Sistemas de Computação

Mestrado Integrado Eng^a. Informática

1º ano

2019/20

A.J.Proença

Tema

Introdução aos Sistemas de Computação

Introdução aos Sistemas de Computação (1)

Estrutura do tema ISC

- 1. Representação de informação num computador
- 2. Organização e estrutura interna dum computador
- 3. Execução de programas num computador
- 4. Análise das instruções de um processador
- 5. Evolução da tecnologia e da eficiência

Noção de computador (1)

Um computador é um sistema físico que:

recebe <u>informação</u>,

processa / arquiva informação,
transmite informação, e ...

é programável

i.e., a funcionalidade do sistema pode ser modificada, sem alterar fisicamente o sistema

Quando a funcionalidade é fixada no fabrico do sistema onde o computador se integra, diz-se que o computador existente nesse sistema está "embebido": ex. *smart phone*, máq. fotográfica, automóvel, ...

Como se representa a <u>informação</u> num computador ? Como se <u>processa</u> a informação num computador ?

Noção de computador (2)

Noção de computador (3)

- Como se representa a <u>informação</u> num computador?
 - representação da informação num computador ->

- Como se <u>processa</u> a informação num computador ?
 - organização e funcionamento de um computador ->

Representação da informação: o algarismo

Como se representa a informação?

– com <u>binary digits!</u>

Um **algarismo** ou **dígito**, é um tipo de representação (um símbolo numérico, como "2" ou "5") usado em combinações (como "25") para representar números (como o número 25) em sistemas de numeração posicionais. O nome "dígito" vem do facto de os 9 dígitos (do latim *digitem*, "dedo") das mãos corresponderem aos 10 símbolos do sistema de numeração comum de base 10, isto é, o decimal (digestivo do latim antigo *decoração*. que significa nove) dígitos.

A palavra "algarismo" tem sua origem no nome do famoso matemático Al-Khwarizmi.

Mais:

- Cada um dos elementos de um numeral é um algarismo ou dígito:
 - Numeral com 3 dígitos: 426.
 - Numeral com 10 algarismos: 1.234.567.890
- Dígitos Binários: podem ser apenas dois, o 0 (zero) e o 1 (um)

Representação da informação num computador

Como se representa a informação?

– com <u>b</u>inary dig<u>its</u>!

Tipos de informação a representar:

- números (para cálculo)
 - » bases de numeração, inteiros (positivos e negativos)
 - » reais (fp), norma IEEE 754
- textos (caracteres alfanuméricos)
- conteúdos multimédia

código para execução no computador

Sistemas de numeração : quanto vale na base 10 um nº representado numa outra base

人入

1532.54₁₀ (base 10) ; quanto vale cada algarismo? **1***10³ + **5***10² + **3***10¹ + **2***10⁰ + **5***10⁻¹ + **4***10⁻² = **15**32**.5**4₁₀

Nota: a potência de 10 dá-nos a ordem do algarismo no número...

1532₆ (base 6); quanto vale cada algarismo na base 10? $1*6^3 + 5*6^2 + 3*6^1 + 2*6^0 = 416_{10}$

1532₁₃ (base 13); quanto vale cada algarismo na base 10? $1*13^3 + 5*13^2 + 3*13^1 + 2*13^0 = 3083_{10}$

110110.011₂ (base 2) ; quanto vale cada algarismo na base 10? $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = 54.375_{10}$

Sistemas de numeração : como se passa um nº na base 10 para uma outra base

- 1532.54₁₀ (base 10); algoritmo para extrair os algarismos?
 - parte inteira: divisão sucessiva pela base e...
 - parte decimal: multiplicação sucessiva pela base e...
- 416₁₀; quanto vale cada algarismo na base 6?
 - parte inteira ... parte decimal ...
- 3083₁₀; quanto vale cada algarismo na base 13?
 - parte inteira ... parte decimal ...
- 154.375₁₀; quanto vale cada algarismo na base 2?
 - parte inteira ... parte decimal ...

