Additional File 1

Table S1. List of genes, sequences of primers, cycling conditions for PCR assays, and amplicon sizes.

Assay	Gene	Primer sequence	PCR program ^a	Product size (bp)	Reference
E. coli	F: 5'-CCGATACGCTGCCAATCAGT-3' uspA		94°C/ 120 s, 70°C/ 60 s, 72°C/ 60 s	884	1
		R: 5'-ACGCAGACCGTAGGCCAGAT-3'	(30 cycles)		
Phylogenetic	chuA	F: 5'-GACGAACCAACGGTCAGGAT-3' R: 5'-TGCCGCCAGTACCAAAGACA-3'	94°C/ 30 s,	279	
typing (Triplex	yjaA .	F: 5'-TGAAGTGTCAGGAGACGCTG-3' R: 5'-ATGGAGAATGCGTTCCTCAAC-3'	55°C/ 30 s, 72°C/ 30 s	211	2
method)	TspE4.C2	F: 5'-GAGTAATGTCGGGGCATTCA-3' R: 5'-CGCGCCAACAAAGTATTACG-3'	(30 cycles)	152	
Phylogenetic typing	chuA .	F: 5'-ATGGTACCGGACGAACCAAC-3' R: 5'-TGCCGCCAGTACCAAAGACA-3'	94°C/ 5 s,	288	
(Quadruplex method)	ујаА .	F: 5'-CAAACGTGAAGTGTCAGGAG-3' R: 5'-AATGCGTTCCTCAACCTGTG-3'	57°C/ 20 s (30 cycles)	211	3
	TspE4.C2	F: 5'-CACTATTCGTAAGGTCATCC-3'		152	

		R: 5'-AGTTTATCGCTGCGGGTCGC-3'			
	arpA	F: 5'-AACGCTATTCGCCAGCTTGC-3'		400	
	(Group F) R: 5'-TCTCCCCATACCGTACGCTA-3'			400	
	arpA	F: 5'-GATTCCATCTTGTCAAAATATGCC-3'		301	
	(Group E)	R: 5'-GAAAAGAAAAGAATTCCCAAGAG-3'		301	
	trn 1	F: 5'-AGTTTTATGCCCAGTGCGAG-3'	94°C/ 5 s,		
	(Group C)		59°C/ 20 s	219	
	(Group C)	R: 5'-TCTGCGCCGGTCACGCCC-3'	(30 cycles)		
	trpA	F: 5'-CGGCGATAAAGACATCTTCAC-3'	94°C/ 5 s,		
	(Internal		57°C/ 20 s	489	
	control)	R: 5'-GCAACGCGGCCTGGCGGAAG-3'	(30 cycles)		
	eae	F: 5'-GACCCGGCACAAGCATAAGC-3'	95°C/ 30 s,	384	
		1. 5 -UACCCUUCACAAUCATAAUC-5	54°C/ 90 s,		
		R: 5'-CCACCTGCAGCAACAAGAGG-3'	72°C/ 90 s		
DEC ^b		N. 3 -CCACCTGCAGCAACAAGAGG-3	(30 cycles)		4,5
	stx1	F: 5'-ATAAATCGCCATTCGTTGACTAC-3'	95°C/ 30 s,	180	4, 3
	36/1	R: 5'-AGAACGCCCACTGAGATCATC-3'	52°C/ 60 s,	100	
	stx2	F: 5'-GGCACTGTCTGAAACTGCTCC-3'	72°C/ 60 s	255	
		R: 5'-TCGCCAGTTATCTGACATTCTG-3'	(35 cycles)	233	

	ItA	F: 5'-GGCGACAGATTATACCGTGC-3'	94°C/ 60 s,	696	
		R: 5'-CCGAATTCTGTTATATATGTC-3' 50°C/ 60 s,		090	
	a+1.4	F: 5'-TCTGTATTATCTTTCCCCTC-3'	72°C/ 120 s	186	
	st1A _	R: 5'-ATAACATCCAGCACAGGC-3'	(35 cycles)	100	
		F: 5'-GTTCCTTGACCGCCTTTCCGATACCGTC-3'	94°C/ 40 s,		
	ipaH -		60°C/ 60 s,	620	
	ιρατι	R: 5'-GCCGGTCAGCCACCCTCTGAGAGTAC-3'	72°C/ 60 s	020	
	N. 5 decadreadecaecterdadadrae 5	(35 cycles)			
		F: 5'-ATTGAATCTGCAATGGTGC-3'	95°C/ 40 s,	461	
	bfpA _	1.5 ATTOMICTOUNTED	55°C/ 40 s,		
	БЈРА	R: 5'-ATAGCAGTCGATTTAGCAGCC-3'	72°C/ 40 s		
		in a mineral continuon coc a	(30 cycles)		
		F: 5'-ATGCATTACTTTGGGTTTAG-3'	94°C/ 60 s,		
	aggA		50°C/ 60 s,	414	
	ugg/.	R: 5'-TCAACCTTGACACTTGCC-3'	72°C/ 120 s		
			(35 cycles)		
ExPEC ^c	vat _	F: 5'-TCAGGACACGTTCAGGCATTCAGT-3'	94°C/ 30 s,	1100	
		R: 5'-GGCCAGAACATTTGCTCCCTTGTT-3'	63°C/ 90 s,		6
	fyuA	F: 5'-GTAAACAATCTTCCCGCTCGGCAT-3'	72°C/ 90 s	850	

