Model-based Evolutionary Algorithms

Marcin Komarnicki

Agenda

- Optimization problem formulation
- Simple Genetic Algorithm
- Linkage Learning
- Dependency Structure Matrix
- Linkage Tree

Optimization

- Goal: best possible solution
- Definition:

```
Optimize f(x)
subject to x \in D \subseteq S
where f: S \to R
```

Binary optimization

- *N*-dimensional binary problem: $S = \{0, 1\}^N$
- Example for N=3

$$-S = \{0, 1\}^3 = \{0, 1\} \times \{0, 1\} \times \{0, 1\}$$

$$-x = [0, 1, 0]$$

Deceptive trap function

- Benchmark problem
- Definition of k-order deceptive trap function:

$$t_k(u) = \begin{cases} k & , u = k \\ n - u - 1 & , u \neq k \end{cases}$$

where u – unitation

• Unitation – number of 1s:

$$x = [1, 0, 0, 1, 1] \rightarrow u = 3$$

5-order deceptive trap function

u	$t_5(u)$
0	4
1	3
2	2
3	1
4	0
5	5

$$f([0,0,0,0,0]) = t_5(0) = 4$$
 (local optimum)

$$f([1, 1, 1, 1, 1]) = t_5(5) = 5$$
 (global optimum)

Concatenated deceptive trap functions

- Sum of m decetpive trap functions
- E.g. sum of three 5-order deceptive trap functions:

$$x = [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1]$$

 $f(x) = t_5(5) + t_5(3) + t_5(2) = 5 + 1 + 2 = 8$

Fully separable problem

Simple Genetic Algorithm

Black-box optimization method

Population-based

Simple Genetic Algorithm

Bit-flipping mutation

Simple Genetic Algorithm

Uniform crossover

Linkage Learning

- Information about gene dependencies
- Previous example:
 - Genes blue, gold, and green are linked!
- Linked genes should be exchanged together

Dependency Structure Matrix (DSM)

- Square matrix
- Dependencies between some components
- $[d_{i,j}]_{1 \le i \le n, 1 \le j \le n}$ relationship between the i^{th} and j^{th} components
- Greater value greater dependency

X	$d_{1,2}$	$d_{1,3}$	$d_{1,4}$
$d_{2,1}$	Χ	$d_{2,3}$	$d_{2,4}$
$d_{3,1}$	$d_{3,2}$	Χ	$d_{3,4}$
$d_{4,1}$	$d_{4,2}$	$d_{4,3}$	X

Mutual information

Definition

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \ln \frac{p(x,y)}{p(x)p(y)} \ge 0$$

where X and Y are random variables

Minimum when X and Y are independent

$$p(x,y) = p(x)p(y) \Rightarrow \ln \frac{p(x,y)}{p(x)(y)} = \ln 1 = 0$$

DSM in EAs

- Rows and columns genes
- Mutual information
 - Definition

$$I(G_i; G_j) = \sum_{g_i \in G_i} \sum_{g_j \in G_j} p_{i,j}(g_i, g_j) \ln \frac{p_{i,j}(g_i, g_j)}{p_i(g_i)p_j(g_j)}$$

where G_i and G_j – the i^{th} and j^{th} gene

E.g. binary search space

$$G_i = G_i = \{0, 1\}$$

Goal: find groups of dependent genes

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

- Rows individuals
- Columns genes
- 8 individuals and 9 genes

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$d_{2,3} = I(G_2, G_3)$$

$$= p_{2,3}(0,0) \ln \frac{p_{2,3}(0,0)}{p_2(0)p_3(0)}$$

$$+ p_{2,3}(0,1) \ln \frac{p_{2,3}(0,1)}{p_2(0)p_3(1)}$$

$$+ p_{2,3}(1,0) \ln \frac{p_{2,3}(1,0)}{p_2(1)p_3(0)}$$

$$+ p_{2,3}(1,1) \ln \frac{p_{2,3}(1,1)}{p_2(1)p_3(1)}$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_{2,3}(0,0) = \frac{2}{8} = 0.25$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_{2,3}(0,0) = \frac{2}{8} = 0.25$$

$$p_{2,3}(0,1) = \frac{2}{8} = 0.25$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_{2,3}(0,0) = \frac{2}{8} = 0.25$$

$$p_{2,3}(0,1) = \frac{2}{8} = 0.25$$

$$p_{2,3}(1,0) = \frac{1}{8} = 0.125$$

Population											
1	1	1	0	0	0	1	1	1			
0	0	0	1	1	1	1	1	1			
0	1	1	0	0	0	1	1	1			
0	1	0	1	1	1	1	1	1			
1	0	1	0	0	0	1	1	1			
0	0	1	1	1	1	1	1	1			
1	1	1	0	0	0	1	1	1			
1	0	0	1	1	1	1	1	1			

$$p_{2,3}(0,0) = \frac{2}{8} = 0.25$$

$$p_{2,3}(0,1) = \frac{2}{8} = 0.25$$

$$p_{2,3}(1,0) = \frac{1}{8} = 0.125$$

$$p_{2,3}(1,1) = \frac{3}{8} = 0.375$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_2(0) = \frac{4}{8} = 0.5$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_2(0) = \frac{4}{8} = 0.5$$

$$p_2(1) = \frac{4}{8} = 0.5$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_2(0) = \frac{4}{8} = 0.5$$

$$p_2(1) = \frac{4}{8} = 0.5$$

$$p_3(0) = \frac{3}{8} = 0.375$$

	Population											
1	1	1	0	0	0	1	1	1				
0	0	0	1	1	1	1	1	1				
0	1	1	0	0	0	1	1	1				
0	1	0	1	1	1	1	1	1				
1	0	1	0	0	0	1	1	1				
0	0	1	1	1	1	1	1	1				
1	1	1	0	0	0	1	1	1				
1	0	0	1	1	1	1	1	1				

$$p_2(0) = \frac{4}{8} = 0.5$$

$$p_2(1) = \frac{4}{8} = 0.5$$

$$p_3(0) = \frac{3}{8} = 0.375$$

$$p_3(1) = \frac{5}{8} = 0.625$$

Population										
1	1	1	0	0	0	1	1	1		
0	0	0	1	1	1	1	1	1		
0	1	1	0	0	0	1	1	1		
0	1	0	1	1	1	1	1	1		
1	0	1	0	0	0	1	1	1		
0	0	1	1	1	1	1	1	1		
1	1	1	0	0	0	1	1	1		
1	0	0	1	1	1	1	1	1		

$$d_{2,3} = I(G_2, G_3)$$

$$= p_{2,3}(0,0) \ln \frac{p_{2,3}(0,0)}{p_2(0)p_3(0)}$$

$$+ p_{2,3}(0,1) \ln \frac{p_{2,3}(0,1)}{p_2(0)p_3(1)}$$

$$+ p_{2,3}(1,0) \ln \frac{p_{2,3}(1,0)}{p_2(1)p_3(0)}$$

$$+ p_{2,3}(1,1) \ln \frac{p_{2,3}(1,1)}{p_2(1)p_3(1)}$$

$$= 0.03$$

Population											
1	1	1	0	0	0	1	1	1			
0	0	0	1	1	1	1	1	1			
0	1	1	0	0	0	1	1	1			
0	1	0	1	1	1	1	1	1			
1	0	1	0	0	0	1	1	1			
0	0	1	1	1	1	1	1	1			
1	1	1	0	0	0	1	1	1			
1	0	0	1	1	1	1	1	1			

				DSM				
Х	0	0.03	0.13	0.13	0.13	0	0	0
0	Χ	0.03	0.13	0.13	0.13	0	0	0
0.03	0.03	Χ	0.38	0.38	0.38	0	0	0
0.13	0.13	0.38	Χ	0.69	0.69	0	0	0
0.13	0.13	0.38	0.69	Χ	0.69	0	0	0
0.13	0.13	0.38	0.69	0.69	Χ	0	0	0
0	0	0	0	0	0	Χ	0	0
0	0	0	0	0	0	0	Χ	0
0	0	0	0	0	0	0	0	Х

	Population										
1	1	1	0	0	0	1	1	1			
0	0	0	1	1	1	1	1	1			
0	1	1	0	0	0	1	1	1			
0	1	0	1	1	1	1	1	1			
1	0	1	0	0	0	1	1	1			
0	0	1	1	1	1	1	1	1			
1	1	1	0	0	0	1	1	1			
1	0	0	1	1	1	1	1	1			

				DSM				
X	0	0.03	0.13	0.13	0.13	0	0	0
0	Х	0.03	0.13	0.13	0.13	0	0	0
0.03	0.03	Χ	0.38	0.38	0.38	0	0	0
0.13	0.13	0.38	X	0.69	0.69	0	0	0
0.13	0.13	0.38	0.69	Χ	0.69	0	0	0
0.13	0.13	0.38	0.69	0.69	X	0	0	0
0	0	0	0	0	0	X	0	0
0	0	0	0	0	0	0	Χ	0
0	0	0	0	0	0	0	0	X

Population										
1	1	1	0	0	0	1	1	1		
0	0	0	1	1	1	1	1	1		
0	1	1	0	0	0	1	1	1		
0	1	0	1	1	1	1	1	1		
1	0	1	0	0	0	1	1	1		
0	0	1	1	1	1	1	1	1		
1	1	1	0	0	0	1	1	1		
1	0	0	1	1	1	1	1	1		

				DSM				
X	0	0.03	0.13	0.13	0.13	0	0	0
0	X	0.03	0.13	0.13	0.13	0	0	0
0.03	0.03	Χ	0.38	0.38	0.38	0	0	0
0.13	0.13	0.38	X	0.69	0.69	0	0	0
0.13	0.13	0.38	0.69	X	0.69	0	0	0
0.13	0.13	0.38	0.69	0.69	X	0	0	0
0	0	0	0	0	0	X	0	0
0	0	0	0	0	0	0	Χ	0
0	0	0	0	0	0	0	0	X

	Population										
1	1	1	0	0	0	1	1	1			
0	0	0	1	1	1	1	1	1			
0	1	1	0	0	0	1	1	1			
0	1	0	1	1	1	1	1	1			
1	0	1	0	0	0	1	1	1			
0	0	1	1	1	1	1	1	1			
1	1	1	0	0	0	1	1	1			
1	0	0	1	1	1	1	1	1			

				DSM				
X	0	0.03	0.13	0.13	0.13	0	0	0
0	Χ	0.03	0.13	0.13	0.13	0	0	0
0.03	0.03	Χ	0.38	0.38	0.38	0	0	0
0.13	0.13	0.38	X	0.69	0.69	0	0	0
0.13	0.13	0.38	0.69	Χ	0.69	0	0	0
0.13	0.13	0.38	0.69	0.69	Χ	0	0	0
0	0	0	0	0	0	X	0	0
0	0	0	0	0	0	0	Χ	0
0	0	0	0	0	0	0	0	Х

- Required by clustering algorithm
- Definition

$$D(G_i; G_j) = \frac{H(G_i; G_j) - I(G_i; G_j)}{H(G_i; G_j)}; \quad 0 \le D(G_i; G_j) \le 1$$

$$H(G_i; G_j) = -\sum_{g_i \in G_i} \sum_{g_j \in G_j} p_{i,j}(g_i, g_j) \ln p_{i,j}(g_i, g_j)$$

• If $H(G_i; G_j) = 0$ then $D(G_i; G_j) = 0$

Population										
1	1	1	0	0	0	1	1	1		
0	0	0	1	1	1	1	1	1		
0	1	1	0	0	0	1	1	1		
0	1	0	1	1	1	1	1	1		
1	0	1	0	0	0	1	1	1		
0	0	1	1	1	1	1	1	1		
1	1	1	0	0	0	1	1	1		
1	0	0	1	1	1	1	1	1		

		D:						
		Dis	stance	measu	re valu	ies		
X	1	0.97	0.9	0.9	0.9	1	1	1
1	Χ	0.97	0.9	0.9	0.9	1	1	1
0.97	0.97	Χ	0.61	0.61	0.61	1	1	1
0.9	0.9	0.61	X	0	0	1	1	1
0.9	0.9	0.61	0	X	0	1	1	1
0.9	0.9	0.61	0	0	Χ	1	1	1
1	1	1	1	1	1	X	0	0
1	1	1	1	1	1	0	X	0
1	1	1	1	1	1	0	0	X

	Population										
1	1	1	0	0	0	1	1	1			
0	0	0	1	1	1	1	1	1			
0	1	1	0	0	0	1	1	1			
0	1	0	1	1	1	1	1	1			
1	0	1	0	0	0	1	1	1			
0	0	1	1	1	1	1	1	1			
1	1	1	0	0	0	1	1	1			
1	0	0	1	1	1	1	1	1			

