

PROBLEM

PROBLEM STATEMENT / OPPORTUNITY YOU IDENTIFIED

Inaccuracy evaluating the effectiveness of building retrofits and their impact on energy consumption.

SUBJECT AREA

Built environment

- ⇒ Building energy efficiency retrofits.
 - Incentives\Services related to 'payfor-performance financing.'

SOLUTION

Implement the BECP Machine Learning model to evaluate the effectiveness of building retrofits by:

ACCURATE PREDICTIONS

Predicts building energy consumption for categories, such as: chilled water, electric, hot water, and steam meters.

PERFORMANCE ASSESSMENT

Gives a clear understanding of whether the retrofits are delivering the anticipated reduction in energy usage.

INVESTMENT DECISION SUPPORT

Offers stakeholders a reliable tool to make informed decisions about retrofit investments.

SOLUTION IMPACT

REAL STATE MARKETABILITY

- ✓ 9 out of 10 homebuyers prefer a home with energy-efficient features that lower energy costs²
- ✓ Home value increases by \$20 for every \$1 saved on energy bills³
 - ¹ International Energy Agency
 - ² EnergyLogic
 - ³ National Renewable Energy Laboratory (NREL)

⁴eeCompass

CLIMATE CHANGE

Buildings account for 30% of global energy consumption and 26% of global energy-related emissions¹

ENERGY EFFICIENCY

Higher-efficiency equipment can reduce energy use by 50% for electric heating and cooling systems⁴

BECP DATASET

MAIN FEATURES

- Data collected from more than 1,000 buildings over three years.
- ➤ Information stored in three CSV files
- Most columns contain numeric data, with only three categorical.
- The raw dataset comprises of 20 million rows, filtered down to a subset of 398,527 rows and 17 columns.

DATA QUALITY CONCERNS

9% of energy data equal to zero.

80% missing values for 'year_built' Energy measurements, heavily positive

SUBSET EDA

Numeric data distribution

Energy meter reading distribution

Variables features:

- Bimodal distribution for air and dew temperature
- Categorical structure

NEXT STEPS

DATA PROCESSING

- Apply log transformation to energy consumption, heavily positive skew.
- Perform time-series analysis to uncover patterns, seasonality, or trends.

FEATURE ENGINEERGING

- Create derived variables: EUI (Wh/m2).
- Extract temporal features such as time of day, day of the week, seasonality, or holidays, which can impact energy usage.
- Group temperature ranges, humidity levels and other weather variables.
- Validate newly engineered features by assessing their correlation with the target variable.

BASELINEMODELING

- Handling missing values
- Train the time-series model
 - Evaluate the model's performance
 - Understand model's predictive capability and limitations

