

Optimal Location of Wind Power Capacity: A Point-estimate Solution Approach

S. Pineda and J. M. Morales Technical University of Denmark, Center of Electric Power and Energy

INFORMS Annual Meeting 2012 Phoenix, AZ 14-17 October 2012

DTU Electrical EngineeringDepartment of Electrical Engineering

Motivation

- How can a wind power investment model be formulated?
- How can imbalance costs be included in the investment decisions of a wind power producer?
- How can we evaluate the impact of the market design on wind investment decisions?
- How do we model wind forecast errors?
- How can the computational burden of large-scale investment models be reduced?

- How can a wind power investment model be formulated?
- How can imbalance costs be included in the investment decisions of a wind power producer?
- How can we evaluate the impact of the market design on wind investment decisions?
- How do we model wind forecast errors?
- How can the computational burden of large-scale investment models be reduced?

How can a wind power investment model be formulated?

- How can a wind power investment model be formulated?
 - ✓ Bilevel optimization problem

Wind Power Producer

Max Expected profit

s.t. Investment constraints

Market Operator

Min Total cost

s.t. Generation = Demand

Network constraints

- How can a wind power investment model be formulated?
- How can imbalance costs be included in the investment decisions of a wind power producer?
- How can we evaluate the impact of the market design on wind investment decisions?
- How do we model wind forecast errors?
- How can the computational burden of large-scale investment models be reduced?

- How can imbalance costs be included in the investment decisions of a wind power producer?
 - ✓ Including both day-ahead and balancing markets

Wind Power Producer

Max Expected profit (day-ahead + balancing)

s.t. Investment constraints

Day-ahead market

Min Day-ahead cost

s.t. Gen + Exp.Wind = Dem Network constraints

Balancing market

Min Balancing cost

s.t. Δ Gen + Δ Wind = Δ Dem Network constraints

- How can imbalance costs be included in the investment decisions of a wind power producer?
 - ✓ Including both day-ahead and balancing markets

- How can a wind power investment model be formulated?
- How can imbalance costs be included in the investment decisions of a wind power producer?
- How can we evaluate the impact of the market design on wind investment decisions?
- How do we model wind forecast errors?
- How can the computational burden of large-scale investment models be reduced?

 How can we evaluate the impact of the market design on wind investment decisions?

✓ Comparing two market designs: coupled and decoupled

Decoupled market design

- Day-ahead dispatch is determined without considering the balancing needs
- It follows the merit-order principle in the day-ahead market

 How can we evaluate the impact of the market design on wind investment decisions?

✓ Comparing two market designs: coupled and decoupled

Decoupled market design

- How can we evaluate the impact of the market design on wind investment decisions?
 - ✓ Comparing two market designs: coupled and decoupled

Coupled market design

- Day-ahead dispatch is determined accounting for the balancing needs
- Day-ahead and balancing cost are jointly minimized

- How can we evaluate the impact of the market design on wind investment decisions?
 - ✓ Comparing two market designs: coupled and decoupled

Coupled market design Price Wind << expected \rightarrow Increase Flex Wind Power Producer **Demand** Investment constraint Day-ahead market **NonFlex Prognosis of BM** Flex **Balancing market** Wind Power

 How can we evaluate the impact of the market design on wind investment decisions?

✓ Comparing two market designs: coupled and decoupled

Coupled market design

Decoupled market design

Wind Power Producer

Investment constraint

Day-ahead market

Prognosis of BM

Balancing market

Wind Power Producer
Investment constraint

Day-ahead market

Balancing market

- How can a wind power investment model be formulated?
- How can imbalance costs be included in the investment decisions of a wind power producer?
- How can we evaluate the impact of the market design on wind investment decisions?
- How do we model wind forecast errors?
- How can the computational burden of large-scale investment models be reduced?

• How do we model wind forecast errors?

 How can the computational burden of large-scale investment models be reduced?

• How can the computational burden of large-scale investment models be reduced?

- How can a wind power investment model be formulated?
- How can imbalance costs be included in the investment decisions of a wind power producer?
- How can we evaluate the impact of the market design on wind investment decisions?
- How do we model wind forecast errors?
- How can the computational burden of large-scale investment models be reduced?

