

UNIVERSITÄT Bern

Statistik II – Teil II

5. Einfaktorielle Varianzanalyse mit Messwiederholung

Dr. Boris Mayer Institut für Psychologie Universität Bern

Was bedeutet Messwiederholung?

b UNIVERSITÄ BERN

- Varianzanalyse OHNE Messwiederholung (Buch Kap. 13)
 - UNABHÄNGIGE STICHPROBEN: In den verschiedenen Bedingungen (Faktorstufen) müssen sich verschiedene Personen befinden (und diese Personen dürfen in keiner systematischen Beziehung zueinander stehen)
- > Varianzanalyse MIT Messwiederholung (Buch Kap. 14)
 - ABHÄNGIGE STICHPROBEN: In den verschiedenen Bedingungen (Faktorstufen) befinden sich
 - 1. Dieselben Personen (intraindividuelle Bedingungsvariation, wiederholte Messung derselben Personen)
 - 2. Verschiedene Personen, die in einer "natürlichen" Beziehung zueinander stehen (z.B. Geschwister, Ehepaare)
 - 3. Verschiedene Personen, die aufgrund einer **Parallelisierung** systematische Ähnlichkeiten aufweisen. **Parallelisierung** ("Matching"): Man bildet Paare etc. von Versuchspersonen, die die gleiche oder eine sehr ähnliche Ausprägung auf einem Merkmal aufweisen, dessen Einfluss man in der Untersuchung kontrollieren will
 - Man spricht daher auch von VERBUNDENEN STICHPROBEN

Einfaktorielle Varianzanalyse mit Messwiederholung

b UNIVERSITÄT BERN

- > Erweiterung des t-Tests für abhängige/verbundene Stichproben
 - Vergleich von mehr als 2 abhängigen/verbundenen Stichproben bezüglich ihrer zentralen Tendenz (Mittelwerte)
- > **Beispiel:** Dreimalige Erhebung der kognitiven Leistungsfähigkeit einer Gruppe von Personen unter 3 verschiedenen Bedingungen
 - (1) ohne Stimmungsinduktion
 - (2) nach positiver Stimmungsinduktion
 - (3) nach negativer Stimmungsinduktion

Da in allen drei Bedingungen dieselben Personen sind, hängt die kognitive Leistungsfähigkeit nicht nur von der induzierten Stimmung, sondern auch von personengebundenen Variablen ab, die über die 3 Stimmungsbedingungen hinweg stabil bleiben (z.B. Intelligenz, Teilnahmemotivation)

Kovarianz der Messwerte über die drei Bedingungen gibt an, wie gross diejenigen Unterschiede zwischen Personen sind, die über die 3 Bedingungen/Messzeitpunkte hinweg stabil bleiben

Typische Anwendungsgebiete und Probleme von Messwiederholungsdesigns

b UNIVERSITÄT BERN

- > Veränderungsmessung (Längsschnittstudien)
 - Entwicklungspsychologie: Frage nach der Veränderung psychologischer Merkmale mit dem Alter
 - → Zeit als unabhängige Variable, wiederholte Messung eines Merkmals an den gleichen Personen in kleineren oder grösseren Abständen
- > **Evaluationsforschung:** Inwieweit verändert sich eine Merkmalsausprägung nach einer Intervention (z.B. Wohlbefinden nach einer Psychotherapie) und inwiefern bleibt die Veränderung nach einer bestimmten Zeitspanne erhalten?
 - Vorher-/nachher-Messungen, mehrere Messzeitpunkte (Stabilität der Veränderung)
- > **Problem:** Sequenzeffekte, z.B.
 - Übertragung von Lösungsstrategien von einer Messung auf die nächste
 - Abnehmende Teilnahme-Motivation

Datenbeispiel: Modelllernen

Ь	
UNIVE	RSITÄT
BERN	

Person m	Stufe a _j des Faktor	Personmittelwert \overline{x}_{mullet}		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a_3)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

- Es gibt zwar immer noch 15 Messungen (3 Gruppen × 5 Messungen), aber nur noch 5 Personen, die die verschiedenen Bedingungen nacheinander durchlaufen haben.
- Nach dem Film wurde jeweils die Aggressions-Nachahmungstendenz erfasst.
- Neben den (bekannten) Bedingungsmittelwerten zu "Belohnung", "Bestrafung" und "Keine Konsequenz" gibt es für jede Person einen Personenmittelwert, der die generelle aggressive Nachahmungstendenz einer Person im Mittel über alle 3 Bedingungen repräsentiert.
- Personen als "zufällige Faktorstufen" eines Personenfaktors

