Divide and Conquer?

ClosestPair $(P_1, ..., P_n)$: $|| n \ge 2$ pts in the plane, x-sorted asc. if n = 2 then return $dist(P_1, P_2)$ // base case $(L, R) \leftarrow \text{partition points by } P_{n/2} \quad \text{// split by median}$ $\delta_1 \leftarrow \mathsf{ClosestPair}(L)$ $\delta_2 \leftarrow \mathsf{ClosestPair}(R)$ // min dist on right need to know min dist between L and R // ... how?

Properties of the δ -strip

ClosestPair($P_1, ..., P_n$): $|| n \ge 2$ pts in the plane, x-sorted asc $(L, \mathbb{R}) \leftarrow \text{partition points by } P_{n/2}$ // split by median $S_1 \leftarrow \mathsf{ClosestPair}(L)$ // min dist on left ← ClosestPair(R)

- * Let $\delta = \min\{\delta_1, \delta_2\}$.
- Q: How many pts can there be in the δ -strip?
- Q: How many blue pts can there be in a $\delta \times \delta$ square?
- Q: How many pts can there be in a $\delta \times 2\delta$ rectangle?

How to find a close red/blue pair:
Slide a
$$\delta \times 2\delta$$
 rectangle down!

$$T(n) = kT(n/b) + O(n^d)$$

$$= \begin{cases} O(n^d) & \text{if } k < b^d \\ O(n^d \log n) & \text{if } k = b^d \\ O(n^{\log_b k}) & \text{if } k > b^d \end{cases}$$

Karatsuba's Algorithm

Karatsuba(x, y): // x, y are n-digit positive integers if n = 1 then return $x \cdot y$ // base case; hard-code $(a, b) \leftarrow \text{split digits of } x \text{ into halves}$ $//x = a \cdot 10^{n/2} + b$ $(c,d) \leftarrow \text{split digits of } y \text{ into halves}$ $|| y = c \cdot 10^{n/2} + d$ $t_1 \leftarrow Karatsuba(a, c)$ || = ac $t_4 \leftarrow \mathsf{Karatsuba}(a+b,c+d)$ || = (a+b)(c+d) $t_3 \leftarrow \mathsf{Karatsuba}(b, d)$ || = bd $t_2 \leftarrow t_4 - t_1 - t_3$ ||=ad+bc|return $(t_1 \ll n) + (t_2 \ll n/2) + t_3$

Next: The runtime of **Karatsuba** is $O(n^{1.585})$.

- st An **alphabet** is a <u>finite</u> set of characters, usually denoted Σ
 - st Typically implicit, e.g., ASCII characters or binary $\{0,1\}$
- * A $(\Sigma$ -)string is a <u>finite</u> sequence of characters from Σ
 - * The **length** of a string X (# chars) is denoted |X|
 - * The empty string is denoted \mathcal{E} ; it has length 0
- A $(\Sigma$ -)language is (possibly infinite) set of $(\Sigma$ -)strings: $L \subseteq \Sigma^*$
- * The language of all strings is denoted Σ^*
- Example: $\Sigma = \{0,1\}, \Sigma^* = \{\varepsilon, 0,1,00, \dots\}, |010| = 3, 0^3 1^2 = 000 \underline{11}$

Recurrence for *LCS*

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0\\ 1 + LCS(i-1,j-1) & X[i] = Y[j]\\ ? & X[i] \neq Y[j] \end{cases}$$

- * Case 2: $X[i] \neq Y[j]$ (end with different characters)
 - * **Example:** X[1..i] = "GTCA" and Y[1..j] = "GTC"
 - * At least one of the letters is not part of LCS
 - * Q: How do we know which one?
 - * Try both! $LCS(i, j) = \max\{LCS(i 1, j), LCS(i, j 1)\}$

Recurrence for *LIS*_{at}

$$LIS_{at}(i) = \begin{cases} 0 & i = 0\\ 1 + \max\left\{LIS_{at}(j) \middle| \begin{matrix} (A[j] < A[i] \text{ and } j < i)\\ \text{ or } j = 0 \end{matrix}\right\} & i \neq 0 \end{cases}$$

LIS(A[1..n]): // table implementation of *LCS* allocate L[0..n] $L[0] \leftarrow 0$ **for** i = 1..n: // fill table $l \leftarrow 0$ for j = 1..i - 1: if A[j] < A[i]: $l \leftarrow \max\{l, L[j]\}$ $L[i] \leftarrow l + 1$ return?

