Topics In Data Science

Chelsea Parlett-Pelleriti

Node Based Resilience Clustering

BK Hamburger McD's Hamburger
W's Jr. Hamburger
BK Cheeseburger
W's Jr. Cheeseburger

BK WHOPPER® Sandwich McD's Big Mac

BK DOUBLE WHOPPER® Sandwich

McD's Quarter Pounder with Cheese

W's Dave's Single Cheeseburger

BK Bacon & Cheese WHOPPER® Sandwich

W's 1/2 lb. Double w/ Cheese

McD's Double Quarter Pounder with Cheese

W's Son of Baconator®

W's Baconator® BK Double Bacon King

W's 3/4 lb. Triple w/ Cheese

McD's Bacon Clubhouse Burger

BK Cheeseburger W's Jr. Hamburger McD's Hamburger BK Hamburger McD's Cheeseburger

McD's Bacon Clubhouse Burger W's 1/2 lb. Double w/ Cheese W's Son of Baconator®

W's 3/4 lb. Triple w/ Cheese

W's Baconator®

W's Dave's Single Cheeseburger

McD's Quarter Pounder with Cheese

BK DOUBLE WHOPPER® Sandwich

McD's Big Mac

BK WHOPPER® Sandwich

Ensemble Methods

ONE VS. MANY

Random Forest

- Bagging (Bootstrap Aggregating):
 Instead of using all of our training data
 to train each model in our sample we
 use bootstrapping to choose the
 samples (rows) we will include.
 - **Bootstrapping** is when you randomly sample data points *with replacement*, meaning that a data point can be included in your bootstrapped sample *more* than once, OR not at all.

BOOTSTRAPPING

Random Forest

- Random Feature Selection:
 Instead of using all the available
 features/predictors in our dataset
 for every model, for each model we
 randomly choose a different subset
 of features to use when training.
 - This helps our ensemble generalize, because it doesn't become overly reliant on one feature (since that feature might not appear in every model).

What we believed before + Evidence from the data = New beliefs