt catgttaaat ggacctaaga gtgaaccaga aggagctcac tttgccccgc gtggaacaat ttcaagaaaa acatgacagt aatgaattat aaaacatgaa 17820 17880 ttaaaataca tattggtact aaaaagagaa caaaaggatg tggctttgga taaaqctctt 17940 cttcatggaa gaataccagc taataaatgt aaaggaaatg agagaattag aaaaattatc 18000 attttgtaaa ccttaatata ttcacctaga catgctaaaa ccactgagta aaaggctgct 18060 tgggaagagg atgctcacat gatctcagag tttcacacca cagataattt attagataca 18120 ggaaggaaga tgtgatcaag cttcctgtga cccccagcca ggccccacaa cactatgtgcctccttgtga tgtgggagct acacagcatc gcccacacag cttctcgcca aaactgtttgaagctaatca caagggaaga actggacagc ttctgaccat gagacgctcc accagacaac 18180 18240 18300 ttgcttggcc tctccaaaga aacttgcttg gcctctccaa agaaaactca gtttcattta 18360 aaaacaaaac taattattta aaaacaaacg aaaagcaagt tgtggacttg agctccaggg 18420 acagagcaga catacttttc cctgttcttc ccagtaagtg gtaataaaaa ccctcaacac tagatataaa acaaatataa gaaggttctg gaaggggaag aggaggcaga ctatccaggt gccttgaggc ccacagaaca acccagtgat gggttcactg ggtcttcttt ttgcttcatt 18480 18540 18600 atctcagact tggagctgaa gcagcaggca acttcaaaac accaaggggc acagattgaa 18660 aagccccaag aaaagcctgc cctctctagc caaaggacca ggaaggagac agtctaatga gatggaacac atttagacag taactgccca tttaccagca ataactgagc agggagccta 18720 18780 gacttccagt cttgtgagga cgtaccaagg tacccaacac ccccaccaag gctgagtaag 18840 gactgcgact tttatccctg catggcagta gtaaggagcc catccctcac ccgccagcag tgtcagggga acctggactt ccactcccac ccaggagtga tgaggccctc cctgctgggg tcatgtcaga ggaggcctag tggagattca gtgacttaac cttttcccag agataatgag 18900 18960 19020 gccacctttc ctccctcttc ccccatggtg acagtgaaag cactgtggca agcagtaggc 19080 actectacce etectageca gggaggtate agggaggeca agtagggaac cagaatacce acaaccacce agcagcaaca ggggtecece aceccattgg gtgtcaatgg aagcagageg gaaagcetgg atattacce ceatetagaa gtaacaaget gatgtecece ttettetact acaatggtgt teaaaacagg tttaaataag gtetagagte tgataacgta atacccaaat 19140 19200 19260 19320 cgttgaagtt ttcattgagg atcatttata ccaagagtca ggaagatccc aaactgaaag 19380 agagaaaaga caattgacag acactagcac taagagagca cagatattag aactacctga 19440 aaggatgtta aagcacatat cataagcete aacaggetgg gegeggtgge teacgeetgt 19500

aaccccagca	ctttgggagg	ccgaggcagg	tggatcacaa	gatcaggaga	tcgagaccat	19560
cctggctaac	acggtgaaac	cccqtctcta	ctaaaaatac	aaaaaaaat	agcaaggcat	19620
aataataaac	acctgtagtc	ccagctactc	gggagcctga	ggcaggagaa	tggcatgaac	19680
ctqqqaaqaq	gagcagtgag	ccgagatcgc	accaccocac	tccagcctgg	gcaacagagc	19740
aagacttcgt	cccaaaaaa	aaaaaaaaa	aaaaaaagc	ctcaacaaac	aactacaaac	19800
gtgcttgaaa	caaatgaaaa	aaaaatcttg	gcaaagaaat	aaaagatata	tattttggcc	19860
aggtgcagtg	gctcacagcc	tgtaatccct	gcactttggg	aggetgagge	aggcggatca	19920
cctgaggtca	ggagtttgag	accageetga	ccaacatgga	gaaaccccgt	ctctactaaa	19980
aatacaaaat	tagccagtca	tggtggcaca	tocctotaat	cctacctact	Caccaccaa	20040
aggraggaga	atcocttoaa	ctcaggaggt	ggaggttgcg	ataaaccaac	atececeat	20100
tocacattoc	actocadoct	gggcaacaag	accasaactc	catctcasas	accongicat	20160
atattttaat	ggaaattta	gaattgaaaa	atacagtaac	Calcidada	ggaaagatac	20220
catageatgg	9900000000	caaaataatc	acacagcaac	aacacaaaaa	ggaaagacaa	20280
acceatate	2222222	agaaaataga	ctacces	aacagaaaac	aacayaaacc	20340
acceaacatg	aagaacagaa	agaaaataga	ccggccaaaa	aaraaayaay	aaaaaagagg	20400
agcagcagga	ggaatgatgg	aaaaagagaa	aggaaggaag	gaagggaagg	agggagggaa	
ggagtgaggg	agaaagtete	aaagacctct	gagactaaaa	taaaagatet	aacacttgtc	20460
		caaagatggc				20520
		gcaagagaca				20580
aaataaaaag	cccaataaaa	tccacaccaa	aatacatcat	agtcaaactt	ctgaaaagac	20640
gaaaagagaa	aacgtcttga	aagcagtgag	tgaaacaaca	cttcatgtat	aagggaaaaa	20700
caattcaagt	aacagatttc	ttacagaaat	taaggaagcc	agaaggaaat	gacacaatgg	20760
ttttcaagtg	ctgaaagaaa	agaagtgtca	acacaaaatt	ctagattcag	taaaaatatc	20820
		tcaagacagt				20880
		ggaatggcaa				20940
		acatcaagaa				21000
tgtaattaca	ataaaatttc	tatctcctct	taagacttct	aaattatatt	gatggttgaa	21060
gcaaaaatta	taaccctgtc	tgaagtgctt	ctactaaatg	tatgcagaga	attataaatg	21120
gggaaagtat	aggtttctat	acctcattga	agtggtaaaa	tgacaacact	gtgaaaagtt	21180
acatacacac	acacacgtaa	gtatatataa	atatatgtgt	gtatatgtgt	gtgtatatat	21240
atatatacat	ataatgtaat	acagcaacca	ctaacaacac	tatacaaaga	gataataacc	21300
aaaaacaatt	tagataaatt	gaaatggaat	tctaaaaaat	attcaaatac	tctacaggaa	21360
		aaagaggagg				21420
aatggtagac	ttaagcccta	acttatcaat	aattacataa	atgtaaatga	tctaattata	21480
tcaattaaaa	gacagagata	gcagagttaa	tttaaaaaca	tagctataag	aaacctgctt	21540
tgggctgagt	gcagtgactc	acacttgtaa	tcccagcact	tcgggaggcc	aaggcgggtg	21600
gatcacctga	ggtcaggagt	tccagaccag	cctggacaac	atggtaatac	cccatctcta	21660
		gccaggcatg				21720
		tgcttgaacc				21780
		gacagagtga				21840
		acatatgttg				21900
		ggagtggcta				21960
		gaataaaagg				22020
		gagattcaac				22080
		gttgagaaga				22140
		acccaacaat				22200
		taccctgggc				22260
aggettggat	ggacagtgga	agagetgeat	ggggaggag	aaggtgacag	ttaaagagtg	22320
taggatttct	ttttgggata	atgaaaatgt	tccaaaattg	attotootoa	tattaacaca	22380
actctacaaa	tataaaaaag	gccattgaat	tatacatttt	aagtgggtga	aacatatoot	22440
atgtggatta	tatctaacgc	tttttaaaaa	Cttaacacat	ttcaaacaat	adaadtcata	22500
cagagtgtgc	tctactggaa	tcaaactaga	aagaggtaac	tagaaastaa	caacaaaaaac	22560
ctccaaatac	ttgaaaactg	gacagcacat	ttctaaaatc	atcoatagat	Caaacaaaa	22620
catttctgat	atteatttt	attgtttaat	otattttta	asatttetta	adddaaataa	22620
actoactass	aatgaatatg	actagataga	gracticad	cctctcctcd	caccactttc	22580
dagaaccaaa	actactacet	gctgggtgcg	grayereacg	accagantes	caguacturg	
22a22ccaa2	ctcaactaaa	cacaagatca	ggagttegag	accayeetgg	ccaayatygt	22800
gataccccgt	acttoccacc	aaactacaaa	aagtagccaa	gegeagegge	gggagcctgt	22860
ggicciagci	acceyyyayy	ctgaggtagg	agaalegett	yaacacaggc	aycayaggtt	22920
geagegagee	aayattgtgC	cactgcacgc	cageetggge	gacagagact	geeteaaaaa	22980
addadaddd	aaaaagaata	tcaaaatttg	rgggacatag	caaagcaat	gctgagaggg	23040
adatttataa	caccaaatgt	ttacattaga	aaagagaaaa	agtttcaaat	caatagtctc	23100

cacteceate teaagaacae agaagatgaa gageaaaata aaceeaaage aageaaaaga 23160 aagaaaatat aaaaataaat cagtaaaatt gaaaacagaa acacaataaa gaaaatcagt gaaacaaagt actgattctt cgaaagatta ataaaattga caaacctcta gcaaggctaa 23220 23280 caaacaaaaa agaaagaaga cacggattac cagttattag aatgaaagca taattagaaa 23340 caactictaca cattataaat ttgacaatgt agatgaaatg gactaattac tgaaaaaaca 23400 caaattacca caactcaccc aatatgaaat agataattgg gatagcctga taactactga gaaaattgaa tttgtaattt taacactctt aaaacagaaa cattaaactt aatatttat 23460 23520 aaatattaga taaggtaatt ataccettee ttaacaaata aaaacgacaa attattttge 23580 agctaaagag atgtatgtac tgtgaaaaat atcttcagaa aaatagaact ttgtttgaag 23640 aataaggatt taaaaaatgt ttttaactct caagaagcaa atatctgggc ccagatggtt 23700 tcactguaga attctaccaa atgtttaatg aagaattacc accaactcta catagcatct 23760 ttgagaaaac tgaagagaag ggaacatctc ccagttcatt ttatgaagtg ggtgttactc 23820 23880 23940 24000 ctggtggatc acctgaggtc aggagtttga gactagectg gccaacatgg taaaaccctg 24060 tetetactaa aatacaaaaa ttagecagge agggtggtgg ggaaaataaa aaggaaaaaa aaacaaaaat aaactgcaga ccaatateet teatgagtat agacacaaaa eteettaaac 24120 24180 teettaacaa aatattagea agtagaagea atatataaaa ataattatae accatgatea 24240 agtgggactt attccagaaa cgcaagtctg gttcaacatt tgaaaacaag gtaaccact atatgaucgt actaaagagg aaaactacat aatcacatca atcaatgcag aaaaaagcat ttgccaaaat ccaatatca ttcatgatac tctaataaga aaaataagaa taaaggggaa 24300 24360 24420 attectigae tigataaage tiacaaaaga ciacaaaage tiacagetaa ectatactia 24480 atggtgaaaa actaaatgct ttcccctacg atcaggaaca aagcaaggat gttcactctc 24540 attgctctta tttaacatag ccctgaagtt ctaacttgtg caaaacgata agaaagggaa atgaaagacc tgcagattgg caaagaagaa ataaaactgt tcctgtttgc agatgacatg 24600 24660 attgtctcat agaaaatgta aagcaactag gggtaggggg gcagtggaga cacgctggtc 24720 asaggatace asattteagt taggaggagt asgtteasga tacetattge acaseatggt 24780 aactatactt aatatattgt attottgaaa atactaaaag agtgggtgtt aagcgttoto 24840 acçacaaaaa tgataactat gtgaagtaat gcatacgtta attagcacaa cgtatattac 24900 tccaaaacat catgttgtac atgataaata cacacaattt tatctgtcag tttaaaaaca 24960 catgattttg gccaggcaca gtggctcata cctgtaatcc cagcatttta ggaggctgag gcgagcagaa aacttgaggt cgggagtttg agaccagaat ggtcaacata gtgaaatccc 25020 25080 gtotocacta ataatacaaa aattagcagg atgtggtggc gtgcacctgt agacccagct 25140 acttgggagg ctgaggcacg agaattgctt gaacaaggga ggcagaggtt gcagtgagct 25200 25260 25320 accaettigg gaggeegagg caggeagate acaaggicag gagtitgaga ceageetgae 25380 caacatggtg aaaccccatc tctactaaaa aatatataaa ttagccaggc atgigtagtc 25440 tcagctactc aggaggctga ggcaggagaa tcacttgaac ccggaggcag aggttgcagt 25500 gttgagccac cgcactccag cctgggtgag agaacgagac tccgtctcaa aaaaaaaaag 25560 caaaataacc taattttaaa aacactaaaa ctactaagtg aattcagtaa gtctttagga 25620 ttcaggatat atgatgaaca tacaaaaatc aattgagctg gacaaaggag gattgtttta ggtcagtagt ttgaggctgt aatgcacaat gattgtgcct gtgaatagct gctgtgctcc agcctgagca gcataatgag accacatctc tatttaaaaa aaaaaaaatt gtatctctat 25680 25740 25800 gtactagcaa taagcacatg ggtactaaaa ttaaaaacat aataaatact gtttttaatt gcctgaaaaa aatgaaatac ttacatataa atctaacaaa atgtgcagga cttgtgtgct gaaaactaca aaacgctgat aaaagaaatc aaagaagact taaatagcgt gaaatatacc 25860 25920 25980 atgettatag gttggaaaac ttaatatagt aaagatgeea attttateea aattattaca 26040 caggataaca ttattactac caaaatccca gaaaaatttt acatagatat agacaagatc 26100 atacaaaaat gtatacggaa atatgcaaag gaactagagt agctaaaaca aatttgaaaa agaaaaataa agtgggaaga atcagtctat ccagtttcaa gacttacata gctacagtaa 26160 26220 tcaagactgt gatattgaca gagggacagc tatagatcaa tgcaaccaaa tagagaacta 26280 agaaagaagc acacacaaat atgcccaaat gatttctgac aaaggtgtta aaacacttca 26340 acgggggaag atatgtctct cattaaaggg tgtagagtca ttgcacatct ataggcaaaa 26400 agatgaacct gaacctcaca ccctacagaa aaattaactc aaaatgactc aaggactaaa 26460 cataagatat acatetataa aacatttaga aaaaggeeac geaeggtgge teaegetegt 26520 aatcccagca ctttgggagg ccaaggcagg tggatcacct aaggtcagga gtttgagacc 26580 agccggatca acatggagaa gccccatctc tactaaaaat acaaaattag ctggacgtgg tggcacatgc ctgtaatccc agctacttgg gaggctgagg catgagaatc gcttgaaccc 26640 26700

ggggggcaga	ggttgcggtg	agccaagatc	acaccattgo	actccagcct	gggcaacaag	26760
agcaaaactc	caactcaaaa	aaaaaaaaa	aaaggaaaaa	tagaaaatct	ttgggatgta	26820
aggcgaggta	aagaattctt	acacttgatg	ccaaactaag	atctataagg	ccagtcgtgg	26880
tggctcatgo	ctgtaattcc	agcactttgg	tcaactagat	gaaaggtata	tgggaattca	26940
ctgtattatt	ctttcaactt	ttctgtaggt	ttgacatttt	tttagtaaaa	aattggggga	27000
aagacctgac	gcagtggctc	acacctgtaa	tcccagcact	ttgggaggcc	ggggcaggtg	27060
gatcacacgg	tcaggagttc	gagaccagcc	tggccaacat	ggtgaaaccc	catctctacc	27120
aaaaatataa	aaaattagcc	gggtgtcatg	gtgcatgcct	gtaatcccag	Ctactgagga	27180
ggctgaggca	ggagaatcac	ttgaacctgg	gaggtggaag	ttacagtgag	ccgagattgt	27240
qccactqcac	tccaqccttq	ggtgacagag	cgagactccg	tctcaaaaga	22222222	27300
aaagaatato	aaacgcttac	tttagaaact	atttaaagga	gccagaattt	aattotatta	27360
gtatttagag	caatttttat	gctccatggc	attottaaat	agaggaacca	actageacta	27420
agtggagttc	aacagctgtt	aaatttgcta	actotttago	aagagagcca	tatcaatatc	27420
actorcattt	gaggetgaca	ataagcacac	ccasagetgt	acctccttca	ggaggagg	27540
aaggggttta	accetattea	ggtgttaatg	atttagetet	gatttattta	ggagcaacat	27600
atctcatatt	gazatttgt	cccactact	gereggaear	esttattee	geeecaeega	
gtettatgtt	tagastatag	ccccagtact	9949919999	ccccaccgga	aggigiciga	27660
greatygggg	ttacttccc	ctcctgaatg	gtttggtgee	accectgeag	gaatgagtga	27720
grectade	ccagicocca	caacaactgg	CLattadaaa	cageetggea	CETECCCCCa	27780
		catgtgatct				27840
rggaagcagc	ctgaagccct	cgccagaagc	agatagtgat	gccatgcttc	ttgtacagcc	27900
		aaaccttttt				27960
		accaagacag				28020
		aacaagaggc				28080
		aagtccagtt				28140
gacatggtag	cttatgtctg	taatcccagc	actttgggat	gctgaggcgg	gcagatcacc	28200
		cagcctggcc				28260
tacaaaaatt	agccaggcat	ggtggtggat	gcctgtaatc	ccagctactc	gggaggctga	28320
ggcagggaat	cacttgaacc	caggaggcag	aggttgcagt	gagccgagat	cacgccactg	28380
aactccagcc	tgggcaacaa	agtgagactc	cacctcaaaa	aaaaaaaaa	tatacatata	28440
tatatgtgtg	tgtgtgtgtg	tgcgcgcgtg	tgtgtatata	cacatacaca	tatatacata	28500
tatacagaca	cacatatata	tatgaagcat	gaaaagaaac	aaggaagtat	gaaccatact	28560
		ggggtatcac				28620
		ttaacagaaa				28680
		gtgattaaaa				28740
		aaaggcatag				28800
		actaaaattt				28860
		atttagtgag				28920
taaaaataa	aaagaaaaa	gaatgaagaa	aaataaacag	aatctcagca	aaatotosca	28980
coccattaat	cacattaaca	tatgcatact	gagagtaccg	gaagcagatg	agaaagagga	29040
agaaaaata	ttcaaatgat	ggccagtaac	ttcctagatt	tttgttttaa	agcaataacc	29100
tatacaatca	agaaactcaa	tgaattccaa	gtaggataaa	tacaaaaaga	accacaaaca	29160
gatacaccat	ggtaaaaatg	ctgtaagtca	aaaacagaga	aaatattgaa	accacctaca	29220
ggaaaactta	taagagaacc	tcacttacaa	aagaacatca	cttataaaaa	aaccacaata	29280
atagaaacag	ttgacctctc	atcagaaaca	atgaatgata	acatatttca	accacaaca	29340
gaaaaaaaat	aaagatteet	atatacgaca	acguatgata	trassastat	agreccaaa	29400
ggattgaaac	cagggtetta	aagagttatt	tatacataca	tottoatage	acacccaaaa	29460
acaatacca	aaaggteeeg	aagagccacc	cotcoatcoa	Gazatazata	agcattattt	
tatatata	aaayytayaa	gcaacccaag	ggcccaccga	Caaacaaaca	aaatgtggta	29520
catguatata	caatggaatt	tattcagtat	taaaaaggaa	tgaaattetg	acacatgeta	29580
		aacactatgc				29640
tassassassas	Caccicacci	gtatgaaata	cctagggtag	tcaaattcag	agatagaaag	29700
caaaacagtg	gregecaagg	gctgagggag	ggagtaacgt	ggagttattg	ttgaatgggt	29760
acagaatttc	agttttgcaa	gataaaaaga	gccccggaga	cagatggtgg	tgagggtggt	29820
acaacaatac	aaatatactt	tatactactg	aacagtatac	ttaaaaatga	ttaacatggt	29880
gaaaccccgt	ctctactaaa	aatacaaaaa	aattagctgg	gtgtggtggc	gggcacctgt	29940
aatcccagct	acttgggagg	ctgaggcagc	agaattgctt	gaaaccagaa	ggcggaggtt	30000
gcagtgagct	gagattgcgc	caccgcactc	tagcctgggc	aataagagca	aaactccgtc	30060
tcaaaaaata	aaaaataaaa	aaaatttaaa	aatgattaag	caggaggcca	ggcacggtgg	30120
ctcacaccta	taatgccagc	actttgggag	gccgaggcag	gcgatcactt	gagaccagga	30180
gtttgagacc	agcctggcca	acatggcaaa	accctgtctc	tgctaaaaat	acaaaaatta	30240
gccaggcatg	gtggcatata	cttataatcc	cagctactqq	tgagactgag	acacgagaat	30300
_ = -				J _ J = J = J		

tgcttgaacc	caggaggcag	agattgcagt	gagtcgagat	cgcgccactg	aattccagcc	30360
taggcgacag	agcaagattc	totctcgaaa	aaacaaaaac	aaaaacaaaa	agcaaaacca	30420
aaaaataatt	aagcaggaaa	cgagattgct	actaaggagg	agaaagatgt	gcaggaccaa	30480
castastasa	2002023222	ttttcaaaaa	atotttaato	attaaaatgg	taaattttat	30540
ggctcatgag	agcacaaaac	anagataa	acgeetaacg	tanaaatan	ataaaccccac	30600
				tgaaggtgaa		
				aacaccacag		30660
aggctgaaaa	caagtgaccc	cagagggtaa	tctgaattct	cacagaaaat	tgaagcatag	30720
cagtaaaggt	tattctgtaa	ctatgacact	aacaatgcat	attttttcct	ttcttctctg	30780
aaatgattta	aaaagcaatt	gcataaaata	ttatatataa	agcctattgt	tgaacctata	30840
				tgcacaaaag		30900
				aagtaatata		30960
						31020
				acaataatat		
				gaagaagaca		31080
				aaatatgaag		31140
taagttaaga	cacacatgtt	aaaccctaga	tactaaaaag	taactcacat	aaatacagta	31200
aaaaaataaa	taaaataatt	aaaatgtttg	tattagtttc	ctcagggtac	agtaacaaac	31260
				tctcccagtt		31320
				tgaaggctct		31380
				cctaagtgct		31440
				aaagattatg		31500
				ccaaaagcta		31560
aagatcaacc	aagttaacaa	accttttaac	tagactgaca	aaaaggaggt	aagactcaaa	31620
ttactagaat	cagaaataaa	agaggggaca	ttactaatga	gggattagaa	aagaatacta	31680
cqaacaaatq	tgtgccaaca	aattagaaaa	cttagatgaa	atggacaggt	tcctaggaca	31740
				ttgaatgagc		31800
				aaatcccagg		31860
				catcagttct		31920
				atctttagaa		31980
				caaggctgca		32040
				tgaacaaccc		32100
						32160
				aaaaacactc		32220
				aaacactgtt		32220
aaaggtttac	ataaatgaaa	aactateeca	tgttcatgga	tcaaaagact	Lactactggc	
				atcaaaatcc		32340
				aggctgaggc		32400
				gaaaccctat		32460
aatacaaaat	tagtcaggcg	tggtggcaca	tgcctataat	cccagctact	cgggaagctg	32520
aggcaggaga	atcgcttgaa	cccaggaggc	agaggttgca	gtgagccaag	atcgtgccat	32580
				aaaaaaaaa		32640
ccagatgact	tcactqttqa	aattgaaaag	attattctaa	aattcacatg	gaattgcaag	32700
				aaatatagga		32760
				ctgtgtggta		32820
				tacagaaaca		32880
				cttttttgta		32940
						33000
				aagcaatcct		
				ccagcccaga		33060
				gatgatcaga		33120
				ctgcgattat		33180
caccacatcc	agcccaaatg	attttcaaaa	aggtcaacaa	gaccattctt	ttcaacaaat	33240
aggtctggga	taatcagata	gtcacatgaa	aaaaaaaatg	aagttggacc	ctccatcaca	33300
ccatatgcaa	aaattaattc	aaaaatgaat	tgatgactta	aacgtaagag	ttacgactgt	33360
				gttaggtttg		33420
				tagggtaaat		33480
				aatggaaagc		33540
				tactacctga		33600
				acatagacca		33660
				tgatttttga		33720
				cagaagaata		33780
				taaagacttg		33840
ccaaaactat	aaaactactg	gtagaaaaca	taaggaaaaa	cgcttcagga	cattggtcca	33900

ggcaaagatc ttatggctaa aacctcaaaa acacaggcaa caaaaacaaa aatggaaaaa 33960 tagcacttta ttaaactaaa aagctcctgc acagcaaagg aaacaacaga atgaaaagac 34020 aacctgtaga atgggagaaa atatttgcaa actatccatc catcaaggga ctagtatcca 34080 gaacacacaa gtgactaaaa caactcaaca gcaaaaaagc aaataatctg gtttttatat gggcaaaaga tctgaataaa cattctcaaa ggaagacata caaatgtcac tatcattctg 34140 34200 ccagtaccac actificitiga tractifitta gigtataaat tittaaattg ggaagtgtga 34260 gtcatcctac actitgttct tgtttttcaa gtttgttttg gctattctgg gagccttgca agtataaaat agccaacaag tatgaaaaaa tgctcaccat cactaatcat cagagaaata aaaatcaaga ccactatgag atatcctctc actccagtta gaatggctac tatcaaaaag 34320 34380 34440 acaaaatata atggatgctg gcaaagattt ggagaaaggg gaactcctat acactgtggg 34500 tagggatgca aattggtaat ggccattatg gaaaataata ctgaggtttt tcaaaaaact gaaaatagaa ctaccatatg atccagcaac cctactactg ggtatttatc caaaggaaag aagtcagtat actgaagaaa tatatgcact ctcatgttaa ttgcaacact gttcacaaca 34560 34620 34680 gccaagacag ggaataaatc taaatgtgca tcaacagatg aatggataaa gaaaatgtgg 34740 catatacact caatagaata ctattcagcc attaaagaag aatgaaatcc tgtcatccca 34800 gcaacatgga tgaacctgga ggacattata tttaatgaaa taagtaaagc acaaaaagat 34860 aaacagtaca tgttctcact cagacatggg tgctaaaaag aaaatggggt cacagaatta 34920 gaaggggagg Cttgggaaaa gttaatggat aaaaatttac agctatgtaa gaagaataag 34980 ttttagtgtt ctatagaact gtagggcgag tatagttacc aataacttat tgtacatgtt caaaaagcta gaagagattt tggatgttcc cagcacaaag gaatgataaa tgtttgtgat gatggatatc ctaattaccc tgattcaatc attacacatt gcatacatgt atcaaattat 35040 35100 35160 cactctgtac ctcataaata tgtataatta ttacgtcaac aaaaaaaagga aaaaaaagaa 35220 35280 35340 cccaattcaa aaatgggtaa aagccttgaa tatacactta tctaaagact atatacaatt 35400 ggccaataaa gacacgaaaa gatgctcaac atcactagtc atcagggaaa tataaatcaa 35460 aaccacaatg tagaatgtag acaccacttc atatgcacta ggatggctag aataaaaagg taataacaaa tgttggtaag gatgtgaaaa aatcagaaac ctcattcgct gctgttggga atgtaaagtg atgcagccac tttggaaaac agtctggcag ctcctcaaat tattaaatac 35520 35580 35640 agagttaccg tatgacccag gaatattcct cctgggtcta taaccaaaaa aatgaaaaca tatatccaca taaaaacttg tacatgggca tttatagcaa cattattcat aacagcaaag gtggtaagaa cccatatgcc catcatctga tgaacaggta aataacatgc ggtattatcc 35700 35760 35820 atacactaga atattatetg eccatacaag gagtgacate cagetacatg etacaaggat 35880 gaatctcgga aaccttatgc taagtgaaag aagccagtca caaatgacca cagattatga 35940 ttccatgcat cggaaatgac cagaataggg aaatctatag agacagaaag tagattagtg gttgggtggg gctgggagga caggtagtac actactttcc cagaactact ggaacaaagt 36000 36060 accacaaact ggggagctta aacatagaaa ttgatttcct cacagttctg gagactagga 36120 ctctgagate aaggtgtcag cagagetggt tetttetgag ggccetgagg caaggetetg teccaggeet eteteettgg etggcaggtg gecatettet ecetgegtet teacateate 36180 36240 ttttctctgt gtgtgcccat gtccaaattt tgattggctc attctgggtc atggccaatt 36300 gctatgcaca aagtgaagtc tacttccaaa agaagggaag agggaacact gactaggcta 36360 aacttatagt cattttaatg teegetttte etatgagatt gtgaacacae agaagtaggg tttttateta cattgtgeaa agtttaataa gaaaaataga atteaagaga ageagtteaa 36420 36480 tagcaggaat ttaatatggg aactaattac aaggtttagg gcaggactaa aaagccagtt 36540 gggatggtga gccaacccag agattagcaa cagtgggacc ccatctacct accacccatg 36600 aagetggaag gataaaggag gggetattat cagagtecae aagecagtgt cagagteett ggetggaget gggaccaece tagagacaet gtgcaaagca gaaaacaagg gggaaaaace 36660 36720 ctgacttete cettectece acetteaat eteccaetag tgetteetae tagecataet tggecagaga cagtgacaag gaacaetgea aaatgaagtt tgtaggaate atetecetet gagacagaga aatatggaag ggtagaaaat gaateagagg ataaagagaa aaaaceetga 36780 36840 36900 gtactatett atttatettt gtatetecag tgeetaatet gteteteaaa aaaggaaage 36960 aattgagaga aactgaaaac tccaattgaa atgaaagaat ggagaattac tggactagaa 37020 gagaagagaa aaatttatto ogcatagagt aaacaagaat ggattoacaa aggacgtgat gaatgaaaag ctataatcag caaagatttg coagagaaat taaaaagtgg taaactcago 37080 37140 cacgetgtac aacetgaagg cacaatgcat gaaaacgttt caagaaatga caagatttga 37200 agtcaaattc taagtgcttt tccagaatct ctcaagacga ttatatagct accccatttt 37260 attaaataaa atggaaactt actaaacttt ccccttgtat taaactaaca tatgtcctaa 37320 tagcaaacga ttctggaatt cctagagtaa aatatatttc gtcaaagtgt attgctcttt 37380 taatattctg ctgacctcct tttgctattt aggatatttg tatacacatc acacgtaaat 37440 ttggtctata gtttacatct acgggcttat actgttcttt ttttcatttt tttaaaattt 37500

ccaaccccca	gtatccatat	actgctctct	atcagggtta	ttttaacttt	gtaaaatcaq	37560
		'tttttttta				37620
taccaccatc	aaccttggat	tatttaagca	ttcacgattc	cacqtqtqqa	ttttttattc	37680
agagtette	ttqtcattcc	tgctatcagc	acagaaccca	atctcagctt	tccagctata	37740
ctctcacccc	atqqaatttq	cagatgaagt	tcaaaaggac	ctttgcatta	tectacetea	37800
ccctcttccc	ccttcattta	gacatcacct	tcttctagaa	cotcttacct	gacatgccct	37860
		aattgtgtgc				37920
		tetgteteee				37980
tratatetta	tccatcacta	taatctcagc	acctagtacc	tagtaggtac	ttaccatota	38040
ttcattagca	aaatottato	tataaccttg	caccttaaaa	acaadagaac	Gaacacacaca	38100
		ttagaacatg				38160
		tgttcattta				
cagaccadacc	taagagacca	caagggaaca	cacacaacct	caaccagett	ccacactaca	38220
ctatacetet	tcacagagaaaa	agttttcaga	teestestt	agageetaa	ttattatt	38280
atttcactaa	accatactt	tttccctaga	tttaatttt	tttgggggg	cccatatgea	38340
ccatccactaa	accatagett	tttgggtttg	attactacta	cityycaaaa	aggaatgagc	38400
cyacctagaa	tactacata	agaatgaatc	tecastacte	tantanasta	cacacagtee	38460
tactototto	tacatacaca	ctgacaccca	tecatageg	teatgagatg	cagcagctac	38520
cattgtgttt	ccaatgeega	gtccacccac	tecataacca	tgtccaagca	accccgggaa	38580
cattattatt	atgettgttt	atccttaagg	tattgeetea	catacageag	rggcrggrea	38640
		ggccaggagg				38700
		agcaggagct				38760
		agagactagg				38820
		catgtcaaaa				38880
		ttaaggattc				38940
		aaactatgtg				39000
		attccagttg				39060
		aaagataaca				39120
		taaaaagagg				39180
ctgtaatccc	agcactttgg	gaggccgagg	cgggcggatc	atgaagtcag	gagatcgaga	39240
ccatcctggc	taacatggtg	aaaccccgtc	tctactgaaa	acacaaaaaa	ttagccaggc	39300
		tcccagctac				39360
		agtgagccga				39420
		aaaaatataa				39480
gtaaataaat	aaaaagagag	agactgctaa	agtctagaaa	gttgaatgat	gccaagcgca	39540
		gatggccggg				39600
		ggatcatgag				39660
		taaaagtaca				39720
tattatatat	atatatatca	gagccttggg	aatccttgtg	tgctgctggg	gaaggtagtg	39780
gtgcagccac	ccttgacagc	aatctggcag	tacttggtta	tattaagtat	aggcacacac	39840
cacgaccagg	cagtcctact	cctgggtcta	aatcccaaag	aattctcaca	caagtccata	39900
aggagacatg	tacgaggctc	attcagcatt	actgggagtg	ggaatcaacc	tgggtgtcca	39960
tctacaggag	acgagatgga	caaaatgtgg	tggatattaa	gaccagaatc	accaagtaac	40020
agagatgggt	ggtgagtgac	aatcctaaga	tacagaataa	aggctagaac	atgatgccat	40080
tcatgtaaat	taaaaataga	tgcacacaaa	gcagtatacg	cgtgaccctt	gaatagcaca	40140
ggtttgaact	gcctgtgtcc	acttacatgt	ggattttctt	ccacttctgc	tacccccaag	40200
acagcaagac	caacccctct	tcttcctcct	cccctcagc	ctactcaaca	tgaagatgac	40260
aaggatgaag	acttttatga	taatccaatt	ccaaggaact	aatgaaaagt	atattttctc	40320
ttccttatga	ttttctttat	ctctagctta	cattattcta	agaatatggt	acataataca	40380
catcacacgc	aaaataaatg	ttaattgact	gtttatatta	tgggtaaggc	ttccactcaa	40440
cagtaggctg	tcagtagtta	agttttggga	gtcaaaagtt	atacacagat	tttcaactqt	40500
gcaggcaatc	agttcccctg	accccctcat	tgttcacggg	tcaactgtat	atacacaaaa	40560
gtattatatg	aacctcatta	gaatagctgt	ctatagggag	aagagaatga	gagtgggata	40620
aaacggaatg	aacaaataaa	ccaacaaatg	cattaacaag	caaaacaaca	gaggggcttg	40680
catgggccag	tgatgataaa	gggctaagaa	tgagaatata	attaattcaa	ttcctcacac	40740
ctgaggtcta	aaaccaagga	aagggagggc	caggcgtgga	ggctcacgcc	tgtaatccca	40800
gcactttggg	aggctgaggc	gggcggatca	caaqattaqq	aqtttqaqat	cagectagee	40860
aacacagtga	aagcccatct	ctacaaaaaa	tacaagaatt	acccaggtgt	ggtggcacat	40920
gcctgtagtt	agctactctg	gaggctgagg	caggagaatc	acttgaaccc	aggaggcgga	40980
ggttgcaggg	agccgagatc	acaccattgc	actccaqcct	qqqtqacaqa	gtaagactct	41040
gtctcaaaaa	aataaaaaa	ataaaaaac	agagaaagga	aggaaactag	atccagacta	41100

actagataca	gcctttagag	g ttagaaaaga	a tgatttgaca	atctaagcco	acactcagat	41160
tgaatgaaat	tgaaaagcct	: ttcaaactaa	a aacatttaat	tacaccatct	gctgcagaca	41220
gaactcagac	: aactcaaaca	a ggtaatgtca	. gcgtggtgtt	ttatatcacc	acceteases	41280
cagaataaaa	ı atcagctgca	ı tgtgaagcac	, tgactagaat	gaagaaaagg	ctacttetta	41340
cttccttcta	l gtggttctt	: ccgaaaacat	: taataggcac	cagctctato	catgtcaccc	41400
tgcagggaga	ı catggggtat	: ataactatga	ı cttactqttc	attcctcaac	gaattcccaa	41460
tcttgtggaa	gattatacac	: aatgaggcaa	ı caaaaactat	ccaataaaac	Cacqqaaaaq	41520
aagccagtga	caaagaagco	: agtgatgaaa	ggccctqtqa	qcaqaqctqa	tagccattta	41580
gggaagaaag	, accaacatgo	, atgggggtga	ı tcagggtggc	tccqtqqqaa	agctggaaga	41640
gaagtggcag	atctctgago	: tggatgatgg	gccactacca	tctqtatatq	gctaattaaa	41700
gaccatgtgt	ggattttta	ı ttcagctctt	tcgtgtcatt	cctqctatca	gcacagaacc	41760
caatctcaac	tttccagcta	tattgagcta	aacttctcac	ctcatggaat	ttgcagataa	41820
agttcaaaag	gateettgee	ttttcaaaat	aattttgaat	ggttgagtag	tecetetgtg	41880
ctctctcact	gacaccctct	caaggetget	gagcacgtgc	catactataa	ctttctccaa	41940
catcaggaaa	tgttctccac	tcagtttcac	cttaatacaa	atgtgttctc	tcttcagaga	42000
aggcaaaaaa	attcatgaco	atctgactgg	gagaagtcat	ttctaggtaa	agtgtccatc	42060
tttttctgag	gaacacagga	ggaaaatctt	acagaaaaga	gttaacacag	caggectaag	42120
actgcttttt	aaaataaata	aataaataaa	taaataaata	aataaataaa	taaataaata	42180
aataaatgaa	tgatagggto	ttctgtattg	gccaggctag	tctcaaattc	Ctggcttcaa	42240
gagatectec	caccttggtc	tcccacagtg	ttgggattat	agacatgage	Cattotoctt	42300
ggcccaagac	tottattett	aaaaagtctc	ataaaaagca	toottaatco	ttaactaace	42360
cctgggaact	tagatttcag	aagggttccc	accatccaac	ctggaaagag	ggactcactg	42420
tgcctaaatt	attatataat	ttatgctgaa	ctcctactt	tetteaggta	gratageeta	42420
tggtatgtgc	tgggcaaagg	gggcctgcat	gaccageeee	caataaaaac	cctaggtate	42540
gggtctctag	tgagtttccc	tggtagacag	catttcacat	gcgttgtcac	ageteettee	42600
tcggggagtt	aagcacatac	atcctgtgtg	actgcactgg	gagaggatgc	ttggaagett	42660
gtgcctggct	tcctttqqac	ttggccccat	gcacctttcc	ctttactaat	tatactttat	42720
atcctttcac	totaataaat	tacagccgtg	agtacaccac	atortoacto	ttccaagtga	42720
accaccagat	ctgagcatgg	tcctgggggc	ccccaacaca	gaaataaatt	ataaaagaga	42840
aaqqactqqq	catogtogco	catgccggta	atctcagcgc	tttgggagg	caacaagacc	42900
ggaccagtta	agcccaaaag	ttcaaagtta	cagtgaccta	taactacacc	aatggagtagga	42960
aacctgggag	acagagcaag	accetgteee	caaaacaata	aactaaacac	atacttctcc	43020
cttccaagtg	tcttaaaatt	caatggaatg	gtagaaacat	ttttaaaacac	Ctalatora	43020
agaaacctgg	aaaacaagag	tgccgatggc	caactaaaat	atctaggaaa	tttctcaaa	43140
gtaaaaagta	ctcagaacca	gattacctga	gcaaaccata	gcccaataca	accttcccac	43200
gaggetgtta	tgcagaagga	aatggtaaca	gatttccaga	aacagacttg	taacaggag	43260
tagaacagca	gaggtagaac	ctgacaaggt	gattacctgg	ggaactgcag	tctgaatga	43320
caggactgtt	qqaccettce	cctcacatgg	aatacacacg	ccactcagcag	gcacacgac	43320
gctcttcaac	aatcacagga	ggcacgctac	gcctagtaag	acaccagea	accactata	43440
aaacttcqaa	gatgaacaca	taaagaatca	ccaagttttt	attractato	atgaacccc	43500
gacactgaat	caacagaaca	caaacccaag	caaagataat	tactagagca	Catacagg	43560
attattagat	attettagga	agacctaagg	ggacattata	aagagcaagca	acttcctatc	43620
tgacgatctt	totoatatac	caagaaataa	aaacacagga	tgaagaccag	atagagaata	43680
atgctactat	ttqtqcaaaa	aaggagaaat	ggagaatctg	attcatattt	acttatett	43740
gcatgaagaa	actttqqaaq	gtacataagt	aactaacaac	aatggttacc	tacttotaao	43740
gcgagagaag	taaqaqqaca	ggaatggtgg	gaacaccttt	tatatccaaa	attootooot	43860
tettggtetg	acttqqaqaa	tgaagccgtg	gaccctcgcg	ataaacataa	Cacttettaa	43920
aggcggtgtg	tctqqaqttt	gttccttctg	atgtttggat	gtgttcggag	tttcttcctt	43980
ctggtgggtt	cgtagtctcg	ctgactcagg	agtgaagctg	cagacetteg	caacaaatat	
tacagetett	aaggggggg	atctagagtt	atteattect	cctaataaat	teataatata	44040
gctagcttca	ggagtgaagc	tgcagacctt	cgaggtgtgt	gttgcagete	atatagacac	44160
tgcagaccca	aagagtgagc	agtaataaga	acqcattcca	aacatcaaaa	ggacaaacct	44220
ccagcagcgc	ggaatgcgac	cqcaqcacqt	taccactctt	aactcaaaca	acctactttt	44220
attctcttat	ctggccacac	ccatatcctg	ctgattggtc	cattttacac	agageegette	44340
getecattt	acagagaacc	gattggtcca	tttttcagag	agctgattgg	tccattttaa	44400
cagagtgctq	attegtacat	ttacaatccc	tgagctagag	acaddetect	gactoctoto	
tttacaatcc	cttagctaga	cataaaggtt	ctcaagtccc	caccagacte	acceggigia	44460 44520
ctggcttcac	ccaqtqqatc	cggcatcagt	gccacaggtg	gagetgeete	CCagtecee	44520
gccctgcgcc	cgcactcctc	agccctctgg	taatcaataa	gactgggcgc	Catagecege	
ggggtggtgc	tgtcagggag	gctcgggccg	Cacaggagg	caggaggtgc	agatagatag	44640
	- JJJ-J				333-33ccca	44700

ggcatggcgg	gccgcaggtc	atgagegete	ccccacago	aggcagctaa	gacccaacaa	44760
gaaatcggg	acagcagcto	ctggcccago	tactaaacco	ctcactgcct	ggggcggtta	44820
gaaccaacta	accaaccact	cccaatacaa	. aacccaccs	gcccacgccc	399990900	44880
caroctoore	cacaaacaca	ccatacaca	ccattcca	cccgcgcctc	teestees	
cctccctgca	aagctgaggg	actecte	accettages	agcccagaaa	CCCCCCCaca	44940
cactecege	ataactaa	geeteetee	agecerggee	ageceagaaa	ggggcccca	45000
cagegeageg	gegggeegaa	gggctcctca	agegeggeea	gagtgggcac	taaggetgag	45060
gaggcaccga	gagegagega	ggactgccag	caegetgtea	cctctcactt	tcatttatgc	45120
ctttttaata	cagtctggtt	ttgaacactg	attatettae	ctatttttt	ttttttttt	45180
tgagatggag	regeretetg	tcgcccagac	tggagtgcag	tggtgccatc	ctggctcact	45240
gcaagctccg	cctcccgggt	tcacaccatt	ctcctgcctc	aacctcctga	gtagctggga	45300
ctacaggcaa	tcgccaccac	gcccagctaa	ttttttattt	tattttttt	ttagtagaag	45360
cggagtttca	ccatgttagc	cagatggtct	caatctcctg	acctcgtgat	ccatcccct	45420
cggcctccca	aagtgctggg	attacagacg	tgagccactg	cgccctgcct	atcttaccta	45480
tttcaaaagt	taaactttaa	gaagtagaaa	cccqtqqcca	ggcgtggtgg	ctcacaccta	45540
taaccccagc	actttgggag	gccgaggcgg	gcggatcacg	aggicaggag	atcgagatca	45600
tcctqqttaa	cacagtgaaa	ccccatcact	actaaaaata	caaaaaatta	accagagatta	45660
gtggtgggca	ccggcagtcc	tcactactaa	ggaggetgag	gcaggagaat	gacatassc	45720
taggaaggaa	agettgeagt	gagccgagat	agtgccattg	ccttccagcc	torococco	45780
agcgagactic	cacctcaaaa	222222222	agesterers	cccggaaagt	tassastata	
ataatcaata	tttaaaaaca	ctcaacacac	aaaacagaga	gttgacggaa	caaaaatatg	45840
tattagattg	ataacctaca	222662666	gggccaaaga	gccgacggaa	Cadatetaaa	45900
353333333	gracergea	adaccageee	aaggaacacc	ccagaatgca	gcccataaag	45960
ataaayayay	cattteeget	gggcacagtg	gcacggcagg	ggaattgcct	gagtccaaga	46020
grigeaggie	acattgaace	acaccattge	actccaggcc	tgggcaacac	agcaatactc	46080
tgteteaaaa	aaaaaaaaa	ttaaattaaa	aaagacagaa	tatttgagag	aaaaaaatgc	46140
ttatttcaag	aaacatgaaa	gataaatcaa	gatattctaa	ttcccaagta	agaataattc	46200
cagaagcaga	aaatagaata	gaggcaagga	aacactcaaa	acttctccag	tgccatagaa	46260
atgtgtatta	atctttagaa	tgaaacggac	taccaaatgc	tgagcaggaa	gaacaaaaga	46320
gatccactct	taagccagtg	tggtgcccaa	gcgcagtggc	tcatgcctgt	aatcccaqca	46380
ctttgggagg	ccgaggcagg	tggatcacct	gaggtcagga	gtttgagatc	agtcaggcca	46440
acatggtgaa	accetgtetg	tactaaaaat	acaaacatta	gctgggtatg	gtggtgcaca	46500
tctgtaatcc	caactacttg	ggaggctaag	gcaggagaat	cacttgaaac	caggaggtgg	46560
aggttgtagt	gagccgagat	catgccacac	tcccagcctg	ggtgacagag	caagattcca	46620
tctcaaaaaa	aaaatccact	cctagacaaa	taatagttaa	attttagaac	accaaqqaqa	46680
aagaaaaaa	attgtaaagc	ttcagagaaa	ataaacatta	actacaaaga	aacgagagtc	46740
agacgcgtgc	acttcttcct	agataccagc	agataaagca	atatctccaa	aattcagaag	46800
gttttaacgt	agaatcctat	acccaqtcaa	gaatattcac	atggaaaagt	gaaataaaaa	46860
acattgttta	aacatgcaag	ggttcagaaa	gtttaccatt	cacagaatcc	ctgaaaacaa	46920
aaccaaataa	tcacttaagg	actcattaaq	aaaacaaatg	aaataaaagc	accaatgatg	46980
agtaaataat	cagaaaaatt	tacagtttac	ctaaataact	gtttatgcat	aatotatoaa	47040
aacccaaaaa	tttaatatgg	gacagaatta	aaatcatgat	aagattettt	tttactttac	47100
tcatggagag	ttcacataaa	cagattatct	tttaatagca	agagaaaaaa	atotttacat	47160
atgtgtgaaa	aactaagggt	accaaaacag	tocasattca	tttatcatca	granateen	
aattaaaacc	acagtateca	ccagaataac	taaaacctaa	aagacagaaa	ttaccaacca	47220
ttggcaagaa	tatagaacaa	ccacatatac	ttctccccta	aataagttgg	traccaagag	47280
actgaaaact	atttacteat	atctactacac	accasage	tgcacagact	tgcaaceggt	47340
acttccactc	ccacatacac	actcaccaaa	accyaycaca	chacagact	acaaccaagc	47400
tactacacto	ttestetset	tactattact	aatgcacaca	ctcactcaac	aaaagacgtg	47460
caetagageg	cicatgtact	tattatteat	aatagteeaa	aaatgcaaac	aaccaactgc	47520
caaccaaagc	taaacycaca	cccacactag	ggatatatac	aatggcatat	acacagcaat	47580
gagaatgaaa	tgaaccaget	cggcacagtg	gttcatgcct	gtaatctcag	cactttgggc	47640
gggtaaggca	ggcagatcac	ttgaggtcag	aaatttgaga	ctagcctggc	caacacggtt	47700
addacctgtc	cccactaaaa	acacaaaaat	tagccgggca	tagiggtigc	aggcctgtaa	47760
Luccagetae	ccgggaggct	gggttgggag	aatcgtttga	acccgaaagc	cggaggtcgc	47820
agtgagcgga	gatcgtgcca	ctgcactcca	gcctggacga	tagagcaaga	ctccgtctca	47880
aaaaaggaaa	tcaaaaatat	aaaataagat	gacaggaata	atccqcaaaa	gatcagtaat	47940
caaaataaat	ataaatgggc	taaagctacc	tattaaaaqa	caaaqatttc	acacccataa	48000
ggatagctac	tatcaaaaaa	agagagaa	taacagatgt	tagcaaggat	gtatggaaac	48060
tgaaattete	acgcattgct	ggtgagaata	taaaatqqtt	cagcctctgc	ggaaaacact	48120
atgctgggtc	atcaaaaaat	taaaaataga	agtactactt	gatccaacaa	ttctacttct	48180
gggtatatac	ccaaataact	qaaaqcaqqq	tcttgaagag	atatttgtac	acceatgate	48240
atggcagcat	tattcataat	agctatgatg	tggaaccaac	ataaatatcc	tttgataaat	48300
_						

atatggataa gcaaaatgtg gtgtatacat tcaatggaat attaattagc aataaaaatg aagaaaattc tgacacatgc tacaacatgg atgaaccttg agggcattac attaaatgaa 48360 48420 ataaqccagt tataaaaaga caaatactat atgaggtact atattagata ctcatgcaag 48480 gtacctaaaa taggcaaatt catagagaca aaaagcagaa tggtggttgc caggggctgc 48540 ggtaatggat acagagette aattttgtaa gatgaaaaaa ttetggagat tggttgcata acaatgtgca cacaettaac actggggaac tgtaaactta aaagtagtaa atggtaaaaa 48600 48660 taaaaataat aaataataaa ttttatgtta ttttaccaca atatttatta aaagacaaag 48720 attaactaat taaacaaaat ccagccataa gctaatggta agagtaacaa ttaaagaaga 48780 cacagaaaat tgaaaatcag tgactagaaa aagatattcc atataaatgc taacaaaaaq 48840 caagtacagc aatataaaga gaatgaacaa aaaaaaaatt aaataagatg gctcgtttat 48900 teccaaaagg tacaatteac caagaagata caagaattgt gaacetttaa geacataaaa 48960 cagcttcaaa aatacaacat ttaaagaaaa atatatatta aacatagaaa tagtacaaaa 49020 accectacaa gaateataat gggagtette aatacaacte tecatateaa caggteaaac 49080 agagaaaaa aataagttaa ggatgcagaa aacctgaatt accatcaata aacttgagat 49140 taatatagaa ctgtataccc aatatactaa gagttcaggg aacagtcgtg actgacagtg gactgcaaat taatctgttc ttaatctttg tttttctttc agcactgtgg cagaatagag atcctaaaaa ccttccagct acaaaacatc tttttaaaaa tataaaaaaa tacaaaaata 49200 49260 49320 actotgaaat caatagaaga cacatggtga aaccaaaatt ctagaataca gggagaataa 49380 aggcattttc agatattaca aaaacagaaa attgatcatt gctgaagtaa tttctaaaga 49440 atgtacttga gggagaagaa aaatgttcca aagaaaagta tctgtgatac aagaaggaat 49500 49560 ggaaagtgaa gaaatggtaa acaggtagat aaagctaata aatgttgacc tagaaaataa 49620 caaaaacaat agcaataatg tetegttigga agggttgaag taaaaataca attaaggeea 49680 aatgtgaggt aagtggaatg aaagaattag aagtcettge ettgtteaca ggactgatta aataaatgag ccaggttttc cattcaaaca gttaaaactt gaacaaaata aactcaaatt aagtagaaag ataaaaaaca gaaattaatg tcatagaaaa ataaaaaatc aatagaatta 49740 49800 atcaataaat cctggttaat aaaagctggt tctttgaaag gattaataaa ataatcatta 49860 agcaagtotg atcaaaaaaa aagagaaaag gtaccaaaaa aagtactgta tcagaaagag 49920 aacatacaga tacatacaga tatgtaagag tctgttttct tacaccagaa tactatatac aacattatgc tagcatatat taaatttcaa taatgttaat gattttctag gaaaacagaa 49980 50040 aatattaaat ttactttqaa qaaacaqaaa aactqaqaaa aataaatqat catgaaaaaa 50100 atgaaaaggt aattaaatac tgatattaac tgcctaaaca acaccagcag cagcccaggc agtctgcagt caagttctgc caaacttgag ggaacagata attcttctat tccagagcat agaaaatgat ggaaagtttc ccaatttaat cagagaggac agcctgatcc ttgttatgaa 50160 50220 50280 cacagataaa aatggggtaa actatatgcc aaactcagat accaaaaccc taaataagat 50340 gctagcttat tgatgtgaac aatccaaaag tgcattttaa attagcccag ggttttagag aaagaaaatc tagcaatgtg accaccactt atgttaacaa ttttaagacg aaaatctaca tgatcatatc aatgcatgct acacaaaagc atttgggcaa aaaacccaac acccacctt 50400 50460 50520 50580 gactttttaa actcttagta attaggcata aacagaaatg tacttaatgt gatagaatac actoggtgaa gatacagagg gaatgotooc taaaaccaag cocaagacaa agattootat ttaacotoaa tagtoaacao tgoagogaga gtaatotatg gaagacaagg aaaaaagtaa aaacatgaga gacatotgtt gtttaacaga caataagato acotacttgg aagaggcaaa 50640 50700 50760 50820 cgaatcaagc gaaaaactat taaaactgag acaggcttta gtatggaggc tcagcttcag ctgtagtttg ggctaccaaa ttcaactcgc ttgcttggag agttaatcct gcaaagctaa tttctgttga ggtattagga ttgacaagcc tgtgctcctc cctcctcccc catcttcaac 50880 50940 actgaaataa cacggtgttt ggaactggat aacagaatct tccaaaaaca aaaattgtcc 51000 51060 tgaagggctg acttgtgccc ttactcaaaa aacactttat ctgctgcctg cagctcctac agttgctggt ggataagcct gccaaccagc tcggcgtaat tcttcctgca gagggcaagg aagagcactt tcacaggaaa attttttcc gaactgtatg ccgcttatta cataaactta 51120 51180 cgtgctggca aatggagctc cagcaaaata agatattcag agtcaaactt ccttaggaaa 51240 aaaaaaaaa aaaagcaagc acataacact aattteettg catgggeact ggggaaggag 51300 gtegttaett eegeaegee geaggteege aceaeeggga aaceeaeggg caeeggege tgeeeeeggg cetteeaggt geaetgegee geggegeeee agetgaeeeg ggatgegeag 51360 51420 ccctagcct tccctgtca ccccggccag gaagggcgg gagcgcggcg gacgccgagg gcgaagggt tctcggtct ctgcaccacg cagcacccc aaggcacaac agggagggtg cgggaggct ccgagacca ggagccgggg ccgggcgtgc ccgcgcacct gtcccactgc ggcgagggct gggtcgcct ccagggccgc agctgtcggg agccacctgg ctctcagtcc 51480 51540 51600 51660 egggteettg egacaaceet egggeeegga ggggaggagg eggeeacetg eegetgeeac 51720 ctgeggeace ggtcccaccg ctccgggccg ggcaggacag gccaggacgt ccctcctggg ctggggacag gacacgcgac gaggggaccg gggcccccgc ggcgaagacg cagcacgcct tcccagaaag gcagtcccgt gccccacga cggactgccg gacccccgcg ctcgcccgcc 51780 51840 51900

catcccttca	gaccacgcgg	ctgaggcgca	aagagccggc	cggcgggcgg	gctggcggcg	51960
cggctagtac	tcaccggccc	cgctggctca	gcgccgccgc	aacccccagc	ggccacggct	52020
				gccggcgcct		52080
				agatgtagta		52140
				ctctctccca		52200
teteatetee	ctatctqctc	atcctctqqt	cqcacataat	cgatgtttgg	gcgtcccaag	52260
				ttctaagggt		52320
ccagcagett	cagcctcatc	tgggaacttg	agaaaatgca	gattctccgt	CCCACCCAGC	52380
				ccagcagtcc		52440
				gctatgctca		52500
				cgcacacgga		52560
				cctcctccgg		52620
				tcttccctac		52680
cctcctccag	aagtactca	taaccaaaaa	ttagaaagag	ccactgtgtt	tettereste	52740
				tgacagaacc		52800
						52860
				ccagggagaa		52920
				tagcggttct		52920
				ggtctggaga		
				gacacgaggg		53040
				gatccggccc		53100
				agaggaggaa		53160
				acattttcac		53220
				cgggtgacag		53280
				taaaaaccca		53340
				tetgtttget		53400
				taattttctt		53460
				ataaaaaatt		53520
				aggaaacaca		53580
				tgtttgcttt		53640
				aggtttgatc		53700
taaaaatgtt	cctcccagcc	tgatgctttc	tttggggagg	gtaaatcttt	taaggctaga	53760
				aattattcta		53820
tgataaagca	tgtatttctt	aaaacaaatt	atccttttt	tccagatgtt	caagtgtatt	53880
				acttctccca		53940
tttgtgtatt	tttgcttctt	tattttgtta	acttttaaaa	gtgtatttt	ttttcaaaga	54000
atcagctctt	aggtttatgt	ttttggttat	actggagctt	ttttcttctt	ctttttaaaa	54060
tattttttct	cctttattt	ttagacgtat	tttgatctaa	cgtaatcgga	agaaggtaaa	54120
ttagaatctt	ttgttactat	tgtgttttta	tttctcctta	tttctctgaa	gtcctgcttt	54180
ataaatagta	ccatgttatt	tgtgcataaa	tattcatttg	tcttatattc	ttgggaattt	54240
tcccacttca	tcataaaatg	accttccttg	tctcatttaa	tgtgttcaaa	ctttgccctg	54300
				tgtttgttac		54360
				aatcccttga		54420
taagttttgc	tttgtgatta	aatctgaaaa	tctttatctt	gccatagatg	agttgagccc	54480
tattcatgtg	acagctatat	tatgctgttt	catagccctt	ttggtccttt	tttcactctt	54540
gcattgcata	ttttgtgttt	attgtgtttt	gtgtttcttc	tgataatttg	gaaggtttgt	54600
				tacacatcgt		54660
				cattgtaatt		54720
				tttatccttc		54780
				tgatttttaa		54840
				ataccatttc		54900
				cacgtttgtt		54960
				tttgccatag		55020
				taagaataat		55080
gagtgtggta	gctcacgttt	gtaatcccag	cactttogga	gacaagaggt	agaaggatcg	55140
				gagaccttgt		55200
aattttaaaa	tttagccaga	catagtagca	totocctata	gtcccagcta	ct.caggaggc	55260
tgaggcaaga	ggattgctag	agcccagaag	tttgagggtg	cagtgacctc	tgattgtgcc	55320
actgcacccc	agtetgggga	agaaagtgag	aacctatctc	tttaaaataa	caataataac	55380
ttatgaaaat	tatattccct	gagttffc2	totttaaaaa	tatttgttgc	ctttatcctc	55440
taaaagtttg	agtataaatt	cttagattat	actttattta	ttgaagaatg	tataactatt	55500
			uuuuuuu	Ligacyaaly	cacaageace	22300

gtcttctaga attgagtgtt gctgtaatga aaccagaagt cagcctggtt tatttttcct 55560 cagaaatgag gtaattgccg gccggacacc gtggctcatg cctgtaatcc caacactttq 55620 ggaggeegag acaggtggat caegaggtea ggagattgag accateetgg etaacatggt 55680 gaaaccccgg ctctactaaa agtacaaaaa gttagctggg catggtggtg gacgcctgta 55740 atcccagcia cccgggaggc tgaggcagga gaatggcgtg aacctgggag gaggagcitg 55800 cagagagetg agategegee actgeactee ageetgggeg acagagtgag acteegtete 55860 aaaaaaacaa aaaaaaaca aagaagtgaa gtaattgcca tgatgctcca agaattatct 55920 ctttgtctat gaaatccaga aatctcactg ttatacattt tggaattatt attctgggcc aatatttcct gggacacaat agattgactc tatagattta attttttt tttttttgag 55980 56040 acagagtete actgeaatet cagettactg caacetetge etcaegggtt caageaatte 56100 tectgeetea geeteecaag tagetgggae tacaggegeg tggeaceatg cetggetaat 56160 ttttgtettt ttagtagaga cagggtttca ccatgttggc caggetggte ttgaacgeet 56220 aacctcaagt gatccacctg cctcagcctc ccaaagtgct gggattacag gcgtgagcca 56280 ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttq 56340 ttctaatacg ttatttcagt gttcttctaa gatgtgtaaa gcaccctatt cccaggtcag ccccatctt gctagtgagc tcggctggtt cttcacaaga gctctggttt tctcctgcttaatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttg 56400 56460 56520 ttttttgttt ttgacagagt cttactctgt cacccaggct ggagagcagt ggcataatct 56580 cageteactg caacetetgt eteccaggit tgagegatte tectgeetea geetactgag 56640 tagctgggat tacaggegeg tgccaccaca ceeggetaat ttttgtattt ttagtagaga tggggtttca ceatgttgge cagggtggte ttgaacteet gaceteaggt aatecacetg 56700 56760 cctcagcctc ccaaagtgct gagattacag gcgtgagcca ccgcgcctgg catggtttgg 56820 56880 56940 57000 getgtgteac ttetggagge tggagtgeag tggegegate teaggteact geaaceteeg tetecegggt teaageaatt eteetgeete ageeteega gtagetggga ttaeaggeae etgeeactt ttaattttt tagagacaga gtetegettt gttgaeeagg etggagtgeg 57060 57120 57180 gtggtgcaat catggctgac tataacctcc aaatcctggg ctcaagtgat cctcctgcct 57240 cagcetectg agtagetggg actacaggea catgecacea tgeccagtta attttaattt 57300 ttttgtagag acagggtete catatgttge ceaggetgge etcetaetee tggceteaag taateeteet aceteageet eccaaattae taggattata ageatgagee aceatgeeea 57360 57420 gccttgttct actactitaa tttcatatgt taggtgacca tgtaattgat catccaaacc 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattgttg aatttggagt ttctatttgc aggettattt caactgggca geettgatee 57660 gccctgccca gcaatgctac cgttctctcc accgggtctc tgggacccct tcagtcacta 57720 tacttagete agttececae ecteceaete ectaaaageg taaccaggaa teetgeetea ggtetactge egtetteegt gggetgttte agtteetatt aeccagagte aaacteceag 57780 57840 cattccctac ctgattccag acttggagtc cagagettta acetettcag gccaactccc caetttgcat ttetgtccct atatettagt ccatggagat acatttcatg tetttgagtc 57900 57960 tacttacaaa gtaaattttg ctgtttttta atttttttt tgagatggag tcttgcctg tcacccaggc tgtggtgcaa tgacgccatc tcggctcact gcaacctccg cctcctgggt 58020 58080 tcaagcgatt catctgcctc agcctcccaa gtagctgtga ttacagacag gcaccaccac 58140 gcccagctaa ttttttttat citttagtag agacagggtt tcaccatgtt ggccaggctg 58200 gtottgaatt cotgacotog tgatotgoco atotoggoot cocaaagtgo tgagattaca ggogtgagoo actgtgocoa gocaattttg ottttttat atttcattgo tatatgttta 58260 58320 gaggataagt ttacagtgct atatgcattc ccaaatatta gaccaaaaaa atctccaaaa 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagaggaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 tcacgcctgt aatcccagca ctttgggagg ccaaggcggg cagatcacaa ggtcaggaat tcgagaccag cctggccaat atggtgaaac cccgtttcca ctaaaaatac aaaaattagc caggcatagt gatgtgtgcc tgtaatccag ccacttggga ggctgaggca ggagaatcac tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg 58620 58680 58740 58800 gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt 58860 ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtgggac tatgtcagct caccgcaacc tccatctcct ggattcaagc aattctcctg tctcagcctc 58920 58980 ccaagtaget aggattacag gegeceacea ccagacecag ctagttttta tatttttagt 59040 agagatggtg tttcaccatg ttggccaggc tggtctcaaa ctcctgacct caagtgatcc 59100

acctgcttca gcctcccaaa gtgctcagat tacaggcgtg agccaccgca ccccacctag 59160 atagaaattt caacatgagg cogggcacaa tggctcacgc ctgtaatctc agcacttcag 59220 gaggetgagg egtgggagga teaettggge eeaggagtte aggaceagea tgggtgaeag 59280 59340 ttcaacatga aaagtatete teaaaceett egagatgttg geaaaaageg aeteaaagga 59400 aaatgtatta ctgtgtgtga atttgcttga aaataagaaa gaggccgggt gtggtggcta 59460 acacetgtaa teecaacact etgggagtee gaatcaagtg gateatgagg teaggagate 59520 gagaccatcc tggctaacat ggtgaaaccc tgtctctact aaaaatacaa aaaattagct aggcgcggtg gctcatgcct gtaatcccag cactttggga ggctgaggca ggtggatcac 59580 59640 ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa 59700 atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga 59760 ggcaggagaa tcgcttgaac ccgggaggcg gaggttgcgg tgagccgaga tcgcaccact acactccagc ctgggcaaca gcctgggtga cacagtgaga ctccatctca aaaaatacaa 59820 59880 aaaattaget gggtgtggtg geetgegeet gtagteeeag etaceeggga ggetgaggea 59940 ggagaatgga gtgaacctgg gaggaggagc ttgcagtgag ccgagatccc accactgcac 60000 tccagcctgg gcgacagagc aagactcttg tctcaaaaaa aagaaaaaaa aaggaaaaaa gaaccctgat aataaagaaa ccaaatgttc aactctcaaa gctcggacac tttaaagaaa 60060 60120 taattaataa aggcagaagt taaagggagg atgataaagc aattitittt gttggtittt 60180 ttgagatgga gtcttgctct gtcacccagg ctggagtgca gtgatgcgat cttggctcac 60240 tgcaacctct gcctcccggg ttcaagcaat tctcctgcct cagcctcctg agtagctggt actacaggtg cgcgccacct ggcccagcta atttttgtat ttttattaga gacggggttt 60300 60360 caccatattt gttaggctgg tctcaaactc ctgatctcag gtaatctgcc cacctcggcc 60420 teteaaagtg etgggattae aggeaggege caeegegeet ggeetaaage aaaatattgg 60480 ttctgtgcaa aaggtcaata aaaagagcaa acgtttacaa actggagcca gcacccattc 60540 agctcagtgt gtctggagaa aaaacaatct cgcttcagaa ttcatgatta cgcagccctt 60600 tttgcttcct aaaaatccta ctatgttgct gttgaccatt ctctctcttt ctctctctct 60660 tgctttctct ccagaaaagc tattcagaca ttctcctctt tcctcaaacc tccaacactt 60720 cctcctccat ccttagcctc agctgctgac ctcacttcta atcattgaga aaccaggaga 60780 agcatttaag agtgaacctc cocctccccg cacgggcaaa accacccacc cacagaattg 60840 tgccccaatt ctgcgtcctc tcctctcacc atggatggac ggtccaggct ccgagccaaa 60900 gccaggcctc ccctggagct ctggatccac cacctgcagc ttctcaggca gggcccagc agctccctg ctcccttgta ccatcaatcc ctcccctcac tgggtcactc ccaacaatat 60960 61020 atatatttag tgatgtttct cccatgtggt aaaatcactt agcctctctc ctcccccage 61080 tactatecta titgittett tecattetet geaaaaette teaaageatt gtgtetatgt 61140 gctgactcca tttatcttct cccgttctct gctgagtcct tcccacagac tctcaccca gttactccat gaaatgacct ctgcactgcc acatccaatg gtgaatgttc agttcttaat 61200 61260 tttattcagt ctttcagcag calttgacct ggccgatcac tecetettet taaaaatact 61320 tttetcagec aggegtgatg getcacacet gtaateecaa caetttggga ggecaaggeg 61380 ggaggatcat gagagcccag gagttcaaga tcagcctggg caacatggca agaccctatc tctacaaaaa ctaaaaagta gccagtgtga tggcatgcac ctgtagtccc atctacttag 61440 61500 gaggotgagg cagtaggatg acttgageot gggaaatcaa ggotgcagtg agccatgatt 61560 gcaccactgc actccagcct gagtgacagc gagaccctgt ctcaaaaaga caaaatagga aacttttctc agcatattcc tctgattctc ctgctgcttc tgtctgcaca gattcagtct 61620 61680 cetttgeegg tietteetea teeteetgat etettgacet tgaagtgeee cagagtacag 61740 tettttttt ttttttgag acgeagtete gtetgteace caagetggag tgeaatggeg 61800 aggitteage teatgeaace tetgeeteet gggitteaage gatteteetg ceteageete ceaagtagee aggaetacag geacatgeea ceatgeecag caaattgitg tattittagt agagaeaggg tittactata tiggeeacge tggteteaaa eteetgaact egitgaaceae 61860 61920 61980 cegectegge eteccaaagt getgagatta caggeatgag ceaccacace eggeecagag 62040 tacagtettt agaeggeete tetacetata ettgeteece teataaacte etcetgeete atggetttaa ataceategg tagaetgatg acteceatat ttetetttt tttttggaga 62100 62160 eggagteteg etcagtece caggetggag tgeagtggeg egatetegge teaetgeaag 62220 etecacetge caagtteaca ceatteteet aceteageet etecagtage tgggaetaca 62280 ggcacccgcc accacgcctg gctaattttt ttgtattttt agtagagatg gggtttcacc atgttagcca ggatggtctc gatctcctga cctcgtgatc cgcccatctc ggcctcccaa 62340 62400 agtgctggga ttataggtgt gagccaccgt gcccagccga tgactcccat atttctatct 62460 cttgctgtgt gggagttctc ctcagaactc catactcata aatccaactc tcataaatag tatctcaaat gggcaatatg ctcaaaagtc aattcctact tttctcccta aacttgcttt 62520 62580 cctgcagtct ccaccatctt aatgtccaat ctaacattag gaggcaaaaa ctttgaagtc 62640 attettgact ettetetatt acacacecta tecaatettt etgeagatec agtegacece 62700

			gttaccccct			62760
ctcacctgaa	tcactgcagc	attctcctca	ctggtctctt	tggttctgtt	ttcactccac	62820
cttagcatag	tctccacaga	gcagtcagag	ggatcctttt	aaagtgtaat	tcccatcctg	62880
tccctgctct	gctcaaaacc	ctgtcgtgat	tcccgtttta	atctgtcaga	ttaaaagcca	62940
gagtctttcc	agtgacctac	atgatctgcc	tattatcacc	tcccacttct	ttccccttgc	63000
tcactccact	ccagctctgc	agctgtcctt	tctgtttcct	gaacagccca	gattttgctt	63060
ctttagaacc	tttgtatttg	ctgtcccctc	tgtctggaat	gtttttccag	gaagtcacct	63120
ggctctctcc	tgcacttcct	tcctgaccac	catgtttaaa	aatcactcaa	acacacttca	63180
ggccggacat	ggtggctcac	gcctgtaatc	ccagcacttt	gggaggccaa	ggtgggtgga	63240
tcacctgagg	tcaggagttc	gagaccagcc	tggccaacat	ggtgaaactt	cgtctctact	63300
acaaatacaa	atagtagcca	ggtgtagtgg	cacacacctg	taatctcagc	tactcaggag	63360
gctgaggcag	gagaatcgct	tgaacccaga	aggcagagga	ggtgcagtga	gccaagatca	63420
cgccacaaca	ccccagcctg	ggtgacagag	caagacccca	tctcaaaaaa	aaaaaagaa	63480
aaaaaaatca	cacaaacaca	cttctcttca	tattcctttt	ccaagtttta	tttttctcca	63540
			tccgtttccc			63600
			caagtactaa			63660
			cagggtggta			63720
			cttttgttcc			63780
ctacttqtac	ataataaqca	ttcaataaat	atttgttgaa	tgaatgactt	gttgaatgaa	63840
			attagaaaat			63900
			gtactctaaa			63960
			tgggcgaggt			64020
qcattttqqq	aggacgaggt	qqqcqqatca	cttgaggtca	ggagtttgag	accagectag	64080
ccatcatggt	gaaaccctat	ctctactgaa	aatagaaaaa	ttagccgggt	ataataacac	64140
atacctataa	teccagetae	ctaggaggct	gaggcaggag	aatggcttga	acccgggagg	64200
			ttgcactcca			64260
			ttaggaatcc			64320
			taaaccttaa			64380
			atgcctgcaa			64440
			aaaaaataaa			64500
			tacagtactt			64560
			gggggacgct			64620
			actggggaga			64680
			ttctgtcaaa			64740
			aggtgagaga			64800
taccacaget	gtggaggtgg	acagogacag	tggtgggccc	togccagact	tttcatgctc	64860
			tccctccagg			64920
			ttttaaattt			64980
			gaaccctgct			65040
ctgccaaact	gattttgaaa	cttaatctcc	aaagtggcaa	tattgagatg	gggctttaag	65100
cagtgactgg	atcatgagag	ctctgacctc	atgagtggat	taatggatta	atgagttgtc	65160
atgggagtgg	catcagtage	tttataagag	gaagaattaa	gacctgagct	agcatggtcg	65220
ccccttcacc	atttgatatc	ttacactocc	taggggctct	gcagagagtc	cccaccaaca	65280
			ccttgtactt			65340
gaaataaatg	ccttttcttt	atquattacc	cagtttcaga	tattctqtta	taaacaatag	65400
aaaacgaact	aaggcaaact	ctcatgattc	tactgccatg	ccattccaat	aaactccctt	65460
tatqcttaaq	agagccagag	ttggccaggc	gtggtgactc	acacctataa	ttccagcact	65520
ttgggaggcc	qaqqcaqqtq	gatcacaagg	tcaggagatc	gagaccatcc	tggctaacac	65580
ggtgaaaccc	cgtctctact	aaaaatacaa	aaaaattagc	tagacatagt	agtagatacc	65640
tgtagtccca	gctactcggg	aggetgaage	aggaggagaa	tagcatagac	ccaggaggg	65700
gagettgeag	tgagtcgaga	tcgtgccact	gcactccagc	ctgggtgaca	gaatgagact	65760
ccgtctcaaa	aaaaaagaga	gccagagttt	atttctgttg	cttqcaacca	agaaatctgg	65820
ctggtgcact	gaagtttcca	taaataataa	caatttaaag	actctttcca	agccaggcaa	65880
tgcctagcct	tgtgtagtcc	ttgtggtaat	acattcattc	attcatttat	tcaaccaact	65940
			gggccgggtg			66000
cctagcactt	tgggaggcca	aggcaggtag	atcacctgag	gtcaggagtt	cgagaccaac	66060
ctggccaaaa	tggtgaaacc	cctactctac	taaaaataca	aaaaattagc	tagagatagt	66120
ggcggacacc	tgtaatccca	gctactcqtq	agactgaggc	aggagaatca	cttgaacccg	66180
ggaggcagag	gttgcagtga	gccgagatca	caccactgca	ctccagcctg	ggcaacaaga	66240
gcgaaactcc	acctcgaaaa	aaaaaaaaa	aaaaaaagag	qqccqaaact	gggcgcagta	66300
-	-		- 3 - 3			

gctcacgcct gtaatcccag cactctggga ggccaaggca ggagaattac gaggtcagca 66360 gatcgagacc agcctgacca acatggtgaa accccatctc tactaaaaat acaaaaatta 66420 tccgggcgtg gtggcgcaca cctctagtcc cagctacttg ggaggctgag gcaggagaat cgcttgaacc cgggaggcag aggttgcagt gagccgaaat catgccactg cactccagcc tgggtgacag agtgagactc cgtctcaaaa aaaaaataaa aaaaaaaaa gaattcaaaa 66480 66540 66600 attgtagagt tatagtgtgc ttctagttta gttgagagga catctgtcct tcaaggaagg 66660 ctagaatcta taccctgagt ccttactgaa atcaatccag cagtcaaaac atgggaccaa 66720 cgatcacagc agtaagatag gaagagcacc tttgtacatt tagctcatgt tgagataagc cactgacaga gctgaaggaa gctcacagtt ctgggttcca tcctttggca tttaaaaaga 66780 66840 aaagtgctaa gaaaattogg ttggtcacgg tggctcacgc ctgtaatccc aacactttga 66900 gaggccaagg caggcagatc acgaggtcag gagttcgaaa ccagcctggc caacatggtg aaaccccgtc tctactaaaa acagaaaaat tagccgggca tggtggcgca tgcctataat 66960 67020 cccagctact caggaggctg aggcaggaga attgcttgaa cccgggaggg ggaggttgca 67080 gcgagtgaga gcaggccact gcactccagc ctgggagaca gagcaagact ctgtctcaaa 67140 67200 ttcaggccag gccaggcctg gtggctcaca cctgtaatcc caacactttg ggaggctgaa gcgagacggt gccttagccc aggagtttga gaccagcctg agcaacatag cgagaccctg 67260 67320 tetetataaa aaaaaatttt tttttggeea gaegeagtgg eteaegeetg taateeeage 67380 actttgggag gccgaggcag gtggatcacg aggtcaggag atggagacca tcctggctaa cacggtgaaa ccccatctct actaaaaaat acaaaaaatt aaccgggcgt ggtggcgggcgctgtagtc ccagctactc gggaggctga ggcaggagaa tggcgtgaac ccgggaggcg 67440 67500 67560 67620 67680 67740 67800 67860 aaaagaaaag gaaggaagga agaagaaaaa aaaagaaaga aagaaaagag agagaagttc aaagaccaaa gggtcaggat cccaaaatag tttttatgtt ttatttattt atttacttat 67920 67980 ttatttttga gacagtatgg ctctgtcgcc caggctggag tgcagtgatg cgattgcggc 68040 tcactgcage etccaaactg ggetcaggtg geceteccae etcageetee egagtagetg ggaccacagg egegtgecae catgeccage taattttta attetttgta gagatgaggt etctatatge tgeccagget ggtetegage teetgggett aagecateca eeegeetggg 68100 68160 68220 cctcccaaag tgctgggatt acagaagtga gccaccgcgc ctaatcgggt ggtttgtttg 68280 tttattgacg gggtctcgct gctgcccagg ctggagtgcc agtggctgtt cacaggtgca 68340 gtcctggagc attgcatcag ctcttgggct ctagcgatcc tccagagtag ctgcagctgg 68400 gattccagge gegecacege geggggetea gaatgggttt ttatattgag ggttatgetg 68460 ccacctagag gatatatgta gtaccgaact gtgtgcgcag ggaggctgag gttgcagtga 68520 gccaagatga tgccagggca ctccagcgtg ggtgacagag caagatttca tctcaaaaaa 68580 aaaaaaaaa aaaaaaaaa aagaattgaa agtaaggtot tgaagagata tttgtgcctg 68640 tatggtcata gcagtattaa ctttgaccca ctagctaaaa cacaaaagca acatgtgtct 68700 gtcagcaggt gaacggataa acaaaatgtg gtatatatgt acaattgaat attattcagc 68760 ctttaaaaag gaataaaagg ctggatgcgg gggctcacgc ctgtaatcct aacactttgg gagactgagg tgggtggatc acccgaggtt aggagtttga gaacagcctg gccaacatgg 68820 68880 tgaaacttca tctctactaa aaatactaaa attagccggg catggtggca cttgtctgta 68940 atccaagcta ctggggaggc taaggcagga gaattgcttg aactcaggag ccggaggttg cagtgagcta agatggcacc actgcactcc agcctgggca acagagtgag actccatctc 69000 69060 aaaacaaaca aacaaaaaat tattatttcc aaagaaacaa gaccctgggt ccatttccca 69120 gcccacacct gatgttgact cacaacacac agcctggttt gctatgagcc tgcttcattt 69180 aattgtcacc ttaacttcac atcaccetca agtcctggaa taactctttg ctgacctttg 69240 tgtgctgagc catctccatg tcgctcaacg tgcagtccct ctcactgcac tgagtcaata 69300 gccagacgtg gtctgactgc agggtcatcc ttggtggctt aggctgactc gggcatagca 69360 gggtgctctg agacctcacc gcatataggc tttgccccca ataaactcta tataatattc 69420 atattatgtg gtctgggtgt gtgtagcttt gcactgtctt ctcgtgacag tgccctcaac ctctttccca ggatttcctc ctctacctcc tcaagtccca ctgctctgca aagaccaaaa 69480 69540 gctgcagagt cccagctccc tcctttacac cccacgacgc agcctcctct ctcagaaccc 69600 tttaaacaga gtcttttact gcagatccca agaacagcca cacccctctc tcccaccac tccagacaca cccaggtaat tatagcaccc agggtaacta tgtagatgga gtccctggaa catgtggata gtgcccctg ggagtatgca aaagcaacat tgctggcacc tgcagagaac 69660 69720 69780 agggtgacat ccaggaatca gagcatgggc ctctgggagg tagggatgtg gccaggcagg 69840 ctgccaaaaa ttggtagagc aaggccacag gatctttctg accttccttc caaacagagg 69900

