(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平8-502163

(43)公表日 平成8年(1996)3月12日

(51) Int.Cl.		識別記号	庁内整理番号	FI	
C 1 2 N	15/09	ZNA			
A 6 1 K	3 9/36	ABF	9284-4C		
C 0 7 K	7/08				
	14/415		8318-4H		
			9281 - 4 B	C 1 2 N 15/00	ZNA A
			審査請求	未請求 予備審査請求 有	(全149頁) 最終頁に続く

(21)出顧番号 特	贾平 6-503269				
(86) (22)出顧日 平	成5年(1993)1月15日				
(85)翻訳文提出日 平	成7年(1995)3月1日				
(86)国際出願番号 P	CT/US93/00139				
(87)国際公開番号 W	094/01560				
(87) 国際公開日 平	成6年(1994)1月20日				
(31)優先権主張番号 0	7/938, 990				
(32)優先日 198	22年9月1日				
(33)優先権主張国 米	I (US)				
(81)指定国 ET	P(AT, BE, CH, DE,				
DK, ES, FR, GB,	GR, IE, IT, LU, M				
C, NL, PT, SE), AU, CA, JP, KR, N					

(71)出願人 イミュロジック ファーマスーティカル コーボレイション アメリカ合衆国 02154 マサチューセッ

アメリカ合衆国 02154 マサチューセッツ, ウォルサム, リンカン ストリート 610

(72)発明者 グリフィス, アーウィン ジェイ. アメリカ合衆国 01864 マサチューセッ ツ, ノース リーディング, サウスウィッ ク ロード 13

(74)代理人 弁理士 倉内 基弘 (外1名)

最終頁に続く

(54) 【発明の名称】 杉花粉由来のアレルゲン性蛋白質及びペプチド

(57) 【要約】

Z, US

本発明は、杉花粉アレルゲンCryJIの単離したペプチドを提供する。この発明の範囲内のペプチドは、CryJIの少なくとも1つのT細胞エピトープを含む。この発明は又、対応する天然のアレルゲン若しくはその部分と同じかそれより増大された治療特性を有するが、減少した副作用を有する改変したペプチドにも関係する。この発明は、更に、この発明のペプチドをコードする核酸配列をも提供する。個人における杉花粉に対する感受性の治療若しくは診断及び、1つ以上のこの発明のペプチドを含む治療用組成物も提供する。本発明は又、JunvI及びJunsI蛋白質アレルゲン並びにJunsI及びJunvIでレルゲンをコードする核酸配列をも提供する。JunsI及びJunvIは、CryJIと免疫的に交差反応性の蛋白質アレルゲンである。

【特許請求の範囲】

- 1. CryjIの単離されたペプチド或はその単離された部分であって、該ペプチド或はその部分はCryjIの少なくとも一種のT細胞エピトープを含み、該ペプチドは下記: CJ1-2、CJ1-3、CJ1-4、CJ1-7、CJ1-8、CJ1-9、CJ1-10、CJ1-11、CJ1-12、CJ1-14、CJ1-15、CJ1-16、CJ1-17、CJ1-18、CJ1-19、CJ1-20、CJ1-21、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-23、CJ1-31、CJ1-32及びCJ1-35からなる群より選ぶアミノ酸配列を有する、CryjIの単離されたペプチド或はその単離された部分。
- 2. 前記ペプチドの前記部分が図14に示す通りの該ペプチドの平均T細胞刺激 インデックスに等しいか又はそれより大きい平均T細胞刺激インデックスを有す る請求項1の単離されたペプチド或はその単離された部分。
- 3. 少なくとも二種のT細胞エピトープを含む請求項1の単離されたペプチド或はその部分。
- 4. 杉花粉に感受性の個人に投与する際に、個人においてT細胞アネルギーを誘発し或は個人におけるT細胞のリンホカイン分泌プロフィルを変える請求項1の 単離されたペプチド或はその部分。
- 5. 平均 T 細胞刺激インデックス少なくとも 2. 0 を有する請求項 1 の単離されたペプチドの部分。
- 6. Cryj I に感受性の個人の相当のパーセンテージにおいて、 Cryj I に特異的な免疫グロブリンEを結合しないか、或はペプチドもしくはその部分の該免疫グロブリンEへの結合が起きるならば、かかる結合は Cryj I に感受性の個人の相当のパーセンテージにおいてマスト細胞或は好塩基球からのメディエーターの放出を生じない請求項1の単離されたペプチドの全部或は部分。
- 7. 免疫グロブリンEを、Cryj I が免疫グロブリンEを結合するのに比べて相当に低い程度に結合する請求項 1 の単離されたペプチド。
- 8. 投与される杉花粉に感受性の個人において、個人の杉花粉へのアレルギー反

応を変える請求項1の単離されたペプチドの全部或は部分。

- 9. 部分がアミノ酸残基少なくとも15を含む請求項1の単離されたペプチドの部分。
- 10.請求項1のペプチドの全部或は部分をコードする配列を有する単離された核酸配列、或は該核酸配列の機能的な同等物。
- 11.請求項1のペプチドの全部或は部分に特異的な抗体と免疫学的に交差反応を起こし得る単離されたペプチド。
- 12. 請求項1のペプチドの全部或は部分と反応性のT

細胞と免疫学的に交差反応を起こし得る単離されたペプチド。

- 13. 杉花粉蛋白質アレルゲンCryjIの単離されたペプチド或はその部分であって、該ペプチド或はその部分は該蛋白質アレルゲンの少なくとも一種のT細胞エピトープを含み、該ペプチドは該蛋白質アレルゲンに感受性の個人群において求めてポジティビティーインデックス少なくとも約100及び平均T細胞刺激インデックス少なくとも約3.5を有する、杉花粉蛋白質アレルゲンCryjIの単離されたペプチド或はその部分。
- 14. 前記個人群が少なくとも25の個人である請求項13の単離されたペプチド或はその部分。
- 15. 前記個人群が少なくとも30の個人である請求項14の単離されたペプチド或はその部分。
- 16. 前記平均 T 細胞刺激インデックスが少なくとも約5.0である請求項14 の単離されたペプチド或はその部分。
- 17. 前記平均T細胞刺激インデックスが少なくとも約7. 0である請求項14 の単離されたペプチド或はその部分。
- 18. 前記ペプチドを下記: CJ1-16、CJ1-17、CJ1-20、CJ 1-22、CJ1-23、CJ1-24、CJ1-26、CJ1-27、CJ1 -30、CJ1-31、CJ1-32及びCJ1-35からなる群より選ぶ請求 項14のペプチド或はその部分。

19. 前記ペプチドが下記: CJ1-16、CJ1-20、CJ1-22、CJ 1-27及びCJ1-32からなる群より選ぶアミノ酸配列を有する請求項17 のペプチド或はその部分。

20. 請求項1のペプチドの改質されたペプチド或は改質された部分。

21. Cryj Iに感受性の個人の相当のパーセンテージにおいて、Cryj Iに特異的な免疫グロブリンEを結合しないか、或はペプチドもしくはその部分の該免疫グロブリンEへの結合が起きるならば、かかる結合はCryj Iに感受性の個人の相当のパーセンテージにおいてマスト細胞或は好塩基球からのメディエーターの放出を生じない請求項20の改質されたペプチド或は改質された部分。22. 投与される杉花粉に感受性の個人において、個人の杉花粉アレルゲンへのアレルギー反応を変える請求項20の改質されたペプチド或は改質された部分。23. 図4a~bにに示す通りのCryj Iのアミノ酸配列のアミノ酸151~

24. 請求項23のペプチドの改質されたペプチド或は改質された部分。

352を含むCryj I の単離されたペプチド或はその部分。

25. 少なくとも2つの領域を含み、各々の領域はCryjIの少なくとも一種のT細胞エピトープを含み、該領域は各々下記:CJ1-1、CJ1-2、

C J 1 - 3、C J 1 - 4、C J 1 - 7、C J 1 - 8、C J 1 - 9、C J 1 - 1 0、C J 1 - 1 1、C J 1 - 1 2、C J 1 - 1 4、C J 1 - 1 5、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 1 8、C J 1 - 1 9、C J 1 - 2 0、C J 1 - 2 1、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 2 5、C J 1 - 2 6、C J 1 - 2 7、C J 1 - 2 8、C J 1 - 3 0、C J 1 - 3 1、C J 1 - 3 2、C J 1 - 3 3、C J 1 - 3 4 及びC J 1 - 3 5 からなる群より選ぶアミノ酸配列の全部或は一部を含む単離されたペプチド。

2 6. 前記領域が下記: CJ1-2、CJ1-9、CJ1-10、CJ1-16、CJ1-17、CJ1-20、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-30、CJ1-31、CJ1-32、CJ1-35からなる群より選ぶアミノ酸配列を含む請求項25の単離されたペプチドの全部或は部分。

(5) 27. 前記ペプチドが下記からなる群より選ぶ領域の組合せを含む請求項25の 単離されたペプチド: C J 1 - 1、C J 1 - 2 及びC J 1 - 3; C J 1 - 1 及びC J 1 - 2; C J 1 - 9 及び C J 1 - 1 0; С J 1 - 1 4、 C J 1 - 1 5、 C J 1 - 1 6 及び C J 1 - 1 7; C J 1 - 2 0 , C J 1 - 2 1 , C J 1 - 2 2 , C J 1 -23:С Ј 1 - 2 0、 С Ј 1 - 2 2 及びС Ј 1 - 2 3; C J 1 - 2 2 及びC J 1 - 2 3; С Ј 1 - 2 2、 С Ј 1 - 2 3 及びС Ј 1 - 2 4; C J 1 - 2 4 及びC J 1 - 2 5; С Ј 1 - 3 0、С Ј 1 - 3 1 及びС Ј 1 - 3 2;

С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 1 6 及びС Ј 1 - 1 7;

С J 1 - 2 2、 C J 1 - 2 3、 C J 1 - 3 1 及び C J 1 - 3 2;

С Ј 1 - 1 6、 С Ј 1 - 1 7、 С Ј 1 - 3 1 及び С Ј 1 - 3 2;

С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 1、 С Ј 1 - 2 及び С Ј 1 - 3;

С Ј 1 - 1 6、 С Ј 1 - 1 7、 С Ј 1 - 2 2 及び С Ј 1 - 2 3、 С Ј 1 - 3 1

C J 1 - 9、C J 1 - 1 0、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2 及び

С J 1 - 3 1 及び C J 1 - 3 2;

С Ј 1 - 1 6 及びС Ј 1 - 1 7;

及びCJ1-32;

C J 1 - 2 3 ;

C J 1 - 9、C J 1 - 1 0 及びC J 1 - 1 6;

С Ј 1 - 1 7、 С Ј 1 - 2 2 及び С Ј 1 - 2 3;

С Ј 1 - 1 6、 С Ј 1 - 1 7 及び С Ј 1 - 2 0;

С Ј 1 - 3 1、 С Ј 1 - 3 2 及びС Ј 1 - 2 0;

C J I - 9, C J 1 - 1 0, C J 1 - 1 6, C J 1 -

17、С J 1 - 3 1 及びС J 1 - 3 2;

C J 1 - 9、C J 1 - 1 0、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 3 1 及び C J 1 - 3 2;

C J 1 - 9、C J 1 - 1 0、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 3 1 及びC J 1 - 3 2;

C J 1 - 1、C J 1 - 2、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2 及びC J 1 - 2 3。

28.請求項1の前記単離されたペプチドの或はその部分をコードする配列を有する単離された核酸或は該核酸配列の機能的な同等物。

29. 請求項28の核酸によりトランスフォームされた宿主細胞において産生された単離されたペプチド。

30.請求項25のペプチドをコードする配列を有する単離された核酸或は該核酸配列の機能的な同等物。

31. 請求項30の核酸によりトランスフォームされた宿主細胞において産生された単離されたペプチド。

3 2. CryjIの単離されたペプチドの全部或は部分であって、該ペプチド或はその部分は該蛋白質アレルゲンの少なくとも一種のT細胞エピトープを含み、該ペプチドは Xn-Y-Z ■式 (式中、Yは下記: CJ1-2、CJ1-3、CJ1-4、CJ1-7、CJ1-8、CJ1-9、CJ1-10、CJ1-11、CJ1-12、CJ1-14、CJ1-15、CJ1-16、CJ1-17、CJ1-18、CJ1-19、CJ1-17、C

20、CJ1-21、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-28、CJ1-30、CJ1-31、CJ1-36、CJ1-31、CJ1-36、CJ1-31、CJ1-32及びCJ1-35からなる群より選ぶアミノ酸配列であり、Xnは該蛋白質アレルゲンのアミノ酸配列におけるYのアミノ未端に隣接するアミノ酸残基であり、Z■は該蛋白質アレルゲンのアミノ酸配列におけるYのカルボキシ末端に隣接するアミノ酸残基であり、nは0~30であり、mは0~30である)を有するCryjIの単離されたペプチドの全部或は部分。

33. 部分がアミノ酸残基少なくとも15を含む請求項32の単離されたペプチドの部分。

3 4. 蛋白質アレルゲンに感受性の個人の相当のパーセンテージにおいて、 C r y j I に特異的な免疫グロブリンEを結合しないか、或はペプチド或はその部分の該免疫グロブリンEへの結合が起きるならば、かかる結合は蛋白質アレルゲンに感受性の個人の相当のパーセンテージにおいてマスト細胞或は好塩基球からのメディエーターの放出を生じない請求項32の単離されたペプチドの全部或は部分。

35. 免疫グロブリンEを、CryiIが該免疫グロブリンEを結合するのに比べて相当に低い程度に結合する請求項32の単離されたペプチド或はその部分。 36. CryiIの単離されたペプチド或はその単離された部分であって、該ペプチド或はその部分はCryi

Iの少なくとも一種のT細胞エピトープを含み、該ペプチドは図4 a ~ b に示す通りのCryj I のアミノ酸 2 0 ~ 3 2 4 或は 3 4 1 ~ 3 5 3 を含むアミノ酸配列を有する、Cryj I の単離されたペプチド或はその単離された部分。

37. 請求項1の少なくとも一種の単離されたペプチド或はその部分及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

38.請求項13の少なくとも一種の単離されたペプチド或はその部分及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

39. 請求項23の単離されたペプチド或はその部分及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

40.個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反応を起こし得るアレルゲンへの感受性を治療するための薬剤を製造するための請求項37の組成物の使用。

41. 個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反応を起こし得るアレルゲンへの感受性を治療するための薬剤を製造するための請求項39の組成物の使用。

4 2. 個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反

応を起こし得るアレルゲンへの感受性を治療するための薬剤を製造するための請求項

37の少なくとも二種の異なる組成物の使用。

43. 杉花粉アレルゲン或は個人において杉花粉アレルゲンと免疫学的に交差反応を起こし得るアレルゲンへの感受性を治療するための薬剤を製造するための請求項38の少なくとも二種の異なる組成物の使用。

4. 個人から得られる血液試料と請求項1の少なくとも一種のペプチドとを、 血液成分とペプチドとを結合させるための適した条件下で組み合わせ、かつかか る結合が個人における杉花粉への感受性を示すものとして起きる程度を求めるこ とを含む、個人における杉花粉への感受性を検出する方法。

45. 結合が起きる程度を、T細胞機能、T細胞増殖或はこれらの組合せを評価することによって求める請求項44の方法。

4 6. 個人から得られる血液試料と請求項13の少なくとも一種のペプチドとを、血液成分とペプチドとを結合させるための適した条件下で組み合わせ、かつかかる結合が個人における杉花粉への感受性を示すものとして起きる程度を求めることを含む、個人における杉花粉への感受性を検出する方法。

47. 結合が起きる程度を、T細胞機能、T細胞増殖或はこれらの組合せを評価することによって求める請求項46の方法。

48. 個人から得られる血液試料と請求項32の少なくとも一種のペプチドの全部或は部分とを、血液成分とペ

プチド或はその部分とを結合させるための適した条件下で組み合わせ、かつかか る結合が個人における杉花粉への感受性を示すものとして起きる程度を求めるこ とを含む、個人における杉花粉への感受性を検出する方法。

49. 結合が起きる程度を、T細胞機能、T細胞増殖或はこれらの組合せを評価することによって求める請求項48の方法。

50. 製薬上許容し得るキャリヤー或は希釈剤及び少なくとも二種のペプチドを含み、該ペプチドは各々CryjIの少なくとも一種のT細胞エピトープを含む

治療組成物。

5 1. 前記ペプチドを下記: CJ1-1、CJ1-2、CJ1-3、CJ1-4、CJ1-7、CJ1-8、CJ1-9、CJ1-10、CJ1-11、CJ1-12、CJ1-12、CJ1-14、CJ1-12、CJ1-14、CJ1-12、CJ1-14、CJ1-18、CJ1-19、CJ1-14、CJ1-19、CJ1-20、CJ1-21、CJ1-22、CJ1-23、CJ1-24、CJ1-20、CJ1-21、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-28、CJ1-30、CJ1-31、CJ1-32、CJ1-33、CJ1-34及びCJ1-35からなる群より選び、前記組成物が前記蛋白質アレルゲンの工細胞エピトープを、組成物を杉花粉アレルゲンに感受性の個人に投与する際に、個人の工細胞が該少なくとも一種の蛋白質アレルゲンに対して寛容にされるように十分なパーセンテージで含む請求項50の組成物。

- 52. 下記からなる群より選ぶペプチド域の組合せを含む請求項51の組成物:
 - C J 1 1、C J 1 2 及びC J 1 3;
 - C J 1 1 及びC J 1 2;
 - C J 1 9 及びC J 1 1 0;
 - С Ј 1 1 4、 С Ј 1 1 5、 С Ј 1 1 6 及びС Ј 1 1 7;
 - C J 1 2 0 , C J 1 2 1 , C J 1 2 2 , C J 1 2 3 ;
 - C J 1 2 0、C J 1 2 2 及びC J 1 2 3;
 - C J 1 2 2 及びC J 1 2 3;
 - С Ј 1 2 2、 С Ј 1 2 3 及びС Ј 1 2 4;
 - C J 1 2 4 及びC J 1 2 5;
 - С Ј 1 3 0、С Ј 1 3 1 及びС Ј 1 3 2;
 - C J 1 3 1 及びC J 1 3 2;
 - С J 1 2 2、 C J 1 2 3、 C J 1 1 6 及び C J 1 1 7;
 - С Ј 1 2 2、 С Ј 1 2 3、 С Ј 1 3 1 及び С Ј 1 3 2;
 - С Ј 1 1 6、 С Ј 1 1 7、 С Ј 1 3 1 及び С Ј 1 3 2;
 - CJ1-9、CJ1-10及びCJ1-16;
 - C J 1 1 6 及びC J 1 1 7;

С Ј 1 - 1 7、С Ј 1 - 2 2 及びС Ј 1 - 2 3;

С Ј 1 - 1 6、С Ј 1 - 1 7 及びС Ј 1 - 2 0;

С Ј 1 - 3 1、 С Ј 1 - 3 2 及びС Ј 1 - 2 0;

С Ј 1 - 2 2 、 С Ј 1 - 2 3 、 С Ј 1 - 1 、 С Ј 1 - 2 及 び С Ј 1 - 3 ;

С Ј 1 - 1 6、 С Ј 1 - 1 7、 С Ј 1 - 2 2 及び С Ј 1 - 2 3、 С Ј 1 - 3 1

及びС J 1 - 3 2;

C J 1 - 9、C J 1 - 1 0、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2 及び

C J 1 - 2 3 ;

CJ1-9、CJ1-10、CJ1-16、CJ1-17、CJ1-31及び

C J 1 - 3 2;

С Ј 1 - 9、 С Ј 1 - 1 0、 С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 3 1 及び

C J 1 - 3 2 ;

C J 1 - 9, C J 1 - 10, C J 1 - 16, C J 1 - 17, C J 1 - 22, C

J 1 - 2 3、C J 1 - 3 1 及びC J 1 - 3 2;

C J 1 - 1、C J 1 - 2、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2 及びC

J 1 - 2 3

С Ј 1 - 1、С Ј 1 - 2、С Ј 1 - 1 6、С Ј 1 - 1 7、С Ј 1 - 2 2 及びС

J 1 - 2 3 ;

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 9、及びC J 1 - 1 0

;

C J 1 - 2 2, C J 1 - 2 3, C J 1 - 2 4, C J 1 - 9, C J 1 - 1 0, C

J 1 - 1 6、及びCJ1-17;

C J 1 - 2 2 , C J 1 - 2 3 , C J 1 - 2 4 , C J 1 - 1 6 , C J 1 - 1 7 ,

С Ј 1 - 3 1 及 び С Ј 1 -

3 2 ;

C J 1 − 2 2、C J 1 − 2 3、C J 1 − 2 4、C J 1 − 1 6、及びC J 1 − 1
7;

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 9、C J 1 - 1 0、C J 1 - 3 1 及びC J 1 - 3 2; 並びに

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 3 1、及びC J 1 - 3 2。

53. 個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反応を起こし得るアレルゲンへの感受性を治療するための薬剤を製造するための請求項50の組成物の使用。

54. 個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反応を起こし得るアレルゲンへの感受性を治療するための薬剤を製造するための請求項52の組成物の使用。

5 5. Cryj Iの少なくとも一種のペプチド及び製薬上許容し得るキャリヤー 或は希釈剤を含む治療組成物であって、Cryj IのT細胞エピトープを、組成 物を杉花粉アレルゲンに感受性の個人に投与する際に、個人のT細胞がCryj Iに対して寛容にされるように十分なパーセンテージで含む治療組成物。

56.請求項55の組成物を個人に治療上有効な量で投与することを含む、杉花 粉アレルゲン或は個人において杉花粉アレルゲンと免疫学的に交差反応を起こし 得るア

レルゲンへの感受性を治療する方法。

57. Cryj I の少なくとも 1 つの断片をコードする核酸配列或は該核酸配列 の機能的な同等物。

58. 前記核酸配列が本質的に図4a~bに示す通りのCryjIの核酸配列のコード部分の少なくとも1つの断片からなる請求項57の核酸配列。

59. 請求項 57の核酸配列によってコードされたペプチドを発現するためにトランスフォームされた宿主細胞。

60. 請求項57の核酸配列によりトランスフォームされた宿主細胞において産生される杉花粉の少なくとも1つの抗原性断片。

61. 前記断片が杉花粉に特異的な免疫グロブリンEを結合しないか、或は断片の該免疫グロブリンEへの結合が起きるならば、かかる結合はマスト細胞或は好

塩基球からのヒスタミンの放出を生じない請求項60の少なくとも1つの抗原性断片。

62. 前記単離された抗原性断片が、投与される杉花粉に感受性の個人において、杉花粉へのアレルギー反応を変えることができる請求項60の単離された抗原性断片。

63. a) Cryj I の少なくとも1つの断片をコードする核酸配列によりトランスフォームされた宿主細胞を適した培地において培養して細胞とCryj I の少なくとも1つの単離された断片を含有する培地との混合物を

生成し; 及び

b) 該混合物を精製してCryjIの少なくとも1つの実質的に純な断片を生成する工程を含むCryjIの少なくとも1つの単離された断片を生成する方法

64. CryjIの単離されたペプチド或はその単離された部分であって、該ペプチド或はその部分はCryjIの少なくとも一種のT細胞エピトープを含み、該ペプチドは下記: CJ1-1、CJ1-2、CJ1-3、CJ1-4、CJ1-7、CJ1-8、CJ1-9、CJ1-10、CJ1-11、CJ1-12、CJ1-14、CJ1-15、CJ1-16、CJ1-17、CJ1-18、CJ1-19、CJ1-20、CJ1-21、CJ1-22、CJ1-23、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-28、CJ1-30、CJ1-31、CJ1-34及びCJ1-35からなる群より選ぶアミノ酸配列を有する、CryjIの単離されたペプチド或はその単離された部分。

6 5. 前記ペプチドが下記: CJ1-2、CJ1-9、CJ1-10、CJ1-16、CJ1-17、CJ1-20、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-30、CJ1-31、CJ1-32及びCJ1-35からなる群より選ぶアミノ酸配列を有する請求項64の単

離されたペプチド或はその部分。

66. 杉花粉に感受性の個人に投与する際に、個人の杉花粉アレルゲンへのアレルギー反応を低減させる杉花粉アレルゲンの少なくとも1つの改質された断片。 67. CryjIに或はその断片に免疫学的に関係する単離された蛋白質アレルゲン或はその抗原性断片。

68. Cryj I の少なくとも1つの単離された抗原性断片及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

69. 杉花粉アレルゲンCryjIの一部ををコードする核酸配列によりトランスフォームされた宿主細胞において合成される、杉花粉アレルゲンCryjIの少なくとも1つの断片を含む蛋白質製剤。

7 0. 請求項 6 9 の前記製剤を哺乳動物に治療上有効な量で投与することを含む、杉花粉アレルゲン或は該アレルゲンに感受性の哺乳動物において杉花粉アレルゲンと免疫学的に交差反応を起こし得るアレルゲンへの感受性を治療する方法。
7 1. 哺乳動物から得られる血液試料と請求項 5 7 の核酸配列によりトランスフォームされた宿主細胞において産生される或は化学的に合成される杉花粉の精製されたされた抗原性断片とを、血液成分と断片とを結合させるための適した条件下で組み合わせ、かつかかる結合が起きる程度を求めることを含む、哺乳動物における杉花粉アレルゲンへの感受性を検出する方法。

72. 請求項 5 7 の核酸配列によりトランスフォームされた宿主細胞において産生される或は化学的に合成される杉花粉アレルゲンCェッ j I の少なくとも 1 つの抗原性断片を十分な量で哺乳動物に投与して該哺乳動物においてアレルギー反応を引き起こし、かつ個人における杉花粉アレルゲンの該抗原性断片へのアレルギー反応の発生を求めることを含む哺乳動物の杉花粉アレルゲンへの感受性を検出する方法。

73. 杉花粉アレルゲンCryjIの少なくとも1つの抗原性断片と特異的に反応性のモノクロナール抗体。

74. Cryj I の単離されたペプチドの全部或は部分であって、該ペプチド或はその部分はCryj I の少なくとも一種のT細胞エピトープを含み、該ペプチ

ドは図4 a ~ b に示す通りのCryjIのアミノ酸残基1~4 0、アミノ酸残基81~110、アミノ酸残基151~180、アミノ酸残基191~260及びアミノ酸残基291~330からなる群より選ぶアミノ酸配列を有する、CryjIの単離されたペプチドの全部或は部分。

75. 杉花粉に感受性の個人に充分な量で投与する際に、個人の杉花粉へのアレルギー性暴露を改質することになる Cryj I の抗原性断片をデザインする方法であって、

- (a) Cryj I のペプチドを組み換えにより或は合成により生成し;
- (b) 該ペプチドを杉花粉に感受性の個人において B 細胞及び/又は T 細胞反応に影響を与える能力について調べ;及び
- (c) 細胞によって認識されるエピトープを含有する適したペプチドを選定する工程を含む方法。

76. CryjIの単離されたペプチド或はその単離された部分であって、該ペプチド或はその部分はCryjIの少なくとも一種のT細胞エピトープを含み、該ペプチドは下記: CJ1-41、CJ1-41、1、CJ1-41、2、CJ1-41、43、CJ1-41、2、CJ1-42、1、CJ1-42、2、CJ1-43、CJ1-42、2、CJ1-43、6、CJ1-43、7、CJ1-43、8、CJ1-43、9、CJ1-43、10、CJ1-43、11、CJ1-43、12、CJ1-45、CJ1-45、1、CJ1-45、2、CJ1-44、CJ1-44、1、CJ1-45、1、CJ1-45、2、CJ1-45、2、CJ1-45、2、CJ1-45、2、CJ1-45、2、CJ1-45、2、CJ1-45、2、CJ1-44、3からなる群より選ぶアミノ酸配列を有する、CryjIの単離されたペプチド或はその単離された部分。

77. 請求項76の少なくとも一種の単離されたペプチド或はその部分及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

78.個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反応を起こし得る任意のアレルゲ

ンへの感受性を治療するための薬剤を製造するための請求項76の組成物の使用

79. 杉花粉アレルゲンと免疫学的に交差反応を起こし得る前記アレルゲンが J uns I 或は Junv I である請求項 78の使用。

80. 請求項76のペプチドの改質されたペプチド或は改質された部分。

81.個人から得られる血液試料と請求項76の少なくとも一種のペプチドの全部或は部分とを、血液成分とペプチド或はその部分とを結合させるための適した条件下で組み合わせ、かつかかる結合が個人における杉花粉への感受性を示すものとして起きる程度を求めることを含む、個人における杉花粉への感受性を検出する方法。

8 2. 前記ペプチドを下記: CJ1-41、CJ1-41.1、CJ1-41.2、CJ1-41.2、CJ1-41.3、CJ1-41.3、CJ1-41.3、CJ1-41.3、CJ1-41.3、CJ1-42.2、CJ1-43.6、CJ1-43.7、CJ1-43.7、CJ1-43.8、CJ1-43.9、CJ1-43.10、CJ1-43.11、CJ1-43.11、CJ1-43.12、CJ1-45.2、CJ1-45.1、CJ1-45.2、CJ1-44.0、CJ1-44.3からなる群より選び、前記組成物が前記蛋白質アレルゲンの下細胞エピトープを、組成物を杉花粉アレルゲンに感受性の個人に投与する際に、個人の下細胞が該少なく

一種の蛋白質アレルゲンに対して寛容にされるように十分なパーセンテージで含む請求項76の組成物。

83.個人における杉花粉アレルゲン或は杉花粉アレルゲンと免疫学的に交差反応を起こし得る任意のアレルゲンへの感受性を治療するための薬剤を製造するための請求項76の組成物の使用。

84. 杉花粉アレルゲンと免疫学的に交差反応を起こし得る前記アレルゲンが J uns I 或は Junv I である請求項 83の使用。

85. JunvIの単離され、精製された天然蛋白質或はペプチド。

とも

86. Juns I をコードするヌクレオチド配列を有する単離された核酸或はその少なくとも一種の断片或は該ヌクレオチド配列の機能的同等物。

- 87. 前記ヌクレオチド配列が本質的に図16のヌクレオチド配列のコード部分からなる請求項86の単離された核酸配列。
- 88. 前記ヌクレオチド配列が本質的に図16のヌクレオチド配列からなる請求項86の単離された核酸配列。
- 89. Juns I をコードするヌクレオチド配列を含む発現ベクター或はその少なくとも一種の断片或は該ヌクレオチド配列の機能的同等物。
- 90. 前記ヌクレオチド配列が本質的に図16のヌクレオチド配列のコード部分からなる請求項89の発現ベクター。
- 91. 請求項86の核酸によってコードされた蛋白質或はペプチドを発現するためにトランスフォームされた宿主細胞。
- 92. 請求項86の核酸によってトランスフォームされた宿主細胞において産生される、単離されたJuns I蛋白質或はその少なくとも一種の抗原性断片。
- 93. JunvIをコードするヌクレオチド配列を有する単離された核酸或はその少なくとも一種の断片或は該ヌクレオチド配列の機能的同等物。
- 94. 前記ヌクレオチド配列が本質的に図17のヌクレオチド配列のコード部分からなる請求項93の単離された核酸配列。
- 95. 前記ヌクレオチド配列が本質的に図17のヌクレオチド配列からなる請求項93の単離された核酸配列。
- 9 6. JunvIをコードするヌクレオチド配列を含む発現ベクター或はその少なくとも一種の断片或は該ヌクレオチド配列の機能的同等物。
- 97. 前記ヌクレオチド配列が本質的に図17のヌクレオチド配列のコード部分からなる請求項96の発現ベクター。
- 98. 請求項93の核酸によってコードされた蛋白質或はペプチドを発現するためにトランスフォームされた宿主細胞。
- 99. 請求項93の核酸によってトランスフォームされた宿主細胞において産生される、単離されたJunvI

蛋白質或はその少なくとも一種の抗原性断片。

100. a) Juns I 或はその断片をコードする核酸配列によりトランスフォームされた宿主細胞を適した培地において培養して細胞と該 Juns I 或はその少なくとも一種の断片を含有する培地との混合物を生成し;及び

b) 該混合物を精製して実質的に純なJuns I 或はその少なくとも一種の断片を生成する

工程を含むJunsⅠ或はその少なくとも一種の断片を生成する方法。

101. 単離されたJunsI或はその少なくとも一種の抗原性断片。

102. 単離されたJuns I 花粉アレルゲン或はその少なくとも一種の断片及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

103. Juns Iの全部或は一部をコードする核酸配列によりトランスフォームされた宿主細胞において合成された Juns I或はその少なくとも一種の断片を含む蛋白質製剤。

104. 花粉に感受性の哺乳動物におけるJunipe-rus種からの花粉アレルゲンへの感受性を治療するための薬剤を製造するために請求項103の製剤を使用する方法。

105. 哺乳動物から得られる血液試料と請求項86の核酸配列によりトランスフォームされた宿主細胞におい

て産生される或は化学的に合成される精製されたJunsIアレルゲン或はその抗原性断片とを組み合わせて該哺乳動物においてアレルギー性反応を引き起こし、かつ個人における該JunsIアレルゲン或はその抗原性断片へのアレルギー性反応の発生を求めることを含む、哺乳動物におけるJunsIへの感受性を検出する方法。

