IOT BASED SMART CROP PROTECTION SYSTEM FOR AGRICULTURE

Team ID: PNT2022TMID41353

Team Members

M.Nilofar Nisha

Z.Jafrin

R.Priya

N.Sneka

INTRODUCTION

PROJECT OVREVIEW:

Crops in farms are many times ravagedby local animalslike buffaloes, cows, goats, birds etc. this leads to huge losses for the farmers. It is not possible for farmers tobarricade entire fields or stay on field 24 hours and guard it.so here we proposeautomatic crop protection system from animals. This is a microcontroller based system using PIC family microcontroller. The microcontroller now sound an alarm to woo the animal away from the field as well as sends SMS to the farmer so that he may about the issue and come to the spot in case the animal don't turn away by the alarm. This ensures complete safetyof crop from animals thus protecting farmers loss.

PURPOSE:

Our main purpose of the project is to develop intruder alert to the farm, to avoid losses due to animal and fire. These intruder alert protect the crop that damaging that indirectly increase yield of the crop. The develop system will not harmful and injurious to animal as well as human beings. Theme of project is to design a intelligent security system for farm protecting by using embedded system.

LITERATURE SURVEY

This paper describes overview of various researches on smart crop protection system. We have a lot of technology that can protect the farm 24x7 those systems and technique we are discussing in this paper. We have different types of technology that can help to secure the farm. We have seen Arduino and raspberry pi based Farm protection system. But those Systems have different mythology and platform for that and the cost of those projects also increased so that those are not affordable with the farmer. Our main aim to design a system that can help to farmer to protect his farm from, animals with getting harm to them.

REFERENCES:

- 1.Dr.M. Chandra ,Mohan Reddy, KeerthiRajuKamakshiKodi, BabithaAnapalliMounikaPulla, "SMART CROP PROTECTION SYSTEM FROM LIVING OBJECTS AND FIRE USING ARDUINO", Science, Technology and Development, Volume IX Issue IX ,pg.no 261-265,Sept 2020.
- 2 .Mr.P.Venkateswara Rao, Mr.Ch Shiva Krishna ,MR M Samba Siva ReddyLBRCE,LBRCE,LBRCE.
- 3. Mohit Korche, Sarthak Tokse, Shubham Shirbhate, Vaibhav Thakre, S. P. Jolhe (HOD). Students, Final Year, Dept. of Electrical engineering, Government College of engineering, Nagpur head of dept., Electrical engineering, Government College of engineering, Nagpur.

PROBLEM STATEMENT DEFINITION STATEMENT:

In the world economyof many Countrydependent upon the agriculture. In spite of economic development agriculture is the backbone of the economy. Crops in forms are many times ravaged by local animals like buffaloes, cows, goats, birds and fire etc. this leads to huge loss for the farmers.it is not possible for farmers to blockade to entire fields or stay 24 hours and guard it. Agriculture meets food requirements of the people and produces several raw materialsfor industries. But because of animal interference and fire in agricultural lands, there will be huge loss of crops. Crops will be totally getting destroyed.

IDEATION AND PROPOSED SOLUTION

EMPATHY MAP CANVAS:

IDEATION AND BRAINSTORMING:

Group Ideas

Take turns sharing your lideus while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is

20 minute

Prioritiz

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

10 minutes

PROPOSED SOLUTION:

S.NO	PARAMETERS	DESCRIPTION
1.	Problem Statement (Problem	Usually cross in the fields are
	to be solveed)	protected against birds and
		other unknown disturbances
		by humans. This take an
		enormous amount of
		time.Creating a smart
		automatic system will beneft
		the farmers in many different
		ways
2.	Idea / Solution descripton	Smart Farming has enableed
		farmers to reduce waste aned
		enhance proeductvity with the
		help of sensors (light,
		humidity, temperature, soil
		moisture,etc).
3.	Novelty / Uniqueness	Role of SENSORS : IOT smart
		agriculturep roeducts are
		edesigneed to hel monitor cro
		feleds using sensors aned by
		automatng irrigaton systems.
		As a result, farmers aned
		associateed braneds can
		easily monitor the feled
		coneditons from anywhere
4	0	without any hassle.
4.	Social Im act / Customer	Water conservation . Saves lot
	Satsfacton	of time . Increaseed quality of
		producton. Real time data
		and proeducton insight.
	Coolability of the Columbia	Remote monitoring.
5.	Scalability of the Soluton	Scalability in smart farming
		refers to the and ability of a

	system to increase the ca
	pacity , the numbers.

PROBLEM SOLUTION FIT:

REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENT:

FR NO	Functional Requireeent (Epic)	Sub Requireeent (Story /
		Sub-Task)
	User Registration	Install the app Signing up
		with Gmail or phone
1.		number Creating a profile
		Understand the guidelines
	User Confirmation	Email or phone number
2.		verification required via
		OTP
	Accessing datasets	Data's are obtained by
3.		cloudant DB.
	Interface sensor	Connect the seosor aod
4.		the applicatoo When
		animals enter the field the
		alarm is generated

NON FUNCTINAL REQUIREMENT:

FR No.	Non-Functional Requirement	Description
1.	Usability	This project's conntributes
		the farm protection through
		the smart protection system
2.	Security	It was created to protect the
		crops from animals
3.	Reliability	Farmers are able to
		safeguard their loads by help
		of this technology They will
		also beneits from higher crop
		yields which will improve our
		economic situation
4.	Performance	When animals attempt to
		enter the field IOT devices
		and seosors alert the farmer
		via message
5.	Availability	We can defend the crops
		agaiost wild animals by
		creating and implementing
		resilinot hardware aod
		software.
6.	Scalability	This system's integration of
		computer vision algorithms
		with IBM cloudant services
		makes it more efficieot to
		retrieve photos at scale
		enhanching and scalability.

PROJECT DESIGN

DATA FLOW DIAGRAM:

SOLUTION AND TECHNICAL ARCHITECTURE:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts	App development
		with the Web UI	
	A 1: .: 1	Logic for a process in	Python Objectives
2.	Application Logic-1	the application	
3.	Application Logic-2	Logic for a process in	IBM Watson STT
		the application	service
4.	Application Logic-3	Logic for a process in	Node-RED service
		the application	
5.	Database	Data Type	Database Cloudant
			DB
6.	Cloud Database	Database Service on	Cloud Object store
		Cloud	service
7.	File Storage	File storage	IBM Block Storage
		requirements	
8.	Infrastructure (Server	Application	Cloud Foundry
	/ Cloud)	Deployment on Local	
		System / Cloud Local	
		Server Configuration:	

	Cloud Server	
	Configuration:	

TABLE 2:

S.No	Characteristics	Description	Technology
1.	Open-source	The open- source	SAN-SAF
	Frameworks	frameworks used	
2.	Security	List all the security /	IBM cloud
	Implementations	access controls	encryptions
		implemented	
3.	Scalable Architecture	Justify the scalability of	IBM cloud
		architecture (3 – tier,	Architecture
		Micro-services)	
4.	Availability	Justify the availability of	Web Application can
		applications (e.g. use of	even be used by the
		load balancers,	framers in the
		distributed servers etc.)	horticulture
5.	Performance	Design consideration	Since the web
		for the performance of	application is high
		the application	efficient, it can be
			used by the farmers
			irrespective of time

USER STORIES:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1		US-1	Create the IBM Cloud services which are being used in this project.	6	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-1		US-2	Configure the IBM Cloud services which are being used in completing this project.	4	Medium	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-2		US-3	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	Medium	Nilofar Nisha M, Jafrin Z, Priya R,

Sprint	Functional	User Story Number	User Story / Task	Story Points	Priority	Team Members
	Requirement (Epic)	Number				Sneha N
Sprint-2		US-4	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT platform and get the device credentials.	5	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-3		US-1	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM IoT Platform.	10	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-3		US-2	Create a Node-RED service.	10	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-3		US-1	Develop a python script to publish random sensor data such as temperature, moisture, soil and humidity to the IBM IoT platform	7	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-3		US-2	After developing python code, commands are received just print the statements which represent the control of the devices.	5	Medium	Nilofar Nisha M, Jafrin Z, Priya R,

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
						Sneha N
Sprint-4		US-3	Publish Data to The IBM Cloud	8	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-4		US-1	Create Web UI in Node- Red	10	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N
Sprint-4		US-2	Configure the Node-RED flow to receive data from the IBM IoT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB	10	High	Nilofar Nisha M, Jafrin Z, Priya R, Sneha N

PROJECT PLANNING AND SCHEDULING

SPRINT PLANNING AND ESTIMATION:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

