

PNI ASIC

3-Axis Magneto-Inductive Sensor Driver and Controller with SPI Serial Interface

General Description

The PNI (11096)ASIC is a low cost magnetic Measurement Application Specific Integrated Circuit designed for use with PNI Corporation's magneto-inductive sensors. The PNI ASIC can control and measure three independent magneto-inductive sensors. Each sensor is individually selectable for measurement, and can also be individually configured for measurement resolution. The PNI ASIC has diagnostic modes and outputs to test the oscillator and counter circuits.

The PNI ASIC contains the entire measurement circuit, both analog and digital sections. Each sensor changes its inductance with an applied change in magnetic field parallel to the sensor. In order to make a measurement, the sensor is switched into an L/R oscillator circuit. The bipolar differential measurement scheme used by the PNI ASIC makes the magnetic measurement inherently temperature independent. It also has the benefit of transforming the measurement range into a zero centered, positive/negative value.

Features

Low supply current:

<500 μA at 3 VDC <1 μA, idle mode

- Complete 3-axis magnetic sensor driver
- Ultra-low magnetic signature in Die form
- Flexible supply voltage: 2.2 to 5.0 V
- Fast sample rate: up to 2000 samples/second
- Wide dynamic range: 96 dB (16 bits) in hardware with 18 dB (3 bits) additional gain scaling available
- Fully digital interface: SPI protocol

Applications

- Compassing
- Magnetometer instruments
- Magnetic object sensing
- Magnetic ink sensing

Ordering Information

Ordering Injormation							
Name	Part #	MOQ	Pkg.	RoHS Compliant			
26 pad Die	10174	1,000	tray	Yes			
28 pin SOIC	10175	27	tube	No			
28 pin MLF	12576	5000	reel	Yes			
28 pin MLF	12576P	1	cut- tape	Yes			

Table 1

This page left intentionally blank

SPECIFICATIONS

CAUTION:

Stresses beyond those listed under **Table 2** may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum
V_{DD}	DC supply voltage	-0.3 VDC	5.25 VDC
V_{IN}	Input pin voltage	V _{DD} -0.3 VDC	V _{DD} + 0.3 VDC
I _{IN}	Input pin current	-10mA at 25°C	10mA at 25°C
T _{STRG}	Storage Temperature	-40℃	125 <i>°</i> C

Table 3: Supply Operating Conditions

Symbol	Parameter	Minimum	Maximum
V_{DD}	Digital DC Supply	2.2 VDC	5.0 VDC
I _{DD} (nominal)	Idle (V _{DD} = 3 VDC)		1 μΑ
I _{DD} (maximum)	Operating (V _{DD} = 3 V, SEN-S65)		0.5 mA
ILKSTBY ^a	I _{DD} @ VSTBY pin		100 nA
V _{SS}	Digital Ground	0 V	0V
TA	Ambient Temperature	-20℃	70℃
ESD Rating	± 2 KV at 200 pF		

a. VSTBY = 5.5V, $AV_{DD} = DV_{DD} = AV_{SS} = DV_{SS} = 0$ V, Temperature $27 \times C$

Electrical Specifications

Parameter voltage and current levels

Testing for the currents listed in **Table 4** assume a static test setup with measurements performed while static data is applied to the device. Test type parameters apply as listed in the **Table 8: Pin Definitions**

Table 4: Inputs

Test Type	Vil ^a	Vih ^a	lil ^b	lih ^b
AIB (analog input)	0.2 Vdd	2.0 Vdd	0.0 to -1.0 μA	0.0 to 1.0 μA
IBA (CMOS)	0.25 Vdd	0.8 Vdd	0.0 to -1.0 μA	0.0 to 1.0 μA
IBT (CMOS, SC Hsy = 1.0) ^c	0.2 Vdd	0.8 Vdd	0.0 to -1.0 μA	0.0 to 1.0 μA

- a. CMOS values are $V_{IN} \times V_{DD}$.
- b. Iil and Iih are tested at $V_{DD} = 3.6 \text{ V}$. Not tested at less than room temperature.
- C. SC = Schmitt

Table 5: Outputs

Test Type	Vol	Voh	lol ^a	loh ^a
OB 1 ^b	<0.4 V	>2.4 V	1.0 mA minimum	-1.0 mA minimum
OB 2 ^b	<0.4 V	>2.4 V	1.0 mA minimum	-1.0 mA minimum
OB 3 ^c	0.267 V	1.936 V	10 mA minimum	10 mA minimum

