

Ficha de Trabalho n.º 1 - Matemática A - 10.º Ano

INTRODUÇÃO À LÓGICA BIVALENTE

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Sejam $p \in q$ duas proposições com o mesmo valor lógico. Qual das seguintes proposições é falsa	1. Sejam	$p \in a$ duas	proposições	com o mesmo	valor lógico.	Qual das s	sequintes	proposições	s é falsa?
--	----------	----------------	-------------	-------------	---------------	------------	-----------	-------------	------------

A $p \Leftrightarrow q$

 $\mathsf{B} \quad p \Rightarrow q$

 $p \lor \sim q$

Resolução em vídeo pelo professor Jorge Penalva do canal do Youtube "O Mocho": https://youtu.be/TQoHMkWhJWc

- 2. Considere as seguintes proposições:
 - p: A Maria tem uma licenciatura em Matemática
 - q: A Maria tem um mestrado em Física
 - r: A Maria é professora Matemática

Sabe-se que a proposição $q \Leftrightarrow p$ é verdadeira e que a proposição $\sim p \vee r$ é falsa.

Qual das seguintes proposições é verdadeira?

- A Se a Maria é licenciada em Matemática e tem um mestrado em Física então é professora de Matemática.
- B A Maria tem uma licenciatura em Matemática e não tem um mestrado em Física.
- C A Maria é licenciada em Matemática se for professora de Matemática.
- D A Maria não tem um mestrado em Física ou é professora de Matemática

Resol ção em vídeo: https://youtu.be/Ko9FOUJT6VQ

3. Considere as proposições p, q e r tais que a proposição $p \Rightarrow q \lor \sim r$ é falsa.

Qual é, respectivamente, o valor lógico das proposições p, q e r?

f A V, Ve V

B *V*, *F* e *V*

C *V*, *F* e *F*

D *F*, *F* e *V*

Resolução em vídeo: https://youtu.be/fbFJQUHie8o

4. Sejam p e q duas proposições.

Qual das proposições é equivalente à negação da proposição $\left(\left(\, p \lor p \, \right) \land \sim q \, \right) \Longrightarrow q \, ?$

- **A** $p \land \sim q$

- $D \quad p \lor \sim q$

Resolução em vídeo: https://youtu.be/G71wtYbh2VM

5. Sejam p e q duas proposições. A proposição $p \land (q \Rightarrow p)$ é equivalente a:

A p

 \mathbf{B} q

C ~ p

Resolução em vídeo: https://youtu.be/gCp2MzgKid0

6. Considere as proposições p, q e r tais que a proposição $(p \Rightarrow q) \land (p \lor \sim r) \land \sim q$ é verdadeira.

Qual é, respectivamente, o valor lógico das proposições $p,\,q$ e r?

lacksquare F, V e V

B F, F e V

 $lackbox{\textbf{C}}$ V, F e F

D *F*, *F* e *F*

Resolução em vídeo: https://youtu.be/3Zk6QbJvjXw

7. Considere as seguintes proposições:

a: A Joana tem um gato de cor branca

b: A Joana tem um gato de cor preta

c: A Joana tem um gato tricolor

Sabe-se que a proposição $(\sim a \land (b \Rightarrow c)) \lor a$ é falsa.

A Joana tem um gato:

A de cor branca.

B tricolor.

C de cor preta.

D nem branco, nem preto, nem tricolor.

Resolução em vídeo: https://youtu.be/xUyZym0jlxl

8. Sejam p, q e r três proposições. Qual das seguintes proposições não é uma tautologia?

$$B ((p \Rightarrow q) \lor (p \Rightarrow r)) \Rightarrow (p \Rightarrow q \lor r)$$

9. Sejam p e q duas proposições e r uma proposição que depende de p e q. Na figura está representada parte da tabela de verdade da proposição r.

A proposição r pode ser:

$$\boxed{\mathbf{A}} \quad p \land \sim q \Rightarrow p$$

$$\mathsf{B} \quad p \Rightarrow p \land \sim q$$

$$p \Rightarrow p \lor \sim q$$

$$\mathbf{D} \quad p \lor \sim q \Longrightarrow p$$

10. Sejam p e q duas proposições. A proposição $p \Leftrightarrow p \lor q$ é equivalente a:

$$\land$$
 $\sim (\sim p \lor q)$

$$(p \lor \sim q)$$

Resolução em vídeo: https://youtu.be/J1YhGrDK_WA

Grupo II Itens de Resposta Aberta

11. Considere as seguintes proposições:

p: O José já fez uma viagem à China

q: O José já fez uma viagem aos Estados Unidos

r: O José já fez uma viagem à Tailândia

11.1. Traduza para linguagem simbólica a seguinte proposição:

"O José ainda não fez uma viagem aos Estados Unidos, mas já fez uma viagem à China se também já fez uma viagem à Tailândia."

