Chapter 11

11.1
$$S_{e(\text{flexible,center})} = \Delta \sigma(\alpha B') \frac{1 - \mu_s^2}{E_s} I_s I_f$$

$$\Delta \sigma = \frac{355}{(2)(3)} = 59.16 \text{ kN/m}^2$$

Given:
$$\alpha = 4$$
; $B' = \frac{2}{2} = 1$; $\mu_s = 0.35$; $E_s = 13,500 \text{ kN/m}^2$

$$I_s = F_1 + \frac{1 - 2\mu_s}{1 - \mu_s} F_2$$

$$m' = \frac{L}{B} = \frac{3}{2} = 1.5; \quad n' = \frac{H}{\left(\frac{B}{2}\right)} = \frac{4}{\left(\frac{2}{2}\right)} = 4$$

From Table 11.1, $F_1 = 0.454$; from Table 11.2, $F_2 = 0.054$.

$$I_s = 0.454 + \frac{1 - (2)(0.4)}{1 - 0.4}(0.054) = 0.472$$

Also, with
$$\frac{D_f}{B} = \frac{1.5}{2} = 0.75$$
 and $\frac{L}{B} = 1.5$, Table 11.3 gives $I_f = 0.765$. Hence,

$$S_{e(\text{flexible}, \text{center})} = (59.16)[(4)(1)] \left(\frac{1 - 0.4^2}{13500}\right) (0.472)(0.765) = 0.0053 \text{ m} = 5.3 \text{ mm}$$

$$S_{e(\text{rigid})} = (0.93)(5.3) \approx 4.93 \text{ mm}$$

11.2 As in Problem 11.1,
$$S_{e(\text{rigid})} = 0.93\Delta\sigma(\alpha B') \frac{1 - \mu_s^2}{E_s} I_s I_f$$

$$E_s = \frac{\sum E_{s(i)} \Delta z}{\overline{z}} = \frac{(3000)(6) + (1100)(8) + (8500)(10)}{24} = 4658 \text{ lb/in}^2 = 670,752 \text{ lb/ft}^2$$

Given:
$$B = L = 6$$
 ft; $\mu_s = 0.3$; $\alpha = 4$

$$\Delta \sigma = \frac{100000}{(6)(6)} = 2778 \text{ lb/ft}^2$$

$$B' = \frac{B}{2} = \frac{6}{2} = 3$$
 ft.

$$I_s = F_1 + \frac{1 - 2\mu_s}{1 - \mu_s} F_2$$

$$m' = \frac{L}{B} = 1; \quad n' = \frac{H}{\left(\frac{B}{2}\right)} = \frac{24}{\left(\frac{6}{2}\right)} = 8$$

From Table 11.1, $F_1 = 0.482$; from Table 11.2, $F_2 = 0.02$

$$I_s = 0.482 + \frac{1 - (2)(0.3)}{1 - 0.3}(0.02) = 0.493$$

Also,
$$\frac{D_f}{B} = \frac{3}{6} = 0.5$$
. From Table 11.3, $I_f \approx 0.77$. So,

$$S_{e(\text{rigid})} = (0.93)(2778)(4 \times 3) \left(\frac{1 - 0.3^2}{670752}\right) (0.493)(0.77) = 0.016 \text{ ft} \approx 0.2 \text{ in}$$

11.3 a. The plot of e vs. σ' is shown.

b.
$$\sigma_c' = 170 \text{ kN/m}^2$$

c.
$$C_c = \frac{e_1 - e_2}{\log\left(\frac{\sigma_2'}{\sigma_1'}\right)} = \frac{0.755 - 0.65}{\log\left(\frac{16}{8}\right)} \approx 0.35$$

$$C_s = \frac{e_1 - e_2}{\log\left(\frac{\sigma_2'}{\sigma_1'}\right)} = \frac{0.658 - 0.65}{\log\left(\frac{16}{8}\right)} = 0.026$$

$$\frac{C_s}{C_c} = \frac{0.026}{0.35} = \mathbf{0.074}$$

11.4 a. Height of solids:
$$H_s = \frac{W_s}{AG_s\gamma_w} = \frac{12 \text{ g}}{(4.91)(2.54)^2(2.49)(1)} = 0.152 \text{ cm} \approx 0.06 \text{ in.}$$