CODING AND SOLUTIONING

FEATURE-1

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "chr2pv"
" deviceType = "NodeMCU"
deviceId = "12345"
authMethod = "token"
authToken = "12345678"
# Initialize GPIO
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#..... except
Exception as e:
print("Caught exception connecting device: %s" % str(e)) sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of
type"greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(0,100)
Hum=random.randint(0,100)
moisture=random.randint(0,100)
data = { 'temperature' : temp, 'Humidity': Hum, 'Moisture':moisture }
#print data def myOnPublishCallback():
print ("Temperature = " + str(temp)+" C Humidity = " + str(hum)+ " moisture = " + str(moisture) +
"to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
if not success:
print("Not connected to IoTF") time.sleep(10)
deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
```

deviceCli.disconnect() M Wel x | ③ IBM x | ☑ IOT @ IBM Watson IoT Platform *** Add Device 🛨 Action Device Types # <u>°°</u> Event Format Last Received IoTSensor {"temp":52,"Humid":90} a few seconds ago IoTSensor {"temp":35,"Humid":76} ison a few seconds ago IoTSensor {"temp":90,"Humid":3} IoTSensor {"temp":4,"Humid":59} a few seconds ago Items per page 50 ▼ | 1-1 of 1 item 1 Simulation running unnamed.webp Type here to search

Features

Output: Digital pulse high (3V) when triggered (motion detected) digital low when idle (no motion detected). Pulse lengths are determined by resistors and capacitors on the PCB and differ from sensor to sensor. Power supply: 5V-12V input voltage for most modules (they have a 3.3V regulator), but 5V is ideal in case the regulator has different specs.

BUZZER

Specifications

• RatedVoltage: 6V DC

• Operating Voltage: 4 to 8V DC

• Rated Current*: ≤30mA

SoundOutput at 10cm*: ≥85dB
Resonant Frequency: 2300 ±300Hz

Tone: Continuous A buzzer is a loud noise maker.

Most modern ones are civil defense or air- raid sirens, tornado sirens, or the sirens on emergency service vehiclessuch as ambulances, police cars and fire trucks. There are two general types, pneumatic and electronic.

FEATURE-2:

- i. Goodsensitivity to Combustible gas in wide range .
- ii. Highsensitivity to LPG, Propane and Hydrogen .
- iii. Longlife and low cost.
- iv. Simpledrive circuit.

TESTING

TEST CASES:

S.NO	Parameter	Values	Screenshot
1.	Model summary	-	
2.	accuracy	Training accuracy95% Validation accuracy72%	
3.	Confidence score	Class detected80% Confidence score- 80%	

User Acceptance Testing:

RESULTS

The problem of crop vandalization by wild animals and fire has become a major social problem in current time. It requires urgent attention as no effective solution exists till date for this problem. Thus this project carries a great social relevance as it aims to address this problem. This project willhelp farmers in protecting their orchards and fields and save them from significant financial losses and will save them from the unproductive efforts that they endure for the protection their fields. This will also help them in achieving better crop yields thus leading to their economic wellbeing.

ADVANTAGES AND DISADVANTAGES

Advantage:

Controllable food supply. you might have droughts or floods, but if you are growing the crops and breeding them to be hardier, you have a better chanceof not straving.

It allows farmers to maximize yields using minimum resources such as water, fertilizers.

Disadvantage:

The main disadvantage is the time it can take to process the information.in order to keep feeding people as the population grows you have to radically change theenvironment of the planet.

CONCLUSION

A IoT Web Application is built for smart agricultural system using Watson IoT platform, Watsonsimulator, IBM cloud and Node-RED .

FUTURE SCOPE

In the future, there will be very large scope, this project can be made based on Image processing in which wild animaland fire can be detected by cameras and if it comes towards farmthen system will be directly activated through wireless networks. Wild animals can also be detected by using wireless networks such as laser wireless sensors and by sensing this laser or sensor's security system will beactivated.

APPENDIX

```
import time
importsys
import ibmiotf.application
# toinstallpip install ibmiotf
importibmiotf.device
# Provide your IBM Watson Device Credentials
organization = "chr2pv"
# replace the ORG ID deviceType = "NodeMCU" #replace the Device type deviceId = "12345"
# replace Device ID authMethod = "token"
authTokEN="12345678"
# Replace the authtoken def myCommandCallback(cmd):
# function for Callbackif cm.data['command'] == 'motoron': print("MOTOR ON IS RECEIVED")
elif cmd.data['command'] == 'motoroff'
:print("MOTOR OFF IS RECEIVED")
if cmd.command == "setInterval":
else:
if 'interval' not in cmd.data:
print("Error - command is missing requiredinformation: 'interval"")
interval = cmd.data['interval']
elif cmd.command == "print":
if 'message' not in cmd.data:
print("Error - commandis missing requiredinformation:
output = cmd.data['message'] print(output)
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,"authmethod":
authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
# ..... except
Exception as e:
print("Caught exception connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
"greeting" 10 times deviceCli.connect()
while True:
deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud deviceCli.disconnect()
```

SENSOR.PY

```
import time
import sysimport ibmiotf.application importibmiotf.device import random
# Provide your IBM Watson Device Credentials organization = "chr2pv"
# replace the ORG ID deviceType = "NodeMCU
#replace the Device type deviceId = "12345"
# replace Device ID authMethod = "token" authToken = "12345678"
# Replace the authtoken def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
print(cmd)
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions
) #..... except
Exception as e:
print("Caught exception connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
"greeting" 10 times deviceCli.connect()
while True:
temp=random.randint(0,1 00)
pulse=random.randint(0,100)
soil=random.randint(0,100)
data = { 'temp' : temp, 'pulse': pulse ,'soil':soil} #print data def myOnPublishCallback():
print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %pulse, "Soil Moisture = %s
%%" % soil,"to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, gos=0,
on_publish=myOnPublishCallback)
if not success:
print("Not connected to IoTF")time.sleep(1) deviceCli.commandCallback =
myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

<u>GitHub & Project Demo Link</u>

https://github.com/IBM-EPBL/IBM-Project-42411-1660661914