Método Simplex das Duas Fases

1 Descrição do método

Suponhamos inicialmente que tenham sido efetuadas transformações no PPL, de modo que tenhamos $b_i \geq 0$, para todas as restrições. Para cada igualdade i introduziremos uma variável artificial não-negativa x_i^a . Também em cada desigualdade do tipo \geq adicionaremos, além da variável de folga, uma variável artificial não-negativa, isto é:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_j + x_i^a = b_i \\ x_i^a \ge 0 \end{cases}$$

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_j - x_{n+i} + x_i^a = b_i \\ x_{n+i} \ge 0, x_i^a \ge 0 \end{cases}$$

A fase I do método visa a obtenção de uma solução básica viável inicial para o PPL original P. Com a introdução das variáveis artificiais, temos um novo PPL P', diferente de P, mas com uma solução básica viável inicial fácil de ser obtida. Para tanto, basta considerar como variáveis básicas:

- (a) as variáveis de folga associadas às restrições do tipo ≤,
- (b) as variáveis artificiais correspondentes às demais restrições.

A seguir, devemos caminhar de SBV (Solução Básica Viável) em SBV de P' até se obter uma SBV de P. A questão é saber quando teremos uma solução básica viável de P. Para cumprir esse objetivo, trabalharemos na primeira fase com uma função objetivo artificial, a saber, $Q^a(x) = \sum_i x_i^a$, a qual deve ser minimizada. Como $x_i^a \geq 0 \ \forall i$, o menor valor possível será obtido para $x_i^a = 0 \ \forall i$.

Terminando a Fase I, abandonamos $Q^a(x)$ e passamos a trabalhar com a função objetivo dada no problema original.

1.1 Exemplo 1

Aplicar o método simplex ao seguinte PPL:

Introduzindo as variáveis de folga e as variáveis artificiais, obtém-se:

Temos então o seguinte quadro:

VB	$ x_1 $	x_2	x_3	x_4	x_1^a		b
$\overline{x_3}$	4	1	1	0	0	0	21
$x_3 \\ x_1^a$	2	3	0	-1	1	0	21 13 1
x_2^a	-1	1	0	0 -1 0	0	1	1
	-6	1	0	0	0	0	Q'

O sistema anterior apresenta a seguinte solução básica, a saber: variáveis não-básicas, $x_1 = x_2 = x_4 = 0$; e variáveis básicas, $x_3 = 21$, $x_1^a = 13$, $x_2^a = 1$. Substituindo os valores encontrados para x_1 e x_2 nas restrições do problema original, verificamos que algumas restrições são violadas. Iremos introduzir a função objetivo artificial, que representa a soma das inviabilidades, a qual deve ser minimizada. Logo podemos montar o seguinte quadro:

	VB	x_1	x_2	x_3	x_4	x_1^a	x_2^a	b	
(L_1)	$\overline{x_3}$	4	1	1	0	0	0	21	-
$(L_1) (L_2) (L_3)$	x_1^a	2	3	0	-1	1	0	13	O 1
(L_3)	x_2^a	-1	1	0	0	0	1	1	₩ .1
(L_4)		0	0	0	0	1 0	1	Q^a	_
(L_5)		-6	1	0	0	0	0	Q'	

Como x_1^a e x_2^a estão na base, devemos anular seus coeficientes na função objetivo artificial, de forma a colocar a PPL na forma canônica. Para tanto, efetuamos a seguinte operação com linhas: $L_4 \leftarrow -L_2 + L_4$ e $L_4 \leftarrow -L_3 + L_4$, que resultam no quadro a seguir:

	VB								
(L_1)	x_3	4	1	1	0	0	0	21	-
(L_2)	x_1^a	2	3	0	-1	1	0	13	Ω
(L_3)	x_2^a	-1	1	0	0	0	1	21 13 1	Q.∠
(L_4)		-1						$Q^a - 14$	
(L_5)		-6	1	0	0	0	0	Q'	

Note-se que na linha da função objetivo artificial temos coeficientes negativos, sendo o de x_2 o menor deles. Assim, a variável x_2 deve entrar na base e uma vez que o $x_2^a = min\{21/1,\ 13/3,\ 1/1\} = 1$, então x_2^a deixará a base (L_3 é a linha pivotal). Desta forma, obtemos o quadro Q.3 a partir das seguintes operações: $L_1 \leftarrow -L_3 + L_1$; $L_2 \leftarrow -3L_3 + L_2$; $L_4 \leftarrow 4L_3 + L_4$ e $L_5 \leftarrow -L_3 + L_5$