σ' (ton/ft ²)	Change in dial reading (in.)	Final height, <i>H</i> (in.)	<i>H</i> _s (in.)	$H_{v} = H - H_{s}$ (in.)	$e = \frac{H_{v}}{H_{s}}$
0.063	0.0112	0.8013	0.06	0.7413	12.35
0.125	0.0059	0.7954	0.06	0.7354	12.25
0.250	0.0124	0.7830	0.06	0.723	12.05
0.500	0.0222	0.7608	0.06	0.7008	11.68
1.000	0.0324	0.7284	0.06	0.6684	11.14
2.000	0.0886	0.6398	0.06	0.5798	9.66
4.000	0.2105	0.4293	0.06	0.3693	6.15

The e-log σ' graph is plotted on the following page.

b. From the graph, $\sigma'_c = 1.8 \text{ ton/ft}^2$

c.
$$C_c = \frac{e_1 - e_2}{\log\left(\frac{\sigma_2'}{\sigma_1'}\right)} = \frac{9.66 - 6.15}{\log\left(\frac{4}{2}\right)} = 11.66$$

11.5
$$W_s = \frac{W}{1+W} = \frac{140}{1+0.19} = 117.6 \text{ g}$$

$$H_s = \frac{W_s}{AG_s\gamma_w} = \frac{117.6}{(\pi)(3.175)^2(2.7)(1)} = 1.375 \text{ cm}$$

σ' (kg/cm ²)	Final height, H (cm)	H _s (cm)	$H_v = H - H_s$ (cm)	$e = \frac{H_{v}}{H_{s}}$
0.5	2.519	1.375	1.144	0.832
1.0	2.5	1.375	1.125	0.818
2.0	2.428	1.375	1.053	0.765
4.0	2.322	1.375	0.947	0.688
8.0	2.206	1.375	0.831	0.604
16.0	2.09	1.375	0.715	0.576

The e-log σ' graph is plotted.

From the graph, $\sigma'_c = 1.85 \text{ kg/cm}^2$

$$C_c = \frac{e_1 - e_2}{\log\left(\frac{\sigma_2'}{\sigma_1'}\right)} = \frac{0.688 - 0.604}{\log\left(\frac{8}{4}\right)} = \mathbf{0.28}$$

11.6 a.
$$S_c = \frac{C_c H}{1 + e_o} \log \left(\frac{\sigma'_o + \Delta \sigma'}{\sigma'_o} \right)$$

$$C_c = 0.009(LL - 10) = (0.009)(42 - 10) = 0.288$$

$$\Delta \sigma = \frac{150}{(3)(3)} = 16.67 \text{ kN/m}^2$$

$$\gamma_d = \frac{(2.72)(9.81)}{1 + 0.7} = 15.7 \text{ kN/m}^3$$

$$\gamma_{\text{sat}} = \frac{(2.72 + 0.7)(9.81)}{1 + 0.7} = 19.73 \text{ kN/m}^3$$

$$\sigma'_o = (15.7)(1.5) + (19.73 - 9.81) \left(\frac{8}{2}\right) = 63.23 \text{ kN/m}^2$$

$$S_c = \frac{(0.288)(8)}{1 + 0.7} \log\left(\frac{63.23 + 16.67}{63.23}\right) = \mathbf{0.137 m}$$

11.7 Eq. (11.68):
$$\Delta \sigma'_{av} = \frac{\Delta \sigma'_t + 4\Delta \sigma'_m + \Delta \sigma'_b}{6}$$

Eq. (10.35):
$$\Delta \sigma' = qI_4$$

$$m_1 = \frac{L}{B} = \frac{3}{3} = 1$$
; $b = \frac{B}{2} = 1.5 \text{ m}$; $n_1 = \frac{z}{b}$

