MATEMATIKA DISKRIT

TEKNIK BIOMEDIS – UDINUS MOHAMAD SIDIQ

Pendahuluan

- Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.
- Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan sejumlah kota di Provinsi Jawa Tengah.

• Sejarah Graf: masalah jembatan Königsberg (tahun 1736)

Gambar 1. Masalah Jembatan Königsberg

• Graf yang merepresentasikan jembatan Königsberg:

Simpul (*vertex*) → menyatakan daratan

Sisi (*edge*) → menyatakan jembatan

 Bisakah melalui setiap jembatan tepat sekali dan kembali lagi ke tempat semula?

Definisi Graf

Graf G=(V, E), yang dalam hal ini:

V = himpunan tidak-kosong dari simpul-simpul (*vertices*)

$$= \{ v_1, v_2, ..., v_n \}$$

E=himpunan sisi (edges) yang menghubungkan sepasang simpul

$$= \{e_1, e_2, \dots, e_n\}$$

Gambar 2. (a) graf sederhana, (b) graf ganda, dan (c) graf semu

Contoh 1. Pada Gambar 2, G_1 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$
 $E = \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) \}$

G_2 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

$$E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4) \}$$

$$= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7 \}$$

G_3 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

 $E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4), (3, 3) \}$
 $= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8 \}$

Gambar 2. (a) graf sederhana, (b) graf ganda, dan (c) graf semu

- Pada G_2 , sisi $e_3 = (1, 3)$ dan sisi $e_4 = (1, 3)$ dinamakan **sisiganda** (multiple edges atau paralel edges) karena kedua sisi ini menghubungi dua buah simpul yang sama, yaitu simpul 1 dan simpul 3.
- Pada G_3 , sisi $e_8 = (3, 3)$ dinamakan **gelang** atau **kalang** (*loop*) karena ia berawal dan berakhir pada simpul yang sama.

Jenis-Jenis Graf

- Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka graf digolongkan menjadi dua jenis:
 - 1. Graf sederhana (simple graph).

Graf yang tidak mengandung gelang maupun sisi-ganda dinamakan graf sederhana. G_1 pada Gambar 2 adalah contoh graf sederhana

2. Graf tak-sederhana (unsimple-graph).

Graf yang mengandung sisi ganda atau gelang dinamakan graf tak-sederhana ($unsimple\ graph$). G_2 dan G_3 pada Gambar 2 adalah contoh graf tak-sederhana

• Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan atas 2 jenis:

1. **Graf tak-berarah** (undirected graph)

Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah. Tiga buah graf pada Gambar 2 adalah graf tak-berarah.

2. **Graf berarah** (directed graph atau digraph)

Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah. Dua buah graf pada Gambar 3 adalah graf berarah.

Gambar 3 (a) graf berarah, (b) graf-ganda berarah

Tabel 1 Jenis-jenis graf [ROS99]

Jenis	Sisi	Sisi ganda	
		dibolehkan?	dibolehkan?
Graf sederhana	Tak-berarah	Tidak	Tidak
Graf ganda	Tak-berarah	Ya	Tidak
Graf semu	Tak-berarah	Ya	Ya
Graf berarah	Bearah	Tidak	Ya
Graf-ganda berarah	Bearah	Ya	Ya

Contoh Terapan Graf

1. Rangkaian listrik.

2. Isomer senyawa kimia karbon

3. Transaksi konkuren pada basis data terpusat

Transaksi T_0 menunggu transaksi T_1 dan T_2

Transaksi T_2 menunggu transaksi T_1

Transaksi T_1 menunggu transaksi T_3

Transaksi T_3 menunggu transaksi T_2

deadlock!

4. Pengujian program

```
read(x);
while x <> 9999 do
begin
   if x < 0 then
        writeln('Masukan tidak boleh negatif')
   else
        x:=x+10;
   read(x);
   end;
writeln(x);</pre>
```



```
Keterangan: 1 : read(x) 5 : x := x + 10

2 : x <> 9999 6 : read(x)

3 : x < 0 7 : writeln(x)

4 : writeln('Masukan tidak boleh negatif');
```

5. Terapan graf pada teori otomata [LIU85].

Mesin jaja (vending machine)

Keterangan:

a: 0 sen dimasukkan

b: 5 sen dimasukkan

c:10 sen dimasukkan

d: 15 sen atau lebih dimasukkan

Latihan

• Gambarkan graf yang menggambarkan sistem pertandingan ½ kompetisi (*round-robin tournaments*) yang diikuti oleh 6 tim.

Terminologi Graf

1. Ketetanggaan (Adjacent)

Dua buah simpul dikatakan *bertetangga* bila keduanya terhubung langsung.

Tinjau graf G_1 : simpul 1 bertetangga dengan simpul 2 dan 3, simpul 1 tidak bertetangga dengan simpul 4.

2. Bersisian (Incidency)

Untuk sembarang sisi $e = (v_j, v_k)$ dikatakan

- e bersisian dengan simpul v_i , atau
- e bersisian dengan simpul v_k

Tinjau graf G_1 : sisi (2, 3) bersisian dengan simpul 2 dan simpul 3, sisi (2, 4) bersisian dengan simpul 2 dan simpul 4, tetapi sisi (1, 2) tidak bersisian dengan simpul 4.

19

3. Simpul Terpencil (Isolated Vertex)

Simpul terpencil ialah simpul yang tidak mempunyai sisi yang bersisian dengannya.

Tinjau graf G_3 : simpul 5 adalah simpul terpencil.

4. Graf Kosong (null graph atau empty graph)

Graf yang himpunan sisinya merupakan himpunan kosong (N_n) . Graf N_5 :

• 1

4 • • 2

•

5. Derajat (Degree)

Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut.

Notasi: d(v)

Tinjau graf
$$G_1$$
: $d(1) = d(4) = 2$

$$d(2) = d(3) = 3$$

Tinjau graf G_3 : d(5) = 0 \rightarrow simpul terpencil

d(4) = 1 \rightarrow simpul anting-anting (pendant vertex)

Tinjau graf G_2 : d(1) = 3 \rightarrow bersisian dengan sisi ganda

d(2) = 4 \rightarrow bersisian dengan sisi gelang (loop)

Pada graf berarah,

- $d_{in}(v) = derajat-masuk (in-degree)$
 - = jumlah busur yang masuk ke simpul *v*
- $d_{\text{out}}(v) = \text{derajat-keluar} (out\text{-}degree)$
 - = jumlah busur yang keluar dari simpul *v*

$$d(v) = d_{in}(v) + d_{out}(v)$$

 G_4

 G_5

Tinjau graf G_4 :

$$d_{\text{in}}(1) = 2$$
; $d_{\text{out}}(1) = 1$

$$d_{\text{in}}(2) = 2$$
; $d_{\text{out}}(2) = 3$

$$d_{\text{in}}(3) = 2$$
; $d_{\text{out}}(3) = 1$

$$d_{in}(4) = 1$$
; $d_{out}(3) = 2$

Lemma Jabat Tangan. Jumlah derajat semua simpul pada suatu graf adalah genap, yaitu dua kali jumlah sisi pada graf tersebut.

Dengan kata lain, jika
$$G = (V, E)$$
, maka $\sum_{v \in V} d(v) = 2|E|$

Tinjau graf
$$G_1$$
: $d(1) + d(2) + d(3) + d(4) = 2 + 3 + 3 + 2 = 10$
= $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graf
$$G_2$$
: $d(1) + d(2) + d(3) = 3 + 3 + 4 = 10$
= $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graf
$$G_3$$
: $d(1) + d(2) + d(3) + d(4) + d(5)$
= $2 + 2 + 3 + 1 + 0 = 8$
= $2 \times \text{jumlah sisi} = 2 \times 4$

Akibat dari lemma (corollary):

Teorema: Untuk sembarang graf G, banyaknya simpul berderajat ganjil selau genap.

Contoh 2. Diketahui graf dengan lima buah simpul. Dapatkah kita menggambar graf tersebut jika derajat masing-masing simpul adalah:

- (a) 2, 3, 1, 1, 2
- (b) 2, 3, 3, 4, 4

Penyelesaian:

- (a) tidak dapat, karena jumlah derajat semua simpulnya ganjil (2+3+1+1+2=9).
- (b) dapat, karena jumlah derajat semua simpulnya genap (2+3+3+4+4=16).

