1 Простые поля, расширения полей, поле разложения многочлена

Определение 1.1 (Простое поле). Поле - простое, если его подалгебры не являются полями

Определение 1.2 (Собственное подполе).

Теорема 1.3. Любое просто поле изоморфно либо рациональным числам или полю вычетов по простому числу, то есть F - простое поле, тогда $F \simeq Q$ или $F \simeq \mathbb{Z}_p$, где $p \in \mathbb{Z}$ - простое

Доказательство. В поле есть 1, поэтому можно строить кратные суммы единиц (1+..+1). Строя такие суммы мы или никогда не получим 0 или получим

1. Никогда не получится 0, то есть $k \cdot 1 \neq 0$ ($-(k \cdot 1) \neq 0$) при k > 0. В поле для любого элемента есть обратный: $(k \cdot 1)^{-1}$ и $-(k \cdot 1)^{-1}$. В поле можно умножать: $(m \cdot 1)(k \cdot 1)^{-1}$. Так можно заметить что все элементы имеют вид

$$m \cdot 1 = (m \cdot 1)(1 \cdot 1)^{-1}$$

 $k \cdot 1 = (1 \cdot 1)(k \cdot 1)^{-1}$

Если $m \neq 0, k \neq 0$, то $(m \cdot 1)(k \cdot 1)^{-1} \neq 0$. Так как $\{(m \cdot 1)(k \cdot 1)^{-1}\}$ образует поле и F - простое, то $\{(m \cdot 1)(k \cdot 1)^{-1}\}$ образует всё поле.

Можно построить изоморфизм где $(m \cdot 1)(k \cdot 1)^{-1} \stackrel{\text{h}}{\to} \frac{m}{k}$. Покажем что это так. Сначала нужно доказать что это гомоморфизм:

Да, это гомоморфизм

Так как поле - это кольцо, для h существует $\operatorname{Ker} h$ и по $\ref{eq:constraint}$?? $\operatorname{Ker} h$ и по $\ref{eq:constraint}$? Существует только два идеала: F и $\ref{eq:constraint}$ Ядро гомоморфизма является одним из этих идеалов, и так как оно не может быть равно всему полю F оно равно $\ref{eq:constraint}$ что $\ref{$

- (а) Так как $\operatorname{Ker} h = \{0\}$ то по $\ref{eq:hamiltonian}$? h разнозначно
- (b) для каждого образа $\frac{m}{k} \in \mathbb{Q}$ есть прообраз $(m \cdot 1)(k \cdot 1)^{-1} \in F$

Следовательно $F \simeq \mathbb{Q}$

 $2. \ k \cdot 1 = 0$ для некоторого k > 0

Выберем наименьшее k>0 для которого $k\cdot 1=0$. Мы можем получить элементы $0,1,2\cdot 1,3\cdot 1,...,(k-1)\cdot 1$. Докажем от противного что k должно быть простым:

Так как k не простое, то оно раскладывается k = pq, где p,q > 1, p,q < k.

$$0 = k \cdot 1 = (p \cdot 1)(q \cdot 1)$$

поскольку p, q < k, то

$$(p \cdot 1) \neq 0 \neq (q \cdot 1)$$

делители нуля. Противоречие, число не составное.

Возьмём p = k, $\mathbb{Z}_p = \{0, ..., p - 1\}$ - это кольцо (ассоциативное, коммутативное, с единицей), остаётся проверить наличие обратного

 \Box

Следствие 1.4. Внутри каждого поля есть простое подполе

Доказательство.

Определение 1.5 (Характеристика поля).

Определение 1.6 (Неразложимый многочлен). Неразложимый многочлен - многочлен, который не раскладывается на множители

Следствие 1.7. 1. Многочлен 1 степени всегда неразложим

- 2. Многочлен 2 или 3 степени неразложим \Leftrightarrow не имеет корней
- 3. Если многочлен степени большей 3 не разложим, то он не имеет корней

Следствие 1.8. Неразложимый многочлены - простые элементы кольца многочленов

Теорема 1.9. R - кольцо главных идеалов, c - простой элемент, тогда cR - простой идеал

Следствие 1.10. Если p - неразложимый многочлен, тогда порождёныый им мдеал является максимальным

Следствие 1.11. $F(x)\left/\langle p \rangle\right.$ - поле

Теорема 1.12. Для каждого многочлена существует расширение поля, котором он разложится на линейные множители.
Доказательство.
Следствие 1.13. Если F - конечное поле, то поле расширений многочле на p тоже конечно
Следствие 1.14. $degp = n$
Доказательство.