Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №7

Частотно-временной анализ нестационарных сигналов методом Гильберта - Хуанга.

Выполнил		
студент гр. в $3530904/00030$		В.С. Баганов
Руководитель		
доцент, к.т.н.		В.С. Тутыгин
	« »	202 г.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2023

Содержание

1.	Частотно-временной анализ нестационарных сигналов методом Гильбеј Хуанга.	рта- 3
2.	Цель работы	3
3.	Программа работы	3
4.	Результаты работы	4
	4.1. Обработка и анализ стационарного гармонического сигнала	4
	$4.1.1$. Зашумление $Q{=}0.1$	4
	$4.1.2$. Зашумление $Q{=}0.2$	7
	$4.1.3$. Зашумление $Q{=}0.3$	9
	4.2. Обработка и анализ нестационарного сигнала	12
	$4.2.1$. Зашумление $Q{=}0.1$	13
	$4.2.2.$ Зашумление $Q{=}0.2$	15
	$4.2.3$. Зашумление $Q{=}0.3$	17
	4.3. Обработка и анализ реального сигнала	19
5.	Вывод	22
6.	Листинг Matlab. lab7_2020.m	22
7.	Листинг Matlab, extrema.m	24

1. Частотно-временной анализ нестационарных сигналов методом Гильберта-Хуанга.

2. Цель работы

Цель данной работы — определить оптимальное количество удаляемых функций IMF при очистке зашумленного сигнала с помощью преобразования Хуанга в зависимости от вида сигнала и уровня шума на входе.

3. Программа работы

- 1. Измерить коэффициент подавления шума (KSKO) для стационарного гармонического сигнала для уровней шума 0.1–0.3 (шаг 0.1) при количестве удаляемых шумовых функций от 1 до 3. Для каждой комбинации уровня шума и количества удаляемых функций проводить испытания 10 раз (всего 90 измерений). Результаты этих 10 измерений занести в протокол. Из 10 значений выбрать наименьшее и наибольшее. Результат также зафиксировать в протоколе. Выбрать оптимальное количество исключаемых функций IMF для каждого уровня шума.
 - 2. Повторить действия из п. 1 для нестационарного сигнала.
- 3. Применить преобразование Хуанга для очистки от шумов реального сигнала. Определить оптимальное количество исключаемых функций IMF.

4. Результаты работы

4.1. Обработка и анализ стационарного гармонического сигнала

Ниже приведен протокол испытаний для стационарного гармонического сигнала:

	KSKO									
NF/N	1	2	3	4	5	6	7	8	9	10
1	5,6518	6,0781	5,565	6,3869	5,9324	6,0771	5,8007	5,7233	5,7186	5,6143
2	8,2282	0,0577	8,1166	7,6188	3,6118	3,275	8,7481	9,0356	8,3574	7,7705
3	9,7522	0,3841	5,1526	0,0387	1,953	3,6416	2,1295	2,3385	4,5046	4,0267
1	5,8229	5,9612	5,9067	6,241	5,9517	5,9189	5,9189	6,0545	5,9616	5,6199
2	7,8547	9,0842	8,0444	8,5935	8,4831	7,5918	8,2324	8,5626	8,7795	8,5694
3	9,9618	6,482	11,0581	13,2041	10,4983	10,1714	5,0209	11,2806	8,9203	8,098
1	5,9139	6,0375	6,1055	6,0555	5,7782	5,9945	6,3082	5,5796	5,8371	6,0319
2	8,8498	9,1759	8,2295	8,2677	8,5919	7,8915	9,0231	8,1482	7,7644	8,4905
3	8,759	8,8208	8,1492	10,1538	9,0303	8,5114	8,37	8,5153	9,344	8,2969

Q - СКО шума на входе

NF - кол-во исключаемых функций IMF

KSKO - коэффициент подавления шума по результатам 10 повторных измерений

N - номер повторного измерения

	NF	KSKO		
Q		ОТ	до	
	1	5,565	6,3869	
0,1	2	0,0577	9,0356	
	3	0,0387	9,7522	
0,2	1	5,6199	6,241	
	2	7,5918	9,0842	
	3	5,0209	13,204	
0,3	1	5,5796	6,3082	
	2	7,7644	9,1759	
	3	8,1492	10,154	

Из полученных данных и таблицы выше видно.

