Inferencia Estadísitica: Teoría

Daniel Monjas Miguélez 16 de enero de 2022

Índice

1.	Intr	oducción a la Inferencia Estadística. Estadísticos muestra-	
	les.		3
	1.1.	Muestra Aleatoria Simple	3
	1.2.	Función de distribución muestral	3
	1.3.	Estadístico muestral	5
2.	Dist	ribuciones en el muestreo de poblaciones normales.	7
	2.1.	Distribuciones χ^2 de Pearson, t de Student y F de Snedecor	7
		2.1.1. Distribución χ^2 de Pearson	7
		2.1.2. Distribución t de Student	8
		2.1.3. Distribución F de Snedecor	9
	2.2.	Muestreo en poblaciones normales	9
		2.2.1. Muestreo en una pobalación normal unidimensional	9
		2.2.2. Muestreo en dos poblaciones normales unidimensionales .	10

1. Introducción a la Inferencia Estadística. Estadísticos muestrales.

1.1. Muestra Aleatoria Simple

Definción: Una muestra aleatoria simple (de tamaño n) de una variable X es un vector (X_1, \ldots, X_n) formado por n variables aleatorias independientes, todas con la misma distribución que X.

- Realización muestral: Cada valor $(x_1, ..., x_n)$ obtenido al observar $(X_1, ..., X_n)$.
- Espacio muestral (χ^n): Conjunto de todas las posibles realizaciones muestrales según nuestro conocimiento de P_X (valores de (X_1, \ldots, X_n) bajo alguna distribución de la familia):

$$\chi_{\theta} = \{x/f_{\theta}(x) > 0\} \rightarrow valores \ de \ X \ bajo \ P_{\theta}$$
$$\chi = \bigcup_{\theta \in \Theta} \chi_{\theta} \rightarrow valores \ de \ X \ bajo \ \mathcal{P}$$
$$\chi^{n} = \chi \times \chi \times \cdots \times \chi = \{(x_{1}, \dots, x_{n}); \ x_{1}, \dots, x_{n} \in \chi\}$$

1.2. Función de distribución muestral

Definición: Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una variable aleatoria X con función de distribución F_X . Se define la función de distribución muestral, F_{X_1, \ldots, X_n}^* , como una función sobre $\mathbb R$ dada por,

$$F_{X_1,...,X_n}^*(x) = \frac{n \ de \ variables \ X_i \leq x}{n} = \frac{\sum_{i=1}^n I_{(-\infty,x]}(X_i)}{n}, \quad \forall x \in \mathbb{R}$$

Propiedades de la función de distribución muestral:

1. $\forall x \in \mathbb{R}, \ F^*_{X_1,...,X_n}(x)$ es una variable aleatoria tal que $nF^*_{X_1,...,X_n}(x) \leadsto B(n,F(x))$:

$$E[F_{X_1,...,X_n}^*(x)] = F(x), \qquad Var[F_{X_1,...,X_n}^*(x)] = \frac{F(x)(1 - F(x))}{n}$$

2. Si *n* es grande, y la distribución binomial poco manejable, puede aproximarse por una normal según el Teorema límite de Lèvy:

$$F_{X_1,...,X_n}^*(x) \leadsto \mathcal{N}\left(F(x), \frac{F(x)(1-F(x))}{n}\right)$$

Demostración:

1. Se tiene que:

$$I_{(-\infty,x]}(X_i) \leadsto B(1,F(x)) \Rightarrow \sum_{i=1}^n I_{(-\infty,x]}(X_i) \leadsto B(n,F(x)) \Rightarrow$$
$$\Rightarrow nF_{X_1,\dots,X_n}^*(x) \leadsto B(n,F(x))$$

Teniendo en cuenta la linealidad de la esperanza:

$$E[nF_{X_1,...,X_n}^*(x)] = nF(x) \Rightarrow nE[F_{X_1,...,X_n}^*(x)] = nF(x) \Rightarrow$$
$$\Rightarrow E[F_{X_1,...,X_n}^*(x)] = F(x)$$