			01/122			
ctcctgtact	ggtgatccct	atattaatta	accactccct	tectaggggt	cataatetet	69960
atcccaatta	cccggacttc	tataaatatc	ctactgaggt	ccttttcato	agaagcatgc	70020
totocttoca	cctactagga	gcaagagtga	caacttcaat	actataatag	cagtggcatge	70020
			aaacaggctt			
			tataaagggc			70140
ctttgagagc	cacatagact	tatttacaaa	gactcaatgt	cagatagtaa	atttaaaaa	70200
			tgattttgtt			70260
agecacagg	atcactcac	tagatttaga	ccatgatcct	tagtttggg	actoctcatt	70320
tagactcacc	cagatetgat	tttgaattct	ggctctgcta	ctggttagtta	acticityctt	70380
ggaggetetet	ctgacctgat	ttcctcatct	gtaaaattaa	acceptaget	tetaagagete	70440 70500
aggaggetet	cctcacccct	ctaatcccac	cactttggag	agtaataatt	cccaacaccc	70560
						70620
			aacgtggcaa catctgtaat			70620
						70740
			ggagcgtgca			70800
			tccatctcaa			70860
			tgccttgtgt			
			tagaagcgat			70920
			gatettggge			70980
			ctaggactgt			71040
			tgcagtggcg			71100
tacasacasa	caggiccaag	ttttttt	gcctcctaag	Lagergagae	cacaggigig	71160
			ttagtagaga			71220
			gatccacccg			71280
			cccagaacca			71340
			ttatttaacc			71400
			tactatccca			71460
			ccttggacat			71520
			tagcatctca			71580
			aaatgattgt			71640
			tcaggctcac			71700
			agatttttac			71760
			aggctgtgtt			71820
			acatctaaca			71880
			ttattattat			71940
			gaccattgct			72000
			ctgtcgccca			72060
			ggttcaaatg			72120
			catgcccagc			72180
			ggtctcaaac			72240
			acaggcatga			72300
			ctctgctgaa			72360
			gtattaataa			72420
			cctctcttat			72480
			attcagttta			72540
			tgcagtggct			72600
			gtcaggagtt			72660
			gtcttgtgtg			72720
atgagacett	catctcagg	tttactttct	tgagactgtg ggggtaactg	accettaaaca	ctagecetgee	72780 72840
			ttattcacca			72900
atcacccca	ggttgtaatt	gragecaga	agagaggatg	gagaacagac	tetestetes	72960
tagtcaaagt	Caacaccato	atasatasas	agagaggatg	cacageeeea	ttagagagag	
ttgagtggt	aaccccacg	accttccaca	gtcaaatcct ttcagacccc	tcastaccc	tactacase	73020 73080
agaaggetee	acattcacct	caccacacac	aggageeetg	caacacacc	tttatata	73080
taaagetgg	ccctccact	ctatttata	ayyayccccg	aaaataaa	stagesees	73140
cctgagga	aaagtgagag	cctactacac	gtaaataacc	cacacteeee	assertes	73260
ctagccctcc	ccactototo	toogenadag	gagaaaatac cagggaatca	tatataggee	teastettes	73260
agctgttgge	ctagagataa	cataceetet	aagcctggcc	ctacacactt	tttccccttt	73320
aaaaaccttt	~ c233333c33	caacatccac	tgctatagca	ggagge	gaggtagtet	73380
taacagatgg	traggattga	acttggcctag	gagtaaaatg	aggactica	taccacacac	73500
	uggaccya	acceggeera	yaytaaaatg	ayyayyaray	cyccayaact	73500

ttctcaacat actattgagg aagaggtcag aaggettaag gaggtagtgt aactggaaag gggtcctgat ccagacccca ggagagggtt cttggacctt gcataagaaa gagttcgaga cgagtccacc cagtaaagtg aaagcaattt tattaaagaa gaaacagaaa aatggctact ccatagagca gcgacatggg ctgcttaact gagtgttctt atgattattt cttgattcta tgctaaacaa agggtggatt atttgtgagg tttccaggaa aggggcaggg atttccaga actgatggat cccccactt ttagaccata tagagtaact tcctgacgtt gccatggcgt ttgtaaactg tcatggccct ggagggaatg tcttttagca tgttaatgta ttataatgtg tataatgage agtgaggacg gecagaggte gettteatea ceatettggt tttggeegge ttetttatea cateetgtt tatgageagg gtetttatga cetataaett eteetgeega eeteetatet eeteetgtga etaagaatge ageetageag gteteageet cattttacca tggagtcgct ctgattccaa tgcctctgac agcaggaatg ttggaattga attactatgc aagacetgag aagccattgg aggacacage etteattagg acaetggcat etgtgacagg etgggtggtg gtaattgtet gttggecagt gtggaetgtg ggagatgeta etaetgtaag atatgacaag gtttetette aaacaggetg ateegettet tattetetaa ttccaagtac cacccccgc ctttcttctc cttttccttc tttctgattt tactacatgc ccaggcatgc tacggccca gctcacattc ctttccttat ttaaaaatgg actggggctg ggcgcggtgg ctcatgcctg taatcccagc actttgggag gccgaggcgg gcggatcatg aggtcaggag atcgagacca tcctggctaa cacggtgaaa ccccgtctct actaaaaatg caaaaacatt agccaggcgt ggttgcaggt gcctgcagtc ccagcggctc aggaggctga ggcaggagaa tggcgtgaac ctgggaggtg gaggttgcaa tgagccgaga ttgtgccact gcactccagc ctgggtgaca gagcgagact ccgtctcaaa aaaaaaaaa aaaaaaaaa tagetgggea tggtggegeg tgeetgtaat accagetact etggaggetg aggeaagaga ategettgaa cecagtagge ggaagttgea gtgageegag atettgacae tgeacteeag aaagagcaca gacagagtca caggtatttg cagtaggaag ctgtcaggtt agagtgcacg gaaatagaaa gtatatttta cacttacagc acatcttcgt ttgattaqcc acatttaaaa tactgaatag caacgtgtgg ctatttagta ttcactaaaa tcttggacag tgcaagtcta aagaatcctt gatccgtccg gcatggtggc tcacgccttt aatcccagca ctttgggagg ccaaggtgga aggatcactt aaggtcagga gttcgagacc agcctggcca acatggtgaa acctegtete tactaataat acaaaaaaaa ttageeggge atggtggtge atgeetqtaa gaggetgagg ggggtggate acctgggtte tggagttega gaccageetg gecaacatgg tgaaacccca tctctactaa aaatacaaaa attagctggg cgtggtggtg ggcacctgaa atctcagcta ctcaggaggc tgaggcagga gaatttettg aacccaggag gcagaggttg cagtgagcca agatcgcgcc tctgcactcc atcctgggtg gcagagcaag actatgtetc aaaaaaaaa aaaaaaatac ttgattgtct ggacattctg cagaacatca tatggagaca ctatgttgac gacatcatgc tgattgtaag caagaaatgg caagtgttcc agaaacacag tcaagacaca tacatgccag aaggtgagat ataaactcta ctaagattca gtggcctgcc acactggtga catttttaaa cctgctagat gtttgtgtag aaaaggattt aaccttgccc tagagactag aatcaaccac atgggcagac aacccagctt acatgatgga attccaataa agactttgga cacaagggct tgggtaagct ttcctggttg gcaatgctct atactgggaa acccattctg actccatagg gagaggacaa ctggatattc tcatttggta cctccctggg ctttgcccta tgcattttc ccttgtctga ttattattat tattatgaga tggaatctcg ctctgtcacc caggctggag tgcagtggaa tgatctcaac tcactgcaac ctctgcctcc ccggttcaag cgattttcct gtctcggcct cccgagtagc tgggactaca gatgcatacc accacaccg gctaatttt ttgtatttt agtagagacg gggtttcacg ttagccagga tggtctcgat ctcctgacct catgttccgc ctgcctcggc ctctcaaagt gctaggaata catgtgtgag ccaccgcgcc cagccccctt ggctgattat taaagtgtat ccttgagctg tagtaaatta taaccgtgaa tataacagct tttagtgagt tttgtgagca cttctagcaa attatcaaac ctaaggatag ccttggggac ccctgaactt gcagttggtg tcagaaataa gggtgctcat gtgtgtacca tgccctctaa ttttgtagtt aattaacttt cacaacttta ttattaccgc ttacactcaa tgtttattca catttatcca cataccactt attctagtgc cttgcatcaa agactttcta tctcatgtac tttattctgc ttgaagtaaa tcctttagga tattetttt ttttttaaa etttgeacat acataetttt atttttatt tattttaat tttgttattt ttgtgggtac gtagtagata tatqtattta tqqaqtacat qaqatqttt 

gatacaggca tgcaatgtga aataagcaca tcatggagaa tggggtatcc atcctctcaa gcaatttatc cttcaagtta caaacaatcc aattacactc tttaagttat tttaaaatgt 77160 77220 acatttaatt ttgtattgac tagagtcact ctgttgtgct atcaaatata atttttttt 77280 tttttgagac agagteteac teagtggeec agaetgaaag tgeagtggea caagetegge 77340 teacticaat cictgeetee etggiteaag egaateteet geeteageet eccacatage 77400 tgggattaca ggcacacc accatgccca gctaattttt atatttttt agtagagacg 77460 ggttttcgcc atgttggcca ggctggtctt gaactcctgg cctcaaatga tctgaccacc 77520 tragection adagtigating gattacagge atgagecace acacotigged adaltagaat 77580 attetttagt gaggtetget ggtgacaatt tttttettt ttttgagaet gagteteget gttgteaget tgggetggag tgeaatagea egateteage teaetgeaac etceaectee 77640 77700 cggattccag caattctcct gcctcagcct cccaagtagc tgagagatta caggcaccca 77760 ccaccacacg cggctaattt ttgtattttt agtagaaatg ggggttcacc gtgttggcca ggctggtctc gaactcctga cctcaggtga tccacccacc ttggcctccc aaagtgctgg gattacaagc atgagccacc acgcacagcc aatttttcc gttttgtct gaaatcttat 77820 77880 77940 78000 tcattattat tattatttg agacagggtc tcactctgtt gcctatgctg gggtgtagta atgtgatct ggttcactgc agacttgacc tcctagggct caggtgatct tcccacctca gcctccctag tagctgggac tacagatgca tgccaccata cccaactaat ttttctattt 78060 78120 78180 tttgtagaga tgaggetitg ccacatttee caggetggte tetaacteet gagetetage 78240 aatccaccca ccttggcctt acaaagtgct gggccatgac tagccagcag ttacttttta tagcatattg aatatttaat atgaatcttc tggcatccac tgtaactgtt taaaaaaatca 78300 78360 geigtttact tggcactett ttttttttt tttttttga gacagagtet tgccetgteg 78420 cccaggctgg agigcagtgg cgtgatcttg gctcactgca agctctgcct cccgggttca 78480 cgccattctc ctgcctcagc ctccggagta gctgggacta aaggcgcccg ccaccacgcc cggctgattt ttttgtattt ttcgtagagt tggggtttca ccgtgttagc caggatggtc 78540 78600 togatotoct gacotogtga totgtocgco toggcotoco aaagtgotgg gattataggo 78660 gtgagccacc gcgcccagcc tetitittt titititag acggagtett actetyteat 78720 ctaggctggt gtacagtggc gtgatctcag ctcagtgcaa cetecacete etgectcage ctgccaaata getgggatta caggtgcgta ccatcacgce eggetaattt ttgtatttte 78780 78840 agtagagatg gggtticacc atgttagaca ggctggtctc gaactcctgg ccicaagtga 78900 totgootgoo coagootooc aaagattaca ggoatgagoo accgcaccog gccaagtago 78960 actoctttga aggtaatotg ottoccotac coctagoaat tittaacaat tittottoat tittatttoc tgaagttitg tiattaataa totgtgtgca gatttotttg tattotttt 79020 79080 gtttgcagtt catagtgatt cttgaattag tgtgttggtt tctgttatca ccacaggaaa 79140 attgicagee gttagetttt caaatattte ettgetääat tetetettet eeeetttegg 79200 tacaattgat ttgattaaaa ctaaaaccag ggccgggtgc agtgactcat gcctgtaatc ccaacacttt gagaggctga ggcaggtgga tcacctaagc tcaggagttc aagaccagcc 79260 79320 tggccaatat ggtgaaaccc cgtctctact aaaaatacaa aaattaccag gcatggtggc 79380 acacatttgt agtcaggagg ctgaggcagg agaattgctt gaatccagga ggtggaggtt gcagtgagct gagatcccac cactgcagtc tggcctgggc gacagagtga gatgagaatc tgtctcgaaa aaaaaagtta tgaatgtttg ataaactata tttgttagaa tgtttgttgt 79440 79500 79560 agaatactat tcattgattt ttaaacaatg ttagattaaa ccattcactg gatttgtgat 79620 aattaactta ctgattttac ctcactgatt tgttgtaatt aatacaactg gtataaaaag actgtgacga ggcegggcat ggtggctccc gcctataatc ccagcacttt gggaggctga ggcaggcgga tcacctgagg tcaggagttc aagaccagcc tgaccaacat ggtgaaaccc 79680 79740 79800 catctttact aaaaatacaa aattageegg tegtggtggt geatgeetgt aateeeaget 79860 cttcgggagg ctgtggcagg agaatcactt gaacccggga ggtggaggtt gcagtgagcc gatatcgcgc cattgcactc cagcctgggc aacaagagcg aaactccgtc taaaaaaaaa 79920 79980 aaagaaaaaa aacacataaa acaaaacaac actgtgacgg ttcccaaaaa ttaggagcat 80040 aattaaagga acteetgata aaaattaatt ttatettaea tgtaaaetaa aatgaettta 80100 tgaagttaat tcagaaatac aatgcagggt attagtttgc cacagctgcg tattcagcct 80160 aatgtaatat tottgttatt tttaaattot tottttaact ttactcatat gtggatcato 80220 azatttcaaa agattaaatg acaatactct tagcagcaag cttccctaag catataaaca 80280 ttttaatggg tgatgattca gaaggtaccc gaagaatatg tactgccaga tatcattcac ccccatatac ctgcccgaca gacatcccat tttgggaccc tggataaatg tgtgggtgga 80340 80400 gagaaagata ggagaaagtg gtataagcaa atggctttgg agtctgattg acagcgattg 80460 aaatcctgtc tctacctctt aacagcctca tgatcctaca taagttaccc cgatcctcag 80520 ggccacatet gtaaattggg ggttgcgatg gcagccatet cacagggtet ettttcgggg aagggcagga attatggatt aagtgageta gtaattgtaa agcaettaat acaaggaggg 80580 80640 cgcataataa gtacttcata aataatgacg gccattatca tgactgaggt gtatgcagct 80700

gtcggggatt acggcgactt cagaatttct ggtgggcagg gctcaaaggc agcaaatcac actggaagtc gaggtgaggc actgcttctg cacagactgc ttagctggag agaatgagga 80760 80820 aggettagag gagatttaga ggaacttaga gteeteegee tecaactetg tgggatetge 80880 tecegtgeca gagacattea ggggatttet egeactetee ectecectae gteceteeeg 80940 ccccatccaa ctaaccacac aacacataca aaatagcccc tgcgaggttc tgcacgctgg 81000 aagggaacag gagaagggcg ctgcgctttc ttgctgatgc cctgtacttg ggcccctqqt 81060 agacacagec acttgtcccc tcagcctgca gagaaatccc acgtagaccg cgcccgggtc 81120 cttggcttca gccaatctcc ctttggtggg ggtgggatgc acgatccaag gttttattgg ctacagacag cggggtgtgg tccgccaaga acacagattg gctcccgagg gcatctcgga tccctggtgg ggcgccgctc agcctcccgg tgcaggcccg gccgaggcca ggaggaagcg 81180 81240 81300 gccagacgc gtccattegg egccagetca etceggacgt eeggageete tgccageget 81360 getteegtee agtgegeetg gaegegetgt cettaactgg agaaaggett cacettgaaa tecaggette atecetagtt agegtgtgae ettgageagt tgaetttatt ttteagtgee 81420 81480 tagtitteca gataccagga ctgactecaa ggactattae teatetggag ggtttageae 81540 agtaccetce catagtaaat ttccatetca etttteetta cctttcatec acttecaaac 81600 atgccatgct ctgaaacgaa ataggcacat ctttttttt ttttttta aggagtcttc 81660 ctctcgccca ggctggagtg cagtggcgcg atcttggctc actgcaacct ccacctcccg tgttcgagat tctcctgcct cagcctcctg attagctggg actacaggca tgccacgacg 81720 81780 cccagttaat ttttgtattt ttagtagaga cggggtttcg ccatcttggc caggctggtc 81840 taacicctga cetcaggtga tetgactgee teageetete aaagtgttgg gattacagge 81900 ataagccact gcatctggcc agaaatgaaa taagtaaatc ttttaacctg ctctaacaat atagtgaaaa gaccatatta ttattagagc aggttaaggg atttgcctat ttcgggttct 81960 82020 agttatagte ttaaacttgg acattettgt agaaagtaaa aagttteete tteaaagtte 82080 cccttcttgt taaagaatac atcataagtg ttagaagtaa tagtttattt taaagactaa ctttcttcaa gcctccttgc tttgtgctaa taactctttg ttaagcccta tcctatgtaa ctgttggaca tgctcacagg cacgttccag ttcacagcct atgccccttc cttatttgga 82140 82200 82260 aatgttattg cttccttaaa cctttcggta agcaacttcc tctccttctt cgttcttcct 82320 tgcacttacc tatttagaaa gttttaggct attagcaaat cggctatcag titaagagtg 82380 tgaggtcccg ctccagccaa tggatgcagg acatagcagt gaggacgacc caaatgcgta 82440 agggataaat atgtttgctt ttcctttgtt caggtgtgct ctcgacatcg ttccatctgc 82500 gattgagcac cetttetgea gaaagtaaag attgeettge tggagatett ttgteteegt 82560 gctgactttt cttcgtggca ccgattatct atttctaaca attttggtat ttctaacatt 82620 ctgaacaatc ttgggctagt tgtctcttct gggcctgttt ccccatccgt cacatgataa 82680 actteattgg tttaaaaacc ceagegaaca tttattgagt tactattacc tteetgeeet 82740 82800 ecceaacec aaceceaggg ageagttaca aceteageeg etgagegeae tegeegggtg ttaagaagca ccaaagacag ggaggcttga ttgattttgc tttgggagta gagggtcaga agattcacag gaaaatggca tttgagcaag gatgattcac tggagctagc ttttaaatac 82860 82920 tiggcgaggct tttatgttgc agtcccttac aaagttgagc attcgcaggg actgcactcc 82980 gaaataagcc cgcttcccct tttcattcgc taatgatcca gggagctgct ggttccgcat 83040 geggeaggtt gigeetttte etaateaggg ttetgeateg cetegaacee geaggeegtg gegggttete etgaggaage agggaetggg gtgeagggtg aagetgeteg tgeeggeeag 83100 83160 83220 cgcctgtgag caaaactcaa acggaggagc aggaggggtc gagctggagc gtggcagggt tgaccetgce ttttagaagg gcacaatttg aagggtacce aggggcegga ageeggggae 83280 ctaaggcccg ccccgttcca gctgctggga gggctcccgc cccagggagt tagttttgca 83340 gagactgggt ctgcagcgct ccaccggggg ccggcgacag acgccacaa acagctgcag 83400 gaacggtggc tegetecagg cacceaggge cegggaaaga ggegegggta geacgegegg 83460 gtcacgtggg cgatgcggc gtgcgccct gcacccgcgg gagggggatg gggaaaaggg gcggggccgg cgcttgacct cccgtgaagc ctagcgcggg gaaggaccgg aactccgggc gggcggcttg ttgataatat ggcggctgga gctgcctggg catcccgagg aggcggtggg 83520 83580 83640 gcccactccc ggaagaaggg tcccttttcg cgctagtgca gcggcccctc tggacccgga 83700 agtccgggcc ggttgctgaa tgaggggagc cgggcctcc ccgcgccagt ccccccgcac 83760 cetecgtece gaccegggee eggeatgte ettetteegg eggaaaggta getgagggg 83820 caccadeada dadreadac adacereada adeadacada adacadata acceptada 83880 gettteecea aggeggeage aaggeettea gegageeteg aceteggege agatgeecee tgagtgeett getetgetee gggaetette tgggagggag aaggtggeet tettgegega ggtcagaggag gtattgtege getggtteag aagegattge taaageecat agaagtteet 83940 84000 84060 gcctgtttgg ttaagaacag ttcttaggtg ggggttagtt tttttgtgtt tctttgagga 84120 ccgtggatca agatcaagga aatctcttta gaaccttatt atggaagtct gaagtttcca 84180 aatgttgagg gttttatgtc taaaagcaac acgtgaaaaa attgttttct tcacccagtg 84240 ctgtcttcca atttcctctt tggggggagg ggtagttact gctgttacta aaataaaatt 84300

acttattgct	aaagttcccc	aacaggaaga	ccactacttt	tgatgacttt	ggcaagtttg	84360
ctaactactg	gaaccctaac	ttacaaacga	actacttaca	tttttqattt	ccaqttqtat	84420
tacctgccca	atgtttacgt	agaaacagct	taattttgat	tctgggtaac	gttgttgcac	84480
ttcattaaaa	atacatatcc	gaagtgagca	agtatgggtc	tgtggacagc	agtgatttt	84540
cctgtcaatt	cctgttgctt	cagataaaat	gtaccagaca	gaggccgggc	acaataactc	84600
acġcctgtaa	tcccagcact	ttgggaggct	tggcgggtgg	atcacctgag	atcqqqaqtt	84660
caagaccagc	ctgaccaaca	tggagaaacc	ccgtgtctac	taaaaataca	aaattagcca	84720
gggtggtggc	gcatgcctgt	aatgccagct	acttgggagg	ctgaagcagg	agaatcgctt	84780
gaacctggga	ggcggaggtt	gcggtgagcc	gagatagcac	cattgcactc	cagectggge	84840
aaaaagagcg	aaactccgtc	tcaaaaaaaa	agtaccagac	agaaatgggt	tttgttttct	84900
ttttttgttt	tgagacggag	tttcgctctt	gttgcccagg	ctcgagtgca	atggcgcgat	84960
ctcagtctcg	gctcactgca	acctctgtct	cccaggttta	atcgattctc	ctgcctcagc	85020
ctcccaagta	gctgggatta	cccatgcccc	accatgcccg	gctaattttt	gtatttttag	85080
tagaaacggg	gcttcaccat	gttaggctgg	tcttgaaccc	ctgacctcaa	gtgggcctcc	85140
cacctcggcc	tcccaaagtg	ccaggattac	aggcatgagc	caccgcggcc	agccagaaat	85200
gggttttgga	aaaagcacta	aacaaaatcg	aacttggttt	catatgacag	ctctgctgct	85260
aactgtaaca	ggggcagacc	agttaaccta	cttttctgtc	ttctgtcagc	tgagaattag	85320
atgattccca	aaggcccatt	gaactctgaa	tgactttaaa	tacttcttct	taagtgggta	85380
cacggttttg	gtaactgatg	ccaggtgatg	aatgcatgaa	agtgcttaat	gaatgaaacc	85440
ggtaaaatag	taggaggaag	ctttattggt	aaggcagggg	tatacctaat	agctctctaa	85500
tttattggta	ttgaagtggt	taacttttgt	ttttttaagg	ggggaaaaca	ttctaagaat	85560
aatgaggcaa	actgcatatt	gcacaagaga	ctgttgtctc	tattcaacaa	ataccttttg	85620
agtgtccaga	gtctgccagg	tgctgtgcta	ggccctcacg	attgagtagt	gaaccagaga	85680
atgtccctgc	acccatggag	cttattgtct	actggggtag	acagataata	aataagcaaa	85740
caaatcttct	ctcttctccc	tttcgctcca	tgtaagtgtg	tgtgtatagg	tgtatactta	85800
caagttgagt	aaagtgttat	gaaagattaa	gaggagaaat	gcattttggt	tagatgttag	85860
aggactcagc	aggtgacctt	gaaacttaga	gctgaaggat	cagtaggagg	taactagaga	85920
ggccagggaa	tcgcatgttc	aaaggccagg	aggcaagaaa	gagcatggtg	cccttcaaga	85980
gaggaaagaa	ggctactgtg	actggagcat	agatgtaggc	aagtgttggg	tgattgagag	86040
ctctacgggc	catggttagg	ttttattcct	aatgccgaga	tgccaaacat	ggtggttcat	86100
atctgtaatc	ccagtatttt	aggaggccga	ggcaggaata	tagcttgaac	ccaggagttc	86160
aagaccagcc	tgagcaacat	gagacctgta	caaaacattt	aaaaaattgc	tgggtatgat	86220
ggtgcacacc	tgtggtccca	gctactcagg	aggctgaggc	agaaggatca	cttgagccta	86280
ggaggtggag	gctacaatga	gccatatttg	agtcactaca	ctccagcctg	gatgacaaag	86340
tgagaccatg	tgtcaaacaa	aatacagaaa	gaatattaat	ttaaaatttt	gaaagaggag	86400
			tctagggcat			86460
aagggctttg	ggaggetgag	acaggaggat	cacctgaggc	cagttcgaga	tcaacctgta	86520
cagcatagag	agactccatc	tctacaaaaa	gaaaaaataa	atagctgggt	gttgtgagtt	86580
atteaggagg	ctgaagcaga	aagatcactt	gagcccagga	gtttgaggct	gcagtaagct	86640
argareceae	cactgeaaca	cagtgagatc	ttgtctcaaa	aaaaaaaaa	aatcattcta	86700
tecatteres	ggaggergga	cotosstana	gtagaagctg	gagatggtcc	tgttagggat	86760
atcettees	ctcaaatac	catcaatgea	ttgagtccca	aatttacatc	actacgttgg	86820
traccaatat	agagetetes	actygiatat	ccaactttag	getcageteg	tatetetace	86880
tetteacea	cacatacact	agtettttgg	cttccctagg	ccacattgga	agaagaattg	86940
graaaactta	taatotttta	acaccaacgc	taacaatagc	ttaccases	tasasasatt	87000
			cgaatttgtg			87060
attttatgcc	agatttagtc	attttaaacc	agtagatacc	tttttataaa	aatatetaaa	87120
tttaactttt	tttcttttct	tttttttaa	tgctcatcag atggagtttc	cctcttatca	ttassaataa	87180 87240
agtgcagtgg	cagatettag	ctcactgcaa	cctccgcctc	ctecetaceg	ctcaagetgg	
tgcctcagcc	tcgcaagtag	ctoggattac	aggcatgcgc	Caccatoaco	gegattett	87300 87360
tagagacaga	gtttcaccat	attaatcaa	ctggttttgt	actoctosco	toogeteete	
tacctaccta	ggcctcccaa	aggctgggat	tacaggcatg	agccaccact	cccaactace	87420 87480
tttttggatt	tttagttgct	Cagcccaaaa	ctttagtaca	tettteaace	tettettee	87540
tcctactcta	tatctgatcc	atcagcasat	ctgttaggtc	tacctcacac	atatogasat	87600
cctaccacot	ctcaccatct	gtgacaatta	acaccctggt	ctaggcagtc	atctctctt	87660
agattgagtg	gttaaggatg	tectetaagg	agatgacatt	caaatcttac	cttaaatata	87720
aaqaqqqaqc	togttttata	aagattgagg	aggcagcatt	attttgccat	aggetteest	87780
ttggtttcca	ttccattctt	gatacttata	gtatatattc	aaaacaaata	cacacaaaaca	87840
gacccaggta	tattgggaat	ttcggatata	gagttcctag	ttaggaaaaa	atamantmat	87900
			22200000	55544449	acayactyat	6,300

ctgtaaatga tgctagttat ccatcatctg gcaaaaaata atttcctgcc tcctcata tatctcagat caacagactt tttctgttaa gggccaaatc ataaatattt taggctttcc agaccatatg gtttetgtca cactetectt tateettgaa gecatagaca atatgtaaac aaatgggcat ggctgtgcta cgataaaact ttacttacaa aaactggtag tgggccagtt taggcatggc cagcactttg ggaggctaag gcagatggat cacttggggt caggagtttg agaccageet ggecaacatg gtgaaaceet gtetetaeta aaaatacaaa aaatagetgg tagtttgcca atccctgatg cagaaacaaa ttccaggtaa ataagagcct ggaatgttaa aaaaacaaaa cttgaagtca tgtagaagaa caggtagggg gaacaatcct gatctcagga taggaaggga tattgcttaa aataagacac aggaaaatat aatccatgtt gtgtaaattt gactacgtta aaacttaaaa ctttcgccaa gcgcggtggc tcacgcctgt aataccagta ctttgggagg ccgaggtgag cagatcacca ggtcaggaga ttgagaccat cctggctaac acggtgaaac cccgtctcta ctaaaaatac aaaacattag ccgggcgtgg tggcggggcgcctgtagtccc agctacttgg gaggctgagg caggagaatg gcctgaaccc gggaggcgaa gcttgcagtg agctgagatc gcgccactgc actccagcct gggcgacaga gtgagattcc gtotcaaaaa aacaaaacaa aacaaagcaa aaaacctaaa actttcatac aataaagtat acctaagata cttctagaag agaagattta catccaggac gtgtatggaa tttctgcaag taataagtaa aagacaaggg acatgaagag gcagttcaca aaagaggaag ccaaaatgac caataaacat gaaaggatgt ttaacctcaa aggaaacaag gaaatgaatt aaaaacatca aatgccattt caaaactagt aagttggcaa aattaaaaat accaaggatg agaatatgaa gcatggctat atgagtgcat ggaatggtac agtcactttc attaaaaatg cacataattt gttttttatt tatttttttg agacagtcta tgtcgcccag gctagaatgc agtggcatga tctcggctca ccacaatctc tgcctcctgg gttcaagcaa ttctcctgcc tcagcctcct gagtagetgg gattacagge acatgecaca acgeeeggtt aagttttgta tttttagtag agacagggtt ttgccatgtt ggeeaggetg gtetegaact cetgacetea ggtgagetge tteccaaagt getgggatta gaggegtgag ceaatgetee tggetgaaaa aaatgeacat aatttgttac ctagcaattc catgtctaga ggcttatcct agagaaattc ttgcttatat gcataggaag acgtgtacta gaatgttcac tagttgaatg tttaagtgaa aattaggaaa taaagtaaat gttcattaac aggaaaatga gtaaaggtat atttataaaa caattaagta gctaaaatga ataaactaga gctgcgtgaa tgaactagaa ctggttcaat agtcatgtca gattattgaa tgaatacagg tcagatatgt atagagtgtc atttgtgtaa ttaattittt ttttttttt gagatggagt ctcactctgt tgcccaggct ggagtgcagt ggcgtgatct cagctcactg caacctccac ctcctgggtt aaagtgattc tcctgcctca gcctcccgag tagttgggat tacaggcatg caccaccatg cccagctcat tttcctattt ttagtggcca cagggtttca ccatgttggc caggctggtc ttgaactcct gacctcaagt gttccaccca acttggcctc ccaaagtgct aggattacag gcgtgagcca ccgtgctcag ccatttgcgt gatttttaaa gatgtgcaga ataatgccat taaaaaaaat acacatacat gtatatatat acacgtttgg ctgggtgtgg tggctcacac ctgtaatcec agcactttgg gaggctgagg caggaggatc acttgagccc aggtgtacaa gactagcctg ggcgagatag caagacccca tctcaacaac agaaaggata attaggtatg gtggcatgag aggatcactt gagcccagga gttcgagtgt tatcaggcca ctgcactcta gcctggacaa caaagcaaga ccgtgtctca aaaaaataaa aataaaaagt atttgtatgt ggtcatagtc aaaaaacgta catggaagga aaatgtcttt atttatttat ttatttttt ttttttaaga cagagtcttg ctctgtcacc caggctgggg tacagtggtg taatctcagc tcaccgcaat ctcggcctcc cgggttcaag cgattettet geeteageet tetaagtage tgggaetaca ggtaceegee accaeaceet gctaattett gtgtttteag tagagacagg gttteaceat gttggeaagg etggtetega acteetgace ttaagtgage caccegeett ggeeteecaa agteetggga ttaeaggtgt gageeactge gettggeeag gaaatateta atttagtaag tatttatate tgggaaagga agggtcaggt ggtgattcat aggaactcta aagtctatgt ataatactta gggggacaga aggaaataaa gcaaaatgct gatatttgat tgttgagttg tgtatatgtt agaagtataa cataggagat ctgattgata gtaggagaat gtttttaggt ggtaaaagtg gaaccgtggt ggtttgtttt ggcagtagaa tcagttggtc atagtttgta tgtggaaggt aataaacaga ccatgitaag gatgacticc ggaattitgg totgagtagt gggtggatga cagtgtcatt catgagggaa gatgaagact gaggtaggaa caggtttggg agaagatgac atgttccctt ttagacaagt ggaattatgg aagatggcag gtaggtggtt agctatatga atttgagata aaagatttag gatggagata taaatttagg agtaacagcg tatctatggt attgtaagcc ttaagaatgg gtaggatcag ccaggaaata cagatgtata tgcagaagag aggagtcaag gaagccaaga caagttaatg tttaaagtga gtgatgtagt ccatgggcag atgctgctga 

gagggctgca aacaccagtg accctacaac atttttaaat gtcgtcttcc tgacagcagt 91560 gatcagtacc tgcaacgatc ttatttattt ttttcatgtt agtctccaca cacttqaatq 91620 tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcc 91680 91740 tgctactage etttcacett tcaatgttta agagcacaaa tacagagatg ggcacgtttt 91800 ggcatttett attitgataa eettiteetg gtaagattit ttaatgitga aaaaaaaaa 91860 Caagaaaaga gggttaaaaa tagtottatg toagatootg tgatagaatt cacacttggo ttaagotgot gggcacotto otatottgga tgtoatatta gottatotao agcagaattt 91920 91980 ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattettt 92040 atcttttatt tttttagacg gagtctctct ttgtctccca ggctggagta cagtgtcgcg 92100 atctcggctc actgcaacct ccgcctcctg ggttcaagca attctctgcc tcagcctccc aagtagctgg gcttacaggt gtccgccacc acacccagct cattgttttg tatttttagt 92160 92220 agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc 92280 accegeettg geateceaaa gtgetggaat tacaggegtg agecacegtg cetggeecag 92340 acaaattatt atactctgag tgttagaggc ttaggatgtt ttcacttgat gctatgggag gaataagtaa taagatatga tacacaacca aagacettte ttcactatge ttctagtage 92400 92460 tagtactatg gatgacacat ggtaataata ttggttagca tttgtcctca atttactgtg 92520 ctagttactc ttctaagccc cttacaggta tatatttttt ttcatcaata atcctctaag 92580 gtagttttta ttattgacct aattttataa atcaagaaaa ttaagaccca gagaagtaag taacttgtcc aagatcacat ggcttataag tggtagagcc agaatttgac cccagatgtt 92640 92700 gtgactacat tgtctctcca taagcaggtt caactetttt gactggatgc tgttccaagg 92760 teactteett agagaageet tigetgacaa etaceeteet gigeeeteet ecaaggeigt 92820 ccattgttct agaactttga atactcatct tagaataaag ctggtctaat ttttacagtg ttatagaatg gatctctgac tgcaaaagtt ggtcataatt atcttttat gttctagtga 92880 92940 aaggcaaaga acaagagaag acctcagatg tgaagtccat taaaggtaag ttctgccctt 93000 ggcagtccac tgcattaaaa agtgatgtgc tttgcatttg tgagttcttt aatcetgtta 93060 tactctctct tttggcatta atcatttctg ccttatttta taattactta tgattttgat ttatttcct ctttaacctg tataatgctt taacatctag catataataa gtaggctttt 93120 93180 ttttttttt ttttttgga gacggagtet tgetetgtta cecaggetgg agtgeagtgg 93240 egegatettg geteactgea agetetgtet eeegggttea caccattete etgeeteage 93300 ctccccagca gctgggacta caggtgcacg gcgccacgcc tggctaattt tttgtatttt ttagtagaga cagagtttca ccatgttagc cagtatggtc tcgatctcct gaccttgtga 93360 93420 tecgecegee teggeeteee aaagtgetgg gattacaage gtgageeace geaceeggee gtaagtagge tttttttace ttaatttat ttttttgaga tggagtettg etettateee 93480 93540 caggetggag tgcagtggtg ccatctegge teactgcage atccacctee egggttcaag 93600 cgattetect geeteageet ecegagtage tgggattaca ggtggeegee accatgeeca 93660 gctaatttt gtattttag tagagacagg gtttcaccgt gttggccagg ccagtctcaa actcctgacc tcaagtgatc cactcgcctt ggcctcccaa agtcctggga ttacaggcgt gagccaccat gcctggccat aagtaggctt ttactgagcc ttgtgtgtat tggctatcct 93720 93780 93840 agtgattaca gtgaaccagt gcccttctta ttaatcacac atttaattgt tccctaaaaq 93900 tgattagttc actttattta tttagtaaga caaaaaatga agaatactct taactgagca 93960 gtctgttaac tgtaggaaag cactgacact tataaggctt agttttctgt catttatcca gaagtatggt tgattacagt ttttactttt ttatttgaat gaacaacctt aatttaaaat 94020 94080 atattttgtt tattttttgt tgggatcgat acattgtcct tgtttataga ttagagcatg 94140 ctttttaaag atgctgtatt actcactgat tttatttgtc cagtgtacag agattgaagt 94200 gggaaaatta taatggaaat tgtttccata gtcattacat attaatttca tcaatttatt tccataaaat ctgtagattg ctacttattt agatttttcc ttcaaatgtt tttatgttgt 94260 94320 attgcttgca ctgagtattt attctatatg ctcaatttgc tggagaagaa gactaattat 94380 aacttaggca agttgtaaaa ttagggaaaa aagtaaggta cettacagee tagtttaett 94440 atttettatg taaageeagt tagatteeae attagtteaa aetgeettet ttgageaaaa 94500 cttgattggc agtgataaag gcttaaagcc cttctcaagc agagacctgt aaagactaga 94560 tetgaetgta gtagaaggaa ggaaettaga tgttteagge agtgagaaca ceagtettee 94620 actoria de la contra del la contra de la contra del la contra de la contra del la contra de la contra del la contra de la contra del la contra de la contra del la contra 94680 94740 94800 cttaggataa tacagaagca gtacaagaaa cagcccctca agatgtttgc agtctggtta 94860 gaaagacaaa cttatacaca gaacagtagc aaatagacca aaataataat agctgccatt tatagaacac ttcttctgtt ctgggcatta gacaaaaact gactataacg gtgaacaaaa 94920 94980 aagacttagg teetgeeete attgaactta cagattagta ggggagagga acattaatea 95040 agtaattcca cagatggctt agcctagatt ggtagtgatg gaagtaaaga gatgtgaacg 95100

gacttgaaaa aaaattcgga ggcaaaatgg atagaagttt attattgatt aaatatgagg 951 tgtgagagag agggatattt aagattgata cetacettet ggettgeeta acagaaccaa 952 aacaggaaat tatatgttca gtittgitat gttgggtggg aggtgctttt gagtcattca 952 tttatatatg ttatatatgt tattttatat gcatagtaat tttaaggtct gagttttaaa ccaaaggtta gagagtgatt ttttagagtc tagcaaacct aagttgaaat cctgcctgtt 953 954 gaaatggctg tttactagct cattaaccta gggcaaagta ttcaacttgt tttcattttt 954 gtcttcatct ctaaaatgag gaaaatatgg tcttacaaga ttgtcctgag agatagatga 955 aataatatcc aaaaaaaaaa aaggtacata gagaaactcg tatagtgcct ggtatatagt aggtcctcca ttggtagcta tcattatcta gttttaacat agccttcagt ttgttgaatt 955 956 . agrcaaactg agrgaagcac tgcaaggaat rcagaggaat trgagatcaa caaargattt 957 ctyaagttta gggaagactt catggcaatg acacttacct tgtataaaag ttgaagaata agaaagattt gaatgagaga ttctttctct tctccctacc agcccagctt cttatttgag 957 958 gatarattgg gcaaaggggc cttcagacaa gtagagggag atttttacag aaagattgag 958 atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag ccactgtagg tttttgagca agatattgat gctgtaagta tggtgtttat gaaaggttag 959 960 960 tetggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac trgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 961 quadagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat 961 tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga tgatgttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg ggaatgctta gtagcgagta atcagtgata caagaccaaa gcccaggtca aagacaagtc 962 963 963 acagatacag atcagggett tttcatetge tecacagagg tgtaccetag gagetgttge 964 asacagteca tgtggagggt gtgagtaaga tgtttccctt gaatttgcca gaattacttt tttgttgttg ttgttgttt ttctgagaca gattctcgct ctgttgccca ggctggaggg 964 965 cagiggegag ategegeage teactgeaac etetgeetet egggttegag tgatteteet 966 gcctcagcct cccaagtagc tgggattaca ggcttgtgcc accaagccca gctaatttct tttgtatttt tagtagagat ggggtttcac catgttggcc agactggtct cgaactectg 966 967 967 gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg Cacceggtee cttgttaagt ttattttggt gggaagcaaa ggaggtttea gettttaaaa agtttgaaaa ttattgetet ggtaataatt aaagatttga gagtaaatat getttetage 968 969 agaaagaata aaagaagaac agatagcctc aagaagggga gccaaagaag caggctatat 969 ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa gaggaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 970 **97**0 tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt acamatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgtta 971 972 972 973 taaataaget aaaaattatt ttgeteeaat tteteatgaa aataaaaata aacettettt taacattaget adaaattatt tigetetaat teetetaat tigetaatte taacattagaattaga aaaatagtt gaagacagte acteteatt tigetaattee cacaactatt attgaatgac tgaaattate titattetga agccaaaggg gigatactga tattiettea gactactaaa aatatatti atgaattit agtgigetti atetititti giittititti 973 974 975 ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca ctgcaacctt cgcctcccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg 975 97E 97€ gattacagge acctgecece acacceaget aatttttgt atttttagta gagacagggt tlcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatatttt 977 978 ctaggttccc cccacccaa gcatttattc tgcaatttta gttttgttcc taaagcaagcaaggtttaag gatttaaaaa taatccgtat tttagaatgc tttctggctt tgttactttt 978 979 tatccacagt agaagttete agagaatgat etecetett taatttaaet tittggcaca 975 gtattttgag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct 980 981 981 gtctgggaaa aaaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat 982 982 taagttactt ttcctcttaa gtatttttg ctgagtatgc tgacttaaga gtaatgttac aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98: gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac 984 aaaaaagcac taaaaatcat gccttgctgg aggctgcagg accaagtcat gttgcaatca atgccatttc tgccaacatg gactcctttt caagtagcag gacagccaca cttaagaagc 984 981 agccaagcca catggaggcc gctcattttg gtgacctggg taagtaacta tcattttta ttaacttgta ttagaaggat ttgagtacaa tatgtgaaac ttctgtcata ggatacagaa 985 98€ 98 ctatataatt qqaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat

gagggctgca aacaccagtg accctacaac atttttaaat gtcgtcttcc tgacagcagt 91560 gatcagtacc tgcaacgatc ttatttattt ttttcatgtt agtctccaca cacttgaatg 91620 tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcc 91680 91740 91800 91860 91920 ttaagetget gggcacette ctatettgga tgtcatatta gettatetae ageagaattt 91980 ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattcttt 92040 atctttatt tttttagacg gagtetetet ttgteteeca ggetggagta cagtgtegeg atcteggete actgeaacet cegeeteetg ggtteaagea attetetgee teageeteee 92100 92160 aagtagetgg gettacaggt gteegecace acacceaget cattgttttg tatttttagt agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc accegecttg gcateccaaa gtgctggaat tacaggegtg agccaccgtg cetggeccag acaaattatt atactetgag tgttagagge ttaggatgtt tteacttgat gctatgggag 92220 92280 92340 92400 gaataagtaa taagatatga tacacaacca aagacettte tteactatge ttetagtage 92460 tagtactatg gatgacacat ggtaataata ttggttagca tttgtcctca atttactgtg ctagttactc ttctaagccc cttacaggta tatattttt ttcatcaata atcctctaag 92520 92580 gtagttttta ttattgacct aattttataa atcaagaaaa ttaagaccca gagaagtaag 92640 taacttgtcc aagatcacat ggcttataag tggtagagcc agaatttgac cccagatgtt gtgactacat tgtctctcca taagcaggtt caactctttt gactggatgc tgttccaagg 92700 92760 teactteett agagaageet tigetgacaa etaceeteet gigeeeteet ecaaggeigt ecatigitet agaaciitga atacteatet tagaataaag eiggietaat tittacagig 92820 92880 ttatagaatg gatctctgac tgcaaaagtt ggtcataatt atcttttat gttctagtga 92940 aaggcaaaga acaagagaag acctcagatg tgaagtccat taaaggtaag ttctgcctt ggcagtccac tgcattaaaa agtgatgtgc tttgcatttg tgagttcttt aatcctgtta 93000 93060 tactctctct titggcatta atcattictg ccttatttta taattactta tgattttgat 93120 ttatttecet etttaacetg tataatgett taacatetag catataataa gtaggetttt ttttttttt tttttttgga gaeggagtet tgetetgtta eccaggetgg agtgeagtgg egegatettg geteactgea agetetgtet ecegggttea caccattete etgeeteage 93180 93240 93300 ctccccagca gctgggacta caggtgcacg gcgccacgcc tggctaattt tttgtatttt 93360 ttagtagaga cagagittica ccaigitage cagialggic tegaleteet gaeetigiga 93420 teegecegee teggeeteee aaagtgetgg gattacaage gtgagecace geaceeggee gtaagtagge tttttttace ttaattttat ttttttgaga tggagtettg etettateee 93480 93540 caggctggag tgcagtggtg ccatctcggc tcactgcagc atccacctcc cgggttcaag 93600 cgatteteet geeteageet ceegagtage tgggattaca ggtggeegee accatgeeca getaattttt gtattttag tagagacagg gtttcacegt gttggeeagg ceagteteaa acteetgace teaagtgate cactegeett ggeeteecaa agteetggga ttacaggegt 93660 93720 93780 gagccaccat gcctggccat aagtaggctt ttactgagcc ttgtgtgtat tggctatcct 93840 agtgattaca gtgaaccagt gcccttctta ttaatcacac atttaattgt tccctaaaag tgattagttc actttattta tttagtaaga caaaaaatga agaatactct taactgagca 93900 93960 gtctgttaac tgtaggaaag cactgacact tataaggctt agttttctgt catttatcca 94020 gaagtatggt tgattacagt ttttactttt ttatttgaat gaacaacctt aatttaaaat 94080 atattttgtt tatttttgt tgggatcgat acattgtcct tgtttataga ttagagcatg ctttttaaag atgctgtatt actcactgat tttatttgtc cagtgtacag agattgaagt 94140 94200 gggaaaatta taatggaaat tgtttccata gtcattacat attaatttca tcaatttatt 94260 tccataaaat ctgtagattg ctacttattt agatttttcc ttcaaatgtt tttatgttgt attgcttgca ctgagtattt attctatatg ctcaatttgc tggagaagaa gactaattat aacttaggca agttgtaaaa ttagggaaaa aagtaaggta ccttacagcc tagtttactt 94320 94380 94440 atttettatg taaageeagt tagatteeae attagtteaa actgeettet ttgageaaaa 94500 cttgattggc agtgataaag gcttaaagcc cttctcaagc agagacctgt aaagactaga 94560 tetgactgta gtagaaggaa ggaacttaga tgtttcaggc agtgagaaca ccagtettec actetaaact ttgccactaa cagtatgace ttgggaagtt gtaactttet tcagattett 94620 94680 catttgttga atggggggat tggcctagct aatttctaaa tctctactgg gctaaaaaat 94740 totgtgotta tactotgatt atgaagtaca taatotgtgo ttaacattca otgacttato 94800 cttaggataa tacagaagca gtacaagaaa cagccctca agatgtttgc agtctggtta gaaagacaaa cttatacaca gaacagtagc aaatagacca aaataataat agctgccatt 94860 94920 tatagaacac ttcttctgtt ctgggcatta gacaaaaact gactataacg gtgaacaaaa 94980 aagacttagg teetgeeete attgaactta cagattagta ggggagagga acattaatca 95040 agtaatteea cagatggett ageetagatt ggtagtgatg gaagtaaaga gatgtgaacg 95100

gacttgaaaa aaaattcgga ggcaaaatgg atagaagttt attattgatt aaatatgagg 95160 tgtgagagag agggatattt aagattgata cctaccttct ggcttgccta acagaaccaa 95220 aacaggaaat tatatgttca gttttgttat gttgggtggg aggtgctttt gagtcattca tttatatatg ttatatatgt tattttatat gcatagtaat tttaaggtct gagttttaaa 95280 95340 ccaaaggtta gagagtgatt ttttagagtc tagcaaacct aagttgaaat cctgcctgtt 95400 gaaatggctg tttactagct cattaaccta gggcaaagta ttcaacttgt tttcatttt 95460 gtetteatet etaaaatgag gaaaatatgg tettacaaga ttgteetgag agatagatga 95520 aataatatcc aaaaaaaaa aaggtacata gagaaactcg tatagtgcct ggtatatagt 95580 aggiceteca tiggiageta teattateta gitttaacat ageetteagi tigtigaati 95640 agicaaactg agigaagcac tgcaaggaat tcagaggaat tigagatcaa caaatgattt 95700 ctgaagttta gggaagactt catggcaatg acacttacct tgtataaaag ttgaagaata 95760 agaaagattt gaatgagaga ttetttetet tetecetace ageceagett ettatttgag 95820 gatatattgg gcaaaggggc cttcagacaa gtagagggag atttttacag aaagattgag atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag 95880 95940 ccactgtagg tttttgagca agatattgat gctgtaagta tggtgtttat gaaaggttag tctggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac 96000 96060 ttgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 96120 gaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat 96180 tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga 96240 tgatgtttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg 96300 ggaatgctta gtagcgagta atcagtgata caagaccaaa gcccaggtca aagacaagtc 96360 acagatacag atcagggett tttcatctgc tecacagagg tgtacectag gagetgttge aaacagteca tgtggagggt gtgagtaaga tgttteeett gaatttgeea gaattacttt 96420 96480 tttgttgttg ttgttgttt ttctgagaca gatteteget etgttgeeca ggetggaggg 96540 cagtggcgag atcgcgcagc tcactgcaac ctctgcctct cgggttcgag tgattctcct 96600 geeteageet eccaagtage tgggattaca ggettgtgee accaageeea getaatttet tttgtattt tagtagagat ggggttteae catgttggee agactggtet egaacteetg 96660 96720 geetegtgat etgeetgeet cageetecaa aagttetggg attacaggeg tgaaccactg 96780 caccoggicc citgitaagt ttattttggt gggaagcaaa ggaggtiica gcttttaaaa 96840 agtttgaaaa ttattgctct ggtaataatt aaagatttga gagtaaatat gctttctagc 96900 agaaagaata aaagaagaac agatageete aagaagggga gecaaagaag caggetatat 96960 ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa 97020 gaggaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 97080 tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt acaaatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc 97140 97200 tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgttta 97260 taaataaget aaaaattatt ttgeteeaat tteteatgaa aataaaaata aacettettt taacattgaa aaaatagttt gaagacagte actetteatt ttgtaattee cacaactatt 97320 97380 attgaatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca 97440 gactactaaa aatatatttt atgaattttt agtgtgcttt atctttttt gtttttttt 97500 ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca ctgcaacctt cgcctcccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg 97560 97620 gattacaggc acctgcccc acacccagct aatttttgt atttttagta gagacagggt 97680 ttcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatattttt ctaggttccc cccaccccaa gcatttattc tgcaatttta gttttgttcc taaagcaagc 97740 97800 97860 aaggtttaag gatttaaaaa taatccgtat titagaatgc tttctggctt tgttacttit 97920 tatccacagt agaagttctc agagaatgat ctccctcttt taatttaact ttttggcaca gtattttgag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga 97980 98040 98100 ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct 98160 gtctgggaaa aaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac 98220 98280 aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98340 gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac 98400 aaaaaagcac taaaaatcat gccttgctgg aggctgcagg accaagtcat gttgcaatca atgccatttc tgccaacatg gactcctttt caagtagcag gacagccaca cttaagaagc 98460 98520 agccaagcca catggaggcc gctcattttg gtgacctggg taagtaacta tcattttta 98580 ttaacttgta ttagaaggat ttgagtacaa tatgtgaaac ttctgtcata ggatacagaa 98640 ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat 98700

gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaacaa gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc atatttttta aagtttgaca atttgaatgt cagtgaagat gcagggaaat acccctccta tttagtgata atataatetg gtgaagaete tttggaaage aatttggaaa teagtataaa atatgeatgt catttaggee aetettteta agaeetagee eteagatatg eteatteata tatgtatgta tgtatgttga aggctattca ttatagtatt gtttgtgata gcaaaaaatt atggacaaca tataaatatc tgttataggg aaataaccaa attgtggtat acgcatgctc tggagtataa tatagccatt tgtttctatt tatttatttt cttgagacag ggttttactc tgttgcccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg gcacaagcca ttctctcgcc tcagcctcca gagttactag gactgcaggc atgtgtcacc acacccagat aatttttaa tttttttag agacagggtc tcactatgtt gcctaagctg gtctcaaact cctggcctca agcaattctc ccacacaggc ctcccaaagt gctgggatta ccaacgtgaa ccaccacc tggttcagtg tagccattta gaaatctaaa aaagacgtgg gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt cagtatttct tacccaaatt tctgcactta gaaaattgca tgtcatgttg tcataagttg aaaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt tetttette tttttttt tettttgag acagggtete actetgttge geaggetgga gtacagtggc gtgattacaa ctcactgcag cctcaccctc ctcaggttca ggtgatcctc cctcagtctc ctgagtagct gggactatag gcatgcacca ccacgcctgg ctaatttttg tattttttt tttttttt gtagagacgg ggtttcgcca tgtttcccag gctggtctca aactcctgga atcaagcgat ccacttgcgt aggcctccca aagtgctggg attacgggcg tgagetactg tgeetggeet aggeagtttg tttgtttgtt tgtttgtttg tttatitati tgtagacgga gtctcacagg ctggagtgca gtggcccaat ttttggctca ctgcaacctc cgcctccag gttcaagcta ttctcctgcc tcagcctcct gagtagctgg gatgacaggt gcctgccata atgcctggct gatttttgta tatttagtag atatggggtt tcaccatgtt ggtcaggctg gttttgaact cctgacctca ggtgatcagc ccgcctcggc ctcccaaagt gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta ccttccaata aaaacctgtg cacaaatgtt catagcagct taatattgaa aaactggatg ttetteagea ggtgaatgaa etggtteatt cataceatgg aataceatte ageaataaaa aggaacaaac tgttgataca tttaaceace tggatgaata teaagggaat tatgetgtea gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg tgagaggggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga agttgtatct tggcagtgga tgcagaaatc tcaatgtgat aaaattacaa agaactaaaa acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg tcagtatett agagtgatat tgtactatag etttgcaaga tgttaccatg ggagaaacta aagtgtacaa gggateteta ggtattatta tttttttaga gatggggttt cactatgtte eccaggeegg tettgaacte etgggeteta gtgateegee tgeeceagee tectaaagta ctggaattac aggcgtgagc gaccatgcct ggccctttca gtattgtatc ttagaacttc atgtgaatct agcattatct catagaattt aattaaaaga aattgtaaac ctcacagaag atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga agaactettt tgacaaattg atgaaaceet cagteagttt tataagaatg cecatettta tgatcatgct atgaaagcca atttttaaaa aaatttttg tctttcctaa caattagctt giggttaiaa ttiaaaitta gttaaatata agataaatga ttttttatta agtttagttt catttttcaa ggtacgatct caaagctact cittaaccia ctatgaatga ataatgctga gttcataaca totttgtaga tatatocaca attttccctc aggataagtg cotacaagtg gaattactgg actgaaaata atgcagtttg ctaagacttt gctatctgtt cctgaatgct cctccaaaaa ggttttgcca gtttacatcc tcatgaccag cgaatgagag tgttgcctat tttcctgtgc ccttgttact gcttaataat ttttgaaaaa aatctaattt gacagacaaa aatgcatttt atgttaattt gcttttctgg gatttttaat gaggttgagt atagttttta atatttttat tggccccttt ggaactagta tcataagttt tttttcttaa gaatttatgt agtetggget gggcgcagtg getcacgeet gcaateccag caetttggga ggccgaggtg 

ggtggattgc cgaaggtcag gagtttgaga ccatcctgac caacatggtg aaaccgaatc 102360 tctactaaaa gtacaaaaac tagctcagcg tggtggcggg tgcctgtaat cccagctact 102420 taggaggetg agteaagaga ategettgaa eeegggaggt ggaggttggt tgeattgage 102480 102540 102600 attgagtaac aaataacttt ttaataattt aggcaagttt tggacgattg tactttgttt 102660 agaaaccaaa agcatagtat ttgtagtttt tttatttact ttagttgcta ggaagtaaac 102720 tttattcaag gtctctggta ccagttgttg ctaaaagtga ttgactaatc tgtcaatctg aaattatttg ttgctgaact gctaattctt ttgcttctat cttttaggca gatcttgtct 102780 102840 ggactaccag actcaagaga ccaaatcaag cctttctaag acccttgaac aagtcttgca 102900 cgacactatt gtcctccctt acttcattca attcatggaa cttcggcgaa tggagcattt 102960 ggtgaaattt tggttagagg ctgaaagttt tcattcaaca acttggtcgc gaataagagc acacagtcta aacacagtga agcagagctc actggctgag cctgtctctc catctaaaaa 103020 103080 gcatgaaact acagcgtctt ttttaactga ttctcttgat aagagattgg aggattctqg 103140 ctcagcacag ttgtttatga ctcattcaga aggaattgac ctgaataata gaactaacag 103200 cactcagaat cacttgctgc tttcccagga atgtgacagt gcccattctc tccgtcttga aatggccaga gcaggaactc accaagtttc catggaaacc caagaatctt cctctacact 103260 103320 tacagtagec agtagaaata gteeegette teeactaaaa gaattgteag gaaaactaat gaaaagtgag tatgtgattt tettgtgtgt acatatgtgt eteactttet tettttaatt 103380 103440 tactaagcag aacttcagat gaggaataaa atgattggaa tattttttt ctcctctaac 103500 tacttgtaaa tttgggagaa tttggagagt gtagtagagt cagatcagtg tatggaaaag 103560 gagcaggagt gactggacct tctaagaagt gtgttatcag aattagtaaa tgaagggtca 103620 aatgtcctac ttttcccctc cactgatttt gacatcaaac cattatccac atagccttat ttcctccctc ggtcttaatt ttattaatat tttactgcac tttgcagata aaatttttaa 103680 103740 aaaattttta aaaattgcca ataagtgaca tttattaagt tcagtgctta gtgtatattt 103800 ggattttatt tattagtcac aagacctttg tgcaggtagt aggcatgatt atctttttt 103860 ttttgagatg gagtettget etgtegeeca ggetggagtg caatggegeg gteteggete actgeaact eegggteat gecattetee tgeeteagee teceaaatag etgggactae 103920 103980 aggegeetge caccacacce ggetaatttt tttgtatttt tagtagagae ggggttteae 104040 catgttegec aggatggtet egateteetg aetttgtgat eegeetgeet eggeeteeca 104100 aagtgctggg attacaggca tgagccaccg cgcccggact gattatctta titacacatg 104160 agaaaaccag ggcttagaaa ggttaggtaa cttcctctag gttgtacagt aaatgtggac ctagaagcat tttgacaaga gcacctgttt tttttcttc tctattagtt tagaaattat 104220 104280 atactettaa ttateacetg ggattttgat tagacageet teatgttett ttteatetta 104340 aatgttcttt gtgtcttaaa gggctaagtg atttcttcag atcttttagt tcactcattc 104400 tcagtgaact aaaatgaggt ctaatctgct actgaatcaa gttttcagca tgttatttcc 104460 tteeteete ecteeteet teetteeete aaceaggete eegaggaget gggattacag 104520 gegecegeca ceaeteetgg etaattttta tattttagta gagaeggggt tteaecatgt tggteagget gatettgaae teetgaeete aagtgaeeca eetgeetegg eeteecaaag 104580 104640 tgctgggatt acaggcatga atcaccacac ctgacggcat gttattttca tcgcaaagtt 104700 actgtaagct gggagaagtg gcacacactt gtactcccag ctactcagga agcttaaggt gagaagattg cttgagccca ggagttttga gaccaacctg ggcaacacag caagaccca gctcaaacaa agaaaaaaag ttattgaatt ttttatttct atggatcatt ttttgtagtt 104760 104820 104880 tettatteet tteaceette atteceaett ttgateeeat ettttattta tttagtttta 104940 ttaaatgtat atttgtctga taattctgct atctacagtt ttttgtggac ctgactcagc atttctttgt ttcttggat tcagactgtt ggtggcttgt gattttagtg atttttggcc gtgaacatgt ttcttggact tttgtctgtg ggaattctct gtgtactctg tataaattaa 105000 105060 105120 gttacttcag gtgttttgca ttttcttttg ccatgcacct ggggcctggg tcactaccct 105180 tctggtacca cttaaaactg aatttttgtc ttgggtgctc gtactgatcc tgtatgagta 105240 caggittata citacigita aaatatggig titgattatg gggtatigic ccagaiggig 105300 ctggagtatt aatatgetet etgttaaaet taatgtgttg teeetgtaaa acteeaaaat 105360 tetgaattee agaatactae tggeeceaaa tgtttaagat aagggeactg cetgtatttg tttetgeete ecaetattt cettagttta acaeaaacte acettttaa aaaacatttt 105420 105480 gagagaatto agtattggga agagtttota acctgtttot ggaaatggaa gtocaaagto 105540 tgtttctgta attgttttt ttttgagatg gagtctcact ctgtcaccca ggctggagtg caatgacgta ctctcagctc actgcaacct ccacctcccg ggttcaagcg attctcttgc ctcagcccc tgagtagctg ggattacagg tgcccaccac catgcctggc tgatttttgt 105600 105660 105720 attittagaa gagatgaggt ticgccatgt tagccagget ggtcttgaac teetgactit 105780 gtgatctgcc cacctcagcc tcccaaagtg ctaggattat gtttctgtaa ttgtaataca 105840 tttattgttt ttagaaactg tctttgcttt agtggtaatt ttcaataaaa atagaaatag

cagtggagtt attaaaagag cattagttac atttttccct ttttcattat cttcaaatat 105960 tatatatagt aagtttgacc tttttaaaat gtatacttgt atcaqtttta acacatacat 106020 agatteetgt aactgteace actataaggg taaagaacag ttagtteett cacetttgaa 106080 gtcaagcccc acctctatcc caacacttgg caaccgctga tctttctccg tctcaatagc tttgcctttt ctctttttt ttcttattt tttttttgag acagcgtctt gctctgtcgc 106140 106200 ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctgggttcaa 106260 gcagttetee tgeettagee tecetagtag etgggattat aggeacgeae caccacacce 106320 ggctgatttt tttgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct caaactcttg acctcaagtg atccacctgc ctcggcctcc caaagtgctg ggattacagg 106380 106440 cgtgagccac tgtgcccaat caggactttt tttttttaaa tttacattca acttgtcatt tttttcttgt atggattgtg ccttcagagt cacacctaag agccctttgc ctaagcaaag gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg 106560 106620 gettatgeet gtaateteag caetttgaga agetgaggtg ggeagattae gaggteagga 106680 gatcgagacc atcctggcta atgcggtgaa accccatctc tactaaaaat acaaaaaaaa aaaaaaatta gccgggcgtg gtggcgggca cctgtagtcc cagctacttg agaggttgag gcaggagaat agtgtgaacc cgggaggtgg agcttgcagt gagccgagat cgcgccactg cactccagcc tgggcaacac agtgagactc catctcaaaa aaaaaaaaa agtattatgg 106800 106860 106920 ttttacactt tacgtttaga tatatatett ttttgagtta atgtegtata agtatgaggg 106980 ttacgtcaga ttttttgttt tttgtttatt tttacatatg gatgtctagt tgttctaata ccatttgttg aaaagacaac ctttactcca ttgaattgcc tttgtacttt tgccatattt 107040 107100 gtctaggect gtttttggac teetttttet gttteatgat gtgtgtgtet atteettigt 107160 taataccaca tggtcttaat tactgtatag taagtcttaa aattgggtaa tgctggcctt 107220 ataaaacgaa ttgggaagtt tttatttta ctcttatttc cattttctag aagagattgt gtagaattgg tgtcatttct tctttagata tttggttgaa ttgggaagtg atgccatctg 107280 107340 ggcctagggt titgtttttt gtgtgtgaga cagagtetca ettetgteac ecaggttgga 107400 gtgcagtggt gagatettgg ettaetgeaa eetetgeete eeaggtteaa gttateetee 107460 tgcctcagcc tcccaaatag ctgggattac aagcgtgtgc caccatgccc gactaatttt 107520 tgtattttta atgcagacag ggtttcacca tgttagccaa gctggtctcg aacttgtgac ctcaagtgat tagcccacct tggcctccca aagtgttagg attatagatg tgagccaccg 107580 tgcctggcag gggcctaggg ttttctttt cagagtatt taaactatga attcagatta tttaatagat ataggactat ttaagttatc tgttcttct tgagtgaatt tttactgtag 107700 107760 tttatggcct ttgagtaatt aattgtattg aattgtcaaa tttatgagcg tgtaattatt 107820 tatagcattt cgggtttgta gtggtatccc tcttttattc ctggtgttgg caattgtgtc 107880 ttgtttttct ttgtcagatt gtatagggat ttattagtct tttcaaagaa ctagcttttg
ttttgattt tctgttgttt tgttttcaat tttattgatt ttctgctctt tattattct 107940 108000 tttctattat ttctgcttgc tttgggttta ttttactctt ttttttttct ccaagttgct 108060 taaagtagaa acttagattt ctggtttgag acctttcttt tctaagataa gcatttaata 108120 ctgtaaattt ccttctaacc actgctttag ttacaccccc acaaattctg gtattttgaa ctgagcacaa atgaaatgtt ctaatttccc ttgaatctta ttcttttacc aatgaattat 108180 108240 ttagaaatat gttatttagt ttgcaagcaa ttggagactt ttttcctgtt atttttctac 108300 catttattc tcatttcatt atattatggt cagagaatat attttgaatg atttcattta 108360 ttaattttta aaaataacat taaaaaattt tttaaaatgt gaatatacca catacagtat aaagattgta cattctgttt ttggacagtt ttctataaat gtcaagttga tttagttggt 108420 108480 taatgatggt gttcagtttt tctttattct tgctgatact ttgtatgcag ttatatcact 108540 ttattactca gaagagtgtt gaactttcca actacaattt ttttttccaa ttttactttc agctctatct ggttttgctt catgtatttt gaggctctgt tgttaggtgt gtacacattc aggatgatat cttctgggtg aattgcctgt tttatcatta tgtaattccc tctttatggt 108600 108660 108720 aatttteett gttetaagat cagaaatate tgttgteeaa tttatataga caetgeaget 108840 ttcatttgat tagtgcttgc atggcatatc tttttccatt tttttacttt tgatctacct 108900 108960 aagetggagt geagtggtge aateetgget taceacaace tecaceteet gggttgeagt gatteteetg ceteageete ecaagtaget gggattacag geacgegeae catgeetgge tgattetttg tatttttagt agaaaeggat ttteaceatg ttageeagge tegtettgaa 109080 109140 ctcctgacct caggtgatcc acctgctttg gcctcccaaa gtgctgggat tacaggcgtg 109200 agccactgca cccggctgag tcatgttatt tttaatcttt tctcacaata cagggttttt 109260 gttggtaaat ttaattattt taatataaat tttagtataa ttatttacat taaatgtaac tgttgcactg gggtatttat aatgtgtaaa tataattatt ggtattaata taattatatt 109320 109380 actcataata atattaatat ctttqqattt aqattaccaq tttaqtatat qtttttctqt 109440 ttctccctct ttgatttccc cttttttgct ttttttttt ttttaattct tatttttt 109500

tagtatttgt tgatcattct tgggtgtttc ttggagaggg ggatttggca gggtcatagg 109560 acaatagtig agggaaggte agcagataaa catgtgaaca aggtetetgg titteetaga 109620 cagaggaccc tgcggccttc tgcagtgttt gtgtccctgg gtacttgaga ttagggagtg gtgatgactc ttaacgagca tgctgccttc aagcatctgt ttaacaaagc acatcttgca 109680 109740 ccaccettaa tecatttaac cetgagtggt aatagcacat gtttcagaga gcagggggtt 109800 gggggtaagg ttatagatta acagcatccc aaggcagaag aatttttctt agtacagaac 109860 aaaatggagt eteccatgte tacttette tacacagaca cagtaacaat etgatetete tttetttee ccacatttee ceettteta ttegacaaaa etgecategt catcatggee 109920 109980 cgttctcaat gagctgttgg gtacacctcc cagacggggt ggcagctggg cagaggggct 110040 ceteacttee cagatggge ageeggeag aggegeeece caceteecag aeggggeagt 110100 ggccgggcgg aggcgcccc cacctccctc ceggatgggg cggctggccg ggcgggggct gacccccac ctccctcccg gacggggcg ctggccgggc gggggctgac ccccacctc 110160 110220 ceteceagat ggggeggetg geegggeggg ggetgeece cacetecete ceggaegggg eggetgeegg getgagggge teeteactte geagaeeggg eggetgeegg geggagggge teeteactte teagaegggg eggeegggea gagaegetee teaceteea gatggggtgg eggtegggea gagaeactee teagtteeca gaeggggteg eggeegggea gaggegetee 110280 110340 110400 110460 teccatecea gaegggegg eggggeagag gtggteecea cateteagae gatgggetge 110520 cgggcagaga cactcctcac ttcctagacg ggatggcagc cgggaagagg tgctcctcac ttcccagacg gggcggccgg tcagagggc tcctcacatc ccagacgatg ggcggctagg cagagacgct cctcacttcc cggacgggt ggcggccggg cagaggctgc aatctcggca 110580 110640 110700 ctttgggagg ccaaggcagg cggctgggaa gtggaggttg tagggagctg agatcacgcc 110760 actgcactcc agcctgggca acattgagca ttgagtgagc gagactccgt ctgcaatcct ggcacctcgg gaggccgagg caggcagatc actcgcggtc aggagctgga gaccagcccg 110820 110880 gccaacacag cgaaaccccg tctccaccaa aaaatgcaaa aaccagtcag gtgtggcggc 110940 gtgcgcctgc aatcccaggc actctgcagg ctgaggcagg agaatcaggc agggaggttg 111000 cagtgageeg agatggegge agtacagtee ageetegget tteacaactt tggtggeate 111060 agagggagac cggggagagg gagagggaga cgagggagag cccctttttt gctttctttt 111120 111180 gatteteetg ceacagetee caagtagetg ggaetgeagg catgtgeeae tacacceage taatttttt gtattttag tagagacagg gttteaceat attggeeagg etggtettga actettgaee teaagtgate caectgeete ggeeteecaa agtgetggga ttacaggegt 111240 111300 111360 gagccaccat gccctgcctt tttctagaat ttatatattg agttcttgat tgtatctttt tatgtaggct ttttagtggc ttctctagga attacaatat acatactttt cacagtgtac 111420 111480 tcacatttaa tattttgtaa cttcaagtgg aatgtagaaa acttaaccac cataaaaata 111540 gaactaggga tgaggttaaa aaagagagag aaaagaaatg taataaagat ttaataacac 111600 cgttttttt ttttttctc tttttttt gagacagagt ctctctttct gttaccaggc tggagtgcag tggcgtgatc ttggctcact gcaacctccg cctcctgggt tcaagtgttt ctcctgcctc agcctactga gtagctggga ttacaggtgc gcgccaccat gcccagctaa 111660 111720 111780 tttttgtatt tttagtagag acggtttcac tgtgttggcc aggatggtct cgatttcttg 111840 accttgtgat tegeteteet cageeteeca aagtgetggg attacaggeg tgageeaceg egeceggeta agtetttaaa tattttttg acattgeact ttttetett teettetagg 111900 111960 attttagtaa cccaaatgtt agttttgtta ttgtttggca ggttcctgag gctttcctta 112020 cttctttaaa ttttttttc ctgttgttca gcttcgaaaa tttctattca tctgtcttca aattcactgg ttctttcccg ttattccat tctgttattg agtctttgta gtgaatttta aattttgtt attatgttt ttagttctaa aattttctt ttttgtgtat gtcttatact 112080 112140 112200 ttgctcctga aactcttatt tgtttcagga gtgatcttat ttcttagagc atggttttag 112260 tagctactta aaatttgttt tatcatccca gcatatgtgt cctcttgatt gtcttttctc ttgtgagata atgggatttt ctggttcttt atatgacaat taattttgga ttgtatcttg gacagtttga cttacgttac atgattctga atcttgtta aatcctgtgg aaaatattga 112320 112380 112440 agtttttget ttaacaagca gtigacctag ttaggitcag tecacaaati ctaagcagca 112500 ttctgtcggc tctggttcca tcatcagttc agttttgtat cttatctgct tatgtgcctt 112560 totgtgtoca gtotgggaco tggccaatgg toaggtocca aagcotttgt acacttttag aagcagggco atgcacaco agotcacgag tggccocggg agtgcacata caactogacg 112620 112680 ttttcatggg ctccttcttt tctgtgatgt ccctgacacg ttctgccttc taagaacctc 112740 ectttatece ttteetgttg tetggetaga aagteaggge tttagattee etalaettea 112800 gcacacttcc tgtagctatg tcaacctctg tggccacgac ttcttcttct tgggactgca gtttctcttg tcagaaagta ggattcttgg agctgctgtc attgctgctg tggctgctct 112860 112920 gatgctgcct gggagtcgaa ggagagaaag gaacaaaaca aaacaaccca ggggatttcc tccactctct ttgatccgtg agagccccct ttcctgttcc tcagaccaga aatagagggc ctgtcttgga acttcttctt tgtgcatctg gtgtgcagtt tcagcttttg agtccaggcc 112980 113040 113100

aggaggtgct ggacaaactt gtcaggagta cggaggtact gcaagttctg attacttttc 113160 tragiccace igetteraag teettigatg cattigiera itgittigag tigcaticca 113220 tgggagagac agaagagtgt gettattea tettgacata ettattagga tttcatatea 113280 aatcaacgga tgatattete tatattaatt tgetgtttte cetttageaa geacattagg 113340 aaaataacac tttaacaccc gcctttggtg gtttctgtca taattattaa tacttgactt tttttttttt tttgagacgg agtctcactc tgtcctttga ggcattgtcc ccataaactt 113460 ttggtaaagc atcaataatt ttatctttca tccacacaag cttcaccata aatttgatgt 113520 ttattettee attttageag aatteatgtt geteeaatag gggetgtett caaactgatg tttteteett ettagtgeet cagagtagat eetgtteaga taegttataa caggttaata 113580 113640 tgagtttatt ttggtgtaaa agtactttga aattcatgca tagttttttc atcatatgca 113700 ttttccatag ctttgaacac ccccatgtaa ctctcctctt ccacaaacca aacaatgaaa 113760 aagcaccttt gtgatggaag tttattttgc aataggaact cacagtgatc taagccctgc 113820 tattcatgaa tataattcat tactggagtc caagttgctt tttggttttt gaagttctct 113880 tettecettg caggtataga acaagatgea gtgaataett ttaccaaata tatateteca gatgctgcta aaccaatacc aattacagaa gcaatgagaa atgacatcat aggtaagcag tgcttgaaac tatggcaaaa aaaaaatgac aaaaaatgca cagaactgac aattttcgtt 114000 114060 attgactaag ataatttttt cttaacatgg aatttagcag ttcccttcct aatttgtttt 114120 ctgagtattt tttatatogg attatagete actttaaaag tttetogget geattoggtg 114180 cgagggtett tgcctgggcc agatgggctg cagtgtagcg ggtgctcagg cctgcccgct 114240 gctgagcagc cgggccggcg ggcggctacg ctaaccggca cagaccaccg gatggactgg ccggcagcc cgcaccagtg cacgaagtgg gcgggacaga aacttctggg gttggaagtc 114300 114360 cagtgaggct aaaagccggt accaaagtct ctaggcatca gggctgcagc ccaagagtct 114420 cacgaccagt gggcaactgg atggccagac aggtgtctca gtggtggcct ctccgtctca gggcttcatc ccacttctca gtggcctga cgtccctggg caccctggat gtctacctgc 114480 114540 attagecaga gecateacat ggeetgtgae tigeettiti tigeeagitg attgigeeae 114600 acacagtgtc atttctgtgt catttggcac agctggaggt gcaaggagga gggcagcctc 114660 114720 114780 Cotgaataac aatgacagca agatcaataa atagtacaca tttattaaac actcactgtg tcccagacaa tattccaagc acttttatg gatagactca ttttaacttc taaagaactt tgtgggataa atacagttat tttatagatg aagaaactga agcacagaga agttaagtgc 114900 114960 tttgtccagg gtaacagctc agatatggca gagtcaggat ttgaaactag accctcacat 115020 accttaactg ctgtgctgtg gcagtgtttt tcatactgta ggttgggacc agccttctct 115080 tatgccctca cccctgcca aaaaaaaaaa aaaaaaaaa aaatatatat atatatata 115140 atatatata atatatat aatatatata tatataaaat atatatatat ataaaatata 115200 tgtattagta tatatgcata tatagtatat attatatat agtatatata ctaatatata 115260 atatacatat tagtgtgtgt atatatatat atactagaat aaaaaaatca aagtatctca 115320 gagtagtaag gacaaacatt tcagaaaaat gttttcatta tatatacatg tatgtatgtg tatgctgatt caacaaatat atttcttata ggttatagca aaatagtttg aaagctttta 115380 115440 ctgtgtttta tcaggaagac cttaggtgaa cgtatattca cagataaaag aggttattta 115500 ttcattcaat aaatattaca ttctcataag tcctaatatt atgtattttt attcttcaaa 115560 aaagttagta tttgtgattt atgaaataag acatgttctt gcacttttag cagatctgtc ccgatgttgg gcttctttaa tccttagtgt gggtgctttg cactcactca ctgctgggga 115620 115680 cagcaagacc cctgttagtc tcagctgtgt ttcttaaatt ggcccactgt accttccagt 115740 tagctattct ggggtccatg tcatgttggc tccattttcc ttttctttct cccacacaga tacctataac ggctataaca taggcctggt ggctgttggt ggcttatccc tatctgcttg tatttaaggg gtactgttc actgagtttt gctgacagat gttgtcatga gatttgaggt 115800 115860 115920 tttctgtgtt gttgctctat ttttatgtgg gaatttgcta ctatcatcat ccctagacca gcttttccta gtaatacaac agggatgttc tgactgatta gagtttgcct gtttgaagaa ttggttggct agtgatttt ttttgagggg agtctgtacc agttaatagc ctgactggcg 115980 116040 116100 tgtggataaa aaggaagcag tttcaagtca aataaaacac ttaaaatgaa accacactgc 116160 aactetettt ettttaetta agettaatea aattaatgat gatgtaatee eatgaaggaa 116220 aagtettetg aaggateaag tigataacat titgigatea aagaatitga gaaaacetet ateecagtgi etateattat atattitagg atgitaatta eetgigigge titaggeaag 116280 116340 tcatttttcc tccttgagcc ccattcttaa tcctgtccaa attatttgtc tcctcttgca 116400 gttggactat tttaatatag ctgtccttca agtgagtttt gttcaaagga gccttcactt 116460 tagctcttac tgtgtaccca ctttgcatag tcttgtttta aatgtaatcc ttggattttt ggtgttgcta actaattact gtttttatgt gaggatttag agtgatccag aatctatact 116520 116580 tgcactacct ccttcatctt ccacaaatgt ttgaagtggt agaattttta aaaactttga 116640 aggtacagct gacagaattt gctgatggtt tggaagtgag tggtatgaga gggaaaaaaa 116700

ggaataaagc atgactgcat ttttttgtttg tttgtttgtt tgtttttgag acggagtctc 116760 actotogoca qqctqqaqtq caqtqqoqtq atottqqotc acggcaacot coqcotoctq 116820 ggttcaageg attecectge ctcageetee caagtagetg ggactacagg cgetegeeae 116880 cacgcctggc taatttttt ttttgtattt tagtagaaac ggggtttcac cgtgttggcc aggatggtct ccatctcctg acctcatgat ctactcacct tggcctccca aagtgctgag 116940 117000 gttacaggca tatatataag catataaagt gtgttatagc atacaaacag gtatatatat 117060 aaacatgcag tccacacagc tgataggaat gaggcagtag tgaaggagaa gttgatgtag gagaggggac agttgttaca ggaaagaagt ctggaggcag aagggatgaa ttccagtgct cacatagaag attgcttaga tgggagcaag gacaatttat ctagagtcac aggaaagaat 117120 117180 117240 gcagtacacg ggtagagatg caggtgagtt gaaagatgtg agagatgatg gaaataattt 117300 117360 117420 117480 ctgtcagcta ccaattctgc agatgattgt tcagtgaaca ccaactgggt gtcctctaag 117540 tragttragt tracacted traceted gatagratra gatrocara attgaggart ctgtrccara agartgreet carttragat greattra agtaraagtt gtggretgtg 117600 117660 ctictgactg accttctata aattggagtt cccacagtcc cctccttggg ttcaataaat 117720 117780 ttgctagagc agctctcaga actcagggaa atgctttaca tatatttacc catttattat aaaggatatt acaaaggata cagattgaac aggcagatgg aagagatgca tgggcaaggt atgggagagg ggcacagagc ttccatgcac tctccaggtc atgccaccct ccaagaacct ctacagattt agctattcag aagccccct ccccattctg tccttttggg ttttttgtgg 117840 117900 117960 118020 agacttcatt atataggcat gattgatcat tggctattgg tgatcagctc aaccttcagc cccctcatcc cgggaggttg gtgggtaggg ctgaaagtcc caaacgtgta attctgcctt ggtctttctg gtgattagcc ctcatcctaa agctctttag aggccacagc cacaagtcat ctcattagcc ttcaaaagaa tccagagatt ccatgaattt taggcgctgt atgctaagaa 118080 118140 118200 actggctaaa ggccagttgc aatgtctcag gcctgtaatc ccagcacttt gggaggctga ggcaggagga tcgtttcagg ccatgagatc aaaaccagcc tggtcaacat agtgagaccc 118260 118320 ccttacaaaa aatttaaaaa ttggccaggc gtaatagctc ttgtctgtag tctcagctac 118380 tcagaaggct gaggatcact gagccctgga gttgaaggca gcagtgagcc atgatcgtgc 118440 cactgactcc ggcttgggtg acaaagtgag accttgtctc agaagaaaaa ggaaaaaaa aaaactgggc aaagactaaa taacatattt cacagtatca cagatttgta ttgtctagga 118500 118560 aagtgaatgt aaacagacca ggacactagt atgatecett ggttteatga aggteecact 118620 118680 aaagtcatga acacaaagtg agactaggca tcatgttata tggtttttcc agccatgttt aacagetage taaatageta attgtttege tgeagettat titageaget cettatttta 118740 gcacatttca tgttttaaaa tttctaccaa taacatttta ataaactttt ttacagataa 118800 cttcacaaat ccataatttt ttaagttaca atcccagaaa tagaattgct cattgaaagg 118860 gtatgttcat ttttaaagtt atgctagaaa ctgccaaatt gccttcagaa aaaggtgttt 118920 gtatceccae taacactagt gttagtttte ttgtgecett geteaagtat acatattatt aaaaacaatg ttgggecagt ttactagata aaaggtgtag tgeeteetta ttetaateta 118980 119040 tttgattact agtgagtatg tatgtctttt cacgttggtc attttatgtt tgttcctttg 119100 tggattgtca tgtcctttgc tcatttttct tttggaacat ttcttagtag tttataagag 119160 ctcttggtat tttaatgata gtaacctttt aactgtcatg catgctgcaa atcttttttc 119220 tgtttgtttg cctttgtatt ttgtttttgg agggtttcta tgtataggaa ttaaatttta 119280 tgttgttaaa tcttttgatt tctgcttttg catatgtact tcaaaagact ttctatttta 119340 agatcaagtg ttacctgtat tttcttttag ttctatttaa aacctcttaa tttatatgcc tgtgctgtta actcccaagt tgattcacaa gtgtgtatac atagtttgaa tttagtggca 119400 119460 atttaattat ttacaacttc ttttgcagca aggatttgtg gagaagatgg acaggtggat 119520 119580 cccaactgtt tegttttggc acagtecata gtetttagtg caatggagca agagtaagtt agttcatatt ttcacattgt gcatcctagg gaatttgggt tcattgttag gaatgggctt cactcagcta aaaacaaagt atttttgaga atttaaatat tttggatatt tacaagatca 119640 119700 tataaagcat actotatott ggttaacagt ttottttaaa tataaattat gtgaactott 119760 aaaattttca ttttcatttt caatgttaat atttcctaag ttaaaataat ttgtttttag 119820 ttctgaaata atttggggag tgattgagtc tgtagtgatt atgactatta gaattggttt 119880 atttatttaa ataatgcatg tetteagatg geteteetaa tttgttagtt aggetttaag 119940 ctaaatggat gctatataac taaatccaca tagatttgtt gaaatggctc cagaggtttt 120000 ttagatttat tactgctatg tgcccttaaa aaaaatctat tcattctttc acttaacatt tatcagaaga gtgctctgtg taagacgtgg ttaggcatag tgccagtctt gaaggaagtt 120060 120120 acagectaat aaaagacata gggcatgttg tttggttact gtaatatgaa gtggcatgtg 120180 ttaaatgtca ggggagaact acaaagtcat aaaaaggtgg gagagattac atacaggtaa 120240 aggaatcagg aatgacacca tggggagtaa ggtagtgttg acctaggcct ttaagataca 120300

atagggacag tatggaaaga gtatattttt cccacttaaa ctctttcctt ggtcgttccc 120360 tcaaattttc ccttttgtcc atgtgcaggc actttagtga gtttctgcga agtcaccatt 120420 tetgtaaata eeagattgaa gtgetgaeea gtggaaetgt ttacetgget gacattetet 120480 tetgtgagte agecetett tatttetetg aggtaaagte tgeatttett tteacactet attegageat tecageetet aactateaat getggggeee tgtetatagg aaataacaca 120540 120600 gaagagccaa gtcatttcca aaaagatgta tcattgtttc aagttgtttc tgatggcaag 120660 agtaatttaa taatatatta gagagaacat gaaaattcaa tgtattaaat aactctaatt ttgagaaacc taattaaact actgcatgta agagagtgca tgtttttaat tatttggagc 120720 120780 tattttaaaa ccacagaatt tgaaacttgc ttccagtgca taaattgcag accagacttc 120840 agaagagaaa aaaagtagta aattttttct tatgctcatc atttttactt tagtcacttg 120900 ataggattgc ccagtgaaga agcatttgca acagacaatg agtatattaa tctttttgag 120960 gcatacagit tagiataatg ctctttgtta ggcttcaaca agtgaaatta ttttgttgga 121020 aagcaaatga ctattaagta gaaagaggat teecagtete acaaagcagt aatttagaca 121080 ctcgattctg cctctttaca agaatacagg tactcagttg atttgttttc tcactccctt 121140 tettigetat aagittaaat caacaatiig titaggitaa taigicetea tggaatggig 121200 gaaatgatca gatataaaat atttggtttg gttagtttac tctttatatg tttgctggca aggaaccaca aatccagttt agtataattt ttactctagt tcactaaaag tttgcatcca 121260 121320 gctgtgtagg tagtgtttgt ttcttgttaa cttttttttc gtctaaaaga atactttaaa 121380 actiticaat cicaaatgac tgtaactigc tgacaggtgt taacagaaga agtagatctt titgtitti gcttatgacc tgtatittaa tattigagci tatagattag agattgtgag 121440 121500 agaaatetgt ttatagtett atttteeett gtgtattttt tetteetagt acatggaaaa 121560 agaggatgca gtgaatatct tacaattctg gttggcagca gataacttcc agtctcagct tgctgccaaa aagggccaat atgatggaca ggaggcacag aatgatgcca tgattttata tgacaagtga gttatattga tagatggatt cagcagatac ttattgaaca tttgatatgt 121620 121680 121740 tttgtggaaa taaagatgaa taaactcagt ctctgttgtc aaggagctca caggaggcag 121800 cataaaagct gcttttatat ggtgtttgta aagctttggg ggttcttaga acaaaagttt ctgctgggaa aggggaggtg tatgtggggt aaacaggatg gcaatggtgg tgttcaagga gtgtttccca gaagagagat tttgtttgga tcccaaagaa agaagggaat tttgctaccc 121860 121920 121980 agagaaggca gaaaacaaca ttctaggcaa aggcattggc ccagaagcca tqqaaacqta 122040 ggggaaagtg gcactttcaa gaaacttgag tttagataat caaaggagtg gggaataaat atgaggatgc tggtactaat tggaatagat tgtaagggac cttgaatgcc tatttatggg 122100 122160 tatattatac tttctgtata aatctgctca ggcacgttgt taattagttt tttattagtt 122220 ttcactgaaa atgagaggat ggaaacatca tacagtaaac aaaattgaaa atatctggtc 122280 aggeagatga tgagettgtg gecagetetg taacgtatgg tattettte atttaacttt tettaetetg taaaaaaagt aattegtggt egggeaeggt ggeteaetee tgtaateaea 122340 122400 acactttgag aggcagaggc aggtgaatcg cttgagccca ggaatttgag accagcctgg 122460 gcaacatggc aaaacccgcc tttactaaaa atacaaaaat tagctgagcg tgatggcgtg 122520 122580 122640 accetgeete caaaaaaaaa aaaaacaaca aaggtaattt getattegta teettaagca 122700 aatgctaaag gggtaacttg gggatagaga aaagtccaca gatgttaggg tttgaagaca ctaatagtat ctaggccagt ggttcctgaa cattagtctg tgggctcttg ctgggctgtc tgcataggaa tcacctgaga gcttattaaa aataggtttt caggctggtt gcggtggctc 122760 122820 122880 acgeetataa teecageact ttgggagget gaggeäggeg gattaettga ggteaggegt 122940 tcaagaccag cctggccaac atggtaaaac cccgtctcta ctaaaaatac aagaattagc caggcatgat ggcacacacc tgtaatccca gctactcagg aggctgagga aggagaattg ctcgagcccg ggaggtggag gttgcagtga gcggagatca tgccactgca ctccaggctg 123000 123060 123120 gctgacagag ggagactctg tctcagaaaa aaaaaaaaa ataggttttc agtctgggta ccggtggctc acacctgtaa tcccagcact ttgggaggcc aaggcaggca gatcacttga 123180 123240 ggtcaggagt ttgagaactg cctggccaac atagtgaaac cttgtctcta ctagaaacta 123300 caaaaaatta actgggcatt ttgacgggtg cctataatcc cagctactag ggaggctgag 123360 gcaggagaat tgcttgaacc cgggaggcag aggactgcat ctcaaaaaaa aaaaaaaaa aaaggtttcc agtccccctg tctcagaaat tctgattctg caggtttgag gtgtgaccag gaatctttat ttttagaaga cataccagat aattctgata aatagccagt ttagggatgt 123420 123480 123540 agtotaattt tootattttg caagtaagga aaataaggoo cagagaggta atgattttot 123600 caaagtcaca gaacaagtta gtggcagaat ttggactgga atgcagttct taatgttctg 123660 tccagtgttt attctggtac agtatgtttg tagaaggtat tacgtaagaa acattgttat atagatgttg agataggaag agtttacatt tagaaatttg gtctaaaatg cctgaacatt caagtcgtgg aggagtattg accaacttac tcaatacaac ataggagatt cacattttgt 123720 123780 123840 tacaaaaatg ctgatttaaa aggagagttt tcttttttt cttcttttt atttttgag 123900

