# **Observations and Insights**

Type *Markdown* and LaTeX:  $\alpha^2$ 

```
In [ ]: # Obersvations from the data study:
    # 1) Count of Male mouse participated in the study is nore than Female.
    # 2) Drug Infubinol have Tumor volume data in the outliner.
    # 3) Correlation between average tumor volume vs. mouse weight for the Capomulir
```

```
In [1]: # Dependencies and Setup
        import matplotlib.pyplot as plt
        import pandas as pd
        import scipy.stats as st
        import numpy as np
        from scipy.stats import linregress
        from sklearn import datasets
        # Study data files
        mouse_metadata_path = "data/Mouse_metadata.csv"
        study results path = "data/Study results.csv"
        # Read the mouse data and the study results
        mouse metadata = pd.read csv(mouse metadata path)
        study results = pd.read csv(study results path)
        # Combine the data into a single dataset
        Combined_1 = pd.merge(mouse_metadata, study_results, on="Mouse ID", how = 'outer'
        # Display the data table for preview
        Combined 1
```

### Out[1]:

|      | Mouse<br>ID | Drug<br>Regimen | Sex  | Age_months | Weight<br>(g) | Timepoint | Tumor Volume<br>(mm3) | Metastatic<br>Sites |
|------|-------------|-----------------|------|------------|---------------|-----------|-----------------------|---------------------|
| 0    | k403        | Ramicane        | Male | 21         | 16            | 0         | 45.000000             | 0                   |
| 1    | k403        | Ramicane        | Male | 21         | 16            | 5         | 38.825898             | 0                   |
| 2    | k403        | Ramicane        | Male | 21         | 16            | 10        | 35.014271             | 1                   |
| 3    | k403        | Ramicane        | Male | 21         | 16            | 15        | 34.223992             | 1                   |
| 4    | k403        | Ramicane        | Male | 21         | 16            | 20        | 32.997729             | 1                   |
|      |             |                 |      |            |               |           |                       |                     |
| 1888 | z969        | Naftisol        | Male | 9          | 30            | 25        | 63.145652             | 2                   |
| 1889 | z969        | Naftisol        | Male | 9          | 30            | 30        | 65.841013             | 3                   |
| 1890 | z969        | Naftisol        | Male | 9          | 30            | 35        | 69.176246             | 4                   |
| 1891 | z969        | Naftisol        | Male | 9          | 30            | 40        | 70.314904             | 4                   |
| 1892 | z969        | Naftisol        | Male | 9          | 30            | 45        | 73.867845             | 4                   |

1893 rows × 8 columns

```
In [2]: # Checking the number of mice.
Unique_no_mouse = Combined_1["Mouse ID"].nunique()
Unique_no_mouse
```

Out[2]: 249

In [3]: # Getting the duplicate mice by ID number that shows up for Mouse ID and Timepoir
Duplicate\_mice\_data = Combined\_1[Combined\_1.duplicated(['Mouse ID', 'Timepoint']

In [4]: # Optional: Get all the data for the duplicate mouse ID.
print(Duplicate\_mice\_data)

