Introduction au codage multimédia codage source

TS 200

2eme Année Electronique

ENSEIRB 2017

Electronique TS200

I Position du problème

ENSEIRB 2017

Avènement du numérique

Stockage

- Télévision
- Téléachat
- Téléformation
- Visiophone
- Vidéo conférence
- Vidéo surveillance
- Streaming ...

Transmission

ENSEIRB 2017

Electronique TS200

I - Introduction

Télécommunications

- ► Supports physiques
 - > Son
 - > Image
 - > Vidéo
 - > GPS ...

- ► Transmettre
 - > Réseau (streaming)
 - > Terrestre (TNT)
 - > Filaire (Adsl)
 - > Sans fils (WIFI, WImax)

ENSEIRB 2017

Période min = 2 points

$$F_{\text{max}} = \frac{4*576}{2*3*52\mu s}$$

 $\sim 6 \text{ MHz}$

ENSEIRB 2017

Electronique TS200

Numérisation des signaux vidéo

Recommandation BT 601

Signal vidéo: bande passante 6MHz

Luminance

Fech=13.5 MHz

Chrominances

 $F_{ech} = 6.75 \text{ MHz}$

ENSEIRB 2017

4:2:2

N1:N2:N3 N2/N1 Taux de sous échantillonnage ligne paire N3/N1 Taux de sous échantillonnage ligne impaire

4:1:1

ENSEIRB 2017

Electronique TS200

Le format 4:2:0

- \oplus + \oplus
- + + +
- \oplus + \oplus
- Chrominance
- + Luminance

Bilan: Luminance (720,576) standard 625 lignes

Chrominances (360,288)

ENSEIRB 2017

$$(XY)\left[1+2\left(\frac{N_2}{N_1}\frac{1}{2}+\frac{N_3}{N_1}\frac{1}{2}\right)\right]$$

Taille de la représentation YCrCb = (X*Y)+2*(X/2*Y/2) octets YCrCb = 3/2(X*Y) octets

4:2:0

ENSEIRB 2017

Electronique TS200

Y/2

Les formats

- VHS 200 lignes
- · S-VHS (Hi-8) 400 lignes
- DV 500 lignes
- DVD 576 lignes (MPEG2)
- HD 720 lignes (MPEG4)
- HD (2K) 1080 lignes (p ou i)
- QFHD (4K) 2160 lignes
- UHD (8K) 4320 lignes (IMAX)

ENSEIRB 2017

32 kHz (Télécommunication) 44.1 kHz (Cdrom grand public) 48 kHz (Studio, DAT, ...) 96 kHz (DVD) ENSEIRB 2017 Electronique TS200

Dolby prologic AC3			
 Haut parleurs (5) Gauche et droite (2) Devant et derrière (2) 			
•Renforcement des basses (1) • Résolution	Auditoire		
16 bits - 20 bits			
ENSEIRB 2017	Electronique TS200		

Bilan numérique

Signal vidéo: format 4:2:2 (8 bits)

Débit brut = 13.5*8+2*6.75*8 = 216 Mbits/s

Signal audio : 5 voies à 16 bits

Débit brut = 44.1*5*16 = 3.6 Mbits/s

ENSEIRB 2017

Electronique TS200

Position du problème

▶ Débit brut d'une vidéo couleur (qualité studio)

Signal vidéo : format 4:2:2 (8 bits)
216 Mbits/s

Signal audio : 5 voies à 44,1Hz 16 bits 3.6 Mbits/s

Lecture/écriture sur stockage optique

➤ Cdrom 74 mm,
 1,5 Mbits/s
 ➤ Télé MPEG2
 ➤ DVD 133 mm,
 ➤ DV 270 mm,5:1,
 25 Mbits/s

Transport

Réseau GSM
ModemV.90
Réseau Ethernet standard
Mbits/s
Mbits/s

> USB (v1) 1.5 Mbytes/s (v2) 480 Mbits/s
> IEEE-1394 Firewire 800, 1600 et 3200 Mbits/s

ENSEIRB 2017

Plan du cours

- ► Introduction
 - > Formation des images
 - Acquisition/Représentation des images
 - > Signaux vidéo
- ► Compression d'images fixes
 - > Méthodes de codage source
 - > Norme Fax
 - > Norme JPEG

- ► Compression de vidéos
 - > Estimation du mouvement
 - Normes MPEG 1 et 2, H261, H263
- ▶ Pour l'an prochain
 - Contenus multimédias interactifs
 - Norme MPEG 4
 - > Transports
 - Streaming
 - Protocole IP

ENSEIRB 2017

Electronique TS200

Objectifs

- Minimiser la bande passante ou la taille de stockage
 - Augmenter le nombre de programmes.
 - > Augmenter la qualité de service.
 - Augmenter le nombre d'abonnés
- Cette minimisation peut être faite sans ou avec perte d'information
 - > Secteur d'activité (biomédical, grand public, militaire ...)
 - Qualité de service (MPEG 4 avec le streaming)

ENSEIRB 2017

Compression?

