PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS NÚCLEO DE EDUCAÇÃO A DISTÂNCIA

Pós-graduação Lato Sensu em Ciência de Dados e Big Data

Bruno Vieira Cardoso

Modelo preditivo de preço de commodities

Belo Horizonte 2021

Bruno Vieira Cardoso

Modelo preditivo de preço de commodities

Trabalho de Conclusão de Curso apresentado ao Curso de Especialização em Ciência de Dados e Big Data como requisito parcial à obtenção do título de especialista.

Belo Horizonte 2021

SUMÁRIO

1. Introdução	4
1.1. Contextualização	4
1.2. O problema proposto	5
2. Coleta de Dados	5
3. Processamento/Tratamento de Dados	7
4. Análise e Exploração dos Dados	12
5. Criação de Modelos de Machine Learning	17
6. Apresentação dos Resultados	24
7. Links	31
REFERÊNCIAS	32
APÊNDICE	34

1. Introdução

1.1. Contextualização

O mercado financeiro, em regra, antecipa os movimentos econômicos através da análise das mais diversas variáveis – econômicas, políticas, sociais, ambientais, regulatórias etc. Um exemplo seria uma decisão política implementada hoje, cujos reflexos na economia real só serão percebidos daqui a alguns meses, já tem seus efeitos reconhecidos no mesmo dia e dias posteriores nos preços dos ativos e índices da B3 – bolsa de valores oficial do Brasil.

Portanto, é um ambiente com bastante volatilidade em razão dos diversos fatores que influenciam o andamento da economia e com reflexos imediatos no preço dos ativos e valores dos índices.

Essa característica do mercado financeiro, de antecipar e fazer projeções para o futuro da economia real, certamente é uma vantagem para o planejamento de investidores, empresas e governos. Realizar projeções com base nessas antecipações, podem evitar desastres econômicos e permitir mais geração de riqueza para o país como um todo.

É possível, a título de exemplo, identificar a tendência dos valores de um índice específico de um setor e adotarem-se políticas de estímulo ou retração antes que o impacto ocorra na economia real. O mesmo pode ser dito em relação aos preços das commodities, como é o caso do petróleo, objeto de estudo deste trabalho.

Desta forma, essa dinâmica presente no mercado financeiro, de ajustar quase que imediatamente os preços dos ativos e os valores dos índices com base em eventos que, na maioria das vezes, só surtirão efeitos na economia real bem depois, é, sem dúvida, uma ferramenta que pode servir como orientadora para tomadas de decisão mais precisas e certeiras, além de representar também uma vantagem temporal significativa em relação à adoção de medidas. Essa agilidade e sensibilidade do mercado financeiro, quando projetada de forma preditiva, pode demonstrar se a economia como um todo ou de um setor está evoluindo ou não na direção adequada, permitindo a adoção de medidas que irão estimular ou inibir a valoração de ativos ou impacto dos eventos previstos a partir dessa análise.

1.2. O problema proposto

O presente estudo busca apresentar modelos preditivos em relação ao comportamento do preço do petróleo, além de suas análises exploratória. Desta forma, requer a extração das séries temporais de valores e preços de fechamento desta commodity para auxiliar o governo na definição de políticas fiscais que contenham ou estimulem a variação de seu preço ou os seus impactos econômicos na economia real.

Para tanto, foi escolhido os dois principais petróleos do mundo: o Brent e o WTI. Desta forma, consta do estudo:

- A análise descritiva dos dois ativos em questão;
- Verificar a correlação entre todos eles;
- Criação de modelo preditivo para o petróleo Brent através da biblioteca
 ARIMA e Facebook Prophet.

Os dados extraídos são dos anos de 2010 a 2019, sendo que as informações de 2010 até 2016 foram utilizadas como base de treinamento e os demais anos como teste.

2. Coleta de Dados

Constam no trabalho a análise de dois *datasets*, conforme segue:

- Dataset1: petróleo Brent (diário a partir de 01/01/2010 até 31/12/2019)
- Dataset2: petróleo WTI (diário a partir de 01/01/2010 até 31/12/2019)

Os dados foram coletados, respectivamente, no site Investing.com, através dos seguintes links:

- https://br.investing.com/commodities/brent-oil-historical-data
- https://br.investing.com/commodities/crude-oil-historical-data

Nome da coluna/campo	Descrição	Tipo
Data	Data de negociação do	Pandas(index)
	ativo	
Último	Valor de fechamento do	Pandas
	ativo	
Abertura	Valor de abertura do ativo	Pandas
Máxima	Valor máximo atingido	Pandas
	pelo ativo	
Mínima	Valor mínimo atingido pelo	Pandas
	ativo	
Vol.	Volume financeiro	Pandas
	negociado pelo ativo	
Var%	Variação percentual do	Pandas
	ativo em relação ao dia	
	anterior de negociação	

3. Processamento/Tratamento de Dados

Os datasets 1 e 2 apresentam 2581e 2591 linhas, respectivamente, e 7 colunas.

: t	rent							
		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	0	31.12.2019	66.00	66.65	66.93	65.63	171,01K	-3,579
	1	30.12.2019	68.44	68.20	68.99	68.16	29,42K	0,419
	2	27.12.2019	68.16	67.91	68.33	67.57	112,22K	0,359
2	3	26.12.2019	67.92	67.27	67.99	67.22	69,82K	1,079
	4	24.12.2019	67.20	66.44	67.26	66.36	104,94K	1,229
	2576	08.01.2010	81.37	81.51	82.05	80.59	157,49K	-0,179
	2577	07.01.2010	81.51	82.00	82.05	81.05	131,28K	-0,469
	2578	06.01.2010	81.89	80.38	82.21	79.77	157,87K	1,619
	2579	05.01.2010	80.59	80.29	80.84	79.75	131,75K	0,599
	2580	04.01.2010	80.12	78.49	80.48	78.34	122,64K	2,819

Com o carregamento dos *datasets* para o notebook, ficou evidente da necessidade tratamento dos dados presentes.

O primeiro passo foi estabelecer as datas no formato adequado e defini-las como index dos *datasets*.

```
brent['Data'] = pd.to_datetime(brent['Data'], format='%d.%m.%Y')
wti['Data'] = pd.to_datetime(wti['Data'], format='%d.%m.%Y')

brent.index = pd.to_datetime(brent.Data, format='%d.%m.%Y')
wti.index = pd.to_datetime(wti.Data, format='%d.%m.%Y')
brent.index.to_period('D')
wti.index.to_period('D')
```

O segundo passo foi corrigir as formas como os valores estavam expressos em relação às vírgulas e pontos. Além disso, o campo volume dos *datasets*, apresentavam, além dos valores, letras que representavam valores ('K' para milhares, 'M' para milhões e 'B' para bilhões). Desta forma, para ambos *datasets* houve o tratamento especial em relação a essas letras na coluna "Vol.", para

transformá-las em apenas números. A título de exemplo, abaixo está exposto o código utilizado no *dataset* de Brent.

```
brent["Abertura"] = brent["Abertura"].astype(str)
brent["Último"] = brent["Último"].astype(str)
brent["Máxima"] = brent["Máxima"].astype(str)
brent["Mínima"] = brent["Mínima"].astype(str)
brent["Var%"] = brent["Var%"].astype(str)
brent["Vol."] = brent["Vol."].astype(str)

brent["Abertura"] = pd.Series(brent["Abertura"]).str.replace(',', '.', regex=True)
brent["Último"] = pd.Series(brent["Último"]).str.replace(',', '.', regex=True)
brent["Máxima"] = pd.Series(brent["Máxima"]).str.replace(',', '.', regex=True)
brent["Mínima"] = pd.Series(brent["Var%"]).str.replace(',', '.', regex=True)
brent["Var%"] = pd.Series(brent["Var%"]).str.replace(',', '.', regex=True)
brent["Vol."] = pd.Series(brent["Vol."]).str.replace(',', ', ', regex=True)
brent["Vol."] = pd.Series(brent["Vol."]).str.replace(',', ', ', regex=True)
brent["Vol."] = pd.Series(brent["Vol."]).str.replace(',', ', ', regex=True)
brent["Vol."] = pd.to_numeric(brent["Abertura"])
brent["Máxima"] = pd.to_numeric(brent["Máxima"])
brent["Máxima"] = pd.to_numeric(brent["Mínima"])
brent["Vol."] = pd.to_numeric(brent["Vol."])
brent["Vol."] = pd.to_numeric(brent["Vol."])
```

Identificou-se, em seguida, que havia dados ausentes.

```
brent.isnull().sum()
Data
Último
Abertura
Máxima
Mínima
Vol.
Var%
dtype: int64
wti.isnull().sum()
Data
Último
Abertura
Máxima
Mínima
Vol.
Var%
dtype: int64
```

Portanto, utilizou-se as médias móveis de 5 períodos para preencher as colunas de valores que possuíam dados ausentes, conforme tela abaixo apresentando os códigos aplicados no *dataset* de Brent.

```
brent_medianaMA = brent["Máxima"].rolling(5).mean().shift(-5).round(0)
brent_medianaMI = brent["Mínima"].rolling(5).mean().shift(-5).round(0)
brent_medianaAB = brent["Abertura"].rolling(5).mean().shift(-5).round(0)
brent_medianaUL = brent["Último"].rolling(5).mean().shift(-5).round(0)
brent_medianaVOL = brent["Vol."].rolling(5).mean().shift(-5).round(0)
brent["Máxima"].fillna(brent_medianaMA, inplace=True)
brent["Mínima"].fillna(brent_medianaMI, inplace=True)
brent["Abertura"].fillna(brent_medianaUL, inplace=True)
brent["Último"].fillna(brent_medianaUL, inplace=True)
brent["Vol."].fillna(brent_medianaVOL, inplace=True)
```

Por fim, juntou-se os datasets já tratados em um só, conforme segue.

```
brent.rename(columns= {'Data': 'data'}, inplace=True)
wti.rename(columns= {'Data': 'data'}, inplace=True)
bw = pd.merge(brent,wti,how='inner', on=['data'],suffixes=('_B', '_W'))
```

Assim, alterou-se o nome da coluna "Data" para "data", para evitar conflito entre ela e o index, e criou-se o *dataset* "bw".

bw													
	data	Último_B	Abertura_B	Máxima_B	Mínima_B	VolB	Var%_B	Último_W	Abertura_W	Máxima_W	Mínima_W	VolW	Var%_W
0	2019-12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57	61.06	61.68	61.88	60.63	49454000.0	-1.01
1	2019-12-30	68.44	68.20	68.99	68.16	2942000.0	0.41	61.68	61.71	62.34	61.09	42715000.0	-0.06
2	2019-12-27	68.16	67.91	68.33	67.57	11222000.0	0.35	61.72	61.73	61.97	61.24	35190000.0	0.06
3	2019-12-26	67.92	67.27	67.99	67.22	6982000.0	1.07	61.68	61.20	61.83	61.06	26509000.0	0.80
4	2019-12-24	67.20	66.44	67.26	66.36	10494000.0	1.22	61.11	60.63	61.16	60.47	20454000.0	0.97
2555	2010-01-08	81.37	81.51	82.05	80.59	15749000.0	-0.17	82.75	82.65	83.47	81.80	31038000.0	0.11
2556	2010-01-07	81.51	82.00	82.05	81.05	13128000.0	-0.46	82.66	83.20	83.36	82.26	24663000.0	-0.63
2557	2010-01-06	81.89	80.38	82.21	79.77	15787000.0	1.61	83.18	81.43	83.52	80.85	37006000.0	1.72
2558	2010-01-05	80.59	80.29	80.84	79.75	13175000.0	0.59	81.77	81.63	82.00	80.95	25889000.0	0.32
2559	2010-01-04	80.12	78.49	80.48	78.34	12264000.0	2.81	81.51	79.63	81.79	79.63	26354000.0	2.71
2500 -	owe v 13 co	lumne											

2560 rows × 13 columns

O campo 'data' foi estabelecido como index do dataset 'bw'.

