Lengoaiak, Konputazioa eta Sistema Adimendunak

2. gaia: Lengoaiak – 0,9 puntu – Bilboko IITUE Ebazpena

2014-11-26

1 A^* zenbagarria da eta 2^{A^*} zenbaezina da (0,325 puntu)

1.1. (0,025 puntu) Har dezagun $A = \{a,b,c\}$ alfabetoa. A^* -ko hitzak zenbatuz joateko era egokia zein den zehaztu. Horretarako, zerrendako lehenengo 15 hitzak orden egokian eman.

$$[\varepsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, \ldots]$$

1.2. (0,300 puntu) Har dezagun edozein A alfabeto. Kontraesanaren teknika erabiliz, 2^{A^*} zenbaezina dela frogatu.

Frogapen hau honako atal hauen bidez laburtu daiteke:

• Demagun 2^{A^*} zenbagarria dela. 2^{A^*} zenbagarria baldin bada, $I\!\!N \to 2^{A^*}$ erako f funtzio bijektibo bat badagoela ziurta dezakegu. f funtzio hori erabiliz 2^{A^*} multzoko lengoaia denak zerrenda batean ipini ahal izango ditugu:

$$[f(0), f(1), f(2), f(3), \dots, f(j), \dots]$$

• Badakigu A^* zenbagarria dela eta, ondorioz, $\mathbb{N} \to A^*$ erako g funtzio bijektibo bat badagoela ziurta dezakegu. g funtzio hori erabiliz A^* multzoko hitz denak zerrenda batean ipini ahal izango ditugu:

$$[q(0), q(1), q(2), q(3), \dots, q(j), \dots]$$

- f eta g funtzioak erabiliz C lengoaia bat definituko dugu honako irizpide hau jarraituz:
 IN multzokoa den k zenbaki bakoitzeko:
 - g(k)hitza f(k)lengoaiakoa baldin bada, orduan g(k)hitza ez da ${\cal C}$ lengoaiakoa.
 - -g(k) hitza f(k) lengoaiakoa ez bada, orduan g(k) hitza C lengoaiakoa da.
- C lengoaia ere 2^{A^*} multzoko elementu bat izango denez, f funtzioak C lengoaiari ere zenbaki bat egokituko dio. Demagun zenbaki hori j zenbakia dela. Beraz, C = f(j).
- ullet Kontraesana g(j) hitza C lengoaiakoa al den aztertzerakoan sortzen da. Aurretik finkatu dugun irizpidearen arabera:
 - -g(j) hitza f(j) lengoaiakoa baldin bada, orduan g(j) hitza ez da C lengoaiakoa. Baina C=f(j) denez, honako hau daukagu: g(j) hitza f(j) lengoaiakoa baldin bada, orduan g(j) hitza ez da f(j) lengoaiakoa. Eta hori ezinezkoa da, g(j) hitza ezin baita aldi berean f(j) lengoaian egon eta ez egon.
 - g(j) hitza f(j) lengoaiakoa ez bada, orduan g(j) hitza C lengoaiakoa da. Baina C = f(j) denez, honako hau daukagu: g(j) hitza f(j) lengoaiakoa ez bada, orduan g(j) hitza f(j) lengoaiakoa da. Eta hori ezinezkoa da, g(j) hitza ezin baita aldi berean f(j) lengoaian ez egon eta egon.
- ullet zenbagarritzat joz edo hartuz kontraesana sortu denez, 2^{A^*} zenbaezina dela ondoriozta dezakegu.

2 Lengoaien definizioa (0,575 puntu)

Har dezagun $A = \{a, b, c\}$ alfabetoa:

2.1. (0,050 puntu) Hiru edo handiagoa den luzera bakoitia duten eta ertzeetako eta erdiko posizioetan sinbolo bera duten hitzez osatutako L_1 lengoaiaren definizio formala eman. Adibidez, $\underline{bca\underline{b}bc\underline{b}}$, \underline{ccc} , \underline{ccccc} , $\underline{abaa\underline{a}aac\underline{a}}$ hitzak L_1 lengoaiakoak dira baina ε , cba, aa, cabbbc eta aaaa ez dira L_1 lengoaiakoak.

