# Tamarin Workshop RI.SE – 2019-10-29

#### **Simon BOUGET**

(w/ slides from David Basin, Cas Cremers, Jannik Dreier, Ralf Sasse)

#### Overview

- 2 hours
  - Half lecture, half hands-on
- Adapted from a one-day tutorial
  - 6 hours cut down to 2
  - Removed most of the theory
- Interrupt if you don't follow

#### Introduction

- How to know if a protocol is secure?
- With a structured, systemic approach?
- Notion of trace properties
  - When a protocol is run, it generates a "trace"
    - e.g. messages sent, data logged, etc.
- Encode (and prove) properties
  - Authentication:
     In all traces, if an initiator completes,
     there exists a responder with...
  - Secrecy:
     There is no trace in which Adversary learns k

## Tamarin: high-level

- Modeling protocol & adversary done using multiset rewriting
  - Specifies transition system; induces set of traces
- Property specification using fragment of firstorder logic
  - Specifies "good" traces
- Tamarin tries to
  - provide proof that all system traces are good, or
  - construct a counterexample trace of the system (attack)

## What can Tamarin do for you?

- Rapid prototyping
- Finding attacks before you start a proof effort
- Provide a symbolic proof
- Explore alternative designs/threat models quickly

#### Resources & documentation



- Sources on github
- 100+ page manual
- Plenty of examples/case studies
- Algorithm details in theses, papers

### Selected case studies

- AKE
  - Naxos
  - Signed DH
  - KEA+
  - UM
  - Tsx
- Group protocols
  - GDH
  - TAK
  - (Sig)Joux
  - STR
- ID-based AKE
  - RYY
  - Scott
  - Chen-Kudla
- Loops
  - TESLA1 & 2

- Non-monotonic global state
  - Keyserver
  - Envelope
  - Exclusive secrets
  - Contract signing
  - Security device
  - YubiKey
  - YubiHSM
- PKI with strong guarantees
  - ARPKI (also global state)
- Transparency
  - DECIM (also global state)
- TLS 1.3
  - Rev 10, 10+, and current

#### Modelization in Tamarin: Overview

- Modeling protocols and threats:
  - 1) What is the current state of the system? What's the situation, the state of the world?
  - 2) How can the system evolve? What are the possibilities? How can the system progress?

#### Modelization in Tamarin: State

- State of the system → multiset / bag
  - Facts (think "general statement")
    - parametrized with Terms
       (think "specific instance")
  - E.g. "Agent A owns the secret/public key pair (sk\_A, pk\_A)"
     KeyPair(A, sk\_A, pk\_A)
- Initial state is empty
- You can define any arbitrary fact you want
  - Foo(x,y), Toto(a,b,c), KeyPair(A, sk, pk), ...
  - Purely symbolic, no meaning attached
     ==> meaning is in the rules,
     in the relationships between facts)

## Modelization in Tamarin: Change

- Changes → transition rules
  - [conditions] --[actions]-> [conclusions]
  - E.g. "If A has a secret key sk\_A
     and knows the public key pk\_B of B,
     then A can send a message m to B, signed and encrypted."
     [!SecKey(A, sk\_A), !PubKey(B, pk\_B)]

```
--[ Send(A, B, m) ]->
[ Out(<aenc(m, pk B), sign(aenc(m, pk B), sk A)>) ]
```

- For a rule to be applied:
  - it must match the conditions (or premises)
  - and it generates the conclusions

# Semantics: example 1

#### Rules

```
- rule 1: [ ] --[ Init() ] -->[ A('5') ]
- rule 2: [A(x)] --[ Step(x) ] -->[ B(x) ]
```

#### ONE possible run

| Rule applied  | Current state      | Trace                       |
|---------------|--------------------|-----------------------------|
| Initial state | []                 | ()                          |
| Rule 1        | [ A('5') ]         | ( Init() )                  |
| Rule 1        | [ A('5'), A('5') ] | (Init(), Init())            |
| Rule 2        | [ A('5'), B('5') ] | (Init(), Init(), Step('5')) |

