Assignment 2:

Objective:

To get good quality image from noisy images f_i where $1 \le i \le n$.

Problem statement:

Let f be an image (Lena). $0 \le x \le 255$ and $0 \le y \le 255$.

Generate

 $f_i(x, y) = f(x, y) + \eta_i(x, y)$ where $\eta_i(x, y)$ is the Gaussian noise with mean = 0 and variance= 1

Find

$$\frac{1}{n} \left(\sum_{i=1}^{n} f_i(x, y) \right) , \text{ say it as g.}$$

- 1. Display f, g and f_1 , f_2 , f_n .
- 2. Do it for n=5, n=10, n=20 and n=30

Explanation:

Suppose if n=5, you have to generate 5 noisy images f_1 , f_2 , f_3 , f_4 and f_5 from f by adding Gaussian noise. For Gaussian noise, you can use built in function. Then find the average of the noisy images (g) and compare it with original image f.

Note:

Implement the code in python and submit the code and output as a single pdf file with file name as your roll number. The dead line for submission of second assignment is Friday (27/01/2023) 5.00 pm