CHIFFREMENT AFFINE

SUBSTITUTION MONO-ALPHABÉTIQUE

la clé est un couple d'entier (a,b) : chaque lettre de rang i est remplacée par la lettre de rang j = ai + b[26]

la clé est un couple d'entier (a,b) : chaque lettre de rang i est remplacée par la lettre de rang j = ai + b[26]

Mais est-on sûr que l'opération soit réversible?

la clé est un couple d'entier (a,b) : chaque lettre de rang i est remplacée par la lettre de rang j=ai+b[26]

Mais est-on sûr que l'opération soit réversible?

$$j = ai + b[26] \implies ai = j - b[26] \implies i = a^{-1}(j - b)[26]$$

la clé est un couple d'entier (a,b) : chaque lettre de rang i est remplacée par la lettre de rang j=ai+b[26]

Mais est-on sûr que l'opération soit réversible?

$$j = ai + b[26] \Rightarrow ai = j - b[26] \Rightarrow i = a^{-1}(j - b)[26]$$

a est-il toujours inversible modulo 26, c'est-à-dire dans $\mathbb{Z}/26\mathbb{Z}$?

Comment calcule-t-on a^{-1} ?

PARENTHÈSE D'ARITHMÉTIQUE

PGCD

Le PGCD de deux entiers relatifs a et b est le « plus grand commun diviseur de a et b », c'est-à-dire le plus grand entier d divisant à la fois a et b.

Principe de l'algorithme d'Euclide

Si q et r sont respectivement le quotient et le reste de la division euclidienne de n par m (n \geq m) alors : PGCD(n,m) = PGCD(m,r)

Théorème de Bezout (identité de Bezout)

Soient n et m deux entiers naturels.

Il existe deux entiers relatifs, u et v de Z, tels que : $\textit{PGCD}(n,m) = u \times n + v \times m$

Les entiers u et v sont appelés coefficients de Bezout.

PARENTHÈSE D'ARITHMÉTIQUE

Nombres premiers entre eux

Deux entiers n et m sont premiers entre eux s'ils ont pour seuls diviseurs communs 1 et -1.

Inversibilité dans Z/nZ

Soient p et n deux entiers ($p \le n$)

Les propositions suivantes sont équivalentes :

- p est inversible dans $\mathbb{Z}/n\mathbb{Z}$
- n et p sont premiers entre eux
- PGCD(n, p) = 1
- Identité de Bezout : $\exists u, v \in Z$ tels que nu + pv = 1

Algorithme d'Euclide étendu

Déterminer pgcd(165,72) et les coefficients de Bezout u et v vérifiant :

$$pgcd(165,72) = 165 \times u + 72 \times v$$

$$pgcd(165,72) = 165 \times u + 72 \times v$$

Principe : reprendre l'algorithme d'Euclide, en exprimant, à chaque étape le reste comme combinaison linéaire de 165 et 72.

Le dernier reste non nul correspond au pgcd et nous donnera donc l'identité de Bezout et ses coefficients

$$pgcd(165,72) = 165 \times u + 72 \times v$$

Division euclidienne (algorithme d'Euclide)	Reste = $165 \times u + 72 \times v$
$165 = 2 \times 72 + 21$	$21 = 165 - 2 \times 72$
$72 = 3 \times 21 + 9$	$9 = 72 - 3 \times 21$ $9 = 72 - 3 \times (165 - 2 \times 72)$ $9 = -3 \times 165 + 7 \times 72$
$21 = 2 \times 9 + 3$	$3 = 21 - 2 \times 9$ $3 = 165 - 2 \times 72 - 2 \times (-3 \times 165 + 7 \times 72)$ $3 = 7 \times 165 - 16 \times 72$
$9 = 3 \times 3 + 0$	$pgcd(165,72)=3$ (dernier reste non nul) Identité de Bezout : $pgcd(165,72)=7\times 165-16\times 72$

$$pgcd(165,72) = 165 \times u + 72 \times v$$

Division euclidienne (algorithme d'Euclide)	Reste = $165 \times u + 72 \times v$
$165 = 2 \times 72 + 21$	$21 = 165 - 2 \times 72$ égalité1
$72 = 3 \times 21 + 9$	$9 = 72 - 3 \times 21$ $9 = 72 - 3 \times (165 - 2 \times 72)$ $9 = -3 \times 165 + 7 \times 72$ égalité2
$21 = 2 \times 9 + 3$	$3 = 21 - 2 \times 9$ $3 = 165 - 2 \times 72 - 2 \times (-3 \times 165 + 7 \times 72)$ $3 = 7 \times 165 - 16 \times 72$ égalité3 = égalité1 - 2x égalité2
$9 = 3 \times 3 + 0$	$pgcd(165,72)=3$ (dernier reste non nul) Identité de Bezout : $pgcd(165,72)=7\times 165-16\times 72$

