1

(12)

(13)

(14)

(15)

Assignment 1-b

Ajay Krishnan K EE22BTECH11003

Solution for Problem 1.1.6

Therefore, the area of $\triangle ABC$

 $= \frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times \mathbf{A} - \mathbf{C} \|$

 $= \frac{1}{2} \times ||48||$

 $= \frac{1}{2} \times 48$

= 24 sq.units

Problem Statement

The area of $\triangle ABC$ is defined as

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times \mathbf{A} - \mathbf{C} \| \tag{1}$$

where

$$\mathbf{A} \times \mathbf{B} \triangleq \begin{vmatrix} 1 & -4 \\ -1 & 6 \end{vmatrix} \tag{2}$$

Find the area of $\triangle ABC$.

Solution

Given triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$$
 (3)

Now,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} \tag{4}$$

$$= \begin{pmatrix} 5 \\ -7 \end{pmatrix} \tag{5}$$

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} \tag{6}$$

$$= \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{7}$$

Since

$$\mathbf{A} \times \mathbf{B} \triangleq \begin{vmatrix} 1 & -4 \\ -1 & 6 \end{vmatrix} \tag{8}$$

We get,

$$(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) = \begin{pmatrix} 5 \\ -7 \end{pmatrix} \times \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{9}$$

$$= \begin{vmatrix} 5 & 4 \\ -7 & 4 \end{vmatrix} \tag{10}$$

$$= 48 \tag{11}$$