Relaciones Binarias

👺 Guía de Estudio: Relaciones Binarias

1. Producto Cartesiano (Cartesian Product)

Definición:

Dado dos conjuntos A y B, el **producto cartesiano** $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$.

Ejemplo en Wolfram Mathematica:

```
A = \{1, 2\};
B = \{a, b\};
PC[A, B]
```

Salida esperada:

```
{{1, a}, {1, b}, {2, a}, {2, b}}
```

2. Relación Binaria

Definición:

Una **relación binaria** R entre conjuntos A y B es un subconjunto del producto cartesiano $A \times B$.

Ejemplo:

```
A = \{1, 2, 3\};
R = \{\{1, 2\}, \{2, 3\}, \{3, 1\}\};
```

3. Unión de Relaciones

Definición:

Ejemplo:

```
R = {{1, 2}, {2, 3}};
S = {{2, 3}, {3, 1}};
Union[R, S]
```

Salida:

```
{{1, 2}, {2, 3}, {3, 1}}
```

4. Intersección de Relaciones

Definición:

La **intersección** $R \cap S$ contiene solo los pares que están en ambas relaciones.

Ejemplo:

```
Intersection[R, S]
```

Salida:

```
{{2, 3}}
```

◆ 5. Diferencia de Relaciones

Definición:

La diferencia R - S contiene los pares que están en R pero no en S.

 $R \rightarrow Conjunto universo.$

 $S \rightarrow Conjunto a evaluar.$

Ejemplo:

```
Complement[R, S]
```

Salida:

{{1, 2}}

6. Inversa de una Relación

Definición:

La relación **inversa** R^{-1} invierte los pares: si $(a,b) \in R$, entonces $(b,a) \in R^{-1}$.

Ejemplo:

```
R = {{1, 2}, {2, 3}};
Reverse /@ R
```

Salida:

```
{{2, 1}, {3, 2}}
```

7. Composición de Relaciones

Definición:

Dadas dos relaciones $R \subseteq A \times B$ y $S \subseteq B \times C$, su **composición** $R \circ S \subseteq A \times C$ contiene pares (a,c) tales que existe un b con $(a,b) \in R$ y $(b,c) \in S$.

Ejemplo:

```
RelacionComposicion[R1_, R2_] :=
Module[{Composicion = {}, i, j},
For[i = 1, i <= Length[R2],
For[j = 1, j <= Length[R1],
If[R2[[i, 2]] == R1[[j, 1]],
Composicion = Append[Composicion, {R2[[i, 1]], R1[[j, 2]]}]]; j++];
i++]; DeleteDuplicates[Composicion]]</pre>
```

8. Propiedades de las Relaciones

- Reflexiva: $orall a \in A, (a,a) \in R$
 - o Significa que: Todo elemento está relacionado consigo mismo.
 - \circ **Ejemplo**: Si $A=\{1,2\}$, entonces R es reflexiva si incluye (1,1) y (2,2).

- Simétrica: Si $(a,b) \in R$ entonces $(b,a) \in R$
 - Significa que: Si un elemento se relaciona con otro, el otro también se relaciona con el primero.
 - **Ejemplo**: $(1,2) \in R$, entonces también debe estar (2,1).
- Antisimétrica: Si $(a,b) \in R$ y $(b,a) \in R$, entonces a=b.
 - Significa que: Si dos elementos están relacionados en ambos sentidos, ¡entonces son el mismo!
 - \circ **Ejemplo**: Si $(1,2) \in R$ y $(2,1) \in R$, **no** puede pasar, a menos que 1 = 2.
- Transitiva: Si $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$
 - o Significa que: La relación "se hereda".
 - **Ejemplo**: Si $(1,2) \in R$ y $(2,3) \in R$, entonces también debe estar (1,3).

Recursos

Definition (4.8)

Sea *R* una relación definida sobre un conjunto *A*, *A* distinto de vacío, entonces:

- **1** Se dice que R es reflexiva sí y solo sí $\forall a, a \in A$ se satisface aRa.
- ② Se dice que R es simétrica sí y solo sí \forall $(a, b) \in R$ se cumple $(b, a) \in R$.
- **3** Se dice que R es antisimétrica sí y solo sí $\forall (a, b) \in R$, $a \neq b$ se tiene $(b, a) \notin R$.
- **③** Se dice que R es transitiva si \forall (a, b) ∈ R y (b, c) ∈ R se satisface (a, c) ∈ R.
- Si R es una relación reflexiva, simétrica y transitiva se dice que R es una relación de equivalencia.
- Si R es una relación reflexiva, antisimétrica y transitiva se dice que R es una relación de orden parcial.

