Тригонометрия

1.
$$\cos^2 \alpha + \sin^2 \alpha = 1$$
; $tg \alpha \cdot ctg \alpha = 1$;

2.
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha};$$
 $ctg \alpha = \frac{\cos \alpha}{\sin \alpha};$

3.
$$tg \alpha = \frac{1}{ctg \alpha}$$
; $ctg\alpha = \frac{1}{tg \alpha}$;

4.
$$1 + tg^2\alpha = \frac{1}{\cos^2\alpha}$$
; $1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$;

5.
$$sin(\alpha \pm \beta) = sin\alpha \cdot cos \beta \pm cos \alpha \cdot sin \beta$$
;

6.
$$\cos(\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$$
;

7.
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha \cdot tg \beta};$$

8.
$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$
;

9.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
;

10.
$$\cos 2\alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$
;

11.
$$tg 2\alpha = \frac{2tg \alpha}{1 - ta^2 \alpha};$$
 $ctg 2\alpha = \frac{ctg^2 \alpha - 1}{2cta \alpha};$

12.
$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$$
;

13.
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$
;

14.
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$
;

15.
$$tg \alpha \pm tg \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta};$$

16.
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
; $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$;

17.
$$\sin \alpha \cdot \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta));$$

18.
$$\cos \alpha \cdot \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta));$$

19.
$$\sin \alpha \cdot \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

20.
$$\left| \sin \frac{\alpha}{2} \right| = \sqrt{\frac{1 - \cos \alpha}{2}}$$
; $\left| \cos \frac{\alpha}{2} \right| = \sqrt{\frac{1 + \cos \alpha}{2}}$;

21.
$$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha}$$
; $ctg\frac{\alpha}{2} = \frac{\sin\alpha}{1 - \cos\alpha}$.

Таблица значений тригонометрических функций

α, <i>рад</i>	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
α, °	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tgα	0	$\frac{1}{\sqrt{3}}$	1	√3	-	- √3	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	√3	=	- √3	-1	$-\frac{1}{\sqrt{3}}$	0
ctgα	-	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	- √3	-	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	-√3	-

Решение тригонометрических уравнений

Общее решение $(-1)^n$ arcsin $a + \pi n$ или $= \arcsin a + 2\pi n$	$a = 0$ $x = \pi n$	α = 1	a = -1
υπυ = arcsin a + 2πn	$x = \pi n$	π . 2	π
$=\pi - arcsin \alpha + 2\pi n$		$x = \frac{1}{2} + 2\pi n$	$x = -\frac{\pi}{2} + 2\pi r$
$\pm arccos a + 2\pi n$ unu $= arccos a + 2\pi n$ $= -arccos a + 2\pi n$	$x = \frac{\pi}{2} + \pi n$	$x = 2\pi n$	$x = \pi + 2\pi n$
arctg a + πn	$x = \pi n$	$x = \frac{\pi}{4} + \pi n$	$x = -\frac{\pi}{4} + \pi n$
$arcctg \ a + \pi n$	$x = \frac{\pi}{2} + \pi n$	$x = \frac{\pi}{4} + \pi n$	$x = \frac{3\pi}{4} + \pi n$
	$u\pi u$ $= \arccos a + 2\pi n$ $= -\arccos a + 2\pi n$ $\arctan arctg \ a + \pi n$ $\arctan arcctg \ a + \pi n$	$x = \frac{\pi}{2} + \pi n$ $= -\arccos a + 2\pi n$ $= -\arccos a + 2\pi n$ $\arctan x = \pi n$ $x = \pi n$ $\arctan x = \frac{\pi}{2} + \pi n$ $x = \pi n$	$x = \frac{\pi}{2} + \pi n$ $= -\arccos a + 2\pi n$ $= -\arccos a + 2\pi n$ $\arctan x = \pi n$ $x = 2\pi n$ $\arctan x = \pi n$ $x = \pi n$

