- 1 Si z=1+2i i $\omega=3-i$, comprovau les propietats següents:

 - a) $\overline{\overline{z}} = z$ b) $\overline{z + \omega} = \overline{z} + \overline{\omega}$
 - c) $\overline{z \cdot \omega} = \overline{z} \cdot \overline{\omega}$ d) $z \cdot \overline{z} > 0$
- **2** Si z = 3 4i i $\omega = -6 + 8i$, comprovau les propietats següents:

 - **a)** $|\bar{z}| = |z|$ **b)** $|z \cdot \omega| = |z| \cdot |\omega|$

 - c) $| \operatorname{Re} z | < | z |$ d) $| \operatorname{Im} z | < | z |$
 - e) $|z + \omega| < |z| + |\omega|$
- 3 Calculau el mòdul i l'argument dels nombres complexos següents:

$$2\sqrt{3} - 2i$$
, $5i$, $-\sqrt{3} - i$, $-4 + 4\sqrt{3}i$, $1 + i$

- 4 Representau gràficament i expressau en forma exponencial i en forma trigonomètrica els nombres complexos següents:

 - a) z = i b) z = -2 2i c) z = 2

- d) z = 1 + i e) z = 1 i f) z = -1 + i
- 5 Representau gràficament i expressau en forma binòmica els nombres complexos següents expressats en forma exponencial:

 - a) $z = 3 e^{i\frac{\pi}{4}}$ b) $z = 2 e^{i\frac{\pi}{3}}$ c) $z = 6 e^{i\frac{5\pi}{3}}$

- d) $z = e^{i\frac{\pi}{6}}$ e) $z = 8 e^{i\frac{\pi}{2}}$ f) $z = 4 e^{i\pi}$
- 6 Resoleu les equacions següents en Ci descomponeu en factors:
 - **a)** $4x^2 + 48x + 169 = 0$ **b)** $4x^2 12x + 25 = 0$

 - c) $x^2 + 49 = 0$ d) $x^2 + 16 = 0$

 - e) $x^2 + 2x 5 = 0$ f) $3x^2 x 10 = 0$
- 7 Si z = 3 + 2i i $\omega = 5 i$, comprovau les propietats següents:

a)
$$e^{z+\omega} = e^z \cdot e^{\omega}$$
 b) $e^{-z} = \frac{1}{e^z}$

b)
$$e^{-z} = \frac{1}{e^z}$$

$$\mathbf{c)} \ \overline{e^z} = e^{\overline{z}}$$

c)
$$\overline{e^z} = e^{\overline{z}}$$
 d) $e^z = e^{z+2\pi i}$

- 8 Provau que si $z_1 = 2 2i, z_2 = 4 + 5i$, aleshores $(z_1 \cdot z_2)^2 = z_1^2 \cdot z_2^2$
- 9 Efectuau les operacions següents amb nombres complexos:

a)
$$(1-i+i^2)(2i-1)^2$$
 b) $(2+3i)^5$

b)
$$(2+3i)^5$$

c)
$$\frac{i^{15}-i^{16}}{2-i}$$

c)
$$\frac{i^{15} - i^{16}}{2 - i}$$
 d) $\frac{(1 + i + \dots + i^{62})}{2 - i}$

10 Determinau el conjunt de tots els $x, y \in \mathbb{R}$ tals que:

$$\mathbf{a)} \ x + iy = |x - iy|$$

a)
$$x + iy = |x - iy|$$
 b) $x + iy = (x - iy)^2$ **c)** $x + iy = \sum_{k=0}^{100} i^k$

c)
$$x + iy = \sum_{k=0}^{100} i^k$$

11 Determinau els conjunts següents:

a)
$$\{z \in \mathcal{C} : 1 + e^z = 0\}$$

b)
$$\{z \in \mathcal{C} : \frac{1}{e} - e^z = 0\}$$

a)
$$\{z \in \mathcal{C} : 1 + e^z = 0\}$$
 b) $\{z \in \mathcal{C} : \frac{1}{e} - e^z = 0\}$ c) $\{z \in \mathcal{C} : 1 + i - e^z = 0\}$

12 Determinau les arrels complexes

$$\sqrt[3]{-5i}$$
, $\sqrt[4]{-\sqrt{3}+i}$, $\sqrt[5]{4-4\sqrt{3}i}$, $\sqrt[6]{1+i}$, $\sqrt[3]{-1}$

- 13 Determinau tots els $z \in \mathcal{C}$ tals que $z^4 + i = 0$ i tots els $z \in \mathcal{C}$ tals que $z^8 = 1$.
- **14** Sigui z=1+i. Calculau els conjunts de valors de $\left(\sqrt[n]{z}\right)^m$ i $\sqrt[n]{z^m}$ per als casos següents:

a)
$$m = 4$$
, $n = 2$ b) $m = 3$, $n = 2$

Nota. Siguin m i n dos nombres naturals i z un nombre complex distint de 0. Llavors el nombre de valors distints de $(\sqrt[n]{z})^m$ és $\frac{n}{d}$, on d = mcd(m, n).