Fluxuri în rețele de transport

- 1. Flux maxim. Se consideră o rețea de transport (care verifică ipotezele din curs) și un flux în această rețea. Se citesc din fișierul retea.in următoarele informații despre această rețea: numărul de vârfuri n (numerotate 1...n), două vârfuri s și t reprezentând sursa și destinația, numărul de arce m și pe câte o linie informații despre fiecare arc: extremitatea inițială, extremitatea finală, capacitatea arcului și fluxul deja trimis pe arc.
 - a) Să se verifice dacă fluxul dat este corect (respectă constrângerile de mărginire și conservare) și să se afișeze un mesaj corespunzător.
 - b) Să se determine un flux maxim în rețea pornind de la acest flux, prin revizuiri succesive ale fluxului pe s-t lanțuri nesaturate de lungime minimă (Algoritmul Ford Fulkerson va porni de la fluxul dat, nu de la fluxul vid). Se vor afișa
 - Valoarea fluxului obținut și fluxul pe fiecare arc
 - Capacitatea minimă a unei tăieturi în rețea și arcele directe ale unei tăieturi minime O(mL), L= capacitatea minimă a unei tăieturi / $O(nm^2)$

retea.in	iesire
6	DA
1 6	10
8	1 3 6
1 3 6 3	1 5 4
1 5 8 2	3 2 5
3 2 5 0	3 4 1
3 4 3 3	5 4 4
5 4 4 2	2 6 5
2 6 7 0	4 6 5
4 6 5 5	3 5 0
3 5 1 0	10
	1 3
	5 4

2. Cuplaj maxim în graf bipartit. Se citesc din fișierul graf.in următoarele informații despre un graf neorientat bipartit conex: numărul de vârfuri n>2, numărul de muchii m și lista muchiilor (o muchie fiind dată prin extremitățile sale). Să se determine un cuplaj de cardinal maxim în acest graf reducând problema la o problemă de flux maxim și folosind apoi algoritmul Ford-Fulkerson. Se vor afișa muchiile cuplajului maxim obținut (vârfurile sunt numerotate 1..n, dar nu este neapărat ca vârfurile de aceeași culoare să fie numerotate consecutiv) O(nm)

Dacă graful dat la intrare \underline{nu} este bipartit, se va afișa un mesaj corespunzător și un ciclu impar al grafului.

graf.in	iesire (nu este unica solutia)
8 9	1 2
1 2	3 4
1 3	6 7
2 4	
3 4	
2 5	
3 5	

(3 7	
6	5 7	
-	7 8	

3. Construcția unui graf orientat cu secvențele de grade de intrare și ieșire date. Se citesc din fișierul secvențe.in: un număr natural n>2, o secvență s₁ de n numere naturale și o secvență s₂ de n numere naturale. Să se construiască, dacă se poate, un graf cu secvența gradelor interne s₁ și cu secvența gradelor externe s₂ (reducând problema la o problemă de flux maxim). În caz afirmativ se vor afișa arcele grafului, altfel se va afișa mesajul NU. O(m²) (unde m = suma numerelor din s₁ = numărul de arce ale lui G)

secvente.in	iesire (nu este unica solutia)
3	1 3
2 1 1	2 1
1 1 2	3 1
	3 2

4. **Suplimentar**. Implementați o altă aplicație (la alegere) discutată la curs/seminar care se reduce la problema determinării unui flux maxim sau a unei tăieturi minime în rețea