 How can the computational burden of large-scale investment models be reduced?

 How can the computational burden of large-scale investment models be reduced?

Summary

- How can a wind power investment model be formulated?
 - √ Bilevel optimization problem
- How can imbalance costs be included in the investment decisions of a wind power producer?
 - ✓ Including both day-ahead and balancing markets
- How can we evaluate the impact of the market design on wind investment decisions?
 - ✓ Comparing two market designs: coupled and decoupled
- How do we model wind forecast errors?
 - ✓ Using beta distributions depending on forecast level
- How can the computational burden of large-scale investment models be reduced?
 - ✓ Using Point-Estimate methods instead of MonteCarlo

Additional model assumptions

- Static expansion model (single future target year)
- Economies of scale (discrete and large investments)
- Energy-only markets (no payments from ancillary or capacity)
- Uncertainty in demand and wind speed (set of samples)
- DC power flow (locational marginal prices)
- Inelastic demand (load shedding)

Data

			Units			
g	P_g^{max}	C_g	$P_g^{max,u}$	C_g^u	$P_g^{max,d}$	C_g^d
$\overline{g_1}$	150	20	50	21	50	19
g_2	500	20.1	50	50	50	5

	Lines			Wind			F	rob	
nm	F_{nm}^{max}	B_{nm}	n	\widehat{W}_{ns_1}	$\widetilde{W}_{ns_1r_1}$	$\widetilde{W}_{ns_1r_2}$	$\widetilde{W}_{ns_1r_3}$	r	π_{s_1r}
$\overline{n_1 n_2}$	10	7.69	n_1	0.6	-Δ	0	$+\Delta$	r_1	0.4
$n_1 n_3$	250	7.69	n_2	0.7	$-\Delta$ $-\Delta$	0	+\Delta +\Delta -	r_2	0.2
n_2n_3	250	7.69	n_3	-	-	-	-	r_3	0.4

$$L_{n_3} = 225 \text{MW}$$

$$P_{w_1'}^{max} = 50 \mathrm{MW}$$

• Results: impact of forecast error

Dec	Bus1	Bus2
Δ=0.1	DA profit = \$600 B profit = -\$4 Total profit = \$596	DA profit = \$704 B profit = -\$62 Total profit = \$642

• Results: impact of forecast error

Dec	Bus1	Bus2
Δ=0.1	DA profit = \$600 B profit = -\$4 Total profit = \$596	DA profit = \$704 B profit = -\$62 Total profit = \$642
Δ=0.3	DA profit = \$600 B profit = -\$12 Total profit = \$588	DA profit = \$704 B profit = -\$186 Total profit = \$518

Imbalance cost may have a significant impact on wind investment decisions

• Results: impact of market design

Δ=0.3	Bus1	Bus2
Dec	DA profit = \$600 B profit = -\$12 Total profit = \$588	DA profit = \$704 B profit = -\$186 Total profit = \$518

Results: impact of market design

Δ=0.3	Bus1	Bus2
Dec	DA profit = \$600 B profit = -\$12 Total profit = \$588	DA profit = \$704 B profit = -\$186 Total profit = \$518
Coup	DA profit = \$600 B profit = -\$12 Total profit = \$588	DA profit = \$704 B profit = -\$14 Total profit = \$690

The wind producer achieves a higher profit with the Coup market clearing

• Results: use of PEM

			Units			
g	P_g^{max}	C_g	$P_g^{max,u}$	C_g^u	$P_g^{max,d}$	C_g^d
g_1	150	20	50	21	50	19
g_2	500	20.1	50	50	50	5

	Lines	
nm	F_{nm}^{max}	B_{nm}
$\overline{n_1 n_2}$	10	7.69
$n_1 n_3$	250	7.69
n_2n_3	250	7.69

$$L_{n_3} = 225$$
MW, $\sigma = 5$ MW
$$P_{w'_1}^{max} = 50$$
MW

Results: use of PEM

- Fix location to Bus 1
- Decoupled market clearing
- Run 500 cases with
 - 100 samples (DA)
 - 100 samples (B)
 - 10,000 total samples
- Determine mean and std

