### Notas de aulas de Estatística Econômica

Marcos Minoru Hasegawa

2020-09-14

## Sumário

| Licença          |            |                              | 5  |
|------------------|------------|------------------------------|----|
| Sobre o material |            |                              |    |
| So               | bre        | o Autor                      | 9  |
| 1                | Me         | didas de posição e dispersão | 11 |
|                  | 1.1        | Variável Aleatória           | 11 |
|                  | 1.2        | Média Aritmética Simples     | 11 |
|                  | 1.3        | Média Aritmética Ponderada   | 12 |
|                  | 1.4        | Média Geométrica Simples     | 14 |
|                  | 1.5        | Média Geométrica Ponderada   | 15 |
|                  | 1.6        | Média Harmônica              | 16 |
|                  | 1.7        | Média Harmônica Ponderada    | 17 |
|                  | 1.8        | Mediana                      | 18 |
|                  | 1.9        | Quartis ou Quartiles         | 20 |
| 2                | Rev        | risão de Literatura          | 23 |
| 3                | Me         | todologia                    | 25 |
| 4                | Aplicações |                              | 27 |
|                  | 4.1        | Exemplo um                   | 27 |
|                  | 4.2        | Examplo dois                 | 27 |
| 5                | Cor        | nsiderações Finais           | 29 |

4 SUMÁRIO

## Licença

Como está descrito no repositório, os poucos códigos originais desenvolvidos ao longo do texto estão sob a licença  ${\bf GNU~GPLv3}$  .

O texto e as artes gráficas elaboradas de forma original estão sob licença  ${\bf Creative~Commons~BY-NC-SA~4.0}.$ 

6 SUMÁRIO

### Sobre o material

A situação especial causada pela pandemia da COVID-19 forçou a muitos professores criarem materiais para facilitar aulas remotas das suas disciplinas. A disciplina SE305 Estatística Econômica e Introdução à Econometria da UFPR não poderia ser diferente. Então, o objetivo deste material é de suprir a falta das bibliografias básicas na sua versão digital com a disponibilização de forma digital e gratuita o que seria o material das notas das aulas da disciplina de Estatística Econômica. Não é o ideal, mas a ideia é melhorar o material com tempo.

### Sobre o Autor

Professor do Departamento de Economia da Universidade Federal do Paraná. Engenheiro Agrônomo pela UNESP/Jaboticabal, Mestrado em Economia Agrária pela ESALQ/USP e Doutorado em Economia Aplicada pela ESALQ/USP, é um dos professores responsáveis pelas disciplinas de SE305 Estatística Econômica e Introdução à Econometria e SE308 Econometria ambas do curso de Economia da Universidade Federal do Paraná (UFPR).

10 SUMÁRIO

## Medidas de posição e dispersão

Este tópico está baseado no material de Sartoris (2013).

#### 1.1 Variável Aleatória

- variável aleatória (v.a.) é uma variável que está associada a uma distribuição de probabilidade.
- Ou seja, cada valor da v.a. está associada a uma probabilidade.
- O resultado do lançamento de uma dado, que poder ser qualquer número de 1 a 6, está associada a uma probabilidade de 1/6.

#### 1.2 Média Aritmética Simples

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{1.1}$$

onde i = 1, ..., n

#### 1.2.1 Exemplo 1

Qual é a média aritmética de um grupo de cinco pessoas cujas idades são em ordem crescente, 21,23,25,28 e 31. Para responder, basta aplicar (1.1).

$$\overline{X} = \frac{21 + 23 + 25 + 28 + 31}{5} = 25,6$$

#### 1.2.2 EXemplo 1 no R

```
X <- c(21, 23, 25, 28, 31)
X
```

## [1] 21 23 25 28 31

```
mediaX <- mean(X)
mediaX</pre>
```

## [1] 25,6

#### 1.2.3 Exemplo 2

Qual é a média aritmética de três provas realizadas por um aluno, cujas notas foram 4,6 e 8. Para responder, basta aplicar (1.1).

$$\overline{X} = \frac{4+6+8}{3} = 6$$

#### 1.2.4 Exemplo 2 no R

```
X2 <- c(4, 6, 8)
X2
```

## [1] 4 6 8

```
mediaX2 <- mean(X2)
mediaX2</pre>
```

## [1] 6

#### 1.3 Média Aritmética Ponderada

Na média aritmética ponderada, cada valor pode ter importância diferentes do outros valores considerados no computo. A frequência dos valores é muito comumente usada para para dar maior ou menor importância relativa entre os valores considerados no computo da média aritmética ponderada. Veja como fica a fórmula para o cálculo da média aritmética ponderada em (1.2)

$$\overline{X} = \frac{1}{\sum_{i=1}^{n} w_i} \sum_{i=1}^{n} w_i X_i$$
 (1.2)

onde  $w_i$  é a ponderação ou peso associado a iésimo valor de X.

