Clase 11 - RISC - V - Parte 1

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl

Resumen de la clase pasada

Arquitectura de Computadores: Instruction Set Arquitecture (ISA)

- Se refiere a tipo, formato,
 características de las instrucciones
 soportadas por el computador
- Especifica cómo escribir los programas en el computador
- Se compone básicamente de:
 - Tipos de instrucciones
 - Tipos de datos
 - Modos de direccionamiento de memoria
 - Formato de instrucción
 - Manejo del stack
 - Palabras por instrucción
 - Ciclos por instrucción

Arquitectura de Computadores: Microarquitectura - Paradigmas

- Arquitectura Harvard: Memoria de datos e instrucciones independientes
- Arquitectura Von Neumann:

 Memoria única que comparte
 datos e instrucciones. Permite
 escribir datos como si fueran
 instrucciones

Arquitectura de Computadores: ISA - Paradigmas

- RISC: Reduced Instruction Set
 Computer. Instrucciones pequeña
 y simples. Su diseño permite
 simplificar el hardware, poniendo
 énfasis en el software.
- CISC: Complex Instruction Set
 Computer. Muchas instrucciones y
 con complejidad alta. Énfasis en
 un hardware más complejo para
 poder ejecutarlas.

Arquitectura de Computadores: ISA - Industria - RISC-V

- RISC-V es una arquitectura de instrucciones (ISA) libre, basada en el diseño RISC, que optimiza el número de instrucciones
- A diferencia de otras ISAs, RISC-V es abierta y no requiere regalías, lo que permite a cualquiera diseñar, fabricar y vender chips y software
- Aunque no es la primera ISA abierta, destaca por su versatilidad y aplicación en una amplia variedad de dispositivos

¿Dudas?

RISC - V

- La arquitectura es de tipo Harvard, al igual que nuestro computador básico.
- El tipo load-store: existen instrucciones de acceso a memoria, pero las operaciones de la ALU se realizan exclusivamente con registros (o literal)

RISC - V

- Tiene 32 registros de propósito general, cada uno de 32 bits.
- Direcciones de memoria de 32 bits. Las palabras de memoria son de 32 bits (4 bytes), pero las direcciones son por cada byte
- Las instrucciones de operaciones aritméticas/lógicas tienen la estructura: palabra clave, registro de destino
- El r**egistro de destino** es donde se va a almacenar el valor de la operación.

RISC - V

Registro	Nombre	Uso
х0	zero	Registro zero. Siempre almacena el valor 0, no se puede escribir.
x1	ra	Return Address . Se usa para guardar la dirección de retorno de una subrutina.
x2	sp	Stack Pointer. Almacena la dirección del último elemento del stack.
х3	gp	Global Pointer.
x4	tp	Thread Pointer.
x5-x7	t0 – t2	Registros temporales. Pueden perder su valor al llamar una subrutina.
x8-x9	s0 – s1	Registros guardados. Preservan su valor al llamar una subrutina.
x10-x11	a0 – a1	Argumentos de funciones / Valores de retorno.
x12-x17	a2 – a7	Argumentos de funciones.
x18-x27	s2 – s11	Registros guardados. Preservan su valor al llamar una subrutina.
x28-x31	t3 – t6	Registros temporales. Pueden perder su valor al llamar una subrutina.

¿Dudas?

RISC - V - RARS

- Emulador que usaremos en el curso
- Se usará en la actividad evaluada

RISC - V - RARS

- Veamos código práctico!
- https://github.com/TheThirdOne/rars/releases/tag/v1.6

¿Dudas?

Clase 11 - RISC - V - Parte 1

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl