Worksheet 5

Problem 1 Consider a random walker on a 1-d lattice hopping left or right with equal probability (p=q=1/2) starting from origin (0). Store the final position after N steps $(N\gg 1)$. Repeat the exercise for an ensemble of M random walkers $(M\gg 1)$. Plot the distribution of final positions (normalized). Calculate the mean position and the variance. Vary N and show that the variance $\propto N$.

Problem 2 Numerically solve the 1-d Diffusion equation:

$$\frac{\partial \rho(x,t)}{\partial t} = D \frac{\partial^2 \rho(x,t)}{\partial x^2} \tag{1}$$

where $D=rac{(\Delta x)^2}{2\Delta t}$ and set the initial condition at t=1 as

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{2}$$

with $\sigma^2=2Dt$. Integrate over time by (a) Euler (b) RK4 and plot $\rho(x,t)$ at time $\{t1,t2,t3\}$. Discretize space $x\in[-2:2]$ with $\Delta x=0.01$