42729 - Cálculo II - Agrupamento 2

Data: 19 de junho de 2023 Duração: 2:00 h

Nome:

Curso: _____

NMec:

 $N^{\underline{0}}$ folhas extra: _____

Questão	Cotação	Classificação
1	10	
2	5	
3	5	
Total:	20	

Teste 2

- Desligue o telemóvel.
- Não é permitido o uso de qualquer material eletrónico.
- Na questão 1 escreva V ou F consoante a afirmação é verdadeira ou falsa e justifique a sua resposta de modo sucinto: <u>apenas uma frase</u>. A resposta só é válida se for justificada.
- Nas restantes questões mostre os seus cálculos mas faça-o de modo claro e sucinto.

Transformadas de Laplace fundamentais

1.
$$\mathcal{L}\{e^{at}\}(s) = \frac{1}{s-a}, \ s > a, a \in \mathbb{R}$$

2.
$$\mathcal{L}\{\cos(at)\}(s) = \frac{s}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

3.
$$\mathcal{L}\{\text{sen}(at)\}(s) = \frac{a}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

4.
$$\mathcal{L}\{t^n\}(s) = \frac{n!}{s^{n+1}}, \ s > 0, n \in \mathbb{N}_0$$

5.
$$\mathcal{L}\{\cosh(at)\}(s) = \mathcal{L}\{\frac{e^{at} + e^{-at}}{2}\}(s) = \frac{s}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

6.
$$\mathcal{L}\{\operatorname{senh}(at)\}(s) = \mathcal{L}\{\frac{e^{at} - e^{-at}}{2}\}(s) = \frac{a}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

Algumas propriedades das Transformadas de Laplace

$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda), s > s_f + \lambda$	
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s), \ s > s_f$	
$f(t-a) \ (a>0)$	$e^{-as}F(s), s>s_f$	
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f$	
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$, onde $f^{(0)} \equiv f$,	
	$s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}$	

1. No local próprio escreva V ou F consoante a afirmação é verdadeira ou falsa e justifique a sua resposta usando apenas uma frase (se precisar fazer cálculos use uma folha de rascunho). (a) ____ A função definida em \mathbb{R}^2 por $f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$, é diferenciável em (0,0). (b) ____ Se $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é uma função de classe $C^2(\mathbb{R}^2)$ e $(a,b) \in \mathbb{R}^2$, verificando $\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial u}(a,b) = 0, \quad \frac{\partial^2 f}{\partial x^2}(a,b) = 0 \quad \text{e} \quad \frac{\partial^2 f}{\partial x \partial u}(a,b) \neq 0,$ então (a,b) é um ponto de sela de f. (c) ___ O ponto (0,0) é maximizante local da função f definida por: $f(x,y) = 4 - x^4 - y^4$. (d) ____ Sendo $f \in C^1(\mathbb{R}^3)$ e $g \in C^1(\mathbb{R}^2)$ tais que $f(x,y,z) = z \; g(x,y)$, tem-se $\frac{\partial f}{\partial x}(x, y, z) = z \frac{\partial g}{\partial x}(x, y) + \frac{\partial g}{\partial x}(x, y).$ (e) ___ Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função diferenciável, tal que f(-1,3) = -1 e $\nabla f(-1,3) = (0,2)$. Uma equação do plano tangente ao gráfico de f no ponto (-1,3,-1) é z=2(y-3).

(f)	$y' = f(x, y)$, com $f(x, y) = \frac{xy}{x + y}$ é uma EDO homogénea.
(g)	O conjunto de funções $\{e^{-x},e^{2x}\}$ é um sistema fundamental de soluções de equação diferencial $y''+4y'+3y=0$.
(h)	Para $\alpha=1,$ a EDO de Bernoulli $y'+a(x)y=b(x)y^{\alpha}$ é uma EDO de variáveis separáveis.
(i)	A transformada de Laplace da função $f(t)=te^{2t}$ é dada por $\mathcal{L}\{f\}(s)=\frac{1}{s^2(s-2)},$ para $s>2.$
(j)	Se $f: [0, +\infty[\longrightarrow \mathbb{R} \text{ é uma função diferenciável tal que } f(0) = 1 \text{ é um mínimo da função, então } \mathcal{L} \{f''(t)\}(s) = s^2 \mathcal{L} \{f(t)\}(s) + s.$

Por favor, responda a cada uma das questões seguintes em folhas independentes.

- 2. Considere a EDO completa $y''' + 3y'' + 3y' + y = \cos(x)$.
- (2 val.) (a) Determine a solução geral da EDO homogénea associada à EDO completa, sabendo que -1 é raiz da equação característica correspondente.
- (2 ½ val.) (b) Determine uma solução particular $y_p(x)$ da EDO completa. (Sugestão: Use o método dos coeficientes indeterminados.)
 - $(\frac{1}{2}$ val.) (c) Determine a solução geral da EDO completa.
 - 3. Considere o seguinte problema:

Pretende-se determinar as dimensões do retângulo de maior área inscrito na elipse de equação $2x^2 + y^2 = 1$.

- (1 val.) (a) Justifique que o problema tem solução, ou seja, que tal retângulo existe.
- (1 val.) (b) Formule o problema como um problema de otimização com restrições.
- (3 val.) (c) Resolva o problema e indique a área do retângulo pedido.