Лабораторная работа №1 Создание сайта. Подготовка инфраструктуры.

Задание выполняется группой из 2 человек.

Задание

- 1. Сформировать рабочую группу, распределить роли, согласовать тематику сайта.
- 2. Настроить виртуальную машину, сетевые интерфейсы системы.
- 3. Установить и настроить веб-сервер.

Ход выполнения работы:

- 1. Теоретическая часть:
- 1.1 Составить краткий конспект на тему: понятие веб-сервера, основные функции и назначение.
- 1.2 Провести анализ (в табличной форме) наиболее популярных web-серверов (не менее четырех) по следующим критериям: поддерживаемая операционная система, тип лицензии, поддерживаемые языки программирования, производительность, основные особенности конфигурирования.
 - 2. Практическая часть:
 - 2.1 Настройка виртуальной машины и сетевого взаимодействия.
 - 2.2 Настройка необходимого системного программного обеспечения (ПО).

Результатом выполнения задания являются:

- Отчет, содержащий следующую информацию:
 - 1) Пошаговое описание практической части.
- 2) Отчет по лабораторной работе, содержащий ход выполнения работы с описанием и скриншотами выполнения, результаты выполнения лабораторной работы.

Для успешной защиты лабораторной работы студенты должны предоставить проект и отчет к нему.

Требования к оформлению отчета:

Способ выполнения текста должен быть единым для всей работы. **Шрифт** — **Times New Roman**, кегль 14, **межстрочный интервал** — 1,5, **размеры полей**: левое — 30 мм; правое — 10 мм, верхнее — 20 мм; нижнее — 20 мм. Сокращения слов в тексте допускаются только общепринятые.

Абзацный отступ (1,25) должен быть одинаковым во всей работе. **Нумерация страниц** основного текста должна быть сквозной. Номер страницы на титульном листе не указывается, задание на производственную практику является второй страницей. Сам номер располагается внизу по центру страницы или справа.

1. Необходимое программное обеспечение

- 1) Система виртуализации Virtualbox:
- https://www.virtualbox.org/wiki/Download_Old_Builds_6_1
- 2) Выбираем установочный пакет в соответствии с ОС рабочей машины и устанавливаем (во время установки сетевые интерфейс будут перезапущены!).
 - 3) ISO-образ ОС Linux Debian для установки на виртуальную машину (BM): https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/
- В нижней части страницы будет ссылка на скачивание актуальной версии isoобраза в формате debian-xx.x.x- amd64-netinst.iso
 - 4) Клиент SSH Putty (для Windows): https://the.earth.li/~sgtatham/putty/latest/w64/putty.exe

2. Создание новой ВМ.

Запускаем Virtualbox.

Создаем новую гостевую виртуальную машину (далее просто ВМ):

Рис. $2.1 - \Gamma$ лавное окно Virtualbox

Выбираем тип ОС и задаем имя для новой ВМ (рис. 2.2):

Рис. 2.2 – Параметры создания ВМ

Рекомендованный объем памяти: 1024Мб.

Создать новый виртуальны жёсткий диск (VDI, динамический, объемом 10Гб). Запускаем созданную ВМ с помощью панели управления главного окна:

Рис. 2.3 – Запуск BM

Выбираем ISO-образ (*debian-11.4.0-amd64-netinst.iso*, полученный ранее в п. 1) в качестве загрузочного диска при старте:

Рис. 2.4 – Выбор загрузочного образа

3. Установка ОС

После загрузки образа в появившемся установочном меню выбираем **Install** или **Graphical install**.

Параметры установки:

Имя компьютера: **aislab<N>** , где N- любое двузначное число.

Имя домена (локальное доменное имя системы): пропускаем или вводим, например: aislab<N>.usatu.local

Пароль суперпользователя (root): Qwerty@

Имя пользователя/учетной записи: ais

Пароль: придумать свой (не более 8 символов)

Разметка диска: автоматически (все файлы в одном разделе)

В результате разметки будут созданы 3 раздела: основной раздел ~90% диска, раздел подкачки ~10% диска и раздел для загрузчика ОС.

Записать изменения на диск: Да

...Установка базовой системы...

Сканирование других дисков: Нет

Менеджер пакетов: РФ (deb.debian.org)

Информация о прокси: Нет

Конфигурация дополнительных пакетов (рис. 3.1):

Выберите устанавливаемое программное обеспечение:
🗌 окружение рабочего стола Debian
□ GNOME
☐ Xfce
☐ GNOME Flashback
KDE Plasma
Cinnamon
□ рабочий стол МАТЕ
□ LXDE
☐ LXQt
web server
▼ SSH-сервер
☑ Стандартные системные утилиты

Рис. 3.1 – Выбор дополнительных программных пакетов

Установить загрузчик GRUB в главную загрузочную запись? Да Устройство для установки системного загрузчика: /dev/sda Машина будет перезагружена...

4. Базовая настройка сетевых интерфейсов ВМ

После базовой установки сетевой интерфейс BM будет по умолчанию работать в режиме NAT (преобразование адреса), когда Virtualbox перехватывает сетевой трафик на физическом интерфейсе и для необходимых пакетов преобразует внутренний IP-адрес BM (обратный адрес «получателя») на внешний (доступный).

Необходимо настроить сетевые интерфейсы ВМ таким образом, чтобы предоставить доступ к сетевым ресурсам виртуальной системы как для компьютера, на котором запущена сама ВМ, так и для компьютеров, находящихся в той же локальной сети.

Для этого останавливаем ВМ, заходим в настройки, выбираем «Сеть» и во вкладке «Адаптер 1» меняем режим на «Сетевой мост», далее включаем «Адаптер 2» и устанавливаем режим «Виртуальный адаптер хоста» (рис. 4.1).

«Адаптер 1» в режиме «Сетевой мост» создаст дополнительный виртуальный интерфейс, использующий физическое подключение сетевой карты ПК. Таким образом, ВМ будет подключена к той же локальной сети (через кабель или точку доступа) и будут автоматически получены сетевые настройки из того же диапазона IP-адресов (при наличии активного DHCP-сервера).

«Адаптер 2» в режиме «Виртуальный адаптер хоста» создаст между ВМ и ОС физической машины внутреннюю виртуальная сеть (по умолчанию из пула адресов 192.168.56.0/24), что позволит осуществлять локальное сетевое взаимодействие между физической машиной и запущенной на ней ВМ в процессе тестирования и разработки.

Рис. 4.1 – Настройка сетевых интерфейсов ВМ

4.1 Проверка корректности настройки сети. Для проверки корректности настройки сети включаем ВМ и заходим в систему, используя login: **root** и пароль суперпользователя, установленный в п.3.

Для получения информации о сетевых настройка в ОС Linux используется утилита **ip**, набираем консольную команду для получения информации обо всех сетевых интерфейсах:

ip a

Вывод команды будет примерно следующего содержания:

Обратите внимание на строку:

```
inet 192.168.4.101/24 brd 192.168.4.255 scope global dynamic enp0s3
```

Т.е. основной сетевой интерфейс BM с именем **enp0s3** автоматически получил IP-адрес **192.168.4.101** (ip-адрес из той же сети, к которой подключен ПК).

enp0s8: ... **state DOWN** ... - означает, что настроенный в VirtualBox Адаптер 2 обнаружен, но отключен. Включаем командой:

```
ip link set dev enp0s8 up
```

При повторном вводе команды **ip a**, состояние интерфейса **enp0s8** должно отобразиться как **state UP**.

4.2 Настройка статичного адреса на виртуальном сетевом интерфейсе.

