

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Machine Learning Approaches: Clustering

B. Solaiman Départ. Image &Traitement de l'Information Brest, France

- 1. Clustering concept
- 2. Clustering distances
- 3. Clustering approaches
- 4. Partitioning algorithms:
- K-means algorithm
- Semi-Supervised K-means
- K-medoids
- Isodata algorithm
 - 5. K-Means algorithm applications
 - 6. Quality of clustering

1. Clustering Concept

Clustering concept

CLUSTERING:

The process of partitioning a set of instances / objects into several subsets (called <u>clusters</u>), so that the instances in each subset share some common trait (according to some predefined similarity measure)

Clustering concept

A collection/group of data instances "similar" to one another within the same group, and, dissimilar to the instances in

other groups

CLUSTERING ANALYSIS: refers to the <u>use of "similarities"</u> between data instances and <u>unsupervised learning</u> techniques in order to group similar instances allowing, thus, to <u>find the</u> intrinsic hidden structure within unlabeled data

CLUSTERING IMPORTANT ASPECTS

Outliers are instances that do not belong to any cluster (or instances forming clusters of very small cardinality)

In some applications (*Rare Events detection*): we are interested in discovering outliers, not clusters (outlier analysis)

Clustering concept

CLUSTERING BASIC QUESTIONS

Clustering quality (How to evaluate the partition's quality, number of clusters....)?

What does similar mean?

Distance (similarity, or dissimilarity) function definition!

Clustering approach leading to a good partition?

Illustrative Example: how many clusters?

How many clusters?

Two Clusters

Four Clusters

Six Clusters

Illustrative Example: how many clusters?

The clustering approaches depend on the choice of the *Similarity* (distance function) between clusters:

Single linkage: distance between the closest neighbors

Complete linkage: distance between the furthest neighbors

Central linkage: distance of centers (centroids)

Average linkage: average distance of all patterns in each cluster

Notations

Single Linkage distance

Dist_{min}(
$$\mathbf{B}_{k}$$
, \mathbf{B}_{q}) = min $||X - Y||^{2}$
 $X \in \mathbf{B}_{k}$, $Y \in \mathbf{B}_{q}$

Eomplete Linkage distance

$$Dist_{max}(\mathbf{B}_{k}, \mathbf{B}_{q}) = \max_{X \in \mathbf{B}_{k}, Y \in \mathbf{B}_{q}} ||X - Y||^{2}$$

(Allows avoiding elongated clusters)

Eentroid Linkage distance

$$Dist_{means}(\mathbf{B}_{k}, \mathbf{B}_{q}) = ||C_{K} - C_{q}||^{2}$$

Average distance

$$Dist_{ave}(\mathbf{B}_{k}, \mathbf{B}_{q}) = \frac{1}{|\mathbf{B}_{k}| \cdot |\mathbf{B}_{q}|} \sum_{X \in \mathbf{B}_{k}, Y \in \mathbf{B}_{q}} ||X - Y||^{2}$$

1. Hierarchical clustering algorithms

Find successive clusters using previously established clusters

- A. <u>Agglomerative ("bottom-up") algorithms</u>

 Begin with each instance as a separate cluster and merge them into successively larger clusters
- B. <u>Divisive ("top-down") algorithms</u>

 Begin with the whole set and proceed to divide it into successively smaller clusters

2. Partitional clustering algorithms

Construct a single partition of all clusters at once and then evaluate them by some criterion

. Hierarchical Clustering algorithms

Hierarchical Clustering: is a deterministic approach producing, iteratively, a nested sequence of clusters

. Hierarchical Clustering algorithms

Agglomerative (*Bottom-Up***) clustering :**

Start with each instance as its own cluster

and iteratively

Find the best pair to merge the closest clusters

Repeat until all clusters are fused together

HIERARCHICAL AGGLOMERATIVE CLUSTERING

We begin with a distance matrix which contains the distances between every pair of instances in the database

$$D(3) = 8$$

$$D(3) = 1$$

Consider all possible merges...

Consider all possible merges...

possible

merges...

