CSci 4707 Homework 3 Solution

Spring 2015

Chapter 8 and 12 Due Thursday, 04/09/2015 14:30

B1a.				
Α	F	G	D	Н
B1b.				
А	G	F	D	Н
B1c.				
А	G	Н	D	F
B1d.				
А	Н	F	D	G

- **B2.** (1) DB may need to force a page before writing another page. (2) DB has more context and can do smarter page replacement for its own need.
- **B3a.** MRU to avoid sequential flooding and better hit rate than FIFO for sequential scan.
- **B3b.** LRU or Clock (trivial)
- **B4a.** When the resulting records in within the same page or in a small number of pages.
- **B4b.** No, this is a contradiction. Alternative 1 will always be a clustered B+Tree.

B4c. One of the difference is: B+Tree has all its Data Entries on the leaf node while B-Tree can be in any node. (this problem is omitted since we don't learn about B-Tree in class)

C1a. Scan or Unclustered B+Tree since we don't know the nature of the data.

C1b. Clustered B+Tree / Hash depending on the # of records.

C1c. Scan or Unclustered B+Tree + check the retrieved tuples' category.

C1d. Clustered B+Tree on <state, age>

C2. We can use the Clustered B+Tree and use an **index only scan** to get the average age for each states. **(This problem is omitted)**

C3a. Assume: 2 I/Os for probing the index: 100 + 1000 * (2 + 1) = 3100 I/Os

C3b. Assume: 1.2 I/Os for probing the index: 10 + 5000 * (1.2 + 1) = 11010 I/Os

C3c. 100 + 1000 * ((5000/1000) + 2) = 7100 I/Os

C3d. 10 + 5000 * 100 = 500010 I/Os