Envoi no. 6 : géométrie

Exercice 1. Soit ABC un triangle rectangle isocèle en B. Soit M un point de l'arc AC du cercle de centre B passant par A et C, H son projeté orthogonal sur (AB). On note I le centre du cercle inscrit à BHM et J le centre du cercle exinscrit dans l'angle B (J est donc l'intersection de la bissectrice intérieure en B avec les bissectrices extérieures en H et M). Montrer que MIAJ est un carré.

Solution.

On observe d'abord que $(MI) \perp (MJ)$ puisque dans un triangle, les bissectrices intérieure et extérieure en un point sont perpendiculaires.

D'autre part, $\widehat{MIJ} = 180^{\circ} - \widehat{BIM} = \widehat{IBM} + \widehat{BMI} = \frac{1}{2}(\widehat{HBM} + \widehat{BMH}) = 45^{\circ}$. Comme MIJ est rectangle en M, on en déduit qu'il est rectangle isocèle en M.

De plus, (IJ) est la bissectrice de MBH = MBA, et MBA est isocèle en B, donc (IJ) est la médiatrice de [AM]. On en déduit que AIJ est le symétrique du triangle rectangle isocèle MIJ par rapport à la droite (IJ), donc MIAJ est un carré.

Exercice 2. Soit ABCD un quadrilatère convexe. Soit M l'intersection entre les bissectrices intérieures des angles B et C, et N l'intersection entre les bissectrices intérieures des angles A et D. Montrer que les droites AB, CD et MN sont concourantes.

Solution. Quitte à échanger les rôles de A et de B et les rôles de C et de D, on peut supposer que A et D se trouvent sur les segments [EB] et [EC] respectivement.

Notons E le point d'intersection entre (AB) et (CD). Alors M est l'intersection des bissectrices intérieures des angles B et C du triangle EBC, donc M est le centre du cercle inscrit à EBC. En particulier il se trouve sur la bissectrice intérieure en E.

De même, N est le point d'intersection des bissectrices extérieures en A et D du triangle EAD, donc N est le centre du cercle exinscrit dans l'angle E de EAD. En particulier, il se trouve sur la bissectrice intérieure en E. Ceci prouve que E, M, N sont alignés.

Exercice 3. Soit ABCD un quadrilatère inscriptible, $L = (AC) \cap (BD)$, J et K les pieds des perpendiculaires à (AD) et (BC) passant par L et I le milieu de [C, D]. Montrer que IJ = IK.

Solution 1.

Il est facile de voir en utilisant le théorème de l'angle inscrit que BLC et ALD sont semblables, et que CKL et DJL sont semblables.

Notons M et N les milieux respectifs de [LD] et [LC]. Alors LNIM est un parallélogramme. On en déduit que NL = IM. Or, CKL est un triangle rectangle en K donc NL = NK, d'où NK = IM. De même, MJ = IN.

Comme MJL est isocèle en M, on a $\widehat{JML} = 180^{\circ} - 2\widehat{MLJ} = 180^{\circ} - 2(90^{\circ} - \widehat{LDJ}) = 2\widehat{BDA}$, et de même $\widehat{KNL} = 2\widehat{BCA}$. Or, $\widehat{BDA} = \widehat{BCA}$ donc $\widehat{JML} = \widehat{KNL}$. On en déduit que $\widehat{IMJ} = 360^{\circ} - \widehat{JML} - \widehat{LMI} = 360^{\circ} - \widehat{KNL} - \widehat{LNI} = \widehat{KNI}$ (l'avant-dernière égalité découlant du fait que LMIN est un parallélogramme).

Des égalités $\widehat{I}M\widehat{J}=\widehat{K}N\widehat{I},\ NK=IM$ et MJ=IN, on déduit que les triangles IMJ et KNI sont isométriques, et en particulier que IJ=IK.

