Package 'Poisson'

October 22, 2015

Description This package contains a functions and classes for simulating, plotting and analysing ho-

Title Simulating Homogenous & Non-Homogenous Poisson Processes

mogenous and non-homogenous Poisson processes.

Author Kristian Brock [aut], Daniel Slade [ctb]

Maintainer Daniel Slade <sladeD@bham.ac.uk>

Type Package

Version 1.0 **Date** 2015-10-01

Depends methods

License	GPL-2	
R top	ics documented:	
	poisson-package	2
	hpp.event.times	3
	hpp.lik	4
	hpp.mean	4
	hpp.mean.event.times	5
	hpp.mle	6
	hpp.plot	7
	hpp.scenario	8
	hpp.sim	9
	nhpp.event.times	10
	nhpp.lik	11
	nhpp.mean	12
	nhpp.mean.event.times	12
	11	13
	11	14
	11 1	15
	nhpp.sim	16
		17
	plot-methods	18
	•	18
	PoissonProcessScenario-class	
		20
Index		21

2 poisson-package

poisson-package

Simulating Homogenous & Non-Homogenous Poisson Processes

Description

This package contains a functions and classes for simulating, plotting and analysing homogenous and non-homogenous Poisson processes.

Details

Package: poisson
Type: Package
Version: 1.0
Date: 2015-10-01
License: GPL-2

The original motivation for this package was modelling recruitment to clinical trials. The gap between patients registering is random. There were examples where we expected that gap to be the same, on average, throughout the trial and for this problem, we simulated patient arrival times as homogeneous Poisson processes. In multi-centre trials, however, we expected that gap to be large at the start of the trial but get smaller as more recruitment centres opened. This scenario required non-homogeneous Poisson processes. Though this package appeared through a medical statistics application, the ability to simulate and analyse Poisson processes is helpful in lots of fields.

The most useful methods are those that simulate scenarios. A scenario consists of many simulated processes, a mean process, and quantile processes. The mean process shows the average number of events through time, i.e. the most likely process path. The simulated paths and the quantile processes inform the analyst about the level of variance about this mean, allowing inference on best and worst outcomes, as well as the most likely outcome.

Imagine a scenario where we expect 5 events per unit of time, on average, and don't expect that average to change. We want to analyse the distribution of paths and hitting times of observing 20 events. To simulate and view the scenario, run:

```
scen = hpp.scenario(rate = 5, num.events = 20, num.sims = 100)
plot(scen, main='My HPP Scenario')
```

The mean process values are in scen@x.bar and the quantile processes are in scen@x.q.

In contrast, let us now assume that the rate of events will be time-varying. Say we expect the event intensity to start at zero and increase linearly to 100% after three units of time. When event intensity is at 100%, we expect 10 events per unit time. To simulate this scenario, we run:

```
intensity <- function(t) pmin(t/3, 1)
rate <- 10
num.events <- 100
scen = nhpp.scenario(rate, num.events, num.sims = 100, prob.func=intensity)
plot(scen, main='My NHPP Scenario')</pre>
```

hpp.event.times 3

Author(s)

Kristian Brock [aut], Daniel Slade [ctb]

Maintainer: Daniel Slade <sladeD@bham.ac.uk>

hpp.event.times

Simulate homogeneous Poisson process event times

Description

Randomly sample the num.events consecutive event times of a random homogeneous poisson process with given rate. Note: the rate parameter is often referred to as lambda.

Usage

```
hpp.event.times(rate, num.events, num.sims = 1, t0 = 0)
```

Arguments

rate The rate at which events occur in the Poisson process, aka lambda

num. events Number of event times to simulate in each process

num. sims Number of simulated paths to create

t0 start time

Value

A numeric vector of length num.events if num.sims=1, else, a num.events by num.sims matrix

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.mean.event.times, hpp.scenario, nhpp.event.times
```

```
rate <- 10
target <- 50
hpp.event.times(rate, target)</pre>
```

4 hpp.mean

hpp.lik

Homogeneous Poisson process likelihood

Description

Get the likelihood of a rate parameter at a specific time for observed HPP event times.

Usage

```
hpp.lik(x, T1, rate)
```

Arguments

x a vector of HPP event times
 T1 Calculate likelihood at this time
 rate the putative HPP event rate

Value

Returns a numerical value for the likelihood.

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.mle, nhpp.lik
```

Examples

```
X = c(0.17, 0.39, 0.63, 0.78, 0.99)
hpp.lik(X, T1 = 1, rate = 4)
hpp.lik(X, T1 = 1, rate = 5)
hpp.lik(X, T1 = 1, rate = 6)
# 5 is the most likely of these three rates
```

hpp.mean

Expected value of an homogeneous Poisson process.

