CW Complex

We often want to restrict our attention to nice topological spaces which have properties that yield more fruitful results. One such example of a topological space is a CW complex. A CW complex is made up of k-cells e^k , which are each homeomorphic to an open disk B^k . Constructing a cell complex is then done in the following inductive manner:

- Start with a discrete set of points, which are the 0-cells and call this the zero skeleton X^0 .
- Create inductively the k skeleton X^k by attaching cells of dimensions k to the k-1 skeleton X^{k-1} such that we have $X^k = X^{k-1} \sqcup_{\alpha} e^k_{\alpha}$. These cells are attached via attaching maps $\phi_{\alpha}: \partial D^k_{\alpha} \to X^{k-1}$. Thus, the k-skeleton X^k is the quotient space $X^{k-1} \sqcup_{\alpha} e^k_{\alpha} / \sim$, where $x \sim \phi_{\alpha}(x)$ for $x \in \partial e^n_{\alpha}$.
- These attaching maps ϕ_{α} extend to so called characteristic maps $\Phi_{\alpha}: D_{\alpha}^k \to X$ such that the interior of D_{α}^k gets mapped homeomorphically to e_{α}^k .
- Finally, if X is a finite CW complex then $X^n = X$ for some finite n. If X is an infinite CW complex then $X = \bigcup_n X^n$ and we give it the weak topology, that is, a subset $A \subset X$ is open or closed iff $A \cap X^n$ is open closed for each n.

For example the space which consists of a single 0-cell e^0 and a single n-cell e^n attached via the constant map $S^{n-1} \to e^0$ is a cell structure for S^n . An explicit homeomorphism exists by considering S^n as $\mathbb{R}^n \cup \{\infty\}$ and defining a map

$$\varphi: D^n/\partial D^n \to \mathbb{R}^n \cup \{\infty\}$$

sending the interior of D^n to \mathbb{R}^n and the boundary to the point at infinity.

Multiplicativity of the Euler Characteristic with respect to covers.

One way of defining the Euler Characteristic of a finite CW complex X is

 $\chi(X)$ = number of even dimensional cells of X – number of odd dimensional cells of X.

If \tilde{X} is an *n*-sheeted covering of X, then one can lift to a CW structure on \tilde{X} by lifting each characteristic map $\phi_{\alpha}: D^k \to X$ for each k-cell of X. Since \tilde{X} is a n-sheeted covering, there exist n lifts of the characteristic map and for each k-cell in X, there exist n number of k-cells in \tilde{X} , so

 $\chi(\tilde{X}) = n$ (number of even dimensional cells of X – number of odd dimensional cells of X) = $n \cdot \chi(X)$.

Proposition. The Euler Characteristic of a CW complex X is

$$\chi(X) = \sum_{i} (-1)^{i} \operatorname{rank}(H_{i}(X))$$

Proof. Consider the cellular chain complex of X.

$$0 \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} 0$$

We have short exact sequences.

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow B_n \longrightarrow Z_n \longrightarrow H_n \longrightarrow 0$$

where $B_n = \text{Im } d_{n+1}$, $Z_n = \ker d_n$, $H_n = Z_n/B_n$. By the rank nullity theorem

$$\operatorname{rank} C_n = \operatorname{rank} Z_n + \operatorname{rank} B_{n-1}$$

$$\operatorname{rank} Z_n = \operatorname{rank} B_n + \operatorname{rank} H_n$$

Therefore,

$$\operatorname{rank} C_n = \operatorname{rank} B_n + \operatorname{rank} H_n + \operatorname{rank} B_{n-1}$$

and $\sum_{n}(-1)^{n}$ rank $C_{n}=(-1)^{n}$ rank $B_{n}+\sum_{n}(-1)^{n}$ rank H_{n} , and since $d_{n+1}=0$ we have

$$\chi(X) = \sum_{n} (-1)^{n} \operatorname{rank} H_{n}(X)$$

One can also arrive at a similar result using this fact we just proved. If we once again consider an n-sheeted covering \tilde{X} of X, we get a fibration with discrete fiber F

$$F \longrightarrow \tilde{X} \longrightarrow X$$
.

The Serre Spectral sequence says that we have the following first quadrant homological spectral sequence

$$E_{p,q}^2 \cong H_p(X; (\mathcal{H}_q(F))) \Longrightarrow H_{p+q}(\tilde{X})$$

In the case of a discrete fiber the only non-zero row of the E^2 page is the 0th row, so all the differentials on the E_2 page and on every other page are 0 and we have

$$H_p(\tilde{X}) \cong H_p(X; \mathcal{H}_0(F)).$$

Since \mathcal{H}_0 is locally \mathbb{Z}^n and this local system corresponds to a sheaf on X we can compute sheaf homology of X and get something along the lines of

$$H_p(X; \mathcal{H}_0) \cong nH_p(X; \mathbb{Z})$$