

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 605 497 B1 (11)

(12)

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 20.03.1996 Patemblatt 1996/12
- (21) Anmeldenummer: 92919477.7
- (22) Anmeldetag: 16.09.1992

- (51) Int. Cl.8: A61K 9/16, A61K 9/51
- (86) Internationale Anmeldenummer: PCT/EP92/02132
- (87) Internationale Veröffentlichungsnummer: WO 93/05768 (01.04.1993 Gazetta 1993/09)
- (54) ARZNEISTOFFTRÄGER AUS FESTEN LIPIDTEILCHEN (FESTE LIPIDNANOSPHÄREN (SLN)) MEDICATION VEHICLES MADE OF SOLID LIPID PARTICLES (SOLID LIPID NANOSPHERES - SLN) EXCIPIENT CONSTITUE DE PARTICULES LIPIDIQUES SOLIDES DITES NANOSPHERES LIPIDIQUES SOLIDES (SLN)
- (84) Benannte Vertragsstaaten: AT BEICH DE DKIES FRIGBIGRIE IT LI LUMONL
- (30) Prioritat: 18.09.1991 DE 4131562
- (43) Veröffentlichungstag der Anmeldung: 13.07.1994 Patentblatt 1994/28
- (73) Patentinhaber: MEDAC GESELLSCHAFT FÜR KLINISCHE SPEZIALPRĀPARATE GMDH Th-20354 Hamburg (DE)
- (3) Erfinder: · LUCKS, Stefan D-2300 KJel 1 (DE)

- MÜLLER, Rainer D-2300 Kiel 1 (DE)
- (74) Vertreter: UEXKÜLL & STOLBERG Patentariwalte Beselerstrasse 4 D-22607 Hamburg (DE)
- (56) Entgegenhaltungen:

EP-A- 0 167 825

EP-A- 0 375 520

EP-A- Q 418 153

EP-A-0 438 359

· JOURNAL OF PHARMACEUTICAL SCIENCES Bd. 55, Nr. 4, April 1966, Selten 376 - 380 DRAPER E.V. ET AL 'SOME WAX FORMULATIONS OF SULFAETHYLTHIADIAZOLE PRODUCED BY AQUEOUS DISPERSION FOR PROLONGED **RELEASE MEDICATION'**

Anmarkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr ensichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung betrifft einen tensidfreien Arzneistoffträger, dessen Dispersion in einem wäßrigen Medium, ein Verfahren Zu seiner Herstellung und zur Herstellung tensidheitiger Arzneistoffträger und seine Verwendung. Insbesondere handelt es sich um einen Arzneistoffträger aus Lipid- oder Lipoidteilchen.

Auf dem Gebiet der Arzneimittelwirkstoffe wird ständig nach Trägern gesucht, die eine vielfaltige Art der Applikation ermöglichen, d.h. in einer Form vorliegen, die es gestattet, das Jeweilige Medikament auf die am besten geeignete Weise dem Körper zuzuführen, z.B. intravenös, intraerthrikulär, intramuskulär oder aubkutan.

So sind beispielsweise Träger aus festen Mikroteilchen, Mikrosphären und Mikrokapseln bekannt (mittlerer Durchmesser im Mikrometerbereich) sowie Nanoteilche und Nanokapseln (mittlerer Durchmesser im Nanometerbereich). Mikro- und Nanoteilchen bestehen aus einer festen Polymermatrix. Bei Mikro- und Nanokapseln sind flüssige oder feste Phasen von filmbildenden Polymeren umhüllt. Derartige Teilchen bestehen aus oder weisen Überzüge aus Polymeren wie Folylactiden (PLA), Polylactid-Glycoliden (PLA/GA) oder Polylactideyanoacrylaten auf. Polylactid und Polylactid-Glycolid als Tellchenmatrix und als Überzüge haben jedoch den Nachteil, daß sie nur sehr langsam abgebaut werden, d.h. 15 der Abbau dauert Wochen bis Monate. Dies führt bei Mehrfachapplikstion eines Arzneimittels mit diesem Trager zur Polymerakkumulation im Organismus und möglicherweise zu toxischen Effekten. Teilchen auf Basis von Polymeren wie Polyalkylcyanoacrylatan warden zwar innerhalb von 24 Stunden bis zu 80% Im Organismus abgebaut, doch wird beim Abbau toxisches Formaldehyd frei. Zur Herstellung der Polymerteilchen müssen als Lösungsmittel für das Polymer beispielsweise Chlorkohlenwasserstoffe wie Dichlormethan eingesetzt werden, die ihrerseits wiederum toxisch sind (T.R. Tice und D.H. Lewis, Microencapsulation Process, US-PS 4 389 330). Mikroteilchen können darüberhinaus aufgrund ihrer Größe bei der immavanösen Injektion zu Embollen führen, so daß hiervon in der Regel abgesehen wird. Ein weiterer Nachteil von Polymerteilchen ist, daß beim Sterilisieren in einem Autoklaven die Glastemperatur überschritten wird, so daß es zu einer Aggregation der Teilchen kommt. Derartige Arzneimittelträger bzw. Arzneimittel sind daher auf diese Weise nicht sterilislerbar und müssen auf dam mit Nachteilen behafteten Wege der Strahlensterilisation behandelt werden.

Bekannt sind ferner als Arzneistoffträger einsetzbare Fettemulsionen. Fettemulsionen sind Öl-in-Wasser-Emulsionen, bei denen die dispergierte (innere) Phase flüssig ist. In der Literatur werden derartige Fettemulsionen auch als "Lipid-Mikrosphären" und hochdisperse Fettemulsionen mit einer mitteren Teilchengröße im Nanometerbereich werden auch als "Nanoemulsionen" bezeichnet (H.G. Weder und M. Muetsch, Eur Pat. EP 90-810436, Juni 1990). Diese Fettemulsionen bestehen insgesamt aus zwei flüssigen Phasen. Fettemulsionen geben inkorporierte Arzneistoffe nach Verdünnung durch Körperflüssigkeiten (z.B. nach Injektion ins Blut) relativ rasch Irel. Die t (50%) liegt im Bereich von 30 bis 60 Sekunden, was mit der hohen Diffusionsgeschwindigkeit der Arzneistoffe im relativ niedrigviskosen Öl korreliert ist. Zusätzlich wird die flüssige dispergierte Phase der Fettemulsionen (= Öl) im Organismus innerhalb weniger Stunden vollständig metabolisiert, was zur schnellen Freisetzung auch von extrem lipophilen Substanzen aus dem Öl führt. Durch die rasche Freisetzung kann es auch zu sogenannten Wirkstoffpeaks im Plasma kommen, so daß aufgrund dieser kurzzeitigen Überdosierung toxische Nebenwirkungen möglich sind. Darüber hinaus ist der Verlust an Wirkstoff vor Erreichung des Zielorgans beim passiven Targeting zu Leber- und Milzmakrophagen relativ groß.

Durch P. Eldem, P. Speiser und A. Hincal, Pharmaceutical Research 9, 47-54 (1991) sind Mikropellets auf Lipidbasis bekannt, deren mittlerer Durchmesser wiederum im Mikrometerbereich liegt.

Bekannt sind auch Arzneistoffträger, bei denen Liposomen oder Liposomen-ähnliche oder -analoge Substanzen wie Niosomen mit einem wäßrigen, flüssigen Kern von einer oder mehreren Phospholipiddoppelmembranen umgeben sind.

Danber hinaus sind subpartikuläre oder halbpartikuläre Systeme bekannt, bei denen Substanzen mit Hilfe von Lösungsvermittlern wie Tensiden soweit gelöst werden, daß sich Mizellen oder Mischmizellen bilden. Hierbei handelt es sich nicht mehr um Dispersionen sondern bereits um Lösungen.