- The conversion from recurrence to table is mechanical
- Q: Given this recurrence, how do we determine the length of a LIS?

Kruskal(G): # G is weighted, undirected graph

 $m{T} \leftarrow m{\emptyset}$ // invariant: $m{T}$ is a spanning forest (set of trees) of G

for each edge *e* in increasing order of weight:

if T + e is acyclic: $T \leftarrow T + e$

return T

Correctness

Kruskal(G): // G is weighted, undirected graph $T \leftarrow \emptyset$ // invariant: T is a spanning forest (set of trees) of Gfor each edge e in increasing order of weight: if T + e is acyclic: $T \leftarrow T + e$ return T

- Let $e_1, e_2, ...$ be the edges of T, in order of addition to T
- Idea: Show by induction, every time we "swap" an edge, still have an MST
- **Base case:** k = 0 swaps; still have T', an MST
- Ind. step: Suppose we've swapped in first k edges and it's still an MST
 - Consider the next edge e_{k+1} added to T. If $e_{k+1} \in T'$, MST doesn't change
- If $e_{k+1} \notin T'$, then adding it creates a cycle C (adding any edge to MST makes a cycle)
- Since T is acyclic, there is an edge $f \in T'$ on the cycle C.
- "Swap in e_{k+1} ": Remove f and add e_{k+1} . It's still an MST!

Claim: e_{k+1} 's weight $\leq f$'s weight.

- edges added in increasing order of weight + first k edges do not form a cycle
- Kruskal would have considered adding f, but added e_{k+1} instead

- * Formally, a DFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:
 - * Q is the finite set of states
 - * Σ is the **input alphabet**
 - * $\delta: Q \times \Sigma \to Q$ is the **transition function**
 - * $q_0 \in Q$ is the **initial** state
 - * $F \subseteq Q$ is the subset of **accepting** states
- * Takeaway: DFAs are a simple & weak, but well defined, kind of "computer."

Regular Expression Exercises

- All strings over $\{a, b\}$ with an **even** number of as.
 - $* b^*(b^*ab^*ab^*)^*$
- * All strings over $\{a, b\}$ without 2 consecutive as.
 - * $(b^*ab)^*(b^*(a|\epsilon))$
- * All strings over {0,1} that begin and end with the same symbol.
 - * (0(0|1)*0)|(1(0|1)*1)
- $* N = (0|1|2|\cdots|9)$
- $L = (A|B| \cdots |Z)$
- * Dates: $NN LLL NN(NN|\epsilon)$ (E.g., 16-Feb-2023 or 16-Feb-23)
- * Michigan License Plates: LLL NNNN

Example: DFA that decides $L = \{\varepsilon, 01, 10, 111\}$, for alphabet

- A **Turing Machine** is a 7-tuple $(Q, \Gamma, \Sigma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:
 - $st \ Q$ is a finite set of $extstyle{states}$
 - * $q_0 \in Q$ is the **initial state**
 - * $F = \{q_{accept}, q_{reject}\} \subseteq Q$ are the final (accept/reject) states
 - * Σ is the input alphabet
 - * $\Gamma \supseteq \Sigma \cup \{\bot\}$ is the **tape alphabet** ($\bot \not\in \Sigma$ is the **blank symbol**)
 - * $\delta: (Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the **transition function**
 - Takeaway: TMs are a well-defined type of "computer".
- Definition: A TM decides language if:
 - 1. accepts every string ("accepts"), and
 - 2. rejects every string ("rejects").

