AIR BLAST PROPAGATION INTO ACOUSTIC SHADOW ZONES

J.W. Reed

19990128 066

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved QMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information, including suggestion for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction project (0704-0188), Washington, DC 20503.

A 22202-4302, and to the Office of Manageme		project (U/U4-U100), VVasnington, DC 20000.	WEST.
. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE 31 July 1998	3. REPORT TYPE AND DATES CO Final Report	
. TITLE AND SUBTITLE			5. FUNDING NUMBERS
AIR BLAST PROPAGATIO	ON INTO ACOUSTIC S	HADOW ZONES	N00174-98-M-0177
i. AUTHOR(S)			7
J.W. Reed			
7. PERFORMING ORGANIZATIONS NAM	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
JWR, Inc.			
5301 Central NE, Suite 220			
Albuquerque, NM 87108			
_	MANAGO AND ADDRESSIES		10. SPONSORING/MONITORING AGENCY
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		REPORT NUMBER
Indian Head Division			IHCR 98-67
Naval Surface Warfare Cen	ter		
Indian Head, MD 20640-50)35		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Approved for public release	se: distriubtion is unlimite	ed.	
Approved for public research	5 0 , 0 .2012-0-1-1-		
_			
·			
A DOTTO A OT (Movimum 200 umrds)			
13. ABSTRACT (Maximum 200 words)		cal applications conducted at the	Utah Test and Training Range of These nominal conditions are an
Hill Air Force Base are eastward-directed sound weather conditions gene neighborhoods, and are u mostly ignored in studie	velocity versus height gra- rally attenuate airblasts passally acceptable to explain of nuisance airblast passages.	adient that refracts airblast upware propagated at ground level, car osion testers. These types of no ropagations. However, there are fraction of feets, or by terra	These nominal conditions are an ard, away from the ground. Such use minimal disturbance to their pise propagations have, thus, been are some cases where attenuated ain barriers can be of concernaction, scattering, or diffusion into
Consequently, this paper such shadow zones.	attempts to develop a bet	ici understanding of wave diffic	, <i></i>
14. SUBJECT TERMS			15. NUMBER OF PAGES 40
Open burn			
Open detonation			16. PRICE CODE
Airblast propagation	18. SECURITY CLASSIFICA	TION 19. SECURITY CLASSIFICATION	ON 20. LIMITATION OF ABSTRACT
17. SECURITY CLASSIFICATION OF REPORT	OF THIS PAGE	OF ABSTRACT	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

FOREWORD

The work discussed in this report was conducted by JWR, Inc., under contract to the Indian Head Division of the Naval Surface Warfare Center (purchase order N00174-98-M-0177). The work was funded by the Strategic Systems Program as a portion of the Poseidon C-3 second-stage rocket motor disposal operation at the Utah Test and Training Range, Hill Air Force Base in Ogden, UT.

Approved and released by:

K. Wayne Reed

X. Wayne Rud

Director, Explosive Technology Applications Division

This page intentionally left blank.

CONTENTS

Heading	rage
Foreword	ii
Foreword	
Background	
Introduction	
www	
Upwind Sound Velocity Structures	
- C - 1 - 1	
Conclusions	

This page intentionally left blank.

AIRBLAST PROPAGATION INTO ACOUSTIC SHADOW ZONES

Jack W. Reed JWR, Inc. Albuquerque, New Mexico May 1, 1998

INTRODUCTION

Most of the Poseidon motor disposal explosions, which are fired during the warmer months at Hill Air Force Base Range, west of Great Salt Lake, Utah, were fired in weather conditions with an eastward-directed sound velocity versus height gradient that refracted airblast upward, away from ground. Such weather conditions generally attenuate airblasts propagated at ground level, they cause minimal disturbance to their neighborhoods, and they are usually acceptable to explosion testers. These noise propagations have thus been mostly ignored in studies of nuisance airblast propagations. Problems of atmospheric refractive enhancement of airblast propagation, which can irritate the neighboring population and cause various degrees of cosmetic structural damage, had priority for resolution. On the other hand, there are some cases where attenuated propagations, shadowed either by atmospheric refraction effects or by terrain barriers, can be of concern. Consequently, a better understanding of wave diffraction, scattering, or diffusion into such shadow zones may be useful.

Poseidon-disposal explosions, equivalent to about 20-t (18-tonnes) TNT, were recorded by sound-level meter on Antelope Island, in Great Salt Lake, at 65 km range, almost due east from the firing site and WSW from Ogden.. During 1995, 39 shots were fired with recordings made at Antelope Island of 24 of them. During 1996, 32 events were recorded of the 44 total. These will be the subjects of this analysis.

BACKGROUND

During Operation DOMINIC, atmospheric nuclear tests at Christmas Island in 1962, several megaton-class bursts were detonated at kilometer altitudes about 30 km southwest of that atoll. In the prevailing easterly trade winds and relatively unstable thermal-structured tropical atmosphere, airblast was propagated upwind toward the atoll within strong sound velocity versus height gradient conditions that bent blast rays upward away from the surface, as illustrated in Figure 1. Depending on specific wind and temperature conditions at firing time, some blast rays reached pressure gages operated on the atoll, where measured overpressures were very close to Standard explosion predictions from ANSI S2.20-1983 [1]. In other cases with stronger gradients, however, the limiting ray just grazed the ocean surface short of gage distance. In these cases, airblast was attenuated to below Standard explosion expectations. Analysis of detailed ray plots showed that overpressures in this shadow zone, beyond the grazing point, decayed in inverse proportion to the square of distance into the shadow zone. Undistorted spherical propagation at such relatively low overpressures decays almost inversely with distance — to the first power.

These results were published in Weapons Test Report WT-2057, October 1963 [2], classified secret along with all megaton-class explosion test data, and nearly forgotten. Recent attempts to declassify this report under currently relaxed rules have been delayed because of some included shot yields which have, so far, only been given yield ranges in released listings.

Nevertheless, this propagation principle can be stated — without available and adequate documentation — and examined for validity in other explosion test results.

Four series of small explosion tests, of 1-kg, 8-kg, and 65-kg C-4 explosives, were conducted in 1994 - 1996 by the Norwegian Defense Construction Service, to examine the attenuating influence on airblasts propagated through European forests. Vertical arrays of weather instruments and airblast pressure gages were operated on 30-m towers for all tests. Two series were fired on flat terrain, two series on hilly terrain. Summer and winter (snow-covered) tests were conducted over each terrain type. The first series in June, 1994, and now partially analyzed, showed that airblast overpressure indeed decayed inversely with distance-squared, at 30-m tower-top height from the closest weather-dependent ray point at that height, in upwind propagations, as shown in **Figure** 2. Similar paths to lower tower gages passed through forest trees and were even further attenuated. Analyses of the winter series measurements of February, 1995, is scheduled to begin soon.

Thus, this shadow-zone propagation model appears to be valid over three orders of magnitude in wave frequency and *nine* orders of magnitude in explosion yield! But neither these Norwegian nor DOMINIC results can be applied directly to the most common problem of horizontal propagation from a *surface* burst where the co-altitude ray is at the source, and inverse-distance-squared overpressure decay clearly does *not* prevail along the entire path.

Empiricism from Project PROPA-GATOR, 2.3-, 45-, and 1134-kg (5-, 100-, and 2500-lb) TNT tests of weather-dependent airblast propagation at Cape Canaveral, Florida, in 1979 [3], showed that overpressure-distance *decay rate* increased with increased sound velocity decrease — as measured between the surface and atop a 154 m meteorological tower — from an approximate Standard explosion source near 2-kPa overpressure.

These results were incorporated into Program BLASTO© for weather-dependent airblast predictions [4], but there are conceptual difficulties from yield-scaling principles [5] that require scaling all dimensions, both horizontal and vertical, in proportion to the cube-root of explosion yield, while conserving sound velocity difference (not gradient) in raypath equations. The height at which the atmospheric sound velocity gradient should be established for yields other than those used in these tests could only be guessed. It was assumed in BLASTO that the effective decrease occurred at the yield-scaled height of 154 m above 100-lb TNT surface burst. But yield-scaling this height for very large explosions often reached altitudes with much greater sound velocity deficits from low temperatures, well beyond the "calibrated" range, about 10 m s⁻¹, from PROPA-GATOR results. Also, such deep atmospheric layers usually contained several significant changes in sound velocity gradient that produced a variety of potential raypath patterns.

Sound velocity structure and ray paths for a typical Utah Poseidon explosion event are shown in **Figure** 3. It was hypothesized that there should be some point along the limiting raypath, emitted horizontally at 0° elevation angle from a surface burst, as it was refracted upward through the atmosphere, that would have predictive utility as a *virtual* source — whether scattered, diffracted, or diffused — for the attenuated wave reaching ground at distance. Radiosonde balloon weather measurements (raobs) near the shot — in space and time — allowed

Figure 1. Explosion Ray Paths High—Altitude Bursts

Figure 2. Upwind Raypaths, Norway Explosion Tests

raypath calculations for distant propagations toward Antelope Island, as was shown in **Figure** 3. A first attempt to correlate measured overpressures with the limiting, horizontally emitted ray path proved quite successful, as will now be described.