W													
	data	Último_B	Abertura_B	Máxima_B	Mínima_B	VolB	Var%_B	Último_W	Abertura_W	Máxima_W	Mínima_W	VolW	Var%_V
data													
2019-12- 31	2019-12- 31	66.00	66.65	66.93	65.63	17101000.0	-3.57	61.06	61.68	61.88	60.63	49454000.0	-1.0
2019-12- 30	2019-12- 30	68.44	68.20	68.99	68.16	2942000.0	0.41	61.68	61.71	62.34	61.09	42715000.0	-0.0
2019-12- 27	2019-12- 27	68.16	67.91	68.33	67.57	11222000.0	0.35	61.72	61.73	61.97	61.24	35190000.0	0.00
2019-12- 26	2019-12- 26	67.92	67.27	67.99	67.22	6982000.0	1.07	61.68	61.20	61.83	61.06	26509000.0	0.8
2019-12- 24	2019-12- 24	67.20	66.44	67.26	66.36	10494000.0	1.22	61.11	60.63	61.16	60.47	20454000.0	0.9
2010-01- 08	2010-01- 08	81.37	81.51	82.05	80.59	15749000.0	-0.17	82.75	82.65	83.47	81.80	31038000.0	0.1
2010-01- 07	2010-01- 07	81.51	82.00	82.05	81.05	13128000.0	-0.46	82.66	83.20	83.36	82.26	24663000.0	-0.6
2010-01- 06	2010-01- 06	81.89	80.38	82.21	79.77	15787000.0	1.61	83.18	81.43	83.52	80.85	37006000.0	1.7
2010-01- 05	2010-01- 05	80.59	80.29	80.84	79.75	13175000.0	0.59	81.77	81.63	82.00	80.95	25889000.0	0.3
2010-01- 04	2010-01-	80.12	78.49	80.48	78.34	12264000.0	2.81	81.51	79.63	81.79	79.63	26354000.0	2.7

Feita a junção, separou-se novamente os *datasets*, agora em Brent1 e Wti1, contendo o mesmo número de linha e datas em comum, conforme exemplo.

```
brent1 = pd.DataFrame(columns={"data","Abertura_B", "Máxima_B", "Mínima_B","Último_B", "Vol._B"}).copy()
brent1["data"]= bw["data"]
brent1["Abertura_B"]= bw["Abertura_B"]
brent1["Máxima_B"]= bw["Máxima_B"]
brent1["Mínima_B"]= bw["Mínima_B"]
brent1["Último_B"]= bw["Último_B"]
brent1["Vol._B"]= bw["Vol._B"]
brent1
```

	Último_B	VolB	data	Mínima_B	Abertura_B	Máxima_B
data						
2019-12-31	66.00	17101000.0	2019-12-31	65.63	66.65	66.93
2019-12-30	68.44	2942000.0	2019-12-30	68.16	68.20	68.99
2019-12-27	68.16	11222000.0	2019-12-27	67.57	67.91	68.33
2019-12-26	67.92	6982000.0	2019-12-26	67.22	67.27	67.99
2019-12-24	67.20	10494000.0	2019-12-24	66.36	66.44	67.26
2010-01-08	81.37	15749000.0	2010-01-08	80.59	81.51	82.05
2010-01-07	81.51	13128000.0	2010-01-07	81.05	82.00	82.05
2010-01-06	81.89	15787000.0	2010-01-06	79.77	80.38	82.21
2010-01-05	80.59	13175000.0	2010-01-05	79.75	80.29	80.84
2010-01-04	80.12	12264000.0	2010-01-04	78.34	78.49	80.48

2560 rows x 6 columns

Em seguida, foi realizada a segregação dos dados de treino, de 2010 a 2016, e teste, de 2017 a 2019.

```
filtroB = brent1['Data']<= "2016-12-31"
train_B = brent1[filtroB]

filtroW = wti1['Data']<= "2016-12-31"
train_W = wti1[filtroW]

filtroBteste = brent1['Data']> "2016-12-31"
teste_B = brent1[filtroBteste]

filtroWteste = wti1['Data']> "2016-12-31"
teste_W = wti1[filtroWteste]
```

4. Análise e Exploração dos Dados

Inicialmente, os dados utilizados na análise e exploração de dados, foram os dados de treino apenas. Assim, foram apuradas as correlações entre os *datasets*, mais especificamente os preços de cada um deles através da coluna 'Último' – que faz referência ao preço de fechamento diário.

A correlação de preço de ambos foi considerada muito forte e diretamente proporcional, já que seu valor foi de 0,97.

```
train_B["Último_B"].corr(train_W["Último_W"])
0.9745391323161525
```

Abaixo o gráfico de correlação.

Gráfico de correlação: Brent x WTI

A correlação entre os preços presentes nos dois *datasets* também é possível ser verificada pelo gráfico abaixo, que apresenta a oscilação de preço diária de ambos os ativos.

Gráfico de preços – Brent x WTI

Nota-se que ao longo dos anos o Brent possui valor superior ao WTI e que ambos, em regra, movimentam na mesma direção e proporção diariamente.

Posteriormente, iniciou-se a análise exploratória dos *dataset*s. Iniciou-se pela descrição estatística dos dados.

train_	B.describe(()			
	Último_B	VolB	Mínima_B	Abertura_B	Máxima_B
count	1787.000000	1.787000e+03	1787.000000	1787.000000	1787.000000
mean	86.978215	1.943510e+07	85.900235	86.967857	87.963212
std	27.329470	7.398364e+06	27.210115	27.278378	27.340258
min	27.880000	1.152000e+06	27.100000	27.990000	28.750000
25%	59.230000	1.535850e+07	58.375000	59.580000	60.560000
50%	99.650000	1.950300e+07	97.920000	99.540000	100.620000
75%	109.885000	2.356550e+07	108.900000	109.760000	110.800000
max	126.650000	4.638100e+07	125.000000	126.580000	128.400000

Descrição estatística - Brent

train_	W.describe(()			
	Mínima_W	Máxima_W	Último_W	VolW	Abertura_W
count	1787.000000	1787.000000	1787.000000	1.787000e+03	1787.000000
mean	77.664057	79.767185	78.753643	3.200921e+07	78.779239
std	22.891260	22.972323	22.978843	1.581953e+07	22.954251
min	26.050000	27.480000	26.210000	2.210000e+06	27.300000
25%	52.055000	54.005000	53.000000	2.244200e+07	53.045000
50%	85.550000	87.770000	86.670000	2.941880e+07	86.570000
75%	96.260000	98.065000	97.330000	3.937150e+07	97.310000
max	112.250000	114.830000	113.930000	1.310000e+08	113.890000

Descrição estatística - WTI

Após verificação, foi constatada a inexistência de dados ausentes. Desta forma, foi plotado o gráfico de *candles*, contendo elementos sobre a abertura, fechamento, máxima e mínima do ativo.

Gráfico de candles - Brent

Gráfico de candles - WTI

É possível perceber que, em ambos os ativos, o preço subiu de 2010 até meados de 2011. Após isso, permaneceu lateral até meados de 2014, quando sofreu uma acentuada correção para baixo até início de 2016.

Em seguida, foi plotado o gráfico contendo a distribuição de frequência de preços do ativo.

Ambos os ativos apresentam dois picos de concentração de preço: 45 e 105 para a distribuição do Brent e 50 e 95 para o WTI.

O código a seguir é referente ao gráfico de preço e volume, portanto, contendo dois eixos y.

Gráfico Preço x Volume - Brent

Gráfico Preço x Volume - WTI

O volume do Brent apresenta-se regular ao longo dos anos, com picos esporádicos, independente das oscilações de seu preço. Já o volume do WTI, apresenta-se da mesma forma somente até 2015, quando inicia uma tendência de alta em seu volume, indiretamente proporcional à queda do preço do ativo. Portanto, em princípio, a queda do preço do Brent não alterou seu volume de negociação. Já em relação ao WTI, a mesma queda resultou em aumento de volume de operações do ativo.

5. Criação de Modelos de Machine Learning

A seguir serão apresentados os modelos preditivos do ativo financeiro petróleo Brent, desenvolvido em linguagem Python, nas seguintes bibliotecas: Facebook Prophet, Sktime e Arima.

5.1. Facebook Prophet

Inicialmente, definiu-se as datas de treinamento e teste. Após, duplicou-se o dataset 'brent1' através da criação do 'brent2'.

```
train_start_date = '2010-01-01'
train_end_date = '2016-12-31'

test_start_date = '2017-01-01'
test_end_date = '2019-12-31'

brent2 = brent1
```

Aplicou-se a definição temporal de tempo aos *datasets* criando 'train_B2', para treinamento, e 'teste_b2' para o teste. Por fim, excluiu-se todas as colunas, deixando apenas a referente às datas (Data) e preço de fechamento (Último).

```
filtroB2 = brent2['Data']<= train_end_date
train_B2 = brent2[filtroB2]

filtroB2teste = brent2['Data']> train_end_date
teste_B2 = brent2[filtroB2teste]

train_B2.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
```

A mesma exclusão foi aplicada em 'teste_B2'. Por fim, 'train_B2' apresentou 1787 linhas e 'teste_B2' apresentou 773 linhas.

O Prophet exige a mudança do nome das colunas no formato a seguir:

```
train_B2_FP = pd.DataFrame({"ds":train_B2['Data'],"y":train_B2['Último_B']})
train_B2_FP.reset_index(drop=True, inplace=True)
train_B2_FP
```

A mesma alteração foi aplicada em 'teste B2'.

19

A seguir foi criado o código do modelo, definindo um valor baixo (0,5) para o parâmetro que modula a flexibilidade da seleção automática de ponto de mudança (Changepoint_prior_scale), portanto, garantindo poucos pontos de mudança; definindo o intervalo de incertezas para a previsão em 0,95; e atribuindo 'False' ao ajuste de sazonalidade diária (Daily_seasonality).

```
prophet_model = Prophet(changepoint_prior_scale=0.05, interval_width=0.95, daily_seasonality=False)
prophet_model.fit(train_B2_FP)
```

Abaixo o erro encontrado:

MAE: 17.145523353934433 MSE: 373.3109475977907 RMSE: 19.321256366959958

5.2. SKTIME

Inicialmente, foi instalado o pacote SKTIME.

pip install sktime

Em seguida, instalou-se algumas bibliotecas específicas do pacote.

```
from sktime.forecasting.arima import ARIMA, AutoARIMA
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.compose import (
   EnsembleForecaster,
   ReducedRegressionForecaster,
   TransformedTargetForecaster,
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.model_selection import (
   ForecastingGridSearchCV,
   SlidingWindowSplitter,
   temporal_train_test_split,
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.theta import ThetaForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.performance_metrics.forecasting import sMAPE, smape_loss
from sktime.transformations.series.detrend import Deseasonalizer, Detrender
from sktime.utils.plotting import plot_series
%matplotlib inline
```

Foram criados novos *datasets* com base nos anteriores, de 'B2' para 'B3'. Estabeleceu-se 'y_train' como base de treino e 'y_test' como teste.

```
train_B3=train_B2
teste_B3=teste_B2
y_train=train_B3
y_test=teste_B3
```

Tal qual com os procedimentos já adotados anteriormente, foram excluídas as colunas, exceto 'Data' e 'Último'. Por fim, eles foram ordenados pela data, que se tornou index do *dataset*.

Foi definida a frequência diária do dataset.

```
y=y.resample('d').mean()
```

A partir disso, ele incluiu no *dataset* todas as datas e atribuiu valor NaN para os dados ausentes. Desta forma, essas linhas foram preenchidas com a média móvel de 5 períodos.

Em seguida, foi plotado um gráfico para observar a série, com dados de treinamento e teste.

