

Implementieren eines Energiespeichersystems eMule 7.0

Studienarbeit T3_3100

Studiengang Elektrotechnik

Studienrichtung Fahrzeugelektronik

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Philipp Bellmann, Rafael Heuschkel

Abgabedatum: 9. Januar 2025

Bearbeitungszeitraum: 01.10.2024-9. Januar 2025

Matrikelnummern: 6889044, 4002442

Kurs: TFE22-1

Betreuerin / Betreuer: Khamis Jakob

Erklärung

gemäß Ziffer 1.1.14 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 24.07.2023.

Ich versichere hiermit, dass ich meine Studienarbeit T3_3100 mit dem Thema:

Implementieren eines Energiespeichersystems eMule 7.0

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Musterstadt, den 9. Januar 2025

Philipp Bellmann, Rafael Heuschkel

Kurzfassung

Problemstellung

Ziel der Arbeit

Vorgehen und angewandte Methoden

Konkrete Ergebnisse der Arbeit, am besten mit quantitativen Angaben

Abstract

English translation of the "Kurzfassung".

Inhaltsverzeichnis

1	Pro	blemst	ellung, Ziel und Vorgehensweise der Arbeit	1
	1.1	Proble	emstellung	1
2	Gru	ndlage	n	5
	2.1	Norme	en zur Zeichnung von Schaltzeichen	5
	2.2	Autod	lesk Fusion 360	7
		2.2.1	Installationsaleitung	8
		2.2.2	Historie und Entwicklung	10
		2.2.3	Grundfunktionen	11
		2.2.4	Spezielle Funktionen zur Erstellung von Schaltplänen, Bestückungs	S-
			plänen und Stromlaufplänen	11
3	Vor	gehenT	est	13
4	Um	setzung	g und Ergebnisse	15
5	Zus	ammer	nfassung	33
	5.1	Ausbli	ick	34
Lit	terat	urverze	eichnis	35
Αŀ	bildı	ıngsvei	rzeichnis	37
Ta	belle	nverze	ichnis	39
Α	Nutz	ung vo	on Künstliche Intelligenz basierten Werkzeugen	41
Sa	chwe	ortverze	eichnis	43

1 Problemstellung, Ziel und Vorgehensweise der Arbeit

Der globale Wandel hin zu nachhaltigeren Mobilitätslösungen ist in vollem Gange. Angesichts steigender Umweltauflagen und wachsendem Bewusstsein für die negativen Auswirkungen fossiler Brennstoffe vollzieht sich ein paradigmatischer Wechsel von konventionellen Verbrennungsmotoren hin zu Elektroantrieben. Dieser technologische Umbruch betrifft nicht nur den privaten Automobilsektor, sondern auch Nutzfahrzeuge und Spezialfahrzeuge, die zunehmend auf elektrische Antriebe umgestellt werden. [Pis23] Im Rahmen eines universitären Projekts haben wir ein Kawasaki Mule 600 Fahrzeug erfolgreich von einem Verbrennungsmotor auf einen Elektroantrieb umgerüstet. Dieser Umbau stellte einen ersten Meilenstein dar, der es uns ermöglichte, die Vorteile elektrischer Mobilität in einer praktischen Anwendung zu demonstrieren. Nun soll das Projekt weiterentwickelt werden, um durch gezielte Verbesserungen – wie den Einsatz einer leistungsfähigeren Batterie – die Effizienz und Reichweite des Fahrzeugs zu optimieren und neue Standards in der elektrischen Antriebstechnologie zu setzen.

