20.08.03

日本国特許庁 JAPAN PATENT OFFICE

REC'D 10 OCT 2003

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 8月30日

出 願 番 号 Application Number:

特願2002-253742

[ST. 10/C]:

[JP2002-253742]

出 願 人 Applicant(s):

アークレイ株式会社 ユニチカ株式会社

PRIODITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 9月26日

今井康

ý

【書類名】 特許願

【整理番号】 P14-293830

【提出日】 平成14年 8月30日

【あて先】 特許庁長官殿

【国際特許分類】 C07K 3/20

C12N 15/53

【発明の名称】 タンパク質およびグルコース脱水素酵素の精製方法

【請求項の数】 14

【発明者】

【住所又は居所】 京都府京都市南区東九条西明田町57 アークレイ株式

会社内

【氏名】 山岡 秀亮

【発明者】

【住所又は居所】 京都府宇治市宇治小桜23番地 ユニチカ株式会社中央

研究所内

【氏名】 黑坂 啓介

【発明者】

【住所又は居所】 京都府宇治市宇治小桜23番地 ユニチカ株式会社中央

研究所内

【氏名】 川瀬 至道

【特許出願人】

【識別番号】 000141897

【住所又は居所】 京都府京都市南区東九条西明田町 5 7

【氏名又は名称】 アークレイ株式会社

【特許出願人】

【識別番号】 000004503

【住所又は居所】 兵庫県尼崎市東本町1丁目50番地

【氏名又は名称】 ユニチカ株式会社

【代理人】

【識別番号】

100086380

【弁理士】

【氏名又は名称】 吉田 稔

【連絡先】 06-6764-6664

【選任した代理人】

【識別番号】

100103078

【弁理士】

【氏名又は名称】 田中 達也

【選任した代理人】

【識別番号】 100105832

【弁理士】

【氏名又は名称】 福元 義和

【選任した代理人】

【識別番号】 100117167

【弁理士】

【氏名又は名称】 塩谷 隆嗣

【選任した代理人】

【識別番号】 100117178

【弁理士】

【氏名又は名称】 古澤 寛

【手数料の表示】

【予納台帳番号】 024198

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0103432

【プルーフの要否】

更

b

【書類名】 明細書

【発明の名称】 タンパク質およびグルコース脱水素酵素の精製方法

【特許請求の範囲】

【請求項1】 電子伝達タンパク質を含む目的タンパク質が溶解したタンパク質溶液から、液体クロマトグラフィーを利用して前記目的タンパク質を精製する方法であって、

前記液体クロマトグラフィーは、充填剤が充填された充填槽に前記タンパク質溶液を導入して前記充填剤と前記目的タンパク質とを結合させた後に不純物を除去し、ヒドロキシコラン酸塩を含む溶離液を用いて、前記充填剤から前記目的タンパク質を溶離させることにより行われることを特徴とする、タンパク質の精製方法。

【請求項2】 前記目的タンパク質は、グルコース脱水素活性を有するサブユニットを含むグルコース脱水素酵素である、請求項1に記載のタンパク質の精製方法。

【請求項3】 前記充填剤は、イオン交換樹脂である、請求項1または2に 記載のタンパク質の精製方法。

【請求項4】 前記イオン交換樹脂は、4級アンモニウム基をイオン交換基として有している、請求項3に記載のタンパク質の精製方法。

【請求項5】 前記電子伝達タンパク質は、還元条件下でのSDSーポリアクリルアミドゲル電気泳動における分子量が約43kDaであり、

前記サブユニットは、還元条件下でのSDS-ポリアクリルアミドゲル電気泳動における分子量が約60kDaである、請求項2ないし4のいずれかに記載のタンパク質の精製方法。

【請求項6】 前記ヒドロキシコラン酸塩は、コール酸塩である、請求項1 ないし5のいずれかに記載のタンパク質の精製方法。

【請求項7】 前記充填剤からの前記目的タンパク質の溶離は、前記溶離液におけるヒドロキシコラン酸塩の濃度を一定にして行われる、請求項1ないし6のいずれかに記載のタンパク質の精製方法。

【請求項8】 前記溶離液におけるヒドロキシコラン酸塩の濃度は、0.5

【請求項9】 前記グルコース脱水素酵素は、グルコース脱水素酵素を産生する能力を有するブルクホルデリア属に属する微生物が産生したものである、請求項2ないし8のいずれかに記載のタンパク質の精製方法。

【請求項10】 前記ブルクホルデリア属に属する微生物は、ブルクホルデリア・セパシアKS1株 (FERM BP-7306) である、請求項9に記載のタンパク質の精製方法。

