

Machine Learning for Large-Scale Data Analysis and Decision Making (MATH80629A) Winter 2023

Week #3 - Summary

Quiz 1

Login to your Gradescope account

Announcement

- Practical Lab session on week #4 (January 27)
- Team Registration, due: January 20, 2023 (Today)
- Next week: Homework 1 will be released!
 It is due February 17, 2023 (3 weeks)

Today

- Second Quiz on Gradescope!
- Summary of Ssupervised Learning Algorithms
- Q&A
- Hands-on session

Models for supervised learning

- (Mostly) linear models
- Focus on classification
- 1. Non-Probabilistic Models
 - Nearest Neighbor, Support Vector Machines (SVMs)
- 2. Probabilistic Models
 - Naive Bayes

Supervised learning

Train Data

	Nb.bed.	Area	Neigh.	•	•		Sell-ability	
x ₀	1	0	0	0	0	y _o [1	7
x ₁	1	100	1	.2	.5	y 1	2	
X ₂	3	200	0	.1	.2	y ₂	0	
X3	1	150	1	.4	.1	y 3	2	
X4	2	210	2	.5	1.1	У4	1	
	-	X			_		Y	

Task

$$f:\mathbb{R}^n \to \{0,1,2\}$$

Test Data

Laurent Charlin & Golnoosh Farnadi — 80-629

Supervised learning

Train Data

	Nb.bed.	Area	Neigh.	•	•		Sell-ability
x _o	1	0	0	0	0	y o [1]
X 1	1	100	1	.2	.5	y 1	2
X ₂	3	200	0	.1	.2	y ₂	0
X3	1	150	1	.4	.1	y 3	2
X4	2	210	2	.5	1.1	У4 [1
		X					Y

Task

Models
$$f \mathbb{R}^n \to \{0,1,2\}$$

Test Data

Laurent Charlin & Golnoosh Farnadi — 80-629

X

X

 X_1

 X_1

 X_1

$$\begin{aligned} i' &= \arg\min_{i} dist(x_i, x_j) \\ y_j &= y_{i'} \end{aligned}$$

• 1-NN

Instance classified according to its nearest neighbor

X₂

k = 5 (assumption)

 $i = \arg \operatorname{sort}_i \operatorname{dist}(x_i, x_j)$

 $y_j = majority(i_{:5})$

K-NN

Instance classified according to the majority of its K nearest neighbors

weighted-NN
Instance classified
according to all neighbors.
The contribution of each
neighbor is weighted by its
distance.

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{\mathbf{0}}$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w_0}$$

Decision

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w_0}) > \mathbf{0} \implies \mathbf{o}$$

$$(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w_0}) < \mathbf{0} \implies \mathbf{0}$$

decision boundary: y(x) = 0 take two points on the boundary: x_a, x_b

then:
$$\mathbf{w}^{\top}\mathbf{x}_{a} + \mathbf{w}_{0} = \mathbf{w}^{\top}\mathbf{x}_{b} + \mathbf{w}_{0}$$

$$\implies \mathbf{w}^{\top}(\mathbf{x}_{a} - \mathbf{x}_{b}) = \mathbf{0}$$

w is perpendicular to the decision boundary w represents the orientation of the decision boundary

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{\mathbf{0}}$$

Decision

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{\mathbf{0}}) > \mathbf{0} \implies \mathbf{0}$$

$$(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w_0}) < \mathbf{0} \implies \mathbf{0}$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{\mathbf{0}}$$

Decision

$$(\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_{0}) > \mathbf{0} \implies \mathbf{o}$$
 $(\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_{0}) < \mathbf{0} \implies \mathbf{o}$

w₀ is a scalar

you can think of it like an intercept

take x' as the closest point on the decision boundary to the origin

$$\mathbf{x}' = \beta \mathbf{w}$$

$$\implies \mathbf{y}(\mathbf{x}') = \mathbf{w}^{\top}\mathbf{x}' + \mathbf{w_0}$$

$$\implies \mathbf{y}(\mathbf{x}') = \mathbf{w}^{\top}(\beta \mathbf{w}) + \mathbf{w_0}$$

$$\implies$$
 0 = $\beta \parallel \mathbf{w} \parallel^2 + \mathbf{w_0}$

$$\implies \beta = \frac{-\mathsf{W_0}}{\parallel \mathsf{w} \parallel^2}$$

Then you know that the distance from the origin to x' is:

$$\| \mathbf{x}' \| = \| \beta \mathbf{w} \|$$

$$\Rightarrow \| \mathbf{x}' \| = \beta \| \mathbf{w} \|$$

$$\Rightarrow \| \mathbf{x}' \| = \frac{-\mathbf{w}_0}{\| \mathbf{w} \|^2} \| \mathbf{w} \|$$

$$\Rightarrow \| \mathbf{x}' \| = \frac{-\mathbf{w}_0}{\| \mathbf{w} \|}$$

HEC MONTREAL

The objective is to find the separating boundary that maximizes the margin

Probabilistic Models for Classification

Probabilistic Models separate Decision and Inference

Non-Probabilistic Modelling

Probabilistic Modelling

Probabilistic Model

$$\longrightarrow$$
 P(y = k|x) \longrightarrow

Decision Rule

Probabilistic models

1. Model the conditional directly:

$$P(y = k|x)$$

2. Model the joint (or the prior and the class conditionals):

Bayes' Theorem

$$\begin{array}{c} \underline{P(y=k|x)} \propto \underline{P(y=k,x)} \\ \text{posterior} & \text{joint} \\ = & \underline{P(x\mid y=k)} \\ \text{class conditional densities class prior} \end{array}$$

Probabilistic Modelling

- 1. Posit a model: P(X, Y)
 - How the data is generated
- 2. Parametrize the distributions: P(X, Y I Parameters)
- 3. Set the objective (e.g., MLE)
- 4. Learn the parameters of the model:
 - E.g., Naive Bayes: learn the parameters of the class conditional P(XIV) and of the prior P(Y)
- 5. Use the model (e.g., for predictions)