Немого забегая вперед для оптимального значения погрешности (чтобы сигнал был хорошо отфильтрован) нужно чтобы в среднем KSKO приближалось или в среднем было равно от $8\ \mathrm{дo}\ 10$

4.1.1. Зашумление Q=0.1

При низком уровне шума стабильные результаты возможны только при NF=1 т.е. при вычитании 1-ой функции шума. Коэффициент подавления шума при этом колеблется от 5.7447 до 6.2547. При NF=2 и NF=3 очень большой разброс значений (NF=2, от 0.0577 до 9.0356) и (NF=3, от 0.0387 до 9.7522), который говорит, что вычитанив 2-х или 3-х шумовых функции исходный сигнал деформируется т.е мы теряем полезные данные вычитая так много шумовых функций. Ниже на графике видно что наиболее

похожая функция при NF=1, остальные деформированны (у NF=3 в конце появилость искажение).

Рисунок 4.1. Исходный зашумленный сигнал Q=0.1

Рисунок 4.2. Q=0.1, NF=1

Рисунок 4.3. Q=0.1, NF=2

Рисунок 4.4. Q=0.1, NF=3

4.1.2. Зашумление Q=0.2

Рисунок 4.5. Исходный зашумленный сигнал $Q{=}0.2$

Рисунок 4.6. Q=0.2, NF=1

Рисунок 4.7. Q=0.2, NF=2

Рисунок 4.8. Q=0.2, NF=3

Видно что при (Q=0.2, NF=2, от 7.5918 до 9.0842) сигнал имеет уже практически исходный (хоть и небольшой шум остался), но все же более очищенный ситнал наблюдается

при (Q=0.2, NF=3, от 5.0209 до 13.204).

4.1.3. Зашумление Q=0.3

При сильном зашумлении сигнала (Q=0.3)

Рисунок 4.9. Исходный зашумленный сигнал Q=0.1

Рисунок 4.10. Q=0.3, NF=1

Рисунок 4.11. Q=0.3, NF=2

Рисунок 4.12. Q=0.3, NF=3

Видно что максимально точное представление сигнла из всех при (Q=0.3, NF=3) от 8.1492 до 10.154),

хотя при (Q=0.3, NF=2) тоже может быть использован, так как разброс значений не такой сильный (Q=0.3, NF=2, от 7.7644 до 9.1759) но видно что в сигнале присутствует шум.

Общий ввывод при стационарном гармоническом сигнале: при малом зашумлении нужно вычитать 1 функцию шума, а при Q=0.2 и Q=0.3 лучше 3 функции шума.

4.2. Обработка и анализ нестационарного сигнала

Ниже приведен протокол испытаний для нестационарного сигнала:

	KSKO									
NF/N	1	2	3	4	5	6	7	8	9	10
1	5,9895	5,7447	5,7961	6,2547	6,0006	5,8679	5,9905	5,761	5,971	5,948
2	8,4946	9,2425	8,1351	8,8152	9,2207	8,4933	9,0035	9,325	9,0833	8,716
3	10,599	8,6232	10,3477	8,5326	10,5976	11,8784	11,746	12,6008	8,8328	8,741
1	6,1231	5,9031	6,1004	6,1392	5,9884	5,9187	5,7515	6,0559	5,9847	6,079
2	5,2388	7,918	8,911	9,2696	8,6558	8,6021	8,8431	8,1754	8,7038	9,129
3	10,649	11,5441	2,5474	12,0392	11,041	9,9169	9,0397	11,1883	10,944	8,401
1	6,2681	5,7904	5,755	6,1379	6,0984	5,8339	6,0542	6,2001	5,9202	6,035
2	8,2726	9,0927	8,5411	8,8626	8,8805	8,292	8,3233	8,2557	8,3478	8,624
3	7,94	11,2085	11,8188	7,2751	10,4332	8,7877	11,969	12,8898	9,0053	12,36