ANALYSIS PROCEDURE

- 1. At what distance from the explosion would a Standard explosion overpressure source be in order to decay with inverse-distance-squared to give the recorded overpressure? This answer is found on a Standard explosion log-log overpressure-distance curve, as shown by **Figure** 4, for a 17.9-Mg TNT surface-burst equivalent for two Poseidon motors. It is intersected by an inverse distance-squared line through the measured overpressure, shown as 110 dB (6.32 Pa) at 65 km, for example. Intersection occurs at 19.2 km with 72.9 Pa (126.5 dB). Such source distances are shown versus target decibel overpressures in **Figure** 5, for graphic solution. For the example in the right-hand graph of **Figure** 3, with a measured overpressure of 101.2 dB (2.3 Pa), this distance is 6904 m.
- 2. At that distance, what is the height of the raypath initially emitted at 0° elevation angle? BLASTO output tables of directed sound velocity versus height toward Antelope Island and West Point were used for calculating refracted paths for rays emitted at 1° increments up to 15° elevation angle, showing the altitude of the 0° ray at the specified distance as 2457 m MSL in **Figure 3**.
- 3. Considering the similarity yield-scaling problem, what is the non-dimensional *ratio* of this ray height above ground at 1293 m MSL to the gage distance? The limiting ray height, 1164 m, is divided by the 65 km gage distance to give the ratio 0.017906. These numerical values are shown in **Tables** 1 and 2 for 1995 and 1996 events, respectively.
- 4. What is the *mean* sound velocity-height gradient below the limiting ray height? This is read from a BLASTO output table of sound velocities at the surface and at ray height; the difference was divided by the height to give the gradient, 4.2696×10^{-3} s⁻¹, entered in **Table** 1. The connection is shown by a dotted line in the left graph of **Figure** 3. The dotted connection to the surface velocity reduced by 6.5 ms^{-1} at 1900 m MSL will be explained in a later section.
- 5. Is there any correlation between the distance ratio and this gradient, since upward ray curvature depends on gradient magnitude? The answer is **yes** for events fired with *easterly* surface wind components and upwind propagations toward Antelope Island.

UPWIND RESULTS

Correlated points, plotted in **Figure** 6, are scattered around a decadal diagonal line indicating roughly inverse proportionality. A statistical RMS fit line was only trivially different. Also, points from events in both 1995 and 1996 fell within the same belt, although there was larger scatter in 1996. Using the resultant relationship

$$Z/R = (10 G)^{-1}$$
 (1)

Figure 4. Overpressure—Distance Curves
POSEIDON Two-Motor Blasts
39,500-lb TNT Equivalent

Figure 5. Overpressure (dB) vs Source Distance

Table 1. Shadow Zone Propagation Analysis, 1995.

		1 a	Die	1. 0	lla		20110		paga	44 1	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	Duct	13	-'*- -		_ <u></u>	Down-
		Raob					MSL	AGL	100 x	1000 x		Za	Ra	Model	Error	wind ?
Shot	Date	Time	Raob	Obsvd	Ray	Ri	Zi	Zi	Z/R	Grad	Dpth	$\overline{}$		(dB)	(dB)	
#		UTC	#	(dB)	(°)	(m)	(m)	(m)		(s ⁻¹)	(m)	(m)	(m)	(ub)	(GD)	Yes
94	4/5	2240	5020	118.8	15	65000	10 km +				100					
	4/04	2105	5032	119.0	6	65000	10 km +		1		10	1				Yes
113	4/24	2050	5036			6904	2457	1164	1.7906	4.296	0	2810	8810	102.9	1.7	No
115	4/26	1800				4788	1884	591	0.9091	6.261	10	2331	7381	102.0	3.6	Yes
127	5/8 5/18	1846				59478	10 km +				10					Yes
137	5/22	1847	5053			2630	1788	495	0.7615	20.808	0	1605	1870	91.6	-2.6	No
141	5/31	1904				3605	1490	197	0.3030	5.085	10	2571	11800	105.2	8.9	Yes
150 151	6/1	2015			1 0						0			100.0		No
185	7/5	1906				6271	2369	1076	1.6552	6.413		2307	5960	100.0	-0.4	No No
205	7/25	2016			0						0					Yes
206		2032			11	<u> </u>				<u> </u>	4500					No
207	7/27	2046			10						0				<u> </u>	No
211	7/31	2036			0			ſ			0					Focus
212		2049			4						2500					No
215		1924			0						0			ļ	 	Yes
218		2023			9					ļ	10		ļ		 	Yes
228		205	512	В	8					 	447			-	┼	No
229		202	513		0					<u> </u>	1 8		 	 		No
233			1 513						10 5475	0.000			12200	105.4	-6.	
23			514	4 111.			8130	6837	10.5175	2.92	10	3313	12200	100.1	 	Yes
239		192					<u> </u>	 			1 0		+	 		No
24	1 8/30		9 515				 	0444	3.7550	2.78			14500	106.8	-0.:	
24	2 8/31		0 515				375	2441	3.7550	2.70	10		1		 	Yes
24	7 9/5		4 516			<u> </u>	1			 	10		 	<u> </u>		Yes
24			8 516			5	400	5 305	0.4692	10.16			4830	98.5	4.	6 Yes
25						7 259								95.8	3 2.	
25						0 249 0 1795			<u> </u>						5 -1.	
25							6 10 km		0.,,00.	+	1					No
25						0 4071 1 345			0.632	2 13.14	0 10	181				
26						8 1640						275				
26						0 394										
26	_					2 4680					2 1140		2 3080			
26						5 1024	_					278	3 1182			
26					-	8 1537				7 4.80	9 10		2 966	0 103.	7 -3	
27						6 2708					4 809					Focus
27						0 1314						337				
27						5 4000					5 1	386	4 1530	0 107.	0 -7	
	32 10/					6 >650			1							Yes
2	38 10/	16 20	44) 52	23 120	J.01	0 -000	<u> </u>									

Table 2. Shadow Zone Propagation Analysis, 1996.

