36-789: Minimax Theory

Spring 2017

Lecture 1: January 18

Lecturer: Alessandro Rinaldo Scribes: Jaehyeok Shin

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Minimax lower bounds

For statistical problems such as estimation, testing, confidence set, model selection, etc, we start with a given procedure, and establish

- Consistency
- Rates of convergence (as a function of n and other parameters)

The last one upper bound the minimax risk which we will define later. The *minimax theory* is about a quantifying how hard a problem is by producing rates that lower bound the convergence rates of any procedure.

Example Normal means $Y = \theta^* + \epsilon \in \mathbb{R}^d$, $\epsilon \sim N(0, \sigma^2 I_d)$

Observation : $Y_1, \dots, Y_n \overset{i.i.d.}{\sim} N(\theta^*, \sigma^2 I_d)$

Let $\hat{\theta}(Y_1, \dots, Y_n) \in \mathbb{R}^d$. We are interested in the expected squared loss $\mathbb{E}\left[\|\hat{\theta} - \theta^*\|^2\right]$

For the penalized regression : $\hat{\theta} \in \arg\min_{\theta \in \Theta} \frac{1}{2n} \sum_{i=1}^{n} ||Y_i - \theta||^2$, we get

$$\mathbb{E}\left[\|\hat{\theta} - \theta^*\|^2\right] \lesssim \begin{cases} \frac{\sigma^2 d}{\eta} & \Theta = \mathbb{R}^d \\ \frac{\sigma^2 \log d}{n} & \Theta = B_1 := \{\theta \in R^d, \|\theta\|_1 \le 1\} \\ \frac{\sigma^2 k}{n} \log \frac{ed}{n} & \Theta = B_0(k) := \{\theta \in R^d, \|\theta\|_0 \le k\} \end{cases}$$

Example Covariance estimation $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P \quad (e.g., P = N(0, \Sigma_{d \times d}))$

$$\Sigma_{d\times d} \in C(\alpha, M_0, M_1) = \{ \Sigma_{d\times d} = (\sigma_{ij})_{i,j=1,\dots,d} \text{ Symmetric \& P.S.D}$$
 such that
$$\max_{j} \sum_{|i-j|>k} |\sigma_{ij}| \leq M_0 k^{-\alpha}, \forall k \ \lambda_{\max}(\Sigma) \leq M_1 \}$$

Bickel, Levina (2008) estimated Σ with $\hat{\Sigma}_{BL} = \hat{\Sigma}_{BL}(X_1, \dots, X_n)$, and got

$$\sup_{\Sigma \in C(\alpha, M_0, M_1)} \mathbb{E} \|\Sigma - \hat{\Sigma}_{BL}\|_{op} \lessapprox \left(\frac{\log d}{n}\right)^{\frac{\alpha}{\alpha+1}}$$

Cai, Zhang, and Zhou (2010) obtained a different estimator $\hat{\Sigma}_{CZZ}$ with

$$\sup_{\Sigma \in C(\alpha, M_0, M_1)} \mathbb{E} \|\Sigma - \hat{\Sigma}_{CZZ}\|_{op} \lessapprox \min \left\{ \left(\frac{1}{n}\right)^{\frac{2\alpha}{2\alpha+1}} + \frac{\log d}{n}, \frac{p}{n} \right\}$$

Better rates, in fact, they are optimal.

$$\inf_{\hat{\Sigma}} \sup_{\Sigma \in C(\alpha, M_0, M_1)} \mathbb{E} \|\Sigma - \hat{\Sigma}\|_{op} \text{ is the same order as } \hat{\Sigma}_{CZZ}$$

1.1.1 Set-up

Let \mathcal{P} collection of probability distributions on $(\mathcal{X}, \mathcal{A})$ Let $\theta : \mathcal{P} \longrightarrow \Theta$ functional, and $\theta(P)$ parameter.

Example

- $\theta(P) = \mathbb{E}_P[X], \ X \sim P$
- If P has a density f, $\theta(P) = f(x_0)$, or $\theta(P) = \int (f'(x))^2 dx$

In particular, we may have that $\theta(P) = \theta(Q)$ for $P, Q \in \mathcal{P}$

Simple case

 θ parametrize \mathcal{P} , in which case $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, and $\theta(P) \neq \theta(Q)$ iff $P \neq Q$. If $\Theta \subset \mathbb{R}^d$, \mathcal{P} is a parametric family.

