19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) No de publication :

2 806 739

(à n'utiliser que pour les commandes de reproduction)

21 Nº d'enregistrement national :

00 03832

(51) Int Ci⁷: **C 12 N 15/12**, C 07 K 14/47, 16/18, C 12 N 15/63, 5/10, A 01 K 67/027, G 01 N 33/53, C 12 Q 1/68, A 61 K 48/00, 38/17, 39/395, A 61 P 1/00, 29/00, 37/00

(12) DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 27.03.00.
- ③ Priorité :

- 71) Demandeur(s): FONDATION JEAN DAUSSET-CEPH FR.
- Date de mise à la disposition du public de la demande : 28.09.01 Bulletin 01/39.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 60 Références à d'autres documents nationaux apparentés :
- (7) Inventeur(s): HUGOT JEAN PIERRE, THOMAS GILLES, ZOUALI MOHAMED, LESAGE SUZANNE et CHAMAILLARD MATHIAS.
- 73) Titulaire(s):
- Mandataire(s): REGIMBEAU.
- (54) GENES IMPLIQUES DANS LES MALADIES INFLAMMATOIRES DE L'INTESTIN ET LEUR UTILISATION.
- (57) La présente invention concerne des gènes impliqués dans les maladies inflammatoires et/ ou immunes et certains cancers, en particulier les maladies inflammatoires cryptogénétiques de l'intestin, ainsi que les protéines codées par ces gènes. Des méthodes de diagnostics de maladies inflammatoires sont également des objets de la présente invention.

La présente invention concerne des gènes impliqués dans les maladies inflammatoires et/ou immunes et certains cancers, en particulier les maladies inflammatoires cryptogénétiques de l'intestin, ainsi que les protéines codées par ces gènes. Des méthodes de diagnostics de maladies inflammatoires sont également des objets de la présente invention.

Les maladies inflammatoires cryptogénétiques de l'intestin (MICI) sont des maladies caractérisées par une inflammation du tube digestif dont la cause est inconnue. Selon la localisation et les caractéristiques de l'inflammation on distingue deux entités nosologiques différentes: la rectocolite hémorragique (RCH) et la maladie de Crohn (MC). La RCH a été décrite par S Wilkes en 1865 tandis que le premier cas d'iléite régionale a été rapportée par Crohn en 1932. En réalité, il est possible que ces deux maladies soient beaucoup plus anciennes.

Les MICI sont des maladies chroniques qui évoluent tout au long de la vie et qui touchent environ 1 à 2 personnes sur 1000 habitants dans les pays occidentaux, ce qui représente entre 60.000 et 100.000 malades en France. Il s'agit de maladies apparaissant chez le sujet jeune (le pic d'incidence est dans la troisième décennie), évoluant par poussées entrecoupées de rémissions, avec des complications fréquentes telles que la dénutrition, le retard de croissance chez l'enfant, la déminéralisation osseuse et à terme la dégénérescence maligne vers le cancer du colon. Il n'existe pas de traitement spécifique. Les thérapeutiques habituelles font appel aux anti-inflammatoires, aux immunosuppresseurs et à la chirurgie. Tous ces moyens thérapeutiques sont eux-mêmes source d'une morbidité iatrogène importante. Pour toutes ces raisons les MICI apparaissent comme un important problème de santé publique.

L'étiologie des MICI est actuellement inconnue. Des facteurs d'environnement sont impliqués dans la survenue de la maladie comme en témoignent l'augmentation séculaire d'incidence de la maladie et la concordance incomplète chez les jumeaux monozygotes. Les seuls facteurs de risque environnementaux actuellement reconnus sont 1) le tabac dont le rôle est néfaste

dans la MC et bénéfique dans la RCH et 2) l'appendicectomie qui a un rôle protecteur pour la RCH.

Une prédisposition génétique est depuis longtemps suspectée devant l'existence d'agrégations ethniques et familiales de ces maladies. En effet, les MICI sont plus fréquentes dans la population caucasienne et en particulier la population juive d'Europe centrale. Les formes familiales représentent de 6 à 20% des cas de MICI. Elles sont particulièrement fréquentes lorsque le début de la maladie est précoce. Cependant, ce sont les études chez les jumeaux qui ont permis de confirmer le caractère génétique de ces maladies. En effet, le taux de concordance entre jumeaux pour ces maladies est plus important chez les jumeaux monozygotes que chez les jumeaux dizygotes plaidant fortement pour une composante héréditaire aux MICI, en particulier à la MC. Selon toute vraisemblance, les MICI sont des maladies génétiques complexes faisant intervenir plusieurs gènes différents, en interaction entre eux et avec des facteurs d'environnement. Les MICI peuvent donc être classées dans le cadre des maladies multifactorielles.

Deux grandes stratégies ont été développées afin de mettre en évidence les gènes de susceptibilité aux MICI. La première repose sur l'analyse de gènes candidats pour des raisons physiopathologiques. Ainsi de nombreux gènes ont été proposés comme potentiellement importants pour les MICI. Il s'agit souvent de gènes ayant un rôle dans l'inflammation et la réponse immune. On peut citer les gènes HLA, TAP, TNF, MICA, le récepteur T du lymphocyte, ICAM1, l'interleukine 1, CCR5, etc. D'autres gènes participent à des fonctions diverses tels que GAI2, la motiline, MRAMP, HMLH1, etc. En réalité, aucun des différents gènes candidats étudiés n'a actuellement fait la preuve définitive de son rôle dans la survenue des MICI.

15

20

25

Le récent développement de cartes du génome humain utilisant des marqueurs génétiques hautement polymorphes a permis aux généticiens de développer une approche non ciblée sur l'ensemble du génome. Cette démarche, appelée aussi génétique inverse ou clonage positionnel, ne fait aucune hypothèse sur les gènes impliqués dans la maladie et tente de découvrir ceux-ci à travers un criblage systématique du génome. La méthode la plus utilisée pour les maladies génétiques complexes repose sur l'étude de l'identité par la descendance des malades d'une même famille. Cette valeur est calculée pour un grand nombre (300-

400) de marqueurs de polymorphisme répartis régulièrement (tous les 10cM) sur le génome. En cas d'excès d'identité entre malades, le(s) marqueur(s) testé(s) indique(nt) une région supposée contenir un gène de susceptibilité à la maladie. Dans le cas des maladies génétiques complexes, le modèle sous-jacent à la prédisposition génétique (nombre de gènes et importance respective de chacun d'entre eux) étant inconnu, les méthodes statistiques à utiliser devront être adaptées.

La présente invention concerne la mise en évidence de la séquence nucléique de gènes impliqués dans les MICI, et d'autres maladies inflammatoires, ainsi que l'utilisation de ces séquences nucléiques.

10

15

20

25

30

Dans le cadre de la présente invention, des travaux préliminaires des inventeurs ont déjà permis de localiser un gène de susceptibilité à la MC. En effet, les inventeurs (Hugot et al., 1996) ont montré qu'un gène de susceptibilité à la MC était localisé dans la région péricentromérique du chromosome 16 (figure 1). Il s'agissait du premier gène de susceptibilité à une maladie génétique complexe localisé par clonage positionnel et satisfaisant aux critères stricts proposés dans la littérature (Lander et Kruglyak, 1995). Ce gène a été nommé IBD1 (pour Inflammatory Bowel Disease 1). Depuis, d'autres localisations ont été proposées par d'autres auteurs en particulier sur les chromosomes 12, 1, 3, 6 et 7 (Satsangi et al., 1996; Cho et al., 1998). Bien que localisés, aucun de ces gènes de susceptibilité aux MICI n'a actuellement pu être identifié.

Certains auteurs n'ont pu répliquer cette localisation (Rioux et al., 1998). Ceci n'est cependant pas surprenant dans le cas de maladies génétiques complexes où une hétérogénéité génétique est probable.

Il est intéressant de noter que selon la même approche de clonage positionnel, des localisations ont aussi été proposées sur le chromosome 16 pour plusieurs maladies immunes et inflammatoires telles que la spondylarthrite ankylosante, le syndrome de Blau, le psoriasis, etc. (Becker et al., 1998; Tromp et al., 1996). Toutes ces maladies pourraient alors partager un même gène (ou un même groupe de gènes) localisé sur le chromosome 16.

Le maximum des tests de liaison génétique est situé pratiquement toujours à la même position, au niveau de D16S409 ou D16S411 séparés seulement de 2cM. Ce résultat est en opposition avec la taille importante (habituellement supérieure à

20cM) de l'intervalle de confiance attribuable à la localisation génétique selon une démarche utilisant des analyses de liaison non paramétriques.

La comparaison des tests statistiques utilisés dans les travaux des inventeurs montre que les tests basés sur l'identité par descendance complète (Tz2) sont meilleurs que les tests basé sur la moyenne de l'identité par descendance (Tz) (fig. 1). Une telle différence peut être expliquée par un effet récessif de IBD1.

Plusieurs gènes connus dans la région péricentromérique du chromosome 16, tels que le récepteur à l'interleukine 4, CD19, CD43, CD11, apparaissent comme de bons candidats potentiels pour la MC. Des résultats préliminaires ne plaident cependant pas en faveur de l'implication de ces gènes dans la MC.

En particulier, la présente invention fournit la séquence non seulement du gène IBD1, mais également la séquence partielle d'un autre gène, appelé IBD1prox en raison de sa localisation à proximité d'IBD, et mis en évidence comme rapporté dans les exemples ci-après. Ces gènes dont la séquence d'ADNc correspond respectivement à SEQ ID N° 1 et SEQ ID N° 4 sont donc potentiellement impliqués dans de nombreuses maladies inflammatoires et/ou immunes ainsi que dans des cancers.

La séquence peptidique exprimée par les gènes IBD1 et IBD1prox est représentée par SEQ ID N° 2 et SEQ ID N° 5 respectivement; la séquence génomique de ces gènes est représentée par SEQ ID N° 3 et SEQ ID N° 6 respectivement.

Ainsi, la présente invention a pour objet un acide nucléique purifié ou isolé, caractérisé en ce qu'il comprend une séquence nucléique choisie dans le groupe de séquences suivantes :

- a) SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 4 et SEQ ID N° 6;
- b) la séquence d'un fragment d'au moins 15 nucléotides consécutifs d'une séquence choisie parmi SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 4 ou SEQ ID N° 6;
- c) une séquence nucléique présentant un pourcentage d'identité d'au moins 80 %, après alignement optimal avec une séquence définie en a) ou b);
- d) une séquence nucléique s'hybridant dans des conditions de forte stringence avec une séquence nucléique définie en a) ou b);

25

10

15

20

30

e) la séquence complémentaire ou la séquence de l'ARN correspondant à une séquence telle que définie en a), b), c) ou d).

La séquence d'acides nucléiques selon l'invention définie en c) présente un pourcentage d'identité d'au moins 80 % après alignement optimal avec une séquence telle que définie en a) ou b) ci-dessus, de préférence 90 %, de façon la plus préférée 98 %.

Par acide nucléique, séquence nucléique ou d'acide nucléique, polynucléotide, oligonucléotide, séquence de polynucléotide, séquence nucléotidique, termes qui seront employés indifféremment dans la présente description, on entend désigner un enchaînement précis de nucléotides, modifiés ou non, permettant de définir un fragment ou une région d'un acide nucléique, comportant ou non des nucléotides non naturels, et pouvant correspondre aussi bien à un ADN double brin, un ADN simple brin que des produits de transcription desdits ADNs. Ainsi, les séquences nucléiques selon l'invention englobent également les PNA (Peptid Nucleic Acid), ou analogues.

10

15

20

25

Il doit être compris que la présente invention ne concerne pas les séquences nucléotidiques dans leur environnement chromosomique naturel, c'est-à-dire à l'état naturel. Il s'agit de séquences qui ont été isolées et/ou purifiées, c'est-à-dire qu'elles ont été prélevées directement ou indirectement, par exemple par copie, leur environnement ayant été au moins partiellement modifié. On entend ainsi également désigner les acides nucléiques obtenus par synthèse chimique.

Par « pourcentage d'identité » entre deux séquences d'acides nucléiques ou d'acides aminés au sens de la présente invention, on entend désigner un pourcentage de nucléotides ou de résidus d'acides aminés identiques entre les deux séquences à comparer, obtenu après le meilleur alignement, ce pourcentage étant purement statistique et les différences entre les deux séquences étant réparties au hasard et sur toute leur longueur. On entend désigner par "meilleur alignement" ou "alignement optimal", l'alignement pour lequel le pourcentage d'identité déterminé comme ci-après est le plus élevé. Les comparaisons de séquences entre deux séquences d'acides nucléiques ou d'acides aminés sont traditionnellement réalisées en comparant ces séquences après les avoir alignées de manière optimale, ladite comparaison étant réalisée par segment ou par « fenêtre de comparaison » pour identifier et comparer les régions locales de similarité de séquence. L'alignement

optimal des séquences pour la comparaison peut être réalisé, outre manuellement, au moyen de l'algorithme d'homologie locale de Smith et Waterman (1981), au moyen de l'algorithme d'homologie locale de Neddleman et Wunsch (1970), au moyen de la méthode de recherche de similarité de Pearson et Lipman (1988), au moyen de logiciels informatiques utilisant ces algorithmes (GAP, BESTFIT, BLAST P, BLAST N, FASTA et TFASTA dans le Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI). Afin d'obtenir l'alignement optimal, on utilise de préférence le programme BLAST, avec la matrice BLOSUM 62. On peut également utiliser les matrices PAM ou PAM250.

Le pourcentage d'identité entre deux séquences d'acides nucléiques ou d'acides aminés est déterminé en comparant ces deux séquences alignées de manière optimale, la séquence d'acides nucléiques ou d'acides aminés à comparer pouvant comprendre des additions ou des délétions par rapport à la séquence de référence pour un alignement optimal entre ces deux séquences. Le pourcentage d'identité est calculé en déterminant le nombre de positions identiques pour lesquelles le nucléotide ou le résidu d'acide aminé est identique entre les deux séquences, en divisant ce nombre de positions identiques par le nombre total de positions comparées et en multipliant le résultat obtenu par 100 pour obtenir le pourcentage d'identité entre ces deux séquences.

Par séquences nucléiques présentant un pourcentage d'identité d'au moins 80 %, de préférence 90 %, de façon plus préférée 98 %, après alignement optimal avec une séquence de référence, on entend désigner les séquences nucléiques présentant, par rapport à la séquence nucléique de référence, certaines modifications comme en particulier une délétion, une troncation, un allongement, une fusion chimérique, et/ou une substitution, notamment ponctuelle, et dont la séquence nucléique présente au moins 80 %, de préférence 90 %, de façon plus préférée 98 %, d'identité après alignement optimal avec la séquence nucléique de référence. Il s'agit de préférence de séquences dont les séquences complémentaires sont susceptibles de s'hybrider spécifiquement avec les séquences SEQ ID N° 1 ou SEQ ID N° 4 de l'invention. De préférence, les conditions d'hybridation spécifiques ou de forte stringence seront telles qu'elles assurent au moins 80 %, de préférence 90 %, de façon plus préférée 98 % d'identité après alignement optimal entre l'une des deux séquences et la séquence complémentaire de l'autre.

Une hybridation dans des conditions de forte stringence signifie que les conditions de température et de force ionique sont choisies de telle manière qu'elles permettent le maintien de l'hybridation entre deux fragments d'ADN complémentaires. A titre illustratif, des conditions de forte stringence de l'étape d'hybridation aux fins de définir les fragments polynucléotidiques décrits ci-dessus, sont avantageusement les suivantes.

L'hybridation ADN-ADN ou ADN-ARN est réalisée en deux étapes : (1) préhybridation à 42°C pendant 3 heures en tampon phosphate (20 mM, pH 7,5) contenant 5 x SSC (1 x SSC correspond à une solution 0,15 M NaCl + 0,015 M citrate de sodium), 50 % de formamide, 7 % de sodium dodécyl sulfate (SDS), 10 x Denhardt's, 5 % de dextran sulfate et 1 % d'ADN de sperme de saumon ; (2) hybridation proprement dite pendant 20 heures à une température dépendant de la taille de la sonde (i.e. : 42°C, pour une sonde de taille > 100 nucléotides) suivie de 2 lavages de 20 minutes à 20°C en 2 x SSC + 2 % SDS, 1 lavage de 20 minutes à 20°C en 0,1 x SSC + 0,1 % SDS. Le dernier lavage est pratiqué en 0,1 x SSC + 0,1 % SDS pendant 30 minutes à 60°C pour une sonde de taille > 100 nucléotides. Les conditions d'hybridation de forte stringence décrites ci-dessus pour un polynucléotide de taille définie, peuvent être adaptées par l'homme du métier pour des oligonucléotides de taille plus grande ou plus petite, selon l'enseignement de Sambrook et al., 1989.

Parmi les séquences nucléiques présentant un pourcentage d'identité d'au moins 80 %, de préférence 90 %, de façon plus préférée 98 %, après alignement optimal avec la séquence selon l'invention, on préfère également les séquences nucléiques variantes de SEQ ID N° 1, ou de SEQ ID N° 4, ou de leurs fragments, c'est-à-dire l'ensemble des séquences nucléiques correspondant à des variants alléliques, c'est-à-dire des variations individuelles des séquences SEQ ID N° 1 ou SEQ ID N° 4. Ces séquences mutées naturelles correspondent à des polymorphismes présents chez les mammifères, en particulier chez l'être humain et, notamment, à des polymorphismes pouvant conduire à la survenue d'une pathologie. De préférence, la présente invention concerne les séquences nucléiques variantes dans lesquelles les mutations conduisent à une modification de la séquence d'acides aminés du polypeptide, ou de ses fragments, codés par la séquence normale de SEQ ID N° 1 ou SEQ ID N° 4.

On entend également désigner par séquence nucléique variante tout ARN ou ADNc résultant d'une mutation et/ou variation d'un site d'épissage de la séquence nucléique génomique dont l'ADNc a pour séquence SEQ ID N° 1 ou SEQ ID N° 4.

L'invention concerne de préférence un acide nucléique purifié ou isolé selon la présente invention, caractérisé en ce qu'il comprend ou est constitué de l'une des séquences SEQ ID N° 1 ou SEQ ID N° 4, de leurs séquences complémentaires ou des séquences de l'ARN correspondant à SEQ ID N° 1 ou SEQ ID N° 4.

Les amorces ou sondes, caractérisées en ce qu'elles comprennent une séquence d'un acide nucléique selon l'invention, font également partie de l'invention.

10

20

25

Ainsi, la présente invention concerne également les amorces ou les sondes selon l'invention qui peuvent permettre en particulier de mettre en évidence ou de discriminer les séquences nucléiques variantes, ou d'identifier la séquence génomique des gènes dont l'ADNc est représenté par SEQ ID N° 1 ou SEQ ID N° 4, en utilisant notamment une méthode d'amplification telle que la méthode PCR, ou une méthode apparentée.

L'invention concerne également l'utilisation d'une séquence d'acide nucléique selon l'invention comme sonde ou amorce, pour la détection, l'identification, le dosage ou l'amplification de séquence d'acide nucléique.

Selon l'invention, les polynucléotides pouvant être utilisés comme sonde ou comme amorce dans des procédés de détection, d'identification, de dosage ou d'amplification de séquence nucléique, présentent une taille minimale de 15 bases, de préférence de 20 bases, ou mieux de 25 à 30 bases.

Les sondes et amorces selon l'invention peuvent être marquées directement ou indirectement par un composé radioactif ou non radioactif par des méthodes bien connues de l'homme du métier, afin d'obtenir un signal détectable et/ou quantifiable.

Les séquences de polynucléotides selon l'invention non marquées peuvent être utilisées directement comme sonde ou amorce.

30 Les séquences sont généralement marquées pour obtenir des séquences utilisables pour de nombreuses applications. Le marquage des amorces ou des sondes selon l'invention est réalisé par des éléments radioactifs ou par des molécules non radioactives. Parmi les isotopes radioactifs utilisés, on peut citer le ³²P, le ³⁵P, le ³⁵S, le ³H ou le ¹²⁵I. Les entités non radioactives sont sélectionnées parmi les ligands tels la biotine, l'avidine, la streptavidine, la dioxygénine, les haptènes, les colorants, les agents luminescents tels que les agents radioluminescents, chémoluminescents, bioluminescents, fluorescents, phosphorescents.

Les polynucléotides selon l'invention peuvent ainsi être utilisés comme amorce et/ou sonde dans des procédés mettant en oeuvre notamment la technique de PCR (amplification en chaîne par polymérase) (Rolfs et al., 1991). Cette technique nécessite le choix de paires d'amorces oligonucléotidiques encadrant le fragment qui doit être amplifié. On peut, par exemple, se référer à la technique décrite dans le brevet américain U.S. N° 4,683,202. Les fragments amplifiés peuvent être identifiés, par exemple après une électrophorèse en gel d'agarose ou de polyacrylamide, ou après une technique chromatographique comme la filtration sur gel ou la chromatographie échangeuse d'ions, puis séquencés. La spécificité de l'amplification peut être contrôlée en utilisant comme amorces les séquences nucléotidiques de polynucléotides de l'invention et comme matrices, des plasmides contenant ces séquences ou encore les produits d'amplification dérivés. Les fragments nucléotidiques amplifiés peuvent être utilisés comme réactifs dans des réactions d'hybridation afin de mettre en évidence la présence, dans un échantillon biologique, d'un acide nucléique cible de séquence complémentaire à celle desdits fragments nucléotidiques amplifiés.

10

15

20

30

L'invention vise également les acides nucléiques susceptibles d'être obtenus par amplification à l'aide d'amorces selon l'invention.

D'autres techniques d'amplification de l'acide nucléique cible peuvent être avantageusement employées comme alternative à la PCR (PCR-like) à l'aide de couple d'amorces de séquences nucléotidiques selon l'invention. Par PCR-like on entend désigner toutes les méthodes mettant en œuvre des reproductions directes ou indirectes des séquences d'acides nucléiques, ou bien dans lesquelles les systèmes de marquage ont été amplifiés, ces techniques sont bien entendu connues. En général il s'agit de l'amplification de l'ADN par une polymérase ; lorsque l'échantillon d'origine est un ARN il convient préalablement d'effectuer une transcription reverse. Il existe actuellement de très nombreux procédés permettant cette amplification, comme par exemple la technique SDA (Strand Displacement

Amplification) ou technique d'amplification à déplacement de brin (Walker et al., 1992), la technique TAS (Transcription-based Amplification System) décrite par Kwoh et al. (1989), la technique 3SR (Self-Sustained Sequence Replication) décrite par Guatelli et al. (1990), la technique NASBA (Nucleic Acid Sequence Based Amplification) décrite par Kievitis et al. (1991), la technique TMA (Transcription Mediated Amplification), la technique LCR (Ligase Chain Reaction) décrite par Landegren et al. (1988), la technique de RCR (Repair Chain Reaction) décrite par Segev (1992), la technique CPR (Cycling Probe Reaction) décrite par Duck et al. (1990), la technique d'amplification à la Q-béta-réplicase décrite par Miele et al. (1983). Certaines de ces techniques ont depuis été perfectionnées.

10

15

20

25

Dans le cas où le polynucléotide cible à détecter est un ARNm, on utilise avantageusement, préalablement à la mise en œuvre d'une réaction d'amplification à l'aide des amorces selon l'invention ou à la mise en œuvre d'un procédé de détection à l'aide des sondes de l'invention, une enzyme de type transcriptase inverse afin d'obtenir un ADNc à partir de l'ARNm contenu dans l'échantillon biologique. L'ADNc obtenu servira alors de cible pour les amorces ou les sondes mises en œuvre dans le procédé d'amplification ou de détection selon l'invention.

La technique d'hybridation de sondes peut être réalisée de manières diverses (Matthews et al., 1988). La méthode la plus générale consiste à immobiliser l'acide nucléique extrait des cellules de différents tissus ou de cellules en culture sur un support (tels que la nitrocellulose, le nylon, le polystyrène) et à incuber, dans des conditions bien définies, l'acide nucléique cible immobilisé avec la sonde. Après l'hybridation, l'excès de sonde est éliminé et les molécules hybrides formées sont détectées par la méthode appropriée (mesure de la radioactivité, de la fluorescence ou de l'activité enzymatique liée à la sonde).

Selon un autre mode de mise en œuvre des sondes nucléiques selon l'invention, ces dernières peuvent être utilisées comme sondes de capture. Dans ce cas, une sonde, dite « sonde de capture », est immobilisée sur un support et sert à capturer par hybridation spécifique l'acide nucléique cible obtenu à partir de l'échantillon biologique à tester et l'acide nucléique cible est ensuite détecté grâce à une seconde sonde, dite « sonde de détection », marquée par un élément facilement détectable.

Parmi les fragments d'acides nucléiques intéressants, il faut ainsi citer en particulier les oligonucléotides anti-sens, c'est-à-dire dont la structure assure, par hybridation avec la séquence cible, une inhibition de l'expression du produit correspondant. Il faut également citer les oligonucléotides sens qui, par interaction avec des protéines impliquées dans la régulation de l'expression du produit correspondant, induiront soit une inhibition, soit une activation de cette expression.

La présente invention concerne également un polypeptide isolé caractérisé en ce qu'il comprend un polypeptide choisi parmi :

10

15

25

30

- a) un polypeptide de séquence SEQ ID N° 2 ou SEQ ID N° 5;
- b) un polypeptide variant d'un polypeptide de séquence définie en
 a);
- c) un polypeptide homologue à un polypeptide défini en a) ou b), comportant au moins 80 % d'identité avec ledit polypeptide de a);
- d) un fragment d'au moins 15 acides aminés consécutifs d'un polypeptide défini en a), b) ou c);
- e) un fragment biologiquement actif d'un polypeptide défini en a),b) ou c).

Par « polypeptide », on entend, au sens de la présente invention, désigner 20 des protéines ou des peptides.

Par « fragment biologiquement actif », on entend un fragment possédant la même activité biologique que le fragment peptidique dont il est déduit, de préférence dans le même ordre de grandeur (à un facteur 10 près). Ainsi, les exemples montrent que la protéine IBD1 (SEQ ID N° 2) a un rôle potentiel dans les phénomènes d'apoptose. Un fragment biologiquement actif de la protéine IBD1 consiste donc en un polypeptide issu de SEQ ID N° 2 possédant également un rôle dans l'apoptose. Les exemples ci-après proposent des fonctions biologiques pour les protéines IBD1 et IBD1prox, en fonction des domaines peptidiques de ces protéines et permettent ainsi à l'homme du métier d'identifier les fragments biologiquement actifs.

De préférence un polypeptide selon l'invention est un polypeptide constitué de la séquence SEQ ID N° 2 (correspondant à la protéine codée par le gène IBD1) ou de la séquence SEQ ID N° 5 (correspondant à la protéine codée par IBD1prox)

.....

ou d'une séquence possédant au moins 80 % d'identité avec SEQ ID N° 2 ou SEQ ID N° 5 après alignement optimal.

La séquence du polypeptide présente un pourcentage d'identité d'au moins 80 % après alignement optimal avec les séquences SEQ ID N° 2 ou SEQ ID N° 5, de préférence 90 %, de façon plus préférée 98 %.

Par polypeptide dont la séquence d'acides aminés présentant un pourcentage d'identité d'au moins 80 %, de préférence 90 %, de façon plus préférée 98 %, après alignement optimal avec une séquence de référence, on entend désigner les polypeptides présentant certaines modifications par rapport au polypeptide de référence, comme en particulier une ou plusieurs délétions, troncations, un allongement, une fusion chimérique, et/ou une ou plusieurs substitutions.

10

15

20

25

30

Parmi les polypeptides dont la séquence d'acides aminés présentant un pourcentage d'identité d'au moins 80 %, de préférence 90 %, de façon plus préférée 98 %, après alignement optimal avec les séquences SEQ ID N° 2, SEQ ID N° 5 ou avec l'un de leurs fragments selon l'invention, on préfère les polypeptides variants codés par les séquences nucléiques variantes telles que précédemment définies, en particulier les polypeptides dont la séquence d'acides aminés présente au moins une mutation correspondant notamment à une troncation, délétion, substitution et/ou addition d'au moins un résidu d'acide aminé par rapport aux séquences SEQ ID N° 2, SEQ ID N° 5 ou avec l'un de leurs fragments, de manière plus préférée les polypeptides variants présentant une mutation liée à une pathologie.

La présente invention concerne également les vecteurs de clonage et/ou d'expression comprenant un acide nucléique ou codant pour un polypeptide selon l'invention. Un tel vecteur peut également contenir les éléments nécessaires à l'expression et éventuellement à la sécretion du polypeptide dans une cellule hôte. Une telle cellule hôte est également un objet de l'invention.

Les vecteurs caractérisés en ce qu'ils comportent une séquence de promoteur et/ou de régulateur selon l'invention, font également partie de l'invention.

Les dits vecteurs comportent de préférence un promoteur, des signaux d'initiation et de terminaison de la traduction, ainsi que des régions appropriées de régulation de la transcription. Ils doivent pouvoir être maintenus de façon stable

dans la cellule et peuvent éventuellement posséder des signaux particuliers spécifiant la sécrétion de la protéine traduite.

Ces différents signaux de contrôle sont choisis en fonction de l'hôte cellulaire utilisé. A cet effet, les séquences d'acide nucléique selon l'invention peuvent être insérées dans des vecteurs à réplication autonome au sein de l'hôte choisi, ou des vecteurs intégratifs de l'hôte choisi.

Parmi les systèmes à réplication autonome, on utilise de préférence en fonction de la cellule hôte, des systèmes de type plasmidique ou viral, les vecteurs viraux pouvant notamment être des adénovirus (Perricaudet et al., 1992), des rétrovirus, des lentivirus, des poxvirus ou des virus herpétiques (Epstein et al., 1992). L'homme du métier connaît les technologies utilisables pour chacun de ces systèmes.

Lorsque l'on souhaite l'intégration de la séquence dans les chromosomes de la cellule hôte, on peut utiliser par exemple des systèmes de type plasmidique ou viral ; de tels virus sont, par exemple, les rétrovirus (Temin, 1986), ou les AAV (Carter, 1993).

15

20

25

30

Parmi les vecteurs non viraux, on préfère les polynucléotides nus tels que l'ADN nu ou l'ARN nu selon la technique développée par la société VICAL, les chromosomes artificiels de bactérie (BAC, bacterial artificial chromosome), les chromosomes artificiels de levure (YAC, yeast artificial chromosome) pour l'expression dans la levure, les chromosomes artificiels de souris (MAC, mouse artificial chromosome) pour l'expression dans les cellules murines et de manière préférée les chromosomes artificiels d'homme (HAC, human artificial chromosome) pour l'expression dans les cellules humaines.

De tels vecteurs sont préparés selon les méthodes couramment utilisées par l'homme du métier, et les clones en résultant peuvent être introduits dans un hôte approprié par des méthodes standard, telles que par exemple la lipofection, l'électroporation, le choc thermique, la transformation après perméabilisation chimique de la membrane, la fusion cellulaire.

L'invention comprend en outre les cellules hôtes, notamment les cellules eucaryotes et procaryotes, transformées par les vecteurs selon l'invention ainsi que les animaux transgéniques, de préférence les mammifères, excepté l'Homme, comprenant une desdites cellules transformées selon l'invention. Ces animaux

peuvent être utilisés en temps que modèles, pour l'étude de l'étiologie de maladies inflammatoires et/ou immunes, et en particulier des maladies inflammatoires du tube digestif, ou pour l'étude de cancers.

