Introduction to Statistical Computing

Seyoung Park

October 30, 2018

Objective

- Linear Regression Analysis with R
- ► Learn "Estimation", "Inference" and "Shrinkage methods (Lasso regression, Ridge regression)" with linear regression model

Install "faraway" package

All datasets used in this topic are from "faraway" package.

Reference book: "Linear models with R" by Julian J. Faraway

```
install.packages("faraway")
library("faraway")
```

Regression Analysis

- ► Regression analysis: used for modeling the relationship between explanatory variables (X) and a dependent variable (Y)
- ▶ Regression model: Y = f(X). Here $f(\cdot)$ explains the regression relationship
- ► Example 1: X: height, Y: weight
- Example 2: X: Math score, Y: total score

Simple Linear Regression

- ▶ Simple linear regression model is based on the following linear model: $Y = \beta_0 + \beta_1 X$
- ▶ Simple linear regression analysis: linear regression model with a single explanatory variable (X), i.e. $Y = \beta_0 + \beta_1 X + \epsilon$. Here ϵ represents a random error, e.g. $\epsilon \sim N(0, \sigma^2)$
- ▶ Given n data pairs $\{(x_i, y_i), i = 1, \dots, n\}$, we can write

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where ϵ_i s are indepedent random errors.

- ▶ β_0 and β_1 are unknown parameters
- ▶ How to interpret β_0 and β_1 ? β_1 is the effect of X on Y.
- ▶ Is the obtained β_1 statistically significant?

"stat500" Example

```
# use "stat500" data
# stat500 is 55 by 4 dimensional data
library("faraway")
data(stat500)
head(stat500)
```

```
## midterm final hw total
## 1 24.5 26.0 28.5 79.0
## 2 22.5 24.5 28.2 75.2
## 3 23.5 26.5 28.3 78.3
## 4 23.5 34.5 29.2 87.2
## 5 22.5 30.5 27.3 80.3
## 6 16.0 31.0 27.5 74.5
```

```
# We can specify column/row names using
# "colnames" and "rownames"
```

```
# scatter plot
plot(final ~ midterm, data = stat500)
```


Fitted linear regression model is final = 15.05 + 0.56 midterm

```
# apply linear regression model
lm(final ~ midterm, data = stat500)
##
## Call:
## lm(formula = final ~ midterm, data = stat500)
##
  Coefficients:
## (Intercept) midterm
##
      15.0462
                    0.5633
```

```
plot(final ~ midterm, data = stat500) # scatter plot
abline(lm(final ~ midterm, data = stat500), col = "red")
```



```
# scatter plot and fitted regression line (version2)
plot(final ~ midterm, data = stat500) # scatter plot
fit = lm(final ~ midterm, data = stat500)
abline(coef(fit), col = "red", lty = 2)
```



```
fit = lm(final \sim midterm, data = stat500)
# Check quantities in the "fit"
names(fit)
    [1] "coefficients" "residuals"
##
                                         "effects"
##
   [5] "fitted.values" "assign"
                                         "qr"
##
    [9] "xlevels"
                        "call"
                                         "terms"
# detailed results
summary(fit)
##
```

```
## Call:
## lm(formula = final ~ midterm, data = stat500)
##
## Residuals:
```

Min 1Q Median 3Q Max ## -9.932 -2.657 0.527 2.984 9.286

"d:

"mo

Multiple Linear Regression

- Multiple linear regression analysis is based on multiple explanatory variables X_1, X_2, \dots, X_p and $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$
- ▶ Given *n* data pairs $\{(x_{i1}, \dots, x_{ip}, y_i), i = 1, \dots, n\}$, we can write

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i,$$

where ϵ_i s are indepedent random errors.

- ▶ How to interpret β_1, \dots, β_p ? β_j is the effect of X_j on Y when the other p-1 explanatory variables are fixed.
- ► Is the obtained linear regression model statistically significant? using F-test
- ▶ Are the obtained β_j s statistically significant? using t-test or F-test
- ► How to analyze when there are too many explanatory variables (i.e. *p* is too large) ?

"stat500" Example

Fitted linear regression model is final = 16.81 + 0.57 midterm -0.08 hw

```
# use "stat500" data
# stat500 is 55 by 4 dimensional data
data(stat500)
lm(final ~ midterm + hw, data = stat500)
```

```
##
## Call:
## lm(formula = final ~ midterm + hw, data = stat500)
##
## Coefficients:
## (Intercept) midterm hw
## 16.81061 0.58179 -0.08157
```

##

```
## Call:
## lm(formula = final ~ midterm + hw, data = stat500)
##
## Residuals:
      Min 1Q Median
                                3Q
                                       Max
##
## -10.0388 -2.5964 0.3714 3.0063 9.3497
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 16.81061 4.08112 4.119 0.000137 ***
## midterm 0.58179 0.12445 4.675 2.12e-05 ***
## hw -0.08157 0.14916 -0.547 0.586836
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
                                                14 / 83
##
```

summary(lm(final ~ midterm + hw, data = stat500))

How to estimate coefficients? Least squares

- ▶ Data: $\{(x_{i1}, \dots, x_{ip}, y_i), i = 1, \dots, n\}$
- ► Find $\beta_0, \beta_1, \dots, \beta_p$ that minimizes the sum of squared residuals (SSR):

minimize
$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2$$

In vector form

minimize
$$\sum_{i=1}^{n} \|y_i - x_i'\beta\|^2,$$

where
$$\beta = (\beta_0, \beta_1, \cdots, \beta_p)$$
 and $x_i = (1, x_{i1}, \cdots, x_{ip})'$

▶ The obtained minimizer $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$ is called the "Ordinary Least Squares" estimator (OLS estimator) for β .

