MBA Business Foundations, Quantitative Methods: Session One

Boris Babic, Assistant Professor of Decision Sciences

INSEAD

The Business School for the World*

About me

- Joined INSEAD June 2019
- Fist time teaching MBA's, have taught PhDs/JDs.
- Postdoc, California Institute of Technology
- PhD/MS, University of Michigan (Ann Arbor)

- JD, Harvard Law School
- Former trial lawyer
- Research is in Bayesian statistics and ethics of AI/ML
- Teach MBA Management Decision Making! (See you there!!)

About your classmates

Course structure

- Two overarching features: (a) mixed backgrounds, (b) packed schedule!
- Structure: follow a clear fixed path + bonus adventures for the curious
 Ex: I will post all my workflow (LaTeX, Python, Mathematica notebooks)
- Focus on exercises/learning by doing!
- 5 classes, focus on applications to management and finance
- Readings before each lecture
- Exercises after each lecture (due the following lecture)
 Will not be graded, but I will post solutions
- Study period in the afternoon, I will be around (Office 543)
- If anything is unclear, come talk to me!
- Website: borisbabic.com/teaching/inseadqm/home

Content

Functions Linear Basics Inverse Two equations Quadratic Exponents Exponents Application: interest rates Exponential functions Logarithmic functions Logarithmic functions Logarithmic and exponential equations Logarithms Case: pricing Derivatives Optimal decisions Derivatives Case: production Statistics Probability & statistics Uncertainty Normal distribution

Today

Functions Linear Basics Inverse Two equations Quadratic Application: interest rates

Derivatives Optimal decisions Case: production Statistics

Uncertainty Probability & statistics
Normal distribution

Constants vs. variables

Boris Babic, INSEAL

Functions

Linea

Two

Quadrat

Constant

- Definition: placeholder for a given or fixed value
- Notation: a, b, c
- Examples:
 - Maximum number of units that can be produced on a production line
 - Height of the Eiffel tower

Variable

- Definition: Placeholder for an unknown value
- Notation: x, y, z
- Examples:
 - Number of units produced each day on a production line
 - Height of a student in this class

Continuous vs. discrete variables

Boris Babic, INSEAL

Functions

Linea

т....

. .

Continuous

- Can take values within a range
- Examples: height, weight, etc.

Discrete

- Can take only certain values (typically whole numbers)
- Examples: number of children, number of defective products, number of weeks worked

• A function is a type of map:

$$x ext{ (Input)} \longrightarrow f ext{ (Function)} \longrightarrow y = f(x) ext{(Output)}$$

ullet Here we say f maps x to y. For example, the following function maps shapes to their associated colors.

- Does it matter that no blue shape? That two red shapes?
- x is the independent variable, y is the dependent variable.
- f is the operation done on x to get y the function, usually denoted f,g,h.

Boris Babic, INSFAI

Functions

Line

Two

Ouadra

- Eg: Let f(x) = x + 2. Then if x = 3, y = f(x) = 5.
- Eg: Amount of interest earned (I) depends on the length of time money is invested (t), given both money invested (p) and interest rate (r):

$$I = t \times p \times r$$

$$I = 10000 \times 0.04t = 400t. \text{ If } t = 5 \text{ then } I = \$2,000$$

$$y = f(t)$$

• Eg: Revenue of a firm (R) is a function of quantity of product sold (q), given the price (p)

$$R = \text{price} \times \text{quantity} \rightarrow R = p \times q \rightarrow R = 5q$$

 $R = g(q)$ (why does p not appear in the expression?)

Graphs

Boris Babic, INSEAE

Functions

Line

Invers

Two Equation

Quadra

A convenient way to visualize functions:

Gives a visual representation of the relationship between two quantities

Some examples of graphs

Boris Babic, INSEAL

Functions

Linea

Invo

Two Equation

Quadra

Google searches for "Manchester United" in Singapore as a function of time (previous 90 days)

Some examples of graphs

Boris Babic, INSEAD

Functions

Linea

Two

Quadra

World Population Growth Through History

Linear functions

Linear

Functions of a special form:

$$y = ax + b$$

Slope y-axis intercept

	CRITERIA	EXAMPLE	GRAPH
INCREASING	<i>a</i> > 0	y=2x-1	6 y 4 2 2 3 x 4 6 1 2 3 x
CONSTANT	a = 0	y = 2	6 y 4 2 2 2 2 2 2 3 x 4 4 4 5 6 5 6
DECREASING	<i>a</i> < 0	y = -x + 2	6 y 4 2 2 2 2 2 3 x 4 4 5 5 5 5

How to plot a linear function y = ax + b?

First, find two points:

.... easiest: those crossing axis

crossing y-axis: (0, b)

crossing x-axis: $\left(-\frac{b}{a},0\right)$

Second, draw line between and beyond

Function

Linear

Inver

Two Equations

Quadra

• Ex: Let f(x) = 2x + 4. Plot this graph.

•
$$(0,b) = (0,4)$$

•
$$(-b/a,0) = (-4/2,0) = (-2,0)$$

Finding the linear form

Boris Babic, INSEAE

Function

Linear

Inverse

Two Equation

. .

A grocery store owner starts her business with debts \$100,000. After operating for five years, she has accumulated a net profit of \$40,000. Write a linear rule for profit as a function of time. That is, write it in the form

$$y = ax + b$$

where y is profit and x is time.

Finding the linear form

Boris Babic, INSEAE

Functior

Linear

Inverse

Two Equation

Ouadra

Linear functions are...

- Easy to estimate
- Easy to analyze
- Easy to interpret (and surprisingly general!)

Finding the intersection of two lines

Linear

• Example: Nuclear vs. fuel power plants

• Suppose cost C is a linear function of quantity Q, where N stands for Nuclear and F stands for Fuel.

$$C_N = 1000 + Q_N$$

$$C_F = 100 + 3Q_F$$

- Plot the two lines
- At what point do the two plants have the same cost?

Session 1 (Basics)

Finding the intersection of two lines

Babic, INSEAE

Function

Linear

_

O...- J...

Inverse functions

Inverse

An inverse function is a different type of map:

$$x = f^{-1}(y)$$
 (Input) $\longleftarrow f^{-1}$ (Inverse function) $\longleftarrow y$ (Output)

- Note that $f^{-1}(f(x)) = x$
- Ex: if $f(x) = x^2$, what is $f^{-1}(x)$?
- Ex: If $q(x) = x^3 + 3$, what is $q^{-1}(x)$?
- Ex: if $h(x) = 7x^2 + 4$ what is $h^{-1}(x)$?
- → Answers:
 - $f^{-1}(x) = \sqrt{x}$
 - $q^{-1}(x) = \sqrt[3]{x-3}$
- $h^{-1}(x) = \sqrt{\frac{x-4}{7}}$

Recipe

Boris Babic, INSEAD

Functio

Linear Inverse

Two Equatio

Quadrat

lacktriangledown Replace f(x) with a y

- ${f 2}$ Swap x and y
- **4** Replace y with f^{-1}

Example from above:

$$g(x) = x^3 + 3$$
 (original function)
 $\leftrightarrow y = x^3 + 3$ (step 1)
 $\leftrightarrow x = y^3 + 3$ (step 2)
 $\leftrightarrow y = \sqrt[3]{x - 3}$ (step 3)
 $\leftrightarrow g^{-1}(x) = \sqrt[3]{x - 3}$ (step 4)

Graphical relationship

Boris Babic, INSEAE

Function

Linea

Inverse

$$\sqrt[3]{x^3 + 3 - 3} = x$$

Quadra

DEMAND FUNCTION

$$Q = 60 - 5P$$

INVERSE DEMAND FUNCTION

$$5P = 60 - Q$$

$$\Rightarrow P = 12 - \frac{Q}{5}$$

Systems of equations

Boris Babic, INSEAD

Functio

1:---

Inver

Two Equations

Quadrat

	By substitution	By elimination
Method	Find \boldsymbol{x} in the first equation, plug it into the second equation	Eliminate one unknown by adding up the two equations
Examples	3x - 2y = 16 $x + y = 2$	$ \begin{aligned} x + y &= 7 \\ x - y &= 1 \end{aligned} $

