

ŘADA A

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXIX/1980 ČÍSLO 9

V TOMTO SEŠITĚ

Mas litter view
Napište to do novin
"Za nerozbornou družbu při
budování socialismu" 323
Trojúhelník smrti 323
Mistrovství ČSSR v technické
činnosti
24 YL pod značkou OK5CRK 325
Východočeská HI-FI Ama 326
Novinky z výzkumných ústavů
TESLA 326
Nové záznamové materiály pro
kazetové magnetofony 327
R 15 (soutěž o zadaný radio-
technický výrobek) 328
Jak na to
Seznamte se s kazetovým
magnetofonem B 302 330
Fázovací jednotka pro hudební
nástroje
Praktická zapojení generátorů
tvarových kmitů. · · · · 336
Měřidlo jako stupnice přijímače 341
Jednoduché přijímače FM
(dokončení) 344
Automatické časové spínače pro
fotokomoru 347
Jednoduchá úprava průběhu -
potenciometrů 348
Elektronická regulace rychlosti
otáčení stejnosměrných
motorků
Programovatelný násobič kmitočtu 350
Drobnosti pro amatéry
Radioamatérský sport:
Mládež a kolektívky
ROB 352
MVT 353
VKV, YL
KV, DX
Přečteme si, Četli jsme 357
Naše předpověď, Inzerce 358

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, PSČ 113 66 Praha 1, tel. 26 06 51–7. Šéfredaktor ing. František Smolík, zástupec
Luboš Kalousek. Redakční rada: K. Bartoš, V. Brzák, RNDr. V. Brunnhofer, K. Donát, A. Glane, I. Harmine, Z. Hradiský, P. Horák, J. Hudee, ing. J. T. Hyan, ing. J. Jaroš, doe. ing. dr. M. Joachim. ing. J. Klabal, ing. F. Králík. RNDr. L. Kryška, PhDr.E. Křížek, ing. E. Môcik, K. Novák, RNDr. L. Ondráš, ing. O. Petráček, ing. M. Smolka, doe. ing. J. Vackář, laureát st. ceny KG, ing. J. Zíma. Redakce Jungmannova 24, PSČ 113 66 Praha 1, telefon 26 06 51–7. ing. Smolík linka 354, redaktoří Kalousek, ing. Engel, Hofhans I. 353, ing. Myslík, P. Havlíš I. 348, sekretářka I. 355. Ročně vyjde 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřízuje PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Naše vojsko. n. p. závod 08, 162 00 Praha 6-Liboc, Vlastina 710. Inzerci přijímá vydavatelství NAŠE VOJSKO, Vladislavova 26, PSČ 133 66 Praha 1, tel. 26 06 51–7, linka 294. Za původnost a správnost příspěvku ručí autor. Redakce rukopis vrátí, bůde-li vyžádán a bude-li připojena frankovaná obálka se zpětnou adresou. Návštěvy v redakci a telefonické dotazy pouze po 14. hod. Č. indexu 46 043.
Toto číslo má vyjit podle plánu 2. 9, 1980 © Vydavatelství NAŠE VOJSKO, Přaha

© Vydavatelství NASE VOJSKO, Přaha

s Karlem Titěrou, OK1DDF, pracovníkem městského výboru Svazarmu a vedoucím výcvikového střediska branců-spojařů v Praze při příležitosti 5. zasedání ÚV Svazarmu

> Ve dnech 26. až 27. září 1980 proběhne 5. zasedání ÚV Svazarmu věnované přípravě branců, záloh a CO. Vaše výcvíkové středisko dosahuje v posledních letech v přípravě branců výrazných úspěchů. Čím je to způsobeno?

Úspěchy, kterých jsme v poslední době dosáhli, jsou podmíněny několika činiteli. Na prvním místě uvádím schopné a spolehlivé aktivisty, bez nichž si nelze činnost našeho výcvikového střediska branců-spojařů představit. V roce 1973 jsem zde začínal sám. Z branců, které jsem tehdy vycvičil jako první skupinu, se do našeho střediska vrátil po skončení základní vojenské služby Tomáš Janíček, nyní OK1DJT, a jako aktivista se podílel na výcviku dalších skupin branců, z nichž se k nám opět vrátili: Petr Čečák, nyní OK1DDH, František Půbal, OK1DFP, a Pavel Čmel, OK1DDG. Společně jsme založili při výcvikovém středisku branců základní organizaci Svazarmu, která dostala číslo 131, a při ní kolektivní stanici OK1OAZ. Dnes máme již asi 30 stabilních členů. Dalším činitelem, podmiňujícím dobré výsledky, je materiální a technické zabezpečení, jehož se nám dostává od nadřízených orgánů. Vysílací středísko máme v Práze 3 Na Balkáně, od roku 1977 a je vybaveno transceivery SOKA 747 a OTAVA pro pásma KV, pro pásmo 2 m máme transceiver FT221. Vybudovali jsme si otočný anténní systém HB9CV pro vyšší pásma KV a otočnou anténu PAOMS pro pásmo 2 metrů. Za tuto poměrně krátkou dobu jsme navázali asi sedm tisíc spojení a získali řadu našich i zahraničních diplomů (např. WAC, 500 OK).

Żajímavá práce v našem radioklubu je pro brance, kteří jsou přidělování do našeho střediska, přitažlivá, a my je do většiny našich akcí aktivně zapojujeme: spojovací služby při pochodu Praha-Prčice, při Říčanských šlapačkách, při propagačním vysílání ke Dni tisku, rozhlasu a televize atd.

Jakým způsobem je samotný předvojen-ský výcvik spojařů organizován a jaká je

Naše výcvikové středisko má na starosti brance ve druhém výcvikovém období, to znamená chlapce, kteří jsou již odvedeni a zařazeni do předvojenského výcviku specialistů, v našem případě spojařů. Tato specializace má dva směry: provozní (budoucí operatéři) a technický (mechanici). Výcvik probíhá vždy od listopadu do června a obsahuje 130 výcvikových hodin. Chlapci jsou rozdělení do skupin přibližně po 25 a scházejí se jednou týdně v odpoledních hodinách (po skončení pracovní doby). Většina ze 130 hodin je věnována odbornému výcviku, tzn. u branců provozního zaměření telegrafii a vojenskému provozu, u branců technického zaměření základům radiotechniky a elektrotechniky. Při závěrečných zkouškách budoucí operatéři přijímají tempa rychlostí 45 zn/min písmen i číslic (na výtečnou), budoucí mechanici sami konstruují nějaký přístroj,

Karel Titěra, OKIDDF

zpravidla jednoduchý přijímač nebo zesilovač. O každou skupinu pečují tři instruktoři jeden politický lektor a dva odborní instruktoři. Dalšími předměty, které absolvují všichni naši branci, jsou politická příprava, zdravotní a chemická příprava a střelecká pří-

Součástí výcviku je i účast branců v branné soutěži Memoriál hrdiny SSSR gen. mjr. Antonína Sochora a v socialistické soutěži o putovní standartu ÚV Svazarmu. Letos do národního kola postoupili branci z výcvikového střediska: v Praze 4, naši chlapci však zvítězili v soutěži družstev, která se konala při příležitosti Dnů Berlína v Praze za účasti branců z GST Berlín.

> Vyskytnou se pří značném počtu branců, kteří projdou vaším výcvikovým střediskem, i nějaké problémy? Jaký je vztah osmnáctiletých chlapců k předvojenské přípravě?

Povinnost branců účastnit se předvojenské přípravy vyplývá z Ústavy ČSSR a je podrobně rozvedena v zákonu z roku 1973 O branné výchově, který mj. ukládá zaměstnavatelům a školám brance na výcvik uvolňovat a jejich výsledky ve výcviku sledovat. Tento podíl zaměstnavatelů a škol na přípravě branců však zdaleka není takový, jaký jim zákon umožňuje. Zůstává tedy na náš, abychom dokázali zajímavou náplní výcviku i činností radioklubu OK1OAZ brance zaujmout a udržet. S možností postihu jako se stimulem pro hojnou účast branců v předvojenském výcviku, není správné počítat, nehledě k tomu, že tato možnost je dost časově vzdálená. Je lépe stavět na dobrovolnosti a vysvětlit chlapcům, že předvojenský výcvik jim usnadní přechod do vojenského způsobu života. Kromě toho branci, kteří absolvují s dobrými výsledky předvojenský výcvik, jsou zpravidla zařazování do poddůstojníc-

U nás tedy problémy se zájmem branců nemáme. Stoprocentní účast na výcviku měla v posledním kursu více než polovina branců. Samozřejmě, že zájem chlapců je podmíněn také jejich občanským povoláním, k němuž však OVS při výběru branců-specialistů přihlížejí.

Určité potíže, hlavně z hlediska lektorského zabezpečení, nám působí každoročně se měnící počty branců, které jsou samozřejmě závislé na úrovni populace. Výrazné zvýšení očekáváme přibližně za čtyři roky.

> Přejl vám, aby se do té doby vrátili do radioklubu OK10AZ a do vašeho výcvikového střediska ze základní vojenské služby další dobří radioamatéři, kteří vám pomohou tento nápor zvládnout, a děkují za rozhovor

Rozmlouval Petr Havliš, OK1PFM

Prvomájový průvod, spartakiáda, žně, Závod míru, rallye Škoda, posyp obaleče modřínového, zkoušky mostů, mistrovství světa v orientačním závodě - to jsou všechno události, o kterých píší všechny noviny, často na prvních stranách s velkými titulky. Při všech těchto akcích a při desítkách dalších jsou i radioamatéři a hrají při nich poměrně důležitou úlohu. Zajištění spojovací služby v takto rozsáhlých akcích je náročné nejen na odbornou a provozní způsobilost operatérů, ale i na jejich organizační schopnosti. Ale už jste se o tom dočetli někde jinde než v Amatérském radiu?

Když přijde řeč na radioamatéry, průměrný občan si vybaví jednak pojem SOS a pak možná několik útržkovitých vět o podivínech, kteří jsou zalezlí v koutě, mají sluchátka na uších a pípají něco do éteru. A je to slyšet hodně ďaleko. Protože průměrný občan nečte Amatérské radio a nikde jinde se o radioamatérech nic nedočte. Neví, že pomáhají zajišťovat výše uvedené akce, neví, že učí velký počet mladých chlapců i děvčat zvládat základy elektroniky, která pronikla již do všech odvětví národního hospodářství, neví, že radioamatéři cvičí brance a připravují dobré spojaře pro ČSLA, neví, že jsou radioamatéři schopni s malými výkony a amatérsky zhotoveným zařízením navazovat spojení po celém světě. A proč se to nikdo nedočte?

Profesionální novináři se u všech uvedených akcí zajímají samozřejmě o jejich hlavní účel a poslání a nikoli o podíl radioamatérů na nich. Ti o nás tedy sami od sebe psát nebudou. Nezbývá tedy než

Jistě si tady už každý doplnil . . . vzít papír, tužku a napsat to sám. Hned v duchu slyším mnoho námitek jako – jo to já neumím, – kam to mám napsat, – oní to nebudou chtít, – na to už nezbývá čas atd. Zkuste si přečíst několik drobných zpráv v denním tisku. Třeba o mistrovství kuželkářů (určitě jich není víc než radioamatérů), o pionýrském oddílu v obci N, o pomoci občanů v akci Z. To byste neuměli napsat o radioamatérech? A kam? Adresa redakce je povinně vytištěna v každém časopise nebo novinách. A jestli to budou chtít? Nemusíte mířit hned vysoko a psát do Rudého práva nebo do Mladého světa o události z okresu. K tomu je místní a okresní tisk. A tam zase nemají tolik zpráv, aby vaši informaci o radioamatérech neuveřejnili. A ještě za ni dostanete honorář!

Jsou v republice místa, kde se o radioamatérech ví. Jsou jako ZO Svazarmu partnery ostatních organizací NF v pravém slova smyslu, pomáhají si navzájem, a mnohde dostanou od národního výboru značné částky na adaptace nebo výstavbu svých objektů a jejich vybavení. Protože v jejich okolí se ví o tom, že jejich činnost je vysoce společensky prospěšná a že investice do ní se obci (městu, okresu) vyplatí.

A tak proto, aby se o radioamatérech "vědělo" nejen v několika obcích, ale v celé republice, rozhodli jsme se vás všechny vyzvat k soutěži v propagaci radioamatérského hnutí:

Účel: Dosáhnout větší popularity radioamatérské činnosti mezi obyvatelstvem, obzvláště v obcích a okresech.

Účast: Kdokoli z radioamatérů i jejich příznivců. Podmínky účasti: Zaslat každoročně do 1. 6. co nejvíce, nejméně však 3 výstřižky vlastních článků, zpráv, informací a fotografií z libovolného místního, okresního, krajského nebo celostátního tisku (deníků, týdeníků, časopisů ap.) s výjimkou časopisů Amatérské radio

a Radioamatérský zpravodaj, do redakce AR. Vyhodnocení: Každoročně budou vyhodnocení

a) tři nejaktivnější dopisovatelé podle množství příspěvků s přihlédnutím k jejich kvalitě, b) autoři pěti nejkvalitnějších příspěvků z hlediska účinnosti propagace radioamatérského

Hodnotit bude komise složená z pracovníků redakce AR a ze zástupců Ústřední rady radioamatérství a její propagační komise.

Odměny: jsme amatéři a vyzýváme amatéry. Nejde nám o hmotné zisky, ale o popularizaci činnosti, které jsme ve většině případů zasvětili všechen svůj volný čas, ne-li celý svůj život. Nemáme možnost dotovat tuto soutěž tisícovými částkami, ale postaráme se každopádně o nějaké radioamatérské ceny – součástky, literaturu, katalogy a trochu té "slávy" uveřejněním podrobných výsledků v AŘ. A přetištěním nejlepších vyhodnocených příspěvků rovněž na stránkách AR

Výsledky naší soutěže "Napište to do novin" vyhlásíme každoročně při příležitosti Dne tisku, tj. přibližně v tuto roční dobu. Jsme optimisté a očekáváme hojnou účast v této soutěži, i když bude třeba trvat několik let, než se "uchytí" a než články o radioamatérech budou pravidelně informovat veřejnost o jejich činnosti ve yšech denících, týdenících a měsíčnících. Potíže je třeba překonávat a v nich růst.

Jistě vzpomenete, že letos v září je to již 60 let, co vyšlo první číslo Práva lidu, předchůdce Rudého práva. V historii naší země sehrálo takovou roli, že si den, kdy toto číslo vyšlo, připomínáme každoročně jako Den tisku. Aby toto výročí neztratilo svůj význam a svůj obsah, mělo by každoročně inspirovat k něčemu novému, k iniciativě, k přímosti a otevřenosti, k popularizaci dobrých myšlenek a jejich autorů i realizátorů, ke vzpomínce na ty, kteří se v takovém duchu podíleli nejen svou tvůrčí prací, ale i její popularizací na stránkách tisku, na budování naší socialistické společnosti.

V souvislosti s tímto výročím tedy vyhlašujeme naši soutěž "Napište to do novin" a jsme přesvědčeni, že naše výzva nezapadne a splní svůj účel. A kdo by se rád přidal, ale neví si s něčím rady, ať nám napíše do redakce - rádi mu poradíme!

Z obsahu májového zasadania Slovenskej ústrednej rady rádioamatérov Zväzarmu v Bratislave

Druhé tohoročné zasadanie Slovenskej ústrednei rady rádioamatérov sa uskutočnilo v Bratislave dňa mája 1980. Za vedenia jeho podpredsedu z. m. š. Ladislava Satmáryho, OK3CIR, prerokovala rada obsah správy o súčasnom stave radioamatérstva a úlohách jeho ďalšieho rozvoja, ktorá bude predložená v júni na posúdenie predsednictvu SÚV Zväzarmu. Z hřadiska plnenia programu úloh rada konštatovala, že všetky plánované výcvikové a športové podujatia k termínu zasadania boli uskutòčnené. Neboli dodržané niektoré termíny zasadania komisií SÚRRA. O tom, ako sa plnil plán na jednotlivých krajoch, bola rada podrobne oboznámená prostredníctvom prítomných tajomníkov KRR. Ďalej zasadanie prerokovalo stav príprav na nadchádzajúce majstrovstvá SSR v ROB a MVT, schválilo návrhy na pridelenie techniky pre jednotlivé ZO-RK, vyjadrilo súhlas s pripravovanou súťažou RK OK3KEF Zlaté Moravce a s potešením konštatovalo, že prišlo 109 prihlášok súťažných kolektívov na tohoročnú súťaž aktivity. Rada odsúhlasila zmeny vo funkcii vedúceho komise KV SÚRRA (OK3ZAF). Vyslovila súčasne poďakovanie za vynikajúce výkony v práci na VKV (EME) Jánovi Polecovi. OK3CTP, ktorý v období necelých 5 mesiacov nadviazal viac ako 70 spojení so stanicami piatich kontinentov odrazom od mesiaca v pásme 70 cm.

V popoludňajšej slávnostnej časti boli za prítomností zástupcov SÚV Zväzarmu a SÚV ZČSSP odovzdané ceny najlepším jednotlivcom a kolektívom za dosiahnuté výsledky v rádioamatérskej súťaži MČSP

Seminář k závěrům 3. plenárního zasedání ÚV Svazarmu

31. května 1980 se ve společenském domě Mars v Praze 10 sešli zástupci politickovýchovných komisí KRRA, aby společně se členy ÚRRA Svazarmu projednali dosahované výsledky v politickovýchovné práci v radioamatérství. Seminář řídil RNDr. Ľudovít Ondriš, OK3EM, hlavní referát přednesla Jarka: Vinklerová, OK1ARI. Podle obsahu hlavního referátu i diskusních příspěvků můžeme očekávat další potěšitelný vývoj v radioamatérství. Všichni účastníci semináře se shodli v tom, že účinná politickovýchovná práce i stav členské základny v radioamatérství jsou podmíněny technickým vybavením a materiálním zabezpečením radioamatérské činnosti.

V diskusi byl kritizován stálý nedostatek monografické i periodické literatury pro radioamatéryvysílače (OK2PEW). Proto se těšíme na metodickou příručku techniky a provozu na KV, která, jak oznámil ve svém příspěvku vedoucí komise KV ÚRRA RNDr. Václav Všetečka, CSc., OK1ADM, je již v tisku a na trh se dostane v roce 1981. OK1ADM také upozornil na nově připravovanou kategorii OL v tradiční soutěži k Měsíci československo-sovětského přátelství.

Ředitel podníku Radiotechnika ÚV Svazarmu A. Vinkler, OK1AES, informoval o ukončení výroby transceiveru Otava v letošním roce a o jeho nahrazení jiným typem (viz rubrika KV).

O dobré reprezentaci značky OK našimi YL v letošním mezinárodním YL-OM contestu referovala členka komise KV ÚRRA a vedoucí komise YL Eva Marhová, OK1OZ. Podrobné výsledky najdete v rubrice YL

informace z hifiklubů

V socialistické soutěži aktivity a iniciativy okresních rad elektroakustiky a videotechniky bylo vyhlášeno v ČSR toto pořadí: 1. Praha 1, 2. Praha 8, 3. Praha 6, 4, Náchod, 5, Blansko, 6, Vyškov, 7, Brno město, 8. Cheb, 9.-10. Jablonec n. N. a Litoměřice.

Ústřední rada elektroakustiky a videotechniky vydala v Edici hifiklubu Svazarmu příručku B. Nekvasila: Bezpečnost při práci na elektrických zařízeních, která je vhodná pro práci s dětmi v elektronice.

12. celostátní přehlídka HIFI - AMA 80 se uskuteční od 14. do 22. listopadu v Domě barikádníků v Praze 10.

1. celostátní festival audiovizuální tvorby Svazarmu se ořipravuje na 24.-26. října v Šale

Ústředně vydané programy k 35. výročí osvobození Československa Sovětskou armádou "A lid povstal" a "Přišli včas" se setkaly v reprízách svazar-movských hifiklubů se zaslouženým příznivým

"Za nerozbornou družbu při budování a obraně socialismu"

Na základě dosavadních úspěšných výsledků, vyplývajících z dlouholetých bratrských styků mezi brannými organizacemi sovětským DOSAAF a naším Svazarmem, byla dne 1. 7. 1980 podepsána dohoda o vzájemné spolupráci mezi ústředními výbory obou organizací.

Dohodu podepsali na ÚV DOSAAF jeho místopředseda generálplukovník A. I. Odincev a předseda UV Svazarmu generálporučík PhDr. Václav Horáček za přítomnosti dalších vedoucích funkcionářů obou bratrských or-

ganizací

Tato významná dlouhodobá dohoda je první svého druhu, kterou přijal DOSAAF s branně vlasteneckou organizací socialistic-

kých zemí.

Obsah dohody směřuje k dalšímu upevňování a prohlubování vzájemných přátelských a soudružských styků, k neustálému posilování internacionálních svazků, k výměně zkušeností a informací při rozvíjení a zkvalitňování branné výchovy a přípravy obyvatelstva k obraně socialistické vlasti.

Dohoda předpokládá pokračovat v úzké spolupráci v řadě oblastí. Zvláštní pozornost bude věnována výměně zkušeností z politickovýchovné práce s důrazem na výchovu k socialistickému vlastenectví a internaciona-

lismu na základě využívání revolučních a bojových tradic národů obou zemí.

Zahrnuje i vzájemnou výměnu trenérů, metodických pracovníků a účast na významných seminářích, konferencích, společných soustředěních a vybraných mistrovských soutěžích DOSAAF a Svazarmu.

V této dohodě jsou zahrnuty družební styky jednotlivých krajů, které napomáhají ke konkrétnímu poznávání života v našich zemích a slouží k soustavnému prohlubování internacionálních a soudružských vztahů.

Budou také vzájemně stuďovány otázky a metody politickovýchovné práce zejména v organizacích a klubech z hlediska účinného spojování sportovní a ideově výchovné činnosti.

Vzájemně budou využívány zkušenosti z oblasti výchovy a přípravy branců a z práce s ostatní mládeží. Dohoda vytváří příznivé podmínky ke vzájemné výměně branných časopisů, propagačních materiálů, publikací a dalších dokumentů.

Přijatá dohoda umožní nadále získávat řadu cenných zkušeností z bohaté historie a současné praxe bratrské sovětské branné organizace DOSAAF a napomůže k dosažení ještě výraznějších výsledků při plnění rezoluce VI. sjezdu Svazarmu.

Taojúhelník SMH nejen puškou a granátem...

Byl pátek 8. září 1944, neštastný pátek. Poddukelská krajina se pomalu probouzí do ranního chladu. Chuchvalce mlh v údolí a nad lesy dotvrzují příchod podzimu. Nesmíme se však nechat oklamat krásou podzimu Poloninských Karpat. Je válka. Na každém čtverečním metru tohoto romantického kraje je skryta vojenská technika, obrovské množství munice a taktéž desítky tisíc našich i fašistických vojáků. Obě strany se připravují na jednu z nejkrvavějších etap poslední války, která vešla do dějin jako Karpatsko-Dukelská operace.

Na velitelském stanovišti 1. čs. armádního sboru; který byl nedávno vytvořen v Sadaguře, panuje čilý ruch. Pohyb spojek na motocyklech a autech dotvrzuje vrchol přípravy k útoku. Tohoto dne hned za svítání začíná dělostřelecká příprava a po té těžké letecké bombardování obranného postavení nepřítele. 120 minut dlouhá dělostřelecká palba, doplňovaná palbou legendárních kaťuší, minometů všech ráží a za podpory bombardovacích a útočících letadel doslova proorala obranné postavení fašistů v předhůří Karpat. V 08.45 hod. vyrážíme do útoku. V odpoledních hodinách naše čelní jednotky pronikly do hloubky 10 až 12 km, kde se tempo útoku začalo zpomalovat a nepřítel počal klást zuřivý odpor. Kolem půlnoci prvního dne operace dosáhla 1. čs. brigáda osad Machnówka a Bobrka a třetí čs. brigáda osady Wrocanka. V tomto prostoru obě brigády narazily na důmyslně skrytou a předem vybudovanou obranu protivníka, který po krátkém dělostřeleckém a minometném přepadu ještě v tu noc přešel do protizteče, podporované silnou skupinou tanků. V trojúhelníku smrti se rozpoutaly rozhořčené boje, kdy prakticky zteč střídala protizteč. Proto jsou osady Machnówka-Wrocanka-Bobrka symbolem hrdinství všech těch, kteří v těchto nepředstavitelných bojových podmínkách dokázali splnit slova přísahy.

Začátek operace Dukla-Prešov mne zastihl v pochodovém proudu na velitelském stanovišti 1. čs. armádního sboru a asi 3 km severozápadně od městečka Krosna. Pohotovost rádiového spojení byla nařízena 8. 9. v 04.00 hod. Prověrka jednostrannými signály po hodinách, později po 30 minutách. Osobní rádiová stanice velitele sboru v době zastávky sjela z komunikace a přitiskla se ke zřícenině většího baráku, která jakž takž vyhovovala zásadám maskování. Rádiové přijímače pracovaly nepřetržitě a to jak v rádiové síti nadřízeného (38. armáda), tak i ve sborové síti (s brigádami). Osobní rádiová stanice byla vlastně zvláštní spojovací skupina s rádiovým materiálem, která měla za úkol zabezpečit všechna rádiová spojení, která velitel vyžadoval. A on jich vyžadoval hodně a stále. Ve dne j v noci. K plnění této funkce jsme měli přiděleno jedno auto – radiovůz a pro neschůdný karpatský terén také jezdecké koně. K tomuto náročnému úkolu jsme byli zvlášť školeni, jak po stránce taktické, tak i technicko-provozní.

K dispozici jsem měl jednu velkou stanici s výkonem kolem 3 kW a jednu stanici svýkonem kolem 650 W (SCR 399), obě se závěsnými agregáty na třítunkách. Pro výjezdy velitele byla určena rádiová stanice RSB180 (200 W), umístěná na terénním vozidle ("dočka"). Stanice pracovaly provo-

zem A1, A2, A3. V radiovoze RSB byly k dispozici další typy rádiových stanic tak, abychom mohli vstoupit do všech rádiových sítí sboru i sousedů. Byly to přenosné stanice typu RB, 12RPM, V100A, A7A.

V počátečním období operace skupina těchto rádiových stanic pracovala podle plánu dobře. Šifrovací oddělení sboru nás přes výpravnu zásobovalo telegramy, zprávami, signály i velitelskými hovory v únosných počtech, organizovaně a relativně v klidu. Zásadní obrat začal až při nasazení rychlých jednotek druhého sledu do průlomu v noci ž 8. na 9. 9. Hned po rozednění jsme prožili těžký nálet Junkersů, které nás postřelovaly těžkými kulomety a bombardovaly celé údolí, vchod do Dukelského průsmyku. Kolem 07.00 hod. přebírám službu a snažím se zásoby telegramů zmenšit na minimum. Spojení je velmi dobré, QSA 4 až 5, i když se již chvílemi objevuje rušení. Stovky přijatých i stovky odeslaných telegramů, převážně šifrovek, jsme převzali i odevzdali do prvo-sledových jednotek v době, kdy tyto prožívaly nejtěžší boje. Kolem 09.15 hod. se najednou přestala hlásit stanice velitele třetí brigády a v rádiové síti se objevil tón zaklíčovanédy a vladiovaniace. To jsme již měli podle staničního zápisníku na 165 telegramů přijatých i ode-slaných. A právě v této době jsem obdržel ústní rozkaz od náčelníka štábu sboru přesunout se s radiovozem RSB ihned na pozorovatelnu třetí brigády, kde se v této době nacházel i velitel sboru, do prostoru Wrocanka. Vydávám krátké rozkazy, balíme antény, ale stanice pracuje dál i za pohybu. Pomocník pro rádio štábu sboru npor. Pavel Fiala jede s námi. Chvíli se s npor. Fialou radíme o ose postupu a jedeme okresní cestou plnou výmolů do prostoru Wrocanka. Po cestě vidíme následky těžkých bojů. Země je rozryta od dělostřeleckých granátů a min a všude jsou stopy po leteckých náletech. V příkopech leží mrtví koně, vidíme padlé. Korespondence za jízdy je velmi obtížná a třetí brigáda se stále nehlásí. Po celé hodině jízdy se nacházíme asi dva a půl km jihovýchodně od Wrocanky. Zastavujeme ve skrytu a zjišťujeme stav, když tu se najednou ocitáme ve středu zhuštěné minometné a tankové palby. Stačil jsem ještě vydat rozkaz, aby radisté vzali s sebou přenosné radiostanice. Všichni vyskočili, až na radistu, který pracoval, a ukryli se v hlubším úvozu, přesto ale úlomek z granátu zasáhl npor. Fialu a těžce jej ranil do ruky. Radista Gluch byl těžce raněn do zad a zůstal v hlubokém bezvědomí.

V 11.30 hod. jsem se konečně dostal za pomoci spojky k rádiové stanici velitele třetí brigády a teprve tam jsem zjistil, proč se stanice nehlásila. Rádiový vůz byl v plné práci zasažen granátem a obsluha mrtva. Jen stojící antény a zvuk zkratovaných akumulátorů doplňovaly pochmurnou atmosféru. Vzal jsem zakrvácený staniční zápisník a ostatní staniční písemnosti a vypnul vysílač.

Při hlášení příchodu jsem velitele informoval o vyřazení rádiové stanice velitele třetí brigády, o ztrátách a o situaci, kterou jsem viděl na jejich levém křídle. Velitel sboru nás ponechává k dispozici operačnímu důstojníkovi sboru a sám odjíždí na štáb. A my jsme již opět v plné práci. Stanici jsme umístili poblíže pozorovatelny dělostřelectva, vylepšujeme své stanoviště a pokračujeme v předávání telegramů a zpráv na štáb sboru, první i druhé brigádě, jakož i tankovému praporu. Převzali jsme i funkci radiostanice třetí brigády. Nočním éterem se nese: "Zina ... zde GUL .. hlaste situaci pro Gornačenka ..."

Š. Husárik

Mistrovství ČSSR v technické činnosti

Ze všech krajú kromě Středočeského se sešlo 30 mladých radiotechníků koncem května t. r. v Hradci Králové, aby zde vybojovali soutěž o mistry ČSSR v kategoriích C1, C2 a B – na kategorií A pořadatelé (tj. technická komise ÚRRA) nějak zapomněli. Díky řediteli a vedení vysokoškolských kolejí Na kotli bylo postaráno o dobré ubytování i soutěžní prostory a stravování – vše v jedné budové. Důstojná byla i výzdoba a propagace této akce v Hradci Králové. O hodnoté ceny se postarali zástupci ředitelství n. p. Strojobal, n. p. TESLA, prodejny OP TESLA v Pardubicích a MěNV v Hradci Králové.

V jednotlivých kategoriích po absolvování teoretického testu stavěli účastníci mistrovství jednoduchý ní zesilovač (C1), indikátor napětí s LED (C2) a stabilizovaný napějecí zdroj s OZ (B). Jejich výrobky, stejně jako výrobky donesené z domova a vystavené v prostorách soutěže hodnotila komise rozhodčích vedená ing. V. Vildmanem, OK10D, a složená převážně z členů technické komise ÚRRA.

Obr. 1. Z. Richter, OK1ACF, u stanice OK1KKS/p, která vysílala po dobu mistrovství mladých radiotechniků

Při vší snaze a úsporném poskytování jakýchkoli průběžných informací jí trvalo hodnocení tak dlouho, že slavnostního vyhlášení výsledků se čekající účastníci dočkali s více než hodinovým zoožděním.

Je potěšitelné, že po mnoha letech snažení se konečně i technická činnost dočkala svého soutěžního systému, který je nejen na papíře, ale začíná být již i skutečností. O to větší péče by se měla věnovat detailnímu dopracování pravidel a ostatních základních materiálů, aby jejich interpretace byla jednoznačná a aby byly v souladu se všemi směrnicemi s celosvazarmovskou působností. Veškeré nedostatky v tomto směru (jako např. věková hranice kategorií, samotný název soutěže ap.) zbytečně poškozují dobrý dojem účastníků z celé akce. V této oblastí má technická komise ÚRRA ještě dost práce.

V jednotlivých kategoriích se mistry ČSSR pro rok 1980 stali Lukáš Vašut (C1), Tomáš Teska (C2) a Martin Šenfeld, OL5AXL (B). Nejúspěšnějším družstvem bylo družstvo Západoslovenského kraje ve složení R. Kotěšovský, P. Rzyman a M. Juliny s vedoucím Lubošem Mrňou, OK3CML (vítězem technické soutěže SSR v kategorii A).

Organizačně celou soutěž velmi pěkně zabezpečili radioamatéři z Hradce Králové a okolí – OK1MAY, OK1VLA, OK1DXZ, OK1VIB, OK1MOT, OK1VGS, OK1WBK, OK1MGW, OK1MVS, OK1ZE, OK1ACF, OK1LK, OK1MKA a další. ÚRRA Svazarmu zastupoval jeji tajemník pplk. V. Brzák, OK1DDK.

Výsledky Mistrovství ČSSR v technické činnosti

٠,	L. Vašut, Severomoravský kraj	5470 bodů
2.	R. Kotěšovský, Západoslovenský kraj	5380 bodů
3.	R. Burčák, Východoslovenský kraj	5267 bodů
4.	R. Gubka, Středoslovenský kraj	5210 bodů
5.	P. Palatka, Praha-město	5182 bodů

R. Puskajler, Středoslovenský kraj
 P. Kohoutek, Východočeský kraj
 P. Jedlička, Jihomoravský kraj
 5140 bodů

Obr. 2. Nejlepší tři technici v kategorii Cl (zleva Vašut, Kotěšovský, Burčák)

Obr. 3. Nejlepší tři technici v kategorii C2 (zleva Teska, Rzyman, Puskajler)

Obr. 4. Nejlepší tři technici v kategorii B (zleva Šenfeld, Vymazal, Kálosi)

Κŧ	tegorie	В	

6000 bodů
5750 bodů
5650 bodů
5610 bodů
5460 bodů

OK1AMY

Technická súťaž rádioamatérov Slovenska 1980

V závere minulého roka prišli v platnosť nové celoštátne pravidlá technických sútaží rádioamatérov. Zimné obdobie bolo priestorom na usporiada-

Obr. 1. Peter Rzyman z Malaciek získal za test 1000 bodov, plných 4000 bodov v rýchlostnej stavbe a 500 bodov za súťažný exponát. Spolu to urobilo 5500 bodov a súčasne aj titul majstra Slovenska pre rok 1980

Obr. 2. Prísnym pohľadom a stratovými bodmi hodnotia súľažné exponáty OK3CJC, OK3IO, OK3LU, ďalej OK3CDR a OK3UE

nie okresných a miestných súťaží, z ktorých najlepší súťažiaci postúpili na súťaže krajské. Už toto samotné konštatovanie svedčí o celkovom novom prístupe k t technicko-konštruktérskej činnosti, predovšetkým v tom, že sa začalo "hýbať" a tvoriť nielen "hore", ale aj "dole", na rádiokluboch a krúžkoch.

Výcvikové stredisko Zväzarmu-Gbelce v okr. Nové Zámky bolo v dňoch 25. a 26. apríla miestom súperenia najlepších technikov, postupujúcich z krajských súřaží, vo všetkých štyroch vekových kategóriach (A, B, C1, C2) v predpisaných disciplinach už podľa nových pravidiel.

V kategórii A zvíťaziť Ľubomír Mrňa (BA-v), predovšetkým vďaka získu 1000 bodov za perfektne vodaka získu 1000 bodov za perfektne vy kategórii juniorov získal prvenstvo Peter Kálosi z OK3KKF-Fifakovo. Kategória mládeže C-2 (13-15 rokov) mala víťaza v Petrovi Rzymanovi z RK Malacky OK3KMY, ktorého poznáme z viacerých uspešných umiestnení aj na majstrovstvách SSR z predcházajúcich ročníkov. V kategórii najmlacších zvíťazii Rastislav Kotešovský z okr. Topolčany.

Za hlavného rozhodcu ing. Mráza, OK3LU, je možné podakovať všetkým činovníkom, organizátorom aj pretekárom za tichú, skromnú, ale skutočne dobrú športovú súťaž.

ОКЗПО

ROB na Duchonke

V máji sa uskutočnilo celoslovenské školenie trénerov v rádiovom orientačnom behu, ktoré bolo spojené so sústredením výberu talentovanej mládeže SSR v ROB (obr. 1).

Obr. 1. Mladé nádeje nášho ROB

Teoretická časť bola volená tak, aby tréneri mohli nadobudnuté poznatky realizovať priamo v praxi na sústredení. Sústredenie se začalo nácvikom práce s prijímačom v pásmach 3,5 MHz a 145 MHz, ktorý bol spestrený hrou, na slepú babu s prijímačom. Pokračovalo dohľadávkami pri, skrátení vysielacieho času, dohľadávkami pitatich vysielačov za päť minút, dohľadávkami bez prijímača atď.

Sústredenie bolo ukončené pretekmi družstiev a jednotlivcov a na rozlúčku bol usporiadaný nočný rádiový orientačný beh dvojčlenných hliedok, v ktorom štartovali aj tréneri.

Na sústredenie najlepšie pripravení prišli chlapci zo ZO Zväzarmu Filakovo, ktorí v kategórii C2 obsadili v celkovom hodnotení prvé miesto. Najväčšie nedostatky mali chlapci v pásme 2 m, čo stojí za zamyslenie pre všetkých trénerov.

24 YL

pod značkou OK5CRK

Je 18. květen 1980. Ač uprostřed měsíce lásky, 24 YL z celé ČSR balí kufry a 19. května ráno opouští svoje rodiny a odjíždí do Božkova, málé vesničky na vysokém kopci nad Mnichovicemi. V zavazadiech mají kromě oblečení na delší dobu telegrafní klíče, sluchátka a velkou svačinu. Když se k nim v Božkově připojí podplukovník Jaroslav Vávra, OK1AVZ, lalk už je si zcela jist: "Dívčí válka..."

Obr. 1. Helena Zábranská (OM OK1ZD) a Ladislav Hlinský, OK1GL, při vysílání volného textu

Obr. 2. Helena Hašková (OM OKIFHP), Jindřich Gunther, OKIAGA, a FT 225

Obr. 3. Byla to dřina, ale stála za to!

Kdo však sleduje pozorně AR, tomu je jasné, že tu přece ještě někde musí být Fräntišek Ježek,OK1AAJ, Jindřich Günther, OK1AGA, a Ladislav Hlinský, OK1GL, a že v Božkově začíná populární YL kurs, již podruhé pořádaný ČÚRRA Svazarmu.

Proto jsme se mohli bez obav vypravit pouze s fotoaparátem a blokem do Božkova. Přivítání bylo opravdu symbolické: plný talíř buchet se šlehačkou! Pohledem do seznamu účastnic jsme se ještě ubezpečili: čtyři Heleny, tři Lenky, dvě Zdeny, dvě Jany, dvě Dany, dále Ludmila, Marta, Zorka, Eva, Marcela, Dagmar, Margit, Ivana, Jitka, Olga a Alena (tedy ani Šárka ani Vlasta).

Jak se stalo rádio jejich koničkem? I kdvž metodici asi radost mít nebudou, zjistili jsme, že největší procento devcat se o radioamatérství začalo zajímat až před svatbou nebo po svatbě. Zásluhu na tom mají tito radioamatéři: OK1AAK, OK1AMY, OK1AVT, OK1DFP, OK1FHP, OK1VMA, OK1VUX a OK1ZD. Na druhém místě jako prvotního činitele děvčata uváděla vliv rodičů, sourozenců, případně dalších příbuzných nebo přátel (OK1KPU, OK1ARI, OK1AES, OK10VP, OK1KTA, OK1KBL, OK1DEF): Až na třetím místě skončil organizovaný nábor radioklubů a ZO Svazarmu (díky OK2ER a OK1KYP). Nezapomeňme však, že naše statistika je ovlivněna věkovým průměrem účastnic kursu - 23 let. Samozřeimě, že isou ještě další příležitosti, jak se stát radioamatérkou: Lenka Uhrová z radioklubu OK2KAJ se před několíka lety zúčastnila jako pořadatel se svými kolegy z oddílu orientačního běhu ČSTV disciplíny orientační běh na krajském přeboru v MVT v Třebíči. Tam vhodně "zapracovala" Zdena Mašková, OK2BMZ, a dnes je Lenka členkou našeho reprezentačniho družstva vícebojařek. Spolužačky Anna Kubová a Lenka Tučková se staly radioamatérkami v rámci studia na vysoké škole. Na pedagogické fakultě v Ústí nad

Labem, kde studují, je jedním z vyučovaných předmětů tzv. společensko-politická praxe, v němž se seznámily se svazarmovskými sporty, mezi nimi také s ROB a telegrafií a odtud zbýval už jen malý krůček do radioklubu OKTKCU.

Nejmladší účastnicí YL kursu byla Dagmar Zachová z OK1KYP (nar. 5. 11. 1964), která se k radioamatérskému sportu dostala prostřednictvím své starší sestry Marcely a YL kurs absolvovaly společně. (Zde je třeby vysvětlit, že pořadatel YL kursu byl nucen vzhledem k množství přihlášek stanovit jako jedno z kritérií výběru dolní věkovou hranici – 15 let.)

Kázeň a morálka byly na YL kursu v Božkově obdobné jako na Děvíně: žádné vycházky ani mužské návštěvy a výcvik a výuka od rána do večera. Po skončení programu měla děvčata denné k dispozici transceiver FT225 a pod volací značkou OK5CRK se

Obr. 4. Dana Pošustová, OL2AXP, a Helena Zábranská při výuce povolovacích podmínek

učila praktickému provozu v pásmu dvou metrů přes dostupné převáděče, což byl jediný styk s okolním světem, s manželi a známými. Pouze Jana Vejvodová (OM OK1VMA) v úterý ráno opustila svoje spolužačky, aby na filozofické fakultě Univerzity Karlovy v Praze absolvovala promoci a večer se vrátila s titulem PhDr.

Při táboráku poslední den večer zpečetil svůj úspěch u všech absolventek instruktorský kvartet QK1AAJ – OK1AGA – OK1AVZ – OK1GL písničkou "Až bílé konvalinky vzkvetou ..." a v sobotu po závěrečných zkouškách byl letošní YL kurs za všeobecné spokojenosti oficiálně ukončen.

Přibylo nám tedy dalších 24 YL ve třídě C a D. Když se přidají k dosavadním 89 OK a OL YL v ČSR (stav k 10. 6. 1980), konečně překročíme stovku. Snad můžeme říci za všechny amatéry-vysílače, že se už na OSO s ními těšíme.

pfm, amy

Východočeská Hi-Fi Ama

Ve stejný den jako celostátní soutěž – mistrovství ČSSR – mladých radiotechniků, pořádaná Ústřední radou radioamatérství,se uskutečnila v Hradci Králové v květnu t. r. i přehlídka technické činnosti hifiklubů Východočeského kraje. Dostatek exponátů a převážně velmi pěkné vnější provedení, úspěšně konkurující továrním výrobkům (nejen tuzemským, což by nebylo ještě nic mimořádného) byly dva hlavní dojmy, které si náhodný návštěvník z výstavy odnesi. Kromě různých zesilovačů, gramofonů, tunerů, magnetofonů a barevné hudby zde byly početně zastoupeny i měřicí přístroje. Dominovala mezi nimi sada digitálních měřicích přístrojů Vladimíra Němce (obr. 2). Mezi exponáty jsme našli i zesilovač Vita Hříbala, syna zesnulého OK1NG, – takže jablko nepadá daleko od stromu...

Obr. 1. Na východočeské výstavě Hi-Fi Ama

Obr. 2. Měřicí přístroje Vladimíra Němce

Obr. 3. Zesilovač Víta Hříbala (nahoře)

Výstava i její exponáty se mi velmi líbily a jako vždy při podobné příležitosti mě zamrzelo, že radioamatéři nedokáží zorganizovat podobnou výstavu svých výrobků z oblasti vysilací techniky a dalších oboru. Protože jejich výrobky isou neměně kvalitní a je jich

takė dost. Snad proto, že jsou trvale používány, není čas je vystavovat?

Obr. 4. Bytová "super" Hi-Fi souprava

Novinky z výzkumných ústavů TESLA

Dłouholetá tradice Dnu nové techniky TESLA – Výzkumného ústavu pro sdělovací techniku A. S. Popova, Praha, byla koncem května 1980 též poprvé rozšířena o účast dalších výzkumných pracovišť:

- TESLA Výzkumný ústav telekomunikací, Praha,
- TESLA Výzkumný ústav vakuové elektroníky.
 Praha,
- Výzkumný ústav elektrotechnické keramiky, Hradec Králové,
- TESLA Výzkumný ústav přístrojů jaderné techniky, Přemyšlení a
- TESLA Elstroj, vývojový podnik pro racionalizaci.

Rozsáhlá výstava (přes 100 vybraných exponátů) ze všech oblastí čs. elektroniky a slaboproudé techniky byla konkrétním výrazem tvůrčí aktivity k 35. výročí osvobožení naší vlasti Sovětskou armádou. Výstava též naznačila možnosti výzkumné vývojové základny pro plnění náročných úkolů čs. elektroniky, zdůrazněné zasedáním ÚV KSČ v prosinci 1979 v důvodech pro nové nově vytvářené federální ministerstvo elektrotechnického průmyslu.

Základní elektronické materiály a součástky

Pro tlustovrstvovou techniku hybridních integrovaných obvodů byly předvedeny nové pokovovací vypalovací pasty AgPt 3 a AgPt 1; ty umožňují vytvářet elektricky vodivé vrstvy na keramických podložkách. Nové dvousložkové vodivé tmely L 20 a L 21 slouží k lepení čipů, tmelení přívodů a nahrazují pájení měkkými cínovými pájkami. Nová piezokeramika na bázi pevného roztoku PbTiO₃ - PbZrO₃ má vysokou teplotní stabílitu rezonančního kmitočtu a činitele jakosti, čehož se dosáhlo dotováním sloučeninami manganu; bude se používat pro rezonanční elektromechanické a nízkofrekvenční filtry. Nová zalévací látka CHSOE 6 je bezbarvá transparentní epoxidová pryskyřice dianového typu čs. původu a nahrazuje dosud dováženou epoxidovou pryskyřící DER 332 z USA. Lze ji zbarvit červeně, zeleně a žlutě, má teplotní odolnost až do 140 °C a bude se používat pro pouzdření optoelektronických součástek, pro konstrukci světlovodičů, pròsvětlovacích tlačítek apod.

Křemíkový mikrovlnný tranzistor pro oscilátory typu VBT 700 je bipolárního typu v keramickém pouzdře se čtyřmí páskovýmí vývody se zdvojeným vývodem báze pro zmenšení parazitní indukčnosti. Maximální ztrátový výkon má 700 mW a bude využíván v mikrovlnných oscilátorech až pro kmitočty do 4 GHz. Integrovaný číslicově analogový převodník HIC-12.3 je dvanáctibitový a jeho vstupní logické úrovně jsou slučitelné s úrovněmi číslicových obvodů řady TTL; je v kovovém pouzdře a obsahuje 24 vývody. Bude využíván především v měřicí a regulační technice.

Miniaturní plochý keramický kondenzátor Supermit S má poměrně malou teplotní závislost kapacity a nestárne. Permitivita dielektrika je nezávislá na napěti. V řadě E6 se vyrábí až pro kapacitu 47 nF a bude využíván v pásmových vazebních obvodech.

Investiční a lékařská elektronika

Světovou úrovní se vyznačuje výrobou ověřený šestikanálový nosný telefonní systém pro krátké vzdálenosti TESLA KNK 6, který je určen pro nepupinované páry nízkofrekvenčních DM kabelů. Jeho 6 kanálů pracuje v pásmu 76 až 120 kHz, využívá se jedno postranní pásmo, druhé je jen částečně potlačeno. Zdrojem nosných kmitočtů je krystalový oscilátor 8 kHz, z něhož se odvozují všechny potřebné nosné kmitočty. Příslušné průběžné zesilovače se většinou ukládají do vodotěsných skřiní, které se přímo zakopají do země. Výrobní objem v letech 1965 až 1979 dosáhl počtu více než 124 000 kanálkonců objemů výroby asi za 1,2 mld Kčs.

Nové mikroprocesorové řízení malých telefonních ústředen, zhotovené na jedné desce plošného spoje 300 × 200 mm obsahuje: mikroprocesor 8080 s podpůrnými obvody, paměř EPROM 4 K, paměř RAM 1 K, sériovou stykovou jednotku 8251, dekodéry adres a vicepolový konektor. Pomocí této řídicí jednotky a dalších desek s integrovanými obvody LSI se mohou stavebnicově vytvářet různé kombinace telefonních ústředen.

Vysokou úrovní se vyznačuje nové zařízení tlačítkové telefonní volby řešené s integrovanými obvody. USI typu MHB9110, 9200 a 9500. Rotační číselnicí má nový telefonní přístroj nahrazenou tlačítky, což dovoluje rychlou volbu a navíc je možné často volané telefonní číslo uložit do paměti přistroje a tak se snadno opakuje stiskem jediného tlačítka posledně volené číslo. Ukládání často volených čísel se provádí obvody MHB9200, které v modulovém zhotoveném provedení umožňují uložit do pamětí až 100 telefonních čísel.

Měřicí přístroje

Automatická nf měřicí souprava ANS 1 umožňuje měření: absolutní úrovně, útlumového, harmonického a intermodulačního zkreslení, rušivé a psofornetrické úrovně, rozdílů úrovní a fází, útlumu přeslechu; dále umožňuje sledovat stálost získu přenosové cesty a přítomnosti nf modulace.

Souprava pro kalibrování měřicích mikrofonů metodou reciprocity byla vyvinuta pro cejchování měřicích kondenzátorových mikrofonů průměru 24 mm. Přesný komparátor umožňuje rozlišení dvou střídavých napětí s přesností 0,01 dB v měřicím rozsahu 1 až 100 mV v kmitočtovém pásmu 100 Hz až 10 kHz. Citlivost měří s přesností lepší než 0,05 dB v rozsahu kmitočtů do 1 kHz, což je na světové úrovní soudobých mezinárodních standardů.

Nový měřic otáček gramofonů a magnetofonů pracuje s nosmým kmitočtem 3150 Hz. Jeho záznam se přehrává na měřeném přístroji a výstupní signál se zpracovává kmitočtovým diskriminátorem; tím se vyhodnotí kmitočtová modulace (kolísání rychlostí). Vyznačuje se výstupními signály obdélníkovitého tvaru, toto napětí se integruje na členu RC. Měřič plně odpovídá požadavkům ČSN 36 8431 čl. 26 a 27 a je určen pro měření kolísání a driftů rychlostí pohonných mechanismů elektroakustických záznamových a reprodukčních zářízení.

Pozoruhodná byla jednotka programového řízení JPR 13, která důsledně využívá mikroprocesory TESLA 3000, což umožnilo zrychlení provádění instrukcí a zhotovit mikropočítač na jedně plošné desce. Také rozšíření paměti na kapacitu 32K slov je význačným zdokonalením stávajícího systému TES-LA SAPI, kterých s jednotkami programového řízení JPR 12 a 12 R bylo již dodáno přes 500 souprav do různých oblastí čs. národního hospodářství.

Původností řešení se vyznačovalo zařízení elektrokardiokinetografu k měření a registraci relativních objemových a tvarových změn srdečních komor během systolické a distolické fáze. Využívají se poznatky o vlastnostech šíření elektrického pole uvnitř lidského hrudníku. Neinvasní vyšetřování lidského srdce umožňuje pôdrobné diagnostické šetření a podá dostatečné množství informací o stavu srdce. Princip metody byl rozpracován v Ústavu fyziologických regulací ČSAV Bulovka a TESLA VÜST, kde byly zhotoveny laboratorní prototypy pio ověření; optimální využíván využívání je podmíněno použitím systému počítače k podrobnému vyhodnocení zaznamenaných výsledků měření srdce. Počet snímacích elektrod je 7 a současně se provádí záznam 8 srdečních signálů.

Spotřební elektronika

Nejvýznačnějším exponátem byl funkční prototyp barevného televizního přijímače TESLA COLOR 110. Byl osazen licenční obrazovkou typu in-line a vysokým podílem integrovaných obvodů. Novinkou má tyristorový řádkový rozklad a vybavení bezztrátovou regulací, kterou se stabilizuje kolísání síťového napěti a dodává energie napájecím obvodům tele-

vizního přijímače. Stabilizace pracuje v rozsahu od 175 do 270 V síťového napětí. Úhlopříčka obrazu je 67 cm a příjem je možný v normách K i G, v soustavě SECAM i PAL, v pásmu l až V. Příkon má 150 W. Vyvinutý funkční vzorek bude podkladem pro dokončení. výrobních prototypů a přípravu výroby v podníku TESLA Orava.

Vhodným doplňkem výstavy byla expozice informační a dokumentační činnosti TESLA VÚST VTEI, která je začleněna v Ústředí technického průzkumu a služeb. Předváděla se celá řada pravidelně vydávaných referátových publikací, z nichž pro čtenáře AR jsou zjímavé soubory LTS (Literárně technická služba), Spotřební elektronika, Elektroakustika, Lékařská elektronika, Polovodiče, Klasické součástky. Aktuální sborníky: Laserová technika, Zobrazovací soustavy apod. a ročenky Quo vadis elektronika

podávají komplexní přehled o vývoji elektroniky. Tyto materiály si mohou zájemci objednat včetně katalogu DNT '80 výzkumných ústavů TESLA (s podrobnými popisy na výstavě předváděných exponátů) od TESLA VÚST, Ústředí technického průzkumu a služeb, odbor edice, Novodvorská 994, 142 21 praha 4.

Současně pořádaný seminář jednal v šesti sekcích o telekomunikační technice, o přístrojích pro jadernou techniku, o elektronických zařízeních, o materiálech, o technologických zařízeních a o součástkách. Celkem bylo předneseno přes 40 referátů, které jsou obsaženy ve sborníku.

Na tiskové konferenci, organizované v závěru otevření výstavy, informoval ing. A. Marhula, náměstek ředitele VÚST, o cílech výstavy a podal podrobnější informace o význačných exponátech. Ocenil přínos spolupráce poboček ČSVTS pořádajících

organizací výzkumu a vývoje a zodpověděl četné dolazy novinářů. Diskutovalo se o urychlení výroby barevných televizorů, o dělbě výzkumných programů RVHP a o nutnosti podstatného zvýšení podliu výroby, neboť nyní se prakticky realizuje jen asi 20 % z předváděných výzkumných a vyvinutých zařízení. Vyzdvihl se přinos dálkových kursů ČSVTS pro další kvalitativní vývoj elektroniky např. Základy spolehlivosti v elektronice a automatizaci, nebo Základy mikroprocesorů a jejich aplikace, které má v působnosti Dům techniky ČSVTS Praha. V závěru konference se zdůraznila progresivnost rozvoje elektroniky, zvláště mikroelektroniky, která stále více proniká do všech oblastí lidské činnosti a umožňuje komplexní automatizaci strojírenských a jiných výrobků našeho národního hospodářství.

Antonín Hálek

Nové záznamové materiály pro kazetové magnetofony

V posledních letech došlo k mnohým zlepšením ve vlastnostech záznamových materiálů. Mnozí uživatelé magnetofonů však často zbytečně investují do drahých záznamových materiálů ve snaze o lepší výsledek af již v kmitočtovém rozsahu, nebo v odstupu signálu od šumu. Domnívají se totiž, že použitím některého z kvalitnějších (a tedy i dražších) druhů pásků dosáhnou lepší kvality záznamu. To však zdaleka neplatí všeobecně. Přesto však v určitých případech přenosové vlastnosti některých magnetofonů zlepšit

Nejběžněji používaným záznamovým materiálem je pásek s kysličníkem železitým Fe₂O₃, dnes běžně označovaný navíc LN (low noise). Do této skupiny patří např. základní typy pásků AGFA, BASF, MAXELL, SCOTCH i EMGETON. Patří sem i nejrůznější výrobky prodávané obchodními domy v zahraničí pod všelijakými efektními názvy. Tyto materiály lze používat na všech typech magnetofonů. Rozdíly mezi nimi jsou obvykle v kvalitě kazety a její mechaniky, zejména kluzných fólií a kladiček. Kvalitnější bývají kazety šroubované (ty nejlevnější jsou jen lepené), neboť umožňují snadnější opravu poškozeného pásku.

Kazety jsou označovány celkovou hrací dobou pásku v minutách (C45, C60, C90 a C120). Většina výrobců doporučuje jako optimální kazety C60 nebo C90. Při volbě záznamového materialu je vždy lépe dát přednost známým a zavedeným výrobkům; kupovat levné kazety se často nevyplatí.

Prvým zlepšením v této oblasti bylo zavedení pásků s kysličníkem chromičitým (CrO₂). Tyto materiály umožňují lepší přenos signálů vyšších kmitočtů, ve střední oblasti se však u nich projevuje zkreslení již při menším vybuzení (oproti materiálům Fe₂O₃). Vyžadují též větší předmagnetizační i záznamový proud a pro optimální využití svých vlastností také jiný průběh remanentního magnetického toku 3180 a 70 μs (oproti 3180 a 120 μs u pásku s Fe₂O₃).

Nevýhody těchto materiálů vedly k pokračování ve vývoji pásků s kysličníkem železitým. Použitím jemnějšího kysličníku, zvětšením jeho poměru vůči pojidlu a zlepšením

Obr. 2. BASF C 90 LH (zkreslení 2,5 %)

Obr. 3. AGFA C 90 Superferro (zkreslení 1 %)

Obr. 4. MAXELL C 90 LN (zkreslení 2;4 %)

Obr. 5. SCOTCH C 60 High Energy (zkreslení 2 %)

Obr. 6. EMGETON C 60 (zkreslení 2,6 %)

povrchu aktivní vrstvy byly vyrobeny pásky označované např. Super Ferro, LH, Ferro Dynamic apod. Tyto pásky, které lze rovněž používat na všech typech magnetofonů, umožňují lepší přenos signálů vysokých kmitočtů i lepší odstup signálu od šumu. Jsou též odolnější proti přebuzení.

Dalším vývojovým stupněm jsou materiály, označované zkratkou FeCr. Jejich aktivní vrstva se skládá ze základní vrstvy Fe₂O₃, na níž je nanesena ještě tenká vrstva (asi 1 µm) CrO₂. Tyto pásky v sobě slučují výhody materiálů Fe ve středních oblastech a materiálů Cr ve vyšších oblastech přenášeného kmitočtového pásma. Lze je rovněž používat na všech typech magnetofonů, i když plného využití se dosáhne na přístrojích, které lze přepnout pro tyto materiály.

Tyto pásky jsou výrobně relativně náročné a proto i dražší. Po počátečním chaosu nastalo v poslední době určité sjednocení v požadavcích na přístroje a jsou používána tři doporučená nastavení pro materiály Fe, Cr a FeCr, která lze obvykle přepínat na magnetofonu.

Na závěr (obr. 1 až 6) předkládám informativní měření několika známých záznamových materiálů typu Fe, aby čtenáři mohli porovnat jejich relativní vlastnosti. Měření bylo realizováno na magnetofonu Tandberg TCD 310 (nastaven na Fe), vstupní signál byl zmenšen o 20 dB oproti plnému vybuzení a vstupní napětí bylo konstantní. Připomínám, že zmenšení úrovně signálů pod 80 Hz a nad 14 kHz je důsledkem přenosových vlastností použitého magnetofonu. I když jsem si vědom, že toto měření má řadu nedostatků, přináší relativní srovnání při nezměněmé pracovním bodu, což bude i běžný případ uživatelů magnetofonů.

Z naměřených výsledků je zřejmé, že chceme-li dosáhnout maximální jakosti záznamů pro určitý druh záznamového materiálu, musíme zajistit přesné nastavení přístroje právě pro tento druh (což obvykle nebude v možnostech běžného posluchače) a nepoužívat pásky neznámých vlastností.

Ing. Jan Merhaut

RUBRIKA PRO NEJMLADŠĪ ČTENĀŘE

Soutěž o zadaný radiotechnický výrobek

Z pověření České ústřední rady PO SSM vyhlašuje Ústřední dům pionýrů a mládeže Julia Fučíka dvanáctý ročník soutěže o zadaný radiotechnický výrobek. Řídí se směrnicemi STTM pro léta 1978 až 1980. Pro školní rok 1980/81 platí následující propozice soutěže:

Pořadatel: Ústřední dům pionýrů a mládeže Julia Fučíka, Praha.

Termíny soutěže: výrobky je možno zaslat na adresu ÚDPM JF, Havlíčkovy sady 58, 120 28 Praha 2 od 1. října 1980 do 15. května 1981. Pořadatel vrátí výrobky autorům nejpozději do šesti měsíců po uzávérce soutěže.

Průvodní list: spolu s výrobkem zašle soutěžící průvodní list, ve kterém uvede svoje jméno a příjmení, den, měsíc a rok narození, adresu svého bydliště včetně PSČ a nechá jej potvrdit (razítko a podpis) organizaci, za kterou soutěží – např. pio-nýrské skupině, základní organizaci SSM, domu pionýrů a mládeže apod.

Kategorie: soutěž je vyhlášena pro jednotlivce ve dvou věkových kategoriích. Soutěžící může zaslat v jedné věkové kategorii jen jeden výrobek. Do první kategorie patří ten soutěžící, který v den uzávěrky nedosáhl věku 14 let (tj. narodil se 16. května 1967 nebo později), do druhé kategorie budou zařazení ti, kteří v den uzávěrky soutěže nedosáhli věku 20 let.

Hodnocení: soutěž je zaměřena na pomoc Výchovnému systému PO SSM pro jiskry a pionýry. Porota proto bere při hodnocení a pionyty i votata protocerie princinceni v úvahu použitelnost zpracování námětu pro plnění požadavků Výchovného systé-mu, např. k plnění podmínek odznaku odbornosti Elektrotechnik. Zvlášť hodnotí technické zpracování výrobku.

Ceny: autoři tří nejlepších prací v každé kategorii získají věcné ceny. Všichni účastníci soutěže, zahrnutí do výsledkové listiny, mohou požádat svoji skupinovou vedoucí PO o záznam splnění příslušné podmínky odznaku odbornosti Elektrotechnik.

Soutěžní úkol 1. kategorie

Pro tuto soutěžní kategorii byl stanoven výrobek "Kontrola světelného okruhu", který byl pod názvem "Kontrola obrysových světel" otištěn v rubrice R 15 Amatérského radia řady A č. 12 1978, str. 450.

Pro čtenáře, kteří toto číslo AR nemají, otiskne návod s malou úpravou časopis ABC mladých techniků a přírodovědců v září 1980.

Pro obě věkové kategorie je závazné schéma stanoveného výrobku, zatímco výběr součástek, provedení desky s plošnými spoji a další vnější úpravy jsou závislé na rozhodnutí autora. Dotazy a konzultace k soutěži zajišťuje radioklub ÚDPM JF, který má k dispozici prototypy obou soutěžních výrobků a může na požádání zaslat jednotlivé výtisky soutěžních úkolů (zájemce z Prahy žádáme o osobní návštěvu k vyřízení jejich dotazů, nejlépe vždy v pondělí odpoledne).

Desky s plošnými spoji prodává i na dobírku Radioamatérská prodejna Svazar-mu, Budečská 7, 120 00 Praha 2. Komplety součástek pro soutěžní výrobky prodává a zasílá na dobírku značková prodejna TES-LA, Palackého 580, 530 02 Pardubice a Dům obchodních služeb Svazarmu, Pospíšilova 12/13, 757 01 Valašské Meziříčí. Jednotlivé součástky zasílá na dobírku Žásilková služba TESLA, Vítězného února 12, 638 19 ·Uherský Brod.

Výrobky zašlete ve vhodném obalu a s předepsaným průvodním listem na adresu ra-dioklubu UDPM JF nejpozději dne 15. května 1981 (platí datum poštovního razítka), později zaslané výrobky nebudou hod-

Soutěžní úkol 2. kategorie

Námětem práce druhé kategorie (narození 16. května 1961 a později) je výrobek Indikátor stavu baterií. Soutěžící uvede v průvodním listu, na jaké jmenovité napětí je přístroj nastaven (viz tabulku v seznamu součástek). Provizorní regulovatelný zdroj, uvedený v návodu, nemusí být součástí soutěžního výrobku.

INDIKÁTOR STAVU BATERIÍ

Ing. Vladimír Valenta

Popisovaný obvod se hodí všude tam, kde je třeba znát stav napájecí baterie. Je to zejména u přenosných magnetofonů, přenosných měřicích přístrojů a také u soupravy dálkového řízení modelů. Indikace stavu baterií miniaturním ručkovým měřidlem vždy nevyhovuje pro malou rozlišitelnost stupnice; měřidlo není také vhodné při mechanickém namáhání přístroje při provozu.

V uvedených případech lze ručkové mě-řidlo nahradit jednoduchým elektronickým zařízením, které opticky (blikáním) upozorní obsluhu na to, že je nutno vyměnit vyčerpané napájecí články nebo baterie. Obvod je zapojen tak, že při nabitých nebo čerstvých bateriích dioda nesvítí. Žmenší-li se napětí baterií pod zvolenou mez, začíná dioda blikat. Při dalším zmenšení napětí se intervaly mezi jednotlivými záblesky stále zkracují, až se dioda rozsvítí trvale. Z popisu je zřejmé, že přístroj bez dalších pomocných obvodů neumí rozeznat, je-li v přístroji baterie dobrá nebo zcela vybitá (v obou případech dioda nesvítí). Plné napětí baterie je však zřejmé z vlastní funkce používaného přístroje.

Obr. 1. Zapojení indikátoru stavu baterií

Zapojení je vlastně astabilní klopný obvod (obr. 1), řízený napětím. Jako aktivní prvky jsou použity dva komplementární tranzistory a proto je v klidu spotřeba indikátoru malá. Tranzistor T₁ má připojen emitor na Zenerovu diodu D₁, která tvoří referenční zdroj napětí. Dělič R, R₁ a R₂ je zvolen tak, aby bylo na bázi napětí +0.7 V při takovém napětí zdroje, kdy má začít dioda D₂ blikat. Bude-li napětí zdroje větší, bude větší i napětí na bázi a na emitoru T_1 (vzhledem k 0 V) a tranzistor T_1 se uzavře. Tranzistor T_2 je proto uzavřen také a diodou D2 neprotéká proud. Odpor R₄ v emitoru tranzistoru T₂ má dvojí funkci: jednak chrání diodu D₂ před přetížením, jednak upravuje hysterezi celého klopného obvodu. Kondenzátor C1 je nabit přes diodu D2 na záporné napětí. Při zmenšování napájecího napětí se zmenšuje i rozdíl napětí báze-emitor T₁ (jeho emitor je držen diodou D₁ na stále stejném potenciálu) až do okamžiku, kdy se tranzistor T₁ otevře. Procházející kolektorový proud vybudí T₂, který rozsvítí diodu D₂. Tím, že se otevře tranzistor T2, připojí se kondenzátor C₁ na + pól a náboj kondenzátoru uzavře T₁ a T₂. Po vybití kondenzátoru se cyklus opakuje.

Všechny součásti jsou umístěny na desce s plošnýmí spoji (obr. 2). Desku po vyleptání pečlivě očistěte a vyleštěte (např. tvrdou pryží). Ihned po vyčištění desku nalakujte lakem z kalafuny, rozpuštěné v nitroředidle. Po zaschnutí laku vyvrtejte díry pro součást-

Obr. 2. Deska s plošnými spoji O42

ky vrtákem o Ø 1 mm. Pro odporový trimr zvětšete díry na Ø 1,2 mm. Desku osaďte odpory podle tabulky uvedené v seznamu součástek, v níž jsou voleny hodnoty podle použitého napětí. Jmenovitá napětí baterií složených z burelových článků či akumulátorů NiCd a jim odpovídající minimální napětí isou v další tabulce. Pamatujte si, že minimální napětí, pod které nelze vybíjet niklokad-miový akumulátor, je 1,1 V. Minimální na-pětí suchých článků je obvykle 1 V.

Po osazení všech součástek do destičky připojíte takové napájecí napětí z regulovatelného zdroje, které chcete "hlídat" a nasta-víte trimr. R tak, aby dioda začala trvale svítit. Zvětšíte-li toto napětí o 0,3 až 0,5 V, dioda by měla zhasnout. V rozsahu této změny musí dioda blikat. Několikerým nastavením napětí a odporového trimru si vyzkoušejte správnou

Obr. 3. Provizorní regulovatelný zdroj

funkci a potom trimr zajistéte kapkou laku. Kdo nemá možnost nastavit si obvod pomocí regulovatelného zdroje, může si zhotovit provizorní regulovatelný zdroj podle obr. 3. Bude k tomu potřebovat jakýkoli tranzistor $\beta\!>\!50$ a potenciometr $1~k\Omega$. Schéma je s tranzistorem typu n-p-n, ale při obrácení polarity napájecího napětí můžete použít i typ p-n-p.

Seznam součástek

tranzistor KC148 tranzistor KF517 dioda LED kondenzátor TE004,50 μF odpor TR 112a, 2,2 $k\Omega$ odpor TR 112a, 820 Ω odpor TR 112a, 10 $k\Omega$

Jmenovitá napětí baterií

D:

Jmenovité napětí [V]	1,5	1,2	3	2,4	4,5	4,8	6	6	9	9,6	12	12
Minimální napětí [V]	1	1,1	2	2,2	3	4,4	4	5,5	6	8,8	8	11
Počet článků v burelové baterii	1 mono- článek	-	2 kulatá baterie	-	3 plochá baterie	-	4	-	6 pro tran. přij.		8	-
Počet článků v baterii NiCd	-	1	-	2	-	4	-	5		8	-	10

Jmer napě	novité tí	4,5 V	4,8 V	6	v	9 V	9,6 V	12	V
Minir napė		3 V	4,4 V	4 V	5,5 V	6 V	8,8 V	8 V	11 V
R;	TR 112a	3k3	1k	8	1k2	820	8k2	10k	3k9
R ₄ *	TR 112a		330			70	6	80	1k2
D ₁			KZ140					KZZ72	
R	TP 040		1k				4k7	10k	2k2

) pro LED typu LQ 100 zmenšete R4 na 56 Ω při 4 až 6 V, na 120 až 150 Ω při

255 AR 2

Jednoduchý nástroj k odstranění izolace z vodičů

Tato velmi jednoduchá pomůcka je zhotovena z běžně používané "štípačky" na nehty. Je velmi praktická a plně nahradí nedostatkové odizolovávací kleště. Na ostrých hra-

nách štípačky vypilujeme několik zářezů (vždy dva proti sobě) různých velikostí na různé průměry vodičů (viz obr.).

Jozef Lazar, 13 let

Doplnenie prijímača Riga 103 pásmom 19 a 16 m

Tento prijímač má pre každý vlnový rozsah AM samostatný modul so zástrčkou, ktorou sa zasúva do základnej dosky. V prijímači však boli vynechané najkratšie rozsahy krátkých vln, tj. pásma 19, 16 a 13 m. Prijímač môžeme aj v amatérskych podmienkach doplnit spomínanými rozsahmi. To však nie je možné pri zachovaní všetkých ostatných rozsahov. V prijímači je celkom nepotrebný rozsah SW 3 (75,9 až 52,2 m), ktorý je možné pre doplnenie obetovať. Kto má

možnosť získať nový modul ktoréhokoľvek krátkovlnného rozsahu môže si modul SW 3 iba odložiť a v prípade potreby vložiť späť.

