Lecture 4. Multiple Linear Regresssion

CS 109A/AC 209A/STAT 121A Data Science:

Harvard University

Fall 2016

Instructors: P. Protopapas, K. Rader, W. Pan

Announcements

- Lectures will be held in Emerson Hall, Room 105
- HW0: You should have received simple test comments. Please check it out.
- HW1: Grading is almost done. Grades should be out by Thursday
- HW2: will be posted on Wed after the lecture
- Projects:
 - List of projects are posted
 - Canvas Project Page has: guideline, project descriptions, form to fill
 - Deadline for milestone 1 (choose project and form a group) is being pushed back to next wednesday (28th)

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- · Extensions of the Linear Model

5 4 3 2 1

Interaction Terms

```
In [1085]: import sys
import time
print("QUIZ TIME")
for i in range(5*1,0,-1):
    #time.sleep(10)
    sys.stdout.write(str(i)+' ')
    sys.stdout.flush()
QUIZ TIME
```

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- · Extensions of the Linear Model
 - Interaction Terms

```
In [1086]: from ipywidgets import interact, FloatSlider, RadioButtons import numpy as np import matplotlib import matplotlib import as plt %matplotlib inline from sklearn.linear_model import LinearRegression as Lin_Reg import statsmodels.api as sm

from mpl_toolkits.mplot3d import Axes3D
```

```
In [1087]: ## GENERATE ANOTHER DATASET AND EXAMINE RESIDUALS
           def GenerateDataLinearFun(N=1000, beta0=2.2, beta1=3.0, sigma=10.0, Xmax=90.0):
               epsilon=np.random.normal(0,sigma,N) # Random normally distributed points
               X = np.linspace(Xmin, Xmax, N)
               Y = beta0 + beta1 * X + epsilon
               return X, Y
           def GenerateDataNotLinearFun(N=1000, beta0=2.2, beta1=3.0, sigma=1.0, Xmax=1.0, alpha=1):
               epsilon=np.random.normal(0,sigma,N) # Random normally distributed points
               X = np.linspace(0, Xmax, N)
               Y = beta0 + beta1 * X + alpha* np.sin(6*X) + epsilon
               \#Y = beta0 + beta1 * X + 4*beta1*(X>0.5) + epsilon
               \#Y = beta0 + beta1 * X + alpha * X*X*X + epsilon
               return X, Y
           def FitLinearModel(X,Y):
               # Estimate the coefficients
               beta1 = np.sum((X-np.mean(X)) * (Y-np.mean(Y)))/np.sum((X-np.mean(X))**2)
               beta0 = np.mean(Y) - beta1*np.mean(X)
               return beta0, beta1
           def PredictLinearModel(X, beta0, beta1):
               Y = beta0 + beta1 * X
               return Y
           def RSS(Y, beta0, beta1):
               return np.sum( (Y-PredictLinearModel(X, beta0, beta1))**2)
```

In [1091]: plotit()

In [1093]: interact(plotit, beta0=(200, 250, 2), beta1=(-1.5,-0.5,.1), fit=False)
(30,) (30,)

Out[1093]: <function __main__.plotit>

Review: Calculate coefficients

The most common approach involves minimizing least squares (sum of the square errors)

$$RSS = \sum_{i} e_i^2 = \sum_{i} (y_i - \hat{y_i})^2$$

The following minimize the RSS

$$\hat{\beta}_{1} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

where $\bar{y} = \frac{1}{n} \sum_{i} y_{i}$ and $\bar{x} = \frac{1}{n} \sum_{i} x_{i}$ are the sample means.

Gradient Decent

Also known as steepest descent

Note: More on this during Lab

Good reads:

http://www.bogotobogo.com/python/python numpy batch gradient descent algorithm.php

(http://www.bogotobogo.com/python/python numpy batch gradient descent algorithm.php)

http://www.scipy-lectures.org/advanced/mathematical optimization/ (http://www.scipy-lectures.org/advanced/mathematical optimization/)

Review: SE and Confidence Intervals

The standard errors associated with $\hat{\beta}_0$ and $\hat{\beta}_1$:

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_i (x_i - \bar{x})^2} \right]$$

