Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №3 з дисципліни: «Схемотехніка-1. Аналогова схемотехніка»

ОПЕРАЦІЙНІ ЛАНКИ НУЛЬОВОГО ПОРЯДКУ

Виконав: Студент 3-го курсу	(підпис)	Кузьмінський О.Р.	
Перевірила:	(підпис)	Бевза О.М.	

1.Мета завдання

Вивчення принципів роботи, дослідження амплітудних характеристик та параметрів різних функціональних ланок на основі інтегральних операційних підсилювачів (інвертуючого та неінвертуючого підсилювачів, сумуючого та віднімаючого підсилювачів).

2.Порядок виконання завдання

- 1) Включити лабораторну установку для дослідження операційних ланок нульового порядку. Підключити лабораторну установку відповідно до блоксхеми(рис.1).
- 2) Для схем масштабного підсилювача з інвертування та без інвертування:
 - а) Виміряти вхідний $R_{\rm BX}$ та вихідний опір $R_{\rm BUX}$, коефіцієнт передачі напруги K_U при підключенні опорів R_1 та R_4 і $U_{\rm BX}{=}U_1=0,1$ В на частоті $f_{\scriptscriptstyle \Gamma}=1$ к Γ ц.
 - б) Обчислити коефіцієнти передачі напруги $K_U = \frac{U_2}{U_1}$, струму $K_I = \frac{R_{\rm BX}}{R_4} K_U$, та потужності $K_P = K_U \times K_I$
 - в) Визначити максимальну частоту масштабних підсилювачів при припустимому зменшенні коефіцієнта передачі до рівня $M_{\rm д} = \frac{K_U(f_{\rm B})}{K_U(f_0=1 {\rm k} \Gamma {\rm ц}=0{,}707)}$
 - г) Змалювати з екрана осцилографа та порівняти амплітуди і фази напруг U_1 та U_2 .
 - д) Результат вимірювань та осцилограми внести в табл. 3.2.
 - е) Виміряти та побудувати графік амплітудної характеристики $U_2 = U_2(U_1)$ неінвертуючого підсилювача ($\Pi 2$) на частоті $f_{\Gamma} = 1$ к Γ ц. Відзначити знаками «+» і «-» відповідно найбільше значення вхідної напруги $U_1(U_{1max}^+$ та U_{1max}^-), при яких з'являються помітні нелінійні спотворення вихідної напруги U_2 позитивної та негативної полярності. Обчислити динамічний діапазон вхідного напруги позитивної Π^+ та негативної Π^- полярностей: $\Pi^+ = \frac{U_{1max}^+}{U_{1min}}$, де U_{1min} -мінімальна амплітуда вхідної на-

пруги, помітна на рівні шумів при заданому відношенні $\frac{\text{сигнал}}{\text{шум}}$ (взяти $\frac{\text{сигнал}}{\text{шум}} = 3$).

3) Для диференціального масштабного підсилювача, інвертуючого та неінвертуючого сумуючих підсилювачів змалювати осцилограми вхідних напруг $(U_{11}=U_{\rm r},U_{12})$ та вихідної напруги (U_2) на частоті $f_{\rm r}=1$ к Γ ц, $U_{11m}=1$ В, де : $U_{11}(t)=U_{1m}\sin(\omega t+\phi)$ при $0\leq t\leq T$;

 U_{11} знімається з виходу КТ3,

$$U_{12}(t) = \begin{cases} 1 & \text{при } t_1 \leq t \leq (t_1 + t_u) \\ 0 & \text{при}(t_1 + t_u) \leq t \leq (t_1 + t_u + t_n) \end{cases}$$
-знімається з виходу КТ7,

 U_2 знімається з виходу КТ3.

Для зазначених трьох підсилювачів (ДМП, ІСП, НСП) записати аналітичний вираз для вихідної напруги $U_2(t)$ у символьному вигляді та чисельно і порівняти результати вимірювань з розрахунками, зробити висновки по кожному пункту досліджень.

Тут U_{1m} — амплітуда вхідного сигналу U_{11} , U_{2m} —максимальне значення вхідного сигналу U_{12} , Т— період вхідного сигналу U_{11} , t_u — тривалість імпульсу вхідного сигналу U_{12} , t_n — тривалість паузи вхідного сигналу U_{12} .

4) Визначити споживану потужність установки при проведенні лабораторних досліджень, знаючи час проведення досліджень та споживану потужність блоків установки.

3.Схеми вимірювання

Рис. 1: Блок-схема лабораторного макета «Операційні ланки нульовогопорядку».

Рис. 2: ІМП

Рис. 3: НМП

4. Результати вимірювань

Табл.1. До вимірювань функцій масштабних підсилювачів (ІМП, НМП).