OLS estimator

Let X is an n by p+1 matrix and y is an n-dimensional vector such that

$$X = \begin{bmatrix} -x_1 - \\ -x_2 - \\ \vdots \\ -x_n - \end{bmatrix} \quad \text{and} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Note that the first column of X are all ones!

▶ Minimize $||y - X\beta||^2$ is equivalent to

$$X^T X \hat{\beta} = X^T y \Rightarrow \hat{\beta} = (X^T X)^{-1} X^T y$$

- ▶ Fitted (predicted) values are $\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty$
- $\vdash H = X(X^TX)^{-1}X^T$ are called the hat-matrix

OLS estimator ("stat500" Example)

```
# still consider stat500
data(stat500)
# select "midterm" and "hw" for X
# select "final" for y
X = stat500[,c(1,3)]; y = stat500[,2]
# the first column of X must be all ones!
X = cbind(rep(1, nrow(X)), X)
# X and y must be matrix/vector for computation
X = as.matrix(X); y = as.matrix(y)
# OLS estimator
OLS = solve(t(X)%*%X, t(X)%*%y)
```

OLS estimator ("stat500" Example)

```
# confirm that two results are the same!
OT.S
##
                         [,1]
## rep(1, nrow(X)) 16.81060740
## midterm
                0.58178957
                  -0.08156661
## hw
lm(final ~ midterm + hw, data = stat500)$coefficients
## (Intercept) midterm
                                   hw
## 16.81060740 0.58178957 -0.08156661
```

Goodness of fit

- It is essential to measure how well the linear regression model fits the data
- ▶ R² ("R-squared") is one popular measure. Sometimes called the "coefficient of determination" or "percentage of variance explained"
- ► Total sum of squares:

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2, \quad \bar{y} = \sum_{i=1}^{n} y_i / n$$

Regression sum of squares, or called the explained sum of squares:

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2, \quad \hat{y}_i = x_i' \hat{\beta}$$

▶ Sum of squares of residuals (related to unexplained variance):

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Goodness of fit

- ▶ It holds that SSR + SSE = SST. Why?
- ► R² (R-squared):

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- ▶ R^2 has ranges from 0 to 1. 0 indicates that $\hat{y}_i = \bar{y}$. On the other hand, 1 indicates $\hat{y}_i = y_i$, i.e. linear regression predictions perfectly fit the data (or perfectly explains the observed variation)
- ▶ Larger R² indicates a better fit to the data
- For simple linear regression (i.e. p = 1), R^2 is equal to r^2 which is a square of the sample correlation between X and Y

Adjusted R^2

▶ Note that R², i.e.,

$$R^2 = 1 - \frac{SSE}{SST}$$

is based on biased estimates of the variances of the dependent variable and of the errors. Why?

▶ Adjusted *R*² is unbiased estimator:

Adjusted
$$R^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)} = 1 - (1-R^2)\frac{n-1}{n-p-1}$$

where n-1 and n-p-1 represent degree of freedom of the estimate of the variance of the dependent variable and of the estimate of the error variance, respectively

"Galapagos Islands" Example

```
# use "Galapagos" data
# "gala" is 30 by 7 dimensional data
library("faraway")
data(gala)
head(gala)
```

##		Species	Endemics	Area	${\tt Elevation}$	${\tt Nearest}$	S
##	Baltra	58	23	25.09	346	0.6	
##	Bartolome	31	21	1.24	109	0.6	2
##	Caldwell	3	3	0.21	114	2.8	Ę
##	Champion	25	9	0.10	46	1.9	4
##	Coamano	2	1	0.05	77	1.9	
##	Daphne.Major	18	11	0.34	119	8.0	

Fitted linear regression model is

```
Species = 7.08 - 0.02 Area + 0.32 Elevation - 0.23 Scruz - 0.07 Adjacent
```

```
# Fit a linear model
fit = lm(Species ~ Area+Elevation+Scruz+Adjacent, gala)
fit
##
## Call:
## lm(formula = Species ~ Area + Elevation + Scruz + Adjace
##
## Coefficients:
## (Intercept)
                     Area
                             Elevation
                                             Scruz
##
      7.07538 -0.02398 0.31957 -0.23936
```

```
# compute R-squared
y = gala$Species
R2 = 1 - deviance(fit) / sum((y-mean(y))^2)
R.2.
## [1] 0.7658462
# compute Adjusted R-squared
n=30; p=4
R2_{adjusted} = 1 - (1-R2)*(n-1)/(n-p-1)
R2 adjusted
## [1] 0.7283816
# "Multiple R-squared" is the R-squared value
summary(fit)
```