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Agglomerative (Bottom-Up) clustering algorithm

- 1. Calculate the distance between all instances
- 2. Cluster the instances to the initial clusters
- 3. Calculate the distance metrics between all clusters
- 4. Interatively cluster most similar clusters into a higher level cluster
- 5. Repeat steps 3 and 4 for the most high-level clusters

Agglomerative (Bottom-Up) clustering algorithms

ample: Airports agglomerative clustering

	BA	FI	MI	NA	RM	TO
BA	0	662	877	255	412	996
FI	662	0	295	468	268	400
MI	877	295	0	754	564	138
NA	255	468	754	0	219	869
RM	412	268	564	219	0	669
TO	996	400	138	869	669	0

BA

FI

MI

NA

RM

BA

FI

MI - TO

NA

RM

	BA	FI	MI/ TO	NA	RM
BA	0	662	877	255	412
FI	662	0	295	468	268
MI/TO	877	295	0	754	564
NA	255	468	754	0	219
RM	412	268	564	219	0
	E	BA F	FI M	I) (N/ MI - TO MI - TO) N

	BA/NA/RM	FI	MI/TO		
BA/NA/RM	0	268	564		
FI	268	0	295		
MI/TO	564	295	0		
BA F		NA RM	TO		
BA FI	МІ -	TO NA	A) (RM)		
BA F	MI MI	- TO [NA - RM		
FI MI - TO BA - NA - RM					
MI - TO FI - BA - NA - RM					

Divisive (Top-Down) clustering algorithms

Starting with all the data in a single cluster, consider every possible way to divide the cluster into two. Choose the best division and recursively operate on both sides

Divisive (*Top-Down*) clustering algorithm

All instances are considered to be in one super-cluster

- Start at the top with all instances in one cluster
- The cluster is split using a flat clustering algorithm
- This procedure is applied recursively until each pattern is in its own singleton cluster

4. Partitioning algorithms:

- K-means algorithm
- Semi-Supervised K-means
- K-medoids
- ISODATA

A partitioning approach

An algorithm allowing to construct, AT ONCE, a partition of a set of N instances into a set of K clusters, where:

- Each instance belongs to exactly one cluster
- The number of clusters **K** is given in advance

K-means algorithm

K-Means Problem: Given a set $\mathbf{B} = \{X_n, n=1, ..., N, X_n \in \mathbb{R}^d\}$ of N points (objects, samples, instances, ...) in a d-dimensional space and an integer K.

Task: find a set of K points $C = \{C_1, C_2, \ldots, C_K\}$ in \mathbb{R}^d to form clusters $\{B_1, B_2, ..., B_K\}$ such that:

Cost(C) =
$$\sum_{k=1,...,K} \sum_{X \in \mathbf{B}_k} \operatorname{dist}^2(X, C_k)$$
 is minimized

K-means algorithm: One way to solve the K-means problem:

- Each cluster is "iteratively" associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid

K-means algorithm

K-means algorithm: One way to solve the K-means problem:

- Each cluster is "iteratively" associated with a centroid (center point);
- Each point is assigned to the cluster with the closest centroid
 - Randomly pick K initial cluster centroids {C₁, C₂,..., C_K}
 - Repeat until convergence (i.e., centroids don't change)
 For each k:
 - Form the cluster B_k as the set of instances in B that are closer to C_K than they are to other C_q for all $q \neq k$
 - For each k, recompute C_{K} as the center of cluster B_{k}

 $\frac{\text{(mean of the vectors in } B_{k})}{\text{(mean of the vectors in } B_{k})}$

K-means algorithm: Example 1

K-means algorithm: Example 2

K-means algorithm: Example 3

K-means Evaluation

Strength

- Relatively efficient: O(TKN), where N is the n^b of instances, K is the n^b of clusters, and T is the n^b of iterations (K, T << N)
- Guaranteed to converge to at least a local optima

Weakness

- Applicable only when mean is defined (what about categorical data?)
- Need to specify K, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable for clusters with non-convex shapes
- Very sensitive to initial centroids assignment

 Machine Learning Approaches: Clustering ------ B. Solaiman

K-means algorithm: Importance of centroids initialization

Sensitivity to the initial random assignments

K-means algorithm: Size of instances classes

Sensitivity to the Size

Original instances

K-means (3 Clusters)

K-means algorithm: Density of instances

Sensitivity to the Density

K-means algorithm: Non globular shapes

Sensitivity to the Shape

How can we tell the right number of clusters?

