SUBTEMA 1.1: Análisis estadístico numérico

El análisis exploratorio de datos permite ver el tamaño y las características de los datos. Si los datos son muy variables, todas nuestras suposiciones de normalidad ya no se aplican. O si los datos tienen muchos valores extremos, estos pueden dominar al resto de los valores normales y hacer que los modelos sean muy inexactos. Ahora veremos cómo realizar un análisis exploratorio de datos en pySpark.

Iniciamos con la estadística descriptiva. Ya has visto este tema en otros contextos, **por ejemplo** Tablau para visualización de datos, tal vez cuando aprendiste el lenguaje R o tal vez cuando aprendiste Python y Scikit-Learn. En este tema no vamos a repetir los conceptos, pero te diremos cómo hacerlo en pySpark.

Vamos a suponer que has instalado Spark en un cuaderno de Google Colab y que lo has detectado y que has iniciado una sesión Spark. Vamos a suponer también que has montado el sistema de archivos del Google Drive.

Ahora leamos el archivo de datos "*daily_weather.csv*".

NOTA: El código con comentarios (#...) ponemos varias formas de llevar a cabo este lectura:

Practica en Colab

Recuerda que para ver las características de la base datos contenida en el dataframe puedes usar los siguientes comandos:

Comando	Información
df.count()	Número de renglones
len(df.columns)	Número de columnas
df.columns	Nombres de columnas
df.printSchema()	Estructura con tipos de variables

Para obtener una descripción estadística con número total de registros por variable, media, desviación estándar y valores máximos y mínimos se utiliza describe():

```
df.describe("number", "air_pressure_9am", "air_temp_9am", "avg_wind_direct
ion_9am", "avg_wind_speed_9am", "max_wind_direction_9am").show()
#df.describe()

+-----+
|summary| number| air_pressure_9am| air_temp_9am|
+-----+
| count| 1095| 1092| 1090|
```

```
| mean| 547.0|918.8825513138094| 64.93300141287072| stddev|316.24357700987383|3.184161180386833|11.175514003175877| min| 0|907.990000000024|36.752000000000685| max| 1094|929.320000000012| 98.90599999999999| +-----+
```

La información es suficientemente pequeña como para pasarlo al nodo coordinador y usar Pandas para un desplegado más atractivo y comprensibles:

df.describe().toPandas().transpose()

	0	1	2	3	4
summary	count	mean	stddev	min	max
number	1095	547.0	316.2435770098 7383	0	1094
air_pressure_9am	1092	918.882551 3138094	3.184161180386 833	907.9900000000	929.3200000000
air_temp_9am	1090	64.9330014 1287072	11.17551400317 5877	36.75200000000 0685	98.90599999999 992
avg_wind_directio n_9am	1091	142.235510 7005759	69.13785928889	15.50000000000	343.4
avg_wind_speed_9a	1092	5.50828424 225493	4.552813465531	0.693451399999	23.55497819999 9763
max_wind_directio n_9am	1092	148.953517 96516923	67.23801294602 953	28.89999999999	312.19999999999 9993
max_wind_speed_9a	1091	7.01951352 9175272	5.598209170780 958	1.185578200000	29.84077959999 996
rain_accumulation _9am	1089	0.20307895 225211126	1.593952125357	0.0	24.01999999999999999999999999999999999999
rain_duration_9am	1092	294.108052 2756142	1598.078778660 1481	0.0	17704.0
relative_humidity _9am	1095	34.2414020 5923536	25.47206680225 0055	6.090000000001	92.62000000000
relative_humidity _3pm	1095	35.3447271 4825898	22.52407945358 7273	5.300000000000	92.25000000000

Nótese que en la columna "count" no todas las variables tienen la misma cantidad de valores, por lo que será necesario eliminar valores vacíos y nulos.

Para ver los cuantiles se usa el comando approxQuantile. Recuerde que los datos se encuentran distribuidos y la cantidad de ellos puede ser muy grande. Spark utiliza un método estadístico, por lo que los cuantiles son aproximados, no exactos. El siguiente ejemplo nos muestra los cuantiles de la variable air_pressure_9am:

```
quantiles_air_pressure_9am =
df.approxQuantile("air_pressure_9am",[0.25, 0.5, 0.75], 0)
quantile_25 = quantiles_air_pressure_9am [0]
quantile_50 = quantiles_air_pressure_9am [1]
quantile_75 = quantiles_air_pressure_9am [2]
print('quantile_25: '+str(quantile_25))
print('quantile_50: '+str(quantile_50))
print('quantile_75: '+str(quantile_75))

quantile_25: 916.550000000009
quantile_50: 918.9020905167166
quantile 75: 921.1600000000036
```

