S4: A Simple Storage Service for Sciences

Matei Ripeanu
University of British Columbia

Adriana Iamnitchi University of South Florida

The Situation

- Services as utilities have gained traction
 - Economy of scale → lower costs
 - One of the present drivers for Grid computing
- Success story: Amazon Simple Storage Service (S3)
 - S3 growth is capacity constrained
 - Direct access to storage: open protocols, APIs
 - Performance claims:
 - Infinite data durability, 99.99% availability, fast access
 - Billing: pay-as-you go
 - \$0.15/month/GB stored; \$0.13-0.18/GB transferred
- Science communities are huge storage users

The Motivating Questions

The immediate question: Is offloading data storage to a storage utility feasible and cost-effective for science Grids?

The long-term question: How should a storage utility that targets scientific applications look like?

The Approach

- Characterize S3
 - Does it live up to its own objectives?
- Toy scenario: consider a representative scientific application (DZero)
 - Is the functionality provided adequate?
 - Estimate performance and costs

Q: Is offloading data storage from an in-house storage system to S3 feasible and cost-effective for science Grids?

The Answer: Risky.

- New risk: direct monetary loss
 - Magnified as there is no built-in solution to limit loss
 - In addition to well-known risk in distributed systems
- Security mechanisms -- too simple to be useful for large collaborations
 - Access control using ACLs,
 - hard to use in large systems, needs at least groups
 - No support for delegation
 - Implicit trust between users and the S3 service
 - No transaction 'receipts', no support for un-repudiabiliy
- But ... standard techniques to deal with these problems

The Answer: Costly.

- Scenario: S3 used by a high-energy physics collaboration
 The DØ Experiment
 - Traces from January '03 to March '05 (27 months)
 - 375TB stored, 5.2 PB processed, 561 users, 13 countries

Guidelines for a <u>Simple Storage</u> <u>Service for Sciences (S4)</u>

- Unbundle performance characteristics
 - S3: high-availability, high-durability, high-access performance, bundled at a single pricing point
 - Applications often do not need all three
 - Each characteristic requires different resources and generates different costs
 - Solution: classes of service that allow applications to specify their requirements and chose pricing point
- Exploit usage patterns
 - e.g., data gets cold
- Facilitate the use of application-level information to reduce costs
 - E.g., raw vs. derived data

Questions?

To access the S3 evaluation technical report: $\underline{\text{http://www.ece.ubc.ca/}{\sim} \text{matei}}$

_

Simple Storage Service (S3) Architecture

Two level namespace

- Buckets (think directories)
 - Unique names
 - Two goals: data organization and charging
- Data objects
 - Opaque object (max 5GB)
 - Metadata (attribute-value, up to 4K)

Functionality

- Simple put/get functionality
- Limited search functionality
- Objects are immutable, cannot be renamed

Data access protocols

- SOAP
- REST
- BitTorrent

S3 Architecture (...cont)

Security

- Identities
 - Assigned by S3 when initial contract is 'signed'
- Authentication
 - Public/private key scheme
 - But private key is generated by Amazon!
- Access control
 - Access control lists (limited to 100 principals)
 - ACL attributes
 - FullControl,
 - Read & Write (for buckets only for writes)
 - ReadACL & WriteACL (for buckets or objects)
- Auditing (pseudo)
 - S3 can provide a log record

S3 Evaluation

- Durability
 - Perfect (but based on limited scale experiment)
- Availability
 - Four weeks of traces, about 3000 access requests from 5 PlanetLab nodes
 - Retry protocol, exponential ba
 - 'Cleaned' data
 - 99.03% availability after o
 - 99.55% availability after fi
 - 100% availability after sec
- Access performance

Characteristics	Resources and techniques to provide them			
High-performance data access	Geographical replication to improve access locality, high-speed storage, fat networks.			
Durability	Replication at various scales: RAID, erasure codes, multiple locations, multiple media;.			
Availability	service replication, hot-swap technologies, multi-hosting, increase availability for auxiliary services (e.g., authentication, access control)			

Application class	Durability	Availability	High access speed
Cache	No	Depends	Yes
Long-term archival	Yes	No	No
Online production	No	Yes	Yes
Batch production	No	No	Yes