Московский Государственный Университет

Паросочетания в плоских графах

Выполнил: Курцев Д.В.

Группа: 517

Факультет Вычислительной математики и кибернетики Кафедра Математических методов прогнозирования

Декабрь 2023

1 Постановка задачи

На плоскости заданы два множества точек: В (черные) и W (белые) по n точек в каждом. Никакие три точки не лежат на одной прямой.

Правильным паросочетанием называется множество из n пар $(b,w),\,b\in B,\,w\in W$ такое, что отрезки прямых, соответствующие этим парам, не пересекаются.

- 1) Доказать, что всегда существует прямая, проходящая через черную и белую точки, для которой количество черных точек, попавших в одну из полуплоскостей относительно этой прямой, равно количеству белых точек в этой же полуплоскости. Опишите, как найти эту прямую за время $O(n \log n)$.
- 2) Разработать алгоритм, позволяющий в течение времени $O(n^2 \log n)$ построить правильное паросочетание. Необязательный критерий предпочтительным является решение, минимизирующее среднюю длину пути между точками в парах.
- 3) Разработать и реализовать программу вычисления и визуализации правильного паросочетания для заданных множеств черных и белых точек. Программа должна обеспечить:
 - ввод заданного массива точек, входящих в множества В и W;
 - вывод картины паросочетания;
 - подсчет и вывод средней длины пути между белыми и черными точками в парах;
 - оценку реального времени работы программы по каждому эксперименту.

Исходные данные задаются в текстовом файле. Первая запись – число точек, далее в каждой записи одна точка: номер точки, координаты и цвет – черный 1, белый – 0.

2 Доказательство алгоритма

Возьмём левую нижнюю точку. Без ограничения общности будем считать, что она чёрная. Поместим начало координат в эту точку. Отсортируем остальные точки по увеличению полярного угла. Далее будем поочерёдно идти по ним и считать количество чёрных и белых пройденных точек. Если мы указываем на белую точку и счётчики совпадают, значит мы нашли такую прямую.

Докажем, что такое всегда произойдёт. Если в нулевой момент мы указываем на белую точку, то данное разбиение найдено. Если нет, то заводим счётчики, как было сказано раннее. Обозначим их b_i и w_j - чёрные и белые соответственно. Заметим, что $0=w_1 < b_1=1$. Так же $b_{2n-1} \le w_{2n-1}=n-1$ так как n-1 максимально возможно количество точек, которое может остаться. Если в последний (2n-1) момент мы указываем на белую точку, то $b_{2n-1}=w_{2n-1}=n-1$ и разбиение найдено. Если на чёрную, то $b_{2n-1} < w_{2n-1}=n-1$. Значит существовал раннее такой момент k, где $b_k=w_k$ и мы указываем на белую точку. Если предположить, что такого момента не было, то тогда для $\forall j \in \{0,2n-2\}$ было бы верно: $w_j \le b_j$ и $w_{j+1} < b_{j+1}$, что противоречит шагу 2n-1.

Чтд

3 Реализация алгоритма

Выполнение данной задачи было разделено на несколько функций.

Функция $get_down_left_point$ ищет нижнюю левую точку. Для этого применялась сортировка по координате y - $O(n \log n)$.

Функция get_edge строит ребро по вышеописанному алгоритму. Проход по всем точкам занимает O(n) времени

И функция $make_pairs$ рекурсивно строит пары через функцию get_edge . Ребро разделяющее плоскость добавляется в пары и далее алгоритм точно так же применяется к оставшимся полуплоскостям.

4 Эксперименты

5 Выводы

В данной работе был доказан алгоритм о разбиении плоскости и реализован другой на основе доказанного для парасочетаний точек разного цвета. Продемонстрирована его работа на нескольких экспериментах. Видно, что алгоритм быстро и верно соединил точки рёбрами без пересечений.