atggagtett getetgteac ceaggetaga gtgeagtgae aegateteag eteactgeaa 123960 cotocacete etgggiteaa geggttetee tgeeteagee teetgagtag etgggattae aggtgggggc caccacgccc agctaatttt tgtattttta gtagagacag ggtttcacca tgttggccag gccggtcttg aactcctgac ctcaagtgat ccacccacca ctgcctccca 124080 124140 aagtgctggg attataggcg tgagccactg tgcccagcct gcttgttttt gtatcatata 124200 tatgcatcat cataatcatg cattatcaac ctttgtattt ctgtcaggac atagaaacca 124260 ttagagtgct tggaagagag ccttttttt tttctcgcat ttaatgcttt ttttggtatt catttcataa tcagcttacc aaaacattac ctgcattata ccccatcaag gtagaaatct 124320 124380 ttgtgttatc aatattggtt actccctttc cacaccgagt catcagtaag tcctgttcta 124440 tocaaatagg toatatgoat ctagotoaco cotoagtgot gttttgtttt gaatttgtac 124500 124560 124620 ctatctatca agtecteaac agagaatagg tacccataaa tatgtgattg ttagtttett tgeeteagtt gtagtetgat eettacaget tttaaacaac agtagagtte acegteaaga 124680 124740 actaaggatg gttggcaggc agatagaaag gtagcaagtt gacccaacta tctctgggga agtgggaaca aagaaaggtt acatcagcac tgtcatcaca tagctctata gttctaggcc 124800 124860 tgcaggetca atcaagtage ettgtataag attetetgga ggaggtgetg aaagttgett 124920 atacttgcta tggaatttga ttttacttcg gatatctttt taccataggt acttctccct ccaagccaca catcctcttg gatttgatga tgttgtacga ttagaaattg aatccaatat ctgcagggaa ggtgggccac tccccaactg tttcacaact ccattacgtc aggcctggac 124980 125040 125100 aaccatggag aaggtaaccc agaacttcaa acgtatcaaa ctacaagaag tittattggt 125160 agaactcata aaatataagg tgggaaaacc aagcagaata gcacagtgga aattgaagca gtccagcaaa gtgattaaga gcagaggcct tgagtctggc ctggtatgta cagtcacgtg 125220 125280 ccacataaca ttttagtcaa cagtggactg cgtgtacgat ggtcctgtac gattataatg 125340 gatcaaagct ggtagtgcaa taataacaaa agttagaaaa aataaatttt aataagtaaa 125400 aaagaaaaaa gaaaaactaa aaagataaaa gaataaccaa gaacaaaaca aaaaaaatta taatggagct gaaaaatctc tgttgcctca tatttactgt actatacttt taatcattat 125460 125520 tttagagtgc tccttctact tactaagaaa acagttaact gtaaaacagc ttcagacagg 125580 teetteagga ggttteeaga aggaggeatt gttateaaag gagatgaegg eteeatgegt 125640 gttactgccc ctgaagacct tccagtggga caagatgtgg aggtgaaaga aagtgttatt gatgatcctg accctgtgta ggcttaggct aatgtgggtg tttgtcttag tttttaacaa 125700 125760 acaaatttaa aaagaaaaaa aaaattaaaa atagaaaaaa gcttataaaa taaggatata 125820 atgaaaatat ttttgtacag ctgtatatgt ttgtgtttta agctgttatg acaacagagt 125880 caaaaagcta aaaaaagtaa aacagttaaa aagttacagt aagctaattt attattaaag 125940 aaaaaaattt taaataaatt tagtgtagcc taagtgtaca gtgtaagtct acagtagtgt 126000 acaataatgt gctaggcctt cacattcact taccactcac tegetgactc acceagagca 126060 acttccagtc ttgcaagctc cattcatggt aagtgcccta tacagatgta ccatttttta tcttttatac tgtatttta ctgtgccttt tctgtatttg tgtttaaata cacaaattct 126120 126180 taccattgca atagtggcct acgatattca ttatagtaac atgtgataca ggtttgtagc 126240 ccaaaagcaa taggttgtac catatagcca aggggtgtag taggccatac catctaggtt 126300 tgtataagta cactetgtga tgttagcaca atggcaagca gcctaacgga aattetgttt attgattgat tgattgattg attgattgag acagagtttc actccattgt ccaggctgga 126360 126420 gtgcagtigc acagtettgg cacactgcaa ettetgeete ecaggttcaa ecaattatee 126480 tgcctcatcc tcccaagtag ctgggattac aggcaggcac caccatacct ggctaatttt 126540 tgtattttag tagagacagg gtttcaccat tttggccagg ctgttctcga actcctgacc ttaagtgatc tgcctgcttt ggcctccgaa agtgctggga ttacaggcat gagctaccat 126600 126660 gcctgggcag taactgaaat tctctaatgc cattttcctt atctgtaaag tgacgataat 126720 atgeaegttt aceteaaagt taetttgatg attaaagtaa ggtaatgtat ataaaataca tattaacata gtacetgaca catggtaage atcaaaaaat gttaactaet tttattaeta 126780 126840 ttattattac gtatttitaa ataattagag agcagtatca aaaattagct gggcgtagtg 126900 gcatgcacct atagttccag ctactcagga ggctgaagct ggaggattgc atgagcctgg 126960 gaattaaagg ctgcagtgag ccgtgttcat gcccctgcac tccagccttg gtgacagagc aagaccctgt cttgaacaat taaagaaggc attatgccgc aacgttagct tagaaatgat 127020 127080 ccacatatat caccagtaac tgtcaacagg attggaaccc tagttttggg tattatgatc 127140 acaaggtatt attaatagct tattaataat aaagcgttgg ctaggcacgg cgactcacat ctgtaatccc agcactttgg gaggccgagg tgggtggatc acctgaggtc aggagtttga gaccagcctg accaacatgg agaaacccca tctctactaa aaatacaaaa ttagccgggc 127200 127260 127320 gtggtggtgc atgcctgtaa tcccagctac ttaggaggct gaggcaggaa aatctcttga 127380 accogggagg cagaggttgc agtgagetga gategeacea ttgcaeteca geetgggcaa 127440 Caagagcaaa actccgtctc aaaaatataa ttataataaa taaataaaag taaagtattq 127500

atgtttgtga atgatttatt cttctaatga actagaggag atttttccag gaatttcaga 127560 gccagtgagg ttatgttgct tgtatgtgtc atgtgtatcc aggtgaaaaa acttaattaa 127620 acgctattat ataataccat acataaaaac tgaattttag gaatactgaa gaatgacata tagaagtcaa atcattaaat agctagtagt aaacagaata gagtgtcagc tgttacccaa 127680 tgatgataat attttcacga ttaaaattaa accttttctg attttaaagg aaaagttcag 127800 atctgtatca tataaagaat gtaaattttc agggtaataa aattaaaatg cagagagaaa aatgcaaaaa tagttcttac tagatgtgtg tatgtaagga acttagacta attttaagaa 127860 127920 cactgtcaag accetggtag ttaggtagga aaaaagacat gaatgattca ttcaacaaaa 127980 actttgagta tttctgtgct agatggtagt gttacagtgg taaacaaaat aaatgtgttt 128040 ctgctatect ggagettagt ctacaaaaaa ggtacatatt ggccgggcac ggtggeteac 128100 geetgtaate etageaettt ggaagatega ggegggtgga teacetgagg teaggagtte aagaceaget tggeeaacat ggegaaaeee egtetetaet aaaaatacaa aaattaaetg 128160 128220 ggigtggigg cggacacctg taatcccagc tactcgggag gctgaggcag gagaatcact 128280 tgaacctggg agacagaggt tccagtgagt cgagatcatg ccactgcatt ccagcccggg 128340 ggacaaaagc gaaaatacgt ctcaaaaaaa caaaaacaaa caacaaaggc acgtattaaa 128400 tacgaacata aatatttaca aattatactg aataagttet catgtttatt atttgettgt 128460 128520 ccaqttacaa acttttcctt cgtagaatta gaaatataaa taataaacat gagaactcat tcagtataat taataattat taaatgtaaa taaaaacatc tatgtacaat taggcattta 128580 tttaagaatt atttgaaaaa aaaacaatgt ggaaacagat attttgatat attgctagtg attgaaattg ataatgttct tttgaagagt aaagtgacca tatatattaa agttaaaatt 128640 128700 128760 taactcagca atcacacgcc tggtgagtta tcttaaggaa atcagtttga aagtaaaatc aatatatgca caaagacttt aacatttatc ataaaccaga aaaatcgagt ttcaaattat 128820 atcctatgga ctattttctg ctaaaaagta ttaatatcaa ctttatgtaa tactttcgtg 128880 acaaatattt tgggggagaa aacccaacaa aattacatgc attgtaattt tttttttt 128940 129000 ttttttttta gacagtcttg ctccagcgtc caggctggag tgcagtggtg caatctcggc tcactgcaac ctccatctcc caggttcaag caattctcct gcctcaggcc tcccgagtag ctgggattac aggcgctcac caccatgcct agctaatttt tatagttttt agtagagatg 129060 129120 gggtttcatc atgttggcca ggctggtctt gaactcctgg tctcaagtga tccgtctgcc 129180 trogretert agagtgetga gattaraggt gtaagcract graccrager ttatgratta 129240 taattttaat ttgtaaactg tacaaaggga taatacttgt agtacaacaa gaagtaaaaa catttgttat aggtagttaa catttgtaac cagtagaatt ataggtaaaa tttatttatt 129300 129360 129420 taaaacagtt ttagttggat ttgatttcaa ctttaaaata atgcttttca tctctatcag gtctttttgc ctggcttttt gtccagcaat ctttattata aatatttgaa tgatctcatc 129480 catteggtte gaggagatga atttetggge gggaacgtgt egetgaetge teetggetet gttggeete etgatgagte teaccaggg agttetgaea getetgegte teaggtattg 129540 129600 actgattgcg totgccatta gggagaaaaag catacacatc otttocttca catoccagta acagatocta ttatttgtaa attttaagtt gtggaaaaaa aagataaaaag coaggcacag 129660 129720 tggcctgtgc ctgtaatccc agcactttgg gaggctgcgg tgggcggatc acacgaggtc aggaattcga gaccagcctg gccgacatgg tgaaacccca tctctactaa aaatacaaaa 129780 129840 129900 attagceggg catggtggca ggcacetgta atectageta ettgggagge tgaggcagga 129960 130020 tagectactt actatettet aateaaagea tttgtggtaa ettaaaatat aetgtattgt 130080 aaagtatcat gctgtttcat ttaggccatt attctatttg aatctgtggc tgtttctctt 130140 aataaatcaa gtaatatgga atatattcat agcctctgaa gagctcttta tgtaagtatt 130200 tatttaggat actttttgta aaataagtga atgaattett aggteteett tittttett 130260 130320 ttcttgagac agggtctcct cgctgcaacc tggaaattct gggctcaaat aatccaccca ccacageete etgaataget gggactagag geatgeacea ecaegeetgg etaatttgaa atttttttt ggecaggeat gatggtteae geetgtaate ecageaettt gggagaeega 130380 130440 ggcaggcaga tcacgaggtc gggagatgga gaccagcctg gccaacgtgg tgaaaccccg 130500 130560 tctctactaa aaatacaaaa attagctggt tatggtggct catgcctgta atcccagcta cttgggaggc tgaggcagga gaatggcttc aaccagggag tcggaggttg cagtgagccg agatcacgcc actgcactcc tgcatggtga cagagtgaga ctccatctca aaaaaaattt 130620 130680 tttttttaaa tgatggagtc ttgctgtgtt gctcaggctg gtcttgaacc cctgacctca 130740 130800 aatgoogoot gottoagoot aagtttottt tttttttgta aagagacagg gtottgotat gttggccagg gtagtctcaa actectgget teaageagte eteccaeett ggeeteteaa agtgetggga ttacaggegt gaaceaetae etataatgtt gtgttteaet caaggeettt 130860 130920 tgatttegtt ttgeattace gtgecacatt gtgeatttee ttgacetttt ttgggttttt 130980 131040 tggagtgett teatatgtta aaccatacet gatteteete aaaateacae aaagtagaat atcctaagac aagaaatcta aggaggcata aagaagttaa ctggttttat taaactcaca 131100

cagtaaatga tagagccaga aatattcccc ttctagtgtt cttcaccatc agcttaatgt 131160 agcataataa ttttctaatt actgttgaca aataaataac cctttgaatt ttcaatactg 131220 ggccttggat aaattttcct aatttgtaag agagtattat cgtattgcca tttacaaagc 131280 tctcctgagt atcttttct tctgttaagt ttacctagga gataaactgc tgagtatggt tgccattttg gttttttgat ataggttaga atgtcttggt ttttttttt tttttttg 131340 131400 gtttttgttg ttgtcattgt ttgagacagc atcttgctct gtcgcccagg ctggagtgca 131460 atggcacgat cgtggctcac tgcaacctcc acctcccggg ttcaagcaat tctcctgcct 131520 cagctteetg agtagetggg attacaggea tgtgcaacca cacetggeta atttttgtgt ttttagtaga gaaggggttt caccatgttg gtcaggetgg tattgaactg etgaceteat 131580 131640 gatecacetg ceteggeete ecaaagtget gggattgeag geatgageea etgeacetgg 131700 ctgaatgtct tgtttttgat taggcactta agaaaggcct aggtactaac cataaaatat atttttatac cttttgttga tactatatat atagaaaact gcacttatca taaccttaga 131760 131820 caccttgaag aatgttcaca agcagaacta acccatgtga cccagcatcc agatcaaaaa 131880 cagcattate ageceeteta gaageeetet tgggeeeett ceatteactg teettettgt 131940 caccagggta gctactatcc tgacttttga tggcatagat tagcattacc tgttcttgtc attttataaa taaaaccata ctgtgtattc ttttcttgta cagctttatt gtgctaattc 132000 132060 acatttacat catacaattc agiggttttt atatggtcac agagttaggt aaccattacc 132120 acategattt tagaacattt ttttcactee agatagaaac ceeetttaet taaacteeaa 132180 atccccact ccaccagcc taggcagcca ctagtctact ttttatctct atagagacaa tagatttgct tattctggac atttcataaa catggaaccg tatattatgt ggtcttttgt tgccaactgt ctttcactta gcatcatgtg ttcaaaagag catcatgtta tccatgtttg 132240 132300 132360 gcatgtatca gaattttatt cctcattatg gccaaatatc ccattgcaag gatttatgac attttattg aattgtaccc tcctttctgc catttatcaa taatgctact gtgaccattt gtgtacaagt ttttgtgtgg atacaggttt tctttttgtt tttaaatttg aggtggagtc 132420 132480 132540 ttgctctgtc gcccaggctg gagtgcagtg gcacaatetc ggctcactgc aacetetgtc teetgggttc aageagttet cetgectcag cetecegagt atetgggact ataggcacge 132600 132660 accaccacge ccagetaatt ttttagtaga gatggggttt caccatgttg gecagtetgg tetegaacte ttgaceteaa gtgatecace cateteggee teccaaagtg etgggattae 132720 132780 aggggtgagc cactatgccc ggctgtggtt ttcattictt ttgttgtata tacataggag 132840 tagaattgct gagtcaagag gtaactctta aacttattga aaaactgcca gattgttttc cgaaaaaggct gcaccatttt gcaatcccac cagcagtgta tgagttttac agcttctcca 132900 132960 catttcattg gaacttatta tctgtttggc tgtttttaaa aatgatagtc attccaataa 133020 gttctacttc agtgtggttt ttgcacttct ctgatgagta atgatgttga gcatcttttc 133080 atttgcttat tggcctttgt tctagctttg gaaaaatgtt tattcaaatc ctttggccat ttttatttt attttattt atttatttt ttttgagacc aagtctcact ctgtcagcca 133140 133200 ggctggagta caatggtgtg gtctcagctc actgcaacct ccgcctcctg tgttcaagtg attctcctgc ctcagcctc cgagtagctg ggattacatt tcaggcacct gccagcatgc cgggctgatt tttgtatttt tactagtgac agggtttcac catgttagcc aggctggtca 133260 133320 133380 caaactcctg acctcaggtg atctgcctgc ctaggcttcc caaagtgctg ggattacagg 133440 cgtgagccat tgggcccagc ctagattttc ttttttcttt tttttttga gaaggagtct 133500 tgctcttgtt gcccaggctg gagtgcaatg gcacaatctt ggctcactgc aacctctgcc tcctgggttc aagcgatttt cctgcctcag cctccccagt agctgggatt acaggtgcct 133560 133620 accaccacac ccagctaact tttgtatttt ttttagagac agggtttcac catgttggcc 133680 aggetggtet caacteetga ceteaggtga tecaeetgee ttggeeteee gaagtgetgg 133740 gattacegge atgagetace aggeecagee aattttetea ttatattgee caggetggte 133800 tcaaactcct gggttcaagt gatcctcctg ccttggcctc ccaaagtgtg gggagtacag gcgtgagcca ccttgctcag cccctttgcc catttttaaa ttagattgcc tttttatatt 133860 133920 gagtttcagg agtcctttat atattctaga taaatgtccc ttatcaaatt atattatttc 133980 caggitatti citcaticig igagitgici ticcictacc tittaaaaaa ggigggitti tgittgittg titgitigti titttaagat aaggictcat tcigcigccc aggciggagi 134040 134100 gcagtggcac aatcacaget cactgccace teaactteet gggccgaagt gateetetta 134160 cttcagcctc ctgaatagct agggccatag atacacacta tcacacccag ctttttttt ctgtttgtag agacagatct tactgtgttg cccaagttgg tctcaaactc taggctcaaa gtgattctcc cacctctgcc tcccagagtg ctgggattac aggtgtgagc cacacgcaac 134220 134280 134340 ctgtcttttc actattaata gtgtcttcct gcttcagcct cccgagtagc tgggattaca 134400 ggcacccacc accatgcctg gctaattttt ttgcattttt agtagagaca gtgtttcacc atgttcaccc ggctggtctt gaactcctga cctcaggtga ttcacctgcc atggcctccc 134460 134520 aaagtgctgg gattacaggc gtgagccact gcacccggcc aaaatattgc cttcttaaca 134580 gtattgtctt ctaatttgtg aacatggatg tatcttcatg tatttatgtg ttctttcatt tcagcagaat tttgtagttt tcagagtaga agcetttcae etcettgggt catttattee 134700

tatgttttaa gttcttttcg attccattat aaatagaatt gttttcttaa tttcattttc 134760 agattgtttg atgagagagc atagaaatac aagtgatttt tacatgttga tcttgcaact 134820 tcaactttga taaatctgat tgttagctct aatagttttc ttgtggattc tttaggattt 134880 tcaatatata agatcatgtc atttatggat agagatagtt ttttttctgg ctagaactta cagagcaatg atgagtagaa gtggcagaag caaaaatctt tgtcttgttt cctatctgac 134940 135000 agggaaagct ttcagtttca tcatttaata tgatgttagg tgtgggtttt caataaatgc 135060 ctitttcag attcaggaat ttccctatca ttcctgattt tttaaggctt ttttttt 135120 ttaaatcatg aaagggtgtt gaatattgtc atgttctttc tgtatcagta taaatgatcc tatggatttt gggttttatt ctgttgatgt gaaatattaa ttgattttca gatgttaaac 135180 135240 caacettgca tacetgagat gaatetcact tggtcatggt gtataatett ttcaatatge 135300 tgctggattc catttactgg tattttgttg aagattttgt atctgaacgc ttaagataac 135360 atttacacte tateagaaat gaattgacea taaatgtgag agtgtatttg tgggttettg attetete atteeaaaga tagacataca teegtetgta tgtetgtett tatgeeagta 135420 135480 ccatactete ttgattacta ttgctttgta ataagttttg aaatcagaaa gtataaatga gatttiggta tetgagtaac agteeteata gaattagttg ggaaatatte eetetttatt 135600 ctqqtccctc tttcttttt gtttaactgt gtatcttgga gattgttcct tctcaacaca tqaqaqccqc tttccctacc ctcccaccc tgctatagag aggtctataa gtgtctgttc 135660 135720 aattattta tttacttaac ctattactta gtcggggaca ttaagcttgt ttatgtcttt 135780 tattttaaac aatgetgeag tgaataatet tgtatataag teatitteea teaaiataag 135840 tetetetgta actgaatttt tagaagtgga atttetaggt caacctatgg etetgtattt 135900 cacaaaaata ccaattetgg tttttettgt ggaggtgggg agtaggaggt agaatgetgg 135960 aggagaactt getgtaetea getggetagt eattttagaa aggttteett agettettt 136020 tgtcatatgg cctcaccaag aatcaaaaac attcctattt accctgtaaa catggggctt 136080 tactacccaa gatacatatt totggatgta tgacagottt toatattgaa gaaataatgo 136140 tgtgagtaca gcacatttgt tggaacttag gtcgttaaga atgtcttata aattcataca 136200 ttatacattt tattttattt tattttttag tttttgatac agagtettee tetgtegeee 136260 aggccagegt gcagtggtac aatettgget cactgcgace tecateteet gggetcaagt 136320 gatteteatg teteageete cagagtaget atggttacag geatgeacea ceatgeeegg etaattttt tattttagt agaaactggg ttteaceata ttgaceatge tggeetegaa 136380 136440 ctcttggcct caagtgatcg gcctgcctca gcctcccaaa gtgctgggat ccttgtattg 136500 ggtaaaagat gaatattgag ggctgcatgg tggctcatac ctgtaatccc agcactttct gagactgagg tgggaggagt cctggagccc aggagggtga ggctgcagtg agttgtgatc gcgccattgc acttcaacct aggaattata ggcttcagtc actgtgcccg gcatgtacat 136560 136620 136680 tttaatattg tgctttcctc ttttagctat agtatgaggt tacatttcag agtcattgtt 136740 gttaagcate ttaatagtga tgaggttgag tgaaagttae ttetatttea aacaetgaag aaaattttgt acaaatetgt cacatteeaa geecaggaet gattgtttea tataetteta 136800 136860 attitacaat tictatigia giccagigig aaaaaagcca giattaaaat acigaaaaat tttgatgaag cgataattgt ggatgcggca agtctggatc cagaatcttt atatcaacgg 136980 acatatgccg ggtaagctta gctcatgcct agaattttta caagtgtaaa taactttgca tcttttaaat tttttaatta aattttacat ttttttctaa tctattatta tatgcccaga 137040 137100 actttcactt agagtgtgca gtataatgtg gtggttaagt ataaaggctc tggagtgact tcctgggttt taatcttggc tctgccattt attggcagcc gctaacctct tggtatctca 137160 137220 gtttcttcat ctgtaaaatg agaataataa agtgaaaaga tgccaacatc atttactctg 137280 ggctgcataa ctgatacttg gaaaaagtat tcctttgagt ttaagaatta agttggttat 137340 tcattttagc ttgtaataaa aagatagtga ttcataggat atgccactta ctgaaattta 137400 ccacagatcc aatcataaaa tcactttctc ttccctaaag atagcttgat taacatgtaa aggtgtgtaa aggcttgatt acactaccct gatccgtacc ccagttccca gcagcaccat 137460 137520 gaaaaaggga tttcaacata tttaattact ttcagtagaa agtaacagtg gtaggccagg 137580 137640 cgcagtggct cacacctgta atcccagcac tttgggaggc cgaggtgggc ggatcacgag gtcaggagat tgagaccatc ctggctaaca cgatgaaacc ccgtctctac taaaaataca 137700 aaaaattage egggeatggt ggeaggeace tgtagteeca getaettggg aggetgagae 137760 aggagaatgg cgtgagccg ggaggcggag cttgcagtga gcttagattg tgccactgca 137820 ctccagcctg cgcagtggag cgagactctt gtctcaaaaa aaaagaaagt aacagtggta 137880 ttgggagact gaggagccta gaaagtactt gaaggaagta aaaggtttgt ttgaccacat tgtatttgga aagccagctt tttcagctgt gtcagctttg tgtagtgatt tttagttctt 137940 138000 cttttagaaa ataacggaca aggccgggca cggtggctca cgcctgtaat cccaccactt 138060 tgggaggcg agacgggcgg attacctgat ctcaggagtt cgagaccagc ctgggcaaca tggtgaaacc ccgtctctac taaaatacaa aaagttagcc gggcgtggtg gcgtggcct gtagtcccag ctactccgga ggctgaggca ggagaattgc ttgaacccgg gaggcggagg 138120 138180 138240 ttgcagtgag ccaagatcac accattgcac tgcagcctgc gcgacagagt aagactctgt 138300

ctcaaaaaat aataataaaa taaaaaagaa tggacagtaa acctaaatga gttcattccc aaagatgatg ttattettaa gggatggtte atttatttaa gacettacat aaagtetate aattgcgtga tttttcactt ctgtaattgt gtgtatgtat aatgtaaata tatatgtttt tgttttgttt tggttttttg agacggagtc tcgctctgtt gctcaggctg gaatgcagtg gigcaatete agetetetge aacetetgte teccaggite aagegittet tetgeeteat cctcccaagt agetgggaet acaggeaegt gecaccaege ceggetaatt ttttgtattt ttagtagaga tggggtttca ccgtgttagc caggatggtc tcaatctcct gacctcgtga tccacccgcc ttggcttccc aaagtgttgc tattacaggc atgagccacc acacccagca tgtatttttt aaatgtataa aatgaagcag aaaagagaaa tgataatttt tcttcatctt gaaagattat cttcaccagg cgcagtggct cacacttgta atcccagcac tttgggaggc cteggeagge ggeteactig agttegaaac cageetggee gacatggtga aacteegtet ctactaaaaa taaataaata aagatggttt taatatatgt tttagtttta tgattttage atetttetga aatttttete aaggeaagta aatttgtate agttggtata tiggtaceea tctatgaaat aacttattag gaagatatct ctaaaataag atcactttgc ctaaaataaa ctgatatatt gatgttcaca gaatttttct tttaaccgac ttgataaatg cattattctt gacgtcaagt gatccacctt cctcagcctc ccaaagtgct gggattacac acatgagcca ccgcacctgg cattattctt ataaaaggtt aaatttctag ttaagtttaa tgtcctcttt gttcatgtac cattgcttat tttcttccct tcctactcac agtaatcatt cttatggtat gcacttttgt ttgcttattt ttatgtaatt gatattacgc tccattctgt acgttgtact ttcattcaca gtgagttttg gacattccta tgttcatcta tacagactta cttcatttta actacactgt agtattccgt atgtaatatt tactataact catcactgta gcagagcatc tcatagtgta tgtattactg ttttgccatt ttggtatcaa tgagtattta agtcatttgc agtttttccc tcttataccc agtattacag aggatctctt tttatatgct tctttgtacc tcactatgit gcccaggetg gtctcaaact cctaggetca agcaatcett ccatcttggcctcccaaagt gctggggtta caggcatgag ccaccatgcc tggcctacat tttaaattttgatagetctt acaatttact ttgtaaagta tctgcatcat tttatgttct caccagtett taataagaat acttcatact tttggctgga cacagtggct cacgcctgta atcccagcac tttgggaggc cgaggcgggc agatcaagag atcgagacca ccctggcaa tatggtgaaa ccctgtctct actaaaaata caaaaattag ctgggcgtgg tggcgcaccc gtagtcccag ctactcgaga ggctgagaca ggagaatcac ttgaacccgg gaggtggagg ttgcagtgaa cttagatcac accactgoac tocagoctag caacagagtg agactotgto toaaaaaaaa aaaagaatac ttcagactta atttttttc cagtottaag tgtttgctaa tgagattgag tttcttttgg tatgtctctt gattgttcag gttttttctt ttatgaattg actgttcatc tctttttcac attattctg ttgggtgatt ttattagtga cttgttaaaa ttctgtatat ttttcagca tgacacttca ttattcaaaa aaaaaaaaag attctctatg tttctcgata ctaatcattg gttggtaata ccttaaaaat aagaccctta ctgtattttt tgctttttt ttttttttt ttttgagatag agtcttgctc tgttgcccag gctggagtgc aatggtatga totoggotot cagotoactg caactgcaac ototacotoc otgtttcaag caatteteet geettageet eccaagtage tgggattaca ggeateeace accaeacea getaatttt gtatttttag tagagacagg gtttcaccat gttggecagg etggtetcaa actaetggee teaagtgate egeetgeete ggeateecaa agtaetggga ttacaggeat gagccacagt gcctagccac tttttgcttt ttaactttgt tttatagtac tatagtttta gtataaacag atgtatgtat acacacaact atggctttat aatatgtttc agtcattgtt agagcaaggc ctaccttttg ggtgcttctt ttacaaaatt gtcttggcta ttcttgtgcc ttttttctta tttgtgaatt ttagaattgt gaattacctg ttgactcacc atgttttgta aactgaggat tttgaatgga attgcactca attaaagatt atcttgcttt ctgtgcagca atgitttatt tcaaataatc cctactttaa attacttagg atagctataa attgigtttc tggctttcta gatttagatg aaacgcttta aattgattgt tttctcctaa atttaaaact gattgttaga agttaaagtc ttctgttcat tcttatttag gaagatgaca tttggaagag tcagtgactt ggggcaattc atccgagaat ctgagcctga acctgatgta aggaaatcaa aaggittgtg gigittitat acticatatt aagccittac tcacattagt gaitgactgt aagtcaaaga ccacttaagg tttaaactgt ttattttgta aagtaaccac tgtatcttic acettgtgtt tatagteaga agtaagtaea agggetteet gtagteaeat etttatgeaa tetectetga atcaaaagtt agtgaacttg etttgecact ccagaaggea catgaatatg aaaaagcatt gtctattttc ttatttaatg gcaaaatacc cgacctaagt tggacttaat gtttgagacc gtttatttta ttaaattata ttttttctct tttcttttt ttttttgaga cagttettge tetgteacce agaceggagt geagtggtet gacegeacet caetgeaace tetgetteet aggiteaage gattiteetg ceteateete etgagtaget gggactacaa gtgegeacea ceacacetgg etaattiteg tattittage agagatgagg titeaceaeg 

ttggctaggc tggtctcata ctcctgacct caagcaatcc atccgccttg gcttcccaaa gtgctgggat tacaagtgtg agccaccatg cctggcctta ttaaattatt tttattaaat ttcctcaaga ttgatgaaag taatgaaata taaaagtaat gaaatatatg tggaaaatag actggattaa gaaaatgtgg cacatataca ccatggatac tatgcagcca taaaaaagga tgagttcatg tcctttgtag ggacatggat gaagetggaa accatcatte tgagcaaact gtctcaagga tagaaaacca aacaccgcat gctctcactc ataggtggga attgaacaat gagaacactt ggacacaggg tggggaacat cacacgctgg ggcctgtcgt ggggtggggg gctgggggag gaatagcatt aggagatata cctaatataa atgacgagtt aatgggtgca gcacaccaac atggtacatg tatacatatg taacaaaget gcacgttgtg cacatgtace ctagaactta aagtataata aatttaaaaa aaataaatat atgtggaaaa tattaatagg tcaaaattca aattgttcat ttaatcagaa gagtagttta gtcaaatcca agggttagac aacagaaatc ttttttgtca agtgcattct ttgtgactga tttcattttc ttcctggttt acacaggaag atttcagaaa caaatgtgga tccgtgacag atggtatcta gaagttttta gtttggttga attgacagta ttttattgag taaaagatac taatttttgt aagaagaaaa attcaatttt gataagtatg tttaagatta agagctattg gccaggcgct gtggctcatg cctgtaatcc tagcactttg ggaagctgga gcaggtgggt cacgaggtca agagattgag accatcctgg ccaacatggt gaaaccctgt ctctactaaa ttagccaggc gtggtggcac atgcctgtgc accegectee gggtttaage gatectactg ceteaggete etgagtaget gggattacag gegecatgge taatttttge atttttagta gagacagggt tteactacat tggccagget ggtctggtet caaacteetg acctcaggtg atetgeeege ettageetee caaagtgctg ggattacagg catgattcac catgtctggc catttatctt attttctttt ttttttttt ttttgtttga gacggagtct tgctgtgtcg cccagagctg gagtgcaatg gtgcgatctc agctcactgc aacctctgcc tcctgggttc aagcaattct cctgcctcag tottocaagt agotgggatt acaggogogt gocaccacat ctagctaatt tttgtatttt tagtagagac agggtttcac catgitggcc aggctggtct cggaactcct gacctcgtaa tetgeceace teggeetees categories agattacaagt gtgagecact gtgeceagee atettattt ettetttt ttttgteggg tgggaggggg acagagteta getetgtege caggettgge teactgeaac etetgecece caggttetag caattattet geeteageet cccaagtage tgggattata ggcacetgee accaegeetg getaattttt tgttattttt agtagagatg gggttttget atgttgacea tgetggeete aagtgateeg eccaeettgg ecteecaaag taetgggett acaggegtga gettgtattg ggtaaaagaa caatattggg ggctgcatgg tggttcatac ctgtaatctg agcactttgt gagactgaga tggaaggagt gttggagcc aggagggtga ggctgcggct gcagtgaatt gtgatcacgc cattgcactt ccacctaggt aatggagcaa gaccatgtct ctaaaaaaca aaacacaatt tttttaagga atactgggaa gaggtcagtg gtggttttag aacagaggaa gtgccagatg acctttgtga ggcattggcc aggaagaact ctacagtgtc tttaggtagc ttctgtccat aaggataatg caagtagetg ggactacagg tgtccaccac cacgcccage taattttttg ttattttag tagagatggg gtttcaccat gtcagccagg atggtctcga tctcctgacc tcgtgatccg ctcgcctctg ccttgcaaag tgctggagtt acaggcgtga gccaccgtgc ctggcctggt gtcgcccggg ctggagtgta gtggcacgat gtcggctcac tgcaagctct gcctgccagg ttcaagccat tctcctgcct cagcctcctg agtagcaggg accacaggcg ctcgccacca cgcccggcta attttttgta tttttagaag agacggggtt tcaccgcatt agccaggatg gtotogatot cotgatgtog tgatoogood acctoggoot cocaaagtgo tgggattaca ggtgtgagcc accgtgcctg gcctgatttt ttttttttt taatctggtc tcatacctct gacagctcat gaagaagtgc tcctgcttca tatgtatatg tgttagcata gtgttaacat agcataggtg ttcggtgttt gcagtttctg tttgttttat atgaattaag gtgtattatg agcagttgaa gatatatagg aaattttttc ccaaaccact atctctgctc gttctattca ttcagtctgt ttatgttatt ccttcattca ttcattttat agaacagtgg agtgcctact gtatgcatct attgttctgg gtcctgggga agaaacaaa gttcctgctt tcatggaact tacattatat tggcggagac agtaacagac aaacaaatgt agcctgtgta catgtgttac atgaaaagca gggtaggggg ctgggagaga gtagtaggga gtgctatttt cgaggtggtt gtcaggaaag gcctcactga ggaggtggca ttttgagtag acctgagcgc agcgggggcg taagcccagg cagcatgtgg aggaagagtg ttcttggtga aaggaacaag gatagaggcc cgaagctaga gagctcagca tgatcaagga acagcaagcc ccgtgtggct ggaatggagt gagcaaagga atgagcagta gaaggtgagt gagttgggag gtcaccagag accatggcaa ggacttgaaa gtgtcaggga cacattggaa gttggagcag ggaaatgatg ggatttatgt 

ttttatgtt	t agtgttttt.	a agggattgc:	t ctatcagct	a tttggaaaat	145560
gcttcaaga	a yayaagcag	a gaaacaacai	tcttqccat	a gtcatagtct	145620
tgatggtgg	t gtggattag	g ctggtagtgd		c cagttcgggt	145680
ggtagaggc	a aaaagatta	tatttctacca		t ctatgaagtt	145000
ttaatttaa	t tgagācatg	ccacataaa	taataaata		
aacacccct	g tatatcctg	ttettettt	agttgtcca		
ttttttaat	g gtgtaggag	ctagagatte			145860
ttactator	g ccaggcacta	tactasata	aatttattc		145920
atctattt	a ctccagctt	a tyctyaatyt			145980
atcctacac	a ecceageic	9 90000000000	aatgaccct		146040
tteettee	a atgtttaat	ttetgtaett	tcctggttg	gttatttagc	146100
cattttagac	a tttcttgtaa	actggaagtt	acacctata	g tcttgatgat	146160
tteetelaga	Lagaacacat	catgtgttgt	atatoototi	tttqaaaqcc	146220
reggeeege	a cattaaaatg	ttgcctgaat	qqatacacat	: aaaatttaac	146280
ttagagatga	a gaagaaagag	gtgcctttta	cttttcaata	taccttttcc	146340
gaactttcti	gecetatgea	ltacqttatto	i Cttaatcato	Cacctcatct	146400
ggctttctgi	: tgcatttqqa	atgaaatcta	geetettee	tattaggran	146460
rgerggeer	catcacctta	Ctttgaacca	ctcctttcat	gaactaaact	146520
Lacetteta	- tettttgetg	aagtttcttc	actttgagtc	CCtctgcagt	146580
rggcrgrgg	aagccctqcc	atqqctttca	Lacaaggato	I Oftentante	146640
tattatctct	tcagagaggg	accttcccaa	ctccastast		
cactcactac	cacttette	ttttctttc	cttttatctt		146700
gagatagggt	cttgctctgt	tacccaaact	CCCCCCCCC	ttttttttt	146760
ttgggctcaa	atgatectet	cacctcagge	totaccacca	creactgeag	146820
Caccatactt	ggcttattat	tttagtt	tetegageag	ctggaactgc	146880
Caageteete	. ggcccaccac	tocaccete	gcagagacag		146940
atagaccac	ccgcaagcaa	todacatete	teagecteec		147000
tttacatact	actcctggcc	tatttttttt	ttcactgtct	aaaattatct	147060
Contact	tgtttatagc	ttatttctca	gctggacatg		147120
20022002	ggaggctggg	ttggagaatt	ggttgagccc		147180
ggcaacaaag	tgagaccctg	tctataaaaa	attgtttaaa	aattagetge	147240
acatgeetgt	ggtcccagct	acttgggagg	cagaggtggg	agaatcgctt	147300
ngttgaggcg	acggtgagcc	atgattgtgc	cactgcactc	tagcctagtg	147360
accatgtgtc	taaaaagtaa	ataaaaatag	tttctctttc	atgactagaa	147420
atgtgggcag		tatactattt	ggcactatat	ttcctgattc	147480
cctagcacat	ggtaagtact	ccttaaatat	ttattgactg	aattatttaa	147540
tttcatttgg	gattatctga	gtggtaagat	tacqqattat	atttatgtaa	147600
ttttttaaac	ttggttgccc	tttqccacac	tgacatagac	actaactttt	147660
Etacttccga	ggatactcac	agaggccatt	CtCttctcaa	tccccaaata	147720
sttagcactt	tcaagctaat	gcaattctta	gatgatgtat	ctgtgtatat	147780
:tctacaaat	gtagaaattg	aagtctgggc	acagtggctc		147840
:tgggaggcc	aaggcgagcg	gatcactgag	gacaagagtt	aagaccagcc	147900
3gtaaagcct			caattagggc	_	
:ataatccca	gcacgttggg		accedates	cgggcgtggt	147960
catcctggct		aaccccatct	ctactaaaaa	cgaggtcagg	148020
	cgcttgtagt	cccacctatc	CCC2CCCCC	tacaaaaaat	148080
:cgggaggcg	gaggttgcaa	tgagctgaga	ttacaccac	ggcaggtgaa	148140
	ctgtctcaaa	222222222	22222222	gaactccagc	148200
icgagtacct	gtaatcccag	ctactaccca	addadaatt	agccaggcgt	148260
agatagaat	ttacaacaaa	ctactaggga	ggctgaggga	ggagaatcac	148320
Jagactetat	ttgcagcggg	ccyacaacgc	accactacat	tccagcctgg	148380
itctgtgatt	cttaaaaaaa	aaaaaaagaa	agaaagaaat	tgaggaatgt	148440
iataccacct	tgttaggaat	cacacagcag	gttagtagca	actacagggc	148500
	tgacaatggt	regettacag	ttcggctccc	cttcctctgc	148560
.cccctattg	ayyycayctu	daaadaarrr	ナアスケアスケナナン	ar saget sts	148620
Jugeceugaa	accityataa	tagagcacag	<u>addaaaadac</u>	taaattttct	148680
.agccccgcc	cracyyccca	aactaaata	Cagtgacacc	atotosooto	148740
. Lyccccca	ggttcaagca	attotocoro .	agecteter	at saatasas	148800
jegeeaceac	<b>ucccauctaa</b>	ttttcccarrr	T	***	148860
iccedere	gccacccagg	Ctqqaqtqca (	ataatacaat	attaactcac	148920
,cccccggg	LLCaaycaat	CCCCCCCCC (	Cageeteeee	agtagetee	148980
grgccacca	tccctagttc.	attitiotar (	atttaataaa	astacaattt	149040
ıccaggctgg	tctcgaactc	ctgatctcag	gtgatctact	Catctcaatt	149100
	_			-500000	_4JIUU

toccaaagtg otgggattat tggcacacgc ctatttttgt atttttagta gagacggggt 149160 ttcaccatgt tggttagact ggtctcaaac ttctgacctc aagtgatttg cccgcccag 149220 cctcccaaag tgctgggatt acaggcgtga gccaccgtgc ccagccaaga ttgagttttg aaaagagcct tctgagatta tgagaagggc aagcaagata acttaagaag ttacattaaa 149280 149340 atcatctaag agacagtgta acaagaagga attgtaaaat gatgttatga gcacgtgccc 149400 aatgtagtgg caatcccttg tgcttcgata cattggtggg agacaaaact gtacttaaat 149460 149520 149580 tigitgccga ggctggagtg caatggcgtg atctcggctc accacaacci ccactccca 149640 ggttcaagca attctcctgc ctcagcctcc cgagtagctg ggattacagc catgcaccac cacgcctggc taattttgta tttttagtag agacggggtt tctccatgtt gtggctggtc tcgaactcct gacctcaggt gatcctcccg cctcagccac ccaaagttct gaaattacag 149700 149760 149820 gegtgageca cegegeccag cecagagatt tetaaacaga gttetaacca gatgetttte 149880 ccigicagta gaatgagaat gaattggagg tgggagagac tggcatgagg gacaccagtc 149940 agccagtgga attagctggt aatgttgata ggagaagaaa aagattcaaa gttaggtagt 150000 ggtagcaaga attagaggga aggtcggatt tatgatatgt ccaaggttga attctaaggt 150060 gaaatttggt ggcagatttc atgtgtaaat tgggaaggta gattgagttt ttttaacatg 150120 ggttttctaa catgtcaata gagtgactct gcagggggc ctgacgagag aacagtgcat 150180 ggggtgattc aacagccagt tgagccttca tgcagagcat ttaacactgt gactctgtag 150240 actictggttg gcagtaaaat ttcattaaac caatatttaa accettaggt aataataaaa 150300 attgagggaa aaggatccag gttttgtatt ttttatgaat tcagttatig aattaaacag 150360 gacettgeet caagaaataa tetaceaaca attaacetgt tttaaagcaa agttaggaag 150420 tgagcatgtt caaattatta aataaaaaag taagctgtgt atttcattca tagaaataga 150480 ggctggccta cttcggatga ttctcagcat gtgattacag atgtgggctt atacatccta 150540 gggagttaag gcgtactctg gcttggatag agtagagctc tttgaaactc ttctctcacc cagctagttt atatagacta gagaactaga atgtagcagc atactctgtc ttagaagccc ttttatatag gagctggtct ggaaggtttg aaaacataac aaatgtgttg gtgtctccca 150600 150660 150720 atgtattgct agattcttac ccaagagcat tatcctggtt agggtttggt ttggttttgt 150780 tttgtttttt aåtgtttgcc acaaactaac actagatgtt agttctttca tcaagtgagg 150840 agagtagaag aaaagtccag aactctgaaa caccttttca aaagtttttc aagccatgat 150900 gttigcaagt taaatgctct gttatgtaag caatataatc agtttttatt aatgtaacat 150960 teettagtgt tttggggtat cacacaaaaa agaatateca tatetggaag caacagettt 151020 151080 151140 151200 cctgctacca tgcctggctg atttttatta ttttagtaga gacaggtttc accatgttgg ccaggctggt cttgaactct taacctcagg tgaatcaccc acctcggcct cccaaagtgc 151260 151320 tggaattaca ggcatgaacc accatggcca gccaaataag agcattttta atgtaaaatt 151380 atgcatgaaa tgtacattca attttgtctt tgtttactag gatccatgtt ctcacaagct 151440 atgaagaaat gggtgcaagg aaatactgat gaggtaaatc ctacctttag gataaaaaga 151500 tttctgttta taagtgccac cctcatgtaa gtgaggttta aaattttcct tttctttagg tcccatgttt aagcagcatg gcacatttat gttctcttac ccagaatgta ccaagaaagg 151560 151620 gtggtccctt cttaacatct aacaattgcc tggtagtagc agtgaaggta tcttcagtca 151680 gaggetagga ceaetgaagg atatacatge atteaagtit ceateageea geaggeatea 151740 gtaatcagtg tgtagatcaa aagctcaaat gtttccttcc ccactggcag ttttacttca 151800 agtagtggag gcttgctttt ttaatagtta attaagtaca ttgagagatg ggaggtgaaa 151860 aaaggaaaat gttttatttt gaccatctaa tatgaaagta gttcggtgtt aggtatccag 151920 tagttgacac tggaagacag ggaatgacat gttaatattc atagccagag ggtggcccag gttttttcgt acatgggaat gaaattctta tccaaataag tagaaattat gtgcgtaagc 151980 152040 cattigttaa gagcactgag tatgtgcatc tcgatccatc taatgaataa ccattatcac 152100 cagtttaaat tattttcttt aggcccagga agagctagct tggaagattg ctaaaatgat 152160 agtcagtgac attatgcagc aggctcagta tgatcaaccg ttagagaaat ctacaaaggt aaggatgact tcgttttgtg taaactaaaa agtattattt tccaggtgta aaaataaaaa 152220 152280 agaacataag gggtttettt geetttgaag gattaactge tgtggggatt acettettat 152340 cataagcaac tagaaaattg acaaactaaa tgaaacaact gtttgcatat attggacaat 152400 gggcaataca gggaaaccat ggaaaccaaa cagagcccag tagtcttgct gaacgaaaga gttaaatatc aaagttcagg ccaggtgcag tggctcacgc ctgtaatccc agcactttgg 152460 152520 gaggccaagg cgggtgaatc acttgaggtc aggagttcaa gaccagcctg gccaacatgg 152580 tgaaaccctg tcttagccgg gtgtggtggc aggcacctgt aatcccaact atttgggagg ctgaggcagg agaatcgctt gaaccaggga ggcggaggtt gcagtgagcc gagatcacac 152640

cactgcactc cagcctgggc gacgagcgaa accccatttc aaaaaaaaa tcaaagttca 152760 gagageteaa tttgagtaga agttgtagga taaggtagea gaaaagagga agetgeecag 152820 aaagaaagcc gtagagatat ttagagagat tcccatggat ccttggccta ggagtgatct 152880 gtatatgtgt ggggtgaaaa cgcatgtgtc caggtagaga accccccaga aattaqtaqq 152940 ctgaatgatt gctggaacat agggctaaga aaagttcatg gccagaagga tctggccaga gtagagagac ttagtaatac acaaggcatt gggtagtgtc ttcacagagg ttatgcctta 153000 153060 ctactgaaga taaattagtc ctagagtaca agcacctgaa ccaagtttca aagcaaattt 153120 ttaaagggtc aaattaccta acaactgcat gccaaaacaa aggcctaacc ctctttacag 153180 taacacaaca aaattcagca cttcacagtg taaagttaga atgtctgacg tccaggctgg 153240 gcgcagtggc tcatgcctgt aatcccagca ctttgggagg ccgaggcagg tagatgacct gaggtcagga gttcaagacc agcctggcta acatggtgca accccgtctc tattaaaaat 153300 153360 acaaaaactt agccaggcat ggtggccggc acctgtgatc ccggctactt gggaggctga ggcaggagaa ttgcctgaac ccaggaggtg aaggttgcag tgagccgaga tcgcaccact gcactctggt ctgggcaaaa agagcaaaac tcaggctcaa aaaaaaaaa gaatgtctga 153420 153480 153540 cgtcaatcac aaattaccaa gcatgacatg aagttgacct ataaccagga gaaaactcaa 153600 tctatagaaa cagacccaga tgtgagaaag atgatgaatt tagcagacaa agaccatcaa 153660 gtggctattt taaatattaa aaatatgttc aagtggccag gtgcagtggc tcatgcctgt aatcccagca ctttgggagg ccaaggtggg taggagttca agaccagctt ggccaatatg 153720 153780 gtgaaacccc ttctctacta aaaatacaaa aaaattagct gggcatggtg gcaggtgcct 153840 atagteeeag etatatggga ggetgaggea caagaateae ttgaaceegg gaggtggagg 153900 153960 154020 gcaaaatagt tttaaaagaa ccaaatggaa tttcttaaaa taaaaaatac cagaaatggg 154080 ggccgggcgt ggtagctcac gtctataatc ccagcacttt gtgggggctg aggcaggcag atcacctgag atcggtagtt caaggccagc ctgaccaaca tggagaaacc tcatctctac 154140 154200 taaaaataca aaattagctg ggcgtggtgg cgcattgcct gtaatcccag ctacttggga 154260 ggctgaggca ggagaattgc ttgaacccgg gaggcagagg ttgcggtgag ctgagattgc 154320 accagtgcac tecagettgg gecaeaagag tgaaacteeg teteaaaaaa aaaacaaaaa aaaacagtag actegaagaa etagetgagt ttttetttac tttaggcagt aagtgtgace 154380 154440 ttttgcaggt gactacttta gttcctcatg tcctcattag tagatcagag aaattcgaca 154500 ccaaaacccc aaaagaaaaa ccccttctaa tcctcattcc atgattttat gaatqcatqa 154560 agtectagge etgegaagga atacteatte tetttateet gtgttgatae etetetgett 154620 caacetecaa etegacattt geetatagga tgtaettgga catteageat aaactacete 154680 acaccattac tgaattgctt catgtgcaca tgtcccatgc cacaataccg gggaccttgt 154740 cttccgtgat atttgtccgc agtgctgtga ctacaggagg gagtcagtga atgtctgcat gtgtgtcttt accatcctc ttgaatatgc tctagggtta attcctagaa gtagaattac tctattgaaa attggcaata tttttcattc taatatctat tgccaacatg ggaaagcaag tctggatgcc agtccttgtt atatgcccct tgggtaagtt acgtaacctc tttaagcttc 154800 154860 154920 154980 tgttcactca tattttaaca aggaaaatta caatatttta cctcacaaaa ttgtagtcag 155040 155100 155160 tttcagttat gactcaaaac ttgagataaa ggaaatctgc ttgtgaaaaa taagagaact 155220 tttttccctt ggttggattc ttcaacacag ccaatgaaaa cagcactata tttctgatct gtcactgttg tttccaggag agaatgggag acaatcctag acttccacca taatgcagtt 155280 155340 acctgtagge ataattgatg cacatgatgt teacacagtg agagtettaa agatacaaaa 155400 tggtattgtt tacattacta gaaaattatt agttttccaa tggcaataac ccatttatga 155460 gagtgtttta gcctactgga atagacaggg accacatcct ctgggaagca gataagcata 155520 gaactgatac ttgatgcaca ctcgtagtgg taactcatcc ctaatcagca ttgtaaagca 155580 ggtgccagag gtggtttgct ttgtccttcc aaagcaggtg agtcagcccc accgagagcc 155640 aggcagettt gagtggcage gtggtgctag cagetteage ggaacagggt gagagttaat tatgcagtet tettgacage ggcattaatt tggaaggaaa etgacaagte atgggtcaag tttcagtgae tteeteette etetgatgge agtatatagt tttcacatte taatteetee 155700 155760 155820 tectgagatg cactatactt aaaaccatte teteceetge taacagaagg gtgtgaatet 155880 ggtttacttt gagcattagg atttgccct ttggaattet gcactccagt tacttaactt tcccttcaga atacatgtgg aaagaaagaa agaaatagcg atgactccac ttttgcccct gtggcacctt gaacaaagca gttcttccca aattatactt ttttttttt taaataaggt 155940 156000 156060 gagcaggatg actggggaga gagaaacatt tgactttgac tgcctccccc attctttgct 156120 gtgagetgga aagtgtgeag ttggtegtet ttetteteet ttetttagga tagtaagaga etcaeteact geaettetge teagttgget tetgeategg gateacacag ceateageag gaetgeecag ttggtgagea cactecattg accaegegge gecagegett ceteaatgea 156180 156240 156300

#### 105/122

catgattgag aggaaagaaa gttctcttag atgttactgc ttttgctcag actttgcaaa 156360 aaaaaaaata tatatatata tgtataaata tataattatt aatcactttt gtccttgaga 156420 aagtottgaa tgaacagaga atttattoca ttgcaatatt tgattgtata gaqqcacact 156480 gtttcatcga cagaagaagc aaaaaggctt tgtgtaagtt tttggtacta tgtaccacct 156540 156600 156660 156720 ctaaaaaccc agaacatgag ccactactgg actttgcctt gtgtttgaag tgtatggcat 156780 aaacccaagg titttattag tcatctatgc tgtgattaat tcatttigtt cttttaacaa 156840 aatatttcca tccacttcac attgcttcaa tctttaacag aaaagcaata taaaggttat agaataaaat gtggttttgg gcaactcttg ctgcctctgc atgttttgga ataacaattt ctacaagact ctaggctgtt taaactagtg ctttcagtta agataaattc taatcatttc 156900 156960 157020 tttgtatata cattttgtgc ttctgagcta gagatgccaa gtagttgtaa actgcttata 157080 aagagaatag cagcaaattt gagactcggc tacttttttc tgccccacct gctttgagac acagaagcgg agtgtggccc gaaattatta gccagattta atatttgatc taaagtaggt 157140 157200 ccttgtacte attttaaagt tggaatttga ttcctccaac attgagcacc caccatgttc 157260 caggetetgt geattgtgee cacaaaataa gatteeetgg tggagttttt atgggtteaa 157320 ataatcagtt gaacaccctt catctttatc atgttgttga cattgacaca aattgtttaa 157380 aaagaaaaga tattagagag aaagtggtac ctttgtaact tgatgtgtct tcatcattcg 157440 gtaagattig atgaaagtaa aaagcaaatg tcagccaaat ccagtgaaca gcaataaaac 157500 agggagtaac tttttataac tttttctact tggatttcaa cattcagtag agcttttcga 157560 aatgtaagta gtttacagta ctggaggttt gactagttca gtaggaattt ggaggggaag gtcattctga attgtaacaa agtacaaact tctttgctgt tttatttaag tactgagagc 157620 157680 taagcacctg atgaagtgac tgacctctct ccagtgacag tgtttgggta cctgcctgac 157740 ttcaggagtg gggtttatgt ttctacacag tgaccttttc tctcgccctc tcctccctct tgcccacaca ccagttgatt ggacctgggt tgaactcctg atccagacag gcccaagaca gttcttaatg ttaagaattt tggggccggg cacggtggct catgcctgta attgcaacac 157800 157920 tttgggagge egagacagge ggateacttg aggteagggg ttegaggeea geetggeeaa catggtgaaa eeetgtett actaaaaata caaaaattag etgggeatgg tggegeaege etgtaatee agetaegtgg gtggetgaga eaggggaate gettgaaeet ggaggeggag gttgtgcaat gageegagae egtgteaetg eatteeagee tgggtgacag agggagaete 157980 158040 158100 158160 tgtctccaaa aataaaaata agaaaaagaa ttttgggcta ggtgcagtgg ctcacgcctg 158220 taattacage attttggaag geceaagatg ggeagateae ttgaggaeag gagttegaga ceageetgga eaacatggtg aaacteeate tetactaaaa agacaaaagt tageeagatg 158280 158340 tggtgatggg cacctataat cctagctcct cgggaggctg gggcaggaga atcacttgaa 158400 cccaggaage agagattgca gtgagecaag atcacatete tgcactecag cetgggcaae 158460 agagcaagac tetgteteaa aaaaaaaga atttggeeag gegeagtggt teaegeetgt aateecagea etttgggagg ceaaggeagg cagateaega ggteaggaga tegagattgt 158520 158580 cctggctaac atggtgaaac cctgtctcta ctaaaaatac aaaacattag ccgggtgtgg 158640 tggtgggcac ctgtagtccc agctactagg gaggctgagg cagaggaagg atgtgaaccc aggaggcgga gcttgcagta agccaagatc gtgccactgc actacagtct gggcgacaga gtgagactcc gtctcaaaaa aaaaaagaat tttggccggg tgcggtggca catgcctgta 158700 158760 158820 gtcccagcac tttgggagac caaagtgggc ggattacctg aggtcaggag ttcaagacca 158880 gtccggccaa tatggcgaaa ccctgtctct tactaaaaaa aatacaaaaa ttagccaggt gtggtggcgg gcacctgggg aggctgaggc agggagaaat gcttgaaccg gggaggcaga 158940 159000 ggttgcagta agccaagatc gtgccactgc actccagagc aagactcttt ctcaaaaaaa 159060 aaaaaaaag aattttgcat ggggaaggag agatactgtt caccatctgg aatggtgctt 159120 ggatgtggca cttacaaaat caggagccag cactgcatgg acaaacagaa gcatgtgggc ctgagatagc aggtaccttg ataaccctga agacatcctt ggtttctgca tctattcctg 159180 159240 calcettgea tiggactaca ttaatetgic agttateett ataatgattt ttgatttttt 159300 ttttttgaga tggagtttcg ctcttgttgc ccaggctgga gtgcaatggc acgatctcgg ctcaccacaa cctccacctc ccaggttcaa gtgattctgc tgcctcagcc tcctgagtaa ctgggattac aggcatgcgc caccacacct ggctaatttt gtatttttag tagagacggg 159360 159420 159480 gtttctccat gttggtcagg ctggtctcga actcccaacc tcaggtgatc accctgtctc 159540 ggcctcccaa agtgctggga ttacaggcgt aagccatggt acccggtctg ttttttgatt 159600 ttttgaaacc agtctgaagt gagtttttt aattacgtga aaggagtttg gctaaaatac tgccatactg ccctaatgcc taatgattat gtattctcag catgtctgca aagtactgct 159660 159720 gatttctgga gaataatttt tctttagtaa acttcactta agtcgtcatg tgtattctct 159780 caaaatggta tootaaccta atggagctaa aagacaccco ttgtttttat aacaagcagt 159840 tactgaggcc caggaagggg agaagtccct ggcttgtgag atgatcacca ttagaactca 159900

```
ggcctgggcc agtgcctttt catgcttctc agatccttcc aaagaataat gaagattata
accgctttta gcaattgtaa taaacccaga aatagaaagc tttttggtta gagtactggt
                                                                                          160020
agaagtttgg cgggagagat aatttttaca aaatttgtaa atacctgcca attctatata
                                                                                          160080
ctaggcaagg tctctggcct tgtaaaaccc ctcaaggtta caactttggt ggcccacact
                                                                                          160140
aatagttacc cactgaggcc ctctccgggt gaacattgag cactagagga agcccctctg cttgggcagg actgggcgtg gtgcagagta ggagcggtga tactgtggat tctgggcagg tggagatggc cagtgatgtc caataaagga cactggaggg agcagtgtga gtaaaggccc tgagggcatt catgttcagg gagggttgct gcccactggc ttgcttggca cacaggagag
                                                                                         160200
                                                                                          160260
                                                                                          160320
                                                                                          160380
tgggtattee tgeettagta actitatgta aacaagtatt teeteagtet gtteetetea
160500
                                                                                          160560
gtcagactgg cccagtctgt gggcaaggag cctagagagg gcttagtttc agcttgaaag
                                                                                          160620
gagctgggat ttaccaagaa gcaaatgaga gacgaggatt gcaacaactg tgccatttcc
                                                                                          160680
ccagcttcag ctgactcctg tatattgact gtgccttcag actcatccgt aagtgacccc aggctggcct ctcccacatc acagtaagaa ttccacacac catacaactt ggaaagaggc
                                                                                          160740
                                                                                          160800
tecagetgaa ggaageeeca caettettte aagtttttet tagtettete ttettggcaa
                                                                                          160860
agagtacett tigittette taattatgta actattggtt tagtaaatat teacecatte
                                                                                         160920
agtcaccetg taagtggcag gcactgttta cagggacaca ggaaggaata aaaacttgca ggcaccettgg agettgcatt ctattgaaga ggtaatggaa gttgggatag cagctaaact
                                                                                         160980
                                                                                          161040
atgctggtat tggccaggcg cagtggctca cacctgtaat cccagcactt tggaggccaa
                                                                                         161100
ggtgggcaga tcatgaagtc aggagatcga gaccatcctg gctaacatgg tgaaaccccg
                                                                                          161160
tetetactaa aagtaaaaaa aaaaattage caggtgtggt ggegggegee tgtagteeca getacttggg aggetgagge aggagaatgg tgtgaaceca ggaggegaag attgeagtga
                                                                                          161220
                                                                                          161280
gccgagatgg caccactgca ctccagcctg ggtgacagag cgagactctg tctcagaaaa
                                                                                          161340
aaaaaatatg ctggtagttt tgattcaaga tggcctttgg agcccatgat ttaggtctcg tacccaccaa ggtctactgg aaaacatcag gctctcctgc tatagaccca tagggagagc tgcagccgag agggggagct gaagagaagt gccccttctg tgtcctgtca gcctcatcct
                                                                                          161400
                                                                                          161460
                                                                                          161520
tecgeaagga ceagttgetg tgecacteea tteaettget geaagaetgg aggtttttee teaggtgttg ageacetggt ttacaagatg teageatett gatgeetgag accateaagg caagtetetg aacaggett accttagagt aaggettaga agaggeegta aagteagtet
                                                                                          161580
                                                                                          161640
                                                                                          161700
cageteegtg getetgeaga getttgggae atgtgaatte ttaaaaacaa qaetattgta
                                                                                          161760
cagttactat atgcatgcag tataaaatta taaccttgga aaatcctagc tagctgttga
                                                                                          161820
gctaattcca taaagtaatc agctcctgag ttctgcagtg gtaataataa tcagcataat gagtaaacac tgtgtgtgcc aggcagcgtc tcatttgatc cttgtgataa tcttgtaagt
                                                                                          161880
                                                                                          161940
actgatttte tecettettt aaacaaagtt tttttttttt ttttagagag ggteteacta
                                                                                          162000
tgttgcccag gctagtcttg aattc
                                                                                          162025
<210> 37
<211> 1350
<212> DNA
<213> Homo Sapien
<220>
<221> CDS
<222> (213)...(920)
<300>
<308> GenBank AJ242973
<309> 1999-10-26
<400> 37
geggeeget egaegtgaea geeggtaege eegggtttgg geaacetega ttaegggegg
                                                                                              60
cctccaggcc cgccagcagc gcccgcgcc gcccgccgc gcccctgcg ccccccggtt
                                                                                            120
ceggeegegg accecatet etgeegttee ggetgegget eegetgeegg tagegeegte
                                                                                            180
ccccgggacc accettegge tggegeeete ee atg ete teg gee ace egg agg
Met Leu Ser Ala Thr Arg Arg
                                                                                            233
gct tgc cag ctc ctc ctc cac agc ctc ttt ccc gtc ccg agg atg
Ala Cys Gln Leu Leu Leu His Ser Leu Phe Pro Val Pro Arg Met
                                                                                            281
```

10	15	5	20	
ggc aac tcg gcc Gly Asn Ser Ala 25	tcg aac atc gtc Ser Asn Ile Val 30	e agc ccc cag l Ser Pro Gln	gag gcc ttg c Glu Ala Leu F 35	cg ggc 329 Pro Gly
	g acc cct gta gcg n Thr Pro Val Ala 45			
	cct ttc cca gag Pro Phe Pro Glu 60			
	tgg gga gct gaa Trp Gly Ala Glu			
	caa gtt ggt ttt Gln Val Gly Phe 95	Ala Gly Gly		
	gtc tgc tca gaa Val Cys Ser Glu 110			
	cag cca gaa cac Gln Pro Glu His 125			
	aat cac gac ccg Asn His Asp Pro 140		Met Arg Gln G	
	cag tac cgc tcg Gln Tyr Arg Ser	<u> </u>		_
	gcc ctg agc tcc Ala Leu Ser Ser 175	Lys Glu Asn		
	ttc ggc ccc atc Phe Gly Pro Ile 190			
act ttc tac tat Thr Phe Tyr Tyr 200	gcg gaa gac tac Ala Glu Asp Tyr 205	cac cag cag His Gln Gln 210	tac ctg agc a Tyr Leu Ser L	ag aac 857 ys Asn 215
	tgc ggc ctt ggg Cys Gly Leu Gly 220		Val Ser Cys P	
ggt att aaa aaa Gly Ile Lys Lys 235		catggtgggc ct	ttgaggtt ccag	taaaaa 960
tgctttcaac aaat aagtacaaag gaat	tgggca atgcttgtg ttatac agattgggt	t gattcacaat t taccgaagta	cgtggcattt aa taatctatag ga	agtgcaca 1020 ggcgcgat 1080

```
ggcaagttga taaaatgtga cttatctcct aataagttat ggtgggagtg gagctgtgcg
                                                                          1140
gtttcctgtg tcttctgggg tctgagtgaa gatagcaggg atgctgtgtt caccettctt ggtagaagct aaggtgtgag ctgggaggtt gctggacagg atgggggacc ccagaagtcc tttatctgtg ctctctgcc gccagtgcct tacaatttgc aaacgtgtat agcctcagtg
                                                                           1200
                                                                           1260
                                                                           1320
                                                                           1350
actcattcgc tgaaatcctt cgctttacca
<210> 38
<211> 235
<212> PRT
<213> Homo Sapien
<400> 38
Met Leu Ser Ala Thr Arg Arg Ala Cys Gln Leu Leu Leu His Ser
                                       10
                                                             15
Leu Phe Pro Val Pro Arg Met Gly Asn Ser Ala Ser Asn Ile Val Ser
                                   25
                                                         30
Pro Gln Glu Ala Leu Pro Gly Arg Lys Glu Gln Thr Pro Val Ala Ala
                              40
        35
Lys His His Val Asn Gly Asn Arg Thr Val Glu Pro Phe Pro Glu Gly
Thr Gln Met Ala Val Phe Gly Met Gly Cys Phe Trp Gly Ala Glu Arg
65
                      70
                                            75
                                                                  80
Lys Phe Trp Val Leu Lys Gly Val Tyr Ser Thr Gln Val Gly Phe Ala
                                       90
Gly Gly Tyr Thr Ser Asn Pro Thr Tyr Lys Glu Val Cys Ser Glu Lys
                                   105
                                                         110
             100
Thr Gly His Ala Glu Val Val Arg Val Val Tyr Gln Pro Glu His Met
                                                    125
        115
                              120
Ser Phe Glu Glu Leu Leu Lys Val Phe Trp Glu Asn His Asp Pro Thr
                          135
                                                140
    130
Gln Gly Met Arg Gln Gly Asn Asp His Gly Thr Gln Tyr Arg Ser Ala
                                           155
                     150
145
Ile Tyr Pro Thr Ser Ala Lys Gln Met Glu Ala Ala Leu Ser Ser Lys
                                                             175
                                       170
                 165
Glu Asn Tyr Gln Lys Val Leu Ser Glu His Gly Phe Gly Pro Ile Thr
             180
                                   185
                                                         190
Thr Asp Ile Arg Glu Gly Gln Thr Phe Tyr Tyr Ala Glu Asp Tyr His
        195
                              200
                                                    205
Gln Gln Tyr Leu Ser Lys Asn Pro Asn Gly Tyr Cys Gly Leu Gly Gly
    210
                          215
Thr Gly Val Ser Cys Pro Val Gly Ile Lys Lys
<210> 39
<211> 481
<212> DNA
<213> Homo Sapien
<300>
<308> GenBank AW195104
<309> 1999-11-29
<400> 39
                                                                              60
ggcattattg gactgtaggt ttttattaaa acaaacattt ctcatagctc taagcaaagc
attagaatto atcaagogga otcacatott ttototgcao agagaggggo tgaaaaggga
                                                                             120
gagaaagtcc cttatgtatg tctagatttg gtaaagcgaa ggatttcagc gaatgagtca
                                                                             180
ctgaggctat acacgtttgc aaattgtaag gcactggcgg gcagagagca cagataaagg
                                                                             240
actictgggg tececeatee tgtecageaa cetecaget cacacettag ettetaceaa
                                                                             300
gaagggtgaa cacagcatcc ctgctatctt cactcagacc ccagaaaacc cagggaaacc
                                                                             360
cgacagetee acteceacea taacttatta ggagataagt cacattttat caacttgeea
                                                                             420
```

t cgcgc	ctcc tatagatta	t acttcggtaa	acccaatctg	tataaattcc	tttgtacttt	480 481
<210><211><211><212><213>	390					
	GenBank AW87418 2000-05-22	37				
gcatta agagaa actgag gacttt caagaa	40 ttat tggactgtag gaat tcatcaagcg agcc ccttatgtat gcta tacacgtttg tggg ggtccccat gggg tgaacacago acag ctccactcc	g gactcacatc gtctagattt g caaattgtaa tcctgtccag atccctgcta	ttttctctgc ggtaaagcga ggcactggcg caacctccca	acagagaggg aggatttcag ggcagagagc gctcacacct	ctgaaaaggg cgaatgagtc acagataaag tagcttctac	60 120 180 240 300 360 390
<210><211><211><212><213>	43	ence				
<220> <223>	Oligonucleotide	: Primer				
<400> agcgga	41 taac aatttcacac	: agggagctag	cttggaagat	tgc		43
<210 > 6 <211 > 1 <212 > 1 <213 > 2	22	ence			·	
<220> <223> (	Oligonucleotide	Primer				
<400> 4	42 tata tgcaaacagt	tg				22
<210 > 4 <211 > 2 <212 > 1 <213 > 2	23	ence				
<220> <223> (	Oligonucleotide	Primer				
<400> 4 agcggat	43 taac aatttcacac	agg				23
<210> 4 <211> 1 <212> I <213> I	18	ence				
<220>						

<223> Oligonucleotide Primer	
<400> 44 actgagcctg ctgcataa	18
<210> 45 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 45 tctcaatcat gtgcattgag g	21
<210> 46 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 46 agcggataac aatttcacac agggatcaca cagccatcag cag	43
<210 > 47 <211 > 23 <212 > DNA <213 > oligonucleotide primer	
<400> 47 agcggataac aatttcacac agg	23
<210> 48 <211> 18 <212> DNA <213> Oligonucleotide primer	
<400> 48 ctggcgccac gtggtcaa	18
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 49 tttctctgca cagagaggc	20
<210> 50 <211> 44 <212> DNA <213> Artificial Sequence	
<220>	

<223>	Oligonucleotide Primer	
<400>	50	-
agcgg	ataac aatttcacac agggetgaaa teettegett taec	44
<210>	51	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>		
agcgga	ataac aatttcacac agg	23
<210>	52	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>		
ctgaaa	aggg agagaaag	18
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>	53	
tcccaa	agtg ctggaattac	20
<210>	54	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>	54	
gtccaa	tata tgcaaacagt tg	22
<210>	55	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>		
cccaca	gcag ttaatccttc	20

<210><211><211><212><213>	18	
<220> <223>	Oligonucleotide primer	
<400> gcgct	56 cctgt cggtgcca	18
<210><211><212><213>	18	
<220> <223>	Oligonucleotide primer	
<400> gcctg	57 actgg tggggccc	18
<210><211><211><212><213>	15	
<220> <223>	Oligonucleotide primer	
<400> catgca	58 atgca cggtc	15
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide primer	
<400> cagaga	59 agtac cectegaceg tgeatgeatg	30
<210><211><212><212><213>	15	
<220>	Oligonucleotide primer	
<400>	60	
catge	atgca cggtt	15
<210><211><211>	30 DNA	
<213>	Artificial Sequence	

<220> <223>	Oligonucleotide primer	
<400> gtacgt	61 acgt gccaactccc catgagagac	30
<210><211><211><212><213>	14	
<220> <223>	Oligonucleotide primer	
<400> catgca	62 otgca cggt	14
<210><211><211><212><213>	18	
<220 > <223 >	Oligonucleotide primer	
<400> gcctga	63 actgg tggggccc	18
<210><211><211><212><213>	26	
<220> <223>	Oligonucleotide primer	
<400> gtgctg		26
<210><211><211><212><213>	28	
<220> <223>	Oligonucleotide primer	
<400> cacgga	65 tccg gtagcagcgg tagagttg	28
<210><211><211><212><213>	19	
<220> <223>	Oligonucleotide primer	
<400> actggg		19

<210><211><211>	18 .	
<213>	Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> gcactt	67 :tctt gccatgag	18
<210><211><211><212>	14	
<220>	Oligonucleotide primer	
<400>	68	14
<210><211><211><212><213>	14	
<220> <223>	Oligonucleotide primer	
<400> cggata		14
<210><211><212><213>	37	
<220> <223>	Oligonucleotide primer	
<400> caattt		37
<210><211><212><212>	37 DNA	
<220>	Artificial Sequence	
	Oligonucleotide primer	
<400> caattt		37
<210><211><211><212>	40 DNA	
ヘエエンン	Artificial Sequence	

<220> <223> Oligonucleotide primer	
<400> 72 tcagtcacga cgttggatgc caataaaagt gactctcagc	40
<210> 73 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 73 cggataacaa tttcggatgc actgggagca ttgaggc	37
<210> 74 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 74 tcagtcacga cgttggatga gcagatccct ggacaggc	38
<210> 75 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 75 cggataacaa tttcggatgg acaaaatacc tgtattcc	38
<210> 76 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 76 tcagtcacga cgttggatgc agagcagctc cgagtc	36
<210> 77 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 77 cagcggtgat cattggatgc aggaagctct gg	32

<210> 78 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 78 tcagtcacga cgttggatgc ccacatgcca cccactac	3 8
<210> 79 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 79 cggataacaa tttcggatgc ccgtcaggta ccacg	35
<210> 80 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 80 tcagtcacga cgttggatgc ccacagtgga gcttcag	37
<210> 81 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 81 gctcatacct tgcaggatga cg	22
<210> 82 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 82 teagteacga egttggatga ecagetgtte gtgtte	36
<210> 83 <211> 34 <212> DNA <213> Artificial Sequence	

<220> <223> Ol	ligonucleotide primer		
<400> 83 tacatgga	3 agt teggggatge acaeggegae t	tete	34
<210> 84 <211> 40 <212> DN <213> Ax	0		
<220> <223> Ol	ligonucleotide primer		
<400> 84 tcagtcac	4 cga cgttggatgg ggaagagcag a	agatatacgt	40
<210> 85 <211> 29 <212> DN <213> Ar	9		
<220> <223> Ol	ligonucleotide primer		
<400> 85 gaggggct	s t <b>ga toca</b> ggatgg gtgctccac		29
<210> 86 <211> 30 <212> DN <213> Ar			
<220> <223> Ol	ligonucleotide primer		
<400> 86 tgaagcac	s ott gaaggatgag ggtgtctgcg		30
<210> 87 <211> 38 <212> DN <213> Ar	3		
<220> <223> Ol	ligonucleotide primer		
<400> 87 cggataac	r caa tttcggatgc tgcgtgatga t	cgaaatcg	38
<210> 88 <211> 26 <212> DN <213> Ar	5		
<220> <223> Ol	ligonucleotide primer		
<400> 88	3 Stc ccaggatgcc agaggc		26

<210> 89 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 89 gccgccggtg taggatgctg ctggtgc	27
<210> 90 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Template	
<400> 90 cgcagggttt cctcgtcgca ctgggcatgt g	3 1
<210> 91 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Biotinylatd primer	
<400> 91 tgcttatccc tgtagctacc ctgtcttggc cttgcagatc caa 4	3
<210> 92 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 92 agcggataac aatttcacac aggccatcac accgcggtac tg	2
<210> 93 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 93 cccagtcacg acgttgtaaa acgtcttggc cttgcagatc caag 4	4
<210> 94 <211> 42 <212> DNA <213> Artificial Sequence	

<220> <223>	Oligo	nucleotide	primer				
<400> agcgga		aatttcacac	aggccatcac	accgcggtac	tg		42
<210><211><211><212><213>	20 DNA	icial Seque	ence				
<220> <223>	Oligo	nucleotide	primer				
<400> ctccag		gcaggagtgc					20
<210><211><211><212><213>	17 DNA	icial Seque	ence				
<220> <223>	Oligo	nucleotide	primer				
<400> cactto		gctccct					17
<210><211><212><213>	23 DNA	icial Seque	ence				
<220> <223>	Bioti	nylated pri	.mer				
<400> cccagt		acgttgtaaa	acg				23
<210><211><211><212><213>	100 DNA	sapien					
	gagaa a			gaaagaaccg gcaaaatgta	ctgcaacaat	ctgggctatg	60 100
<210><211><211><212><213>	100 DNA	sapien					
<400> cctttg agatca	gagaa a	agggetetge agteagagee	ttgagttgta aaaagaagca	gaaagaaccg gcaaaatgta	ctgcaacaat	ctgggctatg	60 100
<210><211><211>	100						

<213> Homo	sapien					
<400> 100 gaattatttt aatgctccca	tgtgtttcta gtgctattca	aaactatggt tgggcagcto	tcccaataaa tctgggctca	agtgactctc	agcgagcctc	60 100
<210> 101 <211> 100 <212> DNA <213> Homo	sapien					
<400> 101 gaattatttt aatgctccca	tgtgtttcta gtgctattca	aaactatggt tgggcagcto	tcccaataaa tctgggctca	agtgactctc	agcaagcctc	60 100
<210> 102 <211> 84 <212> DNA <213> Homo	sapien					
<400> 102 taataggact tttgtccttg	acttctaatc aagtaacctt	tgtaagagca tcag	gatccctgga	caggcgagga	atacaggtat	60 84
<210> 103 <211> 84 <212> DNA <213> Homo	sapien					
<400> 103 taataggact tttgtccttg	acttctaatc aagtaacctt	tgtaagagca tcag	gatccctgga	caggcaagga	atacaggtat	60 84
<210> 104 <211> 100 <212> DNA <213> Homo	sapien					
<400> 104 ctcaccatgg atgatcaccg	gcatttgatt ctgtgggcat	gcagagcagc ccctgaggtc	tccgagtccg atgtctcgta	tccagagctt	cctgcagtca	60 100
<210> 105 <211> 100 <212> DNA <213> Homo	sapien					
<400> 105 ctcaccatgg atgatcaccg	gcatttgatt ctgtgggcat	gcagagcagc ccctgaggtc	tccgagtcca atgtctcgta	tccagagctt	cctgcagtca	60 100
<210> 106 <211> 100 <212> DNA <213> Homo	sapien					
<400> 106 agcaaggact tggtacctga	cctgcaaggg cgggcatcgt	ggacagtgga cagctggggc	ggcccacatg cagggctgcg	ccacccacta	ccagggcacg	60 100

```
<210> 107
<211> 100
<212> DNA
<213> Homo sapien
<400> 107
agcaaggact cctgcaaggg ggacagtgga ggcccacatg ccacccacta ccggggcacg
                                                                          60
tggtacetga cgggcatcgt cagetggggc cagggctgcg
                                                                         100
<210> 108 <211> 100
<212> DNA
<213> Hom sapien
<400> 108
caataactct aatgcagegg aagatgacct geceacagtg gagetteagg gegtggtgee
                                                                          60
ccggggcgtc aacctgcaag gtatgagcat acccccttc
                                                                         100
<210> 109
<211> 100
<212> DNA
<213> Homo sapien
<400> 109
caataactct aatgcagcgg aagatgacct gcccacagtg gagcttcagg gcttggtgcc
                                                                          60
ccggggcgtc aacctgcaag gtatgagcat acccccttc
                                                                         100
<210> 110
<211> 100
<212> DNA
<213> Homo sapien
<400> 110
ttgaagettt gggetaegtg gatgaeeage tgttegtgtt etatgateat gagagtegee
                                                                         60
gtgtggagcc ccgaactcca tgggtttcca gtagaatttc
                                                                         100
<210> 111
<211> 100
<212> DNA
<213> Homo sapien
<400> 111
ttgaagcttt gggctacgtg gatgaccagc tgttcgtgtt ctatgatgat gagagtcgcc
                                                                         60
gtgtggagcc ccgaactcca tgggtttcca gtagaatttc
                                                                         100
<210> 112
<211> 100
<212> DNA
<213> Homo sapien
<400> 112
ggataacctt ggctgtaccc cctggggaag agcagagata tacgtgccag gtggagcacc
                                                                         60
caggeetgga teageeete attgtgatet gggageeete
                                                                         100
<210> 113
<211> 100
<212> DNA
<213> Homo sapien
<400> 113
```

	ggctgtaccc tcagcccctc			tacgtaccag	gtggagcacc	60 100
<210> 114 <211> 80 <212> DNA <213> Homo	sapien					
	gaaggagaag cacattcttc	gtgtctgcgg	gagccgattt	catcatcacg	cagcttttct	60 80
<210> 115 <211> 80 <212> DNA <213> Homo	sapien					
	gaaggagaag cacattette	gtgtctgcgg	gagtcgattt	catcatcacg	cagcttttct	60 80
<210 > 116 <211 > 80 <212 > DNA <213 > Homo	sapien					
<400> 116 tccagatgaa	gctcccagaa gcggcccctg	tgccagaggc	tgctccccgc	gtggcccctg	caccagcagc	60 80
<210> 117 <211> 80 <212> DNA <213> Homo	sapien					
<400> 117 tccagatgaa	gctcccagaa gcggcccctg	tgccagaggc	tgctccccc	gtggcccctg	caccagcagc	60 80
<210> 118 <211> 48 <212> DNA <213> Artif	icial Seque	nce				
<220> <223> Hair	pin structu	re				
<400> 118 cagagagtac	ccctcaaccg.	tgcatgcatg	aaacatgcat	gcacggtt		48



#### (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

#### (19) World Intellectual Property Organization International Bureau





### (43) International Publication Date 19 April 2001 (19.04.2001)

## **PCT**

## (10) International Publication Number WO 01/027857 A3

 (51) International Patent Classification*:
 G06F 19/00
 US
 09/663,968 (CIP)

 Filed on
 19 September 2000 (19.09.2000)

 (21) International Application Number:
 PCT/US00/28413
 US
 60/217.251 (CIP)

 Filed on
 10 July 2000 (10.07.2000)

(22) International Filing Date: 13 October 2000 (13.10.2000)

English

(26) Publication Language: English

(30) Priority Data:

(25) Filing Language:

 60/159,176
 13 October 1999 (13.10.1999)
 US

 60/217,658
 10 July 2000 (10.07.2000)
 US

 60/217,251
 10 July 2000 (10.07.2000)
 US

 09/663,968
 19 September 2000 (19.09.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/159.176 (CIP)
Filed on 13 October 1999 (13.10.1999)
US 60/217.658 (CIP)
Filed on 10 July 2000 (10.07.2000)

(71) Applicant (for all designated States except US): SE-QUENOM, INC. {US/US}: 3595 John Hopkins Court. San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRAUN, Andreas [DE/US]: 11237-6 Carmel Creek Road, San Diego, CA 92130 (US). KÖSTER, Hubert [DE/CH]: Via Delle Scuole 1, CH-6900 Lugano-Cassarate (CH). VAN DEN BOOM, Dirk [DE/DE]: Eppendorfer Weg 205 D, D-20253 Hamburg (DE). PING, Vip [US/US]: 3641 Copley Avenue, San Diego, CA 92116 (US). RODI, Charlie [US/US]: 13823 Recuerdo Drive, Del Mar, CA 92014 (US). HE, Liyan [CN/US]: 10948 Creek Bridge Place, San Diego, CA 92128 (US). CHIU, Norman [CA/US]; 1128 Caminito Alvarez, San Diego, CA 92126 (US). JURINKE, Christian [DE/DE]; Rombergstrasse 22, 20255 Hamburg (DE).

[Continued on next page]

(54) Title: METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS



(57) Abstract: Process and methods for creating a database of genomic samples from healthy human donors, methods that use the database to identify and correlate polymorphic genetic markers and other markers with diseases and conditions are provided.

WO 01/027857 A3



- (74) Agents: SEIDMAN, Stephanie, L. et al.; Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States (national): AE, AG, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, II., IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LI, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PI., PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, T1, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KI: 1.S. MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- (88) Date of publication of the international search report: 3 October 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

## INTERNATIONAL SEARCH REPORT

Intern II Application No PCT/US 00/28413

A. CLASSI IPC 7	GO6F 19/00					
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC				
B. FIELDS	SEARCHED					
Minimum do IPC 7	ocumentation searched (classification system followed by classification $G06F$	on symbols)				
Documental	tion searched other than minimum documentation to the extent that s	such documents are included in the fields so	earched			
	ala base consulted during the international search (name of data bas ta, EPO—Internal	Se ano, wiere prautai, search terms used				
C DOCUME	ENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·				
Category *	Citation of document, with indication, where appropriate, of the rek	evant passages	Relevant to claim No.			
(A. 174)	Olizion di decamani, with manageron, whose appropriate					
x	WO 99 05323 A (AFFYMETRIX INC) 4 February 1999 (1999-02-04) abstract; claims 1,4		1-100			
x	WO 97 40462 A (SPECTRA BIOMEDICAL 30 October 1997 (1997-10-30) page 4, line 2 - line 22 page 7, line 3 -page 8, line 4	_ INC)	1-100			
X	WO 98 24935 A (AN GANG ;HARA MARK RALPH DAVID (US); VELTRI ROBERT ( 11 June 1998 (1998-06-11) page 4, line 27 -page 5, line 6 page 6, line 14 - line 18		1-100			
		-/				
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are tisted	in annex.			
Special categories of cited documents:						
*A* document defining the general state of the art which is not considered to be of particular relevance  *S* agriculture of the principle of the art which is not cited to understand the principle or theory underlying the Invention						
"E" earlier document but published on or after the international standard for the cannot be considered novel or cannot be considered to standard the degree of the degree						
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the						
*O* document reterring to an oral disclosure, use, exhibition or other means document is combined with one or more other such documents, such combination being obvious to a person skilled						
*P* document published prior to the international filling date but tater than the priority date claimed in the art.  *&* document member of the same patent family						
Date of the actual completion of the international search  Date of mailing of the International search report						
10 September 2001 28/09/2001						
Name and m	Name and mailing address of the ISA  Authorized officer  European Patent Office, P.B. 5818 Patentlaan 2					
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Filloy Garcia, E				

Form PCT/ISA/210 (second sneet) (July 1992)

## INTERNATIONAL SEARCH REPORT

Intern. # Application No PCT/US 00/28413

	<u>.                                    </u>	PC1/US 00/28413
C.(Continu	Blion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	COLLINS F S ET AL: "A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation" GENOME RESEARCH, vol. 8, 1998, pages 1229-1231, XP002177106 the whole document	1-100
P,X	WO 00 51053 A (BRYANT STEPHEN PAUL ;GEMINI RESEARCH LTD (GB); KELLY PAUL JAMES (G) 31 August 2000 (2000-08-31) abstract; claims 1-24	1-100
Y	WO 98 35609 A (HELMS RONALD W ;TOMASKO LISA (US); BIOMAR INTERNATIONAL INC (US);) 20 August 1998 (1998-08-20) abstract; claims 1-25	1-100
Y	SARKAR C ET AL: "Human Genetic Bi-allelic Sequences (HGBASE), a Database of Intra-genic Polymorphisms" MEM INST OSWALDO CRUZ, 'Online! vol. 93, no. 5, September 1998 (1998-09) - October 1998 (1998-10), pages 693-694, XP002177107 Rio de Janeiro Retrieved from the Internet: <url:http: brook="" cgb="" es="" groups="" publications.htm="" www.cgb.ki.se=""> 'retrieved on 2001-09-05! the whole document</url:http:>	1-100
A	FOSTER M W AND FREEMAN W L: "Naming Names in Human Genetic Variation Research" GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108 the whole document	2,9,27,55,72
		·

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

## INTERNATIONAL SEARCH REPORT

Inter: al Application No PCT/US 00/28413

Patent do		t	Publication date		Patent family member(s)		Publication date
WO 9905	323	Α	04-02-1999	EP	1002264	Α	24-05-2000
				EP	1009861	Α	21-06-2000
				ΕP	0998697	Α	10-05-2000
				EP	1007737	Α	14-06-2000
				WO		Α	04-02-1999
				WO		Α	04-02-1999
				MO	9905591	A	04-02-1999
				US		В	08-05-2001
				US	6188783	В	13-02-2001
WO 9740	462	Α	30-10-1997	AU	2734197		12-11-1997
				EP	0897567		24-02-1999
				JP	2000508912	T	18-07-2000
WO 9824	935	Α	11-06-1998	AU	722819	В	10-08-2000
				AU	5515198	Α	29-06-1998
				EP	0960214		01-12-1999
				US	6190857	В	20-02-2001
WO 0051	053	Α	31-08-2000	AU	2815900	A	14-09-2000
WO 9835	509	Α	20-08-1998	us	6059724	A	09-05-2000
				AU	6151498	Α	08-09-1998
				BR	9807366	Α	18-04-2000
				CN	1268033	T	27-09-2000
				ΕP	0973435	Α	26-01-2000

Form PCT/ISA/210 (patent family annex) (July 1992)



## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

## CORRECTED VERSION

### (19) World Intellectual Property Organization International Bureau





#### (43) International Publication Date 19 April 2001 (19.04.2001)

## **PCT**

## (10) International Publication Number WO 01/027857 A3

(51) International Patent Classification ⁷ : G06F 19/00	US	60/217.658 (CIP)	
(21) International Application Number: PCT/US00/28413	Filed on US	10 July 2000 (10.07.2000)	
(22) International Filing Date: 13 October 2000 (13.10.2000)	Filed on US	09/663,968 (CIP 19 September 2000 (19.09.2000	
(25) Filing Language: English	Filed on	60/217,251 (CIP) 10 July 2000 (10.07,2000)	

(26) Publication Language: English

(30) Priority Data:

60/159,176	13 October 1999 (13.10.1999)	US
60/217.658	10 July 2000 (10.07.2000)	US
60/217.251	10 July 2000 (10.07.2000)	US
09/663,968	19 September 2000 (19.09.2000)	US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US	60/159,176 (CIP)
Filed on	13 October 1999 (13.10.1999)

(71) Applicant (for all designated States except US): SE-QUENOM, INC. [US/US]: 3595 John Hopkins Court, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRAUN, Andreas [DE/US]; 11237-6 Carmel Creek Road, San Diego, CA 92130 (US). KÖSTER, Hubert [DE/CH]; Via Delle Scuole 1, CH-6900 Lugano-Cassarate (CH). VAN DEN BOOM, Dirk [DE/DE]: Eppendorfer Weg 205 D, D-20253 Hamburg (DE). PING, Vip [US/US]; 3641 Copley Avenue, San Diego, CA 92116 (US). RODI,

[Continued on next page]

(54) Title: METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS



(57) Abstract: Process and methods for creating a database of genomic samples from healthy human donors, methods that use the database to identify and correlate polymorphic genetic markers and other markers with diseases and conditions are provided.

