

Cloud Service Engineering

Dr. Jens Nimis

24. AIK-Symposium 23. Oktober 2009, Karlsruhe

Agenda – Part 1

- Part 1: What is Cloud Computing?
 - Definition(s)
 - Opportunities
- Part 2: The Cloud Ecosystem
- Part 3: Cloud Computing Research

Some Remarks on Cloud Definitions

- "[…] unfortunately the marketing guys got hold of the term before the technicians had known what Cloud Computing is […]" (Anonymous)
- A lot of semi-serious definitions:
 - Cloud = Grid made right
 Cloud = Grid made easy
 - Grid: from Science for Science
 Cloud: from Business for Business
- Let's be serious...

Some Serious Definition Attempts

- UCBerkeley RADLabs: "Cloud computing has the following characteristics: (1) The illusion of infinite computing resources... (2) The elimination of an up-front commitment by Cloud users... (3). The ability to pay for use...as needed..."
 - → business perspective
- Wikipedia: ".. a style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet"
 → technical perspective
- McKinsey: "Clouds are hardware-based services offering compute, network and storage capacity where: Hardware management is highly abstracted from the buyer, Buyers incur infrastructure costs as variable OPEX, and Infrastructure capacity is highly elastic"
 - → only one kind of Cloud

Our Understanding and Definition

"Building on compute and storage virtualization, cloud computing provides scalable, network-centric, abstracted IT infrastructure, platforms, and applications as on-demand services that are billed by consumption."

Common ground:

- Virtualisation/abstraction
- Scalability
- XaaS
- Web technologies
- Pay per use

How strict?

- Clouds are fuzzy things...
- What about monthly rents?

More Fundamental View: CC as a Disruptive Transformation in IT

 Simon Wardley: "Cloud Computing- Why IT Matters", OSCON 09 http://www.youtube.com/watch_popup?v=okqLxzWS5R4#t=347

Compares CC to the (undefineable) industrial revolution:

His definition:
 Cloud Computing is a generic term used to describe
 the disruptive transformation in IT towards a service based economy
 driven by a set of economic, cultural and technological conditions

Cloud Computing Opportunities

Creation of new businesses

- Faster time-to-market, and cost-effective innovation processes
- Dynamic (trans-)formation of open service and business networks
- Leveraging the participation Web and mass programming

Internet-scale service computing

- Provide and consume sophisticated infrastructure, platforms and business applications as modular (Web) services
- Disrupt traditional industries and offer rich, highly dynamic experiences

Classical enterprise-grade systems management

- Under-utilized server resources waste computing power and energy
- Over-utilized servers cause interruption or degradation of service levels

Well-known Examples: NYT, animoto,...

- New York Times:
 - Bulk PDF production of scanned articles
- Animoto
 - does not own any IT-infrastructure
 - Scalability (elasticity) through Cloud services

Cloud Computing in the Technology Crystal Ball

[Gartner, July 2009]

Cloud Computing is on the top of Gartner's "Peak of Inflated Expectations".

Agenda – Part 2 FZI

- Part 1: What is Cloud Computing?
- Part 2: The Cloud Ecosystem
 - Cloud Architecture
 - Cloud Players
- Part 3: Cloud Computing Research

Technical Cloud Architecture: Cloud Computing Stack

- Generic Approach
- Layered architecture
- Everything as a Service concept
 - Standard layers
 - Infrastructure as a Service
 - Platform as a Service
 - Software as a Service
 - Extra Layers
 - Human as a Service
 - Administration/Business Support

Infrastructure as a Service

Infrastructure Services

- Storage
- Computational
- Network
- Database
- e.g. Google Bigtable,
 GoogleFS, Hadoop
 MapReduce, HadoopFS

Resource Set

- Machine Images
- e.g. EC2, Eucalyptus

Platform as a Service

Programming Environment

- Programming Language, Libraries
- e.g. Django, Java

Execution Environment

- Runtime Environment
- e.g. Google App Engine,
 Java Virtual Machine

Software as a Service

Applications

- User Interface
- Frontend Application
- e.g. Google Docs,
 Yahoo Email

Application Services

- Webservices Interface
- Basic or Composite
- e.g. Opensocial, Google Maps

Human as a Service

Crowdsourcing

- Enabling Collective Intelligence
- e.g. Mechanical Turk

Information Markets

- Prediction of events
- e.g. Iowa Electronic Markets

Cloud Architecture → Cloud Players

Categorization of Cloud Players

Cloud infrastructure service providers – raw cloud resources laaS (infrastructure-as-a-service)

Cloud platform providers – resources + frameworks; PaaS (platform-as-a-service)

Cloud intermediares – help broker some aspect of raw resources and frameworks, e.g.,

server managers, application assemblers, application hosting

Cloud application providers (SaaS)

Cloud consumers – users of the above

Agenda – Part 3 FZI

- Part 1: What is Cloud Computing?
- Part 2: The Cloud Ecosystem
- Part 3: Cloud Computing Research
 - In general
 - At eOrganization

Top 10 Obstacles to Cloud Computing

Table 1: Quick Preview of Top 10 Obstacles to and Opportunities for Growth of Cloud Computing.

