目次

無機化学

目次 第1部	非金属元素	3	6.3 6.4 6.5 6.6	一酸化二窒素(笑気ガス) 一酸化窒素 二酸化窒素 硝酸	12 12 13 13
			7	リン	14
1	水素	3	7.1	リン	14
1.1	性質	3	7.2	リン酸	14
1.2	同位体	3	7.3	リン酸	14
1.3	製法	3	8	炭素	15
1.4	反応	3	8.1	炭素	15
2	貴ガス	3	8.2	一酸化炭素	15
2.1	性質	3	8.3	二酸化炭素	16
2.2	生成	3		L /=	17
2.3	ヘリウム	3	9	ケイ素	17
2.4	ネオン	3	9.1	ケイ素	17
2.5	アルゴン	3	9.2	二酸化ケイ素	17
3	ハロゲン	4	笋Ⅱ邨	典型金属	19
3.1	単体	4	45 II GP	兴 主亚属	19
3.2	ハロゲン化水素	5	10	アルカリ金属	19
3.3	ハロゲン化銀	6	10.1	単体	19
3.4	次亜塩素酸塩	6	10.2	水酸化ナトリウム(苛性ソーダ)	19
3.5	塩素酸カリウム	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
4	酸素	7	11	2族元素	22
4.1	酸素原子	7	11.1	単体	22
4.2	酸素	7	11.2	酸化カルシウム(生石灰)	22
4.3	オゾン	7	11.3	水酸化カルシウム(消石灰)	23
4.4	酸化物	8	11.4	炭酸カルシウム(石灰石)	23
4.5	水	8	11.5	塩化マグネシウム・塩化カルシウム	23
_	T+ ++	0	11.6	硫酸カルシウム	24
5	硫黄	9	11.7	硫酸バリウム	24
5.1	硫黄	9	10	12 株二字	24
5.2		9	12 12.1	12 族元素 単体	24
5.3 5.4	二酸化硫黄(亜硫酸ガス)	10	12.1 12.2	酸化亜鉛(亜鉛華)・水酸化亜鉛	24 25
5.4 5.5	硫酸	11 11	12.2	塩化水銀(I)·塩化水銀(II)	$\frac{25}{25}$
5.6	重金属の硫化物	12	12.3		20
5.0	至亚/内 ♥別[[□120]	14	13	アルミニウム	26
6	窒素	12	13.1	アルミニウム	26
6.1	窒素	12	13.2	酸化アルミニウム・水酸化アルミニウム	26
6.2	アンモニア	12	13.3	ミョウバン・焼きミョウバン	27

14	スズ・鉛	28
14.1	単体	28
14.2	塩化スズ(II)	28
14.3	酸化鉛 (IV)	29
14.4	鉛の難溶性化合物	29
第Ⅲ部	邵 遷移元素	30
15	鉄・コバルト・ニッケル	30
15.1	鉄	30
15.2	硫酸鉄(Ⅱ)7水和物	31
15.3	塩化鉄(Ⅲ)6 水和物	32
15.4	鉄イオンの反応	32
15.5	塩化コバルト(Ⅱ)	32
15.6	硫酸ニッケル(Ⅱ)	32
16	銅	33
16.1	銅	33
16.2	硫酸銅(II)5水和物	34
16.3	銅(Ⅱ)イオンの反応	34
16.4	銅の合金	34
17	銀	34
17.1	銀	34
17.2	銀(I)イオンの反応	35
17.3	難溶性化合物の溶解性	35
18	クロム・マンガン	35
18.1	単体	36
18.2	クロム酸カリウム・二クロム酸カリウム	36
18.3	過マンガン酸カリウム	36
18.4	マンガンの安定な酸化数	37
第 Ⅳ 部	邵 APPENDIX	38
Α	気体の乾燥剤	38
В	水の硬度	38
С	錯イオンの命名法	38
D	金属イオンの難容性化合物	39
E	金属イオンの系統分離	41

第I部

非金属元素

1 水素

1.1 性質

- 1 無色 2 無臭の 3 気体
- 最も4軽い
- 水に溶け(5)にくい

1.2 同位体

¹H 99% 以上 ²H (6D)0.015% ³H (7T) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 8赤熱したコークスに 9水蒸気を吹き付ける工業的製法

$$C + H_2O \longrightarrow H_2 + CO$$

- 10水 (11)水酸化ナトリウム水溶液)の電気分解
 2 H₂O → 2 H₂ + O₂
- 12 イオン化傾向が 13 H₂ より大きい 金属と希薄強酸

$$\bigcirc \mathbb{N}$$
 Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

• 水素化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

$$2 H_2 + O_2 \longrightarrow H_2O$$

• 加熱した酸化銅(II)と水素 $CuO + H_2 \longrightarrow Cu + H_2O$

2 貴ガス

(14)He, (15)Ne, (16)Ar, (17)Kr, Xe, Rn

2.1 性質

- [18]無色[19]無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が 20 極めて小さい
- 電気陰性度が[21]定義されない

2.2 牛成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い(約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2 Br_2		I_2		
分子量	小					
分子間力	弱					
反応性	強			弱		
沸点・融点	低					
常温での状態	22 気体	23 気体	24 液体	25)固体		
色	26)淡黄色	27)黄緑色	28 赤褐色	29 黒紫色		
特徴	30 特異臭	31 刺激臭	揮発性	32]昇華性		
H ₂ との反応	33 冷暗所でも	34 常温でも 35 光で	36 <mark>加熱</mark> して	高温で平衡状態		
112 2 07)又//	爆発的に反応	爆発的に反応	37 <mark>触媒</mark> により反応	38 <mark>加熱</mark> して 39 <mark>触媒</mark> により一部反応		
水との反応	水を酸化して酸素と	 41 一部とけて反応	(42)一部とけて反応	43 反応しない		
// こ 0 / / 文/心	40激しく反応		(42)—BICV CIXIN	44 Klaq には可溶		
用途	保存が困難	<u>45 CIO -</u> による	C=C ❖	47ヨウ素デンプン反応で		
用处	Kr や Xe と反応	46)殺菌・漂白作用	C≡C の検出	48)青紫色		

3.1.2 製法

● フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液 の電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

- 49塩化ナトリウム水溶液の電気分解 塩素 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 50酸化マンガン (IV) に51濃塩酸を加えて加熱 塩素 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$
- 52高度さらし粉と 53塩酸 塩素 $Ca(ClO)_2 \cdot 2 H_2O + 4 HCl \longrightarrow CaCl_2 + 2 Cl_2 \uparrow + 4 H_2O$
- 54さらし粉と (55塩酸 塩素)
 CaCl(ClO)・H₂O + 2 HCl → CaCl₂ + Cl₂↑ + 2 H₂O
- 臭化マグネシウムと塩素 Q素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- フッ素と水素 $H_2+F_2\stackrel{\mathring{\pi}_{\stackrel{}{=}}\sigma}{\longrightarrow} 2\,HF$
- 臭素と水素 $H_2 + Br_2 \xrightarrow{\overline{Ala} \circ \overline{Dla}} 2 HBr$
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 Cl₂ + H₂O ⇒ HCl + HClO
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 $I_2 + I^- \longrightarrow I_3^-$

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$ $\mathrm{Cl_2},\mathrm{HCl},\mathrm{H_2O}$ \downarrow 56 水 に通す (HCl の除去) $\mathrm{Cl_2},\mathrm{H_2O}$ \downarrow 57 濃硫酸に通す (H $_2\mathrm{O}$ の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸・・・ 58 酸素を含む酸性物質

+ VII	59HClO₄	60	過塩素酸	O
				O
+ V	61 HCIO₃	62	塩素酸	H - O - Cl - O
+ III	63 HCIO ₂	64	亜塩素酸	H - O - Cl - O
+ I	65 HCIO	66)	欠亜塩素酸	H - O - Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HCl HBr						
色・臭い		67 無色 68 刺激臭							
沸点	20°C	−85°C	−67°C	−35°C					
水との反応	69よく溶ける								
水溶液	70フッ化水素酸	71 塩酸	72 臭化水素酸	73ヨウ化水素酸					
(強弱)	74 弱酸	₹ ≪ 75強酸 < 7	6 強酸 < 77	強酸					
用途	78 ガラス と反応	79アンモニアの検出	半導体加工	インジウムスズ					
开 燃	⇒ ポリエチレン瓶	各種工業	一 一字 体加工	酸化物の加工					

3.2.2 製法

- 80 ホタル石 に 81 濃硫酸 を加えて加熱(82 弱酸遊離) フッ化水素 ${\rm CaF_2 + H_2SO_4} \longrightarrow {\rm CaSO_4 + 2\,HF}$ ↑
- 83水素と84塩素塩化水素工業的製法 H₂+Cl₂ → 2 HCl↑
- 85 塩化ナトリウム に 86 濃硫酸 を加えて加熱 塩化水素 (87 弱酸・88 揮発性酸の追い出し) NaCl + $H_2SO_4 \longrightarrow NaHSO_4 + HCl \uparrow$

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 ${
 m SiO_2} + 4\,{
 m HF}({
 m g}) \longrightarrow {
 m SiF_4} \uparrow + 2\,{
 m H_2O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

3.3 ハロゲン化銀 3 ハロゲン

• 89塩化水素による90アンモニアの検出 $HCl + NH_3 \longrightarrow NH_4Cl$

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	91 黄褐色	92白色	93 淡黄色	94黄色
水との反応	95よく溶ける	96 ほとんど溶けない		
光との反応	97感光	感光性 (→98Ag)		

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 $Ag_2O+2HF\longrightarrow 2\,AgF+H_2O$

• ハロゲン化水素イオンを含む水溶液と 99 硝酸銀水溶液 $\mathrm{Ag^+} + \mathrm{X^-} \longrightarrow \mathrm{Ag}\mathrm{X} \downarrow$

3.4 次亜塩素酸塩

3.4.1 性質

[100]酸化剤として反応([101]殺菌・[102]漂白作用) $ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$

3.4.2 製法

- ・ 水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O
- 水酸化カルシウムと塩素
 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O

3.5 塩素酸カリウム

化学式: [103]KCIO₃

3.5.1 性質

 $egin{aligned} egin{aligned} & 104 \hline \mathbf{ws} & \text{の生成 } (& 105 \hline \mathbf{zw} & \mathbf{vz} & \mathbf{zz} & \mathbf{vz} \\ & 2 & \mathrm{KClO_3} & \frac{\mathrm{MnO_2}}{\Delta} & 2 & \mathrm{KCl} + 3 & \mathrm{O_2} \\ \end{pmatrix} \end{aligned}$

4 酸素

4.1 酸素原子

同106位体:酸素 (O_2) 、107オゾン (O_3)

地球の地殻に 108 最も多く存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 121無色122無臭の123気体
- 沸点 −183°C

4.2.2 製法

- [124]液体空気の分留 工業的製法
- 125水(126水酸化ナトリウム水溶液)の127電気分解 $2 \, \mathrm{H}_2\mathrm{O} \longrightarrow 2 \, \mathrm{H}_2 \, \uparrow + \mathrm{O}_2 \, \uparrow$
- 128 過酸化水素水(129 オキシドール)の分解 $2 \, \mathrm{H}_2\mathrm{O}_2 \xrightarrow{\mathrm{MnO}_2} \mathrm{O}_2 \uparrow + 2 \, \mathrm{H}_2\mathrm{O}$
- 130 塩素酸カリウム の熱分解 $2 \, \mathrm{KClO}_3 \, \frac{\mathrm{MnO}_2}{\Delta} \, 2 \, \mathrm{KCl} + 3 \, \mathrm{O}_2 \, \uparrow$

4.2.3 反応

[131]酸化剤としての反応

 $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$

4.3 オゾン

化学式: [132]O₃

4.3.1 性質

- 【133]ニンニク臭(【134]特異臭)を持つ【135]淡青色の 【136]気体(常温)
- 水に[137]少し溶ける
- [138] **殺菌**・[139] 脱臭作用

オゾンにおける酸素原子の運動 -

4.3.2 製法

酸素中で 146 無声放電 / 強い 147 紫外線 を当てる $3 O_2 \longrightarrow 2 O_3$

4.3.3 反応

● [148]酸化剤としての反応

$$O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$$

湿らせた 149 ヨウ化カリウムでんぷん紙を 150 青色に変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	[151]陽性の大きい金属元素	[152]陽性の小さい金属元素	153 非金属元素
水との反応	[154]塩基性	[155]ほとんど溶けない	156酸性 (157オキソ酸)
中和	[158]酸と反応	[159]酸・塩基と反応	[160] <mark>塩基</mark> と反応

両性酸化物 · · · (161)アルミニウム (162) Al) , (163) 亜鉛 (164) Zn) , (165) スズ (166) Sn) , (167) 鉛 (168) Pb)*1

- $\bigcirc M$ $CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$

4.4.1 反応

● 酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

4.5 水

4.5.1 性質

- 169 極性分子
- 周りの4つの分子と 170 水素結合
- 異常に 171 高い沸点
- [172]隙間の多い結晶構造(密度:固体[173]<液体)
- 特異な (174) 融解曲線

4.5.2 反応

• 酸化カルシウムと水

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

• 二酸化窒素と水

$$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175 斜方硫黄	176 単斜硫黄	[177]ゴム状硫黄
化学式	178 S ₈	179 S ₈	[180]S _x
色	[181]黄色	[181] 黄 色 [182] 黄 色	
構造	184 <mark>塊状</mark> 結晶	185 針状結晶	186 不定形固体
融点	113°C	119°C	不定
構造	S S S S		S S S S S S S S S S S S S S S S S S
CS ₂ との反応	187 <mark>溶ける</mark>	188 <mark>溶ける</mark>	[189]溶けない

CS₂··· 無色・芳香性・揮発性 ⇒ 190 無極性触媒

5.1.2 反応

- 高温で多くの金属(Au, Pt を除く)と反応
 - 例 $Fe Fe + S \longrightarrow FeS$
- 空気中で 191 青色の炎を上げて燃焼

$$S + O_2 \longrightarrow SO_2$$

5.2 硫化水素

化学式: [192]H₂S

5.2.1 性質

- [193]無色[194]腐卵臭
- [195]弱酸性

$$\begin{cases} \boxed{196} \, \text{H}_2 \text{S} & \Longrightarrow \text{H}^+ + \text{HS}^- & K_1 = 9.5 \times 10^{-8} \, \, \text{mol/L} \\ \boxed{197} \, \text{HS}^- & \Longrightarrow \text{H}^+ + \text{S}^{2-} & K_2 = 1.3 \times 10^{-14} \, \, \text{mol/L} \end{cases}$$

● [198]還元剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

• 重金属イオン M^{2+} と $\boxed{199}$ 難容性の塩を生成 $\mathrm{M_2}^+ + \mathrm{S}^{2-} \Longrightarrow \mathrm{MS} \downarrow$

5.2.2 製法

● 硫化鉄(Ⅱ)と希塩酸

$$FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$$

● 硫化鉄(Ⅱ)と希硫酸

$$FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S \uparrow$$

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S + I_2 \longrightarrow S + 2HI$$

酢酸鉛(Ⅱ)水溶液と硫化水素(200 H₂Sの検出)
 (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS↓

5.3 二酸化硫黄(亜硫酸ガス)

化学式: [201] SO₂ 電子式: : O: S:: O

5.3.1 性質

- [202]無色、[203]刺激臭の[204]気体
- 水に 205 溶けやすい
- [206]弱酸性

207SO₂ + H₂O \Longrightarrow H⁺ + HSO₃⁻ $K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

● 208 還元剤(209 漂白作用)

 $SO_2 + 2 H_2 O \longrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$

• 210酸化剤(211 H_2 Sなどの強い還元剤に対して) $SO_2 + 4 H^+ + 4 e^- \longrightarrow S + 2 H_2 O$

5.3.2 製法

● 硫黄や硫化物の 212 燃焼 工業的製法

 $2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$

• [213] <u>亜硫酸ナトリウム</u>と希硫酸

 $\mathrm{Na_2SO_3} + \mathrm{H_2SO_4} \xrightarrow{\quad \Delta \quad} \mathrm{Na_2SO_4} + \mathrm{SO_2} \uparrow + \mathrm{H_2O}$

● [214]銅と[215]熱濃硫酸

 $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$

5.3.3 反応

• 二酸化硫黄の水への溶解

 $SO_2 + H_2O \longrightarrow H_2SO_3$

• 二酸化硫黄と硫化水素

 $\mathrm{SO_2} + 2\,\mathrm{H_2S} \longrightarrow 3\,\mathrm{S} + 2\,\mathrm{H_2O}$

● 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

 $2\,\mathrm{KMnO_4} + 5\,\mathrm{SO_2} + 2\,\mathrm{H_2O} \longrightarrow 2\,\mathrm{MnSO_4} + 2\,\mathrm{H_2SO_4} + \mathrm{K_2SO_4}$

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216無色 217無臭の 218液体
- 水に 219 非常によく溶ける
- 溶解熱が (220) 非常に大きい
- [221]水に濃硫酸を加えて希釈
- [222] 不揮発性で密度が [223] 大きく、 [224] 粘度が大き い 濃硫酸
- [225] 吸湿性・[226] 脱水作用 濃硫酸
- 227 強酸性 希硫酸

- 229 弱酸性 濃硫酸 (230水が少なく、231 H₃O⁺の 濃度が小さい)
- 232 酸化剤として働く 熱濃硫酸

 $(233)H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$

 234アルカリ性土類金属(235 Ca, 236 Be)、237 Pb と難容性の塩を生成 希硫酸

5.4.2 製法

238 接触法 工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

(S + O₂ \longrightarrow SO₂)

- 2. **239 酸化バナジウム**触媒で酸化
 - $2\operatorname{SO}_2 + \operatorname{O}_2 \xrightarrow{\operatorname{V}_2\operatorname{O}_5} 2\operatorname{SO}_3$
- 3. **240 濃硫酸** に吸収させて **241 発煙硫酸** とした後、 希硫酸を加えて希釈

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱 $KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4$
- 水酸化ナトリウムと希硫酸 ${\rm H_2SO_4 + 2\,NaOH \longrightarrow Na_2SO_4 + 2\,H_2O}$
- 銅と熱濃硫酸

 $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$

• 銀と熱濃硫酸

 $2 \operatorname{Ag} + 2 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Ag}_2 \operatorname{SO}_4 + \operatorname{SO}_2 + 2 \operatorname{H}_2 \operatorname{O}$

塩化バリウム水溶液と希硫酸
 BaCl₂ + H₂SO₄ →→ BaSO₄ ↓ + 2 HCl

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: [242]Na₂S₂O₃

[243]硫酸イオン [244]チオ硫酸イオン

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- [245]還元剤として反応

例水道水の脱塩素剤(カルキ抜き)

$$(246)2 S_2 O_3^{2-} \longrightarrow S_4 O_6 + 2 e^{-}$$

$$\begin{array}{c} : \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : \\ \vdots \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{O}} : \\ \vdots \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : & \vdots \overset{\circ}{\mathrm{O}} : \\ & & & \vdots \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{O}} : + 2\,\mathrm{e}^{-} \\ & & \vdots \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : \end{array}$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱 $n \operatorname{Na_2SO_3} + \operatorname{S}_n \longrightarrow n \operatorname{Na_2S_2O_3}$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

 $I_2 + 2 \operatorname{Na_2S_2O_3} \longrightarrow 2 \operatorname{NaI} + \operatorname{Na_2S_4O_6}$

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)				中性	・塩基性で沈	澱(酸性でに	は溶解)		
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
247 <mark>黑</mark> 色	248 <mark>黒</mark> 色	249 黑色	250黑色	251 褐色	252 黑色	253 <mark>黑</mark> 色	254 <mark>黑</mark> 色	255 白色	256)淡赤色

257 低

イオン化傾向

[258]高

[259]極小 塩の溶解度積 (K_{sp}) [260]小

窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- [261]無色[262]無臭の[263]気体
- 空気の 78% を占める
- ・ 水に溶け 264 にくい (265 無極性分子)
- ・ 常温で 266 不活性 (食品などの 267 酸化防止)
- 高エネルギー状態([268]高温・[269]放電)では反応

6.1.2 製法

- 270 液体窒素の分留 工業的製法
- [271] 亜硝酸アンモニウムの[272] 熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$N_2 + 2 O_2 \longrightarrow 2 NO_2$$
 $\begin{cases} N_2 + O_2 \longrightarrow 2 NO \\ 2 NO + O_2 \longrightarrow 2 NO_2 \end{cases}$

• 窒素とマグネシウム $3 \operatorname{Mg} + \operatorname{N}_2 \longrightarrow \operatorname{Mg}_3 \operatorname{N}_2$

6.2 アンモニア

化学式: [273]NH₃

6.2.1 性質

- [274]無色[275]刺激臭の[276]気体
- [277]水素結合
- 水に (278) 非常によく溶ける ((279) 上方 置換)
- [280]塩基性

$$\begin{array}{c}
\hline
(281)\text{NH}_3 + \text{H}_2\text{O} & \longrightarrow \text{NH}_4^+ + \text{OH}^- \\
K_1 = 1.7 \times 10^{-5} \text{ mol/L}
\end{array}$$

- 282 塩素の検出
- 高温・高圧で二酸化炭素と反応して、(283)尿素を生成

6.2.2 製法

(284)ハーバーボッシュ法 工業的製法

[285]低温[286]高圧で、[287]四酸化三鉄([288]Fe₃O₄) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

• [289]塩化アンモニウムと [290]水酸化カルシウムを混ぜ

 $2 \, \mathrm{NH_4Cl} + \mathrm{Ca(OH)_2} \longrightarrow 2 \, \mathrm{NH_3} \uparrow + \mathrm{CaCl_2} + 2 \, \mathrm{H_2O}$

6.2.3 反応

• 硫酸とアンモニア

 $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

● 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素

 $2 \, \mathrm{NH_3} + \mathrm{CO_2} \longrightarrow (\mathrm{NH_2})_2 \mathrm{CO} + \mathrm{H_2O}$

6.3 一酸化二窒素(笑気ガス)

化学式: [291] N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- [292]麻酔効果

6.3.2 製法

[293]硝酸アンモニウムの熱分解 $NH_4NO_3 \longrightarrow N_2O + 2H_2O$

6.4 一酸化窒素

化学式: [294]NO

6.4.1 性質

- [295]無色[296]無臭の[297]気体
- 中性で水に溶けにくい
- 空気中では 298 酸素とすぐに反応

6.5 二酸化窒素 6 窒素

• 血管拡張作用·神経伝達物質

6.4.2 製法

299銅と 300希硝酸

 $3\,\mathrm{Cu} + 8\,\mathrm{HNO_3} \longrightarrow 3\,\mathrm{Cu(NO_3)_2} + 2\,\mathrm{NO} + 4\,\mathrm{H_2O}$

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式: [301]NO₂

6.5.1 性質

- 302 赤褐色 303 刺激 臭の 304 気体
- ・ 水と反応して(305)強酸性((306)酸性雨の原因)
- 140°C 以上で熱分解 $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{ O}_2$

6.5.2 製法

310 銅と (311) 濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式: 312 HNO₃

6.6.1 性質

- [313]無色[314]刺激臭で[315]揮発性の[316]液体
- 水に(317)よく溶ける
- [318]強酸性

 $319 \text{HNO}_3 \iff \text{H}^+ + \text{NO}_3^- \qquad K_1 = 6.3 \times 10^1 \text{mol/L}$

- [320] 褐色瓶 に保存([321] 光分解)
- 322酸化剤としての反応 希硝酸 $\mathrm{HNO_3} + \mathrm{H^+} + \mathrm{e^-} \longrightarrow \mathrm{NO_2} + \mathrm{H_2O}$

• [323]酸化剤としての反応 濃硝酸

 $\mathrm{HNO_3} + 3\,\mathrm{H^+} + 3\,\mathrm{e^-} \longrightarrow \mathrm{NO} + 2\,\mathrm{H_2O}$

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- 324 AI, 325 Cr, 326 Fe, 327 Co, 328 Ni は
 329 酸化皮膜が生じて不溶 濃硝酸
 - = [330]不動態
- [331]王水 ([332]濃塩酸:1[333]濃硝酸=3:1) は、Pt,Au も溶解
- NO₃ は (334) 沈殿を作らない ⇒ (335) 褐輪反応で検出

6.6.2 製法

• 336 オストワルト法

 $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$

- 1. 337白金触媒で338アンモニアを339酸化 $4 NH_3 + 5 O_2 \longrightarrow 4 NO + 6 H_2O$
- 2. 340 空気酸化

 $2 \, \mathrm{NO} + \mathrm{O}_2 \longrightarrow 2 \, \mathrm{NO}_2$

3. 341<mark>水</mark>と反応

 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

• 342 硝酸塩 に 343 濃硫酸 を加えて加熱 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

6.6.3 反応

- アンモニアと硝酸 $NH_3 + HNO_3 \longrightarrow NH_4NO_3$
- 硝酸の光分解
 4 HNO₃ ^光 → 4 NO₂ + 2 H₂O + O₂
- 亜鉛と希硝酸 ${\rm Zn} + 2\,{\rm HNO_3} \longrightarrow {\rm Zn}({\rm NO_3})_2 + {\rm H_2} \uparrow$
- 銀と濃硝酸

 $Ag + 2 HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$

7 リン

7.1 リン

7.1.1 性質

三種類の同[344]素体がある

<u>= E/X / 13 (0.1.)</u>			
名称	345黄リン	346 赤リン	黒リン
化学式	347 P ₄	348)P _x	P_4
融点	44°C	590°C*2	610°C
発火点	35°C	260°C	
光八点	349 <mark>水中</mark> に保存	350マッチの側薬	_
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$
毒性	351]猛毒	352)微毒	353 微毒
構造	P	$P \rightarrow P$	略
CS ₂ への溶解	354)溶ける	355)溶けない	356 溶けない

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法 $2 \operatorname{Ca_3}(PO_4)_2 + 6 \operatorname{SiO_2} + 10 \operatorname{C} \longrightarrow 6 \operatorname{CaSiO_3} + 10 \operatorname{CO} + P_4$
- 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: (357)P₄O₁₀

7.2.1 性質

- 白色で昇華性のある固体
- [358] 潮解性 (水との親和性が [359] 非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(360)加水分解)

7.2.2 製法

361 リンの燃焼

 $P_4 + 5\,O_2 \longrightarrow P_4O_{10}$

7.2.3 反応

水を加えて加熱

 $P_4O_{10} + 6 H_2O \longrightarrow 4 H_3PO_4$

7.3 リン酸

化学式: 362 H₃PO₄

7.3.1 性質

363 中酸性

 $\left(\begin{array}{ccc} 364 \text{H}_3 \text{PO}_4 & \Longrightarrow \text{H}^+ + \text{H}_2 \text{PO}_4^- & K_1 = 7.5 \times 10^{-3} \text{ mol/L} \end{array}\right)$

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和 $2\,H_3PO_4 + 3\,Ca(OH)_2 \longrightarrow Ca_3(PO_4)_2 + 6\,H_2O$
- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成

 $Ca_3(PO_4)_2 + 4H_3PO_4 \longrightarrow 3Ca(H_2PO_4)_2$

• リン酸カルシウムと硫酸が反応して過リン酸石灰が 牛成

 ${\rm Ca_3(PO_4)_2} \ + \ 2\,{\rm H_2SO_4} \ \longrightarrow \ {\rm Ca(H_2PO_4)_2} \ + \ 2\,{\rm CaSO_4}$

8 炭素

8.1 炭素

8.1.1 性質

炭素の同(365)素体

- 366 ダイアモンド
- [367]黒鉛([368]グラファイト)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• [369]フラーレン

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

• グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

• カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	370ダイアモンド	371 黒鉛
特徴	372 無色 373 <mark>透明</mark> で屈折率が大きい固体	374黒色で 375 光沢がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	376正四面体方向の 377 共有結合結晶	378 ズレた層状構造(379 ファンデルワールス力)
硬さ	380 非常に硬い	381 軟らかい
沸点	382高い	<u>383高い</u>
電気伝導性	384なし	<u>385</u> あり
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: [386]CO

C,O 電子の持つ $\overline{(392)}$ 電荷による効果 C=O 間の $\overline{(393)}$ 電気陰性度の差による効果

と○ の極性は 394 <mark>小さい</mark>

8.2.1 性質

- [395]無色[396]無臭で[397]有毒な気体
- 赤血球のヘモグロビンの [398] Fe²⁺ に対して強い [399] 酸化結合
- [400]中性で水に溶け[401]にくい。([402]水上置換)
- 403 可燃性、高温で 404 <mark>還元性 (405)鉄</mark>との親和性が非常に高い)

8.3 二酸化炭素 8 炭素

8.2.2 製法

■ 406 赤熱したコークスに 407 水蒸気を吹き付ける 工業的製法

$$C + H_2O \longrightarrow CO + H_2$$

・ 炭素の 408 不完全燃焼

$$2C + O_2 \longrightarrow 2CO$$

• 409 ギ酸に 410 濃硫酸 を加えて加熱

$$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} \uparrow + \text{H}_2\text{O}$$

411シュウ酸に 412 濃硫酸 を加えて加熱

$$(COOH)_2 \longrightarrow CO + CO_2 + H_2O$$

8.2.3 反応

燃焼

$$CO + O_2 \longrightarrow 2CO_2$$

• 鉄の精錬

$$\operatorname{Fe_2O_3} + 3\operatorname{CO} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO}_2 \left\{ \begin{array}{l} \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2\operatorname{FeO} + \operatorname{CO}_2 \\ \operatorname{FeO} + \operatorname{CO} \longrightarrow \operatorname{Fe} + \operatorname{CO}_2 \times 2 \end{array} \right.$$

8.3 二酸化炭素

8.3.1 性質

- [413]無色[414]無臭で[415]昇華性(固体は[416]ドライアイス)
- 大気の 0.04% を占める
- 水に 417 少し溶ける
- [418]弱酸性

8.3.2 製法

● [420] 炭酸カルシウム を強熱 **工業的製法**

$$CaCO_2 \longrightarrow CaO + CO_2$$

● 421 希塩酸 と 422 石灰石

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

(423)炭酸水素ナトリウムの熱分解

$$2 \text{ NaHCO}_3 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{CO}_2 + \text{H}_2 \text{O}$$

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

$$\mathrm{CO_2} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2CO_3} + \mathrm{H_2O}$$

• [424] 石灰水 に通じると [425] 白濁 しさらに通じると [426] 白濁が消える

$$Ca(OH)_2 + CO_2 \Longrightarrow CaCO_3 \downarrow + H_2O$$

$$CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$$

9 ケイ素

9.1 ケイ素

9.1.1 性質

- [427] 灰色で[428] 光沢がある[429] 共有結合結晶
- 430 硬いがもろい
- (431) 半導体に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が(432)上昇(金属は高温で電気伝導性が(433)降下)

9.1.2 製法

- ◆ (434)ケイ砂と (435)一酸化炭素 を混ぜて強熱 工業的製法
 SiO₂ + 2 C → Si + 2 CO
- $\boxed{436}$ ケイ砂と $\boxed{437}$ マグネシウム粉末を混ぜて加熱 $\mathrm{SiO}_2 + 2\,\mathrm{Mg} \longrightarrow \mathrm{Si} + 2\,\mathrm{MgO}$

9.2 二酸化ケイ素

化学式: 438 SiO₂

9.2.1 性質

- (439)無色(440)透明の(441)共有結合結晶
- [442]硬い
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 443 酸性酸化物
- 444)シリカゲル(445)乾燥剤・吸着剤)の生成に用いられる
 多孔質、適度な数の(446)ヒドロキシ基

9.2.2 反応

- 447フッ化水素と反応 SiO₂ + 4 HF → SiF₄↑ + 2 H₂O
- 448フッ化水素酸と反応
 SiO₂ + 6 HF → H₂SiF₆↑ + 2 H₂O
- $\boxed{449$ 水酸化ナトリウムや $\boxed{450}$ 炭酸ナトリウムがガラスを侵す反応($\boxed{451}$ 水ガラスの生成) $\mathrm{SiO_2}+2\,\mathrm{NaOH}\longrightarrow\mathrm{Na_2SiO_3}+\mathrm{H_2O}$ $\mathrm{SiO_2}+\mathrm{Na_2CO_3}\longrightarrow\mathrm{Na_2SiO_3}+\mathrm{CO_2}$
- $\boxed{452$ 水ガラスと $\boxed{453}$ 塩酸から $\boxed{454}$ ケイ酸の白色ゲル状沈澱が生じる反応 $\mathrm{NaSiO_3} + 2\,\mathrm{HCl} \longrightarrow \mathrm{H_2SiO_3} \downarrow + 2\,\mathrm{NaCl}$
- 455 ケイ酸 を加熱してシリカゲルを得る反応 $\mathrm{H_2SiO_3} \xrightarrow[\Delta]{} \mathrm{SiO_2} \cdot n \ \mathrm{H_2O} + (1-n)\mathrm{H_2O} \ (0 < n < 1)$

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9.2 二酸化ケイ素

シリカゲル生成過程での構造変化

1. 二酸化ケイ素(シリカ) SiO_2

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

4. シリカゲル $SiO_2 \cdot n H_2O \ (n \ll 1)$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で [456]柔らかい 金属
- 全体的に反応性が高く、[457] 灯油中に保存
- 原子一個あたりの自由電子が (458)1個 ((459)弱い (460) 金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs		
融点	181°C	98°C	64°C	39°C	28°C		
密度	0.53	0.97	0.86	1.53	1.87		
構造							
イオン化エネルギー	大	大					
反応力	小 —				大		
炎色反応	463)赤色	464)黄色	465 赤紫色	466 深赤色	467 青紫色		
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)		

10.1.2 製法

水酸化物や塩化物の 468 溶融塩電解 (469 ダウンズ法) 工業的製法

[470] CaCl₂添加([471] 凝固点降下)

 $2 \operatorname{NaCl} \longrightarrow 2 \operatorname{Na} + \operatorname{Cl}_2 \uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

• ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\!\uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 472 NaOH

10.2.1 性質

- 473 白色の固体
- [474]潮解性
- 水によくとける (水との親和性が (475) 非常に高い)
- 476 乾燥剤

• 強塩基性

$$(477 \text{NaOH} \Longrightarrow \text{Na}^+ + \text{OH}^- \quad K_1 = 1.0 \times 10^{-1} \text{mol/L})$$

• 空気中の 478 二酸化炭素 と反応して、純度が不明 酸の標準溶液 (479 シュウ酸)を用いた中和滴定で濃度決定

$$\left(\text{(COOH)}_2 + 2 \,\text{NaOH} \longrightarrow (\text{COONa})_2 + 2 \,\text{H}_2\text{O} \right)$$

10.2.2 製法

(480)水酸化ナトリウム水溶液の(481)電気分解(イオン交換膜法) 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{NaOH} + \operatorname{H}_2 \uparrow + \operatorname{Cl}_2 \uparrow$

10.2.3 反応

塩酸と水酸化ナトリウム HCl+NaOH → NaCl+H₂O

塩素と水酸化ナトリウム2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 二酸化硫黄と水酸化ナトリウム $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$

• 酸化亜鉛と水酸化ナトリウム水溶液 ${
m ZnO} + 2\,{
m NaOH} + {
m H_2O} \longrightarrow {
m Na_2}[{
m Zn(OH)_4}]$

• 二酸化炭素と水酸化ナトリウム $2 \operatorname{NaOH} + \operatorname{CO}_2 \longrightarrow \operatorname{Na_2CO_3} + \operatorname{H_2O}$

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	482 Na ₂ CO ₃	483 NaHCO ₃
色	484 白色	485 白色
融点	850°C	486 熱分解
液性	487 塩基性	488 弱塩基性
用途	(489) ガラスや石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

10.3.3 反応

• Na₂CO₃ 514CO₃²⁻ + H₂O
$$\Longrightarrow$$
 HCO₃⁻ + OH⁻ $K_1 = 1.8 \times 10^{-4}$
• NaHCO₃ $\begin{cases} 515 \text{HCO}_3^- \Longrightarrow \text{H}^+ + \text{CO}_3^{2-} & K_1 = 5.6 \times 10^{-11} \\ \hline 516 \text{HCO}_3^- + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O} & K_2 = 2.3 \times 10^{-8} \end{cases}$

11 2 族元素

(517)Be,(518)Mg,(519)アルカリ土類金属

11.1 単体

11.1.1 性質

化学式	520 Be	521 Mg	522 Ca	523 <mark>S</mark> r	524]Ba
融点	1282°C	649°C	839°C	769°C	729°C
密度 (g/cm ³)	1.85	1.74	1.55	2.54	3.59
525 還元力		小		大	
水との反応	526 反応しない	[527] <mark>熱水</mark> と反応	528 <mark>冷水</mark> と反応	529 <mark>冷水</mark> と反応	530冷水と反応
M(OH) ₂ の水溶性	531)難溶性(532 弱塩基性)	[533] <mark>可溶性([534]強塩基</mark> 性)		
難溶性の塩	535 MCO ₃		536 MCO ₃ , MSO ₄		
炎色反応	537示さない	538 示さない	539 橙赤	540 <mark>紅</mark>	541)黄緑
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

11.1.2 製法

塩化物の 542 溶融塩電解 工業的製法

11.1.3 反応

• マグネシウムの燃焼

$$2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$$

• マグネシウムと二酸化炭素

$$2 \,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2 \,\mathrm{MgO} + \mathrm{C}$$

• カルシウムと水

 $Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2 \uparrow$

11.2 酸化カルシウム(生石灰)

化学式: 543 CaO

11.2.1 性質

- [544] 白色
- [545]水との親和性が[546]非常に高い([547]乾燥剤)
- 548 塩基性酸化物
- 水との反応熱が[549]非常に大きい([550]加熱剤)

11.2.2 製法

(551)炭酸カルシウムの(552)熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

11.2.3 反応

• コークスを混ぜて強熱すると、[553]炭化カルシウム([554]カーバイド)が生成

$$CaO + 3C \longrightarrow CaC_2 + CO \uparrow$$

[555]水と反応して[556]アセチレンが生成

$$CaC_2 + 2H_2O \longrightarrow CaH_2 \uparrow + Ca(OH_2)_2$$

11.3 水酸化カルシウム(消石灰)

化学式: [557] Ca(OH)₂

11.3.1 性質

- [558] 白色
- 水に 559 少し溶ける 固体
- 560強塩基 (561)Ca(OH)₂ \Longrightarrow Ca(OH)⁺ + OH⁻ $K_1 = 5.0 \times 10^{-2}$)
- 水溶液は 562 石灰水

11.3.2 製法

[563]酸化カルシウムと [564]水 工業的製法

 $CaO + H_2O \longrightarrow Ca(OH)_2$

11.3.3 反応

- 塩素と反応して、565 さらし粉が生成 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O
- 580°C 以上で 566 熱分解

 $Ca(OH)_2 \longrightarrow CaO + H_2O$

- ・ 二酸化炭素との反応
 Ca(OH)₂ + CO₂
 → CaCO₃ + H₂O
- 塩化アンモニウムとの反応
 2 NH₄Cl + Ca(OH)₂ → CaCl₂ + 2 NH₃↑ + 2 H₂O

11.4 炭酸カルシウム(石灰石)

化学式: 567 CaCO₃

11.4.1 性質

- [568] 白色で、水に [569] 溶けにくい
- [570]**鍾乳洞**の形成

11.4.2 反応

- 800°C以上で571熱分解
 - $CaCO_{3} \longrightarrow CaO + CO_{2}$
- 572二酸化炭素を多く含む水に 573溶解 CaCO₃ + CO₂ + H₂O ⇒ Ca(HCO₃)₂

11.5 塩化マグネシウム・塩化カルシウム

化学式: [574]MgCl₂ · [575]CaCl₂

11.5.1 性質

[576] <mark>潮解</mark>性があり、水に[577] <mark>よく溶ける</mark> (水との親和性が[578] <mark>非常に高い</mark>)

[579]乾燥剤 塩化カルシウム、 [580]融雪剤

11.6 硫酸カルシウム 12 12 族元素

11.5.2 製法

- 海水から得た [581] にがりを濃縮 塩化マグネシウム 工業的製法
- [582]アンモニアソーダ法 ([583]ソルベー法) 塩化カルシウム 工業的製法

11.6 硫酸カルシウム

化学式: 584 CaSO₄

11.6.1 性質

[585] セッコウを約 150°C で加熱すると、[586] 焼きセッコウが生成

[587]水を加えると、[588]発熱・[589]膨張・[590]硬化して[591]セッコウに戻る

 $CaSO_4 \cdot 2H_2O \xrightarrow{\Delta} CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O$

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: [592]BaSO₄

11.7.1 性質

- [593] 白色で、水に [594] ほとんど溶けない 固体
- 反応性が 595 低く、X 線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	596)Zn	597 Cd	598 Hg
融点	420°C	321°C	−39°C
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	[599自色の[600]ZnS↓	601黄色の602 CdS↓	603黒色の 604 HgS↓
(沈澱条件)	(605)中塩基性)	(606)全液性)	(607全液性)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	608 合金を作りやすい
利注	609 両性元素	⇒ イタイイタイ病	(610)アマルガム)
用途	<u>611</u> トタン(鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は 612 <mark>顔料</mark>や 613 <mark>染料</mark>に利用
- HgS は $450^{\circ}\mathrm{C}$ で消火させると $\boxed{614}$ 赤色に変化

12.1.2 製法

関亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法 $2 \operatorname{ZnS} + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{ZnO} + 2 \operatorname{SO}_2$ $\operatorname{ZnO} + \operatorname{C} \longrightarrow \operatorname{Zn} + \operatorname{CO}$

12.1.3 反応

• 高温の水蒸気と反応 ${\rm Zn} + {\rm H_2O} \longrightarrow {\rm ZnO} + {\rm H_2} \uparrow$

• 塩酸と反応

 $Zn + 2 HCl \longrightarrow ZnCl_2 + H_2 \uparrow$

• 水酸化ナトリウム水溶液と反応

 $Zn + 2 NaOH + 2 H_2O \longrightarrow Na_2[Zn(OH)_4] + H_2 \uparrow$

12.2 酸化亜鉛(亜鉛華)・水酸化亜鉛

化学式: [615]ZnO·[616]Zn(OH)₂

12.2.1 性質

- [617] **白**色で、水に[618] とけにくい固体
- 酸化亜鉛は 619 顔料
- 620 両性酸化物/水酸化物

[621]酸・(強) [622]塩基と反応 Zn^{2+} は、[623] OH^- とも [624] NH_3 とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 工業的製法 酸化亜鉛
 - $2\operatorname{Zn} + \operatorname{O}_2 \longrightarrow 2\operatorname{ZnO}$
- 亜鉛イオンを含む水溶液に、少量の 625 OH を加える 水酸化亜鉛

 $\operatorname{Zn}^{2+} + 2\operatorname{OH}^{-} \longrightarrow \operatorname{Zn}(\operatorname{OH})_{2} \downarrow$

12.2.3 反応

- 酸化亜鉛と塩酸
 - $ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$
- 酸化亜鉛と水酸化ナトリウム水溶液

 $ZnO + 2 NaOH + H_2O \longrightarrow Na_2[Zn(OH)_4]$

• 水酸化亜鉛と塩酸

 $Zn(OH)_2 + 2HCl \longrightarrow ZnCl_2 + 2H_2O$

- 水酸化亜鉛と水酸化ナトリウム水溶液
 - $Zn(OH)_2 + 2 NaOH \longrightarrow Na_2[Zn(OH)_4]$

 水酸化亜鉛の過剰な 626 アンモニアとの反応 Zn(OH)₂ + 4 NH₃ → [Zn(NH₃)₄](OH)₂

12.3 塩化水銀(Ⅰ)・塩化水銀(Ⅱ)

化学式: 627 Hg₂Cl₂ · 628 HgCl

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒
- 白色で、水に少し溶ける固体で、猛毒

12.3.2 製法

水酸化銀(Ⅱ)と水銀の混合物を加熱

 $HgCl_2 + Hg \longrightarrow Hg_2Cl_2$

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

- 密度が 629 小さく、 630 やわからかい 金属
- 展性・延性が [631] 大きく、電気・熱伝導率が [632] 高い

- 電気・熱伝導性が高い金属 -

(633)Ag > (634)Cu > (635)Au > (636)Al

- 637 両性元素 (638) 濃硝酸には 639 不動態となり反応しない) 表面の緻密な 640 酸化被膜が内部を保護 (641 AI, 642 Cr, 643 Fe, 644 Co, 645 Ni*4) 電気分解 (646) 陽極) で人工的に厚い酸化被膜をつける製品加工 (647 アルマイト)
- イオン化傾向が [648] 大きく、 [649] 還元力が [650] 高い
- **651**テルミット反応(多量の **652**熱・ **653**光が発生)

13.1.2 製法

- 654 ボーキサイトから得た 655 酸化アルミニウム (656 アルミナ) の溶融塩電解 工業的製法
- バイヤー法
 - 1. $\overline{\textbf{657}}$ ボーキサイトを濃い $\overline{\textbf{658}}$ 水酸化ナトリウム水溶液に溶解 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$
 - 2. 溶解しない不純物を濾過して、濾液を水で希釈して Al(OH)3 の種結晶を入れる $Na[Al(OH)_4] \longrightarrow NaOH + Al(OH)_3 \downarrow$
 - 3. 成長した $Al(OH)_3$ を強熱 $2 Al(OH)_3 \longrightarrow Al_2O_3 + 3 H_2O$
- ホールエール法
 - 1. [659]水晶石 Na_3 AlF₆を融解し、酸化アルミニウムを溶解
 - 2. $\boxed{660}$ 炭素電極で電気分解 $\left\{ \begin{array}{ll} {\color{red} {\rm B} \overline{\rm w}} & {\rm C} + {\rm O}^{2-} \longrightarrow {\rm CO} + 2\,{\rm e}^-, {\rm C} + 2\,{\rm O}^{2-} \longrightarrow {\rm CO}_2 + 4\,{\rm e}^- \\ {\color{red} {\rm E} \overline{\rm w}} & {\rm Al_3}^+ + 3\,{\rm e}^- \longrightarrow {\rm Al} \end{array} \right.$

13.1.3 反応

1. アルミニウムの燃焼

$$4 \text{ Al} + 3 \text{ O}_2 \longrightarrow 2 \text{ Al}_2 \text{O}_3$$

- 2. アルミニウムと高温の水蒸気
 - $2\,\mathrm{Al} + 3\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Al}_2\mathrm{O}_3 + 3\,\mathrm{H}_2\,\!\!\uparrow$
- 3. テルミット反応

 $Fe_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Fe$

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: [661]Al₂CO₃・[662]Al(OH)₃ 酸化アルミニウムの別称: [663]アルミナ

無機化学 26/41 解答編

^{*4} てつこに

13.2.1 性質

- [664] 白色で、水に [665] 溶けにくい
- [666]両性酸化物/水酸化物

[667]酸・(強) [668]塩基と反応

 Al^{3+} は669OH $^-$ と錯イオンを形成し、670NH $_3$ とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の 671 塩基 を加える 水酸化アルミニウム $Al_3^+ + 3 OH^- \longrightarrow Al(OH)_3 \downarrow$

13.2.3 反応

• 酸化アルミニウムと塩酸

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl + 3H_2O$

• 酸化アルミニウムと水酸化ナトリウム水溶液

 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$

- 水酸化アルミニウムと塩酸
 - $Al(OH)_3 + 3HCl \longrightarrow AlCl_3 + 3H_2O$
- 水酸化アルミニウムと水酸化ナトリウム水溶液 Al(OH)₃ + NaOH → Na[Al(OH)₄]

13.3 ミョウバン・焼きミョウバン

化学式: 672 AIK(SO₄)₂·12 H₂O·673 AIK(SO₄)₂

13.3.1 性質

- [674] 白色で、水に [675] 溶ける 固体
- 676 酸性

$$(677) \text{Al}^{3+} + \text{H}_2\text{O} \Longrightarrow \text{Al}(\text{OH})_2 + \text{H}^+ \quad K_1 = 1.1 \times 10^{-5} \text{ mol/L})$$

● Al³⁺ は価数が 678 大きい陽イオン

粘土([679]負の[680]疏水コロイド)で濁った水の浄水処理([681]凝析)

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

• 水への溶解

$$AlK(SO_4)_2 \longrightarrow Al_3^+ + K^+ + SO_4^{2-}$$

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	(682)Sn	683)Pb		
特徴	灰白色で柔らかい金属	青白色で柔らかい金属		
融点	232°C	328°C		
密度	7.28	11.4		
特性	684)両	性元素		
用途	685ブリキ(鉄にメッキ)	[686] <mark>鉛蓄</mark> 電池の[687]負極		
用述	(688) <mark>放射線</mark> の遮蔽			

【合金】

 $Cu + Sn \cdots$ [689]青銅

 $\operatorname{Sn} + \operatorname{Pb} \cdots$ (690)はんだ

14.1.2 製法

• 錫石 SnO_2 にコークスを混ぜて加熱 $\boxed{\mathtt{T業的製法}}$

$$SnO_2 + 2C \longrightarrow Sn + 2CO$$

• 方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 工業的製法

$$2 \operatorname{PbS} + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{PbO} + 2 \operatorname{SO}_2$$

 $\operatorname{PbO} + \operatorname{C} \longrightarrow \operatorname{Pb} + \operatorname{CO}$

14.1.3 反応

● 鉛と 691 希硝酸

$$3 \,\mathrm{Pb} + 8 \,\mathrm{HNO}_3 \longrightarrow 3 \,\mathrm{Pb}(\mathrm{NO}_3)_2 + 4 \,\mathrm{H}_2\mathrm{O} + 2 \,\mathrm{NO}$$

● 鉛と 692 酢酸

$$2 Pb + 4 CH_3COOH + O_2 \longrightarrow 2 (CH_3COO)_2Pb + 2 H_2O$$

スズと 693 塩酸

$$\operatorname{Sn} + 2\operatorname{HCl} \longrightarrow \operatorname{SnCl}_2 + \operatorname{H}_2 \uparrow$$

• 鉛蓄電池における反応

Pb + PbO₂ + 2 H₂SO₄
$$\stackrel{\text{放電}}{\rightleftharpoons}$$
 2 PbSO₄ + 2 H₂O
$$\begin{cases} \text{ 正極} & \text{PbO}_2 + \text{SO}_4^{2^-} 4 \text{ H}^+ + 2 \text{ e}^- \longrightarrow \text{PbSO}_4 + 2 \text{ H}_2\text{O} \\ \text{ 負極} & \text{Pb} + \text{SO}_4^{2^-} \longrightarrow \text{PbSO}_4 + 2 \text{ e}^- \end{cases}$$

14.2 塩化スズ(Ⅱ)

- 14.2.1 性質
- 14.2.2 製法

スズと 694 塩酸

 $\operatorname{Sn} + 2\operatorname{HCl} \longrightarrow \operatorname{SnCl}_2 + \operatorname{H}_2 \uparrow$

14.2.3 反応

塩化鉄(Ⅲ)水溶液と塩化スズ(Ⅱ)水溶液

$$2\operatorname{FeCl}_3 + \operatorname{SnCl}_2 \longrightarrow 2\operatorname{FeCl}_2 + \operatorname{SnCl}_4$$

備考 塩化スズ (IV) 水溶液と硫化水素

$$SnCl_4 + 2H_2S \longrightarrow SnS + S + 4HCl$$

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

695 還元剤として働く

 $\boxed{696} \mathsf{Sn}^{2+} \longrightarrow \mathsf{Sn}^{4+} + 2\,\mathsf{e}^{-}$

14.3.2 製法

酢酸鉛(Ⅱ)水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV) に濃塩酸を加えて加熱

 $\mathrm{PbO_2} + 4\,\mathrm{HCl} \longrightarrow \mathrm{PbCl_2} + 2\,\mathrm{H_2O} + \mathrm{Cl_2} \uparrow$

14.4 鉛の難溶性化合物

- 加熱すると溶けやすい
- 697 <u>酢酸鉛(Ⅱ)</u> 紙を用いた 698 <u>硫化水素</u>の検出(699 <u>黒</u>色)

第Ⅲ部

遷移元素

d 軌道・f 軌道(内殻)の秋に電子が入っていき、最外殻電子の数は 700 1 か 2

($\boxed{701}$ ランタノイド・ $\boxed{702}$ アクチノイド:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が [703] 大きく、融点が [704] 高い金属
- d 軌道の一部の電子も価電子
- ◆ 化合物やイオンは[705] 白色のものが多い
- 安定な [706] 錯イオンを形成しやすい ([707] d 軌道に空きがある)
- 単体や化合物は[708]触媒になるものが多い*5

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で 711 強磁性
- イオン化傾向が水素より (712)大きい

(713) 強酸と反応((714) 濃硝酸には(715) 不動態となり反応しない)

- [716] 高温の水蒸気と反応して [717] 緻密な [718] 黒錆が生成(酸化被膜)
- 湿った空気中では 719 粗い 720 赤錆を生成

酸化鉄(III)	Fe_2O_3	721 赤褐色	722 常磁性
四酸化三鉄	Fe_3O_4	723黒色	724 強磁性
酸化鉄(Ⅱ)	FeO	(725) <mark>黒</mark> 色	726) 発火性

軟鋼	(727)鉄鋼	728	729ステンレス鋼	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	(730) Cr, Ni	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

15.1.2 製法

鉄の製錬工業的製法

15.1.3 反応

● 塩酸との反応

$$Fe + 2 HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

• 高温の水蒸気との反応

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2 \uparrow$$

- 微量に含まれる炭素・鉄・水による $\overline{753}$ 局部電池($\overline{754}$ 食塩などが溶けていたら反応速度上昇)正極($\overline{755}$ C) $O_2+2\,H_2O+4\,e^-\longrightarrow 4\,OH^-$ 負極($\overline{756}$ Fe \longrightarrow Fe $^{2++}$ 2 e^-
- ▼ 757 水酸化鉄(Ⅱ) の生成

$$Fe^{2+} + 2OH^{-} \longrightarrow Fe(OH)_{2}$$
 (758)緑色)

● 速やかに (759) 水酸化鉄 (Ⅱ) が酸素により酸化

$$4 \operatorname{Fe}(OH)_2 + O_2 + 2 \operatorname{H}_2O \longrightarrow 4 \operatorname{Fe}(OH)_2$$

● [760]水酸化鉄 (III) の脱水

$$Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$$
(酸化水酸化鉄(III)濃橙色) $2 Fe(OH)_3 \longrightarrow Fe_2O_3 \cdot n H_2O + (3-n)H_2O$ (761 赤褐色) (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 762 FeSO₄·7 H₂O

15.2.1 性質

- ▼763 青緑色の固体
- Fe²⁺ 半反応式
 [764]Fe²⁺ → Fe³⁺ + e⁻
- 空気中で表面が (765) Fe2(SO4)3 ((766) 黄褐色)

15.2.2 製法

鉄に [767] 希硫酸を加えて、蒸発濃縮

 $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2 \uparrow$

15.3 塩化鉄(Ⅲ)6水和物

化学式: [768] FeCl₃·6 H₂O

15.3.1 性質

- ▼ 769 黄褐色で 770 潮解性のある固体
- 771酸性

$$\left(\begin{array}{ccc} \hline (772) \text{Fe}^{3+} + \text{H}_2\text{O} & \Longrightarrow \text{FE}(\text{OH})^{2+} + \text{H}^+ & K_1 = 6.0 \times 10^{-3} \text{ mol/L} \end{array}\right)$$

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

 $\mathrm{Fe} + 2\,\mathrm{HCl} \longrightarrow \mathrm{FeCl_2} + \mathrm{H_2} \uparrow$

 $2\operatorname{FeCl}_2+\operatorname{Cl}_2 \longrightarrow 2\operatorname{FeCl}_3$

15.4 鉄イオンの反応

	NaOH	$K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6]$		
Fe ²⁺	773 Fe(OH) ₂ ↓	$\text{Fe}_2[\text{Fe}(\text{CN})_6]\downarrow$	$KFe[Fe(CN)_6]\downarrow$	774)変化なし	775 変化なし
776 淡緑色	777 緑白色	778青白色	779濃青色	780 淡緑色	781 淡緑色
$\mathrm{Fe^{3+}}$	782)Fe(OH) ₃ ↓	$KFe[Fe(CN)_6]\downarrow$	Fe[Fe(CN) ₆]aq	(783) Fe ²⁺ aq	$[Fe(NCS)]^{2+}$
784 黄褐色	785 <mark>赤褐</mark> 色	786 濃青色	787 暗褐色	788 淡緑色	789血赤色

- Fe²⁺, Fe³⁺ は、 790 OH とも 791 OH とも錯イオンを形成しない
- ◆ ベルリンブルーとターンブルブルーは 792 同一物質

15.5 塩化コバルト(Ⅱ)

化学式: 793 CoCl₂

15.5.1 性質

- 794 青色で 795 潮解性のある固体
- 6 水和物は 796 淡赤色
- 塩化コバルト紙を用いた [797]水の検出
- CO³⁺ は 798 NH₃ と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式: [799]NiSO₄

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は 800 NH₃ と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

- 801 赤色の金属光沢
- 他の金属とさまざまな色の[802]合金
- 展性・延性が[803]大きく、電気・熱伝導性が[804]高い
- イオン化傾向が水素より 805 低く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(806)酸に溶解)が生成 807赤色の酸化銅(I)乾・808青緑の錆(809)緑青)湿

16.1.2 製法

銅の製錬 粗銅・ 810 電解精錬 純銅 工業的製法

$$2 \operatorname{Cu}_2 S + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Cu}_2 O + 2 \operatorname{SO}_2$$

 $\operatorname{Cu}_2 S + 2 \operatorname{Cu}_2 O \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_2$

16.1.3 反応

• 銅と希硝酸

$$3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 4 \text{ H}_2\text{O} + 2 \text{ NO} \uparrow$$

• 銅と濃硝酸

$$Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2 \uparrow$$

• 銅と熱濃硫酸

$$Cu + 2 H_2 SO_4 \longrightarrow CuSO_4 + 2 H_2 O + SO_2 \uparrow$$

- 空気中で 1000° C 未満で加熱して、821黒色の822酸化銅(II)生成 2 Cu + O $_2$ \longrightarrow 2 CuO
- さらに 1000° C 以上で加熱して、823赤色の824酸化銅(I)生成 4 CuO $\longrightarrow 2$ Cu₂O + O₂
- 銅イオンから水酸化銅(Ⅱ)の生成

$$\operatorname{Cu_2}^+ + 2\operatorname{OH}^- \longrightarrow \operatorname{Cu}(\operatorname{OH})_2 \downarrow$$

