

AD A114817

12

HDL-SR-82-1

March 1982

Airblast Damage to 30-kW, Skid-Mounted, Mobile Army Diesel Generator Sets

Raymond H. Femenias
William Schuman
Robert Warner
Robert Peterson
George Teel

U.S. Army Electronics Research
and Development Command
Harry Diamond Laboratories

Adelphi, MD 20783

DTIC
ELECTE
S MAY 25 1982 D
B

Approved for public release; distribution unlimited.

FILE COPY

92 05 25 029

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HDL-SR-82-1	2. GOVT ACCESSION NO. <i>AD-A114 817</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Airblast Damage to 30-kW, Skid-Mounted, Mobile Army Diesel Generator Sets	5. TYPE OF REPORT & PERIOD COVERED Special Report	
7. AUTHOR(s) Raymond H. Femenias William Schuman Robert Warner (cont'd on page 2)	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Ele: 6.47.17.A	
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Materiel Development and Readiness Command Alexandria, VA 22333	12. REPORT DATE March 1982	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 37	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES HDL Project: E111E1 DRCMS Code: 644717.42.90012 DA Project: 1G464717D429		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Airblast damage Nuclear weapons effects Generator set Mobile equipment Test and evaluation Communication systems Hardened tactical Tactical equipment shelters Weapons system		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A 30-kW, skid-mounted electric generator set of the tactical Army type was tested for structure-only damage under the impact of airblasts with peak pressures of 9.3 and 3.5 psi. Conclusions based on test results apply to three tactical models of 30-kW, skid-mounted, diesel generator sets available for Army field use. Test results indicate that generator sets will operate without interruption when exposed to an airblast with a peak pressure → cont.		

DD FORM 1 JAN 73 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

7. AUTHOR(s) (cont'd)

Robert Peterson (BRL)
George Teel (BRL)

20. ABSTRACT (cont'd)

cont'd → of 3.5 psi. If the impacting peak pressure is 9.3 psi, the operation of the generator sets could possibly be interrupted because engine parts, generator terminals, and control circuits are damaged from major deformation of the access doors. Recommendations for low-cost hardening emphasize redesign of doors and other sheet-metal structures for survival under combined airblast and thermal pulse conditions.

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

UNCLASSIFIED

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	<u>Page</u>
1. INTRODUCTION	5
1.1 Background	5
1.2 Description of Generator Sets	5
1.2.1 Generator Set Model MEP-005A	6
1.2.2 Generator Set Model SF-30 MD/CIED	9
1.2.3 Generator Set Hol-Gar Model CE-301-AC/WK1	11
1.3 Blast Waveform Characteristics	14
2. DESCRIPTION OF TESTS	17
3. TEST RESULTS	21
3.1 Test 1	21
3.2 Test 2	23
4. CONCLUSIONS	23
4.1 Damage from 9.3-psi Peak Blast Wave	23
4.2 Damage from 3.5-psi Peak Blast Wave	23
5. RECOMMENDATIONS	23
DISTRIBUTION	35
APPENDIX A.--PHOTOGRAPHIC RECORDS FOR AIRBLAST TESTS OF 30-kW GENERATOR SET	25

FIGURES

1. MEP-005A generator set	7
2. SF-30 MD/CIED generator set	9
3. Hol-Gar model CE-301-AC/WK1 generator set before tests	12
4. Variation of pressure as blast wave passes generator set	15
5. Typical stack for ammonium nitrate and fuel oil	16
6. Site for tests with Hol-Gar model CE-301-AC/WK1 generator set	17

FIGURES

	<u>Page</u>
7. Sketch of blast wave source	18
8. Sketch of airblast test setup for Hol-Gar model CE-301-AC/WK1 generator set	19
9. Waveform record, test 1 on Hol-Gar model CE-301-AC/WK1 generator set	20
10. Waveform record, test 2 on Hol-Gar model CE-301-AC/WK1 generator set	21