Latihan

- Mungkinkah dibuat graf-sederhana 5 simpul dengan derajat masing-masing simpul adalah:
 - (a) 5, 2, 3, 2, 4
 - (b) 4, 4, 3, 2, 3
 - (c) 3, 3, 2, 3, 2
 - (d) 4, 4, 1, 3, 2

Jika mungkin, berikan satu contohnya, jika tidak mungkin, berikan alasan singkat.

Jawaban:

- (a) 5, 2, 3, 2, 4: Tidak mungkin, karena ada simpul berderajat 5
- (b) 4, 4, 3, 2, 3: Mungkin [contoh banyak]
- (c) 3, 3, 2, 3, 2: Tidak mungkin, karena jumlah simpul berderajat ganjil ada 3 buah (alasan lain, karena jumlah derajat ganjil)
 - (d) 4, 4, 1, 3, 2: Tidak mungkin, karena simpul-1 dan simpul-2 harus bertetangga dengan simpul sisanya, berarti simpul-3 minimal berderajat 2 (kontradiksi dengan simpul-3 berderajat 1)

6. Lintasan (Path)

Lintasan yang panjangnya n dari simpul awal v_0 ke simpul tujuan v_n di dalam graf G ialah barisan berselang-seling simpul-simpul dan sisi-sisi yang berbentuk v_0 , e_1 , v_1 , e_2 , v_2 ,..., v_{n-1} , e_n , v_n sedemikian sehingga $e_1 = (v_0, v_1)$, $e_2 = (v_1, v_2)$, ..., $e_n = (v_{n-1}, v_n)$ adalah sisi-sisi dari graf G.

Tinjau graf G_1 : lintasan 1, 2, 4, 3 adalah lintasan dengan barisan sisi (1,2), (2,4), (4,3).

Panjang lintasan adalah jumlah sisi dalam lintasan tersebut. Lintasan 1, 2, 4, 3 pada G_1 memiliki panjang 3.

30

7. Siklus (*Cycle*) atau Sirkuit (*Circuit*)

Lintasan yang berawal dan berakhir pada simpul yang sama disebut **sirkuit** atau **siklus**.

Tinjau graf G_1 : 1, 2, 3, 1 adalah sebuah sirkuit.

Panjang sirkuit adalah jumlah sisi dalam sirkuit tersebut. Sirkuit 1, 2, 3, 1 pada G_1 memiliki panjang 3.

31

8. Terhubung (Connected)

Dua buah simpul v_1 dan simpul v_2 disebut **terhubung** jika terdapat lintasan dari v_1 ke v_2 .

G disebut **graf terhubung** (connected graph) jika untuk setiap pasang simpul v_i dan v_j dalam himpunan V terdapat lintasan dari v_i ke v_j .

Jika tidak, maka G disebut **graf tak-terhubung** (disconnected graph).

Contoh graf tak-terhubung:

- Graf berarah *G* dikatakan terhubung jika graf tidak berarahnya terhubung (graf tidak berarah dari *G* diperoleh dengan menghilangkan arahnya).
- Dua simpul, *u* dan *v*, pada graf berarah *G* disebut **terhubung kuat** (*strongly connected*) jika terdapat lintasan berarah dari *u* ke *v* dan juga lintasan berarah dari *v* ke *u*.
- Jika *u* dan *v* tidak terhubung kuat tetapi terhubung pada graf tidak berarahnya, maka *u* dan *v* dikatakan **terhubung lemah** (*weakly coonected*).

• Graf berarah *G* disebut **graf terhubung kuat** (*strongly connected graph*) apabila untuk setiap pasang simpul sembarang *u* dan *v* di *G*, terhubung kuat. Kalau tidak, *G* disebut **graf terhubung lemah**.

graf berarah terhubung lemah

graf berarah terhubung kuat

8. Upagraf (Subgraph) dan Komplemen Upagraf

Misalkan G = (V, E) adalah sebuah graf. $G_1 = (V_1, E_1)$ adalah **upagraf** (subgraph) dari G jika $V_1 \subseteq V$ dan $E_1 \subseteq E$.

