KJG

Równania różniczkowe zwyczajne

Opracowanie zagadnień na egzamin

Spis treści

1.	Twierdzenia		2
	1.2. 1.3.	Ciągła zależność od parametru	2
2.	Zagadnienia		
	2.2.	Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone	5
3.	Przy	kłady	6

1. Twierdzenia

1.1. Ciagła zależność od parametru

Twierdzenie 1.1.1 (o ciągłej zależności od parametru). Niech

$$y' = f(y, t, \lambda), \qquad f: \mathbb{R}^{m+1} \times \mathbb{R}^l \supset U \times B_l(\lambda_0, c) \longrightarrow \mathbb{R}^m,$$

gdzie f jest funkcją ciągłą oraz c>0. Niech $y(t,\lambda_0)$ będzie rozwiązaniem równania $y'=f(y,t,\lambda_0)$ z warunkiem początkowym (y_0,t_0) określonym na zwartym przedziale I zawierającym t_0 . Wybierzmy b>0 i rozważmy zbiór

$$R_b = \{(y,t) : t \in I, ||y - y(t,\lambda_0)|| < b\}.$$

Załóżmy dalej, że

1. Istnieje $L \geq 0$, że dla wszystkich $(y_1, t), (y_2, t) \in R_b$ jest

$$||f(y_1, t, \lambda_0) - f(y_2, t, \lambda_0)|| \le L \cdot ||y_1 - y_2||$$

2. Dla dowolnego $\varepsilon > 0$ istnieje $\delta > 0$, że dla $(y,t) \in R_b$ zachodzi

$$\|\lambda - \lambda_0\| < \delta \implies \|f(y, t, \lambda) - f(y, t, \lambda_0)\| < \varepsilon.$$

Wówczas istnieje stała $c^* > 0$ taka, że

- 1. Jeśli $\|\lambda \lambda_0\| < c^*$, to $y(t, \lambda)$ jest określone na I,
- 2. Jeśli $\lambda_n \to \lambda_0$, to $y(t, \lambda_n) \rightrightarrows y(t, \lambda_0)$ na I.

1.2. Różniczkowalna zależność od parametru

Twierdzenie 1.2.1 (o różniczkowalnej zależności od parametru). Niech

$$y' = f(y, t, \lambda), \qquad f: \mathbb{R}^{m+1} \times \mathbb{R} \supset U \times (\lambda_0 - c, \lambda_0 + c) \longrightarrow \mathbb{R}^m,$$

gdzie f jest funkcją ciągłą względem y,t,λ oraz klasy C^1 względem y,λ . Ustalmy warunek początkowy (y_0,t_0) i oznaczmy przez $y(t,\lambda)$ rozwiązanie równania

$$\frac{\partial y(t,\lambda)}{\partial t} = f(y,t,\lambda)$$

z warunkiem początkowym $y(t_0, \lambda) = y_0$, określone na ustalonym i zwartym przedziale I. Wówczas na przedziale I istnieje ciągła funkcja

$$z(t, \lambda_0) = \frac{\partial y(t, \lambda)}{\partial \lambda} \Big|_{\lambda = \lambda_0}$$

oraz zachodzi równość

$$\frac{\partial z(t,\lambda_0)}{\partial t} = \frac{\partial^2 y(t,\lambda)}{\partial t \partial \lambda} \Big|_{\lambda=\lambda_0} = \frac{\partial^2 y(t,\lambda)}{\partial \lambda \partial t} \Big|_{\lambda=\lambda_0}.$$

1.3. Rozwiązania przez szeregi potęgowe wokół punktu regularnego

Niech

$$a_2(t)y'' + a_1(t)y' + a_0(t)y = 0,$$
 (1.3.1)

gdzie a_2, a_1, a_0 są analityczne w pewnym punkcie t_0 .

1. Twierdzenia 3

Definicja 1.3.1. Powiemy, że t_0 jest punktem regularnym wtedy i tylko wtedy, gdy $a_2(t_0) \neq 0$. W przeciwnym wypadku t_0 nazwiemy punktem osobliwym.

W przypadku regularnym równanie (1.3.2) sprowadza się do

$$y'' + p(t)y' + q(t)y = 0, (1.3.2)$$

gdzie p i q są analityczne w punkcie t_0 , czyli

$$p(t) = \sum_{n=0}^{\infty} p_n (t - t_0)^n, \qquad q(t) = \sum_{n=0}^{\infty} q_n (t - t_0)^n.$$

Twierdzenie 1.3.2. Każde rozwiązanie równania (1.3.2) jest analityczne w kole, w którym oba szeregi p(t) i q(t) zbiegają. Co więcej, analityczna funkcja

$$y(t) = \sum_{n=0}^{\infty} c_n (t - t_0)^n$$

jest rozwiązaniem wtedy i tylko wtedy, gdy

$$c_{n+2} = -\frac{1}{(n+1)(n+2)} \left(\sum_{k=0}^{n} c_{k+1}(k+1) p_{n-k} + \sum_{k=0}^{n} c_k + q_{n-k} \right)$$

1.4. Twierdzenie spektralne dla funkcji analitycznych

Twierdzenie 1.4.1 (Hamilton-Cayley). $\chi_A(A) = 0$.