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2}$$

$$\sigma \approx RSE = \sqrt{\frac{RSS}{n - 2}}$$

$$RSS = \sum_i (y_i - \hat{y}_i)^2 = \sum_i e_i^2$$

```
In [1094]: def plotit(alpha):
               font = {'family' : 'monospace',
                   'weight': 'normal',
                   'size' : 14}
               matplotlib.rc('font', **font)
               plt.figure(figsize=(14,6))
               beta1=1.02
               SE = 0.4
               X=np.random.normal(beta1, SE, 1000)
               hf, bh=np.histogram(X, bins=20) #, alpha=0.8, bins =20, color='w');
               plt.step(bh[1:], hf)
               plt.xlabel(r'$\beta 1$')
               plt.axvline(x=np.mean(X), color='r', linestyle='-', label='Estiamed value')
               plt.axvline(x=0, color='g', linestyle='-', label='Hypothesis testing')
               #plt.show()
               plt.hist(X[(X< bh[np.argmax(beta1+alpha*SE < bh)]) * (X> bh[np.argmax(beta1-alpha*SE < bh)])],</pre>
            color='k', alpha=0.3, bins =bh, label='95% confidence');
               plt.legend(loc='best')
```


Review: Model accuracy/goodness of fit and \mathbb{R}^2

$$RSE = \sqrt{\frac{RSS}{n-2}}$$

- · It is considered a measure of the lack of fit of the model
- · Absolute measure since it is in units of Y

Alternatively we can use R^2 statistics that is propotion of deviation in units of variance

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where $TSS = \sum_i (y_i - \bar{y})^2$ is the total sum of squares, or the deviation of Y before we regress and RSS is the deviation left after the regression.

The ration tells as how well the regression performed to remove deviations on Y

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- Extensions of the Linear Model
 - Interaction Terms

Linear Regression and Beyond

So far we saw single predictor regression but usually we have more complex models, models with several predictors.

For those we need to consider all predictor simultaneously, or multiple regression

We will see the difference from single regression and interpretation

We will revisit everything we did before:

- How to estimate the coefficients
- Relationship between response and predictors
- Model fit and prediction

But also

- Which predictors are important
- Extending beyond linearity more

Motivational Example:

Systolic blood pressure

In this dataset we have for 120 individuals:

- systolic blood pressure (response variable)
- · weight in pounds
- height in inches
- age in years
- gender

Sample questions:

- Does age affect the blood pressure?
- Does weight affect the blood pressure?
- Does height affect the blood pressure?
- Does the height affect the weight and therefore the blood pressure?
- · How do we determine which predictors are important?

We will answer all these questions and more.

Run three independent single linear regression models

```
In [1096]: # IMPORT DATA
    data = pd.read_csv('bloodpressure_males.csv')
    age=data['age'].values
    weight=data['weight'].values
    height=data['height'].values
    blood=data['bloodpressure'].values
```

```
In [1097]: def plotit(fit):
               font = {'family' : 'monospace',
                   'weight': 'normal',
                   'size' : 12}
               matplotlib.rc('font', **font)
               plt.figure(figsize=(8,6))
               fig, ((ax1, ax2, ax3)) = plt.subplots(1, 3, figsize=(15, 5))
               ax1.plot(age, blood, 'bo')
               ax1.set xlabel('age [yeas]'); ax1.set ylabel('Systolic Pressure')
               ax2.plot(height, blood, 'bo')
               ax2.set xlabel('height [inches]'); ax1.set ylabel('Systolic Pressure')
               ax3.plot(weight, blood, 'bo')
               ax3.set xlabel('weight [lb]'); ax1.set ylabel('Systolic Pressure')
               if fit==True:
                   beta0 hat, beta1 hat = FitLinearModel(age, blood)
                   ax1.plot(age, beta0 hat+ beta1 hat*age, 'r', label=r'$\hat{\beta} 0=$'+str(np.around(beta0 h
           at, decimals=1))
                                +r' $\hat{\beta} 1=$'+str(np.around(beta1 hat, decimals=1)))
                   ax1.legend(loc='best')
               if fit==True:
                   beta0 hat, beta1 hat = FitLinearModel(height, blood)
                   ax2.plot(height, beta0 hat+ beta1 hat*height, 'r', label=r'$\hat{\beta 0}=$'+str(np.around(b
           eta0 hat, decimals=1))
                                +r' $\hat{\beta} 1=$'+str(np.around(beta1 hat, decimals=1)))
                   ax2.legend(loc='best')
               if fit==True:
                   beta0 hat, beta1 hat = FitLinearModel(weight, blood)
                   ax3.plot(weight, beta0 hat+ beta1 hat*weight, 'r', label=r'$\hat{\beta} 0=$'+str(np.around(b
           eta0 hat, decimals=1))
                                +r' $\hat{\beta} 1=$'+str(np.around(beta1 hat, decimals=1)))
                   ax3.legend(loc='best')
```