Podemos escrever na forma de frequência relativa dos valores da variável X:

$$f_i = \frac{w_i}{\sum_{i=1}^n w_i}$$
 (1.3)

#### 1.3.1 Exemplo 3

Qual é a média aritmética de um grupo de vinte alunos, oito com 22 anos, sete de 23 anos, três de 25 anos, um de 28 anos e um de 30 anos. Para responder, basta aplicar (1.2).

$$\overline{X} = \frac{22 \times 8 + 23 \times 7 + 25 \times 3 + 28 \times 1 + 30 \times 1}{20} = 23, 5$$

#### 1.3.2 Exemplo 3 no R

```
X3 <- c(22, 23, 25, 28, 30)
X3
```

## [1] 22 23 25 28 30

```
w3 <- c(8, 7, 3, 1, 1)
w3
```

## [1] 8 7 3 1 1

```
wX3 <- w3 * X3
mediaX3 <- sum(wX3)/sum(w3)
mediaX3
```

## [1] 23,5

#### 1.3.3 Exemplo 4

Qual é a média ponderada de três provas realizadas por um aluno, cujas notas foram 4, 6 e 8. A primeira prova tem peso igual a 1, a segunda tem peso igual a 2 e a terceira tem peso igual a 3. Para responder, basta aplicar (1.2).

$$\overline{X} = \frac{4 \times 1 + 6 \times 2 + 8 \times 3}{1 + 2 + 3} \cong 6,7$$

#### 1.3.4 Exemplo 4 no R

```
X4 <- c(4, 6, 8)
X4

## [1] 4 6 8

w4 <- c(1, 2, 3)
w4

## [1] 1 2 3

wX4 <- w4 * X4
mediaX4 <- sum(wX4)/sum(w4)
round(mediaX4, digits = 1)</pre>
```

## [1] 6,7

### 1.4 Média Geométrica Simples

Na média geométrica simples, a forma de obter uma medida resumo ou de tendência central é multiplicar todos os n valores e tirar a raiz enésima do resultado do produtório. Assim é possível ter duas fórmulas para a média geométrica a (1.4) e (1.5).

$$G = \left(\prod_{i=1}^{n} X_i\right)^{\frac{1}{n}} \tag{1.4}$$

ou

$$G = \sqrt[n]{X_1 \times X_2 \times \ldots \times X_n} \tag{1.5}$$

O que acontece se um dos valores de X for igual a zero? E se um dos valores for negativo?

#### 1.4.1 Exemplo 5

Sejam três valores 4, 6 e 8. Calcule a média geométrica simples.

$$\sqrt[3]{4 \times 6 \times 8} \cong 5,7690$$

#### 1.4.2 Exemplo 5 no R

```
X5 <- c(4, 6, 8)
X5

## [1] 4 6 8

n <- length(X5)
mediaX5 <- prod(X5)^(1/n)
round(mediaX5, digits = 1)</pre>
```

### 1.5 Média Geométrica Ponderada

Na média geométrica ponderada que podem ser calculadas através de duas fórmulas (1.6) e (1.7), cada valor pode ter uma importância diferente em relação aos outros valores no computo da média geométrica. Muito comumente, esta maior ou menor importância pode estar associada a frequência dos valores considerados no cálculo.

$$G = \left(\prod_{j=1}^{k} X_j^{w_j}\right)^{\frac{1}{n}} \tag{1.6}$$

ou

## [1] 5,8

$$G = \sqrt[n]{X_1^{w_1} \times X_2^{w_2} \times \ldots \times X_k^{w_k}} \tag{1.7}$$

onde a  $\sum_{j=1}^{k} w_j = n$ 

#### 1.5.1 Exemplo 6

tomando os valores do exemplo 5 e ponderando por 1,2 e 3, temos:

$$\sqrt[6]{4^1\times 6^2\times 8^3}\cong 6,5$$

#### 1.5.2 O exemplo 6 no R

```
x6 <- c(4, 6, 8)
class(x6)

## [1] "numeric"

x6

## [1] 4 6 8

w6 <- c(1, 2, 3)
w6

## [1] 1 2 3

G2 <- round((prod(x6~w6))^(1/sum(w6)), 1)

G2

## [1] 6,5</pre>
```

#### 1.6 Média Harmônica

É o inverso da média dos inversos dos valores da variável que pode ser calculada através das fórmulas (1.8) e (1.9).

