MASARYK UNIVERSITY FACULTY OF INFORMATICS

Maya2CellVIEW: Integrated Tool for Creating Large and Complex Molecular Scenes

Master's Thesis

Bc. David Kouřil

Brno, Fall 2016

MASARYK UNIVERSITY FACULTY OF INFORMATICS

Maya2CellVIEW: Integrated Tool for Creating Large and Complex Molecular Scenes

Master's Thesis

Bc. David Kouřil

Brno, Fall 2016

Replace this page with a copy of the official signed thesis assignment and the copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

Bc. David Kouřil

Advisor: Mathieu Le Muzic and Ivan Viola and Barbora Kozlikova

Acknowledgement

This is the acknowledgement for my thesis, which can span multiple paragraphs.

Abstract

Scientific illustrators communicate the cutting edge of research through their illustrations. There are numerous software tools that assist them with this job. The aim of this thesis is to push abilities of illustrators working on a large scale molecular scenes. This is done by connecting two software packages - Maya and cellVIEW - combining the rendering possibilities of cellVIEW and modeling tools of Maya which results in more effective and efficient workflow.

Keywords

keyword1, keyword2, ...

Contents

1	Introduction	1
2	State of the Art 2.1 Molecular Data	5 6 8 9 10 12
3	Method 3.1 Process	15 18 18 19 19 20
4	Implementation4.1Shared Memory4.2C++ and C# interoperability4.3Maya API4.3.1MEL vs. Python vs. C++ in Maya4.3.2Dependency Graph4.3.3DAG Hierarchy4.3.4Wrappers, Objects, Function Sets and Proxies4.4Maya side4.5Unity side	23 24 24 24 25 25 26 26 27
5	Demonstration	29
6	Discussion, future work	31
Bi	bliography	33
A	Appendix	35

1 Introduction

In this day and age, scientists come to new findings every day. Unfortunately, not all of these are ever shown to the general public. There can be several reasons for that. New discovered facts are usually pieces of a bigger picture. Also, all the information might be already there, in several databases, but putting it all together would take significant effort and time. On top of that, scientists are not usually trained to expose their results to the public eye.

This is the job of scientific illustrator. These people are, first and foremost, experts in their fields but on top of that they have invested significant amount of time on acquiring and perfecting their artistic skills. They use these skills to visualize the science in their domain with easily understandable images, animations or other forms of media. This thesis focuses on visualization of structure and function of objects in cell and molecular biology. To show examples of such visualizations we can point to works of Drew Berry [1], Graham Johnson [2] or Janet Iwasa [3].

The importance of such work is not only in bringing the science to the laymen. Humans are visual beings and by seeing something we can understand certain concepts more deeply or differently. And this applies to other scientists as well. In practice this means that such artworks can serve as a discussion starters. New ideas, hypothesis and experiments might emerge just by seeing concepts differently or as a compilation of information into one cohesive artwork.

Scientific illustrators have to balance both the correctness and artistic form of their outputs. Where conventional artist can use visuals to suppress or pick up his message, illustrator have only limited

There are many ways how scientific illustrators can do their job. Historically, illustrations have been done by hand with traditional drawing and painting methods. Even today, some illustrators still prefer this way of working. It is however a very timely process, as individual illustration can take months to make. Probably the most well known and accomplished person in this is David Goodsell¹. Goodsell has developed a style of abstracting details while preserving the general shapes. However, this is a very timely process, as individual

^{1.} David Goodsell's web page: http://mgl.scripps.edu/people/goodsell/

Figure 1.1: David Goodsell's illustration of

illustration can take months to make[4]. If we consider the speed at which science is moving forward nowadays what could end up happening is that before an illustration is finished a new finding emerges, rendering the illustration effectively obsolete. This is of course undesirable and we need to look for ways how to accelerate, or even partially automate, this process.

With the increasing popularity of computer generated imagery, it has naturally been adopted by scientific illustrators as well. Tools have become more accessible and easier to use over the years. Today, software solutions like Maya, Cinema4D or 3Ds Max have become industry standards for any task that revolves around modeling 3D geometry and rendering it. Game and movie industry are the leading industries that push computer graphics software creators forwards and provides most of the revenue for them. This means that these tools, no matter how versatile they try to be, are being skewed towards the use cases in movies and games. That means that people who want to create scientific content might struggle to use the tools sometimes. Still, people have been able create amazing images and movies showing people phenomena from all kind of science disciplines.

With traditional methods it was timely to create just a static illustrations. This process can be sped up by using modern tools with the help of computers. But the bar has been raised by the need of animated content and movies. Now this is what can take months to prepare. Using professional 3D tools certainly helps. For example, instead of frame-by-frame animation, physics simulations can be used to create animations which are (at least to a certain extent) physically correct. The problem that still persists though is that vendors do not design their products with a use in scientific illustration in mind. It would actually be impossible to do so when we take into account how much different uses we would like to employ this software. But we still need a way how to import scientific data into the program and work with them.