El siguiente ejemplo muestra los cuantiles de todas las variables:

```
quantiles = df.approxQuantile(df.columns,[0.25, 0.5, 0.75], 0)
for i in range(len(df.columns)):
    print("Cuantiles " + str(df.columns[i]) + ": " + str(quantile[0]))

Cuantiles number: [273.0, 547.0, 821.0]
Cuantiles air_pressure_9am: [273.0, 547.0, 821.0]
Cuantiles air_temp_9am: [273.0, 547.0, 821.0]
Cuantiles avg_wind_direction_9am: [273.0, 547.0, 821.0]
Cuantiles avg_wind_speed_9am: [273.0, 547.0, 821.0]
Cuantiles max_wind_direction_9am: [273.0, 547.0, 821.0]
Cuantiles max_wind_speed_9am: [273.0, 547.0, 821.0]
Cuantiles rain_accumulation_9am: [273.0, 547.0, 821.0]
Cuantiles rain_duration_9am: [273.0, 547.0, 821.0]
Cuantiles relative_humidity_9am: [273.0, 547.0, 821.0]
Cuantiles relative_humidity_3pm: [273.0, 547.0, 821.0]
```

Esta cantidad de información también es suficientemente pequeña para pasarla a Pandas como muestra el siguiente ejemplo:

pd.DataFrame(data=quantiles, index=df.columns,columns=[0.25, 0.5,
0.75])

	0.25	0.50	0.75
number	273.000000	547.000000	821.000000
air_pressure_9am	916.550000	918.902091	921.160000
air_temp_9am	57.272000	65.696000	73.454000
<pre>avg_wind_direction_9a m</pre>	65.880616	166.000000	191.100000
avg_wind_speed_9am	2.248279	3.869906	7.337163
<pre>max_wind_direction_9a m</pre>	76.456663	177.100000	201.200000
max_wind_speed_9am	3.064608	4.943637	8.970129
rain_accumulation_9am	0.000000	0.000000	0.000000
rain_duration_9am	0.000000	0.000000	0.000000
relative_humidity_9am	15.090000	23.179259	45.590000
relative_humidity_3pm	17.390000	24.380000	52.070000

Para encontrar las correlaciones se usa la función "Correlation" dentro MLIB Spark subpaquete pyspark.mk.stat. Sin embargo, requiere que se alimente una columna de tipo vector, por lo que necesario convertir las columnas del dataframe a vectores primero usando la función "VectorAssembler" y después de esto calcular las correlaciones. El resultado es un vector lineal, por lo que hay que cambiarlo a formato matrix. Sin embargo, la matrix de correlaciones no es muy grande, por lo que se pueden recolectar en el nodo central y luego manejarlo todo con Numpy y Pandas.

Ahora, la función "VectorAssembler" es muy importante porque se usa para los algoritmos de machine learning, tanto supervisada como la regresión y la clasificación, como no supervisada. Así es que es afortunado que podamos ver esta función tan importante en un contexto mas bien sencillo.

En el siguiente ejemplo se encuentran las correlaciones de Pearson de nuestro Spark Dataframe. Primero importamos nuestros paquetes y eliminamos valores nulos:

```
from pyspark.ml.stat import Correlation
from pyspark.ml.feature import VectorAssembler

df_dropped = df.na.drop()

df_dropped = df_dropped.drop("number")

df columns2 = df dropped.columns
```

Ahora ensamblamos el vector de columnas:

```
# convert to vector column first
vector_col = "corr_features"
assembler = VectorAssembler(inputCols=df_dropped.columns,
outputCol=vector_col)
df_vector = assembler.transform(df_dropped).select(vector_col)
```

