Lab 2

Restauration d'images par EDP

Pour chaque modèle, nous avons testé différentes valeurs pour les hyperparamètres et nous en faisons la synthèse.

1. Modèle de Perona-Malik

Avec la fonction de conduction $g(x) = \exp\{-(x/K)^2\}$

Nous avons testé les paramètres suivants:

N°	delta_t	t	К
1	0.1	25	50
2	0.2	25	50
3	0.25	25	50
4	0.35	25	50
5	0.25	10	50
6	0.25	50	50
7	0.25	80	50
8	0.25	25	20
9	0.25	25	100
10	0.25	25	150

Influence de delta_t

Plus le pas de temps delta_t est faible, plus l'image semble nette avec des contours plus précis. Des artefacts apparaissent dès que delta_t > 25.

Influence de t
Plus le nombre d'itérations t est grand, plus l'image obtenue est floue.

Influence de K

Le paramètre de contraste ne semble pas vraiment améliorer la qualité visuelle, et son augmentation semble flouter les contours.

Avec la fonction de conduction $g(x) = 1/(1+(x/K)^2)$

N°	delta_t	t	К
1	0.2	25	50
2	0.25	25	50
3	0.25	10	50
4	0.25	80	50
5	0.25	25	20
6	0.25	25	100

On constate des résultats similaires à ceux obtenus avec $g(x) = \exp\{-(x/K)^2\}$.

2. Modèle de Nordström

Avec la fonction de conduction $g(x) = \exp\{-(x/K)^2\}$

N°	delta_t	t	К	lambda
1	0.25	25	50	3
2	0.25	25	50	7
3	0.25	25	50	5
4	0.25	25	50	10
5	0.25	25	50	13

Influence de lambda

Le poids lambda du terme d'attache à l'image initiale mesure l'importance donnée à la connaissance a priori du type d'image que l'on souhaite obtenir, soit ici l'image obtenu avec le modèle de Perona-Malik. On constate donc de manière cohérente une augmentation du flou lorsque lambda augmente, avec apparition de bruit pour des valeurs trop grandes.

Le jeu de paramètres optimaux semble donc être le N°4.

Avec la fonction de conduction $g(x) = 1/(1+(x/K)^2)$

N°	delta_t	t	К	lambda
1	0.25	25	50	3

2	0.25	25	50	5
3	0.25	25	50	7
4	0.25	25	50	10
5	0.25	25	50	13

On constate des résultats similaires à ceux obtenus avec $g(x) = \exp\{-(x/K)^2\}$

3. Modèle de Nordström entropique

Avec la fonction de conduction $g(x) = \exp\{-(x/K)^2\}$

N°	delta_t	t	К	lambda	μ
1	0.25	25	50	10	1
2	0.25	25	50	10	1.2
3	0.25	25	50	10	1.5
4	0.25	25	50	10	1.7
5	0.25	25	50	10	2
6	0.25	25	50	10	5
7	0.25	25	50	10	10

Influence de µ

Nous constatons que pour de faibles valeurs de μ , les gradients au niveau des contours augment et favorisent la détection des contours comme on le désirait. Cependant, quand les valeurs de μ dépassent un certain seuil, le modèle devient très rapidement sur-bruité.

IMAGES

Le jeu de paramètres optimaux semble donc être le N°3

Avec la fonction de conduction $g(x) = 1/(1+(x/K)^2)$

N°	delta_t	t	К	lambda	μ
1	0.25	25	50	10	1
2	0.25	25	50	10	1.2
3	0.25	25	50	10	1.5
4	0.25	25	50	10	1.7
5	0.25	25	50	10	2
6	0.25	25	50	10	5
7	0.25	25	50	10	10

On constate des résultats similaires à ceux obtenus avec $g(x) = \exp\{-(x/K)^2\}$