## Smart AI News Reader

2023 Fall NLP Final Project

**December 11 2023** 

Team 5. Arjun Bingly, HaeLee Kim, Nayaeun Kwon

## **Project Overview**

- 1. Introduction
- 2. Methodology
  - News Fetch
  - Summarization
  - Zeroshot Classification
  - Keyword Extraction
  - Question & Answering
- 3. Demo (App)
- 4. Possible Improvement
- 5. Conclusion



### Introduction

#### 1. Background

- Unprecedented proliferation of digital content
- Overwhelming volume challenges traditional news consumption methods

#### 2. Objectives

- Introduce the Smart News Reader application
- Emphasize the importance of NLP in news exploration
- Streamline information consumption in the contemporary era
- Address challenges posed by the information deluge

## Methodology 1: News Fetch

#### Intro

 A comprehensive class for extracting and parsing news articles from given URLs

#### • Initial Attempts

- Tried *Beautifulsoup* for web scraping and HTML parsing
- Limitation: Each news website uses different structuring

#### Implementations

- Incorporates the Newspaper3k library for efficient download and parsing
- Parses rich features like images and videos



## Methodology 2: Article Summarization

#### Goal

 Condenses extensive news articles into concise and informative summaries.

#### Initial Attempts

• Tried BERT-Large-CNN

: pre-trained on the extensive CNN news dataset

: fine-tuning not necessary

#### Limitations

Maximum token size

: observed that most news article are larger than the maximum allowed text input size



## Methodology 2: Article Summarization

#### • Implementation of LangChain

: Split text into maxtokensize with small overlap

: Chunks processed separately to fit model constraints

: Prevented loss of critical information in large articles

#### • Limitation of Controlling Over Summary Size

: Lack of direct control over max summary size

: Recursive summarization considered but with

drawbacks of longer run-time and exaggerated errors



## Methodology 3: Zeroshot Classification



 Predicts the relevance of input labels to a given input without the need for explicit training on labeled data

#### • Implementations

- BART-Large model fine-tuned on MLNI ( "facebook/bart-large-mnli") for sequence classification
- MNLI (Multi-Genre Natural Language
   Interference): Dataset for evaluating NLP models'
   ability to comprehend sentence relationships across
   diverse genres and contexts



## Methodology 4: **Keyword Extraction**



The most relevant n-grams from a document

#### Initial Attempts

- Statistical methods like TF-IDF and YAKE
- Limitation: Does not take context into consideration
- Transformer based key phrase generation
- Limitation: Does not guarantee that the key-phrase exists in the main body

#### Implementations

- Key BERT
- Uses BART Sub-Word Tokenization and Cosine
   Similarity





- Intro
  - Enable users to ask questions regarding the article in a conversational manner.
- Implementation
  - Bert-Large Fine-Tuned on SQUAD
    - Limitations
      - 1. Truncation due to max token limits
      - 2. Non conversational model



- Retrieval Augmented Modeling: Solves the truncation issue
  - How it works
    - LangChain used to split the news article into smaller chunks with overlap.
    - The embeddings are stored in a vector database (Chroma).
    - Retrieval of most similar chunks based on user question.
  - Consideration
    - Optimal embedding model crucial for performance.
    - 'jinaai/jina-embeddings-v2-base-en' performed well but couldn't be integrated due to HuggingFace and LangChain constraints.
    - Hence used sentence-transformers/all-MiniLM-L12-v2



- Retrieval Augmented Modeling
  - Limitation
    - Lacked conversational capabilities
    - Answers typically limited to phrases/sentences extracted from the text



- Larger LLM Models: Solves the conversationality
  - Local approach, avoiding API reliance
  - Obtained Llama-2 model by META upon request
  - Tries Llama-2 7B chat and 13B chat, faced size limitations
  - Quantization Attempts and Model Selection
    - Attempted quantization to 4-bit integer precision using llama.cpp, faced dependency issues
    - Found already quantized model on HuggingFace:
       TheBloke/Llama-2-13B-chat-GGUF

### **Conversational Q&A**



#### Larger LLM Models

- Implementation Differences with Llama-2 13B model
  - LangChain and llama-cpp-python used for conversational retrieval
  - Utilized CuBLAS for GPU inference
  - Utilized LangChains Conversational retrieval chain
- How it works
  - Prompt for condensincing follow up questions
  - Prompt
  - Implemented LangChain Memory Buffer for tracking previous chat inputs and outputs

# Methodology FAILED: Translation many-to-one

#### Goal

 Ensures the accessibility of news articles across diverse linguistic audiences

#### Initial Attempts

- Many-to-One translation module, equipped with the MBART model
  - : proficient in translating news articles from various source languages to English
- NewsTranslator class handles language codes for translation mechanism

#### Implementation Failed

 Implementation caused some dependency related issues





## Possible Improvement

- 1. The whole app takes a lot of computational resource and takes a fairly long time to run, optimizations of both computational resource and time could be done
- 2. The app uses multiple models, this could be condensed to a single LLM
- 3. Every input refreshes the whole app, even with caching more improvements needs to be made.
- 4. Better UI
- 5. Implementation of the translation feature
- 6. App currently only supports one user.

### Conclusion

#### 1. Transformative News Experience:

Smart News Reader redefines news consumption through user-centric design and advanced NLP features.

#### 2. Versatile NLP Toolbox:

Summarization, QA, translation, zero-shot, and keyword extraction provide users with powerful tools for news interaction.

#### 3. Adapting to Evolving Needs:

Anticipates and meets user demands in the digital age, addressing immediate challenges and staying ahead.

#### 4. Innovative Benchmark:

Continuous integration of cutting-edge NLP techniques positions Smart News Reader as a pioneer in efficient and engaging news consumption.