Por fim, foi definido o período a ser predito.

```
\label{eq:fh} \begin{array}{ll} \mbox{fh = ForecastingHorizon}(\mbox{y\_test.index, is\_relative=False}) \\ \mbox{fh} \end{array}
```

5.3. ARIMA

Inicialmente, foi instalado a biblioteca Autoarima.

```
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=15,6

from pmdarima.arima import auto_arima
```

Foi criado um novo dataset de treinamento ('Z') a partir de um anterior ('y_trainI).

```
z= y_trainI.copy()
z=z.drop(columns=["Data"])
z
```

Último B

data	
2010-01-04	80.12
2010-01-05	80.59
2010-01-06	81.89
2010-01-07	81.51
2010-01-08	81.37
2016-12-23	55.16
2016-12-27	56.09
2016-12-28	56.22
2016-12-29	56.14
2016-12-30	56.82

1787 rows x 1 columns

O código abaixo foi aplicado para processar o Autoarima.

```
stepwise_model=auto_arima(z, start_p=1, start_q=1, max_p=6, max_q=6, m=12, start_P=0, seasonal=False,d=1, D=1, trace=True, error_action='ignore', supress_warnings=True, stepwise=False)
```

O modelo mais adequado que o código apontou foi o ARIMA (0, 1, 1).

```
ARIMA(0,1,0)(0,0,0)[0] intercept
                                 : AIC=6378.379, Time=0.14 sec
ARIMA(0,1,1)(0,0,0)[0] intercept
                                 : AIC=6378.085, Time=0.36 sec
ARIMA(0,1,2)(0,0,0)[0] intercept
                                 : AIC=6378.694, Time=0.48 sec
                                 : AIC=6380.694, Time=0.63 sec
ARIMA(0,1,3)(0,0,0)[0] intercept
ARIMA(0,1,4)(0,0,0)[0] intercept
                                  : AIC=6381.979, Time=0.79 sec
                                 : AIC=6383.962, Time=1.07 sec
ARIMA(0,1,5)(0,0,0)[0] intercept
ARIMA(1,1,0)(0,0,0)[0] intercept
                                 : AIC=6378.218, Time=0.30 sec
                                 : AIC=6379.239, Time=1.52 sec
ARIMA(1,1,1)(0,0,0)[0] intercept
ARIMA(1,1,2)(0,0,0)[0] intercept
                                  : AIC=6380.695, Time=0.55 sec
ARIMA(1,1,3)(0,0,0)[0] intercept
                                 : AIC=6381.425, Time=3.10 sec
ARIMA(1,1,4)(0,0,0)[0] intercept
                                 : AIC=6383.988, Time=1.01 sec
ARIMA(2,1,0)(0,0,0)[0] intercept
                                  : AIC=6378.652, Time=0.44 sec
                                 : AIC=6380.642, Time=2.13 sec
ARIMA(2,1,1)(0,0,0)[0] intercept
                                 : AIC=6381.539, Time=3.53 sec
ARIMA(2,1,2)(0,0,0)[0] intercept
                                 : AIC=inf, Time=5.96 sec
ARIMA(2,1,3)(0,0,0)[0] intercept
ARIMA(3,1,0)(0,0,0)[0] intercept
                                  : AIC=6380.629, Time=0.54 sec
ARIMA(3,1,1)(0,0,0)[0] intercept
                                  : AIC=6382.633, Time=0.75 sec
ARIMA(3,1,2)(0,0,0)[0] intercept
                                 : AIC=6381.090, Time=4.92 sec
                                  : AIC=6382.056, Time=0.76 sec
ARIMA(4,1,0)(0,0,0)[0] intercept
ARIMA(4,1,1)(0,0,0)[0] intercept
                                  : AIC=6384.054, Time=0.88 sec
ARIMA(5,1,0)(0,0,0)[0] intercept
                                 : AIC=6384.055, Time=0.87 sec
```

Best model: ARIMA(0,1,1)(0,0,0)[0] intercept

Total fit time: 30.734 seconds

Foi definido o período de treino e teste, o modelo ideal apontado pelo Autoarima foi aplicado ao período de treino e, por fim, foi definido o período a ser predito.

```
trainarima=z.loc['2010-01-01':'2016-12-31']
testarima=y.loc['2017-01-01':]

stepwise_model.fit(trainarima)

ARIMA(order=(0, 1, 1), scoring_args={}, suppress_warnings=True)

future_forecastarima=stepwise_model.predict(n_periods=1095)
```

6. Apresentação dos Resultados

A seguir são apresentados os resultados por pacote.

6.1. Facebook Prophet

O seguinte código foi aplicado para reproduzir o resultado do modelo em gráfico.

```
prophet_forecast = prophet_model.make_future_dataframe(periods=1096, freq='D')
prophet_forecast = prophet_model.predict(prophet_forecast)

fig=prophet_model.plot(prophet_forecast)
ax1=fig.gca()
ax1.set_title('Previsão de cotação', fontsize=16)
ax1.set_xlabel('Período', fontsize=12)
ax1.set_ylabel('Preço de cotação', fontsize=12)
```

A seguir o gráfico contendo o período de treino e a predição.

A seguir o gráfico contendo os dados de treinamento, teste e a predição.

No gráfico seguinte é possível notar que a predição e teste apresentam um movimento lateral. Contudo, a predição não está precisa em relação aos dados de teste.

Abaixo dados sobre a tendência prevista, indicando que não seria nem de alta e nem de baixa, apenas lateral.

6.2. SKTIME

Foram utilizados três modelos preditivos do SKTIME: Naive, AutoETS e Theta. A seguir são apresentados os resultados de cada um deles.

a) NaiveForecaster

O seguinte código foi aplicado para reproduzir o resultado do modelo em gráfico.

```
forecaster = NaiveForecaster(strategy="last")
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
plot_series(y_train, y_test, y_pred, labels=["y_train", "y_test", "y_pred"])
smape_loss(y_pred, y_test)
```

A seguir o gráfico contendo os dados de treinamento, teste e a predição.

Apesar dos dados de teste oscilarem bastante, no gráfico seguinte é possível notar que a predição ignora oscilações e se apresenta como uma linha reta, cuja tendência é lateral, não indicando significativa alta e nem baixa no preço.

 $2017-11-19\ 002001: 8002-27\ 002001: 8006-07\ 002001: 8009-15\ 002001: 8012-24\ 002001: 9004-03\ 002001: 9007-12\ 002001: 9001-20\ 002: 001001: 0010$

A seguir o erro obtido:

MAE: 6.2411254851228986 MSE: 66.676482923674 RMSE: 8.165566907672364

b) AutoETS

O seguinte código foi aplicado para reproduzir o resultado do modelo em gráfico.

```
from sktime.forecasting.ets import AutoETS

forecaster = AutoETS(auto=True, sp=12, n_jobs=-1)
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
plot_series(y_train, y_test, y_pred, labels=["y_train", "y_test", "y_pred"])
smape_loss(y_test, y_pred)
```

A seguir o gráfico contendo os dados de treinamento, teste e a predição.

 $2010-01-04\ 00: \textbf{2010}905-19\ 00: \textbf{2010}\cancel{2}0903-30\ 00: \textbf{2010}\cancel{2}0902-12\ 00: \textbf{2010}\cancel{2}0906-27\ 00: \textbf{2010}\cancel{2}091\cancel{2}091\cancel{2}091\cancel{2}0903-23\ 00: \textbf{2010}\cancel{2}0908-05\ 00: 00: 00: 00: 00: \textbf{2010}\cancel{2}0903-23\ 00: \textbf{20$

Tal qual ocorreu no modelo Naive, apesar dos dados de teste oscilarem bastante, no gráfico seguinte é possível notar que a predição ignora oscilações e se apresenta como uma linha reta, cuja tendência é lateral, não indicando significativa alta e nem baixa no preço.

 $2017-11-19\ 002001:8002-27\ 002001:8006-07\ 002001:8009-15\ 002001:8012-24\ 002001:904-03\ 002001:909-12\ 002001:9010-20\ 00:00:00$

A seguir o erro obtido:

MAE: 6.3015513938898815 MSE: 67.97582616714709 RMSE: 8.244745367029056

c) ThetaForecaster

O seguinte código foi aplicado para reproduzir o resultado do modelo em gráfico.

```
forecaster = ThetaForecaster(sp=12)
forecaster.fit(y_train)
alpha = 0.05 # 95% prediction intervals
y_pred, pred_ints = forecaster.predict(fh, return_pred_int=True, alpha=alpha)
smape_loss(y_test, y_pred)
```

A seguir o gráfico contendo os dados de treinamento, teste e a predição.

2010-01-04 00:**2010**905-19 00:**20112**909-30 00:**2019**902-12 00:**2010**906-27 00:**2010**911-08 00:**2010**903-23 00:**2010**908-05 00:00:00

No gráfico seguinte é possível notar que a predição e teste apresentam um movimento lateral. Contudo, a predição não está precisa em relação aos dados de teste.

 $2017-11-19\ 002001; 8002-27\ 002001; 8006-07\ 002001; 8009-15\ 002001; 80012-24\ 002001; 9004-03\ 002001; 9007-12\ 002001; 9001-20\ 002001;$

A seguir o erro obtido:

MAE: 9.489329239173445 MSE: 123.5232752885097 RMSE: 11.114102540849156

6.3. Arima

O seguinte código foi aplicado para reproduzir o resultado do modelo em gráfico.

A seguir o gráfico contendo os dados de treinamento, teste e a predição.

No gráfico seguinte é possível notar que a predição e teste apresentam um movimento lateral. Contudo, a predição não está precisa em relação aos dados de teste.

A seguir o erro obtido:

MAE: 15.283343938135479 MSE: 319.1676593546785 RMSE: 17.86526404379959

7. Links

Abaixo os links para o repositório contendo os dados utilizados no projeto, scripts criados e para o vídeo de apresentação do TCC.

Link para o vídeo: https://youtu.be/Uab8KaFqvT4

Link para o repositório: https://github.com/brunovc81/TCCPUC

REFERÊNCIAS

FACEBOOK Prophet. Disponível em: https://opensource.facebook.com/>. Acesso em: 15 de dezembro 2020.

https://br.investing.com/commodities/crude-oil-historical-data (acessado 01/12/2020)

https://br.investing.com/commodities/brent-oil-historical-data (acessado 01/12/2020)

https://github.com/alan-turing-

institute/sktime/blob/master/examples/01_forecasting.ipynb (acessado 01/01/2021)

https://www.youtube.com/watch?v=ccupZdvYCn4(acessado 02/01/2021)

https://www.youtube.com/watch?v=D9y6dcy0xK8(acessado 03/01/2021)

https://github.com/aly2009/ModelosPreditivos-

BolsaValores/blob/master/notebook_tcc.ipynb (acessado 04/01/2021)

https://yiyibooks.cn/pyte/Pandas020/timeseries.html (acessado 05/01/2021)

https://www.xspdf.com/resolution/50067275.html (acessado 06/01/2021)

https://panda.ime.usp.br/algoritmos/static/algoritmos/03-adt3-arrays.html (acessado 07/01/2021)

https://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html (acessado 08/01/2021)

https://pt.stackoverflow.com/questions/438231/como-fazer-uma-sequencia-datas-no-python (acessado 09/01/2021)

https://stackoverflow.com/questions/22231592/pandas-change-data-type-of-series-to-string (acessado 11/01/2021)

https://pandas.pydata.org/pandas-docs/version/0.15.2/timeseries.html (acessado 12/01/2021)

https://pandas.pydata.org/pandas-docs/version/0.25.3/user_guide/timeseries.html (acessado 13/01/2021)

APÊNDICE

```
!conda install -c conda-forge fbprophet -y
In [2]:
         Collecting package metadata (current repodata.json): ...working... done
         Solving environment: ...working... done
         # All requested packages already installed.
```

!pip install --upgrade plotly In [3]:

Requirement already up-to-date: plotly in c:\users\bviei\anaconda3\lib\site-packages (4. 14.3) Requirement already satisfied, skipping upgrade: retrying>=1.3.3 in c:\users\bviei\anaco nda3\lib\site-packages (from plotly) (1.3.3) Requirement already satisfied, skipping upgrade: six in c:\users\bviei\anaconda3\lib\sit e-packages (from plotly) (1.15.0)

In [4]:

```
!pip install fbprophet
Requirement already satisfied: fbprophet in c:\users\bviei\anaconda3\lib\site-packages
(0.7.1)
Requirement already satisfied: LunarCalendar>=0.0.9 in c:\users\bviei\anaconda3\lib\site
-packages (from fbprophet) (0.0.9)
Requirement already satisfied: matplotlib>=2.0.0 in c:\users\bviei\anaconda3\lib\site-pa
ckages (from fbprophet) (3.3.2)
Requirement already satisfied: convertdate>=2.1.2 in c:\users\bviei\anaconda3\lib\site-p
ackages (from fbprophet) (2.1.3)
Requirement already satisfied: setuptools-git>=1.2 in c:\users\bviei\anaconda3\lib\site-
packages (from fbprophet) (1.2)
Requirement already satisfied: holidays>=0.10.2 in c:\users\bviei\anaconda3\lib\site-pac
kages (from fbprophet) (0.10.4)
Requirement already satisfied: numpy>=1.15.4 in c:\users\bviei\anaconda3\lib\site-packag
es (from fbprophet) (1.19.2)
Requirement already satisfied: python-dateutil>=2.8.0 in c:\users\bviei\anaconda3\lib\si
te-packages (from fbprophet) (2.8.1)
Requirement already satisfied: tqdm>=4.36.1 in c:\users\bviei\anaconda3\lib\site-package
s (from fbprophet) (4.50.2)
Requirement already satisfied: Cython>=0.22 in c:\users\bviei\anaconda3\lib\site-package
s (from fbprophet) (0.29.17)
Requirement already satisfied: pystan>=2.14 in c:\users\bviei\anaconda3\lib\site-package
s (from fbprophet) (2.19.1.1)
Requirement already satisfied: pandas>=1.0.4 in c:\users\bviei\anaconda3\lib\site-packag
es (from fbprophet) (1.1.3)
Requirement already satisfied: cmdstanpy==0.9.5 in c:\users\bviei\anaconda3\lib\site-pac
kages (from fbprophet) (0.9.5)
Requirement already satisfied: ephem>=3.7.5.3 in c:\users\bviei\anaconda3\lib\site-packa
ges (from LunarCalendar>=0.0.9->fbprophet) (3.7.7.1)
Requirement already satisfied: pytz in c:\users\bviei\anaconda3\lib\site-packages (from
LunarCalendar>=0.0.9->fbprophet) (2019.3)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\bviei\anaconda3\lib\site-pa
ckages (from matplotlib>=2.0.0->fbprophet) (1.3.0)
Requirement already satisfied: certifi>=2020.06.20 in c:\users\bviei\anaconda3\lib\site-
packages (from matplotlib>=2.0.0->fbprophet) (2020.12.5)
Requirement already satisfied: pillow>=6.2.0 in c:\users\bviei\anaconda3\lib\site-packag
es (from matplotlib>=2.0.0->fbprophet) (8.0.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\users\bvie
i\anaconda3\lib\site-packages (from matplotlib>=2.0.0->fbprophet) (2.4.7)
Requirement already satisfied: cycler>=0.10 in c:\users\bviei\anaconda3\lib\site-package
s (from matplotlib>=2.0.0->fbprophet) (0.10.0)
Requirement already satisfied: korean-lunar-calendar in c:\users\bviei\anaconda3\lib\sit
e-packages (from holidays>=0.10.2->fbprophet) (0.2.1)
```

