4

AU OPTRONICS CORPORATION

Spec. No.: xxxx-xxx

Version: 1

Total pages:

Date: 2001-JUN-18

Tentative

Module Specification for 10,4" TFT-LCD MODULES

Model Name: B104SN01

Approved by	Checked by	Prepared by

Quality Management Division / AU Optronics Croporation

Checked & Approved by
_

AU copyright 2001, All rights reserved, Copying forbidden.

Record of Revision

Version	Revise Date	Page	Content
1	26/Apr./2000	14	First draft.

PAGE : 1/15

Contents:

Δ.	Physical specification	P2
В.	Electrical specifications	Р3
	1. Pin assignment	Р3
	2. Absolute maximum ratings	Р4
	3. Electrical characteristics	P5
	a. Typical operating conditions	P5
	b. Display color v.s. input data signals	P6
	c. Input signal timing	Р7
	d. Display position	Р8
	e. Backlight driving conditions	Р9
C.	Optical specifications	P10
D.	Reliability test items	P11
Ε.	Display quality	P12
F.	Handling precaution	P12
G.	Packing form	P13
Αp	pendix:	
	Fig.1 LCM outline dimensions	P14
	Fig.2 Timing chart	P15

PAGE : 2/15

A. Physical specifications

NO.	Item	Specification	Remark
1	Display resolution(pixel)	800(H)× 600(V)	
2	Active area(mm)	211.2(H)× 158.4(V)	
3	Screen size(inch)	10.4(Diagonal)	
4	Pixel pitch(mm)	0.264(H)× 0.264(V)	
5	Color configuration	R. G. B. Vertical stripe	
6	Overall dimension(mm)	236(W)× 174.3(H)× 5.7(D) (Max)	Note 1
7	Weight(g)	285± 10	

Note 1: Refer to Fig. 1.

PAGE : 3/15

B. Electrical specifications

- 1.Pin assignment
 - (1).Input signal interface

Pin no	Symbol	Function	Etc.
1	V_{cc}	+3.3 V power supply	
2	V_{cc}	+3.3 V power supply	
3	GND	Ground	
4	GND	Ground	
5	RxIN0-	LVDS receiver signal channel 0	
6	RxIN0+		
7	GND	Ground	
8	RxIN1-	LVDS receiver signal channel 1	
9	RxIN1+		
10	GND	Ground	
11	RxIN2-	LVDS receiver signal channel 2	
12	RxIN2+		
13	GND	Ground	
14	CKIN-	LVDS receiver signal clock	
15	CKIN+		
16	GND	Ground	
17	NC	No Connection	
18	NC	No Connection	
19	GND	Ground	
20	GND	Ground	

CN1 (20P) connector: HRS DF 19K-20P-1H or Compatible

PAGE : 4/15

(2) LVDS transmitter/receiver signal mapping

	Symbol	Function			
TxIN0	R0	Red data (LSB)			
TxIN1	R1	Red data			
TxIN2	R2	Red data	C hit word dispulses data		
TxIN3	R3	Red data	6 bit red display data		
TxIN4	R4	Red data			
TxIN5	R5	Red data (MSB)			
TxIN6	G0	Green data (LSB)			
TxIN7	G1	Green data			
TxIN8	G2	Green data	O hit amana diamban data		
TxIN9	G3	Green data	6 bit green display data		
TxIN10	G4	Green data			
TxIN11	G5	Green data (MSB)			
TxIN12	В0	Blue data (LSB)			
TxIN13	B1	Blue data			
TxIN14	B2	Blue data			
TxIN15	В3	Blue data	6 bits blue display data		
TxIN16	B4	Blue data			
TxIN17	B5	Blue data (MSB)			
TxIN18	Hs	Horizontal sync			
TxIN19	Vs	Vertical sync			
TxIN20	DE	Data enable			
TxCLKIN	CLK	Clock	Dot clock		

2. Absolute maximum ratings

(GND = 0 V)

Parameter	Symbol	Val	ues	Unit	Remark
Farameter	Symbol	Min.	Max.		nemark
Power voltage	V _{cc}	-0.3	4	V _{DC}	At 25°C
Input signal voltage	V _{LH}	-0.3	V _{cc} +0.3	V _{DC}	At 25°C
Operating temperature	Тор	-10	+60	$^{\circ}\!\mathbb{C}$	Note 1
Storage temperature	T _{ST}	-20	+70	$^{\circ}\!\mathbb{C}$	Note 1

Note 1:The relative humidity must not exceed 90% non-condensing at temperatures of 40℃ or less. At temperatures greater than 40℃, the wet bulb temperature must not exceed 39 ℃. When operate at low temperatures, the brightness of CCFL will drop and the life time of CCFL will be reduced.

Note 2:The unit should not be exposed to corrosive chemicals.

PAGE : 5/15

3. Electrical characteristics

a. Typical operating conditions

	Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Power	Input voltage	V_{cc}	3.0	3.3	3.6	V	
supply	Current	I _A		310		mArms	Note 1
voltage	consumption	I _B		330		mArms	Note 1
	Inrush current	rush current I RUSH -		-	1500	mApeak	Note 2
Internal logic	Low voltage	V_{IL}	0	-	0.3 V _{cc}		
logic	High voltage	V _{IH}	0.7V _{cc}	-	V _{cc}		
Power ripple voltage		V_{RP}	-	-	100	mVp-p	

Note 1:Effective value (mArms) at $V_{cc} = 3.3 \text{ V}/25^{\circ}\text{C}$.

Note 2: Refer to the following power-on condition.

Sequence of Power-on/off and signal-on/off

Apply the lamp voltage within the LCD operating range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentally become abnormal.

PAGE : 6/15

Caution

The above on/off sequence should be applied to avoid abnormal function in the display. In case of handling:

Make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

b. Display color v.s. input data signals

Display colors						Da	ata s	igna	l (0 :	Low	leve	el, 1:	High	ı lev	el)				
Display	COIOIS	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	В4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
colors	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
001013	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Î																		
grayscale																			
	bright	4	4	4	1	0	4	0	0	^	0	0	0	0	0	0	· ^	0	^
		1	1 1	1 1	1	0 1	1 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0
	Dad	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red											0							
	Black	0	0 0	0	0	0	0	0	0	0	0	0	0 1	0	0	0	0 0	0	0
	Dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	Daik	U	U	0	U	U	U	U	U		U	'	U	U	U	U		U	U
Green																			
grayscale	v bright																		
	Drigitt	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Dive	↑			ı													ı		
Blue grayscale	1																		
grayscale	bright																		
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note: Each basic color can be displayed in 64 gray scales using the 6 bit data signals. By combining the 18-bit data signals(R,G,B), the 262, 144 colors can be achieved on the display.

PAGE : 7/15

c. Input signal timing

Timing diagrams of input signal are shown in Fig 2.

(1). Timing characteristics of input signals

(a) DE mode

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency	Fck	38	40	42	MHz	
Horizontal blanking	Thb1	50	256	500	Clk	
Vertical blanking	Tvb1	10	28	150	Th	

(b) HV mode

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency	Fck	38	40	48	MHz	
Hsync period	Th	850	1056	1300	Clk	
Hsync pulse width	Thw	10	128	-	Clk	
Hsync front porch	Thf	15	40	-	Clk	
Hsync back porch	Thb	10	88	-	Clk	
Hsync blanking	Thb1	50	256	500	Clk	
Vsync period	Tv	610	628	750	Th	
Vsync pulse width	Tvw	1	4	-	Th	
Vsync front porch	Tvf	0	1	-	Th	
Vsync blanking	Tvb1	10	28	150	Th	
Hsync/Vsync phase shift	Tvpd	2	320	-	Clk	

Item	Symbol	Value	Unit	Description
Horizontal display start	The	218		After falling edge of Hsync, counting 218clk, then getting valid data from 219th clk's data.
Vertical display start	Tve	25		After falling edge of Vsync, counting 25 Th, then getting 26 th Th's data.

(2). The timing condition of LVDS

Item	Symbol	Min.	Тур.	Max.	Unit
The differential level	VID	0.1	-	0.6	٧
The common mode input voltage	VIC	<u> VID </u> 2	ı	$2.4 - \frac{ \text{VID} }{2}$	V
The input setup time	tsu1	500	-	-	ps
The input hold time	th1	500	-	-	ps

d.Display position

D(1,1)	D(2,1)	 D(X,1)	 D(799,1)	D(800,1)
D(1,2)	D(2,2)	 D(X,2)	 D(799,2)	D(800,2)
:		 :	 :	:
D(1,Y)	D(2,Y)	 D(X,Y)	 D(799,Y)	D(800,Y)
:		 :	 :	:
D(1,599)	D(2,599)	 D(X,599)	 D(799,599)	D(800,599)
D(1,600)	D(2,600)	 D(X,600)	 D(799,600)	D(800,600)

PAGE : 9/15

e.Backlight driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp voltage	V_{L}	-	488	-	Vrms	Note 1
Lamp current	IL	-	4.3	-	mArms	Note 1
Power consumption	P _L	-	2.1	-	W	Note 2
1	M		TBD		\/waa a	T=0°C
Lamp starting voltage	V _s		TBD	T=25°℃		
Frequency	FL	-	60	-	KHz	Note 3
Lamp life time	L	10000	-	-	Hr	Note 1, 4

Note 1: $T = 25^{\circ}C$, $I_{L} = 4.3$

- Note 2: Inverter should be designed with the characteristic of lamp. When you are designing the inverter, the output voltage of the inverter should comply with the following conditions.
 - (1). The area under the positive and negative cycles of the waveform of the lamp current and lamp voltage should be area symmetric (the symmetric ratio should be larger than 90%).
 - (2). There should not be any spikes in the waveform.
 - (3). The waveform should be sine wave as possible.
 - (4).Lamp current should not exceed the maximum value within the operating temperature (It is prohibited to over the maximum lamp current even if operated in the non-guaranteed temperature). When lamp current over the maximum value for a long time, it may cause fire. Therefore, it is recommend that the inverter should have the current limiter circuit.
- Note 3: Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency shall be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference. In case using the inverter by PWM control, PWM frequency may interference with frame frequency. We suggest that PWM frequency is same as frame frequency.
- Note 4: Brightness to be decrease to the 50% of the initial value.
- Note 5: CN2 connector(backlight): JST BHSR-02VS-1
 Mating connector: JST SM02B-BHSS-1-TB

Pin no.	Symbol	Function	Remark
1	Н	CCFL power supply(H.V.)	Cable color: Pink
2	L	CCFL power supply(GND)	Cable color: White

PAGE : 10/15

C. Optical specifications (Note 1, Note 2, Note 3)

lla	Symbol Condition	Specification			11	D	
Item		Condition	Min.	Тур.	Max.	Unit	Remark
Response time Rising time Falling time	Tr T f	θ =0 °	-	20 30	40 50	ms	Note 4
Contrast ratio	CR	$\theta = 0^{\circ}$	150	250	-		Note 5
Viewing angle	0.1		100	200			11010 0
Тор		00.40	10	15	-		
Bottom		CR≧10	30	35	-	deg.	Note 8
Left			40	45	-		
Right			40	45	-		
Brightness	Y _L	$\theta = 0^{\circ}$	130	150	-	nit	Note 6,7
Color obromaticity(CIE)	Wx	<i>θ</i> =0°	-	(0.31)	-		
Color chromaticity(CIE)	Wy	<i>0</i> =0	-	(0.33)	-		
	Rx		-	-	-		
	Ry		-	-	-		
	Gx		-	-	-		
	Gy		-	-	-		
	Bx		-	-	-		
	Ву		-	-	-		
White uniformity	δw		-	-	1.8		Note 9

Note 1: Ambient temperature = 25° C.

Note 2: To be measured in dark room after backlight warm up 30 minutes.

Note 3: To be measured with a viewing cone of 1° by Topcon luminance meter BM-5A.

Note 4: Definition of response time:

The output signals of photodetector are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

PAGE : 11/15

Note 5. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= Photodetector output when LCD is at "White" state

Photodetector output when LCD is at "Black" state

Note 6: Definition of brightness: This shall be measured at center of the screen.

Note 7: Driving conditions for CCFL: I_L=4.3 mA,60KHz Frequency

Note 8: Definition of viewing angle:

Note 9: Definition of white uniformity:

White uniformity is defined as the following with thirteen measurements (A-M)

 $\delta w = \frac{\text{Maximum Luminance of thirteen points (brightness)}}{\text{Minimum Luninance of thirteen points (brightness)}}$

PAGE : 12/15

D. Reliability test items(Note 1)

Test tem	Test Condition	judgement	Remark
High temperature storage	70℃ , 240Hrs	1.Function OK	Note 1, 2
		2.No serious image	
		quality degradation	
Low temperature storage	-20℃, 240Hrs	1.Function OK	Note 1, 2
		2.No serious image	
		quality degradation	
High temperature & high	40℃, 90%RH, 240Hrs	1.Function OK	Note 1, 2
humidity operation	(No condensation)	2.No serious image	
		quality degradation	
High temperature operation	60°C , 240Hrs	1.Function OK	Note 1, 2
		2.No serious image	
		quality degradation	
Low temperature operation	-10℃, 240Hrs	1.Function OK	Note 1, 2
		2.No serious image	
		quality degradation	
Temperature cycling	-20℃~70℃	1.Function OK	Note 1, 2
(non-operation)	1H, 10mins, 1H, 5cycles	2.No serious image	
		quality degradation	
Electrostatic discharge	150 pF,150 Ω ,10kV,1 second, 9 position	1.Function OK	
(non-operation)	on the panel, 10 times each place	2.No serious image	
		quality degradation	
Vibration	Sweep:1G, $10H_z \sim 500H_z \sim 10H_z/2.5$ min	1.Function OK	Note 1, 2
(non-operation)	2 hour for each direction X, Y, Z	2.No serious image	
	(6 Hrs in total)	quality degradation	
Mechanical shock	(50G, 11ms), ± X, ± Y, ± Z	1.Function OK	Note 1, 2
(non-operation)	once for each direction	2.No serious image	
	once for each direction	quality degradtion	

Note 1: Evaluation should be tested after storage at room temperature for one hour.

Note 2: There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

E. Display quality

The display quality of the color TFT-LCD module should be in compliance with the AU Optronics OQC inspection standard.

F. Handling precaution

The Handling of the TFT-LCD should be in compliance with the AU Optronics handling principle standard.

PAGE : 13/15

G. Packing form :TBD

CNI(20P) connector:HRS DF 19K-20P-1H or compatible CN2(backligh)connector:JST BHSR-02VS-1 Mating connector:JST SM02B-BHSS-1-TB