TABLES

1. Characteristics of MEP-005A Generator Set	6
2. Characteristics of SF-30 MD/CIED Generator Set	11
3. Characteristics of Hol-Gar CE-301-AC/WK1 Generator Set	14
4. Characteristics of Blast Wave from 20-kT Weapon at Ground Surface	15
5. Damage to Structure of Hol-Gar CE-301-AC/WK1 Generator Set in Test 1	22
6. Damage to Engine and Generator of Hol-Gar CE-301-AC/WK1 Generator Set in Test 1	22

1. INTRODUCTION

1.1 Background

The class of 30-kW, skid-mounted, mobile electric generator sets of the Army-designated diesel tactical type is finding increased use in weapon and communication systems. Three models of such generator sets currently available for Army field use are considered in this report. One of these models is listed in the present Army inventory; production of the other two has been discontinued. All three models are similar in their electrical characteristics as well as in their structural features. None had ever been evaluated in terms of structural vulnerability to the impact of the blast wave resulting from the explosion of a tactical nuclear weapon.

Before formulating a program for full evaluation of the blast wave survivability of these generator sets, preliminary data were needed on the structure-only damage to be expected from their interaction with the blast wave.

To obtain such data quickly and cost effectively, advantage was taken of a major Air Force blast test in progress at Holloman Air Force Base (AFB), near Alamogordo, NM, in the summer of 1980. An already available 30-kW Army Diesel generator set was exposed first to the impact of a simulated blast wave with a peak pressure of 9.3 psi* and then to another with a peak pressure of 3.5 psi. (It is desirable to expose a target to the low pressure first, but the generator set tests had to follow the Air Force program.) The planned peak pressure for the first test had been 7.3 psi; however, a source variation produced 9.3 psi.

The generator set tests were planned by a three-person group selected from the engineering staffs of the Ballistic Research Laboratory (BRL) and the Harry Diamond Laboratories (HDL). Both BRL and Holloman AFB technical personnel performed the tests.

1.2 Description of Generator Sets

Three models of the Army family of 30-kW, skid-mounted, mobile generator sets were considered for test:

- MEP-005A (Army inventory)
- SF-30 MD/CIED (non-Army inventory)
- Hol-Gar CE-301-AC/WK1 (non-Army inventory)

*1psi = 6.9 kPa.

All three models are diesel engine driven, can operate at continental United States and European voltages (110/220 V), and can provide 30 kW at 60-Hz operation or 25 kW at 50-Hz operation. The three models are similar in their other electrical characteristics as well as in their structural features.

1.2.1 Generator Set Model MEP-005A

Generator set model MEP-005A is the standard military design, Army inventory member of the 30-kW, diesel engine driven, utility type class. Table 1 lists its main characteristics; figure 1 shows front, side, and rear views of the generator set.

TABLE 1. CHARACTERISTICS OF MEP-005A GENERATOR SET

Parameter	Characteristic
Type	Tactical utility, Army inventory
Federal stock No.	6115-118-1240
Class	30 kW ac, portable, skid mounted, diesel engine
Volts	120/208, 240/416, 3 phase, 4 wire, wye connection
Amperes	102 at 120 V, 52 at 208 V
Power rating	30 kW at 60 Hz, 25 kW at 50 Hz
Length	80 in. (2.03 m)
Width	36 in. (0.9 m)
Height	55 in. (1.4 m)
Weight	2850 lb (1283 kg)
Technical manual	TM 5-6115-465-12

Figure 1. MEP-005A generator set: (a) left side and front
(from Army Technical Manual TM 5-6115-465-12) (cont'd next page).

(b)

Figure 1 (cont'd). MEP-005A generator set: (b) right side and rear
(from Army Technical Manual TM 5-6115-465-12).

1.2.2 Generator Set Model SF-30 MD/CIED

Generator set model SF-30 MD/CIED, no longer in production, is still widely used by the Army. Although of military design, it is not in Army inventory. Front, side, and rear views of the SF-30 MD/CIED are shown in figure 2; main characteristics are listed in table 2.

