**Proposition 26.8.** With respect to the basis  $\mathcal{P} = (p_1, p_2, p_3)$ , the matrix  $A_{\mathcal{P}}$  of the unique homography h of  $\mathbb{RP}^2$  mapping the projective frame  $([p_1], [p_2], [p_3], [p_4])$  to the projective frame  $[(q_1], [q_2], [q_3], [q_4])$  is given by

$$A_{\mathcal{P}} = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} \begin{pmatrix} \frac{\lambda_1}{\alpha_1} & 0 & 0 \\ 0 & \frac{\lambda_2}{\alpha_2} & 0 \\ 0 & 0 & \frac{\lambda_3}{\alpha_3} \end{pmatrix}.$$

*Proof.* Let  $u_1 = \alpha_1 p_1$ ,  $u_2 = \alpha_2 p_2$ ,  $u_3 = \alpha_3 p_3$ , and let  $v_1 = \lambda_1 q_1$ ,  $v_2 = \lambda_2 q_2$ ,  $v_3 = \lambda_3 q_3$ , so that

$$p_4 = u_1 + u_2 + u_3$$

and

$$q_4 = v_1 + v_2 + v_3.$$

Because  $p_1, p_2, p_3$  are linearly independent and since  $\alpha_i \neq 0$  for i = 1, 2, 3, the vectors  $(u_1, u_2, u_2)$  are also linearly independent, so there is a unique linear map  $f: \mathbb{R}^3 \to \mathbb{R}^3$ , such that

$$f(u_i) = v_i \quad i = 1, \dots, 3,$$

and by linearity

$$f(p_4) = f(u_1 + u_2 + u_3) = f(u_1) + f(u_2) + f(u_3) = v_1 + v_2 + v_3 = q_4.$$

With respect to the basis  $\mathcal{P} = (p_1, p_2, p_3)$ , we have

$$f(p_i) = \frac{1}{\alpha_i} v_i = \frac{\lambda_i}{\alpha_i} q_i, \quad i = 1, \dots, 3,$$

so with respect to the basis  $\mathcal{P}$ , the matrix of f is

$$A_{\mathcal{P}} = \begin{pmatrix} \frac{\lambda_1}{\alpha_1} x_1 & \frac{\lambda_2}{\alpha_2} x_2 & \frac{\lambda_3}{\alpha_3} x_3 \\ \frac{\lambda_1}{\alpha_1} y_1 & \frac{\lambda_2}{\alpha_2} y_2 & \frac{\lambda_3}{\alpha_3} y_3 \\ \frac{\lambda_1}{\alpha_1} z_1 & \frac{\lambda_2}{\alpha_2} z_2 & \frac{\lambda_3}{\alpha_3} z_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} \begin{pmatrix} \frac{\lambda_1}{\alpha_1} & 0 & 0 \\ 0 & \frac{\lambda_2}{\alpha_2} & 0 \\ 0 & 0 & \frac{\lambda_3}{\alpha_3} \end{pmatrix},$$

as claimed.  $\Box$ 

If we assume that we pick the coordinates of  $(p_1, p_2, p_3, p_4)$  and  $(q_1, q_2, q_3, q_4)$  with respect to the canonical basis  $\mathcal{E}$ , then the coordinates  $\alpha_1, \alpha_2, \alpha_3$  and  $\lambda_1, \lambda_2, \lambda_3$  are solutions of the systems

$$\begin{pmatrix} p_1^x & p_2^x & p_3^x \\ p_1^y & p_2^y & p_3^y \\ p_1^z & p_2^z & p_3^z \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} p_4^x \\ p_4^y \\ p_4^z \end{pmatrix}$$