Recidivism Predictive Model

James Beck, Jia Mody

Objective

Objective

- Bureau of Justice Stat: 68% of criminals commit repeat offences in 3 years
- Comprehensive risk assessment model
- Identify potential repeat offenders
- Public safety
- Support high risk offenders

Overview

Data.gov Published by U.S. DO.

Instances

25,825 instances, each instance represents one prisoner

Attributes

49 attributes, including gender, dependance, drug test positives, etc

Attribute Examples

Prior_Revocations_Parole

Have there been previous violations of parole terms?

5

Dependents

Number of people dependent on inmate's income

3

Prior_Arrest_Episodes_F elony

of arrests due to felonies

Class Breakdown

Ist Year

7724 committed a crime within 1 year of release (29.9%)

2nd Year

4567 committed a crime within 2 years of release (17.7%)

5

3rd Year

2613 committed a crime within 3 years of release

(10.1%)

10,931 did not commit a second crime within 3 years. (42.3%)

03 Pre-processing

Pre-Processing

Missing Values

Filled in missing values

2

Derived Class

Created a derived class attribute from 4 potential classes

3

Normalizing+Changing

Normalized quantitative variables + attribute alterations 4

Test/Train

Created Test/Train split

Missing Values

- □ No attributes were missing >70% values
- ☐ Replaced missing qualitative values with mode
- Replaced missing quantitative values with median (difficulties in WEKA)
 - Python Script

```
import csv
dataset = []
#Filling in missing values:
with open("NIJ s Recidivism Challenge Full Dataset.csv", mode='r')as file:
  fileReader = csv.reader(file)
  dct = \{6:[], 41:[], 42:[], 43:[], 44:[], 45:[], 46:[], 47:[]\}
                                                                  for key in dct:
  for i, line in enumerate(fileReader):
                                                                    dct[key].sort()
     dataset.append(line)
                                                                    medianDct[key] = dct[key][len(dct[key])//2]
     for key in dct:
                                                                  for rowNum, row in enumerate(dataset):
       if line[key] == "": continue
                                                                    for col, val in enumerate(row):
       dct[key].append(float(line[key]))
                                                                       if val == "" and col in medianDct:
  medianDct = \{\}
                                                                          dataset[rowNum][col] = medianDct[col]
```

Derived Class

- 4 potential class attributes
- Combined attributes into single class with following labels:
 - "1" Arrested within 1 year of release
 - "2" Arrested within 2 years of release
 - "3" Arrested within 3 years of release
 - "Never" No arrest within 3 years of release

```
#Combining classes:
with open('CombinedClass.csv', mode='w', newline='') as file:
    training = dataset[0].pop()
    Year3 = dataset[0].pop()
    Year2 = dataset[0].pop()
    Year1 = dataset[0].pop()
   within3 = dataset[0].pop()
    dataset[0].append("Years_Until_Recidivism")
    for i in range(len(dataset)-1):
        training = dataset[i+1].pop()
        Year3 = dataset[i+1].pop()
        Year2 = dataset[i+1].pop()
        Year1 = dataset[i+1].pop()
        within3 = dataset[i+1].pop()
        combinedVal = "Never"
        if Year1 == "true": combinedVal = "1"
        if Year2 == "true": combinedVal = "2"
        if Year3 == "true": combinedVal = "3"
        dataset[i+1].append(combinedVal)
   writer = csv.writer(file)
   writer.writerows(dataset)
```


Normalizing and Changing

Normalizing

- → WEKA Normalize Filter
- Exception: Residence_PUMA

Altering

Nominal→Numerical

Test/Train

- Python Script
- Originally 70/15/15, but validation was not working well
- ☐ Changed to 70/30 train test

Test/Train

- Training:
 - 1 yr-5407/18084 (29.9%)
 - 2 yrs-3197/18084 (17.7%)
 - □ 3 yrs-1829/18084 (10.1%)
 - Never-7651/18084 (42.3%)
- ☐ Test:
 - □ 1 yr-2317/7751 (29.9%)
 - 2 yrs-1370/7751 (17.7%)
 - 3 yrs-784/7751 (10.1%)
 - □ Never-3280/7751 (42.3%)


```
import pandas as pd
df = pd.read csv('/content/drive/MyDrive/ML/Normalized.csv')
from google.colab import drive
drive.mount('/content/drive')
                                                                                               import pandas as pd
from sklearn model selection import train test split
                                                                                               df = pd.read csv('/content/drive/MyDrive/ML/Normalized.csv')
train, remaining = train test split(df, test size=0.30, stratify=df.iloc[:, -1])
                                                                                               from google.colab import drive
val, test = train_test_split(remaining, test_size=0.50, stratify=remaining.iloc[:, -1])
                                                                                              drive.mount('/content/drive')
                                                                                               from sklearn.model selection import train test split
train.to csv('train.csv', index=False)
                                                                                               train, test = train test split(df, test size=0.30, stratify=df.iloc[:, -1])
!cp train.csv /content/drive/MyDrive/ML
                                                                                               train.to_csv('train.csv', index=False)
val.to csv('val.csv', index=False)
                                                                                               !cp train.csv /content/drive/MyDrive/ML
!cp val.csv /content/drive/MyDrive/ML
                                                                                               test.to csv('test.csv', index=False)
                                                                                               !cp test.csv /content/drive/MyDrive/ML
test.to csv('test.csv', index=False)
!cp test.csv /content/drive/MyDrive/ML
```


