Конспект вопросов по компьютерной алгебре. Первый семестр. 2010.

Преподаватель: Васильев Николай Николаевич

Содержание

1	Группа, подгруппа, гомоморфизм групп. Ядро и образ гомоморфизма.	3
2	Мономорфизмы, эпиморфизмы и изоморфизмы. Понятие нормального делителя (нормальной подгруппы). Факторгруппа	4
3	Характеризация мономорфизмов в терминах ядра. Основная теорема о гомоморфизме.	6
4	Группа подстановок (симметрическая группа). Четные и нечетные подстановки. Теорема о том, что всякая группа есть подгруппа симметричской группы (для конечных групп)	7
5	Левые классы смежности по подгруппе (см. вопрос 2). Индекс подгруппы. Теорема об индексе	8
6	Свободная группа. Теорема о том, что всякая группа есть факторгруппа свободной группы	9

1 Группа, подгруппа, гомоморфизм групп. Ядро и образ гомоморфизма.

Определение. < G, *, e > - группа, $*: G \times G \to G, e \in G$

- 1. $\forall a, b, c \in G(ab)c = a(bc)$
- 2. $\forall g \in G \ eg = ge = g$
- 3. $\forall g \in G \ \exists g^{-1} \in G \ gg^{-1} = g^{-1}g = e$

Если $\forall a,b \in G \ ab = ba$ то группу называют абелевой

Теорема. $\exists ! e \in G \ eg = ge = g$

Определение. G - группа, тогда $H \subset G$ называют nodepynnou, если

- 1. $e \in H$
- 2. $\forall h_1, h_2 \in H \ h_1 h_2 \in H \mid HH \subset H$
- 3. $\forall h \in H \ h^{-1} \in H \mid H^{-1} \subset H$

Определение. G, W - группы.

 $f:G\to W$ называют гомоморфизмом (групп), если $\forall g_1,g_2\in G$ $f(g_1g_2)=f(g_1)*f(g_2)$

Теорема. $f:G \to W$ - гомоморфизм $f(e_G)=e_W$

Определение. $f:G\to W$ - гомоморфизм, тогда $kerf=g\in G|f(g)=e_W$ - называют ядром гомоморфизма f

 $m Teopema.\ \it kerf$ - $\it noderpynna$ $\it G$

Определение. $f: G \to W$ - гомоморфизм, тогда $Imf = \{w \in W | \exists g \in G \ f(g) = w\}$ - называют образом гомоморфизма f

2 Мономорфизмы, эпиморфизмы и изоморфизмы. Понятие нормального делителя (нормальной подгруппы). Факторгруппа.

Определение. Сюръективный гомоморфизм - эпиморфизм. Инъективный гомоморфизм - мономорфизм. Биективный гомоморфизм - изоморфизм. Изоморфизм $f: G \to G$ - автоморфизм.

Пусть $H\subset G$. Введем отношение эквивалентности \sim соответствующее подгруппе. $g_1,g_2\in G.$ $g_1\sim g_2,$ если $g_1g_2^{-1}\in H$

Определение. $\stackrel{\sim}{g}=\{k\in G|k\sim g\}$ - класс эквивалентности элемента g

Определение. G/H - факторгруппа, левые смежные классы. $\tilde{g}=Hg$

Заметим, что в случае некоммутативной группы можно ввести правые смежные классы gH.

Теорема. Если gH = Hg, то G/H - группа.

Доказательство. Введем умножение: $\forall g_1H, g_2H \in G/H \ (g_1H)(g_2H) \stackrel{def}{=} g_1g_2H$. Проверим корректность умножения: пусть $g_1' \sim g_1, g_2' \sim g_2$. Тогда $g_1' = g_1h_1, g_2' = g_2h_2$, а значит $g_1'g_2' = g_1h_1g_2h_2 = g_1g_2h_1h_2$. То есть $g_1'g_2'H = g_1g_2H$.

Теперь проверим свойства умножения:

- 1. eHgH = gH
- 2. $g_1 H g_2 H g_3 H = g_1 g_2 g_3 H$
- $3. gHg^{-1}H = eH$

Определение. $H \subset G$ назовем *нормальной подгруппой*, если $\forall g \in G \ gH = Hg$ или $gHg^{-1} = H$ или $ghg^{-1} \in H$ Обозначение: $H \triangleleft G$

Теорема. G - абелева группа, тогда $\forall H \subset G$ - нормальная.

Теорема. Ядра гомоморфизмов и только они суть нормальные подгруппы.

