Assigned 5/12/22, Due 5/12/22 (Thur)

Problem 1. Data Wrangling

The spreadsheet workbook, **data_raw.xls**, contains information, which is stored in 4 worksheets, about a number of public companies and their stocks. Please code to produce a single pandas dataframe, to the specifications below, and export it into a csv file, **data_out.csv**.

- · Retain distinct fields only. For example, there are two fields, labeled "Security Price", that contain the same information. Only one should be kept.
- \cdot Assume stocks with null values for "Dividend Yield" are non-dividend-paying stocks. Replace those null values with 0.00
- \cdot Convert the strings in the "Market Capitalization" field to the correct numerical values. For example, \$123.45M should be converted to 123,450,000.00, \$123.45B to 123,450,000,000,000.00 \$123.45T to 123,450,000,000,000.00
- · The "Equity Summary Score" field provides a numerical indication of sentiment of independent research firms on each stock. Please translate the Equity Summary Scores into sentiment categories as follows, and record them in the "Analyst Sentiment" field.

```
[0.1, 1.0] = very bearish

[1.1, 3.0] = bearish

[3.1, 7.0] = neutral

[7.1, 9.0] = bullish

[9.1, 10.0] = very bullish
```

The resulting dataframe contains the following.

#	Column	Non-Null Count	Dtype
0	Symbol	3061 non-null	object
1	Company Name	3061 non-null	•
_	= -		object
2	Security Type	3061 non-null	object
3	Security Price	3061 non-null	float64
4	Equity Summary Score	3061 non-null	float64
5	Volume (90 Day Avg)	3057 non-null	float64
6	Market Capitalization	3061 non-null	float64
7	Dividend Yield	3061 non-null	float64
8	Company Headquarters Location	3061 non-null	object
9	Sector	3060 non-null	object
10	Industry	3060 non-null	object
11	Optionable	3061 non-null	object
12	Price Performance (52 Weeks)	2988 non-null	float64
13	Total Return (1 Yr Annualized)	2988 non-null	float64
14	Beta (1 Year Annualized)	2988 non-null	float64
15	Standard Deviation (1 Yr Annualized)	2990 non-null	float64
16	S&P Global Market Intelligence Valuation	3047 non-null	float64
17	S&P Global Market Intelligence Quality	3044 non-null	float64
18	S&P Global Market Intelligence Growth Stability	3046 non-null	float64
19	S&P Global Market Intelligence Financial Health	2989 non-null	float64
20	P/E (Price/TTM Earnings)	2145 non-null	float64

21	PEG Ratio	836 non-null	float64
22	EPS Growth (Proj This Yr vs. Last Yr)	2763 non-null	float64
23	Institutional Ownership	2981 non-null	float64
24	Institutional Ownership (Last vs. Prior Qtr)	3060 non-null	float64
25	Analyst Sentiment	3061 non-null	object

You may find the following resources useful.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html

https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.

htm]

html

https://stackoverflow.com/questions/43096522/remove-dollar-sign-from-entire-python-pandas-dataframehttps://www.skytowner.com/explore/converting_k_and_m_to_numerical_form_in_pandas_dataframe

Page 4 is the last page.

Assigned 5/12/22, Due 5/12/22 (Thur)

The file, **data_prepared.csv**, represents the "correct" output from Problem 1. You can load this file as the starting point for Problem 2.

Problem 2. Classification

Let's explore if we can predict "Analyst Sentiment" with information at hand.

Let's focus on non-REIT common stocks only, and exclude records for "Common Stock (REIT)" and "Depository Receipt".

Consider a multiclass logistic regression to predict "Analyst Sentiment", using the following features

#	Column	Non-Null Count	Dtype
0	Security Price	2598 non-null	float64
1	Volume (90 Day Avg)	2598 non-null	float64
2	Market Capitalization	2598 non-null	float64
3	Dividend Yield	2598 non-null	float64
4	Total Return (1 Yr Annualized)	2598 non-null	float64
5	Beta (1 Year Annualized)	2598 non-null	float64
6	Standard Deviation (1 Yr Annualized)	2598 non-null	float64
7	S&P Global Market Intelligence Valuation	2598 non-null	float64
8	S&P Global Market Intelligence Quality	2598 non-null	float64
9	S&P Global Market Intelligence Growth Stability	2598 non-null	float64
10	S&P Global Market Intelligence Financial Health	2598 non-null	float64
11	Institutional Ownership	2598 non-null	float64
12	Institutional Ownership (Last vs. Prior Qtr)	2598 non-null	float64

For this exercise, please drop any record(row) if it contains a null value for any field.

Please report the estimated error rate for a random prediction, using 10-fold cross-validation.

You may find the following resources useful.

The file, **data_prepared.csv**, represents the "correct" output from Problem 1. You can load this file as the starting point for Problem 3.

Problem 3. Regression, Dimension Reduction

Let's explore if we can predict a "Equity Summary Score" with information at hand.

Let's focus on non-REIT common stocks only, and exclude records for "Common Stock (REIT)" and "Depository Receipt".

Consider a principal components regression (PCR) to predict Equity Summary Score. Please use the following raw features as input, but standardize them when performing principal component analysis.

#	Column	Non-Null Count	Dtype
0	Security Price	2598 non-null	float64
1	Volume (90 Day Avg)	2598 non-null	float64
2	Market Capitalization	2598 non-null	float64
3	Dividend Yield	2598 non-null	float64
4	Total Return (1 Yr Annualized)	2598 non-null	float64
5	Beta (1 Year Annualized)	2598 non-null	float64
6	Standard Deviation (1 Yr Annualized)	2598 non-null	float64
7	S&P Global Market Intelligence Valuation	2598 non-null	float64
8	S&P Global Market Intelligence Quality	2598 non-null	float64
9	S&P Global Market Intelligence Growth Stability	2598 non-null	float64
10	S&P Global Market Intelligence Financial Health	2598 non-null	float64
11	Institutional Ownership	2598 non-null	float64
12	Institutional Ownership (Last vs. Prior Qtr)	2598 non-null	float64

For this exercise, please drop any record(row) if it contains a null value for any field.

- [a] Estimate and plot the cumulative % of variance explained vs the number of PCs included. Note that 100% of variance is explained when all 13 PCs are included.
- [b] Using 10-fold cross-validation, explore the potential for dimension reduction.
- [b1] Plot the estimated root mean squared error(RMSE) of a random prediction vs the number of PCs used in the PCR.
- [b2] If you do not use all 13 PCs, what is the optimal number of PCs to include in your PCR?
- [b3] Fit the model using the optimal number of PCs and report the coefficient of each included PC score.

You may find the following resources useful.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html