- a. Polarity on currents indicate direction of current (+) for sinking (-) for sourcing.
- b. $V_{DD} = 4.5 \text{ to } 5.0 \text{ V}$
- c. $V_{DD} = 2.2 \text{ V}$

Table 6: I/O Pins

Test Type	Vil ^a	Vih ^a	Vol ^b	Voh ^b	lol ^b	loh ^b	loz ^c	loz ^c
IO1A CMOS	<.30 V	>.70V	<0.40 V	4.1 V	-0.64 mA	-0.15 mA	39μA minimum	217 μA maximum

- a. CMOS values are V_{IN} x V_{DD}.
- b. Tested at $V_{DD} = 4.8 \text{ V}$
- C. Tested with V_{DD} = 5.2 V. Leakage on I/O pins is typically checked for $\pm 2 \,\mu\text{A}$ with the outure turned off and no PU or PD

Theory of Operation

The PNI ASIC contains the entire measurement circuitry necessary to use PNI Corporation's magneto-inductive sensors (Sen-S and Sen-L) as well as bus interface circuitry. Communication between the PNI ASIC and the host microprocessor is over SPI bus interface. After being reset a single 8 bit command from the host system configures and initiates an axis sample from the ASIC. The ASIC can be used to interface from one to three sensors depending on application requirements, unused sensor connections should remain floating. The interface and functional sequence is as follows: A reset pulse is sent to clear the counter of previous sample reading and reset the DRDY line low. The command byte is sent which selects the axis to sample and the resolution. Upon receiving the command byte the high speed clock turns on and the sample sequence begins. Forward and reverse sampling is done automatically within the ASIC, upon completion the DRDY output will go high indicating that the 16 bit 2's compliment data is available to be clocked out and the high speed clock is turned off returning the AISC to idle mode to reduce power consumption.

PNI ASIC 11096 Block Diagram

Figure 1: ASIC Block Diagram

The PNI Corporation's magneto-inductive sensor changes its inductance with a change in magnetic field parallel to the sensor. The ASIC sensor output reading is defined as the difference between a forward and a reverse biased sensor measurement. To make a measurement, the sensor is switched into an L/R oscillator circuit. One side of the sensor is grounded while the other side is alternately driven with positive and negative current through the oscillator. The PNI ASIC will then switch the bias connection to the sensor and make another measurement. The side that was previously grounded is now charged and discharged while the other is now grounded.

Figure 2: Forward Bias versus Reverse Bias illustrates the change between these two measurements. The actual magnetic measurement is the difference between these two measurements. This measurement scheme is used to make the magnetic measurement temperature independent. It also has the benefit of transforming the measurement range into a zero centered, positive/negative value.

The PNI ASIC returns the data to the host microprocessor over the SPI interface. The microprocessor simply asks the PNI ASIC for data from a specific axis, and the PNI ASIC returns the data in a 16-bit 2's compliment format

Figure 2: Forward Bias versus Reverse Bias

When referring to axis designations PNI defines the axis in aeronautical terms such that the x-axis is parallel to the direction of travel (threw the center of the fuselage), y-axis is adjacent to x-axis in the same plane (threw the center of the wings) and z-axis is vertical. For the biasing connections the forward biased end of each sensor is the front, right and up for x, y and z respectively as shown in **Figure 3.**

Figure 3: Sensor Orientation

CONNECTIONS

A typical connection configuration is shown in **Figure 4** with the analog and digital sections of the PNI ASIC tied together. This configuration is adequate for compassing applications. For higher performance applications where less noise is desirable, separating the sections is recommended. The PNI ASIC can control up to three sensors; if less are needed, the unneeded pins should be left to float.

The VSTBY pin must always be equal to or higher than any voltage present on any other ASIC pin. VSTBY is connected to the cathode end of a diode in the array. The anode end of each diode in the array is connected to each of the digital interface signal pins. Leaving VSTBY floating or connected to ground when other pins are potentially active, as in multiplexed SPI networks, will cause excessive current drain.

Figure 4: Typical Connections

Table 7: Rb Value Sufficient for Evaluation

	SEN-L	SEN-S	
5 VDC	150 Ohm	75 Ohm	
3 VDC	100 Ohm	43 Ohm	

Host Processor Interface

All accesses to and from the PNI ASIC are through a hardware handshaking, synchronous serial interface that adheres to the Motorola SPI protocol. The interface consists of six signals; SCLK, MOSI, MISO, SSNOT, RESET and DRDY.

