

CENTRO UNIVERSITÁRIO DA FEI DEPARTAMENTO DE ENGENHARIA ELÉTRICA

SAE BRASIL AERODESIGN 2019

RELATÓRIO DE ELÉTRICA

EQUIPE FEI MICRO

N° 205

ANA PRISCILA OLIVEIRA ROCHA

BREILA MARIA DIAS PEREIRA

BRUNO FELIX DA SILVA

BRUNO HIDEKI YUGAWA

CARLOS FERNANDES ALFANO JUNIOR

ERICH RAMOS BORGES

HIGOR DAVI PEREIRA DE CAMPOS

LEONARDO AMYUNI DOS SANTOS

PAULO HENRIQUE VIDAL CERVI

ORIENTADOR: PROF. DR. CYRO ALBUQUERQUE NETO

SÃO BERNARDO DO CAMPO

JULHO/2019

LISTA DE ABREVIATURAS E SIGLAS

CMP – Conjunto motopropulsor
FMEA – Failure Mode and Effects Analisys
ESC – Eletronic Speed Control
disp – Disponível
Ev – Estabilizador Vertical
Eh – Estabilizador horizontal
I – Corrente Elétrica
máx – Máximo
req – Requerido
Te – Tração Estática
Td – Tração Dinâmica
Rin – Resistência Interna
Rl – Resistência da Carga
Vl – Tensão da Carga
Vin – Tensão de Entrada
T – Temperatura sob o regulador
R – Resistência na saída
Is/Ie – Corrente de entrada/saída
Ve/Vs – Tensão de entrada/saída

Vr – Tensão sob o regulador

$Vb-Tens\~{a}o$ resistência interna bateria

LISTA DE INPUT

DESEMPENHO	Tempo de Voo	180 segundos
	Torque do Aileron	0,535 Kg.cm
CARGAS	Torque do Leme	0,370 Kg.cm
CARGAS	Torque do Profundor	1,458 Kg.cm
	Torque da Portinhola	1,570 Kg.cm

Sumário

1.	INTRODUÇÃO	5
	OBJETIVO	
3.	SELEÇÃO DOS COMPONENTES	5
	3.1. SISTEMA RÁDIO E CONTROLE	5
	3.1.1. RECEPTOR E ANTENAS	5
	3.1.2. ENSAIO DE INTERFERÊNCIA DO CARBONO NAS ANTENAS	5
	3.2. SERVOS ATUADORES	
	3.2.1. VALIDAÇÕES DOS SERVOS ATUADORES	
	3.3. PACK DE BATERIAS	10
	3.4. REGULADOR DE TENSÃO	11
	3.5. CABLAGEM	15
4.	FMEA	18
5.	CONCLUSÃO	19

1. INTRODUÇÃO

Este relatório visa a melhor escolha de todos os componentes elétricos da aeronave, garantindo um bom funcionamento na parte de segurança e desempenho.

2. OBJETIVO

Através deste relatório visou-se aperfeiçoar da melhor forma possível toda parte elétrica da aeronave, com ensaios e análises comprovando os dados obtidos no relatório, buscando atingir melhor eficiência e segurança com menor peso e custo possível.

3. SELEÇÃO DOS COMPONENTES

Para a seleção dos componentes levou-se em conta todos os dados fornecidos das outras áreas como estrutura, cargas, aerodinâmicas, desempenho, estabilidade e controle, visando atender todos os valores necessários com o menor peso, atingindo uma melhor eficiência e segurança.

3.1. SISTEMA RÁDIO E CONTROLE

O rádio controle escolhido foi JR DSM 12X de 2.4Ghz, apresentou ótimo desempenho em anos anteriores e por ter redundância de antenas e receptores. Para evitar o contato com o carbono as antenas foram enteladas juntas com madeira, garantindo melhor funcionamento, sua comprovação está no ensaio de interferência do carbono nas antenas.