Results: use of PEM

- Fix location to Bus 1
- Decoupled market clearing
- Run 500 cases with
 - 100 samples (DA)
 - 100 samples (B)
 - 10,000 total samples
- Determine mean and std
- Solve problem with PEM
- Error = 0.9%

• Results: use of PEM

• Results: use of PEM

Coupled MC

	Samples	BUS 2	Time
PEM	7x7	100%	< 2s

Decoupled MC

	Samples	BUS 1	Time
PEM	7x7	100%	< 2s

• Results: use of PEM

Coupled MC

	Samples	BUS 2	Time
PEM	7x7	100%	< 2s
	10x10	60%	3s
MC	30x30	62%	14s
(500)	50x50	66%	67s
	100x50	68%	210s

Decoupled MC

	Samples	BUS 1	Time
PEM	7x7	100%	< 2s
	10x10	58%	5s
МС	30x30	62%	18s
(500)	50x50	65%	74s
	100x50	73%	215s

Conclusions

- Imbalance cost is an important factor to be accounted for in wind power generation expansion
- A coupled market clearing reduces the imbalance costs of stochastic generation and facilitates the investment in new wind farms
- Using a point estimate method to represent the uncertainty involved in the investment model reduces its computational burden

Thanks for your attention!

Questions?

Coupled market design

Wind Power Producer

Investment constraint

Day-ahead market

Prognosis of BM

Coupled market design

$$\begin{split} \sum_{n} u_{w'n} &\leq 1, \quad \forall w' \\ \Pi_{sr} &= \underbrace{\sum_{w'n} u_{w'n} \lambda_{ns} P_{w'}^{max} \widehat{W}_{ns}}_{\text{Profit DA}} + \\ &+ \underbrace{\sum_{w'nr} u_{w'n} \lambda_{nsr}^{R} (P_{w'}^{max} \widetilde{W}_{nsr} - W_{w'nsr}^{S})}_{\text{Profit BM}} \end{split}$$

Coupled market design

Wind Power Producer

Investment constraint

Day-ahead market

Prognosis of BM

Balancing market

$$\begin{split} &\operatorname{DA}\operatorname{Cost} \quad \operatorname{Expected}\operatorname{Balancing}\operatorname{Cost} \quad \operatorname{Load}\operatorname{Shed} \\ &\operatorname{Min} \left(\sum_{g} C_g P_{gs} \right) + \left(\sum_{gr} \pi_{sr} \left(C_g^u P_{gsr}^u - C_g^d P_{gsr}^d \right) \right) + \left(\sum_{nr} \pi_{sr} V^L L_{nsr}^S \right) \\ &\operatorname{Subject}\operatorname{to} \\ &\sum_{g \in \Psi_n} P_{gs} + \sum_{w \in \Theta_n} P_w^{max} \widehat{W}_{ns} + \sum_{w'} u_{w'n} P_{w'}^{max} \widehat{W}_{ns} = \\ &= \widehat{L}_{ns} + \sum_{m \in \Omega_n} B_{nm} (\delta_{ns} - \delta_{ms}) : \overleftarrow{\lambda_{ns}} \quad \forall n \\ &\operatorname{DA}\operatorname{price} \\ &\sum_{g \in \Psi_n} \left(P_{gsr}^u - P_{gsr}^d \right) + \sum_{w \in \Theta_n} \left(P_w^{max} \widetilde{W}_{nsr} - W_{wsr}^S \right) + \\ &+ \sum_{w'} \left(u_{w'n} P_{w'}^{max} \widetilde{W}_{nsr} - W_{w'nsr}^S \right) = \\ &= \widetilde{L}_{nsr} - L_{nsr}^S + \sum_{m \in \Omega_n} B_{nm} (\delta_{nsr}^R - \delta_{msr}^R) : \overleftarrow{\lambda_{nsr}^R} \\ &\operatorname{B}\operatorname{price} \end{split}$$

Unit and network technical limits

Linear programming model!!

