(12) NACH DEM VER GÜBER DIE INTERNATIONALE ZUSAMMEN GEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 8. Januar 2004 (08.01.2004)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2004/003062\ A1$

(51) Internationale Patentklassifikation⁷: C08L 67/03, H04R 7/00

C08J 5/18,

(21) Internationales Aktenzeichen: PCT/EP2003/006905

(22) Internationales Anmeldedatum:

30. Juni 2003 (30.06.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Prioritätz / 02014418.4 28. J

28. Juni 2002 (28.06.2002) EP

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): LOFO HIGH TECH FILM GMBH [DE/DE]; Weidstrasse 2, 79576 Weil am Rhein (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): NICK, Jürgen [DE/DE]; Breisgaustrasse 5, 79395 Neuenburg (DE). SIEMANN, Ulrich [DE/DE]; Gartenstrasse 4c, 79576 Weil am Rhein (DE).

(74) Anwalt: RIEGLER, Norbert, Hermann; Lonza AG, Münchensteinerstrasse 38, CH-4052 Basel (CH).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: MEMBRANES MADE OF CAST POLYARYLATE FILM

(54) Bezeichnung: MEMBRANEN AUS POLYARYLAT-GIESSFOLIEN

(57) Abstract: Disclosed are deep-drawn membranes made of cast polyarylate films, at least comprising a polyarylate (PAR) having a structural unit of formula (I), in which R^1 , R^2 , R^3 , and R^4 independently present hydrogen, $C_{1\cdot4}$ alkyl, $C_{1\cdot4}$ alkoxy, or halogen while R_5 and R_6 independently represent hydrogen, $C_{1\cdot4}$ alkyl, $C_{1\cdot4}$ alkoxy, phenyl, or halogen. Also disclosed is the use of deep-drawn membranes made of cast PAR films as sound transducers, preferably as microphone or loudspeaker membranes. The invention further relates to cast PAR films for producing said membranes, cast PAR solutions for producing the cast PAR films, and methods for producing deep-drawn membranes made of cast PAR films and for producing cast PAR films.

(57) Zusammenfassung: Beschrieben werden tiefgezogene Membranen aus Polyarylat-Giessfolien, mindestens enthaltend ein Polyarylat (PAR) mit einer Struktureinheit der Formel (I) worin R¹, R², R³ und R⁴ jeweils unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Alkoxy oder Halogen ist und wobei R₅ und R₆ jeweils unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Phenyl oder Halogen sind. Weiterhin beschrieben wird die die Verwendung von tiefgezogenen Membranen aus PAR-Giessfolien als Schallwandler, vorzugsweise als Mikrofon- oder Lautsprechermembranen. Es werden PAR-Giessfolien zur Herstellung dieser Membranen und PAR-Giesslösungen zur Herstellung der PAR-Giessfolien beschrieben. Weiterhin werden Verfahren zur Herstellung von tiefgezogenen Membranen aus PAR-Giessfolien und Herstellung von PAR-Giessfolien beschrieben.

1 V C 2007 V U U C O Z

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Membranen aus Polyarylat-Giessfolien

Die Erfindung betrifft Membranen aus Polyarylat-Giessfolien (PAR-Giessfolien), insbesondere deren Verwendung als tiefgezogene Mikrofon- oder Lautsprechermembranen, sowie die entsprechenden PAR-Giessfolien, Giesslösungen zur Herstellung der PAR-Giessfolien, Verfahren zur Herstellung von tiefgezogenen Mikrofon- oder Lautsprechermembranen und Verfahren zur Herstellung der PAR-Folien.

Für die Herstellung von kleinen Membranen mit einem Durchmesser von bis zu ca. 10 cm für akustische Anwendungen (Signalwandler) zum Einsatz in mobilen Geräten wie Mikrofonen, Mobiltelefonen, Laptops, Personal Digital Assistants (PDAs), Kopfhörern, oder als Signalgeber, z.B. in der Autoindustrie, werden bislang Polymerfolien, unter anderem aus Polycarbonaten (PC), Polyestern (PET, PEN), Polyethersulfonen (PES) und Polyetherimiden (PEI), verwendet. Um die schwingende Masse der Membranen zu reduzieren, eine exakte Ausbildung von Prägestrukturen beim Tiefziehen zu gewährleisten und eine weitere Miniaturisierung zu ermöglichen, sollen die Folien möglichst dünn sein. Folien aus den genannten Kunststoffen sind mechanisch sehr widerstandsfähig, haben aber den Nachteil, dass sie bei der Verwendung als Lautsprechermembranen einen "metallischen" Klang erzeugen oder sich für die Ausbildung komplizierterer Prägestrukturen nicht ausreichend verformen lassen. Als Folge davon werden Musik- und/oder Sprachsignale bei der Wandlung in elektrische Signale und umgekehrt nachteilig verändert.

Die Herstellung von kleinen Mikrofon- und Lautsprechermembranen in den genannten Anwendungsbereichen erfolgt üblicherweise im Tiefziehverfahren. Hierbei wird die Folie zum Erweichen vor dem Tiefziehen aufgeheizt, beispielsweise durch Bestrahlung mit Infrarotlicht (IR). Eine gleichmässige Erwärmung und daraus resultierend eine gleichmässige Erweichung besonders dünner Folien vor dem Tiefziehprozess ist technisch umso schwerer beherrschbar, je anisotroper die Folie ist. Giessfolien sind deutlich isotroper als gereckte und/oder extrudierte Folien. Folien aus extrudiertem PC, Polyethylennaphthalat (PEN) oder Polyethylenterephthalat (PET) neigen zu mehr oder weniger starken Verformungen und/oder zur Schrumpfung, da sich während des Aufheizens die durch das Extrudieren/Recken aufgebaute innere Spannung teilweise

wieder abbaut. Besonders geeignet für die genannten Anwendungsbereiche sind dünne Giessfolien, die weniger innere Spannungen aufweisen als extrudierte/gereckte Folien und sich gleichmässiger tiefziehen lassen. Speziell bei PET und PEN ist die Herstellung von Giessfolien wegen der schlechten Löslichkeit dieser Polymere aber nicht möglich.

5

10

Aufgabe der Erfindung war es, Folien für die Herstellung von Membranen für akustische Anwendungen bereitzustellen. Diese Membranen sollen darüber hinaus eine gute Sprachverständlichkeit und die Wiedergabe von Musik in guter Qualität und ausreichender Lautstärke ermöglichen und eine hohe mechanische Stabilität bei hoher Temperatur aufweisen.

Wegen der hohen Qualitätsanforderungen, besonders an kleine Membranen für akustische Anwendungen, sollten sich auch sehr dünne Folien gleichmässig mit IR erwärmen und problemlos tiefziehen lassen.

15

In den vergangenen Jahren wurden Membranen auf der Basis von Folien überwiegend aus extrudierten Folien hergestellt. Lediglich bei der Herstellung qualitativ hochwertiger Lautsprechermembranen kamen auch Giessfolien aus Polycarbonaten zum Einsatz.