110110.011₂ (base 2) ; quanto vale cada algarismo na base 10? $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = ...$

Para simplificar:

• eliminar os produtos, ignorar parcelas com produtos por 0

•
$$1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = ...$$

=> $2^5 + 2^4 + 2^2 + 2^1 + 1/2^2 + 1/2^3 = ...$

Recomendação:

- decorar a tabuada das potências de 2 (20 + 210)
- compreender as potências de 2 múltiplas de 10

Numeração de base 2 : dicas para uma rápida conversão de potências de 2 para a base 10

人入

20 =	1	2 ¹⁰ = 1024 = 1 Ki(bi) ≈	$1000 = 10^3 = 1 \text{ K(ilo)}$
21 =	2		
22 =	4	$2^{12} = 2^2 * 2^{10} = 4 \text{ Ki(bi)}$	$\approx 4000 = 4*10^3 = 4 \text{ K}$
23 =	8	$2^{16} = 2^6 * 2^{10} = 64 \text{ Ki(bi)}$	\approx 64*10 ³ = 64 K
24 =	16	020 4 14 11 11	200000 406 4 14
25 =	32	2 ²⁰ = 1 Me(bi) ≈ 10	$000000 = 10^6 = 1 \text{ M(ega)}$
26 =	64	$2^{30} = 1 \text{ Gi(bi)} \approx 10000$	$000000 = 10^9 = 1 G(iga)$
27 =	128	- 40	12
28 =	256	2 ⁴⁰ = 1 Te(bi) ≈	$10^{12} = 1 \text{ T(era)}$
29 =	512	$2^{50} = 1 \text{ Pe(bi)} \approx$	10 ¹⁵ = 1 P(eta)
210 =	1024		

Sistemas de numeração : caso particular da base 16 (hexadecimal)

人入

- Dígitos na base 16:

 0, 1, 2, ... 9,
 a, b, c, d, e, f

 Vantagens sobre um valor de 32 bits:
 - 10100110100001110110010111010100₂ **VS.** a68765d4₁₆
- Mesmo com ponto decimal:

 10100110100000111011001011101.012

 1010 0110 1000 0111 0110 0101 1101.01002

 a 6 8 7 6 5 d . 4₁₆

Representação de inteiros

人入

Gama de valores representáveis

- ideal: todos os valores <u>e</u>
 simetria em relação ao 0
- mas ...

– e quantos bits para representar um inteiro?

Representação de positivos & negativos

- estratégias
- análise dum exemplo com todos os valores possíveis
 - S+M: Sinal + Magnitude/amplitude≠
 - Complemento para 1
 - Complemento para 2
 - Notação por excesso

Inteiros positivos e negativos: o universo com 3 bits

人入

Base 10	Base 2	S+M	Comp p/ 1	Comp p/ 2	Excesso 2 ⁿ⁻¹	Excesso 2 ⁿ⁻¹ -1
0	000	(+0)	(+0)	+0	0 -4 > -4	0 -3 > -3
1	001	+1	+1	+1	1 -4 > -3	1-3 > -2
2	0 10	+2	+2	+2	2 -4 > -2	-3 → -1
3	011	+3	+3	+3	3 -4 > -1	3 -3 > 0
4	100	(-0)	-11 ₂ > -3	-(11+1) ₂ > -4	4 -4 > 0	4-3 > +1
5	101	-1	-10 ₂ > -2	-(10+1) ₂ > -3	5 -4 > +1	5-3 > +2
6	110	-2	-01 ₂ > -1	-(01+1) ₂ > -2	6-4 > +2	6- 3 > + 3
7	111	-3	-00(x) -O) -(00+1) ₂ > -1	7 -4 > +3	7-3 > +4

Nota: n= #bits, $2^{n-1} = 2^{3-1} = 2^2 = 4$, $2^{n-1} - 1 = 2^{3-1} - 1 = 2^2 - 1 = 3$

Representação de reais em vírgula flutuante

人入

- Gama de valores
 - esta gama é viável?