Attribute Selection

Cutoff of 0.1

OneRAttributeEval

Cutoff of 43.95

Self Selection

9 Attributes

InfoGainAttributeEval

Cutoff of 0.25

WrapperSubsetEval

7 Attributes

#	CorrelationAtt ributeEval	InfoGainAttribut eEval	OneRAttribute Eval	WrapperSubse tEval	Self Selection	339	4	Gang_Affiliate	Prior_Arrest_Ep isodes_Felony	Prior_Arrest_E pisodes_PPVio lationCharges	Violations_Fai lToReport	Prison_Years
1	Percent_Days_ Employed	Jobs_Per_Year	Jobs_Per_Yea.	Gang_Affiliat	DrugTests_Coc aine_Positive		5	Prior_Arrest_E pisodes_Prope rty	Gang_Affiliated	DrugTests_TH C_Positive	Deliquency_R eports	Condition_Cog _Ed
2	Prior_Arrest_E pisodes_PPVio lationCharges	Percent_Days_E mployed	Percent_Days_ Employed	Prior_Arrest_ Episodes_PPV iolationCharge s	DrugTests_Met h_Positive	3	7	Supervision_R isk_Score_Firs t Prior_Arrest_E pisodes_Misd	Supervision_Ris k_Score_First DrugTests_THC _Positive	Prior_Arrest_E pisodes_Proper ty Prior_Arrest_E pisodes_Felon y	Percent_Days _Employed Jobs_Per_Year	Education_Lev el Dependent
3	Prior_Arrest_E pisodes_Felon	Prior_Arrest_Ep isodes_PPViolati	Gang_Affiliate	Prior_Convicti on_Episodes_	Gang_Affiliate		8	Prior_Convicti on_Episodes_ Misd	Prior_Arrest_Ep isodes_Property	Age_at_Releas		Violations_Inst ruction
							9	Prior_Convicti on_Episodes_ Prop	Age_at_Release	Prior_Convicti on_Episodes_P rop		Percent_Days_ Employed

Classification Algorithms

J48 Classification via decision trees

NaiveBayes Baye's formula

OneR
Rule Based

RandomForest
Decision trees
through random
subsets of data

Best Model

J48 with attributes selected by WrapperSubsetEval

Accuracy: **54.5** Recall: **0.401**


```
a b c d <-- classified as
72 1009 582 166 | a = 3
159 5386 1670 436 | b = Never
82 1038 4027 260 | c = 1
118 1393 1318 368 | d = 2
```

J48 WrapperSubsetEval

a b c d <-- classified as 65 972 620 172 | a = 3 218 5300 1578 555 | b = Never 167 1603 3125 512 | c = 1 98 1495 1251 353 | d = 2

RandomForest CorrelationAttributeEval

```
=== Confusion Matrix ===

a b c d <-- classified as
0 1129 585 115 | a = 3
0 5925 1413 313 | b = Never
0 2048 3055 304 | c = 1
0 1742 1231 224 | d = 2
```

NaiveBayes OneRAttributeEval

O5 Discussion and Sources of Error

Increasing Accuracy

```
=== Confusion Matrix ===

a b c d <-- classified as

362 0 844 623 | a = 3

0 0 0 0 | b = Never

75 0 4776 556 | c = 1

339 0 1760 1098 | d = 2
```

Removing "Never"

Since "Never" was the most predicted, we decided to remove it to see if it improved accuracy. We got a 59.8% accuracy.

Removing "2" and "3"

These were the least predicted, so we decided to remove them, giving us a 77.2% accuracy.

Error and Discussion

Error Sources

- Similar characteristics regardless of recidivism year
- □ Not enough data for small categories

Discussion

Potential to be used in real life, but more analysis is required to build a suitable model

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

Questions?