	Distance measure values										
X	1	0.97	0.9	0.9	0.9	1	1	1			
1	Х	0.97	0.9	0.9	0.9	1	1	1			
0.97	0.97	Χ	0.61	0.61	0.61	1	1	1			
0.9	0.9	0.61	X	0	0	1	1	1			
0.9	0.9	0.61	0	X	0	1	1	1			
0.9	0.9	0.61	0	0	X	1	1	1			
1	1	1	1	1	1	X	0	0			
1	1	1	1	1	1	0	X	0			
1	1	1	1	1	1	0	0	X			

Population										
1	1	1	0	0	0	1	1	1		
0	0	0	1	1	1	1	1	1		
0	1	1	0	0	0	1	1	1		
0	1	0	1	1	1	1	1	1		
1	0	1	0	0	0	1	1	1		
0	0	1	1	1	1	1	1	1		
1	1	1	0	0	0	1	1	1		
1	0	0	1	1	1	1	1	1		

	Distance measure values										
X	1	0.97	0.9	0.9	0.9	1	1	1			
1	X	0.97	0.9	0.9	0.9	1	1	1			
0.97	0.97	Χ	0.61	0.61	0.61	1	1	1			
0.9	0.9	0.61	Χ	0	0	1	1	1			
0.9	0.9	0.61	0	Х	0	1	1	1			
0.9	0.9	0.61	0	0	Χ	1	1	1			
1	1	1	1	1	1	Χ	0	0			
1	1	1	1	1	1	0	Χ	0			
1	1	1	1	1	1	0	0	Χ			

Population										
1	1	1	0	0	0	1	1	1		
0	0	0	1	1	1	1	1	1		
0	1	1	0	0	0	1	1	1		
0	1	0	1	1	1	1	1	1		
1	0	1	0	0	0	1	1	1		
0	0	1	1	1	1	1	1	1		
1	1	1	0	0	0	1	1	1		
1	0	0	1	1	1	1	1	1		

Distance measure values										
Χ	1	0.97	0.9	0.9	0.9	1	1	1		
1	Χ	0.97	0.9	0.9	0.9	1	1	1		
0.97	0.97	Χ	0.61	0.61	0.61	1	1	1		
0.9	0.9	0.61	Χ	0	0	1	1	1		
0.9	0.9	0.61	0	Χ	0	1	1	1		
0.9	0.9	0.61	0	0	Χ	1	1	1		
1	1	1	1	1	1	Χ	0	0		
1	1	1	1	1	1	0	Х	0		
1	1	1	1	1	1	0	0	Χ		

Linkage tree

- Leaves = all gene indexes
- Nodes = clusters containing dependent gene indexes
- Hierarchical clustering algorithm

Hierarchical clustering algorithm

- Merge nearest clusters
- Distances between clusters
 - Clusters of size 1 take value from table

		Dis	stance	measu	ıre valu	es		
Χ	1	0.97	0.9	0.9	0.9	1	1	1
1	X	0.97	0.9	0.9	0.9	1	1	1
0.97	0.97	Χ	0.61	0.61	0.61	1	1	1
0.9	0.9	0.61	Χ	0	0	1	1	1
0.9	0.9	0.61	0	Χ	0	1	1	1
0.9	0.9	0.61	0	0	X	1	1	1
1	1	1	1	1	1	Χ	0	0
1	1	1	1	1	1	0	Χ	0
1	1	1	1	1	1	0	0	X

Larger clusters – use reduction formula

$$D\left(C_{k};\left(C_{i}\cup C_{j}\right)\right) = \frac{|C_{i}|}{|C_{i}|+|C_{j}|}D(C_{k};C_{i}) + \frac{|C_{j}|}{|C_{i}|+|C_{j}|}D(C_{k};C_{j})$$

Linkage tree creation

Reduction formula

Definition

$$D\left(C_{k};\left(C_{i}\cup C_{j}\right)\right) = \frac{|C_{i}|}{|C_{i}|+|C_{j}|}D(C_{k};C_{i}) + \frac{|C_{j}|}{|C_{i}|+|C_{j}|}D(C_{k};C_{j})$$

Example

$$C_k = \{1\}, C_i = \{4\}, C_j = \{5\}$$

$$D(\{1\}; \{4\}) = 1, D(\{1\}; \{5\}) = 1$$

$$D(\{1\}; \{4, 5\}) = D(\{1\}; \{4\} \cup \{5\}) = \frac{1}{1+1} \cdot 1 + \frac{1}{1+1} \cdot 1 = 1$$

Linkage tree creation

