Umoto YU 1155167057

Person

Р1

P2

Ρ4

Height

(m)

1.79

1.64

1.70

1.88

Weight

(kg)

75

63

78

BMEG 3105
Part I. Data Cleaning
Why?
4 Data quality problems

Lec 6 Scribing

Isl. Noise

4-Definition: Modification of original values 4-Solution: Denoise Outa

5 Ex.:

1-2 Outliers

13 Definition: Octa objects obviously different than most of others in data set 13 Solution: Remove cutliers

4 Ex. _○

>3.	Missing Rodson	values
l	Roason	15:

41. Information not collected 52. Attributes not applicable to all 5. Solution: Handling missing values 51. Eliminate Outre Objects

42. Estimate missing values

43. Ignove missing values during analysis 44. replace with possible values

54. Replicate data 5 Definition: Dataset include Calmost) deplicated data objects 5 Ex: Database 1 Database 2

•	OD)	ects				•
:x.:	Database 1			Database 2		
	Person	Height (m)	Weight (kg)	Person	Height (m)	We (kg
	P1	1.79	<mark>75</mark>	P1	1.79	75
	P2	1.64	54	P7	1.65	55
	Р3	1.70	63	P8	1.69	63
	P4	1.88	78	P9	1.87	77

4 How?
4 mostly from merging dutce from heterogenous sources
5 Solution:

5 Remove deplicates

55. Unnormalized data 5 Definition: Attributes not on similar level of

madelument 4 Solution: Normalization

Ly Min-max normalization
Ly Ex.: Person Height Weight

P1

P2

M	ax nor	maliz	ation	v'	=	$\overline{v^{max}-v^m}$
:	Person	Height	Weight			
		(m)	(kg)			

75

4 Z-score	norm	UZU	non	$V = \frac{1}{\operatorname{Std}(v)}$
1. 7		يمدنا م	bi'a	12' <u>v</u> -Mean
	P4	1.88	78	
	Р3	1.70	63	NO MAIL

1.79

1.64

46. Categorical data

Solution: one-hot encodiff

Serson Height Weight Gender

Person Meight Weight Gender

P1	0.625	0.875	Male
P2	0	0	Female
Р3	0.25	0.375	Female
P4	1	1	Male

Person	Height(m)	Weight(kg)	Male	Femal
P1	0.625	0.875	1	0
P2	0	0	0	1
P3	0.25	0.375	0	1
P4	1	1	1	0

Person

Height(

m)

0.625

0.25

1

Weight(

kg)

0

0.875

0.375 1 Part I. Data Exploration

- Summary Statistics

5 Definition: numbers that summerize paperties of data

5 Measure of location: 5 mean 5 sensitive to authors $mean(x) = \frac{1}{m} \sum_{i=1}^{m} x_i$ 4 median $median(x) = \begin{cases} x_{(r+1)} & \text{if m is odd, i.e., } m = 2r + 1\\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if m is even, i.e., } m = 2r \end{cases}$ 5 Measure of spread Grange 4 Definition: Difference between max & min. 4 variance/standard deviation $> variance(x) = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - mean(x))^2$ 5 Median absolute deviation 5 sensitive to outliers $\stackrel{\mathbf{4}}{\longrightarrow}$ $median(|x_1 - mean(x)|, ..., |x_m - mean(x)|)$ 4 Interquatile range 4 sensitive to cutliers $x_{75\%} - x_{25\%}$ 4 Percentiles 13 p-th percentile
14 p-th percentile
15 p-th percentile
15 p-th percentile
15 p-th percentile
15 p-th percentile
16 p-th perce 13 p=50 13 means: Xp close to the median value.

4 Frequency
4 Definition: percentage of time value occurs in data set 4 Definition: most frequent attribute value 4 usually used with categorical data

- Exploratory visualization

15 Definition: conversion of data into visual/tabular format 540 analyse & report the characteristics & relationships of data 4Ex.

5 powerful & appealing 5 because:

4. We use good at analysing visually posented data 2. can detect general patterns & trends 3. can detect outliers & unusual patterns

4 Common techniques 41. Histograms

4 shows: distribution of single variable value

4 How?

4 Divide values into bins, create a bar plot 4 Height of bar ⇒ number of objects 4 Shape of histogram ⇒ number of bins

52-d histograms
4 shows: joint distribution of 2 attributes' values
4 Ex.

4 2. Box plots
4 for displaying & comparing data distribution
5 Ex. 900 percentile

