Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	CHCTON VI	гравления и Ин	форматики	Группа	D3340
мафедра	Cucrem 31	гравления и иг	гформатики	труппа	1 0040

Лабораторная работа №8 "Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров" Вариант - 11

Выполнил	Та М.Ш		(подпись)
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
""	20 г	Санкт-Петербург,	20г.
Работа выполнена		Санкт-петероург,	
Дата защиты "	_" 2	0г.	

Цель работы

Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

1 Собрать схему моделирования, установив значение постоянной времени

Рис. 1: Схема моделирования

Рис. 2: Графика неустойчивости САУ

Рис. 3: Графика САУ на границе устойчивости

Рис. 4: Графика устойчивости САУ

2 Построим экспериментальную границу устойчивости

T2	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
K	10.3	2.3	1.3	1	0.83	0.73	0.67	0.62	0.58	0.55	0.53

3 Теоретический расчет границы устойчивости с использованием критерия Гурвица

Передаточная функция

$$W(s) = \frac{(3s+1)(T_2s+1)s}{(3s+1)(T_2s+1)s+k}$$

$$(3s+1)(T_2s+1)s + k = 0$$

$$\Leftrightarrow 3T_2s^3 + (3+T_2)s^2 + s + k = 0$$

Матрица Гурвицы

$$A = \left(\begin{array}{cc} 3 + T_2 & k \\ 3T_2 & 1 \end{array}\right)$$

САУ устойчивость на границе когда

$$\Delta = (3 + T_2) - 3T_2k = 0$$
$$k = \frac{3 + T_2}{3T_2}$$

Рис. 5: Графика границы устойчивости САУ

Выводы

При проектировании систем большое значение имеет определение областей устойчивости в плоскости реальных параметров, присущих системе. Система является устойчивой ,соответственно, множество значений параметров находится ниже границы устойчивости (при $k \leq \frac{3+T_2}{3T_2}$