Aus der EP-A-0 167 825 ist ein arzneimittelhaltiges Trägersystem bekannt, daß aus Lipidnanopellets, die bei Raumtemperatur einen festen Aggregatzustand besitzen, mit einer Teilchengröße von 50 bis 1000 nm in Form einer wäßrigen, kolloidalen Suspension besteht, wobei die Lipidteilichen in der Suspension in einer Konzentration von 1 bis 20 Gew.% vorliegen, aus einem Gemisch von Lipiden mit grenzflächenaktiven Substanzen bestehen und 5 bis 70 Gew.% Lipide, 0.01 bis 70 Gew.% grenzflächenaldive Stoffe und 0.05 bis 25 Gew.% Wirkstoff enthalten. Das Einbringen der Wirkstoffe erfolgt direkt in das geschmolzene Lipid oder Lipidgemisch oder in ein Schmelzgemisch aus Lipid und grenzflächenaktivem Material oder wird durch Aufnehmen des grenzflächenaktiven Stoffen in einem organischen Lösungsmittel wie Chloroform und Einbringen dieser Lösung in das geschmolzene Lipid. Das Einmischen erfolgt durch Rühren mit einem handelsüblichen Rührwerk Schüttein oder Ultraschallbehandlung.

Der Erfindung liegt daher die Aufgabe zugrunde, einen tensidfreien Arzneistoffträger zur Verfügung zu stellen, der eine Dispersion von Teilchen in einem wäßrigen Medium bilden kann, wobei die Teilchen bei Flaumtemperatur fess und biologisch abbaubar sind und außerdem aus Komponenten bestehen, die eine geringe oder keine Tozixität aufweisen. Bei der Herstellung des Arzneistoffträgers sollen ferner keine toxischen Hilfestoffe wie halogenierte organische Lösungs-

mittel (Dichlormethan oder ähnliche) benötigt werden. Ferner soll ein Verfahren zur Herstellung diese Arzneistoffträgers oder eines entsprechenden tensidhaltigen Arzneistoffträgers zur Verfügung gestellt werden.

Die ertindungsgemäße Aufgabe wird gemäß Anspruch 1 durch ein Verfahren zur Herstellung eines Arzneistoffträgers gelöst, der tensidhaltige oder tensidfreie Teilchen aus Lipid, lipidähnlichem (lipoidem) Material oder Mischungen davon umfaßt, die einen Durchmesser von 10 nm bis 10 µm aufweisen, wobei die Teilchen der Hauptpopulation einen mittleren Durchmesser zwischen 40 und 1000 nm aufweisen und bei Raumtemperatur fest sind, wobei das Verfahren dadurch gekennzeichnet ist, daß entweder die innere Phase (das Lipid oder Lipoid) in geschmolzenem oder erweichtem Zustand in dem Dispersionsmittel (Wasser, wäßrige Lösung oder mit Wasser mischbare Flüssigkeit) hochdruckhomogenislert wird oder die innere Phase in festem Zustand, wobei die feste Phase fein zerkleinert ist, in dem Dispersionsmittel hochdruckdispergiert wird.

Ferner wird sie durch einen Arzneistoffträger aus tensidfreien Teilchen gemäß Anspruch 21 gelöst. Bevorzugte Ausgestaltungen dieses Arzneistoffträgers sind Gegenstand der Unteransprüche.

Bei dem nach dem erfindungsgemaßen Verlahren hergestellten Arzneistoffträger handelt es sich um bei Raumtemperatur (d.h. ca. 20°C) feste Teilchen mit einer Große im Nanometerbereich. Derartige Teilchen können als "feste Lipidnanosphären" (solid lipid nanospheres - SLN) bezeichnet werden. Diese Teilchen können in einam waßrigen Medium dispergiert werden, so daß sich eine Fest/Flüssig-Dispersion ergibt. Die Teilchengröße der dispergierten Phase bewegt sich im Bereich von >10 nm bis zu wenigen Mikrometern (ca. 10 µm). Die mittlere Teilchengröße (Durchmesser bestimmt mit Photonenkorrelationsspektroskopie) liegt überwiegend im Bereich 100 bis 1000 nm, besonders 100 bis 800 nm. Durch geeignete Auswahl der Verlahrensparameter und durch geeignete Wahl von Hilfsstoffen (z.B. höhere Tensickonzentration) ist es jedoch möglich, SLN kleiner als 100 nm, Insbesondere im Bereich 40 bis 80 nm, herzustellen.

Die SLN bestehen aus Lipiden oder Ilpidähnlichen Substanzen, die vom Organismus wie Fett aus Nahrungsmitteln abgebauf werden können. Der Abbau von Lipiden erfolgt schneller als der Abbau von synthetischen Polymeren wie PLA, PLA/GA. Vorteilhafterweise entstehen ferner beim Abbau bzw. der Verstoffwechselung von Lipiden keine toxischen Metabolite wie es bei Teilchen auf Polyalkylcyanacrylatbasis der Fall ist. Diesbezüglich wird auf die Toxikologie der seit den 50er Jahren in der parenteralen Ernährung verwendeten Fettemulslonen verwiesen.

Da es sich bei den SLN um feste Lipidteilichen mit entsprechend hoher Viskosität handelt, ist die Diffusions- und Freisetzungsgeschwindigkeit eines darin eingeschlossenen Wirkstoffs reduziert. Somit ist es im Gegensatz zu Fettemulsionen mit flüssiger dispergierter Phase möglich, die Einstellung einer kontrollierten Freisetzung über einen langeren Zaitraum zu erreichen. Aufgrund der längeren Freisetzungszeit wird die Bildung von Plasmapeaks des jeweiligen Wirkstoffs vermieden, so daß die aufgrund derartiger Spitzenwerte eintretenden Nebenwirkungen aufbleiben. Ferner ist der Verlust an Wirkstoff nach Applikation und vor Erreichung des jeweiligen Zielorgans aufgrund der verzögerten Freisetzung geringer als bei Fettemulsionen, bei denen die Wirkstoffe vergleichsweise schnell freigesetzt werden.

Der oder die Wirkstoffe sind in den Lipid- oder Lipoidteilchen gelöst oder dispergiert. Ferner können sie an deren Oberfläche adsorbiert sein. Aufgrund des Feststofficharakters können auch hydrophile Wirkstoffe in Form einer wäßrigen Wirkstofflösung in die Lipid- oder Lipoidphase eingearbeitet werden. Nach dieser Einarbeitung und der anschließenden Dispergierung der erhaltenen SLN in dem wäßrigen Dispersionsmedium entsteht ein System W/F/W, d.h. Wasser in Fett in Wasser. Der Lipidkern schließt hierbei die wäßrige Arzneistofflösung aufgrund seines festen Aggregatzustandes besser ein als es bei vergleichbaren multiplen Emulsionen Wasser in Öl in Wasser (W/Ö/W) möglich ist.

Ein weiterer Vorteil der lesten Lipidnanosphären ist, daß sie im Gegensatz zu Teilchen aus Polymer in einem Autoklaven sterilisierbar sind, ohne daß es zu einer Aggregation der Teilchen kommt. Auf diese Weise können die mit der Strahlenstenlisation verbundenen Nachteile umgangen werden.

Im Gegensatz zu Mikroteilchen aus dem Mikrometerbereich sind die SLN aufgrund ihrer geringen Teilchengröße im Nanometerbereich auch problemlos ohne Gefahr der Embolie intravends injizierber.

Bei ihrer Herstellung müssen keine toxischen Hilfsstoffe wie z.B. leicht flüchtige Chlarkohlenwasserstofflösungsmittel eingesetzt werden.

Der erfindungsgemäße Arzneistoffträger kann auf folgende Weisen hergestellt werden:

50

- Dispergieren der inneren Phase (des Lipids oder Lipoids) in geschmölzenem oder erweichtem Zustand. Die Dispergierung erfolgt oberhalb der Raumtemperatur und kann durch verschiedene, beispielsweise die unten beschriebenen Verfahren bewirkt werden.
- Dispergieren der festen inneren Phase in festem Zustand. Die feste Phase wird hierfür fein zerkleinen und in Wasser oder in einem w\u00e4\u00dfrigen Medium dispergiert.

Der dispergierte, bei Raumtemperatur feste Lipid- oder Lipsidkern wurde zuvor mit einem oder mehreren Arzneistoffen beladen. Dies kann dadurch erfolgen, daß der Wirkstoff in dem Lipid/Lipoid gelöst oder dispergiert wird, an dessen Oberfläche adsorbiert wird oder in Form einer waßrigen Lösung in dem Lipid/Lipoid dispergiert wird.