Figure 2. SF-30 MD/CIED generator set: (a) front and right side
(from Army Technical Manual TM 5-6115-449-15) (cont'd next page).

Figure 2 (cont'd). SF-30 MD/CIED generator set: (b) rear and left side (from Army Technical Manual TM 5-6115-449-15).

TABLE 2. CHARACTERISTICS OF SF-30 MD/CIED GENERATOR SET

Parameter	Characteristic
Type	Tactical utility, non-Army inventory, Westinghouse Electric Corp.
Federal stock No.	6115-935-5111
Class	30 kW ac, portable, skid mounted, diesel engine
Volts	120/208, 240/416, 3 phase, 4 wire, wye connection
Amperes	104 at 120 V, 52 at 208 V
Power rating	30 kW at 60 Hz, 25 kW at 50 Hz
Length	80 in. (2.03 m)
Width	36 in. (0.9 m)
Height	57 in. (1.45 m)
Weight	3400 lb (1530 kg)
Technical manual	TM 5-6115-449-15

1.2.3 Generator Set Hol-Gar Model CE-301-AC/WK1

Generator set Hol-Gar model CE-301-AC/WK1 is an earlier commercial version of the non-Army inventory, military design generator set model SF-30 MD/CIED (sect. 1.2.2). Figure 3 shows front, side, and rear views of this model; main characteristics are listed in table 3. Although production of this generator set has been discontinued for some time, this model is still used by the Department of Defense and was the model available for the Holloman AFB test.

(a)

(b)

Figure 3. Hol-Gar model CE-301-AC/WK1 generator set before tests: (a) front and (b) right rear (cont'd next page).

(c)

(d)

Figure 3 (cont'd). Hol-Gar model CE-301-AC/WK1 generator set before tests: (c) right side, doors closed, and (d) right side, doors open.

TABLE 3. CHARACTERISTICS OF HOL-GAR CE-301-AC/WK1 GENERATOR SET

Parameter	Characteristic
Type	Tactical precision, non-Army inventory, General Motors Corp. diesel engine, Westinghouse Electric Corp. generator
Federal stock No.	6115-77-8600
Class	30 kW ac, portable, skid mounted, diesel engine
Volts	120/208, 240/416, 3 phase, 4 wire, wye connection
Amperes	104 at 120 V, 52 at 208 V
Power rating	30 kW at 60 Hz, 25 kW at 50 Hz
Length	81 in. (2.05 m)
Width	36 in. (0.9 m)
Height	55 in. (1.4 m)
Weight	3345 lb (1505 kg)
Technical manual	TM 5-6115-321-15

1.3 Blast Waveform Characteristics

The manner in which a blast wave interacts with a target has been well covered in the literature (for instance, Department of the Army Pamphlet 50-3).¹ Table 4 lists major parameters for two examples of blast waves generated at the ground surface by the detonation of a 20-kT nuclear weapon, that is, equivalent to 20,000 tons of TNT.²

¹The Effects of Nuclear Weapons, Department of the Army Pamphlet 50-3 (March 1973).

²Capability of Nuclear Weapons, Defense Nuclear Agency EM-1 (July 1972).

TABLE 4. CHARACTERISTICS OF BLAST WAVE FROM 20-kT WEAPON AT GROUND SURFACE

Parameter	Characteristic	
	Test 1	Test 2
Peak overpressure	7.3 psi*	3.5 psi
Ground range	0.934 km	1.44 km
Time from detonation to blast wave arrival	0.14 s	2.8 s
Max flow velocity	103 m/s	43 m/s
Equiv wind speed	372 km/hr	155 km/hr
Positive phase duration	0.7 s	0.92 s

*Plan for test 1; 9.3 psi actually recorded. 1 psi = 6.9 kPa.