Por otro lado, puesto que $Var[nX] = n^2 Var[X]$:

$$\begin{split} Var[nF^*_{X_1,...,X_n}(x)] &= n^2 Var[F^*_{X_1,...,X_n}(x)] = nF(x)(1-F(x)) \Rightarrow \\ &\Rightarrow Var[F^*_{X_1,...,X_n}(x)] = \frac{F(x)(1-F(x))}{n} \end{split}$$

2. Como $nF_{X_1,...,X_n}^*(x)$ es usma de variables aleatorias independientes e idénticamente distribuidas, el Teorema Central del Límite permite afirmar que, cuando $n \to +\infty$,

$$\frac{nF_{X_1,\dots,X_n}^*(x) - nF(x)}{\sqrt{nF(x)(1 - F(x))}} = \sqrt{n} \frac{F_{X_1,\dots,X_n}^*(x) - F(x)}{\sqrt{F(x)(1 - F(x))}} \rightsquigarrow \mathcal{N}(0,1)$$

de manera que, cuando el tamaño muestral es grande, se tiene

$$F_{X_1,...,X_n}^*(x) \leadsto \mathcal{N}\left(F(x), \frac{F(x)(1-F(x))}{n}\right)$$

Teorema de Glivenko-Cantelli: Sea $\{X_n\}_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con función de distribución F_X . Si $F_{X_1,\ldots,X_n}^*(x)$ es la función de distribución muestral asociada a la muestra aleatoria simple (X_1,\ldots,X_n) de $X\leadsto P$, se verifica que $F_{X_1,\ldots,X_n}^*(x)$ converge casi seguramente y uniformemente a la función de distribución de X, F_X .

$$P\left[\lim_{n\to+\infty}\sup_{x\in\mathbb{R}}|F^*_{X_1,...,X_n}(x)-F(x)|=0\right]=1$$

Es decir, con probabilidad 1, al tomar sucesivas observaciones independientes de la variable y considerar las correspondientes funciones de distribución muestrales, se verifica:

$$\varepsilon > 0, \exists n_{\varepsilon}/n > n_{\varepsilon} \Rightarrow F(x) \in (F_{X_1,\dots,X_n}^*(x) - \varepsilon, F_{X_1,\dots,X_n}^*(x) + \varepsilon)$$

1.3. Estadístico muestral

Definición: Dada una muestra aleatoria simple $(X_1, ..., X_n)$ de X, un estadístico muestral es una función de ella, medible e independiente de cualquier parámetro desconocido; esto es, una transformación $T(X_1, ..., X_n)$, tal que $T: (\mathbb{R}^n, \mathbf{B}^n) \to (\mathbb{R}^k, \mathcal{B}^k)$ es medible $(T^{-1}(B) \in \mathcal{B}^n, \forall B \in \mathcal{B}^k)$.

Definición: Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una variable aleatoria X. La distribución en el muestreo de un estadístico T definido en el espacio muestral (χ^n, \mathcal{B}^n) es la distribución de la variable aleatoria $T(X_1, \ldots, X_n)$.

Proposición: La función generatriz de momentos del estadístico media muestral viene dada por:

$$M_{\overline{X}}(t) = (M_x(t/n))^n$$

Demostración: Recordemos que la función generatriz de momentos de una variable aleatoria es aditiva-multiplicativa en el sentido de que la función generatriz de momentos de la suma de n variables aleatorias independientes coincide con el producto de las n funciones generatrices de momentos.

Sea X una variable aleatoria, y (X_1,\ldots,X_n) una muestra aleatoria simple de X de tamaño n.

$$M_{\overline{X}}(t) = E\left[e^{t\overline{X}}\right] = E\left[e^{t\overline{X}_i}\right] = E\left[\prod e^{\frac{tX_i}{n}}\right] = E\left[\prod e^{\frac{tX_i}{n}}\right] = \prod_{i=1}^n E\left[e^{\frac{t}{n}X_i}\right] = \prod_{i=1}^n M_{X_i}(t/n) = (M_X(t/n))^n$$

