A Hadoop Based Genomic Structural Variation Detection Pipeline

Chris Whelan
CS 506 – Problem Solving with Large Clusters

Structural Variations

- Structural Variations are large rearrangements in a genome
 - Deletions removing a chunk of DNA
 - Insertions inserting a novel chunk of DNA
 - Duplications copying a chunk of DNA
 - a.k.a copy number variation or tandem repeats
 - Inversions reversing the order of a chunk of DNA
 - Translocations moving a chunk of DNA from one chromosome to another

Structural Variations

- SV's are common in cancer
- This is a map of rearrangements in a breast cancer cell line (Hampton et al. 2009, Genome Research)

Paired End Short Read Data

Paired-end and mate-pair sequencing give pairs of reads an approximate distance apart

200-300 bp

3000-4000 bp

Finding Variations with Mate Pair Data

Current Strategies

- General framework of existing approaches:
 - Map reads to the genome
 - Some reads have many possible mappings; some approaches use multiple mappings (VariationHunter, HYDRA), most do not
 - Remove any pairs for which the aligner did not find a concordant mapping
 - Concordant: within some range of the mean insert size
 - Attempt to cluster the remaining discordant read pair mappings
 - Clusters containing a certain number of read pairs are used to call SV's

Goals

- Want to use all possible mappings for a read pair
- Don't throw away evidence:
 - Concordant pairs
 - Secondary alignments
- Use Hadoop to manage the large number of possible mappings
- Examine the evidence for an SV at each location in the genome

My Pipeline

- Map 1: Align each read in a pair independently to the genome with Novoalign – allow up to 10 alignments for each end
 - Emit (Read Pair ID, alignment)
- Reduce 1: Produce all possible pairs of read alignments
 - Emit (Read Pair ID, Read1 Alignments X Read2 Alignments)
- Map 2: For each paired alignment:
 - Compute an SV score: evidence from this alignment for a structural variation
 - Divide the span that this alignment covers into windows
 - Emit (Window location, SV score)
- Reduce 2: Sum all SV scores for each window
- Finally, visualize distribution of scores across the genome and call SV's at the peaks

Scoring Variant Likelihood at Each Locus

 Novoalign assigns a posterior probability to each possible mapping:

$$P(A_i|R,G) = \frac{P(R|A_i,G)}{P(R|N,G) + \sum_i P(R|A_i,G)}$$

- Based on an aligned insert size s and the expected distribution of insert sizes $\sim N(\mu, \sigma)$, call the likelihood of the alignment pair spanning a deletion $P(S < s \alpha \sigma)$
- Let the read's vote v be 1 if p > .5; -1 otherwise
- Each read contributes a score of

$$P(A_{end1}|R,G) * P(A_{end2}|R,G) * v$$

Experiments

- Using a simulation pipeline:
 - Add random structural variations to a genome sequence (Human Chromosome 2)
 - Simulate 10,000,000 Illumina mate pairs from the modified genome sequence
- Compare to output from two published SV callers: HYDRA and BreakDancer
- Using a very simple sliding window to call peaks in my output distribution: from each value subtract the average of the values in the neighboring 50kb

Visualizing Results

Evaluating Results

	True Positives	False Positives
New Workflow	24	122
HYDRA	28	52
BreakDancer	35	70

- True SV's: 75
- Too many false positives for my method
- Need better peak calling technique
- Did identify 7 SV's that both HYDRA and BreakDancer missed

Future Work

- Better method for calling peaks from deletion scores
 - Anecdotally, many actual SV's had peaks in the score distribution, but didn't make the threshold
- Add scoring functions for other types of SV
 - Scoring function in the current implementation is designed for deletions but suprisingly does well with insertions and inversions
- Optimize parameters of scoring functions
- Allow more mappings
- Expand to multiple chromosomes