# Week 3 Tutorial

COMP10001 – Foundations of Computing

Semester 2, 2025

Clement Chau

- Python basics and types
- Variables and Strings
- Conditionals and Sequences

## Revision, data types!

| Type             | Description                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------|
| int              | For whole numbers such as: -3, -5, or 10                                                                 |
| float            | For real numbers such as: -3.0, 0.5, or 3.14159                                                          |
| bool             | The Boolean type. For storing True and False (only those two values; Booleans allow for no grey areas!). |
| str (= "string") | For chunks of text, eg: "Hello, I study Python"                                                          |
| tuple            | For combinations of objects, eg: (1, 2, 3) or (1.0, "hello", "frank")                                    |
| list             | A more powerful way of storing lists of objects, eg: [1, 3, 4] or [1.0, "hello", "frank"]                |
| dict             | We will see this later maybe you can guess what it does eg: {"bob": 34, "frankenstein": 203}             |



#### **Ed Lessons**

#### Canvas > COMP10001 2025 SM2 > Ed Discussion > Lessons

- Worksheets 1 and 2 due: Monday 11 August 6 pm
- Worksheets 3, 4, and 5 due: Monday 18 August 6 pm



Lessons have a symbol to the left of their name to indicate their status:

- · Lessons with a blue dot · have not been opened by you.
- Lessons with a grey hollow circle o have been opened by you.
- Lessons with a green tick 
   have been completed by you.







mo

Every Code Challenge, or Quiz with a Green Tick is worth 1 point. If you do not have a green tick (all tests passing/fully correct) you will not get 1 point. Reattempting the worksheet will not remove your green tick.

# THE UNIVERSITY OF MELBOURNE Agenda

- 1. Week 3 Discussion Tutorial sheets (~ 55 mins)
- 2. Q&A for **Ed worksheet 1 5** (~ 55 mins)

At the end of this workshop, you should:

be familiar with Types, Strings, Conditionals, and Sequences.

The tutorial sheets correspond to **Ed Worksheets 1 - 4.** 



In groups of 2-3, work through the questions on the Week 3 tutorial sheets.

Please use pen & paper.

We will review questions from Q1 and Q4. Then, move on selected questions between Q6 – Q11.

Tutorial solution will be released Friday night.

#### COMP10001 Foundations of Computing Semester 1, 2025

**Tutorial Questions: Week 3** 

— VERSION: 1663, DATE: MARCH 14, 2025 —

1005, DATE. WARCH 14, 2025 —

Welcome to the second tutorial. From this week we will be covering a lot of content from lectures and the Ed Worksheets. Remember you can ask your tutor for help!

#### Questions

1. Fill in the below table with the data types we have studied so far. What is the difference between the second and third type, both being numerical?

| Type | Example | What does it store? | What can we do with it (functions, operations)? | How do we convert to it? |
|------|---------|---------------------|-------------------------------------------------|--------------------------|
|      | "Hello" |                     |                                                 |                          |
|      | 123     |                     |                                                 |                          |
|      | 3.1415  |                     |                                                 |                          |
|      | True    |                     |                                                 |                          |



1. Fill in the below table with the data types we have studied so far. What is the difference between the second and third type, both being numerical?

| Type  | Example | What does it store?                   | What can we do with it (functions, operations)?                   | How do we convert to it? |  |  |
|-------|---------|---------------------------------------|-------------------------------------------------------------------|--------------------------|--|--|
| str   | "Hello" | A sequence of characters              |                                                                   |                          |  |  |
| int   | 123     | A whole number (integer)              | Arithmetic operations, counting & numbering, indexing and slicing | int()                    |  |  |
| float | 3.1415  | A number containing a fractional part | Arithmetic operations, mathematics & real world measurements      | float()                  |  |  |
| bool  | True    | A truth value (T/F)                   | result of truth tests, used in conditional statements             | bool()                   |  |  |



2. For each of the following data for a user in a library database, discuss which Python data types (str, int, float, or bool) would be appropriate to use.

| • ] | No | am | e |
|-----|----|----|---|
| -   |    |    |   |

Late fees owed

• Whether they are a student

Number of books loaned out

• User ID

str

float

bool, int (e.g. 0, 1)

int

str (e.g. jlee1234), int

3. Evaluate the following by hand:

(a) 
$$str(3 + 4) + "cakes"$$

*357.23* 

(b) int(5 / 2)

True

non-empty str



4. Evaluate the following by hand, given the assignments a = 1, b = 2, c = 2.0:

(b) 
$$b + b$$
 4

(c) 
$$b + c$$
 4.0

(g) 
$$a + b / c$$
 2.0

(h) 
$$(a + b) / c 1.5$$

5. What is the output of the following? Why?

(d) 
$$3 * 4$$



*In groups of 2-3, work through the questions from Q6 – Q11.* 

What is happening in the above examples? How could you avoid or handle this issue?

base 10 (0,1,2,3,...,9) <> base 2 (0,1)

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. Unfortunately, most decimal fractions cannot be represented exactly as binary fractions.

One way to avoid it is to use int instead of float
Or use round () function

https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.python.org/3/library/functions.html#round



7. Evaluate the following truth expressions:

True (a) True or False

True (c) False and not False or True

(b) True and False False (d) False and (not False or True) False

**Logical Operators:** Ed lessons > Worksheet 3 > Conditionals > Logical Operators: Combining Truth [Link]

8. For each of the following if statements, give an example of a value for var which will trigger it and one which will not.

- (a) if 10 > var >= 5:
- (b) if var[0] == "A" and var[-1] == "e": (e.g.) "Apple"
- (c) if var in ("VIC", "NSW", "ACT"):
- (d) if var:

Not trigger Trigger 5, 6, 7, 8, 9 (e.g.) 10

(e.g.) "**vic**" (e.g.) "VIC"

This condition will convert var into a boolean value. non-zero/non-empty



9. What's wrong with this code? How can you fix it?

```
eggs == 3
if eggs = 5:
    print("spam")
else:
    print("not spam")
```

This programmer has confused the assignment (=) and equality (==) operators.

```
assignment(=) : does not evaluate to anything
equality (==) : Relational Operators (equal to)
```

```
eggs = 3 # value assign
if eggs == 5: #if assigned eggs is equal to 5
```



10. What's wrong with this code? How can you fix it?

```
letter = input("Enter a letter: ")
if letter == 'a' or 'e' or 'i' or 'o' or 'u':
    print("vowel")
else:
    print("consonant")
```

Logical operators separate conditions, so the logical statement

letter == 'a' or True or True or True or True
will always evaluate to True

```
if letter in 'aeiou':

if letter in ('a', 'e', 'i', 'o', 'u'):
```



11. Evaluate the following given the assignment s = "python"

(a) 
$$s[1]$$

(b) 
$$s[-1]$$

(c) 
$$s[1:3] + s[3:5]$$

(c) 
$$s[1:3] + s[3:5]$$
 'ytho' (f)  $s[-4:-2]$  'th' (i)  $s[::-1]$ 

| nontyp     |
|------------|
| step by -1 |
| (backward) |

| str   | р  | У  | t  | h  | 0  | n  |  |
|-------|----|----|----|----|----|----|--|
| index | 0  | 1  | 2  | 3  | 4  | 5  |  |
|       | -6 | -5 | -4 | -3 | -2 | -1 |  |

- (d) s[10]: indexing operation > out of range and return IndexError
- (e) s[10:]: slice operation > nothing to slice and return an empty string



#### Ed worksheets 1 & 2

#### - Worksheets 1 and 2 due: Monday 11 March 6 pm

#### Worksheet 1: Introductory Exercises (5 points)

- / Introduction to print (1 point)
  - Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm
- ← Mathematical expressions (2 points)

Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm

- - Available: Wed July 30th, 9:00am

Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm

- ✓ Variables

  Available: Wed July 30th, 9:00am
- ✓ Input (1 point)

  Available: Wed July 30t

Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm

#### Worksheet 2: Numerical expressions (5 points)

- Expressions and Data Types
  - Available: Wed July 30th, 9:00am
- ← Integers and floats (1 point)

Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm

Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm

← More operators (2 points)

Available: Wed July 30th, 9:00am Due: Mon August 11th, 6:00pm



### Ed worksheets 3, 4 & 5

#### - Worksheets 3, 4, and 5 due: Monday 18 August 6 pm

#### Worksheet 3: Conditionals (4 points)



Conditionals

Available: Wed July 30th, 9:00am



If Statements (4 points)

Available: Wed July 30th, 9:00am Due: Mon August 18th, 6:00pm

#### Worksheet 4: Sequences (5 points)



Introduction

Available: Wed July 30th, 9:00am



String Indexing (1 point)

Available: Wed July 30th, 9:00am Due: Mon August 18th, 6:00pm



Substring slicing (3 points)

Available: Wed July 30th, 9:00am Due: Mon August 18th, 6:00pm



Extension to lists and tuples (1 point)

Available: Wed July 30th, 9:00am Due: Mon August 18th, 6:00pm

#### Worksheet 5: Basic Functions and Methods (4 points)



Introduction to functions

Available: Wed July 30th, 9:00am



Defining functions (2 points)

Available: Wed July 30th, 9:00am Due: Mon August 18th, 6:00pm



More on functions (2 points)

Available: Wed July 30th, 9:00am Due: Mon August 18th, 6:00pm

#### Scan here for slides



