SCS 2112 Automata Theory

Regular Grammars

Pasindu Marasinghe ppm@ucsc.cmb.ac.lk

What is a Grammar?

He Plays Basketball.

Language that accepts 0 and 1

- T -> 0|1
- N ->
- S -> S
- P ->

Grammars

- Grammars are used to express languages.
- Definition of Grammar: G = (N,T,S,P)
 - N : Set of variables (non terminals)
 - T: Set of terminal symbols
 - S:Start variable
 - P: Set of Production rules

A Simple Grammar

- Grammar
 - 0 N:{S}
 - o T:{a}
 - S:S
 - \circ P:S \rightarrow aS| ε

Derivation of sentences

$$\circ$$
 S \rightarrow aS \rightarrow a

$$\circ$$
 S \rightarrow aS \rightarrow aaS \rightarrow aa

Chomsky Hierarchy of Grammars

Linear Grammars

- Grammars with at most one variable at the right side of a production.
- Productions:
 - \circ $S \rightarrow a$
 - \circ $S \rightarrow \varepsilon$
 - \circ S \rightarrow uAv

Exercise 01

- G1
 - \circ S \rightarrow aAb
 - \circ A \rightarrow a|b| ε
- G3
 - \circ S \rightarrow aBAb
 - \circ A \rightarrow a $\mid \varepsilon$
 - \circ B \rightarrow b | ε

- G2
 - \circ $S \rightarrow A$
 - \circ A \rightarrow aB | ε
 - \circ B \rightarrow Ab
- G4
 - \circ S \rightarrow A | bB
 - \circ A \rightarrow bB | a | ε
 - \circ B \rightarrow Ab

https://forms.gle/fuhdJvAKt7JPzAGT8

Left and Right Linear Grammars

• A grammar G = (N,T,S,P) is said to be right linear if all productions are of the form

• A grammar G = (N,T,S,P) is said to be left linear if all productions are of the form

$$A \rightarrow Bx \mid x$$
where A, B \in N, x \in T*

Left Linear Grammars

- Consider this rule from a left linear grammar
 - \circ A \rightarrow Babc
- Can that rule be used to recognize this string?
 - abbabc
- We need to check rule for B
 - \circ B \rightarrow Cb | D
- Now we need to check rules for C and D.

Right Linear Grammars

- Consider this rule from a right linear grammar
 - \circ A \rightarrow abcB
- Can that rule be used to recognize this string?
 - o abcabb
- We immediately see that the first part of the sring "abc" matches the first part of the rule.
- Thus, the problem simplifies to this:
 Can this rule B be used to recognize "abb" string?

Convert left linear grammar to right linear grammar

- 1. If the left linear grammar has a rule with the start symbol S on the right hand side, simply add this rule: $S_0 \rightarrow S$
- 2. If the left linear grammar has a rule $S \rightarrow p$, then make that a rule in the right linear grammar
- 3. If the left linear grammar has a rule $A \rightarrow p$, then add the following rule to the right linear grammar: $S \rightarrow pA$
- 4. If the left linear grammar has a rule $B \to Ap$, add the following rule to the right linear grammar: $A \to pB$
- 5. If the left linear grammar has a rule $S \rightarrow Ap$, then add the following rule to the right linear grammar: $A \rightarrow p$

Exercise 02

- G1
 - \circ S \rightarrow Aa
 - \circ A \rightarrow ab

• G3

$$\circ$$
 S \rightarrow Ab | Ba

- \circ A \rightarrow a| ε
- \circ B \rightarrow b | ε

• G2

$$\circ$$
 S \rightarrow Ab

$$\circ$$
 S \rightarrow Sb

$$\circ$$
 A \rightarrow Aa

- \circ A \rightarrow a
- G4

$$\circ$$
 S \rightarrow A | Bb

$$\circ$$
 A \rightarrow Bb | a | ε

$$\circ$$
 B \rightarrow Ab

Regular Grammars

- Regular grammars generate regular languages.
- A regular grammar should be either right linear or left linear.

Finite Automata and Regular Grammar

- For every regular language there is a NFA.
- For every regular grammar there is regular grammar.
- We can convert regular grammar into NFA.

Exercise 03

- G1
 - \circ S \rightarrow aA
 - \circ A \rightarrow ab

- G2
 - \circ S \rightarrow aA
 - \circ A \rightarrow bC
 - \circ A \rightarrow aA
 - $\circ \quad C \to bC$
 - \circ $C \rightarrow \varepsilon$