Q - СКО шума на входе

NF - кол-во исключаемых функций IMF

KSKO - коэффициент подавления шума по результатам 10 повторных измерений

N - номер повторного измерения

	NF	KSKO			
Q		от	до		
	1	5,7447	6,2547		
0,1	2	8,1351	9,325		
	3	8,5326	12,601		
	1	5,7515	6,1392		
0,2	2	5,2388	9,2696		
	3	2,5474	12,039		
	1	5,755	6,2681		
0,3	2	8,2557	9,0927		
	3	7,2751	12,89		

Из полученных данных и таблицы выше, видно что при нестационарном сигнале мы получили более стабильные результатты KSKO.

Немого забегая вперед для оптимального значения погрешности (чтобы сигнал был хорошо отфильтрован) нужно, чтобы в среднем KSKO приближалось или в среднем было равно от 8 до 10.

4.2.1. Зашумление Q=0.1

Рисунок 4.13. Исходный зашумленный сигнал Q=0.1

Рисунок 4.14. Q=0.1, NF=1

Рисунок 4.15. Q=0.1, NF=2

Рисунок 4.16. Q=0.1, NF=3

При зашумлении Q=0.1 нестационарных сигналов, чем больше вычитаем функций шума NF=3, тем лучше отфильтрован сигнал.

4.2.2. Зашумление Q=0.2

Рисунок 4.17. Исходный зашумленный сигнал $Q{=}0.2$

Рисунок 4.18. Q=0.2, NF=1

Рисунок 4.19. Q=0.2, NF=2

Рисунок 4.20. Q=0.2, NF=3

При зашумлении Q=0.2 нестационарных сигналов, чем больше вычитаем функций шума NF=3, тем лучше отфильтрован сигнал.

4.2.3. Зашумление Q=0.3

При сильном зашумлении сигнала (Q=0.3)

Рисунок 4.21. Исходный зашумленный сигнал Q=0.3

Рисунок 4.22. Q=0.3, NF=1

Рисунок 4.23. Q=0.3, NF=2

Рисунок 4.24. Q=0.3, NF=3

При большом зашумлении Q=0.3 нестационарных сигналов, чем больше вычитаем функций шума NF=3, тем лучше отфильтрован сигнал.

4.3. Обработка и анализ реального сигнала

Обычно при разложении сигнала, низкочастотная составляющая несёт в себе информацию об исходном сигнале. Высокочастотная — это шум и мелкие детали. На лекции так же было сказано, что когда IMF_- приобретает значения около 0.005 (тысчных занчений), то ниже уже будут низкочастотные составляющие, а именно функции исходного сигнала. На рисунке ниже видно, что до IMF_3 идут шумовые функции, а после IMF_3 идут функции чистого сигнала.

Ниже приведен график реального сигнала при сильном зашумлении (Q=0,3 красный). Гафики отфильтрованного сигнала синим цветом. На граифках видно как вычитая функциию шума 1,2 и 3 мы получаем более четкий сигнал. Так как мы не знаем уро-

вень зашумеленности сигнала (а тем более самого чистого сигнала) мы можем только визуально отобрать максимально близкий график сигнла очишенный от шума. На последней картинке изображен предположительно исходный сигнал при NF=3 (удаления 3-x функций содержащих шум).

5. Вывод

Эмпирическую модовую декомпозицию Хуанга можно использовать для очистки сигналов от шумов.

Из анализа данных становится понятно, что чем больше зашумлен сигнал, тем точнее можно вычислить шум и исключить его из исходного сигнала.игнала.

Каждая IMF содержит более низкие частотные составляющие, чем извлеченная перед ней.

По мере увеличения количества функций IMF относительная среднеквадратическая погрешность реконструкции достаточно сложных и протяженных сигналов уменьшается, но, как правило, имеет определенный минимум.

Количество функций IMF в различных реализациях случайного сигнала изменяется от 8 до 14.

