Computer Science Department,
College of Computer and Information Sciences,
King Saud University.

CSC 512: Design and Analysis of Algorithms¹
Dr. Waleed Alsalih

3.1 Brute force algorithms [Sections 3.1 and 3.2]

Our first algorithm design technique is **brute force**. Brute force is a straightforward approach to solve a problem in a very easy, yet (usually) inefficient way. It is a Just-Do-It approach. To solve a problem using the brute force technique, you just need to use facts derived from the problem statement without making an effort to make the algorithm smart. Example:

Consider the problem of telling whether a positive integer is a prime number or not.

Algorithm 1: Telling whether a positive integer is prime or not.

```
Algorithm Prime(n)
if n \leq 1 then
return False;
end
i := n - 1;
while i > 1 AND n \mod i > 0 do
i := i - 1;
end
if i > 1 then
return False;
else
return True;
end
```

¹This is a summary of the material we cover from the textbook: *Introduction to the Design & Analysis of Algorithms*, A. Levitin, Second Edition, Pearson Addison-Wesley, 2006.

Example: Selection sort

Algorithm 2: Selection Sort.

```
Algorithm SelectionSort(A[0..n-1])

for i:=0..n-2 do

min:=i;

for j:=i+1..n-1 do

if A[j] < A[min] then

min:=j;

end

end

swap A[i] and A[min];

end
```

The major operation count is $\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1-i) = \frac{n(n-1)}{2} \in \Theta(n^2)$.

Example: Bubble sort

Algorithm 3: Bubble Sort.

```
Algorithm BubleSort(A[0..n-1])
for i:=0..n-2 do
for j:=0..n-2-i do
if A[j+1] < A[j] then
swap A[j] and A[j+1];
end
end
```

The major operation count is $\sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} [(n-2-i)+1] = \frac{n(n-1)}{2} \in \Theta(n^2).$

Example:

Consider the string match problem in which you are given a string called text and anothe string called the pattern, and you are asked to tell whether a substring of the text matches the pattern. The algorithm is supposed to return the index of the leftmost character that starts a matching substring if such a matching substring exists and -1 otherwise. The major

Algorithm 4: Brute force string matching.

```
Algorithm StringMatching(T[0..n-1], P[0..m-1])
for i:=0..n-m do
j:=0;
while j < m AND P[j] == T[i+j] do
j:=j+1;
end
if j == m then
return i;
end
end
return-1;
```

operation count is $(n-m+1)m \in \Theta(nm)$.

3.2 Exhaustive search [Sections 3.4]

Exhaustive search is a brute force algorithm design technique in which all elements in the search space are generated, and then all elements are checked to find a particular element that represents the answer. Exhaustive search is composed of the following steps:

- 1. Generate all elements in the search space.
- 2. Exclude any invalid element.
- 3. Find a desired element representing the right (best) answer.

Question: Let's say that we have a set $A = \{E_0, E_1, \dots, E_{n-1}\}$. How can you find all subsets of A?

Answer: We can have 2^n subsets, each of which can be represented by an integer between 0 and $2^n - 1$. Let B(s) be the binary representation of an integer that corresponds to a subset s. B(s) has n binary bits numbered from 0 to n - 1, and the ith binary bit corresponds to E_i .

The i^{th} bit in B(s) is set to 1 if and only if $E_i \in s$, $0 \le i \le n-1$.

Example:

 $A = \{Ali, Mohammed, Ahmed\}$ $s = \{Ali, Ahmed\}$ B(s) = 101

Question: Given an integer t, how to tell whether the i^{th} bit of the binary representation of t is 1 or 0?

Answer: Left as an exercise!

Example:

Knapsack problem: You have n items and each item i has a weight W[i] and a value V[i]. You have a knapsack of capacity C. You want to find the most valuable subset of items that fit into the knapsack.

Algorithm 5: Finding the b^{th} bit of the binary representation of an integer t.

Algorithm BinaryBit(int t, int b)

This algorithm returns the value of the b^{th} bit in the binary representation of an integer t.

This algorithm runs in $O(n \cdot 2^n)$ time.

Algorithm 6: Brute force knapsack algorithm.

```
Algorithm Knapsack(W[0..n-1], V[0..n-1], C)
MaxValue = 0;
MaxSubset = 0;
for i = 1..2^n - 1 do
   Value := 0;
   Weight := 0;
   for j := 0..n-1 do
      if BinaryBit(i,j)==1 then
         Value := Value + V[j];
         Weight := Weight + W[j];
      end
   end
   if Weight \leq C \ AND \ Value > MaxValue then
      MaxValue = Value;
      MaxSubset = i;
   end
end
return MaxSubset;
```