Feature Selection. Feature Extraction. Dimensionality Reduction.

One dimension:

Small space Being close quite probable

Two dimensions:

More space but still not so much Being close not improbable

Three dimensions:

Much larger space Being close less probable

Four dimensions:

Omg so much space Being close quite improbable

Thousand dimensions:

Hellooo... hellooo... helloo...

Can anybody hear meee.. mee..

mee.. mee..

So alone....

Thousand dimensions:

I specified you with such high resolution, with so much detail, that you don't look like anybody else anymore. You're unique.

Classification, clustering and other analysis methods become exponentially difficult with increasing dimensions.

Classification, clustering and other analysis methods become exponentially difficult with increasing dimensions.

To understand how to divide that huge space, we need a whole lot more data (usually much more than we do or can have).

Dimensionality Reduction

Lots of features, lots of data is best. But what if you don't have the luxury of ginormous amounts of data?

Not all features provide the same amount of information.

We can reduce the dimensions (compress the data) without necessarily losing too much information.

Cigarettes per day

Dropping some features loses information, but gains more on the curse of dim.

Cigarettes per day

Cigarettes per day

Healthy / Heart Disease

Cigarettes per day

Cigarettes per day

Cigarettes per day

Common Sense

Experiments (remove a feature, fit again, evaluate results)

Regularization (in regression)

To get a quick idea on the features, Or to eliminate the useless 80% of 1000 features: sklearn.feature_selection

sklearn.feature_selection

VarianceThreshold

If the values of a feature are pretty much the same for all the points, we can't use it to distinguish them.

Features with low variance cannot carry much information. Drop the features that have variation below a threshold.

sklearn.feature_selection

VarianceThreshold

```
from sklearn.feature_selection import VarianceThreshold X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]] sel = VarianceThreshold(threshold=(.8 * (1 - .8))) sel.fit_transform(X)
```

oscar?	emmy?	bafta?
0	0	1
0	1	0
1	0	0
0	1	1
0	1	0
0	1	1

sklearn.feature_selection

VarianceThreshold

```
from sklearn.feature_selection import VarianceThreshold X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]] sel = VarianceThreshold(threshold=(.8 * (1 - .8))) sel.fit_transform(X)
```

oscar?	emmy?	bafta?
0	0	1
0	1	0
1	0	0
0	1	1
0	1	0
0	1	1

emmy?	bafta?
0	1
1	0
0	0
1	1
1	0
1	1

sklearn.feature_selection

SelectKBest

Check each feature's relation to the target one by one.

Give each feature a score.

This score estimates how much information it carries.

Drop the lowest scoring features.

(Only use the best K features)

sklearn.feature_selection

SelectKBest

```
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
iris = load_iris()
X, y = iris.data, iris.target
X.shape

X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
specific score
function we use
here: chi2
```

chi2 is a test statistic measuring independence between a feature and the target (labels).

A good estimate of useful information for this classification.

https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test#Test_of_independence

sklearn.feature_selection

SelectKBest

```
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
iris = load_iris()
X, y = iris.data, iris.target
X.shape

X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
specific score
function we use
here: chi2
```

Drop all but two features.

We are keeping the top 2 features that are the least independent from the target labels.

https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test#Test_of_independence

sklearn.feature_selection

SelectKBest

Classification score functions:

chi2 Test of independence

f_classif ANOVA F-test

Regression score function:

f_regression The same F-test as reported by statsmodels, related to fitting only with this given feature

sklearn.feature_selection

SelectKPercentile

Same as SelectKBest, but instead of saying "Keep the top k features",

you're saying "Keep the top k% of all the features".

sklearn.feature_selection

Recursive Feature Elimination

Fit a model with every feature.
Find out which feature contributes the least.
Remove that one feature, fit with the rest only.
Repeat, dropping features one by one.

