Matice-užitočný pomocník nielen pri riešení sústav

• **Definícia.** Nech $I = \{1, 2, \cdots, m\}, J = \{1, 2, \cdots, n\}$. Maticou typu $m \times n$ nad množinou reálnych čísel $\mathbb R$ nazývame zobrazenie $A: I \times J \to \mathbb R$. Obraz usporiadanej dvojice [i,j] označujeme a_{ij} a hovoríme, že je prvok matice. Schématicky zapisujeme maticu v tvare tabuľky:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

 Ak m=n, hovoríme o štvorcovej matici, ak $m \neq n$, tak sa jedná o obdĺžnikovú maticu.

Matice, základné pojmy

 vedúci prvok - pivot -prvý nenulový prvok v riadku (nemusí vždy existovať)

• nulová matica
$$A = \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right)$$

• diagonálna matica
$$A=\left(\begin{array}{cccc} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & a_n \end{array}\right),\quad a_i\in\mathbb{R}.$$

$$ullet$$
 jednotková matica $A=\left(egin{array}{cccc} 1&0&\cdots&0\\0&1&\cdots&0\\ &\cdot&\cdot&\cdot&\cdot\\0&0&\cdots&1 \end{array}
ight)$

Zrejme diagonálna aj jednotková matica sú štvorcové.

Súčet matíc

súčet matíc:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \end{pmatrix}$$

Súčet matíc

súčet matíc:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} & a_{14} + b_{14} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} & a_{24} + b_{24} \end{pmatrix}$$

Súčet matíc

súčet matíc:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} & a_{14} + b_{14} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} & a_{24} + b_{24} \end{pmatrix}$$

• Zrejme A + B = B + A

Súčet matíc, príklad

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ -2 & 0 & 2 & -3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 3 & 0 & -2 \\ 2 & 1 & 1 & 1 \end{pmatrix}$$

Súčet matíc, príklad

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ -2 & 0 & 2 & -3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 3 & 0 & -2 \\ 2 & 1 & 1 & 1 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 2 - 1 & -1 + 3 & 0 + 0 & 3 - 2 \\ -2 + 2 & 0 + 1 & 2 + 1 & -3 + 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 3 & -2 \end{pmatrix}$$

Násobok matice

• c-násobok matice, $c \in \mathbb{R}$

$$c \cdot A = \begin{pmatrix} c.a_{11} & c.a_{12} & c.a_{13} & c.a_{14} \\ c.a_{21} & c.a_{22} & c.a_{23} & c.a_{24} \end{pmatrix}$$

Násobok matice, príklad

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ -2 & 0 & 2 & -3 \end{pmatrix}$$

Násobok matice, príklad

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ -2 & 0 & 2 & -3 \end{pmatrix}$$

$$3 \cdot A = \begin{pmatrix} 3.2 & 3.(-1) & 3.0 & 3.3 \\ 3.(-2) & 3.0 & 3.2 & 3.(-3) \end{pmatrix} = \begin{pmatrix} 6 & -3 & 0 & 9 \\ -6 & 0 & 6 & -9 \end{pmatrix}$$

Transponovaná matica

• transponovaná matica

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

$$A^T = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix}$$

Transponovaná matica, príklad

$$A = \begin{pmatrix} 2 & -3 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

Transponovaná matica, príklad

$$A = \begin{pmatrix} 2 & -3 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

$$A^T = \begin{pmatrix} 2 & 1 \\ -3 & -1 \\ 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$A \cdot B = \begin{pmatrix} 1.0 + 2.1 + 0.1 & 1.1 + 2.0 + 0.1 \\ 0.0 + 1.1 + 0.1 & 0.1 + 1.0 + 0.1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$A \cdot B = \begin{pmatrix} 1.0 + 2.1 + 0.1 & 1.1 + 2.0 + 0.1 \\ 0.0 + 1.1 + 0.1 & 0.1 + 1.0 + 0.1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 0.1 + 1.0 & 0.2 + 1.1 & 0.0 + 1.0 \\ 1.1 + 0.0 & 1.2 + 0.1 & 1.0 + 0.0 \\ 1.1 + 1.0 & 1.2 + 1.1 & 1.0 + 1.0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$A \cdot B = \begin{pmatrix} 1.0 + 2.1 + 0.1 & 1.1 + 2.0 + 0.1 \\ 0.0 + 1.1 + 0.1 & 0.1 + 1.0 + 0.1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 0.1 + 1.0 & 0.2 + 1.1 & 0.0 + 1.0 \\ 1.1 + 0.0 & 1.2 + 0.1 & 1.0 + 0.0 \\ 1.1 + 1.0 & 1.2 + 1.1 & 1.0 + 1.0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$

$$C \cdot D = \begin{pmatrix} 1.1 + 2.0 & 1.0 + 2.1 \\ 3.1 + 4.0 & 3.0 + 4.1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = C$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$A \cdot B = \begin{pmatrix} 1.0 + 2.1 + 0.1 & 1.1 + 2.0 + 0.1 \\ 0.0 + 1.1 + 0.1 & 0.1 + 1.0 + 0.1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 0.1 + 1.0 & 0.2 + 1.1 & 0.0 + 1.0 \\ 1.1 + 0.0 & 1.2 + 0.1 & 1.0 + 0.0 \\ 1.1 + 1.0 & 1.2 + 1.1 & 1.0 + 1.0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$

$$C \cdot D = \begin{pmatrix} 1.1 + 2.0 & 1.0 + 2.1 \\ 3.1 + 4.0 & 3.0 + 4.1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = C$$

$$D \cdot C = \begin{pmatrix} 1.1 + 0.3 & 1.2 + 0.4 \\ 0.1 + 1.3 & 0.2 + 1.4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = C$$

Definícia.

 $oldsymbol{\circ}$ Súčinom matíc $A=(a_{ij})_{m,n}, B=(b_{ij})_{n,r}$ nazývame maticu $C=(c_{ij})_{m,r},$ kde

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}.$$

Definícia.

 $oldsymbol{S}$ účinom matíc $A=(a_{ij})_{m,n}, B=(b_{ij})_{n,r}$ nazývame maticu $C=(c_{ij})_{m,r},$ kde

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}.$$

Tvrdenia.

• Násobenie matíc **nie je** komutatívne.

Definícia.

 $oldsymbol{S}$ účinom matíc $A=(a_{ij})_{m,n}, B=(b_{ij})_{n,r}$ nazývame maticu $C=(c_{ij})_{m,r},$ kde

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}.$$

Tvrdenia.

- Násobenie matíc nie je komutatívne.
- Násobenie matíc **je** asociatívne $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.

Definícia.

• Súčinom matíc $A=(a_{ij})_{m,n}, B=(b_{ij})_{n,r}$ nazývame maticu $C=(c_{ij})_{m,r},$ kde

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}.$$

Tvrdenia.

- Násobenie matíc nie je komutatívne.
- Násobenie matíc **je** asociatívne $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
- Násobenie matíc je distributívne vzhľadom na sčítanie

$$A \cdot (B + C) = A \cdot B + A \cdot C.$$

Definícia.

• Súčinom matíc $A=(a_{ij})_{m,n}, B=(b_{ij})_{n,r}$ nazývame maticu $C=(c_{ij})_{m,r},$ kde

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}.$$

Tvrdenia.

- Násobenie matíc **nie je** komutatívne.
- Násobenie matíc **je** asociatívne $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
- Násobenie matíc je distributívne vzhľadom na sčítanie

$$A \cdot (B + C) = A \cdot B + A \cdot C.$$

 Neutrálny prvok vzhľadom na násobenie štvorcových matíc je jednotková matica.