Переходим в папку /etc/network с помощью команды:

cd /etc/network

Настройка сети осуществляется через редактирование файла конфигурации сетевых интерфейсов – /etc/network/interfaces. Используем утилиту nano в качестве консольного редактора текстовых файлов:

nano /etc/network/interfaces

Чтобы задать статичный адрес для интерфейса **enp0s8** добавляем следующие строки:

```
allow-hotplug enp0s8
iface enp0s8 inet static
address 192.168.56.104
netmask 255.255.255.0
gateway 192.168.56.1
```

Базовые команды для работы с ОС Linux через терминал можно посмотреть здесь: https://pingvinus.ru/note/10-commands-for-beginners

```
# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
allow—hotplug enp0s3
iface enp0s3 inet dhcp

allow—hotplug enp0s8
iface enp0s8 inet static
address 192.168.56.104
netmask 255.255.255.0
gateway 192.168.56.1
```

Рис. 4.2 – Файл конфигурации сетевых интерфейсов ВМ

Значение address можно установить любое в рамках подсети 192.168.56.х Сохраняем (Ctrl+X) и перезапускаем ВМ командой **reboot**

Аналогичным образом (если необходимо), можно настроить статичный IP-адрес для Адаптера 1 (интерфейс enp0s3), но для сохранения доступа к интернет-ресурсам также необходимо установить адрес DNS-сервера по умолчанию. Это можно сделать, отредактировав файл /etc/resolv.conf (например, публичный DNS-сервер Yandex: nameserver 77.88.8.1)

Если повторно вывести информацию о сетевых интерфейсах ВМ, то в выводе можно увидеть:

```
link/ether 08:00:27:75:90:d3 brd ff:ff:ff:ff:ff
inet 192.168.56.104/24 brd 192.168.56.255 scope global dynamic enp0s8
valid_lft 372sec preferred_lft 372sec
inet6 fe80::a00:27ff:fe75:90d3/64 scope link
valid_lft forever preferred_lft forever
root@aislab1:~# _
```

Т.е. виртуальный сетевой интерфейс ВМ с именем **enp0s8** получил IP-адрес **192.168.56.104**

4.3 Удаленное подключение к ВМ. Т.к. при установке ОС был также предустановлен SSH-сервер (рис. 3.1), то можно подключиться к системе по IP-адресу, используя утилиту Putty через защищенный протокол SSH (рис. 4.3, 4.4):

Рис. 4.3 – Настройка сессии подключения по SSH

Перед подключением убедитесь, что клиент использует кодировку UTF-8:

Рис. 4.4 – Настройка параметров кодирования для сессии SSH

Логинимся под обычным (ранее созданным в п. 3) пользователем **ais** и переходим в режим администратора командой: **su** и вводим пароль суперпользователя, установленный в п.3.

4.4 Настройка статической сетевой маршрутизации. Т.к. в системе настроено 2 сетевых интерфейса, необходимо проверить как распределяется (маршрутизируется)

сетевой трафик между данными интерфейсами. Данные настройка ОС хранит в таблице маршрутизации, чтобы вывести активные правила маршрутизации вводим команду:

ip route

Примерный вывод команды:

```
default via 192.168.56.1 dev enp0s8 onlink
192.168.4.0/24 dev enp0s3 proto kernel scope link src 192.168.4.101
192.168.56.0/24 dev enp0s8 proto kernel scope link src 192.168.56.104
```

Вторая строка вывода интерпретируется следующим образом: для взаимодействия с адресами подсети 192.168.4.0/24 система использует интерфейс enp0s3 с адресом 192.168.4.101. Аналогично интерпретируется третья строка, но для подсети 192.168.56.0/24 и интерфейса enp0s8.

Ключевое правило маршрутизации здесь определяется в первой строке «default via ...», что означает, что по умолчанию взаимодействие с любыми неизвестными IP-адресами (т.е. не входящие в сети 192.168.4.0/24 и 192.168.56.0/24) система будет осуществлять через интерфейс епр0s8. Данный интерфейс (Адаптер 2) отвечает за подсеть 192.168.56.0/24, а эта подсеть, как мы знаем, является виртуальной локальной сетью между ПК и ВМ и, соответственно, не имеет доступа к интернетресурсам. В этом можно убедиться, запустив утилиту ping на любой публичный адрес, например:

```
ping yandex.ru
```

Выполнение команды «зависнет» или будет выводиться сообщение «No route to Host». Для отмены выполнения нажмите Ctrl+C.

