

CMT83085 High Reliability Isolated Half- Duplex RS-485 Transceivers

1 Features

- Safety-related certifications
 - DIN VDE V 0884-11: 2017-01
 - UL recognition: up to 5000Vrms for 1 minute per
 UI 1577
 - CSA component notice 5A
 - CQC approval per GB4943.1-2011
- Up to 5000Vrms Insulation voltage
- Bus side power supply voltage: 3.0V to 5.5V
- VDD1 supply voltage: 2.5 to 5.5 V
- High CMTI: ±200Kv/us
- High system level EMC performance:
- Bus Pins meet IEC61000-4-2±12 kV ESD
 - Other Pins meet ±7 kV contact ESD
 - Operation temperature: -40°C to 125°C
- Fail-safe protection receiver
- Slew rate limitation
- Robust isolation barrier life:
 - More than 40-year projected lifetime
- Up to 256 transceivers on the bus
- RoHS-compliant packages: SOIC 16 (wide body)

2 Applications

- Industrial automatic control
- Isolated RS-485 communication
- Smart electric meter and water meter
- Security and protection monitoring

3 Description

CMT83085 is a high reliability isolated half duplex RS-485 transceiver based on CMOSTEK digital isolation technology. It is safety certified by UL1577 support 5kVrms insulation withstand voltages, while providing high electromagnetic immunity and low emissions at low power consumption.

The Bus pins of CMT83085 is protected from $\pm 12kV$ system level ESD to GND2 on Bus side. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. The devices have a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus.

The data rate of CMT83085 is 12Mbps. The device is slew limited to reduce EMI and reflections with improperly terminated transmission line.

The CMT83085 is available in wide-body (WB) 16-pin SOIC packages.

Device Information

Part No.	Package	Body Size (mm x mm)			
CMT83085	WB(W) SOIC-16	10.4 x 7.5			
Refer to section 12 for ordering information.					

Functional Block Diagram

Table of Contents

1	Feat	ures	1
2	Appl	ications	1
3	Desc	ription	1
4	Abso	olute Maximum Ratings	3
5	Pin [Description	4
		cal Application	
_	6.1	Typical Application Schematic	
	6.2	PCB Layout Guidelines	
	6.3	ESD Protection	
	6.4	256 Transceivers on the Bus	
7	Para	meter Measurement Circuit Setup	6
		eifications	
Ü			
	8.1	DC Electrical Characteristics	
	8.2	Switching Electrical Characteristics	
	8.3 8.4	Typical Performance	
۵		ty-related Certifications	
		etion Description	
10	Func	·	
	10.1	Function Overview	
	10.2	Data Rate	
	10.3	True Fail-safe Receiver Inputs	
	10.4 10.5	Truth Tables	
		aging Information	
11	Pack		
	11.1	CMT83085 Wide Body SOIC-16 Packaging	16
12	Orde	ring Information	18
13	Таре	and Reel Information	19
14	Revi	se History	21
15	Cont	acts	22

4 Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings[1]

Parameters	Symbol	Condition	Min.	Max.	Unit
Power supply voltage[2]	VDD ₁ , VDD ₂		-0.5	6	V
Maximum input voltage	/RE, DE, TxD		-0.4	VDD+0.4	V
Common-mode transients	CMTI		200		kV/us
Driver Output/Receiver Input Voltage	VA, VB, VY, VZ		-7	12	V
Voltage input, transient pulses, A,B,Y and Z (through 100 Ω resistors)	V _{IT}		-50	50	V
Receiver output current	10		-15	15	mA
Maximum surge isolation voltage	VIOSM			8	kV
Operating temperature	Topr		-40	125	$^{\circ}$
Storage temperature	T _{STG}		-40	150	$^{\circ}$
Electrostatic discharge	HBM (Bus pins and GND)			±8000	V
	HBM (All pins)			±6000	V
	CDM			±2000	V

5 Pin Description

The pin list is shown as below.