106. Juns I 或はその少なくとも1つの抗原性断片と特異的に反応性のモノクローナル抗体。

107. 前記アレルゲン或はその断片がJuniperus種からの花粉に特異的な免疫グロブリンEを結合しないか、或はJunsIアレルゲン或はその断片の該免疫グロブリンEへの結合が起きるならば、かかる結合はマスト細胞或は好塩基球からのヒスタミンの放出を生じない請求項92の単離されたJunsI或

はその少なくとも1つの抗原性断片。

108. 前記単離されたアレルゲン或は前記抗原性断片が、投与されるJuniperus種からの花粉に感受性の個人において、Juniperus種からの花粉へのアレルギー反応を変えることができる請求項107の単離されたアレルゲン或は抗原性断片。

109. a) JunvI或はその断片をコードする核酸配列によりトランスフォームされた宿主細胞を適した培地において培養して細胞とJunvI或はその少なくとも1つの断片を含有する培地との混合物を生成し;及び

b) 該混合物を精製して実質的に純なJunvI或はその少なくとも1つの断 片を生成する

工程を含むJunvI或はその少なくとも1つの断片を生成する方法。

111. 単離されたJunvI或はその少なくとも1つの抗原性断片。

1 1 2. 単離されたJunvI花粉アレルゲン或はその少なくとも1つの断片及び製薬上許容し得るキャリヤー或は希釈剤を含む治療組成物。

1 1 3. Jun v I の全部或は一部をコードする核酸配列によりトランスフォームされた宿主細胞において合成された Jun v I 或はその少なくとも 1 つの断片を含む蛋白質製剤。

1 1 4 . 花粉に感受性の哺乳動物におけるJunipe-rus種からの花粉アレルゲンへの感受性を治療するための薬剤を製造するために請求項 1 1 3 の製剤を使用する方法。

1 1 5 . 哺乳動物から得られる血液試料と請求項 9 3 の核酸配列によりトランスフォームされた宿主細胞において産生される或は化学的に合成される精製されたJunvIアレルゲン或はその抗原性断片とを組み合わせて該哺乳動物においてアレルギー性反応を引き起こし、かつ個人における該JunvIアレルゲン或はその抗原性断片へのアレルギー性反応の発生を求めることを

含む、哺乳動物におけるJunvIへの感受性を検出する方法。

116. JunvI或はその少なくとも1つの抗原性断片と特異的に反応性のモ

ノクローナル抗体。

1 1 7. 前記アレルゲン或はその断片がJuniperus種からの花粉に特異的な免疫グロブリンEを結合しないか、或はJunvIアレルゲン或はその抗原性断片の該免疫グロブリンEへの結合が起きるならば、かかる結合はマスト細胞或は好塩基球からのヒスタミンの放出を生じない請求項99の単離されたJunvI或はその少なくとも1つの抗原性断片。

1 1 8. 前記単離されたアレルゲン或は前記抗原性断片が、投与されるJuniperus種からの花粉に感受性の個人において、Juniperus種からの花粉へのアレルギー反応を変えることができる請求項117の単離されたアレルゲン或は抗原性断片。

1 1 9. 杉花粉蛋白質アレルゲンCryjIの特有の抗原性断片或はその部分。 1 2 0. CryjIの少なくとも一種のT細胞エピトープを含み、前記蛋白質アレルゲンに感受性の個人群において求めて平均T細胞刺激インデックス少なくと も約3. 0を有する請求項119の特有の抗原性断片或はその部分。

121. 前記個人群が少なくとも25である請求項120の特有の抗原性断片。

1 2 2. 前記平均 T 細胞刺激インデックスが少なくとも約 5. 0 である請求項 1 2 0 の特有の抗原性断片。

【発明の詳細な説明】

杉花粉由来のアレルゲン性蛋白質及びペプチド

発明の背景

遺伝的素因を有する個人(人口の約10%に及ぶ)は、彼らがさらされる種々の環境起源の抗原に対して過剰感作(アレルギー性)となる。それらの即時型及び/又は遅延型の過敏症を誘発し得る抗原はアレルゲンとして知られている(King, T.P., Adv.Immunol.23:77-105, (1976))。枯草熱、喘息及び発疹の症状を含むアナフィラキシー又はアトピーは、即時型アレルギーの一形態である。それは、草、木、雑草、動物の鱗屑、昆虫、食物、薬物及び化学物質等の種々のアトピー性アレルゲンによって引き起こされ得る。

アトピー性アレルギーに関係する抗体は、主として免疫グロブリンIgEクラスに属する。IgEはマスト細胞及び好塩基球と結合する。特定のアレルゲンと、マスト細胞又は好塩基球に結合したIgEとの結合により、IgEは、その細胞上で架橋されてIgE一抗原相互作用の生理的効果を生じ得る。これらの生理的効果は、他の物質のうちで、ヒスタミン、セロトニン、ヘパリン、エオシン好性白血球及び/又はロイコトリエンに対する走化性因子、C4、D4及びE4の放出を含み、これらは、気管支平滑筋細胞の長期の収縮を引き起こす

(Hood, L.E. 等、Immunology(第2版), The Benjamin/Cumming Publishing Co., Inc. (1984))。これらの放出された物質は、IgEと特異的アレルゲンとの結合により引き起こされるアレルギー性症状を生じるメディエーターである。それらを介してアレルゲンの効果は現れる。かかる効果は、その性質が、抗原が体内に侵入した経路及びIgEのマスト細胞又は好塩基球への付着パターンによって、全身性であり又は局所的である。局所的出現は、一般に、アレルゲンが体内に侵入した場所の上皮表面に起きる。全身性効果は、アナフィラキシー(アナフィラキシー性ショック)を含み、それは、循環(血管内)抗原に対するIgE-好塩基球の応答の結果である。

杉(スギ:Cryptomeria japonica)花粉症は、日本における最も重大なアレル ギー性疾患の一つである。この病気を患っている患者数は増加中であり、幾つか の地域では人口の10%より多くが影響を受けている。杉花粉抽出物を投与して アレルゲンに対して除感作することによる杉花粉症の治療が試みられてきた。し かしながら、杉花粉抽出物を用いる除感作は、高投与量で用いるならばそれがア ナフィラキシーを誘出し得るという欠点を有しており、他方、低投与量を用いて アナフィラキシーを回避した場合には治療はその抽出物に対する寛容を確立する ために数年間継続しなければならない。

杉花粉に由来する主要なアレルゲンは精製され、スギ

塩基性蛋白質(SBP)又はCryjIと呼ばれている。この蛋白質は、分子量41~50kDaでpI8.8の塩基性蛋白質であることが報告されている。部分的に異なるグリコシレーションのために、このアレルゲンの多くのイソ型があるらしい(Yasueda等(1983)J.AllergyClin.Immunol.71:77-86;及びTaniai等(1988)FEBSLetters239:329-332)。CryjIのN末端の最初の20アミノ酸の配列及び16アミノ酸の内部配列が決定された(Taniai、前出)。

分子量約37kDaを有しCryjIIとして知られる杉花粉の第2のアレルゲンも 又報告された (Sakaguchi等、 (1990) Allergy45: 309-312)。このアレルゲン は、CryjIとの免疫交差反応性を有しないことが見出された。杉花粉症の殆どの 患者は、CryjI及びCryjIIの両者に対するIgE抗体を有することが見出された が、幾人かの患者からの血清はCryjI又はCryjIIのみと反応した。

低投与量の杉花粉抽出物を用いる杉花粉症患者の除感作に加えて、1990年7月3日にMatsuhashi等に発行された米国特許第4,939,239号は、杉花粉に過敏性の人の除感作用の杉花粉アレルゲンに共有結合した糖類を含む除感作剤を開示している。この除感作剤は、1gG及び1gM抗体の産生を促進するがアレルゲンに特異的であってアナフィラキシー及びアレルギーの原因である1gE抗体の産生を減じることが報告されている。これらの除感作剤において用いられるアレルゲン

は、好ましくは、NH2末端アミノ酸配列Asp-Asn-Pro-Ile-A sp-Ser-X-Trp-Arg-Gly-Asp-Ser-Asn-Trp - Ala-Gln-Asn-Arg-Met-Lys-、(ここにXはSer、Cys、Thr又はHisである)(配列番号:18)を有する。更に、Usui等(1990)Int.Arch.Allergy Appl.Immunol.91:74-79は、アルツス反応を誘出するスギ塩基性蛋白質(即ち、CryjI)-プルラン結合体の能力が天然のスギ塩基性蛋白質のそれより約1000倍低く顕著に減じたことを報告し、且つスギ塩基性蛋白質ープルラン結合体が杉花粉症に対する脱感作治療のための優れた候補であることを示唆した。

Cryptomeria japonica中に見出されるCryjIアレルゲンは又、Cupressus sempervirensを含む他の種の木からの花粉中のアレルゲンと交差反応性であることも見出されている。Panzani等(Annals of Allergy57: 26-30 (1986)) は、皮膚試験 (RAST及びRAST阻害) においてCupressus sempervirensとCryptomeria japonicaの花粉のアレルゲンの間で交差反応性が検出されたことを報告した。柏(Mountain Ceder)(Juniperus sabinoidesのこと。Juniperus asheiとしても知られる)から単離された50kDaのアレルゲンは、NH2末端配列AspAsnProIleAsp(配列番号:25)を有し(Gross等(1978)Scand.J.Immunol.8:437-441)、それはCryjIアレルゲンのNH2末端の最初の5アミノ

酸と同じ配列である。CryjIアレルゲンは又、アレルゲン的に、次の種の木々と 交差反応性であることも見出された。Cupressus arizonica, Cupressus macroca rpa, Juniperus virginiana, Juniperus communis, Thuyaorientalis及びChamae cyparis obtusa。

杉花粉症アレルゲンに注意が払われたにもかかわらず、人々に悪影響を及ぼす原因であるアレルゲンの特定又は特性決定は非常に不完全である。現在の脱感作治療は、もし高投与量の花粉抽出物を投与するならば付随するアナフィラキシーの危険を伴う花粉抽出物を用いる治療、又は低投与量の花粉抽出物を投与する場合に長期の脱感作時間を要する治療を含んでいる。

発明の要約

本発明は、Cryptomeria japonica主要花粉アレルゲンCryjIをコードする核酸配列及びその断片を提供する。本発明は又、CryjIをコードする核酸配列又は少

なくともその1断片でトランスフォームされた宿主細胞内で産生された単離されたCryjI又は少なくともその1断片及び合成により調製したCryjIの断片を提供する。

本発明は又、CryjIと免疫的に交差反応性のJunvI及びJunsI蛋白質アレルゲン 並びにJunvI及びJunsIの断片(JunsI又はJunvIをそれぞれコードする核酸配列で トランスフォームした宿主細胞内で産生されたもの)並びに合成により調製した JunsI及びJunvIの断片をも提

供する。本発明は、更に、JunvI及びJunsIをコードする核酸配列並びにそれらの断片を提供する。ここで用いる場合、CryjI、JunsI又はJunvIの完全アミノ酸配列をコードする核酸配列の断片とは、CryjI、JunsI又はJunvI及び/又は成熟CryjI、JunsI又はJunvI及び/又は成熟CryjI、JunsI又はJunvI及び/又は成熟CrybI、JunsI又はJunvI及びこれらの断片は、を有する核酸配列のことをいう。CryjI、JunsI又はJunvI及びこれらの断片は、杉花粉症並びに杉花粉アレルゲンと免疫的に交差反応性である他の種の木々からの花粉により引き起こされる花粉症を診断し、治療し及び予防するために有用である。

この発明の範囲内のペプチドは、好ましくは、CryjIの少なくとも1つのT細胞エピトープを、一層好ましくは少なくとも2つのT細胞エピトープを含む。この発明は、更に、少なくとも2つの領域(各領域は、杉花粉蛋白質アレルゲンの少なくとも1つのT細胞エピトープを含む)を含むペプチドを提供する。この発明は又、対応する天然のアレルゲン又はその部分と同じ又は増大された治療特性を有するが減少した副作用を有する改変されたペプチド、並びに増大された溶解度及び安定性等の改善された特性を有する改変されたペプチドをも提供する。この発明のペプチドは、それらを投与した杉花粉に過敏性の個人又は杉花粉と交差反応性のアレルゲンに過敏性の個人において、杉花粉アレルゲン又は杉花粉と交差反応性のアレルゲン(例えば、JunsI又はJunvI)に

対するその個人のアレルギー応答を調節することが出来る。個人における杉花粉 又は交差反応性アレルゲンに対する感受性の治療又は診断方法及びこの発明の 1 つ以上のペプチドを含む治療用組成物も又提供する。この発明を、請求の範囲に 一層詳細に記載し且つその好適具体例を以下の説明に記載する。

図面の簡単な説明

図1 a は、10 m M 酢酸ナトリウム (p H 5.0) 及び0.15 M N a C 1 で 平衡化した Superdex 75 (60 c m につき2.6) 上でアフィニティー精製した Cr y.j.l の グラフ表示である。

図 1 b は、図 1 a に示した主要ピークからの画分の S D S - P A G E (1 2 . 5 %) 分析を示す。

図2は、SDS-PAGEで分離し、mAB CBF2をプローブとした精製した天然のCryjI蛋白質のイソ型のウエスタンブロットを示す。

図3は、15人のアレルギー患者のプールからの血漿を用いた、精製した天然 CryjIの種々の精製画分のアレルギー性血清滴定のグラフ表示である。

図4 a ~ b は、CryjIをコードする2つの重複するクローンJC71.6及びpUC19JC 91aからの複合核酸配列を示す。CryjIに対する完全なcDNA配列は1312ヌクレオチドからなり、5、非翻訳配列の66ヌクレオチド、1122ヌクレオチドの開始メチオニンに対するコ

ドンで始まるオープンリーディングフレーム及び3'非翻訳領域を含む。図4 a ~ b は又、CryjIの演繹されたアミノ酸アミノ酸配列をも示している。

図5 a は、被覆抗原が杉花粉からの可溶性花粉抽出物(SPE)であるI g E 結合反応の結果のグラフ表示である。

図5 b は、被覆抗原が精製した天然CryjIである I g E 結合反応の結果のグラフ表示である。

図6は、被覆抗原が杉花粉からの可溶性花粉抽出物(SPE)である、15人の患者からのプールしたヒト血漿(PHP)を用いた競争ELISAの結果のグラフ表示である。

図7は、被覆抗原が杉花粉からの可溶性花粉抽出物(SPE)であり競争抗原が精製した天然CryjIである、個々の患者からの血漿(患者番号で示す)を用いた競争ELISAの結果のグラフ表示である。

図8aは、被覆抗原が杉花粉からの可溶性花粉抽出物(SPE)である、7人の個々の患者からの血漿(患者番号で示す)を用いた直接結合ELISAの結果のグラフ表示である。

図8bは、被覆抗原が還元剤DTTの存在下で煮沸させることにより変性させた変性した可溶性花粉抽出物である、7人の個々の患者からの血漿(患者番号で示す)を用いた直接結合ELISAの結果のグラフ表示である。

図9は、ウェルを組換えCryjI(rCryjI)で被覆し且つIgE結合を個々の患者にてアッセイした、直接ELISAのグラフ表示である。

図10aは、ウェルをCBF2(IgG)mAbで被覆し、PBSを陰性抗原対照として用い且つ抗原が精製した組換えCryjIであった、15人の患者からのプールしたヒト血漿を用いる捕獲ELISAの結果のグラフ表示である。

図10bは、ウェルを20μg/m1CBF2(IgG)で被覆し、PBSを 陰性抗原対照として用い且つ抗原が精製した組換えCryjIであった、ウサギ抗Amb aI及びIIを用いる捕獲ELISAの結果のグラフ表示である。

図11は、杉花粉からのSPE、精製した天然CryjI及び組換えCryjIを追加抗原として用いて杉花粉アレルギー患者について行なったヒスタミン放出アッセイのグラフ表示である。

図12は、抗原が組換えCryjI蛋白質、精製した天然CryjI蛋白質又は選択したCryjIペプチド、組換えAmbal. 1である、999番の患者からの血液を用いるT細胞増殖アッセイの結果のグラフ表示である。

図13は、CryjIから誘導された所望の長さの種々のペプチドを示す。

図14は、精製した天然CryjIでイン・ビトロで誘発し且つ種々のCryjIペプチ ドに対する応答につき応答の

パーセントにより分析した、25人の患者からのT細胞系統の応答(陽性)を、少なくとも2のS. I (各棒の上に示す)、このペプチドに対する陽性応答の平均刺激インデックス (各棒の上に括弧内に示す)及びポジティビティーインデックス (Y軸)で描写するグラフ表示である。

図15は、あるCryjI蛋白質、精製した天然CryjI及びrCryjIに対するIgEの直接結合アッセイの結果のグラフ表示である。

図16は、JunsIのヌクレオチド配列を示す。この配列は2つの重複するcDNAクローンpUC19JS42e及びpUC19JS45a並びにJunsIをコードする完全長クローンJS53iibからの複合物である。JunsIに対する完全なcDNAは1170ヌクレオチドからなり、5、非翻訳配列の25ヌクレオチド、1,101ヌクレオチドのオープンリーディングフレーム及び3、非翻訳領域を含む。図16は又、JunsIの演繹されたアミノ酸配列をも示す。

図17は、JunvIのヌクレオチド配列を示す。この配列はJunvIをコードする2つの重複する c D N A クローン pUC19JV46a及び pUC19JV49iiaからの複合物である。JunvIに対する完全な c D N A 配列は1278ヌクレオチドからなり、5,非翻訳配列の35ヌクレオチド、1,101ヌクレオチドのオープンリーディングフレーム及び3,非翻訳領域を含む。図17は又、演繹された

JunvIのアミノ酸配列をも示している。

図18は、CryjIから導かれた所望の長さの種々のペプチドを示している。

図19a及び19bは、CryjI又はCryjI相同物をコードし得るmRNAの同定のためのCryjcDNAをプローブとした花粉誘導されたRNAのノーザンブロットを示す。図19aは、CryjI c DNAをプローブとして、C.japonica (米国及び日本国産)、J.sabinoides及びJ.virginianaからのRNAを示す。図19bは、同じc DNAをプローブとして、J.sabinoides及びC.arizonicaからのRNAを示している。分子量標準の位置を図の各部に示す。

発明の詳細な説明

本発明は、CryjI(杉花粉に見出される主要アレルゲン)をコードする核酸配列並びにJunvI及びJunsIをコードする核酸配列を提供する。CryjIをコードする核酸配列は、好ましくは、図4a及び4bに示す配列(配列番号:1)を有する。図4a及び4bに示すCryjIをコードする核酸配列(配列番号:1)は、塩基66から128までの21アミノ酸リーダー配列を含む。このリーダー配列は、塩基129から1187によりコードされる成熟蛋白質から開裂される。CryjI

の演繹されたアミノ酸配列も又図4 a 及び4 b に示してある(配列番号: 2)。 この発明の核酸配列は、予想される分子量38.

5 k D a 、 p I 7 . 8 及び潜在的な N 結合グリコシレーション部位を有する蛋白 質をコードする。これらのグリコシレーション部位の利用は、分子量を増加させ 、成熟蛋白質のplに影響する。この発明の核酸配列によりコードされる成熟蛋 白質に対する演繹されたアミノ酸配列は、Taniai等(前出)により報告された公 知のNH2末端及び内部のアミノ酸配列と同じである。Taniai等(前出)により 報告されたCryjIのNH2末端は配列番号:18に示した配列を有する。Taniai 等(前出)により報告された内部配列は、配列G1uA1aPheAsnVal GluAsnGlyAsnAlaThrProGlnLeuThrLys(配列 番号:19)を有する。この発明の核酸配列には配列多形が認められる。例えば 、配列番号1のアミノ酸38、51及び74をコードするコドンにおける1つの 独立のヌクレオチドの置換(それぞれ、GGA対GAA、GTG対GCG、及び GGG対GAG)は、これらの部位におけるアミノ酸多形(それぞれ、G対E、 V対A及びG対E)を生じ得る。更に、単一ヌクレオチド置換が、日本において 採集されたCryptomeria japonica花粉から導かれた一つのcDNAクローンにお いて検出された。この配列番号1のアミノ酸60に対するコドンにおける置換(TAT対CAT)は、この部位におけるアミノ酸多形(Y対H)を生じ得る。更 なるサイレントヌクレオチド置換が検出された。更なる配列多形が存在すること が予想され、且つ

CryjIをコードする核酸配列中の1つ以上のヌクレオチド(ヌクレオチドの1%まで)が、自然の対立遺伝子変化のために個々のCryptomeria japonica間で変化し得ることは当業者によって評価されよう。任意の及びすべてのかかるヌクレオチド変化及びその結果のアミノ酸多形は、この発明の範囲内にある。更に、1つ以上のCryjIのファミリーメンバーが存在し得る。かかるファミリーメンバーは、機能及びアミノ酸配列においてCryjIと関連するが別個の遺伝子座によってコードされる蛋白質として定義される。

CryjI又は交差反応性アレルゲンの断片をコードする核酸配列の断片も又、この発明の範囲内にある。この発明の範囲内の断片は、CryjI又は交差反応性アレルゲン例えばJunvI若しくはJunsIの部分をコードするものを含み、これらは、哺乳動物好ましくはヒトにおいて免疫応答を誘発する(最小量のIgEの刺激;IgEの結合;IgG及びIgM抗体の産生の誘出;又は増殖及び/又はリンホカイン分泌及び/又はT細胞アネルギーの誘導等のT細胞応答の誘出等)。前述のCryjIの断片を、ここでは、抗原性断片という。この発明の範囲内の断片は、CryjIと交差反応性のアレルゲンを検出するスクリーニングプロトコールにおいて用いるために、他の植物種からの核酸とハイブリダイズし得るものをも含む。ここで用いる場合、CryjIをコードする核酸配列の断片とは、CryjI及び/又は成熟CryjIの完全アミノ酸配列を

コードする核酸配列より少ない塩基を有する核酸配列をいう。一般に、CryjIの断片をコードする核酸配列を、成熟蛋白質をコードする塩基から選択するが、ある場合には、この発明の核酸配列のリーダー配列部分からの断片の全部又は一部を選択することが望ましい。この発明の核酸配列は又、CryjI又はその断片のクローニング、発現又は精製に有用なリンカー配列、改変された制限エンドヌクレアーゼ部位及びその他の配列をも含む。

CryjIをコードする核酸配列は、Cryptomeria japonica植物から得ることが出来る。しかしながら、出願人は、CryjIをコードするmRNAは市販のCryptomeria japonica花粉からは得られないことを見出した。この花粉からmRNAを得ることが出来ないのは市販の花粉の貯蔵又は輸送の問題のためであろう。出願人は、新鮮な花粉及び雄蘂を有する球果がCryjI mRNAの良い源であることを見出した。Cryptomeria japonicaは杉の周知の種であり、植物材料は野生、耕作又は装飾用植物から得ることが出来る。CryjIをコードする核酸配列は、ここに開示する方法又は遺伝子の単離及びクローニングのための他の任意の適当な方法を用いて得ることが出来る。この発明の核酸配列はDNA又はRNAであってよい。

本発明は、この発明の核酸配列を発現するための発現ベクター及びトランスフ

オームした宿主細胞を提供する。CryjI、JunvI又はJunsIをコードする核酸配列 又

はそれらの少なくとも 1 断片を E. coli等の細菌細胞、昆虫細胞(バキュロウイ ルス)、酵母、又はチャイニーズハムスター卵巣細胞(CHO)等の哺乳動物細 胞中で発現させることが出来る。適当な発現ベクター、プロモーター、エンハン サー及び他の発現制御要素は、Sambrook等、Molecular Cloning: A Laboratory Manual, 第2版, Cold Spring Harbor Laboratory Press, ColdSpring Harbor, ニューヨーク(1989)中に見出すことが出来る。他の適当な発現ベクター、プロ モーター、エンハンサー及び他の発現要素は、当業者には公知である。哺乳動物 、酵母又は昆虫細胞内での発現は、組換え物質の部分的な又は完全なグリコシレ ーション及び鎖間又は鎖内ジスルフィド結合の形成へと導く。酵母内での発現の ための適当なベクターは、YepSec1 (Baldari等 (1987) Embo J.6:229-234) ; p MFa (Kurjan及びHerskowitz (1982) Cell30: 933-943) ;JRY88 (Schultz等 (19 87) Gene<u>54</u>: 113-123) 及びpYES2 (Invitrogen Corporationカリフォルニア、Sa n Diego在)を含む。これらのベクターは自由に入手することが出来る。バキュ ロウイルス及び哺乳動物発現系も又入手可能である。例えば、バキュロウイルス 系は、昆虫細胞中での発現用に市販されており(カリファオルニア、San Diego 在、PharMingen)、他方、pMSGベクターは、哺乳動物細胞内での発現用に市販さ れている(ニュージャージー、Piscataway在、Pharmacia)。

E. coli内での発現のためには、適当な発現ベクター

は、他のものの内で、pTRC (Amann等 (1988) Gene<u>69</u>: 301-315) ; pGEX (オーストラリア、Melbourne在、Amrad Corp.) ; pMAL (マサチューセッツ、Beverly在、N.E.Biolabs) ; pRIT5 (ニュージャージー、Piscataway在、Pharmacia) ; pET-11d (ウィスコンシン、Madison在、Novagen) Jameel等、 (1990) J.Virol. 64: 3963-3966; 及びpSEM (Knapp等(1990)BioTechniques8: 280-281) を含む。例えば、pTRC及びpET-11dの利用は、未融合蛋白質の発現へと導く。pMAL、pRIT5、pSEM及びpGEXの利用は、マルトースE結合蛋白質 (pMAL)、蛋白質A (pRIT5)

、切り詰めたβーガラクトシダーゼ(PSEM)又はグルタチオンS-トランスフェラーセ(pGEX)に融合したアレルゲンの発現へと導くであろう。CryjI断片又はその断片が融合蛋白質として発現される場合には、キャリアー白質とCryjI又はその断片との間の融合点に酵素開裂部位を導入することは特に有利である。次いで、CryjI又はその断片を融合蛋白質からその酵素部位における酵素開裂並びに蛋白質及びペプチド精製のための従来技術を用いる生化学的精製によって回収することが出来る。適当な酵素開裂部位は、血液凝固因子Xa又はトロンビンに対するものを含み、それに対する適当な酵素は、例えば、ミズーリ、St. Louis在、Sigma Chemical Company及びマサチューセッツ、Beverly在、N.E.Biolabsから入手することが出来る。種々のベクターは、構成的発現又は例えばIPTG誘導(PRTCAmann等、(1988)前出;pET-11d、ウィスコンシン、

Madison在、Novagen)若しくは温度誘導(pRIT5、ニュージャージー、Piscatawa y在、Pharmacia)を用いる誘導可能な発現を可能にする種々のプロモーター領域を有する。組換えにより発現される蛋白質を分解する能力を変えた種々のE. coli宿主中で組換えCryjIを発現させることも適当であろう(例えば、米国特許第4,758,512号)。或は、E. coliにより優先的に利用されるコドンを用いるように核酸配列を変えることは有利であり得る(ここに、かかる核酸の変化は、発現されるアミノ酸配列に影響を与えないものである)。

宿主細胞は、リン酸カルシウム若しくは塩化カルシウム共沈殿、 DEAEーデキストラン媒介トランスフェクション、 又は電気穿孔法等の従来技術を用いて、この発明の核酸配列を発現するようにトランスフォームすることが出来る。 宿主細胞をトランスフォームするための適当な方法は、 Sambrook等、前出及び他の実験室用テキスト中に見出され得る。

この発明の核酸配列は又、標準的技術を用いて合成することも出来る。

本発明は又、単離した杉花粉アレルゲンCryjI又は少なくともその1断片を製造する方法をも提供し、それは、杉花粉アレルゲンCryjI又は少なくともその1断片をコードする核酸配列でトランスフォームした宿主細胞を適当な培地中で培養して該杉花粉アレルゲンCryjI若しくはその少なくとも1断片を含む細胞及び

培地の混合

物を生成し;そしてその混合物を精製して実質的に純粋な杉花粉アレルゲンCryjIVはその少なくとも1断片を生成する工程を含んでいる。CryjIV以はその少なくとも1断片をコードするDNAを含む発現ベクターでトランスフォームした宿主細胞をその宿主細胞に適した培地中で培養する。CryjI蛋白質及びペプチドは、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、限外濾過、電気泳動及びCryjI若しくはその断片に特異的な抗体を用いる免疫精製を含むペプチド又は蛋白質を精製するための公知技術を用いて、細胞培養培地、宿主細胞又はその両者から精製することが出来る。単離した及び精製したという用語は、ここでは、交換可能であって、組換えDNA技術により生成したときに、実質的に細胞性物質若しくは培養培地を含まず、又は、化学合成する場合には、化学的前駆体若しくは他の化学物質を実質的に含まないペプチド、蛋白質、蛋白質断片及び核酸配列のことをいう。

この発明の他の面は、杉花粉アレルゲンCryjI又はJunvI若しくはJunsI等の交差反応性アレルゲン又はこれらの少なくとも1断片(杉花粉アレルゲンCryjI又はかかる交差反応性アレルゲンをコードする核酸配列でトランスフォームした宿主細胞内で合成されたもの、或は化学合成したもの)、及び単離した杉花粉アレルゲンCryjI蛋白質又はJunvI若しくはJunsI等の交差反応性アレルゲン又はこれらの少なくとも1つの抗原性断片

(この発明の核酸配列でトランスフォームした宿主細胞内で生成したもの、或は化学合成したもの)を含む調製物を提供する。この発明の好適具体例において、CryjI蛋白質は、少なくとも成熟CryjI蛋白質をコードする核酸配列でトランスフォームした宿主細胞内で産生される。

ここで定義する抗原性断片は、免疫応答を誘発する任意の蛋白質断片又はペプチドをいう。ここで定義するユニークな抗原性断片とは、CryjIから誘導される任意の抗原性断片のことをいうが、図4a~4bに示すアミノ酸1~20又は325~340からなる断片は除く。杉花粉からのアレルゲン又はJunvI若しくはJ

uns I等の交差反応性アレルゲンの抗原性断片は、例えば、かかるペプチドをコードするこの発明の核酸配列の対応する断片から組換えにより生成された又は公知技術を用いて化学合成したペプチドをスクリーニングすることによって得ることが出来る。このアレルゲンを、ペプチドの重複を有しない所望の長さの断片に自由に分割することが出来るが、好ましくは、所望の長さの重複した断片に分割することが出来る。これらの断片を試験してそれらの抗原性(例えば、断片の免疫応答を誘発する能力)を測定する。もしCryjIの断片を治療目的に用いるならば、刺激等のT細胞応答(即ち、増殖又はリンホカイン分泌)を誘出することが出来及び/又はT細胞アネルギーを誘導することが出来るCryjIアレルゲンの断片は特に望まし

く、又、最小IgE刺激活性を有する杉花粉の断片も又望ましい。最小IgE刺 激活性とは、天然のCryjI蛋白質により刺激されたIgE産生の量より少ないI gE刺激活性のことをいう。更に、治療目的のためには、T細胞応答を誘出する ことが出来、杉花粉に特異的なIgEと結合しないか又は精製した天然の杉花粉 アレルゲンがかかるIgEと結合するより実質的に低い程度でかかるIgEと結 合する単離した杉花粉アレルゲン例えばCryjI若しくはその断片を用いることは 好ましい。もし単離した杉花粉アレルゲン又はその断片がIgEと結合するなら ば、かかる結合がマスト細胞又は好塩基球からのメディエーター(例えば、ヒス タミン)の放出を生じないことが望ましい。更に、もしJunvl若しくはJunslを治 療目的に用いるならば、T細胞応答を誘出することが出来、Juniperus種からの 花粉に特異的なIgEと結合しないか又は精製した天然のJuniperus花粉アレル ゲンがかかるIgEと結合するより実質的に低い程度でかかるIgEと結合する Juniperusの花粉アレルゲン例えばJunvI若しくはJunsI又はそれらの断片を用い るのが望ましい。もし単離したJunvI若しくはJunsI又はそれらの断片がIgEと 結合するならば、かかる結合がマスト細胞又は好塩基球からのメディエーター(例えば、ヒスタミン)の放出を生じないことが好ましい。

杉花粉から単離した蛋白質アレルゲン又はその好適な抗原性断片は、杉花粉感受性の個人又はJuniperus virg

iniana若しくはJuniperus sabinoides(前述)等の杉花粉アレルゲンと交差反応性のアレルゲンに対してアレルギーの個人に投与したときに、その個人の杉花粉若しくはかかる交差反応性アレルゲンに対するアレルギー応答を調節することが出来、好ましくは、その個人のそのアレルゲンに対するB細胞応答、T細胞応答又はB細胞及びT細胞の両方の応答を調節することが出来る。ここで用いる場合、杉花粉アレルゲン又は交差反応性アレルゲンに感受性の個人のアレルギー応答の調節は、標準臨床手順により測定したときに、アレルゲンに対する非応答性又は症状の減少として定義することが出来る(例えば、Varney等、British Medical Journal, 302: 265-269 (1990)を参照されたい)(杉花粉誘発性の喘息症状の減少を含む)。ここでいう場合、症状の減少は、個人がこの発明のペプチド若しくは蛋白質を用いる治療管理を完了した後でのアレルゲンに対する任意のアレルギー応答の減少を含む。この減少は、主観的なものであって良い(即ち、患者がアレルゲンの存在下で一層快適に感じればよい)。症状の減少は又、公知の標準皮膚試験を用いて臨床的に測定することも出来る。