##

```
# Fit a linear model by adding one more variable
fit2 = lm(Species ~ Area+Elevation+Scruz+Adjacent+
           Nearest, gala)
fit2
##
## Call:
## lm(formula = Species ~ Area + Elevation + Scruz + Adjace
      Nearest, data = gala)
##
##
  Coefficients:
## (Intercept)
                      Area
                             Elevation
                                              Scruz
##
     7.068221 -0.023938 0.319465 -0.240524
##
     Nearest
##
     0.009144
```

```
# compute R-squared
y = gala$Species
R2 = 1 - deviance(fit2) / sum((y-mean(y))^2)
R.2.
## [1] 0.7658469
# compute Adjusted R-squared
n=30; p=5
R2_{adjusted} = 1 - (1-R2)*(n-1)/(n-p-1)
R2 adjusted
## [1] 0.7170651
# "Multiple R-squared" is the R-squared value
summary(fit2)
```

##

Inference of model

- Are any of the p predictors X_1, \dots, X_p useful when predicting the dependent variable Y?
- Consider the following hypothesis test:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$
 versus $H_a: \beta_j \neq 0$ for some j

Corresponding F-statistics is

$$F = \frac{SSR/p}{SSE/(n-p-1)} = \frac{MSR}{MSE},$$

where MSR and MSE are "regression mean square" and "mean square error", respectively

F-statistic (Analysis of Variance)

Table 1: Analysis of variance table

Source of variation	df	Sum of squares	Mean of squares	F-statistic
Regression	р	$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	$MSR = \frac{SSR}{p}$	$F = \frac{MSR}{MSE}$
Residual	n - p -1	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$MSE = \frac{SSE}{n-p-1}$	
Total	n - 1	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$	•	

- ▶ To compute p-value, we refer to $F_{p,n-p-1}$ which represent the F-distribution with degress of freedom (p, n-p-1)
- Null hypothesis H_0 is rejected if the F value computed from the data is greater than the critical value. More specifically, given the significance level α such as 0.01, 0.05, 0.1, check whether $F > F_{1-\alpha}^{-1}(p,n-p-1)$ or not, where $F_{1-\alpha}^{-1}(p,n-p-1)$ is the $1-\alpha$ quantile of the $F_{p,n-p-1}$ distribution

F-statistic (Analysis of Variance)

- ▶ Or Null hypothesis H_0 is rejected if the p-value computed from the data is less than the significance level α . More specifically, check whether $P(F(p, n-p-1) > F) < \alpha$ or not
- ▶ Larger F would means rejection of the null hypothesis H_0
- ▶ F value is related to R^2 :

$$F = \frac{R^2}{1 - R^2} \frac{n - p - 1}{p}$$

What if we get a very small F statistic? We can try nonlinear transformation variables or apply other models: e.g. x_i ← log(x_i + 1)

"Galapagos Islands" Example

SSE = deviance(fit)

SSR = SST - SSE MSR = SSR/p Fstat = MSR/MSE

```
fit = lm(Species ~ Area+Elevation+Scruz+Adjacent, gala)
# Check quantities in the "fit"
names(fit)
##
    [1] "coefficients" "residuals"
                                        "effects"
## [5] "fitted.values" "assign"
                                        "ar"
                                                        "d:
## [9] "xlevels" "call"
                                        "terms"
                                                        "mo
# Compute F-Statistic
n=30; p=4
SST = sum((gala$Species - mean(gala$Species))^2)
```

MSE = SSE/fit\$df.residual #fit\$df.residual = n-p-1

This means we reject HO

```
# Compare with critical value when alpha = 0.05
crit_value = qf(0.95, p, n-p-1)
Fstat > crit value
## [1] TRUE
# Fstat > crit_value! This means we reject HO
# Compute p-value
pvalue = 1-pf(Fstat, p, n-p-1)
pvalue < 0.05
## [1] TRUE
# pvalue < significance level!
```

Testing single predictor

- Suppose that the previous hypotheis test indicates the rejection of H₀, i.e., some predictors are useful when predicting Y under the linear regression model
- Now we are interested in whether one particular explanatory variable (say β_j) can be dropped from the linear regression model, i.e. consider

$$H_0: \beta_j = 0$$
 versus $H_a: \beta_j \neq 0$

▶ This can be rewritten as

$$H_0:M_1\quad\text{versus}\quad H_a:M_2,$$
 where $M_1=\{x_1,\cdots,x_{j-1},x_{j+1},\cdots,x_p\}$ and $M_2=\{x_1,\cdots,x_p\}$

Comparing two nested models (general version)

- ▶ Consider two linear regression models M_1 and M_2 satisfying $M_1 \subset M_2$, and $|M_1| = p_1$ and $|M_2| = p_2$
- ▶ Let SSE_1 and SSE_2 be the sum of squares of residuals of the models M_1 and M_2 , respectively:
- Then F-Statistic is

$$F = \frac{(SSE_1 - SSE_2)/(p_2 - p_1)}{SSE_2/(n - p_2 - 1)}$$

▶ Referred distribution is $F_{p_2-p_1,n-p_2-1}$

Comparing two nested models (testing single variable version)

