

Algoritmo Backpropagation

Profa Carine G. Webber

Treinamento da Rede Neural

- Passo 1 Propagar as entradas pelas camadas de neurônios da rede
- Passo 2 Calcular os valores dos neurônios da camada de saída da rede
- Passo 3 Calcular o erro de cada neurônio
- Passo 4 Ajustar os pesos das conexões entre neurônios

Passol - Entradas

- Função Sigmoidal
- ◆ Gera um valor entre 0 e 1.
- saida = 1 / (1 + Exp(-somatorio))

Passo 2 - Neurônios da Saida

Passo 3 - Cálculo do Erro

- Camada de Saída
 - FatorErro de neuronío na camada de saída=SaídaEsperada-SaídaAtualNeuronío
 - ◆ Neuronio. Erro = Neuronio. Saida * (1 Neuronio. Saida) * Fator Erro

Passo 3 - Cálculo do Erro

Camadas Intermediárias

FatorErroX=0;

For each neuronio Y connected to X

FatorErroX = FatorErroX+ (Y.Erro * Peso da Conexão entre X e Y)

NeuronioX. Erro = NeuronioX. Saida * (1 - NeuronioX. Saida) * Fator ErroX

Passo 4 - Ajuste dos pesos

- ◆ Constante momentum ≈ 0.9
- ◆ Constate taxa_aprendizagem = 0.2
- Aplique a seguinte função para cada peso:
- Novo_peso=Peso_anterior*momentum+Taxa_aprendizagem*Saida_ne urônio_anterior*Erro_neuronio_posterior

Repita o processo

- Treine cada instância do conjunto em sequência.
- Conte o número de épocas de treinamento.
- Verifique o erro gerado nos neurônios da camada de saída, e use esses valores como condições de parada do treinamento.
- Observe durante algumas épocas se o sistema converge (quando os pesos se estabilizam). Então, passe para a etapa de testes.