Finance Essentials

Calculating Historical Return Statistics

Ravi Shukla

First draft: February 17, 2003 This revision: November 21, 2009

This document shows how to calculate commonly used statistics—average returns, standard deviations of returns, and covariances between returns—for historical data. In this document I have used 60 monthly returns on IBM (denoted as r_1) and LUV (denoted as r_2).

The Data

The following table lists historical monthly returns on the two stocks. Returns from 07/2005 to 09/2009 are omitted from this table to conserve space. The bottom two rows show the number of elements (count) and the sum of the elements in the column.

Month	r_1	r_2
11/2004	5.20%	-0.26%
12/2004	4.60%	3.53%
01/2005	-5.23%	-11.02%
02/2005	-0.71%	-4.38%
03/2005	-1.30%	2.91%
10/2009	2.57%	-6.77%
Count	60	60
Total	0.5073	-0.3429

For calculations, we also need the sum of squares and cross-products of the two returns:

Month	r_1^2	r_2^2	$r_1 r_2$
11/2004	0.0027	0.0000	-0.0001
12/2004	0.0021	0.0012	0.0016
01/2005	0.0027	0.0121	0.0058
02/2005	0.0001	0.0019	0.0003
03/2005	0.0002	0.0008	-0.0004
10/2009	0.0007	0.0046	-0.0017
Count	60	60	60
Total	0.2408	0.4103	0.0971

The Calculation Details

Let us define the following notation:

```
r_{1t} = Return on asset 1 during time period (month) t r_{2t} = Return on asset 2 during time period (month) t T = Number of time periods (months) = Average return on asset 1 \bar{r}_2 = Average return on asset 2 \sigma_1 = Standard deviation of returns on asset 1 \sigma_2 = Standard deviation of returns on asset 2 \sigma_1 = Covariance between returns on assets 1 and 2 \sigma_1 = Correlation between returns on assets 1 and 2
```

Now we can use the following formulas to calculate the various statistics. Consult any standard probability and statistics text book for the explanation of these formula.

$$\begin{split} \bar{r}_1 &= \frac{\sum r_{1t}}{T} = \frac{0.5073}{60} = 0.008455396 \approx 0.85\% \\ \bar{r}_2 &= \frac{\sum r_{2t}}{T} = \frac{-0.3429}{60} = -0.00572000 \approx -0.57\% \\ \sigma_1^2 &= \frac{\sum r_{1t}^2 - \frac{(\sum r_{1t})^2}{T}}{T-1} \\ &= \frac{0.2408 - \frac{0.5073^2}{60}}{60 - 1} \\ &= 0.004009355 \\ \sigma_1 &= \sqrt{0.004009355} \\ &= 0.063319467 \approx 6.33\% \\ \sigma_2^2 &= \frac{\sum r_{2t}^2 - \frac{(\sum r_{2t})^2}{t}}{t-1} \\ &= \frac{0.4103 - \frac{-0.3429^2}{60}}{60 - 1} \\ &= 0.006921573 \\ \sigma_2 &= \sqrt{0.006921573} \\ &= 0.08319599 \approx 8.32\% \\ \mathrm{Cov}(r_1, r_2) &= \frac{\sum r_{1t}r_{2t} - \frac{(\sum r_{1t} \sum r_{2t})}{T}}{T-1} \\ &= \frac{0.0971 - \frac{0.5073 \times -0.3429}{60}}{60 - 1} \\ &= 0.001695375 \\ \rho_{12} &= \frac{Cov(r_1, r_2)}{\sigma_1\sigma_2} \\ &= \frac{0.001695375}{0.063319467 \times 0.08319599} \\ &= 0.321829753 \approx 0.32 \end{split}$$

The Statistics

The statistics are usually expressed in a tabular format shown below:

				Corre	lation
	T	Avg Ret	Std Dev	1	2
1	60	0.85%	6.33%	1.00	0.32
2	60	-0.57%	8.32%	0.32	1.00

These statistics can also be obtained by utilizing the spreadsheet functions AVERAGE, STDEV, COVAR, and CORREL. These calculations and more are shown in the spreadsheet Calculating_Historical_Return_Statistics.xlsx.

Keep in mind that these statistics describe historical behavior, not the prospective behavior.