LOAN DOCUMENT

			I	·	PHO	rograph this	SHEET		7
	MBER							0	
	DTIC ACCESSION NUMBER	ec <u>h.</u>	Hal	1515 DOCUMENT	Rot.	TCATION	7 (est	INVENTORY	H
				DI	STRIB Approv Dist	UTION ST ed for Pub ribution U	ATEMENT blic Release nlimited	A	A N D
	1	ـــ				DISTRIBUTI	ON STATEMENT		$\dashv \mathbf{L}$
									E
BY DISTRIBUTION/ AVAILABILITY OF THE DISTRIBUTION		IPBCIAL.							T H
4-1							D	ATE ACCESSIONED	$\int_{\mathbf{C}}$
DIST	I TRIBUTION STAMP								A R E
								DATE DETINATION	-
								DATE RETURNED	4
2	20010	116	02	7					
	DAT	E RECEIVED		us sheft	r and rem	URN TO DTIC-F		ED OR CERTIFIED NUMBER	
DTIO ROW SEA							-	BEUGIN ENTING MAG BETTAKK	
DTIC FORM 70A				DOCUMEN	T PROCESSING	SHEET		PREVIOUS EDITIONS MAY BE USED U	MIT

LOAN DOCUMENT

Technology Analysis Report PRDA Test: Fluidized Bed Adsorption McClellan Air Force Base, Site IC 31 Sacramento, California

Prepared for

McClellan Air Force Base

Sacramento, California Contract No. F04699-97-C-0102

HLA Project No. 37478 43

Michael A. Sides, P.E.

Senior Engineer

David Hochmuth, P.E. Associate Engineer

June 19, 1998

Harding Lawson Associates

Engineering and Environmental Services 90 Digital Drive Novato, CA 94949 — (415) 883-0112

AQM01-04-0614

DEFENSE TECHNICAL INFORMATION CENTER REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS

AFCEE Collection					
٠	M44411 48 19 19 19 19 19 19 19 19 19 19 19 19 19	***************************************	*****************	***************************************	
	Report Availability (Please check une box)	Za, Numbai Copias Fork		2b. Forwarding Date	
	This report is available. Complete sections 2a - 2f.	00,000 . 00 40	250 14 15 14		
	This report is not available. Complete section 3.	1 eac	L	July/2000	
2c	Distribution Statement (Please check ONE box)			0'	
	Directive 5230.24, "Distribution Statements on Technical Documents cribed briefly below. Technical documents MUST be assigned a distrib			distribution statements, as	
M	DISTRIBUTION STATEMENT A: Approved for public rel	ease. Distribi	ition is u	nlimited.	
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S. Gove	roment A	gencies only.	
	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	to U.S. Gove	mment A	lgencies and their	
	DISTRIBUTION STATEMENT D: Distribution authorized to U.S. Department of Defense (DoD) and U.S. DoD contractors only.				
IJ	DISTRISUTION STATEMENT & Distribution surherized to U.S. Department of Defense (0o0) components only.				
5	DISTRIBUTION STATEMENT F: Further diesemination only as directed by the controlling DoD utilical indicated below or by higher authority.				
	DISTRIBUTION STATEMENT X: Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD Directive 5230.25, Withholding of Unclassified Technical Data from Public Disclosure, 6 Nov 84.				
2 A*C	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	***************************************	enterviewe de la completa de la comp La completa de la completa del completa de la completa del completa de la completa del completa del completa de la completa de la completa de la completa de la completa del completa del completa de la completa del com	
Æ.	Reason For the Above Distribution Statement (in accord	Mica wich gou c	nrectiva d.	(30.24)	
		•		•	
2e.	Controlling Office	27. Date Determin		bution Statement	
	HQ AFLEG	15		2000	
į, .					
J	This report is NOT forwarded for the following reasons	. (Piease check	appropria	to poxy	
	It was previously forwarded to DTIC on(da	ie) and the AC) number	***************************************	
]	It will be published at a later date. Enter approximate date	e if known.	anna madaarin	د موان به ۱ مهم برود و و و و و و و و و و و و و و و و و و	
	In accordance with the provisions of DoD Directive 3200.12, the requested decument is not supplied because:				
r,		ener emen meser ayında kiriliğili bir geçiri. Çalığı ener a energi emen energi edir. Energi e	gram a transcription of the second	The second control and an administrative and a second seco	
. ،	9887 (2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)	**************************************	2424755977777747.44	ят у вен колица, интеритерију вије 1 г. пр. и на језуварентеру и инфициору је и јези и истор	
rico L	t or Type Name Signat	nation, mineralist MTQ	inical se	r ann aiceann a' gaell air ann ann an Aireann an Aireann an Aireann an Aireann an Aireann an Aireann an Airean Aireann an Aireann an	
12	WIR PROP	Late Continue and the second	and Alle S	g of the selection of t	
4	phono	(Furth	70 (166 07) 1800 - 1 1 1 1	A. A. I.	
4	0-536-143/		14	01-04-0614	

Technology Analysis Report PRDA Test: Fluidized Bed Adsorption McClellan Air Force Base, Site IC 31 Sacramento, California

HLA Project No. 37478 43

This document was prepared by Harding Lawson Associates (HLA) at the direction of the McClellan Air Force Base (McClellan AFB) for the sole use of McClellan AFB and the regulatory agencies overseeing the McClellan AFB Installation Restoration Program, the only intended beneficiaries of this work. No other party should rely on the information contained herein without the prior written consent of McClellan AFB and HLA. This report and the interpretations, conclusions, and recommendations contained within are based in part on information presented in other documents that are cited in the text and listed in the references. Therefore, this report is subject to the limitations and qualifications presented in the referenced documents.

CONTENTS

ACR	ONYMS	VII
1.0	EXECUTIVE SUMMARY	IX
	1.1 Background	ix
	1.2 Demonstration Description	
	1.3 Results.	
	1.4 Conclusions	
	1.5 Recommendations	x
2.0	INTRODUCTION AND BACKGROUND	1
	2.1 SERDP NETTS	l
	2.2 Technology Objectives	1
	2.2.1 Planned Objectives	1
	2.2.2 Modified Objectives	2
	2.3 Technology Overview	
	2.3.1 Technology Applicability	
	2.3.2 Technology Advantages	
	2.3.3 Technology Limitations	
	2.3.4 Development Status	
	2.4 Demonstration Scope.	
	2.5 Document Organization.	
3.0	SITE DESCRIPTION	7
•.•	3.1 Location and Setting	
	3.2 Geology	
	3.3 Hydrogeology	
	3.4 Contaminant Distribution	
4.0	DEMONSTRATION DESCRIPTION	8
	4.1 Technology Principles	
	4.1.1 Adsorption Column	
	4.1.2 Desorption Column	
	4.1.3 Product Condensation	
	4.1.4 Product Recycling	
	4.2 Treatment System Installation and Operation	
	4.2.1 Well Installation, Drilling, and Sampling	
	4.2.2 Monitoring System	
	4.2.3 Instrumentation and Control	
	4.3 The Two Phases of the Technology Demonstration	
	4.3.1 Startup Phase	
	4.3.2 Test Phase	
	4.4 Sampling Strategy and QA/QC Results	
	4.4.1 Pre-Demonstration Sampling	
	4.4.1.1 Resin Baseline and Startup.	
	4.4.1.2 System Startup and Optimization	
	4.4.2 Technology Operation	
	4.4.2.1 Adsorbent Sampling	15
	4.4.2.2 Process Gas Sampling	15
	4.4.2.3 Utility and Material Costs	15
	4.4.2.4 Noncorrosive Discharge	
	₹	

	4.4.2.5 Oxides of Nitrogen (NOx)	
	4.4.2.6 Downtime	
	4.4.3 Post-Demonstration Sampling	
	4.4.3.1 Adsorbent Followup	
	4.4.4 Shut-down Monitoring	
	4.4.4.1 Recycled Product	
	4.4.5 Quality Assurance Sampling	
	4.4.5.1 Project Data Quality Objectives	
	4.4.5.2 Quality Control Exceedances	
	4.4.5.3 QC Summary	18
5.0	TECHNOLOGY PERFORMANCE EVALUATION	19
	5.1 Performance Data	19
	5.1.1 Process Stream Characterization	
	5.1.1.1 Air Influent	
	5.1.1.2 Air Effluent	21
	5.1.1.3 Process Liquid Effluent	:22
	5.1.1.4 Solid Medium	
	5.1.2 Mass Balances	24
	5.1.2.1 Air (DREs)	
	5.1.2.2 Liquid Condensate	25
	5.1.2.3 Process Solid Medium	
	5.2 Remediation Efficiency	
	5.2.1 System Performance	26
	5.2.2 System Treatment Performance Enhancements	
	5.3 Process Flow Efficiency	27
	5.3.1 Process efficiency Performance	27
6.0	OTHER TECHNOLOGY ISSUES	29
	6.1 Environmental Regulatory Requirements	29
	6.1.1 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)	29
	6.1.2 Resource Conservation and Recovery Act	29
	6.1.3 Clean Water Act	29
	6.1.4 Safe Drinking Water Act	
	6.1.5 Toxic Substances Control Act	29
	6.1.6 Mixed Waste Regulations	30
	6.1.7 Federal Insecticide, Fungicide, and Rodenticide Act	30
	6.1.8 Occupational Safety and Health Act	30
	6.1.9 Clean Air Act	30
	6.2 Personnel Health and Safety	
	6.3 Community Acceptance	30
7.0	COST ANALYSIS	31
7.0	7.1 Basis of Cost Analysis	
	7.2 Cost Categories	
	7.2.1 Mobilization and Preparatory Work (33.01)	
	7.2.2 Monitoring, Sampling, Testing, and Analysis: Pre-Demonstration, Demonstration, and Po	
	Demonstration (33.02)	
	7.2.3 Site Work (33.03)	
	7.2.4 Surface Water Collection and Control (33.05)	
	7.2.5 Groundwater Collection and Control (33.06)	31
	7.2.5 Groundwater Collection and Control (33.06)	
	7.2.5 Groundwater Collection and Control (33.06)	32

	7.2.9 Drums/ Tanks/ Structures/ Miscellaneous Demolition and Removal (33.10)	33
	7.2.10 Biological Treatment (33.11)	33
	7.2.11 Chemical Treatment (33.12)	33
	7.2.12 Physical Treatment (33.13)	33
	7.2.13 Thermal Treatment (33.14)	
	7.2.14 Stabilization/ Fixation/Encapsulation (33.15)	33
	7.2.15 Decontamination and Decommissioning (33.17)	33
	7.2.16 Disposal (Commercial) (33.19)	
	7.2.17 Site Restoration (33.20)	34
	7.2.18 Demobilization (33.21)	34
	7.3 Results of Cost Analysis	34
8.0	CONCLUSIONS	35
0.0	8.1 Cost and Performance	
	8.1.1 Treatment Performance	
	8.1.2 Process Efficiency Performance	
	6.1.2 Flocess Efficiency renormance	
9.0	RECOMMENDATIONS	36
J.U	9.1 System Enhancements	
	7.1 System Emiliated mental management of the second mental management of the second mental management of the second mental ment	
10.0	REFERENCES	37
	10.1 References	
TABL	ES Control of the con	
1	FBA Field Readings	
)	FBA Sampling Schedule	
	Vapor VOC Concentrations - TO-14	
i	Vapor VOC Concentrations - EPA 8021 & E18	
	Vapor VOC Destruction and Removal Efficiencies	
;	Resin VOC Concentrations - EPA 8240 & modified 8015	
, 7	Condensate VOC Concentrations - EPA 8240 & m8015	
ž	Relative Humidity Readings	
,)	Utilities Consumption	
	ounder committee	
FIGUI	RE	
l	Corrosivity Probe Mass Loss (6/10/97 to 12/4/97)	
APPE	NDIXES	
A	WORK IMPLEMENTATION PLAN ATTACHMENTS	
	TABLES	
	Table 5 - Sampling Container Types and Holding Times	
	Table 6 - Rationale for Vapor and Emission Sampling	
	Table 7 - Analytical Data Quality Objectives	
	PLATES	
	Plate 1 - Site Plan	
	Plate 2 - Process Flow Diagram	
	Plate 3 - Instrumentation Diagram	
	Plate 3 - Instrumentation Diagram Plate 4 - FBA Test Layout Diagram	
	Plate 5 - One-Line Diagram	
	riale J - Olic-Lille Diagram	

- B LABORATORY REPORTS AIR SAMPLES BY EPA TO-14
- C LABORATORY REPORTS AIR SAMPLES BY EPA 8021 & E18
- D LABORATORY REPORTS RESIN AND LIQUID CONDENSATE SAMPLES BY EPA 8240 AND M8015
- E INORGANIC ANALYSES LABORATORY REPORT
- F FIELD DEMONSTRATION TERMINATION PROPOSAL
- G DEMONSTRATION COST SUMMARY

DISTRIBUTION

ACRONYMS

AEA Atomic Energy Act
AFB Air Force Base

ARARs Applicable or Relevant and Appropriate Requirements

BAC Bead Activated Carbon

BACT Best Available Control Technology

BTEX Benzene, Toluene, Ethyl Benzene, and Xylenes

CARB California Air Resource Board CCV Calibration Verification

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFM Cubic feet per minute
CFR Code of Federal Regulations

CWA Clean Water Act

1,1-DCA 1,1-Dichloroethane
1,1-DCE 1,1-Dichloroethene
DQO Data Quality Objectives

DRE Destruction and Removal Efficiency

EPA Environmental Protection Agency

FBA Fluidized Bed Adsorption

FWPCA Federal Water Pollution Control Act

GC Gas Chromatograph
GPM Gallons Per Minute
GAC Granular Activated Carbon

HASP Health and Safety Plan

HCAS Historical Cost Analysis System

IR Installation Restoration

IRP Installation Restoration Program

LCS Laboratory Control Samples

MCL Maximum Contaminant Level

MS/MSD Matrix Spike/Matrix Spike Duplicates

NEPA National Environmental Policy Act

NETTS National Environmental Technology Test Sites

NMOCs Non-methane Organic Compounds

NMHC Nonmethane Hydrocarbon

NPDES National Pollutant Discharge Elimination System

NPL National Priorities List NTL National Test Location

OSHA Occupational Safety and Health Act

OVM Organic Vapor Monitor

ACRONYMS (CONT'D)

PCE Perchloroethylene
PID Photoionization Detector
POL Petroleum, Oils, and Lubricants
ppmv Parts Per Million by Volume

PRDA Program Research and Development Announcement

PWS Performance Work Statement

QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

QMP Quality Management Plan

RCRA Resource Conservation and Recovery Act

RDC Remote Data Collector
ROD Record of Decision

SCFM Standard Cubic Feet Per Minute

SCF Standard Cubic Foot SDWA Safe Drinking Water Act

SERDP Strategic Environmental Research and Development Program

SIC Standard Industrial Classification
SOCs Semi-Volatile Organic Compounds
SOP Standard Operating Procedures

SVE Soil Vapor Extraction

TCE Trichloroethene
1,1,1-TCA 1,1,1 trichloroethane

TICs Tentatively Identified Compounds
TPH Total Petroleum Hydrocarbons

TPHe Total Petroleum Hydrocarbons, Extractable
TPHd Total Petroleum Hydrocarbons, Diesel Fuel
TPHg Total Petroleum Hydrocarbons, Gasoline
TPHo Total Petroleum Hydrocarbons, Motor oil
TPHp Total Petroleum Hydrocarbons, Purgable

TSCA Toxic Substances Control Act
TVH Total Volatile Hydrocarbon Mass

VOCs Volatile Organic Compounds

WIP Final Work Implementation Plan

1.0 EXECUTIVE SUMMARY

1.1 Background

This Technical Analyses Report summarizes a Fluidized Bed Adsorption (FBA)¹ performance test conducted under a Program Research and Development Announcement (PRDA) at McClellan Air Force Base (McClellan AFB), Sacramento, California. This document presents the test objectives, test procedures, results, evaluation, conclusions, and recommendations.

The FBA process involves cycling adsorbent resin beads through two chambers: an adsorber and a desorber. In the adsorber, volatile organic compounds (VOCs) in the process gas are transferred onto the resin beads. In the desorber, the beads are heated to remove the adsorbed VOCs into nitrogen purge gas; the nitrogen is then chilled to condense the VOCs into a liquid condensate suitable for recycling.

FBA was identified as an innovative technology for testing at an existing soil vapor extraction (SVE) system at McClellan AFB Investigative Cluster 31 (IC 31; Appendix A - Plate 1); a mixture of petroleum hydrocarbons and chlorinated VOCs is present in soil at this site. The original intent of the demonstration was to collect performance data to document FBA costs and treatment capabilities. However, site conditions adversely impacted FBA operations, and the scope and objectives of the demonstration were modified to assess how the mixed organic waste stream would affect the performance of the adsorbent resin beads.

1.2 Demonstration Description

The FBA test was conducted on a nominal 100 standard cubic feet per minute (scfm) slip-stream from existing SVE well VW-5001. The FBA effluent vapors were subsequently processed by an existing catalytic oxidizer at IC 31 to provide a backup treatment process for air discharge compliance.

The demonstration was conducted in two phases: startup and test. During the startup phase, a sequence of diagnostic and mitigative actions were implemented by HLA to evaluate the impaired system operations. In the test phase, data were collected from the solid, liquid, and air process media to analyze how the mixture of petroleum hydrocarbons and chlorinated VOCs affected treatment performance relative to mass loading on the adsorbent resin beads.

1.3 Results

Field readings, chemical analysis results, and destruction and removal efficiency (DRE) calculations are summarized in tables, and laboratory reports are attached; chemical analysis results showed good correlation between the various methods used. Chemical analysis data from air, liquid condensate, and resin beads provide a basis for evaluating the relationship between treatment performance and the amount of residual organic mass adsorbed to the resin beads.

1.4 Conclusions

Treatment performance conclusions are as follows:

- 1. Without further development and testing, FBA technology is not appropriate for use at McClellan AFB sites where petroleum hydrocarbons are the primary constituents.
- 2. The FBA test unit achieved 91 percent DRE for TCE from air containing petroleum hydrocarbons that fall in the range of gasoline (C₅ to C₁₂) with a relatively small proportion (less than 3 percent) of chlorinated VOCs.

The term "Fluidized Bed Adsorption" has been used by the vendor for this equipment in trade literature; the reference to "fluidized bed" is intended to distinguish this technology from "static bed" adsorption technologies and is not intended to imply a certain particle path within the reactor.

- 3. Treatment performance of Ambersorb 600 deteriorates when residual mass loading on the resin exceeds 1,000 mg/kg total petroleum hydrocarbons as gasoline (TPHg).
- 4. The test indicated a desorber temperature of 425°F was sufficient to reduce the concentration of TPHg (including high-boiling compounds with carbon numbers as high as C₁₃) present on the resin beads; however, the resin beads do not have sufficient residence time within the desorber as presently configured to maintain a residual TPHg mass loading below 1,000 mg/kg. Residual TPHg concentrations below 1,000 mg/kg were achieved by additional desorption cycles without chemicals present in the influent air.
- 5. Bead cohesion was observed when the residual organic mass adsorbed to the resin contains less than 5 percent chlorinated VOCs, as well as when the residual mass on the resin exceeded 1,000 mg/kg TPHg.
- 6. FBA is more effective in treating TCE and PCE than lighter chlorinated VOCs, such as Freon 113 and 1,1,1-TCA. The differentiation is greater in the presence of petroleum hydrocarbons, which appear to preferentially adsorb to Ambersorb®600 relative to the lighter chlorinated VOCs.
- 7. The system effluent was relatively non-corrosive with test results yielding a design criterion for corrosion of 1 to 2 mils per year. The equipment fabrication design should include an additional stainless steel wall thickness of 20 mils to accommodate corrosion loss over 10 to 20 years of operation.

The FBA process efficiency conclusions are as follows:

- 1. The FBA demonstration recovered VOC contaminants as a recyclable product.
- 2. Increasing desorption time will reduce resin loading and likely enable sustainable operations to occur.

1.5 Recommendations

The following system enhancements are recommended:

- Enlarge the desorber to maintain residual organic mass on the resin to less than 1,000 mg/kg TPHg by
 extending retention time in the desorber. A larger adsorption chamber would further improve the FBA test
 unit treatment performance by providing additional contact time between resin beads and the process gas
 stream.
- Enlarge the adsorber to increase contact between the process gas and additional resin bead mass by extended retention time in the adsorber.
- 3. Evaluate the use of bead activated carbon (BAC) instead of Ambersorb®600 as the adsorbent material because in certain situations, BAC may provide an alternative adsorption medium that would not be susceptible to bead flow inconsistencies.

2.0 INTRODUCTION AND BACKGROUND

This Technical Analysis Report summarizes a Fluidized Bed Adsorption (FBA) performance test conducted under a Program Research and Development Announcement (PRDA) at McClellan Air Force Base (McClellan AFB), Sacramento, California. This document presents the test objectives, test procedures, results, evaluation, conclusions, and recommendations.

Fluidized Bed Adsorption (FBA) has been identified as an innovative technology that is applicable to the stated PRDA requirements for treatment of extracted soil vapor. Harding Lawson Associates (HLA) conducted performance testing of this technology using a slip stream from the existing soil vapor extraction (SVE) system at McClellan AFB Investigative Cluster 31 (IC 31; Appendix A - Plate 1). This site provided the opportunity for testing FBA performance at a site with diverse characteristics due to the presence of heavier petroleum hydrocarbons mixed with chlorinated volatile organic compounds (VOCs).

The purpose of this demonstration was to evaluate the ability of FBA to provide innovative and cost-effective remediation at sites contaminated with chlorinated VOCs. To perform the test at IC 31, HLA modified the FBA test unit to process a blend of fuel hydrocarbons (primarily branched alkanes), which have different adsorption/desorption characteristics than chlorinated VOCs such as trichloroethene (TCE). After the demonstration began, however, the physical properties of resin beads inside the FBA test unit changed and prevented sustained continuous operations. Total operation of the FBA test unit was limited to about 18 events, each with a duration of less than 20 hours. The project scope and objectives were modified to identify, assess, and evaluate system refinements that could address the operational difficulties and potentially facilitate sustained operations. The findings from this demonstration have resulted in FBA design improvements that facilitate continuous and cost-effective treatment applications for a variety of sites contaminated with mixtures of VOCs and petroleum hydrocarbons.

2.1 SERDP NETTS

The FBA technology demonstration was conducted under the National Environmental Technology Test Sites (NETTS) program. The demonstration was conducted at McClellan AFB Site IC 31,a Strategic Environmental Research and Development Program (SERDP) test location.

The NETTS has sponsored the development of five National Test Locations having established infrastructures and well-characterized contamination. McClellan AFB Site IC 31 was the National Test Location chosen as the site for the demonstration of FBA as documented in this report.

Congress established SERDP to improve cooperation among the U.S. Environmental Protection Agency (EPA) and the Department of Defense (DOD) armed services, and to use resources more effectively to develop technologies to clean up military sites containing residues. SERDP has funded the NETTS to facilitate the demonstration, evaluation, and commercial promotion of cost-effective, innovative environmental technologies.

2.2 Technology Objectives

The project objectives were developed to demonstrate the capabilities of fluidized bed adsorption to treat chlorinated VOCs. The objectives initially identified in the contract award documents focused on the treatment of chlorinated VOCs; during the planning and implementation of this demonstration, these objectives were refined to accommodate a more diverse chemical constituency as discussed below.

2.2.1 Planned Objectives

McClellan AFB and HLA developed three general objectives for the FBA test, as defined by the Performance Work Statement (PWS; McClellan AFB 1996b) for this PRDA contract. The Final Work Implementation Plan (WIP; HLA 1997i) outlined how the objectives would be measured and assessed during the demonstration:

Objective 1 - Demonstrate Innovativeness, Importance, and Relevancy.

Document the following operating parameters:

- Non-corrosive emissions
- Negligible NOx emissions
- Product recycling rather than waste generation and disposal
- Reduced energy use and input materials relative to comparable technologies.
- Objective 2 Evaluate Cost Effectiveness

Evaluate cost effectiveness of FBA for the full life-cycle of a soil vapor extraction project.

Objective 3 - Quantify Mass Removal

Demonstrate acceptable VOC mass removal capabilities during the test:

- Best Available Control Technology (BACT) treatment criterion of 95 percent or greater destruction and removal efficiency (DRE) for mixed streams of chlorinated and nonchlorinated hydrocarbons
- Ninety percent operational time after startup and shakedown
- Satisfactory adsorption and desorption of high boiling point compounds with the recently modified hot-oil desorber.

2.2.2 Modified Objectives

During field implementation, the planned objectives were refocused and modified because the mixture of chlorinated VOCs and petroleum hydrocarbons in the process stream adversely impacted operations and prevented gathering information necessary to satisfy the original objectives. HLA developed a plan with McClellan AFB to evaluate how the performance of the resin beads, Ambersorb®600, is affected as the mass of petroleum hydrocarbon constituents adsorbing to the resin accumulates. The modified scope provides for a more detailed perspective of Objective No. 3 (Quantify Mass Removal):

- Objective 3A Quantify Mass Removal Performance of Ambersorb®600
 - Assess impacts from branched alkanes to resin physical and chemical characteristics.
 - Monitor treatment efficiency relative to residual hydrocarbon loading on the resin.
 - Identify system FBA system enhancements to facilitate continuous treatment operations.

This information is valuable because Ambersorb®600 is one of several adsorptive resin materials being introduced as a critical operating component of many recently developed remediation technologies. As a result, findings from the test are pertinent to a wide range of potential Ambersorb®600 applications and also help identify design modifications to optimize performance of the FBA system.

2.3 Technology Overview

The fluidized bed adsorption process is designed to capture and recover a wide variety of VOCs commonly found at industrial and military sites. Initially, this technology was applied to industrial processes such as solvent recovery applications. It was further developed for use in the site remediation field and has been successfully applied at sites contaminated with chlorinated VOCs, primarily trichloroethene (TCE). This demonstration advances the

technology to address several additional challenges associated with variability in the mixture, type, and concentration of VOCs present in extracted soil vapor. Design modifications have been identified for applying this technology at sites exhibiting mixtures of petroleum hydrocarbons and chlorinated VOCs.

2.3.1 Technology Applicability

FBA is suitable for capture and recovery of a wide variety of chlorinated and nonchlorinated VOCs. The FBA desorber and chillier design temperatures determine the range of VOCs that can be treated. Relatively volatile compounds, such as solvents, are the most applicable targets for FBA because the resin beads can be regenerated at relatively low temperatures with corresponding low energy needs. The following compounds are typically treatable with FBA using the original steam-heated desorber operating at 300° F:

Perchlorothylene (PCE) Chlorobenzene

Trichloroethene (TCE) Dichlorobenzene

Methyl ethyl ketone (MEK)

Benzene

Methylene chloride Ethylbenzene

Carbon tetrachloride Toluene

1,1,1-trichloroethane (1,1,1-TCA) Xylenes (o-, m-, and p-)

Acetone Freon[®] 113

Chloroform

The FBA test unit was modified for the IC 31 test to use an oil-heated desorber operating at a maximum temperature of 450°F. This experimental modification was made to improve the FBA test unit's ability to desorb semivolatile organic compounds (SOCs) that have boiling points higher than 300°F, generally those petroleum hydrocarbons with carbon numbers equal or greater than C₁₀ (decane).

2.3.2 Technology Advantages

The fluidized bed process offers a number of advantages over other available, leading treatment technologies. FBA does not destroy the solvents, but recovers them so that they can be recycled. Relative to fixed bed regeneration systems, the fluid-bed adsorber has less pressure drop through the adsorbent and, therefore requires less energy to move the organic vapors through the system. Additionally, less energy is used in the regeneration process in that the desorber remains heated at the desorbing temperature via a recirculating hot oil system or steam generator. Because the desorber remains at a constant temperature, extra energy is not expended heating and cooling the entire desorber vessel as with fixed-bed systems. In the fluid-bed system, only the adsorbent medium cycles thermally as it moves from the desorber to the adsorber and back again. This lack of thermal cycling of the desorber vessel also reduces the potential from metal stress and fatigue which can lead to favored sites for corrosion attacks. Lower pressure drop in the adsorber and lack of thermal cycling in the desorber translate to lower operating costs and better corrosion resistance. Finally, because a condensation process rather than an oxidation process is used to remove the VOCs from the purge gas, corrosive oxidation byproducts are insignificant and NOx and SOx are not emitted.

2.3.3 Technology Limitations

FBA technology relies on adsorptive media to capture VOCs from the vapor stream and then release the VOCs for desorption. In addition, the media must have structural integrity to tolerate extended exposure to turbulent vapor streams. Granular activated carbon (GAC) is commonly used for many adsorptive media purposes; however, GAC must go through a heating process to harden the material for sale as bead activated carbon (BAC). Manufactured resin materials, such as Ambersorb 600, are physically durable beads that have different adsorptive characteristics

than BAC relative to various chlorinated VOCs and petroleum hydrocarbons. Ambersorb 600 was selected for this demonstration because it is a readily available product, whereas BAC has less reliable sources.

Temperature settings in the desorber and solvent condensers are selected on the basis of the types of VOCs present in the process stream. Three classes of compounds cause potential difficulties with the treatment process: high boilers, low boilers, and compounds with high freezing points. FBA design temperature settings need to be modified to address these compounds.

- High boilers are compounds with boiling points at or above the temperature of the FBA desorber where VOCs are evaporated into vapor phase from the loaded beads. These compounds remain adsorbed to adsorbent medium indefinitely and, as the resin continues to cycle through contaminated SVE stream, accumulate on the adsorbent medium. Such compounds ultimately saturate the adsorption sites on the medium, resulting in decreased removal efficiencies for all VOCs being treated. Steam-heated desorbers are impacted by compounds that boil at more than 300°F, such as decane. Oil-heated desorbers achieve higher temperatures (up to 425°F) and can accept a wider range of high-boiling VOCs. The current demonstration was impeded by the presence of high boilers and, as a result, further design modifications have been identified.
- Low boilers are compounds with boiling points at or below the temperature of the FBA condensers where the
 vapor-phase VOCs are condensed into liquid phase. These compounds, such as chloromethane, if not
 condensed, are returned to the FBA adsorber with nitrogen offgas and are emitted to the atmosphere rather
 than recovered as liquid product. This condition results in lower capture efficiency for low boilers compared
 to less volatile compounds.
- High freezers are compounds that exhibit freezing points above the temperature of the FBA condenser where
 vapor-phase VOCs are condensed to liquid-phase product. These compounds freeze into solid-phase and can
 clog the condenser. During previous testing, xylene was the primary chemical that caused clogging (Paragon,
 1995).

The potential difficulties associated with low boilers and high freezers are addressed using a two-stage condenser design, which allows high freezers to be condensed and separated as liquid before the low boilers are condensed into a liquid-phase at a lower temperature.

In addition to these classes of compounds, chlorinated organics can break down during desorption and form acid gases due to uneven heat transfer. When electrical heaters are used to regenerate adsorption beads, very large thermal gradients are generated at the surface of the electric heaters. In the presence of oxygen, this hot spot may cause degradation of the chlorinated compounds and generate acid gases. Solvent degradation is minimized by using evenly distributed heat sources, such as steam or hot oil, and an inert purge gas, such as nitrogen.

2.3.4 Development Status

To our knowledge, HLA operated the first field-scale FBAS on a SVE application in the United States. The system was operated at the National Semiconductor Corporation (National) facility in Santa Clara, California. The successful extended pilot study treated an SVE offgas stream containing a mixture of chlorinated and nonchlorinated VOCs (Paragon, 1995). Two full-scale treatment systems have subsequently been constructed and are in operation at the site.

Pilot test results indicate that the unit achieved a total nonmethane hydrocarbon (NMHC) removal efficiency of 86 to 95.9 percent. The inlet stream consisted of 100 standard cubic feet per minute (scfm) air with a mixture of xylenes, ethylbenzene, TCE, perchloroethylene (PCE), Freon[®] 113, acetone, carbon tetrachloride, 1,4-dichlorobenzene, 1,2-dichlorobenzene, and 1,1,1-TCA. Purge gas was supplied from an in-house nitrogen supply. Condensers were operated using an in-house chilled water source. Desorption heat was supplied by a steam generator.

At test site IC 31, chlorinated VOCs are mixed with fuel constituents, including branched alkanes with boiling points that exceed the 300°F desorption temperature achieved by the original FBA system using low-pressure

steam for a heat source. To proceed with the test, HLA rebuilt the FBA test unit to incorporate a 425°F hot-oil desorber to treat high-boiling hydrocarbons and a second-stage chillier to treat low boilers and high freezers. Conditions at IC 31 provided data on FBA operations where a significant portion of the influent stream consisted of high-boiler fuel constituents, as would be characteristic of remediation projects at many other facilities.

2.4 Demonstration Scope

FBA testing was conducted on a slip stream (90 to 110 cfm) from the existing SVE system at Site IC 31. The Process Flow Diagram (Plate 2) illustrates the incorporation of the FBA test unit into the existing SVE system. HLA provided the FBA test unit and an auxiliary positive displacement (PD) blower.

Three contracting and planning documents defined the scope of the FBA demonstration:

- Program Research and Development Announcement Proposal (PRDA Proposal; HLA, 1996) presented a proposed scope of work.
- Performance Work Statement (PWS; McClellan AFB, 1996b) issued by McClellan AFB, defines the contracted scope of work.
- Final Work Implementation Plan (WIP; HLA, 1997i) defined the demonstration objectives and developed a
 detailed scope of activities to evaluate FBA performance. The WIP is structured in accordance with the
 outline template for all NETTS (McClellan AFB, 1997a) and presents the implementation plan for the FBA
 Test. In addition, the WIP includes the following sections and support documentation required by Contract
 No. F04699-97-C-0102:
 - A summary of how monitoring data were to be evaluated to assess performance versus objectives (Section 4.4[of the WIP])
 - A description of field activities (Sections 5.0 and 7.0). Field work would be performed in accordance with the Quality Assurance Project Plan (Section 8.0 and Appendix B) and cross-referenced with NETTS format in Section 9.0.
 - A Site-Specific Health and Safety Plan (HASP), prepared in accordance with OSHA
 Publication 1910.120; AFOSH Publication 161-21; and U.S. Army Corps of Engineers Safety and Health
 Requirements Manual EM-385-1-1 (Section 9.0 and Appendix B)
 - A Hazardous Waste Management Plan (Section 5.4)
 - A Sampling and Analyses Plan (Section 7.0)
 - A Quality Assurance Project Plan (Section 8.0).

The demonstration scope was adjusted in response to field observations during startup operations to assess the cause of disrupted bead flow. The modified scope involved an iterative sequence of trouble-shooting activities that involved isolating parameters affecting system performance for more focused evaluation. As a result, the startup phase (Section 4.3.1) was extended to about 8 weeks from the original plan of 5 days. The test phase (Section 4.3.2) was changed to a short-term demonstration evaluating differential loading on the resin beads over time. HLA coordinated the scope modifications with McClellan AFB as defined by the following three documents:

- Field Demonstration Termination Proposal (Letter, HLA, 1997m), attached in Appendix F, proposed scope of work modifications to facilitate completion of the PRDA demonstration recognizing the operation limitations encountered during field testing at IC 31.
- Supporting Cost Information (Letter, HLA, 1997n) provided a detailed assessment of costs adjustments associated with the modified scope.

• Modification of Contract F046997C0102 (Memorandum & Contract Document, McClellan AFB, 1997b) provided contractual adjustments to implement the modified scope of work.

2.5 Document Organization

This report is organized according to a format similar to that of the EPA's Site Program Application Analysis Report. Each section is described below. Sections marked with an asterisk are additions to the format of the EPA report.

Section 1.0 Executive Summary, summarizes the demonstration results and conclusions. Section 2.0 **Introduction**, concentrates on the demonstration objectives and scope. Section 3.0 Site Description, with site characterization data. **Demonstration Description**, describes the technology, installation, operation and sampling Section 4.0 strategy used to characterize the relative success of the demonstration. Technology Performance Evaluation, details the numeric success of the demonstration in Section 5.0 terms of remediation effectiveness and system performance. Other Technology Issues, including regulatory, health and safety, and community Section 6.0 acceptance issues. Cost Evaluation, describes the unit-costs for FBA technology. Section 7.0 Conclusions, describes performance issues relating to the treatment of mixed waste streams, Section 8.0 cost issues and technology limitations.

Recommendations, describes possible process improvements for future applications.

Harding Lawson Associates

Section 9.0

3.0 SITE DESCRIPTION

3.1 Location and Setting

McClellan AFB selected Site IC 31 to test FBA. McClellan AFB operates a catalytic oxidizer (cat-ox) at the site that treats vapor phase contaminants from the following sources:

- Vadose zone soil vapors from extraction well VW-5001
- Air emissions from an air stripper treating extracted groundwater at the site.

McClellan AFB constructed a concrete pad to accommodate technology demonstration projects. The test equipment pad is adjacent to the SVE, cat-ox, and groundwater treatment equipment with power, tap water, and McClellan AFB sewer connections available.

3.2 Geology

Reserved (No pertinent information is available under this heading).

3.3 Hydrogeology

Reserved.

3.4 Contaminant Distribution

Table 1 summarizes the chemicals of concern observed in vapors from VW-5001 and the air stripper at Site IC 31 based on a review of data provided by McClellan AFB (Appendix A). Both sources exhibited a mixture of chlorinated and nonchlorinated hydrocarbons in extracted vapor. VW-5001 was selected as the sole source of VOCs for demonstrating FBA performance because it exhibited higher VOC concentrations and a much lower water content.

The chlorinated VOCs, typically related to solvent releases, include TCE; 1,1-dichloroethene (1,1-DCE); 1,1,1-TCA; carbon tetrachloride, and Freon 113. These chlorinated VOCs are highly volatile under ambient conditions and are readily recovered by SVE. TCE concentrations at extraction well VW-5001 decreased from a maximum concentration of 1,500 parts per million by volume (ppmv) to 70 ppmv during the fourth quarter of 1996. TCE is typically observed at concentrations an order of magnitude greater than the other chlorinated VOCs; 1,1-DCE provides the second-most significant mass contribution.

The petroleum VOCs are a mixture of straight-chain hydrocarbons (alkanes), methyl and ethyl groups attached to alkanes (branched alkanes), and aromatic hydrocarbons such as benzene, toluene, ethyl benzene, and xylenes (BTEX). Site data provided by McClellan AFB included an estimate of the total mass of hydrocarbons in VW-5001 vapors (October 28, 1996) expressed as 3,258 ppmv Total Volatile Hydrocarbon Mass (TVH); results for individual analytes showed 1,500 ppmv TCE in the same sample. A review of the available TVH mass calculations indicated that more than half of the hydrocarbon constituents entering the cat-ox system fell in the gas chromatograph (GC) range of pentane to octane (C_5 to C_8); lighter hydrocarbons (propane and butane, C_3 to C_4), and semivolatile hydrocarbons (decane and above, C_{10} +) were observed at concentrations that were generally an order of magnitude lower than the C_5 to C_8 range.

4.0 DEMONSTRATION DESCRIPTION

4.1 Technology Principles

FBA technology concentrates VOCs from vapor-phase constituents in air streams into liquid-phase product. The process uses an adsorptive medium to remove VOCs from the air stream, continuously regenerates the adsorptive medium with heat, and recovers the VOCs as a liquid-phase product typically suitable for recycling.

The main components of an FBA system include:

- Fluidized bed adsorber
- Moving bed desorber with a heat source
- Adsorbent beads (made from either carbonaceous resin or bead activated carbon)
- Solvent condenser with liquid-chillier refrigeration.

An FBA system is coupled with a vacuum blower and moisture separator to comprise a complete SVE system with offgas treatment, as shown on the process flow diagram (Appendix A, Plate 2). For the demonstration at IC 31, the FBA test unit treated a 100-cfm slip stream of soil vapors from SVE well VW-5001. The adsorbent material (carbonaceous resin beads) used for this demonstration was Ambersorb® 600, manufactured by Rohm and Haas Company (Rohm & Haas). The beads cycle between the adsorber and desorber in a continuos regeneration process; the FBA test unit used for this demonstration had a complete bead cycle of about 135 minutes.

4.1.1 Adsorption Column

The air stream containing solvent vapors is treated continuously through the FBA column (adsorber). In the adsorber, the solvent vapors are removed from the process gas by adsorption onto the solid resin beads that flow across a series of perforated trays in the adsorber tower. The air stream travels upward through the adsorber tower and passes through several trays of adsorbent medium. Regenerated adsorbent is continuously loaded at the top of the tower and travels downward through a series of "downcomers." The arrangement is similar to that used in air strippers and distillation towers. The adsorbent medium acts like a liquid (hence the term "fluidized") because of the lifting action of the air stream traveling upward through the perforations in the trays. The adsorbent becomes progressively more loaded with VOCs as it travels down the tower; when it reaches the bottom of the tower, it is removed for regeneration.

4.1.2 Description Column

The resin with adsorbed VOCs (loaded beads) is transported from the bottom of the adsorber to the top of the moving bed desorption column (desorber) by pneumatic lift. The desorber regenerates the resin by heating it with a non-contact steam or recirculating hot oil; the equipment used for this demonstration was modified to use hot oil at a temperature of 425° F to treat the branched alkanes observed at IC 31. Heat causes the VOCs on the loaded beads to return to the vapor phase where they are removed from the top of the desorber by a small, constant stream of purge gas (nitrogen) injected at the bottom of the desorber. Before it leaves the desorber, the resin is cooled to near ambient temperature by a non-contact cooling water stream. The regenerated beads are then returned to the top of the adsorber.

4.1.3 Product Condensation

The hot stream of purge gas, which has a high concentration of VOCs, is transported to a two-stage solvent condenser. In the first stage of the condenser, a high temperature coolant or cooling water is used to condense high boiling point liquid solvents (e.g., xylenes), which could freeze in the second, refrigerated condenser. In the second stage condenser, the low boiling point liquid solvents are condensed. The discharge from both stages of

condenser is directed to a solvent recovery drum. The remaining carrier gas is recycled back into the adsorber where any remaining solvent is processed through the adsorber.

4.1.4 Product Recycling

Recovered liquid product is contained in DOT-approved drums for transportation to a licensed recycling facility. The product becomes the property of the recycling facility, which recovers the various constituents as a recycled solvent or blends the product into heating fuel for cement kiln furnaces.

4.2 Treatment System Installation and Operation

The FBA test unit installation is diagrammed in the following design drawings originally included in the final WIP (HLA, 1997i), attached in Appendix A:

- Process Flow Diagram (Plate 2)
- Instrumentation Diagram (Plate 3)
- FBA Test Layout Diagram (Plate 4)
- One-Line Diagram (Plate 5)

After the McClellan AFB field kick-off meeting on June 20, 1997, FBA system installation began on July 1, 1998. The following major equipment components were delivered and installed at IC 31:

- FBA Test Unit skid with control panel, adsorber, desorber, and condensers
- PD blower trailer with moisture separator
- Condensate collections drums with secondary containment
- Liquid nitrogen tank with an evaporator and pressure regulator.

Three-inch-diameter PVC piping was attached to flanges on the existing SVE system and extended to the FBA test unit; due to temperatures in excess of 130° F, galvanized steel pipe was used between the blower and the heat exchanger. A positive displacement blower equipped with a 15-horsepower electric motor was installed to pull a slip stream of 100 cubic feet per minute (cfm) from well VW-5001 through the FBA Test Unit and then back into the SVE system upstream of the catalytic oxidizer. The FBA Test Unit was loaded with approximately 90 pounds of Ambersorb®600 carbonaceous adsorbent. The 500-gallon nitrogen tank was placed on the test pad to provide a noncombustible purge gas in the desorber.

Supply water, used for non-contact cooling at a rate of 2 gallons per minute (gpm), was connected to the FBA Test Unit with flexible hose. The moisture knockout vessel and condensate collection drums were installed within secondary containment having a minimum capacity of 110 percent of the primary containment vessels.

Demonstration operations are chronicled in Section 4.3. During operations, the system performance was adjusted by varying the following process parameters:

- Process gas flow rate through the adsorber
- Process gas inlet temperature
- Influent VOC concentrations, adjusted with dilution air
- Adsorbent transfer rate between adsorber and desorber

- Desorber retention time
- Desorber set point temperature
- Condenser set point temperature
- Coolant water flow rate
- Nitrogen purge gas flow rate.

Well installation, Drilling, and Sampling

Reserved.

4.2.2 **Monitoring System**

System operations monitoring was conducted using control switches and alarm shutoffs as described in Section 4.2.3. System performance was monitored with a sampling program as discussed in Section 4.4.

4.2.3 Instrumentation and Control

Instrumentation was installed to shut down the FBA test unit concurrently with any shutdown of the existing cat-ox downstream of the FBA test unit. In addition, shutdown controls were connected to high-level switches in the moisture knock-out vessel, solvent recovery drums, and the secondary containment. Internal controls shut down the system for a low bead level in the desorber, low nitrogen flow to the desorber, or if the hot oil pump were to shut down. An autodialer was connected to the shutdown instrumentation to notify HLA maintenance personnel of a system shutdown via telephone.

The Two Phases of the Technology Demonstration 4.3

The FBA demonstration was conducted in two phases: startup and test. The purpose of the startup phase was to adjust the FBA test unit operating parameters to stabilize system operations and optimize DRE. When bead flow problems were observed, the startup phase was extended to isolate factors affecting system operations for more detailed evaluation. The test phase was modified to focus on resin performance during a short duration test in order to access the physical and adsorption behavior as the result of branched alkane accumulations on the beads. A summary of field notes is presented in Table 1.

4.3.1 Startup Phase

This section provides a general chronology of startup-phase activities between July and September 1997.

Initial Settings

On July 15, 1997, HLA initiated FBA system startup with a series of instrumentation checks and adjustments. Ambient air was used initially as the process gas to check system operations by opening the blower inlet to the atmosphere via the dilution air valve. The process gas flow rate was controlled by varying the speed of the auxiliary PD blower and by adjusting the control valve on the process gas stream inlet. The desorber temperature was initially set at 375° F by adjusting the built-in controls in the hot-oil heater. The primary liquid chillier was set at about 30°F to condense compounds like xylene that could freeze; the secondary liquid chillier was set at about -30° F to recover the lighter-end VOCs that were not condensed in the primary chillier. The flow rate for nitrogen purge gas entering the desorber was set at 1.5 scfm using a control valve on the rotameter. The transfer rate of the adsorbent beads was adjusted with built-in ball valves controlling both the air flow and the bead flow rate from the lifter blower entering the adsorbent transport lines. Field measurements were collected throughout startup operations, recording flow rates, temperatures, and equipment operating time.

After setting the operating parameters while processing ambient air, the blower inlet was reconfigured to accept air from VW-5001. Influent VOC concentrations in process gas were varied by adjusting the dilution air valve and Day 1 samples were collected for chemical analyses as discussed in Section 4.4.

Inconsistent Bead Flow

Once the FBA test unit was introduced to well air on July 17, inconsistent bead flow inside the unit disrupted operations within 24 hours after well air was introduced as the process gas. Beads flowing between the adsorber and desorber would occasionally cohere loosely and impede bead circulation, which normally completes a full cycle in approximately 2 hours. The bead flow would back up inside the FBA test unit, causing decreased removal efficiencies and system shutdowns. Most occurrences involved beads backing up inside the adsorber, and an automatic shutdown would occur because a low bead level would be detected inside the desorber. On some occasions, the beads would back up inside the desorber, so that beads transferring from the adsorber to the desorber would be detoured back to the adsorber via an overflow line. As a result, a fixed amount of resin beads would continually circulate through the adsorber without being desorbed; HLA's field technician would manually shut down the system when this condition was observed. After each shutdown, the field technician would physically dislodge the bead backup and restart the system using ambient air before reintroducing well air.

HLA initiated several activities to evaluate the situation, identify the specific cause of the problem, and implement field modifications as warranted. Throughout this iterative process, HLA provided status updates to McClellan AFB (HLA, 1997 a,e,g,j,k), identified corrective measures (HLA, 1997 b,l), and initiated correspondence to modify the PWS (HLA, 1997 c, f,m,n) (McClellan AFB, 1996 b, 1997 b, c), as necessary. As a result, diagnostic activities and corrective measures beyond the scope of activities described in the WIP were implemented.

Relative Humidity

From July 18 through August 5, corrective measures focused on water condensation that might cause the beads to bind loosely with surficial moisture. Although the resin beads (Ambersorb®600) are hydrophobic and therefore unlikely to accumulate water condensate, the process stream involves a number of temperature and pressure changes that cause fluctuations in relative humidity. In addition, other IC 31 operations were concurrently impacted by excessive water condensate accumulations on July 24. Therefore, HLA systematically implemented actions to establish that water condensate was not inhibiting bead flow.

Because relative humidity is severely impacted by temperature fluctuations, HLA assessed the impacts of ambient temperatures at IC 31; temperatures varied from over 100° F during the afternoon to mid-50s during the predawn hours. Substantial amounts of water condensate collected in the influent piping during the morning hours. This situation was further aggravated by the air-to-air heat exchanger downstream of the blower that cooled the influent vapors before they entered the FBA. HLA installed a secondary moisture knockout drum between the heat exchanger and the FBA to precipitate water condensation directly upstream from the FBA test unit inlet. In addition, HLA installed a timer to turn off the heat exchanger at night to reduce condensation from cooling. Bypass piping was installed to completely eliminate the heat exchanger and further reduce temperature drops that caused condensation before soil vapors entered the FBA.

Unusually high water accumulations were responsible for shutting down the catalytic oxidizer, and in turn, the FBA test unit on July 24, 1997. Field observations indicated that the air stripper effluent was contributing vapors to the slip-stream feeding the FBA test unit. At HLA's request, McClellan AFB fully isolated the flow from VW-5001 to check that air-stripper offgas (heavily laden with water) was not contributing condensate to the FBA influent. A new bead flow control valve was installed on the desorber bead drain to make sure it was not restricting in the bead circulation between desorber and adsorber.

After implementing these system modifications, HLA measured relative humidity during peak high and low ambient temperatures at the following locations: blower influent and effluent, knockout effluent, and FBA influent. The relative humidity readings were used for reconfiguring the heat exchanger and moisture knockout capabilities upstream of the FBA test unit to minimize condensation in the adsorber by maintaining the relative humidity below the saturation point.