| P   | (        |              | ,         |           |          |     |           |   |
|-----|----------|--------------|-----------|-----------|----------|-----|-----------|---|
|     | Mouse ID | Drug Regimen | Sex       | Age_month | s Weight | (g) | Timepoint | \ |
| 908 | g989     | Propriva     | Female    | 2         | 1        | 26  | 0         |   |
| 909 | g989     | Propriva     | Female    | 2         | 1        | 26  | 0         |   |
| 910 | g989     | Propriva     | Female    | 2         | 1        | 26  | 5         |   |
| 911 | g989     | Propriva     | Female    | 2         | 1        | 26  | 5         |   |
| 912 | g989     | Propriva     | Female    | 2         | 1        | 26  | 10        |   |
| 913 | g989     | Propriva     | Female    | 2         | 1        | 26  | 10        |   |
| 914 | g989     | Propriva     | Female    | 2         | 1        | 26  | 15        |   |
| 915 | g989     | Propriva     | Female    | 2         | 1        | 26  | 15        |   |
| 916 | g989     | Propriva     | Female    | 2         | 1        | 26  | 20        |   |
| 917 | g989     | Propriva     | Female    | 2         | 1        | 26  | 20        |   |
|     |          |              |           |           |          |     |           |   |
|     | Tumor Vo | , ,          | Metastati | c Sites   |          |     |           |   |
| 908 |          | 45.000000    |           | 0         |          |     |           |   |
| 909 |          | 45.000000    |           | 0         |          |     |           |   |
| 910 |          | 48.786801    |           | 0         |          |     |           |   |
| 911 |          | 47.570392    |           | 0         |          |     |           |   |
| 912 |          | 51.745156    |           | 0         |          |     |           |   |
| 913 |          | 49.880528    |           | 0         |          |     |           |   |
| 914 |          | 51.325852    |           | 1         |          |     |           |   |
| 915 |          | 53.442020    |           | 0         |          |     |           |   |
| 916 |          | 55.326122    |           | 1         |          |     |           |   |
| 917 |          | 54.657650    |           | 1         |          |     |           |   |
|     |          |              |           |           |          |     |           |   |

```
In [5]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
Combined_1 = Combined_1.set_index('Mouse ID')
Combined_2 = Combined_1.drop('g989')
Combined_2
```

Out[5]:

| Drug<br>Regimen |          | Sex  | Age_months | Weight<br>(g) | Timepoint | Tumor Volume<br>(mm3) | Metastatic<br>Sites |
|-----------------|----------|------|------------|---------------|-----------|-----------------------|---------------------|
| Mouse<br>ID     |          |      |            |               |           |                       |                     |
| k403            | Ramicane | Male | 21         | 16            | 0         | 45.000000             | 0                   |
| k403            | Ramicane | Male | 21         | 16            | 5         | 38.825898             | 0                   |
| k403            | Ramicane | Male | 21         | 16            | 10        | 35.014271             | 1                   |
| k403            | Ramicane | Male | 21         | 16            | 15        | 34.223992             | 1                   |
| k403            | Ramicane | Male | 21         | 16            | 20        | 32.997729             | 1                   |
|                 |          |      |            |               |           |                       |                     |
| z969            | Naftisol | Male | 9          | 30            | 25        | 63.145652             | 2                   |
| z969            | Naftisol | Male | 9          | 30            | 30        | 65.841013             | 3                   |
| z969            | Naftisol | Male | 9          | 30            | 35        | 69.176246             | 4                   |
| z969            | Naftisol | Male | 9          | 30            | 40        | 70.314904             | 4                   |
| z969            | Naftisol | Male | 9          | 30            | 45        | 73.867845             | 4                   |

1880 rows × 7 columns

```
In [6]: # Checking the number of mice in the clean DataFrame.
Combined_2 = Combined_2.reset_index()

Unique_no_mouse_1 = Combined_2["Mouse ID"].nunique()
Unique_no_mouse_1
```

Out[6]: 248

## **Summary Statistics**

```
In [18]: # Generate a summary statistics table of mean, median, variance, standard deviati
         # Use groupby and summary statistical methods to calculate the following properti
         # mean, median, variance, standard deviation, and SEM of the tumor volume.
         # Assemble the resulting series into a single summary dataframe.
         Drug_regimen_grp = Combined_2.groupby(['Drug Regimen'])
         Mean tumor volume = Drug regimen grp["Tumor Volume (mm3)"].mean()
         Median_tumor_volume = Drug_regimen_grp["Tumor Volume (mm3)"].median()
         Var_tumor_volume = Drug_regimen_grp["Tumor Volume (mm3)"].var()
         SD tumor volume = Drug regimen grp["Tumor Volume (mm3)"].std()
         SEM_tumor_volume = Drug_regimen_grp["Tumor Volume (mm3)"].sem()
         Drug regimen summary = pd.DataFrame({"Mean": Mean tumor volume,
                                              "Median": Median tumor volume,
                                              "Variance": Var_tumor_volume,
                                              "SD": SD tumor volume,
                                              "SEM": SEM tumor volume})
         Drug_regimen_summary["Mean"] = Drug_regimen_summary["Mean"].map("{:,.2f}".format)
         Drug regimen summary["Median"] = Drug regimen summary["Median"].map("{:,.2f}".for
         Drug regimen summary["Variance"] = Drug regimen summary["Variance"].map("{:,.2f}")
         Drug_regimen_summary["SD"] = Drug_regimen_summary["SD"].map("{:,.2f}".format)
         Drug regimen summary["SEM"] = Drug regimen summary["SEM"].map("{:,.2f}".format)
         Drug regimen summary
```