WO 01/027857 A3

## WO 01/027857 A3



Charlie [US/US]; 13823 Recuerdo Drive. Del Mar. CA 92014 (US). HE, Liyan [CN/US]; 10948 Creek Bridge Place, San Diego, CA 92128 (US). CHIU, Norman [CA/US]; 1128 Caminito Alvarez. San Diego, CA 92126 (US). JURINKE, Christian [DE/DE]; Rombergstrasse 22, 20255 Hamburg (DE).

- (74) Agents: SEIDMAN, Stephanie, L. et al.: Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States (national): AE. AG. AM. AT. AU. AZ. BA. BB. BG. BR. BY. BZ. CA. CH. CN. CR. CU. CZ. DE. DK. DM. DZ. EE. ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL. IN, IS. JP. KE. KG. KP. KR. KZ. LC. LK. LR. LS. LT. LU. LV. MA. MD. MG. MK. MN. MW. MX. MZ. NO. NZ. PL. PT. RO. RU. SD. SE. SG. SI. SK. SL. TJ. TM. TR. TT. TZ. UA. UG. US. UZ. VN. YU. ZA. ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM. AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- (88) Date of publication of the international search report: 3 October 2002
- (48) Date of publication of this corrected version:
  5 December 2002
- (15) Information about Correction: see PCT Gazette No. 49/2002 of 5 December 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

## METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

#### **RELATED APPLICATIONS**

Benefit of priority to the following applications is claimed herein: U.S. provisional application Serial No. 60/217,658 to Andreas Braun, Hubert Koster; Dirk Van den Boom, filed July 10, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/159,176 to Andreas Braun, Hubert Koster, Dirk Van den Boom, filed October 10 13, 1999, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/217,251, filed July 10, 2000, to Andreas Braun, entitled "POLYMORPHIC KINASE ANCHOR PROTEIN GENE SEQUENCES. POLYMORPHIC KINASE ANCHOR PROTEINS AND METHODS OF DETECTING 15 POLYMORPHIC KINASE ANCHOR PROTEINS AND NUCLEIC ACIDS ENCODING THE SAME"; and U.S. application Serial No. 09/663,968, to Ping Yip, filed September 19, 2000, entitled "METHOD AND DEVICE FOR IDENTIFYING A BIOLOGICAL SAMPLE."

Where permitted that above-noted applications and provisional applications are incorporated by reference in their entirety.

### FIELD OF THE INVENTION

Process and methods for creating a database of genomic samples from healthy human donors. Methods that use the database to identify and correlate with polymorphic genetic markers and other markers with diseases and conditions are provided.

#### **BACKGROUND**

Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these "disease"

25

30

15

20

25

30

markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to treatment.

Currently the pharmaceutical and biotechnology industries find a disease and then attempt to determine the genomic basis for the disease. This approach is time consuming and expensive and in many cases involves the investigator guessing as to what pathways might be involved in the disease.

#### Genomics

Presently the two main strategies employed in analyzing the available genomic information are the technology driven reverse genetics brute force strategy and the knowledge-based pathway oriented forward genetics strategy. The brute force approach yields large databases of sequence information but little information about the medical or other uses of the sequence information. Hence this strategy yields intangible products of questionable value. The knowledge-based strategy yields small databases that contain a lot of information about medical uses of particular DNA sequences and other products in the pathway and yield tangible products with a high value.

#### **Polymorphisms**

Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et al. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (s e,

e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There may be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a marker.

PCT/US00/28413

٠..

#### Single nucleotide polymorphisms (SNPs)

Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.

Currently, the only available method to identify SNPs in DNA is by sequencing, which is expensive, difficult and laborious. Furthermore, once a SNP is discovered it must be validated to determine if it is a real polymorphism and not a sequencing error. Also, discovered SNPs must then be evaluated to determine if they are associated with a particular phenotype. Thus, there is a need to develop new paradigms for identifying the genomic basis for disease and markers thereof. Therefore, it is an object herein to provide methods for identifying the genomic basis of disease and markers thereof.

#### **SUMMARY**

10

15

20

25

Databases and methods using the databases are provided herein. The databases comprise sets of parameters associated with subjects in populations selected only on the basis of being healthy (i.e., where the subjects are mammals, such as humans, they are selected based upon apparent health and no detectable infections). The databases can be sorted based upon one or more of the selected parameters.

The databases are preferably relational databases, in which an index that represents each subject serves to relate parameters, which are the data, such as age, ethnicity, sex, medical history, etc. and ultimately genotypic information,

15

20

25

30

that was inputted into and stored in the database. The database can then be sorted according to these parameters. Initially, the parameter information is obtained from a questionnaire answered by each subject from whom a body tissue or body fluid sample is obtained. As additional information about each sample is obtained, this information can be entered into the database and can serve as a sorting parameter.

The databases obtained from healthy individuals have numerous uses, such as correlating known polymorphisms with a phenotype or disease. The databases can be used to identify alleles that are deleterious, that are beneficial, and that are correlated with diseases.

For purposes herein, genotypic information can be obtained by any method known to those of skill in the art, but is preferably obtained using mass spectrometry.

Also provided herein, is a new use for existing databases of subjects and genotypic and other parameters, such as age, ethnicity, race, and gender. Any database can be sorted according to the methods herein and alleles that exhibit statistically significant correlations with any of the sorting parameters can be identified. It is noted, however, is noted, that the databases provided herein and randomly selected databases will perform better in these methods, since diseasebased databases suffer numerous limitations, including their relatively small size, the homogeneity of the selected disease population, and the masking effect of the polymorphism associated with the markers for which the database was selected. Hence, the healthy database provided herein, provides advantages not heretofore recognized or exploited. However, the methods provided herein can be used with a selected database, including disease-based databases, with or without sorting for the discovery and correlation of polymorphisms. In addition, the databases provided herein represent a greater genetic diversity than the unselected databases typically utilized for the discovery of polymorphisms and thus allow for the enhanced discovery and correlation of polymorphisms.

The databases provided herein can be used for taking an identified polymorphism, and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

One use of these methods is correlating a selected marker with a particular parameter by following the occurrence of known genetic markers and then, having made this correlation, determining or identifying correlations with diseases. Examples of this use are p53 and Lipoprotein Lipase polymorphism. As exemplified herein, known markers are shown to have particular correlation with certain groups, such as a particular ethnicity or race or one sex. Such correlations will then permit development of better diagnostic tests and treatment regimens.

These methods are valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex or some other criteria. This can allow the identification of previously unknown polymorphisms and ultimately a gene or pathway involved in the onset and progression of disease.

The databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings and also permit an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

The methods and databases can be used with experimental procedures, including, but are not limited to, *in silico* SNP identification, *in vitro* SNP identification/verification, genetic profiling of large populations, and in biostatistical analyses and interpretations.

Also provided herein, are combinations that contain a database provided herein and a biological sample from a subject in the database, and preferably biological samples from all subjects or a plurality of subjects in the database. Collections of the tissue and body fluid samples are also provided.

Also, provided herein, are methods for determining a genetic marker that correlates with age, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

10

15

20

25

30

10

15

20

25

Further provided herein are methods for determining whether a genetic marker correlates with susceptibility to morbidity, early mortality, or morbidity and early mortality, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

Any of the methods herein described can be used out in a multiplex format.

Also provided are an apparatus and process for accurately identifying genetic information. It is another object of the herein that genetic information be extracted from genetic data in a highly automated manner. Therefore, to overcome the deficiencies in the known conventional systems, a method and apparatus for identifying a biological sample is proposed.

Briefly, the method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample. In a particular example, the data set is DNA spectrometry data received from a mass spectrometer. The data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample may be known, expected peak areas may be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample. In a disclosed example, statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data too inconclusive to call.

Advantageously, the method and system for identifying a biological sample accurately makes composition calls in a highly automated manner. In such a manner, complete SNP profile information, for example, may be collected efficiently. More importantly, the collected data is analyzed with highly accurate results. For example, when a particular composition is called, the result may be relied upon with great confidence. Such confidence is provided by the robust computational process employed.

## 30 DESCRIPTION OF THE DRAWINGS

10

Figure 1 depicts an exemplary sample bank. Panel 1 shows the samples as a function of sex and ethnicity. Panel 2 shows the caucasians as a function of age. Panel 3 shows the Hispanics as a function of age.

Figures 2A and 2C show an age- and sex-distribution of the 291S allele of the lipoprotein lipase gene in which a total of 436 males and 589 females were investigated. Figure 2B shows an age distribution for the 436 males.

Figure 3 is an exemplary questionnaire for population-based sample banking.

Figure 4 depicts processing and tracking of blood sample components.

Figure 5 depicts the allelic frequency of "sick" alleles and "healthy" alleles as a function of age. It is noted that the relative frequency of healthy alleles increases in a population with increasing age.

Figure 6 depicts the age-dependent distribution of ApoE genotypes (see, Schächter et al. (1994) Nature Genetics 6:29-32).

15 Figure 7A-D depicts age-related and genotype frequency of the p53 (tumor suppressor) codon 72 among the caucasian population in the database.

*R72 and *P72 represent the frequency of the allele in the database population.
R72, R72P, and P72 represent the genotypes of the individuals in the population.
The frequency of the homozygous P72 allele drops from 6.7% to 3.7% with
20 age.

Figure 8 depicts the allele and genotype frequencies of the p21 S31R allele as a function of age.

Figure 9 depicts the frequency of the FVII Allele 353Q in pooled versus individual samples.

25 Figure 10 depicts the frequency of the CETP (cholesterol ester transfer protein) allele in pooled versus individual samples

Figure 11 depicts the frequency of the plasminogen activator inhibitor-1 (PAI-1) 5G in pooled versus individual samples

Figure 12 shows mass spectra of the samples and the ethnic diversity of the PAI-1 alleles.

Figure 13 shows mass spectra of the samples and the ethnic diversity of the CETP 405 alleles.

10

15

20

25

30

Figure 14 shows mass spectra of the samples and the ethnic diversity of the Factor VII 353 alleles.

Figure 15 shows ethnic diversity of PAI-1, CETP and Factor VII using the pooled DNA samples.

Figure 16 shows the p53-Rb pathway and the relationships among the various factors in the pathway.

Figure 17, which is a block diagram of a computer constructed to provide and process the databases described herein, depicts a typical computer system for storing and sorting the databases provided herein and practicing the methods provided herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases for identifying polymorphic genetic markers.

Figure 19 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-1 locus. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 20 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-5 locus. Bright green bars show frequencies in individuals younger than 40 years; dark green bars show frequencies in individuals older than 60 years.

Figure 21 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the h-msrA locus. Genotype difference between male age groups is significant. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 22A-D is a sample data collection questionnaire used for the healthy database.

Figure 23 is a flowchart showing processing performed by the computing device of Figure 24 when p rforming genotyping of sense strands and antisense strands from assay fragments.

Figure 24 is a block diagram showing a system in accordance with the present invention;

Figure 25 is a flowchart of a method of identifying a biological sample in accordance with the present invention;

Figure 26 is a graphical representation of data from a mass spectrometer; Figure 27 is a diagram of wavelet transformation of mass spectrometry data:

Figure 28 is a graphical representation of wavelet stage 0 hi data;

Figure 29 is a graphical representation of stage 0 noise profile;

Figure 30 is a graphical representation of generating stage noise standard deviations;

Figure 31 is a graphical representation of applying a threshold to data stages;

Figure 32 is a graphical representation of a sparse data set;

Figure 33 is a formula for signal shifting;

Figure 34 is a graphical representation of a wavelet transformation of a denoised and shifted signal;

Figure 35 is a graphical representation of a denoised and shifted signal;

Figure 36 is a graphical representation of removing peak sections;

Figure 37 is a graphical representation of generating a peak free signal;

Figure 38 is a block diagram of a method of generating a baseline correction;

Figure 39 is a graphical representation of a baseline and signal;

Figure 40 is a graphical representation of a signal with baseline removed;

25 Figure 41 is a table showing compressed data;

Figure 42 is a flowchart of method for compressing data;

Figure 43 is a graphical representation of mass shifting;

Figure 44 is a graphical representation of determining peak width;

Figure 45 is a graphical representation of removing peaks;

Figure 46 is a graphical representation of a signal with peaks removed;

Figure 47 is a graphical representation of a residual baseline;

15

Figure 48 is a graphical representation of a signal with residual baseline removed;

Figure 49 is a graphical representation of determining peak height;

Figure 50 is a graphical representation of determining signal-to-noise for each peak;

Figure 51 is a graphical representation of determining a residual error for each peak;

Figure 52 is a graphical representation of peak probabilities;

Figure 53 is a graphical representation of applying an allelic ratio to peak probability;

Figure 54 is a graphical representation of determining peak probability Figure 55 is a graphical representation of calling a genotype;

Figure 56 is a flowchart showing a statistical procedure for calling a genotype;

Figure 57 is a flowchart showing processing performed by the computing device of Figure 1 when performing standardless genotyping; and

Figure 58 is graphical representation of applying an allelic ratio to peak probability for standardless genotype processing.

# **DETAILED DESCRIPTION**

# 20 Definitions

25

30

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other databases referred to herein throughout the disclosure are incorporated by reference in their entirety.

As used herein, a biopolymer includes, but is not limited to, nucleic acid, proteins, polysaccharides, lipids and other macromolecules. Nucleic acids include DNA, RNA, and fragments thereof. Nucleic acids may be derived from genomic DNA, RNA, mitochondrial nucl ic acid, chloroplast nucleic acid and other organelles with separate genetic material.

10

15

20

25

30

As used herein, morbidity refers to conditions, such as diseases or disorders, that compromise the health and well-being of an organism, such as an animal. Morbidity susceptibility or morbidity-associated genes are genes that, when altered, for example, by a variation in nucleotide sequence, facilitate the expression of a specific disease clinical phenotype. Thus, morbidity susceptibility genes have the potential, upon alteration, of increasing the likelihood or general risk that an organism will develop a specific disease.

As used herein, mortality refers to the statistical likelihood that an organism, particularly an animal, will not survive a full predicted lifespan. Hence, a trait or a marker, such as a polymorphism, associated with increased mortality is observed at a lower frequency in older than younger segments of a population.

As used herein, a polymorphism, e.g. genetic variation, refers to a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed. Thus, a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis, expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population. A single nucleotide polymorphism (SNP) refers to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base.

A polymorphic marker or site is the locus at which divergence occurs. Such site may be as small as one base pair (an SNP). Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu. Polymorphic forms also are manifested as different mendelian

10

15

20

25

30

alleles for a gene. Polymorphisms may be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.

As used herein, a healthy population, refers to a population of organisms, including but are not limited to, animals, bacteria, viruses, parasites, plants, eubacteria, and others, that are disease free. The concept of disease-free is a function of the selected organism. For example, for mammals it refers to a subject not manifesting any disease state. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications. For plants, for example, it is a plant population that does not manifest diseases pathology associated with plants. For bacteria it is a bacterial population replicating without environmental stress, such as selective agents, heat and other pathogens.

As used herein, a healthy database (or healthy patient database) refers to a database of profiles of subjects that have not been pre-selected for any particular disease. Hence, the subjects that serve as the source of data for the database are selected, according to predetermined criteria, to be healthy. In contrast to other such databases that have been pre-selected for subjects with a particular disease or other characteristic, the subjects for the database provided herein are not so-selected. Also, if the subjects do manifest a disease or other condition, any polymorphism discovered or characterized should be related to an independent disease or condition. In a preferred embodiment, where the subjects are human, a healthy subject manifests no disease symptoms and meets criteria, such as those set by blood banks for blood donors.

Thus, the subjects for the database are a population of any organism, including, but are not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity that has nucleic acid. Among preferred subjects are mammals, preferably, although not necessarily, humans. Such a database can capture the diversity of the a population, thus providing for discovery of rare polymorphisms.

As used herein, a profile refers to information relating to, but not limited to and not necessarily including all of, age, sex, ethnicity, disease history, family history, phenotypic characteristics, such as height and weight and other relevant parameters. A sample collect information form is shown in Figure 22, which illustrates profile intent.

As used herein, a disease state is a condition or abnormality or disorder that may be inherited or result from environmental stresses, such as toxins, bacterial, fungal and viral infections.

As used herein, set of non-selected subjects means that the subjects have not been pre-selected to share a common disease or other characteristic. They can be selected to be healthy as defined herein.

As used herein, a phenotype refers to a set of parameters that includes any distinguishable trait of an organism. A phenotype can be physical traits and can be, in instances in which the subject is an animal, a mental trait, such as emotional traits. Some phenotypes can be determined by observation elicited by questionnaires (see, e.g., Figures 3 and 22) or by referring to prior medical and other records. For purposes herein, a phenotype is a parameter around which the database can be sorted.

As used herein, a parameter is any input data that will serve as a basis for sorting the database. These parameters will include phenotypic traits, medical histories, family histories and any other such information elicited from a subject or observed about the subject. A parameter may describe the subject, some historical or current environmental or social influence experienced by the subject, or a condition or invironmental influence on someone related to the subject. Parameters include, but are not limited to, any of those described herein, and known to those of skill in the art.

10

15

20

25

30

15

20

25

30

As used herein, haplotype refers to two or more polymorphisms located on a single DNA strand. Hence, haplotyping refers to identification of two or more polymorphisms on a single DNA strand. Haplotypes can be indicative of a phenotype. For some disorders a single polymorphism may suffice to indicate a trait; for others a plurality (i.e., a haplotype) may be needed. Haplotyping can be performed by isolating nucleic acid and separating the strands. In addition, when using enzymes such a certain nucleases, that produce, different size fragments from each strand, strand separation is not needed for haplotyping.

As used herein, used herein, pattern with reference to a mass spectrum or mass spectrometric analyses, refers to a characteristic distribution and number of signals (such peaks or digital representations thereof).

As used herein, signal in the context of a mass spectrum and analysis thereof refers to the output data, which the number or relative number of moleucles having a particular mass. Signals include "peaks" and digital representations thereof.

As used herein, adaptor, when used with reference to haplotyping using Fen ligase, refers to a nucleic acid that specifically hybridizes to a polymorphism of interest. An adaptor can be partially double-stranded. An adaptor complex is formed when an adaptor hybridizes to its target.

As used herein, a target nucleic acid refers to any nucleic acid of interest in a sample. It can contain one or more nucleotides.

As used herein, standardless analysis refers to a determination based upon an internal standard. For example, the frequency of a polymorphism can be determined herein by comparing signals within a single mass spectrum.

As used herein, amplifying refers to means for increasing the amount of a bipolymer, especially nucleic acids. Based on the 5' and 3' primers that are chosen, amplication also serves to restrict and define the region of the genome which is subject to analysis. Amplification can be done by any means known to those skilled in the art, including use of the polymerase chain reaction (PCR) etc. Amplification, .g., PCR must be don quantitatively when the frequency of polymorphism is required to be det mined.

10

15

20

25

30

As used herein, cleaving refers to non-specific and specific fragmentation of a biopolymer.

As used herein, multiplexing refers to the simultaneous detection of more than one polymorphism. Methods for performing multiplexed reactions, particularly in conjunction with mass spectrometry are known (see, e.g., U.S. Patent Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041).

As used herein, reference to mass spectrometry encompasss any suitable mass spectrometric format known to those of skill in the art. Such formats circlude, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT application No.99/57318 and U.S. Patent No. 5,118,937), Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the preferred formats.

As used herein, mass spectrum refers to the presentation of data obtained from analyzing a biopolymer or fragment thereof by mass spectrometry either graphically or encoded numerically.

As used herein, a blood component is a component that is separated from blood and includes, but is not limited to red blood cells and platelets, blood clotting factors, plasma, enzymes, plasminogen, immunoglobulins. A cellular blood component is a component of blood, such as a red blood cell, that is a cell. A blood protein is a protein that is normally found in blood. Examples of such proteins are blood factors VII and VIII. Such proteins and components are well-known to those of skill in the art.

As used herein, plasma can be prepared by any method known to those of skill in the art. For example, it can be prepared by centrifuging blood at a force that pellets the red cells and forms an interface between the red cells and the buffy coat, which contains leukocytes, above which is the plasma. For example, typical platelet concentrates contain at least about 10% plasma.

Blood may be separated into its components, including, but not limited to, plasma, platelets and red blood cells by any method known to those of skill in the art. For example, blood can be centrifuged for a sufficient time and at a

10

15

20

25

sufficient acceleration to form a pellet containing the red blood cells. Leukocytes collect primarily at the interface of the pellet and supernatant in the buffy coat region. The supernatant, which contains plasma, platelets, and other blood components, may then be removed and centrifuged at a higher acceleration, whereby the platelets pellet.

As used herein, p53 is a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulation gene which control cell growth, DNA repair and apoptosis. The p53 mutations have been found in a wide variety of different cancers, including all of the different types of leukemia, with varying frequency. The loss of normal p53 functions results in genomic instability and uncontrolled growth of the host cell.

As used herein, p21 is a cyclin-dependent kinase inhibitor, associated with G1 phase arrest of normal cells. Expression triggers apoptosis or programmed cell death and has been associated with Wilms' tumor, a pediatric kidney cancer.

As used herein, Factor VII is a serine protease involved the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. Evidence has supported an association between polymorphisms in the gene and increase Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease including myocardial infarction.

As used herein, a relational database stores information in a form representative of matrices, such as two-dimensional tables, including rows and columns of data, or higher dimensional matrices. For example, in one embodiment, the relational database has separate tables each with a parameter. The tables are linked with a record number, which also acts as an index. The database can be searched or sorted by using data in the tables and is stored in any suitable storage medium, such as floppy disk, CD rom disk, hard drive or other suitable medium.

As used herein, a bar codes refers any array of optically readable marks of any desired size and shape that are arranged in a reference context or frame of, preferably, although not necessarily, one or more columns and on or more

rows. For purposes herein, the bar code refers to any symbology, not necessary "bar" but may include dots, characters or any symbol or symbols.

As used herein, symbology refers to an identifier code or symbol, such as a bar code, that is linked to a sample. The index will reference each such symbology. The symbology is any code known or designed by the user. The symbols are associated with information stored in the database. For example, each sample can be uniquely identified with an encoded symbology. The parameters, such as the answers to the questions and subsequent genotypic and other information obtained upon analysis of the samples is included in the database and associated with the symbology. The database is stored on any suitable recording medium, such as a hard drive, a floppy disk, a tape, a CD ROM, a DVD disk and any other suitable medium.

#### **DATABASES**

10

15

20

25

30

Human genotyping is currently dependent on collaborations with hospitals, tissues banks and research institutions that provide samples of disease tissue. This approach is based on the concept that the onset and/or progression of diseases can be correlated with the presence of a polymorphisms or other genetic markers. This approach does not consider that disease correlated with the presence of specific markers and the absence of specific markers. It is shown herein that identification and scoring of the appearance and disappearance of markers is possible only if these markers are measured in the background of healthy subjects where the onset of disease does not mask the change in polymorphism occurrence. Databases of information from disease populations suffer from small sample size, selection bias and heterogeneity. The databases provided herein from healthy populations solve these problems by permitting large sample bands, simple selection methods and diluted heterogeneity.

Provided herein are first databases of parameters, associated with non-selected, particularly healthy, subjects. Also provided are combinations of the databases with indexed samples obtained from each of the subjects. Further provided are databases produced from the first databases. These contain in addition to the original parameters information, such as genotypic information,

10

15

20

25

30

including, but are not limited to, genomic sequence information, derived from the samples.

The databases, which are herein designated healthy databases, are so-designated because they are not obtained from subjects pre-selected for a particular disease. Hence, although individual members may have a disease, the collection of individuals is not selected to have a particular disease.

The subjects from whom the parameters are obtained comprise either a set of subjects who are randomly selected across, preferably, all populations, or are pre-selected to be disease-free or healthy. As a result, the database is not selected to be representative of any pre-selected phenotype, genotype, disease or other characteristic. Typically the number of subjects from which the database is prepared is selected to produce statistically significant results when used in the methods provided herein. Preferably, the number of subjects will be greater than 100, more preferably greater than 200, yet more preferably greater than 1000. The precise number can be empirically determined based upon the frequency of the parameter(s) that be used to sort the database. Generally the population can have at least 50, at least 100, at least 200, at least 500, at least 1000, at least 500 or at least 10,000 or more subjects.

Upon identification of a collection of subjects, information about each subject is recorded and associated with each subject as a database. The information associated with each of the subjects, includes, but is not limited to, information related to historical characteristics of the subjects, phenotypic characteristics and also genotypic characteristics, medical characteristics and any other traits and characteristics about the subject that can be determined. This information will serve as the basis for sorting the database.

In an exemplary embodiment, the subjects are mammals, such as humans, and the information relates to one or more of parameters, such as age, sex, medical history, ethnicity and any other factor. Such information, when the animals are humans, for example, can be obtained by a questionnaire, and by observations about the individual, such as hair color, eye color and other characteristics. Genotypic information will be obtained from tissue or other body and body fluid samples from the subject.

10

15

20

25

The healthy genomic database can include profiles and polymorphisms from healthy individuals from a library of blood samples where each sample in the library is an individual and separate blood or other tissue sample. Each sample in the database is profiled as to the sex, age, ethnic group, and disease history of the donor.

The databases are generated by first identifying healthy populations of subjects and obtaining information about each subject that will serve as the sorting parameters for the database. This information is preferably entered into a storage medium, such as the memory of a computer.

The information obtained about each subject in a population used for generating the database is stored in a computer memory or other suitable storage medium. The information is linked to an identifier associated with each subject. Hence the database will identify a subject, for example by a datapoint representative of a bar code, and then all information, such as the information from a questionnaire, regarding the individual is associated with the datapoint. As the information is collected the database is generated.

Thus, for example, profile information, such as subject histories obtained from questionnaires, is collected in the database. The resulting database can be sorted as desired, using standard software, such as by age, sex and/or ethnicity. An exemplary questionnaire for subjects from whom samples are to be obtained is shown in Figures 22A-D. Each questionnaire preferably is identified by a bar code, particularly a machine readable bar code for entry into the database. After a subject provides data and is deemed to be healthy (i.e., meets standards for blood donation), the data in the questionnaire is entered into the database and is associated with the bar code. A tissue, cell or blood sample is obtained from the subject.

Figure 4 exemplifies processing and tracking of blood sample components. Each component is tracked with a bar code, dated, is entered into the database and associated with the subject and the profile of the subject. Typically, the whole blood is centrifuged to produce plasma, red blood cells (which pellet) and leukocytes found in the buffy coat which layers in betwe n.

15

20

25

Various samples are obtained and coded with a bar code and stored for use as needed.

Samples are collected from the subjects. The samples include, but are not limited to, tissues, cells, and fluids, such as nucleic acid, blood, plasma, amniotic fluid, synovial fluid, urine, saliva, aqueous humor, sweat, sperm samples and cerebral spinal fluid. It is understood that the particular set of samples depends upon the organisms in the population.

Once samples are obtained the collection can be stored and, in preferred embodiments, each sample is indexed with an identifier, particularly a machine readable code, such as a bar code. For analyses, the samples or components of the samples, particularly biopolymers and small molecules, such as nucleic acids and/or proteins and metabolites, are isolated.

After samples are analyzed, this information is entered into the database in the memory of the storage medium and associated with each subject. This information includes, but is not limited to, genotypic information. Particularly, nucleic acid sequence information and other information indicative of polymorphisms, such as masses of PCR fragments, peptide fragment sequences or masses, spectra of biopolymers and small molecules and other indicia of the structure or function of a gene, gene product or other marker from which the existence of a polymorphism within the population can be inferred.

In an exemplary embodiment, a database can be derived from a collection of blood samples. For example, Figure 1 (see, also Figure 10) shows the status of a collection of over 5000 individual samples. The samples were processed in the laboratory following SOP (standard operating procedure) guidelines. Any standard blood processing protocol may be used.

For the exemplary database described herein, the following criteria were used to select subjects:

No testing is done for infectious agents.

Age: At least 17 years old

30 Weight: Minimum of 110 pounds

Permanently Disqualified:

History of hepatitis (after age 11)

Leukemia Lymphoma

Human immunodeficiency virus (HIV), AIDS

Chronic kidney disease

# Temporarily Disqualified:

5 Pregnancy - until six weeks after delivery, miscarriage or abortion

Major surgery or transfusions - for one year

Mononucleosis - until complete recovery

Prior whole blood donation - for eight weeks

Antibiotics by injection for one week; by mouth, for forty-eight hours,

10 except antibiotics for skin complexion;

## 5 year Deferment:

15

20

Internal cancer and skin cancer if it has been removed, is healed and there is no recurrence

These correspond to blood bank criteria for donating blood and represent a healthy population as defined herein for a human healthy database.

#### Structure of the database

Any suitable database structure and format known to those of skill in the art may be employed. For example, a relational database is a preferred format in which data is stored as matrices or tables of the parameters linked by an indexer that identifies each subject. Software for preparing and manipulating, including sorting the database, can be readily developed or adapted from commercially available software, such as Microsoft Access.

# Quality control

Quality control procedures can be implemented. For example, after

collection of samples, the quality of the collection in the bank can be assessed.

For example, mix-up of samples can be checked by testing for known markers, such as sex. After samples are separated by ethnicity, samples are randomly tested for a marker associated with a particular ethnicity, such as HLA DQA1 group specific component, to assess whether the samples have been properly sorted by ethnic group. An exemplary sample bank is depicted in Figure 4.

15

20

25

30

# Obtaining genotypic data and other parameters for the database

After informational and historical parameters are entered into the database, material from samples obtained from each subject, is analyzed. Analyzed material include proteins, metabolites, nucleic acids, lipids and any other desired constituent of the material. For example, nucleic acids, such as genomic DNA, can be analyzed by sequencing.

Sequencing can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence among the subjects in the database, the region of interest from each sample can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art and sequenced. For purposes herein, sequencing analysis is preferably effected using mass spectrometry (see, e.g., U.S. Patent Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids can also be sequence by hybridization (see, e.g., U.S. Patent Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Serial Nos. 08/419,994 and 09/395,409).

In other detection methods, it is necessary to first amplify prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 150 and 350 base pairs apart.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially

15

20

25

30

useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

Nucleic acids can also be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Patent No. 5,605,798, 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851 and International PCT application No. WO 99/31273, International PCT application No. WO 98/20019). These methods can be automated (see, e.g., copending U.S. application Serial No. 09/285,481 and published International PCT application No.

PCT/US00/08111, which describes an automated process line). Preferred among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. Patent No. 6,043,031; see, also U.S. application Serial Nos. 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Serial No. 09/074,936, U.S. Patent No. 6,024,925, and U.S. application Serial Nos. 08/746,055 and 08/786,988, and published International PCT application No. WO 98/20020)

A preferred format for performing the analyses is a chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-coated substrate, preferably in the form of an array. More preferably, when analyses are performed using mass spectrometry, particularly MALDI, small nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the signals in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in U.S. Patent No. 6,024,925, co-

15

20

pending U.S. application Serial Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Serial No. PCT/US97/20195, which published as WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAY.

MassArray relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments associated with genetic variants without tags.

The methods provided herein permit quantitative determination of alleles. The areas under the signals in the mass spectra can be used for quantitative determinations. The frequency is determined from the ratio of the signal to the total area of all of the spectrum and corrected for background. This is possible because of the PROBE technology as described in the above applications incorporated by reference herein.

Additional methods of analyzing nucleic acids include amplification- based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using Q\$\beta\$ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.

Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.

The methods described below provide ways to fragment given amplified or non-amplified nucleotide sequences thereby producing a set of mass signals when mass spectrometry is used to analyze the fragment mixtures.

Amplified fragments are yielded by standard polymerase chain methods (US 4,683,195 and 4,683,202). The fragmentation method involves the use of enzymes that cleave single or double strands of DNA and enzymes that ligate DNA. The cleavage enzymes can be glycosylases, nickases, and site-specific and non site-specific nucleases with the most preferred enzymes being glycosylases, nickases, and site-specific nucleases.

20

25

30

# Glycosylase Fragmentation Method

DNA glycosylases specifically remove a certain type of nucleobase from a given DNA fragment. These enzymes can thereby produce abasic sites, which can be recognized either by another cleavage enzyme, cleaving the exposed phosphate backbone specifically at the abasic site and producing a set of nucleobase specific fragments indicative of the sequence, or by chemical means, such as alkaline solutions and or heat. The use of one combination of a DNA glycosylase and its targeted nucleotide would be sufficient to generate a base specific signature pattern of any given target region.

Numerous DNA glcosylases are known, For example, a DNA glycosylase can be uracil-DNA glycolsylase (UDG), 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-Hydroxymethylcytosine DNA glycosylase, or 1,N6-ethenoadenine DNA glycosylase (see, e.g.,, U.S. Patent Nos. 5,536,649, 5,888, 795, 5,952,176 and 6,099,553, International PCT application Nos. WO 97/03210, WO 99/54501; see, also, Eftedal et al. (1993) Nucleic Acids Res 21:2095-2101,

Bjelland and Seeberg (1987) Nucleic Acids Res. 15:2787-2801, Saparbaev et al. (1995) Nucleic Acids Res. 23:3750-3755, Bessho (1999) Nucleic Acids Res. 27:979-983) corresponding to the enzyme's modified nucleotide or nucleotide analog target. A preferred glycosylase is uracil-DNA glycolsylase (UDG).

Uracil, for example, can be incorporated into an amplified DNA molecule by amplifying the DNA in the presence of normal DNA precursor nucleotides (e.g. dCTP, dATP, and dGTP) and dUTP. When the amplified product is treated with UDG, uracil residues are cleaved. Subsequent chemical treatment of the products from the UDG reaction results in the cleavage of the phosphate backbone and the generation of nucleobase specific fragments. Moreover, the separation of the complementary strands of the amplified product prior to glycosylase treatment allows complementary patterns of fragmentation to be generated. Thus, the use of dUTP and Uracil DNA glycosylase allows the generation of T specific fragments for the complementary strands, thus providing

information on the T as well as the A positions within a given sequence. Similar to this, a C-specific reaction on both (complementary) strands (i.e. with a C-specific glycosylase) yields information on C as well as G positions within a given sequence if the fragmentation patterns of both amplification strands are analyzed separately. Thus, with the glycosylase method and mass spectrometry, a full series of A, C, G and T specific fragmentation patterns can be analyzed.

## Nickase Fragmentation Method

A DNA nickase, or DNase, can be used recognize and cleave one strand of a DNA duplex. Numerous nickases are known. Among these, for example, are nickase NY2A nickase and NYS1 nickase (Megabase) with the following cleavage sites:

NY2A: 5'...R AG...3'

3'...Y TC...5' where R = A or G and Y = C or T

NYS1: 5'... CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

#### Fen-Ligase Fragmentation Method

The Fen-ligase method involves two enzymes: Fen-1 enzyme and a ligase. The Fen-1 enzyme is a site-specific nuclease known as a "flap" endonuclease (US 5,843,669, 5,874,283, and 6,090,606). This enzymes recognizes and cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. This cleavage is highly specific and can recognize single base pair mutations, permitting detection of a single homologue from an individual heterozygous at one SNP of interest and then genotyping that homologue at other SNPs occurring within the fragment. Fen-1 enzymes can be Fen-1 like nucleases e.g. human, murine, and Xenopus XPG enzymes and yeast RAD2 nucleases or Fen-1 endonucleases from, for example, *M. jannaschii*, *P. furiosus*, and *P. woesei*. Among preferred enzymes are the Fen-1 enzymes.

The ligase enzyme forms a phosphodiester bond between two double stranded nucleic acid fragments. The ligase can be DNA Ligase I or DNA Ligase III (see, e.g., U.S. Patent Nos. US 5,506,137, 5,700,672, 5,858,705 and 5,976,806; see, also, Waga, et al. (1994) J. Biol. Chem. 269:10923-10934, Li

15

20

25

30

10

15

20

25

30

et al. (1994) Nucleic Acids Res. 22:632-638, Arrand et al. (1986) J. Biol. Chem. 261:9079-9082, Lehman (1974) Science 186:790-797, Higgins and Cozzarelli (1979) Methods Enzymol. 68:50-71, Lasko et al. (1990) Mutation Res. 236:277-287, and Lindahl and Barnes (1992) Ann. Rev. Biochem. 61:251-281).

Thermostable ligase (Epicenter Technologies), where "thermostable" denotes that the ligase retains activity even after exposure to temperatures necessary to separate two strands of DNA, are among preferred ligases for use herein.

# Type IIS Enzyme Fragmentation Method

Restriction enzymes bind specifically to and cleave double-stranded DNA at specific sites within or adjacent to a particular recognition sequence. These enzymes have been classified into three groups (e.g. Types I, II, and III) as known to those of skill in the art. Because of the properties of type I and type III enzymes, they have not been widely used in molecular biological applications.

Thus, for this invention type II enzymes are preferred. Of the thousands of restriction enzymes known in the arts, there are 179 different type II specificities. Of the 179 unique type II restriction endonucleases, 31 have a 4-base recognition sequence, 11 have a 5-base recognition sequence, 127 have a 6-base recognition sequence, and 10 have recognition sequences of greater than six bases (US 5,604,098). Of category type II enzymes, type IIS is preferred.

Type IIS enzymes can be Alw XI, Bbv I, Bce 83, Bpm I, Bsg I, Bsm AI, Bsm FI, Bsa I, Bcc I, Bcg I, Ear I, Eco 57I, Esp 3I, Fau I, Fok I, Gsu I, Hga I, Mme I, Mbo II, Sap I, and the like. The preferred type IIS enzyme is Fok I.

The Fok I enzyme endonuclease is an exemplary well characterized member of the Type IIS class (see, e.g., U.S. Patent Nos. 5,714,330, 5,604,098, 5,436,150, 6,054,276 and 5,871,911; see, also, Szybalski et al. (1991) Gene 100:13-26, Wilson and Murray (1991) Ann. Rev. Genet. 25:585-627, Sugisaki et al. (1981) Gene 16:73-78, Podhajska and Szalski (1985) Gene 40:175-182. Fok I recognizes the sequence 5'GGATG-3' and cleaves DNA accordingly. Type IIS restriction sites can be introduced into DNA targets by incorporating the site into primers used to amplify such targets. Fragments produced by digestion with Fok I are site specific and can be analyzed by mass

15

20

spectrometry methods such as MALDI-TOF mass spectrometry, ESI-TOF mass spectrometry, and any other type of mass spectrometry well known to those of skill in the art.

Once a polymorphism has been found to correlatate with a parameter such as age. The possibility of false results due to allelic dropout is examined by doing comparative PCR in an adjacent region of the genome.

# **Analyses**

In using the database, allelic frequencies can be determined across the population by analyzing each sample in the population individually, determining the presence or absence of allele or marker of interest in each individual sample, and then determining the frequency of the marker in the population. The database can then be sorted (stratified) to identify any correlations between the allele and a selected parameter using standard statistical analysis. If a correlation is observed, such as a decrease in a particular marker with age or correlation with sex or other parameter, then the marker is a candidate for further study, such as genetic mapping to identify a gene or pathway in which it is involved. The marker may then be correlated, for example, with a disease. Haplotying can also be carried out. Genetic mapping can be effected using standard methods and may also require use of databases of others, such as databases previously determined to be associated with a disorder.

Exemplary analyses have been performed and these are shown in the figures, and discussed herein.

### Sample pooling

It has been found that using the databases provided herein, or any other database of such information, substantially the same frequencies that were obtained by examining each sample separately can be obtained by pooling samples, such as in batches of 10, 20, 50, 100, 200, 500, 1000 or any other number. A precise number may be determined empirically if necessary, and can be as low as 3.

15

20

25

30

In one embodiment, the frequency of genotypic and other markers can be obtained by pooling samples. To do this a target population and a genetic variation to be assessed is selected, a plurality of samples of biopolymers are obtained from members of the population, and the biopolymer from which the 5 marker or genotype can be inferred is determined or detected. A comparison of samples tested in pools and individually and the sorted results therefrom are shown in Figure 9, which shows frequency of the factor VII Allele 353Q. Figure 10 depicts the frequency of the CETP Allele CETP in pooled versus individual samples. Figure 15 shows ethnic diversity among various ethnic groups in the database using pooled DNA samples to obtain the data. Figures 12-14 show mass spectra for these samples.

Pooling of test samples has application not only to the healthy databases provided herein, but also to use in gathering data for entry into any database of subjects and genotypic information, including typical databases derived from diseased populations. What is demonstrated herein, is the finding that the results achieved are statistically the same as the results that would be achieved if each sample is analyzed separately. Analysis of pooled samples by a method, such as the mass spectrometric methods provided herein, permits resolution of such data and quantitation of the results.

For factor VII the R530 acid polymorphism was assessed. In Figure 9, the "individual" data represent allelic frequency observed in 92 individuals reactions. The pooled data represent the allelic frequency of the same 92 individuals pooled into a single probe reaction. The concentration of DNA in the samples of individual donors is 250 nanograms. The total concentration of DNA in the pooled samples is also 250 nanograms, where the concentration of any individual DNA is 2.7 nanograms.

It also was shown that it is possible to reduce the DNA concentration of individuals in a pooled samples from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected. Hence low concentrations of sample may be used in the pooling methods.

## Use of the databases and markers identified thereby

The successful use of genomics requires a scientific hypothesis (i.e., common genetic variation, such as a SNP), a study design (i.e., complex disorders), samples and technology, such as the chip-based mass spectrometric analyses (see, e.g., U.S. Patent No. 5,605,798, U.S. Patent No. 5,777,324, U.S. Patent No. 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851, International PCT application No. WO 98/20019, copending U.S. application Serial No. 09/285,481, which describes an automated process line for analyses; see, also, 10 U.S. application Serial Nos. 08/617,256, 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 15 08/933,792, 08/746,055, 09/266,409, 08/786,988 and 08/787,639; see, also U.S. application Serial No. 09/074,936). All of these aspects can be used in conjunction with the databases provided herein and samples in the collection.

The databases and markers identified thereby can be used, for example, for identification of previously unidentified or unknown genetic markers and to identify new uses for known markers. As markers are identified, these may be entered into the database to use as sorting parameters from which additional correlations may be determined.

# Previously unidentified or unknown genetic markers

The samples in the healthy databases can be used to identify new polymorphisms and genetic markers, using any mapping, sequencing, amplification and other methodologies, and in looking for polymorphisms among the population in the database. The thus-identified polymorphism can then be entered into the database for each sample, and the database sorted (stratified) using that polymorphism as a sorting parameter to identify any patterns and correlations that emerge, such as age correlated changes in the frequency of the identified marker. If a correlation is identified, the locus of the marker can be mapped and its function or effect assessed or deduced.

20

25

30

10

15

20

25

Thus, the databases here provide means for:

identification of significantly different allelic frequencies of genetic factors by comparing the occurrence or disappearance of the markers with increasing age in population and then associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing the male with the female population or comparing other selected stratified populations and associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing different ethnic groups and associating the markers with a disease or a biochemical pathway that is known to occur in high frequency in the ethnic group;

profiling potentially functional variants of genes through the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating the contribution of the variant genes to the physical condition of the investigated population;

identification of functionally relevant gene variants by gene disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population;

identification of potentially functional variants of chromosomes or parts of chromosomes by linkage disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population.

# Uses of the identified markers and known markers

The databases may also be used in conjunction with known markers and sorted to identify any correlations. For example, the databases can be used for:

determination and evaluation of the penetrance of medically relevant polymorphic markers;

10

15

20

25

30

determination and evaluation of the diagnostic specificity of medically relevant genetic factors;

determination and evaluation of the positive predictive value of medically relevant genetic factors;

determination and evaluation of the onset of complex diseases, such as, but are not limited to, diabetes, hypertension, autoimmune diseases, arteriosclerosis, cancer and other diseases within the general population with respect to their causative genetic factors;

delineation of the appropriate strategies for preventive disease treatment; delineation of appropriate timelines for primary disease intervention; validation of medically relevant genetic factors identified in isolated populations regarding their general applicability;

validation of disease pathways including all potential target structures identified in isolated populations regarding their general applicability; and validation of appropriate drug targets identified in isolated populations

regarding their general applicability.

Among the diseases and disorders for which polymorphisms may be linked include, those linked to inborn errors of metabolism, acquired metabolic disorders, intermediary metabolism, oncogenesis pathways, blood clotting pathways, and DNA synthetic and repair pathways DNA repair/replication/transcription factors and activities, e.g., such as genes related to oncogenesis, aging and genes involved in blood clotting and the related biochemical pathways that are related to thrombosis, embolism, stroke, myocardial infarction, angiogenesis and oncogenesis.

For example, a number of diseases are caused by or involve deficient or defective enzymes in intermediary metabolism (see, e.g., Tables 1 and 2, below) that result, upon ingestion of the enzyme substrates, in accumulation of harmful metabolites that damage organs and tissues, particularly an infant's developing brain and other organs, resulting in mental retardation and other developmental disorders.

15

20

25

30

# Identification of markers and genes for such disorders is of great interest.

# Model systems

Several gene systems, p21, p53 and Lipoprotein Lipase polymorphism (N291S), were selected. The p53 gene is a tumor suppressor gene that is mutated in diverse tumor types. One common allelic variant occurs at codon 72. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in an amino acid exchange, arginine to proline, at codon 72 of the gene.

Using diseased populations, it has been shown that there are ethnic differences in the allelic distribution of these alleles among African-Americans and Caucasians in the U.S. The results here support this finding and also demonstrate that the results obtained with a healthy database are meaningful (sec, Figure 7B).

The 291S allele leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer *et al.* (1995) *Nature Genetics 10*:28-34).

Both genetic polymorphisms were profiled within a part of the Caucasian population-based sample bank. For the polymorphism located in the lipoprotein lipase gene a total of 1025 unselected individuals (436 males and 589 females) were tested. Genomic DNA was isolated from blood samples obtained from the individuals.

As shown in the Examples and figures, an exemplary database containing about 5000 subjects, answers to the questionnaire (see Figure 3), and genotypic information has been stratified. A particular known allele has been selected, and the samples tested for the marker using mass spectrometric analyses, particularly PROBE (see the EXAMPLES) to identify polymorphisms in each sample. The population in the database has been sorted according to various parameters and correlations have been observed. For example, FIGURES 2A-C, show sorting of the data by age and sex for the Lipoprotein Lipase gene in the Caucasian population in the database. The results show a decrease in the frequency of the allele with age in males but no such decrease in females. Other

10

20

25

30

alleles that have been tested against the database, include, alleles of p53, p21 and factor VII. Results when sorted by age are shown in the figures.

These examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population. The scientific interpretation of those results allows prediction of medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies, and the general applicability of genetic alterations identified in isolated populations to panmixed populations.

Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

Exemplary computer system for creating, storing and processing the databases

Systems

Systems, including computers, containing the databases are provided herein. The computers and databases can be used in conjunction, for example, with the APL system (see, copending U.S. application Serial No. 09/285,481), which is an automated system for analyzing biopolymers, particularly nucleic acids. Results from the APL system can be entered into the database.

Any suitable computer system may be used. The computer system may be integrated into systems for sample analysis, such as the automated process line described herein (see, e.g., copending U.S. application Serial No. 09/285,481).

Figure 17 is a block diagram of a computer constructed in to provide and process the databases described herein. The processing that maintains the database and performs the methods and procedures may be performed on multiple computers all having a similar construction, or may be performed by a single, integrated computer. For example, the computer through which data is added to the database may be separate from the computer through which the database is sorted, or may be integrated with it. In either arrangement, the

15

20

25

30

computers performing the processing may have a construction as illustrated in Figure 17.

Figure 17 is a block diagram of an exemplary computer 1700 that maintains the database described above and performs the methods and procedures. Each computer 1700 operates under control of a central processor unit (CPU) 1702, such as a "Pentium" microprocessor and associated integrated circuit chips, available from Intel Corporation of Santa Clara, California, USA. A computer user can input commands and data from a keyboard and display mouse 1704 and can view inputs and computer output at a display 1706. The display is typically a video monitor or flat panel display device. The computer 1700 also includes a direct access storage device (DASD) 1707, such as a fixed hard disk drive. The memory 1708 typically comprises volatile semiconductor random access memory (RAM). Each computer preferably includes a program product reader 1710 that accepts a program product storage device 1712, from which the program product reader can read data (and to which it can optionally write data). The program product reader can comprise, for example, a disk drive, and the program product storage device can comprise removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, or a DVD data disc. If desired, the computers can be connected so they can communicate with each other, and with other connected computers, over a network 1713. Each computer 1700 can communicate with the other connected computers over the network 1713 through a network interface 1714 that enables communication over a connection 1716 between the network and the computer.

The computer 1700 operates under control of programming steps that are temporarily stored in the memory 1708 in accordance with conventional computer construction. When the programming steps are executed by the CPU 1702, the pertinent system components perform their respective functions. Thus, the programming steps implement the functionality of the system as described above. The programming steps can be received from the DASD 1707, through the program product reader 1712, or through the network connection 1716. The storage drive 1710 can receive a program product, read

15

20

25

30

programming steps recorded thereon and transfer the programming steps into the memory 1708 for execution by the CPU 1702. As noted above, the program product storage device 1710 can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs. Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation can be embodied on a program product.

Alternatively, the program steps can be received into the operating memory 1708 over the network 1713. In the network method, the computer receives data including program steps into the memory 1708 through the network interface 1714 after network communication has been established over the network connection 1716 by well-known methods that will be understood by those skilled in the art without further explanation. The program steps are then executed by the CPU 1702 to implement the processing of the Garment Database system.

It should be understood that all of the computers of the system preferably have a construction similar to that shown in Figure 17, so that details described with respect to the Figure 17 computer 1700 will be understood to apply to all computers of the system 1700. This is indicated by multiple computers 1700 shown connected to the network 1713. Any one of the computers 1700 can have an alternative construction, so long as they can communicate with the other computers and support the functionality described herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases, such as for identifying polymorphic genetic markers. In particular, the information contained in the database is stored in computers having a construction similar to that illustrated in Figure 17. The first step for maintaining the database, as indicated in Figure 18, is to identify healthy members of a population. As noted above, the population members are subjects that are selected only on the basis of being healthy, and where the subjects are mammals, such as humans, they are preferably selected bas d upon apparent

10

15

20

25

30

health and the absence of detectable infections. The step of identifying is represented by the flow diagram box numbered 1802.

The next step, represented by the flow diagram box numbered 1804, is to obtain identifying and historical information and data relating to the identified members of the population. The information and data comprise parameters for each of the population members, such as member age, ethnicity, sex, medical history, and ultimately genotypic information. Initially, the parameter information is obtained from a questionnaire answered by each member, from whom a body tissue or body fluid sample also is obtained. The step of entering and storing these parameters into the database of the computer is represented by the flow diagram box numbered 1806. As additional information about each population member and corresponding sample is obtained, this information can be inputted into the database and can serve as a sorting parameter.

In the next step, represented by the flow diagram box numbered 1808, the parameters of the members are associated with an indexer. This step may be executed as part of the database storage operation, such as when a new data record is stored according to the relational database structure and is automatically linked with other records according to that structure. The step 1806 also may be executed as part of a conventional data sorting or retrieval process, in which the database entries are searched according to an input search or indexing key value to determine attributes of the data. For example, such search and sort techniques may be used to follow the occurrence of known genetic markers and then determine if there is a correlation with diseases for which they have been implicated. Examples of this use are for assessing the frequencies of the p53 and Lipoprotein Lipase polymorphisms.

Such searching of the database also may be valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex, or some other criteria. This can allow the identification of previously unknown polymorphisms and, ultimately, identification of a gene or pathway involved in the onset and progression of disease.

10

15

20

25

30

In addition, the database can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

In this way, the databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings, and also an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

# Morbidity and/or early mortality associated polymorphisms

A database containing information provided by a population of healthy blood donors who were not selected for any particular disease to can be used to identify polymorphisms and the alleles in which they are present, whose frequency decreases with age. These may represent morbidity susceptibility markers and genes.

Polymorphisms of the genome can lead to altered gene function, protein function or genome instability. To identify those polymorphisms which have a clinical relevance/utility is the goal of a world-wide scientific effort. It can be expected that the discovery of such polymorphisms will have a fundamental impact on the identification and development of novel drug compounds to cure diseases. However, the strategy to identify valuable polymorphisms is cumbersome and dependent upon the availability of many large patient and control cohorts to show disease association. In particular, genes that cause a general risk of the population to suffer from any disease (morbidity susceptibility genes) will escape these case/control studies entirely.

Here described is a screening strategy to identify morbidity susceptibility genes underlying a variety of different diseases. The definition of a morbidity susceptibility gene is a gene that is expressed in many different cell types or tissues (housekeeping gene) and its altered function can facilitate the expression of a clinical phenotype caused by disease-specific susceptibility genes that are involved in a pathway specific for this disorder. In other words, these morbidity

15

20

25

30

susceptibility genes predispose people to develop a distinct disease according to their genetic make-up for this disease.

Candidates for morbidity susceptibility genes can be found at the bottom level of pathways involving transcription, translation, heat-shock proteins, protein trafficking, DNA repair, assembly systems for subcellular structures (e.g. mitochondria, peroxysomes and other cellular microbodies), receptor signaling cascades, immunology, etc. Those pathways control the quality of life at the cellular level as well as for the entire organism. Mutations/polymorphisms located in genes encoding proteins for those pathways can reduce the fitness of cells and make the organism more susceptible to express the clinical phenotype caused by the action of a disease-specific susceptibility gene. Therefore, these morbidity susceptibility genes can be potentially involved in a whole variety of different complex diseases if not in all. Disease-specific susceptibility genes are involved in pathways that can be considered as disease-specific pathways like glucose-, lipid, hormone metabolism, etc.

The exemplified method permit, among other things, identification of genes and/or gene products involved in a man's general susceptibility to morbidity and/or mortality; use of these genes and/or gene products in studies to elucidate the genetic underpinnings of human diseases; use of these genes and/or gene products in combinatorial statistical analyses without or together with disease-specific susceptibility genes; use of these genes and/or gene products to predict penetrance of disease susceptibility genes; use of these genes and/or gene products in predisposition and/or acute medical diagnostics and use of these genes and/or gene products to develop drugs to cure diseases and/or to extend the life span of humans.

# **SCREENING PROCESS**

The healthy population stratified by age, gender and ethnicity, etc. is a very efficient and a universal screening tool for morbidity associated genes. Changes of allelic frequencies in the young compared to the old population are expected to indicate putative morbidity susceptibility genes. Individual samples of this healthy population base can be pooled to further increase the throughput. In a proof of principle experiment pools of young and old Caucasian females and

males were applied to screen more than 400 randomly chosen single nucleotide polymorphisms located in many different genes. Candidate polymorphisms were identified if the allelic difference was greater than 8% between young and old for both or only one of the genders. The initial results were assayed again in at least one independent subsequent experiments. Repeated experiments are necessary to recognize unstable biochemical reactions, which occur with a frequency of about 2-3% and can mimic age-related allelic frequency differences. Average frequency differences and standard deviations are calculated after successful reproducibility of initial results. The final allelic frequency is then compared to a reference population of Caucasian CEPH sample pool. The result should show similar allelic frequencies in the young Caucasian population. Subsequently, the exact allele frequencies of candidates including genotype information were obtained by analyzing all individual samples. This procedure is straight forward with regard to time and cost. It enables the screening of an enormous number of SNPs. So far, several markers with a highly significant association to age were identified and described below.

In general at least 5 individuals in a stratified population need to be screened to produce statistically significant results. The frequency of the allele is determined for an age stratified population. Chi square analysis is then performed on the allelic frequencies to determine if the difference between age groups is statistically significant. A p value less than of 0.1 is considered to represent a statistically significant difference. More preferably the p value should be less than 0.05.

#### Clinical Trials

10

15

20

25

30

The identification of markers whose frequency in a population decreases with age also allows for better designed and balanced clinical trials. Currently, if a clinical trial utilizes a marker as a significant endpoint in a study and the marker disappears with age, then the results of the study may be inaccurate. By using methods provided herein, it can be ascertained that if a marker decreases in frequency with age. This information can be considered and controlled when designing the study. For, example, an age ind pend nt mark r could b substituted in its place.

10

15

20

25

30

The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

#### **EXAMPLE 1**

This example describes the use of a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to determine the distribution of allelic frequencies of known genetic markers with age and by sex in a Caucasian subpopulation of the database. The results described in this example demonstrate that a disease-related genetic marker or polymorphism can be identified by sorting a healthy database by a parameter or parameters, such as age, sex and ethnicity.

# Generating a database

Blood was obtained by venous puncture from human subjects who met blood bank criteria for donating blood. The blood samples were preserved with EDTA at pH 8.0 and labeled. Each donor provided information such as age, sex, ethnicity, medical history and family medical history. Each sample was labeled with a barcode representing identifying information. A database was generated by entering, for each donor, the subject identifier and information corresponding to that subject into the memory of a computer storage medium using commercially available software, e.g., Microsoft Access.

# Model genetic markers

The frequencies of polymorphisms known to be associated at some level with disease were determined in a subpopulation of the subjects represented in the database. These known polymporphisms occur in the p21, p53 and Lipoprotein Lipase genes. Specifically, the N291S polymorphism (N291S) of the Lipoprotein Lipase gene, which results in a substitution of a serine for an asparagine at amino acid codon 291, leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).

The p53 gene encodes a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulating genes that control cell growth, DNA repair and apoptosis (programmed cell death). Mutations in the

15

20

25

p53 gene have been found in a wide variety of different cancers, including different types of leukemia, with varying frequency. The loss of normal p53 function results in genomic instability an uncontrolled cell growth. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in the substitution of a proline for an arginine at amino acid codon 72 of the gene.

The p21 gene encodes a cyclin-dependent kinase inhibitor associated with G1 phase arrest of normal cells. Expression of the p21 gene triggers apoptosis. Polymorphisms of the p21 gene have been associated with Wilms' tumor, a pediatric kidney cancer. One polymorphism of the p21 gene, the S31R polymorphism, results in a substitution of an arginine for a serine at amino acid codon 31.

# Database analysis

# Sorting of subjects according to specific parameters

The genetic polymorphisms were profiled within segments of the Caucasian subpopulation of the sample bank. For p53 profiling, the genomic DNA isolated from blood from a total of 1277 Caucasian subjects age 18-59 years and 457 Caucasian subjects age 60-79 years was analyzed. For p21 profiling, the genomic DNA isolated from blood from a total of 910 Caucasian subjects age 18-49 years and 824 Caucasian subjects age 50-79 years was analyzed. For lipoprotein lipase gene profiling, the genomic DNA from a total of 1464 Caucasian females and 1470 Caucasian males under 60 years of age and a total of 478 Caucasian females and 560 Caucasian males over 60 years of age was analyzed.

### Isolation and analysis of genomic DNA

Genomic DNA was isolated from blood samples obtained from the individuals. Ten milliliters of whole blood from each individual was centrifuged at 2000 x g. One milliliter of the buffy coat was added to 9 ml of 155 mM NH₄Cl, 10 mM KHCO₃, and 0.1 mM Na₂EDTA, incubated 10 min at room t mperature and centrifuged for 10 min at 2000 x g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH₄Cl, 10 mM KHCO₃ and 0.1 mM Na₂EDTA and resuspended in 4.5 ml of 50 mM Tris, 5 mM

EDTA and 1% SDS. Proteins were precipitated from the cell lysate by 6 mM ammonium acetate, pH 7.3, and then separated from the nucleic acids by centrifugation at 3000 x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000 x g. The dried nucleic acid pellet was hydrated in 10 mM Tris, pH 7.6, and 1 mM Na₂EDTA and stored at 4° C.

Assays of the genomic DNA to determine the presence or absence of the known genetic markers were developed using the BiomassPROBE™ detection method (primer oligo base extension) reaction. This method uses a single detection primer followed by an oligonucleotide extension step to give products, which can be readily resolved by mass spectrometry, and, in particular, MALDITOF mass spectrometry. The products differ in length depending on the presence or absence of a polymorphism. In this method, a detection primer anneals adjacent to the site of a variable nucleotide or sequence of nucleotides and the primer is extended using a DNA polymerase in the presence of one or more dideoxyNTPs and, optionally, one or more deoxyNTPs. The resulting products are resolved by MALDI-TOF mass spectrometry. The mass of the determination of the nucleotide(s) present at the variable site.

First, each of the Caucasian genomic DNA samples was subjected to nucleic acid amplification using primers corresponding to sites 5' and 3' of the polymorphic sites of the p21 (S31R allele), p53 (R72P allele) and Lipoprotein Lipase (N291S allele) genes. One primer in each primer pair was biotinylated to permit immobilization of the amplification product to a solid support.

25 Specifically, the polymerase chain reaction primers used for amplification of the relevant segments of the p21, p53 and lipoprotein lipase genes are shown below: US4p21c31-2F (SEQ ID NO: 9) and US5p21-2R (SEQ ID NO: 10) for p21 gene amplification; US4-p53-ex4-F (also shown as p53-ex4US4 (SEQ ID NO: 2)) and US5-p53/2-4R (also shown as US5P53/4R (SEQ ID NO: 3)) for p53 gene amplification; and US4-LPL-F2 (SEQ ID NO: 16) and US5-LPL-R2 (SEQ ID NO: 17) for lipoprotein lipase gene amplification.

15

20

30

Amplification of the respective DNA sequences was conducted according to standard protocols. For example, primers may be used in a concentration of 8 pmol. The reaction mixture (e.g., total volume  $50 \,\mu$ l) may contain Taq-polymerase including 10x buffer and dTNPs. Cycling conditions for polymerase chain reaction amplification may typically be initially 5 min. at 95°C, followed by 1 min. at 94°C, 45 sec at 53°C, and 30 sec at 72°C for 40 cycles with a final extension time of 5 min at 72°C. Amplification products may be purified by using Qiagen's PCR purification kit (No. 28106) according to manufacturer's instructions. The elution of the purified products from the column can be done in  $50 \,\mu$ l TE-buffer (10mM Tris, 1 mM EDTA, pH 7.5).

The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, the following:  $50 \,\mu$ l annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₂, 1% Triton X-100, pH 8) at  $50^{\circ}$ C for 10 min, followed by washing of the beads three times with 200  $\mu$ l washing buffer (40 mM Tris, 1 mM EDTA, 50 mM NaCl, 0.1% Tween 20, pH 8.8) and once in 200  $\mu$ l TE buffer.

The PROBE extension reaction was performed, for example, by using some components of the DNA sequencing kit from USB (No. 70770) and dNTPs or ddNTPs from Pharmacia. An exemplary protocol could include a total reaction volume of 45  $\mu$ l, containing of 21  $\mu$ l water, 6  $\mu$ l Sequenase-buffer, 3  $\mu$ l 10 mM DTT solution, 4.5  $\mu$ l, 0.5 mM of three dNTPs, 4.5  $\mu$ l, 2 mM the missing one ddNTP, 5.5  $\mu$ l glycerol enzyme dilution buffer, 0.25  $\mu$ l Sequenase 2.0, and 0.25 pyrophosphatase. The reaction can then by pipetted on ice and incubated for 15 min at room temperature and for 5 min at 37 °C. The beads may be washed three times with 200  $\mu$ l washing buffer and once with 60  $\mu$ l of a 70 mM NH₄-Citrate solution.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry using 3-hydroxypicolinic acid (3-HPA) as matrix and a UV laser.

15

20

25

30

Specifically, the primers used in the PROBE reactions are as shown below: P21/31-3 (SEQ ID NO: 12) for PROBE analysis of the p21 polymorphic site; P53/72 (SEQ ID NO: 4) for PROBE analysis of the p53 polymorphic site; and LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site. In the PROBE analysis of the p21 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 31 encodes a serine) and from the reaction conducted on a polymorphic S31R allele template (wherein codon 31 encodes an arginine) are shown below and designated as P21/31-3 Ser (wt) (SEQ ID NO: 13) and P21/31-3 Arg (SEQ ID NO: 14), respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 4900.2 Da for the wild-type product and 5213.4 Da for the polymorphic product).

In the PROBE analysis of the p53 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 72 encodes an arginine) and from the reaction conducted on a polymorphic R72P allele template (wherein codon 72 encodes a proline) are shown below and designated as Cod72 G Arg (wt) and Cod72 C Pro, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5734.8 Da for the wild-type product and 5405.6 Da for the polymorphic product).

In the PROBE analysis of the lipoprotein lipase gene polymorphic site, the extension reaction was performed using a mixture of ddA and ddT. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 291 encodes an asparagine) and from the reaction conducted on a polymorphic N291S allele template (wherein codon 291 encodes a serine) are shown below and designated as 291Asn and 291Ser, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 6438.2 Da for the wild-type product and 6758.4 Da for the polymorphic product).

P53-1 (R72P)

#### PCR Product length: 407 bp (SEQ ID NO: 1)

Primers (SEQ ID NOs: 2-4)

p53-ex4FUS4 ccc agt cac gac gtt gta aaa cgc tga gga cct ggt cct ctg ac

15 US5P53/4R

age gga taa caa ttt cac aca ggt tga agt etc atg gaa gee

P53/72

gcc aga ggc tgc tcc cc

#### Masses

20

35

Allele	Product Termination: ddC	SEQ #	Length	Mass
P53/72	gccagaggctgctcccc	5	17	5132.4
Cod72 G Arg (wt)	gccagaggctgctccccgc	6	19	5734.8
Cod72 C Pro	gccagaggctgctccccc	7	18	5405.6

Biotinylated US5 primer is used in the PCR amplification.

#### LPL-1 (N291S)

Amino acid exchange asparagine to serine at codon 291 of the lipoprotein lipase gene.

PCR Product length: 251 bp (SEQ ID NO: 15)

US4-LPL-F2 (SEQ ID NO: 16)

gegeteeatt eatetettea tegaetetet gttgaatgaa gaaaateeaa gtaaggeeta caggtgeagt teeaaggaag cetttgagaa agggetetge ttgagttgta gaaagaaceg

ctgcaa<u>caat ctgqqctatg aqatca</u>ataa agtcagagcc aaaagaagca gcaaaatgta g 291S

cctgaagact cgttctcaga tgccc US4-LPL-R2

Primers (SEQ ID NOs: 16-18):

US4-LPL-F2 ccc agt cac gac gtt gta aaa cgg cgc tcc att cat ctc ttc
US5-LPL-R2 agc gga taa caa ttt cac aca ggg ggc atc tga gaa cga gtc
LPL-2 caa tct ggg cta tga gat ca

#### Masses

5

15

25

Allele Product Termination: ddA, ddT		SEQ #	Length	Mass	
LPL-2	caatctgggctatgagatca	19	20	6141	
291 Asn	caatctgggctatgagatcaa	20	21	6438.2	
291 Ser	caatctgggctatgagatcagt	21	22	6758.4	

Biotinylated US5 primer is used in the PCR amplification.

#### P21-1 (S31R)

Amino acid exchange serine to arginine at codon 31 of the tumor 10 suppressor gene p21. Product length: 207 bp (SEQ ID NO: 8) US4p21c31-2F

> gtcc gtcagaaccc atgcggcagc p21/31-3 31s

> > 15

16

17

Mass

4627

4900.2

5213.4

aaggeetgee geegeetett eggeeeagtg gaeagegage agetgageeg egaetgtgat

gcgctaatgg cgggctgcat ccaggaggcc cgtgagcgat ggaacttcga ctttgtcacc gagacaccac tggaggg US5p21-2R

Primers (SEQ ID NOs: 9-11)

20 US4p21c31-2F ccc agt cac gac gtt gta aaa cgg tcc gtc aga acc cat gcg g

US5p21-2R age gga taa caa ttt cac aca gge tee agt ggt gte teg gtg ac

P21/31-3 cag cga gca gct gag

## Masses

Aliele Product Termination: ddC SEQ# Length p21/31-3 cagcgagcagctgag 12 P21/31-3 Ser (wt) 13 cagcgagcagctgagc P21/31-3 Arg cagcgagcagctgagac 14

Biotinylated US5 primer is used in the PCR amplification.

30 Each of the Caucasian subject DNA samples was individually analyzed by MALDI-TOF mass spectrometry to determine the identity of the nucleotide at the polymorphic sites. The genotypic results of each assay can be entered into the database. The results were then sorted according to age and/or sex to determine the distribution of allelic 35 frequencies by age and/or sex. As depicted in the Figures showing

15

20

histograms of the results, in each case, there was a differential distribution of the allelic frequencies of the genetic markers for the p21, p53 and lipoprotein lipase gene polymorphisms.

Figure 8 shows the results of the p21 genetic marker assays 5 reveals a statistically significant decrease (from 13.3% to 9.2%) in the frequency of the heterozygous genotype (S31R) in Caucasians with age (18-49 years of age compared to 50-79 years of age). The frequencies of the homozygous (S31 and R31) genotypes for the two age groups are also shown, as are the overall frequencies of the S31 and R31 alleles in the two age groups (designated as 'S31 and 'R31, respectively in the Figure).

Figures 7A-C shows the results of the p53 genetic marker assays and reveals a statistically significant decrease (from 6.7% to 3.7%) in the frequency of the homozygous polymorphic genotype (P72) in Caucasians with age (18-59 years of age compared to 60-79 years of age). The frequencies of the homozygous "wild-type" genotype (R72) and the heterozygous genotype (R72P) for the two age groups are also shown, as are the overall frequencies of the R72 and P72 alleles in the two age groups (designated as 'R72 and 'P72, respectively in the Figure). These results are consistent with the observation that allele is not benign, as p53 regulates expression of a second protein, p21, which inhibits cyclin-dependent kinases (CDKs) needed to drive cells through the cell-cycle (a mutation in either gene can disrupt the cell cycle leading to increased cell division).

25 Figure 2C shows the results of the lipoprotein lipase gene genetic marker assays reveals a statistically significant decrease (from 1.97% to 0.54%) in the frequency of the polymorphic allele (S291) in Caucasian males with age (see also Reymer et al. (1995) Nature Genetics 10:28-34). The frequencies of this allele in Caucasian females of different age groups are also shown.

#### **EXAMPLE 2**

This example describes the use of MALDI-TOF mass spectrometry 5 to analyze DNA samples of a number of subjects as individual samples and as pooled samples of multiple subjects to assess the presence or absence of a polymorphic allele (the 353Q allele) of the Factor VII gene and determine the frequency of the allele in the group of subjects. The results of this study show that essentially the same allelic frequency can be obtained by analyzing pooled DNA samples as by analyzing each sample separately and thereby demonstrate the quantitative nature of MALDI-TOF mass spectrometry in the analysis of nucleic acids.

#### Factor VII

Factor VII is a serine protease involved in the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. There is evidence that supports an association between polymorphisms in the Factor VII gene and increased Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease, including myocardial infarction. The polymorphism investigated in this study is R353Q (i.e., a substitution of a glutamic acid residue for an arginine residue at codon 353 of the Factor VII gene) (see Table 5).

Analysis of DNA samples for the presence or absence of the 353Q allele of the Factor VII gene

25

30

20

10

15

Genomic DNA was isolated from separate blood samples obtained from a large number of subjects divided into multiple groups of 92 subjects per group. Each sample of genomic DNA was analyzed using the BiomassPROBE™ assay as described in Example 1 to determine the presence or absence of the 3530 polymorphism of the Factor VII gene.

WO 01/027857 PCT/US00/28413 50

First, DNA from each sample was amplified in a polymerase chain reaction using primers F7-353FUS4 (SEQ ID NO: 24) and F7-353RUS5 (SEQ ID NO: 26) as shown below and using standard conditions, for example, as described in Example 1. One of the primers was biotinylated 5 to permit immobilization of the amplification product to a solid support. The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, described in Example 1. The detection primer is shown as F7-353-P (SEQ ID NO: 27) below. The PROBE extension reaction was carried out using conditions, for example, such as those described in Example 1. The reaction was performed using ddG.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry. A matrix such as 3-hydroxypicolinic acid (3-HPA) and a UV laser could be used in the MALDI-TOF mass spectrometric analysis. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 353 encodes an arginine) and from the reaction conducted on a polymorphic 353Q allele template (wherein codon 353 encodes a glutamic acid) are shown below and designated as 353 CGG and 353 CAG, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5646.8 Da for the wild-type product and 5960 Da for the polymorphic product).

The MALDI-TOF mass spectrometric analyses of the PROBE reactions of each DNA sample were first conducted separately on each sample (250 nanograms total concentration of DNA per analysis). The allelic frequency of the 353Q polymorphism in the group of 92 subjects

10

20

was calculated based on the number of individual subjects in which it was detected.

Next, the samples from 92 subjects were pooled (250 nanograms total concentration of DNA in which the concentration of any individual DNA is 2.7 nanograms) and the pool of DNA was subjected to MALDITOF mass spectrometric analysis. The area under the signal corresponding to the mass of the 353Q polymorphism PROBE extension product in the resulting spectrum was integrated in order to quantitate the amount of DNA present. The ratio of this amount to total DNA was used to determine the allelic frequency of the 353Q polymorphism in the group of subjects. This type of individual sample vs. pooled sample analysis was repeated for numerous different groups of 92 different samples.

The frequencies calculated based on individual MALDI-TOF mass spectrometric analysis of the 92 separate samples of each group of 92 are compared to those calculated based on MALDI-TOF mass spectrometric analysis of pools of DNA from 92 samples in Figure 9. These comparisons are shown as "pairs" of bar graphs in the Figure, each pair being labeled as a separate "pool" number, e.g., P1, P16, P2, etc. Thus, for example, for P1, the allelic frequency of the polymorphism calculated by separate analysis of each of the 92 samples was 11.41% and the frequency calculated by analysis of a pool of all of the 92 DNA samples was 12.09%.

The similarity in frequencies calculated by analyzing separate DNA samples individually and by pooling the DNA samples demonstrates that it is possible, through the quantitative nature of MALDI-TOF mass spectrometry, to analyze pooled samples and obtain accurate frequency determinations. The ability to analyze pooled DNA samples significantly reduces the time and costs involved in the use of the non-selected, healthy databases as described herein. It has also been shown that it is

10

15

20

Tm9*

64°C

possible to decrease the DNA concentration of the individual samples in a pooled mixture from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected.

## 5 Factor VII R353Q PROBE Assay

PROBE Assay for cod353 CGG>CAG (Arg>Gln), Exon 9 G>A.

PCR fragment: 134 bp (incl. US tags; SEQ ID Nos. 22 and 23)

Frequency of A allele: Europeans about 0.1, Japanese/Chinese about 0.03-0.05 (Thromb. Haemost. 1995, 73:617-22; Diabetologia 1998,

#### 10 41:760-6):

#### F7-353FUS4>

1201 GTGCCGGCTA CTCGGATGGC AGCAAGGACT CCTGCAAGGG GGACAGTGGA GGCCCACATG

F7-353-P> A <F7-353RUS5

15 1261 <u>CCACCCACTA CCGGGGCACG TGGTACCTGA CGGGCATCGT CA</u>GCTGGGGC CAGGGCTGCG

Primers (SEQ ID NOs: 24-26)
F7-353FUS4 CCC AGT CAC GAC GTT GTA AAA CGA TGG CAG CAA GGA CTC CTG

F7-353-P CAC ATG CCA CCC ACT ACC

20 F7-353RUS5 AGC GGA TAA CAA TTT CAC ACA GGT GAC GAT GCC CGT CAG GTA C 64°C

## Masses

25

Allele	Product Termination: ddG	SEQ #	Length	Mass
F7-353-P	atgccacccactacc	27	18	5333.6
353 CGG	cacatgccacccactaccg	28	19	5646.8
353 CAG cacatgccacccactaccag		29	20	5960
US5-bio bio-	agcggataacaatttcacacagg	30	23	7648.6

### Conclusion

The above examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population.

Interpretation of those results allows prediction of the medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies,

15

20

25

and the general applicability of genetic alterations identified in isolated populations to panmixed populations. Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

#### **EXAMPLE 3**

#### **MORBIDITY AND MORTALITY MARKERS**

## Sample Band and Initial Screening

Healthy samples were obtained through the blood bank of San

10 Bernardino, CA. Donors signed prior to the blood collection a consent form and agreed that their blood will be used in genetic studies with regard to human aging. All samples were anomymized. Tracking back of samples is not possible.

## Isolation of DNA from blood samples of a healthy donor population

Blood is obtained from a donor by venous puncture and preserved with 1mM EDTA pH 8.0. Ten milliliters of whole blood from each donor was centrifuged at 2000x g. One milliliter of the buffy coat was added to 9 milliters of 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA, incubated 10 minutes at room temperature and centrifuged for 10 minutes at 2000x g. The supernatant was removed, and the white cell pellet was washed in 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA and resuspended in 4.5 milliliters of 50mM Tris, 5mM EDTA, and 1% SDS. Proteins were precipitated from the cell lysate by 6M Ammonium Acetate, pH 7.3, and separated from the nucleic acid by centrifugation 3000x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000x g. The dried nucleic acid pellet was hydrated in IOmM Tris pH 7.6 and 1mM Na2EDTA and stored at 4C.

In this study, samples were pooled as shown in Table 1. Both parents of the blood donors were of Caucasian origin.

Table 1

5

Pool ID	Sex	Age-range	# individuals
SP1	Female	18-39 years	276
SP2	Males	18-39 years	276
SP3	Females	60-69 years	184
SP4	Males	60-79 years	368

More than 400 SNPs were tested using all four pools. After one test run 34 assays were selected to be re-assayed at least once. Finally, 10 assays showed repeatedly differences in allele frequencies of several percent and, therefore, fulfilled the criteria to be tested using the individual samples. Average allele frequency and standard deviation is tabulated in Table 2.

Table 2

Assay ID	SP1	SP1-STD	SP2	SP2-STD	SP3	SP3-STD	SP4	SP4-STD
47861	0.457	0.028	0.433	0.042	0.384	0.034	0.380	0.015
47751	0.276	0.007	0.403	0.006	0.428	0.052	0.400	0.097
48319	0.676	0.013	0.627	0.018	0.755	0.009	0.686	0.034
48070	0.581	0.034	0.617	0.045	0.561	n.a.	0.539	0.032
49807	0.504	0.034	0.422	0.020	0.477	0.030	0.556	0.005
49534	0.537	0.017	0.503	n.a.	0.623	0.023	0.535	0.005
49733	0.560	0.006	0.527	0.059	0.546	0.032	0.436	0.016
49947	0.754	0.008	0.763	0.047	0.736	0.052	0.689	0.025
50128	0.401	0.022	0.363	0.001	0.294	0.059	0.345	0.013

25

63306	0.697	0.012	0.674	0.013	0.712	0.017	0.719	0.005
[								i ii

So far, 7 out of the 10 potential morbidity markers were fully analyzed. Additional information about genes in which these SNPs are located was gathered through publicly databases like Genbank.

#### **AKAPS**

Candidate morbidity and mortality markers include housekeeping genes, such as genes involved in signal transduction. Among such genes are the A-kinase anchoring proteins (AKAPs) genes, which participate in 10 signal transduction pathways involving protein phosphorylation. Protein phosphorylation is an important mechanism for enzyme regulation and the transduction of extracellular signals across the cell membrane in eukaryotic cells. A wide variety of cellular substrates, including enzymes, membrane receptors, ion channels and transcription factors, can be phosphorylated in response to extracellular signals that interact with cells. 15 A key enzyme in the phosphorylation of cellular proteins in response to hormones and neurotransmitters is cyclic AMP (cAMP)-dependent protein kinase (PKA). Upon activation by cAMP, PKA thus mediates a variety of cellular responses to such extracellular signals. An array of PKA isozymes 20 are expressed in mammalian cells. The PKAs usually exist as inactive tetramers containing a regulatory (R) subunit dimer and two catalytic (C) subunits. Genes encoding three C subunits (C $\alpha$ , C $\beta$  and C $\gamma$ ) and four R subunits (RIa, RIB, RIIa and RIIB) have been identified [see Takio et al. (1982) Proc. Natl. Acad. Sci. U.S. A. 79:2544-2548; Lee et al. (1983) Proc. Natl. Acad. Sci. U.S. A. 80:3608-3612; Jahnsen et al. (1996) J. 25 Biol. Chem. 261:12352-12361; Clegg et al. (1988) Proc. Natl. Acad. Sci. U.S. A. 85:3703-3707; and Scott (1991) Pharmacol. Ther. 50:123-145]. The type I (RI)  $\alpha$  and type II (RII)  $\alpha$  subunits are distributed ubiquitously. whereas RI $\beta$  and RII $\beta$  are present mainly in brain [see. e.g., Miki and Eddy

20

25

(1999) J. Biol. Chem. 274:29057-29062]. The type I PKA holoenzyme (RIa and RIB) is predominantly cytoplasmic, whereas the majority of type II PKA (RIIa and RIIB) associates with cellular structures and organelles [Scott (1991) Pharmacol. Ther. 50:123-145]. Many hormones and other signals act through receptors to generate cAMP which binds to the R subunits of PKA and releases and activates the C subunits to phosphorylate proteins. Because protein kinases and their substrates are widely distributed throughout cells, there are mechanisms in place in cells to localize protein kinase-mediated responses to different signals. One such mechanism involves subcellular targeting of PKAs through association with anchoring proteins, referred to as A-kinase anchoring proteins (AKAPs), that place PKAs in close proximity to specific organelles or cytoskeletal components and particular substrates thereby providing for more specific PKA interactions and localized responses [see, e.g., Scott et al. (1990) J. Biol. Chem. 265:21561-21566; Bregman et al. (1991) J. Biol. Chem. 266:7207-7213; and Miki and Eddy (1999) J. Biol. Chem. 274:29057-29062]. Anchoring not only places the kinase close to preferred substrates, but also positions the PKA holoenzyme at sites where it can optimally respond to fluctuations in the second messenger cAMP [Mochly-Rosen (1995) Science 268:247-251; Faux and Scott (1996) Trends Biochem. Sci. 21:312-315; Hubbard and Cohen (1993) Trends Biochem. Sci. 18:172-177].

Up to 75% of type II PKA is localized to various intracellular sites through association of the regulatory subunit (RII) with AKAPs [see, e.g., Hausken et al. (1996) J. Biol. Chem. 271:29016-29022]. RII subunits of PKA bind to AKAPs with nanomolar affinity [Carr et al. (1992) J. Biol. Chem. 267:13376-13382], and many AKAP-RII complexes have been isolated from cell extracts. RI subunits of PKA bind to AKAPs with only micromolar affinity [Burton et al. (1997) Proc. Natl. Acad. Sci. U.S.A.

94:11067-11072]. Evidence of binding of a PKA RI subunit to an AKAP has been reported [Miki and Eddy (1998) J. Biol. Chem 273:34384-34390] in which RIa-specific and RIa/RIIa dual specificity PKA anchoring domains were identified on FSC1/AKAP82. Additional dual specific AKAPs, referred to as D-AKAP1 and D-AKAP2, which interact with the type I and type II regulatory subunits of PKA have also been reported [Huang et al. (1997) J. Biol. Chem. 272:8057-8064; Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189].

More than 20 AKAPs have been reported in different tissues and species. Complementary DNAs (cDNAs) encoding AKAPs have been isolated from diverse species, ranging from *Caenorhabditis elegans* and *Drosophilia* to human [see, e.g., Colledge and Scott (1999) *Trends Cell Biol.* 9:216-221]. Regions within AKAPs that mediate association with RII subunits of PKA have been identified. These regions of approximately 10-18 amino acid residues vary substantially in primary sequence, but secondary structure predictions indicate that they are likely to form an amphipathic helix with hydrophobic residues aligned along one face of the helix and charged residues along the other [Carr et al. (1991) *J. Biol. Chem.* 266:14188-14192; Carr et al. (1992) *J. Biol. Chem.* 267:13376-13382]. Hydrophobic amino acids with a long aliphatic side chain, e.g., valine, leucine or isoleucine, may participate in binding to RII subunits [Glantz et al. (1993) *J. Biol. Chem.* 268:12796-12804].

Many AKAPs also have the ability to bind to multiple proteins, including other signaling enzymes. For example, AKAP79 binds to PKA, protein kinase C (PKC) and the protein phosphatase calcineurin (PP2B) [Coghlan et al. (1995) Science 267:108-112 and Klauck et al. (1996) Science 271:1589-1592]. Therefore, the targeting of AKAP79 to neuronal postsynaptic membranes brings together enzymes with opposite catalytic activities in a single complex.

10

15

20

AKAPs thus serve as potential regulatory mechanisms that increase the selectivity and intensity of a cAMP-mediated response. There is a need, therefore, to identify and elucidate the structural and functional properties of AKAPs in order to gain a complete understanding of the important role these proteins play in the basic functioning of cells.

AKAP10

5

10

15

20

25

30

The sequence of a human AKAP10 cDNA (also referred to as D-AKAP2) is available in the GenBank database, at accession numbers AF037439 (SEQ ID NO: 31) and NM 007202. The AKAP10 gene is located on chromosome 17.

The sequence of a mouse D-AKAP2 cDNA is also available in the GenBank database (see accession number AF021833). The mouse D-AKAP2 protein contains an RGS domain near the amino terminus that is characteristic of proteins that interact with Ga subunits and possess GTPase activating protein-like activity [Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189]. The human AKAP10 protein also has sequences homologous to RGS domains. The carboxy-terminal 40 residues of the mouse D-AKAP2 protein are responsible for the interaction with the regulatory subunits of PKA. This sequence is fairly well conserved between the mouse D-AKAP2 and human AKAP10 proteins. Polymorphisms of the human AKAP10 gene and polymorphic AKAP10 proteins

Polymorphisms of AKAP genes that alter gene expression, regulation, protein structure and/or protein function are more likely to have a significant effect on the regulation of enzyme (particularly PKA) activity, cellular transduction of signals and responses thereto and on the basic functioning of cells than polymorphisms that do not alter gene and/or protein function. Included in the polymorphic AKAPs provided herein are human AKAP10 proteins containing differing amino acid residues at position number 646.

10

15

20

25

30

Amino acid 646 of the human AKAP10 protein is located in the carboxy-terminal region of the protein within a segment that participates in the binding of R-subunits of PKAs. This segment includes the carboxy-terminal 40 amino acids.

The amino acid residue reported for position 646 of the human AKAP10 protein is an isoleucine. Polymorphic human AKAP10 proteins provided herein have the amino acid sequence but contain residues other than isoleucine at amino acid position 646 of the protein. In particular embodiments of the polymorphic human AKAP10 proteins provided herein, the amino acid at position 646 is a valine, leucine or phenylalanine residue.

# An A to G transition at nucleotide 2073 of the human AKAP10 coding sequence

As described herein, an allele of the human AKAP10 gene that contains a specific polymorphism at position 2073 of the coding sequence and thereby encodes a valine at position 646 has been detected in varying frequencies in DNA samples from younger and older segments of the human population. In this allele, the A at position 2073 of the AKAP10 gene coding sequence is changed from an A to a G, giving rise to an altered sequence in which the codon for amino acid 646 changes from ATT, coding for isoleucine, to GTT, coding for valine.

## Morbidity marker 1: human protein kinase A anchoring protein (AKAP10-1)

PCR Amplification and BiomassPROBE assay detection of AKAP10-1 in a healthy donor population

PCR Amplification of donor population for AKAP 10
PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50µl PCR reaction with 100ng-1ug of pooled human genomic

DNAs in a 50µl PCR reaction. Individual DNA concentrations within the

pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction containing IX PCR buffer (Qiagen, Valencia, CA), 200uM dNTPs, 1U Hotstar Tag polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the 5 forward primer containing the universal primer sequence and the target specific sequence 5'-TCTCAATCATGTGCATTGAGG-3'(SEQ ID NO: 45), 2pmol of the reverse primer 5'-AGCGGATAACAATTTCACACAGGGATCACACAGCCATCAGCAG-3' (SEQ ID NO: 46), and lopmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCGGATAACAATTTCACACAGG-3'(SEQ ID NO: 47). After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler 20 (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min.

## Immobilization of DNA

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded amplicons by

10

20

25

incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for AKAP10-1 (clone 48319)

Genotyping using the BiomassPROBE assay methods was carried out by resuspending the DNA coated magnetic beads in 26mM Tris-HCl pH 9.5, 6.5 mM MgCl₂ and 50mM each of dTTP and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham) and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGGCGCCCACGTGGTCAA-3' (SEQ ID NO: 48) (Operon). Primer extension occurs with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nL each sample to a silicon chip preloaded with 150nL of H3PA matrix material. The sample material was allowed to crystallize and was analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP that is present in AKAP10-1 is a T to C transversion at nucleotide number 156277 of the sequence of a genomic clone of the AKAP10 gene (GenBank Accession No. AC005730) (SEQ ID NO: 36). SEQ ID NO: 35: represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10 gene, and SEQ ID NO: 36 represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10-1 allele. The mass of the primer used in the BioMass probe reaction was 5500.6 daltons. In the presence of the SNP, the primer is extended by the addition of ddC, which has a mass of 5773.8. The wildtype gene results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6101 daltons.

15

20

25

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males) and 552 individuals between the ages of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the non-translated 3'region of AKAP 10. Differences in the frequency of this polymorphism with increasing age groups were observed among healthy individuals. Statistical analysis showed that the significance level for differences in the allelic frequency for alleles between the "younger" and the "older" populations was p=0.0009 and for genotypes was p=0.003. Differences between age groups are significant. For the total population allele significance is p=0.0009, and genotype significance is p=0.003.

This marker led to the best significant result with regard to allele and genotype frequencies in the age-stratified population. Figure 19 shows the allele and genotype frequency in both genders as well as in the entire population. For latter the significance for alleles was  $p\!=\!0.0009$  and for genotypes was  $p\!=\!0.003$ . The young and old populations were in Hardy-Weinberg equilibrium. A preferential change of one particular genotype was not seen.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human protein kinase A anchoring protein (AKAP10). The gene is located on chromosome 17. Its structure includes 15 exons and 14 intervening sequences (introns). The encoded protein is responsible for the sub-cellular localization of the cAMP-dependent protein kinase and, therefore, plays a key role in the G-protein mediated receptor-signaling pathway (Huang et al. PNAS (1007) 94:11184-11189). Since its localization is outside the coding region, this polymorphism is most likely in linkage disequilibrium (LD) with other non-synonymous

polymorphisms that could cause amino acid substitutions and subsequently alter the function of the protein. Sequence comparison of different Genbank database entries concerning this gene revealed further six potential polymorphisms of which two are supposed to change the respective amino acid (see Table 3).

Table 3

5

20

25

30

	Exon	Codon	Nucleotides	Amino acid
	3	100	GCT>GCC	Ala > Ala
	4	177	AGT>GTG	Met>Val
10	8 -	424	GGG > GGC	Gly > Gly
	10	524	CCG > CTG	Pro > Leu
	12	591	GTG > GTC	Val > Val
	12	599	CGC>CGA	Arg > Arg

15 Morbitity marker 2: human protein kinase A anchoring protein (AKAP10-5)

#### Discovery of AKAP10-5 Allele (SEQ ID NO: 33)

Genomic DNA was isolated from blood (as described above) of seventeen (17) individuals with a genotype CC at the AKAP10-1 gene locus and a single heterozygous individual (CT) (as described). A target sequence in the AKAP10-1 gene which encodes the C-terminal PKA binding domain was amplified using the polymerase chain reaction. PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10-1 target sequence was carried out in individual 50µl PCR reaction with 25ng of human genomic DNA templates. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, IU Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer (Ex13F) containing the universal primer sequence and the target specific sequence 5'-TCC CAA AGT GCT GGA ATT AC-3' (SEQ ID NO: 53), and 2pmol of the reverse

primer (Ex14R) 5'-GTC CAA TAT ATG CAA ACA GTT G-3' (SEQ ID NO: 54). Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (MJ Research, Waltham, MA) (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles; 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min. After amplification the amplicons were purified using a chromatography (Mo Bio Laboratories (Solana Beach, CA)).

The sequence of the 18 amplicons, representing the target region, was determined using a standard Sanger cycle sequencing method with 25nmol of the PCR amplicon, 3.2uM DNA sequencing primer 5'-CCC ACA GCA GTT AAT CCT TC-3'(SEQ ID NO: 55), and chain terminating dRhodamine labeled 2', 3' dideoxynucleotides (PE Biosystems, Foster City, CA) using the following cycling parameters: 96° C for 15 seconds; 25 cycles: 55° C for 15 seconds, 60° C for 4 minutes. The sequencing products precipitated by 0.3M NaOAc and ethanol. The precipitate was centrifuged and dried. The pellets were resuspended in deionized formamide and separated on a 5% polyacrylimide gel. The sequence was determined using the "Sequencher" software (Gene Codes, Ann Arbor, MI).

The sequence of all 17 of the amplicons, which are homozygous for the AKAP10-1 SNP of the amplicons, revealed a polymorphism at nucleotide position 152171 (numbering for GenBank Accession No. AC005730 for AKAP10 genomic clone (SEQ ID NO: 35)) with A replaced by G. This SNP can also be designated as located at nucleotide 2073 of a cDNA clone of the wildtype AKAP10 (GenBank Accession No. AF037439) (SEQ ID NO: 31). The amino acid sequence of the human AKAP10 protein is provided as SEQ ID NO: 32. This single nucleotide polymorphism was designated as AKAP10-5 (SEQ ID NO: 33) and resulted in a substitution of a valine for an isoleucine residue at amino

10

20

25

30

acid position 646 of the amino acid sequence of human AKAP10 (SEQ ID NO: 32).

# PCR Amplification and BiomassPROBE assay detection of AKAP10-5 in a healthy donor population

The healthy population stratified by age is a very efficient and a universal screening tool for morbidity associated genes by allowing for the detection of changes of allelic frequencies in the young compared to the old population. Individual samples of this healthy population base can be pooled to further increase the throughput.

Healthy samples were obtained through the blood bank of San Bernardino, CA. Both parents of the blood donors were of Caucasian origin. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications.

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in a single 50µl PCR reaction with 100ng- 1µg of pooled human genomic DNAs in a 50µl PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction contained 1X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-AGCGGATAACAATTTCACACAGGGAGCTAGCTTGGAAGAT

15

20

25

TGC-3' (SEQ ID NO: 41), 2pmol of the reverse primer 5'-GTCCAATATATGCAAACAGTTG-3' (SEQ ID NO: 54), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon BIO:5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 43).

After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer can then be hybridized and acted as a forward primer thereby introducing a 5' biotin capture moiety into the molecule. The amplification protocol resulted in a 5'-biotinylated double stranded DNA amplicon and dramatically reduced the cost of high throughput genotyping by eliminating the need to 5' biotin label every forward primer used in a genotyping.

Themal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec; 72° C for 60 sec; 72° C 3min.

## Immobilization of DNA

The 50  $\mu$ I PCR reaction was added to 25 $\mu$ L of streptavidin coated magnetic beads (Dynal, Oslo, Norway), which were prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄0H. The 5' end of one strand of the double stranded PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The hybridized but unbound strand was released from the double stranded amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

## Detection of AKAP10-5 using BiomassPROBE™ Assay

BiomassPROBE[™] assay of primer extension analysis (see, U.S. Patent No. 6,043,031) of donor population for AKAP 10-5 (SEQ ID NO:

33) was performed. Genotyping using these methods was carried out by resuspending the DNA coated magnetic beads in 26mM Tris-HCL pH 9.5, 6.5 mM MgCl₂, 50mM dTTP, 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a template specific oligonucleotide PROBE primer 5'-ACTGAGCCTGCTGCATAA-3' (SEQ ID NO: 44) (Operon). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nL 10 of each sample to a silicon chip preloaded with 150 nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The primer has a mass of 5483.6 daltons. The SNP results in the additional of a ddC to the primer, giving a mass of 5756.8 daltons for the extended product. The wild type results in 15 the addition a T and ddG to the primer giving a mass of 6101 daltons.

The frequency of the SNP was measured in a population of age selected healthy individuals. Seven hundred thirteen (713) individuals under 40 years of age (360 females, 353 males) and 703 individuals over 60 years of age (322 females, 381 males) were tested for the presence of the SNP, AKAP10-5 (SEQ ID NO: 33). Results are presented below in Table 1.

TABLE 1 AKAP10-5 (2073V) frequency comparison in 2 age groups < 40 >60 delta G allele Female *G Alleles 38.6 34.6 4.0 *A 61.4 65.4 Genotypes G 13.9 11.8 2.1 GA 49.4 45.7 Α 36.7 42.5

25

			<u>.</u>			T
	Male	Alleles	*G	41.4	37.0	4.4
			*A	58.6	63.0	
		Genotypes	G	18.4	10.8	7.7
5			GA	45.9	52.5	
			Α	35.7	36.7	
	Total	Alleles	*G	40.0	35.9	4.1
			*A_	60.0	64.1	
10		Genotypes	G	16.1	11.2	4.9
			GA	47.7	49.4	
			Α	36.2	39.4	

Figure 20 graphically shows these results of allele and genotype

15 distribution in the age and sex stratified Caucasian population.

## Morbidity marker 3: human methionine sulfoxide reductase A (msrA)

The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

## Methionine sulfoxide reductase A (#63306)

PCR Amplification and BiomassPROBE assay detection of the human methioine sulfoxid reductase A (h-msr-A) in a healthy donor population PCR Amplification of donor population for h-msr-A

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50μl PCR reaction with 100ng-1ug of pooled human genomic DNA templates in a 50μl PCR reaction. Individual DNA concentrations within the pooled samples were present in an equal concentration with

the final concentration ranging from 1-25ng. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-TTTCTCTGCACAGAGAGGC-3' (SEQ ID NO: 49), 2pmol of the reverse primer

5'-AGCGGATAACAATTTCACACAGGGCTGAAATCCTTCGCTTTACC-3' (SEQ ID NO: 50), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon

5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 51). After an initial round of amplification of the target with the specific forward and reverse primers, the 5' biotinylated universal primer was then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated
double stranded DNA amplicon and and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min.

## Immobilization of DNA

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded

15

20

25

amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

## BiomassPROBE assay analysis of donor population for h-msr A

Genotyping using the BiomassPROBE assay methods was carried out by resuspending the he DNA coated magnetic beads in 26mM Tris-HCl pH 9.5, 6.5 mM MgCl₂, 50mM of dTTPs and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGAAAAGGGAGAGAGAGAGAG'3' (Operon) (SEQ ID NO: 52). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH.Cl and transfer of 150nl

denaturation from the template with 50mM NH₄Cl and transfer of 150nl each sample to a silicon chip preloaded with 150nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP is represented as a T to C tranversion in the sequence of two ESTs. The wild type is represented by having a T at position 128 of GenBank Accession No. AW 195104, which represents the nucleotide sequence of an EST which is a portion of the wild type human msrA gene (SEQ ID NO: 39). The SNP is presented as a C at position 129 of GenBank Accession No. AW 874187, which represents the nucleotide sequence of an EST which is a portion of an allele of the human msrA gene (SEQ ID NO: 40).

In a genomic sequence the SNP is represented as an A to G transversion. The primer utilized in the BioMass probe reaction had a mass of 5654.8 daltons. In the presence of the SNP the primer is extended by the incorporation of a ddC and has a mass of 5928. In the presence of the wildtype the primer is extended by adding a dT and a DDC to produce a mass of 6232.1 daltons.

15

20

25

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males and 552 individuals between the age of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the nontranslated 3'region of h-msr-A.

Genotype difference between male age group among healthy individuals is significant. For the male population allele significance is p = 0.0009 and genotype significance is p = 0.003. The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human methionine sulfoxide reductase (h-msrA). The exact localization is 451 base pairs downstream the stop codon (TAA). It is very likely that this SNP is in linkage disequilibrium (LD) with another polymorphism more upstream in the coding or promoter region; thus, it is not directly cause morbidity. The enzyme methionine sulfoxide reductase has been proposed to exhibit multiple biological functions. It may serve to repair oxidative protein damage but also play an important role in the regulation of proteins by activation or inactivation of their biological functions (Moskovitz et al. (1990) PNAS 95:14071-14075). It has also been shown that its activity is significantly reduced in brain tissues of Alzheimer patients (Gabbita et al., (1999) J. Neurochem 73:1660-1666). It is scientifically conceivable that proteins involved in the metabolism of reactive oxygen species are associated to disease.

20

#### CONCLUSION

The use of the healthy population provides for the identification of morbidity markers. The identification of proteins involved in the G-protein coupled signaling transduction pathway or in the detoxification of 5 oxidative stress can be considered as convincing results. Further confirmation and validation of other potential polymorphisms already identified in silico in the gene encoding the human protein kinase A anchoring protein could even provide stronger association to morbidity and demonstrate that this gene product is a suitable pharmaceutical or diagnostic target.

#### **EXAMPLE 4**

## **MALDI-TOF Mass Spectrometry Analysis**

All of the products of the enzyme assays listed below were analyzed by MALDI-TOF mass spectrometry. A diluted matrix solution (0.15µL) containing of 10:1 3-hydroxypicolinic acid:ammonium citrate in 1:1 water:acetonitrile diluted 2.5-fold with water was pipetted onto a SpectroChip (Sequenom, Inc.) and was allowed to crystallize. Then, 0.15µL of sample was added. A linear PerSeptive Voyager DE mass spectrometer or Bruker Biflex MALDI-TOF mass spectrometer, operating in positive ion mode, was used for the measurements. The sample plates were kept at 18.2 kV for 400 nm after each UV laser shot (approximate 250 laser shots total), and then the target voltage was raised to 20 kV. The original spectra were digitized at 500 MHz.

#### **EXAMPLE 5**

#### 25 Sample Conditioning

Where indicated in the examples below, the products of the enzymatic digestions were purified with ZipTips (Millipore, Bedford, MA). The ZipTips were pre-wetted with 10  $\mu$ L 50% acetonitrile and equilibrated 4 times with 10  $\mu$ l 0.1 M TEAAc. The oligonucleotide fragments were

bound to the C18 in the ZipTip material by continuous aspiration and dispension of each sample into the ZipTip. Each digested oligonucleotide was conditioned by washing with 10  $\mu$ L 0.1 M TEAAc, followed by 4 washing steps with 10  $\mu$ L H₂O. DNA fragments were eluted from the Ziptip with 7  $\mu$ L 50% acetonitrile.

Any method for condition the samples may be employed. Methods for conditioning, which generally is used to increase peak resolution, are well known (see, e.g., International PCT application No. WO 98/20019).

#### **EXAMPLE 6**

## 10 DNA Glycosylase-Mediated Sequence Analysis

DNA Glycosylases modifies DNA at each position that a specific nucleobase resides in the DNA, thereby producing abasic sites. In a subsequent reaction with another enzyme, a chemical, or heat, the phosphate backbone at each abasic site can be cleaved.

The glycosylase utilized in the following procedures was uracil-DNA glycosylase (UDG). Uracil bases were incorporated into DNA fragments in each position that a thymine base would normally occupy by amplifying a DNA target sequence in the presence of uracil. Each uracil substituted DNA amplicon was incubated with UDG, which cleaved each uracil base in the amplicon, and was then subjected to conditions that effected backbone cleavage at each abasic site, which produced DNA fragments. DNA fragments were subjected to MALDI-TOF mass spectrometry analysis. Genetic variability in the target DNA was then assessed by analyzing mass spectra.

Glycosylases specific for nucleotide analogs or modified nucleotides, as described herein, can be substituted for UDG in the following procedures. The glycosylase methods described hereafter, in conjunction with phosphate backbone cleavage and MALDI, can be used to analyze DNA fragments for the purposes of SNP scanning, bacteria

15

20

15

20

25

typing, methylation analysis, microsatellite analysis, genotyping, and nucleotide sequencing and re-sequencing.

#### A. Genotyping

A glycosylase procedure was used to genotype the DNA sequence encoding UCP-2 (Uncoupling Protein 2). The sequence for UCP-2 is deposited in GenBank under accession number AF096289. The sequence variation genotyped in the following procedure was a cytosine (C-allele) to thymine (T-allele) variation at nucleotide position 4790, which results in a alanine to valine mutation at position 55 in the UCP-2 polypeptide.

DNA was amplified using a PCR procedure with a 50  $\mu$ L reaction volume containing of 5 pmol biotinylated primer having the sequence 5′-TGCTTATCCCTGTAGCTACCCTGTCTTGGCCTTGCAGATCCAA-3′ (SEQ ID NO: 91), 15 pmol non-biotinylated primer having the sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 92), 200  $\mu$ M dATP, 200  $\mu$ M dCTP, 200  $\mu$ M dGTP, 600  $\mu$ M dUTP (to fully replace dTTP), 1.5 mM to 3 mM MgCl₂, 1 U of HotStarTaq polymerase, and 25 ng of CEPH DNA. Amplification was effected with 45 cycles at an annealing temperature of 56°C.

The amplification product was then immobilized onto a solid support by incubating 50  $\mu$ L of the amplification reaction with 5  $\mu$ L of prewashed Dynabeads for 20 minutes at room temperature. The supernatant was removed, and the beads were incubated with 50  $\mu$ L of 0.1 M NaOH for 5 minutes at room temperature to denature the double-stranded PCR product in such a fashion that single-stranded DNA was linked to the beads. The beads were then neutralized by three washes with 50  $\mu$ L 10 mM TrisHCI (pH 8). The beads were resuspended in 10  $\mu$ L of a 60mM TrisHCI/1mM EDTA (pH 7.9) solution, and 1 U uracil DNA glycosylase was add d to the solution for 45 minutes at 37°C to remove uracil nucleotides present in the single-stranded DNA linked to the beads.

The beads were then washed two times with 25  $\mu$ L of 10 mM TrisHCI (pH 8) and once with 10  $\mu$ L of water. The biotinylated strands were then eluted from the beads with 12  $\mu$ L of 2 M NH₄OH at 60°C for 10 minutes. The backbone of the DNA was cleaved by incubating the samples for 10 min at 95°C (with a closed lid), and ammonia was evaporated from the samples by incubating the samples for 11 min at 80°C.

The cleavage fragments were then analyzed by MALDI-TOF mass spectrometry as described in Example 4. The T-allele generated a unique fragment of 3254 Daltons. The C-allele generated a unique fragment of 4788 Daltons. These fragements were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in UCP-2.

## B. Glycosylase Analysis Utilizing Pooled DNA Samples

The glycosylase assay was conducted using pooled samples to detect genetic variability at the UCP-2 locus. DNA of known genotype 15 was pooled from eleven individuals and was diluted to a fixed concentration of 5 ng/ $\mu$ L. The procedure provided in Example 3A was followed using 2 pmol of forward primer having a sequence of 5'-CCCAGTCACGACGTTGTAAAACGTCTTGGCCTTGCAGATCCAAG- 3' 20 (SEQ ID NO: 93) and 15 pmol of reverse primer having the sequence 5'-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3' (SEQ ID NO: 94). In addition, 5 pmol of biotinylated primer having the sequence 5'bioCCCAGTCACGACGTTGTAAAACG 3' (SEQ ID NO: 97) may be introduced to the PCR reaction after about two cycles. The 25 fragments were analyzed via MALDI-TOF mass spectroscopy (Example 4). As determined in Example 3A, the T-allele, which generated a unique fragment of 3254 Daltons, could be distinguished in mass spectra from the C-allele, which generated a unique fragment of 4788 Daltons. Allelic frequency in the pooled samples was quantified by integrating the area

under each signal corresponding to an allelic fragment. Integration was accomplished by hand calculations using equations well known to those skilled in the art. In the pool of eleven samples, this procedure suggested that 40.9% of the individuals harbored the T allele and 59.09% of the individuals harbored the C allele.

A glycosylase procedure was utilized to identify microsatellites of

## C. Glycosylase-Mediated Microsatellite Analysis

the Bradykinin Receptor 2 (BKR-2) sequence. The sequence for BKR-2 is deposited in GenBank under accession number X86173. BKR-2 includes a SNP in the promoter region, which is a C to T variation, as well as a SNP in a repeated unit, which is a G to T variation. The procedure provided in Example 3A was utilized to identify the SNP in the promotor region, the SNP in the microsattelite repeat region, and the number of repeated units in the microsattelite region of BKR-2. Specifically, a forward PCR primer having the sequence 5'-CTCCAGCTGGGCAGGAGTGC-3' (SEQ ID NO: 95) and a reverse primer having the sequence 5'-CACTTCAGTCGCTCCCT-3' (SEQ ID NO: 96) were utilized to amplify BKR-2 DNA in the presence of uracil. The amplicon was fragmented by UDG followed by backbone cleavage. The

With regard to the SNP in the BKR-2 promotor region having a C to T variation, the C-allele generated a unique fragment having a mass of 7342.4 Daltons and the T-allele generated a unique fragment having a mass of 7053.2 Daltons. These fragments were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in the promotor region of BKR-2.

cleavage fragments were analyzed by MALDI-TOF mass spectrometry as

10

15

20

25

described in Example 4.

With regard to the SNP in the BKR-2 repeat region having a G to T variation, the T-allele generated a unique fragment having a mass of 1784 Daltons, which was readily detected in a mass spectrum. Hence, the presence of the T-allele was indicative of the G to T sequence variation in the repeat region of BKR-2.

In addition, the number of repeat regions was distinguished between individuals having two repeat sequences and individuals having three repeat sequences in BKR-2. The DNA of these individuals did not harbor the G to T sequence variation in the repeat sequence as each repeat sequence contained a G at the SNP locus. The number of repeat regions was determined in individual samples by calculating the area under a signal corresponding to a unique DNA fragment having a mass of 2771.6 Daltons. This signal in spectra generated from individuals having two repeat regions had an area that was thirty-three percent less than the area under the same signal in spectra generated from individuals having three repeat regions. Thus, the procedures discussed above can be utilized to genotype individuals for the number of repeat sequences present in BKR-2.

## D. Bisulfite Treatment Coupled with Glycosylase Digestion

Bisulfite treatment of genomic DNA can be utilized to analyze positions of methylated cytosine residues within the DNA. Treating nucleic acids with bisulfite deaminates cytosine residues to uracil residues, while methylated cytosine remains unmodified. Thus, by comparing the sequence of a PCR product generated from genomic DNA that is not treated with bisulfite with the sequence of a PCR product generated from genomic DNA that is treated with bisulfite, the degree of methylation in a nucleic acid as well as the positions where cytosine is methylated can be deduced.

5

10

20

WO 01/027857 PCT/US00/28413

Genomic DNA (2  $\mu$ g) was digested by incubation with 1  $\mu$ L of a restriction enzyme at 37°C for 2 hours. An aliquot of 3 M NaOH was added to yield a final concentration of 0.3M NaOH in the digestion solution. The reaction was incubated at 37°C for 15 minutes followed by treatment with 5.35M urea, 4.44M bisulfite, and 10mM hydroquinone, where the final concentration of hydroquinone is 0.5 mM.

The sample that was treated with bisulfite (sample A) was compared to the same digestion sample that had not undergone bisulfite treatment (sample B). After sample A was treated with bisulfite as described above, sample A and sample B were amplified by a standard PCR procedure. The PCR procedure included the step of overlaying each sample with mineral oil and then subjecting the sample to thermocycling (20 cycles of 15 minutes at 55°C followed by 30 seconds at 95°C). The PCR reaction contained four nucleotide bases, C, A, G, and U. The mineral oil was removed from each sample, and the PCR products were purified with glassmilk. Sodium iodide (3 volumes) and glassmilk (5  $\mu$ L) were added to samples A and B. The samples were then placed on ice for 8 minutes, washed with 420  $\mu$ L cold buffer, centrifuged for 10 seconds, and the supernatant fractions were removed. This process was repeated twice and then 25  $\mu$ L of water was added. Samples were incubated for 5 minutes at 37 °C, were centrifuged for 20 seconds, and the supernatant fraction was collected, and then this incubation/centrifugation/supernatant fraction collection procedure was repeated. 50  $\mu$ L 0.1 M NaOH was then added to the samples to denature the DNA. The samples were incubated at room temperature for 5 minutes, washed three times with 50  $\mu$ L of 10 mM TrisHCI (pH 8), and resuspended in 10  $\mu$ L 60mM TrisHCI/1mM EDTA, pH 7.9.

The sequence of PCR products from sample A and sample B were then treated with 2U of UDG (MBI Fermentas) and then subjected to

20

backbone cleavage, as described herein. The resulting fragments from each of sample A and sample B were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. Sample A gave rise to a greater number of fragments than the number of fragments arising from sample B, indicative that the nucleic acid harbored at least one methylated cytosine moiety.

### **EXAMPLE 7**

## Fen-Ligase-Mediated Haplotyping

Haplotyping procedures permit the selection of a fragment from one of an individual's two homologous chromosomes and to genotype linked SNPs on that fragment. The direct resolution of haplotypes can yield increased information content, improving the diagnosis of any linked disease genes or identifying linkages associated with those diseases. In previous studies, haplotypes were typically reconstructed indirectly through pedigree analysis (in cases where pedigrees were available) through laborious and unreliable allele-specific PCR or through single-molecule dilution methods well known in the art.

A haplotyping procedure was used to determine the presence of two SNPs, referred to as SNP1 and SNP2, located on one strand in a DNA sample. The haplotyping procedure used in this assay utilized Fen-1, a site-specific "flap" endonuclease that cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. The two overlapping oligonucleotides in this example were short arm and long arm allele-specific adaptors. The target DNA was an amplified nucleic acid that had been denatured and contained SNP1 and SNP2.

The short arm adaptor included a unique sequence not found in the target DNA. The 3' distal nucleotide of the short arm adaptor was identical to one of the SNP1 alleles. Moreover, the long arm adaptor included two regions: a 3' region complementary to the short arm and a

15

20

5'gene-specific region complementary to the fragment of interest adjacent to the SNP. If there was a match between the adaptor and one of the homologues, the Fen enzyme recognized and cleaved the overlapping flap. The short arm of the adaptor was then ligated to the remainder of 5 the target fragment (minus the SNP site). This ligated fragment was used as the forward primer for a second PCR reaction in which only the ligated homologue was amplified. The second PCR product (PCR2) was then analyzed by mass spectrometry. If there was no match between the adaptors and the target DNA, there was no overlap, no cleavage by Fen-1, and thus no PCR2 product of interest.

If there was more than one SNP in the sequence of interest, the second SNP (SNP2) was found by using an adaptor that was specific for SNP2 and hybridizing the adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures were repeated for the PCR2 product containing the first SNP. If the amplified product yielded a second SNP, then SNP1 and SNP2 were on the same fragment.

If the SNP is unknown, then four allele-specific adaptors (e.g. C, G, A, and T) can be used to hybridize with the target DNA. The substrates are then treated with the Fen-ligase protocol, including amplification. The PCR2 products may be analyzed by PROBE, as described herein, to determine which adaptors were hybridized to the DNA target and thus identify the SNPs in the sequence.

A Fen-ligase assay was used to detect two SNPs present in Factor VII. These SNPs are located 814 base pairs apart from each other. SNP1 was located at position 8401 (C to T), and SNP2 was located at 9215 (G to A) (SEQ ID #).

#### Α. First Amplification Step

A PCR product (PCR1) was generated for a known heterozygous individual at SNP1, a short distance from the 5' end of the SNP.

10

15

20

Specifically, a 10  $\mu$ L PCR reaction was performed by mixing 1.5 mM MgCl₂, 200  $\mu$ M of each dNTP, 0.5 U HotStar polymerase, 0.1 $\mu$ M of a forward primer having the sequence 5'-GCG CTC CTG TCG GTG CCA (SEQ ID NO: 56), 0.1 $\mu$ M of a reverse primer having the sequence 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 57), and 1 ng of genomic DNA. The annealing temperature was 58°C, and the amplification process yielded fragments that were 861 bp in length.

The PCR1 reaction mixture was divided in half and was treated with an exonuclease 1/SAP mixture (0.22  $\mu$ L mixture/5  $\mu$ L PCR1 reaction) which contained 1.0 $\mu$ L SAP and 0.1  $\mu$ L exon1. The exonuclease treatment was done for 30 minutes at 37°C and then 20 minutes at 85°C to denature the DNA.

## B. Adaptor Oligonucleotides

A solution of allele-specific adaptors (C and T), containing of one 15 long and one short oligonucleotide per adaptor, was prepared. The long arm and short arm oligonucleotides of each adaptor (10 $\mu$ M) were mixed in a 1:1 ratio and heated for 30 seconds at 95°C. The temperature was reduced in 2°C increments to 37°C for annealing. The C-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTC (SEQ ID NO: 58) and 20 a long arm sequence of 5'-CAG AGA GTA CCC CTC GAC CGT GCA TGC ATG (SEQ ID NO: 59). Hence, the long arm of the adaptor was 30 bp (15 bp gene-specific), and the short arm was 15bp. The T-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTT (SEQ ID NO: 60) and a long arm sequence of 5'-GTA CGT ACG TGC CAA CTC CCC ATG AGA 25 GAC (SEQ ID NO: 61). The adaptor could also have a hairpin structure in which the short and long arm are separated by a loop containing of 3 to 10 nucleotides (SEQ ID NO: 118).

## C. FEN-ligase r action

In two tubes (one tube for each allele-specific adaptor per sample) was placed a solution (Solution A) containing of 3.5  $\mu$ l 10 mM 16%PEG/50 mM MOPS, 1.2  $\mu$ l 25 mM MgCl₂, 1.5  $\mu$ l 10X Ampligase Buffer, and 2.5  $\mu$ l PCR1. Each tube containing Solution A was incubated at 95°C for 5 minutes to denature the PCR1 product. A second solution (Solution B) containing of 1.65  $\mu$ l Ampligase (Thermostable ligase, Epicentre Technologies), 1.65  $\mu$ l 200ng/ $\mu$ l MFEN (from *Methanocuccus jannaschii*), and 3.0  $\mu$ l of an allele specific adaptor (C or T) was prepared. Thus, different variations of Solution B, each variation containing of different allele-specific adaptors, were made. Solution B was added to Solution A at 95°C and incubated at 55°C for 3 hours. The total reaction volume was 15.0  $\mu$ l per adaptor-specific reaction. For a bi-allelic system, 2 x 15.0  $\mu$ l reactions were required.

The Fen-ligase reaction in each tube was then deactivated by adding 8.0  $\mu$ l 10 mM EDTA. Then, 1.0  $\mu$ l exolll/Buffer (70%/30%) solution was added to each sample and incubated 30 minutes at 37°C, 20 minutes at 70°C (to deactivate exolll), and 5 minutes at 95°C (to denature the sample and dissociate unused adaptor from template). The samples were cooled in an ice slurry and purified on UltraClean PCR Clean-up (MoBio) spin columns which removed all fragments less than 100 base pairs in length. The fragments were eluted with 50  $\mu$ l H₂O.

# D. Second Amplification Step

A second amplification reaction (PCR2) was conducted in each sample tube using the short arm adaptor (C or T) sequence as the forward primer (minus the SNP1 site). Only the ligated homologue was amplified. A standard PCR reaction was conducted with a total volume of  $10.0 \,\mu$ l containing of 1X Buffer (final concentration), 1.5 mM final concentration MgCl₂, 200  $\mu$ M final concentration dNTPs, 0.5 U HotStar polymerase, 0.1  $\mu$ M final concentration forward primer 5'-CAT GCA TGC ACG GT (SEQ ID

15

20

15

25

NO: 62), 0.1 $\mu$ M final concentration reverse primer 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 63), and 1.0  $\mu$ l of the purified FEN-ligase reaction solution. The annealing temperature was 58°C. The PCR2 product was analyzed by MALDI TOF mass spectroscopy as described in Example 4. The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons,

The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons representing the C allele.

# E. Genotyping Additional SNPs

The second SNP (SNP2) can be found by using an adaptor that is specific for SNP2 and hybridizing that adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures are repeated for the PCR2 product containing the first SNP. If the amplified product yields a second SNP, then SN1 and SN2 are on the same fragment. The mass spectrum of SNP2, representing the T allele, showed a mass of 6359.88 Daltons.

This assay can also be performed upon pooled DNA to yield haplotype frequencies as described herein. The Fen-ligase assay can be used to analyze multiplexes as described herein.

## **EXAMPLE 8**

## Nickase-Mediated Sequence Analysis

20 A DNA nickase, or DNase, was used to recognize and cleave one strand of a DNA duplex. Two nickases usd were NY2A nickase and NYS1 nickase (Megabase) which cleave DNA at the following sites:

NY2A: 5'...R AG...3'  
3'...Y
$$\downarrow$$
TC...5' where R = A or G and Y = C or T  
NYS1: 5'... $\downarrow$ CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

15

20

25

# A. Nickase Digestion

Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 6 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of double-stranded oligonucleotide template having a sequence of 5'-CGC AGG GTT TCC TCG TCG CAC TGG GCA TGT G-3' (SEQ ID NO: 90, Operon, Alameda, CA) synthesized using standard phosphoramidite chemistry. With a total volume of 20µL, the reaction mixture was incubated at 37°C for 5 hours, and the digestion products were purified using ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 1. The nickase Cvi NY2A yielded three fragments with masses 4049.76 Daltons, 5473.14 Daltons, and 9540.71 Daltons. The Cvi NYS1 nickase yielded fragments with masses 2063.18 Daltons, 3056.48 Daltons, 6492.81 Daltons, and 7450.14 Daltons.

# B. Nickase Digestion of Pooled Samples

DQA (HLA ClassII-DQ Alpha, expected fragment size = 225bp) was amplified from the genomic DNA of 100 healthy individuals. DQA was amplified using standard PCR chemistry in a reaction having a total volume of 50 μL containing of 10 mM Tris-HCl, 10 mM KCl (pH 8.3), 2.5 mM MgCl₂, 200 μM of each dNTP, 10 pmol of a forward primer having the sequence 5'-GTG CTG CAG GTG TAA ACT TGT ACC AG-3'(SEQ ID NO: 64), 10 pmol of a reverse primer having the sequence 5'-CAC GGA TCC GGT AGC AGC GGT AGA GTT G-3'(SEQ ID NO: 65), 1 U DNA polymerase (Stoffel fragment, Perkin Elme r), and 200ng human genomic DNA (2ng DNA/individual). The template was denatured at 94°C for 5 minutes. Thermal cycling was continued with a touch-down program that included 45 cycles of 20 seconds at 94°C, 30 seconds at 56 C, 1

minute at 72°C, and a final extension of 3 minutes at 72°C. The crude PCR product was used in the subsequent nickase reaction.

The unpurified PCR product was subjected to nickase digestion. Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25mM), BSA (1 mg/mL), and 5 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of the amplified template with a total reaction volume of 20µL. The mixture was then incubated at 37°C for 5 hours. The digestion products were purified with either ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. This assay can also be used to do multiplexing and standardless genotyping as described herein.

To simplify the nickase mass spectrum, the two complementary strands can be separated after digestion by using a single-stranded undigested PCR product as a capture probe. This probe (preparation shown below in Example 8C) can be hybridized to the nickase fragments in hybridization buffer containing 200 mM sodium citrate and 1% blocking reagent (Boehringer Mannheim). The reaction is heated to 95°C for 5 minutes and cooled to room temperature over 30 minutes by using a thermal cycler (PTC-200 DNA engine, MJ Research, Waltham, MA). The capture probe-nickase fragment is immobilized on 140  $\mu$ g of streptavidincoated magnetic beads. The beads are subsequently washed three times with 70 mM ammonium citrate. The captured single-stranded nickase fragments are eluted by heating to 80°C for 5 minutes in 5  $\mu$ L of 50 mM ammonium hydroxide.

# C. Preparation of Capture Probe

The capture probe is prepared by amplifying the human  $\beta$ -globin gene (3' end of intron 1 to 5' end of exon 2) via PCR methods in a total volume of 50  $\mu$ L containing of GeneAmp 1XPCR Buffer II, 10 mM Tris-

15

20

HCI, pH 8.3, 50 mM KCI, 2 mM MgCI₂, 0.2 mM dNTP mix, 10pmol of each primer (forward primer 5'-ACTGGGCATGTGGAGACAG-3'(SEQ ID NO: 66) and biotinylated reverse primer bio5'-GCACTTTCTTGCCATGAG-3'(SEQ ID: 67), 2 U of AmpliTaq Gold, and 200 ng of human genomic DNA. The template is denatured at 94°C for 8 minutes. Thermal cycling is continued with a touch-down program that included 11 cycles of 20 seconds at 94°C, 30 seconds at 64°C, 1 minute at 72°C; and a final extension of 5 minutes at 72°C. The amplicon is purified using UltraClean PCR clean-up kit (MO Bio Laboratories, Solano Beach, CA).

10

15

20

25

#### **EXAMPLE 9**

# Multiplex Type IIS SNP Assay

A Type IIS assay was used to identify human gene sequences with known SNPs. The Type IIS enzyme used in this assay was Fok I which effected double-stranded cleavage of the target DNA. The assay involved the steps of amplification and Fok I treatment of the amplicon. In the amplification step, the primers were designed so that each PCR product of a designated gene target was less than 100 bases such that a Fok I recognition sequence was incorporated at the 5' and 3' end of the amplicon. Therefore, the fragments that were cleaved by Fok I included a center fragment containing the SNP of interest.

Ten human gene targets with known SNPs were analyzed by this assay. Sequences of the ten gene targets, as well as the primers used to amplify the target regions, are found in Table 5. The ten targets were lipoprotein lipase, prothrombin, factor V, cholesterol ester transfer protein (CETP), factor VII, factor XIII, HLA-H exon 2, HLA-H exon 4, methylenetetrahydrofolate reductase (MTHR), and P53 exon 4 codon 72.

Amplification of the ten human gene sequences were carried out in a single 50  $\mu$ L volume PCR reaction with 20 ng of human genomic DNA

template in 5 PCR reaction tubes. Each reaction vial contained 1X PCR buffer (Qiagen), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen), 4 mM MgCl₂, and 10pmol of each primer. US8, having sequence of 5'TCAGTCACGACGTT3'(SEQ ID NO: 68), and US9, having sequence of 5'CGGATAACAATTTC3'(SEQ ID NO: 69), were used for the forward and reverse primers respectively. Moreover, the primers were designed such that a Fok I recognition site was incorporated at the 5' and 3' ends of the amplicon. Thermal cycling was performed in 0.2 mL tubes or a 96 well plate using a MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94°C for 5 minutes; 45 cycles: 94°C for 20 seconds, 56°C for 20 seconds, 72°C for 60 seconds; and 72°C for 3 minutes.

Following PCR, the sample was treated with 0.2 U Exonuclease I (Amersham Pharmacia) and S Alkaline Phosphotase (Amersham Pharmacia) to remove the unincorporated primers and dNTPs. Typically, 0.2 U of exonuclease I and SAP were added to 5  $\mu$ L of the PCR sample. The sample was then incubated at 37°C for 15 minutes. Exonuclease I and SAP were then inactivated by heating the sample up to 85°C for 15 minutes. Fok I digestion was performed by adding 2 U of Fok I (New 20 England Biolab) to the 5 uL PCR sample and incubating at 37°C for 30 minutes. Since the Fok I restriction sites are located on both sides of the amplicon, the 5' and 3' cutoff fragments have higher masses than the center fragment containing the SNP. The sample was then purified by anion exchange and analyzed by MALDI-TOF mass spectrometry as 25 described in Example 4. The masses of the gene fragments from this multiplexing experiment are listed in Table 6. These gene fragments were resolved in mass spectra thereby allowing multiplex analysis of sequence variability in these genes.

Table 5
Genes for Multiplex Type IIS Assay

Gene	Sequence	Seq. ID No.	Primers	S IE
Lipoprotein Lipase (Asn291Ser)	cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg agatca[a>g]taa agtcagagcc	98-99	5' caatttcatcgctggatgcaatct	2
(ASILES TOEL)	aaaagaagca gcaaaatgta		gggctatgagatc 3' 5' caatttcacacagcggatgcttct tttggctctgact 3'	7
Prothrombin	26731 gaattatttt tgtgttteta aaactatggt te <u>ccaataaa agtgaetete</u> 26781 <u>age[g+a]ageete</u> <u>aatgeteesa</u>	100- 101	5' tcagtcacgacgttggatgccaa taaaagtgactctcagc 3'	7
	gtgctattca tgggcagctc tctgggctca		5' cggataacaatttcggat <u>gcact</u> gggagcattgaggc 3'	7
Factor V (Arg506Gin)	taataggact acttctaatc tgtaa <u>gagca</u> gatccctgga caggc[g+a]agga	102- 103	5' tcagtcacgacgttggatgagca gatccctggacaggc 3'	7
	atacaggtat tttgtccttg aagtaacctt tcag		5' cggataacaatttcggat <u>ggaca</u> <u>aaatacctgtattcc</u> 3'	7
Cholesterol ester transfer protein (CETP) (I405V)	1261 ctcaccatgg gcatttgatt gcagagcage tccgagtcc(g≻a) tccagagctt	104- 105	5' tcagtcacgacgttggat <u>gcaga</u> g <u>cagctccgagtc</u> 3'	7
	1311 <u>cetgeagtea atgateaceg etg</u> tggggeat ecetgaggte atgtetegta		5' <u>cageggtgateattggatgeagg</u> <u>aagetetgg</u> 3'	7
Factor VII (R353Q)	1221 agcaaggact cetgeaaggg ggacagtgga ggc <u>ecacatg ecacecacta</u>	106- 107	5' tcagtcacgacgttggat <u>gccca</u> catgccaccactac 3'	7
	1271 <u>cc[a+g]gggcacg tggtacctga</u> <u>cgggcatcg</u> t cagctggggc cagggctgcg		5' cggataacaatttc <u>ggatgcccg</u> <u>tcaggtaccacg</u> 3'	7
Factor XIII (V34L)	111 caataactot aatgoagogg aagatgacot goocacagtg gagottoagg	108- 109	5' tcagtcacgacgttgga <u>tgccca</u> cagtggagcttcag 3'	8
	161 gc[g>t]tggtgcc ccgggg <u>cgtc</u> <u>aacetgcaag gtatgagc</u> at accecette		5' gctcataccttgcaggatgacg 3'	8
HLA-H exon 2 (His63Asp)	361 ttgaagettt gggetaegtg <u>gatgaccage</u> tgttegtgtt etatgat[e>g]at	110- 111	5' tcagtcacgacgttggatgacca gctgttcgtgttc 3'	8
	411 <u>gagagtegee gtgtggagee eegaaeteea</u> tgggttteea gtagaattte		5' ta <u>catggagttcgggg</u> at <u>gcaca</u> cggcgactctc 3'	8
HLA-H exon 4 (Cys282Tyr)	1021 ggataacett ggetgtacee ce <u>tggggaag</u> agcagagata tacgt[g►a]ccag	112- 113	5' tcagtcacgacgttgga <u>tgggga</u> agagcagagatatacgt 3'	8
	1071 <u>gtggagcace caggectgga teagececte</u> attgtgatet gggagcecte		5' gaggggetgatecaggatgggt getecae 3'	8

Gene	Sequence	Seq. ID No.	Primers	Seq. ID No.
Methylentetrahy drofolateredctas e (MTHR) (Ala222Val)	761 tgaagcactt gaagga gaag gtgtetgegg gag[c>t] <u>egattt cateateaeg</u> 811 <u>cage</u> ttttet ttgaggetga caeattette	114- 115	5' tcagtcacgacgttggatgggaa agagcagagatatacgt 3' 5' gaggggctgatccaggatgggt gctcac 3'	86 87
P53 Exon4 Codon 72 (Arg72Pro)	12101 tccagatgaa geteecagaa tgccagagge tgctcccc(g>c)c gtggcccctg 12151 <u>caccagcage</u> tcctacaccg gcggcccctg	116- 117	5' gatgaageteecaggatgeeag agge 3'  5' geegeeggtgtaggatgetgetg gtge 3'	88 89

Table 6
The mass of Center Fragments for Ten Different SNP Typing by
IIS Assay

Gene	LPL(*	LPL(Asm291Ser)	_	Prothrombin	FV( ^{Arg} i	506 ^{Gln} )	FV(A''9506 ^{GIn} ) CETP('405')	405')	FVII( ^R 353 ^a )	353°)	FXIII	FXIII("34)
Genotype	٨	ی,	ပ	4	ပ	∢	g	4	g	4	c	F
+ strand 6213 6220 E01E	6213	6220	E04E	000	:52						,	-
mass	2	0229	0400	2829	26//	5661	5661 3388 3372 6128 6112 5058 5033	3372	6128	6112	5058	5033
(Da)												
- strand	6129	6129 6114	5949 5964 5472 5487 3437 3452 6174 6100 401	5964	5472	5487	3437	3452	R17.4	0100	1010	
mass							<u> </u>	7	<u> </u>	80.0	0 84	4940
100)												

Gene	王	Hlah2	Ť	Hlah4	MTHR(	MTHR(Ala 2222Val)	P53exo	P53exon4(Arg7.2Pro)
Genotype	ပ	9	ပ	4	ပ	⊢	O	U
+ strand mass (Da)	5889	5929	4392	4392 4376 4400	4400	4415	4586	4546
strand mass (Da)	5836	5836 5796	4319	4319 4334 4368	4368	4352	4724	4764

#### **EXAMPLE 10**

Exemplary use of parental medical history parameter for stratification of healthy datebase

A healthy database can be used to associate a disease state with a specific allele (SNP) that has been found to show a strong association between age and the allele, in particular the homozygous genotype. The method involves using the same healthy database used to identify the age dependent association, however stratification is by information given by the donors about common disorders from which their parents suffered (the donor's familial history of disease). There are three possible answers a donor could give about the health status of their parents: neither were affected, one was affected or both were affected. Only donors above a certain minimum age, depending on the disease, are utilized, as the donors parents must be old enough to to have exhibited clinical disease phenotypes. The genotype frequency in each of these groups is determined and compared with each other. If there is an association of the marker in the donor to a disease the frequency of the heterozyous genotype will be increased. The frequency of the homozygous genotype should not increase, as it should be significantly underrepresented in the healthy population.

15

20

25

30

#### **EXAMPLE 11**

# Method and Device for Identifying a Biological Sample Description

In accordance with the present invention, a method and device for identifying a biological sample is provided. Referring now to FIG. 24, an apparatus 10 for identifying a biological sample is disclosed. The apparatus 10 for identifying a biological sample generally comprises a mass spectrometer 15 communicating with a computing device 20. In a preferred embodiment, the mass spectrometer may be a MALDI-TOF mass spectrometer manufactured by Bruker-Franzen Analytik GmbH; however, it will be appreciated that other mass spectrometers can be substituted. The computing device 20 is preferably a general purpose computing device. However, it will be appreciated that the computing device could be alternatively configured, for example, it may be integrated with the mass spectrometer or could be part of a computer in a larger network system.

The apparatus 10 for identifying a biological sample may operate as an automated identification system having a robot 25 with a robotic arm 27 configured to deliver a sample plate 29 into a receiving area 31 of the mass spectrometer 15. In such a manner, the sample to be identified may be placed on the plate 29 and automatically received into the mass spectrometer 15. The biological sample is then processed in the mass spectrometer to generate data indicative of the mass of DNA fragments in the biological sample. This data may be sent directly to computing device 20, or may have some preprocessing or filtering performed within the mass spectrometer. In a preferred embodiment, the mass spectrometer 15 transmits unprocessed and unfiltered mass spectrometry data to the computing device 20. However, it will be appreciated that the analysis in the computing device may be adjusted to accommodate preprocessing or filtering performed within the mass spectrometer.

Referring now to FIG. 25, a general method 35 for identifying a biological sample is shown. In method 35, data is received into a computing device from a test instrument in block 40. Preferably the data is received in a raw, unprocessed and unfilt red form, but alternatively may have some form of

WO 01/027857 PCT/US00/28413 93

filtering or processing applied. The test instrument of a preferred embodiment is a mass spectrometer as described above. However, it will be appreciated that other test instruments could be substituted for the mass spectrometer.

The data generated by the test instrument, and in particular the mass 5 spectrometer, includes information indicative of the identification of the biological sample. More specifically, the data is indicative of the DNA composition of the biological sample. Typically, mass spectrometry data gathered from DNA samples obtained from DNA amplification techniques are noisier than, for example, those from typical protein samples. This is due in part 10 because protein samples are more readily prepared in more abundance, and protein samples are more easily ionizable as compared to DNA samples. Accordingly, conventional mass spectrometer data analysis techniques are generally ineffective for DNA analysis of a biological sample. To improve the analysis capability so that DNA composition data can be more readily discerned, 15 a preferred embodiment uses wavelet technology for analyzing the DNA mass spectrometry data. Wavelets are an analytical tool for signal processing, numerical analysis, and mathematical modeling. Wavelet technology provides a basic expansion function which is applied to a data set. Using wavelet decomposition, the data set can be simultaneously analyzed in the time and 20 frequency domains. Wavelet transformation is the technique of choice in the analysis of data that exhibit complicated time (mass) and frequency domain information, such as MALDI-TOF DNA data. Wavelet transforms as described herein have superior denoising properties as compared to conventional Fourier analysis techniques. Wavelet transformation has proven to be particularly effective in interpreting the inherently noisy MALDI-TOF spectra of DNA samples. In using wavelets, a "small wave" or "scaling function" is used to transform a data set into stages, with each stage representing a frequency component in the data set. Using wavelet transformation, mass spectrometry data can be processed, filtered, and analyzed with sufficient discrimination to be useful for identification of the DNA composition for a biological sample.

Referring again to FIG. 25, the data received in block 40 is denoised in block 45. The denoised data then has a baseline correction applied in block 50.

25

15

20

25

30

A baseline correction is generally necessary as data coming from the test instrument, in particular a mass spectrometer instrument, has data arranged in a generally exponentially decaying manner. This generally exponential decaying arrangement is not due to the composition of the biological sample, but is a result of the physical properties and characteristics of the test instrument, and other chemicals involved in DNA sample preparation. Accordingly, baseline correction substantially corrects the data to remove a component of the data attributable to the test system, and sample preparation characteristics.

After denoising in block 45 and the baseline correction in block 50, a signal remains which is generally indicative of the composition of the biological sample. However, due to the extraordinary discrimination required for analyzing the DNA composition of the biological sample, the composition is not readily apparent from the denoised and corrected signal. For example, although the signal may include peak areas, it is not yet clear whether these "putative" peaks actually represent a DNA composition, or whether the putative peaks are result of a systemic or chemical aberration. Further, any call of the composition of the biological sample would have a probability of error which would be unacceptable for clinical or therapeutic purposes. In such critical situations, there needs to be a high degree of certainty that any call or identification of the sample is accurate. Therefore, additional data processing and interpretation is necessary before the sample can be accurately and confidently identified.

Since the quantity of data resulting from each mass spectrometry test is typically thousands of data points, and an automated system may be set to perform hundreds or even thousands of tests per hour, the quantity of mass spectrometry data generated is enormous. To facilitate efficient transmission and storage of the mass spectrometry data, block 55 shows that the denoised and baseline corrected data is compressed.

In a preferred embodiment, the biological sample is selected and processed to have only a limited range of possible compositions. Accordingly, it is therefore known where peaks indicating composition should be located, if present. Taking advantage of knowing the location of these expect d peaks, in block 60 the method 35 matches putative peaks in the processed signal to the

WO 01/027857 PCT/US00/28413

location of the expected peaks. In such a manner, the probability of each putative peak in the data being an actual peak indicative of the composition of the biological sample can be determined. Once the probability of each peak is determined in block 60, then in block 65 the method 35 statistically determines the composition of the biological sample, and determines if confidence is high enough to calling a genotype.

Referring again to block 40, data is received from the test instrument, which is preferably a mass spectrometer. In a specific illustration, FIG. 26 shows an example of data from a mass spectrometer. The mass spectrometer data 70 generally comprises data points distributed along an x-axis 71 and a y-axis 72. The x-axis 71 represents the mass of particles detected, while the y-axis 72 represents a numerical concentration of the particles. As can be seen in FIG. 26, the mass spectrometry data 70 is generally exponentially decaying with data at the left end of the x-axis 73 generally decaying in an exponential manner toward data at the heavier end 74 of the x-axis 71. However, the general exponential presentation of the data is not indicative of the composition of the biological sample, but is more reflective of systematic error and characteristics. Further, as described above and illustrated in FIG. 26, considerable noise exists in the mass spectrometry DNA data 70.

Referring again to block 45, where the raw data received in block 40 is denoised, the denoising process will be described in more detail. As illustrated in FIG. 25, the denoising process generally entails 1) performing a wavelet transformation on the raw data to decompose the raw data into wavelet stage coefficients; 2) generating a noise profile from the highest stage of wavelet coefficients; and 3) applying a scaled noise profile to other stages in the wavelet transformation. Each step of the denoising process is further described below.

Referring now to FIG. 27, the wavelet transformation of the raw mass spectrometry data is generally diagramed. Using wavelet transformation techniques, the mass spectrometry data 70 is sequentially transformed into stages. In each stage the data is represented in a high stage and a low stage, with the low stage acting as the input to the next sequential stage. For example, the mass spectrometry data 70 is transformed into stage 0 high data

10

15

20

25

82 and stage 0 low data 83. The stage 0 low data 83 is then used as an input to the next level transformation to generate stage 1 high data 84 and stage 1 low data 85. In a similar manner, the stage 1 low data 85 is used as an input to be transformed into stage 2 high data 86 and stage 2 low data 87. The transformation is continued until no more useful information can be derived by further wavelet transformation. For example, in the preferred embodiment a 24-point wavelet is used. More particularly a wavelet commonly referred to as the Daubechies 24 is used to decompose the raw data. However, it will be appreciated that other wavelets can be used for the wavelet transformation. Since each stage in a wavelet transformation has one-half the data points of the previous stage, the wavelet transformation can be continued until the stage n low data 89 has around 50 points. Accordingly, the stage n high 88 would contain about 100 data points. Since the preferred wavelet is 24 points long, little data or information can be derived by continuing the wavelet transformation on a data set of around 50 points.

FIG. 28 shows an example of stage 0 high data 95. Since stage 0 high data 95 is generally indicative of the highest frequencies in the mass spectrometry data, stage 0 high data 95 will closely relate to the quantity of high frequency noise in the mass spectrometry data. In FIG. 29, an exponential fitting formula has been applied to the stage 0 high data 95 to generate a stage 0 noise profile 97. In particular, the exponential fitting formula is in the format  $A_0 + A_1 EXP (-A_2 m)$ . It will be appreciated that other exponential fitting formulas or other types of curve fits may be used.

Referring now to FIG. 30, noise profiles for the other high stages are determined. Since the later data points in each stage will likely be representative of the level of noise in each stage, only the later data points in each stage are used to generate a standard deviation figure that is representative of the noise content in that particular stage. More particularly, in generating the noise profile for each remaining stage, only the last five percent of the data points in each stage ar analyz d to determin d a standard deviation number. It will be appreciated that other numbers—f points, or alternative methods could be us d to generate such a standard d viation figure.

10

15

25

15

20

25

30

The standard deviation number for each stage is used with the stage 0 noise profile (the exponential curve) 97 to generate a scaled noise profile for each stage. For example, FIG. 30 shows that stage 1 high data 98 has stage 1 high data 103 with the last five percent of the data points represented by area 99. The points in area 99 are evaluated to determine a standard deviation number indicative of the noise content in stage 1 high data 103. The standard deviation number is then used with the stage 0 noise profile 97 to generate a stage 1 noise profile.

In a similar manner, stage 2 high 100 has stage 2 high data 104 with the last five percent of points represented by area 101. The data points in area 101 are then used to calculate a standard deviation number which is then used to scale the stage 0 noise profile 97 to generate a noise profile for stage 2 data. This same process is continued for each of the stage high data as shown by the stage n high 105. For stage n high 105, stage n high data 108 has the last five percent of data points indicated in area 106. The data points in area 106 are used to determine a standard deviation number for stage n. The stage n standard deviation number is then used with the stage 0 noise profile 97 to generate a noise profile for stage n. Accordingly, each of the high data stages has a noise profile.

FIG. 31 shows how the noise profile is applied to the data in each stage. Generally, the noise profile is used to generate a threshold which is applied to the data in each stage. Since the noise profile is already scaled to adjust for the noise content of each stage, calculating a threshold permits further adjustment to tune the quantity of noise removed. Wavelet coefficients below the threshold are ignored while those above the threshold are retained. Accordingly, the remaining data has a substantial portion of the noise content removed.

Due to the characteristics of wavelet transformation, the lower stages, such as stage 0 and 1, will have more noise content than the later stages such as stage 2 or stage n. Indeed, stage n low data is likely to have little noise at all. Therefore, in a preferred embodiment the noise profiles are applied more aggressively in the lower stages and less aggressively in the later stages. For example, FIG. 31 shows that stage 0 high threshold is determined by multiplying

the stage 0 noise profile by a factor of four. In such a manner, significant numbers of data points in stage 0 high data 95 will be below the threshold and therefore eliminated. Stage 1 high threshold 112 is set at two times the noise profile for the stage 1 high data, and stage 2 high threshold 114 is set equal to the noise profile for stage 2 high. Following this geometric progression, stage n high threshold 116 is therefore determined by scaling the noise profile for each respective stage n high by a factor equal to  $(1/2^{n-2})$ . It will be appreciated that other factors may be applied to scale the noise profile for each stage. For example, the noise profile may be scaled more or less aggressively to accommodate specific systemic characteristics or sample compositions. As indicated above, stage n low data does not have a noise profile applied as stage n low data 118 is assumed to have little or no noise content. After the scaled noise profiles have been applied to each high data stage, the mass spectrometry data 70 has been denoised and is ready for further processing. A wavelet transformation of the denoised signal results in the sparse data set 120 as shown in FIG. 31.

Referring again to FIG. 25, the mass spectrometry data received in block 40 has been denoised in block 45 and is now passed to block 50 for baseline correction. Before performing baseline correction, the artifacts introduced by the wavelet transformation procedure are preferably removed. Wavelet transformation results vary slightly depending upon which point of the wavelet is used as a starting point. For example, the preferred embodiment uses the 24-point Daubechies-24 wavelet. By starting the transformation at the 0 point of the wavelet, a slightly different result will be obtained than if starting at points 1 or 2 of the wavelet. Therefore, the denoised data is transformed using every available possible starting point, with the results averaged to determine a final denoised and shifted signal. For example, FIG. 33 shows that the wavelet coefficient is applied 24 different times and then the results averaged to generate the final data set. It will be appreciated that other techniques may be used to accommodate the slight error introduced due to wavelet shifting.

The formula 125 is generally indicated in FIG. 33. Once the signal has been denoised and shifted, a denoised and shifted signal 130 is generated as

10

15

20

25

shown in FIG. 58. FIG. 34 shows an example of the wavelet coefficient 135 data set from the denoised and shifted signal 130.

99

FIG. 36 shows that putative peak areas 145, 147, and 149 are located in the denoised and shifted signal 150. The putative peak areas are systematically identified by taking a moving average along the signal 150 and identifying sections of the signal 150 which exceed a threshold related to the moving average. It will be appreciated that other methods can be used to identify putative peak areas in the signal 150.

Putative peak areas 145, 147 and 149 are removed from the signal 150 to create a peak-free signal 155 as shown in FIG. 37. The peak-free signal 155 is further analyzed to identify remaining minimum values 157, and the remaining minimum values 157 are connected to generate the peak-free signal 155.

FIG. 38 shows a process of using the peak-free signal 155 to generate a baseline 170 as shown in FIG. 39. As shown in block 162, a wavelet transformation is performed on the peak-free signal 155. All the stages from the wavelet transformation are eliminated in block 164 except for the n low stage. The n low stage will generally indicate the lowest frequency component of the peak-free signal 155 and therefore will generally indicate the system exponential characteristics. Block 166 shows that a signal is reconstructed from the n low coefficients and the baseline signal 170 is generated in block 168.

FIG. 39 shows a denoised and shifted data signal 172 positioned adjacent a correction baseline 170. The baseline correction 170 is subtracted from the denoised and shifted signal 172 to generate a signal 175 having a baseline correction applied as shown in FIG. 40. Although such a denoised, shifted, and corrected signal is sufficient for most identification purposes, the putative peaks in signal 175 are not identifiable with sufficient accuracy or confidence to call the DNA composition of a biological sample.

Referring again to FIG. 25, the data from the baseline correction 50 is now compressed in block 55, the compression technique used in a preferred embodiment is detailed in FIG. 41. In FIG. 41 the data in the baseline corrected data is presented in an array format 182 with x-axis points 183 having an associated data value 184. The x-axis is indexed by the non-zero wavelet

10

15

20

25

coefficients, and the associated value is the value of the wavelet coefficient. In the illustrated data example in table 182, the maximum value 184 is indicated to be 1000. Although a particularly advantageous compression technique for mass spectrometry data is shown, it will be appreciated that other compression techniques can be used. Although not preferred, the data may also be stored without compression.

In compressing the data according to a preferred embodiment, an intermediate format 186 is generated. The intermediate format 186 generally comprises a real number having a whole number portion 188 and a decimal portion 190. The whole number portion is the x-axis point 183 while the decimal portion is the value data 184 divided by the maximum data value. For example, in the data 182 a data value "25" is indicated at x-axis point "100". The intermediate value for this data point would be "100.025".

From the intermediate compressed data 186 the final compressed data 195 is generated. The first point of the intermediate data file becomes the starting point for the compressed data. Thereafter each data point in the compressed data 195 is calculated as follows: the whole number portion (left of the decimal) is replaced by the difference between the current and the last whole number. The remainder (right of the decimal) remains intact. For example, the starting point of the compressed data 195 is shown to be the same as the intermediate data point which is "100.025". The comparison between the first intermediate data point "100.025" and the second intermediate data point "150.220" is "50.220". Therefore, "50.220" becomes the second point of the compressed data 195. In a similar manner, the second intermediate point is "150.220" and the third intermediate data point is "500.0001". Therefore, the third compressed data becomes "350.000". The calculation for determining compressed data points is continued until the entire array of data points is converted to a single array of real numbers.

FIG. 42 generally describes the method of compressing mass spectrometry data, showing that the data file in block 201 is presented as an array of coefficients in block 202. The data starting point and maximum is det rmined as shown in block 203, and the intermediate real numbers are

10

15

20

25

calculated in block 204 as described above. With the intermediate data points generated, the compressed data is generated in block 205. The described compression method is highly advantageous and efficient for compressing data sets such as a processed data set from a mass spectrometry instrument. The method is particularly useful for data, such as mass spectrometry data, that uses large numbers and has been processed to have occasional lengthy gaps in x-axis data. Accordingly, an x-y data array for processed mass spectrometry data may be stored with an effective compression rate of 10x or more. Although the compression technique is applied to mass spectrometry data, it will be appreciated that the method may also advantageously be applied to other data sets.

Referring again to FIG. 25, peak heights are now determined in block 60. The first step in determining peak height is illustrated in FIG. 43 where the signal 210 is shifted left or right to correspond with the position of expected peaks.

As the set of possible compositions in the biological sample is known before the mass spectrometry data is generated, the possible positioning of expected peaks is already known. These possible peaks are referred to as expected peaks, such as expected peaks 212, 214, and 216. Due to calibration or other errors in the test instrument data, the entire signal may be shifted left or right from its actual position, therefore, putative peaks located in the signal, such as putative peaks 218, 222, and 224 may be compared to the expected peaks 212, 214, and 216, respectively. The entire signal is then shifted such that the putative peaks align more closely with the expected peaks.

Once the putative peaks have been shifted to match expected peaks, the strongest putative peak is identified in FIG. 44. In a preferred embodiment, the strongest peak is calculated as a combination of analyzing the overall peak height and area beneath the peak. For example, a moderately high but wide peak would be stronger than a very high peak that is extremely narrow. With the strongest putative peak identified, such as putative peak 225, a Gaussian 228 curve is fit to the peak 225. Once the Gaussian is fit, the width (W) of the Gaussian is determined and will be used as the peak width for future calculations.

25

WO 01/027857

PCT/US00/28413

As generally addressed above, the denoised, shifted, and baseline-corrected signal is not sufficiently processed for confidently calling the DNA composition of the biological sample. For example, although the baseline has generally been removed, there are still residual baseline effects present. These residual baseline effects are therefore removed to increase the accuracy and confidence in making identifications.

To remove the residual baseline effects, FIG. 45 shows that the putative peaks 218, 222, and 224 are removed from the baseline corrected signal. The peaks are removed by identifying a center line 230, 232, and 234 of the putative peaks 218, 222, and 224, respectively and removing an area to the left and to the right of the identified center line. For each putative peak, an area equal to twice the width (W) of the Gaussian is removed from the left of the center line, while an area equivalent to 50 daltons is removed from the right of the center line. It has been found that the area representing 50 daltons is adequate to sufficiently remove the effect of salt adducts which may be associated with an actual peak. Such adducts appear to the right of an actual peak and are a natural effect from the chemistry involved in acquiring a mass spectrum. Although a 50 Dalton buffer has been selected, it will be appreciated that other ranges or methods can be used to reduce or eliminate adduct effects.

The peaks are removed and remaining minima 247 located as shown in FIG. 46 with the minima 247 connected to create signal 245. A quartic polynomial is applied to signal 245 to generate a residual baseline 250 as shown in FIG. 47. The residual baseline 250 is subtracted from the signal 225 to generate the final signal 255 as indicated in FIG. 48. Although the residual baseline is the result of a quartic fit to signal 245, it will be appreciated that other techniques can be used to smooth or fit the residual baseline.

To determine peak height, as shown in FIG. 49, a Gaussian such as Gaussian 266, 268, and 270 is fit to each of the peaks, such as peaks 260, 262, and 264, respectively. Accordingly, the height of the Gaussian is determined as height 272, 274, and 276. Once the height of each Gaussian peak is determined, then the m thod of identifying a biological compound 35 can move into the genotyping phase 65 as shown in FIG. 25.

10

15

20

25

15

20

25

30

An indication of the confidence that each putative peak is an actual peak can be discerned by calculating a signal-to-noise ratio for each putative peak. Accordingly, putative peaks with a strong signal-to-noise ratio are generally more likely to be an actual peak than a putative peak with a lower signal-to-noise ratio. As described above and shown in FIG. 50, the height of each peak, such as height 272, 274, and 276, is determined for each peak, with the height being an indicator of signal strength for each peak. The noise profile, such as noise profile 97, is extrapolated into noise profile 280 across the identified peaks. At the center line of each of the peaks, a noise value is determined, such as noise value 282, 283, and 284. With a signal values and a noise values generated, signal-to-noise ratios can be calculated for each peak. For example, the signal-to-noise ratio for the first peak in FIG. 50 would be calculated as signal value 272 divided by noise value 282, and in a similar manner the signal-to-noise ratio of the middle peak in FIG. 50 would be determined as signal 274 divided by noise value 283.

Although the signal-to-noise ratio is generally a useful indicator of the presence of an actual peak, further processing has been found to increase the confidence by which a sample can be identified. For example, the signal-to-noise ratio for each peak in the preferred embodiment is preferably adjusted by the goodness of fit between a Gaussian and each putative peak. It is a characteristic of a mass spectrometer that sample material is detected in a manner that generally complies with a normal distribution. Accordingly, greater confidence will be associated with a putative signal having a Gaussian shape than a signal that has a less normal distribution. The error resulting from having a non-Gaussian shape can be referred to as a "residual error".

Referring to FIG. 51, a residual error is calculated by taking a root mean square calculation between the Gaussian 293 and the putative peak 290 in the data signal. The calculation is performed on data within one width on either side of a center line of the Gaussian. The residual error is calculated as:  $\sqrt{(G-R)^2}/N$ 

where G is the Gaussian signal value, R is the putative peak value, and N is the numb r of points from -W to +W. The calculated residual error is used to generate an adjusted signal-to-noise ratio, as described below.

WO 01/027857

An adjusted signal noise ratio is calculated for each putative peak using the formula (S/N) * EXP^(-.1*R), where S/N is the signal-to-noise ratio, and R is the residual error determined above. Although the preferred embodiment calculates an adjusted signal-to-noise ratio using a residual error for each peak, it will be appreciated that other techniques can be used to account for the goodness of fit between the Gaussian and the actual signal.

Referring now to FIG. 52, a probability is determined that a putative peak is an actual peak. In making the determination of peak probability, a probability profile 300 is generated where the adjusted signal-to-noise ratio is the x-axis and the probability is the y-axis. Probability is necessarily in the range between a 0% probability and a 100% probability, which is indicated as 1. Generally, the higher the adjusted signal-to-noise ratio, the greater the confidence that a putative peak is an actual peak.

At some target value for the adjusted signal-to-noise, it has been found that the probability is 100% that the putative peak is an actual peak and can confidently be used to identify the DNA composition of a biological sample. However, the target value of adjusted signal-to-noise ratio where the probability is assumed to be 100% is a variable parameter which is to be set according to application specific criteria. For example, the target signal-to-noise ratio will be adjusted depending upon trial experience, sample characteristics, and the acceptable error tolerance in the overall system. More specifically, for situations requiring a conservative approach where error cannot be tolerated, the target adjusted signal-to-noise ratio can be set to, for example, 10 and higher. Accordingly, 100% probability will not be assigned to a peak unless the adjusted signal-to-noise ratio is 10 or over.

In other situations, a more aggressive approach may be taken as sample data is more pronounced or the risk of error may be reduced. In such a situation, the system may be set to assume a 100% probability with a 5 or greater target signal-to-noise ratio. Of course, an intermediate signal-to-noise ratio target figure can be selected, such as 7, when a moderate risk of error can be assumed. Once the target adjusted signal-to-noise ratio is set for the method,

10

15

20

25

then for any adjusted signal-to-noise ratio a probability can be determined that a putative peak is an actual peak.

Due to the chemistry involved in performing an identification test, especially a mass spectrometry test of a sample prepared by DNA amplifications, the allelic ratio between the signal strength of the highest peak and the signal strength of the second (or third and so on) highest peak should fall within an expected ratio. If the allelic ratio falls outside of normal guidelines, the preferred embodiment imposes an allelic ratio penalty to the probability. For example, FIG. 53 shows an allelic penalty 315 which has an x-axis 317 that is the ratio between the signal strength of the second highest peak divided by signal strength of the highest peak. The y-axis 319 assigns a penalty between 0 and 1 depending on the determined allelic ratio. In the preferred embodiment, it is assumed that allelic ratios over 30% are within the expected range and therefore no penalty is applied. Between a ratio of 10% and 30%, the penalty is linearly increased until at allelic ratios below 10% it is assumed the second-highest peak is not real. For allelic ratios between 10% and 30%, the allelic penalty chart 315 is used to determine a penalty 319, which is multiplied by the peak probability determined in FIG. 52 to determine a final peak probability. Although the preferred embodiment incorporates an allelic ratio penalty to account for a possible chemistry error, it will be appreciated that other techniques may be used. Similar treatment will be applied to the other peaks.

With the peak probability of each peak determined, the statistical probability for various composition components may be determined. As an example, in order to determine the probability of each of three possible combinations of two peaks, -- peak G, peak C and combinations GG, CC and GC. FIG. 54 shows an example where a most probable peak 325 is determined to have a final peak probability of 90%. Peak 325 is positioned such that it represents a G component in the biological sample. Accordingly, it can be maintained that there is a 90% probability that G exists in the biological sample. Also in the example shown in FIG. 54, the second highest probability is peak 330 which has a peak probability of 20%. Peak 330 is at a position associated

5

10

15

20

25

20

25

30

with a C composition. Accordingly, it can be maintained that there is a 20% probability that C exists in the biological sample.

With the probability of G existing (90%) and the probability of C existing (20%) as a starting point, the probability of combinations of G and C existing can be calculated. For example, FIG. 54 indicates that the probability of GG existing 329 is calculated as 72%. This is calculated as the probability of GG is equal to the probability of G existing (90%) multiplied by the probability of C not existing (100% -20%). So if the probability of G existing is 90% and the probability of C not existing is 80%, the probability of GG is 72%.

In a similar manner, the probability of CC existing is equivalent to the probability of C existing (20%) multiplied by the probability of G not existing (100% - 90%). As shown in FIG. 54, the probability of C existing is 20% while the probability of G not existing is 10%, so therefore the probability of CC is only 2%. Finally, the probability of GC existing is equal to the probability of G existing (90%) multiplied by the probability of C existing (20%). So if the probability of G existing is 90% and the probability of C existing is 20%, the probability of GC existing is 18%. In summary form, then, the probability of the composition of the biological sample is:

probability of GG: 72%;

probability of GC: 18%; and

probability of CC: 2%.

Once the probabilities of each of the possible combinations has been determined, FIG. 55 is used to decide whether or not sufficient confidence exists to call the genotype. FIG. 55 shows a call chart 335 which has an x-axis 337 which is the ratio of the highest combination probability to the second highest combination probability. The y-axis 339 simply indicates whether the ratio is sufficiently high to justify calling the genotype. The value of the ratio may be indicated by M 340. The value of M is set depending upon trial data, sample composition, and the ability to accept error. For example, the value M may be set relatively high, such as to a value 4 so that the highest probability must be at least four times greater than the second highest probability before confidence is stablished to call a genotype. However, if a c rtain level of error may be

acceptable, the value of M may be set to a more aggressive value, such as to 3, so that the ratio between the highest and second highest probabilities needs to be only a ratio of 3 or higher. Of course, moderate value may be selected for M when a moderate risk can be accepted. Using the example of FIG. 54, where the probability of GG was 72% and the probability of GC was 18%, the ratio between 72% and 18% is 4.0, therefore, whether M is set to 3, 3.5, or 4, the system would call the genotype as GG. Although the preferred embodiment uses a ratio between the two highest peak probabilities to determine if a genotype confidently can be called, it will be appreciated that other methods may be substituted. It will also be appreciated that the above techniques may be used for calculating probabilities and choosing genotypes (or more general DNA patterns) containing of combinations of more than two peaks.

Referring now to FIG. 56, a flow chart is shown generally defining the process of statistically calling genotype described above. In FIG. 56 block 402 shows that the height of each peak is determined and that in block 404 a noise profile is extrapolated for each peak. The signal is determined from the height of each peak in block 406 and the noise for each peak is determined using the noise profile in block 408. In block 410, the signal-to-noise ratio is calculated for each peak. To account for a non-Gaussian peak shape, a residual error is determined in block 412 and an adjusted signal-to-noise ratio is calculated in block 414. Block 416 shows that a probability profile is developed, with the probability of each peak existing found in block 418. An allelic penalty may be applied in block 420, with the allelic penalty applied to the adjusted peak probability in block 422. The probability of each combination of components is calculated in block 424 with the ratio between the two highest probabilities being determined in block 426. If the ratio of probabilities exceeds a threshold value then the genotype is called in block 428.

In another embodiment of the invention, the computing device 20 (Fig. 24) supports "standardless" genotyping by identifying data peaks that contain putative SNPs. Standardless genotyping is used, for example, where insufficient information is known about the samples to determine a distribution of expected

10

15

20

WO 01/027857 PCT/US00/28413

peak locations, against which an allelic penalty as described above can be reliably calculated. This permits the computing device to be used for identification of peaks that contain putative SNPs from data generated by any assay that fragments a targeted DNA molecule. For such standardless genotyping, peaks that are associated with an area under the data curve that deviates significantly from the typical area of other peaks in the data spectrum are identified and their corresponding mass (location along the x-axis) is determined.

More particularly, peaks that deviate significantly from the average area of other peaks in the data are identified, and the expected allelic ratio between data peaks is defined in terms of the ratio of the area under the data peaks. Theoretically, where each genetic loci has the same molar concentration of analyte, the area under each corresponding peak should be the same, thus producing a 1.0 ratio of the peak area between any two peaks. In accordance with the invention, peaks having a smaller ratio relative to the other peaks in the data will not be recognized as peaks. More particularly, peaks having an area ratio smaller than 30% relative to a nominal value for peak area will be assigned an allelic penalty. The mass of the remaining peaks (their location along the x-axis of the data) will be determined based on oligonucleotide standards.

Fig. 57 shows a flow diagram representation of the processing by the computing device 20 (Fig. 24) when performing standardless genotyping. In the first operation, represented by the flow diagram box numbered 502, the computing device receives data from the mass spectrometer. Next, the height of each putative peak in the data sample is determined, as indicated by the block 504. After the height of each peak in the mass spectrometer data is determined, a de-noise process 505 is performed, beginning with an extrapolation of the noise profile (block 506), followed by finding the noise of each peak (block 508) and calculating the signal to noise ratio for each data sample (block 510). Each of these operations may be performed in accordance with the description above for denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art.

10

20

25

WO 01/027857 PCT/US00/28413

The next operation is to find the residual error associated with each data point. This is represented by the block 512 in Figure 57. The next step, block 514, involves calculating an adjusted signal to noise ratio for each identified peak. A probability profile is developed next (block 516), followed by a determination of the peak probabilities at block 518. In the preferred embodiment, the denoise operations of Fig. 57, comprising block 502 to block 518, comprise the corresponding operations described above in conjunction with Fig. 56 for block 402 through block 418, respectively.

The next action for the standardless genotype processing is to determine an allelic penalty for each peak, indicated by the block 524. As noted above, the standardless genotype processing of Fig. 57 determines an allelic penalty by comparing area under the peaks. Therefore, rather than compare signal strength ratios to determine an allelic penalty, such as described above for Fig. 53, the standardless processing determines the area under each of the identified peaks and compares the ratio of those areas. Determining the area under each peak may be computed using conventional numerical analysis techniques for calculating the area under a curve for experimental data.

Thus, the allelic penalty is assigned in accordance with Fig. 58, which shows that no penalty is assigned to peaks having a peak area relative to an expected average area value that is greater than 0.30 (30%). The allelic penalty is applied to the peak probability value, which may be determined according to the process such as described in Fig. 52. It should be apparent from Fig. 58 that the allelic penalty imposed for peaks below a ratio of 30% is that such peaks will be removed from further measurement and processing. Other penalty schemes, however, may be imposed in accordance with knowledge about the data being processed, as determined by those skilled in the art.

After the allelic penalty has been determined and applied, the standardless genotype processing compares the location of the remaining putative peaks to oligonucleotide standards to determine corresponding masses in the processing for block 524. For standardless genotype data, the processing of the block 524 is performed to determine mass and genotype, rather than performing the operations corresponding to block 424, 426, and 428 of Fig. 33.

5

10

15

20

25

15

20

25

30

Techniques for performing such comparisons and determining mass will be known to those skilled in the art.

In another embodiment, the computing device 20 (Fig. 24) permits the detection and determination of the mass (location along the x-axis of the data) of the sense and antisense strand of fragments generated in the assay. If desired, the computing device may also detect and determine the quantity (area under each peak) of the respective sense and antisense strands, using a similar technique to that described above for standardless genotype processing. The data generated for each type of strand may then be combined to achieve a data redundancy and to thereby increase the confidence level of the determined genotype. This technique obviates primer peaks that are often observed in data from other diagnostic methods, thereby permitting a higher level of multiplexing. In addition, when quantitation is used in pooling experiments, the ratio of the measured peak areas is more reliably calculated than the peak identifying technique, due to data redundancy.

Fig. 23 is a flow diagram that illustrates the processing implemented by the computing device 20 to perform sense and antisense processing. In the first operation, represented by the flow diagram box numbered 602, the computing device receives data from the mass spectrometer. This data will include data for the sense strand and antisense strand of assay fragments. Next, the height of each putative peak in the data sample is determined, as indicated by the block 604. After the height of each peak in the mass spectrometer data is determined, a de-noise process 605 is performed, beginning with an operation that extrapolates the noise profile (block 606), followed by finding the noise of each peak (block 608) and calculating the signal to noise ratio for each data sample (block 610). Each of these operations may be performed in accordance with the description above for the denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art. The next operation is to find the residual error associated with each data point. This is represented by the block 612 in Figure 36.

After the residual error for the data of the sense strand and antisens strand has been performed, processing to identify the genotypes will be

WO 01/027857 PCT/US00/28413

performed for the sense strand and also for the antisense strand. Therefore, Fig. 23 shows that processing includes sense strand processing (block 630) and antisense strand processing (block 640). Each block 630, 640 includes processing that corresponds to adjusting the signal to noise ratio, developing a probability profile, determining an allelic penalty, adjusting the peak probability by the allelic penalty, calculating genotype probabilities, and testing genotype probability ratios, such as described above in conjunction with blocks 414 through 426 of Fig. 56. The processing of each block 630, 640 may, if desired, include standardless processing operations such as described above in conjunction with Fig. 57. The standardless processing may be included in place of or in addition to the processing operations of Fig. 56.

After the genotype probability processing is completed, the data from the sense strand and antisense strand processing is combined and compared to expected database values to obtain the benefits of data redundancy as between the sense strand and antisense strand. Those skilled in the art will understand techniques to take advantage of known data redundancies between a sense strand and antisense strand of assay fragments. This processing is represented by the block 650. After the data from the two strands is combined for processing, the genotype processing is performed (block 660) and the genotype is identified.

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

10

15

#### WHAT IS CLAIMED IS:

 A subcollection of samples from a target population, comprising: a plurality of samples, wherein the samples are selected from the group consisting of blood, tissue, body fluid, cell, seed, microbe, pathogen and reproductive tissue samples; and

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected 10 for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 2. The subcollection of claim 1, wherein the parameters are selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
  - 3. The subcollection of claim 1, wherein the symbology is a bar code.
  - A method of producing a database, comprising:

identifying healthy members of a population;

obtaining data comprising identifying information and obtaining historical information and data relating to the identified members of the population and their immediate family;

entering the data into a database for each member of the population and associating the member and the data with an indexer.

5. The method of claim 4, further comprising: obtaining a body tissue or body fluid sample;

15

20

analyzing the body tissue or body fluid in the sample; and entering the results of the analysis for each member into the database and associating each result with the indexer representative of each member.

- 6. A database produced by the method of claim 4.
- 7. A database produced by the method of claim 5.
- 8. A database, comprising:

datapoints representative of a plurality of healthy organisms from whom biological samples are obtained,

wherein each datapoint is associated with data representative of the organism type and other identifying information.

- 9. The database of claim 8, wherein the datapoints are answers to questions regarding one or more of a parameters selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
- 10. The database of claim 9, wherein the organisms are mammals and the samples are body fluids or tissues.
- 11. The database of claim 9, wherein the samples are selected from blood, blood fractions, cells and subcellular organelles.
- 25 12 The database of claim 8, further comprising, phenotypic data from an organism.
  - 13. The database of claim 12, wherein the data includes one of physical characteristics, background data, medical data, and historical data.
- 14. The database of claim 8, further comprising,30 genotypic data from nucleic acid obtained from an organism.

20

- 15. The database of claim 14, wherein genotypic data includes, genetic markers, non-coding regions, microsatellites, RFLPs, VNTRs, historical data of the organism, medical history, and phenotypic information.
  - 16. The database of claim 8 that is a relational database.
- 17. The database of claim 16, wherein the data are related to an indexer datapoint representative of each organism from whom data is obtained.
- 18. A method of identifying polymorphisms that are candidate genetic markers, comprising:

identifying a polymorphism; and

identifying any pathway or gene linked to the locus of the polymorphism, wherein

the polymorphisms are identified in samples associated with a target population that comprises healthy subjects.

- 19. The method of claim 18, wherein the polymorphism is identified bydetecting the presence of target nucleic acids in a sample by a method,comprising the steps of:
  - a) hybridizing a first oligonucleotide to the target nucleic acid;
  - b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
    - c) ligating the hybridized oligonucleotides; and
  - c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
  - 20. The method of claim 18, wherein the polymorphism is identified by detecting target nucleic acids in a sample by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
  - b) contacting the hybridized first and second oligonucleotides with a cleavage enzyme to form a cleavage product; and
- 30 c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.

10

15

the target nucleotide.

- 21. The method of claim 20 wherein the samples are from subjects in a healthy database.
- 22. The method of claim 18, wherein the polymorphism is identified by identifying target nucleic acids in a sample by primer oligo base extension (probe).
- 23. The method of 22, wherein primer oligo base extension, comprises:
  - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support,
   to produce an immobilized nucleic acid molecule;
- c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
- d) contacting the product of step c) with a composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
- e) detecting the extended primer, thereby identifying the target nucleotide.
- 20 24. The method of claim 23, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying

25. The method of claim 24, wherein;
samples are presented to the mass spectrometer as arrays on chips; and
each sample occupies a volume that is about the size of the laser spot
projected by the laser in a mass spectrometer used in matrix-assisted laser
desorption/ionization (MALDI) spectrometry.

10

15

20

25

30

# 26. A combination, comprising:

a database containing parameters associated with a datapoint representative of a subject from whom samples are obtained, wherein the subjects are healthy; and

an indexed collection of the samples, wherein the index identifies the subject from whom the sample was obtained.

- 27 The combination of claim 26, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and ecposure to environmental factors.
- 28. The combination of claim 26, wherein the database further contains genotypic data for each subject.
  - 29. The combination of claim 26, wherein the samples are blood.
  - A data storage medium, comprising the database of claim 8.
  - 31. A computer system, comprising the database of claim 8.
- 32. A system for high throughput processing of biological samples, comprising:
  - a process line comprising a plurality of processing stations, each of which performs a procedure on a biological sample contained in a reaction vessel;
  - a robotic system that transports the reaction vessel from processing station to processing station;
  - a data analysis system that receives test results of the process line and automatically processes the test results to make a determination regarding the biological sample in the reaction vessel;
  - a control system that determines when the test at each processing station is complete and, in response, moves the reaction vessel to

10

20

the next test station, and continuously processes reaction vessels one after another until the control system receives a stop instruction; and

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database.

