

Continuous Assessment Test (CAT)- I- September 2022

Programme	: B.Tech.	Semester : Fall 2022-2023
Course Title	: Complex Variables and Linear Algebra	Code : BMAT2011. Slot : A1+TA1+TAA1
Faculty	Dr. M. Dhivya, Dr. N. Durga, Dr. M. Prasannalakshmi, Dr. C. Rajivganthi, Dr. Ashish Kumar, Dr. Prosenjit, Dr. Ankit Kumar, Dr. Surath Ghosh, Dr. Sandip Saha, Dr. Kamalesh, Dr. P. Sushmitha, Dr. Amitkumar Rahul	60, 62, 64,67, 70, 72, 74, 76, 80, 82
Duration	: 1 ½ Hours	Max. Marks: 50

Answer all the Questions (50 marks)

Q.No.	Question Description	Marks
V	Prove that the function $u = e^x(x \cos y - y \sin y)$ is harmonic. Also find a function v such that $f(z) = u + iv$ is analytic and express $f(z)$ in terms of z .	[10]
∱ .	Show that the function $f(z) = \begin{cases} \frac{\bar{z}^2}{z}, & z \neq 0 \\ 0, z = 0 \end{cases}$ satisfies the Cauchy Riemann equations at origin but not analytic at $z = 0$.	[10]
J .	In a two-dimensional fluid flow, if $\psi(x, y) = x^2 - y^2 - 3x - 2y + 2xy$ can represent the stream function, find the velocity potential and complex potential.	[5]
4.	Find the points for which the following function is not conformal $f(z) = z^2 + \frac{1}{z^2}$ (b) Find the image of the circle $ z = 2$ under the transformation $w = (\sqrt{2} e^{\frac{i\pi}{4}})z$.	[5]
(3)	Find the image of the wedge $ z \le \frac{1}{2}$, $\frac{-\pi}{8} < arg(z) < \frac{\pi}{8}$ under the mappings (i) $w = z^2$ and (ii) $w = iz$. Sketch the region of images.	[10]
\$	Determine the bilinear transformation which maps the points $z = 0, -i, 2i$ into the points $w = 5i$, ∞ , $\frac{-i}{3}$ respectively. List the invariant points of this transformation. Sketch the image of $ z - i < 1$ under the obtained transformation.	[10]

Continuous Assessment Test (CAT) - I - June 2023

 $\alpha^n = n^{n-1}$

Programme	: B.Tech.	Semester	: Fall Inter Semester 2022-23
			: BMAT201L
Course Title	: Complex Variables and Linear Algebra	Slot	: X11+X12+X21+Z2
Faculty Duration	: Dr. Kriti Arya : 1 ½ Hours	Class Nbr Max. Marks	CH2022232501343

Answer all the Questions (5×10=50)

Q.No. Sub.	Question Description	Marks
Sec.	etermine whether $\frac{1}{2}$ is analytic or not?	[5]
(b) Sh	low that the function defined by $f(z) = \sqrt{ xy }$ satisfies Cauchy-Riemann equation at	[5]
Pr	e origin but is not analytic at that point. ove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic. Find a function v such that $(z) = u + iv$ is analytic. Also, express $f(z)$ in terms of z .	[10]
	If $w = \theta + i\varphi$ represents the complex potential for an electric field and $\varphi = x^2 - y^2 + \frac{x}{x^2 + y^2}$	[5]
de	etermine the function θ .	
(b) T	ransform the rectangular region ABCD in the z-plane bounded by $x = 1, x = 3; y = 0, and y = 3, under the transformation w = z + (2 + i).$	[5]
	show that under the transformation $w = \frac{1}{z}$, the image of the hyperbola $x^2 - y^2 = 1$ is the emniscate $R^2 = \cos 2\varphi$.	[5]
tl	find a bilinear transformation which maps the points $i, -i, 1$ of the z-plane into $0, 1, \infty$ of the w-plane, respectively.	[5]
5. ((a) F	Find the radius of convergence of the power series: $f(z) = \sum_{n=0}^{\infty} \frac{n!}{n^n} z^n.$	[5]
(b) F	Find the terms in the Laurent expansion of $\frac{1}{z(e^z-1)}$ for the region $0 < z < 2\pi$.	
	Or	[5]
Ŀ	Expand the function $f(z) = tan^{-1}z$ in powers of z.	

Continous Assessment Test I (CAT-1) – May 2023

Programme : B.tech		Semester	: Fall Inter Semster2022- 23
Course	: BMAT 201L	Class	: CH2022232500603,60
Code Course T	itle: Complex Variables and Line	Nbr(s) ear Algebra	1,602,567

Course Title	Complex Variables and Linear Algebra		
Faculty(s)	: Dr. Pankaj Shukla, Dr Prabhakar V, Dr. Rajiv Gandhi, Dr Dhivya P	Slot	D1+TD1+TDD1
Time	One and half Hours	Max. Marks	50

Answer all the Questions

1/.	Show that the function $f(z)$ defined by $f(z) = \frac{xy(y-ix)}{x^2+y^2}$, $z \neq 0$ and $f(0) = 0$ is not analytic at the origin, though it satisfies Cauchy – Reimann equations at the origin.	10
J.	If $\varphi = (x-y)(x^2 + 4xy + y^2)$ can represent the equipotential for an electric field, find the corresponding complex potential $w = \varphi + i\psi$ and also ψ , if possible.	10
3.	Find the image of the following regions under the transformation $w = \frac{1}{z}$: The half plane x>c, when c<0 The half plane y>c, when c<0 (iii) The infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$.	10
4.	Show that the transformation $w = \frac{z-1}{z+1}$ maps the unit circle in the w – plane onto the imaginary axis in the z – plane. Find also the images of the interior and exterior of the unit circle in the z-plane.	10
5.	Find the Laurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the regions: (i) $ z+1 < 1$, (ii) $1 < z+1 < 2$ (iii) $ z+1 > 2$.	10

