ARITMÉTICA DE LAS CURVAS ELÍPTICA

1

En el apartado 1.1 se introducen las curvas elípticas. Se explican las operaciones de grupo adicción y duplicacíon para los puntos de una curva elíptica, junto con su estructura fundamental y otras propiedades.

Las principales referencias usadas en este capítulo han sido [4] y [1].

1.1 INTRODUCCIÓN A LAS CURVAS ELÍPTICAS

Definición 1.1.1. Una *curva elíptica* E se define por una una ecuación de la forma

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
 (1)

donde $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_6 \in K$ y $\Delta \neq 0$, donde Δ es el discriminante de E y se define como:

$$\Delta = -d_2^2 d_8 - 8d_4^3 - 27d_6^2 + 9d_2 d_4 d_6$$

$$d_2 = a_1^2 + 4a_2$$

$$d_4 = 2a_4 + 4a_2$$

$$d_6 = a_3^2 + 4a_6$$

$$d_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2$$

$$(2)$$

Si L es una extensión del cuerpo K, entonces el conjunto de puntos *L-racionales* de E es:

$$E(L) = \{\infty\} \cup \{(x,y) \in L \times L : y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 = 0\}$$

Nota 1.1.1 (comentarios de la definición 1.1.1).

- La ecuación (1) se conoce como la ecuación de Weierstrass.
- Diremos que E *está definida sobre* K y lo notaremos E/K. A K lo llamaremos *cuerpo base*.
- La condición Δ ≠ 0 asegura que la curva elíptica es «suave», esto es, no hay puntos en los que la curva tenga dos o mas rectas tangentes.
- El punto ∞ es el único punto en la línea del infinito que satisface la forma proyectiva de la ecuación de Weierstrass (véase ??).

Ejemplo 1.1.1 (curvas elípticas sobre \mathbb{R}). Consideramos las curvas elípticas:

$$E_1 : y^2 = x^3 - x$$

 $E_2 : y^2 = x^3 + x$

definidas sobre el cuerpo $\mathbb R$ de los números reales. Los puntos $E_1(\mathbb R)$ y $E_2(\mathbb R)$ se han representado en la Figura 1.

Figura 1: Curvas elípticas sobre R

1.1.1 Ecuaciones de Weierstrass simplificadas

Definición 1.1.2. Dos curvas elípticas E₁ y E₂ definidas sobre K y dadas por las ecuaciones de Weierstrass:

$$E_1: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

$$E_2: y^2 + a_1'xy + a_3'y = x^3 + a_2'x^2 + a_4'x + a_6'$$

se dicen que son isomorfas sobre K si existen $\mathfrak{u},\mathfrak{r},\mathfrak{s},\mathfrak{t}\in K$, $\mathfrak{u}\neq 0$, tal que el cambio de variables lineal

$$(x,y) \mapsto (u^2x + r, u^3y + u^2sx + y)$$
 (3)

transforma la ecuación E_1 en la ecuación E_2 . La transformación (3) se llama un cambio de variables admisible.

El cambio de variables (3) es el único que deja «fijo» el punto del infinito y preserva la forma de la ecuación de Weierstrass. No vamos a entrar en más detalle, pero puede consultar [3, prop. III.3.1b] para más informácion.

Una ecuación de Weierstrass

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

puede simplificarse considerablemente aplicando cambios de variables admisibles. Usaremos las ecuaciones simplificadas en vez de la general en el resto del trabajo. Vamos a considerar por separado los casos en los que el cuerpo base tenga característica distinta de 2 y 3 o tenga característica 2 o 3.

1. Si la característica de K es distinta de 2 y 3, entonces el cambio de variables admisible

$$(x,y) \mapsto \left(\frac{x - 3a_1^2 - 12a_2}{36}, \frac{y - 3a_1x}{216} - \frac{a_1^3 + 4a_1a_2 - 12a_3}{240}\right)$$

transforma E en la curva

$$y^2 = x^3 + ax + b$$

donde $a,b \in K$. El discriminante de esta curva es $\Delta = -16(4a^3 + 27b^2)$.

2. Si la característica de K es 2, hay dos casos que considerar. Si $a_1 \neq 0$, entonces el cambio de variables admisible

$$(x,y) \mapsto \left(\alpha_1^2 x + \frac{\alpha_3}{\alpha_1}, \alpha_1^3 y + \frac{\alpha_1^2 \alpha_4 + \alpha_3^2}{\alpha_1^3}\right)$$

transforma E en la curva

$$y^2 + xy = x^3 + ax^2 + b$$

donde $a,b \in K$. Tales curvas se llaman *no supersingulares* (véase ??) y tiene discriminante $\Delta=b$. Si $a_1=0$, entonces el cambio de variables admisible

$$(x,y) \mapsto (x + a_2, y)$$

transforma E en la curva

$$u^2 + cu = x^3 + ax + b$$

donde $a,b,c \in K$. Tales curvas se llaman *supersingulares* (véase ??) y tiene discriminante $\Delta = c^4$.