To do that, people have learned to customize this software[5]. Commercial 3D authoring software is by convention highly customizable via scripting and/or APIs. This allowed illustrators and animators to extend the software by implementing functionality that they need. For example, one task that commercial toolsets do not solve is loading scientific data and structures as models. Some of these have been re-

leased to public (as we will see in chapter State of the Art) but most of the scripts are being developed and used only by the original author.

From a completely different section of the field of molecular visualization, there are domain-specific tools. There also exist programs that are completely separated from any of the mentioned commercial software. There is an active research in the domain of visualization, with many conferences every year and hundreds of research papers in this field coming out. Usually, as a byproduct, these paper generate software that showcases the proposed visualization technique or pipeline. Some of these have been turned into full featured visualization packages and thus provide a way how to illustrate something in a new way. While these programs might hugely benefit scientific illustrators, it's not always the case that they get used. This might be because of several reasons one of which is that the illustrators are simply used to a certain pipeline and incorporating a new software into this pipeline doesn't seems very beneficial to them. Another problem is that because these programs are developed for a certain use cases (showcasing the point of the paper) they might not be easily applicable to more than one purpose.

In the next chapter, we will describe the state-of-the-art programs and tools that are used for molecular visualization today and we will mainly focus on showing the gaps in intercompatibility of the available programs. Then, in chapter 3, we will propose a method of how the problem could be solved.

2 State of the Art

Several approaches can be taken when creating an illustration, animation or interactive experience that has some basis in science. We will show tools that help with this process, describing its primary use, discuss its implementation and how this tool is or could be used. Listed solutions are the ones which we believe are or were pivotal or at least present ideas which we think are beneficial to this field.

First however, we will talk about the character of data that we are mostly working with in the field of molecular visualization.

2.1 Molecular Data

All matter consists of **atoms** which are grouped in **molecules**. Atoms in turn contain protons, electron and neutrons which have their own internal structure. This is a level which is out of the scope of what is relevant to this thesis. Individual atoms are the smallest elements that we will consider.

Biomolecules is a term describing any molecule that takes part in some process in living organisms. **Macromolecules** are molecules that are very large, containing typically several thousands of atoms or more. We will not be dealing with chemical properties of molecules and therefore details like what forces hold which elements together are omitted. We are mostly interested in the structure of such objects-what they look like.

Proteins are macromolecules that are formed by a process called protein synthesis. During this process, part of DNA is transcribed into messenger RNA which is then turned into chain of amino acids that fold into a protein.

Lipids are hydrophobic molecules that typically serve as a building blocks of lipid membranes. Lipid membranes' function is to separate different compartments in a cell.

Different techniques are used to acquire molecular data. The three most widely used are X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR) and cryo-electron microscopy (cryo-EM). Each of these techniques has their benefits and downsides. For example, using NMR, only structures of limited size can be resolved. On

the other hand, using cryo-electron microscopy can be used to resolve large structure but only in low resolution.

RCSB Protein Data Bank is a database where the information about structure of large biological molecules resolved using these techniques is stored. Each molecule is identified by PDB ID, typically a four.... Data can be exported and downloaded in several formats, most notably PDB file format with extension .pdb. For us, the most relevant data that can be acquired from this file is the list of atoms with their XYZ coordinates.

Between the molecular (observable with methods like NMR and Xray crystallography) and cellular scale (observable with microscopy), there is an intermediate scale (mesoscale, 10-100nm). In general, there are no good method available to observe objects in mesoscale in atomic detail. Because of that models on this level must be compiled computationally by using information from multiple sources. cellPACK[6] is a software that does exactly that. With cellPACK we can assemble models of an intermediate scale by employing packing algorithms. A recipe serves as an input for this algorithm. A recipe is a compilation of data from light and electron microscopy, x-ray crystalography, NMR spectroscopy and other biochemical data. The process then has two steps: gathering of the data to compile a recipe and then assembling a virtual model from this recipe. cellPACK has been developed at Scripps institute and is a biological version of a more general software called autoPACK. Both of these are implemented in Python and open-sourced.

2.2 Professional 3D Software

Using a professional 3D modeling and animation software can help scientists to communicate their ideas. These programs have been designed to provide means for people that need to create three dimensional models of any kind. And in the past several years, more and more scientists do employ professional 3D solutions into their pipeline for various purposes.

Unfortunately, these programs usually come with a very steep learning curve. Mastering this tool, or even just getting on level of proficiency enough to produce any meaningful work, is not an easy task and takes between several months to years. This is not something a lot of researchers are willing, or even able, to sacrifice. The good news is that there is usually a number of learning materials available on the Internet, both supplied by the vendor of the software and third parties.