She			T	T -	_	$\overline{}$	Haac	11 20	1101	ropag	auon	An	aıys	IS, 13	<i>99</i> 6.			
Short Date Time Raob Obsvd Ray Ri Zi Zi Zi Zi Zi Zi Ci C			Raob	.										T				_
## UTC # (dB) 67 (m) (m) (m) (m) (m) (es of a color) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	Sho	t Date	Time	Raol	Obsvo	Ra	v Ri		•	100 X				1 _	1		1	
456 4/1 2050 6015 0 0 0 0 0 0 0 0 0	#		UTC	#			- I			275				- 1		Erro	Dow	n-
463 448 1004 6021 404 1843 6018 7 0 0 0 0 0 0 0 0 0	450	6 4/1	2050					(111)	(11)	 	(5)			(m)	(dB)	(dB)	winc	1?
465 4/8 1004 6021 10 12 12 12 12 13 15 15 10 10 10 10 10 10	459	9 4/4	1843		1			ļ	}	l				1			No	
A66	463	3 4/8	100/	6024	1			1	1	ł	İ	1 10	ľ	1	1		Yes	3
470 4/15 2004 6028									1						1	1	No	
477 4/22 2057 6032 6036 478 478 4/23 2005 6036 6036 478 478 4/23 2005 6036 6046 100.6 5 6445 2266 946 1.4543 4.757 10 2687 7990 102.2 1.6 76cus Focus						'4	1	Ì	1		1	10)	1		1	1	
487 5/3 2018 6046 10 487 5/3 2018 6046 10 488 5/3 2018 6046 10 498 5/3 2003 6058 112.8 8 31576 10350 9030 13.8910 3.032 58 2274 7510 101.9 478 498 5/3 2003 6058 112.8 8 31576 10350 9030 13.8910 3.032 58 2274 7510 101.9 478 5/5 5/5 5/5 2024 6064 498 5/3 2003 6058 112.8 8 31576 10350 9030 13.8910 3.032 58 2274 7510 101.9 478 5/5 5/5 5/5 6/7 0.0 498 5/3 2003 6058 112.8 8 31576 10350 9030 13.8910 3.032 58 2274 7510 101.9 478 5/5 5/5 5/5 6/7 0.0 498 5/3 2003 6058 112.8 8 31576 10350 9030 13.8910 3.032 58 2274 7510 101.9 499 5/5 5/5 5/5 6/7 0.0 499 5/3 1852 6067 104.5 0 10801 3201 1881 2.8936 5.954 0 2412 7030 101.3 499 5/5 6/7 101.5 0 10.5 0 10.5 1 10.5 0 10.		1				10	J	l	i			ļ		1	1			
487 5/5 2018 6046 10 2 65000 5 6445 2266 946 1.4543 4.757 10 2687 7990 102.2 1.6 Focus	478							1	1	ļ	1			1	1	1	Focu	ıs
494 5/9 1855 6050 118.5 2 65000 5 6445 2266 946 1.4543 4.757 10 2687 7990 102.2 1.6 Yes 7500	487							ŀ	1		1	l .		1	1		Focu	s
494 5/9 1858 6054 100.6 5 6445 2266 946 1.4543 4.757 10 2687 7990 102.2 1.6 Yes 505 5/20 2024 6064 5/50 5/505 5/20 2024 6064 5/505 5/505 5/505 6/70 1855 6077 104.5 0 10801 3201 1881 2.8936 5.954 0 2412 7030 101.3 -3.2 No 5/505 5/50 6/70 1827 6072 99.3 4 5413 1679 3599 0.5523 5.992 224 2525 11000 104.6 5.3 Yes 5/506 6/10 1827 6072 99.3 4 5413 1679 3599 0.5523 5.992 224 2525 11000 104.6 5.3 Yes 5/506 6/10 1979 6075 99.5 0 5561 1945 625 0.9614 13.496 0 1802 4920 98.6 -0.9 No 5/504 6/25 1979 6/71 1979 6/71 101.2 0 7900 2860 1540 2.3990 3.766 0 3046 8850 103.0 0.8 No 5/507 7/24 1922 msg 3943 1689 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 5/707 7/24 1922 msg 3434 1689 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 5/707 7/25 1926 6/114 97.0 8 3900 1750 430 0.6615 9.070 10 2037 5520 99.3 2.3 Yes 5/77 7/31 1844 6/118 97.0 0 3943 1988 663 1.0199 10.256 0 1954 3790 96.7 -0.3 No No 5/85 8/8 1847 6/131 106.5 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 5/98 8/12 1856 6/134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 5/98 8/12 1856 6/134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 5/98 8/12 1856 6/134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No No 5/98 8/12 1856 6/134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No No 5/98 8/12 1856 6/134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No No 5/98 8/12 1856 6/134 0.2 0 14025 3883 2563 3.3427 2.458	491	5/6		ı					1	ľ	ł			1	1	1		
498 5/13 2003 6058 112.8 8 31576 10350 9030 13.8910 3.032 58 2274 7510 101.9 -10.9 Yes 505 5/20 2024 6064	494	5/9		•]	046	4 454				_[ı		Focu	s
505 5/20 2024 6064 507 98.6 2 4911 1855 535 0.8230 6.667 10 2295 7240 101.5 2.9 Yes 528 6/10 1827 6072 99.3 4 5413 1679 359 0.5523 5.392 224 2255 11000 104.6 5.3 Yes 528 6/12 1729 6075 99.5 0 5561 1945 625 0.9614 13.496 0 1802 4920 98.6 0.9 No 540 6/24 1919 6091 102.2 0 7900 2860 1540 2.3690 3.766 0 3046 8850 103.0 0.8 No 564 7/18 1843 6102 97.0 9 3943 1669 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 570 7/24 1922 msg 577 7/25 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 -6.2 Yes 578 8/1 1934 6122 91.8 3943 1988 663 1.0199 10.256 0 1954 3790 96.7 -0.3 No 588 8/1 1934 6122 91.8 0 1913 1666 356 0.5476 18.820 0 1655 1900 107.2 -6.2 Yes 588 8/1 1934 6122 91.8 0 1913 1666 356 0.5476 18.820 0 1655 1900 107.2 -6.2 Yes 588 8/1 1934 6122 91.8 0 1913 1666 356 0.5476 18.820 0 1655 1900 107.2 -6.2 Yes 588 8/1 1934 6122 91.8 0 1913 1666 356 0.5476 18.820 0 1655 1900 107.4 -0.1 No No 589 8/12 1856 6134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No No 599 8/13 1936 6137 112.5 7 30393 10790 9470 14.5579 4.826 10 2667 8050 102.3 -0.5 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9301 1.244 0 1898 5020 98.3 1.1 No	498	5/13	2003	6058		•	P.				l .						e Yes	Į
526 6/6 1855 6070 98.6 2 4911 1855 535 0.8230 6.667 10 2295 7240 101.5 2.9 Yes 526 6/10 1827 6072 99.3 4 5413 1679 359 0.5523 5.392 224 2525 11000 104.6 5.3 Yes 528 6/12 1729 6075 99.5 0 5561 1945 625 0.9614 13.496 0 1802 4920 98.6 -0.9 No 540 6/24 1919 6091 102.2 0 7900 2860 1540 2.3690 3.766 0 3046 8850 103.0 0.8 No 564 7/18 1843 6102 97.0 9 3943 1669 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 570 7/24 1922 msg 1608 102.4 0 8185 2675 1355 2.0844 3.542 0 3155 11300 104.8 2.4 No 571 7/25 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 4.2 Yes 575 7/29 1926 6114 97.0 8 3900 1750 430 0.6615 9.070 10 2037 5520 99.3 2.3 Yes 578 8/1 1934 6122 1856 6134 108.2 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 585 8/8 1847 6131 106.5 0 14025 3883 2563 3.3427 2.458 0 3902 1600 104.4 -3.8 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 1600 104.4 -3.8 No 589 8/15 2019 6141 97.2 0 4051 2023 703 10.814 7.824 0 2151 4720 98.3 -1.1 No 589 8/15 2019 6141 97.2 0 4051 2023 703 1.0814 7.824 0 2151 4720 98.3 -1.1 No 589 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 17.246 8180 102.4 -3.7 Yes 589 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 17.2 462 1770 91.1 No 589 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 17.2 460 300 21570 90.2 48.8 No 589 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 17.2 460 388 100.2 4 -3.7 Yes 589 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 17.2 460 388 50 0.2 8.3 1.1 No 589 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 17.2 460 388 50 0.2 98.3 -0.5 No 613 9/5 2139 6167 110.5 9 24000 6430 5110 7.8608 17.22 10 5505 1770 91.1 0.2 1.0 No 627 9/19 2023 6186 105.4 0 720 1390 70 0.1077 35.714 0 1502 1570 90.2 4.8 No 631 9/23 2131 6193 102.0 0 6600 2442 1122 1.7260 0.585 0 3894 17800 108.0 -2.5 Yes 649 10/11 20/12 2011 6201 86.4 0 860 1444 2122 0.1877 44.262 0 1467 982 87.4 1.0 No 649 10/10 2001 2001 6201 86.4 0 860 1444 220 0.864 10.0 10.2 149 627 12.2 10 5067 10.2 149 627 12.2 10 5064 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.0			2024	6064		_	""	1 10000	3030	13.0910	3.032	58	2274	7510	101.9	-10.9	Yes	ı
522 6/6 1855 6070 98.6 2 4911 1855 535 0.8230 6.667 10 2295 7240 101.5 2.9 Yes 526 6/10 1827 6072 99.3 4 5413 1679 359 0.5523 5.392 224 2525 11000 104.6 5.3 Yes 528 6/12 1729 6075 99.5 0 5551 1945 625 0.9614 13.496 0 1802 4920 98.6 0.9 No 540 6/24 1919 6091 102.2 0 7900 2860 1540 2.3690 3.766 0 3046 8850 103.0 0.8 No 564 7/18 1843 6102 97.0 9 3943 1669 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 570 7/24 1922 msg 7/724 1922 msg 7/724 1922 msg 7/724 1922 msg 7/725 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 4.2 Yes 577 7/31 1844 6118 97.0 0 3943 1988 6637 1.0199 10.256 0 0 3046 8850 103.0 0.8 No 588 87 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1954 3790 96.7 0.3 No No 588 87 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 0.1 No 588 87 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 0.1 No 599 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 106.6 0.1 No 599 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 106.6 0.1 No 599 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 106.6 0.1 No 599 8/12 1857 6158 84,9 0 4051 2023 703 1.01814 7.824 0 2151 4720 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 6870 3727 2407 3.7027 5.775 10 2466 8180 102.4 -3.7 Yes 599 8/22 1827 6152 97.8 0 5041 1907 6870 3.900 110.9 10.256 0 1860 190.9 1.7 0.1 No 613 9/5 2139 6167 110.5 9 24000 6430 5110 7.8608 1.722 10 5095 17300 108.0 -2.5 Yes 620 9/12 2014 6177 85.4 0 720 1396 76 0.1169 46.053 0 1860 102.4 -3.7 Yes 620 9/12 2014 6177 85.4 0 720 1396 76 0.1169 46.053 0 1860 102.4 -3.7 Yes 649 10/11 9/23 2131 6193 102.0 0 6600 2442 1122 1.7260 2.585 0 3894 17800 108.0 -2.5 Yes 649 10/11 2001 6201 6201 6201 6201 6201 6201 62			1852	6067	104.5	0	10801	3201	1881	2 8036	5 054	_	244			1	1	s
526 6/10 1827 6072 99.3 4 5413 1679 359 0.5523 5.392 224 2525 11000 104.6 5.3 Yes 528 6/12 1729 6075 99.5 0 5561 1945 625 0.9614 13.496 0 1802 4920 98.6 -0.9 No 5504 1919 6091 102.2 0 7900 2860 1540 2.566 0 3834 12200 105.4 -0.1 No 564 7/18 1843 6102 97.0 9 3943 1669 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 570 7/24 1922 msg 7964 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 4.2 Yes 577 7/24 1922 msg 7964 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 -6.2 Yes 575 7/29 1926 6114 97.0 8 3900 1750 430 0.6615 9.070 10 2037 5520 99.3 2.3 Yes 577 7/31 1844 6118 97.0 0 3943 1988 663 1.0199 10.256 0 1954 3790 96.7 -0.3 No No 588 8/1 1934 6122			1855	6070		2	4911		1			_			,	1		I
529 6/13 1958 6079 105.5 0 12315 3854 2534 3.8981 2.586 0 3834 12200 105.4 -0.1 No 564 7/18 1843 6102 97.0 9 3943 1669 349 0.5369 7.965 10 2136 6970 101.2 4.2 Yes 7070 7/24 1922 msg 7964 77/25 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 -6.2 Yes 577 7/25 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 -6.2 Yes 577 7/25 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 -6.2 Yes 578 8/1 1934 6122 1988 663 1.0199 10.256 0 1954 3790 96.7 -0.3 No 588 8/7 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 -0.1 No 599 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 599 8/22 1827 6152 97.8 0 5041 1907. 587 0.946 11907. 587 0.946 1910 1911 1666 1900 91.7 -0.1 No 599 8/22 1827 6152 97.8 0 5041 1907. 587 0.946 1910 1913 1666 360 3.8861 2.886 1907 6155 84.9 0 1437 1506 186 0.2861 26.344 0 1898 5020 98.3 -0.5 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 11.246 8180 102.4 -3.8 No 613 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 10.2 -2.1 No 613 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 10.2 -2.1 No 613 9/3 2131 6167 785.4 0 720 1399 70 0.1007 35.714 0 1567 1770 91.1 6.2 No 649 10/12 2014 6177 85.4 0 720 1399 70 0.1007 35.714 0 1567 1770 91.1 6.2 No 633 9/3 2131 6167 10.0 0 6600 2442 1122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/12 2016 631 90.0 0 6600 2442 1122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/12 2016 631 10.0 660 0.1 10.0 10.0 10.0 10.0 10.0					99.3		5413											I
19 19 19 19 19 19 19 19						0	5561	1945	625								1 .	I
10 10 10 10 10 10 10 10							12315	3854	2534					1				ı
1718							7900		1540					1				ı
102 103 102 103 102 103 102 103 102 103 104 105								1669	349								1	ı
571 7/25 1919 6111 113.4 1 34079 9620 8300 12.7681 2.241 10 4221 15300 107.2 -6.2 Yes 575 7/29 1926 6114 97.0 8 3900 1750 430 0.6615 9.070 10 2037 5520 99.3 2.3 Yes 578 8/1 1934 6122 91.8 0 1913 1666 356 0.5476 18.820 0 1954 3790 96.7 -0.3 No 584 8/7 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 -0.1 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 10600 104.4 -3.8 No 599 8/15 2019 6141					102.4	0		2675	1355	2.0844	3.542						1	ı
575 7/29 1926 6114 97.0 8 3900 1750 430 0.6615 9.070 10 2237 5520 99.3 2.3 Yes 577 7/31 1844 6118 97.0 0 3943 1988 663 1.0199 10.256 0 1954 3790 96.7 -0.3 No 584 8/1 1934 6122 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 -0.1 No 585 8/8 1847 6131 106.5 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 10600 104.4 -3.8 No 590 8/13 1936 6131 197.2		, ,			440.4			_]]						1 140	I
577 7/31 1844 6118 97.0 0 3943 1988 663 1.0199 10.256 0 1954 3790 96.7 -0.3 No 578 8/1 1934 6122 0 1954 3790 96.7 -0.3 No 584 8/7 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 -0.1 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 10600 104.4 -3.8 No 590 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 597 8/20 1912 6149 106.1 5 13319 3727 2407 3.7027 5.775											2.241		4221	15300	107.2	-6.2	Yes	i
578 8/1 1934 6122 0 1954 3790 96.7 -0.3 No 584 8/7 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 -0.1 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3965 14300 106.6 0.1 No 590 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 597 8/20 1912 6149 106.1 5 13319 3727 2407 3.7027 5.775 10 2446 8180 102.4 -3.7 Yes 603 8/26 1907 6152 97.8 0 5041 1907 587 0.9030 11.244							1					10	2037	5520	1	1		l
584 8/7 1817 6128 91.8 0 1913 1666 356 0.5476 18.820 0 1665 1900 91.7 -0.1 No 585 8/8 1847 6131 106.5 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 10600 104.4 -3.8 No 590 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 592 8/15 2019 6141 97.2 0 4051 2023 703 1.0814 7.824 0 2151 4720 98.3 1.1 No 599 8/22 1827 6152					37.0	ฯ	3943	1988	663	1.0199	10.256		1954	3790	96.7			ı
585 8/8 1847 6131 106.5 0 14025 3883 2563 3.3427 2.458 0 3965 14300 106.6 0.1 No 589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 10600 104.4 -3.8 No 590 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 592 8/15 2019 6141 97.2 0 4051 2023 703 1.0814 7.824 0 2151 4720 98.3 1.1 No 599 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 11.244 0 1898 5020 98.3 -0.5 No 611 9/3 2111 6164	584				91 8	ام	1013	1666	250	0.5470							No	l
589 8/12 1856 6134 108.2 0 17497 4503 3183 4.8965 3.864 0 3002 106.6 0.1 No 590 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 592 8/15 2019 6141 97.2 0 4051 2023 703 1.0814 7.824 0 2151 4720 98.3 1.1 No 599 8/20 1912 6149 106.1 5 13319 3727 2407 3.7027 5.775 10 2446 8180 102.4 -3.7 Yes 603 8/26 1907 6155 84.9 0 1437 1506 186 0.2861 26.344 0 1567 1770 91.1 6.2 No 611 9/3 2111 6164 103.3	585	8/8														-0.1	No	l
590 8/13 1936 6137 112.5 7 30393 10790 9470 14.5679 4.826 10 2667 8050 102.3 -10.2 Yes 592 8/15 2019 6141 97.2 0 4051 2023 703 1.0814 7.824 0 2151 4720 98.3 1.1 No 599 8/20 1912 6149 106.1 5 13319 3727 2407 3.7027 5.775 10 2446 8180 102.4 -3.7 Yes 603 8/26 1907 6155 84.9 0 1437 1506 186 0.2861 26.344 0 1567 1770 91.1 6.2 No 611 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 101.2 -2.1 No 617 9/9 1920 6172	589	8/12		- 1		- 1				3.3427 4.906E						0.1	No	ı
592 8/15 2019 6141 97.2 0 4051 2023 703 1.0814 7.824 0 2151 4720 98.3 1.1 No 597 8/20 1912 6149 106.1 5 13319 3727 2407 3.7027 5.775 10 2446 8180 102.4 -3.7 Yes 603 8/26 1907 6152 97.8 0 5041 1907 587 0.9030 11.244 0 1898 5020 98.3 -0.5 No 611 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 101.2 -2.1 No 617 9/9 1920 6172 84.7 0 650 1396 76 0.1169 46.053 0 1461 1080 88.3 3.6 No 627 9/19 2023 6186 1	590	8/13	1936	6137		- 1	1	- 1	- 1		1	1	3002	l [104.4	-3.8	No	l
597 8/20 1912 6149 106.1 5 13319 3727 2407 3.7027 5.775 10 2446 8180 102.4 -3.7 Yes 603 8/26 1907 6155 84.9 0 1437 1506 186 0.2861 26.344 0 1898 5020 98.3 -0.5 No 611 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 101.2 -2.1 No 617 9/9 1920 6172 84.7 0 650 1396 76 0.1169 46.053 0 1461 1080 88.3 3.6 No 620 9/12 2014 6177 85.4 0 720 1390 70 0.1169 46.053 0 1461 1080 88.3 3.6 No 627 9/19 2023 6186 10						- 1								8050	102.3	-10.2	Yes	l
599 8/22 1827 6152 97.8 0 5041 1907 587 0.9030 11.244 0 1898 5020 98.3 -0.5 No 603 8/26 1907 6155 84.9 0 1437 1506 186 0.2861 26.344 0 1567 1770 91.1 6.2 No 611 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 101.2 -2.1 No 617 9/9 1920 6172 84.7 0 650 1396 76 0.1169 46.053 0 1461 1080 88.3 3.6 No 620 9/12 2014 6177 85.4 0 720 1390 70 0.1077 35.714 0 1502 1570 90.2 4.8 No 627 9/19 2023 6186 105.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>98.3</td> <td>1.1</td> <td></td> <td></td>						- 1									98.3	1.1		
603 8/26 1907 6155 84.9 0 1437 1506 186 0.2861 26.344 0 1567 1770 91.1 6.2 No 611 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 101.2 -2.1 No 617 9/9 1920 6172 84.7 0 650 1396 76 0.1169 46.053 0 1461 1080 88.3 3.6 No 627 9/19 2023 6186 105.4 6 12000 2060 740 1.1384 2.568 10 3761 26800 111.0 5.6 Yes 638 9/30 2121 6206 640 10/2 2041 6210 86.4 0 850 1442 122 1.7260 2.585 0 3894 17800 108.2 6.2 No 648 10/10 2149 6227 122.0 0 >655km 649 10/11 2201 6230 110.0 0 4 23000 4844 3524 5.444 3.564 0 2.28 10 2.28 10 2.28 10 2.28 10 2.28 10 2.28 10 2.28 10 2.28 10 2.28 10 2.29 10 2.	599												_					1
611 9/3 2111 6164 103.3 0 9500 3130 1810 2.7844 4.917 0 2642 7250 101.2 -2.1 No 613 9/5 2139 6167 110.5 9 24000 6430 5110 7.8608 1.722 10 5095 17300 108.0 -2.5 Yes 620 9/12 2014 6177 85.4 0 720 1396 76 0.1169 46.053 0 1461 1080 88.3 3.6 No 627 9/19 2023 6186 105.4 6 12000 2060 740 1.1384 2.568 10 3761 26800 111.0 56 Yes 638 9/30 2121 6206 6600 2442 1122 1.7260 2.585 0 3894 17800 108.2 6.2 No 640 10/2 2041 6210 86.4 0 850 1442 122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/10 2149 6227 122.0 0 >655km 649 10/11 2201 6230 110.0 0 4 23000 4844 3524 5 6440 0.11 2.00 10.00 1	603	8/26																ı
613 9/5 2139 6167 110.5 9 24000 6430 5110 7.8608 1.722 10 5095 17300 108.0 -2.5 Yes 620 9/12 2014 6177 85.4 0 720 1390 70 0.1169 46.053 0 1461 1080 88.3 3.6 No 627 9/19 2023 6186 105.4 6 12000 2060 740 1.1384 2.568 10 3761 26800 111.0 638 9/30 2121 6206 620 6600 2442 1122 1.7260 2.585 0 3894 17800 108.2 6.2 No 640 10/2 2041 6210 86.4 0 850 1442 122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110.0 4 23000 4844 3524 5 4340 2.568 10 10.72 2041 6230 110.0 4 23000 4844 3524 5 4340 2.568 10 2451 8360 103.7 7.0 Yes 649 10/11 2201 6230 110.0 4 23000 4844 3524 5 4340 2.568 10 2451 8360 103.7																		1
617 9/9 1920 6172 84.7 0 650 1396 76 0.1169 46.053 0 1461 1080 88.3 3.6 No 627 9/19 2023 6186 105.4 6 12000 2060 740 1.1384 2.568 10 3761 26800 111.0 638 9/30 2121 6206 100.0 6600 2442 1122 1.7260 2.585 0 3894 17800 108.2 6.2 No 648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110 0 4 23000 4844 3524 5 4344 3444 34				6167			,											l
620 9/12 2014 6177 85.4 0 720 1390 70 0.1077 35.714 0 1502 1570 90.2 4.8 No 631 9/23 2131 6193 102.0 0 6600 2442 1122 1.7260 2.585 0 3894 17800 108.2 6.2 No 640 10/2 2041 6210 86.4 0 850 1442 122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110 0 4 23000 4844 3524 5 4340 2.583 0 0 0 108.2 6.2 No	- 1				84.7	0							1					l
627 9/19 2023 6186 105.4 6 12000 2060 740 1.1384 2.568 10 3761 26800 111.0 5.6 Yes 638 9/30 2121 6206 2442 1122 1.7260 2.585 0 3894 17800 108.2 6.2 No 640 10/2 2041 6210 86.4 0 850 1442 122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110 0 4 23000 4844 3524 5 4348 0 5.28				- 1			720	1390										
638 9/30 2121 6206 0 6600 2442 1122 1.7260 2.585 0 3894 17800 108.2 6.2 No 640 10/2 2041 6210 86.4 0 850 1442 122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110 0 4 23000 4844 3524 5 4040 0.25 0 108.2 6.2 No								2060	740			- 1						
640 10/2 2041 6210 86.4 0 850 1442 122 0.1877 44.262 0 1467 982 87.4 1.0 No 648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110 0 4 23000 4844 3524 5 4040 0.200 0 5 10 10 10 10 10 10 10 10 10 10 10 10 10					102.0	0	6600	2442								6.0	NO I	ĺ
641 10/3 2102 6213 96.7 7 3800 1665 345 1.0614 5.797 10 2451 8360 103.7 7.0 Yes No					- 1											0.2	.40	ĺ
648 10/10 2149 6227 122.0 0 >65km 649 10/11 2201 6230 110 0 4 23000 4844 3504 5 4049 5 797 10 2451 8360 103.7 7.0 Yes												0	1467	982	87.4	1.0	No	ĺ
649 10/11 2201 6230 110 0 4 23000 4944 3504 5 4049 5 10 10 10 10 10 10 10 10 10 10 10 10 10								1665	345	1.0614	5.797	10	2451	8360				
			2201			- 1		40.4.	255						İ			
				-2001	. 10.0		23000	4044	3524	5.4210	2.695	0	3742	18200	108.5			

