Forest Fires in Portugal - What Are The Causes? Practical Assignment of Data Mining I

By Robson Teixeira, Eduardo Rodrigues and Claudio Rocha

M:CC - FCUP, 10/01/2021

Contents

1	Intr	roduction	2
2	Pro	blem Definition	į
3	For	est Fire Dataset	4
4	Dat	a Preparation	8
	4.1	Data Cleaning	8
	4.2	Data Transformation	10
	4.3	Statistical exploration of the variables	11
	4.4	Feature Engineering	13
	4.5	Feature Selection	13
	4.6	Dimensionality Reduction	14
	4.7	Data exploration	14
5	Pre	diction Models	21
	5.1	Distance-based Approach	21
	5.2	Probabilistic Approach	21
	5.3	Mathematical Formulas	21
	5.4	Logical Approaches	21
	5.5	Optimization Approaches	21
	5.6	Ensemble Approaches	21
6	Cor	nclusions, Shortcomings and Future Work	22
7	App	pendix	23

Introduction

In this project, we try to find the best machine learning model that more accurately predicts whether a forest fire occurs negligently, intentionally, naturally or recurrently. From a database that was given to us, we divided the work into several parts.

The remainder of this report is organized as follows: in chapter 2, we describe the importance of predicting forest fires that are a big problem actually; in chapter 3 is described the causes ofnthe ocurrences that is the variable that the model will be predict and a table with all the variables of the original dataset; chapter 4 is dedicated to the exploration, cleaning and engineering of the data. Some graphics are plotted in this chapter and they help to visualize the origins and locations of the forest fires; the models used to test the dataset are described and compared in chapter 5; in chapter 6, We finalize with the main conclusions and the last chapter includes references.

Problem Definition

Forest fires are a very important issue that negatively affects climate change. Typically, the causes of forest fires are those oversights, accidents and negligence committed by individuals, intentional acts and natural causes. The latter is the root cause for only a minority of the fires.

Their harmful impacts and effects on ecosystems can be major ones. Among them, we can mention the disappearance of native species, the increase in levels of carbon dioxide in the atmosphere, earth's nutrients destroyed by the ashes, and the massive loss of wildlife.

Data mining techniques can help in the prediction of the cause of the fire and, thus, better support the decision of taking preventive measures in order to avoid tragedy. In effect, this can play a major role in resource allocation, mitigation and recovery efforts.

Forest Fire Dataset

The Institute for Nature Conservation and Forests (ICNF) is the governmental body responsible for the nature and forest policies, including the management of protected areas and state managed national, municipal, and communal forests of mainland Portugal. The ICNF has been maintained a database with data of all forest fires that occurred in Portugal over several years. The dataset used in this study is a subset extracted from this database regarding the fires that occurred over 2015. It consist of **7511** records of fires and for each one, there is relevant information such as the GPS coordinates (latitude and longitude) where occur the fire, the date and time of fire alert, the date and time of the first intervention, and the date and time of fire extinction, besides the origin of the ignition, the affected area, and the cause type. The table 3 describes all variables contained in Forest Fires dataset:

Table List of variables in Forest Fires dataset.

Variable	Type	Description
id	integer	id number
region	character	region name
district	character	district name
municipality	character	municipality name
parish	character	parish name
lat	character	latitude value
lon	character	longitude value
origin	character	how the fire started
alert_date	character	date when fire started
alert_hour	character	alert hour
extinction_date	character	date of the end of fire
extinction hour	character	hour of the end of fire
$firstInterv_date$	character	date of intervention
firstInterv_hour	character	hour of intervention
alert_source	logical	alert source
village_area	numeric	village area affected
vegetation_area	numeric	vegetation area affected

Variable	Type	Description
farming_area village_veget_area total_area cause_type	numeric numeric	farming area affected total village+veget affected total area affected cause of the fire

A classification for causes types are presented in table 3.2.

Table 3.2: Classifications of causes of forest fires.