- Überraschenderweise hat es sich nun gezeigt, dass Membranen aus PAR-Giessfolien 20 deutlich bessere akustische Eigenschaften aufweisen als Membranen, die beispielsweise aus extrudierten PC-, PEN- oder PEI-Folien hergestellt wurden. Auch gegenüber PC-Giessfolien ergeben sich deutliche Vorteile.
- PAR-Giessfolien, die sich bekanntermassen durch sehr gute optische isotrope 25 Eigenschaften und hohe Temperaturbeständigkeit auszeichnen, wurden bislang ausschliesslich für optische Anwendungen verwendet (EP-A-0488221, JP-A-08/122526, JP-A-08/134336 und JP-A-08/269214).
- Bei der Ermittlung von Festigkeiten vieler Werkstoffe kann eine hohe Streuung der 30 Messwerte festgestellt werden, die auf der herstellungsbedingten Verteilung von Fehlern im Material beruht. Um eine zuverlässige Aussage über die Festigkeit eines Materials, und damit auch zur Fehlerverteilung in diesem Material, machen zu können, ist die Kenntnis nicht nur des Mittelwertes der gemessenen Spannungen (Maximal-

spannung, Reissspannung), sondern auch der statistischen Verteilung der Festigkeiten erforderlich. Eine bewährte statistische Methode beruht auf der Extremwertverteilung nach Weibull, W. (Ing. Vetenskaps Akad. Handl., 151 (1939) 1-45), die die Wahrscheinlichkeit angibt, dass eine Probe gegebener Geo-metrie unter der Spannung oversagt. Die beiden relevanten Spannungswerte, die Maximalspannung, d.h. die Spannung, bei der ein steiler Spannungs- und damit Festigkeitsabfall einsetzt, und die Reissspannung, d.h. der letzte gemessene Spannungswert vor der vollständigen Materialtrennung, stehen in unmittelbarem Zusammenhang mit dem endgültigen Materialversagen.

10

5

Die Verbesserung der Materialeigenschaften bezüglich Maximalspannung und Reissfestigkeit der erfindungsgemässen PAR-Giessfolie gegenüber PC-Giessfolien (PC-A und PB-B) aus zwei unterschiedlichen Qualitäten von Polycarbonaten, konnte durch Untersuchung von jeweils 40 Proben gezeigt werden (siehe Beispiel 12).

15

20

25

30

Weiterhin wurde gefunden, dass PAR-Giessfolien einen hohen Dämpfungsfaktor und weitgehend lineare akustische Eigenschaften über einen grossen Frequenz- und Lautstärkebereich aufweisen und sich deshalb für akustische Anwendungen nutzen lassen. Membranen aus PAR-Giessfolien weisen ein hervorragendes Ein- und Ausschwingverhalten und ein gleichmässiges Schwingungsverhalten über einen grossen Frequenzund Lautstärkebereich auf und ermöglichen eine gute Sprachverständlichkeit.

Es wurde gefunden, dass sich gefärbte PAR-Giessfolien sehr gleichmässig erwärmen und tiefziehen lassen und sich daher für die Herstellung von kleinen Membranen besonders gut eignen.

Weiterhin wurde gefunden, dass sich der Zusatz von bestimmten Farbstoffen oder von nicht-ionischen Tensiden günstig auf störende thixotrope Eigenschaften der PAR-Giesslösungen auswirkt. Hierdurch vereinfachen sich die technischen Massnahmen vor und während des Giessvorganges erheblich und das Giessverfahren kann gesamthaft entscheidend verbessert werden.

Fertig geformte Membranen aus PAR haben eine erhöhte Temperaturbeständigkeit $(T_g = 188^{\circ} \text{ C})$ gegenüber solchen aus PC $(T_g = 135^{\circ} \text{ C})$. Membranen aus PAR-Giess-

WO 2004/003062

5

10

20

30

folien sind wegen ihrer geringen Schrumpfneigung und Formstabilität bei erhöhter Temperatur gegenüber Membranen aus extrudierten PC-, PEI-, PEN-, PES- oder PET-Folien überlegen. Weiterhin lassen sich aus PAR-Folien Membranen mit komplizierteren Geometrien herstellen als mit extrudierten und gereckten Folien, beispielsweise aus PC-, PEI- oder PEN-Folien.

Wegen ihrer hohen Isotropie werden PAR-Giessfolien vorzugsweise als ungereckte Folien zur Membranherstellung eingesetzt. Die erfindungsgemässen PAR-Giessfolien können aber gegebenenfalls vor der Membranherstellung auch mono- oder biaxial gereckt werden.

Darüber hinaus sind aus PAR hergestellte Membranen bereits ohne Additive, die Einflüsse auf das Schwingungsverhalten haben können, schwer entflammbar.

Es wurde auch gefunden, dass Membranen aus PAR-Folien eine erhöhte Beständigkeit gegen Feuchtigkeit aufweisen.

Gemäss Anspruch 1 werden tiefgezogene Membranen für akustische Anwendungen hergestellt aus PAR-Giessfolien, die mindestens ein Polyarylat mit einer Struktureinheit der Formel

enthalten, worin R^1 , R^2 , R^3 und R^4 jeweils unabhängig voneinander Wasserstoff, C_{1-4} -Alkyl, C_{1-4} -Alkoxy oder Halogen sind und worin R_5 und R_6 jeweils unabhängig voneinander Wasserstoff, C_{1-4} -Alkyl, C_{1-4} -Alkoxy, Phenyl oder Halogen sind.

In einer bevorzugten Ausführung sind $R^1 = R^2$ und $R^3 = R^4$ und repräsentieren unabhängig voneinander Wasserstoff oder C_{1-4} -Alkyl.

20

25

30

In einer besonders bevorzugten Ausführung sind $R^1 = R^2 = R^3 = R^4$ und repräsentieren Wasserstoff oder C_{1-4} -Alkyl.

In einer weiteren bevorzugten Ausführung repräsentieren R^5 und R^6 unabhängig voneinander C_{1-4} -Alkyl. In einer besonders bevorzugten Ausführungsform sind $R^5 = R^6 = Methyl$.

Polyarylate mit R¹ = R² = R³ = R⁴ = Wasserstoff und R⁵ = R⁶ = Methyl und einer Molmasse im Bereich von 10.000–150.000 können beispielsweise von UNITIKA

CHEMICAL K.K., 3-11, Chikkoshin-machi, Sakai-shi, Osaka 592, Japan unter der Bezeichnung "U-Polymer 100" bezogen werden.

Die erfindungsgemässen Membranen können eine Stärke von 5 bis 200 μ m, vorzugsweise von 5 bis 100 μ m und besonders bevorzugt von 10 bis 50 μ m aufweisen.

