

Art of Problem Solving 2011 APMO

APMO 2011	
1	Let a, b, c be positive integers. Prove that it is impossible to have all of the three numbers $a^2 + b + c, b^2 + c + a, c^2 + a + b$ to be perfect squares.
2	Five points A_1, A_2, A_3, A_4, A_5 lie on a plane in such a way that no three among them lie on a same straight line. Determine the maximum possible value that the minimum value for the angles $\angle A_i A_j A_k$ can take where i, j, k are distinct integers between 1 and 5.
3	Let ABC be an acute triangle with $\angle BAC = 30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line AC at B_1 and B_2 , respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line AB at C_1 and C_2 , respectively. Suppose that the circles with diameters B_1B_2 and C_1C_2 meet inside the triangle ABC at point P . Prove that $\angle BPC = 90^{\circ}$.
4	Let n be a fixed positive odd integer. Take $m+2$ distinct points $P_0, P_1, \ldots, P_{m+1}$ (where m is a non-negative integer) on the coordinate plane in such a way that the following three conditions are satisfied: 1) $P_0 = (0,1), P_{m+1} = (n+1,n)$, and for each integer $i, 1 \leq i \leq m$, both x - and y - coordinates of P_i are integers lying in between 1 and n (1 and n inclusive). 2) For each integer $i, 0 \leq i \leq m$, $P_i P_{i+1}$ is parallel to the x -axis if i is even, and is parallel to the y -axis if i is odd. 3) For each pair i, j with $0 \leq i < j \leq m$, line segments $P_i P_{i+1}$ and $P_j P_{j+1}$ share at most 1 point. Determine the maximum possible value that m can take.
5	Determine all functions $f: \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is the set of all real numbers, satisfying the following two conditions: 1) There exists a real number M such that for every real number $x, f(x) < M$ is satisfied. 2) For every pair of real numbers x and y , $f(xf(y)) + yf(x) = xf(y) + f(xy)$
	is satisfied.

www.artofproblemsolving.com/community/c4128

Contributors: WakeUp