● 水酸化銅(Ⅱ)とアンモニアの反応

 $Cu(OH)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} + 2OH^{-}$

水酸化銅(Ⅱ)の加熱

$$Cu(OH)_2 \longrightarrow CuO + H_2O$$

16.2 硫酸銅(Ⅱ)5 水和物 17 銀

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

- 825 青色の固体 (結晶中の 826 [Cu(H₂O)₄]²⁺の色)
- 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ 827 3 水和物 $\xrightarrow{113^{\circ}\text{C}}$ 828 1 水和物 $\xrightarrow{150^{\circ}\text{C}}$ 829 無水和物 $\xrightarrow{650^{\circ}\text{C}}$ 830 酸化銅(II) 831 青色 $\xrightarrow{\text{H}_2\text{O}}$ (検出)

- ◆ Cu²⁺ による 833 殺菌作用(農薬)
- 還元性を持つ有機化合物の検出*6
 [834]赤色の酸化銅(I)が生成

16.2.2 製法

銅に835濃硫酸をかけてから836加熱。

16.2.3 反応

16.3 銅(Ⅱ) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S(837全液性)
Cu ²⁺	838 Ca(OH) ₂ ↓	$[Ca(NH_3)_4]^{2+}$ aq	840 [CuCl ₄] ²⁻ aq	841)CuS↓
842青色	843青白色	844 深青色	845 黄緑色	846黒色

- 炎色反応: 847 青緑色
- 加熱すると 848 分解
- Cu²⁺ は[849]NH₃と錯イオンを形成し、[850]OH⁻とは形成しない

16.4 銅の合金

851 黄銅(真鍮)	852 洋銀 (洋白)	853 白銅	854]青銅	855 ジュラルミン
856 <mark>Z</mark> n	857)Zn, Ni	858 Ni	859) <mark>Sn</mark>	860 AI (主成分)
適度な強度と加工性	柔軟で錆びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽くて丈夫
楽器・水道用具	食器・装飾品	五十円玉・五百円玉	像	航空機・車両

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が 861 大きく、電気・熱伝導性が 862 最も高い
- イオン化傾向が水素より 863 小さい(864)酸化力のある酸((865)硝酸・(866)熱濃硫酸)と反応
- 空気中で酸化しにくいが、 (867)硫化水素とは容易に反応

17.1.2 製法

● 銅の電解精錬の (868) 陽極泥 工業的製法

^{*&}lt;sup>6</sup> フェーリング液・ベネディクト液

銀の化合物の熱分解・光分解
 酸化銀の熱分解 2 Ag₂O → 4 Ag + O₂
 ハロゲン化銀 AgX の感光 2 AgX → 2 Ag + X₂

17.1.3 反応

• 銀と希硝酸

$$3 \text{ Ag} + 4 \text{ HNO}_3 \longrightarrow 3 \text{ AgNO}_3 + 2 \text{ H}_2\text{O} + \text{NO} \uparrow$$

• 銀と濃硝酸

$$Ag + 2 HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$$

• 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + 2\,\mathrm{H}_2\mathrm{O} + \mathrm{SO}_2 \,\uparrow$$

• 銀と硫化水素

$$4 \operatorname{Ag} + 2 \operatorname{H}_2 S + O_2 \longrightarrow 2 \operatorname{Ag}_2 S + 2 \operatorname{H}_2 O$$

17.2 銀(I)イオンの反応

869 硝酸銀水溶液

	少量の塩基	過剰の NH ₃	HCl	H ₂ S(870 全液性)	$ m K_2CrO_4$
Ag^{2+}	871]Ag ₂ O↓	872 [Ag(NH ₃) ₂] ⁺	873]AgCI↓	874)Ag ₂ S↓	875)Ag ₂ CrO ₄ ↓
876無色	877褐色	878無色	879 白色	880黒色	881 <mark>赤褐</mark> 色

• 銀と少量の塩基

$$2 \operatorname{Ag}^+ + 2 \operatorname{OH}^- \longrightarrow \operatorname{Ag}_2 \operatorname{O} \downarrow + \operatorname{H}_2 \operatorname{O}$$

銀と過剰の NH₃

$$Ag_2O + 4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]^+ + 2OH^-$$

● 銀と HCl

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow$$

● 銀と H₂S

$$2 \operatorname{Ag}^+ + \operatorname{S_2}^- \longrightarrow \operatorname{Ag}_2 \operatorname{S} \downarrow$$

● 銀と K₂CrO₄

$$AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^-$$

17.3 難溶性化合物の溶解性

		HNO_3	NH_3	NaS_2O_3	KCN
${ m Ag_2S}\!\downarrow$	882 黒色	883 溶ける	884)溶けない	885 溶けない	886 溶ける
$Ag_2O\downarrow$	887褐色	888 溶ける	889 溶ける	890 溶ける	891 溶ける
AgCl↓	892 白色	893 溶けない	894 溶ける	895 溶ける	896 溶ける
$\mathrm{AgBr}\!\downarrow$	897 淡黄色	898 溶けない	899 やや溶ける	900 溶ける	901 溶ける
AgI↓	902黄色	903 溶けない	904 溶けない	905 溶ける	<u>906</u> 溶ける
溶解している物質	907無色	$908) Ag^{+}(AgNO_3)$	909 [Ag(NH ₃) ₂] ⁺	$910[Ag(S_2O_3)_2]^{3-}$	911 [Ag(CN) ₂]

18 クロム・マンガン

化学式: 912 Cr・913 Mn

18.1 単体 18 クロム・マンガン

18.1 単体

18.1.1 性質

- [914] 強酸と反応([915] Crは[916] 濃硝酸には[917] 不動態となり反応しない)
- 空気中で錆び918にくい(919不動態)⇒920ステンレス鋼(Fe, Cr, Ni) クロム
 空気中で錆び921やすい マンガン
- **922 二クロム**合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

• クロムと希塩酸

```
Cr + 2 HCl \longrightarrow CrCl_2 + H_2 \uparrow (Cr^{2+}:青色)
```

• マンガンと希塩酸

 $Mn + 2 HCl \longrightarrow MnCl_2 + H_2 \uparrow (Mn^{2+} : 923)$ 淡桃色)

18.2 クロム酸カリウム・二クロム酸カリウム

化学式: [924] K₂CrO₄ · [925] K₂Cr₂O₇

18.2.1 性質

• 二つは平衡状態にある

```
926 2 CrO<sub>4</sub><sup>2-</sup> + H<sup>+</sup> ⇒ 927 Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> + OH<sup>-</sup>

(928)塩基性・(929)黄色 930)酸性・(931)赤橙色
```

932酸化剤として反応 ニクロム酸カリウム

```
[933]Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> + 14 H<sup>+</sup> + 6 e<sup>-</sup> ⇒ 2 Cr<sup>3+</sup> + 7 H<sub>2</sub>O ([934]硫酸酸性下)
```

18.2.2 製法

- 1. クロム(III)イオンに少量の水酸化ナトリウム水溶液を加える $\mathrm{Cr}^3 + 3\,\mathrm{OH}^- \longrightarrow \mathrm{Cr}(\mathrm{OH})_3 \downarrow$
- 2. さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える) $\mathrm{Cr}(\mathrm{OH})_3 + \mathrm{OH}^- \longrightarrow [\mathrm{Cr}(\mathrm{OH})_4]^-$
- 3. 過酸化水素水を加えて加熱

$$2 \left[\text{Cr(OH)}_4 \right]^- + 3 \,\text{H}_2 \text{O}_2 + 2 \,\text{OH}^- \longrightarrow 2 \,\text{CrO}_4^{\,\,2-} + 8 \,\text{H}_2 \text{O}$$

18.2.3 反応

• クロム酸イオンと銀イオン

```
CrO_4^{2-} + 2Ag^+ \longrightarrow Ag_2CrO_4 \downarrow (935)赤褐色)
```

• クロム酸イオンと銀イオン

$$\operatorname{CrO_4}^{2-} + \operatorname{Ba}^{2+} \longrightarrow \operatorname{BaCrO_4} \downarrow (936$$
黄色)

• クロム酸イオンと銀イオン

```
CrO_4^{2-} + Ag^{2+} \longrightarrow PbCrO_4 (937)黄色)
```

18.3 過マンガン酸カリウム

化学式: 938 MnO₂

18.3.1 性質

- 939 黒紫色の固体
- [940]酸化剤として反応

```
941 硫酸酸性 942 MnO<sub>4</sub> <sup>-</sup> + 8 H<sup>+</sup> + 5 e<sup>-</sup> → Mn<sup>2+</sup> + 4 H<sub>2</sub>O
中・塩基性 943 MnO<sub>4</sub> <sup>-</sup> + 2 H<sub>2</sub>O + 3 e<sup>-</sup> → MnO<sub>2</sub> + 4 OH<sup>-</sup>
```

18.3.2 製法

- 1. 酸化マンガン(IV)と水酸化ナトリウムを混ぜて空気中で加熱 $2\,\mathrm{MnO_2} + 4\,\mathrm{KOH} + \mathrm{O_2} \longrightarrow 2\,\mathrm{K_2MnO_4} + 2\,\mathrm{H_2O} \ (\mathrm{MnO_2}: \ \boxed{944} \ \underline{\texttt{R4}} \ \underline{\texttt{84}} \ \underline{\texttt{6}} \ / \ \mathrm{K_2MnO_4}: \ \boxed{945} \ \underline{\texttt{46}} \ \underline{\texttt{60}}$
- 2. (a) 酸性にする $3\,\mathrm{MnO_4}^{2-} + 4\,\mathrm{H^+} \longrightarrow 2\,\mathrm{MnO_4}^- + \mathrm{MnO_2} + 2\,\mathrm{H_2O}\,\,(\mathrm{MnO_4}^{2-}: 946\,$ (b) 電気分解する
 - (回) 电双刀解する (回48) 陽極) $\operatorname{MnO_4}^{2-} \longrightarrow \operatorname{MnO_4}^{-} + e^{-}$

