

超甜微积分习题集

第一、二、三季合辑

作者: 曲豆豆⊗ biubiu

组织: 曲豆豆的高等数学群 1022388218

时间: December 22, 2019

版本: 17.5

目 录

1	数列极限		1	5	无穷级数与反常积分		89
	1.1	数列极限的基本概念与性质	1		5.1	级数基本概念、正项级数	. 89
	1.2	单调收敛定理与压缩映射			5.2	一般项级数	. 93
		原理	8		5.3	幂级数	. 95
	1.3	Stolz 定理	11		5.4	无穷乘积	. 99
	1.4	上极限与下极限	14		5.5	反常积分的收敛性	. 99
2	连续	函数	18		5.6	反常积分的计算	. 102
	2.1	函数的基本概念	18 6		多元	微分学	108
	2.2	一元函数的极限与连续性	19	Ū	6.1	偏导数与可微性	
	2.3	一元连续函数的性质	22		6.2	极值与条件极值	
	2.4	无穷大量与无穷小量	25		6.3	隐映射定理及其应用	
	2.5	多元连续函数	25		6.4	几何与物理应用	
3	— #	微分学	28		6.5	简单的偏微分方程	
3	3.1 导数的基本概念与计算				OLE THE HAMMAN TO A TELEFORM		. 110
	3.2	泰勒公式与极限的计算		7	多重	积分	119
	3.3	隐函数与参数方程的求导			7.1	二重积分	. 119
	3.4	微分中值定理			7.2	三重积分	. 127
	3.5	用导数研究函数的性质			7.3	多重积分	. 129
		, , , , , , , , , . , . , . , . , .			7.4	积分不等式 II	. 132
4	一元积分学		54	0	-11- V IV		
	4.1	不定积分的计算		8		积分与曲面积分	135
	4.2	定积分的计算			8.1	第一型曲线积分	
	4.3	积分中值定理	65		8.2	第一型曲面积分	
	4.4	Good kernel 及其应用			8.3	第二型曲线积分	
	4.5	定积分的数值计算	76		8.4	第二型曲面积分	
	4.6	积分不等式	83		8.5	\mathbb{R}^3 中的矢量分析与场论	. 145

第1章 数列极限

1.1 数列极限的基本概念与性质

- **练习 1.1** 已知正数列 $\{a_n\}$ 收敛,且 $\lim_{n\to\infty} a_n = A > 0$,
 - (1) 证明:数列 $\{a_n\}$ 存在正的下界(换句话说,存在 $\varepsilon > 0$,使得 $a_n \ge \varepsilon$ 对任意 $n \ge 1$ 都成立);
 - (2) 举例说明数列 $\{a_n\}$ 之中可能没有最小数。

证明 (1) 由数列极限的定义,存在正整数 N,使得对任意 n > N,都有 $a_n > \frac{A}{2}$,对于这个 N,注意 $a_1, a_2, ..., a_N$ 都为正数,从而考虑

$$\varepsilon := \min\{a_1, a_2, ..., a_N; \frac{A}{2}\}$$

易知如此的 ε 是数列 $\{a_n\}$ 的一个正下界。

- (2) 例如 $a_n = A + \frac{1}{n}$.
- **练习 1.2** 已知非负数列 $\{a_n\}$ 使得对任意 $n \ge 1$ 都成立 $a_{n+1} \le a_n + \frac{1}{n^2}$. 证明: $\lim_{n \to +\infty} a_n$ 存在。

证明 考虑数列 $b_n := a_n + \frac{2}{n}$,则由 $a_{n+1} \le a_n + \frac{1}{n^2}$ 容易得到 $b_{n+1} \le b_n$,即 $\{b_n\}$ 单调递减。又易知 $\{b_n\}$ 非负,从而 $\lim_{n \to +\infty} b_n$ 存在。因此

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (b_n - \frac{2}{n}) = \lim_{n \to +\infty} b_n - \lim_{n \to +\infty} \frac{2}{n} = \lim_{n \to +\infty} b_n$$

 练习 1.3 已知正数列 $\{a_n\}$ 满足 $\lim_{n\to+\infty}a_n=0$,证明:存在正数列 $\{b_n\}$ 使得 $\lim_{n\to+\infty}b_n=0$,并且 $\lim_{n\to+\infty}\frac{b_n}{a_n}=+\infty$.

证明 因为 $\lim_{n\to+\infty} a_n = 0$,从而存在正整数 N_1 ,使得当 $n > N_1$ 时, $a_n < \frac{1}{1^2}$. 之后考虑子列 $\{a_n\}_{n=N_1}^{+\infty}$,该数列也趋于 0,从而存在正整数 $N_2 > N_1$,使得当 $n > N_2$ 时, $a_n < \frac{1}{2^2}$.

如此不断地归纳构造下去,可得到一列 $N_1 < N_2 < N_3 < \cdots$,使得对任意 $k \ge 1$,若 $n > N_k$,则 $a_n < \frac{1}{k^2}$. 注意到对任何正整数 n,要么 $n \le N_1$,要么存在唯一的 $k \ge 1$,使得 $N_k < n \le N_{k+1}$. 构造数列 $\{b_n\}$ 如下:

$$b_n = \begin{cases} a_n & n \le N_1 \\ ka_n & N_k < n \le N_{k+1} \end{cases}$$

则当 $N_k < n \le N_{k+1}$ 时, $b_n = ka_n < k \cdot \frac{1}{k^2} = \frac{1}{k}$,于是易知 $\lim_{n \to +\infty} b_n = 0$;又因为 $N_k < n \le N_{k+1}$ 时, $\frac{b_n}{a_n} = k$,由此易知 $\lim_{n \to +\infty} \frac{b_n}{a_n} = +\infty$.

另一种更直接的构造是 $b_n = \sqrt{a_n}$ 。

注 此题表明,不存在"收敛速度最慢"的数列。

△ 练习 1.4 设 $a_1, a_2, ..., a_N$ 是 N 个给定的正数,证明:

$$\lim_{n \to +\infty} \left(a_1^n + a_2^n + \dots + a_N^n \right)^{\frac{1}{n}} = \max\{a_1, a_2, \dots, a_N\}$$

证明 令 $A := \max\{a_1, a_2, ..., a_N\}$,则一方面有

$$(a_1^n + a_2^n + \dots + a_N^n)^{\frac{1}{n}} \le (NA^n)^{\frac{1}{n}} = \sqrt[n]{N}A \to A \qquad (n \to +\infty)$$

另一方面, $\left\{a_i \middle| 1 \le i \le N\right\}$ 之中至少有一个为A,从而

$$(a_1^n + a_2^n + \dots + a_N^n)^{\frac{1}{n}} \ge (A^n)^{\frac{1}{n}} = A$$

从而由夹逼原理, $\lim_{n \to +\infty} (a_1^n + a_2^n + \dots + a_N^n)^{\frac{1}{n}} = A = \max\{a_1, a_2, \dots, a_N\}.$

练习 1.5 已知数列 $\{a_n\}$ 使得 $\lim_{n\to+\infty}\frac{a_1+a_2+\cdots+a_n}{n}$ 存在,证明 $\lim_{n\to+\infty}\frac{a_n}{n}=0$.

证明 记数列 $\{a_n\}$ 的部分和 $S_n:=a_1+a_2+\cdots+a_n$,则由题意 $A:=\lim_{n\to+\infty}\frac{S_n}{n}$ 存在。从而有

$$\lim_{n\to+\infty}\frac{a_n}{n} = \lim_{n\to+\infty}\frac{S_n-S_{n-1}}{n} = \lim_{n\to+\infty}\left(\frac{S_n}{n} - \frac{n-1}{n} \cdot \frac{S_{n-1}}{n-1}\right) = A-1\cdot A = 0$$

练习 1.6 已知数列 $\{a_n\}$, $\{b_n\}$ 均为单调递增的无界数列,并且 $\lim_{n\to+\infty}(a_{n+1}-a_n)=0$. 证明:集合 $X:=\left\{a_n-b_m\middle|m,n\in\mathbb{Z}_+\right\}$ 在 \mathbb{R} 当中稠密(其中"稠密"是指,任意开区间 (r,s) 与 X 的交集非空)。

证明 由于 $\{a_n\}$, $\{b_n\}$ 单调递增且无界,从而当 $n \to +\infty$ 时它们都趋于 $+\infty$.

对任意给定的开区间 (r,s), 记 $\varepsilon:=s-r>0$. 则由 $\lim_{\substack{n\to+\infty\\n\to+\infty}}(a_{n+1}-a_n)=0$ 可知存在 N>0 使得 当 $n\geq N$ 时成立 $a_{n+1}< a_n+\varepsilon$. 另外由 $\lim_{\substack{n\to+\infty\\n\to+\infty}}b_n=+\infty$ 可知存在 $m\in\mathbb{Z}_+$ 使得 $b_m>-r+a_N$, 即 $-b_m< r-a_N$. 对于此 m, 考虑集合

$$I_m := \left\{ n \in \mathbb{Z}_+ \middle| a_n - b_m \le r \right\}$$

因为 $b_m > -r + a_N$,所以 $a_N - b_m < r$,所以 $N \in I_m$,所以集合 I_m 非空。又因为 $\{a_n\}$ 单调递增趋于正无穷,从而当 n 足够大时 $a_n - b_m > r$,故集合 I_m 有上界。又 I_m 为 \mathbb{Z}_+ 的子集,从而必存在最大元。记 n 为集合 I_m 的最大元,则 $n \geq N$.

由 n 在 I_m 之中的最大性可知 $a_{n+1}-b_m > r$. 另一方面由 $n \ge N$ 可知 $a_{n+1}-b_m < a_n-b_m+\varepsilon \le r+(s-r)=s$. 综上可知 $a_{n+1}-b_m \in (r,s)$, 从而 $X\cap (r,s)\neq\varnothing$. 这就证明了 X 在 $\mathbb R$ 当中稠密。

▲ 练习 1.7 计算极限:

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{n+1-k}{n\binom{n}{k}}.$$

证明 [解]: 对于 $n \ge 2$, 注意对任意的 $2 \le k \le n-2$, 成立

$$\binom{n}{k} \ge \binom{n}{2} = \frac{n(n-1)}{2}$$

因此对于 $n \ge 4$, 成立

$$\sum_{k=1}^{n} \frac{n+1-k}{n\binom{n}{k}} = \frac{2}{n} + \frac{2}{n^2} + \sum_{k=2}^{n-2} \frac{n+1-k}{n\binom{n}{k}}$$

$$\leq \frac{2}{n} + \frac{2}{n^2} + \sum_{k=2}^{n-2} \frac{n}{n\frac{n(n-1)}{2}} = \frac{2}{n} + \frac{2}{n^2} + \frac{2(n-4)}{n(n-1)}$$

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{n+1-k}{n\binom{n}{k}}=0.$$

▲ 练习1.8 计算极限:

$$\lim_{n \to +\infty} \left(\frac{1 + \frac{1}{1}}{n^2 + n + 1} + \frac{2 + \frac{1}{2}}{n^2 + n + 2} + \frac{3 + \frac{1}{3}}{n^2 + n + 3} + \dots + \frac{n + \frac{1}{n}}{n^2 + n + n} \right).$$

证明 [解] 使用夹逼原理。对于 $n \ge 1$, 注意到

$$\sum_{k=1}^{n} \frac{k + \frac{1}{k}}{n^2 + n + k} = \sum_{k=1}^{n} \frac{k}{n^2 + n + k} + \sum_{k=1}^{n} \frac{\frac{1}{k}}{n^2 + n + k} \le \sum_{k=1}^{n} \frac{k}{n^2 + n} + \sum_{k=1}^{n} \frac{1}{n^2 + n}$$
$$= \frac{1}{2} + \frac{1}{n+1} \to \frac{1}{2} \quad (n \to +\infty)$$

另一方面, 我们还有

$$\sum_{k=1}^{n} \frac{k + \frac{1}{k}}{n^2 + n + k} \ge \sum_{k=1}^{n} \frac{k}{n^2 + n + k} \ge \sum_{k=1}^{n} \frac{k}{n^2 + 2n} = \frac{n+1}{2(n+2)} \to \frac{1}{2} \qquad (n \to +\infty)$$

因此由夹逼原理,原极限存在,并且等于 1/2.

△ **练习 1.9** 已知实数 $\alpha > 1$, 计算极限:

$$\lim_{n\to+\infty} \left(\frac{1}{n+1^{\alpha}} + \frac{1}{n+2^{\alpha}} + \dots + \frac{1}{n+n^{\alpha}} \right).$$

证明 [解] 对于任意 $\varepsilon > 0$,由 $\alpha > 1$,从而众所周知正项级数 $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ 收敛. 由柯西收敛准则可知存在正整数 M 使得对任何正整数 k 都成立

$$\frac{1}{M^{\alpha}} + \frac{1}{(M+1)^{\alpha}} + \frac{1}{(M+2)^{\alpha}} + \dots + \frac{1}{(M+k)^{\alpha}} < \frac{\varepsilon}{2}.$$

对于此 M,取 $N := \left[\frac{2M}{\varepsilon}\right] + 1$,则对于任意 $n \ge N$,成立

$$0 \le \sum_{k=1}^{n} \frac{1}{n+k^{\alpha}} \le \sum_{k=1}^{M} \frac{1}{n+k^{\alpha}} + \sum_{k=M+1}^{n} \frac{1}{n+k^{\alpha}}$$
$$\le \sum_{k=1}^{M} \frac{1}{n} + \sum_{k=M+1}^{n} \frac{1}{k^{\alpha}} \le M \cdot \frac{\varepsilon}{2M} + \frac{\varepsilon}{2} = \varepsilon$$

因此有 $\lim_{n \to +\infty} \left(\frac{1}{n+1^{\alpha}} + \frac{1}{n+2^{\alpha}} + \dots + \frac{1}{n+n^{\alpha}} \right) = 0.$

▲ 练习 1.10 计算极限:

$$\lim_{n\to+\infty} \sqrt{n} \left[1 - \left(\frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \dots + \frac{1}{n+\sqrt{n}} \right) \right].$$

证明 [解] 注意到该数列的通项

$$\sqrt{n} \left(1 - \sum_{k=1}^{n} \frac{1}{n + \sqrt{k}} \right) = \sqrt{n} \sum_{k=1}^{n} \left(\frac{1}{n} - \frac{1}{n + \sqrt{k}} \right) = \sum_{k=1}^{n} \frac{\sqrt{k}}{(n + \sqrt{k})\sqrt{n}}$$

注意函数 $x \mapsto \sqrt{x}$ 单调递增,从而有不等式

$$\frac{2}{3} \left[(n+1)\sqrt{n+1} - 1 \right] = \int_{1}^{n+1} \sqrt{x} \, \mathrm{d}x \ge \sum_{k=1}^{n} \sqrt{k} \ge \int_{0}^{n} \sqrt{x} \, \mathrm{d}x = \frac{2}{3} n \sqrt{n}$$

从而我们得到

$$\sqrt{n}\left(1 - \sum_{k=1}^{n} \frac{1}{n + \sqrt{k}}\right) \leq \frac{1}{n\sqrt{n}} \sum_{k=1}^{n} \sqrt{k} \leq \frac{2}{3} \cdot \frac{(n+1)\sqrt{n+1} - 1}{n\sqrt{n}}$$

$$\sqrt{n}\left(1 - \sum_{k=1}^{n} \frac{1}{n + \sqrt{k}}\right) \geq \frac{1}{(n+\sqrt{n})\sqrt{n}} \sum_{k=1}^{n} \sqrt{k} \geq \frac{2}{3} \cdot \frac{n\sqrt{n}}{(n+\sqrt{n})\sqrt{n}}$$

令 $n \to +\infty$, 则由夹逼原理立刻得到

$$\lim_{n \to +\infty} \sqrt{n} \left(1 - \sum_{k=1}^{n} \frac{1}{n + \sqrt{k}} \right) = \frac{2}{3}$$

▲ 练习 1.11 计算极限:

$$\lim_{n \to +\infty} \left(\sin \frac{1}{n^2} + \sin \frac{3}{n^2} + \dots + \sin \frac{2n-1}{n^2} \right)$$

证明 对于 x > 0, 注意不等式 $x - \frac{1}{6}x^3 < \sin x < x$, 从而有

$$\sum_{k=1}^{n} \sin \frac{2k-1}{n^2} \le \sum_{k=1}^{n} \frac{2k-1}{n^2} = 1$$

$$1 - \left(\sum_{k=1}^{n} \sin \frac{2k-1}{n^2}\right) < \frac{1}{6} \sum_{k=1}^{n} \left(\frac{2k-1}{n^2}\right)^3 < \frac{1}{6n^6} \sum_{k=1}^{2n} k^3$$
$$< \frac{1}{6n^6} \int_{1}^{2n+1} x^3 \, \mathrm{d}x < \frac{(3n)^4}{24n^6} \to 0 \qquad (n \to +\infty)$$

于是由夹逼原理立刻得到 $\lim_{n\to+\infty} \left(\sin \frac{1}{n^2} + \sin \frac{3}{n^2} + \dots + \sin \frac{2n-1}{n^2} \right) = 1.$

证明 [另证] 首先仍由 $\sin x \le x$ 得出 $\sum\limits_{k=1}^n \sin \frac{2k-1}{n^2} \le 1$. 不过另一边不等号可以这样估计: 注意到 极限 $\lim\limits_{x\to 0} \frac{\sin x}{x} = 1$,从而对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得对任意 $|x| < \delta$,都有 $\frac{\sin x}{x} > 1 - \varepsilon$,即

 $\sin x > x - \varepsilon x$. 现在取足够大的 N,使得 $N > \frac{2}{\delta}$,则对任意 n > N, $\frac{1}{n^2}$, $\frac{3}{n^2}$,…, $\frac{2n-1}{n^2}$ 都小于 δ ,因此有

$$\sum_{k=1}^{n} \sin \frac{2k-1}{n^2} \ge \sum_{k=1}^{n} \left(\frac{2k-1}{n^2} - \varepsilon \frac{2k-1}{n^2} \right) = 1 - \varepsilon$$

因此由数列极限的定义,即得 $\lim_{n\to+\infty}\left(\sin\frac{1}{n^2}+\sin\frac{3}{n^2}+\cdots+\sin\frac{2n-1}{n^2}\right)=1.$

 \triangle 练习 1.12 对于常数 θ , 计算极限:

$$\lim_{n \to +\infty} \prod_{k=1}^{n} \cos \frac{k\theta}{n\sqrt{n}}$$

证明 [解] 考虑函数 $f(x) = \ln \cos x$ 在 x = 0 附近的泰勒展开,容易知道存在常数 M > 0 使得当 |x| 充分小时成立

$$\ln\cos x = -\frac{1}{2}x^2 + r(x)$$

其中余项 $|r(x)| \le Mx^4$. 于是

$$\begin{split} \sum_{k=1}^{n} \ln \cos \frac{k\theta}{n\sqrt{n}} &= \sum_{k=1}^{n} \left(-\frac{1}{2} \cdot \frac{k^2 \theta^2}{n^3} \right) + \sum_{k=1}^{n} r(\frac{k\theta}{n\sqrt{n}}) \\ \left| \sum_{k=1}^{n} r(\frac{k\theta}{n\sqrt{n}}) \right| &\leq M \sum_{k=1}^{n} \frac{k^4 \theta^4}{n^6} = \frac{M\theta^4}{n^6} \sum_{k=1}^{n} k^4 \to 0 \qquad (n \to +\infty) \end{split}$$

从而令 $n \to +\infty$,有

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \ln \cos \frac{k\theta}{n\sqrt{n}} = \lim_{n \to +\infty} \sum_{k=1}^{n} \left(-\frac{1}{2} \cdot \frac{k^{2}\theta^{2}}{n^{3}} \right) = \lim_{n \to +\infty} \left(-\frac{\theta^{3}}{2n^{2}} \sum_{k=1}^{n} k^{2} \right)$$
$$= -\theta^{2} \lim_{n \to +\infty} \frac{n(n+1)(2n+1)}{12n^{3}} = -\frac{\theta^{2}}{6}$$

对上式两边取指数,即得 $\lim_{n \to +\infty} \prod_{k=1}^n \cos \frac{k\theta}{n\sqrt{n}} = e^{-\frac{\theta^2}{6}}$.

▲ 练习 1.13 计算极限:

$$\lim_{n \to +\infty} \left(\sqrt{n^2 + n} + n \sum_{k=1}^{n} \cos \frac{k\pi}{n} \right)$$

证明 [解] 首先注意到

$$\sum_{k=0}^{n} \cos \frac{k\pi}{n} = \frac{1}{2} \left(\sum_{k=0}^{n} \cos \frac{k\pi}{n} + \sum_{k=0}^{n} \cos \frac{(n-k)\pi}{n} \right) = \frac{1}{2} \sum_{k=0}^{n} \left(\cos \frac{k\pi}{n} + \cos \frac{(n-k)\pi}{n} \right) = 0$$

因此

原式 =
$$\lim_{n \to +\infty} \left(\sqrt{n^2 + n} + n \left(\sum_{k=0}^{n} \cos \frac{k\pi}{n} - \cos \frac{0 \cdot \pi}{n} \right) \right)$$

= $\lim_{n \to +\infty} \left(\sqrt{n^2 + n} - n \right) = \lim_{n \to +\infty} \frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{2}$

▲ 练习1.14 计算极限:

$$\lim_{n \to +\infty} n^{\frac{\pi}{2}} \ln n \cdot \sin \left[(\sqrt{2} + 1)^n \pi \right]$$

证明 [解] 考虑数列 $a_n := (1 + \sqrt{2})^n + (1 - \sqrt{2})^n$,则 $a_1 = 2$, $a_2 = 6$,并且用数学归纳法容易验证递推关系

$$a_{n+2} = 2a_{n+1} + a_n \qquad (n \ge 1)$$

特别地,由递推关系归纳可得数列 $\{a_n\}$ 的每一项都为偶数,从而

$$\sin\left[(\sqrt{2}+1)^n\pi\right] = \sin\left[(a_n - (1-\sqrt{2})^n)\pi\right] = (-1)^n\sin\left[(\sqrt{2}-1)^n\pi\right]$$

再注意 $|\sqrt{2}-1|<1$,从而 $n\to +\infty$ 时有等价无穷小量

$$\sin\left[(\sqrt{2}-1)^n\pi\right] \sim (\sqrt{2}-1)^n\pi$$

因此立刻得到 $\lim_{n\to+\infty} n^{\frac{\pi}{2}} \ln n \cdot \sin \left[(\sqrt{2}+1)^n \pi \right] = 0.$

▲ 练习 1.15 计算极限:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\left[\frac{2n}{k} \right] - 2 \left[\frac{n}{k} \right] \right).$$

证明 [解] 对任意 $1 \le k \le n$, 记 $\left\lceil \frac{n}{k} \right\rceil = \frac{n}{k} + \alpha_{nk}$, 以及 $\left\lceil \frac{2n}{k} \right\rceil = \frac{2n}{k} + \beta_{nk}$. 则有

$$0 \le \alpha_{nk} \le \frac{1}{k}$$
, 以及 $0 \le \beta_{nk} \le \frac{1}{k}$.

因此有

$$\left| \left[\frac{2n}{k} \right] - 2 \left[\frac{n}{k} \right] \right| = \left| \beta_{nk} - 2\alpha_{nk} \right| \le \beta_{nk} + 2\alpha_{nk} \le \frac{3}{k}$$

从而对于 $n \ge 1$, 有

$$\left| \frac{1}{n} \sum_{k=1}^{n} \left(\left[\frac{2n}{k} \right] - 2 \left[\frac{n}{k} \right] \right) \right| \leq \frac{1}{n} \sum_{k=1}^{n} \left| \left[\frac{2n}{k} \right] - 2 \left[\frac{n}{k} \right] \right| \leq 3 \cdot \frac{\sum_{k=1}^{n} \frac{1}{k}}{n} \to 0, \quad (n \to +\infty)$$

这就证明了 $\lim_{n\to+\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\left[\frac{2n}{k} \right] - 2 \left[\frac{n}{k} \right] \right) = 0..$

▲ 练习 1.16

将集合 $\left\{2^m3^n\middle| m,n\geq 0\right\}$ 之中的元素从小到大排成数列 $\left\{a_n\right\}$. 证明: $\lim_{n\to+\infty}\frac{a_{n+1}}{a_n}=1$.

证明 我们需要一个初等的结果:对于任意正数 a,b>0,如果 $\frac{a}{b}$ 为无理数,那么对任意 $\delta>0$,存在非负整数 p,q,r,s,使得 $-\delta< pa-qb<0< ra-sb<\delta$. (用抽屉原理易证)

现在,对于任意 $\varepsilon > 0$,取 $\delta > 0$ 使得 $e^{\delta} < 1 + \varepsilon$. 考虑正实数 $a = \ln 2$, $b = \ln 3$,则容易验证 ϵ 为无理数,从而由引理可知存在非负整数 p,q,r,s 使得

$$-\delta$$

$$\Rightarrow \left\{ \begin{array}{l} 1 < \frac{3^p}{2^q} < e^{\delta} < 1 + \varepsilon \\ 1 < \frac{2^r}{3^s} < e^{\delta} < 1 + \varepsilon \end{array} \right.$$

注意到显然有 $\lim_{n\to +\infty} a_n = +\infty$,从而存在 N > 0使得对任意 n > N 都有 $a_n > 2^q \cdot 3^s$. 于是对任意 n > N,记 $a_n = 2^u \cdot 3^v$,由 $a_n > 2^p \cdot 3^r$ 可知 $u \ge q$ 与 $v \ge s$ 至少有一个成立。不妨 $u \ge q$,则 $2^{u-q} \cdot 3^{v+p} \in \{a_n\}$,并且由 $2^{u-q} \cdot 3^{v+p} = a_n \cdot \frac{3^p}{2q} > a_n$ 可知 $2^{u-q} \cdot 3^{v+p} \ge a_{n+1}$,从而

$$1 \le \frac{a_{n+1}}{a_n} \le \frac{2^{u-q} \cdot 3^{v+p}}{2^u \cdot 3^v} = \frac{3^p}{2^q} < 1 + \varepsilon$$

同理也能证明当 $v \ge s$ 是也有 $1 \le \frac{a_{n+1}}{a_n} < 1 + \varepsilon$. 因此对任意 n > N 都成立 $\left| \frac{a_{n+1}}{a_n} - 1 \right| < \varepsilon$,从而 $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$.

练习 1.17 已知数列 $\{x_n\}$ 满足 $\lim_{n \to +\infty} (x_n - x_{n-2}) = 0$, 证明:

$$\lim_{n \to +\infty} \frac{x_n - x_{n-1}}{n} = 0$$

证明 对于任意 $\varepsilon > 0$,由 $\lim_{n \to +\infty} (x_n - x_{n-2}) = 0$ 的定义可知,存在 N > 0 使得当 $n \ge N$ 时成立 $|x_n - x_{n-2}| < \frac{\epsilon}{2}$,因此对任意整数 $m \ge 0$,成立

$$|x_{N+m} - x_{N+m-1}| \le |x_{N+m} - x_{N+m-2}| + |x_{N+m-1} - x_{N+m-2}| \le |x_{N+m-1} - x_{N+m-2}| + \frac{\varepsilon}{2}$$

$$\le \cdots \le |x_N - x_{N-2}| + \frac{m\varepsilon}{2}$$

对于此 N, 取足够大的 M > N 使得 $\frac{|x_N - x_{N-2}|}{M} \le \frac{\varepsilon}{2}$, 从而 $\frac{\omega}{2} = \frac{1}{2}$ 从 而 $\frac{\omega}{2} = \frac{1}{2}$ 和 $\frac{\omega}{2} =$

$$\frac{|x_n - x_{n-1}|}{n} \le \frac{|x_N - x_{N-2}|}{n} + \frac{(n-N)\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

从而 $\lim_{n \to +\infty} \frac{x_n - x_{n-1}}{n} = 0.$

注 此题还有一种奇技淫巧,巧妙运用 Stolz 定理如下:

$$\lim_{n \to +\infty} \frac{(-1)^n (x_n - x_{n-1})}{n} \xrightarrow{\text{Stolz}} \lim_{n \to +\infty} (-1)^n \frac{x_n - x_{n-2}}{n - (n-1)} = 0$$

4 练习 1.18 将 $\tan x = x$ 的正根从小到大依次记为 $x_1, x_2, x_3, ...$ 计算极限:

$$\lim_{n \to +\infty} x_n^2 \sin(x_{n+1} - x_n)$$

证明 [解] 易知对任意正整数 k, $x = \tan x$ 在区间 $(k\pi, (k+\frac{1}{2})\pi)$ 当中有唯一的根,在 $((k-\frac{1}{2})\pi, k\pi)$ 当中没有根。从而 $x_k \in (k\pi, (k+\frac{1}{2})\pi)$. 先断言: $\lim_{k\to +\infty} x_k - (k+\frac{1}{2})\pi = 0$. 这是因为,记 $x_k = (k+\frac{1}{2})\pi - t_n$,则 $t_n \in (0, \frac{\pi}{2})$. 从而

$$k\pi < x_k = \tan x_k = \tan \left[(k + \frac{1}{2})\pi - t_n \right] = \frac{1}{\tan t_n}$$

从而 $0 < t_n < \arctan \frac{1}{k\pi} \to 0$, $(k \to +\infty)$. 这就说明了 $\lim_{k \to +\infty} x_k - (k + \frac{1}{2})\pi = 0$. 由此容易得到 $\lim_{k \to +\infty} (x_{k+1} - x_k) = \pi$.

现在,注意 $\tan x_n = x_n$,从而可知 $\sin x_n = \frac{x_n}{\sqrt{1+x_n^2}}$, $\cos x_n = \frac{1}{\sqrt{1+x_n^2}}$,从而有

$$\sin(x_{n+1} - x_n) = \frac{x_{n+1} - x_n}{\sqrt{1 + x_{n+1}^2} \cdot \sqrt{1 + x_n^2}}$$

$$\lim_{n \to +\infty} x_n^2 \sin(x_{n+1} - x_n) = \lim_{n \to +\infty} x_n^2 \cdot \frac{x_{n+1} - x_n}{\sqrt{1 + x_{n+1}^2} \cdot \sqrt{1 + x_n^2}} = \lim_{n \to +\infty} x_n^2 \cdot \frac{\pi}{x_{n+1} x_n} = \pi$$

1.2 单调收敛定理与压缩映射原理

△ 练习 1.19 已知数列 {a_n} 满足

$$a_n = \sqrt{\frac{1}{1^2} + \sqrt{\frac{1}{2^2} + \sqrt{\dots + \sqrt{\frac{1}{n^2}}}}}$$

证明: $\lim_{n\to+\infty} a_n$ 存在, 并且

$$\lim_{n \to +\infty} a_n < 1.471$$

证明 显然 $\{a_n\}$ 是单调递增数列,为证其极限存在,只需再证它有上界。我们令

$$b_n := \underbrace{\sqrt{1 + \sqrt{1 + \sqrt{\dots + \sqrt{1}}}}}_{n \, \uparrow \, \text{RF}}$$

显然 $a_n \leq b_n$,以及递推关系 $b_{n+1} = \sqrt{1+b_n}$. 断言对任意 $n \geq 1$,都有 $b_n < \frac{\sqrt{5}+1}{2}$,这是因为 $b_1 = 1 < \frac{\sqrt{5}+1}{2}$,并且由数学归纳法 $b_{n+1} = \sqrt{1+b_n} < \sqrt{1+\frac{\sqrt{5}+1}{2}} = \frac{\sqrt{5}+1}{2}$. 从而对任意 $n \geq 1$, $a_n \leq b_n < \frac{\sqrt{5}+1}{2}$. 从而 $\{a_n\}$ 是单调递增的有界数列,故极限存在。并且我们得到

$$\lim_{n \to +\infty} a_n \le \frac{\sqrt{5} + 1}{2} = 1.61803 \dots < 1.619$$

为得到 $\lim_{n\to\infty} a_n$ 更精确的估计,对于 $n\geq 3$,令

$$c_n := \underbrace{\sqrt{\frac{1}{3^2} + \sqrt{\frac{1}{4^2} + \sqrt{\dots + \sqrt{\frac{1}{n^2}}}}}_{n-2} \stackrel{\wedge}{\wedge} \mathbb{H}^{\frac{1}{2}}$$

则有 $a_n = \sqrt{1 + \sqrt{\frac{1}{4} + c_n}}$. 注意到

$$c_n \le \sqrt{\frac{1}{3^2} + \sqrt{\frac{1}{3^2} + \sqrt{\dots + \sqrt{\frac{1}{3^2}}}}} =: d_n$$
 $n - 2 \uparrow \forall \emptyset =$

而类似地,我们知道 $\{d_n\}$ 单调递增且极限存在,并且其极限 d>0 满足 $d^2=\frac{1}{3^2}+d$,从而 $d=\frac{3+\sqrt{13}}{6}$.

因此有 $c_n \le d = \frac{3+\sqrt{13}}{6}$. 因此

$$\lim_{n \to +\infty} a_n \le \sqrt{1 + \sqrt{\frac{1}{4} + d}} = \sqrt{1 + \sqrt{\frac{1}{4} + \frac{3 + \sqrt{13}}{6}}} = 1.47047 \dots < 1.471$$

练习 1.20 已知数列 $\{x_n\}$ 满足 $x_1 = \frac{1}{2}$,并且 $x_{n+1} = \frac{1}{2} - \frac{1}{2}x_n^2$,($\forall n \geq 1$). 证明: $\lim_{n \to +\infty} x_n = \sqrt{2} - 1$. 证明 对于 $n \geq 1$,记 $y_n := x_n - \sqrt{2} + 1$,则递推关系 $x_{n+1} = \frac{1}{2} - \frac{1}{2}x_n^2$ 化为

$$y_{n+1} = -\frac{1}{2}y_n^2 - (\sqrt{2} - 1)y_n \tag{*}$$

首先归纳证明 $|y_n| < 1$. 这是因为 $y_1 = \frac{1}{2} - \sqrt{2} + 1$ 显然满足 $|y_1| < 1$,再利用归纳假设,有

$$|y_{n+1}| = |-\frac{1}{2}y_n^2 - (\sqrt{2} - 1)y_n| \le \frac{1}{2}|y_n|^2 + (\sqrt{2} - 1)|y_n| \le \frac{1}{2} + \sqrt{2} - 1 < 1$$

这就证明了对任意 $n \ge 1$ 都有 $|y_n| < 1$; 进而得到

$$|y_{n+1}| = |-\frac{1}{2}y_n^2 - (\sqrt{2} - 1)y_n| \le (\sqrt{2} - 1 + \frac{1}{2})|y_n| = (\sqrt{2} - \frac{1}{2})|y_n|$$

反复迭代上式,有 $|y_n| \le \left(\sqrt{2} - \frac{1}{2}\right)^{n-1} |y_1|$. 注意 $\sqrt{2} - \frac{1}{2} < 1$,从而 $\lim_{n \to +\infty} y_n = 0$,即 $\lim_{n \to +\infty} x_n = \sqrt{2} - 1$.

△ 练习 1.21 设 a > 0, $x_1 > 0$, 数列 $\{x_n\}$ 满足递推关系

$$x_{n+1} = \frac{1}{4} \left(3x_n + \frac{a}{x_n^3} \right) \quad \forall n \ge 1$$

试证明 $\lim_{n \to \infty} x_n$ 存在,并求其值。

证明 [解] 首先注意 $x_1 > 0$ 以及 a > 0,用数学归纳法已知 $x_n > 0$ 对任意 $n \ge 1$ 成立,因此数列 $\{x_n\}$ 有下界。对任意 $n \ge 2$,使用平均值不等式可知

$$x_{n} = \frac{1}{4} \left(3x_{n-1} + \frac{a}{x_{n-1}^{3}} \right) = \frac{1}{4} \left(x_{n-1} + x_{n-1} + x_{n-1} + \frac{a}{x_{n-1}^{3}} \right)$$

$$\geq \sqrt[4]{x_{n-1} \cdot x_{n-1} \cdot x_{n-1} \cdot \frac{a}{x_{n-1}^{3}}} = \sqrt[4]{a}$$

因此对任意 $n \ge 2$, $x_n \ge \sqrt[4]{a}$, 进而

$$x_{n+1} - x_n = \frac{1}{4} \left(\frac{a}{x_n^3} - x_n \right) < 0$$

这表明数列 $\{x_n\}$ 在 $n \ge 2$ 是单调递减的。又因为此数列有下界,从而极限 $\lim_{n\to\infty} x_n$ 存在。设其极限值为 x,则对 $x_{n+1} = \frac{1}{4}\left(3x_n + \frac{a}{x_n^2}\right)$ 两边取 $n\to\infty$,得

$$x = \frac{1}{4} \left(3x + \frac{a}{r^3} \right)$$

由因为每个 $x_n > 0$, 故极限值 $x \ge 0$, 因此从上式解得 $x = \sqrt[4]{a}$. 即 $\lim_{n \to \infty} x_n = \sqrt[4]{a}$.

练习 1.22 已知 $\{a_n\}$ 与 $\{b_n\}$ 均为正整数列,并且满足 $a_{n+1}+\sqrt{5}b_{n+1}=\left(a_n+\sqrt{5}b_n\right)^2$. 证明

极限 $\lim_{n\to+\infty} \frac{a_n}{b_n}$ 存在,并求其值。

证明 注意到 a_n, b_n 都是正整数,从而比较 $1 与 \sqrt{5}$ 的系数易知 $\begin{cases} a_n = a_{n-1}^2 + 5b_{n-1}^2 \\ b_n = 2a_{n-1}b_{n-1} \end{cases}$,从而得到

$$\frac{a_n}{b_n} = \frac{1}{2} \cdot \frac{a_{n-1}}{b_{n-1}} + \frac{5}{2} \cdot \frac{b_{n-1}}{a_{n-1}}$$

记 $\lambda_n:=\frac{a_n}{b_n}$,则由均值不等式可知当 $n\geq 2$ 时 $\lambda_n=\frac{1}{2}\lambda_{n-1}+\frac{5}{2}\cdot\frac{1}{\lambda_{n-1}}\geq \sqrt{5}$,从而

$$\lambda_n - \lambda_{n-1} = \frac{5 - \lambda_{n-1}^2}{2\lambda_{n-1}} \le 0$$

又显然 $\lambda_n \ge 0$,从而由单调有界定理知 $\lim_{n \to +\infty} \lambda_n$ 存在。之后易求该极限为 $\sqrt{5}$.

绛 练习 **1.23** 对于 a > 0,已知数列 $\{x_n\}$ 满足 $x_1 = \sqrt{a}$, $x_{n+1} = \sqrt{a + x_n}$.

证明: $\lim_{n\to+\infty} x_n$ 存在,并求其值。

对于 $n \ge 1$,如果 $x_n < \eta$,则 $x_{n+1} = \sqrt{a + x_n} \le \sqrt{a + \eta} = \eta$,这就归纳证明了 $x_n < \eta$ 对任意 $n \ge 1$ 成立。此外,容易验证函数 $f(x) := \sqrt{a + x} - x$ 在 $(0, \eta)$ 上取值为正,在 $(\eta, +\infty)$ 取值为负;而我们已经证明了 $x_n < \eta \ (\forall n \ge 1)$,从而有

$$x_{n+1} - x_n = \sqrt{a + x_n} - x_n > 0$$

因此 $x_n < x_{n+1} < \eta$ 对任意 $n \ge 1$ 成立,从而数列 $\{x_n\}$ 单调有界,故极限存在。对 $x_{n+1} = \sqrt{a + x_n}$ 两边取极限易知 $\lim_{n \to +\infty} x_n = \eta := \frac{1 + \sqrt{1 + 4a}}{2}$.

练习 1.24 已知数列 $b_n := \sum_{k=0}^n \frac{1}{\binom{n}{k}}, (\forall n \geq 1)$. 证明:

(1)
$$b_n = \frac{n+1}{2n}b_{n-1} + 1;$$
 (2) $\lim_{n \to +\infty} b_n = 2.$

证明 只需注意到

$$b_n = \sum_{k=0}^{n} \frac{k!(n-k)!}{n!} = \frac{1}{n} \sum_{k=1}^{n} \frac{k!(n-1-k)!(n-k)}{(n-1)!} + 1$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \frac{n-k}{\binom{n-1}{k}} + 1 = \frac{1}{2n} \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} \left[(n-k) + n - (n-1-k) \right] + 1$$

$$= \frac{n+1}{2n} b_{n-1} + 1$$

从而(1)得证。将此递推关系整理得

$$b_n - 2 = \frac{n+1}{2n}(b_{n-1} - 2) + \frac{1}{n} \tag{*}$$

记 $c_n := |b_n - 2|$, 则当 $n \ge 2$ 时有 $c_n \le \frac{1}{2}c_{n-1} + 1$, 从而易知数列 $\{c_n\}$ 有界, 从而有上界. 对 (*) 两边取上极限, 有

$$\overline{\lim}_{n \to +\infty} |b_n - 2| = \frac{1}{2} \overline{\lim}_{n \to +\infty} |b_n - 2|$$

从而解得 $\overline{\lim}_{n\to+\infty} |b_n-2|=0$, 于是 $\lim_{n\to+\infty} b_n=2$.

练习1.25 已知数列 $\{a_n\}$ 满足递推公式 $a_{n+1}=a_n+\frac{n}{a_n}$,并且 $a_1>0$. 证明: 极限 $\lim_{n\to+\infty}n(a_n-n)$ 存在。

证明 由 $a_{n+1} = a_n + \frac{n}{a_n}$ 可知,

$$a_{n+1} - (n+1) = a_n - n + \frac{n - a_n}{a_n} = \left(1 - \frac{1}{a_n}\right)(a_n - n)$$

$$a_n - n = (a_2 - 2) \prod_{k=2}^{n-1} \left(1 - \frac{1}{a_k}\right)$$

对于 $n \ge 2$,由平均值不等式与数学归纳法, $a_n = a_{n-1} + \frac{n-1}{a_{n-1}} \ge 2\sqrt{n-1} \ge 2$,从而 $0 < 1 - \frac{1}{a_n} < 1$,从而数列 $\left\{\prod_{k=2}^{n-1} \left(1 - \frac{1}{a_k}\right)\right\}$ 单调递减且有下界 0,故极限存在。记

$$b := \prod_{k=0}^{+\infty} \left(1 - \frac{1}{a_k} \right)$$

则 $\lim_{n\to+\infty} (a_n-n)=(a_2-2)b$,于是

$$\frac{1/n}{1/a_n} = \frac{a_n}{n} = \frac{a_n - n}{n} + 1 \to 1 \quad (n \to +\infty)$$

又因为级数 $\sum_{n=1}^{+\infty} \frac{1}{n}$ 发散,从而由比较判别法知级数 $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ 发散,从而无穷乘积 $\prod_{k=2}^{+\infty} \left(1 - \frac{1}{a_k}\right)$ 发散于 0,即 b = 0,从而 $\lim_{n \to +\infty} (a_n - n) = 0$.

因此存在 N > 0,使得对任意 $n \ge N$,成立 $a_n < n + \frac{1}{2}$. 再注意到

$$(n+1)[a_{n+1} - (n+1)] = \left(1 + \frac{1}{n}\right) \left(1 - \frac{1}{a_n}\right) n(a_n - n)$$

$$n(a_n - n) = N(a_N - N) \prod_{k=N}^{n-1} \left(1 + \frac{1}{k}\right) \left(1 - \frac{1}{a_k}\right) \quad (n \ge N)$$

注意到 n > N 是成立 $a_n < n + \frac{1}{2}$,从而

$$\left(1 + \frac{1}{n}\right)\left(1 - \frac{1}{a_n}\right) < \left(1 + \frac{1}{n}\right)\left(1 - \frac{1}{n + \frac{1}{2}}\right) = 1 - \frac{1}{n(2n+1)} < 1$$

于是数列 $\{n(a_n-n)\}$ 在 n 充分大(> N) 时是单调递减的,并且有下界 0,从而极限存在。

1.3 Stolz 定理

▲ 练习 1.26 设 d > 0, 求极限

$$\lim_{n \to +\infty} \frac{1^d + 2^d + \dots + n^d - \frac{n^{d+1}}{d+1}}{n^d}$$

证明 [解] 直接使用 Stolz 定理,有

$$\lim_{n \to +\infty} \frac{1^d + 2^d + \dots + n^d - \frac{n^{d+1}}{d+1}}{n^d} = \lim_{n \to +\infty} \frac{(n+1)^d - \frac{(n+1)^{d+1} - n^{d+1}}{d+1}}{(n+1)^d - n^d}$$

$$= \lim_{n \to +\infty} \frac{(1 + \frac{1}{n})^d - n \cdot \frac{(1 + \frac{1}{n})^{d+1} - 1}{d+1}}{(1 + \frac{1}{n})^d - 1} = \lim_{n \to +\infty} \frac{1 + \frac{d}{n} - \frac{n}{d+1} \left[\frac{d+1}{n} + \binom{d+1}{2} \frac{1}{n^2} \right] + o(\frac{1}{n})}{\frac{d}{n}}$$

$$= \lim_{n \to +\infty} \frac{\frac{d}{n} - \frac{n}{d+1} \cdot \frac{d(d+1)}{2} \cdot \frac{1}{n^2}}{\frac{d}{n}} = \frac{1}{2}$$

注 此题还可以化为定积分来做, 见习题4.40.

 练习 1.27 设数列 $\{a_n\}$ 满足 $\lim_{n\to+\infty} n(a_n-a)=b$. 则对于正整数 k, 成立

$$\lim_{n \to +\infty} n \left(\frac{a_1 + 2^k a_2 + \dots + n^k a_n}{n^{k+1}} - \frac{a}{k+1} \right) = \frac{b}{k} + \frac{a}{2}$$

证明 记 $a_n := a + b_n$, 则有 $\lim_{n \to +\infty} nb_n = b$. 于是有

$$\lim_{n \to +\infty} n \left(\frac{a_1 + 2^k a_2 + \dots + n^k a_n}{n^{k+1}} - \frac{a}{k+1} \right)$$

$$= a \lim_{n \to +\infty} \frac{1^k + 2^k + \dots + n^k - \frac{n^{k+1}}{k+1}}{n^k} + \lim_{n \to +\infty} \frac{b_1 + 2^k b_2 + \dots + n^k b_n}{n^k}$$

$$\frac{\exists \mathbb{B}1.26}{2} \frac{a}{2} + \lim_{n \to +\infty} \frac{b_1 + 2^k b_2 + \dots + n^k b_n}{n^k} = \frac{\text{Stolz}}{2} \frac{a}{2} + \lim_{n \to +\infty} \frac{(n+1)^k b_{n+1}}{(n+1)^k - n^k} = \frac{a}{2} + \frac{b}{k}$$

练习 1.28 记 $H_n := \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$,则众所周知,极限 $\lim_{n \to +\infty} (H_n - \ln n)$ 存在,并且其极限值为 Euler 常数 $\gamma \approx 0.577$. 证明:存在常数 α, β ,使得当 $n \to +\infty$ 时成立

$$H_n = \ln n + \gamma + \frac{\alpha}{n} + \frac{\beta}{n^2} + o(\frac{1}{n^2})$$

并求出 α , β 的值。

证明 [解] 注意到 $\lim_{n\to+\infty} (H_n - \ln n - \gamma) = 0$,从而使用 Stolz 定理,有

$$\lim_{n \to +\infty} n(H_n - \ln n - \gamma) = \lim_{n \to +\infty} \frac{H_n - \ln n - \gamma}{1 - \frac{1}{n}} = \lim_{n \to +\infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n})}{\frac{1}{n+1} - \frac{1}{n}}$$

$$= \lim_{n \to +\infty} \frac{\ln(1 + \frac{1}{n}) - \frac{1}{n+1}}{\frac{1}{n^2}} = \lim_{n \to +\infty} \frac{\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{n+1} + o(\frac{1}{n^2})}{\frac{1}{n^2}} = \frac{1}{2}$$

接下来我们继续考虑:

$$\lim_{n \to +\infty} n^{2} (H_{n} - \ln n - \gamma - \frac{1}{2n}) = \lim_{n \to +\infty} \frac{H_{n} - \ln n - \gamma - \frac{1}{2n}}{\frac{1}{n^{2}}} \xrightarrow{\text{Stolz}} \lim_{n \to +\infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n}) - \frac{1}{2} \left(\frac{1}{n+1} - \frac{1}{n}\right)}{\frac{1}{(n+1)^{2}} - \frac{1}{n^{2}}}$$

$$= -\frac{1}{2} \lim_{n \to +\infty} \frac{\frac{1}{n} + \frac{1}{n+1} - 2\ln(1 + \frac{1}{n})}{\frac{1}{n^{2}} - \frac{1}{(n+1)^{2}}}$$

接下来的计算过程中(灵活使用等价无穷小、泰勒展开可简化计算),注意当 $n \to +\infty$ 时,

$$\frac{1}{n^2} - \frac{1}{(n+1)^2} = \frac{2n+1}{n^2(n+1)^2} \sim \frac{2}{n^3}$$

$$\frac{1}{n+1} = \frac{1}{n} \cdot \frac{1}{1+\frac{1}{n}} = \frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + o(\frac{1}{n^3})$$

$$\ln(1+\frac{1}{n}) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o(\frac{1}{n^3})$$

因此有

原式 =
$$-\frac{1}{2} \lim_{n \to +\infty} \frac{\frac{1}{n} + \frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} - 2\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3}\right) + o\left(\frac{1}{n^3}\right)}{\frac{2}{n^3}} = -\frac{1}{12}$$

因此可知, $H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o(\frac{1}{n^2})$,特别地, $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{12}$.

▲ 练习1.29 计算极限:

$$\lim_{n \to +\infty} n^2 \left[n \sin(2n!e\pi) - 2\pi \right]$$

证明 [解] 众所周知 $\lim_{n\to+\infty} \left(e - \sum_{k=0}^{n} \frac{1}{k!} - \frac{1}{n!n}\right) = 0$, 从而考虑

$$\lim_{n \to +\infty} n^3 n! \left(e - \sum_{k=0}^n \frac{1}{k!} - \frac{1}{n!n} \right) = \lim_{n \to +\infty} \frac{e - \sum_{k=0}^n \frac{1}{k!} - \frac{1}{n!n}}{\frac{1}{n^3 n!}}$$

$$\stackrel{\text{Stolz}}{=} \lim_{n \to +\infty} \frac{\frac{1}{(n+1)!} + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n}}{\frac{1}{n^3 n!} - \frac{1}{(n+1)^3(n+1)!}} = \lim_{n \to +\infty} n^3 n! \left[\frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} \right) - \frac{1}{n!n} \right]$$

$$= \lim_{n \to +\infty} n^3 \left(\frac{1}{n+1} \cdot \frac{n+2}{n+1} - \frac{1}{n} \right) = -1$$

$$\Rightarrow e = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n!} \left(\frac{1}{n} - \frac{1}{n^3} + o(\frac{1}{n^3}) \right), \quad (n \to +\infty)$$

再考虑函数 $x \mapsto \sin x$ 在 x = 0 处的泰勒展开,有

$$\lim_{n \to +\infty} n^2 \left[n \sin(2n! e \pi) - 2\pi \right]$$

$$= \lim_{n \to +\infty} n^2 \left[n \sin\left(2\pi n! \sum_{k=0}^n \frac{1}{k!} + \frac{2\pi}{n} - \frac{2\pi}{n^3} + o(\frac{1}{n^3})\right) - 2\pi \right]$$

$$= \lim_{n \to +\infty} n^2 \left[n \sin\left(\frac{2\pi}{n} - \frac{2\pi}{n^3} + o(\frac{1}{n^3})\right) - 2\pi \right]$$

$$= \lim_{n \to +\infty} n^2 \left[n \left(\frac{2\pi}{n} - \frac{2\pi}{n^3} - \frac{8\pi^3}{6n^3} + o(\frac{1}{n^3})\right) - 2\pi \right]$$

$$= -2\pi - \frac{4}{3}\pi^3$$

1.4 上极限与下极限

练习 1.30 已知数列 $\{x_n\}$ 满足:对任意 $m,n \ge 1$ 都成立 $0 \le x_{m+n} \le x_m + x_n$.证明:极限 $\lim_{n \to +\infty} \frac{x_n}{n}$ 存在。

证明 任意取定正整数 m,则对于任意正整数 n,考虑带余除法

$$n = km + r$$

其中 k,r 为整数,并且余数 $0 \le r < n$. 从而有题设易知 $x_n = x_{km+r} \le kx_m + x_r$,从而有

$$\frac{x_n}{n} \quad \leq \quad \frac{k}{n} x_m + \frac{1}{n} x_r = \frac{k}{km+r} x_m + \frac{1}{n} x_r \leq \frac{1}{m} x_m + \frac{1}{n} x_r$$

令 $n \to +\infty$, 两边取上极限 (注意 m 事先给定, 与 n 无关) 立刻得到

$$\overline{\lim_{n \to +\infty}} \frac{x_n}{n} \le \frac{1}{m} x_m + \overline{\lim_{n \to +\infty}} \frac{1}{n} x_r = \frac{x_m}{m}$$

再将上式两边取 $m \to +\infty$ 的下极限,即得到

$$\overline{\lim_{n \to +\infty}} \, \frac{x_n}{n} \le \underline{\lim_{m \to +\infty}} \, \frac{x_m}{m}$$

所以极限 $\lim_{n\to+\infty} \frac{x_n}{n}$ 存在。

 练习 1.31 已知数列 $\{x_n\}$ 使得 $\lim_{n\to+\infty}(x_n+2x_{n+1})=A$. 证明: $\lim_{n\to+\infty}x_n=\frac{A}{3}$.

证明 首先证明 $\{a_n\}$ 是有界数列。这是因为,由 $\{a_n + 2a_{n+1}\}$ 收敛于 A 的定义可知,存在 N > 0 使得当 $n \ge N+1$ 时 $\varepsilon_n := a_n + 2a_{n+1} - A$ 满足 $|\varepsilon_n| < 1$. 因此由 $a_n + 2a_{n+1} = A + \varepsilon_n$ 可知当 $n \ge N+1$ 时

$$|a_{n+1}| = \frac{1}{2}|A + \varepsilon_n - a_n| \le \frac{1}{2}|a_n| + (\frac{1}{A}| + |\varepsilon_n|) \le \frac{1}{2}|a_n| + B$$

其中 $B:=\frac{|A|+1}{2}$ 为正实数。所以有 $|a_{n+1}|-2B\leq \frac{1}{2}(|a_n|-2B)$. 由此容易得到, $\left\{|a_n|-2B\middle|n\geq N+1\right\}$ 是有上界的,从而 $\{a_n\}$ 为有界数列。

所以 $\{a_n\}$ 的上、下极限不为无穷。注意到 $a_n = (a_n + 2a_{n+1}) - 2a_{n+1}$,两边同时取上、下极限,得到

$$\overline{\lim}_{n \to +\infty} a_n = A - 2 \underline{\lim}_{n \to +\infty} a_n$$

$$\underline{\lim}_{n \to +\infty} a_n = A - 2 \overline{\lim}_{n \to +\infty} a_n$$

从而解得 $\lim_{n \to +\infty} a_n = \overline{\lim}_{n \to +\infty} a_n = \frac{A}{3}$. 因此数列 $\{a_n\}$ 极限存在,且收敛于 $\frac{A}{3}$.

练习 1.32 给定数列 $\{x_n\}$, 记 $S_n := \frac{1}{n} \sum_{k=1}^n x_k$ 为该数列前 n 项的算术平均数。证明:

$$\underline{\lim_{n \to +\infty}} x_n \le \underline{\lim_{n \to +\infty}} S_n \le \overline{\lim_{n \to +\infty}} S_n \le \overline{\lim_{n \to +\infty}} x_n$$

证明 不妨只证明 $\lim_{n \to +\infty} x_n \le \underline{\lim}_{n \to +\infty} S_n$. 记 $x := \underline{\lim}_{n \to +\infty} x_n$.

如果 $x = -\infty$, 则上式自动成立;如果 $x = +\infty$, 则 $\{x_n\}$ 为正无穷大量,此时对任意 M > 0, 取 N > 0 使得当 $n \ge N + 1$ 时成立 $x_n \ge 2M + 1$. 取定此 N, 记 $K := x_1 + x_2 + \cdots + x_N$. 则当 n 足够大 时 $\frac{|K|}{n} < \frac{1}{2}$,并且 $\frac{n-N}{n} > \frac{1}{2}$,从而

$$S_n = \frac{1}{n} \left(K + \sum_{k=N+1}^n x_k \right) \ge \frac{n-N}{n} (2M+1) - \frac{|K|}{n}$$

$$\ge \frac{2M+1}{2} - \frac{1}{2} = M$$

从而 $\{S_n\}$ 也为正无穷大量, $\varliminf_{n\to+\infty} S_n = +\infty$. 如果 $x:=\varliminf_{n\to+\infty} x_n \neq \pm\infty$,则对于任意 $\varepsilon>0$,由下极限的性质可知存在 N>0 使得当 n>N时成立 $x_n > x - \varepsilon$. 取定此 N, 记 $K := \sum_{k=1}^{N} x_k$. 则当 $n \ge N$ 时成立

$$S_n = \frac{1}{n} \left(K + \sum_{k=N+1}^n x_k \right) \ge \frac{K}{n} + \frac{n-N}{n} (x - \varepsilon)$$

对上式两边取 $n \to +\infty$ 的下极限,立刻得到

$$\underline{\lim}_{n \to +\infty} S_n \ge x - \varepsilon$$

注意到上式对任意 $\varepsilon > 0$ 都成立,再令 $\varepsilon \to 0$ 即可。

▲ 练习 1.33 已知数列 $\{x_n\}, \{y_n\}$ 满足 $x_{n+1} = y_n + \theta x_n (\forall n \geq 1)$,其中 $0 < \theta < 1$ 为常数。证 明: $\lim_{n\to\infty} x_n$ 存在当且仅当 $\lim_{n\to\infty} y_n$ 存在。

证明 如果 $\lim_{n\to\infty} x_n$ 存在,注意到 $y_n = x_{n+1} - \theta x_n$,两边取极限立刻知道 $\lim_{n\to\infty} y_n$ 存在。

我们只需考察另一方面,如果 $\lim_{n\to\infty} y_n$ 存在,记其极限值为 y,则对 $x_{n+1}=y_n+\theta x_n$ ($\forall n\geq 1$) 两边取上、下极限,有

$$\begin{array}{rcl} \overline{\lim}_{n \to +\infty} x_n & = & \overline{\lim}_{n \to +\infty} (y_n + \theta x_n) \leq \overline{\lim}_{n \to +\infty} y_n + \theta \overline{\lim}_{n \to +\infty} x_n = y + \theta \overline{\lim}_{n \to +\infty} x_n \\ \underline{\lim}_{n \to +\infty} x_n & = & \underline{\lim}_{n \to +\infty} (y_n + \theta x_n) \geq \underline{\lim}_{n \to +\infty} y_n + \theta \underline{\lim}_{n \to +\infty} x_n = y + \theta \underline{\lim}_{n \to +\infty} x_n \end{array}$$

再注意到 $\{y_n\}$ 收敛,从而为有界数列,记 M 为 $\{y_n\}$ 的一个上界,从而 $|x_{n+1}| \leq |y_n| + \theta |x_n| \leq$ $M + \theta |x_n|$. 由数学归纳法易知 $|x_n| \leq \frac{M}{1-\theta}$,因此 $\{x_n\}$ 为有界数列,从而 $\overline{\lim}_{n \to +\infty} x_n$ 与 $\underline{\lim}_{n \to +\infty} x_n$ 为有 限值,从而有

$$\frac{1}{1-\theta}y \le \varliminf_{n \to +\infty} x_n \le \varlimsup_{n \to +\infty} x_n \le \frac{1}{1-\theta}y$$

因此极限 $\lim_{n\to\infty} x_n$ 存在,且极限值为 $\frac{y}{1-\theta}$.

▲ 练习 1.34 已知正数列 $\{a_n\},\{b_n\}$ 满足 $a_{n+1} \leq a_n + b_n$,并且 $\sum_{i=1}^{+\infty} b_n < +\infty$. 证明:极限 $\lim_{n\to\infty} a_n$ 存在。

证明 记正项级数 $\sum\limits_{n=1}^{+\infty}b_n=M\geq 0$. 由于 $a_n\geq 0$, 从而下极限 $\lim\limits_{n\to +\infty}a_n\neq -\infty$. 又因为

$$a_n \le a_{n-1} + b_{n-1} \le a_{n-2} + b_{n-2} + b_{n-1} \le \dots \le a_1 + \sum_{k=1}^{n-1} b_k \le a_1 + M$$

所以上极限 $\overline{\lim}_{n\to+\infty} a_n < +\infty$.

记数列 $\{a_n\}$ 的上、下极限分别为 $\alpha^*, \alpha_* \in \mathbb{R}$. 如果极限 $\lim_{n \to +\infty} a_n$ 不存在,则 $\alpha_* < \alpha^*$. 记 $\varepsilon := \alpha^* - \alpha_* > 0$. 由正项级数 $\sum_{n=1}^{+\infty} b_n < +\infty$ 的柯西收敛准则,存在 N' > 0 使得对任意 m > N' 都成立

$$b_{N'} + b_{N'+1} + \dots + b_m < \frac{\varepsilon}{4}$$

对于此 N', 由下极限 α_* 的定义可知存在 N>N' 使得 $a_N<\alpha_*+\frac{\varepsilon}{4}$. 于是对任意 n>N', 成立

$$a_n \le a_{n-1} + b_{n-1} \le \dots \le a_N + \sum_{k=N}^{n-1} < \alpha_* + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \alpha^* - \frac{\varepsilon}{2}.$$

这就与上极限 α^* 的性质矛盾。此矛盾表明 $\alpha_* = \alpha^*$, 即 $\lim_{n \to +\infty} a_n$ 存在。

▲ 练习 1.35 证明:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt[k]{1 + n^k}} = 1$$

证明 首先注意到 $\frac{1}{\sqrt[k]{1+n^k}} \le \frac{1}{n}$,从而

$$\overline{\lim}_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt[k]{1+n^k}} \le \overline{\lim}_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n} = 1$$

另一方面,对任意 $\varepsilon > 0$,则对任意 $n > \frac{1}{\varepsilon}$,以及任意 $k \ge 1$,都有

$$[(1+\varepsilon)^k - 1]n^k \ge k\varepsilon \cdot n^k \ge n\varepsilon > 1$$

从而对任意 $n>\frac{1}{\varepsilon}$ 以及任意 $k\geq 1$, $\frac{1}{\sqrt{1+n^k}}\geq \frac{1}{1+\varepsilon}\cdot \frac{1}{n}$,所以

$$\varliminf_{n \to +\infty} \sum_{k=1}^n \frac{1}{\sqrt[k]{1+n^k}} \ge \varliminf_{n \to +\infty} \sum_{k=1}^n \frac{1}{1+\varepsilon} \cdot \frac{1}{n} = \frac{1}{1+\varepsilon}$$

因此对任意 $\varepsilon > 0$, 都成立

$$\frac{1}{1+\varepsilon} \le \underline{\lim}_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt[k]{1+n^k}} \le \overline{\lim}_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt[k]{1+n^k}} \le 1$$

令 $\varepsilon \to 0^+$ 即得

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt[k]{1+n^k}} = 1$$

▲ 练习1.36 计算极限:

$$\lim_{n \to +\infty} \frac{1^n + 2^n + \dots + n^n}{n^n}$$

证明 [解] 记 $a_n:=\frac{1^n+2^n+\cdots+n^n}{n^n}=\sum\limits_{k=0}^n\left(1-\frac{k}{n}\right)^n$. 首先注意到对任意 $0\leq k\leq n$, 有不等式 $\left(1-\frac{k}{n}\right)^n\leq$

 e^{-k} , 从而有

$$\overline{\lim}_{n \to +\infty} a_n \le \overline{\lim}_{n \to +\infty} \sum_{k=0}^n e^{-k} = \sum_{k=0}^{+\infty} e^{-k} = \frac{e}{e-1}$$

另一方面,任意取定正整数m,则对任意 $n \ge m$,成立

$$a_n = \sum_{k=0}^n \left(1 - \frac{k}{n}\right)^n \ge \sum_{k=0}^m \left(1 - \frac{k}{n}\right)^n$$

$$\underline{\lim}_{n \to +\infty} a_n \ge \sum_{k=0}^m \underline{\lim}_{n \to +\infty} \left(1 - \frac{k}{n}\right)^n = \sum_{k=0}^m e^{-k}$$

注意上式对任意 $m \geq 0$ 都成立,从而令 $m \to +\infty$ 有 $\lim_{n \to +\infty} \geq \sum_{k=0}^{+\infty} e^{-k} = \frac{e}{e^{-1}}$. 综上,得到

$$\frac{e}{e-1} \le \varliminf_{n \to +\infty} a_n \le \varlimsup_{n \to +\infty} a_n \le \frac{e}{e-1}$$

所以有 $\lim_{n \to +\infty} \frac{1^n + 2^n + \cdots + n^n}{n^n} = \frac{e}{e-1}$.