Requirement already satisfied: six in c:\users\bviei\anaconda3\lib\site-packages (from h

olidays>=0.10.2->fbprophet) (1.15.0)

```
import pandas as pd
In [5]:
          import numpy as np
          from numpy import sqrt
          import matplotlib.pyplot as plt
          import plotly.offline as py
          import plotly.graph objs as go
          py.init notebook mode(connected=True)
          from statsmodels.tsa.arima model import ARIMA
          from statsmodels.tsa.stattools import adfuller
          from statsmodels.graphics.tsaplots import plot acf,plot pacf
          from statsmodels.tsa.seasonal import seasonal decompose
          from pandas.plotting import lag plot
          !pip install pmdarima
          import sklearn.metrics
          from sklearn.metrics import mean absolute error
          from sklearn.metrics import mean squared error
          from sklearn.metrics import r2 score
          import statsmodels.api as sm
          from scipy import stats
          import warnings
         warnings.filterwarnings("ignore")
         from fbprophet import Prophet
         from fbprophet.diagnostics import cross_validation, performance_metrics
          from fbprophet.plot import plot cross validation metric
```

```
Requirement already satisfied: pmdarima in c:\users\bviei\anaconda3\lib\site-packages
(1.8.0)
Requirement already satisfied: joblib>=0.11 in c:\users\bviei\anaconda3\lib\site-package
s (from pmdarima) (0.17.0)
Requirement already satisfied: numpy>=1.17.3 in c:\users\bviei\anaconda3\lib\site-packag
es (from pmdarima) (1.19.2)
Requirement already satisfied: pandas>=0.19 in c:\users\bviei\anaconda3\lib\site-package
s (from pmdarima) (1.1.3)
Requirement already satisfied: scikit-learn>=0.22 in c:\users\bviei\anaconda3\lib\site-p
ackages (from pmdarima) (0.23.2)
Requirement already satisfied: urllib3 in c:\users\bviei\anaconda3\lib\site-packages (fr
om pmdarima) (1.25.11)
Requirement already satisfied: Cython<0.29.18,>=0.29 in c:\users\bviei\anaconda3\lib\sit
e-packages (from pmdarima) (0.29.17)
Requirement already satisfied: statsmodels!=0.12.0,>=0.11 in c:\users\bviei\anaconda3\li
b\site-packages (from pmdarima) (0.12.1)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\users\bviei\anaconda3\l
ib\site-packages (from pmdarima) (50.3.1.post20201107)
Requirement already satisfied: scipy>=1.3.2 in c:\users\bviei\anaconda3\lib\site-package
s (from pmdarima) (1.5.2)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\bviei\anaconda3\lib\si
te-packages (from pandas>=0.19->pmdarima) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in c:\users\bviei\anaconda3\lib\site-package
s (from pandas>=0.19->pmdarima) (2019.3)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\bviei\anaconda3\lib\site
-packages (from scikit-learn>=0.22->pmdarima) (2.1.0)
Requirement already satisfied: patsy>=0.5 in c:\users\bviei\anaconda3\lib\site-packages
(from statsmodels!=0.12.0,>=0.11->pmdarima) (0.5.1)
Requirement already satisfied: six>=1.5 in c:\users\bviei\anaconda3\lib\site-packages (f
rom python-dateutil>=2.7.3->pandas>=0.19->pmdarima) (1.15.0)
```

```
In [6]: brent = pd.read_csv("brent.csv", usecols=[0,1,2,3,4,5,6], decimal=",")
wti = pd.read_csv('wti.csv', usecols=[0,1,2,3,4,5,6], decimal=",")
```

Out[7]

:		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	0	31.12.2019	66.00	66.65	66.93	65.63	171,01K	-3,57%
	1	30.12.2019	68.44	68.20	68.99	68.16	29,42K	0,41%
	2	27.12.2019	68.16	67.91	68.33	67.57	112,22K	0,35%
	3	26.12.2019	67.92	67.27	67.99	67.22	69,82K	1,07%
	4	24.12.2019	67.20	66.44	67.26	66.36	104,94K	1,22%
	•••				***	***	•••	•••
257	76	08.01.2010	81.37	81.51	82.05	80.59	157,49K	-0,17%
257	7	07.01.2010	81.51	82.00	82.05	81.05	131,28K	-0,46%
257	78	06.01.2010	81.89	80.38	82.21	79.77	157,87K	1,61%
257	79	05.01.2010	80.59	80.29	80.84	79.75	131,75K	0,59%
258	80	04.01.2010	80.12	78.49	80.48	78.34	122,64K	2,81%

2581 rows × 7 columns

```
In [8]: wti
```

Out[8]:		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	0	31.12.2019	61.06	61.68	61.88	60.63	494,54K	-1,01%
	1	30.12.2019	61.68	61.71	62.34	61.09	427,15K	-0,06%
	2	27.12.2019	61.72	61.73	61.97	61.24	351,90K	0,06%
	3	26.12.2019	61.68	61.20	61.83	61.06	265,09K	0,80%
	4	25.12.2019	61.19	61.45	61.52	61.17	-	0,13%
	•••		•••				•••	
	2586	08.01.2010	82.75	82.65	83.47	81.80	310,38K	0,11%
	2587	07.01.2010	82.66	83.20	83.36	82.26	246,63K	-0,63%
	2588	06.01.2010	83.18	81.43	83.52	80.85	370,06K	1,72%
	2589	05.01.2010	81.77	81.63	82.00	80.95	258,89K	0,32%

79.63

2591 rows × 7 columns

81.51

2590 04.01.2010

```
In [9]: #DATAS - adequa as datas e também as define como index (o que facilitará a indentificaç

brent['Data'] = pd.to_datetime(brent['Data'], format='%d.%m.%Y')

wti['Data'] = pd.to_datetime(wti['Data'], format='%d.%m.%Y')
```

81.79 79.63 263,54K 2,71%

```
brent.index = pd.to datetime(brent.Data, format='%d.%m.%Y')
             wti.index = pd.to datetime(wti.Data, format='%d.%m.%Y')
             brent.index.to_period('D')
             wti.index.to period('D')
 '2010-01-15', '2010-01-14', '2010-01-13', '2010-01-12', '2010-01-11', '2010-01-08', '2010-01-07', '2010-01-06', '2010-01-05', '2010-01-04'],
                           dtype='period[D]', name='Data', length=2591, freq='D')
             #CAMPOS COM VALORES - ajuste nos números e também no campo volume, que cotinha letras i
In [10]:
             brent["Abertura"] = brent["Abertura"].astype(str)
             brent["Último"] = brent["Último"].astype(str)
             brent["Máxima"] = brent["Máxima"].astype(str)
             brent["Minima"] = brent["Minima"].astype(str)
             brent["Var%"] = brent["Var%"].astype(str)
             brent["Vol."] = brent["Vol."].astype(str)
             brent["Abertura"]=pd.Series(brent["Abertura"]).str.replace(',', '.', regex=True)
             brent["Último"]=pd.Series(brent["Último"]).str.replace(',', '.', regex=True)
             brent["Máxima"]=pd.Series(brent["Máxima"]).str.replace(',', '.', regex=True)
             brent["Mínima"]=pd.Series(brent["Mínima"]).str.replace(',', '.', regex=True)
             brent["Var%"]=pd.Series(brent["Var%"]).str.replace(',', '.', regex=True)
brent["Var%"]=pd.Series(brent["Var%"]).str.replace('%', '', regex=True)
             brent["Var%"]=pd.Series(brent["Var%"]).str.replace('%',
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('-', '', regex=True)
brent["Vol."]=pd.Series(brent["Vol."]).str.replace(',', '', regex=True)
brent["Vol."]=pd.Series(brent["Vol."]).str.replace(',', '', regex=True)
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('M',"0000000", regex=True)
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('K',"000", regex=True)
             brent["Vol."]=pd.Series(brent["Vol."]).str.replace('B',"000000000", regex=True)
             brent["Abertura"] = pd.to_numeric(brent["Abertura"])
             brent["Último"] = pd.to_numeric(brent["Último"])
             brent["Máxima"] = pd.to numeric(brent["Máxima"])
             brent["Minima"] = pd.to_numeric(brent["Minima"])
             brent["Var%"] = pd.to numeric(brent["Var%"])
             brent["Vol."] = pd.to numeric(brent["Vol."])
             #CAMPOS COM VALORES - ajuste nos números e também no campo volume, que cotinha letras i
In [11]:
             wti["Abertura"] = wti["Abertura"].astype(str)
             wti["Último"] = wti["Último"].astype(str)
             wti["Máxima"] = wti["Máxima"].astype(str)
             wti["Mínima"] = wti["Mínima"].astype(str)
             wti["Var%"] = wti["Var%"].astype(str)
             wti["Vol."] = wti["Vol."].astype(str)
             wti["Abertura"]=pd.Series(wti["Abertura"]).str.replace(',', '.', regex=True)
             wti["Último"]=pd.Series(wti["Último"]).str.replace(',', '.', regex=True)
wti["Máxima"]=pd.Series(wti["Máxima"]).str.replace(',', '.', regex=True)
             wti["Mínima"]=pd.Series(wti["Mínima"]).str.replace(',', '.', regex=True)
             wti["Var%"]=pd.Series(wti["Var%"]).str.replace(',', '.', regex=True)
wti["Var%"]=pd.Series(wti["Var%"]).str.replace('%', '', regex=True)
wti["Vol."]=pd.Series(wti["Vol."]).str.replace('-', '', regex=True)
wti["Vol."]=pd.Series(wti["Vol."]).str.replace(',', '', regex=True)
wti["Vol."]=pd.Series(wti["Vol."]).str.replace(',', '', regex=True)
             wti["Vol."]=pd.Series(wti["Vol."]).str.replace('M',"000000", regex=True)
             wti["Vol."]=pd.Series(wti["Vol."]).str.replace('K',"000", regex=True)
```

```
wti["Vol."]=pd.Series(wti["Vol."]).str.replace('B',"000000000", regex=True)
wti["Abertura"] = pd.to_numeric(wti["Abertura"])
wti["Último"] = pd.to_numeric(wti["Último"])
wti["Máxima"] = pd.to_numeric(wti["Máxima"])
wti["Mínima"] = pd.to_numeric(wti["Mínima"])
wti["Var%"] = pd.to_numeric(wti["Var%"])
wti["Vol."] = pd.to_numeric(wti["Vol."])
```

In [12]: brent

Out

Out[12]: Data Último Abertura Máxima Mínima Vol. Var%

Data							
2019-12-31	2019-12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57
2019-12-30	2019-12-30	68.44	68.20	68.99	68.16	2942000.0	0.41
2019-12-27	2019-12-27	68.16	67.91	68.33	67.57	11222000.0	0.35
2019-12-26	2019-12-26	67.92	67.27	67.99	67.22	6982000.0	1.07
2019-12-24	2019-12-24	67.20	66.44	67.26	66.36	10494000.0	1.22
•••							
2010-01-08	2010-01-08	81.37	81.51	82.05	80.59	15749000.0	-0.17
2010-01-07	2010-01-07	81.51	82.00	82.05	81.05	13128000.0	-0.46
2010-01-06	2010-01-06	81.89	80.38	82.21	79.77	15787000.0	1.61
2010-01-05	2010-01-05	80.59	80.29	80.84	79.75	13175000.0	0.59
2010-01-04	2010-01-04	80.12	78.49	80.48	78.34	12264000.0	2.81

2581 rows × 7 columns

In [13]: wti

[13]:		Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
	Data							
	2019-12-31	2019-12-31	61.06	61.68	61.88	60.63	49454000.0	-1.01
	2019-12-30	2019-12-30	61.68	61.71	62.34	61.09	42715000.0	-0.06
	2019-12-27	2019-12-27	61.72	61.73	61.97	61.24	35190000.0	0.06
	2019-12-26	2019-12-26	61.68	61.20	61.83	61.06	26509000.0	0.80
	2019-12-25	2019-12-25	61.19	61.45	61.52	61.17	NaN	0.13
	•••		•••		•••	•••		
	2010-01-08	2010-01-08	82.75	82.65	83.47	81.80	31038000.0	0.11
	2010-01-07	2010-01-07	82.66	83.20	83.36	82.26	24663000.0	-0.63
	2010-01-06	2010-01-06	83.18	81.43	83.52	80.85	37006000.0	1.72
	2010-01-05	2010-01-05	81.77	81.63	82.00	80.95	25889000.0	0.32

Data

Data Último Abertura Máxima Mínima

Vol. Var%

```
2010-01-04 2010-01-04
                                  81.51
                                           79.63
                                                   81.79
                                                           79.63 26354000.0
                                                                            2.71
         2591 rows × 7 columns
In [14]:
           brent.isnull().sum()
                      0
          Data
Out[14]:
          Último
                      0
          Abertura
                      0
          Máxima
                      a
          Mínima
                      0
          Vol.
                       1
          Var%
          dtype: int64
In [15]:
           wti.isnull().sum()
                        0
Out[15]: Data
          Último
                       0
                       0
          Abertura
                       0
          Máxima
          Mínima
                       0
          Vol.
                       74
          Var%
                       0
          dtype: int64
           brent medianaMA = brent["Máxima"].rolling(5).mean().shift(-5).round(0)
In [16]:
           brent_medianaMI = brent["Minima"].rolling(5).mean().shift(-5).round(0)
           brent_medianaAB = brent["Abertura"].rolling(5).mean().shift(-5).round(0)
           brent medianaUL = brent["Último"].rolling(5).mean().shift(-5).round(0)
           brent medianaVOL = brent["Vol."].rolling(5).mean().shift(-5).round(0)
           brent["Máxima"].fillna(brent_medianaMA, inplace=True)
           brent["Minima"].fillna(brent medianaMI, inplace=True)
           brent["Abertura"].fillna(brent medianaAB, inplace=True)
           brent["Último"].fillna(brent_medianaUL, inplace=True)
           brent["Vol."].fillna(brent medianaVOL, inplace=True)
           wti_medianaMA = wti["Máxima"].rolling(5).mean().shift(-5).round(0)
In [17]:
           wti_medianaMI = wti["Minima"].rolling(5).mean().shift(-5).round(0)
           wti_medianaAB = wti["Abertura"].rolling(5).mean().shift(-5).round(0)
           wti medianaUL = wti["Último"].rolling(5).mean().shift(-5).round(0)
           wti medianaVOL = wti["Vol."].rolling(5).mean().shift(-5).round(0)
           wti["Máxima"].fillna(wti_medianaMA, inplace=True)
           wti["Mínima"].fillna(wti_medianaMI, inplace=True)
           wti["Abertura"].fillna(wti medianaAB, inplace=True)
           wti["Último"].fillna(wti_medianaUL, inplace=True)
           wti["Vol."].fillna(wti medianaVOL, inplace=True)
In [18]:
           brent.isnull().sum()
Out[18]: Data
                      0
          Último
                      0
          Abertura
                      0
          Máxima
                      0
          Mínima
                      0
          Vol.
                      0
```

```
Var%
          dtype: int64
           wti.isnull().sum()
In [19]:
                        0
          Data
Out[19]:
          Último
                        0
          Abertura
                        0
          Máxima
                        0
                        0
          Mínima
                       27
          Vol.
          Var%
                        0
          dtype: int64
           wti_medianaVOL = wti["Vol."].rolling(5).mean().shift(-5).round(0)
In [20]:
           wti["Vol."].fillna(wti_medianaVOL, inplace=True)
           wti.isnull().sum()
In [21]:
Out[21]:
          Data
                       0
          Último
                       0
          Abertura
                       0
          Máxima
                       0
          Mínima
                       0
          Vol.
                       1
          Var%
                       0
          dtype: int64
In [22]:
           wti medianaVOL = wti["Vol."].rolling(5).mean().shift(-5).round(0)
           wti["Vol."].fillna(wti_medianaVOL, inplace=True)
           wti.isnull().sum()
In [23]:
                       0
          Data
Out[23]:
          Último
                       0
          Abertura
                       0
          Máxima
                       0
          Mínima
                       0
          Vol.
                       0
          Var%
          dtype: int64
           #JUNÇÃO DAS TABELAS, cria dataset bw
In [24]:
           brent.rename(columns= {'Data': 'data'}, inplace=True)
           wti.rename(columns= {'Data': 'data'}, inplace=True)
           bw = pd.merge(brent,wti,how='inner', on=['data'],suffixes=('_B', '_W'))
           bw.isnull().sum()
In [25]:
          data
                         0
Out[25]:
          Último B
                         0
          Abertura B
                         0
          Máxima B
                         0
          Mínima B
                         0
          Vol. B
                         0
          Var% B
                         0
          Último W
                         0
          Abertura W
                         0
          Máxima W
                         0
          Mínima W
```

Vol._W Var%_W 0 dtype: int64

In [26]:

Out[26]:

	data	Último_B	Abertura_B	Máxima_B	Mínima_B	VolB	Var%_B	Último_W	Abertura_W
0	2019- 12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57	61.06	61.68
1	2019- 12-30	68.44	68.20	68.99	68.16	2942000.0	0.41	61.68	61.71
2	2019- 12-27	68.16	67.91	68.33	67.57	11222000.0	0.35	61.72	61.73
3	2019- 12-26	67.92	67.27	67.99	67.22	6982000.0	1.07	61.68	61.20
4	2019- 12-24	67.20	66.44	67.26	66.36	10494000.0	1.22	61.11	60.63
•••							•••		
2555	2010- 01-08	81.37	81.51	82.05	80.59	15749000.0	-0.17	82.75	82.65
2556	2010- 01-07	81.51	82.00	82.05	81.05	13128000.0	-0.46	82.66	83.20
2557	2010- 01-06	81.89	80.38	82.21	79.77	15787000.0	1.61	83.18	81.43
2558	2010- 01-05	80.59	80.29	80.84	79.75	13175000.0	0.59	81.77	81.63
2559	2010- 01-04	80.12	78.49	80.48	78.34	12264000.0	2.81	81.51	79.63

2560 rows × 13 columns

bw.index = pd.to_datetime(bw.data, format='%d.%m.%Y') In [27]:

In [28]:

Out[28]:

DW										
	data	Último_B	Abertura_B	Máxima_B	Mínima_B	VolB	Var%_B	Último_W	Abertura_W	
data										
2019- 12-31	2019- 12-31	66.00	66.65	66.93	65.63	17101000.0	-3.57	61.06	61.68	
2019- 12-30	2019- 12-30	68.44	68.20	68.99	68.16	2942000.0	0.41	61.68	61.71	
2019- 12-27	2019- 12-27	68.16	67.91	68.33	67.57	11222000.0	0.35	61.72	61.73	
2019- 12-26	2019- 12-26	67.92	67.27	67.99	67.22	6982000.0	1.07	61.68	61.20	

data Último_B Abertura_B Máxima_B Mínima_B

Vol._B Var%_B Último_W Abertura_W

	data									
	2019- 12-24	2019- 12-24	67.20	66.44	4 67.2	6 66.36	10494000.0	1.22	61.11	60.63
	•••	•••	•••							
		2010- 01-08	81.37	81.5	1 82.0	5 80.59	15749000.0	-0.17	82.75	82.65
	2010- 01-07	2010- 01-07	81.51	82.00	0 82.0	5 81.05	13128000.0	-0.46	82.66	83.20
		2010- 01-06	81.89	80.38	82.2	1 79.77	15787000.0	1.61	83.18	81.43
	2010- 01-05	2010- 01-05	80.59	80.29	9 80.8	4 79.75	13175000.0	0.59	81.77	81.63
	2010- 01-04	2010- 01-04	80.12	78.49	9 80.4	8 78.34	12264000.0	2.81	81.51	79.63
	2560 rov	vs × 13 cc	olumns							
	4									+
In [29]:	brent1 brent1 brent1 brent1 brent1	["data"] ["Abertu ["Máxima ["Mínima ["Último	= bw[" ra_B"] _B"]= _B"]= _B"]=	data"]	rtura_B"] a_B"] a_B"] o_B"]	Aber cura_b	, MAXIMA_	_B , MIIII	ima_B","Últ	IIIO_B ,
In [30]:	brent1									
Out[30]:		Aber	tura_B	Último_B	Máxima_B	data	VolB	Mínima_B		
	d	ata								
	2019-12	-31	66.65	66.00	66.93	2019-12-31	1=101000	CF C2	-	
	2019-12						1/101000.0	65.63		
		-30	68.20	68.44	68.99	2019-12-30		68.16		
	2019-12		68.20 67.91	68.44 68.16			2942000.0			
		-27			68.33	2019-12-30	2942000.0 11222000.0	68.16		
	2019-12	-27 -26	67.91	68.16	68.33 67.99	2019-12-30 2019-12-27	2942000.0 11222000.0 6982000.0	68.16 67.57		
	2019-12 2019-12 2019-12	-27 -26	67.91 67.27	68.16 67.92 67.20	68.33 67.99 67.26	2019-12-30 2019-12-27 2019-12-26	2942000.0 11222000.0 6982000.0 10494000.0	68.16 67.57 67.22		
	2019-12 2019-12 2019-12	-27 -26 -24 	67.91 67.27 66.44	68.16 67.92 67.20	68.33 67.99 67.26	2019-12-30 2019-12-27 2019-12-26 2019-12-24	2942000.0 11222000.0 6982000.0 10494000.0 	68.16 67.57 67.22 66.36		
	2019-12 2019-12 2019-12	-27 -26 -24 	67.91 67.27 66.44	68.16 67.92 67.20	68.33 67.99 67.26 82.05	2019-12-30 2019-12-27 2019-12-26 2019-12-24	2942000.0 11222000.0 6982000.0 10494000.0 15749000.0	68.16 67.57 67.22 66.36		
	2019-12 2019-12 2019-12 2010-01	-27 -26 -24 -08	67.91 67.27 66.44 81.51	68.16 67.92 67.20 81.37	68.33 67.99 67.26 82.05	2019-12-30 2019-12-27 2019-12-26 2019-12-24 2010-01-08	2942000.0 11222000.0 6982000.0 10494000.0 15749000.0 13128000.0	68.16 67.57 67.22 66.36 		
	2019-12 2019-12 2019-12 2010-01 2010-01	-27 -26 -24 -08 -07	67.91 67.27 66.44 81.51 82.00	68.16 67.92 67.20 81.37 81.51 81.89	68.33 67.99 67.26 82.05 82.05	2019-12-30 2019-12-27 2019-12-26 2019-12-24 2010-01-08 2010-01-07	2942000.0 11222000.0 6982000.0 10494000.0 15749000.0 13128000.0 15787000.0	68.16 67.57 67.22 66.36 80.59 81.05		