18.4 マンガンの安定な酸化数

残留酸素の定量(ウィンクラー法)

- 1. マンガン(III)イオンを含む水溶液に塩基を加える $\mathrm{Mn}^{2+} + 2\,\mathrm{OH}^- \longrightarrow \mathrm{Mn}(\mathrm{OH})_2\,\downarrow$
- 2. 水酸化マンガン(II)が水溶液中の溶存酸素と速やかに反応 $2\operatorname{Mn}(\mathrm{OH})_2 + \mathrm{O}_2 \longrightarrow 2\operatorname{MnO}(\mathrm{OH})_2$
- 3. 希硫酸を加える ${\rm MnO(OH)_2 + 4\,H^+ + 2\,e^- \longrightarrow Mn^{2+} + 3\,H_2O}~(\cite{Mayor})$

第IV部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は①U字管につめて、液体の乾燥剤は②洗気瓶に入れて使用。

			<u> </u>	
性質	乾燥剤	化学式	対象	対象外(不適)
酸性	3十酸化四リン	$4P_{4}O_{10}$	酸性・中性	塩基性の気体(⑤NH ₃)
段江	6濃硫酸	7H ₂ SO ₄	1 段任。中任	+8H ₂ S(9還元剤)
中性	10塩化カルシウム	11 CaCl ₂	ほとんど全て	12NH ₃
十庄	13シリカゲル	14SiO ₂ · n H ₂ O	はこんと主じ	特になし
塩基性	[15]酸化カルシウム	16 CaO	中性・塩基性	酸性の気体
温 全 注	17ソーダ石灰	18 CaO と NaOH	中は・塩茎は	$\boxed{19^{\text{Cl}_2}, 20^{\text{HCl}}, 21^{\text{H}_2\text{S}}, 22^{\text{SO}_2}, 23^{\text{CO}_2}, 24^{\text{NO}_2}}$

B 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

C 錯イオンの命名法

(主に遷移) 金属イオンに対して、[26]非共有電子対を持つ[27]分子や[28]イオンが[29]配位結合

「配位子の数(数詞)配位子 金属(価数)酸(陰イオンの場合)イオン」

	金属イ	オン	Ag	+ C	u ⁺	Cu^{2+}	Zn^{2}	F	Fe ²⁺	Fe^3	+ Co ³⁻	⊦ N	Ji^{2+}	Cr^{3+}	Al^{3+}	
	配位数		302			<u>31</u> 4			<u>32</u> 6							
33 直線系				34正方用	多 35 正四面	E四面体形 36正八面体形										
	数 1			2		3	4		5		6 7		7		8	
	数詞 37 _{モノ}		-J	38	ジ	39トリ	40テトラ	5 41	[]ペンタ	42	2)ヘキサ	43	ヘプタ	44	オクタ	
		45ビス		ごス	46トリス	ζ										
ĺ	配位子		NH	NH ₃		$\mathrm{CN}^ \mathrm{H}_2\mathrm{O}$			OH^-	Cl ⁻			$ m H_2N$ –		$-\mathrm{CH_2CH_2}-\mathrm{NH_2}$	
	名称		アン	ミン	48	シアニド	49アクア	50 E	ドロキシ	キシド 51 クロリ		リド	52エチレンジアミ		ン	

エチレンジアミン … 1 分子あたり 2 か所で 53 配位結合

する (2 座配位子) (54 キレート 錯体)

- $[Zn(OH)_4]^{2-}$
 - [55]テトラヒドロキシド亜鉛(II)酸イオン
- $[Zn(NH_3)_4]^{2+}$
 - [56]テトラアンミン亜鉛(II) イオン
- $[Ag(S_2O_3)_2]^{3-}$
 - [57]ビス(チオスルファト)銀(1)イオン
- $[Cu(H_2NCH_2CH_2NH_2)]^{2+}$
 - 58ビス(エチレンジアミン)銅(Ⅱ)イオン

D 金属イオンの難容性化合物

	Cl^-	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$\mathrm{H_2S}$	OH^-	OH-	NH_3
			酸性	中・塩基性	NH3	過剰	過剰
K ⁺	59—	60—	61—	62—	63—	64—	65—
	66一色	67—色	68—色	69一色	70一色	71—色	72—色
Ba ²⁺	73—	74 BaSO ₄	75—	76—	77—	78—	79—
	80一色	81 白色	82—色	83一色	84一色	85一色	86一色
Sr^{2+}	87—	88 SrSO ₄	89—	90—	91—	92—	93—
	94一色	95 白色	96一色	97一色	98一色	99一色	100一色
Ca ²⁺	101—	102 CaSO ₄	103—	104—	105 Ca(OH) ₂	106 Ca(OH) ₂	107 Ca(OH) ₂
	108一色	109 白色	110一色	111一色	112 白色	113 白色	114 白色
Na ⁺	115—	116—	117—	118—	119—	120—	121—
	122一色	123一色	124一色	[125]一色	126一色	[127]—色	128—色
Mg^{2+}	129—	130—	131—	<u>[132]</u>	133 Mg(OH) ₂	134)Mg(OH) ₂	<u> </u>
	136一色	137—色	138一色	139—色	140 白色	141 白色	[142]—色
Al ³⁺	<u> </u>	144)—	<u> </u>	146)AI(OH) ₃	147 AI(OH) ₃	148 [AI(OH) ₄]	149 AI(OH) ₃
	[150]一色	[151]一色	[152]一色	153 白色	154 白色	155 白色	156 白色
Mn^{2+}	<u> 157</u> —	158—	<u> 159</u> —	160 MnS	161Mn(OH) ₂	162 Mn(OH) ₂	163 Mn(OH) ₂
	164一色	165一色	166一色	167淡桃色	168 白色	169 白 色	170 白色
Zn^{2+}	<u> 171</u> —	172—	<u> 173</u> —	174 ZnS	175 Zn(OH) ₂	$176 [Zn(OH)_4]^{2-}$	$177 [Zn(NH_3)_4]^{2+}$
	178一色	179一色	180一色	181 白色	182 白色	183無色	184無色
Cr^{3+}	185—	186—	<u> 187</u> —	188—	189 Cr(OH)₃	[190][Cr(OH) ₄]	191 Cr(OH)₃
	192一色	193一色	194一色	195一色	196 灰緑色	197 緑色	198 灰緑色
Fe ²⁺	199—	200—	201—	202 FeS	203 Fe(OH) ₂	204 Fe(OH) ₂	205 Fe(OH) ₂
	206一色	207一色	208一色	209黒色	210 緑白色	211 緑白色	212 緑白色
Fe ³⁺	213—	214—	215 Fe ²⁺	216 FeS	217 Fe(OH) ₃	218 Fe(OH) ₃	219 Fe(OH) ₃
2.1	220一色	221一色	222 淡緑色	223 黒色	224)赤褐色	225 赤褐色	226 赤褐色
Cd^{2+}	227—	228—	229 CdS	230 CdS	231 Cd(OH) ₂	232 Cd(OH) ₂	233 [Cd(NH ₃) ₄] ²⁻
2.1	234]一色	235]一色	236黄色	237黄色	238 白色	239 白色	240無色
Co ²⁺	241—	242—	243 CoS	244 Co(OH) ₂	245 Co(OH) ₂	246 Co(OH) ₂	247 Co(OH) ₂
2	248一色	249—色	250黒色	251青色	252青色	253青色	254青色
Ni ²⁺	255—	256	257 NiS	258 Ni(OH) ₂	259 Ni(OH) ₂	260 Ni(OH) ₂	261 [Ni(NH ₃) ₆] ²⁺
~ 2±	262一色	263一色	264 黑色	265 緑白色	266 緑白色	267 緑白色	268青紫色
Sn ²⁺	269—	270—	271 SnS	272 SnS	273 Sn(OH) ₂	[Sn(OH) ₄] ²⁻	275 Sn(OH) ₂
2+	276一色	277一色	278褐色	279褐色	280 白色	281 白色	282 白色
Pb ²⁺	283 PbCl	284 PbSO ₄	285 PbS	286 PbS	287 Pb(OH) ₂	[Pb(OH) ₄] ²⁻	289 Pb(OH) ₂
Q 2±	290白色	291 白色	292黒色	293黒色	294 白色	295無色	296 白色
Cu ²⁺	297—	298—	299 CuS	300 CuS	301 Cu(OH) ₂	302 Cu(OH) ₂	303 [Cu(NH ₃) ₄] ²⁺
77. 2±	304一色	305一色	306 白色	307白色	308青白色	309青白色	310深青色
Hg^{2+}	311—	312—	313 HgS	314 HgS	315 HgO	316)HgO	317 HgO
77 2±	318一色	319一色	320黒色	321黒色	322黄色	323黄色	324黄色
${\rm Hg_2}^{2+}$	325 Hg ₂ Cl ₂	326—	(327) HgS	328 HgS	(329) HgO	(330) HgO	(331)HgO

	Cl ⁻	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$_{ m H_2S}$	OH^-	OH^-	NH_3
			酸性	中・塩基性	NH3	過剰	過剰
	332 白色	333一色	334 黑色	335 黑色	336黄色	337黄色	338黄色
Ag^+	339 AgCl	340—	(341)Ag ₂ S	342 Ag ₂ S	343)Ag ₂ O	(344)Ag ₂ O	[345][Ag(NH ₃) ₂] ⁺
	346 白色	347一色	③48 <mark>黑</mark> 色	349黒色	350褐色	351褐色	352無色

E 金属イオンの系統分離

