Operational Reactor Safety

22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Lecture 21
Davis Besse - Near Miss 2002

Topics to Be Covered

- History of Davis Besse
- Review of Alloy 600 cracking
- Review of Davis Besse Vessel Head Leakage
- Contributing Factors
- Failures of Operator, NRC, INPO, Oversight
- Lessons Learned

Davis Besse - 873 Mwe Babcock and Wilcox Design

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

History of Davis Besse

- 1995 World Record of a 99.2% capacity factor
- 2001 99.7% capacity factor
- 2001 500 day run completed in October 2001
- 5.5 million hours worked without lost time accident in 2001
- Considered a good performing plant by NRC and INPO

Primary Water Stress Corrosion Cracking of Vessel Head Penetrations

- First observed in France Bugey 3 Reactor in 1991
- Associated with PWSCC of Alloy 600 (inconel)
- PWSCC function of temperature, pressure and time
- NRC sent out information notices required inspections
- Industry did assessment of susceptibility of reactors (BW/CE)
 - Established a scale based on full power hours of operation
 - Based on head temperature
 - Industry did not consider this a significant issue since US reactor head were built differently than French reactors.
- Inspections difficult due to access and dose

- Perception was that if cracks occurred they would be axial not circumferential and detectable
- Carbon steel vessel degradation was considered but not judged to be significant due to flashing of steam and leaving boron crystals (>500F) not as a liquid 4 inches/yr if water
- Inspection of Oconee Nuclear Station 1 (Nov. 2000), Arkansas Unit 1 (Feb. 2001), Oconee Unit 3 (Feb. 2001) and Oconee Unit 3 (April 2001) showed both axial and circumferential cracks in Control Rod Drive Mechanisms.
- NRC Issues Bulletin 2001-01 ordering inspections of highly susceptible plants by December 31, 2001.
- NRC prepares a shutdown order for Davis Besse

Figure 3-1 Time Line Relating Significant Items of Interest

Results

- Davis Besse requests an extension to next spring outage.
- NRC grants extension February to 16, 2002.

March 2002

Typical PWR Reactor Vessel

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

STP Penetration # 46

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Nozzle 3 with insulation removed and shielding installed 03-16-02

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Vessel Degradation

Figure 2-4 DBNPS VHP NOZZLE NO.3 DEGRADATION CAVITY

Degradation Between Nozzle#3 and Nozzle#11. The Sketch Provided by the Licensee

Nozzle #3 Area Cut Away From Reactor Head

Close-Up View of Cavity

Rubberized Impression of Cavity

Department of Nuclear Science & Engineering

Page 14

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Boric Acid Deposits

Figure 2-6 BORIC ACID DEPOSITS ON THE RPV HEAD (top) AND AREA RELATIVELY FREE OF DEPOSITS (bottom)

Kadak, 2008

Davis-Besse Reactor Vessel

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Control Rod Drive Mechanisms

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Vessel Head Penetration Nozzle

Figure 2-3 SCHEMATIC VIEW OF TYPICAL B&W VHP NOZZLE

Davis Besse Experience with Primary Coolant Leaks

- All BW plants reported boric acid leakage problems including vessel head penetrations
- RPV head vent to steam generator (1992)
- RCS thermowells
- CRDM flange leaks
- Pressurizer spray valve
- Letdown isolation cooler isolation valve
- Pressurizer safety relief valves.

Davis Besse Indicators

- Containment Air Cooler Clogging with Boron Crystals
 - Cleaning monthly instead of yearly
- Containment radiation monitor filters (1998 -2002)
 - Ultimately required replacement every 2-3 days
 - Found brown stains with boron crystals.
- Some bolts on pressurizer spray valves corroded off due to spray valve leakage.
- Leakage increased by a factor of 10 but still within technical specification limits.

Missed Opportunities

Breakdowns

Utility

Industry – NEI and EPRI

• NRC

INPO

Oversight Boards

Lessons Learned

- Could have set nuclear industry back (again) major non-isolable leak break in reactor pressure vessel
 - We are judged by our poorest performer
- Complacency based on good record
- Poor management oversight and awareness
- You can go to jail (several charged with criminal violations – falsification of records)
- Conservative decision making is important
- Not allowing unacceptable conditions to exist.
- Strong questioning attitude needed

More lessons

- Focus should be on causes not symptoms
- Engineering organization needs to be engaged in problem resolution not just enabling management decisions.
- Mind set of it can never happen needs to be challenged.
- Oversight organizations need to be aggressive.
 - INPO should have identified the problem
 - Outside Nuclear Safety Review Boards should not only listen to management presentations
- NRC resident inspectors did not do their job
- Group think should be avoided

Even more lessons

- Failure to use experience reports and believe them
- Power production is important but if safety compromised the plant and the industry will suffer.
- Safety culture differentiates excellent performers from bad.

Consequences

- Davis Besse Replaced reactor vessel head.
- Repairs cost \$ 600 million loss of revenue
- Plant shutdown for 2 years
 - Restart issue was not of adequacy of repairs
 - Restart was predicated on whether or not the safety culture of the plant was acceptable for operation!
- Fortunately this event was considered as an isolated event by the public but a failure of the regulatory and oversight process.

Homework

- Review the FENOC (Davis Besse) request for continued operation sent in late 2001 to justify operation until the spring out.
- Based on the information provided and the experience with Alloy 600, provide a technically based answer to the request you may want to review the NRC letter granting approval to see if you agree why and why not.

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.