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{X_i}} \tag{1.8}$$

$$H = \frac{n}{\frac{1}{X_1} + \frac{1}{X_2} + \ldots + \frac{1}{X_n}} \tag{1.9}$$

O que acontece se um dos valores de X for igual a zero? Para entender essa situação, use o conceito de limite fazendo o valor tender a zero.

#### 1.6.1 Exemplo 7

Tomando o exemplo das notas, temos:

$$H = \frac{3}{\frac{1}{4} + \frac{1}{6} + \frac{1}{8}} \cong 5, 5.$$

#### 1.7 Média Harmônica Ponderada

Na média harmônica ponderada, assim como na média aritmética ponderada e na média geométrica ponderada, cada valor pode ter uma importância em relação aos outros valores considerados no seu cálculo. Comumente, a frequência do valor pode associaar uma maior ou menor importância no cálculo da média harmônica ponderada que pode ser calculada através das fórmulas (1.10) e (1.11)

$$H = \frac{n}{\sum_{j=1}^{k} w_j \frac{1}{X_j}} \tag{1.10}$$

ou

$$H = \frac{n}{w_1 \frac{1}{X_1} + w_2 \frac{1}{X_2} + \dots + w_k \frac{1}{X_k}}$$
 (1.11)

onde a  $\sum_{j=1}^{k} w_j = n$ 

#### 1.7.1 Exemplo 8

Tomando o exemplo das notas

$$H = \frac{6}{\frac{1}{4} \times 1 + \frac{1}{6} \times 2 + \frac{1}{8} \times 3} \cong 6, 3.$$

#### 1.7.2 Observação

Tanto para as médias simples como para as ponderadas, a média aritmética é maior do que a média geométrica e essa, por sua vez, é maior que a harmônica. Isso só não vale quando todos os valores são iguais. Veja de forma esquemática em (1.12)

$$\overline{X} \ge G \ge H \tag{1.12}$$

#### 1.7.3 Exemplo 9

O aluno tira as seguintes notas bimestrais: 3,4,5,7 e 8,5. Determine qual seria sua média final se esta fosse calculada dos três modos, aritmética, geométirca e harmônica, em cada um dos seguintes casos: i) as notas têm o mesmo peso e; ii) as notas têm pesos diferentes.

i) As notas dos bimestres têm os mesmos pesos.

$$\overline{X} = \frac{3+4, 5+7+8, 5}{4} = 23/4 = 5,75$$

$$G = \sqrt[4]{3 \times 4, 5 \times 7 \times 8, 5} = \sqrt[4]{803, 25} \cong 5,32$$

$$H = \frac{4}{\frac{1}{3} + \frac{1}{4,5} + \frac{1}{7} + \frac{1}{8,5}} \cong 4,90$$

ii) Suponha que agora os pesos para as notas bimestrais sejam, 30%, 25%, 25% e 20%.

$$\overline{X} = 0, 3 \times 3 + 0, 25 \times 4, 5 + 0, 25 \times 7 + 0, 20 \times 8, 5 = 5, 475$$

$$G = 3^{0,3} \times 4, 5^{0,25} \times 7^{0,25} \times 8, 5^{0,2} = 30, 5 = 5, 65$$

$$H = \frac{1}{0, 3\frac{1}{3} + 0, 25\frac{1}{45} + 0, 25\frac{1}{7} + 0, 2\frac{1}{85}} \approx 4,66$$

#### 1.8 Mediana

é o valor que divide um conjunto e dados ordenados ao meio, ou seja, dois grupos de valores de igual tamanho. Com base na definição de mediana, o valor da mediana pode ser obtida através da sua posição que proporciona duas situações: i) o número de valores é impar e ii) o número de valores é par.

i) Quando o número de valores é impar, a posiçãodo valor correspondente a mediana é obtida através de (1.13):

$$PMediana_{impar} = \frac{n+1}{2} \tag{1.13}$$

onde n é o número de valores considerado no cálculo.

 ii) Quando o número de valores é par, a posição da mediana é obtida através da média entre os dois valores centrais do conjunto de valores ordenados de menor a maior. O primeiro valor central é definido pela posição obtida através de (1.14)

$$P1Mediana_{par} = \frac{n}{2} (1.14)$$

onde n é o número de valores considerado para o cálculo.

