4A7 Aviation and the Environment Lecture 1 Introduction

Steven BarrettRegius Professor of

Regius Professor of Engineering University of Cambridge

Decarbonization beyond biomass-derived SAF:

- 1. Direct air capture routes
- 2. Carbon-free fuels

Example: fueling CDG with PtL

Electric power consumption of fuel production

broken down by process step, in GW

For comparison:

French total installed capacity	~133 GW
Largest nuclear plant in the world (capacity)	~7 GW
Largest solar power plant (capacity)	~2.2 GW

How much land is needed to produce LH₂ using renewable solar?

Specific energy demand and year-2019 & 2050 fuel replacement with PtL & LH₂ Specific energy demand in MJ (elec)/MJ(fuel), total electricity demand in TWh

Fossil fuel Drop-in BtL Drop-in PtL Hydrogen Battery?

Contrail avoidance:

Potentially the cheapest and fastest way to mitigate and roll back the climate impacts of aviation

What about air pollution?

$$4NO + 4NH_3 + O_2 \longrightarrow 4N_2 + 6H_2O$$

$$NO + NO_2 + 2NH_3 \longrightarrow 2N_2 + 3H_2O$$

NO _x reduction (deNO _x)	95%
Increase in mission fuel burn (due to catalyst, reductant, etc.)	0.5%
Catalyst mass (per engine)	91 kg
Reductant mass (1500 km mission)	21 kg
Additional system mass (pumps, storage tanks, etc.)	128 kg

The challenge for zero impact aviation:

- 1. Net zero CO₂ emissions
- 2. Eliminate contrail warming
- 3. Eliminate NO_x emissions