$$q = \frac{150 \,\mathrm{kN}}{(3)(3)} = 16.67 \,\mathrm{kN/m^2}$$

m_1	z (m)	$b = \frac{B}{2}$ (m)	$n_1 = \frac{z}{b}$	q (kN/m ²)	<i>I</i> ₄ (Table 10.9)	$\Delta \sigma' = qI_4$ (kN/m ²)
1	0.0	1.5	0	16.67	≈ 1.0	16.67
1	4.0	1.5	2.67	16.67	0.231	3.85
1	8.0	1.5	5.33	16.67	0.065	1.08

$$\Delta \sigma'_{av} = \frac{16.67 + (4 \times 3.85) + 1.08}{6} = 5.52 \text{ kN/m}^2$$

$$S_c = \frac{(0.288)(8)}{1+0.7} \log \left(\frac{63.23+5.52}{63.23} \right) =$$
0.049 m

11.8 a.
$$\sigma'_o = (6)(114) + (12)(118) + \left(\frac{18}{2}\right)(117) - (12+9)(62.4) = 1842.6 \text{ lb/ft}^2$$

$$C_c = 0.009(LL - 10) = (0.009)(38 - 10) = 0.252$$

$$S_c = \frac{(0.252)(18)}{1 + 0.73} \log \left(\frac{1842.6 + 550}{1842.6} \right) =$$
0.297 ft. \approx **3.5 in.**

b.
$$S_{c} = \frac{C_{s}H}{1+e_{o}} \log \left(\frac{\sigma'_{c}}{\sigma'_{o}}\right) + \frac{C_{c}H}{1+e_{o}} \log \left(\frac{\sigma'_{o} + \Delta\sigma'}{\sigma'_{c}}\right)$$

$$= \frac{\left(\frac{0.252}{5}\right)(18)}{1.73} \log \left(\frac{2200}{1842.6}\right) + \frac{(0.252)(18)}{1.73} \log \left(\frac{1842.6 + 550}{2200}\right)$$

$$= 0.135 \text{ ft} \approx 1.63 in.$$

11.9
$$\gamma_{d(\text{sand})} = \frac{G_s \gamma_w}{1+e} = \frac{(2.66)(9.81)}{1+0.65} = 15.81 \,\text{kN/m}^3$$

$$\gamma'_{\text{sand}} = \frac{(G_s - 1)\gamma_w}{1+e} = \frac{(2.66 - 1)(9.81)}{1.65} = 9.87 \,\text{kN/m}^3$$

$$\gamma'_{\text{clay}} = \frac{(G_s - 1)\gamma_w}{1+e} = \frac{(2.74 - 1)(9.81)}{1+0.98} = 8.62 \,\text{kN/m}^3$$

$$\sigma'_o = (2)(15.81) + (4)(9.87) + \left(\frac{6}{2}\right)(8.62) = 96.96 \,\text{kN/m}^2$$

$$C_c = 0.009(LL - 10) = (0.009)(54 - 10) = 0.396$$

$$S_c = \frac{C_s H}{1+e_o} \log\left(\frac{\sigma'_c}{\sigma'_o}\right) + \frac{C_c H}{1+e_o} \log\left(\frac{\sigma'_o + \Delta \sigma'}{\sigma'_c}\right)$$

$$= \frac{\left(\frac{0.396}{6}\right)(6)}{1.98} \log\left(\frac{150}{96.96}\right) + \frac{(0.396)(6)}{1.98} \log\left(\frac{96.96 + 85}{150}\right)$$

$$= 0.138 \,\text{m} \approx 13.8 \,\text{cm}$$

11.10
$$C_c = \frac{e_1 - e_2}{\log\left(\frac{\sigma_2'}{\sigma_1'}\right)} = \frac{1.22 - 0.97}{\log\left(\frac{225}{108}\right)} = 0.784$$

$$C_c = \frac{e_1 - e_3}{\log\left(\frac{\sigma_3'}{\sigma_1'}\right)}$$

$$e_3 = e_1 - C_c \log\left(\frac{\sigma_3'}{\sigma_1'}\right) = 1.22 - 0.784 \log\left(\frac{300}{108}\right) = \mathbf{0.872}$$