In [1098]: interact(plotit, fit=False);

<matplotlib.figure.Figure at 0x13630c3c8>


```
In [1099]: # add constant for the intercept to work
heightc = sm.add_constant(height)
weightc = sm.add_constant(weight)
agec = sm.add_constant(age)

# fit three models
olsa = sm.OLS( blood , agec)
olsa_result = olsa.fit()

olsh = sm.OLS( blood, heightc)
olsh_result = olsh.fit()

olsw = sm.OLS( blood, weightc)
olsw_result = olsw.fit()
```

```
In [1100]: print(olsa_result.summary())
    print(olsw_result.summary())
    print(olsh_result.summary())
```

OLS Regression Results

=========	======	.=======	=====	=====		=======	=======
Dep. Variable	:		У	R-sq	uared:		0.613
Model:			OLS	Adj.	R-squared:		0.610
Method:		Least Squ	ıares	F-st	atistic:		187.0
Date:		Mon, 19 Sep	2016	Prob	(F-statistic):		4.36e-26
Time:		12:4	45 : 37	Log-	Likelihood:		-451.25
No. Observation	ons:		120	AIC:			906.5
Df Residuals:			118	BIC:			912.1
Df Model:			1				
Covariance Typ	pe:	nonro	bust				
==========	======			=====		=======	=======
	coef	std err		t	P> t	[95.0% Co	nf. Int.]
const	73.4840	3.991	1	8.411	0.000	65.580	81.388
x1	0.9365	0.068	1	3.674	0.000	0.801	1.072
Omnibus:			 2.872	Durb:	========= in-Watson:		2.133
Prob(Omnibus)	:	(238	Jarq	ue-Bera (JB):		2.301
		,	.296	Prob	(.TR.) •		0.316
Skew:		-(1.290	FLOD	(00)•		0.510
Skew: Kurtosis:			3.330		. No.		243.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

============			=========
Dep. Variable:	У	R-squared:	0.022
Model:	OLS	Adj. R-squared:	0.014
Method:	Least Squares	F-statistic:	2.655
Date:	Mon, 19 Sep 2016	Prob (F-statistic):	0.106
Time:	12:45:38	Log-Likelihood:	-506.89
No. Observations:	120	AIC:	1018.
Df Residuals:	118	BIC:	1023.
Df Model:	1		
Covariance Type:	nonrobust		

=======	coef	std err	t	P> t	[95.0% Co	nf. Int.]
const x1	116.4032 0.0630	6.360 0.039	18.303 1.630	0.000 0.106	103.809 -0.014	128.997 0.140
Omnibus:	=========	0.0	======== 181 Durbin	======== -Watson:	=========	2.010

Kurtosis:	2.743	Cond. No.	688.
Skew:	-0.033	Prob(JB):	0.838
Prob(Omnibus):	0.914	Jarque-Bera (JB):	0.354

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

========	========	======================================	======	==========	========	=======
Dep. Varia	able:	У	R-sq	uared:		0.001
Model:		OLS	Adj.	R-squared:		-0.008
Method:		Least Squares	F-st	atistic:		0.08712
Date:		Mon, 19 Sep 2016	Prob	(F-statistic):		0.768
Time:		12:45:38	Log-	Likelihood:		-508.18
No. Observ	vations:	120	AIC:			1020.
Df Residua	als:	118	BIC:			1026.
Df Model:		1				
Covariance	e Type:	nonrobust				
========		=========	======	=========	========	
	coef	std err	t	P> t	[95.0% Cor	nf. Int.]
const	120 . 5907	19.964	6.040	0.000	81.057	160.125
x1	0.0836	0.283	0.295	0.768	-0.477	0.644
Omnibus:		0.027	Durb	in-Watson:		2.031
Prob(Omnib	ous):	0.986	Jarq	ue-Bera (JB):		0.119
Skew:		-0.033	Prob	(JB):		0.942
Kurtosis:		2.861	Cond	. No.		915.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Age:

	Coefficient	SE	p-value
β_0	79.871	3.982	<0.000
β_1	0.800	0.069	<0.000

Height:

	Coefficient	SE	p-value
β_0	100.6361	17.416	<0.000
β_1	0.3458	0.247	0.064

Weight:

