CHENG GUO

Merve Bodur

DIONNE ALEMAN

David Urbach

MODEL SETUP

Toronto

Western

Toronto General
Toronto Western
Princess Margaret
Toronto Rehab
Michener Institute

Toronto

General

THE SDORS PROBLEM

SDORS: Stochastic Distributed Operating Room Scheduling

- Hospitals share operating rooms (ORs) and waiting lists
- Schedule patients to hospitals and ORs
- Surgery durations are stochastic
- Cancel a surgery if it is expected to finish after working hours

MODEL NOVELTY

★ Modeling the distributed OR scheduling problem in a stochastic setting

Master

Problem

Subproblem

★ "Early stop" scheme

GOALS

- ✓ Robust schedule
- ✓ Decrease costs ✓ Shorten waiting time
- ✓ Reduce cancellation

BDD

master

problem

BDD

subproblem

THE MODEL

1st stage 2nd stage observe Schedule patients to Cancel patients if durations (hospital, room, day) there is overtime

➤ 2-stage stochastic integer program (2SIP):

min
$$f(u, y, x, w) + \mathbb{E}_{\mathbf{T}}[Q(\mathbf{x}, \mathbf{y}, \mathbf{T})]$$

s.t. $\sum_{h \in \mathcal{H}} \sum_{d \in \mathcal{D}} \sum_{r \in \mathcal{R}_h} x_{hdpr} = 1 \quad \forall p \in \mathcal{P}'$
 $\sum_{h \in \mathcal{H}} \sum_{d \in \mathcal{D}} \sum_{r \in \mathcal{R}_h} x_{hdpr} + w_p = 1 \quad \forall p \in \mathcal{P} \setminus \mathcal{P}'$

 $y_{hdr} \le u_{hd}$ $x_{hdpr} \le y_{hdr}$

 $\forall h \in \mathcal{H}; d \in \mathcal{D}; r \in \mathcal{R}_h$ $\forall h \in \mathcal{H}; d \in \mathcal{D}; p \in \mathcal{P}; r \in \mathcal{R}_h$ $\forall h \in \mathcal{H}; d \in \mathcal{D}; r \in \mathcal{R}_h \setminus \{1\}$

 $y_{hdr} \le y_{hd,r-1}$ $u_{hd}, y_{hdr}, x_{hdpr}, w_p \in \{0, 1\}$

 $\forall h \in \mathcal{H}; d \in \mathcal{D}; p \in \mathcal{P}; r \in \mathcal{R}_h$

ightharpoonup The cancellation cost $Q(\mathbf{x}, \mathbf{y}, \mathbf{T})$:

$$\min \sum_{h \in \mathcal{H}} \sum_{d \in \mathcal{D}} \sum_{r \in \mathcal{R}_h} \sum_{p \in \mathcal{P}} c_p^{\text{cancel}}(x_{hdp} - z_{hdpr})$$

s.t. $\sum_{p \in \mathcal{P}} T_p z_{hdpr} \le B_{hd} y_{hdr} \qquad \forall h \in \mathcal{H}; d \in \mathcal{D}; r \in \mathcal{R}_h$

 $z_{hdpr} \le x_{hdpr}$

 $\forall h \in \mathcal{H}; d \in \mathcal{D}; p \in \mathcal{P}; r \in \mathcal{R}_h$

$\forall h \in \mathcal{H}; d \in \mathcal{D}; p \in \mathcal{P}; r \in \mathcal{R}_h$

EXPERIMENTAL RESULTS

Vs. Commercial Solver

instance		Ti	me / Gap)	$\stackrel{-}{\Rightarrow}$	Decomposition out-
(pp-h-d-r)	MIP	2-BDD	2-LBBD	3-LBBD	_	performs MIP
10-2-3-3	4%	3%	3%	17 (min)		
25-2-3-3	13%	9%	12%	9%	\Rightarrow	For 2-stage decom-
10-3-5-5	6%	5%	6%	21 (min)		position, BDD-based
25-3-5-5	60%	17%	20%	-		cuts have a small
50-3-5-5	61%	21%	21%	_		
75-3-5-5	_	32%	21%	-		advantage over
					_	LBBD cuts

- Time limit: 30 minutes
- MIP: CPLEX 12.8
- - : gap > 100%

- \Rightarrow 3-stage decomposition is very fast in small instances

Deterministic Model

instance	Cancel.	Rate (%)	Utiliz.	Rate (%)	
(pp-h-d-r)	Deter.	Sto.	Deter.	Sto.	\Rightarrow Stochastic
10-3-5-5	16	1	3	5	model decreases
25-3-5-5	19	2	9	11	cancellation and
50-3-5-5	16	2	18	23	improves utilization
75-3-5-5	15	5	29	33	.

SOLUTION METHODS

SAMPLE AVERAGE APPROXIMATION (SAA)

- Approximate 2SIP with SAA
- T_n^s : simulated surgery duration in scenario s

TWO DECOMPOSITION SCHEMES

LBBD

master

problem

LBBD

subproblem

★ LBBD optimality cuts for 2SIP

ALGORITHMIC CONTRIBUTIONS

*Adapted first fit decreasing (FFD) algorithm

★ Problem-specific subproblem relaxation

• z_{hdpr}^s : acceptance decision in scenario s

TWO-STAGE DECOMPOSITION

► Master problem:

DECISIONS

Open room

 x_{hdpr} : Assign patient

 z_{hdpr} : Accept patient

Open hospital

Postpone patient

min $f(u, y, x, w) + \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \sum_{h \in \mathcal{H}} \sum_{d \in \mathcal{D}} \sum_{r \in \mathcal{R}} Q_{hdr}^{s}$

s.t. assignment constraints on $x_{hdpr}, y_{hdr}, u_{hd}$ [BDD-based cuts or LBBD cuts]

➤ Subproblem:

$$\bar{Q}_{hdr}^s = \min \sum_{p \in \mathcal{P}} c_p^{\text{cancel}} (\hat{x}_{hdpr} - z_{hdpr}^s)$$

s.t. assignment & duration constraints on z_{hdpr}^{s}

• Logic-Based Benders Decomposition (LBBD) cut:

$$Q_{hdr}^s \ge \bar{Q}_{hdr}^s - \sum_{p \in \hat{\mathcal{P}}_{hdr}} c_p^{\text{cancel}} \left(1 - x_{hdpr}\right)$$

• Binary Decision Diagram (BDD) based cut:

$$Q_{hdr}^s \ge \bar{\pi}_r + \sum_{p \in \mathcal{P}} \left(c_p - \left(\max_{a \in \mathcal{A}_{hdpr1}^s} \bar{\xi}_a \right) \right) x_{hdpr}$$

- * $\bar{\xi}_a$, $\bar{\pi}_r$: dual optimal solutions of subproblem's BDD reformulation
- Classical Benders cuts from subproblem's linear programming (LP) relaxation
- + Fast for large instances
- -Does not perform well in small instances

Three-stage Decomposition

- ► LBBD master problem: min $f(u, y, x, w) + \sum_{h \in \mathcal{H}} \sum_{d \in \mathcal{D}} Q_{hd}$
 - s.t. assignment constraints on x_{hdp}, y_{hd}, u_{hd} [LBBD cuts]
- ► LBBD subproblem (2SIP):

$$\bar{Q}_{hd} = \min \quad \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \sum_{r \in \mathcal{R}_h} \sum_{p \in \mathcal{P}} c_p^{\text{cancel}} \left(x_{pr} - z_{pr}^s \right)$$

s.t. assignment & duration constraints on x_{pr}, z_{pr}^{s}

• LBBD cut:

$$y_{hd} \le \hat{y}_{hd} \Longrightarrow Q_{hd} \ge \bar{Q}_{hd} - \sum_{p \in \hat{\mathcal{P}}_{hd}} \bar{Q}_{hd} (1 - x_{hdp})$$

- Classical Benders cuts from subproblem LP relaxation
- Further decompose the LBBD subproblem with the BDD-based method
- + Fast for small instances
- -Slow for large instances, due to difficult LBBD subproblems

ALGORITHMIC ENHANCEMENTS

- ♦ Adapted FFD heuristic
 - -Adapt FFD method to get an initial solution
 - Derive additional constraints from this solution
- ♦ Subproblem relaxation
- For the 2-stage decomposition:

$$Q_{hdr}^s \ge \left(\min_{p \in \mathcal{P}} \frac{c_p^{\text{cancel}}}{T_p^s}\right) \left(\sum_{p \in \mathcal{P}} T_p^s x_{hdpr} - B_{hd}\right)$$

- -Similar for 3-stage decomposition
- ♦ "Early stop" scheme
- -Avoid solving difficult subproblems
- -Stop solving the subproblem if $qlobalUB < incumbentOptCost+Q_{hd}^{LB}$

ACKNOWLEDGMENTS

This research is supported by University Health Network and Natural Sciences and Engineering Research Council of Canada.