第2章 连续函数

2.1 函数的基本概念

▲ 练习 2.1 已知函数

$$f(x) = \sqrt{x^2 - x + 1} - \sqrt{x^2 + x + 1}$$

求 f(x) 的自然定义域以及值域.

证明 [解法一] 由二次函数知识, $x^2 \pm x + 1$ 恒大于 0,从而 f 的自然定义域为全体实数。接下来我们证明 f 的值域为 (-1,1). 一方面,注意到

$$f^{2}(x) = \left(\sqrt{x^{2} - x + 1} - \sqrt{x^{2} + x + 1}\right)^{2}$$

$$= 2x^{2} + 2 - 2\sqrt{(x^{2} - x + 1)(x^{2} + x + 1)}$$

$$= 2\left(\sqrt{(x^{2} + 1)^{2}} - \sqrt{(x^{2} + 1)^{2} - x^{2}}\right)$$

$$= 2\frac{x^{2}}{x^{2} + 1 + \sqrt{(x^{2} + 1)^{2} - x^{2}}}$$

$$< 2\frac{x^{2}}{x^{2} + x^{2}} = 1$$

因此有 |f(x)| < 1 恒成立, 也就是说 $-1 \le f(x) \le 1$. 另一方面, 由于

$$f(x) = \sqrt{x^2 - x + 1} - \sqrt{x^2 + x + 1} = \frac{-2x}{\sqrt{x^2 - x + 1} + \sqrt{x^2 + x + 1}}$$

可知,

$$\lim_{x \to +\infty} f(x) = -1 \qquad \lim_{x \to -\infty} f(x) = 1$$

再由 f 的连续性,可知 f(x) 的值域为 (-1,1).

证明 [解法二] 我们还可以用别的方法求 f(x) 的值域。首先用第一种解法得 $\lim_{x\to\pm\infty} f(x) = \mp 1$,之后再断言 f 为单调递减函数,再由 f 的连续性也可证明 f 的值域恰为 (-1,1). 接下来我们证明 f 单调递减。注意到

$$f'(x) = \frac{2x-1}{2\sqrt{x^2 - x + 1}} - \frac{2x+1}{2\sqrt{x^2 + x + 1}}$$
$$f'(x) < 0 \iff \left(x - \frac{1}{2}\right)\sqrt{x^2 + x + 1} < \left(x + \frac{1}{2}\right)\sqrt{x^2 - x + 1} \tag{*}$$

当 $-\frac{1}{2} < x < \frac{1}{2}$ 时,(*) 式左边为负,右边为正,从而该不等式成立;而 $|x| \ge \frac{1}{2}$ 时,不妨 $x \ge \frac{1}{2}$ $(x < -\frac{1}{2}$ 的情形类似),此时只需证明

$$\left(\left(x-\frac{1}{2}\right)\sqrt{x^2+x+1}\right)^2<\left(\left(x+\frac{1}{2}\right)\sqrt{x^2-x+1}\right)^2$$

把平方打开,整理得

$$x^4 + \frac{1}{4}x^2 - \frac{3}{4}x + \frac{1}{4} < x^4 + \frac{1}{4}x^2 + \frac{3}{4}x + \frac{1}{4}$$

而当 $x \ge \frac{1}{5}$ 时此式明显成立。证毕。

- △ 练习 2.2 设函数 $f: \mathbb{R} \to \mathbb{R}$, 回答以下问题:
 - (1) 若每个实数都是 $f \circ f$ 的不动点(也就是说,f(f(x)) = x 对所有 $x \in \mathbb{R}$ 都成立),则满足此条件的 f 有多少个?
 - (2) 在 (1) 的条件下,若 f(x) 还是单调递增的,求 f(x).

(3) 如果
$$f \circ f$$
 只有两个不动点 $a, b(a \neq b)$, 那么只可能
$$\begin{cases} f(a) = a \\ f(b) = b \end{cases}$$
 或者
$$\begin{cases} f(a) = b \\ f(b) = a \end{cases}$$
.

证明 [解] (1) 有无穷多个。比如对任意 a < b,考虑函数 $f_{ab}(x) = \begin{cases} b & (x = a) \\ a & (x = b) \end{cases}$,则如此的 $x & (x \neq a,b)$

 $f_{ab}(x)$ 均满足题设,这样的函数有无穷多个。

(2) 此时必有 f(x) = x. 这是因为,如果存在 $a \in \mathbb{R}$ 使得 $f(a) \neq a$,我们分 f(a) > a 与 f(a) < a 两种情况考虑。若 f(a) > a,则由 f 单调递增知 $f(f(a)) \geq f(a)$,再注意任何实数都是 $f \circ f$ 的不动点,特别地 f(f(a)) = a,因此

$$a = f(f(a)) \ge f(a)$$

这与 f(a) > a 矛盾。而 f(a) < a 的情形也类似得到矛盾。因此必有 f(x) = x.

(3) 不妨 a < b. 按逻辑讲,有且仅有以下三种情况: f(a) = a, f(a) = b, 以及 $f(a) \neq a, b$.

如果 f(a) = a,那么我们记 c := f(b),注意 $f(f(c)) = f(f(f(b))) = f(f \circ f(b)) = f(b) = c$,也就是说 c 是 f 的不动点,因此由题设可知 c = a 或 c = b. 但此时 c = a 不成立,因为如果 c = a,

则
$$b = f(f(b)) = f(c) = f(a) = a$$
,与 $a \neq b$ 矛盾,所以必有 $c = b$,因此
$$\begin{cases} f(a) = a \\ f(b) = b \end{cases}$$

如果
$$f(a) = b$$
, 那么 $a = f(f(a)) = f(b)$, 所以
$$\begin{cases} f(a) = b \\ f(b) = a \end{cases}$$

如果 $f(a) \neq a, b$,记 d := f(a),则由(1)中的讨论,知 d 也为 $f \circ f$ 的不动点,因此由题设 d = a 或 d = b,这与 $d = f(a) \neq a, b$ 矛盾。因此这种情况不存在。综上得证。

2.2 一元函数的极限与连续性

▲ 练习 2.3 用函数极限的定义直接证明:

$$\lim_{x \to 1} \frac{3x}{2x - 1} = 3$$

证明 首先注意到,如果 $|x-1| < \frac{1}{3}$,那么 $x > \frac{2}{3}$,因此 $2x-1 > \frac{1}{3}$. 现在,对于任意 $\varepsilon > 0$,取 $\delta := \min\{\frac{1}{3}, \frac{\varepsilon}{9}\}$,则对于任意的 x,若 $|x-1| < \delta$,则有

$$\left| \frac{3x}{2x-1} - 3 \right| = \frac{3|x-1|}{2x-1} < \frac{3\delta}{1/3} = 9\delta \le 9 \cdot \frac{\varepsilon}{9} = \varepsilon$$

从而证毕。

注 如果在考场上,出于对出题人、阅卷人的嘲讽,曲豆豆更倾向于下述证法: **证明** [特别傻逼的另证] 首先注意到,如果 $|x-1| < \frac{1}{2} - \frac{1}{4666}$,那么 $x > \frac{1}{2} + \frac{1}{4666}$,因此 $2x - 1 > \frac{1}{2333}$.

现在,对于任意 $\varepsilon > 0$,取 $\delta := \min\{\frac{1}{2} - \frac{1}{4666}, \frac{\varepsilon}{6999}\}$,则对于任意的 x,若 $|x-1| < \delta$,则有

$$\left| \frac{3x}{2x - 1} - 3 \right| = \frac{3|x - 1|}{2x - 1} < \frac{3\delta}{1/2333} = 6999\delta \le 6999 \cdot \frac{\varepsilon}{6999} = \varepsilon$$

从而证毕。

▲ 练习 2.4 用函数极限的定义直接证明:

$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x} + \sqrt{x}}}}{2} = +\infty$$

证明 对任意 M > 0,令 $N := 4M^2$,则对任意 x > N,都有

$$\frac{\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}}{2} \ge \frac{\sqrt{x}}{2} \ge \frac{\sqrt{4M^2}}{2} = M$$

从而由函数极限的定义知 $\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x} + \sqrt{x}}}}{2} = +\infty.$

▲ 练习 2.5 已知函数 f(x),g(x) 均为定义在 \mathbb{R} 上的周期函数,并且满足

$$\lim_{x \to +\infty} (f(x) - g(x)) = 0$$

证明: 恒有 $f(x) \equiv g(x)$.

证明 设 T_1 与 T_2 分别为 f,g 的一个正周期,则对任意给定的 $x \in \mathbb{R}$,则有

$$f(x) - g(x) = \lim_{n \to +\infty} (f(x + nT_1) - g(x + nT_2))$$

$$= \lim_{n \to +\infty} \left[\underbrace{(f(x + nT_1) - g(x + nT_1))}_{\to 0} + (g(x + nT_1) - f(x + nT_2)) + (g(x + nT_1) - f(x + nT_2)) \right]$$

$$= \lim_{n \to +\infty} (g(x + nT_1) - f(x + nT_2))$$

$$= \lim_{n \to +\infty} (g(x + n(T_1 + T_2)) - f(x + n(T_1 + T_2))) = 0$$

\land 练习 2.6 (黎曼函数)考虑闭区间 [0,1] 上的函数

$$R(x) = \begin{cases} \frac{1}{q} & \text{若} x = \frac{p}{q}, \text{ 其中 } p \ni q \text{ 为互素的整数, } \mathbb{1}q \geq 0 \\ 0 & \text{若 } x \text{ 为无理数} \end{cases}$$

则 R(x) 在哪些点连续,在哪些点不连续?

证明 R(x) 在 $x_0 \in [0,1]$ 处连续,当且仅当 x_0 是无理数。这可用连续性的定义直接验证。

(1) 若 $x_0 \in [0,1]$ 为无理数,断言 R(x) 在 x_0 处连续,也就是说 $\lim_{x \to x_0} R(x) = R(x_0) = 0$.对任意 $\varepsilon > 0$, 注意到集合 $X_\varepsilon := \left\{\frac{p}{q} \middle| q \ge 1, \frac{1}{q} > \varepsilon, 0 \le p \le q \right\}$ 是有限集,且该集合包括所有的分母小于

 $\frac{1}{\epsilon}$ 的有理数。注意 x_0 为无理数,从而 $x_0 \notin X_{\epsilon}$. 于是

$$\delta := \min \left\{ |x_0 - r| \middle| r \in X_{\varepsilon} \right\} > 0$$

取定这个 δ ,则对于任意的 $x \in [0,1]$,如果 $|x - x_0| < \delta$,若 x 为无理数,R(x) = 0,从而 $|R(x) - R(x_0)| < \varepsilon$ 自动成立;而 x 为有理数时,由 δ 的定义,不难知道此时 $R(x) < \varepsilon$,因此总之有 $|R(x) - R(x_0)| = |R(x)| < \varepsilon$,从而 R(x) 在无理点 x_0 处连续。

- (2) 若 $x_0 \in [0,1]$ 为有理数,显然 R(x) 在 x_0 不连续。因为此时 $R(x_0) > 0$,但另一方面取一列 趋近于 x_0 的无理数序列 $\{x_n\}$,注意 $R(x_n) = 0$ 对任意 $n \ge 0$ 成立,从而 $\lim_{n \to +\infty} R(x_n) = 0 \ne R(x_0)$,因此 R(x) 在 x_0 不连续。
- ▲ 练习 2.7 记 $C[0,+\infty)$ 为定义在非负实轴上的连续函数之全体。对于 $f,g \in C[0,+\infty)$,如果

$$\exists x_0 > 0, \forall x > x_0, |f(x) - g(x)| < 1$$

则称 f "猥亵" g; 而如果

$$\forall x_0 > 0, \exists x > x_0, |f(x) - g(x)| < 1$$

则称 f "骚扰" g. 判断以下命题的正误,并说明理由或举出反例:

- (1) 任意 $f,g \in C[0,+\infty)$, 如果 f 猥亵 g, 那么 g 猥亵 f;
- (2) 任意 $f,g \in C[0,+\infty)$, 如果 f 骚扰 g, 那么 g 骚扰 f;
- (3) 任意 $f,g \in C[0,+\infty)$, 如果 f 猥亵 g, 那么 f 骚扰 g;
- (4) 任意 $f,g \in C[0,+\infty)$, 如果 f 骚扰 g, 那么 f 猥亵 g;
- (5) 任意 $f,g,h \in C[0,+\infty)$, 如果 f 猥亵 g 且 g 猥亵 h, 那么 f 猥亵 h;
- (6) 任意 $f,g,h \in C[0,+\infty)$, 如果 f 骚扰 g 且 g 骚扰 h, 那么 f 骚扰 h.
- (7) 任意 $f,g \in C[0,+\infty)$,如果 f 猥亵 g,那么存在 $h \in C[0,+\infty)$,使得 f,g,h 之中任何两个都猥亵。
 - (8) 任意 $f,g \in C[0,+\infty)$, 如果 $\lim_{x\to +\infty} (f(x)-g(x))$ 存在且绝对值小于 1, 则 f 猥亵 g.
 - (9) 任意 $f,g \in C[0,+\infty)$,如果 $\lim_{x\to +\infty} (f(x)-g(x))=1$,则 f 猥亵 g.

证明 [解] (1)(2) 显然正确,因为 $|f(x) - g(x)| < 1 \iff |g(x) - f(x)| < 1$.

- (3) 正确,(4) 错误。由"骚扰"与"猥亵"的定义,显然猥亵一定骚扰;但反之未必,例如 $f(x) = 2\sin x$,g(x) = 0是"骚扰而不猥亵"的例子。
- (5) (6) 都错误,例如 f(x) = 0.6,g(x) = 0,h(x) = -0.6 均为常函数,易验证 f 猥亵 (骚扰)g,g 猥亵 (骚扰)h,但 f 并不猥亵 (骚扰)h.
 - (7) 正确, 比如可以取 h(x) = f(x).
- (8) 正确,记 $A = \lim_{\substack{x \to +\infty \\ -1 < A \varepsilon < A + \varepsilon < 1}} (f(x) g(x))$,则 |A| < 1,从而存在(足够小的)正数 ε ,使得 $-1 < A \varepsilon < A + \varepsilon < 1$,则由函数极限的定义,存在 $x_0 > 0$,使得对任意 $x > x_0$,

$$A - \varepsilon \le f(x) - g(x) \le A + \varepsilon$$

因此对于此 x_0 ,若 $x > x_0$,则 |f(x) - g(x)| < 1. 从而 f 猥亵 g.

(9) 错误,例如 $f(x) = 1 + \frac{1}{x+1}$, $g(x) = -\frac{1}{x+1}$,则 $\lim_{x \to +\infty} (f(x) - g(x)) = 1$,但是由于 |f(x) - g(x)| 恒大于 1,故 f 不可能猥亵 g.

注 纯逻辑题,关键是理解"猥亵"与"骚扰"的定义。建议思考一下,若 f 骚扰(猥亵) g,则 f 与 g 的函数图像之间有何位置关系,这可以加深直观认识。

练习 2.8 概念、记号同上题。设 $\{f_k | k \ge 1\}$ 为任意给定的一列 $C[0, +\infty)$ 中的函数,证明:存在 $g \in C[0, +\infty)$,使得 g 骚扰所有的 f_k (也就是说,任意 $k \ge 1$,g 骚扰 f_k)。

证明 我们具体构造一个满足题设的 g. 对于任意正整数 p,以及正整数 k,如果 $k \leq p$,我们定义正实数

$$x_{pk} := p + \frac{k-1}{p}$$

则我们得到点列 $\left\{x_{p,k}\middle|p\geq 1,1\leq k\leq p\right\}$ (将这些数从小到大依次排列);之后定义函数 $g\in C[0,+\infty)$ 如下:g 的函数图像是以 (0,0) 为起点,顺次连接端点 $(x_{pk},f_k(x_{pk}))$ 所得到的无穷折线段,那么 g 显然连续,并且 g 骚扰每一个 f_n .

注 对于 $f_n(x) = n$ 为常函数的具体例子,请读者画出如此构造的 g 的函数图像作为练习。

2.3 一元连续函数的性质

练习 2.9 设 f(x) 为 [0,1] 上的连续函数,且 f(0) = f(1). 证明: 对任意 $0 < \alpha < 1$,存在 $x \in (0,1]$,使得 $f(x) = f(\alpha x)$.

证明 不妨 f(0) = f(1) = 0. 考虑 [0,1] 上的连续函数

$$g(x) := f(x) - f(\alpha x)$$

只需要证明 g(x) 在 (0,1] 上有零点。由于 f(x) 在闭区间 [0,1] 连续,从而 f(x) 能取到最大值或者最小值。不妨 f 的最值不在端点 x=0,1 取到(否则 f 是常函数)。

令 $\beta \in (0,1)$ 为 f 的一个最大值点,则 $g(\beta) = f(\beta) - f(\alpha\beta) \ge 0$. 如果再有 $g(1) \le 0$,那么由 g 的介值性,g(x) 在 $[\beta,1]$ 之中存在零点。

令 $\gamma \in (0,1)$ 为 f 的一个最小值点,则 $g(\gamma) = f(\gamma) - f(\alpha \gamma) \le 0$. 如果再有 $g(1) \ge 0$,那么由 g 的介值性,g(x) 在 $[\gamma,1]$ 之中存在零点。

综上所述, 无论 $g(1) \le 0$ 还是 $g(1) \ge 0$, g(x) 在 (0,1] 都存在零点。从而证毕。

▲ 练习 2.10 设 $\varphi(x)$ 为 \mathbb{R} 上的连续函数, 并且存在正整数 n 使得

$$\lim_{x \to +\infty} \frac{\varphi(x)}{x^n} = \lim_{x \to -\infty} \frac{\varphi(x)}{x^n} = 0.$$

- (1) 证明: 当 n 为奇数时, 方程 $x^n + \varphi(x) = 0$ 存在实根;
- (2) 证明: 当 n 为偶数时,函数 $f(x) := x^n + \varphi(x)$ 在 \mathbb{R} 上存在且能取到最小值。

证明 由极限 $\lim_{x\to +\infty}\frac{\varphi(x)}{x^n}=\lim_{x\to -\infty}\frac{\varphi(x)}{x^n}=0$ 的定义可知,存在 N>0,使得当 $|x|\geq N$ 时成立 $|\varphi(x)|<\frac{1}{2}|x^n|$. 取定此 N. 记 $g(x)=x^n+\varphi(x)$.

1. 注意当 x > 0 时 $x^n > 0$. 从而

$$g(N)=N^n+\varphi(N)\geq N^n-|\varphi(N)|\geq N^n-\frac{1}{2}N^n>0$$

另一方面,由于n为奇数,则当x<0时 $x^n<0$,从而

$$g(-N) = -N^n + \varphi(N) \le -N^n + |\varphi(N)| \le -N^n + \frac{1}{2}N^n < 0$$

考虑闭区间 [-N, N] 上的连续函数 g(x), 注意已有 g(-N) < 0 以及 g(N) > 0, 从而由连续函数介值定理 g(x) 在 (-N, N) 存在零点。

2. 当 n 为偶数时, x^n 恒非负。类似 (a) 的方法,可知对任意 $|x| \ge N$,都成立 $g(x) \ge \frac{1}{2}x^n > 0$. 记 A := g(0),取足够大的正数 M > N,使得 $\frac{1}{2}M^n > A$. 则当 |x| > M 时,必有

$$g(x) \ge \frac{1}{2}M^n > A = g(0)$$

因此如果 g(x) 存在最小值,则最小值不可能在 |x| > M 处取到。而 g(x) 在闭区间 [-M, M] 连续,从而由连续函数最值定理可知存在 $x_0 \in [-M, M]$ 使得 $g(x_0)$ 为函数 g(x) 在 [-M, M] 的最小值。由之前所述易知它事实上也是 g(x) 在 \mathbb{R} 上的最小值。

- **练习 2.11** 设 f 为定义在 [0,1] 上的函数,f(0) = 1, f(1) = 0,并且存在 [0,1] 上的连续函数 g(x) 使得 f(x) + g(x) 在 [0,1] 单调递增。
 - (1) f 一定是连续函数吗?说明理由。
 - (2) 证明: f(x) 可以取到 [0,1] 当中的任何值。

证明 (1) 满足题设的 f 不一定是连续函数。例如 $f(x) = \begin{cases} -2333x + 1 & x \in [0,1) \\ 0 & x = 1 \end{cases}$,则 f(0) = 1, f(1) = 0. 考虑连续函数 g(x) = 23333x,则 f(x) + g(x) 在 [0,1] 单调递增——但是 f(x) 并不是连续函数,因为在 x = 1 处间断。

(2)由于 f+g 单调递增,所以对任意 $x_0 \in (0,1)$,左、右极限 $\lim_{x \to x_0^-} (f(x)+g(x))$ 与 $\lim_{x \to x_0^+} (f(x)+g(x))$ 都存在,并且

$$\lim_{x \to x_0^-} (f(x) + g(x)) \le f(x_0) + g(x_0) \le \lim_{x \to x_0^+} (f(x) + g(x))$$

又因为g(x)连续,从而由极限的运算性质可知

$$\lim_{x \to x_0^-} f(x) \le f(x_0) \le \lim_{x \to x_0^+} f(x) \tag{*}$$

对任意的 $x_0 \in (0,1)$ 都成立。

现在我们要证明 f(x) 的值域包含 [0,1]. 我们已经知道 f(0) = 1, f(1) = 0,即 0,1 在 f 的值域中,故只需再证 (0,1) 位于 f 的值域。反证法,假设存在 $y_0 \in (0,1)$,使得 y_0 不位于 f 的值域,则考虑集合

$$\mathcal{L} := \left\{ x \in [0,1] \middle| \forall 0 \leq t \leq x, \ f(t) > y_0 \right\}$$

则显然 $0 \in \mathcal{L}$, 故 $\mathcal{L} \neq \emptyset$. 由确界存在原理, 考虑 \mathcal{L} 的上确界

$$x_0 := \sup \mathcal{L}$$

则 $0 \le x_0 \le 1$. 先断言 $x_0 \in \mathcal{L}$. 这是因为,如果 $x_0 \notin \mathcal{L}$,则由集合 \mathcal{L} 的定义可知 $f(x_0) \le y_0$. 而又由集合 \mathcal{L} 的定义,易知 $\lim_{x \to x_0} f(x) \ge y_0$,再注意 (*) 式左边的不等号,从而有

$$y_0 \ge f(x_0) \ge \lim_{x \to x_0^-} f(x) \ge y_0$$

这迫使 $f(x_0) = y_0$,这与 y_0 不在 f 的值域的假设矛盾。因此 $x_0 \in \mathcal{L}$,特别地 $f(x_0) > y_0$. 再断言 $x_0 = 1$. 如果 $x_0 < 1$,则由上确界 x_0 的定义可知,存在一列 $\{x_n\}_{n \ge 1}$,使得 $x_k \in (x_0, x_0 + \frac{1}{k})$,

 $f(x_k) \le y_0$ 对任意 $k \ge 1$ 成立,因此 $\lim_{x \to x_0^+} f(x) \le y_0$. 再注意 $f(x_0) > y_0$,从而与 (*) 式矛盾。

因此有 $1 = x_0 \in \mathcal{L}$,特别地 $f(1) > y_0 > 0$,与 f(1) = 0 矛盾。上述一系列矛盾表明,最初的假设"存在 $y_0 \in (0,1)$ 不位于 f 的值域"是错的,因此原命题得证。

练习 2.12 设 f(x) 为闭区间 [0,1] 上的连续函数, $f(0) \neq f(1)$. 证明: 存在 $x_0 \in (0,1)$,使 得 x_0 不是 f 的极值点。

证明 不妨 f(0) < f(1). 对于 $s \in (0,1)$, 我们称 s 为函数 f 的 "阳光点", 如果

$$\forall t \in [0, s), \quad f(t) < f(s)$$

一方面,对于任意 $y \in (f(0), f(1))$,由连续函数介值原理,集合

$$f^{-1}(y) := \left\{ x \in (0,1) \middle| f(x) = y \right\}$$

非空,因此由确界存在原理,考虑 $s_y := \inf f^{-1}(y) \in (0,1)$,则由有关定义容易验证 $f(s_y) = y$,并且 s_y 为阳光点。也就是说,对每个 $y \in (f(0),f(1))$,我们都能至少找到一个相应的阳光点 s_y ,并且显然不同的 y 对应不同的阳光点 s_y . 特别地,f 有不可数个阳光点。

另一方面,假设 (0,1) 当中所有的点都是 f 的极值点,则阳光点只能是极大值点。因此对于 f 的任何一个阳光点 s,存在 s 的右邻域 $I_s:=(s,s+\delta_s)$,使得对任意 $x\in I_s$, $f(x)\leq f(s)$ 。从而区间 I_s 中的所有点都不是 f 的阳光点。因此,对于 f 的任何两个不同的阳光点 s_1 与 s_2 , $I_{s_1}\cap I_{s_2}=\varnothing$. 也就是说集合族

$$S := \{I_s | s \in (0,1)$$
是 f 的阳光点}

是一族两两不交的开区间,从而是至多可数集。特别地,f的阳光点至多可数个。

综上两方面,得到矛盾。此矛盾表明假设"(0,1)当中所有的点都是 f 的极值点"不正确,从而原命题得证。

注 这里引入了"阳光点"的概念。它之所以被形象地称作"阳光",是因为如下:把函数 f(x) 的图像想象成一座山,再设想初升的太阳从左往右水平地照射在山峰上,被阳光照射到的点就是"阳光点"。

习题2.12示意图:被阳光照射到的橙色部分即为函数 f(x) 的"阳光点"。

2.4 无穷大量与无穷小量

▲ 练习 2.13 计算极限

$$\lim_{x \to 0} \frac{\left(1 + \frac{e^{2x} - 1}{2}\right)^{\sin 2x} - 1}{1 - \cos x}$$

证明 [解] 等价无穷小量的运用:

$$\lim_{x \to 0} \frac{\left(1 + \frac{e^{2x} - 1}{2}\right)^{\sin 2x} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{e^{\sin 2x \ln(1 + \frac{e^{2x} - 1}{2})} - 1}{\frac{1}{2}x^2} = \lim_{x \to 0} 2 \cdot \frac{\sin 2x \ln(1 + \frac{e^{2x} - 1}{2})}{x^2}$$
$$= \lim_{x \to 0} 2 \cdot \frac{2x \frac{e^{2x} - 1}{2}}{x^2} = \lim_{x \to 0} 2 \cdot \frac{e^{2x} - 1}{x} = 4$$

2.5 多元连续函数

 练习 2.14 对于正实数 a,b,c,d, 考虑函数 $f(x) = \frac{|x|^a|y|^b}{|x|^c + |y|^d}$. 证明:

$$\lim_{(x,y)\to(0,0)} f(x,y)$$
存在 \iff $\frac{a}{c} + \frac{b}{d} > 1$

证明 如果 $\frac{a}{c} + \frac{b}{d} < 1$, 则考虑 (x,y) 沿着曲线 $y = x^{\frac{c}{d}}$ 方向区域原点,有

$$\lim_{\substack{y=x\frac{c}{d} \\ (x,y) \to (0,0)}} \frac{|x|^a |y|^b}{|x|^c + |y|^d} = \lim_{x \to 0^+} \frac{x^{a + \frac{bc}{d}}}{2x^c} = \lim_{x \to 0^+} x^{c(\frac{a}{c} + \frac{b}{d} - 1)} = +\infty$$

故极限不存在。

如果 $\frac{a}{c} + \frac{b}{d} = 1$, 则对任意 k > 0, 考虑 (x, y) 沿路径 $y = kx^{\frac{c}{d}}$ 趋于原点, 容易计算得到

$$\lim_{\substack{y=kx\frac{c}{d}\\(x,y)\neq (0,0)}} \frac{|x|^a|y|^b}{|x|^c+|y|^d} = \lim_{x\to 0^+} \frac{k^b x^{a+\frac{bc}{d}}}{(k^d+1)x^c} = \frac{k^b}{k^d+1}$$

其值与 k 的选取有关。因此 f(x) 在原点处的极限不存在。

而当 $\frac{a}{c} + \frac{b}{d} > 1$ 时,注意对数函数 $x \mapsto \ln x$ 的凸性,从而有

$$\ln(|x|^a|y|^b) = \frac{a}{c} \ln|x|^c + \frac{b}{d} \ln|y|^d \le \left(\frac{a}{c} + \frac{b}{d}\right) \ln\left(\frac{\frac{a}{c}}{\frac{a}{c} + \frac{b}{d}}|x|^c + \frac{\frac{b}{d}}{\frac{a}{c} + \frac{b}{d}}|y|^d\right)$$

$$\le \left(\frac{a}{c} + \frac{b}{d}\right) \ln\left(|x|^c + |y|^d\right)$$

$$\frac{|x|^a|y|^b}{|x|^c+|y|^d} \leq \frac{(|x|^c+|y|^d)^{\frac{a}{c}+\frac{b}{d}}}{|x|^c+|y|^d} = (|x|^c+|y|^d)^{\frac{a}{c}+\frac{b}{d}-1} \to 0 \qquad (x,y) \to (0,0)$$

即 f(x,y) 在原点处的极限为 0.

▲ 练习 2.15 已知二元函数 $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ 关于分量 x,y 都连续,并且对任意 $x \in \mathbb{R}, y \mapsto$

f(x,y) 是单调的。证明: f(x,y) 在 \mathbb{R}^2 连续。

证明 对于任意 $(x_0, y_0) \in \mathbb{R}^2$, 断言 f 在该点处连续。对任意 $\varepsilon > 0$, 先取定 $y_0' \in \mathbb{R}$, 使得 $|f(x_0, y_0') - f(x_0, y_0)| < \frac{\varepsilon}{4}$. 记 $\delta_1 := |y_0' - g_0| > 0$. 取定此 y_0' , 注意到关于 x 的函数

$$x \mapsto |f(x, y_0') - f(x, y_0)|$$

是连续的 (特别地, 在 x_0 处连续), 从而存在 $\delta_2 > 0$, 使得当 $|x - x_0| < \delta_2$ 时成立

$$|f(x, y_0') - f(x, y_0)| < |f(x_0, y_0') - f(x_0, y_0)| + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}.$$

再注意 $x \mapsto f(x, y_0)$ 在点 x_0 处连续,从而存在 $\delta_3 > 0$,使得当 $|x - x_0| < \delta_3$ 时,成立 $|f(x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2}$.

取 $\delta := \min\{\delta_1, \delta_2, \delta_3\} > 0$,则对任意 $(x, y) \in \mathbb{R}^2$,如果 $|x - x_0| < \delta$ 并且 $|y - y_0| < \delta$,则由 δ_1 的定义,以及 $y \mapsto f(x, y)$ 的单调性,有 $|f(x, y) - f(x, y_0)| \le |f(x, y_0') - f(x, y_0)|$. (这是关键一步!)所以有

$$|f(x,y) - f(x_0, y_0)| \le |f(x,y) - f(x,y_0)| + |f(x,y_0) - f(x_0, y_0)|$$

 $\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

从而 f(x,y) 在点 (x_0,y_0) 处连续。

▲ 练习 2.16 (点到集合的距离)

设 A 为 \mathbb{R}^n 的一个非空子集。对任意 $\mathbf{x} \in \mathbb{R}^n$, 称

$$d_A(x) := \inf \left\{ \|y - x\| \middle| y \in A \right\}$$

为点 x 到集合 A 的距离,其中 $\|y-x\| := \left(\sum_{k=1}^n |y_k-x_k|^2\right)^{\frac{1}{2}}$ 为两点间的标准欧氏距离。证明:函数 $\mathbf{d}_A: \mathbb{R}^n \to \mathbb{R}$ 满足:对任意 $x,y \in \mathbb{R}^n$,

$$|d_A(\mathbf{v}) - d_A(\mathbf{x})| \le ||\mathbf{v} - \mathbf{x}||.$$

证明 取定 $x,y \in \mathbb{R}^n$, 注意到对任意 $u \in A$ 都有三角不等式

$$||x - y|| + ||x - u|| \ge ||y - u|| \ge d_A(y)$$

将上式最左边的 u 取遍 A, 并取下确界, 得到

$$\|x - y\| + d_A(x) \ge d_A(y)$$

同理也有

$$\|\mathbf{y} - \mathbf{x}\| + \mathrm{d}_A(\mathbf{y}) \ge \mathrm{d}_A(\mathbf{x})$$

整合上述两式,立刻得到 $|d_A(y) - d_A(x)| \le ||y - x||$

练习 2.17 证明: 方程组 $\begin{cases} \sin(x+u) - e^y + 1 = 0 \\ x^2 + y + e^u = 1 \end{cases}$ 有无穷多组解 (x, y, u).

证明 从这两个式子当中反解出 y, 只需证明方程

$$\ln(1 + \sin(x + u)) = 1 - x^2 - e^u \tag{*}$$

有无穷多组解 (x,u).

对任意正整数 k, 考虑 $u = 2k\pi$, 代入 (*) 式, 只需证明关于 x 的方程

$$\ln(1 + \sin x) = 1 - x^2 - e^{2k\pi}$$

有解即可。事实上此方程在 $(-\frac{\pi}{2},0)$ 内有解,这只需考虑 $x \to -\frac{\pi}{2}^+$ 以及 $x \to 0^-$ 的情形,再用连续函数的介值原理即可。

注 注意 (0,0,0) 是原方程组的一个解。事实上由隐映射定理容易知道,在 (0,0,0) 附近存在有该方程组决定的隐函数 x = x(u) 以及 y = y(u). 由此也可说明原方程组有无限多组解。

△ 练习 2.18 证明:不存在从 \mathbb{R}^2 到 \mathbb{R} 的连续单射。

证明 假设 $f: \mathbb{R}^2 \to R$ 为连续单射,则考虑映射

$$\varphi: \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto (\cos t, \sin t)$$

于是复合函数 $f \circ \varphi : \mathbb{R} \to \mathbb{R}$ 为以 2π 为周期的连续函数。由 f 为单射可知 $f \circ \varphi$ 非常值。令 m, M 分别为连续周期函数 $f \circ \varphi$ 的最小、最大值; 并且存在 $t_1 \in \mathbb{R}$ 使得 $f \circ \varphi(t_1) = f \circ \varphi(t_1 + 2\pi) = m$. 利用 $f \circ \varphi$ 的连续、周期性,再取 $t_2 \in (t_1, t_1 + 2\pi)$ 使得 $f \circ \varphi(t_2) = M$. 从而有连续函数介值定理,存在 $s_1 \in (t_1, t_2)$ 以及 $s_2 \in (t_2, t_1 + 2\pi)$,使得 $f \circ \varphi(t_1) = f \circ \varphi(t_2) = \frac{m+M}{2}$. 但此时显然有 $\varphi(t_1) \neq \varphi(t_2)$,这就与 f 的单射性矛盾。

注 一般地,对于 m > n,不存在从 \mathbb{R}^m 到 \mathbb{R}^n 的连续单射。本题的方法能够证明 n = 1 的情形。而当 n > 1 时,证明非常困难,需要**代数拓扑学**的工具。

第3章 一元微分学

3.1 导数的基本概念与计算

- ▲ 练习 3.1 对于任意给定的定义在 x = 0 某邻域的函数 f(x), 如果 f(x) 在 x = 0 的某去心邻 域上可导, 试判断下列命题的对错:

 - (1) 如果 $\lim_{x\to 0} f'(x) = A$,则 f'(0) 存在并且 f'(0) = A; (2) 如果 f'(0) 存在并且 f'(0) = A,则 $\lim_{x\to 0} f'(x) = A$;

 - (3) $\lim_{x\to 0} f'(x) = \infty$,则 f'(0) 不存在; (4) 如果 f'(0) 不存在,则 $\lim_{x\to 0} f'(x) = \infty$.

证明 (3) 正确, (1)(2)(4) 不正确。原因如下:

首先考虑函数 $f(x) := \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$,则 f(x) 满足题设(即在 x = 0 某邻域有定义,在 x = 0某去心邻域可导)。注意这个 f(x) 满足 $\lim_{x\to 0} f'(x) = 0$,但是 f'(0) 不存在,这个反例说明了 (1) 不正确; 再注意此时 $\lim_{x\to 0} f'(x) = 0 \neq \infty$, 从而 (4) 不正确。

再考虑另一个例子 $f(x) := \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$,则 $f'(0) = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$; 但 是对于 $x \neq 0$, $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$, 易知 $\lim_{x \to 0} f'(x)$ 不存在。这个反例说明(2)不正确。

最后断言(3)正确。采用反证法,假设 f'(0) 存在,令 $A:=f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x}$. 于是由极 限的定义知,存在 $\delta > 0$,使得对任意 $0 < |x| < \delta$ 都成立

$$\left| \frac{f(x) - f(0)}{x} \right| \le |A| + 1$$

于是对任意的 $0 < |x| < \delta$,有

$$\left| \frac{f(x) - f(\frac{x}{2})}{\frac{x}{2}} \right| = \left| 2 \frac{f(x) - f(0)}{x} - \frac{f(\frac{x}{2}) - f(0)}{\frac{x}{2}} \right| \le 2 \left| \frac{f(x) - f(0)}{x} \right| + \left| \frac{f(\frac{x}{2}) - f(0)}{\frac{x}{2}} \right| \le 3(|A| + 1)$$

而由拉格朗日中值定理,存在介于 $\frac{x}{2}$ 与 x 之间的 ξ ,使得 $f'(\xi) = \frac{f(x) - f(\frac{x}{2})}{\frac{x}{2}}$. 以上论述表明,任意 x > 0,存在 ξ 使得 $0 < |\xi| < x$,并且 $|f'(\xi)| \le 3(|A| + 1)$. 而这与 $\lim_{x \to 0} f'(x) = \infty$ 的定义矛盾。

注 在 (1) 中,如果额外增加条件 "f(x) 在 x = 0 处连续",则此时 (1) 正确。这是因 为此时有

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \frac{\text{ABZE}}{1} \lim_{x \to 0} \frac{f'(x)}{1} = A$$

注意额外增加的条件保证了使用洛必达法则的合法性。

▲ 练习 3.2 设函数 f(x) 在 x = 0 附近有定义, 在 x = 0 处可导, 并且满足 f(0) = 0, f'(0) = 1. 计算极限

$$\lim_{n\to\infty} \left(f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2}) \right)$$

证明 [解] 对于足够大的 n > 1 (使得 $[0, \frac{1}{n}]$ 位于 f 的定义域中),定义数列

$$a_n := f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2})$$

 $b_n := \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$

则有 $b_n = \frac{n+1}{2n}$,因此 $\lim_{n \to \infty} b_n = \frac{1}{2}$. 如果我们证明了 $\lim_{n \to \infty} (a_n - b_n) = 0$,那么就有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} [(a_n - b_n) + b_n] = \lim_{n \to \infty} (a_n - b_n) + \lim_{n \to \infty} b_n = 0 + \frac{1}{2} = \frac{1}{2}$$

接下来我们证明 $\lim_{n\to\infty}(a_n-b_n)=0$,从而完成本题。对于任意 $\varepsilon>0$,由于 f'(0)=1,从而存在 N>0,使得对任意 $0< x<\frac{1}{N}$,成立

$$\left| \frac{f(x) - f(0)}{x - 0} - 1 \right| < \varepsilon$$

即 $|f(x)-x|<\varepsilon x$. 特别地,对任意 n>N 以及任意 $1\leq k\leq N$,成立

$$\left| f(\frac{k}{n^2}) - \frac{k}{n^2} \right| < \varepsilon \frac{k}{n^2}$$

因此对于任意 n > N,有

$$|a_n - b_n| = \left| \sum_{k=1}^n \left(f(\frac{k}{n^2}) - \frac{k}{n^2} \right) \right| \le \sum_{k=1}^n \left| f(\frac{k}{n^2}) - \frac{k}{n^2} \right|$$

$$< \varepsilon \sum_{k=1}^n \frac{k}{n^2} = \varepsilon \frac{n+1}{2n} \le \varepsilon$$

这表明 $\lim_{n\to\infty} (a_n - b_n) = 0.$

- △ 练习 3.3 已知函数 f(x) 在 \mathbb{R} 上连续可导, $A \in \mathbb{R}$ 为常数。

 - (1) 如果 $\lim_{x \to +\infty} f(x) + f'(x) = A$, 证明 $\lim_{x \to +\infty} f(x) = A$. (2) 如果 $\lim_{x \to +\infty} f(x) + xf'(x) \ln x = A$, 证明 $\lim_{x \to +\infty} f(x) = A$.

证明 (1) 注意到

$$\lim_{x \to +\infty} \frac{(f(x)e^x)'}{(e^x)'} = \lim_{x \to +\infty} f(x) + f'(x) = A$$

又因为 $\lim_{x\to \infty} e^x = +\infty$, 从而由洛必达法则,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{f(x)e^x}{e^x} = \lim_{x \to +\infty} \frac{(f(x)e^x)'}{(e^x)'} = A$$

(2) 与 (1) 完全类似,只需注意 $f(x) = \frac{f(x) \ln x}{\ln x}$

注 此题是洛必达法则的绝妙应用!

▲ 练习 3.4 设 f(x) 为定义在 \mathbb{R} 上的非常值可微函数,并且满足 f(f(x)) = f(x). 证明: $f(x) \equiv x$.

证明 令 R(f) 为 f 的值域。由于 f 可微知 f 连续,从而 R(f) 为 \mathbb{R} 的连通子集。由 f(f(x)) = f(x)

立刻得到, 任意 $x \in R(f)$, 成立 f(x) = x. 从而只需证明 $R(f) = \mathbb{R}$.

记 $A:=\sup R(f)$ 为 f 的值域的上确界,断言 $A=+\infty$. 如果 $A<+\infty$,则由 f(x)=x 在 R(f) 上成立以及 f 的连续性可知 f(A)=A,特别地 $A\in R(f)$. 再注意 f 在 x=A 可微,以及在 x=A 的足够小的左邻域当中成立 f(x)=x,从而必然 f'(A)=1. 因此存在 $\delta>0$,使得 $f(A+\delta)\geq f(A)+\frac{1}{2}\delta>A$,这与 A 的定义矛盾。此矛盾表明 $A=+\infty$.

同理 inf $R(f) = -\infty$. 从而由 R(f) 的连通性可知 $R(f) = \mathbb{R}$ 。

证明 首先用定义计算一阶导数:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x^{x} = 1$$

对于 x > 0,有 $f'(x) = \frac{d}{dx} e^{(x+1)\ln x} = x^{x+1} \ln x + x^x(x+1)$,从而

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0} \left[x^x (1 + \ln x) + \frac{x^x - 1}{x} \right]$$
$$\frac{x^x - 1}{x} = \frac{e^{x \ln x} - 1}{x} = \ln x + \frac{1}{2} x \ln^2 x + o(x \ln^2 x) = \ln x + o(1) \qquad (x \to 0)$$

从而 $f''(0) = \lim_{x \to 0} (x^x (1 + \ln x) + \ln x) = -\infty.$

练习 3.6 已知函数 $f(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$,计算 f 在 x = 0 处的 n 阶导数 $f^{(n)}(0)$.

证明 [解] 注意到 $\sqrt{1-x^2} f(x) = \arcsin x$,两边求导有

$$-\frac{x}{\sqrt{1-x^2}}f(x) + \sqrt{1-x^2}f'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow (1-x^2)f'(x) - xf(x) = 1$$

对上式两边求 (n-1) 阶导,注意使用对乘积求高阶导数的 Leibniz 法则,得到

$$(1-x^2)f^{(n)}(x) - 2(n-1)xf^{(n-1)}(x) - 2\binom{n-1}{2}f^{(n-2)}(x) - xf^{(n-1)}(x) - (n-1)f^{(n-2)}(x) = 0$$

令 x = 0, 可以得到递推关系 $f^{(n)}(0) = (n-1)^2 f^{(n-2)}(0)$, 由此递推关系容易得到

$$f^{(n)}(0) = \begin{cases} [(2k)!!]^2 & n = 2k+1\\ 0 & n = 2k \end{cases}$$

练习 3.7 证明: 函数 $f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$ 在 x = 0 处任意阶可导,且任意阶导数都为 0.

证明 先归纳证明: 对任意 $n \ge 0$,存在多项式 $P_n(x) \in \mathbb{R}[x]$,使得 $f \preceq x \ne 0$ 处的 n 阶导函数 $f^{(n)}(x) = P_n(\frac{1}{x})e^{-\frac{1}{x^2}}$,并且多项式的次数 $\deg P_n = 3n$. 显然 $P_0(x) \equiv 1 \in \mathbb{R}[x]$ 符合断言;此外如果

存在符合断言的 P_n ,则

$$f^{(n+1)}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[P_n(\frac{1}{x}) e^{-\frac{1}{x^2}} \right] = \left[-\frac{1}{x^2} P_n'(\frac{1}{x}) + 2\frac{1}{x^3} P_n(\frac{1}{x}) \right] e^{-\frac{1}{x^2}}$$

因此多项式 $P_{n+1}(x) := -x^2 P_n'(x) + 2x^3 P_n(x)$ 满足断言,并且显然 $\deg P_{n+1} = \deg P_n + 3$. 接下来再归纳证明对任意 $n \ge 0$, $f^{(n)}(0) = 0$. n = 0 时显然;如果 $f^{(n)}(0) = 0$,则

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{1}{x} P_n(\frac{1}{x}) e^{-\frac{1}{x^2}} = 0$$

从而证毕。

△ 练习 3.8 对于正整数 n, 已知 Legendre 多项式

$$P_n(x) := \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

试计算 $P_n(1)$ 与 $P_n(-1)$ 的值,并证明 $P_n(x)$ 满足微分方程

$$(1 - x^2)P_n''(x) - 2xP_n'(x) + n(n+1)P_n(x) = 0.$$

证明 [解] 注意 $x^2 - 1 = (x + 1)(x - 1)$, 从而直接由高阶导数的 Leibniz 公式得到

$$P_n(x) = \frac{1}{n!2^n} \sum_{k=0}^n \binom{n}{k} \frac{\mathrm{d}^k}{\mathrm{d}x^k} (x+1)^n \cdot \frac{\mathrm{d}^{n-k}}{\mathrm{d}x^{n-k}} (x-1)^n$$

所以立刻得到

$$P_n(1) = \frac{1}{n!2^n} (x+1)^n \Big|_{x=1} \cdot n! = 1$$

$$P_n(-1) = \frac{1}{n!2^n} (x-1)^n \Big|_{x=-1} \cdot n! = (-1)^n.$$

对于正整数 n, 记 $f(x) := (x^2 - 1)^n$, 两边求导容易验证

$$(x^2 - 1) f'(x) = 2nx f(x)$$

对上式两边求 (n+1) 阶导数,由 Leibniz 公式直接计算得:

$$(x^2-1)f^{(n+2)}(x) + (n+1)\cdot 2x\cdot f^{(n+1)}(x) + \frac{n(n+1)}{2}\cdot 2\cdot f^{(n)}(x) = 2nx\cdot f^{(n+1)}(x) + (n+1)\cdot 2n\cdot f^{(n)}(x)$$

整理即得 $(1-x^2)P_n''(x) - 2xP_n'(x) + n(n+1)P_n(x) = 0$.

▲ **练习 3.9** (KdV 方程的 Lax 表示)

记 $C^{\infty}(\mathbb{R})$ 为定义在 \mathbb{R} 上的无穷阶可微函数(光滑函数)之全体,则 $C^{\infty}(\mathbb{R})$ 在通常的函数加法、数乘意义下构成线性空间。给定 $u \in C^{\infty}(\mathbb{R})$,考虑 $C^{\infty}(\mathbb{R})$ 上的线性算子 $L := -\partial_x^2 + u$

$$\left\{\begin{array}{l} L:=-\partial_x^2+u\\ A:=4\partial_x^3-6\partial_x-3u_x \end{array}\right.$$
. 试验证上述算子满足对易关系

$$[L, A] = -u_{xxx} + 6uu_x$$

一些记号说明: (1) 我们将 $C^{\infty}(\mathbb{R})$ 当中的函数 f 通过函数乘法视为 $C^{\infty}(\mathbb{R})$ 上的线性

算子,即 $g \mapsto fg$; $(2)\partial_x := \frac{d}{dx}$ 为微分算子, $\partial_x^2 := \frac{d^2}{dx^2}$ 等为高阶微分算子;(3) 对于函数 u, $u_x := \partial_x u = \frac{du}{dx}$ 为 u 的导函数, u_{xx}, u_{xxx} 等为其高阶导函数;(4) 设 A, B 为线性空间 V 上的线性算子,则记对易子 [A, B] := AB - BA.

证明 容易验证 [,] 满足反交换性以及对加法的分配律,即对任何算子 A, B, C,成立 [A, B] = -[B, A], [A, B + C] = [A, B] + [A, C]. 这完全是线性代数的。具体到此题,有

$$[L,A] = [-\partial_x^2 + u, 4\partial_x^3 - 6u\partial_x - 3u_x]$$

= $-4[\partial_x^2, \partial_x^3] + 6[\partial_x^3, u\partial_x] + 3[\partial_x^2, u_x] - 4[\partial_x^3, u] - 6[u, u\partial_x] - 3[u, u_x]$

对任意 $f \in C^{\infty}(\mathbb{R})$,有 $[\partial_x^2, \partial_x^3] f = \partial_x^2 \partial_x^3 f - \partial_x^3 \partial_x^2 f = \partial_x^5 f - \partial_x^5 f = 0$,从而 $[\partial_x^2, \partial_x^3] = 0$. 类似地,也显然有 $[u, u_x] = 0$. 再注意到

$$[\partial_x^2, u\partial_x]f = \partial_x^2(uf_x) - u\partial_x(f_{xx}) = u_{xx}f_x + 2u_xf_{xx} + uf_{xxx} - uf_{xxx} = u_{xx}f_x + 2u_xf_{xx}$$

$$\Rightarrow [\partial_x^2, u\partial_x] = u_{xx}\partial_x + 2u_x\partial_x^2$$

无非就是反复求导,其余几项也类似,经计算可得

$$[\partial_x^2, u\partial_x] = u_{xx}\partial_x + 2u_x\partial_x^2$$

$$[\partial_x^2, u_x] = u_{xxx} + 2u_{xx}\partial_x$$

$$[\partial_x^3, u] = u_{xxx} + 3u_{xx}\partial_x + 3u_x\partial_x^2$$

$$[u, u\partial_x] = -uu_x$$

$$[L, A] = 6[\partial_x^3, u\partial_x] + 3[\partial_x^2, u_x] - 4[\partial_x^3, u] - 6[u, u\partial_x]$$

$$= 6(u_{xx}\partial_x + 2u_x\partial_x^2) + 3(u_{xxx} + 2u_{xx}\partial_x) - 4(u_{xxx} + 3u_{xx}\partial_x + 3u_x\partial_x^2) + 6uu_x$$

$$= -u_{xxx} + 6uu_x$$

3.2 泰勒公式与极限的计算

▲ 练习 3.10 已知定义在 $0 \in \mathbb{R}$ 附近的函数 f(x) 满足 f(0) = 0,并且 f'(0) 存在,试计算

$$\lim_{x \to 0} \frac{f(1 - \cos x)}{1 - \cos x \sqrt{\cos 2x}}$$

证明 [解] 因为 f(0) = 0 且 f'(0) 存在,所以对于 $x \to 0$,有

$$f(x) = xf'(0) + o(x)$$

因此使用等价无穷小代换,有

$$\lim_{x \to 0} \frac{f(1 - \cos x)}{1 - \cos x \sqrt{\cos 2x}} = \lim_{x \to 0} \frac{(1 - \cos x)f'(0)}{1 - \cos x + \cos x(1 - \sqrt{\cos 2x})}$$
$$= \lim_{x \to 0} f'(0) \frac{1}{1 + \cos x \frac{1 - \sqrt{\cos 2x}}{1 - \cos x}}$$
$$= \frac{f'(0)}{1 + \lim_{x \to 0} \frac{1 - \sqrt{\cos 2x}}{1 - \cos x}}$$

又因为

$$\lim_{x \to 0} \frac{1 - \sqrt{\cos 2x}}{1 - \cos x} = \lim_{x \to 0} \frac{1 - \sqrt{1 - 2x^2 + o(x^3)}}{\frac{1}{2}x^2} = \lim_{x \to 0} \frac{1 - (1 - x^2 + o(x^3))}{\frac{1}{2}x^2} = 2$$

从而原式 = $\frac{1}{3}f'(0)$.

▲ 练习 3.11 计算极限:

$$\lim_{x \to 0} \frac{e^{e^x - 1} - \sin x + 2\cos x - 3}{\tan x - \sin x}$$

证明 [解] 首先注意到 $x \to 0$ 时

$$\tan x - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \left(x - \frac{1}{6}x^3 + o(x^3)\right) \left(\frac{1}{1 - \frac{x^2}{2} + o(x^3)} - 1\right)$$
$$= \left(x - \frac{1}{6}x^3 + o(x^3)\right) \left(\frac{x^2}{2} + o(x^3)\right) = \frac{1}{2}x^3 + o(x^3)$$

即得等价无穷小量 $\tan x - \sin x \sim \frac{1}{2}x^3$ $(x \to 0)$. 再注意到

$$e^{e^{x}-1} = e^{x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})}$$

$$= 1 + \left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})\right) + \frac{1}{2}\left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})\right)^{2}$$

$$+ \frac{1}{6}\left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})\right)^{3} + o(x^{3})$$

$$= 1 + \left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6}\right) + \frac{1}{2}(x^{2} + x^{3}) + \frac{1}{6}x^{3} + o(x^{3})$$

$$= 1 + x + x^{2} + \frac{5}{6}x^{3} + o(x^{3})$$

所以有

$$e^{e^x - 1} - \sin x + 2\cos x - 3 = \left(1 + x + x^2 + \frac{5}{6}x^3\right) - \left(x - \frac{1}{6}x^3\right) + 2\left(1 - \frac{x^2}{2}\right) - 3 + o(x^3)$$
$$= x^3 + o(x^3)$$

因此

$$\lim_{x \to 0} \frac{e^{e^x - 1} - \sin x + 2\cos x - 3}{\tan x - \sin x} = \lim_{x \to 0} \frac{x^3}{\frac{1}{2}x^3} = 2$$

▲ 练习 3.12 计算极限:

$$\lim_{x \to 0} \frac{\sin(e^x - 1) - e^{\sin x} + 1}{\sin^4 x}$$

证明 [解] 直接泰勒展开至四阶,有

$$\sin(e^{x} - 1) = \sin\left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + o(x^{4})\right)$$

$$= \left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24}\right) - \frac{1}{6}\left(x + \frac{x^{2}}{2}\right)^{3} + o(x^{4})$$

$$= x + \frac{1}{2}x^{2} - \frac{5}{24}x^{4} + o(x^{4})$$

$$e^{\sin x} - 1 = e^{x - \frac{x^{3}}{6} + o(x^{4})} - 1$$

$$= \left(x - \frac{x^{3}}{6}\right) + \frac{1}{2}\left(x - \frac{x^{3}}{6}\right)^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4} + o(x^{4})$$

$$= x + \frac{1}{2}x^{2} - \frac{1}{8}x^{4} + o(x^{4})$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin(e^x - 1) - e^{\sin x} + 1}{\sin^4 x} = \lim_{x \to 0} \frac{\left(x + \frac{1}{2}x^2 - \frac{5}{24}x^4\right) - \left(x + \frac{1}{2}x^2 - \frac{1}{8}x^4\right) + o(x^4)}{x^4} = -\frac{1}{12}$$

练习 3.13 已知实数 α,β 满足

$$\lim_{x \to +\infty} x^{\alpha} \left(1 - \left(x + \frac{1}{2} \right) \ln\left(1 + \frac{1}{x} \right) \right) = \beta$$

并且 $\beta \neq 0$. 求 α 与 β .

证明 [解] 注意到当 $x \to +\infty$ 时,有泰勒展开 $\ln(1+\frac{1}{x}) = \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o(\frac{1}{x^3})$,从而有

$$1 - (x + \frac{1}{2})\ln(1 + \frac{1}{x}) = 1 - \left(x + \frac{1}{2}\right) \left(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o(\frac{1}{x^3})\right)$$
$$= 1 - \left(1 - \frac{1}{2x} + \frac{1}{3x^2} + \frac{1}{2x} - \frac{1}{4x^2} + o(\frac{1}{x^2})\right)$$
$$= -\frac{1}{12x^2} + o(\frac{1}{x^2})$$

因此立刻得到 $\alpha = 2, \beta = -\frac{1}{12}$.

▲ 练习 3.14 计算极限:

$$\lim_{n\to+\infty} \frac{(2\sqrt[n]{n}-\sqrt[n]{2})^n}{n^2}$$

证明 [解] 只需先计算其对数的极限 $\lim_{n\to+\infty} \left[n \ln(2\sqrt[n]{n} - \sqrt[n]{2}) - 2 \ln n \right]$. 注意到

$$n\ln(2\sqrt[n]{n} - \sqrt[n]{2}) - 2\ln n = \ln 2 + n\ln\left[1 + 2\left(\sqrt[n]{\frac{n}{2}} - 1\right)\right] - 2\ln n$$

$$\sqrt[n]{\frac{n}{2}} - 1 = e^{\frac{1}{n}\ln\frac{n}{2}} - 1 = \frac{1}{n}\ln\frac{n}{2} + \frac{1}{2n^2}\ln^2\frac{n}{2} + o\left(\frac{1}{n^2}\ln^2\frac{n}{2}\right) \qquad (n \to +\infty)$$

因此有

$$\lim_{n \to +\infty} \left[n \ln(2\sqrt[n]{n} - \sqrt[n]{2}) - 2 \ln n \right] = \lim_{n \to +\infty} \left[\ln 2 + n \ln\left(1 + \frac{2}{n} \ln\frac{n}{2} + \frac{1}{n^2} \ln^2\frac{n}{2} + o\left(\frac{1}{n^2} \ln^2\frac{n}{2}\right) \right) - 2 \ln n \right]$$

$$= \ln \frac{1}{2} + \lim_{n \to +\infty} \left[\frac{1}{n} \ln^2\frac{n}{2} + o\left(\frac{1}{n} \ln^2\frac{n}{2}\right) \right] = \ln \frac{1}{2}$$

因此原极限 = $\exp\left(\ln\frac{1}{2}\right) = \frac{1}{2}$.

▲ 练习 3.15 计算极限:

$$\lim_{x \to \infty} \left(x e^{\frac{1}{x}} \arctan \frac{x^2 + x - 1}{(x+1)(x+2)} - \frac{\pi}{4} x \right)$$

证明 注意利用 $\arctan x$ 在 x = 1 处的泰勒展开,有

原式 =
$$\lim_{x \to \infty} \left[x e^{\frac{1}{x}} \left(\arctan \frac{x^2 + x - 1}{(x+1)(x+2)} - \frac{\pi}{4} \right) + x \left(e^{\frac{1}{x}} - 1 \right) \cdot \frac{\pi}{4} \right]$$

= $\lim_{x \to \infty} x \left(\arctan \left(1 - \frac{2x + 3}{(x+1)(x+2)} \right) - \frac{\pi}{4} \right) + \frac{\pi}{4}$
= $\lim_{x \to \infty} x \left(\frac{1}{2} \cdot \frac{-2x - 3}{(x+1)(x+2)} + o(\frac{1}{x}) \right) + \frac{\pi}{4}$
= $\frac{\pi}{4} - 1$

▲ 练习 3.16 计算极限:

$$\lim_{x \to 0} \frac{x^{(\sin x)^x} - (\sin x)^{x^{\sin x}}}{x^3}.$$

证明 [解] 直接计算之,有

原式 =
$$\lim_{x \to 0} \frac{x^{(\sin x)^x - 1} - (\sin x)^{x^{\sin x} - 1} \cdot \frac{\sin x}{x}}{x^2}$$

= $\lim_{x \to 0} \frac{e^{((\sin x)^x - 1)\ln x} - e^{(x^{\sin x} - 1)\ln \sin x} \cdot \left(1 - \frac{1}{6}x^2 + o(x^2)\right)}{x^2}$
= $\lim_{x \to 0} \frac{e^{((\sin x)^x - 1)\ln x} - e^{(x^{\sin x} - 1)\ln \sin x}}{x^2} + \frac{1}{6}\lim_{x \to 0} e^{(x^{\sin x} - 1)\ln \sin x}}{\vdots = A_2}$.

先观察上式的 A_2 部分,注意 $\lim_{\substack{x\to 0\\x\to 0}}(x^{\sin x}-1)\ln\sin x=\lim_{\substack{x\to 0\\x\to 0}}(e^{\sin x\ln x}-1)\ln\sin x=\lim_{\substack{x\to 0\\x\to 0}}\sin x\cdot\ln x\cdot\ln\sin x=0$. 类似地,上式 A_1 的分子上的 e 的指数 $((\sin x)^x-1)\ln x$ 与 $(x^{\sin x}-1)\ln\sin x$ 都为 $x\to 0$ 的无穷小量,从而对 A_1 的分子使用(关于函数 $x\mapsto e^x$)拉格朗日中值定理,有

(接上) 原式 =
$$\lim_{x\to 0} \frac{((\sin x)^x - 1)\ln x - (x^{\sin x} - 1)\ln \sin x}{x^2} + \frac{1}{6}$$
.

之后考虑泰勒展开。先注意到 $x \to 0$ 时有

$$\ln \sin x = \ln x + \ln \frac{\sin x}{x} = \ln x - \frac{1}{6}x^2 + o(x^2)$$

于是有:

$$((\sin x)^{x} - 1) \ln x = \left(e^{x \ln \sin x} - 1\right) \ln x$$

$$= \left(x \ln \sin x + \frac{1}{2}x^{2} \ln^{2} \sin x + o(x^{2})\right) \ln x$$

$$= x \ln^{2} x + \frac{1}{2}x^{2} \ln^{3} x + o(x^{2})$$

$$\left(x^{\sin x} - 1\right) \ln \sin x = \left(e^{\sin x \ln x} - 1\right) \left(\ln x - \frac{1}{6}x^{2} + o(x^{2})\right)$$

$$= \left(x \ln x + \frac{1}{2}x^{2} \ln^{2} x + o(x^{2})\right) \left(\ln x - \frac{1}{6}x^{2} + o(x^{2})\right)$$

$$= x \ln^{2} x + \frac{1}{2}x^{2} \ln^{3} x + o(x^{2}).$$

因此, 我们最终得到

(接上) 原式 =
$$\frac{1}{6} + \lim_{x \to 0} \frac{((\sin x)^x - 1) \ln x - (x^{\sin x} - 1) \ln \sin x}{x^2}$$

= $\frac{1}{6} + \lim_{x \to 0} \frac{\left(x \ln^2 x + \frac{1}{2} x^2 \ln^3 x + o(x^2)\right) - \left(x \ln^2 x + \frac{1}{2} x^2 \ln^3 x + o(x^2)\right)}{x^2}$
= $\frac{1}{6}$.