Таким образом, маршрут по умолчанию необходимо переключить на интерфейс enp0s3, который через сетевую карту ПК подключен к внешней сети. Для выполнения этой настройки сначала удаляем текущий маршрут по умолчанию:

```
ip route del default
```

И устанавливаем новый маршрут через enp0s3:

```
ip route add default via 192.168.4.1 dev enp0s3
```

где адрес 192.168.4.1 — это IP-адрес вашего интернет шлюза по умолчанию (например, вашего Wi-Fi роутера). Посмотреть текущий адрес вашего шлюза можно в информации о подключении на вашем ПК, например, в Win10: «Параметры сети и интернет» — Просмотр свойств оборудования и подключения:

^ E	·	
	йств оборудования и подключени кеаітек Gaming 2.5Gbt Family Controller	1Я
Физический адрес (МАС):	d8:bb:c1:a6:d7:9c	
Состояние:	Работает	
Максимальный передаваемый блок данных:	1500	
Скорость линии (прием и передача):	100/100 (Mbps)	
DHCP включен:	Нет	
IPv4-адрес:	192.168.4.5/24	
IPv6-адрес:		
Шлюз по умолчанию:	192.168.4.1	
DNS-серверы:	192.168.4.1	
DNS-имя домена:		
Суффикс для DNS-подключения:		
Список суффиксов поиска DNS:		
Имя сети:	Сеть	
Категория сети:	Общедоступные	
Возможность подключения (IPv4 или IPv6):	Подключен к Интернет / Подключен к неизвестная сеть	

Рис. 4.5 – Вывод информации о сетевом подключении в Win10

После установки нового маршрута повторно проверьте доступность интернетресурсов утилитой ping.

ВАЖНО! Настройки статической маршрутизации, установленные с помощью консольных команд, будут <u>сброшены</u> после перезагрузки ВМ. Для сохранения правил маршрутизации необходимо настроить автоматическое выполнение маршрутных команд после загрузки сетевых интерфейсов при запуске системы. Для этого добавляем инструкцию **post-up** в файле конфигурации сетевых интерфейсов (/etc/network/interfaces):

Рис. 4.6 — Настройка автоматического выполнения (post-загрузка) команд маршрутизации в файле конфигурации сетевых интерфейсов

5. Установка и настройка дополнительного системного ПО для ВМ

Установка пакетов из репозитория осуществляется с помощью **менеджера пакетов apt**. На начальном этапе достаточно двух команд:

apt install <cписок пакетов> - установка
apt purge <cписок пакетов> - удаление

В старых версиях ОС Linux типа Debian (выпущенных до 2014) для работы с пакетами используется команда apt-get вместо apt.

Для установки пакетов переходим в режим администратора командой: su

Перед началом установки, необходимо проверить доступность репозитория (выбранного во время установки OC - deb.debian.org) для менеджера пакетов (**apt**), используем команду:

apt update

Если чтение репозитория прошло успешно, то ВМ подключена к интернету и можно обновить установленные пакеты:

apt upgrade

5.1 Файловый менеджер. Устанавливаем файловый менеджер (ФМ) **Midnight Commander** (**MC**) и пакет **sudo** для выполнения администраторских команд:

apt install mc sudo

Запускаем ФМ: тс

При запуске ФМ откроется в личной папке текущего пользователя (/home/ais). Для просмотра всех директорий в основном разделе, переходим на 2 уровня выше (рис. 5.1):

Рис. 5.1 – Список каталогов в основном разделе диска (левая панель МС)

Активация функций нижней панели инструментов МС осуществляется с помощью клавиш: F1 — помощь, F2 — меню, F5 — копировать... и т.д. Дополнительные комбинации: Shift+F6 — переименование файла, Shift+F5 — копия файла с возможностью изменить имя.

Назначение основных директорий:

/etc — содержит конфигурационные файлы для установленных пакетным менеджером приложений;

/home/<имя_пользователя> — личные папки обычных пользователей системы.

/root – домашняя директория встроенной учетной записи администратора системы.

/bin, /sbin – содержат исполняемые файлы (скрипты) установленных приложений;

/var — содержит переменные данные, такие как: системные журналы и журналы приложений (/var/logs), файлы баз данных (/var/lib), контентные данные web-приложений (/var/www).