"Day 5" startup samples, as defined in the WIP, were collected for analysis on August 8 and the results were used to further evaluate the situation. After receiving the Day 5 lab results, HLA expanded the focus of the performance investigations to consider other potential impacts to bead flow, such as hydrocarbon accumulations on the beads that caused cohesive attraction. In an August 19 facsimile, HLA provided McClellan AFB with preliminary chemical analysis results for resin and air samples. The situation was discussed with McClellan AFB technical staff on August 20, resulting in the implementation of several action items, including the pursuit of more technical support from Rohm & Haas, the manufacturer of Ambersorb 600.

Manufacturer Consultations

Throughout August and September 1997, HLA engaged Rohm & Haas technical staff in discussions regarding the performance of the Ambersorb®600 beads. Rohm & Haas was provided with field data including relative humidity readings, chemical analysis results, and system configuration. Rohm & Haas provided HLA with quality control data on the batch of Ambersorb®600 and confirmed that the material was new. Isotherms were provided regarding TCE adsorption showing the resin was performing within the established specifications (see Section 5.0). HLA implemented three Rohm & Haas recommendations:

- 1. Reduce excessive water from the influent vapors.
- 2. Maximize the nitrogen purge gas flow rate at 2.5 scfm to improve the kinetics for transferring VOCs from the resin beads in the desorber.
- 3. Conduct inorganic analyses to evaluate whether rust from the adsorber was accumulating on the resin and fouling its adsorptive characteristics.

Internal Physical Inspection

On September 25, HLA physically inspected each tray of the adsorber to check that no physical restrictions were obstructing bead flow. The inspections was conducted by drilling holes in the side wall between each tray and inserting a camera probe (Olympus Bore Scope) to view the bead flow path. The sidewall access holes were subsequently plugged with threaded screws.

4.3.2 Test Phase

The test-phase monitoring program was modified to evaluate how Ambersorb®600 performs with relatively low residual hydrocarbon mass after an extended desorption process. This section provides a general chronology of test phase activities conducted on December 3, 1997:

Initial Desorption

The FBA system was operated using ambient influent air to remove VOCs from the resin to the greatest extent possible. The existing load of resin was circulated through the FBA system for 17.5 hours (approximately 8 complete internal bead circulation cycles) to increase residence time in the desorber to assess whether increased desorption time resulted in the removal of residual chemical mass affecting bead performance. Because no source of VOCs was connected, VOCs were not accumulating on the resin as the beads circulated through the adsorber during this exercise. HLA collected resin samples from both the adsorber and desorber to determine baseline VOC loading on the resin after performing this extended desorption process.

VOC Accumulation Monitoring

Soil vapors were introduced into the FBA influent to monitor resin loading as the beads circulated through the FBA to observe how various constituents accumulate on the resin as the beads continued to circulate. Air samples were collected from the influent and effluent to monitor removal performance as constituents accumulated on the beads. After 2 hours of operation (slightly less than the duration of the 2.2-hour bead cycle), the FBA system shut down due to bead flow restrictions and HLA observed that bead flow was disrupted at the top of the adsorber. Resin bead samples were collected from the adsorber and desorber after the FBA stopped operating.

Discontinued Bead Flow

HLA observed increasingly strong and pervasive bead cohesion that discontinued bead flow throughout the FBA test unit at the conclusion of the test phase demonstration. The beads began to stop moving in random "fluidized" patterns, but instead formed a honey-comb network that allowed process gas to continue to flow through the pores as the beads stabilized. A 1/8-inch-diameter steel bar was used to probe and dislodge the beads backed up inside the adsorber. The beads did not readily dislodge as they were removed from the adsorber, which is consistent with a general trend of stronger cohesion throughout the test operations.

Final Desorption

Between December 11 to 13, 1997, HLA restarted the system processing ambient air to desorb hydrocarbons from the resin bead as thoroughly as possible prior to closing out the test. The beads were circulated approximately 8 hours or three complete bead cycles.

4.4 Sampling Strategy and QA/QC Results

The sampling schedule summarizing sampling parameters, frequencies, and test methods for the FBA Test is discussed in this section and presented on the Sampling Schedule, Table 2. Standard Operating Procedures (SOPs) for all of the chemical analyses methods referenced in this section were provided in the WIP Appendix C (HLA, 1997i). Chemical analysis results were validated in accordance with the QAPP presented in WIP Section 8.0. The following tables were presented in the WIP to support the sampling plan and are attached for reference in Appendix A:

WIP Table 5 - Sampling Container Types and Holding Times

WIP Table 6 - Rationale for Vapor and Emission Sampling²

WIP Table 7 - Analytical Data Quality Objectives.

4.4.1 Pre-Demonstration Sampling

Pre-demonstration sampling was conducted at the beginning of the startup phase to document baseline conditions and check the functionality of the FBA test unit before proceeding with the test phase.

4.4.1.1 Resin Baseline and Startup

The objective of resin baseline sampling was to establish the initial condition of the virgin Ambersorb 600. Startup resin samples were collected in accordance with the Day 1 and Day 5 startup sampling event defined in the final WIP (*HLA*, 1997i) to assess mass loading on the resin resulting from startup operations.

After breaking the seals on the buckets of new resin beads, samples of virgin Ambersorb*600 were collected in an 8-ounce glass jar and analyzed for baseline concentrations of VOCs, as defined by the Day 1 startup sampling event in the WIP (*HLA*, 1997i). Total petroleum hydrocarbons using purging recovery methods (TPHp, EPA Test Method 5030) and TPH using extraction recovery methods (TPHe, EPA Test Method 3550) were quantified with modified EPA Test Method 8015 (modified EPA 8015) using gasoline, diesel fuel, and motor oil standards (TPHg, TPHd, and TPHo). VOCs were analyzed using EPA Test Method 8240 (EPA 8420).

No quality control sampling was conducted for the pre-operational adsorbent sampling. Because virgin resin beads were provided, chemical analysis was not likely to find chemicals present above detectable concentrations so additional QC analyses was determined to not be necessary. Chemical results was validated in accordance with the WIP Quality Assurance and Project Plan (QAPP, WIP Section 8.0).

² Defines the quality of data measurements as "definitive" or "screening" quality.

4.4.1.2 System Startup and Optimization

During field operations, HLA recorded pressure, flow, and temperature readings in a field log several times daily. Flow rate data were recorded, as measured by a Preso venturi flow meter (venturi) installed downstream of the adsorption tower. A magnehelic gauge connected to the venturi metering taps was used to measure the pressure differential across the venturi in inches of water column (in. H_2O). The pressure differential across the venturi, the soil vapor temperature, and the line pressure upstream of the venturi were used to calculate the system flow rate in scfm. Pressure and temperature values of 14.7 psia and 60°F, respectively, was used to convert to standard flow conditions.

Vapor Sampling

After the new beads were place in the FBA test unit, vapor sampling was conducted to obtain instantaneous screening-level data and to observe how various parameters affect system performance and then adjust the settings as needed, as discussed in Section 4.3.1. Startup sampling also provided process stream influent and effluent concentrations at the start of the test, before a substantial mass of constituents could accumulate on the resin beads.

Vapor concentrations were measured using the three methods described below. "Definitive" results, as defined by the WIP (*HLA*, 1997i), are based on the most reliable sampling and analytical techniques and supersede the quality of other measurements. "Screening" results are used for more instantaneous monitoring purposes:

- 1. Definitive VOC concentrations were measured by collecting vapor samples in SUMMA® canisters for analysis using TO-14. Vapor samples were collected using the laboratory-supplied stainless steel flow controller and fittings. A 1/4-inch inert tubing equipped with a barbed, quick-disconnect, male fitting was attached to the sampling canister using a ferrule nut. The SUMMA® canister was then attached via the inert tubing to a female, quick-disconnect fitting installed at the sampling location. Once the SUMMA® canister was connected, the valve in the flow controller was fully opened and process air allowed to enter the canister. After one minute, the flow controller valve was closed and the hose disconnected. A dedicated quick-disconnect fitting and sampling tube was used for each sampling location. SUMMA® canisters were transported under chain of custody to a state-certified laboratory for analysis.
- 2. Screening-quality VOC concentrations were measured by collecting vapor samples in 1-liter Tedlar® bags for analysis using EPA Test Method 8021 (EPA 8021) and Test Method E18 (E18). The Tedlar® bag samples were collected from the sampling ports using Teflon® or other inert tubing. Because the vapor in the process stream was under pressure, a vacuum box was not needed to fill the bag. Each sample location had dedicated tubing to prevent cross contamination. The tubing had split connections to facilitate simultaneous collection of duplicate samples. Tedlar® bag samples collected for laboratory analysis were stored out of sunlight to prevent photochemical reactions and transported under chain of custody to an onsite laboratory.
- 3. Additional screening-quality data were collected using PID measurements to quantify VOC concentrations during the startup phase because they provide instantaneous results that can be used to monitor the effects of adjusting multiple process parameters. Vapor VOC concentrations were measured in the field using a Photovac Microtip[®] HL 2000 PID equipped with a 10.6 electron-volt (eV) ultraviolet lamp or aThermo Environmental Instruments, Inc. organic vapor monitor (OVM) Model 580B equipped with a 10.0 eV lamp. Before each system monitoring event (i.e., daily), the PID was calibrated per manufacture's instructions using a 100 ppmv isobutylene gas standard.

Vapor samples were collected during the startup phase in accordance with the Startup Sampling Schedule (WIP Table 1) for Day 1 and Day 5, respectively. On July 17, 1997, the first day of startup (Day 1), an initial influent vapor sample was collected in a Tedlar bag for analysis by EPA 8021 and E18 to establish initial conditions. VOC concentrations continued to be monitored with a PID to provide immediate readings. When FBA startup operations were relatively stabilized on August 8 (Day 5), three sets of influent and effluent vapor samples were collected and analyzed using all three VOC measurement methods: TO-14, EPA 8021 & E18, and PID readings.

QC Sampling

A field duplicate was collected on Day 5 and analyzed by E18/EPA 8021 to provide a QC check of the samples submitted for analysis to the onsite laboratory. The duplicate was collected by simultaneously filling two Tedlar bags. A stainless steel "T" in the tubing was used to split the flow to the bags.

On Day 5, one field blank was also collected in a SUMMA® canister at a location 20 feet away from the operation equipment and 5 feet above ground surface during relatively calm wind conditions for analysis by TO-14.

4.4.2 Technology Operation

The following sampling strategy was implemented during the test phase on December 3, 1997.

4.4.2.1 Adsorbent Sampling

Sampling proceeded during the test phase in accordance with the modified sampling schedule shown in Table 2 (HLA, 1997n). After the beads had been processed through about 16 desorption cycles, a resin sample was collected and tested for TPHg, THPd, and TPHo using EPA 5030/modified 8015. VOCs were analyzed using EPA 8420. The results of these analyses show the baseline of residual hydrocarbon concentrations on the resin beads after an extended desorption process at 425°F.

When the FBA system shut down at the end of the test, HLA collected Ambersorb[®]600 resin samples from the adsorber and desorber. These samples were collected to assess mass loading on the resin beads after well air was processed during one cycle of the beads inside the FBA test unit.

4.4.2.2 Process Gas Sampling

Once well air was introduced as the process gas, three influent and effluent vapor samples were collected for separate analyses by PID, E18/EPA-8021, and TO-14 and a field duplicate was collected and analyzed by E18/EPA 8021 to provide a QC check of the samples submitted for analysis to the onsite laboratory. The field duplicate was collected by simultaneously filling two Tedlar bags. A stainless steel "T" in the tubing was used to split the flow to the bags.

Influent and effluent concentrations were monitored with a PID each half-hour during the 2 hours of testing when the system shut down just over 2 hours after it was initiated. Influent and effluent samples were also collected in Tedlar® bags and SUMMA® canister after 2 hours of operation and analyzed using E18/EPA-8021 and TO-14, respectively. Flow rate and concentration data for VOCs entering and leaving the FBA test unit were compiled and used to calculate the mass removal rate.

Influent and effluent VOC concentration data was used to calculate destruction and removal efficiencies (DREs) for the system while the test progressed, as discussed in Section 5.1.2. Field measurements and laboratory analyses of influent and effluent samples collected during the test were used to assess the effectiveness of the system to treat compounds relative to mass loading on the resin beads.

Sampling and data collection procedures were the same used during startup (Section 4.4.1.2). These include monitoring system operating parameters (flow, pressures, temperatures) during each field visit. Tedlar bag and SUMMA canister sample collection and analysis also followed the same procedures.

4.4.2.3 Utility and Material Costs

Utility and material usage data were recorded to analyze unit costs for operation and to identify savings relative to comparable technologies. HLA recorded hours of operation, electricity and nitrogen usage, and amount of product recovered during the test:

Hours of operation were recorded by a built-in hour meter in the extraction system control box.

- Power consumption was estimated by measuring the current drawn by the FBA test unit and extraction blower during each site visit. Current draw was measured using an AMPROBE® and recorded in a log sheet. The unit rate for electrical consumption was calculated by multiplying the current draw times the nominal voltage.
- Nitrogen and water usage were measured with dedicated flow meters.
- Qualitative assessment of the amount of product recovered was conducted by a visual inspection of the liquid
 condensate in the condensate drum. The proportion of product and water was visually estimated and the
 distribution of hydrocarbons was determined by laboratory analysis of the recovered liquid.

Labor costs during the demonstration were not representative of typical continuous operations because the FBA test unit only operated intermittently. For the same reason, full life-cycle operation costs for the system were not developed based on FBA test results; however, operation expenses are discussed as unit costs.

4.4.2.4 Noncorrosive Discharge

Corrosion monitoring of the FBA test unit effluent vapor stream was conducted to demonstrate noncorrosive discharges. Corrosion impacts were monitored inside the FBA test unit discharge stack by means of a CORROSOMETER® probe (probe) and in the desorber by measuring the pH of the condensate. These two locations were selected because of their proximity downstream from the heat source in the desorber where acid would most likely be formed. The probe mass was recorded a minimum of four times per day to provide a time log of mass loss from corrosion; the results were used to calculate the corrosion rate of the stack internal coating. Periods of accelerated corrosion were cross-referenced with operation logs to identify activities that may have increased corrosion.

Corrosive impacts from system offgases were measured on a continuous basis throughout the test in accordance with CORROSOMETER® operating procedures. The electrical resistance corrosion probe was placed inside the discharge stack. The probe was a loop-style element (approximately 2 inches long; it threads into a ¾-inch-diameter opening) constructed using 304 stainless steel, which is a grade of metal similar to that used to construct the stack for a commercial-size unit. A CORRDATA® remote data collector (RDC) monitored real-time mass reduction of the probe at predetermined time intervals. The field technician periodically collected the accumulated mass reduction data recorded by the RDC using a MATE® portable data logger (logger); the data were transported to the office and transferred to a personal computer equipped with CORRDATA® software that provides graphical displays of corrosion time history over the project duration (Figure 1).

Corrosion impacts were monitored in the desorber by testing the pH of the condensed liquid product and/ water (condensate) upon completion of closeout testing. At the conclusion of the test phase, one condensate sample was collected for pH analysis in a wide-mouth glass jar with a virgin Teflon® cap liner. The condensate sample was collected from a bung in the condensate drum using a peristaltic pump with inert tubing and stored in an iced cooler. The condensate sample was transported under chain-of-custody protocol to a state-certified laboratory for pH analysis by EPA Method 9040.

4.4.2.5 Oxides of Nitrogen (NOx)

Because continuous operation of the FBA could not be achieved and monitoring data indicated that disrupted bead flow adversely affected the resin performance, sampling for NOx was not conducted. Limited FBA operation time would not accommodate conducting a one-day source test for NOx in accordance with the SOP for California Air Resource Board (CARB) Method 100 (WIP Appendix C).

4.4.2.6 Downtime

The operating status of the FBA test unit was documented to chronicle how long continuous operations could be sustained to identify trends in bead flow disruptions for diagnostic purposes. During each site visit, the field technician recorded the operating time between field visits. Downtime events were documented and an explanation as to the cause e.g., inconsistent bead flow, cat-ox shutdown, power outage).

A motor-driven AC hour meter was used to record hours of operation of the blower and FBA test unit. During each site visit, the field technician recorded the hour meter reading and calculated the total hours of operation since the previous visit. The hour meter was also be used to estimate date and time of each shutdown event.

4.4.3 Post-Demonstration Sampling

4.4.3.1 Adsorbent Followup

After completing the test and operating the system using ambient air as the process gas, HLA collected Ambersorb®600 resin samples from the adsorber and desorber to quantify residual hydrocarbon concentrations on the resin before decommissioning the apparatus. The samples were collected in an 8-ounce glass jars and tested for TPHg using EPA 5030/modified 8015. VOCs were analyzed using EPA 8420. The mass of constituents observed on these follow-up samples were compared to results from the baseline sample of virgin Ambersorb®600 (Section 4.4.1.1) and the samples collected during the test phase (Section 4.4.2.1).

4.4.4 Shut-down Monitoring

4.4.4.1 Recycled Product

Samples of the product condensate were analyzed to demonstrate that the product is suitable for recycling rather than disposal. Waste characteristics were evaluated for handling purposes for acceptance at an offsite recycling facility operated by Romic Environmental Technologies Corporation (Romic), in East Palo Alto, California. Upon receipt of the product, Romic provides documentation that the condensate was delivered to and became the property of the recycling facility. Romic recovers the various constituents as a recycled solvent or blends the product into heating fuel for use in a cement kiln furnace.

Condensate samples were collected and analyzed to evaluate the product's fuel grade characteristics. Laboratory analyses provided a chemical profile of the condensate collected. Analysis of the laboratory data was used to identify future system operational parameters that maximize recycling characteristics of the condensate.

Samples were collected from each identifiable phase in the condensate drum. The sampler visually identified phase separation in the condensate drum. Condensate samples were transferred to laboratory-supplied vials, which were stored in an iced cooler and transported the laboratory with a chain of custody record. The samples were analyzed in accordance with the SOP for EPA Test Method 8240 (WIP Appendix C) to quantify the type and distribution of VOCs and any water content. To classify the product's fuel grade characteristics, Romic conducts additional analyses at its laboratory, including water content, total dissolved solids, total suspended solids, pH, and chloride content.

4.4.5 Quality Assurance Sampling

Analytical results from the study were validated according to procedures specified in the Final WIP (*HLA*, 1997i) and in the Quality Assurance Project Plan (QAPP), Version 1.1 (*AFCEE*, 1996). The validation process examines the quality of the data with respect to a set of quality control (QC) criteria, including precision, accuracy, and representativeness. The QC samples used to assess data quality consisted of laboratory duplicate samples, matrix spike/matrix spike duplicates (MS/MSD), laboratory control samples (LCS), method blanks, and blanks generated in the field. Holding times, laboratory surrogate spike recoveries, initial calibrations, and continuing calibrations were also evaluated. However, not all QC results were available for review for all analyses. This section documents the findings of the data validation. Findings or QC results that are within acceptance criteria (as defined by the QAPP) are not mentioned herein; this section only describes results outside of acceptance criteria, given information provided in laboratory data packages.

4.4.5.1 Project Data Quality Objectives

The initial project objectives were generally to demonstrate cost-effective treatment operations (*HLA*, 1997i). However, these objectives were modified to assess treatment performance while processing chlorinated VOCs

mixed with a blend of fuel hydrocarbons, as described in Section 2.4 of this report. Consequently, the sampling program was modified to evaluate how treatment performance is affected as hydrocarbons accumulate on the resin beads. Data quality objectives for the modified demonstration were refocused toward a diagnostic evaluation of FBA operations rather than on rigorously documenting that operations met specified treatment performance standards. These revised data quality objectives were considered during data validation.

4.4.5.2 Quality Control Exceedances

Three resin bead samples and two condensate samples had high surrogate recoveries for the VOC analysis. The degree of exceedance was minor and can be attributed to matrix interference from high levels of hydrocarbons present in the samples. LCS results indicate that analyses were performed correctly. The consequences of the surrogate exceedances are minor with respect to project objectives because data are still suitable for supporting the diagnostic performance evaluation.

Several continuing calibration verification (CCV) standards for the VOC analysis by EPA Test Method 8021 were outside the 15 percent difference criteria. However, exceedances were minor with less than 35 percent difference. The consequences of CCV exceedances are minor with respect to project objectives because data are still suitable for supporting a diagnostic performance evaluation.

4.4.5.3 QC Summary

Original project objectives were modified after project startup. Data validation was performed on project samples in accordance with the WIP and QAPP guidelines, with a perspective of the modified demonstration scope. A few minor QC exceedances were noted. However, data validation results indicate that project data are suitable for supporting revised project objectives.

5.0 TECHNOLOGY PERFORMANCE EVALUATION

5.1 Performance Data

This section provides a summary and evaluation of the performance data collected during the FBA demonstration.

5.1.1 Process Stream Characterization

Data were collected from the FBA demonstration as discussed in Section 4.4. The following process streams are discussed in this section:

- "Air Influent" is the influent vapors from VW-5001 entering the FBA test unit; samples are labeled "FBAI-xx".
- "Air Effluent" is the effluent vapors leaving the FBA test unit; samples are labeled "FBAE-xx".
- "Liquid Effluent" is the effluent liquids that have been recovered from vapors and condensed into a liquid by the FBA test unit; samples are labeled "PCOND-xx".
- "Solid Medium" is the Ambersorb 600 resin beads; samples are labeled "RESIN-xx", "ADSORB-xx", or "DESORB-xx".

Laboratory analytical reports are attached in Appendices B, C, and D and chemical analyses results are summarized in the following tables:

- Table 1. FBA Field Readings
- Table 2. FBA Sampling Schedule
- Table 3. Vapor VOC Concentrations TO-14 (Appendix B)
- Table 4. Vapor VOC Concentrations EPA 8021 & E18 (Appendix C)
- Table 5. Vapor VOC Destruction and Removal Efficiencies
- Table 6 Resin VOC Concentrations EPA 8240 & modified 8015 (Appendix D)
- Table 7. Condensate VOC Concentrations EPA 8240 & m8015 (Appendix D)
- Table 8. Relative Humidity (RH) and Temperature Readings

For discussion purposes, hydrocarbon concentration results are grouped into two categories: petroleum hydrocarbons and chlorinated VOCs:

• Petroleum Hydrocarbons. Petroleum hydrocarbon concentration measurements of TPH, Total Volatile Hydrocarbons (TVH), and Non-methane Organic Compounds (NMOCs) quantified a diversified mixture of hydrocarbons typically exhibited by petroleum-based products such as fuels and lubricating oils. The petroleum hydrocarbons observed generally ranged in size from C₇ to C₁₃. Although this size-range of hydrocarbons is also observed in gasoline, the types of molecular structures observed were very different; the petroleum hydrocarbons at IC 31 were primarily branched alkanes (straight-chain hydrocarbons with branches of methane and ethane) rather than the alkanes and aromatics (straight-chain and benzene ring hydrocarbons) typically found in gasoline. Although the compounds involved with petroleum hydrocarbon mixtures are too numerous for laboratory techniques to quantify all of the constituents as individual analytes, the most prevalent petroleum hydrocarbon constituents are presented in the attached laboratory reports (Appendices B and D) as tentatively identified compounds (TICs). TIC results are not summarized on tables due to the wide variety of

branched alkanes identified and the subjective nature of their quantification. BTEX concentrations are not included in the tables because these compounds generally represented less than 1 percent of the petroleum hydrocarbons in the process gas from VW-5001.

• Chlorinated VOCs. Chlorinated VOC concentrations are measured as specific analytes by the standard analytical methods specified in Section 4.4. The list of analytes includes ethene-and ethane-based chlorinated hydrocarbons that have been manufactured for use as solvents, such as TCE and PCE. Known TCE degradation byproducts, such as 1,1-DCE and 1,1,1-TCA, are also included as analytes. Because there are so few compounds associated with commercial solvents, it is practical to quantify each of these chlorinated VOCs individually. The 10 chlorinated VOCs commonly detected during this demonstration are presented as "Target Chlorinated VOCs" in Tables 3, 4, 6, and 7; "Total Chlorinated VOCs" is a combined concentration calculated as the sum of the target individual chlorinated VOC concentrations reported by the laboratory for each sample, rounded to two significant figures.

5.1.1.1 Air Influent

Influent air characteristics are summarized below using the target compounds from the list of laboratory analytes:

Process Air	r Influent	Concentrations	(ppmv))
-------------	------------	----------------	--------	---

	Test Method	8/8/97 Startup	12/3/9 7 Begin Test	12/3/9 7 End Test
			0	
TVH	TO-14	1,200	380	390 ppmv
NMOCs	E18	3,900	2,700	2,300 ppmv
Total Organics	PID Readings	491	487	538 ppmv
Total VOCs	TO-14	37	22	27 ppmv
	EPA 8021	75	78	61 ppmv
TCE	TO-14	22	13	16 ppmv
	EPA 8021	21	11	11 ppmv

Petroleum Hydrocarbons

Between the collection of startup samples and the FBA test in December 1997, influent TVH concentrations decreased substantially, from 1,200 to 380 ppmv, respectively, using TO-14. The decreasing TVH concentrations with time are consistent with the previous trend exhibited by VW-5001. The initial TVH concentration in August 1996 was 3,500 ppmv. Startup screening data indicate that influent petroleum hydrocarbon concentrations were similar for the Day 1 and Day 5 sampling events on July 17 and August 8, 1997.

During the brief test phase on December 3, 1997, the total hydrocarbon concentration in the process air influent from VW-5001 remained stable, within a variance of less than 15 percent as measured by TO-14, E18, and PID. TVH concentrations of 380 and 390 ppmv were reported in the influent start- and end-test samples (FBAI-104 and FBAI-105), respectively, as definitively measured by TO-14. Screening measurements showed slightly more variable influent concentrations during the test, as reported by E18 analytical methods (2,700 to 2,300 ppmv NMOCs) and PID readings (487 to 538 ppmv).

Chlorinated VOCs

From the time startup samples were collected in August to the test in December 1997, influent total VOC concentrations decreased from 37 to 22 ppmv by TO-14. TCE contributed 40 to 60 percent of the chlorinated VOC mass, with concentrations decreasing from 22 to 13 ppmv between August and December 1997.

During the test phase on December 3, 1997, influent VOC concentrations measured by EPA 8021 and TO-14 remained stable within a variance of less than 23 percent. TO-14 results indicate that total VOC concentrations of

22 and 27 ppmv contribute approximately 5 percent (by volume) of chlorinated VOCs to the influent petroleum hydrocarbons, as quantified by TVH. TCE makes up about 2 percent of the influent fuel mixture.

Moisture / Relative Humidity

Influent relative humidity was reduced by eliminating the upstream heat exchanger and incorporating a second moisture knockout vessel to reduce water condensation inside the FBA test unit. During startup optimization in August 1997, relative humidity readings were recorded at 83 percent with an ambient temperature of 64° F and 35 percent when ambient temperatures reached 100° F.

5.1.1.2 Air Effluent

Petroleum Hydrocarbons

Petroleum hydrocarbon concentrations observed in the effluent gas on August 8 were higher than at the end of the test phase on December 3, 1997 (TVH of 710 ppmv and 260 ppmv, respectively, based on TO-14). Screening results using E18 and PID reflected a similar decrease in the total hydrocarbon concentrations in the effluent between August and December 1997. Process air effluent PID readings on July 17, 1997, the first day of FBA startup, were an order of magnitude lower than influent readings.

During the test phase on December 3, 1997, the total hydrocarbon concentration in the air effluent from the FBA test unit threefold as measured by each of the three analytical monitoring methods used: PID, E18, and TO-14. TVH concentrations increased from 66 to 260 ppmv, as measured by TO-14 in the influent start- and end-test samples, respectively. Screening measurements showed similar increases during the test, as reported by E18 analytical methods (480 to 1,400 ppmv NMOCs) and PID readings (67 to 188 ppmv).

Chlorinated VOCs

Chlorinated VOC concentrations observed in the effluent gas on August 8 were higher than at the end of the test phase on December 3, 1997 (17 ppmv and 10 ppmv, respectively, using TO-14). Screening results using EPA 8021 reflected a similar decrease in the total hydrocarbon concentrations between August and December 1997.

During the test phase on December 3, 1997, VOC concentrations in the air effluent from the FBA test unit increased threefold based on both EPA 8021 and TO-14 measurements. TO-14 results from the effluent start- and end-test samples show total VOC concentrations increasing from 3.3 to 10 ppmv and TCE concentrations increasing from 1.2 to 4.7 ppmv. Screening measurements using EPA 8021 showed a similar trend during the test, with total VOC concentrations increasing from 9.8 to 29 ppmv and TCE increasing from 1.2 to 3.6 ppmv.

NO_x

NOx measurements were not conducted during the test; however, with a maximum temperature of 425° F inside the FBA test unit, hydrocarbon oxidation processes that result in the production of NOx in the effluent are not anticipated.

Corrosivity

Figure 1 is a graphical presentation of the amount of probe metal lost over the duration of the demonstration. Two periods of corrosion were observed that correlate with system operations conducted during startup operations (mid-July through mid-September 1997) and the test phase (early December 1997). Metal loss was recorded during these timeframes when the system was operating, compared with no metal loss during October 1997, when the system was dormant.

Both of the operating periods showing reductions in probe mass exhibit the same corrosion rate of 0.001 inch (1 mil) per year, as determined by the corrosometer software using a best fit line calculated by linear regression.

Because the system only operated intermittently, the corrosion rate during continuous operations could be as much as 2 mils per year, based on discussions with the corrosion meter manufacturer, Rohrback Cosasco Systems, Inc. These results demonstrate about 10 times less corrosion than a 25 percent hydrochloric acid solution on a 316 stainless steel surface (McGraw-Hill, 1984), which is similar to the acidic discharge characteristics from oxidized air abatement processes such as catalytic oxidation.

5.1.1.3 Process Liquid Effluent

Based on field observations while using the peristaltic pump for sampling on December 3, 1997, the process liquid effluent was reported to be a clear-amber separate phase product (visually estimated at 80 percent) floating on top of dark-amber water (estimated at 20 percent). Chemical analysis results from the product and water effluents are summarized below:

Product

The product sample (PCOND-102) had a TPHg concentration of 270,000 milligrams per kilogram³ (mg/kg), or roughly 27 percent; TPHd and TPHo were not detected above the reporting limit of 5,000 mg/kg. The total VOC concentration was 10,400 mg/kg, or roughly 1 percent. With concentrations of 9,300 and 1,100 mg/kg, respectively, TCE and PCE were the only VOC analytes detected above the laboratory detection level of 500 mg/kg.

Water

The water sample (PCOND-101) had a TPHg concentration of 1,400 mg/kg; TPHd and TPHo were not detected above the reporting limit of 5,000 mg/kg. The total VOC concentration was 9,089 mg/kg. TCE was the most prominent single VOC constituent at a concentration of 7,800 mg/kg with PCE, 1,2-DCE, chloroform, and 1,1-DCA detected at 460, 260, 240, and 190 mg/kg, respectively.

pН

The liquid condensate was relatively noncorrosive, with a pH of 6. Although slightly acidic (neutral pH is 7), the results indicate that the FBA demonstration did not produce substantial amounts of acid as a byproduct in the effluent condensate.

5.1.1.4 Solid Medium

Petroleum Hydrocarbons

The virgin bead sample (RESIN-01) had a TPHd concentration of 8 mg/kg. Although this resin had never been used, Rohm & Haas does not supply organic-free product unless the purchaser specifies and pays for "food-grade" quality. After circulating the beads during initial startup operations, TPHd and TPHo were not detected in bead samples collected from the adsorber and desorber on August 8, 1997.

The highest residual hydrocarbon concentrations were observed on resin samples collected August 8, 1997, after the beads had completed approximately 80 cycles through the adsorber and desorber while treating process gas containing VOCs. TPHg was detected in the desorber and adsorber bead samples (DESORB-03 and ABSORB-01) at 9,700 and 15,000 mg/kg, respectively; the hydrocarbon mixture primarily contained branched alkanes with total reported TIC concentrations of 5,660 and 10,884 mg/kg, respectively.

The lowest residual hydrocarbon concentration was observed after the extended desorption process was completed prior to testing on December 3, 1997; resin sample ADSORB-101 had a TPHg concentration of 730 mg/kg. At the

Laboratory presented results in units of mg/kg instead of milligrams per liter (mg/l) because the constituents are not dissolved in a water matrix.

end of the test, when most resin beads had made one pass through the adsorber, ADSORB-102 had a TPHg concentration of 10,000 mg/kg. The bead sample collected from the desorber (DESORB-101) at the end of the test contained 790 mg/kg TPHg; however, the test period may have been too brief for this sample to contain beads that had made a complete pass through both the adsorber and desorber after the extended desorption process.

The final resin sample collected on December 13, 1997, ADSORB-103, after 3 cycles through the desorber and prior to decommissioning FBA apparatus, had a TPHg concentration of 2,200 mg/kg.

Chlorinated VOCs

No chlorinated hydrocarbons typically associated with solvents were detected in the virgin bead sample (RESIN-01).

The highest residual chlorinated VOC concentrations were observed on resin samples collected August 8, 1997, after the beads had completed approximately 80 cycles through both the adsorber and desorber while treating process gas containing VOCs. Total VOCs were detected on the desorber and adsorber bead samples (DESORB-03 and ABSORB-01) at 1,200 and 1,000 mg/kg, respectively. TCE makes up about 80 percent of the total chlorinated VOC concentration.

Residual chlorinated VOC concentrations were reduced by an order of magnitude after the extended desorption process was completed on December 3, 1997; resin sample ADSORB-101 had a total chlorinated VOC concentration of 196 mg/kg. At the end of the test, when resin beads had made one pass through the adsorber, ADSORB-102 contained total chlorinated VOCs at 440 mg/kg. The bead sample collected from the desorber at the end of the test, DESORB-101, had 160 mg/kg total chlorinated VOCs.

The final resin sample collected on December 13, 1997, ADSORB-103, after 3 cycles through the desorber and prior to decommissioning FBA apparatus, had a TCE concentration of 100 mg/kg. Demonstration results show the resin can continue to be used and, if necessary, lower residual concentrations can be achieved with additional desorption.

Inorganics

The results of elemental analyses on ADSORB-01 are as follows, the laboratory report is in Appendix E:

Carbon	83.19 %
Hydrogen	3.36 %
Oxygen	2.52 %
Nitrogen	0.02 % (ND)
Sulfur	8.64 %
Iron	0.14 %
Total	97.87 %

5.1.2 Mass Balances

This section provides data assessment and an evaluation of the test results

5.1.2.1 Air (DREs)

Destruction and Removal Efficiency:

DRE, expressed as a percentage = <u>(influent concentrations - effluent concentrations) X 100</u> (influent concentration)

DRE calculations are based on the TO-14 results. For comparative purposes, screening measurements reported by E18, resulted in NMOC DREs that correlated well (within 6 percent) with the definitive TVH DREs. The PID DREs had more variability, correlating within 32 percent of the TVH DREs. The screening and definitive DREs showed the closest correlation (within 3 percent) at the beginning of the test after the extended desorption process.

Petroleum Hydrocarbons

The highest TVH DRE of 84 percent was observed at the beginning of the test on December 3, 1997, after the extended desorption process, and the lowest TVH DRE of 33 percent was observed at the end of the test. A relatively low TVH DRE of 43 percent was observed on August 8 after the FBA test unit had intermittently processed well air for approximately 190 hours during startup operations. The highest PID reading DRE of 95 percent were observed on July 17, 1997, the day that FBA test unit startup operations commenced.

Chlorinated VOCs

The highest DRE of 91 percent for TCE was observed at the beginning of the test on December 3, 1997, after the extended desorption process; the total chlorinated VOC DRE was 85 percent. A relatively low total VOC DRE of 63 percent was observed at the end of the test. The lowest chlorinated VOC DRE of 53 percent was observed on August 8 after the FBA test unit had intermittently processed well air for approximately 190 hours during startup operations.

Comparative Performance Evaluation

Test results demonstrate the performance of Ambersorb® 600 at various stages of residual hydrocarbon loading. A comparison of the test data indicates two performance characteristics:

- 1. According to Rohm & Haas, Ambersorb® 600 preferentially adsorbs chlorinated VOCs relative to nonchlorinated hydrocarbons; this characteristic was reflected by the demonstration results involving TCE and PCE removal. At the times of lowest removal efficiencies, the TCE and PCE DREs were 10 to 20 percent higher than the total VOC and TVH DREs; definitive and screening DRE results for TCE and PCE correlate well (within 4 percent).
- 2. Demonstration results indicate that DRE performance for both chlorinated and nonchlorinated VOCs is inversely related to the residual hydrocarbon concentrations on the resin beads (see Section 5.1.2.3).

Relative Humidity

As the process gas passed through the FBA test unit, the temperature decreased, causing an increase in the relative humidity. After operations were adjusted in August 1997, relative humidity was observed to be below saturation throughout the system, thereby reducing water condensation in the FBA test unit.

5.1.2.2 Liquid Condensate

Product

The product sample (PCOND-102) is primarily composed of petroleum hydrocarbons with a relatively small portion of chlorinated VOCs (3.7 percent total chlorinated VOCs). The proportion of free-phase product constituents was similar to that in the influent air stream (total chlorinated VOCs / TVH = 2 to 7 percent). The fraction of chlorinated VOCs in the free-phase product may also have been affected by weathering because the liquid condensate remained in storage drums onsite for several months while the FBA test unit was not operating. The more volatile compounds may have gradually dispersed back into the FBA test unit while purge gas was not continually flushing the VOCs back into the storage drums.

Water

The water sample (PCOND-101) contained about 630 percent total chlorinated VOCs relative to TPHg, a much higher proportion than was generally observed in the product sample (3.7 percent) or air stream (2 to 7 percent). The higher proportion is likely due to the relative solubility of the various constituents because the water condensate, being in continuous contact with the product, would likely be completely saturated with dissolved hydrocarbons.

5.1.2.3 Process Solid Medium

Mass Loading on Resin

Resin bead analysis results demonstrate the following mass loading characteristics of Ambersorb® 600 at various stages of desorption:

- Demonstration results indicate that the mass of residual hydrocarbons on the resin is inversely related to the
 vapor DREs. The best DREs for all constituents were achieved when the lowest THPg and VOC
 concentrations were observed on the resin after completing the extended desorption process. Decreasing DREs
 are observed with corresponding increases of residual TPHg and VOC concentrations adsorbed onto the resin.
- 2. As total mass loading increased on the resin, petroleum hydrocarbons from the influent process gas preferentially accumulated onto the resin beads, relative to the chlorinated constituents, indicating that the

adsorption preferences of the resin are influenced by the residual organic constituents on the surface. This feature is most readily observed by comparing the proportion of chlorinated VOCs to petroleum hydrocarbons, as represented by TPHg. After the extended desorption process was completed on December 3, the resin beads exhibited the highest proportion of chlorinated VOCs to TPHg (26 percent), which then decreased to 4 percent on loaded adsorber beads at the end of the test. A lower proportion of chlorinated VOCs was also detected on the resin on August 8, 1997 (between 8 and 10 percent) than the 26 percent observed after the extended desorbtion process. In addition, the decreased proportion of chlorinated VOCs on loaded resin beads observed from August to December (total VOCs/TPHg decrease from 8 to 4 percent) indicates that the residual hydrocarbons adsorbed to the resin increasingly exhibited a certain degree of recalcitrant fuel constituents over time.

Inorganics

The results of elemental analyses of ADSORB-01 met the Rohm & Haas specifications (less than a 5 percent total variance), indicating that inorganic substances such as rust did not appear to affect the physical or adsorption properties of the resin.

Adhesion

The most significant correlation between resin beads to disrupt bead flow increased as the demonstration progressed. The most significant correlation between adhesion and chemical results is the relative proportion of chlorinated VOCs adsorbed to the resin. Resin samples collected after the system shut down due to disrupted bead flow on December 3 contained residual hydrocarbons with less than 4 percent chlorinated VOCs; samples collected while the beads could circulate contained more than 10 percent chlorinated constituents in the residual hydrocarbons. These data indicate that the resin surface may become adhesive when less than about 5 percent of the residual organics are chlorinated VOCs; however, data are insufficient to state this finding conclusively.

5.2 Remediation Efficiency

This section accesses FBA system relative to the treatment performance objectives.

5.2.1 System Performance

BACT Treatment Criteria

The Best Available Control Technology (BACT) treatment criterion for VOC removal of 95 percent DRE was approached by the FBA test unit for TCE, with a DRE of 91 percent after the extended desorption process. Only the initial PID readings demonstrated a DRE of 95 percent at startup. The highest observed DREs for TVH and total chlorinated VOCs were 83 and 85 percent, respectively, below the BACT criterion. However, these DREs could not be sustained with continued operation of the current FBA test unit, which was initially designed to process the more volatile chlorinated compounds. Results from this demonstration indicate that FBA technology removed organics from mixed waste streams, but the FBA test unit, as currently configured, is unable to achieve the BACT criterion consistently. Additional process modifications are apparently needed to achieve the BACT criterion at sites having substantial amounts of fuel constituents.

The FBA treatment was most successful at processing TCE and PCE, which had DREs ranging from 62 to 91 and 71 to 91 percent, respectively, that were not significantly impacted by hydrocarbons accumulating on the resin beads during operations. Lighter chlorinated constituents, such Freon 113 and 1,1,1-TCA, had the lowest DREs, ranging from 3 to 43 percent and 24 to 67 percent, respectively. The lower DREs are likely due to the adsorption characteristics of Ambersorb® 600, which appear to preferentially adsorb PCE and TCE relative to nonchlorinated hydrocarbons, with other chlorinated VOCs like Freon 113 being the least preferentially adsorbed.

Noncorrosive Emissions

Limited corrosion resulted from the system offgases during operations, as measured with a CORROSOMETER®. The corrosion rate measured during this demonstration indicates that the stack wall thickness in commercial FBA systems need to anticipate 10 to 20 mils of corrosion for every 10 years of operating life. These corrosion rates are substantially below those observed from oxidizing air abatement systems that produce hydrochloric acid as a byproduct.

NOx Emissions

Monitoring of nitrogen oxides (NO_x) was not conducted because stabilized FBA operations could not be sustained within the CARB 100 testing standards.

Adsorb/Desorb of High Boiling Point Compounds

Test results show that the oil-heated desorber reduced VOC concentrations on the resin. The data show that all of the organic constituents detected on resin samples are reduced by volatilization in the desorber, indicating that the constituents have boiling points below the desorber temperature of 425 F; however, the rate at which volatilization occurred was slow enough to adversely impact the FBA treatment efficiency during this demonstration. Hydrocarbon mass accumulated on the resin because each pass through the adsorber added more mass than could be removed by a pass through the desorber.

The demonstration showed that treatment efficiency was higher if the mass load on the resin beads entering the adsorber was lowered. Extending the desorption time by operating without hydrocarbon-laden air passing through the desorber reduced the residual organic mass on the resin beads and provided additional adsorption capacity when process air was reintroduced to the influent.

5.2.2 System Treatment Performance Enhancements

Modifications that would likely enhance treatment performance have been identified based on the findings from this demonstration.

Longer Desorb Cycle

Treatment performance appears to be enhanced by a longer desorb cycle. More desorption time improves the removal of hydrocarbons from the resin, resulting in higher DREs. A longer desorber retention time will provide the beads entering the adsorber with additional adsorption capacity. DREs are anticipated to improve during continuous operations because the residual hydrocarbon mass on the resin will stabilize at lower steady-state concentrations throughout the FBA system.

Longer Adsorb Cycle

Treatment performance would be enhanced by a longer adsorb cycle. DREs would be improved by extending the adsorber retention time because air passing through the adsorber would contact an additional mass of desorbed beads and transfer incrementally greater mass, provided the beads do not achieve chemical saturation.

5.3 Process Flow Efficiency

This section evaluates FBA process efficiency relative to the implementability and cost objectives.

5.3.1 Process efficiency Performance

Product Recycling

The FBA test unit demonstrated its ability to capture VOCs from process gas for recovery as a recyclable product. Romic determines the fuel-grade characteristics for recovery value and transport requirements; the condensed liquid effluent from this demonstration was classified as "fuel grade" for recovery at Romic's offsite recycling

facility. If no free-phase product were present, the water condensate would be classified by Romic as "water grade" because only dissolved hydrocarbons are available for recovery. With 20 percent water content, this condensate would receive a moderate or poor recovery rating of Fuel Grade 2 or 3, respectively, on a fuel grade rating scale of 3. If the water content were less than 10 percent for a better fuel grade rating of 1, other parameters measured by Romic might lower the fuel grade rating, including BTU content, PCBs, suspended solids, and chloride.

Although the condensate processed at Romic's facility is a recyclable product, waste transportation protocol is used to handle the material during transport, including the use of Hazardous Waste Manifests. Romic is licensed to pick up and transport the liquid product to the recycling facility. Because the FBA test was conducted at a CERCLA remediation site, the recovered liquid product does not qualify as a Resource Conservation and Recovery Act (RCRA) listed waste.

Reduced Energy Use

Power utilization was measured during both phases of testing at the site; once during treatment of high influent VOC concentrations and again during the treatment of low concentrations. With a total energy draw of about 55 amps (30 and 20 amps from the FBA test unit and SVE blower, respectively), this demonstration shows that FBA involves lower energy use than other SVE treatment technologies.

Cost Effectiveness

Cost effectiveness could not be evaluated from data obtained during this demonstration because the necessary data were unavailable due to the intermittent operation of the system. The test scope was modified to focus on specific treatment parameters rather than an assessment of costs during continuous operations.

Ninety Percent Operating Time

Ninety percent operating time was not a relevant criterion for this demonstration because of the inconsistent bead flow observed in the FBA test unit. The demonstration scope and objectives were modified accordingly, as discussed in Sections 2.2 and 2.4, respectively.

6.0 OTHER TECHNOLOGY ISSUES

This section presents a discussion of regulatory requirements, personnel health and safety issues, and community acceptance issues as they impact the degree of future success for this remediation technology.

6.1 Environmental Regulatory Requirements

Several regulatory requirements are pertinent to site remediation using the FBA technology; potentially applicable regulations are discussed below.

6.1.1 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

Remediation activities at IC 31 are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, in response to releases of hazardous substances, pollutants, or contaminants to the air, water, and land that may present an imminent and substantial danger to public health or welfare (Federal Register, 1990).

6.1.2 Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984, is the primary federal legislation governing hazardous waste activities. Subpart C of RCRA contains requirements for the generation, transport, treatment, storage, and disposal of hazardous waste.

The FBA treatment process does not generate waste, but rather recovers contaminants from the process gas as a recyclable product. McClellan AFB personnel have indicated that the VOCs recovered during the FBA test are not a RCRA listed waste because IC 31 is a CERCLA remediation site.

6.1.3 Clean Water Act

The Clean Water Act (CWA) regulates direct discharges to surface water through National Pollutant Discharge Elimination System (NPDES) regulations. The CWA does not apply to the FBA technology because municipal supply water is used for non-contact cooling purposes as it passes through the system prior to sewer discharge. During the FBA demonstration, non-contact cooling water was discharged to the onsite industrial sewer system, which must comply with the CWA.

6.1.4 Safe Drinking Water Act

The Safe Drinking Water Act (SDWA), as amended in 1986, establishes primary and secondary national drinking water standards and is not applicable to the scope of the FBA technology, although FBA may be utilized for remediation applications involving SDWA issues, such as remediation projects overseen by local and/or state regulatory agencies responsible for drinking water quality.

6.1.5 Toxic Substances Control Act

The Toxic Substances Control Act (TSCA) regulates testing, premanufacture notification, and record-keeping requirements for toxic substances and addresses the storage requirements for polychlorinated biphenyls (PCBs; see 40 CFR Part 761.65). In applications where FBA technology may be used to treat vapors containing PCBs, PCB storage requirements may apply to effluent condensate containing PCBs and may affect the ability to recycle the product generated. However, PCBs are not volatile at and, therefore, not anticipated to be found in SVE process gas.

6.1.6 Mixed Waste Regulations

Mixed waste contains both radioactive and hazardous components, as defined by the Atomic Energy Act (AEA) and RCRA, and must meet the requirements of both acts. When the application of both regulations results in a situation inconsistent with the AEA (for example, an increased likelihood of radioactive exposure), AEA requirements supersede RCRA requirements. Use of FBA at sites with radioactive contamination might involve the treatment or generation of mixed waste.

6,1.7 Federal Insecticide, Fungicide, and Rodenticide Act

Reserved.

6.1.8 Occupational Safety and Health Act

FBA technology must be operated in compliance with OSHA regulations (29 CFR Parts 1900 through 1926) to protect worker health and safety. Both Superfund and RCRA corrective actions must meet OSHA requirements, particularly Part 1910.120, Hazardous Waste Operations and Emergency Response. Part 1926, Safety and Health Regulations for Construction, applies to any onsite construction activities.

6.1.9 Clean Air Act

Clean Air Act requirements are implemented by local air districts. Air discharges at IC-31 are not subject to permitting by the Sacramento Air Quality Management District (SMAQMD) because remediation activities have been implemented under CERCLA. Although a permit is not needed, air abatement is still required to meet the SMAQMD BACT performance standard of 95 percent DRE for VOCs, which is promulgated from the Clean Air Act. Even though the FBA did not sustain BACT performance standards during this demonstration, BACT was maintained by the existing Cat-ox system that received all of the FBA effluent vapors.

6.2 Personnel Health and Safety

Personnel health and safety requirements are addressed by training requirements and a site-specific safety plan. A complete summary of health and safety requirements is presented in Appendix B of the final WIP (HLA, 1997i). Generally, one operator can respond to alarm notifications and conduct weekly checks. The unit operator should be capable of performing the following: (1) adjust air, bead, nitrogen, and cooling water flow rates to achieve desired DREs; (2) check the control panel on the FBA system; (3) perform simple field measurements (for example, PID concentration, temperature, and flow rate); (4) troubleshoot minor operational problems; and (5) collect samples for offsite analysis. A local laboratory can perform analytical work requiring more technical skills, such as VOC analyses. The frequency of collecting and analyzing samples will depend on site-specific permit requirements.

