

主讲教师: 欧新宇

January 31, 2020

AlphaGo、无人驾驶、人脸识别、智能翻译……这一个个耳熟能详的名词无不预示着人工智能时代的到来。人工智能的本质,是对人的思维过程和行为方式的模拟。研究人的认知机理,引入人的神经元概念,势在必行。

人工神经网络,可以说是这一切的起源。

或者说是这一切起源的核心020

Outlines

- 神经网络网络的前世今生
 - 神经网络的起源
 - 神经网络的两次寒冬
 - 神经网络的发展简史
- ▶神经网络的原理
- 激活函数及非线性矫正
- **Baseline模型及参数调整**
- **▼MNIST手写字体识别**

神经网络的起源

人工智能领域的一个重要任务是让计算机能够像人一 样对输入的信息进行判定。

- 当计算机读入一幅图像后,能否判定里面有没有苹果,如果有,苹果在图中的哪个位置;
- 当计算机读入一段语音后,能否判定里面有没有提到"中国"二字,如果有,在什么时间点。

神经网络的起源

神经网络的两次寒冬(1/3)

- ▶ 1943 年 , 逻 辑 学 家 Walter Pitts 和 神 经 生 理 学 家 Warren McCulloch联合发表文章,首次将神经元概念引入计算领域,提出了第一个人工神经元模型,开启了神经网络的大门。
- 1957 年 , 知 名 学 者 Frank Rosenblatt 提 出 了 感 知 器 (Perceptron)的概念,该概念非常接近神经元的实际机理,通 过将多层感知器前后连接,可以构成一个决策网络,从而为神经 网络的研究奠定了基石。
- 1969年,被誉为人工智能之父的Marvin Minsky和Seymour Papert 出版《Perceptron》一书探讨感知器的优劣,认为仅靠局部连接的神经网络无法有效地开展训练,而全连接的神经网络则过于复杂而不实用。更重要的是,限于当时的计算方法与能力,复杂神经网络核心权重参数的计算时长将无法忍受。这些情况影响了学界和业界对神经网络的信心,神经网络的研究陷入了第一次低谷期。

神经网络的两次寒冬(2/3)

近二十年后,当代神经网络三巨头(Geoffrey Hinton、Yoshua Bengio、Yann LeCun)相继发文,推动了神经网络研究的再次兴起。

- № 1986年, Geoffrey Hinton和David Rumelhart联合在Nature上发表论文,将BP算法用于神经网络模型,实现了对权重参数的快速计算。
- № 1990年, Yann LeCun发表文章, 采用BP神经网络实现对手写数字的识别, 这可以被视作神经网络的"第一个"重大应用, 直到上世纪九十年代末, 超过10%的美国支票都采用该技术进行自动识别。

神经网络的两次寒冬(3/3)

1998年, Yann LeCun又发文提出了LeNet-5的框架,即现在热火朝天的卷积神经网络(Convolutional Neural Network)的基本框架。然而卷积要消耗大量计算资源,BP方法又会带来梯度弥散的问题,从而限制了神经网络的深度和效果。

相反,俄罗斯学者Vladmir Vapnik在1963年提出的支撑向量机 (Support Vector Machine, SVM)概念则不断深入发展。到2002 年,已将手写数字识别的错误率降至0.56%,远高于同期神经网络 的效果。神经网络的研究迎来了第二次寒冬。

神经网络的发展历史

神经网络的发展历史

神经网络发展最核心的步骤:

- 感知器模型 Perceptron
- ▼前馈神经网络 = 》多层感知机 Multi-layered Perceptron, MLP
- BP神经网络 Back Propagation
- ▶ 深度学习
 - 卷积神经网络 Convolutional Neural Network, CNN
 - ▶ 限制玻尔兹曼机 Restricted Boltzmann machine, RBM
 - 深度自编码机 Deep Auto-Encoder, DAE