**SEM** 

#### Out[18]:

| Drug Regimen |       |       |       |      |      |
|--------------|-------|-------|-------|------|------|
| Capomulin    | 40.68 | 41.56 | 24.95 | 4.99 | 0.33 |
| Ceftamin     | 52.59 | 51.78 | 39.29 | 6.27 | 0.47 |
| Infubinol    | 52.88 | 51.82 | 43.13 | 6.57 | 0.49 |
| Ketapril     | 55.24 | 53.70 | 68.55 | 8.28 | 0.60 |
| Naftisol     | 54.33 | 52.51 | 66.17 | 8.13 | 0.60 |
| Placebo      | 54.03 | 52.29 | 61.17 | 7.82 | 0.58 |
| Propriva     | 52.32 | 50.45 | 43.85 | 6.62 | 0.54 |
| Ramicane     | 40.22 | 40.67 | 23.49 | 4.85 | 0.32 |
| Stelasyn     | 54.23 | 52.43 | 59.45 | 7.71 | 0.57 |
| Zoniferol    | 53.24 | 51.82 | 48.53 | 6.97 | 0.52 |

Mean Median Variance SD

```
In [8]: # Generate a summary statistics table of mean, median, variance, standard deviati
# Using the aggregation method, produce the same summary statistics in a single L
Drug_regimen_reg_summary = Drug_regimen_grp.aggregate({"Tumor Volume (mm3)":['meanugaregimen_reg_summary
Drug_regimen_reg_summary
```

### Out[8]:

#### Tumor Volume (mm3)

|              | mean      | median    | var       | std      | sem      |
|--------------|-----------|-----------|-----------|----------|----------|
| Drug Regimen |           |           |           |          |          |
| Capomulin    | 40.675741 | 41.557809 | 24.947764 | 4.994774 | 0.329346 |
| Ceftamin     | 52.591172 | 51.776157 | 39.290177 | 6.268188 | 0.469821 |
| Infubinol    | 52.884795 | 51.820584 | 43.128684 | 6.567243 | 0.492236 |
| Ketapril     | 55.235638 | 53.698743 | 68.553577 | 8.279709 | 0.603860 |
| Naftisol     | 54.331565 | 52.509285 | 66.173479 | 8.134708 | 0.596466 |
| Placebo      | 54.033581 | 52.288934 | 61.168083 | 7.821003 | 0.581331 |
| Propriva     | 52.320930 | 50.446266 | 43.852013 | 6.622085 | 0.544332 |
| Ramicane     | 40.216745 | 40.673236 | 23.486704 | 4.846308 | 0.320955 |
| Stelasyn     | 54.233149 | 52.431737 | 59.450562 | 7.710419 | 0.573111 |
| Zoniferol    | 53.236507 | 51.818479 | 48.533355 | 6.966589 | 0.516398 |