Cause	Description
Unknown	absence of suficient objective evidence to determine the cause of the ignition
	of fire
Natural	lightning generated in thunderstorms
Negligence	the misguided use of fire in activities such as burning trash, mass burning of
	agricultural and forest fuels, fun and leisure activities; failure to properly
	extinguish cigarettes by smokers; the dispersal and transport of incandescent
	particles from chimneys; etc.
Intentional	incendiarism and arson, mostly resulting from behaviors and attitudes
	reacting to the constraints of agroforestry management systems and to
	conflicts related to land use
Rekindling	reburning of an area over which a fire has previously passed, but where fuel
	has been left that is later ignited by latent heat, sparks, or embers

A glimpse of the structure of the Forest Fires data set is provided below:

Table: A glimpse of the structure of the data set.

```
## Rows: 7,511
## Columns: 21
## $ id
                        <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1...
## $ region
                        <chr> "Entre Douro e Minho", "Entre Douro e Minho", "T...
                        <chr> "Viana do Castelo", "Porto", "Vila Real", "Vila ...
## $ district
## $ municipality
                        <chr> "Ponte de Lima", "Marco de Canaveses", "Boticas"...
                        <chr> "Serdedelo", "Vila Boa de Quires", "Cerdedo", "G...
## $ parish
## $ lat
                        <chr> "41:44:48.5663999999878'', "41:12:58.4280000000...
## $ lon
                        <chr> "8:31:12.3276000000027'', "8:12:28.378800000002...
                        <chr> "fire", "fire", "firepit", "firepit", "f...
## $ origin
                        <chr> "2015-03-24", "2015-03-24", "2015-03-24", "2015-...
## $ alert date
                        <chr> "17:01:00", "17:10:00", "21:40:00", "16:00:00", ...
## $ alert hour
## $ extinction date
                        <chr> "2015-03-24", "2015-03-24", "2015-03-25", "2015-...
                        <chr> "18:09:00", "18:47:00", "05:45:00", "17:00:00", ...
## $ extinction hour
                        <chr> "2015-03-24", "2015-03-24", "2015-03-24", "2015-...
## $ firstInterv date
```

A summary for each variable present in dataset is provided below. The metrics displayed are: quantity and percentage of zeros, quantity and quantity and percentage of NA's, data type and quantity of unique values.

Table 4: A summary of variables of the dataset.

##		variable	q_zeros	p_zeros	q_na	p_na	q_{inf}	p_inf	type	unique
##	1	id	0	0.00	0	0.00	0	0	integer	7511
##	2	region	0	0.00	501	6.67	0	0	character	10
##	3	district	0	0.00	0	0.00	0	0	character	19
##	4	municipality	0	0.00	0	0.00	0	0	character	297
##	5	parish	0	0.00	0	0.00	0	0	character	2270
##	6	lat	0	0.00	0	0.00	0	0	character	5858
##	7	lon	0	0.00	0	0.00	0	0	character	5867
##	8	origin	0	0.00	0	0.00	0	0	${\tt character}$	5
##	9	alert_date	0	0.00	0	0.00	0	0	${\tt character}$	317
##	10	alert_hour	0	0.00	0	0.00	0	0	${\tt character}$	1312
##	11	extinction_date	0	0.00	9	0.12	0	0	character	319
##	12	extinction_hour	0	0.00	9	0.12	0	0	${\tt character}$	1201
##	13	firstInterv_date	0	0.00	214	2.85	0	0	${\tt character}$	318
##	14	firstInterv_hour	0	0.00	215	2.86	0	0	${\tt character}$	1202
##	15	alert_source	0	0.00	7511	100.00	0	0	logical	0
##	16	village_area	5349	71.22	0	0.00	0	0	numeric	591
##	17	vegetation_area	2648	35.25	0	0.00	0	0	numeric	1052
##	18	<pre>farming_area</pre>	5976	79.56	0	0.00	0	0	numeric	650
##	19	<pre>village_veget_area</pre>	1413	18.81	0	0.00	0	0	numeric	1377
##	20	total_area	8	0.11	0	0.00	0	0	numeric	1781
##	21	cause_type	0	0.00	0	0.00	0	0	${\tt character}$	4

