Josue Fernandini HW05

1. In class we proved the first version of DeMorgans laws for sets, namely that $\overline{A \cup B} = \overline{A} \cap \overline{B}$. Prove the other version, specifically that to written the proves ANB = ANB;

Need the other limition. $\overline{A\cap B}=\overline{A}\cup\overline{B}$.

$$\cap = \land$$
$$\cup = \lor$$

•		
\equiv Expression	Reason	
$\overline{A\cap B}$	Assumption	
$x\not\in A\cap B$	Definition of Intersection	
$\lnot(x \in A) \lor \lnot(x \in B)$	DeMorgan 🥢 /	
$(x\not\in A)\vee(x\not\in B)$	Negation 🗸	
$(x\in \overline{A})\vee (x\in \overline{B})$	Definition of Complement	
$x\in \overline{A}\cup \overline{B}$	Definition of Union 🗸	
$\overline{\Delta} \sqcup \overline{R}$	Final Expression	

complement Break it down further

We conclude that DeMorgan's Second Law is true since when factoring the expression on the left $\overline{A \cap B}$, through Set Operations and Set Propositional Logic, it results to $\overline{A} \cup \overline{B}$.

2. Prove that $A-B=A\cap \overline{B}$.

2. Prove that $A-B=A\cap \overline{B}$.		comment as
\equiv Expression	Reason	above
A-B	Assumption	(
$(x \in A) \land \neg (x \in B)$	Definition of Difference	oh
$(x\in A)\wedge (x\not\in B)$	Negation	
$(x\in A)\wedge (x\in \overline{B})$	Definition of Complement	
$x\in A\cap \overline{B}$	Definition of Intersection	
$A\cap \overline{B}$	Final Expression	

We conclude that $A-B=A\cap \overline{B}$ is true, since when factoring the expression A-B, through Set Operations and Set Proposition Logic, it results in $A\cap \overline{B}$.

 ${}'$ 3. Let A, B, and C be sets. Prove that if $A\subseteq B$ and $B\subseteq C$, then $A\subseteq C$. In other words, we are proving that the relation "is a subset of" is transitive.

Assume that $x \in A$.

By the definition of a subset, since x is an element in Set A then it must also be an element in Set B $(x \in B)$.

Since $x \in B$, then by the definition of a subset x must also be in Set $C(x \in C)$.

We can conclude that since x is in Set A_j and that x is in Set C, that Set A is a subset of Set C $(A \subseteq C)$. QED