

Approved For Release STAT
2009/08/31 :
CIA-RDP88-00904R000100130

Dec 1988

Approved For Release
2009/08/31 :
CIA-RDP88-00904R000100130

**Вторая Международная конференция
Организации Объединенных Наций
по применению атомной энергии
в мирных целях**

A/CONF/15/P/2308
USSR
ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

САМОДИФФУЗИЯ УРАНА В γ -ФАЗЕ.

Бочвар А.А., Кузнецова В.Г., Сергеев В.С.

Изучение процесса самодиффузии урана представляет не только известный теоретический интерес, но и имеет большое практическое значение. Сведения о константах самодиффузии важны при оценке жаропрочности урана и его сплавов, а также поведения его в условиях облучения в реакторе.

До настоящего времени в литературе отсутствовали какие-либо данные по этому вопросу, что было отмечено на Женевской конференции по мирному использованию атомной энергии в 1955 г./1/.

Настоящая работа является частью исследований, предпринятых с целью изучения самодиффузии урана и влияния на неё различных факторов.

I. Материалы для исследования.

В качестве радиоактивного индикатора был использован искусственный изотоп урана, уран-233, с периодом полураспада $1,6 \cdot 10^5$ лет.

Средой, в которую диффундировал уран-233, служил естественный уран, содержащий примеси в количестве: углерод - 0,08%, железо - $6,0 \cdot 10^{-3}\%$, марганец - $1,2 \cdot 10^{-3}\%$, медь - $1,7 \cdot 10^{-3}\%$, никель - $5,7 \cdot 10^{-4}\%$, азот - $1,14 \cdot 10^{-2}\%$, кремний - $6,7 \cdot 10^{-3}\%$.

- 2 -

2. Экспериментальные методы.

Определение коэффициента самодиффузии урана проводилось измерением изменения концентрации радиоактивного индикатора вдоль пути диффузии. Для измерения концентрации атомов урана-238 в диффузионном слое были использованы два метода :

а) метод последовательного снятия тонких слоев, при котором концентрация индикатора определялась измерением интенсивности альфа - излучения с поверхности оставшейся части образца.

б) метод авторадиографии, в котором концентрация индикатора определялась по степени покрепления фотопластинки под действием альфа-излучения. Ниже будут описаны основные экспериментальные приемы и расчеты коэффициентов диффузии по обоим методам.

A. Метод последовательного снятия слоев.

Образцы для исследования представляли собой пластины урана-238 толщиной 3 мм прямоугольного или круглого сечения. Пластины были изготовлены прокаткой с последующим отжигом при 950° в течение 5 часов, в результате чего они приобретали купноэзернистую структуру с величиной зерна порядка 0,1-0,3 мм /рис.1/. На одну сторону этих пластин, путем термического распыления в вакууме, наносился слой урана-238 толщиной 500-600 Å.

Термическое распыление урана-238 производилось с раскаленной вольфрамовой спиралью диаметром 0,8 мм, в вакууме 10^{-5} - 10^{-6} мм.рт.ст. Тонкие стружки урана-238 навешивались на каждый виток горизонтально расположенной спирали. Было установлено, что интенсивное испарение урана начинается при 2000°C. Как показали рентгеновские исследования, конденсированный слой представлял собой достаточно плотную металлическую пленку чистой α-фазы урана, имеющей хорошее сцепление с основой. Для удобства препарирования, слой урана-238 наносился лишь на центральную часть поверхности образца /рис.2/. Во время диффузионного отжига образцы были сложены по-пятью так, чтобы их активные поверхности плотно прилегали друг к другу.

Отжиг проводился при температурах 800, 900, 1000 и 1050°C в печи с tantalовым нагревателем / вакуум соответствовал 10^{-5} - 10^{-6} мм.рт.ст./. На каждую температуру приходилось по 4 образца. Время

- 8 -

отжига составляло : при 800° - 4 часа, при 900° - 2,5 часа, при 1000° - 1 час и при 1050° - 45 мин. Температура поддерживалась с точностью $\pm 5^{\circ}\text{C}$. Горячий спей термопары находился в печи, в непосредственном соприкосновении с образцами. Время нагрева печи от 600°C до требуемой температуры не превышало 5-6 мин, время охлаждения 0,5 - 1 мин.