Notação científica

Valor = (-1)^S * Mantissa * Radix^{Exp}

- Normalização na representação
 - valores normalizados e subnormais
- Intervalo e precisão de valores representáveis
- Formato binário dum valor em fp
 - <u>S</u>inal, Mantissa ou parte <u>F</u>racionária, <u>E</u>xpoente
- O bit escondido
- A norma IEEE 754-2008 para valores em fp

A norma IEEE 754-2008 para valores em fp

人入

- Representação do sinal e parte fracionária
 - S+M
- Representação do expoente
 - Notação por excesso 2ⁿ⁻¹-1
- Valor decimal de um fp em binário (normalizado)
 - Precisão simples:
 V = (-1) S * (1.F) * 2 E-127
- Valor decimal de um fp em binário (subnormal)
 - Precisão simples: $V = (-1)^{S} * (0.F) * 2^{-126}$
- Representação do zero: E=0 e F=0
- Representação de ±∞: E = 1111 1111₂ e F = 0
- Representação de n.º não real: E = 1111 1111₂ e F ≠ 0

O papel dos subnormais na norma IEEE 754

(a) 32-bit format without denormalized numbers

(b) 32-bit format with denormalized numbers

Representação da informação num computador

Como se representa a informação?

– com <u>b</u>inary dig<u>its</u>!

Tipos de informação a representar:

- números (para cálculo)
 - » bases de numeração, inteiros (positivos e negativos)
 - » reais (fp), norma IEEE 754
- textos (caracteres alfanuméricos)
 - » Baudot, Braille, ASCII, Unicode, ...
- conteúdos multimédia

código para execução no computador

Ex.: codificação telegráfica de texto, código de Baudot, 5-bits

• Baudot,

76.7	11.5			٠.	1	1	IJ	. ,	25.7			•	171	1111
<u> </u>	IV			1	11	111	2	<u>v</u>	11			Ш	111	Ш
		Α	1	•		$!_{-}$		•		P.	%	•		•
	•	₿	8			•		•	•	Q	/	•		•
	•	C	9	•	Γ	•		•	•	R	-			•
	•	D	0	•	•	•	777	0		S	;			•
		E	2		•			•		T	!	•		•
		E'	8	•	•		ij			Ū	4	•		•
	•	F	Ē		•	•		•		V	,	•	•	•
	•	G	7		•		THE STREET	•		W	?		•	•
	•	H	판	•	•			•		X	,		•	_
		7	5		•	•			-	Y	3			•
	•	J	6	•				•		Z	:	•	•	_
•	•	K	7	•				•		브	•	•		
•	•	L	11	•	•		1777	•	•	Ж	黑	Ere	3SU	re
•	•	М)		•				•	Figure Blank				
•	•	\overline{N}	N۰		•	•	77	•		Letter Blank				
		Ò	5		•	•		السند						

Fig 1. The Baudot code

Ex.: codificação de texto em relevo, código Braille com 6-bits

Baudot, <u>Braille</u>,

Alfabeto Braille

AJProença, Sistemas de Computação,

Ex.: representação de texto com ASCII (7 bits)

Tabela ASCII 7 bits

```
0
                                7
                                    8
                                        9
                                                \mathbf{B}
                                                        D
                                                                 F
 NUL SOH STX ETX EOT ENQ ACK BEL BS
                                       HT
                                           LF
                                                       CR
                                                            SO
                                                                SI
 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM
                                           SUB ESC
                                                   FS
                                                       GS
                                                            RS
                                                                US
2 SP
               #
                   $
                       용
                           æ
                       5
                            6
                                    8
   0
       1
           В
                       E
                                    H
                                                K
5
   Ρ
       Q R
               S
                   T U V
                                    X
                                            j k 1
                           f
                                        i
           b
               C
                                    h
                       е
                                g
                                                        m
                                                             n
                   t
                                                                DEL
   p
       q
           r
                       u
                           V
                                W
                                    X
                                        У
```