Proposición: La distribución muestral general de los estadísiticos de orden, según la variable sea discreta o continua, es:

 \blacksquare X discreta:

$$\begin{split} P\left[X_{(r)} \leq x\right] &= P\left[al\ menos\ r\ elementos\ muestrales\ sean \leq x\right] = \\ &= \sum_{i=1}^n \binom{n}{i} (P[X \leq x])^i (P[X \geq x])^{n-i} \end{split}$$

 \blacksquare X continua:

$$g_r(x_{(r)}) = \frac{n!}{(r-1)!(n-r)!} [F(x_{(r)})]^{r-1} [1 - F(x_{(r)})]^{n-r} f(x_{(r)})$$

Definición (Momentos muestrales centrados y no centrados): Se definen los momentos centrados y no centrados de una muestra aleatoria simple de tamaño n como:

■ Momento no centrado de orden $k \in \mathbb{N}$: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

En particular, se tiene $A_1 = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} = \text{media muestral}.$

• Momentos centrado de orden $k \in \mathbb{N}$: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$.

En particular, se tiene $B_1 = 0$ (por las propiedades de la media de una distribución), y definimos $B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = Var[X] = varianza muestral$

Proposición: Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una variable aleatoria X.

1. Para los momentos no centrados, se tiene:

$$E[A_k] = E[X^k]$$
 $Var[A_k] = \frac{1}{n} (E[X^{2k}] - E[X^k]^2)$

En particular, $E[A_1]=\mu,\ Var[A_1]=\frac{\sigma^2}{n},$ donde μ y σ^2 son, respectivamente, la media y la varianza poblacional.

2. Para el momento centrado de orden 2, se tiene

$$E[B_2] = \frac{(n-1)\sigma^2}{n}$$

En particular, se verifica $E[S^2] = \sigma^2$, donde $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

A S^2 así definida le llamamos cuasivarianza muestral.

Demostración: Mirar apuntes.

Definición (Cuantil Muestral): Para cada $p \in (0,1)$, el cuantil de orden p, c_p , es un valor real tal que

$$F_n^*(c_p) \ge p$$
 y $F_n^*(c_p^-) \le p$

Se puede expresar de la siguiente forma en función de los elementos de la muestra ordenada:

- \blacksquare Si $np \in \mathbb{N}, \, c_p = \frac{X_{(np)} + X_{(np+1)}}{2}$
- \blacksquare En otro caso, sea [np] la parte entera de np, entonces $cp=X_{([np]+1)}$

Definción (Función generatriz de momentos muestral): Se define la función generatriz de momentos muestral como

$$M^*(t) = \frac{1}{n} \sum_{i=1}^{n} e^{tX_i}$$

Proposción: La función generatriz de momentos muestral se utiliza para obtener los momentos no centrados, pues se verifica

$$\frac{\partial^k M^*(t)}{\partial t^k}\Big|_{t=0} = A_k$$

2. Distribuciones en el muestreo de poblaciones normales.

2.1. Distribuciones χ^2 de Pearson, t de Student y F de Snedecor.

Proposición (Distribución de muestreo de la meida muestral): Si $X \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$, y (X_1, \dots, X_n) muestra aleatoria simple de X, entonces

$$\overline{X} \leadsto \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

2.1.1. Distribución χ^2 de Pearson

Definición (Distribución χ^2 **de Pearson):** Se dice que una variable aleatoria X tiene una distribución χ^2 de Pearson con n grado de libertad $(n \in \mathbb{N})$, y se denota $X \leadsto \chi^2(n)$, si su función de densidad de probabilidad es

$$f_X(x) = \frac{1}{\Gamma(n/2) \cdot 2^{n/2}} x^{n/2 - 1} e^{-x/2}, \quad x > 0$$

La distribución χ^2 de Pearson es un caso particular de la distribución Gamma, $\Gamma(p,a)$, cuya función de densidad es

$$f(x) = \frac{a^p}{\Gamma(p)} x^{p-1} e^{-ax}, \qquad x > 0$$

Propiedades (Distribución χ^2 de Pearson):

1. La función generatriz de momentos de una variable aleatoria $X \leadsto \chi^2(n)$ es

$$M_X(t) = \frac{1}{(1-2t)^{n/2}}, \qquad t < \frac{1}{2}$$

2. Los momentos no centrados de la distribución $\chi^2(n)$ vienen dados por

$$E[X^k] = 2^k \frac{\Gamma(\frac{n}{2} + k)}{\Gamma(\frac{n}{2})}$$

En particular, E[X] = n, $E[X^2] = n^2 + 2n \Rightarrow Var[X] = E[X^2] - E[X]^2 = 2n$.

