1.

- a. Define half adder.
- The circuit that generates to carry and sum with two given inputs is known as half adder.
- b. Draw a truth table for the sum and carry of half adder.

A	В	Sum(S)	Carry(C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- c. Write the sop expression from the truth table.
- The SOP for sum is $A \, {}^\oplus B$ and for Carry is A.B
- d. Draw the circuit using logsim.

[Paste your gif image here]

2.

a. Draw the truth table for the outputs of the full adder.

A	В	C(in)	Sum(S)	Carry[C(out)]
0	0	0	0	0

1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

b. Write the corresponding sop expression for sum and carry of full adder and simplify the expression

$$=$$
 A'(B'C+BC')+A(B'C'+BC)

$$=A'(B\oplus C)+A(B\oplus C)'$$

SO;

=A'X+AX'

- SOP expression of Carry = A'BC+AB'C'+ABC

$$=BC(A'+A)+AC(B'+B)+AB(C'+C)$$

c. Draw full adder using two half adder and an OR gate.

[Paste your gif image here]

3. Using the three stages of design, construct the circuits for the following input /output values. Here A, B and C are the inputs whereas D, E, F, G, H and I are outputs. *Note: Draw circuit diagram using logsim corresponding to the simplified expression of outputs D, E, F, G, H and I.*

Α	В	С	D	E	F	G	Н	I
0	0	0	1	0	1	0	1	1
0	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1
1	0	1	1	1	1	1	1	0
0	1	1	0	0	0	1	1	1

[Paste your gif images here]

ans:

SOP of
$$F = A'B'C'+A'B'C+A'BC'+ABC+AB'C$$

 $=A'B'(C'+C)+A'BC'+AC(B+B')$
 $=A'B'+A'BC'+AC$

POS of G = A + B + C

SOP of
$$H = A'B'C'+A'BC'+ABC+AB'C+A'BC$$

= $A'C'(B'+B)+BC(A+A')+AB'C$
= $A'C'+BC+AB'C$

POS of I = A' + B + C'