Komplemen dari upagraf G_1 terhadap graf G adalah graf $G_2 = (V_2,$ E_2) sedemikian sehingga $E_2 = E - E_1$ dan V_2 adalah himpunan simpul yang anggota-anggota E_2 bersisian dengannya.

(a) Graf G_1

(b) Sebuah upagraf (c) komplemen dari upagraf (b)

Komponen graf (*connected component*) adalah jumlah maksimum upagraf terhubung dalam graf *G*.

Graf G di bawah ini mempunyai 4 buah komponen.

Pada graf berarah, komponen terhubung kuat (*strongly connected component*) adalah jumlah maksimum upagraf yang terhubung kuat.

Graf di bawah ini mempunyai 2 buah komponen terhubung kuat:

9. Upagraf Rentang (Spanning Subgraph)

Upagraf $G_1 = (V_1, E_1)$ dari G = (V, E) dikatakan **upagraf rentang** jika $V_1 = V$ (yaitu G_1 mengandung semua simpul dari G).

(a) graf G, (b) upagraf rentang dari G, (c) bukan upagraf rentang dari G

10. Cut-Set

Cut-set dari graf terhubung G adalah himpunan sisi yang bila dibuang dari G menyebabkan G tidak terhubung. Jadi, cut-set selalu menghasilkan dua buah komponen.

Pada graf di bawah, {(1,2), (1,5), (3,5), (3,4)} adalah *cut-set*. Terdapat banyak *cut-set* pada sebuah graf terhubung.

Himpunan $\{(1,2), (2,5)\}$ juga adalah *cut-set*, $\{(1,3), (1,5), (1,2)\}$ adalah *cut-set*, $\{(2,6)\}$ juga *cut-set*,

tetapi $\{(1,2), (2,5), (4,5)\}$ bukan *cut-set* sebab himpunan bagiannya, $\{(1,2), (2,5)\}$ adalah *cut-set*.

39

11. Graf Berbobot (Weighted Graph)

Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot).

Beberapa Graf Khusus

a. Graf Lengkap (Complete Graph)

Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K_n . Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n-1)/2.

b. Graf Lingkaran

Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat dua. Graf lingkaran dengan n simpul dilambangkan dengan C_n .

c. Graf Teratur (*Regular Graphs*)

Graf yang setiap simpulnya mempunyai derajat yang sama disebut **graf teratur**. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi pada graf teratur adalah nr/2.

 Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 16 buah sisi dan tiap simpul berderajat sama dan tiap simpul berderajat > 4 ?

- Jawaban: Tiap simpul berderajat sama -> graf teratur.
- Jumlah sisi pada graf teratur berderajat r adalah e = nr/2. Jadi, n = 2e/r = (2)(16)/r = 32/r.
- Untuk r = 4, jumlah simpul yang dapat dibuat adalah maksimum, yaitu n = 32/4 = 8.
- Untuk r yang lain (r > 4 dan r merupakan pembagi bilangan bulat dari 32):

 $r = 8 \rightarrow n = 32/8 = 4 \rightarrow tidak mungkin membuat graf sederhana.$

 $r = 16 \rightarrow n = 32/16 = 2 \rightarrow tidak mungkin membuat graf sederhana.$

• Jadi, jumlah simpul yang dapat dibuat adalah 8 buah (maksimum dan minimum).

d. Graf Bipartite (Bipartite Graph)

Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V_1 dan V_2 , sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V_1 ke sebuah simpul di V_2 disebut **graf bipartit** dan dinyatakan sebagai $G(V_1, V_2)$.

Graf G di bawah ini adalah graf bipartit, karena simpul-simpunya dapat dibagi menjadi $V_1 = \{a, b, d\}$ dan $V_2 = \{c, e, f, g\}$

topologi bintang

Representasi Graf

1. Matriks Ketetanggaan (adjacency matrix)

$$A = [a_{ij}],$$

$$1, \text{ jika simpul } i \text{ dan } j \text{ bertetangga}$$

$$a_{ij} = \{$$

$$0, \text{ jika simpul } i \text{ dan } j \text{ tidak bertetangga}$$

Contoh:

1 2 3 4

1 2 3 4 5

1 2 3 4

(c)

Derajat tiap simpul i:

(a) Untuk graf tak-berarah

$$d(v_i) = \sum_{j=1}^n a_{ij}$$

(b) Untuk graf berarah,

$$d_{in}(v_j) = \text{jumlah nilai pada kolom } j = \sum_{i=1}^{n} a_{ij}$$

$$d_{out}(v_i) = \text{jumlah nilai pada baris } i = \sum_{i=1}^{n} a_{ij}$$

2. Matriks Bersisian (incidency matrix)

$$A=[a_{ij}],$$

1, jika simpul i bersisian dengan sisi j

$$a_{ij} = \{$$

0, jika simpul i tidak bersisian dengan sisi j

3. Senarai Ketetanggaan (adjacency list)

1	
	5
	•
2 3	4

	Simpul	Simpul Tetangga		
2	1	2, 3		
	2	1, 3, 4		
	3	1, 2, 4		
í	4	2, 3		

(a)

Simpul	Simpul Tetangga			
1	2, 3			
2	1, 3			
3	1, 2, 4			
4	3			
5	-			
(b)				

Simpul	Simpul Terminal	
1	2	
2	1, 3, 4	
3	1	
4	2, 3	

(c)

Graf Isomorfik

• Diketahui matriks ketetanggaan (*adjacency matrices*) dari sebuah graf tidak berarah.

Gambarkan dua buah graf yang yang bersesuaian dengan matriks tersebut.

$\lceil 0 \rceil$	1	0	0	1
1	0	1	1	1
0	1	1	1	0
0	1	1	0	1
1	1	0	1	0

Jawaban:

Dua buah graf yang sama (hanya penggambaran secara geometri berbeda)

→ isomorfik!

Graf Isomorfik

- Dua buah graf yang sama tetapi secara geometri berbeda disebut graf yang saling **isomorfik**.
- Dua buah graf, G_1 dan G_2 dikatakan isomorfik jika terdapat korespondensi satu-satu antara simpul-simpul keduanya dan antara sisisisi keduaya sedemikian sehingga hubungan kebersisian tetap terjaga.
- Dengan kata lain, misalkan sisi e bersisian dengan simpul u dan v di G_1 , maka sisi e' yang berkoresponden di G_2 harus bersisian dengan simpul u' dan v' yang di G_2 .
- Dua buah graf yang isomorfik adalah graf yang sama, kecuali penamaan simpul dan sisinya saja yang berbeda. Ini benar karena sebuah graf dapat digambarkan dalam banyak cara.

Gambar 6.35 G_1 isomorfik dengan G_2 , tetapi G_1 tidak isomorfik dengan G_3

Gambar 6.36 Graf (a) dan graf (b) isomorfik [DEO74]

$$A_{G1} = \begin{bmatrix} a & b & c & d & e \\ b & 1 & 1 & 1 & 0 \\ b & 1 & 0 & 1 & 0 & 0 \\ d & 1 & 0 & 1 & 0 & 1 \\ e & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad A_{G2} = \begin{bmatrix} x & y & w & v & z \\ x & 0 & 1 & 1 & 1 & 0 \\ y & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ v & 1 & 0 & 1 & 0 & 1 \\ z & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Gambar 6.38 (a) Dua buah graf isomorfik, (b) tiga buah graf isomorfik

Dari definisi graf isomorfik dapat dikemukakan bahwa dua buah graf isomorfik memenuhi ketiga syarat berikut [DEO74]:

- 1. Mempunyai jumlah simpul yang sama.
- 2. Mempunyai jumlah sisi yang sama
- 3. Mempunyai jumlah simpul yang sama berderajat tertentu

Namun, ketiga syarat ini ternyata belum cukup menjamin. Pemeriksaan secara visual perlu dilakukan.

Apakah pasangan graf di bawah ini isomorfik?

Apakah pasangan graf di bawah ini isomorfik?

