Интуитивная теория множеств

Note 1

nod6ab23d8405a011650386a84b770

Под ((с2) множеством)) понимается ((с1) некоторая, вполне определённая совокупность объектов.))

Note 2

5f9814dbb38246348e00ffce1554e94a

Два основных способа задания множеств.

Перечисление, характеристическое правило.

Note 3

325300814df34c129e29e55cd92829be

«са Пустое множество» есть «самножество, которое не содержит элементов.»

Note 4

f4cb071a174b4cd29c7ac0c7cd405265

Note 5

ee3c092ea6f8412982372151ed6a3ef8

Пусть A — множество. (сл. Само множество A и пустое множество) называют (сл. несобственными подмножествами) множества A.

Note 6

d2d19259b6054a569cee5d5a0b24b0fe

Пусть A — множество. (сл. Все подмножества A, кроме \emptyset и A, в называют (сл. собственными подмножествами) множества A

Note 7

02ebf0e734664103a97df0f5c597b8c7

Пусть A — множество. (са: Множество всех подмножеств множества A) называется (са: булеаном) множества A.

Note 8

ac2c9531h8ad48eabh9e76hac3fdffa

Пусть A — множество. {{c²}} Булеан}} множества A обозначается {{c1}: $\mathcal{P}(A)$.}}

«са-Универсальное множество» есть (са-множество такое, что все рассматриваемые множества являются его подмножествами.

Note 10

446b3cd12ece46568e02af4ed65f3155

 $\{\{c_2\}$ Универсальное $\}$ множество обычно обозначается $\{\{c_1\}\}$ или $I_{-1}\}$

Note 11

c7621865085b4ac5a4b2b24efb11cf87

Приоритет операций над множествами: $\{\{c1:\overline{\cdot},\cap,\cup,\ldots\}\}$

Note 12

6b9f3c8671f2472e9e3b9a20aeb66aa

Пусть A и B — множества. Для удобства часто используется сокращение

$$\{\{c2::AB\}\} := \{\{c1::A \cap B.\}\}$$

Note 13

dc6fc558021f401696123dddc6c61abe

Пусть A и B — множества. «Симметрической разностью» множеств A и B называется множество «СП

$$(A \cup B) \setminus (A \cap B)$$
.

}}

Note 14

1c0cfd677111482c8d16fb1c43f9f802

Пусть A и B — множества. (се: Симметрическая разность) множеств A и B обозначается (се: $A \triangle B$.)

Note 15

658fb28e676a412082702daf0103e08e

Пусть A — множество. (с2::Дополнение A) обозначается (с1:: \overline{A} .

Три первых свойства свойства операций объединения и пересечения множеств.

Коммутативность, ассоциативность, дистрибутивность.

Note 17

0ab39012eaa94abcb901e5c26354d65b

Пусть A — множество.

$$A \cap A = \{\{c1::A.\}\}$$

Note 18

99349135847f4ab7a28f76b06715594e

Пусть A — множество.

$$A \cup A = \{\{c1::A.\}\}$$

Note 19

02876f67e1514f6d92d1e32ce2a5673f

Пусть A — множество.

$$A \cup \overline{A} = \{\{c1:: U.\}\}$$

Note 20

3303d884a57c4c979ab67f664325626a

Пусть A — множество.

$$A\cap \overline{A}= \{\{\text{c1::}\emptyset.\}\}$$

Note 21

c6b6114579204c8e99c5bfbc80ac53b9

Пусть A — множество.

$$A \cup \emptyset = \{\{\text{c1}::A.\}\}$$

Пусть A — множество.

$$A \cap \emptyset = \{\{c_1::\emptyset.\}\}$$

Note 23

bf06afa6211c4b10bd2ecffa833b05a2

Пусть A — множество.

$$A \cup U = \{\{c1::U.\}\}$$

Note 24

b5e4ab6a90eb4de38aa91aa27c7c4847

Пусть A — множество.

$$A\cap U=\{\{\mathrm{cl}::A.\}\}$$

Note 25

4e1167b5fa7748e68b1a4b9a80eaacb3

Пусть A и B — множества.

$$A_{\{\{c2:: \ \cup \ \}\}}(A_{\{\{c3:: \ \cap \ \}\}}B) = \{\{c1:: A.\}\}$$

«{{с4::Закон поглощения}}»

Note 26

478752160fb94508a605ed54a8601340

Пусть A и B — множества.

$$A_{\{\{c2::\cap\}\}}(A_{\{\{c3::\cup\}\}}B)=\{\{c1::A.\}\}$$

«{{с4::Закон поглощения}}»

Note 27

84569bc3ab574cb78e9bbc9f21dc6bd6

Пусть A и B — множества.

$$A\cap (B\cup \overline{A})=\{\{\mathrm{cl}:A\cap B.\}\}$$

Пусть A и B — множества.

$$A \cup (B \cap \overline{A}) = \{\{c1: A \cup B.\}\}$$

Note 29

391250023de4aefa419991a4de9c8ab

Пусть A и B — множества.

$$(A \cup B) \text{(c2::} \cap \text{)} (A \cup \overline{B}) = \text{(c1::} A.\text{)}$$

«{{с3::Закон расщепления}}»

Note 30

29ec5d118d8849bea46146efcbbc4473

Пусть A и B — множества.

$$(A\cap B)$$
{{c2:: \cup }} $(A\cap \overline{B})=$ {{c1:: A .}}

«{{с3::Закон расщепления}}»

Note 31

cfe43c6f8ac74a43a3f82ea5e01fee7d

Пусть A — множество.

$$\overline{\overline{A}} = \{\{c1::A.\}\}$$

Note 32

edcde29726c04401a88af2ef23f3c264

Пусть A и B — множества.

$$A \setminus B = \{\{\mathrm{cl}: A \cap \overline{B}.\}\}$$

Note 33

aed19cd8fa0d4ee3abf314b502af697d

Пусть A, B и X — множества.

$$\text{(c2:}X\cup A\subseteq B\text{)(c3:}\iff\text{(c1:}X\subseteq B\text{ in }A\subseteq B\text{.})$$

(при решений уравнений относительно X)

Пусть A, B и X — множества.

$$\{\text{\{c2::} A\subseteq X\cap B\}\}\{\text{\{c3::}}\iff\}\}\{\text{\{c1::} A\subseteq X\text{ in }A\subseteq B.\}\}$$

(при решений уравнений относительно X)

Note 35

5f70eba8ee804221a8e31f858c0b43ec

Пусть A, B и X — множества.

$$\{\text{c2::}X\cap A\subseteq B\}\}\{\text{c3::}\iff\}\}\{\text{c1::}X\subseteq \overline{A}\cup B.\}\}$$

(при решений уравнений относительно X)

Note 36

72ac0b5d9c1746c79264bb9bd3a0b5f2

Пусть A, B и X — множества.

$$\{\text{c2}:A\subseteq X\cup B\}\}\{\text{c3}:\iff\}\}\{\text{c1}:A\cap\overline{B}\subseteq X.\}\}$$

(при решений уравнений относительно X)

Note 37

9d92e00aafb44695841b52ab137664da

Пусть A, B, C, D и X — множества.

$$\begin{cases} A \subseteq X \subseteq B \\ C \subseteq X \subseteq D \end{cases} \iff \{\{\mathtt{c2::} A \cup C\}\} \subseteq X \subseteq \{\{\mathtt{c1::} B \cap D.\}\}$$

(при решений уравнений относительно X)

Note 38

ee9afcd63b43416d954d357d1dc689bb

В чём основная идея общего алгоритма для решения систем уравнений со множествами?

