Retours sur les K-Means

- Idée :
 - Contraintes sur les K-Means
 - Ajouter des 'coordonnées' à chaque centroïde pour former une topologie
- Ainsi:
 - Chaque neurone *i* possède :
 - Coordinate Vector (C_i)
 - Feature Vector (W_i)

- Ainsi:
 - Chaque neurone *i* possède :
 - Coordinate Vector / Topological Vector (C_i)
 - Feature Vector (W_i)

- Ainsi:
 - Chaque neurone *i* possède :
 - Coordinate Vector / Topological Vector (C_i)
 - Feature Vector (W_i)

Algorithme :

- Initialiser :
 - Choisir les W_i complètement au hasard (ou parmi les S_i existants au hasard)
- Répéter :
 - Choisir un exemple au hasard : S_i
 - Trouver le 'neurone' k dont le feature vector est le plus proche de S_i
 - Modifier le feature vector du neurone élu W_k pour qu'il ressemble un peu plus à l'exemple choisi
 - Modifier les feature vectors des neurones voisins W_i pour qu'ils ressemblent à l'exemple choisi, mais de manière proportionnellement atténuée en fonction de la distance au neurone choisi dans l'espace topologique
- Formule générique classique de mise à jour pour tous les feature vectors : $W_i = W_i + \alpha \times e^{\frac{-||C_i C_k||^2}{2\gamma}} \times (S_i W_i)$

•
$$W_i = W_i + \alpha \times e^{\frac{-||c_i - c_k||}{2\gamma}} \times (S_i - W_i)$$

- α est le pas d'apprentissage
- γ permet de faire varier l'impact de la correction selon la distance

• Exemples de résultats sur le MNIST Digits dataset :

- Faites varier :
 - α
 - γ
 - Le nombre de neurones
- Quels impacts?