• Gambarkan 2 buah graf yang isomorfik dengan graf teratur berderajat 3 yang mempunyai 8 buah simpul

Graf Planar (*Planar Graph*) dan Graf Bidang (*Plane Graph*)

- Graf yang dapat digambarkan pada bidang datar dengan sisi-sisi tidak saling memotong (bersilangan) disebut graf planar,
- jika tidak, maka ia disebut graf tak-planar.
- K₄ adalah graf planar:

K₅ adalah graf tidak planar:

Graf planar yang digambarkan dengan sisi-sisi yang tidak saling berpotongan disebut **graf bidang** (*plane graph*).

Tiga buah graf planar. Graf (b) dan (c) adalah graf bidang

Aplikasi Graf Planar

Persoalan utilitas (utility problem)

(a) Graf persoalan utilitas $(K_{3,3})$, (b) graf persoalan utilitas bukan graf planar.

Aplikasi Graf Planar

• Perancangan IC (Integrated Circuit)

• Tidak boleh ada kawat-kawat di dalam *IC-board* yang saling bersilangan → dapat menimbulkan interferensi arus listrik → *malfunction*

• Perancangan kawat memenuhi prinsip graf planar

• Gambarkan graf (kiri) di bawah ini sehingga tidak ada sisi-sisi yang berpotongan (menjadi graf bidang). (Solusi: graf kanan)

• Sisi-sisi pada graf bidang membagi bidang datar menjadi beberapa wilayah (*region*) atau muka (*face*).

• Graf bidang pada gambar di bawah initerdiri atas 6 wilayah (termasuk wilayah terluar):

• Hubungan antara jumlah simpul (*n*), jumlah sisi (*e*), dan jumlah wilayah (*f*) pada graf bidang:

$$n - e + f = 2$$
 (Rumus Euler)

• Pada Gambar di atas, e = 11 dan n = 7, f = 6, maka 11 - 7 + 6 = 2.

Latihan

• Misalkan graf sederhana planar memiliki 24 buah simpul, masing-masing simpul berderajat 4. Representasi planar dari graf tersebut membagi bidang datar menjadi sejumlah wilayah atau muka. Berapa banyak wilayah yang terbentuk?

Jawaban:

- Diketahui n = jumlah simpul = 24, maka jumlah derajat seluruh simpul = $24 \times 4 = 96$.
- Menurut lemma jabat tangan, jumlah derajat = 2 × jumlah sisi, sehingga jumlah sisi = e = jumlah derajat/2 = 96/2 = 48
- Dari rumus Euler, n e + f = 2, sehingga f = 2 n + e = 2 24 + 48 = 26 buah.

• Pada graf planar sederhana terhubung dengan f buah wilayah, n buah simpul, dan e buah sisi (e > 2) selalu berlaku:

$$e \le 3n - 6$$

- Ketidaksamaan yang terakhir dinamakan ketidaksamaan Euler,
- yang dapat digunakan untuk menunjukkan keplanaran suatu graf sederhana
- kalau graf planar, maka ia memenuhi ketidaksamaan Euler, sebaliknya jika tidak planar maka ketidaksamaan tersebut tidak dipenuhi.

• Contoh: Pada K_4 , n = 4, e = 6, memenuhi ketidaksamaan Euler, sebab

 $6 \le 3(4) - 6$. Jadi, K_4 adalah graf planar.

Pada graf K_5 , n = 5 dan e = 10, tidak memenuhi ketidaksamaan Euler sebab

 $10 \ge 3(5) - 6$. Jadi, K_5 tidak planar

 K_4

 K_5

 $K_{3,3}$

Ketidaksamaan $e \le 3n - 6$ tidak berlaku untuk $K_{3,3}$ karena

$$e = 9, n = 6$$

 $9 \le (3)(6) - 6 = 12$ (jadi, $e \le 3n - 6$)

padahal graf $K_{3,3}$ bukan graf planar!

