Занятие 8. Доверительное (интервальное) оценивание.

Принципиальная задача состоит в том, чтобы найти такие границы для параметров, чтобы «попадание» в эти границы было с достаточной для экспериментатора вероятностью.

Как и при точечном оценивании, есть некоторый закон распределения генеральной совокупности, ассоциируемой со случайной величиной X. Закон распределения зависит от неизвестной величины β .

Задача получить оценку параметра β по полученной в результате эксперимента реализации $\vec{x}_n = (x_1, \dots, x_n)$.

Если конструктивно описать, что именно нам требуется, мы получим выражение

$$P\{b_1 < \beta < b_2 | \vec{X}_n = \vec{x}_n\} = \alpha.$$

Величина α должна быть достаточно близка к 1, чтобы была уверенность, что событие $b_1 < \beta < b_2$ близко к достоверному. Степень близости α к 1 определяется той практической задачей, с которой связано определение неизвестного параметра β .

Величина α называется уровнем доверия.

Первый подход. Можно было бы считать неизвестный параметр β случайной величиной. Если по какой-то причине нам стала бы известна априорная плотность распределения параметра β , то для определения доверительных границ b_1 , b_2 естественно было бы выбрать те, при которых для заданного α выполняется равенство

$$\alpha = P\{b_1 \le \beta < b_2 | \vec{X}_n = \vec{x}_n\} = \frac{\int_{b_1}^{b_2} f_X(x_1, \dots, x_n | b) f_\beta(b) db}{\int_{-\infty}^{+\infty} f_X(x_1, \dots, x_n | b) f_\beta(b) db}$$

Задача определения доверительных границ в такой постановке сложна не только потому, что она приводит к сложным аналитическим операциям, но в первую очередь потому, что априорная плотность f_{β} неизвестна.

Можно обойти неизвестность f_{β} при большой выборке (т.е. n), когда становятся применимы предельные теоремы. Тогда апосториорная плотность $f_{\beta}(b \mid (x_1, \dots, x_n))$ ведет себя как нормальная случайная величина (теорема Гнеденко).

Второй подход. Можно идти по другому пути, а именно искать правила такого рода: каковы бы ни были результаты наблюдений (x_1, \ldots, x_n) , требуется указать такие доверительные границы b_1 и b_2 , чтобы с заданной уверенностью (вероятностью) можно было считать, что $b_1(x_1, \ldots, x_n) <$

$$\beta < b_2(x_1,\ldots,x_n)$$
.

Мы будем следовать второму подходу.

Подход состоит в рассмотрении равенства

$$P\{b_1 < \beta < b_2\} = \alpha.$$

Равенство необходимо разрешить относительно неизвестных b_1 , b_2 при заданном уровне доверия α и в этом и состоит задача доверительного оценивания.

Определение 8.1. Статистика $g = g(\vec{X}_n)$ называется центральной, если она является функцией выборки (зависящей от параметра), но ее закон распределения не зависит от параметра.

8.1. Доверительная оценка a распределения $N(a,\sigma^2)$ при известной σ^2 .

Рассмотрим задачу по доверительному оцениванию параметра a для выборки распределенной $X \sim N(a, \sigma^2)$ с известной величиной σ^2 .

Статистика является наилучшей оценкой для a (несмещенная, состоятельная, эффективная): $\hat{a}(\vec{X}_n) = \frac{1}{n} \sum_{k=0}^{n} X_k$.

При этом центральной статистикой \hat{a} не является, так как распределение зависит от неизвестных параметров.

Исправим статистику. Возьмем новую статистику $g(\vec{X}) = \hat{a} - a$. Выражение стало зависеть от a, а распределение, напротив, от a не зависит.

Эта статистика нормально распределена, имеет математическое ожидание равное нулю.

