Arithmétique - Partie 4 : Congruences

Exercice 1.

Simplifier les expressions suivantes (sans calculatrice). Par exemple "simplifier 72 [7]" signifie "trouver n entre 0 et 6 tel que $72 \equiv n$ [7]"; la réponse est n = 2.

- -45[7], 39[7], 45+39[7], $45\times39[7]$, $45^2[7]$, $39^3[7]$.
- -1052[22], 2384[22], 2384-1052[22], $1052^2 \times 2384[22]$.

Exercice 2.

- 1. Calculer 2⁵⁰⁰ modulo 13 (utiliser le petit théorème de Fermat).
- 2. Calculer 1000¹²³ modulo 17.
- 3. Calculer 3^{1234} modulo 15 (attention on ne peut pas appliquer le petit théorème de Fermat, étudier d'abord 3^k modulo 15 pour les petites valeurs de k).

Exercice 3.

Les deux premières questions reprennent un exercice précédent et montrent l'efficacité des congruences pour les calculs.

- 1. Soit $n = p^2$ le carré d'un entier. Déterminer les valeurs possibles de n modulo 4.
- 2. Montrer que si *n* est un entier naturel somme de deux carrés d'entiers alors *n* modulo 4 n'est jamais égal à 3.
- 3. Soit $n = p^2$ le carré d'un entier. Déterminer les valeurs possibles de n modulo 8.
- 4. Montrer que si *n* est un entier naturel somme de trois carrés d'entiers alors *n* modulo 8 n'est jamais égal à 7.

Exercice 4.

- 1. Montrer que p = 101 est un nombre premier.
- 2. Soit *a* un entier avec $1 \le a < p$. Montrer que pgcd(a, p) = 1.
- 3. Écrire le théorème de Bézout pour le pgcd précédent ; en déduire qu'il existe $u \in \mathbb{Z}$ tel que $au \equiv 1$ [p]. *Un tel u s'appelle un inverse de a modulo p.*
- 4. Trouver un inverse de a = 15 modulo p = 101.
- 5. Trouver une solution de l'équation d'inconnue x (un entier) : $15x \equiv 7$ [101].
- 6. Reprendre tout l'exercice avec p = 103.

Exercice 5.

Les **nombres de Fermat** F_n sont les entiers définis pour $n \in \mathbb{N}$ par

$$F_n = 2^{2^n} + 1$$

1. Montrer que pour tout entier naturel n, on a $F_{n+1} = (F_n - 1)^2 + 1$.

2.	Démontrer que pour $n \ge 2$, l'écriture décimale des nombres de Fermat (F_n) se termine par le chiffre 7.