	Coefficient	SE	p-value
β_0	114.002	6.417	<0.000
β_1	0.068	0.039	<0.000

In [1106]: **def** plotit3d(): xx1, xx2 = np.meshqrid(np.linspace(age.min(), age.max(), 100), np.linspace(weight.min(), weight.max(), 100)) Z = 56 + 0.8 * xx1 + .15 * xx2# create matplotlib 3d axes fig = plt.figure(figsize=(12, 8)) ax = Axes3D(fiq, azim=-115, elev=15)resid = blood-(56+0.8*age+0.15*weight)# plot hyperplane surf = ax.plot surface(xx1, xx2, Z, alpha=0.3, linewidth=0) ax.scatter(age[resid>0], weight[resid>0], blood[resid>0], color='black', alpha=1.0, facecolor='w hite') ax.scatter(age[resid<0], weight[resid<0], blood[resid<0], color='white', alpha=1.0, facecolor='w hite') ax.set xlabel('age [year]') ax.set ylabel('weight [lb]') ax.set zlabel('Blood Pressure')

In [1107]: plotit3d()

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- Extensions of the Linear Model
 - Interaction Terms

Fit a linear regression model with three predictors

 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p + \epsilon$

Estimate the coefficients:

$$\mathbf{Y} = \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n} \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} 1 & X_{1,1} & X_{1,2} & \dots & X_{1,p} \\ 1 & X_{2,1} & X_{2,2} & \dots & X_{2,p} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n,1} & X_{n,2} & \dots & X_{n,p} \end{pmatrix}$$

$$\beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p} \end{pmatrix}$$

With a little calculus one can show that:

$$\hat{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

Good review:

https://onlinecourses.science.psu.edu/stat501/sites/onlinecourses.science.psu.edu.stat501/files/pt2_multiple_linear_regression.pdf

And also we will review some of the numpy's linear argebra toolset

```
In [1101]: # LIN-REG FIT USING statsmodels

Xt = np.vstack([age, weight, height]).T
X = sm.add_constant(Xt)
ols = sm.OLS( blood, X)
ols_result = ols.fit()
```

```
In [1102]: print(ols_result.rsquared)
    print(np.sqrt(np.sum(ols_result.resid**2)/(np.size(age)-1-Xt.shape[1])))
    ols_result.summary()
```

0.674893718965

9.69311388891

Out[1102]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.675
Model:	OLS	Adj. R-squared:	0.666
Method:	Least Squares	F-statistic:	80.27
Date:	Mon, 19 Sep 2016	Prob (F-statistic):	3.55e-28
Time:	12:45:38	Log-Likelihood:	-440.81
No. Observations:	120	AIC:	889.6
Df Residuals:	116	BIC:	900.8
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	72.6356	16.368	4.438	0.000	40.217 105.055
x 1	0.9610	0.064	14.948	0.000	0.834 1.088
x2	0.1393	0.039	3.568	0.001	0.062 0.217
х3	-0.3242	0.285	-1.137	0.258	-0.889 0.240

Omnibus:	1.044	Durbin-Watson:	2.033
Prob(Omnibus):	0.593	Jarque-Bera (JB):	1.060
Skew:	-0.218	Prob(JB):	0.589
Kurtosis:	2.852	Cond. No.	3.46e+03

Interpretation

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- Extensions of the Linear Model
 - Interaction Terms

Relationship Between the Response and Predictors?

In the simple linear regression, to check if there is a relationship between the response and the predictor we checked if $\beta_1 = 0$

Here we check if all the coefficients $\beta_1 = \dots = \beta_p = 0$

Hypothesis test

Null hypothesis:

• H0:
$$\beta_1 = ... = \beta_p = 0$$

Alternative hypothesis:

• Ha: at least one β_i is non-zero.

This hypothesis test is performed by computing the F-statistic,

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)}$$

where as with simple linear regression $TSS = \sum_{i} (y_i - \bar{y})$ and $RSS = \sum_{i} (y_i - \hat{y})$

If H0 is correct F takes the value of 1 If Ha is correct F takes the value greater than 1

In the example above F=80.27 which is much higher than 1. Therefore we **reject** H0 \rightarrow There is a relationship.

Note: if ϵ is normally distributed then F follows the F-distribution

Note: For large n and p, F-test being just a little larger than 1 is still enough to reject H0.

This just proved that the response variable has relationship with at least one of the variables. We rejected that ALL are zero.

We can also test for a subset of size q:

$$F = \frac{(TSS - RSS)/q}{RSS/(n - p - 1)}$$

Note1: For single regression the t-statistics and F-test are the same as if leave out that single variable from the model (q=1 above).

[could we just observe at the individual p-values and reject H0 if any of them is small. This does not work for large p because there is always a small probability to have some of them to be small]

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- · Extensions of the Linear Model
 - Interaction Terms

Deciding the important variables

F-score and associated p-value tells us that at least one predictor is related to the response variable. **THEN** which ones are they?

Looking at the individual p-values can be misleading as we saw in the example above due to colinearity.

The task of determining which predictors are associated with the response, in order to fit a single model involving only those predictors, is referred to as **variable selection**.

Collinearity - Correlation between X

If two predictors are correlated, then they are trying to explain the same part of variation

	age	height	weight
age	1	-0.0171856	-0.01752642
height		1	0.81625664
weight			1

What X-variables is size correlated with? – bed, bath, and lot – Since those 3 variables are also in the multiple regression model, there's nothing left for size to do with the Y-variable (price)! – This happens a lot!

In [1105]: plotit()

<matplotlib.figure.Figure at 0x13a667f98>

Important variables (continue)

- Perform variable selection by trying out a lot of different models, each containing a different subset of the predictors.
- For example we can use:
 - null
 - age
 - height
 - weight
 - age and height
 - height and weight
 - weight and age
 - height and weight and age

Select the best model out of all

HOW ????

Statistics to the rescue:

- Mallow's Cp
- Akaike information criterion (AIC)
- Bayesian information criterion (BIC)
- Adjusted R²

NOTE: WE WILL DISCUSS THESE LATER AND WE SHOW HOW TO USE THEM WITH SKLEANR IN LAB

when p→ large there are too many model combinations so it becomes intractable

There are three classical approaches for this task:

Forward selection

- Start with the null model (just β_0).
- Fit p simple linear regressions and add to the null model the variable that results in the lowest RSS
- Try all two-variable model and add the variable that results in the lowest RSS
- Continue until some stopping rule is satisfied (change in RSS is lower than a threshold)

Backward selection

- · Start with all variables in the model
- · Remove the variable with the largest p-value
- Fit the (p 1)-variable model and remove the variable with largest p-value
- Continue until some stopping rule is satisfied (all remaining variables have low p-value)

Mixed selection

- Start with the null model (just β_0)
- Fit p simple linear regressions and add to the null model the variable that results in the lowest RSS
- If any variable has low p-value we remove it
- Continue until some stopping rule is satisfied (until all variables have low p-value)

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- Extensions of the Linear Model
 - Interaction Terms

Model Fit

As with the simple regression, R^2 and RSE are the most common numerical measures to evaluate the goodness of fit.

$$RSE = \sqrt{\frac{RSS}{n-1-p}}$$

$$RSS = \sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} e_i^2$$

$$TSS = \sum_{i} (y_i - \bar{y_i})^2$$

$$R^2 = 1 - \frac{RSS}{TSS}$$

Model fit

	age	height	weight	weight+age	age+height	height+weight	age+weight +height
R^2	0.4951	0.0764	0.11840	0.11842	0.56212	0.61336	0.61458
RSE	12.0612	16.315	15.93917	15.93903	11.2857048	10.59641	10.63217

Observation:

- The RSE goes up when "weight+age" \rightarrow "age+weight +height"
- R^2 goes up when "weight+age" \rightarrow "age+weight +height"

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- · Extensions of the Linear Model
 - Interaction Terms

Prediction

As with the simple linear regression we have two types of errors

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_p X_p + \epsilon$$

but the real data are produced by (assume linear model)

$$f(X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Prediction (cont)

- Linear model is always an approximation. This source of potentially reducible is called model bias
- Even if we knew f(X) perfectly we will still never predict the response perfectly due to *ε* noise. This is **irreducible error** and there is nothing we can do about it

We use prediction intervals to deal with this. Prediction intervals are always larger than the confidence intervals that can be estimated using the SE of the coefficients because they incorprate both the reducible and irreducible error.

