Victor A. Ying

(301) 337-8428 • victory@csail.mit.edu • victorying.com

RESEARCH INTERESTS

Computer architecture, parallelizing compilers, parallel programming models, programmable accelerators, locality-aware execution, speculative execution, distributed systems, parallel algorithms, parallel runtimes

EDUCATION

Massachusetts Institute of Technology, Cambridge, Massachusetts

Ph.D. in Electrical Engineering and Computer Science S.M. in Electrical Engineering and Computer Science

anticipated 2022

June 2019

- Cumulative GPA: 4.93 / 5.00
- Thesis title:

Scaling Sequential Code with Hardware-Software Co-Design for Fine-Grain Speculative Parallelization

• Thesis advisor: Daniel Sanchez

Princeton University, Princeton, New Jersey

B.S.E. summa cum laude in Electrical Engineering

May 2016

- Cumulative GPA: 3.95 / 4.00
- Thesis title: Analyzing Decision Heuristic Effectiveness in Boolean Satisfiability Solvers
- · Thesis advisor: Sharad Malik

Selected coursework: Computer architecture, operating systems, computer networks, algorithms, functional programming, program analysis, logic design, machine learning

RESEARCH & INDUSTRY EMPLOYMENT

Research Assistant and Edwin Webster Fellow

September 2016 – Present

MIT Computer Science and Artificial Intelligence Lab, Cambridge, Massachusetts

- Supervisor: Daniel Sanchez
- Design and evaluate enhancements to the Swarm multicore architecture, using microarchitectural simulation.
- Lead development of LLVM/Clang-based compilers targeting new hardware for massive parallelism.
- · Implement new language extensions and domain-specific languages for high-performance graph processing.

Research Intern June – September 2021

Microsoft Research Lab - Redmond, Washington

 Build MLIR-based compiler and prototype code transformations to co-optimize communication and computation in distributed GPU workloads such as training and inference for enormous ML models.

Research Intern May – August 2018

NVIDIA Research, Westford, Massachusetts

Develop analytical modeling tool for design space exploration and code optimization for efficient execution
of linear algebra and machine learning workloads on a range of future hardware architectures.

Hardware Engineering Intern

May – August 2015

Pure Storage, Mountain View, California

• Developed firmware (C) and created tools (Python) for debugging prototype embedded hardware through a serial connection. Implemented a command line interface, GDB server, resource monitoring tools, and a checksummed packet protocol.

Software Engineering Intern

May – August 2014

Pure Storage, Mountain View, California

- Developed and deployed the first driver enabling integration of Pure Storage FlashArrays and OpenStack, an open-source cloud platform. Transferred ownership of this sales-driving feature to full-time engineers.
- · Wrote and open-sourced a Python library for managing FlashArrays, used for automated testing.

Technical Intern June – August 2013

Northrop Grumman Electronic Systems, Baltimore, Maryland

- Optimized designs of RF electronics in radar systems using CAD and simulation tools.
- · Characterized prototypes to identify suspect connections and components to be redesigned.

Student Technician June 2012 – June 2016

National Institute of Standards and Technology, Gaithersburg, Maryland

- · Supervisor: Heather J. Patrick
- Developed precise positioning software for robotic arms to enable repeatable reflectance measurements.
- · Modeled distortions in optical scattering measurements and automated post-processing correction factors.

REFEREED CONFERENCE PAPERS

A. Brahmakshatriya, E. Furst, **V. A. Ying**, C. Hsu, C. Hong, M. Ruttenberg, Y. Zhang, T. Jung, D. Richmond, M. Taylor, J. Shun, M. Oskin, D. Sanchez, and S. Amarasinghe, "Taming the Zoo: A Unified Graph Compiler Framework for Novel Architectures", in *48th Intl. Symposium on Computer Architecture (ISCA)*, 2021. Acceptance rate: 76/407 (19%)

V. A. Ying, M. C. Jeffrey, and D. Sanchez, "T4: Compiling Sequential Code for Effective Speculative Parallelization in Hardware", in *47th Intl. Symposium on Computer Architecture (ISCA)*, 2020. Acceptance rate: 77/428 (18%)

A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, **V. A. Ying**, A. Mukkara, R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, "Timeloop: A Systematic Approach to DNN Accelerator Evaluation", in *Intl. Symposium on Perf. Analysis of Systems and Software (ISPASS)*, 2019. Acceptance rate: 26/88 (30%)

M. C. Jeffrey, **V. A. Ying**, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez, "Harmonizing Speculative and Non-Speculative Execution in Architectures for Ordered Parallelism", in *51st Intl. Symposium on Microarchitecture (MICRO)*, 2018. Acceptance rate: 74/351 (21%)

S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, **V. A. Ying**, J. Emer, and D. Sanchez, "Fractal: An Execution Model for Fine-Grain Nested Speculative Parallelism", in *44th Intl. Symposium on Computer Architecture (ISCA)*, 2017. Acceptance rate: 54/322 (17%)

OTHER PUBLICATIONS

S. Malik and **V. A. Ying**, "On the Efficiency of the VSIDS Decision Heuristic", presented at *Theoretical Foundations of SAT Solving Workshop*, 2016.

H. J. Patrick, C. J. Zarobila, T. A. Germer, V. A. Ying, C. A. Cooksey, and B. K. Tsai, "Tunable supercontinuum fiber laser source for BRDF measurements in the STARR II gonioreflectometer", in *Proceedings of SPIE* Volume 8495, 2012.

TALKS

"Parallelizing Sequential Code with Compiler-Hardware Co-Design", at UC Santa Cruz (Languages, Systems, and Data Seminar), February 2021.

"T4: Parallelizing Sequential Code with Compiler-Hardware Co-Design", at Facebook, June 2020.

"T4: Compiling Sequential Code for Effective Speculative Parallelization in Hardware", at *47th Intl. Symposium on Computer Architecture (ISCA)*, June 2020.

"SCC: Compiling Sequential Code for Effective Speculative Parallelization in Hardware", at *Boston Area Architecture Workshop (BARC)*, January 2020.

"Compiling Sequential Code for a Speculative Parallel Architecture", selected from Student Research Competition to present in main session of *41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)*, June 2019.

"Making Parallelism Pervasive with the Swarm Architecture", guest lecture in MIT course 6.S898: *Advanced Performance Engineering for Multicore Applications*, 2017.

HONORS & AWARDS

Finalist, Facebook Fellowship Program	2021
Best PhD Forum Poster, HPDC	2019
Second Place in Student Research Competition, PLDI	2019
Best Poster, Industry-Academia Partnership MIT Cloud Workshop	2018
Honorable Mention, NSF Graduate Research Fellowship Program	2018
Edwin Webster Fellowship, \$77,711 from MIT Dept. of EECS	2016–2017

Honorable Mention, Ford Foundation Predoctoral Fellowship Program	2016
Highest Honors, Princeton Dept. of Electrical Engineering	2016
Hisashi Kobayashi Prize, Princeton Dept. of Electrical Engineering	2016
Sigma Xi, Princeton Chapter	2016
Phi Beta Kappa, New Jersey Beta Chapter	2015
Tau Beta Pi, New Jersey Delta Chapter	2014
Shapiro Prize for Academic Excellence, Princeton University	2014

TEACHING & MENTORSHIP

Chief Operating Officer

June 2012 – Present

HIP Kids Are Scientists Too, a national 501(c)(3) nonprofit

- · Expand after-school science programs for underprivileged elementary school students to nine states.
- · Mentor high school branch leaders and volunteers, who recruit peers, fundraise, and run science activities.
- · Manage finances, tax filings, nonprofit status, and KAST's website and shared online resources for branches.

Teaching Assistant Spring 2020

6.823: Computer System Architecture, MIT

- · Held discussion sessions, review sessions, and office hours on graduate-level computer architecture.
- Wrote, edited, and graded lab assignments and quizzes to teach principles of architecture research.

Lab Teaching Assistant

Fall 2014, Fall 2015

ELE 206: Contemporary Logic Design, Princeton University

- Held lab sessions and taught digital logic, RTL design, and FPGA synthesis.
- Rewrote assignments to define and use a subset of Verilog and new cross-platform simulation software.
- Overhauled the general-purpose processor design project with a new ISA and software testing tools.

Peer Academic Advisor and Peer Tutor

2015-2016

Office of the Dean of Undergraduate Students, Princeton University

- Engage first years in planning their academic paths, enrolling in courses, and adjusting to college academics.
- Tutor students in introductory mathematics, physics, and engineering classes.

SKILLS

Computer architecture research, analytical and simulation-based modeling, compiler optimizations. Proficient in C++, C, Python, LLVM, x86/64 assembly, and Unix tools. Experience with PyTorch, TensorFlow, MATLAB, Java, Verilog, OCaml, Haskell, Z3, and Coq.

[Curriculum vitae compiled on 2021-08-27]