54. The system of claim 53 wherein the communication device is configured to backscatter modulate the continuous wave signal to output the modulated continuous wave signal.

55. The system of claim 53 wherein the communication device comprises a radio frequency identification device.

The system of claim 53 wherein the interrogator is configured to receive the continuous wave signal and to reduce the amplitude of the component of the modulated continuous wave signal using the continuous wave signal.

57. The system of claim 5% wherein the interrogator is configured to receive the continuous wave signal and to reduce the amplitude of the component of the modulated continuous wave signal using the continuous wave signal including adjusting at least one of an amplitude and a phase of the continuous wave signal and combining the adjusted continuous wave signal with the modulated continuous wave signal.

The system of claim by wherein the modulated continuous wave signal comprises a data portion, and wherein the interrogator is configured to adjust the continuous wave signal before reception of the data portion.

The system of claim 58 wherein the interrogator is configured to receive the continuous wave signal and to reduce the amplitude of the component of the modulated continuous wave signal using the continuous wave signal including matching an amplitude of the continuous wave signal with an amplitude of the modulated continuous wave signal, adjusting a phase of the continuous wave signal, and summing the adjusted continuous wave signal with the modulated continuous wave signal.

An interrogator comprising:

a receiver configured to receive a continuous wave signal having a frequency and a modulated continuous wave signal, the receiver being further configured to reduce an amplitude of a component of the modulated continuous wave signal having the frequency of the continuous wave signal using the continuous wave signal while substantially maintaining an amplitude of another component of the modulated continuous wave signal having another frequency.

11.

The interrogator of claim 60 wherein the receiver is configured to reduce the amplitude of the component of the modulated continuous wave signal using the continuous wave signal including adjusting at least one of an amplitude and a phase of the continuous wave signal and combining the adjusted continuous wave signal with the modulated continuous wave signal.

ia.

62. The interrogator of claim 81 wherein the modulated continuous

wave signal comprises a data portion, and wherein the receiver is configured

to adjust the continuous wave signal before reception of the data portion.

13.

10

83. The interrogator of claim 80 wherein the receiver is configured to

reduce the amplitude of the component of the modulated continuous wave

signal using the continuous wave signal including matching an amplitude of

the continuous wave signal with the amplitude of the modulated continuous

wave signal, adjusting a phase of the continuous wave signal, and summing

the adjusted continuous wave signal with the modulated continuous wave

signal.

ťŌ

64.

An interrogator comprising:

a receiver configured to receive a local signal and a communication

signal, the receiver being further configured to adjust the local signal and to

reduce an amplitude of a component of the communication signal having a

first frequency using the adjusted local signal while substantially maintaining

an amplitude of another component of the communication signal having

another frequency.

 \mathcal{O}

n.

65. The interrogator of claim 64 wherein the local signal comprises a continuous wave signal and the communication signal comprises a modulated

16

continuous wave signal.

18.

ზ6. The interrogator of claim ბ4 wherein the receiver is configured to

adjust the local signal including adjusting at least one of an amplitude and

a phase of the local signal and to combine the adjusted local signal and the

communication signal to reduce the amplitude of the component of the

communication signal having the first frequency.

67. The interrogator of claim 64 wherein the receiver is configured to

adjust the local signal including matching an amplitude of the local signal with

an amplitude of the modulated continuous wave signal and adjusting a phase

of the local signal.

68. The interrogator of claim 67 wherein the receiver is configured to

sum the adjusted local signal with the communication signal to reduce the

amplitude of the component of the communication signal having the first

frequency.

69. The interrogator of claim 64 wherein the communication signal comprises a data portion and the receiver is configured to adjust the local signal before reception of the data portion.

SUB

A communication method comprising:

communicating a continuous wave signal having a frequency;

communicating a modulated continuous wave signal responsive to the continuous wave signal using a communication device;

receiving the modulated continuous wave signal; and

reducing an amplitude of a component of the modulated continuous wave signal having the frequency of the continuous wave signal after the receiving while substantially maintaining an amplitude of a component of the modulated continuous wave signal having a frequency different than the frequency of the continuous wave signal.

The method of claim wherein the communicating the modulated continuous wave signal comprises backscatter modulating the continuous wave signal.

The method of claim N wherein the communicating comprises communicating using the communication device comprising a radio frequency identification device.

<u>2</u>7,

24

73. The method of claim 70 further comprising providing a local continuous wave signal and the reducing comprises reducing using the local continuous wave signal.

*ఎ*૪. ష

The method of claim 70 further comprising providing a local continuous wave signal and the reducing comprises reducing using the local continuous wave signal including adjusting at least one of an amplitude and a phase of the local continuous wave signal and combining the adjusted local continuous wave signal and the modulated continuous wave signal.

રૂધ. રૂ૪ રેક. The method of claim રેપ, wherein the modulated continuous wave signal comprises a data portion, and the adjusting comprises adjusting before receiving the data portion.

The method of claim 70 further comprising providing a local continuous wave signal and the reducing comprises reducing using the local continuous wave signal including matching an amplitude of the local continuous wave signal with an amplitude of the modulated continuous wave signal, adjusting a phase of the local continuous wave signal, and summing the adjusted local continuous wave signal with the modulated continuous wave signal.

3b)

77. A communication method comprising:

providing a continuous wave signal;

modulating the continuous wave signal providing a modulated continuous wave signal;

receiving the modulated continuous wave signal; and

after the receiving, reducing an amplitude of a component of the modulated continuous wave signal having a frequency of the continuous wave signal while substantially maintaining an amplitude of another component of the modulated continuous wave signal having another frequency.

35.
78. The method of claim 77 wherein the modulating comprises backscatter modulating...

79. The method of claim 77 wherein the modulating comprises modulating using a radio frequency identification device.

The method of claim \times wherein the reducing comprises adjusting at least one of an amplitude and a phase of the continuous wave signal and combining the adjusted continuous wave signal and the modulated continuous wave signal.

81. The method of claim 80 wherein the modulated continuous wave signal comprises a data portion and the adjusting comprises adjusting before receiving the data portion.

39. 34
82. The method of claim 77 wherein the reducing comprises matching an amplitude of the continuous wave signal with an amplitude of the modulated continuous wave signal, adjusting a phase of the continuous wave signal, and summing the continuous wave signal and the modulated continuous wave signal after the matching and the adjusting.

83. A communication method comprising:

providing a local signal;

receiving a communication signal; and

after the receiving, reducing an amplitude of a first component of the communication signal while substantially maintaining an amplitude of a second component of the communication signal, the reducing comprising adjusting the local signal and combining the communication signal and the local signal after the adjusting.

84. The method of claim 83 wherein the providing comprises communicating the local signal comprising a continuous wave signal, and further comprising communicating the communication signal comprising a modulated continuous wave signal.

43 85. The method of claim 83 further comprising communicating the communication signal using a radio frequency identification device.

86. The method of claim 88 wherein the reducing comprises adjusting at least one of an amplitude and a phase of the local signal and combining the local signal and the communication signal after the adjusting.

87. The method of claim 86 wherein the communication signal comprises a data portion and the adjusting comprises adjusting before receiving the data portion.

The method of claim 83 wherein the reducing comprises matching an amplitude of the local signal with an amplitude of the communication signal, adjusting a phase of the local signal, and summing the local signal and the communication signal after the matching and the adjusting.