/**tmp** — системная директория для хранения временных файлов, файлы, размещенные в этой папке будут удалены после перезапуска системы.

/opt — директория используется для установки сторонних системных приложений, которые не устанавливаются через менеджер пакетов apt (например, приложения собственной разработки).

Более подробную информация о структуре файловой системы Linux можно посмотреть здесь: https://losst.ru/ctruktura-fajlovoj-sistemy-linux

5.2 Выбор и установка веб-сервера. В общем случае под веб-сервером понимается специализированное программное обеспечение, предоставляющее доступ к контенту (html, видео, изображения, JavaScript и т.д.), по протоколу НТТР. Существует большое количество «встроенных» веб-серверов в рамках различных языков программирования и фреймворков, но большинство из данных решений не предназначены для работы в глобальной сети напрямую и используются только на этапе локального тестирования или работают совместно с «промышленными» веб-серверами.

Промышленный (production, жарг. «продуктивный») веб-сервер — специализированное решение для предоставления веб-контента, удовлетворяющее современным требованиям к безопасности, стабильности и производительности и предназначенное для работы с клиентскими запросами непосредственно в глобальной сети.

В данной лабораторной работе рассмотрим <u>3 основных промышленных вебсервера</u>, которые используются на более чем 80% серверов в глобальной сети: **Apache**, **Nginx**, **IIS**:

Таблица 1 – Ключевые особенности промышленных веб-серверов

Название	Особенности	Применение	
Apache2 (или httpd в некоторых дистрибутивах Linux)	Является веб-сервером по умолчанию для ОС Linux. Имеет большое количество дополнительных модулей и простые механизмы для их динамического подключения. Прост в конфигурировании и настройке для шаблонных вебприложений.	Используется для вебприложений, использующих LAMPстек, т.е. на основе Linux, Apache, MySQL, PHP (СRМ-системы, конструкторы сайтов и т.п.) Используется как ргохусервер, т.е. посредник между клиентом и целевым вебприложением (например, на Java или Python).	
	Может работать под ОС Linux и Windows.		
Nginx	Имеет наилучшую производительность при работе со статическим контентом (html, видео, изображения, JavaScript и т.д.). Оптимизирован для потребления минимального количества ресурсов в условиях большого количества клиентских соединений. Может работать под ОС Linux и Windows.	Используется как ргохусервер, т.е. посредник между клиентом и целевым веб-приложением (например, на java или рутноп), при этом обычно проксируются только запросы к динамическому контенту приложения, а запросы к статическим файлам обрабатывает непосредственно Nginx. Используется как балансировщик нагрузки для целевых вебприложений (т.е. перераспределяет клиентские запросы между несколькими приложениями).	
		Используется как кэш- сервер для статического контента.	
IIS (Microsoft Internet	Предоставляет универсальную платформу	Является основной платформой для	

Information Services)	для работы с различными	приложений ASP.NET
information Services)	веб-протоколами, в т.ч.	
	почтовыми (POP3, SMTP),	
	файловыми (FTP) и т.д.	
	Тесная интеграция со	
	средствами развёртывания	
	и разработки от Microsoft	
	(например, VisualStudio).	
	(nanpawep, visualstudio).	
	D	
	Развитая система	
	управления веб-	
	приложениями (оснастка),	
	интегрированная в ОС	
	Windows Server.	
	Доступен только для ОС	
	Windows.	

Т.к. в дальнейшем создание сайта будет выполняться с помощью CMS (Content Management System) WordPress Устанавливаем веб-сервер **Apache2**:

apt install apache2

5.3 Настройка веб-сервера. Файлы конфигурации web-сервера находятся, соответственно, в /etc/apache2.

Описание основных конфигурационных файлов и папок:

apache2.conf — системные настройки веб-сервера.

ports.conf — настройки портов, на которых веб-сервер будет принимать соединения (по умолчанию: порт **80** для **http** запросов, порт **443** для защищённых **https** соединений).

conf-* — отвечают за конфигурацию базовых функций (безопасность, кодировка и т.п.).

mods-*- отвечают за конфигурацию дополнительных модулей.

sites-* — отвечают за конфигурацию сайтов (правила предоставления веб-контента).

