

- ◆ 相关分析实验
- 一、实验概述
- 二、生成用于实验的离散时间信号
- 三、对实验信号进行时差提取与<u>时移校</u>正

一、实验概述

- 实验目的(1)会计算离散序列的(归一化)离散相关函数。
 - (2) 重点掌握 有限离散时间序列的时差提取方法。
- 实验内容(1)设计并生成用于实验的若干有限离散时间信号。
 - (2) 对实验信号进行相关分析。
 - 计算实验信号的离散相关函数。
 - 对实验信号进行时差提取。
 - *(3) 试用高精度插值对实验信号进行时移校正。

一、实验概述

- 实验要求 (1) 编程实现有关实验内容。
 - 编程语言不限;程序规范,通用性强。
 - (2) 完成实验报告,包括:
 - 基本原理与方法;
 - 实验方案与设计;
 - 实验结果与分析;
 - 源程序(必要的注释)。
 - 方法说明、程序说明及使用说明。(可选)

一、实验概述

● 本实验在 Matlab 中所涉及到的部分函数:

fopen 创建或打开文件;

fprintf 将数据以指定的格式写入文件;

fscanf 从文件中读出数据;

fclose 关闭文件;

save 将数据以固定的格式写入文件(.mat);

load 从文件(.mat)中装载数据;

xcorr 计算离散相关函数。

- 1. 实验信号的生成
- 步骤 (1) 具体设计一个非周期的连续实验信号。
 - (2) 选取适当的采样间隔在有限的时间范围内对连续 实验信号采样并保存;该采样信号作为时移量为零 的标准信号。
 - (3) 改变连续实验信号的振幅,并用预先设定的时移量对其进行时移。
 - (4) 对修改后的连续实验信号采样,添加噪声并保存; 该采样信号作为待求时移量的信号。

- 2. 实验信号的设计举例
- 例 连续信号 $x(t) = a \cdot \frac{\sin 2\pi f_c(t-\tau)}{2\pi f_c(t-\tau)}$, 其中, $f_c = \frac{3}{800}$,

a 为最大振幅, τ 为时移量, t 的单位为 ms

- <u>采样信号</u>以 △ = 4 ms 采样, + 800 ms + 800 ms共采集 401 个样点。
- <u>添加噪声</u>添加在区间[-0.5, 0.5]×a×r 上均匀分布[随机噪声。
- 数据文件 共产生了 11 个信号数据文件。

2. 实验信号的设计举例

例

文件名	最大振幅 a	噪声因子"	时移量 τ (ms)
S00.txt	200	0	0
S11.txt	100	0	-33
S12.txt	100	0.05	22
S13.txt	100	0.10	-28
S14.txt	100	0.20	16
S15.txt	100	0.50	-15
S21.txt	400	0	5
S22.txt	400	0.05	-15
S23.txt	400	0.10	-8
S24.txt	400	0.20	12
S25.txt	400	0.50	-21

标准信号

2. 实验信号的设计举例

例

2. 实验信号的设计举例

例

三、对实验信号进行相关分析并计算时差

- 实验内容 (1) 选取适当的最大时移量, 计算各个实验信号与 标准实验信号之间的(归一化)离散相关函数: 并图形显示这些离散相关函数。
 - (2) 求取离散相关函数的最大值,并利用三点抛物 插值得到"真正的"最值进;一步,结合采样 间隔求得最终的时移量。
 - (3) 对时差的提取结果进行比较与分析。
 - *(4) 运用高精度插值对实验信号进行时移校正。

三、对实验信号进行相关分析并计算时差

实验示例 计算并显示归一化的相关函数

三、对实验信号进行相关分析并计算时差

实验示例 时差的提取结果与对比分析

文件名	最大振幅 a	噪声因子 r	时移量 _て (m	结果 _{t*} (m	误差 (m
S00.txt	200	0	0	0	0
S11.txt	100	0	-33	32.97	0.03
S12.txt	100	0.05	22	-21.80	0.20
S13.txt	100	0.10	-28	27.25	0.75
S14.txt	100	0.20	16	-16.65	0.65
S15.txt	100	0.50	-15	17.49	2.49
S21.txt	400	0	5	-5.00	0.00
S22.txt	400	0.05	-15	15.09	0.09
S23.txt	400	0.10	-8	8.80	0.80
S24.txt	400	0.20	12	-12.87	0.87
S25.txt	400	0.50	-21	20.90	0.10

