

=> d 14 1-4 bib

L4 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2002 ACS
AN 2000:289281 CAPLUS
DN 132:279473
TI Process for conversion of oxidized sugars into hydrogenated sugars via catalytic hydrogenation
IN Fleche, Guy; Fuertes, Patrick; Tamion, Rodolphe
PA Roquette Freres, Fr.
SO Fr. Demande, 19 pp.
CODEN: FRXXBL
DT Patent
LA French
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	FR 2784382	A1	20000414	FR 1998-12791	19981013
	EP 999197	A2	20000510	EP 1999-402486	19991011
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
PRAI	FR 1998-12791		19981013		

L4 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2002 ACS
AN 1958:37819 CAPLUS
DN 52:37819
OREF 52:6790f-h
TI Spent sulfite liquor studies. V. Isolation of crystalline sugars from softwood spent sulfite liquor solids via isopropylidene derivatives
AU Boggs, Lawrence A.
CS Sulfite Pulp Mfrs. Research League, Appleton, WI
SO Tappi (1957), 40, 752-5
DT Journal
LA Unavailable

L4 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2002 ACS
AN 1957:98810 CAPLUS
DN 51:98810
OREF 51:17768g-i,17769a-g
TI Configuration of glycosidic linkages in oligosaccharides. IV. Further degradations of reducing disaccharides to 2-O-glycosylglycerols
AU Charlson, A. J.; Gorin, P. A. J.; Perlin, A. S.
CS Natl. Research Council, Saskatoon
SO Can. J. Chem. (1957), 35, 365-73
DT Journal
LA Unavailable

L4 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2002 ACS
AN 1938:35651 CAPLUS
DN 32:35651
OREF 32:4948h-i,4949a-i
TI l-Threonic acid-3-methyl ether and l-threonic acid-2,3-dimethyl ether
AU Gatz, K.; Reichstein, T.
SO Helv. Chim. Acta (1938), 21, 195-205
DT Journal
LA Unavailable

=> QD1, H41

L4 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2002 ACS
AB Catalytic **hydrogenation** of oxidized sugars into hydrogenated sugars in presence of Lewis acid, is reported. Thus, ruthenium-catalyzed **hydrogenation** of arabonic acid in presence of 2-anthraquinone sulfonic acid gave arabitol in good yield. L'erythrose, au threose, au sorbose, au xylose, a l'**arabinose**, au ribose, au ribulose, au xylulose, au glucose, au galactose, au fructose, au mannose, au maltose ou au lactose. Erythritol, le threitol, le ribitol, le xylitol, l'**arabitol**, mannitol, le sorbitol, l'iditol, le maltitol, le lactitol.

L4 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2002 ACS
AB cf. Wisniewski, et al., C.A. 50, 6044f. Sprucewood spent sulfite liquor dried solids were refluxed with Me₂CO contg. a catalytic amt. of concd. H₂SO₄, to convert the sugars to their di-O-isopropylidene derivs. The main portion of the nonsugars remained insol. and was filtered off. Di-O-isopropylidene D-mannose is sparingly sol. in H₂O, from which it was crystd. The di-O-propylidene pentoses were sepd. from the hexose derivs. by 2 methods: mol. distn., and exhaustive steam distn. The acid-sensitive derivs. were sepd. from the acid-resistant derivs. by a partial hydrolysis followed by extn. with CHCl₃ of the unaltered resistant derivs. Products thus obtained in pure cryst. form include: di-O-isopropylidene D-mannose, D-xylose, L-**arabinose**, and D-galactose. Catalytic **hydrogenation** of these products yielded sirupy di-O-isopropylidene D-mannitol, which was converted by acid hydrolysis to cryst. D-mannitol, and cryst. xylitol, L-**arabitol**, and dulcitol.

