Existem domínios melhores que outros em Cross-Domain Sentiment Analysis?

ou, podemos prever o sentimento de avaliações de computadores a partir de avaliações de artigos para bebês?

Cross-domain sentiment analysis: o que é e por que importa

No mundo real a tarefa de análise de sentimento não é tão trivial pela dificuldade de acesso a datasets anotados. Os modelos têm que ser treinados em domínio diferente do que se quer predizer. Os estudos na área tentam reduzir a queda de desempenho nessas situações, que se dá pela diferentes semânticas e vocabulários em cada domínio.

Metodologia: dataset, pré-processamento e modelo

Foi utilizado o dataset Amazon Multidomain que apresenta avaliações de produtos de diversos diferentes domínios, dos quais foram selecionados 5. Pré processamento: remoção de stop words, lemmatização, parsing de datas e números e minimum document frequency = 5. O modelo utilizado foi uma **Convolutional Neural Network com MaxPooling.**

BASELINE

Melhor combinação fonte → alvo

Grocery → Apparel

83,57%
Comp&Games → Grocery

80,80% Comp&Games→ Sports

Acurácia média por domínio fonte

Fonte	Acurácia média
Apparel	77,22 +- 4,09
Baby	71,69 +- 5,74
Comp & games	81,61 +- 4,35
Grocery	77,95 +- 4,09
Sports	78,40 +- 4,40

 $Grocery \rightarrow Baby$

Comp&Games apresentou o melhor poder preditivo médio e **Baby**, o pior.

Acurácia média por domínio alvo

Alvo	Acurácia média	Diferença para o baseline (%)
Apparel	76,71 +- 5,75	6,22
Baby	73,33 +- 3,26	7,28
Comp & games	78,48 +- 3,88	9,66
Grocery	81,60 +- 2,68	2,35
Sports	<i>75,00 +- 4,26</i>	7,17

Baby é o domínio de mais difícil predição e Grocery, o mais fácil.

EXPERIMENTO 1

Fonte: combinação de todos os domínios, com exceção do domínio alvo

f. p/ baseline (%)
-4,13
-14,27
-14,81
-4,22
-3,69

Em todos os casos, a combinação de domínios fonte **não melhorou** o baseline

EXPERIMENTO 2

Melhorar a pior dupla <fonte - alvo> por meio da adição de um domínio-fonte complementar (domínio baseline)

Fonte-Alvo	Acc.	Com fonte complementar	
		Acc.	Dif. para o baseline(%)
Sports - Apparel	72,66	78,69	-2,61
Apparel - Baby	66,52	74,36	-9,09
Baby - Comp &games	77,56	72,97	-7,73
Apparel - Grocery	74,69	74,96	-8,36
Baby - Sports	71,68	74,15	-6,24

O resultado da dupla foi **melhorado em três dos cinco casos**, entretanto, em nenhum caso a acurácia foi superior ao uso do melhor domínio-fonte.

Conclusão

- Cross-domain sentiment analysis é uma tarefa nada trivial; para resultados mais aceitáveis precisa de pelo menos uma amostra, anotada ou não, do domínio alvo já que a combinação de domínios-fonte não traz melhoras no baseline;
- A noção de "domínios parecidos" é enganosa e necessita de formalização para nortear decisões;
- É possível identificar domínios com mais poder preditivo, bem como domínio mais sensíveis à variação de domínio fonte.