Messwertzerlegung

b UNIVERSITÄT BERN

Person m	Stufe a _j des Faktor	Stufe a _j des Faktors		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a3)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

Bedingungseffekt

Personeneffekt

Populationsmodell: $x_{mj} = \mu + \tau_j + \pi_m + \varepsilon_{mj}$

Stichprobenmodell:
$$x_{mj} = \overline{x} + t_j + p_m + e_{mj}$$

Definition der Effekte

b UNIVERSITÄT BERN

Person m	Stufe a _j des Faktor	Personmittelwert \overline{x}_{mullet}		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a ₃)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

Bedingungseffekte

Personeneffekte

Populationsmodell: $\tau_{j} = \mu_{\bullet j} - \mu$ und $\pi_{m} = \mu_{m \bullet} - \mu$

Stichprobenmodell:
$$t_j = \overline{x}_{\bullet j} - \overline{x}$$
 und $p_m = \overline{x}_{m \bullet} - \overline{x}$

UNIVERSITÄT Bern

Bedingungs- und Personeneffekte im Beispiel

Person m	Stufe a _j des Faktor	Stufe a _j des Faktors		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a3)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

Bedingungseffekte:

$$t_1 = \overline{x}_{11} - \overline{x} = 58 - 40 = 18$$

$$t_2 = \overline{x}_{\bullet 2} - \overline{x} = 24 - 40 = -16$$

$$t_3 = \overline{x}_{-3} - \overline{x} = 38 - 40 = -2$$

Personeneffekte:

$$p_1 = \overline{x}_1 - \overline{x} = 37 - 40 = -3$$

$$p_2 = \overline{x}_{2\bullet} - \overline{x} = 29 - 40 = -11$$

$$p_3 = \overline{x}_{3 \bullet} - \overline{x} = 35 - 40 = -5$$

$$p_{A} = 45 - 40 = 5$$

$$p_5 = 54 - 40 = 14$$

UNIVERSITÄT

Hypothesen

Nullhypothese: Die (Populations-)Bedingungsmittelwerte unterscheiden sich nicht.

$$H_0: \mu_{.1} = \mu_{.2} = \mu_{.3}$$

oder alternativ:

$$H_0: \mu_{i} - \mu = \mathbf{0}$$
 für alle j

Alternativhypothese: Mindestens zwei Bedingungsmittelwerte unterscheiden sich, bzw. mindestens ein Bedingungseffekt ist ungleich null.

$$H_1: \mu_{i} - \mu \neq \mathbf{0}$$
 für mindestens ein j

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT BERN

10

Quadratsummenzerlegung

Abbildung 14.2 Quadratsummenzerlegung bei der einfaktoriellen Varianzanalyse mit und ohne Messwiederholung

$$x_{mj} = \overline{x} + t_j + p_m + e_{mj}$$

Quadratsummenzerlegung

b UNIVERSITÄT BERN

11

Additivität der Quadratsummen

Bei der einfaktoriellen Varianzanalyse mit Messwiederholung lässt sich die totale Quadratsumme QS_{tot} in drei Teile zerlegen:

- ▶ einen Teil, der die Variation zwischen Personen ausdrückt (»Haupteffekte« der Person; QS_{zwP}),
- ▶ einen Teil, der die Variation zwischen Bedingungen ausdrückt (Haupteffekte des Faktors *A*; *QS*_{zw}*A*), und
- ▶ einen unerklärten Teil (*QS*_{Res}):

$$QS_{\text{tot}} = QS_{\text{zwP}} + QS_{\text{zwA}} + QS_{\text{Res}}$$
 (F 14.6)

Quadratsumme Total

b UNIVERSITÄT BERN

Person m	Stufe a _j des Faktors	Stufe a _j des Faktors		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a ₃)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

$$QS_{tot} = \sum_{j=1}^{J} \sum_{m=1}^{n} (x_{mj} - \overline{x})^{2} = 17^{2} + 5^{2} + 9^{2} + 29^{2} + 30^{2} + (-22)^{2} + (-25)^{2} + (-27)^{2}$$
$$+ (-3)^{2} + (-3)^{2} + (-4)^{2} + (-13)^{2} + 3^{2} + (-11)^{2} + 15^{2}$$
$$= 4532$$