【請求項11】 前記グルコース脱水素酵素は、形質転換体が産生したものであり、

この形質転換体は、グルコース脱水素酵素を産生する能力を有するブルクホルデリア属に属する微生物から取得した前記サブユニットおよび前記電子伝達タンパク質をコードするDNAを、宿主微生物に導入して形成したものである、請求項2ないし8のいずれかに記載のタンパク質の精製方法。

【請求項12】 前記宿主微生物は、シュードモナス・プチダである、請求項11に記載のタンパク質の精製方法。

【請求項13】 疎水クロマトグラフィーと陰イオン交換クロマトグラフィーとを組み合わせてグルコース脱水素酵素を精製する方法であって、

前記疎水クロマトグラフィーは、固定相に前記グルコース脱水素酵素を保持させるステップと、不要なタンパク質を溶出させるステップと、ヒドロキシコラン酸塩を含む溶離液を用いて前記グルコース脱水素酵素を溶出させるステップと、を含み、

前記陰イオン交換クロマトグラフィーは、固定相に前記グルコース脱水素酵素を保持させるステップと、ヒドロキシコラン酸塩を含む溶離液を用いて前記グルコース脱水素酵素を溶出させるステップと、を含んでいることを特徴とする、グルコース脱水素酵素の精製方法。

【請求項14】 前記疎水クロマトグラフィーにおいては、前記グルコース 脱水素酵素の溶出は、前記溶離液におけるヒドロキシコラン酸塩の濃度を時間と ともに変化させて行われ、

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液体クロマトグラフィーを利用して、タンパク質を精製する方法に関する。この精製方法は、たとえば電子伝達タンパク質が結合したグルコース脱水素酵素を精製する際に利用されるものである。

[0002]

【背景の技術】

特定の基質に対して特異的に反応する酵素を用いたバイオセンサの開発は、産業の分野を問わず盛んに行われている。その代表的なものとして、主に医療分野で使用されるグルコースセンサが挙げられる。

[0003]

グルコースセンサは、酵素と電子伝達物質を含む反応系を構築するためのものであり、このグルコースセンサを利用する場合には、たとえばアンペロメトリックな手法を用いてグルコースが定量される。酵素としては、グルコースオキシダーゼ(GOD)やグルコースデヒドロゲナーゼ(GDH)が使用されている。

[0004]

GODは、グルコースに対する基質特異性が高くて熱安定性に優れており、酵素の量産化が可能であるために生産コストが他の酵素と比べて安価であるといった利点がある。その反面、GODを使用した系は、測定サンプル中の溶存酸素の影響を受けやすいため、溶存酸素が測定結果に影響を及ぼすといった問題がある

[0005]

一方、GDHを使用した系は、測定サンプル中の溶存酸素の影響を受けにくい。このため、GDHを使用した系は、酸素分圧が低い環境下で測定を行ったり、酸素量が多く要求される高濃度サンプルを測定する場合であっても、精度よくグ

[0006]

このような事情から、GODとGDHの双方の欠点を補う酵素が模索されていた。国際公開WO02/36779号公報に開示されているように、早出は、温泉付近の土壌から新規菌株(ブルクホルデリア・セパシアKS1株)を分離し、この菌株から新しいGDHを取得した。このGDHは、 α 、 β 、 γ サブユニットからなるものであり(以下「CyGDH」という)、電子伝達物質との反応速度が高く、耐熱性の面でも問題がないものであり、グルコースセンサ用としては好適なものであった。

[0007]

CyGDHをグルコースセンサに応用する場合には、<math>CyGDHを含む酵素溶液から、CyGDHを精製する必要がある。酵素の精製には、通常、液体クロマトグラフィーが利用されている。そのため、本発明者らは、常法にしたがって、疎水クロマトグラフィーおよび陰イオン交換クロマトグラフィーを併用して酵素溶液の精製を試みた。ところが、精製酵素液を<math>SDS-PAGEで確認したところ、 α 、 β 、 γ サブユニット以外に多くのタンパク質が含まれており、CyGDHを純度良く精製することができなかった。

[0008]

【発明の開示】

本発明は、タンパク質の新規な精製方法を提供することを目的としている。

[0009]

本発明の第1の側面により提供されるタンパク質の精製方法は、電子伝達タンパク質を含む目的タンパク質が溶解したタンパク質溶液から、前記目的タンパク質を液体クロマトグラフィーを利用して精製する方法であって、前記液体クロマトグラフィーは、充填剤が充填された充填槽に前記タンパク質溶液を導入して前記充填剤と前記目的タンパク質とを結合させた後に不純物を除去し、ヒドロキシコラン酸塩を含む溶離液を用いて、前記充填剤から前記目的タンパク質を溶離させることにより行われることを特徴としている。