O segundo valor central é definido pelas posição obtida através de (1.15)

1.8. MEDIANA 19

$$P2Mediana_{par} = \frac{n}{2} + 1 \tag{1.15}$$

onde n é o número de valores considerado para o cálculo.

Assim, a mediana quando o número de valores é par é obtida através da média aritmética simples dos valores correspondentes as posições obtidas por (1.14) e por (1.15) através de (1.16)

$$Mediana_{par} = \frac{ValorCentral_1 + ValorCentral_2}{2}$$
 (1.16)

## 1.8.1 Exemplo numérico de Mediana quando o número de valores é impar

Seja um conjunto de valores 2,-3,1,-2,0,-1,3. Obtenha a mediana.

Primeiramente ordena-se do menor para o maior.

Como se trata de número impar de valores o valor central que divide o conjunto de valores em dois subconjuntos de igual tamanho é o valor da mediana. Neste caso é o zero.

#### 1.8.2 Mediana no R

```
w <- c(-3, -2, -1, 0, 1, 2, 3)
mediana1 <- median(w)
print(mediana1)</pre>
```

## [1] 0

## 1.8.3 Exemplo numérico de Mediana quando o número de valores é par

No exemplo anterior o conjunto de dados era composto por um número ímpar de valores. Neste exemplo o número de valores ordenado de menor a maior é par. Nesse caso, apesar de existir vários critérios, o mais usual é tirar a média aritmética simples entre os dois valores centrais do conjunto de valores ordenados de menor a maior. Uma vez que não existe um valor que separe dois subconjuntos de igual tamanho, a média aritmética simples destes dois valores é o valor da mediana quando o número total de valores não é impar.

Sejam os valores -2,1,3,2,-3,1. Obtenha a mediana.

Primeiramente ordena-se os seis valores.

```
-3,-2,-1,1,2,3
```

Note que trata-se de conjunto com um número par de valores.

Dessa forma, toma-se os dois valores centrais que são -1 e 1 e calcula-se a média aritmética simples. Ou seja, a mediana para este conjunto com seis valores é igual a zero.

#### 1.8.4 O exemplo do número par de valores no R

```
v <- c(-3, -2, -1, 1, 2, 3)
mediana2 <- median(v)
print(mediana2)</pre>
```

## [1] 0

#### 1.9 Quartis ou Quartiles

são os valores que dividem o conjunto de dados ordenados em quatro subjconjuntos de igual tamanho. Ou seja são valores do conjunto que definem o primeiro quarto dos dados (25%), a metade dos dados (50%) que coincide com a mediana, os três quartos dos dados (75%).

Dessa forma para obter os valores que dividem o conjunto de dados ordenados de menor a maior e quatro subconjuntos de igual tamanho, é necessário definir qual é a posição desses valores. Uma vez definido as suas posições pode-se obter os valores corretamente.

A posição do valor que separa o primeiro do segundo quartil é definido por (1.17).

$$PQ_1 = \frac{(n+1)}{4} \tag{1.17}$$

onde n é o número de valores. A posição do valor que separa o segundo do terceiro quartil é definido por (1.18).

$$PQ_3 = \frac{3(n+1)}{4} \tag{1.18}$$

onde n é o número de valores.

Note que o termo genérico é percentil. Por exemplo, o quintis são os valores que dividem o conjunto de ados ordenados de menor a maior em cinco subconjuntos de igual tamanho.

#### 1.9.1 Quartis no R

No R tem uma função específica para a obtenção dos quartis.

```
p <- c(0:100)
length(p)

## [1] 101

quantile(p)

## 0% 25% 50% 75% 100%

## 0 25 50 75 100

faixainterquant <- quantile(p, 0.75) - quantile(p, 0.25)
faixainterquant

## 75%
## 50</pre>
```

#### 1.9.2 Quartis no R

No R tem uma função específica para a obtenção dos quartis.

```
p2 <- c(1:100)
length(p2)

## [1] 100

quantile(p2)

## 0% 25% 50% 75% 100%
## 1,00 25,75 50,50 75,25 100,00</pre>
```

```
## 75%
## 49,5
```

### Revisão de Literatura

Aqui o estado da arte mundo afora.

# Metodologia

We describe our methods in this chapter.

# Aplicações

Some significant applications are demonstrated in this chapter.

- 4.1 Exemplo um
- 4.2 Examplo dois

# Considerações Finais

Terminado um excelente livro digital.

# Referências Bibliográficas

Sartoris, A. (2013). Estatística e Introdução à Econometria. Saraiva, São Paulo, 2 edition.