MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA SOLARA FOTOVOLTAICO DE 5,7 kW CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO EM 220V CARACTERIZADO COMO AUTOCONSUMO LOCAL

ROMULO DE SOUZA CARRERA RG: 7365979

FERNANDA ALVES MAGNO ENGENHEIRA ELETRICISTA REGISTRO: 1518460259 PA

> BELÉM – PA SETEMBRO– 2025

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada
C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

I_N: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}\,$ para

sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição

QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente
TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

SUMÁRIO

1.	OBJETIVO	4
2.	REFERÊNCIAS NORMATIVAS E REGULATÓRIA	4
3.	DADOS DA UNIDADE CONSUMIDORA	5
4.	LEVANTAMENTO DE CARGA	5
5.	PADRÃO DE ENTRADA	6
	5.1. Tipo de Ligação e Tensão de Atendimento	6
	5.2. Disjuntor de Entrada	6
	5.3. Potência Disponibilizada	6
	5.4. Caixa de Medição	7
	5.5. Ramal de Entrada	7
6.	ESTIMATIVA DE GERAÇÃO	7
7.	DIMENSIONAMENTO DO GERADOR	8
	7.1. Dimensionamento do gerador	8
8.	DIMENSIONAMENTO DO INVERSOR	8
9.	DIMENSIONAMENTO DA PROTEÇÃO	9
	9.1. Disjuntores	9
	9.2. DPS	9
	9.3. Aterramento	9
	9.4. Requisitos de Proteção	10
	DIMENSIONAMENTO DOS CABOS	
11.	PLACA DE ADVERTÊNCIA	11
12	ANEXOS	12

1. OBJETIVO

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à Equatorial - PA, dos documentos mínimos necessários, em conformidade com a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT) ou internacionais (europeia e americana), para **SOLICITAÇÃO DO PARECER DE ACESSO** de uma microgeração distribuída conectada à rede de distribuição de energia elétrica através sistema solar fotovoltaico de **5,7** kW, composto por um gerador fotovoltaico, caracterizado como autoconsumo local.

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado de (o) Pará foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica Terminologia.
- c) ABNT NBR 11704: Sistemas Fotovoltaicos Classificação.
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição.
- e) ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma rede elétrica de distribuição Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.00020.EQTL.Normas e Padrões Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.00001.EQTL.Normas e Padrões Fornecimento de Energia Elétrica em Baixa Tensão.
- i) EQUATORIAL ENERGIA NT.00030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de Medição e Proteção.
- j) ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional –
 PRODIST: Módulo 3 Conexão ao Sistema de Distribuição de Energia Elétrica.
- k) ANEEL Resolução Normativa nº 1000, de 07 de dezembro de 2021, que estabelece as regras de prestação do serviço público de distribuição de energia elétrica.
- I) IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface
- m) IEC 62116:2014 Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures

3. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato: 3022011455

Classe: B/B1

Nome do Titular da CC: ROMULO DE SOUZA CARRERA

000 AURA – ANANINDEUA

Número de identificação do poste e/ou transformador mais próximo: Não foi possível identificar

Coordenadas georrefenciadas: 792179.00 m E; 9844886.00 m S;

Figura 1: Localização da unidade consumidora.

4. LEVANTAMENTO DE CARGA

Tabela 1 – Levantamento de carga

ITEM	DESCRIÇÃO	P (W) [A]	QUANT. [B]	CI (kW) [C = (A*B)/1000]	FP [D]	CI (kVA) [E = C/D]	FD [F]	D(kW) [G = CxF]	D(kVA) [H = ExF]
1	REFRIGERADOR/GELADEIRA	250	5	1,25	0,85	1,47	1	1,25	1,47
2	TELEVISÃO	150	4	0,6	0,85	0,71	0,7	0,42	0,49
3	LÂMPADA LED	100	25	2,5	0,7	3,57	0,8	2,00	2,86
4	CHUVEIRO ELÉTRICO	7500	0	0	0,7	0,00	0,8	0,00	0,00

5	AR CONDICIONADO 12000 BTUS	1260	3	3,78	0,85	4,45	1	3,78	4,45
6	MICROONDAS	1200	1	1,2	0,85	1,41	0,8	0,96	1,13
7	NOBREAK	920	1	0,92	0,85	1,08	0,8	0,74	0,87
8	FERRO ELÉTRICO	550	1	0,55	0,85	0,65	0,8	0,44	0,52
9	COMPUTADOR	215	1	0,215	0,85	0,25	0,8	0,17	0,20
10	VENTILADOR	250	1	0,25	0,85	0,29	0,8	0,20	0,24
11	LIQUIDIFICADOR	250	1	0,25	0,85	0,29	0,8	0,20	0,24
12	SANDUICHEIRA	1500	2	3	0,85	3,53	1	3,00	3,53
TOTAL		14145	45	13	9,9	17,71	10,1	13,16	13,86

5. PADRÃO DE ENTRADA

5.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora será ligada em ramal de ligação em baixa tensão, através de um circuito bifásico à três condutores, sendo dois condutores FASE de seção nominal 16 mm² e um condutor NEUTRO de seção nominal 16 mm², com tensão de atendimento em 220V, derivado de uma rede aérea de distribuição secundária da EQUATORIAL ENERGIA no estado de(o) Pará.