Buat asumsi baru: setiap daerah pada graf planar dibatasi oleh paling sedikit empat buah sisi,

Dari penurunan rumus diperoleh

$$e \leq 2n - 4$$

Contoh Graf $K_{3,3}$ pada Gambar di bawah memenuhi ketidaksamaan $e \le 2n - 6$, karena

$$e = 9, n = 6$$

 $9 \le (2)(6) - 4 = 8$ (salah)

yang berarti $K_{3,3}$ bukan graf planar.

Teorema Kuratoswki

Berguna untuk menentukan dengan tegas keplanaran suat graf.

Gambar (a) Graf Kuratowski pertama (K_5)

- (b) Graf Kuratowski kedua ($K_{3,3}$)
- (c) Graf yang isomorfik dengan graf Kuratowski kedua

Sifat graf Kuratowski adalah:

- 1. Kedua graf Kuratowski adalah graf teratur.
- 2. Kedua graf Kuratowski adalah graf tidak-planar
 - 3. Penghapusan sisi atau simpul dari graf Kuratowski menyebabkannya menjadi graf planar.
 - 4. Graf Kuratowski pertama adalah graf tidak-planar dengan jumlah simpul minimum, dan graf Kuratowski kedua adalah graf tidak-planar dengan jumlah sisi minimum.

TEOREMA Kuratowski. Graf *G* bersifat planar jika dan hanya jika ia tidak mengandung upagraf yang isomorfik dengan salah satu graf Kuratowski atau homeomorfik (homeomorphic) dengan salah satu dari keduanya.

Gambar Tiga buah graf yang homemorfik satu sama lain.

Contoh: Kita gunakan Teorema Kuratowski untuk memeriksa keplanaran graf. Graf G di bawah ini bukan graf planar karena ia mengandung upagraf (G_1) yang sama dengan $K_{3,3}$.

Graf G tidak planar karena ia mengandung upagraf yang sama dengan $K_{3,3}$.

Graf G tidak planar karena ia mengandung upagraf (G_1) yang homeomorfik dengan K_5 (dengan membuang simpul-simpul yang berderajat 2 dari G_1 , diperoleh K_5).

Gambar Graf G, upagraf G_1 dari G yang homeomorfik dengan K_5 .

Latihan

• Perlihatkan dengan teorema Kuratowski bahwa graf Petersen tidak planar.

Jawaban:

Gambar (a) Graf Petersen

- (b) G1 adalah upagraf dari G
- (c) G2 homeomorfik dengan G1
- (d) G2 isomorfik dengan K3,3

Lintasan dan Sirkuit Euler

- Lintasan Euler ialah lintasan yang melalui masing-masing sisi di dalam graf tepat satu kali.
- Sirkuit Euler ialah sirkuit yang melewati masing-masing sisi tepat satu kali..
- Graf yang mempunyai sirkuit Euler disebut **graf Euler** (*Eulerian graph*). Graf yang mempunyai lintasan Euler dinamakan juga graf **semi-Euler** (*semi-Eulerian graph*).

Contoh.

Lintasan Euler pada graf (a): 3, 1, 2, 3, 4, 1

Lintasan Euler pada graf (b): 1, 2, 4, 6, 2, 3, 6, 5, 1, 3

Sirkuit Euler pada graf (c) : 1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1

Sirkuit Euler pada graf (d) : a, c, f, e, c, b, d, e, a, d, f, b, a

Graf (e) dan (f) tidak mempunyai lintasan maupun sirkuit Euler

- (a) dan (b) graf semi-Euler
- (c) dan (d) graf Euler
- (e) dan (f) bukan graf semi-Euler atau graf Euler

TEOREMA. Graf tidak berarah memiliki lintasan Euler jika (graf semi-Euler) dan hanya jika terhubung dan memiliki dua buah simpul berderajat ganjil atau tidak ada simpul berderajat ganjil sama sekali.

TEOREMA. Graf tidak berarah G adalah graf Euler (memiliki sirkuit Euler) jika dan hanya jika setiap simpul berderajat genap.

TEOREMA. (a) Graf berarah G memiliki sirkuit Euler jika dan hanya jika G terhubung dan setiap simpul memiliki derajat-masuk dan derajat-keluar sama.

