# Mincer earnings function

$$\log(w_i) = \beta_0 + \beta_1 s_i + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i \tag{1}$$

Now that we are modeling people's choices, we need to quantify preferences

$$u_{1}(z, c, \eta_{1}) = f(z, c, \eta_{1})$$

$$u_{2}(w(s, x), k, \eta_{2}) = g(w(s, x), k, \eta_{2})$$
(2)

Now that we are modeling people's choices, we need to quantify preferences

$$u_{1}(z, c, \eta_{1}) = f(z, c, \eta_{1})$$
  

$$u_{2}(w(s, x), k, \eta_{2}) = g(w(s, x), k, \eta_{2})$$
(2)

- z is family background
- c is schooling costs
- k is number of kids in adult household
- $\eta_t$  are unobservable preferences [similar to  $\varepsilon$  in equation (1)]

And since we are working with a dynamic model, we need to write down the lifetime utility function—with discount factor  $\delta \in [0,1)$ :

$$V = u_1(z, c, \eta_1) + \delta u_2(w(s, x), k, \eta_2)$$
(3)

And since we are working with a dynamic model, we need to write down the lifetime utility function—with discount factor  $\delta \in [0,1)$ :

$$V = u_1(z, c, \eta_1) + \delta u_2(w(s, x), k, \eta_2)$$
(3)

- Equations (1)–(3) define our model
- This model is still laughably unrealistic, but at least we have something
- A number of questions remain, but we'll ignore these for now



Once we've written down the model, it's helpful to classify the different model objects:

# **Exogenous variables**

- family background (z)
- schooling costs (c)
- children in household (k)

### **Endogenous variables**

- schooling (s)
- period-2 work decision

#### Outcome variable

• hourly wages (w)

#### **Unobservables**

- log wages  $(\varepsilon)$
- preferences  $(\eta_t)$

## Model parameters

- returns to human capital  $(\beta)$
- discount factor  $(\delta)$
- other parameters implied by  $f(\cdot)$  and  $g(\cdot)$