S ohľadom na parazitné kapacity a indukčnosti ako aj na mezdný kmitočet použitých germaniových tranzistorov, je treba upustiť od najkratšieho pásma 13 m. Jedná sa teda o obsahnutie rozsahu 15 až 18 MHz na jestvujúcom module SW 3.

Vo vybratom module (obr. 1) postupne povymieňame jednotlivé kondenzátory za nové. Orientujeme sa pritom podľa hodnôt pôvodných kondenzátorov, patriacich ku každej z troch cievok. Opatrne vyspájkujeme aj kostričky a cievkami. Pôvodný bavlnou opradený drôt nahradíme podobným (v núdzi aj bez opradenia) ale väčšieho priemeru (asi 0,6 mm). Závity vinieme tesne pri sebe v pôvodnom smere. Prehľad všetkých zmien je v tab. 1.

Najdôležitejšou prácou je naladenie modulu. Nie však možné uviesť presný návod

Tab. 1.

Označenie	Pôvodná hodnota	Nová hodnota
C ₁	6 až 25 pF	ostáva
C ₂	470 pF	. 110 pF
C ₃	82 pF	56 pF
C ₄	110 pF	56 pF
C ₅	470 pF	100 pF
C ₆	6 až 25 pF	ostáva
C ₇	100 pF	68 pF
C ₈	430 pF	82 pF
C ₉	6 až 25 pF	ostáva
C ₁₀	330 pF	150 pF
L ₁	23/4 záv.	8/2 záv.
	Ø 0,2 mm	Ø 0,6 mm
L ₂	20/6 záv.	7/3 záv.
	Ø 0,2 mm	Ø 0,6 mm
L ₃	20/6 záv.	7/3 záv.
	Ø 0,2 mm	Ø 0,6 mm
L ₄	1 záv.	ostáva
l	Ø 0,2 mm	Į

z toho dôvodu, že na prijímači nie je k dispozícii stupnica pre toto pásmo. Podľa signálného generátoru vymedzíme na stupnici pásmo od 15 do 18 MHz. To dosiahneme zmenou kapacity C₉ a indukčnosti L₃. Dôležité je aj dobre naladit vstupný obvod a obvod predzosilňovača.

Ing. Marián Kolivoška

Ochranný obvod transformátorové svářečky

Při zapalování oblouku se někdy elektroda "přilepí" ke svařovanému materiálu. V tom okamžiku prochází obvodem zkratový proud, který zahřívá transformátor, přivodní vodiče, především však elektrodu. Po několka sekundách se elektroda rozžhaví, v mnoha případech opadá obalová vrstva a elektroda je znehodnocena.

Popisovaný ochranný obvod odpojí automaticky svářečku, jakmile by k uvedenému jevu došlo. Sekundární napětí na transformátoru svářečky je naprázdno asi 50 až 60 V, při svařování (na oblouku) je asi 20 až 25 V. Při zkratu (přilepení elektrôdy) zůstane na výstupu transformátoru vzhledem k úbytku na přívodech asi 5 V.

Zapojení ochranného obvodu je na obr. 1. V mém případě napájím primár napětím 380 V (mezi dvěma fázovými vodiči), zcela shodný obvod lze samozřejmě realizovat i při napájení 220 V.

Svářečka se zapíná tlačítkem Tl₁ a vypíná tlačítkem Tl₂. Stiskneme-li Tl₁, sepne stykač St a jeho kontakty st_a a st_b zapojí primár transformátoru k síti. Napětí na sekundáru se usměrní diodou D a filtruje kondenzátorem C a relé Re sepne. Jeho spínací kontakt re

Obr. 1. Ochranný obvod svářečky

přemostí Tl₁ a svářečka zůstane zapojena, i když Tl₁ uvolníme. Odporový trimr R musí být nastaven (vzhledem k použitému relé) tak, aby relé i při hořícím oblouku spoléhlivě drželo a odpadlo teprve při zmenšení napětí na sekundáru transformátoru pod 10 V. Musíme též zkontrolovat, zda při chodu naprázdno (maximální napětí na sekundáru) není cívka přetížena. Kondenzátor C má za úkol zpozdit dobu odpadu asi o 2 sekundy, aby relé neodpadávalo při každém zapalování oblouku. Protože se na tomto kondenzátoru může objevit napětí áž 80 V, je vhodné použít např. typ TC 939 pro 150 V.

Dojde-li k "přilepení" elektrody, svářečka se za svář sakundy automatichu odsatím zapalování spilosticku spilosticku

Dojde-li k "přilepení" elektrody, svářečka se za svě sekundy automaticky odpojí a po odstranění zkratu ji tlačítkem Tl₁ opet uvedeme do provozu. Tlačítkem Tl₂ svářečku vypojujeme. Jako relé Re mi vyhovělo relé na 12 V s odporem cívky 200 Ω.

Jan Musil

Ještě k elekronickému hubení hmyzu

V AR A8/79 bylo popsáno zapojení vysokonapěťového zdroje, které však lze zjednodušit a ušetřit diak KR205 a jednu diodu KY707. Upravené zapojení je na obr. 1.

Obr. 1

Při kladné půlvlně napajecího napětí se nabije kondenzátor C. Při záporné půlvlně proteče proud přes R₁, D₂ a R₃ a tyristor se otevře. Náboj kondenzátoru se tedy vybije přes primár transformátoru. V sekundárním vinutí se indukuje vysokonapětový impuls o amplitudě 25 až 30 kV. Při dalších periodách se děj opakuje.

Transformátor má feritové jádro a na primáru 9 závitů drátu o průméru 0,6 mm, na sekundáru 720 závitů drátu o průméru 0,15 mm. Jako sekundární cívku lze použít i cívku ze starého televizního vn transformátoru. Odpor R₃ chrání tyristor, nebot při vybíjení omezuje proudové špičky. Mechanické uspořádání zůstává jako v původním článku. Obvod lze použít i jako zdroj vysokého napětí pro Teslův transformátor nebo ionizátor vzduchu apod.

Ing. Jindřich Plzák

Napájení: 9 V (šest monočlánků), síť 220 V (s přídavným napáječem).
Rozměry: 23 × 21 × 6,5 cm.

Hmotnost: 2,5 kg.

V úvodu jsem se zmínil o tom, že B 302 není žádnou novinkou na našem trhu, protože se jedná jen o mírně inovovaný typ MK 125. Tato inovace spočívá především v obvodu, který zajišťuje automatické zastavení na konci pásku.

Funkce přístroje

Obdobné obvody, které jsou dnes používány u většiny kazetových přístrojů, reagují na zastavení navíjecího trnu, přičemž je lhostejné, zda pracují na mechanickém či elektronickém principu. Jejich činnost byla již na stránkách AR několikrát popsána, proto se k ní nebudu znovu vracet. Rád bych jen připomenul, že z naprosto logických důvodů reaguje příslušný obvod vždy na otáčení (či zastavení) navíjecího trnu, protože pak je magnetofon jištěn i proti zmuchlání a zničení pásku, což u kazetových přístrojů vzniká dosti často, přestane-li se z jakýchkoli důvodů navíjet pásek (zastaví se tedy i navíjecí trn), zatímco hnací hřídel pásek transportuje dále.

U tohoto magnetofonu však "zlepšovatelé" z naprosto nepochopitelných důvodů odvodili vypínání nikoli z navíjecího, ale z odvíjecího trnu, což je konstrukce odporující nejen logice, ale přímo zdravému rozumu. Magnetofon se sice na konci pásku zastaví, při poruše navíjení se však pásek určitě zničí. Snímání impulsů nikoli z odvíjecího, ale z navíjecího trnu (tak jak to dělají

s kazetovým magnetofonem B 302

Celkový popis

Kazetový magnetofon B 302 je polský výrobek, který k nám vyváží podnik UNIT-RA prostřednictvím n. p. TESLA Pardubice. Je to monofonní přístroj, který nahradil předešlý typ MK 125, dovážený k nám před lety. Tato inovovaná verze je sice doplněna zařízením zvaným autostop (o němž bude dále podrobnější zmínka), zato však v prodejní cené (1600 Kčs) není zahrnut síťový napáječ, který je nutno koupit zvlášť (185 Kčs).

Magnetofon B 302 je jednoduchý přístroj vyráběný v licenci podle dnes již poněkud zastaralého typu firmy Thomson. V základní výbavě je napájen šesti suchými články (velké monočlánky). Všechny funkce se ovládají

klávesami, prvek krátkodobého zastavení magnetofonu chybí. Regulace záznamové úrovně je automatická, při reprodukci lze využít i regulátor úrovně vyšek (tónová clona). Přepínačem na levé straně (polohy GLOSNIK – DECK) lze přístroj přepnout tak, že v případě, používáme-li vnější zesilovač a reproduktory, zrušíme funkci regulátoru hlasitosti i barvy-zvuku a odpojíme vestavěný reproduktor.

Technické údaje podle výrobce:

Rychlost posuvu: 4,76 cm/s. Způsob záznamu: monofonní. Kmitočtová charakteristika: 80 až 8000 Hz (bez udání normy).

Kolísání rychlosti posuvu: ±0,4 % (bez udá-

ní normy).

Dynamika: 40 dB (bez udání normy).

Obr. 1. Magnetofon B 302

ostatní výrobci), by zajistilo stoprocentní ochranu i v tomto případě.

U typu B 302 zůstalo i nevýhodné ovládání klávesy STOP. Stiskneme-li tuto klávesu jen o něco větší silou, přístroj se nejen zastaví, ale vyskočí i kazeta, což je nepříjemné.

Podíváme-li se na technické údaje výrobce, zjistíme, že je uváděna nejnižší hranice, kterou připouští pro tyto magnetofony ČSN. Tato norma je však více než shovívavá a většina světových výrobků ji podstatně překračuje (srovnejme např. s rovněž polským kazetovým magnetofonem MK 235, který lze zařadit do stejné třídy s B 302).

Dva měřené B 302 však prokázaly pravýopak. Kmitočtová charakteristika byla sice u obou naměřena o něco lepší, než je uváděno, hlavy obou přístrojů byly však nastaveny velmi odlišně a ani u jednoho z nich nebyla štěrbina skutečně kolmá. Kolísání rychlosti posuvu bylo u obou přístrojů mezi ±0,5 až 0,6 %, odstup cizích napětí byl změřen 40 a 42 dB a odstup rušivých napětí 43 a 46 dB. Ve srovnání s obdobnými přístroji světových výrobců nelze tyto parametry považovat za takové, které by odpovídaly současným technickým možnostem magnetofonů tohoto provedení a této třídy.

Vnější provedení přístroje

Ve vnějším provedení se tento magnetofon (obr. 1) nikterak zásadně neliší od předešlého typu MK 125, který je našim čtenářům dostatečně znám. Výrobce zachoval i konstrukci kláves, umožňující ovládání shora i zepředu. Zůstala i drážka pro upevnění přístroje v držáku automobilu. O této skutečnosti je také zmínka na první stránce v návodu k obsluze (č. 13 – drážka pro upevnění magnetofonu v automobilu). Podle našich informací, které jsme již před několika lety dostali od výrobce, se však držák do automobilu již dávno přestal vyrábět a tedy se ani nedodává. Informace v návodu je proto nevhodná, protože na jejím základě se budou mnozí uživatelé po příslušném držáku poptávat – a zcela marně.

Z obou zkoušených přístrojů nebylo ani

Z obou zkoušených přístrojů nebylo ani u jednoho možno po zasunutí kazety bez problémů uzavřít její víko. Před uzavřením víka bylo nutno vždy ještě kazetu zpředu poněkud zatlačit, jinak víko nešlo zavřít.

Majitelé kazetových přístrojů (obzvláště monofonních) vědí, jak často bývá třeba zkontrolovat, popřípadě seřídit kolmost štěrbiny hlavy. U tohoto přístroje se zdá, že je třeba před podobným úkonem celý magnetofon rozebrat, protože není přístup k příslušnému šroubu hlavy. Ani v návodu se o podobném úkonu nic nedočteme.

Jestliže však šroubováčkem nebo ostrým nožíkem opatrně (zpředu od kláves) nadzvedneme pásek z plastické hmoty před otvíracím víkem kazety (v prostoru nad hlavami), můžeme celý pásek vyjmout a získáme tak pohodlný přístup ke všem regulačním šroubům. Škoda jen, že dovozce pozapomněl tuto velmi důležitou skutečnost v návodu popsat a výrazně na ni upozornit.

Vnitřní uspořádání a opravitelnost

Ani vnitřním uspořádáním (obr. 2) se tento magnetofon neřadí mezi výrobky, které by bylo možno pochválit. Uživatel zažije první překvapení, když je nucen umístit napájecí články, vedle reproduktor a změť nejrůznějších volných kablíků. Ani demontaž přístroje při seřizování a opravách není uspokojivě vyřešena.

Problém je i s odděleným sítovým napáječem. Pokud si ho jako zvláštní příslušenství k magnetofonu přikoupíme, musíme jej vždy pracně zaměňovat za suché články, pokud chceme přístroj napájet ze sítě. Podobnou koncepci dnes již nalezneme jen u těch nejprimitivnějších přístrojů.

Závěr

V době, kdy k nám byl kdysi dovážen sice relativně levný, avšak nepříliš zdařilý magnetofon MK 125, nebyly patrně žádné jiné výhodnější možnosti. Pak se však na našem trhu (od téhož vývozce a dovozce) objevil licenční Grundig MK 235, který představoval po všech stránkách nesrovnatelně lepší výrobek. Dnes již z našeho trhu opět zmizel. Další dovoz typu B 302 je však zcela nesporně krokem zpět a lze se jen divit, co vedlo zástupce n. p. TESLA Pardubice k tomu, aby se opět vrátili k tomuto nevyvedenému typu, jestliže přicházejí v úvahu nesrovnatelně lepší přístroje – i když pro vývozce je vždy výhodnější zbavit se méně zdařilých výrobků.

-GLOSN DECK -Lx-BC413B/C BC480 UL1498R αĽα BC1480 A 13 14, 115 圭 G22 🛨 15k 2k2 回 4M7 в 200 12k ±22k *7* 8 13/43 82 [DECK--GLOSN G22 T 3M3 BFP521/5 3k9 BC238 BC1480 BAVP17 4 5 6 A 10 11 12 B ž B 1 10 +]1G6 主 \mathcal{O} 330 6кя 9 V= 22N AAP153 2×BZP6870V75 BC158A 2N2219A BC1480 AAP152 BC211 10/16

Fázovací jednotka mo hudební nástroje

Miroslav Chmela

V posledních letech řada hudebních skupin používá efektů, známých pod názvy Leslie, rotující reproduktory, phasing, flanger apod. Doplněk, sloužící k tomuto účelu, stále chybí na našem trhu [5]. Hudebníci jsou tedy odkázáni na dovoz ze zahraničí, nebo na ochotné "bastlíře" (pokud jimi sami nejsou). Jediná konstrukce, podrobněji popsaná v literatuře [7], nevyhovovala obvykle kladeným požadavkům. Efekt, vytvořený dále popisovanou konstrukcí, byl hodnocen několika hudebníky jako srovnatelný nebo "o něco" lepší, než efekt, získaný se zařízením "Small Stone" firmy Electro Harmonix.

Teorie "phaserů" a "flangerů"

Činnost těchto přístrojů spočívá v napodobení barvy zvuku pohybujícícho se zdroje. Při pohybu zdroje zvuku vůči pozorovateli dochází jednak k Dopplerově jevu, tzn. k posunutí spektra vysílaného zdrojem (změně výšky tonu) a při přítomnosti odražených vln se změní zastoupení jednotlivých složek ve spektru (změny barvy tónu). Typickým pří-kladem z praxe je např. přelet proudového letadla. Na zjednodušeném příkladu lze ukázat, jak je nútno upravit signál k dosažení uvedeného jevu. Od zdroje žvuku Z na obr. 1 se šíří k pozorovateli P přímá zvuková vlna po dráze s a odrazena po dráze s'. Předpokládejme pro jednoduchost, že v místě pozorovatele je amplituda přímě a odražené vlny rovna jedné. Dále uvažujme nulovou počáteční fázi přímé vlny. Fázor přímé vlny je tedy

$$\widehat{u}_{p} = 1. \tag{1}$$

Protože s'>s, posune se fáze odražené vlny o $-\omega\Delta t$, kde ω je úhlová frekvence a Δt čas. Zpoždění odražené vlny

$$\Delta t = \frac{s' - s}{v},\tag{2}$$

kde v je rychlost šíření. Fázor odražené vlny je pak

$$\hat{u}_0 = e^{-j\omega\Delta t}.$$
 (3)

Obě vlny sečteme v místě pozorovatele:

$$\hat{\mathbf{u}}_{\text{vysl}} = \hat{\mathbf{u}}_{\text{p}} + \hat{\mathbf{u}}_{\text{n}} = 1 + e^{-j\omega\Delta t} = 1 + \cos\omega\Delta t - j\sin\omega\Delta t. \tag{4}$$

Pro $\omega \Delta t = 2k\pi$ dostaneme maxima

$$\hat{u}_{\text{visi}} = 2 \tag{5}$$

a pro $\omega \Delta t = (2k + 1)\pi$ minima

$$\hat{\boldsymbol{u}}_{\text{rist}} = 0, \tag{6}$$

kde k = 0, 1, 2, ...

Obr. 1. Zjednodušený případ šíření zvukových vln od zdroje k pozorovateli pro určení požadované barvy zvuku

Situace je názornější z fázorového diagramu na obr. 2. Při změně ωΔtopisuje koncový bod \hat{u}_{vysl} čárkovanou kružnici. V počátku a v bodě 2 mál \hat{u}_{vysl} lextrémní hodnoty. Pro určení požadované změny barvy zvuku potřebujeme znát amplitudovou charakteristiku. Dostaneme ji z (5), (6) po vydělení π a dosazení za k. Výsledný průběh je na obr. 3. Při pohybu zdroje se mění Δt a tím i polohy extrémů. Blokové schéma obvodu, který by realizoval tuto funkci, je na obr. 4. Zpožďovací linku by bylo možno realizovat elektronicky pomocí nábojově vázaných struktur (CCD), lit. [2], [9], které však u nás zatím nejsou běžně dostupné. Na tomto principu pracuje např. "Electric Mistress Flanger" firmy Electro Harmonix. Použijeme-li místo zpožďovací linky fázovací článek 0 až ka podle [8], získáme pásmovou zádrž, u které bude počet minim záviset na počtu fázovacích stupňů. Obvykle se používají čtyři nebo šest stupňů. S těmito fázovacími stupni pracuje konstruovaná fázovací jednotka.

Obr. 2. Fázový diagram pro součet přímé a odražené vlny

Obr. 3. Požadovaná amplitudová charakteristika

Obr. 4. Blokové schéma obvodu, realizujícího funkci z obr. 3

Technické údaje a možnosti použití

Napájecí napětí: 2 × 9 V (4 ploché baterie). Odběr proudu: asi 9 mA. Kmitočet rozmítání: od 0,14 do 7 Hz. Zařízení je určeno pro elektrickou kytaru nebo varhany (není vyloučeno jiné použití, např. housle, bicí nástroje apod.), umožňuje volit dvě barvy zvuku a lze je přizpůsobit zdrojům o různých úrovních signálu.

Popis zapojení

Celkové schéma zapojení je na obr. 5. Trimrem R₁ lze nastavit vstupní citlivost. Předzesilovač s tranzistorem T₁ zesiluje vstupní signál a odděluje vstup od obvodů zpětné vazby, je-li Př₁ v poloze 2. Malou výstupní impedanci pro napájení fázovacího článku zajišťuje emitorový sledovać s tranzistorem T₂. Fázovací článek je složen ze čtyř stupnů, osazených OZ MAA741, z nichž každý posouvá fázi od 0 do 180°; celý článek tedy posouvá fází od 0 do 720°. Na obr. 6 je základní schéma fázovacího stupně. Jeho napěťový přenos podle [8] je

$$A(\Omega) = \frac{j\Omega - 1}{j\Omega + 1},\tag{7}$$

kde Ω je poměrný kmitočet

$$\Omega = \frac{\omega}{ab},\tag{8}$$

$$\omega_0 = \frac{1}{RC}.$$
 (9)

Převedeme (7) na exponenciální tvar:

$$A(\Omega) = e^{j \arctan \frac{\frac{1}{2}\Omega}{\Omega^{\frac{2}{3}-\frac{1}{3}}}}$$
 (10)

Přenos použitého článku je tedy

$$A_{c}(\Omega) = e^{j \cdot 4 \arcsin \frac{2 \cdot \Omega}{\Omega \Omega - 1}}$$
 (11)

a celkový úhel posuvu fáze

$$\psi = 4 \arctan \frac{2 \Omega}{\Omega^2 - 1}.$$
 (12)

Na obr. 7 je fázová charakteristika článku, získaná z (12) dosazením za Ω . Z obr. 6 je zřejmé, že pro $\omega \to \infty$ je fázový posuv nulový, neboť impedance kondenzátoru C je poměrně malá a je připojena na neinvertující vstup OZ. Pro $\omega \to 0$ je impedance C velká a stupeň posouvá fázi o 180° (celý článek o 4,180 = 720°). Pro $\omega = \omega_0$ posouvá celý článek fázi o 4.90 = 360°. Pomocí tranzistorů T_5 až T_8 , jejichž přechod kolektor – emitor lze považovat pro malý signál za lineární odpor, jehož velikost Ize řídit napětím $U_{\rm GIE}$, se mění ω_0 . Odpory R_{19} , R_{22} , R_{25} , R_{28} omezují shora odpor R (obr. 6). Signál z výstupu fázovacího článku je veden přes R_{11} a R_{12} do báze T_3 , kde se sčítá s původním signálem, přivedeným odporem R_{10} z emitoru T_2 .

stejnou velikost s přímým signálem z hudebního nástroje. Př. slouží k přepínání přímého a upraveného signálu. Generátor trojúhelníkového průběhu napětí, kterým se mění ω_0 , je osazen IO_5 , IO_6 (MAA741). IO_5 pracuje jako Schmittův klopný (spoušťový) obvod a IO₆ jako integrátor [3]. Hystereze spoušťového obvodu (a tím i výstupní napětí generátoru) je závislá na poměru odporů R₃₁ a R₃₂. R₃₃, C₁₃, R₃₄, C₁₄ zabraňují pronikání rušivého praskotu do signálu přes obvody napájení při překlápění spoušťového obvodu. Délka periody je přímo úměrná velikosti hysterez-ního napětí, časové konstantě C₁₇R_N, kde

$$R_{\rm N} = P_{\rm 1a} + \frac{R_{35} R_{36}}{R_{35} + R_{36}}$$
 (13)

a nepřímo úměrná přenosu děliče R₃₅, R₃₆. Poměr změny R_N potenciometrem P_{1a} dává poměr změny periody (asi 50: 1). Potenciometrem P_{1b} se zmenšuje amplituda rozmítání směrem k nejvyššímu opakovacímu kmitočtu generátoru. Na odporu R_{37} závisí amplituda rozmítání při vyšších kmitočtech; byl určen experimentálně. Dvojitý potenciometr $50~\text{k}\Omega/\text{E}, 10~\text{k}\Omega/\text{N}$ byl získán výměnou drah v TP 283 50 kΩ/G (exponenciální potenciometr lze málokde koupit); jedna dráha byla zaměněna s drahou potenciometru TP 280 $10 \text{ k}\Omega/\text{N}$. Trimrem \hat{R}_{41} se nastavuje oblast, v níž pracuje fázovací článek. Obvod s tranzistorem T₄ odstraňuje nepříjemné rázy v reprodukci, způsobené velkou strmostí závislosti diferenciálního odporu RCE tranzistorů, řízených polem, na napětí řídicí elektrody v oblasti velkého odporu. T₄ se otevírá, je-li v bodě A zapojení (obr. 5) nižší napětí, než na jeho bázi. Toto napětí lze nastavit trimrem R₄₂. Obvod v podstatě "zaobluje" záporné vrcholy trojúhelníkového napětí. Dioda D₁ chrání přechod emitor-báze T₄ při kladném napětí v bodě A.

spínač napájení

Obr. 8. Základní vnější rozměry přístroje

Z fázové charakteristiky na obr. 7 je vidět, že pro poměrné kmitočty 2,414 a 0,414 je signál, přicházející z fázovacího článku, v protifázi s původním signálem. Na těchto kmitočtech se obvod chová jako pásmová zádrž. K nastavení minima slouží trimr R₁₂. Podrobné odvození a popis násobné zádrže s fázovacím článkem 0 až kπ je v [8]. Přepínač Př v poloze 2 uzavírá smyčku zpětné vazby přes R₇, C₅, emitorový sledovač a fázovací článek. Tato zpětná vazba mění barvu zvuku. Odpory a kapacity R₆, C₃, R₇, C₅ a C₈ až C₁₁ byly získány pokusně (pro optimální dosažený efekt). Výstupní zesilovač s T₃ zesiluje sečtený signál, který lze trimrem R₁₇ upravit na

Obr. 6. Základní schéma fázovacího stupně

Obr. 7. Teoretický průběh fázové charakteristiky fázovacího článku

8

51

Amatérske AD 10

Mechanická konstrukce

Konstrukce přístroje byla navržena pro ovládání přístroje položeného na zemí (tak, aby bylo možno Př₁, Př₂ a P_{1a,b} ovládat nohou). Skříňka přístroje je vyrobena ze sololitu tl. 4 mm a dřeva. Provedení je zřejmé z obr. 8, 9 a z fotografií (titulní str., obr. 10 a 11). Povrch je natřen černým latexem,

Obr. 10. Pohled na přístroj ze strany konektorů a spínače

vnitřní plochy v prostoru pro desku s plošnými spoji jsou vylepeny fólií Alobal. Panel je vyříznut z hliníkového plechu tl. 1,5 mm, broušen a mořen v roztoku hydroxidu sodné-

Obr. 11. Vnitřní uspořádání fázovací jednotky

ho. Popis je proveden obtisky Propisot a tučí Hotový panel je přestříkán bezbarvým kem. Deska s plošnými spoji a její osazí jsou na obr. 12 a 13. Přívody k desce js připájeny na očka, která jsou do ní zanýtov na. Detail upevnění desky je na obr. Spínač a přepínače jsou běžné, páčkové. místě Př₂ by byl výhodnější tlačítkový pře nač v mechanicky odolném provedení, kte však není běžně dostupný.

Obr. 13. Osazená deska

Obr. 12. Deska s plošnými spoji O43 a rozmístění součástek

Nastavení fázovací jednotky

V tab. 1 jsou údaje změřených stejnosměrných napětí. Pomocí nf generátoru a osciloskopu je vhodné zkontrolovat souměrnou limitaci předzesilovače a výstupňího zesilovače (lze upravit pracovní body odpory v obvodech bází). Při odpojeném R₃₈ od běžce P_{1b} "projedeme" nf generátorem, připojeným na vstup, kmitočtové pásmo od 20 Hz do 20 kHz (na kolektoru T₁ 100 mV) a v některém ze dvou minim nastavíme nejnižší napětí na výstupu přístroje trimrem R₁₂. Na obr. 15 jsou amplitudové charakteristiky pro obě polohy Př₁. Na výstupu IO₆ by měl být trojúhelníkový signál s rozkmitem mezi vrcholy asi 7 V. Potenciometrem P_{la,b} vyzkoušíme, zda generátor kmitá v požadované oblasti (lze upravit změnou R₃₅, R₃₆). Dále již nastavujeme přístroj ve spojení s hudebním nástrojem. R₃₈ připojíme k běžci P_{1b}. Trimr R₁ nastavíme tak, aby výstupní signál nebyl při nejhlasitější hře zkreslen. Trimrem Ř₁₇ nastavíme na výstupu takovou úroveň, aby v obou polohách Př₂ byla hlasitost stejná. Pak nastavíme běžec R_{42} do polohy nejzápornějšího napětí na bázi T_4 a trimrem R_{41} nalezneme nejvhodnější oblast změny barvy zvuku. Pak běžec trimru R₄₂ přesouváme (ke kladnějšímu napětí), až zaniknou rázy v reprodukci.

Závěr

Podle tohoto popisu byly postaveny a vyzkoušeny v provozu tři jednotky. Ačkoliv součástky nebyly zvlášť vybírány, všechny tři přístroje pracovaly na první zapojení. Místo tuzemských OZ MAA741, které nebyly k dispozici, byly použity jejich přímé ekvivalenty µA741. Pozornost byla věnována pouze tranzistorům T₅ až T₈, které by měly mít pokud možno stejný průběh závislosti $R_{diCE} = f(U_{G1E})$. Není-li tomu tak zmenší se strmost boků amplitudované charakteristiky a obtížně se odstraňují rázy. Pro informaci jsou v tab. 2 údaje $U_{\rm GIE}$ pro tři různé hodnoty diferenciálního odporu $R_{\rm difCE}$. Tranzistory byly měřeny v počátku jejich výstupních charakteristik střídavým napětím 30 mV o kmirakteristik střídavým napětím střídavým napřídavým napětím střídavým napřídavým napětím střídav točtu 1 kHz. Amplitudová charakteristika se ve všechtřech případech shodovala s výpočtem v [8]. Při praktických zkouškách jednotky byla možnost porovnat ji s přístrojem "Small Stone", který používá řada našich hu-debních skupin. V poloze 1 Př₁ byl dosažený efekt stejný, v poloze 2 se více měnila barva zvuku v oblasti vysokých tónů. Z hlediska odstupu rušivých signálů byla lepší popisovaná konstrukce, neboť u zařízení "Small Stone" bylo při hlasitější reprodukci a částečně vybitých bateriích slyšet znatelně praskání, způsobené generátorem rozmítajícího signálu. Pokud jde o rozměry, je popisovaná konstrukce více než dvakrát větší, což je způsobeno použitým napájecím zdrojem. Ten však vydrží bez výměny déle, než devítivoltová baterie v zařízení "Small Stone". Popisovaná konstrukce je lépe ovladatelná nohou (až na přepínání "efekt – původní zvuk", pro něž by bylo lepší použít tlačítkový přepínač).

0 -10 -20 -30 A = f [f] -40 -50 10 . f (Hz)

Obr. 15. Amplitudové charakteristiky (odpor R₃₈ odpojen od běžce potenciometru P_{1b})

Tab. 1. Naměřené hodnoty napětí

měřicí bod	ss napětí [V]	měřicí bod	ss napětí {V}
C _{T1}	4,7	• Етэ	0,9
E _{T1}	0,15	společný bod R ₄₂ , R ₄₃	-6,4
E _{T2}	0,8	C _{,15}	9
Стз	5,2	C ₁₆	9

Měřeno voltmetrem s Rust = 10 M proti svorce .. 1 Napětí na řídicích elektrodách T5 až T8 se mě u měřeného přístroje, osazeného čtveřicí č. II (tab. 2) od -1,5 do 1 V (při nejnižší rychlosti s optimálním nastavením trimrů R41, R42).

Seznam součástek

adaga (TD 112	a and European Hands
R ₁	a, není-li uvedeno jinak) 100 kΩ, trimr TP 040
R ₂	100 kΩ, trimir 12 040
R ₃	
H3 R4	470 kΩ
	15 kΩ
Rs .	470 Ω
R	33 kΩ
R ₇	4,7 kΩ
R*	56 kΩ
R∘	10 kΩ
Rio	15 kΩ
Ru	10 kΩ
Riz	10 kΩ trimr TP 040
Ris	82 kΩ
R14	330 kΩ
Ris	2,7 kΩ
Ris	10 kΩ
R ₁₇	100 kΩ, trimr TP 040
R18, 120, 121,	
R23, R24, R26,	
R27, R29	47 kΩ
R14, R22, R25,	•
Rzs	33 kΩ
- R ₃₀	1 MΩ
R31	82 kΩ
R32	47 kΩ
R33, R34	470 Ω
R35	56 kΩ
, R ₃₆	1 kΩ
R37	10 kΩ
Взв .	100 kΩ
R39 -	22 kΩ
R40	56 kΩ
R41, R42	100 kΩ, trimr TP 040
R43	22 kΩ
Pı	50 kΩ/G, TP 283 + 10 kQ/N,
Ţ	TP 280, viz text
Kondenzátory	
Cı	1 μF, TE 988
C2 ·	18 pF, TK 754

Condenzátory	
Ci	1 μF, TE 988
2 .	18 pF, TK 754
Za .	10 nF, TC 235
24	0,1 μF, TK 782
Ds	33 nF, TK 782
24	0,1 µF, TK 782
7	5 μF, TE 984
Cs, Cs, C10, C11	0,22 μF, TC 180
D12	0.1 μF, TK 782
013, C14	10 μF, TE 984
15, C16	50 μF. TE 984
	1 (F TC 180

Tab. 2. Parametry vybíraných tranzistorů KF521

-	U _{G1E} [V] pro R _{difCE}				
čtveřice č.	100 Ω	1 kΩ	10 kΩ		
	3	-1,75	-2,1		
	2,5	-1,75	-2,1		
'	3,8	-1,62	-2.1		
•	4	-1.76	-2,2		
	3,8	-1,45	-1,9		
11	4,1	-1,3	-1,72		
	4	-1,5	-1,97		
	4,22	-1,42	-1,85		
	4,5	-1,1	-1,51		
- 10	4,3	-1,11	-1,5		
	7	-1,1	-1,72		
	3,4	-1,1	-1,6		

Polovodičové součástky T1, T2, T3 KC509 KC508 Ť5, T6, T7, T8 KF521 101, 102, 103, 104, 105, 106 MAA741 KA501 D₂ KZ721

Literatura

- [1] Čermák, L.; Jurkovič, K.: Návrh a konstrukce nf tranzistorových zesilovačů. SNTL: Praha 1972.
- [2] Foit, J.: Mikroelektronika I. Vyd. ČVUT: Praha 1978.
- Foit, J.: Pelikán, L.: Mikroelektronika II. Vyd. ČVUT: Praha 1978.
- [4] Polovodičové součástky. TESLA Rožnov: 1979.
- [5] Dolníček, R.: Rotující reproduktory. AR
- řáda A. č. 3/1978, s. 87.

 [6] Michálek, F.: Přístroj ke zkoušení OZ. AR řada B, č. 4/1977, s. 151 až 154.

 [7] Onis, P.: Elektronické zariadenie Les-
- lie efekt. AR č. 10/1974, s. 369.
 [8] Punčochář, J.: Fázovací článek s posuvem 0 až kπ a syntéza frekvenční zádrže. ST č. 4/1978, s. 141 až 143.
- [9] CCD phaser. ETI Top Projects, č. 7/ /1979, s. 24 až 27.

Praktická zapojení generátorů tvarových kmitů

Ing. Jiří Horský, CSc., Petr Zeman

V [1] byla vysvětlena činnost zapojení generátorů tvarových kmitů a ukázány jejich principy. V tomto příspěvku uvádíme několik praktických zapojení generátorů, realizovaných z tuzemských součástek.

Jednotlivá zapojení jsou pro jednoduchost rozlišena podle použitelného optimálního horního mezního kmitočtu, pro které je popisované zapojení vhodné. Záměrně jsou vybrány co nejjednodušší konstrukce, vhodné jako náměty k dalšímu experimentování.

Generátor "1 kHz"

Deska s plošnými spoji podle obr. 1 je určena pro experimentální ověření základního zapojení generátoru s jedním zesilovačem podle obr. 4, 5 a 6 v [1]. Nejúplnější zapojení se zdroji proudu a omezovačem, vhodné pro použití na kmitočtech řádu kilohertzů, ukazuie obr. 2.

Nejprve zapojíme operační zesilovač, R_1 , R_2 , R_3 a C_A , mezi výstupy 1 a 2 zapojíme odpor nebo potenciometr, jehož odpor může být stovky ohmů až stovky kiloohmů. Změnou tohoto odporu nebo kapacity C_A se mění kmitočet. Můžeme také ověřit vliv nastavení dělicího poměru $k = R_2/(R_1 + R_2)$ na amplitudu signálu na výstupu 2 a na kmitočet. Při volbě poměru k dbáme na to, aby na vstupu zesilovače nebylo nikdy napětí větší než ± 5 V, což je povolené mezní napětí pro

operační zesilovače MAA501 až 504 $(k = 0.5 \text{ pro } U_B = \pm 10 \text{ V}).$

Osciloskopem se můžeme přesvědčit, že nabíjení a vybíjení kondenzátoru probíhá po exponenciále. Zvyšujeme-li-kmitočet kmitů generátoru (zhruba nad 40 kHz), začne se zvětšovat amplituda napětí na výstupu 2 vlivem nedostatečné rychlosti překlopení operačního zesilovače.

Dále zapojíme omezovač s diodami a ověříme jeho vliv na symetrii a tvar napětí na výstupu I. Nakonec nahradíme odpor mezi výstupy I a 2 zdrojem proudu s tranzistory n-p-n a p-n-p (T₁ a T₂), které mohou být libovolného typu. Potenciometry P₁ a P₂ nezávisle nastavujeme nabíjecí a vybíjecí proud; můžeme tedy nastavit trojúhelníkové i pilovité napětí na výstupu 2. O vlivu zdrojů proudu na linearizaci nabíjení se můžeme přesvědčit osciloskopem.

Obr. 2. Schéma zapojení jednoduchého generátoru "1 kHz"

Generátor "10 kHz"

Na obr. 3 je deska s plošnými spoji a rozložení součástek pro jednoduchý generátor, vycházející ze zapojení podle obr. 11 v [1]. Výsledné zapojení, vhodné pro použití v oblasti akustických kmitočtů, ukazuje obr. 4. K ladění můžeme použít potenciometr nebo vhodný zdroj řiditelného kladného napětí. Pro tvarovač je v tomto případě použit tranzistor KF521 nebo jiný vhodný tranzistor řízený polem.

Obr. 1. Deska s plošnými spoji a rozložení součástek generátoru "1 kHz" (O44)

Obr. 3. Deska s plošňými spoji a rozložení součástek generátoru "10 kHz" (O45)

Obr. 4. Zapojení generátoru řízeného napětím "10 kHz"

Se zapojením lze dosáhnout poměru krajních kmitočtů v jednom rozsahu až asi 1: 200; pro univerzální generátor jej však omezíme na 1: 10. Při ladění proměnným napětím, snímaným z běžce potenciometru P₁, by měl být odpor P₁ co nejmenší (nejvýše asi $5 \text{ k}\Omega$), protože proměnný vnitřní odpor zdroje napětí částečně ovlivňuje střídu generovaných kmitů. Amplitudu trojúhelníkového napětí nastavíme potenciometrem P2 (na mezivrcholové napětí asi 4 V). Pomocí osciloskopu můžeme zkontrolovat a případně přesněji nastavit odpory na vstupu prvního zesilovače střídu výstupního napětí. Nelineární zkreslení použitého tvarovače závisí na velikosti prahového napětí Up tranzistoru T₃ a na mezivrcholové hodnotě trojúhelníkového napětí U_m . Pro $U_p = U_m$ je teoretická hodnota nelineárního zkreslení 3,8 %, pro $U_{\rm m}/U_{\rm p} = 0.85 \text{ je } 1.6 \%.$

(o)

Zapojení podle obr. 4 umožní realizovat jednoduchý univerzální generátor pro všeobecné laboratorní použití s těmito orientačními vlastnostmi:

rozsah kmitočtu 0,2 Hz až 20 kHz (5 podrozsahů 0,2 Hz až 2 Hz; 2 Hz až 20 Hz; 20 Hz až 200 Hz; 200 Hz až 2 kHz; 2 kHz až 20 kHz):

výstupní napětí obdélníkové, mezivrcholová hodnota asi 25 V;

výstupní napětí trojúhelníkové, mezivrcholová hodnota asi 4 V;

výstupní napětí harmonické, 200 mV; nelineární zkreslení 2 až 5 %.

Generátor "1 MHz"

Zapojení generátoru podle obr. 5 je navrženo s ohledem na co největší jednoduchost a velký rozsah generovaných kmitočtů. Používá dva tranzistory a jeden integrovaný obvod. Jedná se o velmi zjednodušenou verzi zapojení typu integrátor – komparátor. Generátor je použitelný pro rozsah kmitočtů od jednotek Hz do 3 až 4 MHz. "Harmonický" výstup má mezivrcholové napětí 1,2 V, "ob-délníkový" výstup má úrovně TTL. Signál lze amplitudově a kmitočtově modulovat s opakovacím kmitočtem asi 1 kHz.

Generátor "1 MHz" podle obr. 5 má tyto parametry

rozsah kmitočtu 1 Hz až 1(3,5) MHz; výstupní napětí - impulsní, úrovně TTL,

harmonické, mezivrcholová hodnota 1,2 V;

nelineární zkreslení (orientačně) 5 %;

modulace – vypínatelná modulace kmito-čtem 1 kHz, amplitudová a kmitočtová, kdy mimo nastavené kmitočty generuje přístroj s opakovacím kmitočtem asi 1 kHz střídavě nastavený a volitelný nižší

Generátor "1 MHz" pracuje takto: Pilotovité napětí je vytvořeno ve zpětnovazebním integrátoru Millerova typu s rychlými spínacími tranzistory, např. T₁ KSY81 a T₂ KSY71. Časovou konstantu určuje nastavitelný odpor R a přepínatelný kondenzátor C. Volba rychlých spínacích tranzistorů umožnila dosáhnout maximálního opakovacího kmitočtu několik MHz. Generovaný kmitoččet lze dále zvýšit zvětšením proudu T₁ zapojením odporu R₅ mezi kolektor T₁ a zem. Ťím se však zmenší vstupní odpor zesilovače a je nutno použít potenciometr s menším odpo-rem pro nastavení kmitočtu. Při použití tranzistorů s nižším mezním kmitočtem se dosažitelný kmitočet sníží na řádově stovky kHz.

Komparátor je tvořen dvěma hradly integrovaného obvodu MH7400. Amplitudu trojúhelníkového napětí lze nastavit trimrem

P₂, symetrii trimrem P₃.

Zbývající dvě hradla v integrovaném obvodu MH7400 můžeme použít jako oddělovací stupně, nebo z nich vytvořit jednoduchý multivibrátor, kterým lze modulovat výstupní napětí generátoru. Modulace je ovladatelná potenciometrem P4. Je-li P4 nastaven na maximální odpor, kmitá generátor na kmitočtu, určeném nastavením P₁ a volbou C. Při zmenšení odporu P4 se superponuje nf modulační napětí na napětí ve smyčce zpětné vazby a generátor v rytmu opakovacího kmitočtu modulačního signálu kmitá střídavě na původním a nižším kmitočtu, určeném nastaveným odporem P4. Je-li P4 nastaven na minimum, zmenší se nižší kmitočet na nulu a na výstupu dostáváme amplitudově modulovaný signál s hloubkou modulace 100 %, tzn. sled periodických impulsů.

Zapojení lze realizovat na desce s plošnými spoji O46, které je spolu s rozmístěním

součástek na obr. 6.

Generátor "10 MHz"

Realizovat generátor pro vyšší kmitočty čs. součástek a zachovat přitom jednoduchost a nízké náklady je velmi obtížné. Proto byly dále popisované generátory konstruovány bez výstupu harmonického signálu, což umožnilo s výhodou využít číslicových obvodů TTL.

Obr. 5. Schéma zapojení generátoru "1 MHz" A/9 Amatérské! A 1) (1)

Obr. 6. Deska s plošnými spoji a rozložení součástek generátoru "1 MHz" (O46)

Obr. 11a. Deska s plošnými spoji generátoru podle obr. 10 (O47)

Princip činnosti generátoru ukazuje obr. 7. Přepínač Př je střídavě přepínán mezi polohami 1 a 2. Je-li Př v poloze 1, nabíjí se kondenzátor C přes odpor R2. Po dosažení rozhodovací úrovně napětí na výstupu B přepne Př do polohy 2 a výstup B je přes diodu D₂ uzemněn: V této části cyklu se nabíjí C přes R₁ do okamžiku, kdy na výstupu dosáhneme napětí rozhodovací úrovně a přepínač Př přepne zpět do polohy 1. Místo komparátoru a přepínače můžeme s výhodou použít tři invertory z integrovaného obvodu MH7404. Základní zapojení je uvedeno na obr. 8. Kmitočet je orientačně určen volbou kapacity C, ladění v rozsahu umožňu je dvojipotenciometr R₁ a R₂.
Použijeme-li dva jednoduché potencio-

metry, lze nastavovat střídu generovaných

kmitů. Čtvrtý invertor je zapojen jako oddělovací stupeň. Nejvyšší dosažitelný kmitočet s obvody MH7404 je asi 25 MHz. Místo dvojitého potenciometru můžeme použít dva řízené zdroje proudu s tranzistory, jak uka-zuje v nejjednodušším provedení obr. 9. Potenciometrem P2 se nastavuje symetrie

Integrovaný obvod MH7404 obsahuje šest invertorů. Použijeme-li tři z nich pro generátor a jeden jako oddělovací stupeň, můžeme ze zbývajících dvou vytvořit jednoduchý astabilní obvod, kterým lze generátor klíčovat. Zapojení takového generátoru ukazuje obr. 10, deska s plošnými spoji a rozložení součástek jsou na obr. 11.

Zapojení je schopné kmitat do 20 až 25 MHz. Pro rozsah kmitočtu do 10 MHz byla kapacita kondenzátoru CA 680 pF. Zvolíme-li více rozsahů kmitočtu přepínáním kondenzátoru C_A, je nutno dbát, aby přívody byly co nejkratší (s minimální indukčností). Odpor potenciometru může být 2 × 2,5 (5 nebo 10) kΩ; určuje rozsah přeladění kmitočtu (dolní kmitočet).

Obr. 7. Princip činnosti generátoru "10 MHz"

Obr. 8. Základní zapojení generátoru

Obr. 9. Náhrada dvojitého potenciometru řízenými zdroji proudu

Obr. 10. Zapojení generátoru ,,10 MHz" s klíčováním

Obr. 11b. Rozmístění součástek na desce O47

Obr. 13. Deska s plošnými spoji a rozložení součástek generátoru "50 MHz" (O48)

Obr. 14. Schéma zapojení rozmítaného generátoru

Generátor "50 MHz"

Použijeme-li v zapojení podle obr. 8 velmi rychlé invertory, vytvořené z hradel obvodu MH74S00, lze zvýšit dosažitelný horní kmitočet řádově až na 50 MHz. Zapojení takového generátoru ukazuje obr. 12, deska s plošnými spoji a rozmístěním součástek je na obr. 13. Pro kmitočty do asi 20 MHz lze kmitočet měnit dvojitým potenciometrem,

pro kmitočty vyšší je již závislost kmitočtu na úhlu natočení hřídele potenciometru značně nelineární vlivem parazitních reaktancí potenciometru.

Rozmítaný generátor

Použijeme-li k ladění generátoru podle obr. 8 místo dvojitého potenciometru řízené zdroje proudu, jak ukazuje obr. 9, lze proud

těchto zdrojů ovládat pilovitým napětím a-vytvořit tak rozmítaný generátor.

Zdroj pilovitého napětí pro rozmítání lze vytvořit s využitím dvou zbývajících invertorů integrovaného obvodu MH7404 a dvou tranzistorů na principu integrátor – komparátor (Schmittův obvod) v zapojení, poněkud podobném zapojení generátoru "1 MHz".

