Multiple Linear Regression

- Multiple Linear Regression (MLR) is a linear regression model with two or more predictors
- The regression line is represented by the equation

$$\hat{Y} = a + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$

- where
 - *a* is the intercept
 - b_1 , b_2 , ..., b_k are the slopes
 - k is the number of predictors

The Standardized MLR Model

 The equation for the multiple linear regression line with standardized variables is

$$\hat{z}_Y = \beta_1 z_{X_1} + \beta_2 z_{X_2} + \dots + \beta_k z_{X_k}$$

• where $Y, X_1, X_2, ..., X_k$ are standardized using z-scores

Effect Size in MLR

- The coefficient of determination in MLR is called the coefficient of multiple determination
 - It is the proportion of variance in Y that is accounted for by $X_1, X_2, ..., X_k$
 - It is still denoted as R²
 - To make it clear what predictors are in the model, we will sometimes denote it by $R^2_{Y.X_1X_2...X_k}$
 - E.g., for a MLR with three independent variables (X_1, X_2, X_3)
 - $R_{Y.X_1X_2X_3}^2$

Squared Semipartial Correlation

- $sr_{X_1}^2$ is the variance accounted for by X_1 beyond that accounted for by X_2 and X_3
- $sr_{X_2}^2$ is the variance accounted for by X_2 beyond that accounted for by X_1 and X_3
- $sr_{X_3}^2$ is the variance accounted for by X_3 beyond that accounted for by X_1 and X_2

Squared Partial Correlation

- $pr_{X_1}^2$: Of the variance in Y that is not explained by X_2 and X_3 , what proportion is explained by X_1
- $pr_{X_2}^2$: Of the variance in Y that is not explained by X_1 and X_3 , what proportion is explained by X_2
- $pr_{X_3}^2$: Of the variance in Y that is not explained by X_1 and X_2 , what proportion is explained by X_3

Hypothesis Testing

 As with SLR, sample data are used to determine the parameter estimates for the OLS regression line

$$\hat{Y} = a + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$

 But we are truly interested in the population model

$$\hat{Y} = \alpha^* + \beta_1^* X_1 + \beta_2^* X_2 + \dots + \beta_k^* X_k$$

Hypothesis Test for ρ^2

- Step 3: Calculate the Test Statistic
 - This is the F-statistic

Source	SS	df	MS	F
Regression	$SS_{Regression}$	k	MSR	MSR/MSE
Error	SS_{Error}	n-k-1	MSE	
Total	SS_{Total}	n-1		

Hypothesis Test for α^* , β_1^* , β_2^* , ..., β_k^*

- Step 3: Calculate the Test Statistic
 - This is the t-statistic

$$t = \frac{a}{S_a}$$
 $t = \frac{b_1}{S_{b_1}}$ $t = \frac{b_2}{S_{b_2}}$... $t = \frac{b_k}{S_{b_k}}$

- where
 - a is the parameter estimate for the intercept and s_a is the estimated standard error for the intercept
 - $b_1, b_2, ..., b_k$ are the parameter estimates for the slopes and $s_{b_1}, s_{b_2}, ..., s_{b_k}$ are the estimated standard errors for the slopes