MATH 20510 NOTES

WILLIAM COMESS

CONTENTS

Lebesgue Theory 1

LEBESGUE THEORY

Lecture 1

Lebesgue integration is a generalization of Riemann of the Riemann-Stieltjes integral. Idea is that we have some set and we can cover a set in \mathbb{R}^n with n - cells and then shrink the size of the n-cells to decrease the size of the over-approximation.

Definition 0.1. A family A of sets is called a **ring** if for every $A, B \in A$

- (1) $A \cup B \in \mathcal{A}$
- (2) $A \setminus B \in A$

A ring is called a σ -ring if, for every $\{A_n\}_{n=1}^{\infty}$, then $\bigcup_{1}^{\infty} A_n \in \mathcal{A}$.

Remark 0.2. If A is a σ -ring and $\{A_n\}_{n=1}^{\infty} \subseteq A$, then $\bigcap_{n=1}^{\infty} A_n \in A$.

Definition 0.3. -

- (1) ϕ is a set function defined on a ring A if $\phi(A) \in [-\infty, \infty] \forall A \in A$.
- (2) ϕ is additive if $A \cap B = \emptyset$, $\phi(A \cup B) = \phi(A) + \phi(B)$.
- (3) ϕ is **countably additive** if $\{A_n\}_1^{\infty}$, is pairwise disjoint (if $A_i \cap A_j = \emptyset$ if $i \neq j$), then $\phi(\bigcup_{n=1}^{\infty} An) = \sum_{n=1}^{\infty} \phi(A_n)$ (assuming we don't have $\phi(A) = \pm \infty$ for any $A \in \mathcal{A}$.

Remark 0.4. *If* ϕ *is additive, then*

- (1) $\phi(\emptyset) = 0$ (We know $\phi(\emptyset)$ is well-defined because $\phi(A \setminus A) = \phi(\emptyset)$)
- (2) $\phi(A_1 \cup ... \cup A_n) = \sum_{k=1}^n \phi(A_k)$ if $A_1, ..., A_n$ are pairwise disjoint.
- $(3) \ \phi(A_1 \cup A_2) + \phi(A_1 \cap A_2) = \phi(A_1) + \phi(A_2), \forall A_1, ..., A_2 \in \mathcal{A}.$
- (4) If ϕ is non-negative and $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$, then $\phi(A_1) \le \phi(A_2) \le \phi(A_3) \le ...$
- (5) If $B \subseteq A$ and $|\phi(B)| < \infty$, then $\phi(A \setminus B) = \phi(A) \phi(B)$.

The proofs for all of these are exercises.

Theorem 0.5. ϕ is countably additive on a ring A. Suppose that $\{A_n\} \subseteq A$, $A_1 \subseteq A_2 \subseteq A$ $A_3...$ and $A = \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, then $\phi(A_n) \to \phi(A)$ as $n \to \infty$. Note: \mathcal{A} is not a σ -ring because the above holds for the sequence.

Proof. Set $B_1 = A_1$ and define $B_n = A_n \setminus A_{n-1}$. Note that

- (1) $\{B_n\}$ are pairwise disjoint
- (2) $A_n = \bigcup_{i=1}^n B_i$ (3) $A = \bigcup_{i=1}^\infty B_i$

We have $\phi(A_n) = \phi(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n \phi(B_i)$ and $\phi(A) = \sum_{i=1}^\infty \phi(B_i)$. The conclusion clearly follows.

Construction of the Lebesgue Measure

Definition 0.6. -

- (1) An interval of \mathbb{R}^n (empty set is an interval) is a set of points $x = (x_1, ..., x_n)$ such that $a_i \le x_i \le b_i$ or $a_i \le x_i < b_i$ or $a_i < x_i \le b_i$ or $a_i < x_i < b_i$ $\forall 1 \le i \le n$.
- (2) If $A \subseteq \mathbb{R}^n$ is a union of a finite number of intervals, we say that A is **elementary**.
- (3) The set of all elementary sets is denoted by \mathcal{E} .
- (4) If $I = \{(a,b)\}^n$ is an interval of \mathbb{R}^n , define $\operatorname{vol}(I) = \prod_{i=1}^n (b_i a_i)$.
- (5) If $A_k = \bigcup_{i=1}^k I_i$ and $\{I_k\}$ are pairwise disjoint, we define $vol(A) = \sum_{i=1}^k vol(I_i)$

Lecture 2

Remarks 0.7. (Prove these)

- (1) \mathcal{E} is a ring, but not a σ -ring.
- (2) $A \in \mathcal{E}$, then A can be written as a finite union of disjoint intervals.
- (3) If $A \in \mathcal{E}$, then vol(A) does not depend on the decomposition of intervals.
- (4) Vol is additive on \mathcal{E} (vol($A \sqcup B$) = vol(A) + vol(B)).

Definition 0.8. A nonnegative additive set function ϕ on \mathcal{E} is **regular** if the following holds: For every $A \in \mathcal{E}$, $\forall \epsilon > 0$ \exists open $G \supseteq A$ and \exists compact set $F \subseteq A$ s.t. $\phi(G) - \epsilon \le \phi(A) \le \phi(F) + \epsilon$ (we will eventually talk about sets with no open subsets).

Remarks 0.9.

- (1) Since $F \subseteq A \subseteq G$ and ϕ non-negative, then $\phi(F) \leq \phi(A) \leq \phi(G)$.
- (2) vol is regular

Definition 0.10. -

- (1) A countable open cover of $E \subseteq \mathbb{R}^n$ is a countable collection of open elementary sets $\{A_n\}_{n=1}^{\infty}$ s.t. $E \subseteq \bigcup_{n=1}^{\infty} A_n$.
- (2) Define the **Lebesgue outer measure** of any set $E \subseteq \mathbb{R}^n$ by $m^*(E) = \inf \sum_{n=1}^{\infty} vol(A_n)$ where we take the inf over all countable open covers of E.

Remarks 0.11. -

- (1) m^* is well defined for every $E \subseteq \mathbb{R}^n$
- (2) $m^* \ge 0$
- (3) If $E_1 \subseteq E_2$, then $m^*(E_1) \le m^*(E_2)$.

Theorem 0.12. If A is an elementary set, then $m^*(A) = vol(A)$.

Proof. Let $A \in \mathcal{E}$, $\epsilon > 0$. Since vol is regular, \exists open elementary set $G \supseteq A$ s.t. $vol(G) \le vol(A) + \epsilon$. Since $G \supseteq A$ and $G \in \mathcal{E}$, then $m^*(A) \le vol(A) + \epsilon$. By the definition of the outer measure, \exists a collection of open elementary sets $\{A_n\}$ s.t. $A \subseteq \bigcup_{n=1}^{\infty} A_n$ and $\sum_{n=1}^{\infty} vol(A) \le m^*(A) + \epsilon$. Call this result 1.

Recall that since vol is regular, \exists compact elementary set F s.t. $F \subseteq A$ and $\operatorname{vol}(A) \leq \operatorname{vol}(F) + \epsilon$. Since F is compact, $F \subseteq A_1 \cup ... \cup A_n$ for some sufficiently large N. We have $\operatorname{vol}(A) \leq \operatorname{vol}(F) + \epsilon \leq \operatorname{vol}(A_1 \cup ... \cup A_n) + \epsilon \leq \sum_{i=1}^N \operatorname{vol}(A_i) + \epsilon \leq \sum_{i=1}^\infty \operatorname{vol}(A_i) + \epsilon \leq m^*(A) + \epsilon + \epsilon$. Call this result 2.

From results 1 and 2, we have $vol(A) - 2\epsilon \le m^* \le vol(A) + \epsilon$. Since ϵ is arbitrary, we are done.