Ερωτήματα SQL με σύζευξη και ομαδοποίηση Παραδείγματα και εφαρμογές από τη βάση δεδομένων company

Αθανάσιος Σταυρακούδης

http://stavrakoudis.econ.uoi.gr

Άνοιξη 2014

Περιεχόμενα

- 🚺 Πλήθος υπαλλήλων ανά τμήμα με μισθό άνω των 1300 €
- 2 Υπάλληλοι σε ακριβώς 2 έργα
- ③ Έργα με 3 υπαλλήλους του τμήματος 2
- 4 Απασχόληση σε έργα των υπαλλήλων του τμήματος 4
- 5 Πλήθος υπαλλήλων που προσλήφθηκαν το 2002 και εργάζονται σε έργα με πρόοδο < 75%
- 6 Ασκήσεις επανάληψης

Ομαδοποίηση 1:Ν

Ομαδοποίηση 1:Ν

1	depname	COUNT(*)
2		
3	Γραμματεί ας	1
4	Διοίκησης/Επίβλεψης	3
5	Εξωτερικών συνεργατών	1
6	Επιστημόνων/Μηχανικών	3
7	Μάνατζμεντ/Πωλήσεων	5
8	Οικονομολόγων/Λογιστών	3

Ομαδοποίηση 1:Ν

1	depname	COUNT(*)
2		
3	Γραμματείας	1
4	Διοίκησης/Επίβλεψης	3
5	Εξωτερικών συνεργατών	1
6	Επιστημόνων/Μηχανικών	3
7	Μάνατζμεντ/Πωλήσεων	5
8	Οικονομολόγων/Λογιστών	3

- Δεδομένα από δύο πίνακες: departments, employees, επομένως θα χρειαστεί κάποιου είδους σύζευξη.
- Ομαδοποίηση απαραίτητη: πλήθος ανά ...

Έχουμε ξαναδεί παρόμοιο παράδειγμα

Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$

Έχουμε ξαναδεί παρόμοιο παράδειγμα

Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$

SELECT depid, COUNT(*)
 FROM employees
GROUP BY depid;

depid	COUNT(*)
1	3
2	4
3	9
4	5
5	2
6	7

Τρόπος σκέψης

Χρειαζόμαστε το όνομα τμήματος, δηλαδή το πεδίο depname του πίνακα departments.

Οι υπάλληλοι αποθηκεύονται στον πίνακα employees, και γνωρίζουμε ότι το πεδίο depid του πίνακα αυτού μας πληροφορεί για το τμήμα όπου απασχολείται κάθε υπάλληλος.

Οι πίνακες departments και employees έχουν συσχέτιση ένα προς πολλά, το πεδίο employees.depid είναι ξένο κλειδί.

Οι πίνακες departments και employees έχουν συσχέτιση ένα προς πολλά, το πεδίο employees.depid είναι ξένο κλειδί.

Σύνδεση πινάκων:

 $departments \bowtie_{departments.depid=employees.depid} employees$

FROM departments INNER JOIN employees
ON departments.depid = employees.depid

Οι πίνακες departments και employees έχουν συσχέτιση ένα προς πολλά, το πεδίο employees.depid είναι ξένο κλειδί.

Σύνδεση πινάκων:

 $departments \bowtie_{departments.depid=employees.depid} employees$

FROM departments INNER JOIN employees
ON departments.depid = employees.depid

ή με τη χρήση ψευδωνύμων των πινάκων:

 $\varrho_d(departments) \bowtie_{d.depid=e.depid} \varrho_e(employees)$

FROM employees e INNER JOIN departments d
ON e.depid = d.depid

Περιορισμός εγγραφών

Υπάρχει ο περιορισμός για τον μισθό των υπαλλήλων στο ερώτημα. Επομένως πρέπει να συμπληρωθεί ο όρος WHERE: $\sigma_{e.salary>1300}(\varrho_d(departments)\bowtie_{d.depid=e.depid}\varrho_e(employees))$

Περιορισμός εγγραφών

Υπάρχει ο περιορισμός για τον μισθό των υπαλλήλων στο ερώτημα. Επομένως πρέπει να συμπληρωθεί ο όρος WHERE: $\sigma_{e.salary>1300}(\varrho_d(\textit{departments})\bowtie_{d.\textit{depid}=e.\textit{depid}}\varrho_e(\textit{employees}))$

```
FROM employees e INNER JOIN departments d
ON e.depid = d.depid
WHERE e.salary > 1300
```


Η φράση «ανά τμήμα» δηλώνει ομαδοποίηση, επομένως χρειαζόμαστε τη συμπλήρωση όρου GROUP BY. Η ομαδοποίηση χρειάζεται για τον υπολογισμό του πλήθους (COUNT) «ανά τμήμα».

```
\substack{d.depname \mathscr{G}count(*) \big( \sigma_{e.salary} > 1300 \\ \big( \varrho_d(departments) \bowtie_{d.depid=e.depid} \varrho_e(employees) \big) \big)}
```


Η φράση «ανά τμήμα» δηλώνει ομαδοποίηση, επομένως χρειαζόμαστε τη συμπλήρωση όρου GROUP BY. Η ομαδοποίηση χρειάζεται για τον υπολογισμό του πλήθους (COUNT) «ανά τμήμα».

```
\substack{d.depname \mathscr{G}_{count(*)}(\sigma_{e.salary} > 1300 \\ (\varrho_d(departments) \bowtie_{d.depid=e.depid} \varrho_e(employees)))}
```