#### An infinity of other possibilities

## Example 2: persistent facts

#### "!Persistent" vs "Linear" facts

- Linear facts are consumed by rules that match them,
   i.e. removed from the state of the system when the rule is applied
- Persistent facts can be matched any number of times

#### Rules

#### Execution example

| Rule applied  | Current state              | Trace                                           |
|---------------|----------------------------|-------------------------------------------------|
| Initial state | []                         | 0                                               |
| Rule 1        | [ !C('ok'), D('1') ]       | ( Init() )                                      |
| Rule 2        | [ !C('ok'), D(h('1')) ]    | ( Init(), Step('ok', '1') )                     |
| Rule 2        | [ !C('ok'), D(h(h('1'))) ] | ( Init(), Step('ok', '1'), Step('ok', h('1')) ) |

- Now we have the basics...
- ... let's move onto real protocols!
- We still need a few missing pieces
  - How to model the network and the adversary?
  - Randomness?
  - Cryptography?
- Tamarin has built-ins for that.
   Don't need to start from scratch!

#### Modelization in Tamarin: Built-In

- 1 special fact:  $Fr(\sim x) \rightarrow get a fresh value x$ 
  - Always matches
  - All instances are distinct,
     i.e. Fr(~a) & Fr(~b) => ~a != ~b
- 2 pre-defined rules controlling network messages

```
1.rule irecv: [ Out( x ) ] --> [ !KD( x ) ]
2.rule isend: [ !KU( x ) ] --[ K( x ) ]-> [ In( x ) ]
```

- Note the use of In(), Out(),
   and K() = the adversary Knows
   (you can ignore !KU() and !KD())
- You can add more capabilities to the adversary if you want
  - E.g. reveal long term keys

## Equational theories

- Equational theories are used in symbolic protocol verification to model the algebraic properties of the cryptographic primitives.
- Example (asymmetric encryption):

```
adec(aenc(m,pk(k),k) = m
```

- Built-in: encryption (sym and asym), (blind) signing,
   Diffie-Hellman, bilinear pairing, multiset, xor
- You can add your owns (with limitations)
  - Subterm convergent
    - Right-hand side is subterm of left hand side (or constant)
  - Active development

#### Tamarin explore **ALL** possible interactions with the adversary



## Property specification

- Timed first order logic interpreted over a trace
  - Ex x y i. Fact(x,y) @ #i
  - All a b j. Fact(a,b) @ #j
  - Timepoint ordering: #i = #j / #i < #j
  - IMPLY, NOT, AND, and OR logic operators:

```
All Client Server k #i #j.
   Complete(Client, Server, k)@i & Secret(k)@j
   ==>
   not K(k) | (Ex l. Revealed(k)@l & l<i)</pre>
```

- Demo time
  - Sources
  - Using the tool
    - UI
    - Read graphs

## Syntax Issues: Type Annotations

- Mark timepoint (index) variables with a hashmark (#) in quantification.
- Mark fresh values with ~
- Mark public values with \$
- Be consistent! If a rule contains ~x, \$x, and x that is interpreted as three different variables!
- You do get a warning about it, and should fix it.

## Warnings on Loading a theory

- Warnings give good information what is wrong:
  - Mismatch of type: use of \$x and x in same rule
  - Using a fact name with different arities
  - Guardedness problems in formula
- Tamarin strict mode stops you from working with warnings, but is optional:
  - Add command-line parameter: --quit-on-warning

# Reading Tamarin's graphs



# Basic principles

- Backwards search using constraint reduction rules (27!)
- Turn negation of formula into set of constraints
- Case distinctions
  - E.g.: Possible sources of a message or fact
- Try to establish:
  - no solutions exist for constraint system, or
  - there exists a "realizable" execution (trace)
- If multiple rules can be applied: use heuristics

#### Heuristics?

- If Tamarin terminates, one of two options:
  - Proof, or
  - counterexample (in this context: attack)
- At each stage in proof, multiple constraint solving rules might be applicable
  - Similar to "how shall I try to prove this?"
  - Choice influences speed & termination, but not the outcome after termination
- Complex heuristics choose rule
  - user can give hints or override

## How do I know my model is correct?

- Lots of ways to cause errors
- Look at the chains...
  - (requires an understanding of the algorithm)
- Executability
- Break the protocol on purpose
- Much easier to check these things than in manual proofs!