Доказательство. Сперва докажем, что если $f:G\to W$ - гомоморфизм, то $kerf\lhd G.$ $g\in G,h\in kerf$, тогда $f(ghg^{-1})=f(g)f(h)f(g^{-1})=f(g)f(g)^{-1}=e_W.$

Теперь покажем, что $\forall H \triangleleft G \; \exists f$ - гомоморфизм и kerf = H. Введем $\pi_H: G \to G/H$ - канонической гомоморфизм. Пусть $g \in G, h \in H$ тогда $\pi_H(g) = gH, \pi_H(h) = hH = H$. Следовательно $ker\pi_H = H$.

Порой пишут: $\{e\} \subset H \triangleleft G \overset{\pi_H}{\to} G/H$

3 Характеризация мономорфизмов в терминах ядра. Основная теорема о гомоморфизме.

Теорема. ϕ - мономорфизм $\Leftrightarrow ker\phi = \{e\}$

Доказательство. [\Rightarrow] Пусть $\exists g \neq e \ \phi(g) = e$. Но $\phi(e) = e$. Таким образом $g \neq e, \phi(g) = \phi(e)$. Противоречие инъективности. [\Leftarrow] Пусть $\exists g_1 \neq g_2, \phi(g_1) = \phi(g_2)$. Тогда $\phi(g_1)\phi(g_2)^{-1} = e$, а это значит, что $g_1g_2^{-1} \neq e$ и $g_1g_2^{-1} \in kerf$. Противоречие тривиальности ядра.

Теорема. $G/kerf \stackrel{\sim}{=} Imf$

Доказательство. Пусть $\phi: X \leftarrow Y$. Введем отношение эквивалентности: $x_1 \sim x_2$, если $\phi(x_1) = \phi(x_2)$. Рассмотрим $\tau: X/\sim Im \phi$, $\tau(\tilde{x}) = \phi(x)$.

au - инъекция. Действительно, если $\overset{\sim}{x_1} \neq \overset{\sim}{x_2}$, то x_1 не эквивалентно x_2 и значит $\phi(x_1) \neq \phi(x_2)$.

 τ - сюръекция. Действительно $\forall y \in Im \, \phi \, \exists x \, \phi(x) = y \, \text{и} \, \tilde{x} : \tau(\tilde{x}) = y.$ Таким образом изоморфизм установлен.

Теперь пусть $f: G \to W$ - гомоморфизм. $g_1 \sim g_2$, если $f(g_1) = f(g_2)$, или $f(g_1)f(g_2)^{-1} = e, f(g_1g_2^{-1}) = e$ это означает, что $g_1g_2^{-1} \in kerf$. То есть отношение \sim совпадает с отношением эквивалентности порождаемым $kerf \triangleleft G$. Можно записать $G/kerf \stackrel{\sim}{=} Imf$.

4 Группа подстановок (симметрическая группа). Четные и нечетные подстановки. Теорема о том, что всякая группа есть подгруппа симметричской группы (для конечных групп).

Определение. Симметрической группой S_X множества X называется группа автоморфизмов $X \to X$ относительно операции композиции и нейтрального элемента $id_X : \forall x \in X, id_X(x) = x$. Если $X = \{1, 2, \cdots, n\}$, то симметричскую группу называют группой подстановок и обозначают S_n .

Группа подстановок S_n допускает следующее копредставление:

```
Образующие: \sigma_1, \sigma_2, \cdots, \sigma_{n-1} Соотношения: \sigma_i^2 = 1 \sigma_i \sigma_j = \sigma_j \sigma_i, если |i-j| > 1 \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}
```

Вообще, образующие в указанном копредставлении являются *транс-позициями*, то есть это такие подстановки, которые меняют два соседних элемента местами, а остальные элементы оставляют на месте.

Определение. Подстановка называется *четной*, если она представляется в виде произведения четного числа транспозиций и *нечетной* в противном случае.

Теорема. Любая группа - подгруппа симметрической группы.

Доказательство. Необходимо сопоставить каждому элементу $g \in G$ некоторую биекцию $G \to G$, тем самым получив вложение $G \subset S_G$. Рассмотрим $i_g: G \to G, \forall s \in G \ i_G(s) = gs$. Осталось проверить свойства: $i_a \circ i_b = a(bs) = (ab)s = i_{ab}, \ i_g \circ i_{g^{-1}} = g(g^{-1}s) = es = i_e$.

5 Левые классы смежности по подгруппе (см. вопрос 2). Индекс подгруппы. Теорема об индексе.

Определение. $H \subset G$

[G:H] = #G/H - индекс подгруппы. #G - порядок, мощность группы.

