

Informática Gráfica. Modelos Jerárquicos

NodoGrafoEscena, Diagrama PHIGS, Parámetros Animaciones

Ricardo Ruiz Fernández de Alba

Curso 2023/24.

Doble Grado en Ingeniería Informática y Matemáticas. Universidad de Granada

19 de noviembre de 2023

Modelo Jerárquico. Motherboard

Se ha propuesto replicar el personaje de ficción Motherboard de la Serie de Animación 3D Cyberchase.

1.1 | Grafo PHIGS

1.2 | Información de los Nodos

- Motherboard
 - NodoGrafoEscena
 - Parámetros:
 - * angulo_cabeza (α)
 - * posicion_pupila (β)
 - Color: No
 - Archivos: modelo-jer.h, modelo-jer.cpp
 - Rango de líneas: 6-46
- BaseMotherbaord
 - Nodo Terminal (MallaInd)
 - Color: RGB(0.0, 0.0, 0.7)
 - Archivos: modelo-jer.h, modelo-jer.cpp
 - Rango de líneas: 48-74
- Cuello
 - NodoGrafoEscena
 - Color: RGB(0.282,0.239,0.545)
 - Archivos: modelo-jer.h, modelo-jer.cpp
 - Rango de líneas: 104-114
- Cabeza
 - NodoGrafoEscena
 - Parámetros:
 - * posicion_pupila (β)
 - Color: RGB(0.6, 0.6, 1.0)
 - Archivos: modelo-jer.h, modelo-jer.cpp
 - Rango de líneas: 117-137

■ Pelo

- NodoGrafoEscena
- Color: RGB(0.0, 0.6, 0.8)
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 156-168

■ Rizos

- Nodo Terminal (MallaRevol)
- Color: RGB(0.0, 0.6, 0.8)
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 170-185

■ Semiesfera

- NodoTerminal (MallaRevol)
- **Color:** RGB(0.0, 0.6, 0.8)
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 187-204

■ Boca

- NodoGrafoEscena
- Color: No
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 206-211

■ BocaPoligono

- Nodo Terminal (MallaInd)
- **Color:** RGB(0,0,1)
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 213-243

Nariz

- NodoGrafoEscena
- **Color:** RGB(0,0,1)
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 245-250

■ Tetraedro

- Nodo Terminal (MallaInd)
- Color: No
- Archivos: malla-ind.h, malla-ind.cpp
- Rango de líneas: 367-387

■ OjoPupila

- NodoGrafoEscena
- Parámetros:
 - * posicion_pupila (β)
- Color: No
- Archivos: modelo-jer.h, modelo-jer.cpp
- Rango de líneas: 256-266
- CircunferenciaZ(0.3)
 - NodoTerminal (MallaInd)
 - **Color:** RGB(0, 0, 1)
 - Archivos: modelo-jer.h, modelo-jer.cpp
 - Rango de líneas: 290-310
- CircunferenciaZ(0.1)
 - NodoTerminal (MallaInd)
 - **Color:** RGB(0, 0, 0)
 - Archivos: modelo-jer.h, modelo-jer.cpp
 - Rango de líneas: 290-310

1.3 | Información sobre los Parámetros

■ Rotación del cuello

- **Nombre:** angulo_cuello (en el grafo α)
- Nodos donde está la matriz que depende del parámetro:
 - * Motherboard: matriz pm_rotacion_cuello
- Descripción: rotación en torno al eje X con un ángulo que varía oscilante entre -10° y 10° con 0.5 oscilaciones por segundo.
- Construcción matriz

```
float v_min = -15.0f, v_max = 15.0f;
float a = angulo_cabeza_inicial;
float b = (v_max - v_min) / 2;
float n = 0.5;
fijarRotacionCuello(a+b*sin(2*M_PI*n*t_sec));
    (pm_rotacion_cabeza=rotate(radians(angulo_cabeza), vec3(1,0,0)))
```

■ Rotación de la cabeza

- **Nombre:** angulo_cabeza (en el grafo β)
- Nodos donde está la matriz que depende del parámetro:
 - * Motherboard: matriz pm_rotacion_cabeza
- Descripción: rotación en torno al eje Y con un ángulo que varía oscilante entre -30° y 30° con 0.75 oscilaciones por segundo.
- Construcción matriz

```
float v_min = -30.0f, v_max = 30.0f;
float a = angulo_cabeza_inicial;
float b = (v_max - v_min) / 2;
float n = 0.5;
fijarRotacionCabeza(a+b*sin(2*M_PI*n*t_sec));
    (pm_rotacion_cabeza=rotate(radians(angulo_cabeza), vec3(0,1,0)))
```

■ Traslación de las pupilas de los ojos

- **Nombre:** pos_pupila (en el grafo γ)
- Nodos donde está la matriz que depende del parámetro:
 - * Motherboard
 - * Cabeza
 - * OjoPupila (Izq): matriz pm_posicion_pupila
 - * OjoPupila (Der): matriz pm_posicion_pupila
- Descripción: desplazamiento oscilante en el eje X con un periodo de 1 segundo y una amplitud de 0.30 unidades de distancia
- Construcción matriz

```
float v_min = -0.15, v_max = 0.15;
float a = pos_pupila_inicial;
float b = (v_max - v_min) / 2;
float n = 1;
fijarPosicionPupila(a+b*sin(2*M_PI*n*t_sec));
    (pm_posicion_pupila = translate(vec3(pos_pupila, 0.0, 0.05)))
```