FROM employees e INNER JOIN departments d
ON e.depid = d.depid
WHERE e.salary > 1300
GROUP BY d.depname

Προβολή πεδίων

Από το σύνολο των πεδίων που διατίθενται μετά τη σύζευξη των πινάκων employees και departments μας ζητούνται μόνο το όνομα του τμήματος (άρα departments.depname) και το πλήθος εργαζομένων ανά τμήμα, δηλαδή COUNT(employees.depid):

 $\substack{d.depname \mathscr{G}count(*) \big(\sigma_{e.salary} > 1300 \\ \big(\varrho_d(departments) \bowtie_{d.depid = e.depid} \varrho_e(employees) \big) \big)}$

Προβολή πεδίων

Από το σύνολο των πεδίων που διατίθενται μετά τη σύζευξη των πινάκων employees και departments μας ζητούνται μόνο το όνομα του τμήματος (άρα departments.depname) και το πλήθος εργαζομένων ανά τμήμα, δηλαδή COUNT(employees.depid):

```
\substack{d.depname \mathscr{G}_{count(*)}(\sigma_{e.salary} > 1300 \\ (\varrho_d(departments) \bowtie_{d.depid=e.depid} \varrho_e(employees)))}
```

```
SELECT d.depname, COUNT(e.depid)
FROM employees e INNER JOIN departments d
ON e.depid = d.depid
WHERE e.salary > 1300
GROUP BY d.depname
```


Επιπλέον επιλογές και παρατηρήσεις

 Δεν υπάρχει κάποια απαίτηση για περιορισμό των εγγραφών μετά την ομαδοποίηση, δεν χρειάζεται ο όρος HAVING.

- Δεν υπάρχει κάποια απαίτηση για περιορισμό των εγγραφών μετά την ομαδοποίηση, δεν χρειάζεται ο όρος HAVING.
- Δεν υπάρχει απαίτηση για ταξινόμηση των εγγραφών του αποτελέσματος, δεν χρειάζεται ο όρος ORDER BY.

- Δεν υπάρχει κάποια απαίτηση για περιορισμό των εγγραφών μετά την ομαδοποίηση, δεν χρειάζεται ο όρος HAVING.
- Δεν υπάρχει απαίτηση για ταξινόμηση των εγγραφών του αποτελέσματος, δεν χρειάζεται ο όρος ORDER BY.
- Το ερώτημα είναι πλήρες λοιπόν.

Επιπλέον επιλογές και παρατηρήσεις

 Δεν υπάρχει κάποια απαίτηση για περιορισμό των εγγραφών μετά την ομαδοποίηση, δεν χρειάζεται ο όρος HAVING.

- Δεν υπάρχει κάποια απαίτηση για περιορισμό των εγγραφών μετά την ομαδοποίηση, δεν χρειάζεται ο όρος HAVING.
- Δεν υπάρχει απαίτηση για ταξινόμηση των εγγραφών του αποτελέσματος, δεν χρειάζεται ο όρος ORDER BY.

- Δεν υπάρχει κάποια απαίτηση για περιορισμό των εγγραφών μετά την ομαδοποίηση, δεν χρειάζεται ο όρος HAVING.
- Δεν υπάρχει απαίτηση για ταξινόμηση των εγγραφών του αποτελέσματος, δεν χρειάζεται ο όρος ORDER BY.
- Το ερώτημα είναι πλήρες λοιπόν.


```
SELECT d.depname, COUNT(e.depid)
FROM employees e INNER JOIN departments d
ON e.depid = d.depid
WHERE e.salary > 1300
GROUP BY d.depname
```


Να βρεθεί το πλήθος των εργαζομένων με μισθό μεγαλύτερο των 1300 € ανά όνομα τμήματος

```
SELECT d.depname, COUNT(e.depid)
    FROM employees e INNER JOIN departments d
         ON e.depid = d.depid
  WHERE e.salary > 1300
GROUP BY d.depname
                                   COUNT(*)
depname
Γραμματείας
Διοίκησης/Επίβλεψης
Εξωτερικών συνεργατών
Επιστημόνων/Μηχανικών
Μάνατζμεντ/Πωλήσεων
Οικονομολόγων/Λογιστών
```

10

11

12

13

Περιεχόμενα

- 💶 Πλήθος υπαλλήλων ανά τμήμα με μισθό άνω των 1300 €
- ② Υπάλληλοι σε ακριβώς 2 έργα
- ③ Έργα με 3 υπαλλήλους του τμήματος 2
- 4 Απασχόληση σε έργα των υπαλλήλων του τμήματος 4
- 5 Πλήθος υπαλλήλων που προσλήφθηκαν το 2002 και εργάζονται σε έργα με πρόοδο <75%
- 6 Ασκήσεις επανάληψης

Ομαδοποίηση 1:Ν με 3 πίνακες

Να βρεθούν οι υπάλληλοι (κωδικός, όνομα, όνομα τμήματος) που απασχολούνται σε ακριβώς 2 έργα

Ομαδοποίηση 1:Ν με 3 πίνακες

Να βρεθούν οι υπάλληλοι (κωδικός, όνομα, όνομα τμήματος) που απασχολούνται σε ακριβώς 2 έργα

1				
2	empid	firstname	lastname	depname
3				
4	153	Μαρία	Αλεβιζάτου	Οικονομολόγων/Λογιστών
5	234	Αδαμαντία	Θεοτοκάτου	Γραμματεί ας
6	243	Δέσποινα	Παπαδοπούλου	Οικονομολόγων/Λογιστών
7	431	Κώστας	Παπαδόπουλος	Επιστημόνων/Μηχανικών
8	435	Αντώνης	Παύλου	Επιστημόνων/Μηχανικών
9	483	Ηρακλής	Μανωλάκης	Επιστημόνων/Μηχανικών
10	503	Μαριλένα	Κρέσπα	Οικονομολόγων/Λογιστών
11	835	Αθανάσιος	Πετράκης	Μάνατζμεντ/Πωλήσεων

Ποιοι πίνακες χρειάζονται;

Στοιχεία υπαλλήλων empid, firstname, lastname, επομένως ο πίνακας employees.

