

Summary of *Primes is in P**

Christopher Kjellqvist

Primality

- A number n is prime if no number in [2..n-1] divides n
- Greek philosopher Eratosthenes has a prime sieve attributed to his name
- Other Properties:
 - Fermat's Little Theorem: for any a, a^{p-1} mod p

• $(X + a)^n = (X^n + a) \mod n$ iff n is prime

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Find all the primes < n
- Find the first unmarked number and mark it as prime
- For all of its multiples, mark them as composite
- Time Complexity: $\mathcal{O}(n \log \log(n))$
- Density of primes related to log log(n)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

• Potentially the key to a $\mathcal{O}(poly(\log n))$ algorithm

561

$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

$$561$$
 $2^{560} \equiv 1 \mod 561$

$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

$$561$$
 $2^{560} \equiv 1 \mod 561$
 $5^{560} \equiv 1 \mod 561$

$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

```
561
2^{560} \equiv 1 \mod 561
5^{560} \equiv 1 \mod 561
23^{560} \equiv 1 \mod 561
```


$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

```
561
2^{560} \equiv 1 \mod 561
5^{560} \equiv 1 \mod 561
23^{560} \equiv 1 \mod 561
100^{560} \equiv 1 \mod 561
```


$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

$$561 = 3 \cdot 11 \cdot 17$$

 $2^{560} \equiv 1 \mod 561$
 $5^{560} \equiv 1 \mod 561$
 $23^{560} \equiv 1 \mod 561$
 $100^{560} \equiv 1 \mod 561$

$$\forall a \in \mathbb{N} \mid a \neq p, a^{p-1} \equiv 1 \mod p$$

- Potentially the key to a $\mathcal{O}(poly(\log n))$ algorithm
- Carmichael Numbers

```
561 = 3 \cdot 11 \cdot 17

2^{560} \equiv 1 \mod 561

5^{560} \equiv 1 \mod 561

23^{560} \equiv 1 \mod 561

100^{560} \equiv 1 \mod 561
```

- Hard to find except by finding factorization...
- Still is a good way of finding 'probable' primes

$$(X+a)^p \equiv X^p + a \mod p$$

$$(X+a)^p \equiv X^p + a \mod p$$

- In a polynomial $(x + y)^n$, the coefficient of the i'th term will be $\binom{n}{i}$
- As long as n is prime, that coefficient will be divisible by n
- The first and last terms will cancel out

$$(X+a)^p \equiv X^p + a \mod p$$

- In a polynomial $(x + y)^n$, the coefficient of the i'th term will be $\binom{n}{i}$
- As long as n is prime, that coefficient will be divisible by n
- The first and last terms will cancel out

$$(X+a)^p - X^p - a \equiv 0 \mod p$$

$$(X+a)^p \equiv X^p + a \mod p$$

$$1$$

$$1 \quad 1$$

$$1 \quad 2 \quad 1$$

$$1 \quad 3 \quad 3 \quad 1$$

$$1 \quad 4 \quad 6 \quad 4 \quad 1$$

$$1 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1$$

$$1 \quad 6 \quad 15 \quad 20 \quad 15 \quad 6 \quad 1$$

$$1 \quad 7 \quad 21 \quad 35 \quad 35 \quad 21 \quad 7 \quad 1$$

$$1 \quad 8 \quad 28 \quad 56 \quad 70 \quad 56 \quad 28 \quad 8 \quad 1$$

$$1 \quad 9 \quad 36 \quad 84 \quad 126 \quad 126 \quad 84 \quad 36 \quad 9 \quad 1$$

$$1 \quad 10 \quad 45 \quad 120 \quad 210 \quad 252 \quad 210 \quad 120 \quad 45 \quad 10 \quad 1$$

Input: Integer n > 1

1. If ($n = a^b$ for $a \in \mathbb{N}$ and b > 1), output **COMPOSITE**

- 1. If $(n = a^b \text{ for } a \in \mathbb{N} \text{ and } b > 1)$, output **COMPOSITE**
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- The order of a modulo is the smallest k such that

$$n^k \equiv 1 \mod r$$
 $7^{10} \equiv 1 \mod 11 \ o_{11}(7) = 10$

- 1. If ($n = a^b$ for $a \in \mathbb{N}$ and b > 1), output **COMPOSITE**
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If 1 < (a, n) < n for some $a \le r$, output **COMPOSITE**

- 1. If ($n = a^b$ for $a \in \mathbb{N}$ and b > 1), output **COMPOSITE**
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If 1 < (a, n) < n for some $a \le r$, output **COMPOSITE**
- 4. If $n \le r$ output **PRIME**
- If n is less than r and we found the LCM of every number in [2..r], then n must have no prime divisors

ϕ : Euler's Totient Function

• $\phi(n)$ is equal to the number of numbers less than n that are relatively prime to n

$$\phi(6) = 2 \quad \{1,5\}$$

$$\phi(7) = 6 \quad \{1,2,3,4,5,6\}$$

$$\phi(8) = 4 \quad \{1,3,5,7\}$$

- 1. If ($n = a^b$ for $a \in \mathbb{N}$ and b > 1), output **COMPOSITE**
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If 1 < (a, n) < n for some $a \le r$, output **COMPOSITE**
- 4. If $n \le r$ output **PRIME**

for
$$a = 1$$
 to $\lfloor \sqrt{\phi(r)} \log n \rfloor$ **do** \rfloor 5. if $((X + a)^n \neq X^n + a \pmod{X^r - 1, n})$, output **COMPOSITE end**

- 6. Output **PRIME**
- The term $\lfloor \sqrt{\phi(r)} \log n \rfloor$ is what gives this algorithm its deterministic polynomial time complexity

Conclusion

- Prior sieves come with undesirable qualities
 - Exponential Growth
 - Edge cases
- Primes is in P gives us a deterministic polynomial time algorithm with no edge cases

