Diferensiasi Numerik

Heri Purnawan

Disampaikan pada matakuliah Metode Numerik Program Studi S-1 Teknik Elektro Fakultas Sains dan Teknologi (FST) Universitas Islam Lamongan (UNISLA)

> November 30, 2024 Email: heripurnawan@unisla.ac.id

Mengapa Memahami Diferensiasi Numerik Itu Penting?

- Fenomena Dunia Nyata
 - **Kecepatan**: Turunan posisi terhadap waktu $\frac{dx}{dt}$.
 - **Percepatan**: Turunan kecepatan terhadap waktu $\frac{d^2x}{dt^2}$.
 - Gradien Suhu: Analisis distribusi termal dalam teknik termal.
- Keterbatasan Data
 - Data pengukuran sering kali berupa titik diskrit.
 - Tidak ada fungsi kontinu yang dapat langsung diturunkan.
 - Solusi? Gunakan diferensiasi numerik!
- Aplikasi Teknik dan Sains
 - Robotik: Analisis kecepatan untuk kontrol lintasan.
 - UAV: Gradien medan potensial untuk navigasi.
 - Sistem Linier: Pemrosesan sinyal dalam domain frekuensi.

Aplikasi dan Akurasi

- Efisiensi dan Akurasi
 - Memilih metode numerik yang tepat membantu:
 - Meminimalkan error dalam hasil turunan.
 - Mengurangi noise pada data pengukuran.
 - Penting untuk mempertimbangkan efisiensi komputasi.

"Diferensiasi numerik menjembatani keterbatasan data diskrit dengan kebutuhan kalkulasi perubahan. Ini adalah kunci dalam aplikasi teknik modern."

Diferensiasi numerik

Turunan fungsi f pada x_0 adalah

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Pertanyaan

Seberapa akurat

$$\frac{f(x_0+h)-f(x_0)}{h}$$
?

Misalkan suatu fungsi f memiliki turunan pertama kontinu dan $f^{\prime\prime}$ ada. Dari teorema Taylor

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(\xi)h^2$$

dimana ξ berada di antara x_0 dan $x_0 + h$, sehingga

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi) = \frac{f(x_0 + h) - f(x_0)}{h} + O(h).$$

Diferensiasi numerik (lanj.)

Beda Hingga Maju

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi) \tag{1}$$

dimana ξ berada di antara x_0 dan $x_0 + h$

dan galat kesalahannya adalah

$$|e| = \frac{h}{2}|f''(\xi)| \le \frac{h}{2} \max_{t \in (x, x+h)} |f''(t)|.$$

Demikian pula,

Beda Hingga Mundur

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + \frac{h}{2}f''(\xi)$$
 (2)

dimana ξ berada di antara $x_0 - h$ dan x_0

dengan tingkat kesalahan pemotongan yang sama dengan skema beda maju.

Diferensiasi numerik: Contoh

Contoh

Gunakan beda hingga maju untuk mengaproksimasi turunan dari $f(x)=\ln x$ di x=1.8 menggunakan h=0.1, h=0.05, dan h=0.01, dan tentukan batas kesalahan aproksimasinya.

Solusi: formula beda hingga maju adalah

$$f'(1.8) = \frac{f(1.8+h) - f(1.8)}{h}$$

dengan h=0.1 memberikan hasil

$$f'(1.8) = \frac{f(1.8 + 0.1) - f(1.8)}{0.1} = \frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.5406722}{0.1}.$$

Karena $f''(x)=-\frac{1}{x^2}$ dan $1.8<\xi<1.9$, batas untuk kesalahan aproksimasinya adalah

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321.$$

Diferensiasi numerik: Contoh (lanj.)

Aproksimasi dan batas kesalahan ketika h=0.05 dan h=0.01 ditemukan dengan cara yang sama dan hasilnya ditunjukkan pada tabel berikut

h	f(1.8+h)	$\frac{f(1.8+h)-f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	0.5540180	0.0015432

Karena $f'(x)=\frac{1}{x}$, nilai pasti f'(1.8) adalah $0.55\bar{5}$, dan dalam kasus ini batas kesalahan cukup dekat dengan kesalahan aproksimasi sebenarnya.