The peak pressures of 7.3 and 3.5 psi are values often associated with high and low levels inside the range of moderate airblast damage to tactical systems.

Figure 4 depicts a typical nuclear airblast waveform and illustrates the criteria for determining positive phase. For structure-only tests of tactical components such as generator sets, the crushing effect of the positive phase is the prime damage mechanism.

Figure 4. Variation of pressure as blast wave passes generator set (from Joseph J. Halpin et al, Nuclear Weapon Effects on Army Tactical Systems, Vol. I, HDL-TR-1882-I, April 1979).

The type of high-explosive charge used in the generator set tests consisted of a mixture of ammonium nitrate and fuel oil (ANFO). Figure 5, a cutaway view of a typical ANFO charge, depicts a stack of ANFO bags with a seven-section detonation booster at its center.

Figure 5. Typical stack for ammonium nitrate and fuel oil, cutaway view.

2. DESCRIPTION OF TESTS

Objective.--The objective was to provide, at low cost and limited range, experimental support to determine how a nuclear blast affects a class of tactical Army electric power generator sets. Specific goals were these:

- To determine the effects of a blast wave on the generator set structure, parts, and operation (Peak pressures of 7.3 and 3.5 psi were specified.)
- To formulate any need for low-cost, structural hardening fixes against threats at the 7.3- and 3.5-psi peak levels
- To determine any need for combined blast and thermal tests at a 7.3-psi peak level or higher

Location.--The tests were conducted at Holloman AFB (fig. 6).

Figure 6. Site for tests with Hol-Gar model CE-301-AC/WK1 generator set.

Organization.--A three-person group from BRL and HDL conducted the generator set tests. Overall operational and organizational management for the tests was the responsibility of the project manager of the major Air Force event into which the generator set tests were incorporated.

Blast wave source.--A high-explosive charge, consisting of 240 bags of ANFO, was stacked and ignited with a single Pentolite booster as shown in figure 7.

Figure 7. Sketch of blast wave source.

Test target.--The unit under test was a single, non-Army inventory, CE-301-AC/WK1 generator set. This model is similar to models MEP-005A and SF-30 MD/CIED.

Test 1.--Referring to figure 8, the generator set was exposed broadside to an airblast environment predicted along the 7.3-psi peak isopressure line. A sensor gage was placed along the same peak pressure line. Figure 9 depicts the recorded test waveform. The actual pressure recorded was 9.3 psi, a not uncommon deviation in ANFO tests.

Figure 8. Sketch of airblast test setup for Hol-Gar model CE-301-AC/WK1 generator set.

Figure 9. Waveform record, test 1 on Hol-Gar model CE-301-AC/WK1 generator set.

Test 2.--The second test was performed in the same manner as the first, but along the 3.5-psi isopressure line. A record of the test airblast is shown in figure 10. Lacking a second test unit and spare parts, the generator used in the first test was used in the second test. The upwind side doors damaged in the first test were replaced with undamaged downwind side doors. Two board panels were installed in place of the original doors on the downwind side.

Figure 10. Waveform record, test 2 on Hol-Gar model CE-301-AC/WK1 generator set.

3. TEST RESULTS

3.1 Test 1

The broadside impact of the 9.3-psi peak blast wave caused extensive buckling of the upwind side doors and of the front and rear doors. The deformed side doors in turn impacted on vulnerable parts of the diesel engine and on the terminals of the generator power and control circuits. After this test, damaged engine parts and terminals were repaired in the field in about 2 hr. For some other waveform or angle of impact, the component damage may be somewhat different. Specifics of the damage are summarized in tables 5 and 6. Actual records are shown in appendix A.

TABLE 5. DAMAGE TO STRUCTURE OF HOL-GAR CE-301-AC/WK1 GENERATOR
SET IN TEST 1

Part	Record sheet
Upwind side doors severely buckled and front panel doors severely damaged	A-1
Upwind side doors severely buckled	A-2
Air access door and door check bar damaged, hinge bracket rivet sheared off	A-3
Downwind side doors only slightly damaged	A-4
Body top bin slightly buckled near center lift ring and rivet sheared off	A-5

TABLE 6. DAMAGE TO ENGINE AND GENERATOR OF HOL-GAR
CE-301-AC/WK1 GENERATOR SET IN TEST 1

Part	Record sheet
Air filter (oil type) case perforated by deformed door	A-6
Oil sump filler tube bent by impact of deformed door	A-7
Base of upper rear power wire terminal cracked by impact of deformed door	A-8

3.2 Test 2

After the damaged upwind side doors were removed and replaced with the downwind side doors, the generator set used in test 1 was used in test 2. The photograph in record sheet A-9 (app A) shows the upwind side of the generator set under test after the 3.5-psi peak blast impact. The only damage to the generator set was minor deformation (buckling) of the upwind side doors. No damage to the parts in the engine or in the generator systems was recorded after test 2.

4. CONCLUSIONS

The conclusions are derived from an engineering assessment of the results from the CE-3C1-AC/WK1 tests. The conclusions apply also to Army design models MEP-005A and SF-30 MD/CIED because the strong structural similarity among the three models insures that their blast responses will be the same. The three models belong to the Army family of 30-kW, skid-mounted, mobile, diesel generator sets.

4.1 Damage from 9.3-psi Peak Blast Wave

For a peak blast pressure wave of 9.3 psi, the main frame will not be damaged, but the main body will be damaged slightly, and upwind doors might be damaged seriously or irreparably. Parts of the diesel engine section, as well as terminals and circuits in the generator section, are expected to be damaged by the impact of deformed doors; consequent interruption of operation also can be expected. Thus, at the 9.3-psi peak level, direct support maintenance will be required.

4.2 Damage from 3.5-psi Peak Blast Wave

For a peak blast wave of 3.5 psi, the engine and the generator access doors might buckle slightly, but not sufficiently to damage the engine and generator parts and cause operation failure. Front and rear doors also might buckle, particularly if they are directly exposed to the blast front. Thus, only minor maintenance is foreseen.

5. RECOMMENDATIONS

The cost-effective hardening approach recommended to the materiel developer is the redesign of the structural and sheet metal portions of the generator sets. The redesign should not only alleviate the damage recorded in this airblast testing, but also consider the effects of a thermal radiation pulse preceding the blast wave. Strength characteristics of the sheet metal could certainly be reduced by the thermal pulse. Typical fluences to be considered are 80 to 110 cal/cm².

**APPENDIX A.--PHOTOGRAPHIC RECORDS FOR AIRBLAST TESTS OF 30-kW
GENERATOR SET**

This appendix contains the photographic records taken at the Holloman Air Force Base, NM, tests on a single tactical 30-kW, skid-mounted, electric generator set, Hol-Gar model CE-301-AC/WK1. This model is electrically and structurally similar to military design Army models MEP-005A (Army inventory) and SF-30 MD/CIED (non-Army inventory).

APPENDIX A

Record sheet No. A-1

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leaver G. Teel

Observers K. Warner, R. Peterson

Damage Upwind side doors severely buckled and front panel doors severely damaged

APPENDIX A

Record sheet No. A-2

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G. Teel

Observers K. Warner, R. Peterson

Damage Upwind side doors severely buckled

APPENDIX A

Record sheet No. A-3

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G. Teel

Observers K. Warner, R. Peterson

Damage Air access door and adjustable door check bar damaged,
hinge bracket rivet sheared off

APPENDIX A

Record sheet No. A-4

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G. Teel

Observers K. Warner, R. Peterson

Damage Downwind side doors only slightly damaged

APPENDIX A

Record sheet No. A-5

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G Teel

Observers K. Warner, R. Peterson

Damage Body top bin slightly buckled near center lift ring and rivet sheared off

APPENDIX A

Record sheet No. A-6

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G. Teel

Observers K. Warner, R. Peterson

Damage Air filter (oil type) perforated by deformed door

APPENDIX A

Record sheet No. A-7

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G. Teel

Observers K. Warner, R. Peterson

Damage Oil sump filler tube (arrow) bent by impact of deformed door

APPENDIX A

Record sheet No. A-8

Date 20 August 1981

Peak pressure (psi) 9.3

Test waveform Figure 9

Test leader G. Teel

Observers K. Warner, R. Peterson

Damage Base of upper rear power wire terminal (arrow) cracked by impact of deformed door

APPENDIX A

Record sheet No. A-9

Date 13 September 1981

Peak pressure (psi) 3.5

Test waveform Figure 10

Test leader G. Teel

Observers R. Peterson

Damage Upwind side doors slightly damaged by low-level (3.5-psi)
peak pressure

DISTRIBUTION

ADMINISTRATOR
DEFENSE TECHNICAL INFORMATION CENTER
ATTN DTIC-DDA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER
US ARMY ARMAMENT RESEARCH &
DEVELOPMENT COMMAND
ATTN DRDAR-FU, PROJECT MGT PROJECT OFC
DOVER, NJ 07801

COMMANDER
US ARMY MISSILE & MUNITIONS
CENTER & SCHOOL
ATTN ATSK-CTD-F
REDSTONE ARSENAL, AL 35809

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS
ACTIVITY
ATTN DRXSY-MP
ATTN X5 (W3JCAA)
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-TSB-S (SPINFO)
ATTN DRDAR-BLV, VULNERABILITY/
LETHALITY DIV
ATTN DRDAR-BLT, MR. TEEL
ATTN DRDAR-BLT, MR. PETERSON
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY COMBINED ARMS COMBAT
DEVELOPMENTS ACTIVITY
FT LEAVENWORTH, KS 66027

NATIONAL COMMUNICATIONS SYSTEM
OFFICER OF THE MANAGER
ATTN LIBRARY
WASHINGTON, DC 20305

COMMANDER/DIRECTOR
COMBAT SURVEILLANCE
& TARGET ACQUISITION LABORATORY
US ARMY ERADCOM
ATTN DELCS-R, DIR RADAR DIV
FT MONMOUTH, NJ 07703

COMMANDER
COMBAT DEVELOPMENTS
EXPERIMENTATION COMMAND
FT ORD, CA 93941

CHIEF
US ARMY COMMUNICATIONS SYS AGENCY
FT MONMOUTH, NJ 07703

COMMANDER
US ARMY COMMUNICATIONS & ELECTRONICS
MATERIEL READINESS COMMAND
FT MONMOUTH, NJ 07703

COMMANDER
US ARMY COMMUNICATIONS COMMAND
COMBAT DEVELOPMENT DIV
FT HUACHUCA, AZ 85613

COMMANDER
US ARMY COMMUNICATIONS RESEARCH &
DEVELOPMENT COMMAND
ATTN DRCPM-TF, OFC OF THE PM TACTICAL
FIRE DIRECTION SYS/FIELD ARTILLERY
TACTICAL DATA SYSTEMS
(TACFIRE/FATDS)
ATTN DRCPM-MSCS, OFC OF THE FM MULTI-
SERVICE COMMUNICATIONS SYS

OFFICE, DEPUTY CHIEF OF STAFF
FOR OPERATIONS & PLANS
DEPT OF THE ARMY
ATTN DAMO-RQC, TELECOM CMD
& CONTROL DIV
WASHINGTON, DC 20310

DISTRIBUTION (Cont'd)

<p>US ARMY COMMUNICATIONS RESEARCH & DEVELOPMENT COMMAND (Cont'd) ATTN DRCPM-ATC, OFC OF THE PM ARMY TACTICAL COMMUNICATIONS SYS (ATACS) ATTN DRDCO-PPA, PLANS, PROGRAMS & ANALYSIS DIR ATTN DRDCO-TCS, CENTER FOR TACTICAL COMPUTER SYS ATTN DRDCO-COM, CENTER FOR COMMUNICATIONS SYS ATTN DRDCO-SEI, SYS ENGINEERING & INTEGRATION (CENSEI) FT MONMOUTH, NJ 07703</p> <p>COMMANDER US ARMY COMPUTER SYSTEMS COMMAND ATTN TECH LIB FT BELVOIR, VA 22060</p> <p>PRESIDENT US ARMY FIELD ARTILLERY BOARD ATTN ATZR-BDWT, WEAPONS TEST DIV ATTN ATZR-BDAS, ARTILLERY SPT TEST DIV FT SILL, OK 73503</p> <p>COMMANDER EWL INTEL MAT DEV & SPT OFFICE ATTN DELEW-I FT MEADE, MD</p> <p>PRESIDENT US ARMY INFANTRY BOARD ATTN ATZB-IB-TS, TEST SUPPORT DIV ATTN ATZB-IB-A, ANALYSIS & EVALUATION BR ATTN ATZB-IB-TS-D, RANGE CONTROL & DATA ACQUISITION BR ATTN ATZB-IB-AT, ANTIARMOR TEST DIV ATTN ATZB-IB-SA, SMALL ARMS TEST DIV FT BENNING, GA 31905</p> <p>PRESIDENT/COMMANDER US ARMY INTELLIGENCE & SECURITY BOARD ATTN ATSI-BD-EW, ELECTRONIC WARFARE TESTS ATTN STEEP-MT-EW, INTEL & COMMUNICATIONS BR ATTN STEEP-MT-EW, COMMUNICATIONS SYS SECT ATTN STEPP-MT-EW, NON-COMMUNICATIONS SYS SECT FT HUACHUCA, AZ 85613</p>	<p>COMMANDER US ARMY MATERIEL DEVELOPMENT & READINESS COMMAND ATTN DRCPA, DIR FOR PLANS & ANALYSIS ATTN DRNC, NUCLEAR-CHEMICAL OFFICE ATTN DRCD, DIR FOR DEVELOPMENT & ENG ATTN DRCPM, OFFICE OF PROJECT MANAGEMENT 5001 EISENHOWER AVE ALEXANDRIA, VA 22333</p> <p>COMMANDER US ARMY MISSILE COMMAND ATTN DRSMI-U, WEAPONS SYS MGT DIR ATTN DRSMI-D, PLANS, ANALYSIS, & EVALUATION ATTN DRSMI-E, ENGINEERING REDSTONE ARSENAL, AL 35809</p> <p>COMMANDER US ARMY MOBILITY EQUIPMENT RESEARCH & DEVELOPMENT COMMAND ATTN DRDME-U, PROGRAMS & ANALYSIS DIR ATTN DRDME-T, PRODUCT ASSURANCE & TESTING DIR ATTN DRDME-V, MATERIAL TECHNOLOGY LABORATORY FT BELVOIR, VA 22060</p> <p>COMMANDER US ARMY NATICK RES & DEV COMMAND NATICK DEVELOPMENT CENTER ATTN DRDNA-T, TECHNICAL LIBRARY ATTN DRDNA-E, CHIEF ENGINEERING PROGRAMS MANAGEMENT OFFICE NATICK, MA 01760</p> <p>COMMANDER US ARMY NUCLEAR & CHEMICAL AGENCY ATTN ATCN-W, WEAPONS EFFECTS DIV 7500 BACKLICK ROAD BUILDING 2073 SPRINGFIELD, VA 22150</p> <p>COMMANDER US ARMY OPERATIONAL TEST & EVALUATION AGENCY 5600 COLUMBIA PIKE FALLS CHURCH, VA 22041</p> <p>DIRECTOR RESEARCH & TECHNOLOGY LABORATORIES (AVRADCOM) AMES RESEARCH CENTER MOFFETT FIELD, CA 94035</p>
--	--