▲ 练习3.17 计算极限:

$$\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)^n$$

证明 [解] 首先注意到

$$\left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)^n = e^{n \ln\left(\sum_{k=1}^n \frac{1}{\sqrt{n^2+k}}\right)} = e^{n \ln\left(1 + \sum_{k=1}^n \left(\frac{1}{\sqrt{n^2+k}} - \frac{1}{n}\right)\right)}$$

再注意到

$$\frac{1}{\sqrt{n^2+k}} - \frac{1}{n} = \frac{1}{n} \left(\left(1 + \frac{k}{n^2}\right)^{-\frac{1}{2}} - 1 \right) = \frac{1}{n} \left(-\frac{1}{2} \cdot \frac{k}{n^2} + R_k(n) \right) = -\frac{k}{2n^3} + \frac{1}{n} R_k(n)$$

其中 Tayor 展开的 Lagrange 余项 $R_k(n)$ 满足

$$R_k(n) = \frac{3}{8} (1 + \xi)^{-\frac{5}{2}} \frac{k^2}{n^4}$$

其中 $\xi \in (0, \frac{k}{n^2}) \subseteq (0, 1)$. 从而易知 $|R_k(n)| \leq \frac{3}{8} (1+0)^{-\frac{5}{2}} \frac{k^2}{n^4} = \frac{3k^2}{8n^4}$. 因此,

$$\sum_{k=1}^{n} \left(\frac{1}{\sqrt{n^2 + k}} - \frac{1}{n} \right) = -\sum_{k=1}^{n} \frac{k}{2n^3} + \frac{1}{n} \sum_{k=1}^{n} R_k(n) = -\frac{n(n+1)}{4n^3} + \frac{1}{n} \sum_{k=1}^{n} R_k(n)$$
$$\left| \frac{1}{n} \sum_{k=1}^{n} R_k(n) \right| \le \frac{1}{n} \sum_{k=1}^{n} \frac{3k^2}{8n^4} = \frac{n(n+1)(2n+1)}{16n^5} < \frac{1}{n^2}$$

因此 $n \to +\infty$ 时成立 $\frac{1}{n} \sum_{k=1}^{n} R_k(n) = o(\frac{1}{n})$,从而有

$$\sum_{k=1}^{n} \left(\frac{1}{\sqrt{n^2 + k}} - \frac{1}{n} \right) = -\frac{n(n+1)}{4n^3} + \frac{1}{n} \sum_{k=1}^{n} R_k(n) = -\frac{1}{4n} + o(\frac{1}{n})$$

$$\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)^n = \lim_{n \to +\infty} e^{n \ln\left(1 + \sum_{k=1}^n \left(\frac{1}{\sqrt{n^2 + k}} - \frac{1}{n}\right)\right)}$$

$$= \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{1}{4n} + o\left(\frac{1}{n}\right)\right)} = e^{-\frac{1}{4}}$$

- - (1) 证明: LJ = LI, 并且 BM + ON = OC;
 - (2) 记 CE 与 CA 所夹的锐角为 φ ,线段 ON 的长度为 R,线段 LI 的长度为 r; 将 R 与 r 视为 φ 的函数。证明当 $\varphi \to 0^+$ 时有等价无穷小

$$R(\varphi) \sim \varphi$$
, $r(\varphi) \sim 2\varphi^2$

习题3.18示意图

证明 记 $\angle BCE = \theta$,则 $\theta = \frac{\pi}{4} - \varphi$ (φ 的定义见第 2 问),以及 $\angle OCM = 2\theta$.

(1): 直接计算可知 $BE = \tan \theta$,从而 $CM = 1 - \tan \theta$,所以

$$OC = \frac{CM}{\cos 2\theta} = \frac{1 - \tan \theta}{\cos 2\theta}$$

 $ON = 1 - OM = 1 - OC \sin 2\theta = 1 - (1 - \tan \theta) \tan 2\theta$

因此有

$$OC - ON - BM = \frac{1 - \tan \theta}{\cos 2\theta} - (1 - (1 - \tan \theta) \tan 2\theta) - \tan \theta$$

$$= \frac{t = \tan \theta}{1 - t^2} = \frac{1 - t}{1 - t^2} - \left(1 - \frac{(1 - t) \cdot 2t}{1 - t^2}\right) - t$$

$$= \frac{1 + t^2}{1 + t} - \frac{1 - t}{1 + t} - t = 0$$

这就证明了 OC = ON + BM. 再注意到 ON = OI, BM = EJ, 从而

$$OC = ON + BM = OI + EJ$$

因此 EJ = CI. 又由 $\angle LCE = \angle ECB = \angle LEC$ 得到 LE = LC,因此 LE - EJ = LC - CI,即 LJ = LI.

(2): 直接计算得

$$R = 1 - (1 - \tan \theta) \tan 2\theta = 1 - \left[1 - \tan(\frac{\pi}{4} - \varphi)\right] \tan(\frac{\pi}{2} - 2\varphi)$$
$$= 1 - \left(1 - \frac{1 - \tan \varphi}{1 + \tan \varphi}\right) \frac{1 - \tan^2 \varphi}{2 \tan \varphi} = \tan \varphi \sim \varphi$$

以及

$$r = LI = LJ = EL - EJ = \frac{EC}{2\cos 2\theta} - BM$$
$$= \frac{1}{1 + \cos 2\theta} - \tan \theta = \frac{1}{1 + \sin 2\varphi} - \frac{1 - \tan \varphi}{1 + \tan \varphi}$$
$$= \frac{2\tan^2 \varphi}{(1 + \tan \varphi)^2} \sim 2\varphi^2$$

▲ 练习 3.19 已知函数 f(x) 在 $(0,+\infty)$ 可导, f(x) > 0, $\lim_{x \to +\infty} f(x) = 1$, 并且

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}, \qquad \forall x > 0$$

试计算 f(x) 的表达式。

证明 [解] 对每个 x > 0, 有

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = \exp\left(\lim_{h \to 0} \frac{1}{h} \ln\left(1 + \frac{hxf'(x) + o(h)}{f(x)} \right) \right) = e^{\frac{xf'(x)}{f(x)}}$$

因此有 $\frac{xf'(x)}{f(x)} = \frac{1}{x}$ 对任意 x > 0 成立。整理得

$$\frac{\mathrm{d}f}{f} = \frac{\mathrm{d}x}{x^2}$$

两边积分有 $\ln f = -\frac{1}{x} + C$, 从而 $f(x) = Ce^{-\frac{1}{x}}$. 再由 $\lim_{x \to +\infty} f(x) = 1$ 可知积分常数 C = 1. 从而 $f(x) = e^{-\frac{1}{x}}$.

3.3 隐函数与参数方程的求导

 练习 3.20 设 $0 < \varepsilon < 1$,函数 y = y(x) 由方程 $y - \varepsilon \sin y = x$ 决定,试求 y''(x).

证明 将方程两边对 x 求导,得 $y' - \varepsilon \cos y \cdot y' = 1$,从而 $y' = \frac{1}{1 - \varepsilon \cos y}$. 再求导,得

$$y'' = \frac{d}{dx} \frac{1}{1 - \varepsilon \cos y} = -\frac{\varepsilon \sin y \cdot y'}{(1 - \varepsilon \cos y)^2} = -\frac{\varepsilon \sin y}{(1 - \varepsilon \cos y)^3}$$

△ 练习 3.21 设函数 $y = \varphi(x)$ 定义在 x = 0 附近, 在 x = 0 处可导,且满足方程

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{xy}{c^2} \tag{*}$$

其中 a,b,c > 0 为常数。证明: 当 $x \to 0$ 时,成立

$$\varphi(x) = a^{-4}c^2x^3 + o(x^3)$$

证明 考虑广义极坐标换元 $\begin{cases} x = ar\cos\theta \\ y = br\sin\theta \end{cases}$, 则约束方程 $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{xy}{c^2}$ 化为 $r^2 = \frac{ab}{c^2}\sin\theta\cos\theta$,

$$\begin{cases} x = a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\sin^{\frac{1}{2}}\theta\cos^{\frac{3}{2}}\theta \\ y = a^{\frac{1}{2}}b^{\frac{3}{2}}c^{-1}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta \end{cases}$$

特别地, $\theta \to 0^+$ 时有等价无穷小

$$x \sim a^{\frac{3}{2}} b^{\frac{1}{2}} c^{-1} \theta^{\frac{1}{2}} \tag{**}$$

注意由 (*) 的对称性可知隐函数 y=y(x) 为偶函数,由 y'(0) 存在可知 x 在 0 附近时,参数 θ 在 0 附近(而不是 $\frac{\pi}{2}$ 附近)从而我们只需考虑 y(x) 在参数 $\theta=0$ 处的右导数即可。我们只需要求出 $\frac{d^3y}{dx^3}\Big|_{x=0}$,之后用泰勒公式即可。

首先 y(0) = 0, 从而由定义,

$$\frac{dy}{dx}\bigg|_{x=0} = \lim_{x \to 0^+} \frac{y}{x} = \lim_{\theta \to 0^+} \frac{a^{\frac{1}{2}}b^{\frac{3}{2}}c^{-1}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta}{a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\sin^{\frac{1}{2}}\theta\cos^{\frac{3}{2}}\theta} = \lim_{\theta \to 0^+} \frac{b}{a}\tan\theta = 0$$

而对于 $x = 0(\theta = 0)$ 附近的点,由参数方程求导法则,容易得到

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = a^{-1}b \frac{\frac{3}{2}\sin^{\frac{1}{2}}\theta\cos^{\frac{3}{2}}\theta - \frac{1}{2}\sin^{\frac{5}{2}}\theta\cos^{\frac{1}{2}}\theta}{\frac{1}{2}\sin^{-\frac{1}{2}}\theta\cos^{\frac{5}{2}}\theta - \frac{3}{2}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta}$$
$$= a^{-1}b \frac{3\sin\theta\cos^{2}\theta - \sin^{3}\theta}{\cos^{3}\theta - 3\sin^{2}\theta\cos^{2}\theta} \sim 3a^{-1}b\theta \qquad (\theta \to 0^{+})$$

从而由二阶导数的定义直接计算,

$$\frac{d^2y}{dx^2}\bigg|_{x=0} = \lim_{x \to 0^+} \frac{y'(x)}{x} = \lim_{\theta \to 0^+} \frac{3a^{-1}b\theta}{a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\theta^{\frac{1}{2}}} = 0$$

图: 隐函数 y = y(x) 的图像为原点附近"贴近"x-轴的那一支

我们继续计算 y(x) 在 x = 0 处的三阶导数。在 $x = 0(\theta = 0)$ 附近,有

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{d\theta} \left(\frac{dy}{dx}\right) \frac{d\theta}{dx}$$

$$= a^{-1}b \frac{d}{d\theta} \left(\frac{3\sin\theta\cos^2\theta - \sin^3\theta}{\cos^3\theta - 3\sin^2\theta\cos^2\theta}\right) \cdot 2a^{-\frac{3}{2}}b^{-\frac{1}{2}}c \cdot \frac{\sin^{\frac{1}{2}}\theta\cos^{\frac{1}{2}}\theta}{\cos^3\theta - 3\sin^2\theta\cos\theta}$$

$$= 2a^{-\frac{5}{2}}b^{\frac{1}{2}}c\sin^{\frac{1}{2}}\theta\cos^{\frac{1}{2}}\theta \times \left(\frac{(3\cos^3\theta - 6\sin^2\theta\cos\theta - 3\sin^2\theta\cos\theta)(\cos^3\theta - 3\sin^2\theta\cos\theta)}{(\cos^3\theta - 3\sin^2\theta\cos\theta)^3}\right)$$

$$= \frac{(-3\cos^2\theta\sin\theta - 6\sin\theta\cos^2\theta + 3\sin^3\theta)(3\sin\theta\cos^2\theta - \sin^3\theta)}{(\cos^3\theta - 3\sin^2\theta\cos\theta)^3}$$

$$= 6a^{-\frac{5}{2}}b^{\frac{1}{2}}c\sin^{\frac{1}{2}}\theta\cos^{\frac{1}{2}}\theta \times \frac{(\cos^3\theta - 3\sin^2\theta\cos\theta)^2 + (\sin^3\theta - 3\sin\theta\cos^2\theta)^2}{(\cos^3\theta - 3\sin^2\theta\cos\theta)^3}$$

$$\approx 6a^{-\frac{5}{2}}b^{\frac{1}{2}}c\theta^{\frac{1}{2}} \quad (\theta \to 0^+)$$

从而直接由三阶导数的定义,有

$$y'''(0) = \lim_{x \to 0} \frac{y''(x) - y''(0)}{x} = \lim_{\theta \to 0^+} \frac{6a^{-\frac{5}{2}}b^{\frac{1}{2}}c\theta^{\frac{1}{2}}}{a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\theta^{\frac{1}{2}}} = 6a^{-4}c^2$$

因此由 y(x) 在 x = 0 处的 Taylor 展开,

$$y(x) = y(0) + y'(0)x + \frac{1}{2}y''(0)x^2 + \frac{1}{6}y'''(0)x^3 + o(x^3) = a^{-4}c^2x^3 + o(x^3)$$

3.4 微分中值定理

- △ 练习 3.22 设函数 f(x) 在区间 (a,b) 处处可导。
 - (1) 是否对于每个 $x_0 \in (a,b)$,都一定存在 $\xi, \eta \in (a,b)$,使得 $\xi \neq \eta$,并且 $\frac{f(\xi)-f(\eta)}{\xi-\eta} = f'(x_0)$?
 - (2) 对于 $x_0 \in (a,b)$, 如果 f 在 x_0 处二阶可导, 并且 $f''(x_0) \neq 0$, 证明: 存在 $\xi, \eta \in (a,b)$, 使得 $\xi \neq \eta$, 并且

$$\frac{f(\xi) - f(\eta)}{\xi - \eta} = f'(x_0)$$

证明 (1) 这不一定。例如 (a,b) = (-1,1), $x_0 = 0$,考虑函数 $f(x) = x^3$,则 $f'(x_0) = 0$;但是注意

到对任意的 $\xi, \eta \in (-1,1)$, 如果 $\xi \neq \eta$, 那么一定有 $f(\xi) \neq f(\eta)$, 从而

$$\frac{f(\xi) - f(\eta)}{\xi - \eta} \neq 0 = f'(x_0)$$

因此不存在如此的 ξ, η .

(2) 此时,不妨 $f''(x_0) > 0$ (若 $f''(x_0) < 0$,则我们考虑 -f(x),完全类似)。我们定义新的函数

$$g(x) := f(x) - f'(x_0)x$$

则 $g'(x_0) = f'(x_0) - f'(x_0) = 0$,以及 $g''(x_0) = f''(x_0) > 0$. 因此, x_0 是函数 g(x) 的严格极小值点。也就是说,存在 x_0 的邻域 $(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq (a, b)$,使得 $g(x) > g(x_0)$ 对任何满足 $0 < |x - x_0| < \varepsilon$ 的 x 都成立。记

$$M_{-} := g(x_0 - \frac{\varepsilon}{2})$$
 $M_{+} := g(x_0 + \frac{\varepsilon}{2})$

则 M_{-} 与 M_{+} 都大于 $g(x_{0})$,从而 $\min\{M_{-},M_{+}\} > g(x_{0})$. 之后,分别在区间 $(x_{0} - \frac{\varepsilon}{2}, x_{0})$ 与 $(x_{0}, x_{0} + \frac{\varepsilon}{2})$ 当中对 g(x) 使用连续函数介值原理,可知存在 $\xi \in (x_{0} - \frac{\varepsilon}{2}, x_{0})$ 以及 $\eta \in (x_{0}, x_{0} + \frac{\varepsilon}{2})$,使得

$$g(\xi) = g(\eta) = \frac{\min\{M_{-}, M_{+}\} + f(x_0)}{2}$$

所以有

$$\frac{g(\xi) - g(\eta)}{\xi - \eta} = 0 = g'(x_0)$$

易验证上式等价于

$$\frac{f(\xi) - f(\eta)}{\xi - \eta} = f'(x_0)$$

从而证毕。

▲ 练习 3.23 已知函数 f(x) 在 $(-\infty, +\infty)$ 可微,并且存在常数 a_1, a_2, b_1, b_2 $(a_1 < a_2)$ 使得极限

$$\lim_{x \to -\infty} \left(f(x) - a_1 x - b_1 \right), \qquad \lim_{x \to +\infty} \left(f(x) - a_2 x - b_2 \right) \tag{*}$$

都存在。证明,对任意 $a \in (a_1,a_2)$,存在 $\xi \in \mathbb{R}$,使得 $f'(\xi) = a$.

证明 对任意 $a \in (a_1, a_2)$, 取定 $\varepsilon > 0$ 使得 $(a - \varepsilon, a + \varepsilon) \subseteq (a_1, a_2)$. 记 (*) 中的两个极限值分别为 α, β . 由于 $\lim_{x \to -\infty} (f(x) - a_1 x - b_1) = \alpha$, 从而存在 $N_1 > 0$ 使得对任意 $x \le -N_1$ 都有 $|f(x) - a_1 x - b_1 - \alpha| < 1$. 于是取 $x_2 = -N_1$ 以及 $x_1 = -N_1 - \frac{3}{\varepsilon}$,则有

$$\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} - a_1 \right| = \frac{\varepsilon}{3} \left| \left(f(x_2) - a_1 x_2 - b_1 - \alpha \right) - \left(f(x_1) - a_1 x_1 - b_1 - \alpha \right) \right| \\ \le \frac{\varepsilon}{3} (1+1) < \varepsilon$$

而另一方面由拉格朗日中值定理,存在 $\eta_1 \in (x_1, x_2)$ 使得 $f'(\eta_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$,也就是说存在 $\eta_1 < 0$ 使得 $|f'(\eta_1) - a_1| < \varepsilon$. 又因为 $a - \varepsilon > a_1$,从而 $f'(\eta_1) < a$.

同理,取足够大的正数 $0 < y_1 < y_2$,使得 $\left| \frac{f(y_2) - f(y_1)}{x_2 - x_1} - a_2 \right| < \varepsilon$,再由拉格朗日中值定理易知存在 $\eta_2 > 0$ 使得 $f'(\eta_2) > a$. 从而有 $f'(\eta_1) < a < f'(\eta_2)$,之后再利用导函数介值的 Darboux 定理即可。

证明 考虑函数 $g(x) := f(x) + \frac{1}{a}x - 1$, 则 g(x) 在闭区间 [0,a] 连续,从而存在 $t_1, t_2 \in [0,a]$ 使得 g(x) 在 x_1, x_2 处分别取到最大、最小值. 此外 g(x) 在 (0,a) 可导,且 g(0) = g(1) = 0.

- 如果 g(x) 为常函数,则易证。故不妨假设 g(x) 不是常函数,此时必有 $x_t \neq t_2$,并且 t_1, t_2 至 少有一个落在开区间 (0,a) 当中。
- 如果 $t_1 \neq t_2$ 都落在 (0,a) 当中,则 $g'(t_1) = g'(t_2) = 0$,从而 $f'(t_1) = f'(t_2) = -\frac{1}{a}$,此时取 $x_1 = t_1, x_2 = t_2$ 即可。
- 如果 t_1,t_2 当中有一个落在 [a,b] 的端点处,不妨为 t_2 . 从而 $g(t_2) = 0$, 因此 g(x) 在 [0,a] 非负。此时 $t_1 \in (a,b), g(t_1) > 0, g'(t_1) = 0$. 考虑函数

$$\varphi(x) := \begin{cases} \frac{g(t_1) - g(x)}{t_1 - x} & x \neq t_1 \\ 0 & x = t_1 \end{cases},$$

则 $\varphi(x)$ 在 [a,b] 连续,且 $\varphi(0) > 0, \varphi(a) < 0$. 记 $\varepsilon := \min\{\varphi(0), -\varphi(a)\} > 0$,取实数 $\alpha \in (-\frac{1}{a} - \varepsilon, -\frac{1}{a})$ 以及 $\beta \in (-\frac{1}{a}, -\frac{1}{a} + \varepsilon)$ 使得 $\alpha\beta = \frac{1}{a^2}$. 对 $\varphi(x)$ 使用连续函数介值定理,存在 $y_1 \in (0,t_1)$ 使得 $\varphi(y_1) = \beta + \frac{1}{a}$,整理得 $\frac{f(t_1) - f(y_1)}{t_1 - y_1} = \beta$. 再由拉格朗日中值定理,存在 $x_1 \in (y_1,t_1)$ 使得 $f'(x_1) = \beta$. 对区间 (t_1,a) 采用类似的操作(φ 的介值性以及拉格朗日中值定理)同理可得存在 $x_2 \in (t_1,a)$ 使得 $f'(x_2) = \alpha$. 显然 $x_1 < x_2$,且 $f'(x_1)f'(x_2) = \frac{1}{a^2}$.

综上,证毕。

▲ 练习 3.25 已知函数 $f:(0,+\infty) \to (0,+\infty)$ 可微,常数 a > 1. 证明:存在趋于正无穷的非负数列 $\{x_n\}$,使得对任意 $n \ge 1$ 都成立

$$f'(x_n) \leq f(ax_n)$$
.

证明 反证法。若不然,存在 N > 0,使得对任意 $x \ge N$ 都成立 f'(x) > f(ax). 任意取定 x > N,则由拉格朗日中值定理得到

$$f(ax) - f(x) = (a-1)x f'(\xi) > (a-1)x f(a\xi) \ge (a-1)x f(ax)$$

注意到 $f(a_x) > 0$, 从而当 $x > \frac{1}{a-1}$ 时上式不可能成立,从而产生矛盾。证毕。

▲ 练习 3.26

设 f(x) 为 [0,1] 上的连续函数,并且 f(0) = f(1),给定常数 $\alpha \in (0,1)$. 在习题2.9中我们已经证明了存在 $x \in (0,1]$ 使得 $f(x) = f(\alpha x)$. 现在,若再假定 f(x) 在 (0,1) 可导,并且对任意 $x \neq y \in (0,1)$ 成立 $f'(x) \neq \alpha f'(y)$. 证明:使得 $f(x) = f(\alpha x)$ 的 $x \in (0,1]$ 是唯一的。

证明 反证法,假设存在 $x_1 \neq x_2 \in (0,1]$ 使得 $f(x_i) = f(\alpha x_i), (i = 1,2)$. 不妨 $x_1 < x_2$.

- 如果 $x_1 \le \alpha x_2$,则开区间 $(\alpha x_1, x_1)$ 与 $(\alpha x_2, x_2)$ 不交。由罗尔定理,取 $\eta_1 \in (\alpha x_1, x_1)$ 以及 $\eta_2 \in (\alpha x_2, x_2)$,使得 $f'(\eta_1) = f'(\eta_2) = 0$. 显然 $\eta_1 \ne \eta_2$,但是 $f'(\eta_1) = 0 = \alpha f'(\eta_2)$,从而与题 设矛盾。
- 如果 $x_1 > \alpha x_2$,则有 $0 < \alpha x_1 < \alpha x_2 < x_1 < x_2 \le 1$. 此时令 $f(x_i) = f(\alpha x_i) = A_i$, (i = 1, 2),则由拉格朗日中值定理:

$$\exists \xi \in (x_1, x_2), \qquad f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{A_2 - A_1}{x_2 - x_1}$$
$$\exists \eta \in (\alpha x_1, \alpha x_2), \qquad f'(\eta) = \frac{f(\alpha x_2) - f(\alpha x_1)}{\alpha x_2 - \alpha x_1} = \frac{1}{\alpha} \cdot \frac{A_2 - A_1}{x_2 - x_1}$$

则 $\xi \neq \eta$,但是 $f'(\xi) = \alpha f'(\eta)$,从而与题设矛盾。 综上证毕。

练习 3.27 已知函数 f(x) 在 [0,1] 连续,在 (0,1) 可导,f(0)=0, $f(1)=\frac{1}{2}$. 证明:存在 $\xi \in [0,1]$ 以及 $\eta \in (0,1)$,使得

$$f(\xi) + f'(\eta) = \xi + \eta$$

证明 令 $g(x) := f(x) - \frac{1}{2}x$,则 g(0) = g(1) = 0. 我们只需要证明:存在 $\xi, \eta \in (0,1)$,使得

$$g(\xi) - \frac{1}{2}\xi = \eta - g'(\eta) - \frac{1}{2}.$$

- 如果存在 $\eta \in (0,1)$,使得 $-\frac{1}{2} < \eta g'(\eta) \frac{1}{2} < 0$,则注意到 $g(0) \frac{1}{2} \cdot 0 = 0$ 以及 $g(1) \frac{1}{2} \cdot 1 = -\frac{1}{2}$,从而对连续函数 $x \mapsto g(x) \frac{1}{2}x$ 使用介值原理即可找到满足题设的 ξ .
- 如果 Case1 不成立,那么只可能有以下两种情况:

$$\begin{cases} \forall x \in (0,1), \ x - g'(x) - \frac{1}{2} \le -\frac{1}{2} & (2.1) \\ \forall x \in (0,1), \ x - g'(x) - \frac{1}{2} \ge 0 & (2.2) \end{cases}$$

如果 (2.1) 成立,即 $g'(x) \ge x$ 对任意 $x \in (0,1)$ 成立;但是另一方面对 g(x) 使用罗尔定理,存在 $x_0 \in (0,1)$ 使得 $g'(x_0) = 0 < x_0$,产生矛盾,即 (2.1) 不可能发生。 若 (2.2) 成立,即 $g'(x) \le x - \frac{1}{2}$ 对任意 $x \in (0,1)$ 成立,因此

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(g(x) - \frac{x^2 - x}{2}\right) \le 0 \qquad \Rightarrow \qquad g(x) \le \frac{x^2 - x}{2}$$

特别地 $g(1) \leq \frac{1^2-1}{2} = 0$. 又因为 g(0) = 0,上述不等式取到等号迫使 $g(x) = \frac{x^2-x}{2}$. 此时取 $\xi = 0$,任取 $\eta \in (0,1)$ 即可满足题设。

综上,证毕。

练习 3.28 设函数 f(x) 在 $[0,\frac{1}{2}]$ 二阶可导,f(0)=f'(0),并且 $f(\frac{1}{2})=0$. 证明: 存在 $\xi\in(0,\frac{1}{2})$,使得

$$f''(\xi) = \frac{3f'(\xi)}{1 - 2\xi}$$

证明 考虑函数

$$g(x) := (1 - 2x)f'(x) - f(x)$$

则 g(x) 在 $[0,\frac{1}{2}]$ 可导,并且 g(0)=f'(0)-f(0)=0 以及 $g(\frac{1}{2})=0\times f'(0)-f(\frac{1}{2})=0$. 从而由罗尔定理,存在 $\xi\in(0,\frac{1}{2})$ 使得 $g'(\xi)=0$,即 $-2f'(\xi)+(1-2\xi)f''(\xi)-f'(\xi)=0$,整理得

$$f''(\xi) = \frac{3f'(\xi)}{1 - 2\xi}$$

练习 3.29 已知函数 f(x) 在 [0,1] 连续,在 (0,1) 可导,并且 f(0) = 0, f(1) = 1. 又设 $k_1, k_2, ..., k_n$ 是任意 n 个正实数。证明:存在 (0,1) 当中的 n 个互不相同的数 $t_1, t_2, ..., t_n$, 使

得

$$\sum_{i=1}^{n} \frac{k_i}{f'(t_i)} = \sum_{i=1}^{n} k_i.$$

证明 对于 $1 \le i \le n$, 记 $s_i := k_1 + k_2 + \cdots + k_i$, 再记 $s := s_n = k_1 + k_2 + \cdots + k_n$. 再记 $y_i := \frac{s_i}{s}$, 并特别规定 $y_0 = 0$. 则有

$$0 = y_0 < y_1 < y_2 < \dots < y_{n-1} < y_n = 1$$

为闭区间 [0,1] 的一个分割,注意到 f(x) 连续,且 f(0)=0, f(1)=1,从而反复使用连续函数介值定理,易知存在 $0=x_0< x_1< x_2< \cdots < x_{n-1}< x_n=1$,使得 $f(x_i)=y_i$ 对每个 $0\leq i\leq n$ 都成立。现在,对任意 $1\leq i\leq n$,由 f(x) 在区间 $[x_{i-1},x_i]$ 的拉格朗日中值定理,存在 $t_i\in (x_{i-1},x_i)$ 使得 $f'(t_i)=\frac{f(x_i)-f(x_{i-1})}{x_i-x_{i-1}}$,整理得

$$x_i - x_{i-1} = \frac{1}{s} \cdot \frac{k_i}{f'(t_i)}$$

上式两边对 i 从 1 到 n 求和,整理得到 $\sum_{i=1}^{n} \frac{k_i}{f'(t_i)} = \sum_{i=1}^{n} k_i$, 从而证毕。

 练习 3.30 设函数 f(x) 在 [0,1] 上二阶可导,f(0) = f(1),并且对任意 $x \in [0,1]$ 成立 $|f''(x)| \le A$,其中 A 为常数。证明:

$$|f'(x)| \le \frac{A}{2}, \quad \forall x \in [0, 1]$$

证明 对于任意 $x \in [0,1]$, 分别将 f(1) 与 f(0) 在 x 处作泰勒展开, 有

$$f(1) = f(x) + f'(x)(1-x) + \frac{1}{2}f''(\xi)(1-x)^2$$

$$f(0) = f(x) + f'(x)(-x) + \frac{1}{2}f''(\eta)(-x)^2$$

其中 $\xi \in [x,1]$ 以及 $\eta \in [0,x]$. 将以上两式相减,注意 f(0) = f(1),整理得

$$f'(x) + \frac{1}{2}f''(\xi)(1-x)^2 - \frac{1}{2}f''(\eta)(-x)^2 = 0$$

因此有

$$|f'(x)| = \frac{1}{2} |f''(\xi)(1-x)^2 - f''(\eta)x^2| \le \frac{1}{2} (|f''(\xi)|(1-x)^2 + |f''(\eta)|x^2)$$

$$\le \frac{A}{2} ((1-x)^2 + x^2) \le \frac{A}{2}$$

 练习 3.31 设函数 f(x) 在 $[0,+\infty)$ 二阶可导,并且 f''(x) 有界。证明:若 $\lim_{x\to+\infty} f(x)=0$,则 $\lim_{x\to+\infty} f'(x)=0$. 此外,如果去掉"f''(x) 有界"的条件,那么要证明的结论还一定成立吗?

证明 由于 f''(x) 有界,从而存在 M > 0,使得 $|f''(x)| \le M$ 对任意 $x \ge 0$ 成立。对任意 $\varepsilon > 0$,记 $h := \frac{2\varepsilon}{3M}$. 由于 $\lim_{x \to +\infty} f(x) = 0$,因此存在 N > 0,使得对任意 x > N 都成立 $|f(x)| \le \frac{h}{3}\varepsilon$. 因此对于任意 x > N,由泰勒公式得

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(\xi)$$

其中 $\xi \in (x, x + h)$. 因此有

$$|f'(x)| = \left| \frac{1}{h} \left(f(x+h) - f(x) \right) - \frac{1}{2} h f''(\xi) \right|$$

$$\leq \frac{1}{h} \left(|f(x+h)| + |f(x)| \right) + \frac{1}{2} h |f''(\xi)|$$

$$\leq \frac{1}{h} \left(\frac{h}{3} \varepsilon + \frac{h}{3} \varepsilon \right) + \frac{1}{2} \cdot \frac{2\varepsilon}{3M} M$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

这就证明了 $\lim_{x \to +\infty} f'(x) = 0$.

如果去掉条件 "f''(x) 有界"的条件,则 $\lim_{x\to +\infty} f'(x) = 0$ 未必成立。例如考虑函数

$$f(x) = \frac{1}{x+1}\sin(x^2)$$

容易验证 f(x) 在 $[0,+\infty)$ 二阶可导,并且 $\lim_{x\to +\infty} f(x)=0$,但是 $\lim_{x\to +\infty} f'(x)$ 不存在。

练习 3.32 已知函数 f(x) 在 x = 0 附近二阶连续可导,并且 f(0) = f'(0) = 0, 以及对定义域中的任意 x 都成立

$$|f''(x)| \le |f(x)| + |f'(x)|$$

证明:存在 $\delta > 0$, 使得 f(x) 在 $[-\delta, \delta]$ 内恒为 0.

证明 对任意 x, 由泰勒公式的拉格朗日余项可知, 存在位于 x 与 0 之间的 ξ , η , 使得

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(\xi)x^2 = \frac{1}{2}f''(\xi)x^2$$

$$f'(x) = f'(0) + f''(\eta)x = f''(\eta)x$$

取(足够小的) $\delta > 0$ 使得 $[-\delta, \delta]$ 在 f(x) 的定义域内,并且 $\delta = \frac{1}{4}$. 注意到 $x \mapsto |f(x)| + |f'(x)|$ 在 闭区间 $[-\delta, \delta]$ 连续,从而能取到最大值。取 $x_0 \in [-\delta, \delta]$ 使得

$$M := |f(x_0)| + |f'(x_0)| = \max \left\{ |f(x)| + |f'(x)| \middle| - \delta \le x \le \delta \right\}$$

注意到对任意 $x \in [-\delta, \delta]$ 都有 $|f''(x)| \le |f(x)| + |f'(x)| \le M$. 从而成立

$$M = \frac{1}{2} |f''(\xi_0)| x_0^2 + |f''(\eta_0)| x_0 \le \frac{1}{4} (|f''(\xi_0)| + |f''(\eta_0)|)$$

$$\le \frac{1}{4} (M + M) = \frac{1}{2} M$$

这迫使 M=0, 从而由 M 的定义立刻得到 f(x) 在 $[-\delta,\delta]$ 恒为 0.

注 如果 f(x) 的定义域是连通的(例如定义在 \mathbb{R} 上),则还能推出 f 在其定义域内恒为零,不仅仅是在 x=0 的小邻域内。

△ 练习 3.33 已知函数 f(x) 在 [0,1] 连续,在 (0,1) 二阶可导,并且成立

$$\lim_{x \to 0^+} \frac{f(x)}{x} = 1, \qquad \lim_{x \to 1^-} \frac{f(x)}{x - 1} = 2,$$

- (1) 证明:存在 $\xi \in (0,1)$,使得 $f(\xi) = 0$;
- (2) 证明: 存在 $\eta \in (0,1)$, 使得 $f(\eta) = f''(\eta)$.

- (1) 由极限 $\lim_{x\to 0^+} \frac{f(x)}{x} = 1$ 的定义可知,存在 $0 < \delta < 1$,使得对任意 $x \in (0,\delta)$,都有 $f(x) > \frac{1}{2}x$. 特别地,存在 $x_1 \in (0,\frac{1}{2})$,使得 $f(x_1) > 0$. 同理由 $\lim_{x\to 1^-} \frac{f(x)}{x-1} = 2$ 可知,存在 $x_2 \in (\frac{1}{2},1)$,使得 $f(x_2) < 0$. 因此由连续函数介值原理,存在 $\xi \in (x_1,x_2) \subseteq (0,1)$,使得 $f(\xi) = 0$.
- (2) 反证法。如果不存在 $\eta \in (0,1)$ 使得 $f(\eta) = f''(\eta)$,则由 f'' 与 f 的介值性可知,要么 f''(x) > f(x) 在 (0,1) 恒成立,要么 f''(x) < f(x) 在 (0,1) 恒成立。
- (2.1) 如果 f''(x) > f(x),则由之前所述的 f'(x) 在 x = 0 处的连续性可知存在(x = 0 附近的) $y_1 \in (0,1)$,使得 $\begin{cases} f(y_1) > 0 \\ f'(y_1) > 0 \end{cases}$. 考虑集合

$$\mathcal{S} := \left\{ x \in [y_1, 1] \middle| f(t) \ge f(y_1), \forall t \in [y_1, x] \right\}$$

则由 f(x) 的连续性,S 为 $[y_1,1]$ 的闭子集。又 $y_1 \in S$,从而 S 非空。

再断言 \mathcal{S} 是 $[y_1,1]$ 的开子集。对于任意 $x \in \mathcal{S}$ (不妨 $x \neq 1$),则 $f(t) \geq f(y_1) > 0$ 在 $[y_1,x]$ 成立,又因为 f'' > f,从而 f''(t) > f(t) > 0 在 $[y_1,x]$ 成立,从而 f'(t) 在 $[y_1,x]$ 单调递增,特别 地 $f'(x) \geq f'(y_1) > 0$. 从而存在 $\delta > 0$,使得 $f(t) \geq f(x) \geq f(y_1)$ 在 $t \in [x,x+\delta)$ 成立。这就证明 了 \mathcal{S} 为 $[y_1,1]$ 的开子集。从而 \mathcal{S} 非空,且在 $[y_1,1]$ 中既开又闭,因此由 $[y_1,1]$ 的连通性,必有 $\mathcal{S} = [y_1,1]$,特别地 $1 \in \mathcal{S}$,从而 $f(1) \geq f(y_1) > 0$,与 f(1) = 0矛盾。

(2.2) 如果 f''(x) < f(x) 在 (0,1) 成立,则由 f' 在 x=1 的连续性,存在 (x=1 附近的 $y_2 \in (0,1)$,使得 $\begin{cases} f(y_2) < 0 \\ f'(y_2) > 0 \end{cases}$. 与上一种情况类似,考虑集合

$$\mathcal{T} := \left\{ x \in [0, y_2] \middle| f(t) \le f(y_2), \, \forall t \in [x, y_2] \right\}$$

完全类似的方法可说明 $\mathcal{T} = [0, y_2]$,从而 $0 \in \mathcal{T}$,从而 $f(0) \leq f(y_2) < 0$,与 f(0) = 0 矛盾。以上矛盾可知,必存在 $\eta \in (0, 1)$ 使得 $f(\eta) = f''(\eta)$,从而证毕。

注 这种做法适用于一般的 $\begin{cases} \lim_{x\to 0^+} \frac{f(x)}{x} = A > 0 \\ \lim_{x\to 1^-} \frac{f(x)}{x-1} = B > 0 \end{cases}$ 的情形,而此题是 A = 1, B = 2 的特例。

对于 A = 1, B = 2 的特殊情形(事实上是 $\frac{B}{e} < A < Be$ 的情形),我们有**奇技淫巧**的做法 如下,

证明 [第(2)问的另证] 取辅助函数 $\begin{cases} g(x) \coloneqq e^{-x}(f(x) + f'(x)) \\ h(x) \coloneqq e^{x}(f(x) - f'(x)) \end{cases}$,则由之前论述已知 g = h 在 [0,1] 连续,在 (0,1) 可导。如果存在 $\eta \in (0,1)$ 使得 $g'(\eta) = 0$ 或者 $h'(\eta) = 0$,那么如此的 η 即为所求。现在,采用反证法,假设对任意 $x \in (0,1)$, $g'(x) \neq 0$ 且 $h'(x) \neq 0$ 。

由于对任意 $x \in (0,1)$, $g'(x) = e^{-x}(f''(x) - f(x)) \neq 0$,则由导函数的介值性,g'(x) 恒正或者恒负。由拉格朗日中值定理,存在 $y_1 \in (0,1)$ 使得 $g'(y_1) = g(1) - g(0) = \frac{2}{e} - 1 < 0$,因此 g'(x) < 0 在 (0,1) 成立,从而得出 f''(x) < f(x) 在 (0,1) 成立。类似地,由于对任意 $x \in (0,1)$, $h'(x) = e^x(f(x) - f''(x)) \neq 0$,注意 h(1) - h(0) = (-2e) - (-1) < 0,从而必有 h'(x) 在 (0,1) 恒负,这表明 f(x) < f''(x) 在 (0,1) 成立。

因此得出对任意 $x \in (0,1)$, f''(x) < f(x) 且 f(x) < f''(x), 这是自相矛盾的。从而证毕。

练习 3.34 已知 f(x) 在闭区间 [a,b] 连续,g(x) 在 [a,b] 可导,且 g(a) = 0. 设 $\lambda \neq 0$ 为常数,使得

$$|g(x)f(x) + \lambda g'(x)| \le |g(x)|, \quad \forall x \in [a, b].$$

证明: $g(x) \equiv 0$.

证明 考虑函数 $h(x) := e^{\frac{1}{\lambda} \int_a^x f(t) dt} g(x)$, 则 h(a) = 0, 并且对任意 $x \in [a,b]$ 都有

$$|h'(x)| = \frac{1}{\lambda} e^{\frac{1}{\lambda} \int_a^x f(t) \, dt} |f(x)g(x) + \lambda g'(x)| \le \frac{1}{|\lambda|} e^{\frac{1}{\lambda} \int_a^x f(t) \, dt} |g(x)| = \frac{1}{|\lambda|} |h(x)|$$

从而对任意 $x \in [a,b]$, 如果 $x-a < \frac{|\lambda|}{2}$, 设 |h(c)| 为 |h(x)| 在 [a,x] 之中的最大值,其中 $c \in [a,x]$. 于是有

$$|h(c)| = |h(c) - h(0)| = (c - a)|h'(\xi)| \le \frac{|\lambda|}{2} \cdot \frac{1}{|\lambda|}|h(\xi)| \le \frac{1}{2}|h(c)|$$

这迫使 |h(c)| = 0, 从而函数 h 在 [a, a + x] 上恒为 0. 反复运用上述方法,不难归纳证明 h 在 [a, b] 恒为 0, 之后立刻得到 $g(x) \equiv 0$.

▲ 练习 3.35 (线性插值及其误差估计)

设 f(x) 为 [a,b] 上的二阶连续可微函数。考虑一次函数 $\varphi(x)$,使得其图像为连接 (a,f(a)),(b,f(b)) 两点的线段。证明: 对任意 $x \in (a,b)$,存在 $\xi \in (a,b)$,使得

$$f(x) - \varphi(x) = \frac{1}{2}(x - a)(x - b)f''(\xi).$$

进而得到,对任意 $x \in [a,b]$,有误差估计

$$|f(x) - \varphi(x)| \le \frac{(b-a)^2}{8} \max_{a \le t \le b} |f''(t)|.$$

证明 记 $R(x) := f(x) - \varphi(x)$,则由 $\varphi(x)$ 的性质容易得到 R(a) = R(b) = 0. 现在,固定 $x \in (a,b)$,考虑关于 t 的函数

$$\psi(t) := R(t) - R(x) \frac{(t-a)(t-b)}{(x-a)(x-b)}$$

则 $\psi(a) = \psi(x) = \psi(b) = 0$. 反复使用罗尔定理,可知存在 $\xi \in (a,b)$ 使得 $\psi''(\xi) = 0$; 而注意一次函数 $\varphi(t)$ 的二阶导数为零,因此整理得

$$f(x) - \varphi(x) = \frac{1}{2}(x - a)(x - b)f''(\xi)$$

取绝对值, 再使用均值不等式, 容易得到

$$|f(x) - \varphi(x)| \le \frac{(b-a)^2}{8} \max_{a \le t \le b} |f''(t)|$$

△ 练习 3.36 (二次插值与一般的 Lagrange 插值公式) 给定 \mathbb{R} 上的三个点 $x_0 < x_1 < x_2$,

(1) 试构造二次多项式函数 φ_i ,使得 $\varphi_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ 对任意 i, j = 0, 1, 2 都成立。 如此 $\{\varphi_0, \varphi_1, \varphi_2\}$ 构成二次多项式函数空间的一组基,俗称**插值基**;

- (2) 对任意实数 a_1, a_2, a_3 ,试构造二次多项式函数 $\varphi(x)$,使得 $\varphi(x_i) = a_i$ (i = 0, 1, 2). (提示: 把 $\varphi(x)$ 写成 $\varphi_1, \varphi_2, \varphi_3$ 的线性组合);
- (3) 试将上述想法推广: 给定 n 个实数 $x_0 < x_1 < \cdots < x_n$,以及 $a_0, a_1, ..., a_n$,试构 造一个 n 次多项式函数 $\varphi(x)$,使得 $\varphi(x_i) = a_i$ 对任意 i = 0, 1, ..., n 成立。

证明 [解] (1) (2) 只需要取 $\begin{cases} \varphi_0(x) &= \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \\ \varphi_1(x) &= \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \\ \varphi_2(x) &= \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \end{cases}$ 容易验证满足题意。之后取 $\varphi(x) := a_1\varphi_1(x) + a_2\varphi_2(x) + a_3\varphi_3(x)$.

(3) 一般地, 给定 n 个插值点 $x_0 < x_1 < \cdots < x_n$, 定义

$$\varphi_i(x) := \frac{\prod\limits_{\substack{0 \le k \le n \\ k \ne i}} (x - x_k)}{\prod\limits_{\substack{0 \le k \le n \\ k \ne i}} (x_i - x_k)} \qquad (0 \le i \le n)$$

则显然对任意 i, j = 0, 1, 2, ..., n, φ_i 为 n 次多项式函数,并且显然 $\varphi_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$. 之后令

$$\varphi(x) := \sum_{k=0}^{n} a_k \varphi_k(x)$$

则显然 $\varphi(x_i) = a_i$.

注 此题表明,对 \mathbb{R} 上任意给定的 n 个点,都存在 n+1 次多项式,使得该多项式在每个点处取到给定的值。第(3)问的 $\varphi(x)$ 的表达式称为 **Lagrange 插值公式**。特别地,使用此公式可以暴力破解一切"找规律填数"问题,从而证明小学奥数的傻逼性:

例 3.1 找规律填数:

证明 [解] 问号处应该填 23333,这是因为我们可以构造 6 次插值多项式 $\varphi(x)$,使得 $\varphi(x)$ 在 x = 1,2,3,4,5,6,7 处的取值分别为 1,1,2,3,5,8,23333;因此题中数列的规律是: 第 n 个数字为 $\varphi(n)$.

事实上,问号处填任何数,我们都可以将其中的"规律"自圆其说,而且多项式函数似乎并不超出小学生的理解范围。

▲ 练习 3.37 (二次插值的误差估计)

设 f(x) 是 [a,b] 上的三阶连续可微函数, $x_0 < x_1 < x_2$ 为 [a,b] 中的三个点。取二次多项式函数 $\varphi(x)$,使得 $\varphi(x_i) = f(x_i)$ 对任意 i = 0,1,2 成立。记 $R(x) := f(x) - \varphi(x)$. 证明:对任意 $x \in [a,b]$,存在 $\xi \in (a,b)$,使得

$$R(x) = \frac{f'''(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2).$$

特别地,对任意 $x \in [a,b]$ 都有

$$|R(x)| \le \frac{(b-a)^3}{6} \max_{a \le x \le h} |f'''(x)|.$$

证明 与线性插值(习题3.35)的做法完全类似。对于任意给定的 $x \in [a,b]$ (不妨 x 不等于 x_0, x_1, x_2),考虑关于 t 的函数

$$\psi(t) := R(t) - \frac{(t - x_0)(t - x_1)(t - x_2)}{(x - x_0)(x - x_1)(x - x_2)} R(x)$$

则 x_0, x_1, x_2, x 是 $\psi(t)$ 的四个不同的零点; 反复使用罗尔定理可知存在 $\xi \in (a, b)$ 使得 $\psi'''(\xi) = 0$. 注意到 $R(x) = f(x) - \varphi(x)$,而 $\varphi(x)$ 作为二次多项式函数,其三阶导数为零,因此 R'''(x) = f'''(x)。 从而将 $\psi'''(\xi) = 0$ 整理可得

$$R(x) = \frac{f'''(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2)$$

$$\frac{1}{6}f'''(\xi) = \frac{f(a)}{(a-b)(a-c)(a-d)} + \frac{f(b)}{(b-a)(b-c)(b-d)} + \frac{f(c)}{(c-a)(c-b)(c-d)} + \frac{f(d)}{(d-a)(d-b)(d-c)}.$$

证明 考虑插值多项式

$$\varphi(x) := \frac{f(a)}{(a-b)(a-c)(a-d)}(x-b)(x-c)(x-d) + \frac{f(b)}{(b-a)(b-c)(b-d)}(x-a)(x-c)(x-d) + \frac{f(c)}{(c-a)(c-b)(c-d)}(x-a)(x-b)(x-d) + \frac{f(d)}{(d-a)(d-b)(d-c)}(x-a)(x-b)(x-c)$$

则 $\varphi(a)=f(a), \varphi(b)=f(b), \varphi(c)=f(c), \varphi(d)=f(d)$,也就是说 a,b,c,d 是函数 $\varphi-f$ 的四个不同零点,从而反复使用罗尔定理可知存在 $\xi\in(a,d)$ 使得 $\varphi'''(\xi)=f'''(\xi)$,而 $\varphi'''(\xi)$ 容易直接计算出来。易知该 ξ 即为所求。

 练习 3.39 设 $\lambda_1, \lambda_2, ..., \lambda_n$ 是 n 个互不相同的常数, $C_1, C_2, ..., C_n$ 为 n 个不全为零的常数。 证明: 函数

$$f(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \dots + C_n e^{\lambda_n x}$$

至多有n-1个零点。

证明 对 n 归纳。当 n=1 时显然成立。如果此命题对 n 成立 $(n \ge 1)$,则对于 n+1 的情形,若 x_0 使得

$$f(x) := \sum_{k=1}^{n+1} C_k e^{\lambda_k x} = 0$$

不妨 $C_{n+1} \neq 0$, 则上式整理得

$$g(x) := 1 + \sum_{k=1}^{n} \frac{C_k}{C_{n+1}} e^{(\lambda_k - \lambda_{n+1})x} = 0$$

用反证法,如果 f(x) 有多于 n 个零点,则上述 g(x) 也有多于 n 个零点,记 $x_0 < x_1 < x_2 < \cdots < x_n$ 为 g(x) 的 n+1 个零点,则对 g(x) 在每个区间 $[x_{k-1},x_k]$ 当中使用罗尔定理,可知 g'(x) 有多于 n-1 个零点。

但是另一方面,

$$g'(x) = \sum_{k=1}^{n} \frac{C_k}{C_{n+1}} (\lambda_k - \lambda_{n+1}) e^{(\lambda_k - \lambda_{n+1})x}$$

若对每个 $1 \le k \le n$,记 $C'_k := \frac{C_k}{C_{n+1}} (\lambda_k - \lambda_{n+1})$ 以及 $\lambda'_k := \lambda_k - \lambda_{n+1}$,则 C'_k 仍然不全为零, λ'_k 仍然 互不相同。从而由归纳假设知 g'(x) 至多有 n-1 个零点。这就与 g'(x) 有多于 n-1 个零点矛盾。从而 f(x) 至多有 n 个零点。

3.5 用导数研究函数的性质

练习 3.40 对于正整数 m, n,求函数 $f(x) := \sin^m x \cos^n x$ 在 $[0, \frac{\pi}{2}]$ 上的最大值。 证明 [解] 直接对 f(x) 求导得

$$f'(x) = m \sin^{m-1} x \cos^{m+1} x - n \sin^{m+1} x \cos^{n-1} x$$
$$= \sin^{m-1} x \cos^{m-1} x (m \cos^2 x - n \sin^2 x)$$

令 f'(x) = 0,解得驻点 $x_0 = \arctan\sqrt{\frac{m}{n}}$. 容易验证 f'(x) 在 $(0, x_0)$ 为正,在 $(x_0, \frac{\pi}{2})$ 为负,从而 x_0 是 f(x) 在 $[0, \frac{\pi}{2}]$ 上(唯一的)极大值点,从而为最大值点。容易得到

$$\sin x_0 = \frac{\sqrt{m}}{\sqrt{m+n}}$$

$$\cos x_0 = \frac{\sqrt{n}}{\sqrt{m+n}}$$

$$\Rightarrow \max_{0 \le x \le \frac{\pi}{2}} f(x) = f(x_0) = \frac{m^{\frac{m}{2}} n^{\frac{n}{2}}}{(m+n)^{\frac{m+n}{2}}}$$

练习 3.41 求平面曲线 $y = \frac{1}{2}x^2$ 上的点 A,使得该曲线在点 A 处的法线被该曲线所截得线段的长度最短。

证明 对于曲线 $y = \frac{1}{2}x^2$ 上的一点 $A: (x_0, \frac{1}{2}x_0^2)$,由关于 y 轴的对称性,不妨 $x_0 > 0$. 容易求出该 曲线在 A 处的法线 ℓ 的方程为

$$y - \frac{1}{2}x_0^2 = -\frac{1}{x_0}(x - x_0)$$

记 ℓ 与该曲线的另一个交点为 $C:(x_1,y_1)$,则联立曲线方程与法线 ℓ 的方程,可知 x_1 满足方程

$$x^2 + \frac{2}{x_0}x - (x_0^2 + 2) = 0$$

此方程的两个根为 x_0 与 x_1 ,由韦达定理有 $x_0+x_1=-\frac{2}{x_0}$,从而点 C 的横坐标 $x_1=-\frac{2}{x_0}-x_0$. 从而线段 AC 的长度

$$l(x_0) = |x_1 - x_0| \sqrt{1 + \frac{1}{x_0^2}} = 2\sqrt{1 + x_0^2} \left(1 + \frac{1}{x_0}\right)$$

习题3.41示意图

只需求 $x_0 > 0$ 时 $l(x_0)$ 的最小值点。求导得

$$l'(x_0) = 2\left(\frac{x_0}{\sqrt{1+x_0^2}} \frac{1+x_0^2}{x_0^2} - 2\frac{\sqrt{1+x_0^2}}{x_0^3}\right) = \frac{2\sqrt{1+x_0^2}}{x_0^3}(x_0^2 - 2)$$

从而 $x_0 = \sqrt{2}$ 为驻点,且易验证为 $x_0 > 0$ 当中的最小值点。因此 ($\sqrt{2}$,1) 为所求;由对称性, ($-\sqrt{2}$,1) 也为所求。因此 A 的坐标为 ($\pm\sqrt{2}$,1).

△ 练习 3.42 对于 p > 0,试求周长为 2p 的三角形,使得它绕其给定的一条边旋转所得的旋转体体积最大。

证明 [解] 设三角形三边分别为 a,b,c,其中 $a,b,c \ge 0, a+b+c=2p$; 该旋转体的体积视为定义 在 \mathbb{R}^3 的紧子集 $\left\{ (a,b,c) \in \mathbb{R}^3 \middle| a,b,c \ge 0, a+b+c=2p \right\}$ 上的连续函数,故最大值必存在且必能取到。

如果三角形 $\triangle ABC$ 满足题设,绕 AB 边旋转所得旋转体的体积 V 取最大,记 |AB|=L,边 AB 的高为 h,则 $V=\frac{1}{3}\pi h^2L$.

引理 1: 给定 L,h > 0,则以 L 为底以 h 为高的三角形的周长取到最小值当且仅当该三角形 是以 L 为底边的等腰三角形。

这是因为,如下图所示,

设 AH=t,则此三角形的周长 $C(t)=L+\sqrt{t^2+h^2}+\sqrt{(L-t)^2+h^2}$,对 t 求导得

$$\frac{\mathrm{d}}{\mathrm{d}t}C(t) = \frac{t}{\sqrt{t^2 + h^2}} - \frac{L - t}{\sqrt{(L - t)^2 + h^2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}C(t) = 0 \qquad \Leftrightarrow \qquad t = \frac{L}{2}$$

容易验证驻点 $t = \frac{L}{2}$ 为最小值点,从而引理 1 证毕。

引理 2: 设 $\triangle ABC$ 是满足本题要求的三角形,使得绕 AB 边旋转所得旋转体体积 V 最大,那

么必有 |CA| = |CB| (即 $\triangle ABC$ 是以 AB 为底边的等腰三角形)。

这是因为,假如 $\triangle ABC$ 不是以 AB 为底边的等腰三角形,记 |AB| = L,AB 边的高为 h,我们考虑底边长为 L、对应的高为 h 的等腰三角形 $\triangle A'B'C'$,则由引理 1 可知 $\triangle A'B'C'$ 的周长严格小于 $\triangle ABC$ 的周长 2p. 但是这两个三角形所得到的旋转体体积相等(因为同底等高)。于是就出问题了:取一个与 $\triangle A'B'C'$ 相似的三角形 $\triangle A''B''C''$,使得该三角形的周长 = 2p(即,把 $\triangle A''B''C''$ 适当地按比例放大),那么 $\triangle A''B''C''$ 绕边 A''B'' 旋转得到的旋转体体积必然 > V,这就与 V 的最大性矛盾。

Step3: 有了引理 2,我们的计算就方便多了。设 |AB| = 2t,则 |CA| = |CB| = p - t,高 $h = \sqrt{(p-t)^2 - t^2}$. 于是

$$V(t) = \frac{1}{3}\pi h^2 \cdot 2t = \frac{4}{3}\pi p(\frac{1}{2}p - t)t \le \frac{4}{3}\pi p(\frac{p}{4})^2 = \frac{1}{12}\pi p^3$$

等号成立当且仅当 $\frac{1}{2}p-t=t$,即 $t=\frac{p}{4}$. 此时 $\triangle ABC$ 的三边长度为 $\frac{\partial}{2}, \frac{3}{4}p, \frac{3}{4}p$,该旋转体体积最大值 $V=\frac{1}{12}\pi p^3$.

注 当然也可以用条件极值的拉格朗日乘子法直接做。但事实上用不着如此惊天动地,高中知识就解决了。

△ 练习 3.43 求最小的实数 C. 使得对任何实数 x 都成立

$$\frac{e^x + e^{-x}}{2} \le e^{Cx^2}$$

证明 [解] 一方面,假设实数 C 满足题设,则考虑函数 $F(x) := e^{Cx^2} - \frac{e^x + e^{-x}}{2}$,则恒有 $F(x) \ge 0$.注意到 F(0) = F'(0) = 0,从而必有 $F''(0) \ge 0$,即

$$0 \le \left((4C^2x^2 + 2C)e^{Cx^2} - \frac{e^x + e^{-x}}{2} \right) \Big|_{x=0} = 2C - 1$$

从而得到 $C \geq \frac{1}{2}$.

另一方面,如果 $C=\frac{1}{2}$,我们断言 $e^{\frac{1}{2}x^2}\geq \frac{e^x+e^{-x}}{2}$ 对任意实数 x 都成立。事实上,注意两边都为偶函数,从而只需证明上式对任意 $x\geq 0$ 成立。这只需证明:

$$\frac{1}{2}x^2 \ge \ln(e^x + e^{-x}) - \ln 2 \qquad (\forall x \ge 0)$$

上式两边视为关于 x 的函数。注意到当 x = 0 时上式两边相等,从而对上式两边求导,只需证明:

$$x \ge \frac{e^x + e^{-x}}{e^x - e^{-x}},$$
 整理得 $\frac{1}{1 + e^{2x}} \ge \frac{1}{1 - x}$

为了证明 $\frac{1}{1+e^{2x}} \ge \frac{1}{1-x}$, 注意到此式两边在 x=0 时相等,从而两边求导,只需证明 $\frac{-2e^{2x}}{(1+e^{2x})^2} \ge -\frac{1}{2}$, 而这等价于 $(e^{2x}-1)^2 \ge 0$, 从而证毕。综上所述,满足题设的最小实数 C 为 $\frac{1}{2}$.

- △ 练习 3.44 已知函数 f(x) 在 ℝ 上二阶可导, f(0) < 0,并且 f''(x) > 0 恒成立。
 - (1) 证明: f(x) 至多有 2 个不同零点, 至少有一个零点;
 - (2) 证明: 如果 f(x) 恰有两个不同零点 $x_1 < x_2$,则 $x_1x_2 < 0$.

证明 易知 f'(x) 严格单调递增,f(x) 为凸函数。

(1) 先证明 f(x) 至少有一个零点。如果 $f'(0) \ge 0$,则由 f(0) < 0 以及 f 的连续性可知,存在足够小的 $\varepsilon > 0$ 使得 $f(\varepsilon) < 0$,再由由 f' 的严格单调性立刻得到 $f'(\varepsilon) > 0$. 从而对与任意 $x > \varepsilon$,

由拉格朗日中值定理得

$$f(x) = f(\varepsilon) + (x - \varepsilon)f'(\xi) \ge f(\varepsilon) + (x - \varepsilon)f'(\varepsilon)$$

注意 $f'(\varepsilon) > 0$,从而由上式知当 x 充分大时必有 f(x) > 0,然而 f(0) < 0,从而由连续介值原理 知 f 在 (0,x) 当中必有零点。如果 f'(x) < 0,类似方法可以证明当 x 足够接近 $-\infty$ 时 f(x) > 0,之后再用连续介值。

再证明 f(x) 至多由两个零点。否则,若 a < b < c 为 f(x) 的三个不同零点,则反复使用 罗尔定理,存在 $\eta_1 \in (a,b)$ 以及 $\eta_2 \in (b,c)$ 使得 $f'(\eta_1) = f'(\eta_2) = 0$,从而存在 $\eta_3 \in (\eta_1,\eta_2)$ 使得 $f''(\eta_3) = 0$,与 f''(x) 恒正矛盾。

(2) 反证法,如果 $x_1x_2 > 0$,不妨它们同为正(同为负的情形类似),由凸函数的性质可知 f(x) 在 (x_1,x_2) 取值为负,从而易知 $f'(x_1) < 0$ (用拉格朗日中值定理与 f' 的单调性),因此 $\frac{f(x_1)-f(0)}{x_1} = f'(\xi) < f'(x_1) < 0$,推出 f(0) > 0,这就与 f(0) < 0 矛盾。

第4章 一元积分学

4.1 不定积分的计算

▲ 练习 4.1 计算不定积分

$$\int e^{\sqrt[3]{x}} \, \mathrm{d}x$$

证明 考虑换元 $x = t^3$, 从而有

$$\int e^{\sqrt[3]{x}} dx = \int e^t d(t^3) = 3 \int t^2 de^t = 3 \left(t^2 e^t - \int e^t dt^2 \right)$$

$$= 3t^2 e^t - 6 \int t de^t = 3t^2 e^t - 6 \left(t e^t - \int e^t dt \right)$$

$$= (3t^2 - 6t + 6)e^t + C$$

$$= (3x^{\frac{2}{3}} - 6x^{\frac{1}{3}} + 6)e^{\sqrt[3]{x}} + C$$

▲ 练习 4.2 计算不定积分:

$$\int \cos 2x \cos 3x \cos 4x \, \mathrm{d}x$$

证明 [解] 注意使用三角函数的积化和差公式 $\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))$,从而有

$$\int \cos 2x \cos 3x \cos 4x \, dx = \frac{1}{2} \int (\cos 5x + \cos x) \cos 4x \, dx$$
$$= \frac{1}{4} \int (\cos 9x + \cos x + \cos 5x + \cos 3x) \, dx$$
$$= \frac{1}{4} \sin x + \frac{1}{12} \sin 3x + \frac{1}{20} \sin 5x + \frac{1}{36} \sin 9x + C$$

▲ 练习 4.3 计算不定积分:

$$\int \frac{\sqrt{x-1}\arctan\sqrt{x-1}}{x} \, \mathrm{d}x$$

证明 [解] 考虑换元 $u = \sqrt{x-1}$,有

$$\int \frac{\sqrt{x-1} \arctan \sqrt{x-1}}{x} dx = \int \frac{u \arctan u}{u^2 + 1} 2u du$$

$$= 2 \int \arctan u du - 2 \int \frac{\arctan u}{u^2 + 1} du$$

$$= 2 \left(u \arctan u - \int \frac{u}{u^2 + 1} du \right) - \arctan^2 u + C$$

$$= 2u \arctan u - \ln|u^2 + 1| - \arctan^2 u + C$$

$$= 2\sqrt{x-1} \arctan \sqrt{x-1} - \ln|x| - \arctan^2 \sqrt{x-1} + C$$

▲ 练习 4.4 计算不定积分:

$$\int x \arctan x \ln(1+x^2) \, \mathrm{d}x$$

证明 [解] 我们首先注意到

$$\int x \arctan x \, dx = \frac{1}{2} \int \arctan x \, d(x^2) = \frac{1}{2} \left(x^2 \arctan x - \int \frac{x^2}{1 + x^2} \, dx \right)$$
$$= \frac{1}{2} [(1 + x^2) \arctan x - x] + C$$

注意利用上述结果, 我们有

$$\int x \arctan x \ln(1+x^2) dx$$

$$= \frac{1}{2} \int \ln(1+x^2) d[(1+x^2) \arctan x - x]$$

$$= \frac{1}{2} \left(\left[(1+x^2) \arctan x - x \right] \ln(1+x^2) - \int \left(2x \arctan x - \frac{2x^2}{1+x^2} \right) dx \right)$$

$$= \frac{(1+x^2) \arctan x - x}{2} \ln(1+x^2) - \int x \arctan x dx + \int \frac{x^2}{1+x^2} dx$$

$$= \frac{(1+x^2) \arctan x - x}{2} \left[\ln(1+x^2) - 1 \right] + x - \arctan x + C$$

▲ 练习 4.5 计算不定积分:

$$\int \frac{\cos x - \sin x}{1 - 2\sin x \cos x} \, \mathrm{d}x$$

证明 [解] 注意到 $(\cos x - \sin x)^2 = 1 - 2\sin x \cos x$,从而

$$\int \frac{\cos x - \sin x}{1 - 2\sin x \cos x} \, dx = \int \frac{1}{\cos x - \sin x} \, dx = -\frac{\sqrt{2}}{2} \int \frac{1}{\sin(x - \frac{\pi}{4})} \, dx = \frac{u - x - \frac{\pi}{4}}{2} - \frac{\sqrt{2}}{2} \int \frac{\sin u}{1 - \cos^2 u} \, du$$

$$= \frac{\sqrt{2}}{2} \int \frac{1}{1 - \cos^2 u} \, d\cos u = \frac{\sqrt{2}}{2} \ln \left| \frac{1 + \cos u}{\sin u} \right| + C$$

$$= \frac{\sqrt{2}}{2} \ln \left| \frac{1 + \cos(x - \frac{\pi}{4})}{\sin(x - \frac{\pi}{4})} \right| + C$$

4.2 定积分的计算

△ 练习 4.6 用定积分的定义证明 Dirichlet 函数

$$D(x) := \begin{cases} 1 & \text{若 } x \text{ 是有理数} \\ 0 & \text{若 } x \text{ 是无理数} \end{cases}$$

在闭区间 [0,1] 上不可积。

证明 注意到函数 D(x) 的值域为 $\{0,1\}$,并且满足性质:对任何开区间 $(a,b) \subseteq [0,1]$,存在 $\xi,\eta \in (a,b)$,使得 $D(\xi) = 0$ 以及 $D(\eta) = 1$ (也就是说函数值为 0,1 的点都在定义域中稠密)。

注意到对区间 [0,1] 的任何一个划分

$$0 = x_0 < x_1 < \cdots < x_N = 1$$

则对任意 k = 1, 2, ..., N,总可以在 (x_{k-1}, x_k) 当中取一点 ξ_k ,使得 $D(\xi_k) = 0$,于是有

$$\sum_{k=0}^{N} (x_k - x_{k-1}) D(\xi_k) = 0$$

于是由定积分的定义可知,如果 $\int_0^1 D(x) dx$ 存在,则必有 $\int_0^1 D(x) dx = 0$. 但是另一方面,同样也 总可以在 (x_{k-1}, x_k) 当中取标记点 η_k 使得 $D(\eta_k) = 1$,因此

$$\sum_{k=0}^{N} (x_k - x_{k-1}) D(\eta_k) = \sum_{k=0}^{N} (x_k - x_{k-1}) \cdot 1 = 1$$

从而推出: 如果 $\int_0^1 D(x) dx$ 存在,则必有 $\int_0^1 D(x) dx = 1$. 综上,如果 $\int_0^1 D(x) dx$ 存在,则 $\int_0^1 D(x) dx = 0$ 并且 $\int_0^1 D(x) dx = 1$,自相矛盾。因此 $\int_0^1 D(x) dx$ 不存在, 即 D(x) 在 [0,1] 不可积。

▲ 练习 4.7 回顾我们在习题2.6当中定义的 [0,1] 上的函数

$$R(x) = \begin{cases} \frac{1}{q} & \exists x = \frac{p}{q}, \text{ 其中 } p \neq q \text{ 为互素的整数, } \mathbf{1}q \geq 0 \\ 0 & \exists x \text{ 为无理数} \end{cases}$$

请用定积分的定义直接证明: R(x) 在 [0,1] 上是可积的,并且

$$\int_0^1 R(x) \, \mathrm{d}x = 0$$

证明 对任意 $\varepsilon > 0$,注意到集合 $A := \left\{ x \in [0,1] \middle| R(x) \geq \frac{\varepsilon}{2} \right\}$ 是有限集,记 A 的元素个数为 N,取 $\delta := \frac{\varepsilon}{2N}$ 。则对于 [0,1] 的任何带标记点的分割

$$(\pi, \xi) : 0 = x_0 < x_1 < \dots < x_M = 1$$

 $\xi_i \in [x_{i-1}, x_i], \ \forall 1 \le i \le M$

如果 $\max \left\{ |x_i - x_{i-1}| \middle| 1 \le i \le M \right\} < \delta$,那么注意到集合划分

$$\left\{1,2,...,M\right\} = \left\{1 \leq i \leq M \left| \left[x_{i-1},x_i\right] \cap A \neq \varnothing\right\} \bigsqcup \left\{1 \leq i \leq M \left| \left[x_{i-1},x_i\right] \cap A = \varnothing\right\}\right\}$$

将上式右边的两个集合分别记为 B_1, B_2 ,则显然 B_1 的元素个数 $\leq A$ 的元素个数 (= N). 再注 意到 $0 \le R(x) \le 1$ 总成立,从而我们对函数 R(x) 关于划分 (π,ξ) 的黎曼和有如下估计:

$$\begin{split} 0 &\leq \sum_{i=1}^{M} (x_i - x_{i-1}) R(\xi_i) &= \sum_{i \in B_1} (x_i - x_{i-1}) R(\xi_i) + \sum_{i \in B_2} (x_i - x_{i-1}) R(\xi_i) \\ &\leq \sum_{i \in B_1} \delta \cdot 1 + \sum_{i \in B_2} (x_i - x_{i-1}) \cdot \frac{\varepsilon}{2} \\ &\leq |B_1| \cdot \delta + 1 \cdot \frac{\varepsilon}{2} \leq N \cdot \frac{\varepsilon}{2N} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

这就证明了 R(x) 为 [0,1] 上的可积函数,并且 $\int_0^1 R(x) dx = 0$

▲ **练习 4.8** 已知函数 *f*(*x*) 在 [0,1] 可积,证明:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n + \frac{1}{k}} f(\frac{k}{n}) = \int_{0}^{1} f(x) \, \mathrm{d}x$$

证明 对任意 $\varepsilon > 0$,由于 $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n}) = \int_{0}^{1} f(x) dx$,从而存在 $N_{1} > 0$,使得对任意 $n > N_{1}$ 都有 $\left| \sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n}) - \int_{0}^{1} f(x) dx \right| < \frac{\varepsilon}{2}$. 由于 f(x) 在 [0,1] 可积,故有界,记 M 为 |f(x)| 在 [0,1] 的一个上界。取 $N := \max\{N_{1}, \frac{2M}{n}\}$,则对任意 n > N,成立

$$\left| \sum_{k=1}^{n} \frac{1}{n + \frac{1}{k}} f(\frac{k}{n}) - \int_{0}^{1} f(x) \, \mathrm{d}x \right| \le \left| \sum_{k=1}^{n} \frac{1}{n + \frac{1}{k}} f(\frac{k}{n}) - \sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n}) \right| + \left| \sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n}) - \int_{0}^{1} f(x) \, \mathrm{d}x \right|$$

$$\le \sum_{k=1}^{n} \left(\frac{1}{n + \frac{1}{k}} - \frac{1}{n} \right) \cdot |f(\frac{k}{n})| + \frac{\varepsilon}{2} \le M \sum_{k=1}^{n} \frac{1}{kn(n + \frac{1}{k})} + \frac{\varepsilon}{2} \le M \sum_{k=1}^{n} \frac{1}{n^{2}} + \frac{\varepsilon}{2}$$

$$= \frac{M}{n} + \frac{\varepsilon}{2} \le \frac{M}{2M/\varepsilon} + \frac{\varepsilon}{2} = \varepsilon$$

这就证明了本题结论。

▲ 练习 4.9 对于常数 a > 1, 计算定积分:

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a-x} \, \mathrm{d}x$$

证明 [解] 考虑三角换元 $x = \sin t$, 则

$$\int_{-1}^{1} \frac{\sqrt{1 - x^2}}{a - x} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 t}{a - \sin t} dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 - \sin^2 t}{a - \sin t} dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\sin t + a + \frac{1 - a^2}{a - \sin t} \right) dt$$
$$= \pi a + (1 - a^2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt$$

使用万能代换 $u = \arctan \frac{t}{2}$, 有

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \int_{-1}^{1} \frac{1}{a - \frac{2}{1 + u^2}} \frac{2}{1 + u^2} du = \frac{2}{a} \int_{-1}^{1} \frac{1}{\left(u - \frac{1}{a}\right)^2 + 1 - \frac{1}{a^2}} du$$

$$= \frac{2}{a} \int_{-1 - \frac{1}{a}}^{1 - \frac{1}{a}} \frac{1}{v^2 + \left(1 - \frac{1}{a^2}\right)} dv$$

$$= \frac{2}{a} \frac{1}{\sqrt{1 - \frac{1}{a^2}}} \arctan \frac{v}{\sqrt{1 - \frac{1}{a^2}}} \bigg|_{-1 - \frac{1}{a}}^{1 - \frac{1}{a}}$$

$$= \frac{2}{\sqrt{a^2 - 1}} \left(\arctan \sqrt{\frac{a - 1}{a + 1}} + \arctan \sqrt{\frac{a + 1}{a - 1}}\right) = \frac{\pi}{\sqrt{a^2 - 1}}$$

从而:

原式 =
$$\pi a + (1 - a^2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \pi a + (1 - a^2) \frac{\pi}{\sqrt{a^2 - 1}} = \frac{\pi}{a + \sqrt{a^2 - 1}}$$

注 我们可以利用对称性技巧处理积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a-\sin t} dt$,使得简化计算。考虑换元 $t\mapsto -t$, 易知

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} \, \mathrm{d}t = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a + \sin t} \, \mathrm{d}t$$

因此有

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{a - \sin t} + \frac{1}{a + \sin t} \right) dt$$

$$= a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a^2 - \sin^2 t} dt = a \int_{-\infty}^{+\infty} \frac{1}{a^2 - \frac{u^2}{1 + u^2}} \frac{1}{1 + u^2} du$$

$$= \frac{a}{a^2 - 1} \int_{-\infty}^{+\infty} \frac{1}{u^2 + \frac{a^2}{a^2 - 1}} du = \frac{a}{a^2 - 1} \frac{\sqrt{a^2 - 1}}{a} \pi = \frac{\pi}{\sqrt{a^2 - 1}}$$

△ 练习 **4.10** 设常数 d > r > 0, 计算定积分

$$\int_0^{2\pi} \frac{\cos \theta}{d + r \cos \theta} \, \mathrm{d}\theta$$

证明 [解] 直接考虑万能代换 $t = \tan \frac{\theta}{2}$,得到

$$\int_{0}^{2\pi} \frac{\cos \theta}{d + r \cos \theta} d\theta = 2 \int_{0}^{\pi} \frac{\cos \theta}{d + r \cos \theta} d\theta = \frac{t - \tan \frac{\theta}{2}}{2} 2 \int_{0}^{+\infty} \frac{\frac{1 - t^{2}}{1 + t^{2}}}{d + r \frac{1 - t^{2}}{1 + t^{2}}} \cdot \frac{2}{1 + t^{2}} dt$$

$$= 4 \int_{0}^{+\infty} \frac{1}{(d - r)t^{2} + (d + r)} \frac{1 - t^{2}}{1 + t^{2}} dt$$

$$= \frac{8}{d - r} \int_{0}^{+\infty} \frac{1}{t^{2} + \frac{d + r}{d - r}} \cdot \frac{1}{t^{2} + 1} dt - \frac{4}{d - r} \int_{0}^{+\infty} \frac{1}{t^{2} + \frac{d + r}{d - r}}$$

$$= \frac{8}{d - r} \cdot \frac{d - r}{2r} \int_{0}^{+\infty} \left(\frac{1}{t^{2} + 1} - \frac{1}{t^{2} + \frac{d + r}{d - r}} \right) dt - \frac{4}{d - r} \int_{0}^{+\infty} \frac{1}{t^{2} + \frac{d + r}{d - r}}$$

$$= \frac{4}{r} \left(\frac{\pi}{2} - \frac{\pi}{2\sqrt{\frac{d + r}{d - r}}} \right) - \frac{2\pi}{\sqrt{d^{2} - r^{2}}} = \frac{2\pi}{r} \left(1 - \frac{d}{\sqrt{d^{2} - r^{2}}} \right)$$

▲ 练习 4.11 对于常数 |x| < 1, 计算定积分</p>

$$\int_0^{\frac{\pi}{2}} \frac{x^2 \sin^2 t}{1 - x^2 \sin^2 t} dt$$

证明 [解]

$$\int_0^{\frac{\pi}{2}} \frac{x^2 \sin^2 t}{1 - x^2 \sin^2 t} dt = \int_0^{\frac{\pi}{2}} \frac{1}{1 - x^2 \sin^2 t} dt - \frac{\pi}{2} = \int_0^{\frac{\pi}{2}} \frac{1}{(1 - x^2) \sin^2 t + \cos^2 t} dt - \frac{\pi}{2}$$

$$= \int_0^{\frac{\pi}{2}} \frac{\sec^2 t}{(1 - x^2) \tan^2 t + 1} dt - \frac{\pi}{2} = \frac{u - \tan t}{1 - x^2 + 1} \int_0^{+\infty} \frac{1}{(1 - x^2)u^2 + 1} du - \frac{\pi}{2}$$

$$= \frac{\pi}{2} \left(\frac{1}{\sqrt{1 - x^2}} - 1 \right)$$

▲ 练习 4.12 计算定积分:

$$\int_{0}^{1} x^{4} \sqrt{1 + 4x^{2}} \, \mathrm{d}x$$

证明 [解] 换元 $x=\frac{1}{2}\sinh\theta:=\frac{e^{\theta}-e^{-\theta}}{4}$,并且记 $\alpha=\sinh^{-1}2=\ln(2+\sqrt{5})$,则易知

$$\begin{cases} \sinh \alpha = 2 \\ \cosh \alpha = \sqrt{5} \end{cases}, \begin{cases} \sinh 2\alpha = 4\sqrt{5} \\ \cosh 2\alpha = 9 \end{cases}, \begin{cases} \sinh 4\alpha = 72\sqrt{5} \\ \cosh 4\alpha = 161 \end{cases}, \sinh 6\alpha = 1292\sqrt{5}$$

因此有

$$\begin{split} \int_0^1 x^4 \sqrt{1 + 4x^2} \, \mathrm{d}x &= \frac{1}{32} \int_0^\alpha \sinh^4 \theta \cosh^2 \theta \, \mathrm{d}\theta \\ &= \frac{1}{32} \int_0^\alpha \left(\frac{\cosh 2\theta - 1}{2} \right)^2 \frac{\cosh 2\theta + 1}{2} \, \mathrm{d}\theta \\ &= \frac{1}{512} \int_0^\alpha (\cosh 4\theta - 1) (\cosh 2\theta - 1) \, \mathrm{d}\theta \\ &= \frac{1}{512} \int_0^\alpha \left(\frac{1}{2} \cosh 6\theta - \cosh 4\theta - \frac{1}{2} \cosh 2\theta + 1 \right) \, \mathrm{d}\theta \\ &= \frac{1}{512} \cdot \frac{1}{12} \sinh 6\alpha - \frac{1}{512} \cdot \frac{1}{4} \sinh 4\alpha - \frac{1}{512} \cdot \frac{1}{4} \sinh 2\alpha + \frac{1}{512} \alpha \\ &= \frac{133}{768} \sqrt{5} + \frac{\ln(2 + \sqrt{5})}{512} \end{split}$$

▲ 练习 4.13 计算定积分:

$$I := \int_0^1 \frac{\arcsin\sqrt{x}}{\sqrt{1 - x + x^2}} \, \mathrm{d}x$$

证明 [解] 首先注意恒等式

$$\arcsin(2x - 1) + \frac{\pi}{2} = 2\arcsin\sqrt{x} \tag{*}$$

这是因为 x = 0 是上式两边相等,并且容易验证对上式两边关于 x 求导之后也相等。利用 (*) 式,容易得到

$$I = \frac{1}{2} \int_{0}^{1} \frac{\arcsin(2x-1) + \frac{\pi}{2}}{\sqrt{1-x+x^{2}}} dx \xrightarrow{u=2x-1} \frac{1}{2} \int_{-1}^{1} \frac{\arcsin u + \frac{\pi}{2}}{\sqrt{u^{2}+3}} du$$

$$= \frac{\pi}{2} \int_{0}^{1} \frac{1}{\sqrt{u^{2}+3}} du \xrightarrow{u=\sqrt{3}\tan\theta} \frac{\pi}{2} \int_{0}^{\frac{\pi}{6}} \frac{d\sin\theta}{\cos^{2}\theta} \xrightarrow{t=\sin\theta} \frac{\pi}{2} \int_{0}^{\frac{1}{2}} \frac{dt}{1-t^{2}}$$

$$= \frac{\pi}{4} \ln 3$$

▲ **练习 4.14** (Taylor 公式的积分余项)

已知函数 f(x) 在 x = a 的某邻域内 n + 1 阶连续可微,则对于该邻域内的 x,成立

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + r_{n+1}(a, x)$$

其中余项 $r_{n+1}(a,x)$ 满足

$$r_{n+1}(a,x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt$$

证明 对 n 使用数学归纳法。n=0 时显然成立;此外注意到对任意 $n \ge 0$,使用分部积分易得

$$r_{n+1}(a,x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt$$

$$= \frac{1}{n!} \cdot \frac{-1}{n+1} \int_{a}^{x} f^{(n+1)}(t) d(x-t)^{n+1}$$

$$= \frac{-1}{(n+1)!} \left[f^{(n+1)}(t)(x-t)^{(n+1)} \Big|_{a}^{x} - \int_{a}^{x} (x-t)^{n+1} f^{(n+2)}(t) dt \right]$$

$$= \frac{f^{(n+1)}(a)}{(n+1)!} (x-a)^{n+1} + r_{n+2}(a,x)$$

从而易知证毕。

△ 练习 **4.15** 已知定义在 x = 0 附近的函数

$$F(x) := \int_0^{x^2} t^2 \sin \sqrt{x^2 - t^2} \, dt$$

求极限:

$$\lim_{x \to 0^+} \frac{F(x)}{x^7}$$

注 曲豆豆试过,企图对 F(x) 求导用洛必达,非常难算。甚至不可能算出来。 证明 [解] 只需注意到

$$\frac{F(x)}{x^7} \le \frac{1}{x^7} \int_0^{x^2} t^2 \sin x \, dt \le \frac{1}{x^6} \int_0^{x^2} t^2 \, dt = \frac{1}{3}$$

$$\frac{F(x)}{x^7} \ge \frac{\sin \sqrt{x^2 - x^4}}{x^7} \int_0^{x^2} t^2 dt = \frac{1}{3} \frac{\sin(x\sqrt{1 - x^2})}{x} \to \frac{1}{3} \quad (x \to 0^+)$$

从而由夹逼原理, $\lim_{x\to 0^+} \frac{F(x)}{x^7} = \frac{1}{3}$.

注 biu 神使用洛必达未遂,但提供了一个有意思的想法:

证明 [另解] 首先注意到

$$\frac{1}{x^7} \int_0^{x^2} t^2 \sin \sqrt{x^2 - t^2} dt \xrightarrow{\underline{t = x \sin u}} \frac{1}{x^4} \int_0^{\arcsin x} \sin^2 u \cos u \sin(x \cos u) du$$

$$= \frac{1}{3x^4} \int_0^{\arcsin x} \sin(x \cos u) d(\sin^3 u)$$

$$= \frac{1}{3x^4} \left[\sin^3 u \sin(x \cos u) \Big|_0^{\arcsin x} + x \int_0^{\arcsin x} \sin^4 u \cos(x \cos u) du \right]_{:=R(x)}^{\arcsin x}$$

$$= \frac{1}{3x^4} \left(x^3 \sin(x \cos \arcsin x) + xR(x) \right)$$

$$= \frac{\sin(x \cos \arcsin x)}{3x} + \frac{1}{3x^3} R(x)$$

而注意到当 x 充分小时成立 $\arcsin x < 2x$, 因此有

$$|R(x)| \le \int_0^{\arcsin x} u^4 \, \mathrm{d}u \le \int_0^{2x} u^4 \, \mathrm{d}u = \frac{32}{5} x^5$$

$$\lim_{x \to 0^+} \frac{1}{x^7} \int_0^{x^2} t^2 \sin \sqrt{x^2 - t^2} \, \mathrm{d}t = \lim_{x \to 0^+} \frac{\sin(x \cos \arcsin x)}{3x} = \frac{1}{3}$$

▲ 练习 4.16 F(x) 同上题 (习题4.15), 计算极限:

$$\lim_{x \to 0^+} \frac{1}{x^2} \left(\frac{F(x)}{x^7} - \frac{1}{3} \right)$$

证明 对 F(x) 分部积分,有

$$F(x) = \frac{1}{3} \int_0^{x^2} \sin \sqrt{x^2 - t^2} \, d(t^3) = \frac{1}{3} \left(x^6 \sin \sqrt{x^2 - x^4} + \int_0^{x^2} \frac{t^4}{\sqrt{x^2 - t^2}} \cos \sqrt{x^2 - t^2} \, dt \right)$$

其中注意到

$$\int_{0}^{x^{2}} \frac{t^{4}}{\sqrt{x^{2} - t^{2}}} \cos \sqrt{x^{2} - t^{2}} dt$$

$$= \int_{0}^{x^{2}} \frac{t^{4}}{x} \cos \sqrt{x^{2} - t^{2}} dt + \underbrace{\int_{0}^{x^{2}} t^{4} \left(\frac{1}{\sqrt{x^{2} - t^{2}}} - \frac{1}{x}\right) \cos \sqrt{x^{2} - t^{2}} dt}_{:=S(x)}$$

$$= \frac{1}{x} \left(\int_{0}^{x^{2}} t^{4} dt + \underbrace{\int_{0}^{x^{2}} t^{4} \left(\cos \sqrt{x^{2} - t^{2}} - 1\right) dt}_{:=R(x)} \right) + S(x)$$

$$= \frac{1}{5} x^{9} + \frac{1}{x} R(x) + S(x)$$

注意到对于充分小的正实数 u,成立不等式 $|\cos u - 1| < u^2$;由此可知当正数 x 充分小时成立

$$|R(x)| \le \int_0^{x^2} t^4(x^2 - t^2) \le x^2 \int_0^{x^2} t^4 dt = \frac{1}{5}x^{12}$$

再注意当正数 x 充分小时成立 $x^4 < \frac{3}{4}x^2$, 因此正数 x 充分小时成立

$$|S(x)| \le \int_0^{x^2} t^4 \left(\frac{1}{\sqrt{x^2 - t^2}} - \frac{1}{x} \right) dt = \int_0^{x^2} t^4 \cdot \frac{t^2}{x\sqrt{x^2 - t^2}} \cdot \frac{1}{x + \sqrt{x^2 - t^2}} dt$$

$$\le \int_0^{x^2} \frac{t^6}{\sqrt{x^2 - \frac{3}{4}x^2}} \cdot \frac{1}{x} dt = \frac{2}{x^3} \int_0^{x^2} t^6 dt = \frac{2}{7} x^{11}$$

因此综上可知当 $x \to 0^+$ 时成立

$$\int_0^{x^2} \frac{t^4}{\sqrt{x^2 - t^2}} \cos \sqrt{x^2 - t^2} \, \mathrm{d}t = \frac{1}{5} x^9 + o(x^9)$$

最后考虑 Taylor 展开:

$$\sin \sqrt{x^2 - x^4} = \sqrt{x^2 - x^4} - \frac{1}{6}(x^2 - x^4)^{\frac{3}{2}} + o(x^3)$$
$$= x(1 - \frac{1}{2}x^2) - \frac{1}{6}x^3 + o(x^3) = x - \frac{2}{3}x^3 + o(x^3)$$

$$\Rightarrow F(x) = \frac{1}{3} \left(x^6 \sin \sqrt{x^2 - x^4} + \int_0^{x^2} \frac{t^4}{\sqrt{x^2 - t^2}} \cos \sqrt{x^2 - t^2} \, dt \right)$$
$$= \frac{1}{3} \left(x^6 (x - \frac{2}{3}x^3) + \frac{1}{5}x^9 \right) + o(x^9) = \frac{1}{3}x^7 - \frac{7}{45}x^9 + o(x^9)$$

由此立刻得到

$$\lim_{x \to 0^+} \frac{1}{x^2} \left(\frac{F(x)}{x^7} - \frac{1}{3} \right) = -\frac{7}{45}.$$

▲ 练习 4.17 计算极限:

$$\lim_{x \to +\infty} \left(\int_0^x e^{t^2} dt \right)^{\frac{1}{x^2}}.$$

证明 [解] 先取对数,

$$\lim_{x \to +\infty} \ln \left[\left(\int_0^x e^{t^2} \, \mathrm{d}t \right)^{\frac{1}{x^2}} \right] = \lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} \, \mathrm{d}t}{x^2} \xrightarrow{\text{Arrive}} \lim_{x \to +\infty} \frac{e^{x^2}}{2x \int_0^x e^{t^2} \, \mathrm{d}t}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{2x} e^{x^2}}{\int_0^x e^{t^2} \, \mathrm{d}t} \xrightarrow{\text{Arrive}} \lim_{x \to +\infty} \frac{-\frac{1}{2x^2} e^{x^2} + e^{x^2}}{e^{x^2}} = 1$$

所以有

$$\lim_{x \to +\infty} \left(\int_0^x e^{t^2} dt \right)^{\frac{1}{x^2}} = \exp \left(\lim_{x \to +\infty} \ln \left[\left(\int_0^x e^{t^2} dt \right)^{\frac{1}{x^2}} \right] \right) = e$$

注 除了暴力使用洛必达,还可以采用上下极限、放缩技术。

证明 [另解] 与之前解法一样先取对数, 只需证明

$$\lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} dt}{x^2} = 1 \tag{*}$$

换元 $u=t^2$ 得 $\int_0^x e^{t^2} dt = \int_0^{x^2} \frac{e^u}{2\sqrt{u}} du$. 记常数 $M:=\int_0^1 \frac{e^u}{2\sqrt{u}} du$,则有

$$\underbrace{\lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} dt}{x^2}}_{x^2} \ge \underbrace{\lim_{x \to +\infty} \frac{\ln \int_0^{x^2} \frac{e^u}{2x} du}{x^2}}_{x^2} = \underbrace{\lim_{x \to +\infty} \frac{\ln \left(e^{x^2} - 1\right) - \ln 2x}{x^2}}_{x^2} = 1$$

$$\underbrace{\lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} dt}{x^2}}_{x^2} \le \underbrace{\lim_{x \to +\infty} \frac{\ln \left(M + \int_1^{x^2} \frac{e^u}{2\sqrt{1}} du\right)}{x^2}}_{x^2} = 1$$

综上, (*) 得证。

▲ 练习 4.18 计算极限:

$$\lim_{n\to+\infty} ne^{n^2} \int_n^{n+1} e^{-t^2} dt$$

证明 [解] 令函数 $f(x) = xe^{x^2} \int_x^{x+1} e^{-t^2} dt \, (x \ge 0)$,若 $\lim_{x \to +\infty} f(x)$ 存在,则该极限等于原极限。而

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\int_{x}^{x+1} e^{-t^{2}} dt}{\frac{1}{x}e^{-x^{2}}} = \lim_{x \to +\infty} \frac{e^{-x^{2}} - e^{-(x+1)^{2}}}{2e^{-x^{2}} + \frac{1}{x^{2}}e^{-x^{2}}}$$

$$= \lim_{x \to +\infty} \frac{1 - e^{-2x - 1}}{2 + \frac{1}{x^{2}}} = \frac{1}{2}$$

注 除了暴力使用洛必达,我们还有更加优雅的使用积分中值定理的解法**:证明** [另解] 换元 $t^2 = u$ 并使用积分第一中值定理得

$$\int_{n}^{n+1} e^{t^{2}} dt = \frac{1}{2} \int_{n^{2}}^{(n+1)^{2}} \frac{e^{-u}}{\sqrt{u}} du = \frac{1}{2\sqrt{\xi_{n}}} \int_{n^{2}}^{(n+1)^{2}} e^{-u} du$$

其中存在 $\xi_n \in [n^2, (n+1)^2]$. 记 $\sqrt{\xi_n} = n + \eta_n$,其中 $\eta_n \in [0,1]$. 从而整理得

$$ne^{n^2} \int_n^{n+1} e^{-t^2} dt = \frac{1}{2} \frac{n}{n+\eta_n} \left(1 - e^{-2n-1}\right)$$

两边取极限即可。

▲ 练习 4.19 计算极限:

$$\lim_{n \to +\infty} n^2 \left(n e^{n^2} \int_n^{n+1} e^{-t^2} dt - \frac{1}{2} \right)$$

证明 [解] 换元 $t^2 = u$ 之后马上分部积分,然后再用积分中值定理,

$$\int_{n}^{n+1} e^{-t^{2}} dt = \frac{1}{2} \int_{n^{2}}^{(n+1)^{2}} \frac{e^{-u}}{\sqrt{u}} du = -\frac{1}{2} \int_{n^{2}}^{(n+1)^{2}} \frac{1}{\sqrt{u}} d(e^{-u})$$

$$= -\frac{1}{2} \left(\frac{e^{-u}}{\sqrt{u}} \Big|_{n^{2}}^{(n+1)^{2}} + \frac{1}{2} \int_{n^{2}}^{(n+1)^{2}} \frac{e^{-u}}{u\sqrt{u}} du \right)$$

$$= \frac{1}{2} \left(\frac{e^{-n^{2}}}{n} - \frac{e^{-(n+1)^{2}}}{n+1} \right) - \frac{1}{4(n+\lambda_{n})^{3}} \left(e^{-n^{2}} - e^{-(n+1)^{2}} \right)$$

其中 $\lambda_n \in [0,1]$ 为与 n 有关的常数。因此

$$\lim_{n \to +\infty} n^2 \left(n e^{n^2} \int_n^{n+1} e^{-t^2} dt - \frac{1}{2} \right) = \lim_{n \to +\infty} \left(-\frac{1}{2} \cdot \frac{n^3}{n+1} e^{-2n-1} - \frac{n^3}{4(n+\lambda_n)^3} (1 - e^{-2n-1}) \right) = -\frac{1}{4}$$

▲ 练习 4.20 计算极限:

$$\lim_{n \to +\infty} n^5 \left(n^3 \int_{n}^{2n} \frac{t}{1+t^5} dt - \frac{7}{24} \right)$$

证明 [解] 考虑 $f(x) := \frac{1}{1+x}$ 在 x = 0 处的泰勒展开,有

$$\int_{n}^{2n} \frac{t}{1+t^{5}} dt = \int_{n}^{2n} \frac{1}{t^{4}} \cdot \frac{1}{1+\frac{1}{t^{5}}} dt = \int_{n}^{2n} \frac{1}{t^{4}} \left(1 - \frac{1}{t^{5}} + R(t)\right) dt$$
$$= \frac{7}{24} \cdot \frac{1}{n^{3}} - \frac{255}{2048} \cdot \frac{1}{n^{8}} + \int_{n}^{2n} R(t) dt$$

其中 R(t) 为上述泰勒展开的拉格朗日余项: 对每个 t>0,存在 $\xi\in(0,\frac{1}{t^3})$ 使得 $R(t)=\frac{1}{2}f''(\xi)\cdot\frac{1}{(t^3)^2}$. 特别地,存在常数 M>0 使得对任意 t>0 都有 $|R(t)|\leq \frac{M}{t^{10}}$. 因此

$$\left| \int_{n}^{2n} R(t) \, \mathrm{d}t \right| \le \int_{n}^{2n} \frac{M}{n^{10}} \, \mathrm{d}t = \frac{M}{n^{9}}$$

$$\Rightarrow \int_{n}^{2n} \frac{t}{1+t^{5}} \, \mathrm{d}t = \frac{7}{24} \cdot \frac{1}{n^{3}} - \frac{255}{2048} \cdot \frac{1}{n^{8}} + o(\frac{1}{n^{8}})$$

从而立刻得到 $\lim_{n\to+\infty} n^5 \left(n^3 \int_n^{2n} \frac{t}{1+t^5} dt - \frac{7}{24} \right) = -\frac{255}{2048}$.

 \triangle 练习 4.21 证明:对每个正整数 n,存在唯一的正实数 x_n ,使得

$$\int_0^{x_n} (u^n + e^{-u^2} \cos u) \, \mathrm{d}u = 2.$$

并且证明: $\lim_{n\to+\infty} x_n = 1$.

证明 对于每个正整数 n, 考虑函数 $F_n(x) := \int_0^x (u^n + e^{-u^2} \cos u) \, \mathrm{d}u$, 显然 $F_n(x)$ 连续,且 $F_n'(x) = x^n + e^{-x^2} \cos x$.

• 当 $0 \le x \le 1$ 时, $e^{-x^2} \cos x > 0$,从而 $F'_n(x) > 0$;而当 x > 1 时, $F'_n(x) \ge x^n - |e^{-x^2} \cos x| > 1 - 1 = 0$. 综上可知 $F'_n(x)$ 在 $[0, +\infty)$ 恒大于零,因此 $F_n(x)$ 严格递增。又因为 $F_n(0) = 0$,并且

$$\int_0^x (u^n + e^{-u^2} \cos u) \, du \ge \int_0^x u^n \, du - \left| \int_0^x e^{-u^2} \cos u \, du \right|$$
$$\ge \frac{x^{n+1}}{n+1} - \int_0^x 1 \cdot du = \frac{x^{n+1}}{n+1} - x$$

取足够大的 $y_n > 0$ 使得 $\frac{y_n^{n+1}}{n+1} - y_n > 2$, 则 $F_n(y_n) > 2$. 故由连续函数介值原理可知存在 $x_n \in (0, y_n)$ 使得 $F_n(x_n) = 2$. 再由 $F_n(x)$ 的严格单调性可知,上述 x_n 是唯一的。

• 再断言 $\lim_{n\to +\infty} x_n = 1$. 我们分若干步进行。首先断言 $x_n > 1$ 对任意 n 成立。若不然则有

$$2 = \int_0^{x_n} (u^n + e^{-u^2} \cos u) \, du < \int_0^{x^n} (1^n + 1) \, du = 2x_n < 2$$

从而产生矛盾。之后再注意到

$$2 = \int_0^{x_n} (u^n + e^{-u^2} \cos u) du$$

$$= \frac{x_n^{n+1}}{n+1} + \int_0^{x_n} e^{-u^2} \cos u du$$

$$\leq \frac{x_n^{n+1}}{n+1} + \underbrace{\int_0^{+\infty} |e^{-u^2} \cos u| du}_{-\infty}$$

则易知 $M<\int_0^{+\infty}e^{-u^2}\,\mathrm{d}u<\int_0^11\,\mathrm{d}u+\int_1^{+\infty}e^{-u}\,\mathrm{d}u=2$, 于是上式整理得

$$x_n \leq \sqrt[n+1]{(n+1)(2-M)}$$

综上所述, 我们有

$$1 \le x_n \le \sqrt[n+1]{(n+1)(2-M)}$$

 $\Diamond n \to +\infty$, 由数列极限的夹逼原理,立刻得到 $\lim_{n \to +\infty} x_n = 1$.

△ 练习 4.22 求满足以下方程的连续函数 f(x):

$$f(x) = x \sin x + \int_0^x (x - t)f(t) dt \tag{*}$$

证明 [解] 对 (*) 两边对 x 求导两次,得到

$$f'(x) = \sin x + x \cos x + \int_0^x f(t) dt$$

$$f''(x) = 2 \cos x - x \sin x + f(x)$$

在 (*) 式与上式当中令 x = 0 即可得到 f(0) = f'(0) = 0. 因此函数 f(x) 满足如下的初值问题:

$$\begin{cases} f''(x) - f(x) = 2\cos x - x\sin x \\ f(0) = 0 \\ f'(0) = 0 \end{cases}$$

该微分方程的齐次部分 f''(x) - f(x) = 0 通解为 $f(x) = C_1 e^x + C_2 e^{-x}$; 为求原方程的一个特解,采用待定系数法,令

$$f(x) = (Ax + B)\cos x + (Cx + D)\sin x$$

代入方程
$$f''(x)-f(x)=2\cos x-x\sin x$$
 比较有关系数得
$$\begin{cases} C-A&=&0\\A+D-B&=&2\\-A-C&=&-1\\C-B-D&=&0 \end{cases}$$
 ,从而
$$\begin{cases} A&=&\frac{1}{2}\\B&=&-\frac{1}{2}\\C&=&\frac{1}{2}\\D&=&1 \end{cases}$$

因此原方程有特解 $f(x) = \frac{(x-1)\cos x + (x+2)\sin x}{2}$. 由线性常微分方程的理论,原方程的通解形如

$$f(x) = C_1 e^x + C_2 e^{-x} + \frac{(x-1)\cos x + (x+2)\sin x}{2}$$

再将上式代入初值条件 f(0)=f'(0)=0,即可确定常数 $C_1=\frac{1}{2}, C_2=-1$,从而

$$f(x) = \frac{1}{2}e^x - e^{-x} + \frac{(x-1)\cos x + (x+2)\sin x}{2}$$

4.3 积分中值定理

▲ 练习 4.23

设函数 f(x) 在闭区间 [a,b] 连续且非负,证明

$$\lim_{n \to +\infty} \left(\int_a^b f^n(x) \, \mathrm{d}x \right)^{\frac{1}{n}} = \max \left\{ f(x) \middle| a \le x \le b \right\}$$

证明 记 $A := \{f(x) | a \le x \le b\}$,由于 f(x) 为闭区间 [a,b] 上的连续函数,从而存在 $x_0 \in [a,b]$,使得 f 在 x_0 处取到最大值 A.

对任意 $\varepsilon > 0$,注意函数 f(x) 在 x_0 处连续,从而存在 x_0 的邻域 $x_0 \in [a',b'] \subseteq [a,b]$,使得当 $f(x) > A - \frac{e}{2}$ 在 [a',b'] 成立。记 $\delta := b' - a' > 0$ 为此区间的长度。从而有

$$\left(\int_a^b f^n(x) \, \mathrm{d}x\right)^{\frac{1}{n}} \ge \left(\int_{a'}^{b'} f^n(x) \, \mathrm{d}x\right)^{\frac{1}{n}} \ge \delta^{\frac{1}{n}} (A - \frac{\varepsilon}{2})$$

$$\left(\int_a^b f^n(x) \, \mathrm{d}x\right)^{\frac{1}{n}} \le \left(\int_a^b A^n \, \mathrm{d}x\right)^{\frac{1}{n}} \le (b-a)^{\frac{1}{n}} A$$

由于 $\lim_{n\to+\infty} \delta^{\frac{1}{n}} = 1 = \lim_{n\to+\infty} (b-a)^{\frac{1}{n}}$,因此存在 N>0,使得对于任意 $n\geq N$,都有

$$A - \varepsilon \le \left(\int_a^b f^n(x) \, \mathrm{d}x \right)^{\frac{1}{n}} \le A + \varepsilon$$

从而证毕。

▲ 练习 4.24 计算极限:

$$\lim_{n \to +\infty} n \left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x \right)^{\frac{1}{n}}$$

证明 [解] 注意到

$$n\left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x\right)^{\frac{1}{n}} = \left[\int_0^{\frac{\pi}{4}} \left(n \tan(\frac{x}{n})\right)^n \, \mathrm{d}x\right]^{\frac{1}{n}}$$

对于任意 $\varepsilon > 0$, 注意到当 n 足够大时,

$$x \le n \tan(\frac{x}{n}) \le (1 + \varepsilon)x$$
 $\forall x \in [0, \frac{\pi}{4}]$

于是,注意利用习题4.23的结论(或者直接计算也行),有

$$\frac{\overline{\lim}}{n \to +\infty} n \left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x \right)^{\frac{1}{n}} \leq \lim_{n \to +\infty} \left[\int_0^{\frac{\pi}{4}} ((1+\varepsilon)x)^n \, \mathrm{d}x \right]^{\frac{1}{n}} = \frac{\pi}{4} (1+\varepsilon)$$

$$\underline{\lim}_{n \to +\infty} n \left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x \right)^{\frac{1}{n}} \geq \underline{\lim}_{n \to +\infty} \left[\int_0^{\frac{\pi}{4}} x^n \, \mathrm{d}x \right]^{\frac{1}{n}} = \frac{\pi}{4}$$

这就说明了对任意 $\varepsilon > 0$,都有

$$\frac{\pi}{4} \le \underline{\lim}_{n \to +\infty} n \left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x \right)^{\frac{1}{n}} \le \overline{\lim}_{n \to +\infty} n \left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x \right)^{\frac{1}{n}} \le \frac{\pi}{4} (1 + \varepsilon)$$

从而 $\lim_{n \to +\infty} n \left(\int_0^{\frac{\pi}{4}} \tan^n(\frac{x}{n}) \, \mathrm{d}x \right)^{\frac{1}{n}} = \frac{\pi}{4}.$

🔼 练习 **4.25** 设 f(x) 是 [0,1] 上的恒为正的连续函数,证明:

$$\lim_{n \to +\infty} \left(\int_0^1 [f(x)]^{\frac{1}{n}} dx \right)^n = \exp\left(\int_0^1 \ln f(x) dx \right)$$

证明 由于 f(x) 恒正、连续,从而取 M > 0 使得 $|\ln f(x)| \le M$ 对任意 $x \in [0,1]$ 都成立。注意

$$\lim_{n \to +\infty} \left(\int_0^1 [f(x)]^{\frac{1}{n}} dx \right)^n = \exp \left(\lim_{n \to +\infty} n \ln \int_0^1 e^{\frac{1}{n} \ln f(x)} dx \right)$$

考虑函数 $t \mapsto e^t$ 在 t = 0 的泰勒展开,有

$$e^{\frac{1}{n}\ln f(x)} = 1 + \frac{1}{n}\ln f(x) + R_n(x)$$

其中 Lagrange 余项 $R_n(x) = \frac{1}{2}e^{\xi_n(x)}\left(\frac{1}{n}\ln f(x)\right)^2 = \frac{\ln^2 f(x)}{2n^2}e^{\xi_n(x)}$,并且 $|\xi_n(x)| < \frac{1}{n}|\ln f(x)| = \frac{M}{n}$. 因此当 n 足够大(n > M)时有 $|\xi_n(x)| \le 1$,从而 $|R_n(x)| \le \frac{eM}{2n^2}$. 因此有

$$\left| \int_{0}^{1} R_{n}(x) \, \mathrm{d}x \right| \leq \int_{0}^{1} \frac{eM}{2n^{2}} \, \mathrm{d}x = \frac{eM}{2n^{2}}$$

$$\Rightarrow \int_{0}^{1} e^{\frac{1}{n} \ln f(x)} \, \mathrm{d}x = \int_{0}^{1} \left(1 + \frac{1}{n} \ln f(x) \right) \, \mathrm{d}x + \int_{0}^{1} R_{n}(x) \, \mathrm{d}x$$

$$= 1 + \frac{1}{n} \int_{0}^{1} \ln f(x) \, \mathrm{d}x + o(\frac{1}{n})$$

$$\lim_{n \to +\infty} \left(\int_0^1 [f(x)]^{\frac{1}{n}} dx \right)^n = \exp\left(\lim_{n \to +\infty} n \ln \int_0^1 e^{\frac{1}{n} \ln f(x)} dx \right)$$

$$= \exp\left(\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n} \int_0^1 \ln f(x) dx + o(\frac{1}{n}) \right) dx \right)$$

$$= \exp\left(\int_0^1 \ln f(x) dx \right)$$

▲ 练习 4.26 证明:

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = 0$$

证明 [证法一](分部积分直接计算) $\diamondsuit \ I_n := \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x, \ \ \text{注意到对于 } 0 \leq x \leq \frac{\pi}{2} \ \text{总有 } 0 \leq \sin^{n+1} x \leq \sin^n x, \ \text{所以 } I_n \geq I_{n+1} \geq 0,$ 即 $\{I_n\}$ 为单调递减的非负数列。再注意

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x \, d\cos x$$

$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \, dx - \sin^{n-1} x \cos x \Big|_0^{\frac{\pi}{2}}$$

$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) \, dx = (n-1)(I_{n-2} - I_n)$$

从而得到递推关系 $I_n = \frac{n-1}{n} I_{n-2}$. 因此对任意 $n \ge 1$,注意存在唯一的 $k \ge 0$ 使得 $2k \le n \le 2k+1$, 从而

$$I_n \leq I_{2k} = \frac{2k-1}{2k} I_{2k-2} = \dots = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{1}{2} I_0$$
$$= e^{\sum_{m=1}^{k} \ln(1 - \frac{1}{2m})} I_0 \leq e^{-\sum_{m=1}^{k} \frac{1}{2m}} I_0$$

注意当 $n\to +\infty$ 时, $k\to +\infty$,从而 $\sum\limits_{m=1}^k \frac{1}{2m}\to +\infty$. 因此当 $n\to +\infty$ 时,上式最右端趋于 0;又因 为 $I_n \ge 0$,从而由夹逼原理知

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \lim_{n \to \infty} I_n = 0$$

证明 [证法二] (放缩估计)

直接用数列极限的定义证明之。对于任意 $\varepsilon > 0$ (不妨 $\varepsilon < 1$),取足够大的正整数N使得

$$\left(\cos\frac{\varepsilon}{2}\right)^N < \frac{\varepsilon}{\pi}$$

则对于任意 $n \ge N$, 成立

$$0 \leq \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \int_{0}^{\frac{\pi}{2} - \frac{\varepsilon}{2}} \sin^{n} x \, dx + \int_{\frac{\pi}{2} - \frac{\varepsilon}{2}}^{\frac{\pi}{2}} \sin^{n} x \, dx$$

$$\leq \int_{0}^{\frac{\pi}{2} - \frac{\varepsilon}{2}} \sin^{n} \left(\frac{\pi}{2} - \frac{\varepsilon}{2}\right) \, dx + \int_{\frac{\pi}{2} - \frac{\varepsilon}{2}}^{\frac{\pi}{2}} 1 \cdot dx$$

$$\leq \int_{0}^{\frac{\pi}{2} - \frac{\varepsilon}{2}} \left(\cos \frac{\varepsilon}{2}\right)^{N} \, dx + \frac{\varepsilon}{2}$$

$$\leq \frac{\varepsilon}{\pi} \left(\frac{\pi}{2} - \frac{\varepsilon}{2}\right) + \frac{\varepsilon}{2} \leq \varepsilon$$

所以 $\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \sin^n x \, dx = 0.$ **练习 4.27** 证明:

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin(x^n) \, \mathrm{d}x = 0$$

此题与上题很像,但远比上题困难。这个积分一般无法直接计算。 证明 [证法一] (利用积分第二中值定理)

对于正整数n,注意到

$$\int_0^{\frac{\pi}{2}} \sin(x^n) \, \mathrm{d}x = \int_0^1 \sin(x^n) \, \mathrm{d}x + \int_1^{\frac{\pi}{2}} \sin(x^n) \, \mathrm{d}x$$

$$\int_{1}^{\frac{\pi}{2}} \sin(x^{n}) dx = \int_{1}^{\frac{\pi}{2}} \frac{1}{nx^{n-1}} \cdot nx^{n-1} \sin(x^{n}) dx \xrightarrow{\text{All} \pm \frac{\pi}{2}} \frac{1}{n} \int_{1}^{\xi_{n}} nx^{n-1} \sin(x^{n}) dx$$
$$= \frac{1}{n} \int_{1}^{\xi_{n}} (-\cos(x^{n}))' dx = \frac{1}{n} (-\cos(\xi_{n}^{n}) + \cos 1)$$

其中 $\xi_n \in [1, \frac{\pi}{2}]$ 为某个与 n 有关的常数。从而有

$$\left| \int_0^{\frac{\pi}{2}} \sin(x^n) \, \mathrm{d}x \right| \le \int_0^1 \sin(x^n) \, \mathrm{d}x + \frac{1}{n} |-\cos(\xi_n^n) + \cos 1|$$

$$\le \int_0^1 x^n \, \mathrm{d}x + \frac{2}{n} = \frac{1}{n+1} + \frac{2}{n}$$

 $\diamond n \to \infty$,则上式右端趋于 0,于是由夹逼原理知 $\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin(x^n) \, \mathrm{d}x = 0.$

注 上述证法巧妙使用积分第二中值定理。若不熟悉此定理,或者想不到它,还可以有如下常规做法:

证明[证法二](换元,然后划分区间)

对于 $n \ge 1$, 首先注意到

$$\int_0^{\frac{\pi}{2}} \sin(x^n) \, \mathrm{d}x \xrightarrow{x^n = t} \frac{1}{n} \int_0^{(\frac{\pi}{2})^n} t^{\frac{1}{n} - 1} \sin t \, \mathrm{d}t$$

对于 $n \ge 2$, 注意到对于 $n \ge 0$, 存在唯一正整数 M_n , 使得

$$2M_n \pi \le (\frac{\pi}{2})^n < 2(M_n + 1)\pi$$

此时有 $\left| \left(\frac{\pi}{2} \right)^n - 2M_n \pi \right| \le 2\pi$,并且 $\lim_{n \to \infty} M_n = +\infty$. 注意到:

$$\frac{1}{n} \int_0^{(\frac{\pi}{2})^n} t^{\frac{1}{n}-1} \sin t \, \mathrm{d}t = \frac{1}{n} \sum_{k=1}^{M_n} \left(\int_{(2k-2)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t \, \mathrm{d}t \right) + \frac{1}{n} \int_{2M_n\pi}^{(\frac{\pi}{2})^n} t^{\frac{1}{n}-1} \sin t \, \mathrm{d}t \tag{*}$$

$$\int_{(2k-2)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t \, dt = \int_{(2k-2)\pi}^{(2k-1)\pi} t^{\frac{1}{n}-1} \sin t \, dt + \int_{(2k-1)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t \, dt$$
$$= \int_{(2k-1)\pi}^{2k\pi} -\sin t \left((t-\pi)^{\frac{1}{n}-1} - t^{\frac{1}{n}-1} \right) \, dt$$

固定上式的 n 与 k, 当 $k \ge 2$ 时,对于 $(2k-1)\pi \le t \le 2k\pi$,对函数 $f(u) = u^{\frac{1}{n}-1}$ 在 $[t-\pi,t]$ 使用拉格朗日中值定理,得

$$\begin{aligned} \left| (t - \pi)^{\frac{1}{n} - 1} - t^{\frac{1}{n} - 1} \right| &= \left(1 - \frac{1}{n} \right) \xi^{\frac{1}{n} - 2} \le (t - \pi)^{\frac{1}{n} - 2} \\ &\le ((2k - 2)\pi)^{\frac{1}{n} - 2} \le \frac{1}{\pi^2 (2k - 2)^2} (M_n \pi)^{\frac{1}{n}} \\ &\le \frac{1}{\pi^2 (2k - 2)^2} \frac{\pi}{2} = \frac{1}{2\pi (2k - 2)^2} \end{aligned}$$

而 k = 1 时,有估计

$$\left| \int_{0}^{2\pi} t^{\frac{1}{n} - 1} \sin t \, \mathrm{d}t \right| \leq \int_{0}^{2\pi} \left| \frac{\sin x}{x} \right| t^{\frac{1}{n}} \, \mathrm{d}t \leq \int_{0}^{2\pi} t^{\frac{1}{n}} \, \mathrm{d}t \leq \int_{0}^{2\pi} (2\pi)^{\frac{1}{n}} \, \mathrm{d}t \leq \int_{0}^{2\pi} 2\pi \, \mathrm{d}t = 4\pi^{2}$$

综上所述,有

$$\begin{split} \left| \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x \right| &= \left| \frac{1}{n} \sum_{k=1}^{M_n} \left(\int_{(2k-2)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t \, \mathrm{d}t \right) + \frac{1}{n} \int_{2M_n\pi}^{(\frac{\pi}{2})^n} t^{\frac{1}{n}-1} \sin t \, \mathrm{d}t \right| \\ &\leq \frac{1}{n} \sum_{k=2}^{M_n} \int_{(2k-1)\pi}^{2k\pi} |\sin t| \cdot \left| (t-\pi)^{\frac{1}{n}-1} - t^{\frac{1}{n}-1} \right| \, \mathrm{d}t + \frac{1}{n} \left| \int_0^{2\pi} t^{\frac{1}{n}-1} \sin t \, \mathrm{d}t \right| + \frac{1}{n} \int_{2M_n\pi}^{(\frac{\pi}{2})^n} t^{\frac{1}{n}-1} |\sin t| \, \mathrm{d}t \\ &\leq \frac{1}{n} \sum_{k=2}^{M_n} \int_{(2k-1)\pi}^{2k\pi} \frac{1}{2\pi (2k-2)^2} \, \mathrm{d}t + \frac{4\pi^2}{n} + \frac{2\pi}{n} \leq \frac{1}{8n} \left(\sum_{k=1}^{\infty} \frac{1}{k^2} \right) + \frac{4\pi^2}{n} + \frac{2\pi}{n} \end{split}$$

可见 $n \to \infty$ 时,上式右端趋于 0. 于是由夹逼原理可知 $\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin(x^n) dx = 0$.

练习 4.28 设 f(x) 是 [0,1] 上的非负、严格单调递增的连续函数。对于任意 $n \ge 1$,由积分中值定理,存在 $x_n \in [0,1]$,使得

$$f^n(x_n) = \int_0^1 f^n(t) \, \mathrm{d}t$$

则由 f 的单调性容易知道 x_n 是唯一的。

试求极限 $\lim_{n\to +\infty} x_n$.

证明 注意到 xn 满足

$$f(x_n) = \left(\int_0^1 f^n(t) \, \mathrm{d}t\right)^{\frac{1}{n}}$$

利用习题4.23的结论,有

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \left(\int_0^1 f^n(t) \, \mathrm{d}t \right)^{\frac{1}{n}} = \max_{x \in [0,1]} f(x) = f(1)$$

再由 f 的单调性与连续性, 可得 $\lim_{n\to+\infty} x_n = 1$.

 练习 4.29 已知函数 f(x) 在区间 [a,b] 二阶连续可微,并且 f(a) = f(b) = 0.

证明:存在 $\xi \in [a,b]$,使得

$$\int_{a}^{b} f(x) dx = -\frac{f''(\xi)}{12} (b - a)^{3}$$

证明 对任意实数 m,n (待定),都有

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) d(x+m) = -\int_{a}^{b} f'(x)(x+m) dx$$

$$= -\frac{1}{2} \int_{a}^{b} f'(x) d[(x+m)^{2} + n]$$

$$= -\frac{1}{2} \left[f'(x)[(x+m)^{2} + n] \right]_{a}^{b} - \int_{a}^{b} f''(x)[(x+m)^{2} + n] dx$$

现在,令
$$\begin{cases} m = -\frac{a+b}{2} \\ n = -\frac{(b-a)^2}{4} \end{cases}$$
,则有 $(a+m)^2 + n = (b+m)^2 + n = 0$,于是

$$\int_{a}^{b} f(x) dx = \frac{1}{2} \int_{a}^{b} f''(x) [(x+m)^{2} + n] dx$$

$$= \frac{f''(\xi)}{2} \int_{a}^{b} \left[\left(x - \frac{a+b}{2} \right)^{2} - \frac{(b-a)^{2}}{4} \right] dx$$

$$= -\frac{f''(\xi)}{12} (b-a)^{3}$$

证明 [另证] 考虑函数

$$g(x) := f(x) + \frac{6}{(b-a)^3}(x-a)(x-b) \int_a^b f(t) dt$$

则容易验证 g(a) = g(b) = 0, $\int_a^b g(x) dx = 0$ 以及

$$g''(x) = f''(x) + \frac{12}{(b-a)^3} \int_a^b f(t) dt$$

由于 g(x) 在 [a,b] 连续,并且 $\int_a^b g(x) dx = 0$,从而必存在 $\omega \in (a,b)$,使得 $g(a) = g(\omega) = g(b) = 0$;再由 罗尔定理可知存在 $\eta_1 \in (a,\omega)$ 以及 $\eta_2 \in (\omega,b)$ 使得 $g'(\eta_1) = g'(\eta_2) = 0$,从而存在 $\xi \in (\eta_1,\eta_2) \subseteq [a,b]$ 使得 $g''(\xi) = 0$,即

$$\int_{a}^{b} f(x) dx = -\frac{f''(\xi)}{12} (b - a)^{3}$$

▲ 练习 4.30 计算极限:

$$\lim_{n \to +\infty} n \left(\int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} e^{-\frac{1}{x}} dx - 1 \right)$$

证明 [解] 首先注意到

$$\int_{n^2}^{n^2+n} \frac{1}{\sqrt{x}} \, \mathrm{d}x = \frac{2n}{n + \sqrt{n^2 + n}} = 1 - \frac{n}{(n + \sqrt{n^2 + n})^2}$$

$$\lim_{n \to +\infty} n \left(\int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} e^{-\frac{1}{x}} dx - 1 \right) = \lim_{n \to +\infty} n \left(\int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} \left(e^{-\frac{1}{x}} - 1 \right) dx - \frac{n}{(n + \sqrt{n^2 + n})^2} \right)$$

$$= \lim_{n \to +\infty} n \int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} \left(e^{-\frac{1}{x}} - 1 \right) dx - \frac{1}{4}$$

对于 $n \ge 1$ 以及 $x \in (n^2, n^2 + n)$, 考虑 Taylor 展开 $e^{-\frac{1}{x}} - 1 = -\frac{1}{x} + R_n(x)$, 其中余项 $R_n(x) = \frac{1}{2x^2}e^{\xi}$, $\xi < -\frac{1}{n^2+n}$. 从而当 n 充分大时,对任意 $x \in (n^2, n^2 + n)$ 都有

$$|R_n(x)| \le \frac{1}{2x^2} \le \frac{1}{2n^4}$$

$$\left| n \int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} \left(e^{-\frac{1}{x}} - 1 \right) dx \right| \le n \left(\int_{n^2}^{n^2 + n} \frac{1}{x\sqrt{x}} dx + \int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} |R_n(x)| dx \right)$$

$$\le 2n \left(\frac{1}{n} - \frac{1}{\sqrt{n^2 + n}} \right) + \frac{1}{2n^3} \int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} dx$$

$$\to 0 \qquad (n \to +\infty)$$

$$\lim_{n \to +\infty} n \left(\int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} e^{-\frac{1}{x}} dx - 1 \right) = \lim_{n \to +\infty} n \int_{n^2}^{n^2 + n} \frac{1}{\sqrt{x}} \left(e^{-\frac{1}{x}} - 1 \right) dx - \frac{1}{4} = -\frac{1}{4}$$

4.4 Good kernel 及其应用

- ▲ 练习 4.31 设 $\{f_n | n \ge 1\}$ 是一族定义在闭区间 [-1,1] 上的连续函数,并且满足以下条件:
 - (1) $\int_{-1}^{1} f_n(x) dx = 1$ 对任何 $n \ge 1$ 都成立;
 - (2) 存在 M > 0,使得对任意 $n \ge 1$,都有 $\int_{-1}^{1} |f_n(x)| dx \le M$;
 - (3) 对任意的 $0 < \delta < 1$,都有 $\lim_{n \to +\infty} \int_{\delta \le |x| \le 1} |f_n(x)| dx = 0$.

证明:对于任何定义于 [-1,1] 的连续函数 g(x),都成立

$$\lim_{n \to +\infty} \int_{-1}^{1} f_n(x)g(x) \, \mathrm{d}x = g(0)$$

证明 对于在 [-1,1] 上的连续函数 g(x),记 M' 为 g(x) 在 [-1,1] 上的最大值。

对于任意 $\varepsilon > 0$,由于 g(x) 在 x = 0 处连续,从而存在 $\delta > 0$,使得对任意 $x \in [-1,1]$,如果 $|x| \le \delta$,就有 $|g(x) - g(0)| < \frac{\varepsilon}{2M}$. (其中 M 为条件(2)中的那个). 不妨 $\delta < 1$. 对于如此的 δ ,由条件(3)可知存在正整数 N,使得对于任意 $n \ge N$,

$$\int_{\delta \le |x| \le 1} |f_n(x)| \, \mathrm{d}x < \frac{\varepsilon}{4M'}$$

于是,对于任意的 $n \ge N$,注意到条件(1),我们有:

$$\begin{split} \left| \int_{-1}^{1} f_n(x) g(x) \, \mathrm{d}x - g(0) \right| &= \left| \int_{-1}^{1} f_n(x) (g(x) - g(0)) \, \mathrm{d}x \right| \\ &= \left| \left(\int_{|x| \le \delta} + \int_{\delta \le |x| \le 1} \right) f_n(x) (g(x) - g(0)) \, \mathrm{d}x \right| \\ &\le \int_{|x| \le \delta} |f_n(x)| \cdot |g(x) - g(0)| \, \mathrm{d}x + \int_{\delta \le |x| \le 1} |f_n(x)| \cdot |g(x) - g(0)| \, \mathrm{d}x \\ &\le \frac{\varepsilon}{2M} \int_{|x| < \delta} |f_n(x)| \, \mathrm{d}x + 2M' \int_{\delta \le |x| \le 1} |f_n(x)| \, \mathrm{d}x \\ &\le \frac{\varepsilon}{2M} M + 2M' \frac{\varepsilon}{4M'} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

从而证毕。

△ 练习 4.32 设 f(x) 为定义在 [-1,1] 上的连续函数,证明:

$$\lim_{n \to +\infty} \frac{\int_{-1}^{1} (1 - x^2)^n f(x) \, \mathrm{d}x}{\int_{-1}^{1} (1 - x^2)^n \, \mathrm{d}x} = f(0)$$

证明 我们利用上一题(习题4.31)的结论来做。令

$$\varphi_n(x) := \frac{(1 - x^2)^n}{\int_{-1}^1 (1 - x^2)^n \, \mathrm{d}x}$$

我们只需要验证函数族 $\left\{ \varphi_n(x) \middle| n \ge 1 \right\}$ 满足习题**4.31**的条件(1)(2)(3). 而(1)(2)是显然成立的,我们只剩下(3).

现在,对于任意给定的 $0 < \delta < 1$,我们需要证明:

$$\lim_{n \to +\infty} \frac{\int_{\delta \le |x| \le 1} (1 - x^2)^n \, \mathrm{d}x}{\int_{-1}^1 (1 - x^2)^n \, \mathrm{d}x} = \lim_{n \to +\infty} \frac{\int_{\delta}^1 (1 - x^2)^n \, \mathrm{d}x}{\int_0^1 (1 - x^2)^n \, \mathrm{d}x} = 0$$

易知有不等式 $\begin{cases} 1-x^2 \ge -\delta x + 1 & (0 \le x \le \delta) \\ 1-x^2 \le 1-\delta^2 & (\delta \le x \le 1) \end{cases} , 从而有$

$$\int_{\delta}^{1} (1 - x^{2})^{n} dx \leq (1 - \delta^{2})^{n}$$

$$\int_{0}^{\delta} (1 - x^{2})^{n} dx \geq \int_{0}^{\delta} (1 - \delta x)^{n} dx = \frac{1}{\delta} \frac{1}{n+1} \left[1 - (1 - \delta^{2})^{n} \right]$$

因此有如下估计:

$$\frac{\int_0^1 (1 - x^2)^n \, \mathrm{d}x}{\int_\delta^1 (1 - x^2)^n \, \mathrm{d}x} = 1 + \frac{\int_0^\delta (1 - x^2)^n \, \mathrm{d}x}{\int_\delta^1 (1 - x^2)^n \, \mathrm{d}x} \ge 1 + \frac{\frac{1}{\delta} \frac{1}{n+1} \left(1 - (1 - \delta^2)^n\right)}{(1 - \delta^2)^n}$$
$$= 1 - \frac{1}{(n+1)\delta} + \frac{1}{\delta(n+1)(1 - \delta^2)^n}$$

注意 $0 < 1 - \delta^2 < 1$,从而当 $n \to +\infty$ 时,上式右端趋于 $+\infty$,从而 $\lim_{n \to +\infty} \frac{\int_0^1 (1-x^2)^n \, \mathrm{d}x}{\int_\delta^1 (1-x^2)^n \, \mathrm{d}x} = +\infty$,也就是说, $\lim_{n \to +\infty} \frac{\int_0^1 (1-x^2)^n \, \mathrm{d}x}{\int_0^1 (1-x^2)^n \, \mathrm{d}x} = 0$,从而证毕。

🔼 练习 **4.33** 计算极限:

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x \, dx$$

证明 Step1 首先注意到当 $x \in [0, \frac{\pi}{2}]$ 时, $\sin x \le x \le \tan x$,从而

$$n \int_0^{\frac{\pi}{2}} \sin x \cos^n x \, dx \le n \int_0^{\frac{\pi}{2}} x \cos^n x \, dx \le n \int_0^{\frac{\pi}{2}} \sin x \cos^{n-1} x \, dx$$

上式最左边和最右边的积分可以通过换元法直接计算。令 $n \to +\infty$,由夹逼原理不难知道

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \cos^n x \, \mathrm{d}x = 1$$

因此有

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x \, \mathrm{d}x = \lim_{n \to +\infty} \frac{\int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x \, \mathrm{d}x}{\int_0^{\frac{\pi}{2}} x \cos^n x \, \mathrm{d}x}$$

Step2 令 $\varphi_n(x) := \frac{x \cos^n x}{\int_0^{\frac{\pi}{2}} x \cos^n x \, dx}$,则我们只需计算 $\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \varphi_n(x) \ln\left(1 + \frac{\sin x}{x}\right) \, dx$.

