EXERCISE 3.2

1. Let
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

$$(i)$$
 A + B

(i)
$$\begin{bmatrix} a & b \\ b & a \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

(i)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} a^2 + b^2 & b^2 + c^2 \\ a^2 + c^2 & a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab & 2bc \\ -2ac & -2ab \end{bmatrix}$$

iii)
$$\begin{vmatrix} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{vmatrix} + \begin{vmatrix} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 2 & 2 & 4 \end{vmatrix}$$

(iii)
$$\begin{bmatrix} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} \cos^2 x & \sin^2 x \\ \sin^2 x & \cos^2 x \end{bmatrix} + \begin{bmatrix} \sin^2 x & \cos^2 x \\ \cos^2 x & \sin^2 x \end{bmatrix}$$

3. Compute the indicated products.

(i)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$

(iv)
$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{bmatrix}$$

(v)
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \end{bmatrix}$$

(vi)
$$\begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix} \begin{vmatrix} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{vmatrix}$$

4. If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$, then compute

(A+B) and (B-C). Also, verify that A + (B-C) = (A+B) - C.

- 5. If $A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$, then compute 3A 5B.
- 6. Simplify $\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$
- 7. Find X and Y, if

(i)
$$X + Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$$
 and $X - Y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

(ii)
$$2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$$
 and $3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$

- 8. Find X, if Y = $\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ and 2X + Y = $\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$
- 9. Find x and y, if $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$
- **10.** Solve the equation for x, y, z and t, if $2\begin{bmatrix} x & z \\ y & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$
- 11. If $x \begin{vmatrix} 2 \\ 3 \end{vmatrix} + y \begin{vmatrix} -1 \\ 1 \end{vmatrix} = \begin{vmatrix} 10 \\ 5 \end{vmatrix}$, find the values of x and y.
- 12. Given $3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 & x+y \\ z+w & 3 \end{bmatrix}$, find the values of x, y, z and w.

13. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, show that $F(x) F(y) = F(x + y)$.

14. Show that

(i)
$$\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

15. Find
$$A^2 - 5A + 6I$$
, if $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$

16. If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
, prove that $A^3 - 6A^2 + 7A + 2I = 0$

17. If
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find k so that $A^2 = kA - 2I$

18. If
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 and I is the identity matrix of order 2, show that

$$I + A = (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

19. A trust fund has ₹30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ₹80, ₹60 and ₹40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$, respectively. Choose the correct answer in Exercises 21 and 22.

21. The restriction on n, k and p so that PY + WY will be defined are:

(A)
$$k = 3, p = n$$

(B) k is arbitrary, p = 2

(C)
$$p$$
 is arbitrary, $k = 3$

(D) k = 2, p = 3

22. If n = p, then the order of the matrix 7X - 5Z is: (A) $p \times 2$ (B) $2 \times n$ (C) $n \times 3$ (D) $p \times n$

(A)
$$p \times 2$$

(B)
$$2 \times n$$

(C)
$$n \times 3$$

(D)
$$p \times p$$