Zadanie: PRZ Przedziały

Laboratorium z ASD, egzamin (zadanie łatwiejsze). Dostępna pamięć: 128 MB. 06.02.2021, 12:00:00

Bajtazar musi przygotować program, który pozwoli na operowanie na zbiorze przedziałów S. Wszystkie przedziały będą podzbiorami zakresu $U=1,\ldots,n$. Początkowo zbiór przedziałów jest pusty $S=\emptyset$. Program powinien obsługiwać dwie operacje:

• dodaj domknięty przedział $[l, \ldots, r]$ do \mathcal{S} :

$$\mathcal{S} := \mathcal{S} + \{[l, \dots, r]\}$$

(jeśli przedział $[l,\ldots,r]$ już należy do $\mathcal S$ to operacja nic nie zmienia)

• usuń domknięty przedział $[l, \ldots, r]$ z \mathcal{S} :

$$\mathcal{S} := \mathcal{S} - \{[l, \dots, r]\}$$

(jeśli przedział $[l,\ldots,r]$ nie należy do $\mathcal S$ to operacja nic nie zmienia)

Po każdej operacji należy wypisać ile(S): liczbę elementów z U które nie należą do żadnego przedziału z S:

$$ile(\mathcal{S}) = |U \setminus \bigcup S| = |\{x \in U : \forall_{[l,\dots,r] \in \mathcal{S}} x \notin [l,\dots,r]\}|$$

Bajtazarowi udało się wynegocjować uproszczenie zadania i w tej wersji program musi obsługiwać jedynie operacje na przedziałach $[l,\ldots,r]$ w których l=1 lub r=n.

Wejście

Pierwszy wiersz wejścia zawiera dwie liczby całkowite n i m $(1 \le n \le 1\,000\,000,\,1 \le m \le 200\,000)$ oznaczające rozmiar U oraz liczbę zapytań. Kolejnych m wierszy zawiera opisy zapytań. Każdy wiersz z zapytaniem zawiera trójkę wartości c, l, r gdzie $c \in \{-, +\},\,1 \le l \le r \le n$ oraz l = 1 lub r = n. Jeśli c = - to zapytanie dotyczy usunięcia przedziału $[l, \ldots, r]$. Jeśli c = + to zapytanie dotyczy dodania przedziału $[l, \ldots, r]$.

Wyjście

Twój program powinien wypisać na wyjście m wierszy. W i-tym wierszu (dla $i=1,\ldots,m$) powinna znaleźć się jedna liczba całkowita, oznaczająca wartość $ile(\mathcal{S})$ po wykonaniu i-tego zapytania.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
10 9	8
+ 1 2	4
+ 1 6	0
+ 7 10	0
- 1 2	0
+ 1 9	0
+ 1 6	0
- 1 6	0
- 1 1	6
- 1 9	

Wyjaśnienie do przykładu:

	I J	
operacja	\mathcal{S} (po wykonaniu operacji)	$ile(\mathcal{S})$ (po wykonaniu operacji)
+ 1 2	{[12]}	8
+ 1 6	$\{[12], [16]\}$	4
+ 7 10	$\{[12], [16], [710]\}$	0
- 1 2	$\{[16], [710]\}$	0
+ 1 9	$\{[16], [710], [19]\}$	0
+ 1 6	$\{[16], [710], [19]\}$	0
- 1 6	{[710], [19]}	0
- 1 1	$\{[710], [19]\}$	0
- 1 9	$\{[710]\}$	6

1/1 Przedziały