Parmi les cellules utilisables aux sens de la présente invention, on peut citer les cellules bactériennes (Olins et Lee, 1993), mais aussi les cellules de levure (Buckholz, 1993), de même que les cellules animales, en particulier les cultures de cellules de mammifères (Edwards et Aruffo, 1993), et notamment les cellules d'ovaire de hamster chinois (CHO). On peut citer également les cellules d'insectes dans lesquelles on peut utiliser des procédés mettant par exemple en œuvre des baculovirus (Luckow, 1993). Un hôte cellulaire préféré pour l'expression des protéines de l'invention est constitué par les cellules COS.

10

20

30

Parmi les mammifères selon l'invention, on préfère des animaux tels que les rongeurs, en particulier les souris, les rats ou les lapins, exprimant un polypeptide selon l'invention.

Parmi les mammifères selon l'invention, on préfère également des animaux tels que les souris, les rats ou les lapins, caractérisés en ce que le gène codant pour la protéine de séquence SEQ ID N° 2 ou SEQ ID N° 5, ou dont la séquence est codée par le gène homologue chez ces animaux, n'est pas fonctionnel, est invalidé ou présente au moins une mutation.

Ces animaux transgéniques sont obtenus par exemple par recombinaison homologue sur cellules souches embryonnaires, transfert de ces cellules souches à des embryons, sélection des chimères affectées au niveau des lignées reproductrices, et croissance desdites chimères.

Les animaux transgéniques selon l'invention peuvent ainsi surexprimer le gène codant pour la protéine selon l'invention, ou leur gène homologue, ou exprimer ledit gène dans lequel est introduite une mutation. Ces animaux transgéniques, en particulier des souris, sont obtenus par exemple par transfection de copie de ce gène sous contrôle d'un promoteur fort de nature ubiquitaire, ou sélectif d'un type de tissu, ou après transcription virale.

Alternativement, les animaux transgéniques selon l'invention peuvent être rendus déficients pour le gène codant pour l'un des polypeptides de séquences SEQ ID N° 2 ou SEQ ID N° 5, ou leurs gènes homologues, par inactivation à l'aide du

système LOXP/CRE recombinase (Rohlmann et al., 1996) ou de tout autre système d'inactivation de l'expression de ce gène.

Les cellules et mammifères selon l'invention sont utilisables dans une méthode de production d'un polypeptide selon l'invention, comme décrit cidessous, et peuvent également servir à titre de modèle d'analyse.

Les cellules ou mammifères transformés tels que décrits précédemment peuvent aussi être utilisés à titre de modèles afin d'étudier les interactions entre les polypeptides selon l'invention, et les composés chimiques ou protéiques, impliqués directement ou indirectement dans les activités des polypeptides selon l'invention, ceci afin d'étudier les différents mécanismes et interactions mis en jeu.

Ils peuvent en particulier être utilisés pour la sélection de produits interagissant avec les polypeptides selon l'invention, notamment la protéine de séquence SEQ ID N° 2 ou SEQ ID N° 5 ou leurs variants selon l'invention, à titre de cofacteur, ou d'inhibiteur, notamment compétitif, ou encore ayant une activité agoniste ou antagoniste de l'activité des polypeptides selon l'invention. De préférence, on utilise lesdites cellules transformées ou animaux transgéniques à titre de modèle notamment pour la sélection de produits permettant de lutter contre les pathologies liées à une expression anormale de ce gène.

L'invention concerne également l'utilisation d'une cellule, d'un mammifère ou d'un polypeptide selon l'invention pour le criblage de composés chimiques ou biochimiques pouvant interagir directement ou indirectement avec les polypeptides selon l'invention, et/ou capable de moduler l'expression ou l'activité de ces polypeptides.

20

25

30

De la même façon, l'invention concerne aussi un procédé de criblage de composés capables d'interagir *in vitro* ou *in vivo* avec un acide nucléique selon l'invention, en utilisant un acide nucléique une cellule ou un mammifère selon l'invention, et en détectant la formation d'un complexe entre les composés candidats et l'acide nucléique selon l'invention.

Les composés ainsi sélectionnés sont également objets de l'invention.

L'invention concerne aussi l'utilisation d'une séquence d'acide nucléique selon l'invention pour la synthèse de polypeptides recombinants.

La méthode de production d'un polypeptide de l'invention sous forme recombinante, elle-même comprise dans la présente invention, se caractérise en ce que l'on cultive les cellules transformées, notamment les cellules ou mammifères de la présente invention, dans des conditions permettant l'expression d'un polypeptide recombinant codé par une séquence d'acide nucléique selon l'invention, et que l'on récupère ledit polypeptide recombinant.

Les polypeptides recombinants, caractérisés en ce qu'ils sont susceptibles d'être obtenus par ladite méthode de production, font également partie de l'invention.

5

10

15

20

25

30

Les polypeptides recombinants obtenus comme indiqué ci-dessus, peuvent aussi bien se présenter sous forme glycosylée que non glycosylée et peuvent présenter ou non la structure tertiaire naturelle.

Les séquences des polypeptides recombinants peuvent être également modifiées afin d'améliorer leur solubilité, en particulier dans les solvants aqueux.

De telles modifications sont connues de l'homme du métier comme par exemple la délétion de domaines hydrophobes ou la substitution d'acides aminés hydrophobes par des acides aminés hydrophiles.

Ces polypeptides peuvent être produits à partir des séquences d'acide nucléique définies ci-dessus, selon les techniques de production de polypeptides recombinants connues de l'homme du métier. Dans ce cas, la séquence d'acide nucléique utilisée est placée sous le contrôle de signaux permettant son expression dans un hôte cellulaire.

Un système efficace de production d'un polypeptide recombinant nécessite de disposer d'un vecteur et d'une cellule hôte selon l'invention.

Ces cellules peuvent être obtenues par l'introduction dans des cellules hôtes d'une séquence nucléotidique insérée dans un vecteur tel que défini ci-dessus, puis la mise en culture desdites cellules dans des conditions permettant la réplication et/ou l'expression de la séquence nucléotidique transfectée.

Les procédés utilisés pour la purification d'un polypeptide recombinant sont connus de l'homme du métier. Le polypeptide recombinant peut être purifié à partir de lysats et extraits cellulaires, du surnageant du milieu de culture, par des méthodes utilisées individuellement ou en combinaison, telles que le fractionnement, les méthodes de chromatographie, les techniques d'immunoaffinité à l'aide d'anticorps monoclonaux ou polyclonaux spécifiques, etc...

Les polypeptides selon la présente invention peuvent aussi être obtenus par synthèse chimique en utilisant l'une des nombreuses synthèses peptidiques connues, par exemple les techniques mettant en œuvre des phases solides (voir notamment Stewart et al., 1984) ou des techniques utilisant des phases solides partielles, par condensation de fragments ou par une synthèse en solution classique.

Les polypeptides obtenus par synthèse chimique et pouvant comporter des acides aminés non naturels correspondants sont également compris dans l'invention.

Les anticorps mono- ou polyclonaux ou leurs fragments, anticorps chimériques ou immunoconjugués, caractérisés en ce qu'ils sont capables de reconnaître spécifiquement un polypeptide selon l'invention, font partie de l'invention.

10

15

20

25

30

Des anticorps polyclonaux spécifiques peuvent être obtenus à partir d'un sérum d'un animal immunisé contre les polypeptides selon l'invention, notamment produit par recombinaison génétique ou par synthèse peptidique, selon les modes opératoires usuels.

On note notamment l'intérêt d'anticorps reconnaissant de façon spécifique certains polypeptides, variants, ou leurs fragments immunogènes, selon l'invention.

Les anticorps mono- ou polyclonaux ou leurs fragments, anticorps chimériques ou immunoconjugués, caractérisés en ce qu'ils sont capables de reconnaître spécifiquement les polypeptides de séquence SEQ ID N° 2 ou SEQ ID N° 5 sont particulièrement préférés.

Les anticorps monoclonaux spécifiques peuvent être obtenus selon la méthode classique de culture d'hybridomes décrite par Köhler et Milstein (1975).

Les anticorps selon l'invention sont, par exemple, des anticorps chimériques, des anticorps humanisés, des fragments Fab ou F(ab')₂. Ils peuvent également se présenter sous forme d'immunoconjugués ou d'anticorps marqués afin d'obtenir un signal détectable et/ou quantifiable.

L'invention concerne également des méthodes pour la détection et/ou la purification d'un polypeptide selon l'invention, caractérisées en ce qu'elles mettent en œuvre un anticorps selon l'invention.

L'invention comprend en outre des polypeptides purifiés, caractérisés en ce qu'ils sont obtenus par une méthode selon l'invention.

Par ailleurs, outre leur utilisation pour la purification des polypeptides, les anticorps de l'invention, en particulier les anticorps monoclonaux, peuvent également être utilisés pour la détection de ces polypeptides dans un échantillon biologique.

Ils constituent ainsi un moyen d'analyse immunocytochimique ou immunohistochimique de l'expression des polypeptides selon l'invention, notamment les polypeptides de séquence SEQ ID N° 2, SEQ ID N° 5 ou l'un de leurs variants, sur des coupes de tissus spécifiques, par exemple par immunofluorescence, marquage à l'or, immuno-conjugués enzymatiques.

5

10

15

20

25

30

Ils peuvent permettre notamment de mettre en évidence une expression anormale de ces polypeptides dans les tissus ou prélèvements biologiques.

Plus généralement, les anticorps de l'invention peuvent être avantageusement mis en œuvre dans toute situation où l'expression d'un polypeptide selon l'invention, normal ou muté, doit être observée.

Ainsi, un procédé de détection d'un polypeptide selon l'invention dans un échantillon biologique, comprenant les étapes de mise en contact de l'échantillon biologique avec un anticorps selon l'invention et de mise en évidence du complexe antigène-anticorps formé est également un objet de l'invention, ainsi qu'une trousse permettant de mettre en œuvre un tel procédé. Une telle trousse contient en particulier :

- a) un anticorps monoclonal ou polyclonal selon l'invention;
- b) éventuellement des réactifs pour la constitution d'un milieu propice à la réaction immunologique;
- c) les réactifs permettant la détection du complexe antigèneanticorps produit lors de la réaction immunologique.

Les anticorps selon l'invention peuvent également être utilisés dans le traitement d'une maladie inflammatoire et/ou immune, ou d'un cancer, chez l'homme, lorsque l'on observe une expression anormale du gène IBD1 ou du gène IBD1prox. Une expression anormale signifie une surexpression ou l'expression d'une protéine mutée.

Ces anticorps peuvent être obtenus directement à partir de sérum humain, ou à partir d'animaux immunisés avec des polypeptides selon l'invention, puis

« humanisés », et peuvent être utilisés tels quels ou dans la préparation d'un médicament destiné au traitement des maladies précitées.

Font également partie de l'invention, les méthodes de détermination d'une variabilité allélique, d'une mutation, d'une délétion, d'une perte d'hétérozygotie ou de toute anomalie génétique du gène selon l'invention, caractérisées en ce qu'elles mettent en oeuvre une séquence d'acide nucléique, un polypeptide ou un anticorps selon l'invention.

L'invention fournit en effet la séquence des gènes IBD1 et IBD1 prox impliqués dans des maladies inflammatoires et/ou immunes, et en particulier les MICI. Un des enseignements de l'invention est de préciser les mutations dans ces séquences nucléiques ou polypeptidiques, qui sont liées à un phénotype correspondant à une des ces maladies inflammatoires et/ou immunes.

On peut détecter ces mutations directement par analyse de l'acide nucléique et des séquences selon l'invention (ADN génomique, ARN, ou ADNc), mais également par l'intermédiaire des polypeptides selon l'invention. En particulier, l'utilisation d'un anticorps selon l'invention qui reconnaît un épitope portant une mutation permet de discriminer entre une protéine « saine » et une protéine « associée à une pathologie ».

Ainsi, l'étude du gène IBD1 dans diverses maladies inflammatoires et/ou immunes humaines montre ainsi qu'il existe des variants de séquence de ce gène dans la maladie de Crohn, la rectocolite hémorragique et le syndrome de Blau, comme démontré par les exemples. Ces variations de séquence aboutissent à des variations importantes de la séquence protéique déduite. En effet, elles sont soit localisées sur des sites très conservés de la protéine dans des domaines fonctionnels importants, soit elles aboutissent à la synthèse d'une protéine tronquée. Il est donc extrêmement probable que ces altérations entraînent une modification de la fonction de la protéine et aient donc un effet causal dans la survenue de ces maladies.

20

25

La variété des maladies où sont observées ces mutations suggère que le gène IBD1 est potentiellement important dans de nombreuses maladies inflammatoires et/ou immunes. Ce résultat est à rapprocher du fait que la région péricentromérique du chromosome 16 a été décrite comme contenant des gènes de susceptibilité à diverses maladies humaines telles que la spondylarthrite ankylosante ou le

rhumatisme psoriasique. On peut donc considérer qu'IBD1 a un rôle important dans un grand nombre de maladies inflammatoires et/ou immunes.

En particulier, on peut associer IBD1 aux maladies inflammatoires granulomateuses. En effet, le Syndrome de Blau et la MC sont des maladies faisant partie de cette famille. On espère donc trouver des variations dans le gène IBD1 pour les autres maladies de la même famille (sarcoïdose, maladie de Behçet...).

De plus, l'implication de IBD1 dans les voies cellulaires aboutissant à l'apoptose soulève la question de son éventuel rôle carcinogène. En effet, il est attendu qu'une dysrégulation de IBD1 puisse aboutir à une prédisposition cancéreuse. Cette hypothèse est renforcée par le fait qu'il existe une prédisposition au cancer du colon dans les maladies inflammatoires de l'intestin. IBD1 pourrait en partie expliquer cette susceptibilité au cancer et définir de nouvelles voies de carcinogenèse.

La description précise des mutations observables dans le gène IBD1 permet ainsi de poser les bases d'un diagnostic moléculaire des maladies inflammatoires et immunes où son rôle est démontré. Une telle démarche, basée sur la recherche de mutations dans le gène, permettra de contribuer au diagnostic de ces maladies et éventuellement de réduire l'importance de certains examens complémentaires invasifs ou coûteux. L'invention pose les bases d'un tel diagnostic moléculaire basé sur la recherche de mutations dans IBD1.

15

20

25

30

Le diagnostic moléculaire des maladies inflammatoires devrait aussi permettre d'améliorer la classification nosologique de ces maladies et de mieux définir des sous-groupes de malades particuliers par leur caractéristiques cliniques, l'évolutivité de la maladie ou la réponse à certains traitements. A titre d'exemple, le démembrement des mutations existantes pourrait ainsi permettre de classer les colites actuellement indéterminées qui représentent plus de 10% des maladies inflammatoires de l'intestin. Une telle démarche permettra de proposer une prise en charge précoce adaptée à chaque patient. D'une manière générale, une telle démarche permet d'espérer pouvoir définir à terme une prise en charge individualisée de la maladie, en fonction du terrain génétique de chaque malade, incluant des mesures curatives et préventives.

En particulier, on préfère une méthode de diagnostic et/ou d'évaluation pronostique d'une maladie inflammatoire ou d'un cancer caractérisée en ce qu'on détermine à partir d'un prélèvement biologique d'un patient la présence d'au moins une mutation et/ou une altération d'expression du gène correspondant à SEQ ID N° 1 ou SEQ ID N° 4 par l'analyse de tout ou partie d'une séquence nucléique correspondant audit gène. On peut aussi étudier les gènes SEQ ID N° 3 ou SEQ ID N° 6.

5

15

20

25

30

Cette méthode de diagnostic et/ou d'évaluation pronostique peut être utilisée de façon préventive (étude d'une prédisposition à ces maladies inflammatoires ou au cancer), ou afin de servir à l'établissement et/ou la confirmation d'un état clinique chez un patient.

De préférence, la maladie inflammatoire est une maladie inflammatoire du tube digestif, et le cancer est un cancer du tube digestif (intestin grêle ou colon).

L'enseignement de l'invention permet en effet de connaître les mutations présentant un déséquilibre de liaison avec les maladies inflammatoires du tube digestif, et qui sont donc associées à de telles maladies.

L'analyse peut être effectuée par séquence de tout ou partie du gène, ou par d'autres méthodes connues de l'homme du métier. On peut en particulier utiliser des méthodes basées sur la PCR, par exemple la PCR-SSCP qui permet de détecter des mutations ponctuelles.

On peut également effectuer l'analyse par fixation d'une sonde selon l'invention correspondant à l'une des séquences SEQ ID N° 1, 3, 4 ou 6 sur une puce à ADN et l'hybridation sur ces microplaques. Une puce à ADN contenant une séquence selon l'invention est également un des objets de l'invention.

De même, une puce à protéines contenant une séquence d'acides aminés selon l'invention est aussi un objet de l'invention. Une telle puce à protéines permet l'étude des interactions entre les polypeptides selon l'invention et d'autres protéines ou des composés chimiques, et peut ainsi être utile pour le criblage de composés interagissant avec les polypeptides selon l'invention. On peut également utiliser les puces à protéines selon l'invention pour détecter la présence d'anticorps dirigés contre les polypetides selon l'invention dans le sérum de patients. On peut aussi mettre en œuvre une puce à protéines contenant un anticorps selon l'invention.

L'homme du métier sait également mettre en œuvre des techniques permettant l'étude de l'altération de l'expression d'un gène, par exemple par l'étude de l'ARNm (en particulier par Northern Blot ou par des expériences de RT-PCR, avec des sondes ou des amorces selon l'invention), ou de la protéine exprimée, en particulier par Western Blot, en utilisant des anticorps selon l'invention.

Le gène testé est de préférence le gène de séquence SEQ ID N° 1, la maladie inflammatoire pour laquelle on cherche à prédire la susceptibilité étant une maladie du tube digestif, en particulier la maladie de Crohn, ou la rectocolite hémorragique. Si l'on cherche à détecter un cancer, il s'agit de préférence du cancer du colon.

L'invention se rapporte également à des procédés d'obtention d'un allèle du gène IBD1, associé à un phénotype détectable, comprenant les étapes suivantes :

10

15

20

25

30

- a) obtenir un échantillon d'acide nucléique d'un individu exprimant ledit phénotype détectable ;
- b) mettre en contact ledit échantillon d'acide nucléique avec un agent capable de détecter spécifiquement un acide nucléique codant pour la protéine IBD1;
- c) isoler ledit acide nucléique codant pour la protéine IBD1.

Un tel procédé peut être suivi d'une étape de séquence de tout ou partie de l'acide nucléique codant pour la protéine IBD1, ce qui permet de prédire la susceptibilité à une maladie inflammatoire ou d'un cancer.

L'agent capable de détecter spécifiquement un acide nucléique codant pour la protéine IBD1 est avantageusement une sonde d'oligonucléotides selon l'invention, qui peut être formée d'ADN, d'ARN, de PNA, modifiés ou non. Les modifications peuvent inclure un marquage radioactif ou fluorescent, ou être dues à des modifications dans les liaisons entre les bases (phosphorothioates, ou méthylphosphonates par exemple). L'homme du métier connaît les protocoles permettant d'isoler une séquence spécifique d'ADN. L'étape b) du procédé cidessus décrit peut également être une étape d'amplification telle que décrite précédemment.

L'invention se rapporte également à un procédé de détection et/ou de dosage d'un acide nucléique selon l'invention dans un échantillon biologique, comprenant les étapes suivantes de mise en contact d'une sonde selon l'invention avec un échantillon biologique et de détection et/ou dosage de l'hybride formé entre ledit polynucléotide et l'acide nucléique de l'échantillon biologique.

L'homme du métier sait mettre en œuvre un tel procédé, et peut en particulier utiliser une trousse de réactifs comprenant :

- a) un polynucléotide selon l'invention, utilisé en tant que sonde ;
- b) les réactifs nécessaires à la mise en œuvre d'une réaction d'hybridation entre ladite sonde et l'acide nucléique de l'échantillon biologique;
- c) les réactifs nécessaires à la détection et/ou le dosage de l'hybride formé entre ladite sonde et l'acide nucléique de l'échantillon biologique;

qui est également un objet de l'invention.

5

15

30

Une telle trousse peut également contenir des contrôles positifs ou négatifs afin d'assurer la qualité des résultats obtenus.

Toutefois, afin de détecter et/ou doser un acide nucléique selon l'invention, l'homme du métier peut également effectuer une étape d'amplification à l'aide d'amorces choisies parmi les séquences selon l'invention.

Enfin, l'invention concerne également les composés choisis parmi un acide nucléique, un polypeptide, un vecteur, une cellule, ou un anticorps selon l'invention, ou les composés obtenus par les procédés de criblage selon l'invention, à titre de médicament, en particulier pour la prévention et/ou le traitement d'une maladie inflammatoire et/ou immune ou d'un cancer, associé à la présence d'au moins une mutation du gène correspondant à SEQ ID N° 1 ou SEQ ID N° 4, de préférence une maladie inflammatoire du tube digestif, en particulier la maladie de Crohn ou la rectocolite hémorragique.

Les exemples qui suivent permettent de mieux comprendre les avantages de l'invention et ne doivent pas être considérés comme limitant la portée de l'invention.

25 DESCRIPTION DES FIGURES

<u>Figure 1</u>: tests de liaison génétique non paramétrique pour la maladie de Crohn dans la région péricentromérique du chromosome 16 (d'après Hugot et al., 1996). Analyse de liaison multipoint basé sur l'identité par descendance pour les marqueurs de la région péricentromérique du chromosome 16. Les distances génétiques entre marqueurs ont été estimées grâce au programme CRIMAP. Le lod score (MAPMAKER/SIBS) est indiqué sur la figure de gauche. Deux tests de pseudo vraisemblance ont été développés et rapportés sur la figure de droite. Le

premier (Tz) est analogue au test des moyennes. Le deuxième (Tz2) est analogue au test de la proportion des paires d'affectés partageant deux allèles.

Figure 2: analyse de liaison génétique multipoint non paramétrique. 78 familles avec plusieurs apparentés atteints de Maladie de Crohn ont été génotypées pour 26 marqueurs de polymorphisme dans la région péricentromérique du chromosome 16. La localisation de chaque marqueur est symbolisée par une flèche. L'ordre des marqueurs et la distance les séparant dérive de l'analyse des données expérimentales avec le logiciel Crimap. Les flèches sous la courbe indiquent les marqueurs SPN, D16S409 et D16S411 utilisés dans la première étude publiée (Hugot et al., 1996).Les flèches situées en haut de la figure correspondent aux marqueurs D16S3136, D16S541, D16S3117, D16S416 et D16S770 localisés au maximum du test de liaison génétique. Les données de typage ont été analysées à l'aide du programme d'analyse multipoint non paramétrique du logiciel Genehunter version 1.3. Le maximum du NPL Score est de 3,33 (p=0,0004).

15 Figure 3: représentation schématique de la protéine codée par IBD1. La protéine codée par IBD1 est représentée horizontalement. Les différents domaines qui la composent sont indiqués sur la figure avec le numéro de référence des acides aminés correspondant au début et à la fin de chaque domaine. La protéine est constituée d'un domaine CARD, d'un domaine liant les nucléotides (NBD) et de motifs riches en leucines (LRR).

EXEMPLES

10

25

30

Exemple 1 : localisation fine de IBD1

La première étape vers l'identification du gène IBD1 a été de réduire la taille de la région génétique d'intérêt, initialement centrée sur le marqueur D16S411 situé entre D16S409 et D16S419 (Hugot et al., 1996 et fig. 1). Un groupe de marqueurs proches (carte génétique à haute résolution) a été utilisé pour mieux préciser la région génétique et a permis de compléter les analyses de liaison génétique et de rechercher un déséquilibre de liaison génétique avec la maladie.

L'étude a porté sur 78 familles comportant au moins 2 apparentés atteints de MC, qui correspondaient à 119 paires d'affectés. Les familles comportant des malades atteints de RCH ont été exclues de l'étude.

Vingt-six marqueurs génétiques de polymorphisme de type microsatellites ont été étudiés. Ces marqueurs formaient ensemble une carte à haute résolution avec

une distance moyenne entre marqueurs de l'ordre de 1cM dans la région génétique d'intérêt. Les caractéristiques des marqueurs étudiés sont rapportés sur le tableau 1.

<u>Tableau 1. Marqueurs polymorphes de type microsatellite utilisés pour la</u>
5 <u>localisation fine de IBD1</u>

Nom du marqueur de	Distance	Amorces PCR
polymorphisme	cumulée (cM)	
D16S3120	0	SEQ ID N° 7
(AFM326vc5)		SEQ ID N° 8
D16S298	2,9	SEQ ID N° 9
(AFMa189wg5)	·	SEQ ID N° 10
D16S299	3,4	SEQ ID N° 11
	-	SEQ ID N° 12
SPN	3,9	SEQ ID N° 13
L	_	SEQ ID N° 14
D16S383	4,3	SEQ ID N° 15
		SEQ ID N° 16
D16S753	4,9	SEQ ID N° 17
(GGAA3G05)		SEQ ID N° 18
D16S3044	5,8	SEQ ID N° 19
(AFMa222za9)		SEQ ID N° 20
D16S409	5,8	SEQ ID N° 21
(AFM161xa1)		SEQ ID N° 22
D16S3105	6,1	SEQ ID N° 23
(AFMb341zc5)		SEQ ID N° 24
D16S261	6,8	SEQ ID N° 25
(MFD24)		SEQ ID N° 26
D16S540	6,9	SEQ ID N° 27
(GATA7B02)		SEQ ID N° 28
D16S3080	7	SEQ ID N° 29
(AFMb068zb9)		SEQ ID N° 30
D16S517	7	SEQ ID N° 31
(AFMa132we9)		SEQ ID N° 32
D16S411	8	SEQ ID N° 33
(AFM186xa3)		SEQ ID N° 34
D16S3035	10,4	SEQ ID N° 35
(AFMa189wg5)		SEQ ID N° 36
D16S3136	10,4	SEQ ID N° 37
(AFMa061xe5)		SEQ ID N° 38
D16S541	11,4	SEQ ID N° 39
(GATA7E02)		SEQ ID N° 40
D16S3117	11,5	SEQ ID N° 41
(AFM288wb1)		SEQ ID N° 42
D16S416	12,4	SEQ ID N° 43
(AFM210yg3)		SEQ ID N° 44

D16S770	13,2	SEQ ID N° 45
(GGAA20G02)		SEQ ID N° 46
D16S2623	15	SEQ ID N° 47
(GATA81B12)		SEQ ID N° 48
D16S390	16,5	SEQ ID N° 49
		SEQ ID N° 50
D16S419	20,4	SEQ ID N° 51
(AFM225zf2)		SEQ ID N° 52
D16S771	21,8	SEQ ID N° 53
(GGAA23C09)		SEQ ID N° 54
D16S408	25,6	SEQ ID N° 55
(AFM137xf8)		SEQ ID N° 56
D16S508	38,4	SEQ ID N° 57
(AFM304xf1)		SEQ ID N° 58

Chaque marqueur est répertorié selon la nomenclature internationale et le plus souvent par le nom proposé par le laboratoire d'origine. Les marqueurs apparaissent selon leur ordre sur le chromosome (de 16p vers 16q). La distance génétique entre les marqueurs (en centiMorgan Kosambi, calculée par le programme Crimap à partir des données expérimentales) est indiquée dans la deuxième colonne. Le premier marqueur polymorphe est pris arbitrairement comme point de référence. Les oligonucléotides ayant servi à la réaction de polymérisation en chaîne (PCR) sont indiqués dans la troisième colonne.

Le génotypage de ces marqueurs microsatellites a reposé sur la technologie des séquenceurs automatiques utilisant des amorces fluorescentes. Brièvement, après amplification, les produits de réaction de polymérisation en chaîne (PCR) fluorescents ont été déposés sur un gel de polyacrylamide sur séquenceur automatique selon les recommandations du constructeur (Perkin Elmer). La taille des allèles pour chaque sujet a été déduite grâce au logiciels Genescan^R et Genotyper^R. Les données ont ensuite été conservées sur une base informatique intégrée contenant les données généalogiques, phénotypiques et génétiques. Elles ont alors été utilisées pour les analyses de liaison génétique.

10

15

20

Plusieurs contrôles qualité ont été réalisés tout au long de la procédure de génotypage:

- double lecture indépendante des données de génotypage,
- utilisation d'un ADN standard servant de contrôle interne pour chaque migration électrophorétique,
- contrôle de la gamme de taille de chaque allèle observé,

- recherche d'erreurs de transmission mendélienne,

5

10

20

25

- calcul de la distance génétique entre marqueurs (programme CRIMAP)
 et comparaison de celle-ci avec les données de la littérature,
- nouveau typage des marqueurs pour lesquels il était observé une recombinaison entre marqueurs proches.

Les données de génotypage ont été analysées par des méthodes de liaison génétique multipoint non paramétrique (Programme GENEHUNTER version 1.3). L'informativité du système de marqueurs était supérieure à 80% pour la région étudiée. Le maximum du test (NPL= 3,33; P = 0,0004) a été obtenu pour les marqueurs D16S541, D16S3117, D16S770 et D16S416 (figure 2).

Les données de typage pour ces 26 marqueurs de polymorphisme ont aussi été analysées à la recherche d'un déséquilibre de transmission. Deux groupes de 108 et 76 familles avec un ou plusieurs malades atteints de MC ont été étudiés. Le test statistique de déséquilibre de transmission a été décrit par Spielman et al. (1993). Il n'a été pris en compte dans ce travail qu'un seul malade par famille et la valeur de p a été corrigée par le nombre d'allèles testés pour chaque marqueur étudié.

Un déséquilibre de transmission a été observé pour les allèles 4 et 5 (taille 205, resp. 207 paires de bases) du marqueur D16S3136 (p=0,05, resp. p=0,01).

Ces résultats suggestifs d'une association entre le marqueur D16S3136 et la MC ont conduit à construire une cartographie physique de la région génétique centrée sur D16S3136 et à établir la séquence d'un segment d'ADN génomique de grande taille (BAC) contenant ce site polymorphe. Il a alors été possible d'identifier et d'analyser un plus grand nombre de marqueurs de polymorphisme dans le voisinage de D16S3136 ainsi que de définir et d'étudier les séquences transcrites présentes dans la région.

Exemple 2 : cartographie physique de la région IBD1

Un contig de fragments d'ADN génomique, centré sur les marqueurs D16S3136, D16S3117, D16S770 et D16S416, a été généré à partir des banques d'ADN génomique humain de la fondation Jean Dausset/CEPH. Les segments d'ADN chromosomique ont été identifiés à partir de certains marqueurs de polymorphisme utilisés dans la cartographie génétique fine (D16S411, D16S416, D16S541, D16S770, D16S2623, D16S3035, D16S3117 et D16S3136). Pour chaque

marqueur, une banque de chromosomes artificiels de bactéries (BAC) a été criblée par PCR à la recherche de clones contenant la séquence du marqueur. Selon que les séquences testées étaient ou non présentes sur les clones de BAC il a été alors possible d'organiser les clones entre eux à l'aide du logiciel Segmap version 3.35.

On a pu établir, pour les BACs, une organisation continue (contig) couvrant la région génétique d'intérêt, selon une méthode connue de l'homme du métier (Rouquier et al., 1994; Kim et al., 1996; Asakawa et al., 1997). Pour ce faire, les extrémités des BACs identifiés ont été séquencées et ces nouvelles données de séquence ont alors servi à cribler itérativement les banques de BACs. A chaque criblage, le contig de BAC a alors progressé d'un pas jusqu'à l'obtention d'un continuum de clones chevauchants. La taille de chaque BAC participant au contig a été déduite de son profil de migration sur gel d'agarose en champ pulsé.

