Programozási tételek felsorolókra

Összegzés

Feladat: Adott egy E-beli elemeket felsoroló t objektum és egy $f:E \rightarrow H$ függvény. A H halmaz elemein értelmezett egy baloldali nulla elemmel rEndelkező művelet (nevezzük ezt összeadásnak és jelölje a +). Határozzuk meg a függvénynek a t elemeihez rEndelt értékeinek összegét! (Üres felsorolás esetén az összeg értéke definíció szerint a nullelem: 0).

Specifikáció:

$$A = (t:enor(E), s:H)$$

$$Ef = (t=t')$$

$$Uf = (s = \sum_{e \in t'} f(e))$$

Algoritmus:

Számlálás

Feladat: Adott egy E-beli elemeket felsoroló t objektum és egy $felt:E \rightarrow \mathbb{L}$ feltétel. A felsoroló objektum hány elemére teljesül a feltétel?

Specifikáció:

$$A = (t:enor(E), c:\mathbb{N})$$

$$Ef = (t=t')$$

$$Uf = (c = \sum_{e \in t'} 1)$$

$$felt(e)$$

Algoritmus:

Maximum kiválasztás

Feladat: Adott egy E-beli elemeket felsoroló t objektum és egy $f:E \rightarrow H$ függvény. A H halmazon definiáltunk egy teljes rEndezési relációt. Feltesszük, hogy t nem üres. Hol veszi fel az f függvény a t elemein a maximális értékét?

Specifikáció:

$$A = (t:enor(E), max:H, elem:E)$$

 $Ef = (t=t' \land |t| > 0)$
 $Uf = (max, elem = MAX_{e \in t}, f(e))$

Algoritmus:

Kiválasztás

Feladat: Adott egy E-beli elemeket felsoroló t objektum és egy $felt:E \to \mathbb{L}$ feltétel. Keressük a t bejárása során az első olyan elemi értéket, amely kielégíti a $felt:E \to \mathbb{L}$ feltételt, ha tudjuk, hogy biztosan van ilyen.

Specifikáció:

$$A = (t:enor(E), elem:E)$$

$$Ef = (t=t' \land \exists i \in [1..|t|]: felt(t_i))$$

$$Uf = (elem, t = SELECT_{e \in t'} felt(e)))$$

Algoritmus:

Lineáris keresés

Feladat: Adott egy E-beli elemeket felsoroló t objektum és egy $felt:E \to \mathbb{L}$ feltétel. Keressük a t bejárása során az első olyan elemi értéket, amely kielégíti a $felt:E \to \mathbb{L}$ feltételt

Specifikáció:

```
A = (t:enor(E), l: \mathbb{L}, elem: E)

Ef = (t=t')

Uf = (l, elem, t = SEARCH_{e \in t}, felt(e))
```

Algoritmus:

Optimista lineáris keresés

Feladat: Adott egy E-beli elemeket felsoroló t objektum és egy $felt:E \to \mathbb{L}$ feltétel. Igaz-e, hogy a felsorolás minden eleme kielégíti a $felt:E \to \mathbb{L}$ feltételt, illetve melyik az első olyan, amelyik nem.

Specifikáció:

$$A = (t:enor(E), l: \mathbb{L}, elem: E)$$

$$Ef = (t=t')$$

$$Uf = (l, elem, t = \forall SEARCH_{e \in t'} felt(e))$$

Algoritmus:

Feltételes maximumkeresés

Feladat: Adott egy E-beli elemeket felsoroló t objektum, egy $felt:E \to \mathbb{L}$ feltétel és egy $f:E \to H$ függvény. A H halmazon definiáltunk egy teljes rEndezési relációt. Határozzuk meg t azon elemeihez rEndelt f szerinti értékek között a legnagyobbat, amelyek kielégítik a felt feltételt.

Specifikáció:

$$A = (t:enor(E), I:\mathbb{L}, max:H, elem:E)$$

$$Ef = (t=t')$$

$$Uf = ((I, max, elem) = MAX_{e \in t'}f(e)$$

$$felt(e)$$

Algoritmus:

	l:= hamis; t.First()			
ーt.End()				
	_felt(t.Current())	$felt(t.Current()) \wedge I$		$felt(t.Current()) \land \neg l$
	SKIP	f(t.Current())>max		l, max, elem :=
		<pre>max, elem:= f(t.Current()), t.Current()</pre>	-	igaz, f(t.Current()), t.Current()
		t.Next()		