Formelsammlung

Eike Osmers

20. Oktober 2020

Inhaltsverzeichnis

1	Darstellungskonvention	1					
2	Vektoranalysis						
	2.1 Vektoralgebra	1					
	2.2 Koordinatensysteme	2					
	2.3 Differentialoperatoren	3					
	2.4 Differential- und Integrationsregeln	3					
3	Komplexe Funktionen	3					
4	Lineare Algebra	3					
	4.1 Basiswechsel	3					
5	Signale und Systeme	4					
	5.1 Kontinuierliche Signale	4					
	5.1.1 Fourier-Transformation	5					
	5.1.2 Laplace-Transformation	5					
	5.2 Zeitdiskrete Signale	6					
	5.2.1 z-Transformation	6					
	5.3 Zeit- & Wertediskrete Signale	6					
6	Elektrische Netzwerke	6					
7	Klassische Elektrodynamik	7					
	7.1 Elektrostatik	7					
8	Elektronik	8					
	8.1 Operationsverstärker	8					
9	Hochfrequenztechnik	8					
10) Fehlerrechnung						

1 Darstellungskonvention

Skalare Variablen in $\mathit{Kursivschrift}\colon x,y,z$

Vektorielle Variablen mit einem Pfeil über der Variable: \vec{a}

Variablen für Matrizen in fetter Schrift: A

Komplexe Variablen unterstrichen:

2 Vektoranalysis

2.1 Vektoralgebra

Skalarprodukt

arphi ist der kleinere von $ec{A}$ und $ec{B}$ eingeschlossene Winkel.

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot \cos \varphi$$

 $\vec{A}\bot\vec{B}$: $\vec{A}\cdot\vec{B}$ =0

${\bf Kreuzprodukt}$

arphi ist der kleinere von $ec{A}$ und $ec{B}$ eingeschlossene Winkel.

 $ec{n}$ zeigt in Richtung der Rechte-Hand-Regel.

$$\vec{A} \times \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot \sin \varphi \cdot \vec{n}$$

$$\vec{A} ||\vec{B}: \vec{A} \times \vec{B} = \vec{0}$$

Richtungsvektor

Zeigt von \vec{A} auf \vec{B} .

$$\vec{r} = \vec{B} - \vec{A}$$

2.2 Koordinatensysteme

	Kartesische Koordinaten	Zylinderkoordinaten	${\bf Kugelkoordinaten}$
Parametrisierung	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos(\varphi) \\ \rho \cos(\varphi) \\ z \end{pmatrix} $ $ \begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \operatorname{atan2}(\frac{y}{x}) \\ z \end{pmatrix} $	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cos(\varphi) \sin(\theta) \\ r \sin(\varphi) \sin(\theta) \end{pmatrix} $ $ \begin{pmatrix} \theta \\ \theta \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arccos(2 \frac{x^2 + y^2 + z^2}{2}) \\ \arccos(2 \frac{x^2 + y^2 + z^2}{2}) \end{pmatrix} $
Definitionsbereich	$\begin{array}{l} -\infty < x < \infty \\ -\infty < y < \infty \\ -\infty < z < \infty \end{array}$	$\begin{array}{l} 0 \leq \rho < \infty \\ 0 \leq \varphi \leq 2\pi \\ -\infty < z < \infty \end{array}$	$\begin{array}{l} 0 \leq r < \infty \\ 0 \leq \theta \leq \pi \\ 0 \leq \varphi \leq 2\pi \end{array}$
Transformationsmatrix	$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S} = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S} = \begin{bmatrix} \cos(\varphi)\sin(\theta) & \cos(\varphi)\cos(\theta) & -\sin(\varphi) \\ \sin(\varphi)\sin(\theta) & \sin(\varphi)\cos(\theta) & \cos(\varphi) \\ \cos(\theta) & -\sin(\theta) & 0 \end{bmatrix}$
inverse Transformationsmatrix	$\mathbf{S^{-1}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S^{\text{-}1}} = \begin{bmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S^{\text{-}1}} = \begin{bmatrix} \cos(\varphi)\sin(\theta) & \sin(\varphi)\sin(\theta) & \cos(\theta) \\ \cos(\varphi)\cos(\theta) & \sin(\varphi)\cos(\theta) & -\sin(\theta) \\ -\sin(\varphi) & \cos(\varphi) & 0 \end{bmatrix}$
Transformation von Vektoren	$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$	$ \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \mathbf{S} \cdot \begin{pmatrix} a_p \\ a_{\varphi} \\ a_z \end{pmatrix} $ $ \begin{pmatrix} a_p \\ a_{\varphi} \\ a_z \end{pmatrix} = \mathbf{S}^{-1} \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} $	$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \mathbf{S} \cdot \begin{pmatrix} a_r \\ a_\theta \\ a_{\varphi} \end{pmatrix}$ $\begin{pmatrix} a_r \\ a_{\theta} \\ a_{\varphi} \end{pmatrix} = \mathbf{S}^{-1} \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$
Einheitsvektoren in kart. Koordinaten Bogenlängen-Element Linienelement entlang der Koordinatenlinie	$\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$	$\mathrm{d}s^2 = \mathrm{d}\rho^2 + \rho^2\mathrm{d}\varphi^2 + \mathrm{d}z^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2 + r^2\sin^2(\theta)\mathrm{d}\varphi^2$
Flächenelement der Koordinatenseitenfläche			
Volumenelement	$\mathrm{d}V = \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z$	$\mathrm{d}V = \rho\mathrm{d}\rho\mathrm{d}\varphi\mathrm{d}z$	$\mathrm{d}V = r^2 \sin^2(\theta) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi$