Etape
$$n: r_n = 165 \times u_n + 72 \times v_n$$

$$pgcd(165,72) = 165 \times u + 72 \times v$$

Division euclidienne (algorithme d'Euclide)	Reste = $165 \times u + 72 \times v$	
$165 = 2 \times 72 + 21$	$21 = 165 - 2 \times 72$	<mark>égalité1</mark>
$72 = 3 \times 21 + 9$	$9 = 72 - 3 \times 21$ $9 = 72 - 3 \times (165 - 2 \times 72)$ $9 = -3 \times 165 + 7 \times 72$	<mark>égalité2</mark>
$21 = 2 \times 9 + 3$	$3 = 21 - 2 \times 9$ $3 = 165 - 2 \times 72 - 2 \times (-3 \times 3)$ $3 = 7 \times 165 - 16 \times 72$ égal	165 + 7 × 72) lité3 = égalité1 – 2x égalité2
$9 = 3 \times 3 + 0$	pgcd(165,72) = 3 (dernier residentité de Bezout : $pgcd(165,72)$	•

Etape
$$n: r_n = 165 \times u_n + 72 \times v_n$$

Calcul des coef Etape n: division euclidienne entre les restes

des étapes précédentes

$$pgcd(165,72) = 16$$

$$r_n = r_{n-2} - q_n \times r_{n-1}$$

Division euclidienne (algorithme d'Euclide)	Reste = $165 \times u + 72 \times v$
$165 = 2 \times 72 + 21$	$21 = 165 - 2 \times 72$ égalité1
$72 = 3 \times 21 + 9$	$9 = 72 - 3 \times 21$ $9 = 72 - 3 \times (165 - 2 \times 72)$ $9 = -3 \times 165 + 7 \times 72$ égalité2
$21 = 2 \times 9 + 3$	$3 = 21 - 2 \times 9$ $3 = 165 - 2 \times 72 - 2 \times (-3 \times 165 + 7 \times 72)$ $3 = 7 \times 165 - 16 \times 72$ égalité3 = égalité1 - 2x égalité2
$9 = 3 \times 3 + 0$	$pgcd(165,72)=3$ (dernier reste non nul) Identité de Bezout : $pgcd(165,72)=7\times 165-16\times 72$

$$pgcd(165,72) = 16$$

Division euclidienne

Etape n :	$r_n =$	$165 \times u_n$	$+72 \times v_n$
	16	10	

Calcul des coef Etape n: division euclidienne entre les restes des étapes précédentes

$$r_n = r_{n-2} - q_n \times r_{n-1}$$

(algorithme d'Euclide)	nes
$165 = 2 \times 72 + 21$	21
$72 = 3 \times 21 + 9$	9 =
	9 =
	9 =

Res Comme, à chaque étape, on procède par division euclidienne des restes, on peut considérer que la première étape (division de 165 par 72) correspond à la division de r_0 par r_1 .

D'où l'initialisation suivante :

$$r_0 = 165$$
 $r_1 = 72$

3 =

$$9 = 3 \times 3 + 0$$

 $21 = 2 \times 9 + 3$

pgcd(165,72) = 3 (dernier reste non nul) Identité de Bezout : $pgcd(165, 72) = 7 \times 165 - 16 \times 72$

•	tions sur lignes	r : reste	u (coefficient de 165)	v (coefficient de 72)	Division euclidienne	q: quotient
tion	L_0	165	1	0	$165 = 165 \times 1 + 72 \times 0$	
Initialisatior	L_1	72	0	1	$72 = 165 \times 0 + 72 \times 1$	

•	tions sur lignes	r : reste	u (coefficient de 165)	V (coefficient de 72)	Division euclidienne	q : quotient
tion	L_0	165	1	0		
nitialisation	L_1	72	0	1	$165 = 2 \times 72 + 21$	2
Initia					$21 = 1 \times 165 - 2 \times 72$	
$L_2 = I$	$L_0 - 2L_1$	21	1	-2	$72 = 3 \times 21 + 9$	3
					$9 = 72 - 3 \times 21$	

$$L_0$$
: 165 = 165 × 1 + 72 × 0
 L_1 : 72 = 165 × 0 + 72 × 1
 L_2 = L_0 - 2 L_1 : 165 - 2 × 72 = 165 × 1 + 72 × 0 - 2 × (165 × 0 + 72 × 1)
 L_2 : 21 = (1 - 2 × 0)165 + (0 - 2 × 1)72