Another problem with software meant to general 3D editing is that these tools are not designed with molecular visualizations in mind. This is problematic because of the fact that scientific illustrators mostly want to work from accurate data. Mentioned software is primarily designed to be used by workers in entertainment industry. Thus there is missing any framework which would enable to import scientifically accurate data in the basic program installation.

There is number of options to choose from currently available products. Most widely used are Autodesk Maya and Cinema 4D although other programs, like open-sourced Blender or a relatively young MODO[7], have been successfully used in various projects.

Disregarding the differences between all the 3D software of this kind, there are features that are more or less contained in all of them and over the years have become must-have features that tremendously help with navigating and editing of 3D scene.

First, objects in scenes are organized into some variation of "scene hierarchy" or "scene tree". This allows users to organize their objects and establish parent-child relationships between these objects.

Second, navigation in the 3D scene is always solved to be intuitive enough to provide efficient ways how user can position his view. Every named program allows the user to open multiple viewports at the same time where every viewport shows different camera position.

Third, object manipulation—translation, rotation and scale—is solved and made available under shortcut which allows the user to work efficiently. Shortcuts are often instruments each individual artist gets used to and might have a hard time switching to different product. Despise the mentioned drawbacks, professional 3D software is being widely adopted as a solid base of workflow of scientific illustrators and animators. Once illustrators overcome the initial learning period, general 3D software becomes a powerful tool in their toolset.

2.2.1 Rendering

Important component of any professional 3D program is a renderer. Renderer is a tool which turns the 3D scene into a final image (or series of images in case of an animation). All of the mentioned products come with at least one default, pre-installed, renderer. On top of that, user can install external rendering solutions, either commercial or free-to-use. This installation is most often done via plug-ins.

The process that these rendering solutions use is sometimes referred to as "off-line" rendering. The opposite of this would be realtime rendering. The difference is mainly in the amount of time that these two types of rendering take. Off-line rendering has taken physical correctness and/or realistic look as it's primary goal while the amount of time the rendering process takes is given less priority. Actual numbers are dependent on the complexity of the geometry in the scene and the materials and effects used in this scene. But the ranges are from several minutes to hours for casual purposes. On the other hand, real-time rendering aims to render several times each second. The obvious benefit here being that the scene can change dynamically and is still rendered with a frame-rate that human eye considered continuous movement. In past the benchmark of 30 FPS (frames per second) has been considered to be the standard, however these days 60 FPS is starting to be more and more common. For 30 FPS, every frame has to been rendered in under 1/30 s = 16 ms. In real-time rendering, rasterization[TODO:ref] is considered the state-of-the-art approach as it enables us to achieve interactive performance fairly easily. Ray casting[TODO:ref] and ray tracing[TODO:ref] are the two basic types of algorithms used in off-line rendering.

Plethora of external off-line renderers exists these days. From the popular commercial ones like OTOY's Octane, Chaosgroup's V-ray, Pixar's RenderMan to open-sourced solutions—LuxRender or Cycles (which is now available in default installation of Blender).

In the same way as with particular modeling software, the choice of the renderer is mostly personal choice of the person using it. Renderers are, too, complex tools which take some time to truly master. This means that when somebody learns how to use a certain renderer they usually stick to this solution.

2.2.2 Plug-ins

It has become a convention that all of the professional 3D authoring packages (like Maya, Cinema4D or even Blender) provide one or more means of how users can program additional functionality themselves. There are two major ways how vendors accomplish this.

First, scripting interface is provided. This means that user can both perform operations and trigger actions by using Graphics User Interface (or GUI) but in addition to that they can do the same (and in most cases even more) by calling particular commands via a command-line-like interface. Obviously the capability of these additional implementation is limited and scripting interface is mostly used to automate tasks which would otherwise take too much time.

Second way is the ability to load plug-ins that use Application Programming Interface, or API, designed by the vendor. API provides classes and functions that can access and alter internal state of the program or the data inside it. This way the user can implement functionality that he or she is missing from the basic program. Thanks to that these 3D authoring programs can be adapted to more specific use cases.

Some of these plug-ins have actually already been implemented to help artists in molecular illustration. The most typical functionality implemented is a way how to load molecular data into the program.

An example of that is Molecular Maya¹, which, as the name suggests, extends Maya with the ability to load and manipulate models of macromolecules. These can be loaded either from PDB online database or by loading a pdb file from disk. After the molecule is loaded, user can select how by which representation should it be displayed. One of the functions also creates mesh model out of this molecule. User is able to select in which level of detail this export will be performed. Molecular Maya plug-in is free to use with the option to purchase upgraded version that provides more advanced functionality.

BioBlender provides similar functionality for Blender software. MCell and CellBlender[8], plug-ins also for Blender, focus more on the function of proteins and simulation of these processes.