11.11
$$C_c = \frac{0.92 - 0.77}{\log\left(\frac{3}{1.5}\right)} = 0.498$$

$$e_3 = 0.92 - 0.498 \log \left(\frac{4.5}{1.5} \right) =$$
0.682

11.12 The plot of e-log σ' is shown.

$$\sigma'_{0} = 70 \text{ kN/m}^{2}$$
; $e_{1} = 0.93$;

$$\sigma'_{o} + \Delta \sigma' = 250 \text{ kN/m}^2$$
; $e = 0.79$

$$\Delta e = 0.93 - 0.79 = 0.14$$

$$S_c = \frac{H\Delta e}{1 + e_o} = \frac{(2)(0.14)}{1 + 0.93}$$

$$= 0.145 \,\mathrm{m}$$

11.13
$$T_v = \frac{c_v t}{H_{dr}^2}$$
; $U = 75\%$; $T_v = 0.477$ (Table 11.7)

$$0.477 = \frac{(0.24 \text{ cm}^2/\text{min})(t)}{\left(\frac{600}{2} \text{ cm}\right)^2}; t = 178,875 \text{ min} = 124.2 \text{ days}$$

11.14 a.
$$m_v = \frac{a_v}{1 + e_{av}} = \frac{\left(\frac{\Delta e}{\Delta \sigma'}\right)}{1 + e_{av}}$$

$$\Delta e = e_1 - e_2 = 0.92 - 0.77 = 0.15$$

$$\Delta \sigma' = \sigma_2' - \sigma_1' = 3 - 1.5 = 1.5 \text{ ton/ft}^2$$

$$e_{\rm av} = \frac{0.92 + 0.77}{2} = 0.845$$

$$m_v = \frac{a_v}{1 + e_{av}} = \frac{\left(\frac{0.15}{1.5}\right)}{1 + 0.845} = 0.054 \text{ ft}^2/\text{ton}$$

b.
$$c_v = \frac{k}{m_v \gamma_w} = 0.001085 \text{ in.}^2/\text{sec} = 7.534 \times 10^{-6} \text{ ft}^2/\text{sec}$$

$$7.534 \times 10^{-6} \,\text{ft}^2/\text{sec} = \frac{k}{0.054 \,\text{ft}^2/\text{ton} \left(\frac{62.4}{2000}\right) \text{ton/ft}^3}$$

$$k = 1.27 \times 10^{-8}$$
 ft/sec

11.15 In the laboratory:

$$T_{65} = \frac{c_{v} t_{65}}{H_{dr}^{2}}$$

$$0.304 = \frac{(c_v)(10 \text{ min})}{\left(\frac{0.019}{2}\text{ m}\right)^2}; \ c_v = 2.74 \times 10^{-6} \text{ m}^2/\text{min}$$

$$U = 40\%$$
; $T_{40} = 0.126$ (Table 11.7)

In the field:

$$T_{40} = \frac{c_{v} t_{40}}{H_{dr}^{2}}$$

$$0.126 = \frac{(2.74 \times 10^{-6} \text{ m}^2/\text{min})(t_{40})}{(4 \text{ m})^2}$$

$$t_{40} = 735,766 \text{ min} = 511 \text{ days}$$

11.16 a.
$$m_v = \frac{a_v}{1 + e_{av}} = \frac{\left(\frac{\Delta e}{\Delta \sigma'}\right)}{1 + e_{av}}$$

$$\Delta e = 0.9 - 0.75 = 0.15$$

$$\Delta \sigma' = 1.5 - 0.5 = 1 \text{ ton/ft}^2$$

$$e_{\rm av} = \frac{0.9 + 0.75}{2} = 0.825$$

$$m_v = \frac{\left(\frac{0.15}{1}\right)}{1 + 0.825} = 0.082 \text{ ft}^2/\text{ton}$$

$$c_v = \frac{k}{m_v \gamma_w} = \frac{(6 \times 10^{-7})(0.0328) \text{ ft/sec}}{(0.082 \text{ ft}^2/\text{ton}) \left(\frac{62.4}{2000} \text{ ton/ft}^3\right)}$$

$$= 7.69 \times 10^{-6} \text{ ft}^2/\text{sec} = 0.664 \text{ ft}^2/\text{day}$$

