

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Respostas - Exercícios - Parte.B

Matrizes: Escalonadas, M.L.R.F.E., Determinante,

Inversa, Tipos Especiais

Professora: Isamara

Data: 15/03/2021

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{7} & \frac{-1}{4} \end{bmatrix}.$$

()
$$det(A) = det(I_3)$$
.

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

()
$$det(A) = det(I_3)$$
. (V)

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

Assinale V (verdadeiro) ou F(falso) nas afirmações abaixo.

() $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B).

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{7} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V)

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{7} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V)det(AB) =

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- det(A.B) = det(B). (V)det(AB) = det(A)det(B) =

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B)$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{7} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$.

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{1}{52} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{72} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F)

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-6}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{f}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-6}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{f}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A).

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V)

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-6}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{f}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- det(A.B.C) = det(A). (V)det(A.B.C) = det(A).det(B).det(C)

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B).

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B).

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$
- () $det(A) \neq det(A^{-1})$.

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$
- () $det(A) \neq det(A^{-1})$. (F)

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$
- () $det(A) \neq det(A^{-1})$. (F) $det(A^{-1}) =$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$
- () $det(A) \neq det(A^{-1})$. (F) $det(A^{-1}) = \frac{1}{det(A)}$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$
- () $det(A) \neq det(A^{-1})$. (F) $det(A^{-1}) = \frac{1}{det(A)} = \frac{1}{det(B)} = 1 = det(A)$

Questão.1

Sejam as matrizes

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{4} \\ \frac{-1}{6} & \frac{5}{12} & \frac{1}{4} \\ \frac{1}{6} & \frac{7}{12} & \frac{-1}{4} \end{bmatrix}.$$

- () $det(A) = det(I_3)$. (V) pois A é matriz elementar obtida pela operação de substituição: $op: L_2 \leftarrow L_2 + \frac{1}{2}L_1$
- () det(A.B) = det(B). (V) $det(AB) = det(A)det(B) = det(I_3).det(B) = 1.det(B) = det(B)$
- () $det(\frac{1}{2}.C) = \frac{1}{2}det(C)$. (F) $det(\frac{1}{2}C) = (\frac{1}{2})^3 det(C)$
- () det(A.B.C) = det(A). (V) det(A.B.C) = det(A).det(B).det(C) = det(A).det(B). $\frac{1}{det(B)} = det(A)$
- () $det(A) \neq det(A^{-1})$. (F) $det(A^{-1}) = \frac{1}{det(A)} = \frac{1}{det(B)} = 1 = det(A)$

Questão.2

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Questão.2

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 Sim;

Questão.2

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Sim; $A^{-1} = A^t = A$

Questão.2

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Sim; $A^{-1} = A^t = A$

$$2. B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Questão.2

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$Sim; A^{-1} = A^{t} = A$$
$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$$

2.
$$B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
Não:

Questão.2

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Sim; $A^{-1} = A^t = A$

2.
$$B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
Não:
$$A = A^{-1} \neq A^{t}$$

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Sim; $A^{-1} = A^t = A$

$$2. B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Não;
$$A = A^{-1} \neq A^t$$

$$3. C = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Sim; $A^{-1} = A^{t} = A$
2. $B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$
Não; $A = A^{-1} \neq A^{t}$
3. $C = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$

3.
$$C = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$Sim; A^{-1} = A^{t} = A$$
$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$$

$$2. B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Não;
$$A = A^{-1} \neq A^t$$

3.
$$C = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

Não: $A = A^t \neq A^{-1}$

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$Sim; A^{-1} = A^{t} = A$$
$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$$

$$2. B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Não;
$$A = A^{-1} \neq A^t$$

3.
$$C = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

Não: $A = A^t \neq A^{-1}$

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.3

Determine, se possível, os valores de $x;y\in\mathbb{R}$ para que a matriz $A=\begin{bmatrix} \sqrt{2} & \mathsf{x} \\ \mathsf{y} & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal. Para A ser ortogonal, consideramos que $A^{-1}=A^t$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

Para A ser ortogonal, consideramos que $A^{-1} = A^t$. Pela definição de matrizes invertíveis: $A.A^{-1} = A^{-1}.A = I_n$: substituindo:

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & \mathbf{x} \\ \mathbf{y} & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