Description

Calculate the expected value of an homogeneous Poisson process at regular points in time.

Usage

```
hpp.mean(rate, t0 = 0, t1 = 1, num.points = 100, maximum = NULL)
```

hpp.mean.event.times 5

Arguments

rate The rate at which events occur in the Poisson process, aka lambda

t0 Start timet1 End time

num.points Number of points to use between t0 and t1 in calulating the mean

maximum The optional maximum value that the process should take

Value

A numeric vector of length num.points

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.scenario, nhpp.mean
```

Examples

```
hpp.mean(rate = 20, t1 = 5, maximum = 50)
```

Description

Calculate the expected event times of an homogeneous Poisson process.

Usage

```
hpp.mean.event.times(rate, num.events)
```

Arguments

rate The rate at which events occur in the Poisson process, aka lambda

num. events Observe mean event times at this many points

Value

A vector of length num.events giving the expected times

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.scenario, nhpp.mean.event.times
```

6 hpp.mle

Examples

```
rate <- 10
hpp.mean.event.times(rate, 50)</pre>
```

hpp.mle

Get the maximum-likelihood rate parameter of an HPP (homogenous Poisson process)

Description

Get the maximum-likelihood rate parameter for given HPP event times.

Usage

```
hpp.mle(x, T1)
```

Arguments

x a vector of HPP event times

T1 Calculate MLE at this time

Value

Returns a numeric value, the maximum-likelihood rate parameter

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.lik, nhpp.mle
```

```
X = c(0.17, 0.39, 0.63, 0.78, 0.99)
hpp.mle(X, T1=1)
```

hpp.plot 7

hpp.plot	Plot simulated homogeneous Poisson processes
----------	--

Description

Simulate and plot simulated homogeneous Poisson processes, also returning the mean and quantile processes.

Usage

```
hpp.plot(rate, num.events, num.sims = 100, t0 = 0, t1 = NULL, num.points = 100, quantiles = c(0.025, 0.975), \ldots)
```

Arguments

rate	The rate at which events occur in the Poisson process, aka lambda
num.events	Number of event times to simulate in each process
num.sims	Number of simulated paths to plot
t0	Start time
t1	End time
num.points	Number of points to use in estimating mean and quantile processes
quantiles	plot these quantile processes
	further arguments to be passed to methods

Value

list

x Matrix of event times, one process per column

x.bar Vector of mean process event times

x.q Matrix of quantile event times, one process per column

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.scenario,nhpp.plot
```

```
hpp.plot(rate = 5, num.events = 20, num.sims = 100, main='My simulated HPPs')
```

hpp.scenario

hpp.scenario	Simulate an homogeneous Poisson process scenari	o
iipp.occiidi 10	Similare an nome generals I disson process seeman	•

Description

Simulate an homogeneous Poisson process scenario, with sample paths, expected value process, and quantile processes.

Usage

```
hpp.scenario(rate, num.events, num.sims = 100, t0 = 0, t1 = NULL, num.points = 100, quantiles = c(0.025, 0.975), \ldots)
```

Arguments

rate	The rate at which events occur in the Poisson process, aka lambda
num.events	Number of event times to simulate in each process
num.sims	Number of simulated paths to plot
t0	Start time
t1	End time
num.points	Number of points to use in estimating mean and quantile processes
quantiles	plot these quantile processes
	further arguments to be passed to or from methods

Value

Instance of PoissonProcessScenario

Author(s)

```
Kristian Brock - Author, Daniel Slade - Contributor
```

See Also

```
nhpp.scenario, PoissonProcessScenario
```

```
scen = hpp.scenario(rate = 5, num.events = 20, num.sims = 100)
scen@x.bar
plot(scen, main='My HPP Scenario')
```

hpp.sim 9

hpp.sim Simulate homogeneous Poisson process(es).

