Tareas del día:

1. Ejecuté el programa test-MM-K, que usa el modelo de fricción de Karnopp, para simulaciones con 30 fases distintas ϕ por cada amplitud Γ , para 8 valores de Γ , con la idea de comparar con la Fig. 4 de MM. Ajusté luego cada curva con la ec. (9) de MM y obtuve el valor $\mu=0.1095$, diferente de $\mu_d=0.16$ que estoy usando en las simulaciones. La figura 4 que tengo para comparar estática:

2024.02.28

Tareas del día:

- 1. Cálculo del rango de Γ : A partir de la ec. (2) del preprint MM, y usando $\rho=1/2$, los valores de Γ que cubren el rango de valores de $V_{\rm RMS}$ de las curvas de la figura 2 ((0, 100) mm/s) es $\Gamma\in(0,3.24)$.
- 2. Modifico el script set_inis.sh para generar los inputs con el rango anterior para Γ .
- 3. Corrí dos conjuntos de 30 simulaciones con $\phi=0$ (en /test-04) y $\phi=\pi/2$ (en /test-05). Calculé la velocidad media del móvil ajustando una recta sobre el desplazamiento (descartando los primeros valores iniciales). El resultado comparando con la Fig. 2 de MM es:

En esta figura usé $\mu = \mu_d = 0.16$.

2024.02.22

Tareas del día:

1. Tomo como base el preprint MM¹ donde el input es la aceleración dada por la ecuación (1):

$$a_B(t) = \gamma [\rho \operatorname{sen}(\omega t) + (1 - \rho) \operatorname{sen}(2\omega t + \phi)]$$

En consecuencia, la velocidad y posición de la base resultan:

$$v_b(t) = -\frac{\gamma}{\omega} \left[\rho \cos(\omega t) + \frac{(1-\rho)}{2} \cos(2\omega t + \phi) \right]$$
$$x_b(t) = -\frac{\gamma}{\omega^2} \left[\rho \sin(\omega t) + \frac{(1-\rho)}{4} \sin(2\omega t + \phi) \right]$$

Para compatibilizar con el programa de simulación, en que el input de amplitud es la aceleración reducida $\Gamma = A\omega^2/g$, siendo A la amplitud de la oscilación en x(t), escribo las ecuaciones anteriores en términos de $\Gamma = \gamma/g$:

$$\begin{split} x_b(t) &= -\frac{g\Gamma}{\omega^2} \left[\rho \operatorname{sen}(\omega t) + \frac{(1-\rho)}{4} \operatorname{sen}(2\omega t + \phi) \right] \\ v_b(t) &= -\frac{g\Gamma}{\omega} \left[\rho \operatorname{cos}(\omega t) + \frac{(1-\rho)}{2} \operatorname{cos}(2\omega t + \phi) \right] \\ a_B(t) &= g\Gamma[\rho \operatorname{sen}(\omega t) + (1-\rho) \operatorname{sen}(2\omega t + \phi)] \end{split}$$

También para compatibilizar con el preprint, cambio la notación en el input $\eta\mapsto\rho.$

¹Efficient transport controlled by biharmonic frictional driving.

Tareas del día:

1. Cambié la implementación de la excitación de la base y sumé una de dos frecuencias con la forma:

$$f_2(t) = \eta A \operatorname{sen}(\omega t) + (1 - \eta) A \operatorname{sen}(2\omega t + \phi)$$

- 2. Corrí el conjunto de simulaciones previo con el modelo de Karnopp, $\eta=0.5$ y $\phi=0.5$. Los resultados estan en /test-03.
- 3. Se observa que la velocidad media de desplazamiento del móvil crece con Γ .

2024.02.13

Tareas del día:

1. Incorporé el modelo de fricción Smooth Coulomb 2 según:

$$F_{sc2}(\boldsymbol{v}_{\rm rel}) = -\mu_d mg \tanh(v_{\rm rel}/v_d) + (\mu_s - \mu_d) \frac{v_{\rm rel}}{v_s} \exp[-(v_{\rm rel}/v_s)^2]$$

donde v_s es la velocidad de Stribeck. Los tres modelos tienen las gráficas (con $v_d=0.01\,\mathrm{m/s}$ para visualizar):

2. Corrí el conjunto de simulaciones con este nuevo modelo, y los resultados son muy similares a los anteriores, con $v_s = 0.03 \, \text{m/s}$ solo para visualizar:

Los archivos están en /test-02.

2024.02.09

Tareas del día:

- 1. Modifiqué los scripts para extener el rango de simulaciones hasta $\Gamma=0.4$.
- 2. Corrí de nuevo las simulaciones para los casos Karnopp (en /test-00) y Smooth Coulomb (en /test-01).
- 3. Modifiqué el script get_amp.py para leer el parámetro Gamma desde el archivo con los datos de salida de la simulación.
- 4. Corrí los ajustes con el script get_amp.py para ambos casos y rehice la Fig.2. No se observan casi diferencias entre ambos modelos de fuerzas.