3. Si la característica de K es 4, entonces hay dos casos que considerar. Si $\alpha_1^2 \neq -\alpha_2$, entonces el cambio de variables admisible

$$(x,y) \mapsto \left(x + \frac{d_4}{d_2}, y + a_1x + a_1\frac{d_4}{d_2} + a_3\right)$$

donde $d_2=\alpha_1^2+\alpha_2$ y $d_4=\alpha_4-\alpha_1\alpha_3$, transforma E en la curva $u^2=x^3+\alpha x^2+b$

donde $a, b \in K$. Tales curvas se llaman *no supersingulares* (véase ??) y tiene discriminante $\Delta = -a^3b$. Si $a_1^2 = -a_2$, entonces el cambio de variables admisible

$$(x,y) \mapsto (x,y+a_1x+a_3)$$

transforma E en la curva

$$y^2 = x^3 + ax^2 + b$$

donde $a, b \in K$. Tales curvas se llaman *supersingulares* (véase ??) y tiene discriminante $\Delta = -a^3$.

Demostración. La demostración completa puede encontrarse en [3, sec. III.1]. Se trata simplemente de completar cuadrados y realizar sustituciones, por ello aquí solo mostraremos la demostración de la primera simplificación.

En primer lugar, sumando en la ecuación de Weierstrass (1) en ambos lados por $(a_1a_3x)/2 + a_3^2/4 + (a_1^2x^2)/4$, completamos el cuadrado:

$$\left(y + \frac{\alpha_1 x}{2} + \frac{\alpha_3}{2}\right)^2 = x^3 + \left(\alpha_2 + \frac{\alpha_1^2}{4}\right)x^2 + \left(\alpha_4 + \frac{\alpha_1 \alpha_3}{2}\right)x + \left(\alpha_6 + \frac{\alpha_3^2}{4}\right)$$

Haciendo $y_1 = y + (a_1x)/2 + a_3/2$, obtenemos

$$y_1^2 = x^3 + a_2'x^2 + a_4'x + a_6'$$

para algunas constantes $a_2', a_4', a_6' \in K$. Finalmente, sustituyendo $x_1 = x + a_2'/3$ resulta

$$y_1^2 = x_1^3 + ax_1 + b$$

para algunas constante $a, b \in K$. Para obtener el discriminante Δ basta sustiuir el valor de las constantes $a_4 = a$, $a_6 = b$ y $a_1 = a_3 = a_2 = 0$ en (2).

1.1.2 Ley de grupo

Sea E una curva elíptica definida sobre un cuerpo K. Hay un *método* de la cuerda y la tangente para sumar dos puntos en E(K) y obtener un tercer punto en E(K). Junto con esta operación aditiva, el conjunto de puntos E(K) forma un gurpo abeliano con ∞ como elemento neutro.

La regla aditiva se explica fácilmente geométricamente. Sea P y Q dos puntos distintos de una curva elíptica E. Entonces la *suma* R, de P y Q esta definido como sigue. Se dibuja una recta L de P a Q. Esta recta intersecta la curva elíptica en un tercer punto. Entonces R es la

reflexión de este punto sobre el eje-x. Esto se puede apreciar en la Figura 2a.

El *doble* R, de P, se define como sigue. Se dibuja la línea tangente L a la curva elíptica en P. Esta línea intersecta la curva elíptica en un segundo punto. Entonces R es la reflexión de esto punto sobre el eje-x. Esto se puede apreciar en la Figura 2b.

Figura 2: Adicción y duplicación geométrica de puntos de una curva elíptica

El hecho de que $L \cap E$, contando multiplicidades, consiste en exactamente tres puntos (no necesariamente distintos) es un caso especial del teorema de Bézout [2, sec. I.7.8]. Sin embargo, como vamos a dar fórmulas explícitas posteriormente en esta sección, no hay necesidad de usar un teorema general.