Н	е	1	1	0		W	0	r	1	d	į
48	65	6c	6c	6f	20	77	6f	72	6c	64	21

Ex.: codificação universal de texto, UTF-8 no Unicode

Baudot, Braille, ASCII, <u>Unicode</u>, (UTF-8)

binary	hex	decimal	notes				
00000000-0111111	00-7F	0-127	US-ASCII (single byte)				
10000000-10111111	80-BF	128-191	cond, third, or fourth byte of a multi-byte sequence				
11000000-11000001	C0-C1	192-193	Overlong encoding: start of a 2-byte sequence, but code point ≤ 127				
11000010-11011111	C2-DF	194-223	Start of 2-byte sequence				
11100000-11101111	E0-EF	224-239	Start of 3-byte sequence				
11110000-11110100	F0-F4	240-244	Start of 4-byte sequence				
11110101-11110111	F5-F7	245-247	Restricted by RFC 3629: start of 4-byte sequence for codepoint above 10FFFI				
11111000-11111011	F8-FB	248-251	Restricted by RFC 3629: start of 5-byte sequence				
11111100-11111101	FC-FD	252-253	Restricted by RFC 3629: start of 6-byte sequence				
111111110-111111111	FE-FF	254-255	Invalid: not defined by original UTF-8 specification				

Representação da informação num computador

Como se representa a informação?

– com <u>b</u>inary dig<u>its</u>!

Tipos de informação a representar:

- números (para cálculo)
 - » inteiros: S+M, Compl. p/ 1, Compl. p/ 2, Excesso
 - » reais (fp): norma IEEE 754
- textos (caracteres alfanuméricos)
 - » Baudot, Braille, ASCII, Unicode, ...
- conteúdos multimédia
 - » imagens fixas: BMP, JPEG, GIF, PNG, . . .
 - » audio-visuais: AVI, MPEG/MP3, ...
- código para execução no computador

Ex.: representação de uma imagem em bitmap

You can create a 24-bit image in a graphics program such as Paint.

A graphics program saves the image line by line, from the bottom to the top. Each of the pixel's threecolor values, RGB (redgreen-blue), are read from left to right.

R 250	R 244	R 238
G 210	G 195	G 182
B 94	B 69	B 51
R 242	R 235	R 222
G 190	G 176	G 160
B 60	B 42	B 26
R 228	R 218	R 201
G 167	G 153	G 148
B 27	B 17	B 53

A graphics program translates the RGB values into palette values. The palette values are a software-specific decision; each program's values are different.

Each palette value, a hexadecimal value in this case, is stored in the same order as displayed in the image. FAD25E F4C345 EEB633
F2BE3C EBB02A DEA01A
E4A71B DA9911 C99435

The pixel values are stored in the bit-mapped file in the same width and depth as the original image.

Compiled by Kyle Schurman Graphics & Design by Lori Garris

Forming A Pixel

A pixel is the smallest part of an image that a computer's monitor can control. Each pixel consists of three colors: red, green, and blue. Each of the three colors is assigned a value that shows its intensity; the values are from 0 to 255. You can think of each value as a percentage. For example, 127 has a 50% intensity. These are known as the RGB values.

Representação da informação num computador

Como se representa a informação?

– com <u>b</u>inary dig<u>its</u>!

Tipos de informação a representar:

- números (para cálculo)
 - » inteiros: S+M, Compl. p/ 1, Compl. p/ 2, Excesso
 - » reais (fp): norma IEEE 754
- textos (caracteres alfanuméricos)
 - » Baudot, Braille, ASCII, Unicode, ...
- conteúdos multimédia
 - » imagens fixas: BMP, JPEG, GIF, PNG, . . .
 - » audio-visuais: AVI, MPEG/MP3, ...
- código para execução no computador
 - » noção de instruction set

Ex.: representação de código para execução num PC

人入

int
$$x = x+y$$
;

addl 8(%ebp),%eax

Idêntico à expressão x = x + y

- Código numa linguagem de programação
 - somar 2 inteiros
- Código numa linguagem mais próxima do processador
 - somar 2 inteiros (de 4-bytes)
 - operandos:
 - x: no registo eax
 - y: na memória em [(ebp) +8]

0x401046: 03 45 08

- Código "objecto" (em hexadecimal)
 - instrução com 3-bytes
 - na memória em 0x401046