3. **Reproductividad.** Si X_1, \ldots, X_n son variables aleatorias independientes con $X_i \rightsquigarrow \chi^2(k_i)$, entonces

$$\sum_{i=1}^{n} X_i \leadsto \chi^2 \left(\sum_{i=1}^{n} k_i \right)$$

4. Relación entre las distribuciones χ^2 y $\mathcal{N}(0,1)$. Si X_1,\ldots,X_n son variables aleatorias independientes e idénticamente distribuidas con distribución común $\mathcal{N}(0,1)$, entonces:

$$\sum_{i=1}^{n} X_i^2 \leadsto \chi^2(n)$$

Observación importante: Para valores de n grandes (n > 50, normalmente), se utiliza que su distribución se puede aproximar por una $\mathcal{N}(n, 2n)$, por el teorema central del límite de Lèvy.

Gráfica de la función de densidad de $\chi^2(n)$: Asimétrica a la derecha y unimodal.

2.1.2. Distribución t de Student

Definición: Sean X e Y variables aleatorias independientes con distribuciones $X \leadsto \mathcal{N}(0,1)$ e $Y \leadsto \chi^2(n)$. Entonces la variable aleatoria,

$$\frac{X}{\sqrt{Y/n}}$$

se dice que tiene una distribución t de Student de n grados de libertad, y se denota $T \leadsto t(n)$.

Propiedades de la distribución t de Student:

1. La función de densidad de probabilidad de una distribución t(n) viene dada por

$$f_T(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{n\pi}} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad t \in \mathbb{R}.$$

- 2. Sea T una variable aleatoria con distribución t(n), con n > 1. Entonces, se tiene que existen los momentos no centrados $E[T^r]$ para r < n, y se verifica que:
 - Si r es impar, entonces $E[T^r] = 0$.
 - \blacksquare Si r es par, entonces

$$E[T^r] = \frac{\Gamma\left(\frac{r+1}{2}\right)\Gamma\left(\frac{n-r}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n}{2}\right)}$$

En particular, para n>2, existen los momentos de primer y segundo orden, y se tiene E[T]=0, $E[T^2]=Var[T]=\frac{n}{n-2}$

Observación importante: Para valores de n grande, se utiliza que la distribución t(n) se puede aproximar por $\mathcal{N}(0,1)$.

Gráfica de la función de densidad de t(n): La función de densidad de la distribución t(n) cumple que es simétrica y unimodal.

2.1.3. Distribución F de Snedecor

Definición (Distribución F de Snedecor): Sean X e Y variables aleatorias independientes con distribuciones $X \leadsto \chi^2(m)$ e $Y \leadsto \chi^2(n)$. Entonces, la variables aleatoria

$$F = \frac{X/m}{Y/n}$$

se dice que tiene una distribución F de Snedecor con (m, n) grados de libertad, y se denota por $F \leadsto F(m, n)$.

Propiedades de la distribución F de Snedecor:

1. La función de densidad de probabilidad de una distribución ${\cal F}(m,n)$ viene dada por

$$g(f) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{m/2} f^{m/2-1} \left(1 + \frac{m}{n}f\right)^{-\frac{m+n}{2}}, \qquad f > 0$$

2. Sea F una variable aleatoria con distribución F(m,n). Entonces, se verifica que

$$E[F^r] = \left(\frac{n}{m}\right)^r \frac{\Gamma\left(\frac{m}{2} + r\right)\Gamma\left(\frac{n}{2} - r\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)}, \qquad 0 < r < \frac{n}{2}$$

En particular, $E[F] = \frac{n}{n-2}$ si n > 2, $E[F^2] = \frac{n^2(m+2)}{m(n-4)(n-2)}$ si n > 4, luego se tiene que $Var[F] = \frac{n^2(2m+2n-4)}{m(n-2)^2(n-4)}$ si n > 4.