Zapojení rozmítaného generátoru je na obr. 14, deska s plošnými spoji a rozmístění součástek na obr. 15. Do zdrojů proudu jsou vhodné tranzistory s malou kapacitou kolektor-báze, např. KSY81, KSY82, TR15, BC177 apod. Užijeme-li tranzistorů s větší kapacitou (KF517), sníží se dosažitelný horní mezní kmitočet.

Obr. 12. Schéma zapojení generátoru "50 MHz"

Obr. 15. Deska s plošnými spoji a rozložení součástek rozmítaného generátoru (O49)

Obr. 18. Hotová zapojení na deskách s plošnými spoji: a) – generátor "1 kHz", b) – generátor "10 kHz", c) – generátor "1 MHz", d) – generátor "10 MHz" podle obr. 10, e) – generátor "50 MHz", f) – rozmítaný generátor

Zkoušeč operačních zesilovačů a tranzistorů

V amatérské (ale i vývojové) praxi se nejčastěji setkáváme s destrukčními poruchami, úplně znemožňujícími činnost součástky (nejčastěji průraz nebo přerušené spojení). Pro jejich odhalení postačí dynámický zkoušeč, pracující způsobem "dobrý – vadný".

Základního zapojení generátoru tvarových kmitů s jedním operačním zesilovačem můžeme využít také pro realizaci jednoduchého zkoušeče operačních zesilovačů.

Vyhovující zesilovač musí v zapojení podle obr. 17 kmitat. Aby nebyl zesilovač příliš zatěžován, je svítivá dioda D, která ukazuje blikáním, zda zesilovač kmitá, ovládána přes tranzistor T₁. Zapojení nevyžaduje dvojitý napájecí zdroj; postačí, "umělý střed", vytvořený pomocí odporového děliče R₉ a R₁₁. Napájecí napětí volíme raději nižší (do 12 V), aby mezi vstupy zkoušené součástky nebylo příliš velké napětí, protože některé součástky mají značně omezenou velikost napětí mezi vstupy (např. zesilovače řady MAA500 na ±5 V).

U všech operačních zesilovačů MAA501, MAA502, MAA504, MAA725, MAA741, MAA748 i u některých dalších zahraničních typů jsou vstupy, výstup a zdroje zapojeny na stejné vývody. Proto postačí jedna objímka pro zkoušení všech jmenovaných typů zesilovačů.

Přípravek můžeme dále velmi snadno rozšířit pro zkoušení tranzistorů. Pro tranzistory n-p-n stačí připojit objímku pro zkoušený tranzistor, dva odpory a jeden kondenzátor. Zkoušený tranzistor a tranzistor T₁ tvoří multivibrátor, jehož správná činnost je indikována blikáním svítivé diody D. Obdobně můžeme vytvořit multivibrátor pro tranzistory n-p-n. Druhou svítivou diodu ušetříme tím, že napětím z kolektoru T₂ ovládáme tranzistor T₁ přes vazební kondenzátor C₅. Diody D₁ a D₂ chrání přechod emitor-báze při zkoušení germaniových ví tranzistorů, pro běžné typy tranzistorů je možné je vynechat.

Po zapnutí napájecího zdroje svítivá dioda D svítí – je napájena proudem přes "otevřený" T₁. Zasuneme-li do jedné z příslušných zkušebních objímek dobrý operační zesilovač, tranzistor n-p-n nebo p-n-p, musí začít svítivá dioda blikat. K indikaci lze samozřejmě použít i vhodnou miniaturní žárovku. Deska s plošnými spoji zkoušeće a rozložením součástek je na obr. 18.

Objímky pro zkoušené součástky a svítivá dioda D jsou umístěny ze strany spojů.

Literatura

Horský, J.; Zeman, P.: Generátory tvarových kmitů. Amatérské radio, řada A, č. 6/1980, s. 228

Obr. 17. Schéma zapojení zkoušeče operačních zesilovačů a tranzistorů

Obr. 18. Deska s
plošnými spoji O50 a
rozložení součástek
zkoušeče podle obr.
17. Zkušební objímky jsou umístěny ze
strany spojů

Seznam součástek

Rı až Rı

Ra až Ru

R12, R13

Cı až Cı

C6, C7

D1. D2

D

4,7 kΩ, TR 112a (TR 151) 470 Ω, TR 112a (TR 151) 27 kΩ, TR 112a (TR 151) 50 μF/15 V, TE 004 5 μF/15 V, TE 004 KC508, (KF508, KC507, KC509, KF507 apod.) KF517 (KFY16, KFY18, OC76 apod.) křemíková dioda, např. KA501, KA206 svítivá dioda, LQ100

objímka pro tranzistory, větší typ (2 ks) objímka pro operační zesilovač s osmi vývody, kulatá

meridlo jako strumice prijimace—

Ing. Jaroslav Erben, OK1AVY

Rozhodne-li se amatér pro stavbu rozhlasového přijímače FM, nutně naraz na otázku, jak řešit stupnici. Zatím se musí vzdát stupnice digitální, na níž nemá součástky, a chce-li zhotovit klasickou mechanickou stupnici, zpravidla mu není dovoleno na koberci pilovat a vrtat, ani ohýbat plech přes hranu leštěného nábytku. Předem se však vyžaduje, aby budoucí přijímač měl dokonalý vzhled, jinak nesmí být umístěn v obývacím pokoji. Zhodnotíme-li vzhled stupnic dřívějších amatérských výrobků, je jasné, že v domácích podmínkách nejsme schopni realizovat mechanickou stupnici v takové estetické a funkční kvalitě, aby budoucí rozhlasový přijímač FM byl rodinnými příslušníky schválen k tr-valému provozu. Vyjdeme-li z možností současného trhu a vlastních finančních možností, nabízí se řešení stupnice pomocí měřicího přístroje, ocejchovaného v MHz, který lze poměrně snadno a vkusně umístit na předním panelu přijímače.

Porovnání stupnic

Pro srovnání "klasické" stupnice a stupnice využívající měřidla lze vyjít z těchto úvah:
a) dobrá mechanická stupnice zabírá poměr-

 a) dobrá mechanická stupnice zabíra pomerně velký prostor jak uvnitř přijímače, tak na čelním panelu, což komplikuje rozmístění ovládacích prvků;

 b) u stupnice s měřidlem odpadají z velké části obtížné mechanické práce, které vyžaduje stupnice klasická, pokud má mít vyhovující činnost i vzhled;

 c) výchylka u stupnice s měřidlem je úměrná kmitočtu. To zmanená, že náhodná změna ladicího napětí, nebo stárnutí ladicího potenciometru nemá vliv na údaj kmitočtu;

d) lze vypustit stupnice u potenciometrů předvoleb, neboť měřidlo přímo ukazuje předvolený kmitočet. To je dost důležité, neboť např. u svého přijímače jsem mohl na panel umístit dvanáct potenciometrů předvoleb, které mám možnost plně využívat díky dobrým příjmovým podmínkám. V oblasti poslechu obou rozhlasových pásem FM jsou čtyři možnosti předvolby, obvyklé u továrních přijímačů, nedostačující. Tomu nasvědčuje i skutečnost, že byl

vyvinut mikroprocesor pro číslicovou volbu dvaceti stanic pro rozhlasové přijímače FM.

Princip stupnice

Princip nejjednoduššího obvodu stupnice, využívající měřidla, je na obr. 1. Kmitočet i výchylka ukazatele měřicího přístroje jsou

úměrné ladicímu napětí U_L (výchylka je tedy úměrná kmitočtu). V dolní poloze běžce ladicího potenciometru P_L je výchylka ručky nulová; je-li běžec P_L v horní poloze, nastavíme maximální výchylku ručky trimrem P₃. Pak stupnici měřicího přístroje ocejchujeme (v MHz) a zapojení může sloužit svému ùčelu.

Obr. 1. Nejjednodušší zapojení stupnice přijímače, využívající měřidla

Nastavený odpor R_p trimru P₃ pro maximální výchylku (při zanedbání vnitřního odporu měřidla) je

$$R_{\rm p} = \frac{U_{\rm max} - U_{\rm min}}{I_{\rm p}} \qquad [k\Omega; V, mA], \qquad (1)$$

je maximální ladicí napětí, U_{\min} minimální ladicí napětí,

proudový rôzsah měřicího přístroje.

Celkový odpor trimru P3 volíme jen o málo větší, než potřebný R_p . Čím je totiž odpor trimru P_3 větší než R_p , tím více se projeví případné nestability trimru a tím hůře se nastavuje maximální výchylka ručky měřicího přístroje.

Protože kvalitní trimry jsou příliš drahé, zatímco běžné typy obdržíme ve výprodeji za 0,50 až 2 Kčs, je pro amatéra výhodné rozdělit P₃ na pevnou a proměnnou část (P'₃ a R'₃ na obr. 1). Má-li např. P'₃ odpor rovný desetině R_p, lze nastavit maximální výchylku 10krát přesněji a nestability trimru se projeví 10krát méně.

Rozsah ampérmetru Ip volíme do 0,5 mA za předpokladu, že ladící potenciometr P_L nemá odpor větší než 10 kΩ. Ve výprodeji se také vyskytují měřidla z S-metrů, která mají nulovou výchylku vpravo. Protože jsme zvyklí na to, že pohyb ručky směrem vpravo znamená zvyšování kmitočtu, je vhodné v tomto případě obměnit zapojení podle obr. 2. V horní poloze běžce ladicího potenciometru je výchylka ukazatele měřicího přístroje nulová, v dolní poloze nastavíme maximální výchylku trimrem P₃.

Obr. 2. Úprava stupnice pro měřicí přístroj z S-metru s nulou vpravo

Poznámky k ladicímu dílu

Konkrétní zapojení ladicího dílu z výprodejních součástek je na obr. 3. Rozsah přijímače jsem zvolil 65 až 105 MHz.

Vyjdeme-li při řešení vstupního dílu z požadavku použití běžně dostupných bipolárních tranzistorů, lze do doby, kdy jsem psal tento článek, hodnotit asi jako nejlepší vstupní díl podle AR 7/74. Při použití varikapů KB109G namísto původních KB105G je třeba obvody LC upravit podle obr. 3.

Pro danou čtveřici varikapů jsem volil ladicí napětí 1,5 až 20 V, při němž jsem dosáhl optimálního průběhu stupnice. Jako ladicí potenciometr jsem použil desetiotáč-kový ARIPOT, takže jsem nemusel použít mechanický převod.

Potenciometry předvoleb jsou výprodejní typu TP 052, jejichž vlastnosti nejsou takové, aby je bylo možno řadit u předvoleb paralel-ně; je třeba, aby každý potenciometr ladil jen přes část pásma (pro pohodlné ladění ne více než 3 MHz). Odpory potenciometrů nejsou voleny optimálně; použil jsem součástky, které jsem měl k dispozici. Z obr. 3 je zřejmé sérioparalelní žagoří které zamělně serioparalelní serioparalelní žagoří které zamělně serioparalelní šagoří které zamělně serioparalelní serioparaleln sérioparalelní řazení, které umožňuje dosta-tečnou variabilitu předvolby – lze např. předvolit tři stanice v těsné blízkosti. Pro přepinání předvoleb je použit třináctipolohový řadič, což je pro amatéra nejjednodušší.

Prodloužení délky stupnice

Výběr měřicích přístrojů je zpravidla omezen na typy DHR3 a DHR5, nebo MP40 či MP80, které se čas od času vyskytují ve výprodeji. Aby stupnice byla dostatečně přehledná, je třeba stupnici menšího přístroje rozdělit nejvýše na 10 dílků, většího na 20 dílků po 1 MHz.

Při rozsahu přijímače 65 až 105 MHz by měl tedy mít měřicí přístroj čtyři stupnice po 10 MHz, nebo dvě po 20 MHz. Princip rozdělení rozsahu přijímače do čtyř dílčích stupnic je na obr. 4. Každá dílčí stupnice má svůj dělič napětí –

P₁, P₃, P₅, P₇, kterým se nastaví nulová výchylka na horním kmitočtu dílčí stupnice, a svůj předřadný odpor (trimr) - P2, P4, P6, Ps, kterým se nastaví maximální výchylka na dolním kmitočtu dílčí stupnice.

Zvyšování kmitočtu v rámci dílčí stupnice znamená tedy zmenšování výchylky měřidla a naopak – stejně jako na obr. 2

Pohled na stupnici je na obr. 5. Bohužel není možné ztotôžnit všechny čtyři průběhy a zakreslit pouze jedinou společnou stupnici. Pro stupnici jsem použil výprodejní mikroampérmetr z S-metru, který má nulu vpravo. U běžných měřicích přístrojů s nulou vlevo bude mít stupnice opačný průběh (přístroj v panelu lze též umístit obráceně, aby byl pohyb ručičky opačný).

Obr. 3. Konkrétní zapojení ladicího dílu s jednoduchou stupnicí. Údaje napětí a součástek obvodu LC odpovídají rozsahu 65 až 105 MHz. Potenciometry s vývody 1 až 10 mají odpor 820 Ω, s vývody 11 a 12 18 kΩ

Obr. 4. Princip rozdělení stupnice na čtyři dílčí rozsahy

Obr. 5. Pohled na stupnici, získanou zakreslením tuší na pauzovací papír a kontaktním překopírováním na fotografický papír

Obr. 6. Princip automatického přepínání dílčích stupnic. Od spínačů T_{*}, T₆, T₈ požadujeme, aby automaticky spínaly nebo rozpojovaly při úrovních ladicího napětí, které odpovídají kmitočtům uvedeným v tab. 1

Zapojení stupnice

Zapojení pro stupnice se čtyřmi dílčími rozsahy je na obr. 7. Tranzistor T₁ pracuje jako emitorový sledovač, aby obvody stupnice nebyl zatížen zdroj ladicího napětí.

Tranzistor T₂ pracuje jako zdroj konstantního proudu, který jednak zajišťuje, aby ručka měřicího přístroje mohla pokračovat za nulovou polohu, jednak omezuje vliv nelinearity oddělovacích diod D₁ až D₄, který by se projevil u horňích konců dílčích stupnic. Proud T₂ volíme 10 až 25 % proudového rozsahu měřicího přístroje.

Tab. 1. Požadovaná funkce spínačů T₄, T₀, Tջ

	f.[M	Hz)
Spínač	sepnuto	rozpojeno
T ₄	. < 74,5	> 75,5
T ₆	< 84,5	> 85,5
T _B	< 94,5	> 95,5

přesahů lze upravit emitorovými odpory klopných obvodů.

Začátky a konce dílčích stupnic nastavíme trimry P1 až P8 podle obr. 8. Vzhledem k malé vzájemné závislosti sériových (P₂, P₄, P₆, P₈) a paralelních trimrů (P₁, P₃, P₅, P₇) musíme nastavení začátků a konců každé dílčí stupnice několikrát zopakovat. Nastavovat začínáme od horních konců dílčích stupnic. To znamená, že přijímač naladíme např. u první stupnice na kmitočet 75 MHz a trimrem P₁ nastavíme nulovou výchylku. Potom přeladíme na kmitočet 65 MHz a nastavíme maximální výchylku trimrem P2. To několikrát zopakujeme, až začátek i konec stupnice souhlasí. Obdobně nastavíme ostatní dílčí stupnice, které pak ocejchujeme po 1 MHz pomocí kalibrátoru nebo signálního generátoru. Při použití většího měřicího přístroje můžeme rozdělit stupnici přijímače jen na dva dílčí rozsahy, např. 65 až 85 a 85 až 105 MHz. Dílčí stupnice nemusí být stejné co do šířky pásma, musí však na sebe kmitočtově navazovat. Pro dvě dílčí stupnice odpadají klopné obvody T_5 , T_6 , T_7 , T_8 a trimry P_{10} a P_{11} .

Tab. 2. Přehled stavů v zapojení na obr. 6 a 7 a požadovaná funkce indikace stupnic

Rozsah [MHz]		py, resp. r. 6, 7, 10				ikace 1 = nesvítí)	sviti)			
	1	2	3	65 až 75	75 až 85	85 až 95	95 až 105			
65 až 75 75 až 85 85 až 95 95 až 105	0 1 1	0 0 1 1	0 0 0 1	0 1 1 1	1 0 1 1	1 1 0 1	1 1 1 0			

Obr. 7. Zapojení stupnice pro čtyři rozsahy po 10 MHz. Diody D₁ až D₁₀ jsou typu KA501. T₁ až T₈ jsou KF507 nebo jiné křemíkové tranzistory, kromě typů, které se nehodí pro spínací účely – např. vf typy BF167, BF173 atd. Zenerovy diody D₆ a D₇ jsou KZ721. Počet klopných obvodů je o jeden nižší než počet dílčích stupnic. Např. pro dvě dílčí stupnice ve schématu zůstane jen klopný obvod T₃, T₄

Nyní nám již stačí dořešit, aby přepínač Př na obr. 4 přepínal dílčí stupnice automaticky s tím, že přepínání bude mít jistou hysterezi, to znamená, že každá dílčí stupnice bude mít malý přesah (asi 0,5 MHz).

Způsob přepínání dílčích rozsahů z obr. 4 není vhodný pro realizaci automatického přepínání. V obměně zapojení podle obr. 6 lze spínače T4, T6, T8 nahradit tranzistory, které spínají nebo rozpínají při úrovních ladicího napětí, které odpovídají kmitočtům, uvedeným v tab. 1.

Z tabulek 1 a 2 je patrna činnost zapojení na obr. 6. Lze snadno ověřit, že na každém dílčím rozsahu vede jen jedna příslušná oddělovací dioda z diod D₁, D₂, D₃, D₄; ostatní mají své katody kladnější než anody a tedy nevedou. Funkce trimrů P₁ až P₈ je proto totožná jako v zapojení na obr. 4.

Trimry P₁, P₃, P₅, P₇ jsou opět rozděleny na pevnou a proměnnou část.

V případě, že použijeme měřicí přístroj s jiným proudem než 200 μA , úměrně zvětšíme nebo zmenšíme emitorový odpor T_2 (např. pro přístroj 100 μA volíme 30 $k\Omega$). Klopné obvody T_3 - T_4 , T_5 - T_6 , T_7 - T_8 plní

Klopné obvody T₃-T₄, T₅-T₆, T₇-T₈ plní tutéž funkci, jako stejně označené spínače na obr. 6 a v tab. 1.

Před nastavením stupnice trimry P₁ až P₈ nastavíme nejdříve přepínací kmitočty 75, 85 a 95 MHz trimry P₉ až P₁₁. Běžce trimrů P₉ až P₁₁ jsou v dolní poloze. Na přijímači naladíme pomocí signálního generátoru nebo kalibrátoru kmitočet asi 75,5 MHz a běžce trimru P₉ (zdola) nastavíme do bodu, v němž se překlopí obvod T₃, T₄. To se projeví změnou výchylky ručky měřicího přístroje. Podobně nastavíme P₁₀ a P₁₁ tak, aby se překlopily obvody T₃-T₆ a T₇-T₈ na kmitočtech 85,5 a 95,5 MHz.

Po konečném nastavení stupnice ještě trimry P₉ až P₁₁ doladíme tak, aby přesahy dílčích stupnic byly symetrické. Velikost

Použijeme-li v příjímači mechanický přepínač, případně přepínač spojený s laděním, který zajišťuje vynechání kmitočtů mezi oběma rozhlasovými pásmy, ztrácí automatické

Obr. 8. Přehled nastavování začátků a konců dílčích stupnic trimry P₁ až P₈ (měřicí přístroj je z S-metru s nulou vpravo)

přepínání dílčích stupnic svůj význam, neboť dva dílčí rozsahy stupnice lze mechanicky přepínat zmíněným přepínačem (podle obr. 4, popř. obr. 6).

Volba odporů trimrů P, až P,

Protože trimry umožňují nastavitelnost v širokých mezích, nemá smysl zavádět vztahy pro stanovení jejich odporů. Pro předřadné trimry P₂, P₄, P₆, P₈ platí vztah (1) s tím, že U_{max} a U_{min} jsou maximální a minimální ladicí napětí příslušného dílčího rozsahu. Ve skutečnosti bude nastavený odpor předřadných trimrů poněkud menší o vnítřní odpor děličů P₁, P₃, P₅, P₇, který musíme samozřejmě uvažovat včetně odporů připojených ke kon-cům těchto trimrů. Napěťové děliče P₁, P₃, P₅, P₇ včetně připojených pevných odporů volíme tak, aby děličem mohlo být nastaveno napětí, odpovídající ladicímu napětí horního kmitočtu dílčí stupnice, zvětšenému asi o 0,5 až 1,5 V, což je úbytek napětí na předřadném odporu trimru (P2, P4, P6, P8), způsobený konstantním proudem tranzistoru T₂.

Aby zapojení bylo realizovatelné, nesmí být vnitřní odpor děličů větší než odpor předřadných trimrů.

Indikace stupnic

Ručka měřicího přístroje ukazuje na některou ze dvou, nebo více dílčích stupnic. Nevíme ale, na které máme číst kmitočet. Proto je třeba přístrojovou stupnici doplnit ještě indikací dílčích stupnic.

Pro indikaci slouží výstupy z horních konců trimrů P₃, P₅, P₇, označené číslicemi 1,

2, 3 (obr. 6 a obr. 7). Stavy výstupů 1, Stavy výstupů 1, 2, 3 pro čtyři dílčí stupnice jsou v tab. 2. V pravé polovině tabulky je požadovaná funkce indikačních žárovek. Z tab. 2 vidíme, že např. žárovka stupnice pro 95 až 105 MHz svítí jen tehdy, is li na všech třech ustvetek 1, 2, 2 secent je-li na všech třech vstupech 1, 2, 3 spojených s výstupy 1, 2, 3 na obr. 6, resp. 7, úroveň logické jedničky atd.

Pro indikaci dvou dílčích stupnic máme k dispozici jen výstup I, neboť další dva klopné obvody odpaďají. Možné zapojení indikace je na obr. 9.

Zapojení pro indikaci čtyř dílčích stupnic s využitím výprodejních součástek je na obr. 10. Tranzistory postačí s $h_{21E} = 20$. Máme-li svítivé diody a v přijímači zdroj napětí 5 V, lze indikaci značně zjednodušit zapojením podle obr. 11.

Obr. 9. Indikace dvou dílčích stupnic. Tranzistory jsou typu KF507 nebo pod. Žárovky 24 V/50 mA napájíme sníženým napětím, abychom prodloužili jejich dobu života (pro zajímavost: v našem případě by měla být doba života žárovek 12krát větší, světelný tok Φ se zmenšil asi na 48 % původního, příkon na 76 %, proud na 91 %)

Obr. 10. Zapojení indikace pro čtyři dílčí stupnice z výprodejních součástek. Tranzistory jsou typu KF507, indikační žárovky 24 V/50 mA. Napětí zdroje 20 V pro žárovky není třeba filtrovat

Obr. 11. Zapojení indikace pro čtyři dílčí stupnices IO MH7400 asvitivými diodami

Závěr

Pro maximální urychlení stavby jsem součástky pájel na vhodné zkušební destičky ze strany spojů, což umožňuje jednodušší uchycení destičky i rychlé úpravy a opravy v přijímači. Stupnice využívající měřicího přístroje umožňuje dosáhnout vyhovujícího vzhledu

přijímače a je realizovatelná z běžných i výprodejních součástek.