A sample the first observations is provided below:

```
## # A tibble: 6 x 21
## id region district municipality parish lat lon origin alert_date
## <int> <chr> <chr< <chr> <chr
```

```
## 2
        2 Entre~ Porto
                           Marco de Ca~ Vila ~ 41:1~ 8:12~ fire
                                                                  2015-03-24
## 3
                                        Cerde~ 41:3~ 07:5~ fire
         3 Trás-~ Vila Re~ Boticas
                                                                  2015-03-24
## 4
         4 Trás-~ Vila Re~ Montalegre
                                        Gralh~ 41:5~ 7:42~ firep~ 2015-03-25
## 5
        5 Trás-~ Vila Re~ Valpaços
                                        Alger~ 41:3~ 07:2~ firep~ 2015-03-12
## 6
         6 Entre~ Vila Re~ Mondim de B~ Ermelo 41:2~ 07:5~ firep~ 2015-03-13
## # ... with 12 more variables: alert_hour <chr>, extinction_date <chr>,
## #
       extinction_hour <chr>, firstInterv_date <chr>, firstInterv_hour <chr>,
## #
       alert_source <lgl>, village_area <dbl>, vegetation_area <dbl>,
## #
       farming_area <dbl>, village_veget_area <dbl>, total_area <dbl>,
## #
       cause type <chr>
```

Data Preparation

Data preparation consists of the process of cleaning and transforming raw data in a form that can be used by machine learning algorithms. Next sections, we exploit the Forest Fires dataset in order to perform the steps of cleaning a transforming, when need.

4.1 Data Cleaning

4.1.1 Latitude and Longitude

The Forest Fires dataset store the latitude and longitude of the place where occurred the fire into variables lat e lon respectively. These values are in format of Degrees Minutes' Seconds' and for the reason contain special characters o, ', : and ". Besides, there are wrong values into variables as dates between the coordinates and values with scientific notation E-12, E-11 and E-02. A sample of these inconsistencies is provided in the tables below:

```
## # A tibble: 1 x 2
##
     lat
                               lon
     <chr>
                               <chr>
## 1 41°41'25.821599999997'', 8°20',37.446000000002'',
## # A tibble: 1 x 2
##
     lat
                           lon
##
                           <chr>
     <chr>>
## 1 1900-01-01 14:19:38 07:30:27
## # A tibble: 1 x 2
##
     lat
                                  lon
                                  <chr>
##
     <chr>
## 1 38:36:5.11590769747272E-12 8:35:49.9999999999972
```

A cleaning and transformation steps were performed on lat and lon variables to remove the special caracters and scientific notation. For the values wrongs where there is a date among the coordinates, it was performed an data imputation based on another observations that has the same region, district, municipality and parish. After the cleaning steps, the values were transformated from GPS coordinates to decimals coordinates in order to be able retrieve historical data from nearest weather stations using the RNOAA package

The data imputation and transformation generated 8 NA's in lat and lon variables for parishes listed below:

```
## # A tibble: 8 x 6
##
               district municipality
     region
                                         parish
                                                                           lon
                                                                     lat
     <chr>
                        <chr>
##
               <chr>
                                         <chr>
                                                                     <chr> <chr>
## 1 Alentejo Évora
                        Mora
                                                                     <NA>
                                                                           <NA>
                                         Cabeção
## 2 Alentejo Évora
                        Montemor-o-Novo Cortiçadas de Lavre
                                                                     < NA >
                                                                            <NA>
## 3 Alentejo Évora
                        Montemor-o-Novo Ciborro
                                                                            <NA>
                                                                     <NA>
## 4 Alentejo Évora
                        Mourão
                                         Granja
                                                                     <NA>
                                                                            <NA>
## 5 Alentejo Évora
                        Évora
                                         Horta das Figueiras
                                                                     <NA>
                                                                           <NA>
## 6 Alentejo Évora
                        Montemor-o-Novo Cortiçadas de Lavre
                                                                     < NA >
                                                                            <NA>
## 7 Alentejo Évora
                                         São Lourenço de Mamporcão <NA>
                                                                            <NA>
                        Estremoz
## 8 Alentejo Évora
                                         Brotas
                                                                     <NA>
                        Mora
                                                                            <NA>
```

In order to fixing this, the latitude and longitude values for these parishes were imputed directly from the localization data retrieved from the internet.