5. Calculé las diferencias de fase entre el movimiento del móvil y la base, para comparar con la Fig.3:

Pendiente para el lunes: Incoporar el modelo de fricción con exponenciales usando los valores de Diego y empezar a probar con la excitación biarmónica.

2024.02.06

Tareas del día:

1. Corregí un error en el código del modelo de fuerza de fricción Smooth Coulomb según ec.(4) de Pennestri, y para $v_d=1.0\times 10^{-5}\,\mathrm{m/s}$ apareció deriva para valores grandes de Γ . Esto desaparece cuando aumento v_d a $1.0\times 10^{-4}\,\mathrm{m/s}$. Al igual que ayer, el resultado de las simulaciones casi no se distinguen del modelo de Karnopp.

2024.02.05

Tareas del día:

1. Incoporé el modelo de fuerza de fricción Smooth Coulomb según ec.(4) de Pennestri²:

$$F(\mathbf{v}_{\rm rel}) = -\mu_d mg \tanh(v_{\rm rel}/v_d)\hat{v}_{\rm rel}$$

con
$$v_d = v_{\text{tol}} = 1.0 \times 10^{-5} \,\text{m/s}.$$

La salida de las simulaciones es casi indistinguible del caso con el modelo de Karnopp:

²Ettore Pennestrì et al. «Review and comparison of dry friction force models». En: *Nonlinear Dynamics* 83.4 (mar. de 2016), págs. 1785-1801.

Tareas del día:

- 1. Hice un script de bash para generar archivos *.in cambiando algún parámetro a partir de un template. El primero genera diferentes valores de amplitud de aceleración para valores de Γ entre 0.04 y 0.3 (set_inis.sh).
- 2. Hice otro script para lanzar las corridas de todos los archivos *.in que hay en el directorio de trabajo (run_inis.sh).
- 3. Corregí el código para implementar el modelo de fuerza de roce de Karnopp³, con los parámetros usados no aparece una deriva del móvil aunque si un desplazamiento inicial ($v_{\text{tol}} = 1.0 \times 10^{-5} \,\text{m/s}$).

³Filipe Marques et al. «A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems». En: *Nonlinear Dynamics* 86.3 (nov. de 2016), págs. 1407-1443.

Los archivos de entrada y salida estan en el directorio /test-00.

4. Con las simulaciones anteriores del modelo de Karnopp grafiqué las amplitudes de los movimientos del móvil en función de Γ , dando similar a la Figura 2 del preprint Maza².

Pendiente para el lunes: incorporar otros modelos de fricción.

Parámetros para el caso de referencia

Para comenzar como referencia uso los siguientes parámetros, a partir de los valores experimentales:

- Frecuencia $f=20\,\mathrm{Hz}\mapsto\omega=125.66\,\mathrm{rad/s}.$
- Aceleración de la gravedad: $g = 9.8 \,\mathrm{m/s^2}$.
- Aceleración reducida $\Gamma = A\omega^2/g$, donde A es la amplitud de la oscilación de la base.
- Coeficiente de fricción estática: $\mu_s = 0.2$
- Coeficiente de fricción dinámica: $\mu_d=0.16$
- $\beta = \mu_d/\mu_s = 0.8$ (inicialmente).
- El móvil es un disco de radio $0.5\,\mathrm{m}$ y con una densidad de $0.102\,132\,4\,\mathrm{kg/m^2}$, lo que le da una masa $m=0.081\,\mathrm{kg}$.

Definiendo la velocidad relativa entre la base y el móvil como $v_{\rm rel}=v_b-v_m$, el modelo de fricción con la base es:

$$F_f(v_{\rm rel}) = \begin{cases} \mu_s mg \ \mathrm{sgn}(v_{\rm rel}) & \mathrm{si} \quad v_{\rm rel} < v_{\rm tol} \\ \mu_d mg \ \mathrm{sgn}(v_{\rm rel}) & \mathrm{si} \quad v_{\rm rel} \ge v_{\rm tol} \end{cases} \tag{1}$$

Nota: un parámetro crítico parece ser v_{tol} , que es el umbral por debajo del cual se activa la fricción estática.

Tabla de amplitudes de excitación en función de Γ :

Γ	a	Γ	a
0.040	2.483e-05	0.184	1.145e-04
0.069	4.275e-05	0.213	1.324e-04
0.098	6.068e-05	0.242	1.503e-04
0.127	7.861e-05	0.271	1.683e-04
0.156	9.654e-05	0.300	1.862e-04

Pendiente para mañana: verificar el valor de tol para que no se produzca deriva en el movimiento del móvil.