Problem Set 6 - ECON 880

Spring 2022 - University of Kansas

Gunawan, Minh Cao

April 12, 2022

Question 1

• The trapezoid is given by:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f_0 + 2f_1 + \dots + 2f_{n-1} + f_n \right] - \frac{h^2(b-a)}{12} f''(\xi)$$

• The Gauss-Chebyshev is given by:

$$\int_{a}^{b} f(y)dy \doteq \frac{\pi(b-a)}{2n} \sum_{i=1}^{n} f\left(\frac{(x_{i}+1)(b-a)}{2} + a\right) (1-x_{i}^{2})^{1/2}$$

where the x_i are the Gauss-Chebyshev quadrature nodes over [-1,1]. Where the quadrature nodes are

 $x_i = \cos\left(\frac{2i-1}{2n}\pi\right), \quad i = 1, \dots, n.$

• The Gauss-Legendre is given by: A linear change of variables is necessary to apply Gauss-Legendre quadrature to general integrals. In general.

$$\int_{a}^{b} f(x)dx \doteq \frac{b-a}{2} \sum_{i=1}^{n} \omega_{i} f\left(\frac{(x_{i}+1)(b-a)}{2} + a\right),$$

where the w i and xiq are the Gauss-Legendre quadrature weights and nodes over [-1,1]

• True value of the integral = 0.7500

The errors for three methods			
	n=3	n=5	n = 11
Trapezoid	0.081359	0.041771	0.01481
Gauss-Chebyshev	0.036964	0.012382	0.0024208
Gauss-Legendre	0.0051406	0.0015098	0.00020904

Question 2

• True value of the integral = 34.920804

- It is clear that the pseudo-random error does not converge to zero, however it is bounded by 0.08. The) uniformly spaced grid method converges to zero, however if the number of nodes are less than 3000, the pseudo-random method does better the uniformly spaced grid since the lower bound of the uniformly spaced grid method is 0.1.
- The pseudo-random is easier to implement than the uniformly spaced grid method

Figure 1: Pseudo-random error

Figure 2: Uniformly spaced grid error