Advance Calculus Exercise

Exercise 1 (Chapter 1)

1. Let a and b be two real numbers. If $a \leq b + \epsilon$ for any $\epsilon > 0$, then a < b.

Solution. If not,
$$a>b\implies a-b>0$$
. For $\epsilon=\frac{a-b}{2}>0$
$$a\le b+\frac{a-b}{2}=\frac{a+b}{2}$$
 $\implies a\le b(\to\leftarrow)$

2.

- (a) If $r, s \in \mathbb{Q}$, then r + s and rs are rational.
- (b) If $r \in \mathbb{Q}$ with $r \neq 0$ and $x \in \mathbb{R} \mathbb{Q}$, then r + x and rx are irrational.

Solution.

(a) Given $r, s \in \mathbb{Q}$, $r = \frac{a}{b}$, $s = \frac{c}{d}$ where $a, b, c, d \in \mathbb{Z}$, $b, d \neq 0$. Thus,

$$r + s = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \in \mathbb{Q}$$
$$rs = \frac{ac}{bd} \in \mathbb{Q}$$

- (b) If not, $r + x, rx \in \mathbb{Q}$. Since $r + x \in \mathbb{Q}$ and $r \in \mathbb{Q}$, $(r + x) r = x \in \mathbb{Q}(\rightarrow \leftarrow)$ to $x \in \mathbb{R} \mathbb{Q}$ Since $rx \in \mathbb{Q}$ and $r \in \mathbb{Q}$, $r^{-1}(rx) = x \in \mathbb{Q}(\rightarrow \leftarrow)$
- 3. Let $f: X \to Y$ be a function. If $B \subseteq Y$, we denote by $f^{-1}(B)$ the largest subset of X which f maps into B. That is,

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}$$

The set $f^{-1}(B)$ is called the inverse image of B under f. Prove the following for arbitrary $A, A_1, A_2 \subseteq X$ and $B, B_1, B_2 \subseteq Y$

- (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$. Given an example such that the inclusion is strict.
- (c) $A \subseteq f^{-1}[f(A)]$ and $f[f^{-1}(B)] \subseteq B$. Given an example such that the inclusion is strict.

(d) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ and $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_1 \cup B_2)$

Solution.

- (a)
- (\subseteq) Given $y \in f(A_1 \cup A_2), y = f(x)$ for some $x \in A_1 \cup A_2 \implies$ $y = f(x), x \in A_1 \text{ or } y = f(x), x \in A_2 \implies y \in f(A_1) \text{ or }$ $y \in f(A_2) \implies y \in f(A_1) \cup f(A_2)$
- (\supseteq)
- (b)
- (c) Given $x \in A, f(x) \in f(A) \implies x \in f^{-1}[f(A)].$

Conversely, it is not true. Consider $f: \mathbb{Q} \to \mathbb{R}$ by f(x) = x^2 , $A = \{1\}$, Clearly, $f^{-1}[f(A)] = \{-1, 1\}$. Thus, $A = \{1\} \subseteq \{1\}$ $\{-1,1\} = f^{-1}[f(A)]$

(d)

4. Let E be a nonempty subset of an order set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Solution. Suppose α is a non-empty subset of an order set. Suppose α is a lower bound of E and β is an upper bound of E. This means

$$\alpha \le x \text{ and } x \le \beta \forall x \in E$$

Since $E \neq \emptyset$, choose $x \in E$, then $\alpha \leq x$ and $x \leq \beta$. By transitivity, $\alpha \leq \beta$

- 5. Let A, B be two nonempty sets of \mathbb{R}
- (a) If $A \subseteq B$, then $\sup A \le \sup B$ and $\inf A \ge \inf B$.
- (b) Show that $\inf A \leq \sup A$.
- (c) Show that $\inf(-A) = -\sup A$ and $\sup(-A) = -\inf(A)$, where $-A = \{-a \mid a \in A\}$
- (d) Show that $\sup(A+B) = \sup A + \sup B$ and $\inf(A+B) = \inf A +$ inf B, where $A + B = \{a + b \mid a \in A, b \in B\}$, the Minkowski sum of A and B.
- (e) If A, B be two sets of positive numbers which is bounded above. Let $\alpha = \sup A$, $b = \sup B$ and $C = \{ab \mid a \in A, b \in B\}$. Prove that $\sup C = ab$.