- ① Στοιχεία υπαλλήλων empid, firstname, lastname, επομένως ο πίνακας employees.
- Στοιχεία τμήματος depname, επομένως ο πίνακας departments.

- ① Στοιχεία υπαλλήλων empid, firstname, lastname, επομένως ο πίνακας employees.
- Στοιχεία τμήματος depname, επομένως ο πίνακας departments.
- Στοιχεία απασχόλησης: πλήθος συμμετοχών σε έργα, επομένως ο πίνακας workson.

- ① Στοιχεία υπαλλήλων empid, firstname, lastname, επομένως ο πίνακας employees.
- ② Στοιχεία τμήματος depname, επομένως ο πίνακας departments.
- Στοιχεία απασχόλησης: πλήθος συμμετοχών σε έργα, επομένως ο πίνακας workson.
- Υπενθύμιση: Απασχόληση ενός υπαλλήλου σε 2 έργα σημαίνει πως υπάρχουν 2 εγγραφές στον πίνακα workson με τον κωδικό του.

Σύζευξη πινάκων departments και employees

 $\varrho_d(departments) \bowtie_{d.depid=e.depid} \varrho_e(employees)$

FROM departments d INNER JOIN employees e
ON d.depid = e.depid

Σύζευξη πινάκων departments και employees

 $\varrho_d(departments)\bowtie_{d.depid=e.depid} \varrho_e(employees)$

FROM departments d INNER JOIN employees e
ON d.depid = e.depid

Σύζευξη departments, employees και workson

 $\varrho_d(departments)\bowtie_{d.depid=e.depid} \varrho_e(employees)$

 $\bowtie_{e.empid=w.empid} \varrho_w(workson)$

ON e.empid = w.empid

FROM (departments d INNER JOIN employees e
ON d.depid = e.depid)
INNER JOIN workson w

Ομαδοποίηση εγγραφών

Στο ερώτημα υπάρχει ο περιορισμός για υπαλλήλους που εργάζονται σε 2 ακριβώς έργα. Απαιτείται η ομαδοποίηση ως προς τα πεδία που ζητούνται στο ερώτημα e.empid, e.firstname, e.lastname, d.depname:

```
e.empid,e.firstname,e.lastname,d.depname\mathscr{G}count(*) (\varrho_d(departments) \bowtie_{d.depid=e.depid} \varrho_e(employees) \\\bowtie_{e.empid=w.empid} \varrho_w(workson))
```


Ομαδοποίηση εγγραφών

Στο ερώτημα υπάρχει ο περιορισμός για υπαλλήλους που εργάζονται σε 2 ακριβώς έργα. Απαιτείται η ομαδοποίηση ως προς τα πεδία που ζητούνται στο ερώτημα e.empid, e.firstname, e.lastname, d.depname:

```
e.empid,e.firstname,e.lastname,d.depname\mathscr{G}count(*) (\varrho_d(departments)\bowtie_{d.depid=e.depid}\varrho_e(employees)\bowtie_{e.empid=w.empid}\varrho_w(workson))
```

FROM (departments d INNER JOIN employees e

ON d.depid = e.depid)

INNER JOIN workson w

ON e.empid = w.empid

GROUP BY e.empid, e.firstname, e.lastname, d.depname

Περιορισμός μετά την ομαδοποίηση

Είμαστε τώρα σε θέση να εφαρμόσουμε τον περιορισμό για ακριβώς 2 συμμετοχές υπαλλήλων σε έργα. Στον όρο **HAVING** και όχι στον όρο **WHERE**:

```
\sigma_{count(*)=2}(e.empid,e.firstname,e.lastname,d.depname}\mathcal{G}_{count(*)}
(\varrho_d(departments)\bowtie_{d.depid=e.depid}\varrho_e(employees)
\bowtie_{e.empid=w.empid}\varrho_w(workson)))
```


Περιορισμός μετά την ομαδοποίηση

Είμαστε τώρα σε θέση να εφαρμόσουμε τον περιορισμό για ακριβώς 2 συμμετοχές υπαλλήλων σε έργα. Στον όρο **HAVING** και όχι στον όρο **WHERE**:

```
\sigma_{count(*)=2}(e.empid,e.firstname,e.lastname,d.depname}\mathscr{G}_{count(*)} \\ (\varrho_{d}(departments) \bowtie_{d.depid=e.depid} \varrho_{e}(employees) \\ \bowtie_{e.empid=w.empid} \varrho_{w}(workson)))
```

FROM (departments d INNER JOIN employees e
ON d.depid = e.depid)
INNER JOIN workson w
ON e.empid = w.empid
GROUP BY e.empid, e.firstname, e.lastname, d.depname
HAVING COUNT(*) = 2