$$t_{50} = \frac{T_{\nu}H_{\rm dr}^2}{C_{\nu}} = \frac{(0.197)(12)^2}{0.644} = 44 \text{ days}$$

b.
$$C_c = \frac{e_1 - e_2}{\log\left(\frac{\sigma_2'}{\sigma_1'}\right)} = \frac{0.9 - 0.75}{\log\left(\frac{1.5}{0.5}\right)} = 0.31$$

$$S_c = \frac{C_c H}{1 + e_o} \log \left(\frac{\sigma'_o + \Delta \sigma'}{\sigma'_o} \right) = \frac{(0.31)(12)}{1 + 0.9} \log \left(\frac{1.5}{0.5} \right) = 0.934 \text{ ft}$$

$$S_c$$
 at 50% = (0.5)(0.934) = 0.467 ft \approx **5.6 in.**

11.17
$$m_v = \frac{a_v}{1 + e_{av}} = \frac{\left(\frac{\Delta e}{\Delta \sigma'}\right)}{1 + e_{av}} = \frac{\left(\frac{0.85 - 0.71}{250 - 125}\right)}{1 + \left(\frac{0.85 + 0.71}{2}\right)} = 6.29 \times 10^{-4} \text{ m}^2/\text{kN}$$

$$c_v = \frac{T_{70}H_{\text{dr}}^2}{t_{70}} = \frac{(0.403)\left(\frac{0.025}{2}\right)^2}{4.8} = 1.31 \times 10^{-5} \text{ m}^2/\text{min}$$

$$k = c_v m_v \gamma_w = (6.29 \times 10^{-4} \text{ m}^2/\text{kN})(1.31 \times 10^{-5} \text{ m}^2/\text{min})(9.81 \text{ kN/m}^3)$$

= 8.08 × 10⁻⁸ m/min

11.18 a.
$$T_{90} = \frac{c_{\nu} t_{90}}{H_{dr}^2}$$
; $0.848 = \frac{c_{\nu} (180)}{\left(\frac{15}{2}\right)^2}$

 $c_v = 0.265 \text{ ft}^2/\text{day}$

b.
$$T_{65} = \frac{c_v t_{65}}{H_{dr}^2}$$

From Table 11.7, U = 65%; $T_{65} = 0.119$

$$t_{65} = \frac{T_{65}H_{\rm dr}^2}{c_v} = \frac{(0.119)\left(\frac{0.75}{(2)(12)} \text{ ft}\right)^2}{0.265} = 4.38 \times 10^{-4} \text{ day} \approx 38 \text{ sec}$$

11.19 a. Eq. (11.68):
$$\Delta \sigma'_{av} = \frac{\Delta \sigma'_t + 4\Delta \sigma'_m + \Delta \sigma'_b}{6}$$

Eq. (10.35):
$$\Delta \sigma' = qI_4$$

$$m_1 = \frac{L}{B} = \frac{2}{2} = 1$$
; $b = \frac{B}{2} = 1.0 \text{ m}$; $n_1 = \frac{z}{b}$

$$q = \frac{300 \text{ kN}}{(2)(2)} = 75 \text{ kN/m}^2$$

m_1	z (m)	$b = \frac{B}{2}$ (m)	$n_1 = \frac{z}{b}$	q (kN/m^2)	<i>I</i> ₄ (Table 10.9)	$\Delta \sigma' = qI_4 \text{ (kN/m}^2)$
1	1.0	1.0	1.0	75	0.701	52.57
1	2.0	1.0	2.0	75	0.336	25.2
_1	3.0	1.0	3.0	75	0.179	13.42

$$\Delta \sigma'_{av} = \frac{52.57 + (4 \times 25.2) + 13.42}{6} = 27.8 \text{ kN/m}^2$$

b.
$$\gamma_{\text{sat-clay}} = \frac{(1+w)\gamma_w G_s}{1+wG_s} = \frac{(1+0.24)(9.81)(2.74)}{1+(0.24)(2.74)} = 20.1 \text{ kN/m}^3$$

$$\sigma'_o = (1)(14) + (1)(17 - 9.81) + \left(\frac{2}{2}\right)(20.1 - 9.81) = 31.48 \text{ kN/m}^2$$