なお、本明細書においては、「液体クロマトグラフィー」という場合には、特 段の限定がない限りは、カラムを用いてフロー(連続式)で精製する場合の他、 バッチ式でタンパク質を精製する場合も含まれる。バッチ式の精製方法としては 、たとえば容器内に充填剤とタンパク質溶液とを共存させて充填剤に目的タンパ ク質を結合させた後に充填剤を分離し、この充填剤を溶離液に接触させて充填剤 から目的タンパク質を分離して回収する方法が挙げられる。

[0011]

精製対象となる目的タンパク質としては、たとえばグルコース脱水素活性を有するサブユニットを含むグルコース脱水素酵素を例示することができる。

[0012]

充填剤としては、たとえばイオン交換樹脂が使用され、イオン交換クロマトグラフィーによってタンパク質が精製される。この場合、イオン交換樹脂としては、たとえば4級アンモニウム基をイオン交換基として有しているものが使用される。

[0013]

ここで、「ヒドロキシコラン酸」とは、コラン酸の3水和物であるコール酸および広義での誘導体をさすものとし、ヒドロキシコラン酸塩としては、コール酸塩、グリコウルソデオキシコール酸塩、タウログリコウルソデオキシコール酸塩、タウロウルソデオキシコール酸塩、ウルソデオキシコール酸塩、グリココール酸塩、タウロコール酸塩、グリコケノデオキシコール酸塩、タウロケノデオキシコール酸塩、グリコデオキシコール酸塩、タウロデオキシコール酸塩、ケノデオキシコール酸塩、デオキシコール酸塩、グリコリトコール酸塩、タウロリトコール酸塩、リトコール酸塩などが挙げられる。その中でも、コール酸塩、たとえばコール酸ナトリウムを使用するのが好ましい。

[0014]

充填剤からの目的タンパク質の溶離は、溶離液におけるヒドロキシコラン酸塩の濃度を一定にして行うのが好ましい。この場合、溶離液におけるヒドロキシコラン酸塩の濃度は、0.5~2.5重量%の範囲、さらに好ましくは0.8~1

[0015]

電子伝達タンパク質は、たとえば還元条件下でのSDS-ポリアクリルアミドゲル電気泳動における分子量が約43kDaである。一方、前記サブユニットは、還元条件下でのSDS-ポリアクリルアミドゲル電気泳動における分子量が約60kDaである。このような電子伝達タンパク質およびサブユニットを含むグルコース脱水素酵素は、たとえばグルコース脱水素酵素を産生する能力を有するブルクホルデリア属に属する微生物から、あるいは形質転換体から取得することができる。

[0016]

本発明で採用されるブルクホルデリア属に属する微生物は、本酵素の生産能を有するブルクホルデリア属に属する微生物であれば特に制限されないが、ブルクホルデリア・セパシア、特にブルクホルデリア・セパシアKS1株(以下、単に「KS1株」という)が好ましい。このKS1株は、平成12年9月25日に独立行政法人産業技術総合研究所特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1 中央第6)に微生物受託番号第FERM BP-7306として寄託されている。

[0017]

形質転換体は、たとえばブルクホルデリア属に属する微生物から取得した電子 伝達タンパク質およびサブユニットをコードする配列を含むDNAを、宿主微生 物に導入することにより形成される。宿主微生物としては、シュードモナス属に 属する微生物、とくにシュードモナス・プチダを使用するのが好ましい。

国際公開WO02/36779号公報などに開示されているように、KS1株由来のグルコース脱水素酵素は、サブユニット(α サブユニット)および電子伝達タンパク質(β サブユニット)に加えて、還元条件下でのSDSーポリアクリルアミドゲル電気泳動における分子量が約14kDaである γ サブユニットを有するものとして産生される。

[0019]

 γ サブユニットを α サブユニットとともに発現させると、 α サブユニットのみを発現させた場合に比べて高い酵素活性が得られることが早出によって確認されている。したがって、酵素活性の観点からは、 γ サブユニットを発現させるのが好ましく、前記DNAにおいては、 γ サブユニットの構造遺伝子は、 α サブユニットの上流域に含ませておくのが好ましい。そうすれば、 α サブユニットを産生する際に、先ず γ サブユニットが発現されてタンパク質として存在することにより微生物体内で効率良く α サブユニットを産生することができると考えられる。

[0020]

本発明の第2の側面においては、疎水クロマトグラフィーと陰イオン交換クロマトグラフィーとを組み合わせてグルコース脱水素酵素を精製する方法であって、前記疎水クロマトグラフィーは、固定相に前記グルコース脱水素酵素を保持させるステップと、不要なタンパク質を溶出させるステップと、ヒドロキシコラン酸塩を含む溶離液を用いて前記グルコース脱水素酵素を溶出させるステップと、を含み、前記陰イオン交換クロマトグラフィーは、固定相に前記グルコース脱水素酵素を保持させるステップと、ヒドロキシコラン酸塩を含む溶離液を用いて前記グルコース脱水素酵素を溶出させるステップと、を含むことを特徴とする、グルコース脱水素酵素の精製方法が提供される。

