Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Performances des systèmes asservis

TD+=1Performances Robot Delta

	Programme - Compétences		
B227	Modéliser	Modélisation des systèmes asservis · Stabilité: - définition, nature de l'instabilité (apériodique, oscillatoire), - contraintes technologiques engendrées, - interprétation dans le plan des pôles, - critère du revers, - marges de stabilité, - dépassement.	
B228	Modéliser	 Pôles dominants et réduction de l'ordre du modèle; Performances et réglages; Précision d'un système asservi en régime permanent pour une entrée en échelon, une entrée en rampe, une entrée en accélération; Rapidité d'un système asservi: temps de réponse, bande passante. 	

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Extrait du concours X-ENS MP 2002

Présentation

Une usine de fabrication de flacons en verre possède un poste de mise en cartons qui est l'objet de la présente étude.

Les flacons sortent du four de cuisson puis sont disposés les uns derrière les autres sur un tapis roulant qui les achemine jusqu'au poste de mise en cartons. Une caméra associée à un logiciel de reconnaissance de formes s'assure de leur conformité géométrique. Les flacons non conformes (défaut géométrique, flacon renversé, cassé ...) sont évacués vers l'extérieur sur le même tapis. Chaque flacon conforme est saisi par un des deux robots Delta puis placé dans une alvéole du carton. Les deux robots Delta travaillent en parallèle sous la conduite d'une même Partie Commande : ils saisissent les flacons sur le même tapis roulant et remplissent chacun un carton différent. Chaque carton plein contient 48 flacons.

Les images issues de la caméra permettent à la partie commande de donner un ordre d'orientation du flacon au robot qui l'a saisi de façon à ce que celui-ci rentre aisément dans l'alvéole correspondante de forme parallélépipédique :

Les cartons vides sont acheminés sur la zone de chargement par l'intermédiaire d'un convoyeur à rouleaux et de vérins pousseurs. Les cartons remplis sont évacués vers l'extérieur par ce même convoyeur. Les autres opérations réalisées dans l'unité de conditionnement sont la fermeture, le marquage et la palettisation des cartons, elles ne seront pas étudiées ici.

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Les deux robots utilisés sont de type « Delta » à architecture parallèle. Dans ce type de robots, les stators des actionneurs (moteurs électriques) sont fixés sur le bâti et les rotors agissent sur des chaînes cinématiques indépendantes (bras + bielles) reliant, en parallèle, la partie active du robot, ici une plateforme équipée d'une pince.

Le robot étudié est à quatre « axes » (en robotique, un axe est une liaison motorisée) :

- Trois moteurs électriques assurent le déplacement de la plate-forme mobile en agissant sur les trois bras 1, 2 et 3 : c'est la structure « Delta » tri-motorisée.
- Un moteur électrique assure l'orientation de la pince, via un axe cinématique d'orientation.

La fermeture et l'ouverture de la pince sont assurées par un vérin pneumatique.

L'extrait du cahier des charges concernant la fonction « Déplacer le flacon saisi jusqu'à son alvéole » fait apparaître les critères suivants :

	Fonction	Critères	Niveaux
A43	Déplacer le flacon	• Limiter les erreurs de positionnement δ_x , δ_y et δ_z	• $\delta_x = \delta_y = \pm 0.5 \ mm$
	saisi jusqu'à son	du centre de gravité G de la plate-forme 4 dans le	$\delta_z = \pm 1 \ mm$
	alvéole du carton	repère $(0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$	
		• Respecter le temps de cycle (un aller-retour tapis /	$\bullet \ \Delta T = 0.8 \ s$
		alvéole) : ΔT	
		• Ne pas détériorer les flacons : accélération maxi du	• $a = 8g \approx 80 \ m/s^2$
		centre de gravité du flacon : a	
		• Position unique de la pince pour une position	
		angulaire donnée des trois bras motorisés	
		• Pas de collision avec les éléments environnants :	
		respect du volume de sécurité	cylindre d'axe $(0, \vec{z_0})$ et de
			rayon R_S

Le robot Delta est modélisé cinématiquement comme représenté ci-après :

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

L'architecture particulière de ce robot Delta lui assure une rigidité suffisante, et donc, une précision de positionnement qui vérifie le critère imposé : $\delta_x = \delta_y = \pm 0.5~mm$ et $\delta_z = \pm 1~mm$.

