Análise e Especificação do Sistema de Automatização de Manufatura Aditiva

Eugênio Polistchuk Berendsen Gabriel Almeida Fontes Vinícius Baldan Herrera

Automatização de Manufatura Aditiva

VERSÃO: 0.1 DATA DE REVISÃO: 08/06/2025

Sumário

1. INTRO	1. INTRODUÇÃO 1					
1.1	Descrição do Problema	1				
1.2	Alternativas existentes	1				
1.3	Objetivos	1				
1.4	Definição do usuário	1				
2. FUNCI	ONALIDADES DO SISTEMA	2				
	isitos funcionais isitos não-funcionais oo 3	2				
3. DIAGR	AMA DE CASO DE USO	4				
3.1. Diagrama de caso de uso 3.2. Especificação de caso de uso						
	4. MODELO DE CLASSES					
4.1. Modelo de Domínio (Fase de análise) 4.2. Diagrama de Classe (Fase de projeto)						
5. DIAGRAMA DE SEQUÊNCIA						
6. DIAGRAMA DE MÁQUINA						
7. CARAC	CTERÍSTICAS OPERACIONAIS DO SOFTWARE	8				
	7.1. Ambiente operacional 7.2. Arquitetura do software					
	istemas e Componentes	8 8				
8. RISCO	S 9					
9. CRON	OGRAMA	1				
10. CONC	CLUSÕES	2				
RESPONSABILIDADES						

4. MODELO DE CLASSES

4.1. Modelo de Domínio (Fase de análise)

1. Usuário

- Responsável por: realizar pedidos, enviar arquivos, acompanhar status e avaliar pedidos.
- Atributos: id, nome, email, endereço, telefone, tipo (cliente ou admin), pedidos.

2. Pedido

- Representa: uma requisição de serviço feita por um usuário.
- Atributos: id, usuariold, status, dataCriacao, valorTotal.
- Associações:

```
1 usuário → 0..* pedidos
```

$$\circ$$
 1 pedido \rightarrow 1..* itens

- 1 pedido → 1 pagamento
- 1 pedido → 0..1 avaliação

3. Item

- Representa: um modelo 3D solicitado no pedido, com quantidade e preço unitário.
- **Atributos**: id, pedidold, nome, quantidade, precoUnitario.
- Associações:
 - 1 pedido \rightarrow 1..* itens
 - 1 item \rightarrow 1 arquivo 3D

4. Arquivo3D

Representa: o conteúdo digital do objeto a ser impresso.

- **Atributos**: id, tipo (imagem, texto, STL), caminhoArquivo, formatoValido.
- Funções: envio, conversão para STL, fatiamento, validação.

5. Pagamento

- Representa: o pagamento referente a um pedido.
- Atributos: id, pedidold, metodo, valor, status.

6. Avaliação

- Representa: o feedback do usuário após a entrega.
- Atributos: id, pedidold, nota, comentário.

7. Impressora

- Responsável por: receber o GCode e realizar a impressão.
- Atributos: id, modelo, status.

8. Adminn

- Possui funções administrativas:
 - aprovar envios
 - visualizar pedidos
 - gerenciar usuários

Relacionamentos

- Usuário → Pedido (1:N)
- Pedido → Item (1:N)
- Item → Arquivo3D (N:1)

- Pedido → Pagamento (1:1)
- Pedido → Avaliação (1:0..1)
- Impressora → processa modelos (não diretamente relacionado no diagrama com Arquivo3D, mas pode ser implícito via GCode)
- Adminn → interage com Usuário e Pedido (por meio de funções, não diretamente como entidade persistente)

Resumo do Domínio

O sistema representa uma plataforma de pedidos de impressão 3D personalizados, onde:

Usuários criam contas e enviam arquivos de modelos (ou imagens/textos a converter).

Os arquivos são transformados e associados a itens em pedidos.

Cada pedido tem um pagamento e pode ser avaliado.

Admins gerenciam o fluxo e aprovam envios.

O processo final envolve a **impressora** realizando a produção com base no GCode gerado.