11.2. Sabendo que a proposição $(\sim p \land q) \Rightarrow \sim (p \lor r)$ é falsa, em qual, ou em quais, destes países já esteve o José?

11.3. Usando as propriedades das operações lógicas, mostre que $((\sim p \land q) \Rightarrow \sim (p \lor r)) \Leftrightarrow p \lor \sim q \lor \sim r$.

- **12.** Sejam p e q duas proposições.
 - **12.1.** Usando as propriedades das operações lógicas, mostre que $(\sim p \Rightarrow \sim (p \Rightarrow q)) \Leftrightarrow p$.
 - **12.2.** Construa a tabela de verdade da proposição $\sim p \Rightarrow \sim (p \Rightarrow q)$ e confirme a equivalência enunciada na alínea anterior.
- 13. Sejam p, q e r três proposições.
 - **13.1.** Construa a tabela de verdade da proposição $p \land (\sim q \lor r)$.
 - 13.2. Suponha que a proposição $p \land (\sim q \lor r)$ é verdadeira. Qual é o valor lógico da proposição:

$$(r \Rightarrow p) \Leftrightarrow (\sim r \land q)$$

14. Considere as seguintes proposições:

p: «o José passou as suas férias no Algarve»

q: «o José foi à Praia da Rocha»

r: «o José foi à Praia da Ilha de Tavira»

- **14.1.** Traduza para linguagem corrente a seguinte proposição: $p \Rightarrow (q \Leftrightarrow \sim r)$.
- 14.2. Escreva simbolicamente a seguinte afirmação:

"O José foi à Praia da Rocha e à Praia da Ilha de Tavira no caso de ter passado férias no Algarve."

15. Sejam p e q duas proposições. Simplifique a seguintes proposições e indique sempre que possível o respectivo valor lógico.

15.1.
$$(p \lor (p \land q)) \Rightarrow p$$

15.2.
$$\sim (\sim p \land (p \lor q)) \land (p \lor q)$$

15.3.
$$p \Rightarrow (p \Rightarrow p \land q)$$

15.4.
$$(p \Rightarrow (p \land \sim q)) \land (\sim p \lor q)$$

15.5.
$$\sim ((p \Rightarrow \sim q) \vee (p \wedge q))$$

15.6.
$$(p \wedge q) \vee (\sim p \wedge q) \vee (p \wedge \sim q)$$

15.7.
$$q \Rightarrow (\sim (p \Rightarrow \sim q) \land q)$$

15.8.
$$(p \land \sim (p \land q)) \Rightarrow \sim p \lor q$$

- **16.** Sejam p e q duas proposições. Mostre que o valor lógico de $(q \land (p \lor \sim q)) \Rightarrow (\sim p \lor q)$ não depende do valor lógico das proposições p e q, usando:
 - 16.1. uma tabela de verdade.
 - 16.2. as propriedades das operações lógicas.
- 17. Sejam p, q e r três proposições.
 - **17.1**. Mostre que a proposição $((p \Rightarrow r) \land (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$ é uma tautologia.
 - 17.2. Usando as propriedades das operações lógicas, mostre que:

a)
$$((p \Rightarrow r) \land (q \Rightarrow r)) \Leftrightarrow (p \lor q \Rightarrow r)$$
.

b)
$$((p \Rightarrow q) \land (p \Rightarrow r)) \Leftrightarrow (p \Rightarrow q \land r)$$
.

- 18. Considere as seguintes proposições:
 - a: O Pedro tem um carro branco
 - b: O Pedro tem um carro preto
 - c: O Pedro tem um carro cinzento

Sabe-se que as proposições $a \lor b$ e $b \lor c$ são verdadeiras e que $a \land c$ e $b \land \neg c$ são falsas.

É possível concluir se o Pedro tem algum carro? Se sim, de que cor é (são)?

- 19. Considere as seguintes proposições:
 - a: Todos os números primos são ímpares
 - b: Todos os quadrados são trapézios

z: A equação $x^2 + y^2 = z^2$ não tem soluções em que x, y e z sejam números inteiros consecutivos.