Coupled market design

Wind Power Producer

Investment constraint

Primal constraints

Dual constraints

Strong duality theorem

$$\begin{aligned} & \text{DA Cost} & \text{Expected Balancing Cost} & \text{Load Shed} \\ & \text{Min} \\ & \sum_{g} C_g P_{gs} \\ & + \left(\sum_{gr} \pi_{sr} \left(C_g^u P_{gsr}^u - C_g^d P_{gsr}^d \right) \\ & + \left(\sum_{nr} \pi_{sr} V^L L_{nsr}^S \right) \end{aligned}$$

Subject to

$$\begin{split} &\sum_{g \in \Psi_n} P_{gs} + \sum_{w \in \Theta_n} P_w^{max} \widehat{W}_{ns} + \sum_{w'} u_{w'n} P_{w'}^{max} \widehat{W}_{ns} = \\ &= \widehat{L}_{ns} + \sum_{m \in \Omega_n} B_{nm} (\delta_{ns} - \delta_{ms}) : & \lambda_{ns} \\ & \qquad \qquad \text{DA price} \end{split}$$

$$\begin{split} \sum_{g \in \Psi_n} \left(P_{gsr}^u - P_{gsr}^d \right) + \sum_{w \in \Theta_n} \left(P_w^{max} \widetilde{W}_{nsr} - W_{wsr}^S \right) + \\ + \sum_{w'} \left(u_{w'n} P_{w'}^{max} \widetilde{W}_{nsr} - W_{w'nsr}^S \right) = \\ = \widetilde{L}_{nsr} - L_{nsr}^S + \sum_{m \in \Omega_n} B_{nm} (\delta_{nsr}^R - \delta_{msr}^R) : \boxed{\lambda_{nsr}^R} \end{split}$$
 B price

Unit and network technical limits

Linear programming model!!

Coupled market design

$$\frac{\text{Maximiz} q_{w'n}}{\sum_{sr} \pi_{sr} \Pi_{sr}} - \sum_{w'n} \frac{u_{w'n} Q_{w'n}}{\text{Cost}}$$

Decoupled market design

Wind Power Producer

Investment constraint

Day-ahead market

$$\begin{split} \sum_{n} u_{w'n} &\leq 1, \quad \forall w' \\ \Pi_{sr} &= \underbrace{\sum_{w'n} u_{w'n} \lambda_{ns} P_{w'}^{max} \widehat{W}_{ns}}_{+} + \underbrace{\sum_{w'nr} u_{w'n} \lambda_{nsr}^{R} (P_{w'}^{max} \widetilde{W}_{nsr} - W_{w'nsr}^{S})}_{\text{Profit BM}} \end{split}$$

LP!!

Expected Balancing Cost Load Shed
$$\boxed{ \pi_{sr} \left(C_g^u P_{gsr}^u - C_g^d P_{gsr}^d \right) } + \boxed{ \sum \pi_{sr} V^L L_{nsr}^S }$$

Subject to

$$\begin{split} \sum_{g \in \Psi_n} \left(P^u_{gsr} - P^d_{gsr} \right) + \sum_{w \in \Theta_n} \left(P^{max}_w \widetilde{W}_{nsr} - W^S_{wsr} \right) + \\ + \sum_{w'} \left(u_{w'n} P^{max}_{w'} \widetilde{W}_{nsr} - W^S_{w'nsr} \right) = \\ = \widetilde{L}_{nsr} - L^S_{nsr} + \sum_{m \in \Omega_n} B_{nm} (\delta^R_{nsr} - \delta^R_{msr}) : \overleftarrow{\lambda^R_{nsr}} \\ & \text{B price} \\ 0 \leq & \boxed{P_{gs}} + \boxed{P^u_{gsr} - P^d_{gsr}} \leq P^{max}_g \end{split}$$

Unit and network technical limits

$$(P_{gs}, \delta_{ns}) \in \arg \Big\{ \min \sum_{g} C_g P_{gs} \Big\}$$

Unit and network technical limits

Decoupled market design

Wind Power Producer

Investment constraint

Day-ahead market

Linear programming model!!