単離したCryjI蛋白質又はその断片を、好ましくは、Tamura等(1986)Microbiol . Immunol. 30:883-896又は米国特許第4,939,239号に開示されたマウスモデル等の杉花粉の哺乳動物モデルにて、又はChiba等(1990)Int.Arch.Allergy Immunol. 93:83-88に開示された霊長

類モデルにて試験する。蛋白質又はその断片に対するIgE結合についての初期スクリーニングは、実験動物又はヒトのボランティアに対するスクラッチ試験又は皮内皮膚試験によって、又はRAST(放射アレルゲン吸着試験)、RAST阻害、ELISAアッセイ、放射免疫アッセイ(RIA)又はヒスタミン放出(実施例7及び8参照)にて行なうことが出来る。

T細胞刺激活性を有し、従って、少なくとも1つのT細胞エピトープを含む本発明の抗原性断片は、特に望ましい。T細胞エピトープは、アレルギーの臨床症状の原因と成る蛋白質アレルゲンに対する免疫応答の開始及び持続に関与すると考えられている。これらのT細胞エピトープは、抗原提示細胞の表面上の適当な

HLA分子に結合して関連T細胞サブポピュレーションを刺激することによりヘルパーT細胞のレベルで初期事象の引き金を引くと考えられる。これらの事象は、T細胞増殖、リンホカイン分泌、局所的炎症反応、追加の免疫細胞のその部位への補充及び抗体産生へ導くB細胞カスケードの活性化へと導く。これらの抗体の1つのイソ型であるIgEは、アレルギー症状の発達に基本的に重要であり、その産生は事象のカスケードの初期に、ヘルパーT細胞のレベルで、分泌されたリンホカインの性質により影響を受ける。T細胞エピトープは、T細胞レセプターによる認識の基本要素又は最小単位であり、このエピトープはレセプター認識に必須のアミノ酸を含んでいる。T細胞

エピトープのアミノ酸配列を真似るアミノ酸配列及び蛋白質アレルゲンに対する アレルギー応答を調節するアミノ酸配列は、この発明の範囲内にある。

杉花粉患者を、本発明の単離した蛋白質アレルゲン又は本発明の抗原性断片(少なくとも1つのT細胞エピトープを含み、蛋白質アレルゲンから誘導される) にさらすと、適当なT細胞サブポピュレーションを寛容化し又は免疫性減少させ て、それらを蛋白質アレルゲンに対して非応答性にし且つこのようにさらされて も免疫応答の刺激に関与しないようにすることが出来る。更に、少なくとも1つ のT細胞エピトーブを含むこの発明の蛋白質アレルゲン又は本発明の抗原性断片 の投与は、天然の蛋白質アレルゲン又はその部分にさらすことと比較してリンホ カイン分泌プロフィルを調節することが出来る(例えば、IL-4の減少及び/ 又はIL-2の増加を生じる)。更に、かかる蛋白質アレルゲン又はかかる蛋白 質アレルゲンの抗原性断片にさらすことは、通常そのアレルゲンに対する応答に 関与するT細胞サブポピュレーションに影響を与えて、それらのT細胞が通常そ のアレルゲンにさらされる部位(例えば、鼻粘膜、皮膚及び肺)から離れて治療 用の断片又は蛋白質アレルゲンの投与部位に向かうようにすることが出来る。こ のT細胞サブポピュレーションの再分配は、アレルゲンに通常さらされる部位に おいて通常の免疫応答を刺激する患者の免疫系の能力を改善し又は減少させ、ア レルギー症状の減少を

生じる。

単離したCryjl、JunvI又はJunsI蛋白質及びそれらから導かれる断片又は部分 (ペプチド) を、杉花粉アレルゲン又は交差反応性蛋白質アレルゲンに対するア レルギー反応を診断し、治療し及び予防する方法において用いることが出来る。 従って、本発明は、単離した杉花粉アレルゲンCryjI、JunvI若しくはJunsI又は それらの少なくとも1断片(Cryjl、Junvl若しくはJunsl又はそれらの少なくと も1断片を発現するようにトランスフォームした宿主細胞にて生成したもの)及 び製薬上許容し得るキャリアー若しくは希釈剤を含む治療用組成物を提供する。 この発明の治療用組成物は又、合成により調製したCryjI、JunvI若しくはJunsI 又はそれらの少なくとも1断片及び製薬上許容し得るキャリアー若しくは希釈剤 を含んでもよい。脱感作されるべき個人への本発明の治療用組成物の投与は、公 知技術を用いて行なうことが出来る。CryjI、JunvI若しくはJunsI蛋白質又はそ れらの少なくとも1断片を例えば適当な希釈剤、キャリアー及び/又はアジュバ ントと組合せて個人に投与することが出来る。製薬上許容し得る希釈剤は塩溶液 及び緩衝剤水溶液を含む。製薬上許容し得るキャリアーは、ポリエチレングリコ ール (Wie等(1981)Int. Arch. Allergy Appl. Immunol. 64:84-99) 及びリポソ ーム (Strejan等(1984)J.Neuroimmunol 7:27) を含む。T細胞アネルギーを誘 導する目的には、この治療用組成物

を、好ましくは、非免疫原形態(例えば、アジュバントを含まない)で投与する。この発明の治療用組成物を、杉花粉感受性の個人又は杉花粉アレルゲン(即ち、Juniperus virginiana又はJuniperus sabinoides等)と免疫的に交差反応性のアレルゲンに感受性の個人に投与する。

脱感作されるべき個人への本発明の治療用組成物の投与は、その個人のアレルゲンに対する感受性を減じる(即ち、アレルギー応答を減じる)のに十分な投与量及び期間で、公知の手順を用いて行なうことが出来る。この治療用組成物の有効量は、その患者の杉花粉に対する感受性の程度、年齢、性別及び体重、並びにこの蛋白質又はその断片がその個人における抗原応答を誘出する能力等の因子によって変化する。

この活性化合物(即ち、蛋白質又はその断片)を、注射(皮下、静脈注射等)、経口投与、吸入、経皮的投与等の便利な方法で投与することが出来る。投与の経路によって、この活性化合物を、この化合物を不活性化し得る酵素、酸及び他の自然条件から保護するための物質で被覆することが出来る。

例えば、1投与量単位当り、好ましくは約1μg~3mgの、一層好ましくは 約20~500μgの活性化合物(即ち、蛋白質又はその断片)を注射により投 与することが出来る。投与量管理は、最適な治療応答を与えるように調節するこ とが出来る。例えば、幾つかの分割し

た投与量を日々投与することが出来、或は投与量を治療状況の緊急性の指示に応じて減らすことが出来る。

蛋白質又はペプチドを非経口投与以外の投与法により投与するためには、この蛋白質をその不活性化を阻止する物質で被覆する(又はその物質と同時投与する)ことが必要であろう。例えば、蛋白質又はその断片をアジュバント中にて投与し、又は酵素阻害剤と共に又はリポソーム内にて同時投与することが出来る。酵素阻害剤は、膵臓トリプシン阻害剤、ジイソプロピルフルオロホスフェート(DEP)及びトラシロールを含む。リポソームは、水中油中水CGFエマルジョン並びに従来のリポソーム(Strejan等、(1984)J. Neuroimmunol. 7:27)を含む

この活性化合物は又、非経口投与或は腹膜内投与することも出来る。分散を、グリセロール、液体ポリエチリングリコール及びこれらの混合物中及び油中で調製することも出来る。通常の貯蔵及び使用の条件下において、これらの製剤は、微生物の成長を阻止する防腐剤を含むことが出来る。

注射用途に適した製薬組成物は、滅菌した水溶液(水溶性の場合)若しくは分散又は滅菌した分散の注射用溶液を即座に調製するための滅菌した粉末を含む。 すべての場合に、この組成物は、無菌的でなければならず且つ容易に注射可能である程度に流動性でなければならない。それは、製造及び貯蔵条件下で安定でなければなら ず、細菌及びカビ等の微生物の夾雑に対して保護されなければならない。 キャリアーは、例えば水、エタノール、ポリオール(例えば、グリセロール、プロピレングリコール及び液体ポリエチレングリコール等)、これらの適当な混合物並びに植物油を含む溶剤又は分散媒質であってよい。 適当な流動性を、例えばリシチン等の被覆の利用、分散の場合の必要な粒子寸法の維持及び界面活性剤の利用によって維持することが出来る。 微生物の作用の阻止は、種々の抗細菌剤及び抗真菌剤例えばパラベンス、クロロブタノール、フェノール、アスコルビン酸、サーメロサル等によって達成することが出来る。多くの場合に、等現剤例えば糖、ポリアルコール(マンニトール及びソルビトール等)又は塩化ナトリウムをこの組成物中に含むことは好ましい。注射用組成物の長期の吸収は、吸収を遅らせる薬剤例えばアルミニウムモノステアレート及びゼラチンをこの組成物に含ませることで引き起こし得る。

滅菌した注射用溶液は、活性化合物(即ち、蛋白質又はペプチド)を必要な量で適当な溶媒に必要ならば上記の成分の1つ又は組合せたものと共に取り込ませてから滅菌濾過することによって調製することが出来る。一般に、分散を、活性化合物、基本分散媒質及び上記のものから選ぶ必要な他の成分を含む滅菌したビヒクルに取り込ませることにより調製することが出来る。滅菌した注射用溶液の調製用の滅菌した粉末の場合には、調製の好

適な方法は、前もって滅菌濾過した溶液からの任意の所望の追加の成分を加えた活性成分(即ち、蛋白質又はペプチド)の粉末を生成する真空乾燥及び凍結乾燥である。

上記のように蛋白質又はそのペプチドが適当に保護されれば、その蛋白質は、例えば不活性な希釈剤又は同化可能な食べられるキャリアーと共に経口投与することが出来る。この蛋白質及び他の成分は、硬い又は軟らかい殻のゼラチンカプセルに封入し、錠剤に圧縮し、又は個人の食餌に直接取り込ませることも出来る。経口の治療用投与のために、この活性化合物に賦形剤を取り込ませて摂取可能な錠剤、口内錠剤、トローチ、カプセル、エリキシル、懸濁液、シロップ、ウエハース等の形態で使用することが出来る。かかる組成物及び製剤は、少なくとも

1 重量%の活性化合物を含むべきである。勿論、この組成物及び製剤のパーセンテージは、変化することが出来、約5~80重量%単位が好都合である。かかる治療上有用な組成物における活性化合物の量は、適当な薬量が得られるようなものである。本発明による好適な組成物又は製剤は、経口投与量単位が約10μg~200mgの活性化合物を含むように調製する。

錠剤、トローチ、ピル、カプセル等は、次のものをも含んでよい。ガムグラガカンス(gragacanth)、アカシア、コーンスターチ又はゼラチン等の結合剤、リン酸ニカルシウム等の賦形剤、コーンスターチ、ジャガイモ澱

粉、アルギン酸等の分散剤、マグネシウムステアレート等の潤滑剤、ショ糖、ラクトース又はサッカリン等の甘味剤、或は、ペパーミント、冬緑油又はサクランボ薬味等の薬味剤。投与量単位形態がカプセルである場合には、それは、上記の型の物質に加えて、液体キャリアーを含むことが出来る。種々の他の物質が、被覆として或は投与量単位の物理的形態を変えるように存在し得る。例えば、錠剤、ピル又はカプセルは、セラック、糖又は両者で被覆することが出来る。シロップ又はエリキシルは、活性化合物、甘味剤としてのショ糖、防腐剤としてのメチル及びプロピルパラベンス、色素及びサクランボ若しくはオレンジ風味等の薬味を含んでよい。勿論、任意の投薬量単位形態の調製に用いる任意の物質は、製薬上純粋であり、用いる量において実質的に非毒性であるべきである。更に、この活性化合物を、持続的放出用製剤及び配合物に取り込ませることが出来る。

ここで用いる場合、「製薬上許容し得るキャリアー」は、任意の及びすべての 溶媒、分散媒質、被覆、抗細菌剤及び抗真菌剤、等張剤及び吸収遅延剤等を含む 。製薬上活性な物質のためのかかる媒質及び薬剤の利用は、当業者には周知であ る。任意の従来の媒質又は薬剤が活性化合物と相容れないことがないかぎり、治 療用組成物におけるその利用は企図される。補足的活性化合物をこの組成物に取 り込ませることも出来る。

非経口組成物を投与量単位形態で配合することは、投与の容易さ及び均一な投 与量に対して特に有利である。投与量単位は、ここで用いる場合、治療される哺 乳動物患者に対する単位投与量に適した物理的に別個の単位をいう(各単位は、所望の治療効果を生じるように計算して予め決めた量の活性化合物を必要な製薬上のキャリアーと共に含む)。この発明の新しい投与量単位形態についての規格は、(a)活性化合物の独自の性質及び達成すべき特定の治療効果、並びに(b)かかる活性化合物を個人の感受性の治療用に混合する技術における本質的限界により指図され且つこれらに直接依存する。

CryjI c D N A (又は該 c D N A が転写された m R N A) 又はその一部を用いて、任意の種類又は型の植物において類似の配列を同定することが出来、従って、CryjI c D N A 若しくは m R N A 又はそれらの部分にハイブリダイズするだけ十分な相同性を有する配列(例えば、Juniperus virginiana, Juniperus sabinoides等のアレルゲンからの D N A)を低緊縮条件下で同定し又は「引き出す」ことが出来る。それらの十分な相同性(一般に 4 0 %を超える)を有する配列を、ここに記載した方法を用いて、更なる評価のために選択することが出来る。或は、高緊縮条件を用いることが出来る。この方法では、本発明の D N A を用いて、他の型の植物、好ましくは関連する科、属又は種(例えば、Juniperus又は C upressus)において、杉花粉アレルゲンCryjIのアミ

ノ酸配列に類似のアミノ酸配列を有するポリペプチドをコードする配列を同定することが出来、それ故、他の種におけるアレルゲンを同定することが出来る。従って、本発明は、CryjIを含むだけでなく、本発明のDNAとハイブリダイズするDNAによりコードされる他のアレルゲンをも含む。この発明は、更に、単離したアレルゲン性蛋白質又はそれらの断片を含み、それらは、抗体交差反応(単離したアレルゲン性蛋白質又はそれらの断片はこの発明の蛋白質及びペプチドに特異的な抗体に結合することが出来る)により、又はT細胞交差反応(単離したアレルゲン性蛋白質又はそれらの断片はこの発明の蛋白質及びペプチドに特異的なT細胞を刺激することが出来る)等により、免疫的にCryjI又はその断片と関係している。

本発明の c D N A によりコードされる蛋白質又はペプチドを、例えば、「精製した」アレルゲンとして用いることが出来る。かかる精製したアレルゲンは、杉

花粉症の診断及び治療のための鍵となる試薬であるアレルゲン抽出物の標準化において有用である。更に、CryjIの核酸配列に基づくペプチドを用いることにより、抗ペプチド抗体又はモノクローナル抗体を、標準的方法を用いて作成することが出来る。例えば、マウス又はウサギ等の動物を、単離したCryjI蛋白質の免疫原(例えば、CryjI蛋白質又は抗体応答を誘出することの出来る抗原性断片)で免疫化することが出来る。蛋白質又はペプチドサ

ブユニットに免疫原性を与えるための技術は、キャリアーへの結合又は他の当業者に周知の技術を含む。CryjI蛋白質又はそのペプチドをアジュバントの存在下で投与することが出来る。免疫化の進行は、血漿又は血清中の抗体力価の検出により監視することが出来、抗体のレベルを評価するための抗原としてこの免疫原を用いて標準ELISA又は他の免疫アッセイを利用することが出来る。

免疫化の後に、抗CryjI抗血清を得ることが出来、所望であれば、その血清からポリクローナル抗CryjI抗体を得ることが出来る。モノクローナル抗体を生成するために、抗体産生細胞(リンパ球)を、免疫化した動物から採取し、ミエローマ細胞等の不滅化細胞を用いる標準的体細胞融合手順により融合させてハイブリドーマ細胞を生成することが出来る。ハイブリドーマ細胞を、CryjI蛋白質又はそのペプチドと反応性の抗体の産生について免疫化学的にスクリーニングすることが出来る。これらの血清又はモノクローナル抗体を用いてアレルゲン抽出物を標準化することが出来る。

本発明のペプチド及び蛋白質の利用により、首尾一貫した、十分に規定された 組成及び生物学的活性を有する製剤を作成して治療目的のために投与することが 出来る(例えば、杉感受性の個人のかかる木々の花粉に対するアレルギー応答を 調節する等)。かかるペプチド又は蛋白質の投与は、例えば、CryjIアレルゲン に対するB細

胞応答、CryjIアレルゲンに対するT細胞応答又は両方の応答を調節することが 出来る。単離したペプチドは又、Cryptomeria japonicaアレルギーの免疫療法の 機構を研究し及び免疫療法において有用な改変した誘導体又はアナログをデザイ ンするために用いることも出来る。

他の人々の仕事は、一般に、アレルゲンの高投与量が最良の結果(即ち、最大の症状軽快)を生じるということを示した。しかしながら、多くの人々は、アレルゲンに対するアレルギー反応のために、アレルゲンの大量投与に耐えられない。対応する天然のアレルゲンと同じかそれより増大された治療特性を有するが減少した副作用(特に、アナフィラキシー反応)を有する改変したペプチド又は改変したアレルゲンが生成されるような方法で、天然のアレルゲンの改変をデザインすることが出来る。これらは、例えば、本発明の蛋白質又はペプチド(例えば、CryjIのアミノ酸配列の全部又は一部を有するもの)、又は改変した蛋白質若しくはペプチド、又は蛋白質若しくはペプチドのアナログであってよい。

溶解度を増し、治療若しくは予防効果又は安定性(例えば、生体外での貯蔵寿命及びイン・ビボでの蛋白質分解に対する抵抗性)を増大させる等の目的で、この発明のペプチドの構造を改変することも可能である。免疫原性を改変し及び/又はアレルゲン性を減じるために、アミノ酸置換、欠失又は付加等によってアミノ酸配列が変化した、或は、同じ目的のために成分が加えられた、改

変したペプチドを生成することが出来る。

例えば、ペプチドを、強い増殖応答の誘導能力を伴わないで工細胞アネルギーを誘導し及びMHC蛋白質に結合する能力、並びに免疫原形態での投与時の増殖応答を維持するように改変することが出来る。この場合には、工細胞レセプターに対する重大な結合残基を、公知の技術(例えば、各残基の置換及び工細胞反応性の存否の測定)を用いて決定することが出来る。工細胞レセプターとの相互作用に必須であることが示されたそれらの残基を、必須アミノ酸を他のもの好ましくはその存在が工細胞反応性を増大し、除去はしないが減少させ、或は該反応性に影響しない類似のアミノ酸残基で置換(保存的置換)することによって改変することが出来る。更に、工細胞レセプター相互作用に必須でないアミノ酸残基を、その取り込みが工細胞反応性を増大し、減少させ、又は該反応性に影響しないが関連MHCへの結合を除去しない他のアミノ酸により置換することによって改変することが出来る。

更に、この発明のペプチドを、MHC蛋白質複合体との相互作用に必須であるべきことが示されたアミノ酸を他のもの好ましくはその存在が丁細胞活性を増大し、除去はしないが減少させ又は該活性に影響しないことが示された類似のアミノ酸残基と置換(保存的置換)することによって改変することが出来る。更に、MHC蛋白質複合体との相互作用に必須でないがMHC蛋白質複合体

にやはり結合するアミノ酸残基を、その取り込みがT細胞反応性を増大し、影響せず又は除去はしないが減少させる他のアミノ酸で置換することによって改変することが出来る。非必須アミノ酸についての好適なアミノ酸置換は、アラニン、グルタミン酸又はメチルアミノ酸での置換を含む(但し、それらに限定はされない)。

安定性及び/又は反応性を増大するために、この発明の蛋白質又はペプチドを改変して、その蛋白質アレルゲンのアミノ酸配列に、自然の対立遺伝子変化から生じる1つ以上の多形を取り込むことも出来る。更に、Dアミノ酸、非天然アミノ酸又は非アミノ酸アナログを代用とし又は加えて、この発明の範囲内の改変した蛋白質又はペプチドを生成することが出来る。更に、本発明の蛋白質又はペプチドを、A. Sehonと共同研究者(Wie等、前出)のポリエチレングリコール(PEG)法を用いて改変してPEGと結合した蛋白質又はペプチドを生成することが出来る。更に、PEGを、この発明の蛋白質又はペプチドを生成することが出来る。 要に、PEGを、この発明の蛋白質又はペプチドの化学合成中に加えることが出来る。 蛋白質若しくはペプチド又はその部分の改変は又、還元/アルキル化(Tarr、Methods of Protein Microcharacter-ization, J. E. Silver編、Humana Press、Clifton, NJ、155-194頁(1986)中);アシル化(Tarr、前出);適当なキャリアーへの化学カップリング(Mishell及びShiigi編、Selected Methods in Cellular Immunology, WH Freeman, San Francisco, CA(1980);米国特許第4、

939, 239号);又は温和なホルマリン処理(Marsh International Archives of Allergy and Applied Immunology, <u>41</u>: 199-215(1971))をも含むことが出来る。

この発明の蛋白質及びペプチドの精製を容易にし且つ溶解度を潜在的に増大させるために、そのペプチドの主鎖にレポーター基を加えることが出来る。例えば、ポリヒスチジンをペプチドに加えてそのペプチドを固定化金属イオンアフィニティークロマトグラフィーで精製することが出来る(Hochuli, E. 等、Bio/Technology, 6:1321-1325(1988))。更に、特異的なエンドプロテアーゼ開裂部位を、所望であれば、レポーター基とペプチドのアミノ酸配列との間に導入して無関係の配列を含まないペプチドの単離を促進することが出来る。蛋白質抗原に対して個人を上首尾に脱感作するためには、蛋白質若しくはペプチドの溶解度を、そのペプチドに官能基を付加することにより又は疎水性T細胞エピトープ若しくはこれらのペプチド中の疎水性エピトープを含む領域若しくはこの蛋白質若しくはペプチドの疎水性領域を含まないことによって、増大させることが必要であろう

ペプチド内のT細胞エピトープの適当な抗原プロセッシングを潜在的に補助するために、それぞれ少なくとも1つのT細胞エピトープを含む領域間で、標準的プロテアーゼ感受性部位を組換えにより又は合成によって工作することが出来る。例えば、KK若しくはRR等の荷電

したアミノ酸の対を、ペプチドの組換え構築中にペプチド内の領域間に導入する ことが出来る。その結果のペプチドを、カテプシン及び/又は他のトリプシン様 酵素開裂に対して感受性にして1つ以上のT細胞エピトープを含むペプチドの部 分を生成することが出来る。更に、かかる荷電アミノ酸残基は、ペプチドの溶解 度の増大を生じさせることが出来る。

この発明のペプチド若しくは蛋白質(例えば、CryjI又はその断片)をコードするDNAの位置指定突然変異導入法を利用して、公知の方法によってこのペプチド若しくは蛋白質の構造を改変することが出来る。かかる方法は、その他の方法の内で、縮退したオリゴヌクレオチド(Ho等、Gene, 77:51-59(1989))を用いるか又は全合成の突然変異遺伝子(Hostomsky, Z.等、Biochem。Biophys, Res. Comm., 161:1056-1063(1989))を用いるPCRを含む。細菌での発現を促進するために、前述の方法を他の手順と共に用いて、この発明の蛋白質若しくはペ

プチドをコードするDNA構築物中の真核生物用コドンを、E. coli、酵母、哺乳動物細胞又は他の真核生物細胞中で優先的に利用されているものに変えることが出来る。

現在利用可能な構造的情報を用いて、杉花粉感受性の個人に十分量で投与したときにその個人の杉花粉に対するアレルギー応答を調節するCryjIペプチドをデザインすることが出来る。これは、例えば、CryjIの構造を調べ、杉花粉感受性の個人におけるB細胞及び/又はT細

胞応答に影響を与える能力について試験すべきペプチドを(発現系により、合成により若しくはその他の方法により)生成し及びそれらの細胞により認識されるエピトープを含む適当なペプチドを選択することによって行なうことが出来る。エピトープというときは、そのエピトープはレセプター特に免疫グロブリン、組織適合性抗原及びT細胞レセプター(このエピトープはレセプター認識に必須のアミノ酸を含む)による認識の基本要素であり又は単位である。これらのエピトープのアミノ酸配列を真似るアミノ酸配列及びCryjIに対するアレルギー応答を下方制御することの出来る配列を利用することも出来る。

杉花粉アレルゲンが杉花粉感受性の個人にアレルギー反応を誘発する能力をブロックし若しくは阻止することの出来る薬剤若しくは薬物をデザインすることも現在可能である。かかる薬剤は、例えば、それらが関連する抗CryjI IgEに結合し、それ故、IgEーアレルゲン結合及びその後のマスト細胞脱顆粒を阻止するような方法でデザインすることが出来る。或は、かかる薬剤は、免疫系の細胞性成分に結合することが出来、Cryptomeria japonica花粉アレルゲンに対するアレルギー応答の抑制若しくは脱感作を生じる。これの非制限的な例は、杉花粉に対するアレルギー応答を抑制する本発明のcDNA/蛋白質構造に基づく、適当なB及びT細胞エピトープペプチド又はそれらの改変物の利用である。これは、杉

花粉感受性の個人からの血液成分を用いるイン・ビトロ研究において B 及び T 細胞機能に影響を与える B 及び T 細胞エピトープペプチドの構造を限定することに

より行なうことが出来る。

本発明の蛋白質、ペプチド又は抗体を、杉花粉症を検出し及び診断するために利用することも出来る。例えば、これは、杉花粉に対する感受性を評価すべき個人から得た血液若しくは血液生成物を、単離した抗原性ペプチド若しくはCryjIのペプチド、又は単離したCryjI蛋白質と、血液成分(例えば、抗体、T細胞、B細胞)とペプチド若しくは蛋白質との結合に適した条件下で合わせて、かかる結合が起きる程度を測定することによって行なうことが出来る。

本発明は又、CryjIのすべての若しくは少なくとも1つの断片をコードする核酸配列(例えば、DNA)を含む発現ベクターを含む宿主細胞をCryjI若しくは少なくともその1断片の発現に適した条件下で培養することを含むCryjI若しくはその断片を生成する方法をも提供する。次いで、発現された生成物を公知技術を用いて回収する。或は、CryjI若しくはその断片を、公知の機械的若しくは化学的技術を用いて合成することが出来る。

この発明の任意の具体例において用いたDNAは、ここに記載したようにして得られた c DNAであるか、或は、ここに表示した配列の全部若しくは一部を有する任意のオリゴデオキシヌクレオチド配列又はそれらの機能

的等価物であってよい。かかるオリゴデオキシヌクレオチド配列は、公知技術を用いて、化学的若しくは酵素的に生成することが出来る。オリゴヌクレオチド配列の機能的等価物は、1)配列番号1の配列(又は対応する配列部分)又はその断片がハイブリダイズする相補的オリゴヌクレオチドにハイブリダイズし得る配列、又は2)配列番号1に相補的な配列(又は対応する配列部分)及び/又は3)配列番号1の配列(又は対応する配列部分)によりコードされる生成物と同じ機能的特性を有する生成物(例えば、ポリペプチド又はペプチド)をコードする配列であるものである。機能的等価物が一方の基準を満たさなければならないかは、その利用に依る(例えば、もしそれがの基準を満たさなければならないかは、その利用に依る(例えば、もしそれがプリゴプローブとしてのみ用いられるならば、それは第1若しくは第2の基準を満たしさえすれば良く、もしそれがCryjIアレルゲンを生成するために用いられるならば、第3の基準さえ満たせば良い)。

本発明は又、杉花粉蛋白質から導かれた単離したペプチドをも提供する。ここで用いる場合、ペプチド若しくは蛋白質の断片とは、それが導かれた完全なアミノ酸配列より少ないアミノ酸残基を有するアミノ酸配列のことをいう。この発明のペプチドは、アレルゲンの少なくとも1つのT細胞エピトープを含むCryjIから導かれたペプチドを含む。

少なくとも2つの領域(各領域は、杉花粉の少なくと

も1つのT細胞エピトープを含む)を含むペプチドも又この発明の範囲内にある。単離したペプチド又は単離したペプチドの領域(それぞれ、杉花粉アレルゲンの少なくとも2つのT細胞エピトープを含む)は、増大された治療効果の故に、特に望ましい。本発明のペプチドと(例えば、抗体により又はT細胞交差反応性により)免疫的に関連するペプチドも又この発明の範囲内にある。

この発明の単離したペプチドは、かかるペプチドをコードする配列を有する核酸でトランスフォームした宿主細胞における組換えDNA技術により、上述のように生成することが出来る。この発明の単離したペプチドを化学合成によって生成することも出来る。単離したJunvI蛋白質若しくはペプチドに関して、かかる蛋白質若しくはペプチドは、公知の方法でJuniperus virginiana花粉から天然のJunvI蛋白質を生化学的に精製することによって生成することが出来る。ペプチドを組換え技術により生成するときには、そのペプチドをコードする配列を有する核酸又はその核酸配列の機能的等価物でトランスフォームした宿主細胞をその細胞に適した培地で培養し、そして、ペプチドを、細胞培養培地、宿主細胞又はその両者から、ペプチド及び蛋白質を生成するための当業者に公知の技術を用いて精製することが出来、該公知技術は、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、限外濾過、電気泳動又は、このペプチド、そのペプチドが導かれた蛋白質アレルゲン杉花粉又

はその一部に特異的な抗体を用いる免疫精製を含む。この発明の単離したペプチドは、組換えDNA技術により生成したときに、実質的に細胞性物質又は培養培地を含まず、或は、化学合成したときに、化学的前駆体又は他の化学物質を実質

的に含まない。

本発明の単離したペプチドを得るために、CryjIを実施例6で論じるように、重複しない所望の長さのペプチド又は重複する所望の長さのペプチドに分割する(組換えにより又は合成によって生成することが出来る)。少なくとも1つのT細胞エピトープを含むペプチドは、T細胞増殖又はリンホカイン分泌等のT細胞応答を誘出することが出来及び/又はT細胞アネルギー(即ち、寛容)を誘導することが出来る。少なくとも1つのT細胞エピトープを含むペプチドを測定するために、単離したペプチドを、例えば、T細胞生物学技術によって試験してそれらのペプチドがT細胞応答を誘出し又はT細胞アネルギーを誘導するか否かを測定する。T細胞応答を誘出し又はT細胞アネルギーを誘導することが見出されたそれらのペプチドをT細胞刺激活性を有すると規定する。

実施例 6 で論じるように、ヒトT細胞刺激活性は、杉花粉アレルゲンに感受性の個人(即ち、杉花粉アレルゲンに対する I g E 媒介の免疫応答を有する個人)から得られたT細胞を培養し、そして例えばトリチウム化チミジンの細胞への取り込みにより測定したときにそのペプ

チドに応答してT細胞の増殖が起きるか否かを測定することによって試験することが出来る。ペプチドに対するT細胞の応答についての刺激インデックスは、ペプチドに対する応答における最大CPMを対照のCPMで除したものとして計算することが出来る。バックグラウンドレベルの2倍以上の刺激インデックス(3・I・)を「陽性」と見なす。陽性結果を用いて、試験した患者群についての各ペプチドに対する平均刺激インデックスを計算する。この発明の好適なペプチドは、少なくとも1つのT細胞エピトープを含み且つ2・0以上の平均T細胞刺激インデックスを有するペプチドは、治療剤として有用であると考えられる。好適ペプチドは、少なくとも1つの、更に好ましくは少なくとも3・5の、一層好ましくは少なくとも4・0の、更に好ましくは少なくとも5の平均T細胞刺激インデックスを有する。例えば、図14に示した少なくとも5の平均T細胞刺激インデックスを有するこの発明の

ペプチドは、CJ1-2、CJ1-7、CJ1-10、CJ1-17、CJ1-20、CJ1-22、CJ1-23、CJ1-24、CJ1-27、CJ1-31、CJ1-32及びCJ1-35を含む。例えば、図14に示した少なくとも7の平均T細胞刺激インデックスを有するこの発明のペプチドは、CJI-16、CJ1-20、

C J 1 - 2 2 及び C J 1 - 3 2 を含む。

更に、好適ペプチドは、少なくとも約100の、一層好ましくは少なくとも約 250の、最も好ましくは少なくとも約350のポジティビティーインデックス (P. I.) を有する。あるペプチドのポジティビティーインデックスは、平均 T細胞刺激インデックスに、杉花粉に感受性の個人の集団(例えば、好ましくは 少なくとも15人、一層好ましくは少なくとも30人以上)内における少なくと も2.0のかかるペプチドに対するT細胞刺激インデックスを有する個人のパー セントを乗じることによって決定される。従って、ポジティビティーインデック スは、あるペプチドに対するT細胞応答の強度(S.I.)と杉花粉に感受性の 個人の集団におけるあるペプチドに対するT細胞応答の頻度の両方を表す。例え ば、図14に示すように、ペプチドCJ1-22は、試験した個人の群において 、14.5の平均S.Ⅰ.及び60%の陽性応答を有し、その結果、ポジティビ ティーインデックスは870、00となる。少なくとも約100のポジティビテ ィーインデックス及び少なくとも約4の平均T細胞刺激インデックスを有するCr yjIのペプチドは、CJ1-16、CJ1-17、CJ1-20、CJ1-22 、 C J 1 - 2 3 、 C J 1 - 2 4 、 C J 1 - 2 6 、 C J 1 - 2 7 、 C J 1 - 3 2 及 び C J 1 - 3 5 を含む。

正確なT細胞エピトープを、例えば、精密マッピング

技術によって決定するためには、T細胞生物学技術により測定したときにT細胞刺激活性を有し従って少なくとも1つのT細胞エピトープを含むペプチドを、そのペプチドのアミノ若しくはカルボキシ末端の何れかのアミノ酸残基の付加若しくは欠失によって改変し、その改変したペプチドに対するT細胞反応性の変化を

測定する。もし天然の蛋白質配列内の重複領域を共有する2つ以上のペプチドが、T細胞生物学技術により測定したときに、ヒトT細胞刺激活性を有することが見出されるならば、かかるペプチドの全部若しくは一部を含む更なるペプチドを生成することが出来、それらの更なるペプチドを同様の手順により試験することが出来る。この技術の後に、ペプチドを、組換え若しくは合成によって選択し及び生成する。ペプチドを、そのペプチドに対するT細胞応答の強度(例えば、刺激インデックス)、杉花粉に感受性の個人の集団におけるそのペプチドに対するT細胞応答の頻度及びそのペプチドの前記の他の種の木々(例えば、Cupressus sempervirens、Cupressusarizonica、Juniperus virginiana、Juniperus sabino ides等)又はブタクサ(Amba I. 1)からの他のアレルゲンとの潜在的交差反応性を含む種々の因子に基づいて選択する。これらの選択されたペプチドの物理的及び化学的特性(例えば、溶解度、安定性)を試験してそれらのペプチドが治療用組成物中で用いるのに適当であるか否か或はそれらのペプチドがここに記載した

ように改変を必要とするか否かを決定する。これらの選択したペプチド又は選択 した改変したペプチドがヒトT細胞を刺激する(例えば、増殖、リンホカイン分 泌を誘導する)能力を測定する。

更に、この発明の好適なT細胞エピトープ含有ペプチドは、免疫グロブリンE(IgE)に結合しないか又はそのペプチドが導かれた蛋白質アレルゲンがIgEに結合するよりも実質的に低い程度でIgEに結合する。標準的な免疫療法の主要な合併症は、アナフィラキシー等のIgE媒介の応答である。免疫グロブリンEは、マスト細胞若しくは好塩基球上のIgEへの抗原の結合及び架橋並びにメディエーター(例えば、ヒスタミン、セロトニン、エオシン好性走化性因子)の放出から生じるアナフィラキシー反応のメディエーターである。従って、Cryyi Iに感受性の個人の集団の相当のパーセンテージにおけるアナフィラキシーは、免疫療法において、CryjIアレルゲンに感受性の個人の集団の相当のパーセンテージ(例えば、少なくとも75%)においてIgEと結合せず、又は、IgEに結合してもかかる結合がマスト細胞若しくは好塩基球からのメディエーターの放

出を生じないペプチドを利用することによって回避することが出来る。アナフィラキシーの危険は、免疫療法において、IgE結合の減少したペプチドを利用することにより減じることが出来る。更に、最小IgE刺激活性を有するペプチドは、治療効果に対して望ましい。最小IgE刺

激活性とは、天然のCryjI蛋白質アレルゲンにより刺激されたIgE産生及び/ 又はIL-4産生の量より少ないIgE産生のことをいう。

この発明のT細胞エピトープ含有ペプチドは、杉花粉感受性の個人に投与したとき、その個人のアレルゲンに対するアレルギー応答を調節することが出来る。特に、CryjIの少なくとも1つのT細胞エピトープ又はCryjIから導かれる少なくとも2つの領域(それぞれ、少なくとも1つのT細胞エピトープを含む)を含むこの発明のペプチドは、杉花粉に感受性の個人に投与したときに、その個人のアレルゲンに対するT細胞応答を調節することが出来る。

この発明の好適な単離したペプチドは、杉花粉アレルゲンCryjIの少なくとも1つのT細胞エピトープを含み、従って、そのペプチドは、少なくとも約7アミノ酸残基を含む。治療効果の目的のためには、この発明の好適な治療用組成物は、好ましくは、CryjIの少なくとも2つのT細胞エピトープを含み、従って、このペプチドは、少なくとも約8アミノ酸残基好ましくは少なくとも約15アミノ酸残基を含む。更に、この発明の好適な単離したペプチドを含む治療用組成物は、好ましくは、杉花粉に感受性の個人にその組成物を投与する治療管理がその蛋白質アレルゲンに対して寛容化されたその個人のT細胞を生じるように、十分なパーセンテージの完全蛋白質アレルゲンのT細胞エピトープを含む。約45アミ

ノ酸残基長まで最も好ましくは約30アミノ酸残基長までを含むこの発明の合成により生成したペプチドは、長さの増加はペプチド合成を困難にするので、特に望ましい。この発明のペプチドは又、上述のように組換えにより生成することも出来、45アミノ酸以上のペプチドは組換えにより生成するのが好ましい。

好適ペプチドは、CryjI蛋白質アレルゲン内の主要T細胞反応性領域(ここでは、リージョン1、リージョン2、リージョン3、リージョン4及びリージョン

5 とよぶ)の全部又は一部を含む。 T 細胞活性の各主要領域を後述のように定義し、図4 a ~ b に示す。リージョン1 は、CryjIのアミノ酸残基1~50を含み;リージョン2 は、CryjIのアミノ酸残基61~120を含み;リージョン3 は、CryjIのアミノ酸残基131~180を含み;リージョン4は、CryjIのアミノ酸残基191~280を含み;リージョン5 は、CryjIのアミノ酸残基291~353を含む。図4a~bに示すように、各リージョン内の好適な主要T 細胞反応性領域は、アミノ酸残基1~40;アミノ酸残基;81~110;アミノ酸残基151~180;アミノ酸残基191~260及びアミノ酸残基291~330を含む。

治療目的に用い得るCryjI蛋白質アレルゲンから導かれたペプチドは、次のペプチドの全部又は一部を含む: CJ1-1、CJ1-2、CJ1-3、CJ1-4、CJ1-7、CJ1-8、CJ1-9、CJ1-10、

C J 1 - 1 1、C J 1 - 1 2、C J 1 - 1 4、C J 1 - 1 5、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 1 8、C J 1 - 1 9、C J 1 - 2 0、C J 1 - 2 1、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 2 5、C J 1 - 2 6、C J 1 - 2 7、C J 1 - 2 8、C J 1 - 3 0、C J 1 - 3 1、C J 1 - 3 2、C J 1 - 3 3、C J 1 - 3 4 及びC J 1 - 3 5(ここに、このペプチドの部分は、好ましくは、図 1 4 に示すように、それが導かれたペプチドの平均 T 細胞刺激インデックス以上の平均 T 細胞刺激インデックスを有する)。更に好ましくは、治療目的に用い得るCryj I 蛋白質アレルゲンから導かれたペプチドは、図 1 4 に示すように、次のペプチドの全部又は一部を含む:C J 1 - 2、C J 1 - 9、C J 1 - 1 0、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 0、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 2 5、C J 1 - 2 6、C J 1 - 2 7、C J 1 - 3 0、C J 1 - 3 1、C J 1 - 3 2 及びC J 1 - 3 5。

更に、CryjI蛋白質から導かれた他の好適ペプチドは、図18に示すように、次のペプチドを含む: CJ1-41、CJ1-41.1、CJ1-41.2、CJ1-41.1、CJ1-41.2、CJ1-41.3、CJ1-42.2、CJ1-43.6、CJ1-43.7、CJ1-43

. 8, CJ1-43. 9, CJ1-43. 10, CJ1-43. 11, CJ1-43. 12, CJ1-45,

C J 1 - 4 5. 1、 C J 1 - 4 5. 2、 C J 1 - 4 4、 C J 1 - 4 4. 1、 C J 1 - 4 4. 2及び C J 1 - 4 4. 3。 この発明の他の好適な抗原性ペプチドは、1 つより多くのリージョンを含んで良い(即ち、図4 a ~ b に示す Cryj I のアミノ酸配列のアミノ酸 1 5 1 ~ 3 5 2 の全部又は一部)。

本発明の1つの具体例は、この蛋白質アレルゲンの少なくとも1つのT細胞エピトープを含み且つ式 Xn-Y-Z を有する CryjIのペプチド若しくはその部分を叙述する。この式により、Yは、CJ1-1、CJ1-2、CJ1-3、CJ1-4、CJ1-7、CJ1-8、CJ1-1、CJ1-10、CJ1-11、CJ1-12、CJ1-11、CJ1-12、CJ1-11、CJ1-12、CJ1-11、CJ1-12、CJ1-11、CJ1-12、CJ1-11、CJ1-12、CJ1-11、CJ1-12、CJ1-11、CJ1-13、CJ1-13、CJ1-11、CJ1-13、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-28、CJ1-30、CJ1-31、CJ1-32、CJ1-33、CJ1-34及びCJ1-35よりなる群から選択するアミノ酸配列であり、好ましくは、CJ1-2、CJ1-2、CJ1-10、CJ1-16、CJ1-17、CJ1-20、CJ1-2、CJ1-2、CJ1-2、CJ1-2、CJ1-2、CJ1-2、CJ1-2、CJ1-2、CJ1-2、CJ1-3、CJ1-2、CJ1-3、CJ1-2、CJ1-3、CJ1-

の蛋白質アレルゲンのアミノ酸配列中のYのアミノ末端に隣接するアミノ酸残基であり、 Z■は、この蛋白質アレルゲンのアミノ酸配列中のYのカルボキシ末端に隣接するアミノ酸残基である。この式において、nは0~30であり、mは0~30である。好ましくは、このペプチド若しくはその部分は、図14に示すように、Yの平均T細胞刺激インデックスを有する。

本発明の他の具体例は、少なくとも2つの領域(それぞれ、CryjIの少なくとも1つのT細胞エピトープを含み、従って、各領域は少なくとも約7アミノ酸残

基を含む)を含むペプチドを提供する。これらの少なくとも2つの領域を含むペプチドは、CryjIアレルゲンの所望するだけ多くのアミノ酸残基を含むことが出来、好ましくは少なくとも約14、一層好ましくは約30、最も好ましくは少なくとも約40アミノ酸残基を含むことが出来る。所望であれば、これらの領域のアミノ酸配列を生成し、リンカーにより繋いで抗原提示細胞によるプロセッシングに対する感受性を増加させることが出来る。かかるリンカーは、任意の非エピトープアミノ酸配列又は他の適当な架橋若しくは結合剤であってよい。少なくとも2つの領域(それぞれ、少なくとも1つのT細胞エピトープを含む)を含む好適ペプチドを得るために、これらの領域を、アレルゲン中のこれらの領域の天然の構成と異なった構成で配置する。例えば、T細胞エピトープを

含むこれらの領域を、非隣接的構成で配置することが出来、好ましくは同じ蛋白質アレルゲンから導かれ得る。非隣接的とは、T細胞エピトープを含む領域の配置であって、それらの領域が導かれた蛋白質アレルゲン中に存在するアミノ酸配列の配置と異なる配置として定義される。更に、T細胞エピトープを含む非隣接領域を非逐次的順序(例えば、T細胞エピトープを含む領域が誘導される天然の蛋白質アレルゲン(アミノ酸はアミノ末端からカルボキシ末端まで配置されている)のアミノ酸の順序と異なる順序で)で配置することが出来る。1つのペプチドは、少なくとも15%、少なくとも30%、少なくとも50%又は100%までのCryjIのT細胞エピトープを含み得る。

個々のペプチド領域を生成し、試験をして、どの領域がCryjIに特異的な免疫 グロブリンEと結合するのか及びかかる領域のどれがマスト細胞若しくは好塩基 球からのメディエーター(例えば、ヒスタミン)の放出を引き起こすのかを決定 することが出来る。試験したアレルギー性血清の約10~15%より多くにおい て免疫グロブリンEに結合し且つマスト細胞若しくは好塩基球からのメディエー ターの放出を引き起こすことが見出されたそれらのペプチドは、好ましくは、こ の発明の好適ペプチドを形成するために配置されるペプチド領域に含まれない。

更に、この発明のペプチドの領域は、好ましくは、上

述のCryjI内の好適な主要T細胞反応性領域(即ち、リージョン1~5)又は上述の各リージョン内の好適な主要T細胞反応性領域(即ち、残基1~40、81~110、151~180、191~260及び291~330からのアミノ酸)の全部又は一部を含む。例えば、ある領域はリージョン1(アミノ酸残基1~51)の全部又は一部を含み、ある領域はリージョン2(アミノ酸残基61~120)の全部又は一部を含み得る。この発明のペプチドは、これらのリージョン(即ち、リージョン1~5)の2つ以上の全部又は一部を含み得て、その結果の好適ペプチドはIgEに結合せず且つマスト細胞若しくは好塩基球からのメディエーターの放出を引き起こさない。CryjIから導かれた好適ペプチドは、リージョン3、リージョン4及びリージョン5を含み、適宜リージョン1及びリージョン2を含む。更に、もしこれらのリージョンの1つがIgEと結合し且つマスト細胞若しくは好塩基球からのメディエーターの放出を引き起こされたならば、このペプチドは、かかるリージョンを含まずに、IgEに結合せず又はマスト細胞若しくは好塩基球からのメディエーターの放出を引き起こさないようなリージョンから導かれた種々の領域を含むのが好ましい。

好適領域の例は、次を含む: C J 1 - 1、C J 1 - 2、C J 1 - 3、C J 1 - 4、C J 1 - 7、C J 1 - 8、C J 1 - 9、C J 1 - 1 0、C J 1 - 1 1、C J

1-12、CJ1-14、CJ1-15、CJ1-16、CJ1-17、CJ1-18、CJ1-19、CJ1-20、CJ1-21、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-23、CJ1-30、CJ1-31、CJ1-32、CJ1-33、CJ1-34、CJ1-35、CJ1-41、CJ1-41.1、CJ1-41.2、CJ1-34、CJ1-35、CJ1-42、CJ1-41.1、CJ1-41.2、CJ1-41.3、CJ1-42.2、CJ1-43.1、CJ1-43.7、CJ1-43.8、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-43.1、CJ1-443.1、CJ1-443.1、CJ1-443.1、CJ1-443.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-444.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1、CJ1-445.1 (かかる領域のアミノ酸配列を図13及び18に示す)、又は少なくとも1つのT細胞エピトープ

を含む該領域の部分。

好適ペプチドは、2つ以上の領域(各領域は、上述の好適な主要T細胞反応性領域の全部又は一部を含む)の種々の組合せを含む。好適ペプチドは、次を含む2つ以上の領域(各領域は、図13に示すアミノ酸配列を有する)の組合せを含む:

```
C J 1 - 1、C J 1 - 2 及びC J 1 - 3;
```

- C J 1 1 及びC J 1 2;
- C J 1 9 及び C J 1 1 0;

```
С J 1 - 1 4、 C J 1 - 1 5、 C J 1 - 1 6 及び C J 1 - 1 7;
```

- C J 1 2 0 , C J 1 2 1 , C J 1 2 2 , C J 1 2 3 ;
- С J 1 2 0、 С J 1 2 2 及び С J 1 2 3;
- C J 1 2 2 及びC J 1 2 3;
- CJ1-22、CJ1-23及びCJ1-24;
- C J 1 2 4 及びC J 1 2 5;
- С Ј 1 3 0、 С Ј 1 3 1 及び С Ј 1 3 2;
- С J 1 3 1 及び C J 1 3 2;
- С Ј 1 2 2、 С Ј 1 2 3、 С Ј 1 1 6 及び С Ј 1 1 7;
- С Ј 1 2 2、 С Ј 1 2 3、 С Ј 1 3 1 及び С Ј 1 3 2;
- С Ј 1 1 6、 С Ј 1 1 7、 С Ј 1 3 1 及び С Ј 1 3 2;
- С Ј 1 9、 С Ј 1 1 0 及びС Ј 1 1 6;
- C J 1 1 6 及びC J 1 1 7;
- С Ј 1 1 7、 С Ј 1 2 2 及び С Ј 1 2 3;
- С Ј 1 1 6、С Ј 1 1 7 及びС Ј 1 2 0;
- С Ј 1 3 1、 С Ј 1 3 2 及び С Ј 1 2 0;
- С Ј 1 2 2、 С Ј 1 2 3、 С Ј 1 1、 С Ј 1 2 及び С Ј 1 3;
- C J 1 1 6、C J 1 7、C J 2 2 及びC J 1 2 3、C J 1 3 1 及び

C J 1 - 3 2 ;

C J 1 - 9、 C J 1 - 1 0、 C J 1 - 1 6、 C J 1 - 1 7、 C J 1 - 2 2 及びC J 1 - 2 3;

C J 1 - 9、C J 1 - 1 0、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 3 1 及びC J 1 - 3 2;

C J 1 - 9、C J 1 - 1 0、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 3 1 及び C J 1 - 3 2;

C J 1 - 9 , C J 1 - 1 0 , C J 1 - 1 6 , C J 1 - 1 7 , C J 1 - 2 2 , C

С Ј 1 - 1、 С Ј 1 - 2、 С Ј 1 - 1 6、 С Ј 1 - 1 7、 С Ј 1 - 2 2 及び С

С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 2 4、 С Ј 1 - 9 及び С Ј 1 - 1 0;

С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 2 4、 С Ј 1 - 9 及びС Ј 1 - 1 0、

C J 1 - 1 6 及びC J 1 - 1 7;

J 1 - 2 3;

J 1 - 2 3、 C J 1 - 3 1 及び C J 1 - 3 2;

С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 2 4、 С Ј 1 - 1 6 及び С Ј 1 - 1 7

、CJ1-31及びCJ1-32;

CJ1-22、CJ1-23、CJ1-24、CJ1-16及びCJ1-17;

C J 1 - 2 2、 C J 1 - 2 3、 C J 1 - 2 4、 C J 1 - 9 及び C J 1 - 1 0、

C J 1 - 3 1 及びC J 1 - 3 2;

C J 1 - 2 2 , C J 1 - 2 3 , C J 1 - 2 4 , C J 1

- 9 及び C J 1 − 1 0 、 C J 1 − 1 6 、 C J 1 − 1 7 、 C J 1 − 3 1 及び C J 1 − 3 2 ; 及び

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 3 1 及びC J 1 - 3 2

本発明の範囲内の単離したCryjI蛋白質又はCryjIのペプチドを、杉花粉に対するアレルギー反応を治療し及び予防する方法において用いることが出来る。従って、本発明の1つの面は、少なくとも1つのT細胞エピトープを好ましくは少なくとも2つのT細胞エピトープを含むCryjIのペプチド及び製薬上許容し得るキ

ャリアー若しくは希釈剤を含む治療用組成物を提供する。他の面において、この治療用組成物は、製薬上許容し得るキャリアー若しくは希釈剤及び少なくとも2つの領域(各領域は、CryjIの少なくとも1つのT細胞エピトープを含む)を含むペプチドを含む。

好適な治療用組成物は、杉花粉アレルゲンに感受性の個人へその組成物を投与する治療管理がその個人のT細胞をその蛋白質アレルゲンに対して寛容にするように、十分なパーセンテージのCryjIのT細胞エピトープを含む。更に好ましくは、この組成物は、cryjIのT細胞反応性の少なくとも約40%、一層好ましくは少なくとも約60%がこの組成物に含まれるように、十分なパーセンテージのT細胞エピトープを含む。かかる組成物を個人に投与して杉花粉又は杉花粉アレルゲンと免疫的に交差反応性のアレルゲンに対する感受性を治療し又は予防

することが出来る。

本発明の更に別の面において、少なくとも2つのペプチド(それぞれ、CrujIの少なくとも1つのT細胞エピトープを含む)を含む組成物(例えば、少なくとも2つのペプチドの物理的混合物)を提供する。かかる組成物を、製薬上許容し得るキャリアー若しくは希釈剤を伴う治療用組成物の形態で投与することが出来る。治療上有効な量の1種以上のかかる組成物を、杉花粉に感受性の個人に同時に又は逐次的に投与することが出来る。

同時に又は逐次的に投与することの出来るペプチドの好適組成物及び好適組合せ(図13に示すアミノ酸配列を有するペプチドを含む)は、次の組合せを含む.

- C J 1 1、C J 1 2 及びC J 1 3:
- C J 1 1 及びC J 1 2;
- C J 1 9 及びC J 1 1 0;
- CJ1-14、CJ1-15、CJ1-16及びCJ1-17;
- C J 1 2 0、C J 1 2 1、C J 1 2 2 及びC J 1 2 3;
- C J 1 2 0、C J 1 2 2 及びC J 1 2 3;

```
С J 1 - 2 2 及び C J 1 - 2 3;
 С Ј 1 - 2 2、 С Ј 1 - 2 3 及び С Ј 1 - 2 4;
 C J 1 - 2 4 及びC J 1 - 2 5;
 C J 1 - 3 0、C J 1 - 3 1 及びC J 1 - 3 2;
 C J 1 - 3 1 及びC J 1 - 3 2;
 C J 1 - 2 2、C J 1 - 2 3、C J 1 - 1 6 及びC J 1 - 1 7;
 С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 3 1 及びС Ј 1 - 3 2;
 С J 1 - 1 6、 C J 1 - 1 7、 C J 1 - 3 1 及び C J 1 - 3 2;
 C J 1 - 9、C J 1 - 1 0 及びC J 1 - 1 6;
 C J 1 - 1 6 及びC J 1 - 1 7;
 C J 1 - 1 7、C J 1 - 2 2 及びC J 1 - 2 3;
 C J 1 - 1 6、C J 1 - 1 7 及びC J 1 - 2 0;
 С Ј 1 - 3 1、 С Ј 1 - 3 2 及び С Ј 1 - 2 0;
 C J 1 - 2 2、C J 1 - 2 3、C J 1 - 1、C J 1 - 2 及びC J 1 - 3;
 C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 3 1 及
びCJ1-32;
 CJ1-9、CJ1-10、CJ1-16、CJ1-17、CJ1-22及び
C J 1 - 2 3 ;
 C J 1 - 9、C J 1 - 1 0、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 3 1 及び
C J 1 - 3 2 ;
 C J 1 - 9、C J 1 - 1 0、C J 1 - 2 2、C J 1 - 2 3、C J 1 - 3 1 及び
C J 1 - 3 2 ;
 C J 1 - 9 , C J 1 - 1 0 , C J 1 - 1 6 , C J 1 - 1 7 , C J 1 - 2 2 , C
J 1 - 2 3、 C J 1 - 3 1 及び C J 1 - 3 2;
 C J 1 - 1、C J 1 - 2、C J 1 - 1 6、C J 1 - 1 7、C J 1 - 2 2 及びC
J 1 - 2 3 ;
 С Ј 1 - 2 2、 С Ј 1 - 2 3、 С Ј 1 - 2 4、 С Ј 1 - 9 及び С Ј 1 - 1 0;
```

C J 1 - 2 2 , C J 1 - 2 3 , C J 1 - 2 4 , C J 1 - 9 , C J 1 - 1 0 , C

J 1 - 1 6 及び C J 1 - 1 7;

C J 1 - 2 2、 C J 1 - 2 3、 C J 1 - 2 4、 C J 1 - 1 6、 C J 1 - 1 7、
 C J 1 - 3 1 及び C J 1 - 3 2;

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 1 6 及びC J 1 - 1 7

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 9、C J 1 - 1 0、C J 1 - 3 1 及びC J 1 - 3 2;

C J 1 - 2 2、 C J 1 - 2 3、 C J 1 - 2 4、 C J 1 - 9、 C J 1 - 1 0、 C
 J 1 - 1 6、 C J 1 - 1 7、 C J 1 - 3 1 及び C J 1 - 3 2; 及び

C J 1 - 2 2、C J 1 - 2 3、C J 1 - 2 4、C J 1 - 3 1 及びC J 1 - 3 2

この発明を、更に、下記の非制限的実施例により説明する。

実施例1_

杉花粉アレルゲン(CryjI)の精製

以下は、天然形態の主要アレルゲンCryjIを生化学的に精製するためになされた仕事の説明である。この精製は、刊行された手順(Yasueda等、J. Allergy Clin. Immunol. 71:77, 1983)を改変したものである。

日本国から得た100gの杉花粉(ワシントン、Spokane在、HollisterStir)を1Lのジエチルエーテル中で3回脱脂し、濾過後に花粉を集めてエーテルを真空中で乾燥させた。

脱脂した花粉を、50mMトリスHC1(pH7.8)、0.2MNaC1及びプロテアーゼ阻害剤

(2μg/m1(終濃度)大豆トリプシン阻害剤、1μg/m1(終濃度)ロイペプチン、1μg/m1(終濃度)ペプスタチン及び 0.17mg/m1(終濃度)フェニルメチルスルホニルフルオリド)を含む 2 Lの抽出用緩衝液中で 4℃で一晩抽出した。不溶性物質を 1.2 Lの抽出用緩衝液で 4℃で一晩再抽出し、両抽出物を合わせて、抽出用緩衝液で平衡化した Whatman DE-52D E A E セルロ

- ス (乾重量200g) を用いてバッチ式吸収により色素脱失した。

色素脱失した物質を、次いで、80%飽和(4℃)の硫安沈澱により分画して、低分子量の物質の多くを除去した。その結果の部分精製したCryjIを、PBS 緩衝液にて透析してT細胞研究に用い(実施例6参照)又は下記のように更なる 精製(生化学的又はモノクローナルアフィニティークロマトグラフィー)にかけた。

このCryjIに富む物質を、次いで、プロテアーゼ阻害剤を加えた $50 \, m\, M$ 酢酸ナトリウム($p\, H\, 5$. 0)を用いて、 $50 \, m\, M$ 酢酸ナトリウム($4\, C$ で $p\, H$ 5. 0)に対して透析した。この試料を、次に、 $4\, C$ でプロテアーゼ阻害剤を加えた $50 \, m\, M$ 酢酸ナトリウム($p\, H\, 5$. 0)で平衡化した $100 \, m\, 1$ の $D\, E\, A$ $E\, t$ セルロースカラム($Whatman\, DE-52$)に加えた。未結合物質(塩基性蛋白質)を、次いで、プロテアーゼ阻害剤を加えた $4\, C$ の $10 \, m\, M$ 酢酸ナトリウム($p\, H\, 5$. 0)で平衡化した $50 \, m\, 1$ のカチオン交換カラム($Whatman\, C\, M$

-52) に加えた。CryjIは、O.3M NaClの直線的勾配の初期画分に溶出された。このCryjI富化物質を凍結乾燥し、次いで、300mlのSuperdex 75カラム (Pharmacia) 上でのFPLC(25℃の10mM 酢酸ナトリウム(pH5.0)、流量30ml/時)により精製した。

精製したCryjIを、更に、 0~1 M NaCl(25℃)の直線的勾配を用いたFPLC S-Sepharose 16/10カラムクロマトグラフィー (Pharmacia)に加えた。主要ピークとして溶出したCryjIを第2のゲル濾過クロマトグラフィーにかけた。FPLC Superdex 75カラム(60 cm当り2.6)(ニュージャージー、Piscataway在、Pharmacia)を、10 mM 酢酸ナトリウム(pH5.0)の下降流(流量30 ml/時、25℃)で溶出した。図1 aは、このゲル濾過クロマトグラフィーを示す。CryjIのみが検出された(図1b、レーン2~8)。CryjIは、銀染色を用いるSDSーPAGEによる分析で3つのバンドに分画された(図1b)。図1bに示すように、図1 aに示した主要ピークからの画分のSDSPAGE(12.5%)分析を還元条件下で行なった。ゲルを、Bio-Radの銀染色キットを用いて銀染色した。これらの各レーン内の試料は、次のとおりで

あった: レーン 1 、オバルブミン(4 3, 000 k D a)、カルボニックアンヒドラーゼ(2 9, 000 k D a)及び α ーラクトグロブリン(1 8, 4 00 k D a)を含む

予備染色した標準蛋白質 (Gibco BRL) ; レーン 2 、 画分 3 6 ; レーン 3 画分 3 7 ; レーン 4 画分 3 8 ; レーン 5 画分 3 9 ; レーン 6 画分 4 1 ; レーン 7 画分 4 3 及びレーン 8 画分 4 4 。 すべての画分を図 1 a に示す。

これらの蛋白質を、マウスモノクローナル抗体CBF2を用いるウエスタンブロットによっても分析した(図2)。図2に示すように、Superdex 75(図1)から精製した画分36(レーン1)、画分39(レーン2)及び画分43(レーン3)のアリコートをSDSーPAGEにより分離し、二トロセルロース上にエレクトロブロットし且つmAB CBF2をプローブとして調べた。ピオチン化ヤギ抗マウスIgを第2抗体として用い、結合した抗体を 125 I ーストレプトアビジンにより示した。モノクローナルCBF2は、D. Klapper博士(ノースカロライナ、Hill在、Chapel)によりブタクサアレルゲンAmb a Iに対して高められた。Amb a IとCryjIの配列間の相同性の故に、Amb a Iに対して高められた抗体の幾つかをCryjIとの反応性について試験した。これらの結果は、ELISA及びウエスタンブロットにより検出されたように、CBF2が変性したCryjIを認識することを示した。更に、ウエスタンブロットは又、CBF2によっては、予想される分子量範囲にはCryjIを除いて、他のバンドは検出されないことをも示した。これらの結果は、蛋白質の配列決定から見出されたことと一致

した。画分44及び39(図1b)をN末端配列決定にかけたが、CryjIの配列 しか検出されなかった。

要するに、花粉抽出物から分子量の異なる3つのCryjIイソ型が精製された。これらのSDS-PAGEで評価した分子量は、還元及び非還元条件の両方において40~35kDaにわたった。これらのイソ型の等電点は約9.5~8.6であり、平均pI9.0である。N末端の20アミノ酸配列は、これらの3つのバンドにおいて同じであり且つ以前に公表されたCryjIの配列(Taniai等、前出

)と同一であった。これらの3つのイソ型は、すべて、15人のアレルギー患者血漿を用いるCryjIの種々の精製したサブ画分のアレルギー血清滴定で示されるように、モノクローナル抗体CBF2により認識される。それらは、すべてアレルギー患者のIgEと結合する(図3)。これらのイソ型の分子量及び等電点の差異は、部分的に、翻訳後修飾例えばグリコシレーション、リン酸化又は脂質含量のためであろう。これらの異なるイソ型がプロテアーゼ分解のためであるという可能性は、抽出及び精製において4種の異なるプロテアーゼ阻害剤を用いたという事実によりありそうにもないが、現時点では排除することは出来ない。他の可能性は、cDNAクローニング研究においてはCryjI蛋白質の唯一つの主要型しか検出されなかった(実施例4参照)が、遺伝子の多形又はmRNAの交替されたスプライシングのためということがあり得よう。

天然 cryj I 又は組換え Cryj I を精製するために用い得る他のアプローチはイムノアフィニティークロマトグラフィーである。この技術は、モノクローナル抗体と抗原との間の相互作用の特性のために非常に選択的な蛋白質精製を与える。Cryj I 反応性モノクローナル抗体を生成する目的のために、雌の Balb/cマウスをJackson Labsから入手した。各マウスを初めに完全フロイントアジュバントに乳化させた 70~100μgの精製した天然 Cryj I (純度>99%、図1bに示す、下方のバンド)で腹膜内免疫化した。PBS中の10μgの精製した天然 Cryj I の更なる静脈注射を、最初の注射後 54日目に行なった。3日後に膵臓を取り出して、ミエローマとの融合を、ミエローマ系統 SP2.0を用いて、記載された (Current Protocols in Immunology, 1991, Coligan等編)ようにしておこなった。これらの細胞を10%ウシ胎児血清(Hybrimax)、ヒポキサンチン及びアザセリン中で培養し、ハイブリドーマ細胞のコロニーを含むウェルを、抗原結合ELISAを用いて、抗体産生についてスクリーニングした。

陽性のウェルからの細胞を、3/10の細胞/ウェルにて10%ウシ胎児血清(Hybrimax)、ヒポキサンチン中でクローン化し、陽性クローンを再度ヒポキサンチン培地中でサブクローン化した。捕獲ELISA(実施例7参照)を、第2及び第3のスクリーニングに用いた。このアッセイは、天然蛋白質を認識するク

ローンが選択

され、それ故、イムノアフィニティー精製に有用であり得るという利点を与える 。例えば、2つのモノクローナル抗体(4B11、8B11)を生成した。これ らの抗体を、製造者の手順に従つて、Gammabind G. Sepharose(ニユージヤージ ー、Piscataway在、Pharmacia)により生成し、Pharmaciaにより記載された手順 に従ってシアノゲンブロミド活性化Sepharose 4B(ニュージャージー、Piscataw ay在、Pharmacia)に固定化した。CryjIを含む硫安調製物をこの樹脂に加え、未 結合物質を多量のPBSで洗った。Cryjlを2カラム容積の0.1M グリシン (pH2.7)で溶出した。SDSPAGEにて泳動した溶出物画分の銀染色は 、CryjIが殆ど均質に精製されたことを示した。これらの画分は、検出可能なレ ベルのCryhIIを含まない。MAb8B11を固定化する他の方法も又試験した。 類似の結果が、ジメチルピメリミデートによりGammabind G Sepharoseに共有架 橘結合された精製したMAb8B11 (Schneider C. 等、J. Biol. Chem. (198 2)257巻:10766-10769)を用いて得られた。しかしながら、Affi-gel 10 (カリ フォルニア、Richmond在、Biorad)に共有架橋結合された精製したMAb8B1 1 を用いた実験は、モノクローナル抗体の90%より多くがAffi-gel 10に共有 結合で結合されたにもかかわらず、その樹脂にて生成されたCryjIの収率は、シ アノゲンブロミド活性化されたSepharose 4Bに架橋されたMAb8B11から精 製されたものより有意に低いという

