Claims

1. A process for the preparation of acylphosphanes of formula I

$$R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} & O \\ C - R_{2} \end{bmatrix}_{m}$$
 (I), wherein

n and m are each independently of the other 1 or 2;

R_1 , if n = 1, is

 C_1 - C_1 -alkyl, C_2 - C_1 -alkyl which is interrupted by one or several non-successive O atoms; phenyl- C_1 - C_4 -alkyl, C_2 - C_5 -alkenyl, phenyl, naphthyl, biphenyl, C_5 - C_{12} -cycloalkyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl, C_5 - C_{12} -cycloalkyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio, C_1 - C_8 -alkoxy and/or -N(R_8)₂;

R_1 , if n = 2, is

 C_1 - C_{18} alkylene, C_2 - C_{18} alkylene which is interrupted by one or several non-successive O atoms; or R_1 is C_1 - C_6 alkylene which is substituted by C_1 - C_4 alkoxy, phenyl, C_1 - C_4 alkylene, which radicals are unsubstituted or substituted by one to three C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy, or

$$R_1$$
 is a $-CH_2CH=CHCH_2-$, $-CH_2-C=C-CH_2-$, $-CH_2CH_2 -CH_2CH_2 -CH_2 -CH_2 -CH_2 -CH_2 -CH_2 -CH_2 -CH$

R₂ is C₁-C₁₈alkyl, C₃-C₁₂cycloalkyl, C₂-C₁₈alkenyl, phenyl-C₁-C₄alkyl, phenyl, naphthyl, biphenyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C₁-C₈alkyl, C₁-C₈alkoxy and/or C₁-C₈alkylthio;

 R_3 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms or which is interrupted by -CO-, -COO-, -COO-, -CO-N(R₉)-, -N(R₉)-CO-,

-N(R₉)-CO-N(R₉)-, -N(R₉)-COO-; C₁-C₁₈ alkyl substituted by -OR₁₀, -OCO-R₁₀, -COO-R₁₀, -N(R₉)-CO-R₁₀, -CO-N(R₉)-R₁₀, -C(R₁₁)=C(R₁₂)-CO-OR₁₀ or -C(R₁₁)=C(R₁₂)-phenyl;

 C_2 - C_{12} alkenyl or C_2 - C_{12} alkenyl which is interrupted by one or several non-successive O atoms; phenyl- C_1 - C_4 alkyl, phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 alkyl, C_1 - C_8 alkylthio C_1 - C_8 alkoxy and/or $-N(R_8)_2$; or R_3 is -CO- OR_9 or -CO- $N(R_9)_2$;

Q is a single bond, CR₆R₇, -O- or -S-;

R4 and R5 are each independently of the other hydrogen, C1-C4alkoxy;

R₆ and R₇ are each independently of the other hydrogen or C₁-C₄alkyl;

 R_8 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O-atoms; or -N(R_8)₂ forms a 5- or 6-membered O-, S- or N-containing heterocyclic ring;

 R_9 is hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms, C_3 - C_{12} -cycloalkyl, C_2 - C_{18} -alkenyl, phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl, pyridyl, the radicals phenyl, naphthyl or pyridyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen; or -N(R_9)₂ forms a 5- or 6-membered O-, S- or N-containing heterocyclic ring;

 R_{10} is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O-atoms, C_3 - C_{12} -cycloalkyl, phenyl- C_1 - C_4 -alkyl, C_2 - C_{18} -alkenyl, phenyl, naphthyl, biphenyl; the radicals phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl or biphenyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen;

R₁₁ is hydrogen or C₁-C₄-alkyl;

R₁₂ is hydrogen or C₁-C₄-alkyl;

by

(1) reacting a phosphorous halide of formula IIa or a phosphorous halide oxide of formula IIb or a phosphorous halide sulfide of formula IIc

$$R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} \\ P = \begin{bmatrix} Hal \end{bmatrix}_{m} \end{bmatrix}_{n} R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} \\ P = \begin{bmatrix} Hal \end{bmatrix}_{m} \end{bmatrix}_{n} R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} \\ P = \begin{bmatrix} Hal \end{bmatrix}_{m} \end{bmatrix}_{n} (IIb), (IIb),$$

wherein R_1 , R_3 , n and m have the meaning cited above and Hal is F, Cl, Br or I; with an alkali metal in a solvent (metallation) in the presence of a proton source (reduction);

(2) subsequent reaction with m acid halides of formula III

wherein R₂, Hal and m have the meaning cited above.