The unit operator also should have completed an Occupational Safety and Health Act (OSHA) initial 40-hour health and safety training course and annual 8-hour refresher courses before operating the FBA system at hazardous waste sites, in addition to participating in a medical monitoring program as specified under OSHA requirements.

6.3 Community Acceptance

The FBA technology is a fully enclosed system that recovers extracted contaminants for recycling. There is minimal potential to expose onsite personnel or the community to airborne contaminants. If a malfunction occurs, alarm conditions automatically shut off the system.

The liquid product effluent provides the greatest potential chemical exposure associated with the system when product is removed and transported to the recycling facility. However, when the handled appropriately, the potential for exposure of onsite and offsite personnel is low.

The public generally favors processes that produce a recyclable product instead of a waste. The system itself is generally nondisruptive from an aesthetic perceptive, also resulting in favorable community acceptance.

The DFEs achieved during this demonstration did not sustain BACT standards and, without correction, could negatively impact the public. In order to gain community acceptance, the FBA system would need further development to achieve BACT.

7.0 COST ANALYSIS

7.1 Basis of Cost Analysis

Cost analysis is based on unit rates for the utilities and materials used during the FBA demonstration. Power and material utilization was documented during FBA intermittent operations for use in extrapolating the costs to full-time operations. The FBA demonstration costs are summarized in Appendix G.

7.2 Cost Categories

This section summarizes the costs from the FBA demonstration that may be relevant to full-scale operations.

7.2.1 Mobilization and Preparatory Work (33.01)

Mobilization and preparatory work was completed over a 2-week period at a cost of approximately \$1,600. The skid-mounted FBA test unit and control panel (approximately 3,500 pounds) was transported to the site on a flat bed truck and unloaded using a fork lift (\$800 freight). A nitrogen tank with regulator was dropped at the site using the vendor's boom truck (\$800 mobilization). The trailer-mounted SVE blower and moisture knockout vessel was transported to the site on a standard ¾-ton pickup.

7.2.2 Monitoring, Sampling, Testing, and Analysis: Pre-Demonstration, Demonstration, and Post-Demonstration (33.02)

Monitoring costs from the demonstration are not reported because they are not representative of a continuous operation scenario.

7.2.3 Site Work (33.03)

A contractor was retained in addition to HLA's field technician to provide interconnecting piping and electrical connections; labor and material costs were approximately \$4,700.

7,2.4 Surface Water Collection and Control (33.05)

Reserved.

7.2.5 Groundwater Collection and Control (33.06)

Reserved.

7.2.6 Air Pollution/Gas Collection and Control (33.07)

Because FBA did not sustain the BACT performance standard of 95 percent DRE, no full-scale costs can be accurately estimated from the results of this demonstration. However, HLA has been operating a full-scale FBA system for several years at a site exhibiting similar chlorinated VOCs near San Francisco Bay, without the presence of petroleum hydrocarbons. The FBA system at this site has a 300 scfm processing capacity (compared with the demonstration FBA test unit at IC-31 which had a 100 scfm capacity) with total estimated operating costs of \$5,300 per month for equipment, nitrogen, water, power, and labor.

7.2.7 Solids Collection and Containment (33.08)

Not representative.

7.2.8 Liquids/Sediments/Sludges Collection and Containment (33.09)

Product collected from the test would qualify as Fuel-Grade 3 for recovery at Romic's recycling facility at a cost of approximately \$240 per 55-gallon container. Based on operational data for FBA treatment at other sites, HLA has estimated a liquid removal rate of 3 to 6 gallons per day with a 80 percent liquid phase product and 20 percent water distribution. The resulting daily unit rate is approximately \$13 to \$26.

7.2.9 Drums/ Tanks/ Structures/ Miscellaneous Demolition and Removal (33.10)

The nitrogen vessel was removed by the vendor for a demobilization fee of \$700.

7.2.10 Biological Treatment (33.11)

Reserved.

7.2.11 Chemical Treatment (33.12)

Reserved.

7.2.12 Physical Treatment (33.13)

The FBA test unit recovers VOCs from the process gas for recycling using a physical treatment process. The following utility and material costs, expressed as daily expenditures, were observed during system operations:

- Current draw for the FBA test unit and SVE blower were measured at 30 and 20 amps, respectively. HLA calculated a power usage of 12 and 8 kilowatts, respectively, resulting in a daily expenditure of \$18 and \$12, assuming continuous operations and a power cost of \$0.061 per kilowatt-hour.
- Nitrogen costs included a rental fee of \$350 per month for the 500-gallon nitrogen vessel and a unit rate of \$0.01 per standard cubic foot (scf) of nitrogen. An average purge rate of 1.5 scfm during operation results in a nitrogen utilization rate of approximately 2,200 scf per day. The resulting unit cost for nitrogen is estimated at \$33 per day.
- Municipal supply water was used for cooling purposes at a rate of 2 gallons per minute. Costs are based on a
 unit rate of \$2.2537 for each 1,000-gallon of water, including a supply fee of \$0.0537 and a sewer discharge
 fee of \$2.23. The resulting daily rate for full-time water usage during this demonstration was approximately
 \$6 per day.

Based on an extrapolation of the utility and materials unit rates to continuous operations, the FBA test unit costs approximately \$75 per day to operate, with the SVE blower costing an additional \$19 per day.

7.2.13 Thermal Treatment (33.14)

Reserved.

7.2.14 Stabilization/Fixation/Encapsulation (33.15)

Reserved.

7.2.15 Decontamination and Decommissioning (33.17)

Decommissioning the FBA demonstration was accomplished in one day by HLA and a subcontractor for approximately \$500.

7.2.16 Disposai (Commercial) (33.19)

Not representative.

7.2.17 Site Restoration (33.20)

Reserved.

7.2.18 **Demobilization (33.21)**

Not representative.

7.3 Results of Cost Analysis

An extensive cost analysis for complete life-cycle operations is not viable with the data from this demonstration. The demonstration results qualitatively indicate that FBA treatment operations can be cost effective compared with technologies such as catalytic oxidation and carbon adsorption. The test demonstrated relatively low energy and material usage costs.

8.0 CONCLUSIONS

8.1 Cost and Performance

FBA cost and performance conclusions are summarized in this section.

8.1.1 Treatment Performance

The results of the FBA demonstration support the following conclusions regarding treatment performance issues:

- 1. Without further development and testing, FBA technology is not appropriate for use at McClellan AFB sites where petroleum hydrocarbons are the primary constituents.
- 2. The FBA test unit achieved 91 percent DRE for TCE from air containing gasoline range petroleum hydrocarbons (C₃ to C₁₂) and a relatively small proportion (less than 3 percent) of chlorinated VOCs.
- 3. Treatment performance of Ambersorb® 600 deteriorates when residual mass loading on the resin exceeds 1,000 mg/kg TPHg.
- 4. The test indicated a desorber temperature of 425°F was sufficient to reduce the concentration of TPHg (including high-boiling compounds with carbon numbers as high as C₁₃) present on the resin beads; however, the resin beads do not have sufficient residence time within the desorber as presently configured to maintain a residual TPHg mass loading below 1,000 mg/kg. Residual TPHg concentrations below 1,000 mg/kg were achieved by additional desorption cycles without chemicals present in the influent air.
- 5. The volume of recalcitrant petroleum hydrocarbons remaining adsorbed to the resin increased as the test progressed. Based on a limited number of observations correlated with sampling events, bead cohesion was observed when the residual organic mass adsorbed to the resin contains less than 5 percent chlorinated VOCs. The beads adhere to each other when the organics adsorbed to the surface are dominated by petroleum hydrocarbons and when the residual mass on the resin increases.
- 6. FBA is more effective in treating TCE and PCE than lighter chlorinated VOCs, such as Freon 113 and 1,1,1-TCA. The differentiation is greater in the presence of petroleum hydrocarbons, which appear to preferentially adsorb to Ambersorb 600 relative to the lighter chlorinated VOCs.
- 7. The system effluent was relatively noncorrosive, with test results yielding a design criterion for corrosion of 1 to 2 mils per year. The equipment fabrication design should include an additional stainless steel wall thickness of 20 mils to accommodate corrosion loss over 10 to 20 years of operation.

8.1.2 Process Efficiency Performance

The FBA demonstration results support the following conclusions regarding process efficiency performance issues:

- 1. The FBA demonstration recovered VOC contaminants as a recyclable product.
- 2. Increasing desorber retention time will reduce resin loading and likely enable sustainable operations to occur.

9.0 RECOMMENDATIONS

9.1 System Enhancements

The following system enhancements are recommended to provide long-term cost-effective treatment capabilities with FBA at sites exhibiting mixtures of chlorinated VOCs and fuel hydrocarbons.

- 1. Enlarge the desorber to maintain residual organic mass on the resin at less than 1,000 mg/kg TPHg by extending retention time in the desorber. A larger adsorption chamber would further improve the FBA test unit treatment performance by providing additional contact time between resin beads and the process gas stream.
- 2. Enlarge the adsorber to increase contact between the process gas and additional resin bead mass by extending retention time in the adsorber.

Evaluate the use of another form of adsorbent beads, such as bead activated carbon (BAC), instead of Ambersorb® 600 as the adsorbent material. Test results indicate that extended desorber and adsorber retention times (as recommended above) will improve FBA treatment efficiency for mixtures of petroleum hydrocarbons and solvents; however, additional testing is needed to evaluate whether recalcitrant petroleum hydrocarbons will still accumulate on Ambersorb® 600 over time, resulting in bead flow inconsistencies similar to those observed during this demonstration. If this is the case, BAC may provide an alternative adsorption medium that would not be susceptible to bead flow inconsistencies.

TABLES

10.0 REFERENCES

10.1 References

Air Force Center for Environmental Excellence, 1996. Quality Assurance Project Plan. Version 1.1. February.
BDM Federal, 1997. <i>Preliminary Comments</i> . Facsimile transmittal of comments to Draft WIP (HLA, 1997i). June 4.
Harding Lawson Associates, 1996. Program Research and Development Announcement Proposal. Project proposal provided to McClellan Air Force Base. June 21.
, 1997a. Draft Meeting Minutes - January 24, 1997. Letter to McClellan Air Force Base providing meeting notes. February 11. Became final meeting notes on February 26.
, 1997b. Change of Conditions Notification. Letter to McClellan Air Force Base providing notice of change of conditions. February 23.
, 1997c. Modification and Clarifications, Performance Work Statement. Letter to McClellan Air Force Base providing clarification of contract understandings. April 11.
, 1997d. Draft Work Implementation Plan. Report to McClellan Air Force Base. May 1.
, 1997e. 30-Day Notice to Begin Field Work. Letter to McClellan Air Force Base providing notice to begin field work. May 30.
, 1997f. Contract Clarification and Request for Amended Deliverable Dates. Letter to McClellan Air Force Base responding to inquiries in a McClellan memorandum (McClellan AFB, 1997). June 11.
, 1997g. Status Report and Invoice Transmittal. Letter to McClellan Air Force Base providing status report for activities conducted from December 29, 1996 through May 23, 1997. June 11.
June 13. June 13. June 13.
, 1997i. Final Work Implementation Plan. McClellan Air Force Base. June 30.
, 1997j. Status Report and Invoice Transmittal. Letter to McClellan Air Force Base providing status report for activities conducted from May 10 through July 4, 1997. July 18.
, 1997k. Status Report and Invoice Transmittal. Letter to McClellan Air Force Base providing status report for activities conducted from July 5 through August 15, 1997. September 9.
, 19971. Options for Completing Resin Adsorption Test. Letter to McClellan Air Force Base proposing options for continuing test. September 9.
, 1997m. Field Demonstration Termination Proposal. Letter to McClellan Air Force Base proposing close-out testing protocol and scope modifications. October 17.
, 1997n. Supporting Cost Information. Letter to McClellan Air Force Base proposing cost adjustment associated with close-out testing protocol and scope modifications. November 3.
, 1998o. Draft Technical Analyses Report. Report to McClellan Air Force Base. March 23.
, 1998p. Response to Comments Table. Transmittal of response table to McClellan Air Force. June 16.

McClellan Air Force Base, 1995a. Program Research and Development Announcement Supplement. Environmental Management Directorate. August 9.
, 1995b. PET 521. Revision 95-B, Environmental Management Directorate. December 6.
Response Action Plan, SPlan 19-2, and Appendixes A, B, C, D, F, and G. April.
, 1996b. Performance Work Statement (PWS). Groundwater Treatment Optimization, Soil Vapor Extraction of Mixed VOC with Treatment by Continuous Fluidized Bed Adsorption. Program Research and Development Announcement Contract No. F04699-97-C-0102. December 31.
, 1997a. Memorandum from Kimberly J. Ford (McClellan AFB), received by Christopher Smith (HLA) regarding outline template for National Engineering Technology Test Sites (NETTS). February 7.
, 1997b. Memorandum from Kimberly J. Ford (McClellan AFB), received by Christopher Smith (HLA) regarding contract modifications proposed by HLA (HLA, 1997c). May 10.
, 1997c. Memorandum from Lawrence Jaramillo (McClellan AFB), received by Christopher Smith (HLA) regarding contract modifications. November 18.
McGraw-Hill, Inc., 1984. Perry's Chemical Engineer's Handbook. Table 23-2 Detailed Corrosion Data on Construction Materials.
Paragon Environmental Systems, 1995. Report on Technology Demonstration for National Semiconductor and Harding Lawson Associates. Remediation Site C-West. Fluidized Bed Adsorption System for Continuous Treatment of Organic Emissions from Soil Vapor Extraction Operations. October 24.
Radian International LLC, 1997. Final Basewide Remedial Investigation/Feasibility Study Quality Assurance Project Plan. Revision 3 Volume II: Standard Operating Procedures for McClellan AFB/EM, McClellan AFB, California. April.
Romic Environmental Technologies Corporation, 1996. Audit Package Information. September 9.
URS Consultants, Inc., 1995. Final Titanium Dioxide Photocatalytic Oxidation Treatability Testing Work Implementation Plan. October.
, 1996. SVE Bimonthly Operations Report for September/October 1996. Site IC 31. December 13.
U.S. Environmental Protection Agency (EPA). Test Methods for Evaluating Solid Wastes. Third Edition, Update П. SW-846. September.
, 1993. Data Quality Objectives Process for Superfund, Interim Final Guidance. September.

Table 1. FBA Field Readings PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

Estimated Estimated Total	
o o	Hours of Pressure Upstream Well Operation Drop of Venturi
(H) (in. H2O) (in. H2O)	(in. H2O)
4.0 4.0 1.80 21.5	1.80
6.2 6.2 1.40 23.0	1.40
12.8 1.00 17.5	12.8 1.00
24.3 24.3 — —	
25.1 25.1 1.90 22.5	1.90
42.0	
42.5 42.5 1.10 21.0	42.5 1.10
44.8 — — — —	
45.0 45.0 1.50 25.0	45.0 1.50
45.4 45.4 1.40 26.0	1.40
47.0 — — — — —	
47.4 47.4 1.30 22.0	47.4 1.30
48.1 — — — —	48.1
48.1 — — —	1
49.2 48.1 1.80 22.5	1.80
49.2 48.1	48.1
51.1 48.1 1.90 25.0	1.90
52.0 49.0 1.60 25.0	49.0
55.0 52.0	52.0
55.0	52.0
56.5 52.0 0.90 19.0	0.90
61.6 57.1	57.1
62.2 57.1 0.90 20.0	57.1 0.90
68.0 62.9	
68.6 62.9 1.50 25.0	62.9 1.50
87.4 81.7 0.80 20.0	81.7 0.80
154.0 148.3	148.3

Table 1. FBA Field Readings PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

	SVE Estimated	d Estimated		FLOW DATA [a]	ATA [a]					
	100		Vooti m	W	:		Ambiont	LERA	V CDV	
	Hours of	Hours of	Pressure	Uacuum	je	FIOW	Air Data	Lugar	Efficent	
Meter	Operation	₹	Drop	of Venturi	Temp.	Rate	Temperature	PID [d]	PID [d]	
£	£	(F)	(in. H2O)	(in. H2O)	(F)	(sdm)	(F)	(bpmv)	(ppmv)	Comments
	155.1	149.4	ı	ı	1	ı	-	1	ı	Desorber bead level alarm
155.1	155.1	149.4	ì	-	-	1	****	1	1	Restarted unit on ambient air
155.6	155.6	149.4	Ι	1	i	-	-	_	١,	Desorber bead level alarm
155.8	155.8	149.4		-	_	-	_	_	-	Restarted unit on ambient air, cleaned adsorber trays
164.8	164.8	149.4	-	-	ļ	l	I		ł	Nitrogen flow sensor alarm, SVE blower bearing failure
164.8	164.8	149.4	1	1	-	-	-	-	-	Restarted unit on ambient air, replaced SVE blower bearing
169.1	169.1	149.4	-		_	-	_	-	-	Restarted well air extraction
169.3	169.3	149.6	0.70	16.0	107	61	1	533	337	
169.8	169.8	150.1	1.80	35.0	201	100	1	605	138	VES Blower pulley adjustment backed-off overnight
187.3	187.3	167.6	1.00	21.0	8	74	1	909	216	
189.0	189.0	169.3			1	1	1	-	-	Desorber bead level alarm
189.0	189.0	169.3	_	ı	ı	1	1	1	1	Restarted well air extraction
190.5	190.5	170.8	1.00	20.0	104	73	100	491	305	
208.2	208.2	188.5	_			1	1	. 1		Desorber bead level alarm
208.2	208.2	188.5		1	ı	1	-		1	Restarted unit on ambient air
209.7	209.7	188.5	1	1	ı	_	1	-	1	Restarted well air extraction
211.6	211.6	190.4	1.00	21.0	96	74	86	563	431	Collected day-5 samples
222.1	222.1	200.9	1	1	ı	-	-	-	-	Desorber bead level alarm
222.6	222.6	200.9	2.50	30.0	48	119	i	1	1	Restarted unit on ambient air
242.6	242.6	200.9	i	ı	1	-	-	_	-	Manual shutdown due to clogging of beads
242.6	242.6	200.9	1.80	23.0	69	101	-	-	1	Restarted unit on well air to allow URS sampling
243.3	243.3	201.6	-	1	-	_	1	1	1	Manual shutdown
243.3	243.3	201.6	l	l	-		_	1	1	Restarted unit on well air to perform humidity testing, no bead flow
258.3	258.3	216.6	1.20	22.0	99	83		1		Performed humidity test, no bead flow
258.6	258.6	216.9	-	1	-	1	1	1	1	Manual shutdown
258.6	258.6	216.9	1	1	1	ı	-	1	1	Restarted unit on well air to perform bead flow test
259.6	259.6	217.9	1.20	35.0	104	81	1	563	338	Heat exchanger and misters off line
1										

Table 1. FBA Field Readings PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

Hour Hours of Hou	Estimated FL	FLOW DATA [a]					
Time Hour Operation (H-M) Hours of Operation (H-M) Hours of Operation (H-M) Hours of Operation (In H2O) Pressure Operation (In H2O) Inlet Temp. (H-M) (H) (H) (H) (H) (H-MO) (In H2O) (F) 15:10 260.2 280.2 218.5 — — — — 13:10 260.2 260.2 218.5 — — — — 16:00 260.2 260.2 218.5 — — — — 16:00 260.2 260.2 218.5 — — — — 8:40 260.3 260.3 218.5 — — — — 8:50 260.5 260.3 218.5 — — — — 8:50 260.1 260.3 218.5 — — — — 9:30 260.1 260.1 261.3 218.5 — — — — 10:00 261.3<	Venturi	m		Ambient	FBA	FBA	
(HM) (H) (H) <th>Pressure Drop</th> <th></th> <th>Flow Rate</th> <th>Air Data Temperature</th> <th>inffluent PID [d]</th> <th>Effluent PID [d]</th> <th></th>	Pressure Drop		Flow Rate	Air Data Temperature	inffluent PID [d]	Effluent PID [d]	
15:10 260.2 260.2 218.5 —	(in. H2O)	_	(scfm)	(F)	(bpmv)	(hmdd)	Comments
13:10 260.2 260.2 218.5 —			1	ł	1	1	Manual shutdown
7:35 280.2 280.2 218.5 —	1			-	l	-	Restarted FBAS without SVE blower to desorb resin
16:00 260.2 260.2 218.5 —	1			-		I	Manual shutdown
8:40 260.3 218.5 — <t< td=""><td>-</td><td></td><td>-</td><td>-</td><td>_</td><td>1</td><td>Restarted FBAS without SVE blower or nitrogen</td></t<>	-		-	-	_	1	Restarted FBAS without SVE blower or nitrogen
260.5 260.5 218.7 0.90 20.0 61 260.7 260.7 218.9 0.90 20.0 61 261.1 219.3 0.90 20.0 61 261.3 261.3 219.5 261.3 261.3 219.5 0.70 26.0 67 261.7 261.3 219.5 0.70 26.0 67 261.7 261.7 219.9 0.70 26.0 67 262.4 262.4 220.6 262.4 262.4 220.6 262.4 262.4 220.6 0.90 8.0 64 262.4 262.7 220.9 0.90 8.0 64	_				***	1	Restarted unit on ambient air
9:05 260.7 260.7 218.9 0.90 20.0 61 9:30 261.1 261.1 219.3 0.90 20.0 61 9:35 261.3 261.3 219.5 10:00 261.3 261.3 219.5 0.70 26.0 67 10:25 261.7 261.7 219.9 0.70 26.0 67 11:05 262.4 262.4 220.6 11:08 262.4 262.4 220.6 13:30 262.4 262.4 220.6 13:45 262.7 262.7 220.6 0.90 8.0 64	06:0		72	-	-	ı	Restarted well air extraction
9:30 261.1 261.3 261.3 261.3 261.3 261.3 200.0 200.0 61 9:35 261.3 261.3 219.5 10:00 261.3 261.3 219.5 0.70 26.0 67 10:25 261.7 261.7 219.9 0.70 26.0 67 11:05 262.4 262.4 220.6 11:08 262.4 262.4 220.6 13:30 262.4 262.4 220.6 13:30 262.4 262.4 220.6 0.90 8.0 64 13:45 262.7 262.7 220.9 0.90 8.0 64	06:0		72	-	487	29	Collected initial samples
9:35 261.3 261.3 219.5 —	06:0		72	25	537	51	
10:00 281.3 261.3 219.5 0.70 28.0 67 67 10:25 261.7 261.7 219.9 0.70 26.0 67 67 11:05 262.4 262.4 220.6 13:30 262.4 262.4 220.6 0.90 8.0 64 13:45 262.7 262.7 220.9 0.90 8.0 64	1		-	1	1		Desorber bead level alarm
10:25 281.7 261.7 219.9 0.70 28.0 67 67 11:05 262.4 262.4 220.6 0.70 26.0 67 7 11:08 262.4 262.4 220.6 13:30 262.4 262.4 220.6 0.90 8.0 64 8 13:45 262.7 262.7 220.9 0.90 8.0 64 8	0.70		2	-	-	1	Restarted well air extraction
11:05 262.4 262.4 220.6 0.70 26.0 67 11:08 262.4 220.6 13:30 262.4 220.6 0.90 8.0 64 13:45 262.7 262.7 220.9 0.90 8.0 64	0.70	-	29	-	539	182	
11:08 262.4 262.4 220.6 13:30 262.4 262.4 220.6 0.90 8.0 64 13:45 262.7 262.7 220.9 0.90 8.0 64	0.70		20	ı	920	378	
13:30 262.4 262.4 220.6 0.90 8.0 64 13:45 262.7 262.7 220.9 0.90 8.0 64			-	-		-	Desorber bead level alarm
13:45 262.7 262.7 220.9 0.90 8.0 64	06:0		71	1	1		Restarted well air extraction
	06:0		71	-	538	188	Collected closeout samples
12/3/97 13:50 262.7 262.7 220.9 — — — — —	-		-	-	1	**	Manual shutdown, collected resin and condensate samples

--- = not applicable/not measured F = degrees Fahrenheit H = hours

VES = vapor extraction system FBAS = fluidized bed adsorption system

H:M = hours/ minutes

ID = identification in. H20 = inches of water column

M/D/Y = month/day/year

PID = field reading with photoionization device (Microtip, Model MP-1000) ppmv = parts per million by volume scfm = standard cubic feet per minute (14.7 psia at 60 F) SVE = soil vapor extraction

Temp. = temperature

Table 2. Sampling Event Schedule Fluidized Bed Adsorption PRDA Test McClellan Air Force Base, IC-31 Sacramento, California

						SAM	SAMPLING EVENTS	SINTS		
				Sta	Startup			Test Phase		
Parameter	Method	Data Quality Level	Sample Location	Day 1	Day 5	Hour 0 Test Start	Hour 0.5	Hour 1	Hour 1.5	Hour 2 Test End
VAPORS & EMISSIONS										
Flow	_	Screening	FBAI	-	-	-	-	-	-	-
Temperature and	-		FBAI	-	-	+	-	-	-	-
Pressure		Screening	FBAE	-	-	-	-	-	-	-
Total VOCs	Old		FBAI	-	1	-	_	-	-	-
		Screening	FBAE	-	1	1	-	-	-	-
Halogenated and	EPA 8021 and E18	Definitive	FBAI	-	1	٠	-		1	-
Aromatic VOCs and	modified		FBAE		1	1	-	1	1	-
NMOCs			QC Samples		FD	FD	1	-	ł	1
NOC8	Method TO-14 plus	Definitive	FBAI	-	1		-			-
	TICs and TVH		FBAE	-	1	1	1	1	-	-
			QC Samples	1	FB	1	1	ı	1	1
Corrosive Gasses	CORROSOMETERÓ	Definitive	Stack				Con	Continuous Monitoring	oring	
WATER CONDENSATE										
Halogenated and Aromatic VOCs	EPA 8240	Definitive	Condensate Storage Drum	j	I	1	I		l	-
ТРН	EPA 3510/8015 mod	Definitive	Condensate Storage Drum	-	-	-	ı	l	l	-
Acidity	EPA 9040	Definitive	Condensate Storage Drum			1	1		l	-
PRODUCT CONDENSATE										
Halogenated and Aromatic VOCs	EPA 8240	Definitive	Condensate Storage Drum	!		l	1	l	1	₩-
ТРН	EPA 3510/8015 mod	Definitive	Condensate Storage Drum	1.		I	1	I	1	-
RESIN BEADS										
Halogenated and			Adsorber	ı	1	-	ı	1	ı	-
Aromatic VOCs	EPA 8240	Definitive	Desorber	1		1		-		-
			Adsorber		***	-	1	1	1	1
ТРНр	EPA 5030/8015 mod	Definitive	Desorber	1	ī	1	1	-	-	1
i			Adsorber	1	1	1			1	-
ТРНе	EPA 3550/8015 mod	Definitive	Desorber	1		1				1

FBAE = Fluidizad Bad Adsorption Effluent
FBAI = Fluidizad Bad Adsorption Influent
FD = field duplicatio
NMOCs = non-methane organic compounds
PID = photolonization device
CC = quality control
TICS = tentatively identified compounds

TPH = total petroleum hydrocarbons
TPHp = TPH using purgable recovery method for VOCs
TPHe = TPH using extractable recovery method for SOCs
TVH = total votatile hydrocarbons
VOCs = votatile organic compounds
SOCs = semt-votatile organic compounds

Harding Lawson Associates

TABLE2 XLS-Mc

Table 3. Vapor VOC Concentrations - TO-14 PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

								Tar	get Chlori	Target Chlorinated VOCs	Cs					Total		
																Chlorinated		Field
Sampling		Date	Sample	1,1-DCE	Freon 113	1,1-DCA	ds-DCE	1,1,1-TCA	1,2-DCA	TCE	Chloroform	CH ₂ Cl ₂	ij	1,1,2-TCA	PCE	VOCs.	TVH [3]	OIA
Event	Location	(M/D/Y)	٥	(ppmv)	(hmdd)	(bpmv)	(bpmv)	(bpmv)	(bpmv)	(bpmv)	(bpmv)	(ppmv)	(bpmv)	(ppmv)	(ppmv)	(bpmv)	(ppmv)	(bbmv)
Day 5 Startup	Influent	8/8/97	FBAI-03	1.8	. 0.18	3.1	2.4	4.7	ND (0.13)	22	1.4	0.24	0.16	ND (0.13)	8.0	37	1200	563
A served discount	Effluent	8/8/97	FBAE-02	1.3	0.18	2.1	1.2	3.9	ND (0.04)	7	0.87	0.27	0.15	ND (0.04)	0.22	17	710	431
	Field Blank	8/8/97	FBAB-01	ND (0.042)	ND (0.042)	ND (0.042)	ND (0.042)	ND (0.042)	ND (0.042)	0.0	Q							
Start Test	Influent	12/3/97	FBAI-104	96:0	260'0	2.0	1.4	2.6	(220.0) GN	13	0.82	0.17	(720.0) QN	ND (0.077)	0.37	21	380	487
	Effluent	12/3/97	FBAE-104	0.19	950.0	96.0	0.18	0.87	ND (0.018)	1.2	0.13	0.04	ND (0.018)	0.21	0.033	3.3	99	- 67
End Test	Influent	12/3/97	FBAI-105	1.1	980'0	2.2	1.5	2.9	(0:095)	16	0.92	0.18	ND (0.095)	1.2	0.45	27	390	538
	Effluent	12/3/97	FBAE-105	0.46	0.093	0.95	0.54	1.9	ND (0.038)	4.7	0.38	0.083	0.61	99.0	0.13	10.5	260	188

	n
	п
-	=
ď	3
-	E
-	_

-- = not applicable/not measured

EPA = Environmental Protection Agency

ID = identification

M/D/Y = month/day/year

ND () = not detected, detection limit indicated in paranthesis

PID = photoionization detector ppmv = parts per million by volume ASTM Analysis method TO-14 & TICS

[1] = Total of target compounds
Total Chlorinated VOCs = Summation of all detected target

chlorinated VOCs, rounded to two significant figures.

VOCs = volatile organic compounds

1,1-DCA = 1,1-dichloroethane

1,2-DCB = 1,2-dichlorobenzene

1,1-DCE = 1,1-dichloroethene

cis-DCE = cis-1,2-dichloroethene

trans-DCE = trans-1,2-dichloroethene Freon 113 = 1,1,2-trichloro-1,2,2-trifluoroethane

CCI4 = carbon tetrachloride

CH₂Cl₂ = methylene chloride

TVH = laboratory result of total volatile compounds TIC = tentatively identified compounds

Table 4. Vapor VOC Concentrations - EPA 8021 and PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

								Target C	Target Chlorinated VOCs	d VOCs					Total		
															Chlorinated		Field
Sampling		Date	Sample	1,1-DCE	Freon 113	1,1-DCA	cis-DCE	1,1,1-TCA	1,2-DCA	TCE	Chloroform	CH2Cl3	100	PCE	vocs	NMOCs	8
Event	Location	(M/D/Y)	٥	(ррту)	(bpmv)	(bpmv)	(bbmv)	(bbmv)	(bpmv)	(bpmv)	(bpmv)	(bpmv)	(ppmv)	(bpmv)	(bpmv)	(bpmv)	(bpmv)
Day 1 Startup	Influent	7117197	FBAI-01	2.5	ND (0.2)	3.6	2.8	5.1	0.16	20	2	0.19	0.42	1.1	38	4200	534
	Effluent	7/17/97	1	1	ı		_	1		-		-	1	1	1		29
Day 5 Startup	Influent	8/8/97	FBAI-02	2.1	ND (0.2)	3.5	2.9	4.8	0.088	21	1.8	0.16	0.35	0.93	38	3700	. 563
	Duplicate	8/8/97	FBAID-01	2.0	ND (0.2)	3.3	2.8	4.7	0.082	20	1.8	0.15	0.34	0.92	36	1200	563
	Effluent	8/8/97	FBAE-01	1.4	ND (0.2)	1.9	1.3	3.8	ND (0.06)	7.6	1.1	ND (0.06)	0.23	0.27	18	2400	431
Start Test	Influent	12/3/97	FBAI101	11	0.25	2.2	1.7	2.6	90.0	11	1	0.13	0.17	0.47	31	2700	487
	Effluent	12/3/97	FBAE101	0.25	ND (0.1)	0.32	0.16	0.84	ND (0.03)	1.2	0.19	(E0:03) QN	0.044	0.054	3.1	480	29
	Duplicate	12/3/97	FBAED101	0.24	ND (0.1)	0.31	0.15	0.82	ND (0.03)	1.2	0.18	ND (0.03)	0.043	0.052	3.0	440	67
End Test	Influent	12/3/97	FBAI103	1.2	ND (0.1)	2	1.6	2.4	0.075	11	0.94	0.12	0.15	0.43	20	2300	538
	Effluent	12/3/97	FBAE103	0.58	ND (0.1)	62.0	0.48	1.5	ND (0.03)	3.6	62:0	ND (0.03)	0.083	0.13	9.2	1400	188

Notes:

--- = not applicable/not measured EPA = Environmental Protection Agency

ID = identification

M/D/Y = month/day/year

ND ()= not detected, detection limit is included in paratheseis NMOCs = lab analysis of non-methane organic compounds ppmv = parts per million by volume All analyzed by EPA or ASTM Method 8021 & E18 Total Chlorinated VOCs = Summation of all detected target

trans-DCE = trans-1,2-dichloroethene

VOCs = volatile organic compounds

PID = photoionization detector 1,1-DCA = 1,1-dichloroethane 1,1-DCE = 1,1-dichloroethene

1,2-DCB = 1,2-dichlorobenzene

Freon 113 = 1,1,2-trichloro-1,2,2-trifluoroethane PCE = tetrachloroethene

1,1,1-TCA = 1,1,1-trichloroethane TCE = trichloroethene CH₂Cl₂ = methylene chloride

cis-DCE = cis-1,2-dichloroethene CCI₄ = carbon tatrachloride

Table 5. Vapor VOC Destruction and Removal Efficiencies - PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

Sampling Date ASTM Free naily is			EPA or				Destruc	Destruction and Removal Efficiency (DRE)	Removal	Efficiency	, (DRE)				Total	:	
MAID (M) Analysis 1,1-DC Froot 113 (1-DC (1-DC (1-DCA) (1-DCA) <th< td=""><td></td><td></td><td>ASTM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Chlorinated</td><td></td><td>Field</td></th<>			ASTM												Chlorinated		Field
(M/D/Y) Method (ppmV)	Sampling	Date	Analysis	1,1-DCE		1,1-DCA	cis-DCE	1,1,1-TCA	1,2-DCA	100	Chloroform	CH ₂ Cl ₂	TCE	PCE	VOCs	NMOCs	PiO
717197 — 46% 55% 21% 34% 39% 34% 64% 71% 53% 818497 8021 & E18 33% - 46% 55% 21% 32% 32% 64% 71% 53% 818497 10-14 28% 0% 32% 50% 17% 6% 38% 13% 68% 71% 58% 71% 55% 12/3497 8021 & E18 98% - 86% 91% 68% - 74% 81% 76% 89% 96% 12/3497 8021 & E18 98% 42% 91% 67% 75% 82% 91% 86% 91% 68% 91% 86% 91% 86% 91% 86% 91% 86% 91% 86% 91% 86% 91% 86% 91% 86% 96% 91% 86% 91% 86% 91% 86% 91% 86% 91% 86% 91% 85% <td>Event</td> <td>(M/D/Y)</td> <td>Method</td> <td>(bpmv)</td> <td>(bpmv)</td> <td>(bbmv)</td> <td>(bpmv)</td> <td>(ppmv)</td> <td>(bbmv)</td> <td>(hmdd)</td> <td>(bpmv)</td> <td>(bpmv)</td> <td>(bbmv)</td> <td>(bpmv)</td> <td>(ppmv)</td> <td>(ppmv)</td> <td>(bpmv)</td>	Event	(M/D/Y)	Method	(bpmv)	(bpmv)	(bbmv)	(bpmv)	(ppmv)	(bbmv)	(hmdd)	(bpmv)	(bpmv)	(bbmv)	(bpmv)	(ppmv)	(ppmv)	(bpmv)
80817 8021 & E18 33% - 46% 55% 21% - 34% 39% 34% 64% 71% 53% 808197 8021 & E18 30% - 42% 54% 19% - 32% 32% 71% 51% <t< td=""><td>Day 1 Startup</td><td>76/11/7</td><td>1</td><td>•</td><td>-</td><td>-</td><td>_</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>%56</td></t<>	Day 1 Startup	76/11/7	1	•	-	-	_			-	-	-	-			-	%56
88.87 62.4 23.4 64.8 19.8 - 42.4 64.8 19.8 - 32.4 65.4 71.8 65.4 71.8	Day 5 Startup	8/8/97	8021 & E18	33%	-	46%	92%	21%		34%	39%	34%	64%	71%	%89	38%	73%
88897 TO-14 2848 0% 17% 6% 6% 17% 6% 74% 68% 73% 55% 75% 75% 68% 73% 55% 75% 75% 68% 73% 55% 75% 75% 68% 75% 89% 89% 96% 96% 12/3497 8021 & E18 804 42% 81% 61% 61% 70% 84% 76% 91% 96% 96% 12/3497 8021 & E18 52% 42% 81% 61% 70% 84% 76% 71% 71% 85% 12/3497 12/3497 10-14 58% 33% 64% 34% 64% 34% 71% 71% 71% 63%	Duplicate	8/8/97	8021 & E18	30%	•	42%	54%	19%	-	32%	39%	32%	62%	71%	51%	-100%	%82
12/3497 8021 & E18 984 - 85% 91% 68% - 74% 81% - 89% 89% 96% 12/3497 8021 & E18 984 - 86% 91% 68% - 75% 82% - 89% 89% 96% 96% 12/3497 12/3497 8021 & E18 52% 42% 87% 76% 76% 91% 85% <td></td> <td>8/8/97</td> <td>TO-14</td> <td>28%</td> <td>%0</td> <td>32%</td> <td>%09</td> <td>17%</td> <td>-</td> <td>%9</td> <td>38%</td> <td>-13%</td> <td>68%</td> <td>73%</td> <td>%55</td> <td>41%</td> <td>23%</td>		8/8/97	TO-14	28%	%0	32%	%09	17%	-	%9	38%	-13%	68%	73%	%55	41%	23%
12/3/97 8021 & E18 984 - 86% 91% 68% - 75% 82% - 89% 96	Start Test	12/3/97	8021 & E18	%86		85%	91%	%89		74%	81%	-	%68	%68	%96	%78	%98
12/397 TO-14 80% 42% 87% 67% 67% 67% 94% 76% 91% 91% 91% 85% 12/3497 8021 8 E 18 52% 61% 70% 38% 45% 55% 45% 67% 70% 62% 12/3497 10-14 58% 3% 57% 64% 34% 71% 71% 71% 63%	Duplicate	12/3/97	8021 & E18	% 86	•	%98	91%	%89	٠	75%	82%	-	%68	%68	%96	84%	%98
12/3497 8021 8 E 18 52% 61% 70% 38% 45% 59% 45% 67% 70% 62% 12/3497 TO-14 58% 3% 57% 64% 34% 64% 59% 54% 71% 71% 71% 63%		12/3/97	TO-14	% 08	42%	82%	87%	%/9	1		84%	76%	91%	91%	%58	83%	%98
TO-14 58% 3% 57% 64% 34% - 59% 54% 71% 71% 63%	End Test	12/3/97	8021 & E18	52%	-	61%	70%	38%		45%	29%	45%	% 29	70%	%79	%6E	%59
		12/3/97	TO-14	28%	3%	%/5	64%	34%	,	•	%69	54%	71%	71%	63%	33%	%59

Notes:

--- = not applicable/not measured
ASTM = American Society for Testing and Materials
quality control check.

EPA = Environmental Protection Agency
ID = identification
M/D/Y = monttvday/year
NMOCs = non-methane organic compounds

ppmv ≈ parts per million by volume No DREs were calculated for ND's.

PID = photoionization detector VOCs = volatile organic compounds 1,1-DCA = 1,1-dichloroethane

1,2-DCB = 1,2-dichlorobenzene 1,1-DCE = 1,1-dichloroethene cis-DCE = cis-1,2-dichloroethene

trans-DCE = trans-1,2-dichloroethene Freon 113 = 1,1,2-trichloro-1,2,2-trifluoroethane PCE = tetrachloroethene

1,1,1-TCA = 1,1,1-trichloroethane TCE = trichloroethene

CCI, = carbon tetrachloride

CH₂Cl₂ = methylene chloride

Table 6. Resin VOC Concentrations - EPA 8240 m8015 PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base

Sacramento, California

							Tai	Farget Chlorinated VOCs	inated V	SOC				Totai			
					Methylene		1,2-DCE			Carbon				Chlorinated		•	
Sampling		Date	Sample	1,1-DCE	Chloride	1,1-DCA	Total	Chloroform	1,1,1-TCA	Tetrachloride	1,2-DCA	TCE	PCE	vocs	TPH-g	TPH-d	0-H41
Event	Location	(M/D/Y)	Q	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(тд/кд)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Day 1 Startup	Virgin Resin	7/16/97	RESIN-01	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	0.0	ND (4.0)	80	ž
Day 5 Startup	Adsorb	8/8/97	ADSORB-01	(05) QN	(05) QN	120	72	- 26	(05) GN	(05) QN	ND (50)	920	(95) QN	1200	15000	ND (100)	ND(200)
Test End	Adsorb	12/3/97	ADSORB-102	ND(12)	ND(12)	45	28	ND(12)	ND(12)	ND(12)	ND(12)	340	28	440	10000	¥	ΑN
Day 5 Startup	Desorb - 1 cycle	8/8/97	DESORB-03	(09) QN	(05) QN	98	95	99	(05) QN	(05) QN	(05) QN	800	(05) QN	1000	9700	ND (50)	(05) QN
Start Test	Desorb -9 Cycles	12/3/97	ADSORB-101**	ND (1.2)	ND (1.2)	8	4.2	3.7	ND (1.2)	ND (1.2)	ND (1.2)	160	4	190	730	Ą	ž
End Test	Desorb-1 Cycle	12/3/97	DESORB-101	ND (1.2)	ND (1.2)	3.8	2.6	2.6	ND (1.2)	ND (1.2)	ND (1.2)	130	15	150	790	Ą	¥
Final Desorb	3 Cycles	12/13/97	ADSORB-103**	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)	100	13	110	2200	Ϋ́	ž
Notes:		- = not app	— = not applicable/not measured	Pē.			1,1-DCA = 1,1	1,1-DCA = 1,1-dichloroethane	9								

ASTM = American Society for Testing and Materials

1,2-DCB = 1,2-dichlorobenzene 1,1-DCE = 1,1-dichlomethene

EPA = Environmental Protection Agency

ID = identification

M/D/Y = month/day/year

ND = not detected

NT = not tested

ppmv = parts per million by volume

TPH_g= Total petroleum hydrocarbons as gas TICs = tentatively identified compounds VOCs = volatile organic compounds

TPH4 = TPH diesel

Total Chlorinated VOCs = Summation of all detected target chlorinated VOCs, rounded to two significant figures. TCE = trichloroethene

Freon 113 = 1,1,2-trichloro-1,2,2-trifluoroethane

1,1,1-TCA = 1,1,1-trichloroethane

PCE = tetrachloroethene

trans-DCE = trans-1,2-dichloroethene cis-DCE = cis-1,2-dichtoroethene

 ** = these samples were collected from the adsorb location during a time when no contaminants were present. TPH_o= TPH motor oil

Table 7. Condensate VOC Concentrations - EPA 8240 m8015 PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base

Sacramento, California

						Ta	Taget Chlorinated VOCs	inated VC	Cs			Total			
										Carbon		Chlorinated			
Sampling		Date	Sample	1,1-DCE	1,2-DCE	1,1-DCA	1,1-DCA 1,1,1-TCA 1,2-DCA	1,2-DCA	TCE	Tetrachloride	PCE	vocs	TPH-g	TPH-d	TPH-MO
Event	Location	(M/D/Y)	QI	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Test End	Condensate Drum	12/3/97	12/3/97 PCOND-101	9.7	260	190	90	ND (1.2)	7800	ND (1.2)	460	8800	1400	ND (5000) ND (5000)	ND (5000)
Test End	Condensate Drum	12/3/97	12/3/97 PCOND-102	(200) (ND	ND (500)	(200) QN	ND (500) ND (500) ND (500)	ND (500)	9300	(005) QN	1100	10000	270000	(2009) AN (5000) (ND	ND (5000)

Notes:

EPA = Environmental Protection Agency --- = not applicable/not measured

ND = not detected ppmv = parts per million by volume M/D/Y = month/day/year ID = identification

VOCs = volatile organic compounds 1,1-DCA = 1,1-dichlorcethane 1,2-DCB = 1,2-dichlorobenzene 1,1-DCE = 1,1-dichloroethene cis-DCE = cis-1,2-dichloroethene

Freon 113 = 1,1,2-trichloro-1,2,2-trifluoroethane trans-DCE = trans-1,2-dichloroethene PCE = tetrachloroethene

6.48

표

1,1,1-TCA = 1,1,1-trichloroethane TCE = trichloroethene

Table 8. Relative Humidity (RH) and Temperature Readings PRDA Test: "Fluidized Bed Adsorption" McClellan Air Force Base Sacramento, California

											Sampling	Sampling Location				
		¥ ∀Ł	Aftercooler	Misters	Ambient (Conditions	We	Well Air	Blower	Blower Effluent	Aftercool	Aftercooler Effluent	Water K/	Water K/O Effluent	FBAS Effleunt	ffleunt
Date	Hour	On/Off	In Line/Off Line	On/Off	%RH	Temp. (°F)	%RH	Temp. (°F)	%ВН	Temp. (°F)	%ВН	Temp. (°F)	%ВН	Temp. (°F)	%RН	Temp. (°F)
8/14/97	15:10	u0	In Line	On	32	97	40	100	30	136	66	78	73	06	49	101
	15:40	Off	Off Line	Off	30	100	43	104	30	139	30	134	35	119	38	112
8/15/97	5:00	JJ0	Off Line	Off	70	64	88	92	53	86	58	94	83	81	95	74
	5:30	Off	In Line	Off	75	09	99	99	58	97	60	84	90	74	85	71
	5:55	o	In Line	Off	84	61	26	64	56	66	82	63	63	62	06	99
	6:15	Б	In Line	On	85	59	86	63	53	100	92	61	95	62	92	64

Notes:

RH = Relative Humidity
Temp. = Temperature
KO = Knock out
FBAS = Fluidized Bed Adsorption System

PRDA Test: "Fluidized Bed Adsorption" Table 9. Utilities Consumption McClellan Air Force Base Sacramento, California

	_			_		_	_	_			_		_	_		_		_	_	_
4		Total	.Electrical	(kilowatt-hour)	51	78	161	323	273	223	583	009	620	678	825	1961	2160	2200	2443	2896
	SVE	Blower	Electrical	(kilowatt-hour)	22	33	99	140	225	241	254	264	273	294	355	765	843	859	950	1121
Utility Usage		FBAS	Electrical	(kilowatt-hour)	29	45	94	183	296	312	329	336	347	384	470	1195	1316	1341	1493	1775
		Тар	Water	(gallons)	480	744	1536	3012	5040	5400	5688	5796	6024	6684	8124	20208	22368	22752	25284	31416
		Total	Nitrogen	(cf)	360	855	1152	2259	3780	4050	4266	4428	4599	5094	6174	15237	16857	17145	19044	23643
	SVE Blower	Current	Draw	(Amps)	23	21	21	25	21	22	22	23	20	16	21	17	18	20	18	14
Operational Parameters	FBAS	Current	Draw	(Amps)	30	31	31	30	28	21	30	17	24	28	30	30	28	32	30	23
Operational	Tap	Water	Flow	(mdb)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
		Nitrogen	Flow	(cfm)	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Estimated	Total	Hours of	Operation	£	4.0	6.2	12.8	25.1	42.0	45.0	47.4	49.2	51.1	56.6	9'89	169.3	187.3	190.5	211.6	262.7
SVE	Blower	Hour	Meter	Œ	4.0	6.2	12.8	25.1	42.0	45.0	47.4	49.2	51.1	56.6	68.6	169.3	187.3	190.5	211.6	262.7
			Time	(H:M)	13:40	9:35	16:40	17:10	16:30	8:35	15:10	13:10	10:15	11:05	16:20	14:05	8:05	13:00	11:45	9:30
			Date	(M/D/Y)	7/16/97	7/17/97	7/17/97	7/21/97	7/22/97	7/23/97	7/23/97	7/24/97	7/29/97	7/30/97	7/31/97	26/9/8	8/7/97	8/7/97	76/8/8	12/3/97

Notes:

cfm = cubic feet per minute gpm = gallons per minute M/D/Y = month day and year H:M = hours and minutes H = hours FBAS = fluidized bed adsorption system SVE = soil vapor extraction

FIGURE

Harding Lawson Associates

FBA-COR.XLS

Figure 1. Probe Mass Loss (6/10/97 to 12/4/97)
Fluidized Bed Assorbtion PRDA Test
McClellen Air Force Base, IC-31
Sacramento, Califomia

APPENDIX A WORK IMPLEMENTATION PLAN ATTACHMENTS

Table 5. Sample Containers Holding Times Fluidized Bed Adsorption PRDA Test Work Implementation Plan McClellan Air Force Base, IC-31 Sacramento, California

Parameter	Analytical Method	Sample Container	Holding Time	Preservation
VAPORS & EMISSIO	NS			
Halogenated and Aromatic VOCs and NMOCs	8021 and E18 modified	Tedlar (R) bag	24 hours	None
VOCs Nitrogen Oxides	Method TO-14	SUMMA (R) Canister Continuous Monitor	14 days As collected	None None
WATER CONDENSAT			7 10 001100100	110110
Halogenated and Aromatic VOCs TPH Acidity	EPA 8240 EPA 3510/8015 modified EPA 9040	40-ml VOA Vial (3) Amber Liter (2) Poly 0.5 Liter (2)	14 days 7 days 24 hours	None None None
PRODUCT CONDENS	ATE			
Halogenated and Aromatic VOCs TPH	EPA 8240 EPA 3510/8015 modified	40-ml VOA Vial (3) Amber Liter (2)	14 days 7 days	None None
RESIN BEADS				
Halogenated and Aromatic VOCs TPH purgable	EPA 8240 EPA 5030/8015 modified	8-oz Glass Jar (2) 8-oz Glass Jar (2)	14 days 14 days	None None
TPH extractable	EPA 3550/8015 modified	8-oz Glass Jar (2)	14 days	None

TABLES10.XLS 3/20/98

Table 6. Rationale for Vapor and Emissions Analytical Methods Fluidized Bed Adsorption PRDA Test Work Implementation Plan McClellan Air Force Base, IC-31 Sacramento, California

Phase	Analytical Method	EPA DQO	ality Level Basewide	Rationale Based Upon Data Use
		Guidance	RI/FS QAPP	
	Total VOCs (Field PID readings)	Screening	Level I	Immediate TAT to support FBA optimization.
Startup	Halogenated and Aromatic VOCs and NMOCs (8021 and E18 modified)	Screening	Level II	Short TAT to support FBA optimization. Provides some speciation and correlation for PID readings
	Total VOCs (Field PID readings)	Screening	Level I	Immediate TAT to monitor any changes in FBA system
Test	Halogenated and Aromatic VOCs and NMOCs (8021 and E18 modified)	Screening	Level II	1) Short TAT to monitor changes in FBA system 2) Provides some speciation and correlation for PID readings 3) Verification samples will also be collected and analyzed by Method TO-14 for more definitive VOC emissions.
	VOCs (Method TO-14)	Definitive	Level III	1) Standard method for producing high quality data for total and speciated emissions. 2) Can tentatively identify intermediate compounds or byproducts.
	Nitrogen Oxides (CARB 100)	Definitive	Level III	Monitor Nitrogen Oxides emission as a criteria pollutant using acceptable CARB method.

