Source: KBhPHYS201IntroToElectrostaticsLN

1 | Resistance and Current

Resistance roughly measures how much pressure against current — electron flow there is in a conductor.

Current

Use the variable I, a unit $\frac{C}{s}$, Amps, to measure current. This also equals $\frac{\Delta V}{Resistance}$. Big resistance, little current. Current is measured in a unit $\frac{C}{s}$, which intuitively makes sense — Current/second is kind of like metres/second — it measures, roughly, the "speed" at which electrons flow.

Definition 1 · **Current** I A value measured in unit $\frac{C}{s}$, a.k.a. Amps that measures electron flow

Resistance

So, let's figure out resistance.

We know that... $V=\frac{J}{C}$, per [KBhPHYS201Voltage], and we also know that resistance would equal a unit $\frac{Vs}{c}$ given that $I=\frac{C}{s}=\frac{\Delta V}{Resistance}$. * Resistance = $\Omega=\frac{\Delta V}{I}=\frac{Js}{C^2}$ * $I=\frac{C}{s}$ = Amps * Calculating resistance * So, let's think. With a wire of length L and with a wire of area A, if we increase L, the resistance in the wire would increase; if we increase area A, the resistance in the the wire would decrease. * $Resistance=\frac{L}{A}*ResistivityOfMaterial$ with units $\frac{m}{m^2}*(\Omega*m)$.