## Cocnlusion

### Tamarin: Conclusions



- Tamarin offers many unique features
  - Unbounded analysis, flexible properties, equational theories, global state, ...
  - Enables automated analysis in areas previously unexplored
- It has many other features I don't have time to go in details into
  - Many new features planned! Still active dev.
- Tool and sources are free; development on Github mailing list on Google Groups

#### **Bonus: Advanced features**

- More accurate models
  - Executability lemmas => sanity checks
  - Restrictions => limit allowed runs
  - Channel models => restrict adversary control of network
  - Custom equational theories
  - Observational Equivalence => stronger notion of secrecy

#### Easier proofs

- Source lemmas => reduce search space
- Induction => forward instead of backward search
- Custom Heuristics / Guided proofs

# **Executability Lemmas**

## **Executability Lemmas**

- Executability lemmas are existential properties
- These show the existence of some protocol trace satisfying the formula...
- ... instead of the usual case where all traces must satisfy the formula.
- Heuristics tuned for verification
  - Manual intervention needed more often for executability

lemma exec: exists-trace "...(formula)..."

### Channel models

#### Channel models

- By default, the adversary controls
   EVERYTHING on the network
- You can write custom rules governing the network with alternatives to In() and Out()
- A lot of variants in the manual already
   => don't try making your owns
- Make sure you REALLY need a secure channel

# Channel models: Example

#### Default rules

```
rule irecv:
    [ Out( x ) ]
--->
    [ !KD( x ) ]
rule isend:
    [ !KU( x ) ]
--[ K( x ) ]->
    [ In( x ) ]
```

#### Confidential Channel rules

```
rule ChanOut C:
  [ Out C(\$A,\$B,x) ]
--[ ChanOut C($A,$B,x) ]->
  [ !Conf($B,x) ]
rule ChanIn C:
  [ !Conf($B,x), In($A) ]
--[ ChanIn C($A,$B,x) ]->
  [ In C(\$A,\$B,x) ]
rule ChanIn Cadv:
  [ In(<$A,$B,x>) ]
- ->
  [ In C(\$A,\$B,x) ]
```

## Restrictions

#### Restrictions

- Restrictions exclude undesired traces
  - Take care not to exclude attacks!
- Safe to use for certain checks:
  - Equality
  - Inequality
  - LessThan
  - GreaterThan
  - OnlyOnce
- Use same format as lemmas
- Essentially: Conditional Rewriting

## Restriction Example

· restriction once:

```
"All #i #j. OnlyOnce()@#i & OnlyOnce()@#j ==> #i=#j"
```

Rules

Execution removed by restriction

```
[]
-[ OnlyOnce() ] → [ A('5')]
-[ OnlyOnce() ] → [ A('5'), A('5') ]
-[ Step('5') ] → [ A('5'), B('5') ]
```

Execution still allowed

```
[]
-[ Init() ] → [ A('5'), A('5') ]
-[ Step('5') ] → [ A('5'), B('5') ]
```

# Restriction Example 2

restriction InEq:

```
"All x #i. Neq(x,x)@#i ==> F"
```

Rules

Execution removed by restriction – valid without restriction

```
[]
-[A1()] → [A('1')]
-[A1()] → [A('1'), A('1')]
-[Neq('1','1')] → [B('1','1')]
```

Execution allowed

```
[]
-[A1()] → [A('1')]
-[A2()] → [A('1'), A('2')]
-[Neq('1','2')] → [B('1','1')]
```

#### Source lemmas

# State space reduction

Pre-computation

Partial deconstructions

Sources lemmas

#### Precomputation

- Idea: for all facts in rule premises compute their possible sources
- sources are (combinations of) rules yielding such a fact as (part of the) result
- Initial precomputations are called raw sources
- Sometimes these precomputations are incomplete, and give partial deconstructions
- GUI shows both raw and refined sources