[0021]

疎水クロマトグラフィーにおいては、たとえばグルコース脱水素酵素の溶出は、溶離液におけるヒドロキシコラン酸塩の濃度を時間とともに変化させて行われる。一方、陰イオン交換クロマトグラフィーにおいては、たとえばグルコース脱水素酵素の溶出は、溶離液におけるヒドロキシコラン酸塩の濃度を一定にして行

[0022]

【発明の実施の形態】

以下、本発明に係るタンパク質の精製方法について、グルコース脱水素酵素を 精製する場合を例にとって具体的に説明する。

[0023]

グルコース脱水素酵素の精製にあたっては、まず、酵素溶液を準備する。酵素溶液は、グルコース脱水素酵素を産生する微生物やその培養液から採取してもよいし、この微生物から取得したDNAを導入した形質転換体やその培養液から採取してもよい。

[0024]

酵素溶液は、GDHが菌体内に存在する場合には、ろ過または遠心分離などの手段により培養液から菌体を採取した後、この菌体を機械的方法またはリゾチームなどの酵素的方法で破壊し、必要に応じてEDTAなどのキレート剤及び界面活性剤を添加してGDHを可溶化することにより得ることができる。一方、GDHが菌体外(培養液中)に存在する場合には、ろ過または遠心分離などの手段により培養液と菌体とを分離することにより酵素溶液を得ることができる。

[0025]

グルコース脱水素酵素を産生する微生物としては、たとえばブルクホルデリア 属に属する微生物、とくにブルクホルデリア・セパシアが好ましく使用される。 このブルクホルデリア・セパシアからは、たとえば可溶化膜画分として酵素溶液 が採取される。可溶化膜画分は、たとえば培養液を遠心分離して得られる菌体を 破砕して細胞抽出液を採取し、この細胞抽出液を遠心分離して得られる上清を超 遠心することにより沈殿物として得られる。菌体の破砕は、常法に従い、機械的

[0026]

形質転換体は、たとえば α サブユニット(グルコース脱水素活性を有するタンパク質)および β サブユニット(電子伝達タンパク質)の発現をコードする配列を含むDNAを取得した後、このDNAを含む組み換えベクターを、宿主微生物に導入することにより形成される。

[0027]

DNAの取得にあたっては、まず組み換えベクターが構築される。この組み換えベクターは、グルコース脱水素活性を有する酵素を産生する微生物から染色体 DNAを分離・精製した後、この染色体DNAを切断した染色体DNA断片またはPCRなどにより増幅させたDNA断片と、リニアーな発現ベクターとを結合 閉鎖させることにより構築することができる。

[0028]

宿主微生物としては、大腸菌をはじめとする腸内細菌群、シュードモナス属やグルコノバクター属などのグラム陰性菌、バチルス・サブチリスなどのバチルス属細菌をはじめとするグラム陽性菌、サッカロマイセス・セビシエなどの酵母、アスペルギルス・ニガーなどの糸状菌が挙げられる。その中でもとくに、シュードモナス属に属する微生物、たとえばシュードモナス・プチダが好ましく使用される。微生物の形質転換は、例えばエシェリヒア属細菌ではカルシウム処理によるコンピテントセル法、バチルス属細菌ではプロトプラスト法、酵母ではKU法やKUR法、糸状菌ではマイクロマニュピレーション法等の方法によって行うことができる。形質転換する方法としては、エレクトロポーレーション法も用いることもできる。

[0029]

酵素溶液の精製は、液体クロマトグラフィーを利用して行われる。液体クロマトグラフィーによる精製においては、目的とする精製の程度が得られるように、液体クロマトグラフィーの種類、回数、組み合わせが選択される。液体クロマトグラフィーとしては、ゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、およびアフィニティクロマトグラフィーを挙げることができる。

液体クロマトグラフィーは、カラム内に形成した固定相に目的タンパク質を保持させた後に、連続的に溶離液を供給して目的タンパク質を溶離させて回収してもよいし、バッチ式で行ってもよい。バッチ式では、たとえば容器内に充填剤と試料とを供給して充填剤に目的タンパク質を保持させた後に不純物を除去し、溶離液を供給して充填剤から目的タンパク質を溶離させ、目的タンパク質を回収するようにしてもよい。

[0031]

溶離液としては、溶離剤としてのヒドロキシコラン酸塩を含む溶液が使用される。複数回の液体クロマトグラフィーにより目的タンパク質を精製する場合には、少なくとも一回の液体クロマトグラフィーにおいて、溶離液としてヒドロキシコラン酸塩が使用される。この場合、最後に行う液体クロマトグラフィーにおいて、溶離液としてヒドロキシコラン酸塩を使用するのが好ましい。