ことを示した(データは示さない)。それにもかかわらず、これらの種々の樹脂上に固定化されたモノクローナル抗体から精製したCryjIは、やはり無傷であり且つ捕獲ELISAによりMAb8B11及び4B11によって認識され得る。従って、これらのMAbは、花粉抽出物からのCryjIの精製に有用な道具を提供する。同様に、組換えCryjIに結合するモノクローナル抗体も又、イムノアフィニティークロマトグラフィーのために有用であり得る。更に、これらの生成されたモノクローナル抗体は、診断目的にも有用であり得る。CryjIのこれらの異なるイソ型に対する幾らかの特異性を示し、それ故、これらのイソ型を特性決定す

るための有用な道具を与えるであろう異なるMAbを髙めることも可能であろう

実施例2

杉花粉からのRNAの抽出の試み

市販の、脱脂してないCryptomeria japonica (杉) の花粉 (ワシントン、Seat tle在、Hollister Stier) からRNAを得るために多くの試みが為された。最初、試料を4M グアニジン緩衝液中に懸濁させて溶解し、液体窒素下ですり漬して、5.7M 塩化セシウム中で超遠心分離によりペレット化するSambrook等、MolecularCloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor ニューヨーク

(1989) の方法を用いた。種々の量(3.5及び10g)の花粉を、グアニジン溶解緩衝液中でその量を変えて(10及び25ml)試みた。セシウム中での遠心分離は、管の底に粘性の物質を生じたが、それからRNAペレットを回収することは出来なかった。脱脂したAmbrosia artemisiifolia(ブタクサ)花粉(ノースカロライナ、Lenior在、Greer Laboratories)から、このプロトコールを用いてRNAを得ることは可能であるにもかかわらず、Cryptomeria japonica花粉をグアニジン抽出前にアセトンで脱脂しても、A260の吸収で測定した限り何らのRNAをも生成しなかった。

Sambrook等、前出の方法によるRNAの酸フェノール抽出を、Cryptomeria ja ponica花粉から試みた。花粉を4.5 M グアニジン溶液中ですり潰し且つ剪断し、2 M 酢酸ナトリウムを加えて酸性化し、そしてクロロホルムを加えた水飽和フェノールで抽出した。沈澱後、ペレットを4 M 塩化リチウムで洗い、10mM トリス/5 mM EDTA/1% SDSに再溶解させ、クロロホルム抽出し、そしてNaC1及び無水エタノールで再沈澱させた。この手順を用いたのでは、Ambrosia artemisiifolia RNAを抽出することは出来たが、Cryoptomeria japonica RNAの抽出は出来なかった。

次に、4gのCryptomeria japonica花粉を10mlの抽出用緩衝液(50mMトリス(pH9.0)、0.2M NaCl、10mM 酢酸マグネシウム及

び

ジエチルピロカーボネート(DEPC)(0.1%にする))に懸濁し、ドライアイス上で乳鉢と乳棒ですり潰し、1% SDS、10mM EDTA及び0.5% Nーラウロイルサルコシンと共に遠心管に移してこの混合物を温フェノールで5回抽出した。最後の遠心分離の後に水相を回収して2.5倍容の無水エタノールを加え、この混合物を一晩4℃でインキュベートした。ペレットを遠心分離により回収し、65℃に加熱することにより1m1のdH2〇に再懸濁し、そして0.1容の3M 酢酸ナトリウム及び2.0容のエタノールの添加により再沈澱させた。A260の吸収及びゲル電気泳動により鑑定した限りにおいて、このペレットにおいては検出可能なRNAは回収されなかった。

最後に、500mgのCryptomeria japonica花粉をドライアイス上で乳鉢と乳棒ですり潰して0.2M NaC1、1mM EDTA、1% SDSを加えた5m1の50mM トリス (pH9.0) (以前にFrankis及びMascarhenas(1980)Ann. Bot. 45:595-599に記載されたように0.1% DEPCで一晩処理したもの) に懸濁させた。フェノール/クロロホルム/イソアミルアルコール(25:24:1で混合)で5回抽出した後に、水相から物質を、0.1容の3M 酢酸ナトリウム及び2容のエタノールを用いて沈澱させた。そのペレットを、遠心分離で回収し、dH2Oに再懸濁させて65℃まで加熱して沈澱物質を溶解させた。塩化リチウムを用いる

更なる沈澱は行なわなかった。 A 260の吸収及びゲル電気泳動により測定した限りにおいて、検出可能な R N A はなかった。

要するに、市販の花粉からRNAを回収することは不可能であった。RNAが 貯蔵若しくは出荷の際に分解したのか、又はこの実施例で用いたプロトコールが 実在するRNAを回収出来ないのかは分からない。しかしながら、新鮮なCrypto meria japonica花粉及び雄蘂を有する球果試料からはRNAが回収された(実施 例3参照)。

実施例3

杉花粉及び雄蘂を有する球果からのRNAの抽出及びCryjlのクローニング

Arnold Arboretum (マサチューセッツ、Boston) にある 1 本のCryptomeria ja ponica (杉) の木から採集した新鮮な花粉及び雄蘂を有する球果試料を直ちにドライアイス上で凍結した。RNAを 5 0 0 m g の各試料から、本質的にFrankis 及びMascarhenas、前出により記載された様にして調製した。これらの試料をドライアイス上で乳鉢と乳棒ですり潰し、0.1% DEPCで一晩処理した 0.2 M NaC1、1 m 1 EDTA、1% SDSを有する 5 m 1 の 5 0 m M トリス (p H 9.0) に懸濁させた。フェノール/クロロホルム/イソアミルアルコール(25:24:1で混合)で5回抽出した後に、RNAを水相から、0.1 容の 2 M 酢酸ナトリウム及

び 2 容のエタノールで沈殿させた。遠心分離によりペレットを回収し、 d H 2 O に再懸濁させ、 65 $\mathbb C$ に 5 分間加熱した。 2 m 1 の 4 M 塩化リチウムを R N A 沈澱に加えて、それらを一晩 0 $\mathbb C$ でインキュベートした。遠心分離により R N A ペレットを回収し、 1 m 1 の d H 2 O に再懸濁させ、再び 3 M 酢酸ナトリウム 及びエタノールで一晩沈澱させた。最後のペレットを 1 0 0 μ 1 の d H 2 O に 所蔵した。

第1鎖cDNAを、8μgの頭状花序及び4μgの花粉RNAから、市販のキット(cDNA合成システムキット、メリーランド、Gaithersburg在、BRL)を用いて、Gubler及びHoffman(1983)Gene25: 263-269の方法に従ってオリゴd Tプライミングで合成した。CryjIをコードするcDNAを、縮退オリゴヌクレオチドCP-1(配列5'-GATAATCCGATAGATA-3'を有し、ここに、3位のTはCでもよく、6位のTはCでもよく、9位のGはA、T若しくはCでもよく、12位のAはTでもよく、17位のGはCでもよく、15位のTはCでもよく、16位のAはTでもよく、17位のGはCでもよい;配列番号:3)及びプライマーEDT及びEDを用いて増幅する試みを行なった。プライマーEDTは、配列5'-GGAATTCTCTAGACTGCAGGTTTTTTTTTTTTTTTTT-3'(配列番号:24)を有する。プライマーEDは、配列5'-GGAATTCTCTAGACTGCAGGTT-3'(配列番号:23)を有する。CP-1は、CryjIのアミノ末端の最初の6アミノ酸(AspAsnPro

Ile Asp Ser、配列番号 1 のアミノ酸 $1\sim 6$)をコードする縮退したオリゴヌクレオチド配列である。 EDTは、この遺伝子のポリ Aテールとハイブリダイズするであろう。すべてのオリゴヌクレオチドは、アラバマ、Huntsville在、Research Genetics, Inc. により合成された。ポリメラーゼ連鎖反応を、市販のキット(GeneAmp DN ア増幅キット、コネチカット、Norwalk在、PerkinElmer Cetus)を用いて行ない、dNTPを含む $10\mu 1010\times$ 緩衝液を $1\mu g$ のCP-1及び $1\mu g$ のED/EDTプライマー(ED:EDTのモル比3:1)、cDNA($20\mu 1$ の第1鎖cDNA反応混合物の $3\sim 5\mu 1$)、 $0.5\mu 1$ のAmplitaqDNAポリメラーゼ及び蒸留水($100\mu 1$ にする)と混合した。

これらの試料を、プログラム可能な温度制御装置(マサチューセッツ、Cambridge在、MJ Research、Inc.)を用いて増幅した。増幅の最初の5回は、9.4%で 1.5%間の変性、4.5%で 1.5%間のプライマーのテンプレートへのアニーリング及び 7.0%で 2.5%間の鎖延長からなった。増幅の最後の 2.0回は、上記のとおりの変性、5.5%で 1.5%間のアニーリング及び上記の通りの鎖延長からなった。次いで、この初期増幅の5パーセント($5\mu1$)を、4.4%00 4.4%

はCでもよい)(配列番号:4)、ネストしたプライマー及びEDを用いる第2の増幅で用いた。プライマーCP-2中の配列5'-GGGAATTC-3'(配列番号4の塩基1~8)は、クローニング目的のために加えられたEcoRI部位を表す。残りの縮退したオリゴヌクレオチド配列は、CryjIのアミノ酸13~18(AsnTrpAlaGlnAsnArg、配列番号1のアミノ酸13~18)をコードする。多くのDNAバンドが、1%GTGアガロースゲル(ME、Rockport在、FMC)上で分離されたが、それらの何れもが、Sambrook等、前出の方法に従って行なったサザーンブロットにおいて、32P末端標識したプローブCP-3(配列番号:5)とハイブリダイズしなかった。従って、特定のCryjI DNAバンドを選択することは出来ず、このアプローチは中止した。CP-3は配列5'-CTGC

AGCCATTTTCIACATTAAA-3'を有し、ここに、9位のAはGでもよく、12位のTはCでもよく、18位のAはGでもよく、21位のAはGでもよい(配列番号:5)。15位では、縮退を減じるためにG又はA又はT又はCの代りにイノシン(I)を用いている(Knoth等(1988)Nucleic Acids Res. 16:10932)。プライマーCP-3中の配列5'-CTGCAG-3'(配列番号5の塩基1~6)は、クローニング目的のために加えられたPstI部位を表している。残りの縮退したオリゴヌクレオチド配列は、CryjIの内部配列からのアミノ酸PheAsnValGluAsnGly(配列番号1の

アミノ酸327~332)をコードするコード鎖配列に対応する非コード鎖配列である。

第1のPCRも又、第1鎖cDNAにて、上記のように、CP-1(配列番号:3)及びCP-3(配列番号:5)を用いて行なった。第2のPCRは、最初の反応の5%を用いて、CP-2(配列番号:4)及びCP-3(配列番号:5)を用いて行なった。再び、多くのバンドが認められたが、それらの何れもが、サザーンブロットにおいて特異的にCryjlと同定され得ず、このアプローチも中止された。

次いで、二本鎖 c D N A を、約4 μg(花粉)及び8 μg(頭状花序)のR N A から、市販のキット(c D N A 合成システムキット、メリーランド、Gaithers burg在、BRL)を用いて合成した。フェノール抽出及びエタノール沈澱の後に、c D N A を、Rafnar等(1991)J. Biol. Chem. 266: 1229-1236; Frohman等(1990)Proc. Natl. Acad. Sci. USA85: 8998-9002; 及びRoux等(1990)BioTech. 8: 48-57の方法に従って、改変アンカードPCR反応で用いるために、T4DNAポリメラーゼ(ウィスコンシン、Madison在、Promega)で鈍端化し、エタノール沈澱して自己アニールしたAT(配列番号:20)及びAL(配列番号:22)オリゴヌクレオチドに繋いだ。オリゴヌクレオチドATは、配列5′-GGGTCTAGAGGTACCGTCCGATCGATCATT-3′(配列番号:20)(Rafnar等、前出)を有する。オリゴヌクレオチドALは、配列5′-AATGATCGATGCT-3′(

配列番号:22)(Rafnar等、前出)を有する。CryjIのアミノ末端を、結合した c D N A (20 μ 1 の反応からの 3 μ 1) から、各 1 μ g のオリゴヌクレオチド A P (配列番号:21) 及び縮退したCryjIプライマーC P - 7 (配列 5'-TTC ATICGATTCTGGGCCCA-3'、8位のG は T でもよく、9位の A は G でもよく、12位の C は T でもよく、15位の G は A、T 若しくは C でもよい)(配列番号:6)を用いて増幅した。縮退を減じるために、イノシン(I)を、6位で、G 又は A 又は T 又は C の代りに用いている(Knoth等、前出)。縮退したオリゴヌクレオチド C P - 7 (配列番号:6)は、CryjIのアミノ末端(配列番号 1 のアミノ酸 1 4~20)からのアミノ酸 1 4~20(T r p A 1 a G 1 n A s n A r g M e t L y s)をコードするコード鎖配列に対応する非コード鎖配列である。オリゴヌクレオチド A P は、配列 5'-GGGTCTAGAGGTACCGTCCG-3'(配列番号:21)を有する。

第1のPCR反応を、ここに記載したようにして、行なった。次いで、この初期増幅の5パーセント(5μ1)を、各1μgのAP(配列番号:21)及びCr yjIプライマーCP-8(配列番号:7)内部でネストしたCryjIオリゴヌクレオチドプライマーを用いる第2増幅において用いた。プライマーCP-8は、配列5'-CCTGCAGCGATTCTGGGCCCCAAATT-<math>3'を有し、ここに、9位のGはTでもよく、10位のAはGでもよく、13位のCはTでもよく、16位のGはA、T若しくはCでもよく、

2 3 位のAはGでもよい(配列番号: 7)。ヌクレオチド5'-CCTGCAG-3'(配列番号7の塩基1~7)は、クローニング目的のために加えられたPstI部位を表す。残りの縮退したオリゴヌクレオチド配列は、CryjIのアミノ末端からのCryjIのアミノ酸13~18(AsnTrpAlaGlnAsnArg、配列番号1のアミノ酸13~18)をコードするコード鎖配列に対応する非コード鎖配列である。主な増幅生成物は、エチジウムブロミド(EtBr)染色した3%アガロースゲル上で可視化したところ、約193塩基対のDNAバンドであった。

増幅したDNAを、逐次的なクロロホルム、フェノール及びクロロホルム抽出 と、その後の0.5容の7.5酢酸アンモニウム及び1.5容のイソプロパノー ルでの-20℃での沈澱によって回収した。沈澱及び70%エタノールでの洗浄の後に、このDNAを、15μlの反応にてXbaIとPstIで同時に消化して調製用3%GTG NuSieve低融点ゲル(メイン、Rockport在、FMC)中で電気泳動した。適当な寸法のDNAバンドを、EtBr染色により可視化し、取り出して、市販の配列決定用キット(Sequenase kit,オハイオ、Cleveland在、U.S. Biochemicals)を用いて、ジデオキシチェーンターミネーション法(Sanger等(1977)Proc. Natl. Acad Sci. USA74:54463-5476)により配列決定するために、適当にデザインしたM13mp18中に繋いだ。最初は、ライゲー

ション可能な物質は、雄蘂を有する球果由来のRNAからしか導けないと考えられた。しかしながら、引き続いての試験において、ライゲーション可能な物質が、花粉由来のRNA及び雄蘂を有する球果由来のRNAから生成したPCR生成物から回収され得ることが示された。

JC71.6とよばれるクローンは、CryjIの部分配列を含むことが見出された。これは、開示されたCryjIのNH2末端配列(Taniai等、前出)に完全に同一である確実なCryjIのクローンであることが確認された。7位のアミノ酸は、米国特許打4,939,239号に開示された配列と一致して、システイン(Cys)であることが決定された。アミノ酸の番号付けは、成熟蛋白質の配列に基いており、アミノ酸1は、CryjIのNH2末端として開示されたアスパラギン酸(Asp)(Taniai等、前出)に対応する。開始メチオニンは、成熟蛋白質の第1アミノ酸に対してアミノ酸ー21であることが見出された。開始メチオニンの位置は、上流のインフレームの終止コドンの存在により及び周囲の配列と植物コンセンサス配列(Lutcke等(1987)EMBO J.6:43-48により報告されたように、開始メチオニンを含む)との78%の相同性により支持された。

CryjI遺伝子の残りをコードしている c D N A を、第1の P C R 反応で、結合 した c D N A から、オリゴヌクレオチド C P - 9 (配列 5'-ATGGATTCCCCTTGCTTA -3' (配列番号: 8)及び A P (配列番号: 2 1)を用いて

クローン化した。オリゴヌクレオチドCP-9(配列番号:8)は、CryjIのリ

- ダー配列に由来するCryjIのアミノ酸MetAspSerProCysLeu (配列番号1のアミノ酸-21~-16)を含み、部分的CryjIクローンJC7 6.1について決定されたヌクレオチド配列に基いている。

第2のPCR反応を、最初の増幅混合物の5%について、各1μgのAP(配列番号:21)及びCP-10(配列5'-GGGAATTCGATAATCCCATAGACAGC-3'を有する)(配列番号:9)ネストしたブライマーを用いて行なった。プライマーCP-10のヌクレオチド配列5'-GGGAATTC-3'(配列番号9の塩基1~8)は、クローニング目的のために加えられたEcoRI部位を表す。残りのオリゴヌクレオチド配列は、CryjIのアミノ酸1~6(AspAsnProIleAspSer)(配列番号1のアミノ酸1~6)をコードし、部分的CryjIクローンJC76.1について決定されたヌクレオチド配列に基いている。この増幅したDNA生成物を、上記のように精製して沈殿させ、それから、EcoRI及びXbaIで消化して調製用1%低融点ゲル中で電気泳動した。主なDNAバンドを取り出して、配列決定のためにM13mp19及びpUC19に繋いだ。再びライゲーション可能な物質を、花粉由来のRNA及び維薬を有する球果由来のRNAから生成したcDNAから回収した。pUC19JC91a及びpUC19JC91dとよば

れる 2 つのクローンを、全長配列決定のために選択した。それらは、続いて、同 一配列であることが見出された。

DNAを、市販のキット(オハイオ、Cleveland在、U. S. Biochemicals)を用いて、ジデオキシチェーンターミネーション法(Sanger等、前出)により、配列決定した。両鎖を、M13順方向及び逆方向プライマー(マサチューセッツ、Beverly在、N. E. Biolabs)及び内部シーケンシングプライマーCP-13(配列番号:10)、CP-14(配列番号:11)、CP-15(配列番号:12)、CP-16(配列番号:13)、CP-18(配列番号:15)、CP-19(配列番号:16)及びCP-20(配列番号:17)を用いて、完全に配列決定した。CP-13は、配列5'-ATGCCTATGTACATTGC-3'(配列番号:10)を有する。CP-13(配列番号:10)は、CryjIのアミノ酸82~87(Me

t ProMet TyrIleAla)配列番号1のアミノ酸82~87)をコードする。CP-14は、配列5'-GCAATGTACATAGGCAT-3'(配列番号:11)を有し、CP-13(配列番号:10)の非コード鎖配列に対応する。CP-15は、CryjIのアミノ酸169~174(SerAsnSerSerAspGly、配列番号1のアミノ酸169~174)をコードする配列5'-TCCAATTCTTCTGATGGT-3'(配列番号:12)を有する。CP-16は、CryjIのアミノ酸335~340(ThrProGln

LeuThrLys) 配列番号1のアミノ酸335~340) をコードするコー ド鎖配列に対応する非コード鎖配列である配列5'-TTTTGTCAATTGAGGAGT-3'(配 列番号:13) を有する。CP-18は、CryjIのアミノ酸181~186 (T hrSerThrGlyValThr、配列番号1のアミノ酸181~186) をコードするコード鎖配列に実質的に対応する非コード鎖配列である配列5'-TA GCAACTCCAGTCGAAGT-3' (配列番号: 15) を有する(但し、CP-18 (配列 番号:15)の第4ヌクレオチドは、正しいヌクレオチドTではなくCとして合 成された)。配列5'-TAGCTCTCATTTGGTGC-3'(配列番号:16)を有するCP - 1 9 は、Cryjlのアミノ酸 2 7 0 ~ 2 7 5 (Ala Pro Asn Glu Ser Tyr) 配列番号1のアミノ酸270~275) をコードするコード鎖配列に対 応する非コード鎖配列である。CP-20は、CryjIのアミノ酸251~256 (TyrAlaIleGlyGlySer、配列番号1のアミノ酸251~25 6) に対するコード鎖である配列5'-TATGCAATTGGTGGGAGT-3'(配列番号: 1 7) を有する。この配列決定したDNAは、図4a及び4bに示した配列(配列番 号:1)を有することが見出された。これは、2つの重複するクローンJC71 6及びpUC19J91aからの複合配列である。CryjIの完全cDNA配列 は、1312ヌクレオチドからなり、66ヌクレオチドの5、非翻訳配列、11 22ヌクレオチドの開

始メチオニンのコドンから始まるオープンリーディングフレーム及び3、非翻訳領域を含む。ポリAテールの5、側25ヌクレオチドの3、非翻訳領域にはコン

センサスポリアデニル化シグナル配列が存在する(図4及び配列番号1のヌクレオチド1279~1283)。図4及び配列番号1のヌクレオチド1313~1337は、ベクター配列を表す。開始メチオニンの位置は、インフレームの上流終止コドンの存在及び開始メチオニン(植物に共通の配列AACAAUGGC Lutcke等(1987)EMBO J. 6: 43-48に匹敵するCryjI中に見出されたAAAAAUGGA(配列番号1の塩基62~70))を含む植物コンセンサス配列との78%の相同性により確実とされる。このオープンリーディングフレームは、374アミノ酸の蛋白質をコードしており、その最初の21アミノ酸は、成熟蛋白質からは開裂されるリーダー配列を含んでいる。この成熟蛋白質のアミノ末端は、公表されたNH2末端配列(Taniai等(1988)、前出)及び精製したCryjI(実施例1)の直接アミノ酸分析により決定した配列との比較により同定された。成熟蛋白質の演繹されたアミノ酸配列(353アミノ酸からなる)は、公表されたCryjIの蛋白質配列(Taniai等、前出)と完全な配列同一性を有する(NH2末端の最初の20アミノ酸及び16の隣接内部アミノ酸配列を含む)。この成熟蛋白質は又、コンセンサス配列N-X-S/Tに対応する5つの潜在的グリコシレーション部位を含む。

実施例4_

日本で採集された杉花粉からのRNAの抽出

日本でCryptomeria japonica (杉)の木のプールから採集した新鮮な花粉を直ちにドライアイス上で凍結した。この花粉 5 0 0 m g から、本質的にFrankis及びMascarenhas Ann. Bot. 45:595-599に記載されたようにして R N A を調製した。試料をドライアイス上で乳鉢と乳棒ですり潰して、一晩 0 . 1 % D E P C で処理した 0 . 2 M N a C 1 、 1 m M E D T A 、 1 % S D S を加えた 5 m 1 の 5 0 m M トリス (p H 9 . 0) に懸濁させた。フェノール/クロロホルム/イソアミルアルコール(25:24:1で混合)で 5 回抽出した後に、 R N A を、 0 . 1 容の 3 M 酢酸ナトリウム及び 2 容のエタノールで水相から沈澱させた。ペレットを遠心分離で回収し、 d H 2 O に再懸濁させて 6 5 ℃に 5 分間加熱した。これらの R N A 調製物に 2 m 1 の 4 M 塩化リチウムを加えて、一晩 9 ℃でインキュベートした。遠心分離により R N A ペレットを回収して、 1 m 1 の d H

2 O に再懸濁させ、再び 3 M 酢酸ナトリウム及びエタノールで一晩沈殿させた。 最終的ペレットを 1 O O μ 1 の d H 2 O に再懸濁させて - 8 O ℃で保存した。 二本鎖 c D N A を、 8 μ 1 花粉 R N A から、 c D N A 合成システムキット (BR L) を用いてGubler及びHoffman(1983)Gene25: 263-269の方法に従ってオリゴ d

Tプライミングで合成した。ポリメラーゼ連鎖反応(PCR)を、dNTPを含む $10\mu1010$ ×緩衝液を8100 pモルのセンスオリゴヌクレオチド及びアンチセンスオリゴヌクレオチド($400\mu10$ 二本鎖 c DNA反応混合物の $10\mu1$)、0.5 $\mu10$ AmplitaqDNAポリメラーゼ及び蒸留水($100\mu1$ にする)と混合して、GeneAmpDNA増幅キット(Perkin Elmer Cetus)を用いて行なった。

これらの試料を、MJ Research、Inc. (マサチューセッツ、Cambridge在)プログラム可能な温度制御装置を用いて増幅した。最初の5回の増幅は、94℃で1分間の変性、45℃で1分間のプライマーのテンプレートへのアニーリング及び72℃で1分間の鎖延長からなった。最後の20回の増幅は、上記の通りの変性、55℃で1分間のアニーリング及び上記の通りの鎖延長からなった。

この二本鎖 c D N A を増幅するのに、次の7つの異なるCryjIプライマー対を用いた: C P - 9 (配列番号: 8) 及びC P - 17 (配列番号: 14)、C P - 10 (配列番号: 9) 及びC P - 17 (配列番号: 14)、C P - 10 (配列番号: 9) 及びC P - 16 (配列番号: 13)、C P - 10 (配列番号: 9) 及びC P - 16 (配列番号: 13)、C P - 10 (配列番号: 9) 及びC P - 18 (配列番号: 15)、C P - 13 (配列番号: 10) 及びC P - 17 (配列番号: 14)、並びにC P - 13 (配列番号: 10) 及びC P - 17 (配列番号: 14)、並びにC P - 13 (配列番号: 10) 及びC P - 19 (配列番号: 14)、

号:16)。CP-17(配列番号:14)は、配列5'-CCTGCAGAAGCTTCATCAAC AACGTTTAGA-3'を有し、アミノ酸SKRC*(配列番号1の350~353であり且っ終止コドン)をコードするコード鎖配列に対応する非コード鎖配列に対応する。ヌクレオチド配列5'-CCTGCAGAAGCTT-3'(配列番号14の塩基1~13)は、クローニング目的のために加えられたPstI及びHindIII制限部

位を表す。ヌクレオチド配列 5'-TCA-3'(配列番号 1 4 の塩基 1 3 ~ 1 5)は、終止コドンの非コード鎖配列に対応している。すべての増幅は、エチジウムブロミド(EtBr)染色したアガロースゲル上で見たところ、予想された寸法の生成物を生成した。これらのプライマー対の 2 つを増幅において使用し、その生成物を全長配列決定のために P U C 1 9 中にクローン化した。 C P − 1 0 (配列番号:9)及びC P − 1 6 (配列番号:13)を用いる二本鎖 c D N A におけるP C R 反応は、約1.1 k b のバンドを生じ、J C 1 3 0 とよばれた。別個の第1鎖 c D N A 反応を 8 μ g の花粉 R N A を用いて上記のように行ない、オリゴヌクレオチドプライマーC P − 1 0 (配列番号:9)及びC P − 1 7 (配列番号:14)を用いて増幅した。この増幅は、成熟蛋白質のアミノ末端から終止コドンまで、完全長の c D N A (J C 1 3 5 という)を生成した。

増幅されたDNAを、逐次的なクロロホルム、フェノール及びクロロホルム抽出と、その後の-20℃での

O. 5容の7. 5酢酸アンモニウム及び1. 5容のイソプロパノールでの沈澱により回収した。沈澱及び70%エタノールでの洗浄の後に、DNAを、15μ1の反応にて、T4ポリメラーゼで鈍端化してからEcoRIで消化し(JC130の場合)、又はEcoRIとpstIで同時に消化し(JC135の場合)、調製用1%SeaPlaque低融点ゲル(FMC)中で電気泳動した。適当な寸法のDNAバンドをEtBr染色により可視化し、取り出し、市販の配列決定用キット(オハイオ、Cleveland在、U. S. Biochemicals)を用いるジデオキシチェーンターミネーション法(Sanger等(1977)Proc. Natl. Acad. Sci. USA74:5463-5476)によるジデオキシDNA配列決定のために適当に消化したpUC19中に繋いだ。

両鎖を、M 1 3 順及び逆方向プライマー(マサチューセッツ、Beverly在、N. E. Biolabs)及び内部シーケンシングプライマーCP-1 3 (配列番号: 1 0)、CP-1 5 (配列番号: 1 2)、CP-1 6 (配列番号: 1 3)、CP-1 8 (配列番号: 1 5)、CP-1 9 (配列番号: 1 6)及びCP-2 0 (配列番号: 1 7)を用いて配列決定した。増幅JC13 0 からの2つのクローン(JC1

3 0 a 及び J C 1 3 0 b) 及び増幅 J C 1 3 5 からの 1 つのクローン (J C 1 3 5 g) は、配列からCryjIクローンであることが見出された。クローン J C 1 3 0 a 及び J C 1 3 5 g の ヌクレオチド配列及び演繹されたアミノ酸配列は、以前から公知のCryjI配列 (配列番号

:1)と同一であった。クローンJC130bは、1つのヌクレオチドが以前から公知のCryjI配列(配列番号:1)と違うことが見出された。クローンJC130bは、配列番号1の306位のヌクレオチドにCを有した。このヌクレオチド変化は、成熟CryjI蛋白質のアミノ酸60のTyrからHisへの予想されるアミノ酸変化を生じる。この多形は、未だ独立して誘導されたPCRにおいて又は直接アミノ酸配列決定によって確認されていない。しかしながら、かかる一次ヌクレオチド及びアミノ酸配列における多形は予想されることである。

実施例5

CryjIの発現

CryjIの発現を次のようにして行なった。10μgのpUC19JC9laをXbaIで消化し、沈殿させ、次いで、T4ポリメラーゼで鈍端化した。BamHIリンカー(マサチューセッツ、Beverly在、N. E. Biolabs)をpUC19JC91aに一晩鈍端ライゲーションさせ、過剰のリンカーをNACSイオン交換ミニカラム(メリーランド、Gait hersburg在、BRL)を通す濾過により除去した。次いで、リンカー結合したcDNAを、EcoRIとBamHIで同時に消化した。CryjI挿人物(成熟蛋白質のアミノ末端をコードするヌクレオチドから終止コドンを通って伸びる)を、1%SeaPlaque低融点アガロースゲル中でのこの消化物の電気泳動により単離した。次いで、この挿入物を適当に消化した、ユニークなEcoRIエンドヌクレアーゼ制限部位が後に続くATG開始コドンの直ぐ3別に6ヒスチジン(His6)をコードする配列を含むように改変した発現ベクターpET-11d(ウィスコンシン、Madison在、Novagen; Jameel等(1990)J. Virol、64:3963-3966)中にライゲーションした。ベクター中の第2のEcoRIエンドヌクレアーゼ制限部位は、ClaI及びHindIIIエンドヌ

クレアーゼ制限部位と共に、以前に、EcoRI及びHindIIIでの消化、 鈍端化及びリライゲーションによって除去した。このヒスチジン(His6)配 列は、Ni²⁺キレー

ティングカラム(Hochuli等(1987)J. Chromatog. 411:177-184; Hochuli等(1988)Bio/Tech. 6:1321-1325)における組換え蛋白質(CryjI)のアフィニティー精製のために加えた。組換えクローンを用いて、T7ポリメラーゼをコードする遺伝子に先行するイソプロピルーβーDーチオガラクトピラノシド(IPTG)誘導可能なプロモーターを有するプラスミッドを含有する大腸菌BL21-DE 3 株をトランスフォームした。IPTGでの誘導は、高レベルのT7ポリメラーゼ発現へと導き、これは、T7プロモーターを有するPET中の組換え蛋白質の発現に必要である。クローンPET-11d△HRhis6JC91a.dは、CP-14(配列番号:11)を用いるジデオキシ配列決定(Sanger等、前出)により、発現のための正しいリーディングフレーム内のCryjIクローンであることが確認された。

組換え蛋白質の発現を、初期小規模培養(50ml)で確認した。クローン PET-11d Δ HRhis 6 J C 9 1 a. dの一晩培養を用いて、アンピシリンを含む 50mlの培地(Brain Heart Infusion Media, Difco)に接種し、A 600 = 1. 0まで成育させ、次いで、IPTG(終濃度1mM)で2時間誘導した。この細菌の1mlのアリコートを誘導の前後で採取して、遠心分離によりペレット化し、そのペレットを50mMトリスHCl(pH6.8)2mM EDTA、1%SDS、 β -メルカプトエタノール、10% グリセロ

