P. Maurer

ENS Rennes

Recasages: (158), 170, 171, 215.

Référence : Rouvière, Petit guide de calcul différentiel.

Inspiré du travail de Florent Lemonnier.

Lemme de Morse

On se donne $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$ deux entiers, et U un ouvert de \mathbb{R}^n contenant l'origine. On commence par rappeler la formule de Taylor avec reste intégral pour une fonction à plusieurs variables.

Notation 1. Soit $f: U \to \mathbb{R}^n$ de classe C^k sur U. Pour $h \in \mathbb{R}^n$, on note

$$D^k f(a)(h)^k := D^k f(a) \underbrace{(h, \dots, h)}_{k \text{ fois}}.$$

Proposition 2. (Formule de Taylor avec reste intégral)

Si $f \in \mathcal{C}^{k+1}(U,\mathbb{R}^n)$ et s'il existe $a,h \in U$ tels que $[a,a+h] \subset U$, alors

$$f(a+h) - f(a) - Df(a)h - \dots - \frac{1}{k!}D^k f(a)(h)^k = \int_0^1 \frac{(1-t)^k}{k!}D^{k+1} f(a+th)(h)^{k+1} dt.$$

On utilise également le lemme suivant.

Lemme 3. (Réduction différentiable des formes quadratiques)

Soit $A_0 \in \mathcal{S}_n(\mathbb{R}) \cap \operatorname{GL}_n(\mathbb{R})$. Alors il existe un voisinnage V de A_0 et une application $\Psi: V \to \operatorname{GL}_n(\mathbb{R})$ de classe \mathcal{C}^1 tels que

$$\forall A \in V \quad A = \Psi(A)^T A_0 \Psi(A).$$

Démonstration.

Etape 1 : On considère l'application
$$\varphi$$
:
$$\begin{cases} \mathcal{M}_n(\mathbb{R}) & \to \mathcal{S}_n(\mathbb{R}) \\ M & \mapsto M^T A_0 M \end{cases}.$$

L'application φ est polynomiale, donc de classe \mathcal{C}^1 sur $\mathcal{M}_n(\mathbb{R})$, et sa différentielle vérifie $D\varphi(M)(H) = M^T A_0 H + H^T A_0 M$ pour tout $(M, H) \in (\mathcal{M}_n(\mathbb{R}))^2$. En particulier, on a $D\varphi(I_n)(H) = A_0 H + H^T A_0 = A_0 H + (A_0 H)^T$.

L'application $D\varphi(I_n): \mathcal{M}_n(\mathbb{R}) \to \mathcal{S}_n(\mathbb{R})$ est surjective car pour $M \in \mathcal{S}_n(\mathbb{R})$, on a

$$M = A_0 \left(\frac{A_0^{-1}M}{2}\right) + \left(\frac{A_0^{-1}M}{2}\right)^T A_0.$$

Par ailleurs, pour $H \in \text{Ker } D\varphi(I)$, la matrice H vérifie $(A_0 H) = -(A_0 H)^T$, donc en notant $M = A_0 H$, la matrice M est antisymétrique et vérifie $H = A_0^{-1} M$. On en déduit que

$$\operatorname{Ker} D\varphi(I_n) = \{A_0^{-1}M : M \in \mathcal{A}_n(\mathbb{R})\}.$$

Etape 2 : On va utiliser le théorème d'inversion locale.

Notons $F = \{A_0^{-1}M : M \in \mathcal{S}_n(\mathbb{R}) \cap \operatorname{GL}_n(\mathbb{R})\}$. On voit que $F \cap \operatorname{Ker} D\varphi(I) = \{0\}$ puisque $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont en somme directe dans $\mathcal{M}_n(\mathbb{R})$. Par ailleurs, F contient $I_n = A_0^{-1}A_0$.

Considons la restriction $\varphi_{|F}$ à F de φ . Sa différentielle en I_n vérifie alors :

$$D\varphi_{|F}(I_n) \in \mathrm{GL}(F, \mathcal{S}_n(\mathbb{R})).$$

D'après le théorème d'inversion locale, il existe un voisinnage $W \subset F$ de I_n , et un voisinnage $V \subset \mathcal{S}_n(\mathbb{R})$ de $\varphi(I_n) = A_0$ tel que $\varphi_{|W}^{|V}$ soit un \mathcal{C}^1 -difféomorphisme. Notons $\Psi: V \to W$ son application réciproque. On a bien $W \subset F \subset GL_n(\mathbb{R})$, et par ailleurs, pour $A \in V$, Ψ vérifie

$$\varphi(\Psi(A)) = A \iff \Psi(A)^T A_0 \Psi(A) = A,$$

et Ψ est une application de classe \mathcal{C}^1 sur V.

Théorème 4. (Lemme de Morse)

Soit $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 . On suppose que 0 est un point critique quadratique non dégénéré de f, c'est-à-dire que Df(0) = 0 et que la forme quadratique hessienne $Df^2(0)$ est non dégénérée, de signature (p, n - p).

Alors il existe deux voisinnages V et W de l'origine et un C^1 -difféomorphisme $\varphi: V \to W$ tel que

$$\varphi(0) = 0$$
, et en notant $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = : \varphi(x) \text{ pour } x \in U$, on $a : {}^2$

$$f(x) - f(0) = u_1^2 + \dots + u_p^2 - u_{p+1}^2 - \dots - u_n^2$$

Démonstration.

Etape 1 : On applique la formule de Taylor reste intégral à l'ordre 1 à f, pour $x \in U$.