Finalmente obtenemos la correlación entre variables:

```
r1 = Correlation.corr(df vector, vector col)
print("Pearson Corr
Matrix\n", r1.collect() [0] ["pearson({})".format(vector_col)].values)
Pearson Corr Matrix
[ 1.00e+00 -5.73e-02 -3.13e-01 2.36e-01 -2.87e-01 2.52e-01 -8.54e-02
-1.00e-01 -4.31e-01 -4.80e-01 -5.73e-02 1.00e+00 -1.51e-02 -2.84e-01
-7.95e-02 -2.82e-01 -1.99e-01 -2.59e-01 -5.82e-01 -4.91e-01 -3.13e-01
-1.51e-02 1.00e+00 -4.41e-01 8.69e-01 -4.60e-01 1.18e-01 1.27e-01
 3.47e-01 3.85e-01 2.36e-01 -2.84e-01 -4.41e-01 1.00e+00 -3.64e-01
 9.95e-01 2.32e-03 1.21e-02 -9.55e-02 -1.54e-01 -2.87e-01 -7.95e-02
 8.69e-01 -3.64e-01 1.00e+00 -3.83e-01 9.10e-02 8.26e-02 3.69e-01
 4.06e-01 2.52e-01 -2.82e-01 -4.60e-01 9.95e-01 -3.83e-01 1.00e+00
-3.34e-04 1.19e-02 -1.09e-01 -1.74e-01 -8.54e-02 -1.99e-01 1.18e-01
 2.32e-03 9.10e-02 -3.34e-04 1.00e+00 7.36e-01 2.29e-01 1.82e-01
 -1.00e-01 -2.59e-01 1.27e-01 1.21e-02 8.26e-02 1.19e-02 7.36e-01
 1.00e+00 3.05e-01 2.63e-01 -4.31e-01 -5.82e-01 3.47e-01 -9.55e-02
 3.69e-01 -1.09e-01 2.29e-01 3.05e-01 1.00e+00 8.81e-01 -4.80e-01
-4.91e-01 3.85e-01 -1.54e-01 4.06e-01 -1.74e-01 1.82e-01 2.63e-01
 8.81e-01 1.00e+00]
```

Si cambiamos "pearson" por "spearman" se obtiene la correlación Spearman. El resultado es un vector unidimensional. Vamos a recolectarlo y luego pasarlo a una arreglo Numpy y luego un dataframe Pandas:

```
pearson_corr_arr =
np.matrix(r1.collect()[0]["pearson({})".format(vector_col)].values).res
hape(len(df.columns)-1, len(df.columns)-1)
pearson_corr_df = pd.DataFrame(data=pearson_corr_arr,
index=df_columns2,columns=df_columns2)
pearson_corr_df
```

	air_ pres sure _9am	air _te mp_ 9am	avg_win d_direc tion_9a m	avg_w ind_s peed_ 9am	max_win d_direc tion_9a m	max_w ind_s peed_ 9am	rain_a ccumul ation_ 9am	rain_ durat ion_9 am	relati ve_hum idity_ 9am	relati ve_hum idity_ 3pm
air_pre ssure_9 am	1.00	-0. 057 329	-0.3133 60	0.235 826	-0.2872 80	0.252 479	-0.085 434	-0.10 0485	-0.431 126	-0.480 117
air_tem p_9am	-0.0 5732 9	1.0	-0.0150 69	-0.28 4327	-0.0795 20	-0.28 2483	-0.199 102	-0.25 9103	-0.582 318	-0.491 068
avg_win d_direc tion_9a m	-0.3 1336 0	-0. 015 069	1.00000	-0.44 1441	0.86883	-0.46 0122	0.1176 34	0.127 367	0.3468	0.3848
avg_win d_speed _9am	0.23 5826	-0. 284 327	-0.4414 41	1.000	-0.3643 38	0.995 412	0.0023	0.012 057	-0.095 472	-0.154 422
max_win d_direc tion_9a m	-0.2 8728 0	-0. 079 520	0.86883	-0.36 4338	1.00000	-0.38 3025	0.0910	0.082 574	0.3695	0.4059
max_win d_speed _9am	0.25 2479	-0. 282 483	-0.4601 22	0.995 412	-0.3830 25	1.000	-0.000 334	0.011 890	-0.108 673	-0.173 720
rain_ac cumulat ion_9am	-0.0 8543 4	-0. 199 102	0.11763	0.002	0.09100	-0.00 0334	1.0000	0.735 737	0.2289	0.1818
rain_du ration_ 9am	-0.1 0048 5	-0. 259 103	0.12736 7	0.012 057	0.08257	0.011 890	0.7357 37	1.000	0.3048	0.2632

relativ e_humid ity_9am	-0.4 3112 6	-0. 582 318	0.34686	-0.09 5472	0.36950	-0.10 8673	0.2289	0.304	1.0000	0.8813
relativ e_humid ity_3pm	-0.4 8011 7	-0. 491 068	0.38488	-0.15 4422	0.40594	-0.17 3720	0.1818 87	0.263	0.8813	1.0000