Als dispergierte Phase können Lipide und Lipoide im weitesten Sinne als Einzelverbindungen oder als Mischungen eingesetzt werden. Beispiele hierfür schließen natürliche und synthetische Triglyceride oder deren Mischungen, Mono-

P05

EP 0 605 497 B1

und Diglyceride alleine oder in Mischung untereinander oder mit z.B. Triglyceriden, natürliche und synthetische Wachse. Fettalkohole einschließlich ihrer Ester und Ether sowle Lipidpeptide ein. Insbesondere sind synthetische Mono-, Di- und Triglyceride als Einzelsubstanzen oder in Mischung (z.B. Hartlett). Glycerintritettsaureester (z.B. Glycerintritaurat, -myristat, -stearat und -behenat) und Wachse wie z.B. Cetylpalmitat und Cera alba (gebleichtes Wachs, DAB 9) geeignet.

Der Anteil der inneren oder Lipidphase bezogen auf die Grundrezeptur betragt 0,1 bls 30 Gew.% und insbesondere 1 bis 10 Gew.%.

Falls es zur Herstellung stabiler Dispersionen erforderlich sein sollte, dispersionestabilisierende Zusätze zu verwenden, können diese zur Stabilisierung der Teilchen in Form von Reinsubstanzen oder in Form von Mischungen eingesetzt werden. Ihre vorhandene Menge kann bezogen auf das Gesamtgewicht der wäßrigen Dispersion im Bereich 0.01 bis 20 Gew.-% und vorzugsweise von 0,5 bis 5 Gew.-% flegen. Als stabilisierende Substanzen kommen in Frage:

- a) Tenside, insbesondere ethoxyllerte Sorbitantettsäureester, Blockpolymere und Blockcopolymere (wie z.B. Poloxamere und Poloxamine), Polyglycerinether und -ester, Lecithine verschledenen Ursprungs (z.B. Ei- oder Sojaledthin), chemisch modifizierte Lecithine (z.B. hydriertes Lecithin) als auch Phospholipide und Sphingolipide, Mischungen von Lecithinen mit Phospholipiden, Sterline (z.B. Cholesterin und Cholesterinderivate sowie Stigmasterin), Ester und Ether von Zuckern oder Zuckeralkoholen mit Fettsäuren oder Fettalkoholen (z.B. Saccharosemonostearat),
- b) sterisch stabilisierende Substanzen wie Poloxamere und Poloxamine (Polyoxyethylen-Polyoxypropylen-Blodopolymere). ethoxyliene Sorbitamiettsäureester, ethoxylierte Mono- und Diglyceride, ethoxyllene Lipide und Lipoide, ethoxyllene Fettalkohole oder Fettsäuren und
 - c) Ladungsstabílisatoren bzw. Ladungsträger wie z.B. Dicetylphosphat, Phosphatidylglycerin sowie gesättigte und ungesättigte Fettsäuren, Natriumcholat, Natriumglykolcholat, Natriumtaurocholat oder deren Mischungen, Aminosäuren oder Peptisatoren wie Natriumcitrat (siehe J. S. Lucks, B.W. Müller, R.H. Müller, Int. J. Pharmaceutics 63, 183-188 (1990)).
- d) viskositätserhöhende Stoffe wie Celluloseether und -ester (z.B. Methylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, Natriumcarboxymethylcellulose). Polyvinylderivate wie Polyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Alginate, Polyacrylate (z.B. Carbopol), Xanthane und Pektine.

25

50

65

Die Ladungsstabilisatoren werden gegegebenenfalls bezogen auf die Grundrezeptur vorzugsweise in einer Menge von 0.01 bis 10 % und besonders bevorzugt von 0.05 bis 2 % eingesetzt und die viskositätserhöhenden Stoffe werden gegebenenfalls bezogen auf die Grundrezeptur vorzugsweise in einer Menge von 0.01 bis 10%, bevorzugter von 0.1 bis 10% und besonders bevorzugt von 0.5 bis 5% eingesetzt.

Als äußere Phase (kontinuierliche Phase, Dispersionsmittel) werden Wasser, wäßrige Lösungen oder mit Wasser mischbare Flüssigkeiten wie Glycerin oder Polyethylenglykol verwendet. Die wäßrigen Lösungen können hierbei nichtisotonisch oder isotonisch sein. Als wäßrige Lösungen kommen Mischungen von Wasser mit einer oder mehreren anderen Komponenten wie beispialsweise Glycerin, Mannase, Glucose, Fructose, Xylose, Trehalose, Mannit, Sorbit, Xylit oder andere Polyole wie Polyethylenglykol sowie Elektrolyte wie Natriumchlorid in Frage. Diese Komponenten werden dann anteilig in der Grundrezeptur in einer Menge von 0,1 bis 50 % und bevorzugt 1 bis 30 % eingesetzt.

Die Herstellung der SLN erfolgt in der Regel durch Dispergieren der inneren Phase (des Lipids oder Lipoids), in der außeren Phase (Wasser, wäßrige Lösung oder mit Wasser mischbare Flüssigkeit) oberhalb der Raumtemperatur (>20°C). Bei der Dispergierung wird vorteilhafterweise auf die Verwendung von Ultraschaltstäben verzichtet, um eine Kontamination durch Metalipartikel (z.B. Ti) zu vermeiden. Die Temperatur wird so gewählt, daß sich die zu dispergierende Substanz im flüssigen Zustand befindet oder zumindest im erweichten Zustand vorflegt. Bei vielen Lipiden erfolgt die Dispergierung somit bei 70 bis 80°C. Die Herstellung erfolgt meist in zwei Schritten:

- 1. Herstellen einer Vordispersion, z.B. mit einem Rührer oder einem Rotor-Stator-Dispergierer (z.B. Ultra Turrax). Falls es erforderlich ist, erfolgt der Zusatz einer oder mehrerer dispersionsstabilisierender Substanzen.
- Anschließende Dispergierung bei erhöhtem Druck in einem Hochdruckhomogenisator (z.8. ein Spalthomogenisator wie APV Gaulin oder French Press, ein Hochgeschwindigkeitshomogenisator wie der Mikrofluidizer). Bei gut dispergierbaren Systemen kann Schritt 1 entfallen.

Die Herstellung tensidfreier SLN erfolgt durch Dispersion der Lipid- oder Lipoidphase in einer waßrigen Phase, die einen oder mehrere viskositätserhöhende Stoffe allein oder in Kombination mit anderen Stoffen wie Zuckern und Zukkeralkoholen, insbesondere Glucose, Mannose, Trehalose, Mannit, Sorbit sowie anderen enthalt. Ferner kann eine Kom-

bination des oder der viskositätserhöhenden Stoffe oder deren Kombination mit Zuckern oder Zuckeralkoholen darüberhinaus in weiterer Kombination mit Ladungsträgern verwendet werden. Beispiele für geeignete Ladungsträger sind: Natriumcitrat, Natriumpyrophosphat, Natriumsorbat.

Die Einarbeitung des oder der Wirkstoffe kann nach verschiedenen Methoden erfolgen. Beispielhaft seien genannt

- 1. Lösen des Wirkstoffe in der inneren Phase.
- 2. Läsen des Wirkstoffs in einem mit der inneren Phase mischbaren Lösungsmittel und Zugabe dieser Wirkstofflösung zur inneren Phase. Anschließend wird gegebenenfalls das Lösungsmittel teilweise oder vollstandig entlernt
- 3. Dispergieren des Wirkstoffs in der inneren Phase (z.B. durch Dispergieren eines Feststoffs oder gezielte Prazipitation).
- 4. Lösen des Wirkstoffs in der aßßeren, wäßrigen Phase (z.B. amphiphile Substanzen) und Einbindung des Wirkstoffs in einen die Teilchen stabilisierenden Tensidfilm während der Herstellung.
- 5. Adsorption des Wirkstoffs an der Teilchenoberfläche.
- 6. Lösen des Wirkstoffs in der Lipid-/lipoiden Phase mittels eines Lösungsvermittlers (z. 8. eines Blockcopolymeren oder Sorbitanfettsäureesters), anschließende Dispergierung der Lipid-/lipoiden Phase zur Herstellung der Vordispersion. Der Wirkstoff liegt dann in den SLN als feste Lösung vor.
 - 7. Einarbeiten von waßrigen Wirkstofflösungen in die Lipid-/lipoide Phase und anschließende Dispergierung der Lipid-/lipoiden Phase zur Herstellung der Vordispersion, so daß ein System W/F/W entsteht, das den multiplen Emulsionen analog ist.