我们对 $\{\varphi_n(x)\}$ 利用习题**4.31**的结论(把区间 [-1,1] 改为 $[0,\frac{\pi}{2}]$,完全类似),只需再证明:对任意 $0<\delta<\frac{\pi}{2}$,都有 $\lim_{n\to+\infty}\int_{\delta}^{\frac{\pi}{2}}\varphi_n(x)\,\mathrm{d}x=0$ 即可。如果这个成立,我们将立刻得到

原极限 =
$$\ln\left(1 + \frac{\sin x}{x}\right)\Big|_{x\to 0}$$
 = $\ln 2$

Step3 对于给定的 $0 < \delta < \frac{\pi}{2}$,注意到 $\lim_{n \to +\infty} \int_{\delta}^{\frac{\pi}{2}} \varphi_n(x) dx = 0$ 等价于

$$\lim_{n \to +\infty} \frac{\int_0^{\delta} x \cos^n x \, \mathrm{d}x}{\int_{\delta}^{\frac{\pi}{2}} x \cos^n x \, \mathrm{d}x} = +\infty \tag{*}$$

我们考察函数 $f_n(x) := x \cos^n x$ 在 $[0, \frac{\pi}{2}]$ 上的单调性。注意

$$f'_n(x) = \cos^n x - nx \cos^{n-1} x \sin x = (\cos x)^{n-1} (\cos x - nx \sin x)$$

从而易知 $f_n(x)$ 在 $[0,\frac{\pi}{2}]$ 上有唯一的极大值点,记为 x_n ,并且 $f_n(x)$ 在 $[0,x_n]$ 单调递增,在 $[x_n,\frac{\pi}{2}]$ 单调递减。其中 x_n 满足方程 $\cos x_n = nx_n \sin x_n$,从而

$$\frac{1}{nx_n} = \tan x_n \ge x_n$$

所以极大值点 $x_n \leq \frac{1}{\sqrt{n}}$,特别地 $\lim_{n \to +\infty} x_n = 0$. 于是对于 $\delta > 0$,当 n 足够大时, $x_n < \delta$,从而 $x \cos^n x$ 在 $[\delta, \frac{\pi}{2}]$ 单调递减,因此有

$$\int_{\delta}^{\frac{\pi}{2}} x \cos^n x \, \mathrm{d}x \le \int_{\delta}^{\frac{\pi}{2}} \delta \cos^n \delta \, \mathrm{d}x \le \frac{\pi \delta}{2} \cos^n \delta \tag{**}$$

Step4 断言对于足够大的 n, $f_n''(x) \le 0$ 在 $[0, \frac{1}{\sqrt{n}}]$ 上成立,并且 $\frac{1}{\sqrt{n}} < \frac{\delta}{2}$. 从而 f(x) 在 $[0, \frac{1}{\sqrt{n}}]$ 上是凸函数。我们先假定这个断言成立(将在后文 Step 5 给出证明),则由凸函数的性质,当 n 足够大的时候成立

$$\int_0^{\delta} x \cos^n x \, dx \ge \int_0^{\frac{1}{\sqrt{n}}} x \cos^n x \, dx \ge \int_0^{\frac{1}{\sqrt{n}}} \left(\frac{1}{\sqrt{n}} \cos^n \frac{1}{\sqrt{n}} \right) x \, dx = \frac{1}{2n} \cos^n \frac{1}{\sqrt{n}} \ge \frac{1}{2n} \cos^n \frac{\delta}{2} \quad (***)$$

因此由(**)与(***)可知,

$$\frac{\int_0^\delta x \cos^n x \, \mathrm{d}x}{\int_{\delta}^{\frac{\pi}{2}} x \cos^n x \, \mathrm{d}x} \ge \frac{1}{n\pi\delta} \left(\frac{\cos\frac{\delta}{2}}{\cos\delta} \right)^n \to +\infty \qquad (n \to +\infty)$$

这就证明了(*),从而完成。

Step5 至此,我们只剩下:对于足够大的 n, $f_n''(x) \le 0$ 在 $[0, \frac{1}{\sqrt{n}}]$ 成立。直接计算 $f_n(x)$ 的二阶导数,有

$$f_n''(x) = nx \cos^{n-2} x \left(-2 \frac{\sin x}{x} - \cos^2 x + (n-1) \sin^2 x \right)$$

当 $x \in [0, \frac{1}{\sqrt{n}}]$ 时, $(n-1)\sin^2 x \le (n-1)\sin^2 \frac{1}{\sqrt{n}} \le \frac{n-1}{n} < 1$; 另一方面,当 n 足够大时,对任意的

 $x \in [0, \frac{1}{\sqrt{n}}]$ 都有

$$2\frac{\sin x}{x} + \cos^2 x \ge 2 \cdot \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$

(这利用了 $\lim_{x\to 0}\frac{\sin x}{x}=1$ 以及 $\lim_{x\to 0}\cos^2 x=1$ 的定义)。因此,当 n 足够大时,对任意 $x\in[0,\frac{1}{\sqrt{n}}]$,成立

$$-2\frac{\sin x}{x} - \cos^2 x + (n-1)\sin^2 x \le -\frac{3}{2} + 1 = -\frac{1}{2} < 0$$

从而 f''(x) < 0. 完成了断言的证明。

总结: 综合 Step1-5, 得到

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x \, dx = \ln 2$$

注 此题还有其它解法,详见 http://tieba.baidu.com/p/4923216320?share=9105&fr=share&seelz=0&sfc=qqfriend&clienttype=2&clientversion=10.2.8.0&st=1558143174&unique=0CEDEA7D19F2AB0E21408D38406AE031

△ 练习 **4.34** 已知函数 f(x) 在 [0,1] 黎曼可积,并且在 x=1 处可导。证明:

$$\lim_{n \to +\infty} n^2 \int_0^1 x^n f(x) \, \mathrm{d}x = -f'(1)$$

证明 记 f'(1) = a. 则由导数的定义可知,对任意 $\varepsilon > 0$, 存在 $0 < \delta < 1$ 使得当 $1 - \delta < x < 1$ 时成立

$$(a+\varepsilon)(x-1) \le f(x) \le (a-\varepsilon)(x-1) \tag{*}$$

再注意到 f(x) 在 [0,1] 可积,从而有界。取 M>0 使得 |f(x)|< M 在 [0,1] 成立,从而对于任意 $0<\delta<1$ 都有

$$\left| n^2 \int_0^{1-\delta} x^n f(x) \, \mathrm{d}x \right| \le M \left| n^2 \int_0^{1-\delta} x^n \, \mathrm{d}x \right| = \frac{M n^2 (1-\delta)^{n+1}}{n+1} \to 0 \qquad (n \to +\infty)$$

从而对(*)取上极限得到

$$\overline{\lim}_{n \to +\infty} n^2 \int_0^1 x^n f(x) \, \mathrm{d}x = \overline{\lim}_{n \to +\infty} \left(n^2 \int_0^{1-\delta} x^n f(x) \, \mathrm{d}x + n^2 \int_{1-\delta}^1 x^n f(x) \, \mathrm{d}x \right)$$

$$= \overline{\lim}_{n \to +\infty} n^2 \int_{1-\delta}^1 x^n f(x) \, \mathrm{d}x \le (a - \varepsilon) \overline{\lim}_{n \to +\infty} n^2 \int_{1-\delta}^1 x^n (x - 1) \, \mathrm{d}x$$

$$= (a - \varepsilon) \overline{\lim}_{n \to +\infty} n^2 \left(\frac{1 - (1 - \delta)^{n+1}}{n+1} - \frac{1 - (1 - \delta)^n}{n} \right) = -a + \varepsilon$$

同样地,考虑下极限则有

$$\underline{\lim}_{n \to +\infty} n^2 \int_0^1 x^n f(x) \, \mathrm{d}x \ge -a - \varepsilon$$

从而对任意 $\varepsilon > 0$ 都成立

$$-a - \varepsilon \le \varliminf_{n \to +\infty} n^2 \int_0^1 x^n f(x) \, \mathrm{d}x \le \varlimsup_{n \to +\infty} n^2 \int_0^1 x^n f(x) \, \mathrm{d}x \le -a + \varepsilon$$

再令 $\varepsilon \to 0$ 即可。

4.5 定积分的数值计算

▲ 练习 4.35 计算极限:

$$\lim_{n \to +\infty} \frac{1}{n^4} \prod_{k=1}^{2n} (n^2 + k^2)^{\frac{1}{n}}$$

证明 [解]取对数,然后用定积分的定义,可得

原式 =
$$\lim_{n \to +\infty} \prod_{k=1}^{2n} \left(1 + \frac{k^2}{n^2} \right)^{\frac{1}{n}} = \lim_{n \to +\infty} \exp \left(\frac{1}{n} \sum_{k=1}^{2n} \ln \left(1 + \frac{k^2}{n^2} \right) \right)$$

= $\exp \left(\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{2n} \ln \left(1 + \frac{k^2}{n^2} \right) \right) = \exp \int_0^2 \ln(1 + x^2) \, dx$
= $\exp \left(x \ln(1 + x^2) \Big|_0^2 - \int_0^2 \frac{2x^2}{1 + x^2} \, dx \right) = e^{2 \ln 5 - 4 + 2 \arctan 2} = \frac{25}{e^4} e^{2 \arctan 2}$

△ 练习 4.36 证明对任意 $n \ge 1$,成立不等式

$$\frac{3n+1}{2n+2} < \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n}{n}\right)^n < \frac{2n+1}{n+1}$$

证明 考虑定义在 [0,1] 上的函数 $f(x) = nx^n$,则 f 为单调递增的严格凸函数。我们考虑"阶梯函数" $g(x) := f(\frac{k}{n})$ (如果 $x \in [\frac{k}{n}, \frac{k+1}{n}), k \in \mathbb{Z}$);以及"折线函数" h(x) 定义为:h(x) 的图像是依次连接点 $(0, f(0)), (\frac{1}{n}, f(\frac{1}{n})), ..., (\frac{n}{n}, f(\frac{n}{n}))$ 所得的折线。则易知 g(x) < f(x) < h(x),从而知 $\int_0^1 g(x) \, \mathrm{d}x < \int_0^1 f(x) \, \mathrm{d}x < \int_0^1 h(x) \, \mathrm{d}x$,也就是

$$\frac{1}{n} \sum_{k=0}^{n-1} n \left(\frac{k}{n} \right)^n < \int_0^1 n x^n \, \mathrm{d}x < \frac{1}{n} \sum_{k=1}^n \frac{n}{2} \cdot \left[\left(\frac{k}{n} \right)^n + \left(\frac{k-1}{n} \right)^n \right]$$

整理上式即得 $\frac{3n+1}{2n+2} < \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n}{n}\right)^n < \frac{2n+1}{n+1}$

▲ 练习 4.37 证明:

$$(\sqrt{2} - 1)(\ln 2 - \frac{1}{2}) + \frac{1}{2} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} \, \mathrm{d}x \le \frac{\pi}{8} + \frac{3\sqrt{3} - \pi}{6} \ln 2$$

(提示:对于函数 $f(x) = \sin x$,考虑连接 $(\frac{\pi}{4}, f(\frac{\pi}{4}))$ 与 $(\frac{\pi}{2}, f(\frac{\pi}{2}))$ 两点的线段;再考虑 f 在点 $(\frac{\pi}{3}, f(\frac{\pi}{3}))$ 处的切线)

证明

习题4.37示意图

考虑函数 $f(x) = \sin x, x \in [\frac{\pi}{4}, \frac{\pi}{2}], 则 f''(x) \leq 0$ 在 $[\frac{\pi}{4}, \frac{\pi}{2}]$ 成立。考虑连接 $(\frac{\pi}{4}, f(\frac{\pi}{4}))$ 与 $(\frac{\pi}{2}, f(\frac{\pi}{2}))$ 两点的线段,易求该线段所在直线的解析式为 $y = \frac{4-2\sqrt{2}}{\pi}x + (\sqrt{2}-1)$. 再考虑 $\frac{\pi}{3} \in [\frac{\pi}{4}, \frac{\pi}{2}],$ 易求 f(x) 的图像在 $(\frac{\pi}{3}, f(\frac{\pi}{3}))$ 处的切线方程为 $y = \frac{1}{2}x + \frac{3\sqrt{3}-\pi}{6}$. 于是由 f(x) 在 $[\frac{\pi}{4}, \frac{\pi}{2}]$ 上的凸性可知,对于 $x \in [\frac{\pi}{4}, \frac{\pi}{2}],$ 成立

$$\sin x \ge \frac{4 - 2\sqrt{2}}{\pi}x + (\sqrt{2} - 1)$$

$$\sin x \le \frac{1}{2}x + \frac{3\sqrt{3} - \pi}{6}$$

将此式代入积分 $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx$ 当中即可。

▲ 练习 4.38 计算数列极限:

$$\lim_{n \to +\infty} \frac{n^{n+1}}{\left(1^{\frac{1}{n}} + 2^{\frac{1}{n}} + \dots + n^{\frac{1}{n}}\right)^n}$$

证明 首先注意到

$$\frac{n^{n+1}}{\left(1^{\frac{1}{n}} + 2^{\frac{1}{n}} + \dots + n^{\frac{1}{n}}\right)^n} = \frac{1}{\left[\frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^{\frac{1}{n}}\right]^n}$$

对于给定的 n>0,注意到 [0,1] 上的函数 $f(x)=x^{\frac{1}{n}}$ 是单调递增的,从而由定积分的几何意义, 易知

$$\int_0^1 x^{\frac{1}{n}} \, \mathrm{d}x \le \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^{\frac{1}{n}} \le \int_{\frac{1}{n}}^{1+\frac{1}{n}} x^{\frac{1}{n}} \, \mathrm{d}x$$

直接计算两边的定积分,有

$$\frac{n}{n+1} \le \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{\frac{1}{n}} \le \frac{n}{n+1} \left[\left(1 + \frac{1}{n}\right)^{1 + \frac{1}{n}} - \left(\frac{1}{n}\right)^{1 + \frac{1}{n}} \right]$$

令 $n \to +\infty$,容易验证 $\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{\frac{1}{n}} = 1 - \frac{1}{n} + o(\frac{1}{n})$ (利用习题3.5),从而

$$\lim_{n \to +\infty} \frac{n^{n+1}}{\left(1^{\frac{1}{n}} + 2^{\frac{1}{n}} + \dots + n^{\frac{1}{n}}\right)^n} = \lim_{n \to +\infty} e^{-n\ln\left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right)\right)} = \lim_{n \to +\infty} e^{-n\left[-\frac{1}{n} + o\left(\frac{1}{n}\right)\right]} = e^{-n\ln\left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right)\right)}$$

▲ **练习 4.39** 已知 f(x) 为 [a,b] 的某开邻域上的 2 阶连续可微函数,证明: 当 $n \to +\infty$ 时成立

$$\int_{a}^{b} f(x) dx = \frac{b-a}{n} \sum_{k=1}^{n} f(a + \frac{b-a}{n}k) - \frac{b-a}{2n} [f(b) - f(a)] + o(\frac{1}{n})$$

证明 为方便书写,记 L := b - a 为区间 [a,b] 的长度,记 $x_{nk} := a + \frac{Lk}{n}$ 为区间 [a,b] 的第 $k \wedge n$ 等分点($0 \le k \le n$). 由于 f(x) 在 [a,b] 二阶连续可微,取定 M 为 |f''(x)| 在 [a,b] 的一个上界。现在固定 $n \ge 1$ 。

对于每个 $1 \le k \le n-1$,以及 $x \in [x_{nk} - \frac{L}{2n}, x_{nk} + \frac{L}{2n}]$,考虑 Taylor 展开

$$f(x) = f(x_{nk}) + f'(x_{nk})(x - x_{nk}) + \frac{1}{2}f''(\xi_{nk})(x - x_{nk})^2$$

其中 $\xi_{n,k} \in [x_{nk} - \frac{L}{2n}, x_{nk} + \frac{L}{2n}]$. 从而有

$$|f(x) - f(x_{nk}) - f'(x_{nk})(x - x_{nk})| = \left| \frac{1}{2} f''(\xi_{nk})(x - x_{nk})^2 \right| \le \frac{M}{2} (x - x_{nk})^2$$

将上式在区间 $[x_{nk} - \frac{L}{2n}, x_{nk} + \frac{L}{2n}]$ 积分,得

$$\left| \int_{x_{nk} - \frac{L}{2n}}^{x_{nk} + \frac{L}{2n}} f(x) dx - \frac{L}{n} f(x_{nk}) \right| = \left| \int_{x_{nk} - \frac{L}{2n}}^{x_{nk} + \frac{L}{2n}} [f(x) - f(x_{nk}) - f'(x_{nk})(x - x_{nk})] dx \right|$$

$$\leq \frac{M}{2} \int_{x_{nk} - \frac{L}{2n}}^{x_{nk} + \frac{L}{2n}} (x - x_{nk})^2 dx = \frac{ML}{24n^3}$$

将上式中的k从1到n-1求和,得到

$$\left| \int_{a+\frac{L}{2n}}^{b-\frac{L}{2n}} f(x) \, \mathrm{d}x - \frac{L}{n} \sum_{k=1}^{n-1} f(x_{nk}) \right| = \left| \sum_{k=1}^{n-1} \left(\int_{x_{nk}-\frac{L}{2n}}^{x_{nk}+\frac{L}{2n}} f(x) \, \mathrm{d}x - \frac{L}{n} f(x_{nk}) \right) \right|$$

$$\leq \sum_{k=1}^{n-1} \left| \int_{x_{nk}-\frac{L}{2n}}^{x_{nk}+\frac{L}{2n}} f(x) \, \mathrm{d}x - \frac{L}{n} f(x_{nk}) \right| \leq \frac{ML}{24} \cdot \frac{n-1}{n^3} = o(\frac{1}{n})$$

$$\Rightarrow \int_{a+\frac{L}{2n}}^{b-\frac{L}{2n}} f(x) \, \mathrm{d}x = \frac{L}{n} \sum_{k=1}^{n-1} f(x_{nk}) + o(\frac{1}{n}) \tag{*}$$

再考虑变上限的积分 $\varphi(t) = \int_a^{a+t} f(x) dx$,将它在 t = 0 处 Taylor 展开得

$$\int_{a}^{a + \frac{L}{2n}} f(x) \, \mathrm{d}x = \frac{L}{2n} f(a) + o(\frac{1}{n})$$

类似地也有

$$\int_{b-\frac{L}{2n}}^{b} f(x) \, \mathrm{d}x = \frac{L}{2n} f(b) + o(\frac{1}{n})$$

结合(*)式,注意到 $b = x_{nn}$,可得

$$\int_{a}^{b} f(x) dx = \int_{a}^{a + \frac{L}{2n}} f(x) dx + \int_{a + \frac{L}{2n}}^{b - \frac{L}{2n}} f(x) dx + \int_{b - \frac{L}{2n}}^{b} f(x) dx$$

$$= \frac{L}{2n} f(a) + \frac{L}{n} \sum_{k=1}^{n-1} f(x_{nk}) + \frac{L}{2n} f(b) + o(\frac{1}{n})$$

$$= \frac{L}{n} \sum_{k=1}^{n} f(x_{nk}) - \frac{L}{2n} (f(b) - f(a)) + o(\frac{1}{n})$$

从而证毕。

注 另一种做法是,直接使用之前做过的习题3.35的结论。

证明 [另证] 对于正整数 n,将区间 [a,b]n 等分,有关记号同之前。对于 $0 \le k \le n-1$,考虑定义在 [$x_{nk}, x_{n,k+1}$] 上的一次函数 $\varphi_{nk}(x)$,使得其图像为连接 ($x_{nk}, f(x_{nk})$) 与 ($x_{n,k+1}, f(x_{n,k+1})$) 的线段。则由习题3.35的结论可知,对于 $x \in [x_{nk}, x_{n,k+1}]$,有

$$|f(x) - \varphi_{nk}(x)| \le \frac{(b-a)^2}{8n^2} \max_{x \in [x_{nk}, x_{n,k+1}]} |f''(x)| \le \frac{(b-a)^2}{8n^2} \max_{x \in [a,b]} |f''(x)|$$

于是考虑定义在 [a,b]上的"折线函数" $\varphi_n(x)$,使得其图像为依次连接点 $(x_{n0},f(x_{n0})),(x_{n1},f(x_{n1}))$, ..., $(x_{nn}, f(x_{nn}))$ 所得的折线 (注意 $x_{n0} = a, x_{nn} = b$),则对任意 $x \in [a, b]$ 都有

$$|f(x) - \varphi_n(x)| \le \frac{(b-a)^2}{8n^2} \max_{x \in [a,b]} |f''(x)|$$

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - \int_{a}^{b} \varphi_{n}(x) \, \mathrm{d}x \right| \le \frac{(b-a)^{2}}{8n^{2}} \max_{x \in [a,b]} |f''(x)| \int_{a}^{b} 1 \, \mathrm{d}x = \frac{(b-a)^{3}}{8n^{2}} \max_{x \in [a,b]} |f''(x)| \tag{*}$$

而另一方面,"折线函数" $\varphi_n(x)$ 的积分可以直接计算:

$$\int_{a}^{b} \varphi_{n}(x) dx = \frac{b-a}{n} \sum_{k=1}^{n} f(x_{nk}) - \frac{b-a}{2n} (f(b) - f(a))$$

结合(*)式可得

$$\int_{a}^{b} f(x) dx = \frac{b-a}{n} \sum_{k=1}^{n} f(x_{nk}) - \frac{b-a}{2n} (f(b) - f(a)) + R_n(x)$$

其中 $|R_n(x)| \le \frac{(b-a)^3}{8n^2} \max_{x \in [a,b]} |f''(x)|$,特别地当 $n \to +\infty$ 时成立 $R_n(x) \sim o(\frac{1}{n})$,从而完成证明。 **练习 4.40** (习题1.26的另解)设常数 $\alpha > 0$,计算极限

$$\lim_{n \to +\infty} \left(\frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha}} - \frac{n}{\alpha + 1} \right)$$

证明 [解] 考虑 [0,1] 上的函数 $f(x) = x^{\alpha}$,对其使用习题**4.39**的结果,有

$$\frac{1}{\alpha + 1} = \int_0^1 x^{\alpha} dx = \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n} \right)^{\alpha} - \frac{1}{2n} + o(\frac{1}{n})$$

$$\lim_{n \to +\infty} \left(\frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha}} - \frac{n}{\alpha + 1} \right) = \lim_{n \to +\infty} n \left(\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n} \right)^{\alpha} - \frac{1}{\alpha + 1} \right) = \frac{1}{2}$$

▲ 练习 4.41 计算下列极限:

$$\lim_{n \to +\infty} n \left(\sum_{k=1}^{n} \frac{1}{n+k} - \ln 2 \right) \tag{1}$$

$$\lim_{n \to +\infty} n \left(\sum_{k=1}^{n} \frac{n}{n^2 + k^2} - \frac{\pi}{4} \right) \tag{2}$$

证明 [解] 考虑 [0,1] 上的函数 $f(x) = \frac{1}{1+x}$,使用习题**4.39**的结论,可知

$$\ln 2 = \int_0^1 \frac{1}{1+x} dx = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}} - \frac{1}{2n} \left(\frac{1}{2} - 1\right) + o\left(\frac{1}{n}\right)$$
$$= \sum_{k=1}^n \frac{1}{n+k} + \frac{1}{4n} + o\left(\frac{1}{n}\right) \quad (n \to +\infty)$$

从而立刻得

$$\lim_{n \to +\infty} n \left(\sum_{k=1}^{n} \frac{1}{n+k} - \ln 2 \right) = -\frac{1}{4}$$

再看第 (2) 式,考虑 [0,1] 上的函数 $g(x) = \frac{1}{1+x^2}$,使用习题4.39的结果,有

$$\frac{\pi}{4} = \int_0^1 \frac{1}{1+x^2} dx = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k^2}{n^2}} - \frac{1}{2n} \left(\frac{1}{2} - 1\right) + o(\frac{1}{n})$$
$$= \sum_{k=1}^n \frac{n}{n^2 + k^2} + \frac{1}{4n} + o(\frac{1}{n})$$

从而立刻得

$$\lim_{n \to +\infty} n \left(\sum_{k=1}^{n} \frac{n}{n^2 + k^2} - \frac{\pi}{4} \right) = -\frac{1}{4}$$

注记: 本题的(1)亦可使用 Stolz 定理求解。

▲ 练习 4.42 计算极限:

$$\lim_{n \to +\infty} n^{\frac{5}{2}} \left(\int_0^1 \frac{1}{\sqrt{n+x}} \, \mathrm{d}x - \frac{1}{n} \sum_{k=1}^n \frac{1}{\sqrt{n+\frac{k}{n}}} \right)$$

证明 令 $f(x) = \frac{1}{\sqrt{x}}$,则 $f''(x) = \frac{3}{4}x^{-\frac{5}{2}}$. 利用习题**4.39**的另证的某中间结论,可知

所以当 $n \to +\infty$ 时成立 $R_n \sim o(n^{-\frac{5}{2}})$. 因此

$$\lim_{n \to +\infty} n^{\frac{5}{2}} \left(\int_0^1 \frac{1}{\sqrt{n+x}} \, \mathrm{d}x - \frac{1}{n} \sum_{k=1}^n \frac{1}{\sqrt{n+\frac{k}{n}}} \right) = \lim_{n \to +\infty} n^{\frac{5}{2}} \left(-\frac{1}{2n} \left(\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}} \right) \right)$$

$$= \lim_{n \to +\infty} \frac{1}{2} n^{\frac{3}{2}} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = \frac{1}{4}$$

▲ 练习 4.43 计算极限:

$$\lim_{n \to +\infty} \sum_{i=1}^{n^2} \frac{n}{n^2 + j^2}$$

证明 [解] 注意到 $\sum_{j=1}^{n^2} \frac{n}{n^2 + j^2} = \frac{1}{n} \sum_{j=1}^{n^2} \frac{1}{1 + \left(\frac{j}{n}\right)^2}$,于是考虑函数 $f(x) := \frac{1}{1 + x^2}$ 在区间 [0, n] 上的积分,将此区间 n^2 等分用求和近似替代之。注意到 $f''(x) = \frac{6x^2 - 2}{(1 + x^2)^3}$ 在 \mathbb{R} 上有界,记 M > 0 为它的一个上

界,则由习题4.39另证当中的某中间结果,有

$$\int_0^n \frac{1}{1+x^2} dx = \frac{1}{n} \sum_{k=1}^{n^2} \frac{1}{1+\left(\frac{k}{n}\right)^2} - \frac{n}{2n^2} (f(n) - f(0)) + R_n(x)$$

$$|R_n(x)| \le \frac{n^3}{8(n^2)^2} \max_{x \in [0,n]} |f''(x)| \le \frac{M}{8n}$$

从而立刻得到

$$\lim_{n \to +\infty} \left(\int_0^n \frac{1}{1+x^2} \, \mathrm{d}x - \frac{1}{n} \sum_{k=1}^{n^2} \frac{1}{1+\left(\frac{k}{n}\right)^2} \right) = 0$$

$$\Rightarrow \lim_{n \to +\infty} \sum_{j=1}^{n^2} \frac{n}{n^2 + j^2} = \lim_{n \to +\infty} \int_0^n \frac{1}{1 + x^2} \, \mathrm{d}x = \frac{\pi}{2}$$

▲ 练习 4.44 计算极限:

$$\lim_{n \to +\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \sqrt{n^2 - k^2} - \frac{n\pi}{4} \right)$$

证明[解](曲豆豆自己随便出的,但突然发现习题4.39对此题失效,无法直接使用该结论。。。所以再想想。。。)

▲ 练习 **4.45** 对于区间 [a,b],正整数 n 以及 $0 \le k \le n$,记 L := b - a 以及 $x_{nk} = a + \frac{kL}{n}$. 设 f(x) 为 [a,b] 上的 4 阶连续可微函数,证明: $n \to +\infty$ 时成立

$$\int_{a}^{b} f(x) dx = \frac{L}{n} \sum_{k=1}^{n} f(x_{nk}) - \frac{L}{2n} (f(b) - f(a)) - \frac{L^{2}}{12n^{2}} (f'(b) - f'(a)) + o(\frac{1}{n^{3}})$$

证明 与习题4.39完全类似。取定 n,k,考虑 f(x) 在 x_{nk} 处的 Taylor 展开

$$f(x) = f(x_{nk}) + f'(x_{nk})(x - x_{nk}) + \frac{1}{2}f''(x_{nk})(x - x_{nk})^2 + \frac{1}{6}f^{(3)}(x_{nk})(x - x_{nk})^3 + \frac{1}{24}f^{(4)}(\xi_{nk})(x - x_{nk})^4$$

注意 $f^{(4)}(x)$ 在 [a,b] 连续,从而有上界。将上述 Taylor 展开式在区间 $[x_{nk}-\frac{L}{2n},x_{nk}+\frac{L}{2n}]$ 积分可得

$$\int_{x_{nk} - \frac{L}{2n}}^{x_{nk} + \frac{L}{2n}} f(x) \, \mathrm{d}x = \frac{L}{n} f(x_{nk}) + \frac{L^2}{24n^2} f''(x_{nk}) + R_{nk}$$

其中余项 R_{nk} 满足 $|R_{nk}| \leq \frac{ML^5}{1920n^5}$,其中 M 为 $|f^{(4)}(x)|$ 在 [a,b] 的一个上界。特别地, $R_{nk} = o(\frac{1}{n^4})$.

将k从1到n-1求和可得

$$\int_{a+\frac{L}{2n}}^{b-\frac{L}{2n}} f(x) dx = \frac{L}{n} \sum_{k=1}^{n-1} f(x_{nk}) + \frac{L^3}{24n^3} \sum_{k=1}^{n-1} f''(x_{nk}) + o(\frac{1}{n^3})$$

$$= \frac{L}{n} \sum_{k=1}^{n-1} f(x_{nk}) + \frac{L^2}{24n^2} \left(\int_a^b f''(x) dx + \frac{L}{2n} (f''(b) - f''(a)) + o(\frac{1}{n}) \right)$$

$$- \frac{L^3}{24n^3} f''(b) + o(\frac{1}{n^3})$$

$$= \frac{L}{n} \sum_{k=1}^{n-1} f(x_{nk}) + \frac{L^2}{24n^2} (f'(b) - f'(a)) - \frac{L^3}{48n^3} (f''(b) + f''(a)) + o(\frac{1}{n^3})$$

上述推导过程中,对 f''(x) 使用了之前习题4.39的结论。类似地,对变上限的积分作 Taylor 展开,有

$$\int_{a}^{a+\frac{L}{2n}} f(x) dx = \frac{L}{2n} f(a) + \frac{L^{2}}{8n^{2}} f'(a) + \frac{L^{3}}{48n^{3}} f''(a) + o(\frac{1}{n^{3}})$$

$$\int_{b-\frac{L}{2n}}^{b} f(x) dx = \frac{L}{2n} f(b) - \frac{L^{2}}{8n^{2}} f'(b) + \frac{L^{3}}{48n^{3}} f''(b) + o(\frac{1}{n^{3}})$$

将以上各式相加即可得到

$$\int_{a}^{b} f(x) dx = \frac{L}{n} \sum_{k=1}^{n} f(x_{nk}) - \frac{L}{2n} (f(b) - f(a)) - \frac{L^{2}}{12n^{2}} (f'(b) - f'(a)) + o(\frac{1}{n^{3}})$$

注 一般地,对于 [a,b] 上充分高阶可微的函数 f(x),以及任意 $m,n \ge 1$,沿用本题记号,则存在 $\xi \in [a,b]$ 使得成立

$$\int_{a}^{b} f(x) dx = \frac{L}{n} \sum_{k=1}^{n} f(x_{nk}) - \frac{L}{2n} [f(b) - f(a)]$$
$$- \sum_{k=1}^{m} \frac{B_{2k} L^{2k}}{n^{2k} (2k)!} [f^{(2k-1)}(b) - f^{(2k-1)}(a)] - \frac{B_{2m+2} L^{2m+3}}{(2m+2)! n^{2m+2}} f^{(2m+2)}(\xi)$$

其中 B_k 为伯努利数。上述公式称为 Euler-Maclaurin 求和公式。本题是其 m=2 的简化版本。

▲ 练习 4.46 计算极限:

$$\lim_{n \to +\infty} n \left(n \left(\sum_{k=1}^{n} \frac{n}{n^2 + k^2} - \frac{\pi}{4} \right) + \frac{1}{4} \right)$$

证明 [解] 考虑函数 $f(x) = \frac{1}{1+x^2}$,则 $f'(x) = \frac{-2x}{(1+x^2)^2}$. 对 f(x) 使用习题4.45的结论,有

$$\frac{\pi}{4} = \int_0^1 f(x) \, \mathrm{d}x = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + (\frac{k}{n})^2} - \frac{1}{2n} (f(1) - f(0)) - \frac{1}{12n^2} (f'(1) - f'(0)) + o(\frac{1}{n^3})$$

$$= \sum_{k=1}^n \frac{n}{n^2 + k^2} + \frac{1}{4n} + \frac{1}{24n^2} + o(\frac{1}{n^3})$$

从而立刻得到

$$\lim_{n \to +\infty} n \left(n \left(\sum_{k=1}^{n} \frac{n}{n^2 + k^2} - \frac{\pi}{4} \right) + \frac{1}{4} \right) = -\frac{1}{24}$$

▲ 练习 4.47 计算极限:

$$\lim_{n \to +\infty} n^2 \left(\ln 2 - \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{2k-1}{2n}} \right)$$

证明 [解] 考虑 $f(x) := \frac{1}{1+x}$ 在 [0,1] 上的积分。分别考虑将区间 [0,1] 作 2n、n 等分,套用习 题4.45的结论,有

$$\ln 2 = \frac{1}{2n} \sum_{k=1}^{2n} \frac{1}{1 + \frac{k}{2n}} - \frac{1}{2 \cdot 2n} \left(-\frac{1}{2} \right) - \frac{1}{12 \cdot (2n)^2} \cdot \frac{3}{4} + o(\frac{1}{n^3})$$

$$\ln 2 = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} - \frac{1}{2n} \left(-\frac{1}{2} \right) - \frac{1}{12n^2} \cdot \frac{3}{4} + o(\frac{1}{n^3})$$

上式第一式乘2再减去第二式,得到

$$\ln 2 = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{2k-1}{2n}} + \frac{1}{32n^2} + o(\frac{1}{n^3})$$

$$\Rightarrow \lim_{n \to +\infty} n^2 \left(\ln 2 - \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{2k-1}{2n}} \right) = \frac{1}{32}$$

4.6 积分不等式

△ 练习 **4.48** 证明:对任意 $a \ge 0$,成立不等式

$$\int_0^{\frac{\pi}{2}} \sqrt{1 + a \sin^2 x} \, \mathrm{d}x \ge \frac{\pi}{4} (1 + \sqrt{1 + a})$$

证明 这是因为,由均值不等式可得,

$$\int_0^{\frac{\pi}{2}} \sqrt{1 + a \sin^2 x} \, dx = \int_0^{\frac{\pi}{2}} \sqrt{(1 + a) \sin^2 x (\sin^2 x + \cos^2 x) + \cos^2 x (\sin^2 x + \cos^2 x)} \, dx$$

$$= \int_0^{\frac{\pi}{2}} \sqrt{(1 + a) \sin^4 x + (2 + a) \sin^2 x \cos^2 x + \cos^4 x} \, dx$$

$$\geq \int_0^{\frac{\pi}{2}} \sqrt{(1 + a) \sin^4 x + 2\sqrt{1 + a} \sin^2 x \cos^2 x + \cos^4 x} \, dx$$

$$= \int_0^{\frac{\pi}{2}} \left(\sqrt{1 + a} \sin^2 x + \cos^2 x \right) \, dx = \frac{\pi}{4} (1 + \sqrt{1 + a})$$

注 事实上,使用柯西不等式更容易,当然技巧性也很高:

证明 [另证] 使用柯西不等式,有

$$\int_0^{\frac{\pi}{2}} \sqrt{1 + a \sin^2 x} \, dx = \int_0^{\frac{\pi}{2}} \sqrt{(1 + a) \sin^2 x + \cos^2 x} \sqrt{\sin^2 x + \cos^2 x} \, dx$$

$$\geq \int_0^{\frac{\pi}{2}} \left(\sqrt{1 + a} \sin^2 x + \cos^2 x \right) \, dx = \frac{\pi}{4} (1 + \sqrt{1 + a})$$

▲ **练习 4.49** 设 *f*(*x*) 在 [*a*,*b*] 连续、恒正,证明:

$$\frac{1}{b-a} \int_{a}^{b} \ln f(x) \, \mathrm{d}x \ge \ln \frac{b-a}{\int_{a}^{b} \frac{1}{f(x)} \, \mathrm{d}x}$$

证明 事实上,由众所周知的算术-几何-调和平均不等式,对任意 n 个正实数 $x_1, x_2, ..., x_n$,有

$$\sqrt[n]{x_1 x_2 \cdots x_n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}}$$

而本题是它的连续版本:将区间 [a,b] 作 n 等分,记分割点为 $a=x_0 < x_1 < \cdots < x_n = b$,则

$$\frac{1}{b-a} \cdot \frac{b-a}{n} \sum_{k=1}^{n} \ln f(x_k) = \ln \sqrt[n]{f(x_1)f(x_2) \cdots f(x_n)}$$

$$\ln \frac{b-a}{\frac{b-a}{n} \sum_{k=1}^{n} \frac{1}{f(x_k)}} = \ln \frac{n}{\sum_{k=1}^{n} \frac{1}{f(x_k)}}$$

再令 $n \to +\infty$,利用定积分的定义以及算术-几何-调和平均值不等式即证。

注 事实上 f(x) 恒正、可积足矣,"连续"这个条件过强。

▲ 练习 4.50 对于 [0,1] 上的可积函数 f(x), 证明:

$$\int_0^1 x^2 f(x) \, \mathrm{d}x - \int_0^1 x f^2(x) \, \mathrm{d}x \le \frac{1}{16}$$

证明 注意在区间 [0,1] 上恒成立 $x(x-2f(x))^2 \ge 0$, 从而

$$0 \le \int_0^1 x[x - 2f(x)]^2 dx = \frac{1}{4} - 4 \int_0^1 x^2 f(x) dx + 4 \int_0^1 x f^2(x) dx$$

整理即得证。

▲ 练习 **4.51** 设函数 f(x) 在 [0,1] 一阶连续可导,并且 $\int_0^1 f(x) dx = 0$. 证明:

$$\int_0^1 |f(x)| \, \mathrm{d}x \le \max \left\{ \int_0^1 |f'(x)| \, \mathrm{d}x, \left| \int_0^1 f(x) \, \mathrm{d}x \right| \right\}$$

证明 如果 f(x) 在 [0,1] 不变号,则显然 $\int_0^1 |f(x)| dx = \left| \int_0^1 f(x) dx \right|$. 从而不妨 f(x) 在 [a,b] 当中存在零点。记 $c \in [0,1]$ 为 f(x) 的一个零点,则对任意 $x \in [0,1]$, 有

$$|f(x)| = |f(x) - f(c)| = \left| \int_{c}^{x} f'(t) dt \right| \le \int_{0}^{1} |f'(t)| dt$$

取上式两边关于 x 在 [0,1] 上的积分,即得证。

▲ 练习 **4.52** 已知 f(x) 为 [0,1] 上的连续可微函数,并且 $\int_0^1 f(x) dx = 0$. 证明:

$$\int_0^1 |f(x)| \, \mathrm{d}x \int_0^1 |f'(x)| \, \mathrm{d}x \ge 2 \int_0^1 |f(x)|^2 \, \mathrm{d}x$$

证明 注意到 $\int_0^1 f(x) dx = 0$,从而有

$$\int_0^1 |f(x)|^2 dx = \int_0^1 f(x)f(x) dx = \frac{1}{2} \int_0^1 [2f(x) - f(0) - f(1)] dx$$

$$= \frac{1}{2} \int_0^1 f(x) \left(\int_0^x f'(t) dt - \int_x^1 f'(t) dt \right) dx$$

$$\leq \frac{1}{2} \int_0^1 |f(x)| \left(\int_0^x |f'(t)| dt + \int_x^1 |f'(t)| dt \right) dx$$

$$= \frac{1}{2} \int_0^1 |f(x)| dx \int_0^1 |f'(x)| dx$$

注 若对上式继续使用 Cauchy 不等式,则会得到

$$\int_0^1 |f(x)|^2 dx \le \frac{1}{2} \int_0^1 |f(x)| dx \int_0^1 |f'(x)| dx$$
$$\le \frac{1}{2} \left(\int_0^1 |f(x)|^2 dx \right)^{\frac{1}{2}} \left(\int_0^1 |f'(x)|^2 dx \right)^{\frac{1}{2}}$$

从而整理得

$$\int_0^1 |f(x)|^2 dx \le \frac{1}{4} \int_0^1 |f'(x)|^2 dx$$

▲ 练习 **4.53** 设 f(x) 是 [0,1] 上的连续可微函数,且 f(0) = 0. 证明:

$$\int_0^1 \frac{|f(x)|^2}{x^2} \, \mathrm{d}x \le 4 \int_0^1 |f'(x)|^2 \, \mathrm{d}x$$

证明 注意 f(0) = 0,从而分部积分得

$$\int_0^1 \frac{|f(x)|^2}{x^2} dx = -\int_0^1 f^2(x) d\frac{1}{x}$$

$$= \int_0^1 \frac{2f(x)f'(x)}{x} dx - f^2(1) \le 2 \int_0^1 \frac{f(x)f'(x)}{x} dx$$

$$\le 2\left(\int_0^1 \frac{|f(x)|^2}{x^2} dx\right)^{\frac{1}{2}} \left(\int_0^1 |f'(x)|^2 dx\right)^{\frac{1}{2}}$$

整理即得

$$\int_0^1 \frac{|f(x)|^2}{x^2} \, \mathrm{d}x \le 4 \int_0^1 |f'(x)|^2 \, \mathrm{d}x$$

▲ 练习 **4.54** 已知函数 f(x) 在 [0,1] 连续,并且成立 $1 \le f(x) \le 3$. 证明不等式:

$$1 \le \int_0^1 f(x) \, \mathrm{d}x \int_0^1 \frac{1}{f(x)} \, \mathrm{d}x \le \frac{4}{3}$$

证明 一方面注意 $f(x) \ge 0$,从而由柯西不等式得

$$\int_0^1 f(x) \, \mathrm{d}x \int_0^1 \frac{1}{f(x)} \, \mathrm{d}x \ge \left(\int_0^1 f(x) \cdot \frac{1}{f(x)} \, \mathrm{d}x \right)^2 = 1$$

另一方面,注意到 $1 \le f(x) \le 3$,从而由均值不等式以及函数 $x \mapsto x + \frac{3}{x}$ 的单调性可得

$$\int_0^1 f(x) \, \mathrm{d}x \int_0^1 \frac{3}{f(x)} \, \mathrm{d}x \le \frac{1}{4} \left(\int_0^1 f(x) \, \mathrm{d}x + \int_0^1 \frac{3}{f(x)} \, \mathrm{d}x \right)$$
$$= \frac{1}{4} \left(\int_0^1 \left(f(x) + \frac{3}{f(x)} \right) \, \mathrm{d}x \right)^2 \le \frac{1}{4} \cdot 4^2 = 4$$

从而整理得 $\int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx \le \frac{4}{3}$.

△ 练习 4.55 已知函数 $f: \mathbb{R} \to \mathbb{R}$ 非负、在 \mathbb{R} 上反常可积,并且满足

$$\int_{\mathbb{R}} f(t) dt = 1, \quad \int_{\mathbb{R}} t f(t) dt = 0, \quad \int_{\mathbb{R}} t^2 f(t) dt = 1.$$

证明:对任意 x > 0,成立不等式

$$\int_{-\infty}^{x} f(t) \, \mathrm{d}t \ge \frac{x^2}{1 + x^2}.$$

证明 取定 x > 0, 注意对于任意 $t \ge x$ 成立 $\frac{1}{1+tx} \le \frac{1}{1+t^2}$, 从而有

$$\int_{x}^{+\infty} f(t) dt \leq \left(\int_{x}^{+\infty} f(t)(1+tx)^{2} dt \right)^{\frac{1}{2}} \left(\int_{x}^{+\infty} \frac{f(t)}{(1+tx)^{2}} dt \right)^{\frac{1}{2}}$$

$$\leq \left(\int_{\mathbb{R}} f(t)(1+tx)^{2} dt \right)^{\frac{1}{2}} \cdot \frac{1}{1+x^{2}} \left(\int_{x}^{+\infty} f(t) dt \right)^{\frac{1}{2}}$$

$$\Rightarrow \int_{x}^{+\infty} f(t) dt \leq \frac{1}{(1+x^{2})^{2}} \int_{\mathbb{R}} f(t)(1+tx)^{2} dt = \frac{1}{1+x^{2}}$$

因此有 $\int_{-\infty}^{x} f(t) dt \ge \frac{x^2}{1+x^2}$.

注 这是概率论中的一个重要的不等式。事实上,f(x) 可以视为某个随机变量 X 的概率密度函数,则题设条件翻译为 "X 的期望、方差分别为 0,1". 需要证明的不等式翻译为 "对任意 x>0, $\mathbb{P}(X\leq x)\geq \frac{x^2}{1+x^2}$ ".

▲ 练习 **4.56** 已知函数 f(x) 在闭区间 $[0,\pi]$ 连续,f(0)=1,并且满足

$$\left(\int_0^{\pi} (\sin x + \cos x) f(x) dx\right)^2 = \pi \int_0^{\pi} f^2(x) dx.$$

试计算 $\int_0^{\pi} f^3(x) dx$.

证明 [解] 首先注意到 Cauchy 不等式:

$$\pi \int_0^{\pi} f^2(x) dx = \int_0^{\pi} (\sin x + \cos x)^2 dx \int_0^{\pi} f^2(x) dx$$

$$\geq \left(\int_0^{\pi} (\sin x + \cos x) f(x) dx \right)^2$$

$$= \pi \int_0^{\pi} f^2(x) dx$$

上述柯西不等式取到等号,从而存在常数 C 使得 $f(x) = C(\sin x + \cos x)$. 由 f(0) = 1 可知 C = 1,

即 $f(x) = \sin x + \cos x$. 从而

$$\int_0^{\pi} f^3(x) \, \mathrm{d}x = \int_0^{\pi} (\sin x + \cos x)^3 \, \mathrm{d}x = 2\sqrt{2} \int_0^{\pi} \sin^3 \left(x + \frac{\pi}{4} \right) \, \mathrm{d}x = \frac{10}{3}.$$

\land 练习 4.57 设函数 f(x) 在 [0,1] 二阶连续可微,且满足

$$f''(x) \le 0$$
, $0 \le f(x) \le 1$, $f(0) = f(1) = 0$

证明: 平面曲线 $y = f(x), 0 \le x \le 1$ 的弧长 $s \le 3$.

证明 由于 f(x) 在闭区间 [0,1] 连续,从而存在 $x \in [0,1]$ 使得 f 在 x = c 处取到最大值。不妨 f(c) > 0 (否则 f 为常函数),则 $c \in (0,1)$,因此 f'(c) = 0. 又因为 $f''(x) \le 0$,从而易知 f'(x) 在 [0,c] 非负,在 [c,1] 非正。所以有

$$s = \int_0^1 \sqrt{1 + |f'(x)|^2} \, dx = \int_0^c \sqrt{1 + |f'(x)|^2} \, dx + \int_c^1 \sqrt{1 + |f'(x)|^2} \, dx$$

$$\leq \int_0^c (1 + f'(x)) \, dx + \int_c^1 (1 - f'(x)) \, dx = 1 + 2f(c) \leq 3.$$

▲ 练习 **4.58** 已知函数 f(x) 在 $(0,+\infty)$ 连续,常数 p>1,并且 $\int_0^{+\infty} |f(t)|^p dt < +\infty$. 证明:

$$\left(\int_0^{+\infty} \left(\frac{1}{x} \int_0^x |f(t)| \, \mathrm{d}t \right)^p \, \mathrm{d}x \right)^{\frac{1}{p}} \le \frac{p}{p-1} \left(\int_0^{+\infty} |f(t)|^p \, \mathrm{d}t \right)^{\frac{1}{p}}.$$

证明 记 $g(x) := \int_0^x |f(t)| dt$,则对任意 $0 < a < A < +\infty$,成立

$$\int_{a}^{A} x^{-p} g^{p}(x) dx = \frac{1}{1-p} \int_{a}^{A} g^{p}(x) dx^{1-p}
= \frac{1}{1-p} \left(g^{p}(x) x^{1-p} \Big|_{a}^{A} - p \int_{a}^{A} x^{1-p} g^{p-1}(x) |f(x)| dx \right)
= \frac{p}{p-1} \int_{a}^{A} x^{1-p} g^{p-1}(x) |f(x)| dx + \frac{1}{p-1} \left(g^{p}(a) a^{1-p} - g^{p}(A) A^{1-p} \right)
\leq \frac{p}{p-1} \int_{a}^{A} x^{1-p} g^{p-1}(x) |f(x)| dx + \frac{1}{p-1} g^{p}(a) a^{1-p}$$

对上式两边取极限 $a \to 0^+$ 以及 $A \to +\infty$,之后再使用 Hölder 不等式,有

$$\int_{0}^{+\infty} x^{-p} g^{p}(x) dx \leq \frac{p}{p-1} \int_{0}^{+\infty} x^{1-p} g^{p-1}(x) |f(x)| dx$$

$$\leq \frac{p}{p-1} \left(\int_{0}^{+\infty} x^{-p} g^{p}(x) dx \right)^{\frac{p-1}{p}} \left(\int_{0}^{+\infty} |f(x)|^{p} dx \right)^{\frac{1}{p}}$$

整理即得

$$\left(\int_0^{+\infty} \left(\frac{1}{x} \int_0^x |f(t)| \, \mathrm{d}t \right)^p \, \mathrm{d}x \right)^{\frac{1}{p}} \le \frac{p}{p-1} \left(\int_0^{+\infty} |f(t)|^p \, \mathrm{d}t \right)^{\frac{1}{p}}$$

△ 练习 4.59 已知函数 f(x) 在 \mathbb{R} 上存在任意阶导数,并且满足

$$\left| f^{(n)}(x) - f^{(n-1)}(x) \right| < \frac{1}{n^2}, \quad \forall n \in \mathbb{Z}_+, \, \forall x \in \mathbb{R}$$

证明:存在常数 C,使得 $\lim_{n\to+\infty} f^{(n)}(x) = Ce^x$ 对任意 $x \in \mathbb{R}$ 成立。

证明 考虑函数 $\varepsilon_n(x):=f^{(n)}(x)-f^{(n-1)}(x)$,则 $|\varepsilon_n(x)|<\frac{1}{n^2}$. 解关于 $f^{(n-1)}(x)$ 的微分方程

$$\frac{\mathrm{d}}{\mathrm{d}x}f^{(n-1)}(x) - f^{(n-1)}(x) = \varepsilon_n(x)$$

可得

$$f^{(n-1)}(x) = \left(C_{n-1} + \int_0^x e^{-t} \varepsilon_n(t) \, \mathrm{d}t\right) e^x \tag{*}$$

其中 C_{n-1} 为常数,与n的选取有关。同样我们也有

$$f^{(n)}(x) = \left(C_n + \int_0^x e^{-t} \varepsilon_{n+1}(t) dt\right) e^x \tag{**}$$

将 (*) 与 (**) 代入 $f^{(n)}(x) - f^{(n-1)}(x) = \varepsilon_n(x)$, 整理得

$$C_n - C_{n-1} = \int_0^x e^{-t} \left(\varepsilon_n(t) - \varepsilon_{n+1}(t) \right) dt + \varepsilon_n(x) e^{-x}$$

注意此式左边为常数,而右边与x有关。令 $x \to +\infty$,注意 $\varepsilon_n(x)$ 为有界函数,从而得到

$$|C_n - C_{n-1}| = \left| \int_0^{+\infty} e^{-t} \left(\varepsilon_n(t) - \varepsilon_{n+1}(t) \right) dt \right| \le \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} \right) \int_0^{+\infty} e^{-t} dt \le \frac{2}{n^2}$$

由 $|C_n-C_{n-1}|\leq \frac{2}{n^2}$ 不难推出 $\{C_n\}$ 为柯西列,从而收敛于某个常数 C. 于是对于任意 $x\in\mathbb{R}$, 注意到

$$\left| \int_0^x e^{-t} \varepsilon_{n+1}(t) \, \mathrm{d}t \right| \le \frac{1}{(n+1)^2} \int_0^x e^{-t} \, \mathrm{d}t \to 0, \qquad (n \to +\infty)$$

从而对 (**) 式两边令 $n \to +\infty$, 立刻得到

$$\lim_{n \to +\infty} f^{(n)}(x) = Ce^x$$

注 如果熟悉一致收敛逐项求导的相关知识,则由 $|f^{(n)}(x) - f^{(n-1)}(x)| < \frac{1}{n^2}$ 容易知道函数 列 $\{f^{(n)}\}$ 一致收敛于某个函数 f,并且

$$f' = \frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to +\infty} f^{(n)} = \frac{\text{sub}}{\text{sub}} \lim_{n \to +\infty} f^{(n+1)} = f$$

即 f' = f, 解得 $\lim_{n \to +\infty} f^{(n)}(x) = f(x) = Ce^x$.

第5章 无穷级数与反常积分

5.1 级数基本概念、正项级数

练习 5.1 设 $\{x_n\}_{n\geq 1}$ 为正数列, $S_n := x_1 + x_2 + \cdots + x_n$ 为其部分和。证明: 对任意 $\varepsilon > 0$,级数 $\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}}$ 收敛。

证明 如果 $\sum_{k=1}^{+\infty} x_k = a < +\infty$,则 $\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}} \le \sum_{k=1}^{+\infty} \frac{x_k}{x_1^{1+\varepsilon}} = \frac{a}{x_1^{1+\varepsilon}} < +\infty$. 故不妨 $\sum_{k=1}^{+\infty} x_k = +\infty$. 注意到

$$\frac{x_k}{S_k^{1+\varepsilon}} = \frac{1}{S_k^{1+\varepsilon}} (S_k - S_{k-1}) = \int_{S_{k-1}}^{S_k} \frac{1}{S_k^{1+\varepsilon}} \, \mathrm{d}x \le \int_{S_{k-1}}^{S_k} \frac{1}{x^{1+\varepsilon}} \, \mathrm{d}x$$

$$\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}} \le \frac{x_1}{S_1^{1+\varepsilon}} + \sum_{k=2}^{+\infty} \int_{S_{k-1}}^{S_k} \frac{1}{x^{1+\varepsilon}} \, \mathrm{d}x = \frac{1}{x_1^{\varepsilon}} + \int_{S_1}^{+\infty} \frac{1}{x^{1+\varepsilon}} < +\infty$$

因此级数 $\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}}$ 收敛。

△ 练习 5.2 记 $r_1, r_2, r_3, ...$ 为全体有理数。对于实数 $x \in \mathbb{R}$,考虑函数

$$f(x) = \sum_{r_k < x} \frac{1}{2^k}$$

证明:函数 f(x) 在 \mathbb{R} 上有意义,严格单调递增,并且只在有理点处间断。

证明 对于实数 $x \in \mathbb{R}$, f(x) 为正项级数,显然 $f(x) \le \sum_{k=1}^{+\infty} \frac{1}{2^k} = 1$, 从而该正项级数收敛,即 f(x) 有意义。对任意实数 x < y,注意到有理数的稠密性,存在有理数 r_k 满足 $x < r_k < y$,因此 $f(y) - f(x) = \sum_{x \le r_k < y} \frac{1}{2^n} \ge \frac{1}{2^k}$,这就证明的 f(x) 是严格单调递增的。

 $x \le r_n < y$ 断言 f(x) 在有理点处间断。对于有理数 $x = r_k$,则对于任意实数 y > x,成立 $f(y) - f(x) = \sum_{x \le r_n < y} \frac{1}{2^n} \le \frac{1}{2^k}$,因此右侧极限 $\lim_{y \to x^+} f(y) \ne f(x)$,从而 f 在有理点 $x = r_k$ 不连续。

最后断言 f(x) 在无理点处连续。对于任意给定的无理数 r, 则<mark>对于任意 $\varepsilon > 0$ </mark>, 取足够大的 N 使得 $\frac{1}{2^N} < \frac{\varepsilon}{2}$. 考虑集合 $A := \left\{ r_n \middle| n \leq N \right\}$ 为 $\mathbb Q$ 的有限子集. 由于 r 为无理数,从而 $r \notin A$,于是

$$\delta := \min_{1 \le n \le N} |r_n - r| > 0$$

取定这个 δ ,由 δ 的定义可知,对于任何一个有理数 r_k ,如果 $|r_k - r| < \delta$,那么必须 $k \ge N$. 因此对任意 $x \in \mathbb{R}$ 使得 $|x - r| < \delta$,有

$$|f(x) - f(r)| = \left| \sum_{\substack{r_n \uparrow : \exists x : \exists r \ge 1 \\ 2}} \frac{1}{2^n} \right| \le \sum_{\substack{|r_n - r| < \delta}} \frac{1}{2^n} \le \sum_{n \ge N} \frac{1}{2^N} = \frac{2}{2^N} < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$$

这就证明了 f(x) 在无理点连续。

▲ 练习5.3 判断下列级数的敛散性:

(1)
$$\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}}$$
 (2) $\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln \ln n}}$

证明 (1)注意到 $(\ln \ln n)^{\ln n}=e^{\ln n \cdot \ln \ln \ln n}=n^{\ln \ln \ln n}$. 当 $n>e^{e^{e^2}}$ 时, $\ln \ln \ln n>2$,因此 $n^{\ln \ln \ln n}>n^2$,从而

$$\frac{1}{(\ln \ln n)^{\ln n}} < \frac{1}{n^2}$$

而级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,从而原级数收敛。

(2) 注意到

$$\ln[(\ln \ln n)^{\ln \ln n}] = \ln \ln n \cdot \ln \ln \ln n < [\ln \ln n]^2$$

而对于足够大的实数 x,总有 $\ln x < \sqrt{x}$. 取 $x = \ln n$ (n 足够大),则 $\ln \ln n < \sqrt{\ln n}$,所以 $[\ln \ln n]^2 < \ln n$,因此有

$$\frac{1}{(\ln \ln n)^{\ln \ln n}} = \frac{1}{e^{\ln [(\ln \ln n)^{\ln \ln n}]}} > \frac{1}{e^{[\ln \ln n]^2}} > \frac{1}{e^{\ln n}} = \frac{1}{n}$$

由于 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 从而原级数发散。

练习 5.4 设 a > 0 为常数, 试讨论级数 $\sum_{n=2}^{+\infty} x_n$ 的敛散性, 其中:

$$(1) x_n = \frac{\ln 2 \cdot \ln 3 \cdots \ln n}{\ln (2+a) \cdot \ln (3+a) \cdots \ln (n+a)}$$
 (2) $x_n = (2-\sqrt{a})(2-\sqrt[3]{a}) \cdots (2-\sqrt[n]{a})$

证明 注意当n足够大时,(1)(2)中的 x_n 都不再变号。

(1): 此时有
$$\frac{x_n}{x_{n+1}} = \frac{\ln(n+2+a)}{\ln(n+2)}$$
, 从而

$$\lim_{n \to +\infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to +\infty} \frac{n \ln(1 + \frac{a}{n+2})}{\ln(n+2)} = \lim_{n \to +\infty} \frac{\frac{n}{n+2}a + o(1)}{\ln(n+2)} = 0$$

有 Rabbe 判别法可知级数(1)发散。

(2): 若 $0 < a \le 1$,则易知 $x_n \ge 1$ 对任意 $n \ge 2$ 都成立,从而原级数发散。于是不妨 a > 1. 注意到 $\frac{x_n}{x_{n+1}} = \frac{1}{2-\frac{n+1}{2}}$,从而

$$\lim_{n \to +\infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to +\infty} \frac{n \binom{n + \sqrt{a} - 1}{2}}{2 - \binom{n + \sqrt{a}}{2}} = \lim_{n \to +\infty} n \cdot \frac{\ln a}{n+1} = \ln a$$

从而有 Rabbe 判别法可知,当 $\ln a > 1$ 即 a > e 时,原级数收敛; 1 < a < e 是原级数发散。而 a = e 时 Rabbe 判别法失效,于是采用更精细的 Gauss 判别法如下:

$$\lim_{n \to +\infty} \ln n \left(n \left(\frac{x_n}{x_{n+1}} - 1 \right) - 1 \right) = \lim_{n \to +\infty} \ln n \cdot \frac{n e^{\frac{1}{n+1}} - n - 2 + e^{\frac{1}{n+1}}}{2 - e^{\frac{1}{n+1}}} = \lim_{n \to +\infty} \ln n \left(\frac{1}{2(n+1)} + o(\frac{1}{n}) \right) = 0$$

从而有 Gauss 判别法知 a = e 时原级数发散。综上,原级数在 $0 < a \le e$ 时发散,在 a > e 时收敛。

△ 练习 5.5 对于常数 p,q>0, 讨论以下级数的的敛散性:

$$\sum_{n=1}^{+\infty} \frac{n! n^{-p}}{q(q+1)(q+2)\cdots(q+n)}$$

证明 [解] 我们令

$$a_n := \sum_{n=1}^{+\infty} \frac{n! n^{-p}}{q(q+1)(q+2)\cdots(q+n)} = \frac{1}{qn^p} \left(\frac{1}{q+1} \cdot \frac{2}{q+2} \cdots \frac{n}{q+n} \right)$$

注意到该级数是正项级数,考虑 $\frac{a_n}{a_{n+1}} = \left(\frac{n+1}{n}\right)^p \cdot \frac{n+q}{n}$,从而

$$\lim_{n \to +\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to +\infty} n \left[(1 + \frac{1}{n})^p \cdot (1 + \frac{q}{n}) - 1 \right]$$
$$= \lim_{n \to +\infty} n \left[\left((1 + \frac{1}{n})^p - 1 \right) \cdot (1 + \frac{q}{n}) + \frac{q}{n} \right] = p + q$$

于是由 Raabe 判别法可知当 p+q>1 时原级数收敛; p+q<1 时原级数发散。而 p+q=1 时 Raabe 判别法失效,我们考虑更精细的 Gauss 判别法:此时

$$\begin{split} \lim_{n \to +\infty} \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] &= \lim_{n \to +\infty} \ln n \left[n \left((1 + \frac{1}{n})^p - 1 \right) \left(1 + \frac{q}{n} \right) - p \right] \\ &= \lim_{n \to +\infty} \ln n \left[\left(n \left((1 + \frac{1}{n})^p - 1 \right) - p \right) \left(1 + \frac{q}{n} \right) + p \cdot \frac{q}{n} \right] \\ &= \lim_{n \to +\infty} \left[pq \cdot \frac{\ln n}{n} + \ln n \left(\frac{p(p-1)}{2n} + o(\frac{1}{n}) \right) \left(1 + \frac{q}{n} \right) \right] \\ &= 0 \end{split}$$

从而 p+q=1 时原级数发散。综上,当 p+q>1 时原级数收敛, $p+q\leq 1$ 时原级数发散。

▲ 练习 5.6 判断下述级数的收敛性。若收敛,则求和:

$$\sum_{n=1}^{+\infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}{(n+1)(n+2)}$$

证明 众所周知,当 $n\to +\infty$ 时有等价无穷大量 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\sim \ln n$,而 $\ln n$ 为 \sqrt{n} 的低阶 无穷大量。易知 $\sum\limits_{n=1}^{+\infty}\frac{\sqrt{n}}{(n+1)(n+2)}$ 收敛,从而由正项级数的比较判别法可知原级数收敛。交换求和次序得

原式 =
$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)(n+2)} \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{k} \sum_{n=k}^{+\infty} \frac{1}{(n+1)(n+2)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} = 1$$

- △ 练习 5.7 对于 $n \ge 1$,
 - (1) 证明: 方程 $\sin^n x + nx = 1$ 有唯一实根,记为 x_n ;
 - (2) 对于 $\alpha > 0$,讨论级数 $\sum_{n=1}^{+\infty} x_n^{\alpha}$ 的敛散性。

证明 考虑函数 $\begin{cases} f_n(x) := \sin^n x \\ g_n(x) := 1 - nx \end{cases}$,则易知 $\frac{\mathrm{d}}{\mathrm{d}x}(f_n(x) - g_n(x)) = n(\sin^{n-1} x \cos x - 1) \le 0$,从而易知 $f_n - g_n$ 严格单调递减。又因为 $f_n(0) < g_n(0)$ 以及 $f_n(\frac{1}{n}) > g_n(\frac{1}{n}) = 0$,从而由介值原理可知存在 $x_n \in (0, \frac{1}{n})$ 使得 $f_n(x_n) = g_n(x_n)$,即 x_n 为题中方程的根。又由 $f_n - g_n$ 的严格单调性,知满足题设的 x_n 唯一。

习题5.7示意图

对于 $n \geq 2$,注意到 $f_n''(x) = n \sin^{n-2} x \cos 2x$,从而易知 f_n 在 $[0, \frac{\pi}{4}]$ 为凸函数。考虑函数 $h_n(x) := nx \sin^n \frac{1}{n}$,其图像为连接原点与 $(\frac{1}{n}, f_n(\frac{1}{n}))$ 的直线。由 f_n 的凸性可知 $h_n(x) \geq f_n(x)$ 在 $(0, \frac{1}{n})$ 成立(见示意图)。记 $\widehat{x_n}$ 为方程 $h_n(x) = g_n(x)$ 的根,则 $g_n(\widehat{x_n}) = h_n(\widehat{x_n}) \geq f_n(\widehat{x_n})$,从而由介值原理可知 $\widehat{x_n} \leq x_n < \frac{1}{n}$. 而容易计算得到 $\widehat{x_n} = \frac{1}{n} \cdot \frac{1}{1+\sin^n \frac{1}{n}}$,因此有

$$\frac{1}{n} \cdot \frac{1}{1 + \sin^n \frac{1}{n}} \le x_n < \frac{1}{n}$$

特别地, $n\to +\infty$ 时有等价无穷小量 $x_n\sim \frac{1}{n}$,从而由正项级数比较判别法立刻得到原级数收敛当且仅当 $\alpha>1$.

