U.S.N.					

10

4

BMS College of Engineering, Bangalore-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

January 2017 Semester End Make Up Examinations

Course: Engineering Physics

Course Code: 14PY11CPHY

Max Marks: 100

Date: 12.01.2017

Instructions:

b)

1b and 2c.

1. Answer any five full questions choosing one from each unit.

1.71115 Wei ally	invertan questions encosing one from each an
2. Constants:	Planck's constant, $h = 6.63 \times 10^{-34} \text{ Js}$,
	Mass of electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$,
	Charge of electron, $e = 1.602 \times 10^{-19} \text{C}$,
	Boltzmann constant, $k = 1.38 \times 10^{-23} \text{ J/K}$,
	Avogadro's number, $N_A = 6.02 \times 10^{26} / k \text{ mol}$
	Velocity of light, $c = 3 \times 10^8 \text{ m/s}$
	Permittivity of free space, $\varepsilon_0 = 8.854 \text{ x } 10^{-12} \text{ F/m}$

the inter-planar distance in a given specimen.

UNIT 1

1	a) b)		
	c)	Calculate the uncertainty in the velocity of an electron if its position is located within an uncertainty equal to its deBroglie wavelength.	4
		OR	
2	a)	Show that an electron cannot reside inside the nucleus of an atom using uncertainty principle.	6
	b)	Give the properties of Ψ. Set up Schrodinger's wave equation for one dimensional steady state quantum system.	9
	c)	Find the eigen value of an electron in the first excited state when it is confined to a box of width 1X 10 ⁻¹⁰ m and the probability of finding it in the first quarter of the box.	5
		UNIT 2	
3	a)	Explain how to find directional indices of a facial plane, in a cubic crystal with an example.	6

Derive Bragg's law and explain the Powder method of X- ray diffraction for finding

Draw the Miller plane and find the Miller Indices of the plane having intercepts ∞a ,

UNIT 3

4	a)	Explain the success of Quantum free electron theory in explaining any three physical parameters defining a metal.	6
	b)	Derive classical expression for the thermal conductivity of a metal and state and prove Wiedmann – Franz law.	10
	c)	Calculate the electrical conductivity and Lorentz number of a metal at 300K with the relaxation time 10^{-14} s and thermal conductivity 123.9 W/m/K and free electron concentration $6x10^{-28}$ /m ³ .	4
		UNIT 4	
5	a)	Define and derive an expression for internal field of an one dimensional array of atoms in a dielectric solid.	10
	b)	Explain the hysteresis and any two properties of a soft ferromagnetic specimen using Weiss's domain theory.	6
	c)	Calculate the radius of an atom showing electronic polarizability of 9.7x10 ⁻⁴¹ Fm ² .	4
		UNIT 5	
6	a)	Assuming the rate equations of interaction processes, deduce the relationship between Einstein's coefficients and conditions for LASER action.	10
	b)	Give an account of three types of optical fiber.	6
	c)	The refractive indices of core and cladding are 1.50 and 1.48 respectively in an optical fiber. Find the numerical aperture and angle of acceptance.	4
		OR	
7	a)	Describe with the energy level diagram, the construction and working of a He-Ne LASER .	9
	b)	Obtain an expression for the numerical aperature of an optical fiber kept in air.	7
	c)	Find the fractional initial intensity after 1 km and 3 km in an optical fiber with attenuation 3.6 dB/km.	4