Figure 6. Depth Fraction vs Gradient - Upwind

where R is target distance, Z is the source height on the 0° ray, and G is directed sound velocity gradient, or decrease per *kilometer*. For each event, the depth fraction from Equation (1) was used to back-calculate a prediction for 65 km range. Comparison with observed overpressures showed an error standard deviation of ± 2.53 dB, or an error factor of $(1.34)^{\pm 1}$ for 28 events.

These upwind errors are small for such great distance, considering the greater propagation variability found previously when comparing duplicate shots at short time separations [6], and attributed to atmospheric turbulence and mesoscale variability of winds aloft.

In what appeared to be an upwind case in **Table 1**, on 9/15/95, 114.8 dB was recorded, much above any expectation. Its source was calculated to be 40 km horizontally and over 9 km vertically from the burst, and above the highest raob reports. Thus this event could not be evaluated nor included in the error analysis. It must be assumed that some strong westerly winds were encountered along the raypath which were not encountered by the raob balloon, to cause such a strong wave.

Similarly, in another upwind case with an easterly flow near the surface, **Table 2** shows the *strongest* wave in two years of record, 122 dB was enhanced above Standard propagation on 10/10/96, and not explained by the raob weather report. In this case, an upper wind report of 238° 18.5 knots at 3300 m MSL must have missed an *effective* wind stream at least 7 knots stronger. That bang would have been quite loud at Antelope Island, but not approaching the window damage threshold of 200 Pa or 140 dB.

DOWNWIND RESULTS

Explanation of propagations downwind from surface winds has proven less successful. Events fired with westerly surface wind components, however light, in **Figure** 7 show much greater scatter and appear extremely sensitive to sound velocity gradient, which is hard to specify. Surface downwind ducting is assumed to extend only to the 10 m standard anemometer height, unless a higher-altitude raob measurement also showed an effective westerly wind component. These conditions should be expected to enhance eastward propagation in the surface frictional wind layer, unless the sound duct is blocked by terrain. And terrain did obstruct eastward propagation below about 20 m above these shot points, and before the airblast wave reached the flat lake surface.

Unfortunately, low-altitude details, reported as *significant* levels in original raob observations, were not included in delivered collections for dates prior to mid-August, 1995. These were apparently lost from computer files, so that only records at 1000-ft height increments were preserved. This resolution was all that was used for "BOOM-TOO" predictions [7] until the importance of low altitude details for these predictions was explained and 500-ft increments were adopted.

In those cases with surface wind ducting, the lowest ray that broke through the sound velocity inversion was used as the limiting ray for calculation and gradient correlation. These

Figure 7. Depth Fraction vs Gradient — Downwind

escape ray angles are also entered in Figure 7, as well as an approximation line through the data points along

$$Z/R = 78.4 \text{ G}^{-5.4}$$
 (2)

Furthermore, as shown by **Figure** 8, there does not appear to be any correlation between this escape ray angle and the error from applying the upwind model of Equation (1) above the surface sound duct. Comparison with observed overpressures for the 22 cases showed a modeling error standard deviation of ± 5.06 dB, or an error factor of $(1.79)^{\pm 1}$, much larger than for upwind correlations.

"UTAH" UPWIND MODEL

Calculations for acoustic ray paths through atmospheric layers with varying directed sound velocity are described by many references. An adequate method, derived from the Rayleigh approximation that the horizontal wind applies along the ray path, may be used for relatively horizontal propagations from explosions [8]. A more exact solution [9], using actual wind components along ray paths at larger elevation angles, is necessary for application to sonic booms and high-altitude explosions. The approximation method can be greatly simplified in the surface burst gradient case, for a *single* surface atmospheric layer, so that

$$X = Z [(V_0 + V_z) / (V_0 - V_z)]^{1/2}$$
(3)

Where X is horizontal and Z is vertical distance and V is directed sound velocity, subscripted 0 at the bottom and Z at the top of the layer. Interpretation of Equation (1) as $(V_0-V_Z) = 10^{-4}$ R, and approximating $(V_0+V_Z) = 2$ $V_0 = 680$ ms⁻¹ the simultaneous solution is that

$$X = 2608 Z R^{-1/2}$$
 (4)

Prediction for Antelope Island, at 65 km range, would thus proceed by identifying the altitude, Z, where $(V_0-V_Z) = 6.5 \text{ ms}^{-1}$; assuming that layer gradient was linear; calculating the source distance X; and finally reading the predicted pressure level from **Figure** 5. Similar predictions were made for cases with westerly surface winds, but using $(V_i-V_Z) = 6.5 \text{ ms}^{-1}$, where V_i is defined at the top of the low inversion. This procedure for upwind airblast predictions was dubbed the *UTAH Model*. Such predictions for Antelope Island in 1995 and 1996 are shown in **Tables** 3 and 4, respectively, along with their prediction errors.

Other predictions are also included in these two tables, including the BOOM-TOO method, which has apparently been required by agreement with the State of Utah for monitoring these events. BLASTO predictions were made, by this author (JWR), using the best obtainable weather data, and by NSWC-Dahlgren using the provided raob reports at 1000 ft and later at 500 ft height increments as shown in their CD-ROM report [10]. In BLASTO, when terrain profiles are provided, Standard overpressures are assumed in any terrain shadow, for lack of any better approximation. This probably is the source of most differences between JWR and NSWC BLASTO calculations.

Figure 8. Prediction Error Versus Escape Ray Angle, Downwind Cases. 10—m Surface Wind Duct Except Where Depth is Indicated

Table 3. Shadow Zone Predictions, 1995.

1	2	3	4	1 5	7 7	-			Olic I	real	-uons	, 133) .		
<u> </u>	1-	Raot	_	5	- 6		8	9	10	11	12	13	14	15	16
Sho	Date			سام		Du				HATU	BOOM		Prediction	Frors (di	3/
#	1	UTC	1			- 1 .	hwind		NSWC	MODEL	T00	BLASTO	BLASTO	UTAH	ВООМ
94	4 4/5		#	(dB)	(°			(dB)	(dB)	(dB)	(dB)	JWR	NSWC	MODEL	TOO
113		224				1		119.8	118.2	113.7				-5.1	
			1			5 1		119.8	117.1				-1.9	-5.1 -13.5	6.7
115	4/26	2050	503	101.2	2		0 No	106.0	102.8			4.8	1.6		-3.8
127		1800	504	98.4	ıl ;	3 1	Yes	119.8	118.8					-0.8	18.9
137			5049			7 1		119.8	117.7	1	1		20.4	-7.3	17.4
141	5/22	1847	5053				No	92.6	89.0			2.0	-0.1	-14.5	-5.4
150		1904						119.8	09.0			-1.4	-5.0	-1.5	19.7
151	6/1	2015			1		_	106.8		105.0		23.5		8.7	15.8
185	7/5	1906						100.9		93.7	117.7				
205	7/25	2016			1 6			100.9		99.6		0.5		-0.8	35.4
206	7/26	2032			11	1		119.8		78.0					ł
207	7/27	2046			G			105.7			121.8		I		l
211	7/31	2036			d	1 -	1	98.5		95.2	126.6				İ
212	8/1	2049			4		,	131.8		99.0	115.4				_
215		1924			ا			97.8		04.0	128.2	1			
218	8/7	2023			9		Yes	119.8		91.2	118.8			١ ، ١	1
228	8/17	2055			8		Yes	119.8			114.2		İ		ł
229	8/18	2025	5133	j ,	0	١٠٠		95.3	ľ	ا م م	118.5		j	1	i
233	8/22	1824	5138	i	o	ا ا	No	104.3		84.4	126.9	İ			- 1
235	8/24	2108	5144	111.5	8	10	Yes	119.8	118.9	104.3	112.9		[ı	ľ
239	8/28	1928	5148		5	10	Yes	119.8	110.9	104.3	113.6	8.3	7.4	-7.2	2.1
241	8/30	1939	5152		0	0	No	103.5	Į	İ	112.7	1	ŀ	i	- 1
242	8/31	1840	5156	107.0	Ō	0	No	105.3	104.3	96.1	118.7		f	1	
247	9/5	2144	5161		10	10	Yes	119.8	104.5	90.1	120.0	-1.7	-2.7	-10.9	13.0
249	9/7	1948	5165		5	10	Yes	119.8		.]	121.2				
250	9/8	1830	5168	93.9	7	10	Yes	119.8	118.3	106.0	115.4			•	ľ
254	9/12	1901	5172	93.6	0	0	No	107.0	105.5	105.2	120.0	25.9	24.4	12.1	26.1
256	9/14	1845	5176	108.4	0	0	No	100.6	97.7	100.6	112.4 111.9	13.4	11.9	11.6	13.9
257	9/15	2002	5180	114.8	0		No	97.7	96.1	99.3	111.9	-7.8	-10.7	-7.8	3.5
260	9/18	1910	5183	96.0	1	10	Yes	119.8	115.5	98.6	111.6	-17.1	-18.7	-15.5	-2.7
261	9/19	1825	5186	107.7	8	10	Yes	119.8	119.9	105.3	113.5	23.8	19.5	2.6	15.6
	9/21		5192	97.0	0	0	No	105.0	102.3	99.4	121.4	12.1	12.2	-1.4	5.8
	9/25		5198	115.9		1140	Yes	124.9	106.2	112.4	134.8	8.0	5.3	2.4	24.4
	9/26	2015	5202	104.1	5	10	Yes	119.8	16.5	104.7	115.5	9.0 15.7	-9.7	-3.5	18.9
	9/28		5205	107.2	8	10	Yes	119.8	119.0	104.8	113.5		12.5	0.6	11.4
	10/2		5209	111.6	16	8091	Focus	131.8	130.6	107.0	132.0	12.6 20.2	11.8	-2.4	6.0
	10/5		5216	106.0	0	ol	No	98.5		96.1	117.1	-7.5	19.0		20.4
	10/10		5219	114.6	5	10	Yes	119.8	115.2	109.4	120.6	5.3	اءر	-9.9	11.1
288 1	0/11	2044	5225	120.5	6		Yes	119.8	117.2	112.3	120.8	-0.7	-4.5 -3.3	-5.2	6.0
											120.0	-0.7	-3.3	-8.2	0.3

Table 4. Shadow Zone Predictions, 1996.

				Ιa				dow Z				13	14	15	16
1	2	3	4	5	6	7	8	9	10	11	12			Errors (dB	
		Raob			1		Down-	· ·	BLASTO	UTAH	ВООМ		BLASTO	UTAH	воом
Shot	Date	Time	Raob	Obsvd		Dpth	wind?	JWR	NSWC	MODEL	TOO		NSWC	MODEL	тоо
#	. 1	UTC	#	(dB)	(°)	(m)		(dB)	(dB)	(dB)	(dB)	JWR	NOVIC	MODEL	-100
456	4/1	2050	6015		0	0	No	110.3			115.3				1
459	4/4	2050	6018		7	10	Yes	119.8			111.6				
1	1				0	0	No	107.7			123.7				l.
463	4/8	1904	6021		12	10	Yes	119.8			111.5				1
466	4/11	1858	6024		'4	10	163	1,15.0			126.4				
470	4/15	2004	6028		40	2700	Focus	131.8			131.0				Į.
477	4/22	2057	6032		6	3780 3536		131.8			124.8				
478	4/23	2005	6036		10		Focus	131.8			126.9				
487	5/2	2018		ء ء ۽ ا	1		ı		129.6	117.2		13.3	11.1	-1.3	7.3
491	5/6	1954		118.5				119.8	120.0	'''-	1	19.2			
494	5/9	1858		100.6			Yes	119.8	118.0	104.4	112.7	7.0	5.2	-8.1	-0.1
498	5/13	2003		112.5	8	58					133.4		 		
505	5/20	2024		464 -	 _	 _	Focus	106.6					1.3	1.5	13.2
519		1852	L	104.5			1	119.8	1	1	1			4.1	14.1
522		1855						118.4	1					6.0	14.7
526	1	1827		•				119.8	_					-2.8	13.2
528	1	1729					ı	107.7					1		6.2
529		1958						102.3	1				-2.1	2.2	19.5
540		1919						119.8						8.8	18.3
564	1	1843			1		1	107.5	i i				•	6.8	18.1
568		1821		102.4	1 0	η '	1 10	107.5	1 10			1			
570		1922	-	. دید ا		10	Yes	119.8	115.4	101.0	115.2	6.4	2.0	-12.4	1.8
571		1919		1			1	119.8				1	22.1	7.0	
575		1926		1	1	4	No No	105.5			•		5.3	1.7	20.8
577		1842			4-		No No	109.1			120.4				
578		1934			в		No	103.5		93.6	113.	2 11.7			
584		1817					No.	103.9							
58		184			- 1		No No	105.9				-2.3			•
589	ł .					7 1								-14.4	-0.4
59	0 8/13	ı		1	<u> </u>					1	ı	ı	5 7.6	10.6	20.4
59	2 8/15					- 1	O No	107.		•					1 .
59	7 8/20			4		5 1	i i								1
59	9 8/22			4		-	0 No	103.		4 100. 95.				6.	1
60	3 8/26						0 No								
61	1 9/3					- 1	0 No			· ·		- i	-		
61							0 Yes							1	
61	7 9/9		0 617				0 No			109.		22.	,	21.	
62	0 9/12					- 1	0 No							t t	
62		202					0 Yes					-			1
63		3 213			.0	0	0 No	107.	0 104	٠٠٠ ا٠٠	113		<u> </u>	1	
63		0 212	1 620			1			م م	000			.8 11.	6 7.	2 25.1
64		2 201				이	0 No								-1
64		5 210	1 62			1	10 Ye		1	1					
64	18 10/1	0 214				0	0 No						.8 4		
	19 10/1	1 220	1 62	30 110	.0	4	10 Ye	s 119	.8 114	.9 107	.0 123	.5			

Table 5. Statistical Summaries.

Gradient Propagation Analyses.