b UNIVERSITÄT BERN

Quadratsumme zwischen den Personen

Person m	Stufe a _j des Faktors			Personmittelwert $\overline{m{x}}_{mullet}$
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a3)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

$$QS_{_{ZWP}} = \sum_{i=1}^{J} \sum_{m=1}^{n} \left(\overline{X}_{m\bullet} - \overline{X} \right)^{2} = J \cdot \sum_{m=1}^{n} \left(\overline{X}_{m\bullet} - \overline{X} \right)^{2}$$

$$QS_{_{ZWP}} = 3 \cdot \left[\left(-3 \right)^2 + \left(-11 \right)^2 + \left(-5 \right)^2 + 5^2 + 14^2 \right] = 1128$$

b UNIVERSITÄT BERN

14

Quadratsumme zwischen den Bedingungen *A*

Person m	Stufe a _j des Faktor	Stufe a _j des Faktors		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a_3)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{ullet j}$	58	24	38	$\overline{x} = 40$

$$QS_{zwA} = \sum_{m=1}^{n} \sum_{j=1}^{J} \left(\overline{X}_{\bullet j} - \overline{X} \right)^{2} = n \cdot \sum_{j=1}^{J} \left(\overline{X}_{\bullet j} - \overline{X} \right)^{2}$$

$$QS_{zwA} = 5 \cdot \left[18^2 + \left(-16 \right)^2 + \left(-2 \right)^2 \right] = 2920$$

465

b UNIVERSITÄT BERN

Quadratsumme Residuen

Person m	Stufe a _j des Faktors	Stufe a _j des Faktors		
	Belohnung (a ₁)	Bestrafung (a_2)	Keine Konsequenz (a_3)	
1	57	18	36	37
2	45	15	27	29
3	49	13	43	35
4	69	37	29	45
5	70	37	55	54
Bedingungsmittelwert $\overline{x}_{\bullet j}$	58	24	38	$\overline{x} = 40$

$$QS_{\text{Res}} = \sum_{j=1}^{J} \sum_{m=1}^{n} \left(\left(\boldsymbol{X}_{mj} - \overline{\boldsymbol{X}} \right) - \left(\overline{\boldsymbol{X}}_{\bullet j} - \overline{\boldsymbol{X}} \right) - \left(\overline{\boldsymbol{X}}_{m\bullet} - \overline{\boldsymbol{X}} \right) \right)^{2} = \sum_{j=1}^{J} \sum_{m=1}^{n} \left(\boldsymbol{X}_{mj} - \overline{\boldsymbol{X}}_{\bullet j} - \overline{\boldsymbol{X}}_{m\bullet} + \overline{\boldsymbol{X}} \right)^{2}$$

$$QS_{Res} = 2^{2} + (-2)^{2} + (-4)^{2} + 6^{2} + (-2)^{2} + (-3)^{2} + 2^{2} + (-6)^{2} + 8^{2} + (-1)^{2} + 1^{2} + (-1)^{2} + 10^{2} + (-14)^{2} + 3^{2} = 484$$

Interaktion zwischen Person und Bedingung

b UNIVERSITÄT BERN

Abbildung 14.1 Graphische Darstellung der Interaktion zwischen Person und Bedingung (Datenbeispiel aus Tab. 14.1)

Zerlegung der Freiheitsgrade

b Universität Bern

$$df_{\text{tot}} = df_{zwP} + df_{zwA} + df_{\text{Res}}$$

$$df_{_{TWP}} = n - 1 = 5 - 1 = 4$$

$$df_{zwA} = J - 1 = 3 - 1 = 2$$

$$df_{\text{Res}} = (n-1)\cdot (J-1) = (5-1)\cdot (3-1) = 8$$

$$df_{\text{tot}} = df_{zwP} + df_{zwA} + df_{\text{Res}} = \mathbf{4} + \mathbf{2} + \mathbf{8} = \mathbf{14} = n \cdot J - \mathbf{1}$$

b UNIVERSITÄT

Mittlere Quadratsummen

$$MQS_{zwP} = \frac{QS_{zwP}}{df_{zwP}} = \frac{J \cdot \sum_{m=1}^{n} (\overline{x}_{m\bullet} - \overline{x})^{2}}{n-1} = \frac{1128}{4} = 282$$

$$MQS_{zwA} = \frac{QS_{zwA}}{df_{zwA}} = \frac{n \cdot \sum_{j=1}^{J} (\overline{x}_{\bullet j} - \overline{x})^{2}}{J - 1} = \frac{2920}{2} = 1460$$

$$MQS_{Res} = \frac{QS_{Res}}{df_{Res}} = \frac{\sum_{j=1}^{J} \sum_{m=1}^{n} (x_{mj} - \overline{x}_{\bullet j} - \overline{x}_{m\bullet} + \overline{x})^{2}}{(n-1)\cdot (J-1)} = \frac{484}{8} = 60,5$$

