159731 Studies in Computer Vision June 2024

Comparing Performance of Preprocessing Techniques for Traffic Sign Recognition using a HOG-SVM

Luis Vieira

School of Mathematical and Computational Sciences
Massey University – Albany Campus,
Auckland, New Zealand
23012096@massey.ac.nz

INTRODUCTION

Context & Motivation

• Traffic Sign Recognition (TSR) is critical for Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, ensuring road safety and efficient navigation

Objective

• Compare the performance of various preprocessing techniques for TSR using Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM)

Dataset

• The German Traffic Sign Recognition Benchmark (GTSRB)

DATASET

Overview

The GTSRB dataset contains over 50,000 images across 43 classes of traffic signs.

Importance

This dataset provides a comprehensive and diverse set of traffic sign images, ideal for evaluating TSR techniques under varied conditions.

Characteristics

- Images vary in size from 15x15 to 250x250 pixels.
- Each image includes a border of 10% around the traffic sign, aiding edge-based approaches.
- Annotated with class labels and bounding boxes (ROI)

source: dx.doi.org/10.1109/SII.2017.8279320

source: benchmark.ini.rub.de

METHODOLOGY

Compared Preprocessing Techniques

(CLAHE, HUE, YUV, and mix) + Gaussian Blur

Feature Extraction Method:

Histogram of Oriented Gradients (HOG)

Classifier

Support Vector Machine (SVM) with RBF kernel

Tools

C++17, Cmake 3.29.0, VSCode 1.90.0, Python 3.11.2 (for EDA & RandomizedCV)

IMPLEMENTATION

Dataset Handling

• Shuffling to reduce class imbalance

void splitDataset(const std::vector<Annotation>& annotation>& trainSet, std::vector<Annotation>& valSet, float trainRatio

```
std::vector<Annotation> shuffled = annotations;
std::mt19937 g(123);
std::shuffle(shuffled.begin(), shuffled.end(), g);
size_t trainSize = static_cast<size_t>(trainRatio * annotations.size());
trainSet.assign(shuffled.begin(), shuffled.begin() + trainSize);
valSet.assign(shuffled.begin() + trainSize, shuffled.end());
}
```

• Standard resizing images to 32x32 pixels

cv::Mat resizedImage = resizeImage(image, 32, 32);

• Train-validation split: 80:20 ratio

splitDataset(annotations, frainSet, valSet, 0.8);

PREPROCESSING IMPLEMENTATION

CLAHE

- Convert and split BGR into L, a, b channels
- Compute mean and std. deviation of L channel to dynamically adjust clip limit:
- Low contrast (std dev < 50): clip limit = 4.0
- Medium contrast (std dev < 100): clip limit = 2.0
- High contrast (std dev \geq 100): clip limit = 1.0
- Tile grid size: 8x8

HUE

- Convert and split BGR into H, S, V channels
- Equalise the histogram of the H channel to enhance the contrast of hue values

YUV

Convert BGR to YUV

```
void applyCLAHE(cv::Mat& image) {
cv::Mat lab image;
cv::cvtColor(image, lab image, cv::COLOR BGR2Lab);
std::vector<cv::Mat> lab planes;
cv::split(lab image, lab planes);
cv::Scalar mean, stddev;
cv::meanStdDev(lab planes[0], mean, stddev);
double clipLimit; cv::Size tileGridSize(8, 8);
if (stddev[0] < 50) {clipLimit = 4.0;} else if (stddev[0] < 100) {clipLimit = 2.0;} else {clipLimit = 1.0;}
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit, tileGridSize);
clahe->apply(lab planes[0], lab planes[0]);
cv::merge(lab_planes, lab_image);
cv::cvtColor(lab image, image, cv::COLOR Lab2BGR);}
cv::Mat extractHUE(const cv::Mat& image) {
cv::Mat hsv image, hue channel;
cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);
std::vector<cv::Mat> hsv_planes;
cv::split(hsv image, hsv planes);
cv::Mat hue channel equalized;
cv::equalizeHist(hsv planes[0], hue channel equalized);
hsv planes[0] = hue channel equalized;
cv::merge(hsv planes, hsv image);
cv::cvtColor(hsv image, hue channel, cv::COLOR HSV2BGR);
return hue channel;}
cv::Mat yuv image;
cv::cvtColor(resizedImage, yuv image, cv::COLOR BGR2Y/UV);
```

PREPOSSESSING TECHNIQUES

HOG-SVM IMPLEMENTATION

HOG Parameters

- Gaussian Blur ((3, 3), 0)
- Window size: 32x32 pixels
- Block size: 16x16 pixels
- Stride: 8 pixels
- Cell size: 8x8 pixels
- Bins: 9

SVM Hyperparameters

- C = 20.5557
- $\gamma = 0.2167$

```
cv::Mat computeHOG(const cv::Mat& image, int kernelSize = 3, double sigma = 0) {
    cv::Mat processedImage;
    cv::GaussianBlur(image, processedImage, cv::Size(kernelSize, kernelSize), sigma);
    cv::HOGDescriptor hog(cv::Size(32, 32), cv::Size(16, 16), cv::Size(8, 8), cv::Size(8, 8), 9);
    std::vector<float> descriptors;
    hog.compute(processedImage, descriptors);
    return cv::Mat(descriptors).clone().reshape(1, 1);
}
```

cv::Ptr<cv::ml::SVM> svmHOG, svmCLAHEHOG, svmYUVHOG, svmHUEHOG, svmCLAHEYUVHOG, svmHUEYUVHOG, svmCLAHEHUEYUVHOG;

```
// RandomizedSearchCV 3-fold 10 iteration ('C':(5, 25, 10), 'gamma': (0.05, 0.35, 10), ran in python) // best param: 'C': 9.4445, 11.6667, *20.5557, 22.7778; 'gamma': *0.2167, 0.2833, 0.3166, 0.35 double C = 20.5557; double gamma = 0.2167;
```

TEST SET METRICS

Method	F1 Score	Accuracy	Precision	Recall
HOG w/ Gaussian Blur (baseline)	0.8793	0.8965	0.9045	0.8648
CLAHE-HOG	0.8741	0.9033	0.8859	0.8681
YUV-HOG	0.8909	0.9125	0.9162	0.8765
HUE-HOG	0.8584	0.8808	0.8835	0.8455
CLAHE-YUV-HOG	0.8732	0.9049	0.8877	0.8651
HUE-YUV-HOG	0.8676	0.8885	0.8939	0.8529
CLAHE-HUE-YUV-HOG	0.8700	0.9013	0.8849	0.8610

Note. Confusion Matrix, Metrics, no. failed images per class, and list of failed images saved to output/folder.

CONCLUSIONS

Analysis

- Overfitting: some performance drop between validation to test results (around -8.5% in accuracy)
- Class Imbalance: dataset imbalance affecting generalisation.
- Best preprocessing technique: YUV-HOG (91.25% accuracy)

Possible improvements

- Use and compare with PCA/LDA
- Use synthetic data augmentation
- Fine-tunning preprocessing
- Compare with CNN

THANK YOU

LUIS VIEIRA
23012096@massey.ac.nz