First name:	Last name:	

Trigonometric Functions (1) Homework

1. Simplify and Express the following in terms of $\tan \theta$. Leave the answers in the simplest form.

a)
$$\frac{\sin^2 \theta}{\cos^2 \theta} + 7 \tan^2 \theta$$

b)
$$\sqrt{\frac{1-\sin^2\theta}{1-\cos^2\theta}}$$

c)
$$\frac{1}{\sin^2 \theta} - 1$$

2. Prove that each of the following is an identity.

a)
$$\sec \theta (1 - \cos \theta) = \sec \theta - 1$$

b)
$$\sin^2 \alpha \sec^2 \alpha = \sec^2 \alpha - 1$$

c)
$$\frac{\sin \theta}{\csc \theta} + \frac{\cos \theta}{\sec \theta} = 1$$

d)
$$\frac{\sin x \cos x}{\tan x} = 1 - \sin^2 x$$

۵)	cin 4	$\alpha - \cos^2 \alpha$	$^{4} \alpha - 1$	$-2\cos^2$	α
C)	3111	$a - \cos$	$\alpha - 1$	- 2 COS	α

f)
$$\cos^2 x + \frac{\sin x \cos x}{\tan x} = 2\cos^2 x$$

g)
$$\frac{1+\cos x}{\sin x} = \frac{\sin x}{1-\cos x}$$

h)
$$\frac{\tan x}{1 + \tan x} = \frac{\sin x}{\sin x + \cos x}$$

i)
$$\frac{\cos^2 x}{1 + 2\sin x - 3\sin^2 x} = \frac{1 + \sin x}{1 + 3\sin x}$$

 $j) \quad (\sin x - \cos x)^2 = 1 - 2\sin x \cos x$

12)	$\sin^2 x + 2\cos x - 1$	$\cos^2 x + \cos x$
K)	$\frac{\sin^2 x + 3\cos x - 3}{\sin^2 x + 3\cos x - 3}$	$-\sin^2 x$

sin² $\beta - \cos^2 \beta - \tan^2 \beta = \frac{2\sin^2 \beta - 2\sin^4 \beta - 1}{1 - \sin^2 \beta}$

 $1-\sin^2 oldsymbol{eta}$

3. Solve each of the following equations. Give exact answers only ($0 \le x \le 360^{\circ}$).

a)
$$\sin^2 2x = 1$$

b)
$$2\cos^2 x = 1$$

c)
$$\cos x - \sin x = 0$$
 [Hint: $\tan x = \frac{\sin x}{\cos x}$]

$$d) \sin^2 x - \cos^2 x = 0$$

$e) \sin^2 x + 2\sin x = -1$	f) $2\sin^2 x - \sin x - 1 = 0$
g) $2\cos^2 x + 5\cos x - 3 = 0$	h) $3-3\sin x - 2\cos^2 x = 0$

- 4. The temperature of a patient during a 9-day illness is given by $T(t) = 39.1 + 2.1 \sin{(30t)}$, where t is the number of days from the start of the illness, and T(t) is the patient's temperature, in degrees Celsius.
- a) Does the patient's temperature reach 41°C? If so, on what day?
- b) What is the patient's temperature at the end of the illness?