5.2. Disjuntor de Entrada

No ponto de entrega/conexão será instalado um disjuntor termomagnético, em conformidade com a norma NT.00001.EQTL.Normas e Padrões da Equatorial Energia, com as seguintes características:

NÚMERO DE POLOS: 2

TENSÃO NOMINAL: 220 V

CORRENTE NOMINAL: 63 A

FREQUÊNCIA NOMINAL: 60 HZ

60 HZ

ELEMENTO DE PROTECAO: TERMOMAGNÉTICO

CAPACIDADE MAXIMA DE INTERRUPCAO: 5 kA;

ACIONAMENTO: Padrão

CURVA DE ATUACAO (DISPARO): C.

5.3. Potência Disponibilizada

A potência disponibilizada para unidades consumidora onde será instalada a microGD é (será) igual à:

PD $[kVA] = (V_N [V] X I_{DG} [A] X NF)/1000$

PD [kW] = PD [kVA] x FP

 $V_N = 220 V$

 $I_{DG} = 63 A$

NF = 1

FP = 0.92

PD (kVA) = 13,86 KVA

PD (kW) = 13 kW

NOTA 1: A potência de geração deve ser menor ou igual a potência disponibilizada PD em kW.

NOTA 2: V_N é a tensão nominal entre fase e neutro para instalações monofásicas ou entre fases para bifásicas e trifásicas.

NOTA 3: NF é um fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}$ para sistemas trifásicos.

5.4. Caixa de Medição

A caixa de medição nova polifásica em material polimérico terá as dimensões de **260** mm x **423** mm x **130** mm (comprimento, altura e largura), será instalada na fachada, no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e lay-out, em conformidade com as normas da concessionária NT.00001.EQTL e NT.00030.EQTL, conforme a FIGURA 2.

Figura 2: Desenho dimensional detalhado da caixa de medição.

O aterramento da caixa de medição será com 1 hastes de aterramento de comprimento 1500 mm e diâmetro 1/2", condutor de 25 mm² com conector tipo cunha.

5.5. Ramal de Entrada

O ramal de entrada da unidade consumidora será, através de um circuito bifásico à três condutores, sendo dois condutores FASE de diâmetro nominal 16 mm² e um condutor NEUTRO de diâmetro nominal 16 mm², em 220 V.

6. ESTIMATIVA DE GERAÇÃO

Sendo a potência do gerador igual a 5,7 kWp, considerando as perdas ocorrentes (perdas de energia no cabeamento, conexões, inversor, etc) iguais a 80% da capacidade máxima de geração, estima-se gerar em torno de 1.070,11 kWh por mês.

7. DIMENSIONAMENTO DO GERADOR

7.1. Dimensionamento do gerador

A potência de geração foi calculada planejando-se gerar cerca de1.070,11 kWh mensais. A potência mínima do sistema pode ser calculada pela expressão:

$$Potência\ m\'inima(kWp) = \frac{Consumo(kWh)}{Horas\ de\ sol\ pleno\left(\frac{kWh}{m^2.\ dia}x\ Rendimento\ x\ 30\right)}$$

Sendo 'Horas de Sol Pleno' na localidade, em média anual, igual a 4,69kWh/m².dia e considerando 80% de rendimento, tem-se o valor de potência (kWp) igual à 5,7 kWp. Esse valor pode ser atingido com um sistema de 10 módulos de 570 Wp. Nesse caso, tem-se a potência de 5,7 kWp. Portanto, o gerador mencionado é capaz de atender à essa demanda.

Tabela 3 – Características técnicas do gerador

Fabricante	RONMA SOLAR
Modelo	RM-570W-182M-144TB
Potência nominal – Pn [W]	570
Tensão de circuito aberto – Voc [V]	51,07
Corrente de curto circuito – Isc [A]	14,25
Tensão de máxima potência – Vpmp [V]	42,29
Corrente de máxima potência – Ipmp [A]	13,48
Eficiência [%]	22,06
Comprimento [m]	2,278
Largura [m]	1,134
Área [m2]	2,58
Peso [kg]	32,3
Quantidade	10
Potência do gerador [kW]	5,7kW

8. DIMENSIONAMENTO DO INVERSOR

Tabela 4 - Características técnicas do inversor

Fabricante	SOLPLANET		
Modelo	ASW 5000-S-G2		
Quantidade	1		
Entrada			
Potência nominal – Pn [kW]	5		
Máxima potência na entrada CC – Pmax-cc [kW]	7,5		
Máxima tensão CC – Vcc-máx [V]	600		
Máxima corrente CC – Icc-máx [A]	16		
Máxima tensão MPPT – Vpmp-máx [V]	560		
Mínima tensão MPPT – Vpmp-min [V]	60		
Tensão CC de partida – Vcc-part [V]	100		