$$C_c = 0.009(LL - 10) = (0.009)(46 - 10) = 0.324$$

Since $\sigma'_o \le \sigma'_c$, the clay is overconsolidated

$$S_{c} = \frac{C_{s}H}{1+e_{o}}\log\left(\frac{\sigma'_{c}}{\sigma'_{o}}\right) + \frac{C_{c}H}{1+e_{o}}\log\left(\frac{\sigma'_{o} + \Delta\sigma'}{\sigma'_{c}}\right)$$

$$= \frac{\left(\frac{0.324}{5}\right)(2)}{1+0.657}\log\left(\frac{40}{31.48}\right) + \frac{(0.324)(2)}{1+0.657}\log\left(\frac{31.48 + 27.8}{40}\right)$$

 $= 0.0749 \text{ m} \approx 75 \text{ mm}$

c.
$$U(\%) = \left(\frac{19}{75}\right)(100) = 25.3\%$$

d.
$$T_v = \frac{c_v t}{H_{dr}^2}$$
; $U = 25.3\%$; $T_v = 0.0503$ (Table 11.7)

$$0.0503 = \frac{(c_v)(365)}{(1 \,\mathrm{m})^2}$$

$$c_v = 1.378 \times 10^{-4} \text{ m}^2/\text{day}$$

e.
$$T_v = \frac{(0.0001378)(2)(365)}{\left(\frac{2}{2}\right)^2} = 0.1$$

Table (11.7): $U(\%) \approx 36\%$

$$U(\%) = \left(\frac{S_{c(t)}}{S_c}\right)(100); \ S_{c(t)} = (0.36)(75) = 27 \text{ mm}$$

CRITICAL THINKING PROBLEM

11.C.1 a. For the clay layer:

Eq. (11.68):
$$\Delta \sigma'_{av} = \frac{\Delta \sigma'_t + 4\Delta \sigma'_m + \Delta \sigma'_b}{6}$$

Eq. (10.35):
$$\Delta \sigma' = qI_4$$

$$m_1 = \frac{L}{B} = \frac{10}{10} = 1$$
; $b = \frac{B}{2} = 5$ m; $n_1 = \frac{z}{b}$

$$q = (2)(19) = 38 \text{ kN/m}^2$$

m_1	z (m)	$b = \frac{B}{2}$ (m)	$n_1 = \frac{z}{b}$	q (kN/m^2)	<i>I</i> ₄ (Table 10.9)	$\Delta \sigma' = qI_4$ (kN/m ²)
1	4	5	0.8	38.0	0.8	30.4
1	6	5	1.2	38.0	0.606	23.02
1	8	5	1.6	38.0	0.449	17.06

$$\Delta\sigma'_{av} = \frac{30.4 + (4 \times 23.02) + 17.06}{6} = 23.25 \,\text{kN/m}^2$$

$$\sigma'_{o} = (2)(15) + (2)(17) + \left(\frac{4}{2}\right)(18) - (2+2)(9.81) = 60.76 \text{ kN/m}^2$$

$$S_{c-\text{clay}} = \frac{(0.36)(4)}{1+1.1} \log \left(\frac{60.76+23.25}{60.76} \right) = \mathbf{0.096} \,\mathbf{m}$$

For the peat layer:

$$m_1 = \frac{L}{B} = \frac{10}{10} = 1$$
; $b = \frac{B}{2} = 5$ m; $n_1 = \frac{z}{b}$

$$q = (2)(19) = 38 \text{ kN/m}^2$$

m_1	z (m)	$b = \frac{B}{2}$ (m)	$n_1 = \frac{z}{b}$	q (kN/m^2)	<i>I</i> ₄ (Table 10.9)	$\Delta \sigma' = qI_4$ (kN/m ²)
1	8	5	1.6	38.0	0.449	17.06
1	9	5	1.8	38.0	0.388	14.74
1	10	5	2.0	38.0	0.336	12.76

$$\Delta \sigma'_{av} = \frac{17.06 + (4 \times 14.74) + 12.76}{6} = 14.8 \text{ kN/m}^2$$

$$\sigma'_{o} = (2)(15) + (2)(17) + (4)(18) + (1)(16) - (7)(9.81) = 83.33 \text{ kN/m}^{2}$$

$$S_{c-\text{peat}} = \frac{(6.6)(2)}{1+5.9} \log \left(\frac{83.33+14.8}{83.33} \right) = \mathbf{0.136} \,\mathbf{m}$$