F-Test

b Universität Bern

Empirischer F-Wert für den Bedingungseffekt A:

$$F_{df_{Z\ddot{a}hler}=2; df_{Nenner}=8} = \frac{MQS_{zwA}}{MQS_{Res}} = \frac{1460}{60,5} = 24,13$$

Kritischer F-Wert für den Bedingungseffekt A:

$$F_{0,95;df_{Z\ddot{a}hler}=2;df_{Nenner}=8}=4,46$$

→ H_0 ("Keine Mittelwertunterschiede zwischen den Bedingungen a_1 , a_2 und a_3 ") wird zugunsten der H_1 ("Die Mittelwerte mindestens zweier Bedingungen unterscheiden sich.") **abgelehnt**.

20

Varianzanteile (Determinationskoeffizienten)

b UNIVERSITÄT BERN

Varianzanteil des Bedingungseffekts:

$$\hat{\eta}^2 = \frac{QS_{zwA}}{QS_{tot}} = \frac{QS_{zwA}}{QS_{zwA} + QS_{zwP} + QS_{Res}}$$

$$\hat{\omega}^2 = \frac{df_{zwA} \cdot \left(MQS_{zwA} - MQS_{Res}\right)}{QS_{tot} + MQS_{zwP}}$$

Partieller Varianzanteil des Bedingungseffekts:

$$\hat{\eta}_p^2 = \frac{QS_{zwA}}{QS_{zwA} + QS_{Res}}$$

$$\hat{\omega}_{p}^{2} = \frac{df_{zwA} \cdot (MQS_{zwA} - MQS_{Res})}{df_{zwA} \cdot MQS_{zwA} + MQS_{Res} \cdot (n - df_{zwA})}$$

$oldsymbol{u}^{^{\mathtt{b}}}$

21

Ergebnistabelle

Tabelle 14.2 Ergebnistabelle einer einfaktoriellen Varianzanalyse mit Messwiederholung (Datenbeispiel aus Tab. 14.1)

Quelle der Variation	QS	df	MQS	F	p	$\hat{m{\eta}}^{2}$	$\hat{\pmb{\eta}}_{p}^{z}$
Faktor A	2920	2	1460	24,13	0,0004	0,64	0,86
Person	1128	4	282				
Residuum	484	8	60,5				
Total	4532	14	323,71				

Der signifikante Effekt des Bedingungs-Faktors A zeigt an, dass sich **mindestens zwei der Mittelwerte** der Bedingungen "Belohnung" (a_1) , "Bestrafung" (a_2) und "Keine Konsequenz" (a_3) in der Population unterscheiden, bzw. dass die Wahrscheinlichkeit, dass die gefundenen (oder noch extremere) Mittelwertunterschiede nur zufällig zustande gekommen sind, sehr niedrig ist (0,04%).

Welche der Mittelwerte unterscheiden sich signifikant? Dazu brauchen wir wieder **Einzelvergleiche** (z.B. mit Korrektur nach Bonferroni/Šidák/Holm/Tukey), siehe unten ab Folie 29.

Spezielle Annahmen zur Varianz

UNIVERSITÄ BERN

Man kann zeigen, dass die Varianz von X_{mj} innerhalb einer Bedingung a_j definiert ist als:

$$Var(X_{mj}) = Var(\pi_m) + Var(\varepsilon_{mj}) + Cov(\pi_m, \varepsilon_{mj})$$

Drei zusätzliche Annahmen:

- (1) Die zufälligen Personeffekte π_m sind unabhängig und identisch normalverteilt mit $N(0, \sigma_{\pi}^2)$.
- (2) Die Residuen ε_{mj} sind unabhängig und identisch normalverteilt mit $N(0, \sigma_{\varepsilon}^2)$.
- (3) Die Kovarianz der Personeffekte und der Residuen ist gleich 0: $Cov(\pi_m, \varepsilon_{mj}) = 0$.

Daraus folgt, dass die Varianz des Merkmals in allen Faktorstufen identisch sein muss:

$$\sigma_{X_j}^2 = \sigma_{\pi}^2 + \sigma_{\varepsilon}^2$$

23

Kovarianz der Faktorstufen

- UNIVERSITÄT BERN
- > Messwerte sind über die Faktorstufen hinweg nicht unabhängig voneinander, da sie von den gleichen Personen stammen
- > Bei J = 3 Faktorstufen drei Kovarianzen: $Cov(X_1, X_2)$, $Cov(X_1, X_3)$, $Cov(X_2, X_3)$
- Varianz-Kovarianzmatrix:

$$\Sigma_{X} = \begin{pmatrix} Var(X_{1}) & Cov(X_{2}, X_{1}) & Cov(X_{3}, X_{1}) \\ Cov(X_{1}, X_{2}) & Var(X_{2}) & Cov(X_{3}, X_{2}) \\ Cov(X_{1}, X_{3}) & Cov(X_{2}, X_{3}) & Var(X_{3}) \end{pmatrix}$$

b UNIVERSITÄ BERN

Annahme der Gleichheit der Kovarianzen: Compound Symmetry (CS)

- > Annahme unabhängiger Residuen der verschiedenen Bedingungen
 - → Kovarianz der Residuen = 0
- Daher nur ein Grund, warum die Messwerte über die Bedingungen hinweg kovariieren: stabile Personenunterschiede
- > Da diese über alle Messzeitpunkte konstant sind, müssen alle Kovarianzen gleich sein und der Personvarianz σ_{π}^2 entsprechen:

Compound-Symmetry-(CS-) Matrix

$$oldsymbol{\Sigma}_X = egin{pmatrix} \sigma_\pi^2 + \sigma_arepsilon^2 & \sigma_\pi^2 & \sigma_\pi^2 \ \sigma_\pi^2 & \sigma_\pi^2 + \sigma_arepsilon^2 & \sigma_\pi^2 \ \sigma_\pi^2 & \sigma_\pi^2 & \sigma_\pi^2 + \sigma_arepsilon^2 \end{pmatrix}$$

Weniger starke Annahme: Sphärizität (Zirkularität)

b UNIVERSITÄT BERN

- > Compound-Symmetry-Annahme sehr streng, insbesondere wenn es sich bei der UV um den Faktor "Zeit" handelt und die Abstände zwischen den Messzeitpunkten unterschiedlich gross sind → Kovarianz umso grösser, je näher die Messzeitpunkte
- > Huyn & Feldt: "Sphärische" Varianz-Kovarianzmatrix ausreichend
 - Sphärisch (oder zirkulär) = Gleichheit der Varianzen aller Differenzvariablen z.B. gibt es bei J=3 Faktorstufen drei Differenzvariablen: X_1-X_2 , X_1-X_3 , X_2-X_3
 - Überprüfung der Sphärizität mit Hilfe des Mauchly-Tests (s.u. Analyse in R)
 - Index ε_{Box} : Sphärizität gegeben wenn $\varepsilon_{Box} = 1$
 - Bei Verletzung der Sphärizitätsannahme Korrektur der Freiheitsgrade des kritischen F-Werts durch Multiplikation mit ε_{Rox}
 - Je weiter Abweichung von Sphärizität, desto kleiner ε_{Box} , desto stärker also die Korrektur (F-Test wird durch kleinere Freiheitsgrade konservativer, da kritischer F-Wert dann grösser wird)
 - Schätzmethoden für ε_{Box} : Greenhouse-Geisser $\hat{\varepsilon}_{GG}$ und Huyn-Feldt $\hat{\varepsilon}_{HF}$
 - beide Korrekturmethoden geeignet, $\hat{\varepsilon}_{GG}$ etwas kleiner (korrigiert stärker) als $\hat{\varepsilon}_{HF}$ Empfehlung: wenn $\hat{\varepsilon}_{GG} > 0.75$ \rightarrow HF; wenn $\hat{\varepsilon}_{GG} < 0.75$ \rightarrow GG

UNIVERSITÄT BERN

Einfaktorielle Varianzanalyse mit MW in R – Datenstruktur

Daten sind dieselben wie im Beispiel für die Einfaktorielle ANOVA ohne Messwiederholung.