3.1.1. RECEPTOR E ANTENAS

O receptor utilizado é o JR DSM R1221 de 6.0V e 2.4GHz com 12 canais e duas antenas. Ele é a prova de falhas caso ocorra interferência de sinal externo ou baixa tensão de bateria. Por ter sido utilizado em anos anteriores e não demonstrou defeitos, logo, possui uma alta confiabilidade.

3.1.2. ENSAIO DE INTERFERÊNCIA DO CARBONO NAS ANTENAS

Com o auxílio de um medidor de espectros pode-se quantizar a interferência que ocorre no sinal que chega ao receptor quando a antena está em contato com material composto de carbono. Configurou-se a frequência central para 2,4Ghz e a faixa de varredura para 500Mhz. Ajustou-se a

amplitude de referência para 0dBm e o filtro de banda configurou para 1Mhz. Realizou-se um pequeno ajuste no medidor regulando a portadora com uma banda lateral.

Figura 1: Bancada de teste das antenas.

Inicialmente o ensaio foi realizado sem interferência na antena, com atenuação de -19,28 dBm na portadora, como pode ser observado na figura 2.

Figura 2: Tela do analisador de espectros da antena sem interferência.

Realizou-se uma segunda analise com uma caixa feita de carbono e resina envolto da antena para observar a interferência, teve um aumento da portadora para -26,85 dBm, como pode-se observar na figura 3.

Figura 3: Tela do analisador de espectros da antena com interferência de carbono e resina.

Para a próxima análise utilizou-se uma caixa feita apenas com resina para observar a interferência que a antena sofre. Teve uma diminuição da portadora para -14,20 dBm, como pode-se observar na figura 4.

Figura 4: Tela do analisador de espectros da antena com interferência de somente resina.

Conclui-se que os resultados obtidos neste ensaio estavam dentro do esperado pela equipe, a antena perde rendimento em contado com carbono, já que a resina contribui minimamente para a diminuição da atenuação.

3.2. SERVOS ATUADORES

Conhecendo-se o esforço máximo requerido para um bom funcionamento de cada superfície de controle, realizou-se uma pesquisa de mercado em busca de servos que atendessem os requisitos de torque necessário com a menor massa.

De acordo com o input de cargas, esta pesquisa encontrou para cada sistema de controle os seguintes servos motores na tabela 1.

Tabela 1: Dados dos Servos Motores

Sistema de Comando	Servo- Atuador	Tensão [V]	Torque requerido (Kg.cm)	Massa [g]	Imáx [A]
Aileron (E)	FUTABA S3114	4,8 - 6,0	0,535	7,8g	0,58
Aileron (D)	FUTABA S3114	4,8 – 6,0	0,535	7,8g	0,58
Profundor	Turnigy 390DMH	4,8 – 6,0	1,458	22,5g	0,99
Leme	FUTABA S3114	4,8 – 6,0	0,37	7,8g	0,58
Trem Dianteiro	Turnigy 390DMH	4,8 – 6,0	0,717	22,5g	0,99
Porta do Compartimento de Carga	Turnigy 390DMH	4,8 – 6,0	1,57	22,5g	0,99

Considerando uma situação crítica de voo, utilizou-se a equação 2 para o cálculo da carga máxima exigida, obtendo assim para todos os servos atuadores uma corrente máxima de 1,20 Amperes.

$$Imáx(sistema) = \sum \frac{Trequerido}{Tdisponível} . I máx(servo)$$
 (2)

3.2.1. VALIDAÇÕES DOS SERVOS ATUADORES

Notou-se a necessidade de criar um ensaio para validar os dados fornecidos do fabricante e para verificar as cargas requeridas fornecidas pela área de cargas. Os seguintes resultados obtidos pelo ensaio podem ser observados na tabela 2.