<u> </u>		Number of Cases	Average Pressure (dB)	Standard Dev'n (dB)	Modeling Error(RMS) (dB)
	WIND	28	99.99	8.654	2.531
DOW	NWIND	26	107.14	8.120	5.056

Prediction Error Comparisons

	Upwind	Downwind	Total
BLASTO JWR vs NSWC	N=24	24	48
JWR	11.267	11.443	11.355
NSWC	9.666	9.718	9.692

N=28	25	53
11.347	14.168	12.756
9.602		9.069
	11.347	11.347 14.168

DI AOTO ULO			
BLASTO JWR vs BOOM-TOO	N=24	24	48
114.00			70
JWR	10.728	10.697	10.713
50011-00		.0.007	10.7 13
BOOM-TOO	18.9391	18.775	18.860
			10.0001

Statistical prediction errors from these four methods are compared in **Table** 5 from listings in **Tables** 3 and 4. First, comparing JWR BLASTO predictions with those by NSWC, NSWC predictions were slightly more accurate, by 21% in overpressure, in spite of their *not* having been made from more detailed raob reports. It appears, from this particular sampling, that weather and terrain details simply added confusion.

Comparing JWR BLASTO predictions with BOOM-TOO predictions demonstrated results from intrinsic fallacies in BOOM-TOO modeling, as previously described and criticized [11]. In an explosion experiment on Chesapeake Bay [12], measurements were used with an unfortunate selection for an empirical fitting function that precluded any realistic response to atmospheric enhancement of overpressures. This function was initially adopted in programming BOOM-TOO into an early digital mini-calculator for field use [7]. Overall, BOOM-TOO errors were 8.15 dB greater than BLASTO errors, which translates to a factor of 2.56 larger pressure prediction error.

The UTAH Model performed only a little better than BLASTO, which was surprising in light of the apparently good correlation that provided its foundation. Deviations from the assumed *single* gradient may obviously and strongly affect ray curvature, and thus the height and distance of the actual diffusive source for further R⁻² propagation. When prediction errors are plotted against observed pressures in **Figure** 9, however, it clearly appears that low overpressures are overpredicted and high pressures are underpredicted by both BLASTO and UTAH.

Most remarkable and disturbing is that all errors, on average, are very nearly equal to the observation deviation from the sample mean. In other words, by simply predicting the *mean* value; UBAR = 99.99 Pa, for each of 28 upwind propagations, an error standard deviation of only ±8.65 dB resulted. This is 0.95 dB (12%) smaller than the UTAH model error. In 26 downwind cases, a larger UBAR = 107.14 dB obtained, as could be expected, although the error standard deviation was smaller, ±8.12 dB. That was 0.31 dB (4%) smaller than comparable UTAH model errors.

Compared to Standard overpressure at 65 km, 118.5 db, it shows 18.5 dB average excess attenuation for upwind propagation. About 1.3 dB of this may have been caused by atmospheric turbulence and classical atmospheric attenuation (molecular relaxation) [13], which has been ignored. It is not at all clear how this overall mean attenuation can be applied to generalized predictions that require yield scaling and do not have an archive of measurements for reference. Further data analyses may provide an appropriate value equivalent to the 6.5 ms⁻¹ velocity decrease applied in UTAH predictions, but that is beyond the scope and capability of this report.

COMPARISON WITH BLASTO MODELING

Gradient propagation pressure-distance curves used in BLASTO and derived from Project PROPA-GATOR results are shown in **Figure** 10, for 100-lb TNT surface bursts, and gradients of 5 and 10 ms⁻¹, as defined by the 154-m meteorological tower. UTAH calculations were made for gradients of 2, 5, and 10 ms⁻¹ with the same dimensions, as shown by symbols on this figure. Reasonable ball-park agreement is shown, and at comparable yield-scaled distances

Figure 9. Prediction Errors, BLASTO and UTAH Models.

Figure 10. Gradient Model Comparison With PROPA—GATOR 100—LB TNT Data

for both Norwegian tests and nuclear tests. Similarly, as shown by the dot-dash curve, the UBAR average prediction also crosses the same neighborhood.

UPWIND SOUND VELOCITY STRUCTURES

In hope of finding additional clues to explaining error scatter in **Figure** 6 and refining a prediction model, east-directed sound velocities were graphed. **Figure** 11 shows ten cases with observed pressures from 89.5 to 100.4 dB; velocities for each raob were individually shifted so that the curve sequence from left to right across the figure represents increasing measured pressures. It was expected that gradients, as shown between surface and correlation height points, would become weaker with higher pressures (lessened upward refracted ray curvature), and this appears roughly confirmed for most cases. Two exceptions, #3 and #7, showed the greatest correlation point heights as well as the largest fitting errors. But there does not seem to be any clear identifying characteristic to their vertical structure that separates them from the other cases.

Similarly, **Figure** 12 contains the other ten cases with higher observed overpressures, from 101.2 to 114.8 dB. This subset holds more examples with higher altitudes of correlation points, but the largest error magnitudes occurred with lower altitude points, in contrast to the pattern in **Figure** 11. Furthermore, the effective gradients in the two highest pressure cases, #19 and #20, are nearly the same as for #10 in **Figure** 11, at 10 dB lower pressure. In summary, these figures give no clear and obvious clues to correlation deviations.

The entire sequence of 20 upwind sound velocity structures is shown in **Figure** 13 with heights marked on each for 6.5 ms⁻¹ velocity decreases. The largest under-predictions shown in Tables 3 and 4, for #15, #17, #19, and #20, cluster in the lower right hand portion of the figure, while the largest over-predictions, for #3 and #7, fall in the upper left portion, further reflecting the conclusions from **Figures** 9 and 11.

DOWNWIND SOUND VELOCITY STRUCTURES

Similarly, downwind sound velocities are shown in **Figure** 14 for 93.9 to 111.5 dB pressures, and in **Figure** 15 for pressures from 111.6 to 120.5 dB. Heights where $(V_i-V_Z) = 6.5 \text{ ms}^{-1}$ are marked, along with prediction error for each case. The only obvious pattern is the error trend with increasing overpressures that was displayed earlier in **Figure** 9. Detailed case studies of terrain blocking and surface wind ducting effects, using airblast measurements made on the shoreline and beyond the small ridgeline east of the shot area, may elucidate these propagations.

DISCUSSION

Six explosions in 1995 and two in 1996 were measured at 114.8 to 122.0 dB, as shown in **Tables** 1 and 2, and close to the Standard explosion overpressure-distance curve. On 4/5/95 a westerly wind duct extended to 100 m above the terrain, according to detailed Raob #5020 winds and Figure 15, maintaining a near-Standard propagation. On 4/24/95 (Raob # 5032 in Figure 15)

Figure 11. SOUND VELOCITY VS ALTITUDE, UPWIND CASES, 89.5-100.4 dB OBSERVED Solid Triangles at $V(0)-V(Z)=6.5~\mathrm{ms}^{-1}$

Figure 12. SOUND VELOCITY VS ALTITUDE, UPWIND CASES, 101.2-114.8 dB OBSERVED Solid Points at $V(0)-V(Z)=6.5 \text{ ms}^{-1}$

Figure 13. Sound Velocity vs Altitude, Upwind Cases.

Figure 14. Sound Velocity vs Altitude, Downwind Cases, 93.9—111.5 dB

15. Sound Velocity vs Altitude, Downwind Cases, 111.6-120.0

and 5/18/95 (Raob #5049 in Figure 15), low-level wind details were not provided, but there must have been more than a shallow ground wind-friction duct at work, as occurred on 4/5/95. On 9/15/95 (Raob #5180, Figure 12) there was no indication, either at the surface or aloft, of westerly winds to propagate the observed overpressure, but they *must* have occurred along the true raypath but undetected by the raob balloon. It is quite likely that low-level wind circulations over Great Salt Lake differed from those over shot-site terrain where the raob was released. On 10/2/95 (Raob #5209, Figure 15))strong winds aloft showed several ducting layers up to 8 km MSL. This should definitely have been a NO-SHOOT condition. On 10/10/95 (Raob #5219) raob winds at 1500 m above ground came very close (by 0.1 m/s) to causing ducting so it can be safely assumed that some slightly higher wind speeds were encountered along the limiting raypath.

On 5/6/96 (Raob #6050, Figure 15), Standard propagation of 118.5 dB was observed from a dog-leg sound velocity curve extending up to 4700 m MSL, but with only 0.1 ms⁻¹ excess aloft to generate a focused ray path. The Utah model only underpredicted by 1.3 dBA, so there was no strong focusing, Nevertheless, a small increase in the causal 38 knot wind at altitude could have ducted much more airblast energy, and its occurrence at a few hundred meters higher altitude could have moved the focused ground return to a greater distance toward Antelope Island or Ogden. Review of two earlier raob winds showed a slight speed reduction and southerly directional shift was occurring during the count-down, causing an encouraging trend to the velocity structure. But the go-ahead decision based on such small safety margins seems a bit hair-triggered.

On 10/10/96 (Raob #6227), sound velocity decreased very slowly with altitude, by only 3 ms⁻¹ at 3000 m MSL, then to -6.5 ms⁻¹ by 3500 m MSL. Apparently, some winds along the ray path were stronger, causing this 50% overpressure amplification above Standard. There was, however, no marked dog-leg structure to threaten focusing.