▶ Système numérique : Quantification/Echantillonnage

$$D_{brut} = f_e B$$

ENSEIRB 2017

Electronique TS200

Où chercher?

► Théorie de l'information

Source notée SDictionnaire DCode noté C_i $S = \{s_i\}$ $D = \{C_i\}_{i=1:N}$

- ► Théorie du signal
 - > Fourier
 - > Corrélation
 - > Filtrage ...

ENSEIRB 2017

Système numérique

- ▶ Formats binaires
 - > Code ASCII (1963) 5bits+2bits de parité

• 1:011 0001

• A: 100 0001

• r: 111 0010

• +: 010 1011

> Code EBCDIC (1975) 8 bits

• 1:1111 0001

• A: 1100 0001

• r: 1001 1001

• +: 0100 1110

SOS

10000011 01111001 10000011

ENSEIRB 2017

Electronique TS200

Source aléatoire

- ► Problème probabiliste
 - > Source discrète

$$\mathbf{A}_n = \left\{ x_i \right\}_{i=1:n}$$

$$\mathbf{X}_m = \left\{ x_2, x_1, x_4, \dots, x_1 \right\}$$

> Variable aléatoire discrète

$$p_{X}(x) = \sum_{i=1}^{n} P(x_{i}) \delta(x - x_{i})$$

$$P(x_{i}) = P_{i}$$

ENSEIRB 2017

Théorie de l'information

► Estimation des probabilités

$$P(x_i) \approx \frac{Card(x_i)}{Card(X_m)} = \frac{m_i}{m}$$

► Messages

$$\mathbf{X}_4 = \left\{ x_2, x_1, x_3, x_1 \right\}$$

$$\mathbf{X}_4 = \left\{ x_1, x_2, x_1, x_3 \right\}$$

ENSEIRB 2017

Electronique TS200

Quantité d'information

- ► Point de vue empirique
 - > Neige à Tahiti
 - > Neige à Chamonix

« Moins une observation est probable, plus son observation est porteuse d'information »

ENSEIRB 2017

Quantité d'information

- ► I est une quantité positive
- ▶ I est inversement proportionnel à la probabilité de l'évènement

$$h(x) = -\log(P(x))$$

- ► Shannon
 - ➤ Logarithme décimal : unité Hartley
 - ➤ Logarithme base 2 : unité Shannon (bit/symbole)

ENSEIRB 2017

Electronique TS200

Bit/symbole

► Exemple

$$\mathbf{X}_4 = \left\{ x_2, x_1, x_3, x_1 \right\}$$

$$P_2 = \frac{1}{4} \implies h_2 = 2 \ bits / symbole$$

Le logarithme à base 2 fait le lien entre la quantité d'information et le codage binaire du symbole en fonction de sa probabilité d'occurrence.

ENSEIRB 2017

Entropie (indépendance de l'alphabet)

► Caractérisation d'une source

$$H(\mathbf{X}) = E(h(x)) = -\int_{-\infty}^{+\infty} p_{\mathbf{X}}(x) \log(p_{\mathbf{X}}(x)) dx$$

▶ Forme discrète

$$H(\mathbf{X}) = -\sum_{i=1}^{n} P_i \log(P_i)$$

ENSEIRB 2017

Electronique TS200

Entropie d'un système

$$H(S) = E\{Q(C_i)\} = -\sum_{i=1}^{N} \frac{n_i}{M} \log_2\left(\frac{n_i}{M}\right)$$
 Bits/s

Bits/symbole

 $H_1=1$ bit/symbole

H₂=7.56 bits/symbole

ENSEIRB 2017

Compression?

▶ Système analogique : Bande passante

▶ Mesure de l'information : entropie bits/symbole

$$H(S) = E\{Q(C_i)\} = -\sum_{i=1}^{N} \frac{n_i}{M} \log_2\left(\frac{n_i}{M}\right)$$

ENSEIRB 2017

Electronique TS200

Passe-bas

Trop simpliste : mauvaise idée

ENSEIRB 2017

résolution	format	Débit en Ko/s	Minutes sur CD
352x288	YUV	5 Mos/s	2
	MJPEG	768 Ko/s	14
	MPEG 1	175 Ko/s	60
	DIVX	114 Ko/s	95
640x480	YUV	15 Mos/s	40 secondes
	MJPEG	2.3 Mo/s	4,5
	MPEG 2	490 Ko/s	22
	DIVX	352 Ko/s	44
	DV	3.1 Mo/s	3.3

Il Rappels et compléments sur le codage source

II – 1 Rappels sur le codage source

ENSEIRB 2017

Electronique TS200

Formulation du problème

Image à coder

Chaîne de symboles à compresser:

RR0YR00Y00YGYYYG

ENSEIRB 2017

Information codée

Séquence d'événements parmi un choix fini de possibilités (un alphabet).