4.2. Diagrama de Classe (Fase de projeto)

5. DIAGRAMA DE SEQUÊNCIA

6. DIAGRAMA DE MÁQUINA

7. CARACTERÍSTICAS OPERACIONAIS DO SOFTWARE

7.1. Ambiente operacional

O sistema de pedidos de impressão 3D opera em uma arquitetura distribuída em três camadas: cliente, servidor e dispositivos de impressão. O cliente acessa a aplicação via navegador moderno, em dispositivos como computadores ou smartphones. O servidor de aplicação, hospedado em nuvem, executando backend em Python (Flask/Django), frontend web e banco de dados (PostgreSQL/MySQL). A comunicação com as impressoras ocorre via API, utilizando OctoPrint ou software similar. O diagrama de implantação representa a interação entre os componentes, destacando a centralização da lógica no backend e o envio do G-code para as impressoras conectadas. Isso garante organização, escalabilidade e controle do fluxo de pedidos até a produção física.

8. RISCOS

ID	Descrição do Risco	Probabilidade (P)	Impacto (I)	Severidade (S = P × I)	Ação de Prevenção	Ação de Contingência
1	Falha na comunicação entre o sistema e a impressora 3D via OctoPrint	3 (Alta)	3 (Alta)	9	Realizar testes semanais na API; validar G-code antes do envio	Redirecionar o G-code para outro servidor/configuração manual temporária
2	Perda de dados por falha no banco ou falta de backup	2 (Média)	3 (Alta)	6	Implementar backup automático diário e versionamento	Restaurar backup mais recente e validar integridade dos dados
3	Ataques de segurança na API ou acesso indevido a dados de usuários	2 (Média)	3 (Alta)	6	Usar autenticação JWT, criptografia HTTPS e firewall	Revogar acessos, restaurar ambiente e emitir aviso aos usuários
4	Dificuldade do usuário em utilizar o sistema por falhas de usabilidade	3 (Alta)	2 (Médio)	6	Realizar testes de usabilidade com usuários reais antes do lançamento	Fornecer tutorial interativo ou assistência online
5	Incompatibilidade de arquivos enviados pelos usuários (formato errado ou corrompido)	3 (Alta)	1 (Baixo)	3	Implementar validação automática do arquivo na submissão	Solicitar novo arquivo ao usuário com mensagem de erro clara
6	Indisponibilidade temporária do servidor web	2 (Média)	1 (Baixo)	2	Monitoramento com ferramentas como UptimeRobot ou Pingdom	Reinicializar serviços ou mover temporariamente para servidor espelho

A Tabela de Riscos apresentada a seguir tem como objetivo identificar, avaliar e propor estratégias para mitigar os principais riscos associados ao desenvolvimento do sistema de gerenciamento de pedidos e impressão 3D sob demanda. Esta análise foi realizada com base nas características específicas do projeto, na infraestrutura prevista e nas tecnologias adotadas, como integração com impressoras via OctoPrint, uso de banco de dados relacional, e comunicação com o usuário via aplicação web.

Cada risco foi numerado e descrito de forma clara, sendo avaliado de acordo com dois critérios principais: **probabilidade de ocorrência** e **impacto no projeto**, ambos classificados em escala de 1 (baixo) a 3 (alto). A multiplicação desses fatores gera o índice de **severidade**, permitindo organizar os riscos do mais grave ao menos crítico, facilitando a priorização de ações preventivas.

As ações de prevenção foram planejadas para minimizar a probabilidade de que cada risco se concretize, enquanto as ações de contingência visam conter os danos e garantir a continuidade do projeto caso o risco ocorra. Esses planos são essenciais para manter a estabilidade e a confiabilidade do sistema durante o desenvolvimento e

Modelagem de Sistemas Computacionais Versão: 1.0 | Data: 08/06/2025

operação.

É importante destacar que os riscos foram revistos e refinados com base nas considerações feitas durante o Estudo de Viabilidade. Algumas medidas, como a automatização de backups, o uso de autenticação segura e a validação antecipada de arquivos, já foram incorporadas ao planejamento técnico do sistema. A análise contínua desses riscos acompanhará a evolução do projeto, sendo ajustada conforme novas etapas forem implementadas e conforme surgirem novas vulnerabilidades ou pontos críticos.

9. CRONOGRAMA

O desenvolvimento do sistema de gerenciamento de pedidos e impressão 3D foi planejado com base em uma periodicidade **semanal**, distribuída ao longo de **10 semanas**, considerando as demandas do semestre, o domínio técnico do aluno e os marcos definidos no Compromisso Pedagógico. Fatores como semanas de provas, feriados acadêmicos e complexidade das tarefas foram cuidadosamente ponderados, a fim de garantir uma estimativa **realista e viável** de execução.

