

IIC1253 — Matemáticas Discretas

Tarea 4 – Respuesta Pregunta 1

Pregunta 1

Para un conjunto A, sea R_1 y R_2 dos relaciones de equivalencia.

1. Demuestre que $R_1 \cap R_2$ es una relación de equivalencia.

Para demostrar esto basta con probar que la intersección de:

• Dos relaciones reflejas es refleja.

Esto será verdad si

$$\forall a \in A.(a,a) \in R_1 \cap R_2$$

como R_1 es refleja y R_2 es refleja se cumple

$$\forall a \in A.[(a,a) \in R_1]$$

$$\forall a \in A.[(a,a) \in R_2]$$

entonces como $\forall a \in A, (a, a)$ pertenece R_1 y a R_2 simultáneamente, entonces (a, a) está en la intersección de ambas relaciones.

En otras palabras

$$\forall a \in A.[(a,a) \in R_1 \land (a,a) \in R_2] \equiv \forall a \in A.[(a,a) \in R_1 \cap R_2]$$

 $\bullet\,$ Dos relaciones simétricas es simétrica.

Esto es cierto si se cumple

$$\forall a, b \in A.[(a, b) \in R_1 \cap R_2 \Leftrightarrow (b, a) \in R_1 \cap R_2]$$

Tenemos que se cumple

$$\forall a, b \in A.[(a, b) \in R_1 \Leftrightarrow (b, a) \in R_1]$$

$$\forall a, b \in A.[(a, b) \in R_2 \Leftrightarrow (b, a) \in R_2]$$

Entonces como todo elemento de R_1 cumple con lo anterior y al mismo tiempo todo elemento de R_2 también, los elementos en común cumplirán con ser simétricos. En otras palabras

$$\forall a, b \in A. [(a, b) \in R_1 \Leftrightarrow (b, a) \in R_1] \land [(a, b) \in R_2 \Leftrightarrow (b, a) \in R_1]$$

 \equiv

$$\forall a, b \in A. [(a, b) \in R_1 \cap R_2 \Leftrightarrow (b, a) \in R_1 \cap R_2]$$

• Dos relaciones transitivas es transitiva.

Esto es equivalente a probar

$$\forall a, b, c \in A. [(a, b) \in R_1 \cap R_2 \land (b, c) \in R_1 \cap R_2] \to (a, c) \in R_1 \cap R_2$$

Como R_1 y R_2 son transitivas, entonces:

$$\forall a, b, c \in A. [(a, b) \in R_1 \land (b, c) \in R_1] \rightarrow (a, c) \in R_1$$

$$\forall a, b, c \in A. [(a, b) \in R_2 \land (b, c) \in R_2] \rightarrow (a, c) \in R_2$$

Como todos los pares que pertenecen a R_1 y a R_2 cumplen con lo anterior, en particular los que están en ambos también lo cumplirán.

En otras palabras:

$$\forall a, b, c \in A. [(a, b) \in R_1 \land (a, b) \in R_2 \land (b, c) \in R_1 \land (b, c) \in R_2] \rightarrow [(a, c) \in R_1 \land (a, c) \in R_2]$$

 \equiv

$$\forall a, b, c \in A. [(a, b) \in R_1 \cap R_2 \land (b, c) \in R_1 \cap R_2] \rightarrow (a, c) \in R_1 \cap R_2$$

Como R_1 y R_2 son relaciones de equivalencia cumplen con los tres puntos anteriores, lo que implica que su intersección también lo cumple, lo que hace que $R_1 \cap R_2$ sea una relación de equivalencia.

2. Demuestre que si $R_1 \circ R_2 = R_2 \circ R_1$, entonces $R_1 \circ R_2$ es una relación de equivalencia.

Por definición de composición, tenemos que para todo $a, b \in A$

$$((a,b) \in R_1 \circ R_2) \Leftrightarrow (\exists c \in A.[(a,c) \in R_1 \land (c,b) \in R_2])$$

Por lo que si tomamos el caso a=b, quedará:

$$((a,a) \in R_1 \circ R_2) \Leftrightarrow (\exists c \in A. [(a,c) \in R_1 \land (c,a) \in R_2])$$

y como R_1 y R_2 son reflejas sabemos que c=a cumple con lo anterior $\therefore R_1 \circ R_2$ es refleja.

Por otro lado notamos que $R_1 = R_1^{-1}$ y $R_2 = R_2^{-1}$, ya que son simétricas, y en ambos casos $(\forall i \in \{1, 2\})$ se cumple que

$$R_i = R_i^{-1} \Leftrightarrow R_i \circ R_i = I_A$$

Ahora notamos que $R_1 \circ R_2$ es transitiva si, y solo si:

$$(R_1 \circ R_2) \circ (R_1 \circ R_2) \subseteq R_1 \circ R_2$$

Por enunciado $R_1 \circ R_2 = R_2 \circ R_1$, entonces

$$(R_1 \circ R_2) \circ (R_2 \circ R_1) \subseteq R_1 \circ R_2$$

por asociatividad de la composición

$$R_1 \circ (R_2 \circ R_2) \circ R_1 \subseteq R_1 \circ R_2$$

Por lo probado hace dos pasos

$$R_1 \circ (I_A) \circ R_1 \subseteq R_1 \circ R_2$$

Al componer con la identidad se obtiene la relación misma

$$R_1 \circ R_1 \subseteq R_1 \circ R_2$$

Por lo demostrado anteriormente

$$I_A \subseteq R_1 \circ R_2$$

Esto último es cierto ya que $R_1 \circ R_2$ es refleja.

Por lo tanto $R_1 \circ R_2$ es transitiva, pero además es simétrica ya que

$$(R_1 \circ R_2) \circ (R_2 \circ R_1) = I_A$$

Lo que implica que

$$R_1 \circ R_2 = (R_1 \circ R_2)^{-1}$$

Por lo tanto es simétrica.

Finalmente como $R_1\circ R_2$ es refleja, simétrica y transitiva, entonces es una relación de equivalencia.

IIC1253 — Matemáticas Discretas

Tarea 4 – Respuesta Pregunta 2

Pregunta 2

Para un conjunto A, sea $R \subseteq A \times A$ una relación (no necesariamente de equivalencia). Para todo $a \in A$, se define el conjunto:

$$[a]_R = \{b \in A | (a, b) \in R\}.$$

Considere el conjunto $S_R = \{[a]_R | a \in A\}$ y responda las siguientes preguntas.

- 1. Si R es una relación refleja y S_R es una partición de A, ¿és R una relación de equivalencia? Demuestre o de un contra-ejemplo.
- 2. Si R es una relación simétrica y S_R es una partición de A, ¿és R una relación de equivalencia? Demuestre o de un contra-ejemplo.