On a ainsi construit un contig de BAC contenant 101 BACs et s'étendant sur une distance globale de plus de 2,5 Mb avec une redondance moyenne de 5,5 BAC à chaque point du contig. La taille moyenne des BAC est de 136kb.

Exemple 3 : séquençage du BAC hb87b10

5

20

25

30

Le BAC de ce contig contenant le marqueur de polymorphisme D16S3136 (appelé hb87b10), dont la taille était de 163761 bp a été séquencé selon la méthode dite du "coup de fusil". En bref, l'ADN du BAC a été fragmenté par sonication. Les fragments d'ADN ainsi générés ont été soumis à une électrophorèse en gel d'agarose et ceux dont la taille était supérieure à 1,5 kb ont été élus pour être analysés. Ces fragments ont ensuite été clonés dans le phage m13 lui même introduit dans des bactéries rendues compétentes par électroporation. Après culture, l'ADN des clones a été récupéré et séquencé par des méthodes de séquençage automatique à l'aide d'amorces fluorescentes du vecteur m13 sur séquenceur automatique.

1526 séquences différentes d'une taille moyenne de 600 bp ont été générées, qui ont été organisées entre elles grâce au logiciel Polyphredphrap^R aboutissant à un contig de séquence couvrant l'ensemble du BAC. La séquence ainsi générée avait une redondance moyenne de 5,5 équivalents génomiques. Les rares (n=5) intervalles de séquence non représentés dans la banque de clones m13 ont été comblés en générant des amorces de PCR spécifiques, de part et d'autre de ces

intervalles, et en analysant le produit de PCR dérivé de l'ADN génomique d'un sujet sain.

Des homologies de séquence avec des séquences disponibles dans les bases de données génétiques publiques (Genbank) ont été recherchées. Aucun gène connu n'a pu être identifié dans cet intervalle de 163 kb. Plusieurs EST ont été positionnés suggérant que des gènes inconnus étaient contenus dans cette séquence. Ces EST issus des bases de données génétiques publiques (Genbank, GDB, Unigene, dbEST) portaient les références suivantes : AI167910, AI011720, Rn24957, Mm30219, hs132289, AA236306, hs87296, AA055131, hs151708, AA417809, AA417810, hs61309, hs116424, HUMGS01037, AA835524, hs105242, SHGC17274, hs146128, hs122983, hs87280 et hs135201. La recherche d'exons putatifs à l'aide du programme informatique GRAIL a permis d'identifier plusieurs exons potentiels, sites de polyadénylation et séquences promotrices.

15 Exemple 4 : études de déséquilibre de transmission

10

20

12 marqueurs de polymorphisme bialléliques (SNP) ont été identifiés dans une région s'étendant sur environ 250 kb et centrée sur le BAC hb87b10. Ces polymorphismes ont été générés par analyse de la séquence d'une dizaine de malades indépendants atteints de MC. Le séquençage a été le plus souvent réalisé au niveau d'EST connus et positionnés sur le BAC ou à son voisinage. Des exons putatifs, prédits par le programme informatique GRAIL ont aussi été analysés. Les caractéristiques des marqueurs polymorphes ainsi identifiés sont rapportées sur le tableau 2.

25 <u>Tableau 2. Caractéristiques de marqueurs de polymorphisme bialléliques étudiés</u> dans la région de IBD1

I	П	III	IV	V	VI
1	KIAA0849ex9	PCR-AS		SEQ ID N° 88 à 90	116
2	hb27G11F	PCR-RFLP	BsrI	SEQ ID N° 86, 87	185
					116
					69
3	Ctg22Ex1	PCR-RFLP	RsaI	SEQ ID N° 84, 85	381
					313

	· · · · · · · · · · · · · · · · · · ·		T	т	160
					69
4	SNP1	PCR-AS		SEQ ID N° 81 à 83	410
5	ctg2931-3ac/ola	LO		SEQ ID N° 78 à 80	51
					49
6	ctg2931-5ag/ola	LO		SEQ ID N° 75 à 77	44
					42
7	SNP3-2931	PCR-AS		SEQ ID N° 72 à 74	245
8	Ctg25Ex1	PCR-RFLP	BsteII	SEQ ID N° 70, 71	207
					122
					85
9	CTG35 ExA	PCR-AS		SEQ ID N° 67 à 69	333
10	ctg35 ExC	PCR-AS		SEQ ID N° 64 à 66	198
11	D16S3136			SEQ ID N° 37, 38	
12	hb133D1f	PCR-RFLP	TaqI	- SEQ ID N° 62, 63	369
					295
					74
13	D16S3035			SEQ ID N°35, 36	
14	ADCY7 int7	PCR-AS		SEQ ID N° 59 à 61	140

PCR-AS: PCR-allèle spécifique; LO: Ligature d'oligonucléotides

Les 12 marqueurs de polymorphisme bialléliques nouvellement décrits dans ce travail sont répertoriés dans ce tableau. Pour chacun d'eux sont indiqués :

- le locus (colonne I)
- 5
- le nom (colonne II)
- la technique de génotypage utilisée (colonne III)
- l'enzyme de restriction éventuellement utilisée (colonne IV)
- les amorces oligonucléotidiques utilisées pour la réaction de polymérisation en chaîne ou pour la ligature (colonne V)
- la taille des produits attendus lors du typage (colonne VI)

199 familles comportant 1 ou plusieurs malades atteints de MC ont été typées pour ces 12 marqueurs de polymorphisme ainsi que pour les marqueurs D16S3035 et D16S3136 localisés sur le BAC hb87b10. Les familles comportant des malades atteints de RCH n'ont pas été prises en compte. Les méthodes de typage

des polymorphismes étudiés ont été variables en fonction du type de polymorphisme faisant appel à :

- la technique de PCR-RFLP (amplification suivie de digestion enzymatique du produit de PCR) quand le polymorphisme était situé sur un site de restriction enzymatique.
- PCR avec amorces spécifiques du site polymorphe : amplification différentielle des deux allèles en utilisant des amorces spécifiques de chaque allèle.
- Test de ligation d'oligonucléotides : ligation différentielle utilisant des oligonucléotides spécifiques de chaque allèle, suivie d'électrophorèse en gel de polyacrylamide.

5

15

20

25

30

Les données de typage ont ensuite été analysées selon un test de déséquilibre de transmission (programme informatique TDT du logiciel GENEHUNTER version 2). Pour les familles comportant plusieurs apparentés atteints, un seul malade a été pris en compte pour l'analyse. En effet, la prise en compte de plusieurs malades apparentés pose le problème de non indépendance des données dans les calculs statistiques et peut induire une inflation de la valeur du test. Le malade servant à l'analyse a été tiré au sort au sein de chaque famille par une procédure automatique de randomisation. Compte tenu de cette randomisation, la valeur du test statistique obtenu ne représentait qu'un seul échantillon possible issu du groupe de familles étudiées. Afin de ne pas limiter l'analyse à ce seul échantillon possible et pour mieux appréhender la robustesse des résultats obtenus, pour chaque test, une centaine d'échantillons aléatoires ont ainsi été générés et analysés.

Les marqueurs ont été étudiés séparément puis groupés selon leur ordre sur le segment chromosomique (KIAA0849ex9 (locus 1), hb27G11F (locus 2), Ctg22Ex1 (locus 3), SNP1 (locus 4), ctg2931-3ac/ola (locus 5), ctg2931-5ag/ola (locus 6), SNP3-2931 (locus 7), Ctg25Ex1 (locus 8), CTG35ExA (locus 9), ctg35ExC (locus 10), d16s3136 (locus 11), hb133D1f (locus 12), D16S3035 (locus 13), ADCY7int7 (locus 14)) (tableau 2). Les haplotypes comportant 2, 3 et 4 marqueurs consécutifs ont ainsi été analysés en utilisant toujours la même stratégie (100 échantillons aléatoires en prenant pour chaque famille un seul individu atteint).

Pour chaque échantillon testé, il n'a été pris en compte que les génotypes (ou haplotypes) portés par au moins 10 chromosomes parentaux. En moyenne 250 tests

différents ont ainsi été réalisés pour chaque échantillon. Il a alors été possible de déduire le nombre de tests attendus positifs pour chaque seuil de signification et de comparer cette distribution à la distribution observée. Pour les sujets sains, la distribution des tests n'est pas différente de celle attendue selon le hasard ($\chi^2 = 2,85$, ddl=4, p=0,58). Pour les sujets malades, au contraire, il existe un excès de tests positifs témoignant de l'existence d'un déséquilibre de transmission dans la région étudiée.

Les résultats des tests de déséquilibre de transmission pour chaque marqueur de polymorphisme pris isolément et pour les haplotypes montrant les plus forts déséquilibres de transmission ont montré que les marqueurs suivants sont en déséquilibre de liaison avec la maladie: Ctg22Ex1 (locus 3), SNP1 (locus 4), ctg2931-5ag/ola (locus 6), SNP3-2931 (locus 7), Ctg25Ex1 (locus 8) et ctg35ExC (locus 10). Ces marqueurs s'étendent sur une région d'environ 50kb (positions 74736 à 124285 sur la séquence de hb87b10).

Les haplotypes les plus fortement associés avec la maladie de Crohn s'étendent eux aussi sur cette région. Ainsi, pour la majorité des échantillons aléatoires, le test de transmission était positif (p < 0,01) pour des haplotypes combinant les marqueurs suivants :

- locus 5-6, locus 6-7, locus 7-8, locus 8-9, locus 9-10, locus 10-11
- locus 5-6-7, locus 6-7-8, locus 7-8-9, locus 8-9-10, locus 9-10-11
- locus 5-6-7-8; locus 6-7-8-9, locus 7-8-9-10,

L'haplotype de susceptibilité le plus à risque est défini par les locus 7 à 10. Il s'agit de l'haplotype 1-2-1-2 (tableau 2).

Les marqueurs testés sont, comme attendu, le plus souvent en déséquilibre de liaison entre eux.

Exemple 6 : Identification du gène IBD1

20

25

Les groupements d'EST (références Unigene : Hs 135201, Hs87280, Hs122983, Hs146128, Hs105242, Hs116424, Hs61309, Hs151708, Hs 87296 et Hs132289) publiés et présents sur le BAC hb87b10 ont été étudiés à la recherche d'une séquence d'ADN complémentaire (ADNc) plus complète. Pour IBD1prox, les clones disponibles dans les banques publiques ont été séquencés et les séquences organisées entre elles. Pour IBD1, une banque d'ADN complémentaire de sang

périphérique (Stratagene human blood cDNA lambda zapexpress ref 938202) a été criblée par les produits de PCR générés à partir des EST connus selon les modalités proposées par le fabriquant. La séquence des ADNc ainsi identifiés a ensuite servi à un nouveau criblage de la banque d'ADNc et ainsi de suite jusqu'à l'obtention de l'ADNc présenté.

5

10

15

20

25

30

L'EST hs135201 (UniGene) a permis d'identifier un ADNc ne figurant pas sur les bases de données génétiques disponibles (Genbank) Il correspond donc à un nouveau gène humain. La comparaison de la séquence du cDNA et de l'ADN génomique a montré que ce gène est constitué de 11 exons et 10 introns. Un exon supplémentaire, en position 5' par rapport au cDNA identifié est prédit par l'analyse de la séquence avec le logiciel Grail. Ces exons sont très homologues avec les premiers exons du gène CARD4/NOD1. Considérant l'ensemble des exons identifiées et l'exon putatif supplémentaire, ce nouveau gène apparaît avoir une structure génomique très proche de celle de CARD4/NOD1. Par ailleurs, en amont du premier exon putatif figure un site d'initiation de la transcription. Pour l'ensemble de ces raisons, l'exon putatif a été considéré comme participant à ce nouveau gène. L'ADNc reporté en annexe (SEQ ID N° 1) comporte donc l'ensemble de la séquence identifiée plus la séquence prédite par la modélisation informatique, l'ADN complémentaire débutant arbitrairement au premier codon ATG de la séquence codante prédite. Le gène comporte donc 12 exons et 11 introns. La structure intron-exon du gène est rapportée sur la SEQ ID N° 3.

La séquence protéique déduite de la séquence nucléotidique, comporte 1041 acides aminés (SEQ ID N° 2). Cette séquence n'a pas non plus été retrouvée sur les bases de données biologiques (Genpept, pir, swissprot).

L'étude de la séquence protéique déduite montre que ce gène contient trois domaines fonctionnels différents (figure 3):

- Un domaine CARD (Caspase Recruitment Domain) connu pour être impliqué dans l'interaction entre protéines régulatrices de l'apoptose et de l'activation de la voie NFkappa B. Le domaine CARD permet de classer cette nouvelle protéine dans la famille des protéines CARD dont les membres les plus anciens sont CED 4, APAF1 et RICK.

- Un domaine NBD (Nucléotide Binding Domaine) comportant un site de reconnaissance de l'ATP et un site de liaison du Magnésium. La protéine doit donc avoir une activité kinase très probable.
- Un domaine LRR (Leucine Rich Domain) supposé participer à l'interaction entre protéines par analogie avec d'autres domaines protéiques décrits.

Par ailleurs, le domaine LRR de la protéine permet d'affilier la protéine à une famille de protéines impliquées dans la signalisation intracellulaire et présentes tant chez les plantes que chez les animaux.

5

20

25

30

La comparaison de ce nouveau gène avec les gènes précédemment identifiés et disponibles dans les bases de données publiques montre que celui-ci est très homologue avec CARD4/NOD1 (Bertin et al., 1999; Inohara et al., 1999). Cette homologie porte sur la séquence de l'ADN complémentaire, la structure intron-exon du gène et la séquence protéique. L'identité de séquence des 2 ADN complémentaires est de 58%. Une similitude est également observée au niveau de la structure introns-exons. L'homologie de séquence au niveau protéique est de l'ordre de 40%.

La similitude entre ce nouveau gène et CARD4/NOD1 suggère que, comme CARD4/NOD1, la protéine IBD1 est impliquée dans la régulation de l'apoptose et de l'activation de NF-kappa B (Bertin et al., 1999; Inohara et al., 1999). La régulation de l'apoptose cellulaire et l'activation de NF-kappa B sont des voies de signalisation intracellulaire essentielles dans les réactions immunitaires. En effet, ces voies de transduction du signal sont les voies effectrices des protéines de la famille du récepteur du TNF (Tumor Necrosis Factor) impliquées dans les interactions cellule-cellule et la réponse cellulaire aux différents médiateurs de l'inflammation (cytokines). Le nouveau gène apparaît donc comme potentiellement important à la réaction inflammatoire, de façon générale.

L'expression tissulaire de IBD1 a été ensuite étudiée par la technique du Northern Blot. Un transcrit de 4.5 kb est visible dans la plupart des tissus humains. La taille du transcrit est conforme avec la taille prédite par l'ADNc. Le transcrit de 4.5 kb semble en très faible abondance dans l'intestin grêle et le colon. Il est par contre très fortement exprimé dans les globules blancs. Ceci est en accord avec des données cliniques sur les transplantations qui suggèrent que la maladie de Crohn est

potentiellement une maladie liée aux cellules immunitaires circulantes. En effet, la transplantation intestinale n'empêche pas la récidive sur le greffon dans la maladie de Crohn tandis que la transplantation de moelle osseuse semble avoir un effet bénéfique sur l'évolution de la maladie.

Certaines données font également penser à un épissage alternatif, qui pourrait s'avérer un élément important dans la possibilité de générer des mutants qui pourraient jouer un rôle dans le développement de maladies inflammatoires.

5

10

15

20

25

30

Le promoteur du gène IBD1 n'est actuellement pas identifié avec précision. Il est cependant raisonnable de penser, par analogie avec un très grand nombre de gènes que celui-ci réside, au moins pour partie, immédiatement en amont du gène, dans la portion 5' de celui-ci. Cette région génétique contient des séquences transcrites comme en témoigne la présence d'EST (HUMGS01037, AA835524, hs.105242, SHGC17274, hs.146128, hs.122983, hs.87280). Les clones ATCC contenant ces séquences ont été séquencés et analysés dans le laboratoire, permettant de mettre en évidence une organisation en exons et en introns avec d'éventuels épissages alternatifs. Ces données suggèrent l'existence d'un autre gène (nommé IBD1prox en raison de sa proximité d'IBD1). La séquence partielle de l'ADN complémentaire de IBD1prox est rapportée (SEQ ID N° 4) de même que sa structure intron-exon sur la SEQ ID N° 6.

La traduction des ADNc correspondant à IBD1prox aboutit à une protéine contenant une homéobox. L'analyse de plusieurs ADNc du gène suggère cependant l'existence d'épissages alternatifs. IBD1prox, selon un des épissages alternatifs possibles correspond à l'EST anonyme HUMGS01037 dont l'ARN est exprimé de manière plus importante dans les lignées leucocytaires différenciées que dans les lignées non différenciées.

Ainsi, il est possible que ce gène puisse avoir un rôle dans l'inflammation et la différentiation cellulaire. Il peut donc lui aussi être considéré comme un bon candidat pour la susceptibilité aux MICI. L'association entre MC et le polymorphisme ctg35 ExC localisé sur la séquence codante de IBD1prox renforce cette hypothèse même si ce polymorphisme n'entraîne pas de variation de séquence au niveau protéique.

La relation fonctionnelle entre IBD1 et IBD1 prox n'est actuellement pas établie. Toutefois, la forte proximité entre les deux gènes pourrait refléter une

interaction entre ceux-ci. Dans ce cas, la localisation « tête -bêche » de ces gènes suggère qu'ils puissent avoir des modes de régulation communs ou interdépendants.

Exemple 6: identifications de mutations du gène IBD1 dans les maladies 5 inflammatoires

Afin de confirmer le rôle de IBD1 dans les maladies inflammatoires, la séquence codante et les jonctions intron-exon du gène ont été séquencées de l'exon 2 à l'exon 12 inclus chez 70 sujets indépendants, à savoir : 50 malades atteints de MC, 10 malades atteints de RCH, 1 malade atteint de syndrome de Blau et 9 témoins sains. Les malades étudiés étaient pour la plupart des formes familiales de la maladie et étaient souvent porteurs de l'haplotype de susceptibilité défini par les études de déséquilibre de transmission. Les témoins sains étaient d'origine caucasienne.

24 variants de séquence ont ainsi pu être identifiés sur ce groupe de 70 personnes non apparentées(tableau 3).

Tableau 3. Mutations observées dans le gène IBD1

Exon	Variant	Variant	Maladie de	Rectocolite	Témoins
	nucléotidique	protéique	Crohn	hémorragique	sains
1	non testé				
2	G417A	silencieux			
2	C537G	silencieux			
3	aucun				
4	T805C	S269P	48/100	6/20	3/18
4	A869G	N290S	0	0	1/18
4	C905T	A302V	1/100	0	0
4	C1283T	P428L	1/100	0	0
4	C1284A	silencieux			
4	C1287T	silencieux			
4	T1380C	silencieux			
4	T1764G	silencieux			
4	G1837A	A613T	1/100	0	0
4	C2107T	R703W	10/10	1/20	1/18
4	C2110T	R704C	4/10	1/20	0
5	G2365A	R792Q	1/100	0	0
5	G2370A	V794M	0	1/20	0
5	G2530A	E844K	1/10	0	0

6	A2558G	N853S	1/100	0	0
6	A2590G	M864V	1/100	. 0	0
7	aucun				
8	G2725C	G909R	7/100	0	0
8	C2756A	A919D	1/100	0	0
9	G2866A	V956I	2/100	1/20	3/18
10	C2928T	silencieux			
11	3022insC	stop	20/100	0	0
12	aucun				

Les mutations autres que silencieuses observées dans chaque exon sont rapportées. Elles sont indiquées par la variation de la chaîne peptidique. Pour chaque mutation et pour chaque phénotype étudié, il est indiqué le nombre de fois où la mutation est observé, rapporté au nombre de chromosomes testés.

Aucun variant de séquence fonctionnel n'a été identifié dans les exons 1 à 3 (correspondants au domaine CARD de la protéine). Les exons 7 et 12 n'ont pas non plus montré de variation de séquence. Certains variants correspondaient à des polymorphismes déjà identifiés et typés pour les études de déséquilibre de transmission, à savoir :

-Snp3-2931 : variant nucléotidique T805C, variant protéique S269P

-ctg2931-5ag/ola : variant nucléotidique T1380C (silencieux)

10

20

-ctg2931-3ac/ola : variant nucléotidique T1764G (silencieux)

-SNP1: variant nucléotidique C2107T, variant protéique R703W

Plusieurs variations de séquence étaient silencieuses (G417A, C537G, C1284A, C1287T, T1380C, T1764G, C2928T) et n'entraînaient pas de modification de la séquence protéique. Elles n'ont pas été étudiées davantage ici.

Pour les 16 variations de séquence non silencieuses, il a été observé des variants de séquence protéique chez 43/50 MC contre 5/9 témoins sains et 6/10 RCH. L'existence d'une ou plusieurs variation(s) de séquence apparaissait associée au phénotype MC. Il existait souvent plusieurs variations de séquence chez un même individu atteint de MC suggérant un effet parfois récessif du gène pour la MC. A l'inverse, aucun homozygote ou hétérozygote composite n'était observé parmi les patients atteints de RCH ou parmi les témoins sains.

Certains variants non silencieux étaient présents à la fois chez les malades 25 atteints de RCH ou de MC et chez les sujets sains. Il s'agissait des variants S269P, N290S, R703W et V956I situés dans les exons 2, 4 et 9. Un complément d'information semble donc nécessaire avant de retenir un éventuel rôle fonctionnel à ces variants de séquence.

V956I est une variation de séquence conservative (acides aminés aliphatiques).

5

15

20

25

Le variant de séquence S269P correspond à une variation de classe d'acide aminé (hydroxylé en immunoacide) au début du domaine liant les nucléotides. Il en déséquilibre de transmission avec la MC. Il s'agit en effet du polymorphisme Snp3 (Cf. supra).

R703W aboutit à une modification de la classe de l'acide aminé (aromatique au lieu de basique). Cette modification survient dans la région intermédiaire entre les domaines NBD et LRR, région conservée entre IBD1 et CARD4/NOD1. Un rôle fonctionnel peut donc être suspecté pour ce polymorphisme. Cette variation de séquence (correspondant au site polymorphe Snp1) est plus souvent transmise au malades atteints de MC que ne le veut le hasard (Cf. supra) confirmant que ce polymorphisme est associé à la MC. Il est possible que la présence de ce mutant chez les sujets sains témoigne d'une pénétrance incomplète de la mutation comme cela est attendu pour les maladies génétiques complexes telles que les maladies inflammatoires chroniques de l'intestin.

Le variant R704C, situé immédiatement à coté de R703W a pu être identifié à la fois dans la MC et dans la RCH. Il correspond lui aussi à une variation non conservative de la protéine (acide aminé soufré au lieu de basique) sur la même région protéique, suggérant un effet fonctionnel aussi important pour R704C que pour R703W.

D'autres variations de séquence sont spécifiques de la MC de la RCH ou du syndrome de Blau.

Certaines variations de séquence sont au contraire rares, présentes chez un ou quelques malades (A613T, R704C, E844K, N853S, M864V, A919D). Il s'agit toujours de variations entraînant des modifications non conservatives de la protéine dans des domaines leucine riches, à des positions importantes au sein de ces domaines. Ces différents éléments suggèrent que ces variations ont un rôle fonctionnel.

Deux variations de séquence (G909R, L1008P*) sont retrouvées chez un assez grand nombre de maladies de Crohn (respectivement 7/50 et 16/50) alors qu'elles ne sont pas détectées chez les témoins ou chez les malades atteints de RCH.

La délétion/insertion d'une guanosine au niveau du codon 1008 aboutit à une transformation de la troisième leucine de l'hélice alpha du dernier LRR en proline suivie d'un codon STOP (L1008P*). Cette variation de séquence entraîne donc une modification importante de la protéine : réduction de taille de la protéine (protéine possédant un domaine LRR tronqué) et altération d'un acide aminé très conservé (Leucine). Cette modification de séquence est associée à la MC comme en témoigne une étude de déséquilibre de transmission dans 16 familles porteuses de la mutation (P=0,008).

10

20

25

30

La mutation G909R survient sur le dernier acide aminé du sixième motif LRR. Il remplace un acide aminé aliphatique en acide aminé basique. Cette variation est potentiellement importante compte tenu du caractère habituellement neutre ou polaire des acides aminés en position terminale des motifs leucine riche (tant pour IBD1 que pour NOD1/CARD4) et du caractère conservé de cet acide aminé sur les protéines IBD1 et NOD1/CARD4.

Dans le syndrome de Blau, les malades (n=2) de la famille étudiée étaient porteurs d'une variation de séquence spécifique (L470F), localisée dans l'exon 4 et correspondant au domaine NBD de la protéine. Dans cette série, ce variant de séquence était spécifique du syndrome de Blau.

Dans la RCH, plusieurs variants de séquence non retrouvés chez les sujets sains ont aussi été identifiés. La proportion de malades porteurs d'une mutation était plus modeste que pour la MC, comme attendu compte tenu de la liaison moins fortement établie entre IBD1 et RCH et du caractère supposé moins génétique de cette dernière maladie. Des variations de séquence étaient communes à la MC et à la RCH (R703W, R704C). D'autres au contraires apparaissaient spécifiques de la RCH (V794M). Cette observation permet de confirmer que MC et RCH sont des maladies partageant au moins en partie la même prédisposition génétique. Elle pose les bases d'une classification nosologique des MICI.

L'étude des variants de séquence du gène IBD1 a donc permis d'identifier plusieurs variants ayant un effet fonctionnel très probable (ex : protéine tronquée) et associés à la maladie de Crohn, à la RCH et au syndrome de Blau.

Le promoteur du gène n'est actuellement pas déterminé. Selon toute vraisemblance cependant, celui-ci est probablement situé dans la région 5' en amont du gène. Selon cette hypothèse, les variants de séquence observés dans cette région peuvent avoir un effet fonctionnel. Ceci pourrait expliquer la très forte association entre MC et certains locus polymorphes tels que ctg35 ExC ou Ctg25Ex1.

L'invention fournit ainsi la première description de mutations dans la famille des gènes contenant un domaine CARD chez l'homme. La fréquence de ces mutations dans des maladies inflammatoires variées montre que le gène IBD1 a un rôle essentiel dans le processus inflammatoire normal et pathologique. Cette invention fournit de nouvelles voies de compréhension et de recherche dans le domaine de la physiopathologie des processus inflammatoires normaux et pathologiques. Elle permet de ce fait d'envisager le développement de nouvelles molécules pharmaceutiques régulant les voies effectrices contrôlées par IBD1 et utiles dans le traitement des maladies inflammatoires et la régulation du processus inflammatoire en général.

15

20

25

30

Le gène IBD1prox, situé dans la région promotrice de IBD1, et dont la séquence partielle est dévoilée dans la présente invention, peut lui aussi avoir un rôle important dans la régulation de l'apoptose cellulaire et du processus inflammatoire, comme suggéré par son expression différentielle dans les cellules matures du système immunitaire. La forte association rapportée dans ce travail entre le marqueur de polymorphisme ctg35ExC (situé dans la région transcrite du gène) et la maladie de Crohn, plaide aussi très fortement en faveur de cette hypothèse.

Les maladies inflammatoires de l'intestin sont des maladies génétiques complexes pour lesquelles, à ce jour, aucun gène de susceptibilité n'avait été identifié avec certitude. L'invention a permis de l'identification du premier gène de susceptibilité à la maladie de Crohn, par une démarche de clonage positionnel (ou génétique reverse). Il s'agit là de la première localisation génétique obtenue par une telle approche pour une maladie génétique complexe, ce qui démontre son utilité et sa faisabilité, au moins dans certains cas dans les maladies génétiques complexes.

La présente invention concerne aussi un acide nucléique purifié ou isolé caractérisé en ce qu'il code pour un polypeptide possédant un fragment continu d'au moins 200 acides aminés d'une protéine choisie parmi SEQ ID N° 2 et SEQ ID N° 5.

Références

Asakawa et al.(1997), Gene, 191, 69

Becker et al. (1998), Proc Natl Acad Sci USA, 95, 9979

Bertin et al. (1999), J Biol Chem, 274, 12955

5 Buckholz, (1993), Curr. Op. Biotechnology 4, 538.

Carter, (1993) Curr. Op. Biotechnology 3, 533.

Cho et al. (1998), Proc Natl Acad Sci USA, 95, 7502.

Duck et al. (1990), Biotechniques, 9, 142.

Edwards et Aruffo (1993), Curr. Op. Biotechnology, 4, 558.

10 Epstein (1992) Médecine/Sciences, 8, 902.

Guatelli et al. (1990), Proc. Natl. Acad. Sci. USA 87: 1874.

Hugot et al. (1996), Nature, 379, 821.

Inohara et al. (1999) J Biol Chem, 274, 14560.

Kievitis et al. (1991), J. Virol. Methods, 35, 273.

15 Kim et al., (1996) Genomics, 34, 213.

Köhler et Milstein. (1975) Nature 256, 495.

Kwoh, et al. (1989), Proc. Natl. Acad. Sci. USA, 86, 1173.

Landegren et al. (1988) Science 241, 1077.

Lander et Kruglyak (1995) Nat Genet, 11, 241.

20 Luckow (1993), Curr. Op. Biotechnology 4, 564.

Matthews et al. (1988), Anal. Biochem., 169, 1-25.

Miele et al. (1983), J. Mol. Biol., 171, 281.

Neddleman et Wunsch (1970) J. Mol. Biol. 48: 443

Olins et Lee (1993), Curr. Op. Biotechnology 4:520.

25 Perricaudet et al. (1992). La Recherche 23: 471.

Pearson et Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444

Rioux et al. (1998) Gastroenterology, 115: 1062.

Rohlmann et al. (1996) Nature Biotech. 14: 1562.

Rolfs, A. et al. (1991), Berlin: Springer-Verlag.

30 Rouquier et al. (1994), Anal Biochem 217, 205.

Sambrook et al. (1989) Molecular cloning: a laboratory manual. 2nd Ed. Cold

Spring Harbor Lab., Cold Spring Harbor, New York.

Satsangi et al. (1996), Nat Genet, 14: 199.

Segev, (1992), Kessler C. Springer Verlag, Berlin, New-York, 197-205.

Smith et Waterman (1981) Ad. App. Math. 2: 482

Stewart et Yound (1984), Solid phase peptides synthesis, Pierce Chem. Company, Rockford, 111, 2ème éd., (1984).

5 Spielman et al. (1993) Am J Hum Genet, 52, 506.

Temin, (1986) Retrovirus vectors for gene transfer. In Kucherlapati R., ed. Gene Transfer, New York, Plenum Press, 149-187.

Tromp et al. (1996) Am J Hum Genet, 59: 1097.

Walker (1992), Nucleic Acids Res. 20: 1691.

10

Revendications

Acide nucléique purifié ou isolé, caractérisé en ce qu'il comprend une séquence nucléique choisie dans le groupe de séquences suivantes :
 a) SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 4 et SEQ ID N° 6;

5

10

15

20

25

30

 b) la séquence d'un fragment d'au moins 15 nucléotides consécutifs d'une séquence choisie parmi SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 4 ou SEQ ID N° 6;

- c) une séquence nucléique présentant un pourcentage d'identité d'au moins 80 %, après alignement optimal avec une séquence définie en a) ou b);
- d) une séquence nucléique s'hybridant dans des conditions de forte stringence avec une séquence nucléique définie en a) ou b);
- e) la séquence complémentaire ou la séquence d'ARN correspondant à une séquence telle que définie en a), b), c) ou d).
- 2. Acide nucléique purifié ou isolé selon la revendication 1, caractérisé en ce qu'il comprend ou est constitué d'une séquence choisie parmi SEQ ID N° 1 et SEQ ID N° 4, la séquence complémentaire ou la séquence d'ARN correspondant à une de ces séquences.
- 3. Acide nucléique purifié ou isolé caractérisé en ce qu'il code pour un polypeptide possédant un fragment continu d'au moins 200 acides aminés d'une protéine choisie parmi SEQ ID N° 2 et SEQ ID N° 5.

4. Polypeptide isolé caractérisé en ce qu'il comprend un polypeptide choisi parmi :

- a) un polypeptide correspondant à SEQ ID N° 2 ou SEQ ID N° 5;
- b) un polypeptide variant d'un polypeptide de séquence définie en
 a);
- c) un polypeptide homologue à un polypeptide défini en a) ou b), comportant au moins 80 % d'homologie avec ledit polypeptide de a);

- d) un fragment d'au moins 15 acides aminés consécutifs d'un polypeptide défini en a), b) ou c);
- e) un fragment biologiquement actif d'un polypeptide défini en a), b) ou c).

5. Polypeptide selon la revendication 4, caractérisé en ce qu'il est constitué d'une séquence choisie parmi SEQ ID N° 2, SEQ ID N° 5 ou une séquence possédant au moins 80 % d'homologie avec l'une de ces séquences après alignement optimal.

10

- 6. Vecteur de clonage et/ou d'expression comprenant un acide nucléique selon l'une des revendications 1 à 3 ou codant pour un polypeptide selon l'une des revendications 4 et 5.
- 7. Cellule hôte caractérisée en ce qu'elle est transformée par un vecteur selon la revendication 6.
 - 8. Animal, excepté l'homme, caractérisé en ce qu'il comprend une cellule selon la revendication 7.

20

- 9. Utilisation d'une séquence d'acide nucléique selon l'une des revendications 1 à 3 en tant que sonde ou amorce, pour la détection et/ou l'amplification de séquences d'acide nucléique.
- 10. Utilisation in vitro d'un acide nucléique selon l'une des revendications 1
 à 3 comme oligonucléotide sens ou antisens.
 - 11. Utilisation d'une séquence d'acide nucléique selon l'une des revendications 1 à 3 pour la production d'un polypeptide recombinant.

30

12. Procédé d'obtention d'un polypeptide recombinant caractérisé en ce que l'on cultive une cellule selon la revendication 7 dans des conditions permettant l'expression dudit polypeptide et que l'on récupère ledit polypeptide recombinant.

- 13. Polypeptide recombinant caractérisé en ce qu'il est obtenu par un procédé selon la revendication 12.
- 5 14. Anticorps monoclonal ou polyclonal caractérisé en ce qu'il lie sélectivement un polypeptide selon l'une des revendications 4, 5 ou 13.
 - 15. Procédé de détection d'un polypeptide selon l'une des revendications 4, 5 ou 13, caractérisé en ce qu'il comprend les étapes suivantes :
- a) mise en contact d'un échantillon biologique avec un anticorps selon la revendication 14;
 - b) mise en évidence du complexe antigène-anticorps formé.
- 16. Trousse de réactifs pour la mise en œuvre d'un procédé selon la revendication 15, caractérisée en ce qu'elle comprend :
 - a) un anticorps monoclonal ou polyclonal selon la revendication
 14;
 - b) éventuellement des réactifs pour la constitution d'un milieu propice à la réaction immunologique;
 - c) les réactifs permettant la détection du complexe antigèneanticorps produit lors de la réaction immunologique.

- 17. Méthode de diagnostic et/ou d'évaluation pronostique d'une maladie inflammatoire et/ou immune ou d'un cancer caractérisée en ce qu'on détermine à partir d'un prélèvement biologique d'un patient la présence d'au moins une mutation et/ou une altération d'expression du gène correspondant à SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 4 ou SEQ ID N° 6 par l'analyse de tout ou partie d'une séquence nucléique correspondant audit gène.
- 30 18. Puce à ADN caractérisée en ce qu'elle contient une séquence nucléique selon l'une des revendications 1 à 3.

- 19. Puce à protéines caractérisée en ce qu'elle contient un polypeptide selon l'une des revendications 4, 5 ou 13, ou un anticorps selon la revendication 14.
- 20. Procédé de détection et/ou de dosage d'un acide nucléique selon l'une des revendications 1 à 3 dans un échantillon biologique, caractérisé en ce qu'il comprend les étapes suivantes :

- a) mise en contact d'un polynucléotide selon l'une des revendications 1 à 3, marqué;
- b) détection et/ou dosage de l'hybride formé entre ledit polynucléotide et l'acide nucléique de l'échantillon biologique.
- 21. Procédé de détection et/ou de dosage d'un acide nucléique selon l'une des revendications 1 à 3 dans un échantillon biologique, caractérisé en ce qu'il comprend une étape d'amplification des acides nucléiques dudit échantillon biologique à l'aide d'amorces choisies parmi les acides nucléiques selon l'une des revendications 1 à 2.
- 22. Procédé de criblage de composés capables de se fixer à un polypeptide de séquence SEQ ID N° 2 ou SEQ ID N° 5, caractérisé en ce qu'il comprend les étapes de mise en contact d'un polypeptide selon l'une des revendications 4, 5 ou 13, d'une cellule selon la revendication 7, ou d'un mammifère selon la revendication 8, avec un composé candidat et de détection de la formation d'un complexe entre ledit composé candidat et ledit polypeptide.
- 23. Procédé de criblage de composés capables d'interagir in vitro ou in vivo avec un acide nucléique selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend les étapes de mise en contact d'un acide nucléique selon l'une des revendications 1 à 3, d'une cellule selon la revendication 7, ou d'un mammifère selon la revendication 8, avec un composé candidat et de détection de la formation d'un complexe entre ledit composé candidat et ledit acide nucléique
 - 24. Composé caractérisé en ce qu'il est choisi parmi
 - a) un acide nucléique selon l'une des revendications 1 à 3;

- b) un polypeptide selon l'une des revendications 4, 5 ou 13;
- c) un vecteur selon la revendication 6;
- d) une cellule selon la revendication 7; et
- e) un anticorps selon la revendication 14;
- 5 à titre de médicament.
- 25. Composé selon la revendication 24, pour la prévention et/ou le traitement d'une maladie inflammatoire et/ou immune ou d'un cancer associé à la présence d'au moins une mutation du gène correspondant à SEQ ID N° 1 ou SEQ 10 N° 4.

<u>FIG.2</u>

LISTE DE SÉQUENCES

<11	በ> ፑ	onda	tion	Jea	n Na	11665	t -	CEPH								
										inf	lamm	atoi	res	de		
			esti							1111	Lanun	acor	103	uc		
<13	0> D	1870	2													
<16	0> 9	0														
<17	0> P	aten	tIn	Ver.	2.1											
	0> 1 1> 4															
	2> A 3> H		sapi	ens												
<22																
	1> C 2> ((312	3)												
	0> 1	220	242	244	aat	ata	200			tgc	.					40
Met 1	Glu	Lys	Arg	Arg 5	Gly	Leu	Thr	Ile	Glu 10	Cys	Trp	Gly	Pro	Gln 15	Ser	48
	tca	ctq	acc		ttc	tcc	tcc	сса		tgt	gaa	ata	tac		cad	96
Pro	Ser	Leu	Thr 20	Leu	Phe	Ser	Ser	Pro 25	Gly	Cys	Glu	Met	Cys 30	Ser	Gln	,,,
gag	gct	ttt	cag	gca	cag	agg	agc	cag	ctg	gtc	gag	ctg	ctg	gtc	tca	144
Glu	Ala	Phe 35	Gln	Ala	Gln	Arg	Ser 40	Gln	Leu	Val	Glu	Leu 45	Leu	Val	Ser	
ggg	tcc	ctg	gaa	ggc	ttc	gag	agt	gtc	ctg	gac Asp	tgg	ctg	ctg	tcc	tgg	192
GLY	50	ьец	GIU	GIÀ	rne	55	ser	vaı	ьeu	Asp	60	Leu	Leu	Ser	Trp	
gag Glu	gtc Val	ctc Leu	tcc Ser	tgg Trp	gag Glu	gac Asp	tac Tvr	gag Glu	ggc Glv	ttc Phe	cac His	ctc Leu	ctg	ggc	cag Gln	240
65				•	70	•	1		2	75				017	80	
cct Pro	ctc Leu	tcc Ser	cac His	Leu	gcc Ala	agg Arg	cgc Arg	ctt Leu	ctg Leu	gac Asp	acc Thr	gtc Val	tgg Trp	aat Asn	aag Lys	288
				85					90					95		
ggt Gly	act Thr	tgg Trp	Ala	tgt Cys	cag Gln	aag Lys	ctc Leu	Ile	gcg Ala	gct Ala	gcc Ala	caa Gln	Glu	gcc Ala	cag Gln	336
acc	asc.	200	100	taa	666	224	~+~	105		•	4		110			
Ala	Asp	Ser 115	Gln	Ser	Pro	Lys	Leu 120	His	Gly	tgc Cys	Trp	Asp 125	Pro	Cac His	tcg Ser	384
ctc	cac		acc	cga	gac	cta		agt	cac	cgg	cca		att	ata	200	432
Leu	His 130	Pro	Ála	Arg	Asp	Leu 135	Gln	Ser	His	Arg	Pro	Ala	Ile	Val	Arg	432
agg	ctc	cac	agc	cat	gtg	gag	aac	atg	ctg	gac	ctq	gca	tgq	gaq	cga	480
Arg	Leu	His	Ser	His	Val	Glu	Asn	Met	Leu	Āsp	Leu	Āla	Trp	Ğlú	Arg	

ggt tte gte age cag tat gaa tgt gat gaa ate agg ttg ceg ate tte class ace cag tat gaa tgt gat gaa ate agg ttg ceg ate tte class ace cag tat gaa agg ctg ctt gat ctt gcc ace gtg aaa ace ccg tcc cag agg gca aga agg ctg ctt gat ctt gcc ace gtg aaa ace ace ctc all a Ana Ana Ana Ana Ana Ana Ana Ana Ana A				•
aca ccg tcc cag agg gca aga agg ctg ctt gat ctt gca acg gtg aaa as and all a hard hard hard hard hard hard hard ha	145	150	155	160
1800 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 185 1900 195 195 195 195 195 195 195 195 195 195	orly the var set GI	n Tyr Giu Cys	Asp Glu Ile Arg Leu	Pro Ile Phe
gtc cca ttg gcc ctg cct ttg gaa gct gcc aca tgc aag aag tat atg 220 gcc aag ctg agg acc acg gtg tct gct gct gcd gag gac ata tac aca gag aat 240 gcc aag ctg agg acc acg gtg tct gct gct gcd gag gac ata tac aca gag aat 240 gcc aag ctg agg acc acg gtg tct gct gcd gag gac ata tac aca gag aat 240 gcc aag ctg agg acc acg gtg tct gct gcd gag gac ata tac aca gag aat 240 tat gat gag gca gag acg ctc tgc ctg gag gac ata tac aca gag aat 250 gtc ctg gag gtc tgg gca gat gtg ggc atg gct gga tcc ccg cag aag 250 gtc ctg gag gtc tgg gca gat gtg ggc atg gct gga tcc ccg cag aag 361 Val Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Ser Pro Gln Lys 260 gcc ag cca cc ctg ggc ctg gag gag ctc ttc agc acc cct ggc cac 362 Ser Pro Ala Thr Leu Gly Leu Glu Glu Leu Phe Ser Thr Pro Gly His 280 ctc aat gac gat gcg gac act gtg ctg gtg gtg gag gag gag gag gag gag gag g	180 180	g Ala Arg Arg	Leu Leu Asp Leu Ala 185	Thr Val Lys 190
gcc aag ctg agg acc acg gtg tct gct gag gag gac ata tac aca gag aat 768 Leu Glu Ala Ala Thr Cys Lys Lys Tyr Met 225 gtc aag ctg agg acc acg gtg tct gct cag tct cgc tc ctc agt acc 720 Lat gat ga ga ga acg ctc tgc ctg gag gac ata tac aca gag aat 768 Tyr Asp Gly Ala Glu Thr Leu Cys Leu Glu Asp 11e Tyr Thr Glu Asn 255 gtc ctg gag gtc tgg gca gat gtg ggc atg gt gtg ggc atg gcc ccg cag aag 316 Val Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Ser Pro Gln Lys 260 agc cca gcc acc ctg ggc ctg gag gag ctc ttc agc acc cct ggc acc 327 agc cca gcc acc ctg ggc ctg gag gag ctc ttc agc acc cct ggc acc 327 agc caa gac gat gcg gac act gtg ctg gtg gtg gtg gag gcg ggc agt 275 ctc aat gac gat gcg gac act gtg ctg gtg gtg gtg gag gcg ggc agt 295 ctc aat gac gat gcg gac act gtg ctg gtg gtg gtg gag gcg gcg agt 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg leu Val Val Gly Glu Ala Gly Ser 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg leu Leu Trp Ala Ala Gly 310 agg aag acg acg ctc ctg cag cgg ctg cac ttg gtg gtg gg gg gcg gc gca ggg ggc agt 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg tc gtg gtg gtg gc gc gca ggg ggc agt 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ts gtg gtg gcd gcd gca gcg gcg gc agt 310 ggc aag agc acg ctc ctg cag cgg ctg cac ttg tc tc cag ttg gcg agg gcg gca gcly lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 310 aag cca gac ttc cag gaa ttt ctc ttt gtc ttc cca ttc agc tgc cg agg Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 330 ctg cag tgc atg gc aca acc acc ctc tct gtg cgg act cta ctc ttt gag Gln 335 ctg cag tgc atg gc aca cca cct tct gtg cgg act cta ctc ttt gat gcc acc tgc tgc ctg acc tgc ctg ta acc ttt gat gcc ta ctc tct gac cac ctc ta acc ttc ttt gat gcc ta ctc tct gac cac ctc ta acc ttt gat gcc ta ctc ttt gat gcc ta cac ttc ta acc ttt gat gcc ta cac ttc ta acc ttc ttt gat gcc ta cac ctc ta acc ttt gat gcc ta cac ctc ta acc ttt acc ttt gat gcc ta acc ctc ta acc ttt acc ttt acc ttt gat gcc ta acc ttt	195	200	Leu GIn His Val Gln 205	Glu Leu Pro
tat gat gga gca gag acg ctc tgc ctg gag gac ata tac aca gaa aag acg ctc tgc ctg gag gcd ata tac aca gaa aag acg ctc tgc ctg gag gac ata tac aca gaa aag acg ctc tgc ctg gag gac ata tac aca gaa aag acg ctc tgc ctg gag gcd ata tac aca gaa aag acg ctc tgc ctg gag gcd ata tac aca gaa aag acg ctc tgc ctg gag gcd ata tac aca gaa aag acg ctc ctg gac gat gtg ggc atg gcd gga tcc ccg cag aag acg cta Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Ser Pro Gln Lys 260 agc cca gcc acc ctg ggc ctg gag gag ctc ttc agc acc cct ggc cac Ser Pro Ala Thr Leu Gly Leu Glu Glu Glu Leu Phe Ser Thr Pro Gly His 275 ctc aat gac gat gcg gac act gtg gtg gtg ggt gag gcg ggc agt Leu Asn Asp Asp Ala Asp Thr Val Leu Val Val Gly Glu Ala Gly Ser 290 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg gct gca ggg ggc agt Leu Asn Asp Asp Ala Asp Thr Val Leu His Leu Leu Trp Ala Ala Gly 320 ggc aag agc att ccag gaa ttt ctc ttt gtc ttc cca ttc agc tgc gcg cag Gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 320 caa gac ttc cag gaa ttt ctc ttt gtc ttc cca ttc agc tgc gcg cag Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 325 ctg cag tgc atg gcc aaa cca ctc tct gtg cgg act cta ctc ttt gag Cgc act gca gcg ctg cag tgc agt gca gcg gcd gcd add Asp Thr Leu Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 340 acc tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc ttt glo Glu Asp The Phe Gln Leu Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 ttc aag ttc agg ttc acg gat cgt gac cgc cac tgc tcc ccg acc gac leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 375 ttc aag ttc agg ttc acg gat cgt gac cgc cac tcc tcc ccg acc gac leu Asp His Cys Pro Thr Asp 385	ar tro per vra pe	u Pro Leu Giu	Ala Ala Thr Cys Lys	aag tat atg 672 Lys Tyr Met
gcc cca gcc acc ctg gag gcc ttg gag gag gag ctc ttc agc acc cct ggc acg gag acg acg acg acg ctc ccg gag acg ctc atg gag gag act gag gag gag gag ccc act gag gag gag gag gag gag gag gag gag ga	225	230	Ala Gln Ser Arg Phe 235	Leu Ser Thr 240
agc cca gc acc ctg ggc ctg gag gag ctc ttc agc acc ctt ggc cac leu Asn Asp Asp Ala Asp Thr Leu Gly Leu Glu Leu Phe Ser Thr Pro Gly His 275 ctc aat gac gat gcg gac act gtc ctg gag gtg gtg gtg ggt gag gcg ggc agt leu Asn Asp Asp Ala Asp Thr Val Leu Val Gly Gly Glu Ala Gly Ser 290 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg ggt ggc gcg ggc agt gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 320 caa gac ttc cag gaa ttt ctc ttt gtc ttc cca ttc agc tgc cgg cag gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 335 ctg cag tgc atg gcc aaa cca ctc tct gtg cgg act cta ctc ttt gag leu Gln Asp Phe Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 345 cac tgc tgt tgg cct gat gtt ggt caa gac gac atc cta ctc ttt gac leu Gln Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu 355 ctt gac cac cct gac cgt gtc ctg tta acc ttt gat ggt ggt ggt gcg ggc ggc agt loose leu Asp His Pro Asp Arg Val Leu Thr Phe Asp Glu Asp Gly Phe Asp Glu 375 ctt gac cac cct gac tgt acg gct cac gat gtc ctg tta acc ttt gac ggc cac gac leu Asp His Pro Asp Arg Glu Asp Glu Arg His Cys Ser Pro Thr Asp 390	245	int Leu Cys	Leu Glu Asp Ile Tyr 250	Thr Glu Asn 255
ctc aat gac gat gcg gac act ctg cag cgg ctg cac ttg ctg tgg ggt ggt ggd ggc ggc agt 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg gtg ggt ggd ggc ggc agt 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg ggt ggd ggc ggc agg ggc ggc agt 295 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg gct gca ggg ggc ggc ggc ggc ggc ggc ggc ggc	THE BOW OIL VAI TIE	HIA ASP VAL	Gly Met Ala Gly Ser	Pro Gln Lys
ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg gct gca ggg 960 Gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 320 caa gac ttc cag gaa ttt ctc ttt gtc ttc cca ttc agc tgc cgg cag Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 335 ctg cag tgc atg gcc aaa cca ctc tct gtg cgg act cta ctc ttt gag Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 345 cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 ttc aag ttc agg ttc acg gat cgt gac cgc cac tgc tct ctg tga cgc cac tgc tcc ccg acc gac Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 390	275	280	GIu Leu Phe Ser Thr 285	Pro Gly His
caa gac ttc cag gaa ttt ctc ttt gtc ttc cca ttc agc tgc cgg cag loos Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 335 ctg cag tgc atg gcc aaa cca ctc tct gtg cgg act cta ctc ttt gag leu Phe Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 340 cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc leu Phe Gln S55 ctg cac cct gat gtt ggt caa gaa gac atc ttc cag tta ctc lillou asp lile Phe Gln Leu Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu Arg Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Cys Ser Pro Thr Asp 390 caa gac ttc cag tgc cct gat gtt ggt caa cgc cac tgc tcc ccg acc gac lillou asp lile Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 1200	290	295	Led Val Val Gly Glu . 300	Ala Gly Ser
ctg cag tgc atg gcc aaa cca ctc tct gtg cgg act cta ctc ttt gag loss atg cag tgc atg Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 340 cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc live leu Ser Val Arg Thr Leu Leu Phe Glu 350 cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc live leu Ser Val Arg Thr Leu Leu Phe Glu 350 cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc live leu 355 ctt gac cac cct gac cgt gtc ctg tta acc ttt gat ggc ttt gac gag libe leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 ttc aag ttc agg ttc acg gat cgt gaa cgc cac tgc tcc ccg acc gac libe leu Ser Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 380	305	310	Leu His Leu Leu Trp 2 315	Ala Ala Gly 320
cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu 355 ctt gac cac cct gac cgt gtc ctg tta acc ttt gat ggc ttt gac gag Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 ttc aag ttc agg ttc acg gat cgt gaa cgc cac tgc tcc ccg acc gac Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 385	325	rne hed Phe	330 330	Cys Arg Gln 335
ctt gac cac cct gac cgt gtc ctg tta acc ttt gat ggc ttt gac gag Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 375 380 ttc aag ttc agg ttc acg gat cgt gaa cgc cac tgc tcc ccg acc gac Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 385	340	bys Fro Leu S	er Val Arg Thr Leu I 445	seu Phe Glu 850
370 375 380 ttc aag ttc agg ttc acg gat cgt gaa cgc cac tgc tcc ccg acc gac 1200 Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 385 390	355	360	In Glu Asp Ile Phe G 365	ln Leu Leu
385 390 305 Ser Pro Thr Asp	370	375	eu Thr Phe Asp Gly P 380	he Asp Glu
	205	THE MAP ALG G	lu Arg His Cys Ser P	ro Thr Asp

ccc Pro	acc Thr	tct Ser	gtc Val	cag Gln 405	Thr	ctg Leu	ctc Leu	ttc Phe	aac Asn 410	ctt Leu	ctg Leu	cag Gln	ggc Gly	aac Asn 415	ctg Leu	1248
ctg Leu	aag Lys	aat Asn	gcc Ala 420	cgc Arg	aag Lys	gtg Val	gtg Val	acc Thr 425	agc Ser	cgt Arg	ccg Pro	gcc Ala	gct Ala 430	gtg Val	tcg Ser	1296
gcg Ala	ttc Phe	ctc Leu 435	agg Arg	aag Lys	tac Tyr	atc Ile	cgc Arg 440	acc Thr	gag Glu	ttc Phe	aac Asn	ctc Leu 445	aag Lys	ggc	ttc Phe	1344
tct Ser	gaa Glu 450	cag Gln	ggc Gly	atc Ile	gag Glu	ctg Leu 455	tac Tyr	ctg Leu	agg Arg	aag Lys	cgt Arg 460	cat His	cat His	gag Glu	ccc Pro	1392
ggg Gly 465	gtg Val	gcg Ala	gac Asp	cgc Arg	ctc Leu 470	atc Ile	cgc Arg	ctg Leu	ctc Leu	caa Gln 475	gag Glu	acc Thr	tca Ser	gcc Ala	ctg Leu 480	1440
cac His	ggt Gly	ttg Leu	tgc Cys	cac His 485	ctg Leu	cct Pro	gtc Val	ttc Phe	tca Ser 490	tgg Trp	atg Met	gtg Val	tcc Ser	aaa Lys 495	tgc Cys	1488
cac His	cag Gln	gaa Glu	ctg Leu 500	ttg Leu	ctg Leu	cag Gln	gag Glu	ggg Gly 505	Gly ggg	tcc Ser	cca Pro	aag Lys	acc Thr 510	act Thr	aca Thr	1536
gat Asp	atg Met	tac Tyr 515	ctg Leu	ctg Leu	att Ile	ctg Leu	cag Gln 520	cat His	ttt Phe	ctg Leu	ctg Leu	cat His 525	gcc Ala	acc Thr	ccc Pro	1584
cca Pro	gac Asp 530	tca Ser	gct Ala	tcc Ser	caa Gln	ggt Gly 535	ctg Leu	gga Gly	ccc Pro	agt Ser	ctt Leu 540	ctt Leu	cgg Arg	ggc Gly	cgc Arg	1632
ctc Leu 545	ccc Pro	acc Thr	ctc Leu	ctg Leu	cac His 550	ctg Leu	ggc Gly	aga Arg	ctg Leu	gct Ala 555	ctg Leu	tgg Trp	ggc Gly	ctg Leu	ggc Gly 560	1680
atg Met	tgc Cys	tgc Cys	tac Tyr	gtg Val 565	ttc Phe	tca Ser	gcc Ala	cag Gln	cag Gln 570	ctc Leu	cag Gln	gca Ala	gca Ala	cag Gln 575	gtc Val	1728
agc Ser	cct Pro	gat Asp	gac Asp 580	att Ile	tct Ser	ctt Leu	ggc Gly	ttc Phe 585	ctg Leu	gtg Val	cgt Arg	gcc Ala	aaa Lys 590	ggt Gly	gtc Val	1776
gtg Val	cca Pro	ggg Gly 595	agt Ser	acg Thr	gcg Ala	ccc Pro	ctg Leu 600	gaa Glu	ttc Phe	ctt Leu	cac His	atc Ile 605	act Thr	ttc Phe	cag Gln	1824
tgc Cys	ttc Phe 610	ttt Phe	gcc Ala	gcg Ala	ttc Phe	tac Tyr 615	ctg Leu	gca Ala	ctc Leu	agt Ser	gct Ala 620	gat Asp	gtg Val	cca Pro	cca Pro	1872
gct Ala 625	ttg Leu	ctc Leu	aga Arg	cac His	ctc Leu 630	ttc Phe	aat Asn	tgt Cys	ggc Gly	agg Arg 635	cca Pro	ggc Gly	aac Asn	tca Ser	cca Pro 640	1920

					ccc Pro										aag Lys	1968
					gct Ala											2016
					ttc Phe											2064
ggc Gly	ctg Leu 690	ctg Leu	gct Ala	gag Glu	tgc Cys	cag Gln 695	aca Thr	tct Ser	gag Glu	aag Lys	gcc Ala 700	ctg Leu	ctc Leu	cgg Arg	cgc Arg	2112
					tgg Trp 710											2160
cac His	tcc Ser	atc Ile	ccg Pro	cca Pro 725	gct Ala	gca Ala	ccg Pro	ggt Gly	gag Glu 730	gcc Ala	aag Lys	agc Ser	gtg Val	cat His 735	gcc Ala	2208
atg Met	ccc Pro	Gly	ttc Phe 740	atc Ile	tgg Trp	ctc Leu	atc Ile	cgg Arg 745	agc Ser	ctg Leu	tac Tyr	gag Glu	atg Met 750	cag Gln	gag Glu	2256
gag Glu	cgg Arg	ctg Leu 755	gct Ala	cgg Arg	aag Lys	gct Ala	gca Ala 760	cgt Arg	ggc Gly	ctg Leu	aat Asn	gtt Val 765	Gly ggg	cac His	ctc Leu	2304
aag Lys	ttg Leu 770	aca Thr	ttt Phe	tgc Cys	agt Ser	gtg Val 775	ggc Gly	ccc Pro	act Thr	gag Glu	tgt Cys 780	gct Ala	gcc Ala	ctg Leu	gcc Ala	2352
ttt Phe 785	gtg Val	ctg Leu	cag Gln	cac His	ctt Leu 790	cgg Arg	cgg Arg	ccc Pro	gtg Val	gcc Ala 795	ctg Leu	cag Gln	ctg Leu	gac Asp	tac Tyr 800	2400
Asn	Ser	Val	Gly	Asp 805	att Ile	Gly	Val	Glu	Gln 810	Leu	Leu	Pro	Cys	Leu 815	Gly	2448
Val	Cys	Lys	Ala 820	Leu	tat Tyr	Leu	Arg	Asp 825	Asn	Asn	Ile	Ser	Asp 830	Arg	Gly	2496
Ile	Суѕ	Lys 835	Leu	Ile	gaa Glu	Cys	Ala 840	Leu	His	Суѕ	Glu	Gln 845	Leu	Gln	Lys	2544
tta Leu	gct Ala 850	cta Leu	ttc Phe	aac Asn	aac Asn	aaa Lys 855	ttg Leu	act Thr	gac Asp	ggc Gly	tgt Cys 860	gca Ala	cac His	tcc Ser	atg Met	2592
gct Ala 865	aag Lys	ctc Leu	ctt Leu	gca Ala	tgc Cys 870	agg Arg	cag Gln	aac Asn	ttc Phe	ttg Leu 875	gca Ala	ttg Leu	agg Arg	ctg Leu	880 Gly Ggg	2640
aat	aac	tac	atc	act	gcc	gcg	gga	gcc	caa	gtg	ctg	gcc	gag	ggg	ctc	2688

Asn Asn Tyr Ile Thr Ala Ala Gly Ala Gln Val Leu Ala Glu Gly Leu 885 890 895
cga ggc aac acc tcc ttg cag ttc ctg gga ttc tgg ggc aac aga gtg 2736 Arg Gly Asn Thr Ser Leu Gln Phe Leu Gly Phe Trp Gly Asn Arg Val 900 905 910
ggt gac gag ggg gcc cag gcc ctg gct gaa gcc ttg ggt gat cac cag 2784 Gly Asp Glu Gly Ala Gln Ala Leu Ala Glu Ala Leu Gly Asp His Gln 915 920 925
agc ttg agg tgg ctc agc ctg gtg ggg aac aac att ggc agt gtg ggt 2832 Ser Leu Arg Trp Leu Ser Leu Val Gly Asn Asn Ile Gly Ser Val Gly 930 935 940
gcc caa gcc ttg gca ctg atg ctg gca aag aac gtc atg cta gaa gaa 2880 Ala Gln Ala Leu Ala Leu Met Leu Ala Lys Asn Val Met Leu Glu Glu 945 950 955 960
ctc tgc ctg gag gag aac cat ctc cag gat gaa ggt gta tgt tct ctc 2928 Leu Cys Leu Glu Glu Asn His Leu Gln Asp Glu Gly Val Cys Ser Leu 965 970 975
gca gaa gga ctg aag aaa aat tca agt ttg aaa atc ctg aag ttg tcc 2976 Ala Glu Gly Leu Lys Lys Asn Ser Ser Leu Lys Ile Leu Lys Leu Ser 980 985 990
aat aac tgc atc acc tac cta ggg gca gaa gcc ctc ctg cag gcc ctt 3024 Asn Asn Cys Ile Thr Tyr Leu Gly Ala Glu Ala Leu Leu Gln Ala Leu 995 1000 1005
gaa agg aat gac acc atc ctg gaa gtc tgg ctc cga ggg aac act ttc 3072 Glu Arg Asn Asp Thr Ile Leu Glu Val Trp Leu Arg Gly Asn Thr Phe 1010 1015 1020
tct cta gag gag gtt gac aag ctc ggc tgc agg gac acc aga ctc ttg 3120 Ser Leu Glu Glu Val Asp Lys Leu Gly Cys Arg Asp Thr Arg Leu Leu 1025 1030 1035 1040
ctt tgaagtctcc gggaggatgt tcgtctcagt ttgtttgtga caggctgtga 3173 Leu
gtttgggccc cagaggctgg gtgacatgtg ttggcagcct cttcaaaatg agccctgtcc 3233
tgcctaaggc tgaacttgtt ttctgggaac accataggtc acctttattc tggcagagga 3293
gggagcatca gtgccctcca ggatagactt ttcccaagcc tacttttgcc attgacttct 3353
teceaagatt caateecagg atgtacaagg acageeeeee tecatagtat gggaetggee 3413
tetgetgate eteccagget teegtgtggg teagtgggge ceatggatgt gettgttaac 3473
tgagtgcctt ttggtggaga ggcccggccc acataattca ggaagcagct ttccccatgt 3533
ctegacteat ceatecagge catteceegt etetggttee teceeteete etggacteet 3593
gcacacgete etteetetga ggetgaaatt cagaatatta gtgaceteag etttgatatt 3653
tcacttacag caccccaac cctggcaccc agggtgggaa gggctacacc ttagcctgcc 3713 ctcctttccg gtgtttaaga catttttgga aggggacacg tgacagccgt ttgttcccca 3773
- Jaganay agacage acgeececa 3//3

agacattcta ggtttgcaag aaaaatatga ccacactcca gctgggatca catgtggact 3833 tttatttcca gtgaaatcag ttactcttca gttaagcctt tggaaacagc tcgactttaa 3893 aaagctccaa atgcagcttt aaaaaattaa tctgggccag aatttcaaac ggcctcacta 3953 ggcttctggt tgatgcctgt gaactgaact ctgacaacag acttctgaaa tagacccaca 4013 agaggcagtt ccatttcatt tgtgccagaa tgctttagga tgtacagtta tggattgaaa 4073 gtttacagga aaaaaaatta ggccgttcct tcaaagcaaa tgcttcctg gattattcaa 4133 aatgatgtat gttgaagcct ttgtaaattg tcagatgctg tgcaaatgtt attatttaa 4193 acattatgat gtgtgaaaac tggttaatat ttataggtca ctttgttta ctgtcttaag 4253 tttatactct tatagacaac atggccgtga actttatgct gtaaataatc agaggggaat 4313 aaactgttg

<210> 2

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Lys Arg Arg Gly Leu Thr Ile Glu Cys Trp Gly Pro Gln Ser 1 5 10 15

Pro Ser Leu Thr Leu Phe Ser Ser Pro Gly Cys Glu Met Cys Ser Gln 20 25 30

Glu Ala Phe Gln Ala Gln Arg Ser Gln Leu Val Glu Leu Leu Val Ser 35 40 45

Gly Ser Leu Glu Gly Phe Glu Ser Val Leu Asp Trp Leu Leu Ser Trp 50 55 60

Glu Val Leu Ser Trp Glu Asp Tyr Glu Gly Phe His Leu Leu Gly Gln 65 70 75 80

Pro Leu Ser His Leu Ala Arg Arg Leu Leu Asp Thr Val Trp Asn Lys 85 90 95

Gly Thr Trp Ala Cys Gln Lys Leu Ile Ala Ala Ala Gln Glu Ala Gln 100 105 110

Ala Asp Ser Gln Ser Pro Lys Leu His Gly Cys Trp Asp Pro His Ser 115 120 125

Leu His Pro Ala Arg Asp Leu Gln Ser His Arg Pro Ala Ile Val Arg 130 135 140

Arg Leu His Ser His Val Glu Asn Met Leu Asp Leu Ala Trp Glu Arg 145 150 155 160

Gly Phe Val Ser Gln Tyr Glu Cys Asp Glu Ile Arg Leu Pro Ile Phe 165 170 175

- Thr Pro Ser Gln Arg Ala Arg Arg Leu Leu Asp Leu Ala Thr Val Lys 180 185 190
- Ala Asn Gly Leu Ala Ala Phe Leu Leu Gln His Val Gln Glu Leu Pro 195 200 205
- Val Pro Leu Ala Leu Pro Leu Glu Ala Ala Thr Cys Lys Lys Tyr Met 210 220
- Ala Lys Leu Arg Thr Thr Val Ser Ala Gln Ser Arg Phe Leu Ser Thr 225 230 235 240
- Tyr Asp Gly Ala Glu Thr Leu Cys Leu Glu Asp Ile Tyr Thr Glu Asn 245 250 255
- Val Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Ser Pro Gln Lys 260 265 270
- Ser Pro Ala Thr Leu Gly Leu Glu Glu Leu Phe Ser Thr Pro Gly His 275 280 285
- Leu Asn Asp Asp Ala Asp Thr Val Leu Val Val Gly Glu Ala Gly Ser 290 295 300
- Gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 305 310 315 320
- Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 325 330 335
- Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 340 345 350
- His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu 355 360 365
- Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 375 380
- Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 385 390 395 400
- Pro Thr Ser Val Gln Thr Leu Leu Phe Asn Leu Leu Gln Gly Asn Leu 405 410 415
- Leu Lys Asn Ala Arg Lys Val Val Thr Ser Arg Pro Ala Ala Val Ser 420 425 430
- Ala Phe Leu Arg Lys Tyr Ile Arg Thr Glu Phe Asn Leu Lys Gly Phe
 435 440 445
- Ser Glu Gln Gly Ile Glu Leu Tyr Leu Arg Lys Arg His His Glu Pro 450 455 460
- Gly Val Ala Asp Arg Leu Ile Arg Leu Leu Gln Glu Thr Ser Ala Leu 465 470 475 480
- His Gly Leu Cys His Leu Pro Val Phe Ser Trp Met Val Ser Lys Cys 485 490 495
- His Gln Glu Leu Leu Gln Glu Gly Gly Ser Pro Lys Thr Thr Thr

500 505 510

Asp Met Tyr Leu Leu Ile Leu Gln His Phe Leu Leu His Ala Thr Pro 515 520 525

Pro Asp Ser Ala Ser Gln Gly Leu Gly Pro Ser Leu Leu Arg Gly Arg 530 535 540

Leu Pro Thr Leu Leu His Leu Gly Arg Leu Ala Leu Trp Gly Leu Gly 545 550 555 560

Met Cys Cys Tyr Val Phe Ser Ala Gln Gln Leu Gln Ala Ala Gln Val 565 570 575

Ser Pro Asp Asp Ile Ser Leu Gly Phe Leu Val Arg Ala Lys Gly Val 580 585 590

Val Pro Gly Ser Thr Ala Pro Leu Glu Phe Leu His Ile Thr Phe Gln 595 600 605

Cys Phe Phe Ala Ala Phe Tyr Leu Ala Leu Ser Ala Asp Val Pro Pro 610 615 620

Ala Leu Leu Arg His Leu Phe Asn Cys Gly Arg Pro Gly Asn Ser Pro 625 630 635 640

Met Ala Arg Leu Leu Pro Thr Met Cys Ile Gln Ala Ser Glu Gly Lys 645 650 655

Asp Ser Ser Val Ala Ala Leu Leu Gln Lys Ala Glu Pro His Asn Leu 660 665 670

Gln Ile Thr Ala Ala Phe Leu Ala Gly Leu Leu Ser Arg Glu His Trp 675 680 685

Gly Leu Leu Ala Glu Cys Gln Thr Ser Glu Lys Ala Leu Leu Arg Arg 690 695 700

Gln Ala Cys Ala Arg Trp Cys Leu Ala Arg Ser Leu Arg Lys His Phe 705 710 715 720

His Ser Ile Pro Pro Ala Ala Pro Gly Glu Ala Lys Ser Val His Ala 725 730 735

Met Pro Gly Phe Ile Trp Leu Ile Arg Ser Leu Tyr Glu Met Gln Glu 740 745 750

Glu Arg Leu Ala Arg Lys Ala Ala Arg Gly Leu Asn Val Gly His Leu
755 760 765

Lys Leu Thr Phe Cys Ser Val Gly Pro Thr Glu Cys Ala Ala Leu Ala 770 780

Phe Val Leu Gln His Leu Arg Arg Pro Val Ala Leu Gln Leu Asp Tyr 785 790 795 800

Asn Ser Val Gly Asp Ile Gly Val Glu Gln Leu Leu Pro Cys Leu Gly 805 810 815

Val Cys Lys Ala Leu Tyr Leu Arg Asp Asn Asn Ile Ser Asp Arg Gly 820 825 830

Ile Cys Lys Leu Ile Glu Cys Ala Leu His Cys Glu Gln Leu Gln Lys Leu Ala Leu Phe Asn Asn Lys Leu Thr Asp Gly Cys Ala His Ser Met 855 Ala Lys Leu Leu Ala Cys Arg Gln Asn Phe Leu Ala Leu Arg Leu Gly Asn Asn Tyr Ile Thr Ala Ala Gly Ala Gln Val Leu Ala Glu Gly Leu 890 Arg Gly Asn Thr Ser Leu Gln Phe Leu Gly Phe Trp Gly Asn Arg Val Gly Asp Glu Gly Ala Gln Ala Leu Ala Glu Ala Leu Gly Asp His Gln 920 Ser Leu Arg Trp Leu Ser Leu Val Gly Asn Asn Ile Gly Ser Val Gly 935 Ala Gln Ala Leu Ala Leu Met Leu Ala Lys Asn Val Met Leu Glu Glu Leu Cys Leu Glu Glu Asn His Leu Gln Asp Glu Gly Val Cys Ser Leu 970 Ala Glu Gly Leu Lys Lys Asn Ser Ser Leu Lys Ile Leu Lys Leu Ser 985 Asn Asn Cys Ile Thr Tyr Leu Gly Ala Glu Ala Leu Leu Gln Ala Leu 995 1000 Glu Arg Asn Asp Thr Ile Leu Glu Val Trp Leu Arg Gly Asn Thr Phe 1015 Ser Leu Glu Glu Val Asp Lys Leu Gly Cys Arg Asp Thr Arg Leu Leu 1035 Leu

<211> 37443 <212> ADN <213> Homo sapiens <220> <221> exon <222> (63)..(106) <220> <221> exon <222> (3908)..(4406) <220> <221> exon <222> (221> exon <222> (221> exon <222> (221> exon <222> (12307)..(12412)

<210> 3

```
<220>
 <221> exon
 <222> (15010)..(16825)
 <220>
 <221> exon
 <222> (21017)..(21100)
 <220>
 <221> exon
 <222> (21321)..(21404)
 <220>
 <221> exon
 <222> (24355)..(24438)
 <220>
 <221> exon
 <222> (27052)..(27135)
<220>
<221> exon
<222> (27730)..(27813)
<220>
<221> exon
<222> (29917)..(30000)
<220>
<221> exon
<222> (34244)..(34327)
<220>
<221> exon
<222> (36123)..(37443)
<400> 3
tcaccatata actggtattt aaagccacaa gagcaggtgg gctcatctag ggatggagtg 60
atatggagaa gagaagggt ctaaccattg agtgctgggg cccccagtgt taggaaccag 120
ccaagaagac agaaagagtg aaaatcagag agttggggtg tcctggagga aatgaagaaa 180
atgccccaaa gaggaaggag ggaacaaata tgaccaatgc ccctggcaga gcaagcaggc 240
tgagggctga ggattgagca atgggaggtc actggtgaca gtttcactgg agctggatgg 300
ggaactagag ggaatgggag gggatgggag gacttgggga cagcagtaca ggcaacagac 360
aagggggcct gctgtaaagg gagcagataa atgggattgg agccaaatga agaaggggag 420
tgtcaagaga gligctttact tttacaatgg agaattagag tgcattgtgc actggtgggg 480
ggatttgatc tcttagggag agaacagtgt tagggaggga gaatgcagga tagctggggg 540
agggtggggg gcttggcccc agcagagact caggacactt gggaagttga gcttccctgg 600
gettecete eteteetgte tgcaaggggt cagtgggetg agattteage aettaageaa 660
agcatttgct cttggcccca gagaaaccgg gctggctgtg gtctcaggaa ggaaggaggt 720
gtccaggctc aggcctgggc ctgggtttca gggagggccc acgtgggtca ccccttgacc 780
ctctctttca gcaaggaagt gatcctttct ctacatgggc ctcaccttgg ggaggacaat 840
ggtgtctttg aagttgtagt aactgaagta gagatcaaaa ggcaatgcag atagactgac 900
agatttcgcc tgaagagggg aagcccgacc aggtaataaa ggagtaagag gaaggatgtt 960
aaggacaatt ttaggaaaca gataatgagt gaatattttt tctctcttt tcccaattta 1020
aactgaagca ggagaaactg aagctagaca taatgattaa cttcccaagc tggtgagctt 1080
cctgagctgg ttagtgagaa cagcactaag gccaggttct cctccccaga tgtttaagat 1140
gagacaggac aatgcctgct cagagacagg gcctggctga attggccctc aggattctct 1200
ctgctctgag gtttctggaa gaaggccagg gcagaggtgt ggtgatgtag ctgctgggag 1260
gacagagete egagteacgt ggettgggeg ggeeteeest teetggtgte cacagaagee 1320
caacgtcact agetggggtg tgtatggete acacgtagge caggetgeec taggettggt 1380
```

gtgcaaggga	ggggccccta	cttacttgtg	gcctgtcccc	tcgtgaatgt	gtctcatqtc	1440
cccagtgggg	tttttcagtg	agggtcatgg	tctccaggat	gcacaaggct	ttgtgccaga	1500
attgcttgga	attgcctagt	tctggaaggc	tggttggcca	actctggcct	ccggcttttc	1560
ctttgggaat	ttcccttgaa	ggtggggttg	gtagacagat	ccaggctcac	cagtectqtq	1620
ccactgggct	tttggcattc	tgcacaaggc	ctacccgcag	atgccatgcc	toctcccca	1680
gcctaatggg	ctttgatggg	ggaagagggt	ggttcagcct	ctcacgatga	ggaggaaaga	1740
gcaagtgtco	: tcctcggaca	ttctccqqqt	aagaggagca	ggcattgtcc	catacaaat	1800
tgatcctcag	ccttctttca	teettageeg	cgacatgctc	ccaggectag	ggtcagatgg	1860
ggagtgctga	ctctgtttct	gaactatttt	ctggggagaa	tagatcagca	aatttttt	1920
cccaggacct	gggcagggtc	aatggtggg	accactatca	cateettage	taatatttcc	1980
acagctgaga	accactccag	gaccaaacca	agagettatt	ctaccetttt	ttatcctctc	2040
ttcccctatc	ctcggccacc	ccaccctctt	aactecteta	cttagatgtg	aucacaaaaa	2110
ggagaactcc	ttggcctgag	agaactacct	tagatectog	cttccagtg	cctctacaag	2160
ggggtacacc	ctctctccca	agcagccaga	cacacaanta	acctcattoo	ctcactttag	2220
ccatctgacc	agcacagggc	ccctatacc	ccaccaagea	tetaagagat	tagagette	2220
teettttaet	taccttggct	accotatoao	racroataca	gagagagac	cggagctttt	2200
acccaaaaaa	tatttgattc	atgaacattc	cctcaatata	tttataaaaa	cccaccccca	2340
accadactica	addataccad	gacgacteag	acceagegee	cccgcgggg	acaatgetgt	2400
gagagacaca	gggatgccag taaacaacca	tcaggagaag	acceaggere	ccacgiggee	caggcaggga	2460
tecettgagt	atctagget	atccctaatt	tataaaaacc	ccaggecaet	tggcatctgc	2520
atccatacct	gtctgggaat	actttcattt	cttcaaaaaya	agecgaegge	cctctttgtt	2580
agaccccatg	acaccctttc	accetegeee	ant and and	cigcagcagc	ccttgtccac	2640
cctaccaaaa	acaatcgcag	adctyactat	gccgagagac	tttcttggct	gctcagggac	2700
aggtcagtgg	cttgaagctc	ccggagggte	tatassant	aaattcccag	aacgcacagc	2760
aggeeaeega	tgatagcagt	ggcagcagte	rgcgcacggt	ggtttcgagg	gcgtgggagg	2820
acactcagaa	ccctagggca	agigigigig	ggaagtgttg	atgggggaca	aggcaccaga	2880
acyclogyaa	acaacttagt	Luguacegua	atttttcact	tegeetagga	caggaccttt	2940
taaaaaaaa	tctgagtcta	ccccttggag	tagcagtgtg	caaaacacac	agcacgggct	3000
tygggccccc	gtggggaacc	caaatgtaag	agttagagac	atgcattccg	gagtcataca	3060
Lygeregret	tgaaatcctg	actctgcctg	tctagctgtg	acacatcgta	caaatcactt	3120
agcttcttgg	tgcctcagtg	tetteetetg	tagaatgggt	agatcatagg	cactacttca	3180
gagtggctgg	gagggttcag	tgaattcctg	caggagagca	cttagaatgg	cacttggtgt	3240
gtagtttatg	cttaattaat	attagccgtt	actgaaactg	ctgtagcctg	aatccagcca	3300
gcatgaaaga	gccctctca	ccctgcttcg	aagagaatga	attccctgat	tgtttggaag	3360
acceceee	ctctctctgt	ctttttttt	tttttttgag	aaacggtctt	gctctcttgc	3420
ccaggctgga	gcgcaatggt	gccatcttgg	ctcactgcaa	cctctgcctc	ccgggttcaa	3480
grgattetee	tgtctcagcc	tcctgagtag	ctgggattac	aggcgctcgc	caccacgcct	3540
ggctaatttt	tgtattttta	gtagagacag	cgtttcaccg	tgttggccgg	gctggtctag	3600
cgctcctgat	ctcaagtgac	cttgggagat	ctcttgctcc	taatattacc	tcaagccttt	3660
ttaaacgttt	taagccggag	accaagcatg	gatatgggag	ttaggggtct	tgatttaatt	3720
cttggttgct	tcaaactctg	tggaaccttg	aggtgtttct	tgccttctct	gggtctcaat	3780
tttcacatct	atatggtggg	gagcttggat	tgggtaatgt	ctgaggctag	aaccatggcc	3840
aactcgggtt	ctgctggggc	tgacttgccc	tggccttccc	tgaccaccct	gcatctggct	3900
tctggagaag	tccctcactg	accttgttct	cctccccagg	ttgtgaaatg	tgctcgcagg	3960
aggettttea	ggcacagagg	agccagctgg	tcgagctgct	ggtctcaggg	tccctggaag	4020
gcttcgagag	tgtcctggac	tggctgctgt	cctgggaggt	cctctcctgg	gaggactacg	4080
agggcttcca	cctcctgggc	cagcctctct	cccacttggc	caggcgcctt	ctggacaccg	4140
tctggaataa	gggtacttgg	gcctgtcaga	agctcatcgc	ggctgcccaa	gaagcccagg	4200
ccgacagcca	gtcccccaag	ctgcatggct	gctgggaccc	ccactcgctc	cacccagccc	4260
gagacctgca	gagtcaccgg	ccagccattg	tcaggaggct	ccacagccat	gtggagaaca	4320
tgctggacct	ggcatgggag	cggggtttcg	tcagccagta	tgaatgtgat	gaaatcaggt.	4380
tgccgatctt	cacaccgtcc	cagagggtga	ggcactcctg	gtgtgcatca	cagagttete	4440
aggaaagggg	tgcttagtca	ccaagactga	tttgtcctca	tgaagtcagc	ctgtggggta	4500
acttggtccg	tgggatttcc	cctaaaaagg	tagccaggca	ggtaaaattt	gctcttgact	4560
cttggcagga	aacatacaac	tctttctttc	ttcttttctt	ttctttttct	cactctotta	4620
ccctggctag	aatgcagtgg	cacaatcata	gctcactgta	qccttqaatt	cctacactca	4680
agtgatcttc	tggccttaga	gtagctqqqa	ctacqqctqc	totaccacca	tgaacageta	4740
atttttttt	tttcttttag	agatggggtg	ttgctatgtt	gcccagacta	gtctccaget	4800
cctggcttta	agcaatcctc	ccgccttaac	ctcccaaact	attaggatta	caddcatdad	4860
ccactttgcc	tggccaacag	aacacttcto	CCGagaggaa	atatataata	accaddaad+	4000
cagattctqq	agccagaatg	gtgcaggctc	aaggtcaacc	ctatatasta	tcaggaact	4000
ctatggagcc	tctccagcct	cagteteet	tatttcaatt	tecteateta	caaaacaata	4 3 0 U
	, -	, :	Jesesagee	Jocean	cuaaacaacg	2040

:

ttaatagtca aatggtgcct atcctataag gctcttggga ggattcagtg agttaatttg 5100 aqtaatqctt aqqataqtqt ctattaccac tgqctqctat ttattatttc tqttatqaqt 5160 gatactetgt acttgtacae ttttatttet gtetgtttta aattaacage acaacagace 5220 ataacactgc agtatattga atttatttta taattaacat agcatattat aaactaatat 5280 agettaaatg tttatgtagg atttetgaea tgaaattgea ttagateata gatgtteaga 5340 qttqqtatat aacaqcccct gagaatqtag taactcagca gagaccagaa ggtcagagaa 5400 atqaccactq aqtatttttq aaactctttt gttttcttcc aaatagtgat tcttaqqqct 5460 cctgagaggc agatggaaca atcattaaca ttccacttta taaatcggga agttgagacc 5520 aaggaaagta gtttgaataa gctcacagta gttaatgagg gggccagtgc tggaccaatt 5580 ggccagcact ggtcattgac ttattcatcc atcattcatt tattcagcca gaatctatta 5640 ggtgcttcat acatatttgc ttaaagtttg ttgtgttcat agagctttgc acacggtagg 5700 tactccataa acatttgttg atgaaataag tgagttactg aatgaatgat tgaattagaa 5760 tgacactgca gtgttaaaat gggctgggtt ggggaacatt ttagtttttg tttttgtctg 5820 ttttccaaaa atgtatgtgt tgttcacatg agtctggata accctagatt gagattgatg 5880 acataaataa atttgtcttc aaggctgcac taaagctggc tcacatggct aggtatttac 5940 agagcagaag tggtgcagtc ctctctgatt agttgcacgt acagaagaca tattcgttat 6000 tggactgacc ttagtttctc ttataatttg ttaggggaat tgaatcagcc catctgagaa 6060 gttacaagat tgtgtcttgt catctttaaa agttcagcaa tgtgatgtgg tacagatggt 6120 ctgaggggtt tggagaaggt agcctagatc cctagggccc agagaagaca ggatgtgaac 6180 agaggaagta catggattgg tgaagaaaag aaatgggata actcatgggt caaagaagaa 6240 atcatgatgg aaatcagaaa atattcagaa ccatacaata atgagaatat tatttatcaa 6300 aatctattgg atgcagctaa agcaggacat agggggaaat ttacaacctt aggtgcctag 6360 attaggaaag aaggaaggca tttgtttatt tatttgttta tttatttatt tgagatgggg 6420 gtctcactgt gtcacccagg ctgctggagt gcagtagcac gatcataaat cactgaagtc 6480 tegaacttet gggetgaagt gateeteeeg eeteageett eeaagtaggt gggaeaeagg 6540 ctagcaccac cataccaggc taatttttt tttgtagaca cagggtcttg ctatgttgag 6600 gtctcaaact cctgggctca agtaatcctc ctccctcggc ttcccaaagt gctgggatta 6660 caggeatgag ccactgcgcc catctaaggc tgaattttaa tgagctaaga attcatctta 6720 agaaagggct aaatagacag caaaagcaaa cattgaaggt tgggactgag ctgagtgggt 6780 agcagggatg ggagacaaca gatctgagga gagcaggaga ttttgaaagg attgcactgc 6840 ctgaggttta agcetttaga atccagetet etetgagete cetttgaget etgacattet 6900 gtgactctga tttggtggcc ttcccttagt ggccttactg atttcatttg gatggtgctt 6960 gtggtatatc caaccaacat gtcttcccaa atggcctttt aatttcctat aaagaagtag 7020 ttgtcattga ttgcaggtta gggacagaaa atgctgtgga atgaaacaaa atgcaagtta 7080 aagaactaaa ttccaaaaat acccattgct actattgact gagtgaattc ctactgtgtg 7140 ccagacactg tacccagtcc attccctgta ttgttttatt taagcctcac aagggtatag 7200 tgtgactaca ctgtttctta acaatgaaga aactgcccaa atcgcccatc tgggaagcgg 7260 cccagctaga atttgaatcc aggcctgttt tcctccagag cttgtgctat tctctgtctg 7320 tcataaaatg tgggggcttt gtgtggtaaa cttgctcagt tgggcatagc agttgttagg 7380 aaacctgagg ctggtaacac cagctgtaat accagctgtc cgtctgactc atgcaactgt 7440 taaagttgat agggctgagg tgtcagactg agctctgaat tgcctgattc ctataacaat 7500 attaacttaa acatttttta aattgggaaa tgcaccatgc atacagaaga gtgtgtatat 7560 ttcatatgta tagtgtaaac tgttcccatc acccaggtta aaaaacagga tgttgccagt 7620 acctggggcc ttctttaact gcaactgcta gaggtaaaca ctggcttgac ttttgtgtaa 7680 atcatctctt tgcctttctt taatgtttta gcatctttta aaataaatcc ccaaataatg 7740 tattgttcta ttttgaaaaa ctgagtagca agccaaaaat agctgtgtaa agaaaggtca 7800 cttaaattag gctgggtgca gtggctcaag cctttaatcc cagtactttg ggaggctgag 7860 gcaggtggat cacaaggtca ggagatcgag accatcctgg ccaacatgga gaaaccccgt 7920 ctctactaaa aatacaaaaa attagccaag aatagtggca tgtgcctgta gtcccagcta 7980 ctcgggaggc tgaggcagga gaatcgcttg aacccgggag gcagatgttg cagtgagctg 8040 agatogoact gottgaacco gggaggoaga ggttgoagtg agocaagato gcaccactgo 8100 actctagcct gggtcacaga gcaagactct gtctcaaaaa aaaaaaaaa aaaaaqaaag 8160 gttactattg ccttttctta gatgaaggtt cccaaggcag ggaaagctaa gtggagtctc 8220 agggacttgg tctggctttt ccttccctgg gaatttataa ggacctcttc tgggaagtca 8280 gtcggcaatg ccatgaatga gtctggggaa atattgggct cattgcaact ggagggtctg 8340 gtaggactga tgtgaattag gtgctgtgtc cggaggaaaa tggccagagg aagtgggctg 8400 ctttgtacag tcagtggtaa agttgccaaa ggctattata gctcacagga atgggccaag 8460 gctaaacact cctgtggagt gaaatgaatg tcctcagctg actgaggcag cgggagttga 8520 gaagaaacga tattagttca tggtgaagac aagtcaaata tagataaagg ttagggtcag 8580 gcttgcctgg acatctagga gataactgcc ctcaacttgt ttgaatcttg agtcactgct 8640 ccattttgtt tgaactggtg gccatctact tatagtatac agccatcaac ctgagatttc 8700

:

cctacatggt cttcctgcct tggtctcctg tatcctgaat cctatggcct cttcttccct 8760 ggtttactac attttgctag accgtatcct ccagtcaatt ccttagaatg aatgtatgaa 8820 agttaaaatt tetgaggtet cacatgtett aaagtteeet catactggat tgatagtttg 8880 gctgggtata aaattctggg ctggccatca ttttccttca gaattttgat tgcattattc 8940 cattatecte tetttteaat attgetteta agaatteeaa aacettttt ttttttett 9000 tttgagacag tgtctcactc tgtcacccag gctggaatgc agtagtgtga tctcagctca 9060 ctgcaacctc cacctcctgg gtttaagcga ttcttcttcc tcagcctcct gagcagctgg 9120 gattacaggc acccaccacc acacccttta gtagagatgg ggttttgcta tgttggccag 9180 gctggtcttg aacttctgac tttaggtgat ctgcctactt cggcctccca aagtgctggg 9240 attaaaggcg tgagccacca cacccagcct ccaaaaccat tttaaaactc tttctggaag 9300 cttttaaaat tttcttttag tccccagaat tttaaaattt caattatgtg ccttggtgtt 9360 cttccattat attagtcacc caagaggtac tttcaatctg gaaacttctc tatgttttgg 9420 gaaatgttct tgattagttt acaggtgatt tcttcctctc cattttatct cttctcttt 9480 catgaaacta ctattaattc aatgttagaa ttccttgact gatcatttaa ttttcttcta 9540 ttttccatct ctgtgtcttt ttgctctact tttctatgat agtcacagct ctatctttaa 9600 actettgagt ttttcatttt tgatgtcatg attttaattt gcaagaggta ggtttgactg 9660 attettttt gtagtatett actettgttt tatggatgea acatettett tgaettaagg 9720 atcataagat aggtgggttc tttgtttgtt tgtttgactg tttttcaccc tatgtaaact 9780 ttttctacaa gtttctttcc ccttcccccc tttttggctt ctatctccca cattagatgc 9840 tttctctggg ctcatgatac tctttggttt tctttctcaa gattgacagg taggacttta 9900 aaacttgttg agcatgcggg tgaaacttgt ctaccatgaa tttcactgta gatattttgg 9960 agattgacag tgtttatatc tttagatctc acctcctggg ttgatcaagt tatctgagta 10020 caccacagac cttttgcctg gggataaacc agaaatctgt ttcagaaacc actttgattc 10080 agtetteett gttttagtea ttteetteag tteeggaggt eegteatget gateatteea 10140 gagcccttta cagatcctag ggtacacact gcatggtttt caactttctt gttttggggt 10200 taagatttgg ctttcaggag tctcctcagt ccgttactat tcattcaatc agcaagtcct 10260 tgagcacctg atttgtgcca gacattcttc taggtgttag ggatacctca gtgaacaaaa 10320 cagacaaaaa tctttgtctt ggaaatacac acactccagt caggggagag ggacaataag 10380 ccaaaggaag gaaattacag cgtgtgctag aaggtgataa gtgctgtaga aagtaagtaa 10440 agtgggtttg ggagttgaga gtttgggaag gggataaatg atggcaattg taaatagagt 10500 agtcagagtt ctcacttaga aggtgaaatt caagtaaaga cttgaaggag gacagggaat 10560 tagccacatg gatggctagg ggaaggcttc caagctgaga ggacagccag agccaaggcc 10620 cagaggcagg agcatacctg gtagttttag gaaacaggag gccaggatgc tgagtggagt 10680 aagagggggc atgaaaggag aaacttgggt ccacgtggtt ctagacaggt atttttgtct 10740 gttttgggcc ctgaaggtta ctattggact tggactctta ctctgaggaa atagggacgc 10800 tattgggacg tttgtacagg agcaatgtga cctgagtttt gtttgtaaag gattagactc 10860 tggctgtggc attaaggcta ggctgtgggg gcaggaacag aagcaggggg accagttttg 10920 cagcctgtgc agctttccag ataagcaggg attgtggctt ggaggaggat ggtatagagg 10980 aggtgacaag aaatgactct atgtctggta tgtagatatt ggccacagat ggcatttgag 11040 cactagagac ctggctggtc cacatggagt ttccataagc acataataca catcagattt 11100 caaagactta atatgaaaaa aaaaatttaa cgggccccgg gaatttttt cttttttt 11160 ttttttgaga cccagtcttg ctctgtcacc caggctggag tgcagtggtg tgatctcggc 11220 tcactgcaac ctccgcctcc caggttcaag tgattctcct gcctcagcct cctgagtacc 11280 tgggactaca ggcacctgcc accacgcctg gctaattttt tgtattttta gtagtgatgg 11340 ggtttcacca tgttgtccag gctggtctgg aactccggac cttaggggat ctacccgcct 11400 tggcctccca aattgctggg attacaggca tgagccacca tgctcagcca tatcttgcta 11460 ttttctacat ggattacatg ttgaaatggt aatgttttgg ctattgtgga ttaaatagaa 11520 tatatgatta aagttgattt catctatttc ttttaacttt aaaaaatatg tctgttagag 11580 gatttgaaat tccacatgcg gcttgcattt gtgacctgca tttcatttct gtggaacagt 11640 gccctttttg ggacatgctt tgaaggtgga gtcaacagga tttggcagat tacagacgag 11700 aggetteaag ggtgaeteea agaetteggg geagageaee tggaagaaag gggttaatat 11760 tagccaagat gaggaaggct gtcggtttgg caggtgcatg ggcaggttag gagtttagtt 11820 ttgaatatgt tggaggtgtt tatgaaactt ttaagtggag atggaaaata ggcagttgga 11880 tgtgcaagtc cagggttcag ggagacagtt caggctggag atgaagatgt gggagtctga 11940 ggagagattg tattcaaata ttcaatccat gagacttgat gaaatcactt ctcttccaaa 12000 tgatttacag cctgcagaat cattttccct atctttgtag gtttatgtct tcattttgtt 12060 tcatttattt ttcagttatt cactgtttta gtgagttttg agtaggagcc agattggatg 12120 catgcgttca attcaccatc caacactgta ttaactactt gaaactcatg tggttgttcg 12180 gttgtttttt tgacctttta ttctggatgg aagagagatg cttatgaagt tgcagtaatc 12240 agtaagcett cecacattge tecateagee tteetggaag aataatgtet tetgeettte 12300 ctgtaggcaa gaaggctgct tgatcttgcc acggtgaaag cgaatggatt ggctgccttc 12360

cttctacaac atgttcagga attaccagtc ccattggccc tgcctttgga aggtaggtgt 12420 atgttctcag ttaatcagaa agggaagggc agtcagtgca gatccatggt taagagcaga 12480 acacaceteg gttaacatee catatgetgg cagtatagee teeetatgae teaattteet 12540 tgttttaagg ctagcaccac cccgtctcat tgggattttg ggagcattaa aaggacaaaa 12600 gcgtgtaatg ttagctatta gctttcatta tctcccacac agtatactga caattgggct 12660 accatatatt gagggctaac taaaggtgtt acttaccatc caaactctca ttatctgtac 12720 cgaaaagata tggacacatg ttttgagtta gggctggtat ctcttgatct ctgaaattta 12780 gcagctcaca atgggaaact caagaaccaa gtggatctag agactctggt atccctcagt 12840 gcccagggtc accacccaaa ctcaggaaca ggaggggctt ggaccgcacc acttgaacat 12900 accaggeate etgecaggtg etttatggae aatgtetace etttgeaaca accetgagaa 12960 gtaggtggtg tttttttcca ccttatagat gtggaaactg ggcagggagg ttaagtgacg 13020 agggagggga agatgggtct gattgtaaat tgtccccacc tacactttct cttttcttgg 13080 gagaagaaat gtcagttgta aagagagagt gcaagcctgg cactctttag ggcttgttcc 13140 tacaccactg tagggaaagc tcattggcac tgaagccccc tgagctgtgt gtggtgctgg 13200 cagatgggtc tatcaccctg gactgtgtcc tctgggcagc aagcaagcct gtgggcgggg 13260 tggctggaag tctgtgcctg gcactcgcga gtgcaccgtc tcattgaaga acaggatcta 13320 aacatcagtg cgccacagca gggtgcgcgg cacggagtgc aggccctggt ttggcccttg 13380 gttgaggttt gctgttgaca tcatcaagca cagctagtca ctgtaagacc aggccagggt 13440 gcaagattcc ccacacttct aaaggtgaca attggtgtat ttatttctct ataaaatgac 13500 attttttttt tctggagaat tttagtatca ttggtgatga ctggaaaacc tgcatcagaa 13560 atcaggtcgg aagaggaaga tatatatctg atatgtactg gagaggaaga tatctatctt 13620 atggtctaag ttcagggatc ctggtatatt cagagggcag aaagctcagc aataatcatc 13680 aactctggga acagaggtga cataaacaca gggcgtcccc tttgtgtgac tgcagatagt 13740 catcagtgag ctcagagctc tatgaaaatt acttgctagt ttttgggttg aaaatagtgg 13800 gccagtgttt ggttgggggc agtgaggctg tgatggcggg ggaccatgcc aagctcctac 13860 cageetggga egetaaacea geaetteeee attteetgaa aggggaacta aactetgaca 13920 caggaaatgg tttgcttgca ttactttcag gatgagaaag gaagagcact ggccttccaa 13980 acacaccccg tgcatgaaaa ctctccctgc atggggtgca tggggaggat ggggaagtgg 14040 aggcaggatc acagactett gttegagtge teagetgggg caceeeggtg acceegagge 14100 cttcccttgc taggtccacc cagatcaatc aggatcatct ccccatctcg aagtttaact 14160 ttatcacatc tcagagttcc ttttgccacg taaggtaaca tattcacagg ttctgagaat 14220 ccggacatgg acatctttga gggtctattg ttgtgcctac tatatccatg aataataatg 14280 ataataagca ccattttttg agagtttgcc atgtcagata ttcttttaaa ctgtatttta 14340 tctcgctgcc tcctgaaaaa atccttccag gtgtatattg tccccatttt tacagatgag 14400 agaactgagg cccagaaagg ctaaatggct tgcccaagtg tatggtggac ccaggttttc 14460 aaactcaggt gtgtctggct tcagagactg ggctcctgag cccttaagcc ctttgttccc 14520 ctttagaaaa agtcacctga ggctgagtgg tgaagggatt tatccaaagc cacccggcca 14580 ctatggcagg acagatatca gaatacaggt cttccgatcc cagcccagag ccccttcccg 14640 tcatctagaa ctcctcctgg tgtcagtaat gataacggca gtcactgatg tcttttgagc 14700 acttactttg tgttgagcac ttacactgtg ctaagcactt gacataggtc atcttagttg 14760 atccgtgtaa aactctgtga ggtagtgacc aacatttctc ccaccttaca gaggtggaaa 14820 ctgagggtta ggaagtttcc ttgactgtcc tcaaagtgca cagcttgtga atggaggagc 14880 caggatgggc gcccgctggc tctcctatcc cttcagttat gtcagcgtcc cccgcagcag 14940 cccattgtct ggttaggtcc cgtcttcacc atggtgccac cttcatctgc ctcttcttct 15000 gccttccagc tgccacatgc aagaagtata tggccaagct gaggaccacg gtgtctgctc 15060 agtetegett ceteagtace tatgatggag cagagaeget etgeetggag gacatataca 15120 cagagaatgt cctggaggtc tgggcagatg tgggcatggc tggatccccg cagaagagcc 15180 cagecacect gggeetggag gagetettea geacecetgg ceaceteaat gacgatgegg 15240 acactgtgct ggtggtgggt gaggcgggca gtggcaagag cacgctcctg cagcggctgc 15300 acttgctgtg ggctgcaggg caagacttcc aggaatttct ctttgtcttc ccattcagct 15360 geoggeaget geagtgeatg gecaaaceae tetetgtgeg gaetetaete tttgageaet 15420 getgttggce tgatgttggt caagaagaca tetteeagtt acteettgae caecetgace 15480 gtgtcctgtt aacctttgat ggctttgacg agttcaagtt caggttcacg gatcgtgaac 15540 gccactgctc cccgaccgac cccacctctg tccagaccct gctcttcaac cttctgcagg 15600 gcaacctgct gaagaatgcc cgcaaggtgg tgaccagccg tccggccgct gtgtcggcgt 15660 teeteaggaa gtacateege accgagttea aceteaaggg ettetetgaa cagggeateg 15720 agetgtacet gaggaagegt cateatgage eeggggtgge ggacegeete ateegeetge 15780 tccaagagac ctcagccetg cacggtttgt gccacctgcc tgtcttctca tggatggtgt 15840 ccaaatgcca ccaggaactg ttgctgcagg agggggggtc cccaaagacc actacagata 15900 tgtacctgct gattctgcag cattttctgc tgcatgccac cccccagac tcagcttccc 15960 aaggtetggg acceagtett etteggggee geeteeceae eeteetgeae etgggeagae 16020

tggctctgtg gggcctgggc atgtgctgct acgtgttctc agcccagcag ctccaggcag 16080 cacaggtcag ccctgatgac atttctcttg gcttcctggt gcgtgccaaa ggtgtcgtgc 16140 cagggagtac ggcgcccctg gaattccttc acatcacttt ccagtgcttc tttgccgcgt 16200 tctacctggc actcagtgct gatgtgccac cagctttgct cagacacctc ttcaattgtg 16260 gcaggccagg caactcacca atggccaggc tectgcccac gatgtgcatc caggcctcgg 16320 agggaaagga cagcagcgtg gcagctttgc tgcagaaggc cgagccgcac aaccttcaga 16380 tcacagcagc cttcctggca gggctgttgt cccgggagca ctggggcctg ctggctgagt 16440 gccagacatc tgagaaggcc ctgctctggc gccaggcctg tgcccgctgg tgtctggccc 16500 gcagcetecg caagcactte cactecatee egecagetge acegggtgag gccaagageg 16560 tgcatgccat gcccgggttc atctggctca tccggagcct gtacgagatg caggaggagc 16620 ggctggctcg gaaggctgca cgtggcctga atgttgggca cctcaagttg acattttgca 16680 gtgtgggccc cactgagtgt gctgccctgg cctttgtgct gcagcacctt cggcggcccg 16740 tggccctgca gctggactac aactctgtgg gtgacattgg cgtggagcag ctgctgcctt 16800 gccttggtgt ctgcaaggct ctgtagtgag tgttactggg cattgctgtt caggtatggg 16860 ggagcaccat caaggctaag tgtgggagca ccgagctggg ctctagaagt ctgggcccag 16920 tttcaatatg tgatgatgac agccacactt tattgactgg cctatgtgct gggtctggtg 17040 ctatgctttc cggaatgacc tcatctaatc tctacaacca ccctgggggg taggcaggaa 17100 tgttattatc tccattatcc ttgacttgag gctcagagaa gtgaagtaac ttgtccagga 17160 aatggcagag ctggggttca caaattgcat cattctgatt acaggttttc tgcctcccac 17220 cagtctatgg atacacttca gaggctccct gaaaaccttg aggtcacttg cagaaagttt 17280 tgtgtagtat gtgtccgtat caggaacaac accaaatcag aggtgacttg tgccccatca 17340 gagactttaa caccccaacc agatgggaat ttcaggaccc aagaaataga aagtggctgc 17400 agggttacaa ctactgttgg attcctgagg tagcacagtg tccaaacagg atttcagcac 17460 tacccgtatt gcttagagcc ccagccaaag atgtgaggtt ttgccctttg gagaatctgt 17520 gcccctgaac tcgggggcct ctttccacat cttgggggca ggcaagggca gagggtgtgc 17580 ctaggcctgc ggatcagcat gcgacagatt ccccaacatc cttccagctt gaaaggggat 17640 tgccctgctt ctatttagaa cctataggaa agcagaagtt ctagattgaa gttaaaattg 17700 atteccagee tecagggget ttgggetaca cetggatgae ettaattgae eetaageatg 17760 ggacaaacca cttcctgaga gtattaggat ggtatacatc ttctctgggg gcaaagcaac 17820 aagatttatt tttcatcatg gaccaaacac atggataccc actagaaact gtgtagtgaa 17880 ttttgttaac cctgacatag ggaccatggt ctttaggtta aagcataata acaacataat 17940 acataacata tatagcgaat atatatatgt attatatgca atgaatgtaa atatgattat 18000 acccatcatg gtcttggagg aaacagatga cacacttaaa atgggtgttt tgaggagagt 18060 ttgaaaaaca gattgtttac aagccatggg caggagttag gaagagtgag agggttggtg 18120 caggggcctg gggttagtaa cagctggggg agggtagact tgaaggggga aggggaggga 18180 gactaattag ctggggggaa ggtatggaga cggctgcctg agcttctgca aagtggaaga 18240 atactgettg gecetaacte etcaececaa etettgeteg tggecagege ettecaecag 18300 ctggacccat cagggaggcc gagtgggctg tctgctggag tagtccccag gcatcagcct 18360 cccaggagcc agggacgggt agagaagggg gagagtggat ctggccaggc aaatggaaaa 18420 cagccagcac caaactctat ttccctagga gggaggatca tgatactttg agtgggaatt 18480 tggaaacctg tctgttggag caatttccct gatagaaata agaatgtgca ttttcctggg 18540 tagtagactc agtttttacc ccaagaggcc aggcatcact ggcctgtgtg atcctcatag 18600 gccagtccat ctctggaatt cttgaatgga tcatccatcc ttgattaggg atgtccccgt 18660 gattaccagg gtgtgcagaa gggctctggg aaacctgtgg gtctgtctct gtgttcagag 18720 aaaggtgagg gtggcctggt tctagctcat ggtgctcaga ctgtggtgtg taaaggcact 18780 cgtggcaatg cagatteetg ggeetgeete tagtgattee catteagtag gtttggggtg 18840 gggcccagga aatctatatt tttcacagac acccctggtg attctgatac aagtggtctc 18900 gccctgggag aactactggt ctgcagcaac cagcttggtt ttccattagc aattactgtc 18960 cttgagcgag ttttactgct cttcacctta cacacactaa aactgccaag gccgtagggg 19020 aggggaagca accatgaggt tgctgtgagt gcactgtgtg tgtgtgtgtg tgtgtgtgtg 19080 tgtgtgtgtg tgtatgagag agagagaga attgagaaag agaggaaggg aggaaggggg 19140 agggcacagg ctcctctccc acagtgccaa cctgcctctc tcccacttga agcgtttcca 19200 tgccaactga aatcctcagc ctctaggaaa ccctatatac acagtgcccc tatataggtt 19260 tetttagaet etggetetet cagactetag agtgatgget ttaaaagttt tatgttacce 19320 acagagagag agcacgcacc accatgtaaa catggaacct aagtttcaca aaatgacttc 19380 tgctgctcag gaccttcaaa atgatttgca tgacctgcaa cctgcagtct gaaaaatcac 19500 tgcactacag aagtggccat aagaggccct gagggagaag ctgcacaatg tcatggttaa 19560 gagtggggtt tggagccaag ccgcctaggc tcaaagcctt tatgtgccgt acaaccttgg 19620 caaagtcact tcgcttgtct gtgcctcagt ttctttctca cgaatgctca taataatggt 19680

tcccatttca ctggcttgtt gtgaggatga aatagtgtta ttattgagaa gtggtaaggg 19740 tagtgatcag tgctagcgat catgattcta ggtgactttt actgtgtacc gggtgctcac 19800 aaggetttat gtgeacagee tggtgagget gataataeta ttgtteeete tttttttt 19860 ttggaaacgg agtctcgttc tgttgcccag gctgggggta cagtggcaca atctcggctc 19920 atgcaatete tgeeteeegg gtteaegeea tteteetgee teageeteee aagtagetgg 19980 gactacaggc gcctgccacc acgcccggct aatttttttg tatttttggt agcgacaggg 20040 tttcactgtg ttaaccagga tggtctcgat ctcctgacct cgtgatccgc ccgcctcggc 20100 ctcccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcctgttc cctctttat 20160 agatgaagag accagcaaat aactagtaag tcgctgatca ggatcacaat atccagctga 20220 ggcactccag agcctgagct gttaaccatt cagtcagggc ctcccaagtt tgcctaaaga 20280 taaagaatca tgtgcacagt tgttaaaata tacagattcc tgggccccac cccgcagata 20340 cttgattgcc agctccaggg tatgggcctg agaatctgtc ttttagggaa gctttcagat 20400 gatgttgtga tcaggtgagt tttgggaatg gtgccccaag aggagtggca gacagggctt 20460 gctcggcagg gactagcctg ttggagtggt gccattgggg ttaaggactg ggcagcaggg 20520 cctcactaac cacagcctat atgcctgttt ctgaagtttt ggccactctc atccagctgg 20580 tctactgtct gctgacctag atgatggtaa attgtcccca ggggtagcct gtctagttca 20640 ggctgcacct ttcgcatata tcagctcctt tccaccatca tcccctttgt gaggctgctg 20700 tgattatcat gttccttttg cagagatgga aacattgcct caaattagct ctgtcatttc 20760 ctaaggattc cagggttett tagtaggggg tetggateet aegteetggg ceatececat 20820 catagtgcac cacgtcacct ccctggccag ggaccgtggg gtctccactt ttttggggtg 20880 ctccatctat gcagggtttc ctggaagcac agatgctggc acttcaggga tgaatgaaag 20940 tetttttggg ggatttgtag attttttet tgtettaeta getecatttt caaatgtatt 21000 tattttgtct ctttagtttg cgcgataaca atatctcaga ccgaggcatc tgcaagctca 21060 ttgaatgtgc tcttcactgc gagcaattgc agaagttagc gtaagtcagc ctgggctgtg 21120 gacaatgggc tccaagtgcc ctggtctcac cccaggtcgt gcagcctggg aagctgtgag 21180 tgatgggctg gggcaggggc tgtttgcatg atggggggtg caggtgattc ctgcccagag 21240 gggaagggca accetgggat ttggtgctca ctgtccaatg tgctttgctt ctgtgtctcc 21300 tetettetgg aactgaacag tetatteaac aacaaattga etgaeggetg tgeacaetee 21360 atggctaagc teettgeatg caggcagaac ttettggcat tgaggtgage ccaggtttte 21420 cttattccct ggaaactatt ttttgcccca ttcctgagtc agtctgatct ggtcttggcc 21480 tggcactgcc cacactggct cctgacctcc tgattgaatg cagggacagt gtctcatttt 21540 aagcaggggt tetetaatge tgtgatetee eeagtaaaet etggaetage tetgetgagg 21600 acttcctgtc ttttgacctt tagcccgtag ggcaagaaag cttttctagg cccctttcct 21660 tttctgtgtc taagagtgtc acagctttct ggggttactg agttccacga tgcatgttga 21720 gctcgtcctg gtgggggagg catacacagt tacttgccac cccagctgtg gcagcgagtt 21780 gctgcaacac tcccaggagg tcctttcacc actcagagca tgcaaggttt gcagtccatc 21840 tggttctgca tttctgctac tccagtgtct cccagtttca acaggagtct ctctctccc 21900 tacctgatgc ctttaaattg cccctctagc tggccgctgg gttggcctgg cttctctctc 21960 cttctctctc tctcagatat tcttgcctcc tgtgatttgt gaggcagtaa aaaaagacaa 22020 agtaaagaat tgcttccatc tattctttta cctcttgggc tgggtttgtg gatgggagcc 22080 gccattttaa aatggcgggc cacatagctc agtctcggca agggctactg agatcagaac 22140 cacaggtgcc aatttgtaca aaggactcag teetgetace actgeetgat ceetcagact 22200 cacaagectg gaataggetg tggccagace tggctggccc atccctgaga agggtgctag 22260 tttcagaaat ggaggctgag tttgtggcca acacagtagt cctccggtat gtgcaggaga 22320 gatgttctaa gaccccagtg gatgcctgaa accatggaga gtatcaagcc ctacacatac 22380 catgetttte ccaataceta cacacetgea ataaagtgta gtttataaat taggeteagt 22440 aagagagtaa tagcaactca taataaaata gaacaattat aacaatcaat atactataat 22500 aacactatgt gaatgtggac tetetecate teecteaaaa tatettettg taetgtaete 22560 accettette ttgggaagat gtgtggtggt aaaatgeetg tgtgatggga ggaagtgagg 22620 tggatgacgc atgcagcact gtgctctagc gctgggctgc tgttgacctg accacacttc 22680 agaaggagaa tcatctgctc ccagagatcc ctaatctttg agcaacaatg aggtcggcag 22740 ctggatgtca ggagcagacg atcttgatga ttaccaaatg ggagcgtata gagcgtggat 22800 gcgctggacg gggggctgat tcacgtcctg ggtgggatgg agctggatgg cacgtgatca 22860 gaatagcatg caatttaaaa tgtatgaatt gtttatctct agaattttcc atttaatatt 22920 tttggactgc agttgatttc agataactga aaccatagaa ggcgaagctg cggataagca 22980 gggggcaggg attaccgtat atcattgtaa tagagagcac aggctctgga gccagactgc 23040 ccgaggtttg aacceteatt agetgegtga ceteaggtea geceaatgte tgtgtgeete 23100 cgtttcccct tctgtagaat ggaggtaata accctggcta cctcacaggc tgtagtgatg 23160 agcaagcaag ttaatccaca tgaagggctg caccgtctgg caggggcttt atatagtaag 23220 cgagtggctg aaagatgatg ggtaaatcac acaagcactc agcttgtttc tccttatgtg 23280 agtccggtcc tccaagcagg gattcaatgt gccacccatt tattggggaa aagtcctaaa 23340

aggggaagtg	gggaagggag	ctgggggagg	ctgggaggtg	tgtccctgag	tgaaggagag	23400
agggaaggaa	ggaaggttga	gactgggcac	cttggacttc	agtgcagtcc	taagacatct	23460
tggcaaggct	gatgaggagt	tcttgaacca	aattcaccag	gcaggggagc	ctgatgtctc	23520
	tggcaagtgc					
cccttggcta	cctccaagga	gctgaggctg	gagacctgaa	aggcgagttc	tcctagctgc	23640
cacacccctt	ctccaaggat	acaataatat	ctgccttata	ggattgttgt	gagctgagtg	23700
gcttgacgtt	ccttgaaaga	atgaaagcgt	atagttatcc	caggaagcct	agggttgcag	23760
gtgagagctc	tggggcttct	ccgaagctct	ccgaggtgtc	tggattcagt	tgcagcagga	23820
gccttccttg	ctgggatctt	ccccacccc	tagccttggc	cctccctctc	tccttccttt	23880
ctggaaggct	cagtgggccc	cacccctccc	tccagccacc	tggacctgcc	cagcgctctt	23940
gtgcaacagg	taaagcctac	ctgtagcaac	aacagatctg	ggaaggctgc	agagggcacg	24000
atggggtctg	gatcgagggc	ggctgagacc	agagggaaag	gtgtgaccct	qaqtcaccct	24060
cgctgtcccg	gggaaaccac	ctcccaggac	agctgcctac	tgtggctcct	gcctggaatt	24120
gtcacactgc	tgtgcaaaca	gcgtcccgct	gcccctttcc	ctttgctggg	ggaaaatgaa	24180
gttgtgggag	ccgctgagta	aactagacct	agcagcgagg	gcacctgatg	tagctactac	24240
ctcccgggca	ggtcttcaat	gctttcttcc	tgtgtttccc	tggccagggc	acagacggcc	24300
ctccttttct	gcctgccgct	gtgttctctc	agcctcctct	atcttccctt	ccagactaga	24360
gaataactac	atcactgccg	cgggagccca	agtgctggcc	gaggggctcc	gaggcaacac	24420
ctccttgcag	ttcctggggt	aggttggatt	ccaggaagag	ggacctgcat	ggaggggctt	24480
gggacttttg	aggatttagg	ggcaggtgaa	actcttcagc	caggaggccc	cagaggcagc	24540
ccagctccag	tggggaggac	aaqccaqqqa	gagagtgggc	ggcccttgac	toccaccttc	24600
atacttggtc	tatgcctgac	aaacaggaag	tttgggatgt	tagaactaga	ggaggacagt	24660
gcccacqaqc	tggtgacagg	aagccctctg	atcctcaggg	ggcgctaggg	ctgtacttta	24720
gctgcatatt	aaaaccacct	ggaagettet	aaacactatt	gccaggcctc	ccacccaga	24780
ctgatgaaat	gcaaatatct	aggtgcaagg	cccaggtatc	aggagtttta	aaaagcttcc	24840
caggggatgt	acagccaggg	gtgaggaccc	ctgacctaag	aaagagaagg	aaatggggaa	24900
qqataqqaaq	gcacccagga	taagagggg	tatactagat	ccctcaaaac	tettacteee	24960
tgtaggacca	tgctagggcc	taccagggag	aggagtagge	caacctgcag	ccccadata	25020
ggcttcctct	gtttgctagg	cacccagget	tgcacctgtg	ctgtttccag	cagcetetet	25020
cctatcctgt	catgccctag	tataaactaa	agtccatttg	acaagaactg	ggagtttag	25140
aacctgggac	tgtaggaaga	gagaataacc	ttagggccta	ggtgttccag	cccatttcac	25200
agggaggcaa	gttgcccca	agctcagttt	tttattttat	tttattttat	ttgagatgta	25260
gtctcactct	gttgcccagg	ctagagtgca	ntagcacaat	cttaactcac	tacaacetee	25320
acctccttaa	ttcaagcgat	tcacctgcct	cagettetea	antanctana	attatagge	25320
cccaccacca	cgcccagcta	atttttgtat	ttttagtaga	gacaggggg	caccatatta	25440
acccaactaa	tcttgaactc	ctgatctcag	atgatecge	cacateggeee	toccasage	25500
ctgggattac	aggtgtgagc	caccocaccc	ggccccaag	ctcagtttga	accacaaata	25560
ggactatgtt	gctctagaaa	tcaacatctt	ttccacactg	cattagtage	aacadaatct	25620
agaacaaagg	aggccacagc	cccactgaac	tetettetae	ttgaggtcac	atctgccaca	25680
tcaggggtat	ttacctcttt	caacacatat	ttattagggc	acctatctaa	accagacatt	25740
gtgctaaaac	ccccaaacgc	tatcatataa	tacaaagtgt	tctgtaactt	acttaattt	25800
tttttttatt	tgtttgtttg	ttttattta	tttttattat	tatttttt	tacttcacca	25860
tatattatag	gaatttttt	aggtcattat	gacctcttta	tttacttaat	tatctattta	25000
tttattttac	taatatttac	agaaagggtc	tcactctgtc	acccaggetg	gagtgcagtg	25980
gttqcaatca	tagctcattg	tagccttgaa	ctcctgaget	caagtgatet	tectaceted	26040
gcctcctgag	tagctgggac	tacaggcaca	agccaccatg	cctggccgat	atttttatet	26100
tttgtagaga	cggggtctca	ctatgttgcc	caggetggte	tcaaactcct	agactcaagt	26160
gatcctccct	cctttgcctc	ccaaagtatt	gggattacac	aagtgagcca	ccttactcaa	26220
cctgacctca	tttttcaaag	agctgcagag	tottacataa	totatttaac	taatcacttt	26280
ttgatgacta	ttaagttgtt	ttcaggtttt	ttgttattac	agtgtcatat	ccctagaaca	26340
cagagcagtg	ctggcacata	gccagagete	aatcgataca	tacctaatga	atgaaagtac	26400
agtggacatc	ctaattcagc	cattetttee	taacttotot	acatacctgt	ccaddatada	26460
tccctagaat	acagtcaata	agtcagaagg	tataaattaa	gatctacctt	ttaaaaaaaa	26520
atgttttcaa	actacagtga	atcagaggag	gatggccgg	aagctggggg	artrasage	26500
gatggcgtga	aggaattagg	ggtgttagg	agaaggagga	dataaadada	tagettage=	26640
aagaagtgtt	agacttgtta	tagacaaata	ctagaaaata	actaaagage	tataaataaa	267040
agttaccagg	aagcgtatct	gaactaagtg	tranaaaaa	tataaaaaa	ataaattaat	26760
cttqtcagtg	agttcctgtc	cttaangntt	agggtggg	agecetetae	tattototo	26020
gtctgtaato	taaagccact	gaaaactctt	agattaaatt	taaccataca	acccassage	26880 26880
tggaqqcaqq	tccactttgc	tgggaccagg	adccccauta	aggccactct	accodadaya accattasat	26010
ggtcctqccc	ctctggctgg	gactgcagag	adaddaddac	tattaattca	tatataaaa	27000
	2995	J J 9 9	,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-goodgeeca	cycciayaac	21000

acatatcagg tactcactga cactgtctgt tgactctttt ggccttttca gattctgggg 27060 caacagagtg ggtgacgagg gggcccaggc cctggctgaa gccttgggtg atcaccagag 27120 cttgaggtgg ctcaggtaag cttcagagtc tatcctgcag ttttcttggg gagatcaggt 27180 gaagagggag gagctggggc cagttctgaa ggtctttgaa ctttatttct accccacaat 27240 gttaggcaat ggagtaagga aaaaagacca ttggatttca agagaggaca cttgagtctt 27300 tctgggtgac ttggaaatgt cccttgtcct ctcagggttt tgatacagta tctgtaaatt 27360 gaagatattg ggctggatca ggtacatttt atcttaaggg ccaattccaa tccattggta 27420 gtgggtgccc agtgcaccac attaaaaaga attctaaggc tgcacctggg cttaaagaag 27480 ttcaattagt gatgtctaaa aagggtagaa aaaaaaaaa aaagaaaaaa gaaagagcac 27600 cgcaatcaat tagtgatgtc tgaaatggag cagaccagga gagcaccacg aattttgccc 27660 tccataggtt agctcatctc tgaggtcttt ccctgctctg acatactttt gttccatgat 27720 tacctccage ctggtgggga acaacattgg cagtgtgggt geccaageet tggcaetgat 27780 gctggcaaag aacgtcatgc tagaagaact ctggtgagtt tgggggattc tctgctctgg 27840 ggaagtggat cacaatctct gttgatcccc tggcctcatc cataggagcg gttgtgtgga 27900 cagacaaagg tggatgattg agtgattgac tgattgattg attgtgtttg tctttatatg 27960 tactgagtgg tatgaagctt atagagcctg gtatgtacat gctaattttt ttatttaata 28020 aaatatatgg gtttgctggt ttggtgactg cctccacatg gcataagtgt taagagcaca 28080 gactetgtaa teaageagge egtgatetta ggeaagttaa ataacaattt eagaatetea 28140 agtttcatgt ctgtaaaatg agggtaagaa tacttccaac cataaaggat ttttgcaaga 28200 attagataaa gtagtgcctg tgaagacctt aatatagtgc ctggcatatt tgtaagtgct 28260 ccataaatgt taaattagaa taatggcagg gttactacta ctattactgc tgctgctgct 28320 gctgctgctg ctacaactac tatagtactg tgactactac tactaataaa gttttgttat 28380 tttaaagtga ttttgagttc ctaggagcac tgggtattca agtcttaggt cattttggaa 28440 ggtgtaatgg agttttgata gttgaaagag gaaccatgaa tcatgcttat actgttgacc 28500 tgaagcagat tctaagtttc tcatccttta gatgccacta gtatagtttt ctgacatgtt 28560 ctgggcagct tcagattatg tcagggagat aaaatactga atgtttgatt ttcccgggaa 28620 gcagaaaggc actgcaacat atgggcattg ccataaacag attttatgga tggaccttgg 28680 ctgttgcagg gcttactagc tctactcaag tatgattgat tctatcctga ctggattttg 28740 ccacttggaa tttcttagta gaggagaacc ttgttatgag agcatcagtt atgattactg 28800 ttaaaagaaa aactttaggc aaattaaatt tagcagaact ggtttgaaca tacagcaatt 28860 tatgaattgg gcagcattca gaactgggag tgctccaccc agcaaggtag gcaagcagta 28920 tctatagaca ggaaaaggaa gtgatgtaca aaacagcttg attggttgca gctgggcatt 28980 tgccttatat gggcatggtg tgatgaggca ttttctttat atggatatag actgatcagc 29040 tggtagactg tgactgactg aagcctggct gctgtgattg gctaagactt agctgtttgt 29100 tataaggata tgttgttagg ttgcagtttg ctacatagga actcaaagta cagaggcagt 29160 ctcaggccaa atttagttta actatatgtt aagctgcagg tgacagaata cctccatcta 29220 tagaggttta aacaaggaaa gggtttattt tttcctgtat aggcagctgg atgtaggcag 29280 tgtagggttt gtacagtggc tacaagaggc caggaggggt ctcagctctg tctcattctc 29340 ttcctgttcc atcatcctta gcctgtaact tcattcacat ggttggttgt ctcatgatca 29400 caggatggct gctccaggtg cagcactact tctgtattcc cggattcgat ctatataccc 29460 aggaaagcca tctgggttct ctcctttaaa aagcattcct ggaagcccca cctgtcgact 29520 teccettatg tateaaccat gtgtatgtea ettgaceaac ceaettgtat gttgtttgae 29580 cagecetgge tgcaatggag agtgggaaat acagtttttt caccaagtge atggetgtee 29640 ggatcaggga acttattaca ttgagagccc ttggagtgaa ttctcttgca aatatgtccc 29760 tggaattgag aatccccaca acgtctttat ctgttctttc tttatccatg agtttgggtt 29820 ttcagatgtt ggatttccta tatggggggc atgtgagttc atcatcttcc ataatcaatg 29880 ttgtatcaac tggattttct ctcttcttct caccagcctg gaggagaacc atctccagga 29940 tgaaggtgta tgttctctcg cagaaggact gaagaaaaat tcaagtttga aaatcctgaa 30000 gtaaggaacc cataagcagg aaacaggaca ataattgctg gcctttggaa ggggcatttc 30060 tgattaagat ctgggccgct ctccgctggg ctaactcatg tgaggtggcc tggtagaaca 30120 gettgeettg gtetaggtgg acaaggatte cagtgeaagt tgtttatetg ggaggtggte 30180 ccagtaaatg ctgataggag agtggtgaag tgagatgggg aagtgaaggt aaccaataaa 30240 ggggagttat caagccagtt atcaatgagg gaaattggag ctcagtactc tggggcactc 30300 ctggagccag tgcagaacac acatggtcac ctacccaacc aatgggcaag aaagccatgg 30360 catttatcca ccaaccetet gtccttccta tgttgatgtg cgctcatggg gcactgattc 30420 tccagcactt ccagctcacc ctcacccagc tgaacatgct tctggggtca ggagaatggc 30480 ctcaggcaga gagtggcagg tcttctctgc aagcagtggc tggggaggtg atgtgatggg 30540 gagtactgtg gcctcctcca gtggctgact cagtggcttg ggacttgtgc cacaaagaga 30600 tggacagete aggtgaacat gaacecacet agtgaceate atgggtttgt cagggtgete 30660