Indique o valor lógico das seguintes proposições:

19.1.
$$a \lor (b \land \neg c)$$

19.2.
$$a \lor b \Rightarrow b \land c$$

19.3.
$$(a \Leftrightarrow c) \Rightarrow (\neg a \land (a \lor b))$$

19.4.
$$\sim (\sim a \land \sim b \lor c)$$

19.5.
$$\sim a \Rightarrow (b \Rightarrow (\sim c \Rightarrow a \lor b))$$

19.6.
$$(a \lor b) \land (b \Rightarrow c)$$

20. Sejam p, q e r três proposições e V uma qualquer proposição verdadeira. Usando tabelas de verdade, mostre que:

20.1.
$$(p \Rightarrow q) \Leftrightarrow \sim p \vee q$$

20.2.
$$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$$

20.3.
$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

20.4.
$$((p \lor q) \land (p \land q)) \Leftrightarrow p \land q$$

20.5.
$$(p \land q \Rightarrow p \lor q) \Leftrightarrow V$$

21. Sejam p, q e r três proposições, V uma qualquer proposição verdadeira e F uma qualquer proposição falsa. Usando as propriedades das operações lógicas, mostre que:

21.1.
$$\sim p \land (p \lor q) \Leftrightarrow \sim (q \Rightarrow p)$$

$$22 \left(\cdot \left((p \Rightarrow q) \lor p \right) \Rightarrow q \right) \Leftrightarrow V$$

21.3.
$$\sim (p \Leftrightarrow q) \Leftrightarrow ((p \land \sim q) \lor (\sim p \land q))$$

$$M.4. (p \lor q \Rightarrow p \land q) \Leftrightarrow (p \Leftrightarrow q)$$

21.5.
$$(p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$$

21.6.
$$((p \lor q) \land ((p \land r) \lor \sim q)) \Leftrightarrow (p \land (q \Rightarrow r))$$

21.7.
$$(p \land (p \lor q)) \land (p \lor (p \land q)) \Leftrightarrow p$$

21.8.
$$(p \lor (\sim p \land q)) \land (\sim p \land \sim q) \Leftrightarrow F$$

22. Considere as seguintes proposições:

- a: Está a chover
- b: O Carlos sai de casa
- c: O Carlos tem aulas
- 2.1. Escreva a seguinte proposição em linguagem simbólica:

"O Carlos não sai de casa guando está a chover, a menos que tenha aulas."

22.2. Traduza para linguagem corrente a seguinte proposição: $\sim a \lor c \Longrightarrow b$.

Adaptado do Caderno de Apoio do 10.º Ano - Matemática A

- **23.** Sejam p, q e r três proposições tais que a proposição $p \Rightarrow q$ é verdadeira.
 - 23.1. Qual é o valor lógico das seguintes proposições:
 - a) $p \wedge \sim q$
 - b) $r \wedge p \Rightarrow q$
 - c) $(p \Rightarrow r) \lor (r \Rightarrow q)$
 - **23.2.** Supondo que a proposição $(p \Rightarrow q) \Leftrightarrow ((\sim q \lor \sim r) \land r)$ é verdadeira, quais são os valores lógicos de p, q e r?
 - **23.3.** Supondo que $p \land \neg q \Leftrightarrow (p \Rightarrow (\neg r \Rightarrow (q \Rightarrow \neg p)))$ é verdadeira, quais são os valores lógicos de p, q e r?
- **24.** Sejam p, q e r três proposições tais que a proposição $p \Leftrightarrow q$ é falsa e a proposição $r \Rightarrow p \land q$ é verdadeira.

Qual é o valor lógico da proposição \sim $\left(\sim r \wedge \left(p \vee q\right)\right)$?

- **25.** Sejam p, q e r três proposições. Determine os valores lógicos de p, q e r sabendo que:
 - **25.1.** a proposição $(p \land \sim r) \lor (p \Longrightarrow \sim q)$ é falsa.
 - **25.2.** a proposição $\sim p \Rightarrow (q \Rightarrow r)$ é falsa.
 - **25.3.** a proposição $(\sim p \Rightarrow r) \land (\sim q \Leftrightarrow p) \land \sim r$ é verdadeira.

Solucionário

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. D

2. C

3. B

4. A

5. A

6. [

7. C

3. C

9. E

10. D

GRUPO II - ITENS DE RESPOSTA ABERTA

11.1. $\sim q \land (r \Rightarrow p)$

11.2. O José já esteve nos Estados Unidos e na Tailândia.

12.2.

p	q	~ p	$p \Rightarrow q$	$\sim (p \Rightarrow q)$	$\sim p \Rightarrow \sim (p \Rightarrow q)$
V	V	F	V	F	V
V	F	F	F	V	V
F	V	V	V	F	F
F	F	V	V	F	F

13.1.

p	q	r	~ q	~ <i>q</i> ∨ <i>r</i>	$p \times (\sim q \vee r)$
V	V	V	F	V	V
V	V	F	F	F	\bigcup_{F}
V	F	V	V	V	V
V	F	F	V	V	V
F	V	V	F	V	F
F	V	F	F	$rac{1}{2}$	F
F	F	V	\overline{V}	V	F
F	F	F 🕻	V	F	F

13.2 *F*

14.1. Se o José passou as suas férias no Álgarve, então, foi à Praia da Rocha se e somente se não foi à Praia da Ilha de Tavira.