练习 5.8 已知正数列 $\{a_n\}$, $\{b_n\}$ 满足 $\sum_{k=1}^{+\infty} a_k < +\infty$, 并且存在 $\delta > 0$ 使得 $b_{k+1} \ge b_k + \delta$ 对任意 $k \ge 1$ 成立. 证明:

$$\sum_{k=1}^{+\infty} \frac{k}{b_k b_{k+1}} \sqrt[k]{(a_1 a_2 \cdots a_k)(b_1 b_2 \cdots b_k)} < +\infty$$

证明 记 $S_k := \sum_{i=1}^k a_i b_i$,则注意到

$$\sum_{k=1}^{N} a_k = \sum_{k=1}^{N} \frac{S_k - S_{k-1}}{b_k} = \sum_{k=1}^{N} \left(\frac{S_k}{b_k} - \frac{S_k}{b_{k+1}} \right) + \frac{S_N}{b_N}$$
$$= \sum_{k=1}^{N} \frac{b_{k+1} - b_k}{b_k b_{k+1}} S_k + \frac{S_N}{b_N} \ge \delta \sum_{k=1}^{N} \frac{S_k}{b_k b_{k+1}}$$

从而正项级数 $\sum\limits_{k=1}^{N} \frac{S_k}{b_k b_{k+1}}$ 收敛。另一方面,注意不等式

$$\sqrt[k]{(a_1a_2\cdots a_k)(b_1b_2\cdots b_k)} = \sqrt[k]{(a_1b_1)(a_2b_2)\cdots (a_kb_k)} \le \frac{a_1b_1 + a_2b_2 + \cdots + a_kb_k}{k} = \frac{S_k}{k}$$

因此易知证毕。

5.2 一般项级数

练习 5.9 已知级数 $\sum_{k=1}^{+\infty} a_k$ 收敛, $\{p_n\}$ 是递增趋于无穷的正数列。证明:

$$\lim_{n \to +\infty} \frac{1}{p_n} \sum_{k=1}^n p_k a_k = 0$$

证明 不妨 $p_n > 0$ 恒成立。对任意 $\varepsilon > 0$,由级数 $\sum_{k=1}^{+\infty} a_k$ 收敛的柯西收敛准则可知存在 N > 0,使得对任意 M' > 0,都有

$$\left|\sum_{k=N}^{N+M'} a_k\right| < \frac{\varepsilon}{4}$$

取定此 N,记 $A:=\max\left\{|a_k|\left|1\leq k\leq N\right\}\right\}$. 由于 $\{p_n\}$ 单调递增趋于无穷,从而存在 M>0 使得对任意 n>N+M 都成立 $p_n>\frac{2Np_NA}{\varepsilon}$. 取定如此的 N+M,则对于任意的 n>N+M,注意 $\{p_n\}$ 单调递增,从而有

$$\begin{split} \left| \frac{1}{p_n} \sum_{k=1}^n p_k a_k \right| & \leq \left| \frac{1}{p_n} \sum_{k=1}^N p_k a_k \right| + \underbrace{\left| \frac{1}{p_n} \sum_{k=N+1}^n p_k a_k \right|}_{:=R_n} \\ & \leq \frac{1}{p_n} \sum_{k=1}^N p_k |a_k| + R_n \leq \frac{1}{p_n} N p_N A + R_n \leq \frac{\varepsilon}{2} + R_n \end{split}$$

为估计 R_n ,对于 $n \ge N$ 我们记 $S_n := \sum_{k=N}^n a_n$ 为 $\{a_n\}$ 的从第 N 项开始相加的部分和。则由前文所述,当 $n \ge N$ 时成立 $|S_n| < \frac{\epsilon}{4}$,于是

$$|R_n| = \left| \frac{1}{p_n} \sum_{k=N}^n p_k (S_k - S_{k-1}) \right| = \frac{1}{p_n} \left| \sum_{k=N}^{n-1} (p_k - p_{k+1}) S_k + p_n S_n \right|$$

$$\leq \frac{1}{p_n} \left(\sum_{k=N}^{n-1} |p_k - p_{k+1}| \cdot |S_k| + p_n |S_n| \right)$$

$$\leq \frac{1}{p_n} \left(\sum_{k=N}^{n-1} (p_{k+1} - p_k) + p_n \right) \cdot \frac{\varepsilon}{4} \leq \frac{\varepsilon}{2}$$

因此当n > N + M时,成立

$$\left| \frac{1}{p_n} \sum_{k=1}^n p_k a_k \right| \le \frac{\varepsilon}{2} + R_n \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

从而得证。

▲ 练习 5.10 判断下述级数的敛散性:

$$\sum_{n=2}^{+\infty} \ln \left(1 + \frac{(-1)^n}{\sqrt{n}} \right)$$

证明 该级数发散。记 $a_n:=\ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right)$ $(n\geq 2)$,考虑 $b_n:=a_{2n}+a_{2n+1}$,则

$$b_n = \ln\left(1 + \frac{1}{\sqrt{2n}}\right) + \ln\left(1 - \frac{1}{\sqrt{2n+1}}\right)$$
$$= \ln\left(1 - \frac{1}{\sqrt{2n(2n+1)}} + \frac{1}{\sqrt{2n(2n+1)}(\sqrt{2n} + \sqrt{2n+1})}\right) < 0$$

即 $\sum_{n=1}^{+\infty} (-b_n)$ 为正项级数; 而由上式易得等价无穷小 $b_n \sim -\frac{1}{2n}$,从而由正项级数的比较判别法立

刻得到 $\sum_{n=1}^{+\infty} b_n$ 发散。因为 $\sum_{n=1}^{+\infty} b_n$ 发散,所以 $\sum_{n=2}^{+\infty} a_n$ 也发散。 证明 [另证] 其实更简便的做法是泰勒展开,注意把余项说清楚即可。注意到

$$\ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + \frac{\theta_n}{n\sqrt{n}}$$

其中 $\{\theta_n\}$ 是**有界**数列,于是 $\sum_{n=1}^{+\infty} \frac{\theta_n}{n\sqrt{n}}$ 收敛。又显然 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}$ 收敛,但是 $\sum_{n=1}^{+\infty} \frac{1}{2n}$ 发散,从而立刻得 到原级数发散

注 此题的阴险之处在于,诱使一些人想当然地以为可以用等价无穷小

$$a_n := \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) \sim \frac{(-1)^n}{\sqrt{n}}$$

又因为交错级数 $\sum_{n=2}^{+\infty} \frac{(-1)^n}{\sqrt{n}}$ 收敛,所以"由比较判别法可知"原级数收敛。

上述做法是错误的,用通项等价无穷小的比较判别法只适用于正项级数。

△ 练习 5.11 已知函数 f(x) 在 x = 0 处存在二阶导数,并且 $\lim_{x \to 0} \frac{f(x)}{x} = 0$

证明:级数 $\sum_{n=1}^{+\infty} |f(\frac{1}{n})|$ 收敛。

证明 由条件 $\lim_{x\to 0} \frac{f(x)}{x} = 0$ 容易得出 f(0) = f'(0) = 0. 记 A := f''(0),考虑 f 在 x = 0 的泰勒展开

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(0) + R(x) = \frac{A}{2}x^2 + R(x)$$

其中余项 $R(x)\sim o(x^2)$,即 $\lim_{x\to 0}\frac{R(x)}{x^2}=0$. 从而取 $\delta>0$,使得对任意 $|x|\le \delta$ 都有 $|R(x)|< x^2$. 记 $N:=\frac{1}{\delta}+1$,则对任意 $n\ge N$ 都有

$$|f(\frac{1}{n})| = \left|\frac{A}{2n^2} + R(\frac{1}{n})\right| \le \left(\frac{A}{2} + 1\right) \frac{1}{n^2}$$

从而立刻得到 $\sum_{n=N}^{+\infty} |f(\frac{1}{n})|$ 收敛。从而原级数 $\sum_{n=1}^{+\infty} |f(\frac{1}{n})|$ 也收敛。

练习 5.12 已知数列 $\{a_n\}$ 满足 $a_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d}x$, p > 0 为正实数。讨论级数 $\sum_{n=1}^{\infty} a_n^p$ 的敛 散性。

证明 该级数在p > 1 时收敛,在 $0 时发散。我们先断言当<math>0 < x < \frac{\pi}{4}$ 时成立

$$\frac{16}{\pi^2}x^2 \le \tan x \le \frac{4}{\pi}x$$

令 $g(x) := \frac{16}{\pi^2} x^2$ 以及 $h(x) := \frac{4}{\pi} x$,则注意到 $g(0) = \tan 0 = h(0) = 0$ 以及 $g(\frac{\pi}{4}) = \tan \frac{\pi}{4} = h(\frac{\pi}{4}) = 1$. 容易求导验证 $\begin{cases} \frac{d}{dx}|_{x=0}(\tan x - g(x)) > 0 \\ \frac{d}{dx}|_{x=\frac{\pi}{4}}(\tan x - g(x)) < 0 \\ \frac{d^2}{dx^2}(\tan x - g(x)) \le 0, \forall x \in [0, \frac{\pi}{4}] \end{cases}$,因此 $\tan x \ge g(x) = \frac{16}{\pi^2} x^2$. 而 $\tan x \le \frac{4}{\pi} x$ 更容

$$a_n \ge \int_0^{\frac{\pi}{4}} (\frac{16}{\pi^2} x^2)^n dx = \frac{\pi}{4} \cdot \frac{1}{2n+1}$$

 $a_n \le \int_0^{\frac{\pi}{4}} (\frac{4}{\pi} x)^n dx = \frac{\pi}{4} \cdot \frac{1}{n+1}$

因此,若 p > 1,则 $\sum_{n=1}^{\infty} a_n^p \le (\frac{\pi}{4})^p \sum_{n=1}^{\infty} \frac{1}{(n+1)^p} < +\infty$,因此原级数收敛;而当 $0 时, <math display="block">\sum_{n=1}^{\infty} a_n^p \ge (\frac{\pi}{4})^p \sum_{n=1}^{\infty} \frac{1}{(2n+1)^p} = +\infty$,因此原级数发散。

△ 练习 5.13 判断下述级数的敛散性:

$$\sum_{n=2}^{+\infty} (-1)^n \frac{\sqrt{n}}{(-1)^n + \sqrt{n}} \sin \frac{1}{\sqrt{n}}$$

证明 [解] 该级数发散。注意到该级数的通项

$$(-1)^{n} \frac{\sqrt{n}}{(-1)^{n} + \sqrt{n}} \sin \frac{1}{\sqrt{n}}$$

$$= (-1)^{n} \sin \frac{1}{\sqrt{n}} - \frac{1}{(-1)^{n} + \sqrt{n}} \sin \frac{1}{\sqrt{n}}$$

$$= (-1)^{n} \sin \frac{1}{\sqrt{n}} - \frac{\sqrt{n}}{n-1} \sin \frac{1}{\sqrt{n}} + (-1)^{n} \frac{1}{n-1} \sin \frac{1}{\sqrt{n}}$$

由交错级数的 Leibniz 判别法可知 $\sum_{n=2}^{+\infty} (-1)^n \sin \frac{1}{\sqrt{n}}$ 与 $\sum_{n=2}^{+\infty} (-1)^n \frac{1}{n-1} \sin \frac{1}{\sqrt{n}}$ 都收敛;再注意 $n \to +\infty$ 时的等价无穷小 $\frac{\sqrt{n}}{n-1} \sin \frac{1}{\sqrt{n}} \sim \frac{1}{n}$,从而比较判别法知 $\sum_{n=2}^{+\infty} \frac{\sqrt{n}}{n-1} \sin \frac{1}{\sqrt{n}}$ 发散。综上所述,原级数发散。

5.3 幂级数

练习 5.14 对于正整数 n, 考虑函数 $f(x) = (1+x)^{2n+1} + (1-x)^{2n+1}$. 试通过对 f(x) 作二项 展开、求导,证明以下组合恒等式:

$$\sum_{k=0}^{n} {2n+1 \choose 2k} = 2^{2n}$$

$$\sum_{k=0}^{n} k {2n+1 \choose 2k} = (2n+1)2^{2n-2}$$

$$\sum_{k=0}^{n} k^2 {2n+1 \choose 2k} = (n+1)(2n+1)2^{2n-3}.$$

证明 对 f(x) 的表达式作二项展开易得

$$f(x) = (1+x)^{2n+1} + (1-x)^{2n+1} = 2\sum_{k=0}^{n} {2n+1 \choose 2k} x^k$$
 (*)

令 x = 1 得 $\sum_{k=0}^{n} {2n+1 \choose 2k} = 2^{2n}$. 对 (*) 两边求导并且令 x = 1 得到

$$(2n+1)2^{2n} = \sum_{k=1}^{n} 2 \cdot 2k \binom{2n+1}{k}$$

从而整理得 $\sum_{k=0}^{2n} k \binom{2n+1}{2k} = (2n+1)2^{2n-2}$. 再对 (*) 两边求二阶导并且令 x=1 (此时要格外小学求和指标的范围),得到

$$f''(1) = n(2n+1)2^{2n}$$

$$f''(1) = 2\sum_{k=1}^{n} 2k(2k-1)\binom{2n+1}{2k}$$

$$= 4\left[2\sum_{k=1}^{n} k^2\binom{2n+1}{2k} - \sum_{k=1}^{n} k\binom{2n+1}{2k}\right]$$

$$\Rightarrow \sum_{k=0}^{n} k^{2} \binom{2n+1}{2k} = \frac{1}{2} \left(n(2n+1)2^{2n-2} + \sum_{k=0}^{n} k \binom{2n+1}{2k} \right)$$
$$= n(2n+1)2^{2n-3} + (2n+1)2^{2n-3}$$
$$= (n+1)(2n+1)2^{2n-3}.$$

绛 练习 **5.15** 对于函数 $f(x) = x^2 \ln(x + \sqrt{1 + x^2})$,试求 $f^{(n)}(0)$.

证明 [解] 我们考虑在 x = 0 处的幂级数展开。令 $g(x) := \ln(x + \sqrt{1 + x^2})$,则

$$g'(x) = \frac{1}{\sqrt{1+x^2}} = \sum_{k=0}^{+\infty} {\binom{-\frac{1}{2}}{k}} x^{2k} = 1 + \sum_{k=1}^{+\infty} (-1)^k \frac{(2k-1)!!}{2^k k!} x^{2k}$$

再逐项积分可得

$$f(x) = x^{2} \left(x + \sum_{k=1}^{+\infty} \frac{(-1)^{k}}{2k+1} \frac{(2k-1)!!}{2^{k}k!} x^{2k+1} \right)$$

从而与 x = 0 的泰勒系数比较,立刻得到

$$f^{(n)}(0) = \begin{cases} 0 & n = 0, 1, 2 或者 n 为偶数 \\ 6 & n = 3 \\ (-1)^{k-1} \frac{(2k-3)!!(2k+1)!}{2^{2k-1}(k-1)!(2k-1)} & n > 3 且 n = 2k+1 为奇数 \end{cases}$$

▲ 练习 5.16 将函数

$$f(x) = \int_0^x e^{x^2 - t^2} dt$$

展开为x = 0附近的幂级数。

证明[解法一:](直接暴力计算)写成两个级数的柯西乘积,有

$$f(x) = e^{x^2} \int_0^x e^{-t^2} dt = \left(\sum_{k=0}^{+\infty} \frac{x^{2k}}{k!}\right) \cdot \left(\int_0^x \sum_{l=0}^{+\infty} \frac{(-t)^{2l}}{l!} dt\right)$$

$$= \left(\sum_{k=0}^{+\infty} \frac{x^{2k}}{k!}\right) \cdot \left(\sum_{l=0}^{+\infty} \frac{1}{2l+1} \cdot \frac{(-1)^l}{l!} x^{2l+1}\right)$$

$$= \sum_{k=0}^{+\infty} \left(\sum_{l=0}^k \frac{(-1)^l}{l!(k-l)!(2l+1)}\right) x^{2k+1}$$

对于每个 $k \ge 0$, 为了计算 x^{2k+1} 项的系数 $\sum_{l=0}^k \frac{(-1)^l}{l!(k-l)!(2l+1)}$, 我们引入函数

$$g_k(x) := \sum_{l=0}^k \frac{(-1)^l}{l!(k-l)!(2l+1)} x^{2l+1}$$

则 $g'_k(x) = \sum_{l=0}^k \frac{(-1)^l}{l!(k-l)!} x^{2l} = \frac{1}{k!} (1 - x^2)^k$,于是

$$\sum_{l=0}^{k} \frac{(-1)^{l}}{l!(k-l)!(2l+1)} = g_{k}(1) = \int_{0}^{1} g'_{k}(x) dx = \frac{1}{k!} \int_{0}^{1} (1-x^{2})^{k} dx$$
$$= \frac{1}{k!} \int_{0}^{\frac{\pi}{2}} \cos^{2k+1} \theta d\theta = \frac{2^{k}}{(2k+1)!!}$$

从丽 $f(x) = \sum_{k=0}^{+\infty} \frac{2^k}{(2k+1)!!} x^{2k+1}$.

证明 [解法二:] (考虑系数的递推关系) 易知 f(x) 在 x = 0 附近的幂级数存在,且注意到 f(x) 为积函数,从而可设

$$f(x) = \sum_{k=0}^{+\infty} a_k x^{2k+1} \tag{*}$$

对 $f(x) = \int_0^x e^{x^2-t^2} dt$ 两边求导得 f'(x) = 2xf(x) + 1, 将幂级数展开 (*) 代入, 比较系数得

$$\begin{cases} a_0 = 1 \\ (2k+1)a_k = 2a_{k-1}, & \forall k \ge 1 \end{cases}$$

从而容易解得 $a_k = \frac{2^k}{(2k+1)!!}$. 从而 $f(x) = \sum_{k=0}^{+\infty} \frac{2^k}{(2k+1)!!} x^{2k+1}$.

练习 5.17 求幂级数 $\sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n+1}}{n^2-1}$ 的和函数。

证明 直接计算之,有

$$\sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n+1}}{n^2 - 1} = \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n+1}}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$$

$$= \frac{x^2}{2} \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n-1}}{n-1} - \frac{1}{2} \sum_{n=2}^{+\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1}$$

$$= \frac{x^2 - 1}{2} \sum_{k=1}^{+\infty} (-1)^k \frac{x^k}{k} + \frac{1}{2} \left(-x + \frac{x^2}{2} \right)$$

$$= \frac{1 - x^2}{2} \ln(1 + x) - \frac{x}{2} + \frac{x^2}{4}$$

▲ 练习 5.18 计算和函数:

$$S(x) = \sum_{n=1}^{+\infty} \frac{(2n-2)!}{n!(n-1)!} x^{2n-1}$$

证明 [解] 注意到对于任意 $k \ge 2$, 成立

$$\binom{\frac{1}{2}}{k} = (-1)^{k-1} \frac{(2k-3)!!}{2^k k!}$$

从而得到

$$S(x) = x + \sum_{n=2}^{+\infty} \frac{(2n-2)!}{n!(n-1)!} x^{2n-1}$$

$$= x + \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{(2n-3)!!}{2^n n!} \left((-1)^{n-1} 2^{2n-1} x^{2n-1} \right)$$

$$= x - \frac{1}{2x} \sum_{n=2}^{+\infty} {1 \choose n} (-4x^2)^n$$

$$= x - \frac{\sqrt{1 - 4x^2} - 1 + 2x^2}{2x} = \frac{\sqrt{1 - 4x^2} - 1}{2x}$$

△ 练习 5.19 对于正整数 k, 计算和函数:

$$f(x) := \sum_{n=k}^{+\infty} \binom{n}{k} x^n$$

证明 [解]

$$f(x) = \sum_{n=k}^{+\infty} \binom{n}{k} x^n = \frac{x^k}{k!} \sum_{n=0}^{+\infty} (n+1)(n+2) \cdots (n+k) x^n$$

$$= \frac{x^k}{k!} \frac{d^k}{dx^k} \left(\sum_{n=0}^{+\infty} x^{n+k} \right) = \frac{x^k}{k!} \frac{d^k}{dx^k} \left(\frac{1}{1-x} - 1 - x - \dots - x^{k-1} \right)$$

$$= \frac{x^k}{k!} \cdot \frac{k!}{(1-x)^{k+1}} = \frac{x^k}{(1-x)^{k+1}}$$

▲ 练习 5.20 级数求和:

$$\sum_{k=1}^{+\infty} \left(\frac{1^2}{1!} + \frac{2^2}{2!} + \dots + \frac{k^2}{k!} \right) \frac{1}{3^k}$$

证明 [解] 交换求和次序,有

原式 =
$$\sum_{k=1}^{+\infty} \sum_{i=1}^{k} \frac{1}{3^k} \frac{i^2}{i!} = \sum_{i=1}^{+\infty} \frac{i^2}{i!} \sum_{k=i}^{+\infty} \frac{1}{3^k} = \frac{3}{2} \sum_{i=1}^{+\infty} \frac{i^2}{i!} \frac{1}{3^i} = \frac{3}{2} \sum_{i=1}^{+\infty} \frac{i}{(i-1)!} \frac{1}{3^i}$$

= $\frac{1}{2} \left(\sum_{i=0}^{+\infty} \frac{i}{i!} \frac{1}{3^i} + \sum_{i=0}^{+\infty} \frac{1}{i!} \frac{1}{3^i} \right) = \frac{1}{2} (\frac{1}{3} + 1) e^{\frac{1}{3}} = \frac{2}{3} e^{\frac{1}{3}}$

练习 5.21 对于正整数 n, 将平面曲线 $x^{\frac{1}{n}} + y^{\frac{1}{n}} = 1$ 在第一象限的部分与坐标轴围成的区域的面积记为 I_n . 证明:

$$\sum_{n=1}^{+\infty} I_n \le \frac{8}{9}.$$

证明 先计算并估计 I_n . 易知

$$I_n = \int_0^1 \left(1 - x^{\frac{1}{n}}\right)^n dx \xrightarrow{\underline{x = t^n}} n \int_0^1 t^{n-1} (1 - t)^n dt = n \int_0^1 [t(1 - t)]^{n-1} \cdot (1 - t) dt$$

$$\leq n \int_0^1 \left(\frac{t + 1 - t}{2}\right)^{2n - 2} \cdot (1 - t) dt = \frac{n}{2^{2n - 2}} \int_0^1 (1 - t) dt = \frac{n}{2^{2n - 1}}.$$

所以
$$\sum_{n=1}^{+\infty} I_n \le \sum_{n=1}^{+\infty} \frac{n}{2^{2n-1}} = \frac{8}{9}$$
.

5.4 无穷乘积

▲ 练习 5.22 计算无穷乘积:

$$\prod_{k=1}^{+\infty} \left(1 + \frac{1}{2^{2^k}} \right)$$

证明 [解] 对于任意 $n \ge 1$, 直接计算前 n 项乘积, 有

$$\begin{split} &\prod_{k=1}^{n} \left(1 + \frac{1}{2^{2^k}} \right) = \prod_{k=1}^{n} \left(\frac{1}{2^{2^k}} \right) \prod_{k=1}^{n} \left(\frac{2^{2^{k+1}} - 1}{2^{2^k} - 1} \right) = \frac{1}{2^{\sum_{k=1}^{n} 2^k}} \cdot \frac{2^{k^{n+1}} - 1}{3} \\ &= \frac{1}{2^{2^{n+1}} - 2} \cdot \frac{2^{2^{n+1}} - 1}{3} = \frac{4}{3} \left(1 - \frac{1}{2^{2^{n+1}}} \right) \end{split}$$

从而令 $n \to +\infty$ 立刻得到 $\prod_{k=1}^{+\infty} \left(1 + \frac{1}{2^{2^k}}\right) = \frac{4}{3}$.

5.5 反常积分的收敛性

為 练习 5.23 设 f(x) 在 $[0,+\infty)$ 连续,其零点为 $0=x_0< x_1< \cdots < x_n< \cdots$,并且 $\lim_{n\to +\infty}x_n=+\infty$.

证明: 如果级数 $\sum_{n=0}^{+\infty} \int_{x_n}^{x_{n+1}} f(x) dx$ 收敛,则反常积分 $\int_0^{+\infty} f(x) dx$ 收敛。

证明 我们用 Cauchy 收敛准则来说明反常积分 $\int_0^{+\infty} f(x) dx$ 收敛。

对任意 $\varepsilon > 0$,由级数 $\sum_{n=0}^{+\infty} \int_{x_n}^{x_{n+1}} f(x) dx$ 收敛的 Cauchy 收敛准则可知存在 N > 0,使得对任意 $n_2 > n_1 \ge N$,都有

$$\left| \sum_{k=n_1}^{n_2} \int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x \right| \le \frac{\varepsilon}{3}$$

再注意到 $\{x_k\}$ 为连续函数 f(x) 的全部零点,从而由连续函数的性质可知对任意 $k \geq 0$, f(x) 在 区间 (x_k, x_{k+1}) 不变号,从而对于 (x_k, x_{k+1}) 的任何一个子区间 (x_k', x_{k+1}') ,必有

$$\left| \int_{x'_k}^{x'_{k+1}} f(x) \, \mathrm{d}x \right| \le \left| \int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x \right|$$

回顾我们已经取定的 N,现在我们令 $M := x_{N+1}$,则对于任意 $a_2 > a_1 \ge M$,必存在唯一的 n_1 ,使得 $a_1 \in [x_{n_1-1}, x_{n_1})$;以及唯一的 n_2 ,使得 $a_2 \in [x_{n_2}, x_{n_2+1})$. 容易知道 $n_1, n_2 \ge N+1$. 从而有

$$\left| \int_{a_{1}}^{a_{2}} f(x) \, dx \right| = \left| \int_{a_{1}}^{x_{n_{1}}} f(x) \, dx + \sum_{k=n_{1}}^{n_{2}-1} \int_{x_{k}}^{x_{k+1}} f(x) \, dx + \int_{x_{n_{2}}}^{a_{2}} f(x) \, dx \right|$$

$$\leq \left| \int_{a_{1}}^{x_{n_{1}}} f(x) \, dx \right| + \left| \sum_{k=n_{1}}^{n_{2}-1} \int_{x_{k}}^{x_{k+1}} f(x) \, dx \right| + \left| \int_{x_{n_{2}}}^{a_{2}} f(x) \, dx \right|$$

$$\leq \left| \int_{x_{n-1}}^{x_{n_{1}}} f(x) \, dx \right| + \left| \sum_{k=n_{1}}^{n_{2}-1} \int_{x_{k}}^{x_{k+1}} f(x) \, dx \right| + \left| \int_{x_{n_{2}}}^{x_{n_{2}+1}} f(x) \, dx \right|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

从而反常积分 $\int_0^{+\infty} f(x) dx$ 收敛。

练习 5.24 已知定义在 $[1,+\infty)$ 上的函数 f(x) 使得 $\int_1^{+\infty} f^2(x) dx < +\infty$,并且存在 M > 0 使得对任意 $x,y \ge 1, x \ne y$ 都成立

$$|f(x) - f(y)| \le M|x - y|$$

证明: $\lim_{x \to +\infty} f(x) = 0$.

证明 采用反证法。如果 $\lim_{x\to +\infty} f(x) = 0$ 不成立,则存在 $\varepsilon > 0$,以及存在一列 $1 < x_1 < x_2 < ... < x_n < ...$ 使得 $\lim_{n\to +\infty} x_n = +\infty$,并且 $|f(x_n)| > \varepsilon$ 对任意 $n \ge 1$ 成立。我们不妨假设 $x_{n+1} - x_n > \frac{\varepsilon}{M}$ 总成立(否则适当取子列)。对于每个 $n \ge 1$,考虑区间 $I_n := (x_n - \frac{\varepsilon}{2M}, x_n + \frac{\varepsilon}{2M})$,则对于不同的 $m, n, I_m \cap I_n = \emptyset$. 注意到对任意 $x \in I_n$,

$$|f(x)| \ge |f(x_n)| - |f(x) - f(x_n)| \ge |f(x_n)| - M|x - x_n| \ge \varepsilon - M \cdot \frac{\varepsilon}{2M} = \frac{\varepsilon}{2}$$

从而有

$$\int_{1}^{+\infty} f^{2}(x) dx \geq \sum_{n=1}^{+\infty} \int_{I_{n}} |f(x)|^{2} dx \geq \sum_{n=1}^{+\infty} \frac{\varepsilon^{2}}{4} \int_{I_{n}} dx = \sum_{n=1}^{+\infty} \frac{\varepsilon^{3}}{4M} = +\infty$$

与 $\int_1^{+\infty} f^2(x) dx < +\infty$ 产生矛盾。

▲ 练习 5.25 已知函数 f(x) 在 $[0,+\infty)$ 连续,并且 $\int_0^{+\infty} f(x) \, \mathrm{d}x$ 存在。证明:

$$\lim_{y \to +\infty} \frac{1}{y} \int_0^y x f(x) \, \mathrm{d}x = 0$$

证明 考虑函数 $F(y) := \int_0^y f(x) dx$,则 $\lim_{y \to +\infty} F(y)$ 存在,记该极限为 A. 则有

$$\frac{1}{y} \int_0^y x f(x) dx = \frac{1}{y} \int_0^y x dF(x) = \frac{1}{y} \left(x F(x) \Big|_0^y - \int_0^y F(x) dx \right)$$
$$= F(y) - \frac{1}{y} \int_0^y F(x) dx$$

由于 $\lim_{y\to +\infty} F(y) = A$,从而由众所周知的方法易证 $\lim_{y\to +\infty} \frac{1}{y} \int_0^y F(x) \, \mathrm{d}x = A$,因此令上式的 $y\to +\infty$ 取极限得

$$\lim_{y \to +\infty} \frac{1}{y} \int_0^y x f(x) \, \mathrm{d}x = A - A = 0$$

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x \ln f(x)} = +\infty$$

证明 反证法。假设积分 $\int_1^{+\infty} \frac{dx}{x \ln f(x)}$ 收敛,则由 Cauchy 收敛准则,存在 N>1 使得对任意 $A_2>A_1>N$ 都成立

$$\frac{1}{2} \ge \int_{A_1}^{A_2} \frac{\mathrm{d}x}{x \ln f(x)} \ge \int_{A_1}^{A_2} \frac{\mathrm{d}x}{x \ln f(A_2)} = \frac{1}{\ln f(A_2)} \ln \frac{A_2}{A_1}$$

$$f(A_2) \ge A_2^{\frac{4}{3}}$$

对任意 $A_2 > N^3$ 都成立。也就是说,对于充分大的 x 都有 $f(x) \ge x^{\frac{4}{3}}$,从而立刻得 $\int_1^{+\infty} \frac{1}{f(x)} \, \mathrm{d}x$ 收敛,与题设矛盾。

▲ 练习 5.27 已知函数 f(x) 在 $[0,+\infty)$ 连续可导,f(0)>0,并且 f'(x)>0 恒成立。

证明: 若反常积分
$$\int_0^{+\infty} \frac{1}{f(x)+f'(x)} dx$$
 收敛,则 $\int_0^{+\infty} \frac{1}{f(x)} dx$ 也收敛。

证明 由题设可知 f(x) 恒为正,且严格单调递增。对任意 x>0,考虑 $F(x):=\int_0^x \frac{1}{f'(t)}\,\mathrm{d}t$,则 F(x) 是单调递增函数。若再证明 F(x) 有上界,则得证。记 $M:=\int_0^{+\infty} \frac{1}{f(x)+f'(x)}\,\mathrm{d}x$,则

$$F(x) \leq \left| \int_0^x \left(\frac{1}{f(t)} - \frac{1}{f(t) + f'(t)} dt \right) \right| + \int_0^x \frac{1}{f(t) + f'(t)} dt$$

$$\leq \int_0^{+\infty} \frac{f'(t)}{f(t)(f(t) + f'(t))} dt + M$$

$$\leq \int_0^{+\infty} \frac{f'(t)}{f^2(t)} dt + M = \int_{f(0)}^{+\infty} \frac{du}{u^2} + M = M + \frac{1}{f(0)}$$

这就证明了 F(x) 有上界。综上, $\lim_{x \to +\infty} F(x) = \int_0^{+\infty} \frac{1}{f(t)} dt$ 收敛。

5.6 反常积分的计算

▲ 练习 5.28 计算反常积分:

$$\int_0^{+\infty} e^{-2x} |\sin x| \, \mathrm{d}x$$

证明 [解] 易知 $\int e^{-2x} \sin x \, dx = -\frac{1}{5} e^{-2x} (\cos x + 2 \sin x)$,于是有

$$\int_0^{+\infty} e^{-2x} |\sin x| \, dx = \sum_{k=0}^{+\infty} (-1)^k \int_{k\pi}^{(k+1)\pi} e^{-2x} \sin x \, dx$$

$$= \frac{1}{5} \sum_{k=0}^{+\infty} (-1)^{k+1} e^{-2x} (\cos x + 2\sin x) \Big|_{k\pi}^{(k+1)\pi} = \frac{1}{5} \sum_{k=0}^{+\infty} \left(e^{-(2k+1)\pi} + e^{-2k\pi} \right) = \frac{1}{5} \cdot \frac{e^{2\pi} + 1}{e^{2\pi} - 1}$$

$$\int_0^{+\infty} \frac{f(ax) - f(bx)}{x} dx = (f(+\infty) - f(0^+)) \ln \frac{a}{b}$$

证明 不妨 a > b. 则有

$$\int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx = \lim_{M \to +\infty} \int_{1/M}^{M} \frac{f(ax) - f(bx)}{x} dx$$
$$= \lim_{M \to +\infty} \left(\int_{a/M}^{aM} \frac{f(x)}{x} dx - \int_{b/M}^{bM} \frac{f(x)}{x} dx \right)$$
$$= \lim_{M \to +\infty} \int_{bM}^{aM} \frac{f(x)}{x} dx - \lim_{M \to +\infty} \int_{b/M}^{a/M} \frac{f(x)}{x} dx$$

对任意 $\varepsilon > 0$,取 $\delta := \frac{1}{\ln \frac{\alpha}{b}} > 0$,则由 $f(+\infty)$ 存在可知,存在 $M_0 > 0$,使得对任意 $x > M_0$ 都有 $|f(x) - f(+\infty)| \le \frac{\varepsilon}{\ln \frac{\alpha}{b}}$. 对任意 $M > M_0$,注意到 $\int_{bM}^{aM} \frac{\mathrm{d}x}{x} = \ln \frac{\alpha}{b}$,从而

$$\left| \int_{bM}^{aM} \frac{f(x)}{x} \, \mathrm{d}x - f(+\infty) \ln \frac{a}{b} \right| = \left| \int_{bM}^{aM} \frac{f(x) - f(+\infty)}{x} \, \mathrm{d}x \right|$$

$$\leq \int_{bM}^{aM} \frac{|f(x) - f(+\infty)|}{x} \, \mathrm{d}x$$

$$\leq \frac{\varepsilon}{\ln \frac{a}{b}} \int_{bM}^{aM} \frac{\mathrm{d}x}{x} = \varepsilon$$

这就证明了 $\lim_{M \to +\infty} \int_{bM}^{aM} \frac{f(x)}{x} \, \mathrm{d}x = f(+\infty) \ln \frac{a}{b}$. 同理我们也有 $\lim_{M \to +\infty} \int_{b/M}^{a/M} \frac{f(x)}{x} \, \mathrm{d}x = f(0^+) \ln \frac{a}{b}$. 因此

$$\int_0^{+\infty} \frac{f(ax) - f(bx)}{x} dx = \lim_{M \to +\infty} \int_{bM}^{aM} \frac{f(x)}{x} dx - \lim_{M \to +\infty} \int_{b/M}^{a/M} \frac{f(x)}{x} dx$$
$$= (f(+\infty) - f(0^+)) \ln \frac{a}{b}$$

▲ 练习 5.30 已知函数 f(x) 在 $[0,+\infty)$ 单调,并且反常积分 $\int_0^{+\infty} f(x) dx$ 存在。证明:

$$\int_0^{+\infty} f(x) dx = \lim_{h \to 0^+} h \sum_{n=1}^{+\infty} f(nh)$$

证明 不妨 f(x) 是单调递减的,则由 $\int_0^{+\infty} f(x) dx$ 收敛可知, f(x) 单调递减趋近于 0 $(x \to +\infty)$. 从而对任意 h > 0 以及正整数 N, 成立

$$h\sum_{n=1}^{N} f(nh) \le \int_{0}^{Nh} f(x) dx \le \int_{0}^{+\infty} f(x) dx$$

$$h\sum_{n=1}^{+\infty} f(nh) \le \int_0^{+\infty} f(x) \, \mathrm{d}x$$

注意上式对任意 h > 0 都成立, 从而取 $h \to 0^+$ 的上极限, 得到

$$\overline{\lim}_{h \to 0^+} h \sum_{n=1}^{+\infty} f(nh) \le \int_0^{+\infty} f(x) \, \mathrm{d}x \tag{*}$$

另一方面,对任意 $\varepsilon > 0$,由于 $\int_0^{+\infty} f(x) dx$ 收敛可知,存在 M > 0 使得成立

$$\int_0^M f(x) \, \mathrm{d}x \ge \int_0^{+\infty} f(x) \, \mathrm{d}x - \varepsilon$$

取定此 M, 注意到对任意 h > 0, 成立

$$h\sum_{n=1}^{+\infty} f(nh) \ge h\sum_{n=1}^{\left[\frac{M}{h}\right]} f(nh)$$

从而取 $h \to 0^+$ 的下极限得到

$$\underline{\lim_{h \to 0^+}} h \sum_{n=1}^{+\infty} f(nh) \ge \underline{\lim_{h \to 0^+}} h \sum_{n=1}^{\left[\frac{M}{h}\right]} f(nh) \xrightarrow{\underline{\mathbb{E}} \mathcal{H} \text{ finite}} \int_0^M f(x) \, \mathrm{d}x \ge \int_0^{+\infty} f(x) \, \mathrm{d}x - \varepsilon \tag{**}$$

结合 (*) 与 (**) 式可知,对任意 $\varepsilon > 0$ 都成立

$$\int_0^{+\infty} f(x) \, \mathrm{d}x - \varepsilon \le \underline{\lim}_{h \to 0^+} h \sum_{n=1}^{+\infty} f(nh) \le \overline{\lim}_{h \to 0^+} h \sum_{n=1}^{+\infty} f(nh) \le \int_0^{+\infty} f(x) \, \mathrm{d}x$$

令 $\epsilon \to 0^+$ 即得证。

△ 练习 5.31 对于实数 t > 0, 证明:

$$\int_0^{+\infty} e^{-y - \frac{t^2}{y}} \frac{\mathrm{d}y}{\sqrt{y}} = \sqrt{\pi} e^{-2t}$$

证明

$$\int_0^{+\infty} e^{-y - \frac{t^2}{y}} \frac{\mathrm{d}y}{\sqrt{y}} = \frac{y = x^2}{2} \int_0^{+\infty} e^{-x^2 - \frac{t^2}{x^2}} \, \mathrm{d}x = 2e^{-2t} \int_0^{+\infty} e^{-(x - \frac{t}{x})^2} \, \mathrm{d}x$$

$$I(t) := \int_0^{+\infty} e^{-(x - \frac{t}{x})^2} dx \xrightarrow{\frac{x \mapsto \frac{t}{x}}{x}} \int_0^{+\infty} \frac{t}{x^2} e^{-(x - \frac{t}{x})^2} dx$$

$$\Rightarrow 2I(t) = \int_0^{+\infty} \left(1 + \frac{t}{x^2}\right) e^{-(x - \frac{t}{x})^2} dx = \int_{-\infty}^{+\infty} e^{-(x - \frac{t}{x})^2} d\left(x - \frac{t}{x}\right) = \int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{\pi}$$

$$\text{Mfff } I(t) := \int_0^{+\infty} e^{-(x - \frac{t}{x})^2} dx = \frac{\sqrt{\pi}}{2}, \text{ But ff}$$

$$\int_0^{+\infty} e^{-y - \frac{t^2}{y}} \frac{dy}{\sqrt{y}} = 2e^{-2t} I(t) = \sqrt{\pi} e^{-2t}$$

▲ 练习 5.32 计算积分:

$$\int_0^{+\infty} \frac{\sin^3 x}{x^3} \, \mathrm{d}x$$

证明 [解] 先反复分部积分,再注意三倍角公式 $\sin 3x = 3 \sin x - 4 \sin^3 x$,有

$$\int_0^{+\infty} \frac{\sin^3 x}{x^3} \, dx = -\frac{1}{2} \int_0^{+\infty} \sin^3 x \, d(\frac{1}{x^2}) = -\frac{1}{2} \left(\frac{\sin^3 x}{x^2} \Big|_0^{+\infty} - \int_0^{+\infty} \frac{3 \sin^2 x \cos x}{x^2} \, dx \right)$$

$$= \frac{3}{2} \int_0^{+\infty} \frac{\sin^2 x \cos x}{x^2} \, dx = -\frac{3}{2} \int_0^{+\infty} \sin^2 x \cos x \, d(\frac{1}{x})$$

$$= -\frac{3}{2} \left(\frac{\sin^2 x \cos x}{x} \Big|_0^{+\infty} - \int_0^{+\infty} \frac{2 \sin x \cos^2 x - \sin^3 x}{x} \, dx \right)$$

$$= \frac{3}{2} \int_0^{+\infty} \frac{2 \sin x - 3 \sin^3 x}{x} \, dx = \frac{3}{2} \int_0^{+\infty} \frac{2 \sin x - \frac{3}{4} (3 \sin x - \sin 3x)}{x} \, dx$$

$$= \left(-\frac{3}{8} + \frac{9}{8} \right) \int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{3}{8} \pi$$

▲ 练习 5.33 计算极限:

$$\lim_{n \to +\infty} n \int_0^n \frac{\arctan \frac{x}{n}}{(1+x)(1+x^2)} \, \mathrm{d}x$$

证明 [解] 首先由泰勒公式容易证明,存在 $\delta > 0$,使得对任意 $|x| < \delta$ 都成立 $|\arctan x - x| < x^3$. 此外注意 $|\arctan x| \le |x|$ 总是成立的,从而 $|\arctan x - x| \le 2|x|$ 对任意 $x \in \mathbb{R}$ 成立。

现在,<mark>对任意的 $\varepsilon > 0$ </mark>,易知反常积分 $\int_0^{+\infty} \frac{2x}{(1+x)(1+x^2)} \, \mathrm{d}x$ 收敛,从而由柯西收敛原理可知存在 M > 0,使得 $\int_M^{+\infty} \frac{2x}{(1+x)(1+x^2) \, \mathrm{d}x} \le \frac{\varepsilon}{2}$. 现在,取

$$N := \max\left\{ \left(\frac{2}{\varepsilon} \int_0^M \frac{x^3}{(1+x)(1+x^2)} \, \mathrm{d}x \right)^{\frac{1}{2}}, \frac{M}{\delta} \right\} + 1$$

从而对任意 n > N, 成立

$$\begin{split} \left| n \int_0^n \frac{\arctan \frac{x}{n}}{(1+x)(1+x^2)} \, \mathrm{d}x - \int_0^n \frac{x}{(1+x)(1+x^2)} \, \mathrm{d}x \right| &\leq \int_0^{+\infty} \frac{|n \arctan \frac{x}{n} - x|}{(1+x)(1+x^2)} \, \mathrm{d}x \\ &= \int_0^M \frac{|n \arctan \frac{x}{n} - x|}{(1+x)(1+x^2)} \, \mathrm{d}x + \int_M^{+\infty} \frac{|n \arctan \frac{x}{n} - x|}{(1+x)(1+x^2)} \, \mathrm{d}x \\ &\leq \frac{1}{n^2} \int_0^M \frac{x^3}{(1+x)(1+x^2)} \, \mathrm{d}x + \int_M^{+\infty} \frac{2x}{(1+x)(1+x^2)} \, \mathrm{d}x \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

这就说明了

$$\lim_{n \to +\infty} n \int_0^n \frac{\arctan \frac{x}{n}}{(1+x)(1+x^2)} \, \mathrm{d}x = \int_0^{+\infty} \frac{x}{(1+x)(1+x^2)} \, \mathrm{d}x$$

接下来只需计算右边的反常积分:

$$\int_0^{+\infty} \frac{x}{(1+x)(1+x^2)} \, \mathrm{d}x = \frac{1}{2} \int_0^{+\infty} \left(\frac{1+x}{1+x^2} - \frac{1}{1+x} \right) \, \mathrm{d}x = \frac{\pi}{4}$$

▲ 练习 5.34 计算极限:

$$\lim_{\lambda \to +\infty} \lambda \int_0^{+\infty} e^{-\lambda(x+1-\cos\sqrt{x})} \, \mathrm{d}x$$

证明 [解] 换元积分 $x = \frac{u}{3}$ 整理得

$$\lambda \int_0^{+\infty} e^{-\lambda(x+1-\cos\sqrt{x})} \, \mathrm{d}x = \int_0^{+\infty} e^{-u-\lambda\left(1-\cos\sqrt{\frac{u}{\lambda}}\right)} \, \mathrm{d}u$$

上式两边对 λ 取极限得

$$\lim_{\lambda \to +\infty} \lambda \int_0^{+\infty} e^{-\lambda(x+1-\cos\sqrt{x})} dx = \lim_{\lambda \to +\infty} \int_0^{+\infty} e^{-u-\lambda\left(1-\cos\sqrt{\frac{u}{\lambda}}\right)} du$$

$$\stackrel{??}{=} \int_0^{+\infty} \lim_{\lambda \to +\infty} e^{-u-\lambda\left(1-\cos\sqrt{\frac{u}{\lambda}}\right)} du = \int_0^{+\infty} e^{-\frac{3}{2}u} du = \frac{2}{3}$$

但是这还没完。上述" $\stackrel{??}{=}$ "的交换积分与极限顺序并非理所当然,其合法性需要验证。(若熟悉一致收敛的有关知识,则容易验证该步的合法性。我们假装读者不熟悉"一致收敛",但还是要假惺惺地证明一下)现在我们证明" $\stackrel{??}{=}$ "的合法性,即证明

$$\lim_{\lambda \to +\infty} \int_0^{+\infty} e^{-u - \lambda \left(1 - \cos\sqrt{\frac{u}{\lambda}}\right)} du = \int_0^{+\infty} \lim_{\lambda \to +\infty} e^{-u - \lambda \left(1 - \cos\sqrt{\frac{u}{\lambda}}\right)} du = \int_0^{+\infty} e^{-\frac{3}{2}u} du \tag{*}$$

对任意 $\varepsilon > 0$,取定 M > 0 使得 $\int_{M}^{+\infty} e^{-u} du < \frac{\varepsilon}{4}$,则有

$$\left| \int_{0}^{+\infty} e^{-u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} du - \int_{0}^{+\infty} e^{-\frac{3}{2}u} du \right|$$

$$\leq \int_{0}^{M} \left| e^{-u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} du - e^{-\frac{3}{2}u} \right| du + \int_{M}^{+\infty} e^{-u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} du + \int_{M}^{+\infty} e^{-\frac{3}{2}u} du$$

$$\leq \int_{0}^{M} e^{-\frac{3}{2}u} \left| e^{\frac{1}{2}u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} - 1 \right| du + 2 \int_{M}^{+\infty} e^{-u} du$$

$$\leq \int_{0}^{M} \left| e^{\frac{1}{2}u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} - 1 \right| du + 2 \cdot \frac{\varepsilon}{4}$$

考虑 $f(x) = \cos x$ 在 0 处的带 Lagrange 余项的泰勒展开,有

$$\cos \sqrt{\frac{u}{\lambda}} = 1 - \frac{u}{2\lambda} + \frac{\cos \xi_{\lambda}}{4!} \cdot \frac{u^{2}}{\lambda^{2}}$$

$$\Rightarrow \frac{1}{2}u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}}\right) = \frac{\cos \xi_{\lambda}}{4!} \cdot \frac{u^{2}}{\lambda} > 0$$

因此对任意 $0 \le u \le M$,有

$$\left| e^{\frac{1}{2}u - \lambda \left(1 - \cos\sqrt{\frac{u}{\lambda}}\right)} - 1 \right| = e^{\frac{\cos\xi_{\lambda}}{4!} \cdot \frac{u^2}{\lambda}} - 1 \le e^{\frac{u^2}{\lambda}} - 1 \le e^{\frac{M^2}{\lambda}} - 1$$

而 $\lim_{\lambda \to +\infty} e^{\frac{M^2}{\lambda}} - 1 = 0$,从而取 N > 0使得对任意 $\lambda > N$ 都成立 $e^{\frac{M^2}{\lambda}} - 1 \le \frac{\varepsilon}{2M}$. 于是对任意 $\lambda > N$,成立.

$$\begin{split} & \left| \int_0^{+\infty} e^{-u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} \, \mathrm{d}u - \int_0^{+\infty} e^{-\frac{3}{2}u} \, \mathrm{d}u \right| \\ & \leq \int_0^M \left| e^{\frac{1}{2}u - \lambda \left(1 - \cos \sqrt{\frac{u}{\lambda}} \right)} - 1 \right| \, \mathrm{d}u + 2 \cdot \frac{\varepsilon}{4} \\ & \leq \int_0^M \left(e^{\frac{M}{\lambda^2}} - 1 \right) \, \mathrm{d}u + \frac{\varepsilon}{2} \leq \int_0^M \frac{\varepsilon}{2M} \, \mathrm{d}u + \frac{\varepsilon}{2} = M \cdot \frac{\varepsilon}{2M} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

从而完成证明。

▲ 练习 5.35 计算极限:

$$\lim_{n \to +\infty} n \left[n \left(n \int_{1}^{+\infty} \frac{\arctan x}{x^n} dx - \frac{\pi}{4} \right) - \left(\frac{\pi}{4} + \frac{1}{2} \right) \right]$$

证明 [解] 对于给定的 $n \ge 2$,分部积分得

$$\int_{1}^{+\infty} \frac{\arctan x}{x^{n}} dx = \frac{1}{1-n} \int_{1}^{+\infty} \arctan x d(x^{1-n})$$

$$= \frac{1}{n-1} \cdot \frac{\pi}{4} + \frac{1}{n-1} \int_{1}^{+\infty} \frac{x^{1-n}}{1+x^{2}} dx$$

$$= \frac{1}{n-1} \cdot \frac{\pi}{4} + \frac{1}{n-1} \int_{0}^{1} \frac{x^{n-1}}{1+x^{2}} dx$$

反复分部积分,有

$$\int_0^1 \frac{x^{n-1}}{1+x^2} \, \mathrm{d}x = \frac{1}{n} \int_0^1 \frac{\mathrm{d}(x^n)}{1+x^2} = \frac{1}{n} \left(\frac{1}{2} + \int_0^1 \frac{2x^{n+1}}{(1+x^2)^2} \, \mathrm{d}x \right)$$

$$= \frac{1}{2n} + \frac{2}{n(n+2)} \int_0^1 \frac{\mathrm{d}(x^{n+2})}{(1+x^2)^2}$$

$$= \frac{1}{2n} + \frac{2}{n(n+2)} \left(\frac{1}{4} + 2 \int_0^1 \frac{2x^{n+3}}{(1+x^2)^3} \, \mathrm{d}x \right)$$

$$= \frac{1}{2n} + \frac{1}{2n(n+2)} + \frac{8}{n(n+2)} \int_0^1 \frac{x^{n+3}}{(1+x^2)^3} \, \mathrm{d}x$$

$$= \frac{1}{2n} + \frac{1}{2n^2} + o(\frac{1}{n^2}) \qquad (n \to +\infty)$$

再注意到 $\frac{1}{n-1} = \frac{1}{n} \cdot \frac{1}{1-\frac{1}{n}} = \frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + o(\frac{1}{n^3})$,从而有

$$\int_{1}^{+\infty} \frac{\arctan x}{x^{n}} dx = \frac{1}{n-1} \cdot \frac{\pi}{4} + \frac{1}{n-1} \left(\frac{1}{2n} + \frac{1}{2n^{2}} + o(\frac{1}{n^{2}}) \right)$$

$$= \frac{\pi}{4} \left(\frac{1}{n} + \frac{1}{n^{2}} + \frac{1}{n^{3}} \right) + \left(\frac{1}{n} + \frac{1}{n^{2}} \right) \left(\frac{1}{2n} + \frac{1}{2n^{2}} \right) + o(\frac{1}{n^{3}})$$

$$= \frac{\pi}{4} \cdot \frac{1}{n} + \left(\frac{\pi}{4} + \frac{1}{2} \right) \frac{1}{n^{2}} + \left(\frac{\pi}{4} + 1 \right) \frac{1}{n^{3}} + o(\frac{1}{n^{3}})$$

因此立刻得到

$$\lim_{n \to +\infty} n \left[n \left(n \int_{1}^{+\infty} \frac{\arctan x}{x^n} \, \mathrm{d}x - \frac{\pi}{4} \right) - \left(\frac{\pi}{4} + \frac{1}{2} \right) \right] = \frac{\pi}{4} + 1$$

第6章 多元微分学

6.1 偏导数与可微性

练习 6.1 已知二元函数 $f(x,y) := \begin{cases} \left(a\sqrt{|x|} + x^2 + y^2 + b\right) \frac{\sin(xy^2)}{x^2 + y^4} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$ 在点 (0,0) 处可微,求 a,b 的值。

证明 [解] 首先由定义直接计算 f 在 (0,0) 处的偏导数

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0$$

由于 f 在 (0,0) 可微,从而 $x,y\to 0$ 时必有 $f(x,y)\sim o(\sqrt{x^2+y^2})$,特别地 f 在 (0,0) 处的任何方向导数都为 0. 于是

$$0 = \lim_{x \to 0} \frac{f(x, x)}{x} = \lim_{x \to 0} \left(a\sqrt{|x|} + 2x^2 + b \right) \frac{\sin(x^3)}{x(x^2 + x^4)} = \lim_{x \to 0} b \cdot \frac{x^3}{x \cdot x^2} = b$$

即 b=0. 再注意 $f(x,y)\sim o(\sqrt{x^2+y^2})$,从而考虑 (x,y) 沿路径 $x=y^2(y>0)$ 趋近于 0,有

$$0 = \lim_{\substack{(x, y \to (0, 0)) \\ x = y^2, y > 0}} \frac{f(x, y)}{\sqrt{x^2 + y^2}} = \lim_{y \to 0} \left(ay + y^4 + y^2 \right) \frac{\sin(y^4)}{y \cdot 2y^4} = \lim_{y \to 0} ay \cdot \frac{y^4}{2y^5} = \frac{a}{2}$$

从而迫使 a = 0. 综上, 若 f 在 (0,0) 可微, 则必有 a = b = 0.

注 我们也可以证明其逆命题: 当 a = b = 0 时 f 在 (0,0) 可微。这是因为 $(x,y) \to (0,0)$ 时有

$$|f(x,y)| = \left| (x^2 + y^2) \frac{\sin(xy^2)}{x^2 + y^4} \right| \le (x^2 + y^2) \frac{|x||y|^2}{x^2 + y^4} \le (x^2 + y^2) \frac{|x||y|^2}{2\sqrt{x^2 \cdot y^4}}$$
$$= \frac{x^2 + y^2}{2} \sim o(\sqrt{x^2 + y^2})$$

 练习 6.2 已知函数 $f(x,y,z) = x^{y^z}$,求偏导 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$.

证明 [解] 易求 $\frac{\partial f}{\partial x} = y^z x^{y^z - 1}$. 再看 f 关于 y,z 的偏导。注意到

$$f(x, y, z) = x^{y^z} = e^{y^z \ln x}$$

从而

$$\frac{\partial f}{\partial y} = e^{y^z \ln x} \frac{\partial}{\partial y} (y^z \ln x) = x^{y^z} \ln x \cdot z y^{z-1} = x^{y^z} y^{z-1} z \ln x$$

$$\frac{\partial f}{\partial z} = e^{y^z \ln x} \frac{\partial}{\partial z} (y^z \ln x) = x^{y^z} \ln x \cdot y^z \ln y = x^{y^z} y^z \ln x \cdot \ln y$$

△ 练习 6.3 设实数 a, b 满足 $b > a^2$. 试计算积分:

$$I_2(a,b) := \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2ax + b}.$$

计算出 $I_2(a,b)$ 之后,对此表达式适当求偏导数,证明:

$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x^2 + 2ax + b)^2} = -\frac{a}{2b} \cdot \frac{1}{b - a^2} + \frac{1}{2(b - a^2)^{\frac{3}{2}}} \left(\frac{\pi}{2} - \arctan \frac{a}{\sqrt{b - a^2}} \right).$$

(在此题,假定求偏导与积分可以交换次序)

证明 [解] 换元 t = x + a, 注意 $b - a^2 > 0$, 从而

$$I_2(a,b) = \int_a^{+\infty} \frac{dt}{t^2 + (b - a^2)} = \frac{1}{\sqrt{b - a^2}} \arctan \frac{t}{\sqrt{b - a^2}} \Big|_{t=a}^{t=+\infty} = \frac{1}{\sqrt{b - a^2}} \left(\frac{\pi}{2} - \arctan \frac{a}{\sqrt{b - a^2}} \right)$$

对上式两边求偏导 $-\frac{\partial}{\partial t}$,注意我们假定求偏导与积分可以交换次序,从而有

$$\int_{0}^{+\infty} \frac{dx}{(x^{2} + 2ax + b)^{2}} = \int_{0}^{+\infty} -\frac{\partial}{\partial b} \frac{dx}{x^{2} + 2ax + b}$$

$$= -\frac{\partial}{\partial b} \int_{0}^{+\infty} \frac{dx}{x^{2} + 2ax + b}$$

$$= -\frac{\partial}{\partial b} \left[\frac{1}{\sqrt{b - a^{2}}} \left(\frac{\pi}{2} - \arctan \frac{a}{\sqrt{b - a^{2}}} \right) \right]$$

$$= -\frac{a}{2b} \cdot \frac{1}{b - a^{2}} + \frac{1}{2(b - a^{2})^{\frac{3}{2}}} \left(\frac{\pi}{2} - \arctan \frac{a}{\sqrt{b - a^{2}}} \right).$$

练习 6.4 设 $f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$ 为 \mathbb{R}^n 上的连续可微函数,并且 $f(\mathbf{0}) = 0$ (其中 $\mathbf{0} = (0, 0, ..., 0)$ 为原点)。证明:存在 \mathbb{R}^n 上的连续函数 $\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), ..., \varphi_n(\mathbf{x})$,使得

$$f(\mathbf{x}) = x_1 \varphi_1(\mathbf{x}) + x_2 \varphi_2(\mathbf{x}) + \dots + x_n \varphi_n(\mathbf{x})$$

证明 对于任意 $x \in \mathbb{R}^n$, 考虑定义在 [0,1] 上的一元函数

$$V_x : [0,1] \rightarrow \mathbb{R}$$

$$t \mapsto f(tx)$$

则显然 $V_x(0) = f(\mathbf{0}) = 0$ 以及 $V_x(1) = f(x)$. 从而有

$$f(\mathbf{x}) = V_{\mathbf{x}}(1) - V_{\mathbf{x}}(0) = \int_0^1 \left(\frac{\mathrm{d}}{\mathrm{d}t}V_{\mathbf{x}}(t)\right) \,\mathrm{d}t$$
$$= \sum_{k=1}^n \int_0^1 \frac{\partial}{\partial x_k} \left(f(t\mathbf{x})\right) \,\mathrm{d}t = \sum_{k=1}^n x_k \int_0^1 \frac{\partial f}{\partial x_k}(t\mathbf{x}) \,\mathrm{d}t$$

从而对于 $1 \le k \le n$, 易知函数 $\varphi_k(\mathbf{x}) := \int_0^1 \frac{\partial f}{\partial x_k}(t\mathbf{x}) dt$ 满足题设。

注 当 n=1 时,有显然的构造

$$\varphi(x) = \begin{cases} \frac{f(x)}{x} & x \neq 0\\ f'(0) & x = 0 \end{cases}$$

显然 $f(x) = x\varphi(x)$ 并且 $\varphi(x)$ 连续。但这种想法难以推广到 $n \ge 2$ 的高维情形。本题目是

一个十分重要的引理, 尤其在微分几何当中。

4 练习 **6.5** 令 $r := \sqrt{x^2 + y^2 + z^2}$ 为 \mathbb{R}^3 上的函数, $\varphi(x)$ 与 $\psi(x)$ 为 \mathbb{R} 上的可微函数,令

$$u(x, y, z; t) := \frac{1}{r} (\varphi(r - at) + \psi(r + at))$$

其中 $a \in \mathbb{R}$ 为常数。证明: u 满足波方程

$$\frac{\partial^2 u}{\partial t^2} - a^2 \triangle u = 0$$

证明 无非是直接求偏导验证,注意利用 $\frac{\partial r}{\partial x} = \frac{x}{r}$ (以及对 y,z 求偏导的类似情形)。一方面

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{a}{r} [\psi'(r+at) - \varphi'(r-at)] \right) = \frac{a^2}{r} [\psi''(r+at) + \varphi''(r-at)]$$

另一方面,我们计算 Δu. 注意到

$$\begin{split} \frac{\partial u}{\partial x} &= -\frac{x}{r^3} [\varphi(r-at) + \psi(r+at)] + \frac{1}{r} \left(\varphi'(r-at) \cdot \frac{x}{r} + \psi'(r+at) \cdot \frac{x}{r} \right) \\ &= -\frac{x}{r^3} [\varphi(r-at) + \psi(r+at)] + \frac{x}{r^2} \left(\varphi'(r-at) + \psi'(r+at) \right) \end{split}$$

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= -\frac{r^3 - 3r^2 \cdot \frac{x^2}{r}}{r^6} [\varphi(r-at) + \psi(r+at)] - \frac{x}{r^3} \cdot \frac{x}{r} [\varphi'(r-at) + \psi'(r+at)] \\ &+ \frac{r^2 - 2r \cdot \frac{x^2}{r}}{r^4} [\varphi'(r-at) + \psi'(r+at)] + \frac{x}{r^2} \cdot \frac{x}{r} [\varphi''(r-at) + \psi''(r+at)] \\ &= \frac{3x^2 - r^2}{r^5} [\varphi(r-at) + \psi(r+at)] + \frac{r^2 - 3x^2}{r^4} [\varphi'(r-at) + \psi'(r+at)] + \frac{x^2}{r^3} [\varphi''(r-at) + \psi''(r+at)] \end{split}$$

同理可计算出 $\frac{\partial^2 u}{\partial y^2}$ 与 $\frac{\partial^2 u}{\partial z^2}$,只需要将上式中的 x 分别替换成 y,z 即可。注意到 $x^2+y^2+z^2=r^2$,从而直接得到

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{r} [\varphi''(r - at) + \psi''(r + at)]$$

从而 $a^2 \triangle u = \frac{\partial u}{\partial t}$, 证毕。

△ 练习 6.6 (KdV 方程的规范型)

已知二元可微函数 $\eta = \eta(\tau, \xi)$ 满足偏微分方程

$$\frac{\partial \eta}{\partial \tau} = \sqrt{\frac{g}{h}} \frac{\partial}{\partial \xi} \left(\frac{3}{4} \eta^2 + \alpha \eta + \frac{\sigma}{2} \frac{\partial^2 \eta}{\partial \xi^2} \right) \tag{*}$$

其中 $g,h,lpha,\sigma$ 为常数。试选取合适的参数 $\lambda_1,\lambda_2,\lambda_3,\lambda_4$,使得在变量代换 $\begin{cases} t &= \lambda_1 \tau \\ x &= \lambda_2 \xi \\ u &= \lambda_3 \eta + \lambda_4 \end{cases}$

下, 方程(*) 化为如下标准的 KdV 方程:

$$u_t = u_{xxx} + 6uu_x$$
.

