2017 年第九届全国大学生数学竞赛初赛 (数学类) 试卷

- 一、(本题 15 分) 在空间直角坐标系中,设单叶双曲面 Γ 的方程为 $x^2+y^2-z^2=1$. 设P为空间中的平面,它交 Γ 于一抛物线C. 求该平面P的法线与z—轴的夹角.
- 二、(本题 15 分) 设 $\left\{a_n\right\}$ 是递增数列, $a_1>1$.求证: 级数 $\sum_{n=1}^{\infty} \frac{a_{n+1}-a_n}{a_n \ln a_{n+1}}$ 收敛的充分

必要条件是 $\left\{a_n\right\}$ 有界. 又问级数通项分母中的 a_n 是否可以换成 a_{n+1} ?

- 三、(本题 15 分) 设 $\Gamma=\left\{W_1,W_2,...,W_r\right\}$ 为 r 个各不相同的可逆的 n 阶复方阵构成的集合。若该集合关于矩阵乘法封闭(即 $\forall M,N\in\Gamma$,有 $MN\in\Gamma$).证明: $\Sigma_{i=1}^rW_i=0$ 当且仅当 $\Sigma_{i=1}^r\operatorname{tr}\left(W_i\right)=0$,其中 $\operatorname{tr}\left(W_i\right)$ 表示 W_i 的迹.
- **四、(本题 20 分)** 给定非零实数 a 及实 n 阶反对称矩阵 A (即 A 的转置 A^T 等于 -A). 记矩阵有序对集合 T 为: $T=\left\{(X,Y)\,|\,X\in\mathbb{R}^{n\times n},Y\in\mathbb{R}^{n\times n},XY=aI+A\right\}$,其中 I 为 n 阶单位阵, $\mathbb{R}^{n\times n}$ 为所有实 n 阶方阵构成的集合。证明:任取 T 中的两元: $\left(X,Y\right)$ 和 (M,N) ,必有 $XN+Y^TM^T\neq 0$.
- 五、(本题 15 分) 设 $f(x)=\arctan x,A$ 为常数. 若 $B=\lim_{n o\infty}\left(\sum_{k=1}^nf\left(\frac{k}{n}\right)-An\right)$ 存在,求A,B.
- 六、(本题 20 分) 设 $f(x) = 1 x^2 + x^3$ $(x \in [0,1])$, 计算以下极限并说明理由:

$$\lim_{n o\infty}rac{\int_0^1f^n(x)\ln(x+2)\,\mathrm{d}\,x}{\int_0^1f^n(x)\,\mathrm{d}\,x}.$$