

Globally Convergent Newton Methods for III-conditioned Generalized Self-concordant Losses

U. Marteau-Ferey, A. Rudi and F. Bach — INRIA - Ecole Normale Supérieure - PSL Research University

Problem setting

Can we do fast logistic regression?

Find
$$\omega_{\star}^{\lambda} = \arg\min_{\omega \in \mathcal{U}} g^{\lambda}(\omega) := g(\omega) + \frac{\lambda}{2} \|\omega\|_{\mathcal{H}}^{2}$$
 (1)

Supervised learning n data points $(x_i, y_i)_{1 \leq i \leq n} \in \mathcal{H} \times \mathcal{Y}$

$$g(\omega) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \omega \cdot x_i)$$

- logistic loss: $\ell(y, y') = \log(1 + e^{-yy'})$
- softmax loss: $\ell(y, y') = -y \cdot y' \log(\int_z e^{-y' \cdot z} dz)$

Ill conditioned $\lambda \leq \frac{1}{n}$.

GSC function $\forall y, \ |\ell^{(3)}(y,\cdot)| \le R_{\ell} \ \ell^{(2)}(y,\cdot), \ R = R_{\ell} \sup_{i} ||x_{i}||$

Ill-conditioned problems: second order method?

Approximate Newton methods —

Newton step at ω : minimizes the second-order approximation:

$$\Delta_\omega^\lambda = [
abla^2 g^\lambda(\omega)]^{-1}
abla g^\lambda(\omega)$$
 hard to compute

Approximate Newton step : $\widetilde{\Delta}_{\omega}^{\lambda}$ relative approximation of $\Delta_{\omega}^{\lambda}$

 $\|\widetilde{\Delta}_{\omega}^{\lambda} - \Delta_{\omega}^{\lambda}\|_{\nabla^{2}g^{\lambda}(\omega)} \leq \frac{1}{7} \|\Delta_{\omega}^{\lambda}\|_{\nabla^{2}g^{\lambda}(\omega)}$ easier using Hessian sketching

algoritm: start from ω_0 set $\omega_{t+1} = \omega_t - \widetilde{\Delta}_{\omega_t}^{\lambda}$

For GSC functions: linear convergence in a small region

Dikin ellipsoid: $\mathsf{D}_{\lambda}(\mathsf{c}) = \left\{ \omega : \| \nabla g^{\lambda}(\omega) \|_{\nabla^2 g^{\lambda}(\omega)^{-1}} \leq \frac{\mathsf{c} \lambda^{1/2}}{7R} \right\}$,

 $\omega_0 \in \mathsf{D}_{\lambda}(1) \implies g^{\lambda}(\omega_t) - g^{\lambda}(\omega_{\star}^{\lambda}) \le 2^{-t}, \ \omega_t \in \mathsf{D}_{\lambda}(2^{-t})$

Problem : is it possible to get $\omega_0 \in D_{\lambda}(1)$?

Globalization scheme

Main ingredient: inclusion of Dikin ellipsoids

$$\forall \mu \ge \lambda, \ \mathsf{D}_{\mu}(1/3) \subset \mathsf{D}_{q\mu}(1), \qquad q \ge 1 - 1/(1 + R\|\omega_{\lambda}^{\star}\|)$$

This guarantees that $\omega^k \in D_{\mu_k}(1)$ in the following scheme

- 1. Start with $\omega^0 \in D_{\mu_0}(1)$
- 2. Set $\omega^{k+1} = \mathsf{ANM}(g^{\mu_k}, \omega^k, t = 2)$ (2 iterations of approximate Newton method to g^{μ_k}); set $\mu_{k+1} = q\mu_k$

Global convergence guarantees

$$\omega^K \in \mathsf{D}_{\lambda}(1), \qquad K = C(1 + R\|\omega_{\lambda}^*\|) \log \frac{\mu_0}{\lambda}$$

Note: one can make this algorithm adaptive.