Tabela 2: Dados adquiridos no ensaio dos servos atuadores

	Ensaio	do consumo d	le carga dos ser	vos pelo toro	que nominal R	$R = 1,1 \Omega$	
	Tensão						
	da	Torque	Torque	corrente	Page (Ira)	Tempo	Tensão
	bateria	estático	dinâmico	(mA)	Peso (kg)	(ms)	osci. (mV)
	(V)	(kg.cm)	(kg.cm)				
JR DS390	4.8	4.3	2.15	1045	2	2.5	950
	6	5.4	2.7	1320	2.5	2.5	1200
Turnigy	4.8	4.6	2.3	935	2.1	2.5	850
390DMH	6	5.4	2.7	1100	2.6	2.5	1000
JR DS	4.8	3.82	1.91	990	1.9	2.5	900
368BB	6	4.32	2.16	1045	2.1	2.5	950
Hobbico	4.8	2.59	1.295	880	1.20	2.5	800
CS-12MG	6	3.03	1.515	880	1.46	2.5	800
Futaba	4.8	1.51	0.755	880	0.66	2.5	800
S3114	6	1.73	0.865	1045	0.77	2.5	950

O ensaio foi realizado utilizando um suporte para os servos, ligando-os por um testador de servos conectado a um pack de bateria. Para o monitoramento utilizou-se um osciloscópio. Na coleta do torque um peso foi pendurado no ponto a 1 cm do eixo .Pode-se observar a montagem da bancada de ensaio na figura 5.

Figura 5: Bancada de ensaio do server.

3.3. PACK DE BATERIAS

Na escolha da bateria, analisou-se a máxima corrente que pode ser exigida durante todo o tempo de voo por todos componentes eletrônicos, utilizando a equação 3, determinamos a capacidade de carga mínima necessária. De acordo com a necessidade de carga requerida para o sistema elétrico, realizou-se uma busca de baterias. A bateria selecionada está na tabela 3.

Tabela 3: Dados do pack de baterias

Bateria	Tipo de Célula	Número de Células	Tensão Nominal (V)	Capacidade (mAh)	Fator de Descarga	Descarga de Disparo	Massa (g)
Zippy				-00		10.5	
Flightmax Pack	LiFePo4	2	6,6	700	5C	10C	41

O principal motivo pela escolha do pack de bateria mencionado acima foi pelo desempenho que ela mesma apresentou durante anos anteriores, demonstrando confiabilidade durante o envelope de voo.

3.4. REGULADOR DE TENSÃO

Um ensaio foi realizado para determinar a eficiência do regulador de tensão em condições reais variando a carga e a temperatura de trabalho. O circuito montado para analise pode ser visto na figura 6.

Figura 6: Circuito montado para análise do regulador.

Registrou-se na tabela 4 os valores de corrente, tensão e tensão consumida na carga, utilizou-se para a coleta multímetros e controlou-se a temperatura através de uma lâmpada e um termostato. Os

valores nominais de corrente foram definidos pela equação 3 e o cálculo das potências com a equação 4. A montagem do sistema pode ser vista na figura 7.

$$U = R.I \qquad (3)$$

$$P = I.V (4)$$

Figura 7: Bancada de ensaio montada.

Os dados coletados podem ser visualizados na Tabela 4:

Tabela 4: Dados do Ensaio do Regulador de Tensão

T (°C)	R (Ω)	Ie (A)	Is (A)	Ve (V)	Vs (V)	Vr (V)	Vb (V)
	3,3	1,108	1,089	6,11	4,74	3,67	0,43
	5	0,864	0,848	6,19	4,95	4,15	0,35
20	8,3	0,593	0,522	6,19	5,09	4,29	0,35
	10	0,492	0,477	6,19	5,29	4,79	0,35
	15	0,347	0,331	6,41	5,46	4,93	0,13
	3,3	1,065	1,049	6,07	4,69	3,69	0,47
	5	0,841	0,824	6,17	4,89	4,17	0,37
40	8,3	0,581	0,509	6,21	5,01	4,12	0,33
	10	0,497	0,48	6,3	5,31	4,79	0,24
	15	0,282	0,256	6,39	5,53	4,23	0,15

Analisando os resultados obtidos temos a resistência média, potências e rendimentos como pode ser visto na Tabela 5.