[0032]

ヒドロキシコラン酸塩としては、コール酸塩、グリコウルソデオキシコール酸塩、タウログリコウルソデオキシコール酸塩、タウロウルソデオキシコール酸塩、ウルソデオキシコール酸塩、グリココール酸塩、タウロコール酸塩、グリコケノデオキシコール酸塩、グリコデオキシコール酸塩、グリコデオキシコール酸塩、タウロデオキシコール酸塩、ケノデオキシコール酸塩、デオキシコール酸塩、グリコリトコール酸塩、タウロリトコール酸塩、リトコール酸塩などが挙げられる。その中でも、コール酸塩、たとえばコール酸ナトリウムを使用するのが好ましい。

[0033]

溶離液は、この液中のヒドロキシコラン酸塩の濃度を一定にして充填剤と接触 させてもよいし、濃度を時間とともに直線的に変化させて供給してもよい。

[0034]

液体クロマトグラフィーは、酵素溶液から直接行ってもよいが、酵素溶液中の 目的タンパク質を濃縮した後に行ってもよい。濃縮は、たとえば減圧濃縮、膜濃 縮、塩析処理、あるいは親水性有機溶媒(たとえばメタノール、エタノール、ア

[0035]

このようにして得られた精製酵素は、たとえば凍結乾燥、真空乾燥、スプレードライにより粉末化して市場に流通させることができる。

[0036]

【実施例】

以下においては、上述した製造方法の具体的な例について説明するとともに、溶離剤としてコール酸Naを用いた場合には、溶離剤としてNaClやKClを用いる場合に比べて、効率よくグルコース脱水素酵素を精製できることを実証する。

[0037]

<酵素溶液の取得方法>

(1) <u>ブルクホルデイア・セパシアKS1株からの酵素溶液</u>の取得:

ブルクホルデリア・セパシアKS1株の培養は、好気的培養条件で行った。より具体的には、KS1株の培養は、培養液1L当たりの組成が表1となるように調整された培地20Lを用いて、34℃で8時間行った。

[0.038]

【表1】

培地組成

ポリペプトン	10 g
酵母抽出液	1 g
NaCl	5 g
KH ₂ PO ₄	2 g
グルコース	5 g
Einol (ABLE Co. 東京 日本)	0.14g
Total、蒸留水	1 L
pH調製	7. 2

[0039]

[0040]

膜画分は、最終濃度でコール酸ナトリウムが1.5%、塩化カリウムが0.1 Mとなるように、 $10 \, \mathrm{mM}$ リン酸緩衝液($\mathrm{p}\, \mathrm{H}\, \mathrm{6}$)で再分散させ、 $4 \, \mathrm{C}\, \mathrm{c}$ 一夜撹拌し、 $30 \, \mathrm{k}\, \mathrm{U}\, \mathrm{o}\, \mathrm{GDH}\, \mathrm{e}\, \mathrm{e}$ む膜画分懸濁液を得た。この膜画分懸濁液を $10 \, \mathrm{C}\, \mathrm{c}\, \mathrm{17}\, \mathrm{T}\, \mathrm{x}\, \mathrm{g}$ 、 $90 \, \mathrm{f}\, \mathrm{l}$ 、超遠心分離することにより沈殿を除去し、 $26 \, \mathrm{k}\, \mathrm{U}\, \mathrm{o}\, \mathrm{GDH}\, \mathrm{e}\, \mathrm{e}\, \mathrm{f}\, \mathrm{e}\, \mathrm{f}\, \mathrm{e}\, \mathrm{e}\, \mathrm{f}\, \mathrm{e}\, \mathrm{e}\,$

[0041]

(2) 形質転換体からの粗酵素溶液の取得:

まず、 α 、 β 、 γ サブユニットをコードする配列を含む DNAを、常法にしたがって KS 1 株から取得した。次いで、前記 DNAをプラスミドRSF1010に導入して組み換えベクター(プラスミドRSFGDH γ α β)を形成し、この組み換えベクターをシュードモナス・プチダKT2440株(ATCC 47054)に導入して形質転換し、この形質転換体を培養して培養液を取得した。

[0042]

培養は、通常通りの好気的培養条件で行った。培養液は、3.2%ポリペプトン、2%酵母エキス、0.5%NaCl、2%グリセロール、0.05mL/LアデカノールLG-126 (旭電化 東京)、50 μ g/mLストレプトマイシン pH7.0を用いた。この培養液20Lに200mLの前培養液を植菌し、34 $\mathbb C$ で培養開始し、4時間後に0.2mMとなるようにIPTGを添加して

[0043]

