2013-MA- 27-39

1

EE24BTECH11021 - Eshan Ray

27) Let $f, g: [0,1] \rightarrow R$ be defined by

$$f(x) = \begin{cases} x & \text{if } x = \frac{1}{n} \text{ for } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

and

$$g(x) \begin{cases} 1 & \text{if } x \in Q \cap [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

Then

- a) Both f and g are Riemann integral
- b) f is a Riemann integrable and g is Lebesgue integrable
- c) g is Riemann integrable and f is Lebesgue integrable
- d) Neither f nor g is Riemann integrable
- 28) Consider the following linear programming problem:

Maximize
$$x + 3y + 6z - w$$
subject to
$$5x + y + 6z + 7w \le 20,$$

$$6x + 2y + 2z + 9w \le 40,$$

$$x \ge 0, y \ge 0, z \ge 0, w \ge 0.$$

Then the optimal value is ...

- 29) Suppose X is real-valued real random variable. Which of the following values CANNOT be attained by E[X] and $E[X^2]$, respectively?
 - a) 0 and 1
 - b) 2 and 3
 - c) $\frac{1}{2}$ and $\frac{1}{3}$
 - d) $\tilde{2}$ and $\tilde{5}$
- 30) Which of the following subsets of R^2 is NOT compact?
 - a) $\{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, y = \sin x\}$
 - b) $\{(x,y) \in \mathbb{R}^2: -1 \le y \le 1, \ y = x^8 x^3 1\}$
 - c) $\{(x,y) \in R^2 : y = 0, \sin(e)^{-x} = 0\}$
 - d) $\{(x,y) \in \mathbb{R}^2 : x > 0, y = \sin\left(\frac{1}{x}\right)\} \cap \{(x,y) \in \mathbb{R}^2 : x > 0, y = \frac{1}{x}\}$
- 31) Let M be the real space vector of 2×3 matrices with real entries. Let $t: M \to M$ be defined by

$$T\left(\begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{pmatrix}\right) = \begin{pmatrix} -x_6 & x_4 & x_1 \\ x_3 & x_5 & x_2 \end{pmatrix}$$

The determinant of T is ...

- 32) Let \mathcal{H} be a Hilbert space and let $\{e_n : n \ge 1\}$ be an orthonormal basis of \mathcal{H} . Suppose $T: \mathcal{H} \to \mathcal{H}$ is a bounded linear operator. Which of the following CANNOT be true?
 - a) $T(e_n) = e_1$ for all $n \ge 1$
 - b) $T(e_n) = e_{n+1}$ for all $n \ge 1$
 - c) $T(e_n) = \frac{n+1}{n}e_n$ for all $n \ge 1$
 - d) $T(e_n) = e_{n-1}$ for all $n \ge 2$ and $T(e_1) = 0$
- 33) The value of the limit

$$\lim_{n \to \infty} \frac{2^{-n^2}}{\sum_{k=n+1}^{\infty} 2^{-k^2}}$$

- is
- a) 0
- b) some $c \in (0, 1)$
- c) 1
- d) ∞
- 34) Let $f: C \setminus \{3i\} \to C$ be defined by $f(z) = \frac{z-i}{iz+3}$. Which of the following statements about f is FALSE?
 - a) f is conformal on $C \setminus \{3i\}$
 - b) f maps circles in $C \setminus \{3i\}$ onto circles in C
 - c) All the fixed points of f are in the region $\{z \in C : Im(z) > 0\}$
 - d) There is no straight line in $C \setminus \{3i\}$ which is mapped onto a straight line in C by f
- 35) The matrix $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ can be decomposed uniquely into the product A = LU, where $L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix}$ and $U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$. The solution of the system

$$LX = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix}^{t} \text{ is}$$
a) $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^{t}$
b) $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^{t}$
c) $\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}^{t}$
d) $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^{t}$

- 36) Let $S = \{x \in R : x \ge 0, \sum_{n=1}^{\infty} x^{\sqrt{n}} < \infty \}$. Then the supremum of S is
 - a) 1
 - b) $\frac{1}{4}$
 - c) 0
 - d) ∞
- 37) The image of the region $\{z \in C : Re(z) > Im(z) > 0\}$ under the mapping $z \mapsto e^{z^2}$ is
 - a) $\{w \in C : Re(w) > 0, Im(w) > 0\}$
 - b) $\{w \in C : Re(w) > 0, Im(w) > 0, |w| > 1\}$
 - c) $\{w \in C : |w| > 1\}$
 - d) $\{w \in C : Im(w) > 0, |w| > 1\}$

- 38) Which of the following groups contain a unique normal subgroup of order four?
 - a) $Z_2 \oplus Z_4$
 - b) The dihedral group, D_4 , of order eight
 - c) The quaternion group, Q_8
 - d) $Z_2 \oplus Z_2 \oplus Z_2$
- 39) Let *B* be a real symmetric positive-definite $n \times n$ matrix. Consider the inner product on R^n defined by $\langle X, Y \rangle = Y^t B X$. Let *A* be an $n \times n$ real matrix and let $T: R^n \to R^n$ be the linear operator defined by T(X) = A X for all $X \in R^n$. If *S* is the adjoint of *T*, then S(X) = C X for all $X \in R^n$, where *C* is the matrix
 - a) $B^{-1}A^{t}B$
 - b) $BA^{t}B^{-1}$
 - c) $B^{-1}AB$
 - d) A^t