Table 8: Pin Definitions

28 SOIC (pin #)	26 DIE (pin #)	28 MLF (pin #)	Pin Name	I/O Type ^a	Test Type Parameters	Description
1	1	26	VSTBY	DP	V_{DD}	Input protection clamp diode. Connect to V_{DD}
2	2	27	SCLK	DI	IBT	Serial Clock input for SPI port. 1 MHz maximum (Rext = 100 kHz)
3	3	28	MISO	DO	OB2	Serial data output (Master In Slave Out)
4	4	1	MOSI	DI	IBA	Serial data output (Master Out Slave In)
5	5	3	SSNOT	DI	IBA	Active low chip select for SPI port
6		2				Not Connected
7	6	4	AV_DD	AP	V_{DD}	Supply voltage for analog section
8	7	5	AV _{SS}	AP	V _{SS}	Ground pin for analog section
9	8	6	+ZDRV	DO	OB3	Z sensor drive output
10	9	7	+ZIN	Al	AIB	Z sensor sense input
11	10	8	-ZIN	Al	AIB	Z sensor sense input
12	11	9	-ZDRV	DO	OB3	Z sensor drive output
13	12	10	+YDRV	DO	OB3	Y sensor drive output
14	13	11	+YIN	Al	AIB	Y sensor input
15	14	12	DV_DD	DP	V_{DD}	Supply voltage for digital section
16	15	13	-YIN	Al	AIB	Y sensor input
17	16	14	-YDRV	DO	OB3	Y sensor drive output
18	17	15	+XDRV	DO	OB3	X sensor drive output
19	18	16	+XIN	Al	AIB	X sensor sense input
20	19	17	-XIN	Al	AIB	X sensor sense input
21	20	18	-XDRV	DO	OB3	X sensor drive output
22	21	19	DV _{SS}	DP	V _{SS}	Ground pin for digital section
23		20				Not connected
24	22	21	COMP	DO	OB1	Comparator output. Used for diagnostics.
25	23	22	RESET	DI	IBA	Rest input
26	24	23	DRDY	DO	OB1	Data ready
27	25	24	DHST	DIO	IOIA	High speed oscillator output. Output is ½ clock speed. Use for diagnostics
28	26	25	REXT	Al	AIB	External timing resistor for high speed clock. 100 k ohm typical
		Exposed Paddle (center Pad)				Connect to analog ground

a. IO types: D = digital, A = analog, I = input, O = output, IO = bidirectional, and P = power pad

SPI Port Line Descriptions

MOSI - Master Out Slave In

The data sent from the master to the PNI ASIC. Data is transferred most significant bit first. The MOSI line will accept data once the SPI is enabled by taking SSNOT low. Valid data must be presented at least 100 nS before the rising edge of the clock, and remain valid for 100 nS after the edge. New data may be presented to the MOSI pin on the falling edge of SCLK

SSNOT - Slave Select

Selects the PNI ASIC as the operating slave device. The SSNOT line must be low prior to data transfer and must stay low during the entire transfer. Once the command byte is received by the PNI ASIC, and the PNI ASIC begins to execute the command, the SSNOT line can be deselected until the next SPI transfer.

SCLK - Serial Clock

Used to synchronize both the data in and out through the MISO and MOSI lines. SCLK is generated by a master device. SCLK should be 1 MHz or less. The PNI ASIC is configured to run as a slave device, making it an input. One byte of data is exchanged over eight clock cycles. Data is captured by the master device on the rising edge of SCLK. Data is shifted out and presented to the PNI ASIC on the MOSI pin on the falling edge of SCLK.

MISO - Master In Slave Out

The data sent from the PNI ASIC to the master. Data is transferred most significant bit first. The MISO line is placed in a high impedance state if the slave is not selected (SSNOT = 1).

Hardware Handshaking Line Descriptions

RESET

RESET is usually low. RESET must be toggled from low-high-low.

DRDY - Data Ready

DRDY is low after a RESET; after a command has been received and the data is ready, DRDY will be high. It is recommended that the DRDY line always be used to ensure that the data is clocked out of the PNI ASIC only when it is available. If it is determined that the DRDY line cannot be used due to lack of I/O lines to the host processor, then the times listed in Cross Reference Colorable\ can be used to set open-loop wait times. The values listed are the maximum delays from the end of the SCLK command until the rise of the DRDY at each period select setting. The maximum delay occurs when the sensor being sampled is in a zero field

Table 9: Maximum Delay for DRDY

Period Select	Maximum Delay				
	SEN-S (3 VDC)	SEN-L (3 VDC)			
/32	500μS	1.4 mS			
/64	1.0 mS	2.5 mS			
/128	2.0 mS	4.5 mS			
/256	4.0 mS	8.0 mS			
/512	7.5 mS	15.5 mS			
/1024	15 mS	30.5 mS			
/2048	35.5 mS	60.5 mS			
/4096	60 mS	120.0 mS			

Operation

Basic operation will follow these steps. Refer to Figure 5 and Figure 6.

- 1. SSNOT is brought low.
- 2. Pulse RESET high (return to low state). You must RESET the PNI ASIC before every measurement.
- 3. Data is clocked in on the MOSI line. Once eight bits are read in, the PNI ASIC will execute the command.
- 4. The PNI ASIC will make the measurement. A measurement consists of forward biasing the sensor and making a period count; then reverse biasing the sensor and counting again; and finally, taking the difference between the two bias directions.
- 5. At the end of the measurement, the DRDY line is set to high indicating that the data is ready. In response to the next 16 SCLK pulses, data is shifted out on the MISO line.

If you need to make another measurement, go to Step2. You can send another command after the reset. In this case, keep SSNOT low. If you will not be using the PNI ASIC, set SSNOT to high to disable the SPI port.

Figure 5: SPI Port Full Timing Sequence (cpol = 0)

Figure 6: SPI Port Timing Parameters (cpol = 0)

SPI Port Usage Tips

A SPI port can be implemented using different clock polarity options. The clock polarity used with the PNI ASIC must be normally low, (cpol = 0). Figure 6 graphically shows the timing sequence (cpol = 0). Data is always considered valid while the SCLK is high ($t_{DASH} = \underline{T}ime$, \underline{D} ata \underline{A} fter \underline{S} CLK $\underline{H}igh$). When SCLK is low, the data is in transition ($t_{DBSH} = \underline{T}ime$, \underline{D} ata \underline{B} efore \underline{S} CLK $\underline{H}igh$).

When implementing a SPI port, whether it is a dedicated hardware peripheral port, or a software implemented port using general purpose I/O (also known as *Bit-Banging*) the timing parameters given in **Figure 6** must be met to ensure reliable communications. The clock set-up and hold times, t_{DBSH} and t_{DASH} must be greater than 100 nS.

Idle Mode

The PNI ASIC does not initialize in the idle mode at power-up. The PNI ASIC must be in a data-ready state for the idle mode to occur. After power-up the PNI ASIC can be brought to the data-ready state by following these steps for sending a read command to the PNI ASIC.

- 1. Set SSNOT low.
- 2. Pulse the RESET line.
- 3. Send a command to the PNI ASIC to measure one of the sensors.
- 4. Once the SSNOT pin is set to high again the PNI ASIC will go into the low power idle mode.
- 5. The DRDY pin will eventually go high signifying that the PNI ASIC is in the data-ready state. The resultant data *does not* have to be read from the PNI ASIC.

Magnetic Measurements

The magnetic sensor operates in an oscillator circuit composed of the external bias resistors along with digital gates and a comparator internal to the PNI ASIC. Only one sensor can be measured at a time. To measure a sensor, send a command byte to the PNI ASIC through the SPI port specifying the sensor axis to be measured. After dividing by the ratio set by PS2. PS1, and PSO, the PNI ASIC will return the result of a complete forward and reverse bias measurement of the sensor in a 16-bit 2's compliment format. The range is – 32768 to 32767.

Command Byte

The operation of the PNI ASIC is controlled by the data received into the SPI port. The command byte syntax is as follows:

Table 10: Command Byte Syntax

Position	7	6	5	4	3	2	1	0
Bit	DHST	PS2	PS1	PS0	ODIR	MOT	ASI	ASO
RESET	0	0	0	0	0	0	0	0

DHST - High Speed Oscillator Test

When high, the internal high speed clock is set to drive the DHST pad at ½ the clock speed. When low, the DHST pad is set to DVDD. *This is used for debug purposes only, and will not be set in normal operation*

PS0, PS1, and PS2 - Period Select

Selects the division ratio applied to the L/R oscillator output to set the period being measured.

