Inter Quartile Range

Example: To find potential outlier.

- a. The interquartile range. Compare the two interquartile ranges.
- b. Any outliers in either set.

The five number summary for the day and night classes is

	Minimum	Q_1	Median	Q_3	Maximum
Day	32	56	74.5	82.5	99
Night	25.5	78	81	89	98

Day 1988 and and and areas
Day. 01 = 56
Q3 = 82·5
10R = Q3 - Q1 = 82.5 - 56 = 26.5
1.5 × 10R = (1.5) × (26.5) = 39.75
081 808 = 5001 86 + 507 C S S S S S
Lesser Outlies:
Lesser Outlies: Q1-1.5 * 10R = 56 - 39.75 = 16.25//
Greater Outlier:
Q3 + 1.5 * 1QR = 82.5 + 39.75 = 122.25/
Mr No day classes is less than 16.25
and greater than 122.25. Therefore, there is no potential contlier.

Night:

Q1 = 78

Q2 = 89

[R = Q3 - Q1 = 89 - 78 = 1]

[.5 * IR = (1.5) x (11) = 16.5

[Acoser Qutlies:

Q1 - 1.5 × IR = 78 - 16.5 = 61.5//

[Ascater Qutlies:

Q3 + 1.5 * IR = 89 + 16.5 = 105.5//

No might classes is greater than 105.5.

[However 61.5 is lesser outlier value and 25.5 is less than 61.5.

]. 25.5 is less than 61.5.

Why 1.5 in formula?

The factor of 1.5 in the formula for determining outliers (specifically in the interquartile range method) is used to create a reasonable boundary for what's considered an outlier. Let me explain the reasoning behind this:

- 1. Basic formula: The range for non-outliers is typically defined as: [Q1 1.5 * IQR, Q3 + 1.5 * IQR] Where Q1 is the first quartile, Q3 is the third quartile, and IQR is the interquartile range (Q3 Q1).
- 2. Choice of multiplier: The factor 1.5 was proposed by John Tukey, a famous statistician, as a compromise between being too strict and too lenient in identifying outliers.
- 3. Statistical properties: With normally distributed data, this 1.5 multiplier creates a range that covers approximately 99.3% of the data. This means only about 0.7% of data points would be considered outliers in a normal distribution.

- 4. Flexibility: The 1.5 factor provides a good balance for many datasets. It's not so strict that it flags too many points as outliers, nor so lenient that it misses obvious anomalies.
- 5. Customization: While 1.5 is standard, some analysts might use different multipliers (like 3) for more or less stringent outlier detection, depending on their specific needs.