用触发器实现同步时序电路

用触发器设计同步时序电路的一般过程

状态化简

前例: 111序列检测器

(1) 设电路所要记忆的状态:

初始状态 S_1 : 无1输入,即输入是0

状态S₂: 输入1个1

状态S3: 输入2个1

原始状态图:

(2) 如再设状态 S_4 : 输入3个1则原始状态图:

(3) 显然状态 S_4 与 S_3 功能一样, S_4 是多余的,称之 S_4 与 S_3 是等价的两个状态。

所谓**状态化简**就是对原始状态表中存在的若干等价状态进行合并。经状态化简后电路的状态数减少,可以在一定程度上减少所需触发器的数目。

对于有q状态的时序电路来说,所需的触发器的个数,其下限r可由下式决定: 2^{r-1}

两个状态等价的条件是:

- (1) 在所有可能的输入条件下有完全相同的输出;
- (2) 在所有可能的输入条件下次态满足下列条件之一:
 - ① 次态相同;
 - ② 次态交错;
 - ③次态互为隐含条件。

例1 试化简原始状态表

用观察法

例2 试化简原始状态表

用状态对图化简状态表

用状态对图化简状态表

缺头

 x_1x_2

00

01

11

 $S_6/0$

 $S_{5}/1$

 $S_{5}/1$

 $S_1/0$

 $S_{5}/1$

 $S_1/0$

 $S_1/0$

 $S_{5}/1$

10

 S_1 0

 $S_{6}/0$

 $S_1/0$

 $S_{6}/0$

 $S_1/0$

 $S_6/0$ $S_1/0$

 $S_1/0$

NS/z

状态对图结构

少尾

用状态对图化简状态表

					Y
x_1x PS	00	01	11	10	
S_1	$S_4/0$	$S_4/0$	$S_6/0$	S_1 0	
S_2	$S_3/1$	$S_4/0$	$S_5/1$	$S_6/0$	
$\dot{S_3}$	$S_3/1$	$S_4/0$	$S_5/1$	$S_1/0$	
S_4	$S_4/0$	$S_2/0$	$S_1/0$	$S_6/0$	
S_5	$S_3/1$	$S_6/0$	$S_5/1$	$S_1/0$	
S_6	$S_4/0$	$S_4/0$	$S_1/0$	$S_6/0$	
S_7	S ₇ /0	S ₇ /0	$S_1/0$	$S_1/0$	
S_8	$S_2/1$	$S_4/0$	$S_5/1$	$S_1/0$	NS/z
4					

S_2	×						
S_3	×	1,6		_			
S_4	2,4 1,6	×	×				
S_5	×	4,6 1,6	4,6	×			
S_6	>	×	×	2,4	×		
S_7	4,7 1,6	. ×	×	2,7 1,6	×	4,7 1,6	
S_8	×	2,3 1,6	2,3	×	2,3 4,6	×	×
	S_1	S_2	S_3	S_{A}	S_5	S_{6}	S_7

 ${S_1,S_6}$ ${S_2,S_3,S_8}$

例3 未完全规定状态表的化简

交通控制器状态表

x_1x PS	² 00	01	11	10	
S_1	$S_1/0$	$S_5/1$	×/×	$S_2/1$	
S_2	$S_3/1$	×/×	×/×	$S_2/1$	
S_3	$S_3/1$	$S_4/1$	×/×	×/×	
S_4	$S_1/0$	$S_4/1$	×/×	\times/\times	
S_5	$S_6/1$	$S_{5}/1$	×/×	\times/\times	
S_6	$S_6/1$	×/×	×/×	$S_7/1$	
S_7	$S_1/0$	×/×	×/×	$S_7/1$	NS/z
•					'

可以对任意项赋予一个适当的值,以便进行状态合并。

状态分配(编码)

把电路状态用时序器件状态端的不同状态值的组合加以 表示,这称为**状态分配或状态编码。**

例:

设
$$S_1$$
=00, S_2 =01, S_3 =11, S_4 =10

状态分配的原则

对于有q个状态同步时序电路,至少需要用r个触发器的状态组合来记忆,其r由式 $2^{r-1} < q \le 2^r$ 决定。而将r个触发器的状态组合分配到q个状态上,则有种 $N = 2^r ! / (2^r - q)!$ 分配方案。

对于不同的状态分配方案,得到的电路的复杂程度会大不相同。

状态相邻法就是常用的一种状态分配方法,其基本思想是: 在状态分配时,为了得到较简的次态方程和输出方程,尽可能使 将产生次态和输出方程的卡诺图上的"1"方格相邻分布,并形成 最大的卡诺圈。它的主要规则为:

- ① 在同一输入条件下,具有相同次态的现态应尽可能地分配相邻的二进制代码。
- ② 在相邻输入条件下,同一个现态的次态应尽可能地分配相邻的二进制代码。
- ③ 在所有输入条件下,具有相同输出的现态应尽可能地分配相邻的二进制代码。

次态方程与输出方程的推导

将编码状态表的次态变量 Q_1^{n+1} 、 Q_2^{n+1}

及输出变量z分别画成3张卡诺图,得次态方程和输出方程

$$Q_1^{n+1} = \overline{Q}_1^n \overline{Q}_2^n \overline{x} + Q_1^n x$$

$$Q_2^{n+1} = \overline{Q}_2^n \overline{x} + Q_1^n \overline{Q}_2^n$$

$Q_1^{"}Q_2^{"}$	0	1	
00	0	0	
01	0	1	
11	0	1	
10	1	0	z

$$z = Q_1^n \overline{Q}_2^n \overline{x} + Q_2^n x$$

求解触发器激励方程

(1) 用D触发器实现

D触发器特征方程为

$$Q^{n+1} = D$$

激励方程

$$D_2 = \overline{Q}_2^n \overline{x} + Q_1^n \overline{Q}_2^n$$

$$D_1 = \overline{Q}_1^n \overline{Q}_2^n \overline{x} + Q_1^n x$$

输出方程

$$z = Q_1^n \overline{Q}_2^n \overline{x} + Q_2^n x$$

逻辑图

求解触发器激励方程

(2) 用J-K触发器实现

由于JK触发器特征方程为 $Q^{n+1} = J\bar{Q}^n + \bar{K}Q^n$

改写
$$Q_1^{n+1} = \overline{Q}_1^n \overline{Q}_2^n \overline{x} + Q_1^n x = \overline{x} \overline{Q}_2^n \overline{Q}_1^n + x Q_1^n$$

$$Q_2^{n+1} = \overline{Q}_2^n \overline{x} + Q_1^n \overline{Q}_2^n = (Q_1^n + \overline{x}) \overline{Q}_2^n + 0 Q_2^n$$

比较得

$$J_1 = \overline{Q}_2^n \overline{x}$$
 $J_2 = Q_1^n + \overline{x}$ $K_1 = \overline{x}$ $K_2 = 1$

输出方程

$$z = Q_1^n \overline{Q}_2^n \overline{x} + Q_2^n x$$

例4 选用JK触发器,完成例5-1-2 8421BCD码误码检测器的设计。

$\setminus x$			
PS	0	1	
S_0	$S_1/0$	$S_2/0$	
S_1	$S_3/0$	$S_4/0$	
S_2	$S_5/0$	$S_6/0$	
S_3	$S_7/0$	$S_8/0$	
S_4	$S_9/0$	$S_{10}/0$	
S_5	$S_{11}/0$	$S_{12}/0$	
S_6	$S_{13}/0$	$S_{14}/0$	
S_7	$S_0/0$	$S_0/0$	
S_8	$S_0/0$	$S_0/1$	
S_9	$S_0/0$	$S_0/1$	
S_{10}	$S_0/0$	$S_0/1$	
S_{11}	$S_0/0$	$S_0 / 0$	
S_{12}	$S_0/0$	$S_0/1$	
S_{13}	$S_0/0$	$S_0/1$	
S_{14}	$S_0 / 0$	$S_0/1$	NS/z

$$S_7 \approx \{S_7, S_{11}\}$$

 $S_8 \approx \{S_8, S_9, S_{10}, S_{12}, S_{13}, S_{14}\}$

用状态对图 化简状态表

 $\boldsymbol{\mathcal{X}}$

S_1	1,3							
	2,4 1,5	3,5	1					
S_2	2,6	4,6						
S_3	1,7	3,7	5,7					
23	2,8	4,8	6,8		,			
S_4	1,8	3,8	5,8	7,8				
54	2,8	4,8	6,8	7,0				
C	1,7	3,7	5,7	. /	7.0			
S_5	2,8	4,8	4,8		7,8			
C	1,8	3,8	5,8	7.0	. /	7.0		
S_6	2,8	4,8	6,8	7,8	🗸	7,8		
C	1,0	3,0	5,0	7,0	0.0	7,0	0.0	
S_7	2,0	4,0	6,0	8,0	8,0	8,0	8,0	
C			` .	\ /	\ /	/	\ /	\/
38	\times	\times	\times	\times	\times	X	\times	\times
S_8	X	X	X	X	X	X	X	X
3 ₈	$oxed{S_0}$	S_1	$\frac{\times}{S_2}$	S_3	S_4	S_5	S_6	S_7
38	, `	, ,	, ,		/ \	, ,	, ,	S_7