Ομαδοποίηση 1:Ν με 3 πίνακες – Τελική

Τελική διατύπωση: υπάλληλοι σε 2 έργα

 $\Pi_{e.empid,e.firstname,e.lastname,d.depname}$ $(\sigma_{count}(*)=2(e.empid,e.firstname,e.lastname,d.depname}\mathcal{G}_{count}(*)$ $(\varrho_{d}(departments)\bowtie_{d.depid=e.depid}\varrho_{e}(employees)$ $\bowtie_{e.empid=w.empid}\varrho_{w}(workson))))$

Ομαδοποίηση 1:Ν με 3 πίνακες – Τελική

Τελική διατύπωση: υπάλληλοι σε 2 έργα

```
\Pi_{e.empid,e.firstname,e.lastname,d.depname}
(\sigma_{count}(*)=2(e.empid,e.firstname,e.lastname,d.depname}\mathcal{G}_{count}(*)
(\varrho_{d}(departments)\bowtie_{d.depid=e.depid}\varrho_{e}(employees)
\bowtie_{e.empid=w.empid}\varrho_{w}(workson))))
```

```
SELECT e.empid, e.firstname, e.lastname, d.depname
FROM (departments d INNER JOIN employees e
ON d.depid = e.depid)
INNER JOIN workson w
ON e.empid = w.empid
GROUP BY e.empid, e.firstname, e.lastname, d.depname
HAVING COUNT(*) = 2;
```

Περιεχόμενα

- 💶 Πλήθος υπαλλήλων ανά τμήμα με μισθό άνω των 1300 €
- ② Υπάλληλοι σε ακριβώς 2 έργα
- 3 Έργα με 3 υπαλλήλους του τμήματος 2
- 4 Απασχόληση σε έργα των υπαλλήλων του τμήματος 4
- 5 Πλήθος υπαλλήλων που προσλήφθηκαν το 2002 και εργάζονται σε έργα με πρόοδο < 75%
- 6 Ασκήσεις επανάληψης


```
proid title
-----21 Παροχή συμβουλευτικών υπηρεσιών...
38 Μελέτη εναλλακτικών λύσεων για...
```



```
proid title
-----21 Παροχή συμβουλευτικών υπηρεσιών...
38 Μελέτη εναλλακτικών λύσεων για...
```


Να βρεθεί ο κωδικός και ο τίτλος των έργων στα οποία απασχολούνται ακριβώς 3 υπάλληλοι του τμήματος 2

```
proid title
-------
21 Παροχή συμβουλευτικών υπηρεσιών...
38 Μελέτη εναλλακτικών λύσεων για...
```

Πληροφορίες από τον πίνακα projects


```
proid title
------
21 Παροχή συμβουλευτικών υπηρεσιών...
38 Μελέτη εναλλακτικών λύσεων για...
```

- 1 Πληροφορίες από τον πίνακα projects
- Αναζήτηση με βάση δεδομένα από τους πίνακες employees, workson


```
proid title
------
21 Παροχή συμβουλευτικών υπηρεσιών...
38 Μελέτη εναλλακτικών λύσεων για...
```

- Πληροφορίες από τον πίνακα projects
- Αναζήτηση με βάση δεδομένα από τους πίνακες employees, workson
- Λύση: σύζευξη πινάκων

Ποιοι πίνακες χρειάζονται;

Στοιχεία έργων proid, title, επομένως ο πίνακας projects.

- Στοιχεία έργων proid, title, επομένως ο πίνακας projects.
- Στοιχεία υπαλλήλων: depid=2, επομένως ο πίνακας employees.

- Στοιχεία έργων proid, title, επομένως ο πίνακας projects.
- Στοιχεία υπαλλήλων: depid=2, επομένως ο πίνακας employees.
- Στοιχεία απασχόλησης: πλήθος συμμετοχών σε έργα, επομένως ο πίνακας workson.

- Στοιχεία έργων proid, title, επομένως ο πίνακας projects.
- Στοιχεία υπαλλήλων: depid=2, επομένως ο πίνακας employees.
- Στοιχεία απασχόλησης: πλήθος συμμετοχών σε έργα, επομένως ο πίνακας workson.
- Υπενθύμιση: Απασχόληση ενός υπαλλήλου σε 3 έργα σημαίνει πως υπάρχουν 2 εγγραφές στον πίνακα workson με τον κωδικό του.

Σύζευξη employees, workson, projects

 $\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)$ $\bowtie_{w.proid=p.proid} \varrho_p(projects)$

Σύζευξη employees, workson, projects

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```


Σύζευξη employees, workson, projects

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid

Περιορισμός εγγραφών e.depid=2

Υπάρχει ο περιορισμός που αφορά τους υπαλλήλους του τμήματος 2:

```
\sigma_{e.depid=2}(
\varrho_{e}(employees) \bowtie_{e.empid=w.empid} \varrho_{w}(workson)
\bowtie_{w.proid=p.proid} \varrho_{p}(projects))
```


