Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2021 Entrega ${\bf n}^{\circ}{\bf 2}$

- 1. Considerar el problema: $\begin{cases} y'(t) &= t(\operatorname{sen}(y(t)))^2 \\ y(0) &= 1 \end{cases} .$
 - a) Escribir la iteración del método de Euler correspondiente a este problema.
 - b) Calcular el error de truncado local para $t \in [0, 1)$.
 - c) Si se escribe a la iteración del método de Euler como $y_{i+1} = y_i + h\phi(t_i, y_i, h)$ para $0 \le i \le N-1$, mostrar que $\phi(t, y, h)$ es Lipschitz respecto de la segunda variable y concluir que $|y_N y(1)| \to 0$ cuando $N \to +\infty$.

Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2021 Entrega $n^{\circ}2$ - Resolución del ejercicio

1a) La iteración del método de Euler con paso $h = \frac{1}{N}$ es:

$$\begin{cases} y_{i+1} = y_i + ht_i(\text{sen}(y_i))^2, \text{ para } 0 \le i \le N - 1, \\ y_0 = 1. \end{cases}$$

1b) Recordemos que el error de truncado local para el método de Euler para t en [0,1) es $\tau = \frac{h}{2}y''(\xi)$, para $\xi \in (t,t+h) \subseteq (0,1)$. Como $y''(t) = \frac{d}{dt}f(t,y(t)) = \frac{d}{dt}(t(\operatorname{sen}(y(t)))^2) = (\operatorname{sen}(y(t))^2 + 2t\operatorname{sen}(y(t))(\cos(y(t))t(\operatorname{sen}(y(t))^2) = (\operatorname{sen}(y(t))^2(1+2t^2\cos(y(t))\operatorname{sen}(y(t))),$ tenemos:

$$\tau = \frac{hy''(\xi)}{2} = \frac{h[(\text{sen}(y(\xi))^2(1 + 2\xi^2\cos(y(\xi))\sin(y(\xi))))]}{2}.$$

Para acotar esta expresión (en módulo) alcanza con considerar que $|\cos(z)| \le 1$, $|\sin(z)| \le 1$ para cualquier argumento z, que $\xi \in (0,1)$ y por lo tanto $|\xi| < 1$, más la desigualdad triangular. Luego:

$$|\tau| \le \frac{h[1 \times (1 + 2 \times 1 \times 1 \times 1)]}{2} = \frac{3h}{2}.$$

De esta forma, el valor máximo que puede tomar $|\tau|$, τ_{MAX} , se puede acotar por $\tau_{MAX} \leq \frac{3h}{2}$.

 $1c)\,$ Mostremos ahora que $\phi(t,y,h)=t(\sin(y))^2$ es Lipschitz respecto de la segunda variable:

$$|\phi(t, y, h) - \phi(t, z, h)| = |t(\operatorname{sen}(y))^{2} - t(\operatorname{sen}(z))^{2}| = t|\operatorname{sen}(y) + \operatorname{sen}(z)||\operatorname{sen}(y) - \operatorname{sen}(z)|$$

$$\leq 1 \cdot 2 \cdot |\operatorname{sen}(y) - \operatorname{sen}(z)| \underset{TVM}{=} 2|\operatorname{cos}(\xi)||y - z| \leq 2|y - z|.$$

Como el método es consistente porque $\tau \to 0$ y la ϕ es Lipschitz en la segunda variable, el método converge.

Tambien podríamos ver que, si K es la constante de Lipschitz (en este caso, K=2):

$$|y_N - y(1)| = |e_N| \le \frac{\tau_{MAX}}{K} (e^{K(1-0)} - 1) \le \frac{3h}{4} (e^2 - 1) = \frac{3}{4N} (e^2 - 1) \underset{N \to +\infty}{\longrightarrow} 0.$$