Il vient

$$f(x) - f(0) = Df(0) x + \int_0^1 \frac{(1-t)^1}{1!} D^2 f(tx) (x, x) dt$$
$$= \int_0^1 \frac{(1-t)^1}{1!} D^2 f(tx) (x, x) dt$$
$$= x^T Q(x) x,$$

où $Q(x) = \int_0^1 \frac{(1-t)^1}{1!} D^2 f(tx)$ et l'application Q est continue sur U.

Comme la forme quadratique $Df^2(0)$ est non dégénérée, sa matrice est inversible donc

$$Q(0) = \frac{1}{2} D f^{2}(0) \in \mathcal{S}_{n}(\mathbb{R}) \cap \operatorname{GL}_{n}(\mathbb{R}).$$

^{1.} En fait, $\Psi(A) \in \mathcal{S}_n(\mathbb{R})$ donc $\Psi(A)^T = \Psi(A)$. Pour $A_0 = I_n$, on en déduit l'existence de M tel que $A = M^2$ lorsque A est une matrice assez proche de I_n .

^{2.} Autrement dit, la fonction f devient une simple forme quadratique après un changement de coordonnées. On peut voir ce résultat comme une formule de Taylor sans reste. Le résultat s'étend dans le cas où $Df(0) \neq 0$ en remplaçant f(x) par g(x) = f(x) - f(0) - Df(0) x.

Etape 2 : On applique le résultat du lemme 3 avec $A_0 = Q(0)$.

On en déduit qu'il existe un voisinnage $V \subset \mathcal{S}_n(\mathbb{R})$ de Q(0) et $\Psi: V \to \mathrm{GL}_n(\mathbb{R})$ de classe \mathcal{C}^1 tel que

$$\forall A \in V \quad A = \Psi(A)^T Q(0) \Psi(A).$$

Comme Q est continue, il existe un voisinnage W de 0 dans \mathbb{R}^n tel que

$$\forall x \in W \quad Q(x) \in V \quad \text{et } Q(x) = \Psi(Q(x))^T Q(0) \Psi(Q(x)).$$

On pose $M(x) = \Psi(Q(x))$ et y = M(x) x. Alors on a

$$\begin{split} f(x) - f(0) &= x^T Q(x) \, x \\ &= x^T \, \Psi(Q(x))^T Q(0) \, \Psi(Q(x)) \, x \\ &= x^T M(x)^T Q(0) \, M(x) \, x \\ &= (M(x) \, x)^T Q(0) \, (M(x) \, x) \\ &= y^T Q(0) \, y. \end{split}$$

Par ailleurs, le théorème d'inertie de Sylvester assure l'existence de $A \in GL_n(\mathbb{R})$ telle que

$$A^T Q(0) A = \begin{pmatrix} I_p & 0 \\ 0 & -I_{n-p} \end{pmatrix}.$$

En posant $u = yA^{-1}$, on obtient l'expression souhaitée

$$f(x) - f(0) = u^T A^T Q(0) A u$$

= $u_1^2 + \dots + u_p^2 - u_{p+1}^2 - \dots - u_n^2$.

Etape 3 : On montre que $\varphi: x \mapsto u$ est un \mathcal{C}^1 -difféomorphisme entre deux voisinnages de zéro. Considérons l'application $\psi: x \mapsto M(x)$ x

Elle vérifie

$$\psi(0+h) - \psi(0) = M(h) h - M(0) 0$$

= $M(0) h + (M(h) - M(0)) h$
= $M(0) h + o(||h||),$

où on a utilisé la continuité de M (qui provient de celle de Q) en zéro pour la troisième égalité.

En particulier, ψ est différentiable en zéro et $D\psi(0)(h) = M(0) h$, et $M(0) \in GL_n(\mathbb{R})$ donc la différentielle de ψ en zéro est inversible.

• Montrons que par ailleurs, la fonction ψ est de classe \mathcal{C}^1 . Pour $x, h \in U$, la fonction Q vérifie

$$Q(x+h) - Q(x) = \int_0^1 (1-t) D^2 f(t(x+h)) dt - \int_0^1 (1-t) D^2 f(tx) dt$$
$$= \int_0^1 (1-t) (D^2 f(tx+th) - D^2 f(tx)) dt.$$

Comme f est de classe \mathcal{C}^3 sur U, l'application $D^2 f: U \to \mathbb{R}$ est de classe \mathcal{C}^1 donc

$$D^2 f(tx+th) = D^2 f(tx) + D^3 f(tx)(th) + o(||h||).$$

On en déduit que

$$Q(x+h) - Q(x) = \int_0^1 (1-t) D^3 f(tx)(th) dt + \int_0^1 o(\|h\|) dt$$
$$= \int_0^1 (1-t) D^3 f(tx)(th) dt + o(\|h\|),$$

Aussi, Q est différentiable en x et $DQ(x)(h) = \int_0^1 (1-t) \, D^3 f(tx)(th) \, dt$. La fonction $x \mapsto DQ(x)$ est continue par continuité de $x \mapsto D^3 \, f(tx)$.

Donc $\psi = \Psi \circ Q \times \operatorname{Id}_U$ est bien de classe \mathcal{C}^1 sur U

Finalement, ψ est de classe \mathcal{C}^1 sur U et sa différentielle en zéro est inversible. Comme A est inversible, la fonction $\varphi: x \mapsto u = \psi(x) \, A^{-1}$ conserve ces deux propriétés.

En appliquant le théorème d'inversion locale à φ , on en déduit l'existence de deux voisinnages de 0 dans \mathbb{R}^n tels que φ soit bien un \mathcal{C}^1 -difféomorphisme, et ceci conclut la preuve du théorème.