EPA DQO Guidance = 1993 EPA Data Quality Objectives Interim Final Guidance

Table 7. Analytical Data Quality Objectives Fluidized Bed Adsorption PRDA Test Work Implementation Plan McClellan Air Force Base, IC-31 Sacramento, California

		Basewide RI/FS QAPP Table
	· ·	References for Applicable
Analysis	Reference Method	Analytical Data Quality Objectives
VAPORS & EMISSIONS		
VOCs	EPA Method 8021	4-5a, 4-5b, and 10-5
NMOCs	Modified Method E18	10-32
VOCs	EPA Method TO-14	4-2 and 10-27
Nitrogen Oxides	CARB 100	
WATER CONDENSATE		
VOCs	EPA Method 8240[a]	4-11 and 10-11
TPHp	EPA 5030/8015 modified	4-6 and 10-6
TPHe	EPA 3550/8015 modified	4-7 and 10-7
Acidity	EPA Method 9040	
PRODUCT CONDENSATE		
VOCs	EPA Method 8240[a]	4-11 and 10-11
TPHp	EPA 5030/8015 modified	4-6 and 10-6
TPHe	EPA 3550/8015 modified	4-7 and 10-7
RESIN BEADS		
VOCs	EPA Method 8240[a]	4-11 and 10-11
TPHp	EPA 5030/8015 modified	4-6 and 10-6
ТРНе	EPA 3550/8015 modified	4-7 and 10-7

All referenced tables are from the Basewide Remedial Investigation/Feasibility Study Quality Assurance Project Plan dated April 1997

Notes: --- = not applicable

VOCs = volatile organic compound

NMOCs = non-methane organic compound

CARB = California Air Resource Board

EPA = U.S. Environmental Protection Agency

TO = toxic organics

TPHp = TPH using purgable recovery method

TPHe = TPH using extractable recovery method

[a] = Method 8240 has been replaced by Method 8260A. Collected samples will be analyzed by Method 8260A with applicable data quality objectives as specified in the Basewide RI/FS QAPP.

APPENDIX B

LABORATORY REPORTS - AIR SAMPLES BY EPA TO-14

WORK ORDER #: 9708162

Work Order Summary

CLIENT:

Mr. Alfonso Ang

BILL TO: Same

Harding Lawson Associates

90 Digital Drive Novato, CA 94949

PHONE:

415-884-3154

P.O. #

FAX:

415-884-3300

PROJECT # 37478 35 McClellan FBAS

DATE RECEIVED:

8/12/97

DATE COMPLETED: 8/19/97

RECEIPT

FRACTION # 01A 02A 03A 04A

NAME FBAE-02 FBAI-03 FBAB-01 Lab Blank TEST
TO-14/TIC's
TO-14/TIC's
TO-14/TIC's
TO-14/TIC's

VAC./PRES. 0 "Hg 0.2 psi 1.0 "Hg NA

CERTIFIED BY:

Laboratory Director

DATE: 8/19/97

Certification numbers: CA ELAP - 1149, NY ELAP - 11291, UT ELAP - E-217

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630 (916) 985-1000 • (800) 985-5955 • FAX (916) 985-1020

SAMPLE NAME : FBAE-02 ID#: 9708162-01A

File Name: 1081610 Date of Collection, 5180	
File Name: 1081610 Date of Collection: 2/ six	
Fils Name: 1081610 Date of Collection: 8/ 8/9	
Dil. Factor: 50.8 Date of Analysis: 8/15/97	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Freon 12	40	Not Detected
Freon 114	40	Not Detected
Chloromethane	40	Not Detected
Vinyl Chloride	40	Not Detected
Bromomethane	40	Not Detected
Chloroethane	40	Not Detected
Freon 11	40	Not Detected
1,1-Dichloroethene	40	1300
Freon 113	40	180
Methylene Chloride	40	270
1,1-Dichloroethane	40	2100
cis-1,2-Dichloroethene	40	1200
Chloroform	40	870
1,1,1-Trichloroethane	40	3900
Carbon Tetrachloride	40	150
Benzene	40	Not Detected
1,2-Dichloroethane	40	Not Detected
Trichloroethene	40	7000
1,2-Dichloropropane	40	Not Detected
cis-1,3-Dichloropropene	40	Not Detected
Toluene	40	Not Detected
trans-1,3-Dichloropropene	40	Not Detected
1,1,2-Trichloroethane	40	Not Detected
Tetrachloroethene	40	220
Ethylene Dibromide	40	Not Detected
Chlorobenzene	40	Not Detected
Ethyl Benzene	. 40	Not Detected
m,p-Xylene	40	Not Detected
o-Xylene	40	Not Detected
Styrene	40	Not Detected
1,1,2,2-Tetrachloroethane	40	Not Detected
1,3,5-Trimethylbenzene	40	Not Detected
1,2,4-Trimethylbenzene	40	Not Detected
1,3-Dichlorobenzene	40	Not Detected
1,4-Dichlorobenzene	40	Not Detected
Chlorotoluene	40	Not Detected
1,2-Dichlorobenzene	40	Not Detected
1,2,4-Trichlorobenzene	40	Not Detected
Hexachlorobutadiene	40	Not Detected
Propylene	160	Not Detected
1,3-Butadiene	160	Not Detected
Acetone	160	Not Detected
Carbon Disulfide	160	Not Detected
2-Propanol	160	Not Detected
trans-1,2-Dichloroethene	160	Not Detected
Vinyl Acetate	160	Not Detected

SAMPLE NAME : FBAE-02 ID#: 9708162-01A

EPA METHOD TO-14 GC/MS Full Scan

File Name:	
	1081610 Date of Collection; 8/8/97
Dil Factor:	
	50.8 Date of Analysia: 8/16/97

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Chloroprene	160	Not Detected
2-Butanone (Methyl Ethyl Ketone)	160	Not Detected
Hexane	160	Not Detected
Tetrahydrofuran	160	Not Detected
Cyclohexane	160	Not Detected
1,4-Dioxane	160	Not Detected
Bromodichloromethane	160	Not Detected
4-Methyl-2-pentanone	160	Not Detected
2-Hexanone	160	Not Detected
Dibromochloromethane	. 160	Not Detected
Bromoform	160	Not Detected
4-Ethyltoluene	160	Not Detected
Ethanol	160	Not Detected
Methyl tert-Butyl Ether	160	Not Detected
Heptane	160	Not Detected
TVH*	400	710000

Compound	LY IDENTIFIED COMPOUN CAS Number	IDS - Top 10 Reported Match Quality	Amount (ppbv)
Pentane, 2,4-dimethyl-	108-08-7	91 %	5200
Hexane, 1-isocyanato-	2525-62-4	Manual ID	22000
1-Hexene, 4-methyl-	3769-23-1	Manual ID	120000
Hexane, 2,4-dimethyl-	589-43-5	Manual ID	36000
Pentane, 3-ethyl-	617-78-7	83 %	84000
Hexane, 2,3,4-trimethyl-	921-47-1	Manual ID	100000
Hexane, 3,4-dimethyl-	583-48-2	Manual ID	5800
Hexane, 2,2,5,5-tetramethyl-	1071-81-4	Manual ID	95000
Pyrrolidine, 3-methyl-	34375-89-8	Manual ID	2300
Decane, 2,2,6-trimethyl-	62237-97-2	72 %	3000
Pentane, 2,2,3,4-tetramethyl-	1186-53-4	Manual ID	4000
Heptane, 3,3,5-trimethyl-	7154-80-5	90 %	2000
Octane, 2,2,6-trimethyl-	62016-28-8	72 %	3200

^{*}Total Volative Hydrocarbons referenced to Propane (MW = 44).

Surrogates	% Recovery	Method Limits
Octafluorotoluene	105	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	101	70-130

SAMPLE NAME: FBAI-03 ID#: 9708162-02A

File Name:		
	1081609	
		Date of Collection: 8/ 8/97
Dil Factor:		Date of Analysis: 8/16/97

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Freon 12	130	Not Detected
Freon 114	130	Not Detected
Chloromethane	130	Not Detected
Vinyl Chloride	130	Not Detected
Bromomethane	130	Not Detected
Chloroethane	130	Not Detected
Freon 11	130	Not Detected
1,1-Dichloroethene	130	1800
Freon 113	130	180
Methylene Chloride	130	240
1,1-Dichloroethane	130	3100
cis-1,2-Dichloroethene	130	2400
Chloroform	130	1400
1,1,1-Trichloroethane	130	4700
Carbon Tetrachloride	130	160
Benzene	130	Not Detected
1,2-Dichloroethane	130	Not Detected
Frichloroethene	130	22000
,2-Dichloropropane	130	Not Detected
is-1,3-Dichloropropene	130	Not Detected
Toluene	130	180
rans-1,3-Dichloropropene	130	Not Detected
I,1,2-Trichloroethane	130	Not Detected
Tetrachloroethene	130	800
Ethylene Dibromide	130	Not Detected
Chlorobenzene	130	Not Detected
Ethyl Benzene	130	Not Detected
n,p-Xylene	130	Not Detected
o-Xylene	130	Not Detected
Styrene	130	Not Detected
1,1,2,2-Tetrachloroethane	130	Not Detected
,3,5-Trimethylbenzene	130	Not Detected
1,2,4-Trimethylbenzene	130	Not Detected
,3-Dichlorobenzene	130	Not Detected
,4-Dichlorobenzene	130	Not Detected
Chlorotoluene	130	Not Detected
1,2-Dichlorobenzene	130	Not Detected
,2,4-Trichlorobenzene	130	Not Detected
lexachlorobutadiene	130	Not Detected
Propylene	530	Not Detected Not Detected
i,3-Butadiene	530	Not Detected
,5-batadiene Acetone	530	
Carbon Disulfide		Not Detected
2-Propanol	530 530	Not Detected
z-Propanoi rans-1,2-Dichloroethene	530 530	Not Detected
	530	Not Detected
Vinyl Acetate	530	Not Detected

SAMPLE NAME : FBAI-03 ID#: 9708162-02A

EPA METHOD TO-14 GC/MS Full Scan

File Hame: 1081609 Date of Collection: 8/ 8/97 Dill Factor: 265 Date of Applicate SISSON
Dil. Fector: 265 Date of Analysis: 8/16/97

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Chloroprene	530	Not Detected
2-Butanone (Methyl Ethyl Ketone)	530	Not Detected
Hexane	530	Not Detected
Tetrahydrofuran	530	Not Detected
Cyclohexane	530	Not Detected
1,4-Dioxane	530	Not Detected
Bromodichloromethane	530	Not Detected
4-Methyl-2-pentanone	530	Not Detected
2-Hexanone	530	Not Detected
Dibromochloromethane	530	Not Detected
Bromoform	530	Not Detected
4-Ethyltoluene	530	Not Detected
Ethanol	530	Not Detected
Methyl tert-Butyl Ether	530	Not Detected
Heptane	530	Not Detected
TVH*	1300	1200000

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2,3-dimethyl-	565-59-3	Manual ID	31000
Hexane, 2,2-dimethyl-	590-73-8	Manual ID	190000
Ether, heptyl hexyl	7289-40-9	72 %	64000
Pentane, 2,2,3-trimethyl-	564-02-3	Manual ID .	11000
Pentane, 2,3,4-trimethyl-	565-75-3	91 %	120000
Pentane, 2,3,3-trimethyl-	560-21-4	72 %	140000
Hexane, 3,4-dimethyl-	583-48-2	Manual ID	7700
Hexane, 2,2,5,5-tetramethyl-	1071-81-4	72 %	140000
Hexane, 3-ethyl-	619-99-8	72 %	6800
Heptane, 2,2,4-trimethyl-	14720-74-2	72 %	8600
Pentane, 2,2,3,4-tetramethyl-	1186-53-4	Manual ID	13000
Heptane, 3,3,5-trimethyl-	7154-80-5	90 %	5900
Octane, 2,2,6-trimethyl-	62016-28-8	72 %	11000
Hexane, 2,2,3-trimethyl-	16747-25-4	Manual ID	3200

^{*}Total Volative Hydrocarbons referenced to Propane (MW = 44).

Surrogates	% Recovery	Method Limits
Octafluorotoluene	97	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	101	70-130

SAMPLE NAME : FBAB-01 ID#: 9708162-03A

File Name: 1081607 Date of Collection, 81 and
File Name: 1081907 Date of Collection: \$4.902
Pile Name: 1081607 Date of Collection: 6/ 8/97
Dil. Factor: 536 Date of Anabolie Strator
Dil. Factor: 5.36 Date of Analysis: 8/15/97

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Freon 12	4.2	Not Detected
Freon 114	4.2	Not Detected
Chloromethane	4.2	Not Detected
Vinyl Chloride	4.2	Not Detected
Bromomethane	4.2	Not Detected
Chloroethane	4.2	Not Detected
Freon 11	4.2	Not Detected
1,1-Dichloroethene	4.2	Not Detected
Freon 113	4.2	Not Detected
Methylene Chloride	4.2	Not Detected
1,1-Dichloroethane	4.2	Not Detected
cis-1,2-Dichloroethene	4.2	Not Detected
Chloroform	4.2	Not Detected
1,1,1-Trichloroethane	4.2	Not Detected
Carbon Tetrachloride	4.2	Not Detected
Benzene	4.2	Not Detected
1,2-Dichloroethane	4.2	Not Detected
Trichloroethene	4.2	Not Detected
1,2-Dichloropropane	4.2	Not Detected
cis-1,3-Dichloropropene	4.2	Not Detected
Toluene	4.2	Not Detected
trans-1,3-Dichloropropene	4.2	Not Detected
1,1,2-Trichloroethane	4.2	Not Detected
Tetrachloroethene	4.2	Not Detected
Ethylene Dibromide	4.2	Not Detected
Chlorobenzene	4.2	Not Detected
Ethyl Benzene	4.2	Not Detected
m,p-Xylene	4.2	Not Detected
o-Xylene	4.2	Not Detected
Styrene	4.2	Not Detected
1,1,2,2-Tetrachloroethane	4.2	Not Detected
1,3,5-Trimethylbenzene	4.2	Not Detected
1,2,4-Trimethylbenzene	4.2	Not Detected
1,3-Dichlorobenzene	4.2	Not Detected
1,4-Dichlorobenzene	4.2	Not Detected
Chlorotoluene	4.2	Not Detected
1,2-Dichlorobenzene	4.2	Not Detected
1,2,4-Trichlorobenzene	4.2	Not Detected
Hexachlorobutadiene	4.2	Not Detected
Propylene		Not Detected
1,3-Butadiene	17	Not Detected
Acetone	17	Not Detected
Carbon Disulfide	17	Not Detected
2-Propanol	17	Not Detected
trans-1,2-Dichloroethene		Not Detected
Vinyl Acetate	17	Not Detected

SAMPLE NAME : FBAB-01 ID#: 9708162-03A

EPA METHOD TO-14 GC/MS Full Scan

File Hame: 1081907 Date of Collection: 8/ 8/97 Dil. Pactor: 5.38 Date of Apatrolar Strang	
DIL Pactor: 5.36 Date of Analysis: 5/15/97	ŝ

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Chloroprene	17	Not Detected
2-Butanone (Methyl Ethyl Ketone)	17	Not Detected
Hexane	17	Not Detected
Tetrahydrofuran	17	Not Detected
Cyclohexane	17	Not Detected
1,4-Dioxane	17	Not Detected
Bromodichloromethane	17	Not Detected
4-Methyl-2-pentanone	17	Not Detected
2-Hexanone	17	Not Detected
Dibromochloromethane	17	Not Detected
Bromoform	17	Not Detected
4-Ethyltoluene	17	Not Detected
Ethanol	17	Not Detected
Methyl tert-Butyl Ether	17	Not Detected
Heptane	17	Not Detected
TVH*	42	Not Detected

Compound TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported
CAS Number Match Quality Amount (ppbv)

None Identified None Identified

Surrogates	% Recovery	Method Limits
Octafluorotoluene	104	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	100	70-130

^{*}Total Volative Hydrocarbons referenced to Propane (MW = 44).

SAMPLE NAME : Lab Blank ID#: 9708162-04A

File Name: 1081604 Date of Collection: NS
File Name: 1081604 Date of Collection: NA
File Name: 1081604 Date of Collection: NA
DIL Factor: 1.00 Date of Anabolis: SITESOZ
Dil. Fector: 1.60 Date of Analysis: 8/16/07 1
Dil. Factor: 1.00 Date of Analysis: 8/16/97

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Freon 12	0.50	Not Detected
Freon 114	0.50	Not Detected
Chloromethane	0.50	Not Detected
Vinyl Chloride	0.50	Not Detected
Bromomethane	0.50	Not Detected
Chloroethane	0.50	Not Detected
Freon 11	0.50	Not Detected
1,1-Dichloroethene	0.50	Not Detected
Freon 113	0.50	Not Detected
Methylene Chloride	0.50	Not Detected
1,1-Dichloroethane	0.50	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected
Chloroform	0.50	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected
Carbon Tetrachloride	0.50	Not Detected
Benzene	0.50	Not Detected
1,2-Dichloroethane	0.50	Not Detected
Trichloroethene	0.50	Not Detected
1,2-Dichloropropane	0.50	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected
Toluene	0.50	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected
Tetrachloroethene	0.50	Not Detected
Ethylene Dibromide	0.50	Not Detected
Chlorobenzene	0.50	Not Detected
Ethyl Benzene	0.50	Not Detected
m,p-Xylene	0.50	Not Detected
o-Xylene	0.50	Not Detected
Styrene	0.50	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected
Chlorotoluene	0.50	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected
Hexachlorobutadiene	0.50	Not Detected
Propylene	2.0	Not Detected
1,3-Butadiene	2.0	Not Detected
Acetone	2.0	Not Detected
Carbon Disulfide	2.0	Not Detected
2-Propanol	2.0	Not Detected
trans-1,2-Dichloroethene	2.0	Not Detected
Vinyl Acetate	2.0	Not Detected

SAMPLE NAME: Lab Blank ID#: 9708162-04A

EPA METHOD TO-14 GC/MS Full Scan

File Name: 1083604 Date of Collection: NA Dil. Fector: 1.09 Date of Application SISSOT
Dil. Fector: 1.00 Date of Analysis: 8/16/97

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Chloroprene	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected
Hexane	2.0	Not Detected
Tetrahydrofuran	2.0	Not Detected
Cyclohexane	2.0	Not Detected
1,4-Dioxane	2.0	Not Detected
Bromodichloromethane	2.0	Not Detected
4-Methyl-2-pentanone	2.0	Not Detected
2-Hexanone	2.0	Not Detected
Dibromochloromethane	2.0	Not Detected
Bromoform	2.0	Not Detected
4-Ethyltoluene	2.0	Not Detected
Ethanol	2.0	Not Detected
Methyl tert-Butyl Ether	2.0	Not Detected
Heptane	2.0	Not Detected
TVH*	5.0	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported CAS Number Match Quality Compound

Amount (ppbv)

None Identified None Identified

Container Type: NA

Surrogates	% Recovery	Method Limits
Octafluorotoluene	116	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130

^{*}Total Volative Hydrocarbons referenced to Propane (MW = 44).

larding Lawson Associates 10324 Placer Lane Sacremento, California 95827 916/364-0793 Telecopy: 916/364-5633 Job Number: 37478 35

CHAIN OF CUSTODY FORM

Samplers: Dan Gwaltney

ANALYSIS REQUESTED

9708162 . Lab: Arc loxics

10-14 10-5 14/1 ×××× EPA 8015M/TPH ICP METALS 07S8/8S3 A93 EPA 624/8240 EPA 602/8020 6PA 601/8010 STATION DESCRIPTION/ NOTES Field Blunk 9 0 5 ۵ Time ٥ Recorder: DATE δ 9 80 Mo 8 0 Seq 03 -01 SAMPLE NUMBER OR LAB NUMBER Name/Location: McClellan FBAS FBAE TBBT FBAB ¥ Project Manager: Mike Sides #CONTAINERS Unpres. H₂ SO ₄ 714 I!O MATRIX lio2 المارا لمهارا Water Sediment × a CODE SONBCE

 $\overline{\mathcal{L}}$

LAB	Œ	DEPTH	COL	OA	MISCELLANEOUS	CHAIN O	CHAIN OF CUSTODY RECORD	
Yr Wk	Sea	FEET	9					
I	F		I			RELINOUISHEO/BY: (Signature)	RECEIVED BY: (Sypnature)	DATE/TIME
	-	-				Un of working	July Kennedy	1001 101/8
		+	#	1		RELINDUSHED BY: (Signature)	RECEIVED BY MIGHAMAN O	DAJE/TIME
			1			Ally Conneder	What Line	1/1/4/4/1/1/A
	-	+				AL LINDUSHED BY: ISignatural	RECEIVED BY. (Signature)	DATE/TIME
		+						•
						RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature)	DATE/TIME
						DISPATCHED BY: (Signature) DATE	DATE/TIME RECEIVED FOR LAB BY:	: DATE/TIME
							(Suprature)	
						METHOD OF SHIPMENT		

AN ENVIRONMENTAL ANALYTICAL LABORATORY

180 Blue Ravine Road Suite B Folsom, CA 95630

Phone (916) 985-1000 FAX (916) 985-1020 Hours 8:00 A.M. to 6:00 P.M. Pacific

COMPANY:	Harding Lawson Associates
ATTENTION:	Mike Sides
FAX #:	(510) 451-3165
FROM:	Mike sides
# PAGES (Including cover)	
COMMENTS: No kidding Mike, you do typing skills?	have some TIC typing to do. How are your

SAMPLE NAME : FBAI-104 ID#: 9712080-01A

	ROTO AND TO SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	A
Compound	Rpt. Limit (ppbv)	Amount (ppbv)
	77	Not Detected
Freon 12	77	Not Detected
Freon 114	77	Not Detected
Chloromethane	77	Not Detected
Vinyl Chloride	77	Not Detected
Bromomethane	77	Not Detected
Chloroethane	77	Not Detected
Freon 11	77	960
1,1-Dichloroethene	77	97
Freon 113	77	170
Methylene Chloride		2000
1,1-Dichloroethane	77	1400
cis-1,2-Dichloroethene	, , 77	820
Chloroform	77	2600 ·
1.1,1-Trichloroethane	77	Not Detected
Carbon Tetrachloride	77	140
Benzene		Not Detected
1,2-Dichloroethane	77 77	13000
Trichloroethene	77 77	Not Detected
1.2-Dichloropropane	77	Not Detected
cis-1.3-Dichtoropropene		330
Toluene	77	Not Detected
trans-1,3-Dichloropropene	77	Not Detected
1,1,2-Trichloroethane	77	370
Tetrachloroethene	77	Not Detected
Ethylene Dibromide	<u>, , , , , , , , , , , , , , , , , , , </u>	Not Detected
Chlorobenzene	77	Not Detected
Ethyl Benzene	. 77	120
m,p-Xylens	77	Not Detected
o-Xylene	77	Not Detected
Styrene	77	Not Detected
1,1,2,2-Tetrachloroethane	77	Not Detected
1,3,5-Trimethylbenzene	77	Not Detected
1,2,4-Trimethylbenzene	77	Not Detected
1,3-Dichlorobenzene	77	Not Detected
1,4-Dichlorobenzene	$ au_{\ldots}$ $ au_{\ldots}$	Not Detected
Chlorotoluene	77	Not Detected
1,2-Dichlorobenzene	77	Not Detected
1,2,4-Trichlorobenzene	77	Not Detected
Hexachlorobutadiene	77	Not Detected
Propylene	380	Not Detected
1.3 Butadiene	380	Not Detected
Acetone	380	Not Detected
Carbon Disulfide	380	Not Detected
2-Propanol	380	Not Detected
trans-1,2-Dichloroethene	380	Not Detected
Vinyl Acetate	380	Not Defected

ŤVH*

Not Detected

380000

AIR TOXICS LTD.

SAMPLE NAME: FBAI-104 ID#: 9712080-01A

EPA METHOD TO-14 GC/MS Full Scan

EL PARTIE DE LA COMPANIE DE LA COMPA		
Rpt. Limit (ppbv)	Amount (ppby	
380	Not Detected	
380	Not Detected	
	Nat Detected	
	Not Detected	
	380	

_	Y IDENTIFIED COMPOUN CAS Number	DS - Top 10 Reported Match Quality	Amount (ppbv)
Pentane, 2,4-dimethyl-	108-08-7	72 %	6800
	589-34-4	87 %	6800
Hexane, 3-methyl-	14720-74-2	Manual ID	110000
Heptane, 2,2,4-trimethyl-	592-76-7	90 %	7500
1-Heptene	592-13-2	70 %	24000
Hexane, 2,5-dimethyl-	74421-17-3	74 %	25000
Hexane, 1-(hexyloxy)-2-methyl-	564-02-3	Manual ID	7000
Pentane, 2,2,3-trimethyl-	617-78-7	86 %	97000
Pentane, 3-ethyl-	2216-34-4	78 %	120000
Octane, 4-methyl- Hexane, 2,2,5,5-tetramethyl-	1071-81-4	Manual ID	93000

^{*}Total Volatile Hydrocarbons referenced to Heptane (MW=100).

Heptane 380

.	% Recovery	Method Limits
Surrogates	108	70-130
Octafluorotoluene	• = =	70-130
Toluene-d8	108	70-130
4-Bromofluorobenzene	100	70-130

SAMPLE NAME : FBAI-105 ID#: 9712080-02A

	Rpt. Limit (ppbv)	Amount (ppb)
ompound	95	Not Detected
reon 12	95	Nut Detected
rean 114	95	Not Detected
Chloromethane	95	Not Detected
/inyl Chloride	95	Not Detected
Promomethane	95	Not Detected
Chloroethane	95	Not Detected
Freon 11	95	1100
1,1-Dichloroethene	95	96
Freon 113	95	180
Methylene Chloride	95	2200
1,1-Dichloroethane	95	1500
cis-1,2-Dichloroethene	95	920
Chloroform	95	2900
1,1,1-Trichloroethane	95	Not Detected
Carbon Tetrachloride	95	140
Benzene	95	Not Detecte
1,2-Dichloroethane	95	16000
Trichloroethene	95 95	Not Detecte
1,2-Dichloropropane	95	Not Detecte
cis-1,3-Dichloropropene	95	330
Taluana	95	Not Detecte
trans-1,3-Dichloropropene	9 5	1200
1,1,2-Trichloroethane	95	450
Tetrachloroethene	95	Not Detecte
Ethylene Dibromide		Not Detecte
Chlorobenzene	95 05	Not Detecte
Ethyl Benzene	95 05	Not Detecte
m,p-Xylene	95 05	Not Detecte
o-Xylene	95 95	Not Detect
Styrene	95	Not Detect
1,1,2,2-Tetrachloroethane	95	Not Detect
1,3,5-Trimethylbenzene	95 95	Not Detect
1,2,4-Trimethylbenzene	95 95	Not Detect
1,3-Dichlorobenzene	95 25	Not Detect
1,4-Dichlorobenzene	95	Not Detect
Chlorotaluene	95	Not Detect
1,2-Dichlorobenzene	95	Not Detect
1.2,4-Trichlorobenzene	95 05	Not Detect
Hexachlorobutadiene	95 470	Not Detect
Propylene	470	Not Detec
1,3-Butadiene	470	Not Detec
Acetone	470	Not Detec
Carbon Disulfide	470	Not Detec
2-Propanol	470	Not Detec
trans-1,2-Dichloroethene	470 470	Not Detec

SAMPLE NAME : FBA1-105 ID#: 9712080-02A

EPA METHOD TO-14 GC/MS Full Scan

Compound	Apt. Limit (ppbv)	Amount (ppbv
	470	Not Detected
Chloroprene	470	Not Detected
2-Butanone (Methyl Ethyl Ketone)	470	Not Detected
-lexane	470	Not Detected
Tetrahydrofuran	*** =	Not Detected
Cyclohexane	470	Not Detected
1,4-Dioxane	470	Not Detected
Bromodichloromethane	470	
4-Methyl-2-pentanone	470	Not Detected
2-Hexanone	470	Not Detected
Dibromochloromethane	470	Not Detected
	470	Not Detected
Bromoform	470	Not Detected
4-Ethykoluene	470	Not Detected
Ethanol	470	Not Detected
Methyl tert-Butyl Ether		Not Detected
Heptane	470	390000
TVH*	950	39000

_	TENTATIVELY IDENTIFIED COMPOUNDS	S - Top 10 Reported Match Quality	Amount (ppbv)
Compound	589-81-1	Manual ID	7200
Heptane, 3-methyl-	565-5 9- 3	72 %	32000
Pentane, 2,3-dimethyl-		72 %	120000
Heptane, 2,2,4-trimethyl-	14720-74-2	Manual ID	8000
1-Heptene	592-76-7		23000
Hexane, 2,5-dimethyl-	592-13-2	91 %	
Hexane, 1-(hexyloxy0-2-m	ethul- 74421-17-3	72 %	27000
Mexane, 1-(nexy/oxyo-z-in	564-02-3	74 %	7300 ·
Pentane, 2,2,3-trimethyl-	617-78-7	86 %	100000
Pentane, 3-ethyl-		83 %	120000
Octane, 4-methyl-	2216-34-4	·	94000
Hexane, 2,2,5,5-tetrameth	yl- 1071-81-4	78 %	37000

^{*}Total Volatile Hydrocarbons referenced to Heptane (MW=100).

	% Recovery	Method Limits
Octafluorotoluene	98 106	70-130 70-130
Toluene-d8 4-Bromofluorobenzene	92	70-130

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

Hexachlorobutadiene

Chlorotoluene

Propylene

Acetone

2-Propanol

Vinyl Acetate

1,3-Butadiene

Carbon Disulfide

trans-1,2-Dichloroethene

Not Detected

AIR TOXICS LTD.

SAMPLE NAME: FBAE-104 Ш)#: 9712080-03A

EPA METHOD TO-14 GC/MS Full Scan

	Rpt. Limit (ppbv)	Amount (ppbv)
Compound	18	Not Detected
Freon 12	18	Not Detected
Freon 114	18	24
Chloromethane	18	Not Detected
Vinyl Chloride		Not Detected
Bromomethane	18	Not Detected
Chloroethane	18	Not Detected
Freon 11	18	190
1,1-Dichloroethene	18	5 6
Freon 113	18	40
Methylene Chloride	18	360
1,1-Dichloroethane	18	180
cis-1,2-Dichloroethene	18	130
Chloroform	18	870
1,1,1-Trichloroethane	18	Not Detected
Carbon Tetrachloride	18	20
Benzene	18	Not Detected
1,2-Dichloroethane	18	1200
Trichloroethene	18	Not Detected
1,2-Dichloropropane	18	Not Detected
cis-1,3-Dichloropropene	18	
Toluene	18	22
trans-1,3-Dichloropropene	18	Not Detected
1,1,2-Trichloroethane	18	210
Tetrachloroethene	18	33
Ethylene Dibromide	18	Not Detected
Chlorobenzene	18	Not Detected
Ethyl Benzene	18	Not Detected
m,p-Xylene	18	Not Detected
	18	Not Detected
o-Xylene	18	Not Detected
Styrene	18	Not Detected
1,1,2,2-Tetrachloroethane	18	Not Detected

18

18

18

18

18

18

18

18

92

92

92

92

92

92

92

SAMPLE NAME : FBAE-104 1D#: 9712080-03A

EPA METHOD TO-14 GC/MS Full Scan

Compound	Rpt. Limit (ppbv)	Amount (ppbv
	92	Not Detected
Chloroprene	92	Not Detected
2-Butanone (Methyl Ethyl Ketone)	92	Not Detected
Hexane		Not Detected
Tetrahydrofuran	92	Not Detected
Cyclohexane	92,	Not Detected
.4-Dioxane	92	***************************************
Promodichloromethane	92	Not Detected
I-Methyl-2-pentanone	92	Not Detected
•	92	Not Detected
2-Hexanone	92	Not Detected
Dibromochloromethane	92	Not Detected
3romoform	92	Not Detected
4-Ethykoluene	92	Not Detected
Ethanol		Not Detected
Methyl tert-Butyl Ether	92	Not Detected
Heptane	92	66000
TVH*	180	88000

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported CAS Number Match Quality Amount (ppbv) Compound 1500 Manual ID 691-37-2 1-Pentene, 4-methyl-Manual ID 7200 565-59-3 Pentane, 2,3-dimethyl-28000 72 % 96-14-0 Pentane, 3-methyl-1900 83 % 592-76-7 1-Heptene 2400 83 % 592-13-2 Hexane, 2,5-dimethyl-1600 78% 16747-25-4 Hexane, 2,2,3-trimethyl-18000 78 % 617-78-7 Pentane, 3-ethyl-25000 72 % 2216-34-4 Octane, 4-methyl-8700 78 % 1071-81-4 Hexane, 2,2,5,5-tetramethyl-810 Manual ID 619-99-8 Hexane, 3-ethyl-

0	% Recovery	Method Limits
Surrogates	104	70-130
Octafluorotoluene	• •	70-130
Tolu ene-d8	104	70-130
4-Bromoflyorobenzene	86	/ O- 100

^{*}Total Volatile Hydrocarbons referenced to Heptane (MW=100).

SAMPLE NAME : FBAE-105 ID#: 9712080-04A

	E PRESSO	
-	Rpt. Limit (ppbv)	Amount (ppbv
Compound	38	Not Detected
Freon 12	38	Not Detected
Freon 114	38	Not Detected
Chloromethane	38	Not Detected
Vinyl Chlorids	38	Not Detected
Bromomethane	38	Not Detected
Chloroethane	38	Not Detected
Freon 11	38	460
1,1-Dichloroethene	38	93
Frean 113	38	83
Methylene Chloride	38	950
1,1-Dichloroethane	38	540
cis-1,2-Dichloroethene	38	380
Chloroform	38	1900
1,1,1-Trichloroethane	38	61
Carbon Tetrachloride	38	52
Benzene	. 38	Not Detected
1,2-Dichloroethane	38	4700
Trichloroethene	38	Not Detected
1,2-Dichloropropane	38	Not Detecte
cis-1,3-Dichloropropene	38	78
Toluene	38	Not Detects
trans-1,3-Dichloropropene	38	. 660
1.1,2-Trichloroethane	38	130
Tetrachloroethene	38	Not Detecte
Ethylene Dibromide	38	Not Detecte
Chiorobenzene	38	Not Detecte
Ethyl Benzene	38	Not Detecte
m,p-Xylene	38	Not Detecte
o-Xylene	38	Not Detecte
Styrene	38	Not Detecte
1,1,2,2-Tetrachloroethane	38	Not Detect
1,3,5-Trimethylbenzene	38	Not Detecte
1,2,4-Trimethylbenzene		Not Delecti
1,3-Dichlorobenzene	38	Not Detect
1,4-Dichlorobenzene	38	Not Detect
Chlorotoluene	38	Not Detect
1,2-Dichlorobenzene	38	Not Detect
1,2,4-Trichlorobenzene	38 38	Not Detect
Hexachlorobutadiene	190	Not Detect
Propylene	190	Not Detect
1,3-Butadiene		Not Detect
Acetone	190	Not Detec
Carbon Disulfide	190 190	Not Detect
2-Propanol	190 190	Not Detec
trans-1,2-Dichloroethene	190	Not Detec

SAMPLE NAME : FBAE-105 ID#: 9712080-04A

EPA METHOD TO-14 GC/MS Full Scan

Compound	Rpt. Limit (ppbv)	Amount (ppby
	190	Not Detected
Chloroprene	190	Not Detected
2-Butanone (Methyl Ethyl Ketone)	190	Not Detected
Hexane	190	Not Detected
Tetrahydrofuran	190	Not Detected
Cyclohexane	190	Not Detected
1,4-Dioxane	190	Not Detected
Bromodichloromethane	190	Not Detected
4-Methyl-2-pentanons	190	Not Detected
2-Hexanone	190	Not Detected
Dibromochloromathane	190	Not Detected
Bromoform	190	Not Detected
4-Ethyltoluene	190	Not Detected
Ethanol	190	Not Detected
Methyl tert-Butyl Ether		Not Detected
Heptane	190	260000
ŤVH*	380	

•	TENTATIVELY IDENTIFIED COMPOUNDS CAS Number	S - Top 10 Reported Match Quality	Amount (ppbv)
Compound	108-08-7	Manual ID	4000
Pentane, 2,4-dimethyl-	565-59-3	Manual ID	17000
Pentane, 2,3-dimethyl-	96-14-0	Manual ID	88000 -
Pentane, 3-methyl-	592-76- 7	Manual ID	4300
1-Heptene	592-13-2	87 %	9300
Hexane, 2,5-dimethyl-	• • • • •	Manual ID	12000
Heptane, 4,4-dimethyl-	1068-19-5	Manual ID	6100
Pentane, 2,2,3-trimethyl-	564-02-3	90 %	66000
Pentane, 3-ethyl-	617-78-7		91000
Pentane, 2,3,3-trimethyl-	560-21-4	Manual ID	57000
Hexane, 2,2,3-trimethyl-		Manual ID	57000

^{*}Total Volatile Hydrocarbons referenced to Heptane (MW=100).

_	% Recovery	Method Limits
Surrogates		70-130
Octafluorotoluene	104	70-130
Toluene-d8	108	
4. Promofiuorobenzena	86	70-130

SAMPLE NAME: Method Spike ID#: 9712080-05A

EPA METHOD TO-14 GCWS Full Scale		
(le tien)		
Compound	Rpt. Limit (ppbv)	% Recovery
Freon 12	0.10	106
Freon 114	0.10	107
Chloromethane	0.10	109
Vinyi Chloride	0.10	107
Bromomethane	0.10	85
Chloroethane	0.10	76
Freon 11	0.10	95
1,1-Dichloroethene	0.10	97
Freen 113	0.10	96
	0.10	94
Methylene Chloride	0.10	95
1,1-Dichloroethane	0.10	97
cis-1,2-Dichloroethene	0.10	96
Chloroform	0.10	95
1,1,1-Trichloroethane	0.10	95
Carbon Tetrachloride	0.10	96
Benzene		98
1,2-Dichloroethane	0.10 0.10	96
Trichloroethene		94
1,2-Dichloropropane	0.10	93
cis-1,3-Dichloropropene	0.10	96
Toluene	0.10	97
trans-1,3-Dichloropropene	0.10	102
1,1,2-Trichloroethane	0.10	95
Tetrachioroethene	0.10	101
Ethylene Dibromide	0.10	100
Chlorobenzene	0.10	99
Ethyl Benzene	0.10	97
m,p-Xylene	0.10	98
o-Xylene	0.10	96
Styrene	0.10	
1,1,2,2-Tetrachloroethane	0.10	107
1,3,5-Trimethylbenzene	0.10	98
1,2,4-Trimethy/benzene	0,10	101
1,3-Dichlorobenzene	0.10	104
1.4-Dichlorobenzene	0.10	103
Chlorotoluene	0.10	102
1,2-Dichlarabenzene	0.10	107
1,2,4-Trichlorobenzene	0.10	101
Hexachlorobutadiene	0.10	102
Propulana	0.50	108
1,3-Butadiene	0.50	108
Acetone	0.50	98
Carbon Disulfide	0.50	98
2-Propanol	0.50	96
trans-1,2-Dichloroethene	0.50	98
Vinyl Acetate	0.50	92

SAMPLE NAME: Method Spike

ID#: 9712080-05A

EPA METHOD TO-14 GC/MS Full Scan

Compound	Rpt. Limit (ppbv)	% Recovery
ompound	0.50	92
Chloroprene		94
2-Butanone (Methyl Ethyl Ketone)	0.50	93
Hexane	0.50	120
Tetrahydrofuran Tetrahydrofuran	0.50	
Cyclohexane	0.50	92
1,4-Dioxane	0.50	•
Bromodichloromethane	0.50	96
	0.50	96
4-Methyl-2-pentanone	0.50	. 99
2-Hexanone	₹ °	98
Dibromochloromethane	0.50	100
Bromoform		101
4-Ethyltoluene	0.50	112
Ethanol	0.50	94
Methyl tert-Butyl Ether	0,50	93
	0.50	
Heptane TVH*	1.0	Not Spiked

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported CAS Number Match Quality

Amount (ppbv)

Compound None Identified None identified

Container Type: NA

	% Recovery	Method Limits
Surrogates		70-130
Octafluorotoluene	96	70-130
Toluene-d8	98	• • • • • • • • • • • • • • • • • • •
4 BromofluorobenZEDG	100	70 -130 .

^{*}Total Volatile Hydrocarbons referenced to ideptane (MW=100).

SAMPLE NAME: Method Spike ID#: 9712080-05B

Compound	Rpt. Limit (ppbv)	% Recovery
reon 12	0.10	104
Freon 114	0.10	105
Chloromethane	0.10	108
/inyl Chloride	0.10	104
Promomethane	0.10	89
Chloroethane	0.10	92
Freon 11	0.10	93
1,1-Dichloroethene	0.10	96
Freon 113	0.10	93
Nethylene Chloride	0.10	93
1,1-Dichloroethane	0.10	94
cis-1,2-Dichloroethene	0.10	96
Chloroform	0.10	94
1,1,1-Trichloroethane	0.10	94
Carbon Tetrachloride	0.10	96
	0.10	94
Benzene 1,2-Dichloroethan e	0.10	94
	0.10	93
Trichloroethene	0.10	92
1,2-Dichloropropane cis-1,3-Dichloropropene	0.10	94
	0.10	93
Toluene	0.10	96
trans-1,3-Dichloropropene	0.10	102
1,1,2-Trichloroethane	0.10	94
Tetrachloroethene	0.10	100
Ethylene Dibromide Chlorobenzene	0.10	99 97
Ethyl Benzene	0.10	95
m,p-Xylene	0.10	96
o-Xylene	0.10	95
Styrene 1,1,2,2-Tetrachloroethane	0.10 0.10	106
1,3,5-Trimethylbenzene	0.10	97
1,2,4-Trimethylbenzene	0.10	106
1,3-Dichlorobenzene	0.10	108
	0.10	108
Chlorotoluene	0.10	111
	0.10	112
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	0.10	124
Hexachlorobutadiene	0.10	123
•	0.50	105
1,3-Butadiene	0.50	104
•	0.50	97
Acetone	0,50	95
Carbon Disulfide	0.50	99
2-Propanol	0.50	95
trans-1,2-Dichloroethene Vinyl Acetate	0,50	93

SAMPLE NAME: Method Spike ID#: 9712080-05B

EPA METHOD TO-14 GC/MS Full Scan

	Rpt. Limit (ppbv)	% Recovery
Compound	0.50	96
Chloroprene		93
2-Butanone (Methyl Ethyl Ketone)	0.50	93
Hexane	0.50	102
Tetrahydrofuran	0.50	92
Cyclohexane	0.50	99
1,4-Dioxane	0.50	94
Bromodichloromethane	0.50	92
4-Methyl-2-pentanone	0.50	95
2-Hexanone	0.50	97
Dibromochloromethane	0.50	91
Bromoform	0.50	103
	0.50	
4-Ethyltoluene	0.50	113
Ethanol	0,50	95
Methyl tert-Butyl Ether	0.50	91
Heptane TVH*	1.0	Not Spiked

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported
CAS Number Match Quality Amount (ppbv)

Compound

None Identified

None Identified

Container Type: NA

	% Recovery	Wethod Fitting
Surrogates		70-130
Octafluorotoluene	96	70-130
	98	, , , , , , ,
Toluene-d8	110	70-130 ·
4-Bramofluorobenzene	110	

^{*}Total Volatile Hydrocarbons referenced to Heptane (MW=100).

SAMPLE NAME: Lah Blank ID#: 9712080-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv
reon 12	0.10	Not Detected
Freon 114	0.10	Not Detected
Chloromethane	0.10	Not Detected
/inyl Chloride	0.10	Not Detected
romomethane	0.10	Not Detected
chloroethane	0.10	Not Detected
reon 11	0.10	 Not Detected
.1-Dichloroethene	0.10	Not Detected
reon 113	0.10	Not Detected
fethylene Chloride	0.10	Not Detected
,1-Dichloroethane	0.10	Not Detected
is-1,2-Dichloroethene	0.10	Not Detected
Chloroform	0.10	Not Detected
,1,1-Trichloroethane	0.10	Not Detected
Carbon Tetrachloride	0.10	Not Detected
Benzene	0,10	Not Detected
,2-Dichloroethane	0.10	Not Detected
richloroethene	0.10	Not Detected
,2-Dichloropropane	0.10	Not Detected
is-1,3-Dichloropropene	0.10	Not Detected
Foluene	0.10	Not Detected
rans-1,3-Dichloropropene	0.10	Not Detected
1,1,2-Trichloroethane	0.10	Not Detected
Tetrachloroethene	0.10	Not Detected
Ethylene Dibromide	0.10	Not Detected
Chlorobenzene	0.10	Not Detected
Ethyl Benzene	0.10	Not Detected
m,p-Xylene	0.10	Not Detected
n,p-Aylene o-Xylene	0.10	Not Detected
Styrene	0.10	Not Detected
1,1,2,2-Tetrachloroethane	0.10	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detected
1,2,4-Trimethylbenzene	0.10	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected
Chlorotaluene	0.10	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected
1,2,4-Trichlorobenzene	0.10	Nat Detecte
Hexachlorobutadiene	0,10	Not Detecte
Propylene	0.50	Not Detecte
1,3-Butadiene	0.50	Not Detecte
Acetone	0.50	Not Detecte
Carbon Disulfide	0.50	Not Detecte
2-Propanol	0.50	Not Detecte
trans-1,2-Dichloroethene	0.50	Not Detecte
Vinyl Acetate	0.50	Not Detected

SAMPLE NAME: Lab Blank 1D#: 9712080-06A

EPA METHOD TO-14 GC/MS Full Scan

Compound	Rpt. Limit (ppbv)	Amount (ppbv
Chloroprene	0.50	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected
Hexane	0.50	Not Detected
Tetrahydrofuran	0.50	Not Detected
Cyclohexane	0.50	Not Detected
1.4-Dioxane	0.50	Not Detected
Bromodichloromethane	0.50	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected
2-Hexanone	0.50	Not Detected
Dibramochloromethane	0.50	Not Detected
Bromoform	0.50	Not Detected
4-Ethyltoluene	0.50	Not Detected
Ethanol	0.50	Not Detected
Methyl tert-Butyl Ether	0.50	Not Detected
Heptane	0.50	Not Detected
TVH"	1.0	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported CAS Number Match Quality Compound

Amount (ppbv)

None Identified None Identified

*Total Volatile Hydrocarbons referenced to Heptane (MW=100).

Container Type: NA

Surrogates	% Recovery	Method Limits		
Octafluorotoluene	104	70-130		
Toluene-d8	100	70-130		
4-Bromofluorobenzene	96	70-130		

TITE TOUTOR FIR

SAMPLE NAME : Lab Blank 1D#: 9712080-06B

IF REAL PROPERTY.	NA CONTRACTOR OF THE CONTRACTO	
		Commission of the Commission o
Compound	Rpt. Limit (ppbv)	Amount (ppbv)
reon 12	0.10	Not Detected Not Detected
Freon 114	0.10	
Chloromethane	0.10	Not Detected Not Detected
/inyl Chloride	0.10	
iromomethane	0.10	Not Detected
Chloroethane	0.10	Not Detected
reon 11	0.10	Not Detected
,1-Dichloroethene	0.10	Not Detected
•	0.10	Not Detected
Freon 113	0.10	Not Detected
Methylene Chloride	0.10	Not Detected
1 - Dichloroethane	0.10	Not Detected
is-1,2-Dichloroethene	0.10	Not Detected
Chloroform	0.10	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected
Carbon Tetrachloride	0.10	Not Detected
Benzene	0.10	Not Detected
1,2-Dichloroethane	0.10	Not Detected
Trichloroethene	0.10	Not Detected
1,2-Dichloropropane	0.10	Not Detected
is-1,3-Dichloropropene	0.10	Not Detected
Toluene	0.10	Not Detected
trans-1,3-Dichloropropene	0.10	Not Detected
1,1,2-Trichloroethane	0.10	Not Detecte
Tetrachloroethene	0.10	Not Detected
Ethylene Dibromide	0.10	Not Detecte
Chlorobenzene	0,10	Not Detected
Ethyl Benzene	0.10	Not Detecte
m,p-Xylene	0.10	Not Datecte
o-Xylene	0.10	Not Detecte
Styrene	0.10	Not Detecte
1,1,2,2-Tetrachloroethane	0.10	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detecte
1,2,4-Trimethylbenzene	0.10	Not Detecte
1,3-Dichlorobenzene		Not Detecte
1,4-Dichlorobenzene	0.10	Not Detecte
Chlorotoluene		Not Detects
1,2-Dichlorobenzene	0.10	Not Detecte
1,2,4-Trichlorobenzene	0.10	Not Detecte
Hexachlorobutadiene	0.10	Not Detecte
Propylene	0.50	Not Detect
1,3-Butadiene	0.50	Not Detecte
Acetone	0.50	Not Detect
Carbon Disulfide	0.50	Not Detect
2-Propanol	0.50	Not Detect
trans-1,2-Dichloroethene	0.50	Not Detecti
Vinyl Acetate	0.50	

SAMPLE NAME: Lab Blank

ID#: 9712080-06B

EPA METHOD TO-14 GC/MS Full Scan

Compound	Rpt. Limit (ppbv)	Amount (ppbv)
Chloroprene	0.50	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected
Hexane	0.50	Not Detected
Tetrahydrofuran	0.50	Not Detected
Cyclohexane	0.50	Not Detected
1,4-Dioxane	0.50	Not Detected
Bromodichloromethane	0.50	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected
2-Hexanone	0.50	Not Detected
Dibromochloromethane	0.50	Not Detected
Bromotorm	0.50	Not Detected
4-Ethyltoluene	0.50	Not Detected
Ethanol	0.50	Not Detected
Methyl tert-Butyl Ether	0.50	Not Detected
Heptane	0.50	Not Detected
TVH*	1.0	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS - Top 10 Reported
CAS Number Match Quality Amount (ppbv) Compound

None Identified None Identified

Container Type: NA

Surrogates	% Recovery	Method Limits
Octafluorotoluene	98	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	88	70-130

^{&#}x27;Total Volatile Hydrocarbons referenced to Heptane (MW=100).

