

Efficient frictional contacts for soft body dynamics via ADMM

Siyan Zhu¹, Cheng Fang¹, ***Peng Yu**¹, *Xiao Zhai², Aimin Hao¹, *Junjun Pan¹

1. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China 2. Weta FX, New Zealand

Contact Simulation Applications

Frame Time 16 Stims

Particle Count 101010

Frame Time 16 Stims

Frame Time 16 St

Industry Design

Biomechanics

Virtual Surgery

Movies

Robotics

Autopilot Training Platform

Backgrounds

Backward Euler Time Integration

A Euler Time Integration Mass Matrix Position
$$x^{t+1} = argmin_x E(x) = \frac{1}{2h^2} (x - \tilde{x})^T \mathbf{M} (x - \tilde{x}) + U(x)$$

New Pos Incremental Potential Inertia Term Elasticity Energy

Primal based method

$$\mathbf{x}^{t+1} = argmin_{\mathbf{x}}E(\mathbf{x}) + P(\mathbf{x})$$

- Penalty method
- Barrier method (IPC, 2020)
 - Penetration free
 - Continuous collision detection (time consuming)

Predicted

Backgrounds

Dual based method

$$\mathbf{x}^{t+1} = argmin_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \widetilde{\mathbf{x}})^{T} \mathbf{M} (\mathbf{x} - \widetilde{\mathbf{x}})$$
s.t. $C_{1}(\mathbf{x}) \leq 0$,
$$C_{2}(\mathbf{x}) = 0$$

Distance constraints Collision constraints PBD[2006], XPBD[2016] (for small scenes)

Hybrid method

$$x^{t+1} = argmin_{x}E(x)$$

$$s. t. \quad C_{1}(x) \leq 0,$$

$$C_{2}(x) = 0$$

$$\begin{cases} M = 0 \\ \mathbf{u} = 0 \\ \forall i = 0 \end{cases}$$

 $\Rightarrow \begin{cases}
M \frac{\mathrm{d} \boldsymbol{v}}{\mathrm{d} t} = \mathbf{f}(t, \boldsymbol{x}, \boldsymbol{v}) + \mathbf{J}_{\mathbf{f}^{c}}^{\top} \boldsymbol{r} \\
\boldsymbol{u} = \mathbf{J} \boldsymbol{v} + \boldsymbol{u}_{\mathrm{f}} \\
\forall i = 1 \dots n, (\boldsymbol{r}^{i}, \boldsymbol{u}^{i}) \in K_{\mu}.
\end{cases}$

Gilles Daviet [2021, 2023]

• Delassus Operator $JA^{-1}J^{T}$ (Large Sparse Matrix Inversion, time consuming)

Motivation

Habitat of our method

Simulation Quality

ADMM (Alternating Direction Method of Multipliers)

ADMM: solving convex optimization problem

$$\min_{\mathbf{x}, \mathbf{z}} f(\mathbf{x}) + g(\mathbf{z}), \ s.t. \ \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c} = 0,$$

$$\mathbb{I}$$

$$L(\mathbf{x}, \mathbf{z}, \boldsymbol{\lambda}) = f(\mathbf{x}) + g(\mathbf{z}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c} + \boldsymbol{\lambda}\|^2 + \mathbf{k}.$$

ADMM use a Gauss-Seidel type iterative algorithm:

$$\begin{split} \mathbf{x}^{l+1} &:= \mathop{\arg\min}_{\mathbf{x}} L(\mathbf{x}, \mathbf{z}^l, \boldsymbol{\lambda}^l), \\ \mathbf{z}^{l+1} &:= \mathop{\arg\min}_{\mathbf{z}} L(\mathbf{x}^{l+1}, \mathbf{z}, \boldsymbol{\lambda}^l), \\ \boldsymbol{\lambda}^{l+1} &:= \boldsymbol{\lambda}^l + \rho(\mathbf{A}\mathbf{x}^{l+1} + \mathbf{B}\mathbf{z}^{l+1} + \mathbf{c}). \end{split}$$