In our example: we predict the blood pressure of an individua who is 70in tall, 180lb and 45 years old to be \rightarrow 118.26 and the 95% predictor intervals to be [98, 137]:

```
In [1108]: from statsmodels.sandbox.regression.predstd import wls_prediction_std

Xs = np.array( [1, 45, 180, 70])
Q=ols_result.predict(Xs)

sdev, lower, upper = wls_prediction_std(ols_result, exog=Xs, alpha=0.05)
print(lower, upper, Q)
```

[98.84895723] [137.68086145] [118.26490934]

Outline

- · Review of last lecture
- Multiple Regression
 - Estimating the regression coefficients
 - Relationship Between the Response and Predictors: F-statistics
 - Important Variables: Information Criteria
 - Model Fit
 - Prediction
- · Extensions of the Linear Model
 - Interaction Terms

Interaction terms (moving away from linearity)

Rynergy effect

$$Y = \beta_0 + \beta_1 \times \text{age} + \beta_2 \times \text{height} + \beta_3 \times \text{weight}$$

 $Y = \beta_0 + \beta_1 \times \text{age} + \beta_2 \times \text{height} + \beta_3 \times \text{weight} + \beta_4 \times (\text{weight} \times \text{height})$

```
In [1109]: Xt = np.vstack([age, weight, height, height*weight, age*weight, height*weight]).T
    #Xt = np.vstack([age, weight, height, height*weight]).T
    X = sm.add_constant(Xt)
    ols = sm.OLS( blood, X)
    ols_result = ols.fit()
    print("R^2=",ols_result.rsquared)
    print("RSE=", np.sqrt(np.sum(ols_result.resid**2)/(np.size(age)-1-Xt.shape[1])))
    ols_result.summary()
```

R^2= 0.678425110592 RSE= 9.81096402391

Out[1109]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.678
Model:	OLS	Adj. R-squared:	0.661
Method:	Least Squares	F-statistic:	39.73
Date:	Mon, 19 Sep 2016	Prob (F-statistic):	1.14e-25
Time:	12:45:39	Log-Likelihood:	-440.15
No. Observations:	120	AIC:	894.3
Df Residuals:	113	BIC:	913.8
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	66.0076	55.970	1.179	0.241	-44.880 176.895
x1 0.6059		0.455	1.333	0.185	-0.295 1.507
x2	-0.2570	0.716	-0.359	0.720	-1.676 1.162
х3	0.0656	0.691	0.095	0.924	-1.303 1.434
х4	0.0019	0.004	0.456	0.649	-0.006 0.010
х5	0.0101	0.011	0.909	0.365	-0.012 0.032
х6	0.0019	0.004	0.456	0.649	-0.006 0.010
х7	-0.0001	0.000	-0.904	0.368	-0.000 0.000

Omnibus:	1.032	Durbin-Watson:	2.009
Prob(Omnibus):	0.597	Jarque-Bera (JB):	0.983
Skew:	-0.217	Prob(JB):	0.612
Kurtosis:	2.908	Cond. No.	7.53e+19

```
In [1111]: Xt = np.vstack([age, weight, height, gender, height*weight, age*weight, height*weight]).T
    #Xt = np.vstack([age, weight, height, height*weight]).T
    X = sm.add_constant(Xt)
    ols = sm.OLS( blood, X)
    ols_result = ols.fit()
    print("R^2=",ols_result.rsquared)
    print("RSE=", np.sqrt(np.sum(ols_result.resid**2)/(np.size(age)-1-Xt.shape[1])))
    ols_result.summary()
```

R^2= 0.691629854093 RSE= 9.31540174625

Out[1111]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.692
Model:	OLS	Adj. R-squared:	0.672
Method:	Least Squares	F-statistic:	35.89
Date:	Mon, 19 Sep 2016	Prob (F-statistic):	7.56e-26
Time:	12:45:39	Log-Likelihood:	-433.40
No. Observations:	120	AIC:	882.8
Df Residuals:	112	BIC:	905.1
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	const -156.2842		-2.698	0.008	-271.076 -41.493
x1	2.4628	0.438	5.623	0.000	1.595 3.331
x2	2.6551	0.605	4.386	0.000	1.456 3.854
х3	1.7584	0.730	2.409	0.018	0.312 3.205
x4	-3.6103	1.734	-2.082	0.040	-7.045 -0.175
х5	-0.0139	0.003	-4.017	0.000	-0.021 -0.007
х6	-0.0302	0.009	-3.376	0.001	-0.048 -0.012
х7	-0.0139	0.003	-4.017	0.000	-0.021 -0.007
x8	0.0003	9.64e-05	2.992	0.003	9.74e-05 0.000

Omnibus:	0.776	Durbin-Watson:	1.883
Prob(Omnibus):	0.678	Jarque-Bera (JB):	0.558
Skew:	-0.165	Prob(JB):	0.757
Kurtosis:	3.053	Cond. No.	1.12e+19