Solution 2.

$$\begin{split} IJ^2 - IK^2 &= \overrightarrow{IJ} \cdot \overrightarrow{IJ} - \overrightarrow{IK} \cdot \overrightarrow{IK} = (\overrightarrow{IJ} + \overrightarrow{IK}) \cdot (\overrightarrow{IJ} - \overrightarrow{IK}) \\ &= (\overrightarrow{ID} + \overrightarrow{DJ} + \overrightarrow{IC} + \overrightarrow{CK}) \cdot \overrightarrow{KJ} = (\overrightarrow{DJ} + \overrightarrow{CK}) \cdot (\overrightarrow{LJ} - \overrightarrow{LK}) \\ &= \overrightarrow{CK} \cdot \overrightarrow{LJ} - \overrightarrow{DJ} \cdot \overrightarrow{LK} \quad \text{car} \ (DJ) \perp (LJ) \ \text{et} \ (CK) \perp (LK) \\ &= CK \cdot LJ \cos (\overrightarrow{CK}, \overrightarrow{LJ}) - DJ \cdot LK \cos (\overrightarrow{DJ}, \overrightarrow{LK}) \end{split}$$

Or, \overrightarrow{LK} fait un angle orienté de $+90^\circ$ par rapport à \overrightarrow{CK} , et \overrightarrow{DJ} fait un angle orienté de $+90^\circ$ par rapport à \overrightarrow{LJ} , donc les deux cosinus sont égaux. Par conséquent, il suffit de montrer que $CK \cdot LJ = DJ \cdot LK$: ceci découle du fait que

$$\frac{CK}{LK} = \cot \widehat{KCL} = \cot \widehat{BCA} = \cot \widehat{BDA} = \cot \widehat{LDJ} = \frac{DJ}{LJ}.$$

Exercice 4. Soit ABC un triangle. On note O le centre de son cercle circonscrit. Soient D, E, F des points situés sur [B, C], [C, A] et [A, B] respectivement. On suppose que FB = FD et ED = EC. Le cercle de centre F et de rayon FB et le cercle de centre E et de rayon EC se recoupent en EC. Montrer que EC0, EC1, EC2, EC3 sont cocycliques.

Solution.

Les triangles BFD et CED étant isocèles, on a (DE, DF) = (DE, DC) + (DB, DF) = (CD, CE) + (BF, BD) = (BC, AC) + (AB, BC) = (AB, AC).

Comme EG = ED et FG = FD, les points E et F appartiennent à la médiatrice de [GD] donc le quadrilatère FGED est symétrique par rapport à (FE). On en déduit que (DE, DF) = (GF, GE) donc (GF, GE) = (AB, AC) = (AF, AE). Il en résulte que F, A, G, E sont cocycliques.

On a $2(\overrightarrow{GB},\overrightarrow{GD})=(\overrightarrow{FB},\overrightarrow{FD})=\Pi-2(\overrightarrow{BD},\overrightarrow{BF})$ où Π est l'angle plat (cette dernière égalité provenant du fait que FBD est isocèle en F). On montre de même que $2(\overrightarrow{GD},\overrightarrow{GC})=\Pi-2(\overrightarrow{CE},\overrightarrow{CD})$. En additionnant ces deux égalités, on obtient

$$2(\overrightarrow{BB}, \overrightarrow{GC}) = -2(\overrightarrow{BD}, \overrightarrow{BF}) - 2(\overrightarrow{CE}, \overrightarrow{CD})$$

$$= -2(\overrightarrow{BC}, \overrightarrow{BA}) - 2(\overrightarrow{CA}, \overrightarrow{CB}) - 2(\overrightarrow{CB}, \overrightarrow{BC})$$

$$= -2(\overrightarrow{CA}, \overrightarrow{BA}) = 2(\overrightarrow{AB}, \overrightarrow{AC})$$

Donc A, B, C, G sont cocycliques.

