المسادة : فيزيساء

الجال: الميكانيك و الطاقة.

الوحدة 3: الطاقة الكامنة

$:E_{PP}\,$ الطاقة الكامنة الثقلية -1

E_{PP} مقاربة كيفية لعبارة الطاقة الكامنة الثقلية -1-1

أ- تجربة 1 : نحقق التجريب الموضح في الشكل فنتحصل على النتائج المدونة في الجدول التالي :

m(Kg)	0,10	0,15	0,20
h(m)	0,50	0,33	0,25
1/m	10	6,67	5

-1 الحصيلة الطاقوية للجملة (المطاط (الجسم (الأرض (بين الموضعين (A) و (B) (الشكل المقابل () (

(المطاط، الجسم، الأرض)

 $E_{PP} \leftarrow (B)$ و $E_{Pe} \leftarrow (A)$: الطاقة المخزنة في الجملة في الموضع-2

.
$$h = f\left(\frac{1}{m}\right)$$
 رسم المنحنى البياني -6

 $m \times h = a$: أي أن $h = a \times \left(\frac{1}{m}\right)$ نستنتج أن **

. البيان ميل البيان : $a=C^{te}$

 $E_{PP}=W=P imes h$ و منه W=P imes h و لدينا $E_{PP}=W$ \Leftarrow $E_A=E_B$: مبارة وطاقة الجسم لوحده وحده $E_{PP}=W$

فنجد أن $=K_{pp}=K_{pp}=W$ يبحث عنه في التجربة الموالية . $E_{pp}=W=P imes a imes \left(rac{1}{m}
ight)=\left(rac{P}{m}
ight) imes m imes h$ يبحث عنه في التجربة الموالية . $(1)....... \qquad \boxed{E_{PP}=K_{pp} imes m imes h}$

$m = 0,05 \ Kg$	ب- التجربة 2 : الشكل المقابل يمثل تسجيل حركة الجسم ، كتلته
	$\tau = 0.04 \text{ s}$ حيث الذمن الفاصل بين كل تسجيلين متعاقبين

1- نتحصل على النتائج التالية:

الموضع	v(m/s)	h(m)	$E_C = \frac{1}{2} m \times v^2 (J)$	$m \times h(Kg.m)$
M_0	$v_0 = 0$	0,0	0,00	0,0
M_{1}	0,4	0.8×10^{-2}	4×10^{-3}	$0,4\times10^{-3}$
M_2	0,8	$3,2\times10^{-2}$	16×10 ⁻³	$1,6\times10^{-3}$
M_3	1,2	$7,2\times10^{-2}$	36×10^{-3}	$3,6\times10^{-3}$
M_4	1,6	12,8	64×10^{-3}	$6,4\times10^{-3}$

$$v_0=0$$
 : عيث $h_i=M_0M_i$ و $v_i=rac{M_{i-1}M_{i+1}}{2 au}$: عيث

$$E_C = f(m \times h)$$
 رسم المنحنى -2

البيان :
$$E_{c}=f\left(m\times h
ight)$$
 عبارة عن خط مستقيم يمر بالمبدأ -3

$$E_{C}=a imes(h imes m)$$
 : معادلته من الشكل

$$a=10 \iff a=rac{(64-4) imes 10^{-3}}{(6,4-0,4) imes 10^{-3}}:$$
 $u=10:$ $u=10:$

: O , M_0 بين الموضعين الجملة (الجسم + الأرض) بين الموضعين -4

: O , M_0 بين الموضعين الجملة (الجسم + الأرض) بين الموضعين -5

$$\cancel{E}_{C_0}+E_{PP_0}=E_C+\cancel{E}_{PP}$$

$$\left\{ \begin{array}{l} E_{C0}=0\leftarrow v_0=0 \ , \ E_{PP}=0\leftarrow h=0 \end{array} \right\} \ : \ \mbox{\mathbb{L}}$$
 $\mbox{$\mathbb{L}$}$

(3)..... $E_{PP_0} = E_C$: فتصبح

 E_{pp} استنتاج K_{pp} و عبارة الطاقة الكامنة الثقلية - $oldsymbol{6}$

عقارنة العلاقات (1) و (2) و (3) :

 $\left(g_{Paris/Frankfurt}=9,81\ N/Kg,\ g_{Alger/Madrid}=9,80\ N/Kg
ight)$ قيمة تسارع الجاذبية الأرضية g في مكان التجربة $K_{pp}=10$

 $\overline{E_{PP}=m.g.h}$: عبارة الطاقة الكامنة الثقلية تكون **

$$\Delta E_{PP} = -\Delta E_{C}$$
 \iff $-E_{PP} + E_{PP_{0}} = E_{C} - E_{C_{0}} \iff$ $**$ من معادلة انحفاظ الجملة المعزولة يكون $**$