 L_2 : 21 = 165 × 1 + 72 × (-2)

-	tions sur lignes	r : reste	,	(coefficient	Division euclidienne	q: quotient
			de 165)	de 72)		
tion	L_0	165	1	0		
nitialisation	L_1	72	0	1	$165 = 2 \times 72 + 21$	2
Initia					$21 = 1 \times 165 - 2 \times 72$	
$L_2 = I$	$L_0 - 2L_1$	21	1	-2	$72 = 3 \times 21 + 9$	3
					$9 = 72 - 3 \times 21$	
L_3	3 =?					

	tions sur lignes	r : reste	u (coefficient de 165)	v (coefficient de 72)	Division euclidienne	q: quotient
tion	L_0	165	1	0		
nitialisation	L_1	72	0	1	$165 = 2 \times 72 + 21$	2
Initia					$21 = 1 \times 165 - 2 \times 72$	
$L_2 = I$	$L_0 - 2L_1$	21	1	-2	$72 = 3 \times 21 + 9$	3
					$9 = 72 - 3 \times 21$	
L_3	₃ =?	9				i

•	tions sur lignes	r : reste	u (coefficient de 165)	V (coefficient de 72)	Division euclidienne	q: quotient
tion	L_0	165	1	0		
nitialisation	L_1	72	0	1	$165 = 2 \times 72 + 21$	2
Initia					$21 = 1 \times 165 - 2 \times 72$	
$L_2 = I$	$L_0 - 2L_1$	21	1	-2	$72 = 3 \times 21 + 9$	3
					$9 = 72 - 3 \times 21$	
$L_3 = I$	$L_1 - 3L_2$	9	-3	7	$21 = 2 \times 9 + 3$	2
					$3 = 21 - 2 \times 9$	
				1		

•	tions sur lignes	r : reste	u (coefficient de 165)	V (coefficient de 72)	Division euclidienne	q: quotient
tion	\boldsymbol{L}_0	165	1	0		
nitialisation	L_1	72	0	1	$165 = 2 \times 72 + 21$	2
Initi					$21 = 1 \times 165 - 2 \times 72$	
$L_2 = L$	$L_0 - 2L_1$	21	1	-2	$72 = 3 \times 21 + 9$	3
					$9 = 72 - 3 \times 21$	
$L_3 = L$	$L_1 - 3L_2$	9	-3	7	$21 = 2 \times 9 + 3$	2
					$3 = 21 - 2 \times 9$	
$L_4 = L$	$L_2 - 2L_3$	3	7	-16	$9 = 3 \times 3 + 0$ Reste nul, c'est fini. Le pgcd est le dernier reste n $3 = 7 \times 165 - 16 \times 7$	

Opérations sur les lignes		r : reste	u (coefficient de 165)	V (coefficient de 72)	Division euclidienne	q: quotient
tion	\boldsymbol{L}_0	165	1	0		
nitialisation	L_1	72	0	1	$165 = 2 \times 72 + 21$	2
Initi					$21 = 1 \times 165 - 2 \times 72$	
$L_2 = L$	$L_0 - 2L_1$	21	1	-2	$72 = 3 \times 21 + 9$	3
					$9 = 72 - 3 \times 21$	
$L_3 = L_1 - 3L_2$		9	-3	7	$21 = 2 \times 9 + 3$	2
					$3 = 21 - 2 \times 9$	
$L_4=L_2-2L_3$		3	7	-16	$9 = 3 \times 3 + 0$	
Nota	ations ?				Reste nul, c'est fini. Le pgcd est le dernier reste n $3 = 7 \times 165 - 16 \times 7$	

Opérations sur les lignes		r : reste		u (coefficient de 165)	V (coefficient de 72)	Division euclidienne	q: quotient
tion	L_0	r_0	165	u_0 1	v_0 0		
nitialisation	L_1	r_1	72	$u_1 0$	v_1 1	$165 = 2 \times 72 + 21$	2
Initia						$21 = 1 \times 165 - 2 \times 72$	
$L_2 = L$	$L_0 - 2L_1$	$-2L_1$ 21 1 -2 $72 = 3 \times 21 + 9$		3			
						$9 = 72 - 3 \times 21$	
$L_3 = L_1 - 3L_2$			9	-3	7	$21 = 2 \times 9 + 3$	2
						$3 = 21 - 2 \times 9$	
$L_4 = L$	L_2-2L_3		3	7	-16	$9 = 3 \times 3 + 0$	
						Reste nul, c'est fini	
Nota						22	

