

Mathématiques

Classe: BAC

Chapitre: Intégrales

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(S) 30 min

6 pt

Soit f la fonction définie sur IR par : $f(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$.

On désigne par C sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1°) Montrer que I(0,1) est un centre de symétrie pour C.
- 2°) a) Montrer que pour tout réel x, $f'(x) = \frac{1}{\left(\sqrt{x^2 + 1}\right)^3}$.
 - **b)** Donner une équation cartésienne de la tangente à $\,C\,d'$ abscisse 0.
- 3°) Dans le graphique de la feuille annexe, on a représenté la courbe C et la droite Δ : y=x. La droite Δ coupe C en un point d'abscisse α .
 - a) Vérifier que $\sqrt{\alpha^2 + 1} = \frac{\alpha}{\alpha 1}$.
 - **b)** En déduire que $\int_0^{\alpha} f(x) dx = \frac{\alpha^2 \alpha + 1}{\alpha 1}$.
- **4°) a)** Montrer que f réalise une bijection de IR sur un intervalle J à préciser.
 - **b)** On note f^{-1} la fonction réciproque de f.

 On désigne par C' la courbe représentative de f^{-1} dans un repère orthonormé (O,\vec{i},\vec{j}) .

 Tracer la courbe C' dans le même repère.
- **5°)** On pose $I_{\alpha} = \int_{1}^{\alpha} f^{-1}(x) dx$.
 - a) Que représente graphiquement le nombre I_{α} ?
 - **b)** Calculer, I_{α} en fonction de α .

Exercice 2

Dans le graphique ci-dessous on a tracé un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ la courbe $\mathscr C$ d'une fonction f continue sur [0,1] et dérivable sur [0,1] telle que pour tout $x \in [0,1]$:

$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$
 et $f(0) = 0$.

1°) Calculer
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$
.

2°) a) Calculer
$$\int_0^{\frac{1}{2}} \frac{x}{\sqrt{1-x^2}} dx$$
.

- **b)** En déduire, à l'aide d'une intégration par partie la valeur exacte de $\int_0^2 f(x) dx$.
- **3°) a)** Montrer que f réalise une bijection de [0,1] sur $\left[0,\frac{\pi}{2}\right]$.

On désigne par f^{-1} la fonction réciproque de f.

- **b)** Montrer que f^{-1} est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et déterminer $\left(f^{-1}\right)\left(\frac{\pi}{6}\right)$.
 - c) Tracer la courbe \mathscr{C} de f^{-1} dans le même repère.
- **4°)** Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $g(x) = f(\sin x)$.
 - a) Montrer que g est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et que pour tout $x \in \left[0, \frac{\pi}{2}\right]$: g'(x) = 1.
 - **b)** En déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right]$, g(x) = x.
 - c) Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right], f^{-1}(x) = \sin x$.
 - **d)** En déduire $\int_0^1 f(x) dx$

Soit f la fonction définie sur [0,1[par f(x) = $\frac{x^2}{\sqrt{1-x^2}}$. On désigne par C_f sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

1) (a) Vérifier que f'(x) =
$$\frac{2x - x^3}{\sqrt{1 - x^2}}$$
.

En déduire que f est une bijection de [0,1[sur un intervalle J que l'on précisera. (b) A l'aide d'une intégration par parties montrer que : $\int_0^{\frac{\sqrt{2}}{2}} f(x) dx = -\frac{1}{2} + \int_0^{\frac{\sqrt{2}}{2}} \sqrt{1 - x^2} dx$

6 pt

$$\int_0^{\frac{\sqrt{2}}{2}} f(x) dx = -\frac{1}{2} + \int_0^{\frac{\sqrt{2}}{2}} \sqrt{1 - x^2} dx$$

2) Soit
$$F(x) = \int_0^{\sin x} \sqrt{1 - t^2} dt$$
 ; $x \in \left[0, \frac{\pi}{4}\right]$

(a) Montrer que F est dérivable sur $\left[0, \frac{\pi}{4}\right]$ et calculer F'(x).

- (b) En déduire que $F(x) = \frac{1}{2}x + \frac{1}{4}\sin 2x$; pour tout $x \in \left[0, \frac{\pi}{4}\right]$
- (c) Calculer alors $\int_0^{\frac{\sqrt{2}}{2}} \sqrt{1-x^2} dx$
- (d) En déduire que $\int_0^{\frac{\sqrt{2}}{2}} f(x) dx = \frac{\pi 2}{8}$
- 3. On donne ci-dessous Cf et Cf-1 Calculer l'aire de la partie du plan limit $\rm \acute{e}$ par Cf et Cf-

et les droites d'´equations x = 0 et $x = \frac{\sqrt{2}}{2}$ (la partie hachurée).

5 pt

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{2\sqrt{x}}{1+x}$. On désigne par \mathscr{C}_f la courbe représentative de f dans

- un repère orthonormé $(O, \overrightarrow{1}, \overrightarrow{j})$. (unité graphique 2 cm).

 1 Etudier la dérivabilité de f à droite en 0 et interpréter graphiquement le résultat.
 - **b** Dresser le tableau de variation de f.
 - \bigcirc Tracer $\mathscr{C}_{\mathbf{f}}$.

Exercice 4

- On désigne par F la primitive de f sur $[0; +\infty[$ qui s'annule en 0. Soit G la fonction définie sur $\left[0; \frac{\pi}{2}\right[$ par $G(x) = F\left(\tan^2(x)\right)$.

 - **b** Calculer G(0) puis expreimer G(x) en fonction de x.
 - **©** Déterminer alors l'aire \mathscr{A} en cm² de la partie du plan limitée par \mathscr{C}_f les droites x = 0, x = 1 et y = 0.

Exercice 5

5 pt

Soit f la fonction définie sur]0;4[par $f(x)=\frac{2-x}{\sqrt{4x-x^2}}$. On désigne par \mathscr{C}_f sa courbe représentative dans un repère orthonormé $(O,\overrightarrow{\iota},\overrightarrow{\jmath})$.

- 1 Montrer que le point A(2,0) est un centre de symétrie de \mathscr{C}_f .
 - **b** Montrer que pour tout $x \in]0; 4[$, on $a : f'(x) = \frac{-4}{\left(\sqrt{4x x^2}\right)^3}$.
 - © Déterminer une équation de la tangente (T) à \mathscr{C}_f au point A. Etudier la position relative de (T) et \mathscr{C}_f .
 - d Dresser le tableau de variartion de f.
 - e Montrer que l'équation f(x) = x admet une unique solution α et que $0.7 < \alpha < 0.8$.
 - f Tracer $\mathscr{C}_{\mathbf{f}}$.
- (2) (a) Montrer que f réalise une bijection de]0; 4[sur R.
 - **b** Tracer dans le même repère la courbe \mathscr{C} ' de f^{-1} .
 - Soit \mathscr{A} l'aire de la partie du plan limitée par les courbes \mathscr{C} et \mathscr{C} ' et les axes de repère. Montrer que $\mathscr{A}=\alpha^2+4-2\sqrt{4\alpha-\alpha^2}$ (u.a)

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000