(b) *G* memiliki lintasan Euler jika dan hanya jika *G* terhubung dan setiap simpul memiliki derajat-masuk dan derajat-keluar sama kecuali dua simpul, yang pertama memiliki derajat-keluar satu lebih besar derajat-masuk, dan yang kedua memiliki derajat-masuk satu lebih besar dari derajat-keluar.

Gambar (a) Graf berarah Euler (a, g, c, b, g, e, d, f, a)

- (b) Graf berarah semi-Euler (d, a, b, d, c, b)
- (c) Graf berarah bukan Euler maupun semi-Euler

Latihan

 Manakah di antara graf di bawah ini yang dapat dilukis tanpa mengangkat pensil sekalipun?

Lintasan dan Sirkuit Hamilton

- Lintasan Hamilton ialah lintasan yang melalui tiap simpul di dalam graf tepat satu kali.
- **Sirkuit Hamilton** ialah sirkuit yang melalui tiap simpul di dalam graf tepat satu kali, kecuali simpul asal (sekaligus simpul akhir) yang dilalui dua kali.
- Graf yang memiliki sirkuit Hamilton dinamakan **graf Hamilton**, sedangkan graf yang hanya memiliki lintasan Hamilton disebut **graf semi-Hamilton**.

- (a) graf yang memiliki lintasan Hamilton (misal: 3, 2, 1, 4)
- (b) graf yang memiliki lintasan Hamilton (1, 2, 3, 4, 1)
- (c) graf yang tidak memiliki lintasan maupun sirkuit Hamilton

- (a) Dodecahedron Hamilton,
- (b) graf yang mengandung sirkuit Hamilton

TEOREMA. Syarat cukup supaya graf sederhana G dengan $n \geq 3$ buah simpul adalah graf Hamilton ialah bila derajat tiap simpul paling sedikit n/2 (yaitu, $d(v) \geq n/2$ untuk setiap simpul v di G). (coba nyatakan dalam "jika p maka q")

TEOREMA. Setiap graf lengkap adalah graf Hamilton.

TEOREMA. Di dalam graf lengkap G dengan n buah simpul $(n \ge 3)$, terdapat (n - 1)!/2 buah sirkuit Hamilton.

TEOREMA. Di dalam graf lengkap G dengan n buah simpul $(n \ge 3$ dan n ganjil), terdapat (n-1)/2 buah sirkuit Hamilton yang saling lepas (tidak ada sisi yang beririsan). Jika n genap dan $n \ge 4$, maka di dalam G terdapat (n-2)/2 buah sirkuit Hamilton yang saling lepas.

Contoh. Sembilan anggota sebuah klub bertemu tiap hari untuk makan siang pada sebuah meja bundar. Mereka memutuskan duduk sedemikian sehingga setiap anggota mempunyai tetangga duduk berbeda pada setiap makan siang. Berapa hari pengaturan tersebut dapat dilaksanakan?

<u>Jawaban</u>: Jumlah pengaturan tempat duduk yang berbeda adalah (9-1)/2 = 4.

Gambar Graf yang merepresentasikan persoalan pengaturan tempat duduk.

Beberapa graf dapat mengandung sirkuit Euler dan sirkuit Hamilton sekaligus, mengandung sirkuit Euler tetapi tidak mengandung sirkuit Hamilton, dan sebagainya..

- (a) Graf Hamilton sekaligus graf Euler
- (b) Graf Hamilton sekaligus graf semi-Euler

Latihan

• Gambar di bawah ini adalah denah lantai dasar sebuah gedung. Apakah dimungkinkan berjalan melalui setiap pintu di lantai itu hanya satu kali saja jika kita boleh mulai memasuki pintu yang mana saja?

Jawaban:

- Nyatakan ruangan sebagai simpul dan pintu antar ruangan sebagai sisi.
- Setiap pintu hanya boleh dilewati sekali (tidak harus kembali ke titik asal) → melewati sisi tepat sekali → lintasan Euler
- Di dalam graf tersebut ada 2 simpul berderajat ganjil (simpul 1 dan 6), selebihnya genap → pasti ada lintasan Euler
- Kesimpulan: setiap pintu dapat dilewati sekali saja

