

Evaluating the Impact of Data Sampling Rates on Event Detection Accuracy in Load Signatures Using a Shapelet based Approach

1st August 2019

Abdul Rahman Hakmeh

First assessor: Dr.-Ing. habil. Andreas Reinhardt

Second assessor: Prof. Dr. Thorsten Grosch

Roadmap and Goals

- Introduction
 - Non-intrusive Load Monitoring (NILM)
 - Research Question
- Methodology
 - Fast Shapelet Approach
 - Data Pre-processing
 - Model Training
- Experiments Results
 - Results Phase A
 - Results Phase B
- Conclusion
 - Future Work

INTRODUCTION

Non-intrusive Load Monitoring (NILM)

- Recording and analyzing the load measurements in the power system.
- Recognizing the power consumption and the electrical device's state.
- Extracting the signatures of the appliances.

Image source: HART, George William. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 1992.

Non-intrusive Load Monitoring

- Data Acquisition (DQ).
- Appliance Event Detection.
- Appliance Classification.
- Energy Disaggregation.

Image source: Armel, K. Carrie, et al. "Is disaggregation the holy grail of energy efficiency? The case of electricity." Energy Policy 52 (2013).

Research Question

The specific research question is:

"Is it achievable to detect appliance switching on or off events in downsampled data without sacrificing the detection accuracy? And how does the low sampling rate affect the event detection accuracy?"

METHODOLOGY

Fast Shapelet Approach

- Shapelet is a subsequence of a time series that has high discriminative power.
- Fast Shapelet makes the search more efficient through reducing the dimensional space of the time series by using Symbolic Aggregate Approximation (SAX) representation $O(n^2m^3) \rightarrow O(nm^2)$.
- A Decision Tree Classifier is built to classify the subsequences of the unseen data.
- Work method based on an exempel:
 - The task is to classify two very similar types of leaves.

Fast Shapelet Approach

Generating SAX words: By using Symbolic Aggregate Approximation.

Random masking: Using the multi masking resolves the problem of false dismissals:

The random masking makes **adbac** and **acbac** identical.

Fast Shapelet Approach

- Counting similar objects & Finding the best candidates: By calculating the distinguishing score of every object from the collision table:
 - A is the final collision table.
 - B is the sum of objects-based counts.
 - C represents the complementary data of table B.
 - D is the distinguishing score of each SAX word.

Image source: T. Rakthanmanon and E. Keogh. "Fast shapelets: A scalable algorithm for discovering time series shapelets." In: proceedings of the 2013 International Conference on Data Mining.

- Data Source: Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED).
 - BLUED includes one week of the current and the voltage measurements for a family house in Pennsylvania, USA.
 - BLUED is the de facto dataset for the NILM benchmarks.
 - BLUED is annotated with the events (switching on/off) time stamp and the triggering appliance.
 - Due to the electrical wiring system in USA, BLUED has two phases A and B.
 - Every phase will be divided into training set and testing set.

Fixed length window technique is used to extract sequences from data which

represent events or non-events.

Four samples of the training instances; figure I and II represent respectively event and non-event segments from phase A, while III and IV draw event and non-event segments from phase B.

- Processing 56 GB of raw data increases the computational complexity.
- Reducing the collected data to improve the performance by applying 3 filters on the segments extracting process:

- Splitting the data into training set and testing set according to 60/40 rule.
- Skipping every other hour during the collecting process.
- Collecting data according to the manner 1:2 ratio of events: non-events.

Raw data covering percent:

The covering percent of the collected events by the fixed length window technique in comparison to overall events in the BLUED.

Model Training

The proposed stages to train the model und collect the results after testing with unseen data:

- Extracting segments for the training and the testing.
- Downsampling the segments by factor K ∈ [1, 32].
- Training the Shapelet based classifier with the training data.
- Feeding the trained classifier with the unseen data (the testing set).

EXPERIMENTS RESULTS

Results Phase A

Results Phase A

Results of non-downsampled instances:

Accuracy	F1-Score	Confusion Matrix			
		real		event	non-event
94.58 %	0.92	pred	event	278	0
		pred	non-event	50	585

Results Phase A

Results of downsampled instances by factor 10:

Accuracy	F1-Score	Confusion Matrix			
96.31%	0.94	real		event	non-event
		pred	event	305	2
		pred	non-event	32	583

Results Phase B

Results Phase B

Results of non-downsampled instances:

Accuracy	F1-Score	Confusion Matrix			
89.54 %	0.85	real		event	non-event
		pred	event	273	28
		pred	non-event	66	532

Results Phase B

Results of downsampled instances by factor 18:

Accuracy	F1-Score	Confusion Matrix			
82.75 %	0.74	real		event	non-event
		pred	event	215	31
		pred	non-event	124	529

CONCLUSION

Conclusion

- The research question:
 - " Is it achievable to detect appliance switching on or off events in down sampled data without sacrificing the detection accuracy? and how does the low sampling rate affect the event detection accuracy? "
- It is possible to detect events in downsampled data without sacrificing the detection accuracy.
- The fast Shapelet approach generally performs better at the low sampling frequency with the clean data than the noisy data.
- The sampling rate is linearly to the model accuracy on the noisy data. At low sampling frequency the detection accuracy decreases.
- Positive impact at the forefront of the NILM field, as collecting the data at low sample can save the recording, storage, and financial costs of the data acquisition phase.

Future Work

Short Term Research:

- Additional training method to ensure the predictive performance of the model e.g. the cross-validation.
- Another real-world dataset could be chosen, that replaces the BLUED and has an acceptable degree of noise.

Long Term Research:

 Another event detection approaches could be researched with considering the impact of utilizing different models.

Any questions?

Abd Hakmeh ahak15@tu-clausthal.de

Thank you for your attention !!