Softbody Contacts Formulation

Softbody with contacts

$$x_{t+1} = \arg\min_{x} \frac{1}{2h^2} \underbrace{(x - \widetilde{x})^T \mathbf{M} (x - \widetilde{x})}_{\text{Inertia Term}} + \underbrace{U(x)}_{\text{Elasticity}} + \underbrace{F(x, v)}_{\text{Contacts Potential}}$$

Introduce two auxiliary variables $\mathbf{z}_i = \mathbf{D}_i \mathbf{x}, \mathbf{p} = \mathbf{v}$

$$\boldsymbol{x}_{t+1} = \arg\min_{\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{p}} \frac{1}{2h^2} (\boldsymbol{x} - \widetilde{\boldsymbol{x}})^T \mathbf{M} (\boldsymbol{x} - \widetilde{\boldsymbol{x}}) + \sum_{i} U(\boldsymbol{z_i}) + F(\boldsymbol{p})$$

s.t. $\mathbf{D}x = \mathbf{z}, \mathbf{x} - \mathbf{x}_t - \mathbf{h}\mathbf{p} = \mathbf{0}$ (equation constraints)

Reform equation constraint

$$\begin{bmatrix} \mathbf{W}_e \mathbf{D} \\ \frac{1}{h} \mathbf{W}_c \end{bmatrix} \mathbf{x} + \begin{bmatrix} -\mathbf{W}_e & 0 \\ 0 & -\mathbf{W}_c \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} 0 \\ -\mathbf{W}_c \frac{1}{h} \mathbf{x}_t \end{bmatrix} = 0$$

tetrahedron

ADMM Solver

1. Global strain propagation $x^{l+1} \leftarrow \arg \min_{x} L_1$

$$L_1 = \frac{1}{2h^2} (\boldsymbol{x} - \widetilde{\boldsymbol{x}})^T \mathbf{M} (\boldsymbol{x} - \widetilde{\boldsymbol{x}}) + \frac{1}{2} \left| \boldsymbol{W}_e^{\frac{1}{2}} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{z}^l + \boldsymbol{\lambda}_e^l) \right|^2 + \frac{1}{2} \left| \boldsymbol{W}_c^{\frac{1}{2}} (\boldsymbol{x} - \boldsymbol{h} \boldsymbol{p}^l - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$$

- 2. Local elasticity projection $z^{l+1} \leftarrow \arg\min_{z} L_2$ $L_2 = \sum_{i=1}^{n_e} U(\mathbf{z}_i) + \frac{1}{2} \left| \mathbf{W}_e^{\frac{1}{2}} (\mathbf{D}x \mathbf{z}^l + \boldsymbol{\lambda}_e^l) \right|^2$
- 3. Frictional contact projection $p^{l+1} \leftarrow \arg\min_{p} L_3$ $L_3 = I_{K_{\mu}}(p) + \frac{1}{2} \left| \mathbf{W}_c^{\frac{1}{2}} (\mathbf{x} \mathbf{h} \mathbf{p}^l \mathbf{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$

#m independent problems Solved in parallel

4. Dual update

$$\begin{split} & \boldsymbol{\lambda}_e^{l+1} = \boldsymbol{\lambda}_e^l + \boldsymbol{D}\boldsymbol{x}^{l+1} - \boldsymbol{z}^{l+1} \\ & \boldsymbol{\lambda}_c^{l+1} = \boldsymbol{\lambda}_e^l + \boldsymbol{x}^{l+1} - h\boldsymbol{p}^{l+1} - \boldsymbol{x}_t \end{split}$$

Simple vector addition

1. Global strain propagation $x^{l+1} \leftarrow \arg\min_{x} L_1$

$$L_1 = \frac{1}{2h^2} (\boldsymbol{x} - \widetilde{\boldsymbol{x}})^T \mathbf{M} (\boldsymbol{x} - \widetilde{\boldsymbol{x}}) + \frac{1}{2} \left| \boldsymbol{W}_e^{\frac{1}{2}} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{z}^l + \boldsymbol{\lambda}_e^l) \right|^2 + \frac{1}{2} \left| \boldsymbol{W}_c^{\frac{1}{2}} (\boldsymbol{x} - \boldsymbol{h} \boldsymbol{p}^l - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$$

- 2. Local elasticity projection $z^{l+1} \leftarrow \arg\min_{z} L_2$ $L_2 = \sum_{i=1}^{n_e} U(\mathbf{z}_i) + \frac{1}{2} \left| \mathbf{W}_e^{\frac{1}{2}} (\mathbf{D} x \mathbf{z}^l + \boldsymbol{\lambda}_e^l) \right|^2$
- 3. Frictional contact projection $p^{l+1} \leftarrow \arg\min_{p} L_3$ $L_3 = I_{K_{\mu}}(p) + \frac{1}{2} \left| \mathbf{W}_c^{\frac{1}{2}} (\mathbf{x} \mathbf{h} p^l \mathbf{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$

#m independent problems Solved in parallel

pin bending

triangle

tetrahedron

4. Dual update

$$\lambda_e^{l+1} = \lambda_e^l + Dx^{l+1} - z^{l+1}$$
 $\lambda_c^{l+1} = \lambda_e^l + x^{l+1} - hp^{l+1} - x_t$

Simple vector addition

Step 1: Global Strain Propagation: Solving a linear system

$$\boldsymbol{x}^{l+1} \leftarrow \arg\min_{\boldsymbol{x}} L_1 = \arg\min_{\boldsymbol{x}} \frac{1}{2h^2} (\boldsymbol{x} - \widetilde{\boldsymbol{x}})^T \mathbf{M} (\boldsymbol{x} - \widetilde{\boldsymbol{x}}) + \frac{1}{2} \left| \boldsymbol{W}_e^{\frac{1}{2}} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{z}^l + \boldsymbol{\lambda}_e^l) \right|^2 + \frac{1}{2} \left| \boldsymbol{W}_c^{\frac{1}{2}} (\boldsymbol{x} - \boldsymbol{h} \boldsymbol{p}^l - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$$

First order optimal condition Ax = b

$$(\mathbf{M} + h^2 \mathbf{D}^T \mathbf{W}_e \mathbf{D} + h^2 \mathbf{W}_c) \mathbf{x} = \mathbf{M} \hat{\mathbf{x}} + h^2 \mathbf{D}^T \mathbf{W}_e (\mathbf{z}^l - \lambda_e^l) + h^2 \mathbf{W}_c (\mathbf{p}^l - \lambda_e^l)$$

- Constant A, pre-factorization can be applied
- Rayleigh damping
 - Our formulation $\boldsymbol{f}_d = -k_d \boldsymbol{D}^T \boldsymbol{W}_e \boldsymbol{D} \boldsymbol{v}_{t+1}$
 - Final system

$$(\mathbf{M} + h^2 \mathbf{D}^T \mathbf{W}_e \mathbf{D} + h^2 \mathbf{W}_c + h k_d \mathbf{D}^T \mathbf{W}_e \mathbf{D}) \mathbf{x} = \mathbf{M} \hat{\mathbf{x}} + h^2 \mathbf{D}^T \mathbf{W}_e (\mathbf{z}^l - \boldsymbol{\lambda}_e^l) + h^2 \mathbf{W}_c (\boldsymbol{p}^l - \boldsymbol{\lambda}_e^l) + \boldsymbol{f}_d$$

- Step3: Friction Contact Projection
 - First order optimal condition of L_3 + Schur Complement

$$L_3 = I_{K_{\mu}}(\boldsymbol{p}) + \frac{1}{2} \left| \boldsymbol{W}_c^{\frac{1}{2}} (\boldsymbol{x} - \boldsymbol{h} \boldsymbol{p}^l - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$$

Complementary Problem

$$\begin{cases} \boldsymbol{u} = \boldsymbol{Q}\boldsymbol{\gamma}^l + \frac{1}{h}\boldsymbol{J}(\boldsymbol{x}^{l+1} - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \\ (\boldsymbol{u}, \boldsymbol{\gamma}) \in K_{\mu} \end{cases}$$
Relative velocity Contact force

Coulomb friction model

- Step3: Friction Contact Projection
 - First order optimal condition of L_3 + Schur Complement

$$L_3 = I_{K_{\mu}}(\boldsymbol{p}) + \frac{1}{2} \left| \boldsymbol{W}_c^{\frac{1}{2}} (\boldsymbol{x} - \boldsymbol{h} \boldsymbol{p}^l - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \right|^2$$

Complementary Problem

$$\begin{cases} \boldsymbol{u} = \boldsymbol{Q}\boldsymbol{\gamma}^l + \frac{1}{h}\boldsymbol{J}(\boldsymbol{x}^{l+1} - \boldsymbol{x}_t + \boldsymbol{\lambda}_c^l) \\ (\boldsymbol{u}, \boldsymbol{\gamma}) \in K_{\mu} \end{cases}$$
Relative velocity Contact force

Delassus Operator
$$Q = JW_c^{-1}J^T$$
sparse

 \boldsymbol{W}_{c}^{-1} is a diagonal matrix

Solve the Complementary Problem

$$\begin{cases} u = Q\gamma^{l} + \frac{1}{h}J(x^{l+1} - x_{t} + \lambda_{c}^{l}) \\ (u, \gamma) \in K_{\mu} \end{cases}$$

- Projected Gauss-Seidel
 - Enumerate Method: for Contact projection [Daviet, 2020]
 - Coulomb friction law
 - Signorini's condition
 - Kaczmarz method: avoid explicitly calculate Delassus operator Q
 - track $p = J^T u$ in time
 - Contact stabilization
 - Constraint Force Mixing (CFM)

PGS initialization

$$\mathbf{u}_g^{k+1} = \begin{cases} q_{g,d} \boldsymbol{\gamma}_g^k + \Sigma_o q_{g,o} \boldsymbol{\gamma}_o^l + \mathbf{b}^{l+1} & \text{if } k > 0, \\ \mathbf{J} \mathbf{p} & \text{if } k = 0. \end{cases}$$

$$\mathbf{u}_g^* = \mathbf{u}_g^{k+1} - q_{g,d} \mathbf{\gamma}_g^k = \mathbf{J} \mathbf{p}^k - q_{g,d} \mathbf{\gamma}_g^k$$

Classify the contact case (Enumerate Method)

1. Separate:
$$u_{\mathrm{g}}^* \cdot n > 0 \rightarrow u_{\mathrm{g}}^{k+1} = u_{\mathrm{g}}^*$$

2. Slide:
$$u_{\mathrm{g}}^* \in K_{\mu} \rightarrow u_{g}^{k+1} = \mathbf{0}$$

3. Stick: not 1, 2 then
$$\boldsymbol{u}_{g}^{k+1} = u_{g,T}^* + \frac{\mu |u_{g,N}^*| u_{g,T}^*}{|u_{g,T}^*|}$$

Update p

$$\mathbf{p}_i^{k+1} = \mathbf{p}_i + \frac{J_{g,i}}{w_i} (\boldsymbol{\gamma}_g^{k+1} - \boldsymbol{\gamma}_g).$$

Anisotropic Friction

- Match Stick Model
 - Friction Cone: Conic $K_{\mu} \to \text{Elliptic cone } K_{\mu_t,\mu_b}$

[Erleben et al. 19]

Our method with Anisotropic Friction

Result different friction coefficients

Result large scale

Result compare with IPC

IPC[Li et al. 2020]

Ours (Speed up 10x)

Result compare with C-IPC

Result compare with XPBD

Result compare with XPBD

Result Ablation: Contact Stabilization

Result complex contact

Conclusion

- Introduce a novel decoupled scheme for soft body dynamics with frictional contacts, in the framework of ADMM, combining
 - an efficient elasticity solver from PD
 - a lightweight non-Linear PGS for contact handling
- Integrate techniques to enhance both reliability and realism
 - Matchstick anisotropic friction
 - Contact stabilization
 - Rayleigh elastic damping (with zero overhead)
- Demonstrating the effectiveness, accuracy, and computational efficiency of our solver

Efficient frictional contacts for soft body dynamics via ADMM

Siyan Zhu¹, Cheng Fang¹, ***Peng Yu**¹, *Xiao Zhai², Aimin Hao¹, *Junjun Pan¹

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China
 Weta FX, New Zealand

without contact stabilization

with contact stabilization