	Obstacle	Opportunity
1	Availability of Service	Use Multiple Cloud Providers; Use Elasticity to Prevent DDOS
2	Data Lock-In	Standardize APIs; Compatible SW to enable Surge Computing
3	Data Confidentiality and Auditability	Deploy Encryption, VLANs, Firewalls; Geographical Data Storage
4	Data Transfer Bottlenecks	FedExing Disks; Data Backup/Archival; Higher BW Switches
5	Performance Unpredictability	Improved VM Support; Flash Memory; Gang Schedule VMs
6	Scalable Storage	Invent Scalable Store
7	Bugs in Large Distributed Systems	Invent Debugger that relies on Distributed VMs
8	Scaling Quickly	Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9	Reputation Fate Sharing	Offer reputation-guarding services like those for email
10	Software Licensing	Pay-for-use licenses; Bulk use sales

Above the Clouds: A Berkeley View of Cloud Computing. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I und ZahariaM. Technical Report No. UCB/EECS-2009-28. Electrical Engineering and Computer Sciences. University of California at Berkeley. USA. 2009

On a more Generic Level Obstacles become Research Questions

- Network Constraints / Reliability / Scalability
 - Unorthodox ideas already adress some issues (e.g. AWS Import/Export)
 - VPN aaS with guarantees
 - → Smart system architectures will outperform traditional systems
- Portability / Lock-In
 - Open Source clones
 - → Standardization
- Security
 - Security specialists care at provider sites and channels can be secured
 - Secure parallelization algorithms
 - → Could become an organizational or trust issue
- And many more:
 - End-to-End SLAs
 - Licenses
 - Regulations

And many more activities like:

And many more activities like:

Cloud Computing Lecture W. SCC

Cloud Computing Lecture W. Stgt & IBM BB

Strategic alliance W. U. Stgt & IBM BB

CC @ www.eOrganization.de Some select activities

Business Cases & Perspectives Business Cases and Cloud TCO

- E.g. CC business cases for T-Com (w. T-Labs)
- Cloud Computing Adoption
 - CC maturity model incl. online tool (w. IBM D,...)

Cloud Ecosystem Cloud Value Creation

- Cloud offering value creation for intermediairies (EU)
- Architecture of "the Cloud" (see above)

"The Cloud"

25

Cloud Engineering

- Cloud Engineering
 - Dev. support for Cloud-patterns (w. T-Labs)
 - Business continuity services (IBM Watson)
 - **Cloud Application Development**
 - "Cloudification" of existing apps (OpenCirrus/HP)
 - Cloud Platforms and Testbeds for Service Networks
 - EU projects (w. T-Systems, SAP, IBM,...)

Cloud Management & Provisioning

- SAP Landscape Provisioning and Demos
 - Mgmt and Reliability of VPDC (w. fluidOps)
 - SLA mgmt for complex systems (w. SAP Research)

Cloud TCO Framework – the General Approach

Framework for estimating value and determine benefits from Cloud Computing as an alternative to conventional IT infrastructure.

Collect real-world use cases and identify typical scenarios

Examine key aspects from business and IT perspective

business objectives

- foster innovation
- rapid prototyping
- leverage Web as platform

demand behavior

- seasonal
- temporary spikes
- unpredictable

IT requirements

- scalability
- reliable and stable platform
- high availability

Understand and valuate benefits from cloud computing

estimate costs

- variable costs
- fixed costs
- time to market

estimate value

- Business value
- Economic value

derive strategies

- Decision processes
- Recommendations
- Business transformation

Cloud TCO Framework – Systematization

And many more activities like:

And many more activities like:

Cloud Computing Lecture W. SCC

Cloud Computing Lecture W. Stgt & IBM BB

Strategic alliance W. U. Stgt & IBM BB

CC @ www.eOrganization.de Some select activities

Business Cases & Perspectives

Cloud Ecosystem

"The Cloud"

