数学標準問題集 • 解答篇

Ver.1.4.0

最終更新日: 2022 年 09 月 26 日

はじめに

試験等からの引用は[]で示しています.

訂正, 誤字脱字衍字などは, Instagram の DM, または, ruyur10707@gmail.com からお願いします.

更新情報

2022.09.01 【Ver.1.4.0】 **1.6** 複素数 [??], **8.4** 関数の展開 [??], **9.2** 導関数 [??] を追加. 2022.08.27 【Ver.1.2.0】 デザインを変更.

目次

第1章	数と式の計算	9
1.1	式の展開	9
1.2	因数分解	9
1.3	剰余定理・因数定理	9
1.4	分数式	9
1.5	実 数	9
1.6	複素数	9
第2章	方程式・不等式	11
2.1	いろいろな方程式	
2.2	判別式	
2.3	解と係数の関係...................................	
2.4	いろいろな不等式	11
2.5	比例式・恒等式	11
2.6	等式/不等式の証明	11
第3章	集合・命題	13
3.1	集合	
3.2	命 題	_
0.2	MP NA	10
第4章	初等関数 1	15
4.1	2 次関数	15
4.2	幂関数	15
4.3	関数 f の性質 \ldots	15
4.4	分数関数	15
4.5	無理関数	15
4.6	逆関数・合成関数	15
4.7	指数関数	15
4.8	対数関数	15
然と去	5m 分が目目率し 3 → な 目目率し 37g 出が白 目目率し	1 17
第5章	初等関数2-三角関数,双曲線関数	17
5.1	三角関数の相互関係	
5.2	三角形への応用	
5.3	加法定理と三角関数の性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5.4	三角関数を含む方程式・不等式	
5.5	逆三角関数・双曲線関数・逆双曲線関数....................................	17

目次

第6章	平面図形	19
6.1	点と直線	19
6.2	2 次曲線	19
6.3	不等式と領域	19
第7章	** F	21
7.1	場合の数	
7.2	2 項定理	21
7.3	多項定理	21
第8章		23
8.1	数 列	
8.2	漸化式	
8.3	数学的帰納法	
8.4	関数の展開	24
第9章	- 2200420 - 5004	27
9.1	関数の極限	27
9.2	導関数	27
9.3	微分の応用	27
第 10 章	1変数関数の積分	2 9
10.1	不定積分	29
10.2	定積分	29
10.3	積分の応用	29
10.4	1 変数関数の微分積分の発展	29
第 11 章	ベクトル	31
11.1	平面ベクトル	31
11.2	空間ベクトル	31
第 12 章	行 列	33
12.1	行 列	33
12.2	連立 1 次方程式	33
第 13 章	行列式	35
13.1	行列式	35
13.2	線形変換	35
13.3	固有值	35
第 14 章	2 変数以上の関数の微分	37
14.1	多変数関数の極限	37
	14.1.1 ε -δ 論法, ε -N 論法	37
14.2	偏微分	37
14.3	合成関数の微分	37

		7
14.4	全微分	37
14.5	偏微分の応用	37
第 15 章	2変数以上の関数の積分	39
15.1	2 重積分	39
15.2	3 重積分	39
15.3	広義重積分	39
15.4	重積分における変数変換	39
第 16 章	微分方程式	41
第 17 章	確率	43
第 18 章	データ	45
第 19 章	ベクトル解析	47
第 20 章	ラプラス変換	49
第 21 章	フーリエ解析	51
第 22 章	複素関数	53

注意事項

• 特に指定が無い限り, i は虚数単位を, π は円周率を, e はネピア数を表す:

$$i^2 = -1$$
, $\pi = 3.141592...$, $e = 2.718281...$

• N は自然数全体の集合, $\mathbb Z$ は整数全体の集合, $\mathbb Q$ は有理数全体の集合, $\mathbb R$ は実数全体の集合, $\mathbb C$ は複素数全体の集合を表す:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

• ベクトルは第 14 章までは \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{AB} , \cdots で、第 15 章からは a, b, c, \cdots で表す.

第1章 数と式の計算

1.1 式の展開

1

2

1.2 因数分解

1.3 剰余定理・因数定理

1.4 分数式

1.5 実数

1.6 複素数

?? 【複素数】

求める数を z=a+bi $(a,\ b\in\mathbb{R})$ とおいて両辺 2 乗すると

$$z^2 = i = (a+bi)^2 = (a^2 - b^2) + 2abi$$

実部は0,虚部は1なので

$$\begin{cases} a^2 - b^2 = 0\\ 2ab = 1 \end{cases}$$

解いて
$$a = \pm \frac{\sqrt{2}}{2}$$
, $b = \pm \frac{\sqrt{2}}{2}$ (複号同順).
 $\therefore \sqrt{i} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $-\sqrt{i} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$ · · · · · · (答)