ール、0.25% ブロモフェノールブルー中で5分間煮沸することにより粗細胞溶解物を調製した(Studier等、(1990)Methods in Enzymology 185:60-89)。組換え蛋白質発現を、Sambrook等、前出の方法に従って、予想される分子量約38k Daのクーマシーブルー染色したSDSーPAGEゲル上のバンドとして可視化した(ゲルには、 40μ 1の粗溶解物を載せた)。陰性対照は、誘導してないCryjIのプラスミッドを含有する細菌からの粗溶解物及び誘導したプラス

ミッドを有しない細菌の溶解物からなった。

次いで、このpET-11dAHRhis6JC91a.dクローンを組換え蛋白質の発現及び精製のために成育させた。組換えプラスミッドを含む培養細菌2m1を8時間成育させ、次いで、固体培地(例えば、200μg/m1のアンピシリンを含むLB培地(メリーランド、Gaithersburg在、Gibco-BRL)中の1.5%アガロースを含む6個のペトリ皿(100×15mm))上に線状にこすり付け、集密になるまで一晩成育させ、次いで、掻き取ってアンピシリン(200μg/m1)を含む9Lの液体培地(Brain Heart Infusion培地、Difco)に加えた。この培養を、A600が1.0になるまで成育させ、IPTGを加え(終濃度1mM)、更に2時間成育させた。

細菌を遠心分離 (7, 930×g、10分間) により回収して、90mlの6 M グアニジン-HC1、

O. 1 M Na2HPO4 (pH8. O) 中で激しく震盪しながら1時間溶解させた。不溶性物質を遠心分離(11,000×g、10分間、4℃)により除去した。溶解物のpHを8.0に調節し、6 M グアニジンHC1、100mM Na2HPO4 (pH8.0)で平衡化した80mlのニッケルNTAアガロースカラム (Qiagen)に加えた。そのカラムを、6 M グアニジンHC1、100mM Na2HPO4、10mM トリスーHC1 (pH8.0)で、次いで、8 M 尿素、100mM Na2HPO4 (pH8.0)で、最後に8 M 尿素、100mM 下すた。カラムを、6 級衝液で、通過した流れのA280が0.05以下になるまで洗った。カラムを、各級衝液で、通過した流れのA280が0.05以下になるまで洗った。

組換え蛋白質CryjIは、8M 尿素、100mM酢酸ナトリウム、10mMトリス-HC1(pH4.5)で溶出され、10mlのアリコートで採集した。各画分の蛋白質濃度を、A280の吸収により測定して、ピーク画分をプールした。採集した組換え蛋白質のアリコートを、Sambrook等、前出の方法に従って、SDS-PAGEで分析した。

最初の9Lの調製物(JCpET-1)は、クーマシーブルー染色したSDS

- PAGEゲルの濃度測定(Shimadzu Flying Spot Scanner, マサチユーセッツ、Braintree在、Shimadzu Scientific Instruments, Inc.)による

と純度約78%の30mgのCryjIを生成した。同様にして調製した第2の9L調製物 (JCpET-2) は、純度約77%の41mgのCryjIを生成した。 実施例6

CryjI (主要杉花粉アレルゲン)を用いた杉花粉アレルギー患者のT細胞の研究 重複するペプチドの合成

杉花粉CryjIの重複するペプチドを、標準的Fmoc/tBoc合成化学を用いて合成し、逆相HPLCにより精製した。図13は、これらの研究で用いたCryjIペプチドを示す。ペプチドの名称は、一貫している。

杉花粉抗原ペプチドに対するT細胞応答

分精製した天然CryjI(75%の純度で、図2の3本のバンドと類似した3本のバンドを含む)での37℃で7日間の刺激によって樹立し、CryjI反応性T細胞を選択した。この量のプライミング抗原は、殆どの杉花粉アレルギー患者からのT細胞の活性化に最適であることが測定された。生存細胞をLSM遠心分離により精製し、5単位/m1の組換えヒトIL-2及び5単位/m1の組換えヒトIL-4を補った完全培地中で、細胞がもはやリンホカインに応答せず且つ「休止した」と考えられるまで最長で3週間培養した。次いで、T細胞の、選択したペプチド、組換えCryjI(rCryjI)、精製した天然CryjI又は組換えAmb a I.1

(ramb a I. 1) に対して増殖する能力を評価した。アッセイのために、 2×1 0 4の休止細胞を、 2×1 0 4のエプスタイーバールウイルス(EBV)トランスフォームした自家B細胞(後述のようにして調製した)(2 5 , 0 0 0 RADでガンマー照射したもの)の存在下で、丸底 9 6 ウェルプレートの 2 若しくは 3 ウェル中の 2 0 0 μ 1 の容積の完全培地中で、 $2 \sim 5$ 0 μ g / m 1 の r C r y j I 、精製した天然 C r y j I 又は A m b a I . 1 で $2 \sim 4$ 日間再刺激した。次いで、各ウェルに、 1μ C i のトリチウム化チミジンを 1 6 \sim 2 0 時間加えた。取り込まれたカウントをガラス繊維フィルターマット上に集め、液体シンチレーション計数処理した。図 1 2 は、組換え C r y j I 、精製した天然 C r y j I 及び組換え A m b a I . 1 並びに上記のようにし

て合成した幾つかの抗原性ペプチドを用いるアッセイにおいて抗原量を変えるこ との効果を示している。幾つかのペプチドは、これらのアッセイにおいて、高濃 度では阻害的であることが見出された。滴定を用いて、これらのペプチドのT細 胞アッセイにおける投与量を最適化した。各ペプチドの滴定における最大応答を 、刺激インデックス(S.I.)として表す。このS.I.は、ペプチドへの応 答において細胞により取り込まれたカウント/分(CPM)を、培地のみの中で 細胞により取り込まれたCPMで除したものである。バックグラウンドの2倍以 上のS.Ⅰ.値は、「陽性」と考えられ、そのペプチドがT細胞エピトープを含 むことを示す。これらの陽性結果は、試験した患者の群の各ペプチドの平均刺激 インデックスの計算において使用した。図12に示したこれらの結果は、999 番の患者が、組換えCryjI及び精製した天然CryjI並びにペプチドCJI-2、3 、20及び22に対してよく応答するが組換えAmb a I.1には応答しないこ とを示している。これは、CryjIT細胞エピトープがこの特定のアレルギー患者 からのT細胞により認識されること、並びにrCryjI並びにペプチドCJ1-2、 3、20及び22がかかるT細胞エピトープを含むことを示す。更に、これらの エピトープは、しばしば、隣接する重複するペプチドで検出されず、従って、恐 らく、反応性ペプチドの重複しない中央の残基に及ぶ。対照抗原でプライムされ たT細胞又は他の抗原に対

してCryjIプライムされたT細胞を用いるT細胞アッセイにおいて、有意の交差 反応性は見出されなかった。

上記の手順を、他の数人の患者についても行なった。個々の患者の結果を、も し、その患者がCryjI蛋白質に2.0以上のS.I.で応答し且つCryjIから導か れた少なくとも1つのペプチドに2.0以上のS.I.で応答したならば、各ペ プチドについての平均 S. I. の計算に用いた。25人の患者からの陽性の実験 の概要を図14に示す。棒は、ポジティビティーインデックスを表している。各 棒の上にあるのは、試験した患者群におけるペプチド若しくは蛋白質に対する少 なくとも2のS.Ⅰ.を有する陽性応答のパーセントである。各棒の上の括弧内 にあるのは、試験した患者群についての各ペプチド若しくは蛋白質に対する平均 刺激インデックスである。すべての25人のT細胞系統は精製した天然CryjIに 応答し、これらのT細胞系統の68.0%は、rCryjIに応答した。これらの25 のT細胞系統は又、有意に低いレベルで、rAmb a I. 1にも応答し、これは、A mba I. 1アレルゲンがCryjIとある程度の相同性を共有していること及び「共 有される」T細胞エピトープがcryjlとAmb a I. 1との間に存在するであろう ことを示している。この杉アレルギー患者のパネルは、ペプチドCJ1-1、C J 1 - 2 、 C J 1 - 3 、 C J 1 - 4 、 C J 1 - 7 、 C J 1 - 8 、 C J 1 - 9 、 C J 1 - 1 0) C J 1 - 1 1 , C J 1 - 1 2 , C J 1 - 1 4 , C J 1 -

15、CJ1-16、CJ1-17、CJ1-18、CJ1-19、CJ1-20、CJ1-20、CJ1-21、CJ1-22、CJ1-23、CJ1-24、CJ1-25、CJ1-26、CJ1-27、CJ1-28、CJ1-30、CJ1-31、CJ1-32、CJ1-33、CJ1-34及びCJ1-35に応答し、これは、これらのペプチドがT細胞エピトープを含むことを示している。

抗原提示細胞としての利用のための(EBV)トランスフォームしたB細胞の調製

自家EBVトランスフォームした細胞系統を、25,000ラドでガンマー照射して、第2増殖アッセイ及び第2バルク刺激において抗原提示細胞として用いた。これらの細胞系統を、免疫蛍光フローサイトメトリー分析においても対照と

して用いた。これらのEBVトランスフォームした細胞系統を、 5 × 1 0 6 P B Lを 1 m 1 の B − 5 9 / 8 マーモセット細胞系統(A T C C C R L 1 6 1 2、メリーランド、Rockville在、American Type Culture Collection)調整培地と共に、 1 μg / m 1 のフォルボール 1 2 − ミリステート 1 3 − アセテート(P M A)の存在下で、 3 7 ℃で 6 0 分間、 1 2 × 7 5 m m ポリエチレン製丸底Falconスナップキャップチューブ(ニュージヤージー、Lincoln Park在、Becton Dickinson Labware)中でインキュベートすることにより作成した。これらの細胞を、次いで、前述のように R P M I −

1640にて1.25×106細胞/m1に希釈した(但し、熱で不活性化したウシ胎児血清10%を補い、200μ1のアリコートを平底培養プレートにて肉眼でコロニーが検出されるまで培養した)。次いで、それらを、細胞系統が樹立されるまで、より大きいウェルに移した。

実施例7

主要杉花粉アレルゲンとしてのCryjI

杉花粉の主要アレルゲンとして報告されたcryjIの重要性を試験するために、直接及び競争ELISAの両アッセイを行なった。ウェルを杉花粉の可溶性花粉抽出物(SPE)又はCryjI(蛋白質配列決定により純度90%で検定)で被覆し、これらの抗原に対するヒトIgE抗体結合を分析した。杉花粉MASTで2.5以上の評点を有する15人の患者からの等量の血漿からなるプールしたヒト血漿及び2人の個々の患者の血漿試料をこのアッセイにおいて比較した。図5は、これらの2種の抗原との結合反応性の結果を示している。結合の全体のパターンは、被覆抗原がSPEであっても(図5a)又は精製された天然cryjIであっても(図5b)非常に類似している。

競争アッセイにおいては、ELISAのウェルを杉花粉SPEで被覆し、次いで、アレルギー患者のIgE結合を、溶液中で競争する精製された天然CryjIの存在下

で測定した。これらのアッセイにおけるアレルギー性IgEの源は、15人の患

者からの血漿のプール(PHPで示す)又は杉花粉MASTで2.5以上の評点 を有する患者からの7つの個々の血漿試料であった。このプールしたヒト血漿試 料を用いる競争アッセイは、杉花粉SPE及び無関係のアレルゲン源であるライ グラスSPEに対する精製した天然CryjIの競争結合能力を比較する。図6は、 プールしたヒト血漿を用いた競争ELISAのグラフ化した結果を示す。杉花粉 SPE中に存在する蛋白質の濃度は、各競争点において、精製した天然CryjIよ り約170倍大きい。この分析から、精製した天然CryjIが、IgE結合に関し て、杉花粉可溶性花粉抽出物中に存在するすべての範囲の蛋白質と非常によく競 争することは明らかである。これは、抗CryjII g E 反応性の殆どが天然CryjIに 対して向けられていることを意味する。陰性対照は、溶液中の特異的な競争活性 及び競争SPEが被覆されたウェルへの結合を完全に除去することは出来ないと いうことを示す。このアッセイを、アレルギー集団内のIgE応答の範囲の尺度 として、個々の患者について繰り返した。図7は、このSPEへの結合の競争が 精製した天然CryjIで行なわれたという結果を示している。これらの結果は、こ れらの患者が杉花粉SPEに対する異なる投与量応答を示すにもかかわらず、7 人の患者の杉花粉SPEに対するIgE結合の各々は、精製した天然cryjIに匹 敵し得るというこ

とを示す。これらのデータの含意することは、各患者について、CryjIに対して向けられた I g E 反応性が優勢であるが、この反応性には患者間で変化があるということである。全体的結論は、これらのデータが、CryjIが杉花粉の主要アレルゲンであるという以前の発見(Yasueda等、(1988)、前出)を支持するということである。

杉花粉アレルギー患者からのIgEのその花粉蛋白質に対する反応性は、これらの蛋白質を変性したときに、劇的に減少する。この性質を分析する1つの方法は、被覆抗原が杉花粉SPE又は還元剤DTTの存在下で煮沸することにより変性した変性した杉花粉SPEである直接結合ELISAによるものである。次いで、これをアレルギー患者の血漿を用いて、IgE結合反応性について試験する。図8aは、このSPEに対する、7人の個々の血漿試料を用いる直接結合アッ

セイを示す。図8bでは、変性したSPEを用いた結合結果は、この処理の後で、反応が顕著に減少したことを示している。ELISAウェルへのCryjI結合の程度を調べるために、CryjIを、Amb a I及びII蛋白質ファミリーに対するウサギポリクローナル抗血清で検出した。これらのブタクサ蛋白質は、CryjIと高度の配列同一性(46%)を有しており、この抗血清を交差反応性抗体検出システムとして用いることが出来る。結論として、これらのデータは、杉花粉SPEの変性後の顕著なIgE反応性の喪失

を示している。

実施例8

I g E 反応性及びヒスタミン放出分析

細菌内で発現させ、次いで(実施例 5 に記載した様にして)精製した組換え Cryj I蛋白質(rCryj I)を、 I g E 反応性について試験した。この試験に適用した最初の方法は、ウェルを組換え Cryj Iで被覆して個々の患者について I g E 結合をアッセイした、直接 E L I S A であった。このデータセットにおける唯一の陽性シグナルは、従来法で調製した 2 つの対照用抗血清ウサギボリクローナル抗 Amba I 及び I I(ウサギ抗 Amba I 及び I I)及び Cryj I と交差反応する Amba I に対して高められたモノクローナル抗体 C B F 2 からのものである。この方法により、試験したすべての患者は、組換え Cryj I との I g E 反応性を示さなかった。

組換えCryjIに対するIgE反応性の試験に適用された他の分析方法は、捕獲ELISAであった。この分析は、抗原に結合し及び他のエピトープ部位への抗体の結合を与える限定された抗体(ここでは、CBF2)の利用に依存している。この捕獲ELISAの形式は、1)MAb CBF2でウェルを被覆し、2)抗原又はPBS(一種の陰性対照として)を加えて、被覆したMAbとの特異的相互作用により捕獲させ、3)対照用抗体抗Amb a I及びII(図10b)又はヒトアレルギー性血

漿(図10a)の何れかを検出抗体として加え、そして4)抗体結合の検出をア

ッセイするというものである。 I g E 分析のために、プールしたヒト血漿(P H P) (15患者)を用いた。これらの結果からの結論は、この分析方法によっては、ヒトアレルギー性 I g E の r C r y j I に対する特異的結合は示されないということである。しかしながら、r C r y j I の 捕獲は、図10 b に示した対照抗体結合曲線により証明されたように働く。大腸菌で発現された r C r y j I に対する I g E 結合の欠如は、炭水化物又は他の何れかの翻訳後修飾の不在及び/又は I g E の大多数が変性した C r y j I と反応しえないためであろう。 R A S T、競争 E L I S A 及びウエスタンブロッティングのデータも又、r C r y j I に対する特異的 I g E 結合を示さない(データは示さない)。

ヒスタミン放出アッセイを、杉花粉アレルギー患者について、杉花粉SPE、精製した天然CryjI及びrCryjIを追加抗原として用いて行なった。このアッセイは、ヒト好塩基球メディエーター放出によるIgE反応性の測定である。図11に示したこのアッセイの結果は、広範囲の濃度にわたる精製した天然CryjI及び杉花粉SPEによる強いヒスタミン放出を示している。CryjIによる何らかの測定可能なヒスタミン放出がある唯一の点は、最大濃度50μg/mlにおいてである。このrCryjIによる放出の2つの可能な説明は、1)CryjIの組換え型を認識し得る抗CryjI IgEの非常に低い割合との特異

的な反応、又は2)最大抗原濃度でのみ認められた細菌夾雑物の低数度により引き起こされた非特異的放出である。今までのところ、この結果は、一人の患者において示されただけである。更に、この示されたデータは、各蛋白質濃度における1つのデータ点からのものである。

大腸菌で発現させた物質はT細胞反応性を有する(実施例6)が、Cryptomeria japonicaアトペス(atopes)からのIgEに結合しないようであり、かかるアトペスのマスト細胞及び好塩基球からのイン・ビトロでのヒスタミン放出も引き起こさないので、この組換えにより発現されたCryjI蛋白質を免疫療法に用いることは可能であろう。IgEに結合し得るrCryjIの発現は、恐らく、酵母、昆虫(バキュロウイルス)又は哺乳動物細胞(例えば、CHO、ヒト及びマウス)中で達成出来るであろう。哺乳動物細胞での発現の特定の例は、組換えCryjIをC

OS細胞中で発現する p c D N A I / A m p 哺乳動物発現ベクター(カリフォルニア、San Diego在、Invitrogen)の利用であってよい。活性に I g E に結合し得る rCryjIは、診断目的のための組換え物質の利用のために重要であり得る。

選択したCryjIペプチドに対するIgE反応性を分析するために、直接ELISA形式を用いた。ELISA用のウェルを、CryjIから誘導した25ペプチドで被覆してIgE結合についてアッセイした。図15a及び15bは、PHP(15患者)を杉花粉アレルギー性

IgE源として用いた、これらの結合結果のグラフである。この血漿のプールを、変性したSPE(直接ELISAで測定したとき)に結合することが出来、それ故、これらのペプチドに対する反応性の機会を増大させることが出来るであろうIgEの冨化のために配合した。このアッセイにおいて、ペプチドIgE結合能力を、精製した天然CryjI及びrCryjIのそれと比較した。このアッセイで検出された唯一の特異的IgEは、精製した天然CryjIに対するものであり、これは、杉アレルギー患者のIgEは組換えCryjI又は試験した組換えCryjIペプチドと結合しないという発見を支持している(図15)。

この発明をその好適な具体例を参照して説明したが、他の具体例も同じ結果に到達することが出来る。本発明の変化及び改変は、当業者には自明であろうが、かかる改変及び等価物並びにこの発明の精神に従うものすべては、請求の範囲において保護されるべきものである。

実施例9

Juniperus sabinoides, Juniperus virginiana及びCupressus arizonica花粉からのRNAの抽出並びに、CryjIの相同物JunsI及びJunvIのクローニング

新鮮な花粉を、Arnold Arboretum(マサチューセッツ、Boston)の一本のJuni perus virginianaの木から採集して直ちにドライアイス上で凍結した。Juniperu s

sabinoides及びCupressus arizonicaの花粉をGreer Laboratories, Inc. (ノースカロライナ、Lenoir)から購入した。全RNAを、J. virginiana, J. sabino

ides及びC. arizonicaの花粉から実施例3に記載したようにして調製した。一本鎖 c D N A を、5 μ g の J. virginianaからの全花粉 R N A 及び 5 μ g の J. sabinoidesからの全花粉 R N A から、 c D N A 合成システムキット(メリーランド、Gaithersburg在、B R L)を用いて、実施例3に記載したようにして合成した。

2つの柏 種からのCryjI相同物をクローニングする最初の試みを、両柏 c DNAにおけるPCR増幅においてCryjI特異的なオリゴヌクレオチドの種々の対を用いて行なった。PCRを、実施例3に記載したようにして行なった。使用したオリゴヌクレオチドプライマー対は、CP-9/CP-17、CP10/CP-17、CP-10/CP-17、CP-10/CP-18、CP-10/CP-13/CP-19、CP-10/CP-18、CP-13/CP-17、及びCP-13/CP-19であった。Gross等(1978)Scand、J. Immunol、8: 437-441により、J. sabinoidesの最初の5アミノ酸はCryjIのそれらと同一であると報告されているので、大多数の反応において、CP-10を5'プライマーとして用いた。これらのオリゴヌクレオチドプライマー対は、実施例3に記載してある。

上記のプライマー対の何れも、EtBr染色した1%

アガロース(メイン、Rockland在、FMC Bioproducts)ミニゲル上で見たときに、何れの柏 種に対するPCR生成物をも生じなかった。

J. sabinoides及びJ. virginianaからCryjI相同物をクローン化することを意図したPCR増幅の次のシリーズを、各種からのRNAから合成した二本鎖のリンカー結合されたcDNAについて行なった。二本鎖cDNAを、各5μgのJ. virginiana及びJ. sabinoidesの花粉RNAから実施例3に記載したようにして合成した。この二本鎖cDNAを、実施例3に記載した改変アンカードPCRにおいて用いるために、エタノール沈殿して自己アニールしたAT及びALオリゴヌクレオチドに対してライゲーションした。次いで、幾つかのCryjIプライマーを、CryjI相同物をこれらの2柏種から単離する試みにおいて、APと組合せて用いた。AT、AL及びAPの配列は、実施例3で与えてある。最初に、第1のPCRを、100pモルの各オリゴヌクレオチドCP-10及びAPを用いて行なった。次いで、この初期増殖の3パーセント(3μ1)を、それぞれ10

応の試験においては、EtBr染色したアガロースゲル上に、分離したバンドを 有しないブロードなスメアが現れた。Cryjl相同物をこれらのPCR生成物から クローニングする試みは、成功しなかった。このアプローチは、これらの遺伝子 のカルボキシル部分をクローニングしたであろう。次いで、実施例3で記載した 縮退したCryjIプライマーCP-1、CP-4及びCP-7をそれぞれ、二本鎖 のリンカー結合したJ. virginiana及びJ. sabinoides c DNAについての第1の PCRにおいてAPと共に用いた。次の様な種々のプライマー対の組合せを第2 のPCRにおいて用いた:CP-2/AP及びCP-4/AP(CP-1/AP の第1PCR増幅混合物に)、CP-2/AP及びCP-5/AP(CP-4/ APの第1PCR増幅混合物に)、及びCP-8/AP(CP-7/AP第1P CR増幅混合物に)。 最後の増幅(CP-8/APの第2PCR増幅)のみが、 試験において、EtBr染色したミニゲル上にバンドを生じた。その他は、pU C19中にクローン化し得ないスメアを与えた。実施例3に記載したCP-8及 びAPを用いたJ. virginiana及びJ. sabinoidesの第2PCRの両者(JV21 及びJS17という)は、それぞれ、約200塩基対長の増幅された生成物を生 じた。この増幅されたDNAを、実施例3に記載したようにして回収して、50 μ1反応中でXbaI及びPstIで同時に消化し、沈殿させて容積を10μ1 まで減少させ、調製用

2%GTG NuSeive低融点ゲル(メイン、Rockport在、FMC)中で電気泳動した。適当な寸法のDNAバンドをEtBr染色により可視化し、取り出して、市販の配列決定用キット(Sequenase kit, オハイオ、Cleveland在、U.S. Biochemicals)を用いるSanger等(前出)のジデオキシチェーンターミネーション法によ

る配列決定のために適当に消化した p U C 1 9 中にライゲーションした。 2 つの J S 1 7 クローン (p U C 1 9 J S 1 7 d 及び p U C 1 9 J S 1 7 f) 及び 1 つ の J V 2 1 クローン (p U C 1 9 J V 2 1 g) を配列決定して Cryj I ヌクレオチドに相同な配列を含むことを見出し且つアミノ酸配列を演繹した。 この J. sabin oides 及び J. virginiana R N A から単離した Cryj I 相同物をそれぞれ、 Juns I 及び Junv I と 呼んだ。

CryjIプライマーCP-9及びCP-10は、第1及び第2PCRにおいて、それぞれ、APと共に働いて、JunsI及びJunvI cDNAのカルボキシ部分を増幅させる。これらのプライマーの配列は、CP-9中の2ヌクレオチド(CP-9の5位のAの代りのT、12位のAの代りのC)とCP-10中の1ヌクレオチド(JunsIについては12位のAの代りのCのみ)を除いては、本質的に、JunsI I及びJunvIの配列と同じである。しかしながら、CP-9及びAPを用いる第1PCR及びCP-10及びAPを用いる第2PCRは、EtBr染色したアガロースゲル上で見たときに、同定可能なJuns

I生成物もJunvI生成物も生じなかった。

オリゴヌクレオチドJ1を合成した。J1及びすべての後のオリゴヌクレオチドを、ABI394DNA/RNAシンセサイザー(カリフォルニア、Foster City在、Applied Biosystems)にて合成した。第1PCを、J. virginiana及びJ. sabinoides c DNAと共にAP及びJ1を用いて行なった。J1は、JunsI(図16)のヌクレオチド20~37及びJunvI(図17)のヌクレオチド30~47に対応する配列5'-CTAAAAATGGCTTCCCCA-3'を有する。第2PCR増幅を、J. sabinoides c DNAの第1のJ1/AP増幅に対して、プライマーJ2及びAPを用いて行なった。J2は、配列5'-CGGGAATTCTAGATGTGCAATTGTATCTTGTTA-3'を有し、ここに、ヌクレオチド1~13は、クローニング目的のために加えられたEcoRI及びXbaIエンドヌクレアーゼ制限部位を表し、残りのヌクレオチドは、JunsI配列(図16)中のヌクレオチド65~84に対応する。J. virginianac DNAからの第2の増殖を、AP及びJ3を用いて行なった(J3は、配列5'-CGGGAATTCTAGATGTGCAATTCTTGTTG-3'を有し、ここに、ヌクレオチド

1~13は、クローニング目的のために加えられたEcoRI及びXbaIエンドヌクレアーセ制限部位を表し、残りのヌクレオチドは、JunvI配列(図17)中のヌクレオチド75~94に対応する)。何れの第2の反応においても、特異的な増幅生成物は認められなかった。ED及びEDTと呼ばれる

プライマーを、下記のように、モル比3:1(ED:EDT)で、プライマーJ 1、 J 2 及び J 3 と共に用いた。 E D T は、配列 5' -GGAATTCTCTAGACTGCAGGTTTT TTTTTTTTTT-3'を有する。EDTのヌクレオチド1~20をポリTトラックに 加えて、クローニング目的のためのEcoRI、XbaI及びPstIエンドヌ クレアーゼ制限部位を造った。EDは、EDTのヌクレオチド1~21に対応す る配列5'-GGAATTCTCTAGACTGCAGGT-3'を有する。これらのオリゴヌクレオチド 及びそれらの利用は、以前に記載された (Morgenstern等 (1991) Proc. Natl. A cad. Sci. USA88: 9690-9694) 。 E D / E D T を、第1 P C R において、J. sab inoides及びJ. virginianac DNAからの増幅のために、オリゴヌクレオチドJ 1と共に用い、それから、第2PCRを、オリゴヌクレオチドJ2及びAPA(J. sabinoides用)又はJ3及びAPA(J. virginiana用)を用いて行なった。 これらの増幅からは、特異的な生成物は同定されなかった。J1、J2及びJ3 を用いる最後のPCRセットを、オリゴヌクレオチドAPAを用いて試みた。A PAを、第1PCR反応において、J. sabinoides及びJ. virginiana用のJ1と 共に用い、それから、第2の増幅をJ2 (J. sabinoides用) 又はJ3 (J. virg iniana用)とAPAとを用いて行なった。これらの増幅からは、特異的な生成物 は同定されなかった。次いで、縮退したプライマーCP-57を合成した。CP - 5 7 は、配列5'-GGCCT

GCAGTTAACAGCGTTTGCAGAAGGTGCA-3'を有し、ここに、10位のTはCでもよく、11位のTはCでもよく、13位のAはGでもよく、16位のGはA、T若しくはCでもよく、18位のGはTでもよく、19位のTはCでもよく、22位のGはA、T若しくはCでもよく、23位のCはGでもよく、24位のAはCでもよく、25位のGはA、T若しくはCでもよく、27位のAはGでもよく、28位

のGはA、T若しくはCでもよく、29位のGはCでもよく、30位のTはAでもよく、そして、31位のGはAでもよい。CP-57のヌクレオチド1~9を、クローニング目的のために加えてPstI部位を造ったが、ヌクレオチド10~12は終止コドンに相補的であり、ヌクレオチド13~33は、本質的にアミノ酸CysSerLeuSerLysArgCys(図4bのアミノ酸347~353;図4bのヌクレオチド1167~1187に対応する)をコードするコード鎖配列に相補的である。これを、第1PCRにおいて、J1と共に、J. sabinoides及びJ. virginianaの二本鎖のリンカー結合されたcDNAに対して用い、それから、第2PCRを、J. sabinoidesについてはCP-57及びJ2を、J. virginianaについてはCP-57及びJ3を用いて行なった。3つの追加の縮退したCryjIオリゴヌクレオチドを合成した。CP-62は、配列5'CCACTAAATATTTATCCA-3'を有し、ここに、3位のAはGでもよく、6位のAはGでもよく、9位のTはA若し

くはGでもよく、12位のTはA若しくはGでもよい。この縮退したオリゴヌクレオチド配列は、本質的にアミノ酸TrpIleIlePheSerGly(図4aのアミノ酸69~74;図4aのヌクレオチド333~349に対応する)をコードするコード鎖配列に相補的である。CPー63は、配列5'-GCATCCCCATCTCGGGATG-3'を有し、ここに、3位のAはGでもよく、9位のAはGでもよく、12位のTはCでもよく、15位のGはA、T若しくはCでもよく、18位のAはGでもよい。この縮退したオリゴヌクレオチド配列は、アミノ酸HisProGlnAspGlyAspAla(図4aのアミノ酸146~152;図4aのヌクレオチド564~583に対応する)をコードし得る配列に相補的である。CPー64は、配列5'-GTCCATGGATCATAATTATT-3'有し、ここに、6位のTはCでもよく、9位のAはGでもよく、12位のAはGでもよく、15位のAはGでもよく、18位のAはGでもよく、15位のAはGでもよく、17位のAはGでもよく、17位のAはGでもよく、17位のAはGでもよく、17位のAはGでもよく、17位のAはGでもよく、170のAはGでもよく。170のAはGでもよく、170のAはGでもなんのAはGでもよく、170のAはGでもなんのAはGで

CP-63、CP-64及びCP-3 (実施例3に記載)と共に、J. sabinoide s及びJ. virginianaの二本鎖のリンカー結合した両cDNAに対して用いた。診断用PCRを、各第1

反応混合物について行なった。この診断用PCRにおいて、第1反応の3%を、上記のようにAP及びCP-8を用いて増幅した。J. sabinoides及びJ. virgin ianaの両者に対して、約200塩基対の予想されるバンドが、AP及びCP-63を用いる第1PCRからの診断用PCRにおいて認められた。

次いで、縮退したプライマーCP-65を合成した。CP-65は、配列5'-GCCCTGCAGTCCCCATCTTGGGGATGAC-3'を有し、ここに、15位のAはGでもよく、18位のTはCでもよく、21位のGはG、A、T若しくはCでもよく、24位のAはGでもよく、27位のGはA、T若しくはCでもよい。CP-65のヌクレオチド1~9を、クローニング目的のために加えてPst I制限部位を造ったが、残りの縮退したオリゴヌクレオチド配列は、本質的にアミノ酸Va1HisProG1nAspG1yAsp(図4aのアミノ酸145~151:図4aのヌクレオチド561~580に対応する)をコードし得るコード鎖配列に相補的である。APを、上記のJ. sabinoides及びJ. virginianaの第1のAP/CP-63増幅の第2PCRにおいて、CP-65と共に用いた。これらの反応物を、JS42(J. sabinoides)及びJV46(J. virginiana)と呼んだ。第2PCRは、両者とも、1%アガロースミニゲル上でEtBr染色して調べたときに、約600塩基対のバンドを与えた。JS42及びJV46PCRからのDNAを実施例3に記載した

ようにして回収し、15μ1の反応中で X b a I 及び P s t I で同時に消化し、次いで、調製用2%G T G SeaPlaque低融点ゲル(メイン、Rockport在、FMC)中で電気泳動した。適当な寸法の D N A バンドを、 E t B r 染色で可視化し、取り出して、市販の配列決定用キット(Sequenase kit, オハイオ、Cleveland在、U.S. Biochemicals)を用いるジデオキシチェーンターミネーション法(Sanger等、前出)による配列決定のために、適当に消化した p U C 1 9 中にライゲーシ

ョンした。クローンを、M 1 3 用の順及び逆方向プライマー(マサチューセッツ、Beverly在、N. E. Biolabs)及び内部シーケンシングプライマーJ4を用いて配列決定した。Juns I及びJunv Iの両者について、J4は、配列5'-GCTCCACCATGGGAGGCA-3'(図16のヌクレオチド177~194及び図17のヌクレオチド187~204)を有し、それは、本質的にアミノ酸SerSerThrMetGlyGlyGly(図16及び17にそれぞれ示すJuns I及びJunv Iのアミノ酸30~35)をコードするコード鎖配列である。

このJunsIクローンの配列(pUC19JS42eと呼ぶ)は、5、非翻訳領域において異なる長さを有しているにもかかわらず、クローンpUC19JS17d及びpUC19JS17fの配列と、それらの重複領域において同一であることが見出された。クローンpUC19JS17dは、最長の5、非翻訳配列を有した。図

16のヌクレオチド1~141は、クローンpUC19JS17dの配列に対応する。クローンpUC19JS42eは、図16のヌクレオチド1~538に対応する。

p U C 1 9 J V 4 6 及び p U C 1 9 J V 4 6 b と呼ばれるJunvIクローンの配列は、クローン p U C 1 9 J V 2 1 g の配列と、それらの重複領域において同一であった(但し、図 1 7 の ヌクレオチド 8 3 は、示されているTではなく、クローン p U C 1 9 J V 2 1 g 中では A であった)。このヌクレオチドの差異は、予想されるアミノ酸変化を生じない。クローン p U C 1 9 J V 4 6 a、 p U C 1 9 J V 4 6 b 及び p U C 1 9 J V 2 1 g は、それぞれ、図 1 7 の ヌクレオチド 1 ~ 5 4 8、1~5 4 8 及び 2~1 5 1 に対応する。

これらのJunsI及びJunvI遺伝子の残りをコードする c D N A を、それぞれのリンカー結合された c D N A から、縮退したオリゴヌクレオチドCP-66(CP-66は、配列5'-CATCCGCAAGATGGGGATGC-3'を有し、ここに、3位のTはCでもよく、6位のGはA、T若しくはCでもよく、9位のAはGでもよく、12位のTはCでもよく、18位のTはCでもよい)及びA P を第 I P C R で用いてクローン化した。CP-66の配列は、CP-63のそれと相補的である。第2 P

C R を、最初の増幅混合物の3%について、各100pモルのA P 及びC P - 67 を用いて行なった。C P - 67 は、配列5'-C

GGGAATTCCTCAAGATGGGGATGCGCT-3'を有し、ここに、15位のAはGでもよく、18位のTはCでもよく、24位のTはCでもよく、27位のGはA、T若しくはCでもよく、28位のCはTでもよい。ブライマーCP-67のヌクレオチド配列5'-CGGGAATTC-3'(塩基1~9)を、クローニング目的のために加えてEcoRI制限部位を造った。残りのオリゴヌクレオチド配列は、本質的に、アミノ酸ProGlnAspGlyAlaLeu(図4aのアミノ酸147~153;図4aのヌクレオチド567~586に対応する)をコードする。これらの、J. sabinoides増幅からのDNA生成物(JS45と呼ぶ)及びJ. virginiana増幅からのDNA生成物(JS45と呼ぶ)及びJ. virginiana増幅からのDNA生成物(JV49iiと呼ぶ)を、実施例3に記載したようにして精製し、EcoRI及びXbaI(JS45)又はEcoRI及びAsp718I(JV49ii)で消化し、調製用1%低融点ゲル中で電気泳動した。約650bp長の主なDNAバンドを取り出して、配列決定のためにpUC19中にライゲーションした。DNAを、市販のキット(sequenase kit、オハイオ、Cleveland在、U.S. Biochemicals)を用いて、ジデオキシチェーンターミネーション法(Sanger等、前出)により配列決定した。

Juns I 及び Junv I についての p U C 1 9 J S 4 5 a 及び p U C 1 9 J V 4 9 i i a と呼ばれる 2 つのクローンを、それぞれ、M 1 3 用の順及び逆方向プライマー(マサチューセッツ、Beverly在、N. E. BioLabs)及び内部シーケン

シングプライマーJ8、J9及びJ12 Juns I用)及びJ6及びJ11(Junv I用)を用いて配列決定した。J8は、配列5'-TAGGACATGATGATACAT-3'(図16のヌクレオチド690~707)を有し、これは、本質的にJuns Iのアミノ酸LeuG1yHisAspAspThr(図16のアミノ酸201~206)をコードするコード鎖配列である。J9は、配列5'-GAGATCTACACGAGATGC-3'(図16のヌクレオチド976から993)を有し、これは、本質的にJunv Iのアミノ酸ArgSerThrArgAspA1aをコードするコード鎖配列である。J

1 2 は、配列 5' -AAAACTATTCCCTTCACT-3' を有し、ここに、1 位のAはGでもよく、4 位のAはTでもよい。これは、JunsIのアミノ酸SerGluGlyAsnSerPhe(図16のアミノ酸263~268)をコードするコード鎖配列(図16のヌクレオチド875~892)に対応する非コード鎖配列である。J6は、配列 5' -TAGGACATAGTGATTCAT-3' (図17のヌクレオチド700~717)を有し、本質的にJunvIのアミノ酸LeuGlyHisSerAspSerをコードするコード鎖配列である。J11は、配列 5' -CCGGGATCCTTACAAATAACACATTAT-3'を有し、ここに、ヌクレオチド1~9は、クローニング目的のためのBamHI制限部位をコードしており、ヌクレオチド10~27は図17のヌクレオチド1165~1182 (JunvIの3'非翻訳領域内)に相補的なコード鎖配列に対応する。ク

ローンp U C 1 9 J S 4 5 a の配列は、図 1 6 の ヌクレオチド 5 2 7 ~ 1 1 7 0 に対応する。クローン p U C 2 9 J V 4 9 i i a の配列は、図 1 7 の ヌクレオチド 5 3 7 ~ 1 2 7 8 に対応する。

Juns Iの完全長クローンを P C R を用いて増幅した。オリゴヌクレオチドJ7及びJ10を、 P C R 反応において、上記のように、J. sabinoidesの二本鎖のリンカー結合された c D N A と共に用いた。J7は、配列5'-CCCGAATTCATGGCTT CCCCATGCTTA-3'を有し、ここに、ヌクレオチド1~9は、クローニング目的のために加えられたEcoRI制限部位をコードし、ヌクレオチド10~27(図16のヌクレオチド26~43に対応する)は、Juns Iのアミノ酸MetAlaSerProCysLeu(図16のアミノ酸-21~-16)をコードするコード鎖配列である。J10は、配列5'-CCGGGATCCCGTTTCATAAGCAAGATT-3'を有し、ここに、ヌクレオチド1~9は、クローニング目的のために加えられたBamHI制限部位をコードし、ヌクレオチド10~27は、Juns Iの3'非翻訳領域からのヌクレオチド1140~1157(図16)に相補的な非コード鎖配列である。P C R 生成物(JS53iiと呼ぶ)は、1%アガロースミニゲル上でEtBr染色して調べたときに、約1200bpのバンドを与えた。このJS5

3 i i P C R からの D N A を、実施例 3 に記載したようにして回収した。沈殿及び 7 0 % E t O H での洗浄の後に、この D N A を、1 5 μ 1 の反応中で E c o R I 及び B a m H I で同時に消化し、調製用 1 % G T G Sea Plaque 低融点ゲル (メイン、Rockport 在、FMC) 中で電気泳動した。適当な寸法の D N A バンドを、E t B r 染色により可視化

し、取り出し、市販の配列決定用キット(Sequenasekit、オハイオ、Cleveland 在、U.S. Biochemicals)を用いるジデオキシチェーンターミネーション法(Sanger等、前出)による配列決定のために、適当に消化したpUC19中にライゲーションした。その結果生成したクローン、pUC19JS53iibを、M13用の順及び逆方向プライマー(マサチューセッツ、Beverly在、N.E. Biolabs)及び内部シーケンシングプライマーJ4を用いて部分的に配列決定した。このpUC19JS53iibの配列を決定したが、それは、クローンpUC19JS17d、pUC19JS42e及びpUC19JS45aから得られたものと同一であった。このクローンpUC19JS53iibのヌクレオチド26~1157に対応する。

Juns Iのヌクレオチド及び予想されるアミノ酸配列を図16に示す。Juns Iは、図16のヌクレオチド26~1126に対応する1101ヌクレオチドのオープンリーディングフレームを有する(367アミノ酸の蛋白質をコードし得る)。図16のヌクレオチド1~25及び1130~1170は、それぞれ、5′及び3′非翻訳領域である。図16のヌクレオチド26~28によりコードされる開始Metは、植物における開始Metを含むコンセンサス配列(AACAATGGC; Lutcke等、前出)と89%の同一性を有する図16のヌクレオチド23~30(AAAATAGGC)中に同定された。この開始Metを

コードするコドンの直 5'側には、インフレームの終止コドンもある。図 1 6 のアミノ酸 - 2 1 ~ - 1 は、予想されるリーダー配列に対応する。Juns Iの成熟型のアミノ末端は、精製したJuns Iの直接蛋白質配列分析(Gross等、前出)により図 1 6 のアミノ酸 1 として同定された。Juns Iの成熟型は、図 1 6 のアミノ酸 1

 $\sim 3~4~6$ に対応するが、予想される分子量 3~7 . 7~k D a を有する。 Juns I は、共通配列 A s n - X x x - S e r / T h r を有する、 3 つの潜在的な N 結合グリコシレーション部位を有する。

JunvIの核酸及び予想されるアミノ酸配列を図17に示す。ヌクレオチド1~35及び1130~1170は、それぞれ、5′及び3′非翻訳領域である。図17のヌクレオチド36~38によりコードされる開始ヌクレオチドは、植物における開始Metを含むコンセンサス配列(AACAATGGC; Lutcke等、前出)と89%の同一性を有する図17のヌクレオチド23~30(AAAAATGGC)中に同定された。JunsI(図16)及びJunvI(図17)の核酸は、この開始Metの周りの領域において同一である。図17の5′非翻訳領域には2つのインフレームの終止コドンもある。JunvIは、図17のヌクレオチド36~1145に対応する1、100ヌクレオチドのオープンリーディングフレームを有し、それは、370アミノ酸の蛋白質をコードし得る。図17のヌクレオチド1146~1148は終止コドンをコードして

いる。JunvIのアミノ酸-21~-1(図17)は、予想されるリーダー配列に対応する。このJunvIの成熟型のアミノ末端は、CryjI(図4a)及びJunsI(図16)の配列との比較により、図17のアミノ酸1として同定された。図17のアミノ酸1~349に対応するJunvIの成熟型は、予想される分子量38.0kDaを有する。JunvIは、共通配列Asn-Xxx-Ser/Thrを有する4つの潜在的N結合グリコシレーション部位を有する。

表 I に示すように、Juns I と Jun v I の成熟型のアミノ酸配列は、互いに 8 0 . 9 %相同 (75.4%同一であり、5.5%類似) である。Juns I 及び Cryj I の成熟型のアミノ酸配列は、87%相同 (80.1%同一であり、6.9%類似) であり、Jun v I 及び Cryj I の成熟型の配列は、80.5%相同 (72.5%同一であり、8%類似) である。実施例 6 で T 細胞エピトープを含むとして同定された Cryj I ペプチド配列と対応する Juns I 及び Jun v I 配列との間の相同性も又、非常に高い。例えば、Cryj I のアミノ酸 2 1 1 ~ 2 3 0 に対応するペプチド C J 1 ~ 2 2 (図13) は、主要 T 細胞エピトープを含む(図14)。C J 1 ~ 2 2 は、Juns I

及びJunvIそれぞれの対応する領域と95%の同一性(19/20の同一アミノ酸)及び85%の相同性(16/20の同一アミノ酸、1/20の類似アミノ酸)を有する。この高い配列相同性は、CryjIにより引き起こされるアレルギ

一疾患の治療において有効な免疫療法は、CryjI相同物により引き起こされるアレルギー疾患の治療においても有効であり得るということを示唆する。すべての核酸及びアミノ酸分析は、PCGENE(カリフォルニア、Mountain View在、Intelligenetics)に含まれるソフトウェアを用いて行なった。

表I

蛋 白 質 / · 比 較	ペプチド 	同一性	類似性	全 相 同 性		
Juns I 対	JunvI	75.4%	5.5 %	80.9%		
Juns I 対	CryjI	80.1%	6.9 %	87.9%		
JunvI 対	CryjI	72.5%	8.0 %	80.5%		
CJ1-22対	Juns I 2 1 1 - 2 3 0	95.0%	0.0 %	95.0%		
CJ1-22対	Junv I 2 1 1 - 2 3 0	80.0%	5.0 %	85.0%		

実施例10

C. japonica、J. sabinoides、J. virginiana
及びC. arizonicaRNAのノーザンブロット分析

C. japonica、J. sabinoides、及びJ. virginia na花粉から分離したRNAに関してノーザンブロット分析を行った。合衆国(例3)及び日本(例4)の両方で捕集したC. japo-nica花粉からのR NAを調べた。本質的に上記の

Sambrookの方法を用いて、各々のRNA15μgを、ホルムアルデヒド38%及び1X MOPS (20X=0.4M MOPS、0.02MEDTA、0.1M NaOAc、pH7.0) 溶液を含有する1.2%アガロースゲル上で泳動した。RNA試料(初めに酢酸ナトリウム1/10容積、エタノール2容積で沈殿させて容積を減少させ、dH2O 5.5μ1に再懸濁させた)を、

最終濃度ホルムアルデヒド15.5%、ホルムアミド42%、及び1.3 X M O P S 溶液を有するローディング色素を含有するホルムアルデヒド/ホルムアミド緩衝液10μ1により泳動した。試料を10×SSC(20X=3M NaC1、0.3Mクエン酸ナトリウム)におけるキャピラリートランスフアーによりGenescreen Plus(NEN Research Products、マサチューセッツ、ボストン)に移した後に、膜を80℃で2時間ベークし、3分間紫外線照射した。膜のプレハイブリダイゼーションは、4 m L の 0 .5 M NaPO4(pH7.2)、1 m M E D T A、1% B S A、及び7% S D S 中 60℃において1時間であった。アンチセンスプローブを非対称性PCR(McCabe, P.C.、PCR Protocols.AGuidetoMethods and Applicaーtions, Innis, M.等、編集、A cademic Press、ボストン、(1990)、76~

83頁における)により低メルトアガロース(例3に記載する)においてJC9 1 a の増幅で合成した。この場合、2μ1のDNAを2μ1のdNTPミックス (0.167mM dATP, 0.167mM dTTP, 0.167mM GTPO、及び033mM dCTP)、2μlの10×PCR緩衝液、10μ 1 D32P-dCTP (100μCi; Amersham) イリノイ、アーリント ンハイツ)、1 μ 1 (1 0 0 p モル) のアンチセンスプライマー<math>C P - 1 7、0. 5 μ 1 の T a g ポリメラーゼ、及び d H 2 O により増幅して 2 O μ 1 にする。 10×PCR緩衝液、dNTP及びTaqポリメラーゼはPerkin Elm er Cetus(コネチカット、ノアウオーク)からのものであった。 増幅は 94℃において45秒間30回数変性し、プライマーを60℃において45秒間 アニールしてテンプレートにしかつ72℃において1分間鎖延長することからな るものであった。反応を、TE100μ1を加えることによって停止させ、プロ ーブを3ccのG-50スピンカラム(TEで平衡にしたグラスウールを詰めた 3 c c のシリンジ中の 2 m l の G - 5 0 Sephadex [Pharmaci a、スエーデン、アップサラ])で回収し、1500 TriCarb Liq uid Scintillation Counter (Packerd, イリ

ノイ、ダウナースグロウブ)で

カウントした。プローブをプレハイブリダイジング緩衝液に106cpm/mlで加え、プレハイブリダイゼーションを60℃において16時間行った。ブロットを高緊縮条件:3×65℃における0.2×SSC/1%SDSによる15分、において行い、次いでプラスチックラップにラップして-80℃のフィルムに暴露した。このノーザンブロットの7時間暴露は、C. japo-nica(合衆国)(図19a、レーン1)、C. japonica(日本)(図19a、レーン2)、J. sabinoides(図19a、レーン3)及びJ. vir giniana(図19a、レーン4)RNAについておよそ1.2kbにおいて単一の厚いバンドを示した。このバンドはcDNAのPCR分析によって予測される週りのCryjI、JunsI及びJunvIについて予期されるサイズである。各々のレーンにおける異なるバンド強さはゲル上に負荷されたDNAの量の相違を反映し得る。分子量基準1.6及び1.0kbの位置を図19a及び19bに示す。

J. sabinoides及びC. arizoni-caから分離したRNAを別のノーザンブロットにおいて分析した。J. sabinoidesからの全RNA5μg及びC. arizonicaからの全RNA5μgを記載する通りにして精査した。このブロットにおいて、J. sabinoides (図19a) レーン1) 及びC. arizonica (図19b、レーン

2) の両方について 1. 2 k b バンドが観測され、 C. a r i z o n i c a が C r y j I 相同体を有することを示す。他の関連するツリーもまた相同体を有するものと予想される。

本発明をその好適な実施態様に関連して説明したが、その他の実施態様は同じ結果を達成することができる。本発明への変更及び変更態様は当業者にとり自明であると思われかつ発明の真の精神及び範囲に従うかかる変更態様及び均等物をすべて添付する請求の範囲に含む意図である。

配列表

(1)一般的情報:

(i) 出願人: Griffith, Irwin J.

Pollock, Joanne, Bond Julian

(ii) 発明の名称:杉花粉由来のアレルゲン性蛋白質及び

ペプチド

- (iii) 配列の数:25
 - (iv) 通信住所:
 - (A) 名宛人:ImmuLogic Pharmaceutical

Corporation

- (B) 通り: 610 Lincoln Street
- (C) 市: Waltham
- (D) 州:マサチューセッツ
- (E) 国: USA
- (F) 郵便番号: 02154
- (v) コンピューター読み取り可能形式:
 - (A) 媒体型: フロッピーディスク
 - (B) コンピューター: IBM PC 互換機
 - (C) オペレーティングシステム: PC-DOS/MS-DOS
 - (D) ソフトウエア: PatentIn Release #1.0,

Version #1.25

- (vi) 現出願のデータ:
 - (A) 出願番号:
 - (B) 出願日:
 - (C) 分類:
- (viii) 代理人/代理業者の情報:
 - (A) 名称: Stacey L.Channing
 - (B) 登録番号: 31,095
 - (C) 参照/ドケット番号: IPC-025CCC PCT

- (ix) 電信用情報:
 - (A) 電話: (617)466-6000
 - (B) テレファックス: (617)466-6040
- (2)配列番号1の情報:
 - (i) 配列特性:
 - (A) 長さ: 1 3 3 7 塩基対
 - (B)型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (ii) 配列の種類: cDNA to mRNA
 - (vi) 起源:
 - (A) 生物名: Crytpomeria japonica
 - (ix) 配列の特徴:
 - (A) 特徴を表わす記号: CDS
 - (B) 存在位置: 66..1187
 - (ix) 配列の特徴:
 - (A) 特徴を表わす記号: mat peptide
 - (B) 存在位置: 129...1187
 - (xi) 配列(配列番号1):

ACTO	AATC	TG C	TCAT	YEAR!	A TA	GCAT	AGCC	CTA	TAGA	AAG	LAAA	TCT	ICA C	TCTC	CTACC	60
አጸጸጸ	Me	NG GA	p Se	or Pr	T TO	C TT	NA GI SU Va -1	LL Al	A TI	A CI au Le	C GI	T TI il Pi -1	ne Se	TT TP	T ie	107
GTA Val	ATT Ile	GGA Gly -5	TCT Ser	TGC Cys	TTT Phe	TCT Ser	GAT Asp 1	AAT Asn	CCC Pro	ATA Ile	GAC Asp 5	AGC Ser	TCC Cys	TCC Trp	AGA Arg	155
GGA Gly 10	GAC Asp	TCA Ser	AAC Asn	TGG Trp	GCC Ala 15	CAA Gln	AAT Asn	AGA Arg	ATG Met	AAG Lys 20	CTC Leu	GCA Ala	GAT Asp	TGT Cys	GCA Ala 25	203
GTG Val	GCC	TTC Phe	GGA Gly	AGC Ser 30	TOC Ser	ACC Thr	ATG Net	GGA Gly	GGC Gly 35	lys Lys	GGA Gly	gga Gly	A ap	CTT Leu 40	TAT Tyr	251
ACG Thr	GTC Val	AOG Thr	AAC Asn 45	TCA Ser	GAT Asp	GAC Asp	gac Asp	CCT Pro 50	GTG Val	AAT Asn	CCT Pro	GCA Ala	CCA Pro 55	Gly	ACT Thr	299
CTG Leu	CGC	TAT	GGA	GCA Ala	ACC	CGA Arg	GAT	AGG Arg	Pro	CIG	TGG Trp	ATA Ile	ATT	TTC Phe	AGT Ser	347

		60					65					70				
GGC Gly	AAT Asn 75	ATG Met	AAT Asn	ATA Ile	AAG Lys	CTC Leu 80	AAA Lys	ATG Met	CCT Pro	ATG Met	TAC Tyr 85	ATT Ile	GCT Ala	Gly	TAT Tyr	395
AAG Lys 90	ACT Thir	TTT Phe	GAT Asp	GGC Gly	AGG Arg 95	GGA Gly	GCA Ala	CAA Gln	GTT Val	TAT Tyr 100	ATT Ile	G l y GCC	AAT Asn	GGC Gly	GGT Gly 105	443
Pro	TGT Cys	GTG Val	TTT Phe	ATC Ile 110	AAG Lys	AGA Arg	GTT Val	AGC Ser	AAT Asn 115	GTT Val	λTC Ile	ATA Ile	CAC His	GGT Gly 120	TTC Leu	491
TAT Tyr	CTG Leu	TAC Tyr	GGC Gly 125	TGT Cys	AGT Ser	ACT Thr	AGT Ser	GTT Val 130	TTG Leu	GCG	AAT Asn	GTT Val	TTG Leu 135	ATA Ile	AAC Asn	539
GAG Glu	AGT Ser	TTT Phe 140	GGG Gly	GTG Val	GAG Glu	CCT Pro	GTT Val 145	CAT His	CCT Pro	CAG Gln	GAT Asp	GGC Gly 150	GAT Asp	GCT Ala	CTT Leu	587
ACT Thr	CTG Leu 155	CGC Arg	ACT Thr	GCT Ala	ACA Thr	AAT Asn 160	ATT Ile	TGG Trp	ATT Ile	GAT Asp	CAT. His 165	TKA Asn	TCT Ser	TTC Phe	TCC Ser	635
AAT Asn 170	TCT Ser	TCT Ser	GAT Asp	GGT Gly	CTG Leu 175	GTC Val	GAT Asp	GTC Val	ACT Thr	CTT Leu 180	ACT Thr	TCG Ser	ACT Thr	GGA Gly	GTT Val 185	683
ACT Thr	ATT Ile	TCA Ser	AAC Asn	AAT Asn 190	CTT Leu	TTT Phe	TTC Phe	AAC Asn	CAT His 195	CAT His	AAA Lys	GTG Val	ATG Met	TTG Leu 200	TTA Leu	731
GOG Gly	CAT His	GAT Asp	GAT Asp 205	Ala	tat Tyr	AGT Ser	GAT Asp	GAC Asp 210	aaa Lys	TCC Ser	ATG Met	ang Lys	GTG Val 215	ACA Thr	GTG Val	779 .
Ala GCG	TTC Phe	AAT Asd 220	CAA Gln	TTT Phe	GJY GGA	CCT Pro	AAC Asn 225	TGT Cys	GGA Gly	CAA Gln	aga arg	ATG Met 230	CCC Pro	NGG Arg	GCA Ala	827
CGA Arg	TAT Tyr 235	CIY	CIT	CTA Val	CAŢ His	CTT Val 240	GCA Ala	AAC Asn	AAT Asn	AAT Asn	TAT Tyr 245	GAC Asp	CCA Pro	TCG Trp	ACT Thr	875
ATA Ile 250	TYT	GCA Ala	ATT Ile	Cly	GCC Gly 255	ACT Ser	TCA Ser	TAA Taa	CCA Pro	ACC Thr 260	TTA	CTA Lou	AGT Ser	GAA Glu	GGG G1y 265	923
AAT Asn	AGT Ser	TTC Phe	ACT Thr	GCA Ala 270	CCA Pro	TAA naA	GAG Glu	AGC Ser	TAC Tyr 275	AAG Lys	AAG Lys	CAA Gln	GTA Val	ACC Thr 280	ATA Ile	971
Arg	ATT Ile	GGA Gly	TGC Cys 285	aaa Lys	ACA Thr	TCA Ser	TCA Ser	TCT Ser 290	TCT Cys	TCA Ser	AAT Asn	TCC Trp	GTG Val 295	TCG Trp	CAA Gln	1019

				GTT Val												1067
									-			_			GTT Val	1115
				GCA Ala											TTA Leu 345	1163
				TCT Ser 350				TGA'	TGATV	GCA 1	'ATA	PTCT)	AG C.	atgt	IGTAC	1217
TAT	CTAA	ATT	AACA'	rcaa(A AC	GAAA	ATAT	A TC	ATGA	ICTA	TAT	ICTIV	GTA '	TTGA	TGTCAA	1277
AAT	AAAA	ATG '	TATC	TTTT	AC T	ATTA	AAAA	A AA	TAAA	GATC	GAT	CCGA	ccc '	TACC	TCTAGA	1337

(2)配列番号2の情報:

- (i) 配列特性:
 - (A) 長さ:374アミノ酸
 - (B) 型:アミノ酸
 - (D) トポロジー: 直鎖状
- (ii) 配列の種類:蛋白質
- (xi) 配列(配列番号2):

Met Asp Ser Pro Cys Leu Val Ala Leu Leu Val Phe Ser Phe Val Ile
-21 -20

Gly Ser Cys Phe Ser Asp Asn Pro Ile Asp Ser Cys Trp Arg Gly Asp
-5

Ser Asn Trp Ala Gln Asn Arg Met Lys Leu Ala Asp Cys Ala Val Gly
20

Phe Gly Ser Ser Thr Met Gly Gly Lys Gly Gly Asp Leu Tyr Thr Val
30

Thr Asn Ser Asp Asp Asp Pro Val Asn Pro Ala Pro Gly Thr Leu Arg
45

Tyr Gly Ala Thr Arg Asp Arg Pro Leu Trp Ile Ile Phe Ser Gly Asn
60

Phe Asp Gly Arg Gly Ala Gln Val Tyr Ile Gly Asn Gly Cly Pro Cys
100

Val Phe Ile Lys Arg Val Ser Asn Val Ile Ile His Gly Leu Tyr Leu

110 115 120

Tyr Gly Cys Ser Thr Ser Val Leu Gly Asn Val Leu Ile Asn Glu Ser 125 130 135

Phe Gly Val Glu Pro Val His Pro Gln Asp Gly Asp Ala Leu Thr Leu 140 _ 145 150

Arg Thr Ala Thr Asn Ile Trp Ile Asp His Asn Ser Phe Ser Asn Ser 160 170

Ser Asp Gly Leu Val Asp Val Thr Leu Thr Ser Thr Gly Val Thr Ile 175 180 185

Ser Asn Asn Leu Phe Phe Asn His His Lys Val Met Leu Leu Gly His 190 195 200

Asp Asp Ala Tyr Ser Asp Asp Lys Ser Met Lys Val Thr Val Ala Phe 205 210 215

Asn Gln Phe Gly Pro Asn Cys Gly Gln Arg Met Pro Arg Ala Arg Tyr 220 225 230 230

Gly Leu Val His Val Ala Asn Asn Asn Tyr Asp Pro Trp Thr Ile Tyr 240 245 250

Ala Ile Gly Gly Ser Ser Asn Pro Thr Ile Leu Ser Glu Gly Asn Ser 255 260 265

Phe Thr Ala Pro Asn Glu Ser Tyr Lys Lys Gln Val Thr Ile Arg Ile 270 275 280

Gly Cys Lys Thr Ser Ser Ser Cys Ser Asn Trp Val Trp Gln Ser Thr 285 290 295

Gln Asp Val Phe Tyr Asn Gly Ala Tyr Phe Val Ser Ser Gly Lys Tyr 300 305 310 315

Glu Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe Asn Val Glu Asn 326 325 330

Gly Asn Ala Thr Pro Gln Leu Thr Lys Asn Ala Gly Val Leu Thr Cys 335 340 345

Ser Leu Ser Lys Arg Cys 350

(2)配列番号3の情報:

(i) 配列特性:

- (A) 長さ:17塩基対
- (B) 型:核酸
- (C) 鎖の数: 一本鎖
- (D) トポロジー: 直鎖状

(xi) 配列(配列番号3):

GAYAAYCCNA THGAYWS

(2) 配列番号4の情報:

- (i) 配列特性:
 - (A) 長さ: 25塩基対
 - (B) 型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
- (xi) 配列(配列番号4):

GGGAATTCAA YTGGGCNCAR AAYSG

(2)配列番号5の情報:

- (i) 配列特性:
 - (A) 長さ:23塩基対
 - (B) 型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
- (ix) 配列の特徴:
 - (A) 特徴を表わす記号: modified_base
 - (B) 存在位置: 1 5
 - (D) 他の情報: /mod_base= i
- (xi) 配列(配列番号5):

CTGCAGCCRT TYTCNACRTT RAA 23

(2)配列番号6の情報:

- (i) 配列特性:
 - (A) 長さ:20塩基対
 - (B)型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状

- (ix) 配列の特徴:
 - (A) 特徴を表わす記号: modified_base
 - (B) 存在位置: 6
 - (D) 他の情報: /mod_base= i
- (xi) 配列(配列番号6):

TTCATNCKRT TYTGNGCCCA 20

- (2)配列番号7の情報:
 - (i) 配列特性:
 - (A) 長さ: 25塩基対
 - (B)型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号7):

CCTGCAGCKR TTYTGNGCCC AARTT 25

- (2)配列番号8の情報:
 - (i) 配列特性:
 - (A) 長さ:18塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号8):

ATGGATTCCC CTTGCTTA
18

- (2)配列番号9の情報:
 - (i) 配列特性:
 - (A) 長さ:26塩基対
 - (B)型:核酸

- (C)鎖の数:一本鎖
- (D) トポロジー: 直鎖状
- (xi) 配列(配列番号9):

GGGAATTCGA TAATCCCATA GACAGC 26

- (2)配列番号10の情報:
 - (i) 配列特性:
 - (A) 長さ: 1 7 塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号10):

ATGCCTATGT ACATTGC

- (2) 配列番号11の情報:
 - (i) 配列特性:
 - (A) 長さ:17塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号11):

GCAATGTACA TAGGCAT 17

- (2)配列番号12の情報:
 - (i) 配列特性:
 - (A) 長さ:18塩基対
 - (B) 型:核酸
 - (C) 鎖の数:一本鎖

- (D) トポロジー: 直鎖状
- (xi) 配列(配列番号12):

TCCAATTCTT CTGATGGT 18

- (2) 配列番号13の情報:
 - (i) 配列特性:
 - (A) 長さ:18塩基対
 - (B)型:核酸
 - (C) 鎖の数: 一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号13):

TTTTGTCAAT TGAGGAGT 18

- (2)配列番号14の情報:
 - (i) 配列特性:
 - (A) 長さ:30塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号14):

CCTGCAGAAG CTTCATCAAC AACGTTTAGA

- (2) 配列番号15の情報:
 - (i) 配列特性:
 - (A) 長さ:19塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状

(xi) 配列(配列番号15):

TAGCAACTCC AGTCGAAGT

- (2) 配列番号16の情報:
 - (i) 配列特性:
 - (A) 長さ:17塩基対
 - (B) 型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号16):

TAGCTCTCAT TTGGTGC 17

- (2)配列番号17の情報:
 - (i) 配列特性:
 - (A) 長さ:18塩基対
 - (B)型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号17):

TATGCAATTG GTGGGAGT 18

- (2)配列番号18の情報:
 - (i) 配列特性:
 - (A) 長さ:20アミノ酸
 - (B) 型:アミノ酸
 - (D) トポロジー: 直鎖状
 - (ii) 配列の種類:ペプチド
 - (v) フラグメント型: N-terminal
 - (vi) 起源:

- (A) 生物名: Crytpomeria japonica
- (ix) 配列の特徴:
 - (A) 特徴を表わす記号: Modified-site
 - (B) 存在位置: 7
 - (D) 他の情報: /note="the amino acid at

position

7 is Ser, Cys, Thr, or His"

(xi) 配列(配列番号18):

-Asp Asn Pro Ile Asp Ser Xaa Trp Arg Gly Asp Ser Asn Trp Ala Gln

1 5 10

Asn Arg Met Lys 20

- (2)配列番号19の情報:
 - (i) 配列特性:
 - (A) 長さ:16アミノ酸
 - (B)型:アミノ酸
 - (D) トボロジー: 直鎖状
 - (ii) 配列の種類:ペプチド
 - (v) フラグメント型: internal
 - (vi) 起源:
 - (A) 生物名: Crytpomeria japonica
 - (xi) 配列(配列番号19):

Glu Ala Phe Asn Val Glu Asn Gly Asn Ala Thr Pro Gln Leu Thr Lys 1 5 10 15

- (2)配列番号20の情報:
 - (i) 配列特性:
 - (A) 長さ:30塩基対

- (B)型:核酸
- (C)鎖の数:一本鎖
- (D) トポロジー: 直鎖状
- (xi) 配列(配列番号20):

GGGTCTAGAG GTACCGTCCG ATCGATCATT

30

- (2) 配列番号21の情報:
 - (i) 配列特性:
 - (A) 長さ:20塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号21):

GGGTCTAGAG GTACCGTCCG

- (2) 配列番号22の情報:
 - (i) 配列特性:
 - (A) 長さ:13塩基対
 - (B)型:核酸
 - (C)鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号22):

AATGATCGAT GCT

- (2) 配列番号23の情報:
 - (i) 配列特性:
 - (A) 長さ:21 塩基対
 - (B)型:核酸
 - (C)鎖の数:一本鎖

- (D) トポロジー: 直鎖状
- (xi) 配列(配列番号23):

GGAATTCTCT AGACTGCAGG T 21

- (2)配列番号24の情報:
 - (i) 配列特性:
 - (A) 長さ: 3 5 塩基対
 - (B)型:核酸
 - (C) 鎖の数:一本鎖
 - (D) トポロジー: 直鎖状
 - (xi) 配列(配列番号24)

GGAATICTCT AGACTGCAGG TTTTTTTTT TTTTT 35

- (2) 配列番号25の情報:
 - (i) 配列特性:
 - (A) 長さ: 5 アミノ酸
 - (B) 型:アミノ酸
 - (D) トポロジー: 直鎖状
 - (ii) 配列の種類:ペプチド
 - (v) フラグメント型: N-terminal
 - (vi) 起源:
 - (A) 生物名:Juniperus sabinoides
 - (xi) 配列(配列番号25):

Asp Asn Pro Ile Asp 1 5

【図1 a】

【図3】

【図1b】

【図2】

. 1 2 3

李 秦 秦

F19. 2

【図4】

299 347 155 203 251 9 107 5'-AGTCAATCTG CTCATAATCA TAGCATAGCC GTATAGAAAG AAATTCTACA CTCTGCTACC TAT 7 Thr Arg TTC AGT AAC TGG GCC CAA AAT AGA ATG AAG CTC GCA GAT TGT GCA Сyв Leu GGA Trp CTI Gly Phe AAAAA ATG GAT TCC CCT TGC TTA GTA GCA TTA CTG GTT TTC TCT Ser Ile ATT GAT Asp Pro TGC Сув SC Arg Met Lys Leu Ala Asp Phe GGA Gly GAT AGG CCC CTG TGG ATA Ile Ser Pro Ala GTA ATT GGA TCT TGC TTT TCT GAT AAT CCC ATA GAC AGC CCT GCA Ala Leu Leu Val Ile Asp Arg Pro Leu Trp GGC AAG GGA Gly Lys Gly Pro Val Asn GTG AAT Pro Asp Asn Gly CCT GGA AGC TCC ACC ATG GGA 50 Pro Cys Leu Val -15 Met Asp Agp Ala Gln Asn GAC GAC Ser Thr CGA Arg Ser Asp Asp Ser Phe TCA GAT GCA ACC Ala Thr Trp CyB Ser Ser Gly Agn AAC Agn GGA Ser Gly Met Asp Tyr ACG TTC TAT TCA Ser Phe \mathbf{Thr} Gly 999 ပ္ပပ္ပ GAC Val Arg Ile Asp GIC Gly GTG Leu Gly

Hg. 4

【図4】

395	443	491	539	587	635
TAT Tyr	GGT Gly 105	TTG	AAC Asn	CTT Leu	TCC
GGG G1y	GGC G1y	GGT Gly 120	ATA Ile	GCT Ala	TTC
GCT	AAT Asn	CAC His	TTG Leu 135	дат Авр	TCT Ser
ATT	GGC G14	ATA Ile	GTT Val	GGC Gly 150	AAT Asn
TAC TYT 85	ATT Ile	ATC Ile	AAT Asn	GAT	CAT His 165
ATG	TAT TYr 100	GTT Val	GGG	CAG Gln	gat Asp
CCT	GTT Val	AAT Asn 115	rrc	CCT	ATT Ile
ATG Met	CAA Gla	AGC	G한 V&1 130	CAT	TGG
AAA Lyb	GCA Ala	GTT Val	AGT	GTT Val 145	ATT Ile
CTC Leu 80	GGA G1y	AGA Arg	ACT Thr	CCT	AAT Asn 160
AAG	AGG Arg 95	AAG Lyb	AGT Ser	GAG Glu	ACA
ATA Ile	GGC	ATC Ile 110	TGT Cyb	GTG Val	GCT Ala
AAT Asn	gat Asd	TTT Phe	GGC G1y 125	GGG Gly	ACT Thr
ATG Met	TTT	GTG	TAC Tyt	rrr Phe 140	CGC
AAT Asn 75	ACT Thr	TGT Cys	CTG	AGT	CTG Leu 155
666 61y	AAG Lys 90	CCC	TAT Tyr	GAG Glu	ACT

Fig. 4 cont.

683	731	779	827	875	923
GTT Val 185	TTA Leu	grg Val	GCA Ala	ACT	GGG G1y 265
GGA Gly	TTG Leu 200	ACA Thr	AGG Arg	TGG Trd	GAA Glu
ACT	ATG	GTG Val 215	CCC	CCA	AGT
TCG	GTG Val	AAG Lyb	ATG Met 230	GAC	CTA
ACT	AAA Lyb	ATG Met	CAA AGA Gln Arg	TAT Tyr 245	AIT
CTT Leu 180	CAT His	TCC		AAT	ACC Thr 260
ACT	CAT His 195	AAA Ly s	GGA G1y	AAT Asn	CCA
GTC Val	AAC	GAC ABD 210	TGT	AAC	AAT
gat Abd	TTC	GAT	AAC A8n 225	GCA	TCA
GTC Val	TTT Phe	AGT	CCT	GTT Val 240	AGT
CTG Leu 175	CTT	tat Tye	GGA G1y	CAT His	GGG Gly 255
GGT Gly	AAT Asn 190	GCA Ala	TTT Phe	GTA Val	GGT Gly
gat Abd	AAC Asn	GAT ABD 205	CAA Gln	CTT	ATT 11e
rcr Ser	TCA Ser	cat Abd	AAT ABD 220	GGA Gly	GCA
TCT	ATT Ile	CAT	TTC Phe	TAT Tyr 235	TAT Tyr
AAT ABD 170	ACT Thr	GGG Gly	GCG Ala	CGA	ATA 11e 250

【図4】

ig. 4 cont.

[図4]

971	1019	1067	1115	1163	1217	1277	1337
GTA ACC ATA Val Thr Ile 280	GTG TGG CAA Val Trp Gln 295	TCA TCA GGG Ser Ser Gly	rrc AAr Grr Phe Asn Val	GGG GTT TTA Gly Val Leu 345	tgt tgatgatgca tatattctag catgitgtac Cyb	TCAACA AGAAAATATA TCATGATGTA TATTGTTGTA TTGATGTCAA	GG TACCTCTAGA-3'
CAA Gln	TGG Trp	GTA Val 310	GCT		rrc'r?	rGTTC	ceae
AAG AAG CAA Lys Lys Gln	AAT Asn	rrr Phe	GAA Glu	trg ACA AAA AAT GCT Leu Thr Lys Asn Ala 340	[ATA]	TAT	TATTAAAAA AAAATGATC GATCGGACGG FIG. 4 CONT.
	TCA	TAT Tyr	aaa Lys	AAA Lys 340	3CA 1	IGTA	GATC ig. 4
AGC TAC Ser Tyr 275	TGT	GGA GCT Gly Ala	ACA AAG Thr Lys	ACA Thr	rgation	ATGA	RAAT FI
AGC	TCT Ser 290			TTG Leu	TGA:	A TC	A AA
	TCA	AAT Asn 305	TAC Tyt	CAA Gln		ATAT	AAAA
AAT Asn	TCA Ser	TAT	ATA Ile	COT	AAA CGT Lys Arg	SAAA	ATTA
CCA	ACA Thr	TTT Phe	AAT	ACT Thr 335		CA A(AC TU
GCA A1a 270	AAA Lys	GTT Val	GGT Gly	GCA Ala	TCT Ser 350	TCAA	TTTI
ACT	ТGC Сув 285	gat Abd	GGG G1y 325	AAT Aen	TCT CTC Ser Leu	AACA:	ratc.
AGT TTC Ser Phe	GGA G1y	ACA CAA Thr Gln 300	TAT GAA Tyr Glu 315 320	AAT GGG Asn Gly	TCT	ATT 3	AIG
	ATT Ile	ACA Thr	TAT TYT 315	AAT Asn	TGC	TATCTAAATT AACA	AATAAAAIG TAICTITIAC
AAT	CGT	TCT	AAA	GAG Glu 330	ACA Thr	TAT	AAT

【図6】

【図7】

(但し、ウサギ抗 - Amb a I 及び II については、希釈は×1000)

Fig. 8b

【図12】

Fig. 12

【図13】

ペプチド名 CJI-I (1-20) DNPIDSCWRGDSNWAQNRMK CJI-2 (11-30) DSNWAQNRMKLADCAVGFGS CJI-3 (21-40) LADCAVGFGSSTMGGKGGDL CJI-4 (31-50) STMGGKGGDLYTVTNSDDDP СЛ-5 (41-60) YTVTNSDDDPVNPAPGTLRY CJI-6 (51-70 VNPAPGTLRYGATRDRPLWI CJI-7 (61-80) GATRDRPLWIIFSGNMNIKL CJI-8 (71-90) 1 F S G N M N I K L K M P M Y I A G Y K CJI-9 (81-100) KMPMYIAGYKTFDGRGAQVY CJI-10 (91-110) TFDGRGAQVYIGNGGPCVFI СЛ-11 (101-120) IGNGGPCVFIKRVSNVIIHG CJI-12 (111-130) KRVSNVIIHGLYLYGCSTSV CJI-13 (121-140) LYLYGCSTSVLGNVLINESF СЛ-14 (131-150) LGNVLINESFGVEPVHPQDG CJI-15 (141-160) GVEPVHPQDGDALTLRTATN CJI-16 (151-170) DALTLRTATNIWIDHNSFSN CN-17 (161-180) **IWIDHNSFSNSSDGLVDVTL** CJI-18 (171-190) SSDGLVDVTLTSTGVTISNN CJI-19 (181-200) TSTGVTISNNLFFNHHKVML CJI-20 (191-210) LFFNHHKVMLLGHDDAYSDD CJI-21 (201-220) LGHDDAYSDDKSMKVTVAFN CJI-22 (211-230) KSMKYTVAFNQFGPNCGQRM CJI-23 (221-240) QFGPNCGQRMPRARYGLVHV CJI-24 (231-250) PRARYGLVHVANNNYDPWT I CJI-25 (241-260) ANNNYDPWTIYAIGGSSNPT СЛ-26 (251-270) YAIGGSSNPTILSEGNSFTA CJI-27 (261-280) ILSEGNSFTAPNESYKKQVT CJI-28 (271-290) PNESYKKQVTIRIGCKTSSS CJI-29 (281-300) IRIGCKTSSSCSNWVWQSTQ CJI-30 (291-310) CSNWVWQSTQDVFYNGAYFV СЛ-31 (301-320) DVFYNGAYFVSSGKYEGGNI CJI-32 (311-330) SSGKYEGGNIYTKKEAFNVE CJT-33 (321-340) YTKKEAFNVENGNATPQLTK CJI-34 (331-350) NGNATPQLTKNAGVLTCSLS CJI-35 (341-353) NAGVLTCSLSKRC

Fig. 13

[図14]

(、1、8性平Xインサーバ型勘) たんぐデントートデントデジャ

【図15a】

【図15b】

【図16】

09	120	180	240	300	360	420
TATTCTGAACCCTAAAATGGCTTCCCCATGCTTAATAGCAGTCCTTGTTTT M A S P C L I A V L V F -21 -20 -15 -10	CCTTTGTGCAATTGTATCTTGTTACTCTGATAATCCCATCGACAGCTGCTGGAGAGAGA	TTCGAACTGGGATCAAAACAGATGAAGCTCGCAGACTGTGGGATTTGGAAGCTC 180 S N W D Q N R M K L A D C A V G F G S S 15 20 25 30	CACCATGGGAGGAGGAGATTTTTACACCGTCACAAGCACAGATAATCCTGT 241 T M G G K G G D F Y T V T S T D D N P V 35 40 45	GAATCCTACACCAGGAACTTTGCGCTATGGAGCACAAAAAAGCACTTTGGATCAT 30 N P T P G T L R Y G A T R R K A L W I I 55 60 65	TTTCTCTCAGAATATAAAGCTCAAGATGCCTTTGTATGTTGCTGGACATAAGAC 36 F S Q N M N I K L K M P L Y V A G H K T 75 80 85	TATTGACGGCAGGAGCAGATGTTCATCATCTTGGCAACGGCGGTCCCTGTCTGT
5'-AAATTCTATATTCT	CCTTTGTGCAATTG L C A I	TTCGAACTGGGATC S N W D	CACCATGGGAGGCA T M G G	GAATCCTACACCA(N P T P 55	TTTCTCTCAGAAT! F S Q N	TATTGACGGCAGG(I D G R 95

【図16】

		230	7				225	~				220	N				215	(1		
	P4	Z	æ	M K V T V A F N Q F G P N A G Q R M	Ü	4	Z	Д	Ö	Œ	Œ	z	<u>P-</u> 4	K	>	E	>	ĸ	Ξ	ಬ
780	ည	ATG	AGA	CAA	ggg	GCT	AAT	CCT	GGA	TLL	CAA	AAT	TIC	900	GTG	ACA	GTG	AAA	ATG	ATCTATGAAAGTGACAGTGGCGTTCAATCAATTTGGACCTAATGCTGGGCAAAGAATGCC
		210	7				205	7				200	N				195	-		
	ĸ	Ω	Д	F N H H K V M L L G H D D T Y D D D	X	Ŧ	А	Ω	Ħ	ø	h	ч	Σ	>	K	Ħ	Ħ	Z	ß.	Ŀ
720	¥	GAC	GAT(GAC	TAT	ACA	GAT	GAT	CAT	GGA	TTA	TTA	ATG	GTG	AAA	CAT	CAT	AAC	TTC	CTTCTTCAACCATCATAAAGTGATGTTATTAGGACATGATGATACATATGACGATGACAA
		190	Ä				185	~				180	-				175	П		
	Ħ	Z	z	SDGLIDVTLGSTGITISNN	H	H	H	O	Ę٠	Ø	Ö	h	H	>	Ω	н	H	Ů	A	Ø
99	5	AAT	AAC	TCC.	ATC	ACT	ATT	GGA	ACT	TCC	969	CTT	ACG	GTT	GAT	ATC	CTT	GGT	GAT	TTCTGATGGTCTTATCGATGTTACGCTTGGCTCCACTGGAATTACTATCTCCAACAATCA
		170	H				165	н				160	ᆏ				155	ᆏ		
	ບ	А	ល	THRHVTNAWIDHNSLSDC	τΩ	Z	×	Ω	н	3	A.	Z	Ħ	>	×	æ	Z	E	H	K
009	1Ğ	3AT	JCC	CTC	TCT	AAT	CAT	GAT	ATT	766	GCT	AAT	ACA	GTT	CAI	၁၅၁	ATG	ACT	ATT	CGCCATTACTATGCGCCATGTTACAAATGCTTGGATTGATCATAATTCTCTCTC
		9.0	H				145	ਜ				140	₹1				135	₩		
	А	Ö	Ω	G D V L V S B S I G V E P V H A Q D G	Æ	Ħ	>	a,	M	>	ø	н	တ	M	8	>	Н	>	Д	Ö
540	33	366	BATO	CAG(GCT.	CAT	GTT	CCT	GAG	GTC	999	ATT	TCT	GAG	AGT	GTA	TTG	GTT	GAT	GGGGGATGTTTGGTAAGTGAGTCTATTGGGGTCGAGCCTGTTCATGCTCAGGATGGGGA
		130	ਜ				125	Ħ				120	4				115	ਜ		
	1	>	Ø	V S H V I L H S L H I H G C N T S V L	z	ບ	ø	Ħ	н	Ħ	н	Ø	Ħ	ы	н	>	Ħ	ຜ	>	M
480	탎	TIE	AGTO	ACG2	AAT.	TGT.	GGT	CAC	ATA	CAT	TTG	AGT	CAT	CIC	ATT	GTT	CAT	AGC	GTG	GAAAGTGAGCCATGTTATTCTCCATAGTTTGCATATACACGGTTGTAATACGAGTGTTTT

Fig. 16 cont.

'A 840	4		ာ P	096 ອຸ		TGCGAACTGGGTGTGAACACGAGATGCTTTTATTAATGGAGCTTATTTTGTATC 1020 A N W V W R S T R D A F I N G A Y F V S 295 300 305	ATCGGGGAAAACTGAAGACCAATATACAATAGTAATGAAGCTTTCAAAGTTGAGAA 1080 S G K T E E T N I Y N S N E A F K V E N 315 320
TAT	н	0	ეეე. ≱	0 5 5	₩ 0	TAT: V [0	TGAG1 E 330
ATA	N	250	CTGCC T A	270 CAGC	2 A 290	TTGT.	TTC V
GGA	Z		TCA F	CAT	A	X X	A A G
CAT	ы		GTT	CAC	ໝ	CTT A	TCA
ATC	Б		ATA	IAAI	M	GAG	CT.
ATG	×	ī.	3GG 2	265 Grete	285	17.7.4.TC N 305	TGAAC E 325
ATT	Z	24	BE	26	G	ATT2 I 3(AATC N 3;
ATA	z		AGTC B	ATAC	н	rtti F	AGT.
AAC!	Z		CTG2	CE OF	æ	A P	AAT
SCAL	4		ATT(I	\$	ĸ	GAT	TAC.
GTT(>	240	ACC	260 AACA	280	CTACACGAGATGCTTTTATTAATGGAGCTTA18 S T R D A F I N G A Y 300	TATA I 320
CAT	Ħ	Ø	CCA	G ₹	> ~	#C# ⊕	AAT N 3
3TA	>		AAT N	Š	a	ည်း အ	ACC.
CTT(ч		TCA	Š	K	AGA R	GAG M
GGA	ARYGLVHVANNY		GGTGGGAGTTCAAATCCAACCATTCTGAGTGAAGGGAATAGTTT G G S S N P T I L S E G N S F	AAG	ESYKKQVTKRIGCESPSA 275 280 285 290	TGGGTGTGGAGAT W V W R 295	GGGGAAAACTGAAGACCAATATATACAATAGTAATGAAGCTTTCAAAGTTGAGA G K T E E T N I Y N S N E A F K V E 315 330
TAT	> 4	235	999 9	255 TTAC	275	GGTG V 295	AACT T 315
CGA	4	M	GGT G	2 AGT	ω _. α	11GG ¥	AAA K
GCA	4		ATT(I	GAG	M	N	9999 9
AAGGGCACGATATGGACTTGTACATGTTGCAAACAATAATTATGATCCATGGAATATATA	œ		TGCTATTGGTGGGAGTTCAAATCCAACCATTCTGAGTGAAGGGAATAGTTTCACTGCCCC	255 260 265 270 AAGTAACAAAGCGTATAGGGTGTGAATCACCATCAGCTTG	Ø	TGCG A	ATCG

【図16】

Fig. 16 cont.

ATCTTGCTTATGAAACGAAAAAAAATATATAG-3'

340

a

【図17】

09	120	r 180	240	300	360	c 420
5'-CGGTATAGATICTATATTCTGAGCCCTAAAAATGGCTTCCCCATGCTTAATAGCAT M A S P C L I A -21 -20 -15	TCCTTGTTTTCCTTTGTATTGTATCTTGTTGCTCTGATAATCCCATAGACAGCTGCT F L V F L C A I V 8 C C S D N P I D S C -10 -5 +1 5	GGAGAGGAGATTCGAACTGGGGTCAAAACAGAATGAAGCTCGCAGATTGCGCTGTGGGAT W R G D S N W G Q N R M K L A D C A V G 10 15 25	TTGGAAGCTCCACCATGGGAGGCAAAGGAGGATTTTTACACCGTCACAAGCGCAGATG F G S S T M G G K G G D F Y T V T S A D 30 35 45	ATAATCCTGTGAATCCTACACCAGGAACTTTGCGCTATGGAGCAACAAGAAAAAGCAC D N P V N P T P G T L R Y G A T R E K A 50 55 60	TITGGATCATTTTCTCTCAGAATATATAAAGCTCAAGATGCCTTTGTATGTTGCTG L W I I F S Q N M N I K L K M P L Y V A 70 75 85	GACATAAGACTATTGACGGCAGGGAGCAGATGTTCATCTTGGCAACGGCGGTCCCTGTC GHKTIDGRGAGCAGATGTTCATCTTGGCAACGGCGGTCCCTGTC GHKTIDGRAGCAGGGAGCAGATGTTCATCTTGGCAACGGCGGTCCCTGTC GHKTIDGRAGCAGGGAGCAGAGCAGATGTTCATCTTGGTCCTGTC GACAACGCCAGGGGAGCAGAACGTTCATGGTCTTGTCTGTC

【図17】

	Fig. 17 cont.							
	240 245		235				230	
	H P H V V N N Y E P	Ö	R K	~	œ	<u>α</u>	O R C	α
840	AACGATTGCCAAGGGCTAGATATGGACACTTTCATGTTGTTAATAATAATTATGAGCCAT	TGG1	AGATA	GCT	AAGG	ည	CGATTG	AA
	220 225		215				210	
	A H N H F G P	H	X V T V	E	>	ĸ	D D	Ø
780	CACTTTGGACCTAATTGTG	CAC	AAAGT	ATG	AGTG	AA.	GATGAT	S
	200 205		195				190	
	R V M L L G H S	Д	Ω	H	ß4	Ħ	N	Ø
720	CCAATAACCACTTCTTCGACCATGATGTGATGTTGTTAGGACATAGTGATTCATTC	TGA	GACCA	TTC	TTC	CAC	AATAAC	S
	180 185		175				170	
	A S T A	>	D I	A	H	Ġ	S	н
099	TCTCCAATGGCACCGACGGCCTCGTCGACGTTACTCTTGCTTCCACTGCTGTTACTATTT	CGTC	GGCCT	GAC	ACC	099	TCCAAT	TC
	160 165		155				150	
	23	æ	TVRT	<u> </u>	~	A	b a c	œ
009	AGGACGGAGATGCGTTTACTGTGAGGACCTCTGAACATATTTGGGTCGACCATAATACTC	GAGG	ACTGT	TTT	ဥ္သင္မ	GAT	GACGGA	AG
	140 145		135				130	
	S I G V V P	>	D V L V	А	Ø	н	8	H
540	CTAGTGTTTTGGGGGATGTTTTGGTAAGTGAGTCTATTGGGGTGGTGCCTGTACACCCCC	GGTA	GTTT	GAT	ອອອ	Ti	автвтт	CI
	120 125		115				110	
	ILHIHGCN	>	Ω Ξ	>	ĸ	ø	H	h
480	TGTTTATGAGGAAAGTGAGCCATGTTATTCTCCATGGTTTGCATATACACGGTTGTAATA	TGTI	AGCCA	GTG	AAA	AGG	TTTATG	T G

【図17】

A I ATGAA N E N E CATGG	W G K Y A I G G S S D P T I I S E G N R 250 265 TTCTTGCACCAAATGAATCTTATAAAAAGGAGGTGACAATACGTGTAGGTTGTAAATCTA F L A P N E S Y K K B V T I R V G C K S 270 275 280 285 CAAGTTGTGATGCATGGGAGTGGAGTTCAAAAAGATGATGCCTTCCTT	ຜ	Ø	A				ŧ				
FGAA FGG	CTTA'S Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z				7. J	+ 	H	S.	265 265	a rů s	œ	
W W	GAGTG	TAAA K	AAG K	GAG R	GTGACZ V T 280	CAAT	ACG.	TGT) V	GGTTG' G C 285	GTAA/ C K	ATCTA S	096
	<u>გ</u>	gaga R	ξ. 80 €	AAA M	GATGA: D D 300	ATGCC D A	CTT(CCT	PAATGG	GTGC(G A	CTATT X	1020
GCAAG G K	TTGTACAATCAGGCAAGGGGTATAATGGTGGAGGGGATTCAAGGTTGAAAGTGCAAATG FVQSGKGYNATGGTGGAGGCATTCAAGGTTGAAAGTGCAAATG	taat N	GGT G	GG A	GAGGC B A 320	CATT	CAAC	GGT.	IGAAAG: E S 325	6446C) 5 A	AAATG N	1080
TGACT L T	AGGTGCCAACATGATAACATGCTGGAGCATTAAAATGTATACCTACC	TGCT A	GGA	GC.A ►	TTAAA L K 340	AATGT K C	TAT? I	ACC:	raccaau T K 345	AACAA K Q	ATGTG C	1140
CAAT	TGATATGAAAAGTCAATCGATATAATGATGTGTTATTTGTAATATTTCAGCTTTGAATAT V I -	TAAT	aat	GTG	TTAT	ftgt	AAT	ATT.	rcagc	ГТТС	AATAT	1200
ATT	CAACA	AAAT	GAC	ACT	ATTA	IATA	AAT	AAA	FTCTT	AGTT	TATTA	1260
PAAA	₩-3°				Fig	. 17	0	II.				1278
et et	TTT KA	gtatagaaaaagaatttcaaca gttggtattaaaaaaaa-3°	tttcaacaaaat aaaa – 3 °	tttcaacaaaatgac aaaa – 3 °	tttcaacaaaatgacact aaaa – 3 °	tttcaacaaatgacactatta aaaa-3' Fig	rttcaacaaatgacactattatata aaaa-3' Fig. 17	tttcaacaaatgacactattatataaat aaaa-3° Fig. 17 co	tttcaacaaatgacactattatataaataaa: aaaa-3' Fig. 17 conf.	tttcaacaaatgacactattatataaataaattctt aaaa-3° Fig. 17 cont.	tttcaacaaatgacactattatataaataaattcttagtt aaaa-3° Fig. 17 cont.	caaaatgacacta ;

【図18】

CJI-41	KMPMYIAGYKTFDGRGAQVYIGNGGPCVFI
CJI-41.1	PMYIAGYKTFDGRGAQVYIGNGGP
CJI-41.2	YIAGYKTFDGRGAQVYIGNGGP
CJI-41.3	KKYIAGYKTFDGRGAQVYIGNGGP
CJI-42	DALTLRTATNIWIDHNSFSNSSDGLVDVTL
CJI-42.1	RTATNIWIDHNSFSNSSDGLVD
CJI-42.2	KRTATNIWIDHNSFSNSSDGLVDK
CJI-43 CJI-43.1 CJI-43.6 CJI-43.7 CJI-43.8 CJI-43.9 CJI-43.10 CJI-43.11	KSMKVTVAFNQFGPNCGQRMPRARYGLVHVANNNYD KSMKVTVAFNQFGPNCGQRMPRARYGLVHV KSMKVTVAFNQFGPNSGQRMPRARYGLV KSMKVTVAFNQFGPNCGQRMPRARYGLV KSMKVTVAFNQFGPNSGQRMPRARYGLV KSMKVTVAFNQFGPNCGQRMPRARYG KSMKVTVAFNQFGPNSGQRMPRARYG KSMKVTVAFNQFGPNSGQRMPRARYG KSMKVTVAFNQFGPNSGQRMPRARYGKK KSMKVTVAFNQFGPNCGQRMPRARYG
CJI-45	PRARYGLVHVANNNYDPWTIYAIGGSSNPT
CJI-45.1	RARYGLVHVANNNYDPWTIYAIGGSSNP
CJI-45.2	RARYGLVHVANNNYDPWTIYAIGGSS
	DVFYNGAYFVSSGKYEGGNIYTKKEAFNVE NGAYFVSSGKYEGGNIYTKKEAFNVE NGAYFVSSGKYEGGNIYTKKEAFN KKNGAYFVSSGKYEGGNIYTKKEAFN

【図19a】

Fig 19a

【図19b】

Por Car

Fig 19b

【国際調査報告】

INTERNATIONAL SEARCH REPORT

Instructional Application No.

PCT/US 93/00139

L CLASSIF	ICATION OF SUBJ	ECT MATTER (If several classification	symbols apply, indicate all) ⁶	
	io International Patent	Canadication (IPC) or to both National		
Int.Cl.	5 C1ZN15/2° C12P21/0	9; C07K15/10; 2; C12P21/08	A61K39/36;	G01N33/68
R. PIELDS	SEARCHED			
		Minimum Decui	negtaden Searched	
Classificati	oo System		Clearification Symbols	
Int.C1.	5	C12N ; C12P ;	A61K ; CO	7K
		Documentation Searchol other to the Extent that such Document	er than Minimum Documentation a are included in the Piet & Searched	
		D TO BE RELEVANT	rists of the missest research	Relevant to Claim No.13
Category *	Citation of De	ocument, 11 with indication, where approp	store or me were brandes	
E	CORPORA 21 Janu	Bry 1993	RMACEUTICAL	1-122
	see the	whole document		
X	NL nages 3	9, то. 2, November 198 29 - 332		1-72, 74-105, 107-115, 117-122
	sequenc cedar p	ET AL. 'N-terminal amine of a major allergen ollen (Cry j I)' n the application	no acid of Japanese	
	see tad	ie 2	-/-	-
	I categories of cited de cament defining the ge scidered to be of partic	coments: 44 neral state of the art which is not ular relevance theat on or other the international	cited to understand the princi invertion	r the interactional filing date office with the application but iple or theory underlying the
"L" doc	ng date ment which may then	re doubts an printity claim(s) or , the publication date of zarder	cannot be considered novel or involve an inventive step "Y" decement of purvicular releva- cannot be considered to invel	r cannot be considered to ance; the claimed invention to an inventive step when the
"O" do eti "T" des	coment relaxing to an	ural dicalocure, use, exhibition or to the international filing sixte but	document is combined with or	an or more other such domi- ng obvious to a perma skilled
IV. CICKT	PICATION		_	
		the International Search	Date of Muling of this laters	
		UNE 1993	2 8 -06-	
Leternation	al Searching Authority		Signature of Authorized Office	
	EUROPE	AN PATENT OFFICE	CUPIDO M.	
Page PCT//54	/210 (mount sheet) (Jerry	ry 1915		

PCT/US 93/00139

	International Application No	
	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	Reinvant to Claim No.
Category *	Citation of Document, with indication, whore appropriate, of the relevant paranges	MANUAL IN CASE INC.
X	PATENT ABSTRACTS OF JAPAN vol. 13, no. 419 (C-637)(3767) 18 September 1989 & JP,A,11 56 926 (HAYASHIBARA BIOCHEM LAB INC) 20 June 1989 see abstract	1-72, 74-105, 107-115, 117-122
X	Section Ch, Week 8742, Derwent Publications Ltd., London, GB; AN 87-294838 & JP,A,62 205 794 (FUJI REBIO KK) 10 September 1987 see abstract	73,106, 116
	D (authra about) (Japanery 1983)	

INTERNATIONAL SEARCH REPORT

Inc. .auonal application No.

PCT/US 93/00139

Box t Of	secreations where certain claims were found unscarchable (Continuation of item 1 of first sheet)
This interna	nonal search report has not been established in respect of certain dams under Azude 17(2)(a) for the following reasons:
Re	ums Nos.: sause they relace to subject matter not required to be searched by this Authority, namedy, smark: Although claims 56,70 and 72 are directed to a method of treatment (and a diagnostic method practised on) the human body, the search has seen carried out and based on the alleged efects of the composition.
ا لسبحا	aims in us.: cause they relate to parts of the international application that do not comply with the prescribed requirements to such cause they relate to parts of the international search can be carried out, specifically:
5. CI	turns Nos cause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a):
Bax II O	sservations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Intern	tional Searching Authority found multiple inventions in this international application, as follows:
	all required additional search fors were timely paid by the applicant, this international search report covers all archable claims.
2	rall scarchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment any additional fee.
3	r only some of the required additional search fees were timely paid by the applicant, this interactional search report wers only those claims for which fees were paid, specifically claims Noz.:
4.	o required additional search fees were timely paid by the applicant. Consequently, this international search report is structed to the invention first mentioned in the claims; it is covered by claims Nos.:
Romania sen	Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search feet.

Form PCT.15A.210 (continuation of first street (1)) (July 1992)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9300139 SA 69270

This names lists the patent family members relating to the patent documents cited in the above-mentioned international much report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for those particulars which are merely given for the purpose of information.

17/06/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9301213	21-01-93	AU-A-	2300492	11-02-93
######################################	, +e +			

the For more details about this assex : see Official Journal of the European Patent Office, No. 12/82

フロントページの続き

(51) Int.Cl.6	識別記号		庁内整理番号	FΙ		
C 0 7 K						
C 1 2 P	21/02	С	9282 - 4 B			
	21/08		9358 - 4B			
G 0 1 N	33/53	Q	8310 - 2 J			
// A61K	39/395	N	9284-4C			
(72)発明者	ポロック,ジョーン					
	アメリカ合衆国 02174	7	サチューセッ			
ツ, アーリントン, ニューコーム ストリ						
	ート 51					
(72)発明者	ボンド, ジュリアン エフ.					
アメリカ合衆国 02188 マサチューセッ						
ツ, ウェイマス, コマーシャル ストリー						
	F 294					
(72)発明者	ガーマン,リチャード	ディ				
	アメリカ合衆国 02174					
ツ, アーリントン, フェセンデン ロード						
	21					
(72)発明者	クウォー,メイチャン					
アメリカ合衆国 01890 マサチューセッ						
	ツ,ウィンチェスター,	コク	ノス ロード			
(72)発明者	クウォー , メイチャン					