Привести систему к виду $AX \cup B\overline{X} = \emptyset$, где A и B не зависят от X.

Пусть A и B — множества.

$$\{\{c3::A=B\}\}\{\{c4::\iff\}\}\{\{c1::A\bigtriangleup B\}\}=\{\{c2::\emptyset.\}\}$$

Note 40

06c3d3d8c5614af3b760a31c9b94fdc8

Пусть A и B — множества.

$$A \cup B = \emptyset$$
{{c2:: \iff }}{{c1::}} $A = \emptyset$ и $B = \emptyset$.}}

Note 41

73259212f85a4411b131299cc49d90d

Пусть A и X — множества.

$$AX = \emptyset \iff \{\{c1::X \subseteq \overline{A}.\}\}$$

(при решений уравнений относительно X)

Note 42

c02302f80f0143d0bb7cdc18b8929288

Пусть B и X — множества.

$$B\overline{X} = \emptyset \iff \{\{c1::B \subseteq X.\}\}$$

(при решений уравнений относительно X)

Note 43

96e46cd4122448b3a6c8a8543d793a05

Пусть A и B — множества. При каком условии система

$$\begin{cases} AX = \emptyset, \\ B\overline{X} = \emptyset \end{cases}$$

имеет решение?

 $B \subseteq \overline{A}$.

Note 44

e8c77h24h74411e9c9d6769ee278443

Пусть A и B — множества. Каково решение системы

$$\begin{cases} AX = \emptyset, \\ B\overline{X} = \emptyset. \end{cases}$$

$$B \subseteq X \subseteq \overline{A}$$
.

Note 45

f1c5541c7c884dba936d4374ff51af88

Пусть A и B — множества. Как в уравнении $AX \cup B\overline{X} \cup C = \emptyset$ избавиться от «свободного» множества C?

 $C = \emptyset$ — условие совместности системы.

Note 46

86475fdea01944fba56365048d57b02d

Пусть A и B — множества.

$$(A\times B)\cap (B\times A)=\{\text{c2::}\emptyset\} \quad \{\text{c3::}\iff\} \quad \{\text{c1::}A\cap B=\emptyset.\}\}$$

Note 47

8ca45754929648bda3ca5496c7cba70f

Операция {{ез::декартового произведения}} {{ес::дистрибутивна}} относительно {{ес::операций \cap , \cup , \setminus , \triangle .}}

Note 48

ad330727e2cb4c27970e8cb8fdcdeb23

Пусть A, B и C — множества. Равны ли множества $(A\times B)\times C$ и $A\times (B\times C)$?

Их отождествляют и считают равными.

Note 49

06a0896de5284f44bac5ddff2170cbb1

Пусть A и B — множества. Для $\{(c, c)$ конечных $\}$ множеств,

$$|A \times B| = \{\{\text{c1::} |A| \cdot |B|.\}\}$$

Бинарные отношения

Note 1

cfc203cc41644c75b3df5d21c2bf036d

Пусть A и B — множества. (с.: Бинарным отношением) на множествах A и B называется (с.: некоторое подмножество $A \times B$.)

Note 2

3ba559fe73cf4c90b5b919ce1a45881a

Четыре способа задания бинарных отношений.

Перечисление, правило, матрица, граф.

Note 3

:0ee3ac94a454d748e625d9e8c854763

Пусть $R \subseteq A \times B$ — бинарное отношение.

$$aRb \stackrel{\mathrm{def}}{\Longleftrightarrow} \{\{c1::(a,b)\in R.\}\}$$

Note 4

cef6486539a64268a1827f863aa7b9e1

Пусть $R\subseteq A\times B$ — бинарное отношение. «Собратным отношением к R» называется «сомножество

$$\{(b,a) \mid aRb\}$$
.

}}

Note 5

5e2c602b70a3473684a8ea79d93c7d68

Пусть $R\subseteq A\times B$ — бинарное отношение. (С2) Обратное отношение к R) обозначается (С1) R^{-1} .)

Note 6

d6e34168370e44feafa7891c93b2df04

Пусть $R \subseteq A \times B$ — бинарное отношение. Тогда

$$R^{-1} \subseteq \{\{\operatorname{c1}:: B \times A\}\}.$$

Пусть $R \subseteq A \times B$ — бинарное отношение.

$$(R^{-1})^{-1} = \{\{c1::R.\}\}$$

Note 8

e91e90545919488bb2c2ebe373b9e615

Пусть $R\subseteq A imes B$ — бинарное отношение. «22 Областью определения R называется «12 множество

$$\{x \mid \exists y : xRy\}.$$

Note 9

08e952c62da84566a99743eb4c6c48a5

Пусть $R\subseteq A imes B$ — бинарное отношение. ((c2):Область определения R)) обозначается ((c1):D(R),)) ((c1): δ_R)) или ((c1):dom R.))

Note 10

13e35bd817d9438690104754dc4d016d

Пусть $R\subseteq A imes B$ — бинарное отношение. «С2» Областью значений R называется «С1» множество

$$\{y \mid \exists x : xRy\}$$
.

Note 11

051cc32e89b94beebd49875c952f6b5b

Пусть $R \subseteq A \times B$ — бинарное отношение. «са Область значений R обозначается (ст E(R),) (ст ρ_R) или (ст $\operatorname{im} R$.)

Note 12

c0426f6bec33477e9bc759610c4d426b

Пусть $R\subseteq A\times B$ и $S\subseteq B\times C$ — бинарные отношения. Композицией R и $S_{\mathbb{H}}$ называется (сл.:множество

$$\{(a,c)\mid \exists b:aRb$$
 и $bSc\}$.

Пусть $R\subseteq A\times B$ и $S\subseteq B\times C$ — бинарные отношения. (с2: композиция R и S) обозначается (с1:

$$R \circ S$$
.

Note 14

78bbe389ea094b0aad40c370c5092937

Является ли операция композиции бинарных отношений коммутативной?

Нет.

Note 15

63f83037312e4f29a81de945fb387d06

Является ли операция композиции бинарных отношений ассоциативной?

Да.

Note 16

1530beb1e1c24540a8be6f534775cca(

Пусть $R \subseteq A \times B$ и $S \subseteq B \times C$ — бинарные отношения.

$$(R \circ S)^{-1} = \{\{c_1:: S^{-1} \circ R^{-1}.\}\}$$

Note 17

10fae1eae25a48a2998a9be7d6af2e4d

Пусть $R\subseteq \{(c3),A\times A\}\}$. Отношение R называется $\{(c2),Hecum-metruuhum,\}\}$ если $\{(c1),Oho He cummetruuho, He асимметриино и не антисимметриино.}\}$

Note 18

8e02e778a9a5426fa89340cd47a6a0c

Пусть $R\subseteq \{\text{Ic3}:: A\times A\}$ — бинарное отношение. Отношение R называется $\{\text{Ic2}:: \text{интранзитивным},\}\}$ если $\{\text{Ic1}:: \text{Ic2}:: \text{интранзитивным},\}\}$

$$aRb$$
 и $bRc \implies \overline{aRc}$.

11

Пусть $R\subseteq \{\{c2:A\times A\}\}$ — бинарное отношение. Отношение R называется $\{\{c2:A\times A\}\}$ если $\{\{c1:A\times A\}\}$ если $\{\{c1:A\times A\}\}$ но и не интранзитивно. $\{\{c1:A\times A\}\}$

Note 20

3fcca348ef844da9d3cf01b1e27fe1f

Матрица A называется ((са) бинарной, ()) если ((са) все её элементы принадлежат множеству $\{0,1\}$.)

