Lecture 1: Set Theory

Tianpei Xie

Nov. 7th., 2022

Contents

1	Fundamental Concepts	2
	1.1 Set Operations and Logics	2
2	Functions	3
3	Relations	4
	3.1 Equivalence Relation	5
	3.2 Order Relation	5
4	Cartesian Products	7
5	Countable and Uncountable Sets	8
6	The Principle of Recursive Definition	8
7	The Axiom of Choice	9
8	Well-Ordering Theorem and the Maximum Principle	9

1 Fundamental Concepts

1.1 Set Operations and Logics

• **Definition** Given a set X, the collection of all subsets of X, denoted as 2^X , is defined as

$$2^X := \{E : E \subseteq X\}$$

- Remark The followings are basic operation on 2^X : For $A, B \in 2^X$,
 - 1. *Inclusion*: $A \subseteq B$ if and only if $\forall x \in A, x \in B$.
 - 2. *Union*: $A \cup B = \{x : x \in A \lor x \in B\}$.
 - 3. *Intersection*: $A \cap B = \{x : x \in A \land x \in B\}$.
 - 4. **Difference**: $A \setminus B = \{x : x \in A \land x \notin B\}$.
 - 5. Complement: $A^c = X \setminus A = \{x : x \in X \land x \notin A\}.$
 - 6. Symmetric Difference: $A\Delta B = (A \setminus B) \cup (B \setminus A) = \{x \in X : x \notin A \lor x \notin B\}$.

We have deMorgan's laws:

$$\left(\bigcup_{a\in A} U_a\right)^c = \bigcap_{a\in A} U_a^c, \quad \left(\bigcap_{a\in A} U_a\right)^c = \bigcup_{a\in A} U_a^c$$

• **Remark** Note that the following equality is useful:

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

- The forms of logic statement using "if . . . then":
 - 1. Original statement: "If P then Q", or "Q holds if P holds";

$$P \Rightarrow Q$$

2. Converse statement: "If Q then P", or "Q holds only if P holds";

$$Q \Rightarrow P$$

3. Contrapositive statement: "If not Q then not P", or "P not holds if Q not holds";

$$\neg Q \Rightarrow \neg P$$

The contrapositive and the original statements are *logically equivalent*.

If it should happen that both the statement $P \Rightarrow Q$ and its converse $Q \Rightarrow P$ are true, we express this fact by the notation

$$P \Leftrightarrow Q$$

"P holds if and only if Q holds""

2 Functions

• **Definition** A <u>rule of assignment</u> is a subset r of the cartesian product $C \times D$ of two sets, having the property that each element of C appears as the first coordinate **at most one ordered pair belonging to** r. Thus, a subset r of $C \times D$ is a rule of assignment if

$$[(c,d) \in r \text{ and } (c,d') \in r] \Rightarrow [d=d'].$$

Given a rule of assignment r, <u>the domain</u> of r is defined to be the *subset* of C consisting of all first coordinates of elements of r, and **the image** set of r is defined as the *subset* of D consisting of all second coordinates of elements of r.

A function f is a rule of assignment r, together with a set B that contains the image set of r.

• **Definition** $f: X \to Y$ is a *function* if for each $x \in X$, there exists a unique $y = f(x) \in Y$. X is called the *domain* of f and Y is called the *codomain* or *image* of f. $f(X) = \{y \in Y : y = f(x)\}$ is called the *range* of f

The pre-image of f is defined as

$$f^{-1}(E) = \{ x \in X : f(x) \in E \}.$$

• **Definition** If $f: A \to B$ and if A_0 is a subset of A, we define the <u>restriction</u> of f to A_0 to be the function mapping A_0 into B whose rule is

$$\{(a, f(a)): a \in A_0\}.$$

It is denoted by $f|_{A_0}$, which is read ""f restricted to A_0 ."

• Remark The pre-image operation commutes with all basic set operations:

$$A \subseteq B \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)$$

$$f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(E_{\alpha})$$

$$f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f^{-1}(E_{\alpha})$$

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

$$f^{-1}(E^{c}) = (f^{-1}(E))^{c}$$

• Remark The image operation commutes with only inclusion and union operations:

$$A \subseteq B \Rightarrow f(A) \subseteq f(B)$$
$$f\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f(E_{\alpha})$$

For the other operations:

$$f\left(\bigcap_{\alpha\in A} E_{\alpha}\right) \subseteq \bigcap_{\alpha\in A} f\left(E_{\alpha}\right)$$
$$f\left(A\setminus B\right) \supseteq f(A)\setminus f(B)$$

• **Definition** A map $f: X \to Y$ is <u>surjective</u>, or, onto, if for every $y \in Y$, there exists a $x \in X$ such that y = f(x). In set theory notation:

$$f: X \to Y$$
 is surjective $\Leftrightarrow f^{-1}(Y) \subseteq X$.