Figure 1. CMT83085 Pin List Table 2. CMT83085 Pin Description

Currele el	Pin No.	Description
Symbol	CMT83085	Description
VDD1	1	Power Supply for Isolator Side 1
GND1	2	Ground reference for Isolator Side 1
R	3	Receive output
/RE	4	Receive enable input. It is low level input.
DE	5	Driver enabled input. It is high level input
D	6	Driver transmitting data input.
GND1	7,8	Ground reference for Isolator Side 1
GND2	9,10,15	Ground reference for Isolator Side 2
NC	11,14	No Connection.
		Non-inverting Driver Output/Receiver Input. When the driver is
A	12	disabled, or when VDD1 or VDD2 is powered down, Pin A is put
		into a high impedance state to avoid overloading the bus.
		Inverting Driver Output/Receiver Input. When the driver is
В	13	disabled, or when VDD1 or VDD2 is powered down, Pin B is put
		into a high impedance state to avoid overloading the bus.
VDD2	16	Power Supply for Isolator Side 2

6 Typical Application

6.1 Typical Application Schematic

Figure 2. Typical Application Circuit

Note: Rt is a special matching impedance with typical value of 120 Ω .

Figure 3. Typical Isolated Half-duplex RS-485 Application

6.2 PCB Layout Guidelines

The CMT83085 requires a $0.1~\mu\text{F}$ bypass capacitor between VDD1 and GND1, $10\mu\text{F}$ bypass capacitor between VDD2 and GND2. The capacitor should be placed as close as possible to the package. To eliminate line reflections, each cable end is terminated with a resistor, whose value matches the characteristic impedance of the cable. It's good practice to have the bus connectors and termination resistor as close as possible to the A and B pins.

6.3 ESD Protection

ESD protection structures are enhanced on all pins to protect against electrostatic discharge encountered during handing and assembly. The Bus pins have extra protection against static electricity to both the logic side (VDD1 side) and bus side (VDD2 side).

ESD protection can be tested in various ways. Below is the ESD spec of the devices. Bus pins:

- ± 8 kV HBM.
- ±12 kV using the Contact Discharge method specified in IEC 61000-4-2

Other pins except bus pins:

- ±6 kV HBM.
- ±7 kV using the Contact Discharge method specified in IEC 61000-4-2

6.4 256 Transceivers on the Bus

The devices have a 1/8 unit-load receiver input impedance ($96k\Omega$) that allows up to 256 transceivers on the bus. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32 unit-loads to the line.

7 Parameter Measurement Circuit Setup

Figure 4. Driver DC Test Load

Figure 5. Driver Timing Test Circuit and Waveform

Figure 6. Driver Enable Disable Timing Test Circuit and Waveform

Figure 7. Receiver Propagation Delay Test Circuit and Waveform

Figure 8. Receiver Enable Disable Timing Test Circuit and Waveform

Figure 9. Common-Mode Transient Immunity Test Circuit

8 Specifications

8.1 DC Electrical Characteristics

VDD1 =2.5V~5.5V, VDD2= 3.0V~5.5V, T_A = -40 to 125 °C. Unless otherwise noted, typical values are at VDD1=5V, VDD2=5V, T_A =25 °C.

Table 3. Electrical Characteristics

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{DD1}		2.5		5.5	V
Supply Voltage	V _{DD2}		3.0		5.5	V
		$VDD_1 = 5 V$, $DE = high$,		2.85	5.2	
Logic side supply current	I _{DD1}	/RE = D = low, no load				mA
Logic slac supply surrout	.001	$VDD_1 = 3 V, DE = high,$		2.81	5	110 (
		/RE = D = low, no load		2.01	3	
		$VDD_1 = 5 V$, $DE = high$,		2.1	5	
Bus side supply current	I _{DD2}	/RE = D = low, no load	2.1			mA
bus side supply current	1002	$VDD_1 = 5 V$, $DE = high$,	2.12		4.5	110
		/RE = D = low, no load				
Thermal-shutdown Threshold	T _{TS}			145		$^{\circ}$ C
Thermal-shutdown Hysteresis	T _{TSH}			15		$^{\circ}$ C
Common Mode Transient Immunity	CMTI			±200		kV/us
Logic Side						
High level input voltage	V _{IH}	DE, D		1.65		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
nign level input voltage	VIH	/RE		0.8	V	
Low level input voltage	V _{IL}	DE, D, /RE		1.65		V
Low level input voltage	V _{IL}	/RE		0.8		V
Input threshold	V _{IT}	Input Threshold at rising edge		1.65		V
mpat aneshola	V _{IT_HYS}	Input Threshold Hysteresis		0.2		v
Input Pull up Current	I _{PU}	DI/RE			10	uA