800gの菌体を10mMリン酸緩衝液(pH8)に懸濁させ、高圧ホモジナイザー(500bar)で破砕した後、1%となるようにマイドール12(花王東京)を0.1MとなるようにKClを添加し30分間撹拌した。次ぎに、遠心分離(8,000×g、60分、10℃)により沈殿として細胞固形物を除去し、上清として粗酵素液を得た。粗酵素液は2,930kUのGDH活性を示し、比活性は22U/mgであった。

[0044]

<グルコース脱水素活性の測定方法>

グルコース脱水素活性は、グルコースの脱水素化に基づく、電子受容体の還元 反応を追跡することにより行った。電子受容体として2,6ージクロロフェノル インドフェノル(DCIP)及びフェナジンメトサルフェート(PMS)を用い た。

[0045]

具体的には、まず $20\,\mathrm{mM}$ グルコース、 $2\,\mathrm{mM}$ PMS及び $0.1\,\mathrm{mM}$ DC I Pを含む $47\,\mathrm{mM}$ リン酸緩衝液($p\,H\,6.0$) $900\,\mu$ Lを分光光度計のセルにいれ、 $37\,\mathrm{C}$ で3分間プレインキュベーションした。次ぎに、 $0.5\,\mathrm{c}$ 10 μ Lの酵素溶液を添加して、直ちに転倒混和して反応を開始させて $600\,\mathrm{nm}$ の吸光度低下を $37\,\mathrm{C}$ で時間とともに計測した。

[0046]

このDCIPの吸収波長である600nmの吸光度低下は、グルコースの脱水素化に基づく、電子受容体の還元反応によるものである。DCIPのモル吸光係数は4.76mM/cmを用いた。酵素1単位(U)は標準測定条件下で1分毎に 1μ Mのグルコースを酸化する量と定義した。タンパク質濃度は、UV法を用いて測定し、280nmにおける吸収が1の場合のタンパク質濃度を1g/Lと定義した。

[0047]

本実施例では、上述した手法によりKS1株から得た酵素溶液(可溶化GDH 画分)を、疎水クロマトグラフィーおよび陰イオン交換クロマトグラフィーを組み合わせて精製した。

[0048]

疎水クロマトグラフィーは、予め60mMリン酸緩衝液(pH6)で平衡化したOctyl sepharose 4 Fast Flowカラム(44mmID×20cm アマシャムバイオサイエンス)を用いて行った。可溶化GDH画分は、最終濃度が60mMとなるように1Mリン酸緩衝液(pH6)を加えて調製した後にカラムに供給した。続いて、60mMリン酸緩衝液(pH6)600mL、20mMリン酸緩衝液(pH8)を900mL通液した後に、強固に吸着したGDHを、20mMリン酸緩衝液(pH8)中のコール酸Na濃度が0~1重量%になるように、直線的グラジエントで溶出した。その流速は15mL/minで行った。その結果、GDHは、コール酸Naが濃度が約0.8重量%のときに溶出され、GDH活性を有する画分が340mL回収できた。この回収画分(Octyl回収画分)の活性を測定したところ、比活性108U/mg、総活性16kUであった。

[0049]

[0050]

なお、各操作後における液量、総活性、比活性、収率をまとめたものを、下記表2に示した。

[0051]

【表2】

	液量	総活性	比活性	収率
可溶化 GDH 画分	110mL	28 kU	6.8U/mg	100%
Octhyl 回収画分	340mL	16kU	108U/mg	57%
Q回収画分	340mL	14kU	770U/mg	50%

[0052]

実施例2:

本実施例では、上述した手法により形質転換体から得た粗酵素溶液を、疎水クロマトグラフィーおよび陰イオン交換クロマトグラフィーを組み合わせて精製した。

[0053]

疎水クロマトグラフィーでは、まず、予め 0. 1 MのK C 1 を含む 1 0 m M リン酸緩衝液(p H 8)で平衡化したPhenyl cellulofinカラム(3 0 0 m m I D × 1 0 c m チッソ、東京)に粗酵素液を供給して充填剤にG D H を保持させた。次ぎに、0. 1 MのK C 1 を含む 1 0 m M リン酸緩衝液(p H 8)7 L、1 0 m M リン酸緩衝液(p H 8)2 1 L を通液した後に、強固に吸着したG D H を 1 0 m M リン酸緩衝液(p H 8)中のコール酸 N a 濃度が 0~1 重量%になるように、直線的グラジエントで溶出した。その流速は 7 L / h r で行った。その結果、G D H は、コール酸 N a 濃度が約 0. 9 重量%のときに溶出され、活性画分が 7 3 0 0 m L 回収された。この回収画分(P h e n y l 回収画分)の活性を測定したところ、比活性 2 0 4 U / m g、総活性 5 9 6 k U であった。

[0054]