APPENDIX C

LABORATORY REPORTS - AIR SAMPLES BY EPA 8021 & E18

Project #: 37478 35

Field ID #: N/A

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #1 N/A

Sample Delivery Group: N/A

Lab Sample ID: 5.0ML S8058

Sample Type: AIR / STANDARD Date Sampled: 03-Dec-97

Sample Volume (ml): 5.0

Date Received: N/A

Initial Calibration Date: 01-May-97

Date Analyzed: 03-Dec-97

QC Batch Code: 8D1203A2

Time Analyzed: 2039 Date Reported: 11-Dec-97 Data Filename: 011F0101.D

Dilution Factor: 1.00

Electronic Filename: 211D1203.OAC

Concentration Units: PPBV

SACODE: RM4 PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Resetts	PARVQ	URS USE	RPD / PD
Dichlorediffueromethene	FC12	75-71-8	4.00	190.00	=		5
Chloremethene	CLME	74-57-3	4.00	170.00	-		15
Vtayl chloride	VC	75-01-4	4.00	180.00	-		11
Trichierofinaremethene	PC11	75-69-4	3.00	170.00	-		17
1,1-Dichloreethene	DCE11	75-35-4	10.00	190.00	-		6
Trickiorotrifiseroeth <u>an</u> e	PC113	76-13-1	10.00	200.00	-		1
Methylene chloride	MTLNCL	75-89-2	3.00	200.00	-		i
trans-1,2-dichleroethene	DCE12T	156-69-5	4.00	200.00			1
1,1-Dichloresthane	DCA11	75-34-3	4.00	200.00	•		ı
cis-1,2-dichleroethene	DCE12C	156-59-2	3.00	210.00	-		3
Chieroform	TCLME	67-46-3	4.00	190.00	-		4
1,1,1-Trichloroethane	TCA111	71-55-6	4.00	190.00	3		7
Carbon tetrachieride	crcı	56-23-5	3.00	190.00	•		3
1,2-Dichiereethane	DCA12	107-06-2	3.00	200.00	-		1
Boesse	BZ	71-43-2	20.00	1200.00	=		19
Trichioresthese	TCE	79-01-6	3.00	190.00	_		3
Tolune	BZME	100-00-3	20.00	1200.00	-		16
Totrachioreethene	PCE	127-18-4	3.00	180.00	7/8		12
Chierobenzene	CLBZ	100-90-7	4.00	220.00	-		8
Ethylboneene	ESZ	100-41-4	25.00	1100.00	-		15
ta+p-Xylence	XYLMP	1339-29-7	50.00	2400.00	-		18
o-Xylene	XYLO	95-47-6	25.00	1200.00			21
Bromochloremethene	BRCLME	74-97-5	0	82.45			
1,4-Dichterobatane	DCBTA14	110-56-5	0	115.06			

NOTES

- R Deta rejected.
- E Data estimated due to essendance of calibration res
- D Dilution.
- B Blank conta
- U Analytes not detected at, or obove the stated detection limit.
- Q purumeter is out of ecentral limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Perts per billion volume. MQL Method questitation limit.
- PD Percent difference.
- RPD Robitive persons diff
- Surrogate results are in units of percent recovery with control limits 65 to 135%.

This energies was performed using EPA Method \$021 and EPA Method 5030.

Approved By:

Tel: (510) 490-8571

Fac (510) 490-8572

Onsite Environmental Laboratories, Inc.

Printed on recycled paper. S.9

LEB S3 . 38 . 08:3SbW HTV * OHKTUND

Project #: 37478 35

Field ID #: N/A

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / TEDLAR

Date Sampled: 03-Dec-97

Lab Sample ID: METHOD BLANK

Date Received: N/A

Sample Volume (ml): 50

Date Analyzed: 03-Dec-97

Initial Calibration Date: 01-May-97 OC Batch Code: 8D1203A2

Time Analyzed: 2114

Data Filename: 012F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 212D1203.QAC

Dilution Factor: 1.00

SACODE: LB4

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Remits	PARVQ	URS USE	RPD / PD
Dicklerodiffuorometheme	FC12	75-71-8	4.00	0	U		
Chloromothene	CLME	74-87-3	4.00	0	U		
Visyl chlevide	УC	75-01-4	4.00	0	U		
Trichlarofteeremethane	FC11	75-69-4	3.00	0	U		
1,1-Dickloreethene	DCE11	75-35-4	10.00	0	Ŭ		
Trichierotrifinorosticase	FC113	76-13-1	10.00	0	U		
Methylene chloride	MITLNOL	75-49-2	3.00	0	U		
trans-1,2-dichiereethene	DCE12T	156-69-5	4.00	0	U		
1,1-Dichiercotkane	DCALL	75-34-3	4.00	0.	U		
cis-1,2-dicklorosthese	DCE13C	156-59-2	3.00	0	U		
Chloroform	TCLMZ	67-64-3	4.00	0	U		
1,),1-Trichleresthane	TCA111	71-55-6	4.00	0	U		
Certen terrechioride	CTCL	56-23-5	3.00	0	U		
1,2-Dichiorasthane	DCA12	107-06-2	3.00	0	U		
Benarine	B2.	71-43-2	20.00	0	U		
Tricklorosthese	TCE	79-01-6	3.00	0	U		
Tolmene	BZME	109-88-3	20.00	0	U		
Tetrachierosthems	PCE	127-18-4	3.00	0	U		
Chlorobessess	CLB2	108-98-7	4.00	0	U		
Ethythenione	EBZ	108-41-4	25.00	0	U		
m+p-Xylenes	XYLMP	1339-29-7	50.00	0	Ü		
o-Xyleae	XYLO	95-47-6	25.00	0	U	1	
Bresnochioremethane	BRCLME	74-97-5	0	79.72			
1,4-Dicklerobutone	DCBTA14	110-56-5	0	110.26			

NOTES

- R Date repa
- R Date esta
- D Dibation.
- B Blank oon
- U Applytes not detented at, or above the stated detection limit Q - personeter is out of control limits.
- O A result of zero represents an undetected result at the MCE reported and does not imply an actual value. PPBV - Parts per billion volume.

MOL - Method quantitation limit.

PD - Percent difference.

RPD - Raintive percent difference.

Surrogets results are in units of percent recovery with control limits 65 to 135%.

This enalyses was performed using EPA Method 8021 and EPA Method 5030

Tel: (510) 490-8571

Fax: (510) 490-8572

Onsite Environmental Laboratories, Inc.

Project #: 37478 35

Field ID #: FBAI101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32601

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 01-May-97

Date Analyzed: 03-Dec-97 Time Analyzed: 2149

QC Batch Code: 8D1203A2 Data Fliename: 013F0101.D

Date Reported: 11-Dec-97 Dilution Factor: 10.00

Electronic Filename: 213D1203.HAL

Concentration Units: PPBV

SACODE: * PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodiffeoromethene	FC12	75-71-8	40.00	0	U		
Chleromethane	CLME	74-87-3	40.00	0	U		
Visyl chloride	VC	75-01-4	40.00	0	U		
Trichieroffscrossethese	FC11	75-69-4	30.00	0	Ü		
1,1-Dichleroethene	DCE11	75-35-4	100.00	1100.00	-		
Trickloretrifkerweth and	PC113	76-13-1	100.00	250.00	-		
Methylene chloride	MTLNCL	75-09-2	30.00	130.00	-		
trans-1,2-dichlerouthens	DCE12T	156-69-5	40.00	0	· U		
1.1-Dichloreethane	DCA11	75-34-3	40.00	2200 00			· · · · · · · · · · · · · · · · · · ·
cis-1,2-dichloreethene	DCE12C	156-59-2	30.00	1700.00	•		
Chiaroform	TCLME	67-66-3	40.00	1000.00	-		
1,1,1-Trichicroethans	TCA111	71-55-6	40.00	2600.00	-		
Carbon tetrachloride	CTCL	56-23-5	30.00	170.00	-		
1,2-Dichloroothane	DCA12	107-06-2	30.00	80.00	-		
Bessene	BZ	71-43-2	200.00	15000.00	-		
Trickleroethene	TCE	79-01-6	30.00	11000.00			
Tolumo	BZME	105-56-3	200.00	17000.00	=		
Tetrachloroethene	PCE	127-18-4	30.00	470.00	-		
Chlerubensone	CLBZ	108-98-7	40.00	0	Ū		
Ethylhengene	EBZ	100-41-4	250.00	7500,00			
n+p-Xylenes	XYLMP	1330-20-7	500.00	4200.00	•		
-Xylone	XYLO	95-47-6	250.00	3500.00	u		
Bremochloromethane	BRCLME	74-97-5	0	82.52			
1,4-Dichlerobutane	DCBTA14	110-56-5	0	112.37			

NOTES

- R Date rejected
- E Deta esti
- D Dilution.
- B Blank oon
- U- Analytes not detected at, or above the stated detection limit.
- Q personator is out of co 0 A result of zero repre er is out of control limits.
- aber as time ted result at the MQL reported and does not imply an actual value.
- PPBV Perts per billi MQL - Method quantilation limit.
- PD Percent difference. RPD - Relative percent diffe

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

Tel: (510) 490-8571

Date:

Fax: (510) 490-8512

Onsite Environmental Laboratories, Inc.

94538

Project #: 37478 35

Field ID #: FBAE101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32602

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97 Date Analyzed: 03-Dec-97 Initial Calibration Date: 01-May-97 QC Batch Code: 8D1203A2

Time Analyzed: 2223

Data Filename: 014F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 214D1203.HAL

Dilution Factor: 10.00

SACODE: *

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Resealts	PARVQ	URS USE	RPD / PD
Dicklerodiffuoremethane	FC12	75-71-8	40.00	0	U		
Chieromethane	CLME	74-87-3	40.00	0	υ		
Vieyi chieride	VC	75-01-4	40.00	0	ַט		
Tricklorofineromethans	FC11	75-69-4	30.00	0	U		
1,1-Dicksroothene	DCE11	75-35-4	100.00	250.00	_		
Trickloretriffeoreethsus	PC113	76-13-1	100.00	0	ប		
Methyleae chloride	MTLNCL	75-89-2	30.00	0	บ		
trees-1,2-dichloroothens	DCE12T	156-69-5	40.00	0	U		
1,1-Dichleroetkene	DCA11	75-34-3	40.00	320.00	•		
cis-1,2-dichloroothene	DCE12C	156-59-2	30.00	160.00	4		
Caleroform	TCLME	67-66-3	40.00	190.00	=		
1,1,1-Tricklerooth.me	TCA111	71-55-6	40.00	840.00	*		
Carbon tetrachloride	CLCT	56-23-5	30.00	44.00	-		
1,2-Dichloroethane	DCA12	107-06-2	30.00	0	บ		
Bonecee	BZ	71-43-2	200.00	3600.00	-		
Trickleroethene	TCE	79-81-6	30.00	1200.00			
Toleses	BZME	166-88-3	200.00	2800.00	-		
Tetrachioroethene	PCE	127-18-4	30.00	54.00	-		
Chierobeazene	CLBZ	105-90-7	40.00	0	บ		
Ethylbersene	EBZ	109-41-4	250.00	350.00			
m+p-Xylence	XYLMP	1339-29-7	500.00	0	U		
o-Xyisaa	XYLO	95-47-6	250.00	0	ט		
Brussochieremethame	DRCLME	74-97-5	0	80.06			
1.4-Dichterobutane	DCBTA14	110-56-5	0	110.26			

NOTES

- R Data reje
- and date to empendence of calibration reces H - Date estin
- D Dilution.
- B Black contenues
- U Analyses not detected at, or shows the stated detection limit.
- eer is cost of essented limits. 0 - A result of sere regard
- same an readstanted result at the MQL reported and does not amply an extual value.
- PPBV Perts per billion voka
- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent diffe

Surrogete results are in units of percent recovery with control limits: 65 to 135%.

This analysis was performed using EFA Method \$021 and EPA Method 5030.

5500 Bosoeli Come

Tel: (510) 490-8571

Fasc: (510) 490-8572

Onsite Environmental Laboratorius, Inc.

Project #: 37478 35

Field ID #: FBAI103

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32603

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 01-May-97

Date Analyzed: 03-Dec-97 Time Analyzed: 2258

QC Batch Code: 8D1203A2 Data Filename: 015F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 215D1203.HAL

Dilution Factor: 10.00

SACODE: *

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorediffuoromethans	PC12	75-71-8	40.00	0	U		
Chicromethese	CLME	74-87-3	40.00	0	U		
Viayi chloride	VC	75-01-4	40.00	0	U		
Trichlerofleeromethane	PC11	75-69-4	30.00	0	U		
1,1-Dichlerosthene	DCE11	75-35-4	100.00	1200.00	-		
Trichlorotrifluoroothane	PC113	76-13-1	100.00	0	U		
Methylene chloride	MTLNCL	75-89-2	30.00	120.00	-		
trans-1,2-dichloroothene	DCE12T	156-60-5	40.00	0	U		
1,1-Dichleroethage	DCA11	75-34-3	40.00	2000.00	-		
cis-1,2-dichloroethone	DCX12C	154-59-2	30.00	1600.00	-		
Chloroform	TCLME	67-66-3	40.00	940.00	-		
1,1,1-Trickleroethame	TCA111	71-55-6	40.00	2400.00	-		
Carbon tetrachleside	CTCL	56-23-5	30.00	150.00	_		
1,2-Dichier octhese	DCA12	107-06-2	30.00	75.00	=		
Bengane	82	71-43-3	200.00	13000.00	-		
Trichloresthens	TCE	79-01-6	30.00	11000.00	_		
Talesze	BZME	109-88-3	200.00	15000.00			
Tetrachloresthens	PCE	127-18-4	30.00	430.00	3		
Chlorobenezae	CLEZ	195-99-7	40.00	0	U		
Ethylbensone	EBZ	100-41-4	250.00	6500.00	<u> </u>		
sa+p-Xylence	XYLMP	1339-28-7	500.00	3600.00	-		
o-Xylano	XYLO	95-47-6	250.00	3000.00	-20		
Bromocideromethene	BRCLME	74-97-5	0	80.84			
1,4-Dicisiorobutane	DCBTA14	110-56-5	0	108.12		<u> </u>	

NOTES

- R Data rejected.
- R Data estimated that to estecological of calibrating range
- D Dilution.
- B Blank contentio
- U Analytes not detected at, or shove the stated detection limit.
- er is out of eastroi lissite. of zero represents as testo
- 0 A result of zero repres PPBV Parts per billion ted result at the MQL reported and does not imply as actual value.
- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of parcent recovery with control limits: 65 to 135%.

PROCEDURES:

This enalysis was performed using EPA Method 8021 and EPA Method 5030.

A CA 94538

Tel: (510) 490-8571

Fesc (\$10) 490-8572

Printed on recycled paper.

Onsite Environmental Laboratories, Inc.

LEB S3 , 38 108:346W HTW * OUNTWID

Project #: 37478 35

Field ID #: FBAE103

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32604

Date Sampled: 03-Dec-97

Sample Volume (mil): 5

Date Received: 03-Dec-97

Initial Calibration Date: 01-May-97

Date Analyzed: 03-Dec-97

QC Batch Code: 8D1203A2

Time Analyzed: 2332 Date Reported: 11-Dec-97 Data Filename: 016F0101.D

Dilution Factor: 10.00

Electronic Filename: 216D1203.HAL SACODE: *

Concentration Units: PPBV

PVCCODE: PR

Azelytes	PARLABEL	CABNUM	MQL	Regults	PARVO	URS USE	RPD / PD
Dicklorodisheromethase	FC12	75-71-8	40.00	0	U		
Chieromethane	CLME	74-87-3	40.00	0	U		
Visyl ciderate	VC	75-01-4	40.00	0	U	<u> </u>	
Trichiorefleoromethase	PC11	75-69-4	30.00	0	U		
1,1-Dichlerosthess	DCR11	75-35-4	100.00	580.00	-		
Trickloretrificoreethsze	FC113	76-13-1	100.00	0	U		
Methylene chloride	MTLNCL	75-09-2	30.00	0	U		
trans-1,2-dichlersethene	DCE12T	156-69-5	40.00	0	U		
1,1-Dickloroethane	DCALL	75-34-3	40.00	790.00	-		
cis-1,2- dichlarootheas	DCX12C	156-59-2	30.00	480.00	-		
Chloreform	TCLME	67-66-3	40.00	390.00			
1,1,1-Trickierosthasse	TCA111	71-55-4	40.00	1500.00	2		
Carbon tetrachioride	CTCL	56-23-5	30.00	83.00	=		
1,2-Dickierosthana	DCA12	107-96-2	30.00	0	U		
Beacea	B2Z	71-43-2	200.00	9800.00			·
Trickiereetkene	TCE	79-01-6	30.00	3600.00	-		
Tobasse	BZME	199-88-3	200.00	7800.00	_		
Tetrachioroethene	PCE	127-18-4	30.00	130.00	-		
Chlerobancana	CLEZ	199-99-7	40.00	0	U		
Ethylbonsono	PEZ	100-41-4	250.00	2000.00	-		
m+p-Xylenes	XYLMP	1339-28-7	500.00	1100.00	=		
o-Xytesse	XYLO	95-47-6	250.00	760.00	==		
Broznochioromothame	BRCLME	74-97-5	0	80.41			
1,4-Dichlorebutans	DCBTA14	110-56-5	0	110.69			

NO TEEL

- R Duta zwi
- ad das to exceedance of culturation recee B - Deza est
- D Dilution.
- U Analytes not detented et, or shows the stated detection limit
- Q parameter is out of a 0 A result of zero reper ser is out of soneral limits.
- ents an underceted result at the MQL reported and does not imply an actual value. PPBV - Parts per billion voltam
- MQL Method quantitation limit. PD Percent difference.
- RPD Relative persent difference.

Surrogate results are in usate of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This enalysis was performed using EPA Method 3021 and EPA Method 5030

Onnite Environmental Laboratorica, Inc.

5500 Boscell Common, Fred CEL CA 94538 Tel: (510) 490-8571

Fee: (\$10) 490-8572

Project #: 37478 35

Field ID #: FBAD101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32605

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 01-May-97

Date Analyzed: 04-Dec-97 Time Analyzed: 0006

QC Batch Code: 8D1203A2 Data Filename: 017F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 217D1203.HAL

Dilution Factor: 10.00

SACODE: * PVCCODE: PR

Concentration Units: PPBV

Analytes	PARLABEL	CASNUM	MQL	Resides	PARVQ	URS USE	RPD / PD
Dicklerediffuorospothams	FC12	75-71-8	40.00	0	Ŭ		
Chloromethans	CLME	74-87-3	40.00	0	บ		
Vizyl chloride	VC	75-01-4	40.00	0	ט		
Trichlare@usromethene	FC11	75-69-4	30.00	0	บ		
1,1-Dichleroethess	DCE11	75-35-4	100.00	240.00	-		
Trickleretriffscreethese	PC113	76-13-1	100.00	0	U		
Methylane chloride	MTLNCL	75-89-2	30.00	0	U		
rene-1,2-dichleroothene	DCE12T	156-60-5	40.00	0	· U		
1,1-Dichioroethane	DCA11	75-34-3	40.00	310.00	-		
cis-1,2-dichleroethene	DCE12C	156-59-2	30.00	150.00	-		
Chierofortm	TCLME	67-46-3	40.00	180.00	=		
1,1,1-Trichleroethane	TCA111	71-55-6	40.00	820.00	2		
Carbon tetrackleride	CTCL	56-23-5	30.00	43.00			
1,2-Dichlerosthans	DCA13	107-06-2	30.00	0	U		
Benzese	32	71-43-2	200.00	3500.00	-		1
Trickloroethene	TCE	79-01-6	30.00	1200.00	-		
Telesco	BZME	100-88-3	200.00	1600.00	-		
Tetrachioreethene	PCE	127-18-4	30.00	52.00			
Chlorobenzeae	CLBZ.	108-98-7	40.00	0	U		
Ethylbenzene	EBZ	100-41-4	250.00	270.00	=		
m+p-Xyimes	XYLMIP	1339-28-7	500.00	0	U		
o-Xylsee	XYLO	95-47-6	250.00	0	U		
Browechloremethans_	BRCLME	74-97-5	0	78.67			
1,4-Dichiorebatane	DCBTA14	110-56-5	0	108.70			

NOTES

- R Deta rejected.
- E Data estimated de

- Q personater is out of control limits.
- 0 A result of zero represents an understood result at the MQL reported and does not imply an actual value. PPBV Parts per billion values.
- MQL Method quantitation limit. PD Percent difference.
- RPD Relative percent difference.

Oneite Enveronmental Laboratories, Inc.

Surrogate results are in units of percent recovery with control binds: 65 to 135%.

This analysis was performed using EPA Method 8021 and EPA Method 5050.

5500 Bosoell Com

Tel: (510) 490-8571

Fax: (510) 490-8572

Printed on recycled paper.

LEB S3 . 38 BB: 326W HITH * OHKTUND

Project #: 37478 35

Field ID #: N/A

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / STANDARD

Lab Sample ID: 5.0ML S8058

Date Sampled: 03-Dec-97

Sample Volume (ml): 5.0

Date Received: N/A

Initial Calibration Date: 01-May-97

Date Analyzed: 04-Dec-97

QC Batch Code: 8D1203A2

Time Analyzed: 0041

Data Filename: 018F0101.D

Date Reported: 11-Dec-97 Dilution Factor: 1.00

Electronic Filename: 218D1203.QAC SACODE: RM6

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Reseates	PARVQ	urs use	RPD/PD
Dictalore di finaromethane	FC12	75-71-8	4.00	190.00	-		4
Chieromethezo	CLME	74-87-3	4.00	170.00	•		13
Visyt chloride	VC	75-01-4	4.00	180.00	-		19
Trichlerofinoremethres	PC11	75-69-4	3.00	150.00	-	I	24
1,1-Dichlos esthene	DCE11	75-35-4	10.00	170.00	-		15
Trichkrotrisherosthene	PC113	76-13-1	10.00	230.00	-		13
Mathylana chiorida	MTLNCL	75-09-2	3.00	200.00	-		0
trans-1,2-dichleresthens	DCE12T	156-69-5	4.00	200.00			1
1,1-Dicklereethese	DCA11	75-34-3	4.00	200.00	-		1
cie-1,2-dicklereethess	DCE12C	156-59-2	3.00	210.00	-		3
Chiarofarm	TCLME	67-66-3	4.00	190.00	-		5
1,1,1-Trichlorosthess	TCA111	71-55-6	4.00	180.00	_		8
Carbon tetrachleride	CTCL	56-23-5	3.00	190.00	-		4
1,2-Dickierostkene	DCA13	107-06-2	3.00	190.00	-		3
Bezzese	B2	71-43-2	20.00	1200.00	-		19
Trichlorosthone	TCE	79-01-6	3.00	190.00	-		4
Telegra	BZME	106-59-3	20.00	1200.00	-		15
Tetrachioroethese	PCE	127-18-4	3.00	180.00	-		12
Chlerobaneses	CLBZ.	193-98-7	4.00	210.00	-		4
Ethylbeases	KRZ	109-41-4	25.00	1100.00	•		9
m+p-Xylenes	XYLMP	1339-29-7	50.00	2200.00	-		12
o-Xylses	XYLO	95-47-6	25.00	1100.00			13
Brozzachieromothens	BRCLME	74-97-5	0	82.79			
1,4-Dtchlerobutese	DCBTA14	116-56-5	0	113.97			

NOTES

- R Deser reje
- sted due to emendance of calibratina range
- D Dilution.
- B Blank cost
- U Analytes not detected at, or above the stated detection limit.
- Q personator is out of enemal limits.
- 0 A result of zero supresents as undetected result at the MCL reported and does not suply an actual valua.

PPBV - Parts per billion volume.

MQL - Method quantimeion limit. PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in uses of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030.

5500 Bosouli Common, Fre

Tel: (510) 490-8571

Far (510) 490-8572

Onside Buyeremental Laboratories, Inc.

Project #: 37478 35

Field ID#: N/A

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / STANDARD

Lab Sample ID: 2.0ML S8090

Date Sampled: 03-Dec-97

Sample Volume (ml): 2.0

Date Received: N/A

Initial Calibration Date: 24-Jul-95

Date Analyzed: 03-Dec-97 Time Analyzed: 2043 QC Batch Code: 8D1203A3

Date Reported: 11-Dec-97

Data Filename: 018F0101.D Electronic Filename: 118D1203.QAC

Dilution Factor: 1.00

SACODE: RMQ

Concentration Units: PPMV

PVCCODE: PR

Amelytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD/PD
Methens	CH4	74-82-8	200.00	1100.00			6

NOTES:

- R Deta rejected.
- E Data cutimated due to exceedence of culibration range.
- D Diletion.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection Sanit.
- Q parameter is out of countrel limits.
- 0 A result of zare represents an undetected result at the MQL reported and does not imply an actual value.

PPMV - Parts per million volumes.

MQL - Method quantization limit.

PD - Percent difference.

RPD - Relative percent difference.

PROCEDURES.

This analysis was performed using EPA Method 18 modified.

Approved By:

Date:

Tel: (510) 490-8572

Fax: (510) 490-8572

Onsite Environmental Laboratories, Inc.

5500 Boscoli Common, Freengal, CA 94538

Project #: 37478 35

Field ID#: N/A

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / TEDLAR

Lab Sample ID: METHOD BLANK

Date Sampled: 03-Dec-97

Sample Volume (ml): 2

Date Received: N/A
Date Analyzed: 03-Dec-97

Initial Calibration Date: 24-Jul-95

Time Analyzed: 2102

QC Batch Code: 8D1203A3

Date Reported: 11-Dec-97

Data Filename: 019F0101.D Electronic Filename: 119D1203.QAC

Date Reported: 11-Dec-97

SACODE: LBO

Düution Factor: 1.00 Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	urs use	RPD / PD
Non-methans organic corresonats	NMOC	0-86-2	200.00	0	U		

NOTES

- R Deta rejected.
- E Data estimated due to exceedence of calibration range.
- D Dilution.
- B Blank contrasinasion.
- U Analytee not detected at, or above the steam detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an underected result at the MQL reported and does not imply an actual value.

PPMV - Parts per million volume.

MQL - Method quantitation limit.

PD - Perosas difference.

RPD - Relative percent difference.

PROCEDURES:

This analysis was performed using EPA Method 18 modified.

Approved By:

Date:

12130197

Ossite Environmental Laboratorius, Inc.

5500 Boscott Common, Fromore CA S

Tel: (510) 490-8972

Fax: (510) 490-8572

Project #: 37478 35

Field ID #: FBAI101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32601

Date Sampled: 03-Dec-97

Date Received: 03-Dec-97

Sample Volume (ml): 5

Date Analyzed: 03-Dec-97

Initial Calibration Date: 24-Jul-95 OC Batch Code: 8D1203A3

Time Analyzed: 2122

Data Filename: 020F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 120D1203.HAL

Dilution Factor: 0.40

SACODE: *

Concentration Units: PPMV

PVCCODE: PR

_								
ı.	Amalotes	PARLABEL	CASNUM	MOL	Resulta	PARVO	URS USE	RPD/PD
_	1	4 / CACCATAGO PAGE	C7 807 1 C1/2	14965	NOTE:	1 mart V	UNGOUSE	L KEU/ FU
ľ	ion-methans organic compounds	NMOC	0-80-2	80.00	2700.00	•		

NOTES

- R Data rejected.
- E Data estimated due to exceedement of calibration range.
- D Dilection.
- B Biank contamination.
- U Analyses not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents as undetected result as the MQL reported and does not imply an actual value.

PPMV - Parts per sellion volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

PROCEDURES

This enalysis was performed using EPA Method 18 modified.

Tel: (510) 490-8572

Fast: (510) 490-8572

Orașio Esvirosamental Laboratorica, Ins.

5500 Bescell Common, Fren

Project #: 37478 35

Field ID #: FBAI101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32601

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 03-Dec-97

QC Batch Code: 8D1203A3

Time Analyzed: 2327

Data Filename: 025F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 125D1203 HAL SACODE: *

Dilution Factor: 0.40 Concentration Units: PPMV

PVCCODE: PR

Analyses	PARLABEL	CASNUM	MQL	Results	PARVQ	urs use	RPD / PD
Non-methane erganic competends	NMOC	9-30-2	80.00	2700.00	•		0

NOTE:

- R Data rejected.
- E Data entirement due to exceedance of culibration range.

- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undertected result at the MQL reported and does not imply as actual value.

PPMV - Parts por mellion volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent differences.

PROCEDURES:

This analysis was performed using EPA Method 18 modified.

Onsite Environmental Laboratorisa, Inc.

5500 Bosoel Common, Fre

Tel: (510) 490-8572

Fee: (510) 490-8572

Project #: 37478 35

Field ID #: FBAE101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32602

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 03-Dec-97

QC Batch Code: 8D1203A3

Time Analyzed: 2143

Data Filename: 021F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 121D1203.HAL

Dilution Factor: 0.40

Concentration Units: PPMV

SACODE: * PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD/PD
Non-methone organic compounds	NMOC	0-86-2	80.00	480.00	=		

NOTES:

- R Data rejected.
- E Data cotinuous dose to exceedance of calibration range
- D Diletica.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an notation value.

PPMV - Parts per million volumes.

- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

PROCEDURES:

This analysis was performed using EPA Method 15 modified.

Approved By:

Fax: (510) 490-8572

Onsite Environmental Laboratories, Inc.

5500 Boscoll Common, Fre

Printed on recycled paper.

P.14

LEB S3 , 38 BB: 336W HTW * OUNCEUND

Tel: (510) 490-8572

Project #: 37478 35

Field ID #: FBAI103

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32603

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 03-Dec-97

QC Batch Code: 8D1203A3

Time Analyzed: 2203

Data Filename: 022F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 122D1203.HAL

Dilution Factor: 0.40

SACODE: *

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Restates	PARVQ	URS USE	RPD / PD
Non-methone organic compounds	NMOC	9-86-2	80.00	2300.00	**		

NOTES:

- R Date reisoted.
- E Data estimated due to exceedence of calibration range.

- U Analytine not detected at, or above the stated detection limit.
- Q personeur is out of course limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPMV - Parta per asidica volume.

MQL - Method quantitation limit.

PD - Porcest difference.

RPD - Relative percent difference.

This analysis was performed using EPA Moticed 18 modified.

Oncide Environmental Laboratorisa, Inc.

Tel: (510) 490-8572

Fasc (510) 490-8572

Project #: 37478 35

Field ID #: FBAE103

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32604

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 03-Dec-97

OC Batch Code: 8D1203A3

Time Analyzed: 2223

Data Filename: 023F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 123D1203.HAL

Dilution Factor: 0.40

SACODE: *

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Remaits	PARVQ	urs use	RPD/PD
Non-methode organic compounds	NMOC	0-98-2	80.00	1400.00	•		

NOTES

- R Data rejected.
- E Data commeted due to exceedance of collection range
- D Dépation.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an andstrotted result at the MQL reported and does not imply an actual value.

PPMV - Parts per million volume.

MQL - Mothod questitation limit.

PD - Percent difference.

RPD - Relative parcent difference.

PROCEDURES

This analysis was performed using EPA Method 18 modified.

Tel: (510) 490-8572

Fasc (510) 490-8572

Omita Environmental Laboratories, Inc.

5500 Boscoli Cours

Project #: 37478 35

Field ID #: FBAD101

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D326

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D32605

Date Sampled: 03-Dec-97

Sample Volume (ml): 5

Date Received: 03-Dec-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 03-Dec-97

QC Batch Code: 8D1203A3

Time Analyzed: 2244

Data Filename: 024F0101.D

Date Reported: 11-Dec-97

Electronic Filename: 124D1203.HAL

Dilution Factor: 0.40

SACODE: *

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Receits	PARVQ	URS USE	RPD/PD
Non-merihane organic compounds	NMOC	0-89-2	80.00	440.00	***		

NOTES:

- R Data rejected.
- E Data estimated due to expecdence of calleration range.

- U Analyses not desected at, or above the stated desection limit.
- Q parameter is out of control limits.
- 0 A results of zero represents an undertected result at the MQL reported and does not imply an screek value.

PPMV - Parts per mation volume.

MQL - Method quantitation limit.

PD - Percess difference.

RPD - Relative percent difference.

PROCEDURES:

This analysis was performed using EPA Method 18 modified.

Onside Environmental Laboratorisa, Isa.

Tet (510) 490-8572

Fax: (510) 490-8572

Project #: 37478 35

Field ID #: N/A

Client: Harding Lawson Associates

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / STANDARD

Lab Sample ID: 2.0ML S8090

Date Sampled: 03-Dec-97

Sample Volume (ml): 2.0

Date Received: N/A Date Analyzed: 03-Dec-97 Initial Calibration Date: 24-Jul-95

Time Analyzed: 2350

QC Batch Code: 8D1203A3

Date Reported: 11-Dec-97

Data Filename: 026F0101.D Electronic Filename: 126D1203.QAC

Dilution Factor: 1.00

SACODE: RMR

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD/PD
Methens	CH4	74-82-8	200.00	1100.00	-		3

NOTES

- R Data rejected.
- E Data estimated due to expecdence of calibration range.
- D Dilution.
- B Black contrations
- U Analytes not detected at, or above the stated detection little.
- Q perameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPMV - Parts per million volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent differences.

PROCEDURES:

This enalysis was performed using EPA Method 18 modified.

Tel: (510) 490-8572

Fax: (510) 490-8572

Onsite Environmental Laboratories, Inc.

08:41PM HLA * OAKLAND P.19 FEB 23 '98 3 1957 1540 6533 DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME ANALYSIS REQUESTED Onsite Luss 25598 7 5 3 M RECEIVED FOR LAB BY (Signature) EMN Sylibem 619 EN RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) 701 1703 CHAIN OF CUSTODY RECORD EPA BOISM/TPH ICP METALS EPA 625/8270 RECENVED BY EPA 624/8240 de EPA 802/8020 EPA 601/8010 DATE/TIME STATION DESCRIPTION/ Court Hoch RELINGUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINOUISHED BY: (Signature) RÉLINDUISHED BY, MANNO CHAIN OF CUSTODY FORM the state of the state of NOTES DISPATCHED BY: (Signatura) METHOD OF SHIPMENT ζ 2 2 Laboratory Copy Project Office Copy Field or Office Copy Whire 0 200 0 Time 09 3090 34 4 Samplers: Recorder: 3 0 DATE Mo DV MISCELLANEOUS 3 41112 ۲ ि । Seq C1 1 4 9 3 00 F-BAS SAMPLE NUMBER OR LAB NUMBER RACIDES Sides BAF FBAL Yr Wk OA CODE 35 M. CIPILAD BITC #CONTAINERS COL MTD Lewson Associates 8 37473 10324 Placer Lane Secremento, California 95827 916/364-0783 DEPTH HMO³ H³ 80 ⁴ IN FEET roject Manager:_ Mecopy: 916/364-5633 Sergen lame/Location:_ ob Number: 110 MATRIX Seq 1102 NUMBER Insmibed LAB Water ≸ ノロ CODE 2

Project #: 62400

Field ID #: FBAI02

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27719

Date Sampled: 08-Aug-97

Sample Volume (ml): 1

Date Received: 08-Aug-97
Date Analyzed: 08-Aug-97

Initial Calibration Date: 01-May-97

QC Batch Code: 8D0808A2

Time Analyzed: 1511

Data Filename: 003F0101.D

Date Reported: 05-Sep-97

Data Filename: 003F0101.D Electronic Filename: 203D0808.HAL

Dilution Factor: 50.00 Concentration Units: PPBV

SACODE: *
PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	200.00	0	U		
Chloromethane	CLME	74-87-3	200.00	0	U		
Vinyl chloride	VC	75-01-4	200.00	0	U		
Trichlorofluoromethane	FC11	75-69-4	150.00	0	U		
1,1-Dichloroethene	DCEII	75-35-4	500.00	1800.00	=		
Trichlorotrifluoroethane	FC113	76-13-1	500 00	0	U		
Methylene chloride	MTLNCL	75-09-2	150.00	0	U		
trans-1,2-dichloroethene	DCE12T	156-60-5	200.00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	200.00	3100 00			
cis-1,2-dichloroethene	DCE12C	156-59-2	150.00	2700.00	, =		
Chloroform	TCLME	67-66-3	200.00	2100.00	=		
1,1,1-Trichloroethane	TCA111	71-55-6	200.00	5200 00	-		
Carbon tetrachloride	CTCL	56-23-5	150.00	310.00	=		
1,2-Dichloroethane	DCA12	107-06-2	150.00	0	U		
Benzene	BZ	71-43-2	1000.00	24000.00	*		
Trichloroethene	TCE	79-01-6	150.00	24000.00			-
Toluene	BZME	108-88-3	1000.00	21000.00	=		
Tetrachioroethene	PCE	127-18-4	150.00	1000.00	* '		
Chlorobenzene	CLBZ	108-90-7	200.00	0	U		
Ethylbenzene	EBZ	100-41-4	1300 00	8700.00	=		
m+p-Xylenes	XYLMP	1330-20-7	2500.00	4200.00	=		
o-Xylene	XYLO	95-47-6	1300.00	9100.00	=		
Bromochioromethane	BRCLME	74-97-5	0	90.69			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	98.01			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- $\boldsymbol{U} + \boldsymbol{A} \boldsymbol{n} \boldsymbol{a} \boldsymbol{l} \boldsymbol{y} \boldsymbol{t} \boldsymbol{e} \boldsymbol{s}$ not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Parts per billion volume.
- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By: Lover Voist

SEP - 5 1997

Date:

Project #: 62400

Field ID #: FBAE01

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27720

Date Sampled: 08-Aug-97

Sample Volume (ml): i

Date Received: 08-Aug-97 Date Analyzed: 08-Aug-97 Initial Calibration Date: 01-May-97 QC Batch Code: 8D0808A2

Time Analyzed: 1550 Date Reported: 05-Sep-97 Data Filename: 004F0101.D

Dilution Factor: 50.00

Electronic Filename: 204D0808.HAL

SACODE: * PVCCODE: PR Concentration Units: PPBV

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	200 00	0	U		
Chloromethane	CLME	74-87-3	200 00	0	U		
Vinyl chloride	VC	75-01-4	200 00	0	U		
Trichlorofluoromethane	FC11	75-69-4	150 00	0	U		
1,1-Dichloroethene	DCEII	75-35-4	500.00	1000 00	=		
Trichlorotrifluoroethane	FC113	76-13-1	500 00	0	U		
Methylene chloride	MTLNCL	75-09-2	150 00	0	Ŭ		
trans-1,2-dichloroethene	DCE12T	156-60-5	200 00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	200 00	1600 00			
cis-1,2-dichloroethene	DCE12C	156-59-2	150 00	1000.00	=		
Chloroform	TCLME	67-66-3	200 00	1300 00	2		
1,1,1-Trichloroethane	TCA111	71-55-6	200 00	4000.00	3		
Carbon tetrachloride	CTCL	56-23-5	150 00	220 00	•		
1,2-Dichloroethane	DCA12	107-06-2	150 00	0	U		
Benzene	B2	71-43-2	1000 00	21000 00	-		
Trichloroethene	TCE	79-01 -6	150 00	7600 00	#		
Toluene	BZME	108-88-3	1000 00	17000 00	•		
Tetrachloroethene	PCE	127-18-4	150 00	330 00	-		
Chlorobenzene	CLBZ	108-90-7	200 00	0	U		
Ethylbenzene	EBZ	100-41-4	1300 00	6500 00	32		
m+p-Xylenes	XYLMP	1330-20-7	2500.00	3000.00	-		
o-Xylene	XYLO	95-47-6	1300 00	6000.00	-		
Bromochloromethane	BRCLME	74-97-5	0	89.70			
I,+Dichlorobutane	DCBTA14	110-56-5	0	101 04			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value

. 4

PPBV - Parts per billion volume.

MOL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:	South Voit	Date:	SEP - 5 1997
		•	

Project #: 62400

Field ID #: FBAD01

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27721

Date Sampled: 08-Aug-97

Sample Volume (ml): 1

Date Received: 08-Aug-97 Date Analyzed: 08-Aug-97 Initial Calibration Date: 01-May-97 QC Batch Code: 8D0808A2

Time Analyzed: 1628

Data Filename: 005F0101.D

Date Reported: 05-Sep-97

Electronic Filename: 205D0808.HAL

Dilution Factor: 50.00 Concentration Units: PPBV SACODE: *

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	200 00	0	U		
Chloromethane	CLME	74-87-3	200.00	0	U		
Vinyl chloride	VC	75-01-4	200.00	0	U		
Trichlorofluoromethane	FC11	75-69-4	150.00	0	U		
1,1-Dichloroethene	DCE11	75-35-4	500.00	1700.00	=		
Trichlorotrifluoroethane	FC113	76-13-1	500.00	0	U		
Methylene chloride	MTLNCL	75-09-2	150 00	0	U		
trans-1,2-dichloroethene	DCE12T	156-60-5	200 00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	200 00	3100.00	. =	i	
cis-1,2-dichloroethene	DCE12C	156-59-2	150.00	2600.00			
Chloroform	TCLME	67-66-3	200.00	2000.00			
1,1,1-Trichloroethane	TCA111	71-55-6	200 00	5200.00	=		
Carbon tetrachloride	CTCL	56-23-5	150 00	330.00	=		
1,2-Dichloroethane	DCA12	107-06-2	150.00	0	U		
Benzene	BZ	71-43-2	1000.00	23000.00	-		
Trichloroethene	TCE	79-01-6	150.00	24000.00	=		
Toluene	BZME	108-88-3	1000.00	20000.00	*		
Tetrachioroethene	PCE	127-18-4	150.00	1000.00	3		
Chlorobenzene	CLBZ	108-90-7	200.00	0	U		
Ethylbenzene	EBZ	100-41-4	1300.00	8900.00	=		
m+p-Xylenes	XYLMP	1330-20-7	2500.00	4300.00	=		
o-Xylene	XYLO	95-47-6	1300.00	9700.00	=		
Bromochloromethane	BRCLME	74-97-5	0	91.24			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	103.19			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Parts per billion volume.
- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

Date:

Project #: 62400

Client: Harding Lawson Assoc.

Field ID #: FBA102

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27719

Date Sampled: 08-Aug-97

Sample Volume (ml): 2.5

Date Received: 08-Aug-97

Initial Calibration Date: 01-May-97

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A2

Time Analyzed: 1706

Data Filename: 006F0101.D

Date Reported: 05-Sep-97

Electronic Filename: 206D0808.HAL

Dilution Factor: 20.00

SACODE: *

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	80 00	0	U		
Chloromethane	CLME	74-87-3	80 00	0	U		
Vinyl chloride	VC	75-01-4	80.00	0	U		
Trichlorofluoromethane	FC11	75-69-4	60 00	0	U		
1,1-Dichloroethene	DCE11	75-35-4	200 00	2000 00	=		
Trichlorotrifluoroethane	FC113	76-13-1	200 00	0	U		
Methylene chloride	MTLNCL	75-09-2	60 00	160 00	=		
trans-1,2-dichloroethene	DCE12T	156-60-5	80 00	0	U		
1,1-Dichloroethane	DCAII	75-34-3	80 00	3200 00	. =		
cis-1,2-dichloroethene	DCE12C	156-59-2	60 00	2900 00	=		
Chloroform	TCLME	67-66-3	80 00	1800 00	•		
1,1,1-Trichloroethane	TCAIII	71-55-6	80 00	4800.00	-		
Carbon tetrachloride	CTCL	56-23-5	60 00	340 00	-		
1,2-Dichloroethane	DCA12	107-06-2	60 00	85 00	=		
Benzene	BZ	71-43-2	400 00	24000.00	7		
Trichloroethene	TCE	79-01-6	60.00	21000 00	7		
Toluene	BZME	108-88-3	400 00	1000 00	*		
Tetrachioroethene	PCE	127-18-4	60 00	940 00	=		
Chlorobenzene	CLBZ	108-90-7	80 00	0	U		
Ethylbenzene	EBZ	100-41-4	500.00	9600.00	-		
m+p-Xylenes	XYLMP	1330-20-7	1000 00	4900 00	=		
o-Xylene	XYLO	95-47-6	500 00	860 00	*		
Bromochioromethane	BRCLME	74-97-5	0	93 63			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	105.26			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Parts per billion volume.
- MQL Method quantitation limst.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

SEP - 5 1997

Date

Project #: 62400

Field ID #: FBAE01

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27720

Date Sampled: 08-Aug-97

Sample Volume (mi): 2.5

Date Received: 08-Aug-97
Date Analyzed: 08-Aug-97

Initial Calibration Date: 01-May-97

Time Analyzed: 1744

QC Batch Code: 8D0808A2

Data Filename: 007F0101.D

Date Reported: 05-Sep-97

Electronic Filename: 207D0808.HAL

Dilution Factor: 20.00 Concentration Units: PPBV SACODE: *
PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	80.00	0	U		
Chloromethane	CLME	74-87-3	80.00	0	U		
Vinyl chloride	VC	75-01-4	80.00	0	U		
Trichlorofluoromethane	FC11	75-69-4	60.0 0	0	U		
1,1-Dichloroethene	DCE11	75-35-4	200.00	1400.00	*		
Trichlorotrifluoroethane	FC113	76-13-1	200.00	0	Ü		
Methylene chloride	MTLNCL	75-09-2	60.00	0	U		
trans-1,2-dichloroethene	DCE12T	156-60-5	80.00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	80.00	1900.00	. =		
cis-1,2-dichloroethene	DCE12C	156-59-2	60 00	1300.00	-		
Chloroform	TCLME	67-66-3	80 00	1100.00			
1,1,1-Trichloroethane	TCAIII	71-55-6	80.00	3800.00	=		
Carbon tetrachloride	CTCL	56-23-5	60.00	230.00	*		
1,2-Dichloroethane	DCA12	107-06-2	60.00	0	U		
Benzene	BZ	71-43-2	400 00	20000.00	-		
Trichloroethene	TCE	79-01-6	60 00	7600.00	*		
Toluene	BZME	108-88-3	400 00	580.00	=		
Tetrachloroethene	PCE	127-18-4	60.00	270.00	*		
Chlorobenzene	CL BZ	108-90-7	80.00	0	U		
Ethylbenzene	EBZ	100-41-4	500.00	6600.00	-		
m+p-Xylenes	XYLMP	1330-20-7	1000.00	3000.00	=		
o-Xylene	XYLO	95-47-6	500.00	1800.00	=		
Bromochioromethane	BRCLME	74-97-5	0	93.48			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	105.68			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 + A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPBV - Parts per billion volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

SEP - 5 1997

Date:

House Voit

Project #: 62400

Field ID #: FBAD01

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27721

Date Sampled: 08-Aug-97

Sample Volume (ml): 2.5

Date Received: 08-Aug-97 Date Analyzed: 08-Aug-97 Initial Calibration Date: 01-May-97

Time Analyzed: 1822

QC Batch Code: 8D0808A2

Date Reported: 05-Sep-97

Data Filename: 008F0101.D

Electronic Filename: 208D0808.HAL

Dilution Factor: 20.00 Concentration Units: PPBV SACODE: *

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	80 00	0	U		
Chloromethane	CLME	74-87-3	80 00	0	U		
Vinyl chloride	VC	75-01-4	80 00	0	U		
Trichlorofluoromethane	FC11	75-69-4	60 00	0	U		
1,1-Dichloroethene	DCEII	75-35-4	200 00	2000 00	2		
Trichlorotrifluoroethane	FC113	76-13-1	200 00	0	U		
Methylene chloride	MTLNCL	75-09-2	60 00	150 00	=		
trans-1,2-dichloroethene	DCE12T	156-60-5	80 00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	80 00	3300 00	. =		
cis-1,2-dichloroethene	DCE12C	156-59-2	60.00	2800 00			
Chloroform	TCLME	67-66-3	80 00	1800 00	-		
1,1,1-Trichloroethane	TCAIII	71-55-6	80 00	4700.00	=		
Carbon tetrachloride	CTCL	56-23-5	60 00	340 00	=		
1,2-Dichloroethane	DCA12	107-06-2	60 00	82.00	=		
Benzene	BZ	71-43-2	400 00	22000 00	3		
Trichloroethene	TCE	79-01-6	60 00	20000 00	3		
Toluene	BZME	108-88-3	400 00	970 00	=		
Tetrachloroethene	PCE	127-18-4	60 00	920 00	3 1		
Chlorobenzene	CLBZ	108-90-7	80 00	0	U		
Ethylbenzene	EBZ	100-41-4	500 00	9100 00	=		
m+p-Xylenes	XYLMP	1330-20-7	1000 00	4700.00	-		
o-Xylene	XYLO	95-47-6	500 00	800 00	2		
Bromochloromethane	BRCLME	74-97-5	0	92.52			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	103.15	I .		

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- steel result at the MQL reported and does not imply an actual value 0 - A result of zero represents an under

PPBV - Parts per billion volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:	Hour Voit	Date:	SEP - 5 1997
• •			

Project #: 62400

Field ID #: FBAI02

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27719

Date Sampled: 08-Aug-97

Sample Volume (ml): 2.5

Date Received: 08-Aug-97 Date Analyzed: 08-Aug-97 Initial Calibration Date: 01-May-97

Time Analyzed: 1901

QC Batch Code: 8D0808A2

Date Reported: 05-Sep-97

Data Filename: 009F0101.D Electronic Filename: 209D0808.QAC

Dilution Factor: 20.00

SACODE: LR2

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	80.00	0	U		
Chloromethane	CLME	74-87-3	80.00	0	U		
Vinyl chloride	VC	75-01-4	80.00	0	U		
Trichlorofluoromethane	FC11	75-69-4	60.00	0	U		
1,1-Dichloroethene	DCE11	75-35-4	200.00	2100.00	=		5
Trichlorotrifluoroethane	FC113	76-13-1	200.00	0	U		
Methylene chloride	MTLNCL	75-09-2	60.00	160.00	*		0
trans-1,2-dichloroethene	DCE12T	156-60-5	80.00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	80.00	3500.00	. =		9
cis-1,2-dichloroethene	DCE12C	156-59-2	60.00	2900.00			0
Chloroform	TCLME	67-66-3	80.00	1800.00	=		0
1,1,1-Trichloroethane	TCAIII	71-55-6	80.00	4800.00	•		. 0
Carbon tetrachloride	CTCL	56-23-5	60.00	350.00	•		3
1,2-Dichloroethane	DCA12	107-06-2	60.00	88.00	39		4
Benzene	BZ	71-43-2	400.00	22000.00	-		9
Trichloroethene	TCE	79-01-6	60.00	21000.00	=		0
Toluene	BZME	108-88-3	400.00	980.00	-	1	2
Tetrachloroethene	PCE	127-18-4	60.00	930.00	-		1
Chlorobenzene	CLBZ	108-90-7	80.00	0	U		
Ethylbenzene	EBZ	100-41-4	500.00	9100.00	=		5
m+p-Xylenes	XYLMP	1330-20-7	1000.00	4600.00	=		6
o-Xylene	XYLO	95-47-6	500.00	790.00	=		8
Bromochloromethane	BRCLME	74-97-5	0	93.20			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	103.47			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- $\boldsymbol{U} \leftarrow \boldsymbol{A} \boldsymbol{n} \boldsymbol{a} \boldsymbol{l} \boldsymbol{v} \boldsymbol{t} \boldsymbol{e} \boldsymbol{t}$ not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Parts per billion volume.
- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.
- Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:	Down Vout	SEP - 5 1997 Date:
·		

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / STANDARD

Lab Sample ID: 5.0ML S8058

Date Sampled: 08-Aug-97

Sample Volume (mi): 5.0

Date Received: N/A

Initial Calibration Date: 01-May-97

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A2

Time Analyzed: 2039

Data Filename: 010F0101.D

Date Reported: 05-Sep-97

Data Filename: 010F0101.D

Dilution Factor: 1.00

Electronic Filename: 210D0808.QAC

Dilution Factor: 1.00

SACODE: RM4

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	4 00	210 00	-		7
Chloromethane	CLME	74-87-3	4 00	140 00	-		28
Vinyl chloride	VC	75-01-4	4 00	150 00	•		25
Trichlorofluoromethane	FC11	75-69-4	3 00	150 00	-		27
1,1-Dichloroethene	DCEII	75-35-4	10 00	270 00	*		35
Trichlorotrifluoroethane	FC113	76-13-1	10 00	160 00	-		19
Methylene chloride	MTLNCL	75-09-2	3 00	220 00	-		12
trans-1,2-dichloroethene	DCE12T	156-60-5	4 00	220 00	-		11
1,1-Dichloroethane	DCA11	75-34-3	4 00	220 00	. 30		11
cis-1,2-dichloroethene	DCE12C	156-59-2	3 00	230 00	=		13
Chloroform	TCLME	67-66-3	4 00	220 00	_		9
1,1,1-Trichloroethane	TCAIII	71-55-6	4 00	210 00	-		7
Carbon tetrachloride	CTCL	56-23-5	3 00	220 00			11
1,2-Dichloroethane	DCA12	107-06-2	3 00	220 00	*		10
Benzene	BZ	71-43-2	20.00	1100 00			11
Trichloroethene	TCE	79-01-6	3 00	230 00	*		14
Toluene	BZME	108-88-3	20 00	1100 00	=		8
Tetrachloroethene	PCE	127-18-4	3 00	220 00	**		11
Chlorobenzene	CLBZ	108-90-7	4 00	230 00	=		16
Ethylbenzene	EBZ	100-41-4	25.00	1100 00	=		6
m+p-Xylenes	XYLMP	1330-20-7	50 00	2000.00	-		1
o-Xylene	XYLO	95-47-6	25 00	1000 00	=		4
Bromochloromethane	BRCLME	74-97-5	0	96 24			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	105.08	1		

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D · Dilution.
- B Blank contamination
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value

PPBV - Parts per billion volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

Date:

SEP - 5 1997

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / STANDARD

Lab Sample ID: 5.0ML S8058

Date Sampled: 08-Aug-97

Date Received: N/A

Sample Volume (mi): 5.0

Date Analyzed: 08-Aug-97

Initial Calibration Date: 01-May-97 QC Batch Code: 8D0808A2

Time Analyzed: 1339

Date Reported: 05-Sep-97

Data Filename: 001F0101.D

Dilution Factor: 1.00

Electronic Filename: 201D0808.QAC

Concentration Units: PPBV

SACODE: RM2 **PVCCODE: PR**

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	4.00	190.00	2		3
Chloromethane	CLME	74-87-3	4.00	150.00	28		26
Vinyl chloride	VC	75-01-4	4 00	140.00	=		30
Trichlorofluoromethane	FC11	75-69-4	3.00	180.00	#		12
1,1-Dichloroethene	DCEII	75-35-4	10.00	240.00	=		18
Trichlorotrifluoroethane	FC113	76-13-1	10.00	210.00	*		4
Methylene chloride	MTLNCL	75-09-2	3 00	230.00	=		15
trans-1,2-dichloroethene	DCE12T	156-60-5	4 00	230.00	=		16
1,1-Dichloroethane	DCA11	75-34-3	4.00	230.00	, =		16
cis-1,2-dichloroethene	DCE12C	156-59-2	3 00	240.00	, =		20
Chloroform	TCLME .	67-66-3	4 00	230.00	=		14
1,1,1-Trichloroethane	TCAIII	71-55-6	4 00	220.00	-		12
Carbon tetrachloride	CTCL	56-23-5	3 00	240.00	-		19
1,2-Dichloroethane	DCA12	107-06-2	3 00	230 00	=		13
Benzene	BZ	71-43-2	20.00	1100.00	3		14
Trichloroethene	TCE	79-01-6	3.00	240.00	3		21
Toluene	BZME	108-88-3	20.00	1100.00	=		12
Tetrachloroethene	PCE	127-18-4	3.00	230.00	=		17
Chlorobenzene	CLBZ	108-90-7	4 00	240.00	=		20
Ethylbenzene	EBZ	100-41-4	25.00	1100.00	=		8
m+p-Xylenes	XYLMP	1330-20-7	50.00	2100.00	-		4
o-Xylene	XYLO	95-47-6	25 00	1000.00	3		5
Bromochioromethane	BRCLME	74-97-5	0	98.91			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	103.81			

NOTES:

- R Data resected.
- E Data estimated due to exceedance of calibration range
- D Dilution
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Parts per billion volume.
- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

Date:

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / TEDLAR

Lab Sample ID: METHOD BLANK

Date Sampled: 08-Aug-97

Sample Volume (ml): 50

Date Received: N/A

Initial Calibration Date: 01-May-97

Date Analyzed: 08-Aug-97 Time Analyzed: 1422 QC Batch Code: 8D0808A2

Date Penarted: 05 Sen.

Data Filename: 002F0101.D

Date Reported: 05-Sep-97

Electronic Filename: 202D0808.QAC

Dilution Factor: 1.00

SACODE: LB2

Concentration Units: PPBV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Dichlorodifluoromethane	FC12	75-71-8	4 00	0	U		
Chloromethane	CLME	74-87-3	4 00	0	U		
Vinyl chloride	vc	75-01-4	4 00	0	U		
Trichlorofluoromethane	FC11	75-69-4	3 00	0	U		
1,1-Dichloroethene	DCE11	75-35-4	10 00	0	U		
Trichlorotrifluoroethane	FC113	76-13-1	10 00	0	U		
Methylene chloride	MTLNCL	75-09-2	3 00	0	U		
trans-1,2-dichloroethene	DCE12T	156-60-5	4 00	0	U		
1,1-Dichloroethane	DCA11	75-34-3	4 00	0	. U		
cis-1,2-dichloroethene	DCE12C	156-59-2	3 00	0	U		
Chloroform	TCLME	67-66-3	4 00	Ó	U		
1,1,1-Trichloroethane	TCAIII	71-55-6	4 00	0	U		
Carbon tetrachloride	CTCL	56-23-5	3 00	0	U		
1,2-Dichloroethane	DCA12	107-06-2	3 00	0	U		
Benzene	BZ	71-43-2	20 00	0	U		
Trichloroethene	TCE	79-01-6	3 00	0	U		
Toluene	BZME	108-88-3	20 00	0	U		
Tetrachloroethene	PCE	127-18-4	3 00	0	U		
Chlorobenzene	CL BZ	108-90-7	4 00	0	U		
Ethylbenzene	EBZ	100-41-4	25 00	0	U		
m+p-Xylenes	XYLMP	1330-20-7	50 00	0	U		
o-Xylene	XYLO	95-47-6	25 00	0	U		
Bromochloromethane	BRCLME	74-97-5	0	90 55			
1,4-Dichlorobutane	DCBTA14	110-56-5	0	97 71			

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- $0 \cdot \hat{A}$ result of zero represents an undetected result at the MQL reported and does not imply an actual value PPBV Parts per billion volume.

MOL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Approved By:

SEP -

Tel: (510) 490-8571

Fax. (510) 490-8572

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Lab Sample ID: 2.0ML S8073

Sample Type: AIR / STANDARD Date Sampled: 08-Aug-97

Sample Volume (mi): 2.0

Date Received: N/A

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1334

Data Filename: 001F0101.D

Date Reported: 09-Sep-97

Electronic Filename: 101D0808.QAC

Dilution Factor: 1.00

SACODE: RMN

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Methane	CH4	74-82-8	200.00	1100.00	-		7

Hour Voit

NOTES:

R - Data rejected.

E - Data estimated due to exceedance of calibration range.

D - Dilution.

B - Blank contamination.

U - Analytes not detected at, or above the stated detection limit.

Q - parameter is out of control limits.

0 - A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPMV - Parts per million volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

PROCEDURES:

This analysis was performed using EPA Method 18 modified.

Date:

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR/STANDARD

Lab Sample ID: 2.0UL S8024

Date Sampled: 08-Aug-97

Sample Volume (ml): 2.0

Date Received: N/A

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1357

Data Filename: 002F0101.D

Date Reported: 12-Aug-97

Dilution Factor: 1.00

Electronic Filename: 202D0808.QAC

SACODE: RMO

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Methane	CH4	74-82-8	200.00	0	U		100

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPBV - Parts per billion volume.

- MQL Method quantitation limit
- PD Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits. 65 to 135%

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

SEP - 8 1997

Tel (510) 490-8571

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / TEDLAR

Date Sampled: 08-Aug-97

Lab Sample ID: METHOD BLANK

Date Received: N/A

Sample Volume (ml): 2 Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1417

Data Filename: 003F0101.D

Date Reported: 12-Aug-97

Electronic Filename: 103D0808.QAC

Dilution Factor: 1.00

Concentration Units: PPMV

SACODE: LBA PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Non-methane organic compounds	NMOC	0-80-2	200.00	0	U		

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.
- PPBV Parts per billion volume.
- MQL Method quantitation limit.
- PD Percent difference
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Project #: 62400

Field ID #: N/A

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: N/A

Sample Type: AIR / TEDLAR

Date Sampled: 08-Aug-97

Lab Sample ID: 2.0ML S8073

Date Received: N/A

Sample Volume (ml): 2.0

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1618

Data Filename: 008F0101.D

Date Reported: 12-Aug-97

Dilution Factor: 1.00

Electronic Filename: 108D0808.OAC

SACODE: RMP

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Methane	CH4	74-82-8	200 00	1100 00	=		12

Houth Voit

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- O parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MOL reported and does not imply an actual value.

PPBV - Parts per billion volume.

MOL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Project #: 62400

Field ID #: FBA102

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: 0000

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27719

Date Sampled: 08-Aug-97

Sample Volume (ml): 5

Date Received: 08-Aug-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1447

Data Filename: 004F0101.D

Date Reported: 12-Aug-97

Dilution Factor: 0.40

Electronic Filename: 104D0808.HAL

SACODE: *

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Non-methane organic compounds	NMOC	0-80-2	80.00	3900.00	=		

Hour Voit

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- O parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPBV - Parts per billion volume.

- MOL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030

Project #: 62400

Field ID #: FBAE01

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27720

Date Sampled: 08-Aug-97

Sample Volume (ml): 5

Date Received: 08-Aug-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1513

Data Filename: 005F0101.D

Date Reported: 12-Aug-97

Dilution Factor: 0.40

Electronic Filename: 105D0808.HAL

SACODE: •

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Non-methane organic compounds	NMOC	0-80-2	80 00	2400.00	3		

House Vist

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value

PPBV - Parts per billion volume.

- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

This analysis was performed using EPA Method 8021 and EPA Method 5030

Project #: 62400

Field ID #: FBAD01

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27721

Date Sampled: 08-Aug-97

Sample Volume (mi): 5

Date Received: 08-Aug-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1533

Data Filename: 006F0101.D

Date Reported: 12-Aug-97

Electronic Filename: 106D0808.HAL

Dilution Factor: 0.40 Concentration Units: PPMV SACODE: *

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Non-methane organic compound	NMOC	0-80-2	80.00	1200.00	*		

Douth Voit

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range.
- D Dilution.
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- O parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value.

PPBV - Parts per billion volume.

MQL - Method quantitation limit.

PD - Percent difference.

RPD - Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%.

PROCEDURES:

This analysis was performed using EPA Method 8021 and EPA Method 5030.

Project #: 62400

Field ID #: FBAI02

Client: Harding Lawson Assoc.

Site #: N/A

Chain-of Custody #:

Sample Delivery Group: 8D277

Sample Type: AIR / TEDLAR

Lab Sample ID: 8D27719

Date Sampled: 08-Aug-97

Sample Volume (ml): 5

Date Received: 08-Aug-97

Initial Calibration Date: 24-Jul-95

Date Analyzed: 08-Aug-97

QC Batch Code: 8D0808A3

Time Analyzed: 1554

Data Filename: 007F0101.D

Date Reported: 12-Aug-97

Electronic Filename: 107D0808.OAC

Dilution Factor: 0.40

SACODE: LRA

Concentration Units: PPMV

PVCCODE: PR

Analytes	PARLABEL	CASNUM	MQL	Results	PARVQ	URS USE	RPD / PD
Non-methane organic compounds	NMOC	0-80-2	80 00	3700 00	-		5

NOTES:

- R Data rejected.
- E Data estimated due to exceedance of calibration range
- B Blank contamination.
- U Analytes not detected at, or above the stated detection limit.
- Q parameter is out of control limits.
- 0 A result of zero represents an undetected result at the MQL reported and does not imply an actual value

PPBV - Parts per billion volume.

- MQL Method quantitation limit.
- PD Percent difference.
- RPD Relative percent difference.

Surrogate results are in units of percent recovery with control limits: 65 to 135%

This analysis was performed using EPA Method 8021 and EPA Method 5030

Date: SEP - 8 1997

Tel: (510) 490-8571

Sacramento, California 95827 916/364-0793 Telecopy: 916/364-5633

3

Samplers: Den Gwaltne

ANAL YSIS REQUESTED

Lab:

Name/Location: McClellan FBAS Job Number: 37478 35

Project Manager: Mike 5ides

Recorder: 🂢

					丄						L						L
					\perp										$_{\perp}\Gamma$		
									1					T			
											T	Ţ			Т		
					Т						П		T				Г
7	17,	104		9 13	1	<	$\overline{}$	7	•					\top	\top		1
7	~~	1208	, ,	V83	3 >			7	T			十		+	\top		\vdash
	HdJ	MSFO	8	EPA	+	7		+	+			十	+	+	+		┝
_		ETALS			+-	+		+-	+	_	+-	+	+	+	+		\vdash
_		28/929			╁	+		+	+		╁	+		+	+		-
	Ob:	28/\$Z	,	<u> </u>	╁	+		+-	+		⊢	+	+-	-	\perp		_
	070	08/209	<u>, </u>	<u>^</u>	+-	4		+	+		-	-	-	\bot	_	_	<u></u>
	020	08/109	•	V 0 3	╀	4		\bot	4		L	1	\downarrow	\bot	_		
	OLU	18/10:	,	FPA	⊥_	ل			1			⊥.					
(Signature Bequired)		STATION DESCRIPTION/ NOTES			80277-19		-20	16-	~								
1361					_	_	_	<u></u>			_					_	_
Sig					2	L	0	r	١Į.						Т	T	
_	ĺ			Time	0		0	Q	T					1		T	
				ا ا		Ţ	_	_	1				1	T	\top	1	-
	Ι.			'	\blacksquare		_	-		1				十	\top	†	_
		DATE		<u></u>	1	Ť			T	_		✝	+	+	╅	+	_
]	V		ρ	6	۲			$^{+}$	-		+-	+-	+	┿	+	
		_			a	t		-	t	7		+	+-	╁	╁	+	_
	l			Мо	7	t	_	-	╁	+		╁╌	┿	╁	+-	+	
				_	PB080	+		_	╁	+		+	+-	+	+	+	
	1			¥	1	+	Q	-	╁	\dashv		├-	╁	+	+-	+	
			_		1	t	_	_	╁	+			-	-	+	+	_
				_	7	+	_		+	\dashv		-	+-	╁	+	+	
	æ	: ^	-	Seq	O		Q	0	\vdash	+		-	+	+-	+	+	
	36	OR LAB		"	H	+	7	-	┢	+		╁	+-	╁	╁	+	
	ΣZ	6 ∑3	Ē	<u> </u>	늡	١	ù	1	-	╅		-	-	+	+	+	
	S		֡	Ĭ.	1	١.	-		┡	+		 	+	┼	╀	+	
						h	8	8	┢	+		-	┿	┿	┿	+	
				۲r	F 8	H		TI	┝	+		├-	+	┼	╁	┿	_
	S		_		-	H	*	-	-	+	-	<u> </u>	-	-	╄	+	
	#CONTAINERS	 	_		 	\vdash			-	+		-	+-	-	+	+	_
	ZE	 	_		-	H			_	+		<u> </u>	-	ـــ	╀	+	
Į	ES	-	_		—	H			L	4			₩			1	_
-	38		<u>U</u>	H	<u> </u>	_	-		_	4		ļ			↓_	Ļ	
١	$\sum_{i=1}^{n}$	<u> </u>	S	H. H.	_	_	-	_	L	4				<u> </u>	L	\downarrow	
1	મ	53.	-0	υŊ	X		4	$\stackrel{\frown}{=}$	L	_						L	
١						L	$ \bot $		L							\prod	
	×		_	1!0		L			L							Γ	
ı	MATRIX			os						\prod						Γ	
	≤)nem	it	Sec						T						T	
ı	≥	16	33	•W				,		T						1	
1		\$	Y	2	×	-	=	~		1				\vdash		T	
[3	a	00	0			_								t	_
		E BCE	n	os	9	_	7			\top						1	_
•						_	-	-	_	_						1	_

	LAB	α	DEPTH	COL	O A				
				5		MISCELLANEOUS	CHAINO	CHAIN OF CUSTODY RECORD	
×ِ ¥		Sed	120	3					
E				E			RECNOUISHED BY: (Signature)	REÇEIVED BY: (Signature)	DATE/TIME
							Machines	9/8/8 Warney 8/8/9	SIZI L6/8/8
				E			RELINQUISHED BY: (Signature)		DATE/TIME
			+	1	+			•	
	1		4				RELINGUISHED BY: (Signature)	RECEIVED BY: (Signature)	DATE/TIME
							,		
							RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) D	DATE/TIME
							DISPATCHED BY: (Signature) DATE/TIME	RECEIVED FOR LAB BY:	DATE/TIME
								(Signature)	
							METHOD OF SHIPMENT		

Education Cope Proport Office Cope Tooldan Office Cope

915-568-1849

Project #: N/A

Field ID #: N/A

Client: Harding Lawson

Site #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: N/A

Sample Type: AIR / STANDARD

Leb Sample ID: 5.0ML S#05#

Date Sampled: 17-Jul-97

Sample Volume (mi): 5.0

Date Received: N/A

Initial Calibration Date: 01-May-97

Date Analyzed: 17-Jul-97

QC Setch Cede: 8D0717A2

Time Analyzed: 0904

Oats Filosome: 001F0101.D

Date Reported: 17-Jul-97

Einctronic Filonome: 20100717.QAC

Dilution factor: 1.00

SACODE: KMZ

Concentration Units: PPSV

PVCCODE: PR

Assiytes	PARLAGEL	CASALIM	HQL	Results	PARW	SBU PHI	RPO / PO
Dieldored/fittesressethene	FCIS	75-71-0	4.00	230.00	7		13
(hi-res eferce	CLME	74-67-3	6.00	160.00	•		n
Vieyt charide	W.	75-01-6	4 00	160 00	•		22
Trickle reference methode	R:U	75.49.4	3 00	210 00	•		4
I. I-Okidereelhous	DCEIL	75- 36- 4	10.00	740 00	•		18
Trichlerettfharesthane	KID	76-13-1	10.00	2 40 NG	-		26
Methylene chloride	MILNOL	15-69-2	3 00	240 00	•		78
trans-1_2-dechinerations	DCE121	190-44-5	4 00	250.00	=		ເຊ
1.1-Dichier-ethore	UCAII	79-36-3	4,00	250.00	2.		23
us-1,2-Belierestians	DCE13C	196-89-2	3,00	240.00	•		23
Chleroform	TCLME	67-46-3	4.00	230.00	•		1.5
I, I, I- Frachioroeshage	TCALL	71-99-6	4 00	230.00			15
Cartes tetrochlorule	CICL	96-23-5	3.00	240.00	•		10
1.3-Dights residence	DCA12	197-06-3	3 00	230.00			17
Peneses	82	71-43-2	20 00	1200 00	-		22
Тліцаворостнове	TCE	79-01-6	3.00	250.00	•		24
l u hande	12.14%	(45-45-3	20.00	1200.00			10
Tetrachia rustimer	PCE	127-18-4	J.00	240.00	•		19
Chloropeusone	CLIZ	194-99-7	4 00	240.00	3		31
Anythquaten	Z.B.Z	198-41-4	25.00	1100 00			13
a-p-Xyisees	XYLMP	C336-36-7	50.00	2200 00	-		y
-Xylane	XYLO	98.47-6	25.00	1100 00	•		10
Promocidoru rocthous	MECLMS	74-8745		14.39			
). 4 Dichiero bulbas	DCBTASO	119-96-5		105 08			

NOTES:

- R Date reported.
- R I have continued that to accompanies of estimates manys

- U Analyses not deserted at ar above the stated da
- Q parameter is out of motorial planets.
- U . N . COM NET THE THE THE PROPERTY OF THE PROPERTY PROPERTY OF THE PROPERTY

PHANA " I AMA but prijited anyment

MOL - Mother quantities fullet.

FO - Percent difference

RPD - Relenve persons difference.

Surregular remains we so makes of percent recovery with exertal finale 65 to 139%.

PROCKOURES

This enably nia was postermed where EVA Method 2021 and SFA Medical 5030

Approved By:

Tel: (519) 679-6571

FEE (\$10) 490-6572

Project #: N/A

Client: Harding Lawson

Chain-of Custody #: N/A

Sample Type: AIR/TEDLAR

Date Sampled: 17-Jul-97 Date Received: N/A

Date Analyzed: 17-Jul-97

Time Analysed: 0937

Date Reported: 17-Jul-97

Dilution Factor: 1.00

Concentration Units: PPBV

Field ID #: N/A

Size #: N/A

Sample Delivery Gross: N/A

Lab Sample ID: METHOD BLANK

Sample Volume (ml): 50

laitial Calibration Date: 01-May-97

QC Betch Code: 8D0717A2.

Data Filename: 002F0101.D

Electrosic Filename: 20200717.QAC

SACODE: LB2

PVCCODE: PR

A column	PARLABEL	CARNUM	MeQL	Results	PARVQ	OH& DAW	MAD / NO
Analytes	FC17	74.71-0	9.00	i)	U		
Dicklored Museumenton no	CLMS	74-47-3	6.00	0	U	2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	
Tipromethers		7841-4	4.00	0	U		
Visyl chloride	VC.		300	đ	v		Control of the Contro
rechlerefuere mathema	PCH	79.69-4		o o	U		
. I - Dichie reelbase	DCEIL	78-35-4	10.00		U		-
i restince a citation and the contract of the citation and citation and the citation and citati	PC118	7613-1	10 00		<u> </u>		
Marthy hand chinarista	MILNEL	75-07-8	3.00	0			
rom-12-dictioned and	DCEI2T	150-40-6	4 00	<u> </u>	V	the state of the state of the state of	
1.1-Michiganostore	DCAH	75-36-3	4 00	n	<u> </u>		
ria- Lalachiarea (hasta	DLEIDC	156-59-3	3 90	<u> </u>	U		-
Coloredora	TCLME	67-56-3	4.00	Ţ	U		
1.1.1-Tricklorestbone	TCALL	11-65-6	4 00	0	U		
Carton barachuride	CICL	5623-9	3.00	0	U		
2-Clebinge@age	OCA13	107-06-3	3 00	0	U		
Scussos	NZ NZ	71-43-8	20.00	0	<u> </u>		
Trielderecthese	TCE	7948146	3,00	Û	l v		
Column	REME	146-38-3	20 00	0	U	<u> </u>	<u> </u>
l'elegable routiture	PCIL	127-10-4) 90	Û	U		
	CLBZ	105-90-7	4 90	. 0	U		
(Bis no between	1255	100-43-4	25.00	0	V		
Kaybeares	XYLM	1330-28-7	50.00	Q	υ		
m-p.lyleass		76.47.6	25.00	0	U		
o-Xylens	XAPO	76-97-8		62,55	and the same of th		
Browneckle remails and	BINCTME			102.99		 	
LA-Dichterobutore	DCBTA14	119-56-5		1114.77			

NUTES:

- A Date resected.
- C . Date commissi des la sessiones di celibration desgr
- 8 Blank verses
- U · Audytes not determed at, or altered the speech department brank
- कारण संस्थात का प्रोत्ताच का स्थान क्रांत क्रिया क्रिया है है है जो स्थान क्रिया क्रिया क्रिया क्रिया क्रिया के स
- FTBV Party per billion whose
- PD Parent dellaration

PPD - Relative persons differences.

When para returns are to some of portrait coloresty with general lattice 65 to 139%.

This analysis was performed using EPA Masterd 1021 and EPA Masterd 1009.

Approved By:

Fest. (\$15) 494-8572

Project #: NA

FIELD ID #: FBAL-01

Client: Harding Lowson

Site H: N/A

Chain-of Custody #: N/A

Sample Delivery Crosp: \$0271

Sample Type: AIR / TEDLAR

Lab Sample ID: AD27101

Date Sampled: 17-Jul-97

Sample Volume (ml): 0.5

Date Received: 17-Jul-97

Initial Calibration Date: 01-May-97

Date Analyzed: 17-Jul-97

QC Butch Code: 800717A2

Time Analyzed: 1123 Onte Reported: 17-Jul-97

Data Filenames: 003F0101.D Electronic Filename: 203D0717.HAL

Dilation Factor: 100.00

SACODE: *

Concentration Units: YPBV

PVCCODE: PR

Andres	PARLABEL	CASMUM	MOL	H consists	PARVQ	urs use	nro/Po
Dicklerediffeerenwides	FC12	79-71-4	400.UEU	. 0	U		
Merenysheer	CLME	74.87-3	400.00	0	U		
Very I children	VC:	7541-4	400 00	0	U		
[neblars/hears:acthese	→CII	19.69.4	300 Œ	Ġ	U		
I.I-Oldsterecthera	OCEII	99.36-4	1000,00	0	U		
I'm Mary Maria Masa	PCID	96-13-1	1000,00	1500.00	•		
Methytopse chloristo	MTLNCL	75-09-2	300 00	υ	U		
rese (Lightherophero	OCE131	150-46-6	400 00	V	U		I .
(Olebiorochess	DCA11	77-36-3	400.0U	2700.00			
. Lie brother	DCEI3C	154-59-2	300,00	2100.00	•		
Chlerefore	TYLME	67-44-3	400.00	2600 00			
I.I.I-Trishinmentens	TCAILL	71-44-6	400 (30)	S400 00	-		
Carbon tetrachierale	CTCL	56.73-9	300.08	390.00	2		
1.2-Deshiorecansos	DCA18	197-86-8	300 00	0	į.		
Renewee	92	71-42-7	2000.00	28000.00	-		
Trubbernethens	TCE	79-01-6	300.00	21000.00	4		<u> </u>
Tolone	BMSB	146.84	2000.00	23000 00	•		<u> </u>
Termetiers@sse	PCE	127-18-4	100 00	1500 00	•		
(blorobenseno	CLEZ	108.78.7	400 00	c	U		1
Erfor Roma care	261	199-41-4	2500 (m)	7900 00	-	<u> </u>	
e p Xyken	XYLMP	1339-29-7	Sono no	5000.00	3		1
o-Xydessa	AAFO	VS-47-6	2500 00	9700 00	3		
Smarachiarosachura	BECLME	74-97-9		61 92			ļ
I & October Select	DCBTA14	119.95.5		110.56	1		

NOTES:

- R Date rejessed.
- C . Due crumated but to premitering of the courses recom
- () . Orbores
- R BLUS CLYMAN PROPERTY ---
- U Analytem ness described as, or above the sealed described history.
- Question of the artificial beauty
- क्षांको स्थापने से केन भिन्नि स्थापनाच कर्ज देन्सा तम देनम्भू का ब्राह्म न्थान the missessibility acre repres
- PPBV Parts gar billion volumes
- MQL Medical quantities issue
- PU FUNCTOR SIFFERENCE.
- HIO. Halmor percent difference.

PROCEDURES

The e-givile was performed used CPA theorem FE) and BPA theball SUD.

Approved By.

161 (\$10) 475-0571

Paul (510) 490-4572

Project #: NA

Field ID # FBAL-01

Climat: Harding Lawson

Side #: N/A

Chain-of Custody #: N/A

Sample Delivery Group: 10271

Sumple Type: AIR / TEDLAR

Lab Sample ID: 8D27101

Date Sampled: 17-hil-97

Sample Volume (ml): 2.5

Dats Received: 17-Jul-97

lattini Calibration Date: 01-May-97

Date Assiyaed: 17-Jul-97 Time Analyzed: 1222

QC Betch Code: 8D0717A2

Date Reported: 17-Jul-97

Data Filsaume: 004F0101 D Electronic Filename: 20400717.HAL

Dilation Factor: 20.00

SACODE: •

Concentration Units: PYSV

PYCCODE: PR

Assiyes	PARLADEL	CASNUM	MQL	Reme/No	PARYO	Desp des	RPD/PD
Decklorediffaerosiethess	PC13	79.71.5	80.00	0	U		le <u>transcription</u>
Chieropethone	CLME	76-87-3	\$0.00	0	U		
Ynnyi chilactifa	vc vc	75-01-6	80.00	0	U		
l'redderefeerometeur	PCB	75.49-4	60.0V	0	Ų	Market NV 1 Sp. Sm. and and among the April Security	
1.1-Dickto rections	DCEII	75-26-4	200.00	2400,00	•	SECOND CO. O. CO. CO. C.	
Tradisretrissersettess	PCIN	76-13-6	200.00	0	Ū		
Newsystene caleride	MTLACL	75.5743	50,00	_180,00	•		A STATE OF THE PARTY OF THE PARTY OF
trans-).3-decider-military	DEELTS	156-66-5	#O.00	0	U		
1,1-Dicklorociteco	DCA11	75-36-3	80 OD	3500.00	•		
de-1.2-dictiones@ens	DCELEC	196-99-3	60 00	2000.00	2		
(Storeform	TCLME	67-66-3	80.00	2000.00	=	A Section of Contract of Contr	
1.1.1-Trichbrogitains	PEADS	11-05-0	90.00	SONO.ON	•		
Carbon teleschiertise	വര	56-13-6	60.00	410.00	_	The same of the sa	
1.2-Oscillorosidano	DCAIS	(97.4%3	60.00	180.00			
Marries et	1 %.	73 o 43 n3	400.00	27000,00	•		
Trichicrosthese	TCE	79-01-6	69 00	20000.00	•		
Telector	3248	168-88-7	400.00	1300.00			
Turrenbloreeflicte	PCE	127-16-4	60.00	1100.00			
Chlorobousens	CLSZ	108-70-7	80,00	0	Ų		
Efbylhonzenn	283	100-41-4	500 00	11000.00	-	(
nerge X y less (to	AYLMP	L330-34-7	1000.00	£700.00			
~ X y 100000	XAFO	75-47-A	500.00	1200.00	•		
Bromech hrome thane	SECLME	7 6.47 \$		\$6.32			
1.4- Deablero by to ge	DCSTAID	11846-9		110 64			

NOTES:

- E David evel-manual stree on expensionals of colliberation range.
- O Hibstorn
- 6 Black comemmeters
- U Armintes and detected of, or allowe the stated date
- O personner is out of commit limets.
- a de a de
- PPWY . PER SET BALLIAGE WALKING.
- sorte . Minus puntashire ilma
- FU Funded difference.
- Artistica process difference

Surveyage regards are in colors of parents reservery with extend blocks 69 to 139%.

PROCEDUREM

This engines was performed using EPA Material 9921 and BPA Material 9909.

Approved By:

Fex. (\$10) 490-8572

Analytical Laboratory Report EPA MESSOSS SUZ!

Project #: N/A

FINE ID # FBAI-01

Client: Harding Lawron

Stea St. N/A

Chain-of Custody #: N/A

Sample Delivery Greep: 80291

Sample Type: AIR / TEDLAR

Lab Sample ID: AD27101

Date Sampled: 17-Jul-97

Sample Volume (mi): 25

Date Received: 17-Jul-97

Initial Culibration Date: 01-May-97

Date Analyzed: 17-Jul-97

QC Betch Code: 8D0717A2

Time Analyzed: 1321

Data Filesame: 005F0101.D

Date Reported: 17-Jul-97

Electronic Florestes: 205D0717.QAC

Dilution Factor: 20.00

SACODE: LR2

Concentration Units: PPBV

PVCCODE: PR

Aselyss	PARLASEL	CARNUM	MQL	larein	PARYO	URS URE	RPD/PD
Dictalored iffuerousesthems	FC13	75-71-3	80.00	0	Ų.		
Lib-rogasheaa	CUMB	74-57-3	\$0.0U	a	U		
Vlayi catorida	VC.	79.81.0	\$0.00	Ü	U		
Tricklereft-errosestates	PC11	75-00-6	60.00	0	V		
1.1-Oighhoroethesse	DCEII	772.95-4	200 00	1500,00	-		
Trickerstriffestorpess	HC113	76-13-3	200 às	v	U		
Methytese chiaride	MTLNCL	79-00-2	60 00	190 00	9		
reme Louisberger	OCEIST	186-40-5	80 .00	n	υ		
(.IDistance	DCAIL	75-36-3	80.00	3600 00	a .		
in I Letichlageoffens	DCEIM	156-89-3	6U.UU	2100 00			
(bis refer etc.)	TCLME	67-66-3	80 00	2000,00	•	a de la companya de l	
1.1.1. Frichtsrootheast	TCALL	71-45-4	20 .00	5100.00	•		
Carbon retrochioride	CPCL	%433 6	60.00	470 00	•		
1.2-Otrala residens	DEATS	107-46-3	60 00	160 00	5		
Manager	9Z	71-43-3	400 00	27000 00	•		
Tristicroothers	108	78.010	60 00	20000 00	•	<u></u>	<u> </u>
Toluens	BMS	108-00-3	400.00	1300 00	2		
Tetreshioreathers	PCE	127-18-6	60,00	1100,00			
Chlorebassess	CLEZ	79-75-7	\$0.0g7	0	Ü		
Edvibacens	ese:	199-41-4	500.00	11000.00			
m+p-Xylasso	XYLAG	1339-75-7	1000000	5790.00			
- Xykas	XYLO	96-47-6	\$40.00	910 00	•		
Moreovelle considerate	BACLME	74-57-9		\$6.33			
1.4-Dichierobatase	DUSTA14	118-85-6		109.34	T T		

NOTES

- K Casa microsof
- t . Uses recommend the to consider of the former tomate
- D · Delutuma
- 5 · Greek exercises.
- If a Amilyour ma houseled the above the stated detection book.
- () . The streets to use of compact limits
- PABA . Dars for julyes assesses
- MCVL Melland species and balling.
- KTO Kalain param diliasea

Surroughly require are in uses of particul recovery with several famous 65 to 139%.

FROCEDURES

This enalysis was participated as no EPA Marked NQ1 and EPA Marked 5050.

Approved By:

Fas (310) 490-8377

Analytical Laboratory Report EPA Methods 8021

Project #: N/A

Client: Harding Lawson

Field ID #: N/A

Step 6: N/A

Chain-of Custody S: N/A

Sample Delivery Group: N/A

Sample Type: AIR / TEDLAR

Date Sampled: 17-Jul-97

Lab Sample ID: METHOD BLANK

Date Received: N/A

Sample Volume (mi): 50

Date Assiysed: 17-Jul-97

Initial Calibration Data: 01-May-97 QC Batch Code: 8D0717A2

Time Analyzed: 1412 Date Reported: 17-Jul-97 Data Filename: 006F0101 D

Dilution Factor: 1.00

Electronic Filename: 20000717.OAC

SACODE: LB4

Concentration Units: PPSV

PVCCODE: PR

Analytes	LAHLABEL	CASNUM	MOL	Raselts	PARVQ	URS USE	RPD / PD
Dichlorodifficers methode	PC12	75-71-8	4.00	0	U		
Chloramestrant	CLME	74.87.3	4,09	O	U		
Viseri chiartiis	ν¢	75-01-4	4 Q0	U	U		
I rightered unrequirement	PCII	75-49-4	3 00	0	Ų		
i, I-Dichterre Destr	DCEII	75-36-4	10.00	0	Ų		
Trichterstrifigeregibene	FC143	74-13-1	10(0)	n	U		
Mediviese chloride	MILNCL	75-69-2	3,00	0	U		
iram-1.2-deblerermen	DCKITT	196-08-0	4 00	()	l li		
1,1-Vichlerecthman	DCAH	79-34-3	4.00	()	1),		
ca- 1.1-dichiaracticas	IX. RISC	150-08-8	3.00	O	U		
(This referen	ICLME	67-46-3	4 00	U	U		
L.I.1- (richles with the	TCALL	71.56.6	6,00	ŋ	U		and a company of the
Carbon tetrachieride	CTCL	96-23-6	3.00	0	U		
1,3-Oschlur sertberra	DCA18	107-05-3	3.00	0	U		
Severe	ez.	71.63-8	20.00	0	V		An transporter of the
Tricklereothere	TCE	79-01-0	3.00	0	Ų		
Telega	SCALE:	169-83-3	20 00	Û	Į į		
i etrachia racificae	PCE	127-18-6	3.00	0	U		
Chierobasses	CLSZ	100.96-7	4.00	n	U	Mary and the second	Santa Alaksi dari matangga kananan dan kananan
	. ×32	108-41-4	25.00	ŋ	U		- Advisor
a-eAvisio	XYLMP	1338-32-7	50.00	Ü	U	1	
u-Rylene	XYLO	95-47-6	25 00	0	U	<u> </u>	L
Bruche, River and Shatto	BRCLIKE	74-97-9		\$1.18			
1.4-Dighturehutsee	DCBTA16	110.95.9		102 33			L

NOTES:

- R Date reposited

- U Analyses and detected it, or shows the stated describes band,
- O parameters in man of control beauty.

 O parameters in man of control beauty.
- FFRY Forte per billion and
- MFJL Method questileties fines.
- 10 Penant & Maranes
- RPD Relative persons affectives

Surregue require are to make of parent reservely totals current braids (a) to 139%.

PROCEDURES:

The andrew was performed water EFA Masterl 2021 and EFA Masterl 1030.

Tel: (319) 499-8571

F66: (510) 490-8573

Analytical Laboratory Report EPA Methods 1021

Project e: N/A

Client: Harding Lawren

FINE LD # N/A

Site #: N/A

Chain-of Castody 8: N/A

Sample Delivery Gross: NA

Sample Type: AIR / STANDARD

Lab Sample ID: 5.0ML SEOSE

Date Sampled: 17-Jul-97

Sample Volume (ml): 5.0

Date Received: N/A

Initial Calibration Date: 01-May-97 QC Betch Code: 8D0717AZ

Date Analysed: 17-Jul-97 Time Analyzed: 1445

Data Filessere: 007F0101.D

Dete Reported: 17-Jul-97

Electronic Filezame: 20700717.QAC

Dilector Factor: 1.00

SACODE: RM4

Concentration Units: PPBV

PVCCODE: PK

	PARLABEL	CABRUM	WQL.	Reserva	LVEAC	ury use	app/pp
Acelyses	FC18	75.73-8	4 00	220 00	•		10
Mubliometifius researcheme	CLME	74.47-3	4.00	160,00	7		19
Diereseshan		75-01-4	4 00	170.00			17
Visual editoride	, vc	19-69-4	300	160.00			76
[reddereffeerestikene	iCII		10.00	230 00			19
.1-Diebbergthere	OCEII	79.35.4	10 00	240 00			19
Trickerstellicersellice	FC113	75.13-1	The state of the last of the l	230 00	 		19
Hertyloue chloride	MILNO	75-45-2	3 00				1.6
rese 12 desiderations	OCEIL	196-60-8	4 00	240 00	 		17
. !-Dickinger	DCA11	75-34-3	4,00	230 00			17
to 1.2 dichiercedane	DCEISC	194-94-2	3.00	230.00			10
bloroform	TCLME	67-46-3	4 00	220.00	-	-	Name and Address of the Owner, where the Owner, which is the
. I. I I recharge est	ICAILI	71-95-6	4,00	220 00	2)1
Carbea surschlands	cra	46.23-4	3 00	230 00		-	19
1.2 Dichipros Gene	DCA13	107-05-3	3 00	770.00	•		14
	52	71-43-8	20.00	1200 00			\ 10
Person W	A)1	79-81-6	3 00	240 00	2		70
Tracking and the second	SIME	(59.36.3	20 00	1200.00			10
Telegrap	PCE	177-18-4	3.00	240.00	>		116
Tetrachierociness	CL#3	162.63.7	4.00	240.00	6		21
Chiber because	EBZ	120-41-4	25 QQ	1100.00	•		19
[de bourse	XYLMP	120-30-1	50.00	2200,00		Î	10
m-p-Xytenen		155-55	25 00	1100.00	e	1	100
e-Xytone	XYLO		2700	HE.CO	†	1	1
Howard Park	HNCLME	74.97.\$		11309	 		*
1.4-Vicale reduction	OCETA14	110-98-5	1000	112 47			<u> </u>

NOTES:

- R Data renessed.
- C. Una surreced that to exceptions of destroises stops
- 13 Inhairea
- B Blans venturingeion.
- U Amelytan कार ऐस्टिक्टियों का, पर कोरूना देखा इंडिया देखारावाच्या संपर्देश
- character is again to present in the
- U A (cour of ser) (क्लाक्स्प्रांट का क्राव्यक्स्प्रांच कार्या क्राव्यक्स्प्रांच क्राव्यक्स्प्रांच क्राव्यक्स्

MBV . Pero per hillers referre. MQL - bindered symptomics limits.

VU - Poressi dell'arrores

KHI . Kalenta percent difference

huntered receive one in word of present recovery with crossed briefs 65 to 11.4%

This medyan was perferred using SFA Musical WIII and SFA thesian XUA

Approved By:

Fas (510) 090-0572

1500 Bescall Common, Pressured, CA 94536

Onging Carumanant Laboration Inc.

Td: (310) 480-0571

California Laboratory Services

Environmental Laburatury Information System

This report was sent automatically. In the event of an incomplete transmittance, 5 attempts will be made to send the complete number of pages for this report. If you have any questions, please cell (918)638-7301 for assistance.

To: Altungo Ang

Date: 7-28-97

From: California Laboratory Services

Page 001 of 005

The following facsimile report is of a preliminary nature and as such does not include data that will be forthcoming in the complete report package. Interpretation of the report results should be made only after the complete report package has been delivered.

Client: Harding Lawson Associates

90 Digital Drive

Novato, CA 94949

Project: McClellan FBAS/IC-31

Date Sampled: 07/16/97 Date Received: 07/17/97 Date Extracted: 07/21/97 Date Analyzed: 07/21/97 Date Reported: 07/28/97

Client ID No.: RESIN-1

Project No.:

Contact: Alfonso Ang Phone: (415)884-3121

Lab Contact: George Hampton

Lab ID No.: N8438-1A Job No.: 808438 COC Log No.: NO NUMBER Batch No.: 20072

Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

RESIN-1 _____

Analyte	Results	Rep. Limit	Dilution
CAS No.	(ug/kg)	(ug/kg)	(factor)
Acetone			
67-6 4-1	ND	5000	50
Benzene			
71-43-2	26000	1000	200
Bromodichloromethane			
75-27- 4	ND	250	50
Bromoform			
75-25-2	ND	250	50
Bromomethane			
74-83-9	ND	500	50
2-Butanone		5000	
78-93-3	ND	5000	50
Carbon disulfide		050	5 0
75-15-0	1 20	250	50
Carbon tetrachloride		250	5 0
56-23-5	ND	250	50
Chlorobenzene		250	F0
108-90-7	ND	250	50
Chloroethane		F00	F0
75-00-3	ND	500	50
Chloroform	ND	250	50
67-66-3	עוו	230	30
Chloromethane	ND	500	50
74-87-3 Dibromochloromethane	NU	300	30
124-48-1	ND	250	50
17.4-40-1	1117	·	

Client: Harding Lawson Associates

90 Digital Drive Novato, CA 94949

Project: McClellan FBAS/IC-31

Date Sampled: 07/16/97
Date Received: 07/17/97
Date Extracted: 07/21/97
Date Analyzed: 07/21/97
Date Reported: 07/28/97
Client ID No.: RESIN-1

Project No.:

Contact: Alfonso Ang Phone: (415)884-3121

Lab Contact: George Hampton

Lab ID No.: N8438-1A
Job No.: 808438
COC Log No.: NO NUMBER
Batch No.: 20072
Instrument ID: MS02
Analyst ID: MARKW

Matrix: SOLID

RESIN-1(cont.)

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Dibromomethane			
74-95-3	ND	250	50
1,2-Dichlorobenzene			
95-50-1	ND	250	50
1,3-Dichlorobenzene			
541-73-1	ND	250	50
1,4-Dichlorobenzene		250	50
106-46-7	ND	250	30
Dichlorodifluorometh		500	50
75-71-8	ND	300	30
1,1-Dichloroethane 75-34-3	ND	250	50
1,2-Dichloroethane	112		
107-06-2	ND	250	50
1,1-Dichloroethene			
75-35 -4	ND	250	50
1,2-Dichloroethene,			F0
540-59-0	ND	250	50
1,2-Dichloropropane	MB	250	50
78-87-5	ND	230	30
cis-1,3-Dichloroprop	ND ND	250	50
<pre>10061-01-5 trans-1,3-Dichloropr</pre>	••=		
10061-02-6	ND	250	50
Ethylbenzene	··-		
100-41-4	ND	250	50

Client: Harding Lawson Associates

90 Digital Drive Novato, CA 94949

Project: McClellan FBAS/IC-31

Date Sampled: 07/16/97
Date Received: 07/17/97
Date Extracted: 07/21/97
Date Analyzed: 07/21/97
Date Reported: 07/28/97
Client ID No.: RESIN-1

Project No.:

Contact: Alfonso Ang Phone: (415)884-3121

Lab Contact: George Hampton

Lab ID No.: N8438-1A Job No.: 808438 COC Log No.: NO NUMBER Batch No.: 20072

Instrument ID: MSO2
Analyst ID: MARKW
Matrix: SOLID

RESIM-1(cont)
--------------	---

	~ • • •	D 11-14	Dilution
Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
CH3 NU.	(uy/ky/	· · · · · · · · · · · · · · · · · · ·	(140001)
2-Hexanone		3500	50
591-78-6	ND	2500	30
Methylene chloride		350	50
75-09-2	ND	250	30
4-Methyl-2-pentanone		3500	50
108-10-1	ND	2500	30
Styrene	NB	250	50
100-42-5	ND	250	70
1,1,2,2-Tetrachloroet		250	50
79-34-5	ND	230	30
Tetrachloroethene	NA	250	50
127-18-4	ND	230	30
Toluene	1000	250	50
108-88-3	1000	250	30
1,1,1-Trichloroethane		250	50
71-55-6	ND	230	30
1,1,2-Trichloroethane		250	50
79-00-5	ND	230	30
Trichloroethene	ND	250	50
79-01-6		230	
Trichlorofluoromethan	ND	250	50
75-69-4		230	
1,1,2-Trichloro-1,2,2	ND	250	50
76-13-1	עח	230	
Vinyl acetate	MD	2500	50
108-05 -4	ND	2300	- -

Client: Harding Lawson Associates

90 Digital Drive

Novato, CA 94949

Project: McClellan FBAS/IC-31

Date Sampled: 07/16/97 Date Received: 07/17/97 Date Extracted: 07/21/97 Date Analyzed: 07/21/97 Date Reported: 07/28/97 Client ID No.: RESIN-1

Project No.:

Contact: Alfonso Ang Phone: (415)884-3121

Lab Contact: George Hampton

Lab ID No.: N8438-1A Job No.: 808438 COC Log No.: NO NUMBER

Batch No.: 20072 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

RESIN-1(cont.)

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Vinyl chloride 75-01-4	ND	500	50
Xylenes, total 1330-20-7	ND	500	50

California Laboratory Services

Environmental Laboratury Information System

This report was sent automatically. In the event of an incomplete transmittence, 5 ettempts will be made to send the complete number of pages for this report. If you have any questions, please call (916)638-7301 for assistance.

To: chance me

Date: 7-18-97

From: California Laboratory Services

Page 001 of 002

The following facsimile report is of a preliminary nature and as such does not include data that will be forthcoming in the complete report package. Interpretation of the report results should be made only after the complete report package has been delivered.

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

90 Digital Drive Novato, CA 94949

Project: McClellan FBAS/IC-31

Date Sampled: 07/16/97 Date Received: 07/17/97 Date Extracted: 07/18/97 Date Analyzed: 07/18/97 Date Reported: 07/18/97 Client ID No.: RESIN-1 Project No.:

Contact: Alfonso Ang Phone: (415)884-3121

Lab Contact: George Hampton

Lab ID No.: N8438-1A Job No.: 808438

COC Log No.: NO NUMBER

Batch No.: 20062 Instrument ID: GC018 Analyst ID: JENNDC

Matrix: SOLID

VEO	11	1-	T	

Ana lyte	CAS No.	Results (mg∕kg)	Rep. Limit (mg/kg)	Dilution (factor)
TPH as Gasoline	N/A	ND	4.0	4.0

California Laboratory Services

Environmental Lahoratory Information System

This report was sent automatically. In the event of an incomplete transmittance, 5 ettempts will be made to send the complete number of pages for this report. If you have any questions, please cell (916)638-7301 for essistence.

To:

Date:7-25-97

From: California Laboratory Services

Page 001 of 002

The following facsimile report is of a preliminary nature and as such does not include data that will be forthcoming in the complete report package. Interpretation of the report results should be made only after the complete report package has been delivered.

Sonication, EPA Method 3550

Client: Harding Lawson Associates

90 Digital Drive Novato, CA 94949

Project: McClellan FBAS/IC-31

Date Sampled: 07/16/97
Date Received: 07/17/97
Date Extracted: 07/21/97
Date Analyzed: 07/24/97
Date Reported: 07/25/97

Project No.:

Contact: Alfonso Ang Phone: (415)884-3121

Lab Contact: George Hampton

Lab ID No.: N8438 Job No.: 808438 COC Log No.: NO NUMBER

Batch No.: 20071 Instrument ID: PGC06 Analyst ID: SEPIDEHS

Matrix: SOLID

ANALYTICAL RESULTS							
Lab / Client ID Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)	Dilution (factor)			
1A / RESIN-1 TPH as Diesel	N∕A	8.0	1.0	1.0			

Harding Lawson Associates 10324 Placer Lane Sacramento, CA 95827

12/19/97

Attention: Mike Sides

Reference: Analytical Results

Project Name: McClellan FBAS
Project No.: 37478 35
Date Received: 12/03/97
Chain Of Custody: NO NUMBER

CLS ID No.: 90788 CLS Job No.: 810788

The following analyses were performed on the above referenced project:

No. of Samples	Turnaround Time	Analysis Description
5	10 Days	TPE Gasoline by DHS Method M8015 (soil)
2	10 Days	TPH Extractables by Method M8015 (soil)
5	10 Days	EFA Method 5240
1	10 Days	pH Analysis

TPH Extractable reporting limits were elevated due to high levels of lower range hydrocarbons present in the sample.

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the EPA's criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

George Hampton Laboratory Director

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates 10324 Placer Lane Sacramento, CA 95827

Contact: Mike Sides Phone: (916)364-0793

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/04/97
Date Analyzed: 12/04/97
Date Reported: 12/09/97
Client ID No.: ADSORB-101

Lab Contact: George Hampton Lab ID No.: 90788-12 Job No.: 810788
COC Log No.: NO NUMBER
Batch No.: 21114 Instrument ID: GC018
Analyst ID: JENNOC
Matrix: SOLID

Project No.: 37478 35

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/kg)	
o-Chlorotoluene	95-49-8	-49-8 20.0		151 MA
	Sam	ple: ADSORB-101		
Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)	Dilution (factor)
TPH as Gasoline	N/A	730	200	200

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/04/97 Date Analyzed: 12/04/97 Date Reported: 12/09/97 Client ID No.: ADSORB-102 Project No.: 37478 35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-2A

Job No.: 810788

COC Log No.: NO NUMBER

Batch No.: 21114 Instrument ID: GC018
Analyst ID: JEMMDC
Matrix: SOLID

SURROGATE

Surrogate Recovery Surr Conc. (percent) (mg/kg) CAS No. Analyte 200 MA 95-49-8 200 o-Chlorotoluene Sample: ADSORE-102 Rep. Limit Dilution Results (factor) (mg/kg) (mg/kg) CAS No. Analyte 2000 2000 10000 N/A TPH as Gasoline

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 5015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates 10324 Placer Lane

Project No.: 37478 35
Contact: Mike Sides

Sacramento, CA 95827

Phone: (916)364-0793

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/04/97
Date Analyzed: 12/04/97
Date Reported: 12/09/97
Client ID No.: DESORE-101

Lab Contact: George Hampton
Lab ID No.: p0788-3A
Job No.: 810788
COC Log No.: NO NUMBER
Batch No.: 21114
Instrument ID: GC018
Analyst ID: JENNOC
Matrix: SOLID

SURROGATE

					
Analyte	CAS No		Surr Conc. (mg/kg)	Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-	95-49-8 20.0		168 MA	
		Sample: DESORB-1	01		
Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)	Dilution (factor)	
TPH as Gasoline	N/A	790	200	200	

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Analysis Report: Total Fetroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates 10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/04/97
Date Analyzed: 12/04/97
Date Reported: 12/09/97
Client ID No.: PCOND-101

Project No.: 37478 35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton Lab ID No.: P0788-4A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21114 Instrument ID: GC018
Analyst ID: JERMOC
Matrix: OIL

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/kg)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	8	20.0	127 MA
		Sample: PCOMD-101		
Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)	Dilution (factor)
TPH as Gasoline	N/A	1400	200	200

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Contact: Mike Sides Phone: (916)364-0793

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/04/97 Date Analyzed: 12/04/97 Date Reported: 12/09/97 Client ID No.: PCOND-102

Lab Contact: George Hampton Lab ID No.: P0788-5A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21114

Project No.: 37478 35

Instrument ID: GC018
Analyst ID: JEMMDC
Matrix: OIL

SURROGATE

Analyte	CAS No		Surr Conc. (mg/kg)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-6	3	10000	190 MA
	&	Sample: PCOMD-102		
Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)	Dilution (factor)
TPH as Gasoline	N/A	270000	100000	100000

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

California Laboratory Services

Environmental Lahuratury Information System

This report was sent automatically. In the event of an incomplete transmittance, 5 attempts will be made to send the complete number of pages for this report. If you have any questions, piesse cell (918)638-7301 for essistence.

To: Mike Sides

Date:8-13-97

From: California Laboratory Services

Page 001 of 013

The following facsimile report is of a preliminary nature and as such does not include data that will be forthcoming in the complete report package. Interpretation of the report results should be made only after the complete report package has been delivered.

The high dilution on the TPH-MO was required because of the abundance of lower molecular weight hydrocarbons in the sample.

LAM

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 08/08/97
Date Received: 08/08/97
Date Extracted: 98/12/97
Date Analyzed: 08/12/97
Date Reported: 08/13/97
Client ID No.: ABSORB-01

Project No.: 3747835

Contact:

Phone: (916)364-9793

Lab Contact: George Hampton

Lab ID No.: N8751-1A Job No.: 808751 COC Log No.: NO NUMBER Batch No.: 20214

Instrument ID: MS92
Analyst ID: MARKW
Matrix: SOLID

ABSOR8-01 _____

Analyte CAS No.	Results (ug/kg)	Rcp. Limit (ug/kg)	Dilution (factor)
Acetone 67-64-1	ND	1888000	10000
Benzene	ND	50000	10090
71-43-2 Bromodichloromethane		50 066	19909
75-27-4 Bromoform	ND		10800
75-25-2	HD	59000	- '
Bromomethane 74-83-9	HD	190009	10000
2-Butanone 78-93-3	MD	100006	10000
Carbon disulfide	HD	50888	10800
75-15-0 Carbon tetrachloride		58800	10000
56-23-5	ND	30000	10000
Chlorobenzene 108-90-7	MD	50000	10000
Chloroethane 75-00-3	ND	100899	10000
Chloroform	92888	50000	10088
67-66-3 Chloromethane		10000	19880
74-87-3 Dibromochloromethane	ND		10000
124-48-1	ND	50000	10000

MD = Not detected at or above indicated Reporting Limit

Project: McClellan FBAS

Date Sampled: 08/08/97

Date Received: 08/06/97

Date Analyzed: 08/12/97

Date Reported: 08/13/97

Client ID No.: ABSORB-01

Date Extracted: 08/12/97

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No .: N8751-18 Job No.: 808751 COC Log No.: NO NUMBER

Batch No.: 20214 Instrument ID: MSOZ Analust ID: MARKW

Matrix: SOLID

ABSORB-01(cont.)

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Dibromomethane		5000	19800
74-95-3	ND	30000	•
1,2-Dichlorobenzer 95-50-1	ND	50000	10000
1,3-Dichlorobenzer 541-73-1	ne ND	50000	100 90
1,4-Dichlorobenzer	ne ND	50000	10009
Dichlorodifluoromo	ethane ND	108800	10900
1,1-Dichloroethand	120000	50000	10008
1,2-Dichloroethand	ND	5000	10000
1,1-Dichloroethen 75-35-4	ND	50 000	10090
1,2-Dichloroethen 540-59-0	e, total 72908	50000	10000
1,2-Dichloropropa 78-87-5	ne ND	50008	16009
cis-1,3-Dichlorop 10061-01-5	ropene ND	50000	10008
trans-1,3-Bichlor	• • • •	58800	10080
10061-02-6 Ethylbenzens			19000
100-41-4	ND	500 00	TAAAA

ND = Not detected at or above indicated Reporting Limit

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Design McClellan FRAQ

Project: McClellan FBAS

Date Sampled: 08/08/97

Date Received: 08/08/97
Date Extracted: 08/12/97
Date Analyzed: 08/12/97
Date Reported: 08/13/97
Client ID No.: ABSORB-01

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: N8751-1A Job No.: 898751 COC Log No.: NO NUMBER

Batch No.: 20214 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

ABSORB-01(cont.)			
Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Z-Hexanone 591-78-6	ND	5000 00	10090
Methylene chloride 75-09-2	ND	50006	10000
4-Methyl-2-pentanone 108-10-1	ND	500000	10080
Styrene 108-42-5	ND	50 00	19800
1,1,2,2-Tetrachloroet 79-34-5		5 6 00 8	10000
Tetrachloroethene	ND	50098	19009
Toluene	ND	5000	10990
108-88-3 1,1,1-Trichloroethane		50088	10000
71-55-6 1,1,2-Trichloroethand		5000	10800
79-00-5 Trichloraethene	926900	50000	10000
79-01-6 Trichlorofluorometha		50000	10099
75-69-4 1,1,2-Trichloro-1,2,	2-trifluoroethane	50000	10800
76-13-1 Vinyl acetate 108-05-4	ND ND	500008	10000
TOO - OO .			

ND = Not detected at or above indicated Reporting Limit

Project: McClellan FBAS

Date Sampled: 08/08/97

Date Received: 08/08/97

Date Analyzed: 08/12/97

Date Reported: 08/13/97

Client ID No.: ABSORB-01

Date Extracted: 08/12/97

Analysis Report: Uplatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: N8751-1A Job No.: 808751

COC Log No .: NO NUMBER

Batch No.: 20214 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

_ ABSORB-01(cont.) _

Dilution Rep. Limit Results Analyte (factor) (ug/kg) (ug/kg) CAS No.

Vinul chloride

10980 100000 ND 75-01-4

Xulenes, total 1330-20-7

10000 100000 HD

ND = Not detected at or above indicated Reporting Limit

Client: Harding Lawson Associates

Date Sampled: 08/08/97

Date Received: 08/08/97

Date Analyzed: 08/12/97

Date Reported: 08/13/97

Client ID No.: DESORB-03

Date Extracted: 08/12/97

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton Project: McClellan FBAS

Lab ID No.: N8751-2A Job No.: 808751 COC Log Ma .: NO NUMBER

Batch No .: 20214 Instrument ID: MS02 Analust ID: MARKW

Matrix: SOLID

		DESORB-03		,
Analyte CAS No.	Results (ug/kg)		Rep. Limit (ug/kg)	Dilution (factor)
Acetone 67-64-1	HD		1900000	10800
Benzene 71-43-2	ND		500 88	10000
Bromodichloromethane 75-27-4	MD		58900	10000
Bromoform 75-25-2	ND		50000	100 96
Bromomethane 74-83-9	MD		100000	10000
2-Butanone 78-93-3	ND		100000	10000
Carbon disulfide 75-15-0	MD		50000	10090
Carbon tetrachloride 56-23-5	ND		50 00	19000
Chlorobenzene 108-98-7	ND		50000	10000
Chloroethane 75-00-3	MD		100 999	10000
Chloroform 67-66-3	66888		50000	10090
Chloromethane 74-87-3	ND		100998	10000
Dibromochloromethane 124-48-1	ND		50000	10099

ND = Not detected at or above indicated Reporting Limit

Date Sampled: 08/08/97

Date Received: 08/08/97

Date Analyzed: 08/12/97

Date Reported: 08/13/97

Client ID No.: DESORB-03

Date Extracted: 08/12/97

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-9793

Project: McClellan FBAS Lab Contact: George Hampton

Lab ID No.: M8751-ZA Job No.: 808751 COC Log No.: MO NUMBER

Batch No.: 20214 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

	DESO	RB-	03(מסס	ŧ.)
--	------	-----	-----	-----	----	---

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Dibromomethane 74-95-3	ND	50000	10000
1,2-Dichlorobenzene 95-50-1	ND	50000	10000
1,3-Dichlorobenzene 541-73-1	ND	50000	10000
1,4-Dichlorobenzene 106-46-7	ND	59900	19900
Dichlorodifluorometh 75-71-8	ane ND	100006	10006
1,1-Dichloroethane 75-34-3	86000	5000	10980
1,2-Dichloroethane 107-06-2	ND	50000	19900
1,1-Dichloroethene 75-35-4	ND	50000	10000
1,2-Dichloroethens, 540-59-0	total 56 000	5000	19900
1,2-Dichloropropane 78-87-5	MB	509 00	10000
cis-1,3-Dichloroprop	MD	5 000	10000
trans-1,3-Dichlorops 10061-02-6	opene ND	50000	10000
Ethylbenzene 160-41-4	ND	50000	10900

ND = Not detected at or above indicated Reporting Limit

Project: McClellan FBAS

Date Sampled: 08/08/97

Date Received: 08/08/97

Date Analyzed: 08/12/97

Date Extracted: 08/12/97

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8249

Client: Harding Lawson Associates

19265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: N8751-2A Job No.: 808751 COC Log No.: NO NUMBER

Batch Mo.: 20214
Instrument ID: MS02
Analyst ID: MARKU
Matrix: SOLID

Date Reported: 08/13/97 Hnalyst ID. No.: DESORB-03 Matrix: S

	DESORB-03(cont.)	
Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
2-Hexanone 591-78-6	ND	500000	16009
Methylene chloride 75-09-2	ND	50000	10000
4-Methyl-2-pentanone	ND	50000	10008
108-10-1 Styrene	ND	5000	10000
100-42-5 1,1,2,2-Tetrachloroet	*	50000	10009
79-34-5 Tetrachloroethene	ND	58000	19000
127-18-4 Toluene	ND	5000	10008
108-88-3 1,1,1-Trichloroethane		5000	10980
71-55-6 1,1,2-Trichloroethane		50800	10900
79-00-5 Trichloroethene	860800	50 989	10900
79-01-6 Trichlorofluoromethan		500 99	10000
75-69-4 1,1,2-Trichloro-1,2,	2-trifluoroethane ND	500 00	10000
76-13-1 Vinyl acetate 108-05-4	ND	500888	10000

ND = Not detected at or above indicated Reporting Limit

Date Sampled: 08/08/97

Date Received: 08/68/97

Date Analyzed: 08/12/97

Date Reported: 08/13/97

Client ID No.: DESORB-03

Date Extracted: 08/12/97

3 88-13-97 85:88 pm 13 ses of 613

Analysis Report: Uolatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10265 Rockingham Dr. SIE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton Project: McClellan FBAS

Lab ID No.: N8751-2A Job No.: 808751 COC Log No.: NO NUMBER

Batch No.: 20214 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

DESORB-03(cont.) ____

Dilution Rep. Limit Results Analyte (ug/kg) (factor) (ug/kg) CAS No. Vinul chloride 100000 10000 MD 75-01-4 Xylenes, total 18800 100060 1330-20-7 ND

ND = Not detected at or above indicated Reporting Limit

Sonication, EPA Method 3550

Client: Harding Lawson Associates

19265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835 Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: N8751-1A Job No.: 808751 COC Log No .: NO NUMBER

Batch No.: 20206 Instrument ID: PGC04

Analyst ID: SEPIDEHS

Matrix: SOLID

Project: McClellan FBAS

Date Sampled: 08/08/97 Date Received: 08/08/97 Date Extracted: 08/11/97

Date Analyzed: 08/13/97 Date Reported: 08/13/97 Client ID No.: ABSORB-01

ABSORB-**91**

Rep. Limit Dilution Results (factor) (mg/kg) (mg/kg) CAS No. Analyte 100 100 HD N/A TPH as Diesel 188 200 MD M/A TPH as Motor Oil

HD = Not detected at or above indicated Reporting Limit

Sonication, EPA Method 3550

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: N8751-ZA Job No.: 808751

COC Log No.: NO NUMBER Batch No.: 20206

Instrument ID: PGC04
Analyst ID: SEPIDEHS

Matrix: SOLID

Project: McClellan FBAS

Date Sampled: 08/08/97
Date Received: 08/08/97

Date Extracted: 08/11/97
Date Analyzed: 08/13/97
Date Reported: 08/13/97
Client ID Mo.: DESORB-03

DESORB-03 _____

Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)	Dilution (factor)
TPH as Diesel	N/A	ND	50	100
TPH as Motor Oil	N/A	ND	100	100

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 08/08/97 Date Received: 08/08/97

Date Extracted: 08/11/97
Date Analyzed: 08/11/97
Date Reported: 08/13/97
Client ID No.: ABSORB-01

Project No.: 3747835

Contact:

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: N8751-1A Job No.: 808751

COC Log No.: NO NUMBER
Batch No.: 20202
Instrument ID: GC018
Analust ID: JENNDC

Matrix: SOLID

ABSORB-01 _

Analyte CAS No. Results Rep. Limit Dilution (mg/kg) (mg/kg) (factor)

TPH as Gasoline N/A 15000 5000 5000

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

Project No.: 3747835

Contact:

Phone: (916)364-0793

in FBAS Lab Contact: George Hampton

Lab ID No.: N8751-2A Job No.: 808751 COC Log No.: NO NUMBER

Batch No.: 20202 Instrument ID: GC018 Analyst ID: JENNDC

Matrix: SOLID

Project: McClellan FBAS

Date Sampled: G8/68/97
Date Received: G8/68/97
Date Extracted: G8/11/97
Date Analyzed: G8/11/97
Date Reported: G8/13/97

Client ID No.: DESORB-03

_ DESCRB-03

Results Rep. Limit Dilution Analyte CAS No. (mg/kg) (mg/kg) (factor)

TPH as Gasoline

N/A

9700

2666

2000

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

ANALYSIS REPORT: Tentatively Identified Compounds

EPA METHOD: 8240

CLIENT: Harding Lawson Associates

10265 Rockingham Dr. STE 150

Sacramento, CA 95827

PROJECT NO.: 3747835 CONTACT. Mike Sides

PHONE: 916-364-0793

PROJECT: McClellan FBAS

CLS CONTACT: Larry Mooney

JOB NO.: 808751

DATE RECEIVED: 8/8/97

DATE ANALYZED: 8/12/97

COC LOG NO.:

CLS ID NO.: N8751

BATCH NO.: 20214

CLIENT ID: ABSORB-01

MATRIX: SOLID

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (ug/Kg)
13.62	Hexane, 2,3-dimethyl-	380000
13.92	Pentane, 2,3,3-trimetnyl-	5400 00
14.51	Hexane, 2,2,5-trimethyl-	1180000
15.89	Hexane, 2,3,5-trimethyl-	410000
17.92	Heptane, 2.2,4-trimethyl-	750000
18.17	Decane, 2,2,8-trimethyl-	1980000
18.65	Heptane, 3,3,5-trimethyl-	1060000
19.11	Octane, 2,3-dimethyl-	570000
20.19	Unknown Alkane	3800000
20.56	Octane, 2,2,6-trimethyl-	750000

3249 Fitzgerald Road Rancho Cordova, CA 98742 (916) 638-7301 Fax (916) 838-4510 3083 Gold Canal Drive Rancho Cordova, CA 956 3 (918) 852-8600 Fax (916) 852-7292

acumpun 🖈 ump

ANALYSIS REPORT: Tentatively Identified Compounds

EPA METHOD: 8240

CLIENT: Harding Lawson Associates

10265 Rockingham Dr, STE 150

Sacramento, CA 95827

PROJECT NO.: 3747835 CONTACT: Mike Sides

PHONE: 916-364-0793

PROJECT: McClellan FBAS

DATE RECEIVED: 8/8/97

DATE ANALYZED: 8/12/97

CLIENT ID: DESORB-03

CLS CONTACT: Larry Mooney

JOB NO.: 808751

COC LOG NO .:

CLS ID NO.: N8751 BATCH NO.: 20214

MATRIX: SOLID

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (ug/Kg)
12.50	Octane, 4-ethyl-	350000
12.60	Pentane, 2,3,4-trimethyl-	280000
13.61	Pentane, 2,3,3-trimethyl-	380000
13.93	Hexane, 2,2,4-trimethyl-	680000
14.56	Hexane 2.2 6 immathul	340000
17.93	Hexane, 2,2,5-trimethyl-	730000
18.21	Heptane, 2,2,4-trimethyl-	400000
18.67	Heptane, 3.3.5-trimethyl-	1800000
20.21	Octane, 2,2,6-trimethyl-	410000
20.60	Unknown Alkane	280000
21,91	Decane, 2,2-dimethyl-	260000

3249 Fitzgerald Road Rancho Cordova, CA 95742 (916) 638-7301 Fax (916) 538-4510 3083 Gold Canal Drive Rancho Cordova, CA 95670 (916) 862-6600 Fax (916) 652-7292

Environmental Laboratory Information System

This report was sent automatically. In the event of an incomplete transmittance, 5 attempts will be made to send the complete number of pages for this report. If you have any questions, please call (916)638-7301 for assistance.

To: Alfonso Ang

From: CLS Labs

Date:6-19-98

Page 001 of 045

The following facsimile report is of a final nature in fax format and as such does not include data that will be forthcoming in the complete report package. Interpretation of the report results should be made only after the complete report package has been delivered.

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: ADSORB-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-1A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

SURRUGATE	
-----------	--

Ana lyte	Cí	AS N o.	Surr Conc. (ug∕kg)	Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene	H.	∕A ∕A 60-00-4	25000 25000 25000	97 98 84
		ADSORB-	101	
Analyte CAS N o.	Results (ug/kg)		Rep. Limit (ug∕kg)	Dilution (factor)
Acetone 67-64-1	ND		25000	250
Benzene 71-43-2	2600		1200	250
Bromodichloromethane 75-27-4	ND		1200	250
Bromoform 75-25-2	ND		1200	250
Bromomethane 74-83-9	ND		2500	250
2-Butanone 78-93-3	ND		25000	250
Carbon disulfide 75-15-0	ND		1200	250

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Client ID No.: ADSORB-101

Contact: Mike Sides

Lab Contact: George Hampton

Phone: (916)364-0793

Lab ID No.: P0788-1A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21147

Project No.: 37478 35

Instrument ID: MS02
Analyst ID: MARKW
Matrix: SOLID

ADSORB-	101	(cont	t.)
---------	-----	-------	-----

Analyte CAS N o.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Carbon tetrachlor	ide		
56-23-5	ND	1200	250
Chlorobenzene			250
108-90-7	ND	1200	250
Chloroethane		2500	250
75-00-3	ND	2500	250
2-Chloroethyl vin		12000	250
110-75-8	ND	12000	230
Chloroform	3700	1200	250
67-66-3 Chloromethane	2100	1200	200
74-87-3	ND	2500	250
Dibromochlorometh		 = 0 - 2	
124-48-1	ND	1200	250
Dibromomethane			
74-95-3	ND	1200	250
1,2-Dichlorobenze	ne		
95-50-1	ND	1200	250
1,3-Dichlorobenze	ne		
541-73-1	ND	1200	250
1,4-Dichlorobenze			250
106-46-7	ND	1200	250
Dichlorodifluorom		0500	250
75-71-8	ND	2500	250
1,1-Dichloroethan		4200	250
75-34-3	8000	1200	250

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: ADSORB-101

Analyte

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-1A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

Results	Rep. Limit	Dilution
(ug/kg)	(ug/kg)	(factor)

_ ADSORB-101(cont.) _____

CAS No.	(ug/kg)	(ug/kg)	(factor)
1,2-Dichloroetha		4300	250
107-06-2	ND	1200	230
1,1-Dichloroethe		1300	250
75-35- 4	ND	1200	230
1,2-Dichloroethe	ne, total	1300	250
540-59-0	4 200	1200	230
1,2-Dichloroprop	oane	1200	250
78-87-5	ND	1200	230
cis-1,3-Dichloro		1200	250
10061-01-5	ND	1200	230
trans-1,3-Dichlo		1200	250
10061-02-6	ND	1200	230
Ethylbenzene		1200	250
100-41-4	ND	1200	230
2-Hexanone		12000	250
591-78-6	ND	12000	230
Methylene chlori	ide	1200	250
75-09-2	ND	1200	230
4-Methyl-2-penta	anone	12000	250
108-10-1	ND	12000	230
Styrene		1200	250
100- 4 2-5	ND	1200	230
1,1,2,2-Tetrach	loroethane	1200	250
79-34-5	ND	1200	230
Tetrachloroethe	ne	1200	250
127-18- 4	14000	1200	230

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: ADSORB-101

Project No.: 37478 35 Contact: Mike Sides

ntact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-1A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

ADSORB-101(cont.)

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
To luene 108-88-3	3600	1200	250
1,1,1-Trichloroethan		1200	230
71-55-6	ND	1200	250
1,1,2-Trichloroethan	·· -		
79-00-5	ND	1200	250
Trichloroethene	110	1000	
79-01-6	160000	5000	1000
Trichlorofluorometha			
75-69-4	ND	1200	250
1,1,2-Trichloro-1,2,			
76-13-1	ND	1200	250
Vinyl acetate			
108-05-4	ND	12000	250
Vinyl chloride			
75-01-4	ND	2500	250
Xylenes, total			
1330-20-7	ND	2500	250

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: ADSORB-102

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-2A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

SURROGATE	

Analyte		CAS	No.	Surr Conc. (ug∕kg)	Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene		N∕A N∕A 460	-00- 4	250000 250000 250000	105 102 99
			ADSORB-102		
Analyte CAS N o.	Results (ug/kg)			Rep. Limit (ug/kg)	Dilution (factor)
					,
Acetone					2500
67-64-1	ND			250000	2500
Benzene				12000	2500
71-43-2	ND			12000	2300
Bromodichloromethane 75-27-4	ND			12000	2500
Bromoform 75-25-2	ND			12000	2500
Bromomethane					araa
74-83-9	ND			25000	2500
2-Butanone 78-93-3	ND			250000	2500
Carbon disulfide 75-15-0	ND			12000	2500

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Client ID No.: ADSORB-102

Lab Contact: George Hampton

Contact: Mike Sides

Phone: (916)364-0793

Lab ID No.: P0788-2A

Job No.: 810788 COC Log No.: NO NUMBER

Project No.: 37478 35

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

ADSORB-	102(cont.)
---------	------	--------

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Carbon tetrachloride			
56-23-5	ND	12000	2500
Chlorobenzene		4222	3500
108-90-7	ND	12000	2500
Chloroethane		35000	2500
75-00-3	ND	25000	2300
2-Chloroethyl vinyl		120000	2500
110-75-8	ND	120000	2300
Chloroform	ND	12000	2500
67-66-3 Chloromethane	עוו	12000	
74-87-3	ND	25000	2500
Dibromochloromethane	112		
124-48-1	ND	12000	2500
Dibromomethane	2		
74-95-3	ND	12000	2500
1,2-Dichlorobenzene			
95-50-1	ND	12000	2500
1,3-Dichlorobenzene			2500
541-73-1	ND	12000	2500
1,4-Dichlorobenzene	·	1000	3500
106-46-7	ND	12000	2500
Dichlorodifluorometh		35000	2500
75-71-8	ND	25000	2300
1,1-Dichloroethane 75-34-3	45000	12000	2500

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Lab Contact: George Hampton

Contact: Mike Sides

Phone: (916)364-0793

Lab ID No.: P0788-2A

Project No.: 37478 35

Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MSO2 Analyst ID: MARKW Matrix: SOLID

Date Reported: 06/19/98 Client ID No.: ADSORB-102

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97

Date Extracted: 12/10/97
Date Analyzed: 12/10/97

ADSORB-102(cont.) _____

Analyte CAS N o.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
1.2-Dichloroetha	. no		
107-06-2	ND	12000	2500
1,1-Dichloroethe		12000	2300
75-35-4	ND	12000	2500
1,2-Dichloroethe		12000	
540-59-0	28000	12000	2500
1,2-Dichloroprop		12009	
78-87-5	ND	12000	2500
cis-1,3-Dichlore			
10061-01-5	ND	12000	2500
trans-1,3-Dichlo			
10061-02-6	ND	12000	2500
Ethylbenzene			
100-41-4	ND	12000	2500
2-Hexanone			
591-78-6	ND	120000	2500
Methylene chlori	ide		
75-09-2	ND	12000	2500
4-Methyl-2-penta	anone		
108-10-1	ND	120000	2500
Styrene			05.0
100-42-5	ND	12000	2500
1,1,2,2-Tetrach	loroethane		2500
79-34-5	ND	12000	2500
Tetrachloroether		10000	3500
127-18- 4	28000	12000	2500

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/10/97 Date Analyzed: 12/10/97 Date Reported: 06/19/98 Client ID No.: ADSORB-102 Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-2A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

ADSORB-102(cont.)

Analyte CAS N o.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
To luene 108-88-3	ND	12000	2500
1,1,1-Trichloroethane 71-55-6		12000	2500
1,1,2-Trichloroethane 79-00-5	ND	12000	2500
Trichloroethene 79-01-6	340000	12000	2500
Trichlorofluoromethan		12000	2500
75-69-4 1,1,2-Trichloro-1,2,2	ND -trifluoroethane	12000	2000
76-13-1	ND	12000	2500
Vinyl acetate 108–05–4	ND	120000	2500
Vinyl chloride 75-01-4	ND	25000	2500
Xylenes, total 1330-20-7	ND	25000	2500

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: DESORB-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-3A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21147

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

SURRUGATE	
-----------	--

Ana lyte		CAS	No.	Surr Conc. (ug/kg)	Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene		N/A N/A 460-	-00- 4	25000 25000 25000	101 100 104
			DESORB-101		
Analyte CAS No.	Results (ug/kg)			Rep. Limit (ug/kg)	Dilution (factor)
Acetone	ND			25000	250
67-64-1 Benzene	ND			1200	250
71-43-2 Bromodichloromethane 75-27-4	1900 ND			1200	250
Bromoform 75-25-2	ND			1200	250
Bromomethane 74-83-9	ND			2500	250
2-Butanone 78-93-3	ND			25000	250
Carbon disulfide 75-15-0	ND			1200	250

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: DESORB-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-3A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21147

Batch No.: 21147
Instrument ID: MS02
Analyst ID: MARKW
Matrix: SOLID

DESORB-101(cont.) _____

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Carbon tetrachloride			
56-23-5	ND	1200	250
Chlorobenzene			250
108-90-7	ND	1200	250
Chloroethane			250
75-00-3	ND	2500	250
2-Chloroethyl vinyl e		42000	250
110-75-8	ND	12000	250
Chloroform		4200	250
67-66-3	2600	1200	230
Chloromethane		3500	250
74-87-3	ND	2500	230
Dibromochloromethane		1200	250
124-48-1	ND	1200	2.30
Dibromomethane	MD	1200	250
74-95-3	ND	1200	230
1,2-Dichlorobenzene	N/D	1200	250
95-50-1	ND	1200	200
1,3-Dichlorobenzene	ND	1200	250
541-73-1	ND	1200	
1,4-Dichlorobenzene	ND	1200	250
106-46-7		1200	
Dichlorodifluorometha		2500	250
75-71-8	ND	2300	
1,1-Dichloroethane	3800	1200	250
75-34-3	3600		

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: DESORB-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-3A
Job No.: 810788
COC Log No.: NO NUMBER
Batch No.: 21147

Instrument ID: MSO2
Analyst ID: MARKW
Matrix: SOLID

DESURB-1	l01 (cont	ι.)
----------	-----------	-----

Analyte	Results	Rep. Limit	Dilution
CAS No.	(ug/kg)	(ug/kg)	(factor)
1,2-Dichloroetha			
107-06-2	ND	1200	250
1,1-Dichloroethe			
75-35- 4	ND	1200	250
1,2-Dichloroethe			
540-59-0	2600	1200	250
1,2-Dichloroprop			
78-87-5	ND	1200	250
cis-1,3-Dichloro			
10061-01-5	ND	1200	250
trans-1,3-Dichlo	ropropene		
10061-02-6	ND	1200	250
Ethylbenzene			
100-41-4	MD	1200	250
2-Hexanone			
591-78-6	ND	12000	250
Methylene chlori			
75-09-2	ND	1200	250
4-Methyl-2-pentar			
108-10-1	MD	12000	250
Styrene			
100-42-5	ND	1200	250
1,1,2,2-Tetrachle	oroethane		
79-34-5	ND	1200	250
Tetrachloroethen	e		
127-18- 4	15000	1200	250

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: DESORB-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-3A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21147

Instrument ID: MS02
Analyst ID: MARKW
Matrix: SOLID

DESORB-101(cont.)

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Toluene	3300	1200	250
108-88-3		1200	250
1,1,1-Trichloroethane		1200	250
71-55-6	ND	1200	230
1,1,2-Trichloroethane		1200	250
79-00-5	ND	1200	230
Trichloroethene		E000	1000
79-01-6	130000	5000	1000
Trichlorofluoromethan	ne		050
75-69-4	ND	1200	250
1,1,2-Trichloro-1,2,2	2-trifluoroethane		
76-13-1	ND	1200	250
Vinul acetate			
108-05-4	ND	12000	250
Vinyl chloride			
75-01-4	ND	2500	250
Xylenes, total			
1330-20-7	ND	2500	250
1330 60 1	114		

Surrogate

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: PCOND-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-4A

Job No.: 810788

COC Log No.: NO NUMBER

Patch No.: 21147

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: OIL

SURROGATE	_

Ana lyte		CAS	No.	Surr Conc. (ug∕kg)	Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene		N∕A N∕A 460		25000 25000 25000	110 99 77
			PCOND-101		
Analyte CAS No.	Results (ug/kg)			Rep. Limit (ug/kg)	Dilution (factor)
Acetone 67-64-1	ND			25000	250
8enzene 71-43-2	55000			1200	250
Bromodichloromethane 75-27-4	ND			1200	250
Bromoform 75-25-2	ND			1200	250
Bromomethane 74-83-9	ND			2500	250
2-Butanon e 78-93-3	ND			25000	250
Carbon disulfide 75-15-0	ND			1200	250

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: PCOND-101

Project No.: 37478 35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-4A
Job No.: 810788
COC Log No.: NO NUMBER
Batch No.: 21147

Instrument ID: MS02
Analyst ID: MARKW
Matrix: OIL

ru	กนก	i — T	ωŢ	CO	п	ι.	,

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Carbon tetrachloride			
56-23-5	ND	1200	250
Chlorobenzene			
108-90-7	ND	1200	250
Chloroethane	ND	2500	250
75-00-3	ND	2500	230
2-Chloroethyl vinyl e 110-75-8	ND	12000	250
Chloroform	עוו	12000	
67-66-3	240000	50000	10000
Chloromethane			
74-87-3	ND	2500	250
Dibromochloromethane	·		250
124-48-1	ND	1200	250
Dibromomethane		1200	250
74-95-3	MD	1200	230
1,2-Dichlorobenzene	ND	1200	250
95-50-1 1,3-Dichlorobenzene	עוו	1200	
541-73-1	ND	1200	250
1,4-Dichlorobenzene			
106-46-7	ND	1200	250
Dichlorodifluorometha	ine		
75-71-8	ND	2500	250
1,1-Dichloroethane			10000
75-34-3	190000	50000	10000

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/10/97

Date Analyzed: 12/10/97 Date Reported: 06/19/98 Client ID No.: PCOND-101 Project No.: 37478 35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-4A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW

Matrix: OIL

PCOND-1	01 (c)	ont.)
---------	--------	------	---

Analyte CAS N o.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
1,2-Dichloroethane		4200	250
107-06-2	ND	1200	250
1,1-Dichloroethene		4200	250
75-35- 4	9700	1200	230
1,2-Dichloroethene		F0000	10000
540-59-0	260000	50000	10000
1,2-Dichloropropat		4200	250
78-87-5	ND	1200	250
cis-1,3-Dichlorop		4200	250
10061-01-5	MD	1200	250
trans-1,3-Dichloro		4200	250
10061-02-6	ND	1200	250
Ethylbenzene		4000	200
100-41-4	ND	1200	250
2-Hexanone		45000	250
591-78-6	ND	12000	250
Methylene chlorid	e	4222	250
75-09-2	3900	1200	230
4-Methyl-2-pentano	one	1000	250
108-10-1	ND	12000	250
Styrene			250
100-42-5	ND	1200	250
1,1,2,2-Tetrachlo	roethane		250
79-3 4- 5	ND	1200	250
Tetrachloroethene			10000
127-18- 4	460000	50000	10000

1 017 of 045

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/10/97

Date Analyzed: 12/10/97 Date Reported: 06/19/98 Client ID No.: PCOND-101 Project No.: 37478 35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-4A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: OIL

PCOND-101(cont.) _____

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Toluene			
108-88-3	20000	1200	250
1,1,1-Trichloroethane	!		
71-55-6	50000	1200	250
1,1,2-Trichloroethane			250
79-00-5	ND	1200	250
Trichloroethene		F0000	40000
79-01-6	7800000	50000	10000
Trichlorofluoromethan			250
75-69- 4	ND	1200	250
1,1,2-Trichloro-1,2,2		1000	350
76-13-1	ND	1200	250
Vinyl acetate			350
108-05-4	ND	12000	250
Vinyl chloride		2500	250
75-01-4	ND	2500	250
Xylenes, total		3500	250
1330-20-7	ND	2500	230

100000

100000

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/10/97 Date Analyzed: 12/10/97 Date Reported: 06/19/98 Client ID No.: PCOND-102 Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-5A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: OIL

Ana lyte	CAS M o.	Surr Conc. (ug∕kg)	Surrogate Recovery (percent)
1,2-Dichloroethane-d4	N/A	10000000	102
Toluene-d8	N/A	10000000	100
p-Bromofluorobenzene	460-00-4	10000000	94

SURROGATE _____

PCOND-102 ____ Dilution Rep. Limit Results Ana lyte (factor) (ug/kg) CAS No. (ug/kg) Acetone 100000 10000000 ND 67-64-1 Benzene 100000 500000 ND 71-43-2 Bromodichloromethane 100000 500000 75-27-4 ND Bromoform 100000 500000 75-25-2 HD Bromomethane 100000 1000000

Carbon disulfide 500000 ND 75-15-0

HD

ND

ND = Not detected at or above indicated Reporting Limit

74-83-9 2-Butanone

78-93-3

CA DOHS ELAP Accreditation/Registration Number 1233

10000000

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: PCOND-102

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-5A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: OIL

PCOND-10	2(cont	.)
----------	--------	-----

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Carbon tetrachloride	ND	500000	100000
56-23-5	עוו	300000	20000
Chlorobenzene 108-90-7	ND	500000	100000
Chloroethane	עוו		
75-00-3	ND	1000000	100000
2-Chloroethyl vinyl e			
110-75-8	ND	5000000	100000
Chloroform			
67-66-3	ND	500000	100000
Chloromethane	·		
74-87-3	ND	1000000	100000
Dibromochloromethane			10000
124-48-1	ND	500000	100000
Dibromomethane			400000
74-95-3	ND	500000	100000
1,2-Dichlorobenzene		F00000	100000
95-50-1	ND	500000	100000
1,3-Dichlorobenzene	NID	500000	100000
541-73-1	ND	200000	100000
1,4-Dichlorobenzene	ND	500000	100000
106-46-7	ND	300000	10000
Dichlorodifluorometha		1000000	100000
75-71-8	ND	100000	
1,1-Dichloroethane	ND	500000	100000
75-34-3	עוו	30000	

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Lab Contact: George Hampton

Contact: Mike Sides

Phone: (916)364-0793

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/10/97 Date Analyzed: 12/10/97

Lab ID No.: P0788-5A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21147

Project No.: 37478 35

Instrument ID: MS02 Analyst ID: MARKW Matrix: OIL

Date Reported: 06/19/98 Client ID No.: PCOND-102

PCOND-102(cont.)				
Analyte CAS N o.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)	
1,2-Dichloroethane				
107-06-2	ND	500000	100000	
1,1-Dichloroethene				
75-35 -4	ND	500000	100000	
1,2-Dichloroethene,		50000	400000	
540-59-0	MD	500000	100000	
1,2-Dichloropropane		500000	100000	
78-87-5	ND	200000	100000	
cis-1,3-Dichloropro	npene ND	500000	100000	
10061-01-5		300000	100000	
trans-1,3-Dichlorop 10061-02-6	ND ND	500000	100000	
Ethylbenzene	110	300000	100000	
100-41-4	ND	500000	100000	
2-Hexanone	112			
591-78-6	ND	5000000	100000	
Methylene chloride				
75-09-2	ND	500000	100000	
4-Methyl-2-pentanon	e			
108-10-1	ND	5000000	100000	
Styrene				
100-42-5	ND	500000	100000	
1,1,2,2-Tetrachloro			400000	
79-34-5	ND	500000	100000	
Tetrachloroethene		50000	100000	
127-18-4	1100000	500000	100000	

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98
Client ID No.: PCOND-102

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-5A
Job No.: 810788
COC Log No.: NO NUMBER
Batch No.: 21147

Instrument ID: MS02
Analyst ID: MARKW
Matrix: OIL

PCOND-102(cont.)

Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Toluene			
108-88-3	MD	500000	100000
1,1,1-Trichloroethane			400000
71-55-6	ND	500000	100000
1,1,2-Trichloroethane		F22222	100000
79-00-5	MD	500000	100000
Trichloroethene	B30000	500000	100000
79-01-6	9300000	200000	100000
Trichlorofluoromethan		F00000	100000
75-69- 1	ND	500000	100000
1,1,2-Trichloro-1,2,2	-trifluoroethane		400000
76-13-1	ND	500000	100000
Vinyl acetate			400000
108-05- 1	ND	5000000	100000
Vinyl chloride		400000	100000
75-01-4	ND	1000000	100000
Xylenes, total		400000	100000
1330-20-7	ND	1000000	199999

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788

Job No.: 810788

COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

MB SURROGATE _____

Ana lyte	CAS No.	Surr Conc. (ug/kg)	MB Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene	N/A N/A 460-00-4	100 100 100	99 104 99
	METHOD BLAN	1K	

Ana lyte	CAS N o.	Results (ug∕kg)	Reporting Limit (ug/kg)
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 110-75-8	ND N	100 5.0 5.0 5.0 10 100 5.0 5.0 5.0

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35 Contact: Mike Sides

ontact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21147

Instrument ID: MS02
Analyst ID: MARKW
Matrix: SOLID

METHOD BLANK(cont.)

Ana lyte	CAS N o.	Results (ug/kg)	Reporting Limit (ug/kg)
Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane	67-66-3 74-87-3 124-48-1 74-95-3 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 107-06-2 75-35-4 540-59-0 78-87-5 10061-01-5 10061-02-6 100-41-4 591-78-6 75-09-2 108-10-1 100-42-5 79-34-5		5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
Tetrachloroethene Toluene	127-18- 4 108-88-3	ND ND	5.0

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

METHOD BLANK(cont.)

Ana lyte	CAS No.	Results (ug∕kg)	Reporting Limit (ug/kg)
1,1,1-Trichloroethane	71-55-6 79-00-5	ND ND	5.0 5.0
1,1,2-Trichloroethane Trichloroethene	79-01-6	ND	5.0
Trichlorof luoromethane	75-69-4	ND	5.0
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	MD	5.0
Vinyl acetate	108-05-4	ND	50
Vinyl chloride	75-01- 4	MD	10
Xylenes, total	1330-20-7	ND	10

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97 Date Analyzed: 12/10/97 Date Reported: 06/19/98 Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

MS SURROGATE _____

Ana lyte	CAS N o.	MS Surr. Conc. (ug/kg)	MS Surrogate Recovery (percent)
1,2-Dichloroethane-d4	N/A	25000	101 98
Toluene-d8 p-Bromofluorobenzene	n ∕a 460-00-4	25000 25000	93
	MATRIX SPI	KE	
Analyte	CAS No.	MS Conc. (ug/kg)	MS Recovery (percent)
1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	75-35-4 71-43-2 108-90-7 108-88-3 79-01-6	12500 12500 12500 12500 12500	120 106 92 94 HC

HC = Recovery data is outside standard QC limits due to the high concentration of this analyte in the sample. LCS recovery data validates methodology.

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788

COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

MSD SURROGATE _____

Analyte	CAS N o.	Surr. Conc. (ug/kg)	MSD Surrogate Recovery (percent)
1,2-Dichloroethane-d4	N∠A	25000	98
Toluene-d8	N/A	25000	97
p-Bromof luorobenzene	460-00-4	25000	92
	MATRIX SPIKE DU	PLICATE	
	CAS No	MSD Conc.	MSD Recovery (percent)

Ana lyte	CAS No.	MSD Conc. (ug/kg)	MSD Recovery (percent)
1,1-Dichloroethene	75-35-4	12500	117
Benzene	71-43-2	12500	101
Chlorobenzene	108-90-7	12500	93
Toluene	108-88-3	12500	87
Trichloroethene	79-01-6	12500	HC

HC = Recovery data is outside standard QC limits due to the high concentration of this analyte in the sample. LCS recovery data validates methodology.

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

RELATIVE × DIFFERENCE _____

Analyte	CAS No.	Relative Percent Difference (percent)
1,1-Dichloroethene	75-35-4	3
Benzene	71- 4 3-2	5
Chlorobenzene	108-90-7	1
Toluene	108-88-3	8
Trichloroethene	79-01-6	10

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788

Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

	LCS SURROGA	TE	
Analyte	CAS No.	LCS Conc. (ug/kg)	LCS Surrogate Recovery (percent)
1,2-Dichloroethane-d4	N/A N/A	100 100	99 95
To luene-d8 p-Bromof luorobenzene	460-00- 4	100	96
	LAB CONTROL S	AMPLE	
Analyte	CAS No.	LCS Conc. (ug/kg)	LCS Recovery (percent)
1,1-Dichloroethene Benzene	75-35-4 71-43-2	50.0 50.0	128 106
Chlorobenzene Toluene Trichloroethene	108-90-7 108-88-3 79-01-6	50.0 50.0 50.0	95 100 93
	LCS DUPLICATE SU	IRROGATE	
		LCSD Conc.	LCSD Surrogate Recovery
Analyte	CAS No.	(ug/kg)	(percent)

CA DOHS ELAP Accreditation/Registration Number 1233

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788
Job No.: 810788
COC Log No.: NO NUMBER
Batch No.: 21147

Instrument ID: MS02
Analyst ID: MARKW

Matrix: SOLID

LCS DUPLICATE SURROGATE(cont.)			
Ana lyte	CAS N o.	LCSB Conc. (ug/kg)	LCSD Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene	N/A N/A 460-00-4	100 100 100	101 96 99
	LAB CONTROL SAMPLE	DUPLICATE	
Ana lyte	CAS No.	LCS Conc. (ug/kg)	LCSD Recovery (percent)
1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	75-35-4 71-43-2 108-90-7 108-88-3 79-01-6	50.0 50.0 50.0 50.0 50.0	111 104 97 96 90
	LCS RPD		
Ana lyte	CAS 1	lo .	LCS Relative Percent Difference (percent)

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

	LCS RPD(cont.)	
	0.0 N	LCS Relative Percent Difference
Analyte	CAS No.	(percent)
1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	75-35-4 71-43-2 108-90-7 108-88-3 79-01-6	14 2 2 4 3

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/10/97
Date Analyzed: 12/10/97
Date Reported: 06/19/98

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788 Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21147 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

MATRIX SPIKE DUPLICATE _____

Analyte	CAS No.	MSD Conc. (ug/kg)	MSD Recovery (percent)
		42500	447
1,1-Dichloroethene	75-35- 4	12500	117
Benzene	71- 4 3-2	12500	101
Chlorobenzene	108-90-7	12500	93
Toluene	108-88-3	12500	87
Trichloroethene	79-01-6	12500	НС

HC = Recovery data is outside standard QC limits due to the high concentration of this analyte in the sample. LCS recovery data validates methodology.

⑤ 06-19-98 11:38 am ☐ 032 of 045

From: CLS Labs at @ 1-916-638-4510

Analysis Report: pH, EPA Method 9040

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97

Date Extracted: N/A

Date Analyzed: 12/04/97 Date Reported: 06/19/98 Project No.: 37478 35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788

Job No.: 810788

COC Log No.: NO NUMBER Batch No.: W971204C

Instrument ID: PH002

Analyst ID: PONGC

Matrix: OIL

AMALYTICAL RESULTS _____

Lab / Client ID Analyte

CAS No.

Value (Standard Units)

5A / PCOND-102 pH

N/A

6.48

Sonication, EPA Method 3550

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/05/97
Date Analyzed: 12/09/97
Date Reported: 06/19/98
Client ID No.: PCOND-101

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-4A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 51119
Instrument ID: PGC06
Analyst ID: SEPIDEHS

Matrix: OIL

PCOND-101 _____

Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg/kg)
TPH as Diesel	N∕A	ND	5000
TPH as Motor Oil	N∕A	ND	5000

Sonication, EPA Method 3550

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/05/97
Date Analyzed: 12/09/97
Date Reported: 06/19/98
Client ID No.: PCOND-102

Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-5A

Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 51119
Instrument ID: PGC06
Analyst ID: SEPIDEHS

Matrix: OIL

PCOND-102 _____

Ana lyte	CAS No.	Results (mg/kg)	Rep. Limit (mg∕kg)
TPH as Diesel	N/A	ND	5000
TPH as Motor Oil	N/A	ND	5000

Sonication, EPA Method 3550

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/05/97

Date Analyzed: 12/09/97 Date Reported: 06/19/98

2/05/97 2/09/97 Project No.: 37478 35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788

Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 51119

Instrument ID: PGC06

Analyst ID: SEPIDEHS

Matrix: OIL

METHOD BLANK _____

Analyte	CAS N o.	Results (mg/kg)	Reporting Limit (mg/kg)
TPH as Diesel	N/A	ND	1.0
TPH as Motor Oil	N/A	ND	1.0

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Lab Contact: George Hampton

Contact: Mike Sides

Phone: (916)364-0793

Project: McClellan FBAS

Lab ID No.: P0788-1A

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/04/97 Job No.: 810788 COC Log No.: NO NUMBER

Project No.: 37478 35

Date Extracted: 12/04/97
Date Analyzed: 12/04/97
Date Reported: 06/19/98
Client ID No.: ADSORB-101

Batch No.: 21114
Instrument ID: GC018
Analyst ID: JENNDC
Matrix: SOLID

SURROGATE

Analyte	CAS No.	Surr Conc. (mg∕kg)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	151 MA
	ADSORB-	-101	
Analyte	CAS No.	Results (mg∕kg)	Rep. Limit (mg∕kg)
TPH as Gasoline	N/A	730	200

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97

Date Extracted: 12/04/97 Date Analyzed: 12/04/97 Date Reported: 06/19/98 Client ID No.: ADSORB-102 Project No.: 37478 35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-2A

Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21114 Instrument ID: GC018 Analyst ID: JENNDC

Matrix: SOLID

SURROGATE _____

Surrogate
Surr Conc. Recovery
Analyte CAS No. (mg/kg) (percent)

ADSORB-102 _____

Analyte CAS No. (mg/kg)

95-49-8

esults Rep. Limit ng/kg) (mg/kg)

TPH as Gasoline

o-Chlorotoluene

N/A

10000

200

2000

200 MA

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97 Date Received: 12/03/97 Date Extracted: 12/04/97 Date Analyzed: 12/04/97 Date Reported: 06/19/98 Client ID No.: DESORB-101 Project No.: 37478 35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-3A Job No.: 810788 COC Log No.: NO NUMBER

Batch No.: 21114 Instrument ID: GC018 Analyst ID: JENNDC Matrix: SOLID

SURROGATE _____

Analyte	CAS No.	Surr Conc. (mg/kg)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	168 MA
	DESORB-	-101	
Analyte	CAS No.	Results (mg∕kg)	Rep. Limit (mg∕kg)
TPH as Gasoline	N/A	790	200

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 Contact: Mike Sides Phone: (916)364-0793

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/04/97
Date Analyzed: 12/04/97
Date Reported: 06/19/98

Client ID No.: PCOND-101

Lab Contact: George Hampton

Lab ID No.: P0788-4A Job No.: 810788 COC Log No.: NO NUMBER Batch No.: 21114

Project No.: 37478 35

Instrument ID: GC018
Analyst ID: JENNDC
Matrix: OIL

SURROGATE _____

Surrogate Surr Conc. Recovery Ana lyte CAS No. (mg/kg) (percent) 127 MA 95-49-8 20.0 o-Chlorotoluene _____ PCOND-101 ____ Rep. Limit Results (mg/kg) CAS No. (mg/kg) Analyte 200 1400 TPH as Gasoline N/A

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/03/97
Date Received: 12/03/97
Date Extracted: 12/04/97
Date Analyzed: 12/04/97

Date Reported: 06/19/98 Client ID No.: PCOND-102 Project No.: 37478 35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0788-5A Job No.: 810788

COC Log No.: NO NUMBER

Batch No.: 21114 Instrument ID: GC018 Analyst ID: JENNDC

Matrix: OIL

20	IKI	าบ	ЬΗ	1 L

Analyte	CAS N o.	Surr Conc. (mg/kg)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10000	190 MA
	PCOND-:	102	
Analyte	CAS No.	Results (mg/kg)	Rep. Limit (mg∕kg)
TPH as Gasoline	N∕A	270000	100000

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

EPA METHOD: 8240

CLIENT: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 PROJECT NO.:

CONTACT: Mike Sides
PHONE: (916)364-0793

PROJECT: McClellan

CLS CONTACT: George Hampton

JOB NO.: 810788

DATE RECEIVED: 12/3/97

DATE ANALYZED: 12/10/97

COC LOG NO.:

CLS ID NO.: **P0788-1A**

BATCH NO.: 21147

CLIENT ID: ADSORB-101

MATRIX: Solid

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (mg/Kg)
10.88	Butane, 2,2,3,3-tetramethyl-	82
12.70	Undecane, 2,5-dimethyl-	80
13.76	Pentane, 2,3,4-trimethyl-	110
14.06	Hexane, 2,3-dimethyl-	120
14.68	Hexane, 2,2,5-trimethyl-	180
16.06	Hexane, 2,3,5-trimethyl-	120
16.47	Unknown hydrocarbon	28
16.79	Heptane, 2,5-dimethyl-	89
18.01	Unknown hydrocarbon	100
18.31	Unknown hydrocarbon	120
18.79	Unknown hydrocarbon	79
19.25	Octane, 2,3-dimethyl-	230
20.33	Undecane, 2,9-dimethyl-	260
20.7	Decane, 2,2,9-trimethyl-	92
21.53	Heptane, 2,2,4,6,6-pentamethyl-	49
22.41	Unknown hydrocarbon	48

CLIENT: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 CONTACT: Mike Sides

EPA METHOD: 8240

PHONE: (916)364-0793

PROJECT: McClellan

CLS CONTACT: George Hampton

JOB NO.: 810788

DATE RECEIVED: 12/3/97

DATE ANALYZED: 12/10/97

COC LOG NO.:

PROJECT NO.:

CLS ID NO.: **P0788-2A**

BATCH NO.: **21147**

CLIENT ID: ADSORB-102

MATRIX: Solid

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (mg/Kg)	
10.93	Butane, 2,2,3,3-tetramethyl-	300	
12.74	Undecane, 2,5-dimethyl-	390	
13.78	Pentane, 2,3,4-trimethyl-	390	
14.10	Pentane, 2,3,3-trimethyl-	550	
14.7	Hexane, 2,2,5-trimethyl-	. 880	
16.08	Hexane, 2,3,5-trimethyl-	250	
16.79	Hexane, 4-ethyl-2-methyl-	100	
18.08	Hexane, 2,2,5,5-tetramethyl-	210	
18.33	Unknown hydrocarbon	490	
18.79	Heptane, 3,3,5-trimethyl-	260	
19.28	Heptane, 3-ethyl-	120	
20.33	Unknown hydrocarbon	540	
20.72	Unknown hydrocarbon	140	

EPA METHOD: 8240

CLIENT: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 PROJECT NO.:

CONTACT: Mike Sides PHONE: (916)364-0793

PROJECT: McClellan

CLS CONTACT: George Hampton

JOB NO.: 810788

DATE RECEIVED: 12/3/97 COC LOG NO.:

DATE ANALYZED: 12/10/97

CLS ID NO.: P0788-3A

BATCH NO.: 21147

CLIENT ID: DESORB-101

MATRIX: Solid

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (mg/Kg)
10.88	Hexane, 2,2-dimethyl-	77
12.72	Undecane, 2,5-dimethyl-	240
13.76	Pentane, 2,3,4-trimethyl-	180
14.06	Pentane, 2,3,3-trimethyl-	160
14.68	Hexane, 2,2,5,5-tetramethyl-	250
16.06	Hexane, 2,3,5-trimethyl-	150
16.45	Unknown hydrocarbon	30
16.77	Heptane, 3,5-dimethyl-	85
17.57	Unknown hydrocarbon	100
17.99	Unknown hydrocarbon	120
18.31	Unknown hydrocarbon	130
18.77	Heptane, 3,3,5-trimethyl-	81
19.25	Octane, 2,3-dimethyl-	220
20.31	Unknown hydrocarbon	250
20.68	Unknown hydrocarbon	80
21.53	Heptane, 2,2,4,6,6-pentamethyl-	44
22.41	Unknown hydrocarbon	40

ANALYSIS REPORT: Tentatively Identified Compounds EPA METHOD: 8240

CLIENT: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 PROJECT NO.:

CONTACT: Mike Sides PHONE: (916)364-0793

PROJECT: McClellan

CLS CONTACT: George Hampton

JOB NO.: 810788

DATE RECEIVED: 12/3/97

DATE ANALYZED: 12/10/97

COC LOG NO.:

CLS ID NO.: P0788-4A BATCH NO.: 21147

CLIENT ID: PCOND-101

MATRIX: Oil

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (mg/Kg)
10.86	Butane, 2,2,3,3-tetramethyl-	920
12.73	Undecane, 2,5-dimethyl-	2,200
13.74	Pentane, 2,3,4-trimethyl-	2,200
14.04	Hexane, 2,3-dimethyl-	2,600
14.63	Hexane, 2,2,5-trimethyl-	4,500
16.01	Heptane, 2,3-dimethyl-	1,900
16.73	Heptane, 3,5-dimethyl-	280
18.04	Unknown hydrocarbon	1,400
18.29	Unknown hydrocarbon	4,100
18.75	Unknown hydrocarbon	2,200
20.29	Heptane, 2,2,3,4,6,6-hexamethyl-	3,900
20.68	Unknown hydrocarbon	60 0
21.99	Unknown hydrocarbon	300

EPA METHOD: 8240

CLIENT: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 PROJECT NO.:

CONTACT: Mike Sides PHONE: (916)364-0793

PROJECT: McClellan

CLS CONTACT: George Hampton

JOB NO.: 810788

DATE RECEIVED: 12/3/97

DATE ANALYZED: 12/10/97

COC LOG NO.:

CLS ID NO.: **P0788-5A**

BATCH NO.: **21147**

CLIENT ID: PCOND-102

MATRIX: Oil

RETENTION TIME (mins)	TENTATIVE IDENTIFICATION	ESTIMATED CONC (mg/Kg)
10.91	Butane, 2,2,3,3-tetramethyl-	9,900
12.77	Undecane, 2,5-dimethyl-	29,000
13.78	Pentane, 2,3,4-trimethyl-	27,000
14.10	Hexane, 2,3-dimethyl-	34,000
14.7	Hexane, 2,2,5-trimethyl-	57,000
16.08	Hexane, 2,3,5-trimethyl-	250,000
16.82	Octane, 3-methyl-	6,200
17.55	Cyclohexane, 1,1,3-trimethyl-	14,000
18.08	Heptane, 2,2,3,4,6,6-hexamethyl-	18,000
18.33	Unknown hydrocarbon	43,000
18.82	Heptane, 3,3,5-trimethyl-	24,000
19.28	Octane, 2,5-dimethyl-	5,900
20.34	Unknown hydrocarbon	34,000
20.73	Pentane, 2,2,3,4-tetramethyl-	5,100

CLS Labs

E ovironmental L aboratory I oformation System

This report was sent automatically. In the event of an incomplete transmittance, 5 attempts will be made to send the complete number of pages for this report. If you have any questions, please call (916)638-7301 for assistance.

To: Alfonso Ang

From: CLS Labs

Date:6-19-98

Page 001 of 017

The following facsimile report is of a final nature in fax format and as such does not include data that will be forthcoming in the complete report package. Interpretation of the report results should be made only after the complete report package has been delivered.

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/13/97
Date Received: 12/15/97
Date Extracted: 12/23/97
Date Analyzed: 12/23/97
Date Reported: 06/19/98

Client ID No.: ADSORB-103

Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969-1A Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

SURROGATE	
-----------	--

Analyte		CAS	No.	Surr Conc. (ug∕kg)	Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene		N∕A N∕A 460	-00-4	250000 250000 250000	96 99 100
			ADSORB-103		
Analyte CAS N o.	Results (ug/kg)			Rep. Limit (ug/kg)	Dilution (factor)
And the second s					
Acetone	ND			250000	2500
67-64-1	MD			230000	2300
Benzene 71-43-2	ND			12000	2500
Bromodichloromethane 75-27-4	ND			12000	2500
Bromoform 75-25-2	MD			12000	2500
Bromomethane 74-83-9	ND			25000	2500
2-Butanone 78-93-3	ND			250000	2500
Carbon disulfide 75-15-0	ND			12000	2500

Project No.: 37478.35

Contact: Mike Sides

Phone: (916)364-0793

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS Lab Contact: George Hampton

Lab ID No.: P0969-1A

Date Sampled: 12/13/97

Date Received: 12/15/97

Date Extracted: 12/23/97

Lab ID No.: P0969-1A

Job No.: 810969

COC Log No.: NO NUMBER

Batch No.: 21275

Date Extracted: 12/23/97 Batch No.: 21275
Date Analyzed: 12/23/97 Instrument ID: MS02
Date Reported: 06/19/98 Analyst ID: MARKW
Client ID No.: ADSORB-103 Matrix: SOLID

ADSORB-103(cont.)			
Analyte CAS No.	Results (ug/kg)	Rep. Limit (ug/kg)	Dilution (factor)
Carbon tetrachlor	ide		
56-23-5	ND	12000	2500
Chlorobenzene			
108-90-7	MD	12000	2500
Chloroethane	,		2500
75-00-3	ND	25000	2500
2-Chloroethyl vin		420000	2500
110-75-8	ND	120000	2500
Chloroform	ND	12000	2500
67-66-3	ND	12000	2300
Chloromethane	ND	25000	2500
74-87-3		23000	2500
Dibromochlorometh 124-48-1	ND ND	12000	2500
Dibromomethane	11D	2200	
, 74-95-3	ND	12000	2500
1,2-Dichlorobenze			
95-50-1	ND	12000	2500
1,3-Dichlorobenze			
541-73-1	ND	12000	2500
1,4-Dichlorobenze	ne	•	
106-46-7	ND	12000	2500
Dichlorodifluorom	ethane		0500
75-71-8	ND	25000	2500
1,1-Dichloroethan	ıe	12000	2500
75-3 1 -3	MD	12000	2500

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Sampled: 12/13/97
Date Received: 12/15/97
Date Extracted: 12/23/97
Date Analyzed: 12/23/97
Date Reported: 06/19/98
Client ID No.: ADSORB-103

Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969-1A

Job No.: 810969

COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

ADSORB-	103	(cont	է.)
---------	-----	-------	-----

Analyte	Results	Rep. Limit	Dilution
CAS No.	(ug/kg)	(ug/kg)	(factor)
1,2-Dichloroetha		12000	2500
107-06-2	ND	12000	2300
1,1-Dichloroethe		12000	2500
75-35-4	ND	12000	2300
1,2-Dichloroethe	ene, total	12000	2500
540-59-0	ND	12000	2300
1,2-Dichloroprop		12000	2500
78-87-5	ND	12000	2300
cis-1,3-Dichloro		12000	2500
10061-01-5	ND	12000	2300
trans-1,3-Dichlo		12000	2500
10061-02-6	ND	12000	2300
Ethylbenzene		12000	2500
100-41-4	ND	12000	2300
2-Hexanone		120000	2500
591 78 6	ND -	120000	2300
Methylene chlori	.de	25000	2500
75-09-2	ND	25000	2300
4-Methyl-2-penta	inone	420000	2500
108-10-1	ND	120000	2300
Styrene		42000	2500
100-42-5	ND	12000	2300
1,1,2,2-Tetrachl	oroethane	42000	2500
7 9 –34–5	ND	12000	2300
Tetrachloroethen		43000	2500
127-18- 4	13000	12000	2,000

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 Contact: Mike Sides Phone: (916)364-0793

Project: McClellan FBAS

Lab Contact: George Hampton Lab ID No.: P0969-1A

Date Sampled: 12/13/97 Date Received: 12/15/97 Date Extracted: 12/23/97

Date Analyzed: 12/23/97 Date Reported: 06/19/98 Client ID No.: ADSORB-103

Job No.: 810969 COC Log No.: NO NUMBER Batch No.: 21275

Project No.: 37478.35

Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

ADSOKR-	103	(cont)
---------	-----	-------	---

Results	Rep. Limit	Dilution (factor)
(ug/kg)	(ug/kg)	(Idotol)
		2500
ND	12000	2500
		0500
ND	12000	2500
	•	
ND	12000	2500
100000	12000	2500
е		
ND .	12000	2500
-trifluoroethane		0544
ND	12000	2500
		3500
ND	120000	2500
		3500
ND	25000	2500
		2500
ND	25000	2500
	ND ND 100000 e ND -trifluoroethane ND ND	(ug/kg) (ug/kg) ND 12000 ND 12000 100000 12000 e 12000 -trifluoroethane 12000 ND 12000 ND 12000 ND 120000 ND 120000 ND 25000

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97 Date Analyzed: 12/23/97 Date Reported: 06/19/98 Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

MB SURKUGATE

Ana lyte	CAS N o.		r Conc. /kg)	MB Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8	N/A N/A	100 100		103 99
p-Bromof luorobenzene	460-00-4	100		95
	METHOD BLA	ANK		
Analyte	CAS	S N o.	Results (ug∕kg)	Reporting Limit (ug/kg)
Acetone		-64-1	ND	100
Benzene		-43-2	ND	5.0
Bromodichloromethane		-27-4	ND	5.0
Bromoform		-25-2	ND	5.0
Bromomethane		-83-9	ND	10
2-Butanone		-93-3	ND	100
Carbon disulfide		-15-0	ND	5.0 5.0
Carbon tetrachloride		-23-5	ND ND	5.0 5.0
Chlorobenzene		8-90-7	ND ND	10
Chloroethane 2-Chloroethyl vinyl ether		-00-3 0-75-8	ND ND	50
2-Cillor occurds oxings comes				

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97
Date Analyzed: 12/23/97
Date Reported: 06/19/98

Project No.: 37478.35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969
Job No.: 810969
COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

METHOD BLANK(cont.)

Analyte	CAS N o.	Results (ug/kg)	Reporting Limit (ug/kg)
Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	67-66-3 74-87-3 124-48-1 74-95-3 95-50-1 541-73-1 106-46-7	ND ND ND ND ND ND	5.0 10 5.0 5.0 5.0 5.0 5.0
Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene, total	75-71-8 75-34-3 107-06-2 75-35-4 540-59-0	ND ND ND ND ND	10 5.0 5.0 5.0 5.0
1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene	78-87-5 10061-01-5 10061-02-6 100-41-4	ND ND ND ND	5.0 5.0 5.0
2-Hexanone Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene	591-78-6 75-09-2 108-10-1 100-42-5 79-34-5 127-18-4 108-88-3	ND ND ND ND ND ND ND	50 10 50 5.0 5.0 5.0 5.0

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97 Date Analyzed: 12/23/97 Date Reported: 06/19/98 Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW Matrix: SOLID

METHOD BLANK(cont.)

Ana lyte	CAS N o.	Results (ug∕kg)	Reporting Limit (ug/kg)
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane Vinyl acetate Vinyl chloride Xylenes, total	71-55-6 79-00-5 79-01-6 75-69-4 76-13-1 108-05-4 75-01-4 1330-20-7	ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 50 10

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97
Date Analyzed: 12/23/97
Date Reported: 06/19/98

Project No.: 37478.35 Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21275
Instrument ID: MS02
Analyst ID: MARKW
Matrix: SOLID

	MS SURROGA	TE	
Analyte	CAS N o.	MS Surr. Conc. (ug/kg)	MS Surrogate Recovery (percent)
1,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene	N/A N/A 460-00-4	100 100 100	105 96 100
	MATRIX SPI	KE	
Analyte	CAS No.	MS Conc. (ug/kg)	MS Recovery (percent)
Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	71-43-2 108-90-7 75-35-4 108-88-3 79-01-6	50.0 50.0 50.0 50.0 50.0	106 94 112 98 95
	MSD SURROGA	TE	
Ana lyte	CAS No.	Surr. Conc. (ug/kg)	MSD Surrogate Recovery (percent)

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97
Date Analyzed: 12/23/97
Date Reported: 06/19/98

Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

			MSD
		Surr.	Surrogate
		Conc.	Recovery
Ana lyte	CAS No.	(ug/kg)	(percent)
			-
1,2-Dichloroethane-d4	N∕A	100	107
Toluene-d8	N∕A	100	92
p-Bromofluorobenzene	460-00-4	100	95
	MATRIX SPIKE DUPLICATE		
			MSD
		MSD Conc.	Recovery
Ana lyte	CAS No.	(ug/kg)	(percent)
	71-43-2	50.0	104
Benzene Chlorobenzene	108-90-7	50.0	92
1,1-Dichloroethene	75-35-4	50.0	107
To luene	108-88-3	50.0	91
Trichloroethene	79-01-6	50.0	75
	RELATIVE × DIFF	ERENCE	
			Relative
			Percent
			Difference
Analyte	CAS N	ln	(percent)

CA DOHS ELAP Accreditation/Registration Number 1233

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97

Date Analyzed: 12/23/97 Date Reported: 06/19/98 Project No.: 37478.35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969

Job No.: 810969

COC Log No.: NO NUMBER

Batch No.: 21275

Instrument ID: MS02

Analyst ID: MARKW

Matrix: SOLID

RELATIVE × DIFFERENCE(cont.)

Analyte	CAS No.	Relative Percent Difference (percent)
Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	71-43-2 108-90-7 75-35-4 108-88-3 79-01-6	2 2 5 7 24

⊕ 06-19-98 11:24 am 🕒 012 of 017

103

96

97

90

116

From: CLS Labs at @ 1-916-638-4510

Analysis Report: Volatile Organic Compounds by GC/MS, EPA Method 8240

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/23/97
Date Analyzed: 12/23/97
Date Reported: 06/19/98

Benzene

Toluene

Chlorobenzene

Trichloroethene

1,1-Dichloroethene

Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969

COC Log No.: NO NUMBER

Batch No.: 21275 Instrument ID: MS02 Analyst ID: MARKW

Matrix: SOLID

	LCS SURRUGA	11E	LCS Surrogate
Analyte	CAS No.	LCS Conc. (ug/kg)	Recovery (percent)
1,2-Dichloroethane-d4	N /A	100	98
Toluene-d8 p-Bromofluorobenzene	N∕A 460-00-4	100 100	95 97
	LAB CONTROL S	SAMPLE	
Analyte	CAS N o.	LCS Conc. (ug∕kg)	LCS Recovery (percent)

71-43-2

75-35-4

108-88-3

79-01-6

108-90-7

TAG GUDDOCATE

CA DOHS ELAP Accreditation/Registration Number 1233

50.0

50.0

50.0

50.0

50.0

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827 Project No.: 37478.35 Contact: Mike Sides Phone: (916)364-0793

Project: McClellan FBAS

Date Sampled: 12/13/97
Date Received: 12/15/97
Date Extracted: 12/19/97
Date Analyzed: 12/21/97
Date Reported: 06/19/98

Client ID No.: ADSORB-103

Lab Contact: George Hampton

Lab ID No.: P0969-1A Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21254
Instrument ID: GC018
Analyst ID: JENNDC
Matrix: SOLID

_____ SURROGATE _

Surrogate Surr Conc. Recovery CAS No. (mg/kg) (percent) Analyte 92 200 95-49-8 o-Chlorotoluene __ ADSORB-103 __ Rep. Limit Dilution Results (factor) (mg/kg) CAS No. (mg/kg) Analyte

TPH as Gasoline

N/A

2200

2000

2000

⊕ 06-19-98 11:25 am 🕒 014 of 017

From: CLS Labs at @ 1-916-638-4510

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/19/97
Date Analyzed: 12/21/97
Date Reported: 06/19/98

Project No.: 37478.35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969

COC Log No.: NO NUMBER

Batch No.: 21254
Instrument ID: GC018
Analyst ID: JENNDC
Matrix: SOLID

	MB SURR	OGATE	
Ana lyte	CAS N o.	Surr Conc. (mg/kg)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.100	101
	METHOD	BLANK	
Analyte	CAS N o.	Results (mg/kg)	Reporting Limit (mg/kg)
TPH as Gasoline	N/A	ND	1.0

ND = Not detected at or above indicated Reporting Limit

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane

Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/19/97 Date Analyzed: 12/21/97

Date Reported: 06/19/98

Project No.: 37478.35

Contact: Mike Sides

Phone: (916)364-0793

1 015 of 017

Lab Contact: George Hampton

Lab ID No.: P0969

Job No.: 810969 COC Log No.: NO NUMBER

Batch No.: 21254

Instrument ID: GC018 Analyst ID: JENNDC

Matrix: SOLID

	MS SURRO	IGATE	
Ana lyte	CAS Mo.	MS Surr. Conc. (mg/kg)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.100	108
	MATRIX S	SPIKE	
			MS
Ana lyte	CAS No.	MS Conc. (mg/kg)	Recovery (percent)
Gasoline	N/A	2.50	92
	MSD SURRO	GATE	
Analyte	CAS No.	Surr. Conc. (mg/kg)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.100	121

⑤ 06-19-98 11:25 am ☐ 016 of 017

From: CLS Labs at @ 1-916-638-4510

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/19/97
Date Analyzed: 12/21/97
Date Reported: 06/19/98

Project No.: 37478.35

Contact: Mike Sides

Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969

COC Log No.: NO NUMBER

Batch No.: 21254
Instrument ID: GC018
Analyst ID: JENNDC
Matrix: SOLID

MATRIX SPIKE DUPLICATE MSD Recovery MSD Conc. (percent) CAS No. (mg/kg) Analyte 2.50 107 N/A Gasoline RELATIVE × DIFFERENCE Relative Percent Difference (percent) CAS No. Analyte 15 N/A Gasoline

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

10324 Placer Lane Sacramento, CA 95827

Project: McClellan FBAS

Date Extracted: 12/19/97
Date Analyzed: 12/21/97
Date Reported: 06/19/98

Project No.: 37478.35

Contact: Mike Sides Phone: (916)364-0793

Lab Contact: George Hampton

Lab ID No.: P0969 Job No.: 810969

COC Log No.: NO NUMBER Batch No.: 21254

Instrument ID: GC018
Analyst ID: JENNDC
Matrix: SOLID

	LCS SURF	OGATE	
Ana lyte	CAS No.	LCS Conc. (mg/kg)	LCS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.100	125
	LAB CONTRO	OL SAMPLE	
Analyte	CAS No.	LCS Conc. (mg/kg)	LCS Recovery (percent)
Gasoline	N∕A	2.50	109

Lets. CLS Pr361

CHAIN OF COSTODY FORM 1010	Samplers: Dun Gwaltney			Recorder: Um Mayer
Excess though Land	-2	@ Job Number: 37478.35	"Name/Location: McCLellu Fets	Project Manager: Mike Sides

-	_		_					-	-	_		_			-	_	
	_							1	\perp	1	\perp	\perp	\perp				
									1		i						
1							$oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}$		I			I	I				
	Г							Т		T	T			T			\Box
ع	ı٢							1	1		1		+	1	${\dagger}$		1
ANA! YSISTREDITECTED							1	+	1	+	+	+	+	+	 		
Į ű								+-	+	+-	+-	+	+	+	+	-	
Ιā	}					**********	_	+-	+-	+	+-	+-	+	+	+	 	
Ĭ,	!					· . — · · · · · · · · · · · · · · · · ·		+	+	+-	╁	+	+-	+-	+-	-	-
	7	7-	·w)	10	=7	0605	VZ	ıtz	+	+-	+-	+-	+-	+	+	⊢	-
[3			7	7		Calde	-	4	₩	+	+-	-	┿	+	-	_	┢
13	100	7		72	1111	/INCLOS	770	1	+	+-	+	+	+	+-		-	\vdash
ĮŽ	<u> </u>				HQT	MAHUA	Ves	+-	+	+	+-	╄	+	┼	↓		\vdash
	<u> </u>				A47	8/9Z9 METAL	421	╄	╁	+-	+-	↓_	 	 			
1								 	_	 	\perp	\downarrow	$oldsymbol{oldsymbol{\perp}}$	-	<u> </u>	lacksquare	
	_	_5	70	^_	CUY	27768	FPA	×	4	\perp	1	1	1		_		
1	\perp					8/209		L_		_			_		L		
L				_	010	8/109	443	<u></u>	_	L						·	
	í	1	1	i	<u> </u>			Υ	_	1	Τ	T	Ŧ	T	_	_	
	1		i		1			ļ	1	1	1	1		1	1	ŀ	
	1		1	l	1	_		1			1				1 .	ł	
Samplers: Dun Gwalfney		-	1	1	i	Ì						1					
						2		1				1					
		-	1.	}		<u> </u>		1						Ì			
	1		11			K (4		1			1			1			
	1			1		STATION DESCRIPTION/ NOTES				1	1						
	1	1	1	11.		집 으		1			1	-	1				
I		1	\$ k	۲		<u> </u>		1									
Ă	i		M	8		Ĕ		ı	1								
3	l		1	1		₹ '		l									ı
O	4	1	1	×	[4		l						1	İ		
<		_		5				1									
ğ	1		1	اةٍ	<u> </u>			Ц_	L_	<u>L</u>		1					
		\		X			1	Ta	Г			1	Γ	T			\neg
			-	10	Ī		يو ا	500	一	 	-	-	-		\vdash	┥	
d)						Time	云	⊢	+	-	+-		-	-	\dashv	\dashv
4			e				1	 	\vdash		-	-	-	-	\vdash	\dashv	\dashv
7			Ĭ			DAIE		8	_	-	 	-	-				\dashv
Ē			3			<u> </u>	٥	Ë	\vdash	-	-	-	-			\dashv	\dashv
ď	j		Recorder:		'	~		2	-	_	├-	╁	-	-		-	
U))	•	<u> </u>				₹	12113	-	-	-	-	-	-	\vdash		
								_	_	-	-	-	<u> </u>				
							۲۲	5	-		_	-	<u> </u>	-		-	
					_		-			-	_	-			_		_
			55			NUMBER NUMBER	Ş	¥	03	-	<u> </u>	-	_	$\vdash \vdash$		_	_
					SAMPLE NUMBER			P		-	\vdash	-	-	\vdash		4	_
	1	Name/Location: McCLellu FeAS		Project Manager: Pitte Sides				Ŧ	1	-	<u> </u>	-	_	 	\rightarrow		
							\vdash	4	7	-	 	-	_		-		-4
		4			⋨ ⊇		ğ	#	7	 -	_	<u> </u>			_	_	_
		1	.70		"=		尸	1	Ň	-	-			-	-	-+	
		5	\7	- (Yr 😘	金	ADSAGB	_	_	-		\vdash		\dashv	
	Ň	1	V'		44		Щ	4		-					_	-	
	40	4	[. Y	-	#CONTAINERS & PRESERV.				_	_	-	<u> </u>		\Box	_	_	_
		J		- 1	30									\sqcup	\downarrow		_
	7	J	E	- [₹ %												_
g.	4	E		1	돌리	02	NH.									\Box	_]
3	7			- [있기	. 01 01 03	'H									$oxed{I}$	
Mecapy: 996.084-5633	3	ا. ا	9		₹	.1910	IUN.	旦							\Box	\Box	
ž		5	9	•													
σ ≱		Ξ	2		×		110										
8	9	ä	8	١	Ē		10\$										
i	2	ŏ	2	- [MATRIX	Insmi	200								寸	\top	7
1	Job Number: 37478.35	7			Z	151 Iment	PM						_	1	\dashv	\dashv	ヿ
	Z	ò	ĕ]	200	Pai	X		-	\rightarrow	_		_	-+	十	ㅓ
•	Ω	E	Ö	ſ		DE NBCE	02	X			-		-		\dashv	+	\dashv
	ō	a	Ĭ	Į	•	33HD	20	6			\dashv	-	+	+	+	-+	\dashv
	3	4	_					- (- 1		- 1				1	4	

		CATE/TIME	DATE/TME			DATE/TIME	DATE/TIME	
CHAIR OF CUSTODY RECORD		RECEIVED BY: (Signature)	NECEIVED BY: (Signature)	W No Control	Mediate BT. Explaine	RECEIVED BY: (Signature)	RECEIVED FOR LAB BY:	
CHAIN OI		MELINOLISMED V: Signatural 12-15-57 RECEIVED BY: Signatural	RELINCOLSHED BY: (Signature)	REI INDINGLED BY: (C		REL'MOUISHED BY: /Signature/	DISPATCHED BY: (Signatum) DATE/TIME	METHOD OF SHIPMENT
MISCETTANEOUS								
O.A. CODE								
00 6	3							
E TH								
LAB	Seq							日

Laboratory Copy Project Office Copy Field or Office Copy While Yellow Fink

APPENDIX E INORGANIC ANALYSES LABORATORY REPORT

Robertson Microlit Laboratories, Inc.

P.O. Box 927 / 29 Samson Ave. / Madison, N.J. 07940 / (201) 966-6668 / Fax (201) 966-0136

MR MIKE SIDES HARDING LAWSON ASSOCIATES 383 FOURTH STREET 3RD FL DAKLAND. CA 94607

HARDING ASSOC

001 HLA001

SEP 0 8 1997

ANALYTICAL REPORT

09/05/1997

PAGE 1

SAMPLE NO: ABSORB-01

TEST: 1 RECEIVED: 09/03/1997 COMPLETED: 09/05/1997

Results: C=83.19 H=3.36 N=<0.02 S=8.64 O=2.54 Fe=0.135 ICP=1 RESFX=1

ND OF REPORT

APPENDIX F
FIELD DEMONSTRATIONS TERMINATION PROPOSAL

Harding Lawson Associates

October 17, 1997

37478 99

Mr. Larry Jaramillo PKOP 5120 Dudley Blvd. McClellan Air Force Base, California 95652

Field Demonstration Termination Proposal PRDA Fluidized Resin Adsorption Test Contract Number: FO4699-95-R-0143

Dear Mr. Jaramillo:

With this letter, Harding Lawson Associates (HLA) proposes procedures to terminate a field demonstration at McClellan Air Force Base (McClellan AFB) under our Program Research and Development Announcement (PRDA) Contract. Our proposed field operation shut-down protocol, final report content, and cost impacts are discussed below; the recommended Performance Work Statement modifications to implement these close-out procedures are attached.

Field data collected from the Fluidized Bed Adsorption (FBA) system between July and September 1997 indicate that resin characteristics were altered by the mixed waste stream being processed at test site IC-31. Increased resin adhesion has prevented the FBA system from operating properly and necessitated deviations from HLA's Work Implementation Plan (WIP). However, the data generated will provide McClellan AFB with valuable information regarding the performance of synthetic resins which are commonly used as adsorptive media for many remediation technologies, including one that is scheduled for future testing at IC-31.

We are proposing to complete the testing and evaluate the results relative to the relevant original objectives presented in the WIP and assess how system performance was impacted by the mix of constituents found at IC-31.

FIELD OPERATION TERMINATION PROTOCOL

HLA proposes to implement a modified monitoring program to complete data collection to assess the effect on resin performance by influent vapors containing chlorinated volatile organic compounds (VOCs) mixed with branched-alkanes. The close-out monitoring program is designed to assess short-term accumulation of VOCs on the resin during sequential circulations through the FBA system and is consistent with the test method suggested by McClellan AFB in your September 30 electronic correspondence.

October 17, 1997 37478 99 Mr. Larry Jaramillo McClellan Air Force Base Page 2

Task 1 - Initial Desorption

Operate the FBA system using ambient influent air to remove VOCs from the resin to the greatest extent possible. The existing load of resin will be circulated through the FBA system for a minimum of 6, and up to 24 hours (minimum of 3, and up to 12 bead circulation cycles) to provide sufficient residence time in the desorber to remove as much chemical mass as possible under current conditions. Because no source of VOCs will be connected, VOCs will not be accumulating on the resin in the adsorber during this exercise. HLA will collect resin samples from the adsorber to estimate baseline VOC loading on the resin after performing this desorption process.

Task 2 - Monitor VOC Accumulation

Introduce soil vapors into the influent and monitor resin loading as the beads circulate through the FBA to observe how constituents accumulate on the resin. Influent and effluent air samples for field or laboratory analyses will be collected upon startup and once every hour of operation in accordance with the sampling schedule, Table 1. Air samples will continue to be collected for up to 8 hours or until the system shuts down, at which time resin samples will be collected from the adsorber and desorber. HLA will evaluate those data relative to manufacturer expected performance specifications to assess how the chemical and physical properties of the resin vary during treatment operations.

Task 3 - Final Desorption

Repeat the desorption process by operating the FBA system using ambient influent air to remove VOCs from the resin to the greatest extent possible for disposal purposes. The resin will be circulated through the FBA system for a minimum of 6, and up to 24 hours (minimum of 3, and up to 12 bead circulation cycles) to remove as much chemical mass as possible. HLA will collect resin samples from the adsorber and characterize the resin for disposal purposes.

CLOSE-OUT REPORT CONTENT

HLA will prepare a close-out report in accordance with the example format provided by McClellan AFB. The FBA system will be evaluated relative to the relevant original objectives stated in the WIP. Since continuous FBA operation was not sustainable during the field demonstration, our evaluation will focus on how resin performance was affected by the IC-31 mixed waste stream. We will assess how the resin performance varied from the FBA operation requirements and resin specifications provided by the manufacturer, Rohm and Haas Company. The conclusions will summarize our findings from many weeks of trouble-shooting; our recommendations will address how the system design and operation could be adjusted to compensate for the performance variances observed at the site.

October 17, 1997 37478 99 Mr. Larry Jaramillo McClellan Air Force Base Page 3

COST IMPACT

HLA recognizes that the operational phase of the PRDA was not performed as described in the WIP; however, HLA implemented an extensive unanticipated effort to diagnose, modify, and attempt operation of the FBA system after equipment startup in mid-July. HLA conducted troubleshooting activities to identify and respond to unexpected conditions at IC-31 that adversely impacted FBA performance, apparently caused by the presence of a mixed waste stream with relatively high concentrations of branched-alkane compounds. We believe the findings from our response to this situation will be useful to McClellan AFB for further defining the applicability of FBA with synthetic resins and its apparent incompatibility with mixed waste-stream sites. The following paragraphs describe the activities performed to date that were not anticipated in our original proposal as well as other factors that impact the final contract amount.

Our trouble-shooting strategy focused on identifying and eliminating possible causes for the loss of bead flow within the FBA, resulting in system shut downs. We worked with Rohm and Hass Company, the resin manufacturer, to systematically eliminate possible causes, including:

- Mechanical restrictions
- Air/bead flow dynamics within the adsorber
- High relative humidity in the influent air stream
- Transformation of resin physical/chemical characteristics
- Purge gas flow rate in desorber, and
- Desorption temperature.

Troubleshooting activities included providing field staff for 18 one-half to full day site visits with extensive technical support in the office. This effort is approximately equivalent to the effort we had anticipated for 9 weeks of system operation. The most substantial portion of our troubleshooting was focused on eliminating excessive water condensation, initially considered a likely cause for the beads to loosely bond and inhibit their cycling through the system. We made adjustments to the after-cooler (which cools air leaving the blower), installed another air/water separator, and replaced valves that control the flow of beads. In addition, McClellan AFB allowed HLA to isolate flow from VW-1005 to make sure that air-stripper off-gas (heavily saturated with water) was not contributing condensate to the influent air stream. Relative humidity measurements were collected to allow the process configuration to be adjusted to reduce moisture. After system adjustment, HLA observed inconsistent bead flow with relative humidity of the inlet stream below 90 percent. Rohm and Haas indicated that Ambersorb 600 should not exhibit cohesion due to moisture accumulation under these conditions.

After HLA conducted startup sampling in accordance with the WIP, HLA collected resin and air samples from the FBA system to analyze the situation from a chemical perspective. We summarized the chemical analyses results in a facsimile and electronic transmittals to McClellan AFB and discussed the

October 17, 1997 37478 99 Mr. Larry Jaramillo McClellan Air Force Base Page 4

situation with Rohm and Haas technical support personnel. We implemented Rohm and Haas recommendations to increase the flow of nitrogen purge gas used to flush VOCs from the desorption chamber and increased the desorption temperature, but the bead flow continued to be inconsistent. We also followed another Rohm and Haas recommendation and submitted a resin sample to a specialty laboratory for elemental analyses to evaluate whether an unexpected inorganic compound, such as rust, may be fouling the resin.

The final report will address the results of HLA's close-out monitoring plan, discussed above, in addition to addressing the objectives presented in our WIP; the report will include additional discussions regarding the complications that arose in the field. Although generating and presenting life cycle costs for system operation will not be warranted, the level of effort for reporting will likely be similar to what we anticipated in our PRDA response package to McClellan AFB as a result of diagnostic field data and their analyses.

On the basis of these factors, HLA proposes a reduction of \$20,000 from the original PRDA contract amount of \$232,438 to \$212,438. (This amount excludes the optional \$3,139 travel task.) This contract adjustment will reimburse McClellan for the portion of the operational period that was not performed or used to conduct troubleshooting activities.

We have attached recommended modifications to the Performance Work Statement (PWS) in order to contractually implement the close-out procedures described in this letter. We appreciate your consideration in this matter. HLA will wait for guidance from McClellan AFB before taking any further action.

Your very truly,

HARDING LAWSON ASSOCIATES

David P. Hochmuth Project Manager

Christopher R. Smith Program Manager

DPH/CRS/lm50224.doc-Mc

Attachments: Proposed Performance Work Statement Modifications

Table 1 - Field Closeout Sampling Schedule

cc: Mr. Tim Chapman, BDM

Mr. Craig Burnett, EMRP

PERFORMANCE WORK STATEMENT MODIFICATIONS

HLA proposes the following modifications to the Performance Work Statement (PWS) in order to contracturally implement the close-out of the field operations as discussed in this letter. The following modifications are recommended to PWS Section 3.0, titled "Tasks":

- 3.7 The contractor shall provide staff to operate and monitor the system performance <u>during</u> system startup, operation, and close-out periods. for three months:
- 3.8 ...Field readings shall be measured with a gas chromatograph and photoionization detector (GC/PC); measurements shall be recorded every day during the first week an once per week thereafter during system operation and close-out periods. This demonstration shall be subdivided into two treatment periods to demonstrate performance at both high and low influent concentrations. The system shall treat full strength concentrations for two months followed by one month of operation with diluted influent concentrations.
- 3.11 The contractor shall submit effluent air samples to a certified laboratory for analyses of NOx concentrations to verify that this compounds is not generated as byproducts from the fluidized bed treatment process.
- 3.14 The contractor shall estimate the cost for the full life cycle operation of the system based on costs obtained from the pilot test. the contractor shall estimate operation costs of comparable treatment eqipment operation under similar conditions.

Table 1. Field Closeout Sampling Schedule PRDA Test "Fluidized Bed Adsorption" McClellan Air Force Base, Site IC-31 Sacramento, California

								CL08E-C	CLOSE-OUT OPERATIONS	MATIONS				
Parameter	Method	Data Quality Level	Sample	Hour 0	Hour O Hour 0.5		Hour 1 Hour 1.5 Hour 2	Hour 2	Hour 3	Hour 4	Hour 5	Hour 6	Hour 7	Hour 8
VAPORS & EMISSIONS	N8													
Flow		Screening	FBAI	1.	1.	1.		1.	1.	1.	1.	1.	1.	-
Temperature and	1		FBAI	. 1	1.	1.					1.	1.		-
Pressure		Screening	FBAE	1:	1.	1.		1.	1.	-	-	-	-	-
Total VOCs	ОЫ		FBAI		1.	1.			1.	1.	1.	1.	-	-
		Screening	FBAE	1.	1.	1.	1"	1.	1:	1:	1.	1.	-	-
Halogenated and	EPA 8021 and E18	Definitive	FBAI	-										1
Aromatic VOCs and			FBAE	1		- 4					• •	•	-	
NMOC			QC Samples	FD	1	1	1,			1	i	1		i
Corrosive Gasses	CORROSOMETER®	Definitive	Stack					Contin	Continuous Monitoring	htoring				
WATER CONDENSATE	TE													
Halogenated and		Definitive	Condensate	1	l	!	ŀ	i	i	ı	1	i	i	-
Aromatio VOCe	EPA 8240		Storage Urum											T
Hdl	EPA 3510/8015 mod	Definitive	Condensate Storage Drum		1		-	ł		1	ı	i	ļ	-
			Condensate						_					
Acidity	EPA 9040	Definitive	Storage Drum				-		-	1	1	-	:	-
PRODUCT CONDENSATE	SATE													
Halogenated and		O e finite live	Condensate			1	1		ı	ı	l	ı	;	-
Aromatic VOCs	EPA 8240	Celmitive	Storage Drum											-
			Condensate											
ТРН	EPA 3810/8015 mod	Definitive	Storege Drum							1		:	:	-
RESIN BEADS														
Helogenated and			Adeorber	-	1	!	1	1	i	1	1	i		-
Aromatic VOCs	EPA 8240	Definitive	Desorber	ļ	1	1	1	-		1	:	1	i	-
			Adsorber	-	i	1	I	-	1	1	1	1	-	-
TPHP	EPA 5030/8015 mod	Definitive	Desorber	1	ì	1	-	I	-	ı	1	!	1	-

One sampling event may knotive multiple measurements.

** Samples will be collected at each interval until the system shuts down due to beed flow problems; only the beginning and end-point semples of the close-out operation will be submitted to the laboratory. TICS = tentetively identified compounds

FBAE = Fluidized Bed Adeorption Effluent FBAI = Fluidized Bed Adsorption Influent

NMOCe a non-methane organio compounds PID a photolonization device OC a quality control FD = field duplicate

TPHp = TPH using purgable recovery method 80Cs = semi-volatile ergenio compounds TPH = total petroleum hydrocarbons VOCs = voletile organio compounde TVH = total volatile hydrocarbona

Harding Lawson Associates

APPENDIX G
DEMONSTRATION COST SUMMARY

APPENDIX G DEMONSTRATION COST SUMMARY

For the technology (T) in question, please provide a cost, as applicable, for each of the following elements. Additionally, provide a separate cost for the entire demonstration (D), as applicable, for each of the following elements. Attach supporting or backup information to this form.

a.	Pre-treatment Requirements
	Work Plan Development D: \$33,000
	Regulatory Approval D: \$700
(3) T:	Mobilization and Preparatory Work D: \$ 1,200
(4) T:	Monitoring, Testing, Sampling and Analysis D: \$ 2,000
(5) T:	Site Work (roads, utility distribution, demolition, clearing, grading, shoring, etc.) D: \$ 0
	Surface Water Collection and Control (e.g. storm drainage) D:\$ 0
	Groundwater Collection and Control (e.g. slurry walls) D:
	Air Pollution/Gas Collection and Control D: \$ 0
(9) T:	Solids Collection and Containment D: \$ 0
(10) T:	Liquids/Sediments/Sludges Collection and Containment D: \$ 600
(11) T:	Drums/Tanks/Structures/Miscellaneous Demolition/Removal D: \$ 0

(12) T:	Equipment Installation	_ D:	\$ 4,500
(13)	Other (Equipment transp	ortation	and coordination)
b.	Treatment Costs		
(1) T:	Sampling and Analysis	_ D:	\$16,000
(2) T:	Materials (Raw Materials	and Eq _ D:	uipment) \$68,000
(3) T:	Fuel and Utilities (Water	, Electri D:	city, Gas, etc.) \$ 6,800
(4) T:	Operations and Maintena	nnce _ D:	\$25,000
(5) T:	Rental Equipment (Vehic	cles, Cor _ D:	mputers, etc.) \$ 4,000
(6) T:	Facilities (Trailers, Latri	nes, etc. D:) \$ 800
	Decontamination	_ D:	\$ 0
	Labor	_ D:	\$20,000
(9) T:	Other (Please Specify)	D.	• 0

c.	Post Treatment Requirement	ents					
	Decontamination and Dec						
	Disposal (Please state con					zial)	
(3) T:	Site Restoration (e.g. tops	oil, lan _ D:	dscapi:	ng, restor	ation of	roads, etc) .)
	Demobilization	_ D:	\$	500			
	Administrative Data Colle						
(6) T:	Other (Please Specify)	_ D:	\$	0	· 		

DISTRIBUTION

Technology Analysis Report
PRDA Test: Fluidized Bed Adsorption
McClellan Air Force Base, Site IC 31
Sacramento, California

June 19, 1998

Copy No. ____

Copies 1 - 45:

Mr. Larry Jaramillo

PKOP

5120 Dudley Blvd.

McClellan Air Force Base, California 95652

Copies 46-50:

Harding Lawson Associates

Quality Control Reviewer

Stephen J. Osborne, P.E.

Principal Engineer

DPH/MAS/mlw/036871R-H