Постфикс ***-available** означает, что данная папка содержит все доступные файлы конфигурации.

Папки с постфиксом *-enabled содержат ссылки, по которым можно определить, какая из доступных конфигураций активирована.

Для каждого web-сайта необходима настройка соответствующего конфигурационного файла в папке sites-available. По умолчанию в данной

папке уже содержится файл с базовой настройкой **000-default.conf** с (примерно) следующим содержанием:

<VirtualHost *:80>
...
DocumentRoot /var/www/html
...
</VirtualHost>

Что означает, что Apache читает web-контент из корневой папки /var/www/html и контент доступен на всех интерфейсах (*) через порт 80.

Проверяем, перейдя в браузере по адресу http://192.168.56.104 (рис. 5.2):

Рис. 5.2 – Стартовая страница web-сервера Арасһе

ВАЖНО! Если при попытке перейти на стартовую страницу веб-сервера возникает таймаут соединения, то выполнить следующие шаги:

1) Отключить поддержку **ipv6** на сетевом адаптере вашего ПК:

Рис. 5.3 – Настройка сетевых интерфейсов в ОС Windows

2) В конфигурационном файле веб-сервера apache2 /etc/apache2/ports.conf изменить строку:

Listen 80

Listen 0.0.0.0:80

- 3) Перезагрузить ПК и виртуальную машину.
- **5.5 Настройка поддержки РНР для веб-сервера Арасhe.** Установим необходимые пакеты для добавления функций обработки ***.php** скриптов на веб-сервере:

apt-get install php libapache2-mod-php php-mysql php-curl php-gd
php-mbstring php-xml php-xmlrpc php-soap php-intl php-zip

Далее необходимо настроить обработчик контента веб-сервера, чтобы в первую очередь читалась **index.php** страница. Редактируем файл /etc/apache2/mods-enabled/dir.conf следующим образом:

```
<IfModule mod_dir.c>
   DirectoryIndex index.php index.html index.cgi index.pl index.xhtml
index.htm
</IfModule>
```

По умолчанию Apache в первую очередь обрабатывает файл index.html, и только четвертым будет обработка index.php. Для улучшения производительности лучше выставить приоритеты на обработку соответствующих индексных страниц для используемых типов веб-приложений. Для php-приложения перемещаем index.php на первое место соответственно.

Перезапустите службу web-сервера Apache:

systemctl restart apache2 Проверим статус web-сервера: systemctl status apache2

BAЖHO! systemctl – команда системного менеджера systemd для управления приложениями (сервисами), установленными в ОС Linux. Для управления или получения информации о приложении используйте аргументы start | stop | restart | status и имя сервиса.

Проверим корректность установки php-модулей. Создаем тестовый скрипт php в корневой директории web-сервера:

nano /var/www/html/index.php

Содержание скрипта:

<?php phpinfo(); ?>

Т.к. служба веб-сервера Арасhе работает в системе от имени пользователя **www-data**, при создании новых контентных страниц в директории сервера вручную необходимо также предоставить права доступа для этого пользователя. Рекурсивно (параметр -R) меняем владельца на www-data для всех новых файлов в папке /var/www/html:

chown -R www-data /var/www/html

Открываем в браузере адрес ВМ. Должна появиться страница примерно следующего содержания (рис. 5.4):

PHP Version 7.4.30		php
System	Linux aislab22 5.10.0-17-amd64 #1 SMP Debian 5.10.136-1 (2022-08-13) x86_64	
Build Date	Jul 7 2022 15:51:43	
Server API	Apache 2.0 Handler	

•••

Рис. 5.4 – Содержание тестовой страницы index.php

ВАЖНО! На данном этапе сервер готов для развертывания РНРприложений, НО данные настройки web-сервера являются недостаточными с точки зрения безопасности, т.о. сервер с подобными настройками можно использовать исключительно в безопасном сегменте сети!