Principles of Induction	
Notation: 2/20 = {1,2,3,4,}	
The	is a
method of proof for statements like	
· To prive these statements, we do the following	
1) (Buse Step):	
2a) (Inductive hypothesis):	

26) (Inductive leap):

RmK: An intuition for this can be gotten from comparing to posting over dominos

·The logical fundation is that

Pn () => is a tautology

ex) Show that for
$$n \ge 1$$

$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$
Pf) Let us first identity the open sentance $P(n)$.
$$P(n):$$

ex) let n=1. Prom ? Pn(x) is u deg	that d' (ex2)	$= P_n(x)e^{x^2}$	where
	dr ()	
Pn(x) is u deg	re n polynamia).	
	1 /		

It can happen that our	, that is, our
It can happen that our first instance where the state does at	ntement is
dousat	n=1, but instead
by "	will still
by	· ·
One then privis	
10	
1) Buse Cuse:	

2a) Inductive hypothesis:
26) Inductive leap:
This is referred to as the (or) principle of induction
principle of induction

ex) Reall last class we defined, for n=2 integer. $P_{n} = (1 - \frac{1}{4})(1 - \frac{1}{4}) - \cdots - (1 - \frac{1}{n\nu})$ We conjectived it is also of fum Pri- nx)
Lets provi it.

ex) If A... An are sets, for n=2 then

(A, U. U An) = A, A, A, C, -- A, C

ex) Let n 2 if	2, and let	f	fn k d	ifferes timble	
functions. P	tone that	• •			
(1,	fn) =	f' + f'	t d	fn	
f_{i}	fn	Fi Fi		fn	
() P					

	Strong Principle of Induction
L	is a variant
f	the first principle of that we saw
	the first principle of that we saw problems
11.14	trying to prive statements like
	Vn 2 m, fur some fixed me 2
1	1, N. 1, d. Cl., 11, 1.
γS	time though, an steps will be
	1) Busi Casc

2a) Induction hypothesis

26) Inductive leap

Thron: Prime Factoritation of the integers

Every positive integer n=2 is a product of prime HS.

129

Corollary: Every integer	nzl	hus	at liust one	pnim	# dwilling
			, i f		
Carollery: There are (90 manz	Primo	<u>₩</u> 5.		

Record: Last class we defined the sequence
$\alpha_i = 1$
a2=4
an=2an-1-an-2 for n=3,
Conjustared that an = n2. Let's prove it!

·		