Opérations sur les lignes		r : reste		u (coefficient de 165)	V (coefficient de 72)	Division euclidienne	q: quotient																
tion	\boldsymbol{L}_0	r ₀ 165		u_0 1	v_0 0																		
nitialisation	L_1	r_1	72	u_1 0	v_1 1	$165 = 2 \times 72 + 21$	2																
Initi						$21 = 1 \times 165 - 2 \times 72$	$= r_0 / / r_1$																
$L_2 = L_0 - 2L_1$			21	1	-2	$72 = 3 \times 21 + 9$	3																
		$_2 = \gamma$	7 ₀ % r ₁	$=r_0-q_2\times$	<u>r_1</u>	$9 = 72 - 3 \times 21$																	
$L_3 = L_1 - 3L_2$		9		9		9		9		9		9		9		9	9	-3	7	$21 = 2 \times 9 + 3$	2		
						$3 = 21 - 2 \times 9$																	
$L_4 = L_2 - 2L_3$		3		3		3		3		3		3		3		3		3		7	-16	$9 = 3 \times 3 + 0$	
						Reste nul, c'est fini																	
							23																

Opérations sur les lignes		r:r	este	u (coefficient de 165)		v (coefficient de 72)			Division euclidienne		q: quotient	
tion	L_0	r_0 165		u ₀ 1		v_0 0						
nitialisation	L_1	r_1	72	u_1)	v_1	1		$165 = 2 \times 72 + 21$		2	
Initi								21	$1 = 1 \times 165 - 2 \times \frac{7}{9}$	2 ₂ =	$= r_1 / / r_0$	
$L_2 = I$	$L_0 - 2L_1$		21	1	L	_	-2 $72 = 3 \times 21 + 9$		3			
$r_2 = r_0$	<mark>– q</mark> 2	$\times r_1$	$u_2 =$	$u_0 - u_0$	$q_2 u_1 = v_0 - q_2 v$			$9 = 72 - 3 \times 21$				
$L_3 = L_1 - 3L_2$			9	-3		7		1 -	$21 = 2 \times 9 + 3$		2	
									$3 = 21 - 2 \times 9$			
$L_4 = L_2 - 2L_3$		3		3 7		7	-16			$9 = 3 \times 3 + 0$		
								Reste nul, c'est fini				
										24		

Opérations sur les lignes		r : r	este	u (coefficient de 165)		v (coefficient de 72)			Division euclidienne q :			
tion	L_0	r_0	165	u_0	1		v_0 0					
nitialisation	L_1	r_1	72	u_1	0		v_1 1		$165 = 2 \times 72 + 21$			
Initi									$21 = 1 \times 165 - 2 \times 72$ $q_2 = r_1//$	r_0		
$L_2 = L_0 - 2L_1$			21	1			-2		$r_0 = 165$			
	$= r_1 \% r_0$			$u_2 = u_0 - q_2$				$r_1 = 72$				
$L_3 = L_1 - 3L_2$		(9		-3^{-v_2}	 	$= v_0 - 7$		$egin{aligned} u_0 &= 1 & et \ v_0 &= 0 \ u_1 &= 0 & et \ v_1 &= 1 \end{aligned}$			
J	_							<i>a</i> -	A chaque étape :			
$L_4 = L_2 - 2L_3$		3		3			7	$-16 q_n = \text{quotient de la division de } r_n = \text{reste de la division de } r_n$			$=$ quotient de la division de r_{n-2} par r_n $_n=$ reste de la division de r_{n-2} par r_{n-1}	1-1
									$u_n = u_{n-2} - q_2 u_{n-1}$ $v_n = v_{n-2} - q_2 v_{n-1}$			
									$v_n v_{n-2} q_2v_{n-1}$			
	•					-						

```
Pseudo Code:
r_0 = 165
r_1 = 72
u_0 = 1 et v_0 = 0
u_1 = 0 et v_1 = 1
Tant que r_1 non nul faire :
            début :
             q \leftarrow quotient de la division de <math>r_0 par r_1
            r_2 \leftarrow r_0 - qr_1
            u_2 \leftarrow u_0 - qu1
            v_2 \leftarrow v_0 - qv1
             r_0 \leftarrow r_1; r_1 \leftarrow r_2
            u_0 \leftarrow u_1; u_1 \leftarrow u_2
             v_0 \leftarrow v_1; v_1 \leftarrow v_2
             fin
Renvoyer (u_0, v_0, r_0)
```


$$egin{aligned} r_0 &= 165 \ r_1 &= 72 \ u_0 &= 1 \ ext{et} \ v_0 &= 0 \ u_1 &= 0 \ ext{et} \ v_1 &= 1 \end{aligned}$$

