CS1231S: Discrete Structures

Tutorial #5: Relations & Partial Orders

(Week 7: 26 – 30 September 2022)

I. Discussion Questions

These are meant for you to discuss on Canvass. No answers will be provided.

- D1. Let R be a binary relation on a non-empty set A. If $R = \emptyset$, then is R reflexive? Symmetric? Transitive?
- D2. Suppose a binary relation R on a non-empty set A is reflexive, transitive, symmetric and antisymmetric. What can you conclude about R? Explain.
- D3. Asymmetry is defined in question 6 as follows: A binary relation R on a set A is asymmetric iff

$$\forall x, y \in A (x R y \Rightarrow y \cancel{R} x).$$

Are there any binary relations that are both symmetric and asymmetric?

II. Tutorial Questions

1. Let S be the set of all strings over the alphabet $\mathcal{A} = \{s, u\}$, i.e. an element of S is a sequence of characters, each of which is either s or u. Examples of elements of S are: ε (the empty string), s, u, sus, usssuu, and sususssssu.

Define a relation R on S by the following: $\forall a, b \in S (aRb \Leftrightarrow len(a) \leq len(b))$ where len(x) denotes the length of x, i.e. the number of characters in x.

Is R antisymmetric? Prove or disprove it.

- 2. Consider the "divides" relation on each of the following sets of integers. For each of them, draw a Hasse diagram, and find all minimal, maximal, smallest and largest elements.
 - (a) $A = \{1, 2, 4, 5, 10, 15, 20\}.$
 - (b) $B = \{2, 3, 4, 6, 8, 9, 12, 18\}.$
- 3. Let $\mathcal{P}(A)$ denote the power set of set A. Prove that the binary relation \subseteq on $\mathcal{P}(A)$ is a partial order.
- 4. Let $B = \{0,1\}$ and define the binary relation R on $B \times B$ as follows:

$$\forall (a,b), (c,d) \in B \times B ((a,b) R (c,d) \Leftrightarrow (a \leq c) \land (b \leq d)).$$

- (a) Prove that R is a partial order.
- (b) Draw the Hasse diagram for R.
- (c) Find the maximal, largest, minimal and smallest elements.
- (d) Is $(B \times B, R)$ well-ordered?

5. Let R be a binary relation on a non-empty set A. Let $x, y \in A$. Define a relation S on A by

$$x S y \Leftrightarrow x = y \lor x R y$$
 for all $x, y \in A$.

Show that:

- (a) S is reflexive;
- (b) $R \subseteq S$; and
- (c) if S' is another reflexive relation on A and $R \subseteq S'$, then $S \subseteq S'$.

What is this relation S called? (Hint: Refer to Transitive Closure in Lecture 6).

6. Let *R* be a binary relation on a set *A*.

We have defined antisymmetry in class: R is antisymmetric iff

$$\forall x, y \in A (x R y \land y R x \Rightarrow x = y).$$

We define asymmetry here. R is asymmetric iff

$$\forall x, y \in A (x R y \Rightarrow y \cancel{R} x).$$

- (a) Find a binary relation on A that is both asymmetric and antisymmetric.
- (b) Find a binary relation on A that is not asymmetric but antisymmetric.
- (c) Find a binary relation on A that is asymmetric but not antisymmetric.
- (d) Find a binary relation on A that is neither asymmetric nor antisymmetric.
- 7. Consider a set A and a total order \leq on A. Show that all minimal elements are smallest.
- 8. **Definitions.** Consider a partial order \leq on a set A and let $a, b \in A$.
 - We say a, b are **comparable** iff $a \le b$ or $b \le a$.
 - We say a, b are **compatible** iff there exists $c \in A$ such that $a \le c$ and $b \le c$.

In question 3, you are given the "divides" relation on $A = \{1, 2, 4, 5, 10, 15, 20\}$. List out the pairs of distinct elements in A that are (a) comparable; (b) compatible. Use the notation $\{x, y\}$ to represent the pair of elements x and y.

9. Let $A = \{a, b, c, d\}$. Consider the following partial order on A:

$$R = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (c, c), (d, d)\}.$$

- (a) Draw a Hasse diagram of R...
- (b) Draw Hasse diagrams of all the linearizations of R.
- 10. For each of the following statements, state whether it is true or false and justify your answer.
 - (a) In all partially ordered sets, any two comparable elements are compatible.
 - (b) In all partially ordered sets, any two compatible elements are comparable.