2560 rows × 6 columns

```
wti1 = pd.DataFrame(columns={"data","Abertura_W", "Máxima_W", "Mínima_W", "Último_W", "V
In [31]:
            wti1["data"]= bw["data"]
            wti1["Abertura W"]= bw["Abertura W"]
            wti1["Máxima_W"]= bw["Máxima_W"]
            wti1["Mínima W"]= bw["Mínima W"]
            wti1["Último W"]= bw["Último W"]
            wti1["Vol. W"]= bw["Vol. W"]
In [32]:
            wti1
Out[32]:
                        Mínima W
                                         data Abertura W
                                                               Vol. W Máxima W Último W
                  data
           2019-12-31
                             60.63 2019-12-31
                                                     61.68 49454000.0
                                                                             61.88
                                                                                        61.06
           2019-12-30
                             61.09
                                   2019-12-30
                                                     61.71 42715000.0
                                                                             62.34
                                                                                        61.68
           2019-12-27
                             61.24 2019-12-27
                                                           35190000.0
                                                     61.73
                                                                             61.97
                                                                                        61.72
           2019-12-26
                             61.06
                                   2019-12-26
                                                     61.20
                                                           26509000.0
                                                                             61.83
                                                                                        61.68
           2019-12-24
                                   2019-12-24
                                                     60.63
                                                           20454000.0
                                                                             61.16
                             60.47
                                                                                        61.11
                                                                                ...
           2010-01-08
                             81.80
                                   2010-01-08
                                                     82.65 31038000.0
                                                                             83.47
                                                                                        82.75
           2010-01-07
                             82.26 2010-01-07
                                                     83.20
                                                           24663000.0
                                                                             83.36
                                                                                        82.66
           2010-01-06
                             80.85
                                  2010-01-06
                                                     81.43 37006000.0
                                                                             83.52
                                                                                        83.18
           2010-01-05
                                                                             82.00
                                                                                        81.77
                             80.95 2010-01-05
                                                     81.63 25889000.0
           2010-01-04
                             79.63 2010-01-04
                                                     79.63 26354000.0
                                                                             81.79
                                                                                        81.51
          2560 rows × 6 columns
In [33]:
            brent1.rename(columns= {'data': 'Data'}, inplace=True)
            wti1.rename(columns= {'data': 'Data'}, inplace=True)
            brent1
In [34]:
Out[34]:
                        Abertura_B Último_B Máxima_B
                                                                         Vol._B Mínima_B
                                                               Data
                  data
           2019-12-31
                             66.65
                                       66.00
                                                   66.93
                                                         2019-12-31 17101000.0
                                                                                     65.63
           2019-12-30
                             68.20
                                       68.44
                                                   68.99
                                                         2019-12-30
                                                                                     68.16
                                                                      2942000.0
           2019-12-27
                             67.91
                                       68.16
                                                   68.33
                                                         2019-12-27 11222000.0
                                                                                     67.57
                                                         2019-12-26
           2019-12-26
                                       67.92
                             67.27
                                                   67.99
                                                                      6982000.0
                                                                                     67.22
           2019-12-24
                             66.44
                                       67.20
                                                   67.26
                                                         2019-12-24 10494000.0
                                                                                     66.36
           2010-01-08
                             81.51
                                       81.37
                                                   82.05 2010-01-08 15749000.0
                                                                                     80.59
```

	Abertura_B	Último_B	Máxima_B	Data	VolB	Mínima_B
data						
2010-01-07	82.00	81.51	82.05	2010-01-07	13128000.0	81.05
2010-01-06	80.38	81.89	82.21	2010-01-06	15787000.0	79.77
2010-01-05	80.29	80.59	80.84	2010-01-05	13175000.0	79.75
2010-01-04	78.49	80.12	80.48	2010-01-04	12264000.0	78.34

2560 rows × 6 columns

```
In [35]: #Serparar treino e teste
    filtroB = brent1['Data']<= "2016-12-31"
        train_B = brent1[filtroB]
        filtroW = wti1['Data']<= "2016-12-31"
        train_W = wti1[filtroW]
        filtroBteste = brent1['Data']> "2016-12-31"
        teste_B = brent1[filtroBteste]
        filtroWteste = wti1['Data']> "2016-12-31"
        teste_W = wti1[filtroWteste]

In [36]: #correlação
        train_B["Último_B"].corr(train_W["Último_W"])
Out[36]: 0.9745391323161525
```

```
In [37]: data1=train_B["Último_B"]
    data2=train_W["Último_W"]

    plt.scatter(data1, data2)
    plt.title('Gráfico de Correlação')
    plt.gcf().set_size_inches(10, 8)
    plt.show()

#diretamente proporcionais com alta correlação
```

Gráfico de Correlação


```
In [38]: eixo_x = train_B['Data']
    linha_brent1_ultimo = train_B["Último_B"]
    linha_wti1_ultimo = train_W["Último_W"]
    trace1 = go.Scatter(x = eixo_x,y = linha_brent1_ultimo,mode = 'lines', name = 'BRENT')
    trace2 = go.Scatter(x = eixo_x,y = linha_wti1_ultimo,mode = 'lines',name = 'WTI')
    data = [trace1, trace2]
    py.iplot(data)
```



```
In [39]:
            train_B.describe()
Out[39]:
                   Abertura_B
                                  Último_B
                                             Máxima_B
                                                               Vol._B
                                                                        Mínima B
                  1787.000000
                               1787.000000
                                            1787.000000
                                                        1.787000e+03
                                                                      1787.000000
           count
                    86.967857
                                 86.978215
                                              87.963212
                                                        1.943510e+07
                                                                        85.900235
           mean
              std
                    27.278378
                                 27.329470
                                              27.340258
                                                        7.398364e+06
                                                                        27.210115
                    27.990000
                                 27.880000
                                              28.750000
                                                        1.152000e+06
                                                                        27.100000
             min
             25%
                    59.580000
                                 59.230000
                                              60.560000
                                                        1.535850e+07
                                                                        58.375000
             50%
                    99.540000
                                 99.650000
                                             100.620000
                                                        1.950300e+07
                                                                        97.920000
                    109.760000
             75%
                                109.885000
                                             110.800000
                                                        2.356550e+07
                                                                        108.900000
             max
                    126.580000
                                126.650000
                                             128.400000
                                                        4.638100e+07
                                                                       125.000000
In [40]:
            import plotly.graph_objects as go
            fig = go.Figure(data=[go.Candlestick(x=train_B['Data'],
                              open=train_B['Abertura_B'], high=train_B['Máxima_B'],
                              low=train_B['Minima_B'], close=train_B["Ultimo_B"])
            fig.update_layout(xaxis_rangeslider_visible=False)
            fig.show()
```



```
import seaborn as sns
plt.figure(figsize=(10,7))
sns.set_context("notebook", font_scale=1.5, rc={'font.size':20, 'axes.titlesize':20, 'a
sns.rugplot(train_B["Último_B"], color ='red')
sns.distplot(train_B["Último_B"], color ='green')
sns.set_style("darkgrid")
plt.title("Distribuição de Fechamento - BRENT")
```

Out[41]: Text(0.5, 1.0, 'Distribuição de Fechamento - BRENT')


```
In [42]: #gráfico com dois eixos y

b = train_B["Data"]
    data1 = train_B["Último_B"]
    data2 = train_B["Vol._B"]
```

```
fig, ax1 = plt.subplots()

color = 'tab:red'
ax1.set_xlabel('')
ax1.set_ylabel('Preço', color=color)
ax1.plot(b, data1, color=color)
ax1.tick_params(axis='y', labelcolor=color)

ax2 = ax1.twinx()

color = 'tab:blue'
ax2.set_ylabel('Volume', color=color)
ax2.plot(b, data2, color=color)
ax2.tick_params(axis='y', labelcolor=color)
plt.gcf().set_size_inches(15, 10)
plt.show()
```


97.330000

98.065000

In [43]: train_W.describe()

Out[43]:		Mínima_W	Abertura_W	VolW	Máxima_W	Último_W
	count	1787.000000	1787.000000	1.787000e+03	1787.000000	1787.000000
	mean	77.664057	78.779239	3.200921e+07	79.767185	78.753643
	std	22.891260	22.954251	1.581953e+07	22.972323	22.978843
	min	26.050000	27.300000	2.210000e+06	27.480000	26.210000
	25%	52.055000	53.045000	2.244200e+07	54.005000	53.000000
	50%	85.550000	86.570000	2.941880e+07	87.770000	86.670000

97.310000 3.937150e+07

96.260000

75%

	Mínima_W	Abertura_W	VolW	Máxima_W	Último_W
max	112.250000	113.890000	1.310000e+08	114.830000	113.930000

```
In [44]: plt.figure(figsize=(10,7))
    sns.set_context("notebook", font_scale=1.5, rc={'font.size':20, 'axes.titlesize':20, 'a
    sns.rugplot(train_W["Último_W"], color ='red')
    sns.distplot(train_W["Último_W"], color ='green')
    sns.set_style("darkgrid")
    plt.title("Distribuição de Fechamento - WTI")
```

Out[44]: Text(0.5, 1.0, 'Distribuição de Fechamento - WTI')


```
In [46]:
           w = train_W["Data"]
           data1 = train W["Último W"]
           data2 = train_W["Vol._W"]
           fig, ax1 = plt.subplots()
           color = 'tab:red'
           ax1.set_xlabel('')
           ax1.set_ylabel('Preço', color=color)
           ax1.plot(w, data1, color=color)
           ax1.tick_params(axis='y', labelcolor=color)
           ax2 = ax1.twinx()
           color = 'tab:blue'
           ax2.set_ylabel('Volume', color=color)
           ax2.plot(w, data2, color=color)
           ax2.tick_params(axis='y', labelcolor=color)
           plt.gcf().set_size_inches(15, 10)
           plt.show()
```


FACEBOOK PROPHET

```
In [47]: train_start_date = '2010-01-01'
    train_end_date = '2016-12-31'

test_start_date = '2017-01-01'
    test_end_date = '2019-12-31'
```

In [48]: brent2 = brent1

In [49]: brent2

Out[49]:

	Abertura_B	Último_B	Máxima_B	Data	VolB	Mínima_B
data						
2019-12-31	66.65	66.00	66.93	2019-12-31	17101000.0	65.63
2019-12-30	68.20	68.44	68.99	2019-12-30	2942000.0	68.16
2019-12-27	67.91	68.16	68.33	2019-12-27	11222000.0	67.57
2019-12-26	67.27	67.92	67.99	2019-12-26	6982000.0	67.22
2019-12-24	66.44	67.20	67.26	2019-12-24	10494000.0	66.36
•••						
2010-01-08	81.51	81.37	82.05	2010-01-08	15749000.0	80.59
2010-01-07	82.00	81.51	82.05	2010-01-07	13128000.0	81.05
2010-01-06	80.38	81.89	82.21	2010-01-06	15787000.0	79.77
2010-01-05	80.29	80.59	80.84	2010-01-05	13175000.0	79.75

Abertura_B Último_B Máxima_B

```
data
           2010-01-04
                            78.49
                                      80.12
                                                80.48 2010-01-04 12264000.0
                                                                                 78.34
          2560 rows × 6 columns
In [50]:
            filtroB2 = brent2['Data']<= train_end_date</pre>
            train B2 = brent2[filtroB2]
            filtroB2teste = brent2['Data']> train_end_date
            teste B2 = brent2[filtroB2teste]
            train_B2.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
In [51]:
                       Último_B
Out[51]:
                                      Data
                 data
           2016-12-30
                          56.82 2016-12-30
           2016-12-29
                          56.14 2016-12-29
           2016-12-28
                          56.22 2016-12-28
           2016-12-27
                          56.09 2016-12-27
           2016-12-23
                          55.16 2016-12-23
           2010-01-08
                          81.37 2010-01-08
           2010-01-07
                          81.51 2010-01-07
           2010-01-06
                          81.89 2010-01-06
           2010-01-05
                          80.59 2010-01-05
           2010-01-04
                          80.12 2010-01-04
          1787 rows × 2 columns
In [52]:
            teste_B2.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
                       Último B
Out[52]:
                                      Data
                 data
           2019-12-31
                          66.00 2019-12-31
           2019-12-30
                          68.44 2019-12-30
           2019-12-27
                          68.16 2019-12-27
           2019-12-26
                          67.92 2019-12-26
           2019-12-24
                          67.20 2019-12-24
```

Data

Vol._B Mínima_B

```
Último B
                                     Data
                 data
           2017-01-09
                          54.94 2017-01-09
           2017-01-06
                          57.10 2017-01-06
           2017-01-05
                          56.89 2017-01-05
           2017-01-04
                          56.46 2017-01-04
           2017-01-03
                          55.47 2017-01-03
          773 rows × 2 columns
In [53]:
           train_B2_FP = pd.DataFrame({"ds":train_B2['Data'],"y":train_B2['Último_B']})
           train B2 FP.reset index(drop=True, inplace=True)
           train B2 FP
Out[53]:
                        ds
                               у
              0 2016-12-30 56.82
              1 2016-12-29 56.14
              2 2016-12-28 56.22
              3 2016-12-27 56.09
                2016-12-23 55.16
           1782 2010-01-08 81.37
           1783 2010-01-07 81.51
           1784 2010-01-06 81.89
           1785 2010-01-05 80.59
           1786 2010-01-04 80.12
          1787 rows × 2 columns
           teste_B2_FP = pd.DataFrame({"ds_teste":teste_B2['Data'],"y_teste":teste_B2['Último_B']}
In [54]:
           teste_B2_FP.reset_index(drop=True, inplace=True)
           teste_B2_FP
Out[54]:
                  ds_teste y_teste
             0 2019-12-31
                            66.00
             1 2019-12-30
                            68.44
             2 2019-12-27
                            68.16
               2019-12-26
                            67.92
               2019-12-24
                            67.20
```

	ds_teste	y_teste
768	2017-01-09	54.94
769	2017-01-06	57.10
770	2017-01-05	56.89
771	2017-01-04	56.46
772	2017-01-03	55.47

773 rows × 2 columns

Out[56]: Text(39.5, 0.5, 'Preço de cotação')


```
In [57]: prophet_forecast = prophet_forecast[prophet_forecast['ds'] > train_end_date]
    prophet_forecast.head()
```