4.1.2 District

Mainland Portugalis is divided into 18 districts and the variable district from Forest Fires dataset refer the place where occurred the fires. As seen in table @ref(tab:summary_data), this variable has 19 unique values, so there are some inconsistent data. The table below display the unique values for this variable:

```
##
    [1] "Viana do Castelo" "Porto"
                                                 "Vila Real"
                                                                      "Bragança"
    [5] "Braga"
                                                 "Santarém"
                                                                      "Viseu"
##
                             "Portalegre"
    [9]
        "Guarda"
                             "Leiria"
                                                  "Castelo Branco"
                                                                      "Aveiro"
## [13] "Évora"
                             "Faro"
                                                 "Coimbra"
                                                                      "Viana Do Castelo"
   [17] "Lisboa"
                             "Beja"
                                                  "Setúbal"
```

As seen in table above, there are two references for the same district: *Viana do Castelo* and *Viana Do Castelo*. So a step of cleaning was performed into this variable values.

4.1.3 First Intervention and Extinction

The variables firstInterv_date and firstInterv_hour store the date and time that occured the the first intervention by autorities after the fire alert. As seem in table 4, these variables have a total of NA's values equals 214 and 215, respectively. In order to reduce these quantity, a data imputation were performed based on values of extinction_date and extinction_hour assumption that if there are values for extinction date and time it because some intervention was realized. After data imputatio the quantity of NA's was reduced to 7 in both variables as can be seen below:

##	variable	${\tt q_zeros}$	<pre>p_zeros</pre>	q_na	p_na	q_{inf}	p_inf	type	unique
##	<pre>1 firstInterv_date</pre>	0	0	7	0.09	0	0	${\tt character}$	318
##	<pre>2 firstInterv_hour</pre>	0	0	7	0.09	0	0	${\tt character}$	1209
##	3 extinction_date	0	0	9	0.12	0	0	${\tt character}$	319
##	4 extinction_hour	0	0	9	0.12	0	0	character	1201

The remaining quantity of NA's values in firstInterv_date, firstInterv_hour, extinction_date, and extinction_hour represent 0.9% and 1.2% respectively of the total of observations. As these values are relatively low, these observations were removed from dataset.

4.1.4 Variable: Alert Source

As can be seen in table below, the variable alert_source has 100% of values with NA's, so this variable were removed from dataset.

4.2 Data Transformation

In order to

Changing type of some variables to factor

Creating new features

Variable alert

Marking a check point

It was necessary to do a cleaning on lat and lon variables and convert their contents from GPS coordinate to decimals.Before the transformation they were like below:

4.3 Statistical exploration of the variables

Table 4.1 describes all variables contained in the data set that was analised in sections 4.1 and 4.4.

Table 4.1: List of all variables to be analysed.

Variable	Type	Description		
id	integer	id number		
region	factor	region name		
district	factor	district name		
municipality	factor	municipality name		
parish	factor	parish name		
lat	character	latitude value		
lon	character	longitude value		
origin	factor	how the fire started		
alert_date	character	date when fire started		
alert_hour	character	alert hour		
extinction_date	character	date of the end of fire		
extinction hour	character	hour of the end of fire		
$firstInterv_date$	character	date of intervention		
firstInterv_hour	character	hour of intervention		
alert_source	logical	alert source		
village_area	numeric	village area affected		
alert_source	numeric	alert source		
village_area	numeric	village area affected		
vegetation_area	numeric	vegetation area affected		
farming_area	numeric	farming area affected		
village_veget_area	numeric	total village+veget affected		

Variable	Type	Description		
total_area cause_type	numeric factor	total area affected cause of the fire		

Understanding the structure of the data, the distribution of the variables, and the relationships between them is fundamental to build a solid model.

4.3.1 id

The variable id only represents the line number of the observations. Initially, it isn't an important variable and can be retired possibly of the final data set.

4.3.2 region, district, municipality and parish

These four variables represents the areas of the occurrences and we can observe by summary that the variable region has a lot of NA's (501) that corresponds to 6,67% of the total of lines. The other 3 variables don't have zeros nor NA's, but parish and municipality have many distinct observations. The distribution of the occurrences by region and district can be observer in grafics 4.2 and 4.3.

4.3.3 lat and lon

The variables lat and lon represents points of the occurrence, don't have zeros nor NA's but there is a lot of different observations and these variables can be represented by the district that include many points in it. Maybe, district can substitute these two variables but it must be confirmed by the analysis to be done.

4.3.4 origin

Origin informs the reason why the fire started and apparently appears to be an important observation for evaluation. It can be observed in figure 4.5.

4.3.5 alert_date, alert_hour

These two variables inform the date and hour of the advice of the occurrence. They don't have NA's.

4.3.6 extinction_date, extinction_hour

These are the information about the end of the fire and they have to be analysed if they are important because the fire just finished and we don't know yet if they help to predict the occurrence.

4.3.7 firstInterv date, firstInterv hour

They represent the moment of starting of the fight against the fire.

4.3.8 alert_source

This variable, how we can see, doesn't have any information that can be used in the model because all the observations are NA's.

4.3.9 village_area, vegetation_area, farming_area, village_veget_area, total_area

4.3.10 cause_type

This is the variable to be predicted by the model that will be chosen. It shows the four causes of the occurrences: intentional, natural, negligent and rekindling. They can be observed in the graphic 4.4.

4.4 Feature Engineering

Deriving new variables from available data and merging datasets WEATHER DATA AND FOREST FIRES getting new variables that can help on the predictions.

We did an imputation of value in tavg variable based on tmax and tmin, in tavg variable based on tavg15d, in tavg15d variable if NaN, in tmax variable based on tavg and tmin, in tmin variable based on tavg and tmax

4.5 Feature Selection

Identifying those input variables that are most relevant to the task. First, we rename the dataset and extracted some variables to minimize it. The variables "parish" and "municipality" have many different observations, "id" can be retired because it is only the number of the lines of dataset and we don't need this column, "region" has 501 NA's and we don't have how to substitute them, "alert_source" only has NA's and it can be removed.

changing to numeric
##Creating train and test datasets

4.6 Dimensionality Reduction

Creating compact projections of the data.

4.7 Data exploration

Based on the dataset we ploted some graphics that helped us to get some conclusions and showed a general notion about the problem of the forests fires.

Figure 4.1 depicts the bar graphic of the distribution of forests fires during 2015. The x-axis represents the months along the year 0f 2015 and the y-axis represents the total of fires that occurred by month.

Figure 4.1: Barplot of the distribution of forests fires during 2015.

This graphic showed us that july and august are the months with the largest ocurrences and the period between march and september needs more atention. Probably we will consider the variable month as important to the analisys.

In another graphic, figure 4.2 we plotted the bar graphic of the distribution of forests fires by region. The x-axis represents the regions and the y-axis represents the total of fires that occurred by region.

Figure 4.2: Barplot of the distribution of forests fires by regions.

Observing this grafic we saw that Entre Douro e Minho was the region with more forests fires and other regions like Centro, Lisboa and Norte were with minimum occurrences.

Another important graphic is the figure 4.3 that corresponds to the distribution of forests fires by district. The x-axis represents the districts and the y-axis represents the total of fires that occurred by region.

This graphic indicates that Porto and Viana do Castelo were the districts with more forests fires.

A bar plot of forests fires related with the causes of them, is being reported on figure 4.4. On the x-axis are listed the different causes and on y-axis represents the total of fires that occurred.

Figure 4.3: Barplot of the distribution of forests fires by districts.

Figure 4.4: Barplot of the distribution of forests fires by causes.

A thing that calls our atention is the difference between the number of fires that were caused by negligence and by natural causes. The number of forest fires caused intentionally were almost the half of the negligent causes what is an alarmant number.

We plotted too a bar plot of forests fires during 2015 by origin, figure 4.5.On the x-axis are listed the different origins and on y-axis represents the total of fires that occurred.

Distribution of forests fires by origin across 2015 4000 - 3000 - 1000

Figure 4.5: Barplot of the distribution of forests fires by origins.

The firepit was the origin of the most forests fires comparing it with the other origins.

The relationship between district, month and causes is represented on figure 4.6. The x-axis includes the different districts, y-axis represents the months of ocurrences and the variable cause is showed by colours listed on the labels.

The relationship between region, month and causes is represented on figure 4.7. The x-axis includes the different regions, y-axis represents the months of ocurrences and the variable cause is showed by colours listed on the labels.

Figure 4.6: Distribution of forests fires relating district, month and causes.

Figure 4.7: Distribution of forests fires relating region, month and causes.

Prediction Models

In this section was created

- 5.1 Distance-based Approach
- 5.1.1 K-Nearest Neighbor
- 5.2 Probabilistic Approach
- 5.3 Mathematical Formulas
- 5.4 Logical Approaches
- 5.5 Optimization Approaches
- 5.6 Ensemble Approaches

Conclusions, Shortcomings and Future Work

Appendix