2021 AMC 10A Problems/Problem 4

Contents

- 1 Problem
- 2 Solution 1 (Arithmetic Series)
- 3 Solution 2 (Arithmetic Series)
- 4 Solution 3 (Answer Choices and Modular Arithmetic)
- 5 Solution 4 (Motion With Constant Acceleration)
- 6 Video Solution (Simple and Quick)
- 7 Video Solution (Arithmetic Sequence but in a Different Way)
- 8 Video Solution (Using Arithmetic Sequence)
- 9 Video Solution
- 10 Video Solution by TheBeautyofMath
- 11 Video Solution by The Learning Royal
- 12 See Also

Problem

A cart rolls down a hill, travelling 5 inches the first second and accelerating so that during each successive 1-second time interval, it travels 7 inches more than during the previous 1-second interval. The cart takes 30 seconds to reach the bottom of the hill. How far, in inches, does it travel?

(A) 215

(B) 360

(C) 2992

(D) 3195

(E) 3242

Solution 1 (Arithmetic Series)

Since

Distance = Speed
$$\cdot$$
 Time,

we seek the sum

$$5 \cdot 1 + 12 \cdot 1 + 19 \cdot 1 + 26 \cdot 1 + \dots = 5 + 12 + 19 + 26 + \dots$$

in which there are 30 terms.

The last term is $5+7\cdot(30-1)=208$. Therefore, the requested sum is

$$5 + 12 + 19 + 26 + \dots + 208 = \frac{5 + 208}{2} \cdot 30 = \boxed{\textbf{(D) } 3195}.$$

Recall that to find the sum of an arithmetic series, we take the average of the first and last terms, then multiply by the number of terms:

$$Sum = \frac{First + Last}{2} \cdot Count$$

~MRENTHUSIASM

Solution 2 (Arithmetic Series)

The distance (in inches) traveled within each 1-second interval is:

$$5, 5 + 1(7), 5 + 2(7), \dots, 5 + 29(7).$$

This is an arithmetic sequence so the total distance travelled, found by summing them up is:

number of terms-average of terms = number of terms- $\frac{\text{first term} + \text{last term}}{2}$

Or,

$$30 \cdot \frac{5+5+29(7)}{2} = 15 \cdot 213 = \boxed{\textbf{(D) } 3195}.$$

~BakedPotato66

Solution 3 (Answer Choices and Modular Arithmetic)

From the 30-term sum

$$5 + 12 + 19 + 26 + \cdots$$

in Solution 1, taking modulo $10\,\mathrm{gives}$

$$5+12+19+26+\cdots \equiv 3\cdot (5+2+9+6+3+0+7+4+1+8) = 3\cdot 45 \equiv 5 \pmod{10}$$
.

The only answer choices congruent to 5 modulo 10 are $({\bf A})$ and $({\bf D})$. By a quick estimation, $({\bf A})$ is too small, leaving us with $({\bf D})$ 3195.

~MRENTHUSIASM

Solution 4 (Motion With Constant Acceleration)

This problem can be solved by physics method. The average speed increases $7~{\rm in/s}$ per second. So, the acceleration $a=7~{\rm in/s^2}$. The average speed of the first second is $5~{\rm in/s}$. We can know the initial velocity $v_0=5-0.5\cdot 7=1.5$. The displacement at t=30 is

$$s = \frac{1}{2}at^2 + v_0t = \frac{1}{2} \cdot 7 \cdot 30^2 + 1.5 \cdot 30 =$$
 (D) 3195.

~Bran_Qin

Video Solution (Simple and Quick)

https://youtu.be/qLDkSnxLvxM

~ Education, the Study of Everything

Video Solution (Arithmetic Sequence but in a Different Way)

https://www.youtube.com/watch?v=sJa7uB-UoLc&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=4

~ North America Math Contest Go Go Go

Video Solution (Using Arithmetic Sequence)

https://youtu.be/7NSfDCJFRUg

~ pi_is_3.14

Video Solution

https://youtu.be/aO-GklwkBfl

~savannahsolver

Video Solution by TheBeautyofMath

~IceMatrix

Video Solution by The Learning Royal

https://youtu.be/sIVBYmcDMOI

See Also

2021 AMC 10A (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c1 3))	
Preceded by Problem 3	Followed by Problem 5
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14	4 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25
All AMC 10 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_AMC_10A_Problems/Problem_4&oldid=162558"

Copyright © 2022 Art of Problem Solving