DISTRIBUTION (Cont'd)

OFFICE OF THE DEPUTY CHIEF OF STAFF
 FOR RESEARCH, DEVELOPMENT,
 & ACQUISITION
 ATTN DAMA-CSZ-A, DIR OF COMBAT
 SUPPORT SYSTEMS
 ATTN DAMA-WSZ-A, DIR OF WEAPONS SYSTEMS
 ATTN DAMA-SCS, COMMAND, CONTROL,
 SURVEILLANCE SYSTEMS DIV
 ATTN DAMA-WSM, MISSILES & AIR
 DEFENSE SYSTEMS DIV
 ATTN DAMA-CSS, SUPPORT SYSTEMS DIV
 ATTN DAMA-WSW, GROUND COMBAT
 SYSTEMS DIV
 WASHINGTON, DC 20310

COMMANDER
 US ARMY SATELLITE COMMUNICATIONS
 AGENCY
 CORADCOM
 FT MONMOUTH, NJ 07703

COMMANDER
 US ARMY SIGNAL CENTER
 & FT GORDON
 ATTN ATZHTD, DIR OF COMBAT
 DEVELOPMENTS
 ATTN ATZHTD-D, DOCTRINE BRANCH
 ATTN ATZHTD-D, DESIGN & DEVELOPMENT
 DIV
 FT GORDON, GA 30905

COMMANDER
 US ARMY TEST & EVALUATION
 COMMAND
 ABERDEEN PROVING GROUND, MD 21005

COMMANDER
 US ARMY TRAINING & DOCTRINE
 COMMAND
 ATTN ATCD-DCS, COMBAT DEVELOPMENT
 ATTN ATCD-C, BATTLEFIELD SYS
 INTEGRATION BR
 ATTN ATCD-T, TEST & EVAL DIR
 FT MONROE, VA 23651

COMMANDER
 NAVAL SURFACE WEAPONS CENTER
 ATTN DX-21 LIBRARY DIV
 DAHLGREN, VA 22448

COMMANDER
 NAVAL SURFACE WEAPONS CENTER
 ATTN F30, NUCLEAR EFFECTS DIV
 ATTN R-40, RADIATION DIV
 WHITE OAK, MD 20910

COMMANDER
 AF ELECTRONIC SYSTEMS DIVISION
 ATTN WO, DEP FOR CONTROL
 & COMMUNICATIONS SYS
 L. G. HANSOM AFB, MA 01730

US ARMY ELECTRONICS RESEARCH
 & DEVELOPMENT COMMAND
 ATTN TECHNICAL DIRECTOR, DRDEL-CT

HARRY DIAMOND LABORATORIES
 ATTN CO/TD/TSO/DIVISION DIRECTORS
 ATTN RECORD COPY, 81200
 ATTN HDL LIBRARY, 81100 (2 COPIES)
 ATTN HDL LIBRARY, 81100 (WOODBRIDGE)
 ATTN TECHNICAL REPORTS BRANCH, 81300
 ATTN LEGAL OFFICE, 97000
 ATTN CHAIRMAN, EDITORIAL COMMITTEE
 ATTN MORRISON, R. E., 13500 (GIDEP)
 ATTN CHIEF, 21000
 ATTN CHIEF, 21100
 ATTN CHIEF, 21200
 ATTN CHIEF, 21300
 ATTN CHIEF, 21400
 ATTN CHIEF, 21500
 ATTN CHIEF, 22000
 ATTN CHIEF, 22100
 ATTN CHIEF, 22300
 ATTN CHIEF, 22800
 ATTN CHIEF, 22900
 ATTN CHIEF, 20240
 ATTN W. SCHUMAN, 21100 (5 COPIES)
 ATTN R. WARNER, 21100 (5 COPIES)
 ATTN R. FEMENIAS, 21100 (30 COPIES)