Процесс снижения погрешности при увеличении количества функций IMF приведен ниже на рисунке:

Преобразование Гильберта – Хуанга является эффективным методом обработки нестационарных сигналов. Благодаря наличию таких важнейших свойств, как локальность и адаптивность, появляется возможность более точно выявлять скрытые в шумах амплитудные и частотные модуляции, выполнять идентификацию частотных и временных диапазонов.

6. Листинг Matlab. lab7 2020.m

```
%Эмпирическая модовая декомпозиция Хуанга.
     %Используется для очистки сигналов от шумов
2
3
     clc;%очистка Command Window
    N=2401; %количество точек
    d=0.005; %шаг изменения переменной time
    M = (N-1)*d;%
     time = 0:d:M;
     Q=0.3;%уровень шума в долях СКО
    NF=1;%кол-во функций разложения, содержащих шум (NF=1..3)
10
     КР1=5;%кол-во периодов первого сигнала
11
    КР2=7; %кол-во периодов второго сигнала
12
13
     %ПРОГРАММНАЯ ГЕНЕРАЦИЯ СИГНАЛА
14
       noise=rand(N);%генерация массива равномерно распределенного шума
15
    % noise=wgn(kt,1,0);%генерация массива белого Гауссова шума
16
    % for k=1:N % генерация гармонического сигнала
17
       s(k) = sin(2*pi*KP1*k/N) + sin(2*pi*KP2*k/N);%1-й вид сигнала
18
       f(k)=s(k)+ Q*noise(k); % суммирование сигнала и шума
19
```

```
% end
20
     %Генерация нестационарного сигнала
21
     % s = 4*sin(10*time.*time./100.0);
22
    % f = s(1:N) + Q*noise(1:N);
23
    % Чтение сигнала из файла
24
    % filename = 'Lab_90.xls';%3-й вид сигнала
25
    % x = xlsread(filename);%3-й вид сигнала
26
     filename = 'r3.csv';
27
     x = importdata(filename);
28
     f = x(1:N);
29
     f(N) = f(N-1);
30
     f = zeros(1,1+M/d);
31
     i=1:1+M/d;
32
     f(i)=x(i);
33
     %Обнуление матрицы остатков
35
     r = zeros(10,1+M/d);
36
     r(1,:) = f;%Операция создания 1-й строки матрицы остатков r из массива f
37
     %первая строка матрицы остатков равна самому модельному сигналу
38
39
     %ПОЛУЧЕНИЕ ФУНКЦИЙ РАЗЛОЖЕНИЯ
40
     for j = 1:10 %10 - максимальное количество функций разложения IMF
41
         h = r(j,:); %r(j,:)-операция выделения строки ј из матрицы r
42
         maxLastCount = -10;
43
         for i = 1:N \% N - максимальное количество экстремумов
44
              [ymax,imax,ymin,imin] = extrema(h);%нахождение массивов
45
               → ЛОКАЛЬНЫХ МАКСИМУМОВ
             %и минимумов с помощью стандартной функции extrema, имеющейся в
46
              → MATLAB
             if((length(imax) < 2) || (length(imin) < 2))</pre>
47
                 break;
48
             end:
49
             kUp = spline(time(imax),ymax,time);%сплайн-интерполяция локальных
