Since Sp(x=0) = DP is maintained constant -> Steady state. So use Steady-State equations. Solution to 2nd-order differential equations have the form: Sp(x) = Evaluate C, and Cz from boundary ronditions Sp (x=m) =0 50 C = 0 Sp (x=0) - DP SO C, =AP so Sp(x) =

and Lp = length over and p= Po+Dpe-X/Lp	which DP decays to DPE! = Po + Sp(x) of TALL 18 too. Since
Diffusion current decay	is too. Since
26 =	
	proportional to excess carriers
Actually, very import -> injection of minor	ant for p-n junctions -ity carriers across junctions

Recombination Probability SP(x) = DPe-X/LP

recombination is:

Probability that hole recombines in subsequent interval dx is:

Total probability that hole injected out x=0
recombines is given dx is product of Abbabilities:

average distance
$$\langle x \rangle = \int_{0}^{\infty} \frac{x e^{-x/Lp}}{Lp}$$

Diffusion length me small animals crossin	mory device: g amazon - piranha
Example: Solve for Si, Np = 1015/cm3,	Lp where the bar is
Si, NA = 1015/cm3,	Tp = 10 " sec
Lp =	state-state diffusion
=	Einstein relation
= [(0.0259 V) (45	fig. 3-23
" KT(:300 k)	Fig. 3-23
Independent of	DP (or doping) depends
1.0	Coping

neglecting recombination

The Gaussian

Distribution

De is a constant so

as to increases, so

Gradients of Fermi Levels Relate currents to quasi- Ef gradients Equilibrium: dEF=0 -> J=0 Non equilibrium: J=0 Jn (x)= qunn(x) E(x) + 9D, dn(x) (Definition) U(X) = 「姜一嗎」 = J(x) [. .] (Einstein) Ja(x) = gunn(x)&(x)+n(x)un [dx - dx] $\Xi(x) = \frac{1}{2} \left(-\frac{dE_i}{dx} \right)$ Net effect of drift and diffusion (Likewise for holes

Modified chm's Law:

$$T_n(x) = g \mu_n n(x) d(F_n/g) = \sigma_n(x) d(F_n/g)$$
 $T_p(x) = g \mu_p P(x) d(F_p/g) = \sigma_p(x) d(F_p/g)$

Fradients \rightarrow Corrents (J)

No $T \rightarrow No$ " (J)

No $T \rightarrow No$ gradient

Junctions

So far: Generation, Recombination Drift, Diffusion, Diffusion Length what happens if we intentionally set up carrier gradients? Instead of uniform doping, have

I P N Rectifying

N NN CNADONA

N NN CNADONA N >> N, CNd>>NA

How to fabricate? Read Streetman \$5.1

5.1.4 Ion Implantations

By Si ---> 1000°C Anneal
to remove
to remove
Si And Bacceptors defects

AND Defects
Sum of Gaussians
More
Uniform
doping

5.2 Equilibrium Conditions

- · Step Junctions (versus diffused, graded)

 Simplifies the math: get the big picture,
 make orrections later
- will see: It Currents balance to zero

 p-type drift, diffusion, n-type drift, diffusion

 Applied bias unbalances them.

Can get Vo from dopant concentration and balance between and diffusion

$$\frac{D_{p}}{D_{p}} = 0 = g \left[\frac{dp(x)}{dx} \right]$$

$$\frac{D_{p}}{D_{p}} = 0 = g \left[\frac{dp(x)}{dx} \right]$$

$$\mathcal{E}(x) = -d\sqrt[4]{x}$$

denotes courrier

Einstein Relation

$$\frac{1}{160} \frac{d\sqrt{x}}{dx} = \frac{1}{160} \frac{d\sqrt{x}}{dx}$$

Integrate across transition region

$$\int_{P_{p}}^{P_{q}} \frac{dY(x)}{dx} dx = \int_{P_{p}}^{P_{q}} \frac{dP}{dx} dx$$

Na=Pp Na=nn

Ma=Pp Na=nn

majority concentration

a doping concentration

(good except when Na Na)

Very Valuable for I-V calculations (Vo measured by forward bias to flat bands)

Alternate Form:

Check out Example 5.1 Get Vo 2 ways. (Easier way is NaNd)