E_{Pe} الطاقة الكامنة المرونية -1

E_{PP} مقاربة كيفية لعبارة الطاقة الكامنة الثقلية -1-1

أ- التجربة 1 :نحقق التجريب الموضح في الشكل فنتحصل على النتائج التالية

(النابض، الجسم، الأرض)

 $E_{Pe}(j)$

: B o A معادلة انحفاظ الطاقة بين الموضعين -2

A و A الأرض بين الموضعين A و A الخصيلة الطاقوية للجملة (النابض ، الجسم ، الأرض) بين الموضعين

$$E_{PeB}=m.g.x \iff \boxed{E_{PPA}=E_{PeB}}$$
 و منه و $\cancel{E}_{PeA}+E_{PPA}=E_{PeB}+\cancel{E}_{PPB}$: $E_{Pe}=f\left(x^2\right)$ رسم البيان -4

نلاحظ أن البيان عبارة عن خط مستقيم يمر من المبدأ

، $E_{Pe}=K_{e}.x^{2}$ معادلته من الشكل

$$K_e = \frac{\left(0,25-0,04
ight)}{\left(0,01-0,0016
ight)}$$
 عمامل توجيه البيان : K_e جيث : K_e جيث $K_e = 25\ N\ / m$ \leftarrow

 $E_{\scriptscriptstyle Po}=25.x^2$: عبارة الطاقة الكامنة المرونية تكون **

** التجربة 2 :

** نعلق في نهاية النابض أجساما مختلفة الكتلة فنتحصل على النتائج التالية.

m(Kg)	x(m)	m.g(N)
0,10	0,02	1,0
0,15	0,03	1,5
0,20	0,04	2,0
0,25	0,05	2,5

. $T=f\left(x
ight)$ رسم منحنی المعایرة الممثل –1

T = K.x خط أن البيان عبارة عن خط مستقيم يمر بالمبدأ معادلته من الشكل **

ميل المنحنى (مرونة النابض K) : من البيان أو من جدول القيم -3

$$K = 50 \ N/m \iff K = \frac{2,5-1,5}{0,05-0,03} = \frac{1}{0,02} \iff K = \frac{\Delta T}{\Delta x}$$

. $K_e=rac{1}{2}K$: ومنه $K_e=25$ و K=50 : نلاحظ أن **

 $otin E_{Pe} = K_e.x^2$: استنتاج عبارة الطاقة الكامنة المرونية : لدينا $-\mathbf{6}$

$$E_{Pe} = \frac{1}{2} K.x^2$$

تقويم الوحدة: تماين الكتاب الدرسي

الطاقة الكامنة المرونية

** تمرين 2

** العبارة " الطاقة الكامنة الثقالية معرّفة بتقريب ثابت " تعني أن مرجع حساب الطاقة الكامنة الثقالية اختياري .

 $|E_{pp} = m.g.z + C^{te}|$: الأعلى نكتب في الحالة العامة عبارة الطاقة الكامنة الثقالية على الشكل **

 $|E_{PP}=m.g.z|$: تصبح العبارة : z=0 باختيار الطاقة الكامنة الثقالية تساوي صفرا عندما z=0

** تمرين 3 :

إذا اخترنا الجملة هي الجسم دون الأرض فإنه لا يمكن التحدث عن طاقة كامنة ثقالية ، لأن الطاقة الكامنة الثقالية هي طاقة تتعلق بموضع الجسم بالنسبة للأرض داخل الجملة .

. B و A الحصيلة الطاقوية للجملة بين A

 $W+E_{PPA}=E_{PPB}$ معادلة انحفاظ الطاقة -2

$$W=E_{_{PPB}}$$
 باختيار $E_{_{PPA}}=0$ تكتب المعادلة

 $W_{AB}=E_{PPB}=m.g.h=m.g.AB\,:\,B\,$ عمل قوة الكابل من A إلى -3 $|W_{AB}| = 29400 \ j \ \leftarrow W_{AB} = 500 \times 9,8 \times 6 \ \leftarrow$

: C الى B عمل قوة الكابل من B

العمل معدوم لأن القوة عمودية على الانتقال:

C عمل قوة الكابل من C الى -5

$$-W'=W_{CD}$$
 نضع $E_{PPC}-W'=E_{PPD}=0$
$$-E_{PPC}=-W'=W_{CD}$$

 $\mathrm{E}_{\mathrm{PPB}} = \mathrm{E}_{\mathrm{PPC}} \;\; E_{PPB} = E_{PPC} \;\; : \;\;$ بي أن

$$W_{CD} = -W_{AB} = -29400 \ j$$
 : إذْن

مل هذه القوة من A الى D يكون معدوما . $-\mathbf{6}$

** تمرين 7:

hيستحسن كتابة عبارة الطاقة الكامنة الثقالية باستعمال المتغير z بدلا من نكتب : $E_{PP} = m.g.z$) نكتب نكتب في الأعلى)

1- الطاقة الكامنة للجملة في حالة:

أ- المرجع في $O_{\scriptscriptstyle \parallel}$ (سطح الأرض)

 $3 \, m$ مع $z_1 = 3 \times 9 = 27$ مع $E_{PP1} = m.g.z_1$ $\left| E_{PP1} = 2,7 \times 10^5 j \right| \leftarrow E_{PP1} = 1025 \times 9,8 \times 39 \leftarrow$

ب- المرجع في O_2 (الطابق التاسع)

$$z_2 = 0$$
: لأن $E_{PP1} = m.g.z_2 = 0$

(الطابق العاشر) O_3 في -

$$E_{PP1} = -0.3 \times 10^5 j$$
 \iff $E_{PP1} = 1025 \times 9.8 \times (-3)$ \iff $E_{3} = -3 m$ \iff $E_{PP1} = m.g.z_3$

2- عمل قوة الكابل من الطابق الأرضى الى الطابق التاسع

$$W=2,7 imes10^5~j$$
 \iff $W=E_{PPB}=E_{PP1}$ \iff $W=E_{PPB}$ نكتب معادلة الانحفاظ

استطاعة القوة $P=rac{E}{t}=rac{W}{t}$ بما أن المصعد له حركة مستقيمة منتظمة إذن $t=rac{z}{t}$ بالتعويض في عبارة P نحصل على :

$$P = 0.12 \times 10^5 Watt \iff P = \frac{2.7 \times 10^5 \times 1.2}{27} \iff P = \frac{W}{t} = \frac{W \times v}{z} P = W/t = W v/z$$

الطاقة الكامنة المرونية

** تمرين <u>12 :</u>

الى طاقة حركية في الوضع B باختيار الجملة A الى طاقة حركية في الوضع B الى طاقة حركية في الوضع B ثم Bالى طاقة كامنة مرونية تظهر في النابض عندما ينضغط كلية في الوضع $\,\,\,\,\,\,\,\,\,$

D
otag A الحصيلة الطاقوية بين الوضعين A

$$m.g.h = \frac{1}{2}K.x^2$$

$$\left| m.g.h = \frac{1}{2}K.x^2 \right| \leftarrow E_{PPA} = E_{PeD}$$
: معادلة انحفاظ الطاقة

4- أقصى انضغاط للنابض

$$\boxed{x = 12,5 \ Cm} \iff m.g.AB.\sin 30^0 = \frac{1}{2}K.x^2$$

شدة القوة المطبقة من طرف النابض في هذا الوضع
$$-5$$
 $T=50~N~ \Leftarrow T=400\times12,5\times10^{-2} \Leftarrow T=K.x$

6- بالاعتماد على مبدأ انحفاظ الطاقة و بإهمال قوى الاحتكاك تصعد العربة حتى الموضع A بعد استطالة النابض حيث تتحول كل الطاقة الكامنة

المرونية إلى طاقة كامنة ثقالية .

(النابض ، العربة ،الأرض)

7- الهدف من هذا السؤال هو تمثيل الحصيلة الطاقوية ثم إيجاد الطاقة الحركية للعربة لحظة ملامستها النابض ثم دراسة تحويل الطاقة من العربة إلى النابض .

** تمرين 13 :

. نختار النقطة B مبدأ التراتيب التي توافق أقصى استطالة للنابض مرجعا لحساب الطاقة الكامنة الثقالية

 $\boxed{E_{pp} = m.g.z}$ عبارة الطاقة الكامنة الثقالية تكون:

1 الحصيلة الطاقوية و معادلة انحفاظ الطاقة في الحالات:

 $\overline{E_{PPA}} = \overline{E_{PeB}}$: (الجملة (الجسم + النابض + الأرض ب- الجملة (الجسم + النابض)

حيث $W\left(\overrightarrow{P}
ight)$ هو عمل قوة الثقل $W\left(\overrightarrow{P}
ight)$

4- الطاقة الكامنة المرونية للنابض:

$$E_{Pe} = 0.76 \ j$$
 \iff $E_{Pe} = \frac{1}{2} \times 10 \times (0.39)^2 \iff E_{Pe} = \frac{1}{2} K.z_A^2$