Einziger Unterschied:

In ID-Variable jetzt Personen von 1 bis 5 mehrfach vorhanden (3 Messzeitpunkte/ Messbedingungen) pro Person

# A	tibble:	15 ×	3	
II	age	gressi	on	bedingung
<:	fct>	<db:< td=""><td>1></td><td><fct></fct></td></db:<>	1>	<fct></fct>
1 1		į	57	Belohnung
2 2		4	45	Belohnung
3 3		4	49	Belohnung
4 4			69	Belohnung
5 5		•	70	Belohnung
6 1			18	Bestrafung
7 2		:	15	Bestrafung
8 3			13	Bestrafung
9 4		•	37	Bestrafung
10 5			37	Bestrafung
11 1			36	KeineKonsequenz
12 2		2	27	KeineKonsequenz
13 3		4	43	KeineKonsequenz
14 4		2	29	KeineKonsequenz
15 5		!	55	KeineKonsequenz

Einfaktorielle Varianzanalyse mit MW in R – Berechnung und Output

```
b
UNIVERSITÄT
BERN
```

```
library (afex)
anova1MW <- aov 4(aggression ~ 1 + (bedingung | ID), data = df)
summary(anova1MW)
Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
            Sum Sq num Df Error SS den Df F value Pr(>F)
                       1
                              1128 4 85.106 0.0007673 ***
(Intercept)
            24000
                        2 484 8 24.132 0.0004087 ***
bedingung
              2920
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
                                          Mauchly-Test signifikant
Mauchly Tests for Sphericity
                                          (\alpha = 0.10) \rightarrow Sphärizität
          Test statistic p-value
                                          nicht gegeben, F-Test muss
                                          korrigiert werden
bedingung 0.16392(0.066368)
```

B. Mayer - Statistik II - FS 2025

Einfaktorielle Varianzanalyse mit MW in R – **Berechnung und Output (Forts.)**

Greenhouse-Geisser and Huynh-Feldt Corrections for Departure from Sphericity

Da $\hat{\varepsilon}_{GG} = 0.54$ und damit < 0.75

- → Greenhouse-Geisser-Korrektur verwenden
- → Effekt von Bedingung weiterhin signifikant

anova1MW\$anova table

Anova Table (Type 3 tests)

 $df_{1(GG)} = df_1 \cdot \hat{\varepsilon}_{GG} = 2 \cdot 0.54464 = 1.0893$

 $df_{2(GG)} = df_2 \cdot \hat{\varepsilon}_{GG} = 8 \cdot 0,54464 = 4,3571$

Response: aggression

num Df den Df MSE

ges Pr (>F)

bedingung (1.0893 4.3571) 111.08 24.132 (0.64431) 0.006082 **

 $\hat{\eta}^2 = QS_{zwA}/QS_{tot} = 2920/4532$

UNIVERSITÄT

Post-hoc-Einzelvergleiche

Einzelvergleichstests entsprechen *t*-Tests für abhängige Stichproben:

⇒ SE der MW-Differenz **(4)**

⇒ Varianz der Differenzvariable

2

⇒ Varianz der MW-Differenz

(3)

Quadratsumme der Differenzvariable (1)

Differenzvariable

Bestrafung (a ₂)	Keine Konsequenz (a_3)	$x_{m2}-x_{m3}$
18	36	18 - 36 = -18
15	27	15 - 27 = -12
13	43	13 - 43 = -30
37	29	37 - 29 = 8
37	55	37 - 55 = -18
24	38	$\bar{x}_{\bullet 2} - \bar{x}_{\bullet 3} = -14$

Beispiel: Bestrafung (a_2) vs. Keine Konsequenz (a_3)

$$t = \frac{\bar{x}_{\bullet 2} - \bar{x}_{\bullet 3}}{\sqrt{\frac{\sum_{m=1}^{n} \left((x_{m2} - x_{m3}) - (\bar{x}_{\bullet 2} - \bar{x}_{\bullet 3}) \right)^{2}}{(5-1) \cdot 5}}} = \frac{24 - 38}{\sqrt{\frac{\left(-18 - (-14)\right)^{2} + \dots + \left(-18 - (-14)\right)^{2}}{4 \cdot 5}}}$$

$$= \frac{-14}{\sqrt{\frac{16+4+256+484+16}{20}}} = \frac{-14}{6,229} = -2,248 df = n-1 = 4$$

Kritische t-Werte (ohne α -Adjustierung):

$$t_{(0,025;4)} = -2,7764$$

 $t_{(0,975;4)} = 2,7764$

Test nicht signifikant, da t = -2.248 nicht im kritischen Bereich

Einfaktorielle Varianzanalyse mit MW in R – Post-hoc-Einzelvergleiche

b UNIVERSITÄT BERN

1. "Estimated Marginal Means"-Objekt erstellen mit emmeans

```
library(emmeans)
result1MW <- emmeans(object = anova1MW, specs = ~ bedingung)</pre>
```