Continuous Assessment Test (CAT)- I- May 2023

Programme	: B.Tech.	Semester	: Fall Inter2022-23
rogramme		Code	: BMAT201L
Course Title	: Complex Variables and Linear Algebra	Slot	: D2+TD2+TDD2
Faculty	: Dr. P. Durgaprasad, Dr. Tharasi Dilleswar Rao, Dr. C. Rajivganthi, Dr. Pankaj Shukla,	Class Nbr	: CH2022232500604, 05, 06, 07, 09
Duration	Dr. B. Jaganathan	Max. Marks	5 : 50

Answer all the Questions (50 marks)

Q.No.	Question Description	Marks
1.	a) Determine all the points where the given function $\frac{z+1}{ z+1 ^2}$ is differentiable	
	b) For what values of a and b the given $v = (x-1)^3 - axy^2 + by^2$ is harmonic and	[4+6]
	find its harmonic conjugate.	
2.	Find the potential and stream functions of a complex potential function,	[10]
	when $\phi - \psi = (x - y)(x^2 + y^2 + 3xy)$	[10]
3.	Show that the transformation $w = \frac{z-i}{1-iz}$ maps (i) the interior of the circle z	
	= 1 onto the lower half of the w - plane and (ii) the upper half of the z - plane onto the interior of the circle $ w = 1$.	[10]
4.	a) Find the bilinear transformation whose fixed points are ½ and 2.	
	b) Find the bilinear transformation that maps the points i , $-i$, 1 into the points 0, 1, ∞ , respectively.	[5+5]
5.	Find the Laurent series expansion for the function $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the	
	region i) $1 < z < 2$, ii) $1 < z + 1 < 3$.	[10]

Answer all the Questions (5x10 = 50 marks)

Q.No.	Sec.		Marks
1		Find the constant 'a' so that $u(x, y) = ax^2 - y^2 + xy$ is harmonic. Find an analytic function	
		f(z) for which u is the real part. Also find its harmonic conjugate.	10
2		(a) In a two-dimensional fluid flow, the velocity potential $\phi(x,y)$ is given as $4x(3y-4)$.	
		Find the complex potential $w = \phi(x, y) + i \psi(x, y)$ where ψ is the stream function.	10 [5 +5]
		(b) Verify whether $f(z) = \frac{1}{z-1}$ is analytic at $z = 1 + i$.	
3		Determine the bilinear transformation which maps the points $z = 1, -1, \infty$ into the points	
		w = 1 + i, $1 - i$, 1 respectively. Find the image of the unit circle $ z = 1$ under this transformation and sketch the image.	10
4		(a) Find the points where $w = e^{\cos hz}$ is not conformal.	
		11. 12. 12. 12. 12. 12. 12. 12. 12. 12.	10 [5+5]
		(b) Find the image of the circle $ z-1 =1$ under the transformation $w=(\frac{1}{2}e^{i\frac{\pi}{2}})z$.	,[5 T3]
5		(a) Find the Taylor series expansion of the given function $f(z) = \frac{z^3 + 1}{(z-3)(z-5)}$ about	
		z = 2. Also, discuss the radius of convergence.	10 [5+5]
		(b) Find the poles and residues of the given function $f(z) = \frac{1}{z^4 + 5z^2 + 6}$.	[5,5]
		Articological Control of the Control	

Continuous Assessment Test (CAT) - 1 - September 2023

Programme	: B.Tech	Semester	: Fall 2023-24
Course Title	: Complex Variables and Linear Algebra	Code	: BMAT201L
	Complex Variables and Effect Algebra	Slot(s)	: A2+TA2+TAA2
Faculty	Dr. S. Balaji, Dr. Ashish Kumar Nandi, Dr. N. Mohana, Dr. G. Hannah Grace, Dr. Abhishek Kumar Singh, Dr. Prosenjit paul, Dr. P. Vijay Kumar, Dr. M Dhivya	Class Nbr(s)	C112023240101009, 1010, 1011, 1012, 1013, 1014, 1015, 1017
Duration	: 1 ½ Hours	Max. Mark	s : 50

Answer all the Questions (5×10=50)

Q.No. Sul	Question Description	Marks
1/2	Check whether $u = x^2 - y^2$ and $v = \frac{-y}{x^2 + y^2}$ are harmonic. Also verify if $u + iv$ is analytic. Justify?	10
2	Find the analytic function $f(z)$ given that $2u + 3v = e^x(\cos y - \sin y)$.	10
-3-	(a) Find all the points where the mapping $f(z) = \sin z$ is conformal. [3 Marks] (b) Find the image of the triangle with vertices 0 , $1 + i$ and $1 - i$ under the mapping $w = z^2$. [7 Marks]	10
2	Find the bilinear transformation $w = f(z)$ which maps the points $z = 1, i, -1$ onto the points $w = i, 0, -i$. Also, find the fixed point and image of $ z \le 1$ under the mapping $w = f(z)$.	10
f .	(a) Using Laurent's series, expand the function $f(z) = \frac{2z+1}{z^3+z^2-2z}$ valid in the region $0 < z-1 < 1$. [5 Marks]	10
	(b) Find the poles and residues of the given function $f(z) = \frac{\sin z}{z \cos z}$ inside the circle $ z = 5$. [5 Marks]	