COMPARISON WITH PROPA-GATOR RESULTS

In Figure 10, of overpressure versus distance for 100-lb TNT surface bursts, one solid line shows Standard explosion propagation and two dashed lines that were fitted to PROPA-GATOR measurements at 200, 500, 1000, 2000, and 5000 m, for surface to 152 m tower-top decreases of -5 m/s and -10 m/s in sound velocity. These were calculated by the BLASTO program. Values were then calculated from the Utah model for comparison, as shown by symbols for -2, -5, and -10 m/s. The Utah model shows consistently lower predictions, although not many fell below PROPA-GATOR error scatter-bars. A dash-dot line connects the Utah data upwind average 99.99 dB measurement to the Standard overpressure curve following R⁻² decay.

Also included in this figure are indicators of yield-scaled distances for Christmas Island nuclear tests, Norwegian kilogram tests, and Utah data at 65 km. All fall in the same general ball park of yield-scaled distances.

CONCLUSIONS

It appears that explosion airblast propagation into acoustic shadow zones, hypothesized to follow inverse-distance-squared overpressure decay from nuclear megaton and chemical kilogram sources, also follows this decay from upwind measurements of Poseidon demolitions.

At this point it seems that the derived "Utah" model is superior to the PROPA-GATOR empiricism as applied by the BLASTO program, in that it evades yield-scaling problems and represents a much larger-scale experiment that should have allowed better measurement precision.

Using the Utah model for propagations downwind of low-altitude or surface winds also gave smaller prediction errors than BLASTO, although Utah downwind errors were also smaller than Utah upwind errors, for this particular sampling.

Standard deviations around the *mean* recorded overpressures, for 28 upwind and 26 downwind cases, were also smaller than UTAH prediction errors. But this would only provide predictive utility when a large number of similar previous events had been monitored.

On several occasions, shots were fired under marginal noise-propagation weather conditions. On a couple occasions, firings were conducted under conditions which could easily have caused focusing on the populated east side of Great Salt Lake.

RECOMMENDATIONS

Case studies of the effects of the small terrain barrier, east of the firing point, on short range propagations to the lake shore could elucidate the surface downwind duct assumption, as it confused prediction and several times managed to transmit relatively strong airblast waves across Salt Lake.

The inverse-distance-squared model should be further explored to see it if also applies in airblast shadows beyond other terrain barriers. Such study is scheduled for analyses of Norwegian test data from series conducted in hilly terrain. It also should be applied to measurements collected at Vandenberg AFB, in 1981, in a sequel to PROPA-GATOR, to determine the protection provided there by surrounding mountains.

The collection of Nevada nuclear test data contains many examples of gradient-dominated propagation to long distances of 50 to 150 km. These tests were mostly fired at early morning hours under strong desert night-time temperature inversions. But these inversion airblast ducts were blocked by 300- to 500-m mountains that surrounded both Yucca and Frenchman Flats. These data are in hand and could be analyzed against the Utah model.

REFERENCES

- 1. American National Standards Institute, Estimating Air Blast Characteristics for Single Point Explosions in Air, with a Guide to Evaluation of Atmospheric Propagation and Effects, ANSI S2.20-1983 (R-1989), Acoust. Soc. Amer., New York NY, 1983.
- 2. Reed, J.W. and H.W. Church, "Blast Predictions at Christmas Island," Operation DOMINIC, Hazards Evaluation Unit Report WT-2057, Sandia Laboratory, Albuquerque NM, October 25, 1963.
- 3. Reed, J.W., "Project PROPA-GATOR Intermediate Range Explosion Airblast Propagation Measurements," *Min.* 19th DOD Explosive Safety Seminar, Los Angeles CA, 9-11 September 1980.
- 4. Reed, J.W., "Program BLASTO for Weather-Dependent Airblast Predictions," Min. 24th DOD Explosive Safety Seminar, St. Louis MO, August 26-31, 1990.
- 5. Glasstone, S. and P.J. Dolan, *The Effects of Nuclear Weapons, Rev. Ed.* U.S. Depts. Of Defense and Energy, Washington DC, 1977.
- 6. Reed, J.W., "Amplitude Variability of Explosion Waves at Long Range," J. Acoust. Soc. Amer., 39, 5, 1, May 1966.
- 7, Douglas, D., "Blast Operational Overpressure Model (BOOM): An Airblast Prediction Method," AFWL-TR-85-150, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, April 1987.
- 8. Cox, E.F., H.J. Plagge, and J.W. Reed, "Meteorology Directs Where Blast Will Strike," Bull. Amer. Meteor. Soc., 35, 3, March 1954.
- 9. Thompson, R.J., "Ray Theory for an Inhomogeneous Moving Medium," J. Acoust. Soc. Amer., 51, 1972.
- 10. Kordich, M.M. and D.A. Pollet, "UTTR Noise Abatement, 1995-1996 Data," CD-ROM Report NSWCDD TR-97/148, NSWC Dahlgren Div., Dahlgren VA, June 23, 1997.
- 11. Reed, J.W., "A Critique of Lorenz-Douglas Prediction Techniques for Weather-Dependent Airblast Propagations," ltr to G.Ullrich, HQ-DNA, Washington, DC, November 3, 1989.
- 12, Lorenz, R.A., "Noise Abatement Investigation for the Bloodworth Island Target Range: Description of Test Program and New Long Range Airblast Overpressure Prediction Method," NSWC TR 81-431, Naval Surface Weapons Center, Silver Spring, MD, 2 November 1981.
- 13. Reed, J.W., "Atmospheric Attenuation of Explosion Waves," J. Acoust. Soc. Amer., 61, 1, January 1977.

DISTRIBUTION

ADMINISTRATOR		US ARMY CONSTRUCTION ENGINEERING	
ADMINISTRATOR DEFENSE TECHNICAL INFORMATION CENTI	ER	RESEARCH LABORATORY	
		ATTN DR L L PATER	
ATTN DTIC-OCP 8725 JOHN J KINGMAN RD STE 0944		2902 FABER DRIVE	
8725 JOHN J KINGWAN KD STE 0744	1	CHAMPAIGN IL 61821	1
FT BELVOIR VA 22060-6218	•		
TO TO COMO D		UTAH TEST AND TRAINING RANGE	
DIRECTOR TEGRA SYSTEMS PROGRAM		ATTN CODE 00 AL SUE (R. SHORT)	
STRATEGIC SYSTEMS PROGRAM		75TH SQUADRON	
ATTN CODE 27432 (W HELMRICH)		HILL AFB UT 84406	1
1931 JEFFERSON DAVIS HIGHWAY	1	INDEAN DOLLAR	
ARLINGTON VA 22241-5362	1	UTAH TEST AND TRAINING RANGE	
		ATTN CODE 00 AL SE (T OLSEN)	
COMMANDER		75TH SQUADRON	
DAHLGREN DIVISION NAVSURFWARCEN		HILL AFB UT 84406	1
ATTN G72 (KORDICH)		HILL AFB U1 84400	-
17320 DAHLGREN ROAD		CEED A ADMINISTRATION	
DAHLGREN VA 22448-5100	1	SIERRA ARMY DEPOT	
		ATTN G LONG (BLDG 79)	1
COMMANDER		HERLONG CA 96113-5000	1
DAHLGREN DIVISION NAVSURFWARCEN			
ATTN G72 (POLLET)		JAYCOR	
17320 DAHLGREN ROAD		ATTN DR P CHAN	
DAHLGREN VA 22448-5100	1	9775 TOWNE CENTER DRIVE	
DATEGREN VII 22 110 0100		PO BOX 85154	1
CHAIRMAN		SAN DIEGO CA 94551	1
DOD EXPLOSIVE SAFETY BOARD			
ATTN DDESB-KT (WARD)		COMPUTER SCIENCE CORPORATION	
2461 EISENHOWER AVENUE		UTAH TEST AND TRAINING RANGE	
ALEXANDRIA VA 22331-0600	1	ATTN R MITCHELL	
ALEXANDRIA VA 22331-0000		PO BOX 217	_
CYLAND (AN)		CLEARFIELD UT 84056	1
CHAIRMAN DOD EXPLOSIVE SAFETY BOARD			
DOD EXPLOSIVE SAFETT BOARD		COMPUTER SCIENCE CORPORATION	
ATTN DDESB-KT (CANADA)		UTAH TEST AND TRAINING RANGE	
2461 EISENHOWER AVENUE	1	ATTN B DICKSON	
ALEXANDRIA VA 22331-0600	1	PO BOX 217	
		CLEARFIELD UT 84056	1
DIRECTOR		ODDING IIII	
DEFENSE SPECIAL WEAPONS AGENCY		COMPUTER SCIENCE CORPORATION	
ATTN CODE LEEE		UTAH TEST AND TRAINING RANGE	
6801 TELEGRAPH ROAD	1	ATTN J NELSON	
ALEXANDRIA VA 23310-3398	1	PO BOX 217	
		CLEARFIELD UT 84056	1
		CLEARFILLD OF 64030	

Internal:

950T	10
PME	3
600B	3
8230	1
840L	Ţ
040L	3