Input Pull down Current	I _{PD}	DE	-10			uA
Output Voltage High	V_{OH}	I _{OH} = -4mA	V _{DD1} - 0.3			V
Output Voltage Low	V _{OL}	I _{OL} = 4mA			0.3	V
Output Short-Circuit Current	I _{OSR}	$0 \le V_R \le VDD_1$			109	mA
Three-State Output Current	I _{OZ}	$0 \le V_R \le VDD_1$, /RE = high	-15			uA
Input Capacitance	C _{IN}	DE, D, /RE		2		pF
Driver	1	-	•			•
		VDD=5V, TXD=0, $R_{load} = 60\Omega$	2.4		VDD2	
Differential output voltage	V _{OD}	R _L =100Ω (RS-422)	3		VDD2	٧
		R _L =54Ω (RS- 485)	2.2	•	VDD2	
Change in magnitude of the differential output voltage	Δ V _{OD}	R_L =100 Ω or R_L =54 Ω			0.2	
Common-Mode Output Voltage	Voc	R_L =100 Ω or R_L =54 Ω		VDD ₂ /2	2.8	
Change in Magnitude of Common-Mode Voltage	Δ V _{oc}	R_L =100 Ω or R_L =54 Ω	10		0.2	V
D. 0. 10. 10. 10.	_	0 ≤ V _{OUT} ≤ +12 V			100	
Driver Short-Circuit Output Current	I _{OSD}	$-7V \le V_{OUT} \le VDD_2$	-100			mA
Receiver	1					
		DE=GND, VDD ₂ =GND or VDD ₂ , V _{IN} =12V			80	
Input Current (A and B)	I _A , I _B	DE=GND, VDD ₂ =GND or VDD ₂ , V _{IN} =-7V	-60			- uA
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤ 12V	-200	-125	-50	mV
Receiver Input Hysteresis	ΔV_{TH}	V _A +V _B =0		40		mV
Receiver Input Resistance	R _{IN}	-7V ≤ V _{CM} ≤ 12V, DE=low	96kΩ			

8.2 Switching Electrical Characteristics

 $VDD1 = 2.5V \sim 5V, \ VDD2 = 2.5V \sim 5.5V, \ TA = -40 \ to \ 85^{\circ}C. \ Unless \ otherwise \ noted, \ Typical \ values \ are \ at \ VDD1 = 5V, \ VDD2 = 5V, \ TA = 25^{\circ}C$

Table 4. Switching Electrical Characteristics

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit
Driver						
Maximum Data Rate	f _{MAX}				12	Mbps
Driver Propagation Delay	t _{PLH}			11.5	50	ns
	t _{PHL}			13.2	50	ns
Driver Pulse Width Distortion,	PWD			1	10	ns

Driver Output Falling Time or	t _F			1.7	16	20
Rising time	t_R			1.8	16	ns
Driver Enable to Output High	t _{ZH}			30	60	ns
Driver Enable to Output Low	t _{ZL}			30	60	ns
Driver Output High to Disable	t _{HZ}			18	60	ns
Driver Output Low to Disable	t _{LZ}			12	60	ns
Receiver						
Maximum Data Rate	f_{MAX}				12	Mbps
Receiver Propagation Delay	t _{PLH}	C _L =15pF		90	200	20
Receiver Propagation Delay	t _{PHL}	C _L =15pF		75	200	ns
Receiver Pulse Width Distortion	PWD	C _L =15pF	X	3	20	ns
Receiver Output Falling Time or	t _F	C _L =15pF		4.5	6	
Rising time	t _R	C _L =15pF		4.5	6	ns
Receiver Enable to Output High	t _{zH}	$R_L=1k\Omega$, $C_L=15pF$		30	80	ns
Receiver Enable to Output Low	t _{ZL}	$R_L=1k\Omega$, $C_L=15pF$		30	80	ns
Receiver Disable to Output High	t _{HZ}	$R_L=1k\Omega$, $C_L=15pF$		18	60	ns
Receiver Disable to Output Low	t _{LZ}	$R_L=1k\Omega$, $C_L=15pF$		12	60	ns

