Design of Wind Energy Systems SS 2016

Lecture 11 & 12: Wake and wind farm effects on turbine performance

Prof. Dr. Martin Kühn Wind energy systems

Contents

- I. Single wake
- II. Wake measurements
- III. Wind flow in windfarms
- IV. Example of wind farm effects (Horns Rev)

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

The use of lecture material developed by the author at SWE - University of Stuttgart is acknowledged.

Oldenburg, June 2016

Martin Kühn

Relevance of wake assessment

Single wakes

Wake development : Near wake

Wake development: far wake

Inflow and wake wind speed

Thrust S from momentum conservation

$$S = \stackrel{\iota}{m} \cdot (v_1 - v_3)$$

$$S = \frac{1}{2} \times \rho \times \left(\times^2_1 \quad v^2_3 \right)$$

Thrust coefficient

$$c_{S} = \frac{Schub}{Staudruck:} = \frac{\frac{1}{2} \times \rho \times (\times^{2}_{1} \times^{2}_{3})}{\frac{1}{2} \times \rho \times v_{1}^{2}} = 1 - \left(\frac{v_{3}}{v_{1}}\right)^{2}$$

$$\frac{v_3}{v_1} = \sqrt{1 - c_S}$$

Wind speed in wake is dependent on the thrust curve coefficient of the turbine

Wind speed in wake

$$\frac{v_3}{v_1} = \sqrt{1 - c_S}$$

Mean wind speed in wake

Qualitative description of the mean wind speed in wake

Mean wind speed in wake

Wake as linear superposition of wind shear, wind speed deficit and turbulence

Mean wind speed in wake

Empirical model for estimation of the wir speed at wake center dependent on downstream distance

$$\frac{\Delta V}{V_{\text{hub}}} = A \left(\frac{D}{x}\right)^n$$

A: dependent on C_S

n: dependent on turbulence

Turbulence intensity in wake

Steady complex structures in the near wake develop into Gaussian-like profiles in the far wake

Turbulence intensity

$$I = \frac{\sigma_u}{\overline{u}}$$

Near wake

Transition

Far wake

Turbulence in wake

Wind turbines generate additional turbulence (ΔI) to ambient turbulence (I_{∞})

$$\Delta I = \sqrt{I^2 - I_{\infty}^2}$$

Example: Empirical
Turbulence decay at the
center of the wake nach
Quarton

$$\Delta I = 4.8 C_{\rm T}^{0.7} I_{\infty}^{0.68} \left(\frac{x_N}{x}\right)^{0.57}$$

Wake modelling

PARK Wake model (Risø)

 PARK-Model of N.O. Jensen assumes a linear expansion of the wake

$$R_N = R_R + kx$$

Mass conservation

$$v_N = (v_3 - v_1) \frac{R_R^2}{R_N^2} + v_1$$

Implemented in commercial wind farming

Numerical models Steady wake characteristics

Ainslie: 2D CFD

Actuator disk

Far wake

Turbulence -> Eddy viscosity GH Windfarmer®,

WindPRO®

Full wake

Turbulence k-ε

Numerical models *Unsteady wake characteristics*

Large eddy simulation : Actuator line with PALM (ForWind)

Wake measurement

Standard wake measurement

Mean horizontal profiles obtained with standard anemometers on meteorological masts

Measurements of Multibrid Prototype

Experiment setup

Lidar-Scanner

Multibrid M5000 prototype

- 5 MW with 116m rotor diameter
- 102m hub height
- Heavily equipped with sensors
- Met mast
- Mounted Lidar-Scanner SWE

Measurements of Multibrid Prototype

early morning (stable)

Wind speed [m/s]

Measurements of Multibrid Prototype

midday (unstable)

Wind speed [m/s]

Wind farms

III. Wind farm modelling

Wind farm models

Single wake superposition

- Assumptions for flow simplification
- Low computational cost
- FLaP, WindPRO, GH Windfarmer

Wind farm CFD/LES simulation

- More detail of the physics
- High computational effort
- Commercial and research

LES Simulation von »alpha ventus«

Wind turbine separation onshore

Typical separations of minimum 5D

Example

"...for optimal "harvesting" of the wind it is <u>suggested</u> to have a turbine separation of 8 diameters in the mean wind direction +/- 30°, in the other directions a separation of 4 diameters is suggested..."

[Windenergieerlass NRW, www.IWR.de]

Wind turbine separation offshore

Typical separations of minimum 8D

Vattenfal & DONG

IV. Example wind farm Horns Rev

Horns Rev

DONG Energy

Horns Rev Measurement: wind farm effects

Electrical power westerly wind (10Min mean values)

Largest power loss between 1st and 2nd row

Horns Rev Measurement: wind farm effects

Standard deviation of electrical power westerly wind

(10Min mean values)

Lidar measurements at wind farm alpha ventus

Far wake of windfarms

Satellite measurement at Horns Rev

Reduction of wind speed
 still visible at 20km downstream

[ERS SAR / Risø]

Wake effects on wind turbines

Power in wake

The estimation of the power in wake is typically based on the freestream **power curve** and an **effective wind speed**

Wind farm effects on mechanical loads Partial and full wake

Partial loading

- Inhomogeneous wind field
- Large changes in
 - Flap-wise bending moments
 - Bending and torsional moments of the main shaft
- Large mean and from of yaw and roll moments

Wakes are very dynamic ...

- Wind speed and turbulence
- **Meandering** large scale transversal movement

Present engineering models

IEC Standard recommendation

Effective turbulence

Simplified models

- Dynamic Wake Meandering (Larsen et al. DTU Wind Energy)
- Disk-Particle Model (Trujillo et al., Universität Oldenburg)

Estimation of fatigue loading in wake

Effective turbulence (Frandsen 2003) is a procedure recommended in the IEC 61400-1

Estimation of fatigue loading in wind Effective turbulence from IEC 61400-1

- If separation of WEC's is larger than 20 rotor diameters, wake effects are not important. (Empirical)
- If separation lower than 20 rotor diameters, consider this formula:

Wake modelling as emitted passive disks

Steady wake
Without effect of large scale atmospheric turbulence

Meandering wake

Wake *meandering* driven by large scale turbulence in the atmosphere

Lecture 11&12 – Wake and wind farm effects/ page41

Main assumption

Wind turbine wake meanders similar to passive tracers

Simplified approach

Constant passive disk advection

Dynamic Wake Meandering (DWM)

- Developed at DTU Wind Energy (Larsen et al.)
- Assumption of "passive" wake advekcion
- Strutures greater than the rotor diameter are filtered out
- "Moving" wake profile superimposed with a stochastic wind field
- Implementiert im GL-Bladed

ersität oldenburg

Extended Disk-Particle Model (EDPM)

- Developed at Uni Oldenburg (Trujillo et al.)
- Assumption of "passive" wake advection
- Enables inclusion of atmospheric convective conditions

Example of comparison of models

"Fore-aft" tower bottom bending moment

NREL 5MW at 7 rotor diameters downstream and 7 m/s inflow

