Лабораторная работа 4.3 Интеграция данных из нескольких источников. Обработка и согласование данных из разных источников

Цель работы: получить практические навыки интеграции, обработки и согласования данных из различных источников.

Задачи:

- Изучить методы чтения данных из разных источников.
- Освоить техники обработки и очистки данных.
- Научиться согласовывать данные из разных источников.
- Реализовать сохранение обработанных данных.

Варианты индивидуальных заданий

N.C.	Варианты индивидуальных задании				
No	Тема	Источники данных	Задача		
1	Продажи	CSV файл с транзакциямиExcel файл со справочником товаровMySQL база с данными о клиентах	Объединить данные, рассчитать аналитику по продажам		
2	Данные о сотрудниках	PostgreSQL база с личными даннымиExcel файл с данными об окладахCSV файл с данными о премиях	Создать единый отчет по заработной плате		
3	Складские остатки	 MySQL база данных основного склада PostgreSQL база данных розничных магазинов Excel файл с поставками 	Создать единую систему учета остатков, выявить расхождения		
4	Финансовые данные	 CSV файлы банковских выписок Excel файл бюджета PostgreSQL база данных с транзакциями 	Сформировать финансовый отчет, провести сверку движения средств		
5	Клиентские заказы	 МуSQL база данных интернет- магазина CSV файл с данными службы доставки Ехсеl файл с отзывами клиентов 	Создать комплексный отчет по качеству обслуживания		
6	Маркетинговые данные	 PostgreSQL база с данными рекламных кампаний CSV файлы с данными из социальных сетей Excel файл с бюджетами на рекламу 	Проанализировать эффективность маркетинговых каналов		
7	HR-данные	 MySQL база данных персонала Excel файл с данными об обучении CSV файл с результатами аттестаций	Создать комплексную оценку развития персонала		
8	Производственные данные	 PostgreSQL база данных производственных заказов CSV файлы с данными контроля качества Excel файл с нормативами производства 	Проанализировать эффективность производства		

9	Логистические данные	 MySQL база данных перевозок Excel файл с затратами на топливо CSV файл с маршрутными листами 	Оптимизировать логистические затраты
10	Техническая поддержка	 PostgreSQL база обращений клиентов Excel файл с регламентами обслуживания CSV файл с оценками качества поддержки 	Проанализировать качество технической поддержки
11	Закупки	 MySQL база данных поставщиков Excel файл с ценовыми предложениями CSV файл с историей закупок 	Оптимизировать закупочные процессы
12	Оборудование	 PostgreSQL база данных инвентаризации Excel файл с графиком обслуживания CSV файл с историей ремонтов 	Создать систему учета технического обслуживания
13	Лояльность клиентов	 МуSQL база данных бонусной программы CSV файл с историей покупок Excel файл с акциями и спецпредложениями 	Проанализировать эффективность программы лояльности
14	Учебные данные	 PostgreSQL база данных студентов Excel файл с оценками CSV файл с посещаемостью 	Создать комплексный анализ успеваемости
15	Недвижимость	 MySQL база данных объектов Excel файл с оценкой состояния CSV файл с историей арендных платежей 	Оценить эффективность управления недвижимостью
16	Электронная коммерция	 PostgreSQL база данных товаров CSV файл с отзывами покупателей Excel файл с данными о возвратах 	Проанализировать качество товарного ассортимента
17	Страховые данные	 MySQL база данных полисов Excel файл со страховыми случаями CSV файл с оценкой рисков	Проанализировать страховой портфель
18	Call-центр	 PostgreSQL база данных звонков Excel файл с оценками операторов CSV файл с тематикой обращений 	Оценить эффективность работы call-центра
19	Проекты	 MySQL база данных проектов Excel файл с ресурсами и бюджетами CSV файл с отчетами о выполнении 	Создать систему мониторинга проектов
20	Качество продукции	 PostgreSQL база данных контроля качества Excel файл с нормативами CSV файл с рекламациями 	Проанализировать систему контроля качества

Требования к выполнению работы

- 1. Подготовка данных:
 - Создание тестовых наборов данных.
 - Настройка подключений к БД.
 - Подготовка скриптов очистки.
- 2. Разработка программы:
 - Модульная структура.
 - Обработка ошибок.
 - Логирование действий.
- 3. Оформление результатов:
 - Графики анализа данных.
 - Статистика обработки.
 - Выводы по качеству данных.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Описание входных данных.
- 4. Листинг программы.
- 5. Результаты обработки.
- 6. Анализ результатов.
- 7. Выводы.

Генерации синтетических данных для варианта 20 "Интеграция данных о качестве продукции"

```
!pip install Faker
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import random
from faker import Faker
import os
from google.colab import files
# Установка seed для воспроизводимости
np.random.seed(42)
fake = Faker('ru_RU')
# Создание базовых данных о продукции
products = [
  'Смартфон Model X', 'Ноутбук Рго Y', 'Планшет Z',
  'Наушники Alpha', 'Смарт-часы Beta', 'Камера Ultra'
]
defect_types = [
  'Дефект экрана', 'Проблема с батареей', 'Неисправность динамика',
  'Проблема с зарядкой', 'Программный сбой', 'Механическое повреждение'
]
# Генерация данных для PostgreSQL базы контроля качества
def generate_quality_control_data(start_date, num_records):
  data = []
  current_date = start_date
  for _ in range(num_records):
    product = random.choice(products)
    passed = random.random() > 0.15~\#85\% проходят контроль качества
    record = {
       'inspection_id': f'QC\{-+1:05d\}',
       'date': current_date.strftime('%Y-%m-%d'),
       'product': product,
       'batch_number': f'B{random.randint(1000, 9999)}',
       'inspector': fake.name(),
       'quality_score': random.randint(75, 100) if passed else random.randint(50, 74),
       'passed_inspection': passed,
       'notes': 'Проверка пройдена' if passed else random.choice(defect types)
```

```
}
     data.append(record)
     current date += timedelta(hours=random.randint(1, 8))
  return pd.DataFrame(data)
# Генерация данных о нормативах для Excel
def generate_quality_standards():
  data = []
  for product in products:
     record = {
       'product': product,
       'min_quality_score': random.randint(75, 85),
       'optimal quality score': random.randint(90, 98),
       'max_defect_rate': round(random.uniform(0.01, 0.05), 3),
       'inspection frequency hours': random.choice([4, 8, 12]),
       'sample_size_percent': random.randint(5, 15),
       'shelf_life_days': random.randint(365, 730),
       'storage_temp_min': random.randint(10, 15),
       'storage_temp_max': random.randint(25, 30),
       'humidity_percent': random.randint(40, 60)
     data.append(record)
  return pd.DataFrame(data)
# Генерация данных о рекламациях для CSV
def generate complaints data(start date, num records):
  data = []
  current_date = start_date
  for _ in range(num_records):
     product = random.choice(products)
     defect = random.choice(defect_types)
     record = {
       'complaint_id': f'C{_+1:05d}',
       'date_received': current_date.strftime('%Y-%m-%d'),
       'product': product,
       'customer id': f'CUS{random.randint(10000, 99999)}',
       'purchase_date': (current_date - timedelta(days=random.randint(1, 90))).strftime('%Y-
%m-%d'),
       'defect_type': defect,
       'severity': random.choice(['Низкая', 'Средняя', 'Высокая']),
       'description': f'Обнаружен {defect.lower()} после {random.randint(1, 30)} дней
использования',
```

```
'status': random.choice(['Новая', 'В обработке', 'Решена', 'Отклонена']),
       'compensation_amount': random.choice([0, 1000, 2000, 5000, 10000])
    data.append(record)
    current_date += timedelta(days=random.randint(0, 2))
  return pd.DataFrame(data)
# Генерация данных
start date = datetime(2023, 1, 1)
quality_control_df = generate_quality_control_data(start_date, 1000)
standards_df = generate_quality_standards()
complaints_df = generate_complaints_data(start_date, 200)
# Сохранение данных в файлы
quality control df.to csv('quality control data.csv', index=False, encoding='utf-8')
standards_df.to_excel('quality_standards.xlsx', index=False)
complaints_df.to_csv('customer_complaints.csv', index=False, encoding='utf-8')
# Вывод информации о созданных файлах
print("Созданные файлы:")
print(f"1. quality_control_data.csv - {len(quality_control_df)} записей")
print(f"2. quality_standards.xlsx - {len(standards_df)} записей")
print(f"3. customer_complaints.csv - {len(complaints_df)} записей")
# Вывод примера данных
print("
Пример данных из каждого файла:")
Контроль качества (первые 3 записи):")
print(quality_control_df.head(3))
print("
Нормативы качества (первые 3 записи):")
print(standards df.head(3))
print("\
Рекламации (первые 3 записи):")
print(complaints_df.head(3))
# Скачивание файлов
files.download('quality_control_data.csv')
files.download('quality_standards.xlsx')
files.download('customer_complaints.csv')
```