

Clases 4 y 5: OLS

Denise Laroze

5 de octubre de 2018

CESS - Universidad de Santiago denise.laroze@usach.cl

Resumen de contenidos

Not so (Ordinary) Least Squares

Regresión Múltiple

Functional Form

Violaciones de supuestos - endogeneidad

Not so (Ordinary) Least Squares

Supuestos - Recordar

- 1. Linearidad
- 2. Full Rank (relevante para regressiones múltiples)
- 3. Exogeneidad de covariables $E[\epsilon_i|X=0]$. el valor esperado de las discrepancias o "errores" en la observación i no es una función de las covariables.
- 4. homoskedasticidad y no auto-correlación de los "errores": Que ϵ_i tiene varianza constante y no está correlacionado con ninguna otra ϵ_j
- 5. Que los datos son generados exógenamente: el proceso de generación de los datos es externo a los supuestos del modelo, lo que implica que es externo a el/los procesos que generan ϵ . En otras palabras, las covariables y los disturbios no están correlacionados.
- 6. Los disturbios ("errores") se distribuyen normalmente. Más específicamente $\epsilon | X \sim N(0, \sigma^2)$

Importancia de ϵ

$$b = (X'X)^{-1}X'Y.$$

$$= (X'X)^{-1}X'(X\beta + \epsilon).$$

$$= (X'X)^{-1}(X'X)\beta + (X'X)^{-1}X'\epsilon.$$

$$= \beta + (X'X)^{-1}X'\epsilon.$$
Take expected values over X.
$$E[b|X] = \beta + E[(X'X)^{-1}X'\epsilon|X].$$

$$E[b|X] = \beta.$$

л

Regresión Múltiple

Regresión lineal múltiple

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_n X_n + \epsilon$$

Regresión lineal múltiple

Dummy variables

Regresión lineal múltiple

¿Cómo se interpretan los siguientes resultados?

	(1)	(2)
x1	0.112***	0.099***
	(0.006)	(0.006)
×2	0.452***	0.525***
	(0.027)	(0.027)
x3	1.472***	1.540***
	(0.125)	(0.124)
factor(x4)1		6.041***
		(0.280)
factor(x4)2		3.494***
		(0.271)
factor(x4)3		0.165
		(0.279)
factor(x4)4		4.146***
		(0.360)
Constant	4.929***	4.750***
	(0.094)	(0.259)
Observations	1,000	1,000
R^2	0.421	0.690
Adjusted R ²	0.419	0.687
F Statistic	241.250*** (df = 3; 996)	314.843*** (df = 7; 992)

Variables Categóricas

¿Cómo evaluar si una variable aporta a la explicación de la varianza de Y?

¿Cómo evaluar si una variable aporta a la explicación de la varianza de Y?

t-test

¿Cómo evaluar si una variable aporta a la explicación de la varianza de Y?

t-test

¿Cómo saber si una variable categórica o conjunto de variables son un aporte al modelo de estimación o no?

¿Cómo evaluar si una variable aporta a la explicación de la varianza de Y?

t-test

¿Cómo saber si una variable categórica o conjunto de variables son un aporte al modelo de estimación o no?

F-test

$$F = \frac{(R_a^2 - R_0^2)/(k_a - k_0)}{(1 - R_a^2)/[n - (K_a + 1)]}$$

$$F = \frac{(R_{cambio}^2)/df_{cambio}}{(1 - R_a^2)/[n - (K_a + 1)]}$$

Donde R_a^2 corresponde al del modelo completo y R_0^2 al del modelo restringido.

Buen use del F-test

La prueba de F sólo se puede hacer si el modelo restringido es un subconjunto del modelo completo.