Περιορισμός εγγραφών e.depid=2

Υπάρχει ο περιορισμός που αφορά τους υπαλλήλους του τμήματος 2:

```
\sigma_{e.depid=2}(
\varrho_{e}(employees) \bowtie_{e.empid=w.empid} \varrho_{w}(workson)
\bowtie_{w.proid=p.proid} \varrho_{p}(projects))
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```

WHERE e.depid = 2

Ομαδοποίηση εγγραφών

Στο ερώτημα υπάρχει ο περιορισμός για ακριβώς 3 συμμετοχές υπαλλήλων σε έργα. Απαιτείται η εφαρμογή ομαδοποίησης εγγραφών ως προς τα ζητούμενα του ερωτήματος:

Ομαδοποίηση εγγραφών

Στο ερώτημα υπάρχει ο περιορισμός για ακριβώς 3 συμμετοχές υπαλλήλων σε έργα. Απαιτείται η εφαρμογή ομαδοποίησης εγγραφών ως προς τα ζητούμενα του ερωτήματος:

$$p.proid,p.title Gcount(*) (\sigma_{e.depid=2} (e(employees)) \bowtie_{e.empid=w.empid} \varrho_w(workson) \bowtie_{w.proid=p.proid} \varrho_p(projects)))$$

Ομαδοποίηση εγγραφών

Στο ερώτημα υπάρχει ο περιορισμός για ακριβώς 3 συμμετοχές υπαλλήλων σε έργα. Απαιτείται η εφαρμογή ομαδοποίησης εγγραφών ως προς τα ζητούμενα του ερωτήματος:

```
p.proid,p.title Gcount(*) (\sigma_{e.depid=2}(e(employees)) \bowtie_{e.empid=w.empid} \varrho_w(workson) \bowtie_{w.proid=p.proid} \varrho_p(projects)))
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```

WHERE e.depid = 2 GROUP BY p.proid, p.title

Περιορισμός μετά την ομαδοποίηση

Μετά την ομαδοποίηση των εγγραφών εφαρμόσουμε τον περιορισμό για ακριβώς 3 συμμετοχές των υπαλλήλων στα έργα:

$$\sigma_{count(*)=3}(p.proid,p.title} G_{count(*)}(\sigma_{e.depid=2}(epployees)) \bowtie_{e.empid=w.empid} Q_{w}(workson)$$

$$\bowtie_{w.proid=p.proid} Q_{p}(projects))))$$

Περιορισμός μετά την ομαδοποίηση

Μετά την ομαδοποίηση των εγγραφών εφαρμόσουμε τον περιορισμό για ακριβώς 3 συμμετοχές των υπαλλήλων στα έργα:

```
\sigma_{count(*)=3}(p.proid,p.title}\mathcal{G}_{count(*)}(\sigma_{e.depid=2}(e_e(employees))) \bowtie_{e.empid=p.proid} \varrho_p(projects))))
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```

```
WHERE e.depid = 2
GROUP BY p.proid, p.title
HAVING COUNT(*) = 3
```


Πολλά προς πολλά – Τελική διατύπωση

Ποια πεδία θέλουμε στο αποτέλεσμα:

$$\Pi_{p.proid,p.title}(\sigma_{count(*)=3}(p.proid,p.title}\mathcal{G}_{count(*)}(\sigma_{e.depid=2}(e.employees)))) \bowtie_{e.empid=p.proid} \varrho_{p}(projects)))))$$

Πολλά προς πολλά – Τελική διατύπωση

Ποια πεδία θέλουμε στο αποτέλεσμα:

HAVING COUNT(*) = 3;

```
\begin{split} & \Pi_{p.proid,p.title} (\sigma_{count(*)=3}(_{p.proid,p.title} \mathscr{G}_{count(*)}(\sigma_{e.depid=2}(\\ & \varrho_{e}(employees) \bowtie_{e.empid=w.empid} \varrho_{w}(workson) \\ & \bowtie_{w.proid=p.proid} \varrho_{p}(projects))))) \end{split}
```