2. Post-hoc-Einzelvergleiche für Bedingung (ohne/mit Tukey-Adjustierung)

```
pairs(x = result1MW, adjust = "none")
contrast
                           estimate SE df t.ratio p.value
Belohnung - Bestrafung
                                34 1.58 4 21.503 < .0001
Belohnung - KeineKonseguenz
                              20 5.59 4 3.575 0.0233
Bestrafung - KeineKonsequenz -14 6.23 4 -2.248 0.0879
pairs(x = result1MW, adjust = "tukey")
contrast
                           estimate SE df t.ratio p.value
                                34 1.58 4 21.503
                                                   0.0001
Belohnung - Bestrafung
                             20 5.59 4 3.575 0.0495
Belohnung - KeineKonsequenz
Bestrafung - KeineKonsequenz -14 6.23 4 -2.248
                                                   0.1760
```

B. Mayer - Statistik II - FS 2025

$u^{\scriptscriptstyle \mathsf{b}}$

Kontrastanalyse

UNIVERSITÄT BERN

Kontraste werden wie bei der einfaktoriellen Varianzanalyse ohne Messwiederholung als «massgeschneiderte MW-Vergleiche» spezifiziert

Populationsmodell:

Stichprobenmodell:

$$\Lambda = \sum_{j=1}^{J} K_{j} \cdot \mu_{\bullet j}$$

$$L = \sum_{j=1}^{J} K_{j} \cdot \overline{X}_{\bullet j}$$

t-Test der Kontrastanalyse wird über eine Verallgemeinerung der Formel für die Post-hoc-Einzelvergleiche berechnet:

$$t_{Kontrast} = \frac{\sum_{j=1}^{J} K_{j} \cdot \bar{x}_{\bullet j}}{\sum_{m=1}^{n} \left(\left(\sum_{j=1}^{J} K_{j} \cdot x_{mj} \right) - \left(\sum_{j=1}^{J} K_{j} \cdot \bar{x}_{\bullet j} \right) \right)^{2}}$$
 Quadratsumme der Kontrastvariable
$$(n-1) \cdot n$$
 Quadratsumme der Kontrastvariable
$$(n-1) \cdot n$$

$$\Rightarrow \text{Varianz der}_{\text{Kontrasts}} \Rightarrow \text{Varianz des}_{\text{Kontrasts}} \Rightarrow \text{Varianz d$$

UNIVERSITÄT RERN

Polynomiale Trendkontraste

- > Bei Modellen mit Messwiederholung besonders relevant
- > Nur bei quantitativer Bedingungsvariable (z.B. Zeit) möglich
 - Linearer Trend: lineare Zunahme/Abnahme der Mittelwerte (über die Zeit)
 - Quadratischer Trend: Abschwächung der Zunahme/ Abnahme über die Zeit (U-förmiger und umgekehrt U-förmiger Verlauf)
 - Kubischer Trend: Zickzack-Verlauf
 - Polynomiale Trends höherer Ordnung: quartisch, quintisch etc.
 - müssen paarweise orthogonal sein und Summe der Kontrastkoeffizienten = 0
 - → linearer Trend ab 2 Gruppen möglich, quadratischer Trend ab 3 Gruppen etc.

Stufen	Effekt	K ₁	K ₂	K ₃	K ₄
J = 2	linear	-1	+1		
J = 3	linear	-1	0	+1	
	quadratisch	+1	-2	+1	
J = 4	linear	-3	-1	+1	+3
	quadratisch	+1	-1	-1	+1
	kubisch	-1	+3	-3	+1

Polynomiale Trendkontraste: Beispiel

b Universität Bern

Person m	t_1 : Beginn des Schuljahres	t ₂ : 3 Monate später	t_3 : 6 Monate später
1	18	15	15
2	15	16	14
3	17	16	17
4	16	14	15
5	16	19	17
6	19	14	15
7	15	12	13
8	14	15	13
Mittelwert \bar{x}_{ij}	16,25	15,125	14,875