Beda pusat/tengah

Beda maju adalah skema ${\cal O}(h)$. Skema ${\cal O}(h^2)$ juga dapat diturunkan dari teorema Taylor

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(\xi_1)h^3$$
$$f(x-h) = f(x) - f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{6}f'''(\xi_2)h^3$$

dimana ξ_1 berada diantara x dan x+h dan ξ_2 berada diantara x dan x-h. Dengan mengurangkannya, maka diperoleh

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{1}{6}[f'''(\xi_1) + f'''(\xi_2)]h^3$$

dan

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{1}{12} [f'''(\xi_1) + f'''(\xi_2)]h^3$$

Beda pusat (lanj.)

Jika f''' kontinu pada [x-h,x+h], maka dengan teorema nilai rata-rata, ada $\xi\in[x-h,x+h]$ sedemikian hingga

$$f'''(\xi) = \frac{1}{2} [f'''(\xi_1) + f'''(\xi_2)].$$

Jadi,

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{1}{6}f'''(\xi)h^2 = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

Ini disebut aproksimasi beda pusat dan kesalahan pemotongannya adalah

$$|e| = \frac{h^2}{6}f^{\prime\prime\prime}(\xi)$$

Demikian pula, skema $O(h^2)$ dari teorema Taylor untuk $f^{\prime\prime}(x)$ adalah

Rumus Titik Tengah Turunan Kedua

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{1}{12}f^{(4)}(\xi)h^2,$$

dimana ξ berada diantara x - h dan x + h.

Interpolasi polinomial

Andaikan bahwa $(x_0, f(x_0))$, $(x_1, f(x_1))$, \cdots , $(x_n, f(x_n))$ diberikan, kita menerapkan skema interpolasi polinomial Lagrange untuk menurunkan

$$P(x) = \sum_{i=0}^{n} f(x_i) L_i(x),$$

dimana

$$L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}.$$

Karena f(x) dapat dituliskan sebagai

$$f(x) = \sum_{i=0}^{n} f(x_i)L(x) + \frac{1}{(n+1)!}f^{(n+1)}(\xi_x)w(x),$$

dimana

$$w(x) = \prod_{j=0}^{n} (x - x_j),$$

Interpolasi polinomial (lanj.)

kita mendapatkan

$$f'(x) = \sum_{i=0}^{n} f(x_i) L'_i(x) + \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) w'(x) + \frac{1}{(n+1)!} w(x) \frac{d}{dx} f^{(n+1)}(\xi_x).$$

Catatan bahwa

$$w'(x) = \sum_{i=0}^{n} \prod_{i=0}^{n} (x - x_i).$$

Oleh karena itu aproksimasi yang memungkinkan untuk turunan pertama fadalah

$$f'(x) \approx \sum_{i=0}^{n} f(x_i) L'_i(x).$$

Ketika $x = x_k$ untuk beberapa $0 \le k \le n$,

$$w(x_k) = 0$$
 dan $w'(x_k) = \prod_{i=0}^{n} (x_k - x_i)$

Interpolasi polinomial

Oleh karena itu,

$$f'(x_k) = \sum_{i=0}^{n} f(x_i) L'_i(x_k) + \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0, i \neq k}^{n} (x_k - x_i),$$
 (3)

yang disebut (n+1)-formula titik untuk mengaproksimasi f'(x).

▼ Formula Tiga Titik Karena

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

kita dapatkan

$$L_0'(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)}$$

Demikian pula,

$$L_1'(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \quad \text{dan} \quad L_2'(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}.$$

Formula tiga titik

Oleh karena itu,

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$
$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0, k \neq j}^{2} (x_j - x_k),$$

untuk setiap j = 0, 1, 2. Asumsikan bahwa

$$x_1 = x_0 + h$$
 dan $x_2 = x_0 + 2h$, untuk beberapa $h \neq 0$.

maka

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0),$$

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1),$$

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2).$$

Formula tiga titik (lanj.)