Examples

- 1. $\mathcal{P} = \{N(\theta, I) : \theta \in \mathbb{R}^d\}$
- 2. $\Theta = \{ \text{Set of smooth functions on}[0,1]^d \},$ $\mathcal{P} \text{ consists of probabilities } P \text{ for } (Y,X) \in \Re \times \Re^d \text{ such that }$

$$Y = f(X) + \epsilon, \ f \in \Theta, \ \epsilon \sim (0, \sigma^2) \perp \!\! \! \perp X$$

⇒ Non-parametric function estimation problem.

3.
$$\mathcal{P}$$
 of $(Y,X) \in \Re \times \Re^d$, $Y = X^T \theta + \epsilon$, $\theta \in \Theta \subset \Re^d$

Let $X = (X_1, \dots, X_n) \stackrel{i.i.d.}{\sim} P \in \mathcal{P}$. We will estimate $\theta(P)$ using X = X.

You may allow \mathcal{P} to change with n, i.e., for each n, we will have \mathcal{P}_n , Θ_n depending on n

Let $d:\Theta\times\Theta\longrightarrow [0,\infty)$ be a metric

- 1. d > 0
- 2. d(x,y) = d(y,x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Lecture 1: January 18

4.
$$d(x,y) = 0 \Leftrightarrow x = y$$

More generally, we will consider $w\left(d(\theta, \theta^{'})\right)$ where

$$w:[0,\infty)\longrightarrow [0,\infty)$$
 non-decreasing, $w(0)=0,\ w\not\equiv 0$

Example $d(\theta, \theta') = \|\theta - \theta'\|$

- $w(x) = x^2$: square error
- $w(x) = \mathbf{1}\{x > c\}, c > 0$

Assuming $X = (X_1, \dots, X_n) \stackrel{i.i.d.}{\sim} P \in \mathcal{P}$. We are concerned with $\theta(P) \in \Theta$.

For a given procedure $\hat{\theta}: \mathcal{X}^n \longrightarrow \Theta$, its (point-wise) risk at P is

$$\mathbb{E}_{\tilde{X} \sim P^n} \left[w \left(d(\hat{\theta}(\tilde{X}), \theta(P)) \right) \right]$$

Example

• $\mathcal{P} = \{ N(\theta, I), \theta \in \Re^d \}, d(x, y) = ||x - y||_2, w(x) = x^2$ Risk : $\mathbb{E} ||\hat{\theta} - \theta||_2^2$

• $\mathcal{P} = \{P_0, P_1\}, \quad \theta(\overset{\cdot}{X}) = 1 \quad \text{or} \quad 0$ Risk: $l_i P_i \left(\overset{\cdot}{X} \neq i \right), \quad i = 0, 1, \quad l_i > 0$

To measure how well $\hat{\theta}$ does, let's take sup over all $P \in \mathcal{P}_n$

$$r_n(\hat{\theta}, \mathcal{P}_n) = \sup_{P \in \mathcal{P}_n} \mathbb{E}_P \left[w \left(d(\hat{\theta}, \theta(P)) \right) \right]$$

Upper bound calculations entail finding a constant $C = C(\mathcal{P}_n)$ and a sequence $\psi_n \longrightarrow 0$ as $n \longrightarrow \infty$ such that

$$r_n(\hat{\theta}, \mathcal{P}_n) \le C\psi_n$$

The minimax risk is

$$R_n(\mathcal{P}_n) = \inf_{\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)} \sup_{P \in \mathcal{P}_n} \mathbb{E}_P \left[w \left(d(\hat{\theta}, \theta(P)) \right) \right]$$

If we can show that

$$R_n(\mathcal{P}_n) \geq C' \psi_n', \quad C' = C'(\mathcal{P}_n), \quad \psi_n' \longrightarrow 0$$

Then, $C^{'}\psi_{n}^{'}$ is a lower bound on minimax risk, $\forall n$ If $\hat{\theta}$ is such that $\frac{\psi_{n}}{\psi_{n}^{'}} = \Theta(1)$, then $\hat{\theta}$ is minimax rate optimal.