Description

Get the n consecutive event times of an homogeneous poisson process with given rate. Note: the rate parameter is often referred to as lambda.

Usage

```
hpp.sim(rate, num.events, num.sims = 1, t0 = 0, prepend.t0 = T)
```

Arguments

The rate at which events occur in the Poisson process	, aka lambda
---	--------------

num. events Number of event times to simulate in each process

num.sims Number of simulated paths to create

t0 Start time

prepend. t0 TRUE: To include t0 at the start of the process, FALSE: Not include to at the

start of the process.

Value

A numeric vector of length num.events if num.sims=1, else, a num.events by num.sims matrix [num.events+1 if prepend.zero=T]

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.scenario, nhpp.sim
```

```
rate <- 10
target = 50
hpp.sim(rate,target)</pre>
```

10 nhpp.event.times

nhpp.ev	ent.	times
---------	------	-------

Simulate non-homogeneous Poisson process event times

Description

Randomly simulate the num.events consecutive event times of a non-homogeneous poisson process. Events are simulated using an underlying homogeneous process with given rate. An event at time t is admitted with probability prob.func(t). Note: The rate parameter of an homogeneous process is often called lambda.

Usage

```
nhpp.event.times(rate, num.events, prob.func, num.sims = 1, t0 = 0)
```

Arguments

rate	the rate at which events occ	ur in the equivalent	homogeneous Poisson	process,

aka lambda

num. events number of event times to simulate in each process

prob. func aka intensity function, function that takes time as sole argument and returns

value between 0 and 1

num.sims number of simulated paths to create to the reference start time of all events

Details

This method is called 'thinning' by Lewis & Shedler (1978).

Value

A numeric vector of length num.events if num.sims=1, else, a num.events by num.sims matrix

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

References

Lewis & Shedler, Simulation of Non-Homogeneous Poisson Processes by Thinning, 1978

See Also

```
\verb|nhpp.mean.event.times|, \verb|nhpp.scenario|, \verb|hpp.event.times||
```

```
rate <- 10
target <- 50
intensity <- function(t) pmin(t/3, 1)
nhpp.event.times(rate, target, intensity)</pre>
```

nhpp.lik 11

nhpp.lik	Non-homogeneous Poisson process likelihood
----------	--

Description

Get the likelihood of a rate parameter at a specific time for observed NHPP event times and given intensity function.

Usage

```
nhpp.lik(x, T1, rate, prob.func)
```

Arguments

x	a vector of HPP event times
T1	Calculate likelihood at this time
rate	the putative HPP event rate
prob.func	aka intensity function, function that takes time as sole argument and returns value between 0 and 1

Value

Returns a numerical value for the likelihood.

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
nhpp.mle, hpp.lik
```

```
intensity <- function(t) pmin(t/3, 1) 
 X = c(0.74, 1.50, 1.67, 2.01, 2.27) 
 nhpp.lik(X, T1 = 2.3, rate = 5, prob.func = intensity) 
 nhpp.lik(X, T1 = 2.3, rate = 6, prob.func = intensity) 
 nhpp.lik(X, T1 = 2.3, rate = 7, prob.func = intensity) 
 # 6 is the most likely of these three rates
```

nhpp.mean Expected value of a non-homogeneous Poisson process.	
--	--

nhpp.mean.event.times

Description

Calculate the expected value of a non-homogeneous Poisson process at points in time.

Usage

12

```
nhpp.mean(rate, prob.func, t0 = 0, t1 = 1, num.points = 100, maximum = NULL)
```

Arguments

rate the rate at which events occur in the Poisson process, aka lambda

prob. func function that takes time as sole argument and returns value between 0 and 1

t0 start timet1 end time

num.points number of points between t0 and t1 to use in estimating mean maximum the optional maximum value that the process should take

Value

A numeric vector of length num.points

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
nhpp.scenario, hpp.mean
```

Examples

```
intensity <- function(t) pmin(t/3, 1)
nhpp.mean(rate = 20, t1 = 5, maximum = 50, prob.func=intensity)</pre>
```

nhpp.mean.event.times Expected event times of a non-homogeneous Poisson process.

Description

Calculate the expected event times of a non-homogeneous Poisson process.

Usage

```
nhpp.mean.event.times(rate, num.events, prob.func, max.time = 1000)
```

nhpp.mle 13

Arguments

rate The rate at which events occur in the Poisson process, aka lambda

num. events Observe mean event times at this many points

prob.func aka intensity function, function that takes time as sole argument and returns

value between 0 and 1

max.time Maximum time value to use

Value

A vector of length num.events giving the expected times

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
nhpp.event.times, nhpp.scenario, hpp.mean.event.times
```

Examples

```
intensity <- function(t) pmin(t/3, 1)
rate <- 10
nhpp.mean.event.times(rate, 50, prob.func = intensity)</pre>
```

nhpp.mle

Get the maximum-likelihood rate parameter of an NHPP (non-homogenous Poisson process)

Description

Get the maximum-likelihood rate parameter for given NHPP event times.

Usage

```
nhpp.mle(x, T1, prob.func, max.val)
```

Arguments

x a vector of NHPP event timesT1 calculate MLE at this time

prob. func function that takes time as sole argument and returns value between 0 and 1

max.val maximum value to consider for MLE of NHPP rate parameter

Value

Returns a numeric value, the maximum-likelihood rate parameter

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

14 nhpp.plot

See Also

```
nhpp.lik, hpp.mle
```

Examples

```
intensity <- function(t) pmin(t/3, 1)
X = c(0.74, 1.50, 1.67, 2.01, 2.27)
nhpp.mle(X, T1=1, prob.func=intensity, max.val = 70)</pre>
```

nhpp.plot

Plot simulated non-homogeneous Poisson processes

Description

Plot num.events simulated non-homogeneous Poisson processes, plus the mean and quantiles

Usage

```
nhpp.plot(rate, num.events, prob.func, num.sims = 100, t0 = 0, t1 = NULL, num.points = 100, quantil
```

Arguments

rate the rate at which events occur in the Poisson process, aka lambda

num. events the number of event times to simulate in each process

prob. func function that takes time as sole argument and returns value between 0 and 1

num.sims number of simulated paths to plot

t0 start timet1 end time

num.points number of points to use in estimating mean and quantile processes

quantiles plot these quantile processes

... further arguments to be passed to or from methods

Value

list

x Matrix of event times, one process per column

x.bar Vector of mean process event times

x.q Matrix of quantile event times, one process per column

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
nhpp.scenario, hpp.plot
```

nhpp.scenario 15

Examples

nhpp.scenario

Simulate a non-homogeneous Poisson process scenario

Description

Simulate a non-homogeneous Poisson process scenario, with sample paths, expected value process, and quantile processes.

Usage

```
nhpp.scenario(rate, num.events, prob.func, num.sims = 100, t0 = 0, t1 = NULL, num.points = 100, quantiles = c(0.025, 0.975), \ldots)
```

Arguments

rate the rate at which events occur in the equivalent homogeneous Poisson process,

aka lambda

num. events Number of event times to simulate in each process

prob. func aka intensity function, function that takes time as sole argument and returns

value between 0 and 1

num.sims Number of simulated paths to plot

t0 Start timet1 End time

num.points Number of points to use in estimating mean and quantile processes

quantiles plot these quantile processes

... further arguments to be passed to or from methods

Value

Instance of PoissonProcessScenario

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.scenario, PoissonProcessScenario
```

```
intensity <- function(t) pmin(t/3, 1)
rate <- 10
num.events <- 100
scen = nhpp.scenario(rate, num.events, num.sims = 100, prob.func=intensity)
scen@x.bar
plot(scen, main='My NHPP Scenario')</pre>
```

16 nhpp.sim

nhpp.sim	Simulate non-homogeneous Poisson process(es)	

Description

Get the n consecutive event times of a non-homogeneous poisson process. Events are simulated using an homogeneous process with rate, and an event at time t is admitted with probability prob.func(t). The rate parameter of an homogeneous process is often called lambda.

Usage

```
nhpp.sim(rate, num.events, prob.func, num.sims = 1, t0 = 0, prepend.t0 = T)
```

Arguments

rate	the rate at which events occur in the equivalent homogeneous Poisson process, aka lambda
num.events	number of event times to simulate in each process
prob.func	aka intensity function, function that takes time as sole argument and returns value between $\boldsymbol{0}$ and $\boldsymbol{1}$
num.sims	number of simulated paths to create
t0	the reference start time of all events

Details

prepend.t0

This method is called 'thinning' by Lewis & Shedler (1978)

T to include t0 at the start of the process

Value

a numeric vector of length num.events if num.sims=1 else, a num.events by num.sims matrix [num.events+1 is prepend.zero=T]

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

References

Lewis & Shedler, Simulation of Non-Homogeneous Poisson Processes by Thinning, 1978

See Also

```
nhpp.scenario, hpp.sim
```

```
intensity <- function(t) pmin(t/3, 1)
rate <- 10
num.events <- 100
nhpp.sim(rate, num.events, prob.func=intensity)</pre>
```

nhpp.sim.slow 17

nhpp.sim.slow	Simulate a non-homogeneous Poisson process.
---------------	---

Description

Get the n consecutive event times of a non-homogeneous poisson process. Events are simulated using an homogeneous process with rate, and an event at time t is admitted with probability prob.func(t).

Usage

```
nhpp.sim.slow(rate, num.events, prob.func, num.sims = 1, t0 = 0, prepend.t0 = T)
```

Arguments

rate	the rate at which events occur in the equivalent homogeneous Poisson process, aka lambda
num.events	number of event times to simulate in each process
prob.func	aka intensity function, function that takes time as sole argument and returns value between $0\ \mathrm{and}\ 1$
num.sims	number of simulated paths to create
t0	the reference start time of all events
prepend.t0	T to include t0 at the start of the process

Details

This method is called 'thinning' by Lewis & Shedler (1978)

Value

a numeric vector of length num.events if num.sims=1 else, a num.events by num.sims matrix

Note

This item is my original (slower) implementation of NHPP simulation, hence the name. It does not use recursion so the code is easier to understand.

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

References

Lewis & Shedler, Simulation of Non-Homogeneous Poisson Processes by Thinning, 1978

See Also

```
nhpp.scenario, hpp.sim
```

18 plot.processes

Examples

```
intensity <- function(t) pmin(t/3, 1)
rate <- 10
num.events <- 100
nhpp.sim.slow(rate, num.events, prob.func=intensity)</pre>
```

plot-methods

plot

Description

A simulated scenario can be visualised with a plot. Included are process paths, the mean process and quartile processes.

Usage

```
## S4 method for signature 'PoissonProcessScenario' plot(x, ...)
```

Arguments

x The PoissonProcessScenario object to plot

... Additional arguments affecting the plot

Examples

```
scen = hpp.scenario(rate = 5, num.events = 20, num.sims = 100)
scen@x.bar
plot(scen, main='My HPP Scenario')
```

plot.processes

Plot simulated process paths

Description

Plot a matrix of simulated process paths

Usage

```
plot.processes(x, y = NULL, xlab = "t (years)", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "N", type = "l", lty = 2, col = "cadetblue3", ylab = "l", lty = 2, col = "cadetblue3", ylab = "l", lty = 2, col = "cadetblue3", ylab = "l", lty = 2, col = "cadetblue3", ylab = "l", lty = 2, col = "cadetblue3", ylab = "l", lty = 2, col = "cadetblue3", ylab = "l", lty = 2, col = "cadetblue3", ylab = "l", ylab =
```

Arguments

x matrix of process paths

... Additional arguments affecting the plot

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

Examples

```
scen = hpp.scenario(rate = 5, num.events = 20, num.sims = 100)
plot.processes(scen@x, main='My HPP paths')
```

PoissonProcessScenario-class

Class "PoissonProcessScenario"

Description

This class is the result of a Poisson process simulation scenario, yielded by methods like hpp.scenario and nhpp.scenario. The object has slots for the simulated random processes, the mean process, and quantile processes. It has specific implementations of plot and show.

Objects from the Class

Objects can be created by calls of the form new("PoissonProcessScenario", ...), although they would more commonly be fetched from calls to hpp.scenario and nhpp.scenario.

