Math Module 2A Notes

Hankertrix

April 29, 2025

Contents

1	Defi	nitions	2
	1.1	Diverging to positive infinity	2
	1.2	Diverging to negative infinity	2
	1.3	Limit	2
	1.4	The restriction of a function	2
	1.5	Right-hand limit	2
	1.6	Left-hand limit	3
	1.7	Heaviside function	3
	1.8	Relation between limits and one-sided limits	3
	1.9	Continuous functions	4
	1.10	Composition rule	4
		Elementary functions	5
		Intermediate value theorem	5
		Max/Min theorem	5
		One-to-one functions	5
		Inverse functions	6
		Inverse continuous functions on an interval	7
2	Linking the limits of functions and sequences		8
	2.1	Proof	8
	2.2	Contrapositive statement	8
3	Rea	soning with limit laws	9

1 Definitions

1.1 Diverging to positive infinity

Suppose a is a limit point of the domain A of f. If for every M > 0, there exists a $\delta > 0$ such that:

$$0 < |x - a| < \delta, \quad x \in A \quad \Rightarrow \quad f(x) > M$$

We say that f(x) diverges to positive infinity as x approaches a and write:

$$\lim_{x \to a} f(x) = +\infty$$

1.2 Diverging to negative infinity

Suppose a is a limit point of the domain A of f. If for every M > 0, there exists a $\delta > 0$ such that:

$$0 < |x - a| < \delta, \quad x \in A \quad \Rightarrow \quad f(x) < -M$$

We say that f(x) diverges to negative infinity as x approaches a and write:

$$\lim_{x \to a} f(x) = -\infty$$

1.3 Limit

Let $f: A \to \mathbb{R}$ be a function and let a be a limit point of A. If for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$0 < |x - a| < \delta, \quad x \in A \quad \Rightarrow \quad |f(x) - L| < \varepsilon$$

1.4 The restriction of a function

Consider $f: A \to \mathbb{R}$ and suppose $B \subset A$. The **restriction of** f **to** B, denoted by $f \upharpoonright_B$, is the function with domain B given by:

$$f \upharpoonright_B (x) = f(x), \text{ for } x \in B$$

1.5 Right-hand limit

Consider $f: A \to \mathbb{R}$. If the limit below exists:

$$\lim_{x \to a} f \upharpoonright_{A \cap (a, \infty)} (x)$$

We call it the **right-hand limit** of f at a and denote it using:

$$\lim_{x \to a+} f(x)$$

1.6 Left-hand limit

Consider $f:A\to\mathbb{R}$. If the limit below exists:

$$\lim_{x \to a} f \upharpoonright_{A \cap (-\infty, a)} (x)$$

We call it the **left-hand limit** of f at a and denote it using:

$$\lim_{x \to a-} f(x)$$

1.7 Heaviside function

$$H(x) = \begin{cases} 0; & \text{for } x < 0, \\ 1; & \text{for } x \ge 0. \end{cases}$$

1.8 Relation between limits and one-sided limits

Suppose that for some $\delta > 0$, f(x) is defined on $(a - \delta, a) \cup (a, a + \delta)$. Then:

$$\lim_{x \to a} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to a+} f(x) = L = \lim_{x \to a-} f(x)$$

1.9 Continuous functions

A function $f: A \to \mathbb{R}$ is **continuous at** $a \in A$ if for any $\varepsilon > 0$ there exists a $\delta > 0$ such that:

$$|x-a| < \delta, \quad x \in A \quad \Rightarrow \quad |f(x) - f(a)| < \varepsilon$$

If $B \subset A$ and f is continuous at every $a \in B$, we say that f is **continuous** on B.

We say that f is continuous if f is continuous on A.

1.9.1 Theorem

Consider a function $f: A \to \mathbb{R}$ and suppose $a \in A$ is also a **limit point of A**. Then f is continuous at a if and only if:

$$\lim_{x \to a} f(x) = f(a)$$

Do note that the criterion $\lim_{x\to a} f(x) = f(a)$ includes the condition that the limit $\lim_{x\to a} f(x)$ exists. If it doesn't, f is not continuous at a.