14.2. $p \Rightarrow q \wedge r$

15.1. *V*

15.2. *p*

15.3. $\sim p \vee q$

15.4. ~ *p*

15.5.

15.6. $p \vee q$

15.7. $p \lor \sim q$

15.8. $\sim p \vee q$

16.1.

p		q	~ p	~ q	$p \lor \sim q$	$q \land (p \lor \sim q)$	$\sim p \vee q$	$(q \land (p \lor \sim q)) \Rightarrow (\sim p \lor q)$
O,	V	V	F	F	V	V	V	V
V	V	F	F	V	V	F	F	V
F	F	V	V	F	F	F	V	V
F	F	F	V	V	V	F	V	V

17.1.

p	q	r	$p \Rightarrow r$	$q \Rightarrow r$	$\underbrace{(p \Rightarrow r) \land (q \Rightarrow r)}_{a}$	$p \wedge q$	$\underbrace{p \land q \Rightarrow r}_{b}$	$a \Rightarrow b$
V	V	V	V	V	V	V	V	V
V	V	F	F	F	F	V	F	V
V	F	V	V	V	V	F	V	V
V	F	F	F	V	F	F	V	V
F	V	V	V	V	V	F	V	V
F	V	F	V	F	F	F	V	V
F	F	V	V	V	V	F	V	V
F	F	F	V	V	V	F	V	V

Portanto, a proposição $(p \Rightarrow r) \land (q \Rightarrow r) \Rightarrow (p \land q \Rightarrow r)$ é uma tautologia, pois é sempre verdadeira para quaisquer que sejam a proposições, p, q e r.

18. Podemos resolver o problema recorrendo a uma tabela de verdade:

а	b	с	~ c	$a \lor b$	$b \lor c$	$a \wedge c$	b ∧~c
V	V	V	F	V	V	V	F
V	V	F	V	V	V	F	V
V	F	V	F	V	V		F
V	F	F	V	V	F	F	V
F	V	V	F	V	V	F	F
F	V	F	V	V	V	F	F
F	F	V	F	F) V	F	F
F	F	F	V	(K)	F	F	F

O Pedro tem um carro preto e outro cinzento.

19.1. *V*

19.2. F

19.3. *V*

19.4. *V*

19.5. V

96 F

20.1.

<i>p</i> •	q	~p	$p \Rightarrow q$	$\sim p \vee q$
\overline{V}	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

Portanto, $p \Rightarrow q \Leftrightarrow \sim p \vee q$

20.2.

p	q	$p \Leftrightarrow q$	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

Portanto, $(p \Leftrightarrow q) \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p)$

20.3.

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$p \Rightarrow r$	$\underbrace{(p \Rightarrow q) \land (q \Rightarrow r)}_{a}$	$a \Rightarrow (p \Rightarrow r)$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	V	F	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	A	F	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

Portanto, $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow p \Rightarrow r$

20.4.

р	q	$p \lor q$	$p \wedge q$	$(p \lor q) \land (p \land q)$
V	V	V	V	V
V	F	V	F	F
F	V	V	F	F
F	F	F	F	F

Portanto, $(n \vee a) \wedge (n \wedge a) \Leftrightarrow n \wedge a$

20.5.

p	q	$p \lor q$	$p \wedge q$	$p \land q \Rightarrow p \lor q$
V	V	V	V	V
V	F	V	F	V
F	V	V	F	V
F	F	F	F	V

Portanto, $(p \land q \Rightarrow p \lor q) \Leftrightarrow V$

- 22.1. $\sim c \Rightarrow (a \Rightarrow \sim b)$ ou $(\sim c \land a) \Rightarrow \sim b$
- 22.2. O Carlos sai de casa quando não está a chover ou quando tem aulas.
- 23.1. a) E
- **23.1**. b) *V*
- 23.1. c) V
- **23.2.** $F, F \in V$

- **23.3.** *V*, *V* e *F*
- **24**. F
- **25.1** *V*, *V* e *V*
- **25.2.** *F*, *V* e *F*
- **25.3.** *V*, *F* e *F*