Solution.

(a) Suppose $A \subseteq B$. To prove $\sup A \leq \sup B$

- (*) If A is unbdd above, then B is also. Thus, $\sup A = +\infty = \sup B$
- (*) If A is bdd above then we have two cases
 - $(*_1)$ If B is unbdd above, then the result follows trivilly
 - (*2) If B is bdd above, then $\sup A$, $\sup B$ exist and finite, say $\sup A = \alpha$ and $\sup B = \beta$. Now, to prove that $\alpha \leq \beta$. Given $\epsilon > 0$, since $\sup A = \alpha$, $\exists a \in A \ni \alpha - \epsilon < a$. Since $A \subseteq B$ and $\beta = \sup B$, $a \in B$ and $a \leq \beta$

(b)

(c)

(d) To prove $\sup(A+B) = \alpha + \beta$ If A or B is unbdd above, then the result follows trivially

If A and B are bdd above, say $\sup A = \alpha$ and $\sup B = \beta$ Claim: $\sup(A + B) = \alpha + \beta$

- (i) Given $x \in A + B$, x = a + b for some $a \in A$ and $b \in B$. Since $\alpha = \sup A$ and $\beta = \sup B$, $a \le \alpha$ and $b \le \beta \implies x = a + b \le \alpha + \beta$
- (ii) Given $\epsilon > 0$, since $\alpha = \sup A$ and $\beta = \sup B$, $\exists a \in A, b \in B$, $\alpha \frac{\epsilon}{2} < a$ and $\beta \frac{\epsilon}{2} < b \implies \alpha + \beta \epsilon < a + b$ and $a + b \in A + B$

Hence $\sup(A+B) = \alpha + \beta$

(e) Given $c \in C$, c = xy for some $x \in A, y \in B$. Then $0 < x \le a$ and $0 < y \le b \implies xy \le ab$. Hence $\sup C \le ab$. Now to prove $\sup C \ge ab$. $\forall x \in A, y \in B$

$$\sup C \ge xy \implies \frac{\sup C}{x} \ge y \implies \frac{\sup C}{x} \ge b$$

$$\implies \frac{\sup C}{b} \ge x \implies \frac{\sup C}{b} \ge a \implies \sup C \ge ab$$

Hence, $\sup C = ab$

- 6. Prove or disprove the following statement by given a counterexample:
- (a) $\sup(A \cap B) \le \inf\{\sup A, \sup B\}$
- (b) $\sup(A \cap B) = \inf\{\sup A, \sup B\}$
- (c) $\sup(A \cap B) \ge \sup\{\sup A, \sup B\}$
- (d) $\sup(A \cap B) = \sup\{\sup A, \sup B\}$

Solution.

7. Let $A, B \subseteq \mathbb{R}$ such that $\sup A = \sup B$ and $\inf A = \inf B$. Does A = B?

Solution.

8. Fix b > 1.

(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence, it makes sense to define $b^r = (b^m)^{1/n}$

- (b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence, it make sense to define

$$b^x = \sup B(x)$$

for every real x.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Solution. Recall. Thm (Existence of n^{th} root): $\forall x \in \mathbb{R}, x > 0$ and $n \ in \mathbb{N} \exists 1y > 0 \ni y^n = x(y = x^{\frac{1}{n}}) \ , \ x^{\frac{m}{n}} = (x^{\frac{1}{n}})^m = (x^m)^{\frac{1}{n}}$

