

به نام خدا

SLR(1)

مرور مطالب گذشته

- آيتم هاى (LR(0)
 - تابع بستار
 - تابع goto
- مجموعه کانونی مجموعه آیتم های (CR(0)
 - $C = \text{CLOSURE}(\{[S' \rightarrow \cdot S]\});$
 - برای هر مجموعه آیتم I در C
- برای هر سمبل X (پایانه و غیر پایانه) در گرامر
- اگر C نیست، آن را به C اضافه کن. GOTO(I,X) تهی نیست و در

ماشین (R(0) برای گرامر گفته شده

- راس (حالت): یک مجموعه آیتم در مجموعه کانونی آیتم های (CR(0)
 - یال: سمبل های گرامر
 - در حین ایجاد مجموعه کانونی مجموعه آیتم های (LR(0)، مجموعه آیتم های می توانیم این ماشین را بسازیم.
- هر راس نشان دهنده یک سمبل است.
 - یالی که با آن به آن راس می رسیم.
 - پایانه
 - غير پايانه
 - به جز راس اول

تجزیه گر پایین به بالا

تجزیه گر پایین به بالا

- برنامه تجزیه LR برای سه روش تجزیه یکسان است.
 - در این سه روش جدول تجزیه فرق می کند.

ساختار جدول تجزیه

	T									
STATE	ACTION							GOTO		
	id	+	*	()	\$	$\mid E \mid$	T	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2	1			
3		r4	r4		r4	$\mathbf{r4}$				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9		r1	s7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r_5				

ساختار جدول تجزيه

Action[i,a] •

- ورودى ها: i: شماره حالت، a: پایانه و یا
- می تواند یکی از ۴ مقدار زیر را داشته باشد:
- انتقال j که در آن j شماره حالت است. در این صورت برنامه تجزیه حالت j (که نشان دهنده ووردی است) را به پشته اضافه می کند.
 - کاهش $A \to \beta$ در این صورت برنامه تجزیه β را به $A \to \beta$ کاهش می دهد.
 - پذیرش: برنامه تجزیه ورودی را می پذیرد و تجزیه کاهش می یابد.
 - خطا: برنامه تجزیه خطا را کشف می کند.

Goto[i,A] •

- ورودى ها: i: شماره حالت، A: غيرپايانه
- GOTO $[I_i, A] = I_j$ است اگر j است آن شماره حالت j

وضعیت تجزیه گر LR

• وضعيت تجزيه

$$(s_0s_1\cdots s_m, a_ia_{i+1}\cdots a_n\$)$$

• نشان دهنده فرم جمله ای

$$X_1X_2\cdots X_ma_ia_{i+1}\cdots a_n$$

- هر یک از S_i ها نشان دهنده یکی از سمبل های گرامر اند.
 - به جز S_0 که حالت شروع است.
- با اجرای برنامه تجزیه در هر گام یک عمل معکوس بسط سمت راست ترین را انجام می دهیم.

$$(s_0, a_1 a_2 ... a_n \$)$$

حالت پذیرش
$$(s_0 s_a, \$)$$

$(s_0s_1\cdots s_m, a_ia_{i+1}\cdots a_n\$)$

اعمال تجزیه گر

- در هر گام با توجه به ورودی و حالت بالای پشته عملی انجام می دهیم.
- اگر ACTION $[s_m,a_i]= ext{shift }s$ به پشته اضافه شود (نشان دهنده ورودی) و ورودی یکی به جلو برود تا به وضعیت زیر برسیم.

$$(s_0s_1\cdots s_ms, a_{i+1}\cdots a_n\$)$$

• اگر $A oup ACTION[s_m,a_i] = ext{reduce } A oup A oup A$ اگر $a_i oup A oup A oup A oup A$ اگر $a_i oup A oup A oup A oup A oup A$ اگر $a_i oup A oup A oup A oup A oup A oup A$ اگر $a_i oup A o$

r is the length of β , and $s = \text{GOTO}[s_{m-r}, A]$

- خروجی تجزیه با چاپ قاعده کاهش در این مرحله ایجاد می شود.
- اگر ACTION $[s_m, a_i] = \operatorname{accept}$ تجزیه با پذیرش رشته پایان می پذیرد.
 - . اگر ACTION $[s_m,a_i]= ext{error}$. اگر ACTION $[s_m,a_i]= ext{error}$