Ainda há coeficiente negativo na linha da função objetivo artificial. Logo x_1 deve entrar na base. Temos ainda que $x_1^a = min\{20/5, 10/5\} = 2$, o que indica que x_1^a deve deixar da base (L_2 é a linha pivotal). Obtemos o quadro Q.4 após as seguintes operações de pivotamento: $L_1 \leftarrow -L_2 + L_1$; $L_3 \leftarrow (1/5)L_2 + L_3$; $L_4 \leftarrow L_2 + L_4$; $L_5 \leftarrow L_2 + L_5$; $L_2 \leftarrow (1/5)L_2$;

					x_4				
(L_1)	x_3	0	0	1	1	-1	2	10	•
(L_2)	x_1	1	0	0	-1/5	1/5	-3/5	2	0.4
(L_3)	x_2	0	1	0	$ \begin{array}{r} 1 \\ -1/5 \\ -1/5 \end{array} $	1/5	2/5	3	Q.4
(L_4)		0			0			Q^a	•
(L_5)		0	0	0	-1	1	-4	Q'+9	

Observando a linha da função objetivo artificial em Q.4 percebemos que esta solução é ótima com relação à função objetivo artificial. Portanto, chegamos ao final da Fase I. Como $Q^a(x^*) = \sum x_i^{a^*} = 0$, geramos uma solução básica viável inicial para o PPL original. Como as variáveis artificiais são todas não-básicas e não têm qualquer significado real, podemos eliminá-las, bem como a função artificial $Q^a(x)$. Ao eliminar a linha referente à função objetivo artificial e as colunas referentes às variáveis artificiais, passamos à fase II com o seguinte quadro reduzido do Simplex:

	VB	x_1	x_2	x_3	x_4	b	
(L_1)	$\overline{x_3}$	0	0	1	1	10	
(L_2)	x_1	1	0	0	-1/5	2	Q.5
(L_3)	x_2	0	1	0	$1 \\ -1/5 \\ -1/5$	3	
(L_4)		0			-1	Q'+9	-

Observando a linha da função objetivo em Q.5, verificamos que a atual solução não é ótima, logo a variável x_4 deve entrar na base. Como existe um único $y_{ij} > 0$ na coluna de x_4 , isto é, o elemento 1 na primeira linha, x_3 deve deixar a base (L_1 é a linha pivotal). Chegamos a Q.6 efetuando as seguintes operações de pivotamento: $L_2 \leftarrow (1/5)L_1 + L_2$; $L_3 \leftarrow (1/5)L_1 + L_3$; $L_4 \leftarrow L_1 + L_4$;

VB	x_1	x_2	x_3	x_4	b	
x_4	0	0	1	1	10	-
x_1	1	0	1/5	0	4	Q.6
x_2	0	1	1/5	0	5	
	0	0	1	0	Q'+ 19	-

Note-se que a solução obtida acima, ou seja, $x^* = (4,5,0,10)$ com $Q(x^*) = -Q'x^*$ = 19 é ótima, pois não há mais como melhorar o valor da função objetivo.

CASOS ESPECIAIS

A Fase I termina ao atingirmos o menor valor possível para $Q^a(x)$. Suponhamos que este mínimo seja atingido para uma determinada solução x^* . Vejamos o que pode acontecer com $Q^a(x^*)$, bem como com as variáveis artificiais.

a)
$$Q^a(x^*) = \sum x_i^{a^*} > 0$$

Isto significa que o problema original não possui solução.