Свойства четности и нечетности тригонометрических функций

$$cos(-x) = cos x - четная$$

 $sin(-x) = -sin x - нечетная$
 $tg(-x) = -tgx - нечетная$
 $ctg(-x) = -ctgx - нечетная$

$$arccos(-x) = \pi - arccos x$$

 $arcsin(-x) = -arcsin x$
 $arctg(-x) = -arctgx$
 $arcctg(-x) = \pi - arcctgx$

Обратные тригонометрические функции

$$arcsin a = t, t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], sin t = a, a \in [-1; 1]$$
 $arcsin(sin t) = t, t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$
 $sin(arcsin a) = a, a \in [-1; 1]$
 $arccos a = t, t \in [0; \pi], cos t = a, a \in [-1; 1]$
 $arccos(cos t) = t, t \in [0; \pi]$
 $cos(arccos a) = a, a \in [-1; 1]$

$$arctg \ a = t, \ t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right), \ tg \ t = a, \ a \in R$$
 $arctg \ (tg \ t) = t, \ t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$
 $tg(arctg \ a) = a, \ a \in R$
 $arcctg \ a = t, \ t \in (0; \pi), \ ctg \ t = a, \ a \in R$
 $arcctg \ (ctg \ t) = t, \ t \in (0; \pi)$
 $ctg(arcctg \ a) = a, \ a \in R$

Формулы приведения

$$\sin\left(\frac{\pi}{2} \pm t\right) = \cos t \qquad \cos\left(\frac{\pi}{2} \pm t\right) = \mp \sin t \qquad tg\left(\frac{\pi}{2} \pm t\right) = \mp ctgt \qquad \cot\left(\frac{\pi}{2} \pm t\right) = \mp tgt$$

$$\sin(\pi \pm t) = \mp \sin t \qquad \cos(\pi \pm t) = -\cos t \qquad tg(\pi \pm t) = \pm tgt \qquad \cot(\pi \pm t) = \pm ctgt$$

$$\sin\left(\frac{3\pi}{2} \pm t\right) = -\cos t \qquad \cos\left(\frac{3\pi}{2} \pm t\right) = \pm \sin t \qquad tg\left(\frac{3\pi}{2} \pm t\right) = \mp ctgt \qquad \cot\left(\frac{3\pi}{2} \pm t\right) = \mp tgt$$

$$\sin(2\pi \pm t) = \pm \sin t \qquad \cos(2\pi \pm t) = \cos t \qquad tg(2\pi \pm t) = \pm tgt \qquad \cot(2\pi \pm t) = \pm ctgt$$

Знаки тригонометрических функций

Показательные уравнения и неравенства

1.
$$a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$$
.
2. $(a(x))^{f(x)} = (a(x))^{g(x)} \Leftrightarrow \begin{bmatrix} a(x) = 1, \\ a(x) > 0, \\ f(x) = g(x). \end{bmatrix}$

$$\left[f(x) = g(x) \right]$$
3. $a^{f(x)} > a^{g(x)} \Leftrightarrow (a-1)(f(x)-g(x)) > 0$.

4.
$$a^{f(x)} \ge a^{g(x)} \iff (a-1)(f(x)-g(x)) \ge 0.$$

5.
$$\frac{a^{f(x)} - a^{g(x)}}{h(x)} \ge 0 \Leftrightarrow \frac{(a-1)(f(x) - g(x))}{h(x)} \ge 0.$$

6.
$$\frac{a^{f(x)}-a^{g(x)}}{h(x)} \le 0 \Leftrightarrow \frac{(a-1)(f(x)-g(x))}{h(x)} \le 0.$$

7.
$$\frac{a^{f(x)} - a^{g(x)}}{a^{h(x)} - a^{p(x)}} \le 0 \iff \frac{f(x) - g(x)}{h(x) - p(x)} \le 0.$$

$$(a(x))^{f(x)} > (a(x))^{g(x)} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a(x) > 0, \\ (a(x) - 1)(f(x) - g(x)) > 0. \end{cases}$$

4.
$$a^{f(x)} \ge a^{g(x)} \Leftrightarrow (a-1)(f(x)-g(x)) \ge 0.$$

5. $\frac{a^{f(x)}-a^{g(x)}}{h(x)} \ge 0 \Leftrightarrow \frac{(a-1)(f(x)-g(x))}{h(x)} \ge 0.$ **9.** $\begin{cases} a(x))^{f(x)} \ge (a(x))^{g(x)} \Leftrightarrow \\ a(x) > 0, \\ (a(x)-1)(f(x)-g(x)) \ge 0. \end{cases}$