Die Sterilisierung kann nach Verfahren erfolgen, die in den Arzneibüchern beschrieben sind, z.B. durch Autoklavieren (121°C, 2 bar, DAB 9) oder nach sonstigen anerkannten Verfahren.

Die Anwendungsgebiete für den erfindungsgemäßen Arzneistoffträger mit den testen Upidnanospharen sind vielfältig. Beispielsweise kann er zur parenteralen, enteralen, pulmonalen und topischen (nasal, dermal, intraocculär) und in Körperhöhlen Arzneistoffapplikationen verwendet werden.

Bei der parenteralen Applikation handelt es sich insbesondere um;

- Intravenöse Gabe (Targeting zu Leber, Milz und Knochenmark, im Blut zirkulierenden Teilchen mit komrollierter Freisetzung von Wirkstoffen, z.B. Peptidarzneistoffe, Cytostatika, Immunstimulantien, Wachstumstaktoren wie der Colony Stimulating Factor (Leucozytenregulation) und der Growth Factor.
- 2. Intramuskuläre Gabe (Depotformen für verlängerte oder langanhaltende Abgabe von Wirkstoffen, z.B. Peptidarzneistoffen oder Hormonen).
- 3. Imraantrikuläre Gabe (z.B. für Antirheumatika und Imunsuppressiva bei Arthritis).
- 4. Intrakavitale Gabe (z.8. für Cytostatika und Peptidarznaistoffe für Krebsformen im Peritoneum und in der Pleurahöhle) und
- 5. Subkutane Gabe (z.B. Depotformen für Cytostatika bei Hautkrebs).

Die enteralen Applikationsformen dienen insbesondere zur

- 1. Einarbeitung von Ilpidioslichen Vitaminen,
- 2. lymphatischen Adsorption (z.B. Wirkstoff-Targeting von Cytostatika zu den Lymphknoten),
- 3. Präsemation von Antigenen (z.B. orale immunicierung mit Hilfe der Peyerschen Plaques) und
- 4. Aufnahme von Peptidarzneistoffen mit Hille von M-Zellen.
- 45 Als pulmonale Applikationsformen kommen insbesondere in Betracht:
 - 1. Aerosole, Dasieraerosole (Versprühen der wäßrigen SLN-Dispersion),
 - 2. Instillation der Dispersion.
- Als topische Anwendung selen beispielhatt
 - 1. dermatologische Arzneimittel zur Applikation von z.B. Cortikoiden und Antimykotika,
 - Augentropfen oder Augengele, z.B. für β-Blocker, aber auch
 - 3. Kosmetika analog den liposomalen Praparaten genannt.

55

5

10

20

30

35

Beispiele für in SLN einzuarbeitende Arzneistoffe (als Salz, Ester, Ether oder in freier Form)

Analgetika/Antirheumatika

Morphin, Codein, Piritamid, Fentanyl und Fentanylderivate, Leyomethadon, Tramadol, Diclotenac, Ibuprofen, Indometacin, Naproxen, Piroxicam, Penicillamin

Antiailergika

10

20

25

35

45

50

55

Pheniramin, Dimetinden, Terfenadin, Astemizol, Loratidin, Doxylamin, Medozin, Bamipin, Clamastin

Antibiotika/Chemotherapeutika

hiervon: Polypeptidamibiotika wie Colistin, Polymyxin B, Teicplanin, Vancomycin; Malariamittel wie Chinin, Halofantrin, Mefloquin, Chloroquin, Virustatika wie Ganciclovir, Foscarnet, Zidovudin, Aciclovir und andere wie Dapson, Fosfomycin, Fusafungin, Trimetoprim

Antiepileptika

Phenytoin, Mesuximid, Ethosoximid, Primidon, Phenobarbital, Valproinsaure, Carbamazepin, Clonazepam

Antimykotika

Nystatin, Natamycin, Amphotericin B, Flucytosin, Miconazol, Fluconazol, Itraconazol

b) extern außerdem:

Ciotrimazol, Econazol, Tioconazol, Femilconazol, Bifonazol, Oxiconazol, Ketoconazol, Isoconazol, Tolnaftat

Carticoide (Interna)

Aldosteron, Fludrocortison, Betametason, Dexametason, Triamcinolon, Fluocortolon, Hydroxycortison, Predniso-Ion, Prednyliden, Cloprednol, Methylprednisolon

Dermatika

a) Antibiotika:

Tetracyclin, Erythromycin, Neomycin, Gentamycin, Clindamycin, Framycetin, Tyrothricin, Chlortetracyclin, Mipirocin, Fusidinsaure

b) Virustatika wie oben, außerdem:

Podophyllotoxin, Vidarabin, Tromantadin

c) Corticoide wie oben, außerdem:

Amcinonid, Flupredniden, Aldometason, Clobetasol, Dillorason, Halcinonid, Fluocinolon, Clocomolon, Flumetason, Diflucontolon, Fludroxycortid, Halometason, Desoximetason, Fluocinolid, Fluocortinbutyl, Flupredniden, Prednicarbat, Desonid

Diagnostika

- a) radioaktive Isotope wie Te99m, In111 oder (131, kovalent gebunden an Lipide oder Lipoide oder andere Moleküle oder in Komplexen
- b) hochsubstituiertre iodhaltige Verbindungen wie z.B. Lipide

Hamostyptika/Antihamorrhagika

Blutgerinnungsfaktoren VIII, IX

Hypnotika, Sedativa

Cyclobarbital, Pertobarbital, Phenobarbital, Methaqualon, Benzodiazepine (Flurazepam, Midazolam, Nitrazepam, Lormetazepam, Flunitrazepam, Triazolam, Brotizolam, Temazepam, Loprazolam)

Hypophysen-, Hypothalamushormona, regulatorische Peptide und ihre Hemmstoffe

Corticotrophin, Tetracosactid, Choriongonadotropin, Urotollitropin, Urogonadotropin, Somatropin, Metergolin, Bromocriptin, Terlipressin, Desmopressin, Oxrtocin, Argipressin, Ornipressin, Leuprorelin, Triptorelin, Gonadorelin, Buserelin, Nafarelin, Goselerin, Somatostatin

Immuntherapeutika und Zytokine

Dimepranol-4-acetatamidobenzoat, Thymopentin, α-Interferon, β-Interferon, γ-Interferon, Filgrastim, Interleukine,

Lokalanaesthetika

intern:

Butanilicain, Mepivacain, Bupivacain, Etidocain, Lidocain, Articain, Prilocain, extern außerdem:

Propipocain, Oxybuprocain, Tetracain, Benzocain

Migranemittel

20

25

15

Proxibarbal, Lisurid, Methysergid, Dihydroergotamin, Clonidin, Ergotamin, Pizotifen

Narkosamittel

Methohexital, Propofol, Etomidat, Ketamin, Alfentanil, Thiopental, Oroperidol, Fentanyl

Nebenschilddrüsenhormone. Calciumstoffwechseiregulatoren

Dihydrotachyeleral, Calcitonin, Clodronsaure, Etidronsaure

30

Opthalmika

Atropin, Cyclodrin, Cyclopentolat, Homatropin, Tropicamid, Scopolamin, Pholedrin, Edoxudin, Idoundin, Tromantadin, Aciclovir, Acetazolamid, Diclofenamid, Carteolol, Timolol, Metipranolol, Betaxolol, Pindolol, Befunolol, Bupranolol, Levobununol, Carbachol, Pilocarpin, Clonidin, Neostigmin

Psychopharmaka

Benzodiazepine (Lorazepam, Diazepam), Clomethiazol

Schilddrüsentherapeutika

1-Thyroxin. Carbimazol, Thiamazol, Propylthiouracil

45 Sera, Immunglobuline, Implistoffe

- a) Immunglobuline allgemein und spezifisch wie Hepatitis-Typen, Röteln, Cytomegalie, Tollwut, FSME, Vancella-Zoster, Tetanus, Rhesusfaktoren
- b) Immunsere wie Botulismus-Antitoxin, Diphterie, Gasbrand, Schlangengift, Skorpiongift
- c) Impfstoffe wie Influenza, Tuberkulose, Cholera, Diphterie, Hepatitis-Typen, FSME. Röteln, Hāmophilus influenzae. Masern, Neisseria, Mumps, Poliomyelitis, Tetanus, Tollwut, Typhus

5G

Sexualharmone und ihre Hemmstoffe

Anabolika, Androgene, Antiendrogene, Gestagene, Estrogene, Antiestrogene (Tamoxifen etc.)

Zystostatika und Metastasenhemmer

- a) Alkylantien wie Nimustin, Melphalan, Carmustin, Lomustin, Cyclophosphamid, Ifosfamid, Trofosfamid, Chlorambucil, Busulfan, Treosulfan, Prednimustin, Thioteps
- b) Antimetabolite wie Cytarabin, Fluorouracii, Methotrexat, Mercaptopurin, Tioguanin
- c) Alkaloide wie Vinbiastin, Vincristin, Vindesin
 - d) Amibiotika wie Aclarubicin, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mizomycin, Plicamycin
 - a) Komplexe von Nebengruppenelementen (z.B. Ti, Zr, V, Nb, Te, Mo, W, Pt) wie Carboplatin, Cisplatin und Metallocenverbindungen wie Titanocendichlorid
 - f) Amsacrin, Dacarbazin, Estramustin, Etoposid, Hydroxycarbamid, Mitoxanthron, Procarbazin, Temiposid
 - g) Alkylamidophospholipide (beschrieben in J.M. Zeidler, F. Emling, W. Zimmermann und H.J. Roth, Archiv der Pharmazie, 324 (1991), 687)
 - h) Etherlipide wie Heoadecylphosphocholin, Ilmofosin und Analoga, beschrieben in R. Zeisig, D. Arndt und H. Brachwitz, Pharmazie 45 (1990), 809-818.

Die Erfindung wird in den folgenden Beispielen näher erläutert.

Beisplel 1

10

15

30

- 10,0 g Cera Alba (gebleichtes Wachs)
 - Poloxamer 188 (Polyoxyethylen-Polyoxypropylen-Blockpolymer) 2,5 g
 - 0,1 g Dicetylphosphat
 - 87.4 g Wasser für Injektionszwecke
- Cera alba und Dicetylphosphatwurden auf 70° erwärmt und mit der ebenfalls auf 70°C erwärmten Lösung von Poloxamer 188 in Wasser für Injektionszwecke gemischt. Die Mischung wurde mit Hille eines Ultra Turrax bei 70°C vordispergiert. Die so erhaltene Vordispersion wurde anschließend durch einen auf 70°C temperierten APV Gaulin Hochdruckhomogenisator gegeben (5 Zyklen mit 500 bar). Es wurde eine SLN-Dispersion mit einem mittleren Durchmesser von 216 nm erhalten. Der Polydispersitätsindex als Maß für die Breite der Teilchengrößenverteilung betrug 0,143 (PCS-Photonenkorrelationsspektroskopie). Alle Partikel waren kleiner als 6.0 µm (vermessen mit einem Sympatek Laserdiffrakto-

Beispiel 2:

- 10,0 g Cetylpalmitat
 - 2,5 g Poloxamer 188
 - 87,5 g Wasser für Injektionszwecke
- Die Herstellung erfolgte wie unter Belspiel 1 beschrieben. Der mittlere Durchmesser betrug 215 nm, der Polydispersitätsindax 0.131 (PCS-Daten). Alle Partikel waren ideiner als 4.2 µm (Laserdiffraktometer).

Beispiel 3:

- 10,0 g
- 2.5 g Lipoid S 75 (Sojalecithin mit 75% Phosphatidylcholin)
- 0.1 g Dicetylphosphat
- Wasser für Injektionszwecke 87,4 g
- Die Hersteilung erfolgte wie umer Beispiel 1 beschrieben, jedoch wurde Lipoid S 75 in der erwärmten Lipidphase dispergiert. Der mittlere Durchmesser betrug 183 nm, der Polydispereitätsindex 0,133 (PCS-Daten). Alle Partikel waren kleiner als 8,6 µm (Laserdiffraktometer.

Beispiel 4:

10.5 g Glycerintrilaurat (Dynasan@112)

2.5 g Poloxamer 188

87,5 g Wasser für Injektionszuwecke

Die Herstellung erfolgte wie unter Beispiel 1 beschrieben. Der mittlere Durchmesser betrug 199 nm, der Polydispersitätsindex 0,180 (PCS-Daten). Alle Partikel waren kleiner als 7,2 µm (Laserdiffraktometer).

10 Beispiel 5:

10,0 g Cetytpalmitat

2,5 g Poloxamer 188

0.5 g Dicetylphosphat

15 87,0 g Wasser für Injektionszwecke

Die Herstellung erfolgte wie unter Beispiel 1 beschrieben. Die Kenndaten vor und nach der Autoklavierung belegen die Anwendbarkeit der Sterilisationsmethode;

20

25

90

35

	mittlerer Durchmesser	Polydispersitätsindax	alle Partikel ideiner als
vor Sterilisation	216 nm	0.131	4,2 µm
nach Sterilisation	214 nm	0,109	3,0 µm

Beisplel 6:

Als Modellarzneistoff wurden 0,25 g Tetracainbase in die Rezeptur Nr. 5 eingearbeitet.

Die Herstellung erfolgte wie unter Beispiel 1 beschrieben. Der mittlere Durchmesser betrug 218 nm, der Polydispersitätsindex 0,185 (PCS-Daten). Alle Partikel waren kleiner als 10,2 µm (Laserdiffraktometer).

Die Arzneistoffbeladung betrugt 92,8%

Beispial 7:

Als Modellarzneistoff wurde Tetracainbase In folgende Rezeptur eingearbeitet:

10,0 0

Glycerintrilaurat (Dynasan 112)

5,0 g

Lipoid S 75

Tetracainbase 0,1 g, 0,5 g, 1,0 g oder 2.0 g

auf 100,0 g

Wasser für Injektionszwecke

Die Herstellung erfolgte wie unter Beispiel 1 beschrieben, jedoch erfolgte die Hochdruckhomogenisztion bei 1500 bar (drei Zyklen), Als mittlere Durchmesser (PCS-Daten) wurden folgende Werte erhalten:

Arzneistoffgenalt (bezogen auf Lipidphase)	PCS-Durchmesser (nm)
1 %	103
5 %	102
10 %	101
20 %	125

Baispiel 8:

Die unter Beispiel 7 genannten Präparationen wurden gemäß DAB 9 autoklaviert (A 121).

Arzneistoffgehalt (bez. auf Lipidphase)	PCS-Durchmesser vor Autoklavieren	PC3-Durchmesser nach Autoklavieren
1 %	103 nm	101 nm
5 %	102 nm	102 nm
10 %	101 nm	95 nm

Die Teilchen können ferner bei Verwandung hydrolyssempfindlicher Wirkstoffe lyophilisien oder sprühgetrocknet werden.

Beispiel 9:

10

30

35

10.0 g Glycerintrilaurat (Dynasan 112)
5.0 G Lipoid S 75
0.5 g Tetracainbase
84,5 ml waßrige Glucoselösung (30 % m/V)

Die Herstellung erfolgte wie unter Beispiel 1 beschrieben, jedoch erfolgte die Hochdruckhomogenisation bei 1500 x 109
Pa (1500 bar) (drei Zyklen). Als mittere Durchmesser (PCS-Daten) wurden folgende Werte vor und nach Lyophylisation erhalten:

	Mitterer Durchmesser	Polydispersitätsindex
vor Lyophilisation	90 nm	0,277
nach Lyophilisation	481 nm	0,289

Als weiterer Arzneistoff wurde der Wirkstoff Hexadecylphosphocholin (HPC) in eine Modelirezeptur eingearbeitet.