	Показники роботи	Підсилювач в		
$ N_{\overline{0}} $	-	схемі		
	підсилювача	IMΠ	НМП	
		(Π1)	(П2)	
1	При $R_1=0$	100	100	
	(П6-замкнутий) $U_{ m r}$,мВ	100		
	При $R_1=1$ кОм			
2	(П6-розімкнений)	91,3	99,4	
	$ig U_1$, м ${ m B}$			
3	$R_{\rm BX} = R_1 \frac{U_1}{U_{\rm \Gamma} - U_1}$	10,49	165,7	
$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	При $R_4 = \infty$,	199	$\begin{vmatrix} 300 \end{vmatrix}$	
	U_{2xx} , мВ	133	300	
5	При $R_4=2$ кОм,	199	$\begin{vmatrix} \\ 300 \end{vmatrix}$	
	U_2 , м B	100		
6	$R_{ ext{bux}} = R_4 rac{U_{2xx-U_2}}{U_2}, ext{Om}$	0	0	
7	$K_U = rac{U_2}{U_1}$	2,18	3,018	
8	$R_{ ext{вих}} = R_4 rac{U_{2xx-U_2}}{U_2}, ext{Ом}$ $K_U = rac{U_2}{U_1}$ $K_I = K_U rac{R_{ ext{вх}}}{R_4}$	11,434	250,041	
9	$K_P = K_U \cdot K_I$	24,926	754,624	
10	Епюри напруги $U_1(-)$ та $U_2()$	протифазні	синфазні	
11	$f_{ exttt{B}} = f_{max}, \; ext{к} \Gamma$ ц	500-600	500-600	
	при $U_{2\mathtt{B}} = 0.707 \cdot U_2$	000-000	000-000	

 Табл.2. До вимірювань амплітудної характеристики неінвертуючого

 масштабного підсилювача.

Um1, B	0,0186	0,092	0,174	0,552	0,92	1,22
Um2, B	0,0561	0,283	0,568	1,68	2,78	3,66

5. Розрахунки

- 1) Розрахунок вхідного попору ($R_1 = 1 \text{ кOm}$)
 - Підсилювач в схемі ІМП:

$$R_{\text{BX}} = R_1 \frac{U_1}{U_{\Gamma} - U_1} = 10^3 \times \frac{91,3 \cdot 10^{-3}}{100 \cdot 10^{-3} - 91,3 \cdot 10^{-3}} = 10,49 \text{ kOm}$$

• Підсилювач в схемі НМП:

$$R_{\mathrm{BX}} = R_1 \frac{U_1}{U_{\Gamma} - U_1} = 10^3 \times \frac{99.4 \cdot 10^{-3}}{100 \cdot 10^{-3} - 99.4 \cdot 10^{-3}} = 165.7 \ \mathrm{кOm}$$

- 2) Розрахунок вихідного попору $(R_4 = 2 \text{ кOm})$
 - Підсилювач в схемі ІМП:

$$R_{\text{BHX}} = R_4 \frac{U_{2xx} - U_2}{U_2} = 2 \cdot 10^3 \times \frac{199 \cdot 10^{-3} - 199 \cdot 10^{-3}}{199 \cdot 10^{-3}} = 0 \text{ Om}$$

• Підсилювач в схемі НМП:

$$R_{\text{BHX}} = R_4 \frac{U_{2xx} - U_2}{U_2} = 2 \cdot 10^3 \times \frac{300 \cdot 10^{-3} - 300 \cdot 10^{-3}}{300 \cdot 10^{-3}} = 0 \text{ Om}$$

- 3) Розрахунок коефіцієнта передачі напруги
 - Підсилювач в схемі ІМП:

$$K_U = \frac{U_2}{U_1} \frac{199 \cdot 10^{-3}}{91.3 \cdot 10^{-3}} = 2.18$$

• Підсилювач в схемі НМП:

$$K_U = \frac{U_2}{U_1} \frac{300 \cdot 10^{-3}}{99.4 \cdot 10^{-3}} = 3,018$$

- 4) Розрахунок коефіцієнта передачі струму
 - Підсилювач в схемі ІМП:

$$K_I = K_U \times \frac{R_{\text{BX}}}{R_4} = 2.18 \times \frac{10.49 \cdot 10^3}{2 \cdot 10^3} = 11.434$$

• Підсилювач в схемі НМП:

$$K_I = K_U \times \frac{R_{\text{BX}}}{R_4} = 3,018 \times \frac{165,7 \cdot 10^3}{2 \cdot 10^3} = 250,041$$

- 5) Розрахунок коефіцієнта передачі потужності
 - Підсилювач в схемі ІМП:

$$K_P = K_U \cdot K_I = 2{,}18 \cdot 11{,}434 = 24{,}926$$

• Підсилювач в схемі НМП:

$$K_P = K_U \cdot K_I = 3,018 \cdot 250,041 = 754,624$$

6.Графіки

Рис. 4: Епюри напруг U_1 і U_2 підсилювача в схемі

Рис. 5: Амплітудна характеристика НМП

Рис. 6: Осцилограми $U_{11}(t),\ U_{12}(t),\ U_{2}(t)$ для ДМУ

Рис. 7: Осцилограми $U_{11}(t),\ U_{12}(t),\ U_{2}(t)$ для ИСУ

Рис. 8: Осцилограми $U_{11}(t),\ U_{12}(t),\ U_{2}(t)$ для НСУ

7. Аналіз результатів та висновки