

Título de la Práctica: Combinatoria.

Profesor Responsable: Inmaculada Rodríguez Martín.

Práctica número: 1

Objetivo

Esta práctica veremos las técnicas básicas y avanzadas de recuento mediante ejemplos y problemas. Para ello, se utilizará el motor computacional de conocimiento denominado **Wolfram Alpha (W|A)**, cuyo núcleo de cálculo está basado en el aplicativo de cálculo simbólico Mathematica. Los contenidos de la práctica son los siguientes:

- Introducción a la combinatoria. Técnicas de recuento.
- Introducción a W|A.
- Comandos de W | A para recuento básico.
- Problemas de recuento básico.
- Cuestionario tipo test que indicará la nota final de la práctica.

1. Introducción a la Combinatoria. Técnicas de recuento.

Regla multiplicativa. Se tienen k conjuntos de elementos con n_1, n_2, \ldots, n_k elementos en cada uno. Deseamos tomar una muestra de k elementos de forma que tomemos un elemento de cada conjunto. El número total de muestras distintas es $n_1 \cdot n_2 \cdot \ldots \cdot n_k$.

Ejemplo: ¿De cuantas formas diferentes podemos seleccionar un menú en el que podemos elegir entre 2 primeros platos, entre 4 segundos platos y entre 3 postres?

Variaciones sin repetición de n elementos tomados de k en k. Tomamos k elementos de n donde importa el orden y no se pueden repetir ($k \le n$). El número de muestras diferentes es:

$$V_n^k = n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Ejemplo. De los 25 profesores de la Escuela de Ingeniería, ¿de cuántas formas diferentes se puede nombrar un equipo directivo (formado por decano, vicedecano y secretario)?

Variaciones con repetición de n elementos tomados de k en k. Tomamos k elementos de n donde importa el orden y se pueden repetir. El número de muestras diferentes es:

$$VR_n^k = n^k$$

Ejemplo. ¿Cuántos números diferentes de 8 dígitos se pueden escribir en binario?

Permutaciones de n **elementos**. Son un caso particular de las variaciones sin repetición en el que n = k. Es decir tomamos n objetos de los n posibles y no se pueden repetir. Por tanto, contamos las diferentes formas de ordenar n objetos. El número de muestras diferentes es:

$$P_n = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1 = n!$$

Por ejemplo. ¿De cuántas formas diferentes se pueden sentar 6 personas en 6 sillas?

Permutaciones con repetición. Se tiene n objetos diferentes que se repiten $\alpha_1,\alpha_2,\ldots,\alpha_n$. Sea $m=\alpha_1+\alpha_2+\cdots+\alpha_n$ el número total de objetos que hay. Entonces el número de formas diferentes de ordenar estos m objetos es:

$$PR_m^{\alpha_1,\dots,\alpha_n} = \frac{m!}{\alpha_1! \cdots \alpha_n!}$$

Por ejemplo. ¿Cuántas palabras diferentes (con o sin sentido) podemos formar con 3 aes, 2 eses, una o y una t?

Combinaciones de n elementos tomados de k en k. Se tiene una población de n elementos y se quiere escoger un subconjunto de k elementos ($k \le n$). El número de muestras diferentes es:

$$C_n^k = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Por ejemplo. ¿Cuántos conjuntos de 4 representantes de alumnos se pueden formar de una clase de 30 alumnos?

Combinaciones con repetición de n elementos tomados de k en k. Se disponen de n tipos de elementos diferentes y hay que escoger un conjunto de k elementos donde se pueden escoger elementos repetidos. El número de muestras diferentes es:

$$CR_n^k = \binom{n+k-1}{k}$$

Por ejemplo. ¿De cuántas formas diferentes podemos poner en una urna 5 bolas si disponemos de bolas blancas, rojas y negras?

TABLA DE COMBINATORIA

$A = \{a_1, a_2,, a_n\}$	¿Influye el orden?	¿Pueden repetirse los elementos?	Número total de elementos diferentes	Número de elementos tomados	Fórmula
Variaciones sin repetición	Sí	No	n	$k \le n$	$V_n^k = \frac{n!}{(n-k)!}$
Variaciones con repetición	Sí	Sí	n	k	$VR_n^k = n^k$
Permutaciones	Sí	No	n	n	$P_n = n!$
Permutaciones con repetición	Sí	a_i se repite α_i veces	n	$m = \sum_{i=1}^{n} \alpha_i$	$PR_m^{\alpha_1,\dots,\alpha_n} = \frac{m!}{\alpha_1! \cdots \alpha_n!}$
Combinaciones	No	No	n	$k \le n$	$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
Combinaciones con repetición	No	Sí	n	k	$CR_n^k = \binom{n+k-1}{k}$

2. Introducción al W A.

La URL de W | A es www.wolframalpha.com, donde podemos preguntarle directamente qué es:

A lo cual responde: "Soy un motor de conocimiento computacional". Realmente, W|A no pretende ser un simple buscador (como Google), sino más bien una aplicación web que genera datos a partir de su propia base de conocimiento interna, sin tener que buscar en Internet para devolver los enlaces relacionados. Las principales ventajas de W|A son:

- Es de uso gratuito para fines no comerciales.
- Fácil de usar (como un buscador de internet) por cualquier persona.
- Muestra cientos de ejemplos relacionados con infinidad de tópicos tanto científicos como culturales y/o sociales.
- Permite desarrollar aplicativos sencillos, y expone toda su potencia de cálculo para ser consumida mediante servicios web (WS).