		第	2	章
方程式	•	不急	学 :	£

いろいろな方程式		
判別式		
解と係数の関係		
いろいろな不等式		
比例式・恒等式		
	判別式解と係数の関係いろいろな不等式	料別式解と係数の関係

2.6 等式/不等式の証明

第3章 集合·命題

3.1 集合

3.2 命 題

	<u>15</u>
第 4	章
初等関数	1

	2次関数
4.1	
4.2	幂関数
4.3	関数 f の性質
4.4	分数関数
4.5	無理関数
4.6	逆関数・合成関数
4.7	指数関数
4.8	

第5章

初等関数2-三角関数, 双曲線関数

- 5.1 三角関数の相互関係
- 5.2 三角形への応用
- 5.3 加法定理と三角関数の性質
- 5.4 三角関数を含む方程式・不等式
- 5.5 逆三角関数・双曲線関数・逆双曲線関数

	第	6	章
平面	íΒ	1	形

6.1 点と直線

6.2 2 次曲線

6.3 不等式と領域

	第	7	章
場合	0)}	数

7.1 場合の数

7.2 2 項定理

7.3 多項定理

第8章 数 列

8.1 数列

1 【等差数列】

- (1) 2, $\boxed{7}$, 12, $\boxed{17}$, $\boxed{22}$, \cdots 初項 2, 公差 5 なので $a_n = 5n 3 \cdots$ (答)
- (2) [-27], -23, [-19], [-15], -11, \cdots 初項 -27, 公差 4 なので $a_n = 4n 31$ \cdots (答)
- $(3) 2, \begin{bmatrix} \frac{3}{2} \end{bmatrix}, [1], \begin{bmatrix} \frac{1}{2} \end{bmatrix}, 0, \cdots$ 初項 2, 公差 $-\frac{1}{2}$ なので $a_n = -\frac{1}{2}n + \frac{5}{2}$ · · · · · (答)
- (4) $\sqrt{2}-1$, $\sqrt{2}$, $\sqrt{2}+1$, $\sqrt{2}+2$, $\sqrt{2}+3$, … 初項 $\sqrt{2}-1$, 公差 1 なので $a_n=n+\sqrt{2}-2$ ……**(答)**
- (5) 1, $\left[\frac{\sqrt{2}+2}{3}\right]$, $\left[\frac{2\sqrt{2}+1}{3}\right]$, $\sqrt{2}$, $\left[\frac{4\sqrt{2}-1}{3}\right]$, ... 初項 1, 公差 $\frac{\sqrt{2}-1}{3}$ なので $a_n = \frac{\sqrt{2}-1}{3}n \frac{\sqrt{2}-4}{3}$ (答)
- (6) $\left[\log \frac{3}{4}\right]$, $\left[\log \frac{3}{2}\right]$, $\log 3$, $\log 6$, $\left[\log 12\right]$, \cdots 初項 $\log \frac{3}{4}$, 公差 $\log 2$ なので $a_n = \log 2^n + \log \frac{3}{8}$ \cdots (答)
- 2 【等差数列】
- 3 【等差数列】
- 4 【等差数列】
- 5 【等差数列】
- 6 【等差数列】

24

第8章 数 列

- 7 【等差数列】
- 8 【等差数列】
- 9 【等差数列】

8.2 漸化式

8.3 数学的帰納法

8.4 関数の展開

1 【数列の極限の性質】

- (1) 偽 反例: $a_n = n + 1, b_n = n$
- (2) 偽 反例: $a_n = n + \frac{1}{n}, b_n = n$
- (3) 真 証明: $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \{a_n (a_n b_n)\} = \alpha 0 = \alpha$
- (4) 偽 反例: $a_n = 1 + (-1)^n, \ b_n = 1 (-1)^n$
- (5) 偽 反例: $a_n = n, b_n = \frac{1}{n}$
- (6) 偽 反例: $a_n = \frac{1}{n^2}$, $b_n = \frac{1}{n}$
- (8) 偽 反例: $a_n = 1, b_n = \frac{1}{n}$
- (9) 偽 反例: $a_n = 1$, $b_n = 1 + \frac{1}{n}$
- (10) 偽 反例: $a_n = \sqrt{n}$
- (11) 偽 反例: $a_n = (-1)^n$

8.4 関数の展開 25

数列 $\{a_n\},\;\{b_n\}$ が収束し、各極限値が $\lim_{n o\infty}a_n=lpha,\;\lim_{n o\infty}b_n=eta$ であるとき

[1] $\lim_{n\to\infty}(Aa_n\pm Bb_n)=A\alpha\pm B\beta$ (線形性, ただし $A,\ B$ は定数)

- $[2] \lim_{n \to \infty} a_n b_n = \alpha \beta$
- [3] すべての n について $a_n \leq b_n$ または $a_n < b_n \Longrightarrow \alpha \leq \beta$
- [4] $\lim_{n \to \infty} a_n = \alpha \iff \lim_{n \to \infty} |a_n \alpha| = 0$

数列が収束しないとき,上の性質は成り立つとは限らない.

- (1) a_n , b_n は収束していないので常に成り立つとは限らない.
- (8) $\beta \neq 0$ であれば真である.
- (9) $\alpha \leq \beta$ であれば真である.
- (11) $\{a_n\}$ が無限大に発散するならば真である.