On vise cependant, pour minimiser la taille des actionneurs, à l'isostatisme de la structure.

Cahier des charges

Les critères et niveaux de l'asservissement sont les suivants :

	Fonction	Critères	Niveaux	
A42	Orienter le flacon	Stabilité	Marge de phase $\Delta \varphi > 45^{\circ}$	
			Marge de gain $\Delta G > 10 \ dB$	
		Précision	Écart statique nul à une entrée en échelon : $arepsilon_{\infty}=0$	
		Rapidité	Bande Passante à 0 dB de la fonction $H_B(p)$: $BP_0 > 50 \ rad/s$ Nota: bande passante à 0 dB: $BP_0 = \{pulsations \ \omega/GdB(\omega) > 0\}$ On définit la bande passante par sa largeur de bande (ici: 50 rad.s ⁻¹)	

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Mise en place du schéma bloc

On se propose ici de valider le niveau des performances de la commande de l'axe d'orientation de la pince.

Les fonctions dans le domaine temporel seront notées en minuscule, alors que celles dans le domaine de Laplace seront notées en majuscule :

$$\mathcal{L}(\omega(t)) = \Omega(p)$$

Le servo-entraînement met en rotation un arbre télescopique muni à chacune de ses extrémités d'un joint de Cardan. Le mouvement d'orientation de la pince est indépendant des mouvements de la plateforme 4.

Afin d'assurer un bon positionnement angulaire de la pince P, la commande de sa rotation est asservie de la façon suivante :

- La consigne de position θ_{PC} , entrée par l'utilisateur grâce à une interface graphique (lors des réglages) ou imposée par la Partie Commande (lors des cycles de travail), est transformée en une tension V_{PC} grâce à un convertisseur qui sera assimilé à un système de gain pur K_C (en V/rad).
- La vitesse de rotation ω_M (en rad/s) et l'angle de rotation θ_M (en rad) de l'arbre moteur sont mesurés par un codeur incrémental, monté directement sur l'arbre moteur, qui délivre une information numérique. Celle-ci est alors transformée par une carte de conversion numérique analogique (C.A.N.) supposée linéaire en deux tensions V_ω et V_θ telles que :
 - o pour la vitesse : $V_{\omega} = K_{\omega} \omega_{M}$
 - o pour la position : $V_{\theta} = K_{\theta} \theta_{M}$
- La tension V_{θ} (image de la rotation θ_M du moteur) est soustraite à la tension V_{PC} pour donner la tension ε_P .
- Cette tension ε_P est modifiée par un correcteur de fonction de transfert $\mathcal{C}(p)$ pour donner la tension e_{VP} .
- La tension V_{ω} (image de la vitesse de rotation ω_M du moteur) est soustraite à la tension e_{VP} en sortie du correcteur pour donner la tension ε_V .
- Cette tension ε_V est amplifiée par un amplificateur de gain pur G pour donner la tension d'alimentation du moteur U_M . Le moteur tourne alors à la vitesse angulaire ω_M telle que :

$$\Omega_M(p) = M(p)U_M(p)$$

- La rotation θ_{EC} de la pièce d'entrée du double joint de Cardan obtenue à l'aide du réducteur de vitesse fixé sur l'arbre moteur est telle que :

$$\theta_{EC} = \lambda \theta_M$$

- Le double joint de Cardan est homocinétique et a pour fonction de transfert R(p)=1 (l'entrée est l'angle θ_{EC} , et la sortie est $\theta_{SC}=\theta_P$ où θ_P est la rotation de la pince fixée par encastrement sur la pièce de sortie du double joint de Cardan).