Slots

```
x: Object of class "matrix", the simulated process paths
x.bar: Object of class "numeric", the mean process
x.bar.index: Object of class "numeric", the time variable of the mean process
x.q: Object of class "matrix", the quantile processes.
```

Methods

```
plot signature(x = "PoissonProcessScenario"): ...
show signature(object = "PoissonProcessScenario"): ...
```

Author(s)

Kristian Brock - Author, Daniel Slade - Contributor

See Also

```
hpp.scenario, nhpp.scenario
```

show-methods

show-methods

show

Description

A simulated scenario can be examined with a show.

Usage

```
## S4 method for signature 'PoissonProcessScenario' show(x)
```

Arguments

Х

The PoissonProcessScenario object to plot

```
scen = hpp.scenario(rate = 5, num.events = 20, num.sims = 100)
show(scen)
```

Index

*Topic HPP	hpp.mle,6
hpp.event.times, 3	hpp.plot, 7
hpp.lik, 4	hpp.scenario, 8
hpp.mean, 4	hpp.sim, 9
hpp.mean.event.times, 5	nhpp.event.times, 10
hpp.mle, 6	nhpp.lik, 11
hpp.plot, 7	nhpp.mean, 12
hpp.scenario, 8	nhpp.mean.event.times, 12
hpp.sim, 9	nhpp.mle, 13
PoissonProcessScenario-class, 19	nhpp.plot, 14
*Topic MLE	nhpp.scenario, 15
hpp.mle, 6	nhpp.sim, 16
nhpp.mle, 0	nhpp.sim.slow, 17
*Topic NHPP	plot.processes, 18
nhpp.event.times, 10	PoissonProcessScenario-class, 19
nhpp.lik, 11	*Topic show
nhpp.mean.event.times, 12	show-methods, 20
nhpp.mle, 13	*Topic simulation
nhpp.plot, 14	hpp.event.times, 3
nhpp.scenario, 15	hpp.scenario,8
PoissonProcessScenario-class, 19	hpp.sim,9
*Topic classes	nhpp.event.times,10
PoissonProcessScenario-class, 19	nhpp.scenario, 15
*Topic likelihood	nhpp.sim, 16
hpp.lik, 4	nhpp.sim.slow, 17
nhpp.lik, 11	
*Topic maximum likelihood	hpp.event.times, 3, 10
hpp.mle, 6	hpp.lik, 4, 6, 11
nhpp.mle, 13	hpp.mean, 4, 12
*Topic methods	hpp.mean.event.times, 3, 5, 13
plot-methods, 18	hpp.mle, 4, 6, 14
show-methods, 20	hpp.plot, 7, 14
*Topic nhhp	hpp.scenario, 3, 5, 7, 8, 9, 15, 19
nhpp.mean, 12	hpp.sim, 9, <i>16</i> , <i>17</i>
nhpp.sim, 16	nhpp.event.times, <i>3</i> , 10, <i>13</i>
nhpp.sim.slow, 17	nhpp.lik, 4, 11, 14
*Topic plot	nhpp.mean, 5, 12
plot-methods, 18	nhpp.mean.event.times, 5, 10, 12
*Topic poisson	nhpp.mle, 6, 11, 13
hpp.event.times, 3	nhpp.plot, 7, 14
hpp.lik,4	nhpp.scenario, 8, 10, 12–14, 15, 16, 17, 19
hpp.mean, 4	nhpp.sim, 9, 16
hpp.mean.event.times, 5	nhpp.sim.slow, 17
· ·	

22 INDEX

```
plot, PoissonProcessScenario-method
        (plot-methods), 18
\verb"plot,PoissonProcessScenario-method"
        (PoissonProcessScenario-class),
        19
plot-methods, 18
plot.processes, 18
poisson(poisson-package), 2
poisson-package, 2
PoissonProcessScenario, 8, 15, 18, 20
PoissonProcessScenario-class, 19
\verb|show|, PoissonProcessScenario-method|\\
        (show-methods), 20
show,PoissonProcessScenario-method
        (PoissonProcessScenario-class),
        19
show-methods, 20
```