A map $f: X \to Y$ is **injective**, **or one-to-one**, if for every $x_1 \neq x_2 \in X$, their map $f(x_1) \neq f(x_2)$, or equivalently, $f(x_1) = f(x_2)$ only if $x_1 = x_2$.

If a map $f: X \to Y$ is both *surjective* and *injective*, we say f is a **bijective**, or there exists an **one-to-one correspondence** between X and Y. Thus $Y = f(\overline{X})$.

• Remark

$$f^{-1}(f(B)) \supseteq B, \quad \forall B \subseteq X$$

$$f(f^{-1}(E)) \subseteq E, \quad \forall E \subseteq Y$$

$$f: X \to Y \text{ is surjective } \Leftrightarrow f^{-1}(Y) \subseteq X.$$

$$\Rightarrow f(f^{-1}(E)) = E.$$

$$f: X \to Y \text{ is injective } \Rightarrow f^{-1}(f(B)) = B$$

$$\Rightarrow f\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f\left(E_{\alpha}\right)$$

$$\Rightarrow f\left(A \setminus B\right) = f(A) \setminus f(B)$$

- Proposition 2.1 The following statements for composite functions are true:
 - 1. If f, g are both injective, then $g \circ f$ is injective.
 - 2. If f, g are both surjective, then $g \circ f$ is surjective.
 - 3. Every injective map $f: X \to Y$ can be writen as $f = \iota \circ f_R$ where $f_R: X \to f(X)$ is a bijective map and ι is the inclusion map.
 - 4. Every surjective map $f: X \to Y$ can be writen as $f = f_p \circ \pi$ where $\pi: X \to (X/\sim)$ is a quotient map (projection $x \mapsto [x]$) for the equivalent relation $x \sim y \Leftrightarrow f(x) = f(y)$ and $f_p: (X/\sim) \to Y$ is defined as $f_p([x]) = f(x)$ constant in each coset [x].
 - 5. If $g \circ f$ is **injective**, then f is **injective**.
 - 6. If $g \circ f$ is surjective, then g is surjective.

3 Relations

• **Definition** A <u>relation</u> on a set A is a subset R of the cartesian product $A \times A$.

If R is a relation on A, we use the notation xRy to mean the same thing as $(x,y) \in R$. We read it "x is in the relation R to y."

• Remark A rule of assignment r for a function $f: A \to A$ is also a subset of $A \times A$. But it is a subset of a very special kind: namely, one such that each element of A appears as the first coordinate of an element of r exactly once. Any subset of $A \times A$ is a relation on A.

3.1 Equivalence Relation

- Definition An equivalence relation on X is a relation R on X such that
 - 1. (**Reflexivity**): xRx for all $x \in X$;
 - 2. (**Symmetry**): xRy if and only if yRx for all $x, y \in X$;
 - 3. (**Transitivity**): xRy and yRz then xRz for all $x, y, z \in X$.

We usually denote the equivalence relation R as \sim .

- Definition (*Equivalence Class*)

 The equivalence class of an element x is denoted as $[x] := \{y \in X : xRy\}$.
- Lemma 3.1 [Munkres, 2000]

 Two equivalence classes E and E' are either disjoint or equal.
- **Definition** A <u>partition</u> of a set A is a collection of **disjoint** nonempty subsets of A whose **union** is all of A.
- Remark The set of equivalence classes provides a partition of the set X in that every $z \in X$ can must belong to only one equivalence class [x]. That is $[x] \cap [y] = \emptyset$ if $x \not\sim y$ and $X = \bigcup_{x \in X} [x]$.
- **Definition** The set of all equivalence classes of X by \sim , denoted $X/\sim := \{[x] : x \in X\}$, is the quotient set of X by \sim . $X = \bigcup_{C \in X/\sim} C$.
- Remark Since $x \sim y \Rightarrow y \in [x]$, we see that if $[x] \neq [y]$, then $x \not\sim y$, i.e. representative of different equivalence classes are not in the given relationship.

3.2 Order Relation

- **Definition** A relation C on a set A is called <u>an order relation</u> (or a simple order, or a linear order) if it has the following properties:
 - 1. (Comparability) For every x and y in A for which $x \neq y$, either xCy or yCx.
 - 2. (**Nonreflexivity**) For no x in A does the relation xCx hold.
 - 3. (**Transitivity**) If xCy and yCz, then xCz.

We denote order relation as > or <. We shall use the notation $x \le y$ to stand for the statement "either x < y or x = y"; and we shall use the notation y > x to stand for the statement "x < y." We write x < y < z to mean "x < y and y < z"

- Remark If $x \neq y$, then x < y and y < x cannot hold simultaneously.
- Definition (*Order Type*)

Suppose that A and B are two sets with order relations $<_A$, and $<_B$ respectively. We say that A and B have the same order type if there is a bijective correspondence between them that preserves order; that is, if there exists a bijective function $f: A \to B$ such that

$$x <_A y \Rightarrow f(x) <_B f(y)$$

• Definition (Dictionary Order Relation)

Suppose that A and B are two sets with order relations \prec_A and \prec_B respectively. Define an order relation \prec on $A \times B$ by defining

$$a_1 \times b_1 < a_2 \times b_2$$

if $a_1 <_A a_2$, or if $a_1 = a_2$ and $b_1 <_B b_2$. It is called <u>the dictionary order relation</u> on $A \times B$.

- **Definition** Suppose that A is a set ordered by the relation <. Let A_0 be a subset of A. We say that the element b is the *largest element* of A_0 if $b \in A_0$ and $x \le b$ for every $x \in A_0$.
 - Similarly, we say that a is <u>the smallest element</u> of A_0 if $a \in A_0$ and if $a \le x$ for every $x \in A_0$.
- Remark It is easy to see that a set has at most one largest element and at most one smallest element.
- Definition (The Upper Bound and The Supremum of Subset)

We say that the subset A_0 of A is <u>bounded above</u> if there is an element b of A such that $x \leq b$ for every $x \in A_0$; the element $b \in A$ is called **an upper bound for** A_0 .

If the set of all upper bounds for A_0 has a **smallest element**, that element is called **the least upper bound**, or **the supremum**, of A_0 . It is denoted by $\sup A_0$, it may or may not belong to A_0 . If it does, it is **the largest element** of A_0 .

• Definition (The Lower Bound and The Infimum of Subset)

Similarly, we say that the subset A_0 of A is **bounded below** if there is an element a of A such that $a \leq x$ for every $x \in A_0$; the element $a \in A$ is called **a lower bound for** A_0 .

If the set of all lower bounds for A_0 has a largest element, that element is called <u>the greatest</u> <u>lower bound</u>, or <u>the infimum</u>, of A_0 . It is denoted by inf A_0 , it may or may not belong to A_0 . If it does, it is <u>the smallest element</u> of A_0 .

• Definition (The Least Upper Bound Property and The Greatest Lower Bound Property)

An ordered set A is said to have <u>the least upper bound property</u> if every nonempty subset A_0 of A that is bounded above has a least upper bound.

Analogously, the set A is said to have <u>the greatest lower bound property</u> if every nonempty subset A_0 of A that is bounded below has a greatest lower bound.

• Theorem 3.2 (Zorn's Lemma). [Munkres, 2000]

Let A be a set that is **strictly partially ordered**. If every **simply ordered subset** of A has an **upper bound in** A, then A has a **maximal element**.

4 Cartesian Products

• Definition (Indexed Family of Sets)

Let \mathcal{A} be a nonempty collection of sets. <u>An indexing function</u> for \mathcal{A} is a <u>surjective</u> function f from some set J, called <u>the index set</u>, to \mathcal{A} . The <u>collection</u> \mathcal{A} , together with <u>the indexing function</u> f, is called <u>an indexed family of sets</u>. Given $\alpha \in J$, we shall denote the set $f(\alpha)$ by the symbol A_{α} . And we shall denote the indexed family itself by the symbol

$$\{A_{\alpha}\}_{\alpha\in J}$$
,

which is read "the family of all A_{α} , as a ranges over J." Sometimes we write merely $\{A_{\alpha}\}$, if it is clear what the index set is.

• Definition (Cartesian Product of Indexed Family of Sets)

Let m be a positive integer. Given a set X, we define an m-tuple of elements of X to be a function

$$x:\{1,\ldots,m\}\to X.$$

If X is an m-tuple, we often denote the value of x at i by the symbol x_i ; rather than x(i) and call it **the** i-th coordinate of x. And we often denote the function x itself by the symbol

$$(x_1,\ldots,x_m).$$

Now let $\{A_1, \ldots, A_m\}$ be a family of sets indexed with the set $\{1, \ldots, m\}$. Let $X = A_1 \cup \ldots \cup A_m$. We define **the cartesian product** of this indexed family, denoted by

$$\prod_{i=1}^{m} A_i \quad \text{or} \quad A_1 \times \ldots \times A_m$$

to be the set of all m-tuples (x_1, \ldots, x_m) of elements of X such that $x_i \in A_i$ for each i.

• Definition (Countable Cartesian Product of Indexed Family of Sets) Given a set X, we define an ω -tuple of elements of X to be a function

$$x: \mathbb{Z}_+ \to X;$$

we also call such a function a **sequence**, or an **infinite sequence**, of elements of X. If x is an ω -tuple, we often denote the value of x at i by x_i rather than x(i), and call it **the** i-th **coordinate** of x. We denote x itself by the symbol

$$(x_1, x_2, \ldots)$$
 or $(x_n)_{n \in \mathbb{Z}_+}$

Now let $\{A_1, A_2, \ldots\}$ be a family of sets, indexed with the positive integers; let X be the union of the sets in this family. **The cartesian product** of this indexed family of sets, denoted by

$$\prod_{i \in \mathbb{Z}_+} A_i \quad \text{ or } \quad A_1 \times A_2 \times \dots,$$

is defined to be the set of all ω -tuples $(x_1, x_2, ...)$ of elements of X such that $x_i \in A_i$ for each i.

7

5 Countable and Uncountable Sets

- **Definition** See the following definitions
 - 1. A set is said to be **countably infinite** if it admits a **bijection** with the set of positive integers $f: A \to \mathbb{Z}_+$, and
 - 2. A set is said to be **countable** if it is finite or countably infinite.
 - 3. A set that is not countable is said to be *uncountable*.
- **Proposition 5.1** Let B be a nonempty set. Then the following are equivalent:
 - 1. B is countable.
 - 2. There is a surjective function $f: \mathbb{Z}_+ \to B$.
 - 3. There is an **injective** function $g: B \to \mathbb{Z}_+$.
- Lemma 5.2 If C is an infinite subset of \mathbb{Z}_+ , then C is countably infinite.

6 The Principle of Recursive Definition

- Principle 6.1 (Principle of Recursive Definition). [Munkres, 2000]
 Let A be a set. Given a formula that defines h(1) as a unique element of A, and for i > 1
 defines h(i) uniquely as an element of A in terms of the values of h for positive integers
 less than i, this formula determines a unique function h: Z₊ → A.
- Theorem 6.2 (Principle of Recursive Definition). [Munkres, 2000] Let A be a set; let a₀ be an element of A. Suppose ρ is a function that assigns, to each function f mapping a nonempty section of the positive integers into A, an element of A. Then there exists a unique function

$$h: \mathbb{Z}_+ \to A$$

such that

$$h(1) = a_0,$$

 $h(i) = \rho(h | \{1, \dots, (i-1)\}) \text{ for all } i > 1.$ (1)

The formula (1) is called a <u>recursion formula</u> for h. It specifies h(1), and it expresses the value of h at i > 1 in terms of the values of h for positive integers less than i. A definition given by such a formula is called a **recursive definition**.

- Corollary 6.3 A subset of a countable set is countable.
- Corollary 6.4 The set $\mathbb{Z}_+ \times \mathbb{Z}_+$ is countably infinite.
- Proposition 6.5 A countable union of countable sets is countable.
- Proposition 6.6 A finite product of countable sets is countable.
- It is very tempting to assert that countable products of countable sets should be countable; but this assertion is in fact **not true**:

Theorem 6.7 Let X denote the two element set $\{0,1\}$. Then the set X^{ω} is uncountable.

- Theorem 6.8 Let A be a set. There is no injective map $f: 2^A \to A$, and there is no surjective map $g: A \to 2^A$.
- Proposition 6.9 Let A be a set. The following statements about A are equivalent:
 - 1. There exists an **injective** function $f: \mathbb{Z}_+ \to A$.
 - 2. There exists a bijection of A with a proper subset of itself.
 - 3. A is infinite.

7 The Axiom of Choice

- Principle 7.1 (Axiom of Choice). [Munkres, 2000]
 Given a collection \(\mathrew{\nodesign} \) of disjoint nonempty sets, there exists a set C consisting of exactly one element from each element of \(\mathrew{\nodesign} \); that is, a set C such that C is contained in the union of the elements of \(\mathre{\nodesign} \), and for each \(A \in \mathre{\nodesign} \), the set C \(\cap A \) contains a single element.
- Lemma 7.2 (Existence of a Choice Function). [Munkres, 2000]
 Given a collection \mathscr{B} of nonempty sets (not necessarily disjoint), there exists a function

$$c: \mathscr{B} \to \bigcup_{B \in \mathscr{B}} B$$

such that c(B) is an element of B, for each $B \in \mathcal{B}$.

Remark The function c is called a **choice function** for the collection \mathcal{B} . The difference between this lemma and the axiom of choice is that in this lemma the sets of the collection \mathcal{B} are not required to be disjoint.

- **Remark** The axiom of choice is used when someone construct an infinite set using infinite number of arbitrary choices.
- Corollary 7.3 If $\{A_{\alpha}\}_{{\alpha}\in J}$ is a disjoint collection of nonempty sets, there is a set $C\subset \bigcup_{{\alpha}\in J}A_{\alpha}$ such that $C\cap A_{\alpha}$ contains **precisely one element** for each $\alpha\in J$.

8 Well-Ordering Theorem and the Maximum Principle

- Definition (Well-Ordered Set)
 A set A with an order relation < is said to be well-ordered if every nonempty subset of A has a smallest element.
- Proposition 8.1 (Finite Ordered Set is Well-Ordered) [Munkres, 2000] Every nonempty finite ordered set has the order type of a section $\{1,\ldots,n\}$ of \mathbb{Z}_+ , so it is well-ordered.
- Theorem 8.2 (Well-Ordering Theorem). [Munkres, 2000]
 If A is a set, there exists an order relation on A that is a well-ordering.

- **Remark** The proof of Well-Ordering Theorem is based on a construction involving an infinite number of arbitrary choices, that is, a construction involving the choice axiom.
- Corollary 8.3 There exists an uncountable well-ordered set.
- **Definition** Let X be a well-ordered set. Given $\alpha \in X$, let S_{α} denote the set

$$S_{\alpha} = \{x : x \in X \text{ and } x < \alpha\}.$$

It is called the <u>section</u> of X by α .

• Definition (Strict Partial Order)

Given a set A, a relation \prec on A is called a <u>strict partial order</u> on A if it has the following two properties;

- 1. (*Nonreflexivity*) The relation $a \prec a$ never holds.
- 2. (**Transitivity**) If $a \prec b$ and $b \prec c$, then $a \prec c$.

Moreover, suppose that we define $a \leq b$ either $a \prec b$ or a = b. Then the relation \leq is called a partial order on A.

- Remark The Comparability condition means every two elements are comparable under simple order. Without this condition, we have partial order $x \prec y$. Consider the simple ordering as along a chain graph, while the partial ordering is along the general graphs.
- Theorem 8.4 (The Maximum Principle). Let A be a set; let ≺ be a strict partial order on A. Then there exists a maximal simply ordered subset B of A.
- Definition (Upper Bound and Maximal Element for Strict Partial Order)
 Let A be a set and let \prec be a strict partial order on A. If B is a subset of A, an upper bound on B is an element c of A such that for every b in B, either b = c or $b \prec c$.

<u>A maximal element</u> of A is an element m of A such that for <u>no element a of A</u> does the relation $m \prec a$ hold.

- Remark The upper bound of a set A is not necessarily in A, but the maximal element of A is in A.
- Theorem 8.5 (Zorn's Lemma). [Munkres, 2000] Let A be a set that is strictly partially ordered. If every simply ordered subset of A has an upper bound in A, then A has a maximal element.
- Remark Note that the inclusion operation \subset defines an order relationship between two sets. One application of Zorn's lemma is on the collection of subsets $\mathscr{A} = \{A_n\}_{n \in J}$ that is partially ordered by \subset operation. For each simply ordered sub-collection $\mathscr{A}_I := \{A_n\}_{n \in I}$, $I \subseteq J$, where $A_i \subset A_{i+1}$ we can see that $A_{\max I}$ is the uppper bound of \mathscr{A}_I in \mathscr{A} . Thus there exists a maximal subset $A_{\max} \in \mathscr{A}$ so that $A_n \subset A_{\max}$ for all $n \in J$.

References

James R Munkres. Topology, 2nd. Prentice Hall, 2000.