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0), \tag{4}$$

$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1), \tag{5}$$

$$f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$
 (6)

Menggunakan substitusi variabel x_0 untuk $x_0 + h$ dan $x_0 + 2h$ pada masingmasing Pers. (5) dan (6), didapatkan

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0), \tag{7}$$

$$f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1), \tag{8}$$

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$
 (9)

Formula tiga titik (lanj.)

Perhatikan bahwa (9) dapat diperoleh dari (7) dengan mengganti h dengan -h.

Formula Titik Akhir Tiga Titik

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0+h) - f(x_0+2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$
 dimana ξ_0 terletak di antara x_0 dan x_0+2h .

Formula Titik Tengah Tiga Titik

$$f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

dimana ξ_1 terletak di antara $x_0 - h$ dan $x_0 + h$.

Formula lima titik

Formula Titik Akhir Lima Titik

$$f'(x_0) = \frac{1}{12h} \left[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\xi)$$

dimana ξ terletak di antara x_0 dan $x_0 + 4h$.

Formula Titik Tengah Lima Titik

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi)$$

dimana ξ terletak di antara $x_0 - 2h$ dan $x_0 + 2h$.

Contoh penerapan formula titik: turunan pertama

Contoh

Nilai untuk $f(x) = xe^x$ diberikan pada tabel berikut:

\overline{x}	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Gunakan semua formula tiga titik dan lima titik yang berlaku untuk mengaproksimasi $f^\prime(2.0).$

Solusi:

- Data dalam tabel memungkinkan kita menemukan empat pendekatan tiga titik yang berbeda.
- \blacktriangleleft Kita dapat menggunakan rumus titik akhir dengan h=0.1 atau dengan h=-0.1, dan
- \blacktriangleleft kita bisa menggunakan rumus titik tengah dengan h=0.1 atau dengan h=0.2.

Contoh penerapan formula titik: turunan pertama (lanj.)

lacktriangled Menggunakan formula titik akhir tiga titik dengan h=0.1 memberikan

$$f'(2.0) = \frac{1}{0.2} \left[-3f(2.0) + 4f(2.1) - f(2.2) \right]$$

= 5 \[-3(14.778112) + 4(17.148957) - 19.855030 \]
= 22.032310

dan dengan h = -0.1 memberikan hasil f'(2.0) = 22.054525.

- ◀ Menggunakan formula titik tengah tiga titik dengan h=0.1 memberikan $f'(2.0)=\frac{1}{0.2}\left[f(2.1)-f(1.9)\right]=5\left[17.148957-12.7703199\right]=22.228790$ dan dengan h=0.2 memberikan hasil f'(2.0)=22.414163.
- \blacktriangleleft Satu-satunya formula lima titik yang tabelnya memberikan data yang cukup adalah formula titik tengah dengan h=0.1. Ini memberikan hasil

$$f'(2.0) = \frac{1}{1.2} [f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)]$$

$$= \frac{1}{1.2} [10.889365 - 8(12.703199) + 8(17.148957) - 19.855030]$$

$$= 22.166999$$

Contoh penerapan formula titik: turunan kedua (lanj.)

- ▶ Jika kita tidak mempunyai informasi lain, kita akan menerima aproksimasi titik tengah lima titik menggunakan h=0.1 sebagai yang paling akurat, dan mengharapkan nilai sebenarnya berada di antara perkiraan tersebut dan aproksimasi titik tengah tiga titik, yaitu di interval [22.166, 22.229].
- Nilai aktual dalam kasus ini adalah $f'(2.0) = (2+1)e^2 = 22.167168$, sehingga kesalahan aproksimasi dapat disajikan dalam tabel berikut.