Out [57]: ds trend yhat_lower yhat_upper trend_lower trend_upper additive_terms additive_term

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_tern
1788	2017- 01-01	46.522636	32.271853	54.417461	46.522636	46.522636	-3.394820	-
1789	2017- 01-02	46.522401	31.804644	53.528329	46.522401	46.522401	-3.689596	-
1790	2017- 01-03	46.522166	31.753264	53.856961	46.522166	46.522166	-3.798483	-
1791	2017- 01-04	46.521930	31.267200	53.303155	46.521930	46.523158	-3.851718	-
1792	2017- 01-05	46.521695	31.252054	53.775329	46.518990	46.529545	-3.991363	-
4								•

In [58]: fig=prophet_model.plot_components(prophet_forecast)

2017-032017-072017-112018-032018-072018-112019-032019-072019-11 ds

January 1 March 1 May 1 July 1 September November 1 January 1

Day of year

In [59]: prophet_forecast.set_index(prophet_forecast['ds'], inplace=True)

```
teste_B2_FP.set_index(teste_B2_FP['ds_teste'], inplace=True)
train_B2_FP.set_index(train_B2_FP['ds'], inplace=True)
```



```
plt.figure(figsize=(14,8))
   plt.plot(teste_B2_FP['y_teste'], 'blue', label='Teste')
   plt.plot(prophet_forecast['yhat'], 'red', label='Predição')
   plt.fill_between(prophet_forecast.index, prophet_forecast['yhat_lower'], prophet_foreca
   plt.legend()
   plt.grid(True)
```


Out[63]:		data	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_term
	0	2017- 01-03	46.522166	31.753264	53.856961	46.522166	46.522166	-3.798483	-3
	1	2017- 01-04	46.521930	31.267200	53.303155	46.521930	46.523158	-3.851718	-3
	2	2017- 01-05	46.521695	31.252054	53.775329	46.518990	46.529545	-3.991363	-3
	3	2017- 01-06	46.521460	30.806468	52.818402	46.500924	46.541872	-4.266456	-2
	4	2017- 01-09	46.520755	30.199963	53.182456	46.422887	46.607116	-5.097600	-î
	•••								
	768	2019- 12-24	46.267069	-140.691328	229.004072	-139.839156	230.808042	-2.731992	-2
	769	2019- 12-26	46.266599	-140.823405	233.369853	-140.121356	231.242182	-2.607993	-2
	770	2019- 12-27	46.266364	-143.319539	227.894682	-140.260581	231.459252	-2.729845	-2
	771	2019- 12-30	46.265659	-148.020037	227.181423	-140.970103	232.110462	-3.169816	-3

```
        data
        trend
        yhat_lower
        trend_lower
        trend_upper
        additive_terms
        additive_terms

        772
        2019-
12-31
        46.265424
        -142.323374
        234.443056
        -141.216303
        232.327532
        -3.220225
        -3
```

773 rows × 20 columns

```
In [64]: #Cálculo do erro
    print('MAE: ', mean_absolute_error(pftb2['y_teste'],pftb2['yhat']))
    print('MSE: ', mean_squared_error(pftb2['y_teste'],pftb2['yhat']))
    print('RMSE: ', np.sqrt(mean_squared_error(pftb2['y_teste'],pftb2['yhat'])))
```

MAE: 17.145523353934433 MSE: 373.3109475977907 RMSE: 19.321256366959958

SKTIME

```
In [65]:
           pip install sktime
          Requirement already satisfied: sktime in c:\users\bviei\anaconda3\lib\site-packages (0.
          Requirement already satisfied: numba>=0.50 in c:\users\bviei\anaconda3\lib\site-packages
          (from sktime) (0.51.2)
          Requirement already satisfied: wheel in c:\users\bviei\anaconda3\lib\site-packages (from
          sktime) (0.35.1)
          Requirement already satisfied: pandas>=1.1.0 in c:\users\bviei\anaconda3\lib\site-packag
          es (from sktime) (1.1.3)
          Requirement already satisfied: statsmodels>=0.12.1 in c:\users\bviei\anaconda3\lib\site-
          packages (from sktime) (0.12.1)
          Requirement already satisfied: scikit-learn>=0.23.0 in c:\users\bviei\anaconda3\lib\site
          -packages (from sktime) (0.23.2)
          Requirement already satisfied: numpy>=1.19.0 in c:\users\bviei\anaconda3\lib\site-packag
          es (from sktime) (1.19.2)
          Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in c:\users\bviei\anaconda3\l
          ib\site-packages (from numba>=0.50->sktime) (0.34.0)
          Requirement already satisfied: setuptools in c:\users\bviei\anaconda3\lib\site-packages
          (from numba>=0.50->sktime) (50.3.1.post20201107)
          Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\bviei\anaconda3\lib\si
          te-packages (from pandas>=1.1.0->sktime) (2.8.1)
          Requirement already satisfied: pytz>=2017.2 in c:\users\bviei\anaconda3\lib\site-package
          s (from pandas>=1.1.0->sktime) (2019.3)
          Requirement already satisfied: scipy>=1.1 in c:\users\bviei\anaconda3\lib\site-packages
          (from statsmodels>=0.12.1->sktime) (1.5.2)
          Requirement already satisfied: patsy>=0.5 in c:\users\bviei\anaconda3\lib\site-packages
          (from statsmodels>=0.12.1->sktime) (0.5.1)
          Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\bviei\anaconda3\lib\site
          -packages (from scikit-learn>=0.23.0->sktime) (2.1.0)
          Requirement already satisfied: joblib>=0.11 in c:\users\bviei\anaconda3\lib\site-package
          s (from scikit-learn>=0.23.0->sktime) (0.17.0)
          Requirement already satisfied: six>=1.5 in c:\users\bviei\anaconda3\lib\site-packages (f
          rom python-dateutil>=2.7.3->pandas>=1.1.0->sktime) (1.15.0)
          Note: you may need to restart the kernel to use updated packages.
           from sktime.forecasting.arima import ARIMA, AutoARIMA
In [66]:
           from sktime.forecasting.base import ForecastingHorizon
```

from sktime.forecasting.compose import (

ReducedRegressionForecaster,

EnsembleForecaster,

```
TransformedTargetForecaster,
)
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.model_selection import (
    ForecastingGridSearchCV,
    SlidingWindowSplitter,
    temporal_train_test_split,
)
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.theta import ThetaForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.performance_metrics.forecasting import sMAPE, smape_loss
from sktime.transformations.series.detrend import Deseasonalizer, Detrender
from sktime.utils.plotting import plot_series

%matplotlib inline
```

```
In [135... train_B3=train_B2
    teste_B3=teste_B2

    y_trainSK=train_B3
    y_testSK=teste_B3
```

In [136... y_testSK

Out[136...

	Abertura_B	Último_B	Máxima_B	Data	VolB	Mínima_B
data						
2019-12-31	66.65	66.00	66.93	2019-12-31	17101000.0	65.63
2019-12-30	68.20	68.44	68.99	2019-12-30	2942000.0	68.16
2019-12-27	67.91	68.16	68.33	2019-12-27	11222000.0	67.57
2019-12-26	67.27	67.92	67.99	2019-12-26	6982000.0	67.22
2019-12-24	66.44	67.20	67.26	2019-12-24	10494000.0	66.36
•••						
2017-01-09	56.81	54.94	57.00	2017-01-09	26639000.0	54.74
2017-01-06	56.88	57.10	57.47	2017-01-06	23487000.0	56.28
2017-01-05	56.35	56.89	57.35	2017-01-05	26961000.0	56.01
2017-01-04	55.73	56.46	56.55	2017-01-04	28255000.0	55.33
2017-01-03	57.05	55.47	58.37	2017-01-03	34082000.0	55.30

773 rows × 6 columns

```
In [137... y_trainSK=y_trainSK.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
   y_testSK=y_testSK.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
In [138... y_trainSK
```

Out[138... Último_B Data

data

56.82	2016-12-30
56.14	2016-12-29
56.22	2016-12-28
56.09	2016-12-27
55.16	2016-12-23
81.37	2010-01-08
81.51	2010-01-07
81.89	2010-01-06
80.59	2010-01-05
80.12	2010-01-04
	56.14 56.22 56.09 55.16 81.37 81.51 81.89 80.59

Último_B

Data

1787 rows × 2 columns

```
In [139... y_trainI = y_trainSK.sort_values(by='Data')
    y_trainI
```

Out[139... Último_B Data

data		
2010-01-04	80.12	2010-01-04
2010-01-05	80.59	2010-01-05
2010-01-06	81.89	2010-01-06
2010-01-07	81.51	2010-01-07
2010-01-08	81.37	2010-01-08
•••		
2016-12-23	 55.16	 2016-12-23
 2016-12-23 2016-12-27		
	55.16	2016-12-23
2016-12-27	55.16 56.09	2016-12-23 2016-12-27 2016-12-28

1787 rows × 2 columns

```
In [140... y_testI = y_testSK.sort_values(by='Data')
    y_testI
```

Out[140... Último_B Data

data	Último_B	Data
data		
2017-01-03	55.47	2017-01-03
2017-01-04	56.46	2017-01-04
2017-01-05	56.89	2017-01-05
2017-01-06	57.10	2017-01-06
2017-01-09	54.94	2017-01-09
•••		
2019-12-24	67.20	2019-12-24
2019-12-26	67.92	2019-12-26
2019-12-27	68.16	2019-12-27
2019-12-30	68.44	2019-12-30
2019-12-31	66.00	2019-12-31

773 rows × 2 columns

```
brent3 = brent2
In [141...
           brent3=brent3.drop(columns=["Máxima_B", "Abertura_B", "Mínima_B", "Vol._B"])
           brent3I = brent3.sort_values(by='Data')
           brent3I=brent3I.drop(columns=["Data"])
           y = brent3I['Último_B']
           У
Out[141... data
          2010-01-04
                         80.12
                         80.59
           2010-01-05
           2010-01-06
                         81.89
           2010-01-07
                         81.51
           2010-01-08
                         81.37
          2019-12-24
                         67.20
           2019-12-26
                         67.92
           2019-12-27
                         68.16
           2019-12-30
                         68.44
           2019-12-31
                         66.00
          Name: Último_B, Length: 2560, dtype: float64
           y.index
In [142...
'2019-12-17', '2019-12-18', '2019-12-19', '2019-12-20', '2019-12-23', '2019-12-24', '2019-12-26', '2019-12-27', '2019-12-30', '2019-12-31'],
                         dtype='datetime64[ns]', name='data', length=2560, freq=None)
In [143...
```

data

```
Out[143... 2010-01-04
                         80.12
                         80.59
          2010-01-05
          2010-01-06
                         81.89
          2010-01-07
                         81.51
          2010-01-08
                         81.37
                         67.20
          2019-12-24
          2019-12-26
                         67.92
          2019-12-27
                         68.16
          2019-12-30
                         68.44
          2019-12-31
                         66.00
          Name: Último_B, Length: 2560, dtype: float64
           y=y.resample('d').mean()
In [144...
In [145...
          data
Out[145...
          2010-01-04
                         80.12
          2010-01-05
                         80.59
          2010-01-06
                         81.89
          2010-01-07
                         81.51
          2010-01-08
                         81.37
          2019-12-27
                         68.16
          2019-12-28
                           NaN
          2019-12-29
                           NaN
          2019-12-30
                         68.44
          2019-12-31
                         66.00
          Freq: D, Name: Último B, Length: 3649, dtype: float64
           y_trainSK, y_testSK = temporal_train_test_split(y, test_size=773)
In [146...
           plot_series(y_trainSK, y_testSK, labels=["y_train", "y_test"])
           print(y_trainSK.shape[0], y_testSK.shape[0])
          2876 773
             120
                                                                                            y_train
                                                                                              y_test
             100
          В
             80
             60
             40
             In [147...
           fh = np.arange(len(y testSK)) + 1
           fh
                                             6,
                              3,
                                   4,
                                        5,
                                                  7,
                                                        8,
                                                             9,
                                                                 10,
                                                                      11,
                                                                           12,
                                                                                 13,
Out[147... array([
                   1,
                         2,
                                                                           25,
                  14,
                        15,
                                  17,
                                       18,
                                                  20,
                                                       21,
                                                            22,
                                                                      24,
                                                                                 26,
                             16,
                                            19,
                                                                 23,
                  27,
                        28,
                             29,
                                  30,
                                       31,
                                            32,
                                                  33,
                                                       34,
                                                            35,
                                                                 36,
                                                                      37,
                                                                           38,
                                                                                 39,
                  40,
                                  43,
                                            45,
                                                 46,
                                                       47,
                                                            48,
                                                                 49,
                                                                      50,
                        41,
                             42,
                                       44,
                                                                           51,
                                                                                 52,
                  53,
                        54,
                                  56,
                                       57,
                                            58,
                                                  59,
                                                       60,
                                                            61,
                                                                      63,
                             55,
                                                                 62,
                                                                           64,
                                                                                 65,
                        67,
                                            71,
                  66,
                             68,
                                  69,
                                       70,
                                                 72,
                                                       73,
                                                            74,
                                                                 75,
                                                                      76,
                                                                           77,
                                                                                 78,
                  79,
                        80,
                             81,
                                  82,
                                       83,
                                            84,
                                                 85,
                                                       86,
                                                            87,
                                                                 88,
                                                                      89,
                                                                           90,
                                  95,
                                                 98,
                                                       99, 100, 101, 102, 103, 104,
                  92,
                        93,
                             94,
                                       96,
                                            97,
                 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
                 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
                 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
                 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
```