1.1 Problemstellung

Das Kawasaki Mule 600 wurde durch unsere Vorgängerjahrgänge von einen auslieferungsgemäß verbauten Verbrennungsmotor auf einen Elektromotorantrieb umgebaut. Die Dokumentation des Umbaus wurde in diesem Zuge nur notdürftig bis garnicht

und ohne jegliche Vereinheitlichung vorgenommen. Das Fahrzug wurde von Kawasaki Mule 600 in Kawasaki E-Mule umgetauft. Das neue E-Mule Team muss sich im ersten Schritt einen Überblick über das Fahrzeug und dessen Zustand verschafft werden. Dieser Überblick umfasst sowohl den mechanischen sowie elektrischen Aufbauzustand des Gesamtfahrzeugs und der einzelnen Komponenten. Im nächsten Schritt muss die vorhandene Dokumentation eingesehen werden. Hier wird überprüft, welche Teile der Dokumentation dem aktuellen Aufbauzustand entsprechen. Die Teile der Dokumentation, welche nicht dem aktuellen Stand entsprechen müssen verworfen werden. Auf Basis der vorhandenen Dokumentation und des Aufbauzustandes des Fahrzeuges muss eine neue gesamtheitliche Dokumentation des Gesamtsystems erstellt werden. Um die Dokumentation einheitlich zu gestalten muss sich auf eine Norm festgelegt werden, nach dieser die neue Dokumentation erstellt wird. Im folgenden werden lediglich die Aspekte der Problemstellung für die Aufgabe der Erstellung von Stromlaufplänen, Schaltplänen und Bestückungsplänen betrachtet. Das erste Problem hierbei besteht darin, ein geeignetes Programm zum Erstellen der Dokumentation auszuwählen. Die Schwierigkeit besteht hierbei darin, ein Programm zu finden, welches allen gestellten Anforderungen entspricht. Diese sind: das Programm muss möglichst kostengünstig sein, da nur ein begrenztes Budget zur Verfügung steht. Das Programm muss sowohl für die Betriebssysteme Windows als auch macOS ausgelegt sein, um sicherzustellen, dass jedes Teammitglied optimal arbeiten kann. Das Programm muss sowohl in der Lage sein, Stromlaufpläne, Schaltpläne und Bestückungspläne zu erstellen, da auf Grund des beschränkten Budgets nicht mehrere Programme gezahlt werden können. Das Programm muss entweder die ausgewählte Norm unterstützen, oder die Möglichkeit bieten eigene Bibliotheken mit Bauteilen zu erstellen. Das zweite Problem besteht in der bereits erwähnten vereinheitlichung nach einer gemeinsamen Norm. Hier besteht das Problem darin, dass für die gewählte Norm eine eigens angelegte Bibliothek erstellt werden muss.

Um dieses Ziel zu erreichen muss die alte Dokumentation überarbeitet werden und für sämtliche Teile des Systems, für welche keine Dokumentation vorliegt eine solche Erstellt werden. Das Team muss in verschiedene Gruppen aufgeteilt werden, um dann wiederum verschiedene Teilaufgaben zu bearbeiten.

Die bereits erwähnte Vereinheitlichung nach DIN Norm bietet noch weitere Probleme.

Im ersten Schritt muss eine allgemeine Dokumentation der Norm vorliegen anhand welcher die Dokumentation des Systems erstellt werden kann. Im zweiten Schritt müssen Dokumentationen der für die bisherige Systemdokumentation verwendeten Normen vorliegen, um erkennen zu könne um welche Teile es sich handelt. Ein weiteres Problem stellt die Erstellung einer eigenen Bibliothek für die gewählte Norm dar, da dies eine sehr umfangreiche Aufgabe ist für welche sich intensiv in das Program eingearbeitet werden muss.