Para A ser ortogonal, consideramos que $A^{-1} = A^t$. Pela definição de matrizes invertíveis: $A.A^{-1} = A^{-1}.A = I_n$; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & \mathbf{x} \\ \mathbf{y} & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^{t} = \begin{bmatrix} x^{2} + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^{2} + 2 \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.3

Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^t = \left[\begin{array}{cc} x^2 + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^2 + 2 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]; \text{ pela igualdade de matrizes:}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^t = \left[\begin{array}{cc} x^2 + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^2 + 2 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]; \text{ pela igualdade de matrizes:}$$

$$x^2 + 2 = 1$$
; $y^2 + 2 = 1$; e

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^t = \left[\begin{array}{cc} x^2 + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^2 + 2 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]; \text{ pela igualdade de matrizes:}$$

$$x^{2} + 2 = 1$$
; $y^{2} + 2 = 1$; $y^{2} + 2 = 1$; $y = \pm i$; $y = \pm i$; $y = \pm i$;

Para A ser ortogonal, consideramos que $A^{-1} = A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^t = \begin{bmatrix} x^2 + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^2 + 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; pela igualdade de matrizes:

$$x^2 + 2 = 1$$
; $y^2 + 2 = 1$; e $\sqrt{2}y + \sqrt{2}x = 0 \Rightarrow x = \pm i$; $y = \pm i$; $x = -y$; desta forma,

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^t = \begin{bmatrix} x^2 + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^2 + 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; pela igualdade de matrizes:

$$x^2+2=1$$
; $y^2+2=1$; e $\sqrt{2}y+\sqrt{2}x=0 \Rightarrow x=\pm i$; $y=\pm i$; $x=-y$; desta forma, podemos afirmar que não existem $x,y\in$ para que a matriz A seja ortogonal.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para

$$A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$$
; obtemos

$$A.A^t = \begin{bmatrix} x^2 + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^2 + 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; pela igualdade de matrizes:

$$x^2+2=1$$
; $y^2+2=1$; e $\sqrt{2}y+\sqrt{2}x=0 \Rightarrow x=\pm i$; $y=\pm i$; $x=-y$; desta forma, podemos afirmar que não existem $x,y\in$ para que a matriz A seja ortogonal.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1).

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1).

<u>Tese</u>: $(AB)^{-1} = (AB)^{t}$.

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que $A \in B$ são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1).

 $\underline{\mathsf{Tese}} \colon (AB)^{-1} = (AB)^t.$

Propriedades: $(2)(A.B)^{-1} = B^{-1}.A^{-1}$,

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$.

Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1).

 $\underline{\mathsf{Tese}} \colon (AB)^{-1} = (AB)^t.$

Propriedades: $(2)(A.B)^{-1} = B^{-1}.A^{-1}, (3)(A.B)^t = B^t.A^t.$

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$.

Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1).

<u>Tese</u>: $(AB)^{-1} = (AB)^t$.

Propriedades: $(2)(A.B)^{-1} = B^{-1}.A^{-1}, (3)(A.B)^{t} = B^{t}.A^{t}.$

Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que:

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1}=A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1}=A^t$; $B^{-1}=B^t$ (1). Tese: $(AB)^{-1}=(AB)^t$. Propriedades: $(2)(A.B)^{-1}=B^{-1}.A^{-1}, (3)(A.B)^t=B^t.A^t$. Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que: $(AB)^{-1}=(AB)^{-1}$

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1). Tese: $(AB)^{-1} = (AB)^t$. Propriedades: $(2)(A.B)^{-1} = B^{-1}.A^{-1}, (3)(A.B)^t = B^t.A^t$. Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que: $(AB)^{-1} = B^{-1}A^{-1} = B^{-1}A^{-1}$

Questão.4

Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1). <u>Tese</u>: $(AB)^{-1} = (AB)^t$. <u>Propriedades</u>: $(2)(A.B)^{-1} = B^{-1}.A^{-1}$, $(3)(A.B)^t = B^t.A^t$. <u>Considerando</u> as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que:

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

 $(AB)^{-1} = B^{-1}A^{-1} = B^{t}A^{t} =$

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1). Tese: $(AB)^{-1} = (AB)^t$. Propriedades: $(2)(A.B)^{-1} = B^{-1}.A^{-1}$, $(3)(A.B)^t = B^t.A^t$. Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que: $(AB)^{-1} = B^{-1}A^{-1} = B^tA^t = (AB)^t$;

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1}=A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1}=A^t$; $B^{-1}=B^t$ (1). Tese: $(AB)^{-1}=(AB)^t$. Propriedades: $(2)(A.B)^{-1}=B^{-1}.A^{-1}, (3)(A.B)^t=B^t.A^t$. Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que: $(AB)^{-1}=B^{-1}A^{-1}=B^tA^t=(AB)^t$; logo, o produto (AB) é uma matriz ortogonal.