Metode	h	Kesalahan aproksimasi	
Titik akhir tiga titik	0.1	1.35×10^{-1}	
Titik akhir tiga titik	-0.1	1.13×10^{-1}	
Titik tengah tiga titik	0.2	-2.47×10^{-1}	
Titik tengah tiga titik	0.1	-6.16×10^{-2}	
Titik tengah lima titik	0.1	1.69×10^{-4}	

Contoh penerapan formula titik: turunan kedua

Contoh: Formula Titik Tengah Turunan Kedua

Nilai untuk $f(x) = xe^x$ diberikan pada tabel berikut:

\overline{x}	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Gunakan formula titik tengah turunan kedua untuk mengaproksimasi f''(2.0).

Solusi: Data memungkinkan kita menentukan dua aproksimasi untuk f''(2.0). Menggunakan rumus dengan h = 0.1 memberikan hasil

$$f''(2.0) = \frac{1}{0.01} [f(1.9) - 2f(2.0) + f(2.1)]$$

= 100 [12.703199 - 2(14.778112) + 17.148957] = 29.593200

Contoh penerapan formula titik: turunan kedua (lanj.)

dan menggunakan formula dengan h=0.2 memberikan hasil

$$f''(2.0) = \frac{1}{0.04} [f(1.8) - 2f(2.0) + f(2.2)]$$

= 25 [10.889365 - 2(14.778112) + 19.855030] = 29.704275

Nilai aktualya adalah f''(2.0)=29.556224. Jadi, kesalahan aproksimasi dari dua nilai h yang berbeda adalah -3.70×10^{-2} untuk h=0.1 dan -1.48×10^{-1} untuk h=0.2.

Ekstrapolasi Richardson

Andaikan $\forall h \neq 0$ kita mempunyai sebuah formula $N_1(h)$ yang mengaproksimasi sebuah nilai M yang tak diketahui

$$M - N_1(h) = K_1 h + K_2 h^2 + K_3 h^3 + \cdots$$
 (10)

untuk beberapa konstanta yang tak diketahui K_1 , K_2 , K_3 , \cdots . Jika $K_1 \neq 0$, maka kesalahan pemotongan adalah O(h). Contoh:

$$f'(x) - \frac{f(x+h) - f(x)}{h} = -\frac{f''(x)}{2!}h - \frac{f'''(x)}{3!}h^2 - \frac{f^{(4)}(x)}{4!}h^3 - \cdots$$

Tujuan

Temukan cara mudah untuk menghasilkan rumus dengan kesalahan pemotongan tingkat tinggi.

Ganti h pada (10) dengan $\frac{h}{2}$, kita dapatkan

$$M = N_1 \left(\frac{h}{2}\right) + K_1 \frac{h}{2} + K_2 \frac{h^2}{4} + K_3 \frac{h^3}{8} + \cdots$$
 (11)

Mengurangi (10) dengan 2 kali (11), kita mendapatkan

$$M = N_2(h) - \frac{K_2}{2}h^2 - \frac{3K_3}{4}h^3 - \cdots,$$
 (12)

dimana

$$N_2(h) = 2N_1\left(\frac{h}{2}\right) - N_1(h) = N_1\left(\frac{h}{2}\right) + \left[N_1\left(\frac{h}{2}\right) - N_1(h)\right],$$

yang merupakan rumus aproksimasi $O(h^2)$.

Ganti h pada (12) dengan $\frac{h}{2}$, kita mendapatkan

$$M = N_2 \left(\frac{h}{2}\right) - \frac{K_2}{8}h^2 - \frac{3K_3}{32}h^3 - \cdots$$
 (13)

Mengurangi (12) dengan 4 kali (13), kita mendapatkan

$$3M = N_2\left(\frac{h}{2}\right) - N_2(h) + \frac{3K_3}{8}h^3 + \cdots,$$

yang mengisyaratkan bahwa

$$M = \left[N_2 \left(\frac{h}{2} \right) + \frac{N_2(h/2) - N_2(h)}{3} \right] + \frac{K_3}{8} h^3 + \dots \equiv N_3(h) + \frac{K_3}{8} h^3 + \dots$$