Total consolidation settlement, $S_c = 0.096 + 0.136 = 0.232 \text{ m}$

b. For the clay layer, a double drainage condition is assumed since the bottom peat layer has high void ratio and considered permeable.

$$t_{99-\text{clay}} = \frac{(H_{\text{dr}}^2)(T_{99})}{c_v} = \frac{(200^2)(1.781)}{0.003} = 23,746,666 \sec \approx 275 \text{ days}$$

For the peat layer, a single drainage is assumed since the top layer is considered to have relatively low permeability.

$$t_{99-\text{peat}} = \frac{(H_{\text{dr}}^2)(T_{99})}{c_y} = \frac{(200^2)(1.781)}{0.025} = 2,849,600 \text{ sec} \approx 33 \text{ days}$$

c. Secondary compression in clay:

$$\Delta e_{\text{primary}} = C_c \log \left(\frac{\sigma'_0 + \Delta \sigma'}{\sigma'_0} \right) = 0.36 \log \left(\frac{60.76 + 23.25}{60.76} \right) = 0.0506$$

$$e_p = e_0 - \Delta e_{\text{primary}} = 1.1 - 0.0506 = 1.049$$

$$C'_{\alpha} = \frac{C_{\alpha}}{1 + e_{p}} = \frac{0.03}{1 + 1.049} = 0.0146$$

$$S_{s-\text{clay}} = C'_{\alpha}H \log \left(\frac{t_2}{t_1}\right) = (0.0146)(4) \log \left(\frac{(2)(365)}{275}\right) = \mathbf{0.0247} \text{ m}$$

Secondary compression in peat:

$$\Delta e_{\text{primary}} = C_c \log \left(\frac{\sigma'_0 + \Delta \sigma'}{\sigma'_0} \right) = 6.6 \log \left(\frac{83.33 + 14.8}{83.33} \right) = 0.468$$

$$e_p = e_0 - \Delta e_{\text{primary}} = 5.9 - 0.468 = 5.432$$

$$C'_{\alpha} = \frac{C_{\alpha}}{1 + e_{p}} = \frac{0.263}{1 + 5.432} = 0.0408$$

$$S_{s-\text{peat}} = C'_{\alpha} H \log \left(\frac{t_2}{t_1} \right) = (0.0408)(2) \log \left(\frac{(2)(365)}{33} \right) = \mathbf{0.109} \,\mathbf{m}$$

d. Total settlement:

$$S_c + S_{s\text{-clay}} + S_{s\text{-peat}} = 0.232 + 0.0247 + 0.109 = 0.365 \text{ m}$$

e. Time factor in 3 months:

$$T_v = \frac{c_v t}{H_{\text{dr}}^2} = \frac{(0.003)(3)(30)(24)(3600)}{200^2} = 0.583$$

Determine the degree of consolidation, U_z from Figure 11.25:

$$\frac{z}{H_{dr}} = \frac{3}{2} = 1.5$$
; $U_z \approx 0.85$

Eq. 11.57:
$$U_z = 1 - \frac{u_z}{u_0}$$

Initial excess pore water pressure, $u_0 \approx \Delta \sigma' = 23.25 \text{ kN/m}^2$

 $u_z = (1 - U_z)u_0 = (1 - 0.85)(23.25) = 3.487 \text{ kN/m}^2 = \text{remaining excess pore}$ water pressure at point A after 3 months.

The increase in effective stress after 3 months = $23.25 - 3.487 = 19.76 \text{ kN/m}^2$

$$\sigma'_o = (2)(15) + (2)(17) + (3)(18) - (2+3)(9.81) = 68.95 \text{ kN/m}^2$$

Therefore, the final effective stress after 3 months = 68.95 + 19.76

 $= 88.71 \text{ kN/m}^2$