Linearer Kontrast (-1, 0, 1)	Quadrat. Kontrast (1, -2, 1)
-18 + 0 + 15 = -3	18 - 30 + 15 = 3
-15 + 0 + 14 = -1	15 - 32 + 14 = -3
-17 + 0 + 17 = 0	17 - 32 + 17 = 2
-16 + 0 + 15 = -1	16 - 28 + 15 = 3
-16 + 0 + 17 = 1	16 - 38 + 17 = -5
-19 + 0 + 15 = -4	19 - 28 + 15 = 6
-15 + 0 + 13 = -2	15 - 24 + 13 = 4
-14 + 0 + 13 = -1	14 - 30 + 13 = -3
$L_{Lin}=-1,375$	$L_{Quad} = 0.875$

$$t_{Lin} = \frac{(-1) \cdot \bar{x}_{\bullet 1} + 0 \cdot \bar{x}_{\bullet 2} + 1 \cdot \bar{x}_{\bullet 3}}{\sqrt{\frac{[-3 - (-1,375)]^2 + \dots + [-1 - (-1,375)]^2}{7 \cdot 8}} = \frac{-16,25 + 14,875}{\sqrt{\frac{17,875}{56}}} = \frac{-1,375}{0,5650} = -2,434$$

$$t_{Quad} = \frac{1 \cdot \bar{x}_{\bullet 1} + (-2) \cdot \bar{x}_{\bullet 2} + 1 \cdot \bar{x}_{\bullet 3}}{\sqrt{\frac{(3 - 0.875)^2 + \dots + (-3 - 0.875)^2}{7 \cdot 8}}} = \frac{16.25 - 30.25 + 14.875}{\sqrt{\frac{110.875}{56}}} = \frac{0.875}{1.4071} = 0.622$$

Kritische t-Werte (ohne α -Adjustierung):

$$t_{(0,025;7)} = -2,3646$$

 $t_{(0.975;7)} = 2,3646$

- → linearer Trend sig.
- → quadr. Trend ns

Diese Formeln (auch die für Post-hoc-Einzelvergleiche) sind für den Fall, dass **keine Sphärizität gegeben** ist. Sie sind aber die Standardformeln in Statistikprogrammen, da Kontraste besonders sensitiv auf die Verletzung der Sphärizitätsannahme reagieren.

Bei (wirklich) **gegebener Sphärizität** können andere Tests angewendet werden, die in diesem Fall teststärker sind. Ausserdem gilt nur für diese (als F-Tests formulierte) Tests, dass die Summe der $QS_{Kontrast}$ eines Sets orthogonaler Kontraste die QS_{ZWA} der RM-ANOVA ergibt. Für die polynomialen Trendkontraste gilt kann dann Formel F 14.52 (\square 428) verwendet werden.

UNIVERSITÄT Bern

Polynomiale Trends zur RM-ANOVA in R – Datenstruktur

# A tibble: 24 × 3	
ID lernmotivation	zeit
<fct> <dbl></dbl></fct>	<fct></fct>
1 1 18	Beginn
2 2 15	Beginn
3 3 17	Beginn
4 4 16	Beginn
5 5 16	Beginn
6 6 19	Beginn
7 7 15	Beginn
8 8 14	Beginn
9 1 15	Drei_Monate
10 2 16	Drei Monate
11 3 16	Drei Monate
12 4 14	Drei Monate
13 5 19	Drei Monate
14 6 14	Drei Monate
15 7 12	Drei_Monate
16 8 15	Drei Monate
17 1 15	Sechs Monate
18 2 14	Sechs Monate
19 3 17	Sechs Monate
20 4 15	Sechs Monate
21 5 17	Sechs Monate
22 6 15	Sechs_Monate
23 7 13	Sechs_Monate
24 8 13	Sechs Monate

B. Mayer - Statistik II - FS 2025

Polynomiale Trends zur RM-ANOVA in R –

aov 4() + emmeans() + contrast(method = "poly")

```
b
UNIVERSITÄT
BERN
```

```
lernenMW <- aov 4(lernmotivation ~ 1 + (zeit | ID), data = df)</pre>
lerntrend <- emmeans(object = lernenMW, specs = ~ zeit)</pre>
contrast(object = lerntrend, method = "poly", adjust = "none")
 contrast estimate SE df t.ratio p.value
linear -1.375 0.565 7 -2.434 0.0452
quadratic 0.875 1.407 7 0.622 0.5537
contrast(object = lerntrend, method = "poly", adjust = "sidak")
 contrast estimate SE df t.ratio p.value
                                             ns nach Šidák-Korrektur
 linear -1.375 0.565 7 -2.434 (0.0883)
quadratic 0.875 1.407 7 0.622 0.8009
P value adjustment: sidak method for 2 tests
```

B. Mayer - Statistik II - FS 2025