Lecture 25: Bipolar junction transistors (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Small-signal model

- Quite similar with the MOSFET model
 - Finite resistance between the base and emitter

$$r_{\pi} = \frac{\beta}{g_m}$$

Early effect (1/2)

- For higher V_{CE},
 - The depletion region between the base and collector is widened.

Early effect (2/2)

- Its modeling
 - The IV characteristics is now modified:

$$I_C = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$$

Output resistance

It is easy to show that

$$\frac{dI_C}{dV_{CE}} = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \frac{1}{V_A}$$

$$r_O \approx \frac{V_A}{I_C}$$

Saturation?

- What was the saturation in the MOSFET?
 - Saturation of the drain current, as the drain voltage increases.
- What is the saturation in the BJT?
 - Saturation of the collector current, as the base current increases.

Small-signal model

Useful expressions

$$g_m = \frac{I_C}{V_T}$$

$$r_{\pi} = \frac{\beta}{g_m}$$

$$r_O \approx \frac{V_A}{I_C}$$

Biasing

- Example 5.7
 - DC analysis?
 - (Recall its MOS counterpart.)
 - Specific values

$$V_{CC} = 2.5 \text{ V}$$

$$R_B = 100 k\Omega$$

$$R_C = 1 k\Omega$$

Current?

Self-biased stage

- Which one is higher?
 - Collector voltage or base voltage?
 - In the forward active region!

$$I_C = \frac{V_{CC} - V_{BE}}{R_C + \frac{R_B}{\beta}} \quad \longleftarrow \quad Why?$$

- Uncertain V_{BE} and β
- What can we do?

$$R_C \gg \frac{R_B}{\beta}$$

Example 5.14

- Design the self-biased stage.
 - In this example, we assume

$$R_C \approx 10 \frac{R_B}{\beta}$$

- It means $I_C = \frac{V_{CC} V_{BE}}{1.1R_C}$.
- We want to have g_m of $\frac{1}{13 \Omega}$ in this example.
- For BJTs, $g_m = \frac{I_C}{V_T}$. Therefore, $I_C = 2$ mA.
- Then,

$$R_C \approx \frac{V_{CC} - V_{BE}}{1.1 I_C} = 475 \Omega$$

Common-emitter (1/2)

- You can easily imagine that
 - There is a common-emitter configuration.

Common-emitter (2/2)

- Voltage gain?
 - Same with the CS stage:

$$A_v = -g_m(R_C||r_0)$$

- Impedances?
 - Input impedance

$$R_{in} = r_{\pi} = \frac{\beta}{g_m}$$

Output impedance

$$R_{out} = R_C || r_O$$

Common-emitter (2/2)

- Voltage gain?
 - Same with the CS stage:

$$A_v = -g_m(R_C||r_0)$$

- When we have a very large R_C , $A_v \rightarrow -g_m r_0$.
- For BJTs, $g_m = \frac{I_C}{V_T}$ and $r_O = \frac{V_A}{I_C}$.
- Impedances?
 - Input impedance

$$R_{in} = r_{\pi} = \frac{\beta}{g_m}$$

Output impedance

$$R_{out} = R_C || r_O$$

Example 5.21

- Collector current of 1 mA and $R_C = 1 k\Omega$.
 - Then, g_m is readily available.

$$g_m = \frac{1}{26 \Omega}$$

- When the Early voltage is 10 V, $r_O = \frac{10 \text{ V}}{1 \text{ mA}} = 10 k\Omega$.
- Overall, $R_C || r_O = \frac{1}{1.1} k\Omega \approx 0.91 k\Omega$.

Special topic

DIGITAL CMOS CIRCUITS

In circuit,

- How can we represent 0 and 1?
 - V_{DD} is assigned to the logical value, 1.
 - *GND* is assigned to the logical value, 0.

Inverter

- When the output becomes 0?
 - Only when the input is high.
 - You have seen it before!

Vin	Vout
0	1
1	0

Voltage transfer

- When $V_{in} < V_{TH}$,
 - Trivially, $V_{out} = V_{DD}$.
- When V_{in} is slightly larger than V_{TH} , the NMOSFET is in the saturation region.

$$V_{out} = V_{DD} - I_D R_D$$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

• When V_{in} is further increased, the NMOSFET is in the triode region.

$$V_{out} = V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} R_D [2(V_{in} - V_{TH})V_{out} - V_{out}^2]$$

G-SPICE example (1)

Following parameters are used.

–
$$\mu_n C_{ox}=200~\mu\text{A/V}^2$$
 , $V_{TH}=0.4~\text{V}$, $\frac{W}{L}=\frac{5}{0.18}$, $\lambda=0.1~\text{V}^{-1}$, $R_D=2k\Omega$ and $V_{DD}=1.8~\text{V}$

GIST Lecture on June 8, 2016 (Internal use only)

G-SPICE example (2)

- Different values of R_D (8000 Ohm and 500 Ohm)
 - 0→1 is always good, but, 1→0 depends on the situation.
 - Relative "strength" determines the VTC.

Standby(!) power

- The biggest problem in the NMOS inverter
 - When $V_{in} = 0$, no standby power
 - When $V_{in} = V_{DD}$, the power consumption is (approximately) $\frac{V_{DD}^2}{R_D}$.

G-SPICE example (3)

- Current as a function of input voltage
 - Estimate the power consumption...

GIST Lecture on June 8, 2016 (Internal use only)

CMOS inverter

- Ideal "pull-up" should have the following properties.
 - When $V_{in} = V_{DD}$, no current conduction.
 - When $V_{in} = 0$, improved current conduction.
- PMOS can do those jobs!

G-SPICE example (4)

- Parameters of P17.20
 - (Two large resistors are introduced.)

G-SPICE example (5)

- Even better news
 - No standby power is dissipated.

CLOSING REMARKS