

Introdução à microeletrónica

SÉRIE DE PROBLEMAS 1

Problema 1.1. Implemente a equação $Y = \overline{A + B \cdot C}$ em CMOS.

Problema 1.2. Implemente a equação $Y = \overline{A.(B+C) + D.E}$ em CMOS.

Solução:

Problema 1.3. Implemente o sistema digital da figura usando CMOS.

Solução:

Problema 1.4. Qual função lógica descreve o funcionamento dos circuitos abaixo?

Solução:

a)
$$S = \overline{A(B+C)}$$

b)
$$S = \overline{(\overline{A} + B)}$$

c)
$$S = \overline{A + (B.C)}$$

Problema 1.5. Qual o número de transistores necessários para construir o circuito lógico apresentado abaixo em tecnologia CMOS? Considere que cada uma das porta lógicas de tal circuito será implementada de forma independente.

Solução: 2 transistores da porta NOT, 2×6 das portas AND e 6 da porta OR, em total 18 transistores

Problema 1.6. Qual o número de transistores necessários para construir o circuito lógico apresentado abaixo em tecnologia CMOS? Considere que cada uma das porta lógicas de tal circuito será implementada de forma independente. **B A E**n

Solução: 2×2 transistores das portas NOT, 4×4 das portas NAND, em total 20 transistores

Problema 1.7. Testes realizados no circuito CMOS apresentado abaixo mostraram que ele não funciona corretamente. Visando auxiliar o diagnóstico desse circuito, indique as combinações de valores das entradas $\bf A$, $\bf B$ e $\bf C$ que deixam a saída $\bf S$ em alta impedância. Adicionalmente, indique as combinações que levam a *pull-up* e *pull-down* simultaneamente.

Solução:

				Lima nasaiyal saluaãa:
ABC	Pull-up	Pull-down	S	Uma possível solução:
000	Sim	Não	1	│
001	Sim	Não	1	
010	Sim	Não	1	
011	Não	Não	Z	Alta impedância
100	Sim	Não	1	A —d
101	Não	Sim	0	'¬
110	Sim	Sim	?	Não sabemos se 0 ou 1
111	Não	Sim	0	لے,
				A ——
				L.
				B—— C
				"ל ל'
				·

Problema 1.8. (Prova 2018.1) Faça a análise do circuito CMOS apresentado na figura:

- a) Obtenha a função lógica que descreve o funcionamento desse circuito;
- b) Reduza o número de transístores sem alterar o funcionamento lógico.

Solução:

a)
$$S = \overline{D(AB + AC)}$$

b)
$$S = \overline{DA(B+C)}$$

Problema 1.9. Obtenha as portas NAND e NOR de duas entradas em tecnologia *tri-state*.

Solução:

Porta NAND

Porta NOR

Problema 1.10. (Prova 2019.1) Usando tecnologia CMOS:

- a) Implemente a equação $f(A,B) = A \oplus B$, usando 12 transistores (6 NMOS e 6 PMOS);
- b) Implemente a equação $f(A, B) = A \oplus B$, com entrada adicional *tri-state*.

Solução:

