

佛題內容

• 函数依赖集等价

2 最小函数依赖集

函数依赖集等价

假设F、G为一个关系模式上的两个函数依赖集,若F+=G+,则称F和G是等价的,也可称F和G互相覆盖。

$$F=\{AB\rightarrow C, A\rightarrow B, B\rightarrow A\}$$

 $G=\{A\rightarrow C, A\rightarrow B, B\rightarrow A\}$

函数依赖集等价

○ 引運3:

F + = G + 的充分必要条件是F⊆G + 且 G⊆F +

 $F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow A\}$

 $G = \{A \rightarrow C, A \rightarrow B, B \rightarrow A\}$

对F中的每一个函数依赖X→Y 考察Y是否包含在X₆+中 对G中的每一个函数依赖X→Y 考察Y是否包含在X₊+中 F+2G+ F⊆G+且 G⊆F+?

函数依赖集等价

判断函数依赖集F和G是否等价

$$F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow A\}$$

 $G = \{A \rightarrow C, A \rightarrow B, B \rightarrow A\}$

解:考察F中的函数依赖AB→C

$$(AB)_{G}^{+}=ABC$$
 , $C\subseteq (AB)_{G}^{+}$, $AB\rightarrow C\subseteq G^{+}$, $F\subseteq G^{+}$

考察G中的函数依赖A→C

$$A_{F}^{+}=ABC$$
, $C\subseteq A_{F}^{+}$, $A\rightarrow C\in F^{+}$, $G\subseteq F^{+}$

- 函数依赖集F当且仅当满足下列条件时,称为最小函数依赖 集,或极小函数依赖集,或最小覆盖。
 - · F中每个函数依赖的<mark>右部为单一属性。(</mark>右部不能再分解)
 - F中不存在函数依赖X→A,使得F-{ X→A}与F等价。(无冗余的函数依赖)
 - F中不存在函数依赖X→A,且Z⊂X,使得F-{X→A}∪{Z→A}
 与F等价。(左部不可约)

寻找等价的最小函数依赖集的过程:

- ① 对F中的每个函数依赖X→Y, 若Y= A₁A₂...A_k(k≥2), 则用 { X→A_j | j=1,2,...,k }来取代X→Y。
- ② 对F中的每个函数依赖X→A, 令G=F-{X→A}, 若A∈X_G+, 则X→A为G所蕴含, F与F-{X→A}等价,则从F中去掉此冗余的函数依赖X→A。
- ③ 对F中的每个函数依赖X→A,设X=B₁B₂...B_k,对每个B_i
 (i=1,2,...,k),令Z=X-B_i,若A∈Z_F+,说明Z→A为F所
 蕴含,函数依赖X→A是左部可约的,则以X-B_i取代X,F-{X→A}∪{(X-B_i)→A}与F等价。

○ 定理1:

每一个函数依赖集F都等价于一个最小函数依赖集Fm

- ▶ 设 $F = \{A \rightarrow BC, B \rightarrow AC, C \rightarrow A\}$, 求 F_m
 - 解: (1) 函数依赖右边属性单一化 $F=\{A\rightarrow B, A\rightarrow C, B\rightarrow A, B\rightarrow C, C\rightarrow A\}$
 - (2) 去掉冗余的函数依赖

判断A→B是否冗余:

$$G1 = \{A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A\}$$

判断A→C是否冗余:

$$G2 = \{A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow A\}$$

$$A_{G2}^{+}$$
 = ABC, C $\in A_{G2}^{+}$, A \rightarrow C冗余, 去掉

$$F = \{A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow A\}$$
;

(2) 去掉冗余的函数依赖

- \blacktriangleright 设F={A→BC, B→AC, C→A}, 求F_m
 - (2) 去掉冗余的函数依赖
 F={A→B, B→C, C→A};
 判断C→A是否冗余:
 G5= {A→B, B→C}
 C_{G5}+= C, A不属于C_{G5}+, C→A不冗余, F不变 F={A→B, B→C, C→A};
 - (3) 各函数依赖的决定因素均为单属性,不可约,F不变。

$$Fm = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

- 设 $F=\{AB\rightarrow C, A\rightarrow B, B\rightarrow A\}, 求F_m$
 - 解: (1) 函数依赖右边属性单一化 所有的函数依赖右部均为单一属性,F不变。
 - (2) 去掉冗余的函数依赖

```
判断AB→C是否冗余:
```

$$G1 = \{A \rightarrow B, B \rightarrow A\},\$$

判断A→B是否冗余:

G2= {AB→C, B→A},
$$A_{G2}^+$$
 = A, B不属于 A_{G2}^+ , A→B不冗余;

判断B→A是否冗余:

G3= {AB
$$\rightarrow$$
C, A \rightarrow B}, B_{G3}⁺= B, A不属于B_{G3}⁺, B \rightarrow A不冗余;

设 $F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow A\}, 求F_m$

(3) 去掉各函数依赖左部冗余的属性 只需处理AB→C

方法1:

在决定因素中去掉B,若A→C被F所逻辑蕴含,则以A→C代替AB→C。

- $A_F^+ = ABC, C \in A_F^+, A \rightarrow C \in F^+$
- \therefore Fm = {A \rightarrow C, A \rightarrow B, B \rightarrow A}

方法2:

在决定因素中去掉A, 若B→C被F所逻辑蕴含,则以B→C代替AB→C。

- $:: B_{F}^{+} = ABC, C \in B_{F}^{+}, B \rightarrow C \in F^{+}$
- \therefore Fm = {B \rightarrow C, A \rightarrow B, B \rightarrow A}

最小函数依赖集不是唯一的

数学案例模式

R (学生学号, 课程编号, 学生姓名, 所在系, 系主任, 成绩)

F = { (学生学号,课程编号)→成绩, 学生学号→学生姓名, 学生学号→所在系, 所在系→系主任 }

小结

- 函数依赖集表达关系的属性与属性之间的约束关系。
- 引 寻找最小函数依赖集F.,具有实践上的重要性, 也是进行模式分解的基础。