— Kernel methods -

Data: n i.i.d. observations $(x_i, y_i)_{1 \le i \le n} \in \mathcal{X} \times \mathbb{R}$ with distribution ρ **Features**: p.d. Kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$; defines a feature space \mathcal{H}_K

and a feature map $\phi: \mathcal{X} \to \mathcal{H}_K$ s.t. $K(x, x') = \phi(x) \cdot \phi(x')$

Predictor: $f(x) = f \cdot \phi(x)$

Goal: minimize the *expected risk* $\mathcal{L}(f) := \mathbb{E}_{\rho}[\ell(y, f(x))]$

Classical solution: regularized ERM

$$\widehat{f}_{\lambda} = \underset{f \in \mathcal{H}_K}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \frac{\lambda}{2} ||f||_{\mathcal{H}_K}^2$$

Kernel trick : $\exists (\alpha_i), \ \forall x, \ \widehat{f_{\lambda}}(x) = \sum_{i=1}^n \alpha_i K(x_i, x)$ (n-dim problem)

Issue: solving an n-dimensional problem is too costly

Statistical rates in the kernel setting —

Assumptions ℓ GSC, K, Y bounded, $\exists f_{\star} \in \arg\min_{f \in \mathcal{H}_{K}} \mathcal{L}(f)$

Main quantities

 $\mathbf{H} =
abla^2 \mathcal{L}(f_\star)$ Hessian at optimum, $\mathbf{H}_\lambda = \mathbf{H} + \lambda \mathbf{I}$

Bias term: $\mathbf{b}_{\lambda} = \lambda^2 \|f_{\star}\|_{\mathbf{H}_{\lambda}^{-1}(f_{\star})}^2 \leq \lambda \|f_{\star}\|^2$, regularity of f_{\star}

Effective dimension $d_{\lambda} = \text{Tr}(\mathbf{H}_{\lambda}^{-1/2}\mathbf{H}\mathbf{H}_{\lambda}^{-1/2}) \leq C/\lambda$, size of \mathcal{H}_{K}

Statistical rates : with proba at least $1-\delta$

$$\mathcal{L}(\widehat{f}_{\lambda}) - \mathcal{L}(f_{\star}) \le C\left(\mathbf{b}_{\lambda} + \frac{\mathsf{d}_{\lambda}}{n}\right) \log \frac{1}{\delta}, \quad \text{if } \mathbf{b}_{\lambda}, \frac{\mathsf{d}_{\lambda}}{n} \le \frac{\lambda}{R^2}$$

Dimension reduction

Kernel trick: $\widehat{f_{\lambda}} \in \mathcal{H}_n = \{\sum_{i=1}^n \alpha_i K(x_i, \cdot)\}$

Principle of Nystrom sampling: dimension reduction

- Subsample points $(\tilde{x}_j)_{1 \leq j \leq M}$ from $(x_i)_{1 \leq i \leq n}$, M << n
- $ullet \widehat{f}_{\lambda,M} = rg \min_{f \in \mathcal{H}_M} \widehat{\mathcal{L}}_{\lambda}(f) \text{ where } \mathcal{H}_M = \left\{ \sum_{j=1}^M \widetilde{\alpha}_j K(\widetilde{x}_j, \cdot) \right\}.$

Statistical guarantees with Nystrom

If (i) $M \ge C/\lambda \log(c/\lambda \delta)$ using uniform sampling

or (ii) $M \geq C d_{\lambda} \log(c/\lambda \delta)$ using Nystrom leverage scores

$$\mathcal{L}(\widehat{f}_{\lambda,M}) - \mathcal{L}(f_{\star}) \le C\left(\mathbf{b}_{\lambda} + \frac{\mathsf{d}_{\lambda}}{n}\right)\log\frac{1}{\delta}, \qquad \text{if } \mathbf{b}_{\lambda}, \frac{\mathsf{d}_{\lambda}}{n} \le \frac{\lambda}{R^2}$$

M-dimensional optimization problem of type (1)

