Introduction to \mathbb{R}^*

Section 6: Environments, Running R , Libraries and some probability distributions

Wim R.M. Cardoen

Last updated: 10/29/2025 @ 12:47:39

Contents

1	R Environments	2			
2	Running R				
3	R Packages 3.1 Installation of R packages	2 2 2			
4	Probability distributions 4.1 Discrete distributions	3 4 5			
B	Sibliography	7			

 $^{^*}$ \odot - Wim R.M. Cardoen, 2022 - The content can neither be copied nor distributed without the **explicit** permission of the author.

1 R Environments

under construction

2 Running R

under construction

3 R Packages

under construction

3.1 Installation of R packages

3.2 Using R packages

4 Probability distributions

R comes with the most important probability distributions installed. For the theoretical underpinnings, see e.g. (Casella & Berger, 2024).

Probability distributions can be grosso modo classified into:

- discrete distributions
- continuous distributions

4.1 Discrete distributions

Let $\mathbb{P}(X = k; \{\xi\})$ be a discrete probability mass function when the random variable X = k and which depends on the parameter set $\{\xi\}$.

Let keyword be the (variable) name of the corresponding distribution. Then,

- dkeyword(k,...): calculates the probability $\mathbb{P}(X=k)$
- pkeyword(k,...): calculates the cumulative probability function (CDF) at k:

$$F(X = k; \{\xi\}) := \sum_{j=0}^{k} \mathbb{P}(X = j)$$

- qkeyword(p,...): calculates the value of k where $p = F(k; \{\xi\})$ or $k = \lceil F^{-1}(p; \{\xi\}) \rceil$
- rkeyword(n, ...): generates a vector of n random values sampled from the distribution keyword.

Some common discrete probability distributions (implemented in R) are displayed in Table 1.

keyword Name		$\mathbb{P}(X=k;\{\xi\})$	Parameter set $(\{\xi\})$	
binom	Binomial	$\binom{n}{k} p^k (1-p)^{n-k}$	$0 \le p \le 1$	
nbinom	Negative Binomial	$\binom{k+r-1}{k}(1-p)^k p^r$	$0 \le p \le 1 \; ; r > 0$	
hyper	Hypergeometric	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$	$N \in \{0, 1, 2, \dots\}; K, n \in \{0, 1, \dots, N\}$	
pois	Poisson	$\frac{\lambda^{k} e^{n \lambda}}{k!}$	$0 < \lambda < \infty$	

Table 1: A few common discrete probability distributions.

4.1.1 Examples

• Let's consider the following distribution: binom(p = 0.3, n = 5).

```
n <- 5
p <- 0.3
# Alternative code for the binom distribution
mybinom <- function(n,p){
    v <- vector(mode="double", length=(n+1))
    for(k in 0:n){
       v[k+1] <- choose(n,k)*p^k*(1-p)^(n-k)
    }
    return(v)
}
pvec <- mybinom(n,p)</pre>
```

- Value of the PMF at $k = \{0, 1, ..., 5\}$: for(k in 0:n){ $cat(sprintf(" P(X=%d):%8.6f and should be %8.6f\n",$ k, dbinom(k, size=n, p), pvec[k+1])) } P(X=0):0.168070 and should be 0.168070 P(X=1):0.360150 and should be 0.360150 P(X=2):0.308700 and should be 0.308700 P(X=3):0.132300 and should be 0.132300 P(X=4):0.028350 and should be 0.028350 P(X=5):0.002430 and should be 0.002430 - Value of the CDF at $k = \{0, 1, ..., 5\}$: for(k in 0:n){ $cat(sprintf(" F(X=\%d):\%8.6f and should be \%8.6f\n",$ k, pbinom(k,size=n,p), sum(pvec[1:(k+1)]))) } F(X=0):0.168070 and should be 0.168070

F(X=1):0.528220 and should be 0.528220

```
F(X=2):0.836920 and should be 0.836920 F(X=3):0.969220 and should be 0.969220 F(X=4):0.997570 and should be 0.997570 F(X=5):1.000000 and should be 1.000000
```

- The quantile function:

```
pvec <- c(0.0, 0.25, 0.50, 0.75, 1.00)
for(item in pvec){
    cat(sprintf(" P:%4.2f => k=%d\n",
    item, qbinom(item,size=n, prob=p)))
}
P:0.00 => k=0
```

```
P:0.00 => k=0
P:0.25 => k=1
P:0.50 => k=1
P:0.75 => k=2
P:1.00 => k=5
```

- Sampling random numbers from the distribution:

```
tot <- 15
vec <- rbinom(tot,size=n, prob=p)
print(vec)</pre>
```

[1] 1 3 3 4 1 0 2 1 1 2 0 1 0 1 3

4.2 Continuous distributions

Let $f(x; \{\xi\})$ be a continuous probability density function (pdf), which depends on the variable x and the parameter set $\{\xi\}$.

Let keyword be the (variable) name of the corresponding distribution. Then,

- dkeyword(x,...): calculates the value of the pdf at x, i.e. $f(x;\{\xi\})$
- pkeyword(x,...): calculates the cumulative probability function (cdf) at x: $F(x;\{\xi\}) := \int_{-\infty}^{x} f(t;\{\xi\}) dt$
- qkeyword(p,...): calculates the value of x where $p = F(x; \{\xi\})$ or $x = F^{-1}(p; \{\xi\})$
- \mathbf{r} rkeyword (n, \ldots) : generates a vector of n random values sampled from the distribution keyword.

Some common continuous probability distributions (implemented in R) are displayed in Table 2.

keyword	Name	$f(x; \{\xi\})$	$\mathtt{Dom}(x)$	Parameter set $(\{\xi\})$
unif	Uniform	$\frac{1}{(b-a)}$	$a \leq x \leq b$	a,b
norm	Normal	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < x < \infty$	$-\infty < \mu < \infty$, $\sigma > 0$
cauchy	Cauchy	$\frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x-\theta}{\sigma}\right)^2}$	$-\infty < x < \infty$	$-\infty < \theta < \infty \;,\; \sigma > 0$
t	Student's t	$\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{\nu\pi} \frac{1}{\left(1 + \frac{x^2}{\nu}\right)^{(\nu+1)/2}}$	$-\infty < x < \infty$	$ u=1,2,\ldots$
chisq	Chi-squared	$\frac{1}{\Gamma(\nu/2)2^{(\nu/2)}}x^{(\nu/2)-1}e^{-\frac{x}{2}}$	$0 \le x < \infty$	$\nu=1,2,\dots$
f	F	$\frac{1}{\Gamma(\nu/2)2^{(\nu/2)}}x^{(\nu/2)-1}e^{-\frac{x}{2}}$ $\frac{\Gamma\left(\frac{\nu_1+\nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)}\frac{x^{(\nu_1-2)/2}}{\left(1+\left(\frac{\nu_1}{\nu_2}\right)x\right)^{(\nu_1+\nu_2)/2}}$ $\lambda e^{-\lambda x}$	$0 \le x < \infty$	$\nu_1,\nu_2=1,2,\dots$
exp	Exponential	$\lambda e^{-\lambda x}$	$0 \le x < \infty$	$\lambda > 0$

Table 2: A few common continuous probability distributions.

where $\Gamma(x)$ stands for the gamma function which has the following mathematical form:

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-x} dt$$

4.2.1 Examples

• Let's consider the following distribution: $N(\mu=5.0,\sigma^2=4.0)$. Therefore, distro:norm

Figure 1: Plot of the normal distribution (red). The area under the curve (blue) represents the cumulative probability at x = 8.0.

```
x <- 8.0
mu <- 5.0
sigma <- 2.0
```

- Value of the PDF at x:

```
cat(sprintf("The density at %f is %12.10f\n", x, dnorm(x,mean=mu, sd=sigma)))
```

The density at 8.000000 is 0.0647587978

- Value of the CDF at x:

```
prob <- pnorm(x,mean=mu,sd=sigma)
cat(sprintf("The Cumulative Probability at %f is %12.10f", x, prob))</pre>
```

The Cumulative Probability at 8.000000 is 0.9331927987

- The quantile function:

The point where the Cumulative Probability is 0.9331927987: 8.0000

- Sampling random numbers from the distribution:

```
vec <- rnorm(n=10, mean=mu, sd=sigma)
print(vec)</pre>
```

- [1] 5.588591 1.915691 7.043293 2.386433 7.089001 5.522514 5.383818 4.433846
- [9] 1.615659 8.515435

4.3 Exercises

- 1. Generate vectors with 10^4 , 10^5 , 10^6 , 10^7 random numbers from the $\chi^2(\nu=5)$ distribution. Calculate the mean, as well as the variance for each of those vectors. (**mean()**, **var()**) Note: If $X \sim \chi^2(\nu) \Rightarrow \mathbb{E}[X] = \nu$ and $\mathbb{V}[X] = 2\nu$
- 2. Let X, Y be independent random variables $\sim Unif(0,1)$. Then Z = X + Y has the following pdf: (If you are interested in the details, click here)

$$f_Z(z) = \begin{cases} z & , \ 0 \le z \le 1\\ 2 - z & , \ 1 \le z \le 2 \end{cases}$$

Generate the vectors x and y each having 10^5 random numbers $\sim Unif(0,1)$. Use the **hist()** function to plot the z = x + y vector.

3. A brewer from the far-away lands of Hatu wants to follow the land's alcohol ordinance (i.e. a maximum of 5% ethanol per volume). In order to comply with the law he sent a batch of independent samples to a certified lab. The lab results are to be found in the file data/beer.csv.

His plan is to perform a simple one-sided hypothesis test:

$$H_0: \mu_0 = 5.0$$

 $H_1: \mu \neq \mu_0$

He assumes that the alcohol % per volume is normally distributed (over the different samples/batches of beer) i.e. $N(\mu, \sigma^2)$ where μ is supposed to be 5.0 but where σ^2 is unknown.

Let $c_{1-\alpha}$ be the (critical) point that separates the acceptance region (\mathcal{A}) with $\mathbb{P}(\mathcal{A}) = 1 - \alpha$ from the rejection region (\mathcal{R}) with $\mathbb{P}(\mathcal{R}) = \alpha$. Therefore,

$$\begin{split} \alpha &= \mathbb{P}(\overline{X} > c_{1-\alpha}|\mu = \mu_0) \\ &= \mathbb{P}\Big(\frac{\overline{X} - \mu_0}{s/\sqrt{n}} > \frac{c_{1-\alpha} - \mu_0}{s/\sqrt{n}}\Big) \\ &= \mathbb{P}\Big(\frac{\overline{X} - \mu_0}{s/\sqrt{n}} > t_{1-\alpha}(\nu = n - 1)\Big) \end{split}$$

where t stands for Student's t distribution, s^2 is the sample variance, n the number of measurements.

- Read the lab results from the file data/beer.csv. (Hint: use read.csv() to read the file).
- Calculate the numerical value (τ) of the test-statistic T, given by:

$$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t(\nu = n - 1)$$

- Determine $t_{0.95}(\nu = n 1)$, i.e. the critical point such that $\mathbb{P}(\mathcal{R}) = 0.05$.
- Decide whether the brewer should reject H_0 (i.e. reject if $\tau > t_{0.95}(\nu = n 1)$).
- What is the probability of the area under the curve for $t \in [\tau, +\infty)$?
- 4. Check out the following link if you are interested in the origin of Student's t distribution.

Bibliography

Casella G. & Berger R.L. (2024). Statistical Inference. 2nd edn. Texts in Statistical Science. Chapman; Hall/CRC.