Vishay Siliconix

# N-Channel 60 V (D-S) MOSFET

# **DESCRIPTION**

The attached SPICE model describes the typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model is extracted and optimized over the -55  $^{\circ}\text{C}$  to +125  $^{\circ}\text{C}$  temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

# **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Sub-circuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the -55 °C to +125 °C Temperature Range
- · Model the Gate Charge

# SUBCIRCUIT MODEL SCHEMATIC



# Note

This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer
to the appropriate datasheet of the same number for guaranteed specification limits.



www.vishay.com

Vishay Siliconix

| SPECIFICATIONS (T <sub>J</sub> = 25 °C, unless otherwise noted) |                     |                                                                      |                |                  |      |
|-----------------------------------------------------------------|---------------------|----------------------------------------------------------------------|----------------|------------------|------|
| PARAMETER                                                       | SYMBOL              | TEST CONDITIONS                                                      | SIMULATED DATA | MEASURED<br>DATA | UNIT |
| Static                                                          |                     |                                                                      |                |                  |      |
| Gate Threshold Voltage                                          | V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                 | 1.5            | -                | V    |
| Drain-Source On-State Resistance <sup>a</sup>                   | R <sub>DS(on)</sub> | $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$                         | 0.030          | 0.030            | Ω    |
|                                                                 |                     | $V_{GS} = 4.5 \text{ V}, I_D = 4.2 \text{ A}$                        | 0.034          | 0.035            |      |
| Forward Transconductance <sup>a</sup>                           | 9 <sub>fs</sub>     | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 4.5 A                       | 11             | 13               | S    |
| Diode Forward Voltage                                           | $V_{SD}$            | I <sub>S</sub> = 3.6 A                                               | 0.82           | 0.82             | V    |
| Dynamic <sup>b</sup>                                            |                     |                                                                      |                |                  |      |
| Input Capacitance                                               | C <sub>iss</sub>    | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$     | 335            | 335              | pF   |
| Output Capacitance                                              | C <sub>oss</sub>    |                                                                      | 78             | 78               |      |
| Reverse Transfer Capacitance                                    | C <sub>rss</sub>    |                                                                      | 30             | 30               |      |
| Total Gate Charge                                               | $Q_g$               | $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$  | 5.4            | 6.4              | - nC |
|                                                                 |                     | $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 4.5 \text{ A}$ | 2.7            | 3.2              |      |
| Gate-Source Charge                                              | Q <sub>gs</sub>     |                                                                      | 1.1            | 1.1              |      |
| Gate-Drain Charge                                               | $Q_{gd}$            |                                                                      | 1.3            | 1.3              |      |

# Notes

- a. Pulse test; pulse width  $\leq 300~\mu s,$  duty cycle  $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

# **COMPARISON OF MODEL WITH MEASURED DATA** ( $T_J = 25$ °C, unless otherwise noted)













#### Note

Dots and squares represent measured data.
 Copyright: Vishay Intertechnology, Inc.