:

•

tctgaggctg	g atgccaaaat	tcttatttca	agtagacct	c aggaacccca	tcagatggct	30720
ccttttgctg	g gaggaaagto	g gcatctgcct	aggcaaatgt	t ggtcctagga	aaacgcttgc	30780
ctttagagad	c agacagacag	g acagetgeet	: ctgtgagtgd	c cagetttget	gccaggctgc	30840
tacccactct	ggcgacacto	: atttgtgttg	ctttcacaa	g ctaggaagtt	tccaaatatt	30900
tggagaaaa	c acttccacta	attatttggg	, tggaaatggg	g ctgggaagtt	ggggtgaagc	30960
ccggatgtgt	: ctgagccaga	ı tgccagcttt	gcactgaggg	g teggeettte	ggaataccaa	31020
gcccattato	: aaccaggtgt	: ggatatggca	ggtttgtctt	ccctccttgt	cacageetta	31080
ctccacttga	ı ctcccatgg <i>a</i>	ı tgccaggcaa	tgaggctggc	g gttggtccca	taccacccta	31140
tcatcagcct	: tatttttcag	, catcctaaac	: tatatcatco	cccacaaaaa	ttgaacttct	31200
gatatatctt	: ttataaaaaa	ı gagaaatgco	: tacatctttc	c ttttccagga	ttagtttctg	31260
ccaagagttg	, gttgagagco	: caggcttgct	gggtgcagtg	g gctcacacct	gtaatcccag	31320
cactttggga	ı ggctgaggcg	, ggtggatcac	ctgaggtggg	gagttccata	ccagcctgac	31380
caacatggag	, aaaccccatc	: tctactaaaa	atacaaaatt	agccgggcgt	ggtggcatac	31440
acctgtaato	ccatctacto	: aggaagctga	ggcaggagaa	tcacttgaac	ctgggaggtg	31500
gaggttgcca	tgagccaaga	tcacaccatt	gcaccctaga	ı ctggacaaga	gagaaacttc	31560
catctcaaaa	aaaaaaaaa	ggatgagaaa	aataataatt	taaaaaaaag	agtccaggct	31620
ctggaaccag	r acageetggg	tcttacccct	gctccaccat	: taccagccag	ttcttcttgg	31680
atgagtgcct	cagttgcctc	: aagtgtaaat	ggagataatg	gctggacctt	cattataggc	31740
catgagcatt	cactgagaga	atgtagctaa	caaaagtgag	ttgtaggttg	gagcaaaagt	31800
aattgtggtt	tcagaccatg	aactttaaat	tattataact	aggctaaaat	acatctttat	31860
LaalCaaaat	aggaaccatt	aaaatcaaca	catttttgcc	: aataagaaat	aagtttgttt	31920
attectgtag	cataaaaatt	catgcttcgg	gattcaacaa	actcttggaa	agcattttct	31980
gcatectcct	ggttgtggaa	gcatttttcc	tgcagaaagt	tgtcaagatt	cttgaagaaa	32040
rggragecag	ttggctagag	gtcaggtaaa	tatggcggat	gaggcaaaac	ttcatagtcc	32100
aattcattca	acttttgaag	ctttggttgt	gtgacatgca	gtccggttgt	tgtcgcggag	32160
aattggaccc	cttctgttga	cgaatgccgg	ttgcaggtgt	tgcagttttc	agtgcatctc	32220
accgaectge	cgagcatact	tctcatatgt	aatggtttcg	cagggattca	gaaagctgta	32280
ggggattaga	ccagcagcag	accaccagtg	accatgacct	ttttttttg	gtgcgaattt	32340
ttatataaaa	tagaatttta	agettettet	cggtccaacc	actgagctag	tcattgccag	32400
ttatataaaa	taagagaaga	accgcacgtc	acaatcagat	caagaaatgg	ttcgctgttg	32460
tratgagga	caayayaaya	rgacacttca	aaatgacgat	tttcttggtt	ttcactcagc	32520
accatageat	catacttatt	gaggiiiic	acctttccaa	tttgcttcaa	atgctgaatg	32580
gctctcaatt	ggtcgatgtt	agettetest	gragingraa	gaaaatcagc	tttgatgatt	32640
ctcttatctc	cttcccaaaa	cttcttcaac	ggeetgeeag	tacactcctc	atcttcaagg	32700
cctgggccaa	atgrattget	gatgttgtga	attatataa	ctatacgtta ctgctttaca	gttagcagtt	32760
aattcaaata	agaaaattgc	ttgaatttgc	tttttatata	acatcatttt	acccattttg	32820
aataaatata	aaataaacag	aaaqtattaa	atcattage	aaaaatcata	catagtctaa	32880
tgtgcattaa	aatgatgtat	agcataacca	catttattta	agaatgtatt	aagigagaat	32940
atggcaaatt	tcaacaatgc	aaaaactgca	attacttttc	caccaatcta	otaatatcaa	33000
aataaatact	ggcaattaca	attogcatto	ccttagggtc	aacttgtaag	acayaagiic	33100
aattgtggga	aaqqqqqaqq	acctggagtg	gacattattg	gaaggcaaag	atatecetga	33120
aagagcaacc	tgggaaacac	atgactcctc	tattactate	cctggcccta	testatetas	22700
ccccccgcc	greagerace	tcatatgttc	tctaatctct	atctctatac	cctcaaagac	33300
ceceeegaaa	atagaaatat	tactgctcat	toottatttt	ctatcaatta	antactotat	33360
Lagicegett	tcatgctgat	gataaagata	tacccaagac	taggcacttt	atgaaagaaa	33420
gagilliatt	gaacttacag	ttccacqtqq	ctggggaggt	ctcacaatca	taactaaaaa	33480
Lyadaggcac	atctcacatg	gcagcagaca	ggagaagagg	gcttgttcag	ggaaactccc	33540
Cicicaaaa	ccatcagata	tcatgaaact	tatttactqt	aatgagaaca	ggatgggatt	33600
Caattacctt	ccactgggtc	gctcccacaa	cacqtqqqaa	ttcaagagat	ttaaataaaa	33660
acacagedaa	accatatcaa	gtactgtgca	agtgttttag	gcatgcagag	agtagtagat	33720
ccccayca	agcagagtgt	ggggaggtaa	tagaggacta	gtggctgact	taatggccca	33780
ggacccatge	cacaaggaga	tggatggtgg	atgtgaatag	gagectgett	acacccatca	33840
caaccagac	tcttatgctc	gatggcacgg	qtactctttt	aggcccattt	taccaatasa	33000
yayartggga	ctaatttgct	cgagatcaaa	aaagaagtgg	tataggtagg	atttaaaccc	33060
ayyatyttta	gcactaaaat	gcaggtactt	aaccactatc	ctaagggagt	aactacttaa	34020
LLLGALAAC	tcatctagtg	aatqqaaqaq	agacggttac	atttcactga	taataataaa	24000
ccccigciga	tgagctcatt	gggaatctca	gacatgagca	agatatatet	aannnacann	24140
egggetteag	Lagactggct	aactcctgca	gtctctttaa	ctggacagtt	tcaagaggaa	34200
aaccaagaat	ccttgaagct	caccattgta	tcttctttc	caggttgtcc	aataactoca	3/260
ccacctacct	aggggcagaa	gccctcctgc	aggcccttga	aaggaatgac	accatcctgq	34320

aagtctggta	aggcccctgg	gcaggcctgt	tttagctctc	cgaacctcag	tttttctatc	34380
	ggtgacggga					
	agaatgattc					
	taagtaggga					
	tctatgagat					
gtcagctccc	gccctcctag	aaattqcatc	tgccttcaca	ggtcaaggat	attggatcag	34680
	gttctgaatg					
attctctata	attaaagcca	tagactttca	tgtattgaaa	aaagcaagaa	ttgcattctt	34800
gacagattct	ttcattgcct	taaaaagaat	gactageett	gggagtctgg	gcagctgggt	34860
ccagtgttgt	agactttctc	tctqctqaqc	cacagettea	aagatttgtc	cttcttattt	34920
ccagggatct	atttctcaga	caataagtaa	aggetttece	tagcctaata	toctotaaot	34980
	atatatgttc					
	aaaatctata					
	tccagtagtt					
aacccactct	ggctgactgc	agatccacca	agectattgt	cttagaccag	gaccetttgg	35220
caactcattc	ccataagcct	gtgacccttg	ctttaaatat	acaaacctta	tcttctctca	35280
aaaagcacat	caaggctgca	gcgaatgcag	atatcaaatq	atmaamttaa	aaacaaaaac	35340
tttactaaac	gtggcagctc	acacctgtaa	tectageact	ttagaagaaat	aaaacaaaagc	35400
gatcacttta	ggccagaggt	tcaacaccag	accttgtctc	tcaaaaaata	aaaaattcag	35460
ctaggtacaa	tgtagttcct	agccacttgg	gaggetggg	tagaaggata	ccttgaaccc	35520
aggagttcaa	ggctgcagtg	ggccatgatt	gaggooggga	acaddcdaca	destragate	35580
ccatctctta	aaaaaataaa	aaatttaaaa	ataacttcaa	acayycyaca	tatastaasa	25640
agatttttcc	ttctgtatga	ttataataac	tetatageet	atazatazt	cagattataa	25700
agacccccc	ggttttctgt	ttctttattt	ttgaaaggat	tagacataa	taggittetgg	35700
cacattetaa	atactagas	ccccccgccc	tasaatasaa	tycacagicc	Laagaaacat	35/60
catactetgg	gtcctgggca	attacetta	rgaggrgagg	geaceagggt	ttgctcattg	35820
ctaactaaat	agattctctt	accyccicaa	taagaatta	tggcettggg	gagtetgtgg	35880
ttcctaaact	gcagtgttgt	ggactetete	Lgcagagtea	tggagccttg	ttcagaatgc	35940
ctacaactaa	gccctggttg	gccaagggta	aaaacagccc	tgacttccct	gcaagaaaca	36000
atttassac	gccagagagt	ttttatata	caggcarggg	ctcaaaaagt	ggaggetttt	36060
aggetegaaage	cctgctctaa	ctctgtcccc	accedadect	cigilicacti	gatetgettt	30120
aggetetgag	ggaacacttt	cccccagay	gaggingana	ageleggelg	cagggacacc	30180
tagatttaga	tttgaagtct	taggtaggat	gttegtetea	geeegeeege	gagcaggctg	36240
tectacetaa	ccccagaggc	cygycgacac	guguuggeag	ccccccaaa	atgagecetg	36300
ggaggagg	ggctgaactt	geeeeeeggg	aacaccatag	gecaccetta	ttctggcaga	36360
tettecessa	tcagtgccct	ccaggataga	CULLUCCCAA	gcctacttt	gccattgact	36420
gasetetast	attcaatccc	aggatgtaca	aggacagece	ctcctccata	gtatgggact	36480
taactgaatg	gatcctccca	ggcccccgcg	raggicagig	gggcccatgg	atgtgcttgt	36540
ctastassas	ccttttggtg	gagaggeeeg	geeteteaea	aaagacccct	taccactgct	36600
tcatccatcc	ggagtacaca	gaacacataa	ttaataaa	agettteece	atgtctcgac	36660
actesttest	aggccattcc	asttasast	LLCCLCCCCT	cctcctggac	tcctgcacac	36720
202000000	ctgaggctga	aatteagaat	actagtgacc	tcagctttga	tatttcactt	36780
taggatattt	caaccctggc	acccagggtg	ggaagggcta	caccttagcc	tgccctcctt	36840
	aagacatttt					
tecaggeers	caagaaaaat	ttoonttoon	Lecagetggg	accacatgtg	gacttttatt	36960
cccagtgaaa	tcagttactc	ttaatataa	cctttggaaa	cagctcgact	ttaaaaagct	37020
taattaataa	ctttaaaaaa	ctaatctggg	ccagaatttc	aaacggcctc	actaggette	37080
agttggatyt	ctgtgaactg	addictigaca	acagacttct	gaaatagacc	cacaagaggc	37140
agreedatet	catttgtgcc	taattaaaa	aggatgtaca	gctatggatt	gaaagtttac	37200
atatattaa	attaggccgt	atter ====	Caaatgtctt	cctggattat	tcaaaatgat	37260
tastatata	gcctttgtaa	actgccagat	gctgtgcaaa	tgttattatt	ttaaacatta	37320
ctattata	aaactggtta	acatttatag	gccactttgt	tttactgtct	taagtttata	37380
tta	caacatggcc	gegaacttta	tgctgtaaat	aatcagaggg		
ttg						37443

<210> 4 <211> 1315 <212> ADN <213> Homo sapiens

<220>

<221> CDS

<222> (117)(1118)			
<400> 4 cgatcagaag cag	gtcacac agcct	gtttc ctgtttt	caa acggggaact tagaa	agtgg 60
cagcccctcg gct	tgtcgcc ggago	etgaga accaaga	gct cgaaggggcc atatg	a cac 119 His 1
Ser Ser Arg Th			tgg aga ctg gag cct Trp Arg Leu Glu Pro 15	
agc atg gca ag Ser Met Ala Se 20	t cca gag cac r Pro Glu His	cct ggg agc Pro Gly Ser 25	cct ggc tgc atg gga Pro Gly Cys Met Gly 30	ccc 215 Pro
ata acc cag tgo Ile Thr Gln Cys 35	c acg gca agg s Thr Ala Arg 40	Thr Gln Gln	gaa gca cca gcc act Glu Ala Pro Ala Thr 45	ggc 263 Gly
ccc gac ctc ccc Pro Asp Leu Pro 50	g cac cca gga o His Pro Gly 55	cct gac ggg Pro Asp Gly	cac tta gac aca cac His Leu Asp Thr His 60	agt 311 Ser 65
ggc ctg agc tcc Gly Leu Ser Ser	c aac tcc ago c Asn Ser Ser 70	atg acc acg Met Thr Thr 2	cgg gag ctt cag cag Arg Glu Leu Gln Gln 80	tac 359 Tyr
	n Lys Cys Arg		gtc aaa ctg ctc ttt Val Lys Leu Leu Phe 95	
att gct tca gct Ile Ala Ser Ala 100	c cgc atc gag a Arg Ile Glu	gag aga aaa (Glu Arg Lys) 105	gtc tct aag ttt gtg Val Ser Lys Phe Val 110	gtg 455 Val
tac caa atc atc Tyr Gln Ile Ile 115	c gtc atc cag e Val Ile Gln 120	Thr Gly Ser	ttt gac aac aac aag Phe Asp Asn Asn Lys 2 125	gcc 503 Ala
gtc ctg gaa cgg Val Leu Glu Arg 130	g cgc tat tcc g Arg Tyr Ser 135	Asp Phe Ala	aag ctc cag aaa gcg Lys Leu Gln Lys Ala : 140	ctg 551 Leu 145
Leu Lys Thr Phe	e Arg Glu Glu 150	Ile Glu Asp 1 155	gtg gag ttt ccc agg a Val Glu Phe Pro Arg : 160	Lys
cac ctg act ggg His Leu Thr Gly 165	Asn Phe Ala	gag gag atg a Glu Glu Met 1 170	atc tgt gag cgt cgg o Ile Cys Glu Arg Arg A 175	cgc 647 Arg
Ala Leu Gln Glu 180	ı Tyr Leu Gly	Leu Leu Tyr 1 185	gcc atc cgc tgc gtg (Ala Ile Arg Cys Val <i>i</i> 190	Arg
cgc tcc cgg gag Arg Ser Arg Glu 195	ttc ctg gac Phe Leu Asp 200	ttc ctc acg o	cgg ccg gag ctg cgc (Arg Pro Glu Leu Arg (205	gag 743 Glu

gct ttc ggc Ala Phe Gly 210							791
ctg ctg cgc Leu Leu Arg		Pro Leu					839
gcg gcc gcc Ala Ala Ala				Val Leu		s Arg Asp	887
ctc gac cgc Leu Asp Arg 260							935
cgc ctg cag Arg Leu Gln 275							983
gcc atg gtc Ala Met Val 290	cgc ctg Arg Leu	gcc tac Ala Tyr 295	gcg ctg Ala Leu	ggc aag Gly Lys 300	gac ttc gt Asp Phe Va	g act ctg l Thr Leu 305	1031
cag gag ágg Gln Glu Arg	ctg gag Leu Glu 310	gag agc Glu Ser	cag ctc Gln Leu	cgg agg Arg Arg 315	ccc acg cc Pro Thr Pro	c cga ggc c Arg Gly 320	1079
atc acc ctg Ile Thr Leu				Glu Tyr		agccggcc	1128
tgggaccccg c	agggacg	ct ggaga	tttgg gg	tcaccatg	gctcacagtg	ggctgtttgg	1188
ggttcttttt t	tttattt	tt ccttt	tcttt tt	tgttattt	gagacagtct	tgctctgtca	1248
cccagactga a	gtgcagt	gg ctcaa	ttatg to	tcactgca	gcctcaaact	cctgggcaca	1308
agcaatc							1315
<210> 5 <211> 334 <212> PRT <213> Homo s	apiens						
<400> 5 His Ser Ser 1	Arg Thr	Pro Gly	His Thr	Gln Pro	Trp Arg Let	ı Glu Pro 15	
Trp Ser Met	Ala Ser 20	Pro Glu	His Pro	Gly Ser	Pro Gly Cys	. -	
	20						
Pro Ile Thr 35		Thr Ala	Arg Thr	Gln Gln	Glu Ala Pro 45	Ala Thr	
	Gln Cys		40		45		

65					70					75					80
Tyr	Trp	Gln	Asn	Gln 85	Lys	Cys	Arg	Trp	Lys 90	His	Val	Lys	Leu	Leu 95	Phe
Glu	Ile	Ala	Ser 100	Ala	Arg	Ile	Glu	Glu 105	Arg	Lys	Val	Ser	Lys 110	Phe	Val
Val	Tyr	Gln 115	Ile	Ile	Val	Ile	Gln 120	Thr	Gly	Ser	Phe	Asp 125	Asn	Asn	Lys
Ala	Val 130	Leu	Glu	Arg	Arg	Tyr 135	Ser	Asp	Phe	Ala	Lys 140	Leu	Gln	Lys	Ala
Leu 145	Leu	Lys	Thr	Phe	Arg 150	Glu	Glu	Ile	Glu	Asp 155	Val	Glu	Phe	Pro	Arg 160
Lys	His	Leu	Thr	Gly 165	Asn	Phe	Ala	Glu	Glu 170	Met	Ile	Cys	Glu	Arg 175	Arg
Arg	Ala	Leu	Gln 180	Glu	Tyr	Leu	Gly	Leu 185	Leu	Tyr	Ala	Ile	Arg 190	Суѕ	Val
Arg	Arg	Ser 195	Arg	Glu	Phe	Leu	Asp 200	Phe	Leu	Thr	Arg	Pro 205	Glu	Leu	Arg
Glu	Ala 210	Phe	Gly	Суѕ	Leu	Arg 215	Ala	Gly	Gln	Tyr	Pro 220	Arg	Ala	Leu	Glu
Leu 225	Leu	Leu	Arg	Val	Leu 230	Pro	Leu	Gln	Glu	Lys 235	Leu	Thr	Ala	His	Cys 240
Pro	Ala	Ala	Ala	Val 245	Pro	Ala	Leu	Суѕ	Ala 250	Val	Leu	Leu	Cys	His 255	Arg
Asp	Leu	Asp	Arg 260	Pro	Ala	Glu	Ala	Phe 265	Ala	Ala	Gly	Glu	Arg 270	Ala	Leu
Gln	Arg	Leu 275	Gln	Ala	Arg	Glu	Gly 280	His	Arg	Tyr	Tyr	Ala 285	Pro	Leu	Leu
Asp	Ala 290	Met	Val	Arg	Leu	Ala 295	Туr	Ala	Leu	Gly	Lys 300	Asp	Phe	Val	Thr
Leu 305	Gln	Glu	Arg	Leu	Glu 310	Glu	Ser	Gln	Leu	Arg 315	Arg	Pro	Thr	Pro	Arg 320
Gly	Ile	Thr	Leu	Lys 325	Glu	Leu	Thr	Val	Arg 330	Glu	Tyr	Leu	His		
	D> 6 L> 8:	135													
~2.1.1															

<212> ADN <213> Homo sapiens

<220> <221> exon <222> (1)..(161)

```
<220>
<221> exon
<222> (3812)..(3950)
<220>
<221> exon
<222> (5426)..(5577)
<220>
<221> exon
<222> (7273)..(8135)
<400> 6
cgatcagaag caggtcacac agcctgtttc ctgttttcaa acggggaact tagaaagtgg 60
cagececteg gettgtegee ggagetgaga accaagaget egaaggggee atatgacaet 120
ecteceggae ecetggaeae acaeageeet ggagaetgga ggteagtatt tgateecaag 180
etcagetgte etctgeetge tgtggeetga gteeeettet eetggggeee tgeetggeae 240
ctgctggggg cagggtggga gggggaagag ttagtgacag ccgctgtgtc tggagctctc 300
cttagcacac tgaggcagag gaagggacag ctcctggacc ttccatcacc tccattcctt 360
ttgaaatgct aggcgcttgt acaacccatc ttgggcctgg agaataagtc accacacctg 420
tgtttctcaa aagaacagtg tcagggaacc cctgcctcag cacagcctta gaggactcat 480
ggaaaatgca gaatccaggc ctgttcaatg gcaccttcct atgttagcag ccaggaaacc 540
tgctcttgga caageccetg ggatcccacc cccaccccac caggggattc ttacacaca 600
tgggttggga gcccctggct ttggcaaggc ttctcaggtg agcgtccagt tgttggaggg 660
tacccacct ttccccaaga gaggcagcca cacatccaac atcctgggat ctctgtctcc 720
cagcgtgggc catgtgcttt atttcacccc ctagaggctc atcccccatg aaaagtcctc 780
cgcaggccct cagaaagata gtgtggcctc tgtgtgccca gcagaagaag gactggactt 840
ggcagtcagc tcttggagag ggggtggtta ggacacctgg ggacaggagg aggagaatga 900
ctgtctgtgc acacacggct ggaaggtaca ggaggctggg aagctgctct gtcccctggg 960
ccaactacag gcccccaggc caacagcaac aacactttta gtattttgtt ataaagtcaa 1020
gaaatctttg ctacagaggg tgaggagagg gaaggaaagg gccatggaac cgtctatgtg 1080
gctatcccca gagagctttt agagtgacag gattgctttc ccatttcaca gatgaggaaa 1140
ctgaggcctg gagagggatg ggaagctacc caaggcccca tggatacacc agtgcacaac 1200
tettteette ecceteetet ttaaatgggt gatteecaat gaaacetgta agagacaace 1260
ataagggagc tgactgtggc tgctgaattt gattttattc taaggcctgg ttttataatc 1320
agetttetea gtetttaetg gagtgteaag eegaggeate atttetaggg tettaeaggg 1380
tetetgggee aatagtgeee tgettetgae etggageeag etgeetggte atgaaageag 1440
atctgcaaag getggggccc ctgaggccaa ggccactcgc catcacccat tttacagaag 1500
tgctgagcat aggagtgccc tgggccccca agaatcccag ccaccaagaa tcacgtaaac 1560
catccactgt ctcacttagg caccagtcag aatgtaggga acccaccct agtcatccat 1620
catettatea acaggaeggg gettgtagee acatttatea ggtagggaaa etgaageeta 1680
gagatattaa agcacttgct taaggacaca cggttggtca ggatggaagg cgatgtctcc 1740
tgactccctg acaggcacaa gagacaagcg agaggtgccc gtgacggcat gctcaagaac 1800
gtgcagccct gggccagcca ggcccctgct ccgtgcctct gtttgcccat ctgtaaaagg 1860
tgaggttgga tcgagggtcc ctgagggccg cccactggat ggctgtgcag agccaaacgg 1920
agaaggcccc agggttcctt tcacccgaca cagcaagcac ttccccctga agtgcaggct 1980
ccaggcccca gctgacctcc cctctcccag gccagcggct ctcacccctg gagcaaggga 2040
caggogotgg ctgtgctcag ggacatgcat gactcccgcc cccatctgtg ctcagggggt 2100
gccagggagg cactggctct atctttctct aggccgtagt cagcccaggg gttcagacca 2160
agageceaga atecaacaga teagagttea agteceaget etacetetat gttecaetgg 2220
cagetteete aggteattig caeetteett giettgaatt teeatgeeta accagitatae 2280
cagctactcc ctccagccga tctaatgttt taattgtccc tttctctaag ttgtctcaaa 2340
catttgtaat totattocaa tocacottaa tttagtoatt tatttcacaa atatttctgg 2400
aaacatctag cacttaacag acactaaaag cgggggtact acacagtccc tgggatggac 2460
agggccctga gctgaggctt cagagtctgc ctgactgaat cctcacccca gccttgtgaa 2520
cgtgggttct gttattatcc ccaatttata ggaaacagaa gcacagagaa gttgagtcac 2580
ttgccagcta ccaggtcatc ccttccactt atccgggtca cagacagagt tattatgtaa 2640
accagatece agetgeetgt tetecetece tgagtaaggt ggagagaatt etgaagteag 2700
eccageetgg gtetgtatee tgeecaceae teaccagete etcatetttg geaactetaa 2760
gtctcagttc ccttatcata aaagggagat gtaaacagtc ctgagtgcag acagtgttca 2820
ggttagtgca agagtgtgtg ctgggtgtga agtgcacagc cagcacgtca caagcactgg 2880
```

!