- 33. The system of claim 32, wherein one of the processing stations comprises a mass spectrometer.
- 34. The system of claim 32, wherein the data analysis system processes the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.
- 15 35. A method for high throughput processing of biological samples, the method comprising:
  - transporting a reaction vessel along a system of claim 32, comprising a process line having a plurality of processing stations, each of which performs a procedure on one or more biological samples contained in the reaction vessel;
  - determining when the test procedure at each processing station is complete and, in response, moving the reaction vessel to the next processing station;
- receiving test results of the process line and automatically processing the

  test results to make a data analysis determination regarding the
  biological samples in the reaction vessel; and
  - processing reaction vessels continuously one after another until receiving a stop instruction, wherein the samples tested by the automated process line comprise samples from subjects in the database.
- 36. The method of 35, wherein one of the processing stations comprises a mass spectrometer.

15

20

30

- 37. The method of claim 36, wherein the samples are analyzed by a method comprising primer oligo base extension (probe).
  - 38. The method of claim 37, further comprising:

processing the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals or numerical values representative of signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.

- 39. The method of claim 37, wherein primer oligo base extension, comprises:
  - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support, to produce an immobilized nucleic acid molecule;
- c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
- d) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
  - e) detecting the primer, thereby identifying the target nucleotide.
- 40. The method of 39, wherein detection of the extended primer is effected by mass spectrometry, comprising:

25 ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

- 41. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
  - a) hybridizing a first oligonucleotide to the target nucleic acid;
- b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;

20

- c) ligating then hybridized oligonucleotides; and
- c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
- 42. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid:
- b) contacting the hybridized first and second oligonucleotides with a
   10 cleavage enzyme to form a cleavage product; and
  - c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.
  - 43. A method of producing a database stored in a computer memory, comprising:
- identifying healthy members of a population;

obtaining identifying and historical information and data relating to the identified members of the population;

entering the member-related data into the computer memory database for each identified member of the population and associating the member and the data with an indexer.

- 44. The method of claim 43, further comprising:
   obtaining a body tissue or body fluid sample of an identified member;
   analyzing the body tissue or body fluid in the sample; and
   entering the results of the analysis for each member into the computer
   25 memory database and associating each result with the indexer representative of each member.
  - 45. A database produced by the method of claim 43.
  - 46. A database produced by the method of claim 44.
  - 47. The database of claim 8, wherein:
- the organims are selected from among animals, bacteria, fungi, protozoans and parasites and

15

20

each datapoint is associated with parameters representative of the organism type and identifying information.

- 48. The database of claim 43, further comprising, phenotypic data regarding each subject.
- 49. The database of claim 47 that is a relational database and the parameters are the answers to the questions in the questionnaire.
  - 50. The database of claim 8, further comprising,

genotypic data of nucleic acid of the subject, wherein genotypic data includes, but is not limited to, genetic markers, non-coding regions,

- microsatellites, restriction fragment length polymorphisms (RFLPs), variable number tandem repeats (VNTRs), historical day of the organism, the medical history of the subject, phenotypic information, and other information.
  - 51. A database, comprising data records stored in computer memory, wherein the data records contain information that identifies healthy members of a population, and also contain identifying and historical information and data relating to the identified members.
  - 52. The database of claim 51, further comprising an index value for each identified member that associates each member of the population with the identifying and historical information and data.
    - 53. A computer system, comprising the database of claim 51.
      - 54. An automated process line, comprising the database of claim 51.
  - 55. A method for determining a polymorphism that correlates with age, ethnicity or gender, comprising:

identifying a polymorphism; and

- determining the frequency of the polymorphism with increasing age, with ethnicity or with gender in a healthy population.
  - 56. A method for determining whether a polymorphism correlates with suceptibility to morbidity, early mortality, or morbidity and early mortality, comprising;
- 30 identifying a polymorphism; and

determining the frequency of the polymorphism with increasing age in a healthy population.

15

20

25

57. A high throughput method of determining frequencies of genetic variations, comprising:

selecting a healthy target population and a genetic variation to be assessed;

5 pooling a plurality of samples of biopolymers obtained from members of the population,

determining or detecting the biopolymer that comprises the variation by mass spectrometry;

obtaining a mass spectrum or a digital representation thereof; and determining the frequency of the variation in the population.

58. The method of claim 57, wherein:

the variation is selected from the group consisting of an allelic variation, a post-translational modification, a nucleic modification, a label, a mass modification of a nucleic acid and methylation; and/or

the biopolymer is a nucleic acid, a protein, a polysaccharide, a lipid, a small organic metabolite or intermediate, wherein the concentration of biopolymer of interest is the same in each of the samples; and/or

the frequency is determined by assessing the method comprising determining the area under the peak in the mass spectrum or digital repesentation thereof corresponding to the mass of the biopolymer comprising the genomic variation.

- 59. The method of claim 58, wherein the method for determining the frequency is effected by determining the ratio of the signal or the digital representation thereof to the total area of the entire mass spectrum, which is corrected for background.
- 60. A method for discovery of a polymorphism in a population, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample; optionally pooling each isolated biopolymer; optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;
obtaining a mass spectrum of the resulting fragments and comparing the
mass spectrum with a control mass spectrum to identify differences between the
spectra and thereby identifing any polymorphisms; wherein:

the control mass spectrum is obtained from unsorted samples in the collection or samples sorted according to a different parameter.

- 61. The method of claim 60, wherein cleaving is effected by contacting the biopolymer with an enzyme.
- 62. The method of claim 61, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
  - 63. The method of claim 60, wherein the biopolymer is a nucleic acid or a protein.
- 64. The method of claim 60, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
  - 65. A method for discovery of a polymorphism in a population, comprising:
- obtaining samples of body tissue or fluid from a plurality of organisms; isolating a biopolymer from each sample;

pooling each isolated biopolymer;

optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments;

comparing the frequency of each fragment to identify fragments present in amounts lower than the average frequency, thereby identifying any polymorphisms.

66. The method of claim 65, wherein cleaving is effected by contacting 30 the biopolymer with an enzyme.

- 67. The method of claim 66, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
- 68. The method of claim 65, wherein the biopolymer is a nucleic acid or a protein.
  - 69. The method of claim 65, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
- 10 70. The method of claim 65, wherein the samples are obtained from healthy subjects.
  - 71. A method of correlating a polymorphism with a parameter, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample;

pooling each isolated biopolymer;

optionally amplifying the amount of biopolymer;

determining the frequency of the polymorphism in the pooled biopolymers, wherein:

an alteration of the frequency of the polymorphism compared to a control, indicates a correlation of the polymorphism with the selected parameter; and

the control is the frequency of the polymorphism in pooled biopolymers obtained from samples identified from an unsorted database or from a database sorting according to a different parameter.

72. The method claim 71, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smok r, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription

20

25

30

20

drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.

- 73. The method claim 72, wherein the parameter is occurrence of disease or a particular disease in an immediate family member, thereby correlating the polymorphism with the disease.
- 74. The method of claim 71, wherein the pooled biopolymers are pooled nucleic acid molecules.
- 75. The method of claim 74, wherein the polymorphism is detected by primer oligo base extension (PROBE).
- 76. The method of 75, wherein primer oligo base extension, comprises:
- a) optionally immobilizing the nucleic acid molecules onto a solid support, to produce immobilized nucleic acid molecules;
- b) hybridizing the nucleic acid molecules with a primer oligonucleotide
   that is complementary to the nucleic acid molecule at a site adjacent to the polymorphism;
  - c) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the polymorphism is extended onto the primer; and
  - d) detecting the extended primer, thereby detecting the polymorphism in nucleic acid molecules in the pooled nucleic acids.
  - 77. The method of claim 76, wherein detecting is effected by mass spectrometry.
- 78. The method of claim 71, wherein the frequency is percentage of nucleic acid molecules in the pooled nucleic acids that contain the polymorphism.
  - 79. The method of claim 78, wherein the ratio is determined by obtaining mass spectra of the pooled nucleic acids.
- 30 80. The method of claim 72, wherein the parameter is age, thereby correlating the polymorphism with suceptibility to morbidity, early mortality or morbidity and early mortality.

15

20

- 81. A method for haplotyping polymorphisms in a nucleic acid, comprising:
- (a) sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;
  - (b) isolating nucleic acid from each identified sample;
  - (c) optionally pooling each isolated nucleic acid;
  - (d) amplifying the amount of nucleic acid;
- (e) forming single-stranded nucleic acid and splitting each singlestrand into a separate reaction vessel;
- 10 (f) contacting each single-stranded nucleic acid with an adaptor nucleic acid to form an adaptor complex;
  - (g) contacting the adaptor complex with a nuclease and a ligase;
  - (h) contacting the products of step (g) with a mixture that is capable of amplifying a ligated adaptor to produce an extended product;
  - (i) obtaining a mass spectrum of each nucleic acid resulting from step
     (h) and detecting a polymorphism by identifying a signal corresponding to the extended product;
  - (j) repeating steps (f) through (i) utilizing an adaptor nucleic acid able to hybridize with another adapter nucleic acid that hybridizes to a different sequence on the same strand; whereby

the polymorphisms are haplotyped by detecting more than one extended product.

- 82. The method of claim 1, wherein the nuclease is Fen-1.
- 83. A method for haplotyping polymorphisms in a population,
- 25 comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a nucleic acid from each identified sample;

pooling each isolated nucleic acid;

30 optionally amplifying the amount of nucleic acid;

contacting the nucleic acid with at least one enzyme to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments; whereby:

the polymorphisms are detected by detecting signals corresponding to the polymorphisms; and

the polymorphisms are haplotyped by determining from the mass spectrum that the polymorphisms are located on the same strand of the nucleic acid.

- 84. The method of claim 83, wherein the enzyme is a nickase.
- 85. The method of claim 84, wherein the nickase is selected from the group consisting of NY2A and NYS1.
- 10 86. A method for detecting methylated nucleotides within a nucleic acid sample, comprising:

splitting a nucleic acid sample into separate reaction vessels; contacting nucleic acid in one reaction vessel with bisulfite; amplifying the nucleic acid in each reaction vessel;

15 cleaving the nucleic acids in each reaction vessel to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments from one reaction vessel and another mass spectrum of the resulting fragements from another reaction vessel; whereby:

- cytosine methylation is detected by identifying a difference in signals between the mass spectra.
  - 87. The method of claim 86, wherein: the step of amplifying is carried out in the presence of uracil; and the step of cleaving is effected by a uracil glycosylase.
- 25 88. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data;
deleting the baseline from the denoised data to generate an intermediate

30 data

set;

defining putative peaks for the biological sample;

the

using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate a corrected data set;

locating, responsive to removing the residual baseline, a probable peak in

corrected data set; and

identifying, using the located probable peak, the biological sample; wherein the generated biological sample data set comprises data from sense

- 10 strands and antisense strands of assay fragments.
  - 89. The method according to claim 88, wherein identifying includes combining

data from the sense strands and the antisense strands, and comparing the data against expected sense strand and antisense strand values, to identify the

15 biological

sample.

- 90. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak, in accordance with whether the probable peak is from sense strand data or from antisense strand data.
- 20 91. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak and applying an allelic penalty in response to a

ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data set.

92. A method for identifying a biological sample, comprising:
generating a data set indicative of the composition of the biological
sample:

denoising the data set to generate denoised data;

deleting the baseline from the denoised data to generate an intermediate

30 data

set:

а

10

25

defining putative peaks for the biological sample; using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate

5 corrected data set;

locating, responsive to removing the residual baseline, a probable peak in the corrected data set; and

identifying, using the located probable peak, the biological sample; wherein identifying includes deriving a peak probability for the probable peak and

applying an allelic penalty in response to a ratio between a calculated area under the

probable peak and a calculated expected average area under all peaks in the data set.

15 93. The method according to claim 92, wherein identifying includes comparing

data from probable peaks that did not receive an applied allelic penalty to determine their mass in accordance with oligonucleotide biological data.

- 94. The method according to claim 92, wherein the allelic penalty is not applied to probable peaks whose ratio of area under the peak to the expected area value is greater than 30%.
  - 95. A method for detecting a polymorphism in a nucleic acid, comprising:

amplifying a region of the nucleic acid to produce an amplicon, wherein the resulting amplicon comprises one or more enzyme restriction sites;

contacting the amplicon with a restriction enzyme to produce fragments; obtaining a mass spectrum of the resulting fragments and analyzing signals in the mass spectrum by the method of claim 88; whereby:

the polymorphism is detected from the pattern of the signals.

30 96. A subcollection of samples from a target population, comprising: a plurality of samples, wherein the samples are selected from the group consisting of nucleic acids, fetal tissue, protein samples; and

10

20

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 97. The combination of claim 26, wherein the samples are selected selected from the group consisting of nucleic acids, fetal tissue, protein, tissue, body fluid, cell, seed, microbe, pathogen and reproductive tissue samples.
  - 98. A combination, comprising the database of claim 8 and a mass spectrometer.
- 99. The combination of claim 98 that is an automated process line for analyzing biological samples.
  - 100. A system for high throughput processing of biological samples, comprising:

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database; and a mass spectrometry for analysis of biopolymers in the samples.

DNA Bank

Number	of	Samples	3912
, , , , , , , , , , , , , , , , , , , ,	• •	O p O O	



FIG. IA

Caucasians

Number	of	Samples	2801
lianunnei	OI	2011 hiez	2001



Hispanics

Inditing of aditibles 43	Number of Sample	s 495
--------------------------	------------------	-------





age— and sex—distribution of the 291S allele of the lipoprotein lipase gene. A total of 436 males and 586 females were investigated.

FIG. 2A



Age— related distribution of the 291S allele of the lipoprotein lipase gene within the male Caucasian population. A total of 436 males were tested.

FIG. 2B



FIG. 2C

Questionnaire for Population—Based Sample Banking

	Data Collection Form
Collection Inform	nation
Initials of Data Coll	MM/DD/YY)//98 lection(nearest hour in 24 hour clock format) ectorCollecting Agency Affix Barcode Here  (For Date Entry Only)Sampleintactlostbroken
Donor information	
In which state do : What is your highes I less than 8t	t grade you completed in school?
_	r knowledge what is the Ethnic Origin of your:
Father Mother	·
	Caucasian (please check specific geographic area below if known) Northern Europe (Austria, Denmark, Finland, France, Germany, Netherlands, Norway, Sweden, Switzerland, U.K.) Southern Europe (Greece, Italy, Spain) Eastern Europe (Czechoslovakia, Hungary, Poland, Russia, Yugoslavia) Middle Eastern (Israel, Egypt, Iran, Iraq, Jordan, Syria, other Arab States)
	African-American
	Hispanic (please check specific geographic area below if known) Mexico Central America,South American Cuba,Puerto Rico, other Caribbean
	Asian (please check specific geographic area below if known) Japanese Chinese Korean Vietnamese other Asian Other
□ □ □	Don't know  Have you or has anyone in your immediate family(parents,brothers,sisters, or your children)
	Check all that apply
Disease:	
Heart Disease Stro Cancer (Specify ty Alzheirner's Disease Chronic inflammato	ke or Arteriosclerosis  pe if known)  e or Dementia  pry or Autoimmune Disease sease like Multiple Sclerosis
Additional health int	ormation details you would like to provide:

FIG. 3

rj

FIG. 4

Sample Banks



**SUBSTITUTE SHEET (RULE 26)** 



**SUBSTITUTE SHEET (RULE 26)** 



SUBSTITUTE SHEET (RULE 26)



**SUBSTITUTE SHEET (RULE 26)** 



SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)



Significance: Genotype frequencyof SR heterozygous drops from 13.3% to 9.2%; p=0.009

FIG. 8







SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)



FIG. 16



FIG. 17



FIG. 18

-



**SUBSTITUTE SHEET (RULE 26)** 



FIG. 20

## methionine sulfoxide reductase A (#63306)



FIG. 21

Co	lection Info	rmation								7
Co	nsent Form	Signed								J
	Date of C	No		Time of Sor Collection (negrest hou	r. in	Initials	Initials of (	Data Collector		
	onth Da	y Ye	ar 0	24 hour cl format)	ock		(DO NOT	COMPLETE:	_	
								entry only)		
	# □ ଫ		<b>22</b>				Sample;	Voiu (m		
M	Y 🖂 [	4)(A)(B)	<b>CD</b>				los Bro	t		ODE
JL	יים ו		<b>6060</b>	යායා සාශ					<u> </u>	Bar code
SE	P 🖂 🖰	30 CE	<b>1303</b>	1100				<u> </u>	CD	<b>50</b>
) NO	× =			99				<b>4</b>		
_	or Informa	1:00		-						י
	Date of B		<del></del>	[Hataka ]	Wet-to 7	<del></del>				1
We	nth	eor		Ft Inches	Weight (lb)	What Physical	Are you	a <u>If Femal</u>	e:	
	N D		Sex:			activity do you d on a regular bas	is?	in? How mai	y Ho	w many
N/		200	Male Female			☐ Running	Ye			es did 📅
M.A				(C)		Swimming Biking		pregnant		h? 🖂
JU				5302		□ Other			14 1	181
SE		503033		F		□ None				
NO		ar place			(A) (A) (A)				≥ 89	<b>125</b> 1
[_DE	<u>c 🗆 </u>	لـــــا							2	2 (32)
	To the	best of	your knowledge	, what is the	Ethnic Orig	in of your:	<del></del>		<del></del>	
	Father	Mother		_						
	100	00	Northern Euro	pe (Austria, D	enmark. Fin	ophic area below i land, France, Gern	t known) 1any, Netheric	inds, Norway,	Sweden, Sw	itzerland, UK)
	000	000	Southern Europ	e (Czechoslov	rakio, Hungai	ry. Poland, Russia.	Yugoslovia)			
		]	African-Ameri		ot, iran, irac	ą, Jordan, Syria, O	ther Arab Sta	ites)	•	
which					rific geograp	hic area below if	knowa)			
iate d ou live	۰	00	Mexico Central Americ			INC GIOG DEIDW II	KIIOWILJ			
			Cuba, Puerto							
AJCAD BJCBD		00	Asian (please Japanese	mark specific	geographic	area below if kno	own)			
		0.0	Chinese Korean							
		00	Vietnamese Filipino							
	0	0	Native America	an						
			Other		<del></del>	<u>-</u>				
			Don't know							
	How long	Years W	hat is your hig	hest grade	Mother Dece	ased? Cause of D	eath Mother: ,	Eather Decease	ed? Cause	of Death Father:
	have you lived		ou completed ii ⊐less then 8th	n school?   arade	□ Yes □ No	≤ 29 □ H	eart Disease	☐ Yes ☐ No		⊐ Heart Disease
	there?	<del></del>	⊐8th,9th,10th,a ⊐high school g	graduate or	If Yes a	30-39 C C 40-49 C S	troke	t	30-39 c 40-49 c	⊐ Cancer ⊐ Stroke
H H			equivalency some college,	2yr degree	what ago		ccident uicide	If Yes at what age?	50-59 C	⊐ Accident ⊐ Suicide
		123 C	⊃college gradu ⊃post graduate			70-79 C 0 80-89	ther,	-	70-79 E 80-89	□ Other,
			degree			≥ 90		{	> 90	
		18181 1919				FIC	3. 2	2Δ		

Have you ever smoked? Yes No  If yes, for how long?  Years  Years  Years  Years  Years  Have you or has anyone in your immediate	Hove you been hospitalized in the past 5 years for mathen 6 days at a time?  Yes No  If yes, how many times?  For each hospitalization (if not the same) how long did you stay and for what reason?		Accident Other:_ Weeks: Acute Chronic Accident Other:_ Weeks: Acute Chronic Accident Other:_ Chronic Accident Other:_	disorder, Disorder disorder, Disorder t Disorder disorder, Disorder	including	infection of the control of the cont	and thrombosis
Mark all that apply! Disease Heart Disease, including arteriosclerosis Stroke Hypertension Blood clots Diabetes, insulin dependent Diabetes, not insulin-dependent (diet control Cancer: Lung&Bronchus Breasts Prostate Coton&Rectum Skin Lymphoma&Leukernia Other, piease specify below:	olled)	30000000000000000000000000000000000000	Mother (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	#0000000000000000000000000000000000000	SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brother 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30000000000000000000000000000000000000
Attneimer's Disease Enlepsy Schizophrenia Bipotar disorder (manic depression) Vajor depression		0 00 0	0 00 0	000 0	000 0	000 0	000 0
Marian depression  Chronic Inflammatory or Autoimmune Diseas  Multiple Sclerosis and Rheumatoid Arthritis  Emphysema  Asthma  Gther, please specify below:	e including	0 0 0 0	0 000	0 000	0 000	0.000	0 000
Do you take prescription drugs on a regular  If yes, please specify below:  Have you ever donated blood before?	Yes - No Additional he	☐ Ye		-	would like	to provide	e:
क्षिण्याच्याच्याच्याच्याच्याच्याच्याच्याच्याच	2					OF USE	
⊒ Never □ Hard	? dly ever r more times per week	<b>00</b> E	•			12 13 14	1 GE1

FIG. 22B

SUBSTITUTE SHEET (RULE 26)

Collection Ir	nformation						
JAN CITY FEB CAPR CITY FEB CAP	m Signed No of Collection Day Year   2 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		our in lock to the control of the co	Initials  ADDIAGO  AD	(DO NOT C for data e Sample: Lost Broke	OMPLETE intry only)  Volume (ml)	
Donor Infor	mation						
Month  JAN DIC FEB D  MAR D  APR D  JUN D  J	of Birth Year 1 9   Se 202222222 20232323 203323323 203323323 203323323 203323323 203323323 203323323 2033232333	Height Ft Inches  Male Female	Weight (lb)	What physical activity do you on a regular batter Swirming Swirming Gymnastics Other		If female:  How many times have many you been pregnant?	How many times did you give birth?
In which sto							
	Father Mother	ur knowledge, what is caucasian (please misorthern Europe (Aussiauthern Europe (Greinstern Europe (Czech diddle Eastern (Israel) ther Jon't know	ork specific ge tria, Denmark, ece, Italy, Spo oslovakia, Hun	ographic area bel Finland, France, ain, Turkey) gary, Poland, Russ	Germany, Netheria sia, Yugoslavia)		den, Switzerland, UK)
Hard Hard Hard Hard Hard Hard Hard Hard	How years been Years Inching the control of the con	many have you samoking? Years TOTAL	Did you quit smoking? Yes No	Years de	######################################	per !	f yes, for low long?  Years  COLUMN CONTINUE  CONTINUE  On back
	2020 2020	FIG	220	(A)	(\$) (\$)		
		1 10					

What is your highest grade you completed in school?    less then 8th grade   Yes   Strike   Strike   Strike	ner: <u>Father</u> Dr Yes No If Yes at what age!	<u>≤</u> 30− 40− 50−	29	art Disea ncer roke cident			
have you or has anyone in your immediate family (parents, brothers, sis	iters,or your	children)	had the	following	?		
Mark all that apply!					_		
Cisease	You	Mother	Father	Sister	Brother	Child	
Stroke							
Hypertension (fixed material)	00		0 0	0 0	00	0.0	
lictood clots Unabetes, insulin dependent	10		6	16	10	10	
Diatoles, no: insulin-dependent							
Conser				00		00	
Lung&Bronchus Breasts		]	0.0	11		]	
Prostate					00		
Colon&Rectum Sun	0.0	00	00	00		00	
Lympnoma&c.eukemia			=	=			
Other, piecse specify below:						00	
Athermer's Disease							
Epik-psy							
Sch:zuphreniq							
Bipolar disorder (manic depression)					_		
Major depression	]			3		]	
Chronic Informatory or Autoimmune Disease including	_	_			_		
Multiple Scienosis and Rheumatoid Arthritis							
Emphysema Asthma	00						
Other, piecse specify below:			_				
						•	
Do you take prescription drugs on a regular basis?	□ Y	es 🗀		re you ev od before	rer donate	d 🗀 Ye	i — No
If yes, p.ease specify below:					ıı		
, , , , , , , , , , , , , , , , , , , ,				yes, how		ber of T	mes
Hove you been hospitalized 1) Weeks:   1) Weeks:	93063		mo	ny times:			7
in the past 5 years for more Acute disorder, including		nd throm	bosis				
then 6 days at a time? — Chronic Disorder							
☐ Yes ☐ No ☐ Accident ☐ Other:							
If yes, how many times?	නයා					GD GD	
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	infection or	nd throm	bosis			යායා යායා	
Chronic Disorder							
For each hospitalization Other:						8000	
(if not the same) 3) Weeks:						(3000)	30
how long did you stay Acute disorder, including	infection or	nd throm	posis				
and for what reason? Chronic Disorder							
□ Other:	_						
Do you drink any kind of alcoholic beverage?					FOR O		
□ Never □ Hardly ever					USE C	NLY	
□ Less than 3 times per week □ 3 or more times per week							
□ Daily					-	<b>E</b>	
Additional health information details you would like to provide:					122	<b>4</b>	
					ca.	æ	
					l	i	
					<b>Z</b>	<b>CS</b> D	
	00	7			<u> </u>	<b>m</b>	

FIG. 22D

SUBSTITUTE SHEET (RULE 26)



FIG. 23





FIG. 25
SUBSTITUTE SHEET (RULE 26)



FIG. 26







Exp fitting a₀+ a₁exp (a₂m)



FIG. 30



Threshold 0=4XNoiseProfile



Stage 1 - Hi

Threshold 1=2XNoiseProfile



Stage 2 - Hi

Threshold 2=1XNoiseProfile



Stage n — Hi

Threshold n=(1/2 n-2)XNoiseProfile



FIG. 31



Signal (t)= 
$$\frac{\text{(Start 0(t) + Start 1(t) + Start 2(t)... + Start 23 (t))}}{24}$$

SHIFT SIGNAL TO ACCOUNT FOR VARIATIONS DUE TO STARTING POINT

FIG. 33



**SUBSTITUTE SHEET (RULE 26)** 



FIG. 35



FIG. 13-TAKE A MOVING AVERAGE, REMOVE SECTIONS EXCEEDING A THRESHOLD

FIG. 36



FIG. 37 FIND MINIMA IN REMAINING SIGNALS AND CONNECT TO FORM A PEAK FREE SIGNAL



FIG. 38 GENRATE BASLELINE CORRECTION



FIG. 39

**SUBSTITUTE SHEET (RULE 26)** 





FIG. 41



FIG. 42



FIG. 43



SUBSTITUTE SHEET (RULE 26)



FIG. 45



FIG. 46



FIG. 47



272 266 260 260 262 274 270 276 276

FIG. 49



FIG. 50



SUBSTITUTE SHEET (RULE 26)







FIG. 54





**SUBSTITUTE SHEET (RULE 26)** 



FIG. 57



RATIO OF AREA UNDER PEAK

FIG. 58

## SEQUENCE LISTING

```
<110> SEQUENOM
        Braun et al.
 <120> METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING
 POLYMORPHIC GENETIC MARKERS
 <130> 24736-2033PC
 <140> Not Yet Assigned
<141> 2000-10-13
 <150> 60/217,658
<151> 2000-07-10
<150> 60/159,176
<151> 1999-10-13
<150> 60/217,251
<151> 2000-07-10
<150> 09/663,968
<151> 2000-09-19
<160> 118
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 361
<212> DNA
<213> Homo Sapien
ctgaggacct ggtcctctga ctgctctttt cacccatcta cagtccccct tgccgtccca
                                                                             60
agcaatggat gatttgatgc tgtccccgga cgatattgaa caatggttca ctgaagaccaagtccagat gaagctccaa gaatgccaga ggctgctccc cgcgtggccc ctgcaccagc
                                                                             120
                                                                             180
agetectaca ceggeggeee etgeaceage ececteetgg ecectgteat ettetgteee
                                                                             240
ttcccagaaa acctaccagg gcagctacgg tttccgtctg ggcttcttgc attctgggac
                                                                             300
agccaagtet gtgaettgea eggteagttg ceetgagggg etggetteea tgagaettea
                                                                            360
                                                                             361
<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide Primer
cccagtcacg acgttgtaaa acgctgagga cctggtcctc tgac
                                                                             44
<210> 3
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide Primer
ageggataac aatttcacac aggttgaagt ctcatggaag cc
                                                                             42
<210> 4
<211> 17
<212> DNA
```

<213> Artificial Sequence	
<220> <223> Probe	
<400> 4 gccagaggct gctcccc	17
<210> 5 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 5 godagaggot gotocoo	17
<pre>&lt;210 &gt; 6 &lt;211 &gt; 19 &lt;212 &gt; DNA &lt;213 &gt; Artificial Sequence</pre>	
<220> <223> Probe	
<+00> 6 gccagagget geteecege	19
<210> 7 <211> 18 <212> DNA <213> Artificial Sequence	
<220><223> Probe	
<400> 7 gccagaggct gctcccc	18
<210> 8 <211> 161 <212> DNA <213> Homo Sapien	
<400> 8 gtccgtcaga acccatgcgg cagcaaggcc tgccgccgcc tcttcggccc agtggacagc gagcagctga gccgcgactg tgatgcgcta atggcgggct gcatccagga ggcccgtgag cgatggaact tcgactttgt caccgagaca ccactggagg g	60 120 161
<210> 9 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 9	

cccagtcacg acgttgtaaa acggtccgtc agaacccatg cgg	43
<210> 10 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 10 agcggataac aatttcacac aggctccagt ggtgtctcgg tgac	44
<210> 11 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 11 cagcgagcag ctgag	15
<210> 12 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 12 cagcgagcag ctgag	15
<210> 13 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 13 cagcgagcag ctgagc	16
<210> 14 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 14 cagcgagcag ctgagac	17
<210> 15 <211> 205 <212> DNA	

<213> Homo Sapien	
<400> 15 gcgctccatt catctcttca tcgactctct gttgaatgaa gaaaatccaa gtaaggccta caggtgcagt tccaaggaag cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg agatcaataa agtcagagcc aaaagaagca gcaaaatgta cctgaagact cgttctcaga tgccc	60 120 180 205
<210> 16 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primers	
<400> 16 cccagtcacg acgttgtaaa acggcgctcc attcatctct tc	42
<210> 17 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 17 agcggataac aatttcacac agggggcatc tgagaacgag tc	42
<210> 18 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 18 caatctgggc tatgagatca	20
<210> 19 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 19 caatctgggc tatgagatca	20
<210> 20 <211> 21 <212> DNA <213> Artificial Sequence	
<220><223> Probe	

<400> 20 caatctgggc tatgagatca a	21
<210> 21 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 21 caatctgggc tatgagatca gt	20
<210> 22 <211> 50 <212> DNA <213> Homo Sapien	
<220> <223> Probe	
<400> 22 gtgccggcta ctcggatggc agcaaggact cctgcaaggg ggacagtgga ggcccacatg	60
<210> 23 <211> 60 <212> DNA <213> Homo sapien	
<400> 23 ccacccacta ccggggcacg tggtacctga cgggcatcgt cagctggggc cagggctgcg	60
<210> 24 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 24 cccagtcacg acgttgtaaa acgatggcag caaggactcc tg	42
<210> 25 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 25 cacatgccac ccactacc	18
<210> 26	
<211> 43 <212> DNA	
c2122 DNA	

<220> <223> Oligonucleotide primer	
<400> 26 agcggataac aatttcacac aggtgacgat gcccgtcagg tac	43
<210> 27 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 27 atgccaccca ctacc	
<210> 28 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 28 cacatgccac ccactaccg	19
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 29	
cacatgccac ccactaccag	20
<210> 30 <211> 23	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Probe	
<400> 30	
agcggataac aatttcacac agg	23
<210> 31 <211> 2363 <212> DNA	
<213> Homo Sapien	
<220>	
<221> CDS <222> (138)(2126)	
~222~ (130/(2120) ~223~ AKAD_10	

## 7/122

<300> <308> GenBank AF037439 <309> 1997-12-21 <400> 31 geggettgtt gataatatgg eggetggage tgeetgggca teeegaggag geggtgggge 60 ccactcccgg aagaagggtc cettttcgcg ctagtgcagc ggcccctctg gacccggaag 120 teegggeegg ttgetga atg agg gga gee ggg eee tee eeg ege eag tee Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 170 ecc ege acc etc egt ecc gae eeg gge ecc gee atg tee tte etg 218 Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Glu Glu Lys Thr Ser Asp Val Lys Ser 266 att aaa gct tca ata tcc gta cat tcc cca caa aaa agc act aaa aat Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn 314 cat gcc ttg ctg gag gct gca gga cca agt cat gtt gca atc aat gcc His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala 362 65 att tot god aac atg gad too ttt toa agt agd agg aca god aca ott 410 Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu 80 85 aag aag cag cca agc cac atg gag gct gct cat ttt ggt gac ctg ggc Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly 458 100 aga tot tgt otg gao tac cag act caa gag acc aaa toa ago ott tot 506 Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser aag acc ctt gaa caa gtc ttg cac gac act att gtc ctc cct tac ttc Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe 554 130 att caa ttc atg gaa ctt cgg cga atg gag cat ttg gtg aaa ttt tgg Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Tro 602 150 tta gag gct gaa agt ttt cat tca aca act tgg tcg cga ata aga gca Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala 650 165 cac agt cta aac aca atg aag cag agc tca ctg gct gag cct gtc tct

His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser

cca tct aaa aag cat gaa act aca gcg tct ttt tta act gat tct ctt Pro Ser Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu

gat aag aga ttg gag gat tct ggc tca gca cag ttg ttt atg act cat

200

698

746

794

Asp	Lys 205	Arg	Leu	Glu	Asp	Ser 210	Gly	Ser	Ala	Gln	Leu 215	Phe	Met	Thr	His	
tca Ser 220	gaa Glu	gga Gly	att Ile	gac Asp	ctg Leu 225	aat Asn	aat Asn	aga Arg	act Thr	aac Asn 230	agc Ser	act Thr	cag Gln	aat Asn	cac His 235	842
								agt Ser								890
								gtt Val 260								938
								aga Arg								986
								aaa Lys								1034
aat Asn 300	act Thr	ttt Phe	acc Thr	aaa Lys	tat Tyr 305	ata Ile	tct Ser	cca Pro	gat Asp	gct Ala 310	gct Ala	aaa Lys	cca Pro	ata Ile	cca Pro 315	1082
att Ile	aca Thr	gaa Glu	gca Ala	atg Met 320	aga Arg	aat Asn	gac Asp	atc Ile	ata Ile 325	gca Ala	agg Arg	att Ile	tgt Cys	gga Gly 330	gaa Glu	1130
gat Asp	gga Gly	cag Gln	gtg Val 335	gat Asp	ccc Pro	aac Asn	tgt Cys	ttc Phe 340	gtt Val	ttg Leu	gca Ala	cag Gln	tcc Ser 345	ata Ile	gtc Val	1178
ttt Phe	agt Ser	gca Ala 350	atg Met	gag Glu	caa Gln	gag Glu	cac His 355	ttt Phe	agt Ser	gag Glu	ttt Phe	ctg Leu 360	cga Arg	agt Ser	cac His	1226
								gtg Val								1274
ctg Leu 380	gct Ala	gac Asp	att Ile	ctc Leu	ttc Phe 385	tgt Cys	gag Glu	tca Ser	gcc Ala	ctc Leu 390	ttt Phe	tat Tyr	ttc Phe	tct Ser	gag Glu 395	1322
tac Tyr	atg Met	gaa Glu	aaa Lys	gag Glu 400	gat Asp	gca Ala	gtg Val	aat Asn	atc Ile 405	tta Leu	caa Gln	ttc Phe	tgg Trp	ttg Leu 410	gca Ala	1370
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	gly aaa	caa Gln 425	tat Tyr	gat Asp	1418
gga Gly	cag Gln	gag Glu 430	gca Ala	cag Gln	aat Asn	gat Asp	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	1466
tcc	ctc	caa	gcc	aca	cat	cct	ctt	gga	ttt	gat	gat	gtt	gta	cga	tta	1514

Ser	Leu 445	Gln	Ala	Thr	His	Pro 450	Leu	Gly	Phe	Asp	Asp 455	Val	Val	Arg	Leu	
gaa Glu 460	Ile	gaa Glu	tcc Ser	aat Asn	atc Ile 465	tgc Cys	agg Arg	gaa Glu	ggt Gly	999 Gly 470	cca Pro	ctc Leu	ccc Pro	aac Asn	tgt Cys 475	1562
ttc Phe	aca Thr	act Thr	cca Pro	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	aca Thr 485	acc Thr	atg Met	gag Glu	aag Lys	gtc Val 490	ttt Phe	1610
ttg Leu	cct Pro	ggc Gly	ttt Phe 495	ctg Leu	tcc Ser	agc Ser	aat Asn	ctt Leu 500	tat Tyr	tat Tyr	aaa Lys	tat Tyr	ttg Leu 505	aat Asn	gat Asp	1658
ctc Leu	ats Ile	cat His 510	tcg Ser	gtt Val	cga Arg	gga Gly	gat Asp 515	gaa Glu	ttt Phe	ctg Leu	ggc Gly	999 Gly 520	aac Asn	gtg Val	tcg Ser	1706
ccg Pro	act Thr 525	got Ala	cct Pro	ggc Gly	tct Ser	gtt Val 530	ggc Gly	cct Pro	cct Pro	gat Asp	gag Glu 535	tct Ser	cac His	cca Pro	gly ggg	1754
agt Ser 540	tot Ser	gac Asp	agc Ser	tct Ser	gcg Ala 545	tct Ser	cag Gln	tcc Ser	agt Ser	gtg Val 550	aaa Lys	aaa Lys	gcc Ala	agt Ser	att Ile 555	1802
aaa Lys	ata Ile	ctg Leu	aaa Lys	aat Asn 560	ttt Phe	gat Asp	gaa Glu	gcg Ala	ata Ile 565	att Ile	gtg Val	gat Asp	gcg Ala	gca Ala 570	agt Ser	1850
ctg Leu	gat Asp	cca Pro	gaa Glu 575	tct Ser	tta Leu	tat Tyr	caa Gln	cgg Arg 580	aca Thr	tat Tyr	gcc Ala	gly ggg	aag Lys 585	atg Met	aca Thr	1898
ttt Phe	gga Gly	aga Arg 590	gtg Val	agt Ser	gac Asp	ttg Leu	999 Gly 595	caa Gln	ttc Phe	atc Ile	cgg Arg	gaa Glu 600	tct Ser	gag Glu	cct Pro	1946
gaa Glu	cct Pro 605	gat Asp	gta Val	agg Arg	aaa Lys	tca Ser 610	aaa Lys	gga Gly	tcc Ser	atg Met	ttc Phe 615	tca Ser	caa Gln	gct Ala	atg Met	1994
aag Lys 620	aaa Lys	tgg Trp	gtg Val	caa Gln	gga Gly 625	aat Asn	act Thr	gat Asp	gag Glu	gcc Ala 630	cag Gln	gaa Glu	gag Glu	cta Leu	gct Ala 635	2042
tgg Trp	aag Lys	att Ile	gct Ala	aaa Lys 640	atg Met	ata Ile	gtc Val	agt Ser	gac Asp 645	att Ile	atg Met	cag Gln	cag Gln	gct Ala 650	cag Gln	2090
tat Tyr	gat Asp	caa Gln	ccg Pro 655	tta Leu	gag Glu	aaa Lys	tct Ser	aca Thr 660	aag Lys	tta Leu	tga *	ctca	aaac	tt:		2136
caac	aca9 .ggg9	icc a	atga .caat	aaac	a go	acta	tatt	tct cta	gato atgo	tgt	cact	gttg	tt t	ccaq	ttctt ggaga attgg	2196 2256 2316 2363

<210> 32

#### 10/122

<211> 662 <212> PRT <213> Homo Sapien <400> 32 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu Asp Lys Arg Leu Glu Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His Ser Glu Gly Ile Asp Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His Leu Leu Ser Gln Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu Met Ala Arg Ala Gly Thr His Gln Val Ser Met Glu Thr Gln Glu Ser Ser Ser Thr Leu Thr Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu Lys Glu Leu Ser Gly Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val Asn Thr Phe Thr Lys Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro Ile Thr Glu Ala Met Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu Asp Gly Gln Val Asp Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val Phe Ser Ala Met Glu Gln Glu His Phe Ser Glu Phe Leu Arg Ser His His Phe Cys Lys Tyr Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr Leu Ala Asp Ile Leu Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu Tyr Met Glu Lys Glu Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala Ala Asp Asn Phe Gln Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp Gly Gln Glu Ala Gln 

Ash Asp Ala Met Ile Leu Tyr Asp Lys Tyr Phe Ser Leu Gln Ala Thr  435  His Pro Leu Gly Phe Asp Asp Val Val Arg Leu Glu Ile Glu Ser Asn  450  Ile Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys Phe Thr Thr Pro Leu  465  Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu  480  Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu  480  Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu Ile His Ser Val  500  Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser Pro Thr Ala Pro Gly  510  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  510  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  520  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  530  Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn  545  Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser Leu Asp Pro Glu Ser  550  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Gly Pro Asp Val Ser  580  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg  601  610  Gly Asn Thr Asp Glu Ala Gln Glu Leu Ala Trp Lys Trp Val Gln  610  611  612  Asn Thr Asp Glu Ala Gln Glu Leu Ala Trp Lys Ile Ala Lys  625  Glu Lys Ser Thr Lys Leu  660  621  621  621  622  6221  6221  6221  6222  6223  6223  6223  635  640  640  640  640  640  640  640  64																	
His Pro Leu Gly Phe Asp Asp Val Val Arg Leu Glu Tle Glu Ser Asn  450  11e Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys Phe Thr Thr Pro Leu  470  Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu  485  Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu Ile His Ser Val  500  Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser Pro Thr Ala Pro Gly  515  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  520  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  530  Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn  555  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  550  Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn  555  Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser  550  Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn  555  Ser Val Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Ser  550  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg  600  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg  601  Gly Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln  610  610  610  611  612  613  614  615  616  616  617  618  619  619  610  610  610  610  611  610  611  610  611  610  611  611  612  613  614  615  616  617  618  619  619  610  610  610  610  610  610	Asn	Asp		Met	Ile	Leu	Tyr		Lys	Tyr	Phe	Ser		Gln	Ala	Thr	
The Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys Phe Thr Thr Pro Leu Arg Cys Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu Arg Cys Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu I He His Ser Val Sol Sol Sol Sol Sol Sol Sol Sol Sol So	His			Gly	Phe	Asp		Val	Val	Arg	Leu			Glu	Ser	Asn	
465	Ile		Arg	Glu	Gly	Gly		Leu	Pro	Asn	Cys		Thr	Thr	Pro	Leu	
Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu Ile His Ser Val 500		- 2 -			_												
Ser Ash Leu Tyr Tyr Lys Tyr Leu Ash Asp Leu 1e His Ser Val	Arg	Gln	Ala	Trp		Thr	Met	Glu	Lys		Phe	Leu	Pro	Gly		Leu	
Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser Po Thr Ala Pro Gly 515 515 515 525 525 525 525 525 525 525	Ser	Ser	Asn	_		Tyr	Lys	Tyr		_	Asp	Leu	Ile			Val	
Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser	Arg	Gly			Phe	Leu	Gly			Val	Ser	Pro			Pro	Gly	
Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn 5645  He Asp Glu Ala Ile Ile Val Asp Ala Ala Ser Leu Asp Pro Glu Ser 575  Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr Phe Gly Arg Val Ser 585  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 600  Lys Ser Lys Gly Ser Met Phe Ser Glu Ala Met Lys Lys Trp Val Gln 610  Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625  Glu Lys Ser Thr Lys Leu 665  Glu Lys Ser Thr Lys Leu 655  Glu Lys Ser Thr Lys Leu 655  C210 > 33  <211 > 2363  <212 > DNA  <222 > (138) (2126)  <222 > 223 > AKAP-10-5 400 33  Gggettgtt gataatatgg cggetggage tgeetggca teeegagag gegetggagag agggetggee gacceggage teeegage gegetggee geer teeegageag gegetggee geer teeegageag gegetggee geer teeegageage gegetggee geer teeegageageageageageageageageageageageage	Ser	_		Pro	Pro	Asp			His	Pro	Gly			Asp	Ser	Ser	
545 Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser Leu Asp Pro Glu Ser 560 Ser 100 101 102 102 103 103 104 105 105 105 105 105 105 106 107 107 108 108 108 108 108 108 108 108 108 108	Ala	•	Gln	Ser	Ser	Val		Lys	Ala	Ser	Ile		Ile	Leu	Lys	Asn	,
Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr Phe Gly Arg Val Ser 575  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 595  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 605  Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 615  Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625  Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 645  Glu Lys Ser Thr Lys Leu 655  C210 > 33  C211 > 2363  C222 > (138) (2126)  C222 > 2073  C222 > 2073  C223 > Single Nucleotide Polymorphism: A to G  C400 > 33  Gcggcttgtt gataatatgg cggctggage tgcctggage tccctcccgg agagagggccggat tcccggggcgggc ccactcccgg agaagagggtc ccttttcgcg ctagtgcag ggccctcttg gaccggaagg tcccactcccgg agaagagggtc ccttttcgcg ctagtgcagc ggccctctg gaccggaagg tcccactcccgg agaagagggtc ccttttcgcg ctagtgcagc ggc cct cc ccg cgc cag tcc Net Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 100  Ccc cgc acc ctc cgt ccc gac ccg ggc ccc ccc atg tcc ttc ttc cgg 218  Ccg aaa gtg aaa ggc aaa gaa caa gag aag ac ctc agt gt gag tcc arg tcc Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser 266	_						-	-				•			•		
Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr Phe Gly Arg Val Ser 580   Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 595   Lys Gly Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 610   Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625   Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 655   Glu Lys Ser Thr Lys Leu 660	Phe	Asp	Glu	Ala	_	Ile	Val	Asp	Ala		Ser	Leu	Asp	Pro		Ser	
Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 595  Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 610  Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 640  Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Trp Asp Gln Pro Leu 655  Glu Lys Ser Thr Lys Leu  C210 > 33  <211 > 2363  <212 > DNA  <222 > C23 > AKAP-10-5  <222 > C138) (2126)  <223 > Single Nucleotide Polymorphism: A to G  4400 > 33  gggggttgtt gataatatgg cggctggagc tgcctgggca tcccgggagg ggggtgggc ccatcccggg at atg aga aga ggg ggg ggg ccc tcc ccc ccg cgc cag tcc  Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser  10  ccc cgc acc ctc cgt ccc gac ccg ggc ccc cc gcc atg tcc ttc ttc cgg Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg  15  ccg aaa gtg aaa ggc aaa gac caa gag aag acc tca ggtg aag tcc Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser	Leu	Tyr	Gln		Thr	Tyr	Ala	Gly			Thr	Phe	Gly			Ser	
Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 615 615 615 620 620 620 620 620 620 620 620 620 620	Asp	Leu			Phe	Ile	Arg			Glu	Pro	Glu			Val	Arg	
Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625 630 640  Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 645  Glu Lys Ser Thr Lys Leu 660  C210 33  C211 2363  C212 DNA  C213 Homo Sapien  C220 C221 (138)(2126)  C221 allele  C222 2073  C223 AKAP-10-5  C221 allele  C222 2073  C223 Single Nucleotide Polymorphism: A to G  C400 33  Greggettgtt gataatatgg cggetggage tgeetgggea teecgaggag geggtgggg 60  Caatecegg aagaagggte cettteege ctagtgeage ggeeeteteg gacceggaag 120  teegggeegg ttgetga atg agg geg ggg egg tgeet cee cee cee cee cage cag tee feetggeege gggeeetetegggeat 170  Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 1  Cee cgc acc ctc cgt cee gac ceg gge cee dag tee tte tte egg Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15  Cegg aaa gtg aaa gge aaa gaa caa gag aag acc tea gat gtg aag tee Arg Lys Val Lys Gly Lys Glu Glu Lys Thr Ser Asp Val Lys Ser	Lys			Gly	Ser	Met			Gln	Ala	Met			Trp	Val	Gln	
625  Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 645  Glu Lys Ser Thr Lys Leu 660  2210> 33 2211> 2363 2212> DNA 2213> Homo Sapien  2220> 2221> CDS 2222> (138)(2126) 2223> AKAP-10-5  2221> allele 222> 2073 2223> Single Nucleotide Polymorphism: A to G  4400> 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag 120 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 1 5 10  ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgg Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25  cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser	Glv		Thr	Asp	Glu	Ala		Glu	Glu	Leu	Ala		Lvs	Ile	Ala	Lvs	
Glu Lys Ser Thr Lys Leu  C210> 33 C211> 2363 C212> DNA C213> Homo Sapien  C220> C221> CDS C222> (138)(2126) C223> AKAP-10-5  C221> allele C222> 2073 C223> Single Nucleotide Polymorphism: A to G  C400> 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc caccccccg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag tcccactcccga aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag tccgggctgggc ccactcccg aagaagggtc cctttcgcg ctagtgcagc ggcccctctg gacccggaag tccggggccccccccg cag tcc locccgg aagaagggtc cctttcgcg ccag tcc ccg cgc cag tcc loccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc loccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc loccgggccgg ttgctga atg agg gcc ccg ccc ccg cgc cag tcc locccg cgc cag tcc locccgg acccggaccccccc locccg cgc cag tcc locccgg acccggacccccccc ccg cgc cag tcc locccgg ccc ccgc cag tcc locccg ccc ccgc cag tcc locccg ccc ccgc ccc ccc ccg cgc cag tcc locccg ccc ccgc ccc ccc ccg cgc cag tcc locccg ccc ccgc ccc ccc ccg cgc cag tcc loccccg ccc ccc ccc ccc ccc ccc ccc ccc c	_			-								•	•				
Glu Lys Ser Thr Lys Leu 660  <210> 33 <211> 2363 <212> DNA <213> Homo Sapien  <220> <221> CDS <222> (138)(2126) <223> AKAP-10-5  <221> allele <222> 2073 <223> Single Nucleotide Polymorphism: A to G  <400> 33 ggggcttgtt gataatatgg cggctggage tgcctgggca tcccgaggag gcggtggggc ccactccgg aagaagggtc ccttttcgcg ctagtgcage ggccctctg gacccggaag tccgggctggttgtgage tgcgggggggggggggggggggggggggggggggggg	Met	Ile	Val	Ser		Ile	Met	Gln	Gln		Gln	Tyr	Asp	Gln		Leu	
<pre>&lt;211&gt; 2363 &lt;212&gt; DNA &lt;213&gt; Homo Sapien  &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (138)(2126) &lt;223&gt; AKAP-10-5  &lt;221&gt; allele &lt;222&gt; 2073 &lt;223&gt; Single Nucleotide Polymorphism: A to G  &lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag l20 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>	Glu	Lys	Ser		_	Leu											
<pre>&lt;211&gt; 2363 &lt;212&gt; DNA &lt;213&gt; Homo Sapien  &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (138)(2126) &lt;223&gt; AKAP-10-5  &lt;221&gt; allele &lt;222&gt; 2073 &lt;223&gt; Single Nucleotide Polymorphism: A to G  &lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag l20 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>	-21	) - 33	ì														
<pre> &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (138)(2126) &lt;223&gt; AKAP-10-5  &lt;221&gt; allele &lt;222&gt; 2073 &lt;223&gt; Single Nucleotide Polymorphism: A to G  &lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc cactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggccctctg gacccggaag tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>	<21:	L> 23 2> DN	363 JA	Sapie	en												
<pre>&lt;221&gt; CDS &lt;222&gt; (138)(2126) &lt;223&gt; AKAP-10-5  &lt;221&gt; allele &lt;222&gt; 2073 &lt;223&gt; Single Nucleotide Polymorphism: A to G  &lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtgggc 60 ccactcccgg aagaagggtc ccttttcggg ctagtgcagc ggccctctg gacccggaag 120 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>				_													
<pre>&lt;221&gt; allele &lt;222&gt; 2073 &lt;223&gt; Single Nucleotide Polymorphism: A to G  &lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>	<22 <22	L> CI 2> (3	.38).		2126)												
<pre>&lt;222&gt; 2073 &lt;223&gt; Single Nucleotide Polymorphism: A to G  &lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>				_													
<pre>&lt;400&gt; 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>	<22	2> 20	73		:leot	ide:	Polv	morr	his	n: A	to G	3					
gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc 170  Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser  1 5 10  ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgg Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25  cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser							2	Е									
teegggeegg ttgetga atg agg gga gee ggg eee tee eeg ege cag tee  Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser  1	gcg	gcttc	itt g	gataa	tato	g cg	gctg	gago	tgo	ctg	gca	tece	gago	gag g	geggt	ggggc	
Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser  1 5 10  ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgg Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25  cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser																	
ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgg Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25  cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser	000;	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-55 -														-70
Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25  cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Glu Glu Lys Thr Ser Asp Val Lys Ser						1				5					10		
Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25  cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc Arg Lys Val Lys Gly Lys Glu Glu Glu Lys Thr Ser Asp Val Lys Ser			300	at c	cat		~~~				~~-						21.0
Arg Lys Val Lys Gly Lys Glu Glu Glu Lys Thr Ser Asp Val Lys Ser				Leu					ĞĨy					Phe			218
Arg Lys Val Lys Gly Lys Glu Glu Glu Lys Thr Ser Asp Val Lys Ser	caa	aaa	ata	aaa	gac	aaa	gaa	caa	gag	aac	acc	tca	gat	ata	aad	tcc	266
			Val					Gln					Āsp				

						gta Val 50										314
						gca Ala										362
att Ile	tct Ser	gcc Ala	aac Asn	atg Met 80	gac Asp	tcc \$er	ttt Phe	tca Ser	agt Ser 85	agc Ser	agg Arg	aca Thr	gcc Ala	aca Thr 90	ctt Leu	410
aag Lys	aag bys	cag Gln	cca Pro 95	agc Ser	cac His	atg Met	gag Glu	gct Ala 100	gct Ala	cat His	ttt Phe	ggt Gly	gac Asp 105	ctg Leu	ggc Gly	458
						cag Gln										506
aag Lys	400 Thr 105	ctt Leu	gaa Glu	caa Gln	gtc Val	ttg Leu 130	cac His	gac Asp	act Thr	att Ile	gtc Val 135	ctc Leu	cct Pro	tac Tyr	ttc Phe	554
						cgg Arg										602
tta Leu	Giu gag	gct Ala	gaa Glu	agt Ser 160	ttt Phe	cat His	tca Ser	aca Thr	act Thr 165	tgg Trp	tcg Ser	cga Arģ	ata Ile	aga Arg 170	gca Ala	650
						aag Lys										698
						act Thr										746
						tct Ser 210										794
tca Ser 220	gaa Glu	gga Gly	att Ile	gac Asp	ctg Leu 225	aat Asn	aat Asn	aga Arg	act Thr	aac Asn 230	agc Ser	act Thr	cag Gln	aat Asn	cac His 235	842
ttg Leu	ctg Leu	ctt Leu	tcc Ser	cag Gln 240	gaa Glu	tgt Cys	gac Asp	agt Ser	gcc Ala 245	cat His	tct Ser	ctc Leu	cgt Arg	ctt Leu 250	gaa Glu	890
atg Met	gcc Ala	aga Arg	gca Ala 255	gga Gly	act Thr	cac His	caa Gln	gtt Val 260	tcc Ser	atg Met	gaa Glu	acc Thr	caa Gln 265	gaa Glu	tct Ser	938
tcc Ser	tct Ser	aca Thr 270	ctt Leu	aca Thr	gta Val	gcc Ala	agt Ser 275	aga Arg	aat Asn	agt Ser	ccc Pro	gct Ala 280	tct Ser	cca Pro	cta Leu	986

						cta Leu 290										10:	34
						ata Ile										108	82
						aat Asn										113	30
						aac Asn										117	78
						gag Glu										122	26
						att Ile 370										127	74
						tgt Cys										132	22
						gca Ala										137	70
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	ggg Gly	caa Gln 425	tat Tyr	gat Asp	143	L 8
gga Gly	cag Gln	gag Glu 430	gca Ala	cag Gln	aat Asn	gat Asp	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	146	56
tcc Ser	ctc Leu 445	caa Gln	gcc Ala	aca Thr	cat His	cct Pro 450	ctt Leu	gga Gly	ttt Phe	gat Asp	gat Asp 455	gtt Val	gta Val	cga Arg	tta Leu	151	.4
						tgc Cys										156	2
ttc Phe	aca Thr	act Thr	cca Pro	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	aca Thr 485	acc Thr	atg Met	gag Glu	aag Lys	gtc Val 490	ttt Phe	161	-0
ttg Leu	cct Pro	ggc Gly	ttt Phe 495	ctg Leu	tcc Ser	agc Ser	aat Asn	ctt Leu 500	tat Tyr	tat Tyr	aaa Lys	tat Tyr	ttg Leu 505	aat Asn	gat Asp	165	8
ctc Leu	atc Ile	cat His 510	tcg Ser	gtt Val	cga Arg	gga Gly	gat Asp 515	gaa Glu	ttt Phe	ctg Leu	ggc Gly	999 Gly 520	aac Asn	gtg Val	tcg Ser	170	6

ccg Pro	act Thr 525	gct Ala	cct Pro	ggc Gly	tct Ser	gtt Val 530	ggc	cct Pro	cct Pro	gat Asp	gag Glu 535	tct Ser	cac His	cca Pro	gly aaa	1754
agt Ser 540	tct Ser	gac Asp	agc Ser	tct Ser	gcg Ala 545	tct Ser	cag Gln	tcc Ser	agt Ser	gtg Val 550	aaa Lys	aaa Lys	gcc Ala	agt Ser	att Ile 555	1802
aaa Lys	ata Ile	ctg Leu	aaa Lys	aat Asn 560	ttt Phe	gat Asp	gaa Glu	gcg Ala	ata Ile 565	att Ile	gtg Val	gat Asp	gcg Ala	gca Ala 570	agt Ser	1850
ctg Seu	gat Asp	cca Pro	gaa Glu 575	tct Ser	tta Leu	tat Tyr	caa Gln	cgg Arg 580	aca Thr	tat Tyr	gcc Ala	Gly aaa	aag Lys 585	atg Met	aca Thr	1898
tt he	gga Gly	aga Arg 590	gtg Val	agt Ser	gac Asp	ttg Leu	999 Gly 595	caa Gln	ttc Phe	atc Ile	cgg Arg	gaa Glu 600	tct Ser	gag Glu	cct Pro	1946
gaa Blu	cct Pro 605	gat Asp	gta Val	agg Arg	aaa Lys	tca Ser 610	aaa Lys	gga Gly	tcc Ser	atg Met	ttc Phe 615	tca Ser	caa Gln	gct Ala	atg Met	1994
aag Lys 520	aaa Lys	tgg Trp	gtg Val	caa Gln	gga Gly 625	aat Asn	act Thr	gat Asp	gag Glu	gcc Ala 630	cag Gln	gaa Glu	gag Glu	cta Leu	gct Ala 635	2042
(rp	aag Lys	att Ile	gct Ala	aaa Lys 640	atg Met	ata Ile	gtc Val	agt Ser	gac Asp 645	gtt Val	atg Met	cag Gln	cag Gln	gct Ala 650	cag Gln	2090
at	gat Asp	caa Gln	ccg Pro 655	tta Leu	gag Glu	aaa Lys	tct Ser	aca Thr 660	aag Lys	tta Leu	tga *	ctca	aaaa	ett		2136
caac gaat atgg :210	acag gggg	jec a jag a itg a	aatga acaat	aaaac	a go	acta	tatt	tct cta	gato	tgt	cact	gttg	att t	ccac	attett gggaga aattgg	2196 2256 2316 2363
<212 <213	> PR	T mo S	Sapie	en												
	> 34 Arg		Ala	Gly 5	Pro	Ser	Pro	Arg	Gln 10	Ser	Pro	Arg	Thr	Leu 15	Arg	
	Asp	Pro	Gly 20		Ala	Met	Ser	Phe 25		Arg	Arg	Lys	Val		Gly	
		35			Thr		40	Val				45	Ala			
	50					55					60					
5					His 70					75					80	
				85	Ser				90					95		
lis	Met	Glu	Ala	Ala	His	Phe	Gly	Asp	Leu	Gly	Arg	Ser	Cys	Leu	Asp	

			100					105					110	)	
Tyr	Gln	Thr 115	Gln	Glu	Thr	Lys	Ser 120		Leu	Ser	Lys	Thr 125	Leu		Gln
Val	Leu 130	His		Thr	Ile	Val 135			Tyr	Phe	Ile 140	Gln		Met	Glu
Leu 145		Arg	Met	Glu	His 150	Leu	Val	Lys	Phe	Trp			Ala	Glu	Ser 160
				165					170					175	Thr
			180		Leu			185					190	Lys	
		195			Phe		200					205			
	210				Gln	215					220		_		-
225					Asn 230					235					240
				245	His				250				_	255	_
			260		Met			265					270		
		275			Ser		280				-	285			-
	290				Ile	295					300				
305					Ala 310					315					320
				325	Ala				330					335	_
			340		Leu			345					350		
		355			Glu Thr		360					365			
	370				Leu	375					380				
385					390 Leu					395					400
				405	Lys				410					415	
			420		Leu			425					430		
		435			Asp		440					445			
	450				Gly	455					460				
465					470 Thr					475					480
				485	Tyr				490					495	
			500		Leu			505					510		
		515			Asp		520					525			
Ala	530				Val	535					540				
545			Ala	Ile	550 Ile					555					560
				565	Tyr				570					575	

```
580
                                           585
                                                                      590
Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg
           595
                                      600
                                                                605
 Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln
                                 615
      610
                                                           620
Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys
625
                           630
                                                      635
Met Ile Val Ser Asp Val Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu
                      645
                                                650
Glu Lys Ser Thr Lys Leu
<210> 35
<211> 162025
<212> DNA
<213> Homo Sapien
<300>
<308> GenBank AC005730
<309> 1998-10-22
<400> 35
gaatteetat ticaaaagaa acaaatggge caagtatggt ggeteatace tgtaateeca
                                                                                               60
geactitiggy aggoogaggt gagtgggtoa ottgaggtoa ggagttocag gooagtotgg
                                                                                              120
ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg
                                                                                              180
gcacctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga acctgggaga
                                                                                              240
tggaggitgc agtgagccga gatcgcgcca ctgctctcca gcctgggtgg cagagtgaga
                                                                                             300
ctctgtctca aaaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca
                                                                                             360
aatttgaaat gutaaaggta ttatggtcac tgatatcctg tutcattctt tatataatca ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt
                                                                                              420
                                                                                              480
actgotttia cacaatatat tittogtaata tgtatgoact ggtgtttaig tacgtgttta
                                                                                             540
tgtttatatc tgttaaaatt agcagtttcc atctttttct attttgtacc atcacatcaq
                                                                                             600
ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgagtgg cataaataca actctgaaca attaggaggc tcactattga ctggaactaa actgcaagcc
                                                                                             660
                                                                                             720
agaaagacac atateetata tgteaagaga tgtaceacec aggeagttaa agaagggaag
                                                                                             780
tacacatiga aagcacaatg gtgaataatt aaaaaattgg aatttatcag acactggatt
                                                                                             840
cattigcicc taaagtcaga giccictati gittititigi tittigiggi tictititaa attitititat tittigiaga gicggagici cactgigita cccgggcigg tctagaactc
                                                                                             900
                                                                                             960
ctggcctcaa acaaacctcc tgcctcagct tcccaaagca ttgggattac agacatgagc
                                                                                            1020
cactgagece ageceagaeg etttageatt tatgaagett etgaaatagt tgtagaaace geataagett tecatgteae ttteaaagtt tgatggtete tttagtaaac eaaceaagtt
                                                                                            1080
                                                                                            1140
attecteaag ggcaaaataa cattteteag tgcaaaactg atgcaettea ttaccaaaag
                                                                                            1200
gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaaa
                                                                                            1260
aggtacaaac acatactaat ggaacattct ttagaagagc cccaaagtta atgataaaca
                                                                                            1320
ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac
                                                                                            1380
                                                                                            1440
cagtagataa tttcaacttg ctgccgaatg aaacctcttt gcaaggtatg aatcagcact
                                                                                            1500
totcatgttt gttttgcttt gttttgtttt gtttttagag acaggccctt gctctgtcac
                                                                                            1560
acaggetgga gtgcagtgge acgatcagag etcactgcaa cetgaaacte etgggetcaa gggatcetee tgcettagee teccaagtag etgggactae aggeceacea tgcecageta
                                                                                            1620
                                                                                            1680
attttttaaa ttttctatag agatgggatc tcactagcac ctttcatgtt tgatgttcat
                                                                                            1740
atacaacgac caaggtacaa tgtggaaaag ggtctcaggg atctaaagtg aaggaggacc agaaagaaaa ggggttgcta catagagtag aagaagttgc acttcatgcc agtctacaac actgctgttt tcctcagagc agagttgatg atctaaatca ggggttccca acccccagtt
                                                                                            1800
                                                                                            1860
                                                                                            1920
catagectgt taggaacegg gecacaeage aggaggtgag caataggeaa gegageatta
                                                                                            1980
ccacctgggc ttcacctcc gtcagatcag tgatgtcatt agattctcat aggaccatga accctattgt gaactgagca tgcaagggat gtaggttttc cgctctttat gagactctaa tgccggaaga tctgtcactg tcttccatca ccctgagatg ggaacatcta gttgcaggaa aacaacctca gggctcccat tgattctata ttacagtgag ttgtatcatt atttcattct
                                                                                            2040
                                                                                            2100
                                                                                            2160
                                                                                            2220
atattacaat gtaataataa tagaaataaa ggcacaatag gccaggcgtg gtggctcaca
                                                                                            2280
```

cctgtaatcc	cagcacttcg	ggaggccaag	gcaggcggat	cacgaggtca	ggagatcgag	2340
accatcctgg	ctaaaacggt	gaaaccccgt	ctactaaaaa	ttcaaaaaaa	aattagccgg	2400
gtgtggtggt	gggcacctgt	agtcccagct	actcgagagg	ctgaggcagg	agaatggtgt	2460
gaacctggga	ggcagagctt	gaggtaagco	gagatcacgc	cactgcactc	cagcctgggc	2520
gacagagcga	tactctgtct	caaaaaaaa	aaaaaaaaa	aaagaaataa	agtgaacaat	2580
aaatgtaatg	tggctgaatc	attccaaaac	aatcccccca	ccccagttca	cqqaaaaatt	2640
ctcccacaaa	accagtccct	ggtgccaaaa	aggttgggga	ccgctaatct	aaataatcta	2700
atcttcattc	aatgctaaaa	aatgaataaa	cttttttta	aatacacggt	ctcactttgt	2760
tgcccaggct	ggagtacggt	ggcatgatca	cagctcactg	tagcctcaat	cacccaggc	2820
ccagcgatcc	tcccacctaa	acttcctgag	tagctgggac	tacaggcacg	caccaccatg	2880
cccagctaat	ttttaaattt	tttatagaga	tagagatete	accatattac	ccagactggt	2940
ctcaaaccct	gggctcaagt	gatcctccct	caaactcctq	gactcaagtg	atectectte	3000
cttqqcctcc	caaagtgctg	ggattacaag	catgagccac	tgtacccagc	tggataaaca	3060
ttttaagtcg	cactacagto	atggacaatc	aggettttea	acatgcagta	tggacagtga	3120
atcccasaat	ctacttttcc	atactgaaat	acatotoata	ctaaggagaa	aggtgctcgc	3180
aaggatattt	aaaatgaaga	atatttaaaa	tgaggaaaaa	actotttctt	catgactttg	3240
ataaggctga	taaagaccat	ttctgtgatc	tcaggtgatt	cactcaacta	catgattttca	3300
gtaatsatta	tctggaacag	cctgaatctt	aaccaaaata	ccatcatttt	ttaatootot	3360
		accaaactgc				
acttcccca	gacgacacg	ttttcttcac	22211222	astatatttt	ttastsasta	3420
						3480
gaatcaaatc	caatcaaacca	cactgaaatg	antataata	acataaayaa	acattttcca	3540
acacttogae	taattaaaga	gtggattagg	tataatata	ccartatcaa	Ctaaatagaa	3600
acaccaggac	-999191991	ggctcacatc	igiaalitia	geaetttggg	aggecaagge	3660
ctctacaaaa	anananan	ggagctcaag	accageetga	gcaacatagc	aaaactctgt	3720
ctctacaaaa	tannathaan	attaaccagg	catggtggca	gatgettgta	atcccagcta	3780
tectoggaage	cgaagtagga	ggactgcttg	agcccaggag	atcaagactg	cagtgagccg	3840
rggccacgct	gegeeacage	ctgagtgaca	gagagagacc	ctgtctcaaa	aacaaaaaca	3900
aacaaaaac	acttaacctt	cctgtttttt	getgttgttg	ttgttgtttg	tttgttttga	3960
gatggagtet	cactetgttg	cccaggctgg	agtgcagtgg	cgtgatcttg	gctcactgca	4020
agecetgeet	cccgggttca	cgccattctc	ctgcctcage	ctcccgagta	gctgggacta	4080
Laggegeeeg	ccaccacgcc	cggctacttt	tttgcatttt	tagtagagat	ggggtttcac	4140
egtgttagee	aggatggtct	tgatctcctg	acctcgtgat	ccacctgcct	cggcctccca	4200
aagtgctggg	attacaggca	tgagccaccg	cacccggcca	acctttctgt	tttttagttt	4260
gatatgettg	ttaactcagc	agctgaaaga	atgctgaaag	tggccttcag	taaaaaaatt	4320
tcactagaat	ctctacatcc	atatttaatc	tgaatgcata	tccagattga	tcagttagag	4380
caaaaacact	catcatcatt	cctgatgacc	tctaattctg	gtttcggctt	tctatttcaa	4440
tggaaacaga	ataaggaaag	aaatggaagg	gctctggaaa	tttgtcctgg	gctatagata	4500
ctatcaaaga	tcaccaacaa	taagatctct	cctataaata	taaaacaagt	ataattaatt	4560
ttttaattat	ttttttctct	tcagaggatt	ttatttcaag	ataaaacata	acttctaccc	4620
atactattga	ttccaaaggt	tagaaaaagt	gtttttcctc	atcttatcct	tcaaagaggt	4680
cacagcaatg	caaacatcta	taaaatgcct	ctgcataatt	gtcagaagct	atagtccaga	4740
aatcattgaa	aatgcttttc	cattttaagc	ttaggtgagg	tgtcttagga	aacctctatg	4800
acaacttact	ctatttattg	ggaggtaaac	tcccagactc	tcccagggtc	tcctgtattg	4860
atctcatttt	ttaggcttcc	taatcccttg	aagcacaatc	gaaaaagccc	tggatctctt	4920
ttctgcacat	atcatcgcgg	aattcattcg	gcttccagca	agctgacact	ccatgataca	4980
agcggcctcg	cccttctccg	gacgccagtc	cttgctgcgg	ttagctagga	tgaggggttt	5040
gctgggcttc	agtgcaggct	tctgcgggtt	cccaagccgc	accaggtggc	ctcacaggct	5100
ggatgtcacc	attgcacact	gageteetgg	caggetgtae	caatttttta	attatttaat	5160
atttatttt	aaaattatgg	tgaatatttt	ggtattctgc	tctaaaataq	gcccataaat	5220
gcacagcaga	tatctcttgg	aacccacagc	tttccactqq	aagaactaag	tatttttctt	5280
ttaaagatgc	tactaagtct	ctgaaaagtc	cagatectet	acctctttcc	atcccaaact	5340
aagacttgga	atttatgaga	gatctagcta	acagaaatcc	cagacacatc	attogttctt	5400
cccagagtgc	agtcctccta	aagaggctca	gccctaagca	ggcccctgca	ccaggagggt	5460
gggtctqaga	cccacatage	acttcccaag	gtgcatgctc	cadadaddca	ctgaaacage	5520
tgagcacaaq	cctgcaaqcc	tggagaactc	tcacagtcag	aacadaaaaa	acceateaa	5580
actaacataa	agagaaaagg	gaacacagag	aaatggatgg	Caccaacaac	220022522	5640
ttcatqqcca	atgaaagcat	cagtgacggg	accadaaccc	tcatccccaa	agactcttca	5700
ctqcctttag	tgaaaaacaa	tggctagaga	gtgaagttat	gatcatgtat	agagaggtaa	5760
agttacattt	ttatattctc	actctgctaa	tataaaatta	cctatctcct	~gagaggaa	5820
tttcagacac	cctattcaaa	tatcccatta	attactece	acttasaat~	agactaaaag	5880
			agag	ucciaaaacy	aacagaacge	2000

acattgtcag	gatgactatt	accaaaaaat	caaaagacag	caaqtattqq	tgaggatgta	5940
gagaaactgg	aacttttgtg	, cactgtttat	gagaatgtaa	aatggagcag	ctactataaa	6000
aaagagtato	caggttcctc	aaagagtaaa	accaagatgt	ggaaacaact	aaatocccat	6060
cagtggatga	agggtagac	aatatgtggt	atatacatac	catogagtag	tattcaccet	6120
ctaaaaaaa	aaaaggaaat	tctataacat	gcaacagcat	ggatgatct	taragagaga	
ttoctaatoa	aataaggcag	tcatagaaag	, acaaatacto	Caccacteca	cttatatata	6180
ataccaaaaa	tagacaaatt	catagaatca	acadactaces	tacgacteca	stanachan	6240
adddcdddaa	acqaqqaqtt	actaatcaac	. cagagtacaa	ttggaggttat	ctggagetge	6300
taagetetea	acgaggagee	tacaaccaac	taggtagact	cigcagicaa	gtaagatgaa	6360
Cttassastt	tottaacce	tacaacactg	otetagage	taacaacaac	gtattgtaca	6420
ttettaeea	agtaaagggt	agattaacaa	atgragraga	ccacaaacg	cggctaagtg	6480
taagatggtg	agtadadtaa	aaaaagaata	Leaageceag	gagilegaga	ctageetggg	6540
ctactacggrg	adaccccgc	tctacagaaa	atacaaaaat	Lagecagetg	tggaggtgca	6600
cccccaggga	ggcigaggig	ggaggcttgc	ttgagcccag	gaggtcaagg	ctgcagtgag	6660
ccatgattge	accactgtac	tccagcccag	atgacagagc	aagacaccac	ccccccaaa	6720
aaaagaaaaa	gaatatcaaa	cattttaaaa	gatcagatac	gcaagaacaa	caacaaaaa	6780
gagatgaaca	gagcatcgac	cctcatctag	tgggattctt	ggtctaactg	aaaaacagac	6840
attgagagac	aaacaatgac	agtgatgtga	tcacagcaat	tacacaggta	tcccctgggg	6900
actgcagaag	aaaggaggaa	tgcctaactt	tcagaaaata	gagaaagcgt	caaacagttg	6960
gtgaaagcct	tccaaaacta	gagagaactg	cacacaccaa	atcacagaaa	gaagaaaagc	7020
cgtgggagat	tctgggaccc	accggctatt	tttgatggct	gaacaccctq	ctgcaggaga	7080
gacaggagct	ggaaagcatg	gtgggatgaa	acctcaaaca	gctttgcctg	cattgcttaa	7140
gatgactggg	cttgattaac	tctagtcaat	ggggacaatt	caatcaaaga	agaaagatgc	7200
tcaaattcac	attttagaat	gattttttat	ggcagtatgg	ggaatagatt	aaaagagagt	7260
gaagctggag	gcaagaaact	tgttaagagg	caactgaaac	agtctagatg	ataaataata	7320
aactgacaga	gtgactagaa	aaatcagaac	aggetgaate	aacagatacc	tagatgaaaa	7380
taacaggact	tgatcaccag	ttgtatcttg	gagaggaagg	agttgtttcc	ttactttecc	7440
tacgactggg	aatacqqaaq	gtttgccgtg	tatattaatt	atatactoot	gtgtagccaa	7500
tcactgacaa	ccatttagca	gcttaaaaca	caaaggctta	tctcccagtt	tetatagace	7560
aggaatctaa	gataggetta	gctggctggt	tctggctcag	agtttctcaa	gaggttgcaa	7620
tcaaqatqtc	agctggggtt	gcatcatctg	aaggctcaac	tagaaccaga	gagtccactt	7680
ccaaggagtt	cactcaccto	cctgacaagg	cagtactagt	tattaacaaa	agateteaat	7740
tcattgccaa	gtgagcctct	ctatagcatt	actagaacat	cctccccatc	tagacectaat	7800
cttctctcag	catgagtgat	ctgagagaga	gagcaaggag	Gaagecacac	tottottoot	7860
actcctactc	ctaacactat	ggacctactc	ctaacactct	cacttctcc	ttattccatt	
agttagaaag	ggaactaagc	tccacctctt	ceaataacaa	ctctcccgcc	atttataaat	7920
atatttaaaa	atcatcacac	tgtggaagtg	gatacaagaa	tcaattaata	stannetten	7980
aatocctoao	acattcaeat	gtccaacagg	castgaagg	accatact	ctgaacttga	8040
ttagcaagaa	tagaggagag	tcacagaatt	aargaacat	tassagat	ggtcatgact	8100
atcagattcc	ccctcaaaa	taaaaaataa	aaggaggaat	rgaaaggraa	aagaagtgga	8160
gecagacece	tttesstess	tgagccatga	aaggaacttt	aactattgag	ttagaggtca	8220
gageaggaaa	Castasates	attcttttt	aaagaaagga	accatataag	catgttttga	8280
attasassa	gaataaatta	gtagacaggg	agaggtaaaa	aacataaatg	ataggggata	8340
totttatta	acceptage	aatcccttac	ccartgactt	ggggccaaga	gagggacact	8400
tetaggggg	agggataagg	aaaataagaa	agaatgggtg	ctatttagtg	tggtcctgtc	8460
tterestes	acgeataggt	aacaaactgt	grgrgrragg	aatatagatg	tgacctcaca	8520
ccyagattet	caccicaaal	ccattttgtt	gttacctgta	ccttcctacc	ttctcttttt	8580
getacatgea	gactgctgtt	ttgtcttcct	ggcctgttcc	aggtttcagc	attctggcat	8640
atetgetace	ctgttcccaa	acctctctag	agtccatgct	ccttccttgg	atagtgtttg	8700
attgggccac	gtatctaaga	agtgatgcct	tcagttaggc	ctgagaacct	cctctatgga	8760
aatctccatc	agtgaccctg	acagacttgg	tatcttggag	atgtcactgc	tcccagcctg	8820
tggtctagga	gaatctcagc	ctgggcctct	agtagtatgg	ataaggcgtt	aaggtatett	8880
tgaaccagag	tctqtcatat	tcctcaatgt	gggacagata	aaacagtggt	agtactaata	8940
tttctgagct	agaactctgg	tttttggtct	agattetttg	atgtatgacc	tttcagaggt	9000
actaaaattt	grtctaatac	aatgttcaat	acaaatgtag	ttccttttct	gttaggacct	9060
caacaaaaca	tgaccaactg	tagatgaaca	ttaaactatg	acaattcato	gaaatgaata	9120
cagtaatacc	tgcggttccc	ccattttagc	agtcactatg	gtgacatttg	gcacaaatgg	9180
ctatttaagg	gtgcttttgt	taaaacctac	catcttacta	ggcacatgat	attgaaacta	9240
atgaaataat	ggagaaactt	cttaaaaact	tttaatqaat	aaagtgatga	agtgataata	9300
ttttagctgc	tatttataaa	gtgactatta	caggtcaaac	attettetae	gatttttta	9360
ttgaagttgt	cacatttaat	ccttaataac	ccactatgag	tcaggtattc	tteteteee	9420
tttggacagt	tggggaaato	ggggtcagag	aggttaggta	atttactcac	GGCCGCGCGC	9480
		2225243	35000950	g	Jacoucacad	2400

			ggaacgtatc			9540
ctattttccc	atgctgcctt	tctaataaaa	ggtaactaat	gctactggat	gctgccccca	9600
aagtgagtca	ctttcacccc	accctacttq	attttctcca	taaaactaat	cacatectga	9660
caacttattt	attoctoatc	tcccccacta	gattataaac	tcaataaaag	caagateett	9720
			tctagcacag			9780
tastasas	2252226622	22222	2002302223	ageaageaae	caacactcgc	
retesanta	aataaaggaa	aaaaacccaa	aggaagaaaa	agccccaaaa	cagargreea	9840
			aacaaattca			9900
tttttaaaga	aataaccaag	tgctagctgg	gcacagtggc	tcacacctgt	aatcctagca	9960
ctctgggagg	ccgaggcagg	cagatcactt	gaggtcaaga	gttcaagacc	agcctggcca	10020
acatggtgaa	acctgtctct	actaaaaata	cagaaattat	ccaggcatgg	tggcaggtcc	10080
ctgtaacccc	agctactcag	gaggctgagt	caggagaatt	gcttgaaccc	aggaggcaga	10140
aattacaata	ggccaagatt	gcaccactgc	actccagcct	gagtaacaaa	gcaagactct	10200
gtctgaagga	daaddaaada	aagaaggaaa	gaaggaaaga	aggaaagaag	Geargaces	10260
			gaaagaaaga			10320
			accaagtgct			10380
			agcagttagc			10440
			gtgctttaag			10500
atgtatgcat	tagttttcta	agagttacta	gtaacttttt	ccctggagaa	tatccacagc	10560
cagtttattt	aaccaaagga	ggatgcttac	taacatgaag	ttatcaaatg	tgagcctaag	10620
			acaaaaacca			10680
tttacctgaa	aattcatttt	ccacattacc	aaggagccag	ggtaggagaa	tatagaaaga	10740
ccacccaaga	atccttactt	ctttcaccaa	aatcaattca	aantanntaa	ctaaacacat	10800
						10860
			gaagaatgat			
ggaactactg	aaatattcca	ataagaette	tctccaaaat	gattttattg	aatttgcatt	10920
ttaaaaaata	ttttaagcct	aaattttaaa	aggtttgata	ttggtacatg	aatagacaaa	10980
cagacatgga	ctagaccaag	aattaggttc	aaacatatac	aggaatttaa	tatacgataa	11040
atctagtatt	ccaaaggaac	caacaaatgg	tgttcagaca	gcaggatagg	catcaggaaa	11100
aacacagttg	ggcaccctac	cttactccta	acaccaggag	taactgaagg	agcaccaaat	11160
atttatttat	tttaattata	gttttaagtt	ctagggtacg	tgtgcacaac	atgcaggttt	11220
attacatagg	tatacatoto	ccatattaat	gaggagcacc	aaatatttaa	aagaaaaaaa	11280
ttggccaggg	acagtaactc	acacctgtaa	tcccagcact	ttaggaggcc	aaggtgggca	11340
gatcacctga	aatcaaaat	trancescan	cctgagcaac	atogagagae	cccatatata	11400
			gcacatgcct			11460
			gaggcacagg			11520
gcactccagc	ctgggcaaca	agagcaaaac	ttcaactcaa	aaaaattaat	aaataaataa	11580
aaataaagaa	agaaaagaaa	aaaatgaaaa	tagtataatt	agcagaagaa	aacaccgtag	11640
aatcctcgga	ctcttaggat	ggggaatgcc	tataatataa	aaaccctgaa	gttataaaag	11700
agaaaatcac	ctacatacaa	accaaatctt	tctacatgcc	taaaacatag	cacaaacaca	11760
gctaaataat	catagctgaa	tgaactggga	aaacaaaact	tgactcatat	ccagacagag	11820
ttaattttcc	tacacataaa	gagtacctat	ataaacccaa	caaaaaaacc	accactaacc	11880
			gtagttcaca			11940
ggcacataag	atoctcadac	tracttttac	ttatttattt	tttgagagag	acggccccc	12000
gatattaca	aggettagget	caaactcctc	ggctcaaatg	atastassa	agggtettat	
gacgccgccc	aggeragger	catactette	ggcccaaacg	acageaceag	gactacaggt	12060
gigocciaco	geacetgget	cercaaceae	ctgtattaac	aggaaatgca	aaataaaact	12120
ttcaaatcta	ttttacctat	tagaatggca	aaaatttgaa	aaacttcaaa	catcatcatg	12180
ttggtgagaa	tgtgaggaga	ctggcactct	cattttttgc	tgatagcata	tatatactga	12240
tggcttctat	ggaaagcaat	ctggcagcgt	ctatcaaatg	tacaagtgca	tatatccttt	12300
gacaaagcaa	ttccactcta	ggaatgtgtt	ctatatggtt	gtgcttcctg	gggctgggaa	12360
ctgggagcta	agggacaggg	gcagaagata	atcttcttt	ccctccttcc	ccottaaaca	12420
tattaaattt	tatatactot	aatatattat	ttttcacaaa	agataatttt	taagcgatat	12480
gtctgggaat	ttttttttt	cttttctgag	acagggtctc	acteteteat	ccagagaaaa	12540
ataccataat	atgatgtgag	ctaactacaa	actigggeete	stanttan	ccaggctgga	
cacctcaccg	teetesetse	ctccccccc	cctcgacctc	ant ant	guaateetee	12600
caccicages	tacatatat	ccyyyactac	aggcacgtgc	catcatgcta	accetegeat	12660
acacagggcc	Leactatgtt	gcccaggcta	atgtcaaact	cctaggctca	agcaatccac	12720
ccacctcagg	ctccaaagtg	ctgggattac	aggcgtgagc	caccgcgcct	ggccctggga	12780
attcttacaa	aagaaaaaat	atctactctc	cccttctatt	aaagtcaaaa	cagagaagga	12840
aattcaacct	ataatgaaag	tagagaaggg	cctcaaccct	gaqcaacaaa	cacaaaggct	12900
atttctgaga	caggaatttg	ctgaacaaaa	tcgagggaag	atgacaagaa	tcaagactca	12960
cttctcqqct	gggcgcagta	gctcacacct	gtaatcccag	cactttggga	aaccasaaca	13020
gacagatcac	gaggtcagga	gattgagacc	atactggcta	acacactcas		13080
J.2.J	J99-44954	22222200		acaytyaa	accoagicit	12000