El motor de cálculo que hay detrás de W|A es la aplicación **Mathematica**, la cual, mediante su lenguaje simbólico matemático, proporciona el marco de trabajo sobre el que todo el conocimiento de W|A está representado, y sobre el que se implementan todas sus capacidades. La web principal de W|A es muy simple, y se describe en la siguiente figura. Indicar que cada parte independiente que aparece en la web de W|A se denomina un **pod** o **subpod**.

3. Comandos de W | A para recuento básico

Permutaciones de n elementos

Podemos preguntarle por las permutaciones de un conjunto de elementos.

También se podría poner **Permutations**[{a, b, c, d}], y con el comando **Lenght**[·] aplicado al resultado anterior obtendríamos el número total de permutaciones. O simplemente, calcular el número de permutaciones con 4! = 24.

Permutaciones con repetición

¿Cuántas cadenas distintas se pueden formar con las letras de la palabra PEPPERCORN si se utilizan todas las letras?

Variaciones sin repetición de n elementos tomados de k en k

¿Cuántos números de dos cifras sin repetir dígitos se pueden formar con el conjunto {1, 2, 3, 4}?

El número total de variaciones se obtiene aplicando el comando Lenght $[\cdot]$ al resultado anterior, o usar los comandos P(n,k) o nPk, que en este caso particular sería P(4,2) ó 4P2.

Variaciones con repetición de n elementos tomados de k en k

¿Cuántos sucesos distintos se pueden dar si se tira una moneda {C, X} tres veces?

Los sucesos se pueden obtener con el comando Tuples[{"C","X"},3].

Combinaciones sin repetición de n elementos tomados de k en k

¿Cuántos grupos de dos alumnos distintos se pueden construir con los números {1, 2, 3, 4} asignados a dichos alumnos?

Si sólo queremos el número de combinaciones podemos usar el comando n choose k. También se puede usar el comando C(n,k).

Combinaciones con repetición de n elementos tomados de k en k

¿De cuántas formas se pueden escoger 6 objetos de entre 10 si no se ordenan y se pueden repetir?

4. Problemas de recuento básico

En esta sección vamos a repasar los conceptos mediante la resolución de algunos de los problemas.

- [1] ¿De cuántas formas se pueden escoger 6 objetos de entre 10 diferentes si:
 - a) los objetos escogidos se ordenan y no se pueden repetir?

Variaciones sin repetición: P(10,6) = 151200

b) los objetos escogidos se ordenan y sí se pueden repetir?

Variaciones con repetición: 10^6 = 1 000 000

c) los objetos escogidos no se ordenan y no se pueden repetir?

Combinaciones: C(10,6) = 210

d) los objetos escogidos no se ordenan y sí se pueden repetir?

Combinaciones con repetición: C(10 + 6 - 1, 6) = 5005

[2] Un examen de tipo test contiene 100 preguntas con respuestas de VERDADERO o FALSO. ¿De cuántas formas distintas se puede responder al examen si las preguntas se pueden dejar sin contestar?

Variaciones con repetición de 3 elementos tomados de 100 en 100: 3^100 = 515 377 520 732 011 331 036 461 129 765 621 272 702 107 522 001 formas

- [3] ¿Cuántas apuestas se pueden hacer en los siguientes juegos de azar?
 - a) Marcar 14 resultados en la Quiniela de Fútbol:

Variaciones con repetición: 3¹⁴ = 4 782 969

b) Elegir 6 números del 1 al 49 en La Primitiva:

Combinaciones: C(49,6) = 13 983 816

c) Elegir 5 números del 1 al 50, y 2 estrellas del 1 al 11 en Euro Millones:

Combinaciones: C(50,5) * C(11,2) = 116 531 800

5. Cuestionario.

Para evaluar el rendimiento de la práctica, tienes que realizar un pequeño cuestionario tipo test que está accesible en el Campus Virtual ULL de OPTIMIZACIÓN. El cuestionario se puntúa de 0 a 10 y esa nota se trasladará luego a la siguiente escala: un suspenso equivale a un 0, un aprobado a un apto- (1), un notable a un apto (1,6) y un sobresaliente a un apto+ (2).