台北市立松山高級中學 109 學年度第二學期期末考高三物理科試卷

選修物理(下) 8-4~10-6

3 年 班 座號 姓名

 $e=1.6\times10^{-19}C$; $h=6.626\times10^{-34}J-s$; $c=3\times10^8m/s$

一、單一選擇題:(每題4分,共60分;答錯不倒扣)

1. 如圖(-)所示,質量m、帶電量-q的點電荷,以速度 \overline{v} 與磁場邊界夾 60°垂直射入不隨時變的均勻磁場當中,磁場量值為B、方向為垂直出 紙面。則此電荷在磁場中運動的時間為何?

- (B) $\frac{2\pi m}{3aB}$ (C) $\frac{4\pi m}{3aB}$ (D) $\frac{5\pi m}{3aB}$ (E) $\frac{10\pi m}{3aB}$
- 2. 在陰極射線管中,電子垂直射入均勻電場 E 與均勻磁場 B 中可筆直通 過,若移除電場,測得電子的迴轉半徑為r,則電子的荷質比為何?

- (A) $\frac{B^2 r}{F}$ (B) $\frac{E^2 r}{B}$ (C) $\frac{Er}{B^2}$ (D) $\frac{B}{F^2 r}$ (E) $\frac{E}{B^2 r}$ \circ
- 3. 如圖(二)所示,在出紙面的均勻磁場 B 中,有長度ℓ的金屬棒 PQ,以等速度 \vec{v} 向右運動,則 PQ 兩端的電位差 $V_P - V_O = ?$

題組 4~6:

4. 如圖(三)所示,有一電阻 R、半徑 r 的圓形線圈,以等速度 \bar{v} 向右進入不 隨時變的均勻磁場當中,磁場量值為B、方向為垂直出紙面。在時間 t=0 時,線圈恰接觸磁場邊緣。若電流方向順時針定為正,則線圈上的應電 流隨時間變化的關係圖應為下列何者?

5. 如圖(四)所示,今該線圈完全進入磁場區後不再行進,改為繞其平行圈面之中央軸作等角速度旋 轉,角速度為ω,時間 t=t₀ 時線圈面與磁場方向垂直。則自 t₀ 起經 1/2 週期間,平均應電動勢為何? $(B)Br^2\omega$ (C) $2Br^2\omega$ (D) $B\pi r^2\omega$ (E) $2B\pi r^2\omega$ • (A)0

題組7~9:

7. 圖(五)為光電效應實驗之裝置圖,當電流計讀數為 3.2×10^{-6} 安培時,每秒內到達 C 極之光電子 有幾個?

(A) 2×10^{13}

(B) 1.1×10^{14} (C) 9.6×10^{14} (D) 9.6×10^{21}

(E) 2×10^{25} °

8. 承上題,若入射光波長比 6200Å 大時,無論強度多大,電流 計讀數恆為 0 , 則 P 極材料之功函數為多少電子伏特?

圖(五)

(A) 2 (B) 3 (C) 4 (D) 6

(E) 8 °

9. 承上題,若改以波長 2000 埃的光照射 P極,欲使光電流減為 0,需加遏止電壓多少伏特? (A) 2.2 (B) 3.6 (C)4.2 (D)6.8 (E)8.4 \circ

題組 10~12:

10. 氫原子的電子由量子數 n=1 躍遷到 n=4 時,其角動量量值增加多少?

 $(A)\frac{h}{2\pi}$ $(B)\frac{3h}{2\pi}$ $(C)\frac{h}{\pi}$ $(D)\frac{3h}{\pi}$ $(E)\frac{6h}{\pi}$ \circ

11. 承上題,若 n=1 時電子的軌道半徑為 r,則 n=4 時,電子的物質波波長為?

(A) $2\pi r$ (B) $4\pi r$ (C) $8\pi r$ (D)4r (E) $16r \circ$

- 12. 承上題,若氫原子的電子由量子數 n=1 躍遷到 n=4 時,吸收的光子能量為 E,則氦離子(He^+ , Z=2)的電子由量子數 n=3 躍遷到 n=2 時,放出的光子能量為何?

(A) $\frac{4}{3}$ E (B) $\frac{16}{3}$ E (C) $\frac{16}{9}$ E (D) $\frac{4}{27}$ E (E) $\frac{16}{27}$ E °

13. 有一低速電子在碰撞過程中損失3的動能,則碰撞後此電子的物質波波長變為原來的幾倍?

 $(A)^{\frac{1}{4}}$ $(B)^{\frac{1}{2}}$ $(C)^{2}$ $(D)^{4}$ $(E)^{16}$ °

 $14.~^{214}_{82}Pb$ 衰變成同位素 $^{206}_{82}Pb$ 的過程共經過 α 衰變 m 次和 β 衰變 n 次,則(m,n)=?

(A) (8, 2) (B) (8, 4) (C) (4, 4) (D) (2, 4) (E) (4, 2) \circ

15. 下列何者不是電磁波?

(A)微波 (B)X 射線 $(C)\gamma$ 射線 (D)光電子 (E)遠紅外線 。

二、多重選擇題:(每題5分,共40分;答錯不倒扣)

- 16. 一粒子質量為 m,帶電量+q,以速度 \bar{i} 進入一均勻磁場 \bar{B} 和均勻電場 \bar{E} 的交叉區內,同時受到電力及磁力的作用而保持等速度運動,重力的影響忽略不計,則下列敘述何者正確?
 - (A)v與B必定互相垂直
 - (B)v如至 互相垂直
 - (C)如將電場及磁場同時減半,其他不變,則粒子仍維持等速度運動
 - (D)如將帶電量改為-2q,其他不變,則粒子仍能維持等速度運動
 - (E)如粒子由電磁場區的另一端,以-vi的速度反向進入,其他不變,則粒子仍能維持等速運動。
- 17. 一理想變壓器,原線圈及副線圈的匝數各為 N_1 及 N_2 。有關於該變壓器的使用,下列敘述哪些正確?
 - (A)變壓器適用於交流電
 - (B)若 N₂> N₁,則副線圈輸出的功率比原線圈輸入的功率高
 - (C)若 N₂> N₁,則副線圈輸出的交流電頻率比原線圈輸入的頻率高
 - (D)若原線圈輸入的交流電壓為 ϵ 時,則副線圈輸出的電壓為 $N_2\epsilon/N_1$
 - (E)變壓器的軟鐵心可更換為銅片,以減少渦電流的損耗。
- 18. 兩金屬 A、B 的光電效應,測得遏止電壓 Vs 與入射光頻率 f 的函數關係如圖(六)所示,圖中縱軸 截距 a、b 的大小比為 2:3,則下列敘述哪些正確? Vs ↑ ∠A

- (B)橫軸截距 fA、fB即為金屬 A、B的截止頻率
- (C) 横軸截距 f_A: f_B=2:3
- (D)兩金屬 A、B 的函數圖形斜率相等,等於卜朗克常數 h
- (E)以 5fA的入射光分別照在 A、B的表面時,所激發出來的光電子的最大動能比為 3:2。

- 19. 圖(七)為黑體輻射強度對波長的分布圖。有關黑體輻射,下列敘述哪些正確?
 - (A)黑體輻射的發射光譜與黑體的材料及形狀無關
 - (B)溫度改變時, u₀與λ₀成反比
 - (C)温度上升時,λ。變小
 - (D)黑體輻射的光譜是不連續光譜
 - (E)黑體輻射的光譜需用能量量子化的觀念才能解釋。

- 20. 關於光電效應的現象,下列敘述哪些正確?
 - (A)入射光的波長需大於某一定值,才能產生光電子
 - (B)入射光的截止頻率與光電金屬的材質有關
 - (C)相同的光電金屬,若能產生光電流,入射光的強度越大,產生的光電流越大
 - (D)相同的光電金屬,若能產生光電流,入射光的強度越大,產生的光電子最大動能越大
 - (E)以單一頻率入射光射向金屬靶產生的光電子動能均相同。

- 21. 如圖(八)所示,質量m、帶電量+q之 α 質點,射向一帶電量+Q之固定金原子核而被散射。若q 距Q無窮遠時之速率為v,撞擊參數(+q 的入射方向與+Q 核心的垂直距離)為b,圖中P點為+q 與+Q最接近處,最近距離為r,此時+q速率為v/3。關於此系統(α 質點+金原子核),下列敘述哪些正確?
 - (A)此系統不受外力作用,故動量守恆
 - (B)此系統非保守力作功為零,故力學能守恆
 - (C) α 質點受庫侖力作用,相對於金原子核之力矩為零,故角動量守恆
 - (D) α 質點運動軌跡為拋物線
 - (E) r = 3b

散射方向

- 22. 關於 X 射線,下列敘述哪些正確?
 - (A) 侖琴發現陰極射線打在金屬靶上產生未知射線,稱為 X 射線
 - (B) 侖琴發現將 X 射線通過狹縫可見干涉現象
 - (C)將電子經電壓 V 加速後撞擊鎢靶,產生的 X 射線波長與加速電壓 V 成正比
 - (D)布拉格晶格繞射實驗確立了 X 射線的粒子性
 - (E)X 射線可用於觀測未知晶體結構。
- 23. <u>莰琰</u>作「電流天平」的實驗,實驗裝置如圖(九)所示。圖中 R_1 及 R_2 為可變電阻器, A_1 及 A_2 為安培計, V_1 及 V_2 為直流電源供應器。此時天平達到平衡,天平上之重物質量為 m。關於此實驗,下列敘述哪些正確?
 - (A)可變電阻的功用在調節輸出電流的大小
 - (B)調整 R_1 , A_2 讀數將跟著改變
 - (C)調整 R_1 使輸出電流變為兩倍,則天平上之 砝碼質量應增加為 2m 才可平衡
 - (D)若增大 V_2 ,重物端卻越加向下傾斜,則應將 V_1 及 V_2 均反向連接,才可能達成平衡
 - (E)此實驗的目的是觀察電磁感應的現象。

台北市立松山高級中學 109 學年度第二學期期末考高三物理科試卷

選修物理(下) 8-4~10-6

3	年	班	座號	姓名	
	_		/ *//U		

一、單一選擇題:(每題4分,共60分;答錯不倒扣)

1.	В	2.	Е	3.	В	4.	Е	5.	С
6.	A	7.	A	8.	A	9.	С	10.	В
11.	С	12.	Е	13.	С	14.	D	15.	D

二、多重選擇題:(每題5分,共40分;答錯不倒扣)

16.	BCD	17. AD	18. BC	19. ACE	20. BC
21.	ВСЕ	22. AE	23. AC		