2006-2007 年《过程控制》期末试卷 B (闭卷)

班级	姓名	成绩
----	----	----

一、 简答题(36%)(每题6分)

- 1、过程控制中被控对象动态特性有哪些特点?常用的评价控制系统动态性能的单项性能指标有哪些?
- 2、一个自动控制系统,在比例控制的基础上分别增加:①适当的积分作用。②适当的微分作用。试问:(1)这两种情况对系统的稳定性,最大动态偏差、余差分别有何影响?(2)为了得到相同的系统稳定性,应如何调整调节器的比例度 δ ,并说明理由。
- 3、下图 1 所示的换热器,用蒸汽将进入其中的冷水加热到一定温度,生产工艺要求热水温度维持恒定($\Delta\theta \leq \pm 1^{\circ}C$),试设计一简单温度控制系统,指出调器的类型。

图 1 换热器原理图

- 4、调节阀的气开与气关形式是如何实现的?在使用时应根据什么原则选择 之。
- 5、如果系统中主、副回路的工作周期十分接近,例如分别为三分钟和两分钟,也就是说正好运行在共振区内,应采取什么措施来避免系统的共振,这种措施对控制系统的性能有什么影响?
 - 6、前馈控制和反馈控制各有什么特点?为什么采用前馈-反馈复合控制系统

二、 计算题(64%)

1、有一复杂液位对象,其液位阶跃响应实验结果为:

t/s	0	10	20	40	60	80	100	140	180	250	300	400	500	600
h/cm	0	0	0.2	0.8	2.0	3.6	5.4	8.8	11.8	14.4	16.6	18.4	19.2	19.6

其中阶跃扰动量 $\Delta\mu = 20\%$ 。

- (1) 画出液位的阶跃响应曲线;
- (2) 若该对象用带纯迟延的一阶惯性环节近似,试用作用法确定对象增益 K 及 纯迟延时间 τ 和时间常 T。(10 分)
- 2、对象传递函数 $G(s) = e^{-2s}/2s$,调节器采用 PI 动作。试用稳定边界法(利用闭环测试原理计算)估算调节器的整定参数。(12 分)

有关参数整定如下表所示

整定参数调节规律	k_{p}	T_{i}
PI	$0.46k_{ps}$	$0.85T_{\scriptscriptstyle S}$

- 3、图 2 所示为一加热炉,工艺要求被加热物料的出口温度保持为某一恒定值, 影响出口温度的因素主要有燃料油方面的流量和压力波动,工艺安全条件是: 一旦发生重大事故,立即切断燃料油的供应。
 - (1) 设计一串级控制系统方案,画出相应的控制方块图(在图 2 上标出)。
 - (2) 画出该加热炉串级控制系统结构图

(3)调节阀的作用形式及主、副调节器的正反作用。(15分)

图 2 加热炉出口温度控制

4、试为下述过程设计一个前馈-反馈控制系统。已知过程的控制通道传递函数为:

 $W_o(s) = \frac{3e^{-3s}}{2s+1}$,过程干扰通道传递函数为: $W_d(s) = \frac{6e^{-3s}}{s+1}$,试写出前馈调节器的传递函数 $W_m(s)$ 并说明其模型是超前还是滞后,画出前馈-反馈系统方框图及分析其实现方案(设 $\frac{1}{Ts+1}$ 是容易实现的模型)。(15 分)

5、已知某模糊控制器的控制规则为"若 \tilde{A} 且 \tilde{B} 则 \tilde{C} ,且

$$\tilde{A} = (0.5, 0.8)$$
 $\tilde{B} = (0.3, 0.5, 0.6)$ $\tilde{C} = (0.4, 0.2)$

- (1) 求模糊关系 \tilde{R} ,
- (2) 若己知 \tilde{A}_{1} = (0.2, 0.4); \tilde{B}_{1} = (0.6, 0.8, 1) 求 \tilde{C}_{1} (12分)