Continuous-time stochastic models

Modern Techniques in Modelling

Introduction

Overview

- Introduce continuous-time stochastic models
- Implement Gillespie algorithm and analyse stochastic model output
- Implement a stochastic model with the adaptivetau package
- Discussion and concluding remarks

Overview

- Introduce continuous-time stochastic models (~20 minutes)
- Implement Gillespie algorithm and analyse stochastic model output (~60 minutes)
- Implement a stochastic model with the adaptivetau package (~20 minutes)
- Discussion and concluding remarks(~20 minutes)

Deterministic models

One set of parameters -> one trajectory

Stochastic models

One set of parameters -> many trajectories

Types of model

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

Example 1: difference equations

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

$$S(t+1) = S(t) - \beta S(t)I(t)$$

$$I(t+1) = I(t) + \beta S(t)I(t) - \gamma I(t)$$

$$R(t+1) = R(t) + \gamma I(t)$$

Discrete-time deterministic models

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

$$S(t+1) = S(t) - \beta S(t)I(t)$$

$$I(t+1) = I(t) + \beta S(t)I(t) - \gamma I(t)$$

$$R(t+1) = R(t) + \gamma I(t)$$

Example 2: ODEs

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

$$\frac{dS}{dt} = -\beta SI/N$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Continuous-time deterministic models

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

$$\frac{dS}{dt} = -\beta SI/N$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Example 3: individual-based model

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

```
For each ts from 1 to T {
   lambda <- beta * I/N

For each i from 1 to N {
    If individual i is susceptible:
        with prob 1-exp(-lambda·Δt) make infected.
        Else-if individual i is infected:
        with prob 1-exp(-gamma·Δt) make susceptible.
   }
   Record population state
}</pre>
```

Example 3: individual-based model

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

```
For each ts from 1 to T {
   lambda <- beta * I/N

For each i from 1 to N {
    If individual i is susceptible:
        with prob 1-exp(-lambda·Δt) make infected.
        Else-if individual i is infected:
        with prob 1-exp(-gamma·Δt) make susceptible.
   }
   Record population state
}</pre>
```

Event-based view

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

```
For each ts from 1 to T {
   lambda <- beta * I/N

For each i from 1 to N {
    If individual i is susceptible:
        with prob 1-exp(-lambda·Δt) make infected.
        Else-if individual i is infected:
        with prob 1-exp(-gamma·Δt) make susceptible.
   }
   Record population state
}</pre>
```

Continuous-time stochastic models

Continuous-time stochastic models

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

Stochastic differential equations (SDEs)

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

$$\frac{dS}{dt} = -\beta SI/N - \sqrt{\beta SI/N} dW_1$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I + \sqrt{\beta SI/N} dW_1 - \sqrt{\gamma I} dW_2$$

$$\frac{dR}{dt} = \gamma I + \sqrt{\gamma I} dW_2$$

Can be solved with Euler method (see Session 7).

Continuous-time discrete stochastic models

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

Continuous-time discrete stochastic models

- discrete vs continuous time
- discrete vs continuous compartments
- deterministic vs stochastic dynamics

Event-based view:

– infection: (S, I, R) → (S - 1, I + 1, R) with rate βSI/N

- recovery: $(S, I, R) \rightarrow (S, I - 1, R + 1)$ with rate γI

We model these as a so-called **continuous-time Markov chain**.

Example: Influenza with short and long immunity

 $\frac{\mathrm{d}T}{\mathrm{d}t}$

dL

 $\overline{\mathrm{d}t}$

QUESTION: Which events can happen, and at what rates?

 $= \nu I - \tau T$

 $= \alpha \tau T$

DISCRETE

(session on individual-based models)

```
for (ts in 1:steps) { ... EVENTS ... }
```

CONTINUOUS (here)

```
while (time < finaltime) { ...
  time <- time + rexp(n = 1, rate = sum(rates))
    if (time <= finaltime) { ... EVENTS ... }
}</pre>
```

Waiting times between events in a Poisson process are exponentially distributed

Gillespie algorithm

[Gillespie, 1976]

Repeat until end time:

1. Calculate event rates

```
rates <- c()
rates["infection"] <- beta * S * I / N
rates["recovery"] <- gamma * I</pre>
```

2. Choose how long nothing happens

```
rexp(n = 1, rate = sum(rates))
```

3. Choose which event happens

```
sample(x = length(rates), size = 1, prob = rates)
```

and update system state according to event.

Now, put it in R!

Practical structure

- Part 1: Stochastic simulation using the Gillespie algorithm
- Part 2: A faster alternative: the adaptivetau package

Practical part 1

- Open the file
 - 10_StochasticContinuousractical/01_Gillespie.R and follow the instructions
- Objective: use the Gillespie algorithm to simulate the SIR model;
 process outputs from stochastic models

adaptive tau-leaping

Algorithm:

- Identifies periods during which all rates are not expected to change, and all variables are far from 0
- "Leaps" over these periods of time
- Adds the net effect of the Poisson-distributed number of transitions that should have occurred in that period

In R, the ssa.adaptivetau package implements this (and generates fast C code).

Practical part 2

- Open the file
 - 10_StochasticContinuousractical/02_AdaptiveTau.R and follow the instructions
- Objective: use the adaptivetau packages to simulate the SIR and SEITL models

Representing uncertainty

Parameter variation

At each of 4 μ values, 5 runs of a model that is:

Stochastic = o / X ?
Deterministic = o / X ?

Parameter variation

Fig. 2. Incidence of tuberculosis (all forms) in the United Republic of Tanzania based on WHO estimates and projected incidence based on the calibrated epidemic model

Representing uncertainty

References

- L.J.S. Allen (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2(2):128–142. https://doi.org/10.1016/j.idm.2017.03.001
- M.J. Keeling, P. Rohani (2017). Modeling Infectious Diseases in Humans and Animals. Princeton University Press.
- D.T. Gillespie (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys, 22(4):403–434, 1976. ISSN 0021-9991. https://doi.org/10.1016/0021-9991(76)90041-3
- Y. Cao, D.T. Gillespie, and L.R. Petzold (2007). Adaptive explicit-implicit tauleaping method with automatic tau selection. J Chem Phys, 126(22):224101 URL https://doi.org/10.1063/1.2745299
- A.A. King, M. Domenech de Cellès, F.M.G. Magpantay and Pejman Rohani (2015). Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proc Roy Soc B 282(1806). https://doi.org/10.1098/rspb.2015.0347