Questão.4

Uma matriz A de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1} = A^t$. Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t$; $B^{-1} = B^t$ (1). Tese: $(AB)^{-1} = (AB)^t$. Propriedades: $(2)(A.B)^{-1} = B^{-1}.A^{-1}$, $(3)(A.B)^t = B^t.A^t$. Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que: $(AB)^{-1} = B^{-1}A^{-1} = B^tA^t = (AB)^t$; logo, o produto (AB) é uma matriz ortogonal.

Matrizes Revisão Questão.5

Questão.5

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Questão.5

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A.A^* = A^*A = I_2$

Questão.5

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A \cdot A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

Questão.5

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A \cdot A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

$$2. B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}$$

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A.A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

2.
$$B = \begin{bmatrix} 5 - i & -1 + i \\ -1 - i & 3 - i \end{bmatrix}$$
não é unitária;

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A.A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

2.
$$B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}$$

não é unitária; mas, $B.B^* = B^*B$ é normal.

- 1. $A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$ Como $A \cdot A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.
- 2. $B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}$ não é unitária; mas, $B.B^* = B^*B$ é normal.
- 3. $C = \begin{bmatrix} i & i \\ 2 & 3 \end{bmatrix}$

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A \cdot A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

2.
$$B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}$$

não é unitária; mas, $B.B^* = B^*B$ é normal.

3.
$$C = \begin{bmatrix} i & i \\ 2 & 3 \end{bmatrix}$$

 C não é normal;

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A \cdot A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

2.
$$B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}$$

não é unitária; mas, $B.B^* = B^*B$ é normal.

3.
$$C = \begin{bmatrix} i & i \\ 2 & 3 \end{bmatrix}$$

 C não é normal; logo, não é unitária.

Classifique, se possível, as matrizes abaixo em Ortogonais, Normais, Unitárias:

1.
$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Como $A \cdot A^* = A^*A = I_2$ logo, é unitária e, consequentemente, é normal.

2.
$$B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}$$

não é unitária; mas, $B.B^* = B^*B$ é normal.

3.
$$C = \begin{bmatrix} i & i \\ 2 & 3 \end{bmatrix}$$

 C não é normal; logo, não é unitária.

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL.

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$:

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A + B)^t =$

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

) A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t =$

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A + B)^t = A^t + B^t = A^{-1} + B^{-1}$

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$

Questão.6

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal.

Questão.6

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas.

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V)

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$;

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1}$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL.

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V)

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V) $C^t =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V) $C^t = (A.B)^t =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V) $C^t = (A.B)^t = B^t.A^t =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V) $C^t = (A.B)^t = B^t.A^t = B^{-1}.A^{-1} =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V) $C^t = (A.B)^t = B^t.A^t = B^{-1}.A^{-1} = (A.B)^{-1} =$

- () A soma de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL. (F)Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(A+B)^t = A^t + B^t = A^{-1} + B^{-1} \neq (A+B)^{-1}$
- () Sejam A e B matrizes ortogonais então a matriz C = A.B é também uma matriz ortogonal. (V)
- () A transposta do produto de matrizes ortogonais é o produto das suas inversas. (V) Hipótese: $A^t = A^{-1}$ e $B^t = B^{-1}$; Tese: $(AB)^t = B^t . A^t = B^{-1} . A^{-1} = (AB)^{-1}$
- () O produto de matrizes ORTOGONAIS é uma matriz ORTOGONAL. (V) $C^t = (A.B)^t = B^t.A^t = B^{-1}.A^{-1} = (A.B)^{-1} = C^{-1}$

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() O traço de uma matriz ortogonal é igual ao traço da sua inversa.

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V)

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$:

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A)$.

Questão.6

Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)

() O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t=A^{-1}$; Tese: $tr(A^{-1})=tr(A).tr(A^{-1})=tr(A^t)=tr(A)$.

Questão.6

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL.

Questão.6

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V)

Questão.6

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$;

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$.

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade:

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A$

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL.

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V)

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A) \cdot tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$;

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$.

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^*$

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^* = A^*.A = I_n$

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^* = A^*.A = I_n$

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^* = A^*.A = I_n \Rightarrow A.A^t = A^*$

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^* = A^*.A = I_n \Rightarrow A.A^t = A^t.A = I_n$

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^* = A^*.A = I_n \Rightarrow A.A^t = A^t.A = I_n$.

- () O traço de uma matriz ortogonal é igual ao traço da sua inversa. (V) Hipótese: $A^t = A^{-1}$; Tese: $tr(A^{-1}) = tr(A).tr(A^{-1}) = tr(A^t) = tr(A)$.
- () Toda matriz UNITÁRIA é também uma matriz NORMAL. (V) Hipótese: A é matriz unitária $A.A^* = A^*.A = I_n$; tese: A é matriz normal $A.A^* = A^*.A$. Verificando a igualdade: $A.A^* = A^*.A \Rightarrow I_n = I_n$.
- () Toda matriz real UNITÁRIA é também uma matriz ORTOGONAL. (V) Hipótese: A é matriz real unitária $A.A^* = A^*.A = I_n$; $A^* = A^t$; tese: A é matriz ortogonal $A.A^t = A^t.A = I_n$. Verificando a igualdade: $A.A^* = A^*.A = I_n \Rightarrow A.A^t = A^t.A = I_n$.

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix} .$$

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes \overline{A} , \overline{B} e \overline{C} efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ;

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes A, B e C efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ; pois anulamos uma linha da matriz C ao efetuarmos

operações elementares sobre as linhas:

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ; pois anulamos uma linha da matriz C ao efetuarmos

operações elementares sobre as linhas:
$$C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix} \sim$$

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ; pois anulamos uma linha da matriz C ao efetuarmos

operações elementares sobre as linhas:
$$C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$
;

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.7

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ; pois anulamos uma linha da matriz C ao efetuarmos

operações elementares sobre as linhas:
$$C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$
; então

C não é linha equivalente à matriz identidade l₃ e,

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ; pois anulamos uma linha da matriz C ao efetuarmos

operações elementares sobre as linhas:
$$C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$
; então

C não é linha equivalente à matriz identidade I_3 e, consequentemente, não é invertível.

Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$.

Determine, se possível, a inversa das matrizes $A, B \in C$ efetuando operações elementares sobre as linhas das matrizes.

$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{3}{2} \\ 1 & 0 & -1 \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} . B^{-1} = \begin{bmatrix} 9 & \frac{-3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}.$$

Não é possível achar a inversa C^{-1} ; pois anulamos uma linha da matriz C ao efetuarmos

operações elementares sobre as linhas:
$$C = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$
; então

C não é linha equivalente à matriz identidade I_3 e, consequentemente, não é invertível.

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

()
$$(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$$
.

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

()
$$(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$$
. (F)

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

()
$$(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$$
. (F)

() Se
$$(A.B^t) = (B^t.A) = I_n$$
 então $B^t = A^{-1}$.

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

()
$$(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$$
. (F)

() Se
$$(A.B^t) = (B^t.A) = I_n$$
 então $B^t = A^{-1}$. (V)

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Seiam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$.

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$.

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V)

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1}.B).C) =$

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1}.B).C) = tr(C.(C^{-1}B)) =$

Questão.8

Sejam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}).A = I_n$. Se A é ORTOGONAL então $A^{t} = (E_{n}^{(3)}, E_{n}^{(2)}, E_{n}^{(1)})I_{n}$

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}), A = I_n$ Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)}) I_n$. (V)

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}), A = I_n$ Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$

Questão.8

Seiam as matrizes $A, B, C \in \mathcal{M}_n(\mathbb{R})$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}), A = I_n$ Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}), A = I_n$ Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$, (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$. (V)

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}, E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)}).C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1}.B).C) = tr(C.(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}).A = I_n$. Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$. (V) B é UNITÁRIA sse $B^{-1} = \overline{B^t}$.

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}$, $E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)})$, $C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1},B),C) = tr(C,(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}), A = I_n$ Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$. (V) B é UNITÁRIA sse $B^{-1} = \overline{B^t}$. Então, $tr(B^{-1}) =$

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}, E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)}).C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1}.B).C) = tr(C.(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}).A = I_n$. Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$. (V) B é UNITÁRIA sse $B^{-1} = \overline{B^t}$. Então, $tr(B^{-1}) = tr(\overline{B^t})$

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}, E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)}).C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1}.B).C) = tr(C.(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}).A = I_n$. Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$. (V) B é UNITÁRIA sse $B^{-1} = \overline{B^t}$. Então, $tr(B^{-1}) = tr(\overline{B^t}) = \overline{tr(B)}$

- () $(A.B.C)^{-1} = A^{-1}B^{-1}C^{-1}$. (F)
- () Se $(A.B^t) = (B^t.A) = I_n$ então $B^t = A^{-1}$. (V)
- () Sejam $E_n^{(1)}, E_n^{(2)}$ matrizes elementares. Se $(E_n^{(2)}, E_n^{(1)}).C = I_n$ então $(E_n^{(2)}, E_n^{(1)})I_n = C^{-1}$. (V).
- () Se C é invertível então $tr(C^{-1}.B.C) = tr(B)$. (V) $tr((C^{-1}.B).C) = tr(C.(C^{-1}B)) = tr(B)$
- () Sejam $E_n^{(1)}, E_n^{(2)}, E_n^{(3)}$ matrizes elementares tais que $(E_n^{(3)}, E_n^{(2)}, E_n^{(1)}).A = I_n$. Se A é ORTOGONAL então $A^t = (E_n^{(3)}, E_n^{(2)}, E_n^{(1)})I_n$. (V) A é ORTOGONAL sse $A^t = A^{-1}$
- () Se B é UNITÁRIA então $tr(B^{-1}) = \overline{tr(B)}$. (V) B é UNITÁRIA sse $B^{-1} = \overline{B^t}$. Então, $tr(B^{-1}) = tr(\overline{B^t}) = \overline{tr(B)}$

Questão.9

(a)
$$A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & m \end{bmatrix}$$

Questão.9

(a)
$$A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & m \end{bmatrix}$$
 para $m \in -\{\frac{12}{7}\}$

Questão.9

(a)
$$A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & m \end{bmatrix}$$

$$para \ m \in -\{\frac{12}{7}\}$$

(b)
$$A = \begin{bmatrix} m & 2 & m \\ 2 & 1 & 1 \\ 2 & m & 2 \end{bmatrix}$$

Questão.9

(a)
$$A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & m \end{bmatrix}$$

$$para \ m \in -\left\{\frac{12}{7}\right\}$$

(b)
$$A = \begin{bmatrix} m & 2 & m \\ 2 & 1 & 1 \\ 2 & m & 2 \end{bmatrix}$$
para $m \in \mathbb{R} - \{-2, 2\}$

Questão.9

(a)
$$A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & m \end{bmatrix}$$

$$para \ m \in -\left\{\frac{12}{7}\right\}$$

(b)
$$A = \begin{bmatrix} m & 2 & m \\ 2 & 1 & 1 \\ 2 & m & 2 \end{bmatrix}$$
para $m \in \mathbb{R} - \{-2, 2\}$

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
.

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível,

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível.

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível.

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível. $det(A - \lambda I_2) = \lambda^2 - 4\lambda + 3 =$

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível. $det(A - \lambda I_2) = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow$

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível. $det(A - \lambda I_2) = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda = 1$ e $\lambda = 3$.

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível. $det(A - \lambda I_2) = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda = 1$ e $\lambda = 3$. Logo, para $\lambda \in \mathbb{R} - \{1, 3\}$

Questão.10

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível. $det(A - \lambda I_2) = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda = 1$ e $\lambda = 3$. Logo, para $\lambda \in \mathbb{R} - \{1,3\}$ a matriz $A - \lambda I_2$ é invertível.

12 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.10

Seja
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
. Calculando o $det(A - \lambda I_2)$, determine se possível, para quais valores de $\lambda \in \mathbb{R}$ a matriz $A - \lambda I_2$ é invertível. $det(A - \lambda I_2) = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda = 1$ e $\lambda = 3$. Logo, para $\lambda \in \mathbb{R} - \{1,3\}$ a matriz $A - \lambda I_2$ é invertível.

12 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1