#### Demo

```
theory sources begin

Message theory
Multiset rewriting rules (5)

Raw sources (8 cases, 6 partial deconstructions left)

Refined sources (8 cases, deconstructions complete)
```

#### Partial deconstruction – derive any value



#### See demo for detail



#### Partial deconstructions — issues

- Proofs much more complicated
  - Possibly non-termination due to partial deconstructions
- Need to resolve such partial deconstructions
- Claim (and then prove) such deconstructions are not possible, by sources lemma

# Example protocol

```
1. I -> R: {ni,I}pk(R)
2. I <- R: {ni}pk(I)

rule I_1:
    let m1 = aenc{~ni, $I}pkR in
        [ Fr(~ni) , !Pk($R, pkR) ]
    --[ OUT_I_1(m1) ]->
        [ Out( m1 ) ]

rule R_1:
    let m1 = aenc{ni, I}pk(ltkR)
        m2 = aenc{ni}pkI in
        [ !Ltk($R, ltkR) , In( m1 ), !Pk(I, pkI) ]
        --[ IN_R_1_ni( ni, m1 ) ]->
        [ Out( m2 ) ]
```

# Really? Extract everything?

- Realization: only values actually sent by legitimate party (whose private key must be compromised) or adversary-generated terms
  - which are known to the adversary previously

```
lemma types [sources]:

" (All ni m1 #i.

IN_R_1_ni( ni, m1) @ i

==>

( (Ex #j. K(ni) @ j & j < i)

| (Ex #j. OUT_I_1( m1 ) @ j) ) ) "
```

#### Demo

Problems with partial deconstructions Sources lemma removes partial deconstructions for refined sources Automatic proof of sources lemma

#### Sources lemmas

- Explain where terms can come from or what their form must be
- Tamarin actions in order:
- 1) Determine possible sources (raw)
- 2) Apply sources lemma to raw sources to get refined sources
- 3) Prove sources lemma WRT raw sources
- 4) Prove other lemmas WRT refined sources

# Induction

#### Induction

$$R_{loop} := \left\{ \begin{array}{l} \mathsf{Fr}(x) \\ \mathsf{A}(x) \end{array} [\mathsf{Start}(x)], \ \frac{\mathsf{A}(x)}{\mathsf{A}(x)} [\mathsf{Loop}(x)] \end{array} \right\}$$

- Proof goal:  $\forall x \ i. \mathsf{Loop}(x)@i \Rightarrow \exists j. \mathsf{Start}(x)@j$ 
  - -j < i? Not needed in formula, but will hold
- Naive constraint solving does not work
- Such properties are needed:
  - "Reuse" lemmas
  - "Sources" lemmas

# Constraint solving failure



#### Demo



#### Induction – on time points

- Informally, induction works on previous slide
- Formally, for IH  $\phi$ 
  - 1)Check if  $\phi$ holds for empty trace
  - 2)Consider special last rule index on trace
    - Assume  $\phi$  olds at all non-last indices, and prove for last
- Added constraint reduction rules for last atoms
- Allows proof of previous example

# Example – solved by induction



#### Demo – using induction



# Induction in general

- Required for all "sources" lemmas
- Often required for "reuse" lemmas
- Helps for all looping constructs, used in e.g.:
  - YubiKey
  - TPM
  - PKCS11
  - Group protocols
  - Counters

# Observational equivalence

# Observational equivalence

Two types of properties:

- Trace properties
  - (Weak) secrecy as reachability
  - Authentication as correspondence

Observational equivalence



# Why observational equivalence?

Consider classic **Dolev-Yao** adversary for deterministic pub-key encryption:

$$adec(aenc(x, k), pk(k)) = x$$

Adversary can only decrypt if he knows the secret key

Consider a simple voting system:

- Voter chooses v="Yes" or v="No"
- Encrypt v using server's public key pk(k):

```
c = enc(v, pk(k))
```