********			<b>.</b>			
Lactadada	. acaaaaact	. agccgggcgt	ggtggcaggt	gcctgtagtc	ccagctactt	13140
gggaagctga	ı ggcaggagaa	tggcgtgaac	ccaggaagcg	gagcttgcag	tgagccgaga	13200
tcacgccact	gcactccago	: ctgggtgaca	gagcaagact	ctqtctcaaa	aaaaaaaaa	13260
aagactcatt	tctctagato	ttgagccgta	ttcaaattta	totcagotta	gtgagaggtt	13320
aaaqcaaqqa	atatccttcc	ctatagacco	tgctccttac	tgaaggaagg	taacqqatqa	13380
gtcaaggaca	ccaatggaga	aaagcactaa	caccattatc	tastassast	tagetga	
annotaanaa	atasataas	attoctoaa	aagtcagtga	zgatgaatat	tacgrgaaga	13440
2225002250	taggaggagt	attananatan	aagccagcga	aageggaeae	ccatttgggg	13500
aaarggaara	taggaaaccc	acaaaagtya	ttaaaaagat	grtagaggct	gaggcggggg	13560
gaccacaggg	ccaggagacc	gagaccatcc	tggctaacac	ggtgaaaccc	catctctact	13620
aaaaatacaa	aaaattagcc	aggcgrggrg	gcaggcacct	gtagtcccaa	ctactcggga	13680
gactgaggca	ggagaatggc	atgaacctgg	gagacggagc	ttgcagtgag	ccgagatcac	13740
gccactgcac	tccagcctgg	gtgacagagt	gagactccat	ctcaaaaaaa	aaagttagat	13800
acgagagata	aagatccaac	agacacacaa	ctgctaattc	tgaacagaac	aaaacaaatg	13860
gcacaggaaa	agaaaattta	agatataaca	ccggaaaact	ttcctgaaat	tgagtaactg	13920
aatctatagc	ttgaaagggt	ttagcatatg	ccaagaaaaa	tcagtagagt	ccaaccagca	13980
caagacacat	ctagcaagge	tootoattct	accaacacag	agaaagaagt	anataecce	14040
taatgcggaa	aaaggcagac	catctgcagt	cttctccaga	agaaagaaga	Stangacca	
aagaatgetg	cctactgage	caceegoage	agaaagtgac	caccygage	tttaagacaa	14100
tagaatgteg	cccactgage	cagaagggag	agaaagtgat	CCaacacacc	tttaccaagt	14160
cagaacgcca	cycattattt	aaaggctgca	aaagccatga	aagacatgaa	agaacacaag	14220
Cattlacaac	atgaaagaac	acaagcattc	tcatactcaa	gaatccttaa	gaaaaatgta	14280
gtcctaatcc	agcccactga	aagttaaatg	tacttaatgt	gctcattaat	gggaacttca	14340
tagcttcaaa	tcagtctggt	cccatctacc	aacatctctc	gcccggcttt	cctgcaatag	14400
tcagcacctt	tecetectee	cagtcttgtc	ccctggagtc	tgctctcaqc	atagcagagt	14460
gaccacatca	acacccaagt	cagagccctc	cagtgcgcac	tggtctacaa	agcccttccc	14520
accccccacc	ccacgtgccc	tccggatcct	tgtgacgtgt	ctcctqcata	ccctagcagc	14580
cctggcctcc	tcactgcccc	tcctgtacat	caggaaggcg	actccttgag	tettagetet	14640
ggccgcctcc	tccacctqca	gtgagttaac	tcccttacct	actctaggtc	attoctcasa	14700
tgtcagcatc	tcaatggggc	cctccctgac	taccctattt	aaattctaca	tactcccctt	14760
gaccccatoo	acctcactca	ccctattcca	cttttattct	tacaatttac	cacttcttct	14820
cttctaacgt	attotaagac	ttactcattt	attacattgt	ttaccaccag	atatagtaga	
taaactccac	accocaagac	atttctctct	atttattcat	ttatttata	ctctagtaca	14880
anaceceag	49999ca999	tattenatet	acctatteat	ttetttatee	ctaggacata	14940
tteesettee	cageceagag	cattedatyt	tatcaatgaa	Lgaactagea	gragraccag	15000
tacatacaa	gcacagaatt	adaltidadi	agaattaaat	ctcatggtct	gggttaacta	15060
Lygaragaaa	accagacaca	attttaagaa	gcctagaaag	aaaaaattaa	taatgtaaaa	15120
ataatattaa	tttgataata	ataacaaaaa	ctctgccagg	cactgtggct	caaatctgca	15180
atcccagcta	ctcaggaggc	tgaggtggaa	ggatcacttg	agaccagagt	tcaagactca	15240
gcctaggcaa	cacggcaaga	aactgtctct	aaaaaaatta	aaacttaaat	ttttaaaaaa	15300
gaattctcaa	agcgtcacaa	aaactggaga	ttaaggtaca	ggaagtgtga	agtaatatta	15360
ctatgctaat	ggttttttt	ttttttagaa	aggtataacc	aaaaqatttc	tttctcaagt	15420
cgataaactg	agaaagataa	gcatatcttc	caattaacag	aggggagga	aaagccagat	15480
acaacaaaat	aagatataaa	ttagtttcca	gttgaaaaca	agagtaggag	ttattttgca	15540
tcacctcacc	tataacctcc	cccacccaa	aaaacactac	tgataaacag	anteneesea	15600
catcatctca	gataaagcag	gaaaaactgc	cacagtctca	aaccacaaac	tataaggaaaag	15660
cacctggcca	accetaceaa	gtctgggctc	agtaggagga	acctactaca	acaagcaca	
taccaactta	gacattctgt	gcccgggccc	totootoo	acgreergag	ageraggarg	15720
gcacctgtaa	tacccacta	ttagagaga	tgtccctgga	agggccacac	cateteaaag	15780
geacetgeaa	caccaccga	ctacagecae	catatgtgag	agagaaactc	agggcactta	15840
gagagtataa	caagaacctt	atgtcatctg	agatgaggaa	tcctcagccc	tgcaaattaa	15900
CCAACCCCCC	agaacaactg	gcaaaacata	aatatccaca	acttttgttt	cagtaattcc	15960
actettagat	atcaatccaa	agtacatgag	acagcagata	cacacacaa	atggtattta	16020
ctgcagcatt	gtttataata	gcaaaaaaca	agaaataatc	catatgtctc	aataggatac	16080
tgggtacatg	agggtatgta	cccatcattc	aaccatcaaa	aagagtgata	tagatataca	16140
cagatggaca	taaaaagctg	tgtgttacgt	gaaaacaaac	tcaagcagca	gcaggatggg	16200
cttatgatag	tcagtatgag	ctaatttctc	gaaaaaaaaa	tctagtgtgt	gcacagaaaa	16260
catctgaaag	aacagaaaca	aaactatcag	cagaatattg	agatgtttt	ctaacttota	16320
tatctatact	gcttgtaatt	tttaccccaa	gcaagaatta	ctttttcce	22242222	16320
caggaaataa	agcatttctt	taaacttcat	gtttaaacaa	atootoatea	aaayaaaatt	
ttcttattca	tcataaacac	acacacacac	catgcacgca	totacetes	aacaaaagag	16440
acttoateee	taccatotte	astatttta	tatttatt	tacate	Cacaccctt	16500
222210000	tataaataa-	adiatitieg	tettteettt	Laggitetat	CCCTTCactc	16560
taaatycyyt	ctccccttct	LyLacttttc	atgtgccttc	tgcctaaacc	cactttaata	16620
Laactttaca	geeceattat	cattatagtc	tcaaagctag	actcagcctg	aaactaccct	16680

ttcatttgga	acccttatta	aaatgccaca	tacagctcct	tcaaataaaa	acaaacccta	16740
ggacctgaca	ctaggcttcc	tttgttgcta	ctcataatgg	ccaagttctg	tgcttataat	16800
		gctacatatc				16860
cttaattcaa	aacaccatca	cgctcttttc	cagatgaaaa	taaggaaaag	aaattqagca	16920
actgactgac	ttaaaggtca	taaaactata	tagtagcaga	gtcagcaaaa	gaagaaacac	16980
		gaaaaccagt				17040
		taaatgttca				17100
acctcqtaaq	aacagcctca	gatcttgtta	tagccttttt	tttagcatgc	tgaagccaat	17160
		agagaaacaa				17220
cctatquaca	tttccactgt	gagaaatgtt	ctccactqtq	tggagaagat	ccttactctt	17280
		agaaaaattc				17340
tqtttuqcac	aatttaagtc	caaatagtta	ttaaatcctc	ctctgttcca	gaaacagtgc	17400
		attgaaaaga				17460
		acaaatcact				17520
		agaatacagt				17580
		tagaaaactc				17640
		ggaagcaggg				17700
		tgagtctggg				17760
		catgttaaat				17820
		ttcaagaaaa				17880
		aaaaagagaa				17940
cttcatuuaa	gaataccage	taataaatgt	aaaggaaatg	agagaattag	aaaaattatc	18000
attttgtaaa	ccttaatata	ttcacctaga	catoctaaaa	ccactgagta	aaaggctgct	18060
tage Hanga	atoctcacat	gatctcagag	tttcacacca	cacataattt	attagataga	18120
		cttcctgtga				18180
		acacagcatc				18240
		actggacage				18300
tractraace	tctccaaaga	aacttgcttg	gcctctccaa	agaaaactca	ctttcattta	18360
aaaacaaaac	raattattta	aaaacaaacg	aaaagcaagt	tataaactta	agetecaeeea	18420
		cctgttcttc				18480
		gaaggttctg				18540
		acccagtgat				18600
		gcagcaggca				18660
aagccccaag	aaaagcctgc	cctctctagc	caaaggacca	agaaggagac	agtctaatga	18720
gatggaacac	atttagacag	taactgccca	tttaccacca	ataactgage	agggagggta	18780
		cgtaccaagg				18840
		catggcagta				18900
tatcagggga	acctggactt	ccactcccac	ccaggagtga	tgaggcctc	cctactagag	18960
tcatgtcaga	ggaggctag	tggagattca	gtgacttaac	cttttcccag	agataatgag	19020
gccacctttc	ctccctcttc	ccccatggtg	acagtgaaag	cactgtggca	agacaatagag	19080
		gggaggtatc				19140
acaaccaccc	agcagcaaca	ggggtccccc	accccattgg	gtgtcaatgg	aagcagagcg	19200
gaaagcctgg	atatttaccc	ccatctagaa	gtaacaagct	gatgtcccc	ttcttctact	19260
acaatggtgt	tcaaaacagg	tttaaataag	gtctagagtc	tgataacgta	atacccaaat	19320
cattaaaatt	ttcattgagg	atcatttata	ccaagagtca	ggaagatccc	aaactgaaag	19380
agagaaaaga	caattgacag	acactagcac	taagagagca	cagatattag	aactacctga	19440
aaggatgtta	aagcacatat	cataagcctc	aacaggctgg	acacaataac	tcacgcctgt	19500
aaccccagca	ctttaggagg	ccgaggcagg	tggatcacaa	gatcaggaga	togagacoat	19560
		cccgtctcta				19620
		ccagctactc				19680
ctgggaagag	gagcagtgag	ccgagatcgc	accaccacac	tccagcctgg	acascadaac	19740
aagacttcgt	cccaaaaaaa	aaaaaaaaa	aaaaaaaaa	ctcaacaaac	aactacaaac	19800
gtgcttgaaa	caaatgaaaa	aaaaatcttg	gcaaagaaat	aaaagatata	tattttggcc	19860
aggtgcagtg	gctcacagcc	tgtaatccct	gcactttggg	aggetgagge	aggcggatca	19920
cctgaggtca	ggagtttgag	accageetga	ccaacatees	-330-3433C	ctctactaaa	19980
aatacaaaat	tagccagtca	tggtggcaca	tacctataat	cctacctact	caggaggggg	20040
aggcaggaga	atcacttosa	ctcaggaggt	agaagttaca	ataaaccaac	atcccccat	20100
tgcacattgc	actccacct	gggcaacaag	agcaaaactc	catctcaaaa	aaatagatag	20160
atattttaat	ggaaatttta	gaattgaaaa	atacagtaac	caaattgaat	adayadacas	20220
catagaatgg	aggggggaga	caaaataatc	agtgaacttc	aacagaaaat	aatagaaatt	20280
						20200

acccaatatg	aagaacagaa	agaaaataga	ctggccaaaa	aataaagaag	aaaaaagagg	20340
agcagcagga	ggaatgatgg	aaaaagagaa	aggaaggaag	gaagggaagg	agggagggaa	20400
ggagtgaggg	agaaagtctc	aaagacctct	gagactaaaa	taaaagatct	aacacttgtc	20460
atcagggtcc	aggaaagaga	caaagatggc	acagctggaa	acgtattcaa	aaaataataq	20520
ctgaaaactt	cccaaatttg	gcaagagaca	taaacctata	gattcgaaat	gctgaacccc	20580
aaataaaaaq	cccaataaaa	tccacaccaa	aatacatcat	agtcaaactt	ctgaaaagac	20640
gaaaagagaa	aacqtcttqa	aagcagtgag	tgaaacaaca	cttcatgtat	aagggaaaaa	20700
caattcaagt	aacagatttc	ttacagaaat	taaggaagcc	agaaggaaat	gacacaatgg	20760
ttttcaagtg	ctgaaagaaa	agaagtgtca	acacaaaatt	ctagattcag	taaaaatatc	20820
cttcaagaat	caatgggaaa	tcaagacagt	ctcagataaa	gcaaaataag	agaatatgtt	20880
			aaggaagatc			20940
			gaaagaaata			21000
			taagacttct			21060
			ctactaaatg			21120
gggaaagtat	agguitteat	accidatiga	agtggtaaaa	cgacaacact	gtgaaaagtt	21180
			atatatgtgt			21240
			ctaacaacac			21300
			tctaaaaaat			21360
			acaaactaaa			21420
			aattacataa			21480
tcaattaaaa	gacagagata	gcagagttaa	tttaaaaaca	tagctataag	aaacctgctt	21540
tgggctgagt	gcagtgactc	acacttgtaa	tcccagcact	tcgggaggcc	aaggcgggtg	21600
gatcacctga	ggtcaggagt	tccagaccag	cctggacaac	atggtaatac	cccatctcta	21660
			gtggcacacg			21720
ggaggctgcg	acacaagaac	tgcttgaacc	cgggcagcag	aggtagcagt	gggccaagat	21780
tgcgccactc	cagcctgaac	gacagagtga	gactccacct	cagttgaaaa	acaaaaaaga	21840
aacctgcttt	aaatatacca	acatatgttg	gttgaaatta	aaaqaataaa	atatatcatq	21900
aaaacattaa	tcaaaagaaa	ggagtggcta	tattaataac	ataaaataga	cttcagagaa	21960
aagaaaattt	caagagacag	gaataaaagg	atcaagaaaa	gatcctgaaa	gaaaagcagg	22020
caaatcaatc	attctqcttq	gagattcaac	accctctctt	aacaactgat	agaacaacta	22080
gacaaaaaaa	tcaqcatqqa	gttgagaaga	acttaacacc	actgaacaac	aggatctaat	22140
			agcaaaataa			22200
			cataaaacaa			22260
aggettagat	ggacagtgga	agagctgcat	gggagggag	aaggtgacag	ttaaagagtg	22320
taggatttct	ttttgggata	atgaaaatgt	tccaaaattg	attotootoa	tattaacaca	22380
actctacaaa	tataaaaaag	accattaaat	tgtacgtttt	aadtaaataa	aacatatoot	22440
atgtggatta	tatctaacgc	tttttaaaaa	cttaacacat	ttcaaacaat	accacacggc	22500
cagagtgtgc	tctactggaa	tcaaactaga	aagaggtaac	togaggataa	casassac	22560
ctccaaatac	ttgaaaactg	racarcacat	ttctaaaatc	atcorrors	cyayaaaagc	22620
catttctcat	ettcatttt	attatttaat	gtatttttaa	accegegge	caaayatatt	
actorctara	actoactett	actgcctaac	graciticaa	adatttttta	ayyyaaataa	22680
gaccaaa	aatgaatacg	gergggrgeg	gtggctcacg	cetgtgatee	cageactitg	22740
ggaggccgag	gerggreggar	cacaagatca	ggagttcgag	accageetgg	ccaagatggt	22800
gaaaccccgt	Citaactaaa	adactacaaa	aagtagccaa	gcgcagtggc	gggagcctgt	22860
ggteeeaget	actigggagg	ctgaggtagg	agaatcgctt	gaacacaggc	agcagaggtt	22920
geagegagee	aagattgtgc	cactgcacgc	cagcctgggc	gacagagact	gcctcaaaaa	22980
aaaaaaaaa	aaaaagaata	tcaaaatttg	tgggacatag	ttaaagcaat	gctgagaggg	23040
aaatttataa	cactaaatgt	ttacattaga	aaagagaaaa	agtttcaaat	caatagtctc	23100
cactcccatc	tcaagaacac	agaagatgaa	gagcaaaata	aacccaaagc	aagcaaaaga	23160
aagaaaatat	aaaaataaat	cagtaaaatt	gaaaacagaa	acacaataaa	gaaaatcagt	23220
gaaacaaagt	actgattctt	cgaaagatta	ataaaattga	caaacctcta	gcaaggctaa	23280
caaacaaaaa	agaaagaaga	cacggattac	cagttattag	aatgaaagca	taattagaaa	23340
caactctaca	cattataaat	ttgacaatgt	agatgaaatg	gactaattac	tgaaaaaaca	23400
caaattacca	caactcaccc	aatatgaaat	agataattgg	gatagcctga	taactactga	23460
gaaaattgaa	tttgtaattt	taacactctt	aaaacagaaa	cattaaactt	aatatttat	23520
aaatattaga	taaggtaatt	atacccttcc	ttaacaaata	aaaacgacaa	attattttqc	23580
agctaaagag	atgtatgtac	tgtgaaaaat	atcttcagaa	aaatagaact	ttqtttqaaq	23640
aataaggatt	taaaaaatgt	ttttaactct	caagaagcaa	atatctqqqc	ccagatggtt	23700
tcactgaaga	attctaccaa	atgtttaatg	aagaattacc	accaactcta	catagcatct	23760
ttgagaaaac	tgaagagaag	ggaacatctc	ccagttcatt	ttatgaagtg	ggtgttactc	23820
tgatactaga	actotataao	gacagetact	cttgacacac	tacctataga	tagetetget	23880
	,-,			-2		23000

## 23/122

ctgcaggaac agtcagaaaa aaaaaaaaa gaagcactgg acaagggcag tataaaaaaa gaaaactggg ccaggtgcag tggctcacac ctgtaatctc agcactttgg gaggctgacg 23940 24000 ctggtggatc acctgaggtc aggagtttga gactagcctg gccaacatgg taaaaccctg 24060 tctctactaa aatacaaaaa ttagccaggc agggtggtgg ggaaaataaa aaggaaaaaa aaacaaaaat aaactgcaga ccaatatcct tcatgagtat agacacaaaa ctccttaaac 24120 24180 tccttaacaa aatattagca agtagaagca atatataaaa ataattatac accatgatca 24240 agtgggactt attccagaaa cgcaagtctg gttcaacatt tgaaaacaag gtaacccact 24300 atatgaacgt actaaagagg aaaactacat aatcacatca atcaatgcag aaaaaagcat 24360 ttgccaaaat ccaatatcca ttcatgatac tctaataaga aaaataagaa taaaggggaa 24420 attectigae tigataaage tiacaaaaga ciacaaaage tiacagetaa cetataetta 24480 atggtgaaaa actaaatgct ttcccctacg atcaggaaca aagcaaggat gttcactctc 24540 attigctetta tttaacatag ceetgaagtt etaacttgtg caaaacgata agaaagggaa 24600 atgaaagacc tgcagattgg caaagaagaa ataaaactgt tcctgtttgc agatgacatg attgtctcat agaaaatgta aagcaactag gggtaggggg gcagtggaga cacgctggtc aaaggatacc aaatttcagt taggaggagt aagttcaaga tacctattgc acaacatggt 24660 24720 24780 aactatactt aatatattgt attettgaaa atactaaaag agtgggtgtt aagegttete 24840 accacaaaaa tgataactat gtgaagtaat gcatacgtta attagcacaa cgtatattac tccaaaacat catgttgtac atgataaata cacacaattt tatctgtcag tttaaaaaca 24900 24960 catgattttg gccaggcaca gtggctcata cctgtaatcc cagcatttta ggaggctgag 25020 gcgagcagaa aactigaggt cgggagtttg agaccagaat ggtcaacata gigaaatccc 25080 gtctccacta ataatacaaa aattagcagg atgtggtggc gtgcacctgt agacccagct acttgggagg ctgaggcacg agaattgctt gaacaaggga ggcagaggtt gcagtgagct 25140 25200 25260 aaagcatgac ttttcttaaa tgcaaagcag ccaagcgcag tggctcatgc ctgtaatccc accactttgg gaggccgagg caggcagatc acaaggtcag gagtttgaga ccagcctgac caacatggtg aaaccccatc tctactaaaa aatatataaa ttagccaggc atgtgtagtc 25320 25380 25440 tcagctactc aggaggctga ggcaggagaa tcacttgaac ccggaggcag aggttgcagt 25500 gttgagccac cgcactccag cctgggtgag agaacgagac tccgtctcaa aaaaaaaaag 25560 caaaataacc taattttaaa aacactaaaa ctactaagtg aattcagtaa gtctttagga 25620 ttcaggatat atgatgaaca tacaaaaatc aattgagctg gacaaaggag gattgtttta 25680 ggtcagtagt ttgaggctgt aatgcacaat gattgtgcct gtgaatagct gctgtgctcc 25740 agcctgagca gcataatgag accacatctc tatttaaaaa aaaaaaaatt gtatctctat gtactagcaa taagcacatg ggtactaaaa ttaaaaacat aataaatact gtttttaatt gcctgaaaaa aatgaaatac ttacatataa atctaacaaa atgtgcagga cttgtgtgct 25800 25860 25920 gaaaactaca aaacgctgat aaaagaaatc aaagaagact taaatagcgt gaaatatacc 25980 atgcttatag gttggaaaac ttaatatagt aaagatgcca attttatcca aattattaca caggataaca ttattactac caaaatccca gaaaaatttt acatagatat agacaagatc 26040 26100 atacaaaaat gtatacggaa atatgcaaag gaactagagt agctaaaaca aatttgaaaa 26160 agaaaaataa agtgggaaga atcagtctat ccagtttcaa gacttacata gctacagtaa 26220 tcaagactgt gatattgaca gagggacagc tatagatcaa tgcaaccaaa tagagaacta agaaagaagc acacacaaat atgcccaaat gatttctgac aaaggtgtta aaacacttca 26280 26340 acgggggaag atatgtotot cattaaaggg tgtagagtoa ttgcacatot ataggcaaaa 26400 agatgaacct gaacctcaca ccctacagaa aaattaactc aaaatgactc aaggactaaa 26460 cataagatat acatctataa aacatttaga aaaaggccac gcacggtggc tcacgctcgt aatcccagca ctttgggagg ccaaggcagg tggatcacct aaggtcagga gtttgagacc 26520 26580 agccggatca acatggagaa gccccatctc tactaaaaat acaaaattag ctggacgtqq 26640 tggcacatgc ctgtaatccc agctacttgg gaggctgagg catgagaatc gcttgaaccc ggggggcaga ggttgcggtg agccaagatc acaccattgc actccagct gggcaacaag agcaaaactc caactcaaaa aaaaaaaaa aaaggaaaaa tagaaaatct ttgggatgta 26700 26760 26820 aggogaggta aagaattott acacttgatg ccaaactaag atotataagg ccagtogtgg 26880 tggctcatgc ctgtaattcc agcactttgg tcaactagat gaaaggtata tgggaattca ctgtattatt ctttcaactt ttctgtaggt ttgacatttt tttagtaaaa aattggggga aagacctgac gcagtggctc acacctgtaa tcccagcact ttgggaggcc ggggcaggtg 26940 27000 27060 gatcacacgg tcaggagttc gagaccagcc tggccaacat ggtgaaaccc cgtctctacc 27120 aaaaatataa aaaattagcc gggtgtcatg gtgcatgcct gtaatcccag ctactgagga ggctgaggca ggagaatcac ttgaacctgg gaggtggaag ttgcagtgag ccgagattgt gccactgcac tccagccttg ggtgacagag cgagactccg tctcaaaaga aaaaaaaaa 27180 27240 27300 aaagaatatc aaacgcttac tttagaaact atttaaagga gccagaattt aattgtatta 27360 gtatttagag caatttttat gctccatggc attgttaaat agagcaacca gctaacaatt 27420 agtggagttc aacagctgtt aaatttgcta actgtttagg aagagagccc tatcaatatc 27480

actgtcattt	gaggctgaca	ataagcacac	ccaaagctgt	acctccttga	ggagcaacat	27540
aaggggttta	accctgttag	ggtgttaatg	gtttggatat	ggtttgtttg	gccccaccga	27600
gtctcatgtt	gaaatttgtt	ccccaqtact	qqaqqtqqqq	ccttattgga	aggtgtctga	27660
atcatagaga	togcatatee	ctcctgaatg	atttaatacc	attettgcag	gaatgagtga	27720
				cagcctggca		27780
				ccttcccttt		27780
				gccatgcttc		27900
tacaaaacca	tgageceaat	aaaccttttt	tetttataaa	ttatccagcc	tcaggtattc	27960
				acttcattaa		28020
				ggaagccaat		28080
				aaatatatat		28140
gacatggtag	cttatgtctg	taatcccagc	actttgggat	gctgaggcgg	gcagatcacc	28200
ctaggtcagg	agttcgagac	cagcctggcc	aatatggcaa	aaccccgtct	ctactaaaaa	28260
tacaaaaatt	agccaggcat	ggtggtggat	gcctgtaatc	ccagctactc	gggaggctga	28320
				gagccgagat		28380
				aaaaaaaaaa		28440
				cacatacaca		28500
				aaggaagtat		28560
				gacaagggaa		28620
				agtaaccatt		28680
				aagtatcata		28740
				atataataca		28800
				agagaaggtt		28860
				ttcaatagac		28920
				aatctcagca		28980
caccattaat	cacattaaca	tatgcatact	gagagtaccg	gaagcagatg	agaaagagga	29040
agaaaaaata	ttcaaatgat	ggccagtaac	ttcctagatt	tttgttttaa	agcaataacc	29100
tatacautca	agaaactcaa	tgaattccaa	gtaggataaa	tacaaaaaga	accacaaaca	29160
				aaatattgaa		29220
				cttataaaag		29280
				acatatttga		29340
				tcaaaaatat		29400
				tgttcatagc		29460
				caaataaata		29520
				tgaaattctg		29580
				aagccagcca		29640
				tcaaattcag		29700
taaaacagtg	gctgccaagg	gctgagggag	ggagtaacgt	ggagttattg	ttgaatgggt	29760
acagastttc	agttttgcaa	gataaaaaga	gttctggaga	cagatggtgg	tgagggtggt	29820
acaacaatac	aaatatactt	tatactactg	aacagtatac	ttaaaaatga	ttaacatggt	29880
gaaaccccgt	ctctactaaa	aatacaaaaa	aattagctgg	gtgtggtggc	gggcacctgt	29940
aatcccagct	acttgggagg	ctgaggcagc	agaattgctt	gaaaccagaa	ggcggaggtt	30000
gcagtgagct	gagattgcgc	caccgcactc	tagcctgggc	aataagagca	aaactccgtc	30060
tcaaaaaata	aaaaataaaa	aaaatttaaa	aatgattaag	caggaggcca	ggcacggtgg	30120
				gcgatcactt		30180
gtttgagacc	agcctggcca	acatggcaaa	accetgtete	tgctaaaaat	acaaaaatta	30240
gccaggcatg	gtggcatata	cttataatcc	cagctactgg	tgagactgag	acacgagaat	30300
tgcttgaacc	caggaggcag	agattgcagt	gagtcgagat	cgcgccactg	aattccagcc	30360
tagacaacaa	agcaagattc	totctcgaaa	aaacaaaaac	aaaaacaaaa	agcaaaacca	30420
				agaaagatgt		30480
ggctcatgag	agcacaaaac	ttttcaaaaa	atatttaata	attaaaatgg	taaattttat	30540
atotatotta	CCCCCCCCCCC	angantaga	acguitatig	tgaaggtgaa	-taaacccac	
acguateria	ccacaaaaaa	aagggccggg	gggcaggaaa	cgaaggcgaa	acaaagacat	30600
cccayayada	caaaaytaya	gaacciging	tottagaaga	aacaccacag	gaagttette	30660
aygetgaaaa	tattate	cagagggtaa	cecgaattet	cacagaaaat	Egaagcatag	30720
cagtaaaggt	caccetgtaa	ccatgacact	aacaatgcat	atttttcct	rrettetetg	30780
aaatgattta	aaaagcaatt	gcataaaata	ttatatataa	agcctattgt	tgaacctata	30840
acatatatag	aaatatactt	graatatatt	tgcaaataac	tgcacaaaag	agagttggaa	30900
caaagctgtt	actaggctaa	agaaattact	acagatagta	aagtaatata	acagggaact	30960
taaaaataaa	attttaaaaa	atttaaaaat	aataattaca	acaataatat	ggttgggttt	31020
gtaatattaa	tagacataat	acaaaaatac	cacaaaaagg	gaagaagaca	atagaactac	31080

ataggaataa	cattttqqta	tctaactaca	attaaattat		* ****	21740
taaggaacaa	cacccggc		tostosco	aaacacyaay	Lacattering	31140
Laagttaaga	Cacacacyc	aaaccccaga	tactaaaaag	taactcacat	aaatacagta	31200
aaaaaataaa	taaaataatt	aaaatgtttg	tattagtttc	ctcagggtac	agtaacaaac	31260
taccacaaat	tgagtggctt	aacacaactt	aaatgtattt	tctcccagtt	ctggaggcta	31320
aacacctgca	. atcaaggtga	gtacagggco	atgctccctg	tgaaggetet	aggaaagaat	31380
cctcccttat	ctcttccage	ttccagtggt	tctcagtaac	cctaagtgct	ccttaactta	31440
tagctatato	attectagea	accadaaada	agaaaataat	222025525	~~~~~	
25022502	226666	ateengaaaga	agaaaataat	aaagactatg	gcaaaaaaa	31500
atgaaattaa	aayyayaaaa	arggaaaaaa	ataaataaaa	ccaaaagcta	gttctttgaa	31560
aagatcaacc	aagttaacaa	accttttaac	tagactgaca	aaaaggaggt	aagactcaaa	31620
ttactagaat	cagaaataaa	agaggggaca	ttactaatga	. gggattagaa	aagaatacta	31680
cgaacaaatg	tgtgccaaca	aattagaaaa	cttagatgaa	atggacaggt	tcctaggaca	31740
acatcaacta	ccaaaattta	ctcaagaaga	aagagacaat	ttgaatgagc	tataacaagg	31800
gaagagactg	aattgacaac	caagaaacta	tccacaaaga	aaatcccac	cccaccaagg	31860
tranctatas	aattotttoa	aacttataaa	tataaattaa	andecedagg	tecagaagat	
ctcactgtga	aacccccca	aacttataaa	Lacaactaa	Calcagetee	tcacaaactc	31920
Ctccaaaaaa	aagaacagat	CLCLATTIAC	aggcgatacg	atctttagaa	aatcctaagg	31980
gaactactaa	gacactatga	taactgataa	acaagttcag	caaggctgca	ggatagaaaa	32040
ccaatataca	aaaatctatt	atatttctat	acacttgcag	tgaacaaccc	aaaaatgaga	32100
ttaagaaaat	aattcaattt	acaataacat	caaaaagaat	aaaaacactc	aaaaataaat	32160
ttattcaagt	aaqtqcaaaa	cttatactct	agaagctaca	aaacactgtt	aaaacaaatt	32220
a-aggtttac	ataaatraaa	aactatccca	tgttcatgga	tananaget	tattactece	
- at a state	acadacgada	adctatteta	cycccacyya	ccaaaayacc	tattattggc	32280
Aatgetetee	adaligatet	aladaillad	caaaatcctt	atcaaaatcc	cagatgaggc	32340
rääääätääc	ggttcatgcc	tgtaatccca	gcactttggg	aggctgaggc	acgcagatta	32400
cctgaggtcg	ggagctcgag	atcagcctga	ccaacatgga	gaaaccctat	ctcttctaaa	32460
autacaaaat	tagtcaggcg	tggtggcaca	tgcctataat	cccagctact	cgggaagctg	32520
aggcaggaga	atcgcttgaa	cccaggaggc	agaggttgca	gtgagccaag	atcgtgccat	32580
tacactecag	cctgggcaac	aagagcaaaa	ttccatctca	222222222	22222222	32640
ccadatgact	tcactattaa	aattgaaaag	attattctaa	anttananta	addddddddcc	
300000000	tacceasac	aaacttcaaa	226266226	aactcacacg	gaactgcaag	32700
accergagaa	Lagctaaaac	aaacttgaaa	aacacgaaca	aaatatagga	tgactcactt	32760
gecaattgea	aatgttacga	cacagcaaca	gtaatcaaga	ctgtgtggta	ctggcaaaag	32820
acacatacat	acatacatat	caatggaata	taattgagag	tacagaaaca	agcctaaaca	32880
tctatggtaa	gtgcttttct	atttttttct	tttttttt	cttttttgta	gagatagaat	32940
ctcaccatgt	tgcccaggct	ggtcttcaac	ttctgggctc	aagcaatcct	cccactataa	33000
cctcccaaaq	tgctgggata	actggcatga	gccaccacat	ccagcccaga	tgattttcaa	33060
aaaagtcaac	aagaccattc	ttttcaacaa	ataggtctgg	gatgatgaga	tagtcacatg	33120
222222222	tgaagttgga	ccctccatca	cactaaagtg	ctacasttst	ageodeacg	
caccacatec	200003334	attttaaaaa	cactaaagtg	cegegateat	aggeateage	33180
caccacaccc	ageceaaacg	atttttaaaa	aggtcaacaa	gaccattett	ttcaacaaat	33240
aggicitggga	taatcagata	greacatgaa	aaaaaaaatg	aagttggacc	ctccatcaca	33300
ccatatgcaa	aaattaattc	aaaaatgaat	tgatgactta	aacgtaagag	ttacgactgt	33360
aaaactctta	gaaggaaaca	tacgggtaaa	tcttaaagac	gttaggtttg	acaaagaatt	33420
cttagacatg	acaccaaaag	catgaccaac	taaggtaaaa	tagggtaaat	tgtacctacc	33480
aaaatqaaaa	acctttqtqc	togaaaggac	accatcaaga	aatggaaagc	caaaatagcc	33540
aaggcaatat	taagcaaaaa	gaacaaagct	ggaggcatca	tactacctca	cttcaaagca	33600
acagtaacca	aaacaacata	gtactage	aaaaacagac	2000000000	otecaaagca	
atasacaacc	Cassastass	taasaatat	tatagt	acatagacca	atggaacaga	33660
acaaagaacc	caaaaacaaa	tecacatatt	tatagtcaac	tgatttttga	caatgacacc	33720
cccccaacaa	atgatactag	gaaaactgga	tatcgatatg	cagaagaata	aaactagacc	33780
cctatctctc	accatataga	aaaatcaact	cagactgaat	taaagacttg	aatgtaagac	33840
ccaaaactat	aaaactactg	gtagaaaaca	taaggaaaaa	cgcttcagga	cattggtcca	33900
ggcaaagatc	ttatggctaa	aacctcaaaa	acacaggcaa	caaaaacaaa	aatggaaaaa	33960
tagcacttta	ttaaactaaa	aagctcctgc	acagcaaagg	aaacaacaga	atgaaaagac	34020
aacctgtaga	atoggagaaa	atatttqqaa	actatccatc	catcaacaga	ctactatees	
daacacacaa	ctcactaaaa	caactegeaa	accaccacc	caccaaggga	ctagtattta	34080
gaacacacaa	gryacraaaa	caacicaaca	gcaaaaaagc	aaataatctg	gtttttatat	34140
gggcaaaaga	tetgaataaa	cattctcaaa	ggaagacata	caaatgtcac	tatcattctg	34200
ccagtaccac	actgtcttga	ttacttgtta	gtgtataaat	ttttaaattg	ggaagtgtga	34260
gtcatcctac	actttgttct	tgtttttcaa	gtttgttttg	gctattctgg	gageettgea	34320
agtataaaat	agccaacaaq	tatgaaaaaa	tgctcaccat	cactaatcat	cagagaaata	34380
aaaatcaaga	ccactatgag	atatectete	actccagtta	gaatggctac	tatcaaaaag	34440
acaaaatata	atggargete	gcaaagettt	ggagaaaggg	Gaactactat	acactetee	
tagggatge	aattootaat	ggggattat-	22222222	gaacccccat	teasesses	34500
annatar-	atteggraat	ggccattatg	gaaaataata	ccgaggtttt	ccaaaaaact	34560
yaaaacayaa	claccatatg	acccagcaac	cctactactg	ggtatttatc	caaaggaaag	34620
aagtcagtat	actgaagaaa	tatatgcact	ctcatgttaa	ttgcaacact	gttcacaaca	34680

### 26/122

gccaagacag ggaataaatc taaatgtgca tcaacagatg aatggataaa gaaaatgtgg 34740 catatacact caatagaata ctattcagcc attaaagaag aatgaaatcc tgtcatccca 34800 gcaacatgga tgaacctgga ggacattata tttaatgaaa taagtaaagc acaaaaagat 34860 aaacagtaca tgttctcact cagacatggg tgctaaaaag aaaatggggt cacagaatta 34920 gaaggggagg cttgggaaaa gttaatggat aaaaatttac agctatgtaa gaaqaataaq 34980 ttttagtgtt ctatagaact gtagggcgag tatagttacc aataacttat tgtacatgti 35040 caaaaagcta gaagagattt tggatgttcc cagcacaaag gaatgataaa tgtttgtgat 35100 gatggatatc ctaattaccc tgattcaatc attacacatt gcatacatgt atcaaattat 35160 cactetgtae etcataaata tgtataatta ttaegteaae aaaaaaagga aaaaaaagaa 35220 aattaagaca acccacataa tggaagaaat aaaatatctg caaattatat atatctgata 35280 aatatttaat atttataata tataaagaac tootacaact caagaacaac aacaaaacaa 35340 cccaattcaa aaatgggtaa aagccttgaa tatacactta tctaaagact atatacaatt 35400 ggccaataaa gacacgaaaa gatgctcaac atcactagtc atcagggaaa tataaatcaa 35460 aaccacaatg tagaatgtag acaccacttc atatgcacta ggatggctag aataaaaagg 35520 taataacaaa tgttggtaag gatgtgaaaa aatcagaaac ctcattcgct gctgttggga atgtaaagtg atgcagccac tttggaaaac agtctggcag ctcctcaaat tattaaatac 35580 35640 agagttaccg tatgacccag gaatattcct cctgggtcta taaccaaaaa aatgaaaaca 35700 tatatccaca taaaaacttg tacatgggca tttatagcaa cattattcat aacagcaaag 35760 gtggtaagaa cccatatgcc catcatctga tgaacaggta aataacatgc ggtattatcc 35820 atacactaga atattatctg cccatacaag gagtgacatc cagctacatg ctacaaggat gaatctcgga aaccttatgc taagtgaaag aagccagtca caaatgacca cagattatga 35880 35940 ttccatgcat cggaaatgac cagaataggg aaatctatag agacagaaag tagattagtg 36000 gttgggtggg gctgggagga caggtagtac actactttcc cagaactact ggaacaaagt 36060 accacaaact ggggagctta aacatagaaa ttgatttcct cacagttctg gagactagga 36120 ctctgagatc aaggtgtcag cagagctggt tctttctgag ggccctgagg caaggctctg 36180 tcccaggcct ctctccttgg ctggcaggtg gccatcttct ccctgcgtct tcacatcatc ttttctctgt gtgtgcccat gtccaaattt tgattggctc attctgggtc atggccaatt gctatgcaca aagtgaagtc tacttccaaa agaagggaag agggaacact gactaggcta 36240 36300 36360 aacttatagt cattttaatg teegetttte etatgagatt gtgaacacae agaagtaggg 36420 tttttatcta cattgtgcaa agtttaataa gaaaaataga attcaagaga agcagttcaa 36480 tagcaggaat ttaatatggg aactaattac aaggtttagg gcaggactaa aaagccagtt gggatggtga gccaacccag agattagcaa cagtgggacc ccatctacct accacccatg 36540 36600 aagctggaag gataaaggag gggctattat cagagtccac aagccagtgt cagagtcctt ggctggagct gggaccaccc tagagacact gtgcaaagca gaaaacaagg gggaaaaacc ctgacttctc ccttcctcc acctttcaat ctcccactag tgcttcctac tagccatact tggccagaga cagtgacaag gaacactgca aaatgaagtt tgtaggaatc atctccctct 36660 36720 36780 36840 gagacagaga aatatggaag ggtagaaaat gaatcagagg ataaagagaa aaaaccctga 36900 36960 37020 37080 gaatgaaaag ctataatcag caaagatttg ccagagaaat taaaaagtgg taaactcagc 37140 cacgctgtac aacctgaagg cacaatgcat gaaaacgttt caagaaatga caagatttga agtcaaattc taagtgcttt tccagaatct ctcaagacga ttatatagct accccatttt 37200 37260 attaaataaa atggaaactt actaaacttt ccccttgtat taaactaaca tatgtcctaa 37320 tagcaaacga ttctggaatt cctagagtaa aatatatttc gtcaaagtgt attgctcttt 37380 taatattctg ctgacctcct tttgctattt aggatatttg tatacacatc acacgtaaat ttggtctata gtttacatct acgggcttat actgttcttt ttttcatttt tttaaaattt 37440 37500 ccaaccccca gtatccatat actgctctct atcagggtta ttttaacttt gtaaaatcag 37560 ctgagatgct ttccatgttt tttttttta ttttctgcca catttgaata gcataggagt 37620 taccaccatc aaccttggat tatttaagca ttcacgattc cacgtgtgga ttttttattc 37680 agagtettte ttgtcattee tgctateage acagaaceca ateteagett tecagetata 37740 cteteacece atggaatttg cagatgaagt teaaaaggae etttgeatta teetgeeteg 37800 ccctcttccc ccttcattta gacatcacct tcttctagaa cgtcttacct gacatgccct 37860 geteceaace cetgetgee aattgtgtge tetecegtgt cetggeetge catcetett agtaattgee tgetecetea tetgteteee caeceagaca ttaagetgaa tagaetggat 37920 37980 ttgtgtcttg tccatcacta taatctcagc acctagtacc tagtaggtac ttaccatgta 38040 ttcattagca aaatgttatg tataaccttg caccttaaaa acaagagaag gaagacaaaa ttaagtctta agactatggt ttagaacatg gatcagaaac tacagtctgc agcccaaatc cagaccaaat gaagagacca tgttcattta catacaacct atagcagctt tcacactaca 38100 38160 38220 ggagcagagc taagtagttc caagggaaca cacggccctg caaagcctaa aatatttact 38280

ctatagetet teacagaaaa agtttteaga teeetegttt agaactettg tteatatgea 38340 atttcactaa accatagttt tttgggtttg tttggttttt tttggcaaaa agqaatqaqc 38400 cgatccagaa aaggttgaaa agaatgaatc attactgctg aaagaatgtg cacacagtcc 38460 gtcagtattc tgctgccatg ctgacaccca tccaatagtg tcatgagatg cagcagctac 38520 tactgtgttc tcaatgccga gtccacccac tccataacca tgtccaagca atcttgggaa 38580 catcatcacc atgettgttt atcettaagg tattgeetca catacagcag tggetggtca 38640 taaagtcaaa tgacactagt ggccaggagg tcaagagaat gagtgaggac aggtgggtag 38700 gcagcccagg ccctagcaac agcaggagct cacccctcag tcactctagc caggactgaa 38760 atacttttca ccctttcaag agagactagg aatctggatt tttatgtgaa atatcttgat 38820 tactaaatgt tgtcaacaga catgtcaaaa ggtaaaacta agtaagttca tggggcagat 38880 tgactattca ggttatagaa ttaaggattc ttatccaaca cagataccaa ccaaaaaagct 38940 gacgtataac atattaggag aaactatgtg cactgtcgaa acatcaacaa ggggctaatg tctaaaatag tctatattgg attccagttg aaacatgggg aaaggacatg aacaggcaac 39000 39060 ttatgtcaat ggaaactcaa aaagataaca agcatatata aaagcattct caaattcagt 39120 agtaaacaga cagatgcaaa taaaaagagg gaaactgctg ccgggcacag tggctcacac ctgtaatccc agcactttgg gaggccgagg cgggcggatc atgaagtcag gagatcgaga ccatcctggc taacatggtg aaaccccgtc tctactgaaa acacaaaaaa ttagccaggc 39180 39240 39300 gtagtggtgg gcaccagtag tcccagctac tcaggaggtt gaggcaggag aatggcatga 39360 acccaggagg cggagattgc agtgagccga gaccatgcca ctgcactcca gcctgggcga 39420 39480 gtaaataaat aaaaagagag agactgctaa agtctagaaa gttgaatgat gccaagcgca 39540 tgcaaagatc agggccttgg gatggccggg tgcagtggct cacgcctgta atcccaccac 39600 tttgggagge caaggegge ggatcatgag gtcaagagat caagaccate ctggeegaca cagtgaaace eggtetetae taaaagtaca aaaaaatata tatatata tatattatta 39660 39720 tattatatat atatatatca gagocitggg aatcottgtg tgctgctggg gaaggtagtg 39780 gtgcagccac ccttgacagc aatctggcag tacttggtta tattaagtat aggcacacac 39840 cacgaccagg cagtoctact cotgggtota aatoccaaag aattotcaca caagtocata aggagacatg tacgaggoto attoagcatt actgggagtg ggaatcaacc tgggtgtoca 39900 39960 tctacaggag acgagatgga caaaatgtgg tggatattaa gaccagaatc accaagtaac 40020 agagatgggt ggtgagtgac aatcctaaga tacagaataa aggctagaac atgatgccat 40080 tcatgtaaat taaaaataga tgcacacaaa gcagtatacg cgtgaccctt gaatagcaca ggtttgaact gcctgtgtcc acttacatgt ggattttctt ccacttctgc tacccccaag 40140 40200 acagcaagac caacccctct tetteeteet eccetteage etacteaaca tgaagatgae 40260 aaggatgaag acttttatga taatccaatt ccaaggaact aatgaaaagt atattttctc 40320 ttccttatga ttttctttat ctctagctta cattattcta agaatatggt acataataca 40380 catcacacgc aaaataaatg ttaattgact gtttatatta tgggtaaggc ttccactcaa 40440 cagtaggctg tcagtagtta agttttggga gtcaaaagtt atacacagat tttcaactgt 40500 gcaggcaatc agttcccctg accccctcat tgttcacggg tcaactgtat atacacaaaa 40560 gtattatatg aacctcatta gaatagctgt ctatagggag aagagaatga gagtgggata aaacggaatg aacaaataaa ccaacaaatg cattaacaag caaaacaaca gagggcttg 40620 40680 catgggccag tgatgataaa gggctaagaa tgagaatata attaattcaa ttcctcacac 40740 ctgaggtcta aaaccaagga aagggagggc caggcgtgga ggctcacgcc tgtaatccca 40800 gcactttggg aggctgaggc gggcggatca caagattagg agtttgagat cagcctggcc aacacagtga aagcccatct ctacaaaaaa tacaagaatt acccaggtgt ggtggcacat 40860 40920 gcctgtagtt agctactctg gaggctgagg caggagaatc acttgaaccc aggaggcgga 40980 ggttgcaggg agccgagatc acaccattgc actccagcct gggtgacaga gtaagactct 41040 gtctcaaaaa aataaaaaaa ataaaaaaac agagaaaggg aggaaactag atccaggctg 41100 actagataca gcctttagag ttagaaaaga tgatttgaca atctaagccc acactcagat 41160 tgaatgaaat tgaaaageet tteaaactaa aacatttaat tacaccatet getgeagaca 41220 gaactcagac aactcaaaca ggtaatgtca gcgtggtgtt ttatatcacc accctcaaca cagaataaaa atcagctgca tgtgaagcag tgactagaat gaagaaaagg ctgcttctta 41280 41340 cttectteta gtggttettt ecgaaaacat taataggeac cagetetatg catgteacce 41400 tgcagggaga catggggtat ataactatga cttactgttc attcctcaag gaattcccaa 41460 tcttgtggaa gattatacac aatgaggcaa caaaaactat ccaataaaac cacggaaaag 41520 aagccagtga caaagaagcc agtgatgaaa ggccctgtga gcagagctga tggccatttg 41580 gggaagaaag accaacatgg atggggtga tcagggtggc tccgtgggaa agctggaaga 41640 gaagtggcag atctctgagc tggatgatgg gccactacca tctgtatatg gctaattaaa 41700 gaccatgtgt ggatttttta ttcagctctt tcgtgtcatt cctgctatca gcacagaacc caatctcaac tttccagcta tattgagcta aacttctcac ctcatggaat ttgcagataa 41760 41820 agttcaaaag gatccttgcc ttttcaaaat aattttgaat ggttgagtag tccctctgtg 41880

ctctctcact gacacctct caaggctgct gagcacgtgc catgctatgg ctttctccaa catcaggaaa tgttctccac tcagtttcac cttaatacaa atgtgttctc tcttcagaga aggcaaaaaa attcatgacc atctgactgg gagaagtcat ttctaggtaa agtgtccatc tttttctgag gaacacagga ggaaaatctt acagaaaaga gttaacacag caggcctaag actgcttttt aaaataaataa aataaataa taaataaat gaatcctcc caccttggtc tcccacagtg tggggtag tctcaaattc ctggcttcaa ggcccaagac tgttattctt aaaaagtctc ataaaaagaca tggttaatcct ttgggggacct tcctgggaact tggggaact tagatttcag aagggttccc accatccaac ctgggaaagg gggcctgaa tcctaaattc ttggctggca cctggggaact tagatttcag aagggttccc accatccaac ctggaaagag ggactcactg tggtatgtgc tgggaaagg gggcctgcat gaccagccc caataaaaac cctgggggtt gggtctctag tgggcaaaagg gggcctgcat gaccagccc caataaaaac cctgggtgtt gggtctctag tgagtttccc tggtagacag catttcacat gcgttgtcac agctccttcc tcggggagtt aagcacatac atcctgtgtg actgcactgg gagaggatgc ttggaagctt gtgcctggct tcctttggac ttggcccat gcacctttcc ctttgctgat tgtgcttgt accaccagat ctgagcatgg tcctgggggc ccccaacaca gaaaataaat ataaaagacc aaggactcgga catggaggac cttggagga cttccaggga cttggagaga cttccaggga catggaggac catggagaga cttccaggga catggaggac catggagaga cttcagagac cttgagagac cttgagagac catggagaga atccacaca gaaaataaat ataaaagacc aaggacatga ctgagcagga catggagaga ctttgggagac cgaggcagga	41940 42000 42060 42120 42180 42240 42300 42360 42480 42480 42540 42660 42720
catcaggaaa tgttctccac tcagtttcac cttaatacaa atgtgttctc tcttcagaga aggcaaaaaa attcatgacc atctgactgg gagaagtcat ttctaggtaa agtgtccatc tttttctgag gaacacagga ggaaaatctt acagaaaaga gttaacacag caggcctaag actgcttttt aaaataaata aataaataa taaataaata aataaatgaa tgataggtc tcccacagtg gccaggctag tctcaaattc ctggcttcaa gagaccccacagac caccttggtc tcccacagtg ttgggattat agacatgagc cattgtgctt ggcccaagac tgttattctt aaaaaggtcc accatccaac ctgggaact tagattcag aagggttccc accatcgag caccatcag tggcctaaatt ttggtggat tattgtggt tattgctgaa ctcctggta ctctcagggaact tgggatagt tggggaggt tagggttcccat gaccaccac cagagggagtt gaggttcccat tggtagacag catttcacat gcgttgtcac agccccttcc tggggagtt aagcacatac atcctgtgt actgcactgg gagaggatgc ttgggaagct tgggcaggatcacagat ctgaacaaga tcctgggggc ccccaacaca atgctgagtc ttccaagtga accaccagat ctgaacatag tcctgggggc ccccaacaca gaaataaatt ataaaagaccaaggaactggg catggtggc catggggga atccaccag tttgggaggc catgggggaga atctcaggagaagaagaagaacaaaagaacaaaggaactggg catggtgga atccaccac tttgggaggc catggagga tttgggaggagaagaagaagaagaacaaaaaaaaaa	42060 42120 42180 42240 42300 42360 42420 42480 42540 42600 42660
aggcaaaaa attcatgacc atctgactg gagaagtcat ttctaggtaa agtgtccatc tttttctgag gaacacagga ggaaaatctt acagaaaaga gttaacacag caggcctaag actgcttttt aaaataaata aataaataa taaataaata aataaatgaa tgataggtc ttctgtattg gccaggctag tctcaaattc ctggcttcaa ggcccaagac tgttattctt aaaaaagtct ataaaaagac tggccaagac tgttattct aaaaaagtct acctgggaact tagatttcag aagggttccc accatcaac ctggaaagag ggactacctg tgcctaaatt attgtgtggt tattgctgaa ctctgctt tcttaaggta gggcctgcat ggcccaaagac ctgggaatg tgggaatg tgggaatg tgggaatg tgggaatg tgggaatg tgggaatg tgggaggatt aggacatac atcctgtgt aagcactag gagaggatg ttggaagct tggggaggt tccttggac ttggcccat gaccatcag gagaggatgc ttggaagct tggcctggct tcctttggac ttggcccat gaccatctc ctttgctgat tgtgcttgt accatcagat ctgaacaag tcctgggggc ccccaacaca gaaataaat ataaaagacc aaggactggg catggtggc catggggg attcaggg ccccaacaca gaaataaat ataaaagacc aaggactggg catggtggc catggggga attcaggg tttgggaggc cgaggaagga	42060 42120 42180 42240 42300 42360 42420 42480 42540 42600 42660
actgetttt aaaataata aataaataa taaataaata aataaataa taaataaata aataaataa tgataggte teetgtattg gecaggetag teteaaatte etggetteaa ggeceaagae tgttattet aaaaagtete ataaataaagea tggttaatee tggetggaace tagatteag aagggteee accateaae etggtaatee tggetaate tggetaatee tggetaate tggetaate tggetaate tggetaate tggetaate tggetaate tgggaatgg tgggeteetag tgggeaaagg gggeetgeat gaecageee caataaaaae eetggggatt tggggaatg tgggaggate tgggaggate tggtateee tggtagacag catteeaet gegttgteae ageteettee tgggggagtt aageacatae ateetgtgtg actgeaetgg gagaggatge ttggaagett tgtgeetgga accaecagat etgageatgg teetggggge eetgggggge eetggagge eetgggggggggg	42180 42240 42300 42360 42420 42480 42540 42600 42660
actgetttt aaaataaata aataaataa taaataaata aataaaata aataaataa taaataaata aataaataa taaaataaata aataaataa taaaaaa	42240 42300 42360 42420 42480 42540 42600 42660
gagatectec cacettggte teccacagtg ttgggattat agacatgage cattgtgett ggeecaagae tgttattett aaaaagtete ataaaaagea tggttaatee ttggetggea eetgggaact tagattteag aagggttee accatecaae etggaaagag ggacteactg tgeetaaatt attgtggt ttatgetgaa eteetgett tetteaggta gegtggaatg tggtetetag tgagtetee tggtagaeag eattteaeat gegttgteae eetgggggggggg	42300 42360 42420 42480 42540 42600 42660
ggcccaagac tgttattctt aaaaagtctc ataaaaagca tggttaatcc ttggctggca cctgggaact tagatttcag aagggttcc accatcaac ctggaaagag ggactcactg tgcctaaatt attgtggt ttatgctgaa ctcctgcttt tcttcaggta gcgtggaatg tggtatgtgc tgggcaaagg gggcctgcaa gaccacac caataaaaac cctgggtgtt gggtctctag tgagtttccc tggtagacag catttcacat gcgttgtcac agctcctcc tcggggggtt aagcacatac atcctgtgtg actgcactgg gagaggatgc ttggaagctt gtgcctggct tcctttggac ttggcccat gcaccttcc ctttgctgat tgtgcttgt atcctttcac tgtaataaat tacagccgtg agtacaccac atgctgagtc ttccaagtga accaccagat ctgagcatgg tcctggggc ccccaacaca gaaataaatt ataaaagacc aaggactggg catggtggc catgccgga atctcagcg tttgggaggc cgaggcagga	42360 42420 42480 42540 42600 42660
cctgggaact tagatttcag aagggttcc accatcaac ctggaaagag ggactcactg tgcctaaatt attgtgtgt ttatgctgaa ctcctgcttt tcttcaggta gcgtggaatg tggtatgtgc tgggcaaagg gggcctgcat gaccagccc caataaaaac cctgggtgtt gggtctctag tgagtttccc tggtagacag catttcacat gcgttgtcac agctccttcc tcggggggtt aagcacatac atcctgtgtg actgcactgg gagaggatgc ttggaagctt gtgcctggct tcctttggac ttggcccat gcaccttcc ctttgctgat tgtgctttgt atccttcac tgtaataaat tacagccgtg agtacaccac atgctgagtc ttccaagtga accaccagat ctgagcatgg tcctggggc ccccaacaca gaaataaatt ataaaagacc aaggactggg catggtggc catgccggta atctcagcg tttgggaggc cgaggcagga	42420 42480 42540 42600 42660
tgcctaaatt attgtgtgt ttatgctgaa ctcctgcttt tcttcaggta gcgtggaatg tggtatgtgc tgggcaaagg gggcctgcat gaccagccc caataaaaac cctgggtgtt gggtctctag tgagtttccc tggtagacag catttcacat gcgttgtcac agctccttcc tcgggggagtt aagcacatac atcctgtgtg actgcactgg gagaggatgc ttggaagctt gtgcctggct tcctttggac ttggccccat gcacctttcc ctttgctgat tgtgcttgt atcctttcac tgtaataaat tacagccgtg agtacaccac atgctgagtc ttccaagtga accaccagat ctgagcatgg tcctggggc ccccaacaca gaaataaatt ataaaagacc aaggactggg catggtggc catgccggta atctcagcgc tttgggaggc cgaggcagga	42480 42540 42600 42660
tggtatgtge tgggcaaagg gggcetgcat gaccageee caataaaaac cetgggtgtt gggtetetag tgagttteee tggtagacag cattteacat gegttgteac ageteettee tegggggagtt aageacatac atcetgtgtg actgcaetgg gagaggatge ttggaagett gtgcetgget teetttggae ttggececat geacetttee etttgetgat tgtgetttgt atcettteac tgtaataaat tacageegtg agtacaccac atgetgagte ttecaagtga accaccagat etgageatgg teetgggge eeccaacaca gaaataaatt ataaaagacc aaggaetggg catggtgge catgeeggta ateteagege tttgggagge egaggeagga	42540 42600 42660
gggtetetag tgagtttece tggtagacag cattteacat gegttgteac ageteettee teggggagtt aageacatae atcetgtgtg actgeactgg gagaggatge ttggaagett gtgeetgget teetttggae ttggeeceat geacetttee etttgetgat tgtgetttgt atcettteac tgtaataaat tacageegtg agtacaceae atgetgagte ttecaagtga accaceagat etgageatgg teetggggge eeceaacaca gaaataaatt ataaaagace anggaetggg eatggtggee eatgeeggta ateteagege tttgggagge egaggeagga	42600 42660
teggggagtt aageacatae ateetgtgtg aetgeaetgg gagaggatge ttggaagett gtgeetgget teetttggae ttggeeceat geaeetttee etttgetgat tgtgetttgt ateettteae tgtaataaat taeageegtg agtacaceae atgetgagte tteeaagtga aecaceagat etgageatgg teetggggge eeceaacaca gaaataaatt ataaaagace aaggaetggg eatggtggee eatgeeggta ateteagege tttgggagge egaggeagga	42660
gtgcctggct tcctttggac ttggccccat gcacctttcc ctttgctgat tgtgctttgt atcctttcac tgtaataaat tacagccgtg agtacaccac atgctgagtc ttccaagtga accaccagat ctgagcatgg tcctgggggc ccccaacaca gaaataaatt ataaaagacc anggactggg catggtggcc catgccggta atctcagcgc tttgggaggc cgaggcagga	
atcettteae tgtaataaat tacageegtg agtacaceae atgetgagte ttecaagtga accaceagat etgageatgg teetggggge eeccaacaca gaaataaatt ataaaagace aaggaetggg catggtggee eatgeeggta ateteagege tttgggagge egaggeagga	42720
accaccagat ctgagcatgg teetggggge ceecaacaca gaaataaatt ataaaagacc aaggaetggg catggtggee catgeeggta ateteagege tttgggagge egaggeagga	
asggactggg catggtggcc catgccggta atctcagcgc tttgggaggc cgaggcagga	42780
	42840
	42900
ggaccagtta agcccaaaag ttcaaagtta cagtgaccta tgactgcgcc aatgcactct	42960
aacctgggag acagagcaag accctgtccc caaaacaata aactaaacac atacttctgc	43020
cttccaagtg tcttaaaatt caatggaatg gtagaaacat ttttaaaaca ctaaatcaaa	43080
agalacetgg aaaacaagag tgccgatggc caactaaaat gtctaggaaa tttctgaaaa	43140
gtalaaagta ctcagaacca gattacctga gcaaaccata gcccaataca agcttgggag	43200
gaggetgtta tgeagaagga aatggtaaca ggttteeagg aacagaettg taacageaga	43260
tagaacagca gaggtagaac ctgacaaggt gattacctgg ggaactgcag tctgaatgac	43320
caggactgtt ggaccettee ceteacatgg aatacacacg ceacteagea geacaceaca	43380
gctcttcaac aatcacagga ggcacgctac gcctagtaag acaggaaaaa aggaattctc aaacttcgaa gatgaacaca taaagaatca ccaagttttt attcagtatg atgaaacagg	43440
gacactgaat caacagaaca caaacccaag caaagataat tactagagca catagaagaa	43500
attattagat attottggga agacctaagg ggacattata aagagcaagc agttggtatg	43560
tgacgatett tgtgatatac caagaaataa aaacacagga tgaagaccag atagagaata	43620 43680
atgctactat ttgtgcaaaa aaggagaaat ggagaatctg attcatattt gcttgtattt	43740
gcatgaagaa actttggaag gtacataagt aactaacaac aatggttacc tacttgtaag	43800
gcgagagazg taagaggaca ggaatggtgg gaacaccttt tgtgtccgga attggtgggt	43860
tettggtetg acttggagaa tgaageegtg gaccetegeg gtgagegtaa eagttettaa	43920
aggoggtgtg totggagttt gttocttotg atgtttggat gtgttoggag tttottoctt	43980
ctggtgggtt cgtagtctcg ctgactcagg agtgaagctg cagaccttcg cggcgagtgt	44040
tacagetett aagggggege atetagagtt gttegtteet eetggtgagt tegtggtete	44100
gctagcttca ggagtgaagc tgcagacctt cgaggtgtgt gttgcagctc atatagacag	44160
tgcagaccca aagagtgagc agtaataaga acgcattcca aacatcaaaa ggacaaacct	44220
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt	44280
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact	44280 44340
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttqa	
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtgcgt ttacaatecc tgagctagac acagggtgct gactggtgta	44340
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtgcgt ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag	44340 44400
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtgcgt ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc	44340 44400 44460
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtgcgt ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc	44340 44400 44460 44520
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtgct ttacaatcc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggat cggcatcagt gccacaggtg gagctgcctg ccagtcccg gccctgcgc cgcactcctc agccctctgg tggtcgatgg gactggcgc cgtggagcag ggggtggtgc tgtcagggag gctcgggcg cacaggagc caggaggtgg gggtqgctca	44340 44400 44460 44520 44580
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtgct ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gactgcctg ccagtcccg gccctgcgcc cgcactcctc agccctctgg tggtcgatgg gactggcgc cgtggagcag ggggtggtgc tgtcagggag gctcgggccg cacaggagc caggaggtgg gggtggctca ggcatggcg gcccagcgag gcccagcgag aggcagctaa ggcccagcgag	44340 44400 44460 44520 44580 44640
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtggt ttacaatccc tgagctagac acagggtgct gactggtgta ttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gactgcctg ccagtcccgc gccctgcgcc cgcactcctc agccctctgg tggtcgatgg gactggcgc cgtggagcag gggggtggtgc tgtcagggag gctcgggccg cacaggagc caggaggtgg gggtggctca ggcatggcg gccgcaggtc atgagcgctg cccgcaggg aggcagctaa ggcccagcgagaaatcgggc acagcagct ctggcccagg tgctaagcc ctcactgcc cggggccgttg	44340 44460 44520 44580 44640 44700
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtggt ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggatcagt gccacaggtg gactggcgc cgagtgccgc ggggtggtgc tgtcaggag gccctctgg tggtcgatgg gactgggcgc caggagcgag gggggggggg	44340 44460 44450 44520 44580 44640 44700 44760
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtggt ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc ggcgtgggtgc tgtcaggagc caggaggtgg ggctggggtgggtgggggggggg	44340 44460 444520 44580 44640 44760 44760 44820 44880 44940
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtcgc ttacaatccc tgagctagac acagggtgct gactggtgta tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc ggggtggtgc tgtcaggagc ggcctctgg gactgggtgc gggtggctca ggcattggtgc tgtcaggagc cacaggagcc caggaggtgg gggtggctca ggcattgggcg gccgcaggt atggacgagg gccgaggtg ggccagggg gaaatcgggc acagcaggt gtgccaagg ggccaggct cccagtagg gggccggctg gggccggct cccagtagacc cccagaacc accaggagc cacaggagc cacaggagc cacaggagc cacaggagccaggaaatcgggcaggcaggcaggcaggcag	44340 44460 44520 44580 44640 44760 44760 44820 44880 44940 45000
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtggt ttacaatece tgagctagac acagggtgct gactggtgta tttacaatec cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ccggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc ggcgtggtgc tgtcaggag gccgctctg tggtcgatgg gactgggcgc cgggggggggg	44340 44460 444520 44580 44640 44700 44760 44820 44880 44940 45000 45060
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtggt ttacaatecc tgagctagac acagggtgct gactggtgta tttacaatec cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc gcctgcgcc cgcactcctc agccctctgg tggtcgatgg gactggcgc cgtggagcag ggagtggcgc tgtcaggagg gccaggctg gccacaggtg gagctgcctg gccacaggtg gagctgccag gagagtggcg cacaggagc cacaggagc cacaggaggagaggagagaga	44340 44460 444520 44580 44640 44700 44760 44820 44880 44940 45000 45120
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gcccatttt acagagaacc gattggtca tttttcagag agctgattgg tccattttga cagagtgctg attggtcgat ttacaatcc tgagctagac acagggtgct gactggtgta ttacaatcc cttagctaga cataaaggtt ctcaagtcgc cagcagcacg ccaggatcggctggccggctggctgggccagggggggggg	44340 44460 444520 44580 44640 44700 44760 44820 44880 44940 45060 45120 45180
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt attetettat ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtca tttttcagag agctgattgg tccattttga cagagtgctg attggtcg ttacaatcc tgagctagac acagggtgct gactggtgta ttacaatcc cttagctaga cataaaggtt ctcaagtcgc caccagactc ccaggctcac ccagtggatc cgcatcagt gccacaggtg gactggcccag ggcctggccc cgcactcctc agccctctgg tggtcgatgg gactggcgc cggtgagcag ggggtggtgg tgtcagggag gccaggagg gactggcgc caggaggtgg gggtggccagggaaatcgggcggcggcggcggagggggggg	44340 44460 44450 44580 44580 44640 44760 44820 44880 44940 45000 45120 45180 45240
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtcg ttacaatcc tgagctagac acagggtgct gactggtgta ttacaatcc cttagctaga cataaaggtt ctcacaggtg gagctgctca ccagtggtcc ccagtggat cgcacaggtg gactggctcg ggcctggctc agcctctcgg tggtcgatgg ggcccagg ggggtggtgc tgtcagggag gctcgggcg cacaggagc caggaggtgg gggtggctca ggggtggtgc gccgcaggc acaggagcc aggagagcc caggaggtgg gggtggctca gggccggctg gccgcaggt cccagtgcgg ggccgaggtg gggccggaggagaact cacagctggc cgcaagcac cacaggagc cccaggagagcc cacaggagc cccaggagagcgaact gggccggctg gccggcagct cccagtgcg ggcccagca acagcagcac cacagtgcg ggcccagcac cacagtggc cccaggaact cacagctggc cgcaagcac cacagtgcg ggcccagcac cccagaacac cacagtgcaa agccgagaact cacagtgcaa gagcaccaa aagctgagga agctgccaa agcctgagaa gggcccaaa gaggcaccaa cagtgcaaca gagcaccaa agcccagaaa ggggctccca cagtgcaccaa gagcaccaa gagccaagaa gggctcccaa cagtgcaccaa gagcaaccaa cacagtggaa tcgcccaa ggacccaagaa ttatacttac ctatttttt tttttttttt	44340 44460 44520 44580 44640 44700 44760 44880 44940 45060 45120 45180 45240 45300
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtcg ttacaatcc tgagctagac acagggtgct gactggtgta ttacaatcc cttagctaga cataaaggtt ctacaatgcc ctggcttcac ccagtggat cggcatcagg ggccctgggcc cgcactcctc agccctctgg ggcccagggggggggg	44340 44460 44520 44580 44640 44700 44760 44880 44940 45060 45120 45120 45180 45240 45360
tcagcagcgc ggaatgcgac cgcagcacgt taccactett ggctcgggca gcctgctttt ctggccacac ccatatectg ctgattggtc cattttacag agagccgact gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga cagagtgctg attggtcg ttacaatcc tgagctagac acagggtgct gactggtgta ttacaatcc cttagctaga cataaaggtt ctcacaggtg gagctgctca ccagtggtcc ccagtggat cgcacaggtg gactggctcg ggcctggctc agcctctcgg tggtcgatgg ggcccagg ggggtggtgc tgtcagggag gctcgggcg cacaggagc caggaggtgg gggtggctca ggggtggtgc gccgcaggc acaggagcc aggagagcc caggaggtgg gggtggctca gggccggctg gccgcaggt cccagtgcgg ggccgaggtg gggccggaggagaact cacagctggc cgcaagcac cacaggagc cccaggagagcc cacaggagc cccaggagagcgaact gggccggctg gccggcagct cccagtgcg ggcccagca acagcagcac cacagtgcg ggcccagcac cacagtggc cccaggaact cacagctggc cgcaagcac cacagtgcg ggcccagcac cccagaacac cacagtgcaa agccgagaact cacagtgcaa gagcaccaa aagctgagga agctgccaa agcctgagaa gggcccaaa gaggcaccaa cagtgcaaca gagcaccaa agcccagaaa ggggctccca cagtgcaccaa gagcaccaa gagccaagaa gggctcccaa cagtgcaccaa gagcaaccaa cacagtggaa tcgcccaa ggacccaagaa ttatacttac ctatttttt tttttttttt	44340 44460 44520 44580 44640 44700 44760 44880 44940 45060 45120 45180 45240 45300

tttcaaaagt taaactttaa gaagtagaaa cccqtqqcca qqcqtqqtqq ctcacqcctq 45540 taaccccagc actttgggag gccgaggcgg gcggatcacg aggtcaggag atcgagatca 45600 tcctggttaa cacagtgaaa ccccgtcgct actaaaaata caaaaaatta gccgggcgtg 45660 gtggtgggca ccggcagtcc tcgctactgg ggaggctgag gcaggagaat ggcgtgaacc tgggaggcag agcttgcagt gagccgagat agtgccattg ccttccagcc tgggcgacag 45720 45780 agcgagactc cacctcaaaa aaaaaaaaaa aaaatagaga cccggaaagt taaaaatatg 45840 ataatcaata tttaaaaaca ctcaagagat gggctaaaga gttgacggaa caaatctaaa tattagattg gtgacctgca aaaccagccc aaggaacatc ccagaatgca gcccataaag 45900 45960 ataaagagag cattteeget gggcacagtg gtatggcagg ggaattgeet gagtecaaga 46020 gttgcaggtc acattgaacc acaccattgc actccaggcc tgggcaacac agcaatactc 46080 tgtctcaaaa aaaaaaaaaa ttaaattaaa aaagacagaa tatttgagag aaaaaaatgc 46140 ttatttcaag aaacatgaaa gataaatcaa gatattctaa ttcccaagta agaataattc 46200 cagaagcaga aaatagaata gaggcaagga aacactcaaa acttctccag tgccatagaa 46260 atgtgtatta atctttagaa tgaaacggac taccaaatgc tgagcaggaa gaacaaaaga 46320 gatccactct taagccagtg tggtgcccaa gcgcagtggc tcatgcctgt aatcccagca ctttgggagg ccgaggcagg tggatcacct gaggtcagga gtttgagatc agtcaggcca 46380 46440 acatggtgaa accetgtetg tactaaaaat acaaacatta getgggtatg gtggtgcaca 46500 tetgtaatee caactaettg ggaggetaag geaggagaat caettgaaac caggaggtgg aggttgtagt gageegagat catgecaeac teccageetg ggtgacagag caagatteea 46560 46620 tctcaaaaaa aaaatccact cctagacaaa taatagttaa attttagaac accaaggaga 46680 aagaaaaaaa attgtaaagc ttcagagaaa ataaacatta actacaaaga aacgagagtc 46740 agacgegtge acttetteet agataceage agataaagea atateteeaa aatteagaag 46800 gttttaacgt agaatcctat acccagtcaa gaatattcac atggaaaagt gaaataaaaa 46860 acattgttta aacatgcaag ggttcagaaa gtttaccatt cacagaatcc ctgaaaacaa 46920 aaccaaataa tcacttaagg actcattaag aaaacaaatg aaataaaagc accaatgatg agtaaataat cagaaaaatt tacagtttac ctaaataact gtttatgcat aatgtatgaa 46980 47040 aacccaaaaa tttaatatgg gacagaatta aaatcatgat aagattottt tttgctttac 47100 tcatggagag ttcacataaa cagattatct tttaatagca agagaaaaaa atgtttagat 47160 atgtgtgaaa aactaagggt accaaaacag tgcaaattca tttatcatca qqaaaatcca 47220 aattaaaacc acagtatcca ccagaataac taaaaggtaa aagacagaaa ttaccaagag ttggcaagaa tgtggagcaa ccacatatac ttctggggta aataagttgg tgcaaccaggt actgaaaact gtttgctagt atctactaaa accgagcaca tgcacagact acaaccaagc 47280 47340 47400 agttccactc ccagatacac actcaacaga aatgcacaca ctcactcaac aaaagacgtg 47460 tactagagtg ttcatgtact tactattcat aatagtccaa aaatgcaaac aaccaactgc 47520 caatcaaagt caaatgtata totatattag ggatatatac aatggcatat acacagcaat 47580 gagaatgaaa tgaaccagct cggcacagtg gttcatgcct gtaatctcag cactttgggc 47640 gggtaaggca ggcagatcac tigaggtcag aaatttgaga ctagcctggc caacacggtt 47700 aaaacctgtc cccactaaaa acacaaaaat tagccgggca tagtggttgc aggcctgtaa 47760 ttccagctac tcgggagget gggttgggag aatcgtttga acccgaaage cggaqqtcqc 47820 agtgagegga gategtgeca etgeaeteca geetggaega tagageaaga eteegtetea 47880 aaaaaggaaa tcaaaaatat aaaataagat gacaggaata atccgcaaaa gatcagtaat 47940 caaaataaat ataaatgggc taaagctacc tattaaaaga caaagatttc acacccataa 48000 ggatagctac tatcaaaaaa agagagagaa taacagatgt tagcaaggat gtatggaaac 48060 tgaaattete acgeattget ggtgagaata taaaatggtt cageetetge ggaaaacact 48120 atgctgggtc atcaaaaaat taaaaataga agtactactt gatccaacaa ttctacttct 48180 gggtatatac ccaaataact gaaagcaggg tcttgaagag atatttgtac acccatgatc atggcagcat tattcataat agctatgatg tggaaccaac ataaatatcc tttgataaat 48240 48300 atatggataa gcaaaatgtg gtgtatacat tcaatggaat attaattagc aataaaaatg 48360 aagaaaattc tgacacatgc tacaacatgg atgaaccttg agggcattac attaaatgaa 48420 ataagccagt tataaaaaga caaatactat atgaggtact atattagata ctcatgcaag 48480 gtacctaaaa taggcaaatt catagagaca aaaagcagaa tggtggttgc caggggctgc 48540 ggtaatggat acagagette aattttgtaa gatgaaaaaa ttetggagat tggttgcata 48600 acaatgigca cacacitaac aciggggaac igiaaactta aaagiagiaa aiggtaaaaa 48660 taaaaataat aaataataaa ttttatgtta ttttaccaca atatttatta aaagacaaag 48720 attaactaat taaacaaaat ccagccataa gctaatggta agagtaacaa ttaaagaaga 48780 cacagaaaat tgaaaatcag tgactagaaa aagatattcc atataaatgc taacaaaaag 48840 caagtacagc aatataaaga gaatgaacaa aaaaaaaatt aaataagatg gctcgtttat 48900 tcccaaaagg tacaattcac caagaagata caagaattgt gaacctttaa gcacataaaa 48960 cagcttcaaa aatacaacat ttaaagaaaa atatatatta aacatagaaa tagtacaaaa 49020 accectacaa gaatcataat gggagtette aatacaacte tecatateaa caggteaaac 49080

agagaaaaaa	ı aataagttaa	ggatgcagaa	aacctgaatt	accatcaata	aacttgagat	49140
taatatagaa	ctgtataccc	aatatactaa	. gagttcaggg	aacagtcgtg	actgacagtg	49200
gactgcaaat	taatctgttc	ttaatctttg	tttttctttc	agcactgtgg	cagaatagag	49260
atcctaaaaa	ccttccagct	acaaaacatc	tttttaaaaa	tataaaaaaa	tacaaaaata	49320
actictgaaat	caatagaaga	. cacatggtga	aaccaaaatt	ctagaataca	gggagaataa	49380
aggcattttc	: agatattaca	aaaacagaaa	attgatcatt	gctgaagtaa	tttctaaaga	49440
atgtacttga	. gggagaagaa	aaatgttcca	aagaaaagta	tctgtgatac	aagaaggaat	49500
ggaaagtgaa	. gaaatggtaa	acaggtagat	aaagctaata	aatgttgacc	tagaaaataa	49560
caaaaacaat	agcaataatg	tctcgttgga	agggttgaag	taaaaataca	attaaggcca	49620
aatgtgaggt	aagtggaatg	aaagaattag	aagtccttgc	cttgttcaca	ggactgatta	49680
aataaatgag	ccaggttttc	cattcaaaca	gttaaaactt	gaacaaaata	aactcaaatt	49740
aagtagaaag	ataaaaaaca	gaaattaatg	tcatagaaaa	ataaaaaatc	aatagaatta	49800
accaataaat	cctggttaat	aaaagctggt	tctttgaaag	gattaataaa	ataatcatta	49860
ageaagtetg	atcaaaaaaa	aagagaaaag	gtaccaaaaa	aagtactgta	tcagaaagag	49920
aacatacaga	tacatacaga	tatgtaagag	tetettet	tacaccagaa	tactatatac	49980
aacattatgo	tagcatatat	taaatttcaa	taatgttaat	gattttctag	gaaaacagaa	50040
aatattaaat	ttactttgaa	gaaacagaaa	aactgagaaa	aataaatgat	catgaaaaaa	50100
atgaaaaggt	aattaaatac	tgatattaac	tgcctaaaca	acaccagcag	cagcccaggc	50160
agtetgeagt	caagttctgc	caaacttgag	ggaacagata	attcttctat	tccagagcat	50220
agaaaatgat	ggaaagtttc	ccaatttaat	cagagaggac	agcctgatcc	ttgttatgaa	50280
cacagataaa	aatggggtaa	actatatgee	aaactcagat	accaaaaccc	taaataagat	50340
getagettat	tgatgtgaac	aatccaaaag	tgcattttaa	attagcccag	ggttttagag	50400
				ttttaagacg		50460
				aaaacccaac		50520
actorates	acticitagia	accaggoaca	aacagaaacg	tacttaatgt	gatagaatac	50580
				cccaagacaa		50640
aaaccccaa	cagicaacac	cycaycyaya	graatctatg	gaagacaagg	aaaaaagtaa	50700
coastcaaga	gacacccgc	taaaaataaa	caataagatc	acctacttgg	aagaggcaaa	50760
ctataattta	gaaaaactat	ttcaactgag	ttaattaana	gtatggaggc	reagetteag	50820
tttctgttga	ggtattagga	ttgacaagg	tatactecte	agttaatcct cctcctccc	gcaaagctaa	50880
actgaaataa	caccatatt	ggactaget	aacacaatct	tccaaaaaca	catcttcaac	50940
taaaaaacta	acttotocc	ttactcaaaa	aacagaacct	ctgctgcctg	cacatactac	51000
agttactagt	ggataagcct	CCCSSCCSCC	tracactteat	tcttcctgca	gagggaaag	51060 51120
aagagcactt	tcacaggaaa	atttttttcc	gaactgtate	ccgcttatta	catacactta	51180
catactaaca	aatggaggtc	cagcaaaata	agatattcag	agtcaaactt	ccttaccaa	51240
aaaaaaaaa	aaaagcaagc	acataacact	aatttccttg	catgggcact	aaaaaaaaaa	51300
gtcgttactt	ccacacaccc	gcaggt.ccgc	accaccagga	aacccacggg	aggaaggag	51360
taccccaaa	ccttccaggt	gcactgcgcc	acaacaccc	agctgacccg	agatacacaa	51420
ccctagccct	tecectetea	ccccaaccaa	gaagggggg	gagcgcggcg	gargegeag	51420
gcgaagggct	tctcaatect	ctgcaccacg	cagcaccccc	aaggcacaac	agggaggg	51540
cgggaggctc	ccgagaccca	ggagccgggg	ccaaacatac	ccgcgcacct	atcccactac	51600
ggcgagggct	gagatcacct	ccagaaccac	agctatcaga	agccacctgg	ctctcagtcc	51660
cgggtccctg	cgacaaccct	cgggcccgga	qqqqaqaqq	cggccacctg	ccactaccac	51720
ctgcggcacc	ggtcccaccg	ctccqqqccq	ggcaggacag	gccaggacgt	ccctcctaaa	51780
ctggggacag	gacacgcgac	gaggggaccq	gggccccac	ggcgaagacg	cagcacacct	51840
tcccagaaag	gcagtcccgt	gcccccacqa	cadactacca	gacccccgcg	ctcacccacc	51900
catcccttca	gaccacgcgg	ctgaggcgca	aagagccggc	cggcgggggg	actaacaaca	51960
cggctagtac	tcaccggccc	cgctggctca	acaccaccac	aacccccagc	gaccacaact	52020
ccgggcgctc	actgatgctc	aggagaggga	cccqcqctcc	gccggcgcct	ccaqccatcq	52080
ccgccagggg	gcgagcgcga	gccgcgcggg	actcactaga	agatgtagta	cccggaccgc	52140
cgcctgcgcc	gteeteette	agccggcggc	cadadacccc	ctctctccca	gctctcagtg	52200
tctcatctcc	ctatctgctc	atcctctggt	cgcacataat	cgatgtttgg	gcgtcccaag	52260
ccagatgtgg	accccatttc	cgcactctac	actggaggtt	ttctaagggt	gataccaga	52320
ccagcagctt	cagcctcatc	tgggaacttg	agaaaatgca	gattctccgt	cccacccage	52380
ctattcggtt	tttcctgcac	taaaaccatq	aaqqtqqqc	ccaqcaqtcc	acattetese	52440
aagcccgtca	agtgattctg	aggcgccctc	cagtttgaga	gctatgctca	cggcctcacc	52500
teegeeeege	aaggagcccg	gtcttgcctg	tggcgctagc	cqcacacqqa	cacctcatcc	52560
tgcggggccc	gcccccccgc	tgcaccctca	ccqcccaacq	cctcctccqq	gatgcagcgg	52620
aggcgcctgg	aagtcggcaa	ggtcaacatc	cccctcagca	tcttccctac	cctcacggct	52680

#### 31/122

cctcctccag gggtgcctca tggccagggg ttagaaagag ccactgtgtt tcttgacatq 52740 gaagtggcct aagaccttaa tgaaaactgc aggagtggaa tgacagaacc tttggtcata 52800 cttgagggcg tgaagctcaa atgaggagga aggaaaggat ccagggagaa taaccaaccc 52860 tggcaagttg tggcgcccag gtagagggc gagcctaggc tagcggttct cgaccagggc 52920 cggtgttgcc cctcctcgcc gccccgcgta catttgggga ggtctggaga catttttggt 52980 tgtcatgatg cgggagttgc tactgttgcc taagtgggta gacacgaggg tgctcctcaa 53040 catectacet gaaggacagg actgeeceae aaggaagaat gateeggeee caaataagaa 53100 accetggget ggtcagcaac aaccetttg ttetgagaag agaggaggaa agaataaaag 53160 aagtggggtg aagttttggt ttggtagagg aaacttgaag acattttcac tggaaaggaa 53220 gagaggaaga ggagggagat gtctgtaagg acgagcaaac cgggtgacag ctgatttcct catattgaag taatgagtcc tagttataat aaattcctaa taaaaaccca gtttatccct 53280 53340 gcaataaact tgtcttttt ttttaaatat actgcttgat tctgtttgct aatattttat 53400 ttacaggett tgcattgata tgcaaaaatg agatgggcaa taattttett tttgaatgte 53460 taatgttgtt tggtttcaga atcaatgtta tgctcacatc ataaaaaatt tggaaccgag . 53520 gcaggaggag tgcttgaggc cagaagttcg agaccagtct aggaaacaca gtgagacccc 53580 cccatctcta caaaaaaaaa aaaagaaaaa aaaatgggca tgtttgcttt ttccttttac 53640 totgaacaat ttaaggagca ttaaaattat ctattotttg aggtttgatc atttoccagt 53700 taaaaatgtt cctcccagcc tgatgctttc tttggggagg gtaaatcttt taaggctaga aaagtttctt ctgtggcaat tttattattt acattttaaa aattattcta gagttaattt 53760 53820 tgataaagca tgtatttctt aaaacaaatt atcctttttt tccaqatgtt caaqtgtatt 53880 tgcataaagt tgaggaaagt agtcttttgt gaatctttta acttctccca aatatcttat 53940 tttgtgtatt tttgcttctt tattttgtta acttttaaaa gtgtattttt ttttcaaaga 54000 atcagetett aggittatgt ttttggitat actggagett ttttettett ettttaaaa 54060 tattitttct cctttatttt ttagacgtat tttgatctaa cgtaatcgga agaaggtaaa 54120 ttagaatett ttgttaetat tgtgttttta ttteteetta tttetetgaa gteetgettt 54180 ataaatagta ccatgttatt tgtgcataaa tattcatttg tcttatattc ttgggaattt 54240 toccactica toataaaatg accitocttg totcatttaa tgtgttcaaa ctttgccctg 54300 aatttaactt tgtctgatat tttaccatcc tgctgaattt tgtttgttac cccaaacaac 54360 ctttgctgtt ticgtctttt ctgaaccctt tattitaggt aatcccttga attagagcac 54420 taagttttgc tttgtgatta aatctgaaaa tctttatctt gccatagatg agttgagccc tattcatgtg acagctatat tatgctgttt catagccctt ttggtccttt tttcactctt 54480 54540 gcattgcata ttttgtgttt attgtgtttt gtgtttcttc tgataatttg gaaggtttgt 54600 attittatte agggagtige ettataatea tacteegeaa tacacategi eeteagtite 54660 ttcagactgt ctgttaactc cctattctga ataaaaatga cattgtaatt tccctctttt 54720 ttctttaccc cttttcttct cctcacctaa tgtaaatgat tttatccttc tttagtattt 54780 gcttttttaa ttaactacat ttataaatat ctttatcact tgatttttaa atcagctttg 54840 aatgagatat ttggatteet agatataaaa gatgttaatt ataccattte caegitagta 54900 ggtttataaa atcatacatt ctgctgtgta accataatcc cacgtttgtt ttagttccac 54960 tectacagtt aaaagattea gaagtattat taacagttat tttgccatag ttttttcccc 55020 aacccatttt gtggtaagtt atgatcctgc tttagtttct taagaataat ttatagagca 55080 gagtgtggtg getcacgttt gtaateecag cactttggga gacaagaggt agaaggateg 55140 cttgaagcca gcagttcaag accaccctga gcaacatagt gagaccttgt ctctacaaaa 55200 aattttaaaa tttagccaga cgtagtggcg tgtgcctata gtcccagcta ctcaggaggc 55260 tgaggcaaga ggattgctag agcccagaag tttgaggctg cagtgacctc tgattgtgcc 55320 actgcaccc agtctgggca agaaagtgag aacctatctc tttaaaaataa caataataac ttatgaaaat tatattccct gagtttttca tgtttaaaaa tatttgttgc ctttatcctg 55380 55440 taaaagtttg agtataaatt cttgggttat actttattta ttgaagaatg tataagtatt 55500 gtcttctaga attgagtgtt gctgtaatga aaccagaagt cagcctggtt tatttttcct 55560 cagaaatgag gtaattgccg gccggacacc gtggctcatg cctgtaatcc caacactttg ggaggccgag acaggtggat cacgaggtca ggagattgag accatcctgg ctaacatggt 55620 55680 gaaaccccgg ctctactaaa agtacaaaaa gttagctggg catggtggtg gacgcctgta 55740 atcccagcta cccgggaggc tgaggcagga gaatggcgtg aacctgggag gaggagcttg 55800 cagagagetg agategegee actgeactee ageetgggeg acagagtgag acteegtete 55860 aaaaaaacaa aaaaaaaaca aagaagtgaa gtaattgcca tgatgctcca agaattatct 55920 ctttgtctat gaaatccaga aatctcactg ttatacattt tggaattatt attctgggcc 55980 aatattteet gggacacaat agattgaete tatagattta atttttttt tttttttgag 56040 acagagtete actgeaatet cagettaetg caacetetge etcaegggtt caageaatte teetgeetea geeteecaag tagetgggae tacaggegeg tggeaceatg eetggetaat 56100 56160 ttttgtcttt ttagtagaga cagggtttca ccatgttggc caggctggtc ttgaacgcct 56220 aacctcaagt gatccacctg cctcagcctc ccaaagtgct gggattacag gegtgagcca 56280