• Was waren die Probleme

- Plänechaos
- alles in versch Normen
- keine Doku über aktualität
- Noch nie sowas gemacht
- Mac-Kompatiblität

• Was war das Ziel

- vergemeinschaftung der vorhandenen Pläne nach DIn norm
- erstellen neuer pläne(Schalt, bestückungs, stromlauf, usw.) nach DIN Norm

• Wie sind wir vorgegangen

- geeignetes Program gesucht
- eingearbeitet
- eigene Bibs erstellt

- alte pläne geordnet und brauchbare in din norm übersetzt
- neue Pläne gezeichnet
- Hinführung, Begründung, Zweck und Ziel der Aufgabenstellung
- Erläuterung der Problemstellung
- Konkretisierung der zu lösenden Aufgabe
- Gegebenenfalls Formulierung einer Leitfrage oder Forschungsfrage
- Ausgangslage, geplante Vorgehensweise, Methoden zur Bearbeitung und Zielsituation
- Zum Ende der Einleitung wird eine Kurzübersicht über die Inhalte der Kapitel gegeben: "Die Arbeit ist wie folgt gegliedert: …"

2 Grundlagen

- Normen -> Din norm
- wenn man strecken muss: kawasaki mule+definition elektrofzg

2.1 Normen zur Zeichnung von Schaltzeichen

Entstehung und Bedeutung von Normen

Normen haben ihren Ursprung in der industriellen Revolution, als der Bedarf an standardisierten Verfahren und Produkten exponentiell anstieg. Unterschiedliche Maße, Zeichnungen oder Bezeichnungen führten zu Missverständnissen, Ineffizienzen und Fehlern in der Fertigung und Kommunikation. Um diesem Chaos entgegenzuwirken, wurden Normen geschaffen, die als verbindliche Regelwerke dienen.

Normen ermöglichen eine einheitliche Sprache zwischen Ingenieuren, Herstellern und Anwendern. Sie sichern die Kompatibilität von Bauteilen, verbessern die Qualität und fördern den internationalen Handel. Im Kontext technischer Zeichnungen – insbesondere von Schaltzeichen – gewährleisten Normen, dass technische Pläne weltweit eindeutig verstanden werden können, unabhängig von Sprache oder regionalen Besonderheiten.

Die bekanntesten Normen für Schaltzeichen

Drei der bekanntesten und am häufigsten verwendeten Normen für Schaltzeichen sind:

- DIN-Normen (Deutschland): Diese Normen, herausgegeben vom Deutschen Institut für Normung, sind insbesondere im deutschsprachigen Raum verbreitet. Sie umfassen eine breite Palette von Standards, darunter auch solche für elektrische, hydraulische und pneumatische Schaltzeichen.
- IEC-Normen (International): Die International Electrotechnical Commission (IEC) ist für die Entwicklung global gültiger Standards verantwortlich. Die IEC 60617-Serie beispielsweise definiert Symbole für elektrotechnische Anlagen und Komponenten.
- ANSI-Normen (USA): Das American National Standards Institute (ANSI) ist die dominierende Normierungsorganisation in den USA. ANSI-Zeichnungen sind häufig in nordamerikanischen Projekten anzutreffen.

Die Wahl der Norm hängt von der Region und dem Anwendungsfall ab. Während europäische Projekte häufig auf DIN- oder IEC-Normen basieren, dominieren ANSI-Normen in den USA.

Die DIN-Norm für Schaltzeichen im Detail

Die DIN-Normen sind in Deutschland der zentrale Standard für die Erstellung technischer Zeichnungen und Schaltpläne. Besonders relevant ist die Norm DIN EN 60617, die elektrische Schaltzeichen beschreibt. Diese Norm wurde in Zusammenarbeit mit der IEC entwickelt, was die internationale Anschlussfähigkeit erleichtert.

Die DIN EN 60617 regelt detailliert:

- Die Darstellung von Bauelementen: Elektronische Bauteile wie Widerstände, Kondensatoren oder Schalter haben klar definierte Symbole.
- Das Layout von Schaltplänen: Vorgaben für Linienführung, Anschlussstellen und Abstände zwischen Symbolen sorgen für Übersichtlichkeit.
- Verbindungsleitungen: Die Darstellung von Leitungen und Kreuzungen vermeidet Missverständnisse, beispielsweise durch eindeutige Markierungen bei Verbindungen.