• By substitution (left panel example):

$$x = 2 - y \rightarrow 3(2 - y) - 2y = 16$$

$$\rightarrow 6 - 3y - 2y = 16$$

$$\rightarrow 6 - 5y = 16$$

$$\rightarrow 5y = -10$$

$$\rightarrow y = -2 \rightarrow x = 4$$

• By elimination (right panel example): $2x = 8 \rightarrow x = 4 \rightarrow y = 3$

Examples

Two Equations

• Ex 1:

$$3x - y = 7$$

$$2x + 3y = 1$$

• Ex 2:

$$5x + 4y = 1$$

$$3x - 6y = 2$$

- Solution 1: x = 2, y = -1
- Solution 2: x = 1/3, y = -1/6

Quadratic functions

(Basics Boris

Eunstion

Functio

Invo

Two Equatio

Quadratic

Another special type of function (a type of polynomial), of the form

$$ax^2 + bx + c$$

- When a=0 we recover a linear function.
- When $a \neq 0$, this is a nonlinear function. Its graph is a continuous curve called a parabola.

Quadratic equations

Boris Babic, INSEAD

Functio

Linear

Two

Quadratic

• Solving quadratic function equal to 0.

- Corresponds to the intersection(s) of the curve with f(x) = 0 line.
- Will there aways be solutions to this problem?
- Depends on the value of $b^2 4ac$.

Quadratic equations

Boris Babic, INSEAL

Function

Two

Equatio

Quadratic

• In general, when $ax^2 + bx + c = 0$, the roots are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 4ac > 0$ then 2 roots
- If $b^2 4ac = 0$ then 1 root
- If $b^2 4ac < 0$ then no roots

Function

LIIICa

Inver

I wo Equatio

Quadratic

• Ex 1: Solve $x^2 - x - 2 = 0$

• Ex 2: Solve $4x^2 - 12x + 9 = 0$

• Ex 3: Solve $x^2 - 2x + 3 = 0$

• Solution 1: x = -1, x = 2

• Solution 2: x = 3/2

• Solution 3: No real solution

Session 1 (Basics)

Graphed solutions

Boris Babic, INSEAE

Function

Linea

Inver

Equatio

Quadratic

Application to market equilibrium

Boris Babic, INSEAT

Function

Linea

Inve

Two Equatio

Quadratic

Suppose that supply, S, and demand, D, for a product are functions of the product price, p:

$$S = p^2 + 10p + 10$$

$$D = 110 - 10p$$

At what price will supply equal demand?

Application to market equilibrium

Boris Babic, INSEAE

Function

Linea

_

Equation

Quadratic

$$p^{2} + 10p + 10 = 110 - 10p$$

$$\Leftrightarrow p^{2} + 20p - 100 = 0$$

$$\Rightarrow p = \frac{-20 \pm \sqrt{20^{2} - 4 \times 1 \times -100}}{2 \times 1}$$

$$p \approx 4.24$$

Profit-break even analysis

Boris Babic, INSEAL

Functio

Linea

Inverse

Two Equation

Quadratic

The demand function for a good is given as Q=65-5p, where Q is quantity and p is price. Fixed costs are \$30 and each unit produced costs an additional \$2.

Write down the equations for total revenue and total costs as a function of Q.

Find the break-even point(s).

Application to market equilibrium

Babic, INSEAL

Function

Line

T....

Quadratic

Resources

Boris Babic, INSEAE

Functio

Linea

IIIVEISC

Two Equation

Quadratic

- Paul's Notes (for excellent notes): http://tutorial.math.lamar.edu/Extras/AlgebraTrigReview/AlgebraTrigIntro.aspx
- Khan Academy Algebra (for additional lectures): https://www.khanacademy.org/math/algebra
- WolframAlpha (for computing answers): https://www.wolframalpha.com/
- Math Stack Exchange (for questions): https://math.stackexchange.com/

Session 1 Today (Basics) **Functions** Linear Basics Inverse Two equations Quadratic Quadratic

Europe | Asia | Middle Eas