Geographic Data Science – guest lecture

Sándor Juhász

Complexity Science*Hub

sandorjuhasz.com sandor.juhasz@uni-corvinus.hu

SOCIO-ECONOMIC NETWORKS

URBAN DATA SCIENCE

Current research – Supply networks and labor flows

https://vis.csh.ac.at/colocation-suppliers/

Current research – Cities through individual mobility data

Juhász et al. (2023) EPJ Data Science

Geographic Data Science

- Full course in **Social Data Science 1-year MA program** (spring semester)
- We follow giants with local twists http://darribas.org/gds18/
- Tutorials by the NERDS (https://nerds.itu.dk)

Michael Szell
Assoc Prof
ITU Copenhagen

Anastassia Vybornova
PhD Student
ITU Copenhagen

Dani Arribas-BelProfessor in Geographic Data Science
University of Liverpool (UK)

Geographic Data Science – today

- What is GDS (Geographic Data Science)?
- Why learn about it?
- Data and pyhon libraries
- Statistical tools and applications

Geographic Data Science is all the things that exist in 'regular' data science – but with a focus on **space** and **location**

Why is this relevant?

More and more social and economical data are spatial

Need for statistical tools to correctly handle space

$$\mathbf{y}_{\text{lag}} = \left(\sum_{j=1}^{n} w_{ij} y_{j}\right)_{i} = W\mathbf{y}$$

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} z_{i} z_{j}}{\sum_{i} z_{i}^{2}}$$

We need to be aware of pitfalls

What is geographic data?

Geographic or geospatial data is information that describes objects, events or other features with a location on or near the surface of the earth

- Coordinates (latitude, longitude)
- Attibutes (temperature, ...)
- Temporal infomration (time stamp, ...)

Standard data formats

Vector data: geometric objects .gpkg, .shp, .svg, .geojson

Raster data: grid of pixels .tif, .jpg, .png, .bmp

Source: Kelly, M. UC Berkeley

Network data

Structure (topology), embedded in space

Szell et al. (2022) Scientific Reports

Tobler's first law of geography

Everything is related to everything else, but near things are more related than distant things

Szell et al. (2022) **Scientific Reports**

How do things relate in space?

How to formalize, operationalize and visualize this question?

Practice sessions

Part 1 – Introduction to geographic data

Part 2 – OSM and spatial networks

Part 3 – Spatial autocorrelation and gravity models

https://github.com/sandorjuhasz/geoDS-guest-lectures

Procedural part of Geographic Data Science

DB handling

Point and click GIS

Procedural part – geographic data basics

- Coordinate Reference Systems (CRS)
- Libraries and data handling

Coordinate Reference Systems (CRS)

Geographic RS

$$(\phi, \lambda) = (-0.1, 51.5)$$

Latitude

Longitude Degrees N/S from equator Degrees W/E from meridian

Projected RS

(x,y) = (530000,180000)

Easting Meters east from origin (bottom left) Meters north from origin (bottom left) Northing

Coordinate Reference Systems (CRS)

$$(\phi, \lambda) = (-0.1, 51.5)$$

Longitude Latitude Degrees N/S from equator Degrees W/E from meridian

(x,y) = (530000,180000)

Projected RS

Easting Meters east from origin (bottom left)
Northing Meters north from origin (bottom left)

Common world-spanning reference systems

WGS 84 (World Geodetic System 1984) / EPSG:4326

WGS 84 - Web/Pseudo-Mercator / EPSG:3857

All map projections are wrong

... but some are useful

https://www.thetruesize.com/

Usual pitfalls

Nr. 1 – wrong or missing CRS!

Nr. 2 – (lat,lon) vs. (lon,lat)

lon, lat	lat, lon
formats	formats
 GeoJSON ref 	GeoRSS ref
• KML <u>ref</u>	 Encoded Polylines (Google) ref
 Shapefile ref 	• iCalendar <u>ref</u>
 WKT ref 	
• WKB <u>ref</u>	
• geobuf ^{ref}	
javascript apis	javascript apis
• OpenLayers ref	Leaflet ref
• d3 ^{ref}	Google Maps API ref
 ArcGIS API for JavaScript ref 	
 Mapbox GL JS ref 	

Data handling and libraries

The spatial extension for pandas

Data handling and libraries

https://geopandas.org/

Data handling and libraries

Uses Shapely for geometries

CRS support

Intersection

Static maps

GeoPandas handles vector data

Vector data: geometric objects

.gpkg, .shp, .svg, .geojson

Raster data: grid of pixels

.tif, .jpg, .png, .bmp

Data handling – file formats

```
Geopackage – 'universal'
GeoJSON – web-optimized
CSV
Shapefiles – old school
....
```

Basic geometric objects are handled by shapely

Spatial data operations in GeoPandas/Shapely

Spatial data operations in GeoPandas/Shapely

Set based operations

intersection = gdf1.overlay(gdf2, how='intersection')

Spatial data operations in GeoPandas

Spatial join

join = point_gdf.sjoin(poly_gdf)

Spatial data operations in GeoPandas/Shapely

Spatial queries

...and many more!

Thank you! Let's explore together!

sandorjuhasz.com