После отжига с каждого образца на квадратной бумаге /размер зерна 28-58 мк/ последовательно сошлифовывали один слой за другим, измеряя каждый раз активность вновь образованной поверхности.

Толщина снятого слоя составляла в среднем $10-20$ мк и изменилась на оптическом микрометре по убыли толщины образца с точностью 1-2 мк.

Альфа-излучение измерялось на сцинтиляционном счетчике, причем регистрировались лишь альфа-частицы, вылетающие из слоя эффективной толщины порядка 4-х мк.

Проведенное таким образом послойное измерение интенсивности радиоактивного излучения позволило расчитать коэффициент самодиффузии урана " D " для всех вышеперечисленных температур.

Границные условия опытов соответствовали частному случаю диффузии из бесконечно тонкого слоя в бесконечно толстую среду. Решение второго уравнения Фика при этих условиях имеет вид:

$$C = \frac{C_0}{\sqrt{\pi \cdot Dt}} \cdot e^{-x^2/4Dt} \quad , \quad \text{где}$$

C_0 - произведение толщины слоя, содержащего индикатор на концентрацию индикатора при $t = 0$ и $x = 0$.

C - концентрация индикатора при данных значениях t и x .

В уравнении /1/ концентрация "С" заменялась активностью измеряемого слоя "J", ввиду пропорциональности этих величин. Для вычисления коэффициента самодиффузии была использована прямолинейная зависимость между логарифмом интенсивности излучений / $\log J$ / и квадратом расстояния от первоначальной поверхности / x^2 /.

Результаты опытов, проведенных по методу последовательного снятия слоев, даны на рис.5.

Тангенс угла наклона прямых, изображенных на этом графике,

-4-

является простой функцией коэффициента диффузии :

$$t_9 \alpha = \frac{1}{4Dc}$$

/2/.

Полученные значения коэффициентов самодиффузии урана приведены в таблице I.

Таблица I

$t^{\circ}\text{C}$	$D \cdot 10^8 \text{ см}^2 \cdot \text{сек.}^{-1}$
800	0,48
900	1,17
1000	2,8
1050	4,5

Теплота активации самодиффузии урана " Q " , определенная этим методом, составляет 26600 кал/гр.ат, предэкспоненциальный множитель " D_0 " равен $1,17 \cdot 10^{-3} \text{ см}^2 \text{ сек.}^{-1}$; температурная зависимость коэффициента самодиффузии выражается следующим уравнением:

$$D = 1,17 \cdot 10^{-3} \exp(-26600/RT) \text{ см}^2 \cdot \text{сек.}^{-1}.$$

Б. Метод авторадиографии.

Образцы для исследования готовились следующим образом: на дно полого цилиндрического стакана диаметром 10 мм, изготовленного из урана-238, закладывалась фольга урана-233 толщиной 15 мк. После этого в отверстие стакана запрессовывалась пробка, изготовленная из того же урана-238 с усилием $\sim 5 \text{ т/см}^2$. Таким образом создавался плотный контакт между фольгой из урана-233, пробкой и дном стакана.

Диффузионный отжиг таких сложных образцов проводился аналогично описанному в предыдущем параграфе. После отжига образцы разрезались по оси цилиндра и в этой плоскости готовился микротиф.

При авторадиографировании применялись пластины Ником, бегущие галоидным серебром с толщиной эмульсионного слоя не более 10 мк. Типичная авторадиограмма, полученная с образца, отожженного при 800°C в течение 4-х час, приведена на рис.4.

- 5 -

Время экспонирования фотопластинки составляло 7-8 мин. При такой экспозиции почернение, создаваемое различными участками диффузионного слоя укладывалось на линейном участке кривой почернение - экспозиция для данного сорта пластинок.

Измерение почернения фотопластинки проводилось на микрофотометре МФ-2 при увеличении 22 раза, с шириной щели 100 мк.

Типичная кривая, полученная путем фотометрирования почернения, созданного диффузионным слоем образца, отожженного при 900°С в течение 2,5 часов, приведена на рис.5.

На основании таких кривых производился расчет коэффициентов самодиффузии урана для различных температур, так как почернение "S" в различных участках диффузионного слоя пропорционально концентрации атомов урана~288 в этих участках.