Send c to server

#### Is the vote secret?

- Dolev-Yao: Yes, adversary does not know server's secret key
- Reality: **No**, encryption is deterministic and there are only two choices
  - Attack: encrypt "Yes", and compare to c

#### Observational equivalence vs reachability

- Reachability-based (weak) secrecy is insufficient
- Stronger notion: adversary cannot distinguish
  - a system where the voter votes "Yes" from
  - a system where the voter votes "No"
- Observational equivalence between two systems
- Can be used to express
  - Strong secrecy
  - Privacy notions

# Running example

- Auction system for a shout-out auction
- Property: strong secrecy of bids
- Property violated:
  - Broadcast bid (e.g., A or B)
  - Send "A" in first system
  - Send "B" in second system
  - Observer knows if he is observing first or second system
- Property holds using shared symmetric key:
  - Shared symmetric key k between bidder and auctioneer
  - Send "{A}<sub>k</sub>" in first system
  - Send "{B}<sub>k</sub>" in second system
  - Observer has no access to k, does not know which system he observes

# System and environment

- We separate environment and system
  - System: agents running according to protocol
  - Environment: adversary acting according to its capabilities
- Environment can observe:
  - Output of the system
  - If system reacts at all



# Defining observational equivalence

- Two system specifications given as set of rules
  - One rule per role action (send/receive)
  - Running example shout-out auction:

System 1: 
$$\frac{}{\text{Out}_{Sys}(A)}$$
 System 2:  $\frac{}{\text{Out}_{Sys}(B)}$ 

Interface and environment/adversary rule(s):

$$\frac{\operatorname{Out}_{Sys}(X)}{\operatorname{In}_{Env}(X)} \qquad \frac{\operatorname{Out}_{Env}(X)}{\operatorname{In}_{Sys}(X)} \qquad \frac{\operatorname{In}_{Env}(X) \quad K(X)}{\operatorname{Out}_{Env}(true)}$$

- Last rule models comparison by the adversary
- Each specification yields a labeled transition system
- Observational equivalence is a kind of bisimulation accounting for the adversaries' viewpoint and capabilities

#### Diff terms

- General definitions of observational equivalence difficult to verify: requires inventing simulation relation
- Idea: specialize for cryptographic protocols
  - Consider strong bid secrecy:
    - both systems differ in secret bid only, i.e.,
    - both specifications contain same rule(s), which differ only in some terms
  - Exploit this similarity in description and proof
- Approach: two systems described by one specification using diff-terms
  - Running example

$$\overline{Out_{Sys}(A)}$$
  $\overline{Out_{Sys}(B)}$ 

- Is equivalent to one rule with a **diff**-term

$$\overline{Out_{Sys}(\mathbf{diff}(A,B))}$$

# Approximating observational equivalence using mirroring

Both systems contain same rules modulo diff-terms

Idea: assume that each rule simulates itself

Compute mirrors of each execution into the other system

 If the mirrors are valid executions, we have observational equivalence (sound approximation)

#### Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A



Counter example to observational equivalence

#### Valid mirror

Observer compares system output to itself



- All mirrors need to be valid for observational equivalence

# Dependency graph equivalence

- A diff-system is dependency graph equivalent if mirrors of all dependency graphs rooted in any rule on both sides are valid.
  - Sound but incomplete approximation
  - Efficient and sufficient in practice

#### Input:

- Protocol specification
- Property: equivalence given two choices for some term(s)
  - Example: random value vs expected value

#### Output:

- Yes, observational equivalent
- No, dependency graph with invalid mirror
- Non-termination possible

# The equivalence zoo



Red arrows require assumptions: determinate processes + bounded sessions (no replication)

# Guided proofs & Custom Heuristics

#### Lemmas

- When it doesn't terminate...
- Guide the proof manually; export
- Write lemmas
  - "Hints" for the prover
    - They don't change the proof obligation, only help finding a proof
  - Specify lemma that can be used to prune proof trees at multiple points

# **Storing Proofs**

- Complete (or partial) proofs can be stored
  - Click the "Download" button in top right
- These can be reloaded like normal theories
  - Proof is rechecked!