Beispiel 10:

10,0 g Glycerintrilaurat (Dynasan 112)
5.0 g Poloxamer 188
0.1 g Hexadecylphosphocholin
84,9 g Wasser für Injektionszwecke

Die Herstellung erfolgte wie in Beispiel 1 beschrieben. Die erhaltene SLN-Dispersion hatte einen mittleren PCS Durchmesser von 178 nm. Der Polydispersitätsindex betrug 0, 1653. Alle Partikel waren kleiner als 3,6 µm (Lasardiffraktometer). Durch Variation des Tensidgehalts oder der Tensidkomponente war es möglich, SLN-Dispersionen mit einem HPC-Gehalt von 0,1 bis 50 mg/g herzustellen.

Unter Verwendung viskositätserhöhender Stoffe ist as möglich, tensidfreie SLN-Dispersionen herzustellen.

≤ Beispiel 11:

10.0 g Glycerintrilauret (Dynasan 112) 0.5 g Tylose MH 300 89.5 g Wasser für Injektionszwecke

Die Herstellung erfolgte wie unter Beispiel 1 beschrieben, jedoch erfolgte die Hochdruckhomogenisation bei 500×10^5 Pa (500 bar) (drei Zyklen). Der PCS-Durchmesser der Hauptpopulation betrug 879 nm mit einem Polydispersitätsindex von 0,367.

Durch Variationen der Verfahrensbedingungen ist es möglich, SLN-Dispersionen mit einem mittleren PCS-Durchmesser unter 100 nm herzustellen.

Beispiel 12:

10,0 g Glycerintrilaurat (Dynasan 112)

5.0 g Lipoid S 75

85,0 g Wasser für Injektionszwecke

Die Herstellung entolgte wie unter Beispiel 1 beschrieben, jedoch entolgte die Hochdruckhomogenisation bei 1500 x 10⁵ Pa (1550 bar) (drei Zyklen).

Der PCS-Durchmesser der Hauptpopulation betrug 88 nm (erhalten durch Polydispersitätsanalyse mittels Fourier-transformation der erhaltenen Korrelationsfunktion).

Die Erfindung umfaßt auch das Verfahren zur Herstellung des beschriebenen Arzneimittelträgers sowie dessen Verwandung zur Applikation von Arzneimittelwirkstoffen.

Insgesamt gesehen, kombinieren die festen Lipidnanosphären die Vorteile von Polymernanopartikeln (fester Kern, kontrollierbare Freisetzung über einen langeren Zeitraum, Einarbeitungsmöglichkeit für hydrophile Arzneistoffe) mit den Vorteilen von parenteralen Fettemulsionen (relativ schnelle Abbaubarkeit, geringe bzw. keine Toxizität, Herstellung im industriellen Maßstab mit bei der Emulsionsproduktion etablierten Techniken, problemlose Sterilisation durch Autoklavieran) unter Umgehung der Nachteile von Nanopartikeln (zu langsamer Abbau in vivo bzw. toxische Abbauprodukte, fehlende Scaling-up-Möglichkeit in der Produktion) und der Nachteile von Feltemulsionen (z.B. sehr schnelle Metabolisierung, sehr schnelle Arzneistoffreisetzung).

Patentansprüche

25

30

50

- 1. Verfahren zur Herstellung eines Arzneistoffträger, der tensidhaltige oder tensidfreie Teilchen aus Lipid, lipidähnlichem (lipoidem) Material oder Mischungen davon umfaßt, die einen Durchmesser von 10 nm bis 10 µm aufweisen, wobei die Teilchen der Hauptpopulation einen mittleren Durchmesser zwischen 40 und 1000 nm aufweisen und bei Raumtemperatur test sind, dadurch gekennzeichnet, daß entweder die innere Phase (das Lipid oder Lipoid) in geschmolzenem oder erweichtem Zustand in dem Dispersionsmittel (Wasser, wäßrige Lösung oder mit Wasser mischbare Flüssigkeit) hochdruckhomogenisiert wird oder die Innere Phase in festem Zustand, wobei die feste Phase fein zerkleinert ist, in dem Dispersionsmittel hochdruckdispergiert wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Teilchen der Hauptpopulation einen mittleren Durchmesser von 100 bis 500 nm und bei geeigneter Verfahrensparameter- und Hilfsetoffauswahl einen mittleren Durchmesser von 40 bis 80 nm aufweisen.
 - Verfahren nach Anspruch 1 oder 2. dadurch gekennzeichnet, daß der Anteil der inneren oder Lipidphase bezogen auf die Grundrezeptur 0,1 bis 30 Gew.% und insbesondere 1 bis 10 Gew.% beträgt.
 - Verfahren nach einem der Ansprüche 1 bis 3. dadurch gekennzeichnet, daß das Teilchenmaterial Mono-. Di- und Triglyceride. Fettalkohole, deren Ester oder Ether, Wachse und Lipidpeptide sowie Mischungen derselben umfaßt.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Triglycend Glycerimniaurat, -myristat, -palmitat, -stearat und -behenat, der Feltalkohol Cetyl- und Stearylalkohol und das Wachs Cetylpalmitat sowie gebleichtes Bienenwachs umfassen.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5. dedurch gekennzeichnet, daß der Arzneistoffträger außerdem eine oder mehrere dispersionsstabilisierende Substanzen umfaßt, wobei er die dispersionsstabilisierende Substanzen bezogen auf die Grundrezeptur insbesondere in einer Menge von 0,01 bis 20 Gew.% und spezieller 0.5 bis 5 Gew.% umfaßt.
- 7. Verfahren nach Anspruch 6. dadurch gekennzeichnet, daß die stabilisierenden Substanzen Verbindungen aus der Reihe der Poloxamere, Poloxamine, ethoxylierten Mono- und Diglyceride, ethoxylierten Lipide und Lipoide, ethoxylierten Fatt-alkohole und Alkylphenole, ethoxylierten Fettsaureester, Polyglycerinether und -ester, Lecthine, Ester und Ether von Zukkern oder Zuckeralkoholen mit Fettsäuren oder Fettalkoholen, Phospholipide und Sphingolipide, Sterine, deren Ester oder Ether sowie der Mischungen dieser Verbindungen umfassen.

- Verfahren nach Anspruch 6 oder 7. dadurch gekennzelchnet, daß die stabilisierende Substanz Eilecithin. Sojalecithin oder hydriertes Lecithin, deren Mischungen oder Mischungen aus einem oder belden Lecithinen mit einer oder mehreren Phospholipidkomponenten, Cholesterin, Cholesterinpalmitat, Stigmasterin oder andere Sterine umfaßt.
- 9. Verlahren nach einem der vorhergehenden Ansprüche, dadurch gakennzeichnet, daß der Arzneistoffträger außerdem Ladungsstabilisatoren umfaßt, wobei er die Ladungsstabilisatoren bezogen auf die Grundrezeptur imsbesondere in einer Menge von 0.01 bis 10 Gew.% und speziell 0,05 bis 2 Gew.% umfaßt.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Ladungsstabilisatoren Olcetylphosphat. Phosphatidylglycerol, gesättigte oder ungesättigte Fettsauren, Natriumcholat, Natriumglykocholat, Natriumtaurocholat oder deren Mischungen, Peptisatoren oder Amlnosauren umfassen.
 - 11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Arzneistoffträger einen oder mehrere viskositätserhöhende Stoffe umfaßt, wobei er die viskositätserhöhende Stoffe bezogen auf die Grundrezeptur insbesondere in einer Menge von 0,1 bis 10 Gew.% und speziell 0,5 bis 5 Gew.% umfaßt.