1.1 Relación binaria | Matemáticas Discretas

Dados dos conjuntos no vacíos A y B, una relación binaria R es un conjunto formado por pares ordenados (a,b). Donde, la primera componente del par está relacionado con la segunda componente, por medio de cierta propiedad o característica.

kttps://ecosistema.buap.mx/forms/files/dspace-32/11_relacin_binaria.html

2-relaciones-binarias-definicion-y-propiedades-ciencias-basicas.pdf

Relaciones Binarias: Nociones Fundamentales — Steemit

Saludos a todos los lectores de la comunidad de Steemit, en esta oportunidad les presentaré el inicio de una nueva... by reinaseq

https://steemit.com/spanish/@reinaseq/relaciones-binarias-nociones-fundamentales

Teoría de conjuntos

Conjuntos (Curso COMPLETO)

Matrices

Definition (4.3)

Si $A = \{a_1, a_2, ..., a_n\}$ y $B = \{b_1, b_2, ..., b_m\}$, una relación binaria R de A a B, se puede representar por una matriz de tamaño n por m, denotada $M_R = (m_{ij})$, tal que:

$$m_{ij} = \begin{cases} 1 \text{ si } a_i R b_j \\ 0 \text{ en caso contrario} \end{cases}$$

A esta matriz se le denomina "matriz de la relación R".

Theorem (4.1)

Sean A, B y C conjuntos distintos de vacío y, R_1 y R_2 relaciones binarias de A a B con matrices representativas M_{R_1} y M_{R_2} , respectivamente, entonces:

- $M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}.$
- $M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2}.$
- $M_{\overline{R_1}} = \overline{M_{R_1}}.$
- $M_{R_1^{-1}} = (M_{R_1})^t.$
- **3** $M_{R_1 \circ R_2} = M_{R_2} \odot M_{R_1}$ asumiendo R_2 definida de A a B y R_1 de B a C.

Matriz de una Relación Binaria

https://youtu.be/0yR5qHoH28k?si=Fke6agaeF_NnBtRd

Matrices Booleanas y Relaciones Binarias

Este video está destinado a reforzar los conceptos relacionados con las matrices booleanas y las relaciones binarias que se imparten en la asignatura Lógica del 2do. Semestre de Ingeniería Industrial, UCAB,

https://youtu.be/seRMvjl0Su8?si=ZkY2c-WBh10juenH

Relaciones propiedades 04 reflexiva, simétrica, antisimétrica y transitiva

▶ https://youtu.be/MMUzadgFLvc?si=zt0w7vIRc-dVGPS_

Relaciones binarias Composición y productos

Producto de matrices booleanas

Sean $A=(a_{ij})$ de tamaño $n\times m$ y $B=(b_{ij})$ de tamaño $m\times p$. La multiplicación booleana de A y B es la nueva matriz de tamaño $n\times p$ que se denota A $\bigcirc B$, de manera que A $\bigcirc B_{li,j} = 1$ si existe un 1 en la misma posición de la fila i de A y en la columna j de B.

https://youtu.be/q4VAkengJnc?si=TUunYT92s_bgSpkp

Operaciones Binarias con Matrices

$$\begin{array}{c} \text{SOLUCIÓN} & A = \{1,2,3,4,5\} & \circ aRb \Leftrightarrow a \cdot b > 9 \\ B = \{2,4,6,8\} & \circ aSb \Leftrightarrow b + a = 3k, k \in \mathbb{Z} \\ \bullet M_R = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} & \bullet M_S = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

https://youtu.be/Tdkojp7f14Q?si=AFxVChtZtXXATTtM

Operaciones con relaciones: Producto booleano

En este video explicamos como realizar el producto booleano de matrices Repaso de tablas lógicas | Conjunción y disyunción lógicas

https://youtu.be/xedVwRj3JxE?si=ZJOrJ66l08dVTftQ

RELACIONES: PRODUCTO BOOLEANO

$$\mathbf{M}_{RS} = \mathbf{M}_{R} \circ \mathbf{M}_{S} \begin{vmatrix} \mathbf{v} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{vmatrix} \begin{vmatrix} \mathbf{A} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{vmatrix}$$