▶ Now revisit the following "testing single variable" problem:

$$H_0: \beta_j = 0$$
 versus $H_a: \beta_j \neq 0$

- $|M_1| := p_1 = p 1$ and $|M_2| := p_2 = p$
- ▶ Recall that SSE_1 and SSE_2 are the sum of squares of residuals of the models M_1 and M_2 , respectively:
- Then F-Statistic is

$$F = \frac{(SSE_1 - SSE_2)}{SSE_2/(n-p-1)}$$

▶ Referred distribution is $F_{1,n-p-1} = {}^{d} [t(n-p-1)]^2$, where t(n-p-1) represents Student's t-distribution with a degree of freedom n-p-1

"savings" Example

```
# use "savings" data
# savings is an old economic dataset on 50
# different countries (50 by 5 dimensional data)
library("faraway")
data(savings)
head(savings)
```

```
## Australia 11.43 29.35 2.87 2329.68 2.87 ## Austria 12.07 23.32 4.41 1507.99 3.93 ## Belgium 13.17 23.80 4.43 2108.47 3.82 ## Bolivia 5.75 41.89 1.67 189.13 0.22 ## Brazil 12.88 42.19 0.83 728.47 4.56 ## Canada 8.79 31.72 2.85 2982.88 2.43
```

```
# We can specify column/row names using
# "colnames" and "rownames"
```

"savings" Example (cont.)

savings

Savings rates in 50 countries

Description

The savings data frame has 50 rows and 5 columns. The data is averaged over the period 1960-1970.

Usage

data(savings)

Format

This data frame contains the following columns:

sr savings rate - personal saving divided by disposable income pop15 percent population under age of 15

pop75 percent population over age of 75 dpi per-capita disposable income in dollars

ddpi percent growth rate of dpi

Details

Now also appears as LifeCycleSavings in the datasets package

Source

Belsley, D., Kuh. E. and Welsch, R. (1980) "Regression Diagnostics" Wiley.

"savings" Example (cont.)

Fitted linear regression model is sr = 28.57 - 0.46pop15 - 1.69pop75 - 0.0003dpi + 0.41ddpi

```
# apply linear regression model
fit2 = lm(sr \sim ., data = savings)
# Compute F-Statistic
n=nrow(savings); p=ncol(savings)-1
SST2 = sum((savings$sr - mean(savings$sr))^2)
SSE2 = deviance(fit2)
MSE2 = SSE2/fit2$df.residual #fit$df.residual = n-p-1
SSR2 = SST2 - SSE2
MSR2 = SSR2/p
Fstat2 = MSR2/MSE2
```

"savings" Example (cont.)

Is pop75 significant in the full model?

```
fit2 = lm(sr \sim ., data = savings)
fit1 = lm(sr \sim pop15 + dpi + ddpi, savings)
SSE1 = deviance(fit1)
Fstat = (SSE1-SSE2)/(SSE2/(n-p-1))
1-pf(Fstat,1,n-p-1) # this is the p-value
## [1] 0.1255298
# compute p-value using t-distribution
2*pt(-1.561,n-p-1)
## [1] 0.1255297
```

"savings" Example (cont.)

We can perform the hypothesis testing using "anova" function

```
# compare two tested model
anova(fit1, fit2)
## Analysis of Variance Table
##
## Model 1: sr ~ pop15 + dpi + ddpi
## Model 2: sr ~ pop15 + pop75 + dpi + ddpi
    Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1
       46 685.95
## 2 45 650.71 1 35.236 2.4367 0.1255
```

Questions

1. Perform the following hypothesis test:

 H_0 : both dpi and ddpi are not significant versus H_a : All explanatory variables are significant

2. Perform the following hypothesis test:

 H_0 : both dpi and ddpi are not significant versus H_a : pop15, pop75, ddpi are all significant

Questions (cont.)

```
# [1.] compare two tested model
fit2 = lm(sr \sim ., data = savings)
fit1 = lm(sr \sim pop15 + pop75, savings)
anova(fit1, fit2)
## Analysis of Variance Table
##
## Model 1: sr ~ pop15 + pop75
## Model 2: sr ~ pop15 + pop75 + dpi + ddpi
## Res.Df RSS Df Sum of Sq F Pr(>F)
        47 726.17
## 1
## 2 45 650.71 2 75.455 2.609 0.08471 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Questions (cont.)

[2.] compare two tested model

```
fit2 = lm(sr \sim pop15 + pop75 + ddpi, data = savings)
fit1 = lm(sr \sim pop15 + pop75, savings)
anova(fit1, fit2)
## Analysis of Variance Table
##
## Model 1: sr ~ pop15 + pop75
## Model 2: sr ~ pop15 + pop75 + ddpi
## Res.Df RSS Df Sum of Sq F Pr(>F)
       47 726.17
## 1
## 2 46 652.61 1 73.562 5.1851 0.02748 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Testing a subspace

One can consider the following hypothesis test:

$$H_0: \beta_{pop15} = \beta_{pop75} \quad \text{versus} \quad H_a: \beta_{pop15} \neq \beta_{pop75}$$

$$\text{fit1} = \text{lm}(\text{sr} \sim \text{I(pop15 + pop75)} \quad + \text{dpi + ddpi, savings})$$

$$\text{fit2} = \text{lm}(\text{sr} \sim \text{pop15 + pop75 + dpi + ddpi, data} = \text{savings})$$

$$\text{anova}(\text{fit1,fit2})$$

```
## Analysis of Variance Table
##
## Model 1: sr ~ I(pop15 + pop75) + dpi + ddpi
## Model 2: sr ~ pop15 + pop75 + dpi + ddpi
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 46 673.63
## 2 45 650.71 1 22.915 1.5847 0.2146
```