1.9.2 Notation

The set of functions continuous at a point a is denoted by C(a). Hence, $f \in C(a)$ means that f(x) is continuous at the point $a \in \mathbb{R}$. Similarly, C(B) denotes the set of functions continuous on a set $B \subset \mathbb{R}$. Another example would be:

 $f \in C([0,1]) \Leftrightarrow f$ is a function that is continuous on [0,1]

1.10 Composition rule

Given two functions f(y) and g(x), assume that:

$$1. \lim_{x \to a} g(x) = L$$

2.
$$f \in C(L)$$

Then, we would have $\lim_{x\to a} f(g(x)) = f(L)$.

In other words, if f is continuous and f is continuous at $\lim_{x\to a} g(x)$:

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

1.11 Elementary functions

Elementary functions are those functions f(x) obtained from:

- 1. Constants and powers of x
- 2. Exponential, logarithm, trigonometric, inverse trigonometric functions

Through addition, subtraction, multiplication, division, power and composition. An example of composition is f(g(x)).

Any elementary function is **continuous** on its natural domain.

1.12 Intermediate value theorem

Assume that $f \in C([a,b]), f(a) \neq f(b)$ and y_0 is some real number between f(a) and f(b), like:

$$\min\{f(a), f(b)\} < y_0 < \max\{f(a), f(b)\}\$$

Then there exists a $x_0 \in (a, b)$ such that $f(x_0) = y_0$.

f must be continuous on the whole **closed** interval [a, b] for the conclusion to hold. For example, with $f : [0, 1] \to \mathbb{R}$, given by:

$$f(x) = \begin{cases} 1 & \text{for } x = 0, \\ -1 & \text{for } x \in (0, 1] \end{cases}$$

f(x) is continuous on (0,1] but not continuous on [0,1]. Since y=0 is between f(0) and f(1), and there is no $x_0 \in (0,1)$ such that $f(x_0) = 0$, the conclusion fails.

1.13 Max/Min theorem

Assume that $f \in C([a,b])$. Then there are some points $x_m, x_M \in [a,b]$ such that for any $x \in [a,b]$, we have $f(x_m) \leq f(x) \leq f(x_M)$.

The result does not hold if we replace [a,b] with (a,b). The function $f:(0,1)\to\mathbb{R},\ f(x)=x$ is a counterexample.

1.14 One-to-one functions

Consider a function $f: A \to \mathbb{R}$. We say that f is **one-to-one** or *injective* if for $x_1, x_2 \in A$:

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2)$$

Equivalently, we could say that $f: A \to \mathbb{R}$ is **one-to-one** if for $x_1, x_2 \in A$,

$$f(x_1) = f(x_2) \quad \Rightarrow \quad x_1 = x_2$$

Note that if $f: A \to \mathbb{R}$ is one-to-one, then for every $y \in f(A)$ there exists **exactly one** $x \in A$, such that f(x) = y.

1.15 Inverse functions

Let $f: A \to \mathbb{R}$ be a one-to-one functions. The **inverse** function $f^{-1}: f(A) \to \mathbb{R}$ is defined by:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y, x \in A$$

This definition is usually expressed with the x and y swapped:

$$f^{-1}(x) = y \quad \Leftrightarrow \quad f(y) = x, \ y \in A$$

Also, note that the $^{-1}$ in f^{-1} is **not** an exponent:

$$f^{-1}(x)$$
 does **not** mean $\frac{1}{f(x)}$

From the definition it also follows that if $f: A \to \mathbb{R}$ is one-to-one, then $g = f^{-1}$ if and only if:

1.
$$g(f(x)) = x$$
, for every $x \in A$

2.
$$f(g(y)) = y$$
, for every $y \in f(A)$

1.15.1 Example 1

The function $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ is given by $f(x) = \sin x$ is one-to-one. Its inverse is called arcsin. Hence:

$$\arcsin y = x \quad \Leftrightarrow \quad y = \sin x \text{ and } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

1.15.2 Example 2

The function $f:[0,\pi]\to\mathbb{R}$ is given by $f(x)=\cos x$ is one-to-one. Its inverse is called arccos. Hence:

$$\arccos y = x \quad \Leftrightarrow \quad y = \cos x \text{ and } x \in [0, \pi]$$

1.15.3 Example 3

The function $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ is given by $f(x)=\tan x$ is one-to-one. Its inverse is called arctan. Hence:

$$\arctan y = x \quad \Leftrightarrow \quad y = \tan x \text{ and } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

1.15.4 Comment on the examples

A lot of textbooks and calculators often use the notation \sin^{-1} , \cos^{-1} , \tan^{-1} instead of arcsin, arccos, arctan respectively, but this is somewhat misleading since the 3 trigonometric functions themselves are not one-to-one and do not have an inverse.