agacaaatto agotttgott gttgogoaca otoaccagot gogtgacttt agacotcagt 2940 tttctcatct gttatgtggt ggtaatgata gacttttgtg agcattaaac tagattaggg 3000 gctatggaga acctagatgg gtatgaagtg ggtataataa gctatcagtt aattttgctg 3060 atagatagat tattgattga ttgatcgata gaagattcat accagtatct acctgctctg 3120 aacactgacc tttctttttt tctttttgag atggtcttgt tctgtcaccc agactggagt 3180 gcagtggcat catcatagct cactgcagcc tcagtctctt gggcttaagg gatcctcctg 3240 tctcagcctc ccaagtagct gggaccacag gcgtgcatcc tggataattt ttttttattt 3300 tttctaqaqa cqqqqtctca ctacattqqc caggctqqtc tcaaattcct gggctcaagt 3360 qatccttcta acccagcctc ccaaagcgct gggattacag gcatgagtgg ccatgttcaa 3420 cttgaacact gagacttcat tcgcatgtgt aacataaaac tgagtatcta gacaagccag 3480 catctttctt tcaagtaatc actaaagcca atacttttac ttgaaatcat ctcatttaaa 3540 actotgagoa atacgtaagg atcacotoaa taacatatgg atcatogoaa taggtgaagg 3600 gtcttctctg ccttggagta acctgcccag caaaggggca gacccagatt tgggatctgg 3660 cagctgggag agtggggaag gttgagccgt ggggcccttg tcattccctc tgcctgccag 3720 gagggggcat gacacagete etaggcacee caggagecae egggaaceee aactggagtg 3780 ggtcctcact gttctctttt tcctctggca gccttggagc atggcaagtc cagagcaccc 3840 tgggagccct ggctgcatgg gacccataac ccagtgcacg gcaaggaccc agcaggaagc 3900 accagecact ggccccgace teeegcacec aggacetgae gggcaettag gtgggettga 3960 ggcttgagac tcggtctggg ggagaggtct gaagacattc aaagtacaaa tgtgggtcac 4020 tttgggggat gcagcaagag gcccgggcag ctcttgtaac ttgggttatc ccaaaacaga 4080 cactgagaca cagatctagt gcaagctgtt tatccgggag acggtcctag gagtcatggc 4140 aggggagtgg gaatggaagg aaagggcaag aggccagggc aggacatcag tgaacagata 4200 ggcacggtag gtggctgaag ctcaacccca gcgggggtct tctgggagac cctggaacat 4260 atetetgggt tgtcctatec taggggtgag gaageeggge tgttatetae cagteetgee 4320 ctgcatagga gaagggacgc tcctgggcct gctgctatgg ccctagaaag ccctcaggga 4380 agccagtggc atgttctgga aaagtgggtg ccaagagggc acggtccagc ctggggcatg 4440 gacagcatet getgtagtge cateteetgg aacagatett ttettacagt cettegagat 4500 gccctattca atacctgctc tgttcctggc cctatgcagg gcactggaga aacagaaaca 4560 ggaagaaatc aaacactgca ctagtcctga ggtttggtag agaaacagat cagtgagaaa 4620 cagttacacg tgccacgaga aataaataaa taaaatgaaa aacctgtagg aacaaggtgg 4680 gaagctetta etetaatgee aaggggeatt tgeagtgatg tgggggetgg gtettgaagg 4740 gtagactgga aaagggctgg gacccatgcc ctttgcaata aaatgcacaa ttatttgtgc 4800 ttcttaagaa cctcagagtg gcgcagggct caagtggggt ttaagaaaca ctgtgttcgt 4860 tttccaggcg tggaaataga gggttggatg caaggcagag cagtgcacgt ccgagaagag 4920 cccggcatgt gggcagttag atgagaaggt taggaagggc cagcccgctg aggctggaac 4980 ataacateet eeteactgee teeeetgeee actgatgtgt geteaaggag tegtggeaae 5040 agtcacgaag tcagggctgc agggagcaca gaaacacaca agccaccgtc tctgcttgtc 5100 cagagcaggg atttcaccat ggccaatcta cagaccagaa gtggacgatg caaagtgccc 5160 geacegeatt ccaaagetgt gaaaceaett gggggtgatg ggetatttgg gattgteggt 5220 ggtagggtgg attctgccag gctgggcaca gaggtctgtc tgatgcccca attgggccta 5280 taaatggcgg ggtgggagag agggatattc aatactettc aggagttetg atatgecate 5340 tcagatagac ccagccatct ccccaagccc atgcctcgga agtgcactga cagggtgcag 5400 atcettaagg gtgttgteet tecagacaca cacagtggee tgagetecaa etceagcatg 5460 accacgeggg agetteagea gtaetggeag aaccagaaat geegetggaa geaegteaaa 5520 ctgctctttg agatcgcttc agctcgcatc gaggagagaa aagtctctaa gtttgtggta 5580 agcagagatt gggaaatggt ggagcctctt tcactctgct tccttcctqg ccctqaataa 5640 gtcttgtaga gcctcaggtt tcccaactat gaaatgggtc aacacactaa ctcacagctt 5700 tettetggag aaaatggeea aagageaaga ttteaggete ageacetget agggtetgtg 5760 aggattogaa coatataagt catatttott ggtoccaaga aggaaatago ccagtttaat 5820 cccatcttat caggigtcag tcaccigtgt cctttcttca ccaattitgc catatcactg 5880 tatctgttct aattattatt acttattttt ttctttaaat tggatcactt tttaaaaaca 5940 tgaagcacat ttatttcaaa gagaaatacc ttaaatggaa aaccaatatc acatggcaca 6000 aagcaaaagt aacatactag aaaagtcgat acaaggaaag tcaatacaag gaaagctatg 6060 tgctgttatt aaattctagc tggttactgt ggcttcggga aagccctgtg cctgggagct 6120 getectetee etgttagaat ggaattttag ettgtgttaa gggatgttaa agaetgeeta 6180 agagecaeae tteateette teetteaett aeetgggaee gggataaata aeatagetae 6240 cactgaatgc caatggcatg ccgggcacag ctccatgtgg tttcagtgca ttaactcatt 6300 taatcctcac tgggtgaggt aggcactatg cctatccttg ttttatgaat gagaaaagtg 6360 agactcggag aggttaaatt actcatctaa aaccacacag ctagaccatg gtagggctat 6420 aattacaacc catgcaatct ggctctggag tcagatgcat gggttataat tgcccttaat 6480 atataattgc ccgtaatcag gattctcttg aaagatgatt gaaaaggatt gattttctta 6540

```
ccatataacg gcatcaccag tgtacctaaa tgatgttata ttgtacgtaa aactaattcc 6600
caaqtqtqaa acatttqqaa aacacaqcat ctcaqttcaq aaaacaqaqq cccaqtttta 6660
qcaaqtaaaq ccaaqaqqqa ccccaqcaqc ctqcaqqqca qqaccctctq ccctttctcc 6720
teccagatgt ecceaecttg etgtqttgtt qttecagggt tgaeteaget gatgeeaata 6780
gcaatttaaa acagaattgg gccaggtgca gtggctcatg cctgtaatcc cagcactttg 6840
ggaggcccag gtaggaggat cgcttgagcc caggagttgg agaccagcct gggcaacaca 6900
gccagacccc atcttttaaa aagaatcaaa aaatctgcca ggtagtgggt gtgcctgtag 6960
teccagetae teaggagget caggtgggea ggteaattga geccataagt teaaggttge 7020
agtgaggtat gatcgcatca ctgtactcca gcctgggtaa cagtgcgaga ccctgtctct 7080
tcaattgcat ataaggatcg cccgttttca gggcatgctt tacaccggcc tggttaactt 7200
tactctgggt gtgctccgtc cgccgcagcc cccgccggga ggtggccaca gctctctctg 7260
gttgcgccct aggtgtacca aatcatcgtc atccagactg ggagctttga caacaacaag 7320
geogteetgg aacggegeta tteegactte gegaagetee agaaageget getgaagaeg 7380
ttcagggagg agatcgaaga cgtggagttt cccaqqaaqc acctgactqq qaacttcqct 7440
gaggagatga tetgtgageg teggegege etgeaggagt acetgggeet getetaegee 7500
atccgctgcg tgcgccgctc ccgggagttc ctggacttcc tcacgcggcc ggagctgcgc 7560
gaggettteg getgeetgeg ggeeggeeag taccegegeg ceetggaget getgetgege 7620
gtgctgccgc tgcaggagaa gctcaccgcc cactgccctg cggccgccgt cccggccctg 7680
tgcgccgtgc tgctgtgcca ccgcgacctc gaccgccccg ccgaggcctt cgcggccgga 7740
gagagggeee tgeagegeet geaggeeegg gagggeeate getactatge geetetgetg 7800
gacgccatgg tccgcctggc ctacgcgctg ggcaaggact tcgtgactct gcaggagagg 7860
ctggaggaga gccagctccg gaggcccacq ccccgaggca tcaccctgaa ggagctcact 7920
gtgcgagaat acctgcactg agccggcctg ggaccccgca gggacgctgg agatttgggg 7980
tcaccatggc tcacagtggg ctgtttgggg ttcttttttt ttatttttcc ttttctttt 8040
tgttatttga gacagtettg etetgteace cagaetgaag tgeagtgget caattatgte 8100
tcactgcagc ctcaaactcc tgggcacaag caatc
                                                                8135
<210> 7
<211> 16
<212> ADN
<213> Homo sapiens
<400> 7
ctgggtgcga ttgctc
                                                                16
<210> 8
<211> 16
<212> ADN
<213> Homo sapiens
<400> 8
ccaggcccca tgacag
                                                                16
<210> 9
<211> 25
<212> ADN
<213> Homo sapiens
<400> 9
tggtcccggc ccaatcccaa tgctt
                                                                25
<210> 10
<211> 28
<212> ADN
<213> Homo sapiens
```

<400> 10 ttcctcatgt ataaattggg	tgtggcca	28
<210> 11 <211> 25 <212> ADN <213> Homo sapiens		
<400> 11 acagagtgag gaccccatct	ctatc	25
<210> 12 <211> 25 <212> ADN		
<213> Homo sapiens <400> 12 tccaactgct gggattacag	gcaca	25
<210> 13 <211> 22 <212> ADN		
<213> Homo sapiens <400> 13		
agtccccgag accagggcaa	ac .	22
<211> 23 <212> ADN <213> Homo sapiens		
<400> 14 tccatttctg cagtacacat	gca	23
<210> 15 <211> 20 <212> ADN <213> Homo sapiens		
<400> 15 ctctccccat agaaggcatc		20
<210> 16 <211> 20 <212> ADN		
<213> Homo sapiens		20
ggatagagac gttetettaa <210> 17		20
<211> 20 <212> ADN		

<213> Homo	sapiens	
<400> 17 caggctgaat	gacagaacaa	20
<210> 18 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 18 attgaaaaca	actccgtcca	20
<210> 19 <211> 25 <212> ADN <213> Homo	sapiens	
<400> 19 atactcactt	ttagacagtt caggg	25
<210> 20 <211> 21 <212> ADN <213> Homo	sapiens	
<400> 20 ggctcagttc	ctaaccagtt c	21
<210> 21 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 21 agtcagtctg	tccagaggtg	20
<210> 22 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 22 tgaatcttac	atcccatccc	20
<210> 23 <211> 17 <212> ADN <213> Homo	sapiens	
<400> 23 gatettecca	aagcgcc	17

<210> 24

<211> 17		
<212> ADN		
<213> Homo	sapiens	
<400> 24		
tcccgtcagc	caagcta	17
<210> 25		
<211> 20		
<212> ADN		
<213> Homo	sapiens	
	•	
<400> 25		
aagcttgtat	ctttctcagg	20
(010) 06		
<210> 26		
<211> 20 <212> ADN		
<213> Homo	canione	
\215> Holdo	Saptens	
<400> 26		
	gctgtcattg	20
_		
<210> 27		
<211> 20		
<212> ADN		
<213> Homo	sapiens	
<400> 27		
	catgtgagcc	20
	9-9-9-9	
<210> 28		
<211> 20		
<212> ADN		
<213> Homo	sapiens	
<400> 28		
	natanagaa	20
aucocococa	actcaagacc	20
<210> 29		
<211> 20		
<212> ADN		
<213> Homo	sapiens	
<400> 20		
<400> 29	tctaaatacc	20
ggatgeetge	CCCaaacaCC	20
<210> 30		
<211> 19		
<212> ADN		
<213> Homo	sapiens	
<400> 30		
cccaggggtc	aaacttaat	19

<210> 31 <211> 21 <212> ADN <213> Homo	sapiens	
<400> 31 ggtttgaaag	tatctccagg g	21
<210> 32 <211> 21 <212> ADN		
<213> Homo <400> 32	sapiens	
ggtttgaaag	tatctccagg g	21
<210> 33 <211> 20 <212> ADN		
<213> Homo	sapiens .	
<400> 33 gtgcatgtgt	tcgtatcaac	20
<210> 34 <211> 20 <212> ADN	·	
<213> Homo	sapiens	
<400> 34 tcatctccaa	aggagtttct	20
<210> 35 <211> 18 <212> ADN		
<213> Homo	sapiens	
<400> 35 aaagccaacc	ttgcttca	18
<210> 36 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 36 tcttggaaac	aggtaagtgc	20
<210> 37 <211> 18 <212> ADN <213> Homo	sapiens	
∠400\ 27		

attgccctca agaacagc	18
<210> 38 <211> 17 <212> ADN <213> Homo sapiens	
<400> 38 gtgctatgcc atcccag	17
<210> 39 <211> 20 <212> ADN	
<213> Homo sapiens <400> 39 ccacaccagc gtttttctaa	20
<210> 40 <211> 24	
<212> ADN <213> Homo sapiens	
<400> 40 cacactttac acacacctat accc	24
<210> 41 <211> 22 <212> ADN <213> Homo sapiens	
<400> 41 aagccatatt aggtctgtcc at	22
<210> 42 <211> 19 <212> ADN	
<213> Homo sapiens <400> 42 gcttgggtta aatgcgtgt	19
<210> 43 <211> 20	
<212> ADN <213> Homo sapiens	
<400> 43 agcagtttgg gtaaacattg	20
<210> 44 <211> 20 <212> ADN <213> Homo sapiens	

<400> 44 aaatatgcct	tctggaggtg	20
<210> 45 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 45 ggaggatcag	gggagtttat	20
<210> 46 <211> 24 <212> ADN <213> Homo	sapiens	
<400> 46 caaagtaaat	gaatgtctac tgcc	24
<210> 47 <211> 23 <212> ADN <213> Homo	saniens	
<400> 47	agtttcaaag agc	23
<210> 48 <211> 20 <212> ADN <213> Homo	saniens	
<400> 48	cttgcttggt	20
<210> 49 <211> 25 <212> ADN <213> Homo		
<400> 49	aatgaaatat aacac	25
<210> 50 <211> 25 <212> ADN		
<213> Homo <400> 50 gctctcagct	agggtagttg tttat	25
<210> 51 <211> 25		

<212> ADN <213> Homo	sapiens	
<400> 51 atttttaagg	aatgtaaagn acaca	25
<210> 52 <211> 20 <212> ADN <213> Homo	saniens	
<400> 52	cagtaaaagg	20
<210> 53 <211> 20 <212> ADN		
<213> Homo	sapiens	
<400> 53 gtccaaaaca	ccaccctcta	20
<210> 54 <211> 24 <212> ADN <213> Homo	sapiens	
<400> 54 gaagtagatc	agtcatcttg ctgc	24
<210> 55 <211> 19 <212> ADN <213> Homo		
	sapiens	
<400> 55 tcctctgggg		19
<pre><210> 56 <211> 20 <212> ADN</pre>	gattcactc	19
<pre><210> 56 <211> 20 <212> ADN <213> Homo <400> 56</pre>	gattcactc	19
<pre><210> 56 <211> 20 <212> ADN <213> Homo <400> 56</pre>	gattcactc sapiens caagcacaag	

<210> 58 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 58 cctgtgggca	ctgataaata	20
<210> 59 <211> 19 <212> ADN <213> Homo	sapiens	
<400> 59 cccagcccc	atctcaccg	19
<210> 60 <211> 19 <212> ADN <213> Homo	sapiens	
<400> 60 cccagcccc	atctcacca	19
<210> 61 <211> 19 <212> ADN <213> Homo	sapiens	
<400> 61 ctgcggagga	ggctgctgg	19
<210> 62 <211> 19 <212> ADN <213> Homo	sapiens	
<400> 62 tcactcccac	caccettte	19
<210> 63 <211> 20 <212> ADN <213> Homo	sapiens	
<400> 63 agaagtttag	tgtggcgtgg	20
<210> 64 <211> 17 <212> ADN <213> Homo	sapiens	
<400> 64 gccatctccc	caagccc	17

<210> 65		
<211> 18		
<212> ADN		
<213> Homo	sapiens	
<400> 65		
tcgatgcgag	ctgaagcg	18
<210> 66		
<211> 18		
<212> ADN		
<213> Homo	sapiens	
<400> 66		
tcgatgcgag	ctgaagca	18
<210> 67		
<211> 20		
<212> ADN		
<213> Homo	canions	
\213\/ HOIRO	Saptens	
(400) (7		
<400> 67		
tgaatgttaa	agggctctgg	20
<210> 68		
<211> 19		
<212> ADN		
<213> Homo	saniens	
1210) HOMO	Suprems	
<400> 68		
ttggttctca	gctccggcg	19
<210> 69		
<211> 19		
<212> ADN		
<213> Homo	sapiens	
	<u> </u>	
<400> 69		
ttggttctca	actecades	10
	goooggeu	19
Z2105 70		
<210> 70		
<211> 19		
<212> ADN		
<213> Homo	sapiens	
<400> 70		
agaaaccggg	ctggctgtg	19
3	· · · · · · · · · · ·	
	•	
<210> 71		
<211> 71		
<212> ADN		
213 Homo	4251 ANG	

<400> 71 gcattgcctt ttgatctcta c	2,1
<210> 72 <211> 18 <212> ADN <213> Homo sapiens	
<400> 72 tgggctcttc tgcgggga	18
<210> 73 <211> 18 <212> ADN	
<213> Homo sapiens	
<400> 73 tgggctcttc tgcggggg	18
<210> 74	
<211> 20 <212> ADN	
<213> Homo sapiens	
<400> 74	
tgcctcttct, tctgccttcc	20
<210> 75	
<211> 22	
<212> ADN <213> Homo sapiens	
<400> 75 cgagctgtac ctgaggaagc gt	22
<210> 76	
<211> 24 <212> ADN	
<213> Homo sapiens	
<400> 76	
cctgagctgt acctgaggaa gcgc	24
<210> 77 <211> 20	
<212> ADN	
<213> Homo sapiens	
<400> 77	
catcatgagc ccggggtggc	20
<210> 78 <211> 23	
<212> ADN	

<213> Homo	sapiens		
<400> 78 tttctcttgg	cttcctggtg	cgt	23
<210> 79 <211> 25 <212> ADN <213> Homo	sapiens		
<400> 79 accttctctt	ggcttcctgg	tgcgg	25
<210> 80 <211> 26 <212> ADN <213> Homo	sapiens		
<400> 80 gccaaaggtg	tcgtgccagg	gctcca	26
<210> 81 <211> 20 <212> ADN <213> Homo	sapiens		
<400> 81 atctgagaag	gccctgctct		20
<210> 82 <211> 20 <212> ADN <213> Homo	sapiens		٠
<400> 82 atctgagaag	gccctgctcc		20
<210> 83 <211> 19 <212> ADN <213> Homo	sapiens		
<400> 83 cccacactta	gccttgatg		19
<210> 84 <211> 19 <212> ADN <213> Homo	sapiens		
<400> 84 atgagttagc	ccagcggag		19
<210> 85			

<211> 19 <212> ADN <213> Homo sapiens	
<400> 85 attgagagcc cttggagtg	19
<210> 86 <211> 19 <212> ADN <213> Homo sapiens	
<400> 86 tgatttcgta agacaagtg	19
<210> 87 <211> 20 <212> ADN	
<213> Homo sapiens	
<400> 87 agcaaattct aggagttatg	20
<210> 88 <211> 19 <212> ADN <213> Homo sapiens	
<400> 88 agctgagatg tccggatcg	19
<210> 89 <211> 18 <212> ADN <213> Homo sapiens	
<400> 89 agctgagatt ccggatca	18
<210> 90	
<211> 20 <212> ADN <213> Homo sapiens	
<400> 90 gtcctcttaa cttcccttcc	20

établi sur la base des demières revendications déposées avant le commencement de la recherche

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806739

N° d'enregistrement national

FA 591027 FR 0003832

Catégorie X	Citation du document avec indication, en cas de besoir des parties pertinentes	n,		à l'invention par l'INPI
X				
	DATABASE EMBL 'en ligne! ACCESSION NO:ACO07728, 7 juin 1999 (1999-06-07) DOE JOINT GENOME INSTITUTE: "Ho chromosome 16 clone RP11-327F22 DRAFT SEQUENCE, 1 ordered piece XP002156657 voir complément inverse nts 136	mo sapiens , WORKING s."		C12N15/12 C07K14/47 C07K16/18 C12N15/63 C12N5/10 A01K67/027 G01N33/53 C12Q1/68 A61K48/00
x	DATABASE EMBL 'en ligne! ACCESSION NO: ACOO7608, 21 mai 1999 (1999-05-21) DOE JOINT GENOME INSTITUTE: "Ho chromosome 16 clone RP11-401P9, DRAFT SEQUENCE, 8 ordered piece XP002156658 voir nts 30640-38779 te complém nts 1-16166	mo sapiens WORKING S."	,13, 19	A61K38/17 A61K39/395 A61P1/00 A61P29/00 A61P37/00
X	DATABASE EMBL 'en ligne! ACCESSION NO: AQ534686, 18 mai 1999 (1999-05-18) ZHAO, S., ET AL.: "RPCI-11-384F RPCI-11 Homo sapiens genomic cl RPCI-11-384F21,genomic survey s XP002156659 * le document en entier *	21.TJ one	,13, 19	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7) C12N C07K C12Q G01N A61K
X	WO 99 64576 A (BURGESS CHRISTOP; BUSHNELL STEVEN E (US); CARROL () 16 décembre 1999 (1999-12-16 voir SEQ ID NO:365	L EDDIE III 18,	3,13, 19	
	Date d'achèvem	ent de la recherche		Examinateur
	8 jar	vier 2001	Mad	dox, A
X:pa Y:pa auf A:an O:dia	CATÉGORIE DES DOCUMENTS CITES Inticulièrement pertinent à lui seul Inticulièrement pertinent en combinaison avec un tre document de la même calégorie rière-plan technologique vulgation non-écrite cument intercalaire	T: théorie ou principe à la E: document de brevet bé à la date de dépôt et qu de dépôt ou qu'à une d D: cité dans la demande L: cité pour d'autres raison	néficiant d ii n'a été p ate postéri ns	'une date antérieure ublié qu'à cette date

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806739 N° d'enregistrement

national

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 591027 FR 0003832

Classement attribué **DOCUMENTS CONSIDÉRÉS COMME PERTINENTS** Revendications à l'invention par l'INPI Citation du document avec indication, en cas de besoin, Catégorie des parties pertinentes 1-8,13, DATABASE EMBL 'en ligne! X 18,19 ACCESSION NO: AI681116, 27 mai 1999 (1999-05-27) NCI-CGAP: "tx44b02.x1 NCI_CGAP_Lu24 Homo sapiens cDNA clone IMAGE:2272395 3', mRNA sequence." XP002156660 * le document en entier * 1-8.13χ DATABASE EMBL 'en ligne! 18,19 ACCESSION NO: AQ585409, 9 juin 1999 (1999-06-09) ZHAO, S., ET AL.: "RPCI-11-459C5.TV RPCI-11 Homo sapiens genomic clone RPCI-11-459C5, genomic survey sequence." XP002156661 * le document en entier * 1-8,13,DATABASE EMBL 'en ligne! X 18,19 ACCESSION NO:AI090427, DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7) 19 août 1998 (1998-08-19) NCI-CGAP: "oy82d10.s1 NCI_CGAP_CLL1 Homo sapiens cDNA clone IMAGE:1672339 3', mRNA sequence." XP002156662 * le document en entier * 1-8,13, X DATABASE EMBL 'en ligne! 18,19 ACCESSION NO: AQ176547, 21 septembre 1998 (1998-09-21) MAHAIRAS, G.G., ET AL.: "HS_3213_B1_C05_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3213 Col=9 Row=F, genomic survey sequence. XP002156663 * le document en entier * Date d'achèvement de la recherche Examinateur Maddox, A 8 janvier 2001 T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure CATÉGORIE DES DOCUMENTS CITES à la date de dépôt et qui n'a été publié qu'à cette date X : particulièrement pertinent à lui seul particulièrement pertinent en combinaison avec un autre document de la même catégorie de dépôt ou qu'à une date postérieure. D : cité dans la demande arrière-plan technologique L : cité pour d'autres raisons O: divulgation non-écrite P : document intercalaire & : membre de la même famille, document correspondant

1

établi sur la base des dernières revendications déposées avant le commencement de la recherche

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806739

N° d'enregistrement national

FA 591027 FR 0003832

DOCU	MENTS CONSIDÉRÉS COMME PERTI	NENTS Revending	
atégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
х	DATABASE EMBL 'en ligne! ACCESSION NO: AW082334, 18 octobre 1999 (1999-10-18) NCI-CGAP: "xb65f03.x1 Soares_NFL Homo sapiens cDNA clone IMAGE:25 similar to contains LTR1.t3 LTR1 repetitive element ;, mRNA seque XP002156664 * le document en entier *	81181 3'	
х	DATABASE EMBL 'en ligne! ACCESSION NO: AA282390, 4 avril 1997 (1997-04-04) NCI-CGAP: "zs89all.rl NCI_CGAP_G sapiens cDNA clone IMAGE:704636 sequence." XP002156665 * le document en entier *		
X	DATABASE EMBL 'en ligne! ACCESSION NO: AA278249, 3 avril 1997 (1997-04-03) NCI-CGAP: "zs77c05.rl NCI_CGAP_G sapiens cDNA clone IMAGE:703496 sequence." XP002156666 * le document en entier *	1-8, 18,1 CB1 Homo 5', mRNA	
X	DATABASE EMBL 'en ligne! ACCESSION NO: AW134842, 29 octobre 1999 (1999-10-29) NCI-CGAP: "UI-H-BI1-abs-e-09-0-U NCI_CGAP_Sub3 Homo sapiens cDNA IMAGE:2713048 3', mRNA sequence. XP002156667 * le document en entier *	clone	
	Date d'achèvemer	t de la recherche	Examinateur
		ier 2001	Maddox, A
X:pa Y:pa au A:an O:da	CATÉGORIE DES DOCUMENTS CITES rliculièrement pertinent à lui seul rliculièrement pertinent en combinaison avec un re document de la même catégorie rère-plan technologique rulgation non-écrite cument intercalaire	T: théorie ou principe à la b E: document de brevet bén à la date de dépôt et qui de dépôt ou qu'à une da D: cité dans la demande L: cité pour d'autres raisons	base de l'invention réficiant d'une date antérieure i n'a été publié qu'à cette date de postérieure.

établi sur la base des dernières revendications déposées avant le commencement de la recherche

2806739

N° d'enregistrement national

FA 591027 FR 0003832

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

DOCU	IMENTS CONSIDÉRÉS COMME PE	RTINENTS	tevendications oncernées	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de bes des parties pertinentes	oin,		•
х	DATABASE EMBL 'en ligne! ACCESSION NO: AW104269, 21 octobre 1999 (1999-10-21) NCI-CGAP: "xd70h07.x1 Soares_N Homo sapiens cDNA clone IMAGE: similar to contains Alu repeti element;contains element MER22 element;, mRNA sequence." XP002156668 * le document en entier *	FL_T_GBC_S1 2603005 3' tive	-8,13, 8,19	
X	DATABASE EMBL 'en ligne! ACCESSION NO: AI377313, 28 janvier 1999 (1999-01-28) NCI-CGAP: "te60b02.x1 Soares_N Homo sapiens cDNA clone IMAGE: similar to contains element MS repetitive element ;, mRNA sec XP002156669 * le document en entier *		1-8,13, 18,19	DOMAINES TECHNIQUES RECHERCHÉS (Inf.CL.7)
D,A	HUGOT JEAN-PIERRE ET AL: "May susceptibility locus for Croho on chromosome 16." NATURE (LONDON), vol. 379, no. 6568, 1996, page XP002156655 ISSN: 0028-0836 * le document en entier *	n's disease	1-23,25, 26	
		rement de la recherche	Mad	Examinateur
		anvier 2001	!	dox, A
X:pa Y:pa au A:an O:di	CATÉGORIE DES DOCUMENTS CITES uticulièrement pertinent à lui seul uticulièrement perlinent en combinaison avec un tre document de la même catégorie rière—plan technologique vulgation non-écrite curment intercalaire	à la date de dépôt de dépôt ou qu'à t D : cité dans la dema L : cité pour d'autres	et bénéficiant d et qui n'a été p une date postér nde raisons	l'une date antérieure ublié qu'à cette date

établi sur la base des demières revendications déposées avant le commencement de la recherche

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806739

N° d'enregistrement national

FA 591027 FR 0003832

DOCU	IMENTS CONSIDÉRÉS COMME PER	TINENTS	Revendication concernées	ns Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoi des parties pertinentes	in,		
A	MIRZA MUDDASSAR M ET AL: "Evid linkage of the inflammatory bow susceptibility locus on chromos (IBD1) to ulcerative colitis." JOURNAL OF MEDICAL GENETICS, vol. 35, no. 3, mars 1998 (1998 218-221, XP000971943 ISSN: 0022-2593 * le document en entier *	rel disease come 16	1-23,2 26	25,
A	HUGOT J P ET AL: "Fine mapping inflammatory bowel disease susciocus 1 (IBD1) in the pericentregion of chromosome 16." GASTROENTEROLOGY, vol. 114, no. 4 PART 2, 15 avril 1998 (1998-04-15), pag XP000971941 Digestive Diseases Week and the Annual Meeting of the American Gastroenterological Association Orleans, Louisiana, USA; May 16 ISSN: 0016-5085 * le document en entier *	ceptibility comeric ge A999 e 99th n;New	1-23,2 26	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
A	WO 99 23255 A (CEDARS SINAI MEI ;UNIV LOUISVILLE RES FOUND (US) 14 mai 1999 (1999-05-14) * le document en entier *	DICAL CENTER); DIETZ)	1-23,2 26	25,
		-/		
	Date d'achèver	ment de la recherche	٠	Examinateur
	8 ja	nvier 2001		Maddox, A
X:pa Y:pa au A:ar O:di	CATÉGORIE DES DOCUMENTS CITES uticutièrement pertinent à lui seul uticutièrement pertinent en combinaison avec un tre document de la même catégorie rière-plan technologique vulgation non-écrîte cument intercalaire	à la date de dép de dépôt ou qu'à D : cité dans la dem L : cité pour d'autre	evet bénéfic ôt et qui n'a i une dale p nande s raisons	ciant d'une date antérieure L'été publié qu'à cette date

établi sur la base des dernières revendications déposées avant le commencement de la recherche

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806739

N° d'enregistrement national

FA 591027 FR 0003832

DOCL	IMENTS CONSIDÉRÉS COMME PE	RTINENTS Reve	endications ernées	Classement attribué à l'invention par l'INPI
ıtégorie	Citation du document avec indication, en cas de bes des parties pertinentes	soin,		
	DATABASE SWISSPROT 'en ligne! ACCESSION NO: Q9Y239, INOHARA, N., ET AL.: "NOD1 pro XP002156670 * le document en entier * -& INOHARA, N., ET AL.: "Nod Apaf-1-like activator of caspa nuclear factor-kappaB" THE JOURNAL OF BIOLOGICAL CHEM vol. 274, no. 21, 21 mai 1999 (1999-05-21), page 14560-14567, XP002156656 * le document en entier *	otein" 1, an ase-9 and MISTRY,	23,25,	
1	WO 99 40102 A (BERTIN JOHN ;MI PHARM INC (US)) 12 août 1999 (* figures 3,10,18 *		23,25,	
				DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
	Date d'achè	vernent de la recherche	1	Examinateur
		anvier 2001	Mad	dox, A
X:pa Y:pa au A:ar	CATÉGORIE DES DOCUMENTS CITES uticulièrement pertinent à lui seul uticulièrement pertinent en combinaison avec un tre document de la même catégorie rière—plan technologique vulgation non-écrite	T: théorie ou principe à E: document de brevet à la date de dépôt et de dépôt ou qu'à une D: cité dans la demande L: cité pour d'autres rais	bénéficiant d qui n'a été p date postéri e sons	'une date antérieure ublié qu'à cette date
	current intercalaire	& : membre de la même		

1

RECHERCHE INCOMPLÈTE FEUILLE SUPPLÉMENTAIRE C

Numéro de la demande

FA 591027 FR 0003832

Certaines revendications n'ont pas fait l'objet d'une recherche ou ont fait l'objet d'une recherche incomplète, à savoir:

Revendications ayant fait l'objet de recherches complètes: 1-23

Revendications ayant fait l'objet de recherches incomplètes: 25 26

Revendications n'ayant pas fait l'objet de recherches: 24(complètement) et, 25 et 26 partiellement

Raison:

Les revendications 24 et 25f,et 26 (pour autant qu'elle se référes à 25f) présentes ont trait à un composé défini en faisant référence à une caractéristique ou propriété souhaitable, à savoir un composé capable d'interagir avec un acide nucléotidique selon l'une des revendications 1 à 3. Les revendications couvrent tous les composés présentant cette caractéristique ou propriété, alors que la demande ne fournit pas un fondement au sens de l'Article 6 PCT et/ou un exposé au sens de l'Article 5 PCT pour tels composés. Dans le cas présent, les revendications manquent de fondement et la demande manque d'exposé à un point tel qu'une recherche significative sur tout le spectre couvert par les revendications est impossible. Indépendamment des raisons évoquées ci-dessus, les revendications manquent aussi de clarté. En effet, on a cherché à définir le composé au moyen du résultat à atteindre. Ce manque de clarté est, dans le cas présent, de nouveau tel qu'une recherche significative sur tout le spectre couvert par les revendications est impossible.

ABSENCE D'UNITÉ D'INVENTION FEUILLE SUPPLÉMENTAIRE B

Numéro de la demande

FA 591027 FR 0003832

La division de la recherche estime que la présente demande de brevet ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir :

1. revendications: 1-26 partiellement

Acide nucléique et polypeptide charactérisé par le groupe de séquences SEQ ID NO:1,2, et 3, et des séquences présentant un pourcentage d'identité avec,ou fragments de, ou s'hybridant avec ces séquences 1,2, ou 3,comme definies dans les revendications, vecteur de clonage,cellule hote,animal excepté l'homme,utilisation,procédé d'obtention d'un polypeptide, anticorps,trousse de réactifs,méthode de diagnostic, procédé de détection, procédé de criblage et composé, basés sur ces séquences

2. revendications: 1-26 partiellement

Acide nucléique et polypeptide charactérisé par le groupe de séquences SEQ ID NO:4,5, et 6, et des séquences présentant un pourcentage d'identité avec,ou fragments de, ou s'hybridant avec ces séquences 4,5, ou 6,comme definies dans les revendications, vecteur de clonage,cellule hote,animal excepté l'homme,utilisation,procédé d'obtention d'un polypeptide, anticorps,trousse de réactifs,méthode de diagnostic, procédé de détection, procédé de criblage et composé, basés sur ces séquences

Toutes les inventions ont cependant été recherchées.