$$L_1 = \{ w \mid w \in A^* \land \exists \alpha, u, v(\alpha \in A \land u \in A^* \land v \in A^* \land |u| = |v| \land w = \alpha u \alpha v \alpha) \}$$

Hor $|w| \ge 3 \land |w| \mod 2 \ne 0$ ere ipini daiteke, baina ez da beharrezkoa, izan ere hori beteko dela ondoriozta baitezakegu. Hala ere, ipintzea nahiko bagenu honela geldituko litzateke:

$$L_1 = \{ w \mid w \in A^* \land |w| \ge 3 \land |w| \bmod 2 \ne 0 \land \exists \alpha, u, v(\alpha \in A \land u \in A^* \land v \in A^* \land |u| = |v| \land w = \alpha u \alpha v \alpha) \}$$

Jarraian datorren aukeran informazio hori beharrezkoa da:

$$L_1 = \{ w \mid w \in A^* \land |w| \ge 3 \land |w| \bmod 2 \ne 0 \land w(1) = w(|w|) = w((|w| \operatorname{div} 2) + 1) \}$$

Hor div zatiketa osoa da.

2.2. (0,100 puntu) Hiru edo handiagoa den luzera bakoitia duten eta ertzeetako eta erdiko posizioetan sinbolo bera edukitzeaz gain, sinbolo hori beste posizioetan ez duten hitzez osatutako L_2 lengoaiaren definizio formala eman. Adibidez, $\underline{bca\underline{bccb}}$, \underline{ccc} , \underline{cbcbc} , $\underline{abcca\underline{ccca}}$ hitzak L_2 lengoaiakoak dira baina ε , \underline{cba} , \underline{aa} , \underline{aaaba} , \underline{aaaaa} eta \underline{aaaa} ez dira L_2 lengoaiakoak.

$$L_2 = \{ w \mid w \in A^* \wedge \exists \alpha, u, v (\alpha \in A \wedge u \in A^* \wedge v \in A^* \wedge |u| = |v| \wedge |w|_\alpha = 3 \wedge w = \alpha u \alpha v \alpha) \}$$

$$L_2 = \{ w \mid w \in A^* \land \exists \alpha, u, v (\alpha \in A \land u \in A^* \land v \in A^* \land |u| = |v| \land |u|_\alpha = |v|_\alpha = 0 \land w = \alpha u \alpha v \alpha) \}$$

Hor $|w| \ge 3 \land |w| \mod 2 \ne 0$ ere ipini daiteke baina ez da beharrezkoa. Ipiniko bagenu honela geldituko litzateke:

$$\begin{array}{ll} L_2 = \{ w \mid & w \in A^* \wedge |w| \geq 3 \wedge |w| \ \mathrm{mod} \ 2 \neq 0 \wedge \\ & \exists \alpha, u, v (\alpha \in A \wedge u \in A^* \wedge v \in A^* \wedge |u| = |v| \wedge |u|_\alpha = |v|_\alpha = 0 \wedge w = \alpha u \alpha v \alpha) \} \end{array}$$

Jarraian datorren aukera honetan informazio hori beharrezkoa da:

$$L_2 = \{ w \mid w \in A^* \land |w| \ge 3 \land |w| \bmod 2 \ne 0 \land w(1) = w(|w|) = w((|w| \operatorname{div} 2) + 1) \land |w|_{w(1)} = 3 \}$$

2.3. (0,050 puntu) Hiru edo handiagoa den luzera bakoitia duten eta simbolo bakar baten errepikapenez eratuta dauden hitzez osatutako L_3 lengoaiaren definizio formala eman. Adibidez, aaa, aaaaa, cccc, bbb hitzak L_3 lengoaiakoak dira baina ε , a, aa, aaaba, aaaba, cccc eta bcaaac ez dira L_3 lengoaiakoak.

$$L_3 = \{ w \mid w \in A^* \land |w| \ge 3 \land |w| \bmod 2 \ne 0 \land \exists \alpha (\alpha \in A \land |w|_\alpha = |w|) \}$$

$$L_3 = \{ w \mid w \in A^* \land \exists \alpha, k (\alpha \in A \land k \ge 3 \land k \bmod 2 \ne 0 \land w = \alpha^k) \}$$

$$L_3 = \{ w \mid w \in A^* \land |w| \ge 3 \land |w| \bmod 2 \ne 0 \land \exists \alpha, k (\alpha \in A \land k \in I\!\!N \land w = \alpha^k) \}$$