Menggunakan induksi, ${\cal M}$ dapat diaproksimasi dengan

$$M = N_m(h) + O(h^m),$$

dimana

$$N_m(h) = N_{m-1}\left(\frac{h}{2}\right) + \frac{N_{m-1}(h/2) - N_{m-1}(h)}{2^{m-1} - 1}$$

Formula beda pusat

Dari teorema Taylor

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \frac{h^5}{5!}f^{(5)}(x) + \cdots$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \frac{h^5}{5!}f^{(5)}(x) + \cdots$$

didapatkan

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{2h^3}{3!}f'''(x) + \frac{2h^5}{5!}f^{(5)}(x) + \cdots,$$

dan akibatnya,

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \left[\frac{h^2}{3!}f'''(x_0) + \frac{h^4}{5!}f^{(5)}(x_0) + \cdots\right],$$

$$\equiv N_1(h) - \left[\frac{h^2}{3!}f'''(x_0) + \frac{h^4}{5!}f^{(5)}(x_0) + \cdots\right]. \tag{14}$$

Ganti h pada (14) dengan h/2 memberikan hasil

$$f'(x_0) = N_1\left(\frac{h}{2}\right) - \frac{h^2}{24}f'''(x_0) - \frac{h^4}{120}f^{(5)}(x_0) - \cdots$$
 (15)

Mengurangi (14) dari 4 kali (15) memberikan

$$f'(x_0) = N_2(h) + \frac{h^4}{480} f^{(5)}(x_0) + \cdots,$$

dimana

$$N_2(h) = \frac{1}{3} \left[4N_1\left(\frac{h}{2}\right) - N_1(h) \right] = N_1\left(\frac{h}{2}\right) + \frac{N_1(h/2) - N_1(h)}{3}.$$

Secara umum,

$$f'(x_0) = N_i(h) + O(h^{2j})$$

dengan

$$N_j(h) = N_{j-1}\left(\frac{h}{2}\right) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{4^{j-1} - 1}$$

Contoh

Andaikan bahwa $x_0=2.0$, h=0.2 dan $f(x)=xe^x$. Hitung nilai aproksimasi dari f'(2.0)=22.16716829679195 sampai enam angka desimal.

Solusi: Dengan beda pusat, kita dapatkan

$$N_1(0.2) = \frac{f(2.0+h) - f(2.0-h)}{2h} = \frac{f(2.2) - f(1.8)}{0.4} = 22.414160,$$

$$N_1(0.1) = \frac{f(2.0+h) - f(2.0-h)}{2h} = \frac{f(2.1) - f(1.9)}{0.2} = 22.228786.$$

Ekstrapolasi Richardson: Contoh

Mengisyaratkan bahwa

$$N_2(0.2) = N_1(0.1) + \frac{N_1(0.1) - N_1(0.2)}{3} = 22.166995$$

yang tidak memiliki enam angka desimal. Menambahkan $N_1(0.05)=22,182564$, kita mendapatkan

$$N_2(0.1) = N_1(0.05) + \frac{N_1(0.05) - N_1(0.1)}{3} = 22.167157$$

dan

$$N_3(0.2) = N_2(0.1) + \frac{N_2(0.1) - N_2(0.2)}{15} = 22.167168$$

yang berisi enam angka desimal

yang bensi enam angka aesii	iiui.		
O(h)	$O(h^2)$	$O(h^3)$	$O(h^4)$
1: $N_1(h) = N(h)$			
2: $N_1(h/2) = N(h/2)$	3: $N_2(h)$		
4: $N_1(h/4) = N(h/4)$	5: $N_2(h/2)$	6 : $N_3(h)$	
7: $N_1(h/8) = N(h/8)$	8: $N_2(h/4)$	9: $N_3(h/2)$	10 : $N_4(h)$