Foundational Statistics Simple Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

A linear model for two numeric variables

A generic linear model for two numeric variables

Ordinary Least Squares (OLS): one method for estimating β_0 and β_1 from a random sample.

- Construct a "best fit" linear function to model variation in y
- Function is derived such that the total vertical distance between observed *y*-values and the line are minimized
- The *y*-intercept and slope of the line are our sample-based estimates for the population β_0 and β_1
- This approach (also called "Model I regression") assumes that the *x*-variable is measured without error

Ordinary Least Squares (OLS): How it works

Hypothesis tests in linear regression

$$H_0: eta_1=0$$
 (the population slope equals zero)

$$H_0: eta_0 = 0$$
 (the population y-intercept equals zero)

full model
$$(H_A)$$
 - $y_i = \beta_0 + \beta_1 x_i + error_i$

reduced model
$$(H_0)$$
 - $y_i = \beta_0 + 0x_i + error_i$
= $\beta_0 + error_i$

Model with no slope: No linear effect of x on y

To test null hypothesis:

- 1) fit a "reduced" model without slope term (fit under H₀)
- 2) fit the "full" model with slope term added back (fit under H_A)
- 3) use the full and reduced models to calculate a <u>test statistic that reflects</u> the ratio of explained to unexplained variation by the full model

(i) the variation that is explained by the model (SS_{Model}) $SS_{Model} = SS_{Total}$ (reduced model) — $SS_{Residual}$ (full model)

The bigger this difference, the better our full model is, relative to the null model

(ii) the variation that is unexplained by the model ($SS_{Residual}$) $SS_{Residual}$ (full model)

If this value is small, our model explains much of the variation in *y*

So, If our model's ratio of explained to unexplained variation is high, we reject the null hypothesis of our predictor variables having zero explanatory power

F-ratio (our test statistic) =
$$\frac{SS_{reduced} - SS_{full}}{SS_{full}} = \frac{Var_{explained}}{Var_{unexplained}}$$

Assumptions of the *F*-ratio test for β_1 = 0

1. Linear relationship between y and x, under H_A

(Check using scatter plot)

2. Bivariate normally distributed

(Check using histograms, boxplots, etc.)

3. Variance of residuals is homogeneous across all values of *x*

(Check using residuals vs. predicted-y plot)

Assumptions of the F-ratio test for β_1 = 0 (Using <u>residual plots</u>)

The coefficient of determination (r^2)

$$r^{2} = \frac{SS_{regression}}{SS_{total}} = 1 - \frac{SS_{residual}}{SS_{total}}$$

$$r^{2} = 1 - \frac{SS_{residual(full)}}{SS_{total(reduced)}}$$

- proportion of variance in Y that is explained by X

Model II regression: when *x* and *y* are both measured with error

MA (Major Axis): x and y have similar error and have same units

Ranged MA: x and y in different units or on different scales.

Assumes no outliers

RMA or SMA (Reduced Major Axis): x and y in different units or on different scales. Robust to outliers