O cronograma contempla desde a análise e modelagem inicial até a entrega da solução funcional, passando por etapas intermediárias essenciais como testes, integração e documentação. As tecnologias envolvidas — como Flask/Django, PostgreSQL e a API do OctoPrint — já são parcialmente dominadas pelo aluno, o que contribui para a fluidez do desenvolvimento, embora etapas específicas de integração e depuração exijam margens maiores de tempo. A seguir, apresenta-se o cronograma proposto:

Semana	Período	Etapas/Atividades	Recursos Envolvidos
1	03/06 - 07/06	Definição de escopo, estudo de viabilidade, levantamento de requisitos	Aluno + Orientador
2	10/06 - 14/06	Modelagem de dados (MER e DER), casos de uso, e diagramas de classe	Aluno
3	17/06 - 21/06	Prototipação inicial da interface (HTML/CSS), estrutura básica do backend	Aluno
4	24/06 - 28/06	Implementação dos modelos e conexão com banco de dados (PostgreSQL)	Aluno
5	01/07 - 05/07	Integração das rotas de controle (MVC), testes com dados fictícios	Aluno
6	08/07 - 12/07	Semana de provas – foco reduzido (apenas revisões menores e correções)	Aluno
7	15/07 - 19/07	Integração com OctoPrint, envio de G-code e automação do fluxo de impressão	Aluno + Documentação API OctoPrint
8	22/07 - 26/07	Testes de ponta a ponta, tratamento de erros, ajustes de segurança e login	Aluno
9	29/07 - 02/08	Produção dos artefatos finais (diagramas, tabela de riscos, cronograma)	Aluno
10	05/08 - 09/08	Documentação final, vídeo de demonstração, preparação para entrega/apresentação	Aluno + Ferramentas de captura e edição

Modelagem de Sistemas Computacionais Versão: 1.0 | Data: 08/06/2025

10. CONCLUSÕES

O desenvolvimento do sistema de gerenciamento de pedidos e impressão 3D sob demanda representa uma proposta alinhada com a crescente demanda por soluções automatizadas, personalizáveis e acessíveis no contexto da manufatura digital. Desde a definição do escopo até a construção dos artefatos técnicos e validação da arquitetura, o projeto demonstrou solidez, coerência técnica e viabilidade prática.

A adoção da arquitetura MVC e a organização em camadas permitiram uma separação clara de responsabilidades entre a interface, a lógica de negócio e a persistência dos dados, favorecendo a manutenibilidade e a escalabilidade da aplicação. A integração com a API do OctoPrint, elemento essencial para o controle físico das impressoras 3D, também foi planejada com segurança e modularidade.

Ao longo do projeto, os diagramas desempenharam um papel central na estruturação e validação da solução proposta. O Diagrama de Classes foi fundamental para definir entidades e relacionamentos, consolidando a estrutura dos dados. O Diagrama de Sequência auxiliou na visualização dos fluxos entre os objetos durante a realização de pedidos, enquanto o Diagrama de Atividades contribuiu para compreender os caminhos de decisão e ações executadas pelo sistema. Já o Diagrama de Implantação permitiu representar de forma clara a distribuição física dos componentes e suas interações em ambiente real, e o Diagrama de Componentes evidenciou a aplicação prática do padrão MVC, reforçando a organização lógica do sistema.

Com base na revisão da tabela de riscos e na análise da evolução do projeto desde o estudo de viabilidade, observa-se que os principais riscos foram devidamente identificados e tratados com ações preventivas e planos de contingência adequados. A integração com dispositivos físicos, a segurança dos dados e a estabilidade do sistema foram priorizadas em todas as etapas.

O cronograma, por sua vez, foi estruturado de forma realista, respeitando os limites do calendário acadêmico, a carga de provas e o domínio técnico do desenvolvedor, o que reforça a confiança no cumprimento das próximas etapas.

Em síntese, o projeto segue viável e tecnicamente sólido. A base conceitual, aliada ao uso efetivo de representações gráficas e ferramentas de engenharia de software, assegura que a solução atenda aos requisitos estabelecidos e esteja preparada para evoluções futuras, incluindo a expansão para múltiplas impressoras, novos módulos de pagamento e maior automação no processo de produção.

Modelagem de Sistemas Computacionais Versão: 1.0 | Data: 08/06/2025

RESPONSABILIDADE Eugênio Polistchuk Berendsen

Gabriel Almeida Fontes Vinícius Baldan Herrera