```
SELECT p.proid, p.title
FROM (employees e INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
WHERE e.depid = 2
GROUP BY p.proid, p.title
```


Περιεχόμενα

- 💶 Πλήθος υπαλλήλων ανά τμήμα με μισθό άνω των 1300 €
- 2 Υπάλληλοι σε ακριβώς 2 έργα
- ③ Έργα με 3 υπαλλήλους του τμήματος 2
- 4 Απασχόληση σε έργα των υπαλλήλων του τμήματος 4
- 5 Πλήθος υπαλλήλων που προσλήφθηκαν το 2002 και εργάζονται σε έργα με πρόοδο <75%
- 6 Ασκήσεις επανάληψης

Πλήθος υπαλλήλων ανά έργο

Να βρεθεί το πλήθος των των συμμετοχών σε έργα των υπαλλήλων του τμήματος 4, ανά κωδικό και τίτλο έργου στα οποία απασχολούνται

Πλήθος υπαλλήλων ανά έργο

Να βρεθεί το πλήθος των των συμμετοχών σε έργα των υπαλλήλων του τμήματος 4, ανά κωδικό και τίτλο έργου στα οποία απασχολούνται

1	proid	title	COUNT(*)
2			
3	12	Επίβλεψη κατασκευής σταθμού	2
4	14	Μελέτη και επίβλεψη κατασκευής	. 1
5	38	Μελέτη εναλλακτικών λύσεων για	. 1
6	43	Μελέτη οικονομικής βιωσιμότητας	. 1

Πλήθος υπαλλήλων ανά έργο

Να βρεθεί το πλήθος των των συμμετοχών σε έργα των υπαλλήλων του τμήματος 4, ανά κωδικό και τίτλο έργου στα οποία απασχολούνται

1	proid	title	COUNT(*)
2			
3	12	Επίβλεψη κατασκευής σταθμού	2
4	14	Μελέτη και επίβλεψη κατασκευής	. 1
5	38	Μελέτη εναλλακτικών λύσεων για	. 1
6	43	Μελέτη οικονομικής βιωσιμότητας	. 1

Να βρεθεί το πλήθος των των συμμετοχών σε έργα των υπαλλήλων του τμήματος 4, ανά κωδικό και τίτλο έργου στα οποία απασχολούνται

1	proid	title COUNT(*)	
2			
3	12	Επίβλεψη κατασκευής σταθμού	2
4	14	Μελέτη και επίβλεψη κατασκευής	1
5	38	Μελέτη εναλλακτικών λύσεων για	1
6	43	Μελέτη οικονομικής βιωσιμότητας	. 1

1 Πληροφορίες από τον πίνακα projects

Να βρεθεί το πλήθος των των συμμετοχών σε έργα των υπαλλήλων του τμήματος 4, ανά κωδικό και τίτλο έργου στα οποία απασχολούνται

1	proid	title CO	COUNT(*)	
2				
3	12	Επίβλεψη κατασκευής σταθμού	2	
1	14	Μελέτη και επίβλεψη κατασκευής	1	
	38	Μελέτη εναλλακτικών λύσεων για	1	
3	43	Μελέτη οικονομικής βιωσιμότητας	1	

- 1 Πληροφορίες από τον πίνακα projects
- Αναζήτηση με βάση δεδομένα από τους πίνακες employees, workson

Να βρεθεί το πλήθος των των συμμετοχών σε έργα των υπαλλήλων του τμήματος 4, ανά κωδικό και τίτλο έργου στα οποία απασχολούνται

proid	title COUNT(*)	
12	Επίβλεψη κατασκευής σταθμού	2
14	Μελέτη και επίβλεψη κατασκευής	1
38	Μελέτη εναλλακτικών λύσεων για	1
43	Μελέτη οικονομικής βιωσιμότητας	1
	12 14 38	12 Επίβλεψη κατασκευής σταθμού 14 Μελέτη και επίβλεψη κατασκευής

- Πληροφορίες από τον πίνακα projects
- ② Αναζήτηση με βάση δεδομένα από τους πίνακες employees, workson
- **3** Λύση: σύζευξη πινάκων

Ποιοι πίνακες χρειάζονται;

Ποιοι πίνακες χρειάζονται;

Στοιχεία έργων proid, title, επομένως ο πίνακας projects.

Ποιοι πίνακες χρειάζονται;

- Στοιχεία έργων proid, title, επομένως ο πίνακας projects.
- ② Στοιχεία υπαλλήλων: depid=4, επομένως ο πίνακας employees.

Ποιοι πίνακες χρειάζονται;

- Στοιχεία έργων proid, title, επομένως ο πίνακας projects.
- Στοιχεία υπαλλήλων: depid=4, επομένως ο πίνακας employees.
- Στοιχεία απασχόλησης: πλήθος συμμετοχών σε έργα, επομένως ο πίνακας workson.

Σύζευξη πινάκων

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```


Σύζευξη πινάκων

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```


Σύζευξη πινάκων

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid

Περιορισμός εγγραφών e.depid=4

Υπάρχει ο περιορισμός που αφορά τους υπαλλήλους του τμήματος 4:

```
\sigma_{e.depid=4}(
\varrho_{e}(employees) \bowtie_{e.empid=w.empid} \varrho_{w}(workson)
\bowtie_{w.proid=p.proid} \varrho_{p}(projects))
```


Περιορισμός εγγραφών e.depid=4

Υπάρχει ο περιορισμός που αφορά τους υπαλλήλους του τμήματος 4:

```
\sigma_{e.depid=4}(
\varrho_e(employees)\bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects))
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```

WHERE e.depid = 4

Ομαδοποίηση

«πλήθος των υπαλλήλων ανά έργο», δηλαδή ομαδοποίηση:

```
p.proid,p.title Gcount(*) (\sigma_{e.depid=4} (eepployees)) \bowtie_{e.empid=w.empid} \varrho_w(workson) \bowtie_{w.proid=p.proid} \varrho_p(projects)))
```


Ομαδοποίηση

«πλήθος των υπαλλήλων ανά έργο», δηλαδή **ομαδοποίηση**:

```
p.proid,p.title \mathscr{G}_{count(*)}(\sigma_{e.depid=4}(employees)) \bowtie_{e.empid=w.empid} \varrho_w(workson) \bowtie_{w.proid=p.proid} \varrho_p(projects)))
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```

WHERE e.depid = 4
GROUP BY p.proid, p.title

Τελική διατύπωση

$$p.proid,p.title Gcount(*) (\sigma_{e.depid=2} (e(employees)) \bowtie_{e.empid=w.empid} \varrho_w(workson) \bowtie_{w.proid=p.proid} \varrho_p(projects)))$$

Τελική διατύπωση

```
p.proid,p.title \mathscr{G}_{count(*)}(\sigma_{e.depid=2}(e)) \bowtie_{e.empid=w.empid} \varrho_{w}(workson) \bowtie_{w.proid=p.proid} \varrho_{p}(projects)))
```

```
SELECT p.proid, p.title, COUNT(*)

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON p.proid = w.proid

WHERE e.depid = 4

GROUP BY p.proid, p.title;
```


Περιεχόμενα

- 💶 Πλήθος υπαλλήλων ανά τμήμα με μισθό άνω των 1300 €
- 2 Υπάλληλοι σε ακριβώς 2 έργα
- ③ Έργα με 3 υπαλλήλους του τμήματος 2
- 4 Απασχόληση σε έργα των υπαλλήλων του τμήματος 4
- 5 Πλήθος υπαλλήλων που προσλήφθηκαν το 2002 και εργάζονται σε έργα με πρόοδο <75%
- 6 Ασκήσεις επανάληψης