2.3 Differentialoperatoren

divgradcurl

	Kartesische Koordinaten	Zylinderkoordinaten	${\bf Kugelkoordinaten}$
Nabla			
Gradient	$\nabla a = \operatorname{grad} \ a = \begin{pmatrix} \frac{\partial a}{\partial x} \\ \frac{\partial a}{\partial y} \\ \frac{\partial a}{\partial z} \end{pmatrix}$	$\nabla a = \text{grad } a = \begin{pmatrix} \frac{\partial a}{\partial \rho} \\ \frac{1}{\rho} \frac{\partial a}{\partial \theta} \\ \frac{\partial a}{\partial z} \end{pmatrix}$	$\nabla a = \operatorname{grad} \ a = \begin{pmatrix} \frac{\partial a}{1^{\partial r}} & \frac{\partial a}{\partial a} \\ \frac{1}{r \sin(\phi)} & \frac{\partial \theta}{\partial \theta} \end{pmatrix}$
Divergenz $\mathbb{R}^3 \to \mathbb{R}$			$\begin{split} \nabla \cdot \vec{a} &= \text{div } \vec{a} = \\ \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 a_r) + \frac{1}{r \sin(\varphi)} \frac{\partial a_\theta}{\partial \theta} + \frac{1}{r \sin(\varphi)} \frac{\partial}{\partial \varphi} \left(\sin(\varphi) a_\varphi \right) \end{split}$
Rotation $\mathbb{R}^3 o \mathbb{R}^3$			$\begin{array}{l} \nabla \times \vec{a} = \mathrm{rot} \ \vec{a} = \\ \left(\frac{1}{r \sin(\varphi)} \frac{\partial}{\partial \varphi} (\sin(\varphi) a_{\theta}) - \frac{1}{r \sin(\varphi)} \frac{\partial a_{\varphi}}{\partial \theta} \right) \\ \frac{1}{r} \frac{\partial}{\partial r} (r a_{\varphi}) - \frac{1}{r} \frac{\partial a_{\theta}}{\partial \varphi} \\ \frac{1}{r \sin(\varphi)} \frac{\partial a_{\theta}}{\partial \theta} - \frac{1}{r} \frac{\partial}{\partial r} (r a_{\theta}) \end{array} \right) \end{array}$

2.4 Differential- und Integrationsregeln

(Wie löst man Kurven- und Oberflächenintegrale) (Satz von Green, Stokes, usw.?)

