

Ingeniería de Software I

2024

Técnicas de especificación de requerimientos

Tablas de decisión

Ingeniería de Requerimientos

Técnicas de Especificación de Requerimientos Dinámicas

Tablas de Decisión

Es una herramienta que permite presentar de forma concisa las reglas lógicas que hay que utilizar para decidir acciones a ejecutar en función de las condiciones y la lógica de decisión de un problema específico.

Describe el sistema como un conjunto de:

Posibles CONDICIONES satisfechas por el sistema en un momento dado

REGLAS para reaccionar ante los estímulos que ocurren cuando se reúnen determinados conjuntos de condiciones y

ACCIONES a ser tomadas como un resultado.

Técnicas de Especificación de Requerimientos Dinámicas

Construiremos las tablas con:

- condiciones simples y acciones simples
- Las condiciones toman sólo valores Verdadero o Falso
- Hay 2^N Reglas donde N es la cantidad de condiciones

	REGLA1	REGLA2	
COND1			
COND2			
ACCION1			
ACCION2			

☐ ¿Cómo se llena la tabla?

A partir de un enunciado se debe:

- 1. Identificar las condiciones y las acciones.
- 2. Completar la tabla teniendo en cuenta:
 - a) Si hay condiciones que son opuestas, debe colocarse una de ellas porque por la negativa se "obtendrá" la otra. (Si son n condiciones excluyentes, colocar n-1 en la tabla).
 - b) Las condiciones deben ser atómicas.
- 3. Se construyen las reglas

Modelizar el problema de remisión de mercadería con las siguientes consideraciones:

Si el comprador no es cliente se imprime un mensaje de aviso y no se remite.

Si no hay stock y el comprador es cliente no se remite.

Si hay stock y el comprador es cliente se remite

Si el comprador no es cliente se imprime un mensaje de aviso y no se remite.

Regla

1. Identificar Si no hay stock y el comprador es cliente no se remite. Si hay stock y el comprador es cliente se remite

Condiciones

Acciones

2ⁿ Reglas

Fuente: Ingeniería de software 2024

Es cliente	V	V	F	F
Hay stock	V	F	V	F

Especificaciones completas

Aquellas que determinan acciones (una o varias) para todas las reglas posibles.

Especificaciones redundantes

Aquellas que marcan para reglas que determinan las mismas condiciones acciones iguales.

Especificaciones contradictorias

Aquellas que especifican para reglas que determinan la No se remite mismas condiciones acciones distintas.

Imprime	mensaje	de
aviso		

Se remite

Fuente: Ingeniería de software 2024

Redundancia y Contradicción

	Reg	clas					
C1	V	V		••	••	F	F
C2	V	V		•	•	V	V
C3	V	F		•	••	F	F
A1				•	••	X	X
A2	X				•		
A3		X	•	•		X	X

Redundante

	Reglas							
C1	V	V	•	•	••	F	F	
			٠	•				
C2	V	V	•	•	•	V	V	
C3	V	F	•	•	••	F	F	
A1			•	•	••		X	
A2	X				•	X		
A3		X	•	•		X		

Contradictoria

Reducción de Complejidad (Redundancia)

Combine las reglas en donde sea evidente que una alternativa no representa una diferencia en el resultado.

El guion [—] significa que la condición 2 puede ser S o N, y que aun así se realizará la acción.

Condición 1:	S	S
Condición 2	S	N
Acción 1	X	X

Condición 1:	S
Condición 2	_
Acción 1	X

Reducción de Complejidad (Redundancia) Álgebra de Boole

	Reglas			
Es cliente	V	V	F	F
Hay stock	V	F	V	F
Imprime mensaje de aviso			X	X
Se remite	X			
No se remite		X	X	X

Re	Reglas					
V	V	F				
V	F	1				
		X				
X						
	X	X				

1. Identificar las condiciones y las acciones.

Se quiere determinar el incremento en el salario de los empleados de acuerdo con estos criterios:

- Si el empleado es altamente productivo tendrá un plus de productividad.
- Si el empleado es encargado de su grupo tendrá un plus de encargado.
- Si el empleado ha cometido una infracción grave durante ese mes le será eliminado cualquier plus que pudiera tener y se le descontará un 10% de su salario

Condiciones

Empleado altamente productivo

Empleado encargado de su grupo

empleado ha cometido una infracción grave

Acciones

Plus de productividad

Plus de encargado

Elimina cualquier plus

Descuento 10%

Se quiere determinar el incremento en el salario de los empleados de acuerdo con estos criterios:

- Si el empleado es altamente productivo tendrá un plus de productividad.
- Si el empleado es encargado de su grupo tendrá un plus de encargado.
- Si el empleado ha cometido una infracción grave durante ese mes le será eliminado cualquier plus que pudiera tener y se le descontará un 10% de su salario

2. Completar la tabla

Condiciones	Reglas							
Empleado altamente productivo	V	V	V	٧	F	F	F	F
Empleado encargado de su grupo	V	V	F	F	٧	V	F	F
empleado ha cometido una infracción grave	V	F	V	F	V	F	V	F
Acciones								
Plus de productividad	Х	Х	Х	Х				
Plus de encargado	Х	Х			Х	Х		
Elimina cualquier plus	Х		Х		Х		Х	
Descuento 10%	Х		Х		Х		Х	
No se incrementa el salario								Х

Ejercicio para realizar en grupos

15 minutos:

- Organizarse en grupos de 5 personas
- Definir Condiciones y acciones
- Construir la tabla
- Revisar si se requiere reducción

5 minutos:

Compartir la solución con el grupo de al lado para corregirla Llegar a acuerdos

Revisar con el profesor

Ejercicio para realizar en grupos

Una aerolínea tiene proyectada la siguiente promoción:

a)Las personas que viajen a Europa o América y son pasajeros frecuentes, acceden a un descuento de un 17% en el valor de su pasaje.

b)Además, los que van a Europa sean o no frecuentes reciben un descuento adicional.

c)Los pasajeros que pagaron en efectivo y son de tipo frecuente, tienen derecho a la compra de un pasaje al mismo destino por un 50% de su valor.

d)Los pasajeros que pagaron en efectivo, y no son del tipo frecuente, se les concede una cantidad de kilómetros gratuitos en su siguiente viaje.

e)Los que son o no son frecuentes y viajan a Europa, tienen derecho a una noche gratuita en un hotel de la ciudad destino, y tienen el mismo derecho los que van países de América y son frecuentes.

Recordar

Para construir tablas de decisión, el analista necesita determinar el tamaño máximo de la tabla; eliminar cualquier situación imposible, inconsistencia o redundancia, y simplificar la tabla lo más que pueda.

Es esencial que verifique la integridad y precisión de sus tablas de decisión. Pueden ocurrir cuatro problemas principales al desarrollar tablas de decisión: que estén incompletas, que existan situaciones imposibles, contradicciones y redundancia.

Técnicas de Especificación de Requerimientos

Análisis Estructurado

Análisis estructurado

- □ Para entender los requerimientos, se debe poder reconocer además cómo se mueven los datos, los procesos o transformaciones que sufren dichos datos y sus resultados.
- ☐ La elicitación proporciona una descripción verbal del sistema, una descripción visual puede consolidar la información.

Ingeniería de software 2024 Fuente: Pressman 4ta edición Cap. 12

Análisis Estructurado

- □ La técnica de análisis estructurado permite lograr una representación gráfica que permite lograr una comprensión más profunda del sistema a construir y comunicar a los usuarios lo comprendido.
- ☐ La notación no especifica aspectos físicos de implementación.
- □ Hace énfasis en el procesamiento o la transformación de datos conforme estos pasan por distintos procesos.

Análisis estructurado – Modelado funcional y flujo de la información

Diagrama de Flujo de Datos (DFD)

- Es una herramienta que permite visualizar un sistema como una red de procesos funcionales, conectados entre sí por "conductos" y almacenamientos de datos.
- Representa la transformación de entradas a salidas y es también llamado diagrama de burbujas.
- Es una herramienta comúnmente utilizada por sistemas operacionales en los cuales las funciones del sistema son de gran importancia y son más complejas que los datos que éste maneja.

Análisis estructurado – Modelado Funcional y Flujo de la información

Se utiliza un rectángulo para representar una *entidad externa*, esto es, un elemento del sistema (por ejemplo, un elemento hardware, una persona, otro programa) u otro sistema que produce información para ser transformada por el software, o recibe información producida por el software.

Un círculo (también llamado burbuja) representa un *proceso* o *transformación* que es aplicado a los datos (o al control) y los modifica.

Una flecha representa un "conducto" para uno o más *elementos de datos* (objetos de dato).

Un rectángulo abierto (lado izquierdo y derecho) que representa un **almacén de datos**

Cliente

Ingresar nuevo cliente

Datos Nuevo Cliente

Clientes

Ingeniería de Software l 2023

Análisis estructurado – Modelado funcional y flujo de la información

Desarrollo de DFDs

Se debe visualizar desde una perspectiva jerárquica de arriba hacia abajo.

Pasos:

- 1. Redactar la lista de actividades (eventos) de la organización para determinar:
 - Entidades externas
 - Flujos de datos
 - Procesos
 - Almacenes de datos
- 2. Crear un diagrama de contexto que muestre las entidades externas y los flujos de datos desde y hacia el sistema.
- Dibujar el Diagrama 0 (siguiente nivel), con procesos generales y los almacenes correspondientes
- 4. Dibujar un diagrama hijo por cada uno de los procesos del Diagrama 0

Diagrama de contexto

Se muestra un panorama global que muestre las entradas básicas y las salidas

Es el nivel más alto en un DFD y contiene un solo proceso que representa a todo el sistema

Nivel 0

Es la ampliación del Diagrama de contexto.

Las entradas y salidas del Diagrama de contexto permanecen, sin embargo, se amplía para incluir hasta 9 procesos (como máximo) y mostrar los almacenes de datos y nuevos flujos.

Nivelación de un DFD

Cada proceso se puede a su vez ampliar para crear un diagrama hijo más detallado.

Las entradas y salidas del proceso padre permanecen, sin embargo, pueden aparecer nuevos almacenes de datos y nuevos flujos.

Bibliografía

Libros consultados para Tablas de Decisión

Kendall & Kendall, Capítulo 9, Análisis y Diseño de Sistemas, Pearson Prentice Hall 2011. 8va edición