Ag24

January 22, 2024

```
[1]: import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/Users/thutranghoa/Code/Data_analysis/Data/Dataset.csv')
df
```

[1]:		Day	Date	CodedDa	ıy	Zone	Weather	Temperature	Traffic
	0	Wednesday	01-06-18		3	2	35	17	2
	1	Wednesday	01-06-18		3	3	36	16	3
	2	Wednesday	01-06-18		3	4	27	25	5
	3	Wednesday	01-06-18		3	5	23	23	3
	4	Wednesday	01-06-18		3	6	18	42	2
		•••	•••			•••	•••	•••	
	1434	Friday	10-06-18		5	140	47	38	1
	1435	Friday	10-06-18		5	141	15	8	4
	1436	Friday	10-06-18		5	142	26	38	1
	1437	Friday	10-06-18		5	143	16	34	3
	1438	Friday	10-06-18		5	144	16	17	1

[1439 rows x 7 columns]

[2]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1439 entries, 0 to 1438
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype			
0	Day	1439 non-null	object			
1	Date	1439 non-null	object			
2	CodedDay	1439 non-null	int64			
3	Zone	1439 non-null	int64			
4	Weather	1439 non-null	int64			
5	Temperature	1439 non-null	int64			
6	Traffic	1439 non-null	int64			
dtypes: int64(5),		object(2)				

memory usage: 78.8+ KB

```
[3]: from sklearn.preprocessing import LabelEncoder
    e=LabelEncoder()

df['Day'] = e.fit_transform(df['Day'])
    df['Date'] = e.fit_transform(df['Date'])
    df
```

[3]:	Day	Date	CodedDay	Zone	Weather	Temperature	Traffic
0	6	0	3	2	35	17	2
1	6	0	3	3	36	16	3
2	6	0	3	4	27	25	5
3	6	0	3	5	23	23	3
4	6	0	3	6	18	42	2
				•••	•••	•••	
1434	0	9	5	140	47	38	1
1435	0	9	5	141	15	8	4
1436	0	9	5	142	26	38	1
1437	0	9	5	143	16	34	3
1438	0	9	5	144	16	17	1

[1439 rows x 7 columns]

```
[6]: from sklearn.preprocessing import LabelEncoder
    e=LabelEncoder()

' Heat map'
    corr_matrix = df.corr()

# Set up the matplotlib figure
    # plt.figure(figsize=(20, 16))

# Draw the heatmap
    sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap='coolwarm')

# Add title
    plt.title('Correlation Matrix Heatmap')

# Show the plot
    plt.show()
```



```
y_pred_rf = rf.predict(X_test)
if(y_pred_rf.all()<2.5):
    y_pred1=np.round(y_pred_rf-0.5)

else:
    y_pred1=np.round(y_pred_rf+0.5)

acc_rf=(y_pred1 - y_test)/y_test
acc_rf = 100 - round(acc_rf.mean()*100,2)
print ('Accurancy : ', acc_rf)</pre>
```

Accurancy: 87.03

```
[30]: from sklearn.metrics import ConfusionMatrixDisplay,confusion_matrix,__

classification_report

disp = ConfusionMatrixDisplay.from_predictions(y_test, y_pred1)

plt.title ('Random Forest')

plt.show()
```



```
[25]: from sklearn.svm import SVR
    svr = SVR(kernel = 'rbf')
    svr.fit(X_train,y_train)
    y_pred_sv = svr.predict(X_test)
    if(y_pred_sv.all()<2.5):
        y_pred=np.round(y_pred_sv-0.5)

else:
        y_pred=np.round(y_pred_sv+0.5)

acc_sv=(y_pred - y_test)/y_test
    acc_sv = 100 - round(acc_sv.mean()*100,2)
    print ('Accurancy : ', acc_sv)</pre>
```

Accurancy: 86.56

[33]: Text(0.5, 1.0, 'Accurancy of each model')


```
[34]: import seaborn as sns
sns.scatterplot(df, x = 'Weather', y = 'Temperature')
```

[34]: <Axes: xlabel='Weather', ylabel='Temperature'>

Dựa trên scatter plot và correlation matrix, ta ket luận weather và temperature không có mối liên hệ