Question 1: Tracer le schéma bloc d'asservissement en position, d'entrée $\theta_{PC}(p)$ et de sortie $\theta_P(p)$, faisant apparaître toutes les variables et les fonctions de transfert définies ci-dessus.

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Performance de précision

On donne : $\lambda = 0.2$ et $K_{\theta} = 0.01 \ V/rad$.

On veut que, lorsque la pince atteint la position demandée (soit $\theta_P = \theta_{PC}$), l'écart $\varepsilon_P = V_{PC} - V_{\theta}$ soit nul.

Question 2: En déduire la relation entre K_C , K_θ et λ puis la valeur numérique de K_C qui permette d'assurer cet écart nul.

Performance de rapidité

Le servo-entraînement utilisé est le AXL305RS330E5 qui est composé du moteur RS330E, du variateur 10/20-60 et du réducteur GB à train épicycloïdal de réduction $\lambda=0,2$.

Le moteur RS330E a comme caractéristiques :

- Constante de force électromotrice : $K_E = 14.3 \ V/1000 \ tours \ min^{-1}$
- Constante de couple : $K_T = 0.137 Nm/A$
- Résistance de l'induit : $R=1~\Omega$
- Inductance de l'induit : L = 1,65 mH
- Frottement visqueux rapporté à l'axe de rotation du moteur négligeable
- Inertie (Rotor + Charge entraînée) rapportée à l'axe de rotation du moteur : $J=12.\,10^{-5}~kg.\,m^2$

À partir des éguations du moteur à courant continu, on obtient la fonction de transfert suivante :

$$M(p) = \frac{\Omega_M(p)}{U_M(p)} = \frac{K_T}{K_E K_T + JRp + JLp^2}$$

On donne $K_{\omega}=6~V/1000~tours~min^{-1}$

Question 3: Déterminer l'expression littérale et la valeur numérique du gain G de l'amplificateur pour que la boucle tachymétrique (d'entrée e_{VP} et de sortie ω_M) présente un temps de réponse à 5 % minimum pour une entrée en échelon. Quel est alors le temps de réponse à 5 % ?

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Performance de stabilité

Avec la valeur de G trouvée précédemment, on a alors calculé la fonction de transfert de boucle (ou en boucle ouverte) suivante pour l'asservissement en position :

$$H_B(p) = \frac{V_\theta(p)}{\varepsilon_P(p)} = C(p) \frac{86}{p(10^3 + 3.2p + 5.3.10^{-3}p^2)}$$

On considère pour l'instant que le système n'est pas corrigé : C(p) = 1.

Question 4: Tracer les diagrammes asymptotiques de Bode en amplitude et phase de la fonction de transfert $H_B(p)$ du système non corrigé en plaçant avec précision les points caractéristiques.

Page **7** sur **8**Inspiré de travaux de Florestan Mathurin

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
06/04/2016	asservis	

Pour la suite, la courbe de gain sera assimilée à son tracé asymptotique.

Question 5: Déterminer graphiquement les valeurs de $\Delta \varphi$, marge de phase, ΔG , marge de gain, BP_0 , bande passante à 0 du système de fonction de transfert $H_B(p)$. Les critères de la fonction A42 sont-ils vérifiés ?

On prend alors une correction proportionnelle : $C(p) = C_0$.

Question 6: Déterminer la valeur de \mathcal{C}_0 qui permet de vérifier les critères de stabilité de la fonction A42.

La rapidité de la réponse à une consigne de ce système d'orientation de la pince (caractéristique importante ici, car celui-ci doit avoir un temps de réponse inférieur au système à structure Delta qui déplace la plate-forme 4) est obtenue par une bande passante suffisante. La stabilité et la limitation des oscillations de la pince sont obtenues par les marges de stabilité relativement importantes de 45° en phase et de 10 dB en gain. La précision statique est assurée de manière intrinsèque de part la structure même de l'asservissement : on a donc un système performant pour le système d'orientation de la pince.