Table 11: Period Select

PS2	PS1	PS0	Ratio
0	0	0	/32
0	0	1	/64
0	1	0	/128
0	1	1	/256
1	0	0	/512
1	0	1	/1024
1	1	0	/2048
1	1	1	/4096

ODIR - Oscillator Direction

Determines the magnetic oscillator direction if MOT is set to 1. It has no effect on direction when the MOT bit is set to zero. This is used for debug purposes only, and will not be set in normal operation.

MOT – Magnetic Oscillator Test

When set, causes the magnetic oscillator selected by AS0 and AS1, in the directions selected by ODIR to run continuously until PNI ASIC is reset.

ASO & ASI – Axis Select

Determines which axis is being measured.

NOTE

When 2 MHz scaling is selected, the magnetic sensor oscillator does not run. Instead, the internal 2 MHz oscillator is turned on. The 2 MHz clock cycles are counted until a command byte is sent disabling the scaling function. A RESET stops the 2 MHz oscillator and clears all bits.

Table 12: ASO and ASI Axis Select

Function	AS1	AS0
2 MHz scaling	0	0
X axis	0	1
Y axis	1	0
Z axis	1	1

Response Word

PNI ASIC will return the result of a complete forward and reverse bias measurement of the sensor in a 16-bit 2's compliment format. The range is -32768 to 32767.

Package Information

Pin Configuration

Figure 7: Pin Configuration

28 Pin SOIC Outline Dimensions

Figure 8: 28 Pin SOIC

Table 13: 28 Pin SOIC Outline Dimensions

Symbol	Minimum	Nominal	Maximum
Α	2.35 mm		2.65
A1	0.10 mm		0.30 mm
В	0.33 mm		0.51 mm
С	0.23 mm		0.32 mm
D	17.70 mm		18.10
E	7.40 mm		7.60 mm
е		1.27 BSC	_
Н	10.0 mm		10.65 mm
L	0.40 mm		1.27 mm

28 Lead MLF (5 x 5 mm) Outline Dimensions

Figure 9: 28 Lead MLF (5 x 5 mm) Outline Dimensions

28 Lead MLF (5 x 5 mm) Tape & Reel Dimensions

Figure 10: 28 Lead MLF (5 x 5 mm) Tape & Reel Dimensions

Ao = 5.25

Bo = 5.25

Ko = 1.10

Notes:

1. 10 sprocket hole pitch cumulative tolerance ±0.2

2. Camber in compliance with EIA 481

3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

5 thousand per reel

Tolerances - Unless Noted 1PL ±.2 2PL ±.10 All dimensions in millimeters

Die Package Mechanical Specifications

Die size is $2580 \, \mu m \, x \, 2360 \, \mu m$ (with scribe line). All X and Y coordinates refer to the center of the die.

Figure 11: Mechanical Specifications

Die Package Mechanical Specifications

Table 14: Die Pad Descriptions

Pad	Function	X (mm)	Y (mm)
1	VSTBY	-655	968
2	SCLK	- 755	968
3	MISO	-893	968
4	MOSI	-1012	968
5	SSNOT	-1128	968
6	AVDD	–1125	226
7	AVSS	-1125	62
8	APZDRV	-1125	-81
9	APZIN	-1134	-966
10	ANZIN	-1012	-966
11	ANZDRV	-893	-966
12	APYDRV	-448	-966
13	APYIN	- 3	-966
14	DVDD	115	-966
15	ANYIN	237	-966
16	ANYDRV	357	-966
17	APXDRV	802	-966
18	APXIN	1118	-403
19	ANXIN	1118	-312
20	ANXDRV	1118	-189
21	DVSS	1118	225
22	COMP	1126	968
23	RESET	1008	968
24	DRDY	887	968
25	DHST	768	968
26	REXT	650	968

Recommended Processing Parameters

Figure 12: Lead Free Reflow Profile

Table 15 Recommended Processing Parameters^a

Reflow Parameter	Temperature (°C)	Time (sec)
Preheat Temperature (T _{Smin} to T _{Smax})	150℃ – 200℃	60-180
Temperature T _L (typical solder melting point)	>218℃	
T _{Smax} to T _L Ramp-up Rate	3°C/second max	
Peak Temperature T _P	260℃	
Time 25 ℃ to Peak T _P	6 minute max	
Time Maintained Above Temperature T_L (t_L)	218℃	60-120
Soak (time within 5° of actual Peak T _P)		10-20
Ramp-down Rate	4°C/second max	

a. Meets lead-free profile recommendations (IPC/JEDEC J-STD-020)