Stop when you've reached the planned feature number.

sklearn.feature_selection

Recursive Feature Elimination

Needs an estimator with coefficients

(Logistic Regression works, KNN doesn't)
Uses model.coef_ as feature contributions. Scale!!!

sklearn.feature_selection

Lasso (L1) for Feature Selection

L1 Regularization while fitting a model with coefficients will set some of those to zero. This removes them.

Pick any model that has regularization (Logistic Regression, LinearSVC, etc.)

If you call fit(X,Y), it fits normally.

If you call fit_transform(X,Y) instead, it works as a feature selector, fits and removes features with coef_ set to zero.

sklearn.feature_selection

Lasso (L1) for Feature Selection

```
>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> X_new = LinearSVC(C=0.01, penalty="l1", dual=False).fit_transform(X, y)
>>> X_new.shape
(150, 3)
```

sklearn.feature_selection

Tree Based Selection

Decision Trees are classifiers. In a decision tree, you can measure the impact of a feature in a single split decision.

Random Forests are ensemble models of a bunch of trees. After fitting a Random Forest, you can look at the decision impacts of a feature in the entire forest.

That's a score. You can judge a feature's importance by it.

sklearn.feature_selection

Tree Based Selection

```
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier()
>>> X_new = clf.fit(X, y).transform(X)
>>> clf.feature_importances_
array([ 0.04...,  0.05...,  0.4...,  0.4...])
>>> X_new.shape
(150, 2)
```

Common Sense

Experiments (remove a feature, fit again, evaluate results)

Regularization (in regression)

To get a quick idea on the features, Or to eliminate the useless 80% of 1000 features: sklearn.feature_selection

Do I have to choose the dimensions among existing features?

Do I have to choose the dimensions among existing features?

Instead of the columns won_oscar?, won_emmy?, won_golden_globe?, won_actor's_guild? (4 dummy features), try using number_of_awards_won (1 feature).

You're throwing away some information, but gaining on the curse of dimensionality arena.

Or try %_nominations_that_turn_to_awards. Combine features. Use common sense, perform hypothesis driven trials on the feature set and measure performance.

Do I have to choose the dimensions among existing features?

Awards won

Do I have to choose the dimensions among existing features?

Awards won

Advantage: You retain more information

Disadvantage: You lose interpretability

Advantage: You retain more information

Disadvantage: You lose interpretability

2D

Oscar_or_not = logit(β_1 (Metascore) + β_2 (Awards))

Advantage: You retain more information

Disadvantage: You lose interpretability

2D

```
Oscar_or_not = logit(\beta_1(Metascore) + \beta_2(Awards))
```

Feature selection 1D

```
Oscar_or_not = logit(\beta_1(Metascore))
```

Advantage: You retain more information

Disadvantage: You lose interpretability

2D

```
Oscar_or_not = logit(\beta_1(Metascore) + \beta_2(Awards))
```

Feature selection 1D

```
Oscar_or_not = logit(\beta_1(Metascore))
```

Feature extraction 1D

```
Oscar_or_not = logit(\beta_1(0.4*Metascore + 0.6*Awards))
```

3D → 2D Feature Selection

3D → 2D Feature Selection

3D → 2D Feature Selection

Optimum plane

Optimum plane

Optimum plane

PCA Math

Singular Value Decomposition

Vectors defining the reduced hyperplane are eigenvectors of the covarience matrix of the features.

from sklearn.decomposition import PCA

```
reducer = PCA( n_components = 20 )
reduced_X = reducer.fit_transform(X)
model.fit(reduced_X, Y)
```

```
# When you need to predict:
reduced_X_new = reducer.transform(X_new)
model.predict(reduced_X_new)
```

How and why to use PCA

Improving your clustering

Improving your classification (alternative to feature selection)

Dealing with sparse features

Visualizing high dimensional data in 2D or 3D

Data compression with little loss

My model is not awesome enough.

What do I do?

What do I do?

Feature selection Model parameters (K for KNN, C for regularization, etc.) Feature extraction Functional forms of features Feature interactions Sensible combinations of features Try different algorithms PCA