Расчетным уравнением как и в методе последовательного снятия слоев служила формула /I/.

Коэффициент самодиффузии определялся также графически из линейной зависимости между логарифмом почернения / $\ln S$ / и квадратом расстояния / x^2 / по тангенсу угла наклона прямых, построенных в этих координатах. График такой зависимости представлен на рис.6.

Значения коэффициентов самодиффузии урана, полученные методом авторадиографии, даны в таблице 2.

Таблица 2.

T °C	$D \cdot 10^{-8}$ см ² .сек ⁻¹
800	0,9
900	2,0
1000	4,0

Теплота активации самодиффузии γ - урана "Q", найденная этим методом, составляет 21000 кал/гр.ат., предэкспоненциальный множитель "D₀" равен $1,4 \cdot 10^{-4}$ см² сек⁻¹; температурная зависимость коэффициента самодиффузии, выражается уравнением:

$$D = 1,4 \cdot 10^{-4} \exp(-21000/kT) \text{ см}^2 \cdot \text{сек}^{-1}$$

На рис.7 температурная зависимость коэффициента самодиффу-

- 6 -

зии урана приведена по данным обоих методов.
Максимальная ошибка при определении коэффициента самодиффузии
урана в обоих методах составляет 10-12%.

Кроме вышеописанных исследований, в данной работе изучалась самодиффузия урана в сплаве, содержащем 10% молибдена. Было найдено, что коэффициент самодиффузии урана в этом сплаве при 1000°C равен $8,58 \cdot 10^{-10} \text{ см}^2 \cdot \text{сек}^{-1}$, т.е. в 200-300 раз меньше, чем в чистом уране при этой температуре ($2,8-4,0 \cdot 10^{-8} \text{ см}^2 \cdot \text{сек}^{-1}$). Этот вывод полностью согласуется с данными о том, что сплав уран-молибден обладает значительно большей сопротивляемостью ползучести, чем чистый уран.

- 7 -

ЗАКЛЮЧЕНИЕ.

Определение теплоты активации самодиффузии урана в δ -фазе, проведенное в данной работе двумя методами, дало близкие между собой значения; так по методу последовательного снятия слоев "Q" определено равной 26600 кал/гр.ат, по методу авторадиографии - 21000 кал/гр.ат.

Следует указать, что найденное значение "Q" лежит значительно ниже, чем следовало ожидать согласно полуэмпирическим соотношениям Бугакова /2/ и Нехтриба /8/, по которым это значение должно укладываться в пределах 50000-60000 кал/гр.ат.

При авторадиографическом изучении диффузионной зоны не было обнаружено какого-либо локального распределения атомов урана - 238. Это обстоятельство позволяет считать, что полученное значение теплоты активации относится к процессу об'емной самодиффузии урана.

ЛИТЕРАТУРА.

1. J.P. Howe, Металлургия горючего для ядерных реакторов. Доклад на Женевской конференции 1955 г.
2. В.З.Бугаков.Диффузия в металлах и сплавах.Москва 1949г.
- 3.0. Клерра, Annual Review of Physical Chemistry, 1955, 6, pp 119-141

x115

Рис.1. Структура исходного урана,
электротравление смесь
хромовой и уксусной кислот

x100

Рис.4. Авторадиограмма с диффузион-
ного слоя (800° - 4 часа)

x1

Рис.2. Авторадио-
грамма с
поверхности
исходного
образца

-6-

Рис.3. Зависимость логарифма интенсивности излучения ($\ln I$) от квадрата расстояния в диффузионном слое (x^2).
 □ 1050° - 45 мин. ● 900° - 2,5 часа
 ○ 1000° - 1 час. Δ 800° - 4 часа

-10-

Рис. 5. Динамическая кривая, снятая с измерительного прибора в течение 2,5 часов
после открытия обсады при 9000 бар с течением 2,5 часов

75-1882

- 11 -

Рис. 6. Зависимость логарифма почернения фотопластинки
($\log_{10} t$) от квадрата расстояния в диффузионном
слое (x^2) для различных концентраций
□ 900 - 2,5 часа; Δ 800 - 4 часа;

-12-

Рис.7. Температурная зависимость коэффициента
самодифузии урана.
□ Метод последовательного удаления слоев
○ Метод авторадиографии.

Зад 2831