(a) If m = 0 or p = 1 then the result trivial. Suppose $m \neq 0$ and $p \neq 0$. Since $\frac{m}{n} = \frac{p}{q}$, mq = np. By the existence of n^{th} root, it satisfies to show that $((b^p)^{\frac{1}{q}})^n = b^m$

$$((b^p)^{\frac{1}{q}})^n = ((b^{\frac{1}{q}})^p)^n = (b^{\frac{1}{q}})^{pn} = (b^{\frac{1}{q}})^{mq} = ((b^{\frac{1}{q}})^q)^m = b^m$$

(b) Given $r, s \in \mathbb{Q}$. We can write $r = \frac{m}{n}$ and $s = \frac{p}{q}$, where $n, m, p, q \in \mathbb{Z}$ with n, q > 0. Then $b^{r+s} = b^{\frac{np+mq}{nq}}$. This means b^{r+s} is the unique real number $\ni (b^{r+s})^{nq} = b^{np+mq}$.

Claim: $(b^r b^s)^n q = b^{np+mq}$

 $(b^r b^s)^{nq} = b^{rnq} b^{snq} = b^{mq} b^{np} = b^{np+mq}$. Thus, $b^{r+s} = b^r b^s$

- (c) First, we prove that if r < s, then $b^r < b^s \forall r, s \in \mathbb{Q}$
 - *1 If r = 0, then $b^r = 1$ write $s = \frac{m}{n} > r = 0$, where $m, n \in \mathbb{N}$ with $n \neq 0$. Since b^s is the unique real number such that $(b^s)^n = b^m$ and b > 1 we get $b^r = 1 < b^m = (b^s)^n \Rightarrow b^r < b^s$

 \star_2 If s=0, then consider the same result of \star_1

 \star_3 If r < 0 < s, then $b^r < 1$ and $b^s > 1$. Hence $b^r < b^s$

- \star_4 If 0 < r < s. Write $r = \frac{p}{q}$ and $s = \frac{m}{n}$, where $n, m, p, q \in \mathbb{N}$. Then $r = \frac{np}{nq} < \frac{mq}{nq} = s$ By (a), we have $b^r = b^{\frac{p}{q}} = b^{\frac{np}{nq}} = (b^{\frac{1}{nq}})^{np} < (b^{\frac{1}{n1}})^{mq} = b^s$
- \star_5 If r < s < 0, then consider 0 < -s < -r. By \star_4 , we are done.

Hence, in any case, we have b^r is the upper bound of B(r) where $r \in \mathbb{Q}$ Finally, to prove that b^r is the smallest on. We need some facts.

- (i) $\forall n \in \mathbb{N}, b^n 1 \ge n(b-1)$
- (ii) If t > 1 and $n > \frac{(b-1)}{(t-1)}$, then $b^{\frac{1}{n}} < t$. By replacing $b = b^{\frac{1}{n}}$ in (i), we get $\forall n \in \mathbb{N}, b-1 \geq n(b^{\frac{1}{n}}-1)$ Thus, $n > \frac{b-1}{t-1} \geq \frac{n(b^{\frac{1}{n}}-1)}{t-1} \Longrightarrow b^{\frac{1}{n}}-1 < t-1 \Longrightarrow b^{\frac{1}{n}} \leq t$. If $\alpha < b^r$, we must find $q \in \mathbb{Q}$ and $q = b^q > \alpha$. If $\alpha \leq 0$, then trivial If $0 < \alpha < b^r$ Changing $t = \frac{b^r}{\alpha} > 1$ in (ii) and choose $n \in \mathbb{N} \ni n > \frac{(b-1)}{(t-1)}$. We get $b^{\frac{1}{n}} < \frac{b^r}{\alpha} \Longrightarrow \alpha < b^{r-\frac{1}{n}}$ Choose
- $q = r \frac{1}{n} \text{ and we are done.}$ (d) Prove that $b^{x+y} = b^x b^y \forall x, y \in \mathbb{R}$. From (c), $b^x = \sup\{b^r \mid r \in \mathbb{Q}, r \leq X\}, \ b^y = \sup\{b^s \mid s \in \mathbb{Q}, s \leq y\}$. Thus, $b^x b^y = \sup\{b^{r+s} \mid r, sin\mathbb{Q}, r+s \leq x+y\} = b^{x+y}$
- 9. Prove that no order can be defined in the complex field that truns it into an ordered field.

