Chapter 8 Statistics - (Study) Formula Sheet

8.1 - Collecting Data

8.2 - Displaying Data

Frequency Tables

Summarize datasets by counting the number of observations for each category, distinct value or interval.

Type of Compute	Frequency	Percent	
Desktop	11	11/50 = 22%	
Laptop	23	23/50 = 48%	
Notebool	9	9/50 = 18%	
Tablet	7	7/50 = 14%	

Number of Pets	Frequency		
1-2	<u>6</u>		
3-4	(3)		
5-6	3		
7-8	2		

Number of Students

Graphical Displays of Data

- Pie charts (categorical data)
 - Compare parts to a whole (slices are proportion of a category).

- Bar graphs (categorical data) and Histograms (numeric data)
 - Height of bar represents amount of data in each category (counts or relative frequencies).

Examples

a) What percent of observations have between 1 and 4 pets inclusive?

b) What percent of students prefer Football and Hockey?

c) Bar graph – Which season has the highest frequency?

d) Histogram – How many items cost between \$11 and \$40 inclusive?

- Line graph
 - Shows changes in a numerical variable over time.

e) How many days was the temperature between 55 and 60 °F?

8.3 - Describing and Analyzing Data

Measures of Center

-
$$\left\{ \text{Mean (average)} = \bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \right\}$$

- NOT resistant → Affected by outliers
- Median (middle)
 - The middle value in an ordered list.
 - Resistant -> NOT affected by outliers.
- Mode (most common)
 - The most frequently occurring value(s).
 - Resistant \rightarrow NOT affected by outliers.
 - Only measure of center that can be used with categorical data.

Measures of Spread

- Standard deviation
 - Measures average distance from the mean.
 - (Don't calculate by hand).

Empirical Rule (68 – 95 – 99.7 Rule)

95.7 of the data lies within 2 st devs of the mean.

 $\alpha q. > \%$ of the data lies within 3 st devs of the mean.

Example

Dataset: 1, 2, 7, 3, 6, 9, 1, 0, 4, 7

a) Find the mean. A Calc: 1-Var Stats \mathcal{L}' (Data in L_1) 1+2+...+7 = \(\bar{x} = 4)

b) Find the median. [med = 3.5]

d, y, x, \$ 3.4.4. h. f. g/ (3+4)/2 = 3.5

c) Find the mode.

d) Find the range.

e) Find the sample standard deviation.

- Finding probabilities using the Empirical Rule.
 - Step 1 → Draw and label curve.
 - Step 2 → Shade curve.
 - Step 3 → Use empirical rule.

<u>Example</u>

Oak tree heights are normally distributed with mean 60 m and st dev 5 m.

a) Find the percent of trees between 50 m and 70 m tall.

b) Find the percent of trees greater than 65 $\ensuremath{\text{m}}$

outside =
$$\frac{70 + 91}{100 90} - \frac{2011 + 20}{68\%} = 329$$
 $\frac{10000}{1000} = \frac{3290}{3} = \frac{1690}{3}$

8.4 - The Normal Distribution

Finding probabilities based on the normal distribution

Step 1 → Standardize using the z-score.

- Ex) X has a normal distribution with mean 10 and st dev 2. Find the z-score for X = 13.
- Step 2 → Draw, label and shade curve.
 - This is how you show your work!!!

- Step 3 → Use 'Standard Normal Distribution' table to find the probability for Z.
 - Table ALWAYS gives probability LESS THAN Z: P(Z < z).
 - Examples How to use Z-table
 - Left probability = Table (directly)

$$P(Z < 1.2) = \frac{0.8844}{1.20}$$

-1.13

8.5 - Linear Regression

Scatterplots:

- Form: Linear, lurved, or random scatter
- Direction: Positive, negative or no association
- Strength: Weak, moderate or strong

Correlation (r):

- Interpreting correlation (LINEAR)
 - Sign = Direction
 - Absolute value |r| = Strength
- Calculate using calculator
 - LinReg(ax+b) or 2-Var Stats
 - $L_1 = X$, $L_2 = Y$

-1.0

Regression:

- Step 1 → Determine if there is a significant correlation (linear relationship).
 - Compare |r| and Critical Value (CV) for n (sample size) and significance level α .

Weak | Weak

0.0

Zero

-0.5

Negative

Correlation

 Step 2 → Once we have a significant correlation, we can find the regression line.

- Step 3 → Make **predictions** using the regression line.
 - Just plug in the new X value to our equation and this will give us the predicted Y.

Perfect High Moderate No Moderate Positive Correlation Correlation

+0.5

Positive

Correlation

Example

+1.0

Dataset:

Х	3	5	4	7	6	10
Υ	24	40	34	32	17	18

a) Calculate the correlation r.

OR lines (Ax+b) = X=L, Y=L2

b) Determine if r is significant for $\alpha = 0.01$.

c) Suppose we have different regression equation where $\hat{y} = 5x + 2$.

Predict Y for X = 3: