$$f(x) = e^{2x} - 7e^{x} + 5x + 1$$
 $D_f = \mathbb{R}$

1.
$$f'(x) = 2e^{2x} - 7e^{x} + 5$$

$$e^{x}-4>0$$
 | $2e^{x}-5>0$
 $e^{x}>4$ | $2e^{x}>5$
 $e^{x}>5$
 $e^{x}>5/2$
 $e^{x}>6/2$

×	-00	9	,	ln (5/2)		+00
e*-1	-	0	+	7	+	
Ze~5	_		_	0	+	
g1	+	0	_	0	+	

b) Tableau de variations:

$$f(0) = 1 - 7 + 1 = -5$$

$$f(\ln(\frac{5}{2})) = \frac{25}{4} - \frac{7}{2} + \frac{5}{2} + 5\ln(\frac{5}{2}) + 1 =$$

$$= \frac{25}{4} - \frac{35}{2} + 5\ln(\frac{5}{2}) + 1$$

$$= -5, 7$$

$$f(x) = 1 - 2x + e^{2x}$$

1.
$$f'(x) = -2 + 2e^{2x}$$

2. Signe de f' : $-2 + 2e^{2x} > 0 \Rightarrow 2(e^{2x} - 1) > 0 \Rightarrow e^{2x} > 1 \Rightarrow 2x > 0 \Rightarrow x > 0$

Toblesu de variations:

3. Le minimum de f est 2 atteint pour x=0 sur R, danc le fonction f est toujours positif sur R.