Диперсия $q(\vec{X})$ равна

$$D(\hat{a} - a) = \frac{1}{n^2} \sum_{k=1}^{n} D(X_k - a) = \frac{\sigma^2}{n}.$$

Сделаем еще одно преобразование и перейдем к новой статистике

$$g_0(\vec{X}) = \frac{g(\vec{X})}{\sigma/\sqrt{n}} = \sqrt{n} \frac{\hat{a} - a}{\sigma} \sim N(0, 1).$$

 $g_0(ec{X})$ - центральная статистика.

Возвращаемся к задаче.

Пусть мы получили набор $\vec{x}_n=(x_1,\ldots,x_n)$. Нужно найти с уровнем доверия α (обычно $0,9\leqslant \alpha<1$) границы $a_1=a_1(\vec{x}_n,\alpha)$, $a_2=a_2(\vec{x}_n,\alpha)$ такие, что

$$P\{a_1 < a < a_2\} = \alpha.$$

Для центральной статистики $g_0(\vec{X}_n) \sim N(0,1)$ построим доверительные границы $z_{(1-\alpha)/2}$, $z_{(1+\alpha)/2}$, такие, что

$$P\{z_{(1-\alpha)/2} < g_0(\vec{X}_n) < z_{(1+\alpha)/2}\} = \alpha.$$

Замечание: $z_{(1-\alpha)/2}$, $z_{(1+\alpha)/2}$ - квантили N(0,1).

Подставим выражение $g_0(\vec{X_n})$ в полученное равенство. Получим

$$P\{z_{(1-\alpha)/2} < \sqrt{n} \frac{\hat{a} - a}{\sigma} < z_{(1+\alpha)/2}\} = \alpha.$$

После тождественных преобразований неравенств получим

$$P\{\hat{a}-z_{(1+\alpha)/2}\frac{\sigma}{\sqrt{n}}< a<\hat{a}-z_{(1-\alpha)/2}\frac{\sigma}{\sqrt{n}}\}=\alpha.$$

Замечание: $z_{(1+\alpha)/2}>0$, $z_{(1-\alpha)/2}=-z_{(1+\alpha)/2}$.

Когда мы записываем доверительный интервал, мы подставляем $\vec{X}_n = \vec{x}_n$ т.е. переходим к конкретной реализации. Соответственно реализовались границы доверительного интервала, т.к. случайная величина $\hat{a}(\vec{X}_n)$, которая имелась под вероятностью, в результате проведенного опыта, принимает конкретное значение $\hat{a}(\vec{x}_n)$, т.е. становится величиной неслучайной. Доверительный интервал получен:

$$\left(\hat{a}(\vec{x}_n) - z_{(1+\alpha)/2} \frac{\sigma}{\sqrt{n}}, \hat{a}(\vec{x}_n) + z_{(1+\alpha)/2} \frac{\sigma}{\sqrt{n}}\right).$$

Можно также переписать полученный доверительный интервал в другом виде, подставив $\hat{a}(\vec{x}_n)$:

$$\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}-z_{(1+\alpha)/2}\frac{\sigma}{\sqrt{n}},\frac{1}{n}\sum_{k=1}^{n}x_{k}+z_{(1+\alpha)/2}\frac{\sigma}{\sqrt{n}}\right).$$

Если задать точность ε с которой необходимо знать значение параметра a, при заданном уровне доверия α данного размера выборки n. Три приведенных параметра связывает одно соотношение и это позволяет задав два параметра, определить третье.

$$\varepsilon = z_{(1+\alpha)/2} \frac{\sigma}{\sqrt{n}}.$$

- **ДЗ 1.** Пусть совокупность распределена $X \sim N(a, \sigma^2)$, известно, что $\sigma = 2, 7$. Проведен n = 100 раз эксперимент и получена выборка (x_1, \ldots, x_n) и, по ней, получена точечная оценка $\hat{a} = 3, 1$. Найти $\alpha = 0, 9$ -доверительный интервал для a.
- **ДЗ 2.** Для генеральной совокупности, распределенной по закону $N(a,\sigma^2)$, выбрав подходящую статистику, построить доверительные границы (с уровнем доверия α) для неизвестного параметра σ^2 при известной величине a. \blacktriangleleft