8.3 Insulation Specifications

Table 5. Insulation Specifications

Parameters	Sym.	Condition	Value	Unit
External clearance ^[1]	CLR	The shortest terminal-to-terminal distance through air	8.0	mm
External creepage ^[1]	CRP	The shortest terminal-to-terminal distance across the package surface	8.0	mm
Distance through insulation	DTI	Minimum internal gap	26	um
Comparative tracking index	CTI	DIN EN 60112 (VDE 0303-11); IEC 60112	> 400	V
Material group -			II	-
DIN VDE V 0884-11:2017-01 ^[2]				
Voltage Classification as standard		For Rated Mains Voltage ≤ 150Vrms	I to IV	
of IEC 60664-1		For Rated Mains Voltage ≤ 300Vrms	I to IV	

		For Rated Mains Voltage ≤ 300Vrms	I to IV	
Pollution Degree per DIN VDE 0110			2	
Maximum repetitive isolation voltage	V _{IORM}		1414	V_{pk}
Maximum working insulation	V _{IOWM}	AC voltage (sine wave); Dielectric layer breakdown (TDDB) test	1000	V _{RMS}
voltage	VIOWM	DC voltage	1414	V_{pk}
Maximum transient isolation voltage	V _{IOTM}	VTEST = VIOTM, t = 60 s (certified); t = 1 s (100% production)	7000	V_{pk}
Maximum surge isolation withstand voltage [3]	V _{IOSM}	According to the IEC60065 test, 1.2/50 us waveform, VTEST = 1.6 x VIOSM (certified)	7000	V_{pk}
		Method a: after the security test subgroup, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s	<5	
Apparent electric charge [4]	q _{pd}	Method a: after the environmental test subgroup1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s	<5	рC
		Method b1: General test (100% production) and preconditioning (test style) Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM, tm = 1 s	<5	
Insulation capacitance, from input to output [5]	C _{IO}	f = 1 MHz	0.8	pF
Isolation resistor, from input to output ^[5]	R _{IO}	V _{IO} = 500 V	>10 ⁹	Ω
Input capacitance	Cı	>	2	pF
Total power consumption at 25 ° C	Ps		1499	mW
Secure input, output, or supply current	Is	θ_{JA} = 140 °C/W, V $_{I}$ = 5.5 V, T $_{J}$ = 150 °C, T $_{A}$ = 25 °C		mA
Isolation resistance, from input to output [5]	R _{IO}	θ_{JA} = 84 °C/W, V _I = 5.5 V, T _J = 150 °C, T _A = 25 °C	237	Ω
Temperature	Ts		150	$^{\circ}$

8.4 Typical Performance

9 Safety-related Certifications

Table 6. Safety-related Certifications

VDE		CQC	
DIN VDE V0884-11:2017-01	UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	GB 4943.1-2011
Certificate number: pending	Certificate number: UL-US-2439077-1	Certificate number: UL-CA-2429797-0	Certificate number: pending

10 Function Description

10.1 Function Overview

CMT83085 is a high reliability isolated half duplex RS-485 transceiver. Data isolation is achieved using Cmostek integrated capacitive isolation that allows data transmission between the logic side and the Bus side. CMT83085 is safety certified by UL1577 support 5kVRMS insulation withstand voltages.

10.2 Data Rate

The data rate of CMT83085 is 12Mbps. The device is slew limited to reduce EMI and reflections with improperly terminated transmission line.

10.3 True Fail-safe Receiver Inputs

The devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. The receiver threshold is fixed between -50mV and -200mV, which meets EIA/TIA-485 standard. If the differential input voltage (VA-VB) is greater than or equal to -50mV, receiver output R is logic high. In the case of a terminated bus with all transmitters disabled, the differential input voltage is pulled to zero by the termination resistors. Due to the receiver threshold, the receiver output R is logic high.

10.4 Truth Tables

Output (OUTx) V_{DD1} V_{DD2} Input (D) **Enable Input (DE)** В PU PU Н ΡU PU Н L Н PU PU X L Ζ Ζ PU PU **OPEN** Ζ Z Χ ΡU PU **OPEN** Н Н L PU PD Χ Χ Ζ Ζ PU PD Ζ Ζ Χ Χ PD Χ Χ Ζ Ζ

Table 7. Driver Function Table^[1]

Table 8. Reciever Function Table

V _{DD1}	V _{DD2}	Differential Input (V _A -V _B)	Enable Input (/RE)	Output(R)
PU	PU	≥-50mV	L/Open	Н
PU	PU	≤-200mV	L/Open	L
PU	PU	OPEN/SHORT	L/Open	Н
PU	PU	X	Н	Z

PU	PU	IDLE	L	Н
PD	PU	X	X	Z
PU	PD	X	Х	Н
PD	PD	X	Х	Z

^{1.} PD= Powered down; PU= Powered up; H= Logic High; L= Logic Low; X= Irrelevant; Z= High Impedance.