Subject to

$$\begin{split} \sum_{g \in \Psi_n} \left(P_{gsr}^u - P_{gsr}^d \right) + \sum_{w \in \Theta_n} \left(P_w^{max} \widetilde{W}_{nsr} - W_{wsr}^S \right) + \\ + \sum_{w'} \left(u_{w'n} P_{w'}^{max} \widetilde{W}_{nsr} - W_{w'nsr}^S \right) = \\ = \widetilde{L}_{nsr} - L_{nsr}^S + \sum_{m \in \Omega_n} B_{nm} (\delta_{nsr}^R - \delta_{msr}^R) : & \lambda_{nsr}^R \end{split}$$
 B price

$$0 \le \boxed{P_{gs}} + \boxed{P_{gsr}^u - P_{gsr}^d} \le P_g^{max}$$
 DA BM

Unit and network technical limits

Primal constraints

Dual constraints

Strong duality theorem

Linear constraints ensuring that DA variables minimize DA cost Decoupled market design

Wind Power Producer

Investment constraint

Day-ahead market

Linear programming model!!

Subject to

$$\begin{split} \sum_{g \in \Psi_n} \left(P_{gsr}^u - P_{gsr}^d \right) + \sum_{w \in \Theta_n} \left(P_w^{max} \widetilde{W}_{nsr} - W_{wsr}^S \right) + \\ + \sum_{w'} \left(u_{w'n} P_{w'}^{max} \widetilde{W}_{nsr} - W_{w'nsr}^S \right) = \\ = \widetilde{L}_{nsr} - L_{nsr}^S + \sum_{m \in \Omega_n} B_{nm} (\delta_{nsr}^R - \delta_{msr}^R) : \boxed{\lambda_{nsr}^R} \end{split}$$

 $0 \le \boxed{P_{gs}} + \boxed{P_{gsr}^u - P_{gsr}^d} \le P_g^{max}$ DA BM

Unit and network technical limits

Primal constraints

Dual constraints

Strong duality theorem

Linear constraints ensuring that DA variables minimize DA cost Decoupled market design

Wind Power Producer

Investment constraint

Primal constraints

Dual constraints

Strong duality theorem

Decoupled market design

Mixed-integer linear model

Investment constraint

Primal constraints

Dual constraints

Strong duality theorem

• Results: impact of forecast error

Dec	Bus1	Bus2
Δ=0.1	DA profit = \$600 B profit = -\$4 Total profit = \$596 Cost = \$3914	DA profit = \$704 B profit = -\$62 Total profit = \$642 Cost = \$3868
Δ=0.3	DA profit = \$600 B profit = -\$12 Total profit = \$588 Cost = \$3922(+0.2%)	DA profit = \$704 B profit = -\$186 Total profit = \$518 Cost = \$3992(+3.2%)

The forecast error also affects the total cost of operating the system

• Results: impact of market design

Δ=0.3	Bus1	Bus2
Dec	DA profit = \$600 B profit = -\$12 Total profit = \$588 Cost = \$3922	DA profit = \$704 B profit = -\$186 Total profit = \$518 Cost = \$3992
Coup	DA profit = \$600 B profit = -\$12 Total profit = \$588 Cost = \$3922	DA profit = \$704 B profit = -\$14 Total profit = \$69 Cost = \$3820

The lower total cost is also obtained for the Coup market clearing

• How do we model wind forecast errors?

How can a wind power investment model be formulated?

- 3 bus system
- Wind n1 = Wind n2
- Prices n2 >> Prices n1
- Optimal location n2?
- It depends on the impact of such a wind farm on the market outcomes

 How can imbalance costs be included in the investment decisions of a wind power producer?

- 3 bus system
- Prices n1 = Prices n2
- Wind n2 >> Wind n1
- Optimal location n2?
- It depends on the imbalance costs at each bus

• How do we model wind forecast errors?

• How do we model wind forecast errors?

. . .

. . .

0

 N_R

How do we model wind forecast errors?

. . .

. . .

 N_R

How do we model wind forecast errors?

• Results: impact of forecast error

Dec	Bus1
Δ=0.1	

• Results: impact of forecast error

Dec	Bus1
Δ=0.1	DA profit = \$600 B profit = -\$4 Total profit = \$596

Results: use of PEM

- Fix location to Bus 1
- Decoupled market clearing
- Run 500 cases with
 - 100 samples (DA)
 - 100 samples (B)
 - 10,000 total samples