```
COUNT(DISTINCT e.empid)
-----3
```



```
COUNT(DISTINCT e.empid)
-----3
```


Να βρεθεί το πλήθος των υπαλλήλων που προσλήφθηκαν μέσα στο 2002 και απασχολούνται σε έργα με βαθμό προόδου μικρότερο του 75%

```
COUNT(DISTINCT e.empid)
-----3
```

Πληροφορίες από τον πίνακα employees


```
COUNT(DISTINCT e.empid)
-----3
```

- Πληροφορίες από τον πίνακα employees
- Αναζήτηση με βάση δεδομένα από τους πίνακες employees, projects


```
COUNT(DISTINCT e.empid)
-----3
```

- Πληροφορίες από τον πίνακα employees
- Αναζήτηση με βάση δεδομένα από τους πίνακες employees, projects
- **3** Λύση: σύζευξη πινάκων


```
COUNT(DISTINCT e.empid)
```

- Πληροφορίες από τον πίνακα employees
- Αναζήτηση με βάση δεδομένα από τους πίνακες employees, projects
- **3** Λύση: σύζευξη πινάκων
- Προσοχή στη χρήση του πίνακα workson

Ποιοι πίνακες χρειάζονται;

Ποιοι πίνακες χρειάζονται;

 Στοιχεία υπαλλήλων empid, hiredate, επομένως ο πίνακας employees.

Ποιοι πίνακες χρειάζονται;

- Στοιχεία υπαλλήλων empid, hiredate, επομένως ο πίνακας employees.
- Στοιχεία έργων: progress, επομένως ο πίνακας projects.

Ποιοι πίνακες χρειάζονται;

- Στοιχεία υπαλλήλων empid, hiredate, επομένως ο πίνακας employees.
- Στοιχεία έργων: progress, επομένως ο πίνακας projects.
- Σύζευξη πινάκων υπαλλήλων και έργων, επομένως ο πίνακας workson.

Σύζευξη πινάκων

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```


Σύζευξη πινάκων

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```

```
FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid
```


Σύζευξη πινάκων

```
\varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
\bowtie_{w.proid=p.proid} \varrho_p(projects)
```

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid

Περιορισμός εγγραφών

Περιορισμός με βάση την ημερομηνία πρόσληψης και την πρόοδο έργου:

```
\sigma_{\sigma_{e.hiredate} \geq '2002-01-01' \land e.hiredate} \leq '2002-12-31' \land p.progress > 75
\varrho_{e}(employees) \bowtie_{e.empid} = w.empid = \varrho_{w}(workson)
\bowtie_{w.proid} = p.proid = \varrho_{p}(projects))
```


Περιορισμός εγγραφών

Περιορισμός με βάση την ημερομηνία πρόσληψης και την πρόοδο έργου:

```
\sigma_{\sigma_{e.hiredate} \geq '2002-01-01' \land e.hiredate} \leq '2002-12-31' \land p.progress > 75
\varrho_{e}(employees) \bowtie_{e.empid} =_{w.empid} \varrho_{w}(workson)
\bowtie_{w.proid} =_{p.proid} \varrho_{p}(projects))
```

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid

WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-31

AND p.progress < 75

Πρόσληψη το 2002 – τελική διατύπωση

Καταμέτρηση πλήθους

```
\mathscr{G}_{count(e.empid)}\sigma_{\sigma_{e.hiredate} \geq '2002-01-01' \land e.hiredate} \leq '2002-12-31' \land p.progress > 75} (
\varrho_{e}(employees) \bowtie_{e.empid} =_{w.empid} \varrho_{w}(workson)
\bowtie_{w.proid} =_{p.proid} \varrho_{p}(projects))
```


Πρόσληψη το 2002 – τελική διατύπωση

Καταμέτρηση πλήθους

10

```
\mathcal{G}_{count(e.empid)}\sigma_{\sigma_{e.hiredate}>'2002-01-01'\land e.hiredate}\leq'2002-12-31'\land p.progress>75
                  \varrho_e(employees) \bowtie_{e,empid=w,empid} \varrho_w(workson)
                                     \bowtie_{w.proid=p.proid} \varrho_p(projects))
 SELECT COUNT(DISTINCT e.empid)
    FROM (employees e INNER JOIN workson
                                 ON e.empid = w.empid)
                             INNER JOIN projects p
                                 ON p.proid = w.proid
   WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-31'
     AND p.progress < 75;
COUNT(DISTINCT e.empid)
```

3

107 / 128

Πρόσληψη το 2002 – λάθος διατύπωση

Χωρίς απαλοιφή διπλοεγγραφών

```
\mathscr{G}_{count(e.empid)}\sigma_{\sigma_{e.hiredate} \geq '2002-01-01' \land e.hiredate} \leq '2002-12-31' \land p.progress > 75} (
\varrho_{e}(employees) \bowtie_{e.empid=w.empid} \varrho_{w}(workson)
\bowtie_{w.proid=p.proid} \varrho_{p}(projects))
```


Πρόσληψη το 2002 – λάθος διατύπωση

Χωρίς απαλοιφή διπλοεγγραφών

10

