Digital Logic Design Part 3

Binary digits

- Basic unit of information in digital communication: 0 or 1
- Represented internally as a high or low voltage
- Transistors: An on/off switch controlled by electricity

Transistors:

- The first transistor was invented in 1947 by William Shockley John Bardeen and Walter Brattain at Bell Laboratories.
- Most important electronics event of the 20th century: leading to IC (integrated circuit) and microprocessor technology serving as the basis of electronics

Background on Transistors

- First Early Computer: Charles Babbage and Early form of Computers
 - Used Relays or Vacuum Tubes to represent states of matter
- Transistors: Cheap, Reliable and Small
 - Voltage applied to a control terminal (On or Off is generated)

- 1959: Robert Noyce: (Cofounded Fairchild Semiconductor and Intel) patented a method of interconnecting many transistors on a single chip.
 - At that time transistors cost was ~\$10 ©

Background on Transistors

- First Early Computer: Charles Baggage and Early form of Computers
 - Used Relays or Vacuum Tubes to represent states of matter
- Transistors: Cheap, Reliable and Small
 - Voltage applied to a control terminal (On or Off is generated)

- 1959: Robert Noyce: (Cofounded Fairchild Semiconductor and Intel) patented a method of interconnecting many transistors on a single chip.
 - At that time transistors cost was ~\$10 ©
 - Today we can pack ~1billion MOS or MOSFET transistors onto $1cm^2$ silicon chip
 - Cost 10 microcents per transistor

MOSFETS: Metal-Oxide-semiconductor field effect transistors Also Known As: MOS transistors

- Built from silicon (Si): 4 valence electrons in outer shell
- Silicon forms strong crystal lattice:
- All electrons tied up in adjacent bonds >Therefore poor conductor
- However, (Si) becomes a better conductor when small amounts of impurities (called dopants) are added to this lattice structure
- N-Type: Small amounts of Arsenic(5 valence electrons) atoms added leaving extra floating electrons that are not involved in bonding. Negatively charge particles
- P-Type: Small amounts of Boron(3 valence electrons) atoms added leaving positively charged ions within the lattice: Results in Positively charged particles
- Silicon becomes a Semiconductor with the addition of dopants

MOSFETS: Metal-Oxide-semiconductor field effect transistors Also Known As: MOS transistors

Emitter

Collector

Physlinks.com

- •MOS transistors :sandwich of layers of conducting and insulating materials
- •nMOS (npn) and pMOS (pnp)
- *Base Collector and Emitter Model: Gate-Source-Drain
- •Two types of Transistors have opposite behaviours
- •That compliment each other: CMOS uses both nMOS and pMOS
- Further Reading
- http://hyperphysics.phy-astr.gsu.edu/hbase/solids/dope.html#c4
- http://www.cs.mun.ca/~paul/transistors/node1.html
- Go To Course Notes: Section 2: Transistors/ Examples on Board

A	Q_1	Q_2	\mathbf{F}
0	Low	High	1
1	High	Low	0

PMOS and NMOS together form CMOS: Compliment MOS

WHY:

*We want both 0, 1 signals to be Strong readings
Use properties of NMOS and CMOS
together

Α	Q_1	Q_2	\mathbf{F}
0	Low	High	1
1	High	Low	0

PMOS and NMOS together form CMOS:

A goes into the Gate at both Transistors

*Does a Signal pass or not pass

*Are we connected to Ground

→ That will determine F

A	Q_1	Q_2	F
0	Low	High	1
1	High	Low	0

When A = 0

What is the Output at B:

A)1

B)0

C)Neither

D)Vss

E)Ground

CMOS NAND

				Q_3		1
O	0	Low	Low	High	High	1
O	1					
1	0					
1	1					

CMOS NAND

Scale up to 3 input NAND GATE

Add one more NMOS and one more PMOS per input

- To get AND and OR, add inverter at end
- Example: 3 Input AND

Thus, NAND is preferred to AND in actual circuits

• Example: 3 Input AND

Designing our circuits
Using NAND gates
Is easier from
Implementation
Perspective.

Less Transistors In the hardware

Thus, NAND is preferred to AND in actual circuits