神经网络的发展历史

Andrew Ng 斯坦福大学, 百度

Yoshua Bengio 蒙特利尔大学. 微软

Yann Lecun 纽约大学, Facebook

新加坡国立,奇虎 360

Michael I. Jordan 加州**大**学伯克利分校。 美国三院院士

Geoffrey Hinton 多伦多大学, Google

李飞飞 斯坦福大学 GoogleAI

汤晓鸥 香港中文大学 商汤科技

● 线性模型

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b$$

在该公式中 \hat{y} 表示对真实 \hat{y} 值的估计值. x[0], x[1], ..., x[p] 是

数据集中样本的特征值; w 和 b 是模型的参数, 其中 w 表示每个

特征的权重,也就是指每个神经元对于模型贡献的重要程度。

因此, 从数学表示表达式来看, 我们可以认为 ŷ 就是每个特征 的加权和。

● 线性模型

左图给出了线性模型求解过程图示。 其中 x[i] 称为输入层(inputs), y 称为输 出层(output)。

当 x[i](i = 0, 1,2,3,...,n), 表示样本 x有 n+1 个特征输入,左图表示有4个特征输入。输入 x 和输出 y 之间的连线用系数 w 表示,可以将这个过程理解为线性关系: x[i]*w[i] = y[i]。

● 多层感知机MLP模型

我们在输入层(inputs)和输出层(output)增加一个隐藏层(Hidden Layer),然后将MLP理解为一个两层的线性模型,并模拟线性模型

中加权求和的过程。

- 第一层模型的输入层是原来的输入层 (inputs), 输出层是新增加的隐层 (hidden layer),此时输出变成了隐层 单元h[j].
- 第二层模型的输入层变成了新增加的 隐层(hidden layer),而输出层依然是 原来的输出层(output),此时输入变成 了隐层单元h[j].

● 多层感知机MLP模型

与线性模型相似,在第一层模型 中的每一个 x[i]和隐层单元 h[j] 之间、 第二层模型中的每一个隐层单元 h[j]和 y 之间都有一个系数 w。相似的, 在每个模型中也都有一个偏移量 b. 此时, 最终的输出 y 等于 j 个加 权和的加权和。

激活函数及非线性矫正

值得注意的是,上面所介绍的MLP模型,并非完整的MLP模型, 更非完整的神经网络模型。从数学的角度来分析,不难想象,输出 y 变成了 *j* 个加权和的加权和,但其结果依然不会有什么区别,为 了让模型更强大,我们还需要增加一些处理。例如:

- 非线性 (限制线性) 激活、
- Dropout、
- Pooling
- shortcut(ResNet)、
- batchNorm
- ...

激活函数及非线性矫正

对于MLP, 此处我们仅引入激活函数Activation Function. 基本思路是,在每个隐层后面都增加一个激活函数。假设我们用 h(x)表示线性变化, ReLU(x)表示激活函数,则原来的线性变换 y=f(x)可以表示为: y=ReLU(f(x)).

而两层MLP就可以表示为 $y = ReLU(f_2(ReLU(f_1(x))))$

URL: 激活函数

激活函数及非线性矫正

下面给出ReLU和tanh对特征进行限制激活的效果:

- ReLU, 限制线性矫正单元 Rectified Linear Unit
- 🦠 tanh, 双曲正切 Tangens Hyperbolicus

从图中可以看出,**双曲正切函数tanh**将特征**限制**到了 [-1,1]

之间,而限制线性单元ReLU则将小于0的部分直接归0.

更深的网络

inputs

更更深的网络

LeNet-5

更更深的网络

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

更更深的网络

VGG 和 ResNet

神经网络的使用

调整单层的隐藏神经元数量

Ch08021L10.py

调整神经网络的深度

Ch08032L.py

调整激活函数 (ReLU、Tanh)

Ch0804Tanh.py

调节超参数(Alpha)

Ch0801Baseline.py

Ch0805Alpha.py

MNIST手写字体识别

MNIST数据集被誉为人工智能领域的"Hello World",不仅因为其"简单",更因为其实用。同时也因为它并不是真的那么"简单",它既可以用来验证普通的**机器学习**算法,也可以被应用到**深度学习**领域。当然,直到卷积神经网络的出现,MNIST的性能才真正提高到了99.8%以上。

MNIST手写字体(数字)数据集目前由三驾马车之一的纽约大学教授Yann LeCun实验室维护,包含多种数据格式。整个数据集包含0-9十个数字的灰度图片共计70000张,都是分辨率为28×28的图片,其中训练集样本60000张,测试集10000张。

MNIST手写字体识别

1. 数据集载入

- 使用内置集成工具载入数据集
- 使用文件读取方式载入数据集

2. 训练MLP神经网络

3. 模型性能分析

- 权值图分析
- 超参数分析
- 测试集评估、单样本评估(测试集样本、自定义样本)
- 保存和载入模型

Ch0806CaseMNIST.py

欧老师的联系方式

读万卷书 行万里路 只为最好的修炼

QQ: 14777591 (宇宙骑士)

Email: ouxinyu@alumni.hust.edu.cn

Tel: 18687840023