陰イオン交換クロマトグラフィーは、予め10mMリン酸緩衝液(pH8)で 平衡化したQ sepharose Fast Flowカラム(44mmID×20cm アマシャムバイオサイエンス)を用いて行った。Phenyl回収画分は、分画分子量5 0,000のラボモジュール(旭化成 東京)を用いて10mMリン酸緩衝液(pH8)にバッファー置換した後にカラムに供給した。次ぎに、10mMリン酸 緩衝液(pH8)を600mL、続いて1重量%コール酸Naを含有する10m

[0055]

なお、各操作後における液量、総活性、比活性、収率をまとめたものを、下記表3に示した。

[0056]

【表3】

	液量	総活性	比活性	収率
粗酵素溶液	1950mL	2930 kU	22U/mg	100%
Phenyl 回収画分	7300mL	596kU	204U/mg	20%
Q回収画分	315mL	390kU	1283U/mg	13%

[0057]

本実施例ではさらに、Phenyl回収画分およびQ回収画分をSDS-PAGEで電気泳動を行った。SDS-PAGEは、Tris-Tricine緩衝液を用いて8-25%ポリアクリルアミドの勾配ゲル中で実施した。ゲルを泳動したタンパク質については、CBB染色を施した。SDS-PAGE電気泳動の結果は、図1(a)に示した。同図においては、レーン2がPhenyl回収画分のCBB染色を、レーン3がQ回収画分のCBB染色をそれぞれ示している。

[0058]

<u>実施例3</u>:

本実施例では、上述した手法により形質転換体から得た粗酵素溶液を、疎水クロマトグラフィーおよび陰イオン交換クロマトグラフィーを組み合わせて精製した。

[0059]

疎水クロマトグラフィーは、実施例2と同様にして行い、回収溶液を限外濃縮

[0060]

[0061]

なお、各操作後における液量、総活性、比活性、収率をまとめたものを、下記表4に示した。

[0062]

【表4】

	液量	総活性	比活性	収率
粗酵素溶液	420ml	80 kU	59U/mg	100%
Phenyl 回収画分	70mL	21kU	300U/mg	26%
QAE回収画分	300mL	7. 8kU	1500U/mg	10%

[0063]

本実施例ではさらに、実施例2と同様な手法によりQAE回収画分をSDS-PAGEで電気泳動を行った後、タンパク質についてCBB染色を施した。SDS-PAGE電気泳動の結果は、図1(a)に示した。同図においては、レーン4がQAE回収画分を示している。

[0064]

比較例1:

本比較例では、上述した手法により形質転換体から得た粗酵素溶液を、疎水ク

[0065]

疎水クロマトグラフィーは、実施例2と同様にして行い、比括性314U/mg、総活性が256kUであるPhenyl回収画分を7200mL得た。ただし、本比較例では、Phenyl回収画分うちの総活性39kUに相当する1100mL(Qアプライ)について、次に説明する陰イオン交換クロマトグラフィーに使用した。

[0066]

陰イオン交換クロマトグラフィーは、予め10mMリン酸緩衝液(pH8)で平衡化したQ sepharose Fast Flowカラム(44mmID×13cm アマシャムバイオサイエンス)を用いて行った。このカラムにQアプライを供給した後、800mLの10mMリン酸緩衝液(pH8)を通液して非吸着タンパク質を洗い流した。その後、カラムに対して、10mMリン酸緩衝液(pH8)中のNaC1濃度が0~0.6Mとなるように溶離液を通じ、GDHを直線的グラジエントで溶出させた。その流速は7.5mL/minで行った。その結果、GDHは、NaC1濃度が約0.25Mと約0.4Mの2箇所に溶出し、140mLおよび360mLの活性画分が回収された。これらの活性画分(Q回収画分(1)およびQ回収画分(2)のそれぞれについて活性を測定したところ、Q回収画分(1)は、比活性600U/mg、総活性4.5kU、Q回収画分(2)は、比活性432U/mg、総活性12kUであった。

[0067]

なお、各操作後における液量、総活性、比活性、収率をまとめたものを、下記表 5 に示した。

[0068]

	液量	総活性	比活性	収率
粗酵素溶液	1250mL	1066 kU	36U/mg	100%
Phenyl 回収画分	7200mL	256kU	314U/mg	24%
Qアプライ	1100mL	39kU	314U/mg	24%
Q回収画分(1)	140mL	4. 5kU	600U/mg	3%
Q回収画分(2)	360mL	12kU	432 U/mg	7%

[0069]

本比較例ではさらに、実施例2と同様な手法によりPhenyl回収画分およびQ回収画分(1)をSDS-PAGEで電気泳動を行った後、タンパク質についてCBB染色を施した。SDS-PAGE電気泳動の結果は、図1(b)に示した。同図においては、レーン2がPhenyl回収画分を、レーン3がQ回収画分(1)をそれぞれ示している。

[0070]