In general, this is a unsolved problem. However there are many approximate methods.....

1 2 3 4 5 6 7 8 9 10 Machine Learning Approaches: Clustering ----- B. Solaiman

When k = 1, the objective function is 873.0

When k = 2, the objective function is 173.1

When k = 3, the objective function is 133.6

"Knee finding" or "Elbow finding" technique: The abrupt change at k = 2, is highly suggestive of two clusters in the data

Seeded K-Means

- Labeled data provided by user are used for initialization
- Initial center for cluster *i* is the mean of the seed points having label *i*
- Seed points are only used for initialization, and not in subsequent steps

Constrained K-Means

- Labeled data provided by user are used to initialize K-Means algorithm
- Cluster labels of seed data are kept unchanged in the cluster assignment steps, and only the labels of the non-seed data are re-estimated

Semi-Supervised K-Means Example:

Semi-Supervised K-Means Example:

INITIALIZE MEANS USING LABELED DATA

Semi-Supervised K-Means Example:

ASSIGN INSTANCES TO CLUSTERS

Semi-Supervised K-Means Example:

RE-ESTIMATE MEANS & ITERATE

K-medoids: A variant from K-means algorithm

Idea: Avoid convergence problems by restricting centroids to coincide with the instances (Cluster C_i represented by representative instance o_i , the medoid)

C_i reassigned to o

- 1. Select several cluster means and form clusters
- 2. Split any cluster whose variance is too large
- 3. Group together clusters that are too small
- 4. Recompute clusters' means
- 5. Repeat till 2 and 3 cannot be applied

ISODATA algorithm

Original

K-means, K=6

Isodata, K became 5

Image Segmentation

Breaking up the image into meaningful or perceptually similar regions

Image Segmentation

X: Pixel's Grey level

Original Image

K=3

K=2

Image Segmentation

X: Pixel's color level (i.e., 3 grey level features)

K=5

Image Segmentation

X: Pixel's color level (i.e., 3 grey level features)

Image Segmentation

X: Feature vector computed on $L \times L$ image sub-blocks

Original Image

5 x 5 image sub-blocks

10x10 *image sub-blocks*

Image Segmentation

50x50

Image Segmentation

Image Compression

Clustering is related to vector quantization

Dictionary of vectors (the cluster centers)

Each original instance represented using a dictionary index

Each center "claims" a nearby region (Voronoi region)

Image Compression

Training Data: Set of L x L sub-blocks from 4 training images

Image Compression Original

Decoded image, psnr: 31.32

Image Compression

Original

Decoded image, psnr: 30.86

6. Quality of clustering

Quality of clustering

When training instances are labelled, (Class labels known for ground truth): several quality measures can be used: Accuracy, precision, recall...

A good clustering method will produce high quality clusters:

- High <u>intra-class</u> similarity: cohesive within clusters
- Low <u>inter-class</u> similarity: distinctive between clusters

Internal Measures

- Validate without external info
- With different number of clusters
- Solve the number of clusters

External Measures

- Validate against ground truth
- Compare two clusters: (how similar)

Quality of clustering

Cluster tightness (or homogeneity) measure:

$$Q = \sum_{k} \frac{1}{|\mathbf{B}_{k}|} \sum_{X \in \mathbf{B}_{k}} ||X - C_{k}||^{2}$$

- $|\mathbf{B}_{\mathbf{k}}|$ is the number of data instances in cluster \mathbf{k}
 - **Q** will be small if (on average) the data instances in each cluster are close

The Q measure takes into account homogeneity within clusters, but not separation between clusters

Silhouette coefficient

Cohesion: measures how closely related are objects in a cluster

Cohesion

a(C): average distance of C to all other vectors in the same cluster

Silhouette coefficient

Separation: measure how distinct or well-separated a cluster C is

Quality of clustering

Silhouette coefficient

Silhouette S(C):

$$S(C) = \frac{b(C) - a(C)}{Max(a(C), b(C))}$$

Silhouette Coefficient S: $S = \frac{1}{K} \sum_{K=1}^{K} S(C_K)$

S(C), $S \in [-1, +1]$: -1=Bad, 0=Indifferent, 1=Good