```
\mathcal{G}_{count(e.empid)}\sigma_{\sigma_{e.hiredate}>'2002-01-01'\land e.hiredate}\leq'2002-12-31'\land p.progress>75
                   \varrho_e(employees) \bowtie_{e.empid=w.empid} \varrho_w(workson)
                                      \bowtie_{w.proid=p.proid} \varrho_p(projects))
 SELECT COUNT(e.empid)
    FROM (employees e INNER JOIN workson
                                 ON e.empid = w.empid)
                             INNER JOIN projects p
                                 ON p.proid = w.proid
  WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-31'
     AND p.progress < 75;
COUNT(e.empid)
```

109 / 128

Πρόσληψη το 2002 – γιατί DISTINCT;

Τι παρατηρείτε;

```
SELECT e.empid, e.hiredate, p.proid, p.progress
FROM (employees e INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON w.proid = p.proid
WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-31'
AND p.progress < 75;
```

empid	hiredate	proid	progress
206	2002-12-03	12	60.0
230	2002-12-03	12	60.0
230	2002-12-03	14	20.0
431	2002-09-16	14	20.0
230	2002-12-03	38	0.0

Διαχωρισμός δύο εννοιών

Διαχωρισμός δύο εννοιών

Πλήθος συμμετοχών υπαλλήλων σε έργα

```
SELECT COUNT(e.empid)

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON w.proid = p.proid

WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-31'

AND p.progress < 75;
```


Διαχωρισμός δύο εννοιών

```
Πλήθος συμμετοχών υπαλλήλων σε έργα
  SELECT COUNT(e.empid)
    FROM (employees e INNER JOIN workson
                          ON e.empid = w.empid)
                       INNER JOIN projects p
                          ON w.proid = p.proid
   WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-31'
     AND p.progress < 75;
Πλήθος υπαλλήλων σε έργα
```

```
SELECT COUNT(DISTINCT e.empid)
  FROM (employees e INNER JOIN workson w
                       ON e.empid = w.empid)
                    INNER JOIN projects p
                       ON w.proid = p.proid
```

WHERE e.hiredate BETWEEN '2002-01-01' AND '2002-12-3 AND p.progress < 75;

Περιεχόμενα

- 1 Πλήθος υπαλλήλων ανά τμήμα με μισθό άνω των 1300 €
- 2 Υπάλληλοι σε ακριβώς 2 έργα
- ③ Έργα με 3 υπαλλήλους του τμήματος 2
- 4 Απασχόληση σε έργα των υπαλλήλων του τμήματος 4
- 5 Πλήθος υπαλλήλων που προσλήφθηκαν το 2002 και εργάζονται σε έργα με πρόοδο < 75%
- 6 Ασκήσεις επανάληψης


```
SELECT p.proid, p.title, COUNT(*)
FROM (employees e INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
```



```
SELECT p.proid, p.title, COUNT(*)

FROM (employees e INNER JOIN workson w

ON e.empid = w.empid)

INNER JOIN projects p

ON p.proid = w.proid

WHERE e.salary < 1500
```



```
SELECT p.proid, p.title, COUNT(*)
FROM (employees e INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
WHERE e.salary < 1500
GROUP BY p.proid, p.title
```



```
SELECT p.proid, p.title, COUNT(*)
FROM (employees e INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
WHERE e.salary < 1500
GROUP BY p.proid, p.title
HAVING COUNT(*) < 5
```



```
SELECT p.proid, p.title, COUNT(*)
FROM (employees e INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
WHERE e.salary < 1500
GROUP BY p.proid, p.title
HAVING COUNT(*) < 5
ORDER BY COUNT(*) ASC;
```


Μισθοδοσία ανά τμήμα ...

Μισθοδοσία ανά τμήμα

```
SELECT d.depid, d.depname, SUM(DISTINCT e.salary)
FROM ((employees e INNER JOIN departments d
ON e.depid = d.depid)
INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
```


Μισθοδοσία ανά τμήμα

```
SELECT d.depid, d.depname, SUM(DISTINCT e.salary)
FROM ((employees e INNER JOIN departments d
ON e.depid = d.depid)
INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
WHERE p.progress > 50
```

Μισθοδοσία ανά τμήμα ...

```
SELECT d.depid, d.depname, SUM(DISTINCT e.salary)
FROM ((employees e INNER JOIN departments d
ON e.depid = d.depid)
INNER JOIN workson w
ON e.empid = w.empid)
INNER JOIN projects p
ON p.proid = w.proid
WHERE p.progress > 50
GROUP BY d.depid, d.depname
```

Μισθοδοσία ανά τμήμα ...

Διευθυντές και έργα

Να βρεθεί το όνομα του τμήματος, το επώνυμο και ο κωδικός του διευθυντή και το πλήθος των έργων στα οποία απασχολείται ο κάθε διευθυντής.

Διευθυντές και έργα

Να βρεθεί το όνομα του τμήματος, το επώνυμο και ο κωδικός του διευθυντή και το πλήθος των έργων στα οποία απασχολείται ο κάθε διευθυντής.

```
SELECT d.depname, e.lastname, w.empid, COUNT(*)
FROM (departments d INNER JOIN employees e
ON d.manager = e.empid)
LEFT JOIN workson w
ON e.empid = w.empid
GROUP BY d.depname, e.lastname, w.empid;
```


Σχόλια και ερωτήσεις

Σας ευχαριστώ για την προσοχή σας

Είμαι στη διάθεσή σας για σχόλια, απορίες και ερωτήσεις