Otra forma de hacerlo es con el paquete Statistics de MLIB. Primero eliminamos la columns "number" y luego los valores nulos:

```
from pyspark.mllib.stat import Statistics

df_features = df.drop("number")

df_features = df.select(df_features.columns).dropna()
```

Luego creamos una table RDD para almacenar las correlaciones:

```
rdd table = df features.rdd.map(lambda row: row[0:])
```

Finalmente llamamos "Statistics.corr" que nos generará una verdadera matriz:

```
corr_mat=Statistics.corr(rdd_table, method="pearson")
print(corr mat)
```

```
[[ 1.00e+00 -5.73e-02 -3.13e-01 2.36e-01 -2.87e-01 2.52e-01 -8.54e-02 -1.00e-01 -4.31e-01 -4.80e-01]
[-5.73e-02 1.00e+00 -1.51e-02 -2.84e-01 -7.95e-02 -2.82e-01 -1.99e-01 -2.59e-01 -5.82e-01 -4.91e-01]
[-3.13e-01 -1.51e-02 1.00e+00 -4.41e-01 8.69e-01 -4.60e-01 1.18e-01 1.27e-01 3.47e-01 3.85e-01]
[ 2.36e-01 -2.84e-01 -4.41e-01 1.00e+00 -3.64e-01 9.95e-01 2.32e-03 1.21e-02 -9.55e-02 -1.54e-01]
[ -2.87e-01 -7.95e-02 8.69e-01 -3.64e-01 1.00e+00 -3.83e-01 9.10e-02 8.26e-02 3.69e-01 4.06e-01]
[ 2.52e-01 -2.82e-01 -4.60e-01 9.95e-01 -3.83e-01 1.00e+00 -3.34e-04 1.19e-02 -1.09e-01 -1.74e-01]
[ -8.54e-02 -1.99e-01 1.18e-01 2.32e-03 9.10e-02 -3.34e-04 1.00e+00 7.36e-01 2.29e-01 1.82e-01]
[ -1.00e-01 -2.59e-01 1.27e-01 1.21e-02 8.26e-02 1.19e-02 7.36e-01
```

```
1.00e+00 3.05e-01 2.63e-01]
[-4.31e-01 -5.82e-01 3.47e-01 -9.55e-02 3.69e-01 -1.09e-01 2.29e-01 3.05e-01 1.00e+00 8.81e-01]
[-4.80e-01 -4.91e-01 3.85e-01 -1.54e-01 4.06e-01 -1.74e-01 1.82e-01 2.63e-01 8.81e-01 1.00e+00]]
```

La cual también podemos pasar a un dataframe de Pandas para mejorar la visualización:

	air_ pres sure _9am	air _te mp_ 9am	avg_win d_direc tion_9a m	avg_w ind_s peed_ 9am	max_win d_direc tion_9a m	max_w ind_s peed_ 9am	rain_a ccumul ation_ 9am	rain_ durat ion_9 am	relati ve_hum idity_ 9am	relati ve_hum idity_ 3pm
air_pre ssure_9 am	1.00	-0. 057 329	-0.3133 60	0.235 826	-0.2872 80	0.252 479	-0.085 434	-0.10 0485	-0.431 126	-0.480 117
air_tem p_9am	-0.0 5732 9	1.0	-0.0150 69	-0.28 4327	-0.0795 20	-0.28 2483	-0.199 102	-0.25 9103	-0.582 318	-0.491 068
avg_win d_direc tion_9a m	-0.3 1336 0	-0. 015 069	1.00000	-0.44 1441	0.86883	-0.46 0122	0.1176 34	0.127 367	0.3468 65	0.3848
avg_win d_speed _9am	0.23 5826	-0. 284 327	-0.4414 41	1.000	-0.3643 38	0.995 412	0.0023	0.012 057	-0.095 472	-0.154 422
max_win d_direc tion_9a m	-0.2 8728 0	-0. 079 520	0.86883	-0.36 4338	1.00000	-0.38 3025	0.0910	0.082 574	0.3695	0.4059
max_win d_speed _9am	0.25	-0. 282 483	-0.4601 22	0.995 412	-0.3830 25	1.000	-0.000 334	0.011 890	-0.108 673	-0.173 720
rain_ac cumulat ion_9am	-0.0 8543 4	-0. 199 102	0.11763	0.002	0.09100	-0.00 0334	1.0000	0.735 737	0.2289	0.1818 87
rain_du ration_ 9am	-0.1 0048 5	-0. 259 103	0.12736 7	0.012 057	0.08257	0.011 890	0.7357 37	1.000	0.3048	0.2632
relativ e_humid ity_9am	-0.4 3112 6	-0. 582 318	0.34686	-0.09 5472	0.36950	-0.10 8673	0.2289	0.304	1.0000	0.8813

relativ	-0.4	-0.	0.38488	-0.15	0.40594	-0.17	0.1818	0.263	0.8813	1.0000
e_humid	8011	491	5	4422	6	3720	87	283	01	00
ity_3pm	7	068								