Source notée S
Dictionnaire D
Code noté C_i

$$S = \{s_i\}$$

$$D = \{C_i\}_{i=1:N}$$

ENSEIRB 2017

Electronique TS200

Entropie d'un système

$$|H(S) = E\{Q(C_i)\} = -\sum_{i=1}^{N} \frac{n_i}{M} \log_2\left(\frac{n_i}{M}\right)|$$
 Bits/symbole

H₁=1 bit/symbole

H₂=7.56 bits/symbole

ENSEIRB 2017

Longueur et efficacité d'un code

$$L_{moy}(S) = \sum_{i=1}^{N} p(C_i) l_i$$

Bits/symbole

Théorème du codage

$$L_{moy}(S) \geq H(S)$$

$$\eta = \frac{H(S)}{L_{mov}(S)}$$

ENSEIRB 2017

Electronique TS200

Il Rappels et compléments sur le codage source

II - 2 Un codeur intuitif

ENSEIRB 2017

Codage des répétitions (RLC ou RLE)

- Choix d'un caractère de contrôle
- Coder les plages de k octets identiques

Exemple:

I=01abbbbbbcZeed

I= 01a#6bcZeed

<u>Problème</u>: trouver un caractère de contrôle non élément du dictionnaire.

ENSEIRB 2017

Electronique TS200

Il Rappels et compléments sur le codage source

II – 3 Rappels sur le codage entropique

ENSEIRB 2017

Code à longueur variable

Image à coder

R	R	0	Υ
0	0	0	Y
0	Υ	Y	G
Υ	Υ	Υ	G

Couleur Code R 001 01 Y 1 G 000

RR0YR00Y00YGYYYG

00100101101010110111000111000

ENSEIRB 2017

Electronique TS200

Condition du préfixe

Aucun mot de code ne doit être un préfixe d'un autre mot de code.

=> Une seule interprétation possible

Exemple

Symboles: x1 0

x2 x3 x4 x5

Codes:

100 101 110 1110 1111

 $11001110101110 \rightarrow 110 - 0 - 0 - 1110 - 101 - 110$

ENSEIRB 2017

Electronique TS200

x6

Codage de Huffman

Codage à arbre binaire

<u>Idée</u>: générer des codes de longueur variable

 $p_i \Rightarrow 1$ $L(C_i)$ faible

 $p_i \Rightarrow 0$ $L(C_i)$ grande

ENSEIRB 2017

Electronique TS200

Méthodologie

- 1 Classer les fréquences par ordre décroissant
- 2 Deux noeuds libres de plus faible poids sont sélectionnés. Un noeud parent est alors créé. Son poids est la somme des poids des noeuds fils.
- 3 Attribuer le bit 1 au fils gauche puis le bit 0 au fils droit.
- 4 Itérer la construction de l'arbre jusqu' à ce qu' il ne reste plus qu' un seul noeud (de poids 1) => {.

ENSEIRB 2017

Conclusion codage de Huffman

- ► Compression générique
- ► Efficace si probabilités d'apparition variées
 - > Peu efficace sur les images ayant des histogrammes à distribution uniforme.
- ▶ Peu efficace sur les séquences répétitives
- Existe en version adaptative
 - > Emission du code correspondant au code entrant
 - > Mise à jour de l'arbre après chaque lecture

ENSEIRB 2017

Codage sans entête

• Table statistique prédéfinie: densité de probabilité moyenne représentative de l'application.

« the text is written in english »

Par table: 111 bits
Par Huffman: 84 bits

Entête < 27 bits

ENSEIRB 2017

Electronique TS200

Il Rappels et compléments sur le codage source

II - 4 Application au fax du codage entropique

ENSEIRB 2017

ITU-T

- T. 4 (Group 3 Standard)
 - Developed in 1980
 - Amended in 1984 and 1988
 - Fax Transmission in PSTN (Public Switched Telephone Network) and International Leased Circuits
- T. 6 (Group 4 Standard)
 - Developed in 1988
 - Error Free Digital fax transmission on Public Data networks.
 - Also used in Document Imaging for Compression of Binary Images.