Testing a subspace

One can consider the following hypothesis test:

```
H_0: \beta_{pop75} = 4\beta_{pop15} versus H_a: \beta_{pop15} \neq 2\beta_{pop75}
```

```
fit1 = lm(sr ~ I(1*pop15 + 4*pop75) + dpi + ddpi, savings)
anova(fit1,fit2)
```

```
## Analysis of Variance Table
##
## Model 1: sr ~ I(1 * pop15 + 4 * pop75) + dpi + ddpi
## Model 2: sr ~ pop15 + pop75 + dpi + ddpi
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 46 651.33
## 2 45 650.71 1 0.61849 0.0428 0.8371
```

Testing a subspace

One can consider the following hypothesis test:

```
H_0: \beta_{ddpi} = 0.5 versus H_a: \beta_{ddpi} \neq 0.5
```

```
fit1 = lm(sr ~ pop15+pop75+dpi+offset(0.5*ddpi), savings)
anova(fit1,fit2)
```

```
## Analysis of Variance Table
##
## Model 1: sr ~ pop15 + pop75 + dpi + offset(0.5 * ddpi)
## Model 2: sr ~ pop15 + pop75 + dpi + ddpi
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 46 653.78
## 2 45 650.71 1 3.0635 0.2119 0.6475
```

Questions

Q1 . Perform the following hypothesis test:

 H_0 : $\beta_{pop75} = 4\beta_{pop15}$ and ddpi = 0.5 versus H_a : full model

Caution when using multiple constraints in the "lm" function

Consider the following hypothesis test:

```
H_0 : eta_{pop75} = 4eta_{pop15} and eta_{dpi} = eta_{pop15} versus H_a : full model
```

```
# which linear model is correct between the following two?
fit1 = lm(sr~I(pop15+4*pop75)+I(dpi+pop15)+ddpi,savings)
fit11 = lm(sr~I(pop15+4*pop75+dpi)+ddpi,savings)
```

Caution when using multiple constraints (cont.)

The model "fit1" is equivalent to the following linear model:

$$y = (X_{pop15} + 4X_{pop75})\beta_1 + (X_{pop15} + X_{dpi})\beta_2 + X_{ddpi}\beta_3 + \epsilon$$

= $X_{pop15}(\beta_1 + \beta_2) + X_{pop75}(4\beta_1) + X_{dpi}\beta_2 + X_{ddpi}\beta_3$,

which implies

$$\beta_{\textit{pop}15} = \beta_1 + \beta_2, \ \beta_{\textit{pop}75} = 4\beta_1, \ \beta_{\textit{dpi}} = \beta_2, \ \beta_{\textit{ddpi}} = \beta_3.$$

This can be rewritten as the following compact form:

$$\beta_{pop15} = \beta_{pop75}/4 + \beta_{dpi},$$

which is not eqivalent to the null hypothesis

$$H_0: \beta_{pop75} = 4\beta_{pop15} = 4\beta_{dpi}$$

Penalization methods (Shrinkage methods)

Recall that linear regression is based on minimizing residual sum of squares:

$$\mathsf{minimize}_{\beta} \ \sum_{i=1}^n (y_i - x_i'\beta)^2$$

- ▶ The obtained minimizer $\hat{\beta}$ (OLS estimator) is generally a good estimator of β .
- ▶ However, (1). when the number of explanatory variables (p) is much larger than sample size (n); (2). when columns of the design matrix X are highly correlated, obtained $\hat{\beta}$ can be unstable and often less interpretable

Penalization methods (Shrinkage methods)

- ▶ Shrnkage methods give a penalty on the coefficient (β) in the optimization problem such that the obtained coefficient $(\hat{\beta})$ can't be too large!
- Shrnkage methods generally solve

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + Penalty(\beta),$$

where $Penalty(\cdot)$ is a function that penalizes β

▶ In this class, we will learn "Ridge penalty" and "Lasso penalty"

Ridge regression

- ▶ Ridge regression is based on limiting $\sum_{j=1}^{p} \beta_{j}^{2}$
- ▶ Suppose that $X \in \mathbb{R}^{n \times p}$ is columnwise centered. Ridge regression solves

$$\mathsf{minimize}_{\beta} \ \sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^p \beta_j^2,$$

where $\lambda > 0$ is a user-determined tuning parameter that controls the tradeoff between fit and penalty

▶ Ridge regression has a closed form solution:

$$\hat{\beta}_{ridge}(\lambda) = (X'X + \lambda I_{p \times p})^{-1}X'y,$$

where $I_{p \times p}$ is a p by p identity matrix

```
library("MASS")
# ridge regression
lm.ridge(sr ~ ., data= savings, lambda = 1)
```