15

30

- 12. Verfahren nach Anspruch 11. dadurch gekennzelchnet, daß die viskositätserh\u00f6henden Stoffe Celluloseether und ester, Polyvinylderivate, Alginate. Polyacrylate, Xanthane und Pektine umfassen.
- 20 13. Verfahren nach Anspruch 11 oder 12, dedurch gekennzeichnet, daß der Arzneistoffträger außerdem Zucker oder Zuckeralkohole, insbesondere Glucose, Mannose, Trehalose, Mannit, Sorbit umfaßt.
 - 14. Verfahren nach einem der Ansprüche 11 bis 13. dadurch gekennzeichnet, daß der Arzneistoffträger außerdem Ladungsträger umlaßt.
 - 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Teilchen in destilliertem Wasser, einer wäßrigen Lösung mit Zusätzen aus Elektrolyten, Mono- und Disacchanden, Polyolen oder deren Mischungen oder einer mit Wasser mischbaren Flüssigkeit dispergiert eind, wobel die Zusätze insbesondere Natnumchlorid, Mannose, Glucose, Fructose, Xylose, Trehalose, Mannit, Sorbit, Xylit und Glycerin umfassen und bezogen auf die Grundrezeptur insbesondere in einer Menge von 0,1 bis 50 Gew.% und insbesondere 1 bis 30 Gew.% vorhanden sind.
 - Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Teilchen lyophylisiert oder sprühgetrocknet werden.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Arzneistoffträger unter Ausschluß der Verwendung von halogenierten organischen Lösungsmitteln hargestellt wird.
 - Verlahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, da R der Arzneistoffträger keinen, einen oder mehrere Wirkstoffe umfaßt.
 - 19. Verfahren nach Anspruch 18. dadurch gekennzeichnet, daß der oder die Wirkstoffe in den Teilchen gelöst oder dispergiert sind, an deren Oberfläche edsorbiert sind oder als wäßrige Lösung in den Teilchen dispergiert sind.
- 45 20. Verfatren nach Anspruch 18, dadurch gekennzeichnen, daß der Arzneistoffträger einen oder mehrere Wirkstoffe enthält und für die intravenöse Gabe, intramuskuläre Gabe, intraartrikuläre Gabe, intracavitale Gabe, subkutane Gabe, intradermale Gabe, enterale Gabe, pulmonale Applikation sowie topische und ophtalmologische Anwendung geeignet ist.
- 21. Arzneistoffträger aus tensidfreien Teilchen aus Lipid, lipidahnlichem (lipoidem) Material oder Mischungen davon, die einen Durchmesser von 10 nm bis 10 µm aufweisen, durch ein Hochdruckhomogenisationsverfahren gemäß einem der Ansprüche 1 bis 19 herstellber sind, wobei die Teilchen der Hauptpopulation einen mittleren Durchmesser zwischen 40 und 1000 nm aufweisen, und bei Raumtemperatur fest sind.
- 22. Verwendung einer Arzneistoffträgere gemäß Anspruch 21 zur Herstellung von Arzneimitteln, die insbesondere für die intravenose Gabe, Intramuskulare Gabe, intraartrikulare Gabe, Intracavitale Gabe, subkutane Gabe, intradermale Gabe, enterale Gabe, pulmonale Applikation sowie topische und ophtalmologische Anwendung geeignet sind.

Claims

70

30

- 1. Process for the manufacture of a drug carrier which comprises tenside-containing or tenside-free particles of lipid or lipid-like (lipoid) material, or mixtures thereof, which have a diameter of 10 nm to 10 µm, whereby the particles of the main population have an average diameter of between 40 and 1000 nm and are solid at room temperature, characterised by the fact that either the inner phase (the lipid or lipoid), is homogenised under high pressure in the dispersion medium (water, aqueous solution or a liquid which can be mixed with water) in a melted or softened state, or the inner phase is dispersed under high pressure in the dispersion medium in a solid state, whereby the solid phase is finely broken down.
- Process as in claim 1, characterised by the fact that the particles of the main population have an average diameter of 100 to 500 nm and, with appropriate selection of process parameters and auxiliary media, have an average diameter of 40 to 80 nm.
- 15 3. Process as in claim 1 or 2, characterised by the fact that the proportion of the Inner or lipid phase in relation to the basic preparation is 0.1 to 30 % by weight and, especially, 1 to 10 % by weight.
 - Process as in one of the claims 1 to 3, characterised by the fact that the particle material comprises monoglyceride, diglyceride, triglyceride, latty alcohols and the esters or ethers thereof, waxes and lipid peptides or mixtures of these.
 - 5. Process as in one of the claims 1 to 4, characterised by the fact that the triglyceride comprises glycerine trilaurate, glycerine myristate, glycerine palmitate, glycerine stearate and glycerine behanate, that the fatty alcohol comprises ceryl and stearyl alcohol and the wax comprises ceryl palmitate and bleached beeswax.
- 25 6. Process as in one of the claims 1 to 5, characterised by the fact that, in addition, the drug carrier includes one or more dispersion-stabilising substances, whereby the dispersion-stabilising substances are included in a quantity of 0.1 to 20 % by weight in relation to the basic preparation, ideally 0.5 to 5% by weight.
 - 7. Process as in claim 6, characterised by the fact that the stabilising substances comprise compounds from the series of poloxamers, poloxamins, ethoxylated monoglycerides and diglycerides, ethoxylated lipids and lipoids, ethoxylated fatty alcohols and elkyl phenols, ethoxylated fatty acid esters, polyglycerine ethers and esters, lecithins, esters and ethers of sugars or sugar alcohols with fatty acids or fatty alcohols, phospholipids and ephingolipids, sterols or the esters and ethers thereof, as well as mixtures of these compounds.
- 8. Process as in claim 6 or 7, characterised by the fact that the stabillising substance comprises egg-lecithin, soyalecithin or hydrogenated lecithin, mixtures thereof, or mixtures of one or both lecithins with one or more phospholipid components, cholesterin, cholesterin palmitate, stigmaterin or other sterols.
- Process as in one of the preceding claims, characterised by the fact that, in addition, the drug carrier includes load
 stabilisers in a quantity of 0.01 to 10 % by weight and aspecially 0.05 to 2 % by weight.
 - 10. Process as in claim 9, characterised by the fact that the load stabilisers comprise dicetyl phosphate, phosphatidylg-lycerol, saturated or unsaturated fatty acids, sodium cholate, sodium glycocholate, sodium taurocholate or mixtures thereof, peptisators or amino acids.
 - 11. Process as in claim 6, characterised by the fact that the drug carrier comprises one or more viscosity-increasing substances, whereby the viscosity-increasing substances are included in a quantity of 0.1 to 10 % by weight, ideally 0.5 to 5% by weight in relation to the basic preparation.
- 50 12. Process as in claim 11, characterised by the fact that the viscosity-increasing substances comprise cellulose ethers and esters, polyvinyl derivatives, alginates, polyacrylates, xanthanes and pectins.
 - 13. Process as in claim 11 or 12, characterised by the fact that the drug carrier also comprises sugar or sugar alcohols, especially glucose, mannose, trehalose, mannitol and sorbitol.
 - 14. Process as in one of the claims 11 to 13, characterised by the fact that the drug carrier also comprises load carriers.
 - 15. Process as in one of the preceding claims, characterised by the fact that the particles are dispersed in distilled water, in an aqueous solution with additives of electrolytes, monosaccharides and disaccharides, polyois or mixtures.

thereof or a liquid that can be mixed with water, whereby the additives comprise, in particular, sedium chloride, mannose, glucose, fructose, xylose, trehalose, mannitol, sorbitol, xylitol and glycerol, preferably in a quantity of 0.1 to 50 % by weight and especially 1 to 30 % by weight in relation to the basic preparation.

- 5 16. Process as in one of the preceding claims, characterised by the fact that the particles are lyophilised or spray-dried.
 - Process as in claim 1, characterised by the fact that the drug carrier is manufactured without the use of halogenated organic solvents.
- 18. Process as in one of the preceding claims, characterised by the fact that the drug carrier includes no active substances.
 - 19. Process as in claim 18, characterised by the fact that the active substance or substances are dissolved or dispersed in the particles, adsorbed on the surface of the particles or dispersed in the particles as an aqueous solution.
 - 20. Process as in claim 18, characterised by the fact that the drug carrier contains one or more active substances and is suitable for impavenous administration, intramuscular administration, intra-arthricular administration, intracavital administration, subcuraneous administration, intradermal administration, enteral administration, pulmonary application and topical and opthalmological application.
 - 21. Drug carrier consisting of tenside-free particles of lipid or lipid-like (tipoid) material, or mixtures thereof, with a diameter of 10 nm to 10 nµ, which can be manufactured by means of a high-pressure homogenisation process in accordance with one of the claims 1 to 19, whereby the particles of the main population have an average diameter of between 40 and 1000 nm and are solid at room temperature.
 - 22. Use of a drug carrier as in claim 21 for the manufacture of drugs which are, in particular, suitable for intravenous administration, intramuscular administration, intra-arthricular administration, intracavital administration, subcutaneous administration, intradermal administration, enteral administration, pulmonary application and topical and opthalmological application.