We say that is a **decider** (for), and is **decidable**.

- Note: By definition, <u>does not loop</u> on any input!
- **Definition:** The language of a TM M is $L(M) = \{x \mid M \text{ accepts } x\}$.
- Question: What if $x \notin L(M)$? (does not accept.)
- Answer: Then M either rejects x, or loops on x.
- Conclusion: TM M decides language L iff L = L(M) and M halts on every input.
- Definition: TM M recognizes language L
- if L = L(M) (regardless of whether ever loops!).
- More on this later...

		_	_	-		
$L^*[$	<i>i</i>] =	= 1	-T	[j,j]		

	s ₁	s ₂	s ₃	s ₄	s ₅	<i>s</i> ₆	
$L(M_1)$	1	0	0	1	1	0	
$L(M_2)$	0	1	1	0	0	0	
$L(M_3)$	1	1	1	1	1	1	
$L(M_4)$	0	0	0	0	0	0	
$L(M_5)$	1	0	1	0	0	0	

Proof. If L for some i $L^* \neq L(M_i)$

0

- $L_{\text{BARBER}} = \{ \langle M \rangle : M \text{ does not accept } \langle M \rangle \}$
- * Result: "Program B accepts the source code of those, and only those, who do not accept their own source code.
- **Question:** Does *B* accept its own source code?
- **Answer:** Suppose *P* is a program.
- P accepts its own code \Rightarrow B does not accept P's code.
- P does not accept its own code \Rightarrow B accepts P's code.
- **Question:** What if P = B?
- B accepts its own $code \Rightarrow B$ does not accept B's code.
- B does not accept its own code \Rightarrow B accepts B's code.

Paradox! (Program B cannot exist)

$L_{ m HALT}$ is Undecidable

H is given two inputs: $\langle M \rangle$ and x

M loops on $x \Rightarrow H$ rejects $(\langle M \rangle, x)$

M accepts or rejects $x \Rightarrow H$ accepts $(\langle M \rangle, x)$

We need to implement:

C is given two input: $\langle M \rangle$ and x $M ext{ accepts } x \Rightarrow C ext{ accepts}(\langle M \rangle, x)$

M does not accept $\langle M \rangle \Rightarrow C$ rejects $(\langle M \rangle, x)$

- * In code:
- * C on input($\langle M \rangle, x$):
 - * Run H on $(\langle M \rangle, x)$ (Ask H: "does M halt on x"?)
- * If H rejects, reject (M loops on x, so it can't accept it)
- * If H accepts, run M on x (M halts on x, so this is safe to do)
 - * If M accepts, accept; If M rejects, reject (answer like M)
- * Analysis: C always halts (why?). Moreover:
 - M accepts $x \Rightarrow H$ accepts $(\langle M \rangle, x) \Rightarrow C$ accepts $(\langle M \rangle, x)$
 - $M \text{ rejects } x \Longrightarrow H \text{ accepts } (\langle M \rangle, x) \Longrightarrow C \text{ rejects } (\langle M \rangle, x)$
- * M loops on $x \Rightarrow H$ rejects $(\langle M \rangle, x) \Rightarrow C$ rejects $(\langle M \rangle, x)$
- * Conclusion: L_{HALT} decidable $\Rightarrow L_{\text{ACC}}$ decidable * Contrapositive: L_{ACC} undecidable $\Rightarrow L_{HALT}$ undecidable
- * **Definition:** Language A is **Turing reducible** to language B, written $A \leq_T B$, if there exists a program M that decides A using a "black box" that decides B.
- Previous results: $L_{BARBER} \leq_T L_{ACC}$ and $L_{ACC} \leq_T L_{HALT}$
- **Intuition:** *B* is "no easier" than *A* to decide.
- **Theorem:** Suppose $A \leq_T B$. Then B is decidable \Rightarrow A is decidable.
- Definition: A language A is recognizable if there exists a program M (a "recognizer") that recognizes it: L(M)=A.
- **Theorem:** If a language A and its complement A are both <u>recognizable</u>, then A is decidable.

L_{α} is Unrecognizable

Berry's Paradox

- Claim: $L_{\mathcal{O}} = \{\langle M \rangle : L(M) = \mathcal{O}\}$ is unrecognizable.
- Proof: We show that L_{\varnothing} is undecidable $(L_{ACC} \leq_T L_{\varnothing})$ and $\overline{L_{\varnothing}}$ is recognizable. **Step 1:** Let N be a decider for L_{\emptyset} . Construct a decider C for L_{ACC} :

- Construct a program "M'(w): run M on x and answer as M does"
- Call N on $\langle M' \rangle$ and return the opposite output
- Analysis: C halts since N does, Moreover:
- M accepts $x \Leftrightarrow L(M') \neq \emptyset \Leftrightarrow N$ rejects $\langle M' \rangle \Leftrightarrow C$ accepts $(\langle M \rangle, x)$

"Dovetailing"

- Claim: $L_{\varnothing} = \{\langle M \rangle : L(M) = \varnothing\}$ is unrecognizable.
- **Proof:** We show that L_{\varnothing} is undecidable $(L_{\mathrm{ACC}} \leq_T L_{\varnothing})$ and $\overline{L_{\varnothing}}$ is recognizable.
- Step 2: We need to construct a recognizer for $\overline{L_{\mathscr{O}}} = \{ \langle M \rangle : L(M) \neq \mathscr{O} \}.$
- **Idea:** Do step i of $M(s_j)$ in "block" i+j (like in proof that \mathbb{Q}^+ is countable).
- $R(\langle M \rangle)$:
 - For t = 1, 2, 3, ...: 2. For j = 1, 2, ..., t:
 - Run one (additional) step of $M(s_j)$ If $M(s_j)$ accepts, accept.
- $\langle M \rangle \in \overline{L_{\emptyset}} \Rightarrow \exists j, k. M \text{ accepts } s_j \text{ in } k \text{ steps} \Longrightarrow R \text{ accepts } \langle M \rangle.$
- * $\langle M \rangle \notin \overline{L_{\emptyset}} \Rightarrow L(M) = \emptyset \Longrightarrow R \text{ loops on } \langle M \rangle$.

- Aside (Berry's Paradox): "The first positive integer that cannot be defined in <70 characters."
- st Let $S \subset \mathbb{Z}^+$ be the set of positive integers that cannot be defined in <70 characters. Let $x = \min(S)$. Then:
- * x cannot be defined in <70 characters, since $x \in S$
- x can be defined by the sentence "The first positive integer that cannot be defined in <70 characters.", which has 68

$K_{II}(w)$ is Uncomputable

- **Proof:** Pick the language U. Suppose M is a program that computes $K_U(w)$.
- **Definition:** For every n define new program Q_n :
- const int LENGTH = n; (n is
- * Iterate over all $x \in \{0,1\}^{\text{LENGTH}}$: ° ° ° Compute $K_U(x)$ (using M as a black-box)

 Output the first x such that $K_U(x) \ge \text{LENGTH}$

- **Observation:** For every n the size of the program Q_n is $O(\log n)$.
- **Analysis:** Let W_n be the output of Q_n . What is $K_{II}(W_n)$?
- By definition: $K_U(w_n) \ge n$, since Q_n outputs an x such that $K_U(x) \ge n$. On the other hand, Q_n outputs w_n , so Q_n is a program that outputs w_n ; by definition of Kolmogorov complexity, $K_U(w_n) \leq |Q_n|$.
- Therefore: $K_U(w_n) \ge n$ and $K_U(w_n) \le O(\log n)$ Contradiction: Conditions cannot be fulfilled simultaneously
- * Conclusion: No such M exists. Note: this could hide a large constant

That is, the size of the shortest U-program that outputs W.