Erfindungsgemäss eignen sich PAR-Folien wegen ihrer ausgezeichneten Dämpfungseigenschaften (internal loss) besonders gut für die die Herstellung von tiefgezogenen
Membranen als Schallwandler für akustische Anwendungen, vorzugsweise als
Mikrofon- und/oder Lautsprechermembranen. Sie weisen weniger "metallische" Klangeigenschaften auf als bekannte Membranen aus anderen Polymeren.

Die mechanische Belastbarkeit der erfindungsgemässen PAR-Membranen gegenüber PC-Membranen ist deutlich verbessert und führt bei elektrischer Ansteuerung mit gleicher Nennleistung bei erhöhter Temperatur zu einer längeren Lebensdauer.

Die erfindungsgemässen tiefgezogenen PAR-Membranen eignen sich besonders bei hohen Anforderungen an Sprachverständlichkeit, wie beispielsweise beim Einsatz als Mikrofon- und Lautsprechermembranen in Mikrofonkapseln, Mobiltelefonen, Freisprechanlagen, Funkgeräten, Hörgeräten, Kopfhörern, Kleinstradios, Computern und PDAs. Ein weiteres Einsatzgebiet ist die Verwendung als Signalgeber.

Im Folgenden sind alle %-Angaben von Farbstoff- und Tensidmengen als Gewichtsprozente bezogen auf den Feststoffanteil in den PAR-Giesslösungen und/oder daraus hergestellter PAR-Giessfolien zu verstehen.

Ġ.

15

20

30

Im Folgenden sind alle %-Angaben von Polyarylatmengen als Gewichtsprozente bezogen auf das Gesamtgewicht zu verstehen.

Für die Herstellung von erfindungsgemässen Membranen aus PAR-Giessfolien nach

Anspruch 1, beispielsweise mittels Tiefziehen, werden die Folien zur besseren Verformbarkeit mit Infrarot-Licht (IR) bestrahlt und dadurch erwärmt. Dabei hat sich der Zusatz eines Farbstoffes als vorteilhaft erwiesen, weil dadurch eine gleichmässige Wärmeaufnahme und Erweichung erreicht wird. Dadurch lassen sich die erfindungsgemässen PAR-Giessfolien besser verarbeiten und die Qualität der daraus hergestellten

Membranen wird verbessert.

0,01 % eines handelsüblichen Farbstoffes wie beispielsweise "C.I. Solvent Yellow 93" oder "Macrolex[®] Orange R" sind für eine gleichmässige Erwärmung erfindungsgemässer PAR-Giessfolien bereits ausreichend. Bei Verwendung von reinen Pigmenten ohne Hilfs- und/oder Füllstoffe, kann die Farbstoffmenge noch weiter reduziert werden.

Der Farbstoff "C.I. Solvent Yellow 93" ist beispielsweise unter dem Handelsnamen "Transparent Yellow 3G" erhältlich von Bayer, Deutschland, von Kunshan Far East Chemical Company, Ltd., South of Bingxi Town, Kunshan, Jiangsu 215334, PR China, von China Chemicals, Luxun Mansion 12 Fl./ Suite G, 568 Ou Yang Road, Shanghai 200081, PR China sowie von Hongment Chemicals Limited, Xinzhuhuayuan 32-203, Ningxi Road, Zhuhai, PR China.

Ein zu "C.I. Solvent Yellow 93" äquivalenter Farbstoff, "BASF Thermoplast

Yellow 104", ist erhältlich von BASF, Deutschland, oder unter der Bezeichnung
"Solvent Yellow 202" von Zhuhai Skyhigh Chemicals Co., Ltd., 20/F., Everbright
International Trade Centre, Zhuhai City, Guangdong Province, PR China.

"Macrolex® Orange R" kann beispielsweise von BAYER, Deutschland bezogen werden.

Die genannten Farbstoffe enthalten in ihren derzeit erhältlichen Handelsformen unter anderem nicht-ionische Polyol-Tenside, deren vorteilhafte Auswirkungen auf erfindungsgemässe PAR-Giesslösungen weiter unten beschrieben werden.

Erfindungsgemässe PAR-Giesslösungen und/oder daraus hergestellte PAR-Giessfolien enthalten mindestens einen der genannten Farbstoffe und/oder ein nicht-ionisches Polyol-Tensid.

- Allgemein werden unter nicht-ionischen Polyol-Tensiden nicht-ionische wasserlösliche Polyoxyalkylene wie Poly(ethylenoxid) oder Poly(ethylenglykol) (PEO), Poly-(propylenoxid) oder Poly(propylenglykol) (PPO) und Poly(tetramethylenoxid) (PTMO) mit der gemeinsamen Struktureinheit –[(CH₂)_x–CHR–O]– verstanden, worin (i) R = H, x = 1 (Poly(ethylenglykol), (PEO)); (ii) R = CH₃, x = 1 (Poly(propylenglykol), (PPO)); oder (iii) R = H, x = 3 (Poly(tetramethylenoxid), (PTMO)) sein kann. Neben PEO-, PPO- und PTMO-Homopolymeren werden unter Polyol-Tensiden auch deren Copolymere, insbesondere Block-Copolymere und/oder Polymergemische davon, mit einem mittleren Molekulargewicht unter 20.000 verstanden.
- Handelsübliche Poly(ethylenglykol)-Poly(propylenglykol)-Block-Copolymere sind beispielsweise "Pluronic[®] PE 6800" von BASF oder "Synperonic[®] F86 pract." von SERVA.
- Giesslösungen aus PAR der Formel (I) in Methylenchlorid, worin R¹, R², R³, R⁴ jeweils unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Alkoxy oder Halogen bedeuten und worin R₅ und R₆ jeweils unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Phenyl oder Halogen sein können, weisen eine starke Thixotropie auf und sind als gebrauchsfertige Lösungen ohne Bewegung nicht lagerfähig. Damit sich die Giesslösungen in den Lagerbehältern, dem Fördersystem, den Filtern oder der Giessapparatur nicht gelartig verfestigen können, müssen umfangreiche Vorkehrungen zur Gewährleistung von ständiger Bewegung sowie zur Vermeidung von "toten Winkeln" getroffen werden.
- Überraschend hat sich gezeigt, dass der Zusatz eines Farbstoffes wie beispielsweise 30 "C.I. Solvent Yellow 93", "Solvent Yellow 202" oder "Macrolex[®] Orange R" zu den PAR-Giesslösungen als Anti-Thixotropiemittel wirkt.

Weitere Prüfungen haben gezeigt, dass nicht-ionische Polyol-Tenside wie beispielsweise Poly(ethylenglykol)-Poly(propylenglykol)-Block-Copolymere diesen Effekt auch

20

30

alleine bewirken. PAR-Giesslösungen, welchen einer der genannten Farbstoffe und/oder nicht-ionischen Polyol-Tenside zugesetzt wird, weisen keine thixotropen Eigenschaften mehr auf. Der Giessprozess wird dadurch erheblich vereinfacht und die erfindungsgemässen gebrauchsfertigen PAR-Giesslösungen sind wochenlang lagerfähig. PAR-Giesslösungen ohne Tensid- und/oder Farbzusatz, die ohne Bewegung gelagert werden, büssen ihre Gebrauchsfähigkeit dagegen bereits nach wenigen Stunden vollständig ein (siehe Beispiel 11).

Die genannten Farbstoffe und nicht-ionischen Polyol-Tenside können weitere Zusätze wie beispielsweise TiO₂ enthalten.

Erfindungsgemässe PAR-Giesslösungen und/oder daraus hergestellte PAR-Giessfolien enthalten einen Farbstoff und/oder ein nicht-ionisches Polyol-Tensid.

In einer besonderen Ausführungsform enthalten erfindungsgemässe PAR-Giesslösungen und/oder daraus hergestellte PAR-Giessfolien mindestens ein nicht-ionisches
Tensid, ausgewählt aus der Gruppe bestehend aus Poly(ethylenglykol), Poly(propylenglykol) und Poly(tetramethylenoxid), wobei die genannten Tenside als Homopolymere,
Copolymere, Block-Copolymere einzeln oder als Gemisch verwendet werden können.

In einer besonders bevorzugten Ausführung enthalten erfindungsgemässe PAR-Giesslösungen und/oder daraus hergestellte PAR-Giessfolien mindestens ein Polyethylen-Polypropylen-Block-Copolymer mit einem mittleren Molgewicht von 6.000 bis 10.000.

In einer besonders bevorzugten Ausführung enthalten erfindungsgemässe PAR-Giesslösungen und/oder daraus hergestellte PAR-Giessfolien einen Farbstoff wie beispielsweise "C.I. Solvent Yellow 93", "Solvent Yellow 202" oder "Macrolex® Orange R" und/oder ein nicht-ionisches Polyol-Tensid wie beispielsweise "Pluronic® PE 6800" oder "Synperonic® F86 pract.".

Erfindungsgemässe PAR-Giesslösungen und/oder daraus hergestellte PAR-Giessfolien enthalten PAR der Formel (I) gemäss Anspruch 1 sowie einen Farbstoff und/oder ein nicht-ionisches Polyol-Tensid in einer Menge von 0,001 bis 2 %, vorzugsweise in einer Menge von 0,001 bis 0,15 %.

Der Farbstoff und/oder das nicht-ionisches Polyol-Tensid können beispielsweise in Aceton, Butylacetat oder Methylenchlorid, besonders bevorzugt in Methylenchlorid gelöst werden.

5

In einer bevorzugten Ausführung enthält der Farbstoff wie beispielsweise "C.I. Solvent Yellow 93", "Solvent Yellow 202" oder "Macrolex[®] Orange R" bereits ein nichtionisches Polyol-Tensid wie beispielsweise "Pluronic[®] PE 6800" oder "Synperonic[®] F86 pract." und kann als Gemisch mit diesem gelöst werden.

10

20

25

Bevorzugt wird der PAR-Giesslösung der Farbstoff und/oder das nicht-ionische Polyol-Tensid als Lösung in Methylenchlorid bis zur gewünschten Menge zudosiert.

In einer weiteren bevorzugten Ausführung wird der Farbstoff und/oder das nichtionische Polyol-Tensid bereits in dem als Lösungsmittel für die Herstellung der PARGiesslösungen verwendeten Methylenchlorid gelöst.

Geeignete Konzentrationen für die erfindungsgemässen PAR-Giesslösungen in Methylenchlorid reichen von 10 % bis zur Löslichkeitsgrenze. Bevorzugt liegen sie im Bereich von 15 bis 25 %, besonders bevorzugt im Bereich von 20 bis 24 %.

Die Herstellung der Membranen kann erfolgen, indem die PAR-Folien im aufgeheizten und erweichten Zustand mittels Tiefziehen in einer Tiefziehform verformt werden. Dies kann beispielsweise durch Anwendung von Luftdruck oder Vakuum oder mit einem mechanischen Stempel erfolgen. Die Tiefziehverfahren können auch miteinander kombiniert eingesetzt werden.

Der Aufheizvorgang erfolgt vorzugsweise durch Bestrahlung mit Infrarotlicht.

Die fertig geformten Membranen können anschliessend mittels eines mechanischen Verfahrens, beispielsweise mit einem Messer oder einer Stanze, oder berührungslos, beispielsweise mit Hilfe eines Wasserstrahls oder eines Lasers aus der Folie ausgeschnitten werden. Vorzugsweise werden die geformten Membranen ausgestanzt oder mit einem Laser geschnitten.

10

15

20

Anschliessend können die Membranen am äusseren Umfang mit einem Trägerring aus Kunststoff oder Metall und mit einer Spule mit Anschlusskontakten verbunden und als Mikrofon- oder Lautsprechermembran zusammen mit einem Permanentmagneten in entsprechende Vorrichtungen zur Umwandlung oder Erzeugung akustischer Signale eingebaut werden.

Zur Herstellung von Polyarylat-Giessfolien werden die erfindungsgemässen Polyarylat-Giesslösungen mittels eines geeigneten Giessers auf einen Träger aufgebracht, nach einer Vortrockenzeit von diesem Träger abgezogen und anschliessend vollständig getrocknet.

In einer besonderen Ausführungsform wird der Giessfilm mittels eines geeigneten Giessers oder einer Rakel (doctor blade) auf eine Glasunterlage aufgebracht, vorgetrocknet, abgezogen und bis zur gewünschten Restkonzentration an Lösungsmittel endgetrocknet.

In einer weiteren bevorzugten Ausführungsform wird der Giessfilm mittels eines geeigneten Giessers auf einen Endlosträger aufgebracht, vorgetrocknet, abgezogen und bis zur gewünschten Restkonzentration an Lösungsmittel endgetrocknet.

In einer bevorzugten Ausführungsform ist der Endlosträger ein einseitig poliertes oder mattiertes Stahlband von 20 bis 100 m Länge oder eine polierte oder mattierte Edelstahlwalze von 5 bis 25 m Umfang.

25

30

Besonders bei sehr dünnen Folien mit Folienstärken von <20 µm kann es zur Erhöhung der Stabilität der erfindungsgemässen Giessfolien und zur Vermeidung von Spannungsdehnungen während der Weiterverarbeitung dieser Folien vorteilhaft sein, den Giessfilm nicht direkt auf einem der genannten Träger, sondern auf eine Zwischenfolie aufzubringen, welche auf dem eigentlichen Träger geführt wird. Diese Zwischenfolie kann dann nach der beschriebenen Vortrockenzeit zusammen mit dem Giessfilm vom eigentlichen Träger abgezogen werden und der Giessfilm wie beschrieben endgetrocknet werden. Dabei ist es unerheblich, ob und wann die erfindungsgemässe Giessfolie von der Žwischenfolie getrennt wird. Vorzugsweise wird die Zwischenfolie zusammen mit

15

20

der erfindungsgemässen Giessfolie auf Rollen gewickelt und dann weiterverarbeitet.

In einer bevorzugten Ausführungsform wird als Zwischenfolie eine Polymerfolie, besonders bevorzugt eine PET-Folie verwendet.

In einer bevorzugten Ausführungsform erfolgt die Vortrocknung bis zum Abziehen des vorgebildeten Films direkt durch Infrarot- oder Mikrowellenbestrahlung, elektrische Heizung oder indirekt durch Beaufschlagung mit erwärmter Luft.

In einer bevorzugten Ausführungsform hat die PAR-Folie nach dem Abziehen einen Lösungsmittelgehalt von 5 bis 15 %. In einer weiteren bevorzugten Ausführungsform erfolgt die Endtrocknung bis zur gewünschten Restkonzentration an Lösungsmittel in einem beheizbaren Nachtrockenschrank (drying cabinet) durch direkte und/oder indirekte Heizung. Besonders bevorzugt erfolgt die Endtrocknung freitragend.

Die Heizung kann direkt durch Infrarot- und/oder Mikrowellenheizung und/oder indirekt durch die Beaufschlagung mit temperierter Luft erfolgen.

In einer bevorzugten Ausführungsform wird die PAR-Folie mit einer Geschwindigkeit von 1 bis 20 m/min, vorzugsweise bei 2 bis 5 m/min transportiert. Hierbei kann die Endtrocknung bei einer Temperatur im Bereich von 50 bis 200 °C durchgeführt werden. Nach der Endtrocknung hat die erfindungsgemässe PAR-Folie eine durchschnittliche Stärke von 5 bis 200 µm und einen Lösungsmittelgehalt von unter 1,5 %.

Die Eigenschaften der erfindungsgemässen PAR-Giessfolien lassen sich durch Beschichtungen noch weiter optimieren. Solche Beschichtungen können beispielsweise aus einer Lösung aufgetragen oder als Folie bzw. Schicht auflaminiert werden. In einer weiteren Ausführungsform können solche Beschichtungen wegen der hohen Temperaturbeständigkeit der PAR-Folie auch als Extrusionsbeschichtung vorgenommen werden.
Durch die Beschichtung können z. B. die Dämpfungseigenschaften weiter verbessert werden.

Die Lösungsbeschichtung kann beispielsweise mittels Walzenauftrag, Rakelauftrag oder Sprühauftrag erfolgen. Für die Lösungsbeschichtung eignen sich beispielsweise

Ġ,

5

10

Lösungen von Polyurethanen (PUR) oder Acrylaten in geigneten Lösungsmitteln. Für die Laminierbeschichtung eignen sich Folien aus PE, PP oder PUR. Für die Laminierung können ungereckte, mono- oder biaxial gereckte Giessfolien oder extrudierte Folien verwendet werden, indem eine dauerhafte und ausreichend hohe Haftung zwischen den einzelnen Schichten beispielsweise mittels eines zusätzlichen

Haftung zwischen den einzelnen Schichten beispielsweise mittels eines zusätzliche Klebstoffauftrags (Kaschierung) oder als echte Laminierung durch Druck- und Temperaturanwendung herbeigeführt wird.

Nach der Trocknung, gegebenenfalls nach einer weiteren Beschichtung und gegebenenfalls einer Vorkonfektionierung beispielsweise durch Rollenschneiden, kann die erfindungsgemässe PAR-Giessfolie wie vorstehend beschrieben in einer Tiefziehapparatur zu Membranen weiter verarbeitet werden.

Beispiele

Obwohl die Ausführung der vorliegenden Erfindung durch die angeführten erfindungsgemässen Beispiele 1 bis 13 vollständig offenbart wird, können aufgrund der beanspruchten Variationen der Verfahrensparameter noch zahlreiche weitere erfindungsgemässe Beispiele durchgeführt werden. Beispiele, die durch Umsetzen dieser, innerhalb der in der Beschreibung und in den Ansprüchen definierten Variationen durchgeführt werden, sollen als erfindungsgemässe Beispiele gelten und in den Schutzbereich dieser Patentanmeldung fallen.

Beispiel 1

Als Ansatzgrösse für die Produktion wurden 600 kg Polyarylat "U-Polymer 100" von UNITIKA der Formel (I), mit R¹ = R² = R³ = R⁴ = Wasserstoff sowie R⁵ = R⁶ = Methyl, in 2062 kg Methylenchlorid eingewogen und im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren gelöst. 300 g Farbstoff "C.I. Solvent Yellow 93" von BAYER wurden während des Rührens als Pulver zugegeben. Der Lack wies einen Feststoffanteil von 22,5 % auf.

30 Aus dem Lack wurden Folien mit 100 μm Filmstärke und ca. 110 cm Breite hergestellt.

Beispiel 2

Als Ansatzgrösse für die Produktion wurden 600 kg Polyarylat "U-Polymer 100" von Unitika der Formel (I), mit $R^1 = R^2 = R^3 = R^4 = \text{Wasserstoff sowie } R^5 = R^6 = \text{Methyl}$,

in 2062 kg Methylenchlorid eingewogen und im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren gelöst. 300 g Farbstoff "Macrolex [®] Orange R" wurden während des Rührens als Pulver zugegeben. Der Lack wies einen Feststoffanteil von 22,5 % auf.

5 Aus dem Lack wurden Folien mit 100 μm Filmstärke und ca. 110 cm Breite hergestellt.

Beispiel 3

Als Ansatzgrösse für die Produktion wurden 300 kg Polyarylat "U-Polymer 100" von UNITIKA der Formel (I), mit R¹ = R² = R³ = R⁴ = Wasserstoff sowie R⁵ = R⁶ = Methyl, in 1100 kg Methylenchlorid eingewogen und im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren gelöst. 32 g Farbstoff "C.I. Solvent Yellow 93" von BAYER wurden während des Rührens als Pulver zugegeben. Der Lack wies einen Feststoffanteil von 21,5 % auf.

Aus dem Lack wurden Folien mit 20, 25, 30, 40, 60, 80 und 100 μm Filmstärke und ca. 110 bis 120 cm Breite hergestellt.

Beispiel 4

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %, durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit $R^1 = R^2 = R^3 = R^4 = W$ asserstoff sowie $R^5 = R^6 = M$ ethyl, in Methylenchlorid im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die Lacke für Handgüsse enthielten einen "C.I. Solvent Yellow 93" Farbstoffanteil von 0,01 %. Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis 100 µm hergestellt.

25 **Beispiel 5**

30

20

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %, durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit $R^1 = R^2 = R^3 = R^4 = W$ asserstoff sowie $R^5 = R^6 = M$ ethyl, in Methylenchlorid im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die Lacke für Handgüsse enthielten einen "Macrolex[®] Orange R" Farbstoffanteil von 0,01 %. Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis 100 µm hergestellt.