1)
$$y = \alpha + \beta_1 x 1 + \beta_2 x 2 + \beta_3 x 3 + \beta_4 x 4 + \epsilon$$

$$2)y = \alpha + \beta_1 x 1 + \beta_2 x 2 + \epsilon$$

3)
$$y = \alpha + \beta_1 x 1 + \beta_2 x 2 + \beta_3 x 3 + \beta_5 x 5 + \epsilon$$

Comparar modelo 1) y 2) Sí, modelo 1) y 3) NO

Functional Form

Efectos no lineales

Función real: $y < -5 + 1.3 * x1 - 0.05 * x1^2 + e$

	(1)	(2)
×1	0.869***	1.318***
	(0.026)	(0.020)
I(x1^2)		-0.048***
		(0.001)
Constant	1.373***	4.849***
	(0.278)	(0.198)
Observations	1,000	1,000
R^2	0.530	0.811
Adjusted R ²	0.529	0.810
F Statistic	1,124.753*** (df = 1; 998)	2,136.135*** (df = 2; 997)
-		

Note:

*p<0.1; **p<0.05; ***p<0.01

Interacciones

Función real: y < -5 + 0.1 * x1 + 0.5 * x2 + 1.5 * x3 + -0.9 * x2 * x3 + e

	(1)	(2)
×1	0.109***	0.112***
	(0.007)	(0.006)
×2	-0.019	0.450***
	(0.030)	(0.039)
x3	1.381***	1.471***
	(0.142)	(0.125)
x2*x3		-0.897***
		(0.053)
Constant	5.004***	4.929***
	(0.106)	(0.094)
Observations	1,000	1,000
R^2	0.238	0.406
Adjusted R ²	0.235	0.403
Residual Std. Error	2.240 (df = 996)	1.979 (df = 995)
F Statistic	103.438*** (df = 3; 996)	169.846*** (df = 4; 995)

Note:

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Sin interacción - cuando existe

Con interacción - cuando existe

Efecto Marginal de X2

$$y < -\alpha + \beta_1 * x1 + \beta_2 * x2 + \beta_3 * x3 + \beta_4 * x2 * x3 + e$$

$$y < -5 + 0.1 * x1 + 0.5 * x2 + 1.5 * x3 - 0.9 * x2 * x3 + e$$

$$\frac{dE[y|x]}{dx2} = 0.5 - 0.9 * x3$$

Efecto Marginal de X2

$$y < -\alpha + \beta_1 * x1 + \beta_2 * x2 + \beta_3 * x3 + \beta_4 * x2 * x3 + e$$

$$y < -5 + 0.1 * x1 + 0.5 * x2 + 1.5 * x3 - 0.9 * x2 * x3 + e$$

$$\frac{dE[y|x]}{dx2} = 0.5 - 0.9 * x3$$

¿Pero cuál es la varianza de x2? ¿Por qué importa?

Efecto Marginal de X2

$$y < -\alpha + \beta_1 * x1 + \beta_2 * x2 + \beta_3 * x3 + \beta_4 * x2 * x3 + e$$

$$y < -5 + 0.1 * x1 + 0.5 * x2 + 1.5 * x3 - 0.9 * x2 * x3 + e$$

$$\frac{dE[y|x]}{dx^2} = 0.5 - 0.9 * x3$$

¿Pero cuál es la varianza de x2? ¿Por qué importa?

Delta method

$$Var(\beta_2 - \beta_4 * x3) = 1^2 + Var(\beta_2) + x3^2 + Var(\beta_4) + (2)(1)(x3)Cov(\beta_2, \beta_4)$$

Multicolinealidad

Violaciones de supuestos -

endogeneidad

Temas a considerar

Causalidad: X --> Y

Causalidad inversa: X < --Y

Simultaneidad: X < --> Y

Variables Omitidas:

Causalidad inversa

Omitted Variable Bias

$$Y = b_0 + b_1 X + e$$

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \varepsilon$$

$$b_1 \neq \beta_1$$

Omitted Variable Bias

$$b_1 \approx A + B$$

 $\beta_1 \approx A$
 $bias \approx B$
 $\beta_1 = b_1 - bias \approx (A + B) - B$