Ein zentrales Ziel der DIN-Norm ist es, Komplexität zu reduzieren und eine intuitive Lesbarkeit zu fördern. Zusätzlich berücksichtigt die Norm auch neuere Technologien und Entwicklungen, wodurch sie immer wieder aktualisiert wird.

Durch die Einhaltung der DIN-Norm können Ingenieure sicherstellen, dass ihre Schaltpläne sowohl in der eigenen Organisation als auch international korrekt interpretiert werden. Normen sind daher nicht nur ein Werkzeug der Standardisierung, sondern auch ein Mittel zur Qualitätssteigerung und zur Vereinfachung technischer Prozesse.

2.2 Autodesk Fusion 360

Autodesk Fusion 360 ist eine integrierte Plattform für computergestütztes Design (CAD), Fertigung (CAM) und technische Analyse (CAE), die als Cloud-basierte Lösung entwickelt wurde. Sie erlaubt es, mechanische und elektronische Designprozesse zu vereinen, und bietet damit Ingenieuren, Designern und Entwicklern eine zentrale Plattform für die Produktentwicklung. Im Folgenden wird zunächst die Unternehmensgeschichte von Autodesk als Entwickler dieser Software beleuchtet, bevor die Kernfunktionen und speziellen Funktionen zur Erstellung elektronischer Schaltpläne detailliert werden.

2.2.1 Installationsaleitung

Anleitung zur Erstellung eines Studentenaccounts und zum Herunterladen von Fusion 360 Electronics

Erstellung eines Autodesk-Studentenaccounts Zur Nutzung von Fusion 360 Electronics ist die Erstellung eines Autodesk-Studentenaccounts erforderlich. Dies ermöglicht den kostenlosen Zugriff auf die Software.

Registrierung

- Zugriff auf die Registrierungsseite: Autodesk Registrierungsseite.
- Ausfüllen des Formulars mit den notwendigen Informationen:
 - Vor- und Nachname
 - Gültige E-Mail-Adresse
 - Passwort entsprechend den Sicherheitsrichtlinien

Bestätigung der E-Mail-Adresse

- Nach dem Absenden des Formulars wird eine E-Mail zur Bestätigung empfangen.
- Öffnen der E-Mail und Klicken auf den Bestätigungslink zur Verifizierung der Adresse.

Vervollständigung der Profilinformationen

- Anmeldung im Autodesk-Konto.
- Angabe weiterer Informationen wie Institution, Studienrichtung und Studienjahr zur Bestätigung des Studentenstatus.

Verifizierung des Studentenstatus

- Hochladen eines Dokuments, das die Immatrikulation belegt (z. B. eine Studienbescheinigung).
- Autodesk prüft die Dokumente innerhalb weniger Tage und sendet eine Bestätigung per E-Mail.

Herunterladen und Installieren von Fusion 360 Electronics

Zugriff auf den Download-Bereich

- Nach erfolgreicher Verifizierung des Accounts erfolgt die Anmeldung und Navigation zur Autodesk Education Community.
- Auswahl von Fusion 360 aus der Liste der verfügbaren Software.

Download und Installation

- Klicken auf "Jetzt herunterladen" und Befolgen der Anweisungen auf dem Bildschirm.
- Nach Abschluss des Downloads Öffnen der Installationsdatei und Befolgen der Installationsanweisungen.

Aktivierung der Education-Lizenz

- Beim ersten Start von Fusion 360 erfolgt die Eingabe der Anmeldeinformationen.
- Die Software erkennt automatisch den Studentenstatus und aktiviert die entsprechende Lizenz.