برنامه تجزيه

```
let a be the first symbol of w$;
while(1) { /* repeat forever */
       let s be the state on top of the stack;
       if (ACTION[s,a] = shift t) {
              push t onto the stack;
              let a be the next input symbol;
       } else if ( ACTION[s, a] = reduce A \to \beta ) {
              pop |\beta| symbols off the stack;
              let state t now be on top of the stack;
             push GOTO[t, A] onto the stack;
              output the production A \to \beta;
       } else if ( ACTION[s, a] = accept ) break; /* parsing is done */
       else call error-recovery routine;
```

مثال تجزیه

(1)
$$E \rightarrow E + T$$

$$(2)$$
 $E \rightarrow T$

(3)
$$T \rightarrow T * F$$

$$(4) T \to F$$

$$(5)$$
 $F \rightarrow (E)$

(6)
$$F \rightarrow id$$

- 1. si means shift and stack state i,
- 2. rj means reduce by the production numbered j,
- 3. acc means accept,
- 4. blank means error.

مثال تجزیه

• جدول تجزیه SLR

STATE	ACTION							GOTO		
	id	+	*	()	\$	E	T	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2	1			
3		$\mathbf{r4}$	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4			ĺ		10	
8		s6			s11					
9		r1	s7		r1	r1				
10		r3	r3		r3	r_3				
11		r_5	r5		r5	r_5				

مثال تجزيه

	STACK	SYMBOLS	INPUT	ACTION
(1)	0		id * id + id \$	shift
(2)	0.5	id	* id + id \$	reduce by $F \to id$
(3)	0 3	$\mid F \mid$	*id + id \$	reduce by $T \to F$
(4)	0 2	$\mid T$	*id + id \$	shift
(5)	0 2 7	T*	id + id \$	\mathbf{shift}
(6)	0 2 7 5	$T*\mathbf{id}$	$+\operatorname{id}\$$	reduce by $F \to \mathbf{id}$
(7)	0 2 7 10	T * F	$+\operatorname{id}\$$	reduce by $T \to T * F$
(8)	0 2	$\mid T \mid$	$+\operatorname{id}\$$	reduce by $E \to T$
(9)	0 1	$\mid E \mid$	$+\operatorname{id}\$$	shift
(10)	0 1 6	E +	$\mathbf{id}\$$	\mathbf{shift}
(11)	0165	E + id	\$	reduce by $F \to \mathbf{id}$
(12)	0 1 6 3	E+F	\$	reduce by $T \to F$
(13)	0169	E+T	\$	reduce by $E \to E + T$
(14)	0 1	$oldsymbol{E}$	\$	accept

مثال تجزیه

STACK	SYMBOLS	INPUT
0		id * id + id
0 5	\mathbf{id}	* id + id
0 3	F	*id + id
0 2	T	*id + id
0 2 7	T*	id + id
$0\ 2\ 7\ 5$	$T*\mathbf{id}$	+ i d
$0\ 2\ 7\ 10$	T*F	+ i d
0 2	$\mid T \mid$	+ i d
0 1	E	+ i d
0 1 6	E +	id
$0\ 1\ 6\ 5$	$E + \mathbf{id}$	
$0\ 1\ 6\ 3$	E + F	
$0\ 1\ 6\ 9$	E+T	
0 1	E	

• معكوس استخراج سمت راست ترين

ساخت جدول تجزیه SLR

- از آیتم های LR(0) و ماشین حالت LR(0) کمک می گیریم.
- باید برای هر غیرپایانه مانند A، مجموعه FOLLOW(A) را بدانیم.

- ورودی: گرامر تقویت شده 'G
- خروجی: جدول تجزیه شامل بخش های ACTION و GOTO

ساخت جدول تجزیه SLR

 $C = \{I_0, I_1, \dots, I_n\}$ مجموعه آیتم های (LR(0) را برای گرامر تقویت شده بسازید. (1

2) حالت i از روی آیتم I_i ساخته می شود. بخش ACTION مربوط به حالت i به صورت زیر ساخته می شود:

- (a) If $[A \to \alpha \cdot a\beta]$ is in I_i and $GOTO(I_i, a) = I_j$, then set ACTION[i, a] to "shift j." Here a must be a terminal.
- (b) If $[A \to \alpha \cdot]$ is in I_i , then set ACTION[i, a] to "reduce $A \to \alpha$ " for all a in FOLLOW(A); here A may not be S'.
- (c) If $[S' \to S \cdot]$ is in I_i , then set ACTION[i, \$] to "accept."

اگر با توجه به قوانین بالا برای یک وضعیت و یک ورودی دو عمل وجود داشت، می گوییم گرامر SLR(1) نیست.

ساخت جدول تجزیه SLR

- If $GOTO(I_i, A) = I_j$, then GOTO[i, A] = j :GOTO برای بخش (3
- 4) خانه هایی که پس از پر کردن جدول با توجه به بخش های ۲ و ۳ خالی مانده اند، خانه های خطا هستند.
 - 5) حالتش شروع، حالتی است که آیتم زیر را دارد:

$$[S' \to \cdot S]$$

مثال ساخت جدول تجزیه SLR

مثال ساخت جدول تجزیه SLR

$$I_{0}:$$

$$E' \to \cdot E$$

$$E \to \cdot E + T$$

$$E \to \cdot T$$

$$T \to \cdot T * F$$

$$T \to \cdot F$$

$$F \to \cdot (E) \longrightarrow \text{ACTION}[0, (] = \text{shift } 4$$

$$F \to \cdot \mathbf{id} \longrightarrow \text{ACTION}[0, \mathbf{id}] = \text{shift } 5.$$

$$I_1$$
:
 $E' \to E$ ACTION[1, \$] = accept.
 $E \to E \cdot + T$ ACTION[1, +] = shift 6.

مثال ساخت جدول تجزیه SLR

 I_2 : $E \to T \cdot \longrightarrow \text{ACTION}[2,\$] = \text{ACTION}[2,+] = \text{ACTION}[2,)] = \text{reduce } E \to T$ $T \to T \cdot *F$ $\text{FOLLOW}(E) = \{\$,+,\}\}$ ACTION[2,*] = shift 7.

جدول تجزیه SLR

	T						T			
STATE	ACTION							GOTO		
	id	+	*	()	\$	E	T	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2	1			
3		$\mathbf{r4}$	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4			ĺ		10	
8		s6			s11					
9		$^{\mathrm{r1}}$	s7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r_5				

مثال ساخت درخت تجزیه برای گرامری که SLR نیست

$$I_0: \quad S' \to \cdot S \\ S \to \cdot L = R \\ S \to \cdot R \\ L \to \cdot *R \\ L \to \cdot *\mathbf{id} \\ R \to \cdot L$$

$$I_1: S' \to S$$

$$I_2: S \to L \cdot = R$$

 $R \to L \cdot$

$$I_3: S \to R$$

$$I_4 \colon \quad L \to * \cdot R$$

$$R \to \cdot L$$

$$L \to \cdot * R$$

$$L \to \cdot \mathbf{id}$$

$$I_6: \quad S \to L = \cdot R$$

$$R \to \cdot L$$

$$L \to \cdot * R$$

$$L \to \cdot id$$

 $I_5: L \to id$

$$I_7: L \to *R$$

$$I_8: R \to L$$

$$I_9: S \to L = R$$

$$ACTION[2, =]$$

shift 6. reduce
$$R \to L$$

$$= \in FOLLOW(R)$$