Radiometry and Reflectance

To interpret image intensities, we need to understand Radiometric Concepts and Reflectance Properties.

Topics:

- Radiometric Concepts
- (2) Surface Radiance and Image Irradiance
- (3) BRDF: Bidirectional Reflectance Distribution Function
- (4) Reflectance Models
- (5) Dichromatic Model

From 2D to 3D

Image Intensity

Image Intensity = f (Illumination, Surface Orientation, Surface Reflectance)

Image intensity understanding is under-constrained!

What is the relationship between L and E ?

Solid Angles: $d\omega_i = d\omega_s$

$$\frac{dA_i \cos \alpha}{(f/\cos \alpha)^2} = \frac{dA_s \cos \theta}{(z/\cos \alpha)^2} \longrightarrow \frac{dA_s}{dA_i} = \frac{\cos \alpha}{\cos \theta} \left(\frac{z}{f}\right)$$
Equation (1)

Solid Angle subtended by the lens:

$$d\omega_L = \frac{\pi d^2}{4} \frac{\cos \alpha}{(z/\cos \alpha)^2}$$
Equation (2)

Energy Conservation:

Flux received by lens from dA_s = Flux projected onto dA_{i_s}

Scene Radiance:

$$L = \frac{d^2\Phi}{(dA_s\cos\theta)d\omega_L}$$

Flux received by lens from dA_s

$$d^2\Phi = L (dA_s \cos\theta)d\omega_L$$
 Equation (3)

Image Irradiance:

Flux projected onto dAi

$$E = \frac{d\Phi}{dA_i} \longrightarrow \boxed{d\Phi = E \ dA_i}$$
Equation (4)

Equation (1)

$$\frac{dA_s}{dA_i} = \frac{\cos\alpha}{\cos\theta} \left(\frac{z}{f}\right)^2$$

Equation (2)

$$d\omega_L = \frac{\pi d^2}{4} \frac{\cos \alpha}{(z/\cos \alpha)^2}$$

Equation (3)

$$d^2\Phi = L (dA_s \cos\theta)d\omega_L$$

Equation (4)

$$d\Phi = E dA_i$$

$$E = L \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha$$

- Image Irradiance is proportional to Scene Radiance
- Image brightness falls off from image center as cos⁴α
- For small fields of view, effects of $\cos^4 \alpha$ are small

Does image brightness vary with scene depth? NO

$$E = L \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha$$

- Larger the scene depth, larger the area of light accumulation.
- Larger the scene depth, smaller the solid angle subtended by each point onto the lens, and hence less light from each point.

Surface Reflection

Surface reflection depends on both the viewing and illumination directions.

Bidirectional Reflectance Distribution Function

 $E(\theta_i, \phi_i)$: Irradiance due to source in direction (θ_i, ϕ_i)

 $L(\theta_r, \phi_r)$: Radiance of surface in direction (θ_r, ϕ_r)

BRDF:
$$f(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{L(\theta_r, \phi_r)}{E(\theta_i, \phi_i)}$$

Unit: 1/sr

[Nicodemus 1977]

Properties of BRDF

Non-Negative:

$$f(\theta_i, \phi_i, \theta_r, \phi_r) > 0$$

Helmholtz Reciprocity:

$$f(\theta_i, \phi_i, \theta_r, \phi_r) = f(\theta_r, \phi_r, \theta_i, \phi_i)$$

BRDF of Isotropic Surfaces

In general, BRDF is a 4-D function: $f(\theta_i, \phi_i, \theta_r, \phi_r)$

For rotationally symmetric reflectance (Isotropic Surfaces), BRDF is a 3-D function:

$$f(\theta_i, \theta_r, \phi_i - \phi_r)$$

Rendering Equation

Let $\mathbf{p} \in \mathbb{R}^3$ denote a 3D surface point, $\mathbf{v} \in \mathbb{R}^3$ the viewing direction and $\mathbf{s} \in \mathbb{R}^3$ the incoming light direction. The **rendering equation** describes how much of the light L_{in} with wavelength λ arriving at \mathbf{p} is reflected into the viewing direction \mathbf{v} :

$$L_{\mathrm{out}}(\mathbf{p},\mathbf{v},\lambda) = L_{\mathrm{emit}}(\mathbf{p},\mathbf{v},\lambda) + \int_{\Omega} \mathrm{BRDF}(\mathbf{p},\mathbf{s},\mathbf{v},\lambda) \cdot L_{\mathrm{in}}(\mathbf{p},\mathbf{s},\lambda) \cdot (-\mathbf{n}^{\top}\mathbf{s}) \ d\mathbf{s}$$

