Explainable AI (XAI)

Christoph Molnar

13. Institutstag - July 05, 2019

Let's Predict Wine Quality

Disclaimer: I am NOT a wine expert!

How can we develop a wine quality prediction program?

Programing vs. Machine Learning

Machine Learning (supervised)

Machine Learning (supervised)

Machine Learning (supervised)

Step 1: Find data

Wine Dataset

- ▶ 6500 red and white Portuguese "Vinho Verde" wines
- ► Features: Physicochemical properties
- Quality assessed by blind tasting, from 0 (very bad) to 10 (excellent)

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Wine Quality Distribution

Step 2: Apply Machine Learning

Random Forest

 $Image: \ http://www.hallwaymathlete.com/2016/05/introduction-to-machine-learning-with.html \\$

Train Random Forest to Predict Quality

Mean absolute error on test data (cross-validated): 0.44

Prediction vs. Actual Quality

Step 3: Profit

We want to know:

- Which wine properties are the most predictive for quality?
- How does a property affect the predicted wine quality?
- Can we extract a "Rule of Thumb" from the black box?
- Why did a wine get a certain prediction?
- ► How do we have to change a wine to achieve a different prediction?

Permutation Feature Importance

original

x_1	 x_j	 x_p
3	1.4	6.0
5	1.2	7.2
6	2.0	8.9

\rightarrow

shuffled x_i

situitied wy				
x_1		x_j		x_p
3		2.0		6.0
5		1.4		7.2
6		1.2		8.9

Which features are important?

Effect of Alcohol

Effect of Volatile Acidity

How do features affect predictions?

Surrogate Model

Surrogate Model

Tree explains 37.36% of black box prediction variance.

Explain individual predictions

Shapley Value

Explain best wine

Explain worst wine

Counterfactual Explanations

Counterfactual Explanations

Counterfactual Explanations

Improve worst wine?

How do we get the wine above predicted quality of 5?

- Decreasing volatile acidity to 0.2 yields predicted quality of 5.09
- ► Decreasing volatile acidity to 1.0 and increasing alcohol to 13% yields predicted quality of 5.01

Interested in learning more?

More on interpretable machine learning in my book http://christophm.github.io/interpretable-ml-book/.

Backup

Units in Wine dataset

- fixed acidity g(tartaric acid)/dm³
- volatile acidity: g(acetric acid/dm³)
- ► citric acid: g/dm³
- ► residual sugar: g/dm³
- chlorides: g(sodium chloride)/dm³
- ► free sulfur dioxide: mg/dm³
- total sulfur dioxide: mg/dm³
- ▶ density> g/cm³
- ▶ pH
- sulphates: g(postassium sulphate) / dm³
- ► alcohol vol.%

Interpretable Models

Interpretable Models

Intepretable Model: Linear Regression

Intepretable Model: Decision Tree

Interpretable Model: Decision Rules

IF $90m^2 \leq \text{size} < 110m^2$ AND location = "good" THEN rent is between 1540 and 1890 EUR

Layerwise Relevance Propagation (LRP)

Bach, Sebastian, et al. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation." PloS one 10.7 (2015): e0130140.

https://distill.pub/2017/feature-visualization/

Model-agnostic Methods

Model-agnostic Methods

Model-agnostic Methods

Model-agnostic Methods: Global Surrogate

Model-agnostic Methods: Local Surrogate