3 Komplexe Funktionen

4 Lineare Algebra

4.1 Basiswechsel

5 Signale und Systeme

5.1 Kontinuierliche Signale

Energie eines Signals

Energiesignal:

endl. Energie, keine Leistung

$$E_x = \int_{\vec{x}_1}^{\vec{x}_2} |x(t)|^2 \,\mathrm{d}t$$

(mittlere) Leistung eines Signals

Leistungssignal:

endl. Leistung, unendl. Energie

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$

5.1.1 Fourier-Transformation

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \left(\frac{2\pi kt}{T} \right) + b_k \sin \left(\frac{2\pi kt}{T} \right) \right)$$
Relle Fourierreihe
$$a_0 = \frac{1}{T} \int_0^T f(t) \, \mathrm{d}t$$

$$a_k = \frac{2}{T} \int_0^T f(t) \cos \left(\frac{2\pi kt}{T} \right) \, \mathrm{d}t$$

$$b_k = \frac{2}{T} \int_0^T f(t) \sin \left(\frac{2\pi kt}{T} \right) \, \mathrm{d}t$$
Symmetrieeigenschaften
$$a_k = 0 \Leftrightarrow f(t) \text{ ungerade}$$

$$b_k = 0 \Leftrightarrow f(t) \text{ gerade}$$
Komplexe Fourierreihe
$$b_k = 0 \Leftrightarrow f(t) \text{ gerade}$$

$$f(t) = \sum_{k=1}^{\infty} \left(c_k \, \mathrm{e}^{\frac{i2\pi kt}{T}} \right)$$

$$c_k = \frac{1}{T} \int_0^T f(t) \, \mathrm{e}^{-\frac{i2\pi kt}{T}} \, \mathrm{d}t$$

5.1.2 Laplace-Transformation

5.2 Zeitdiskrete Signale

Länge eines Signals
$$N = N_2 - N_1 + 1$$

$$v[n] = \sum_{k=0}^{\infty} x[k]h[h-k]$$

Faltungssumme

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[h-k]$$
$$= \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

Zirkulare Zeitumkehr

entlang eines Kreises mit Umfang $N\,-\,1$

$$y[n] = x \left[-n \operatorname{modulo}(N) \right]$$

Zirkulare Verschiebung $y[n] = x[(n - n_0) \operatorname{modulo}(N)]$

- 5.2.1 z-Transformation
- 5.3 Zeit- & Wertediskrete Signale
- 6 Elektrische Netzwerke

7 Klassische Elektrodynamik

Georg.Felder Marinescu

7.1 Elektrostatik

	Skalare Größe	Vektorielle Größe	
Coulomb'sches Kraftgesetz Kraftvektoren zweier Ladungen zeigen von einander weg. $n>2$: Superposition	$F_C = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r^2}$ $= -\frac{\partial E_C}{\partial r}$	$ec{F}_{C_{12}} = rac{q_1 q_2}{4\piarepsilon_0} \cdot rac{ec{x}_2 - ec{x}_1}{ ec{x}_2 - ec{x}_1 ^3}$	
Elektrische Feldstärke $[\vec{E}] = \frac{V}{m}$		$\begin{split} \vec{E}(\vec{x}) &= -\operatorname{grad}(\varphi_e) \\ &= \frac{\vec{F}_{C_{12}}}{q_2} = \frac{q_1}{4\pi\varepsilon_0} \cdot \frac{\vec{x} - \vec{x}_1}{ \vec{x} - \vec{x}_1 ^3} \end{split}$	
Elektrische Potential(feld)			
$[arphi_e] = V$ Gleiches Potential auf Äquipotentialflächen	$\varphi_e(\vec{x}) = \frac{q_1}{4\pi\varepsilon_0} \cdot \frac{1}{ \vec{x} - \vec{x}_1 }$		
Elektrische Spannung $[U] = V$	$U_{12} = \varphi_e(\vec{x}_1) - \varphi_e(\vec{x}_2)$ $= \int_{\vec{x}_1}^{\vec{x}_2} \vec{E} d\vec{s}$		
	$\lambda = \frac{dq_e}{ds}$ $q_e = \int \lambda ds$		
Flächenladungsdichte $[\sigma] = \frac{C}{m^2}$	$\sigma = \frac{dq_e}{dA}$ $q_e = \iint \sigma dA$		
Volumenladungsdichte $[ho]=rac{C}{m^3}$	$\rho = \frac{dq_e}{dV}$ $q_e = \iiint \rho dV$		

- 8 Elektronik
- 8.1 Operationsverstärker
- 9 Hochfrequenztechnik
- 10 Fehlerrechnung