#### 32/122

ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttq 56340 ttctaatacg ttatttcagt gttcttctaa gatgtgtaaa gcaccctatt cccaggtcag 56400 ccccatctt gctagtgagc tcggctggtt cttcacaaga gctctggttt tctcctgctt aatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttg 56460 56520 ttttttgttt ttgacagagt cttactctgt cacccaggct ggagagcagt ggcataatct 56580 cageteactg caacetetgt etcecaggit tgagegatte tectgeetea geetactgag 56640 tagctgggat tacaggcgcg tgccaccaca cccggctaat ttttgtattt ttagtagaga tggggtttca ccatgttggc cagggtggtc ttgaactcct gacctcaggt aatccacctg 56700 56760 ceteageete ceaaagtget gagattacag gegtgageea eegegeetgg catggtttgg 56820 agttttaatc tgtagtttta ataaagatag tgcttatgtt tgtgtttctt atatttcttg 56880 56940 57000 getgtgteae ttetggagge tggagtgeag tggegegate teaggteaet geaaceteeg 57060 tetecegggt teaageaatt eteetgeete ageeteeega gtagetggga ttacaggeae 57120 ctgccacttt ttaatttttt tagagacaga gtctcgcttt gttgaccagg ctggagtgcg 57180 gtggtgcaat catggctgac tataacctcc aaatcctggg ctcaagtgat cctcctgcct 57240 cagceteetg agtagetggg actacaggea catgecacca tgeccagtta attttaattt 57300 ttttgtagag acagggtctc catatgttgc ccaggctggc ctcctactcc tggcctcaag 57360 taatceteet aceteageet eccaaattae taggattata ageatgagee aceatgeeea 57420 gccttgttct actactttaa tttcatatgt taggtgacca tgtaattgat catccaaacc 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattg:tg aatttggagt ttctatttgc aggcttattt caactgggca gccttgatcc 57660 geoctgeeca geaatgetae egttetetee acegggtete tgggaceect teagteacta 57720 tacttagete agttececae ecteceaete cetaaaageg taaccaggaa teetgeetea 57780 ggtctactgc cgtcttccgt gggctgtttc agttcctatt acccagagtc aaactcccag 57840 cattccctac ctgattccag acttggagtc cagagettta acctettcag gccaactccc caetttgcat ttctgtccct atatcttagt ccatggagat acatttcatg tetttgagtc 57900 57960 tacttacaaa gtaaattttg ctgtttttta atttttttt tgagatggag tcttqcctq 58020 tcacccagge tgtggtgcaa tgacgccate teggeteact gcaaceteeg ceteetgggt 58080 tcaagcgatt catctgcctc agcctcccaa gtagctgtga ttacagacag gcaccaccac gcccagctaa tttttttat cttttagtag agacagggtt tcaccatgtt ggccaggctg 58140 58200 gtottgaatt cotgacotog tgatotgood atotoggoot cocaaagtgo tgagattaca 58260 ggcgtgagcc actgtgccca gccaattttg cttttttat atttcattgc tatatgttta gaggataagt ttacagtgct atatgcattc ccaaatatta gaccaaaaaa atctccaaaa 58320 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagaggaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 tcacgcctgt aatcccagca ctttgggagg ccaaggcggg cagatcacaa ggtcaggaat 58620 togagaccag cotggccaat atggtgaaac cocgtttoca ctaaaaatac aaaaattagc 58680 caggcatagt gatgtgtgcc tgtaatccag ccacttggga ggctgaggca ggagaatcac 58740 tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg 58800 gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt 58860 ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtgggac 58920 tatgtcaget cacegcaace tecateteet ggattcaage aatteteetg tetcageete 58980 ccaagtagct aggattacag gcgcccacca ccagacccag ctagttttta tattttagt agagatggtg tttcaccatg ttggccaggc tggtctcaaa ctcctgacct caagtgatcc 59040 59100 acctgettea geeteccaaa gtgeteagat tacaggegtg ageeacegea ecceacetag 59160 atagaaattt caacatgagg ccgggcacaa tggctcacgc ctgtaatctc agcacttcag 59220 59280 59340 ttcaacatga aaagtatctc tcaaaccctt cgagatgttg gcaaaaagcg actcaaagga 59400 aaatgtatta ctgtgtgtga atttgcttga aaataagaaa gaggccgggt gtggtggcta 59460 acacctgtaa teccaacact etgggagtee gaatcaagtg gatcatgagg teaggagate gagaccatee tggetaacat ggtgaaacce tgtetetact aaaaatacaa aaaattaget 59520 59580 aggegeggtg geteatgeet gtaateeeag caetttggga ggetgaggea ggtggateae 59640 ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa 59700 atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga ggcaggagaa tcgcttgaac ccgggaggcg gaggttgcgg tgagccgaga tcgcaccact acactccagc ctgggcaaca gcctgggtga cacagtgaga ctccatctca aaaaatacaa 59760 59820 59880

aaaattaget gggtgtggtg geetgegeet gtagteeeag etaceeggga ggetgaggea 59940 ggagaatgga gtgaacctgg gaggaggagc ttgcagtgag ccgagatccc accactgcac tccagcctgg gcgacagagc aagactcttg tctcaaaaaa aagaaaaaaa aaggaaaaaa 60000 60060 gaaccetgat aataaagaaa ccaaatgtte aacteteaaa geteggacae tttaaagaaa 60120 taattaataa aggcagaagt taaagggagg atgataaagc aattitttt gttggtittt 60180 ttgagatgga gtcttgctct gtcacccagg ctggagtgca gtgatgcgat cttggctcactgcacctct gcctcccggg ttcaagcaat tctcctgcct cagcctcctg agtagctggt 60240 60300 actacaggtg cgcgccacct ggcccagcta atttttgtat ttttattaga gacggggttt 60360 caccatattt gttaggetgg teteaaacte etgateteag gtaatetgee caceteggee 60420 tetcaaagtg etgggattac aggeaggege caeegegeet ggeetaaage aaaatattgg 60480 ticigigaa aaggicaata aaaagagcaa acgittacaa actggagcca gcacccattc 60540 auct castgt gtotggagaa aaaacaatot ogottoagaa ttoatgatta ogoagooott 60600 titquitcot aaaaatoota ctatgttgot gttgaccatt ctototottt ctotototet 60660 tgettietet ccagaaaage tattcagaca tteteetett teetcaaace tecaacaett 60720 cetericeat ecttageete agetgetgae etcaetteta atcattgaga aaccaggaga 60780 agratttaag agtgaacctc cgcctccccg cacgggcaaa accacccacc cacagaattg 60840 tgececuatt ctgcgteete teeteteace atggatggae ggtecagget cegagecaaa 60900 gecagnete coetggaget etggatecae cacetgcage ttetcaggea gggececage ageteceetg etceettgta ceatcaatee etceetcae tgggteacte ceaacaatat 60960 61020 atatatttag tgatgtttct cccatgtggt aaaatcactt agoctototo otoccccago 61080 tactatecta titigittett tecattetet geaaaactte teaaageatt gigtetatgt 61140 grigatica thatettet coeghtetet getgagteet teccacagae teteaceca griacical gaaatgacet etgeactgee acatecaatg grgaatgite aghtettaat thateagt ethteageag cantigacet ggeogateae tecchetet taaaaatact 61200 61260 61320 tttctcagcc aggcgtgatg gctcacacct gtaatcccaa cactttggga ggccaaggcg 61380 ggaggateat gagageeeag gagtteaaga teageetggg caacatggea agaceetate tetacaaaaa etaaaaagta geeagtgtga tggeatgeae etgtagteee atetaettag 61440 61500 gaggetgagg cagtaggatg acttgageet gggaaateaa ggetgeagtg agceatgatt 61560 gcaccactgc actocagest gagtgacage gagaccetgt eteaaaaaga caaaatagga aacttteete ageatattee tetgattete etgetgette tgtetgeaca gatteagtet eetttgeegg ttetteetea teeteetgat etettgaeet tgaagtgeee eagagtacag 61620 61680 61740 61800 61860 61920 61980 ccgcctcggc ctcccaaagt gctgagatta caggcatgag ccaccacacc cggcccagag tacagtcttt agacggcctc tctacctata cttgctcccc tcataaactc ctcctgcctc 62040 62100 atggetttaa ataccategg tagactgatg acteccatat ttetetttt tttttqqaqa 62160 cggagteteg cteagteece caggetggag tgeagtggeg cgatetegge teactgeaag 62220 etecacetge caagtteaca ceatteteet aceteageet etecagtage tgggactaca 62280 ggcacccgc accacgcctg gctaattttt ttgtattttt agtagagatg gggtttcacc atgttagcca ggatggtctc gatctcctga cctcgtgatc cgcccatctc ggcctcccaa agtgctggga ttataggtgt gagccaccgt gcccagccga tgactcccat atttctatct 62340 62400 62460 cttgctgtgt gggagttctc ctcagaactc catactcata aatccaactc tcataaatag 62520 tatctcaaat gggcaatatg ctcaaaagtc aattcctact tttctcccta aacttgcttt cctgcagtct ccaccatctt aatgtccaat ctaacattag gaggcaaaaa ctttgaagtc attcttgact cttctctatt acacacccta tccaatcttt ctgcagatcc agtcgaccc 62580 62640 62700 caaatccagt tagctctcat catctcccct gttaccccct ggtccaggcc atcttcctct ctcacctgaa tcactgcagc attctcctca ctggtctctt tggttctgtt ttcactccac 62760 62820 cttagcatag tctccacaga gcagtcagag ggatcctttt aaagtgtaat tcccatcctg tccctgctct gctcaaaacc ctgtcgtgat tcccgtttta atctgtcaga ttaaaagcca 62880 62940 gagtetttee agtgacetae atgatetgee tattateace teccaettet tteccettge 63000 tcactccact ccagctctgc agctgtcctt tctgtttcct gaacagccca gattttgctt ctttagaacc tttgtatttg ctgtcccctc tgtctggaat gttttccag gaagtcacct ggctctctcc tgcacttcct tcctgaccac catgtttaaa aatcactcaa acacacttca 63060 63120 63180 ggccggacat ggtggctcac gcctgtaatc ccagcacttt gggaggccaa ggtgggtgga 63240 tcacctgagg tcaggagttc gagaccagcc tggccaacat ggtgaaactt cgtctctact acaaatacaa atagtagcca ggtgtagtgg cacacacctg taatctcagc tactcaggag 63300 63360 gctgaggcag gagaatcgct tgaacccaga aggcagagga ggtgcagtga gccaagatca 63420 cgccacaca ccccagcctg ggtgacagag caagacccca tctcaaaaaa aaaaaaagaa 63480

aaaaaaatca cacaaacaca cttctcttca tattcctttt ccaagtttta tttttctcca 63540 gaatacttta cattgtttta atggaagttc tccgtttccc cccaactaga atggatactt cctgcaggta ggcactctag tcctcccatc caagtactaa ccaggctcaa ccctgcttag 63600 63660 cttctgagag caggggagat caggcctgtt cagggtggta tggcccagga attttgattc 63720 tgttttattc attgctgttc tgttgattct cttttgttcc tcctcctagt gctgagaaca 63780 ctacttgtac ataataagca ttcaataaat atttgttgaa tgaatgactt gttgaatgaa 63840 ttaatctcag aaatgcagga ctggttctac attagaaaat tittcaaggt cattctctgt 63900 tgtcgtaaca cattaagaga ggaaaatttt gtactctaaa tcatttgata aaatacatac 63960 tgatttctgt tttcaaaaac tcttagtggc tgggcgaggt ggctcacatc tataatccca 64020 gcattttggg aggacgaggt gggcggatca cttgaggtca ggagtttgag accagcctgg ccatcatggt gaaaccctat ctctactgaa aatagaaaaa ttagccgggt gtggtggcgc 64080 64140 atgectgtag teccagetae etgggagget gaggcaggag aatggettga accegggagg 64200 cggaggttgc agtgagccaa gatcatgcca ttgcactcca gcctgggtaa cagagtgaga 64260 ctccatctca aaagaaaact cttagtgagt ttaggaatcc aaggaagacc ctcaaactaa 64320 atagataatc tagctaccag aagccttcag taaaccttaa cactccatgg tgaaacatta 64380 gaaacattcc tactaaaaga caggctaaga atgcctgcaa tcttcacggc tagtccaaga 64440 agtcaaaaag aagaaatgag cgctgattta aaaaaataaa caaacaaaaa actaccgatg 64500 cagaggetgg cagcaaggac tgaaggactg tacagtactt gcctggagca ggcggatggc cacacccctg cgaagcctgc tcagctggct gggggacgct ccagtgtgtg agtggcagga 64560 64620 tgcagggtac ttcctctgcc agggagttgc actggggaga tcctcccca ctcacacttt 64680 ggcagctggg gctttggaat gtgacttagc ttctgtcaaa gggtcaatcc accetttgat 64740 atatgatgca aaggcgaaca tatgatgcaa aggtgagaga acagcccaaa ttaggacttt 64800 taccacaget gtggaggtgg acagegacag tggtgggeee tggeeagaet ttteatgete 64860 aaaggtggtg gttgttcttc ctacttcttg tccctccagg gcttcctttg cctgtgtgct gaacctgctt cttttaattt tttttaactt ttttaaattt ttaattgttt taattaaaac 64920 64980 aaattttgaa aactgtctga acctgctttt gaaccctgct atgatttgaa tgtttgtccc ctgccaaact gattttgaaa cttaatctcc aaagtggcaa tattgagatg gggctttaag 65040 65100 cagtgactgg atcatgagag ctctgacctc atgagtggat taatggatta atgagttgtc 65160 atgggagtgg catcagtggc tttataagag gaagaattaa gacctgagct agcatggtcg ccccttcacc atttgatatc ttacactgcc taggggctct gcagagagtc cccaccaaca agaaggctct caccagatac agctcctcaa ccttgtactt ctcagcctct gtaactgtaa 65220 65280 65340 gaaataaatg cottttottt atgaattaco cagtttoaga tattotgtta taaacaatag 65400 aaaacgaact aaggcaaact ctcatgattc tactgccatg ccattccaat aaactccctt 65460 tatgettaag agagecagag ttggecagge gtggtgacte acgeetgtaa ttecageaet ttgggaggee gaggeaggtg gateacaagg teaggagate gagaecatee tggetaacae 65520 65580 ggtgaaaccc cgtctctact aaaaatacaa aaaaattagc tgggcgtggt agtgggtgcc 65640 tgtagtccca gctactcggg aggctgaagc aggaggagaa tggcgtggac ccaggaggcg 65700 gagettgeag tgagtegaga tegtgeeact geacteeage etgggtgaca gaatgagaet 65760 ccgtctcaaa aaaaaagaga gccagagttt atttctgttg cttgcaacca agaaatctgg 65820 ctggtgcact gaagtttcca taaataatag caatttaaag actctttcca agccaggcaa tgcctagcct tgtgtagtcc ttgtggtaat acattcattc attcatttgt tcaaccaact 65880 65940 gtgctccaga gactaagaat acaaaaatgg gggccgggtg tggtggctca cacctataat 66000 cctagcactt tgggaggccg aggcaggtag atcacctgag gtcaggagtt cgagaccaac 66060 ctggccaaaa tggtgaaacc cctactctac taaaaataca aaaaattagc tgggggtggt 66120 ggcggacacc tgtaatccca gctactcgtg agactgaggc aggagaatca cttgaacccg 66180 ggaggcagag gttgcagtga gccgagatcg caccactgca ctccagcctg ggcaacaaga 66240 gcgaaactcc acctcgaaaa aaaaaaaaa aaaaaaagag ggccggggct gggcgcagtg 66300 gctcacgcct gtaatcccag cactctggga ggccaaggca ggagaattac gaggtcagca 66360 gatcgagacc agcctgacca acatggtgaa accccatctc tactaaaaat acaaaaatta 66420 teegggegtg gtggegeaca cetetagtee cagetaettg ggaggetgag geaggagaat egettgaace egggaggeag aggttgeagt gageegaaat catgeeactg cactecagee 66480 66540 tgggtgacag agtgagactc cgtctcaaaa aaaaaataaa aaaaaaaaa gaattcaaaa 66600 attgtagagt tatagtgtgc ttctagttta gttgagagga catctgtcct tcaaggaagg 66660 ctagaatcta taccetgagt cettactgaa atcaatccag cagteaaaac atgggaccaa cgateacage agtaagatag gaagagcace tttgtacatt tagetcatgt tgagataage 66720 66780 cactgacaga gctgaaggaa gctcacagtt ctgggttcca tcctttggca tttaaaaaga 66840 aaagtgctaa gaaaattcgg ttggtcacgg tggctcacgc ctgtaatccc aacactttga gaggccaagg caggcagatc acgaggtcag gagttcgaaa ccagcctggc caacatggtg aaaccccgtc tctactaaaa acagaaaaat tagccgggca tggtggcgca tgcctataat 66900 66960 67020 cccagctact caggaggctg aggcaggaga attgcttgaa cccgggaggg ggaggttgca 67080

gcgagtgaga gcaggccact gcactccagc ctgggagaca gagcaagact ctgtctcaaa 67140 67200 ttcaggccag gccaggcctg gtggctcaca cctgtaatcc caacactttg ggaggctgaa 67260 gcgagacggt gccttagccc aggagtttga gaccagcctg agcaacatag cgagaccctg 67320 tetetataaa aaaaaatttt tittiggeea gaegeagtgg eteaegeetg taateecage 67380 actttgggag gccgaggcag gtggatcacg aggtcaggag atggagacca tcctggctaa cacggtgaaa ccccatctct actaaaaaat acaaaaaatt aaccgggcgt ggtggcgggc 67440 67500 gcctgtagtc ccagctactc gggaggctga ggcaggagaa tggcgtgaac ccgggaggcg 67560 67620 67680 67740 gcagtaatag tgcctctcac tctaccctgg gtgacaatga gaccctctct caaaaagaaa 67800 67860 aaaagaaaag gaaggaagga agaagaaaaa aaaagaaaga aagaaaagag agagaagttc aaagaccaaa gggtcaggat cccaaaatag tttttatgtt ttatttattt atttacttat 67920 67980 ttatttttga gacagtatgg ctctgtcgcc caggctggag tgcagtgatg cgattgcggc 68040 teactgcage etecaaactg ggeteaggtg geeeteceae eteageetee egagtagetg ggaccacagg egegtgceae catgeceage taattttta attetttgta gagatgaggt 68100 68160 ctctatatgc tgcccaggct ggtctcgagc tcctgggctt aagccatcca cccgcctggg 68220 cctcccaaag tgctgggatt acagaagtga gccaccgcgc ctaatcgggt ggtttgtttg 68280 tttattgacg gggtctcgct getgcccagg ctggagtgcc agtggctgtt cacaggtgca gtcctggagc attgcatcag ctcttgggct ctagcgatcc tccagagtag ctgcagctgg gattccaggc gcgccaccgc gcggggctca gaatgggttt ttatattgag ggttatgctg 68340 68400 68460 ccacctagag gatatatgta gtaccgaact gtgtgcgcag ggaggctgag gttgcagtga 68520 68580 68640 tatggtcata gcagtattaa ctttgaccca ctagctaaaa cacaaaagca acatgtgtct 68700 gtcagcaggt gaacggataa acaaaatgtg gtatatatgt acaattgaat attattcagc 68760 ctttaaaaag gaataaaagg ctggatgcgg gggctcacgc ctgtaatcct aacactttgg gagactgagg tgggtggatc acccgaggtt aggagtttga gaacagcctg gccaacatgg 68820 68880 tgaaacttca tetetaetaa aaataetaaa attageeggg catggtggea ettgtetgta 68940 atccaagcta ctggggaggc taaggcagga gaattgcttg aactcaggag ccggaggttg 69000 cagtgagcta agatggcacc actgcactcc agcctgggca acagagtgag actccatctc aaaacaaaca aacaaaaaat tattatttcc aaagaaacaa gaccctgggt ccatttccca 69060 69120 gcccacacct gatgttgact cacaacacac agcctggttt gctatgagcc tgcttcattt 69180 aattgtcacc ttaacttcac atcaccetca agtectggaa taactetttg etgacetttg 69240 tgtgctgagc catctccatg tcgctcaacg tgcagtccct ctcactgcac tgagtcaata gccagacgtg gtctgactgc agggtcatcc ttggtggctt aggctgactc gggcatagca 69300 69360 gggtgctctg agacctcacc gcatataggc tttgccccca ataaactcta tataatattc 69420 atattatgtg gtctgggtgt gtgtagcttt gcactgtctt ctcgtgacag tgccctcaac ctctttccca ggatttcctc ctctacctcc tcaagtccca ctgctctgca aagaccaaaa 69480 69540 gctgcagagt cccagetccc teetttacac cccaegaege agecteetet etcagaacce 69600 tttaaacaga gtcttttact gcagatccca agaacagcca cacccctctc tcccacccac tccagacaca cccaggtaat tatagcaccc agggtaacta tgtagatgga gtccctggaa catgtggata gtgcccctg ggagtatgca aaagcaacat tgctggcacc tgcagagaac 69660 69720 69780 agggtgacat ccaggaatca gagcatgggc ctctgggagg tagggatgtg gccaggcagg 69840 ctgccaaaaa ttggtagagc aaggccacag gatctttctg accttccttc caaacagagg ctcctgtact ggtgatccct gtgttgattg accactccct tcctgggggt cgtggtctct gtcccagttg cccggacttc tgtgagtgtc ctactgaggt ccttttcatg agaagcatgc 69900 69960 70020 tgtccttcca cctgctggga gcaagagtga caacttcaat actataatag cagtggcata 70080 cagagaagaa gaaagatgaa gtggcaagaa aaacaggctt ccaagcagga gtttttctat 70140 aaaaacaaaa acgtttacaa gcaaactttt tataaagggc tagatagtaa atattttagg 70200 ctttgagagc cacatagact tgtttgcagg gactcaatgt cgctattgta gtttgaaagc agccatcagg gttatgtaaa tgagtgagtc tgattttgtt tcagcaaaat tttatttacc 70260 70320 aaaacagaca atgagtgggc tggatttggc ccatgatcct tagtttgcca actcctgctt 70380 tgggctcacc cagatctgat tttgaattct ggctctgcta ctggttagct gcaggagctt ggaaggctct ctgagcctgt ttcctcatct gtaaaattaa agcaataatt tctaacactc 70440 70500 aagagtgtta cetcaegeet gtaateecag caetttggag getgaggeag geggateace 70560 tgaggtcaga agttcaagac cagcgtggcc aacgtggcaa aaccctgtct ctactaaaaa 70620 atacaaaaag tagccgggca tggtggcgcg catctgtaat cccagctact tgggaggctg 70680

aggcagggat actgctagaa cctgggaggt ggagcgtgca gtgagtggag atcacacctc 70740 cacactccag cctggccgac agagcgagac tccatctcaa aaaaaaaaa aaaaagagtg 70800 ttagaaggtt ttgagataat gaataaaaga tgccttgtgt atactaagta ttcaacaact 70860 gatagetgea ttggtetaat tataacagtt tagaagegat tgagteaaca aatgetggat 70920 ttgtcaggga ggacttccta tcaggaggta gatcttgggc tgagtcctga agcaaagata 70980 ggcattggat agaggagttg agagaacacc ctaggactgt tattattatt attcgacacg 71040 gagtetettg etetgteace caggetggag tgeagtggeg egatetegge teactgeace etetgeetee caggtteaag egatteteet geeteetaag tagetgagae tacaggtgtg 71100 71160 tgccaccaca cccggctaat tittatattt ttagtagaga cagagttica ccatgttggc 71220 catgetggte tegaacteet gaetteaggt gatecacceg ceteageete ccaaagtget 71280 ggaataacag atgtgagcca ccgcacccag cccagaacca tttttcaatc cttggctctg ccttttatta gctgcaagat ctcaggcaat ttatttaacc tctccaaaga ctcatttct 71340 71400 cattcacaaa atgaggcaaa taataatatc tactatccca ggttgtcatg agaattaaat 71460 grascatgae atttaatgaa atgagaagte eettggacat taactggeta aagtatgtge 71520 togacaagga tatcatttta ggtggatact tagcatctca gaactgatgc tcacaatgga atatcattga aacgcattaa aattcatttt aaatgattgt aggtagtgag gcaattgaaa gaagaagaca agaggactga ttataatgct tcaggctcac tagtctcctt ttaggaggga 71580 71640 71700 adadcanttt caagttaaat titaggetet agattittae eeetgetget cattagaate 71760 accompating atgacateag agestatety aggstigtit titleatetes agaatgagag etgitgigg gattaagtit tigaaaaagt acatetaaca ggigategaa aatgatagig 71820 71880 atattattac agtgatggtc attattgttg ttattattat actgaaagag gcttcagttt 71940 totgatecar aaagtgaggg aattgcatga gaccattgct aagattcctt ctagctctgt 72000 ttttttttt ttgttttta gacagagtct ctgtcgccca ggctggagtg caatggcatg 72060 atettypete actgeaacet cegeeteeeg ggtteaaatg atecteetgt eteageetee 72120 gaagtagetg ggactacagg cacacaccac catgeccage taaettttat attittaata 72180 gaggtggggt ttcaccatat tggtcagget ggtctcaaac tcctgacctc aggtgatcca 72240 cccgcctcgg cctcccaaca tgctgggatt acaggcatga gccactgtgc ccaaccctt 72300 ctagetteet tgateactga ttetagggtt etetgetgaa atatatttga gacateetgg 72360 ataaaagate atgcaagage teccaatatg gtattaataa ttgattetgg aggettaget 72420 actectgate destaugage toccard guide destaurant actectgate gattagacat gactcaactg cototottat gtgtacaaca caacaacaca accaagaaag gttattotgg cattcoattt attcagttta tttacagcoo ttacttocag cagcacgtta aagatatggo cagggooggg tgcagtggot caagtotgta atcccaggac 72480 72540 72600 tttgggaggc caaggtgggc ggatcacaag gtcaggagtt tgagaatctg gcaattcttc 72660 agactragaa gcaaccaget egataacaca gtettgtgtg ggetetecet etgteeetee etegettece teatttetea teeetgeee tgagactgtg cacetteaca tageeetgee atgagacett cateteage tttgetttet ggggtaactg aggetaaaca etgagtggee 72720 72780 72840 ctaaligagg attgggattt ggaagttaga ttattcacca gagaacagac tttgctgatg 72900 atcaggecca ggttgtaatt gttgaaaaaa agagaggatg catagtetta teteatetee tagteaaagt caacaccatg ataaataaga gtcaaateet gagatgtgaa ttggggacat 72960 73020 ttgagtggtt aaccetgaga agettgcace ttcagaccee tcaataccee tgetecceag 73080 agaaggctgg acattgacct cagcacaggc aggagccctg caagatgcca tttgtcctac 73140 taaagatgga cccctccact ctgtttctag gtaaataacc aaagtcaagt ctccacacag 73200 cctgagcaag aaagtcagag cctgctacag gagaaaatac cacactggcc aaaggattca ctagccctgg ccactgtgtg tgggaggaac cagggaatca tgtgtgggag tcaatgttga 73260 73320 agctgttgga ctgggggtgg ggtggaatat aagcctggcc ctggggagtt tttcccgttt gagggccttt acccacaact caagatccag tgctatagca ggagatccca gagctagtcc 73380 73440 taacagatgg tcaggattga acttggccta gagtaaaatg aggaggatag tgccagaact ttctcaacat actattgagg aagaggtcag aaggcttaag gaggtagtgt aactggaaag 73500 73560 gggtcctgat ccagacccca ggagagggtt cttggacctt gcataagaaa gagttcgaga 73620 cgagtccacc cagtaaagtg aaagcaattt tattaaagaa gaaacagaaa aatggctact ccatagagca gcgacatggg ctgcttaact gagtgttctt atgattattt cttgattcta 73680 73740 tgctaaacaa agggtggatt atttgtgagg tttccaggaa aggggcaggg atttcccaga 73800 actgatggat coccocactt ttagaccata tagagtaact tootgacgtt gocatggcgt 73860 ttgtaaactg tcatggccct ggagggaatg tcttttagca tgttaatgta ttataatgtg tataatgagc agtgaggacg gccagaggtc gctttcatca ccatcttggt tttggtgggt 73920 73980 tttggccggc ttctttatca catcctgttt tatgagcagg gtctttatga cctataactt 74040 ctectgeega cetectatet cetectgtga etaagaatge ageetageag gteteageet 74100 cattttacca tggagtcgct ctgattccaa tgcctctgac agcaggaatg ttggaattga 74160 attactatgc aagacctgag aagccattgg aggacacagc cttcattagg acactggcat 74220 ctgtgacagg ctgggtggtg gtaattgtct gttggccagt gtggactgtg ggagatgcta 74280

ctactgtaac	g atatgacaag	g gtttctcttc	: aaacaggctg	atccgcttct	tattctctaa	74340
ttccaagtac	caccccccgc	ctttcttctc	: cttttccttc	tttctgattt	tactacatoc	74400
ccaggcatgo	: tacggcccca	a gctcacattc	: ctttccttat	ttaaaaatgo	actoggacto	74460
ggcgcggtgg	, ctcatgcctc	g taatcccago	: actttgggag	geegaggege	gcggatcatg	74520
aggtcaggag	, atcgagacca	ı tcctggctaa	. cacggtgaaa	ccccgtctct	actaaaaatg	74580
caaaaacatt	agccaggcgt	: ggttgcaggt	gcctgcagtc	ccagcggctc	aggaggctga	74640
ggcaggagaa	tggcgtgaac	: ctgggaggtg	, gaggttgcaa	tgagccgaga	ttgtgccact	74700
gcactccago	: ctgggtgaca	gagegagaet	ccgtctcaaa	aaaaaaaaa	aaaaaaaaa	74760
tagctgggca	ragragegeg	, tgcctgtaat	accagctact	ctggaggctg	aggcaagaga	74820
atcgcttgaa	cccagtaggo	ggaagttgca	gtgagccgag	atcttgacac	tgcactccag	74880
cctggtgaca	gagtgagact	ctgtctcaaa	aaaaaaaaaa	agaaaaaaa	agacagaaag	74940
aaagagcaca	gacagagtca	caggtatttg	cagtaggaag	ctgtcaggtt	agagtgcacg	75000
gaaacagaaa	gtatattta	cacttacage	acatettegt	ttgattagco	acatttaaaa	75060
cactgaatag	caacgtgtgg	ctatttagta	ttcactaaaa	tcttggacag	tgcaagtcta	75120
Sanageteen	gareegreeg	gcatggtggc	tcacgccttt	aatcccagca	ctttgggagg	75180
ccaaggigga	aggattactt	aaggtcagga	gttcgagacc	agcctggcca	acatggtgaa	75240
teceseetse	ttaccacacac	acaaaaaaa	ttageeggge	arggrggrgc	atgcctgtaa	75300
Agreemente	at gagagget	gaggcaggag	aatagettga	acccaggagg	cgctgcagtg	75360
Casasasasa	argecargee	actactgcac	teeageetgg	gcaacagagt	gagactgtct	75420
Caddadada	adadaaatty	ttgggcgtgg	tggeteaege	ctgtaatece	agcactttgg	75480
tuabaccca	tototactac	acctgggttc	rggagilega	gaccagcctg	gccaacatgg	75540
atorcancta	ctcaccaa	aaatacaaaa	actagerggg	caraaraara	ggcacctgaa	75600
Carroageca	agatoggge	tgaggcagga tctgcactcc	stactacata	aacccaggag	gcagaggttg	75660
aaaaaaaaa	agacegegee	ttgattgtct	ggagattete	gcagagcaag	actatgtete	75720
Ctatottoac	gacatcatgo	tgattgtaag	Caacactccg	cagaacatca	tatggagaca	75780
tcaagacaca	tacatoccao	aaggtgagat	ataaactcta	ctaagegeece	agaaacacag	75840
acactagtaa	catttttaaa	cctgctagat	atttatataa	aaaaggattt	arguettage	75900 75960
aaaaaaaaat	ctaaccttta	tccccagcta	ctooscataa	tctctttaaa	ctcttcaaat	76020
atcattcctg	atagaagtat	ttttgttttg	actaggggcc	ttgggccagc	cadatadeaa	76080
caatgtgatc	tagattagaa	gctttggatc	aggtggcatc	agtgtgacct	cctgacagcaa	76140
tagagactag	aatcaaccac	atgggcagac	aacccagctt	acatgatgga	attccaataa	76200
agactttgga	cacaagggct	tgggtaagct	ttcctggttg	gcaatgctct	atactgggaa	76260
acccattctg	actccatagg	gagaggacaa	ctggatattc	tcatttggta	cctccctaga	76320
ctttgcccta	tgcatttttc	ccttgtctga	ttattattat	tattatgaga	togaatctco	76380
ctctgtcacc	caggctggag	tgcagtggaa	tgatctcaac	tcactgcaac	ctctacctcc	76440
ccggttcaag	cgattttcct	gtctcggcct	cccgagtagc	tgggactaca	gatgcatacc	76500
accacacccg	gctaattttt	ttgtattttt	agtagagacg	gggtttcacg	ttagccagga	76560
tggtctcgat	ctcctgacct	catgttccgc	ctacctcaac	ctctcaaagt	gctaggaata	76620
catgtgtgag	ccaccgcgcc	cageceett	ggctgattat	taaagtgtat	ccttgagctg	76680
tagtaaatta	taaccgtgaa	tataacagct	tttagtgagt	tttqtqaqca	cttctagcaa	76740
attatcaaac	ctaaggatag	ccttggggac	ccctgaactt	gcagttggtg	tcagaaataa	76800
gggtgctcat	gtgtgtacca	tgccctctaa	ttttqtaqtt	aattaacttt	cacaacttta	76860
ctattaccgc	ttacactcaa	tgtttattca	catttatcca	cataccactt	attctagtgc	76920
tottgcatcaa	agactttcta	tctcatgtac	tttattctgc	ttgaagtaaa	tcctttagga	76980
tattettet	ttttttaaa	ctttgcacat	acatactttt	attttttatt	tatttttaat	77040
Cttgttattt	ttgtgggtac	gtagtagata	tatgtattta	tggagtacat	gagatgtttt	77100
gatacaggca	tgcaatgtga	aataagcaca	tcatggagaa	tggggtatcc	atcctctcaa	77160
gcaatttatt	ttatata	caaacaatcc	aattacactc	tttaagttat	tttaaaatgt	77220
tttttaacc	rigialigae	tagagtcact	ctgttgtgct	atcaaatata	atttttttt	77280
toacttoact	agagicicae	tcagtggccc	agactgaaag	tgcagtggca	caagctcggc	77340
toccattaca	gggaggggg	ctggttcaag	cgaatctcct	gcctcagcct	cccacatagc	77400
agttttcaca	ggcacacacc	accatgccca	gctaatttt	atatttttt	agtagagacg	77460
traccetors	acyccyycca	ggctggtctt	yaactcctgg	cctcaaatga	tctgaccacc	77520
attettaet	gaggerag	gattacaggc	atgagecace	acacctggcc	aaaatagaat	77580
attataeact	tagactaget	ggtgacaatt	CCCCCCCCCC	ttttgagact	gagtctcgct	77640
Cogattecae	caattotoot	tgcaatagca	cgatctcagc	tcactgcaac	cccacctcc	77700
CCaccacaca	caactettt	gcctcagcct	actacase	tgagagatta	caggcaccca	77760
gactagtete	gaactcctca	ttgtattttt	tocapeaato	ggggttcacc	grgrrggcca	77820
2200290000	Juaceceuga	cctcaggtga	LCCacccacc	reggeeteec	aaagtgctgg	77880

gattacaagc atgagccacc acgcacagcc aattttttcc gtttttgtct gaaatcttat 77940 78000 teattattat tattattttg agacagggte teactetgtt geetatgetg gggtgtagta 78060 atgtgatete ggtteactge agaettgace teetaggget caggtgatet teecacetea 78120 geeteectag tagetgggae taeagatgea tgeeaccata cecaactaat ttttetattt 78180 tttgtagaga tgaggetttg ccacatttee caggetggte tetaacteet gagetetage aatecacea cettggeett acaaagtget gggecatgae tagecageag ttaettttta 78240 78300 tagcatattg aatatttaat atgaatcttc tggcatccac tgtaactgtt taaaaaatca 78360 gctgtttact tggcactctt ttttttttt tttttttga gacagagtct tgccctgtcg 78420 78480 cccaggctgg agtgcagtgg cgtgatcttg gctcactgca agctctgcct cccgggttca cgccattete etgecteage etceggagta getgggacta aaggegeeg ceaceaegee 78540 eggetgattt ttttgtattt ttegtagagt tggggtttea eegtgttage eaggatggte 78600 tegateteet gacetegtga tetgteegee teggeeteec aaagtgetgg gattatagge gtgageeace gegeecagee tettttttt tttttttag aeggagtett aetetgteat 78660 78720 ctaggetggt gtacagtggc gtgateteag eteagtgcaa cetecacete etgeeteage 78780 ctgccaaata gctgggatta caggtgcgta ccatcacgcc cggctaattt ttgtattttc 78840 agtagagatg gggtttcacc atgttagaca ggctggtctc gaactcctgg cctcaagtga totgcctgcc ccagcctcc aaagattaca ggcatgagcc accgcacccg gccaagtagc actcctttga aggtaatctg cttcccctac ccctagcaat ttttaacaat ttttcttcat 78900 78960 79020 ttttatttcc tgaagttttg ttattaataa tctgtgtgca gatttctttg tatttctttt 79080 gtttgcagtt catagtgatt cttgaattag tgtgttggtt tctgttatca ccacaggaaa attgtcagcc gttagctttt caaatatttc cttgctaaat tctctcttct cccctttcgg 79140 79200 tacaattgat ttgattaaaa ctaaaaccag ggccgggtgc agtgactcat gcctgtaatc 79260 ccaacacttt gagaggetga ggcaggtgga tcacctaagc tcaggagttc aagaccagcc 79320 tggccaatat ggtgaaaccc cgtctctact aaaaatacaa aaattaccag gcatggtggc 79380 acacatttgt agtcaggagg ctgaggcagg agaattgctt gaatccagga ggtggaggtt gcagtgagct gagatcccac cactgcagtc tggcctgggc gacagagtga gatgagaatc 79440 79500 tgtctcgaaa aaaaaagtta tgaatgtttg ataaactata tttgttagaa tgtttgttgt 79560 agaatactat tcattgattt ttaaacaatg ttagattaaa ccattcactg gatttgtgat aattaactta ctgatttac ctcactgatt tgttgtaatt aatacaactg gtataaaaag actgtgacga ggccgggcat ggtggctccc gcctataatc ccagcacttt gggaggctga 79620 79680 79740 ggcaggcgga tcacctgagg tcaggagttc aagaccagcc tgaccaacat ggtgaaaccc 79800 catcittact aaaaatacaa aattagccgg tcgtggtggt gcatgcctgt aatcccagct cttcgggagg ctgtggcagg agaatcactt gaacccggga ggtggaggtt gcagtgagcc 79860 79920 gatategege cattgcacte cageetggge aacaagageg aaacteegte taaaaaaaaa 79980 aaagaaaaaa aacacataaa acaaaacaac actgtgacgg ttcccaaaaa ttaggagcat 80040 aattaaagga actcctgata aaaattaatt ttatcttaca tgtaaactaa aatgacttta 80100 tgaagttaat tcagaaatac aatgcagggt attagtttgc cacagctgcg tattcagcct 80160 aatgtaatat totigttatt titaaattot tottitaact tiactcatat giggatcato 80220 aaatttcaaa agattaaatg acaatactct tagcagcaag cttccctaag catataaaca 80280 ttttaatggg tgatgattca gaaggtaccc gaagaatatg tactgccaga tatcattcac ccccatatac ctgcccgaca gacatcccat tttgggaccc tggataaatg tgtgggtaga 80340 80400 gagaaagata ggagaaagtg gtataagcaa atggctttgg agtctgattg acagcgattg aaatcetgte tetacetett aacagcetea tgateetaca taagttacee cgateeteag 80460 80520 ggccacatct gtaaattggg ggttgcgatg gcagccatct cacagggtct cttttcgggg aagggcagga attatggatt aagtgagcta gtaattgtaa agcacttaat acaaggaggg 80580 80640 cgcataataa gtacttcata aataatgacg gccattatca tgactgaggt gtatgcagct 80700 gtcggggatt acggcgactt cagaatttct ggtgggcagg gctcaaaggc agcaaatcac actggaagtc gaggtgaggc actgcttctg cacagactgc ttagctggag agaatgagga aggcttagag gagatttaga ggaacttaga gtcctccgcc tccaactctg tgggatctgc 80760 80820 80880 tecegtgeca gagacattea ggggatttet egeactetee ceteceetae gteceteeeg 80940 ccccatccaa ctaaccacac aacacataca aaatagcccc tgcgaggttc tgcacgctgg 81000 aagggaacag gagaagggcg ctgcgctttc ttgctgatgc cctgtacttg ggcccctggt agacacagcc acttgtcccc tcagcctgca gagaaatccc acgtagaccg cgcccgggtc 81060 81120 ettggettea gecaatetee etttggtggg ggtgggatge aegatecaag gttttattgg 81180 ctacagacag cggggtgtgg tccgccaaga acacagattg gctcccgagg gcatctcgga tccctggtgg ggcgccgctc agcctcccgg tgcaggcccg gccgaggcca ggaggaagcg gccagacgc gtccattcgg cgccagctca ctccggacgt ccggagcctc tgccagcgct 81240 81300 81360 getteegtee agtgegeetg gaegegetgt cettaactgg agaaaggett cacettgaaa 81420 tecaggette atecetagtt agegtgtgae ettgageagt tgaetttatt ttteagtgee 81480

tagttitcca gataccagga ctgactccaa ggactattac tcatctggag ggtttagcac 81540 agtaccgtcg catagtaaat ttccatgtca gttttggtta cctttcatgc acttgcaaac 81600 atgccatgct ctgaaacgaa ataggcacat cttttttttt tttttttta aggagtcttc 81660 ctctcgccca ggctggagtg cagtggcgcg atcttggctc actgcaacct ccacctcccg tgttcgagat tctcctgcct cagcctcctg attagctggg actacaggca tgccacgacg 81720 81780 cccagttaat ttttgtattt ttagtagaga cggggtttcg ccatcttggc caggctggtc 81840 taacteetga eeteaggtga tetgaetgee teageetete aaagtgttgg gattacagge 81900 ataagccact gcatctggcc agaaatgaaa taagtaaatc ttttaacctg ctctaacaat atagtgaaaa gaccatatta ttattagagc aggttaaggg atttgcctat ttcgggttct agttatagtc ttaaacttgg acattcttgt agaaagtaaa aagtttcctc ttcaaagttc 81960 82020 82080 cccttcttgt taaagaatac atcataagtg ttagaagtaa tagtttattt taaagactaa 82140 etticiteaa geeteettge titgtgetaa taactettig titaageeeta teetatgtaa 82200 ctgttggaca tgctcacagg cacgttccag ttcacagcct atgccccttc cttatttgga 82260 aatgreattg cttccttada cctttcggta agcaacttcc tctccttctt cgttcttcct 82320 tgcacttacc tatttagaaa gttttaggct attagcaaat cggctatcag tttaagagtg 82380 tgaggtcccg ctccagccaa tggatgcagg acatagcagt gaggacgacc caaatgcgta agggataaat atgtttgctt ttcctttgtt caggtgtgct ctcgacatcg ttccatctgc gattgagcac cctttctgca gaaagtaaag attgccttgc tggagatctt ttgtctccgt 82440 82500 82560 gctgactttt cttcgtggca ccgattatct atttctaaca attttggtat ttctaacatt 82620 ctgaacaatc ttgggctagt tgtctcttct gggcctgttt ccccatccgt cacatgataa acttcattgg tttaaaaaacc ccagcgaaca tttattgagt tactattacc ttcctgccct 82680 82740 ccccaacccc aaccccaggg agcagttaca acctcagccg ctgagcgcac tcgccgggtg 82800 ttaagaagca ccaaagacag ggaggettga ttgattttgc tttgggagta gagggtcaga 82860 agattcacag gaaaatggca titgagcaag gatgattcac tggagctagc tittaaatac tggcgaggct titatgttgc agtcccttac aaagttgagc attcgcaggg actgcactcc gaaataagcc cgcttcccct titcattcgc taatgatcca gggagctgct ggttccgcat 82920 82980 83040 geggeaggtt gtgcetttte etaateaggg ttetgeateg cetegaacee geaggeegtg 83100 gegggttete etgaggaage agggaetggg gtgeagggte gagetggage gtggeagggt egectgtgag caaaactcaa aeggaggage aggagggte gagetggage gtggeagggt tgaccetgee ttttagaagg geacaatttg aagggtaece aggggeegga ageeggggae 83160 83220 83280 ctaaggcccg ccccgttcca gctgctggga gggctcccgc cccagggagt tagttttgca 83340 gagactgggt ctgcagcgct ccaccggggg ccggcgacag acgccacaaa acagctgcag gaacggtggc tcgctccagg cacccagggc ccgggaaaga ggcgcgggta gcacgcgcgg 83400 83460 gtcacgtggg cgatgcgggc gtgcgcccct gcacccgcgg gagggggatg gggaaaaggg 83520 gcggggccgg cgcttgacct cccgtgaagc ctagcgcggg gaaggaccgg aactccgggc 83580 gggcggcttg ttgataatat ggcggctgga gctgcctggg catcccgagg aggcggtggg gcccactccc ggaagaaggg tcccttttcg cgctagtgca gcggcccctc tggacccgga 83640 83700 agteegggee ggttgetgaa tgaggggage egggeeetee eegegeeagt eeceeegeae 83760 cotcogtoco gaccoggoco cogocatgto ottottocogo oggaaaggta gotgaggggg ogcocggogg gagtoaggco gggootcagg ggoggoggtg gggoaggtgg gottococa aggoogcago aaaggootca gogaagctog acctoggogo agatgococo 83820 83880 83940 tgagtgcctt gctctgctcc gggactcttc tgggagggag aaggtggcct tcttgcgcga 84000 ggtcagagga gtattgtcgc gctggttcag aagcgattgc taaagcccat agaagttcct gcctgtttgg ttaagaacag ttcttaggtg ggggttagtt tttttgtgtt tctttgagga 84060 84120 ccgtggatca agatcaagga aatctcttta gaaccttatt atggaagtct gaagtttcca 84180 aatgttgagg gttttatgic taaaagcaac acgtgaaaaa attgttitct tcacccagtg 84240 ctgtcttcca atttcctctt tggggggagg ggtagttact gctgttacta aaataaaatt acttattgct aaagttccc aacaggaaga ccactacttt tgatgacttt ggcaagtttg ctaactactg gaaccctaac ttacaaacga actacttaca tttttgattt ccagttgtat 84300 84360 84420 tacctgccca atgtttacgt agaaacagct taattttgat tctgggtaac gttgttgcac 84480 ttcattaaaa atacatatcc gaagtgagca agtatgggtc tgtggacagc agtgattttt cctgtcaatt cctgttgctt cagataaaat gtaccagaca gaggccgggc gcggtggctc 84540 84600 acgeetgtaa teecageaet ttgggagget tggegggtgg atcacetgag atcgggagtt 84660 caagaccagc ctgaccaaca tggagaaacc ccgtgtctac taaaaataca aaattagcca 84720 gggtggtggc gcatgcctgt aatgccagct acttgggagg ctgaagcagg agaatcgctt gaacctggga ggcggaggtt gcggtgagcc gagatagcac cattgcactc cagcctgggc 84780 84840 aaaaagagcg aaactccgtc tcaaaaaaaa agtaccagac agaaatgggt tttgttttt 84900 ttttttgttt tgagacggag tttcgctctt gttgcccagg ctcgagtgca atggcgcgat 84960 ctcagtctcg gctcactgca acctctgtct cccaggttta atcgattctc ctgcctcagc 85020 ctcccaagta gctgggatta cccatgcccc accatgcccg gctaattttt gtatttttag 85080

tagaaacggg gcttcaccat gttaggctgg tcttgaaccc ctgacctcaa gtgggcctcc 85140 caccteggee teccaaagtg ccaggattac aggeatgage cacegeggee agecagaaat 85200 gggttttgga aaaagcacta aacaaaatcg aacttggttt catatgacag ctctgctgct 85260 aactgtaaca ggggcagacc agttaaccta cttttctgtc ttctgtcagc tgagaattag 85320 atgattecca aaggeecatt gaactetgaa tgaetttaaa taettettet taagtgggta 85380 cacggttttg gtaactgatg ccaggtgatg aatgcatgaa agtgcttaat gaatgaaacc ggtaaaatag taggaggaag ctttattggt aaggcagggg tatacctaat agctctctaa 85440 85500 tttattggta ttgaagtggt taacttttgt ttttttaagg ggggaaaaca ttctaagaat aatgaggcaa actgcatatt gcacaagaga ctgttgtctc tattcaacaa ataccttttg 85560 85620 agtgtccaga gtctgccagg tgctgtgcta ggccctcacg attgagtagt gaaccagaga 85680 atgtccctgc acccatggag cttattgtct actggggtag acagataata aataagcaaa 85740 caaatettet etetteteee tttegeteea tgtaagtgtg tgtgtatagg tgtataetta 85800 caagttgagt aaagtgttat gaaagattaa gaggagaaat gcattttggt tagatgttag aggactcagc aggtgacctt gaaacttaga gctgaaggat cagtaggagg taactagaga 85860 85920 ggccagggaa tcgcatgttc aaaggccagg aggcaagaaa gagcatggtg cccttcaaga 85980 gaggaaagaa ggctactgtg actggagcat agatgtaggc aagtgttggg tgattgagag ctctacgggc catggttagg ttttattcct aatgccgaga tgccaaacat ggtggttcat atctgtaatc ccagtattt aggaggccga ggcaggaata tagcttgaac ccaggagttc 86040 86100 86160 aagaccagcc tgagcaacat gagacctgta caaaacattt aaaaaattgc tgggtatgat 86220 ggtgcacacc tgtggtccca gctactcagg aggctgaggc agaaggatca cttgagccta 86280 ggaggtggag gctacaatga gccatatttg agtcactaca ctccagcctg gatgacaaag tgaqaccatg tgtcaaacaa aatacagaaa gaatattaat ttaaaatttt gaaagaggag tgatctgaac ttatatctta aaaagatcat tctagggcat ggtggctcat gcctgtaatc 86340 86400 86460 augygetttg ggaggetgag acaggaggat cacetgagge cagttegaga teaacetgta cageatagag agaetecate tetacaaaaa gaaaaaataa atagetgggt gttgtgagtt 86520 86580 attcaggagg ctgaagcaga aagatcactt gagcccagga gtttgaggct gcagtaagct 86640 atgateccae caetgeaaca cagtgagate ttgteteaaa aaaaaaaaa aateatteta 86700 ggigcttttt ggaggctgga tgtggtaaga gtagaagctg gagatggtcc tgttagggat tcgattcaga ctttaaatac catcaatgca ttgagtccca aatttacatc actacgttgg 86760 86820 atcettgeee etgaateeag actggtatat ceaactttag gtteagtttg tatetetace 86880 tgaccaatat agaggtgtcc agtcttttgg cttccctagg ccacattgga agaagaattg 86940 tettgageca cacatagagt acactaacge taacaatage agatgageta aaaaaaaate 87000 gcaaaactta taatgtttta agaaagttta cgaatttgtg ttgggcacat tcagagccat cctgggccgc gggatggaca agcttaatcc agtagatacc ttcaacttac aatatctaaa 87060 87120 attitatgcc agatttagtc attitaaacc tgctcatcag tttttctcaa gaagtagtat 87180 tttggctttt tttcttttct tttttttgag atggagtttc gctcttatcg ttcaagctgg agtgcagtgg cggatcttgg ctcactgcaa cctccgcctc ctgggttcaa gtgattctcc 87240 87300 tgcctcagcc tcgcaagtag ctggaattac aggcatgcgc caccatgacc agctaatttt 87360 tggagacagg gtttcaccat gttggtcagg ctggttttgt actcctgacc tcaggtgatc tgcctgcctc ggcctcccaa aggctgggat tacaggcatg agccaccgct cccggctgca 87420 87480 tittiggatt titagtiget cageccaaaa etttagtaca tettigaace tettettee 87540 tectacteta tatetgatee ateageaaat etgttaggte taceteacae atategaaat 87600 cctaccacgt ctcaccatct gtgacaatta acaccctggt ctaggcagtc atctctgtta 87660 agattgagtg gttaaggatg tcctctaagg agatgacatt caaatcttag cttaaatgtc aagagggagc tggttttata aagattgagg aggcagcatt attttgccat aggcttccat 87720 87780 ttggtttcca ttccattctt gatacttatg gtatatattc aaaacaaatg cacagaaaca 87840 gacccaggta tattgggaat ttcggatata gagttcctag ttgggaaaag atagactgat 87900 ctgtaaatga tgctagttat ccatcatctg gcaaaaaata atttcctgcc tcctctata tatctcagat caacagactt tttctgttaa gggccaaatc ataaatattt taggctttcc 87960 88020 agaccatatg gtttctgtca cactctcctt tatccttgaa gccatagaca atatgtaaac 88080 aaatgggcat ggctgtgcta cgataaaact ttacttacaa aaactggtag tgggccagtt taggcatggc cagcactttg ggaggctaag gcagatggat cacttggggt caggagtttg agaccagct ggccaacatg gtgaaaccct gtctctacta aaaatacaaa aaatagctgg 88140 88200 88260 gcatggtggt gggtgtctat aattccagct actctggagg ctaagacaca agaatcactt 88320 88380 88440 88500 aaaaacaaaa cttgaagtca tgtagaagaa caggtagggg gaacaatcct gatctcagga 88560 taggaaggga tattgcttaa aataagacac aggaaaatat aatccatgtt gtgtaaattt 88620 gactacgita aaacttaaaa ctttcgccaa gcgcggtggc tcacgcctgt aataccagta 88680

ctttgggagg ccgaggtgag cagatcacca ggtcaggaga ttgagaccat cctggctaac acggtgaaac cccgtctcta ctaaaaatac aaaacattag ccgggcgtgg tggcgggcgc ctgtagtccc agctacttgg gaggctgagg caggagaatg gcctgaaccc gggaggcgaa gcttgcagtg agctgagatc gcgccactgc actccagcct gggcgacaga gtgagattcc gtotcaaaaa aacaaaacaa aacaaagcaa aaaacctaaa actttcatac aataaagtat acctaagata cttctagaag agaagattta catccaggac gtgtatggaa tttctgcaag taataagtaa aagacaaggg acatgaagag gcagttcaca aaagaggaag ccaaaatgac caataaacat gaaaggatgt ttaacctcaa aggaaacaag gaaatgaatt aaaaacatca aatgccattt caaaactagt aagttggcaa aattaaaaat accaaggatg agaatatgaa gcatggctat atgagtgcat ggaatggtac agtcactttc attaaaaatg cacataattt gttttttatt tatttttttg agacagtcta tgtcgcccag gctagaatgc agtggcatga teteggetea ceacaatete tgeeteetgg gtteaageaa tteteetgee teageeteet gagtagetgg gattacagge acatgeeaca acgeeeggtt aagttttgta tttttagtag agacagggtt ttgccatgtt ggccaggctg gtctcgaact cctgacctca ggtgagctgc ttcccaaagt gctgggatta gaggcgtgag ccaatgctcc tggctgaaaa aaatgcacat aatttgttac ctagcaattc catgtctaga ggcttatcct agagaaattc ttgcttatat gcataggaag acgtgtacta gaatgttcac tagttgaatg tttaagtgaa aattaggaaa taaagtaaat gttcattaac aggaaaatga gtaaaggtat atttataaaa caattaagta gctaaaatga ataaactaga gctgcgtgaa tgaactagaa ctggttcaat agtcatgtca gattattgaa tgaatacagg tcagatatgt atagagtgtc atttgtgtaa ttaattttt ttttttttt gagatggagt ctcactctgt tgcccaggct ggagtgcagt ggcgtgatct cagctcactg caacctccac ctcctggtt aaagtgattc tcctgcctca gcctcccgag tagttgggat tacaggcatg caccaccatg cccagctcat tttcctattt ttagtggcca cagggtttca ccatgttggc caggctggtc ttgaactcct gacctcaagt gttccaccca acttggcctc ccaaagtgct aggattacag gcgtgagcca ccgtgctcag ccatttgcgt gatttttaaa gatgtgcaga ataatgccat taaaaaaaat acacatacat gtatatatat acacgtttgg ctgggtgtgg tggctcacac ctgtaatccc agcactttgg gaggctgagg caggaggatc acttgagecc aggtgtacaa gactagectg ggegagatag caagacecea teteaacaac agaaaggata attaggtatg gtggcatgag aggatcactt gageccagga gttcgagtgt tatcaggcca ctgcactcta gcctggacaa caaagcaaga ccgtgtctca aaaaaataaa aataaaaagt atttgtatgt ggtcatagtc aaaaaacgta catggaagga aaatgtcttt atttatttat ttatttttt ttttttaaga cagagtcttg ctctgtcacc caggctgggg tacagtggtg taatctcagc tcaccgcaat ctcggcctcc cgggttcaag egattettet geeteageet tetaagtage tgggaetaea ggtaceegee accaeecet gctaattctt gtgttttcag tagagacagg gtttcaccat gttggcaagg ctggtctcga actcctgacc ttaagtgagc caccegcctt ggcctcccaa agtcctggga ttacaggtgt gagccactgc gcttggccag gaaatatcta atttagtaag tatttatatc tgggaaagga agggtcaggt ggtgattcat aggaactcta aagtctatgt ataatactta gggggacaga aggaaataaa gcaaaatgct gatattgat tgttgagttg tgtatatgtt agaagtataa cataggagat ctgattgata gtaggagaat gtttttaggt ggtaaaagtg gaaccgtggt ggtttgttt ggcagtagaa tcagttggtc atagttgta tgtggaaaggt aataaacaga ccatgttaag gatgacttcc ggaattttgg tctgagtagt gggtggatga cagtgtcatt catgagggaa gatgaagact gaggtaggaa caggtttggg agaagatgac atgttcctt ttagacaagt ggaattatgg aagatggcag gtaggtggtt agctatatga atttgagata aaagatttag gatggagata taaatttagg agtaacagcg tatctatggt attgtaagcc ttaagaatgg gtaggatcag ccaggaaata cagatgtata tgcagaagag aggagtcaag gaagccaaga caagttaatg tttaaagtga gtgatgtagt ccatgggcag atgctgctga gagggctgca aacaccagtg accctacaac atttttaaat gtcgtcttcc tgacagcagt gatcagtacc tgcaacgatc ttatttattt ttttcatgtt agtctccaca cacttgaatg tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcc tgctactagc ctttcacctt tcaatgttta agagcacaaa tacagagatg ggcacgtttt caagaaaaga gggttaaaaa tagtettatg teagateetg tgatagaatt cacaettgge ttaagctgct gggcaccttc ctatcttgga tgtcatatta gcttatctac agcagaattt ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattcttt atcttttatt tttttagacg gagtetetet ttgleteeca ggetggagta cagtgtegeg atctcggctc actgcaacct ccgcctcctg ggttcaagca attctctgcc tcagcctccc aagtagctgg gcttacaggt gtccgccacc acacccagct cattgttttg tatttttagt agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc 

accegeettg	gcatcccaaa	gtgctggaat	: tacaggcgtg	agccaccgtg	cctggcccag	92340
acaaattatt	atactctgag	tgttagaggo	: ttaggatgtt	ttcacttgat	gctatgggag	92400
gaataagtaa	. taagatatga	tacacaacca	aagacctttc	ttcactatgo	ttctagtagc	92460
tagtactatg	, gatgacacat	ggtaataata	ı ttggttaqca	tttqtcctca	atttactqtq	92520
ctagttacto	: ttctaagccc	cttacaggta	ı tatattttt	ttcatcaata	atcctctaag	92580
gtagttttta	ttattgacct	aattttataa	atcaaqaaaa	ttaaqaccca	gagaagtaag	92640
taacttgtcc	: aagatcacat	ggcttataag	tggtagaqcc	agaatttgac	cccagatgtt	92700
gtgactacat	tgtctctcca	taagcaggtt	caactctttt	gactggatgc	tattccaaga	92760
tcacttcctt	agagaageet	ttgctgacaa	. ctaccctcct	gtgccctcct	ccaaggctgt	92820
ccattgttct	agaactttga	atactcatct	tagaataaag	ctggtctaat	ttttacagtg	92880
ttatagaatg	gatctctgac	tgcaaaagtt	ggtcataatt	atctttttat	gttctagtga	92940
aaggcaaaga	acaagagaag	acctcagatg	tgaagtccat	taaaqqtaaq	ttetaceett	93000
ggcagtccac	tgcattaaaa	agtgatgtgc	tttqcatttq	tgagttcttt	aatcctgtta	93060
tactqtctct	titggcatta	atcatttctg	ccttatttta	taattactta	tgattttgat	93120
ttatttccct	ctttaacctg	tataatqctt	taacatctag	catataataa	gtaggetett	93180
ttttttttt	tttttttgga	gacggagtct	tactctatta	cccagactag	agtgcagtgg	93240
cgcgatcttg	gctcactgca	agctctgtct	cccgggttca	caccattete	ctacctcaac	93300
ctccccaqca	gctgggacta	caggtgcacg	acaccacacc	togctaattt	tttatattt	93360
ttagtagaga	cagagtttca	ccatottage	cagtatogto	trattctct	gacettataa	93420
tecaccacc	teggeeteee	aaagtgctgg	gattacaage	atagaccacc	gaccttgtga	93480
gtaagtaggc	ttttttacc	ttaattttat	ttttttgaga	tagageete	ctcttatccc	93540
caggetggag	tgcagtggtg	ccatctcggc	tcactgcage	atccacctcc	cccctacccc	93600
cgattetect	gcctcagcct	cccgagtage	taggattage	gatageegee	aggettaag	93660
gctaattttt	gtattttag	tagagacagg	atttcaccat	ggtggccgcc	ccatgetta	93720
actectoace	tcaagtgatc	cactcccctt	gacctaccgc	actectees	ttagecetaa	
gagccaccat	gcctggccat	aagtaggett	ttactgaggg	ttatatatat	teacaggege	93780
agtgattaca	gtgaaccagt	accettetta	ttaatcacac	atttaattat	togetacee	93840
tgattagrtc	actttattta	tttagtaaga	caaaaaatca	accuaactgt	tacatacaa	93900
gtctgttaac	tgtaggaaag	cactgacact	tataaggett	agaacacccc	caactgagca	93960
gaagtategt	tgattacagt	ttttacttt	ttatttgaat	gazcazcett	natttancea	94020
atattttatt	tattttttgt	tagastast	acattotoct	tatttataa	ttagagat	94080
ctttttaaag	atgctgtatt	actcactgat	tttatttatc	cactatacaga	reagagearg	94140
gggaaaatta	taatggaaat	totttccata	otcattaget	attaatttca	toaatttatt	94200
tccataaaat	ctgtagattg	ctacttattt	agatttttcc	ttcaaatctt	tttatt	94260
attocttoca	ctgagtattt	attctatato	ctcaatttcc	tagagaagaa	gataatta	94320
aacttaggca	agttgtaaaa	ttagggaaaa	aagtaaggta	cggagaagaa	gactaattat	94380
atttcttato	taaagccagt	tagattccac	attacttona	actorettet	tagettacet	94440
cttgattggc	agtgataaag	acttagacc	cttatanaa	actigeettet	Ligageaaaa	94500
totgactgge	gragaaggaa	gcccaaagcc	tatttaage	agagacctgt	aaagactaga	94560
actictagact	gtagaaggaa ttgccactaa	cactatoacc	ttaggaaget	agryagaaca	ceagtettee	94620
catttgttga	atggggggat	tageatgact	aatttataaa	tatatacte	ceagattett	94680
tctgtgctta	atggggggat tactctgatt	atgaagtaga	taatototo	tecetaetgg	getaaaaaat	94740
cttaggataa	tacagaagca	atacaacaa	caaccegege	ccaacactca	ctgaettate	94800
gaaagacaaa	cttatacaca	geacaagaaa	ageceeeca	agatgettge	agreeggeta	94860
tatagaacac	ttcttctgtt	ctacageage	gacca	adataataat	agetgeeatt	94920
aagacttagg	tectaceete	attoaactta	gacaaaaact	gactataacg	grgaacaaaa	94980
agtaattcca	tectgeeete	accgaactta	cagactagta	ggggagagga	acattaatca	95040
gacttgaaaa	cagatggctt	agcotagatt	ggragrate	gaagtaaaga	gatgtgaacg	95100
tataagagag	aaaattcgga	agcadacyg	acagaagttt	attattgatt	aaatatgagg	95160
aacaggaaat	agggatattt	attttattat	cttaccttct	ggettgeeta	acagaaccaa	95220
tttatatata	tatatgttca	tatttat	grigggiggg	aggegetete	gagtcattca	95280
ccatacatg	ttatatatgt	ttttt	gcatagtaat	tttaaggtet	gagttttaaa	95340
gaaatggctg	gagagtgatt	cattagagic	cagcaaacct	aagttgaaat	cctgcctgtt	95400
gtettestet	tttactaget	Calladecta	yygcaaagta	ttcaacttgt	TTTCATTTT	95460
aataatataa	ctaaaatgag	yaaaatatgg	tcttacaaga	ttgtcctgag	agatagatga	95520
adractact	aaaaaaaaa	aaggtacata	gagaaactcg	tatagtgcct	ggtatatagt	95580
aggiocioca	ttggtagcta	tantateta	gttttaacat	agccttcagt	ttgttgaatt	95640
ctcaactg	agtgaagcac	Lgcaaggaat	ccagaggaat	ttgagatcaa	caaatgattt	95700
agazza	gggaagactt	catggcaatg	acacttacct	tgtataaaag	ttgaagaata	95760
ayaaayattt	gaatgagaga	cccttctct	tctccctacc	agcccagctt	cttatttgag	95820
garacarigg	gcaaaggggc	cttcagacaa	gragagggag	attttacag	aaagattgag	95880

### 43/122

atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag 95940 ccactgtagg tittitgagca agatattgat gctgtaagta tggtgtttat gaaaggttag 96000 totggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac 96060 ttgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 96120 gaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat 96180 trtgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga tgatgttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg 96240 96300 ggaatgetta gtagegagta ateagtgata caagaccaaa geecaggtea aagacaagte 96360 acagatacag atcagggett tttcatetge tecacagagg tgtaccetag gagetgttge 96420 aaacagtcca tgtggagggt gtgagtaaga tgtttccctt gaatttgcca gaattacttt tttgttgttg ttgttgttt ttctgagaca gattctcgct ctgttgcca ggctggaggg cagtggcgag atcgcgcagc tcactgcaac ctctgcctct cgggttcgag tgattctcct 96480 96540 96600 genteagent cocaagtage tyggattaca gyettytyee accaagenca getaatttet 96660 tttgtatttt tagtagagat ggggtttcac catgttggcc agactggtct cgaactcctg 96720 gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg cacccggtcc cttgttaagt ttattttggt gggaagcaaa ggaggtttca gcttttaaaa agtttgaaaa ttattgctct ggtaataatt aaagatttga gagtaaatat gctttctagc 96780 96840 96900 agaaagaata aaagaagaac agatagcctc aagaagggga gccaaagaag caggctatat 96960 ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa 97020 gaggaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 97080 tggtasaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt 97140 acaaatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc 97200 tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgttta taaataagct aaaaattatt ttgctccaat ttctcatgaa aataaaaata aaccttcttt 97260 97320 taacattgaa aaaatagttt gaagacagtc actcttcatt ttgtaattcc cacaactatt 97380 attgaatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca gactactaaa aatatattt atgaattttt agtgtgcttt atctttttt gtttttttttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca ctgcaacctt cgcctccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg 97440 97500 97560 97620 gattacagge acctgecce acaccaget aatttttigt attittagta gagacagggt tteaccatgt tggtcagget ggtcttgaac teetgacete aggtgateca eccaecttgg 97680 97740 cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatattttt 97800 ctaggttccc cccaccccaa gcatttattc tgcaatttta gttttgttcc taaagcaagc 97860 aaggtttaag gatttaaaaa taatccgtat tttagaatgc tttctggctt tgttactttt tatccacagt agaagttctc agagaatgat ctccctcttt taatttaact tttttggcaca 97920 97980 gtattttgag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc 98040 ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct gtctgggaaa aaaaaaaaa aaaaaagag tgttttcttt cctattttcc accacttgat 98100 98160 98220 taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac 98280 aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98340 gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac aaaaaagcac taaaaatcat gccttgctgg aggctgcagg accaagtcat gttgcaatca 98400 98460 atgccattte tgccaacatg gactcetttt caagtageag gacagecaca ettaagaage agecaageca catggaggee geteattttg gtgacetggg taagtaacta teatttttta ttaacttgta ttagaaggat ttgagtacaa tatgtgaaac ttetgteata ggatacagaa 98520 98580 98640 ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat 98700 gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaacaa gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac 98760 98820 tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc 98880 atatttttta aagtttgaca atttgaatgt cagtgaagat gcagggaaat acccctccta 98940 tttagtgata atataatctg gtgaagactc tttggaaagc aatttggaaa tcagtataaa atatgcatgt catttaggcc actctttcta agacctagcc ctcagatatg ctcattcata 99000 99060 99120 99180 atggacaaca tataaatatc tgttataggg aaataaccaa attgtggtat acgcatgctc tggagtataa tatagccatt tgtttctatt tatttattt cttgagacag ggttttactc 99240 99300 tgttgcccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg 99360 gcacaagcca ttctctcgcc tcagcctcca gagttactag gactgcaggc atgtgtcacc 99420 acacccagat aattititaa tittitigtag agacagggto toactatgti gootaagotg 99480

gtctcaaact cctggcctca agcaattctc ccacacaggc ctcccaaagt gctgggatta 99540 ccaacgtgaa ccaccacace tggttcagtg tagccattta gaaatctaaa aaagacgtgg 99600 gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat 99660 ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt 99720 cagtatttct tacccaaatt tctgcactta gaaaattgca tgtcatgttg tcataagttg 99780 aaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct 99840 ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa 99900 taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat 99960 cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt 100020 tetttette tttttttt tettttgag acagggtete actetgttge geaggetgga 100080 gtacagtggc gtgattacaa ctcactgcag cctcaccctc ctcaggttca ggtgatcctc 100140 cctcagtctc ctgagtagct gggactatag gcatgcacca ccacgcctgg ctaatttttg tattttttt ttttttttt gtagagacgg ggtttcgcca tgtttcccag gctggtctca aactcctgga atcaagcgat ccacttgcgt aggcctcca aagtgctggg attacgggcg 100200 100260 100320 tgagctactg tgcctggcct aggcagtttg tttgtttgtt tgtttgtttg tttatttatt 100380 tgtagacgga gtctcacagg ctggagtgca gtggcccaat ttttggctca ctgcaacctc cgcctcccag gttcaagcta ttctcctgcc tcagcctcct gagtagctgg gatgacaggt gcctgccata atgcctggct gatttttgta tatttagtag atatggggtt tcaccatgtt 100440 100500 100560 ggtcaggctg gttttgaact cctgacctca ggtgatcagc ccgcctcggc ctcccaaaqt 100620 gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta 100680 100740 cettecaata aaaacetgtg cacaaatgtt catageaget taatattgaa aaactggatg 100800 ttetteagea ggtgaatgaa etggtteatt cataceatgg aataceatte ageaataaaa 100860 aggaacaaac tgttgataca tttaaccacc tggatgaata tcaagggaat tatgctgtca 100920 gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga 100980 aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg 101040 tgagagggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga 101100 agttgtatct tggcagtgga tgcagaaatc tcaatgtgat aaaattacaa agaactaaaa 101160 acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg 101220 tcagtatctt agagtgatat tgtactatag ctttgcaaga tgttaccatg ggagaaacta 101280 aagtgtacaa gggatctcta ggtattatta tttttttaga gatggggttt cactatqttc 101340 cccaggeegg tettgaacte etgggeteta gtgateegee tgeeccagee tectaaagta etggaattae aggegtgage gaccatgeet ggeeetttea gtattgtate ttagaactte 101400 101460 atgtgaatct agcattatct catagaattt aattaaaaga aattgtaaac ctcacagaag 101520 atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa 101580 gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga agaactcttt tgacaaattg atgaaaccct cagtcagttt tataagaatg cccatcttta 101640 101700 tgatcatgct atgaaagcca atttttaaaa aaattttttg tctttcctaa caattagctt 101760 gtggttataa tttaaattta gttaaatata agataaatga tttttatta agtttagttt 101820 catttttcaa ggtacgatct caaagctact ctttaaccta ctatgaatga ataatgctga gttcataaca tctttgtaga tatatccaca attttccctc aggataagtg cctacaagtg 101880 101940 gaattactgg actgaaaata atgcagtttg ctaagacttt gctatctgtt cctgaatgct cctccaaaaa ggttttgcca gtttactact tcatgaccag cgaatgagag tgttgcctat tttcctgtgc ccttgttact gctaataat ttttgaaaaa aatctaattt gacagacaaa 102000 102060 102120 aatgcatttt atgttaattt gcttttctgg gatttttaat gaggttgagt atagtttta 102180 atatttttat tggccccttt ggaactagta tcataagttt tttttcttaa gaatttatgt 102240 agtotgggot gggogcagtg gotcacgoot gcaatcocag cactttggga ggocgaggtg 102300 ggtggattgc cgaaggtcag gagtttgaga ccatcctgac caacatggtg aaaccgaatc tctactaaaa gtacaaaaac tagctcagcg tggtggcggg tgcctgtaat cccagctact 102360 102420 taggaggetg agteaagaga ategettgaa eeegggaggt ggaggttggt tgeattgage 102480 cgagatcgcg ccattgctct ccagcctagg caacaagagt gaaaagtctc aaaaaaaaa 102540 aaaaaaaaa aaaaaagaat ttacatggtc tgaattgcca ttaaaagaga tatgagaatt attgagtaac aaataacttt ttaataattt aggcaagttt tggacgattg tactttgttt 102600 102660 agaaaccaaa agcatagtat ttgtagtttt tttatttact ttagttgcta ggaagtaaac 102720 tttattcaag gtctctggta ccagttgttg ctaaaagtga ttgactaatc tgtcaatctg aaattatttg ttgctgaact gctaattctt ttgcttctat cttttaggca gatcttgtct 102780 102840 ggactaccag actcaagaga ccaaatcaag cctttctaag acccttgaac aagtcttgca 102900 egacactatt gteeteeett aetteattea atteatggaa etteggegaa tggageattt 102960 ggtgaaattt tggttagagg ctgaaagttt tcattcaaca acttggtcgc gaataagagc 103020 acacagteta aacacagtga agcagagete actggetgag cetgtetete catetaaaaa 103080

gcatgaaact acagcgtctt ttttaactga ttctcttgat aagagattgg aggattctqq 103140 ctcagcacag ttgtttatga ctcattcaga aggaattgac ctgaataata gaactaacag 103200 cactcagaat cacttgctgc tttcccagga atgtgacagt gcccattctc tccqtcttga 103260 aatggccaga gcaggaactc accaagtttc catggaaacc caagaatctt cctctacact 103320 tacagtagec agtagaaata gtcccgcttc tccactaaaa gaattgtcag gaaaactaat gaaaagtgag tatgtgattt tcttgtgtgt acatatgtgt ctcactttct tttttaatt 103380 103440 tactaagcag aacttcagat gaggaataaa atgattggaa tattttttt ctcctctaac 103500 tacttgtaaa tttgggagaa tttggagagt gtagtagagt cagatcagtg tatggaaaag gagcaggagt gactggacct tctaagaagt gtgttatcag aattagtaaa tgaagggtca 103560 103620 aatgteetae tttteecete cactgatttt gacatcaaac cattatecac atageettat 103680 ttcctccctc ggtcttaatt ttattaatat tttactgcac tttgcagata aaatttttaa 103740 aaaattttta aaaattgcca ataagtgaca tttattaagt tcagtgctta gtgtatattt ggattttatt tattagtcac aagacctttg tgcaggtagt aggcatgatt atctttttt 103800 103860 ttttgagatg gagtettget etgtegeeca ggetggagtg caatggegeg gteteggete 103920 actgcaacct cogggttcat gccattctcc tgcctcagcc tcccaaatag ctgggactac 103980 aggegeetge caccacacce ggetaatttt tttgtatttt tagtagagae ggggttteae catgttegee aggatggtet egateteetg actttgtgat eegeetgeet eggeeteeca 104040 104100 aagtgctggg attacaggca tgagccaccg cgcccggact gattatctta tttacacatg 104160 agaaaaccag ggcttagaaa ggttaggtaa cttcctctag gttgtacagt aaatgtggac ctagaagcat tttgacaaga gcacctgttt ttttttcttc tctattagtt tagaaattat atacccttaa ttatcacctg ggattttgat tagacagcct tcatgttctt tttcatctta 104220 104280 104340 aatgttettt gtgtettaaa gggetaagtg atttetteag atettttagt teacteatte 104400 tcagtgaact aaaatgaggt ctaatctgct actgaatcaa gttttcagca tgttatttcc 104460 tteeteete eeteeteet teetteete aaccaggete eegaggaget gggattacag gegeeegeea eeacteetgg etaattitta tattitagta gagaeggggt tteaecatgt 104520 104580 tggtcagget gatettgaae teetgaeete aagtgaeeea eetgeetegg eeteecaaag 104640 tgctgggatt acaggcatga atcaccacac ctgacggcat gttattttca tcgcaaagtt 104700 actgtaaget gggagaagtg gcacacactt gtactcccag ctactcagga agcttaaggt gagaagattg cttgagccca ggagttttga gaccaacctg ggcaacacag caagaccca 104760 104820 gctcaaacaa agaaaaaaag ttattgaatt ttttatttct atggatcatt ttttqtaqtt 104880 tettatteet tteaceette atteceaett ttgateeeat ettttattta tttagtttta ttaaatgtat atttgtetga taattetget atetaeagtt ttttgtggae etgaeteage 104940 105000 atttetttgt ttetteggat teagaetgtt ggtggetigt gattitagtg attittggee 105060 gtgaacatgt ttcttggact tttgtctgtg ggaattctct gtgtactctg tataaattaa gttacttcag gtgttttgca ttttcttttg ccatgcacct ggggcctggg tcactaccct tctggtacca cttaaaactg aatttttgtc ttgggtgctc gtactgatcc tgtatgagta 105120 105180 105240 caggittata cttactgtag aaatatggtg ttigattatg gggtattgtc ccagatggtg 105300 ctggagtatt aatatgctct ctgttaaact taatgtgttg tccctgtaaa actccaaaat 105360 tetgaattee agaatactae tggeeecaaa tgtttaagat aagggeactg cetgtatttg tttetgeete ecaetatttt cettagttta acaeaaete acetttttaa aaaacatttt 105420 105480 gagagaattc agtattggga agagtttcta acctgtttct ggaaatggaa gtccaaagtc 105540 tgtttctgta attgttttt ttttgagatg gagtctcact ctgtcaccca ggctggagtg caatgacgta ctctcagctc actgcaacct ccacctcccg ggttcaagcg attctcttgc ctcagcccc tgagtagctg ggattacagg tgcccaccac catgcctggc tgatttttgt 105600 105660 105720 attittagaa gagatggggt ticgccatgt tiggccaggct ggtcttgaac tictgactit 105780 gtgatctgcc cacctcagcc tcccaaagtg ctaggattat gtttctgtaa ttgtaataca tttattgttt ttagaaactg tctttgcttt agtggtaatt ttcaataaaa atagaaatag cagtggagtt attaaaagag cattagttac attttccct ttttcattat cttcaaatat 105840 105900 105960 tatatatagt aagtttgacc tttttaaaaat gtatacttgt atcagtttta acacatacat 106020 agatteetgt aactgtcacc actataaggg taaagaacag ttagtteett cacetttgaa 106080 gtcaagcccc acctctatcc caacacttgg caaccgctga tctttctccg tctcaatagc tttgcctttt ctctttttt ttcttattt ttttttgag acagcgtctt gctctgtcgc 106140 106200 ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctgggttcaa gcagttctcc tgccttagcc tccctagtag ctgggattat aggcacgcac caccacaccc ggctgatttt tttgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct 106260 106320 106380 caaactettg accteaagtg atceacetge cteggeetee caaagtgetg ggattacagg 106440 egtgagecae tgtgeccaat eaggaetttt tttttttaaa tttacattca acttgteatt 106500 tttttcttgt atggattgtg ccttcagagt cacacctaag agccctttgc ctaagcaaag gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg 106560 106620 gettatgeet gtaateteag caetttgaga agetgaggtg ggeagattae gaggteagga 106680

gatcgagacc atcctggcta atgcggtgaa accccatctc tactaaaaat acaaaaaaa 106740 aaaaaaatta gccgggcgtg gtggcgggca cctgtagtcc cagctacttg agaggttgag 106800 gcaggagaat agtgtgaacc cgggaggtgg agcttgcagt gagccqagat cqcqccactq 106860 106920 106980 ttacgtcaga tttttgttt tttgtttatt tttacatatg gatgtctagt tgttctaata 107040 ccatttgttg aaaagacaac ctttactcca ttgaattgcc tttgtacttt tgccatattt 107100 gtctaggcct gtttttggac tcctttttct gtttcatgat gtgtgtgtct attcctttgt taataccaca tggtcttaat tactgtatag taagtcttaa aattgggtaa tgctggcctt 107160 107220 ataaaacgaa ttgggaagtt tttattttta ctcttatttc cattttctag aagagattgt 107280 gtagaattgg tgtcatttct tctttagata tttggttgaa ttgggaagtg atgccatctg ggcctagggt tttgtttttt gtgtgtgaga cagagtetea ettetgteae eeaggttgga gtgcagtggt gagatettgg ettaetgeaa eetetgeete eeaggtteaa gttateetee 107400 107460 tgcctcagcc tcccaaatag ctgggattac aagcgtgtgc caccatgccc gactaatttt 107520 tgtatttta atgcagacag ggtttcacca tgttagccaa gctggtctcg aacttgtgac ctcaagtgat tagcccacct tggcctcca aagtgttagg attatagatg tgagccaccg tgcctggcag gggcctaggg ttttctttt cagagtatt taaactatga attcagattatttaatagat ataggactat ttaagttatc tgtttcttct tgagtgaatt tttactgtag 107640 107700 107760 tttatggcct ttgagtaatt aattgtattg aattgtcaaa tttatgagcg tgtaattatt 107820 tatagcattt cgggtttgta gtggtatccc tcttttattc ctggtgttgg caattgtgtc ttgttttct ttgtcagatt gtatagggat ttattagtct tttcaaagaa ctagctttg 107880 107940 ttitgatttt telgttgttt igttteaat tttattgatt ttetgetett tatlatteet 108000 tttctattat ttctgcttgc tttgggttta ttttactctt ttttttttct ccaagttgct taaagtagaa acttagattt ctggtttgag acctttcttt tctaagataa gcatttaata ctgtaaattt ccttctaacc actgctttag ttacacccc acaaattctg gtattttgaa ctgagcacaa atgaaatgtt ctaatttccc ttgaatctta ttcttttacc aatgaattat 108120 108180 108240 ttagaaatat gttatttagt ttgcaagcaa ttggagactt ttttcctgtt atttttctac 108300 catttatttc tcatttcatt atattatggt cagagaatat attttgaatg atttcattta ttaattttta aaaataacat taaaaaattt tttaaaatgt gaatatacca catacagtat 108360 108420 aaagattgta cattctgttt ttggacagtt ttctataaat gtcaagttga tttagttggt 108480 taatgatggt gttcagtttt tctttattct tgctgatact ttgtatgcag ttatatcact 108540 ttattactca gaagagtgtt gaactttcca actacaattt ttttttccaa ttttactttc agctctatct ggttttgctt catgtatttt gaggctctgt tgttaggtgt gtacacattc 108600 108660 aggatgatat cttctgggtg aattgootgt tttatcatta tgtaattooc tctttatggt 108720 aattttcctt gttctaagat cagaaatatc tgttgtccaa tttatataga cactgcagct 108780 ttcatttgat tagtgcttgc atggcatatc tttttccatt tttttacttt tgatctacct 108840 ttataatict atttaaaggg ggcttcttgt aggcagcata tagttgggta gtgttattta 108900 tttatttatt tatttattta tttatttatt tattgagaca gagttttgct cttgttgccc aagetggagt geagtggtge aateetgget taccacaace tecaceteet gggttgeagt 109020 gattetetg ceteageete ecaagtaget gggattacag geacgegeae catgeetgge tgattttttg tatttttagt agaaacggat tttcaccatg ttagecagge tegtettgaa 109080 109140 ctcctgacct caggtgatcc acctgctttg gcctcccaaa gtgctgggat tacaggcgtg agccactgca cccggctgag tcatgttatt tttaatcttt tctcacaata cagggttttt gttggtaaat ttaattatt taatataat tttagtataa ttatttacat taaatgtaac 109200 109260 109320 tgttgcactg gggtatttat aatgtgtaaa tataattatt ggtattaata taattatatt 109380 actcataata atattaatat ctttggattt agattaccag tttagtatat gtttttctgt ttctccctct ttgattccc ctttttgct tttttttt ttttaattct tatttttt tagtatttgt tgatcattct tgggtgtttc ttggagaggg ggatttggca gggtcatagg acaatagttg agggaaggtc agcagataaa catgtgaaca aggtctctgg ttttcctaga 109500 109560 109620 cagaggaccc tgcggccttc tgcagtgttt gtgtccctgg gtacttgaga ttagggagtg gtgatgactc ttaacgagca tgctgccttc aagcatctgt ttaacaaagc acatcttgca 109680 109740 ccacccttaa tccatttaac cctgagtggt aatagcacat gtttcagaga gcagggggtt 109800 gggggtaagg ttatagatta acagcatccc aaggcagaag aatttttctt agtacagaac 109860 aaaatggagt ctcccatgtc tacttctttc tacacagaca cagtaacaat ctgatctctc tttettttee ceacatttee ecetttteta ttegacaaaa etgecategt cateatggee egtteteaat gagetgttgg gtacacetee cagaeggggt ggeagetggg cagagggget ecteaettee cagatggge ageegggeag aggegeece caecteecag aeggggeagt 109980 110040 110100 ggccgggcgg aggcgcccc cacctccctc ccggatggg cggctggccg ggcgggggt 110160 gacccccac ctccctcccg gacgggcgg ctggccgggc gggggctgac ccccacctc 110220 cctcccagat ggggcggctg gccgggcggg ggctgcccc cacctcctc ccggacgggg 110280