Ridge regression

Apendix

```
# Ridge regression
lam_set = seq(0, 1000, 1)
result = lm.ridge(sr ~ .,data=savings,lambda=lam_set)
plot(lam set, result$coef["pop15",],type = "1",
  xlim=range(lam_set), ylim=range(result$coef), lwd=2,
xlab=expression(lambda),ylab="Coefficients",cex.lab=2)
lines(lam_set,result$coef["pop75",],col="blue",lty=2,lwd=2]
lines(lam set,result$coef["dpi",],col="red",lty=3,lwd=2)
lines(lam set,result$coef["ddpi",],col="green",lty=4,lwd=2
abline(h = 0, lwd = 2)
# Add legend
legend(300,-1,legend=expression(beta[pop15],beta[pop75],
  beta[dpi],beta[ddpi]),
col=c("black", "blue", "red", "green"), lty=1:4, cex=1)
```

Ridge regression with orthonormal design matrix

In the case of an orthonormal design matrix $X \in \mathbb{R}^{n \times p}$, i.e, $X'X = I_{p \times p}$,

$$\hat{\beta}^{OLS} = X'y, \quad \hat{\beta}^{ridge} = X'y/(1+\lambda),$$

which clearly illustrates the shrinkage effect of Ridge regression

▶ Ridge regression produce the effect of shrinking the estimates of β toward zero that cause a bias but reduce a variance of the estimator. Think about $MSE(\hat{\beta}) = Bias(\hat{\beta})^2 + Variance(\hat{\beta})!$

Lasso regression

- ▶ Lasso regression is based on limiting $\sum_{j=1}^{p} |\beta_j|$
- Lasso regression solves

minimize_{\beta}
$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|,$$

where $\lambda > 0$ is a user-determined tuning parameter that controls the tradeoff between fit and penalty

- Lasso regression doesn't have a closed form solution
- Compared to Ridge regression, Lasso regression provides a more sparse solution

Lasso regression with orthonormal design matrix

In the case of an orthonormal design matrix $X \in \mathbb{R}^{n \times p}$, i.e, $X'X = I_{p \times p}$,

$$\begin{split} \hat{\beta}_{j}^{Lasso} &= \quad \hat{\beta}_{j}^{OLS} - \lambda \quad \text{if } \hat{\beta}_{j}^{OLS} > \lambda \\ &= \quad 0 \quad \text{if } \lambda \leq \hat{\beta}_{j}^{OLS} \leq \lambda \\ &= \quad \hat{\beta}_{j}^{OLS} + \lambda \quad \text{if } \hat{\beta}_{j}^{OLS} < -\lambda \end{split}$$

which clearly illustrates the shrinkage effect of Lasso regression

Lasso regression has the effect of making the estimates of some of β_j s exactly zero that cause a bias but reduce a variance of the estimator.

Lasso and Ridge regression

```
library(glmnet)
# Lasso regression
X = as.matrix(savings[,2:5])
y = as.matrix(savings[,1])
lam_set1 = seq(0, 100, 1)
lam set2 = seg(0, 10, 0.1)
# Lasso and Ridge regression
ridge=glmnet(X,y,family="gaussian",alpha=0,lambda=lam_set1]
lasso=glmnet(X,y,family="gaussian",alpha=1,lambda=lam_set2)
```

Ridge regression (not efficient)

Appendix (not efficient)

```
par(mfrow = c(1,2))
# ridge regression
plot(lam_set1, rev(ridge$beta[1,]),type = "l",
  xlim=range(lam_set1), ylim=range(ridge$beta), lwd=2,
main = "Ridge",
xlab=expression(lambda),ylab="Coefficients",cex.lab=2)
lines(lam set1,rev(ridge$beta[2,]),col="blue",lty=2,lwd=2)
lines(lam set1,rev(ridge$beta[3,]),col="red",lty=3,lwd=2)
lines(lam_set1,rev(ridge$beta[4,]),col="green",lty=4,lwd=2)
abline(h = 0. lwd = 2)
# Add legend
legend(20,-0.5,legend=expression(beta[pop15],beta[pop75],
  beta[dpi],beta[ddpi]),
col=c("black", "blue", "red", "green"), lty=1:4, cex=1)
```

Ridge/Lasso regression (efficient)

Ridge/Lasso regression (efficient)

```
par(mfrow = c(1,2))
names = c("Ridge", "Lasso");result = list(ridge, lasso)
lam = list(lam_set1,lam_set2)
for (i in 1:2){
plot(lam[[i]], rev(result[[i]]$beta[1,]),type = "l",
  xlim=range(lamd[[i]]),ylim=range(result[[i]]$beta),
main = names[i],
xlab=expression(lambda),ylab="Coefficients",cex.lab=2)
lines(lam[[i]],rev(result[[i]]$beta[2,]),col="blue",lty=2)
lines(lam[[i]],rev(result[[i]]$beta[3,]),col="red",lty=3)
lines(lam[[i]],rev(result[[i]]$beta[4,]),col="green",lty=4]
abline(h = 0, lwd = 2)
# Add legend
legend("bottomright", legend=expression(beta[pop15],
    beta[pop75], beta[dpi],beta[ddpi]),
col=c("black", "blue", "red", "green"), lty=1:4, cex=1)}
                                                       61/83
```

