EX 1 – DL basics

Liav Eliyau 308167675

Inbal Cohen 211388491

Theory

1.

- a. The shape of the input *X* is $m \times 10 m$ vectors of the input size 10.
- b. The shape of the weigh vector W_h is 10×50 and the shape of its bias vector b_h is 50×1 .
- c. The shape of W_0 is 50×3 , and b_0 is 3×1 .
- d. The shape of the output Y is $m \times 3$.
- e. $Y = \psi(Z_0W_0 + b_0) = \psi(\psi(W_hX + b_h)W_0 + b_0) =$ = $\max(0, \max(0, W_hX + b_h)W_0 + b_0)$

2.

of parameters Conv Layer = $((filter_width \times filter_height \times n_filters_prev_layer + 1) \times n_filters)$

Input Layer: $200 \times 300 \times 3$

of parameters Conv Layer1: (3 * 3 * 3 + 1) * 100 = 2800

of parameters Conv Layer2: (3 * 3 * 100 + 1) * 200 = 180200

of parameters Conv Layer3: (3 * 3 * 200 + 1) * 400 = 720400

Total # of parameters = 2800 + 180200 + 720400 = 903400

3.

a.
$$\frac{\partial f}{\partial \gamma} = \frac{\partial f(y)}{\partial \gamma} = \sum_{l=1}^{m} \frac{\partial f}{\partial y_{l}} \frac{\partial y_{l}}{\partial \gamma} = \sum_{l=1}^{m} \frac{\partial f}{\partial y_{l}} \hat{x}_{l}$$
b.
$$\frac{\partial f}{\partial \beta} = \frac{\partial f(y)}{\partial \beta} = \sum_{l=1}^{m} \frac{\partial f}{\partial y_{l}} \frac{\partial y_{l}}{\partial \beta} = \sum_{l=1}^{m} \frac{\partial f}{\partial y_{l}} \cdot 1 = \sum_{l=1}^{m} \frac{\partial f}{\partial y_{l}}$$
c.
$$\frac{\partial f}{\partial z_{l}} = \frac{\partial f}{\partial y_{l}} \frac{\partial y_{l}}{\partial z_{l}} = \frac{\partial f}{\partial y_{l}} \frac{\partial z_{l}}{\partial z_{l}} = \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{\partial z_{l}}{\partial \sigma^{2}} = \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{\partial z_{l}}{\partial \sigma^{2}} = \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{\partial z_{l}}{\partial \sigma^{2}} \left(\frac{x_{l} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \right) = \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \left(-\frac{1}{2} \left(\frac{x_{l} - \mu}{(\sigma^{2} + \varepsilon)^{\frac{3}{2}}} \right) \right) =$$

$$= -\frac{1}{2} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{\partial x_{l}}{\partial \sigma^{2}} + \sum_{l=1}^{m} \frac{\partial f}{\partial \sigma^{2}} \frac{\partial z_{l}}{\partial \sigma^{2}} = \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{1}{\sqrt{\sigma^{2} + \varepsilon}} + \frac{\partial f}{\partial \sigma^{2}} \frac{-2}{m} \sum_{l=1}^{m} (x_{l} - \mu) =$$

$$= -\frac{1}{\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - 2 \frac{\partial f}{\partial \sigma^{2}} \frac{1}{m} \sum_{l=1}^{m} (x_{l} - \mu) =$$

$$= -\frac{1}{\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - 2 \frac{\partial f}{\partial \sigma^{2}} \left(\frac{1}{m} \sum_{l=1}^{m} x_{l} - \mu \right) =$$

$$= -\frac{1}{\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - 2 \frac{\partial f}{\partial \sigma^{2}} (\mu - \mu) =$$

$$= -\frac{1}{\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{\partial z_{l}}{\partial x_{l}} + \frac{\partial f}{\partial \sigma^{2}} \frac{\partial z_{l}}{\partial x_{l}} =$$

$$= \frac{\partial f}{\partial x_{l}} \frac{1}{\sqrt{\sigma^{2} + \varepsilon}} - \frac{1}{\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{1}{m} - \frac{1}{2} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{x_{l} - \mu}{(\sigma^{2} + \varepsilon)^{\frac{3}{2}}} \frac{2(x_{l} - \mu)}{m} =$$

$$= \frac{1}{\sqrt{\sigma^{2} + \varepsilon}} \frac{\partial f}{\partial x_{l}} - \frac{1}{m\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - \frac{1}{m\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{x_{l} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{x_{l} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} =$$

$$= \frac{1}{m\sqrt{\sigma^{2} + \varepsilon}} \left(m \frac{\partial f}{\partial x_{l}} - \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \frac{x_{l} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \right) =$$

$$= \frac{1}{m\sqrt{\sigma^{2} + \varepsilon}} \left(m \frac{\partial f}{\partial x_{l}} - \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} - \sum_{l=1}^{m} \frac{\partial f}{\partial x_{l}} \right) \frac{x_{l} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \frac{\partial f}{\partial x_{l}} \frac{x_{l} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \right) =$$

$$= \frac{1}{m\sqrt{\sigma^{2}$$

Practical

The Data:

The data we use for this exercise is Fashion-MNIST, a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

The Model:

LeNet is a <u>convolutional neural network</u> structure proposed by <u>LeCun</u> et al. in 1998.^[1] In general, LeNet refers to LeNet-5 and is a simple <u>convolutional neural network</u>. (Wikipedia)

Baseline model – LeNet5:

Layer (type)	Output Shape	Param #
Conv2d	[-1, 6, 28, 28]	156
Tanh	[-1, 6, 28, 28]	0
AvgPool2d	[-1, 6, 14, 14]	0
Conv2d	[-1, 16, 10, 10]	2,416
Tanh	[-1, 16, 10, 10]	0
AvgPool2d	[-1, 16, 5, 5]	0
Conv2d	[-1, 120, 1, 1]	48,120
Flatten	[-1, 120]	0
Linear	[-1, 84]	10,164
Tanh	[-1, 84]	0
Linear	[-1, 10]	850
		Total params: 61,706

Techniques to compare:

- Dropout
- Weight Decay
- Batch Normalization

Results:

LeNet5 (Baseline):

LeNet5 with Dropout:

LeNet5 with Weight Decay:

LeNet5 with Batch Normalization:

Summary of all accuracies:

+ Model	H Train Accuracy [%]	++ Test Accuracy [%]
lenet5	94.98	89.1
lenet5_dropout	89.26	85.39
lenet5_weight_decay	91.49	89.02
lenet5_batch_normalization	97.58	89.6
+	+	++,

Conclusion:

- We got the best accuracy with the Batch Normalization technique, both on Train and Test sets.
- The Train accuracy of the Batch Normalization technique is almost perfect and can get better with more epochs.
- We got the worst Accuracy with the Dropout technique, both on Train and Test sets. Even worse results compared to the Baseline model.
- We used the validation for fine tuning the general model. For example, to choose the optimizer and size of epochs.