- b) $Q^a(x^*)=\sum x_i^{a^*}=0$ Logo $x_i^{a^*}=0$, para todo i. Encontramos então uma solução básica viável para o problema.
 - b.1) Todas as variáveis artificiais são VNB. Como as variáveis artificiais não têm qualquer significado, podemos neste caso simplesmente eliminá-las, bem como a função objetivo artificial. Passamos à Fase II do método, trabalhando, agora, com a função objetivo dada por Q(x).
 - b.2) Existe variável artifial que é VB. Primeiramente eliminamos todas as variáveis artificiais que são VNB, inclusive os respectivos coeficientes em Q(x) e $Q^a(x)$. Permanecem, portanto, somente as variáveis artificiais que são VB. Há dois casos considerar:
 - b.2.1) Na linha referente à variável artificial x_j^a que é VB, existe $y_{jk} \neq 0$ para alguma coluna não-básica k. Neste caso, para qualquer que seja o valor do coeficiente \bar{c}_k , podemos fazer com que x_k entre na base em lugar de x_j^a , com o valor $x_k = 0 / y_{jk} = 0$, sem que o valor da função objetivo se altere, pois Q(x) - $Q(\hat{x}) = c_k x_k = 0 \Rightarrow Q(x) = Q(\hat{x})$. Trata-se, portanto, de uma solução básica (viável) degenerada.
 - b.2.2) Na linha referente à variável artificial x_j^a que é VB, tem-se $y_{jk}=0$ para todas as colunas não-básicas k. Neste caso, como $y_{jk}=0$ para todo k, então conseguimos anular uma equação do sistema Ax=b utilizando apenas transformações elementares sobre as equações do sistema. Trata-se, pois, de uma restrição redundante, que pode ser eliminada. Assim, se ao final da Fase I, tivermos uma variável qualquer x_j^a na base com $y_{jk}=0$ para todo k, devemos eliminar a linha e a coluna à ela relativas.

1.2 Exemplo 2

Aplicar o método simplex ao seguinte PPL:

Maximizar
$$Q(x)=x_1+x_2$$
 sa:
$$x_1 + 4x_2 \geq 4 \\ 3x_1 + x_2 = 1 \\ x_1 \geq 0 \;\; ; \;\; x_2 \geq 0$$

Colocando as variáveis de folga e as variáveis artificiais, obtém-se:

Minimizar $Q'(x) = -x_1 - x_2$

sa:
$$x_1 + 4x_2 - x_3 + x_1^a = 4 \ 3x_1 + 3x_2 + x_2^a = 1 \ x_1, \, x_2, \, x_3, \, x_1^a, \, x_2^a \geq 0$$

Temos então o seguinte quadro:

	VB	x_1	x_2	x_3	x_1^a	x_2^a	b	
$(L_1) (L_2)$	$\overline{x_1^a}$	1	4	-1	1	0	4	-
(L_2)	x_2^a	3	1	0	0	1	1	Q.1
(L_3)		0	0	0	1	1	Q^a	=
(L_4)		-1	-1	0	0	0	Q'	

Como x_1^a e x_2^a estão na base, devemos anular os seus coeficientes na função objetivo artificial. Para tanto, efetuamos a seguinte operação com linhas : $L_3 \leftarrow -L_1 + L_3$ e $L_3 \leftarrow -L_2 + L_3$, resultando no quadro a seguir:

	VB	x_1	x_2	x_3	x_1^a	x_2^a	b	
(L_1)	x_1^a	1	4	-1	1	0	4	
(L_2)		3	1	0	0	1	1	Q.2
(L_3)		-4	-5	0	0	0	$Q^a - 5$	
(L_4)		-1	-1	0	0	0	Q'	

Note-se que na linha da função objetivo artificial temos coeficientes negativos, sendo o de x_2 o menor deles. Logo, x_2 deve entrar na base e uma vez que $min\{4/4, 1/1\}$ mostra um empate no critério de saída da base, escolheremos arbitrariamente x_2^a para deixar a base. Obteremos, assim, o quadro a seguir:

Atingimos o fim da Fase I. Como $Q^*(x) = 0$, podemos então eliminar a variável artificial que é VNB, bem como a linha correspondente à função objetivo artificial.

Como x_1^a é VB, não podemos eliminá-la imediatamente. Observe que na linha à ela correspondente (linha 1), o coeficiente de x_3 (que é VNB) é diferente de zero. Assim, podemos fazer x_3 entrar na base (com o valor zero, resultado da operação $x_3 = 0/-1 = 0$). Efetuada essa mudança de base, através do pivoteamento $L_1 \leftarrow -L_1$, obtemos o seguinte quadro do simplex:

Agora temos a variável artificial x_1^a sendo VNB. Logo podemos eliminá-la, ou seja :

O quadro acima apresenta a seguinte solução ótima: $Q^*(x) = 1$ e $x^* = (0, 1, 0)$, finalizando então a Fase II do método.

1.3 Lista de Exercícios

Resolva os PPL's abaixo pelo método SIMPLEX, mostrando todas as iterações:

a) **MAX**
$$f(x) = 2x_1 + 3x_2$$

sa:

b) **MIN**
$$f(x) = x_1 + x_2$$

sa:

c) **MAX**
$$f(x) = 2x_1 + 3x_2$$

69

d) **MAX**
$$f(x) = x_1 + x_2$$

sa: