ELEC 372 - Homework 4

(To be submitted on Moodle by August 8th, 11:59PM)

Note:

- By the given deadline, upload a report (<u>in pdf format</u>) containing the solutions to problems below. Late reports will not be accepted.
- For problems solved by hand, include in the report all the steps of the solution.
- For problems requiring the use of Matlab/Simulink, include in the report the obtained results. Upload also the used/developed Matlab and Simlulink files, collecting them in a single <u>zip folder</u>. The uploaded Matlab/Simulink files must be working.
 - Plots and figures (e.g., generated in Matlab/Simulink) can be included in the report to better describe/comment the obtained solutions.

Figure 1: Closed-Loop Control System

Problem 1 (6 points). Consider the feedback control system shown in Fig. 1 where

$$G(s) = \frac{s+2}{(s+1)(s+4)(s+5)(s+9)}$$

In Matlab, using rltool, design C(s) such that

- The steady-state tracking error due to a step reference signal is zero¹
- The step response of the closed-loop system has a settling time $T_s(98\%) \leq 3$ sec
- The step response of the closed-loop system has an overshoot $\%OS \leq 15\%$

Hints:

- The command rltool(G) opens a new window with two different plots: the root-locus and the step response.
- rltool(G), by default, considers a controller C(s) = K.
- By right-clicking on the root-locus plot, it is possible to:
 - add new poles and zeros in C(s)
 - add the desired closed-loop pole region that achieve the given specifications. To this end: \rightarrow design requirements \rightarrow New \rightarrow (add here the desired requirement).²
- Moving the closed-loop poles location (i.e., the poles shown as pink squares \blacksquare) is equivalent to change the gain K of C(s).
- Once the controller design is terminated, it is possible to export C(s) into the Matlab workspace by clicking on Export (on the top panel) \rightarrow Export tuned blocks \rightarrow check the C box \rightarrow export.

¹This specification defines the number of poles in the origin (system's type) that must be in C(S)G(s) to obtain zero tracking error.

²The tool finds the desired closed-loop pole region considering a second order underdamped system. However, the considered system is not. A way to address this possible issue is to ensure that the closed-loop poles are within the desired region with a certain tolerance margin.

Problem 2 (4 points). Consider the following transfer function:

$$G(s) = 10 \frac{s + 100}{(s - 10)(s + 1)}$$

Draw on a paper the asymptotic Bode plots (modulus and phase) of $G(j\omega)$