比較例2:

本比較例では、比較例1で得られたPhenyl回収画分のうち、総活性74kUに相当する2100mL(QAEアプライ)から、陰イオン交換クロマトグラフィーを用いてGDHを精製した。

[0071]

陰イオン交換クロマトグラフィーは、予め10mMリン酸緩衝液(pH8)で平衡化したQAE-トヨパール550カラム(44mmID×10cm 東ソー東京)を用いて行った。このカラムには、まずQAE回収画分(総活性74kU)を供給した。次いで、800mLの10mMリン酸緩衝液(pH8)を通液して非吸着タンパク質を洗い流した。その後、カラムに対して、10mMリン酸緩衝液(pH8)中のKC1濃度が0~1Mとなるように溶離液を通じ、GDHを直線的グラジエントで溶出させた。その流速は5mL/minで行った。その結果、GDHは、KC1濃度が約0.23Mと約0.43Mの2箇所に溶出し、

[0072]

なお、各操作後における液量、総活性、比活性、収率をまとめたものを、下記表6に示した。

[0073]

【表 6】

	液量	総活性	比活性	収率
粗酵素溶液	1250mL	1066 kU	36U/mg	100%
Phenyl 回収画分	7200mL	256kU	314U/mg	24%
QAEアプライ	2100mL	74 k U	314U/mg	24%
QAE回収画分(1)	200mL	7.4kU	399U/mg	2%
QAE回収画分(2)	400mL	6.4kU	217U/mg	2%

[0074]

本比較例ではさらに、実施例2と同様な手法によりQAE回収画分(2)をSDS-PAGEで電気泳動を行った後、タンパク質についてCBB染色を施した。SDS-PAGE電気泳動の結果は、図1(b)に示した。同図においては、レーン4がQAE回収画分(2)を示している。

[0075]

<結果の検討>

表2~表6から分かるように、溶離剤としてコール酸Naを用いてGDHを溶出させた場合には(実施例1から3)、溶離剤としてNaClやKClを用いてGDHをグラジエント溶出させた場合(比較例1および2)に比べ、最終的な比活性が高く、効率よくGDHが精製されている。この点については、図1(a)

ページ: 21/E

および(b)にも明確に表れている。つまり、KS1株由来のGDHは、 α 、 β 、 γ サプユニットからなるが、これらのサプユニットの還元条件下でのSDS-ポリアクリルアミドゲル電気泳動における分子量は、それぞれ約60kD、約43kDa,および約14kDaである。この点を踏まえて図1(a)および(b)をみれば、実施例2および3で得られる回収画分では、比較例1および2で得られる回収画分に比べて、 α 、 β 、 γ サブユニットに相当するバンドが大きく、その他の分子量のタンパク質が少なくなっている。したがって、疎水クロマトグラフィーや陰イオン交換クロマトグラフィーを組み合わせてGDHを精製する際に、コール酸Naを用いてGDHを溶出させた場合には、効率よくGDHが精製できるといえる。

【図面の簡単な説明】

【図1】

陰イオン交換クロマトグラフィー後の精製酵素のSDS-PAGEの結果を示したものであり、(a) は溶離剤としてコール酸Naを用いた精製酵素について結果であり、(b) は溶離剤としてNaClまたはKClを用いた精製酵素についての結果である。

図面

【図1】

(a) コール酸 Na(イソクラテック法)

レーン1:マーカー

レーン2:実施例2のPhenyl 回収画分

レーン3:実施例2の0回収画分

レーン4:実施例3のQAE 回収画分

(b) NaClorKCI (グラジエント法)

レーン1:マーカー

レーン2:比較例1のPhenyl回収画分

レーン3:比較例1のQ回収画分(1)

レーン4:比較例2のQAE 回収画分(2)

【書類名】 要約書

【要約】

【課題】 本発明は、タンパク質の新規な精製方法を提供することを課題としている。

【解決手段】 電子伝達タンパク質を含む目的タンパク質が溶解したタンパク質溶液から、液体クロマトグラフィーを利用して目的タンパク質を精製する方法において、液体クロマトグラフィーを、充填剤が充填された充填槽にタンパク質溶液を導入して充填剤と目的タンパク質とを結合させた後に不純物を除去し、ヒドロキシコラン酸塩を含む溶離液を用いて、充填剤から目的タンパク質を溶離させることにより行う。

【選択図】 なし

特願2002-253742

出 願 人 履 歴 情 報

識別番号

[000141897].

1. 変更年月日 [変更理由] 住 所 氏 名 2000年 6月12日 名称変更

京都府京都市南区東九条西明田町57番地アークレイ株式会社

特願2002-253742

出願人履歴情報

識別番号

[000004503]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月 7日 新規登録 兵庫県尼崎市東本町1丁目50番地 ユニチカ株式会社