- Most explanations we've seen are about interpreting models
- Chain-of-thought: prompting technique for using explanations to improve model performance, particularly for complex reasoning tasks
- Basic idea: the language model can "work through" different types of computation over multiple timesteps of inference, rather than needing to generate an answer immediately

Rationales as "Programs"

Problem 2:

Question: From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

Options: A) 2/1223 B) 1/122 C) 1/221 D) 3/1253 E) 2/153

Rationale: Let s be the sample space.

Then n(s) = 52C2 = 1326

E = event of getting 2 kings out of 4

n(E) = 4C2 = 6

P(E) = 6/1326 = 1/221

Answer is C

Correct Option: C

- Rationales are most useful for problems where some computation is required. They can articulate the intermediate steps needed to solve it
- Some of the earliest work: math word problems

Rationales as "Programs"

- "StrategyQA": dataset where different reasoning strategies are needed
- Related to multi-hop QA: "What's the capital of the country where Aristotle lived?" (but these are easy with current models)

- For these kinds of problems, do "computation" entirely in natural language
- Unifies several ideas:
 - For math: relies on the fact that LLMs can at least do single steps of arithmetic okay
 - For QA: many problems involve reasoning decompositions E.g., What's the capital of the country where Aristotle lived? -> ans = "country where Aristotle lived" return What's the capital of [ans]
 - For other tasks: capture the kinds of behavior written in rationales

- Chain-of-thought is usually a few-shot prompting technique where the in-context examples now contain explanations
- Answer is not generated in one go, but comes after an explanation that "talks through" the reasoning

Input:

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

•••

Q: John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How many hours a week does he spend taking care of dogs?

A:

Model output:

John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. So that is 10 x .5 = 5 hours a day. 5 hours a day x 7 days a week = 35 hours a week. The answer is 35 hours a week.

From our work: a synthetic test of multi-hop reasoning with extractive explanations:

Context: Christopher agrees with Kevin. Tiffany agrees with Matthew. Mary hangs out with Danielle. James hangs out with Thomas. Kevin is a student. Matthew is a plumber. Danielle is a student. Thomas is a plumber.

Q: Who hangs out with a student?

A: Mary.

Explanation: because Mary hangs out with Danielle and Danielle is a student.

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Mary

Standard few-shot learning, no explanation

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Mary, because Mary hangs out with Danielle and Danielle is a student.

Predict-explain: answer is not conditioned on output explanation (original E-SNLI LSTM)

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Because Mary hangs out with Danielle and Danielle is a student, the answer is Mary.

Explain-predict: answer is conditioned on output explanation (Chain of Thought)

Input Label+ Explanation	Context: Christopher agrees with Kevin. [] Q: Who hangs out with a student? Mary, because Mary hangs out with Danielle and Danielle is a student.
Train Ex	
Train Ex	
Test Input	Context: Adam plays with Ellen. [] Q: Who plays with a doctor?
	GPT-3
Output	Adam, because Adam plays with Ellen and Ellen is a doctor.
	greedy decoding from GPT-3

Results on SYNTH data

- Instruct tuning / RLHF improves models' ability to use explanations
- Chain-of-thought helps on the biggest and best models, but isn't always effective on weaker models

Chain-of-Thought: Results

	MultiArith	GSM8K
Zero-Shot		10.4
Few-Shot (2 samples)	33.7	15.6
Few-Shot (8 samples)	33.8	15.6
Zero-Shot-CoT	78.7	40.7
Few-Shot-CoT (2 samples)	84.8	41.3
Few-Shot-CoT (4 samples : First) (*1)	89.2	_
Few-Shot-CoT (4 samples : Second) (*1)	90.5	_
Few-Shot-CoT (8 samples)	93.0	48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2)	92.8	51.5
Finetuned GPT-3 175B [Wei et al., 2022]	_	33
Finetuned GPT-3 175B + verifier [Wei et al., 2022]	-	55
PaLM 540B: Zero-Shot	25.5	12.5
PaLM 540B: Zero-Shot-CoT	66.1	43.0
PaLM 540B: Zero-Shot-CoT + self consistency	89.0	70.1
PaLM 540B: Few-Shot [Wei et al., 2022]	_	17.9
PaLM 540B: Few-Shot-CoT [Wei et al., 2022]	_	56.9
PaLM 540B: Few-Shot-CoT + self consistency [Wang et al., 2022]		74.4

[&]quot;Let's think step by step" paper introduced a new zero-shot prompt. CoT works much better than non-CoT, and few-shot is better Kojima et al. (2022)