

CONTENTS

- Quick recap
- Implications of Shannon's Hartley Law
- Shannon's limit
- Bandwidth-efficiency diagram

Shannon's Limit

- We define an ideal system where the data is transmitted at the rate of Rt = channel capacity C
- We may express the average transmitted signal power as S,

$$S = E_b C$$
Where $E_b = \text{transmitted energy per bit in joules.}$
Using $N = \eta B$ and $S = E_b C$ in equation (4.216), we get for an ideal system
$$C = B \log_2 \left(1 + \frac{E_b}{\eta} \frac{C}{B} \right) \qquad C = B \log(1 + S/N)$$
or $\frac{C}{B} = \log_2 \left(1 + \frac{E_b}{\eta} \frac{C}{B} \right)$

Bandwidth- Efficiency

The quantity $\left(\frac{C}{B}\right)$ is called "Bandwidth-efficiency" and the quantity (E_b/η)

$$\frac{E_b}{\eta} = \frac{2^{\frac{6}{B}}-1}{(C/B)}$$

$$\frac{C}{B} = \log_2 \left(1 + \frac{E_b}{\eta} \frac{C}{B} \right)$$

$$x = log_z y$$

 $z^x = y$

Bandwidth – Efficiency diagram

We plot Rt/B as a function of Eb/

This diagram represents the capacity boundary for which Rt= C

Department of ECE, SCMS School of Engineering & Technology

Observations from the diagram

1. For infinite bandwidth, the signal energy-to-noise ratio E_b/η approaches the limiting value.

$$\left(\frac{E_b}{\eta}\right) = \lim_{B \to \infty} \left(\frac{E_b}{\eta}\right) = \lim_{B \to \infty} \left[\frac{2^{\frac{9}{8}} - 1}{(C/B)}\right]$$

Let
$$\frac{C}{B} = x$$
. As $B \to \infty$, $x \to 0$

$$\therefore \left(\frac{E_b}{\eta}\right)_{-} = \lim_{x \to 0} \left[\frac{2^x - 1}{x}\right] \qquad \dots (4.221)$$

Using L'Hospital Rule, the above limit can be evaluated as below:

Let
$$y = 2^x$$

Taking In on both sides

$$ln y = x ln2$$

Differentiating,
$$\frac{1}{y} dy = (\ln 2) dx$$

$$\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}} = y \, (\ln 2) = 2^x \, (\ln 2)$$

Differentiating both numerator and denominator of the RHS of equation (4.221) with respect to 'x', we get

$$\left(\frac{E_b}{\eta}\right)_{\bullet\bullet} = \lim_{x \to 0} \left[\frac{\frac{d}{dx}(2^x - 1)}{\frac{d}{dx}(x)}\right]$$

$$= \lim_{x \to 0} \left[\frac{2^x (\ln 2)}{1}\right] \text{ by using equation (4.222)}$$

$$= 2^0 \ln 2$$

$$\left(\frac{E_b}{\eta}\right)_{\bullet\bullet} = \ln 2 = 0.693$$

Shannon's Limit

or
$$\left(\frac{E_b}{\eta}\right)$$
 in dB = $10 \log_{10}(0.693)$
 $\therefore \left(\frac{E_b}{\eta}\right)$ in dB $\cong -1.6$ dB (4.223)
This value of -1.6 dB is called the "Shannon's Limit". The corresponding value of channel capacity is given by equation (4.217) as
$$C_{\infty} = B \frac{S}{N} \log_2 e \text{ bits/sec}$$

$$= \frac{S}{N} \log_2 e \text{ bits/sec}$$

- 2. The capacity boundary, defined as the curve for critical bit rate Rt= C separates the error free transmission(Rt<C) from those of with error free transmission is not possible(Rt>C)
- 3. The diagram highlights the trade off between Eb/ and Rt/B

CONCLUSION

• Shannon's limit : $\left(\frac{E_b}{\eta}\right)$ in dB ≈ -1.6 dB

Bandwidth Efficiency Diagram