Lo mismo podemos hacer para obtener la correlación Spearman:

```
corr_mat_sp=Statistics.corr(rdd_table, method="spearman")
corr_mat_pd_sp = pd.DataFrame(data=corr_mat_sp,
index=df_features.columns,columns=df_features.columns)
corr_mat_pd_sp
```

	air_ pres sure _9am	air _te mp_ 9am	avg_win d_direc tion_9a m	avg_w ind_s peed_ 9am	max_win d_direc tion_9a m	max_w ind_s peed_ 9am	rain_a ccumul ation_ 9am	rain_ durat ion_9 am	relati ve_hum idity_ 9am	relati ve_hum idity_ 3pm
air_pre ssure_9 am	1.00	-0. 117 418	-0.2794 79	0.232 753	-0.2431 58	0.248	-0.063 062	0.000 697	-0.472 377	-0.527 897
air_tem p_9am	-0.1 1741 8	1.0	0.02198	-0.36 0481	-0.0403 98	-0.36 4843	-0.227 157	-0.28 6164	-0.424 956	-0.359 926
avg_win d_direc tion_9a m	-0.2 7947 9	0.0 219 86	1.00000	-0.37 7934	0.85960	-0.39 2063	0.1426 16	0.039 965	0.3359	0.4088
avg_win d_speed _9am	0.23 2753	-0. 360 481	-0.3779 34	1.000	-0.2993 34	0.993 435	0.0825 94	0.210 421	-0.105 392	-0.205 306
max_win d_direc tion_9a m	-0.2 4315 8	-0. 040 398	0.85960	-0.29 9334	1.00000	-0.30 9779	0.1290 86	0.043 627	0.3364 57	0.3941
max_win d_speed _9am	0.24	-0. 364 843	-0.3920 63	0.993 435	-0.3097 79	1.000	0.0806	0.212	-0.112 784	-0.218 481
rain_ac cumulat ion_9am	-0.0 6306 2	-0. 227 157	0.14261	0.082 594	0.12908	0.080 661	1.0000	0.846	0.2865	0.2381

rain_du ration_ 9am	0.00	-0. 286 164	0.03996	0.210 421	0.04362	0.212	0.8466	1.000	0.2063	0.1500 08
relativ e_humid ity_9am	-0.4 7237 7	-0. 424 956	0.33596	-0.10 5392	0.33645	-0.11 2784	0.2865	0.206	1.0000	0.8667
relativ e_humid ity_3pm	-0.5 2789 7	-0. 359 926	0.40880	-0.20 5306	0.39417	-0.21 8481	0.2381	0.150 008	0.8667	1.0000

Para visualizar las correlaciones correctamente podemos usar imshow de plotly.express que mostrará las correlaciones como un mapa de calor, el paquete seaborn que también usará colores o corrplot del paquete heatmapz que creará un mapa de color más fácil de leer.

Usando imshow y el arreglo de correlaciones:

```
import plotly.express as px
fig = px.imshow(pearson_corr_arr)
fig.show()
```


Nótese cómo es posible ver correlaciones significativas entre varias variables (pintadas de amarillo y naranja).

Ahora usando seaborn y el dataframe de correlaciones en vez del arreglo:

```
import seaborn as sns
sns.set(color_codes=True, font_scale=1.0)
from matplotlib import pyplot as plt
#Establecer el tamaño de la figura
plt.figure(figsize=(10,10))
ax = sns.heatmap(
   pearson corr df,
    vmin=-1, vmax=1, center=0,
    cmap=sns.diverging_palette(20, 220, n=200),
    square=True
)
#La barra de anotación
ax.set_xticklabels(
   ax.get_xticklabels(),
   rotation=45,
   horizontalalignment='right'
);
```


Y ahora usando el paquete corrplot de heatmapz:

```
!pip install heatmapz
from heatmap import corrplot

plt.figure(figsize=(8, 8))
corrplot(pearson_corr_df ,size_scale=300);
```