Revendications

15

20

25

30

.15

50

- 1. Procédé pour la préparation d'un véhicule de substance médicamenteuse, qui comprend des particules contenant un tensioactif ou exemptes de tensioactif, à base de lipide, d'une substance de type lipidique (lipoldique) ou de mélanges de ceux-ci, qui présentent un diametre de 10 nm à 10 μm, la majeure partie des particules ayant un diamètre moyen compris entre 40 et 1 000 nm, et étant solldes à la température ambiante, caractérisé en ce que soit la phase interne (le lipide ou lipoïde) est homogénéisée sous haute pression, à l'état fondu ou ramolli, dans le milieu de mise en dispersion (eau, solution aqueuse ou liquide miscible à l'eau), soit la phase interne est dispersée sous haute pression, à l'état solide, la phase solide étant finement divisée, dans le milieu de mise en dispersion.
- Procédé selon la revendication 1, caractérisé en ce que les particules ont en majorité un diamètre moyan de 100
 à 500 nm et, dans le cas d'un choix d'adjuvant et de paramètres de procédé appropriés, un diamètre moyan de 40
 à 80 nm.
- 45 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la proportion de la phase lipidique ou interne, par rapport à la composition de base, va de 0,1 à 30 % en poids et en particulier de 1 à 10 % en poids.
 - Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le matériau des particules comprend des monodi- et triglycérides, des alcools gras, leurs asters ou éthers, des cires et des lipopeptides, ainsi que des mélanges de ceux-ci.
 - 5. Procéde selon l'une des revendications 1 à 4, caractérisé en ce que le triglycéride comprend le trilaurate, -myristate. -palmitate, -stéarate et -béhénate de glycérol, l'alcool gras comprend l'alcool cétylique et l'alcool stéarylique, et la cire comprend la palmitate de cétyle ainsi que la cire blanche d'abeille.
 - 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le véhicule de substance médicamenteuse comprend en outre une ou plusieurs substances stabilisant la dispersion, celui-ci comprenant les substances stabilisant la dispersion, par rapport à la composition de base, en particulier en une proportion de 0,01 à 20 % en poids, et plus particulièrement de 0,5 à 5 % en poids.

9

10

15

20

25

40

55

EP 0 605 497 B1

- 7. Procédé selon la revendication 8, caractérisé en ce que les substances stabilisantes comprennent des composés choisis parmi des Poloxamères, Poloxamères, mono- et diglycérides éthoxylés, lipides et lipoïdes éthoxylés alcools gras et alkylphénois éthoxylés, esters d'acides gras éthoxylés, polyéters et -esters de glycérol, lécitines, esters et éthers de sucres ou d'alcools glucidiques avec des acides gras ou des alcools gras, phospholipides et sphingolipides, stérols, leurs esters ou éthers ainsi que des mélanges de ces composés.
- 8. Procédé selon la revendication 6 ou 7, caractérisé en ce que la substance stabilisante comprend la lécithine d'oeuf,
 la lécithine de soja ou la lécithine hydrogénée, leurs mélanges ou des mélanges d'une lécithine ou des deux avec un ou plusieurs composants phospholipidiques, le cholastérol, le palmitate de cholastérol, le stigmastérol ou d'autres stérols.
- 9. Procédé selon l'une des revendications précédemes, caractérisé en ce que le véhicule de substance médicamenteuse comprend en outre des etabilisants de charge, celui-ci comprenant les stabilisants de charge, par rapport à la composition de base, en particulier en une proportion de 0,01 à 10 % en poids et plus particulierement de 0,05 à 2 % en poids.
- 10. Procédé selon la revendication 9, caractérisé en ce que les stabilisants de charge comprennent le phosphate de dicétyle, le phosphatidylglycérol, des acides gras saturés ou insaturés, le cholate de sodium, le glycocholate de sodium, le taurocholate de sodium ou des mélanges de ceux-ci, des peptisateurs ou des aminoacides.
- 11. Procédé selon la revendication 6, caractérisé en ce que le véhicule de substance médicamenteuse comprend une ou plusieurs substances augmentant la viscosité, celui-ci comprenant les substances augmentant la viscosité, par rapport à la composition de base, en particulier en une proportion de 0,1 à 10 % en poids et plus particulièrement de 0,5 à 5 % en poids.
- 12. Procédé selon la revendication 11, caractérisé en ce que les substances augmentant la viscosité comprennent des éthers et esters de cellulose, des dérivés polyvinyliques, des alginates, des polyacrylates, des xembannes et des pectines.
- 13. Procédé selon la revendication 11 ou 12, caractérisé en ce que le véhicule de substance médicamenteuse comprend en outre des sucres ou des alcools glucidiques, en particulier le glucose, le mannose, le tréhalose, le mannitol, le sorbitol.
- 14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que le véhicule de substance médicamenteuse comprend en outre des porteurs de charge.
 - 15. Procédé selon l'une des revendications précédentes, caractérisé en ce que les particules sont dispersées dans de l'eau distillée, une solution aqueuse avec addition d'électrolytes, de mono- et disaccharides, de polyois ou des mélanges de ceux-ci, ou dans un liquide miscible à l'eau, les additifs comprenant en particulier le chlorure de socium, le mannose, le glucose, le tructose. le xylose, le tréhalose, le mannitol, le sorbitol, le xylitol et le glycérol, et étant présents, par rapport à la composition de base, en particulier en une proportion de 0,1 à 50 % en poids et plus particulièrement de 1 à 30 % en poids.
- 16. Procédé selon l'une des revendications précédentes, caractérisé en ce que les particules som lyophilisées ou séchées par atomisation.
 - 17. Procédé selon la revendication 1, caractérisé en ce que le véhicule de substance médicamenteuse est préparé avec exclusion de l'utilisation de solvants organiques halogénés.
- 50 18. Procèdé selon l'une des revendications précédantes, caractérisé en ce que le véhicule de substance médicamenteuse comprend une ou plusieurs substances actives ou n'en comprend aucune.
 - 19. Procédé selon la revendication 18, caractérisé en ce que la ou les substances actives est(sont) dissoure(s) ou dispersée(s) dans les particules, est(sont) adsorbée(s) sur leur surface ou est(sont) dispersée(s) sous forme de solution aqueuse dans les particules.
 - 20. Procédé selon la revendication 18, caractérisé en ce que le véhicule de substance médicamenteuse contient une ou plusieurs substances actives et est approprié à l'administration intravelneuse, l'administration intral'administration intra-articulaire, l'administration intracavitaire, l'administration sous-cutanée, l'administration intra-

dermique, l'administration entérale, l'administration pulmonaire ainsi que l'application locale et l'application optical mologique.

- 21. Véhicule de substance médicamenteuse, constitué de particules, <u>examptes de tensioactif</u> à base d'un lipide, d'une substance de type lipide (lipoïde) ou de mélanges de ceux-d, qui présentent un diamètre de 10 nm à 10 µm, peuvers être obtenues par un procédé d'homogénéisation à haute pression selon l'une des revendications 1 à 19, la majorité des particules présentant un diamètre moyen compris entre 40 et 1 000 nm et étant solides à la température
- 22. Utilisation d'un véhicule de substance médicamenteuse selon la revendication 21, pour la tabrication de médicaments qui sont appropriés à l'utilisation en particulier pour l'administration intraveineuse, l'administration intramusculaire, l'administration intra-articulaire, l'administration intracavitaire, l'administration sous-curanée, l'administration intradermique, l'administration entérale, l'administration pulmonaire ainsi que l'application locale et l'application oph-

25

35

45

50