Twierdzenie 1.4.2 (spektralne dla wielomianów). Dla każdej macierzy A istnieją macierze spektralne $M_{j,l}$ takie, że dla dowolnego wielomianu f zachodzi

$$f(A) = \sum_{j=1}^{n} \sum_{l=0}^{q_j - 1} M_{j,l} \cdot \frac{d^{(l)} f(z)}{dz^l} \bigg|_{z = \lambda_j} = \sum_{j=1}^{n} \sum_{l=0}^{q_j - 1} M_{j,l} \cdot f^{(l)}(\lambda_j).$$

2. Zagadnienia

2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone

Twierdzenie 2.1.1 (Peano). Niech y' = f(y,t), gdzie $y(t_0) = y_0$ oraz

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła i oznaczmy

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla $\alpha = \min(a, b/M)$ istnieje rozwiązanie y(t) określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$, spełniające warunek początkowy $y(t_0) = y_0$.

Twierdzenie 2.1.2 (Picard-Lindelöf). Niech $y' = f(y,t), y(t_0) = y_0$, gdzie

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła oraz lipszycowska ze względu na y, to znaczy

$$\exists L \ \forall (y_1, t), (y_2, t) \in H \quad ||f(y_1, t) - f(y_2, t)|| \le L \cdot ||y_1 - y_2||.$$

Oznaczmy ponadto

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla dowolnego $\alpha < \min(a, b/M, 1/L)$ istnieje dokładnie jedno rozwiązanie zagadnienia Cauchy'ego z warunkiem początkowym $y(t_0) = y_0$ określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$.

Lemat 2.1.3 (o zgodności rozwiązań). Niech y' = f(y,t), gdzie funkcja $f: U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Niech $(y_0, t_0) \in U$. Jeśli $y_1(t), y_2(t)$ są rozwiązaniami określonymi odpowiednio na I_1, I_2 , spełniającymi ten sam warunek początkowy $y_1(t_0) = y_2(t_0) = y_0$, to $y_1 \equiv y_2$ na $I_1 \cap I_2$.

Lemat 2.1.4 (o przedłużaniu przez koniec). Niech y' = f(y,t), gdzie funkcja $f: \mathbb{R}^{m+1} \supset U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Niech y(t) – rozwiązanie, T – koniec $\operatorname{Dm} y$, granica $\lim_{t\to T} y(t) = y_T$ istnieje oraz $(y_T,T)\in U$. Wówczas y rozszerza się na przedział zawierający T we wnętrzu.

Twierdzenie 2.1.5 (o przedłużaniu przez koniec). Niech y' = f(y,t), gdzie $f: \mathbb{R}^{m+1} \supset U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Przypuśćmy, że rozwiązanie y(t) jest określone na pewnym przedziale, którego końcem jest $T \in \mathbb{R}$. Przypuśćmy dalej, że istnieje zbiór zwarty $K \subset U$ oraz $\varepsilon > 0$, taki, że

$$\forall t \in \text{Dm } y \cap [T - \varepsilon, T + \varepsilon] \quad (y(t), t) \in K.$$

Wtedy y rozszerza się na przedział zawierający T we wnętrzu.

Twierdzenie 2.1.6 (o rozwiązaniu wysyconym). Niech y'=f(y,t), gdzie funkcja $f\colon \mathbb{R}^{m+1}\supset U\to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y oraz $(y_0,t_0)\in U$. Wówczas istnieje rozwiązanie y_{\max} zwane wysyconym, określone na przedziale otwartym, spełniające warunek początkowy $y_{\max}(t_0)=y_0$ i takie, że jeśli y jest dowolnym rozwiązaniem spełniającym warunek $y(t_0)=y_0$, to $\mathrm{Dm}\,y\subset\mathrm{Dm}\,y_{\max}$ oraz y jest obcięciem y_{\max} .

2. Zagadnienia 5

2.2. Metoda Frobeniusa

2.3. Rozwiązania układów liniowych jednorodnych

Definicja 2.3.1. Równaniem liniowym nazywamy równanie postaci

$$\frac{dy}{dt} = A(t)y + B(t),$$

gdzie A(t) jest macierzą $m \times m$, zaś B(t) wektorem z \mathbb{R}^m o ciągłych współczynnikach, określonym na przedziale otwartym $I \subset \mathbb{R}$.

Definicja 2.3.2. Równanie y' = A(t)y nazywamy *jednorodnym*, zaś równanie y' = A(t)y + B(t) (odpowiadającym) niejednorodnym.

Twierdzenie 2.3.3. Zbiór rozwiązań równania jednorodnego jest podprzestrzenią liniową $C^0(I, \mathbb{R}^m)$, a zbiór rozwiązań równania niejednorodnego jej wartwą.

Niech V oznacza zbiór rozwiązań wysyconych równania y' = A(t)y.

Stwierdzenie 2.3.4. Następujące warunki są równoważne dla zbioru $\{y_1, \ldots, y_n\} \subset V$:

- 1. Zbiór jest liniowo niezależny.
- 2. Dla dowolnego $t \in I$ zbiór $\{y_1(t), \dots, y_n(t)\}$ jest liniowo niezależny w \mathbb{R}^m .
- 3. Istnieje $t \in I$, że zbiór $\{y_1(t), \dots, y_n(t)\}$ jest liniowo niezależny w \mathbb{R}^m .

3. Przykłady