L4 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2002 ACS
AB cf. C.A. 51, 14563d. The configuration of the glycoside linkages in various reducing disaccharides was detd. by converting each of these into the corresponding 2-O-glycosylglycerol, the structure of which was then established. All oxidations were carried out in AcOH with Pb(OAc)₄; **hydrogenations** with NaBH₄. Unless otherwise stated [.alpha.]D27 of substituted hexitols and pentitols were taken in H₂O; those of the benzoates were taken in 2,4-lutidine. Benzoates were recrystd. from EtOH at 30.degree.. Sugars produced hydrolytically were characterized by paper chromatograms. Infrared absorption spectra were taken by the KBr window technique, and were often used for purposes of identification; no actual absorption data are included. 3-O-.beta.-L-arabopyranosyl-L-**arabinose** (718 mg.) from larch arabogalactan was oxidized, treated with 10% (CO₂H)₂, filtered, and the evapd. filtrate dissolved in H₂O and decompd. with a mixt. of Amberlite IR-120 and Dowex-1 resins. The product was reduced, treated with AcOH, deionized, evapd., extd. with MeOH, and evapd. to remove H₃BO₃ giving 415 mg. 2-O-.beta.-L-arabopyranosyl-L-erythritol (I), [.alpha.] 135.degree. (c 1.7); hexabenoate, m. 131-4.degree., [.alpha.] 114.degree. (c 1.0). I (304 mg.) was oxidized and then reduced as above and the products fractionated on a cellulose column using half-satd. BuOH giving 69 mg. 2-O-.beta.-L-arabopyranosylglycerol, m. 154-5.degree., [.alpha.] 204.degree. (c 1.2); pentabenoate, m. 48-50.degree., [.alpha.] 164.degree. (c 0.8). Treated similarly, with but slight modifications, 3-O-.alpha.-D-xylopyranosyl-L-**arabinose** (452 mg.), obtained from the autohydrolyzate of golden apple gum, gave 338 mg. 2-O-.alpha.-D-xylopyranosyl-L-erythritol, sirup, [.alpha.] 91.degree. (c 1.5); hexabenoate, m. 64-7.degree., [.alpha.] 98.degree. (c 1.1). 2-O-.alpha.-D-Xylopyranosylglycerol, sirup, [.alpha.] 91.degree. (c 1.5), after fractionation; pentabenoate, m. 51-5.degree., [.alpha.] 51.degree. (c 1.1). The partial hydrolysis of wheat flour pentosan gave 4-O-.beta.-D-xylopyranosyl-D-xylose, from which, by the usual procedures were formed 2-O-.beta.-D-xylopyranosylglycerol, [.alpha.] -37.degree. (c 1.1), and the pentabenoate, m. 51-3.degree., [.alpha.] -36.degree. (c 0.9). Partial hydrolysis of corncob hemicellulose B gave 2-O-.beta.-D-xylopyranosyl-L-**arabinose** (II) from which was obtained, by direct reduction with NaBH₄, 2-O-.beta.-D-xylopyranosyl-

L-arabitol, m. 185-7.degree. (from MeOH-EtOH), [.alpha.] -33.degree. (c 1.2), which by oxidation followed by reduction gave 2-O-.beta.-D-xylopyranosylglycerol, [.alpha.] -30.degree. (c 1.3); pentabenzoate, m. 51-3.degree., [.alpha.] -35.degree. (c 1.2). The partial hydrolysis of gum acacia gave 3-O-.alpha.-D-galactopyranosyl-L-arabinose, giving rise to 2-O-.alpha.-D-galactopyranosyl-L-erythritol, m. 156-8.degree., [.alpha.] 145.degree. (c 1.0), from which was formed 2-O-.alpha.-D-galactopyranosylglycerol, m. 131-2.degree. (from EtOH), [.alpha.] 164.degree. (c 0.7); hexabenzoate, m. 156-7.degree. [.alpha.] 120.degree. (c 1.4). 3-O-.beta.-D-galactopyranosyl-D-galactose from gum acacia gave 4-O-.beta.-D-galactopyranosyl-D-arabitol, m. 177-9.degree. (from EtOH), [.alpha.] -78.degree. (c 0.6), and from this, 2-O-.beta.-D-galactopyranosylglycerol, sirup, whose amorphous hexabenzoate m. 56-9.degree. (also given as 61-3.degree.), [.alpha.] 36.degree. (c 0.7) (also given as 25.degree. (c 0.6)). From sucrose, by enzymic synthesis with Leuconostoc mesenteroides was formed 5-O-.alpha.-D-glucopyranosyl-D-fructose, which by oxidation and subsequent reduction gave 2-O-.alpha.-D-glucopyranosylglycerol, [.alpha.] 119.degree. (c 0.7); hexabenzoate, m. 137-8.degree. [.alpha.] 94.degree. (c 0.8, CHCl₃). A mixt. of 8.4 g. tri-O-acetyl-.beta.-L-arabopyranosyl bromide, 7.5 g. 1,3-O-benzylideneglycerol (III), 20 g. Ag₂O, 50 g. Drierite, and 125 ml. C₆H₆ was shaken 3 hrs. at 55.degree., then refluxed 0.25 hr., filtered, and treated with 200 ml. CHCl₃ and 0.5 g. MeONa in 20 cc. MeOH. After 18 hrs. at 20.degree., the mixt. was evapd. to a sirup and fractionated on cellulose. Unchanged III was eluted by C₆H₆ and C₆H₆-EtOH (3:1, contg. a trace H₂O) was used in eluting 1',3'-benzylidene-2-O-.alpha.-L-arabopyranosylglycerol (IV), m. 121-2.degree. (from MeOH-Et₂O), [.alpha.] 4.degree. (c 1.1, EtOH). IV (46 mg.) in 0.3 ml. CHCl₃ and 0.2 ml. pyridine was treated with 0.12 ml. BzCl; after 18 hrs. CHCl₃ and MeOH were added and the mixt. washed with 1% H₂SO₄, aq. NaHCO₃, and H₂O, dried, filtered, and evapd. giving the tribenzoate of IV, m. 170-2.degree. (softening 160-65.degree.), [.alpha.] 114.degree. (c 0.9). IV (28 mg.) shaken 18 hrs. with PdO and H gave 2-O-.alpha.-L-arabopyranosylglycerol, a sirup, [.alpha.] 5.degree. (c 10, H₂O), whose pentabenzoate m. 53-7.degree., [.alpha.] 93.degree. (c 0.9). The present results confirm the configurations previously assigned to the various disaccharides, with the exception of II, which was believed to have the .alpha.-configuration; the present data characterize the compds. more fully than do those previously obtained from equil. rotation values. Because of the relatively good agreement in the results reached by the 2 methods, however, the validity of the polarimetric technique is supported.

L4 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2002 ACS
 AB The degradation of acetone-1-ascorbic acid (C. A. 29, 5076.3) and the partial methylation of 1-threonic acid lactone (C. A. 32, 915.4) give 2-methyl-1-threonic acid. For purposes of comparison the isomeric 3-Me ether (I) has been prep'd. Attempts were made to produce I from the acetone-1-threose (II) of known structure by methylation, cleavage and Br oxidation. The product decompd. entirely on distn. in a high vacuum below 100.degree., probably on account of a small amt. of impurity acting catalytically. Catalytic hydrogenation of 5 g. 1-arabinose in 40 cc. H₂O in the presence of Raney Ni (from 3 g. Ni-Al alloy) for 40 hrs. with the use of 745 cc. H₂ gave 4.5 g. of 1-arabitol, m. 99-101.degree. (cor.). Degradation of benzal-1-arabitol with Pb (OAc)₄ yielded cryst. benzal-1-threose, C₁₁H₁₂O₄.0.5 H₂O, m. 119-20.degree. (cor.) from benzene-Et₂O. A mixt. of 4.0 g. II, 25 g. Ag₂O (dried in a high vacuum over P₂O₅) and 23 g. MeI was slowly rotated in a glass-stoppered flask with 35 cc. anhyd. Et₂O. The reaction mixt. was refluxed at 50.degree. for 8 hrs., treated with 13 g. Ag₂O, 11 g. MeI and 10 cc. abs. Et₂O and again refluxed for 6 hrs. A further similar addn. was made and the refluxing was carried out at 55.degree.. The methylated product was extd. with 400 cc. abs. Et₂O, the ext. was filtered and evapd. down, and the residue (4.5 g.) was distd. in vacuo, yielding 4.2 g. of sirupy

1,2-acetone-1-threose 3-Me ether, C₈H₁₄O₄, b₁₂ 87-9.degree., cleaved by heating on the steam bath for 1.5 hrs. with 80 cc. of 10% AcOH to 3.1 g. of faintly bright yellow syrup, 1-threose 3-Me ether (III). Oxidation of III in 50 cc. H₂O by shaking with 3.8 g. Br, neutralization with Ag₂CO₃ and further working up gave 2.6 g. of non-reducing colorless syrup which decompd. at 80-90.degree. (bath temp.) on high-vacuum distn. Although I might be prep'd. in this way under special conditions, ethylidene-1-threonic acid (IV) provided a more accessible starting material. The Me ester of IV (3 g.) was methylated with dry Ag₂O and MeI in Et₂O to give Me ethylidene-1-threonate 3-Me ether (V), C₈H₁₄O₅, m. 49-50.degree. (cor.), [α]_D¹⁹ 46.4 .+- .2.degree. (in MeOH). Cleavage of 0.48 g. V with 7 cc. of 5% NaOH in aq. MeOH for 30 min. on the steam bath gave 260 mg. of the corresponding acid (VI), C₇H₁₂O₅, m. 158-61.degree. (cor.), [α]_D²⁰ 70.7 .+- .2.degree. (in H₂O), subliming in a high vacuum at 95.degree. to yield granules, m. 161.5-2.0.degree. (changing to long needles at 120.degree.), quantitatively converted by methylation with CH₂N₂ to V. Cleavage of 0.70 g. V with 20 cc. of 10% AcOH by heating on the steam bath for 4 hrs. produced 0.45 g. of 1-threonic lactone 3-Me ether (VII), b_{0.12} 83.degree., [α]_D²¹ 19.8 .+- .2.degree. (in MeOH), which was similarly prep'd. from VI. For the sake of comparison 50 mg. of the Me ester of IV was treated with 5 cc. of MeOH satd. with NH₃ at 0.degree. and stood at room temp. for 3 days. After evapg. to dryness, the residue was crystd. from AcOEt, yielding large fibrous leaflets of ethylidene-1-threonic amide, m. 155-6.degree., [α]_D¹⁹ 103.0 .+- .2.degree. (in MeOH). Analogous treatment of 40 mg. V produced small granules of ethylidene-1-threonic amide 3-Me ether, m. 114-16.degree., [α]_D¹⁹ 22.8 .+- .2.degree. (in MeOH), and similarly VII was converted into the extremely hygroscopic 1-threonic amide 3-Me ether, C₅H₁₁NO₄, m. about 78-81.degree., [α]_D¹⁸ 57.4 .+- .3.degree. (in MeOH), which is quite distinct from the known amide of 1-threonic acid 2-Me ether. Methylation of 0.45 g. VII in 3 cc. anhyd. dioxane with a large excess of CH₂N₂ in Et₂O according to the method of Schmidt and Zeiser (C. A. 29, 2150.2) produced 0.26 g. of a viscous colorless syrup of 1-threonic lactone 2,3-di-Me ether (VIII), b₁₂ 120.degree.; amide, C₆H₁₃NO₄, m. 148-50.degree., [α]_D²⁰ 64.8 .+- .2.degree. (in MeOH). Methylation of 1.85 g. of 1-threonic lactone 2-Me ether with 12 g. dry Ag₂O and 10 g. of pure MeI in 10 cc. anhyd. Et₂O by heating for 6 hrs. at 50.degree. and a further treatment with 10 g. Ag₂O and 10 g. MeI for 6 hrs. at 55.degree., extn. with 200 cc. Et₂O, filtration, evapn. and distn. of the syrup gave 2.1 g. of a mixt. of 1-threonic acid 2,3-di-Me ether (IX) and Me threonate 2,3,4-tri-Me ether (X), sepd. by sapon. of 1.0 g. with 5% NaOH which converted IX into VIII (90 mg.) and yielded 0.23 g. of thick, syrupy 1-threonic acid 2,3,4-tri-Me ether (XI), b₁₁ 147-9.degree., [α]_D²⁰ 40.2 .+- .2.degree. (in MeOH). Treatment of 90 mg. VIII with 10 cc. of NH₃ in MeOH, evapn. and crystn. from AcOEt gave the known amide, identical with that prep'd. from VIII through VII. Methylation of 0.20 g. XI with CH₂N₂ in Et₂O, evapn. and distn. gave 0.2 g. of the ester X as a thick, water-white oil, b₁₁ 102-3.degree., which was converted by NH₃ in MeOH to 1-threonic amide 2,3,4-tri-Me ether, C₇H₁₅NO₄, m. 79.degree., [α]_D²⁰ 63.7 .+- .2.degree. (in MeOH). The constitution of IV as 1,3-ethylidene-1-threonic acid is proved by these reactions.