Beispiel 6

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %, durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit R¹ = R² = R³ = R⁴ = Wasserstoff sowie R⁵ = R⁶ = Methyl, in Methylenchlorid im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die Lacke für Handgüsse enthielten einen "Pluronic[®] PE 6800" Tensidanteil von 0,01 %. Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis 100 μm hergestellt.

10 Beispiel 7

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %, durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit R¹ = R² = R³ = R⁴ = Wasserstoff sowie R⁵ = R⁶ = Methyl, in Methylenchlorid im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die Lacke für Handgüsse enthielten einen "C.I. Solvent Yellow 93" Farbstoffanteil von 0,001 %. Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis 100 μm hergestellt.

Beispiel 8

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %, durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit R¹ = R² = R³ = R⁴ = Wasserstoff sowie R⁵ = R⁶ = Methyl, in Methylenchlorid im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die Lacke für Handgüsse enthielten einen "Macrolex® Orange R" Farbstoffanteil von 0,001 %. Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis 100 μm hergestellt.

Beispiel 9

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %,
durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit R¹ = R² = R³
= R⁴ = Wasserstoff sowie R⁵ = R⁶ = Methyl, in Methylenchlorid im Verlauf von 3 h bei
Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die
Lacke für Handgüsse enthielten einen "Pluronic[®] PE 6800" Tensidanteil von 0,001 %.
Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis

10

15

100 µm hergestellt.

Vergleichsbeispiel 10

Für Handgüsse wurden 0,3 bis 2,0 kg Lacke mit einem Polymeranteil von 15 bis 24 %, durch Lösen von PAR "U-Polymer 100" von UNITIKA der Formel (I), mit $R^1=R^2=R^3=R^4=$ Wasserstoff sowie $R^5=R^6=$ Methyl, in Methylenchlorid im Verlauf von 3 h bei Raumtemperatur und weiteren 3 h bei 39 °C unter ständigem Rühren hergestellt. Die Lacke für Handgüsse enthielten keinen Farbstoff und/oder Tensidanteil. Aus den Lacken wurden Handgüsse im DIN-A4-Format in einer Filmstärke von 15 bis 100 μ m hergestellt.

Beispiel 11

Lackproben der Lacke aus den Beispielen 1 bis 9, sowie dem Vergleichsbeispiel 10 wurden zu bestimmten Zeiten nach Herstellung der gebrauchsfertigen Lösungen bezüglich ihres thixotropen Verhaltens beobachtet. Hierzu wurden Proben der Lacke jeweils in 5 verschiedene Gefässe übergeführt. Nach 30 min, 4 h, 8 h, 20 h und nach 1 bis 4 Wochen wurden, soweit möglich, Folien im Handgussverfahren hergestellt. Die Beobachtungen sind in Tabelle 1 zusammengestellt.

le 1				ine	nue	
nach 4 Wochen	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösungen oh Eindickung	gebrauchsfähige stabile Lösungen oh Eindickung	festes Gel, beim Umstülpen keine Bewegung mehr zu erkennen
nach 20 h	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige gebrauchsfähige stabile Lösungen ohne stabile Lösungen ohne Eindickung	gebrauchsfähige gebrauchsfähige gebrauchsfähige stabile Lösungen ohne stabile Lösungen ohne Eindickung	festes Gel, beim Umstülpen keine Bewegung mehr zu erkennen
nach 8 h	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige gebrauchsfähige stabile Lösungen ohne Eindickung Eindickung	gebrauchsfähige stabile Lösungen ohne Eindickung	Lösung ist gelartig und nicht mehr verwendbar
nach 4 h	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	gebrauchsfähige stabile Lösungen ohne Eindickung	gebrauchsfähige stabile Lösung ohne Eindickung	starker Anstieg der Viskosität
nach 30 min	nige ng ohne	hige mg ohne	gebrauchsfähige stabile Lösung ohne Eindickung	lhige ıngen ohne	gebrauchsfähige gebrauchsfähige stabile Lösungen ohne stabile Lösung ohne Eindickung	beginnende Eindickung
Lack	oiel 1	Beispiel 2	Beispiel 3	Beispiele 4 bis 6	Beispiele 7 bis 9	Vergleichs- beispiel 10

Beispiel 12

5

10

Reissspannung und Maximalspannung wurden bei jeweils 40 Folienproben mit 30 μm Dicke aus 3 unterschiedlichen Materialien (PC-B, PAR, PC-A) nach der Weibullschen Methode ausgewertet.

Die charakteristischen Parameter der Weibull-Statistik sind in Tabelle 2 zusammengefasst. Die Probe mit der Bezeichnung PAR entspricht einer erfindungsgemässen PAR-Giessfolie. PC-A und PC-B entsprechen Proben von Polycarbonat-Giessfolien. PC-A ist das gegenwärtige Standard-Polycarbonat für Lautsprechermembranen aus PC-Giessfolien. PC-B besteht aus einem PC-Vergleichsmaterial, das als Alternative zu PC-A untersucht wurde.

Tabelle 2

		R	Reissspannung			Maximalspannung			
Polymer	N	$\overline{\sigma} \pm \Delta \sigma$	σ _{c,0}	$\sigma_{\rm m}$	m	$\overline{\sigma} \pm \Delta \sigma$	$\sigma_{c,0}$	$\sigma_{\rm m}$	<i>m</i> .
-		[MPa]	[MPa]	[MPa]		[MPa]	[MPa]	[MPa]	
PC-B	40	$24,9 \pm 5,8$	27,3	25,2	4,6	$73,5 \pm 3,5$	75,1	74,0	24,9
PAR	40	$30,9 \pm 5,7$	33,3	31,3	6,0	$77,3 \pm 3,4$	78,8	77,8	28,3
PC-A	40	$42,9 \pm 8,7$	46,6	43,5	5,3	$85,1 \pm 6,1$	87,8	85,9	16,8

N:

Probenzahl

15 $\overline{\sigma} \pm \Delta \sigma$: arithmetischer Mittelwert mit Standardabweichung

σ_{c,0}:

charakteristische Festigkeit (Bruchwahrscheinlichkeit 63,2%)

σm:

Medianwert der Festigkeit (Bruchwahrscheinlichkeit 50%)

m:

Weibullmodul

- Die Weibullmoduln *m*, die die Homogenität der Materialien charakterisieren, wobei mit steigendem *m* die Homogenität zunimmt und die Messwertstreuung geringer wird, weisen für die Maximalspannung und die Reissspannung folgende Reihung auf.

 Maximalspannung: *m* (PC-A) < *m* (PC-B) < *m* (PAR)

 Reissspannung: *m* (PC-B) < *m* (PC-A)
- Die erfindungsgemässe PAR-Giessfolie besitzt im Vergleich mit zwei unterschiedlichen PC-Giessfolien die geringsten Inhomogenitäten und damit auch die geringste Messwertverteilung.