A chaque étape :

 $q_n =$ quotient de la division de r_{n-2} par r_{n-1} $r_n =$ reste de la division de r_{n-2} par r_{n-1}

$$u_n = u_{n-2} - q_2 u_{n-1}$$
$$v_n = v_{n-2} - q_2 v_{n-1}$$

```
Pseudo Code:
                                                                            Division euclidienne
                                                                  ent
r_0 = 165
                                                                                                                quotient
                    def euclide etendu(m,n):
r_1 = 72
                         if m < n:
u_0 = 1 et v_0 = 0
                               cop=m
u_1 = 0 et v_1 = 1
                               \mathbf{m} = \mathbf{n}
                                                                                                 1 + 21
                               n = cop
Tant que r_1 non nul
                         # Initialisation
         début :
                          r0, r1 = m, n
         q ← quotic
                                                                                                  q_2 = r_1 / r_0
                         u0, v0 = 1, 0
         r_2 \leftarrow r_0
                         u1, v1 = 0, 1
         u_2 \leftarrow u_0
                         # Boucle, tant que le reste est non nul
         v_2 \leftarrow v_0 -
                         while r1 != 0:
         r_0 \leftarrow r_1
                                                                                                 y_0 = 0
                               q = r0 // r1
         u_0 \leftarrow u_1
                               r2, u2, v2 = r0 - q*r1, u0 - q*u1, v0 - q*v1
                                                                                                  r_1 = 1
         v_0 \leftarrow v_1;
                               r0, u0, v0 = r1, u1, v1
         fin
                               r1, u1, v1 = r2, u2, v2
Renvoyer (u_0, v_0, r_0)
                                                                                                 tape:
                          return (r0, u0, v0)
                                                                                                 on de r_{n-2} par r_{n-1}
                                                                                                  \operatorname{de} r_{n-2} \operatorname{par} r_{n-1}
                    euclide_etendu(165,72) # --> (3, 7, -16)
                                                                                  \overline{u_n} - \overline{u_{n-2}} - q_2 u_{n-1}
                                                                                  v_n = v_{n-2} - q_2 v_{n-1}
```

Exercice1

1. Euclide étendu

Écrire une fonction $pgcd_euclide_etendu(n,m)$ prenant en paramètres deux entiers n et m, et renvoyant le tuple (pgcd, u, v) dans lequel:

- pgcd=pgcd(n,m)
- u et v sont les coefficients de Bezout dans l'égalité : $pgcd = u \times n + v \times m$

2. Inverse modulaire

En utilisant la fonction **pgcd_euclide_etendu (n,m)**, écrire en Python une fonction **inversemod (nb, mod)** prenant en entrée deux entiers **nb** et **mod** et renvoyant l'inverse modulaire de nb quand celui-ci existe.

Exercice2

- 1. Si on utilise un chiffrement affine sur un alphabet de 26 lettres, combien de a-t-on de clés possibles ?
- 2. Programmer les fonctions suivantes :
- chiffreaffine (message, a,b) prenant en entrée le message et la clé (a,b) et renvoyant le cryptogramme
- dechiffreaffine (cryptogramme, a,b) prenant en entrée le cryptogramme et la clé (a,b) et renvoyant le message.

Exercice 2: cryptanalyse chiffrement affine

'lqdmadtfkahuhqutadnkxxutesdstqutrqmadtfkalsrpqumqdtmq psstnawulsfswrpulsxkatmlshsfmstladsqtwkmrnsfsmaudtqdtsd kdrpamyaadtfkamsedamqxpkddsavmqdmfusdrkafmqmmskufd umafyakuwqdgsfestqutadtfkalsnkxxutesyauuwrpuyaspsekdzkf tbfftkpiusdxupxkpsnkxxut'

Cryptanalyse

On cherche la clé (a, b) qui a permis de transformer chaque lettre de rang i en une lettre de rang j par la formule : j = (ai + b)[26]

Nous avons surtout besoin de décoder le message c'est-à-dire d'exprimer \boldsymbol{i} en fonction de \boldsymbol{j} :

$$j = (ai + b)[26] \implies i = a^{-1}(j - b)[26] = (a^{-1}j - a^{-1}b)[26]$$

 $i = (\alpha j + \beta)[26]$ avec $(\alpha, \beta) = (a^{-1}, -a^{-1}b)$