Comme FG = FB et $\overrightarrow{OB} = \overrightarrow{OG}$, les points G et B sont symétriques par rapport à (OF) donc $2(\overrightarrow{OG}, \overrightarrow{OF}) = (\overrightarrow{OG}, \overrightarrow{OB})$. De même, $2(\overrightarrow{OE}, \overrightarrow{OG}) = (\overrightarrow{OC}, \overrightarrow{OG})$. En additionnant ces deux égalités, il vient $2(\overrightarrow{OE}, \overrightarrow{OF}) = (\overrightarrow{OC}, \overrightarrow{OB}) = 2(\overrightarrow{AC}, \overrightarrow{AB}) = 2(\overrightarrow{EA}, \overrightarrow{AF})$, donc A, O, E, F sont cocycliques.

Exercice 5. Soient A, B, C, D, E des points dans cet ordre sur un demi-cercle de rayon 1. Démontrer que

$$AB^{2} + BC^{2} + CD^{2} + DE^{2} + AB \cdot BC \cdot CD + BC \cdot CD \cdot DE \leq 4.$$

Solution. En remplaçant E par le point diamétralement opposé à A, la quantité DE augmente et les autres longueurs de la formule ne changent pas, donc on se ramène au cas où [AE] est un diamètre.

D'après la formule d'Al-Kashi,

$$AB^{2} + BC^{2} = AC^{2} + 2AB.BC \cos \widehat{ABC}$$

$$CD^{2} + DE^{2} = CE^{2} + 2CD.DE \cos \widehat{CDE}$$

$$AC^{2} + CE^{2} = AE^{2}.$$

En additionnant ces trois égalités, compte tenu de $AE^2 = 4$, on obtient

$$AB^2 + BC^2 + CD^2 + DE^2 = 4 + 2AB.BC\cos\widehat{ABC} + 2CD.DE\cos\widehat{CDE},$$
donc on se ramène à montrer que

$$2AB.BC\cos\widehat{ABC} + 2CD.DE\cos\widehat{CDE} + AB.BC.CD + BC.CD.DE \leqslant 0.$$
 Or, $CD \leqslant CE = AE\cos\widehat{AEC} = 2\cos(180^{\circ} - \widehat{ABC}) = -2\cos\widehat{ABC}$, donc $AB.BC.CD + 2AB.BC\cos\widehat{ABC} \leqslant 0$,

et de même

$$BC.CD.DE + 2CD.DE \cos \widehat{CDE} \leq 0.$$

On conclut en additionnant ces deux dernières inégalités.

Exercice 6. Soit ABCDEF un hexagone régulier et $M \in [A, C]$, $N \in [C, E]$. On suppose que $\frac{AM}{AC}$ et $\frac{CN}{CE}$ sont égaux à un nombre r > 0, et que B, M, N sont colinéaires. Déterminer la valeur de r.

Solution.

On peut supposer que l'hexagone est inscrit dans un cercle de rayon 1. On se place dans un repère tel que les coordonnées de A, B, C sont respectivement $A = (0, 1), B = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ et $C = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$.

Comme $CE = \sqrt{3}$, on a $CN = r\sqrt{3}$ donc $\overrightarrow{CN} = (-r\sqrt{3}, 0)$. On en déduit que

$$N = \left(\frac{\sqrt{3}}{2} - r\sqrt{3}, -\frac{1}{2}\right).$$
 Comme $\overrightarrow{AC} = \left(\frac{\sqrt{3}}{2}, -\frac{3}{2}\right)$, on a $\overrightarrow{AM} = \left(\frac{\sqrt{3}}{2}r, -\frac{3r}{2}\right)$ donc
$$M = \left(\frac{\sqrt{3}}{2}r, 1 - \frac{3r}{2}\right).$$

On calcule aisément que

$$\overrightarrow{BM} = \left(\frac{\sqrt{3}}{2}(r-1), \frac{1}{2} - \frac{3r}{2}\right), \qquad \overrightarrow{BN} = (-r\sqrt{3}, -1).$$

Le fait que B,M,N sont alignés signifie que ces deux vecteurs sont colinéaires, ce qui équivaut à

$$\frac{\sqrt{3}}{2}(1-r) + r\sqrt{3}\left(\frac{1}{2} - \frac{3r}{2}\right) = 0,$$

ce qui se simplifie en $r = \frac{1}{\sqrt{3}}$.