10.5 Thermal Shutdown

The device is protected from over temperature damage by integrated thermal shutdown circuitry. When the junction temperature (TJ) exceeds +165°C (typ), the driver outputs go high-impedance. The device resumes normal operation when TJ falls below +145°C (typ).

11 Packaging Information

The packaging information of the CMT83085 SOIC16 is shown in the figures below.

11.1 CMT83085 Wide Body SOIC-16 Packaging

Figure 10. Wide Body SOIC-16 Packaging

Table 9. Wide Body SOIC-16 Packaging Scale

Ob. all	Scale (mm)					
Symbol	Min.	Тур.	Max.			
Α	-	-	2.65			
A1	0.10	0.20	0.30			
A2	2.25	2.30	2.35			

Symbol	Scale (mm)					
	Min.	Тур.	Max.			
A3	1.00	1.05	1.10			
b	0.35	0.37	0.43			
С	0.15	0.20	0.30			
D	10.30	10.40	10.50			
E	10.10	10.30	10.50			
E1	7.40	7.50	7.60			
е	1.14	1.27	1.40			
L	0.65	0.70	0.85			
L1		1.40				
θ	0	-	8°			

12 Ordering Information

Table 10. Part Number List

Part Number	MOQ	Isolatio n Rating (kV)		Number of nodes	Max Data Rate (Mbps)	Temperature Range	Package	MSL
CMT83085	1000	5	Half	256	12	-40 to 125℃	WB SOIC-16	3

Please visit <u>www.hoperf.com</u> for more product/product line information.

Please contact sales@hoperf.com or your local sales representative for sales or pricing requirements.

Rev 0.5 | 18 / 22

13 Tape and Reel Information

PRODUCT SPECIFICATION						
TAPE WIDTH	ØA ± 2.0	øN ± 2.0	W1	W2 (MAX)	W3	E (MIN)
08MM	330	178	8.4 +1.5	14.4		5.5
12MM	330	178	12.4 = 2.0	18.4	SHALL ACCOMMODATE	5.5
16MM	330	178	16.4 = 2.0	22.4	TAPE WIDTH	5.5
24MM	330	178	24.4 = 20	30.4	INTERFERENCE	5.5
32MM	330	178	32.4 10.0	38.4		5.5

SURFACE RESISTIVITY						
LEGEND	LEGEND SR RANGE TYPE COLOUR					
Α	BELOW 10 ¹²	ANTISTATIC	ALL TYPES			
В	10 ⁵ TO 10 ¹¹	STATIC DISSIPATIVE	BLACK ONLY			
С	105 & BELOW 105	CONDUCTIVE (GENERIC)	BLACK ONLY			
E	10° TO 10 ¹¹	ANTISTATIC (COATED)	ALL TYPES			

- NOTES:
 1, 10 SPROCKET HOLE PITCH CIMILATIVE TOLERANCE ±0.2
 2. PROCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE
 3. AS AND BO ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.

Ao = 10.90 Bo = 10.80 Ko = 3.1

Figure 11. CMT83085 WB SOIC-16 Tape and Reel Information

14 Revise History

Table 11. Revise Records

Version No.	Chapter	Description	Date
0.1	All	Initial version	2023/11/14
0.2	7	Update Figure 6/7/8 in chapter 7	2023/12/12
0.3	All	Update circuit specification	2024/1/28
0.4	All	Update current of V _{DD1}	2024/3/21
0.5	All	Add MSL in order information	2024/12/3

15 Contacts

Shenzhen Hope Microelectronics Co., Ltd.

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Tel: +86-755-82973805 / 4001-189-180

Fax: +86-755-82973550

Post Code: 518052

Sales: sales@hoperf.com
Website: www.hoperf.com

Copyright. Shenzhen Hope Microelectronics Co., Ltd. All rights are reserved.

The information furnished by HOPERF is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of HOPERF and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of HOPERF. HOPERF products are not authorized for use as critical components in life support devices or systems without express written approval of HOPERF. The HOPERF logo is a registered trademark of Shenzhen Hope Microelectronics Co., Ltd. All other names are the property of their respective owners.