Cloud Engineering

Cloud Management & Provisioning

Business Cases and Cloud TCO

- E.g. CC business cases for T-Com (w. T-Labs)
- Cloud Computing Adoption
 - CC maturity model incl. online tool (w. IBM D,...)
- Cloud Value Creation
 - Cloud offering value creation for intermediairies (EU)
- Architecture of "the Cloud" (see above)
- Cloud Engineering
 - Dev. support for Cloud-patterns (w. T-Labs)
 - Business continuity services (IBM Watson)
 - Cloud Application Development
 - "Cloudification" of existing apps (OpenCirrus/HP)
 - Cloud Platforms and Testbeds for Service Networks
 - EU projects (w. T-Systems, SAP, IBM,...)
 - SAP Landscape Provisioning and Demos
 - Mgmt and Reliability of VPDC (w. fluidOps)
 - SLA mgmt for complex systems (w. SAP Research)

IT-Service Continuity Management Top-down approach for Cloud-based recovery.

- Novel approach to deliver ITSCM through orchestrating
 - cloud services,
 - supporting services and
 - people services
- Based on the separation of an ITservice into
 - Business Service Configuration Item (replicated on a VM image at cloud service provider)
 - Service Business Data
 (using file system or database
 backup and recovery mechanisms)
- Currently ongoing:
 - estimation of over-all cost of end to end ITSCM Invocation & Recovery and On-Going Operations processes

And many more activities like:

And many more activities like:

Cloud Computing Lecture W. SCC

Cloud Computing Lecture W. Stgt & IBM BB

Strategic alliance W. U. Stgt & IBM BB

CC @ www.eOrganization.de Some select activities

Business Cases & Perspectives

> Cloud Ecosystem

"The Cloud"

Cloud Engineering

Cloud Management & Provisioning

Business Cases and Cloud TCO

- E.g. CC business cases for T-Com (w. T-Labs)
- Cloud Computing Adoption
 - CC maturity model incl. online tool (w. IBM D,...)
- Cloud Value Creation
 - Cloud offering value creation for intermediairies (EU)
- Architecture of "the Cloud" (see above)
- Cloud Engineering
 - Dev. support for Cloud-patterns (w. T-Labs)
 - Business continuity services (IBM Watson)
 - Cloud Application Development
 - "Cloudification" of existing apps (OpenCirrus/HP)
 - Cloud Platforms and Testbeds for Service Networks
 - EU projects (w. T-Systems, SAP, IBM,...)
 - SAP Landscape Provisioning and Demos
 - Mgmt and Reliability of VPDC (w. fluidOps)
 - SLA mgmt for complex systems (w. SAP Research)

SAP on Cloud Demo Simple experimentation environment w. SAP CEC.

And many more activities like:

And many more activities like:

Cloud Computing Lecture W. & IBM BB

The Strategic alliance W. U. Stgt & IBM BB

CC @ www.eOrganization.de Some select activities

Business Cases & Perspectives

> Cloud Ecosystem

"The Cloud"

Cloud Engineering

Cloud Management & Provisioning

Business Cases and Cloud TCO

- E.g. CC business cases for T-Com (w. T-Labs)
- **Cloud Computing Adoption**
 - CC maturity model incl. online tool (w. IBM D,...)
- **Cloud Value Creation**
 - Cloud offering value creation for intermediairies (EU)
- Architecture of "the Cloud" (see above)
- Cloud Engineering
 - Dev. support for Cloud-patterns (w. T-Labs)
 - Business continuity services (IBM Watson)
 - **Cloud Application Development**
 - "Cloudification" of existing appe (OpenCirrus/HP)
 - Cloud Platforms and Testbeds for Service Networks
 - EU projects (w. T-Systems, SAP, IBM,...)
 - SAP Landscape Provisioning and Demos
 - Mgmt and Reliability of VPDC (w. fluidOps)
 - SLA mgmt for complex systems (w. SAP Research)

More information: http://cloudwiki.fzi.de

Questions? Thank you!

- Part 1: What is Cloud Computing?
 - Definition(s)
 - Opportunities
- Part 2: The Cloud Ecosystem
 - Cloud Architecture
 - Cloud Players
- Part 3: Cloud Computing Research
 - In general
 - At eOrganization

Thanks to:

- [JB] Dr. James Broberg, U. Melbourne, CC-Tutorial at CCGrid 2009 http://www.slideshare.net/jamesbroberg/introduction-to-cloud-computing-ccgrid-2009
- [MM] Michael Maximilien, IBM
- [MKCB] Dr. Marcel Kunze und Christian Baun, KIT SCC
- Stefan Tai, Alex Lenk, Markus Klems, Sebastian Schmidt ,...