Windows

Mac

2.2.2 Historie und Entwicklung

Autodesk, Inc. wurde 1982 von John Walker und einer Gruppe von Programmierern gegründet und spezialisierte sich schnell auf Softwarelösungen für Architektur, Ingenieurwesen und digitale Medien. [Wik24b] Die Veröffentlichung von AutoCAD im Jahr 1982 setzte einen wichtigen Meilenstein für die computergestützte Konstruktion und wurde zur führenden CAD-Software für Architekten und Ingenieure weltweit. [Wik24a]

Mit dem Aufkommen neuer Anforderungen in der Fertigungsindustrie und der Integration von Elektronik in mechanische Systeme begann Autodesk, eine neue Art von Software zu entwickeln. Ziel war es, die Mechanik- und Elektronikentwicklung auf einer Plattform zu vereinen und kollaboratives, Cloud-basiertes Arbeiten zu ermöglichen. Dies führte zur Einführung von Fusion 360 im Jahr 2013. [con24] Durch die Integration traditioneller CAD/CAM/CAE-Funktionen und die cloudbasierte Zusammenarbeit wurde Fusion 360 zu einem beliebten Werkzeug in der Produktentwicklung und verhalf Autodesk zu einer neuen Marktposition im Bereich der digitalen Fertigung.

2.2.3 Grundfunktionen

2.2.4 Spezielle Funktionen zur Erstellung von Schaltplänen, Bestückungsplänen und Stromlaufplänen

Zielgerichtete theoretische Grundlagen, sowohl fachliche, wie auch methodische.

Zu den Grundlagen gehören z. B. auch Details zur Problemstellung, der Stand der Technik und weitere Grundlagen, welche zur Konzeptausarbeitung, Umsetzung und Verifikation erforderlich sind.

Grundlagen haben immer einen Bezug zu den nachfolgenden Kapiteln. Diesen Bezug sollte man gelegentlich explizit herstellen, damit bereits in diesem Kapitel klar ist, wo und für was die Grundlagen gebraucht und angewandt werden.

3 VorgehenTest

Je nach Art der Arbeit kann diese Kapitelüberschrift auch "Konzeptentwurf" lauten.

Beschreibung der Ausgangssituation und des Themenumfelds. Ggf. wird darauf eingegangen, welche Randbedingungen und Einflüsse zu beachten sind.

Anforderungsanalyse und Anforderungsdefinition, nach Möglichkeit strukturiert, um zu einem späteren Zeitpunkt die Anforderungen nachvollziehbar verifizieren zu können.

Herleitung einer Lösung (einer Methodik, eines experimentellen Aufbaus oder von unterschiedlichen Konzepten), Lösungsbewertung und bewusste Wahl des gewählten Vorgehens. An dieser Stelle ist auch auf die Zuverlässigkeit einer Methodik oder auf die Genauigkeit von Untersuchungen einzugehen. Die Überlegungen sollen dazu helfen, mit der angestrebten Lösung die gestellten Anforderungen zu erfüllen, um schließlich die Ziele der Arbeit erreichen zu können.

Bei einer Gegenüberstellung von verschiedenen Lösungsansätzen kann z. B. eine Nutzwertanalyse helfen. Dabei sind nicht nur z. B. die Funktion, Leistungsfähigkeit, Umsetzbarkeit und Nutzbarkeit, sondern auch z. B. wirtschaftliche Aspekte, wie Stück-, Entwicklungskosten oder Ressourcenverbrauch zu berücksichtigen. Sehr bedeutend sind auch Aspekte der Nachhaltigkeit unter Betrachtung des gesamten Lebenszyklus einer erarbeiteten Lösung.

Sowohl bei der Anforderungsdefinition, als auch bei der Lösungsfindung gibt es eine große Anzahl an verschiedenen Methoden. Eine kleine Auswahl ist in der folgenden

Aufzählung zu finden.

- Anforderungsdefinition mithilfe des Requirements Engineering [PR21]
- Systems Engineering Ansatz [Sch23]
- Agile Entwicklungsmethodiken [Coh10; Mar20; WRM22]
- Klassische Bewertungsverfahren [BK97; Zan14]

Ziel dieses Kapitels ist, dass auf Basis von umfassend und genau formulierten Anforderungen (ggf. auch Nicht-Zielen) eine Lösungsvielfalt erarbeitet wird, welche anschließend strukturiert bewertet wird, um eine fundierte Begründung für die angestrebte Art der Umsetzung herzuleiten.

4 Umsetzung und Ergebnisse

Je nach Art der Arbeit kann diese Kapitelüberschrift auch "Ergebnisse" lauten, z. B. bei rein messtechnischen Aufgaben.

Beschreibung der Umsetzung des zuvor gewählten Vorgehens (theoretische Untersuchung, Erhebungen, Durchführung von Experimenten, Prototypenaufbau, Implementierung eines Prozesses, etc.).

Verifikation anhand der zuvor erarbeiteten Anforderungen und Validierung in Bezug auf das zuvor gestellte Ziel. Diskussion der Ergebnisse. Spätestens hier auch auf die Zuverlässigkeit der gewonnenen Erkenntnisse eingehen (z. B. anhand der Genauigkeit von Messergebnissen).

Schaltplan Batterie Circuit

Für die umsetzung des Battery Circut Stromlauftplans muss im ersten Schritt der vorhandene Schaltplan auf Fehler überprüft werden. Um dies möglichst effizient zu gestalten wird der Stromlaufplan ausgedruckt. Gefundene Fehler werden im nächsten Schritt markiert und korrigiert. Sind alle Fehler korrigiert, muss der Stromlaufplan so angepasst werden, dass die bestmögliche Übersichtlichkeit entsteht. Im letzten Schritt muss herausgefunden werden, nach welcher Norm der Stromlaufplan erstellt wurde. Diese Norm muss recherchiert und in die von uns gewählte DIN EN 60617 Norm "übersetzt" werden. Sind sämtliche Schritte absolviert kann der Schaltplan mit Hil-

fe von Autodesk Fusion 360 in den gewünschten Rahmen, hier DIN A3, eingefügt werden.

Schaltplan Motor Controller

Zur Analyse und Bearbeitung des Stromlaufplans "Motor Controller" wird der Plan zunächst ausgedruckt und systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Gefundene Fehler werden markiert und anschließend korrigiert, wobei die Einhaltung elektrotechnischer Standards gewährleistet wird. Zudem erfolgt eine Layoutanpassung zur Verbesserung der Übersichtlichkeit. Im nächsten Schritt wird geprüft, ob der Schaltplan den Vorgaben der DIN EN 60617 entspricht. Abweichungen werden identifiziert und normgerecht angepasst. Der überarbeitete Schaltplan wird schließlich mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Dabei werden Titelblock und Legende integriert, um die Professionalität und Lesbarkeit sicherzustellen.

Schaltplan Onboard-Netz

Der Stromlaufplan "Onboard-Netz" wird nach dem gleichen Vorgehen wie bei den vorherigen Plänen bearbeitet, wobei der Schwerpunkt auf der Lesbarkeit liegt. Nach der Fehlerprüfung und -korrektur wird das Layout so überarbeitet, dass Verbindungen und Beschriftungen klarer und übersichtlicher dargestellt werden. Normgerechte Anpassungen nach DIN EN 60617 und die Übertragung in ein DIN-A3-Format stellen sicher, dass der Schaltplan nicht nur funktional, sondern auch optimal lesbar ist.

Temperatursteuerung des Ladegeräts

Der Schaltplan zur Temperatursteuerung des Ladegeräts wird gemäß der Norm DIN EN 60617 erstellt. Diese Norm definiert die symmetrische Darstellung von Schaltungen und sorgt für eine klare, standardisierte Kommunikation im Bereich der Elektrotechnik. Der Schaltplan beinhaltet einen Temperatursensor, der die Temperatur des Ladegeräts misst. Bei Überschreitung eines festgelegten Temperaturwerts wird ein Steuermechanismus aktiviert, der entweder die Kühlung einleitet oder das Ladegerät abschaltet, um eine Überhitzung zu verhindern und die Sicherheit sowie die Lebensdauer der Geräte zu gewährleisten.

HV-Onboard-Netz

Der Schaltplan für ein Ladegerät mit HV-Onboard-Netz wird gemäß der Norm DIN EN 60617 erstellt. In diesem Schaltplan werden alle relevanten elektrischen Komponenten, die für den Betrieb eines Hochvolt-Onboard-Netzes erforderlich sind, standardisiert dargestellt. Dazu gehören die Spannungsversorgungseinheit, die Schutzschaltungen, die Kommunikationsschnittstellen sowie die Schnittstellen für die Steuerung und Überwachung des Hochvoltnetzes. Die Norm sorgt dafür, dass die Schaltung klar verständlich und international kompatibel ist, um die Sicherheit und Effizienz des gesamten Systems zu gewährleisten.

Legende der Schaltzeichen

In der folgenden Tabelle werden die verwendeten Schaltzeichen des Schaltplans gemäß der Norm DIN EN 60617 erläutert. Diese Schaltzeichen dienen dazu, die elektrischen Komponenten und deren Verbindungen im Schaltplan eindeutig und standardisiert darzustellen. Die Legende bietet eine Übersicht über die Symbole, die in den darauffolgenden Schaltplänen verwendet werden, und erleichtert so das Verständnis der Systemarchitektur und Funktionalität des Hochvolt-Onboard-Netzes.

Symbol	Beschreibung
φ <u></u>	Schütz
C1 ————————————————————————————————————	Kondensator
SPARK_PLUG	Funkenstrecke
<u></u>	Masse (Ground)
BATIERY H	Batterie
10A	Sicherung
20+01	Schalter
+ 1	PTC-Widerstand
	Potentiometer
-(Stecker
	LED
	Spule
M ₊	3-Phasen-Motor

Tabelle 4.1: Legende der Symbole

5 Zusammenfassung

Auf zwei bis drei Seiten soll auf folgende Punkte eingegangen werden:

- Welches Ziel sollte erreicht werden
- Welches Vorgehen wurde gewählt
- Was wurde erreicht, zentrale Ergebnisse nennen, am besten quantitative Angaben machen
- Konnten die Ergebnisse nach kritischer Bewertung zum Erreichen des Ziels oder zur Problemlösung beitragen
- Ausblick

In der Zusammenfassung sind unbedingt klare Aussagen zum Ergebnis der Arbeit zu nennen. Üblicherweise können Ergebnisse nicht nur qualitativ, sondern auch quantitativ benannt werden, z. B. "...konnte eine Effizienzsteigerung von 12 % erreicht werden." oder "...konnte die Prüfdauer um 2 h verkürzt werden".

Die Ergebnisse in der Zusammenfassung sollten selbstverständlich einen Bezug zu den in der Einleitung aufgeführten Fragestellungen und Zielen haben.

5.1 Ausblick

Ergänzend zu der nach aktuellem Stand vorhanden Dokumentation sollen im nächsten Semester weitere Stromlaufpläne generiert und in diese aufgenommen werden. Ergänzend sollen der Dokumentation Bestückungspläne hinzugefügt werden. Die gesamte Dokumentation soll in einem großes Dokument als ein Projekt mit sämtlichen Projekttiefen festgehalten werden. Weitere Ziele für das nächste Semester umfassen eine Modularisierung der Batterie, den Einbau des Bussystems an die Batterie, eine Erweiterung der Temeraturüberwachung sowie die Modularisierung der Powerbox und die Installation eines Displays im Cockpit, welches sämtliche Fahr-, Verbrauchs-, und Leistungsdaten anzeigt. Als optionales Ziel soll bei entsprechendem Fortschritt des Systems noch eine Musikanlage verbaut werden. Modularisierung der Batterie, (batterieoptimierung(z.b. Layout)), Bussystem an der Batterie

Literaturverzeichnis

- [BK97] A. Breiing und R. Knosala. Bewerten technischer Systeme: Theoretische und methodische Grundlagen bewertungstechnischer Entscheidungshilfen. Springer eBook Collection Computer Science and Engineering. Springer Berlin Heidelberg, 1997. ISBN: 9783642592294. DOI: 10.1007/978-3-642-59229-4.
- [Coh10] Mike Cohn. User stories: für die agile Software-Entwicklung mit Scrum, XP u.a. 1. Aufl. mitp, 2010. ISBN: 9783826658983.
- [con24] Wikipedia contributors. Autodesk Wikipedia, Die freie Enzyklopädie. [Online; abgerufen am 13. November 2024]. 2024. URL: https://de.wikipedia.org/wiki/Autodesk.
- [Mar20] Robert Martin. Clean Agile Die Essenz der agilen Softwareentwicklung. 1st edition. mitp-Verlag und Safari, 2020. URL: https://learning.oreilly.com/library/view/-/9783747501139/?ar.
- [Pis23] Stefan Pischinger. "Die Revolution des Antriebsstrangs in der Automobilindustrie". In: MTZ Motortechnische Zeitschrift 84.9 (2023), S. 62–62. DOI: 10.1007/s35146-023-1510-1. URL: https://doi.org/10.1007/s35146-023-1510-1.
- [PR21] Klaus Pohl und Chris Rupp. Basiswissen Requirements Engineering: Ausund Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level. 5., überarbeitete und aktualisierte Auflage. dpunkt Verlag, 2021. ISBN: 9783864908149.

- [Sch23] Nadine Schlüter. Generic Systems Engineering: Ein methodischer Ansatz zur Komplexitätsbewältigung. 3. Auflage 2023. Springer Berlin Heidelberg, 2023. ISBN: 9783662667897. DOI: 10.1007/978-3-662-66789-7.
- [Wik24a] Wikipedia contributors. AutoCAD version history Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2024]. 2024. URL: https://en.wikipedia.org/wiki/AutoCAD_version_history.
- [Wik24b] Wikipedia contributors. Autodesk Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2024]. 2024. URL: https://en.wikipedia.org/wiki/Autodesk.
- [WRM22] Ralf Wirdemann, Astrid Ritscher und Johannes Mainusch. Scrum mit User Stories. 4., überarbeitete und erweiterte Auflage. Hanser eLibrary. Hanser, 2022. ISBN: 9783446474383. DOI: 10.3139/9783446474383. URL: https://www.hanser-elibrary.com/doi/book/10.3139/9783446474383.
- [Zan14] Christof Zangemeister. Nutzwertanalyse in der Systemtechnik: Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen. 5. Auflage 2014 (erweitert). Zangemeister & Partner, 2014. ISBN: 9783923264001.

Abbildungsverzeichnis

Tabellenverzeichnis

4.1	Legende der Symbole	32
A.1	Liste der verwendeten Künstliche Intelligenz basierten Werkzeuge	4

A Nutzung von Künstliche Intelligenz basierten Werkzeugen

Im Rahmen dieser Arbeit wurden Künstliche Intelligenz (KI) basierte Werkzeuge benutzt. Tabelle A.1 gibt eine Übersicht über die verwendeten Werkzeuge und den jeweiligen Einsatzzweck.

Tabelle A.1: Liste der verwendeten KI basierten Werkzeuge

Werkzeug	Beschreibung der Nutzung
ChatGPT	 Grundlagenrecherche zu bekannten Prinzipien optischer Sensorik zur Abstandsmessung (siehe Abschnitt) Suche nach Herstellern von Lidar-Sensoren (siehe Abschnitt)
ChatPDF	 Recherche und Zusammenfassung von wissenschaftlichen Studien im Themenfeld
DeepL	• Übersetzung des Papers von []
Tabnine AI coding assistant	Aktiviertes Plugin in MS Visual Studio zum Programmieren des
	•