Bloque 2 Aprendizaje Automático

Práctica 2:

Aplicación de los algoritmos de Perceptrón y Regresión Logística a varios datasets

DOCENCIA VIRTUAL

Responsable del Tratamiento: Universitat Politècnia de València (UPV)

Finalidad: Prestación del servicio público de educación superior en base al interés público de la UPV (Art. 6.1.e del RGPD).

Ejercicio de derechos y segunda capa informativa: Podrán ejercer los derechos reconocidos en el RGPD y la LOPDGDD de acceso, rectificación, oposición, supresión, etc., escribiendo al correo dpd@upv.es.

Para obtener más información sobre el tratamiento de sus datos puede visitar el siguiente enlace: https://www.upv.es/contenidos/DPD.

Propiedad Intelectual: Uso exclusivo en el entorno del aula virtual.

Queda prohibida la difusión, distribución o divulgación de la grabación de las clases y particularmente su compartición en redes sociales o servicios dedicados a compartir apuntes.

La infracción de esta prohibición puede generar responsabilidad disciplinaria, administrativa y/o civil.

Objetivo

Generar y evaluar un clasificador sobre datasets (conjuntos de datos)

Sesiones

• S1: G1:22/11 G2:19/11

• S2: G1:29/11 G2:26/11

• S3: G1: 5/12 G2: 3/12

• Examen P2: G1:13/12 G2:10/12

Sesiones de la práctica 2

Sesión 1:

- Familiarizarse con el entorno de trabajo (Google Colab)
- Analizar conjuntos de datos (datasets): iris, digits, olivetti, openml

Sesión 2:

- Aplicación del algoritmo del Perceptron a tareas de clasificación: dataset iris.
- Ejercicio: Aplicar Perceptrón a digits y olivetti

Sesión 3:

- Aplicación de Regresión Logística a tareas de clasificación: dataset iris.
- Ejemplo de examen:
 - Aplicación de Perceptrón y Regresión Logística a un dataset de OpenML.

Sesión 4 (examen):

- Se pedirá la aplicación de Regresión Logística para una tarea diferente de OpenML
- Hay que subir la solución del Ejercicio

- Entorno de trabajo: Google Colab (https://colab.research.google.com)
 - Se trabaja con Notebooks (código + texto)
 - Similar a un Notebook de Jupyter
- Dataset: colección de datos que se utiliza para entrenar, probar y validar modelos de aprendizaje automático.
- Un dataset típicamente consiste en varias "instancias" o "ejemplos", cada uno de los cuales incluye varias "características" o "atributos".
- Cada instancia en el dataset también tiene una "etiqueta" o "target", que es el valor que el modelo de aprendizaje intenta predecir

• Ej dataset: iris

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

species: es la variable que el clasificador basado en un modelo de aprendizaje automático intentará predecir.

datos

• Ej dataset: iris

Todas las filas (individuos) quitando la columna de clase se usan para entrenar el modelo y validarlo.

/		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm) species
	0	5.1	3.5	1.4	0.2 setosa
	1	4.9	3.0	1.4	0.2 setosa
	2	4.7	3.2	1.3	0.2 setosa
	3	4.6	3.1	1.5	0.2 setosa
	4	5.0	3.6	1.4	0.2 setosa

species: es la variable que el clasificador basado en un modelo de aprendizaje automático intentará predecir.

datos

• Ej dataset: iris

La columna de clase determinar el valor a predecir por el clasificador dado un nuevo individuo.

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species		
0	5.1	3.5	1.4	0.2	setosa		
1	4.9	3.0	1.4	0.2	setosa		
2	4.7	3.2	1.3	0.2	setosa		
3	4.6	3.1	1.5	0.2	setosa		
4	5.0	3.6	1.4	0.2	setosa		

species: es la variable que el clasificador basado en un modelo de aprendizaje automático intentará predecir.