### **Bar and Pie Charts**

```
In [9]: # Generate a bar plot showing the total number of unique mice tested on each drug

Total_mouse_count = pd.DataFrame(Drug_regimen_grp["Mouse ID"].nunique())

# Total_mouse_count

Total_mouse_count.plot(kind="bar", facecolor="blue")

plt.title("Drug Regimen tested")
plt.ylabel("Mice count")
plt.xlabel("Drug name")
plt.legend(loc="best")
plt.show()
```



```
In [10]: # Generate a bar plot showing the total number of unique mice tested on each drug
         Total mouse count = Total mouse count.reset index()
         x axis = np.arange(len(Total mouse count))
         tick locations = [value for value in x axis]
         # plt.figure(figsize=(20,3))
         plt.bar(x_axis,Total_mouse_count["Mouse ID"] , color='g', alpha=0.7, align="cente")
         plt.xticks(tick locations, Total mouse count["Drug Regimen"], rotation="vertical"
Out[10]: ([<matplotlib.axis.XTick at 0x2031640ca58>,
           <matplotlib.axis.XTick at 0x2031640ca20>,
           <matplotlib.axis.XTick at 0x2031640c668>,
           <matplotlib.axis.XTick at 0x20316450160>,
           <matplotlib.axis.XTick at 0x203164505c0>,
           <matplotlib.axis.XTick at 0x20316450a58>,
           <matplotlib.axis.XTick at 0x20316450438>,
           <matplotlib.axis.XTick at 0x20316457160>,
           <matplotlib.axis.XTick at 0x203164575c0>,
           <matplotlib.axis.XTick at 0x20316457a58>],
           [Text(0, 0, 'Capomulin'),
           Text(0, 0, 'Ceftamin'),
           Text(0, 0, 'Infubinol'),
           Text(0, 0, 'Ketapril'),
           Text(0, 0, 'Naftisol'),
           Text(0, 0, 'Placebo'),
           Text(0, 0, 'Propriva'),
           Text(0, 0, 'Ramicane'),
           Text(0, 0, 'Stelasyn'),
           Text(0, 0, 'Zoniferol')])
          25
          20
          15
```

**Samicane** 

Stelasyn

Zoniferol

Propriva

localhost:8889/notebooks/Pymaceuticals/pymaceuticals starter.ipynb

10

5

Ketapril

Naftisol

Placebo

Ceftamin

nfubinol

```
In [11]: # Generate a pie plot showing the distribution of female versus male mice using p
Gender_count = Combined_2.groupby(['Sex'])
Gender_count_1 = Gender_count['Mouse ID'].nunique()

Gender_count_df = pd.DataFrame({"Count": Gender_count_1})
Gender_count_df.plot(kind="pie",subplots=True, autopct="%1.1f%%", shadow=True)
plt.title("Gender Distubution")
plt.legend(loc="lower right")
```

Out[11]: <matplotlib.legend.Legend at 0x203164a4198>







### **Quartiles, Outliers and Boxplots**

#### Out[13]:

|    | Mouse<br>ID | Drug<br>Regimen | Timepoint | Sex    | Age_months | Weight<br>(g) | Tumor Volume<br>(mm3) | Metastatic<br>Sites |
|----|-------------|-----------------|-----------|--------|------------|---------------|-----------------------|---------------------|
| 0  | a203        | Infubinol       | 45        | Female | 20         | 23            | 67.973419             | 2                   |
| 1  | a251        | Infubinol       | 45        | Female | 21         | 25            | 65.525743             | 1                   |
| 2  | a275        | Ceftamin        | 45        | Female | 20         | 28            | 62.999356             | 3                   |
| 3  | a411        | Ramicane        | 45        | Male   | 3          | 22            | 38.407618             | 1                   |
| 4  | a444        | Ramicane        | 45        | Female | 10         | 25            | 43.047543             | 0                   |
|    |             |                 |           |        |            |               |                       |                     |
| 95 | y769        | Ceftamin        | 45        | Female | 6          | 27            | 68.594745             | 4                   |
| 96 | y793        | Capomulin       | 45        | Male   | 17         | 17            | 31.896238             | 2                   |
| 97 | y865        | Ceftamin        | 45        | Male   | 23         | 26            | 64.729837             | 3                   |
| 98 | z578        | Ramicane        | 45        | Male   | 11         | 16            | 30.638696             | 0                   |
| 99 | z581        | Infubinol       | 45        | Female | 24         | 25            | 62.754451             | 3                   |