50
              → максимумов
             kDown = spline(time(imin), ymin, time); %сплайн-интерполяция
51
              → ЛОКАЛЬНЫХ МИНИМУМОВ
             kMean = (kUp + kDown)/2;
52
             h = h - kMean;
53
             [one, maxCount] = size(ymax);
54
             if(abs(maxCount - maxLastCount) < 4)</pre>
55
56
                 break;
             end;
57
             maxLastCount = maxCount;
58
         end;
59
         c(j,:) = h;
60
61
    %Формирование искусственных экстремумов в начале и в конце массива
62
     c(j,1)=c(j,2);%1-ый элемент массива Сј устанавливается равным 2-му
     c(j,2)=c(j,3)+0.1*abs(c(j,3));%2-ой элемент массива Сj равен 3-му + 10%
64
     c(j,3)=c(j,4)-0.1*abs(c(j,4));%3-ий элемент массива Сј равен 4-му минус
65
     \rightarrow 10% от модуля 4-го
     c(j,N)=c(j,N-1); %N-й элемент массива Сј устанавливается равным N-1-му
66
     c(j,N-2)=c(j,N-3)+0.1*abs(c(j,N-3)); %N-2-й элемент массива Сj равен
     \rightarrow N-3-му +10% от модуля N-3-го
     c(j,N-3)=c(j,N-4)-0.1*abs(c(j,N-4)); %N-3-й элемент массива Сj N-4-му
68
     \rightarrow минус 10% от модуля N-4-го
69
     r(j + 1,:) = r(j,:) - c(j,:);
70
    end;
71
```

```
%Вывод функций разложения ІМЕ
72
     figure
73
     subplot (8, 1,1);
74
     plot(c(1,:));title('IMF_1');subplot(8,1,2);
75
     plot(c(2,:));title('IMF_2');subplot(8,1,3);
76
     plot(c(3,:));title('IMF_3');subplot(8,1,4);
77
     plot(c(4,:)); title('IMF_4'); subplot(8,1,5);
78
     plot(c(5,:)); title('IMF 5'); subplot(8,1,6);
79
     plot(c(6,:)); title('IMF_6'); subplot(8,1,7);
80
     plot(c(7,:)); title('IMF_7');
81
82
     C1 = zeros(1,1+M/d);
83
     %Суммирование функций разложения, содержащих только шум
84
     for i = 1:NF
85
             С1=С1+с(i,:);%накопление шумовых функций ІМБ
86
     end
87
     i=1:N;
88
     f1(i)=f(i)-C1(i);%исходный зашумленный сигнал за вычетом шумовых IMF
     figure;plot(i,f(i),'r-\frac{1}{1};title('Исходный зашумленный сигнал')
90
     figure
91
     plot(i,f1(i));title('Отфильтрованный сигнал');
92
     % Следующий блок программы комментируется, если зашумленные
93
     % данные берутся из файла (в этом случаев
94
     % чистый незашумленный сигнал s неизвестен)
95
        for i=1:N
96
     %
             DZ(i)=f1(i)-s(i):%vpoвень зашумления в сигнале после
97
     %
             %вычитания функций разложения, содержащих только шум
     %
        end
        SKO=std(DZ)%CKO полной погрешности
100
        KSK0=Q/SK0 %коэффициент подавления шума
101
     pause;
102
     close all; %закрытие всех окон графического вывода
103
     clear; %очистка WorkSpace
104
```

