1 Problem sheet 5: Lectures 21-26

1.1 Problem 1

This problem considers Cauchy and Logarithmic transforms of Laguerre polynomials. Recall from lectures that

$$\mathcal{C}_{[0,\infty)}[e^{-\diamond}](z) = -\frac{e^{-z} \operatorname{Ei} z}{2\pi i}$$

for the exponential integral

$$\operatorname{Ei} z = \int_{-\infty}^{z} \frac{e^{\zeta}}{\zeta} d\zeta.$$

1. What is

$$\mathcal{C}_{[0,\infty)}[\diamond \mathrm{e}^{-\diamond}L_1^{(1)}(\diamond)](z) := \frac{1}{2\pi\mathrm{i}} \int_0^\infty \frac{x \mathrm{e}^{-x} L_1^{(1)}(x)}{x - z} \mathrm{d}x$$

in terms of Eiz?

2. What is

$$\frac{1}{\pi} \int_0^\infty e^{-x} L_2(x) \log|z - x| dx$$

in terms of the real and imaginary parts of Eiz?

1.2 Problem 2

Consider the incomplete Gamma function:

$$\Gamma(\alpha, z) = \int_{z}^{\infty} \zeta^{\alpha - 1} e^{-\zeta} d\zeta,$$

where the contour of integration is two straight line segments from z to 1 to ∞ , hence this has a branch cut on $(-\infty, 0]$.

1

1. For x < 0 and $\alpha > 0$, show that

$$\Gamma_{+}(\alpha, x) - e^{2i\pi\alpha}\Gamma_{-}(\alpha, x) = (1 - e^{2i\pi\alpha})\Gamma(\alpha)$$

where $\Gamma(\alpha)=\Gamma(\alpha,0)=\int_0^\infty x^{\alpha-1}{\rm e}^{-x}{\rm d}x$ is the Gamma function and

$$\Gamma_{\pm}(\alpha, x) = \lim_{\epsilon \to 0} \Gamma(\alpha, x \pm i\epsilon).$$

2. For $-1 < \alpha < 0$, express

$$C_{[0,\infty)}[\diamond^{\alpha} e^{-\diamond}](z) = \frac{1}{2\pi i} \int_0^{\infty} \frac{x^{\alpha} e^{-x}}{x-z} dx$$

in terms of $\Gamma(-\alpha,-z)$ and $(-z)^{\alpha}\mathrm{e}^z$ using Plemelj's lemma.

1.3 Problem 3

Define

$$a(z) = z^2 - 4 + z^{-2}$$
.

- 1. What are the entries of $L[a(z)]^{-1}$?
- 2. Find the WienerHopf factorisation

$$a(z) = \phi_+(z)\phi_-(z)$$

where $\phi_+(z)$ is analytic inside the unit circle and and $\phi_-(z)$ is analytic outside, with $\phi_-(\infty) = 1$.

3. Find the UL decomposition

$$T[a(z)] = UL$$

where U is upper-triangular with 1 on the diagonal and L is lower triangular.

- 4. What is $T[a(z)]^{-1}$?
- 5. What is $T[(z^2+3)/(z^2+2)]^{-1}$?

1.4 Problem 4

When the winding number is non-trivial, a Toeplitz operator can either be non-invertible or have multiple solutions. This problem sheet explores this.

1. What is the winding number of a(z) = z? Show that

$$T[z]\mathbf{u} = \mathbf{f}$$

only has a solution if f_0 (the first entry of \mathbf{f}) is zero.

2. What is the winding number of $a(z) = z^{-1}$? What are all solutions to

$$T[z^{-1}]\mathbf{u} = \mathbf{f}?$$

3. Show that if a(z) has winding number κ it can be written as

$$a(z) = \phi_{+}(z)z^{\kappa}\phi_{-}(z)$$

What are $\phi_{+}(z)$ and $\phi_{-}(z)$ in terms of $\log(a(z)z^{-\kappa})$?

4. Show that if the winding number is κ there exists a

$$T[a(z)] = UPL$$

decomposition, where

$$P = T[z^{\kappa}]$$

is a permutation operator.

5. Find all solutions to

$$T[1/(2z^2+1)]\mathbf{u} = \mathbf{e}_0$$

1.5 Problem 5

This set of problems investigates the analyticity properties of the half-Fourier transform. Recall the definitions

$$u_{\rm R}(x) = \begin{cases} u(x) & x \ge 0 \\ 0 & \text{otherwise} \end{cases},$$

$$u_{\rm L}(x) = \begin{cases} u(x) & x < 0 \\ 0 & \text{otherwise} \end{cases},$$

The Fourier transform

$$\hat{u}(s) = \int_{-\infty}^{\infty} u(x) e^{-ixs} dx,$$

and the inverse Fourier transform

$$u(x) = \frac{1}{2\pi} \int_{-\infty + i\gamma}^{\infty + i\gamma} \hat{u}(s) e^{isx} ds$$

where the choice of γ is dictated by the analyticity of $\hat{u}(z)$.

- 1. Consider f(x) = x. Without computing it, in what strip, if any, is $\hat{f}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover f?
- 2. Consider $f(x) = \frac{1}{1+e^x}$. Without computing it, in what strip, if any, is $\hat{f}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover f?
- 3. Consider $f(x) = e^{2x}$. Without computing it, in what strip, if any, is $\widehat{f}_{R}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover f?
- 4. Consider f(x) = x. Without computing it, in what strip, if any, is $\widehat{f}_{L}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover f?
- 5. Calculate the Fourier transforms in the above problems and confirm your statements.
- 6. What is the Fourier transform of $\delta(x)$, i.e., the Dirac delta function satisfying

$$\int_{-\infty}^{\infty} \delta(x)g(x)dx = g(0)$$

for smooth test functions g. Where is it analytic?

1.6 Problem 6

This set of problems considers extensions of the WienerHopf method to functions that do not decay, degenerate integral equations, and to integro-differential equations. Please be precise on which contour the RiemannHilbert problem is solved on and the inverse Fourier transforms taken.

1. The function u(x) is bounded by a polynomial for all $x \ge 0$, including as $x \to \infty$, and satisfies the integral equation

for $x \geq 0$,

$$u(x) + \frac{3}{2} \int_0^\infty e^{-|x-t|} u(t) dt = 1 + \alpha x$$

where α is a positive constant. Find u(x) for $x \geq 0$. Hint: set up a RiemannHilbert problem on the contour $\mathbb{R} + i\gamma$ where $-1 < \gamma < 0$ is arbitrary.

2. The function u(x) is bounded by a polynomial for all $x \ge 0$, including as $x \to \infty$, and satisfies the integral equation

for $x \ge 0$,

$$\int_0^\infty e^{-\alpha|x-t|} u(t) dt = 1 + \alpha x$$

where α is a positive constant. Find u(x) for $x \geq 0$. Hint: If you proceed na\"\i vely, we arrive at a RiemannHilbert problem of the form

$$\Phi_{+}(s) - g(s)\Phi_{-}(s) = f(s)$$
 and $\lim_{s \to \infty} \Phi(\infty) = 0$

but where $g(\infty) = 0$ instead of $g(\infty) = 1$. This is not in canonical form, but maybe this example is special. Try writing $\Phi(z) = \kappa(z)Y(z)$ as before but allowing different asymptotic behaviour in κ and Y in the different half planes in a way that they cancel out so that $\lim_{z\to\infty} \Phi(z) = 0$:

$$\kappa(z) = \begin{cases} O(z^{-1}) & \Im z > 0 \\ O(z) & \Im z < 0 \end{cases}$$
$$Y(z) = \begin{cases} O(1) & \Im z > 0 \\ O(z^{-2}) & \Im z < 0 \end{cases}.$$

3. Consider the integral equation

$$u(t) - \lambda \int_0^\infty e^{-|x-t|} u(t) dt = x$$

where $0 < \lambda < \frac{1}{2}$. Show that, for $x \ge 0$,

$$u(x) = A(\sinh \gamma x + \gamma \cosh \gamma x) + \frac{1}{\gamma^2} \left[x + \left(\gamma - \frac{1}{\gamma} \right) \sinh \gamma x \right]$$

where $\gamma^2 = 1 - 2\lambda$ and A is an arbitrary constant.

1.7 Problem 7

A bounded, smooth, function u(x) satisfies the integro-differential equation

$$u''(x) - \frac{72}{5} \int_0^\infty e^{-5|x-t|} u(t) dt = 1$$
 for $x \ge 0$

with u(0) = 0.

1. Rewrite the integral equation on the half line in the form:

$$u_{\rm R}''(x) - \frac{72}{5} \int_{-\infty}^{\infty} e^{-5|x-t|} u(t) dt = 1_{\rm R}(x) + \alpha \delta(x) + p_{\rm L}(x)$$

for $\alpha = u'(0)$ and a to-be-specified p(x). Here δ is the Dirac delta function, that is, $\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$.

2. Use integration by parts to determine that

$$\widehat{u_{\rm R}''}(s) = -u'(0) - s^2 \hat{u}_{\rm R}(s).$$

What is $\hat{\delta}(s)$? Use these to translate the equation to Fourier space on a contour $s \in \mathbb{R} + i\gamma$. What choices of γ are suitable?

3. Define $\Phi(z)$ in terms of $\widehat{p_L}(z)$ and $\widehat{u_R}(z)$ so that it satisfies the following (non-standard) RH problem

$$\Phi_{+}(s) - \frac{(s^2 + 9)(s^2 + 16)}{s^2 + 25} \Phi_{-}(s) = \alpha + \frac{1}{is}$$

$$\lim_{\substack{z \to \infty \\ \Im z > \gamma}} \Phi(z) = \alpha$$

$$\lim_{\substack{z \to \infty \\ \Im z < \gamma}} \Phi(z) = 0.$$

4. Solve the Riemann Hilbert problem for $\Phi.$ Hint: write $\Phi(z)=\kappa(z)Y(z)$ where

$$\kappa(z) = \begin{cases} O(z) & \Im z > \gamma \\ O(z^{-1}) & \Im z < \gamma \end{cases},$$

$$Y(z) = O(z^{-1}).$$

Hint: Y(z) does not depend on α in the lower-half plane.

5. Recover u(x) by taking the inverse Fourier transform of $\Phi_{-}(s)$.