$\diamondsuit S_0' = S_0,$	$S_1' = \{$	S ₁ ,	S_2 },	$S_2' = \{ S_3,$	S ₅ },
$S_3'=\{S_4$, S ₆ },	S_4'	=S ₇ ,	$S_5'=S_8$	

状态分配

编码状态表

状态分配图

导出激励方程与输出方程

$$Q_2^{n+1} = Q_2^n Q_1^n + Q_1^n x$$

x			
$Q_2^n Q_1^n Q_0^n$	0	1	
000	1	1	
001	0	0	
011	0	0	
010	1	1	
110	×	×	
111	0	0	
101	0	0	
100	×	X	O_1^{n+1}
			\\ \&\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

$$Q_1^{n+1} = \overline{Q}_0^n$$

$$Q_0^{n+1} = Q_1^n$$

$Q_2^n Q_1^n Q_0^n$	0	1
000	0	0
001	0	0
011	0	0
010	0	0
110	X	×
111	0	0
101	0	1
100	X	×
'		

$$z = Q_2^n \overline{Q}_1^n x$$

$$Q_{2}^{n+1} = Q_{2}^{n} Q_{1}^{n} + Q_{1}^{n} x (\overline{Q}_{2}^{n} + Q_{2}^{n}) = Q_{1}^{n} x \overline{Q}_{2}^{n} + Q_{1}^{n} Q_{2}^{n}$$

$$Q_{1}^{n+1} = \overline{Q}_{0}^{n} (\overline{Q}_{1}^{n} + Q_{1}^{n}) = \overline{Q}_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{0}^{n} Q_{1}^{n}$$

$$Q_{0}^{n+1} = Q_{1}^{n} = Q_{1}^{n} (\overline{Q}_{0}^{n} + Q_{0}^{n}) = Q_{1}^{n} \overline{Q}_{0}^{n} + Q_{1}^{n} Q_{0}^{n}$$

JK触发器的激励方程

$$J_2 = Q_1^n x \qquad K_2 = \overline{Q}_1^n$$

$$J_1 = \overline{Q}_0^n \qquad K_1 = Q_0^n$$

$$J_0 = Q_1^n \qquad K_0 = \overline{Q}_1^n$$

$$z = Q_2^n \overline{Q}_1^n x$$

电路自启动性验证

$$Q_2^{n+1} = Q_2^n Q_1^n + Q_1^n x$$

$$Q_1^{n+1} = \overline{Q}_0^n$$

$$Q_0^{n+1} = Q_1^n$$

例5 用D触发器设计一个模6同步计数器

模6计数器的状态图

设 S_0 =000, S_1 =001, S_2 =010,

$$S_3 = 011$$
, $S_4 = 100$, $S_5 = 101$

模6计数器的编码状态表

$$Q_2^{n+1} = Q_2^n \overline{Q}_0^n + Q_1^n Q_0^n$$

$$Q_1^{n+1} = \overline{Q}_2^n \overline{Q}_1^n Q_0^n + Q_1^n \overline{Q}_0^n$$

$$Q_0^{n+1} = \overline{Q}_0^n$$

$$z = Q_2^n Q_0^n$$

模6计数器的逻辑图

$$egin{aligned} D_2 &= Q_2^{n+1} = Q_2^n \overline{Q}_0^n + Q_1^n Q_0^n \ & \ D_1 &= Q_1^{n+1} = \overline{Q}_2^n \overline{Q}_1^n Q_0^n + Q_1^n \overline{Q}_0^n \ & \ Z &= Q_2^n Q_0^n \ & \ D_0 &= Q_0^{n+1} = \overline{Q}_0^n \end{aligned}$$

电路自启动性验证

$$D_{2} = Q_{2}^{n+1} = Q_{2}^{n} \overline{Q}_{0}^{n} + Q_{1}^{n} Q_{0}^{n}$$

$$D_{1} = Q_{1}^{n+1} = \overline{Q}_{2}^{n} \overline{Q}_{1}^{n} Q_{0}^{n} + Q_{1}^{n} \overline{Q}_{0}^{n}$$

$$D_0 = Q_0^{n+1} = \overline{Q}_0^n$$
$$z = Q_2^n Q_0^n$$

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+}	Q_0^{n+1}	\overline{z}
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	0	0	0	1
1	1	0	1	1	1	0
1	1	1	1	0	0	1