7. Листинг Matlab. extrema.m

```
function [xmax,imax,xmin,imin] = extrema(x)
     %EXTREMA
                Gets the global extrema points from a time series.
2
         [XMAX,IMAX,XMIN,IMIN] = EXTREMA(X) returns the global minima and
3
         maxima
         points of the vector X ignoring NaN's, where
    %
     %
          XMAX - maxima points in descending order
5
          IMAX - indexes of the XMAX
6
    %
          XMIN - minima points in descending order
    %
          IMIN - indexes of the XMIN
8
    %
9
    %
         DEFINITION (from http://en.wikipedia.org/wiki/Maxima and minima):
10
    %
         In mathematics, maxima and minima, also known as extrema, are points
11
         the domain of a function at which the function takes a largest value
    %
12
    %
         (maximum) or smallest value (minimum), either within a given
13
    %
         neighbourhood (local extrema) or on the function domain in its
14
         entirety
     \hookrightarrow
         (global extrema).
    %
15
    %
    %
         Example:
17
```

```
x = 2*pi*linspace(-1,1);
18
             y = cos(x) - 0.5 + 0.5*rand(size(x)); y(40:45) = 1.85;
     %
19
         y(50:53)=NaN;
     %
             [ymax,imax,ymin,imin] = extrema(y);
20
     %
             plot(x,y,x(imax),ymax,'g.',x(imin),ymin,'r.')
21
     %
22
     %
         See also EXTREMA2, MAX, MIN
23
24
     %
         Written by
25
     %
         Lic. on Physics Carlos AdriAn Vargas Aguilera
26
         Physical Oceanography MS candidate
     %
27
     %
         UNIVERSIDAD DE GUADALAJARA
28
     %
         Mexico, 2004
29
     %
30
     %
         nubeobscura@hotmail.com
31
32
     % From
                    : http://www.mathworks.com/matlabcentral/fileexchange
33
                   : 12275
     % File ID
34
     % Submited at: 2006-09-14
35
     % 2006-11-11 : English translation from spanish.
36
     % 2006-11-17 : Accept NaN's.
37
     % 2007-04-09 : Change name to MAXIMA, and definition added.
38
39
40
     xmax = [];
41
     imax = [];
42
     xmin = [];
43
     imin = [];
44
45
     % Vector input?
     Nt = numel(x);
47
     if Nt \simeq length(x)
48
      error('Entry must be a vector.')
49
50
51
     % NaN's:
52
     inan = find(isnan(x));
53
     indx = 1:Nt;
54
     if ~isempty(inan)
55
      indx(inan) = [];
56
      x(inan) = [];
57
      Nt = length(x);
58
59
60
     % Difference between subsequent elements:
61
     dx = diff(x);
62
63
     % Is an horizontal line?
64
     if ~anv(dx)
65
      return
66
     end
67
68
     % Flat peaks? Put the middle element:
69
     a = find(dx \approx 0);
70
                                      % Indexes where x changes
     lm = find(diff(a) \approx 1) + 1;
                                      % Indexes where a do not changes
71
     d = a(lm) - a(lm-1);
                                     % Number of elements in the flat peak
72
     a(lm) = a(lm) - floor(d/2); % Save middle elements
73
     a(end+1) = Nt;
74
75
     % Peaks?
```

```
xa = x(a);
                                % Serie without flat peaks
77
     b = (diff(xa) > 0);
                                % 1 ⇒ positive slopes (minima begin)
78
                                % 0 ⇒
                                          negative slopes (maxima begin)
79
     xb = diff(b);
                                          maxima indexes (but one)
                                % -1 ⇒
80
                                % +1 ⇒
                                          minima indexes (but one)
81
     imax = find(xb = -1) + 1; % maxima indexes
82
     imin = find(xb = +1) + 1; % minima indexes
83
     imax = a(imax);
84
     imin = a(imin);
85
86
     nmaxi = length(imax);
87
     nmini = length(imin);
88
89
     % Maximum or minumim on a flat peak at the ends?
90
     if (nmaxi=0) & (nmini=0)
91
      if x(1) > x(Nt)
92
        xmax = x(1);
93
        imax = indx(1);
94
        xmin = x(Nt);
95
        imin = indx(Nt);
96
       elseif x(1) < x(Nt)
97
        xmax = x(Nt);
98
        imax = indx(Nt);
99
        xmin = x(1);
100
        imin = indx(1);
101
      end
102
      return
103
     end
104
105
     % Maximum or minumim at the ends?
106
     if (nmaxi=0)
107
      imax(1:2) = [1 Nt];
108
     elseif (nmini=0)
109
      imin(1:2) = [1 Nt];
110
     else
111
      if imax(1) < imin(1)
112
        imin(2:nmini+1) = imin;
113
        imin(1) = 1;
114
      else
115
        imax(2:nmaxi+1) = imax;
116
        imax(1) = 1;
117
       end
118
       if imax(end) > imin(end)
119
        imin(end+1) = Nt;
120
121
        imax(end+1) = Nt;
122
      end
123
     end
124
     xmax = x(imax);
125
     xmin = x(imin);
126
127
     % NaN's:
128
     if ~isempty(inan)
      imax = indx(imax);
130
       imin = indx(imin);
131
     end
132
133
     % Same size as x:
134
     imax = reshape(imax, size(xmax));
135
     imin = reshape(imin, size(xmin));
136
```

```
% Descending order:
[temp,inmax] = sort(-xmax); clear temp
xmax = xmax(inmax);
imax = imax(inmax);
[xmin,inmin] = sort(xmin);
imin = imin(inmin);

% Carlos AdriAn Vargas Aguilera. nubeobscura@hotmail.com
```