 \mathbf{T} s.t. $\mathbf{T}^{ op}\mathbf{T}=\mathbf{K}_{MM}=(K(ilde{x}_i, ilde{x}_j))_{1\leq i,j\leq M}$, $\mathbf{K}_{nM}=(K(x_i, ilde{x}_j))_{ij}$ Then $\widehat{f}_{\lambda,M}=\sum_{j=1}^M \widetilde{lpha}_j K(\widetilde{x}_j,\cdot)$ where $\widetilde{lpha}=\mathbf{T}^{-1}\omega_\star^\lambda$ and

$$\omega_{\star}^{\lambda} = \arg\min_{\omega \in \mathbb{R}^{M}} g^{\lambda}(\omega), \ g(\omega) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, \omega \cdot \mathbf{T}^{-\top} \mathbf{K}_{Mn} e_{i})$$
 (2)

- Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. FALKON: An optimal large scale kernel method. In Advances in Neural Information Processing Systems 30, pages 3888–3898. 2017.
- Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond least- squares: Fast rates for regularized empirical risk minimization through self-concordance. In Proceedings of the Conference on Computational Learning Theory, 2019.

Efficient approximate Newton steps —

Gradient: $\nabla g^{\mu} = \mathbf{T}^{-\top} \mathbf{K}_{nM} \mathbf{P}_n + \mu \omega$, O(nM) time, O(n) memory

Hessian : $abla^2 g^\mu = \mathbf{T}^{- op} \mathbf{K}_{Mn} \mathbf{W}_n \mathbf{K}_{nM} \mathbf{T}^{-1} + \mu \mathbf{I}$, \mathbf{W}_n diagonal. Solving the newton system $[
abla^2 g^\mu] \Delta^\mu =
abla g^\mu$

Problem : computing $abla^2 g^\mu o O(nM^2)$ ops

Solution: computing $abla^2 g^{\mu}.x \to O(nM)$ ops. Iterative methods?

Iterative methods to solve Ax = b

+ one matrix-vector product $\mathbf{A}.x/\text{epoch}$ ($\nabla^2 g^\mu.x o O(nM)$ time)

- #epochs needed : $O(\sqrt{\text{Cond}(\mathbf{A})})$ (conjugate gradient)

Problem: $\operatorname{Cond}(\nabla^2 g^{\mu}) \approx \frac{C}{u}$: too big $(\operatorname{Cond}(\mathbf{A}) = (\lambda_{\max}/\lambda_{\min})(\mathbf{A}))$

Preconditioning the system Ax = b

Find preconditioner $\mathbf{B} \in \mathbb{R}^{M \times M}$ s.t. $\operatorname{Cond}(\mathbf{B}^{-\top} \mathbf{A} \mathbf{B}^{-1}) \leq 2$

Solve $\mathbf{B}^{-\top}\mathbf{A}\mathbf{B}^{-1}$ $x = \mathbf{B}^{-\top}\mathbf{b}$ (using iterative method)

Return ${f B}^{-1}$ $x o O(nM+M^3)$ operations + cost of pre-conditioner

Pre-conditioner used

$$\mathbf{B} = \mathsf{chol}\left(\mathbf{T}^{-\top}\mathbf{K}_{MM}\mathbf{W}_{M}\mathbf{K}_{MM}\mathbf{T}^{-1} + \mu\mathbf{I}\right) \to O(M^{3}) \text{ time}$$
 (3)

Guarantees of the algorithm

Logsitic regression on Susy and Higgs ($n \approx 10^7$)

Main assumption

- (i) $M \geq C/\lambda \log(c/\lambda\delta)$ using uniform sampling
- or (ii) $M \ge C d_{\lambda} \log(c/\lambda \delta)$ using Nystrom leverage scores,

Method

- Globalization scheme to solve (2) with $K = C(1 + R||f_{\star}||) \log \frac{\mu_0}{\lambda}$
- Approximate Newton steps with (3), $C \log(1/\epsilon)$ iterations

Guarantees

$$\mathcal{L}(f) - \mathcal{L}(f_{\star}) \le C\left(\mathbf{b}_{\lambda} + \frac{\mathsf{d}_{\lambda}}{n} + \epsilon\right) \log \frac{1}{\delta}, \quad \text{if } \mathbf{b}_{\lambda}, \frac{\mathsf{d}_{\lambda}}{n} \le \frac{\lambda}{R^2}$$

Time: $O(R||f_{\star}||(nM+M^3)\log(\mu_0/\lambda)\log(1/\epsilon))$

Memory : $O(n+M^2)$