Developing Communication-aware Service Placement Frameworks in the Cloud Economy

Chao Chen, Ligang He, **Bo Gao**, Stephen A. Jarvis

Multitenant cloud system

- Cloud system with multiple tenants and services
 - Cloud Tenants: Users renting services and virtual machines.
 - Cloud system(Datacenter)
 - Cloud providers: deliver a level of QoS(Quality-of-Service), such as: Amazon Web Services, Microsoft Azure, Google Cloud Platform, etc,
 - Cloud Services: hosted by a collection of virtual machines running different jobs: data analysis, web servers, etc.

Example: NASDAQ OMX

S3:

Amazon simple Storage Service

EC2:

Amazon Elastic Compute

VPC:

Amazon Virtual Private Cloud

Direct Connect:

Amazon Direct Connect

EMR:

Amazon Elastic MapReduce

Challenges

1. Task/Service invocations may vary according to dynamic system information, and it may be difficult to know the full picture of the tasks/workflows in the Cloud. This work is *service-oriented*, which does not focus on allocating resources for *a set of specific tasks or workflows*, but aim to allocate resources based on *the interaction patterns between services*.

2. When the services interact with each other, data might be(cached) communicated between them. If the Virtual machine(VMs) that host the services with frequent communications among themselves can be placed to the same Physical Machine(PM), the communication cost could be significantly reduced. (The cost is huge!)

Storage

Map reduce

Challenges

1. Task/Service invocations may vary according to dynamic system information, and it may be difficult to know the full picture of the tasks/workflows in the Cloud. This work is *service-oriented*, which does not focus on allocating resources for *a set of specific tasks or workflows*, but aim to allocate resources based on *the interaction patterns between services*.

Leontief Input-Output Model in economy

2. When the services interact with each other, data might be(cached) communicated between them. If the Virtual machine(VMs) that host the services with frequent communications among themselves can be placed to the same Physical Machine(PM), the communication cost could be significantly reduced. (The cost is huge!)

Genetic algorithm to find out the "optimal" solution

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

		Agriculture	Manufacturing	Services	Open Sector
_	Agriculture	34.69	4.92	5.62	39.24
	Manufacturing	5.28	61.82	22.99	60.02
_	Services	10.45	25.95	42.03	130.65
-	Total Gross Output	84.56	163.43	219.03	

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

	Agriculture	Manufacturing	Services	Open Sector
Agriculture	34.69	4.92	5.62	39.24
Manufacturing	5.28	61.82	22.99	60.02
Services	10.45	25.95	42.03	130.65
Total Gross Output	84.56	163.43	219.03	

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

	Agriculture	Manufacturing	Services	Open Sector
Agriculture	34.69	4.92	5.62	39.24
Manufacturing	5.28	61.82	22.99	60.02
Services	10.45	25.95	42.03	130.65
Total Gross Output	84.56	163.43	219.03	

consumption matrix

 $C = \begin{bmatrix} .4102 & .0301 & .0257 \\ .0624 & .3783 & .1050 \\ .1236 & .1588 & .1919 \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} 39.24 \\ 60.02 \\ 130.65 \end{bmatrix}$

demand vector

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

	Agriculture	Manufacturing	Services	Open Sector
Agriculture	34.69	4.92	5.62	39.24
Manufacturing	5.28	61.82	22.99	60.02
Services	10.45	25.95	42.03	130.65
Total Gross Output	84.56	163.43	219.03	

consumption matrix

$$C = \begin{bmatrix} .4102 & .0301 & .0257 \\ .0624 & .3783 & .1050 \\ .1236 & .1588 & .1919 \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} 39.24 \\ 60.02 \\ 130.65 \end{bmatrix}$$

x - Equilibrium Production Level

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$

demand vector

$$\mathbf{x} = (I - C)^{-1}\mathbf{d} = \begin{bmatrix} 82.40 \\ 138.85 \\ 201.57 \end{bmatrix}$$

Modern industry ecosystem

Cloud ecosystem

Consumption Matrix

	Service 0	Service 1	Service 2	Service 3	Service 4	External demand
Service 0	c{0,0}	c{0,1}	c{0,2}	c{0,3}	c{0,4}	λΟ
Service 1	c{1,0}	c{1,1}	c{1,2}	c{1,3}	c{1,4}	λ1
Service 2	c{2,0}	c{2,1}	c{2,2}	c{2,3}	c{2,4}	λ2
Service 3	c{3,0}	c{3,1}	c{3,2}	c{3,3}	c{3,4}	λ3
Service 4	c{4,0}	c{4,1}	\c{4,2}	c{4,3}	c{4,4}	λ4
			c{2,1} =2			

Consumption relation

 $c{2,1} = 2$

 $c{2,1} = 2$

Consumption relation

Consumption relation

Communication Cost

$$C(\mathcal{M}) = \sum_{k=1}^{N} \sum_{j=1}^{M} \sum_{i=1}^{M} \beta_{ijk}$$

$$\tag{6}$$

$$\beta_{ijk} = \begin{cases} e_{ji} \times (f(j, R_j, v_{jk}) \times p_{ji} - f(i, R_i, v_{ik})) \\ & \text{if } \alpha_{ijk} \leq c_{ij} \\ & \text{otherwise} \end{cases}$$
 (7)

The objective is to find a VM-to-PM mapping such that $C(\mathcal{M})$ is minimized, subject to certain constraints. This can be formalized as Eq. 8, where x_i is the number of VM^i s

miminize
$$\mathcal{C}(\mathcal{M}),$$
 subject to: $\forall i: 1 \leq i \leq M, \sum_{k=1}^N v_{ik} = x_i$ (8) $v_{ik} > 0$

calculates that the amount of requests that are sent from $S\{j\}$ in PM $n\{k\}$ to $S\{i\}$ in a time unit, but cannot handled by VM $\{i\}$ in $n\{k\}$ in order to maintain the QoS. Therefore, these requests have to be sent to be processed by VM $\{i\}$ in a different PM.

The ratio of the number of $VM\{i\}$ to the number of $VM\{j\}$ in the PM $n\{k\}$

The total amount of data that have to be communicated in the Cloud caused by the inadequate resource capacity of $S\{j\}$ in PM $n\{k\}$ comparing with that of $S\{j\}$ in the same PM.

Designing Genetic Algorithm for VMs Allocation **Problem**

Calculate it via Eq. 5

$$C(\mathcal{M}) = \sum_{k=1}^{N} \sum_{j=1}^{M} \sum_{i=1}^{M} \beta_{ijk}$$

Genetic Algorithm: two points Crossover

Impact of the increase in external demands

a: computationintensive workflow

c: communication-

intensive workflow

Comparing CAGA with mini-nodes and the round-robin heuristic in terms of communication cost

Comparing CAGA with mini-nodes and the roundrobin heuristic in terms of number of used PMs

Convergence speed of CAGA

Question?