Tabela 5: Resultados para conclusão do ensaio.

T (°C)	r (Ω)	Média (Ω)	Pe (W)	Ps (W)	Pr (W)	η (Ps/Pe)	I (A)
	0,388		6,77	5,162	3,997	0,762	1,089
	0,405		5,348	4,198	3,519	0,785	0,848
20	0,59	0,494	3,671	2,657	2,239	0,724	0,522
	0,711		3,045	2,523	2,285	0,829	0,477
	0,375		2,224	1,807	1,632	0,813	0,331
	0,441	0,493	6,465	4,92	3,871	0,761	1,049
	0,44		5,189	4,029	3,436	0,777	0,824
40	0,568		3,608	2,55	2,097	0,707	0,509
	0,483		3,131	2,549	2,299	0,814	0,48
	0,532		1,802	1,416	1,083	0,786	0,256

Através dos dados obtidos é possível ver que a temperatura não influencia na eficiência do regulador. O regulador interno do receptor e queda de tensão provam a funcionalidade dos servos motores para uma bateria de 6,6V.

Por final realizou-se um ensaio da mesma bateria ligada em um regulador de tensão criado pela própria equipe, a utilização de um Led vermelho possui a funcionalidade para mostrar quando o circuito está ligado. Pode-se ver o esquema eletrônico do regulador na figura 8.

Figura 8: Diagrama Eletrônico do Regulador de Tensão.

Descarregou-se a bateria ligada no regulador e com um Arduino Uno coletou-se os todos os dados e transformou-se no gráfico da figura 9.

Figura 9: Dados da descarregarem da bateria com o regulador.

Interpretou-se o resultado da figura 9 e a equipe chegou na conclusão que para um funcionamento perfeito deveria ter um degrau maior entre a tensão fornecida pela bateria e a tensão requerida, pelo TBJ utilizado no regulador este degrau dever ser aproximadamente 1,5V. Para atingir este intervalo um estudo para um pack de bateria com voltagem maior, em torno de 9,9V ou colocando dois packs atuais em série, porém, possui a desvantagem do aumento do PV da aeronave.

3.5. CABLAGEM

O dimensionamento da cablagem tem como objetivo a interligação dos componentes eletrônicos de forma eficiente e segura. Um estudo foi realizado afim de determinar a eficiência dos fios em relação á sua perda de tensão no decorrer de sua extensão. Para isso, realizou-se um ensaio para os dois tipos de fios disponíveis. Pode-se ver a figura 10.

Figura 10: Medindo a tensão para encontra a resistência interna da bateria.

Utilizou-se no ensaio duas amostras de 50cm de cada fio de bitolas diferentes, aplicando a tensão de nosso pack de bateria, aproximadamente 6,6V, variando a carga Rl para que seja consumido diferentes valores de corrente. O resultado do ensaio pode ser observado na tabela 6.

Tabela 6: Dados do resultado do ensaio de Cablagem.

Bitola dos Fios (mm²)	Fios (mm²) Interna (Ω/cm)		Tensão de Saída (V)	Tensão sobre o fio (V)	Erro por Imprecisão do Equipamento (mV)
1,5	0,032	1,58	5,752	5,966	10
2,5	0,048	1,48	5,9	6,078	10

Os seguintes resultados foram obtidos utilizando as tabelas 7 e 8.