证明 [解] 首先我们有 $\begin{cases} \frac{\partial}{\partial \xi} &= \frac{\partial x}{\partial \xi} \frac{\partial}{\partial x} = \lambda_2 \frac{\partial}{\partial x} \\ \frac{\partial}{\partial \tau} &= \frac{\partial t}{\partial \tau} \frac{\partial}{\partial t} = \lambda_1 \frac{\partial}{\partial t} , \text{从而立刻得到} \\ \eta &= \frac{1}{\lambda_1} (u - \lambda_4) \end{cases}$

$$\frac{\partial \eta}{\partial \tau} = \frac{\lambda_1}{\lambda_3} u_t \tag{1}$$

以及

$$\begin{split} &\sqrt{\frac{g}{h}}\frac{\partial}{\partial \xi}\left(\frac{3}{4}\eta^2 + \alpha\eta + \frac{\sigma}{2}\frac{\partial^2\eta}{\partial \xi^2}\right) \\ &= \lambda_2\sqrt{\frac{g}{h}}\frac{\partial}{\partial x}\left(\frac{3}{4\lambda_3^2}(u - \lambda_4)^2 + \frac{\alpha}{\lambda_3}(u - \lambda_4) + \frac{\sigma\lambda_2^2}{2\lambda_3}u_{xx}\right) \\ &= \lambda_2\sqrt{\frac{g}{h}}\left[\frac{3}{2\lambda_3^2}uu_x + \left(\frac{\alpha}{\lambda_3} - \frac{3}{2\lambda_3^2}\lambda_4\right)u_x + \frac{\sigma\lambda_2^2}{2\lambda_3}u_{xxx}\right] \end{split}$$

与(1)联立,整理得

$$u_t = \frac{\lambda_2}{\lambda_1} \sqrt{\frac{g}{h}} \left[\frac{3}{2\lambda_3} u u_x + \left(\alpha - \frac{3\lambda_4}{2\lambda_3} \right) u_x + \frac{\sigma}{2} \lambda_2^2 u_{xxx} \right]$$
 (2)

与标准的 KdV 方程比较系数,我们希望 $\begin{cases} \frac{\lambda_2}{\lambda_1} \sqrt{\frac{g}{h}} \frac{3}{2\lambda_3} &= 6 \\ \alpha - \frac{3\lambda_4}{2\lambda_3} &= 0, 将其整理得到 \\ \frac{\lambda_2}{\lambda_1} \sqrt{\frac{g}{h}} \cdot \frac{\sigma}{2} \lambda_2^2 &= 1 \end{cases}$

$$\lambda_2^3 = \frac{2}{\sigma} \sqrt{\frac{h}{g}} \lambda_1$$

$$\lambda_3 = \frac{1}{4} \sqrt{\frac{g}{h}} \frac{\lambda_2}{\lambda_1}$$

$$\lambda_4 = \frac{2\alpha}{3} \lambda_3$$

为了方便计算 λ_2 , 不妨取 $\lambda_1=\frac{1}{2}\sqrt{\frac{g}{h\sigma}}$, 则立刻得到 $\lambda_2=\frac{1}{\sqrt{\sigma}}$, 进而得到 $\lambda_3=\frac{1}{2}$, $\lambda_4=\frac{1}{3}\alpha$. 综上所述,变量替换

$$t = \frac{1}{2}\sqrt{\frac{g}{h\sigma}}\tau, \qquad x = \frac{1}{\sqrt{\sigma}}\xi, \qquad u = \frac{1}{2}\eta + \frac{1}{3}\alpha$$

即为所求。

注 古典数学物理里面有两个美丽的传说,其一是众所周知的苹果砸牛顿,另一个则是 Russel 骑马千米追逐水波。

传说在 1834 年夏日,英国科学家 J.S.Russel 骑马沿着一条河旅行,偶然发现狭窄的河床中行走的船突然停止前进,被船体带动的水团积聚在船头周围并剧烈地翻动着。不久,一个圆形且轮廓分明的巨大孤立波峰开始形成,并急速离开船头向前运动。波长约 10 米,高约 0.5 米,在行进中波的形状和速度并无明显变化,以后高度逐渐下降,在骑马追踪两到三公里后,终于消失在蜿蜒的河道上。这次发现的奇特景观促使 Russel 开始更深入研究水波,他认为这是流体运动的一个稳定解,并称之为**孤波**。但他始终没有在

理论上证实孤波的存在。这引起了物理学界的激烈争论。

注 直到 1895年,荷兰数学家 Korteweg 和他的学生 de Vries 建立了浅水波运动方程:

$$\frac{\partial \eta}{\partial \tau} = \sqrt{\frac{g}{h}} \frac{\partial}{\partial \xi} \left(\frac{3}{4} \eta^2 + \alpha \eta + \frac{\sigma}{2} \frac{\partial^2 \eta}{\partial \xi^2} \right) \tag{*}$$

并求解出了与 Russel 描述一致的孤子解,争论才告终止。

△ 练习 **6.7** (KdV 方程的 Miura 变换)

已知二元光滑函数 w(x,t) 满足 **mKdV** 方程 $w_t = w_{xxx} + 6w^2w_x$. 设函数 u(x,t) 满足 $u = iw_x + w^2$ (其中 $i = \sqrt{-1}$ 为虚数单位),证明: u(x,t) 满足 **KdV** 方程

$$u_t = u_{xxx} + 6uu_x$$

证明 由于 $u = iw_x + w^2$, 从而暴力求导计算得

$$u_{t} = \frac{\partial}{\partial t}(iw_{x} + w^{2}) = iw_{tx} + 2ww_{t}$$

$$= i(w_{xxx} + 6w^{2}w_{x})_{x} + 2w(w_{xxx} + 6w^{2}w_{x})$$

$$= (2ww_{xxx} + 12w^{3}w_{x}) + i(w_{xxxx} + 12ww_{x}^{2} + 6w^{2}w_{xx})$$

$$u_{x} = 2ww_{x} + iw_{xx}$$

$$uu_{x} = (2w^{3}w_{x} - w_{x}w_{xx}) + i(2ww_{x}^{2} + w^{2}w_{xx})$$

$$u_{xxx} = (6w_{x}w_{xx} + 2ww_{xxx}) + iw_{xxxx}$$

因此立刻得到

$$u_{xxx} + 6uu_x = i(w_{xxx} + 12ww_x^2 + 6w^2w_{xx}) + 6w_xw_{xx} - 6w_xw_{xx} + 2ww_{xxx} + 12w^3w_x$$
$$= u_t$$

6.2 极值与条件极值

练习 6.8 已知映射 $f: \mathbb{R}^m \to \mathbb{R}^n$ 在单位闭球 $\overline{B}(\mathbf{0},1) := \left\{ \mathbf{x} \in \mathbb{R}^m \middle| x_1^2 + 2_2^2 + \dots + x_m^2 \le 1 \right\}$ 连续可微,并且存在向量 $\mathbf{v} \in \mathbb{R}^n$,使得 $f(\mathbf{x}) \cdot \mathbf{v}$ 恒为常数 ($\forall \mathbf{x} \in \partial \overline{B}(\mathbf{0},1)$). 证明: 存在 $\mathbf{x}_0 \in B(\mathbf{0},1)$,使得对任意 $1 \le k \le m$,都有

$$\frac{\partial f}{\partial x_k}(x_0) \cdot \mathbf{v} = 0.$$

证明 考虑函数 $\varphi: \mathbb{R}^m \to \mathbb{R}$, 使得 $\varphi(x) = f(x) \cdot v$, $(\forall x \in \overline{B}(\mathbf{0}, 1))$. 则 $\varphi(x)$ 连续可微,并且由题设可知它在单位球的边界 $\partial \overline{B}(\mathbf{0}, 1)$ 上为常值函数. 从而易知必存在单位球内部的一点 $\mathbf{x}_0 \in B(\mathbf{0}, 1)$, 使得 \mathbf{x}_0 为 φ 的最大值点或者最小值点. 取定此 \mathbf{x}_0 , 则对任意 $1 \le k \le m$ 都有 $\frac{\partial \varphi}{\partial x_k}(\mathbf{x}_0) = 0$. 从而

$$0 = \frac{\partial \varphi}{\partial x_k}(x_0) = \frac{\partial (f \cdot v)}{\partial x_k}(x_0) = \frac{\partial f}{\partial x_k}(x_0) \cdot v.$$

练习 6.9 已知二元函数 $f(x,y) = (1 + e^y)\cos x - ye^y$. 证明: f(x,y) 有无穷多个极大值点,但没有极小值点。

证明 由于 f(x,y) 可微, 故若 (x_0,y_0) 为 f 的极值点, 则必有 $\begin{cases} \frac{\partial f}{\partial x}(x_0,y_0) = 0 \\ \frac{\partial f}{\partial y}(x_0,y_0) = 0 \end{cases}$, 于是

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = (1 - e^{y_0})\sin x_0 \\ \frac{\partial f}{\partial y}(x_0, y_0) = e^{y_0}(\cos x_0 - y_0 - 1) \end{cases} \Rightarrow \begin{cases} (1 - e^{y_0})\sin x_0 = 0 \\ \cos x_0 - y_0 - 1 = 0 \end{cases}$$

解得如下两组解(驻点):

$$(x_0, y_0) = (2k\pi, 0) \quad (k \in \mathbb{Z})$$
 或者 $(x_0, y_0) = ((2k+1)\pi, -2) \quad (k \in \mathbb{Z})$

接下来验证 f 在这些驻点附近的行为。 f 的 Hessian 为

$$\operatorname{Hess}(f)(x,y) = \begin{pmatrix} (1-e^y)\cos x & -e^y\sin x \\ -e^y\sin x & e^y(\cos x - y - 2) \end{pmatrix}$$

Case 1 若 $(x_0, y_0) = (2k\pi, 0)$,则 f 的 Hessian 满足

Hess
$$(f)(x_0, y_0) = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \le 0$$

从而 $(2k\pi,0)$ 为 f 的极大值点 $(\forall k \in \mathbb{Z})$;

Case 2 若 $(x_0, y_0) = ((2k+1)\pi, 0)$,则 f 的 Hessian 满足

Hess
$$(f)(x_0, y_0) = \begin{pmatrix} e^{-2} - 1 & 0\\ 0 & -e^{-2} \end{pmatrix} \le 0$$

从而 $((2k+1)\pi, -2)$ 为 f 的极大值点 $(\forall k \in \mathbb{Z})$.

综上, f 有无数个极大值点, 无极小值点。

- - (1) 若 $\frac{\partial f}{\partial x}(0,0) = 0$,则 $\frac{\partial f}{\partial y}(0,0) = 0$;
 - (2) 若 $\frac{\partial f}{\partial x}(0,0) = 0$,则 $\frac{\partial f}{\partial y}(0,0) \neq 0$;
 - (3) 若 $\frac{\partial f}{\partial x}(0,0) \neq 0$,则 $\frac{\partial f}{\partial y}(0,0) = 0$;
 - (4) 若 $\frac{\partial f}{\partial x}(0,0) \neq 0$,则 $\frac{\partial f}{\partial y}(0,0) \neq 0$.

证明 注意到 $\frac{\partial \varphi}{\partial y}(0,0) \neq 0$,所以由隐函数定理,存在定义于 x = 0 附近的连续可微函数 $\psi(x)$,使得 $\varphi(x,\psi(x)) = 0$ 在 x = 0 附近恒成立,特别地 $\psi(0) = 0$ 。也就是说,约束条件 $\varphi(x,y) = 0$ 等价于 $y = \psi(x)$. 于是 x = 0 是单变量函数

$$x \mapsto f(x, \psi(x))$$

的极值点, 因此

$$0 = \frac{\mathrm{d}}{\mathrm{d}x} \bigg|_{x=0} f(x, \psi(x)) = \frac{\partial f}{\partial x}(0, 0) + \frac{\partial f}{\partial y}(0, 0) \psi'(0)$$

由上式容易判断(4)正确,(3)一定不正确,(1)(2)不一定正确。

▲ 练习 **6.11** 已知函数 f(x,y) 在单位圆盘 $\mathbb{D} := \{(x,y) | x^2 + y^2 \le 1\}$ 一阶连续可微,并且成立

|f(x,y)| ≤ 1. 证明: 在圆盘 $\mathbb D$ 的内部存在点 (x_0,y_0) , 使得在 f 该点处成立

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 \le 16.$$

证明 考虑函数 $g(x,y) := f(x,y) + 2(x^2 + y^2)$, 则易知 $|g(0,0)| = |f(0,0)| \le 1$, 并且对圆盘边界上的点 $\mathbf{p} \in \partial \mathbb{D}$ 成立 $|g(\mathbf{p})| = |f(\mathbf{p}) + 2| \ge 1$, 从而或者 g(x,y) 为恒为 1 的常函数,或者 g(x,y) 的极小值点不在圆盘边界取到。从而存在圆盘内部的点 (x_0,y_0) 为 g(x,y) 的极小值点。于是

$$0 = \frac{\partial g}{\partial x}\Big|_{(x_0, y_0)} = \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} + 4x_0, \qquad 0 = \frac{\partial g}{\partial y}\Big|_{(x_0, y_0)} = \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} + 4y_0,$$

所以
$$\left(\frac{\partial f(x_0,y_0)}{\partial x}\right)^2 + \left(\frac{\partial f(x_0,y_0)}{\partial y}\right)^2 = 16(x_0^2 + y_0^2) \le 16.$$

6.3 隐映射定理及其应用

证明 [解] 解方程组容易算出 u(2,1,1) = v(2,1,1) = 1. 令函数

$$\begin{cases} F_1(x, y, z; u, v) = x - u - vz \\ F_2(x, y, z; u, v) = y + u^2 - v - z \end{cases}$$

则关于 x,y,z 的隐函数 u,v 由 $F_1 = F_2 = 0$ 决定。由隐映射定理,直接计算之,

$$\begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}
\end{pmatrix}\Big|_{(2,1,1)} = - \begin{pmatrix}
\frac{\partial F_1}{\partial u} & \frac{\partial F_1}{\partial v} \\
\frac{\partial F_2}{\partial u} & \frac{\partial F_2}{\partial v}
\end{pmatrix}^{-1}\Big|_{(2,1,1)} \begin{pmatrix}
\frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial z}
\end{pmatrix}\Big|_{(2,1,1)}$$

$$= - \begin{pmatrix}
-1 & -z \\
2u & -1
\end{pmatrix}^{-1} \begin{pmatrix}
1 & 0 & -v \\
0 & 1 & -1
\end{pmatrix}\Big|_{(u,v)=(1,1)}$$

$$= \frac{1}{3} \begin{pmatrix}
1 & -1 & 0 \\
2 & 1 & -3
\end{pmatrix}$$

因此有 $\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z}\right)\Big|_{(2,1,1)} = \frac{1}{3}(1+1+0) = \frac{2}{3}.$

练习 6.13 设 u(x,y,z) 与 F(x,y,z) 均为 \mathbb{R}^3 上的可微函数,其中 u(x,y,z) 是由方程 $F(u^2-x^2,u^2-y^2,u^2-z^2)=0$ 决定的隐函数。证明: u(x,y,z) 满足偏微分方程

$$\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} + \frac{1}{z}\frac{\partial u}{\partial z} = \frac{1}{u}.$$

证明 设四元函数 $G(x,y,z,u) := F(u^2 - x^2, u^2 - y^2, u^2 - z^2)$,则 u(x,y,z) 是由方程 G(x,y,z,u) = 0 确定的隐函数,从而有隐映射定理直接写出

$$\frac{\partial u}{\partial x} = -\frac{\partial G/\partial x}{\partial G/\partial u} = -\frac{-2x\frac{\partial F}{\partial x}}{2u\frac{\partial F}{\partial x} + 2u\frac{\partial F}{\partial y} + 2u\frac{\partial F}{\partial z}} = \frac{x}{u} \cdot \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}}$$

同理可得

$$\frac{\partial u}{\partial y} = \frac{y}{u} \cdot \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}} \qquad \frac{\partial u}{\partial x} = \frac{z}{u} \cdot \frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}}$$

因此有

$$\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} + \frac{1}{z}\frac{\partial u}{\partial z} = \frac{1}{u}\frac{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}} = \frac{1}{u}$$

练习 6.14 设 F(x,y,z) 是 \mathbb{R}^3 上的可微函数。如果方程 F(x,y,z) = 0 决定了可微的隐函数 x = x(y,z)、y = y(x,z) 以及 z = z(x,y),证明:

$$\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1.$$

证明 由关于 x = x(y,z) 的隐映射定理,有

$$\frac{\partial x}{\partial y} = -\left(\frac{\partial F}{\partial x}\right)^{-1} \frac{\partial F}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial x}$$

同理也有 $\frac{\partial y}{\partial z} = -\frac{\partial F/\partial z}{\partial F/\partial y}$ 以及 $\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z}$. 因此 $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$.

△ 练习 6.15 已知方程 $u = x + y \sin u$ 确定了连续可微的二元函数 u(x, y).

证明:对任意 $n \ge 1$,成立

$$\frac{\partial^n u}{\partial y^n} = \frac{\partial^{n-1}}{\partial x^{n-1}} \left(\frac{\partial u}{\partial x} \sin^n u \right).$$

证明 对方程 $u = x + y \sin u$ 两边求偏导,得到 $\left\{ \begin{array}{l} \frac{\partial u}{\partial x} = 1 + y \cos u \cdot \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} = \sin u + y \cos u \cdot \frac{\partial u}{\partial y} \end{array} \right.$,整理得 $\left\{ \begin{array}{l} \frac{\partial u}{\partial x} = \frac{1}{1 - y \cos u} \\ \frac{\partial u}{\partial y} = \frac{\sin u}{1 - y \cos u} \end{array} \right.$,从而有 $\frac{\partial u}{\partial y} = \sin u \cdot \frac{\partial u}{\partial x}$,即证明了 n = 1 的情形。

接下来对n归纳。n=1已证;如果欲证结论对n成立,则由归纳假设以及n=1的结论可得

$$\begin{split} \frac{\partial^{n+1} u}{\partial y^n} &= \frac{\partial^{n-1}}{x^{n-1}} \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \sin^n u \right) \\ &= \frac{\partial^{n-1}}{\partial x^{n-1}} \left(n \sin^{n-1} u \cos u \cdot \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} + \sin^n u \cdot \frac{\partial}{\partial x} \frac{\partial u}{\partial y} \right) \\ &= \frac{\partial^{n-1}}{\partial x^{n-1}} \left((n+1) \sin^n u \cos u \cdot \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x^2} \cdot \sin^{n+1} u \right) \\ &= \frac{\partial^n}{\partial x^n} \left(\frac{\partial u}{\partial x} \sin^{n+1} u \right) \end{split}$$

从而证毕。

6.4 几何与物理应用

▲ 练习 6.16

证明球面上的曲线

$$\tan\left(\frac{\pi}{4} + \frac{\psi}{2}\right) = e^{k\varphi}$$

与该球面上的每一条经线相交成定角。其中 φ 为经度, ψ 为纬度,k为常数。

证明 建立空间直角坐标系,使得该球面以原点为球心,北极点坐标为 (0,0,1). 于是该球面有参数方程 $\begin{cases} x = \cos\psi\cos\varphi \\ y = \cos\psi\sin\varphi \end{cases}$. 对该球面上任何一点 $r(\varphi,\psi)$,考虑球面在该点处的切向量 $z = \sin\psi \end{cases}$

$$\frac{\partial \mathbf{r}}{\partial \varphi} = (-\cos\psi \sin\varphi, \cos\psi \cos\varphi, 0)$$

$$\frac{\partial \mathbf{r}}{\partial \psi} = (-\sin\psi \cos\varphi, -\sin\psi \sin\varphi, \cos\psi)$$

容易验证 $\frac{\partial r}{\partial \varphi}$ 与 $\frac{\partial r}{\partial \psi}$ 垂直,并且 $\left|\frac{\partial r}{\partial \varphi}\right| = \cos \psi$, $\left|\frac{\partial r}{\partial \psi}\right| = 1$.

对曲线方程两边微分,得

$$\frac{\mathrm{d}\psi}{2\cos^2\left(\frac{\pi}{4} + \frac{\psi}{2}\right)} = ke^{k\varphi}\,\mathrm{d}\varphi$$

$$\frac{\mathrm{d}\psi}{\mathrm{d}\varphi} = 2ke^{k\varphi}\cos^2\left(\frac{\pi}{4} + \frac{\psi}{2}\right) = k\sin\left(\frac{\pi}{2} + \psi\right) = k\cos\psi$$

从而对于曲线上的一点 $\mathbf{r}(\varphi,\psi)$,曲线在该点处的切向量不妨为 $\mathbf{v}:=\frac{\partial \mathbf{r}}{\partial \varphi}+k\cos\psi\frac{\partial \mathbf{r}}{\partial \psi}$. 而与经线的夹角 θ 即为切向量 \mathbf{v} 与 $\frac{\partial \mathbf{r}}{\partial \psi}$ 的夹角,其余弦值

$$\cos \theta = \frac{\langle \mathbf{v}, \frac{\partial \mathbf{r}}{\partial \psi} \rangle}{\|\mathbf{v}\| \cdot \left| \frac{\partial \mathbf{r}}{\partial \psi} \right|} = \frac{k \cos \psi}{\sqrt{k^2 + 1} \cos \psi} = \frac{k}{\sqrt{1 + k^2}}$$

为定值。从而证毕。

练习 6.17 (电偶极子)考虑三维空间中的点电荷 A_1,A_2 ,它们的位置分别为 I,-I (即关于原点对称),电荷量分别为 Q,-Q. 对于位置为 r、电荷量为 q 的点电荷 B,证明 A_1,A_2 对 B 的总静电力 F 满足如下近似公式: 当 $r:=\|r\|\to +\infty$ 时,

$$F = \frac{q}{4\pi\varepsilon_0} \left(\frac{3\mathbf{p} \cdot \mathbf{r}}{r^5} \mathbf{r} - \frac{\mathbf{p}}{r^3} \right) + o(\frac{1}{r^3})$$

其中 p := 2Ol 为点电荷系统 $\{A_1, A_2\}$ 的电偶极矩, $ε_0$ 为常数 (真空介电常数)。

提示(库仑定律): 若点电荷 A_1,A_2 的位置分别为 r_1,r_2 ,电荷量分别为 q_1,q_2 ,则 A_2 所受 A_1 的静电力为

$$\boldsymbol{F} = \frac{q_1 q_2}{4\pi\varepsilon_0} \cdot \frac{\boldsymbol{r}_2 - \boldsymbol{r}_1}{\|\boldsymbol{r}_2 - \boldsymbol{r}_1\|^3}$$

证明 记 $e_r := \frac{r}{r}$,以及 $\varepsilon := \frac{l}{r}$,则由库伦定律直接计算之,

$$\begin{split} F &=& \frac{Qq}{4\pi\varepsilon_0} \left(\frac{r-l}{\|r-l\|^3} - \frac{r+l}{\|r+l\|^3} \right) = \frac{Qq}{4\pi\varepsilon_0 r^2} \left(\frac{e_r - \varepsilon}{\|e_r - \varepsilon\|^3} - \frac{e_r + \varepsilon}{\|e_r + \varepsilon\|^3} \right) \\ &=& \frac{Qq}{4\pi\varepsilon_0 r^2} \left[\left(\frac{1}{\|e_r - \varepsilon\|^3} - \frac{1}{\|e_r + \varepsilon\|^3} \right) e_r - \left(\frac{1}{\|e_r - \varepsilon\|^3} + \frac{1}{\|e_r + \varepsilon\|^3} \right) \varepsilon \right] \end{split}$$

注意到

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = (1 + 2\boldsymbol{e}_r \cdot \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^2)^{-\frac{3}{2}}$$

而当点电荷 B 到原点的距离 r 趋于无穷时, $\varepsilon=\frac{l}{r}$ 为无穷小量,从而 $2e_r\cdot\varepsilon+\varepsilon^2$ 也为无穷小量。 利用 Taylor 展开式 $(1+x)^{-\frac{3}{2}}=1-\frac{3}{2}x+o(x)$,可得

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = 1 - 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r + o(\frac{1}{r})$$

$$\frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} = 1 + 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r + o(\frac{1}{r})$$

代入F的表达式,得到

$$\begin{split} F &= \frac{Qq}{4\pi\varepsilon_0 r^2} \left[\left(\frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} - \frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} \right) \boldsymbol{e}_r - \left(\frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} + \frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} \right) \boldsymbol{\varepsilon} \right] \\ &= \frac{Qq}{4\pi\varepsilon_0 r^2} \left((6\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r) \boldsymbol{e}_r - 2\boldsymbol{\varepsilon} + o(\frac{1}{r}) \right) \\ &= \frac{Qq}{4\pi\varepsilon_0 r^2} \left(\frac{(6\boldsymbol{l} \cdot \boldsymbol{r})\boldsymbol{r}}{r^3} - \frac{2\boldsymbol{l}}{r} \right) + o(\frac{1}{r^3}) \\ &= \frac{q}{4\pi\varepsilon_0} \left(\frac{3\boldsymbol{p} \cdot \boldsymbol{r}}{r^5} \boldsymbol{r} - \frac{\boldsymbol{p}}{r^3} \right) + o(\frac{1}{r^3}) \end{split}$$

练习 6.18 考虑三维空间中关于原点对称分布的两个质点 A_1, A_2 ,它们的质量均为 m. 记 A_1 的位置向量为 I,则 A_2 的位置为 -I. 现在,对空间中的质量为 M 的质点 B,其位置向量为 r. 我们企图计算质点 A_1, A_2 对 B 的总引力 F。有一种偷懒的方法是,用 A_1, A_2 两点的质心对 B 的引力来近似替代,也就是说考虑位于原点、质量为 2m 的质点 C,则 C 对 B 的引力 $F' = -\frac{2GMm}{r^2}e_r$ 约等于 A_1, A_2 对 B 的总引力 F,其中 $r := \|r\|, e_r := \frac{r}{r}$,G 为常数(引力常量)。

证明: 当r很大时,成立

$$F = -\frac{2GMm}{r^2} \boldsymbol{e}_r - \frac{GMm}{r^4} \left[\left(15(\boldsymbol{e}_r \cdot \boldsymbol{l})^2 - 3\boldsymbol{l} \cdot \boldsymbol{l} \right) \boldsymbol{e}_r - 6l(\boldsymbol{e}_r \cdot \boldsymbol{l}) \boldsymbol{e}_l \right] + o(\frac{1}{r^4})$$
其中 $l := \|\boldsymbol{l}\|, \boldsymbol{e}_l := \frac{l}{l}.$

证明 我们记 $\boldsymbol{\varepsilon}:=\frac{l}{r}=\frac{l}{r}\boldsymbol{e}_{l}$. 由众所周知的牛顿万有引力定律,质点 A_{1},A_{2} 对 B 的总引力 \boldsymbol{F} 为

$$F = -GMm \left(\frac{r-l}{\|r-l\|^3} + \frac{r+l}{\|r+l\|^3} \right)$$

$$= -\frac{GMm}{r^2} e_r - GMm \left(\frac{r-l}{\|r-l\|^3} + \frac{r+l}{\|r+l\|^3} - \frac{2r}{r^3} \right)$$

$$= -\frac{GMm}{r^2} e_r - \frac{GMm}{r^2} \left(\frac{e_r - \varepsilon}{\|e_r - \varepsilon\|^3} + \frac{e_r + \varepsilon}{\|e_r + \varepsilon\|^3} - 2e_r \right)$$

$$= -\frac{GMm}{r^2} e_r - \frac{GMm}{r^2} \left[\left(\frac{1}{\|e_r - \varepsilon\|^3} + \frac{1}{\|e_r + \varepsilon\|^3} - 2 \right) e_r + \left(\frac{1}{\|e_r + \varepsilon\|^3} - \frac{1}{\|e_r - \varepsilon\|^3} \right) \varepsilon \right]$$

注意到

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = (1 + 2\boldsymbol{e}_r \cdot \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^2)^{-\frac{3}{2}}$$

而当质点 B 到原点的距离 r 趋于无穷时, $\varepsilon = \frac{1}{r}$ 为无穷小量,从而 $2e_r \cdot \varepsilon + \varepsilon^2$ 也为无穷小量。利

用 Taylor 展开式 $(1+x)^{-\frac{3}{2}} = 1 - \frac{3}{2}x + \frac{15}{8}x^2 + o(x^2)$,可得

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = 1 - 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r - \frac{3}{2}\boldsymbol{\varepsilon}^2 + \frac{15}{2}(\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r)^2 + o(\frac{1}{r^2})$$

$$\frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} = 1 + 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r - \frac{3}{2}\boldsymbol{\varepsilon}^2 + \frac{15}{2}(\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r)^2 + o(\frac{1}{r^2})$$

从而得到

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} + \frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} - 2 = -3\boldsymbol{\varepsilon}^2 + 15(\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r)^2 + o(\frac{1}{r^2})$$

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} - \frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} = -6\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r + o(\frac{1}{r^2})$$

将它们代回F的表达式,有

$$\begin{split} F &= -\frac{GMm}{r^2} \boldsymbol{e}_r - \frac{GMm}{r^2} \left[\left(\frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} + \frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} - 2 \right) \boldsymbol{e}_r + \left(\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} - \frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} \right) \boldsymbol{\varepsilon} \right] \\ &= -\frac{GMm}{r^2} \boldsymbol{e}_r - \frac{GMm}{r^2} \left[\left(-3\boldsymbol{\varepsilon}^2 + 15(\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r)^2 + o(\frac{1}{r^2}) \right) \boldsymbol{e}_r + \left(-6\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r + o(\frac{1}{r^2}) \right) \boldsymbol{\varepsilon} \right] \\ &= -\frac{2GMm}{r^2} \boldsymbol{e}_r - \frac{GMm}{r^4} \left[\left(15(\boldsymbol{e}_r \cdot \boldsymbol{l})^2 - 3\boldsymbol{l} \cdot \boldsymbol{l} \right) \boldsymbol{e}_r - 6\boldsymbol{l}(\boldsymbol{e}_r \cdot \boldsymbol{l}) \boldsymbol{e}_l \right] + o(\frac{1}{r^4}) \end{split}$$

6.5 简单的偏微分方程

△ 练习 6.19 已知二元连续可微函数 u(x, y) 满足偏微分方程

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$$

并且 u(x,2x) = x, $\frac{\partial u}{\partial x}(x,2x) = x^2$ 恒成立。求 u(x,y).

证明 [解] 考虑变量替换 $\begin{cases} p=x+y \\ q=x-y \end{cases}$,则偏微分方程化为 $\frac{\partial^2 u}{\partial p \partial q}=0$,直接积分可知,存在一元可

微函数 f,g 使得

$$u(x, y) = f(p) + g(q) = f(x + y) + g(x - y)$$

代入题设条件可得 $\begin{cases} f(3x)+g(-x)=x\\ f'(3x)+g'(-x)=x^2 \end{cases}$,对第一个式子两边求导,再与第二式联立,解得

$$\begin{cases} f'(x) = \frac{1}{36}x^2 + \frac{1}{4} \\ g'(x) = \frac{3}{4}x^2 - \frac{1}{4} \end{cases}$$
, 积分得

$$\begin{cases} f(x) = \frac{1}{108}x^3 + \frac{1}{4}x + C_1\\ g(x) = \frac{1}{4}x^3 - \frac{1}{4}x + C_2 \end{cases}$$

其中常数 C_1 , C_2 满足 $C_1 + C_2 = 0$. 因此

$$u(x,y) = f(x+y) + g(x-y) = \frac{1}{108}(x+y)^3 + \frac{1}{4}(x+y) + \frac{1}{4}(x-y)^3 - \frac{1}{4}(x-y)$$

第7章 多重积分

7.1 二重积分

△ **练习 7.1** 设 a > 0,计算二重积分

$$\int_0^{2a} dx \int_0^{\sqrt{2ax-x^2}} (x+y)^2 dy$$

证明 [解] 先将该累次积分写为二重积分,易知积分区域为 $D:=\left\{(x,y)\in\mathbb{R}^2 \middle| (x-a)^2+y^2< a,y>0\right\}.$

习题7.1积分区域D示意图

考虑极坐标换元 $\left\{\begin{array}{l} x=r\cos\theta\\ y=r\sin\theta \end{array}\right.,\;\; 则变换后的积分区域为\; D':=\left.\left\{(r,\theta)\in\mathbb{R}^2\middle|\theta\in(0,\frac{\pi}{2}),r\in(0,2a\cos\theta)\right\}\right\}.$ 因此有

$$\int_0^{2a} dx \int_0^{\sqrt{2ax-x^2}} (x+y)^2 dy = \iint_D (x+y)^2 dx dy = \iint_{D'} r^2 (\cos\theta + \sin\theta)^2 \cdot r dr d\theta$$

$$= \int_0^{\frac{\pi}{2}} (1+2\cos\theta\sin\theta) d\theta \int_0^{2a\cos\theta} r^3 d\theta$$

$$= 4a^4 \int_0^{\frac{\pi}{2}} \cos^4\theta (1+2\cos\theta\sin\theta) d\theta$$

$$= 4a^4 \left(\frac{3}{4} \cdot \frac{\pi}{4} + 2\int_0^1 t^5 dt\right) = 4a^4 \left(\frac{3\pi}{16} + \frac{1}{3}\right)$$

▲ 练习7.2 计算二重积分:

$$\iint_D x(y+1) \, \mathrm{d}x \, \mathrm{d}y$$

其中平面区域 $D = \{(x, y) | 1 \le x^2 + y^2 \le 2x \}.$

证明 [解] 首先注意积分区域 D 关于 x 轴对称,从而立刻得到 $\iint_D xy \, \mathrm{d}x \, \mathrm{d}y = 0$,从而只需计算

$$\iint_D x \, \mathrm{d}x \, \mathrm{d}y.$$
 考虑极坐标换元
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$
 , 则

原式 =
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} d\theta \int_{1}^{2\cos\theta} r\cos\theta \cdot r\,dr = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos\theta\,d\theta \int_{1}^{2\cos\theta} r^2\,dr$$

= $\frac{2}{3} \int_{0}^{\frac{\pi}{3}} (8\cos^4\theta - \cos\theta)\,d\theta = \frac{16}{3} \int_{0}^{\frac{\pi}{3}} \cos^4\theta\,d\theta - \frac{\sqrt{3}}{3}$
= $\frac{4}{3} \int_{0}^{\frac{\pi}{3}} (1 + 2\cos 2\theta + \cos^2 2\theta)\,d\theta - \frac{\sqrt{3}}{3} = \cdots = \frac{2}{3}\pi + \frac{\sqrt{3}}{4}$

▲ 练习7.3 计算二重积分:

$$\iint_D \sin \frac{x+y}{x+2y} \, \mathrm{d}x \, \mathrm{d}y$$

其中区域 D 为直线 x + 2y = 1 与 x 轴、y 轴围成的三角形区域。

证明 [解] 考虑变量代换 $(x,y) \mapsto (u,k)$ 使得 $\begin{cases} x+2y=u \\ y=kx \end{cases}$, 即 $\begin{cases} x=\frac{u}{2k+1} \\ y=\frac{uk}{2k+1} \end{cases}$, 其中 $(u,k) \in (0,1) \times$

(0,+∞). 从而 Jacobian

$$\left| \frac{\partial(x,y)}{\partial(u,k)} \right| = \left| \det \begin{pmatrix} \frac{1}{2k+1} & -\frac{2u}{(2k+1)^2} \\ \frac{k}{2k+1} & \frac{u}{(2k+1)^2} \end{pmatrix} \right| = \frac{u}{(2k+1)^2}$$

$$\iint_{D} \sin \frac{x+y}{x+2y} \, dx \, dy = \int_{0}^{1} \int_{0}^{+\infty} \sin \frac{\frac{u(k+1)}{2k+1}}{u} \left| \frac{\partial(x,y)}{\partial(u,k)} \right| \, du \, dk$$

$$= \int_{0}^{1} u \, du \int_{0}^{+\infty} \frac{1}{(2k+1)^{2}} \sin \frac{k+1}{2k+1} \, dk$$

$$= -\frac{1}{4} \int_{0}^{+\infty} \sin \frac{k+1}{2k+1} \, d\frac{1}{2k+1} \stackrel{s=\frac{1}{2k+1}}{=} \frac{1}{4} \int_{0}^{1} \sin \frac{s+1}{2} \, ds$$

$$= \frac{1}{2} \left(\cos \frac{1}{2} - \cos 1 \right)$$

注 当然也可以直接极坐标换元:

证明 [另解] 考虑极坐标换元 $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$,则有

$$\iint_{D} \sin \frac{x+y}{x+2y} \, dx \, dy = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{1}{\cos\theta+2\sin\theta}} \sin \frac{\cos\theta+\sin\theta}{\cos\theta+2\sin\theta} \cdot r \, dr$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \left(\frac{1}{\cos\theta+2\sin\theta} \right)^{2} \sin \frac{\cos\theta+\sin\theta}{\cos\theta+2\sin\theta} \, d\theta$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin \left(1 - \frac{\sin\theta}{\cos\theta+2\sin\theta} \right) \, d\left(\frac{\sin\theta}{\cos\theta+2\sin\theta} \right)$$

$$= \frac{1}{2} \int_{0}^{\frac{1}{2}} \sin(1-t) \, dt = \frac{1}{2} \left(\cos\frac{1}{2} - \cos 1 \right)$$

▲ 练习7.4 计算平面上的二重积分:

$$\iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} \cos(x^2 + y^2) \, dx \, dy$$

证明 [解] 考虑极坐标换元 $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$,则

原式 =
$$\int_0^{2\pi} \int_0^{+\infty} e^{-r^2} \cos(r^2) \cdot r \, dr \, d\theta$$

= $2\pi \int_0^{+\infty} r e^{-r^2} \cos(r^2) \, dr = \pi \int_0^{+\infty} e^{-u} \cos u \, du$
= $\frac{\pi}{2} e^{-u} (\sin u - \cos u) \Big|_{u=0}^{u=+\infty} = \frac{\pi}{2}$

练习 7.5 设 \mathbb{H} 为上半平面 $\{(x,y) \in \mathbb{R}^2 | y > 0 \}$, 计算重积分

$$\iint_{\mathbb{H}} \frac{y}{(x^2 + y^2)((x - 1)^2 + y^2)} \, \mathrm{d}x \, \mathrm{d}y$$

证明 [解] 极坐标换元,有

$$\iint_{\mathbb{H}} \frac{y}{(x^2 + y^2)((x - 1)^2 + y^2)} dx dy = \int_0^{+\infty} \int_0^{\pi} \frac{r \sin \theta}{r^2 (r^2 - 2r \cos \theta + 1)} r d\theta dr$$

$$= \int_0^{\pi} \sin \theta d\theta \int_0^{+\infty} \frac{1}{r^2 - 2r \cos \theta + 1} dr = \int_0^{\pi} \sin \theta d\theta \cdot \frac{1}{\sin \theta} \arctan \frac{x}{\sin \theta} \Big|_{-\cos \theta}^{+\infty}$$

$$= \int_0^{\pi} (\pi - \theta) d\theta = \frac{\pi^2}{2}$$

练习 7.6 已知平面区域 $\Omega := \left\{ (x,y) \in \mathbb{R}^2 \middle| e^x + e^y \ge 1, e^{2x} + e^{2y} \le 1 \right\}$, 计算重积分 $\iint_{\Omega} \frac{\mathrm{d}x \, \mathrm{d}y}{x^2 + y^2}$

证明 [解] 直接化成累次积分,有

$$\iint_{\Omega} \frac{dx \, dy}{x^2 + y^2} = \int_{-\infty}^{0} dx \int_{\ln(1 - e^{2x})}^{\frac{1}{2}\ln(1 - e^{2x})} \frac{1}{x^2 + y^2} \, dy$$

$$= \int_{-\infty}^{0} \frac{1}{x} \left(\arctan \frac{\ln(1 - e^{2x})}{2x} - \arctan \frac{\ln(1 - e^{x})}{x} \right) \, dx$$

$$= \int_{0}^{+\infty} \frac{1}{x} \left(\arctan \frac{\ln(1 - e^{-2x})}{2x} - \arctan \frac{\ln(1 - e^{-x})}{x} \right) \, dx$$

$$= \ln \frac{2}{1} \left(\lim_{x \to +\infty} \arctan \frac{\ln(1 - e^{-x})}{x} - \lim_{x \to 0^{+}} \arctan \frac{\ln(1 - e^{-x})}{x} \right)$$

$$= \frac{\pi}{2} \ln 2$$

其中倒数第二个等号利用了 Frullani 积分(见习题5.29)。

第7章 多重积分

习题7.6积分区域 Ω 示意图

△ 练习 7.7 对于常数 a > 0,计算重积分

$$\iint_D \frac{1}{(a^2 + x^2 + y^2)^{\frac{3}{2}}} \, \mathrm{d}x \, \mathrm{d}y$$

其中区域 $D := \{(x,y) \in \mathbb{R}^2 \mid 0 < x,y < a \}.$

证明 先通过伸缩换元把积分区域化为单位正方形 (0,1)×(0,1), 再直接累次积分, 有

原式 =
$$\frac{1}{a} \int_0^1 dx \int_0^1 \frac{1}{(1+x^2+y^2)^{\frac{3}{2}}} dy = \frac{1}{a} \int_0^1 \frac{dx}{(1+x^2)^{\frac{3}{2}}} \int_0^1 \frac{1}{(1+\frac{y^2}{1+x^2})^{\frac{3}{2}}} dy$$

$$\frac{y=\sqrt{1+x^2}t}{a} = \frac{1}{a} \int_0^1 \frac{dx}{(1+x^2)^{\frac{3}{2}}} \int_0^{\frac{1}{\sqrt{1+x^2}}} \frac{1}{(1+t^2)^{\frac{3}{2}}} \sqrt{1+x^2} dt$$

$$= \frac{1}{a} \int_0^1 \frac{dx}{1+x^2} \int_0^{\frac{1}{\sqrt{1+x^2}}} \frac{1}{(1+t^2)^{\frac{3}{2}}} dt$$

$$\frac{t=\tan\theta}{a} = \frac{1}{a} \int_0^1 \frac{dx}{1+x^2} \int_0^{\arctan\frac{1}{\sqrt{1+x^2}}} \cos\theta d\theta = \frac{1}{a} \int_0^1 \frac{dx}{1+x^2} \cdot \frac{1}{\sqrt{2+x^2}}$$

$$\frac{x=\tan\varphi}{a} = \frac{1}{a} \int_0^{\frac{\pi}{4}} \frac{\cos\varphi}{\sqrt{1+\cos^2\varphi}} d\varphi \frac{u=\sin\varphi}{a} \frac{1}{a} \int_0^{\frac{\sqrt{2}}{2}} \frac{du}{\sqrt{2-u^2}} = \frac{1}{a} \arcsin\frac{1}{2} = \frac{\pi}{6a}$$

练习 7.8 已知平面区域 $\mathbb{D} := \{(x,y) \in \mathbb{R}^2 | y \ge x^2 + 1 \}$,计算反常重积分: $\iint_{\mathbb{D}} \frac{1}{x^4 + y^2} \, \mathrm{d}x \, \mathrm{d}y$

证明 [解] 直接化为累次积分,暴力计算之,

$$\iint_{\mathbb{D}} \frac{1}{x^4 + y^2} \, dx \, dy = 2 \int_0^{+\infty} \, dx \int_{x^2 + 1}^{+\infty} \frac{1}{x^4 + y^2} \, dy = 2 \int_0^{+\infty} \frac{1}{x^2} \left(\frac{\pi}{2} - \arctan\left(1 + \frac{1}{x^2}\right) \right) \, dx$$

$$= 2 \int_0^{+\infty} \frac{1}{x^2} \arctan \frac{1}{1 + \frac{1}{x^2}} \, dx \xrightarrow{\frac{x = \frac{1}{t}}{t}} 2 \int_0^{+\infty} \arctan \frac{1}{1 + t^2} \, dt$$

$$= 2 \left(t \arctan \frac{1}{1 + t^2} \Big|_0^{+\infty} - \int_0^{+\infty} t \cdot \frac{-\frac{2t}{(1 + t^2)^2}}{1 + \frac{1}{(1 + t^2)^2}} \, dt \right) = 4 \int_0^{+\infty} \frac{t^2}{t^4 + 2t^2 + 2} \, dt$$

注意到 $t^4+2t^2+2=(t^2+\sqrt{2})^2-(2\sqrt{2}-2)=(t^2+\sqrt{2\sqrt{2}-2}t+\sqrt{2})(t^2-\sqrt{2\sqrt{2}-2}t+\sqrt{2}).$ 为了方便

书写,记
$$\begin{cases} \alpha := \sqrt{\frac{\sqrt{2}-1}{2}} \\ \beta := \sqrt{\frac{\sqrt{2}+1}{2}} \end{cases}, \quad 則有$$
$$\frac{t^2}{t^4 + 2t^2 + 2} = \frac{1}{4\alpha} \left(\frac{t}{t^2 - 2\alpha t + \sqrt{2}} - \frac{t}{t^2 + 2\alpha t + \sqrt{2}} \right) = \frac{1}{4\alpha} \left(\frac{t}{(t-\alpha)^2 + \beta^2} - \frac{t}{(t+\alpha)^2 + \beta^2} \right)$$
$$= \frac{1}{4\alpha} \left(\frac{t-\alpha}{(t-\alpha)^2 + \beta^2} - \frac{t+\alpha}{(t+\alpha)^2 + \beta^2} \right) + \frac{1}{4} \left(\frac{1}{(t-\alpha)^2 + \beta^2} + \frac{1}{(t+\alpha)^2 + \beta^2} \right)$$

因此有

$$\iint_{D} \frac{1}{(a^{2} + x^{2} + y^{2})^{\frac{3}{2}}} dx dy = 4 \int_{0}^{+\infty} \frac{t^{2}}{t^{4} + 2t^{2} + 2} dt$$

$$= \frac{1}{2\alpha} \ln \frac{(t - \alpha)^{2} + \beta^{2}}{(t + \alpha)^{2} + \beta^{2}} \Big|_{0}^{+\infty} + \frac{1}{\beta} \left(\arctan \frac{t}{\beta} \Big|_{\alpha}^{+\infty} + \arctan \frac{t}{\beta} \Big|_{-\alpha}^{+\infty} \right) = \frac{\pi}{\beta} = \sqrt{2\sqrt{2} - 2\pi}$$

△ 练习 7.9 设 a > 0,平面区域 D 是旋轮线

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad 0 \le t \le 2\pi$$

与 x 轴围成的区域, 试计算重积分

$$\iint_D y^2 \, \mathrm{d}x \, \mathrm{d}y$$

证明 [解] 考虑变量替换

$$\begin{cases} x = a(t - \sin t) \\ y = \lambda a(1 - \cos t) \end{cases} (t, \lambda) \in [0, 2\pi] \times [0, 1]$$

其 Jacobi 行列式为

$$\frac{\partial(x,y)}{\partial(t,\lambda)} = \det \begin{pmatrix} a(1-\cos t) & 0\\ * & a(1-\cos t) \end{pmatrix} = a^2(1-\cos t)^4$$

因此有

$$\iint_D y^2 \, dx \, dy = \int_0^1 \int_0^{2\pi} \lambda^2 a^2 (1 - \cos t)^2 \left| \frac{\partial(x, y)}{\partial(t, \lambda)} \right| \, dt \, d\lambda = a^4 \int_0^1 \lambda^2 \, d\lambda \int_0^{2\pi} (1 - \cos t)^4 \, dt$$
$$= \frac{32}{3} a^4 \int_0^{\pi} \sin^8 \frac{t}{2} \, dt = \frac{64}{3} a^4 \int_0^{\frac{\pi}{2}} \sin^8 u \, du = \frac{64}{3} a^4 \frac{7!!}{8!!} \frac{\pi}{2} = \frac{35}{12} \pi a^4$$

▲ 练习 7.10 计算平面曲线

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{xy}{c^2} \qquad (a, b, c > 0)$$

所围成区域的面积S.

习题7.10示意图

证明 [解] 从曲线表达式容易看出该曲线不经过第二、四象限,并且位于第一、三象限的部分关于原点中心对称。从而我们只需考虑该曲线所围成的区域在第一象限的部分(记为D)即可。

考虑坐标变换
$$\begin{cases} x = ar\cos\theta \\ y = br\sin\theta \end{cases}, 则区域 D 变为 D' := \left\{ (r,\theta) \middle| \theta \in (0,\frac{\pi}{2}), r \in (0,\sqrt{\frac{ab}{c^2}}\sin\theta\cos\theta) \right\}.$$

因此有

$$S = 2 \iint_D dx dy = 2 \iint_{D'} abr dr d\theta = 2ab \int_0^{\frac{\pi}{2}} d\theta \int_0^{\sqrt{\frac{ab}{c^2}} \sin\theta \cos\theta} r dr$$
$$= \frac{a^2b^2}{c^2} \int_0^{\frac{\pi}{2}} \sin\theta \cos\theta d\theta = \frac{a^2b^2}{2c^2}$$

▲ 练习 7.11 计算极限:

$$\lim_{x \to 0} \int_{-\frac{x}{2}}^{0} dt \int_{-\frac{x}{2}}^{t} \frac{e^{-(t-u)^{2}}}{1 - e^{-\frac{x^{2}}{4}}} du$$

证明 [解] 首先注意等价无穷小 $1 - e^{-\frac{x^2}{4}} \sim \frac{x^2}{4}$ $(x \to 0)$,从而

$$\lim_{x \to 0} \int_{-\frac{x}{2}}^{0} dt \int_{-\frac{x}{2}}^{t} \frac{e^{-(t-u)^{2}}}{1 - e^{-\frac{x^{2}}{4}}} du = \lim_{x \to 0} \frac{4}{x^{2}} \iint_{D_{x}} e^{-(t-u)^{2}} dt du$$

其中积分区域 D_x 是以 $(-\frac{x}{2}, -\frac{x}{2}), (0,0), (0,-\frac{x}{2})$ 这三个点为顶点的三角形区域。注意积分区域 D_x 的面积为 $\frac{x^2}{8}$.

习题7.11: 积分区域 D_x 示意图

从而由积分中值定理知,对任意 x,存在点 $(t_x,u_x) \in D_x$ 使得

$$\iint_{D_x} e^{-(t-u)^2} dt du = \frac{x^2}{8} e^{-(t_x - u_x)^2}$$

而 $x \to 0$ 时, $(t_x, u_x) \to (0, 0)$,由此可知原极限 = $\frac{1}{2}e^{-(0-0)^2} = \frac{1}{2}$.

微,且 f(0,0) = 0. 计算极限:

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} dt \int_{\sqrt{t}}^x f^2(t, u) du}{1 - e^{-\frac{1}{5}x^5}}$$

证明 [解]

$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} dt \int_{\sqrt{t}}^{x} f^{2}(t, u) du}{1 - e^{-\frac{1}{5}x^{5}}} = \lim_{x \to 0^{+}} \frac{5 \int_{0}^{x^{2}} dt \int_{\sqrt{t}}^{x} f^{2}(t, u) du}{x^{5}} \xrightarrow{\text{ABZIM}} \lim_{x \to 0^{+}} \frac{\frac{d}{dx} \int_{0}^{x^{2}} dt \int_{\sqrt{t}}^{x} f^{2}(t, u) du}{x^{4}}$$
$$= \lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} f^{2}(t, x) dt}{x^{4}}$$

而当 $x \to 0^+$ 时,f 在原点可微表明 $f(t,x) = f_x't + f_y'x + o(x)$,其中 $f_x' := \frac{\partial f}{\partial x}(0,0)$, $f_y' := \frac{\partial f}{\partial y}(0,0)$ 为 f 在原点处的偏导。因此

$$f^{2}(t,x) = (f'_{x})^{2}t^{2} + 2f'_{x}f'_{y}tx + (f'_{y})^{2}x^{2} + o(x^{2})$$

$$\int_{0}^{x^{2}} f^{2}(t,x) dt = \int_{0}^{x^{2}} \left((f'_{x})^{2}t^{2} + 2f'_{x}f'_{y}tx + (f'_{y})^{2}x^{2} + o(x^{2}) \right) dt = (f'_{y})^{2}x^{4} + o(x^{4})$$

因此有

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} dt \int_{\sqrt{t}}^x f^2(t, u) du}{1 - e^{-\frac{1}{5}x^5}} = \lim_{x \to 0^+} \frac{\int_0^{x^2} f^2(t, x) dt}{x^4} = (f_y')^2 := \left[\frac{\partial f}{\partial y}(0, 0)\right]^2$$

$$\lim_{\delta \to 0} \frac{1}{\delta^2} \iint_D s_{\delta}(\boldsymbol{p}) \, \mathrm{d}x \, \mathrm{d}y$$

证明 [解] 如下图所示,对于点 $p \in D$,则 $s_{\delta}(p) = \widehat{EDF}$ 为圆弧 EDF 的弧长。连接 Op 并延长,与圆盘 D 的边界交于点 A,过点 A 作 D 的切线,与圆弧 EDF 交于 E', F'. 记 $\tilde{s}_{\delta}(p) := \widehat{E'DF'}$ 为圆弧 E'DF' 的弧长,断言当 $\delta \to 0^+$ 时 $s_{\delta}(p)$ 与 $\tilde{s}_{\delta}(p)$ "充分接近",从而用后者代替之 (如此近似替代的合理性需要验证,并且涉及较深的知识。我们先承认这个并以此计算,事后再补证)。

习题7.13示意图

记点 p 到 A 的距离为 l,则 $0 < l < \delta$. 由初等几何容易得到

$$\tilde{s}_{\delta}(\boldsymbol{p}) = 2\delta \arcsin \frac{\sqrt{\delta^2 - l^2}}{l}$$

以大圆圆心 O 为原点任取坐标系 (x,y),考虑极坐标变换 $(x,y) \to (l,\theta)$: $\begin{cases} x = (r-l)\cos\theta \\ y = (r-l)\sin\theta \end{cases}, \quad \text{则 } D$ 内使得 $s_{\delta}(\textbf{\textit{p}})$ 与 $\tilde{s}_{\delta}(\textbf{\textit{p}})$ 非零的区域都为 $\Big\{(l,\theta)\Big|0 < l < \delta, \, 0 < \theta \leq 2\pi\Big\}$,从而

$$\frac{1}{\delta^2} \iint_D \tilde{s}_{\delta}(\boldsymbol{p}) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{\delta^2} \int_0^{2\pi} \, \mathrm{d}\theta \int_0^{\delta} 2\delta \arcsin \frac{\sqrt{\delta^2 - l^2}}{l} \cdot (r - l) \, \mathrm{d}l$$

$$\stackrel{l=t\delta}{=} 4\pi \int_0^1 (r - t\delta) \arcsin \sqrt{1 - t^2} \, \mathrm{d}t$$

$$= 4\pi r \int_0^1 \arcsin \sqrt{1 - t^2} \, \mathrm{d}t - 4\pi \delta \int_0^1 t \arcsin \sqrt{1 - t^2} \, \mathrm{d}t$$

$$:= \omega(\delta)$$

易知 $\delta \to 0^+$ 时 $\omega(\delta) \to 0$,从而有

$$\lim_{\delta \to 0^+} \frac{1}{\delta^2} \iint_D s_{\delta}(\boldsymbol{p}) \, \mathrm{d}x \, \mathrm{d}y \quad \stackrel{??}{=} \quad \lim_{\delta \to 0^+} \frac{1}{\delta^2} \iint_D \tilde{s}_{\delta}(\boldsymbol{p}) \, \mathrm{d}x \, \mathrm{d}y = 4\pi r \int_0^1 \arcsin \sqrt{1 - t^2} \, \mathrm{d}t = 4\pi r$$

接下来断言用 $\tilde{s}_{\delta}(p)$ 代替 $s_{\delta}(p)$ 的合理性(用到一致收敛的有关内容,不熟悉者可跳过)。我们令 $\left\{ \begin{array}{l} \delta = kr \\ l = t\delta = tkr \end{array} \right.$,并将 t,k 视为参变量,其中 $t \in (0,1)$,并且 k > 0. 我们也不妨 k < 1. 将示意图中的有关几何量都视为 t,k 的二元函数(于是 $\delta \to 0^+$ 转化成 $k \to 0^+$)。断言 $\lim_{k \to 0^+} \angle EpE' = 0$ 关于 $t \in (0,1)$ 一致。考虑三角形 $\triangle OPE$,由余弦定理得

$$\cos \angle EPD = -\frac{(l-r)^2 + \delta^2 - r^2}{2\delta(r-l)} = \frac{2t - (1+t^2)k}{2(1-tk)}$$

再考察三角形 $\triangle pE'A$,易知 $\cos \angle E'pD = t$. 注意到 0 < k, t < 1,从而有

$$|\cos \angle E p D - \cos \angle E' p D| = \left| \frac{2t - (1 + t^2)k}{2(1 - tk)} - t \right| = k \left| \frac{t^2 - 1}{2(1 - tk)} \right|$$

$$\leq k \cdot \frac{1}{2 \cdot 1} = \frac{1}{2}k \to 0 \qquad (k \to 0^+)$$

即 $\lim_{k\to 0^+}(\cos\angle EpD-\cos\angle E'pD)=0$ 关于 $t\in(0,1)$ 一致。又因为函数 $x\mapsto\cos x$ 在 $[0,\pi]$ 单调、一致连续,从而得到 $\lim_{k\to 0^+}\angle EpE'=\lim_{k\to 0^+}(\angle EpD-\angle E'pD)=0$ 关于 $t\in(0,1)$ 一致。所以

$$\left| \frac{1}{\delta^2} \iint_D (s_{\delta}(\boldsymbol{p}) - \tilde{s}_{\delta}(\boldsymbol{p})) \, dx \, dy \right| \le \frac{1}{\delta^2} \int_0^{2\pi} d\theta \int_0^{\delta} |s_{\delta}(\boldsymbol{p}) - \tilde{s}_{\delta}(\boldsymbol{p})| \cdot |r - l| \, dl$$

$$\le \frac{2\pi r}{\delta^2} \int_0^1 |s_{\delta}(\boldsymbol{p}) - \tilde{s}_{\delta}(\boldsymbol{p})| \cdot \delta \, dt = \frac{2\pi r}{\delta} \int_0^1 2\delta \angle E \boldsymbol{p} E' \, dt = 4\pi r \int_0^1 \angle E \boldsymbol{p} E' \, dt$$

$$\to 0 \qquad (\delta \to 0^+)$$

其中最后一步利用了关于 t 的一致收敛性。从而证毕。

7.2 三重积分

△ 练习 7.14 对于常数 a,b,c>0,计算 \mathbb{R}^3 中的曲面

$$\left(\frac{x}{a} + \frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1 \qquad (x, y, z > 0)$$

与坐标平面所围成区域的体积 V

证明 [解] 考虑广义球坐标变换 $\begin{cases} x = ar\sin\theta\cos^2\varphi \\ y = br\sin\theta\sin^2\varphi , \\ z = cr\cos\theta \end{cases}$

该变换的 Jacobian 为

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = \det \begin{pmatrix} a\sin\theta\cos^2\varphi & ar\cos\theta\cos^2\varphi & -2ar\sin\theta\cos\varphi\sin\varphi \\ b\sin\theta\sin^2\varphi & br\cos\theta\sin^2\varphi & 2br\sin\theta\sin\varphi\cos\varphi \\ c\cos\theta & -cr\sin\theta & 0 \end{pmatrix}$$

$$= 2abcr^2\sin\theta\sin\varphi\cos\varphi\det \begin{pmatrix} \sin\theta\cos^2\varphi & \cos\theta\cos^2\varphi & -1 \\ \sin\theta\sin^2\varphi & \cos\theta\sin^2\varphi & 1 \\ \cos\theta & -\sin\theta & 0 \end{pmatrix}$$

$$= 2abcr^2\sin\theta\sin\varphi\cos\varphi$$

因此该曲面与坐标平面围成区域的体积

$$V = 2abc \int_0^1 r^2 dr \int_0^{\frac{\pi}{2}} \sin\theta d\theta \int_0^{\frac{\pi}{2}} \sin\varphi \cos\varphi d\varphi = \frac{abc}{3}$$

△ **练习 7.15** 对于常数 b > a > 0,计算三重积分

$$\iiint_D (x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

其中 \mathbb{R}^3 中的区域 $D := \{(x, y, z) \in \mathbb{R}^3 | z \ge 0, a^2 \le x^2 + y^2 + z^2 \le b^2 \}.$

证明 [解] 考虑球坐标换元 $\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \end{cases}$,其中 $(r, \theta, \varphi) \in [a, b] \times [0, \frac{\pi}{2}] \times [0, 2\pi]$. 从而 $z = r \cos \theta$

$$\iiint_D (x^2 + y^2) dx dy dz = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_a^b r^2 \sin^2 \theta \cdot r^2 \sin \theta dr d\theta d\varphi$$
$$= \int_a^b r^4 dr \int_0^{\frac{\pi}{2}} \sin^3 \theta d\theta \int_0^{2\pi} d\varphi$$
$$= \frac{4\pi}{15} (b^5 - a^5)$$

练习 7.16 计算由曲面 $z = 6 - x^2 - y^2$ 与曲面 $z = \sqrt{x^2 + y^2}$ 所围成区域的体积。 证明

习题7.16示意图

如图所示,易知该空间区域为图中绿色阴影部分绕 y 轴旋转所得的旋转体。从而该旋转体的体积为

$$V = \int_0^2 2\pi x \, dx \int_x^{6-x^2} dy = 2\pi \int_0^2 (-x^3 - x^2 + 6x) \, dx = \frac{32}{3}\pi$$

▲ 练习 7.17 已知定义在 $[0,+\infty)$ 上的连续函数 f(x) 满足 f(0)=0,并且 f 在 x=0 可导。对于 t>0,记 $\mathbb{B}_t:=\left\{(x,y,z)\in\mathbb{R}^3\Big|x^2+y^2+z^2\leq t^2\right\}$. 试求极限

$$\lim_{t \to 0^+} \frac{1}{\pi t^4} \iiint_{\mathbb{B}_t} f(\sqrt{x^2 + y^2 + z^2}) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

证明 [解] 记 $r = \sqrt{x^2 + y^2 + z^2}$, 球坐标变换直接计算之,有

$$\lim_{t \to 0^+} \frac{1}{\pi t^4} \iiint_{\mathbb{B}_t} f(\sqrt{x^2 + y^2 + z^2}) \, dx \, dy \, dz = \lim_{t \to 0^+} \frac{1}{\pi t^4} \int_0^t 4\pi r^2 f(r) \, dr$$

$$= \lim_{t \to 0^+} \frac{4}{t^4} \int_0^t r^2 f(r) \, dr \xrightarrow{\text{Add}} \lim_{t \to 0^+} \frac{4}{4t^3} \cdot t^2 f(t) = \lim_{t \to 0^+} \frac{f(t)}{t} = f'(0)$$

练习 7.18 将地球视为半径为 R 的球体,设大气层密度 $\rho(h) = \rho_0 e^{-kh}$, 其中 h 为点到地面的高度(其中 ρ_0 , k 为正常数)。试计算地球大气层的总质量 M.

