Collins 2017

```
library(LAGOSNE)
library(dplyr)
library(plsdepot)
library(knitr)
dt <- LAGOSNE::lagos_load_collins_2017()</pre>
dt <- dplyr::filter(dt, Region == "Midwestern")</pre>
# In the Midwestern U.S. region, dominated by agricultural land use, lake depth
# and the percentage of row crop agriculture were strong predictors of
# stoichiometry because:
# * **only phosphorus was related to lake depth**
# * **only nitrogen was related to the percentage of row crop agriculture**
coefs <- round(abs(</pre>
  lm(ln_TP ~ ln_Urban_iws + ln_Pasture_iws + ln_RowCrop_iws +
     ln_Forest_iws + NO3deposition_hu12 + X30yrPrecip_hu12 +
     Baseflow_hu12 + ln_maxdepth + ln_ResTime_lawa +
     X30yrTemp_hu12, data = dt)$
    coefficients), 2)
knitr::kable(coefs[order(coefs)])
```

	x
ln_RowCrop_iws	0.00
X30yrPrecip_hu12	0.00
ln_Pasture_iws	0.01
NO3deposition hu12	0.01
Baseflow hu12	0.01
ln_Forest_iws	0.02
ln_Urban_iws	0.04
X30yrTemp_hu12	0.06
ln ResTime lawa	0.17
ln maxdepth	0.76
(Intercept)	6.65

	ln_TP	$\ln_{-}TNTP$	ln_TN
ln_Urban_iws	-0.09	0.03	-0.07
$ln_Pasture_iws$	-0.07	0.01	-0.08
ln RowCrop iws	0.03	0.04	0.08

	ln_TP	ln_TNTP	ln_TN
ln_Forest_iws	-0.07	-0.01	-0.10
NO3deposition_hu12	-0.10	0.12	0.01
$X30$ yrPrecip_hu12	-0.09	0.03	-0.09
Baseflow_hu12	-0.14	0.14	-0.01
$ln_maxdepth$	-0.59	0.42	-0.27
$ln_ResTime_lawa$	-0.19	0.10	-0.12
$X30yrTemp_hu12$	0.04	-0.08	-0.04