Note 21

25d02bbd94644780a0346254f22a07df

Пусть $R\subseteq A\times B$ — бинарное отношение, (св. A и B конечны.)) (св. Матрицей отношения R) называется (св. бинарная матрица

$$(a_iRb_j) \sim |A| \times |B|$$
.

Note 22

ce9cf9f0367d40f9bbdd914eb95eb39

Пусть $R\subseteq A\times B$ — бинарное отношение, A и B конечны. ««Матрица отношения R» обозначается (ст. $\|R\|$.)

Note 23

1f23045998c647aca7a97bcf2a5b5d31

Пусть $R\subseteq A\times B$ — бинарное отношение, (сл. $x\in A$.) (сл. Множество $\{b\mid xRb\}$) называется (сл. образом элемента x при отношении R.)

Note 24

65b799e6a5bc4b01bff56d2146031199

Пусть $R\subseteq A imes B$ — бинарное отношение, $x\in A$. (сез Образ элемента x при отношении R обозначается (сез R(x).)

Note 25

477523df314842d1ad7c5a4d978f2f7a

Пусть $R\subseteq A\times B$ — бинарное отношение, (сл. $x\in B$.) (сл. Множество $\{a\mid aRx\}$)) называется (сл. прообразом элемента x при отношении R.)

Пусть $R\subseteq A\times B$ — бинарное отношение, $x\in B$. Прообраз элемента x при отношении R0 обозначается при отношении R1 обозначается при отношении R2.

Note 27

3348d69b0cf149a8a70f5ec94b05b306

Пусть $R \subseteq A \times B$ — бинарное отношение, {{c2::}} $X \subseteq A$.}}

$$\mathrm{def}_{\mathrm{co}}(X)\mathrm{def} = \bigcup_{x \in X} R(x).\mathrm{def}_{\mathrm{co}}$$

Note 28

5c26a7f17db242d7b8db989512093cc6

Пусть $R\subseteq A imes B$ — бинарное отношение, ([c2:: $X\subseteq B$.])

$$\mathrm{def}_{\mathrm{c}::R^{-1}(X)\mathrm{c}::} \bigcup_{x \in X} R^{-1}(x).\mathrm{def}_{\mathrm{c}::=X}$$

Note 29

5b5ba1073a2e479f8b8eca3f6c2c7329

Пусть A множество. (ст. Отношение $\{(x,x)\mid x\in A\}$) называется (ст. тождественным отношением на A.)

Note 30

c1e1caa30e724485b938627008bc28d0

Пусть A множество. (с2: Тождественное отношение на A)) обозначается (с1: E.)

Note 31

ldc3c3c6dff84c6f8ba496ed57840291

Пусть $R\subseteq A imes B$ — бинарное отношение. Тогда R (кезтрефлексивно) тогда и только тогда, когда (кезтрефлексивно)

$$E \subseteq R$$
.

«В терминах множеств»

Пусть $R\subseteq A imes B$ — бинарное отношение. Тогда R «сачантирефлексивно» тогда и только тогда, когда «сачантирефлексивно» тогда и только тогда, когда

$$R \cap E = \emptyset$$
.

«В терминах множеств»

Note 33

0b173912f3f54d539053ec72781173bf

Пусть $R\subseteq A imes B$ — бинарное отношение. Тогда R - полько тогда, когда (са:

$$R = R^{-1}$$
.

«В терминах множеств»

Note 34

1d0d52561f0b48f8a96ed987369af728

Пусть $R\subseteq A imes B$ — бинарное отношение. Тогда R «едентисимметрично» тогда и только тогда, когда «еден

$$R \cap R^{-1} \subseteq E$$
.

«В терминах множеств»

Note 35

92c95593c51a4ac08d44f6be1cf69e5e

Пусть $R\subseteq A imes B$ — бинарное отношение. Тогда R ((с2) асимметрично) тогда и только тогда, когда ((с1))

$$R \cap R^{-1} = \emptyset.$$

«В терминах множеств»

Пусть $R\subseteq A\times B$ — бинарное отношение. Тогда R (се: транзитивно) тогда и только тогда, когда (се:

$$R \circ R \subseteq R$$
.

}}

«В терминах множеств»

Note 37

045dab85eeaa4728b61896649dc1ba75

Пусть $A, B \in \mathbb{R}^{n \times m}$. Тогда

$$\text{(c2::} A \leqslant B \text{)} \iff \text{(c1::} a_{ij} \leqslant b_{ij} \quad \forall i,j. \text{)}$$

Note 38

3b1e7f3609054643ae820caaeae6db2a

Пусть $A, B \in \mathbb{R}^{n \times m}$. Тогда

$$\text{(c2::} A < B\text{)} \iff \text{(c1::} A \leqslant B \text{ is } A \neq B\text{.}\text{)}$$

Note 39

cfdc6aac0b1d4a87b2bec698ca44ce30

Пусть $A,B\in\mathbb{R}^{n\times m}$. Матрицы A и B называют (селнесравнимыми,) если (селне выполняется ни $A\leqslant B$, ни $B\leqslant A$.))

Note 40

303fa2bd38f446e59e6690ebc8c9c824

Бинарную операцию ((с2::«или»)) так же называют логистическим ((с1::сложением.))

Note 41

46107ba23b0a4fcdaaa341d70b37861c

Бинарную операцию (се:«и») так же называют логистическим (ст:умножением.)

 $\{(c2)$ Операция поэлементного умножения матриц $\}$ называется $\{(c1)$: произведением Адамара. $\}$

Note 43

510b762349a41cc87225739c6fe6dc0

Пусть $A,B\in\mathbb{R}^{n\times m}$. (с2::Произведение Адамара матриц A и B)) обозначается (с1:: $A\circ B$)) или (с1:: $A\odot B$.))

Note 44

5054e224483f4cc28f2739f6fad9f517

Пусть $R, S \subseteq A \times B$ — бинарные отношение.

$$\text{\{c2::} \|R\cap S\|\text{ \}\}} = \text{\{c1::} \|R\|\odot\|S\|\text{ .}\}$$

Note 45

93467a16ee87438cbc954b8b71d23aa4

Пусть $R, S \subseteq A \times B$ — бинарные отношение.

$$\{\{c2:: \|R \cup S\|\}\} = \{\{c1:: \|R\| + \|S\|$$
 (с логистическим сложением).}]

Note 46

1c75356f6fe44393ae1e2c195bed3c1

Пусть $R \subseteq A \times B$ и $S \subseteq B \times C$ — бинарные отношения.

$$\{\{c2:: \|R\circ S\|\}\} = \{\{c1:: \|R\|\cdot \|S\|$$
 (с логистическим сложением).}}

Note 47

525cce9b6e944f94911754eec1fc824b

Пусть $R,S\subseteq A\times B$ — бинарные отношение.

$$\{\text{c2::} R \subseteq S\}\}\{\text{c3::} \iff \}\}\{\{\text{c1::} \|R\| \leqslant \|S\| .\}\}$$

(в терминах матриц)

Пусть $R\subseteq A\times B$ — бинарное отношение. Тогда R (се: транзитивно) тогда и только тогда, когда (се:

$$\|R\|^2 \leqslant \|R\|$$
 (с логистическим сложением).

«В терминах матриц»

Note 49

h1c4dha55ad47adhacfd250e1f39101

Пусть $R\subseteq A\times A$ — отношение эквивалентности. (кез:Множество классов эквивалентности R)) обозначается (кез: $[A]_R$.

Note 50

c54eb7123d974c8aba9972163019b4ac

Пусть $R\subseteq A\times A$ — отношение эквивалентности, $a\in A$. (каже эквивалентности, порождённый a,)) обозначается (каже [a].))

Note 51

b21c1b2e3c504807a89717a4205b3fdf

Пусть A — множество. «Са Разбиение множества A обозначается (Са $\langle A \rangle$.)

Note 52

3d8bf9b65a4b4898be5460faaaecab86

Пусть $R\subseteq A\times A$ — бинарное отношение. (ега: Транзитивным замыканием $R_{||}$ называют (ега: наименьшее транзитивное отношение на A, включающее $R_{||}$)

Note 53

08c79ddd7572454f9ecc2f3580a39674

Пусть $R\subseteq A\times A$ — бинарное отношение. Если $\{(c2), R\}$ транзитивно, $\{(c1), C2\}$ то транзитивное замыкание $\{(c1), C2\}$ само $\{(c1), C2\}$ то $\{(c1), C2\}$ то

Note 54

e7b56866ed8e4192a45f157195f949e4

Пусть $R\subseteq A\times A$ — бинарное отношение. (ССС) Транзитивным сокращением R_0 называется (ССС) минимальное отношение R' на A_0 такое, что (ССС) транзитивное замыкание R' совпадает с транзитивным замыканием R_0

 $\{(c3)$ -Диаграмма Ха́ссе $\}$ — это вид диаграмм, используемый для представления $\{(c1)$ -конечного частично упорядоченного множества $\}$ в виде $\{(c2)$ -графа его транзитивного сокращения.

Элементы комбинаторики

Note 1

8hfca03d7414c5ab08f51dd7162fa63

 $\{\{c2n^r\}$ -элементный набор из n-элементного множества $\}$ называется $\{\{c1n^r\}$ ывыборкой объёма n из n элементов. $\}$

Note 2

9c40042b9af64db3823fd0fc687379f5

 $\{\{can}$ Выборку объёма r из n элементов $\}$ так же называют $\{\{can},r\}$ -выборкой. $\}$

Note 3

7b9c414597ef428981257c73511e44d2

 $\{(n,r)$ -выборка, в которой элементы могут повторяться, (n,r)-выборкой с повторениями.

Note 4

6afeb348dbbf4ce7a258ad26ba469c48

 $\{(n,r)$ -выборка, в которой элементы попарно различны, (n,r)-выборкой без повторений. (n,r)-выборкой без повторений.

Note 5

ef4dbbc893164d0db276530cb20c94c7

 $\{(n,r)$ -выборка) $\}$ называется $\{(n,r)$ -перестановкой. $\}$

Note 6

514e05b8ce994556a7d4f31540bfee43

Число $\{(n,r)$ -перестановок без повторений $\}$ обозначается $\{(n,r)\}$ -перестановок без повторений $\}$ обозначается

P(n,r).

}}

Note 7

400452c068e84e42a0865821bd703a7b

Число $\{(n,r)$ -перестановок с повторениями) обозначается $\{(n,r)\}$ -перестановок с повторениями $\}$

 $\widehat{P}(n,r)$.

}}

Note 9

6470ab31727449d8a82512cafaea283

Число $\{(c), r\}$ -сочетаний без повторений $\}$ обозначается $\{(c), r\}$

Note 10

ca7c36f0138749fb90d8876a44c92a2

Число $\{(c2), (n,r)\}$ -сочетаний с повторениями $\}$ обозначается $\{(c1), (n,r)\}$

$$\widehat{C}(n,r)$$

Note 11

59712aabfb56413995a990d0c381fbee

Пусть $n \in \mathbb{R}$, $r \in \mathbb{N}$.

$$\{ (\operatorname{c2::}(n)_r) \} \stackrel{\operatorname{def}}{=} \{ (\operatorname{c1::}n(n-1)\cdots(n-r+1). \} \}$$

Note 12

10b62e86e38446c85f4bb8c5807d6c2

Биномиальный коэффициент из n по r обозначается

$$\{\{c::C_n^r\}\}$$
 или $\{\{c:: \binom{n}{r}.\}\}$

Note 13

3221712b5dda4ebe9e522f4508804522

$$\binom{n}{r} \stackrel{\text{def}}{=} \{\{\text{c1::} \frac{(n)_r}{r!}\}\}$$

Note 14

e1ac7a181662466fa92a7768e3bb6899

$$P(n,r) = \{\{\operatorname{cl}: (n)_r\}\}$$

Note 15

4722cda874c44899a9bc36727640274a

$$\widehat{P}(n,r) = \{\{\text{cl:} n^r.\}\}$$

Note 16

bdb9dd6722f644019fedc6c94810b129

$$C(n,r) = \{ (\operatorname{cli} \binom{n}{r}. \} \}$$

Note 17

a46501a9e6f54ccbb15eb513c9b73039

$$\widehat{C}(n,r) = \{ \{ \operatorname{cir} \binom{n+r-1}{n-1}. \}$$

Алгебра логики

Note 1

1782cd08cdab44008d0d1c31c6012d8d

Кратко булев набор $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ обозначается $\{(c):\widetilde{\alpha}^n\}\}$ или $\{(c):\widetilde{\alpha},0\}$

Note 2

04eabdff1da9430caa51dea1f7973ebb

 $\{\{can M$ ножество всех двоичных наборов длины $n_{\{\}}$ называют $\{\{can M\}$ -мерным булевым кубом. $\{\{can M\}\}$

Note 3

ae679a4256e04958a9d0d03ce4b174a2

 $\{\{cz: n\text{-}$ мерный булев куб $\}$ обозначается $\{\{c1: B^n\}\}$ или $\{\{c1: E_2^n.\}\}$

Note 4

c06059c4d3014e8f8d7762ecb2e7fb4

Note 5

4b632fb9309f40b5b4286d3acbc0f06d

Пусть $\widetilde{\alpha},\widetilde{\beta}\in B^n$. (кез. Расстояние Хэмминга между $\widetilde{\alpha}$ и $\widetilde{\beta}$) обозначается (кез. $\rho(\widetilde{\alpha},\widetilde{\beta})$.))

Note 6

37fb9e894285459ea68b457c8ce5d2d3

Булевы наборы \widetilde{lpha}^n и \widetilde{eta}^n называются (c2::соседними,)) если ((c1:

$$\rho(\widetilde{\alpha}, \widetilde{\beta}) = 1.$$

}}

Note 7

96ae235391374f19821a21b56b6d8b98

Булевы наборы $\widetilde{\alpha}^n$ и $\widetilde{\beta}^n$ называются противоположными, песли противоположными,

$$\rho(\widetilde{\alpha}, \widetilde{\beta}) = n.$$

}}

 $\{(c2)$ Множество всех булевых функций, зависящих от переменных $x_1,\dots,x_n\}$ будем обозначать через $\{(c1)\}$

$$P_2(X^n)$$
.

}}

Note 9

d4d14bf7854d445e80552d7c67d03d4f

$$||P_2(X^n)|| = \{\{\text{c1::}2^{2^n}.\}\}$$

Note 10

152863b499e64f64b2374c749fbde8ad

 $\{\{c_1\}$ Константы $\{0,1\}\}$ являются $\{\{c_2\}$ нульместными $\}$ булевыми функциями.

Note 11

d06f0289418d4a41b071c552a48bff09

Пусть $f(\widetilde{x}^n)$ — булева функция. Тогда переменные

$$x_1, x_2, \ldots, x_2$$

 $\}$ называются {{c1:} аргументами функции f.}

Note 12

a0b4e4b264844402aed619c4fd37ca24

Пусть $f(\widetilde{x}^n)$ — булева функция. Что есть T(f)?

Таблица, в которой слева — значения аргументов, справа — значения функции.

Note 13

bf9b50dc17e84201a627f5c871ea6c31

Пусть $f(\widetilde{x}^n)$ — булева функция. $\{(c2)^n\}$ Таблица $T(f)\}$ $\}$ называется $\{(c1)^n\}$ таблицей истинности $f.\}$

Note 14

1122c8a455b64cf789b394df752b821

Пусть $f(\widetilde{x}^n)$ — булева функция. Что есть $\Pi_{k,n-k}(f)$?

Таблица, в которой слева — значения k аргументов, сверху — значения остальных аргументов, на пересечении — значение функции.

Note 15

903d8fda79124586a7240910bb5d8a70

Пусть $f(\widetilde{x}^n)$ — булева функция. В каком порядке идут значения аргументов в таблице $\Pi_{k,n-k}$?

Слева направо, сверху вниз.

Note 16

53de4b3157f34550908c2cc6c8752a3

Пусть $f(\widetilde{x}^n)$ — булева функция. Что есть N_f ?

Множество наборов $\widetilde{\alpha}$, для которых $f(\widetilde{\alpha}) = 1$.

Note 17

ec43c333201b45f28e9a03f6a2828c27

Как булева функция задаётся в виде вектора значений?

Значения функции в лексикографическом порядке следования наборов аргументов.

Note 18

6b8ed8864e3f468bb75dec0ad534e2b6

Как строится разложение булевой функции по нескольким переменным?

Аналогично разложению по одной построить дизъюнкцию по всем возможным значениям этих переменных.

Note 19

3915fbd594044a7782a5ecfb1b697c23

Пусть f — булева функция. Переменная x_i называется фиктивной, если селу выражается формулой, не содержащей $x_{i\cdot ||}$

Пусть f — булева функция. Переменная x_i называется (сестреченной,)) если (сегона не является фиктивной.))

Note 21

1a853308fb53438c836240f876a13076

Пусть f — булева функция. Как показать, что x_i является существенной переменной?

Найти два набора аргументов, отличающихся только значением x_i , для которых отличается значение f.

Note 22

b171f4d5373543008b3c7165b170294d

Пусть $x_i \in X^n$ и $\sigma \in B$. Тогда

$$\{\{oldsymbol{c} : x_i^\sigma\}\} \stackrel{ ext{def}}{=} \{\{oldsymbol{c} : x_i, \quad \sigma = 1, \ ar{x}_i, \quad \sigma = 0. \}\}$$

Note 23

3ff8ee76361d4f8aa2dc6817fb8e23c5

Пусть $x_i \in X^n$ и $\sigma \in B$. Выражение x_i^σ называется положение x_i^σ называется положения x_i^σ

Note 24

434c03fe1f394ebf9ed47f45f7432dcc

Что называется конъюнкцией над множеством переменных?

Конъюнкция набора букв из этих переменных.

Note 25

285409914ff4434dba7d33024928ee2

Что называется дизъюнкцией над множеством переменных?

Дизъюнкция набора букв из этих переменных.

Конъюнкция (или дизъюнкция) над множеством переменных называется (канэлементарной,)) если она (канне содержит двух одинаковых переменных.))

Note 27

69bac32971cb4720860b4dd4a9d453ch

 $\{(c2)$ Число букв $\}\}$ в элементарной конъюнкции (или дизъюнкции) называется $\{(c1)$ её рангом. $\}\}$

Note 28

085748c48aca434f80ee81ccc432679

Что считают элементарной конъюнкцией нулевого ранга?

Константу 1.

Note 29

54299e611ec9467c80fdf0edb992ffda

Что считают элементарной дизъюнкцией нулевого ранга?

Константу 0.

Note 30

7daec66acbc147049ae871ee63127e67

«сп-Дизъюнкция попарно различных элементарных конъюнкций» называется «сандизъюнктивной нормальной формой.

Note 31

9da6ac44d6864608adffeff2f2653b9e

«с Конъюнкция попарно различных элементарных дизъюнкций» называется «с конъюнктивной нормальной формой.

Note 32

4b63a16430be4e91a44d687409d1a59f

Дизъюнктивная нормальная форма называется (селовершенной,)) если (селовее её элементарные конъюнкции имеют максимальный ранг.))

Конъюнктивная нормальная форма называется (селе совершенной,)) если (селе её элементарные дизъюнкции имеют максимальный ранг.))

Note 34

5f9836f8024544a29c0d75faa28110d8

Что для элементарной конъюнкции означает обладание максимальным рангом?

Она содержит все переменные.

Note 35

5c8cca9d57834de1a77e826c87fcff5f

Что называется минимальным термом набора переменных?

Элементарная конъюнкция, содержащая все эти переменные.

Note 36

487bd0adfeec4611abb3e25da2b5c9d7

«са::Минимальный терм» сокращается как «са::минтерм.)

Note 37

4c650846a2ca498cb6f414f00874d0c6

В чём основная особенность любого минтерма?

Он истинен только ровно на одном наборе аргументов.

Note 38

6353970c4054404c9fe9936241a3f8d2

В чём основная особенность любой элементарной дизъюнкции максимального ранга?

Она ложна ровно на одном наборе аргументов.

Note 39

291d8c80606b4957b2615d312164f8da

Какая элементарная дизъюнкция обращается в ноль ровно на одном наборе аргументов?

Note 40

76f3e85c81f14d4fa7c9d4699fd71df7

Элементарная (стедизъюнкция) максимального ранга обращается в (са ноль) ровно на одном наборе аргументов.

Note 41

c5ad27ca1aaa4a5f98e04fa49b506bd4

Элементарная (стконъюнкция) максимального ранга обращается в (са единицу) ровно на одном наборе аргументов.

Note 42

bbfcc84390d84f24abd0aee0aa1dfc13

Пусть $f(\widetilde{x}^n)$ — булева функция. Тогда

$$f(\widetilde{x}^n) = \{ (x_i \cdot f | x_{i-1} \lor \overline{x}_i \cdot f | x_{i-0} \cdot) \}$$

«{{c2::Теорема разложения для д.н.ф.}}»

Note 43

45d478dc3b0b46789b3b2af3d10d0c35

Каждая булева функция (селединственным образом) представляется в виде (сплсовершенной) дизъюнктивной (или конъюнктивной) нормальной формы (селевоих аргументов.

Note 44

3115335543484943b10f4139847114fa

Каждая булева функция единственным образом представляется в виде совершенной дизъюнктивной нормальной формы своих аргументов. В чём ключевая идея доказательства?

С.д.н.ф. состоит из минтермов, отвечающих единицам в векторе значений.

Note 45

ad0588753e0342ea901fb670f955419b

Как строится с.д.н.ф. по таблице значений булевой функции?

Для каждой единицы строится соответствующий минтерм.

Note 46

86b0370b79784d5cb1f61f8d43ea62ca

Как строится с.к.н.ф. по таблице значений булевой функции?

Для каждого нуля строится соответствующая элементарная дизъюнкция.

Note 47

d5f6af188d8a41b2a3a644065c3ffa60

Note 48

5cb3b093852847ad992d8f92afed8778

В булевой алгебре, перештрих Шефферан обозначается пережили $x_1\mid x_2$.

Note 49

53029bbedc0b455e801cee6510a98bf5

В чём смысл штриха Шеффера?

Аргументы не могут быть истинными одновременно.

Note 50

77f305f399f947bd90023950db2c7072

Пусть $\widetilde{x} \in B^2$. Как читается выражение « $x_1 \mid x_2$ »?

 x_1 и x_2 не совместны.

Note 51

ec1d6d17cbb045b8abb57d404f0e5314

Логическая операция (казажне-или») так же называется (казактальной Пирса.)

Note 52

5bc24294b87949fe93f07f9db9363cc5

В булевой алгебре, (когатрелка Пирса)) обозначается (кога $x_1\downarrow x_2$.

В чём смысл стрелки Пирса?

Оба аргумента ложны.

Note 54

4e41888826f48bb87b5d52cfffdff82

Пусть $\widetilde{x} \in B^2$. Как читается выражение « $x_1 \downarrow x_2$ »?

Ни x_1 , ни x_2 .

Note 55

811fe08112ea4d4184e59731f1744d49

В алгебре логики, постоя в по модулю 2 обозначается 0

Note 56

e2f54e00eb6649a2924ef3362262984

В алгебре логики, $\overline{a \sim b} = \{\{c1:: a \oplus b\}\}$.

Note 57

:2e62b1e91d7494ba8a272bc7d96ae90

В алгебре логики, $\overline{a\oplus b}=\{\{c1::a\sim b\}\}$.

Note 58

87a39833e41348ee966b516f50698494

 $\{\{c2:M$ ногочлен над полем $\mathbb{Z}_2\}\}$ называется $\{\{c1:M$ ногочленом Жегалкина. $\}\}$

Note 59

6bda2a19f81f481ea8880a737a3ff3fa

Любая булева функция $\{(c): eдинственным oбразом\}\}$ представляется в виде многочлена $\{(c): Жегалкина.\}\}$

Note 60

59a8d454f30342909e9db0c643c83e4a

 $\{\{c2: Длиной\}\}$ полинома Жегалкина называется $\{\{c1: число \ cлагаемых \ B \ ero \ записи.\}\}$

Какие есть основные способы построения полинома Жегалкина для данной булевой функции?

Метод неопределённых коэффициентов; преобразование вектора значений; алгоритм Паскаля.

Note 62

90f0eb74c2594473a47dc084cdceeee0

В каком порядке стоит брать наборы аргументов при построении полинома Жегалкина методом неопределённых коэффициентов?

Лексикографическом, начиная с нуля.

Note 63

22dd666ef1ac46b6a3db9f23cd06b74

В чём состоит метод преобразования вектора значений для построения полинома Жегалкина?

Последовательно преобразовывать блоками все большей величины.

Note 64

3fd377445ff746d4bf5d09dfa361112

Какое преобразование используется при построении полинома Жегалкина методом преобразования вектора значений?

Делим блок пополам и прибавляем левую часть к правой.

Note 65

81aaa6e743d74b498974ea1716a6fb32

Какое сложение используется при построении полинома Жегалкина методом преобразования вектора значений?

По модулю двух.

Какого размера блоки берутся при построении полинома Жегалкина методом преобразования вектора значений?

Начиная с двух и на каждом следующем шаге в два раза больше.

Note 67

19bd9cf64cea4452bfa49092ad3436d8

В чём состоит метод Паскаля построения полинома Жегалкина?

Построить треугольник аналогичный треугольнику Паскаля.

Note 68

94806c084ac540ef804d5444799594f

Как строиться треугольник при построении полинома Жегалкина методом Паскаля?

На каждом шаге складываются по модулю двух соседние элементы вектора.

Note 69

b1d7be08723b44eaa0f476e513b31931

Где в построенном треугольнике находятся искомые коэффициенты при построении полинома Жегалкина методом Паскаля?

Левые элементы сверху вниз.

Note 70

b69324ff24e643199e1b880f783ff767

В каком порядке берутся коэффициенты полинома Жегал-кина при представлении его в виде вектора коэффициентов?

В лексикографическом порядке следования булевых масок вхождения элементов в группы.

Note 71

61a8295f62404faa91e19a69262e7a15

Пусть $f(\widetilde{x}^n)$ — булева функция. «св. Импликантой функции f называется такая «св. элементарная конъюнкция k её аргументов, что «св.

$$k \vee f(\widetilde{x}^n) = f(\widetilde{x}^n).$$

Note 72

a3e3fca754924589b36ea95c9edd20f

Что означает условие $k \vee f(\widetilde{x}^n) = f(\widetilde{x}^n)$ из определения импликанты k булевой функции?

$$k \to f(\widetilde{x}^n).$$

Note 73

8f3f29bfc6d54b9ca09a2fd1fdd6e58b

Импликанта булевой функции называется (со простой,) если (со после отбрасывания любой из букв она перестаёт быть импликантой.)

Note 74

4a3577b789674da58ba03a52b5710ea3

Пусть $f(\widetilde{x}^n)$ — булева функция. «с»:Дизъюнкция всех простых импликант функции f» называется «с»сокращённой д.н.ф. функции f.

Note 75

c5d072cd661d45e4b1027aadbe203045

Конъюнкции, входящие в д.н.ф., называются «спеё слагаемыми»

Note 76

lacef456faac42fd8420cc99d8890e5b

{{c2::Число слагаемых}} д.н.ф. называется {{c1::eë длиной.}}

«са Сумма рангов всех слагаемых» д.н.ф. называется «са её сложностью.»

Note 78

8f3adf33c7d542cb89e2c7f19554d84c

Д.н.ф. называется (саминимальной,)) если она имеет наименьшую (самсложность)) среди (самвсех д.н.ф., эквивалентных ей.))

Note 79

1dd146ddf117426cacc4a76fa773d84d

Д.н.ф. называется (каз кратчайшей,)) если она имеет наименьшую (каздлину) среди (каз всех д.н.ф., эквивалентных ей.))

Note 80

e0998ae22e13457aa7bedbe548e0ce57

Д.н.ф. называется «ступиковой,» если «стотбрасывание любых её слагаемого или буквы приводит к д.н.ф., не эквивалентной исходной.»

Note 81

3c3cb501fe524d508cee8a396e246de5

Любая минимальная д.н.ф. является (спятупиковой.)

Note 82

41b825d38ba944ac959b52db25423ee8

Любая кратчайшая д.н.ф. является (сттупиковой.)

Note 83

381196254f5b4ff88f7cb1dbe58cdf33

 $\{ (c1)$ Двоичный код, $\} \}$ в котором $\{ (c2) \}$ соседние значения представляются соседними булевыми наборами $\} \}$, называется $\{ (c3) \}$ кодом $\{ (c3) \}$

Note 84

9fb6eca8a3984a83ac41b14b95e52ea7

Какое табличное представление функции используется для построения её сокращений д.н.ф.?

Карта Карно.

Чем, в первую очередь, является карта Карно?

Табличное представление булевой функции.

Note 86

404849406d374f84b0027730b5a93b8c

Чем карта Карно отличается от обычного табличного представления?

Наборы значений аргументов расположены в коде Грея.

Note 87

f49b1a9385c14feebbe5a75682af3073

Как называется табличное представление булевой функции, в котором наборы значений переменных на каждой из сторон прямоугольника расположены в коде Грея?

Карта Карно.

Note 88

6f39d187479f4790bb4e1a151406918b

Как по другому называют карты Карно?

Диаграммы Вейча.

Note 89

7ec72a3172754a4c9b75c2c12151406d

Для каких функций имеет смысл использование карты Карно для построения сокращённой д.н.ф.?

Не более четырёх аргументов.

Note 90

3367571a83104bc8aa72c23b88036a5c

Что на карте Карно представляет импликанты булевой функции малого числа аргументов?

Прямоугольники размера 2^k , покрывающие только единицы.

Note 91

73244fdc1053472da90d49b391d90c61

Какие из соответствующих прямоугольников на карте Карно отвечают **простым** импликантам булевой функции малого числа аргументов?

Максимальные по включению.

Note 92

3d6c9e0393a241a7a81798b38ba03769

Как по данному прямоугольнику на карте Карно строится импликанта функции?

Берутся переменные, сохраняющие значение внутри прямоугольника, с соответствующими знаками отрицания.

Note 93

dcec 278578344605 a eec 4341 ee1 fbccf

Сколько переменных входит в импликанту, отвечающую прямоугольнику размера 2^k на карте Карно?

[число переменных]-k

Note 94

12df0cc8ac6448aeaabca21d69e8ac58

Как строится сокращённая д.н.ф. по карте Карно?

На карте находятся все прямоугольники, отвечающие простым импликантам, и из них строиться сокращённая д.н.ф.

Note 95

84f5a9f698ca42048f6b5e5a6c52a18c

Как по карте Карно построить все тупиковые д.н.ф. функции?

Построить к.н.ф., где каждый множитель — это дизъюнкция имён импликант, покрывающих данную единицу, и привести её к д.н.ф.

Note 96

c5h60a019984heeh30acf754aa9hf67

При построении всех возможных тупиковых д.н.ф. функции по карте Карно, что отвечает искомым д.н.ф. в построенной д.н.ф. из импликант?

Каждое отдельное слагаемое.

Note 97

8213d7c755db4307b3e66b4f49906322

Что используется вместо карты Карно, когда булева функция зависит от большого числа аргументов?

Алгоритм Квайна.

Note 98

72dd709a9ecb4ffdaa0fffd682758ab6

В чём, в общих чертах, состоит алгоритм Квайна?

Пошагово применять операции склеивания и поглощения ко всем парам слагаемых.

Note 99

6dc04a146f6c4bc786292e7eeaeeabf1

С какого представления функции начинается алгоритм Квайна?

Совершенная д.н.ф.

Note 100

793a3497f4734adf9c710e04dd9c6905

До какого момента применяются операции склеивания в алгоритме Квайна?

Пока это возможно.

Note 101

4e9b5e650af741f5b2d73141d0add6f6

В каком порядке применяются операции склеивания и поглощения в алгоритме Квайна?

Сначала склеивание ко всем возможным парам, потом так же поглощение и так далее.

Note 102

cc8d30b9006404d862ba491dd69658

Как применяется операция склеивания в алгоритме Квайна?

Без удаления склеиваемых слагаемых.

Note 103

b1ebc3b297184053aaabf561ed08c9d0

Что есть результат выполнения алгоритма Квайна?

Сокращённая д.н.ф.

Note 104

93c3aff28286465d8f1c04e2309d4857

Что перечисляется в левой части таблицы Квайна?

Простые импликанты булевой функции.

Note 105

195e9ac7ffd840a9bd372abb29260386

Что перечисляется в верхней части таблицы Квайна?

Значения, на которых функция обращается в единицу.

Note 106

f44386bc3fe1460b9c4b4d9245cc3b46

Что стоит на пересечениях в таблице Квайна?

Значения импликант на наборах.

Note 107

bd6c452a75a54f8fac85d08a227081e9

Как по таблице Квайна строится кратчайшая д.н.ф. функции?

Выбрать набор строк минимальной длины, "покрывающий" каждый из столбцов.

Note 108

2429e5dfh85944919fh847dec0c29a8a

В чём основная практическая ценность минимальных и кратчайших д.н.ф.?

Они потенциально упрощают схемы.

Note 109

72c248c379834f5b86701f9b7d0bc07

Пусть K — некоторое множество функций алгебры логики. Поставанием множества $K_{\rm H}$ называется (полимножество всех функций, являющихся суперпозициями функций из $K_{\rm H}$

Note 110

3c14f05d74b3432087dc8d02b5e32d2

Пусть K — некоторое множество функций алгебры логики. «Са: Замыкание множества K » обозначается (Са: [K].)

Note 111

a9c3b7f892cc4f0ba7e429a2ae9bfe2

Пусть K — некоторое множество функций алгебры логики. Множество K называется (кезазамкнутым, к) если (кеза[K]=K.)

Note 112

3887b6c690454ba19288df70564724d

Пусть K — некоторое множество функций алгебры логики, $P\subseteq K$. Множество P называется полным в K, если [P]=K.

Пусть K — некоторое множество функций алгебры логики, $P\subseteq K$. Если $\{(c^2):K\}$ замкнуто, а P полно в K, $\{(c^2):K\}$ то P называется $\{(c^2):K\}$ замкнуто, а P полно в K, $\{(c^2):K\}$ то P называется $\{(c^2):K\}$ то $\{($

Note 114

0a6c832056ee4d2b96e0566585d86be0

Две формулы алгебры логики называются $\{(c)$ конгруэнтными,(c) если $\{(c)$ одна из них может быть получена из другой заменой переменных.(c)

Note 115

655826e951542a3bb98d89da369c6bb

Пусть f — формула алгебры логики. [[c2::Множество всех формул, конгруэнтных f,]] обозначается [[c1:: $\{f\}$.]]

Note 116

d4e78c956bef4290883dfc89f3533b1

Класс булевых функций, песетохраняющих 0 (или 1), обозначается песето (или T_1 .)

Булевы алгебры

Note 1

0f3d9e66cae48b4872cde6c9ed57d3a

Что есть верхняя граница в контексте произвольного частично упорядоченного множества?

Элемент ≥ любому элементу множества.

Note 2

13fa1e0fee2c4a718e26e0c7f9c37c46

Что есть нижняя граница в контексте произвольного частично упорядоченного множества?

Элемент ≤ любому элементу множества.

Note 3

0ac55444db6e4fed8fa19d402da0fde0

Что есть супремум в контексте произвольного частично упорядоченного множества?

Наименьшая из верхних границ.

Note 4

7f565979844841de8441229417e3e1c

Что есть инфимум в контексте произвольного частично упорядоченного множества?

Наибольшая из нижних границ.

Note 5

b6e17bbaad124d3ebd6e98b8381a867f

Какое множество рассматривается в определении решётки?

Частично упорядоченное.

Note 6

99e77ba59fe64260b79e25d9f28cad08

Какое частично упорядоченное множество называется решёткой?

Любое двухэлементное подмножество имеет sup и inf.

Note 7

7a3e12e05de4cdfab62d0dea07344d1

Пусть
$$(X,\leqslant)$$
 — решётка, $a,b\in X$. Тогда

$$\{\{c2:a\lor b\}\}\stackrel{\mathrm{def}}{=} \{\{c1:\sup\{a,b\}.\}\}$$

Note 8

c9da1f844e3f4bd9bbe116283730ceel

Пусть
$$(X, \leqslant)$$
 — решётка, $a, b \in X$. Тогда

$$\{\{c2::a \land b\}\} \stackrel{\text{def}}{=} \{\{c1::\inf\{a,b\}.\}\}$$

Note 9

95e0104c61f1411a8b36c0dccc9a0c7d

Решётку так же можно определить как универсальную алгебру с операциями (как ∧ и ∨.)

Note 10

647880d6a2d84657b6ed1d688cf8a568

Какие аксиомы должны выполняться в определении решётки как универсальной алгебры?

Идемпотентность, коммутативность, ассоциативность, поглошение.

Note 11

a9dc77aa008449b2a79f45c128715ce9

В определении решётки ((стесвойство идемпотентности)) на самом деле выводится из ((слесвойства поглощения.))

Note 12

a70eaa64be014d1f8d32db2187ac39b0

{{c1:

$$a \wedge a = a$$
 и $a \vee a = a$.

}}

«[{с2::Идемпотентность}]» (из определения решётки)

Пусть (X, \leqslant) — решётка, $a, b \in X$. Тогда

$$\{\{c2:: a \leq b\}\} \iff a \wedge b = \{\{c1:: a\}\}.$$

Note 14

900809a351c54ff4a39993d52ae1e388

Пусть (X, \leqslant) — решётка, $a, b \in X$. Тогда

$$\{\{c2: a \leq b\}\} \iff a \vee b = \{\{c1: b\}\}.$$

Note 15

33c337ecec8e4e5e8457ad2312f7a0ce

Решётка называется пострибутивной, если пострибутивной, обоюдно дистрибутивны.

Note 16

e6915cd9a90b49cdbba81443ba0a14al

«22-Нулём» «23-частично» упорядоченного множества называется «с1-его наименьший элемент.»

Note 17

12dd64fc8d0648eca210d44a0b7e5ae5

Ноль частично упорядоченного множества обозначается (ставов).

Note 18

730dc345dc804811be6c1f82b9350a94

«са Единицей» «са частично» упорядоченного множества называется «са его наибольший элемент.»

Note 19

543c12d0c8214d79ac9fca56bb2ec02e

Единица частично упорядоченного множества обозначается (кл.: 1.))

Note 20

b4bef54da8aa41d1863424cc97398a7

Пусть A — множество. Тогда ноль $(\mathcal{P}(A),\subseteq)$ — это $\{(c1:\emptyset,\mathbb{N})\}$

Пусть A — множество. Тогда единица $(\mathcal{P}(A),\subseteq)$ — это $\{c: A.$

Note 22

94ed508a73f945fc8a6b4c1803cef774

Пусть (X, \leqslant) — решётка, $x, y \in X$. Элементы x и y называются (сандизъюнктивными,) если (сан

$$x \wedge y = \mathbf{0}$$
.

Note 23

ef9dbbf66ec64b659e16cdb4bb830f5

Пусть (X,\leqslant) — решётка, $x,y\in X$. Элемент y называется полодинением x, песли полодинением y

$$x \wedge y = \mathbf{0}$$
 u $x \vee y = \mathbf{1}$.

Note 24

eb16dfe04f534fcd95dfce6b0eab9636

Для каких решёток имеет смысл понятие дополнения?

Для решёток с нулём и единицей.

Note 25

2b49c7f09eeb4fa09c205e6ef5416e6b

Для начала, булева алгебра — это $\{\{c1\}$ решётка. $\}\}$

Note 26

e823cfd66b9a4b7aba2bcfeb6ae82e0c

Какую решётку называют булевой алгеброй?

Дистрибутивную; с нулём и единицей; каждый элемент имеет дополнение.

Как называют дистрибутивную решётку с нулём и единицей, каждый элемент которой имеет дополнение?

Булева алгебра.

Note 28

5a7f39372324f8692538470e13cebb7

В определении (са булевой алгебры) (са свойство поглощения можно заменить на (са закон тождественности.))

Note 29

7c150397485f4e128ed7a0aa7d34f6c

{{c1:

$$a \wedge 1 = a$$
 и $a \vee 0 = a$.

}}

 ${\{\{c2:: 3aкoн тoжеcтвеннocтu\}\}}$ » (из oпределения булевой алгебры)

Note 30

i486cf3db94f4129bf68eed1e3194939

Каждый элемент булевой алгебры имеет ([спединственное дополнение.])

Note 31

eb156d1ea036435a89006401851c38d6

Пусть (X, \leqslant) — булева алгебра, $x \in X$. «Сег-Дополнение x» обозначается (Сег- \overline{x} .)

Note 32

2b88d7541f5641d5ac8623f8a78c3384

Каждый элемент булевой алгебры имеет единственное дополнение. В чём ключевая идея доказательства?

Умножить \overline{x} на $x \vee x^*$, где x^* — второе дополнение.

Note 33

6baeed8e7301491ea3dfca0b6fd7750d

Для булевых алгебр верны (ствсе основные законы) алгебры логики.

В чём ключевая идея доказательства законов Де-Моргана для булевых алгебр?

Показать, что правая часть является дополнением по определению.

Note 35

d7959d4251d34780bf02493d717f2c6a

Пусть (X,\leqslant) — булева алгебра, $f,g:X^n\to X$. Функции f и g называются (салвзаимно двойственными,) если (сал

$$f(x_1,\ldots,x_n)=\overline{g(\overline{x_1},\ldots,\overline{x_n})}.$$

Note 36

13cfa6ef0b5649518e5f73d626669239

Пусть (X,\leqslant) — булева алгебра, $f:X^n\to X$. (коз:Функция, двойственная к f ,)) обозначается (коз: f^* .))

Note 37

dd63d9bebef6405bad499b8ac612b3d2

Пусть (X, \leq) — булева алгебра, $f: X^n \to X$.

$$(f^*)^* = \{\{\text{cl}: f.\}\}$$

Note 38

f46b68627d9a4a49ae7759f86e1198b1

Пусть (X,\leqslant) — булева алгебра, $f:X^n\to X$. Функция f называется (клюсамодвойственной,)) если (клюсамодвойственной)

Note 39

f94e35dh4a9047a7hee032a5cae511d0

Пусть $f:B^n o B$. Если

$$f=(\alpha_1,\ldots,\alpha_{2^n}),$$

то

$$f^* = \{\{c_1: (\bar{\alpha}_{2^n}, \ldots, \bar{\alpha}_1).\}\}$$

Пусть (X, \leq) — булева алгебра. $\mathbf{0}^* = \{\{c\}: \mathbf{1}\}\}$.

Note 41

7a361ce9cbe84f77b236a38d96ee29a6

Пусть (X, \leqslant) — булева алгебра. $\mathbf{1}^* = \{(c1:: \mathbf{0})\}$.

Note 42

a83c28cd41a247e0905cb9b46bc30c39

Пусть (X, \leqslant) — булева алгебра. $\wedge^* = \{\{c1: \forall \}\}$.

Note 43

32ec500412874f4cb81569a5483da5c9

Пусть (X, \leq) — булева алгебра. $\vee^* = \{\{c1: \land\}\}$.

Note 44

1ed5cffea17343ef9953a3bed3081904

В алгебре логики, $\oplus^* = \{\{c1:: \sim \}\}$.

Note 45

c7ec94fd1e224455bb8338bc967651b5

В алгебре логики, $\sim^* = \{\{\text{c1::} \oplus \}\}.$

Note 46

6d5ed061caee4a21b5e098a197019176

В алгебре логики, $|*=\{\{c1:: \downarrow \}\}$.

Note 47

d99e4bd6874d47aeb0185f58610c8ab8

В алгебре логики, $\downarrow^* = \{\{c1:: \mid \}\}$.

Note 48

abf23bd834914587b24eb8d0cf857c59

Пусть f:B o B и f(x)=x. Тогда $f^*=\{\{c\in F\}\}$.