The rendering stage takes place after the scene is modeled. Again, there are more options at hand. 3D packages usually come with a

^{1.} Available to download at: http://www.molecularmovies.com/toolkit/

default rendering solution which is for the most part good enough to use. For more demanding artist, external renderers like vray, mental ray, corona or octane. What these renderes have in common is that they are so called "off-line renderers". In practice this means that they are using ray tracing (or similar) technique to render the scene with a process that is very much close to how light works in real life. The disadvantage of this approach is that this process take more time. It usually isn't possible to achieve real-time rendering (fps at least 25).

2.3 Domain-specific tools

In the field of molecular visualization as a separate research topic, numerous programs exist. They share a some features but they each have their own specialties and are meant to be used for slightly different tasks. We will name a few that have been developed for some time and have matured to a certain extent. Apart from that, other tools exist which are even more specialized. These might be results of a research and they accompany a paper describing the technique. This means that these programs are not that well usable out-of-the-box but rather serve as a demonstration of a certain technique.

One of the more user-friendlier and easier to use tools is **Molecular Flipbook**. It has been developed by a team lead by Janet Iwasa and it consists of two parts - an animation program and a website where creators can share their outputs. Main motivation for this project is to create tool that even scientists without education in animation can use to communicate their ideas through simple molecular animations. They achieve this by building the program around the concept of simplified key-frame animation technique. The website portion of the project is meant to serve as a database of animations explaining various processes. Creators can upload their works and improve works of others.

It has been build on top of Blender's game engine functionality. **Molecular Workbench**?

PyMol[9] is a molecular visualization system aimed to be used by expert users. It is an open-source software product in which the user can view, render, animate and export 3D molecular structures. PyMOL can visualize molecules with several representations - spheres, surface,

mesh, lines, sticks, etc. Rendering of high quality images can be done with internal ray caster.

PyMOL focuses on visualization of individual macromolecules, not so much used to create molecular scenes which contain several thousands of these.

VMD (Visual Molecular Dynamics)[10] serves as a tool for modeling, visualization and analysis. It actually has a long tradition, being first introduced in 1996. Similarly to PyMOL, VMD has been used extensively to make figures and illustrations for covers of textbooks and journals. It's primary purpose lays in molecular modeling—using computer simulations in applicati

cellVIEW[11] is a tool with the ability to render large biological macromolecular scene at an interactive frame-rate. It has been designed and implemented with regards to this use case with the use of state-of-the-art rendering techniques. It employs several modern techniques to reduce the amount of processed geometry in macromolecular scenes to provide its users with a real-time performance. As a result cellVIEW can render scenes containing up to several billion atoms with a frame-rate above 60 FPS. cellVIEW has been implemented with Unity game engine. The rendering styles has been inspired by illustration by David Goodsell who has developed a style of abstracting the shape of individual proteins to reduce visual noise of the picture. cellVIEW imitates this approach by incorporating a level-of-details scheme - the farther the protein is from the camera the less amount of its atoms are rendered and the rendered atoms are scaled up. This approach results in a multi-scale visualization - user can zoom in to see individual atoms of a protein instance, or he can zoom out and see the whole dataset with its distinguishable compartments. The biggest dataset that has been possible to visualize is HIV, however tests have been done and it should be possible to render e-coli bacteria (which is X times larger)

ePMV[12] tackles similar problem as we do. The goal is to simplify process of generating figures and animations for scientific purposes taking into account the fact that illustrators have tools that they are familiar with. ePMV is a plug-in which brings molecular visualization toolset into various 3D authoring software, in this context called host. They take advantage of host API which is nowadays commonly exposed to be used by custom Python scripts. By implementing they

Figure 2.1: ePMV architecture

create an unified environment where the molecular visualization software can run. Thanks to this unified environment, an adaptor, the molecular program can stay the same across all the supported hosts. Only the adaptor needs to be adapted to a new hosts' API. When designed, emphasis has been given to making sure that both native (general 3D modeling) and scientific molecular tools are used in conjunction to their full potential.

Several host programs are already supported—Cinema4D, Blender, Maya and 3ds Max, with plans to extend this list further.

2.4 Workflow

The actual workflow obviously differs from illustrator to illustrator, different software is used, different plug-ins and most importantly different data and project goals.

It is however important to formalize a little bit how the workflow looks like. Our goal is to connect one of the specific domain tools into a professional software. By doing that, we want to achieve faster and therefore more effective workflow.

We consider the pipeline to be composed of two major steps - modeling and rendering. In the modeling step, all the data, requirements, hypothesis, ideas and stories are compiled into a 3D scene or animation. Artist usually uses software-specific features like particle systems, physics simulations,... to get there.

The next step is generation of either still image or animated video from the 3D scene/animation. This is equally, maybe even more so, important as the first step. By using certain rendering techniques we can underline concepts which are important to the artwork. The level of detail has to be carefully chosen not to overwhelmed the audience with visual noise. Traditionally, the rendering step has been very computationally intensive. Today with the power of modern GPUs and the increasing availability of such devices, the render times have been reduced dramatically. Still, this represents an obstacle in the workflow of animator. Even just one minute delay can cause distraction.

