ICML 2018
Workshop TLLLEIB,
July 13 (Fri),
Stockholm, Sweden

# CoNet: Collaborative Cross Networks for Cross-Domain Recommendation

## Guangneng Hu, Yu Zhang, and Qiang Yang





### Motivation

Collaborative filtering techniques for recommendation:

- Deep collaborative filtering has the power to learn the complex/ nonlinear relationship between the user and item from their interactions.
  - Requires many examples to learn a good predictor. Or, it faces the data sparsity issue.



- Cross-domain recommendation reduces the data sparsity in the target domain (e.g. App domain) by leveraging the knowledge from a related source domain (e.g. News domain)
  - Assumes equally important weights and all useful for transferred knowledge.



#### The Collaborative Cross Networks

We propose a novel deep transfer learning method, Collaborative Cross Networks, to both alleviate the data sparsity issue faced by the deep collaborative filtering and relax the strong assumptions faced by the existing cross-domain recommendation.

#### Contributions

- Our model can reduce tens of thousands training examples by comparing with non-transfer methods without performance degradation.
- We demonstrate the necessity of adaptively selecting representations to transfer. Naïve transfer learning approach may confront the negative transfer.
- The proposed model outperforms various baselines on two large real-world datasets under three ranking metrics.

| Dataset | #Users | Target Domain |                |         |         | Source Domain  |         |  |  |
|---------|--------|---------------|----------------|---------|---------|----------------|---------|--|--|
|         |        | # I tems      | # Interactions | Density | # Items | # Interactions | Density |  |  |
| Mobile  | 23,111 | 14,348        | 1,164,394      | 0.351%  | 29,921  | 617,146        | 0.089%  |  |  |
| Amazon  | 80,763 | 93,799        | 1,323,101      | 0.017%  | 35,896  | 963,373        | 0.033%  |  |  |

# The Collaborative Cross Networks (cont.)

## The Architecture (CoNet)

Idea 1: Using a matrix rather than a scalar to transfer.



# Adaptive Variant (SCoNet)

Idea 2: Sparsity-induced regularization for selecting representations.

$$\Omega(\mathbf{H}^l) = \lambda \sum_{i=1}^r \sum_{j=1}^p |h_{ij}|$$

#### Experiments

| Baselines     | Shallow method      | Deep method     |
|---------------|---------------------|-----------------|
| Single-domain | BPRMF [40]          | MLP [13]        |
| Cross-domain  | CDCF [27], CMF [43] | MLP++, CSN [30] |

| Dataset | Method | Reduction |                                                                | HR NDCG |        | MRR       |  |
|---------|--------|-----------|----------------------------------------------------------------|---------|--------|-----------|--|
| Dataset | Mediod | percent   | $\mathbf{a}\mathbf{m}\mathbf{o}\mathbf{u}\mathbf{n}\mathbf{t}$ | 1110    | NDOG   | 1411.01.0 |  |
|         | MLP    | 0%        | 0                                                              | .8405   | .6615  | .6210     |  |
| Mobile  |        | 0%        | 0                                                              | .8547   | .6802  | .6431     |  |
| Mobile  | SCoNet | 2.05%     | 23,031                                                         | .8439   | .6640  | .6238     |  |
|         |        | 4.06%     | 45,468                                                         | .8347*  | .6515* | .6115*    |  |
|         | MLP    | 0%        | 0                                                              | .5014   | .3143  | .3113     |  |
| Amazon  | SCoNet | 0%        | 0                                                              | .5338   | .3424  | .3351     |  |
| Amazon  |        | 1.11%     | 12,850                                                         | .5110   | .3209  | .3080*    |  |
|         |        | 2.18%     | 25,318                                                         | .4946*  | .3082* | .2968*    |  |



| Dataset | Metric     | BPRMF | CMF   | CDCF  | MLP    | MLP++  | CSN    | CoNet | SCoNet | improve |
|---------|------------|-------|-------|-------|--------|--------|--------|-------|--------|---------|
| Mobile  | $_{ m HR}$ | .6175 | .7879 | .7812 | .8405  | .8445  | .8458* | .8480 | .8583  | 1.47%   |
|         | NDCG       | .4891 | .5740 | .5875 | .6615  | .6683  | .6733* | .6754 | .6887  | 2.29%   |
|         | MRR        | .4489 | .5067 | .5265 | .6210  | .6268  | .6366* | .6373 | .6475  | 1.71%   |
| Amazon  | $_{ m HR}$ | .4723 | .3712 | .3685 | .5014  | .5050* | .4962  | .5167 | .5338  | 5.70%   |
|         | NDCG       | .3016 | .2378 | .2307 | .3143  | .3175* | .3068  | .3261 | .3424  | 7.84%   |
|         | MRR        | .2971 | .1966 | .1884 | .3113* | .3053  | .2964  | .3163 | .3351  | 7.65%   |