157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,

```
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
                 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
                 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
                 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
                 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
                 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
                 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
                 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
                 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
                 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
                 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
                 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
                 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
                 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
                 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
                 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
                 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
                 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
                 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
                 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429,
                 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
                 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
                 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
                 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
                 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
                 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,
                 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,
                 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
                 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
                 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
                 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,
                 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584,
                 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
                 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
                 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
                 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637,
                 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650,
                 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663,
                 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
                 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
                 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702,
                 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
                 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
                 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
                 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
                 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
                 768, 769, 770, 771, 772, 773])
In [148...
           fh
              = ForecastingHorizon(y_testSK.index, is_relative=False)
          ForecastingHorizon(['2017-11-19', '2017-11-20', '2017-11-21', '2017-11-22',
                          '2017-11-23', '2017-11-24',
                                                      '2017-11-25', '2017-11-26',
                          '2017-11-27', '2017-11-28',
                          '2019-12-22', '2019-12-23', '2019-12-24', '2019-12-25',
                          '2019-12-26', '2019-12-27', '2019-12-28', '2019-12-29',
                          '2019-12-30', '2019-12-31'],
                        dtype='datetime64[ns]', name='data', length=773, freq='D', is_relative=Fal
          se)
           y.isnull().sum()
In [149...
```

```
TCC_FINALIZADO
Out[149... 1089
In [170...
          y_mediana = y.rolling(5).mean().shift(-5).round(0)
          y.fillna(y_mediana, inplace=True)
In [171...
          y.isnull().sum()
Out[171... 0
In [175...
          y_train_mediana = y.rolling(5).mean().shift(-5).round(0)
          y_trainSK.fillna(y_train_mediana, inplace=True)
          y_test_mediana = y.rolling(5).mean().shift(-5).round(0)
          y_testSK.fillna(y_test_mediana, inplace=True)
          y_trainSK.isnull().sum()
In [176...
Out[176... 0
          y_testSK.isnull().sum()
In [177...
Out[177... 0
          forecaster = NaiveForecaster(strategy="last")
In [178...
          forecaster.fit(y_trainSK)
          y_pred = forecaster.predict(fh)
          plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred"])
          smape_loss(y_pred, y_testSK)
Out[178... 0.09236973081303312
            120
                                                                                       y_train
                                                                                       y_test
            100
                                                                                       y_pred
            80
            60
            40
            plot_series(y_testSK, y_pred, labels=["y_test", "y_pred"])
In [179...
Out[179... (<Figure size 1152x288 with 1 Axes>, <AxesSubplot:ylabel='Último_B'>)
                                                                                       y_test
```

```
80
                                                                                                                    v pred
70
```

2017-11-19 00200t8902-27 00200t8906-07 00200t8909-15 00200t89012-24 00200t8904-03 00200t8907-12 00200t89010-20 00:00:00

```
TCC_FINALIZADO
In [181...
           print('MAE: ', mean_absolute_error(y_testSK,y_pred))
           print('MSE: ', mean_squared_error(y_testSK,y_pred))
           print('RMSE: ', np.sqrt(mean_squared_error(y_testSK,y_pred)))
                6.2411254851228986
          MSE: 66.676482923674
          RMSE: 8.165566907672364
```

```
In [182...
           forecaster = NaiveForecaster(strategy="last", sp=12)
           forecaster.fit(y_trainSK)
           y_pred = forecaster.predict(fh)
           plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred"])
           smape_loss(y_pred, y_testSK)
```

Out[182... 0.0951743349663283

2010-01-04 00:**201**6905-19 00:**20.122**09-30 00:**201**6902-12 00:**2016**906-27 00:**2016**911-08 00:**2012**903-23 00:**201**9908-05 00:00:00

```
In [183...
           plot_series(y_testSK, y_pred, labels=[ "y_test", "y_pred"])
```

Out[183... (<Figure size 1152x288 with 1 Axes>, <AxesSubplot:ylabel='Último_B'>)


```
from sktime.forecasting.ets import AutoETS
In [184...
           forecaster = AutoETS(auto=True, sp=12, n_jobs=-1)
           forecaster.fit(y_trainSK)
           y_pred = forecaster.predict(fh)
           plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred"])
           smape_loss(y_testSK, y_pred)
```

Out[184... 0.09332332551947344

```
120

100

80

80

40
```

2010-01-04 00:**201**3905-19 00:**201**29-09-30 00:**201**3902-12 00:**201**59-06-27 00:**201**39011-08 00:**201**3903-23 00:**201**3908-05 00:00:00

```
In [185... plot_series(y_testSK, y_pred, labels=[ "y_test", "y_pred"])
```

Out[185... (<Figure size 1152x288 with 1 Axes>, <AxesSubplot:ylabel='Último_B'>)

2017-11-19 002001:8402-27 002001:8406-07 002001:8409-15 002001:8402-24 002001:9404-03 002001:9407-12 002001:9400-20 00:00:00

```
In [186... print('MAE: ', mean_absolute_error(y_testSK,y_pred))
    print('MSE: ', mean_squared_error(y_testSK,y_pred))
    print('RMSE: ', np.sqrt(mean_squared_error(y_testSK,y_pred)))
```

MAE: 6.3015513938898815 MSE: 67.97582616714709 RMSE: 8.244745367029056

```
In [187... forecaster = ThetaForecaster(sp=12)
    forecaster.fit(y_trainSK)
    alpha = 0.05 # 95% prediction intervals
    y_pred, pred_ints = forecaster.predict(fh, return_pred_int=True, alpha=alpha)
    smape_loss(y_testSK, y_pred)
```

Out[187... 0.14674560330930167

```
fig, ax = plot_series(y_trainSK, y_testSK, y_pred, labels=["y_train", "y_test", "y_pred
ax.fill_between(
    ax.get_lines()[-1].get_xdata(),
    pred_ints["lower"],
    pred_ints["upper"],
    alpha=0.2,
    color=ax.get_lines()[-1].get_c(),
    label=f"{1 - alpha}% prediction intervals",
)
ax.legend();
```



```
In [189... fig, ax = plot_series(y_testSK, y_pred, labels=["y_test", "y_pred"])
    ax.fill_between(
        ax.get_lines()[-1].get_xdata(),
        pred_ints["lower"],
        pred_ints["upper"],
        alpha=0.2,
        color=ax.get_lines()[-1].get_c(),
        label=f"{1 - alpha}% intervalo de predição",
    )
    ax.legend();
```


 $2017-11-19\ 0020001: 902-27\ 0020001: 906-07\ 0020001: 909-15\ 0020001: 9012-24\ 0020001: 9004-03\ 0020001: 9007-12\ 0020001: 9010-20\ 00:00:00$

```
In [190... print('MAE: ', mean_absolute_error(y_testSK,y_pred))
    print('MSE: ', mean_squared_error(y_testSK,y_pred))
    print('RMSE: ', np.sqrt(mean_squared_error(y_testSK,y_pred)))
```

MAE: 9.488035578112644 MSE: 123.48841447144301 RMSE: 11.112534115648105

ARIMA

data

2010-01-04 80.12

Último B

data	
2010-01-05	80.59
2010-01-06	81.89
2010-01-07	81.51
2010-01-08	81.37
•••	
2016-12-23	55.16
2016-12-27	56.09
2016-12-28	56.22
2016-12-29	56.14
2016-12-30	56.82

1787 rows × 1 columns

```
stepwise_model=auto_arima(z, start_p=1, start_q=1, max_p=6, max_q=6, m=12, start_P=0, s
In [195...
           ARIMA(0,1,0)(0,0,0)[0] intercept
                                               : AIC=6378.379, Time=1.36 sec
           ARIMA(0,1,1)(0,0,0)[0] intercept
                                               : AIC=6378.085, Time=0.47 sec
                                               : AIC=6378.694, Time=0.56 sec
           ARIMA(0,1,2)(0,0,0)[0] intercept
                                               : AIC=6380.694, Time=0.73 sec
           ARIMA(0,1,3)(0,0,0)[0] intercept
           ARIMA(0,1,4)(0,0,0)[0] intercept
                                               : AIC=6381.979, Time=0.75 sec
           ARIMA(0,1,5)(0,0,0)[0] intercept
                                               : AIC=6383.962, Time=1.05 sec
                                               : AIC=6378.218, Time=0.30 sec
           ARIMA(1,1,0)(0,0,0)[0] intercept
                                               : AIC=6379.239, Time=1.52 sec
           ARIMA(1,1,1)(0,0,0)[0] intercept
                                               : AIC=6380.695, Time=0.56 sec
           ARIMA(1,1,2)(0,0,0)[0] intercept
                                               : AIC=6381.425, Time=3.27 sec
           ARIMA(1,1,3)(0,0,0)[0] intercept
                                               : AIC=6383.988, Time=1.10 sec
           ARIMA(1,1,4)(0,0,0)[0] intercept
           ARIMA(2,1,0)(0,0,0)[0] intercept
                                               : AIC=6378.652, Time=0.61 sec
           ARIMA(2,1,1)(0,0,0)[0] intercept
                                               : AIC=6380.642, Time=1.85 sec
                                               : AIC=6381.539, Time=3.60 sec
           ARIMA(2,1,2)(0,0,0)[0] intercept
                                               : AIC=inf, Time=5.92 sec
           ARIMA(2,1,3)(0,0,0)[0] intercept
           ARIMA(3,1,0)(0,0,0)[0] intercept
                                               : AIC=6380.629, Time=0.56 sec
           ARIMA(3,1,1)(0,0,0)[0] intercept
                                               : AIC=6382.633, Time=0.85 sec
           ARIMA(3,1,2)(0,0,0)[0] intercept
                                               : AIC=6381.090, Time=4.46 sec
                                               : AIC=6382.056, Time=0.67 sec
           ARIMA(4,1,0)(0,0,0)[0] intercept
           ARIMA(4,1,1)(0,0,0)[0] intercept
                                               : AIC=6384.054, Time=0.78 sec
           ARIMA(5,1,0)(0,0,0)[0] intercept
                                               : AIC=6384.055, Time=0.89 sec
          Best model: ARIMA(0,1,1)(0,0,0)[0] intercept
          Total fit time: 31.973 seconds
In [196...
           print(stepwise_model.aic())
          6378.084892238259
           trainarima=z.loc['2010-01-01':'2016-12-31']
In [197...
           testarima=y.loc['2017-01-01':]
In [198...
           stepwise model.fit(trainarima)
Out[198... ARIMA(order=(0, 1, 1), scoring_args={}, suppress_warnings=True)
```

```
In [199...
           future_forecastarima=stepwise_model.predict(n_periods=1095)
            future_forecastarima=pd.DataFrame(future_forecastarima,index=testarima.index, columns=[
In [200...
            pd.concat([testarima, future_forecastarima], axis=1).plot()
In [201...
          <AxesSubplot:xlabel='data'>
Out[201...
                                                                                               Último B
                                                                                               Predição
           80
           70
           60
           50
                            Jul
                                                          Jul
                                                                                        Jul
            Jan
                                          Jan
                                                                         Jan
                                          2018
            2017
                                                                        2019
                                                         data
In [202...
            pd.concat([z,testarima, future_forecastarima], axis=1).plot(linewidth=3)
          <AxesSubplot:xlabel='data'>
Out[202...
                                                                                                Último_B
           120
                                                                                                Último_B
                                                                                                Predição
           100
            80
            60
            40
                                                       2015
                                                               2016
              2010
                       2011
                                                                       2017
                                                                                2018
                                                                                                2020
                                                          data
           print('MAE: ', mean_absolute_error(testarima, future_forecastarima))
In [203...
           print('MSE: ', mean squared error(testarima, future forecastarima))
           print('RMSE: ', np.sqrt(mean_squared_error(testarima, future_forecastarima)))
                 15.283343938135479
          MSE:
                 319.1676593546785
          RMSE: 17.86526404379959
```

In []: