

Introdução à Banco de Dados Explorando os Tipos de Joins

Prof. Ulpio Netto.

Importância dos Joins

- Joins são essenciais em bancos de dados relacionais, já que permitem combinar dados de diferentes tabelas com base nos relacionamentos específicos entre elas.
- Capacidade de reunir informações dispersas em várias tabelas.
- Facilitam a integração e a compreensão dos dados armazenados

Por que relacionar tabelas?

- Evitar a redundância de dados
- Garantir consistência e integridade dos dados
- Facilitar atualizações e modificações
- Permitir consultas complexas
- Melhorar desempenho
- Flexibilidade na modelagem
- Suporte a sistemas mais complexos

Tabela da esquerda e da direita

- Será muito comum, chamarmos tabelas de direita e esquerda, até mesmo pelo nome dos joins.
- Então aqui vai uma estrutura de um Select com Join para definirmos qual tabela é esquerda e direita.

```
select *
from tabela_esquerda
join tabela_direita on (tabela_esquerda.coluna = tabela_direita.coluna)
```


Revisando PK e FK

- Primary Key (PK) ou Chave Primária é o nosso identificador único de um registro em uma tabela.
- Por exemplo, em vários sistemas, esse identificador único é CPF, Matricula, ID...
- Foreign Key(FK) ou Chave Estrangeira, é a associação que fazemos a uma coluna de uma tabela B que referencia uma chave primária de uma tabela A
- Por exemplo, podemos dizer que dentro de um sistema de uma rede social, toda postagem tem uma coluna com o "postador", que é o usuário, de outra tabela, que realizou a postagem

Criando as tabelas

- Vamos criar as tabelas e inserir os registros para treinarmos os principais tipos de joins.
- Nesse caso, iremos criar uma tabela:
- Notebooks(id, marca, ram)
- Clientes(id, nome, estado, cidade)
- Vendas(id,cliente_id,notebook_id,valor)

Tipos de Joins – Inner Join

- Um Inner Join combina registros de duas tabelas com base em uma condição de correspondência específica.
- As linhas que não atendem à condição de correspondência são excluídas do resultado.

Tabela A Tabela B A B

```
select *
from vendas
join clientes on (vendas.cliente_id = vendas.cliente_id)
```

Aqui, estou selecionando todas as informações, de ambas as tabelas(venda e cliente), para cada venda que foi efetuada

Tipos de Joins – Left Join

 Left Join, retorna todos os registros da tabela da esquerda e os registros correspondentes na tabela da direita.


```
select *
from vendas
left join clientes on (vendas.cliente_id = clientes.cliente_id)
```

 Nesse caso, eu retorno todas as informações das duas tabelas, porém, tendo como base, apenas a tabela A, nesse caso, vendas

Tipos de Joins – Full Outer Join

 Full Outer Join, retorna todos os registros da tabela da direita, esquerda e os correspondentes entre os dois.


```
select *
from vendas
full outer join notebooks on (vendas.notebook_id = notebooks.notebook_id)
```

 Nesse caso, eu retorno todas as informações de vendas, e de todos os notebooks, independente se há uma relação entre as tabelas.

Tipos de Joins – Right Join

 Right Join, retorna todos os registros da tabela da direita e os registros correspondentes na tabela da esquerda.

select *
from vendas
right join clientes on (vendas.cliente_id = clientes.cliente_id)

 Nesse caso, eu retorno todas as informações dos clientes e as vendas realizadas por eles, inclusive aquelas que não tiveram nenhuma interação com com a tabela de vendas

Em resumo de Joins:

RIGHT JOIN

INNER JOIN

FULL OUTER JOIN

Exercicio

- Agora vamos criar um novo banco de dados:
- Considere duas tabelas:
- Produtos(id_produto, nome, categoria, preco_unitário).
- Vendas(id_venda,id_produto,data_venda,quantidade).
- Realize as inserções para termos tabelas assim:

id_produto	nome	categoria	preco_unitario
1	Laptop	Eletrônicos	2500.00
2	Smartphone	Eletrônicos	1200.00
3	Tablet	Eletrônicos	800.00
4	Impressora	Periféricos	300.00

id_venda	id_produto	data_venda	quantidade
101	1	10/05/2023	2
102	2	12/05/2023	1
103	3	15/05/2023	3
104	5	18/05/2023	1

Exercicio

- Inner Join:
 - Crie uma consulta que retorne todas as vendas com detalhes do produto.
 - Inclua as colunas: venda_id, data_venda, quantidade, nome e preco_unitário
- Left Join:
 - Crie uma consulte que retorne todas as vendas, incluindo aquelas sem correspondência com protudos.
 - Inclua as colunas: id_venda, data_venda, quantidade, nome, preco_unitario
- Right Join:
 - Crie uma consulte que retorne as informações de vendas e produtos, incluindo aqueles que não foram vendidos.
 - Inclua as colunas: id_produto, nome, categoria, preco_unitário, id_venda, data_venda, quantidade

Exercicio

- Full Outer Join:
 - Crie uma consulta que retorne todas as vendas e informações de produtos, incluindo aqueles que não foram vendidos.
 - Inclua todas as colunas.