2. A process according to claim 1, wherein in step (1) the metallation is carried out by reacting a compound of the formula IIa, IIb, or IIc with an alkali metal in a solvent, whereby a metallized phosphanide of the formula V

$$R_1$$
-P(Me)-P(Me)- R_1 (V)

is formed together with cyclic phosphanes $(R_1P)_n$, $n \ge 3$ as intermediates, wherein Me is lithium, sodium or potassium or magnesium in combination with lithium, and R_1 is as defined in claim 1; and

wherein the reduction is carried out by reacting the intermediate V and/or $(R_1P)_n$, $n \ge 3$ with a proton source.

3. A process according to claim 2, wherein

the alkali metal is sodium;

the proton source is selected from sterically hindered alcohols, trialkylamine hydrohalogenes, bisarylamines, malono nitrile, malonic acid esters, amidine hydrohalogene and carboxylic acids;

the solvent is benzene, toluene, o-, m- or p-xylene, mesitylene, ethylbenzene, diphenylethane, 1,2,3,4-tetrahydronaphthaline (tetraline), isopropylbenzene (cumol) and mixtures thereof; and

the reaction temperature of step (1) is in the range from -20°C to +160°C.

4. A process according to claim 3, wherein the sterically hindered alcohol is selected from the group consisting of secondary or tertiary C₃-C₁₈alcohols, preferably of t-butanol, tert.-amylalcohol, 3-methyl-3-pentanol, 3-ethyl-3-pentanol, triphenylmethanol, 3,7-dimethyl-3-octanol, 2-methyl-1-phenyl-2-propanol, 2-methyl-4-phenyl-2-butanol, fenchyl alcohol, 2,4-dimethyl-3-pentanol, 1-dimethylamino-2-propanol or hexylene glycol.

- 5. A process according to any one of claims 1-3, wherein the metallation is carried out in the presence of catalytic amounts of alkali or earth alkali hydroxides or of Na, K or Li alcoholates or of alcohols, preferably sterically hindered alcoholates or alcohols.
- 6. A process according to any one of claims 1-3, wherein the metallation and reduction step is carried out in the presence of an activator.
- 7. A process according to claim 6, wherein the activator is an amine selected from triethylamine, tributylamine, piperidine, morpholine, N-methylpiperidine, N-methyl morpholine or a polyamine such as N,N,N',N'-tetramethylethylenediamine (TMEDA).
- 8. A process according to claim 1 for the preparation of monoacylphosphanes of the formula I'

(1) reacting organic phosphorus halides of formula II'

$$R_1$$
-P(Hal)₂ (II')

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III'

followed by the reaction with an electrophilic compound R_3 -Hal or vice versa, wherein R_1 , R_2 and R_3 and Hal are as defined in claim 1.

9. A process according to claim 1 for the preparation of **symmetric bisacylphosphanes** of the formula I" (compounds of the formula I with n=1 and m=2)

$$R_2 - C - P - C - R_2$$
 R_1
(I"), by

(1) reacting organic phosphorus halides of formula II"

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III"

wherein R_1 and R_2 and Hal are as defined in claim 1.

10. A process according to claim 1 for the preparation of **unsymmetric bisacylphosphanes** of the formula I'''

(1) reacting organic phosphorus halides of formula II"

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III"

(3) subsequent reaction with a second acid halide III"

wherein

R₁ is as defined in claim 1 and

 R_2 and R_2 ' independently of one another are as defined in claim 1 under R_2 with the proviso that R_2 is not equal R_2 ',

Hal is as defined in claim 1.

11. A process according to claim 1, wherein step (1) is carried out by reacting diphospanes of the formula $(R_1)_2$ -P-P(R_1)₂ or polyphosphanes of the formula $[R_1P]_n$, wherein R_1 is as defined above and n is \geq 3, with an alkali metal in a solvent in the presence of a proton

source; followed by the reaction with acid halides (III, III", III") and/or by reaction with electrophilic compounds R₃-Hal.

12. A process for the preparation of mono acylated phosphanes of the formula VI and VI'

$$\begin{bmatrix} O & O & O & O \\ R2 & P & R1 & R2 & P \\ R1 & R1 & R2 & R1 \end{bmatrix} \qquad \begin{bmatrix} O & O & O \\ R_2 & P & R_2 & P \\ R_1 & R_2 & R_2 & R_1 \end{bmatrix}$$

by

(1) reacting organic phosphorus halides of formula II"

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III" or III"

wherein R_1 , R_2 are as defined in claim 1 R_2 ' is as defined in claim 10 and Me is Li, Na, K or Mg in combination with Li.

13. A process for the preparation of acylphosphane oxides and acylphosphane sulfides of formula IV

$$R_{1} = \begin{bmatrix} Z & O \\ II & C - R_{2} \\ I & R_{3} \end{bmatrix}_{2-m}$$
 (IV), wherein

 R_1 , R_2 , R_3 , n and m are as defined in claim1, and Z is O or S,

by oxidation or reaction with sulfur of the acylphosphane of formula I, I', I" or I"

as defined in claims 1,8,9 and 10.