100 rows × 8 columns

```
In [14]: # Put treatments into a list for for loop (and later for plot labels)
         Treatment_list = ['Capomulin', 'Ramicane', 'Infubinol', 'Ceftamin']
         Treatment list
         # Create empty list to fill with tumor vol data (for plotting)
         Tumor_vol_list_Cap = []
         Tumor vol list Ram = []
         Tumor vol list Inf = []
         Tumor_vol_list_Cef = []
         for i in range(len(Timepoint Merge)):
             Drug = Timepoint_Merge.iloc[i,:]["Drug Regimen"]
             Volume = Timepoint_Merge.iloc[i,:]["Tumor Volume (mm3)"]
             if Drug == 'Capomulin':
                Tumor vol list Cap.append(Volume)
             if Drug == 'Ramicane':
                Tumor_vol_list_Ram.append(Volume)
             if Drug == 'Infubinol':
                Tumor_vol_list_Inf.append(Volume)
             if Drug == 'Ceftamin':
                Tumor vol list Cef.append(Volume)
```

```
In [15]: # Locate the rows which contain mice on each drug and get the tumor volumes
        # add subset
        for drug in Treatment list:
           # From drug df , if drug name matches the one from list, add tumor volume to
           drug df = Timepoint Merge.loc[Timepoint Merge["Drug Regimen"]== drug,"Tumor \u2211
        # Calculate the IQR and quantitatively determine if there are any potential outli
           quartiles = drug df.quantile([.25,.5,.75])
           lowerq = quartiles[0.25]
           upperq = quartiles[0.75]
           iqr = upperq-lowerq
           lower_bound = lowerq - (1.5*iqr)
           upper bound = upperq + (1.5*iqr)
           print(f"The lower quartile of {drug} occupancy is: {lowerq}")
           print(f"The upper quartile of {drug} occupancy is: {upperq}")
           print(f"The interquartile range of {drug} occupancy is: {iqr}")
           print(f"The the median of {drug} occupancy is: {quartiles[0.5]} ")
           print("----")
           # Determine outliers using upper and lower bounds
           print(f"Values below {drug} {lower_bound} could be outliers.")
           print(f"Values above {drug} {upper_bound} could be outliers.")
           print("-----")
        The lower quartile of Capomulin occupancy is: 32.37735684
        The upper quartile of Capomulin occupancy is: 40.1592203
        The interquartile range of Capomulin occupancy is: 7.781863460000004
        The the median of Capomulin occupancy is: 38.125164399999996
        _____
        Values below Capomulin 20.70456164999999 could be outliers.
        Values above Capomulin 51.83201549 could be outliers.
        _____
        The lower quartile of Ramicane occupancy is: 31.56046955
        The upper quartile of Ramicane occupancy is: 40.65900627
        The interquartile range of Ramicane occupancy is: 9.098536719999998
        The the median of Ramicane occupancy is: 36.56165229
        -----
        Values below Ramicane 17.912664470000003 could be outliers.
        Values above Ramicane 54.30681135 could be outliers.
        The lower quartile of Infubinol occupancy is: 54.04860769
        The upper quartile of Infubinol occupancy is: 65.52574285
        The interquartile range of Infubinol occupancy is: 11.477135160000003
        The the median of Infubinol occupancy is: 60.16518046
        ______
        Values below Infubinol 36.83290494999999 could be outliers.
        Values above Infubinol 82.74144559000001 could be outliers.
        _____
        The lower quartile of Ceftamin occupancy is: 48.72207785
        The upper quartile of Ceftamin occupancy is: 64.29983003
        The interquartile range of Ceftamin occupancy is: 15.577752179999997
        The the median of Ceftamin occupancy is: 59.85195552
        _____
        Values below Ceftamin 25.355449580000002 could be outliers.
        Values above Ceftamin 87.66645829999999 could be outliers.
```

```
In [19]: # Generate a box plot of the final tumor volume of each mouse across four regimer
fig1,(ax1, ax2, ax3, ax4) = plt.subplots(ncols = 4, sharex='all', sharey='all')
ax1.set_title('Box plot for Tumor volume')
ax1.set_ylabel('Tumor Volume')
ax1.boxplot(Tumor_vol_list_Cap)
ax2.boxplot(Tumor_vol_list_Ram)
ax3.boxplot(Tumor_vol_list_Inf)
ax4.boxplot(Tumor_vol_list_Cef)
plt.show()
```



### **Line and Scatter Plots**

Out[16]: <function matplotlib.pyplot.show(\*args, \*\*kw)>





## **Correlation and Regression**

In [18]: # Calculate the correlation coefficient and linear regression model
# for mouse weight and average tumor volume for the Capomulin regimen
correlation\_coeff = st.pearsonr(Capomulin\_data\_comb['Tumor Volume (mm3)'], Capomulin\_tof"The correlation between both factors is {round(correlation\_coeff[0],2)}")

The correlation between both factors is 0.84

The r-squared is: 0.7088568047708717