2.4. (0,075 puntu) Hiru edo handiagoa den luzera bakoitia duten eta erdiko sinboloa kontuan hartu gabe, ezkerreko erdia eskuineko erdiaren alderantzizkoa duten hitzez osatutako L_4 lengoaiaren definizio formala eman. Adibidez, aaa, aaaaa, abcba, aacbbbcaa hitzak L_4 lengoaiakoak dira baina ε , a, aa, aaaba, aaabac, abcab eta bcaaac ez dira L_4 lengoaiakoak.

$$L_{4} = \{ w \mid w \in A^{*} \land |w| \ge 3 \land \exists \alpha, u, v(\alpha \in A \land u \in A^{*} \land v \in A^{*} \land u = v^{R} \land w = u\alpha v) \}$$

$$L_{4} = \{ w \mid w \in A^{*} \land |w| \ge 3 \land \exists \alpha, u(\alpha \in A \land u \in A^{*} \land w = u\alpha u^{R}) \}$$

$$L_{4} = \{ w \mid w \in A^{*} \land |w| \ge 3 \land \forall k (1 \le k \le |w| \to w(k) = w(|w| - k + 1)) \}$$

2.5. (0,100 puntu) aa azpikatea ez duten hitzez osatutako L_5 lengoaiaren definizio formala eman. Adibidez, ε , a, b, abcc, accabc eta accabc lengoaiakoak dira baina aa, abaaabac, abaaabac, abaaabac ez dira abaaabac lengoaiakoak.

$$L_5 = \{ w \mid w \in A^* \land \neg \exists u, v (u \in A^* \land v \in A^* \land w = uaav) \}$$
$$L_5 = \{ w \mid w \in A^* \land \forall k ((1 \le k \le |w| - 1 \land w(k) = a) \to w(k+1) \ne a) \}$$

2.6. (0,075 puntu) aa azpikatearekin hasten ez diren hitzez osatutako L_6 lengoaiaren definizio formala eman. Adibidez, ε , a, b, abcc, accaaabc eta accacaabc eta ac

$$L_6 = \{ w \mid w \in A^* \land \neg \exists u (u \in A^* \land w = aau) \}$$

$$L_6 = \{ w \mid w \in A^* \land (|w| \ge 2 \to (w(1) \ne a \lor w(2) \ne a)) \}$$

$$L_6 = \{ w \mid w \in A^* \land ((|w| \ge 2 \land w(1) = a) \to w(2) \ne a) \}$$

2.7. (0,050 puntu) aa azpikatearekin bukatzen ez diren hitzez osatutako L_7 lengoaiaren definizio formala eman. Adibidez, ε , a, b, aaaabcc, accaaabc eta accacaabc eta aaaaaa ez dira aa, aabaaabacaaa, aaaaccccaa, aaaaaa, aaaaaa ez dira aaaaa

$$L_7 = \{ w \mid w \in A^* \land \neg \exists u (u \in A^* \land w = uaa) \}$$

$$L_7 = \{ w \mid w \in A^* \land (|w| \ge 2 \to (w(|w| - 1) \ne a \lor w(|w|) \ne a)) \}$$

$$L_7 = \{ w \mid w \in A^* \land ((|w| \ge 2 \land w(|w| - 1) = a) \to w(|w|) \ne a) \}$$

$$L_7 = (L_6)^R$$

2.8. (0,075 puntu) Ez hasieran eta ez bukaeran, aa azpikatea ez duten hitzez osatutako L_8 lengoaiaren definizio formala eman. Adibidez, ε , a, b, caaaabcc, accaaabc eta accaaaabc eta accaaaabc eta accaaaabc eta accaaaaa eta accaaaaa eta accaaaaa eta accaaaa eta accaa

$$L_8 = L_6 \cap L_7$$

$$L_8 = L_6 L_7$$

$$L_8 = \{ w \mid w \in A^* \land \neg \exists u (u \in A^* \land (w = aau \lor w = uaa)) \}$$