??

第9章

1変数関数の微分

9.1 関数の極限

?? 【中間値の定理】

証明 f(x) =左辺 とすると,絶対値の十分大きな $x_+ > 0$, $x_- < 0$ に対して $f(x_+) > 0$, $f(x_-) < 0$ となるから,中間値の定理より区間 (x_-, x_+) に少なくとも 1 つの実数解を持つ. //

9.2 導関数

?? 【高次導関数】

ライプニッツの公式より

$$\frac{d^{n} f}{dx^{n}}(x) = \sum_{k=0}^{n} {}_{n}C_{k} \frac{d^{k}(x^{2})}{dx^{k}} \frac{d^{n-k}(\cos x)}{dx^{n-k}}$$

いま,
$$k \ge 3$$
 なら $\frac{d^k(x^2)}{dx^k} = 0$ なので

$$\frac{d^{100}f}{dx^{100}}(x) = {}_{100}\text{C}_0x^2 \frac{d^{100}(\cos x)}{dx^{100}} + {}_{100}\text{C}_1(x^2)' \frac{d^{99}(\cos x)}{dx^{99}} + {}_{100}\text{C}_2(x^2)'' \frac{d^{98}(\cos x)}{dx^{98}}$$
$$= x^2 \cos x + 200x \sin x - 9900 \cos x$$

よって

$$\frac{d^{100}f}{dx^{100}}(\pi) = -\pi^2 + 0 + 9900 = 9900 - \pi^2 \quad \cdots$$
 (答)

9.3 微分の応用

?? 【ロピタルの定理】

r>1,任意の正の x について, $(x+1)^{r+1}-x^{r+1}>0$ が成り立つことに注意すると,対数の連続性より

$$\log g(x) = \lim_{r \to 0} \log ((x+1)^{r+1} - x^{r+1})^{\frac{1}{r}}$$
$$= \lim_{r \to 0} \frac{1}{r} \log ((x+1)^{r+1} - x^{r+1})$$

ロピタルの定理より

$$\begin{split} \log g(x) &= \lim_{r \to 0} \frac{(x+1)^{r+1} \log(x+1) - x^{r+1} \log x}{(x+1)^{r+1} - x^{r+1}} \qquad \qquad \leftarrow r \text{ について微分することに注意.} \\ &= \frac{(x+1) \log(x+1) - x \log x}{(x+1) - x} \\ &= \log \frac{(x+1)^{x+1}}{x^x} \end{split}$$

よって

$$g(x) = \frac{(x+1)^{x+1}}{x^x} = (x+1)\left(1 + \frac{1}{x}\right)^x$$

したがって

$$\lim_{x \to \infty} \frac{g(x)}{x} = \lim_{x \to \infty} \frac{x+1}{x} \left(1 + \frac{1}{x} \right)^x = 1 \cdot e = e \quad \cdots \quad (5)$$

[The 82nd William Lowell Putnam Mathematical Competition, 2021]

	第	10	章
1	変数関数の	書	;;

10.1	不定積分
TO.T	* *

10.2 定積分

10.3 積分の応用

10.4 1変数関数の微分積分の発展

第 11 章 ベクトル

11.1 平面ベクトル

1 【ベクトルの和,差,実数倍】

- (1) 与式 = $2\vec{a} 4\vec{b} 3\vec{a} \vec{b} = -\vec{a} 5\vec{b}$
- (2) 与式 = $\vec{6a} \vec{3b} \vec{2a} \vec{4b} = \vec{4a} \vec{7b}$
- (3) 与式 = $3\vec{a} + \vec{b} 2\vec{c} 2\vec{a} + 2\vec{b} 2\vec{c} = \vec{a} + 3\vec{b} 4\vec{c}$

2 【ベクトルの和,差,実数倍】

- (1) 与式 \iff $3\vec{x} = 3\vec{a} + 9\vec{b}$ より $\vec{x} = \vec{a} + 3\vec{b}$ (2) 与式 \iff $2\vec{x} + 4\vec{b} 3\vec{x} 3\vec{a} = \vec{0}$ より $\vec{x} = -3\vec{a} + 4\vec{b}$

3 【平行な単位ベクトル】

$$\frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{\overrightarrow{a}}{2}$$

11.2 空間ベクトル

第12章 行 列

12.1 行列

12.2 連立1次方程式

第	13	章
行	列	力

13.1 行列式

13.2 線形変換

13.3 固有値

第14章 2変数以上の関数の微分

14.1	多変数関数の極	限

14.1.1 ε - δ 論法, ε -N 論法

14.2 偏微分

14.3 合成関数の微分

14.4 全微分

14.5 偏微分の応用

	第 15 章
2変数以	上の関数の積分

15.1 2 重積分

15.2 3 重積分

15.3 広義重積分

15.4 重積分における変数変換

第16章 微分方程式

第 17 章

確 率

第18章 データ

第19章 ベクトル解析

第20章 ラプラス変換

第21章 フーリエ解析

第22章 複素関数