Definición 1.1.3 (ley de grupo). Sea E una curva elíptica definida por la ecuación $y^2 = x^3 + ax + b$ sobre un cuerpo K de característica distinta de 2 y 3. Definimos la operación binaria $+ : E(K) \times E(K) \rightarrow E(K)$ como sigue:

- a) $P + \infty = \infty + P = P$, para todo $P \in E(K)$
- b) Si P = $(x,y) \in E(K)$, entonces $(x,y) + (x,-y) = \infty$. El punto (x,-y) se denotará por -P y se llamará el *negativo* de P. Además, $-\infty = \infty$.
- c) Sea $P = (x_1, y_1) \in E(K)$ y $Q = (x_2, y_2) \in E(K)$, donde $P \neq \pm Q$. Entonces $P + Q = (x_3, y_3)$, donde

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2, \quad y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

d) Sea $P = (x_1, y_1) \in E(K)$, donde $P \neq \pm P$. Entonces $2P = (x_3, y_3)$ donde:

$$x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1, \quad y_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_3) - y_1$$

Demostración. Tenemos que comprobar que + es una operación binaria válida, esto es, que a cada par de elementos de $E(K) \times E(K)$ le corresponde un único elemento de E(K). Como la casuística anterior es total y exclusiva, basta ver que + es una operación cerrada. Los casos a) y b) son triviales. Veamos los otros dos casos con detalle.

CASO c) Supongamos $P = (x_1, y_1), Q = (x_2, y_2), P, Q \in E(K)$ con $P \neq \pm Q$. Consideramos la recta siguiente

L:
$$y = m(x - x_1) + y_1$$
, donde $m = \frac{y_2 - y_1}{x_2 - x_1}$

Nótese que $x_2 \neq x_1$ ya que $P \neq \pm Q$. Para hallar la intersección de L con E sustituimos y:

$$(m(x-x_1) + y_1)^2 = x^3 + ax + b$$

Podemos reescribir esto de la forma

$$0 = x^3 - m^2 x^2 + b' x + c'$$
(4)

para algunas constantes $b', c' \in K$. Así, las raíces de esta cúbica es justamente $L \cup E$.

Sabemos que las raíces de un polinomio están relacionadas con sus coeficientes. De hecho, para un polinomio cúbico mónico $x^3 + c_2x^2 + c_1x + c_0$ con raíces r, s, t se tiene:

$$x^{3}+c_{2}x^{2}+c_{1}x+c_{0} = (x-r)(x-s)(x-t)$$
$$= x^{3}-(r+s+t)x^{2}+(rs+rt+st)x-rst,$$

En particular, $r+s+t=-c_2$. Como P y Q están en la intersección, x_1 y x_2 son dos raíces de (4), luego la tercera raíz α es $m^2-x_1-x_2$. Sustituyendo α en L resulta $\beta=m(x_3-x_1)+y_1$, luego $(\alpha,\beta)\in E(K)$. Entonces $(\alpha,-\beta)=(x_3,y_3)\in E(K)$.

CASO d) Sea $P = (x_1, y_1)$, donde $P \neq -P$. Consideramos la recta siguiente

L:
$$y = m(x - x_1) + y_1$$
, donde $m = \frac{3x_1^2 + a}{2y_1}$

Nótese que $y_1 \neq 0$ ya que si no estaríamos en el caso b). Hallamos la intersección con E de forma análoga al caso c) y obtenemos la cúbica:

$$0 = x^3 - m^2 x^2 + b' x + c'$$

para algunas constantes b', $c' \in K$. Análogamente al caso c), como x_1 es una raíz doble de la cúbica (derívese y evalúe en x_1) tenemos que la tercera raíz α es $m^2 - 2x_1$. Sustituyendo α en L resulta $\beta = m(x_3 - x_1) + y_1$, luego $(\alpha, \beta) \in E(K)$. Entonces $(\alpha, -\beta) = (x_3, y_3) \in E(K)$.

Teorema 1.1.1. La suma de puntos en una curva elíptica E sobre un cuerpo K de característica distinta de 2 y 3 satisface la siguientes propiedades:

- Conmutatividad. $P_1 + P_2 = P_2 + P_1$, $\forall P_1, P_2 \in E(K)$.
- Existencia de elemento neutro. $P + \infty = P$, $\forall P \in E(K)$.
- Existencia de elemento opuesto. $P + -P = \infty$, $\forall P \in E(K)$.
- *Asociatividad*. $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3), \forall P_1, P_2, P_3 \in E(K)$.

En otras palabras, $(E(K), +, \infty)$ es un grupo abeliano.

Demostración. ... □

Parte I

APÉNDICE

BIBLIOGRAFÍA

- [1] Darrel Hankerson, Alfred J. Menezes y Scott Vanstone. *Guide to Elliptic Curve Cryptography*. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003. ISBN: 038795273X.
- [2] R. Hartshorne. *Algebraic Geometry*. Encyclopaedia of mathematical sciences. Springer, 1977. ISBN: 9780387902449.
- [3] J.H. Silverman. *The Arithmetic of Elliptic Curves*. Graduate Texts in Mathematics. Springer New York, 2009. ISBN: 9780387094946.
- [4] Lawrence C. Washington. *Elliptic Curves: Number Theory and Cryptography, Second Edition.* 2.ª ed. Chapman & Hall/CRC, 2008. ISBN: 9781420071467.