	R: 5'-TGACGATTAACGAACCGGAAGGGA-3'	(30 cycles)		
chuA	F: 5'-CTGAAACCATGACCGTTACG-3'		652	
Criari	R: 5'-TTGTAGTAACGCACTAAACC-3'	032		
yfcV _	F: 5'-ACATGGAGACCACGTTCACC-3'	292		
	R: 5'-GTAATCTGGAATGTGGTCAGG-3'		232	

- ^aBefore starting the PCR cycle, DNA was first denatured at 95°C/15 min. After completion
- 3 of the cycle, there was a final primer extension at 72°C/8 min.
- 4 bDiarrheagenic E. coli are defined by the following genes: eae+bfpA/eae (EPEC), ItA+st1A/ItA/st1A (ETEC), ipaH (EIEC),
- 5 eae+stx1+stx2/stx1/stx2 (STEC), and aggA (EAEC).
- 6 °Extra-intestinal pathogenic *E. coli*

7 8	References in Table 1
9	1. Chen J, Griffiths MW. PCR differentiation of Escherichia coli from other Gram-negative
10	bacteria using primers derived from the nucleotide sequences flanking the gene encoding
11	the universal stress protein. Lett Appl Microbiol. 1998; 27: 369–71.
12	
13	2. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the
14	Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000; 66: 4555–8.
15	
16	3. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli
17	phylo-typing method revisited: Improvement of specificity and detection of new phylo-
18	groups. Environ Microbiol Rep. 2013; 5: 58–65.
19	
20	4. Robins-Browne RM, Bordun A-M, Tauschek M, Bennett-Wood VR, Rusell J, Oppedisano
21	F, et al. Escherichia coli and community-acquired gastroenteritis, Melbourne, Australia.
22	Emerg Infect Dis. 2004; 10: 1797-1805.
23	
24	5. Sethabutr O, Venkatesan M, Yam S, Pang LW, Smoak BL, Sang WK, et al. Detection of
25	PCR product of the <i>ipaH</i> gene from <i>Shigella</i> and enteroinvasive <i>Escherichia coli</i> by
26	enzyme-linked immunosorbent assay. Diagn Microbiol Infect Dis. 2000; 37: 11-16.
27	

6. Spurbeck RR, Dinh PC Jr, Walk ST, Stapleton AE, Hooton TM, Nolan LK, et al. *Escherichia coli* isolates that carry *vat*, *fyuA*, *chuA*, and *yfcV* efficiently colonize the urinary tract. Infect Immun. 2012; 80: 4115–22.

Table S2. Sample collection dates and locations, and phylogenetic groupings of *E. coli* by triplex and quadruplex PCR assays.

Date of sample collection	Location (no. of confirmed <i>E. coli</i>)	Phylogenetic grouping by triplex PCR (no. of isolates)	Phylogenetic grouping by quadruplex PCR (no. of isolates)
14 May 2018	J ^a (1) Z ^b (2)	B1 (2) D (1)	B1 (2) D (1)
11 June 2018	J (7) Z (2) H ^c (5)	A (6) B1 (3) D (5)	A (6) B1 (3) D (4) E (1)
9 July 2018	J (1) Z (3) H (2)	A (3) B1 (1) B2 (1) D (1)	A (3) B1 (1) B2 (1) D (1)
13 August 2018	J (6) Z (6) H (7)	A (9) B1 (6) B2 (2) D (2)	A (9) B1 (6) B2 (2) D (1) E (1)
10 September 2018	J (2) Z (1) H (9)	A (8) B1 (3) B2 (1)	A (7) B1 (3) B2 (1) C (1)

			0 (4)
	J (4)	A (4)	A (4)
8 October	Z (1)	B1 (3)	B1 (3)
2018	H (4)	D (2)	D (1)
	` ,	, ,	F (1)
12 November	J (4)	A (7)	A (7)
2018	Z (1)	B1 (2)	B1 (2)
2010	H (4)	DI (2)	D1 (2)
	1 (2)	A (2)	A (3)
10 December	J (3)	A (3)	B1 (3)
2018	Z (4)	B1 (3)	D (2)
	Н (3)	D (4)	F (2)
			A (3)
	J (4) Z (5) H (5)	A (3)	B1 (3)
7 January		B1 (3)	B2 (2)
2019		B2 (2)	D (3)
		D (6)	F (1)
			E (2)
4 Fobruary	J (4)	A (3)	A (3)
4 February	Z (2)	B1 (3)	B1 (3)
2019	H (2)	D (2)	F (2)
	1 (2)	A (6)	A (6)
11 March	J (3)	B1 (1)	B1 (1)
2019	Z (6)	B2 (4)	B2 (4)
	H (3)	D (1)	D (1)
			A (14)
	J (7)	A (16)	B1 (5)
8 April 2019	Z (7)	B1 (5)	D (1)
	H (10)	D (3)	F (2)
			C (2)

^{34 &}lt;sup>a</sup>Jabriya.

^{35 &}lt;sup>b</sup>Zahraa.

^{36 &}lt;sup>c</sup>Hateen.

Table S3. Distribution of ExPEC according to location and date of collection of samples.

Month/Year	No. of ExPEC	Location			
Worthly real	isolates	Jabriya	Zahraa	Hateen	
14 May/2018	0	0	0	0	
11 June/2018	0	0	0	0	
9 July/2018	1	0	1	0	
13 August/2018	2	0	0	2	
10 September/2018	0	0	0	0	
8 October/2018	1	1	0	0	
12 November/2018	0	0	0	0	
10 December/2018	0	0	0	0	
7 January/2019	2	1	1	0	
4 February/2019	3	0	1	2	
11 March/2019	4	2	1	1	
8 April/2019	1	1	0	0	