Beispiel 13

Lebensdauertest-Vergleich von Standard- und Hochleistungslautsprechertypen aus PAR-Giessfolie und PC-Giessfolie (PC-A und PC-B, siehe Beispiel 12) in Anlehnung an DIN ETS 300019 "Geräte-Entwicklung; Umweltbedingungen und Umweltprüfungen 5 für Telekommunikationsanlagen". PAR entspricht der erfindungsgemässen PAR-Giessfolie. Getestet wurden 5 unterschiedliche Lautsprechertypen mit jeweils mindestens 50 Lautsprechern pro Typ und Membrandurchmesser. Die Lautsprecher wurden unter Belastung verschiedenen Tests wie beispielsweise mehrfaches Durchlaufen von Temperaturzyklen (-40°C bis 85°C) bei hoher Luftfeuchtigkeit oder 10 Dauerbelastung bei 85°C unterzogen. Insgesamt wurde jeder Lautsprecher unter einer elektrischen Belastung mit "Rosa Rauschen" ("Pink Noise") bei der jeweiligen Nennleistung laut Datenblatt des jeweiligen Lautsprechers über eine Zeitspanne von 500 h getestet. Weil die Ausfallverluste zu unterschiedlichen Zeiten des Tests eintreten, werden die Ergebnisse nur qualitativ in Form von Beurteilungen wiedergegeben. 15 In Tabelle 5 sind die Beurteilungen zusammengefasst und geben an, ob sich die Zahl der getesteten Lautsprecher signifikant von der Zahl der Lautsprecher unterscheidet, die nach dem Test noch funktionsfähig sind. Lautsprechermembranen aus der erfindungsgemässen PAR-Giessfolie schneiden nach dem Lebensdauertest mindestens gleichwertig ab im Vergleich zum gegenwärtigen Standardmaterial. 20

Tabelle 3

25

Beispiel	Membran- durchmesser	Folienstärke	Anzahl Typen	PC-B	PC-A	PAR
13-1	13 mm	30 μm	4	-	+	+
13-2	16 mm	40-60 μm	3	-	+	+
13-3	13 mm	30-60 μm	8	-	+	+
13-4	23-38 mm	40-150 μm	24	+	(+)	(+)
13-5	28 mm	100 μm	1	-	(+)	+

+ = Lebensdauertest mit minimalen Verlusten bestanden, (+) = Lebensdauertest mit noch tolerierbaren Verlusten eingeschränkt bestanden, - = Lebensdauertest wegen hoher Verluste nicht bestanden

Ansprüche

5

10

15

20

30

 Tiefgezogene Membranen aus Polyarylat-Giessfolien, mindestens enthaltend ein Polyarylat mit einer Struktureinheit der Formel

worin

R¹, R², R³, R⁴ jeweils unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Alkoxy oder Halogen sind und worin R₅ und R₆ jeweils unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Phenyl oder Halogen sind.

- 2. Tiefgezogene Membranen nach Anspruch 1, dadurch gekennzeichnet, dass $R^1 = R^2$ und $R^3 = R^4$ sind und jeweils unabhängig voneinander Wasserstoff oder C_{1-4} -Alkyl repräsentieren.
- 3. Tiefgezogene Membranen nach Anspruch 2, dadurch gekennzeichnet, dass $R^1 = R^2$ = $R^3 = R^4$ sind und Wasserstoff oder C_{1-4} -Alkyl repräsentieren.
- Tiefgezogene Membranen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass R⁵ und R⁶ jeweils unabhängig voneinander C₁₋₄-Alkyl, besonders bevorzugt Methyl repräsentieren.
 - 5. Tiefgezogene Membranen nach mindestens einem der Ansprüche 1 bis 4 in einer Stärke von 5 bis 200 μm , vorzugsweise 5 bis 100 μm .

30

- Verwendung der tiefgezogenen Membranen gemäss Ansprüchen 1 bis 5 als Membranen für Schallwandler für akustische Anwendungen, vorzugsweise als Mikrofon- und/oder Lautsprechermembranen.
- Verwendung nach Anspruch 6 in Mikrofonkapseln, Mobiltelefonen, Freisprechanlagen, Funkgeräten, Hörgeräten, Kopfhörern, Kleinstradios, Computern, PDAs und/oder Signalgebern.
- 8. Giesslösungen und/oder daraus hergestellte Giessfolien aus Polyarylat der
 Formel (I) gemäss Anspruch 1, dadurch gekennzeichnet, dass sie einen Farbstoff
 und/oder ein nicht-ionisches Polyol-Tensid enthalten.
- Polyarylat-Giesslösungen und/oder daraus hergestellte Polyarylat-Giessfolien nach
 Anspruch 8, dadurch gekennzeichnet, dass das nicht-ionische Polyol-Tensid aus der
 Gruppe bestehend aus Poly(ethylenglykol), Poly(propylenglykol) und Poly(tetramethylenoxid) ausgewählt und als Homopolymer, Copolymer, Block-Copolymer
 oder ein Gemisch davon, vorzugsweise als Polyethylen-Polypropylen-BlockCopolymer verwendet wird.
- 20 10. Polyarylat-Giesslösungen und/oder daraus hergestellte Polyarylat-Giessfolien nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass sie einen Farbstoff wie beispielsweise "C.I. Solvent Yellow 93", "Solvent Yellow 202" oder "Macrolex[®] Orange R" und/oder ein nicht-ionisches Polyol-Tensid wie beispielsweise "Pluronic[®] PE 6800" oder "Synperonic[®] F86 pract." enthalten.
 - 11. Polyarylat-Giesslösungen und/oder daraus hergestellte Polyarylat-Giessfolien nach mindestens einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass sie den Farbstoff und/oder das nicht-ionisches Tensid in einer Menge von 0,001 bis 2 %, vorzugsweise in einer Menge von 0,001 bis 0,15 % enthalten.
 - 12. Polyarylat-Giesslösungen nach mindestens einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass sie das Polyarylat in einer Menge von mindestens 10 %, vorzugsweise in einer Menge von 15 bis 25 % und besonders bevorzugt in einer Menge von 20 bis 24 % enthalten.