Solution.

10. Suppose z = a + ib, w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a dictionary order, or lexicographic order, for obvious reasons) Does this ordered set have the least-upper-bound property?

Solution. (a) Given $z \neq w \in \mathbb{C}$. We must prove z < w or w < z Write z = a + ib, w = c + id.

If $a \neq c$, then if a < c, then z < w, if c < a, then w < zIf a = c, then $b \neq d$ if b < d, then z < w If d < b then c < z

(b) $\forall z, w, u \in \mathbb{C}$ with z < w and $w < u \implies z < u$. Write z = a + ib, w = c + id and u = e + if. Since z < w and w < u we have $a \le c \le e$. If a = e, then $a = c = e \implies b < d < f \implies z < u$ If a < e then z < u

Finally, to prove \mathbb{C} doesn't have l.u.b property:

Consider the set $S = \{1 + iy \mid y \in \mathbb{R}\}$. Then S is bdd above by 2. If $\sup S$ exists, say $a + ib \in \mathbb{C}$, then $a \ge 1$

If a = 1, then $b \ge y \ \forall y \in \mathbb{R}(\rightarrow \leftarrow)$

If a > 1, then $\frac{a+1}{2}$ is an upper bound of $S(\rightarrow \leftarrow)$

11. Suppose z = a + bi, w = u + iv and

$$a = \left(\frac{|w| + u}{2}\right)^{1/2}, \ b = \left(\frac{|w| - u}{2}\right)^{1/2}$$

Prove that $z^2 = w$ if $v \ge 0$ and that $(\overline{z})^2 = w$ if $v \le 0$. Conclude that every complex number (with one exception!) has two complex square roots.

Solution.

12. Under what conditions does equality hold in the Cauchy-Schwartz inequality.

Solution. (\Rightarrow) Suppose $(a_1, \dots, a_n) = k(b_1, \dots, b_n)$

$$\left| \sum_{i=1}^{n} a_{i} \overline{b_{i}} \right| = |k|^{2} \left| \sum_{i=1}^{n} |b_{i}|^{2} \right| = \sum_{i=1}^{n} |a_{i}|^{2} \sum_{i=1}^{n} |b_{i}|^{2}$$

(\Leftarrow) Let $A = \sum_{i=1}^{n} |a_i|^2$, $B = \sum_{i=1}^{n} |b_i|^2$, and $C = \sum_{i=1}^{n} a_i \overline{b_i}$ Suppose $|C|^2 = AB$. If B = 0, then the result follows. Recall the proof of Cauchy-Schwartz inequality $\forall \lambda \in \mathbb{C}$, $0 \leq \sum_{i=1}^{n} |a_i - \lambda b_i|^2$

$$\forall \lambda \in \mathbb{C}, \ 0 \le \sum_{i=1}^{n} |a_i - \lambda b_i|^2$$

$$\text{Take } \lambda = \frac{\sum_{i=1}^{n} a_i \overline{b_i}}{\sum_{i=1}^{n} |b_i|^2} = \frac{C}{B}$$

$$0 \le \sum_{i=1}^{n} |a_i - \frac{C}{B}b_i|^2 = A - 2\frac{|C|^2}{B} + \frac{|C|^2}{B}$$
$$= A - \frac{|C|^2}{B} = \frac{BA - |C|^2}{B}$$

Thus
$$a_i - \frac{C}{B}b_i = 0 \implies a_i = \frac{C}{B}b_i \ \forall 1 \le i \le n$$