Замечание: индекс тривиальной подгруппы - порядок группы.

Теорема (Теорема об индексе). $K \subset H \subset G$, $mor \partial a [G:K] = [G:H][H:K]$

Доказательство. $G=\bigcup_{i=1}^{[G:H]}g_iH$ при этом $g_iH \neq g_jH, i \neq j$. Аналогично

$$H=\bigcup_{j=1}^{[H:K]}h_jK$$
 при этом $h_iK
eq h_jK, i
eq j$. Запишем $G=\bigcup_{i,j}g_ih_jK$.

Теперь достаточно проверить, что g_ih_jK представляют все различные классы смежности по K. Пусть $g_ih_jK=g_lh_mK$. Умножим на H, получим $g_ih_jKH=g_lh_mKH$, и далее $g_ih_jH=g_lh_mH\Rightarrow g_iH=g_lH\Rightarrow i=l$. Вернемся к исходному равенству $g_ih_jK=g_ih_mK\Rightarrow h_jK=h_mK\Rightarrow j=m$. То есть все классы различны.

Возьмем gK. Ясно, что $g = g_i h, h \in H$ и $h = h_m k, k \in K$. Имеем $g = g_i h_m k, g \in g_i h_m K$. Теперь понятно, что исходное представление G представляло все классы смежности по K.

Следствия:

- 1. Порядок подгруппы всегда делитель порядка группы. Пусть $K = \{e\}$, по теореме об индексе #G = #(G/H)#H
- 2. $\forall G: \#G = p, p \in \mathbb{P}$ циклическая группа порядка р Рассмотрим $G: \#G = p, p \in \mathbb{P}$. Рассмотрим $H \subset G$ циклическая подгруппа, порожденная $g \neq e$. Ясно, что $\#H \geq 2$. Но #H делитель #G = p, а значит #H = p = #G. Также из этого следует $\forall G: \#G = p, p \in \mathbb{P}$ $G \cong \mathbb{Z}/p\mathbb{Z}$

6 Свободная группа. Теорема о том, что всякая группа есть факторгруппа свободной группы.

Пусть $S=\{a,b,c\cdots\},\ S^{-1}=\{a^{-1},b^{-1},c^{-1},\cdots\}.$ Будем называть $A=S\cup S^{-1}$ алфавитом, а A^* - множеством всевозможных слов над алфавитом A. Пустым словом будем называть $aa^{-1}=\emptyset$. Введем отношение эквивалентности на A^* . $w\sim v$, если w можно получить из v с помощью правил сокращения. Также введем операцию конкатенации на A^* .

Определение. $F_S = A^* \cup \emptyset /\!\!\!\sim$ - группа по конкатенации. F_S - свободная группа, порожденная S.

Теорема (Категорное свойство свободной группы). Существует единственный гомоморфизм, делающий диаграмму коммутативной. То есть $\forall f: S \to G \ \exists ! \phi_f: F_S \to G, \ f = \phi_f \circ i.$

Доказательство. Пусть $S = \{s_1, \cdots, s_n\}$. Тогда $Imf = \{f(s_1, \cdots, f(s_n))\} = \{g_1, \cdots, g_n\}$. Теперь введем $\phi_f(s_1^{n_1}s_2^{n_2}\cdots s_i^{n_i}) = g_2^{n_1}g_2^{n_2}\cdots g_i^{n_i}$. Единственность очевидна по построению.

Теорема. Приведенное выше свойство может быть принято за определение свободной группы с точностью до изоморфизма.

Доказательство. Пусть существуют две свободные группы, порожденные $S: F_1$ и F_2 . Тогда по свойству существуют единственные гомоморфизмы $\phi_i: F_1 \to F_2$ и $\phi_j: F_2 \to F_1$. А это значит, что $F_1 \stackrel{\sim}{=} F_2$.

Теорема. Любая группа есть факторгруппа некоторой свободной группы.

Доказательство. Пусть G - группа. Забудем о её груповых свойствах и рассмотрим как множество. Рассмотрим F_G - свободную группу, порожденную G. Теперь вспомним о том, что G - группа. Тогда $\exists \phi: F_G \to G$ - естественный эпиморфизм групп, то есть $Im\ \phi = G$. По основной теореме о гомоморфизме $F_G/\ker\phi \stackrel{\sim}{=} Im\ \phi = G$.

Пример:

 $F_{\{a,b\}}\stackrel{\sim}{=} \mathbb{Z} \times \mathbb{Z}$, если введены следующие правила $aba^{-1}b^{-1}=e, ab=ba$.