1.16 Inverse continuous functions on an interval

If $f: I \to \mathbb{R}$ is continuous and one-to-one, and if I is an interval, then f^{-1} is also continuous.

1.16.1 Example

The function $f:[-\frac{\pi}{2},\frac{\pi}{2}]\to\mathbb{R}$ is given by $f(x)=\sin x,$ is one-to-one and continuous.

Since the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is an interval, the inverse function arcsin (with domain [-1, 1]) is also continuous.

By similar arguments, the arccos and arctan functions are also continuous.

2 Linking the limits of functions and sequences

For $f: A \to \mathbb{R}$, assume that $\lim_{x\to a} = L$. Then for any sequence (a_n) in A satisfying both conditions:

- 1. For each n, we have $a_n \neq a$
- 2. $\lim_{n\to\infty}$

We have $\lim_{n\to\infty} = L$.

2.1 Proof

Since $\lim_{x\to a} f(x) = L$, for any $\varepsilon > 0$, there is a $\delta > 0$ such that:

$$0 < |x - a| < \delta, \ x \in A \quad \Rightarrow \quad |f(x) - L| < \varepsilon$$

Since $a_n \to a$, $a_n \in A$, $a_n \neq a$, we can find N such that:

$$n > N \quad \Rightarrow \quad 0 < |a_n - a| < \delta \quad \Rightarrow \quad |f(a_n) - L| < \varepsilon$$

The proof is complete.

2.2 Contrapositive statement

Using the theorem we just proved, let's say that we have a function f(x) and two sequences (a_n) and (b_n) , such that:

$$a_n \neq a, \ b_n \neq a, \ \lim_{n \to \infty} a_n = \lim_{n \to \infty} = a, \ \lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n)$$

That means that there does not exist any $L \in \mathbb{R}$ such that:

$$\lim_{x \to a} f(x) = L$$

Hence, the limit $\lim_{x\to a} f(x)$ does not exist. Because if it exists, the theorem tells us that $\lim_{x\to\infty} f(a_n) = \lim_{x\to\infty} f(b_n) = L$.

2.2.1Example

Let $f(x) = \sin \frac{1}{x}$. Note that:

$$0 = f(x) = \sin \frac{1}{x} \quad \Leftrightarrow \quad \frac{1}{x} = n\pi, \text{ where } n = \pm 1, \pm 2, \pm 3, \dots$$

$$1 = f(x) = \sin \frac{1}{x} \iff \frac{1}{x} = \frac{\pi}{2} + 2n\pi, \text{ where } n = 0, \pm 1, \pm 2, \dots$$

Let $a_n = \frac{1}{n\pi}$ for $n = 1, 2, 3, \ldots$ We get $a_n \neq 0, a_n \rightarrow 0$ as $n \rightarrow \infty$. Hence:

$$f(a_n) = \sin\frac{1}{a_n} = \sin n\pi = 0$$

So $\lim_{n\to\infty} f(a_n) = 0$. Let $a_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ for $n = 1, 2, 3, \ldots$ We get $b_n \neq 0, b_n \to 0$ as $n \to \infty$.

Hence:

$$f(b_n) = \sin\frac{1}{b_n} = \sin\left(\frac{\pi}{2} + 2n\pi\right) = 1$$

So $\lim_{n\to\infty} f(b_n) = 1$.

Since $\lim_{n\to\infty} f(a_n) \neq \lim_{n\to\infty} f(b_n)$, $\lim_{x\to 0} f(x)$ does not exist.

$\mathbf{3}$ Reasoning with limit laws

Suppose $\lim_{x\to a} f(x)$ does not exist and $\lim_{x\to a} g(x) = L$.

Does $\lim_{x\to a} (f(x) + g(x))$ exist?

If for some $l \in \mathbb{R}$,

$$\lim_{x \to a} (f(x) + g(x)) = l$$

Then:

$$\lim_{x \to a} f(x) = \lim_{x \to a} [f(x) + g(x) - g(x)]$$

$$= l - L$$

$$\neq \text{ undefined}$$

Since $\lim_{x\to a} f(x)$ does not exist, $\lim_{x\to a} f(x)$ cannot be equal to l-L, which is a contradiction.

Hence, $\lim_{x\to a} (f(x) + g(x))$ does not exist.