证明 [解] 在球坐标 (r,θ,φ) 下,注意 h=r-R, 从而

$$\begin{split} M &= \iiint_{r \geq R} \rho_0 e^{-k(r-R)} \, \mathrm{d}V = 2\pi \rho_0 e^{kR} \int_0^\pi \sin\theta \, \mathrm{d}\theta \int_R^{+\infty} r^2 e^{-kr} \, \mathrm{d}r \\ &= \frac{4\pi \rho_0 e^{kR}}{k} \left(\int_R^{+\infty} 2r e^{-kr} \, \mathrm{d}r + R^2 e^{-kR} \right) = \frac{4\pi \rho_0}{k^3} (k^2 R^2 + 2kR + 2) \end{split}$$

7.3 多重积分

▲ 练习 7.19 设 f(x) 为 ℝ 上的连续函数,证明:对任意 $n \ge 1$ 以及任意 a > 0,

$$\int_0^a dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n-1}} f(x_1) f(x_2) \cdots f(x_n) dx_n = \frac{1}{n!} \left(\int_0^a f(t) dt \right)^n$$

证明 [常规做法] 对 n 使用数学归纳法。

起始步: n=1 是显然正确。

归纳步:对于n > 1,如果此命题对n - 1成立,则

$$\int_{0}^{a} dx_{1} \int_{0}^{x_{1}} dx_{2} \cdots \int_{0}^{x_{n-1}} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{n}$$

$$= \int_{0}^{a} f(x_{1}) dx_{1} \left(\int_{0}^{x^{1}} dx_{2} \cdots \int_{0}^{x_{n-1}} f(x_{2}) \cdots f(x_{n-1}) dx_{n} \right)$$
坦纳假设

$$\int_{0}^{a} f(x_{1}) \cdot \frac{1}{(n-1)!} \left(\int_{0}^{x^{1}} f(t) dt \right)^{n-1} dx_{1}$$

$$= \frac{1}{(n-1)!} \int_{0}^{a} \left(\int_{0}^{x^{1}} f(t) dt \right)^{n-1} \frac{d}{dx_{1}} \left(\int_{0}^{x^{1}} f(t) dt \right) dx_{1}$$
換元 $u = \int_{0}^{x_{1}} f(t) dt$

$$= \frac{1}{(n-1)!} \int_{0}^{a} f(t) dt u^{n-1} du$$

$$= \frac{1}{n!} \left(\int_{0}^{a} f(t) dt \right)^{n}$$

从而证毕。

注 以上是此题的常规做法。话说对称性是好东西,我们早已见过很多【巧妙利用对称性 化简计算】的例子。而对于此题,如果对称性用得好,就能够一眼看出它显然成立。以 下给出利用对称性的做法:

证明 [另证] 考虑 \mathbb{R}^n 中的 n 维立方体区域

$$D := \left\{ (x_1, ..., x_n) \in \mathbb{R}^n \middle| 0 < x_i < a, \ \forall 1 \le i \le n \right\} = [0, a]^n$$

再考虑 n 维单纯形

$$\Delta := \left\{ (x_1, ..., x_n) \in \mathbb{R}^n \middle| 0 < x_n < x_{n-1} < \dots < x_1 < a \right\}$$

容易知道以下两件事:首先,题目中的累次积分化为n重积分,积分区域为 Δ ,即

$$\int_0^a dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n-1}} f(x_1) f(x_2) \cdots f(x_n) dx_n = \int_{\Delta} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n$$

再注意到:

$$\int_D f(x_1)f(x_2)\cdots f(x_n) dx_1 dx_2 \cdots dx_n = \left(\int_0^a f(t) dt\right)^n$$

(前方高能预警,开始使用对称性了)

注意到对于任意 $\sigma \in S_n$, 其中 S_n 为 n 元置换群, 考虑变量代换

$$x_i := x'_{\sigma(i)} \qquad (1 \le i \le n)$$

则成立

$$\int_{\Delta} f(x_1) f(x_2) \cdots f(x_n) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \cdots \, \mathrm{d}x_n = \int_{\sigma(\Delta)} f(x_1') f(x_2') \cdots f(x_n') \, \mathrm{d}x_1' \, \mathrm{d}x_2' \cdots \, \mathrm{d}x_n'$$

$$= \int_{\sigma(\Delta)} f(x_1) f(x_2) \cdots f(x_n) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \cdots \, \mathrm{d}x_n$$

上式右边的积分区域 $\sigma(\Delta)$ 为:

$$\sigma(\Delta) := \left\{ (x'_1, x'_2, ..., x'_n) \in \mathbb{R}^n \middle| 0 < x'_{\sigma(n)} < x'_{\sigma(n-1)} < \dots < x'_{\sigma(1)} < a \right\}$$

至此, 我们证明了, 对任意 $\sigma \in S_n$,

$$\int_{\Delta} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n = \int_{\sigma(\Delta)} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n$$

上式左右两边的区别在于积分区域的变化。最后再注意到对于任意 $\sigma \neq \tau \in S_n, \sigma(\Delta) \cap \tau(\Delta) = \varnothing$,因此

$$\int_{0}^{a} dx_{1} \int_{0}^{x_{1}} dx_{2} \cdots \int_{0}^{x_{n-1}} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{n}$$

$$= \int_{\Delta} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \sum_{\sigma \in S_{n}} \int_{\sigma(\Delta)} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \int_{\substack{\cup \\ \sigma \in S_{n}}} \sigma(\Delta)} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \int_{D} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \left(\int_{0}^{a} f(t) dt \right)^{n}$$

从而证毕。

注 以上证法可用六个字概括:"由对称性显然"。

 练习 7.20 对于正整数 n,记 $\mathbb{D}_n := [0,1]^n = \{(x_1,x_2,...,x_n) \in \mathbb{R}^n \middle| 0 \le x_i \le 1, \forall 1 \le i \le n \}$ 为 n 维单位立方体。证明:对任意 $\varepsilon > 0$,成立

$$\lim_{n \to +\infty} \underbrace{\int \int \cdots \int}_{n} \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{D}^n \middle| \left| \frac{x_1 + x_2 + \dots + x_n}{n} - \frac{1}{2} \middle| > \varepsilon \right\} dx_1 dx_2 \cdots dx_n = 0 \right\}$$

证明 取定正整数 n 以及 $\varepsilon > 0$,记 $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ 以及 $d\mathbf{x} := dx_1 dx_2 \cdots dx_n$ 为 n 维体积

元。定义 \mathbb{R}^n 上的函数 $g(x) := \frac{x_1 + x_2 + \cdots + x_n}{n} - \frac{1}{2}$. 记 \mathbb{D}_n 的子集

$$\mathbb{D}_{n,\varepsilon}:=\left\{\boldsymbol{x}\in\mathbb{D}_n\Big||g(\boldsymbol{x})|>\varepsilon\right\}$$

则有

$$\int_{\mathbb{D}_n} |g(x)|^2 dx \ge \int_{\left\{x \in \mathbb{D}_n \middle| |g(x)|^2 \ge \varepsilon^2\right\}} |g(x)|^2 dx \ge \varepsilon^2 \int_{\left\{x \in \mathbb{D}_n \middle| |g(x)|^2 \ge \varepsilon^2\right\}} dx = \varepsilon^2 \int_{\mathbb{D}_{n,\varepsilon}} dx$$

$$\Rightarrow \int_{\mathbb{D}_{n,\varepsilon}} dx \le \frac{1}{\varepsilon^2} \int_{\mathbb{D}_n} |g(x)|^2 dx$$

另一方面,直接计算可知

$$\int_{\mathbb{D}_n} |g(\mathbf{x})|^2 d\mathbf{x} = \int_{\mathbb{D}_n} \left(\frac{x_1 + \dots + x_n}{n} - \frac{1}{2} \right)^2 d\mathbf{x}$$

$$= \int_{\mathbb{D}_n} \left(\frac{x_1 + \dots + x_n}{n} \right)^2 d\mathbf{x} - \int_{\mathbb{D}_n} \frac{x_1 + \dots + x_n}{n} d\mathbf{x} + \frac{1}{4} \int_{\mathbb{D}_n} d\mathbf{x}$$

$$= \frac{1}{n^2} \left(\sum_{i=1}^n \int_0^1 x_i^2 dx_i + 2 \sum_{1 \le i < j \le n} \int_0^1 \int_0^1 x_i x_j dx_i dx_j \right) - \frac{1}{4}$$

$$= \frac{1}{n^2} \left(n \cdot \frac{1}{3} + 2 \binom{n}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right) - \frac{1}{4}$$

$$= \frac{1}{12n}$$

因此对于给定的 $\varepsilon > 0$, 总成立

$$\int_{\mathbb{D}_{n,\varepsilon}} dx \le \frac{1}{12n\varepsilon^2}$$

 $\diamond n \to +\infty$,即得 $\lim_{n \to +\infty} \int_{\mathbb{D}_{n,\varepsilon}} \mathrm{d}x = 0$,从而得证。

注 本题实际上是概率论中的大数定律的特殊情形。

△ 练习 7.21 设函数 f(x) 在 [0,1] 连续,计算极限

$$\lim_{n \to +\infty} \underbrace{\int_0^1 \int_0^1 \cdots \int_0^1}_n f\left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right) dx_1 dx_2 \cdots dx_n$$

证明 注意 f(x) 在闭区间 [0,1] 连续,从而有界,记 M 为 |f| 在 [0,1] 的一个上界。<mark>对任意 $\varepsilon > 0$,由 f(x) 的连续性,从而存在 $\delta > 0$,使得当 $|x - \frac{1}{2}| \le \delta$ 时成立 $|f(x) - f(\frac{1}{2})| \le \frac{\epsilon}{2}$. 固定此 $\delta > 0$,沿 用上一题(习题7.20)的记号与结论,有 $\lim_{n \to +\infty} \int_{\mathbb{D}_{n,\delta}} \mathrm{d}x = 0$,因此取 N > 0,使得对任意 $n \ge N$,都有</mark>

$$\int_{\mathbb{D}_{n,\delta}} \, \mathrm{d}x \le \frac{\varepsilon}{4M}$$

于是对任意 $n \ge N$, 成立

$$\left| \int_{\mathbb{D}_n} f\left(\frac{x_1 + \dots + x_n}{n}\right) dx - f\left(\frac{1}{2}\right) \right| = \left| \int_{\mathbb{D}_n} \left(f\left(\frac{x_1 + \dots + x_n}{n}\right) - f\left(\frac{1}{2}\right) \right) dx \right|$$

$$\leq \int_{\mathbb{D}_{n,\delta}} \left| f\left(\frac{x_1 + \dots + x_n}{n}\right) - f\left(\frac{1}{2}\right) \right| dx + \int_{\mathbb{D}_n \setminus \mathbb{D}_{n,\delta}} \left| f\left(\frac{x_1 + \dots + x_n}{n}\right) - f\left(\frac{1}{2}\right) \right| dx$$

$$\leq 2M \int_{\mathbb{D}_{n,\delta}} dx + \frac{\varepsilon}{2} \int_{\mathbb{D}_n \setminus \mathbb{D}_{n,\delta}} dx \leq 2M \cdot \frac{\varepsilon}{4M} + \frac{\varepsilon}{2} \cdot 1 = \varepsilon$$

这就证明了

$$\lim_{n \to +\infty} \underbrace{\int_0^1 \int_0^1 \cdots \int_0^1}_{n} f\left(\frac{x_1 + \cdots + x_n}{n}\right) dx_1 dx_2 \cdots dx_n = f(\frac{1}{2})$$

7.4 积分不等式 II

练习 7.22 设平面 \mathbb{R}^2 上的闭区域 $D := \{(x,y) \in \mathbb{R}^2 | 0 \le x,y \le 1 \}$,定义在 D 上的四次连续可微函数 f(x,y) 在 D 的边界处取值恒为 0,并且在 D 上成立

$$\left| \frac{\partial^4 f}{\partial x^2 \partial y^2} \right| \le b$$

其中 $b \ge 0$ 为常数。证明:

$$\left| \iint_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y \right| \le \frac{b}{144}$$

证明 对于任意 $y \in [0,1]$, 注意到对任意实数 C_1, C_2 都成立

$$\int_{0}^{1} f(x,y) dx = (x + C_{1}) f(x,y) \Big|_{x=0}^{x=1} - \int_{0}^{1} (x + C_{1}) \frac{\partial f}{\partial x}(x,y) dx$$

$$= -\left(\frac{1}{2} (x + C_{1})^{2} + C_{2}\right) \frac{\partial f}{\partial x}(x,y) \Big|_{x=0}^{x=1} - \int_{0}^{1} \left(\frac{1}{2} (x + C_{1})^{2} + C_{2}\right) \frac{\partial^{2} f}{\partial x^{2}}(x,y) dx$$

令
$$\begin{cases} \frac{1}{2}(C_1+1)^2 + C_2 = 0 \\ \frac{1}{2}C_1^2 + C_2 = 0 \end{cases} , 解得 \begin{cases} C_1 = -\frac{1}{2} \\ C_2 = -\frac{1}{8} \end{cases} , 因此$$

$$\int_{0}^{1} f(x, y) dx = \frac{1}{2} \int_{0}^{1} (x^{2} - x) \frac{\partial^{2} f}{\partial x^{2}}(x, y) dx$$
 (*)

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{2} \int_0^1 \, \mathrm{d}y \int_0^1 (x^2 - x) \frac{\partial^2 f}{\partial x^2}(x,y) \, \mathrm{d}x = \frac{1}{2} \int_0^1 (x^2 - x) \, \mathrm{d}x \int_0^1 \frac{\partial^2 f}{\partial x^2}(x,y) \, \mathrm{d}y$$

注意到当 y = 0 或 1 时, 总有 $\frac{\partial^2 f}{\partial x^2}(x,y) = 0$, 从而类似 (*) 式, 同理可得

$$\int_0^1 \frac{\partial^2 f}{\partial x^2}(x, y) \, \mathrm{d}y = \frac{1}{2} \int_0^1 (y^2 - y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x, y) \, \mathrm{d}y$$

因此,

$$\left| \iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y \right| = \left| \frac{1}{4} \iint_D (x^2 - x)(y^2 - y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) \, \mathrm{d}x \, \mathrm{d}y \right|$$

$$\leq \frac{1}{4} \iint_D \left| (x^2 - x)(y^2 - y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) \right| \, \mathrm{d}x \, \mathrm{d}y$$

$$\leq \frac{b}{4} \int_0^1 (x - x^2) \, \mathrm{d}x \int_0^1 (y - y^2) \, \mathrm{d}y = \frac{b}{144}$$

▲ 练习 7.23 已知 f(x) 是 \mathbb{R} 上的非负连续函数,并且对任意 $t \in \mathbb{R}$ 都成立

$$\int_{-\infty}^{+\infty} e^{-(x-t)^2} f(x) \, \mathrm{d}x \le 1 \tag{*}$$

证明:对任意有界闭区间 [a,b],若 $b-a \leq \frac{\sqrt{2}}{2}$,则成立 $\int_a^b f(x) dx \leq \frac{2\sqrt{e}}{1+\sqrt{e}}$.

证明 将(*)式中的t在[a,b]积分,有

$$\int_{a}^{b} dt \int_{a}^{b} e^{-(x-t)^{2}} f(x) dx \le \int_{a}^{b} dt \int_{-\infty}^{+\infty} e^{-(x-t)^{2}} f(x) dx \le \int_{a}^{b} dt = b - a$$

另一方面,交换积分次序得到

$$\int_{a}^{b} dt \int_{a}^{b} e^{-(x-t)^{2}} f(x) dx = \int_{a}^{b} f(x) dx \int_{a}^{b} e^{-(x-t)^{2}} dt = \int_{a}^{b} f(x) dx \int_{x-b}^{x-a} e^{-u^{2}} du$$

注意上式最右端有 $a \le x \le b$,从而 $x - b \le 0 \le x - a$. 现在考虑函数 $\varphi(u) = e^{-u^2}$,则 $\varphi''(u) = (4u^2 - 2)e^{-u^2}$,从而 $\varphi(u)$ 在 $[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}]$ 是凸函数。于是对任意 $x \in [a,b]$,若 $b - a \le \frac{\sqrt{2}}{2}$,则 |x - b|,|x - a| 都小于等于 $\frac{\sqrt{2}}{2}$,从而有

$$\int_{x-a}^{x-b} e^{-u^2} du \ge \frac{1}{2} \left(1 + e^{-(x-b)^2} \right) (b-x) + \frac{1}{2} \left(1 + e^{-(x-a)^2} \right) (x-a)$$
$$\ge \frac{1}{2} \left(1 + e^{-\frac{1}{2}} \right) (b-a)$$

从而有

$$\frac{1}{2} \left(1 + e^{-\frac{1}{2}} \right) (b - a) \int_{a}^{b} f(x) \, \mathrm{d}x \le b - a$$

整理得 $\int_a^b f(x) dx \le \frac{2\sqrt{e}}{1+\sqrt{e}}$.

△ 练习 7.24 已知 f(x) 是 [-1,1] 上的非负连续函数,并且满足

$$\int_{-1}^{1} x f(x) dx = 0, \qquad \int_{-1}^{1} f(x) dx = 1$$

证明:

$$\int_{-1}^{1} \int_{-1}^{1} |x + y| f(x) f(y) \, \mathrm{d}x \, \mathrm{d}y \ge \int_{-1}^{1} |x| f(x) \, \mathrm{d}x$$

证明 令 g(x) = f(-x),则由题设条件易得

$$\int_0^1 x f(x) \, \mathrm{d}x = \int_0^1 x g(x) \, \mathrm{d}x \tag{*}$$

$$\int_0^1 f(x) dx + \int_0^1 g(x) dx = 1$$
 (**)

因此有

$$\int_{-1}^{1} \int_{-1}^{1} |x + y| f(x) f(y) dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} (x + y) f(x) f(y) dx dy + \int_{0}^{1} \int_{0}^{1} (x + y) g(x) g(y) dx dy$$

$$+ 2 \int_{0}^{1} \int_{0}^{1} |x - y| f(x) g(y) dx dy$$

$$\geq \int_{0}^{1} \int_{0}^{1} (x + y) f(x) f(y) dx dy + \int_{0}^{1} \int_{0}^{1} (x + y) g(x) g(y) dx dy$$

$$= \int_{0}^{1} x f(x) dx \int_{0}^{1} f(y) dy + \int_{0}^{1} f(x) dx \int_{0}^{1} y f(y) dy$$

$$+ \int_{0}^{1} x g(x) dx \int_{0}^{1} g(y) dy + \int_{0}^{1} y g(y) dy \int_{0}^{1} g(x) dx$$

$$\xrightarrow{(*)(**)} \int_{0}^{1} x f(x) dx + \int_{0}^{1} x g(x) dx$$

$$= \int_{0}^{1} |x| f(x) dx$$

第8章 曲线积分与曲面积分

8.1 第一型曲线积分

练习 8.1 设 3 维欧氏空间中的曲线 $L: \left\{ \begin{array}{l} x^2+y^2+z^2=a^2 \\ x+y+z=0 \end{array} \right.$,其中 a>0 为常数。求第一型曲线积分

$$I := \int_{L} x^2 \, \mathrm{d}s$$

证明 [解] 首先注意到积分区域是在平面 x + y + z = 0 上的以原点 (0,0,0) 为圆心,半径为 a 的圆周。再注意到积分区域关于 x,y,z 的对称性,由换元积分容易得到

$$\int_{L} x^{2} \, \mathrm{d}s = \int_{L} y^{2} \, \mathrm{d}s = \int_{L} z^{2} \, \mathrm{d}s$$

因此有

$$\int_{L} x^{2} ds = \frac{1}{3} \int_{L} (x^{2} + y^{2} + z^{2}) ds = \frac{a^{2}}{3} \int_{L} 1 ds = \frac{a^{2}}{3} \cdot 2\pi a = \frac{2}{3}\pi a^{3}$$

注 这种对称性方法十分巧妙,大大简化计算。若没有想到对称性,直接用基础的"笨办法"求解也是可行的,如下:

证明 [另解] 我们暴力给出曲线 L 的参数方程,进而计算该曲线积分。注意到曲线 L 位于平面 P: x+y+z=0 上,而该平面有法向量 $\mathbf{n}=(1,1,1)$. 再注意到向量 $\mathbf{u}:=(1,-1,0)$ 位于平面 P,从而向量

$$\mathbf{v} := \mathbf{n} \times \mathbf{u} = (1, 1, -2)$$

也位于平面P,并且与 \mathbf{u} 垂直。

又因为曲线 L 位于平面 P,且是以原点为圆心,半径 a 的圆周,记 L 上的点为 $\mathbf{r}=(x,y,z)$,则直接写出 L 的参数方程

$$\mathbf{r} = \frac{a}{\sqrt{2}}\mathbf{u}\sin\theta + \frac{a}{\sqrt{6}}\mathbf{v}\cos\theta \qquad \theta \in [0, 2\pi]$$

$$\iff \begin{cases} x = \frac{a}{\sqrt{2}}\sin\theta + \frac{a}{\sqrt{6}}\cos\theta \\ y = -\frac{a}{\sqrt{2}}\sin\theta + \frac{a}{\sqrt{6}}\cos\theta \\ z = -2\frac{a}{\sqrt{6}}\cos\theta \end{cases}$$

因此有

$$ds = \left| \frac{d\mathbf{r}}{d\theta} \right| d\theta = \left| \frac{a}{\sqrt{2}} \mathbf{u} \cos \theta + \frac{a}{\sqrt{6}} \mathbf{v} \sin \theta \right| d\theta = \sqrt{\frac{a^2}{2} |\mathbf{u}|^2 \cos^2 \theta + \frac{a^2}{6} |\mathbf{v}|^2 \sin^2 \theta} d\theta = a d\theta$$

$$\int_{L} x^{2} ds = \int_{0}^{2\pi} \left(\frac{a}{\sqrt{2}} \sin \theta + \frac{a}{\sqrt{6}} \cos \theta \right)^{2} \cdot a d\theta$$
$$= a^{3} \int_{0}^{2\pi} \left(\frac{1}{2} \sin^{2} \theta + \frac{1}{6} \cos^{2} \theta + \frac{1}{\sqrt{3}} \sin \theta \cos \theta \right) d\theta = \frac{2}{3} \pi a^{3}$$

8.2 第一型曲面积分

练习 8.2 设三维空间中的曲面 S 是圆柱面 $x^2 + y^2 = 9$ 夹在平面 z = 0 与平面 z = 2 之间的 部分,计算积分

$$\iint_{S} (x^2y + z^2) \, \mathrm{d}S$$

证明 [解] 容易写出曲面 S 的参数方程

$$\begin{cases} x = 3\cos u \\ y = 3\sin u \end{cases} \quad (u, v) \in [0, 2\pi] \times [0, 2]$$
$$z = v$$

则面积元 $dS = \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| du dv = 3 du dv$. 因此有

$$\iint_{S} (x^{2}y + z^{2}) dS = \iint_{[0 \times 2\pi] \times [0,2]} (27 \cos^{2} u \sin u + v^{2}) \cdot 3 du dv$$
$$= 162 \int_{0}^{2\pi} \cos^{2} u \sin u du + 6\pi \int_{0}^{2} v^{2} dv = 16\pi$$

注 事实上,由积分区域关于 xOz 平面的对称性,直接看出 $\iint_S x^2 y \, dS = 0$,从而原积分 = $\iint_S z^2 \, dS = 2\pi \times 3 \int_0^2 z^2 \, dz = 16\pi$,可以口算出来。

练习 8.3 设 \mathbb{R}^3 中的曲面 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 在圆柱面 $x^2 + y^2 = ax$ 内部的部分。求 Σ 的面积。

证明 [解] 注意到曲面 Σ 关于 xOy 平面是对称的,并且 Σ 在 xOy 的上半部分 Σ ⁺ 具有参数表示

$$z(x,y) = \sqrt{a^2 - x^2 - y^2}$$
 $(x - \frac{a}{2})^2 + y^2 < \frac{a^2}{4}$

记向量 $\mathbf{r}(x,y)=(x,y,z)\in\mathbb{R}^3$ 为曲面 Σ^+ 上的一点,则 $\left\{\begin{array}{l} \frac{\partial\mathbf{r}}{\partial x}=(1,0,-\frac{x}{z})\\ \frac{\partial\mathbf{r}}{\partial y}=(0,1,-\frac{y}{z}) \end{array}\right.$,从而面积元

$$dS = \left| \frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} \right| dx dy = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$$

其中 $(x,y)\in D:=\left\{(x,y)\in\mathbb{R}^2\left|(x-\frac{a}{2})^2+y^2<\frac{a^2}{4}\right\}\right.$ 再考虑极坐标变换 $\left\{\begin{array}{c}x=r\cos\theta\\y=r\sin\theta\end{array}\right.$,则此变换将

区域 D 变为 $D' = \{(r,\theta) \in \mathbb{R}^2 | \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}), r \in (0, a\cos\theta) \}$. 从而

$$\Sigma 的面积 = 2 \iint_{\Sigma^{+}} dS = 2 \iint_{D} \frac{a}{\sqrt{a^{2} - x^{2} - y^{2}}} dx dy$$

$$= 2a \iint_{D'} \frac{r}{\sqrt{a^{2} - r^{2}}} dr d\theta = 4a \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{a \cos \theta} \frac{r}{\sqrt{a^{2} - r^{2}}} dr$$

$$= 4a^{2} \int_{0}^{\frac{\pi}{2}} (1 - \sin \theta) d\theta = 4a^{2} (\frac{\pi}{2} - 1)$$

练习 8.4 对于 0 < h < a,考虑曲面 $Σ := \left\{ (x, y, z) \in \mathbb{R}^3 \middle| x^2 + y^2 + z^2 = a^2, z \ge h \right\}$,计算积分: $\iint_{\Sigma} \frac{1 + \sin x}{z} \, \mathrm{d}S$

证明 [解] 首先注意到函数 $\frac{\sin x}{z}$ 关于 x 为积函数,并且曲面 Σ 关于 $x \mapsto -x$ 对称,故由对称性得 $\iint_{\Sigma} \frac{\sin x}{z} \, dS = 0$,我们只需计算 $\iint_{\Sigma} \frac{1}{z} \, dz$. 考虑曲面 Σ 的参数表示 $z(x,y) = \sqrt{a^2 - x^2 - y^2}$,则面元 $dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} \, dx \, dy$,于是有

原式 =
$$\iint_{x^2+y^2 \le a^2-h^2} \frac{1}{\sqrt{a^2-x^2-y^2}} \cdot \frac{a}{\sqrt{a^2-x^2-y^2}} \, dx \, dy$$
=
$$a \int_0^{2\pi} d\theta \int_0^{\sqrt{a^2-h^2}} \frac{r}{a^2-r^2} \, dr = 2\pi a \ln \frac{a}{h}$$

4 练习 8.5 求球面 $x^2 + y^2 + z^2 = 1$ 含在柱面 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 内的部分的面积 S.

证明 [解] 考虑平面第一象限内的区域 $D:=\left\{(x,y)\in\mathbb{R}^2\middle|x,y\geq0,\,x^{\frac{2}{3}}+y^{\frac{2}{3}}<1\right\}$,则注意到题目中曲面的对称性,类似上一题,

$$S = 8 \iint_D \frac{1}{\sqrt{1 - x^2 - y^2}} \, \mathrm{d}x \, \mathrm{d}y$$

考虑变量代换 $\left\{ \begin{array}{l} x=r\cos^3\theta \\ y=r\sin^3\theta \end{array} \right.$,则区域 D 变为 $D':=\left\{ (r,\theta)\in\mathbb{R}^2 \middle| r\in(0,1),\theta\in(0,\frac{\pi}{2}) \right\}$,并且该变换的 Jacobian 为

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \det\begin{pmatrix} \cos^3\theta & -3r\cos^2\theta\sin\theta\\ \sin^3\theta & 3r\sin^2\theta\cos\theta \end{pmatrix} = 3r\sin^2\theta\cos^2\theta$$

使用此变换,可得

$$S = 8 \int_0^{\frac{\pi}{2}} d\theta \int_0^1 \frac{1}{\sqrt{1 - r^2(\cos^6\theta + \sin^6\theta)}} \cdot 3r \sin^2\theta \cos^2\theta dr$$

$$= 24 \int_0^{\frac{\pi}{2}} \cos^2\theta \sin^2\theta d\theta \int_0^1 \frac{r dr}{\sqrt{1 - r^2(\cos^6\theta + \sin^6\theta)}}$$

$$= 12 \int_0^{\frac{\pi}{2}} \cos^2\theta \sin^2\theta d\theta \int_0^1 \frac{du}{\sqrt{1 - u(\cos^6\theta + \sin^6\theta)}}$$

$$= 12 \int_0^{\frac{\pi}{2}} \cos^2\theta \sin^2\theta d\theta \cdot \frac{2}{\cos^6\theta + \sin^6\theta} \left(1 - \sqrt{1 - (\cos^6\theta + \sin^6\theta)}\right)$$

再注意到

$$\cos^{6}\theta + \sin^{6}\theta = (\cos^{2}\theta + \sin^{2}\theta)(\cos^{4}\theta - \cos^{2}\theta\sin^{2}\theta + \sin^{4}\theta)$$
$$= (\cos^{2}\theta + \sin^{2}\theta)^{2} - 3\cos^{2}\theta\sin^{2}\theta$$
$$= 1 - 3\cos^{2}\theta\sin^{2}\theta$$

继续整理原式,得到

$$S = 24 \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}\theta \sin^{2}\theta}{1 - 3\cos^{2}\theta \sin^{2}\theta} \left(1 - \sqrt{3}\cos\theta \sin\theta\right) d\theta$$

$$= 12 \int_{0}^{\pi} \frac{\frac{1}{4}\sin^{2}\theta}{1 - \frac{3}{4}\sin^{2}\theta} \left(1 - \frac{\sqrt{3}}{2}\sin\theta\right) d\theta$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{4 - 3\sin^{2}\theta} - \frac{1}{4}\right) \left(1 - \frac{\sqrt{3}}{2}\sin\theta\right) d\theta$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \frac{1}{4 - 3\sin^{2}\theta} d\theta - 16\sqrt{3} \int_{0}^{\frac{\pi}{2}} \frac{\sin\theta d\theta}{4 - 3\sin^{2}\theta} - 8 \int_{0}^{\frac{\pi}{2}} d\theta + 4\sqrt{3} \int_{0}^{\frac{\pi}{2}} \sin\theta d\theta$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + 3\cos^{2}\theta} d\theta - 16\sqrt{3} \int_{0}^{\frac{\pi}{2}} \frac{-d(\cos\theta)}{1 + 3\cos^{2}\theta} - 4\pi + 4\sqrt{3}$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + 3\cos^{2}\theta} d\theta - 16\sqrt{3} \int_{0}^{1} \frac{1}{1 + 3t^{2}} dt - 4\pi + 4\sqrt{3}$$

再注意到

$$\int_0^1 \frac{1}{1+3t^2} dt = \frac{u=\sqrt{3}t}{\sqrt{3}} \int_0^{\sqrt{3}} \frac{du}{1+u^2} = \frac{1}{\sqrt{3}} \arctan \sqrt{3} = \frac{\pi}{3\sqrt{3}}$$

$$\int_0^{\frac{\pi}{2}} \frac{1}{1+3\cos^2\theta} d\theta = \int_0^{\frac{\pi}{2}} \frac{2}{5+3\cos 2\theta} d\theta = \int_0^{\pi} \frac{d\theta}{5+3\cos\theta} = \int_0^{+\infty} \frac{1}{5+3\frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt$$

$$= \int_0^{+\infty} \frac{dt}{t^2+4} = \frac{\pi}{4}$$

代入原式,即可得到

$$S = 32 \cdot \frac{\pi}{4} - 16\sqrt{3} \cdot \frac{\pi}{3\sqrt{3}} - 4\pi + 4\sqrt{3} = 4(\sqrt{3} - \frac{\pi}{3})$$

注 原题是计算"柱面在球面内"的部分的面积;而曲豆豆当时误以为是"球面在柱面内"的部分,于是就有了此题。虽然计算量较大,但别有一番风味。

练习 8.6 设 Σ 为椭球面 $\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1$ 的上半部分。对于曲面 Σ 上的点 p = (x, y, z),记 Π_p 为曲面 Σ 在点 p 处的切平面,再记 $\rho(p) = \rho(x, y, z)$ 为原点到平面 Π_p 的距离。试计算曲面积分

$$\iint_{\Sigma} \frac{z}{\rho(x, y, z)} \, \mathrm{d}S$$

证明 对于 $p_0 = (x_0, y_0, z_0) \in \Sigma$, 容易计算出切平面 Π_{p_0} 的方程为 $x_0x + y_0y + 2z_0z = 2$, 因此

$$\rho(\boldsymbol{p}_0) = \frac{2}{\sqrt{x_0^2 + y_0^2 + (2z_0)^2}} = \frac{\sqrt{2}}{\sqrt{1 + z_0^2}}$$

考虑曲面 Σ 的参数表示 $\begin{cases} x = \sqrt{2}\cos\varphi\cos\theta \\ y = \sqrt{2}\cos\varphi\sin\theta \end{cases}, \ \ \mbox{其中} \ (\theta,\varphi) \in [0,2\pi] \times [0,\frac{\pi}{2}]. \ \mbox{则容易验证切向量} \ \frac{\partial p}{\partial \theta} \\ z = \sin\varphi \end{cases}$

与 $\frac{\partial \mathbf{p}}{\partial \varphi}$ 垂直,并且 $\left|\frac{\partial \mathbf{p}}{\partial \theta}\right| = \sqrt{2}\cos\varphi$, $\left|\frac{\partial \mathbf{p}}{\partial \varphi}\right| = \sqrt{1 + \sin^2\varphi}$. 从而面积元 $dS = \sqrt{2}\cos\varphi\sqrt{1 + \sin^2\varphi} \ d\theta \ d\varphi$. 从而

$$\iint_{\Sigma} \frac{z}{\rho(x, y, z)} dS = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} z \frac{\sqrt{1 + z^2}}{\sqrt{2}} \cdot \sqrt{2} \cos \varphi \sqrt{1 + \sin^2 \varphi} d\varphi$$
$$= 2\pi \int_{0}^{\frac{\pi}{2}} \sin \varphi \cos \varphi (1 + \sin^2 \varphi) d\varphi = 2\pi \int_{0}^{1} t(1 + t^2) dt = \frac{3}{2}\pi$$

▲ 练习 8.7 设 Σ 为三维空间中质量分布均匀的曲面,表达式为

$$x^{2} + y^{2} + z^{2} = a^{2}$$
 $(x, y, z \ge 0, x + y \le a)$

其中 a > 0 为常数。求 Σ 的重心的坐标。

证明 [解] 设 Σ 的重心坐标为 (x_0, y_0, z_0) . 由曲面 Σ 的对称性,容易看出 $x_0 = y_0$. 注意曲面 Σ 的参数表示 $z(x,y) = \sqrt{a^2 - x^2 - y^2}$,其中 $(x,y) \in \Delta := \left\{ (x,y) \in \mathbb{R}^2 \middle| x,y \geq 0, x+y \leq a \right\}$. 容易求出 Σ 在此参数下的面积元 $dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$. 从而有

$$\iint_{\Sigma} dS = a \iint_{\Delta} \frac{dx \, dy}{\sqrt{a^2 - x^2 - y^2}} = a \int_{0}^{a} dy \int_{0}^{a-y} \frac{1}{\sqrt{a^2 - x^2 - y^2}} \, dx$$

$$= a \int_{0}^{a} \arcsin \sqrt{\frac{a - y}{a + y}} \, dy \xrightarrow{\frac{u = \arcsin \sqrt{\frac{a - y}{a + y}}}{a + y}} a^2 \int_{\frac{\pi}{2}}^{0} u \, d\frac{\cos^2 u}{1 + \sin^2 u}$$

$$= -a^2 \left(\frac{u \cos^2 u}{1 + \sin^2 u} \right)_{0}^{\frac{\pi}{2}} - \int_{\frac{\pi}{2}}^{0} \frac{\cos^2 u}{1 + \sin^2 u} \, du$$

$$= a^2 \int_{0}^{\frac{\pi}{2}} \left(\frac{2}{1 + \sin^2 u} - 1 \right) du \xrightarrow{\frac{t = \tan u}{2}} - \frac{\pi}{2} a^2 + 2a^2 \int_{0}^{+\infty} \frac{1}{1 + \frac{t^2}{1 + t^2}} \cdot \frac{1}{1 + t^2} \, dt$$

$$= -\frac{\pi}{2} a^2 + a^2 \int_{0}^{+\infty} \frac{1}{t^2 + \frac{1}{2}} \, dt = \frac{\sqrt{2} - 1}{2} \pi a^2$$

$$\iint_{\Sigma} x \, dS = a \int_{0}^{a} dy \int_{0}^{a - y} \frac{x}{\sqrt{a^2 - y^2 - x^2}} \, dx = \frac{a}{2} \int_{0}^{a} dy \int_{0}^{(a - y)^2} \frac{1}{\sqrt{a^2 - y^2 - t}} \, dt$$

$$= a \int_{0}^{a} \left(\sqrt{a^2 - y^2} - \sqrt{2y(a - y)} \right) \, dy = \frac{2 - \sqrt{2}}{8} \pi a^3$$

$$\iint_{\Sigma} z \, dS = \iint_{\Delta} \frac{a \sqrt{a^2 - x^2 - y^2}}{\sqrt{a^2 - x^2 - y^2}} \, dx \, dy = a \iint_{\Delta} dx \, dy = \frac{1}{2} a^3$$

因此 Σ 的重心的坐标 (x_0, y_0, z_0) 满足

$$x_0 = y_0 = \frac{\iint_{\Sigma} x \, dS}{\iint_{\Sigma} dS} = \frac{\sqrt{2}}{4} a$$

$$z_0 = \frac{\iint_{\Sigma} z \, dS}{\iint_{\Sigma} dS} = \frac{\sqrt{2} + 1}{\pi} a$$

△ 练习 8.8 设 f(x) 是连续正值函数,定义关于 t > 0 的函数

$$\varphi(t) := \frac{\iint_{\mathbb{S}_t} f(x^2 + y^2) \, \mathrm{d}S}{\iint_{\mathbb{D}_t} f(x^2 + y^2) \, \mathrm{d}S},$$

其中 \mathbb{R}^3 当中的曲面 $\mathbb{D}_t: \left\{ (x,y,0) \middle| x^2 + y^2 \le t^2 \right\}$,以及 $\mathbb{S}_t:= \left\{ (x,y,z) \middle| z = x^2 + y^2, z \le t^2 \right\}$. 证明: $\varphi(t)$ 是 $(0,+\infty)$ 上的严格单调递增的连续函数,并且 $\lim_{t\to 0^+} \varphi(t)=1$.

证明 首先计算曲面 \mathbb{S}_t 的面积元 dS. 考虑曲面 $z=x^2+y^2$ 的参数表示: 此曲面上的点 $\boldsymbol{p}=(x,y,x^2+y^2)$,则切向量

$$\frac{\partial \mathbf{p}}{\partial x} = (1, 0, 2x), \qquad \frac{\partial \mathbf{p}}{\partial y} = (0, 1, 2y)$$

从而面积元 $dS = \|\frac{\partial \mathbf{p}}{\partial x} \times \frac{\partial \mathbf{p}}{\partial y}\| dx dy = \sqrt{(2x)^2 + (2y)^2 + 1} dx dy = \sqrt{1 + 4r^2} dx dy$, 其中 $r := \sqrt{x^2 + y^2}$. 之后考虑标准的平面极坐标换元,易知

$$\varphi(t) = \frac{\iint_{\mathbb{D}_t} \sqrt{1 + 4r^2} f(r^2) \, dx \, dy}{\iint_{\mathbb{D}_t} r f(f^2) \, dx \, dy} = \frac{\int_0^t \sqrt{1 + 4r^2} r f(r^2) \, dr}{\int_0^t r f(r^2) \, dr} \xrightarrow{\frac{g(r) := r f(r^2)}{\int_0^t g(r) \, dr}} \frac{\int_0^t \sqrt{1 + 4r^2} g(r) \, dr}{\int_0^t g(r) \, dr}$$

注意到 g(r) 依然是 $(0,+\infty)$ 上的恒正、连续函数。从而对 $\varphi(t)$ 求导,有

$$\frac{d\varphi}{dt} = \frac{\sqrt{1 + 4t^2}g(t) \int_0^t g(r) dr - g(t) \int_0^t \sqrt{1 + 4r^2}g(r) dr}{\left(\int_0^t g(r) dr\right)^2}
= \frac{g(t)}{\left(\int_0^t g(r) dr\right)^2} \int_0^t \left(\sqrt{1 + 4t^2} - \sqrt{1 + 4r^2}\right) g(r) dr > 0$$

从而 $\varphi(t)$ 严格单调递增。

而由积分第一中值定理,对任意 t > 0,存在 $\xi \in [0,t]$ 使得成立

$$\varphi(t) = \frac{\int_0^t \sqrt{1 + 4r^2} g(r) \, dr}{\int_0^t g(r) \, dr} = \frac{\sqrt{1 + 4\xi^2} \int_0^t g(r) \, dr}{\int_0^t g(r) \, dr} = \sqrt{1 + 4\xi^2}$$

而当 $t \to 0^+$ 时, ξ 也趋于 0^+ , 从而 $\sqrt{1+4\xi^2}$ 趋于 1. 这就说明了 $\lim_{t\to 0^+} \varphi(t) = 1$.

▲ 练习 8.9 (Poisson 积分公式)

设单变量连续函数 $f: \mathbb{R} \to \mathbb{R}$, a,b,c 为不全为零的常数, 记 $\rho = \sqrt{a^2 + b^2 + c^2}$.

(1) 若 S 为三维空间中的单位球面 $x^2 + y^2 + z^2 = 1$, 证明如下的 **Poisson 积分公式**:

$$\iint_{S} f(ax + by + cz) dS = 2\pi \int_{-1}^{1} f(\rho t) dt$$

(2) 设 *B* 为三维空间中的单位球体 $x^2 + y^2 + z^2 \le 1$, 证明:

$$\iiint_B f\left(\frac{ax + by + cz}{\sqrt{x^2 + y^2 + z^2}}\right) dx dy dz = \frac{2}{3}\pi \int_{-1}^1 f(\rho t) dt$$

证明 (1) 令三阶矩阵 $A = \begin{pmatrix} \frac{a}{\rho} & \frac{b}{\rho} & \frac{c}{\rho} \\ * & * & * \\ * & * & * \end{pmatrix}$, 其中适当选取实数 * 使得 A 为正交矩阵。考虑变量代换

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. 注意积分区域 S 的旋转对称性,易知

$$\iint_{S} f(ax + by + cz) \, dS = \iint_{S} f(\rho u) \, dS$$

之后将 $\mathbb{R}^3 = \{(u,v,w)\}$ 中的单位球面(仍记为 S)视为绕 u 轴的旋转曲面,从而由旋转曲面的积分公式,

$$\iint_{S} f(\rho u) \, dS = \int_{-1}^{1} f(\rho u) \cdot 2\pi \sqrt{1 - u^{2}} \sqrt{1 + \left(\frac{d}{du}\sqrt{1 - u^{2}}\right)^{2}} \, du = 2\pi \int_{-1}^{1} f(\rho u) \, du$$

(2)
$$i \exists r := \sqrt{x^2 + y^2 + z^2}$$
, $i \exists r := \sqrt{x^2 + y^2 + z^2}$,

$$\iiint_B f\left(\frac{ax + by + cz}{\sqrt{x^2 + y^2 + z^2}}\right) dx dy dz = \int_0^1 dr \iint_{x^2 + y^2 + z^2 = r^2} f\left(\frac{ax + by + cz}{r}\right) dS$$

对于每个 $0 \le r \le 1$,考虑变量代换 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} u \\ v \\ w \end{pmatrix}$,再注意利用已证明的 (1),

原式 =
$$\int_0^1 dr \iint_{x^2+y^2+z^2=r^2} f\left(\frac{ax+by+cz}{r}\right) dS = \int_0^1 dr \iint_S f(au+bv+cw) \cdot r^2 dS$$

= $\int_0^1 r^2 dr \int_S f(au+bv+cw) dS = \frac{2}{3}\pi \int_{-1}^1 f(\rho u) du$

$$\iint_{T^2} \omega^2(\boldsymbol{p}) \, \mathrm{d}S$$

其中环面 $T^2 = \{(x, y, z, w) \in \mathbb{R}^4 | x^2 + y^2 = z^2 + w^2 = 1 \}.$

证明 [解] 考虑直线 ℓ 的单位方向向量 $\mathbf{n} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, 则对任意点 $\mathbf{p} = (x, y, z, w)$, 成立

$$\omega^{2}(\mathbf{p}) = |\mathbf{p}|^{2} - (\mathbf{n} \cdot \mathbf{p})^{2} = |\mathbf{p}|^{2} - \left(\frac{x + y + z + w}{2}\right)^{2}$$

考虑曲面
$$T^2$$
 的参数表示
$$\begin{cases} x=\cos\theta\\ y=\sin\theta\\ z=\cos\varphi\\ w=\sin\varphi \end{cases}$$
 , $(\theta,\varphi)\in[0,2\pi]\times[0,2\pi]$, 则面积元

$$dS = \sqrt{\det \begin{pmatrix} \frac{\partial \mathbf{p}}{\partial \theta} \cdot \frac{\partial \mathbf{p}}{\partial \theta} & \frac{\partial \mathbf{p}}{\partial \theta} \cdot \frac{\partial \mathbf{p}}{\partial \varphi} \\ \frac{\partial \mathbf{p}}{\partial \varphi} \cdot \frac{\partial \mathbf{p}}{\partial \theta} & \frac{\partial \mathbf{p}}{\partial \varphi} \cdot \frac{\partial \mathbf{p}}{\partial \varphi} \end{pmatrix}} d\theta d\varphi = d\theta d\varphi$$

再注意到对于 $p \in T^2$, 恒有 $|p|^2 = 2$, 因此

$$\begin{split} \iint_{T^2} \omega^2(\pmb{p}) \, \mathrm{d}S &= \int_0^{2\pi} \int_0^{2\pi} \left[|\pmb{p}|^2 - \frac{1}{4} (\cos \theta + \sin \theta + \cos \varphi + \sin \varphi)^2 \right] \, \mathrm{d}\theta \, \mathrm{d}\varphi \\ &= 2 \cdot 4\pi^2 - \frac{1}{4} \int_0^{2\pi} \int_0^{2\pi} 2 \left[\sin(\theta + \frac{\pi}{4}) + \sin(\varphi + \frac{\pi}{4}) \right]^2 \, \mathrm{d}\theta \, \mathrm{d}\varphi \\ &= 8\pi^2 - \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} (\sin \theta + \sin \varphi)^2 \, \mathrm{d}\theta \, \mathrm{d}\varphi \\ &= 8\pi^2 - \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} (\sin^2 \theta + \sin^2 \varphi) \, \mathrm{d}\theta \, \mathrm{d}\varphi \\ &= 8\pi^2 - \frac{1}{2} \cdot 2 \cdot 2\pi \int_0^{2\pi} \sin^2 \theta \, \mathrm{d}\theta = 6\pi^2 \end{split}$$

练习 8.11 计算五维欧氏空间 $\mathbb{R}^5 = \{(x,y,z,u,v) | x,y,z,u,v \in \mathbb{R} \}$ 当中的四维曲面

$$\Sigma: \begin{cases} x^2 + y^2 + z^2 = 1\\ u^2 + 2v^2 \le x^2 + v \end{cases}$$

的四维体积。

证明 [解] 化为累次曲面积分,有

$$\iiint_{\Sigma} dS(x, y, z, u, v) = \iint_{x^2 + y^2 + z^2 = 1} dS(x, y, z) \iint_{u^2 + 2(v - \frac{1}{4})^2 = x^2 + \frac{1}{8}} du \, dv$$

$$= \frac{\pi}{\sqrt{2}} \iint_{x^2 + y^2 + z^2 = 1} \left(x^2 + \frac{1}{8} \right) dS(x, y, z) \xrightarrow{\frac{\pi}{2} + \frac{1}{8} + \frac{\pi}{2}} \frac{\pi}{\sqrt{2}} \int_{0}^{\pi} \int_{0}^{2\pi} \left(\cos^2 \theta \cos^2 \varphi + \frac{1}{8} \right) \sin \theta \, d\theta \, d\varphi$$

$$= \frac{\pi}{\sqrt{2}} \left(\frac{1}{8} \cdot 2\pi \int_{0}^{\pi} \sin \theta \, d\theta + \int_{0}^{\pi} \cos^2 \theta \sin \theta \int_{0}^{2\pi} \cos^2 \varphi \, d\varphi \right) = \frac{7\sqrt{2}}{12} \pi^2$$

8.3 第二型曲线积分

练习 8.12 设平面曲线 $L = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = a^2 \}$, 其中 a > 0 为常数,曲线 L 取顺时针定向。计算积分:

$$\oint_{L} \sqrt{x^{2} + y^{2}} \, dx + y(xy + \ln(x + \sqrt{x^{2} + y^{2}})) \, dy$$

证明 [解] 注意到在曲线 L 上,有 $\sqrt{x^2 + y^2} = a$,从而

原式 =
$$\oint_L a \, \mathrm{d}x + y(xy + \ln(x+a)) \, \mathrm{d}y = \oint_L (xy^2 + y \ln(x+a)) \, \mathrm{d}y$$

注意积分区域的对称性, $\oint_L y \ln(x+a) \, \mathrm{d}y = 0$,从而原式 = $\oint_L xy^2 \, \mathrm{d}x$. 注意曲线 L 的定向,取 L 的定向相容的参数表示 $\left\{ \begin{array}{l} x = a \sin \theta \\ y = a \cos \theta \end{array} \right.$,从而

原式 =
$$\int_0^{2\pi} a^3 \sin\theta \cos^2\theta (-a\sin\theta) d\theta = -4a^4 \int_0^{\frac{\pi}{2}} \sin^2\theta \cos^2\theta d\theta = -\frac{a^4\pi}{4}$$

▲ 练习8.13 计算第二型曲线积分:

$$\int_{L} e^{-(x^2 - y^2)} \left[x(1 - x^2 - y^2) dx + y(1 + x^2 + y^2) dy \right]$$

其中平面曲线 L 为抛物线 $y=x^2$ 的从 (0,0) 到 (1,1) 的部分。

证明 [解] 记
$$\begin{cases} P(x,y) = e^{-(x^2-y^2)}x(1-x^2-y^2) \\ Q(x,y) = e^{-(x^2-y^2)}y(1+x^2+y^2) \end{cases}$$
 , 则容易验证

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = -2e^{-(x^2 - y^2)}xy(x^2 + y^2)$$

于是由格林公式可知原积分与从点 (0,0) 到 (1,1) 的积分路径无关。于是我们令取一条积分路径 L',使得 L' 为从 (0,0) 到 (1,1) 的线段,它具有参数方程 $\begin{cases} x=t\\y=t \end{cases}$, $(0 \le t \le 1)$. 从而有

原式 =
$$\int_{I'} P(x, y) dx + Q(x, y) dy = \int_{0}^{1} [P(t, t) + Q(t, t)] dt = \int_{0}^{1} 2t dt = 1$$

▲ 练习 8.14 给定常数 a, 考虑函数

$$I_a(r) = \int_C \frac{y \, \mathrm{d}x - x \, \mathrm{d}y}{(x^2 + y^2)^a}$$

其中曲线 C 为椭圆 $x^2 + xy + y^2 = r^2$, 定向取逆时针。试计算极限 $\lim_{r \to +\infty} I_a(r)$.

证明 曲线 C 的方程为 (x,y) $\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} = r^2$. 易知系数矩阵 $\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$ 的本征值为 $\frac{1}{2}$ 与 $\frac{3}{2}$, 从而存在某个实数 φ , 使得

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}^{-1} \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

考虑保持定向的变量替换 $\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, 则 (u,v) 位于椭圆 $C': \frac{1}{2}u^2 + \frac{3}{2}v^2 = r^2$, 并且容易验证 $u^2 + v^2 = x^2 + y^2$ 以及 $y \, dx - x \, dy = v \, du - u \, dv$. 所以有

$$I_a(r) = \int_{C'} \frac{v \, du - u \, dv}{(u^2 + v^2)^a}$$

现在,考虑曲线 C' 的服从定向的参数化 $\begin{cases} u = \sqrt{2}r\cos\theta \\ v = \frac{\sqrt{6}}{3}r\sin\theta \end{cases}$,则有

$$I_a(r) = -\frac{2\sqrt{3}r^{2-2a}}{3} \int_0^{2\pi} \frac{1}{\left(2\cos^2\theta + \frac{2}{3}\sin^2\theta\right)^a} d\theta$$

从而立刻看出, 当 a>1 时 $\lim_{r\to +\infty}I_a(r)=0$; 当 a<1 时 $\lim_{r\to +\infty}I_a(r)=-\infty$. 而当 a=1 时,

$$I_{a}(r) = -\frac{2\sqrt{3}}{3} \int_{0}^{2\pi} \frac{1}{2\cos^{2}\theta + \frac{2}{3}\sin^{2}\theta} d\theta = -4\sqrt{3} \int_{0}^{\frac{\pi}{2}} \frac{1}{3\cos^{2}\theta + \sin^{2}\theta} d\theta$$

$$\frac{t = \tan\theta}{3} - 4\sqrt{3} \int_{0}^{+\infty} \frac{1+t^{2}}{3+t^{2}} \cdot \frac{1}{1+t^{2}} dt = -4\sqrt{3} \cdot \frac{1}{\sqrt{3}} \cdot \frac{\pi}{2} = -2\pi$$

$$\Rightarrow \lim_{r \to +\infty} I_a(r) = \begin{cases} 0 & \text{如果} a > 1 \\ -\infty & \text{如果} a < 1 \\ -2\pi & \text{如果} a = 1 \end{cases}$$

注 当 a=1 时,注意 $\frac{y\,dx-x\,dy}{x^2+y^2}=d\arctan\frac{x}{y}$,从而可以利用格林公式以及在原点处"挖奇点"的标准方法来计算 $I_a(r)$.

8.4 第二型曲面积分

▲ 练习 8.15 考虑 ℝ³中的定向曲面 Σ 为区域

$$\Omega := \left\{ (x, y, z) \in \mathbb{R}^3 \middle| x > \sqrt{y^2 + z^2}, \ 1 < x^2 + y^2 + z^2 < 2 \right\}$$

的外表面, f(x) 为 \mathbb{R} 上的可微函数, 计算曲面积分

$$\iint_{\Sigma} x^3 \, dy \, dz + [y^3 + f(yz)] \, dz \, dx + [z^3 + f(yz)] \, dx \, dy$$

证明 [解] 使用 Gauss 公式,有

原式 =
$$\iiint_{\Omega} \left(\frac{\partial}{\partial x} (x^3) + \frac{\partial}{\partial y} [y^3 + f(yz)] + \frac{\partial}{\partial z} [z^3 + f(yz)] \right) dx dy dz$$

=
$$3 \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz + \iiint_{\Omega} (y + z) f'(yz) dx dy dz$$

考虑变换 $\left\{ \begin{array}{l} x' = x \\ y' = -y \end{array} \right. , \ \text{注意积分区域} \ \Omega \ \text{关于此变换对称}, \ \text{利用如此对称性易知} \\ z' = -z \end{array} \right.$

$$\iiint_{\Omega} (y+z)f'(yz) \, dx \, dy \, dz = 0$$

之后考虑球坐标变换 $\begin{cases} x = r\cos\theta \\ y = r\sin\theta\cos\varphi \text{ , 则积分区域 }\Omega\text{ 变为 }\Omega' := \left\{(r,\theta,\varphi)\middle| r\in(1,\sqrt{2}),\theta\in z=r\sin\theta\sin\varphi \right\} \end{cases}$

 $(0,\frac{\pi}{4}), \varphi \in (0,2\pi)$, 从而有

原式 =
$$3 \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz = 3 \iiint_{\Omega'} r^2 \cdot r^2 \sin \theta dr d\theta d\varphi$$

= $3 \int_{1}^{\sqrt{2}} r^4 dr \int_{0}^{\frac{\pi}{4}} \sin \theta d\theta \int_{0}^{2\pi} d\varphi = \frac{3}{5} (4\sqrt{2} - 1)(1 - \frac{\sqrt{2}}{2}) \cdot 2\pi = \frac{3\pi}{5} (9\sqrt{2} - 10)$

△ 练习 8.16 设 S 为圆柱面 $x^2 + y^2 = 4$ 介于平面 x + z = 2 和 z = 0 之间部分的外侧,试计算 曲面积分

$$\iint_{S} -y \, \mathrm{d}z \, \mathrm{d}x + (z+1) \, \mathrm{d}x \, \mathrm{d}y$$

证明 [解]注意到曲面 S 的法向量始终与 xOy 平面平行,从而由第二型曲面积分的几何意义容易 知道

$$\iint_{S} (z+1) \, \mathrm{d}x \, \mathrm{d}y = 0$$

再注意曲面 S 关于 xOz 平面的对称性,容易知道

$$\iint_{S} -y \, dz \, dx = 2 \iint_{S'} -y \, dz \, dx$$

其中 S' 是曲面 S 位于 $\{(x,y,z) | y \ge 0\}$ 的部分。考虑 S' 的与其定向相容的参数表示 (θ,z) : $\begin{cases} x = 2\cos\theta \\ y = 2\sin\theta \end{cases}$, 其中 $\theta \in [0,\pi]$, $0 \le z \le 2 - 2\cos\theta$. 因此有

$$\iint_{S} -y \, dz \, dx + (z+1) \, dx \, dy = 2 \iint_{S'} -y \, dz \, dx = -2 \iint_{S'} 2 \sin \theta \, dz \wedge (-2 \sin \theta \, d\theta)$$
$$= -8 \int_{0}^{\pi} \sin^{2} \theta \, d\theta \int_{0}^{2-2 \cos \theta} dz$$
$$= -16 \int_{0}^{\pi} \sin^{2} \theta (1 - \cos \theta) \, d\theta = -8\pi$$

8.5 \mathbb{R}^3 中的矢量分析与场论

练习 8.17 已知定义在 $\Omega := \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 1 \}$ 上的函数 f(x,y,z) 二阶可 微,且各二阶偏导数连续,并且满足 $\Delta f = \rho$,其中 $\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2} + \frac{\partial^2}{\partial z^2}$ 为 Laplace 算子, $\rho := \sqrt{x^2 + y^2 + z^2}$. 试计算

$$\iiint_{\Omega} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} \right) dx dy dz$$

证明 [解] 对于 0 < r < 1,我们记区域 $\Omega_r := \{(x,y,z) \in \mathbb{R}^3 \, \Big| \, x^2 + y^2 + z^2 \le r^2 \}$. 记 $\rho := (x,y,z) \in \mathbb{R}^3$

为位置向量,则 $\rho = \|\rho\|$. 再记 $n := \frac{\rho}{\rho}$ 为单位外法向量, dV := dx dy dz 为体积元。则有

$$\iiint_{\Omega} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} \right) dx dy dz = \iiint_{\Omega} \rho \cdot \nabla f dV = \int_{0}^{1} dr \iint_{\partial \Omega_{r}} \rho \cdot \nabla f dS$$

$$= \int_{0}^{1} r dr \iint_{\partial \Omega_{r}} \nabla f \cdot \mathbf{n} dS = \int_{0}^{1} r dr \iiint_{\Omega_{r}} \nabla \cdot \nabla f dV = \int_{0}^{1} r dr \iiint_{\Omega_{r}} \rho dV$$

$$= \pi \int_{0}^{1} r \cdot r^{4} dr = \frac{\pi}{6}$$

注 此题还有另一种漂亮的做法,由 biu 神提供:证明 [另解] 记号同上,考虑曲面积分

$$I := \iint_{\partial \Omega} \rho^2 \nabla f \cdot \boldsymbol{n} \, dS$$

一方面注意到在积分区域 $\partial\Omega$ 上始终有 $\rho=1$, 从而

$$I = \iint_{\partial \Omega} \nabla f \cdot \mathbf{n} \, dS = \iiint_{\Omega} \nabla \cdot \nabla f \, dV = \iiint_{\Omega} \rho \, dV = \int_{0}^{1} 4\pi \rho^{2} \cdot \rho \, d\rho = \pi$$

另一方面直接对 I 用 Gauss 公式计算,有

$$\begin{split} I &= \iiint_{\Omega} \nabla \cdot (\rho^2 \nabla f) \, \mathrm{d}V = \iiint_{\Omega} \left(\nabla (\rho^2) \cdot \nabla f + \rho^2 \triangle f \right) \, \mathrm{d}V \\ &= 2 \iiint_{\Omega} \rho \cdot \nabla f \, \mathrm{d}V + \iiint_{\Omega} \rho^3 \, \mathrm{d}V = 2 \iiint_{\Omega} \rho \cdot \nabla f \, \mathrm{d}V + \int_0^1 4\pi \rho^2 \cdot \rho^3 \, \mathrm{d}\rho \\ &= 2 \iiint_{\Omega} \rho \cdot \nabla f \, \mathrm{d}V + \frac{2}{3}\pi \end{split}$$

因此有

$$\iiint_{\Omega} \boldsymbol{\rho} \cdot \nabla f \, dV = \frac{1}{2} \left(I - \frac{2}{3} \pi \right) = \frac{\pi}{6}$$

△ 练习 8.18 对于 $0 < r_2 < r_1$, 计算曲线积分

$$I := \oint_L (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz$$

其中曲线 L 是曲面 $x^2+y^2+z^2=2r_1x$ 与 $x^2+y^2=2r_2x$ (z>0) 的交线,并且从点 (1,0,0) 看 L 是顺时针方向。

证明 [解] 记 Σ 为球面 $x^2 + y^2 + z^2 = 2r_1x$ 被柱面 $x^2 + y^2 = 2r_2x$ (z > 0) 围住的部分,其定向为球面外侧。对于 Σ 上的一点 (x,y,z),Σ 在该点处的外法向量 $\mathbf{n} = \frac{1}{r_1}(x - r_1,y,z)$. 记 \mathbb{R}^3 的切向量场 $\mathbf{v} = (y^2 + z^2, z^2 + x^2, x^2 + y^2)$. 于是由 Stokes 公式得

$$I = \oint_{L} \mathbf{v} \cdot d\mathbf{l} \xrightarrow{\underline{\text{Stokes}}} \iint_{\Sigma} (\nabla \times \mathbf{v}) \cdot \mathbf{n} \, dS$$
$$= \frac{2}{r_{1}} \iint_{\Sigma} \left[(y - z)(x - r_{1}) + (z - x)y + (x - y)z \right] \, dS$$
$$= -2 \iint_{\Sigma} (y - z) \, dS$$

注意曲面 Σ 关于 xOz 平面对称,从而易知 $\iint_{\Sigma} y \, dS = 0$,所以 $I = 2 \iint_{\Sigma} z \, dS$. 记 Σ' 为曲面 Σ 在 xOy 平面上的投影,则 Σ 无非是圆盘 $(x-r_2)^2 + y^2 < r_2^2$,z = 0. 再注意

$$\iint_{\Sigma} z \, dS = \iint_{\Sigma} r_1 \boldsymbol{e}_z \cdot \boldsymbol{n} \, dS = r_1 \iint_{\Sigma'} dS = \pi r_1 r_2^2$$

因此 $I = 2 \iint_{\Sigma} z \, dS = 2\pi r_1 r_2^2$.

注 多么令曲豆豆惊叹的技巧呀, 充分利用几何性质, 巧妙避开暴力计算!

△ 练习 8.19 已知 A, B 为 \mathbb{R}^3 上的光滑向量场,并且满足

$$\nabla \times \boldsymbol{B} = \frac{1}{r} (\nabla r \times \boldsymbol{A}),$$

其中 $r = \sqrt{x^2 + y^2 + z^2}$. 设 L 为以原点为中心的某球面 Σ 上的一条定向光滑简单闭曲线, τ 为曲线 L 的与定向相容的单位切向量场。证明:

$$\oint_L \mathbf{A} \cdot \boldsymbol{\tau} \, \mathrm{d} s = 0.$$

证明 由题设可知

$$\mathbf{0} = \nabla \cdot (\nabla \times \mathbf{\textit{B}}) = \nabla \cdot \left(\frac{\mathbf{\textit{r}}}{r^2} \times \mathbf{\textit{A}}\right) = \left(\nabla \times \frac{\mathbf{\textit{r}}}{r^2}\right) \cdot \mathbf{\textit{A}} - \frac{\mathbf{\textit{r}}}{r^2} \cdot (\nabla \times \mathbf{\textit{A}}) = -\frac{\mathbf{\textit{r}}}{r^2} \cdot (\nabla \times \mathbf{\textit{A}})$$

因此在球面 Σ 上成立 ($\nabla \times A$) · n = 0, 其中 n 为球面的单位外法向量。记 Σ' 为球面 Σ 被曲线 L 所 围成的部分,且 Σ' 的外侧与 L 定向相容。从而由 Stokes 公式得到

$$\oint_{L} \mathbf{A} \cdot \mathbf{\tau} \, \mathrm{d}s = \iint_{\Sigma'} \nabla \times \mathbf{A} \cdot \mathbf{n} \, \mathrm{d}\sigma = 0.$$