Tabela 7: Dados dos Fios

2,5	mm²	1,5mm²				
Sem Carga (V)	Com Carga (V)	Sem Carga (V)	Com Carga (V)			
6,73	6,08	6,63	6,01			
6,59	6,11	6,51	6,03			
6,58	6,08	6,54	5,95			
6,53	6,06	6,5	5,94			
6,53	6,06	6,46	5,9			
M	l édia	Me	l édia			
6,592	6,078	6,528	5,966			

Utilizou-se os dados da tabela 6 é possível encontrar a resistência interna da bateria com a equação 5.

$$Rin = Rl \ x \frac{(Vin-Vl)}{Vl} \quad (5)$$

Tabela 8: Dados das Perdas nos Fios

Fio 2,5	mm²	Fio 1,5mm ²			
Com Carga (V)	Na Carga (V)	Com Carga (V)	Na Carga (V		
6,08	5,95	6,01	5,84		
6,11	5,95	6,03	5,58		
6,08	5,92	5,95	5,87		
6,06	5,91	5,94	5,75		
6,06	5,77	5,9	5,72		
Méd	lia	Méd	ia		
6,078	5,9	5,966	5,752		

Para calcular os valores teóricos utilizou-se a equação 6.

$$R = \rho \, x \frac{L}{A} \qquad (6)$$

Com 50cm de fio de 2,5mm² atingiu-se um valor de 0,048 Ω /cm, com uma perda de tensão de 0,178V. Com 50cm de fio de 1,5mm² atingiu-se um valor de 0,032 Ω /cm, com uma perda de tensão de 0,214V. Concluiu-se que a melhor opção seria o fio com maior bitola, fornecendo uma melhor performance do sistema, mesmo que ocorra um aumento do PV.

4. FMEA

Tabela 9: Análise de FMEA

Compone	Falhas Potenciais Severida Ocorrên					Con	Controles Atuais					
Compone nte	Modo	Efeito	Severida de	Causa	Ocorrên cia	Prevenção	Detecção	Detecç ão	N.P. R			
						ue	Não estar devidamen te posicionad os	3	1.		au	90
Antenas, Rádio Controle e Receptor	Falha na transmiss ão do sinal	O avião não decolar ou cair durante o voo	10	Estar em contato com carbono	1	Integrantes aptos para realizar a instalação e	Testes de funcioname nto antes do	3	30			
кесеріоі	Siliai	VOO		Antena danificada	4	manutenção do circuito.	VOO		120			
				Fora do alcance máximo permitido	2				60			
Baterias	Descarga completa	Perda do controle da aeronave	10	1. Fios desencapa dos decorrendo em curto- circuito 2. Não conferir estado da carga	2	1. Verificaçã o da tensão através do Voltwatch antes dos voos 2. Isolar os	Checagem porcentage m de carga da bateria, do estado físico da cablagem e sistema	2	40			
	Mal contato entre os terminais	Não fornecimento de energia ao sistema	7	Má instalação elétrica		conectores com fita isolante	elétrico como um todo.		28			
	Curto- circuito	Queima de servo ou danificação da bateria	6	Fio desencapa do	2	Inspeção dos fios	Verificação através do teste de continuidad e e testes com a recepção de sinal		60			
Extensões	Não condução de corrente ou transmiss ão de sinal	Falha no sistema elétrico como um todo.	10	Mal contato entre o ligamento dos conectores	5	armazename nto correto de aphlagam		5	250			
Regulador de tensão	Regulaçã o abaixo da nominal para servos	Não funcionament o dos servos	6	Diferença de tensão de entrada e saída menor que 1,5V	5	Utilizar bateria carregada a uma porcentagem com >80%	Checagem através do multímetro	1	30			
Servo- atuadores	Ausência de resposta ou movimen to inesperad	Desestabiliza ção da aeronave	7	1. Servo queimado ou danificado	5	Utilização de servos em bom estado	Testes dos comandos e teste de continuidad e das extensões	1	35			

5. CONCLUSÃO

As escolhas dos componentes utilizados na aeronave baseando em todos os ensaios realizados são adequados a suportar as situações críticas de voo durante todo o período da competição, garantindo a segurança necessária.