ENSEIRB 2017

Mode MH

Run Length	Encoding
0-63	Use Codeword from 'T' table
64-1791	Use codewords from 'M' Table and 'T' Table M: Make up
1792-2560	Use codewords from 'AM' Table and 'T' Table

Projet de recommandation du CCITT T.4 RFC 804

ENSEIRB 2017

Electronique TS200

Exemples

▶ 12 pixels blancs (Terminating)

001000

▶ 140 pixels blancs : 128+12 (Make-up et Terminating)

10010|001000

ENSEIRB 2017

Il Rappels et compléments sur le codage source

II – 5 Codage à dictionnaire

ENSEIRB 2017

Electronique TS200

Dictionnaire

- Transmission des adresses dans un dictionnaire à la place des symboles euxmêmes
- Création du dictionnaire à la volée
 - > Le décodeur peut reconstruire le dictionnaire
- Compactage sans lecture préalable du fichier

Dictionnaire	Adresse
NULL	0
 a b	 97 98
 si ir sid ma	256 257 258 259

ENSEIRB 2017

Fichier	émission	binaire	Diction	nnaire
10	rien	omane	Diction	
130	10	00001010	256	10 130
130	130	10000010	257	130 130
121	130	10000010	258	130 121
10	121	01111001	259	121 10
10	10	00001010	260	10 10
10	SP	11111111	261	10 10 10
10	260	100000100	262	10 130 121
130			263	121 130
121	256	100000000		
130	121	001111001		
121				
ENSEIRB 2017	258	100000010	Elec	ctronique TS200

Décompression

ENSEIRB 2017

Electronique TS200

Exemples

- ► Compress (UNIX) base LZW
 - Dictionnaire init (29=512 entrées jusqu' à 216)
 - Saturation = dictionnaire statique
- ► ZIP et GZIP : LZ77+Huffman
 - fenêtre 32Kbytes-long
- ► PKZIP : LZW et Shannon-Fano
 - Dictionnaire dynamique

ENSEIRB 2017

Il Rappels et compléments sur le codage source

II – 6 Bilan et perspectives

ENSEIRB 2017

Electronique TS200

Exemples

Image	BMP	TIF
		+
		LZW
Usine (Ko)	386	174
Route (Ko)	402	411

ENSEIRB 2017

Conclusion générale

- <u>RLC</u> : Compression des plages de même niveau.
- <u>Statistique</u> (Huffman, arithmétique) : joue sur les disparités des fréquences d'apparition.
- <u>Dictionnaire</u> : recherche les répétitions de chaînes.

Aucune des méthodes ne traite des corrélations existantes entre les blocs de pixels.

ENSEIRB 2017

Electronique TS200

Performances de méthodes statistiques

Observation sur une corrélation entre pixels voisins

$$Err(i) = x(i+1,j) - x(i,j)$$

ENSEIRB 2017

Objectifs

- ► Trouver une transformation
 - > Décorrélation.
 - > Bonne répartition de l'énergie des nouveaux coefficients.
 - > Peu coûteuse en temps de calcul
- ▶ Perte d'information
 - > Troncature des coefficients de la transformée
 - > Quantification scalaire ou multidimensionnelle

ENSEIRB 2017

Extraction de la corrélation par transformée orthogonale

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k \Phi_k(t) \qquad a_k = \int_a^b x(t) \Phi_k^*(t) dt$$

$$\int_{a}^{b} \Phi_{k}(t) \Phi_{l}^{*}(t) dt = \begin{cases} 1 & \text{si } k = l \\ 0 & \text{si } k \neq l \end{cases}$$

ENSEIRB 2017

Formes discrètes

$$x(n) = \sum_{k=0}^{N-1} a_k \Phi_k(n) \implies \underline{x} = \Phi \underline{a}$$

$$a_k = \sum_{n=0}^{N-1} x(n) \Phi_k^*(n) \implies \underline{a} = \Phi^H \underline{x}$$

H : symbolise la matrice transposée et conjuguée

orthogonalité
$$\Phi^H \Phi = I_N$$

ENSEIRB 2017

Electronique TS200

Objectifs de la compression

$$a_k$$
 pour $k \in [0, N-1]$
 $x(n)$ pour $n \in [0, N-1]$

- a_k décorrélés
- a_k fonction fortement décroissante

Troncature sur $\{a_k\}$ en contrôlant l'erreur de reconstruction

$$e(n) = x(n) - \widetilde{x}(n) = x(n) - \sum_{k=0}^{M-1} a_k \Phi_k(n)$$

M < N

ENSEIRB 2017

Principe psychovisuel

La perception visuelle peu sensible à la suppression des composantes hautes fréquences

Destruction de l'information haute fréquence

ENSEIRB 2017