• Ej dataset: iris

• Ej dataset: iris

14	Sepaltorighton	SegalWidthCor	PetalLengthCrs	PetalWidthCor	Species			
1	5.3	3.5	1.8	0.2	Into-sertona			
2	4.9	1	1.4	0.2	tiro-setesa			
9	4.2	3.2	1.0	0.2	kris-setojus			
4	4.6	3.1	1.5	0.2	Irin-patoret			
5.	5	3.6	1.4	0.2	tric-satosa	- Entropor		
6	5.4	3.9	1.7	0.4	Irio-setola	Entrenar		
7	4.6	3.4	1.4	0.3	Ins-setria			
8		3.4	4.5	0.2	Mis-setosa			Modelo
9	4.4	2.9	1.6	0.2	Into-setosa			Modelo Clasificación
50	4.9	5.1	1.5	0.5	Ins-setora			01 161 17
11	5.6	3.7	1,5	0.2	trio-setora			Clasificación
12	4.6	3.4	1.6	0.2	Inh-setose		,	Clasificación
13	4.8		1,4	0.1	105-591058			
34	4.3	1	1.1	0.5	frie-setona			
25	5.6	4	1.2	0.2	Inh-partosa			
36	5.7	4.6	1.5	0.4	ino-setora			
17	5.6	3.9	1.3	0.4	fris-setosa			
16	5.1	3.5	1.4	0.3	Ins-setoia			
663	2.00	2.0	7.7	0.5	Artic Architectus			

sepal_length sepal_width petal_length petal_width

• Ej dataset: iris

- Datasets:
 - IRIS

DIGITS

OLIVETTI

OPENML (repositorio)

Uso de Google Colab

Paso 1: Crear una Cuenta de Google (si aún no tienes una)

- Para usar Google Colab, necesitas una cuenta de Google. Si ya tienes una cuenta de Gmail, YouTube, o cualquier otro servicio de Google, puedes usar esa misma cuenta. Si no, sigue estos pasos para crear una nueva:
 - 1. Ve a <u>accounts.google.com</u>.
 - 2. Sigue las instrucciones para crear una nueva cuenta de Google.

Paso 2: Acceder a Google Colab

- Una vez que tengas tu cuenta de Google, puedes acceder a Google Colab:
 - 1. Ve a Google Colab.
 - 2. Inicia sesión con tu cuenta de Google.

Uso de Google Colab

Paso 3: Crear un Nuevo Notebook

- Después de iniciar sesión en Google Colab, puedes comenzar a crear notebooks:
 - 1. Haz clic en Nuevo Notebook en la esquina inferior derecha de la pantalla. Esto abrirá un nuevo notebook en una nueva pestaña del navegador.
 - 2. Puedes cambiar el nombre del notebook haciendo clic en el título (por defecto, algo como "Untitled0.ipynb") en la parte superior de la página y escribiendo el nombre que desees.

Paso 4: Escribir y Ejecutar Código

- Google Colab te permite escribir y ejecutar código Python de manera interactiva:
 - 1. Escribe tu código Python en una celda.
 - 2. Para ejecutar el código en esa celda, presiona Shift + Enter o haz clic en el botón de reproducción (triángulo) en la esquina superior izquierda de la celda.
 - 3. El resultado de la ejecución del código aparecerá debajo de la celda.

Uso de Google Colab

Paso 5: Guardar y Compartir tu Notebook

- Google Colab guarda automáticamente tus notebooks en Google Drive:
 - 1. Para guardar manualmente, ve a Archivo > Guardar.
 - 2. Para compartir tu notebook, haz clic en el botón Compartir en la esquina superior derecha y sigue las instrucciones para compartirlo como lo harías con cualquier otro archivo de Google Drive.

Paso 6: Importar y Exportar Notebooks

- Puedes importar notebooks existentes o exportar los tuyos:
 - Importar: Archivo > Abrir notebook > elige desde GitHub, Google Drive o sube un archivo.
 - **Exportar**: Archivo > Descargar > elige el formato que prefieras (por ejemplo, .ipynb para Jupyter Notebook o .py para un script de Python).

Probar los siguientes notebooks en Google colab:

- iris.ipynb
- digits.ipynb
- olivetti.ipynb

openml.ipynb

¿Qué hay que saber de la sesión de hoy?

- -Saber qué es y que formato tiene un dataset
- -Saber interpretar un dataset: nº individuos, nº clases, ...
- -Saber cargar un dataset de openml
- -Saber extraer las características y la columna objetivo de un dataset