Sparsity assumption on the coefficient when p>n

- When p > n, i.e. high-dimensional case, β is not uniquely defined, which cause an identifiability issue. Why?
- ▶ With a sparsity condition $\|\beta\|_0 \le s$ for some s < n, we could estimate β
- "Sparsity assumption" is essential in the high-dimensional model

```
# Generate X and y using normal distribution
set.seed(2000)
n = 100; p = 50
X = matrix(rnorm(n*p), ncol = p)
X = cbind(rep(1,n), X)
# column normalizing
norm vec = sqrt(apply(X^2, 2, mean))
X = X / matrix(rep(norm_vec, each = n), nrow = n)
# Check the norm of columns
\#sgrt(apply(X^2, 2, mean))
# Generate a dependent variables y
beta = runif(p+1)
\#beta[6:p+1] = 0
y = X \% *\% beta + 0.1 * rnorm(n)
```

```
# Apply Least squares
ls_beta = lm(y \sim X[,2:(p+1)])$coefficients
# Apply Ridge regression
lam Ridge = seq(0, 20, 0.05)
ridge=glmnet(X[,2:(p+1)],y,family="gaussian", alpha=0,
             lambda=lam Ridge)
ridge beta = rbind(ridge$a0,ridge$beta)
# Apply Lasso regression
lam_Lasso = seq(0, 0.5, 0.01)
lasso=glmnet(X[,2:(p+1)],y,family="gaussian", alpha=1,
             lambda=lam Lasso)
lasso beta = rbind(lasso$a0,lasso$beta)
```

```
# Analyzing estimation errors
err ls = sqrt(sum(ls beta - beta)^2)
err ridge = NULL
for (i in 1:length(lam Ridge)){
  err ridge=c(err ridge,sqrt(sum(ridge beta[,i]-beta)^2))}
err_ridge = rev(err_ridge)
err lasso = NULL
for (i in 1:length(lam_Lasso)){
  err_lasso=c(err_lasso,sqrt(sum(lasso_beta[,i]-beta)^2))}
err_lasso = rev(err_lasso)
```


Appendix

```
# Drawing error plots
par(mfrow = c(1,2))
names = c("Errors plot (Ridge)", "Errors plot (Lasso)");
result = list(err ridge, err lasso);
lam = list(lam Ridge,lam Lasso)
for (i in 1:2){
# ridge regression
plot(lam[[i]], result[[i]], type = "1",
xlim=range(lam[[i]]), ylim=range(result[[i]]),lwd=2,
main = names[i],
xlab=expression(lambda),ylab="Estimation errors")
points(0,err ls, col = "blue")
# Add legend
legend("bottomright",legend=c(names[[i]],"Least squares"),
col=c("black","blue"),lty=c(1,0),pch = c("","o"),cex=1)
```

Make a function

```
# load the uploaded "generating plot" function instead
generating_plot = function(X, y, beta, lam_Ridge, lam_Lasse
# Apply Least squares
ls_beta = lm(y \sim X[,2:(p+1)])$coefficients
# Apply Ridge regression
ridge=glmnet(X[,2:(p+1)],y,family="gaussian", alpha=0, lam
ridge_beta = rbind(ridge$a0,ridge$beta)
# Apply Lasso regression
lasso=glmnet(X[,2:(p+1)],y,family="gaussian", alpha=1, lam
lasso_beta = rbind(lasso$a0,lasso$beta)
# Analyzing estimation errors
err ls = sqrt(sum(ls beta - beta)^2)
```

Comparisons of regression methods (Sparse model case)

```
# Generate a dependent variables y with a sparse beta!
beta[6:p+1] = 0
v = X \% *\% beta + 0.1 * rnorm(n)
lam_Ridge = seq(0, 20, 0.05)
lam Lasso = seq(0, 0.5, 0.005)
results = generating plot(X,y,beta,lam Ridge,lam Lasso)
# We can observe that Lasso gives more accurate solutions
# with some penalty parameter lambda when underlying beta
# is sparse!
# results$lasso_beta[,3] gives a sparse solution and
# provides the most accurate solution!
```

Comparisons of regression methods (Sparse model case)

Comparisons of regression methods (highly correlated matrix X)

```
## Now we consider correlated design matrix case
set.seed(3000)
n = 100; p = 70
# Generating covariance (correlation) matrix
sigma = 0.99
A = array(0,c(p,p))
for (i in 1:p){for (j in 1:p){A[i,j] = sigma^(abs(i-j))}}
Z = matrix(rnorm(n*p), ncol = p)
# The generating X has independent rows but dependent
# columns whose population covariance matrix is A
# library("expm")
X = Z \%*\%  sqrtm(A); X = cbind(rep(1,n), X)
beta = c(rep(1,5), rep(0, p-4))
y = X \% *\% beta + 0.1 * rnorm(n)
lam Ridge = seq(0, 20, 0.05); lam Lasso = seq(0, 1, 0.005)
results = generating_plot(X, y, beta, lam_Ridge, lam_Lasso)
```

Comparisons of regression methods (highly correlated matrix X)

Model selection criterion

- Among many obtained linear models (by using different λ values), we could choose the best one based on some criterion
- "R-squared" and "Adjusted R-squared" are one of such criteria, but not often used in the high-dimensional model
- More popular criterion are "Akaike information criterion" (AIC) and "Bayesian information criterion" (BIC)

AIC and BIC

- AIC/BIC consider trade-off between goodness of fit and simplicity of the model.
- ► AIC/BIC only provide a relative quality of the model, i.e. they do not provide a statistical inference (i.e. test) of a model
- Lower AIC/BIC indicates a better model!
- ► For the model *M*, let *L* be the maximum value of the log-likelihood function for the model *M*. Then

$$AIC(M) = -2\log L + 2|M| = n\log\left(\sum_{i=1}^{n} \frac{(y_i - x_i'\hat{\beta})^2}{n}\right) + 2|M|$$

$$BIC(M) = -2\log L + |M|\log n = n\log\left(\frac{\sum_{i=1}^{n} (y_i - x_i'\hat{\beta})^2}{n}\right) + |M|\log n$$

▶ BIC penalizes larger models more aggressively, i.e. BIC prefers smaller models compared to AIC

AIC and BIC (cont.)

