step_input.md 2024-10-18

Step Input Response

Basics:

For a nanoparticle (NP) network of N_{NP} particles connected to two electrodes, we measure the electric current I(t) response at the *output* electrode upon time varying voltages U(t) at the *input* electrode. The voltage is changed within fixed time steps $\Delta t = 10^{-10} \text{ text}$ should the electric current is evaluated in those steps as the time average across the starting time t_i and the end time t_i of the corresponding step $I(t) = \frac{1}{2} \cdot \frac$

In each simulation we firstly equilibrate the system for U(t=0) to receive the charge landscape \colongle (t=0) := \vec{q}{eq}\$. The equilibrated landscape is stored and \$N{runs} = 500\$ parallel simulations for the whole time scale are executed starting with \colongle as the initial landscape. We will then calculated the mean electric current in each time step \$t\$ across all simulations \$\$\bar{I}(t) = \frac{1}{N{runs}}\sum_{n=1}^{n=1

Uniform Networks:

a) Network with 49 NPs and two electrodes marked red. b) Output electric current response for variable network sizes. The input electrode voltage signal is marked blue.

step_input.md 2024-10-18

For a network of 49 NPs the distribution indicates variable relaxation times across the nanoparticles. Output relaxation time marked black.

Disordered Networks

Resistances

Vgologo

We repeat the upper analysis for networks with disordered properties. There are three properties which can be coosen to be disordered:

Nanoparticle Sizes

Topology	Resistances		Nanoparticle Sizes
Network of \$N_{NP} = 49\$ NPs connected based on a random regular graph with node degree \$N_j = 4\$.	For a cubic shaped network of \$N 49\$ Nps all junction resistances a set at \$25\$ M\$\Omega\$. Next \$95 choosen at random based on a gi Junctions connected to those NPs different resistance of \$R\$.	re initially NPs are ven <i>seed</i> .	For a cubic shaped network of \$N_{NP} = 49\$ Nps all nanoparticle sizes are set at \$10\$ nm. Next \$9\$ NPs are choosen at random based on a given <i>seed</i> . Those NPs get a different radius of \$r\$.
30		30	
10		20	
$0^{\frac{1}{10^2}}$	10^3 $R~[{ m M}\Omega]$	0	50 100 150 r [nm]

Relaxation time for different distributions of disorder in terms of nanoparticle sizes and resistances. Black dashed line indicates uniform network.