30

- 13. Verfahren zur Herstellung von tiefgezogenen Membranen gemäss den Ansprüchen 1 bis 5 aus Polyarylat-Giessfolien gemäss den Ansprüchen 8 bis 11, dadurch gekennzeichnet, dass die Polyarylat-Giessfolien, gegebenenfalls nach einer Vorkonfektionierung wie beispielsweise Rollenschneiden, durch Bestrahlung mit Infrarotlicht erwärmt, danach mittels Tiefziehen zu Membranen verformt und gegebenenfalls anschliessend konfektioniert werden.
- 14. Verfahren zur Herstellung von Polyarylat-Giessfolien gemäss den Ansprüchen 8
 10 bis 11, dadurch gekennzeichnet, dass Polyarylat-Giesslösungen gemäss den Ansprüchen 8 bis 12 auf einen Träger aufgebracht, nach einer Vortrockenzeit von diesem Träger abgezogen und anschliessend vollständig getrocknet werden.
- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die PolyarylatGiesslösungen auf einen Endlosträger, besonders bevorzugt ein einseitig poliertes oder mattiertes Stahlband oder eine polierte oder mattierte Edelstahlwalze von 5 bis 25 m Umfang aufgebracht werden.
- 16. Verfahren nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, dass die Polyarylat-Giesslösungen auf eine auf dem Träger geführte Zwischenfolie aufgebracht und nach einer Vortrockenzeit zusammen mit der Zwischenfolie von diesem Träger abgezogen, sowie anschliessend vollständig getrocknet wird.
- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass als Zwischenfolie eine
 25 Polyethylenterephthalat-Folie verwendet wird.
 - 18. Verfahren nach mindestens einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass die endgetrockneten Polyarylat-Giessfolien eine durchschnittliche Stärke von 5 bis 200 μm aufweisen.
 - 19. Verfahren nach mindestens einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass die Polyarylat-Giessfolien gemäss den Ansprüchen 8 bis 11 zusätzlich durch Lösungsauftrag oder Laminierung beschichtet werden.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C08J5/18 C08L67/03 H04R7/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO8J CO8L CO8G HO4R Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages EP 0 488 221 A (KANEGAFUCHI CHEMICAL IND) 1 - 19Y 3 June 1992 (1992-06-03) cited in the application page 2, line 1-16; claims; examples 1-19 EP O 371 425 A (NIEBLING CURT ; BAYER AG Υ (DE)) 6 June 1990 (1990-06-06) column 1, line 1-16
column 2, line 13-47
column 6, line 18 -column 7, line 6
column 6, line 17-29
column 6, line 52 -column 8, line 46; claims 1-11 Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier document but published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *Y* document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. O document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the International search report Date of the actual completion of the international search 08/10/2003 30 September 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

4

Otegui Rebollo, J

PCT/EP 03/06905

	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	[Delevents also also also also also also also als
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 1 001 282 A (NISSHIN SPINNING) 17 May 2000 (2000-05-17) page 1, line 5-17 page 5, line 15-25 page 9, line 35 -page 10, line 8; example 6	1–19
Y	PATENT ABSTRACTS OF JAPAN vol. 018, no. 313 (C-1212), 15 June 1994 (1994-06-15) & JP 06 065487 A (TEIJIN LTD), 8 March 1994 (1994-03-08) abstract	1-19
Υ	US 4 746 472 A (KOHN RACHEL S) 24 May 1988 (1988-05-24) column 2, line 30 -column 4, line 4 column 5, line 22-24; claims	1-19
	·	

1

RNATIONAL SEARCH REPORT

Information on patent family members

onal Application No PCT/EP 03/06905

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0488221 A	03-06-1992	JP JP DE DE EP KR US	2988636 B2 4193510 A 69128955 D1 69128955 T2 0488221 A2 195773 B1 5275881 A	13-12-1999 13-07-1992 02-04-1998 18-06-1998 03-06-1992 15-06-1999 04-01-1994
EP 0371425 A	06-06-1990	DE DE AT CA DE DE DE DE US US	3840542 C1 3905177 A1 119465 T 2004376 A1 3844584 A1 8816011 U1 58909087 D1 0371425 A2 2068876 T3 2263621 A 2942771 B2 242475 B1 5108530 A 5217563 A	02-11-1989 23-08-1990 15-03-1995 01-06-1990 07-06-1990 03-05-1989 13-04-1995 06-06-1990 01-05-1995 26-10-1990 30-08-1999 01-02-2000 28-04-1992 08-06-1993
EP 1001282 A	17-05-2000	EP JP KR US	1001282 A2 2000206323 A 2000035395 A 6117370 A	17-05-2000 28-07-2000 26-06-2000 12-09-2000
JP 06065487 A	08-03-1994	JP	3043524 B2	22-05-2000
US 4746472 A	24-05-1988	US	4910083 A	20-03-1990

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08J5/18 C08L67/03 H04R7/00

Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C08J C08L C08G H04R

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	EP 0 488 221 A (KANEGAFUCHI CHEMICAL IND) 3. Juni 1992 (1992-06-03) in der Anmeldung erwähnt Seite 2, Zeile 1-16; Ansprüche; Beispiele	1-19
Y	EP 0 371 425 A (NIEBLING CURT; BAYER AG (DE)) 6. Juni 1990 (1990-06-06) Spalte 1, Zeile 1-16 Spalte 2, Zeile 13-47 Spalte 6, Zeile 18 -Spalte 7, Zeile 6 Spalte 6, Zeile 17-29 Spalte 6, Zeile 52 -Spalte 8, Zeile 46; Ansprüche 1-11	1-19

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamille
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	 *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Täligkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Täligkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung dür einen Fachmann nahellegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
30. September 2003	08/10/2003
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Aljswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Otegui Rebollo, J

nales Aktenzelchen
PCT/EP 03/06905

	FCI/EF	
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	To de Assessor No.
Kategorieº	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	EP 1 001 282 A (NISSHIN SPINNING) 17. Mai 2000 (2000-05-17) Seite 1, Zeile 5-17 Seite 5, Zeile 15-25 Seite 9, Zeile 35 -Seite 10, Zeile 8; Beispiel 6	1–19
Υ	PATENT ABSTRACTS OF JAPAN vol. 018, no. 313 (C-1212), 15. Juni 1994 (1994-06-15) & JP 06 065487 A (TEIJIN LTD), 8. März 1994 (1994-03-08) Zusammenfassung	1-19
Y	US 4 746 472 A (KOHN RACHEL S) 24. Mai 1988 (1988-05-24) Spalte 2, Zeile 30 -Spalte 4, Zeile 4 Spalte 5, Zeile 22-24; Ansprüche	1-19
	·	

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0488221	A	03-06-1992	JP JP DE DE EP KR US	2988636 B2 4193510 A 69128955 D1 69128955 T2 0488221 A2 195773 B1 5275881 A	13-12-1999 13-07-1992 02-04-1998 18-06-1998 03-06-1992 15-06-1999 04-01-1994
EP 0371425	A	06-06-1990	DE DE AT CA DE DE DE SP JP KR US	3840542 C1 3905177 A1 119465 T 2004376 A1 3844584 A1 8816011 U1 58909087 D1 0371425 A2 2068876 T3 2263621 A 2942771 B2 242475 B1 5108530 A 5217563 A	02-11-1989 23-08-1990 15-03-1995 01-06-1990 07-06-1990 03-05-1989 13-04-1995 06-06-1990 01-05-1995 26-10-1990 30-08-1999 01-02-2000 28-04-1992 08-06-1993
EP 1001282	A	17-05-2000	EP JP KR US	1001282 A2 2000206323 A 2000035395 A 6117370 A	17-05-2000 28-07-2000 26-06-2000 12-09-2000
JP 06065487	Α	08-03-1994	JP	3043524 B2	22-05-2000
	Α	24-05-1988	US	4910083 A	20-03-1990