- $ightharpoonup \Omega$ is the unit hemisphere at normal ${f n}$
- The bidirectional reflectance distribution function BRDF(p, s, v, λ) defines how light is reflected at an opaque surface.
- $ightharpoonup L_{
 m emit} > 0$ only for light emitting surfaces

Diffuse and Specular Reflection

- Typical BRDFs have a diffuse and a specular component
- ► The diffuse (=constant) component scatters light uniformly in all directions
- ► This leads to shading, i.e., smooth variation of intensity wrt. surface normal
- The specular component depends strongly on the outgoing light direction

Diffuse and Specular Reflection

- Typical BRDFs have a diffuse and a specular component
- The diffuse (=constant) component scatters light uniformly in all directions
- This leads to shading, i.e., smooth variation of intensity wrt. surface normal
- ► The specular component depends strongly on the outgoing light direction

Diffuse and Specular Reflection

Cloud Gate (Kapoor, 2006)

Dropping the dependency on λ and p for notational simplicity, and considering a **single point light source** located in direction s, the rendering equation

$$L_{\mathrm{out}}(\mathbf{p},\mathbf{v},\lambda) = L_{\mathrm{emit}}(\mathbf{p},\mathbf{v},\lambda) + \int_{\Omega} \mathrm{BRDF}(\mathbf{p},\mathbf{s},\mathbf{v},\lambda) \cdot L_{\mathrm{in}}(\mathbf{p},\mathbf{s},\lambda) \cdot (-\mathbf{n}^{\top}\mathbf{s}) \ d\mathbf{s}$$

simplifies as follows:

$$L_{\text{out}}(\mathbf{v}) = \text{BRDF}(\mathbf{s}, \mathbf{v}) \cdot L_{\text{in}} \cdot (-\mathbf{n}^{\top}\mathbf{s})$$

Assuming a purely **diffuse material** with albedo (=diffuse reflectance) BRDF(\mathbf{s}, \mathbf{v}) = ρ

$$L_{\text{out}}(\mathbf{v}) = \text{BRDF}(\mathbf{s}, \mathbf{v}) \cdot L_{\text{in}} \cdot (-\mathbf{n}^{\top}\mathbf{s})$$

further simplifies to the following equation (L_{out} becomes independent of \mathbf{v}):

$$L_{\text{out}} = \rho \cdot L_{\text{in}} \cdot (-\mathbf{n}^{\top} \mathbf{s})$$

For simplicity, we further eliminate the minus sign in

$$L_{\mathsf{out}} = \rho \cdot L_{\mathsf{in}} \cdot (-\mathbf{n}^{\mathsf{T}}\mathbf{s})$$

by reversing the orientation (definition) of the light ray ${f s}$ and obtain:

$$L_{\text{out}} = \rho \cdot L_{\text{in}} \cdot \mathbf{n}^{\top} \mathbf{s}$$

$$L_{\mathrm{out}} = \rho \cdot L_{\mathrm{in}} \cdot \mathbf{n}^{\top} \mathbf{s} = R(\mathbf{n})$$

- ightharpoonup For a fixed material and light source, the reflected light L_{out} is a function of ${f n}$
- ▶ This function $R(\mathbf{n})$ is called **reflectance map** (we will see examples)
- ▶ If we would know n at each surface point, we can integrate the geometry
- ightharpoonup Can we determine \mathbf{n} from the observation L_{out} for every pixel in an image?
- This problem is called Shape-from-Shading (Berthold Horn, 1970)