Quantidade de Strings	1/1
Quantidade de entradas MPPT	2
Saída	
Potência nominal CA – Pca [kW]	5
Máxima potência na saída CA – Pca-máx [kW]	5,5
Máxima corrente na saída CA – Imáx-ca [A]	25
Tensão nominal CA – Vnon-ca [V]	220
Frequência nominal – Fn [Hz]	60
Máxima tensão CA – Vca-máx [V]	295
Mínima tensão CA – Vca-min [V]	180
THD de corrente [%]	<3
Fator de potência	0,8i-0,8c
Tipo de conexão – número de fases + neutro + terra	2F+PE
Eficiência máxima [%]	97,7

9. DIMENSIONAMENTO DA PROTEÇÃO

9.1. Disjuntores

Disjuntor CA instalado para proteção do lado CA do inversor:

Número de polos: 2

Tensão nominal CA [V]: 220V

• Corrente Nominal [A]: 32

• Frequência [Hz], para disjuntor CA: 60

Capacidade máxima de interrupção [kA]: 5KA

• Curva de atuação: C

9.2. DPS

Para atender às características de geração e saída CC:

Tipo CC

Classe: II

Tensão CC [V]: 1000

Corrente nominal [kA]: 18

Corrente máxima [kA]: 40

Para atender às características de geração e saída CA

Tipo CA

Classe: II

• Tensão CA [V]: 275

Corrente nominal [kA]: 10

Corrente máxima [kA]: 30

9.3. Aterramento

Características técnicas do aterramento:

- Malha de aterramento com hastes espaçadas em 2,4m
- Hastes de cobre 5/8", dimensões 10mm x 2400 mm
- Quantidade de hastes: 3
- Cabos de aterramento do sistema fotovoltaico de 4 mm² isolados em PVC, equipotencializado com cabos da malha de aterramento de 10 mm² isolados em PVC
- Conectores de cobre tipo cunha
- Valor da resistência de aterramento: 10 ohms
- BEP em cobre, comprimento 14cm, largura 22cm, altura 1,47cm

9.4. Requisitos de Proteção

Tabela 5 – Características técnicas do gerador

REQUISITOS DE PROTEÇÃO	INDICAR SE POSSUI
Proteção de subtensão (27)	PRESENTE
Proteção de sobretensão (59)	PRESENTE
Proteção de subfrequência (81U)	PRESENTE
Proteção de sobrefrequência (810)	PRESENTE
Proteção contra desequilíbrio de corrente (46)	PRESENTE
Proteção contra reversão e desbalanço de tensão (47)	PRESENTE
Proteção de sobrecorrente (50/51 e 50N/51N)	PRESENTE
Proteção contra perda de rede (proteção anti-ilhamento)	PRESENTE
Check de sincronismo (25)	PRESENTE
Tempo de reconexão – temporizador (62)	PRESENTE
Proteção de Sobrecorrente com restrição de tensão (51V)	PRESENTE
Proteção de Sobrecorrente direcional (67-67N)	PRESENTE
Proteção direcional de potência (32)	PRESENTE
Proteção contra falha de disjuntor (50BF)	PRESENTE
Proteção LINHA VIVA / BARRA MORTA	PRESENTE

10. DIMENSIONAMENTO DOS CABOS

Características técnicas dos cabos CA e CC:

Condutores CC (positivo e negativo)

Isolação: PVC

Isolamento: 0,6/1kV

Bitola: 4 mm²

Capacidade de condução de corrente: 36 A

Condutor CC (terra).

Isolação: PVC

Isolamento: 750V

Bitola: 4 mm²

Capacidade de condução de corrente: 36 A

Condutores CA

Isolação: XLPE/EPR

Isolamento: 0,6/1KV

Bitolas: 6 mm²

Capacidade de condução de corrente: 41 A

11. PLACA DE ADVERTÊNCIA

Características da Placa:

- Espessura: 2 mm;
- Material: Policarbonato com aditivos anti-raios UV (ultravioleta);
- Gravação: As letras devem ser em Arial Black;
- Acabamento: Deve possuir cor amarela, obtida por processo de masterização com 2%, assegurando opacidade que permita adequada visualização das marcações pintadas na superfície da placa;

Figura 3: Placa de advertência.

12. ANEXOS

- Formulário de Solicitação de Orçamento.
- Documento de responsabilidade técnica (projeto e execução) do conselho profissional competente.
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Relatório de ensaio, em língua portuguesa, atestando a conformidade de todos os conversores de potência para a tensão nominal de conexão com a rede, sempre que houver a utilização de conversores.
- Dados de registro.
- Lista de rateio dos créditos.
- Cópia de instrumento jurídico de solidariedade.
- Para cogeração documento que comprove o reconhecimento pela ANEEL.