This is the problem that we wanted to solve by using custom state-of-the-art molecular renderer. As was mentioned before, at this domain, hyper-realistic results of modern rendering methods are not that beneficial to us. We instead want to employ more illustrative, simplified rendering styles. That brings us another benefit in that this rendering method is better performing allowing us to render at interactive (real-time) frame-rate. By using our fast renderer, we want to eliminate the time cost of rendering step when using conventional off-line renderers.

3 Method

As was discussed in State of the Art chapter, the majority of artists uses commercial 3D software. These programs are very good at modeling and rendering 3D content as a set of meshes - 3D objects consisting of triangles. However, for molecular data and scenes, mesh is not the best representation and there exist rendering techniques that perform way better if we use other representation.

Another thing we can take advantage of is that illustrations and animation describing structures and function of objects at nanoscale don't often profit from using ultra-realistic rendering. The concept of realistic rendering and light/material interactions don't exist at this scale. They show concepts that are happening at different scales than the stuff that programs are usually made for. Thus they usually want to use more illustrative, simplified, rendering styles.

In our use case, this is even more true because we are dealing with a very dense data sets. We want to simplify what we show to reduce the visual noise in the output image. Various level-of-detail (LOD) schemes exist and they not only help with filtering of the visual noise but also reduce the performance requirements.

Thanks to these simplifications we can render molecular scenes with interactive frame-rates, as has been shown by cellVIEW[11]. Unfortunately, these techniques are not implemented in 3D commercial programs which is what the artists usually use. Our goal is to make it so that the artist can use his software of choice to model his scenes but also take advantage of modern rendering. The use is two-fold: real-time rendering can serve as a preview of the scene but also can be used as a final result. The goal of this project was to come up with an idea of how to connect these two programs so that they will work together.

Ultimately, we have two programs and we want to use some functionality from the first one and other functionality from the second one. The naive solution would be to implement our desired functionality into the software that is missing it. In our case, that would mean we could either implement the fast and visually appealing rendering into our modeling software, or we could do the opposite and implement the desired modeling tools into our renderer.

The problem with the first approach is that substantial percentage of the 3D software packages that artists are using the most are commercial solutions with closed source code. It is possible to extend them via API that they provide but that is not enough if we want to implement state-of-the-art technique that sometimes requires the latest technology in terms of graphics API etc.

We also don't want to implement desired 3D modeling tools into our specific domain program. This would create development overhead which wouldn't bring much benefit on its own. Besides that, every artist uses different instruments and gratifying all of them would be impossible thing to achieve.

We've chosen to go with another, third, option instead. We don't want to re-implement from scratch something that is already available to use. Instead, we went for a different approach and tried to connect the two parts in a way that would allow us to use both sets of features at the same time. We do this by using both of the programs and establishing a communication channel between them. We use writing and reading from shared memory to accomplish this communication. In our case the communication is one-way. We can model the scene on one side and we want to transfer data describing this scene to have it rendered on the other side. As we will show this can be done in a straight-forward fashion as our scenes can be simplified to the point when we can describe them with few numbers.

We can establish such communication between the two programs mainly thanks to the character of the data we are dealing with.

Scenes we work with consist of macromolecules - proteins and lipids. Macromolecules in turn are made of atoms of different elements. There are multiple representations by which we usually visualize atomic data (see chapter State of the Art) [TODO: where should I put this?]. However the underlining data doesn't change. An instance of molecule is defined by the type information (what kind of molecule this is), position and rotation of the instance, and last, a list of atoms that this molecule is made of.

On the side of modeling program, we want to see an approximation of the scene. One way would be to use a simple geometry like cube or sphere as a placeholder for each molecule. Such placeholder would then serve as an object that we manipulate instead of an actual molecule. We tried something a little bit different. With Molecular

Figure 3.1: Workflow, a. before, b. after

Maya plug-in, we can load a molecule description in form of a pdb file. With the same plug-in it is also possible to generate a polygonal surface mesh representation with choosable detail level. We therefore load a molecule and generate very low resolution mesh which serves as our placeholder.

On the Figure X, you can see an overview of the system. On one side we have a modeling software while on the other we have a domain-specific tool, in our case it's a high performance renderer. Our vision was to have both of these programs running at the same time. The illustrator could have his scene opened in his modeling software. This way he would be using the tools he knows and is accustomed to for modeling the actual scene. Then on the renderer side he would be able to see how the changes he's made are reflected in the rendered final image. This all would happen in real-time thanks to writes and reads into and from shared memory.

As was already mentioned, when dealing with molecular data we can take advantage of several simplifications. A scene like this consists of macromolecules: proteins and lipids. First simplification - we consider the shape of the molecule to be static. This means that inside each molecule, the positions of all the atoms doesn't change in time. The position of the atoms is taken from the PDB file. The second simplification is that all the instances of certain molecule type look the same. They only differ in position and rotation.

With these facts in mind, we can define a molecular scene as a set of molecules, where each molecule is defined by its position, rotation, and type, which says what kind of molecule this instance is.

This means that we need to stream this data - positions, rotations and types - of all molecule instances from the modeling software to the rendering tool. Because of the technical implications we write the data in a format described on Figure X. This is more efficient that writing the data in a format position/rotation/into for each molecule.

3.1 Process

3.1.1 Parsing the Scene

Inside the modeling software, we scan the scene, looking for molecular objects. We need to identify an object which is supposed to represent

an instance of a molecule. We find out what type of molecule this is. This information is saved in a form of pdb id. For each of the found instances we also read its world position and rotation. This info is accumulated into an array and then prepared to be written into the memory.

There are several approaches and optimizations possible at this level and these depend mostly on the API that the modeling software provides. We were able to inject this method into a callback which is called every time the scene has changed. After this happens, we scan all the models in the scene and look for molecular objects. This could be optimized in a way that only the objects that have changed report their changes. That way not all the object in the scene need to be scanned which saves us some performance. As we've discovered however, the APIs are not always keen on having such a performance-heavy procedures executed on each frame and so the concrete implementation heavily depends on the chosen modeling software and its API. We will describe in more detail how we accomplished this with Maya API in the chapter Implementation.

3.1.2 Writing into and Reading from Shared Memory

Once the data about current state of the scene is accumulated into position, rotation and info arrays, we can write these into the shared memory. Operating system API calls should be used for this. Again, for more details, see chapter Implementation to see how we did this on Windows operating system.

3.1.3 Using the data

Reading the data uses operating system API calls as well. In our case, because we are operating on the interface between c++ and c#, the code that reads from the memory is pretty simple, only retrieving memory address and sending it into the c# part of the system. This data is then copied into buffers inside cellVIEW which in turn sends them to GPU for render. We format the data in a way so that there is no additional manipulation on the data between these steps required. After the data write, we ideally want to only copy the chunks of memory from one place to another.

We have chosen Maya as the modeling software because our collaborating partner, Drew Berry, is its prominent user and he's been a key person that we had in mind when implementing this method. Choosing cellVIEW as the renderer has been an obvious choice as its rendering capabilities are on the state-of-the-art level of what common hardware computers are able to render. Drew Berry has been impressed with the results of cellVIEW and expressed his interest in using it for his movies.

3.2 old

[we don't want to use files TODO: why?]Our method tries to solve these two problems. The problem of import/export is solved by using shared memory instead of files managed by the user. The rendering times problem is solved by using modern rendering techniques which enable us to render what we want in an interactive frame-rate. The reason why it's possible to take this approach of using shared memory comes from the character of data that we work with. Molecular scenes consist of molecules. Molecules are made of atoms which can be, and usually are, represented as spheres. Atoms of different elements are visualized by having different radii and colors. So for every molecule we need to keep track of what atoms it consists of, positions of those atoms and type of each of those atoms. This is even more leveraged by Protein Data Bank, which stores data about various proteins that have been found through out the years. For us, this means that we only need to keep track of the type of molecule and by fetching data from Protein Data Bank we get information about the protein cataloged under the protein identifier. Our scenes are (simplified) made of macromolecules. That means that in the end for rendering the scene we need a list of molecules, where for each molecule instance we need to save it's position, rotation and type. That's all the info that we need to be able to render our large molecular scenes. Even though this is still a lot of data, we are slowly getting to being able to render this on commonly available hardware. Because of the fact that this data size is "manageable" by modern computers we are able to store the data in shared memory. This method is mostly valuable as an example of how interconnection of software can be done and what improvements to the users this can bring. There is some prerequisites - both programs need to be extensible to the extend of the programmers must be able to develop extension that are able to read from and write to the shared memory using operating system API calls.

4 Implementation

This chapter will in detail describe the implementation of real-time scene data sharing between Autodesk Maya and cellVIEW. Autodesk provides Maya users an API which allowed us to extend this program with required functionality. Similarly, we have been able to create plug-in for cellVIEW. This was because of the fact that cellVIEW is implemented using Unity engine which also allows custom plug-ins in a form of DLL to be used.

The architecture of the system consists of three parts - a plug-in for Maya, plug-in for Unity and a Unity script - as you can see in Figure 4.1. The data flows only in one way - we write into shared memory with Maya plug-in and read from shared memory with Unity plug-in. This simplifies the situation from the implementation point of view because we don't have to design synchronization scheme. The plug-in for Maya is using Maya API (which will be described later) and is written using in C++ programming language. The function of this plug-in is to parse the 3D scene, looking for a molecular objects, and output their positions and rotations (along with info about the instance) into the shared memory. Unity side of the system consists of two parts - a C++ plug-in and a C# script. The C++ plug-in takes care of reading the data from shared memory, while the C# script, which is a part of cellVIEW, receives this data and uses them to render the final molecular scene. Note that there are two types of interoperability between components: (1) shared memory functionality, which enables two processes to communicate, and (2) interoperability between C++ and C#, which allows us to pass memory addresses from the plug-in to the script on Unity side.

4.1 Shared Memory

Shared memory is a segment of system memory which can be accessed by multiple programs. It is used as an efficient way to establish communication between separately running processes. Our implementation has been done on Windows, however the concept of shared memory can be found on all operating systems.

Figure 4.1: Overview of system components

From now on, we will be talking about the implementation that has been done on Windows operating system. There are several way how we can access shared memory here. boost library provides class that provides an abstraction above shared memory functionality. Similarly, Qt framework also has class with comparable function set. We chose to not use any of these. Instead, we directly used Windows API function calls to operate with shared memory. This solution has been chosen because we wanted to use the lowest possible layer because of speed concerns. This unfortunately means that our implementation is tied to Windows platform. Porting to other platforms should however be straight-forward.

4.2 C++ and C# interoperability

4.3 Maya API

Maya actually provides two APIs - one in Python [13] and one in C++ [14]. In addition to that, there is also third way how additional functionality can be implemented - MEL scripting language [15].

4.3.1 MEL vs. Python vs. C++ in Maya

MEL (Maya Embedded Language) is very similar to other scripting languages like Bash or Perl. It is not fully mature programming language and therefore is suitable only for things like automating tasks that would otherwise be done through the GUI. There is however one thing in which MEL excels and is perfectly suited for inside Maya programming ecosystem - creation of custom GUI. Even though graphics interface can be made by using modified Qt library [16], extending the interface is way faster and easier with MEL.

Python API is more mature then MEL. Its advantage is that Python, as an interpreted language, can be run without compilation. This means that there doesn't have to be a compilation step and this makes the iteration loop faster. However, Python is, naturally, expected to be slower than C++. We wanted to implement a functionality that is real-time. This means that we needed every piece of performance we could get. Because of that, the C++ API has been chosen and thus our Maya plug-in has been implemented in C++.

There is also another reason why only the C++ route could be taken. We wanted to write into shared memory. The most basic way how to do that is via system API function calls. In our case, we implemented this on Windows platform. Thus the API we used has been WinAPI.

4.3.2 Dependency Graph

Maya's internal scene representation is called Dependency Graph. It is a network of nodes where each node has a set of inputs and outputs. Through these inputs and outputs the nodes are connected and data is propagated through the network. The idea is that each node performs some computation using input parameters and forwards the result further. There is an optimization in this approach in that the calculation is only done when the input parameters have changed somehow. If an output of a node is requested when the inputs have not changed, instead of performing the computation, a cached value is returned.

4.3.3 DAG Hierarchy

DAG (Directed Acyclic Graph), as the name suggests, is a structure in which nodes are connected with edges that have an orientation with the constraint that they can't create loops. In Maya API context this refers to a hierarchy of nodes which establishes parent-child relationships between them.

Figure 4.2: Plugin contents

4.3.4 Wrappers, Objects, Function Sets and Proxies

In Maya API, we can find four types of C++ objects: wrappers, objects, function sets and proxies.

Wrapper objects usually provide utility functionality either for easier manipulation with data or mathematics. These include classes like MFloatArray, MMatrix, MVector, MQuaternion or iterators for traversing collections of data - MItDependencyGraph, MItMesh...

Objects and **Function Sets** are used to access and change internal object in Maya. Objects are instances of class MObject and they basically serve as a handle which only holds the necessary information about kind of object do they point to. In a way Objects are typeless and their type is determined by a mechanism called RTTI (Run Time Type Identification). Function Sets are here to actually perform operations on Objects. Function Set classes always start with a MFn* prefix and they are designed to be compatible with only certain Objects.

Proxies are classes that allow developers to implement new types of objects like custom nodes or commands. Proxy classes are always prefixed with MPx*.

4.4 Maya side

Maya plug-in implements two new custom commands and one new custom node. When the plug-in is loaded and initialized it creates a new menu item in Maya's main toolbar. Under this menu item there are two sub-items (buttons) - Start Streaming and Stop Streaming. These are set up to trigger call of appropriate command - startStreamingCommand to start the streaming and endStreamingCommand to stop it. This interface is made to adapt to the state of streaming, you should not be allowed to stop streaming when no streaming is happening and you shouldn't be able to start streaming when you already are.

The new custom node is class which inherits from MPxLocatorNode. This is a proxy type objects (as can be told from MPx prefix) and it serves as way to implement new node type. In this case the node is a locator node. What this inside Maya means is that handle that you use when you change objects in Maya scene. This doesn't really sound like something we are trying to do. And indeed this is a little bit of a hack. We needed to implement our functionality in a place in Maya APi that would be called every frame, every time something in the scene has changed. MPxLocatorNode has a method draw which can be overridden and this way we can implement our custom functionality which will be performed every time something in the scene changes.

Another option would be to use connection of inputs and outputs and perform the code when these changes happen.

startStreamingCommand adds an instance of the custom node into the scene.

4.5 Unity side

On the side of cellVIEW (or Unity), we have two components - dll plugin and a C# script. Topics - Architecture of the plugin, very generally about plugins (it's just a basic C++ dll plugin), interface between C++ and C#

5 Demonstration

In this chapter we present two use cases of how the user can approach illustration with this new proposed system. Use case one - modified Janet's scene. Use case two - microtubulus (create a model in maya and then name it properly and we will get it in cellVIEW).

6 Discussion, future work

The strongest use of the tool as of right now is the live preview of the scene.

Limitations (of the tool) - what was done just for the use case and should be worked on for final production. The project has been presented to Drew Berry (I think). Also, it was mention in a talk in Utah, presentation by Peter Mindek. The method has tremendous potential in its application. The current implementation should be extended for both performance and actual use for artists. For this however, we will need additional input from domain experts. We have been fortunate enough that Drew Berry really liked this work and expressed his desire to develop this project further. It is highly probable that we will be working even more closely with him and that we would continue to improve this system so that he can use it for his movies production. The challenge will be how to design the system to be easily adaptable by other creators as well.

Bibliography

- [1] Drew Berry. *Molecular animations*. URL: http://www.molecularmovies.com/movies/viewanimatorstudio/drew%5C%20berry/.
- [2] Graham Johnson, Andrew B Noske, and Brad J Marsh. *Rapid visual inventory and comparison of complex 3d structures*. 2011. URL: https://www.youtube.com/watch?v=Dl1ufW3cj4g.
- [3] Janet H Iwasa. "Animating the model figure". In: *Trends in cell biology* 20.12 (2010), pp. 699–704.
- [4] Illustrating Ebola. URL: https://www.youtube.com/watch?v=f0rPXTJzpLE.
- [5] Gaël McGill, Ph.D. and Graham Johnson, Molecular Animators. URL: https://pdb101.rcsb.org/learn/resource/molecular-animation-q-and-a-interview.
- [6] Graham T Johnson et al. "cellPACK: a virtual mesoscope to model and visualize structural systems biology". In: *Nat Meth* 12.1 (Jan. 2015), pp. 85–91. URL: http://dx.doi.org/10.1038/nmeth.3204.
- [7] Viscira takes us inside the body with MODO. URL: https://www.thefoundry.co.uk/case-studies/viscira/.
- [8] Joel R Stiles, Thomas M Bartol, et al. "Monte Carlo methods for simulating realistic synaptic microphysiology using MCell". In: *Computational neuroscience: realistic modeling for experimentalists* (2001), pp. 87–127.
- [9] Schrödinger, LLC. "The PyMOL Molecular Graphics System, Version 1.8". Nov. 2015.
- [10] William Humphrey, Andrew Dalke, and Klaus Schulten. "VMD Visual Molecular Dynamics". In: *Journal of Molecular Graphics* 14 (1996), pp. 33–38.
- [11] Mathieu Le Muzic et al. "cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets". In: Eurographics Workshop on Visual Computing for Biology and Medicine. Ed. by Katja B"uhler, Lars Linsen, and Nigel W. John. EG Digital Library. Chester, United Kingdom: The Eurographics Association, Sept. 2015, pp. 61–70. ISBN: 978-3-905674-82-8. URL: https://www.cg.tuwien.ac.at/research/publications/2015/cellVIEW_2015/.

BIBLIOGRAPHY

- [12] Graham T. Johnson et al. "ePMV Embeds Molecular Modeling into Professional Animation Software Environments". In: *Structure* 19.3 (), pp. 293–303. DOI: 10.1016/j.str.2010.12.023. URL: http://dx.doi.org/10.1016/j.str.2010.12.023.
- [13] Maya Python API. url: http://help.autodesk.com/view/MAYAUL/2017/ENU/?guid= files Maya Python API htm.
- [14] C++ API Reference. URL: http://help.autodesk.com/view/MAYAUL/2017/ENU/?guid=_cpp_ref_index_html.
- [15] *MEL Overview*. url: http://help.autodesk.com/view/MAYAUL/ 2017/ENU/?guid=GUID-60178D44-9990-45B4-8B43-9429D54DF70E.
- [16] Using Qt in Plugins. url: http://help.autodesk.com/view/
 MAYAUL/2017/ENU/?guid=__files_GUID_13434252_F0BF_
 4ACO_B47B_09BD626B0881_htm.

A Appendix

Here you can insert the appendices of your thesis.