The likelihood function is

$$L = (2\pi\sigma^2)^{-n/2} \exp\left(\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - x_i'\beta)^2\right)$$

► The log-likelihood function is

$$\log L = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - x_i'\beta)^2$$

▶ Since $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i' \beta)^2$, the maximum value of the log-likelihood function is

$$-\frac{n}{2}\log(\hat{\sigma}^2) + \text{constant} = -\frac{n}{2}\log\left(\frac{1}{n}\sum_{i=1}^n(y_i - x_i'\hat{\beta})^2\right) + \text{constant},$$

which gives a AIC/BIC formula

Selecting model using AIC/BIC via simulation model (p>n and sparse case)

```
## Apply AIC/BIC to the simulation model
# Generate X and y using normal distribution
set.seed(1000)
n = 100; p = 200
X = matrix(rnorm(n*p), ncol = p)
X = cbind(rep(1,n), X)
# column normalizing
norm_vec = sqrt(apply(X^2, 2, mean))
X = X / matrix(rep(norm vec, each = n), nrow = n)
# Generate a dependent variables y
beta = runif(p+1)
beta[8:p+1] = 0
y = X \% *\% beta + 0.1*rnorm(n)
```

Selecting model using AIC/BIC via simulation model (p>n and sparse case)

```
# Apply Lasso regression
lam_Lasso = seq(0.05, 5, 0.01)*sqrt(log(p)/n)*0.1
lasso=glmnet(X[,2:(p+1)],y,family="gaussian", alpha=1,
             lambda=lam Lasso)
lasso beta = rbind(lasso$a0,lasso$beta)
# Analyzing estimation errors
err lasso = NULL
for (i in 1:length(lam Lasso)){
err lasso=c(err lasso,sqrt(sum(lasso beta[,i]-beta)^2))}
err lasso = rev(err lasso)
```

Selecting model using AIC/BIC via simulation model (p>n and sparse case) Errors plot (Lasso)

78 / **V37**

##

Selecting model using AIC/BIC via simulation model (p>n and sparse case)

```
# Drawing error plots
names = "Errors plot (Lasso)"; result = err lasso;
lam = lam Lasso
plot(lam, result, type = "1",
xlim=range(lam), ylim=range(result), lwd=2,
main = names,
xlab=expression(lambda),ylab="Estimation errors")
ind = which(err_lasso==min(err_lasso))
round(lasso_beta[,ncol(lasso_beta)-ind+1],3)
```

Selecting model using AIC/BIC via simulation model (p>n and sparse case)

V1 V2 V3 V4 V5

Appendix

```
# Computing AIC/BIC
AIC = NULL; BIC = NULL; BIC_fit = NULL; BIC_pen = NULL
for (i in 1:length(lam_Lasso)){
AIC=c(AIC, n*log(sum((y - X%*% lasso_beta[,i])^2)/n)+
        2*sum(abs(lasso_beta[2:(p+1),i])>0.00001))
BIC=c(BIC, n*log(sum((y - X%*% lasso_beta[,i])^2)/n)+
          log(n)*sum(abs(lasso_beta[2:(p+1),i])>0.00001))
BIC_fit=c(BIC_fit,n*log(sum((y-X%*%lasso_beta[,i])^2)/n))
BIC_pen=c(BIC_pen, log(n)*
            sum(abs(lasso_beta[2:(p+1),i])>0.00001))}
AIC = rev(AIC); BIC = rev(BIC)
BIC fit = rev(BIC fit); BIC pen = rev(BIC pen)
par(mfrow = c(1,2))
plot(AIC); plot(BIC)
ind B = which(BIC==min(BIC))
round(lasso_beta[,ncol(lasso_beta)-ind_B+1],5)
```

Selecting model using AIC/BIC via simulation model (p>n and sparse case)

Appendix

```
# Drawing BIC plot
names = "BIC plot" ;
lam = lam Lasso
par(mfrow=c(1,1))
plot(lam, BIC_fit,type = "1",
xlim=range(lam),lwd=2,main=names,ylim=
  c(min(BIC_fit), max(BIC_pen)),
xlab=expression(lambda),ylab="Value",cex.lab=2)
lines(lam,BIC_pen, col = "blue", lty = 2)
lines(lam, BIC, col="red", lty=3, lwd=2)
# Add legend
legend("bottomright",legend=c("-2L (fit)",
                  "Penalty(simplicity)", "BIC"),
col=c("black", "blue", "red"), lty=1:3, cex=1)
```