- 3. Se verifican las siguientes propiedades:
 - $F \leadsto F(m,n) \Leftrightarrow F^{-1} \leadsto F(n,m)$
 - $\blacksquare T \leadsto t(n) \Leftrightarrow T^2 \leadsto F(1,n)$

Gráfica de la función de densidad de F(m,n): Es asimétrica a la derecha y unimodal.

2.2. Muestreo en poblaciones normales

2.2.1. Muestreo en una pobalación normal unidimensional

Teorema: Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una variable aleatoria $X \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$. Entonces, \overline{X} y $(X_1 - \overline{X}, \ldots, X_n - \overline{X})$ son independientes

Corolario: Bajo las mismas condiciones del teorema anterior, se tiene:

1.
$$\overline{X} \rightsquigarrow \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

2. Lema de Fisher. \overline{X} y S^2 son independientes.

3.
$$\frac{(n-1)S^2}{\sigma^2} \rightsquigarrow \chi^2(n-1)$$

4.
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \rightsquigarrow t(n-1)$$

Estadísticos para hacer inferencia sobre los parámetros de una población unidimensional en diferentes situaciones:

• Inferencia sobre μ :

$$\sigma_0^2$$
 conocida: $\frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \rightsquigarrow \mathcal{N}(0, 1)$

$$\sigma_0^2 \quad conocida: \qquad \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \leadsto \mathcal{N}(0, 1)$$

$$\sigma^2 \quad desconocida: \qquad \frac{\overline{X} - \mu}{S / \sqrt{n}} \leadsto t(n - 1)$$

■ Inferencia sobre σ^2 :

$$\mu_0$$
 conocida: $\frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma^2} \rightsquigarrow \chi^2(n)$

$$\mu_0$$
 conocida: $\frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma^2} \rightsquigarrow \chi^2(n)$
 μ desconocida: $\frac{(n-1)S^2}{\sigma^2} \rightsquigarrow \chi^2(n-1)$

2.2.2. Muestreo en dos poblaciones normales unidimensionales

Proposición:

$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \rightsquigarrow \mathcal{N}(0, 1)$$

Lema extendido de Fisher: Los vectores $(\overline{X}, \overline{Y})$ y (S_1^2, S_2^2) son independientes.

Estadísticos para hacer inferencia sobre los parámetros de dos poblaciones normales unidimensionles en los siguientes casos:

■ Inferencia sobre $\mu_1 - \mu_2$:

$$\sigma_{1}^{2}, \sigma_{2}^{2} \quad conocidas: \qquad \frac{\overline{X} - \overline{Y} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \rightsquigarrow \mathcal{N}(0, 1)$$

$$\sigma_{1}^{2} = \sigma_{2}^{2} = \sigma^{2} \quad desconocidas: \frac{\overline{X} - \overline{Y} - (\mu_{1} - \mu_{2})}{\sqrt{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}} \sqrt{\frac{n_{1} + n_{2} - 2}{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \rightsquigarrow t(n_{1} + n_{2} - 2)$$

■ Inferencia sobre $\frac{\sigma_2^2}{\sigma_1^2}$:

$$\mu_{1}, \mu_{2} \quad conocidas: \qquad \frac{n_{2}}{n_{1}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \frac{\sum_{i=1}^{n_{1}} (X_{i} - \mu_{1})^{2}}{\sum_{i=1}^{n_{2}} (Y_{i} - \mu_{2})^{2}} \leadsto F(n_{1}, n_{2})$$

$$\mu_{1}, \mu_{2}, \quad desconocidas: \frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{1}^{2}} \leadsto F(n_{1} - 1, n_{2} - 1)$$