Q1 Obtain V_0 in the circuit using nodal voltage and loop current methods.

[Ans $V_0 = -60V$)

Q2 Find Vo in the circuit across the 8Ω resistor.

<u>O 3:</u> Find V_1 , V_2 , and V_3 in the circuit. [Ans $V_1 = 10 \text{ V}$, $V_2 = 4.933 \text{ V}$, and $V_3 = 12.267 \text{ V}$]

 $\underline{\mathbf{O4}}$ Find the loop currents I_1 and I_2 in the circuit using mesh current method.

[Ans $I_1 = 1$ A and $I_2 = 2$ A]

O5:Find I₀ in the circuit using mesh current method.

[Ans $I_0 = -1.733A$]

<u>O6.</u> Find the voltage (V_{ab}) across 2 A source using Thevenin's theorem.

 $\underline{O7}$ Find the Norton equivalent across terminals ab and then find the voltage across 3Ω resistor in the circuit.

[Ans
$$R_N = (7/3) \Omega$$
, $I_N = (30/7) A$, $V_{3\Omega} = (45/8) V$]

<u>**O8:**</u> Obtain the required value of the variable current source I_{dc} shown in the figure for which the power delivered by the 40mA current source will be zero.

 $\underline{\mathbf{O9}}$ Find the maximum power that the active network to the left of terminals ab can deliver to the adjustable load resistor R_L .

<u>**Q10:**</u> While solving the circuit using superposition theorem, find the current (I_x) through 5Ω resistor contributed by 10V, 20V, and 5A sources individually. Ans $\left[\frac{1000}{1167}A, -\frac{4}{7}A, \frac{10}{7}A\right]$

 $\underline{\textbf{O11}}$ Find current I_1 in the 1 ohm resistance as shown using Thevenin's theorem.

[Ans $V_{Th} = -10 \text{ V}$, $R_{Th} = 1.5 \Omega$, and $I_1 = 4.0 \text{ A}$]

O12 Find current I in the circuit.