Exercice 7. Soit ABC un triangle et M un point de [B,C]. Soit ω un cercle tangent à (AB) en T et à (BC) en K et tangent au cercle circonscrit à AMC en P. Montrer que si (KT)//(AM) alors les cercles circonscrits à KPC et APT sont tangents en P.

Solution.

Rappelons d'abord que si A, B, C sont trois points d'un cercle Γ , et si δ est la tangente en B à Γ , alors on a l'égalité d'angles de droites $(\delta, BC) = (AB, AC)$.

Soient δ et δ' les tangentes en P aux cercles (KPC) et (APT) respectivement. On a

$$(\delta, PK) = (CP, CK) = (CP, CM) = (AP, AM),$$

et

$$(\delta', PK) = (\delta', PT) + (PT, PK) = (AP, AT) + (TB, TK)$$

= $(AP, AM) + (AM, AT) + (TB, TK) = (AP, AM)$

puisque (TB) = (AT) et (AM) = (TK).

On en déduit que δ et δ' sont parallèles. Or, elles ont un point commun, donc elles sont égales.

Exercice 8. Soient ω_1 et ω_2 deux cercles sécants en deux points X et Y. Un cercle ω est tangent intérieurement à ω_1 et ω_2 en P et Q respectivement. Le segment [X,Y] coupe ω en M et N. Les demi-droites [P,M) et [P,N) coupent ω_1 en A et D; les demi-droites [Q,M) et [Q,N) coupent ω_2 en B et C. Montrer que AB = CD.

Soit ℓ la tangente en M à ω et ℓ_1 la tangente en A à ω_1 . Comme ω est tangent en P à ω_1 , il existe une homothétie h de centre P qui envoie ω sur ω_1 . Or, P, M, A sont alignés donc h(M) = A. On en déduit que $h(\ell) = \ell_1$, et donc ℓ/ℓ_1 .

D'autre part, comme M est sur l'axe radical de ω_1 et ω_2 , on a $\overline{MA}.\overline{MP} = \overline{MB}.\overline{MQ}$ donc A, B, P, Q sont cocycliques. On en déduit que

$$(AB, AP) = (QB, QP) = (QM, QP) = (\ell, MP) = (\ell_1, AP)$$

d'où $(AB) = \ell_1$. Autrement dit, (AB) est tangente en A à ω_1 . Mais de même, (AB) est tangente en B à ω_2 , donc (AB) est une tangente commune à ω_1 et ω_2 . De même, (CD) est une tangente commune à ω_1 et ω_2 , donc AB = CD.

Exercice 9. Soit ABCD un quadrilatère inscriptible. On note K le point d'intersection des diagonales. Soient M et N les milieux de [A, C] et [B, D]. Les cercles circonscrits à ADM et BCM se recoupent en un point L. Montrer que K, L, M, N sont cocycliques.

Solution.

Notons E le centre radical des trois cercles ABC, ADM, BCM. Les triplets (E, A, D), (E, L, M) et (E, B, C) sont alignés.

Soit F le point où les cercles ADK et BCK se recoupent. On a (FA, FD) = (KA, KD) = (KC, KB) = (FC, FB) et (AD, AF) = (KD, KF) = (KB, KF) = (CB, CF), donc les triangles FAD et FCB sont semblables. Soit S la similitude de centre F qui envoie A sur D et C sur B. Alors S(M) = N, donc l'angle de S est à la fois égal à (FM, FN) et à (AC, DB) = (KM, KN). Par conséquent, F, K, M, N sont cocycliques.

E est l'intersection de (AD) et de (BC), donc il est le centre radical des cercles ABCD, ADK et BCK. Par conséquent, E, F, K sont alignés. En utilisant la puissance d'un point par rapport à un cercle, on a

$$\overline{EK}.\overline{EF} = \overline{EA}.\overline{ED} = \overline{EB}.\overline{EC} = \overline{EM}.\overline{EL},$$

donc M, L, K, F sont cocycliques.

Finalement, L et N sont sur le cercle MKF donc K, L, M, N sont cocycliques.