I u malého přístroje DHR3 lze při rozsahu 10 MHz na jednu dílčí stupnici číst kmitočet s přesností 100 kHz, příčemž úhlová výchylka ručky dává i z poměrně velké vzdálenosti dostatečnou informaci o kmitočtu naladěné

JEDNODUCHÉ PŘIJÍMAČE FM

(Dokončení)

Stavba přijímače

Před stavbou jednotlivých částí a propojováním celého přijímače je vhodné nejdříve zhotovit šasi a připravit si jednotlivé desky s plošnými spoji k pájení (obr. 7 a 8, deska

nf zesilovače). Šasi se skládá z několika poměrně jednoduchých dílů. Je to spodní nosná část (vana), na níž budou na distančních sloupcích přišroubovány jednotlivé desky s plošnými spoji a sítový transformátor, dále zadní panel (s anténním konektorem, reproduktorovým konektorem a pojistkovým pouzdrem), dvě rozpěrné tyčky a oba čelní panely. Ke vnějšímu čelnímu panelu je připevněno pouze měřidlo, které slouží jako stupnice přijímače. Toto řešen řešení ušetří značné starosti se zhotovením stupnice, potřebných převodů atd. Kromě toho ukazatel kmitočtu s měřidlem umožňuje indikovat i kmitočet předvolených stanic, což usnadňuje nastavování potenciometrů předvolby. Na vnitřním čelním panelu (subpanelu) jsou připevněny všechny ovládací prvky: potenciometr hlasitosti se sítovým spínačem, potenciometr ladění a tlačítková souprava Ísostat.

Hlavní vnější rozměry přijímače jsou šířka 300 mm, výška 65 mm a hloubka 225 mm.

Celkové rozložení jednotlivých dílů přijímače i rozložení dalších detailů (konektorů, ovládacích prvků atd.) bylo patrné z obr. 6.

Příprava desek s plošnými spoji spočívá ve vyvrtání všech děr, zarovnání hran a kontrole spojů. Všechny vývody desek s plošnými spoji je vhodné opatřit vhodnými pájecími

Do oblasti mechanických příprav můžeme zahrnout i montáž transformátoru a všech dílů, upevněných na subpanelu a na zadním panelu.

Stavba jednotlivých částí obvodů přijímače

Stavbu zahájíme zapojením obvodů napájecích zdrojů. Napájecí zdroj A zapojíme metodou letmé montáže na izolovaná pájecí oka. Napájecí zdroj B stavíme na desce s plošnými spoji, do níž zapájíme všechny součástky kromě odporů R'₈ a R'₁₀. Po skončení stavby zkontrolujeme činnost zdroje. K síťovému transformátoru připojíme vývody 1, 2 a 3 a kontrolujeme výstupní napětí mezi body 5 a 6; má být v rozmezí 11 až 13 V. Případně odchylky korigujeme vhodným odporem, připojeným paralelně

Obr. 7. Deska s plošnými spoji vf obvodů (O51)

Obr. 8. Deska s plošnými spoji napájecích zdrojů (O52)

k odporu R_5 nebo R_6 . Potom připojíme k transformátoru vývody 4 a 7 a měřením výstupního napětí mezi vývody 8 a 9kontrolujeme činnost integrovaného stabilizátoru ladicího napětí (mělo by být asi 15 V). Toto napětí však můžeme upravovat až po nastavení obvodů na desce vf dílu.

Po dokončení stavby napájecích zdrojů zapojíme nf zesilovač; veškeré informace lze nalézt v předchozích částech článku (AR A6, A7/80):

Stavba ví obvodů přijímače

Postavit vysokofrekvenční obvody přijímače znamená splnit dva úkoly: postavit mezifrekvenční zesilovač, a dále upravit použitou vstupní jednotku a připojit ji k desce mf zesilovače.

První úkol lze splnit poměrně snadno, protože jde o zapájení běžných součástek do desky s plošnými spoji a zhotovení cívky detektoru. Cívka má 20 závitů drátu CuL o ⊘ 0,2 až 0,3 mm na kostřičce o vnějším průměru 5 mm. Dolaďovací feritové jádro je z hmoty N05 (modrá barva) a má_závit M4 × 0,5, jeho délka je 10 až 12 mm. Cívka musí být opatřena stínicím krytem. Integrovaný obvod MA3005 má propojeny vývody 7 a 10, což zajistíme jejich přihnutím k sobě a spájením ještě před osazením obvodu do desky s plošnými spoji. Podrobnější informace o integrovaném obvodu A220 a filtru jsou ve stati o součástkách.

Druhá část stavby vf obvodů souvisí se vstupní jednotkou, kterou musíme před montáží na desce mf zesilovače ještě upravit. Nejdříve musíme od jednotky oddělit ladicí kondenzátor a potom do ní musíme zapojit nové obvody ladění. Při všech manipulacích se vstupní jednotkou postupujeme opatrně, abychom mechanicky nepoškodili její části (zejména cívky laděných obvodů apod.).

Obr. 10. Rozebraná vstupní jednotka

Ze vstupní jednotky (obr. 9) nejdříve sej-meme horní kryt, který je na vaničce aretován prolisovanými výstupky, jež zapadají do otvorů na bocích vaničky. Kryt snímáme z té strany, kde je jen jeden aretační výstupek (na protilehlé straně jsou dva). Po sejmutí krytu odpájíme od narážecích pájecích oček (která jsou na desce plošných spojů jednotky) propojovací můstky, jimiž je mechanicky spojena vanička vstupní jednotky s destičkou. Tyto můstky jsou na obvodu vaničky, po jednom na kratších stranách jednotky a jeden je uprostřed delší strany, která je proti straně s vývody. Na straně s vývody je ze spodní strany destičky obvodu ještě jedno místo spojení s vaničkou, které musíme rovněž přerušit pájením. Potom už zbývá jen odpájet od pájecích oček (body A a B) přívody od obou sekcí ladicího kondenzátoru. Tím se deska s plošnými spoji zcela uvolní a můžeme ji vyjmout z vaničky (obr. 10).

Po vyjmutí se na dně vaničky objeví dvě místa, v nichž je vanička připájena k tělesu ladicího kondenzátoru. Po roztavení cínu v místech spojení (použijeme raději výkonnější páječku) můžeme vaničku od ladicího kondenzátoru oddělit.

Po oddělení ladicího kondenzátoru desku vstupní jednotky opět "usadíme" zpět do vaničky a propájíme znovu všechna místa spojení obou dílů tak, jak tomu bylo před montáží.

Druhá část úprav vstupní jednotky je již jednodušší, neboť spočívá pouze v připojení dvou varikapů spolu s příslušnými odpory a oddělovacími kondenzátory do bodů Aa B. Jako společného zemnicího bodu pro oba varikapy využijeme pájecího očka uprostřed delší strany desky, proti vývodům jednotky. Tento bod potom zároveň se společným bodem odporů R₁ a R₂ (přes které řídíme napětí na varikapech) vyvedeme z jednotky ven. K tomu účelu si ve stínicím krytu vstupní jednotky vypilujeme na vhodném místě z boku zářez.

Po skončení úprav propojíme vstupní jednotku ve vyznačených bodech s obvody na desce mf zesilovače. Zatím však ještě nepropojumeme signálovou cestu ze vstupní jednotky do mf zesilovače (tj. spoj C₁ s vývodem 6). Po mechanické stránce zajišťují pevnost spojení obou částí krátké drátové spojky mezi zemnicí fólií desky s plošnými spoji a vaničkou vstupní jednotky, které jsou zhruba uprostřed delších stran.

Propojení jednotlivých dílů přijímače a konečné seřízení

Způsob vzájemného propojení funkčních celků přijímače je patrný z obr. 5. Postupujeme tak, abychom vždy mohli propojené celky odzkoušet a případné chyby hned odstranit. Proto nejdříve propojíme síťový transformátor s obvody napájecích zdrojů, jejichž výstupy přezkoušíme. Potom zapojíme a odzkoušíme nf zesilovač. Nakonec propojujeme desku s vf obvody a obvody ladění.

Po propojení dílů přijímače seřídíme obvody vf dílu. K této práci potřebujeme rozmítač, osciloskop a stejnosměrný voltmetr. V první řadě seřídíme mf zesilovač, což spočívá v naladění fázovacího článku detektoru. Signál z rozmítače přivádíme na kondenzátor C₁ a osciloskop je připojen na výstup mf zesilovače (emitor T₂).

Potom připojíme rozmítač na anténní zdířky vstupní jednotky. Osciloskop připojíme přes diodovou sondu na výstup mezifrekvenčního keramického filtru (na C₁₀) a ladíme obvody vstupní jednotky. Tato operace je usnadněna tím, že prodávané vstupní jednotky jsou již sladěny z výroby, takže jde spíše jen o kontrolu. Seřizování spočívá v nastavení vstupního filtru na maximální mf signál (cívky L₃ a L₄), doladění obvodů oscilátoru do pásma (cívka L₂, doladovací kondenzátor C₄) doladění souběhu laděného obvodu vstupního zesilovače (cívku L₁ a doladovací kondenzátor C₂)

kondenzátor C₃).

Nakonec se seřídí stabilizátor ladicího napětí tak, aby byla zajištěna správná činnost obvodu automatického dolaďování a možnost přeladění přijímače přes celé pásmo. Nejdříve změříme velikost stejnosměrného napětí na výstupu mř zesilovače (emitor T₂) a potom výběrem odporu R'₈ ve zdroji nastavíme na vývodu 3 stabilizátoru MAA723H přesně stejné napětí. Potom nastavíme výběrem odporu R'₁₀ na výstupu 8 takové ladicí napětí, která umožní přeladit přijímač přes celé pásmo (asi 15 V).

Poznámky k součástkám

Při přípravě součástek přijímače bychom měli začít u vstupní jednotky. Jak již bylo uvedeno, jedná seo náhradní díl k přijímači Contura, který má v omezeném množství na skladě prodejna TESLA, Martinská ulice v Praze 1. Podle informace vedoucího prodejny snad bude v případě zájmu možné ještě přiobjednat další zásilku, aby byl uspokojen co největší počet zájemců. K tomu ještě

poznamenáváme, že je možné v přijímači použít i jinou vstupní jednotku, konrétně byla s plným úspěchem vyzkoušena jednotka z tuneru TESLA 632 A.

Další méně běžné součástky jsou keramicfiltr a integrovaný obvod A220 (TBA120S). Zde máme možnost využít nabídek v inzerci AR nebo navštívit prodejnu Klenoty v Praze na Karlově náměstí (v pasáži u vydavatelství Lidové demokracie), kde jsou tyto součástky často k dostání. Třetí možností je koupě součástek přímo v NDR, což je především finančně velmi výhodné. V souvislosti s tím by bylo možné zkusit touto cestou získat i vstupní jednotku. Přepínací tlačítková soustava Isostat obsahuje šest přepínačů se závislou aretací (pro spínání předvolby a ručního ladění) a jeden se samostatnou aretací pro zapínání automatického doladování. Počet předvoleb je možné podle přání zmenšit nebo rozšířit. Je velmi výhodné použít na předvolbě i na ladění víceotáčkové potenciometry. Protože se však velmi obtížně shánějí, bude třeba většinou použít běžné druhy trimrů. Aby ladění bylo dostatečně jemné, je vhodné trimry zapojit v sérii s pevnými odpory. Ladicí potenciometr je možno vybavit vhodným převodem.

Stupnici přijímače tvoří indikátor úrovně záznamu z magnetofonu B5, který opatrně rozebereme (sejmeme přední průhledný kryt) a doplníme značkami kmitočtu (při slaďování vstupní jednotky). V zájmu dobrého výsledku doporučujeme zkušenostmi a přístroji méně vybaveným amatérům, aby především při konečném seřizování vyhledali pomoc zdatnějších kolegů, protože zejména na této operaci závisú úspěch celé stavby. S tímto předpokladem byla volena stručná forma stati o seřizování a slaďování:

Zhodnocení přijímače

Vzhledem k omezenému rozsahu přístrojového vybavení nebylo možno měřením zjistit všechny parametry, které se u přijímačů FM běžně sledují. Již prohlídkou zapojení (zejména pak vstupní jednotky) však můžeme zjistit, že např. odolnost vůči křížové modulaci, potlačení zrcadlových signálů a některé další parametry zjevně nebudou na příliš vysoké úrovni. To však nemusí být při dálkovém přijmu (tedy jsou-li v celém přijmaném pásmu pouze slabé signály) na závadu. Naproti tomu má přijímač velmi dobrou citlivost, měřením byla zjištěna pro odstup –26 dB citlivost 1,8 μV (na vstupu 75 Ω při zdvihu 40 kHz). Přijímač byl realizován pou-

ze v monofonní verzi, ale nic nestojí v cestě vybavit ho stereofonním dekodérem (zároveň musíme vyřadit deemfázi).

Závěrem býchom chtěli ještě vyzdvíhnout pochopení a iniciativu vedoucího prodejny TESLA Martinská P. Bezvalda, jehož zásluhou byly pro radioamatéry zajištěny ze skladů vstupní jednotky z přijímačů Contura a vf díly z magnetofonů TESLA A3 VKV, což vytvoření těchto stavebních motivovalo návodů.

Seznam součástek

Vstupní jednotka

VKV díl přijímače Contura

varikap KB109G - 2 ks (párované) D1, D2 kondenzátor keramický 1 nF R1. R2 odpor TR 112, 68 kΩ

Mf zesilovač

Polovodičové prvky

KF524 KC147 101 MAA3005 A220 (TBA120S) 102

Odpory (TR 151, TR 112, TR 212, TR 191)

R 47 kΩ R: 5.6 kΩ 470 Ω R4, R8, R15 2,7 kΩ R: 330 Ω R۰ 1,8 kΩ . 680 Ω R9, R12 390 Ω R10, R11 120 Ω R14 3.9 kQ

Kondenzátory (keramické)

1 nF C2, C5, C11,

Ct 2, C13 C3, C6, C7 47 nF C4, C14 0.1 nF C10 -2.2 nF

C15 100 pF TE 984, 20 uF

Ostatní součástky keramický filtr 10,7 MHz cívka Lı s krytem deska s plošnými spoji O51

Napájecí zdroje

Polovodičové prvky

KF508 T2, T3 KC147 D1, D2, D3 KY130/80 D4 KZ260/6V8 Ds, Da KY132/80 MAA723H

Odpory (TR 151, TR 112, TR 212, TR 191)

Rz. Rv. R11 8,2 kΩ R 10 kΩ R4 1,2 kΩ Rs, Re 5.6 kΩ Ra 33 kΩ R10, R13 6,8 kΩ TR 152, 33 Ω Rı

Kondenzáton

TE 675, 2200 μF TE 984, 20 μF TE 984, 500 μF C2, C7 C4 C3, C6 keramické, 1 nF

Deska s plošnými spoji O52

Další součástky síťový transformátor tlečítkové přepínače isostat - viz text potenciometr hlasitosti se spinačem potenciometr na ladění odporové trimry na předvolbu kompletní nf zesilovač – viz text kondenzátory 20 μF, TE 984, 2 ks pouzdro pojistky konektor souosý anténni konektor reproduktorovi síťová flexosňúra indikátor z magnetofonu B5 odpor miniaturní 39 kQ kondenzátor 500 μF, TE 980

Automatické časové spínače pro fotokomoru

Josef Šťastný

Na základě zapojení časového spínače, publikovaného v [1], jsem zhotovil automa-tický expoziční spínač, pracující integrální

Popis činnosti zapojení

Zapojení s tranzistory je na obr. 1. Přepínačem Př se přepíná buď odpor R₁ nebo fotoodpor v obvodu nabíjení kondenzátoru C₁ (C₂); podle toho pracuje zapojení buď jako časový spínač s volitelnou dobou sepnutí, nebo jako automatický časový spínač. Po stisknutí tlačítka Tl se "uzavře" tyristor Tyi. Současně se vybije kondenzátor C₁ (C₂) a po uvolnění tlačítka se začne nabíjet přes fotoodpor nebo přes odpor R a tyristor Ty2 rozsvítí žárovku zvětšovacího přístroje. Když

přizpůsobit C₁ a C₂ použitému fotoodporu; budou-li se jejich kapacity podstatně lišit od uvedených, je nutno změnit i odpor R1.

V zapojení podle obr. 2 je použit integrovaný obvod 555 [2]. Po stisknutí tlačítka Tlse překlopí monostabilní klopný obvod v integrovaném obvodu a zapne pomocí tyristoru Ty žárovku zvětšovacího přístroje. Kondenzátor C₁ (C₂) se nabíjí přes R₁, popř. fotood-por R₁ podle osvětlení. Když se nabíje kondenzátor na úroveň napětí, které je na běžci potenciometru P, překlopí komparátor v IO a vypne tyristor; současně tranzistor v IO vybije kondenzátor.

Přístroj je vodivě spojen se sítí a proto je třeba celý přístroj i fotoodpor dobře izolovat. Provedení a umístění sondy bylo již na stránkách AR popsáno [3].

Obr. 1. Schéma zapojení spínače s tranzistory

Obr. 2. Schéma zapojení spínače s integrovaným obvodem

se tento kondenzátor nabíje na úroveň napětí, které je na běžci potenciometru P, "ote-vře" se dvojice tranzistorů T₁, T₂, do řídicí elektrody Ty₁ prochází proud a "otevře" jej. Přitom se přeruší proud do řídicí elektrody Ty₂ a žárovka zvětšovacího přístroje při nejbližším průchodu tepavého napětí nulou zhasne. Expoziční doba závisí na osvětlení fotoodporu (máme-li přepnuto na automatiku) a na nastavení potenciometru P. Spínačem S₁ se přepínají dva rozsahy expozičního spínače a spínačem S2 se zapíná žárovka při zaostřování

Použijeme-li součástky R1, C1, C2 uvedené ve schématu, je doba expozice na prvním rozsahu asi 3 až 23 s, na druhém asi 17 až 60 s. Pro provoz s automatikou je třeba

Pro dobrou přesnost je třeba zajistit, aby červené světlo ve fotokomoře nesvítilo na fotoodpor a nezkreslovalo měření - lze buď fotoodpor zaclonit nebo vypínat červenou žárovku při expozici.

Použitá literatura

- [1] Příloha AR 1974, s. 43 (Elektronické
- vybavení temné komory). ST č. 12/1974, s. 458 (Impulsní generá-
- tory s časovačem 555).
 [3] AR-A č. 6/1978, s. 210 (Automatický expoziční spínač).

Jednoduchá úprava průběhu potenciometrů

Přemysi Smetana

Při konstrukci různých zařízení potřebujeme proměnné odpory pro nastavování výstupních veličin. Podle účelu použití často požadujeme různé průběhy odporu v závislosti na lineárně se měnící poloze běžce:

Nejběžnější jsou potenciometry s lineárním či logaritmickým průběhem odporové dráhy, méně časté s průběhem exponenciálním. Tyto tři průběhy jsou na obr. 1 jako poměr výstupního napětí U_2 ke vstupnímu napětí U_1 v závislosti na poloze běžce v procentech celkového rozsahu regulace.

Obr. 1. Ideální průběhy potenciometrů

Technologie výroby lineárních potenciometrů umožňuje i při hromadné výrobě poměrně malý rozptyl od požadovaného průběhu odporu a teoretický průběh podle obr. 1 je běžně splňován s přesností lepší než ±20 %. Podstatně náročnější je výroba logaritmických a exponenciálních potenciometrů, takže nepřesnost proti teoretickým průběhům je u nich (podle normy) až +100 a -50 %. Součinitel logaritmického průběhu se pak oproti obvyklé změně asi 4 dB/10 % změny nastavení mění v rozmezí 1 dB až 15 dB/10 % změny nastavení. Navíc jsou tyto průběhy u každého výrobku jiné.

Výhodnější je proto upravit lineární potenciometr vhodným obvodem tak, abychom dosáhli požadovaného výsledného průběhu. Dosáhneme to připojením paralelního odporu buď k horní, nebo k dolní větvi potenciometru, jak je naznačeno v obr. 2. Zde jsou též naznačeny výsledné průběhy, jestliže je odpor R_d v určitém poměru k celkovému odporu R potenciometru. Tečkovaně je naznačen obvyklý průběh logaritmického po-

Obr. 2. Obvod regulátoru s paralelním odporem v dolní větvi

tenciometru G 50 (pro rozsah 50 dB). Na obr. 3 jsou obdobné průběhy při připojení odporu R_h . Tečkovaně je naznačen průběh exponenciálního potenciometru E 50.

Obr. 3. Obvod regulátoru s paralelním odporem v horní větvi

Lze samozřejmě použít i kombinaci obou odporů R_d a R_h . To je výhodné zejména proto, že získáme uprostřed regulačního rozsahu jemnější regulaci, jak vyplývá z obr. 4 (křivky 4, 8 a 9). U všech těchto zapojení však nesmíme zapomenout na to, že se mění vstupní odpor regulačního obvodu, jak bude vysvětleno později.

Křivka	Rh	R_d
1	R/10	10 F
2	R/5	5 R
3	R/2	2 R
4	R	R
5	2 R	R/2
. 6	5 R	R/5
7	10 R	R/10
8	R/25	R/25
9	R/5	R/5

Obr. 4. Obvod regulátoru s paralelními odpory v obou větvích

Z obr. 2, 3 a 4 můžeme podle požadavku na průběh zvolit nejvýhodnější $R_{\rm d}$ nebo $R_{\rm h}$, případně oba. Například při $R_{\rm d}=R/7$ získáme kvazilogaritmický průběh, který lépe vyhovuje regulaci než běžný potenciometr logaritmický. Při můstkových měřeních budeme opět požadovat jemnější regulaci ve středu regulačního rozsahu. Lepších výsledků než se samotným lineárním potenciometrem dostaneme, jestliže jej doplníme oběma odpory, kdy $R_{\rm d}=R_{\rm h}$. Strmost ve středu regulačního rozsahu bude závislá na jejich

hodnotě, pro běžné případy se jeví jako nejvýhodnější $R_d = R_h = R/3$.

Potřebujéme-li zajistit jemnou regulaci v kterémkoli místě rozsahu hrubé regulace, musíme použít dva potenciometry. Běžně používáné zapojení dvou potenciometrů v sérii (jeden pro hrubé a druhý pro jemné nastavení) má značnou nevýhodu v tom, že jemnost regulace se mění podle polohy regulátoru pro hrubé nastavování. Na horním kraji jeho dráhy je jemné nastavení prakticky neúčinné.

Jemnou regulaci, která je v celém rozsahu naprosto stejná, lze zajistit zapojením podle obr. 5. Použitý tandemový potenciometr je lineární a zapojení má navíc tu výhodu, že vstupní odpor regulačního obvodu nemění. Hrubý i jemný regulátor lze tedy opatřit stupnicí s přesným významem, což u sériového zapojení obou potenciometrů možné není.

Obr. 5. Zapojení s hrubou a jemnou regulací

Zapojení z obr. 2 a jeho průběhy můžeme překreslit do semilogaritmického papíru podle obr. 6, kde lépe vynikne přibližně logaritmická změna ve střední části regulace. Ideální logaritmická změna by byla v tomto zobrazení přímková, jak naznačují v pravé části obrázku přímky s různou směrnicí. Směrnice přímek odpovídá určité konstantě v logaritmickém nebo exponenciálním vztahu závislosti U2/U1 na procentu nastavení regulátoru. Nejdelší přímkovou část ve středu průběhu bychom nalezli v levé části obr. 6 u křivky pro $R_d = 0.35$ R a podle směrnic v pravé části obrázku by byla změna asi 1,8 dB/10 %. U horního konce regulace dosahuje strmost až 4 dB/10 % (jako u obvyklých logaritmických potenciometrů), u dolního konce přes 7 dB/10 %. To je výhodné pro regulátory hlasitosti. Je-li střední poslechová úroveň 85 až 90 dB při nastavení regulátoru na 50 %, můžeme v této oblasti nastavovat hlasitost jemněji. Do plného nastavení (100 %) máme možnost zvýšení asi o 12 dB, tedy pro domácí trvalý poslech takřka nepoužitelnou hlasitost kolem 100 dB. Jak plyne z obr. 6, mění se pro různé R_d střední hladina jemného nastavování a částečně i směrnice průběhu. Tak např. při $R_d = R/10$ až R/5 dostáváme průběh, který je vhodný pro korektory hloubek a výšek a to jak v pasívních, tak i v aktivních korektorech. V těchto případech 'však musíme vhodně volit odpor potenciometru R, abychom neovlivnili přizpůsobení budicích i zatěžovacích obvodů. S obvyklým lineárním potenciometrem jsou změny ve střední poloze regulátorů velmi rychlé. Pro tento průběh regulátoru bývá někdy používáno nesprávné označení, "sinusový průběh"; průběh nemá se sinuso-vou funkcí nic společného. Směrnici a délku lineárního úseku může-

Směrnici a délku lineárního úseku můžeme ovlivnit přidáním odporu R_h tak, jak je naznačeno pro dva náhodně vybrané průběhy tečkovaně a čárkovaně v obr. 6. Tečkovaný průběh ($R_h = R/2$ a $R_d = 2$ R) je výhodný pro řízení vyvážení stereofonních kanálů, neboť umožňuje velmi jemnou regulaci.

Zhruba kvadratický průběh (vhodný např. pro usměřňovače s řízeným napětím) dosáhneme v zapojení podle obr. 2 ($R_d = R/2,8$). Tak můžeme nalézt další průběhy, vhodné pro určitá zapojení. Protože se obvykle jedná o speciální použitík uvádím v závěru pouze hlavní rovnice, jimiž lze potřebné členy vypočítat.

Obr. 6. Průběhy regulačních obvodů v semilogaritmickém zobrazení

Vstupní odpor takto upravovaných regulátorů se téměř vždy zmenší. Nahrazujeme-li původní potenciometr některým z uvedených obvodů, musíme tuto skutečnost respektovat. Rozhodující je vždy nejmenší možný vstupní odpor $R_{\rm in}$ regulačního obvodu. Pro zapojení z obr. 2 a 3 je $R_{\rm in}$ určen paralelní kombinací odporu potenciometru R a odporu $R_{\rm in}$ nebo $R_{\rm h}$ za předpokladu, že zatěžovací odpor obvodu $R_{\rm i}$ je mnohem větší než R. Jestliže je zatěžovací odpor $R_{\rm s}$ s R srovnatelný, pak je nutno použít přesnější vztahy uvedené na konci článku.

Výstupní odpor regulačního obvodu je vždy menší, než byl s původním potenciometrem, a proto této otazce nemusíme (až na zcela výjimečné případy) venovat pozornost.

Obr. 7. Zapojení úplného obvodu (k výpočtům)

Výstupní odpor regulátoru:

$$R_{\text{out}} = R_2 \parallel R_3.$$

$$R_{1} = hR \| [(1 - k)R] = R \frac{h(1 - k)}{1 + h - k}$$

$$R_{2} = kR \| dR = R \frac{kd}{k + d}$$

$$R_{3} = R_{1} + iR = R \quad i + \frac{h(1 - k)}{1 + h - k}$$

$$R_{4} = R_{2} \| zR = R \frac{kzd}{zd + k(z + d)}$$

Při použití logaritmického potenciometru platí dále:

$$\frac{U_2}{U_1} = 10^{(k-1)/\text{konst}}$$

$$k = 1 + \text{konst.} \log(U_2/U_1).$$

Využití takto upravených potenciometrů je velmi široké a úprava průběhu k výhodnějšímu splnění žádané funkce je podle grafů na obr. 2, 3, 4 a 6 snadná.

Při všech zapojeních předpokládáme, že výstupní odpor budicího obvodu R_0 je ve srovnání s R, R_0 či R_0 zanedbatelný. Kdyby tomu tak nebylo, bylo by opět nutno průběh přepočítat podle vzadu uvedených vztahů.

Na závěr uvádím základní zapojení úplného obvodu (obr. 7) a vztahy nezbytné pro výpočet. Všechny odpory jsou uvažovány jako násobky odporu potenciometru R, jehož dolní část je kR, horní část (1-k)R. Pro 100% nastavení regulátoru je k=1. Přenos:

$$\frac{U_2}{U_1} = \frac{R_4}{R_2 + R_4}$$

Vstupní odpor regulátoru:

$$R_{\rm in} = R_{\rm i} + R_{\rm i}.$$

Elektronická regulace rychlosti otáčení stejnosměrných motorků

Tomáš Kůdela,

Stejnosměrné motorky se vyskytují v různých hračkách, v přenosných bateriových magnetofonech a někdy i v sitových přístrojích (jako např. M531S). Amatér naráží na nutnost řešit regulaci rychlosti otáčení magnetofonového motorku v těchto případech:

 Odstředivá regulace v magnetofonu selhává pro opotřebení.

Regulace rychlosti (odstředivá nebo elektronická) je konstrukčné nedokonalá.

 Starý motorek v jinak dobrém magnetofonu musel být vyměnén za jiný typ a rychlost otáčení náhradního motorku je nutno přizpůsobit převodům.

Magnetofonů s motorky s odstředivou regulací je na trhu i mezi amatéry stále dost a bude proto jistě dost i těch, kteří by rádi zdokonalili svůj přístroj.

TI - 30 żáv na feritové tyčce o €3 mm

Elektronickou regulaci jsem řešil při úplné rekonstrukci staršího přenosného magnetofonu Crown CRC 5800, při které jsem mj. musel vyměnit i motorek. Použil jsem motorek z MGF TRQ – 257R HITACHI, jehož odstředivá regulace byla – stejně jako u původního motorku – slyšitelně nepřesná a poruchová. Stabilizační obvod je principiálně známý, např. z AR č. 5/1977, str. 189. Pro konkrétní motorky je však třeba vyřešit hodnoty odporů v obvodu. Návrh postupu je uveden dále. Základní schéma jsem doplnil o užitečný rozběhový obvod. Celý regulátor se vešel na desku s plošnými spoji o rozměrech 3×4 cm.

Popis činnosti

Schéma zapojení elektronického regulátoru je na obr. 1. V okamžiku připojení napájecího napětí je C_3 vybit a záčne se nabíjet přes odpory R_2 , R_6 , diodu D_1 a přes přechod báze-emitor tranzistoru T_1 . Tím se otevřou T_1 , T_2 a T_3 . Motor se rozběhne a je na něm plné napájecí napětí (výhoda tohoto zapojení). Diody D_2 a D_3 fungují jako Zenerova dioda na 1,4 V. Kdyby byl $R_7=0$, obvod by pracoval jako stabilizátor napětí. Zařazením odporu R_7 dosáhneme toho, že se při zvětšujícím se odběru proudu zvětšuje také napětí na motorku. Tato vlastnost zapojení umožní dôsáhnout konstantní rychlosti otáčení při různém zatížení a různém napájecím napětí. V praxi to znamená, že se rychlost otáčení nezmenšuje při zvětšování mechanické zátěže ani při postupném vybíjení baterií.

S různými motorky bude R_7 různý. Správně lze R_7 nastavit experimentálně např. postupem, který se mi osvědčil. Za R7 jsem zvolil 10 Ω. Tento odpor jsem zhotovil ustřižením patřičné délky nikelinového odporového drátu o Ø 0,2 mm. Po zapojení R₇ do obvodu jsem připojil napájecí napětí. Moto-rek "běžel trhavě". Při mechanickém brzdění motorku trhavý chod zmizel a při jeho silnějším přibrzdění se rychlost otáčení zvětšovala. Postupným zkracováním odporového drátu (až do vymizení tremola) jsem dospěl

k odporu 5 Ω, což bylo pro daný typ motorku optimální.

Pro dobrou funkci je zapotřebí, aby T₁ měl velký zesilovací činitel h_{11e}, aby kartáčky motoru dobře "seděly" na komutátoru. Komutátor nesmí být příliš znečištěn. Komutátor očistíme tvrdou pryží a benzínem. V žádném případě nepoužívejte prostředky jako je např. "Kontaktol" aj.

Uvedená stabilizace pracuje velmi dobře v rozsahu napájecího napětí 5 až 20 V.

a H₄ a jako BKO i Č výhodně využíváme částí

IO₁, které mají společné nulovací vstupy. Pro krácení módu Č bez nutnosti dalších vnějších

hradel jsou na místě PZ zapojeny oddělovací diody D₁ až D₃ a spínače S₁ až S₃.

(2 ≤ n ≤ 8 a n je prvkem množiny celých čísel) udává tab. 1. 0 odpovídá rozpojenému stavu příslušného spínače, 1 značí sepnutý stav. Při zařazení obecně kbitového čítače je

násobek ntého kmitočtu definován vztahem

 $n = 2^a + 2^b + 2^{c} + 2^d + \dots + 2^k$, kde a, b, c, d \dots k jsou popořadě binární

*n*tého

předvolbu

Přehled kombinačních stavů S1 až S3 pro

násobku

kmitočtu

0

Programovatelný násobič kmitočtu

Násobiče kmitočtu logického signálu, které byly dosud uveřejněny, měly hlavní nedo-statek, že nevytvářely oběcný násobek kmitočtu hodinového signálu. Násobiče většinou nebylo možno řadit do kaskády, nebo zpracovávaly jen úzké kmitočtové pásmo hodino-

vých signálů.

vstup

nulování

Tyto nedostatky odstraňuje programova-telný násobič, jehož blokové schéma je na obr. 1. Předpokládejme, že GI pracuje na kmitočtu řádově vyšším, než je maximální kmitočet vstupního signálu a BKO i Č jsou v klidovém stavu (vynulovány). Týlovou hranou vstupního hodinového impulsu překlápí BKO a otevírá BO. Impulsy z GI jdou klápi BKO a otevírá BO. Impulsy z GI jdou jednak na výstup násobiče a současně plní Č. Jakmile Č napočítá tolik impulsů, kolik odpovídá nastavení PZ, je z PZ vyslán nulovací impuls. BKO i Č se vrátí do výchozího stavu a BO blokuje cestu signálu z GI. Pak se celý děj periodicky opakuje. Činnost názorně osvětluje diagram na obr. 2 odpovídající módu 4 čítání. Vyplývá z něho nerovnoměrné časové rozložení výstupních impulsů. což však většinou nebude na závadu sů, což však většinou nebude na závadu.

Na obr. 3 je schéma zapojení násobiče. GI tvoří hradla H₁ a H₂, BO je složen z hradel H₃

во

text a tabulku)

V tabulce zjistíme i vhodnou kapacitu kondenzátoru Č v závislosti na maximálním kmitočtu hodinového signálu. Při tomto mezním kmitočtu a naprogramovaném násobku 8 (tab. 1) pak budou výstupní impulsy rozloženy téměř rovnoměrně.

Tab. 1.

Násobek	S ₁	S_2	S3	f _{max}	c
. 1	1	0	0	1 Hz	100 μF
2	0	1	0	10 Hz	10 µF
3	1	1	. 0	10 ² Hz	1 μF
4	0	0	1	10 ³ Hz	100 nF
5	1	0	- 1	10 ⁴ Hz	10 nF
6	0	1	1.	10 ⁵ Hz	1 nF
7	1	1	1	10 ⁶ Hz	100 pF
8')	0	0	0	1 = S sepnut,	0 = S rozpoje

*) nulovací vstupy 2 a 3 lO₁ uzemněny

stavy spínačů S1 až Sk

Obr. 3. Schéma zapojení násobiče (C - viz

vstup _____ výstup MALMALMIL

Obr. 1. Blokové schéma násobiče (GI generátor impulsů, BO - blokovací obvod,

PZ – programovací zařízení)

BKO – bistabilní klopný obvod, Č

Obr. 2. Impulsní diagram násobiče (čítač pracuje v módu 4)

Obr. 4. Deska O53 s plošnými spoji násobiče (vývody 3, 4, 5 IO2 spojit kapkou cínu)

0

Pokud na místě Č zapojíme více než tříbitový čítač s paralelně řízenými nulovacími vstupy programovacími spínači a diodové matice pro krácení módu, můžeme bez obtíží získávat výstupní signál s kmitočtem vyšším o několik řádů. Zařadíme-lì přídavný dělič podle obr. 3, můžeme kmitočet logického signálu násobit necelým racionálním nebo aproximovaným iracionálním číslem. Násobitel bude mít tvar zlomku, jehož čitatel odpovídá módu Č a jmenovatel módu děliče. Programovatelný násobič kmitočtu byl

postaven na desce s plošnými spoji (obr. 4) a k napájení byla použita plochá baterie.

Popsaný násobič má uplatnění v měřicí, automatizační či regulační technice. Lze ho využít i při sestavování digitálních měřičů analogových veličin apod. Přístroj jsem například vyzkoušel i v nf zesilovači s PCM (PWM) a ve složitější verzi pro transpozici ladění elektrické kytary.

Jan Drexler

-vstup

S

S

DROBNOSTI PRO AMATÉRY

Jednoduchý bzučák

Zcela nenáročný bzučák, vhodný například pro výcvik Morseovy abecedy, lze realizovat podle obr. 1. Využijeme v něm libovol-

Öbr. 1. Schéma zapojení bzučáku

ného sluchátka (buď 2 × 27 Ω, nebo 50 Ω), dva tranzistory a dva odpory. Napájecí napětí není kritické, při 1,5 V již zařízení dobře pracuje a má spotřebu asi 10 mA.

Zdeněk Pícha

Úprava mikrofonu k transceiveru "Boubín"

U transceiveru "Boubín" se jako mikrofon používá miniaturní reproduktor 8 Ω. Tento reproduktor jsem z původního držáku vyjmul a místo něho jsem vsadil telefonní vložku 50 Ω s následující úpravou: šroubovákem jsem opatrně uvolnil opertlované kraje a vyjmul "vnitřek". Membránu jsem z každé strany asi 2,5 mm odstřihnul podle obrázku. Takto upravenou vložku jsem zabudoval do původního držáku, ale napřed jsem ji podložil kouskem molitanu o síle 4 mm. Zbytek prostoru v mikrofonním držáku jsem vyplnil původní molitanovou podložkou. Toto je celá úprava; podle zkušeností ji vřele doporučuji všem uživatelům tohoto zařízení.

QRT

Dne 28. dubna 1980 ve věku 44 let opustil řady radioamatérů po dlouhé nemoci

Milan Sianička, OK1JSM

Byl předsedou radioklubu OK10NA a ORRA v Teplicích a členem KRRA v Ústí nad Labem. Svůj volný čas věnoval radioamatérské činnosti a výchově mladých radioamatérů v OUŽ Sobědruhy. Odchodem • Milana ztrácí kolektiv radioklubu dobrého kamaráda.

OK1ONA

RADIOAMATĒR SKÝ LO LO PORT

QSO YV5ZZ - OK3CTP EME!

V I. EME contestu 19. až 20. 4. 1980 se podafilo Janovi, OK3CTP, navázat v pásmu 432 MHz odrazem od Měsíce spojení s venezuelskou stanici YV5ZZ (op Edgar), což je první spojení mezi ČSSR a Jižní Amerikou tímto způsobem provozu. Janovi tak přibyl další, již pátý kontinent a nyní mu chybí pouze Austrálie a Oceánie. Celkem navázal OK3CTP v I. EME contestu v pásmu 432 MHz 14 QSO s devíti zeměmi a 5 světadíly (K2UYH, JA6CZD, DL7YCA, DL9KR, F9FT, SM6CKU, ZE5JJ, G3LTF, W6ABN, YV5ZZ, I2COR, F2TU). A to je vysledek práce pouze při druhém oběhu Měsíce (20. 4.)! OK3CTP se sice na I. EME contest důkladně připravoval, postavil anténní předzesilovač podle JA6CZD s MGF1400, který dostal od JA6CZD jako dárek, a již týden před závodem přijímal 18 dB šumu Slunce. Avšak těsně před začátkem závodu, při posledních úpravách v anténním předzesilovači, který je umístěn nahoře pod anténou, aby nezesiloval šum kabelu, vyklouzl MGF1400 Janovi z ruky, dopadl na betonovou patku stožáru a mechanicky se zničil. Při prvním oběhu Měsíce v závodě tedy Jano nesoutěžil, nýbrž upravoval anténní předzesilovač pro zapojení s BFT66.

II. EME contest proběhl již bez podobných nepřijemností ve dnech 17. až 18. 5. 1980. Oproti první částí navázal Jano 28 QSO, tedy dvojnásobek, pracoval se. 14 zemémi a 4 svétadíly (JA9BOH, JA6CZD, I5MSH, SM2GGF, DL9KR, F9FT, PA0SSB, DL7YCA, G3WDG, LX1DB, K2UVH, GW3XYW, K9KFR, VE7BBG, K5JL, SM5BFK, F2TU, G3LTF, ZE5JJ, YU2RGC, I2COR, HB9SV, WB5LUA, K3NSS).

V obou cástech EME contestu byli OK3CTP a YU2RGC jedinými zúčastněnými stanicemi ze socialistických zemí a podle počtu navázaných spojení očekáváme umístění OK3CTP na něterém z předních míst.

Jano je optimista a předpokládá, že v době, kdy čtete tento článek, již bude zbývající šestý kontinent "doma". I přes technickou náročnost zařízení pro provoz EME očekává Jano další zvýšení zájmu o tento způsob provozu (v současné době pracuje EME asi 80 stanic na celém světě) a dozvěděli jsme se, že se připravuje k zahájení vysílání EME další OK stanice, tentokráte.s prefixem OK2.

pfm

Obr. 1. Ján Polec, OK3CTP, ve svém hamshacku

Rubriku vede Josef Čech, OK2-4857, Tyršova 735, 675 51 Jaroměřice nad Rokytnou

Zájmové kroužky rádia

Skončila doba prázdnin a dovolených a začíná nový školní rok. Také v radioklubech a při kolektivních stanicích se znovu plně rozbíhá činnost nejen sportovní a technická, ale také práce s mládeží. Výchova nových operatérů by se měla stát základem činnosti všech, kolektivních stanic a radloklubů.

Do škol a závodů nastoupí noví žáci a uční. Bylo by dobré podchytit zájem mládeže ihned na začátku nového školního roku a připravit na školách, v radioklubech a v Domech pionýrů a mládeže zájmové kroužky rádia, kursy telegrafie, radioamatérského provozu a základů radiotechniky.

Mezi mládeží je v současné době velice populární stavba různých zesilovačů a barevné hudby. Je proto třeba upozornit mládež na činnost našich kolektivních stanic a radioklubů ve vývěsních skřiňkách, za výlohami nebo na informačních tabulích, které jsou umístěny ve většině škol.

Mládež se s naší činností seznámila o prázdninách v řadě letních pionýrských táborů při ukázkách radioamatérské činností, které pro ně připravili členové okolních radioklubů. Nečekejte však, že se mládež sama přihlásí. Mnohdy ani neví, kde mají radiokluby a kolektivní stanice hledat. Zajděte do škol a na učňovská střediska do závodů. Učitelé a vychovatelé vám jistě umožní pohovořit s mládeží o radioamatérském sportu a v žádném případě nezapomeňte na spolupráci s SSM. Jistě se vám podaří získat nové zájemce o naší činnost.

Práce s mládeží je velice náročná a důležitá, bohužel však ne dosud dostatečně hodnocena. Proto je také stálý nedostatek dobrých a obětavých cvičitelů mládeže. Přesto věřím, že v každém radioklubu a na každé kolektivní stanici se najde několik obětavých členů, kteří si vezmou výchovu mládeže na starost. Vyplatí se nám, když po úspěšném zakončení kursů nám do kolektivních stanic a radioklubů přibudou noví operatéři, RP, OL i radiotechnici. To bude ta nejlepší odměna všem ochotným a obětavým cvičitelům, kteří dokáží mládeži věnovat několik hodin týdně ze svého osobního

Kolektiv OK1KNÇ

Příkladem v obětavé práci s mládeží je kolektiv OK1KNC v Nejdku u Karlových Varů, který vám dnes představuji.

Když před několika lety přišel do pohraničního městečka Nejdku mladý radioamatér Pavel Káčerek, OK1AWQ (obr. 1), s manželkou Majkou, OK1IWQ, našel kolektivní stanici v "zimním spánku". Přes všechna úskali, včetně výcvíku branců ve vlastním bytě, se jim podařilo díky jejich obětavosti činnost

Obr. 1. VO OKIKNC Pavel Káčerek, OKIAWQ, vede členy radioklubu k radioamatérské všestrannosti

kolektivní stanice obnovit. OV Svazarmu zakoupil budovu pro ZO Svazarmu v Nejdku a radioamatéři se zabydleli v půdních prostorách. S radostí se pustili do práce, pozvali mezi sebe mládež včetně té nejmladší a členská základna se pomalu začala rozšiřovat. Postupně si vychovali další operatéry kolektívky, RP i OL a činnost kolektívky se úspěšně rozvíjela. Jeden z nejmladších členů kolektivu, Radek Herout, OK1-23029, přívedí do radioklubu svého otce, který dnes jíž pracuje na pásmech VKV pod vlastní značkou OK1VOQ a aktivně pomáhá pří výchově nových operatérů a mládeže.

Úspěšně se také rozvíjí ROB. Se zapůjčeným zařízením uskutečnili náborové soutěže, místní přebory a za pomoci dřívějších členů kolektivky i okresní přebor. V krajském přeboru zvítězil v nejmladší kategorii C2 Tomáš Káčerek, OK1-21219, a v kategorii B zvítězil Herbert Ullmann, OL3AXZ, kterého vidíte na druhém obrázku při vysílání v Polním dnu

Operatéři kolektívky by se také rádi účastnili Polního dne a činnosti v pásmech VKV. Zprvu chybělo zařízení, Kája, OK1AOE, však splnil slib, zařízení zhotovil a kolektivka OK1KNC se mohla zúčastnit PD 1979 i 1980.

Od roku 1978 je činnost kolektivní stanice OK1KNC již pravidelná a operatéři vysílají v pásmech KV téměř denně. Nadšení a obětavost všech operatérů již přináší první úspěchy. V letošním ročníku OK-MARATÓNU se v hlášeních za jednotlivé měsíce značka OK1KNC objevuje na prvních místech a také jednotliví operatéři kolektivky jsou hodnocení na předních místech v kategorii posluchačů

Jejich úspěchy nejsou náhodné, nýbrž svědčí o poctivé a obětavé práci všech 21 členů radioklubu Jistě je to také tím, že mají zdravé jádro a nenechaj se hned tak odradit nedostatečným vybavením své ho radioklubu. Snad jen Majka, OK1IWQ, si občas posteskne, když doma nenajde řadu věcí, které byly přemístěny do radioklubu.

Přeji celému kolektivu OK1KNC brzké splnění všech úkolů, které si do budoucna vytyčili, hodně úspěchů ve výchově mládeže a nových operatérů, při výcvíku branců a v soutěži aktivity radioklubů na počest 35. výročí osvobození ČSSR.

Jeden nejaktivnějších členů OKIKNC - Herbert Ullmann, OL3AXZ, při PD 1979

Závodv

CQ WW DX CONTEST, část fone

je dalším závodem, který je započítáván do letošního mistrovství ČSSR v práci na KV v kategorii jednotlivců a kolektivních stanic. Závod bude probíhat od 25. října 1980 00.00 UTC do 26. října 1980 24.00 UTC.

TEST 160 m

Jednotlivá kola tohoto závodu budou uspořádána v pondělí 6. října a v pátek 17. října v době od 20.00 do 21.00 SEC v pásmu 1,8 MHz.

Doporučuji vám také účast v závodech VK -ZL / Oceania Contest v obou částech a v závodě WADM Contest, které proběhnou rovněž v říjnu.

OK - MARATÓN

Těšíme se na hlášení od dalších kolektivních stanic, OL a posluchačů, kteří se dosud do OK-MARATÓNU nezapojili.

Přeji vám hodně úspěchů v přípravě kursů pro mládež, v provozu na pásmech a těším se na další vaše dopisy a připominky

73! Josef, OK2-4857

Přebor ČSR v ROB

Severomoravšký kraj, který již několik let tradičně doplňuje kádr reprezentantů ČSSR, byl pověřen ČÚRRA Svazarmu uspořádáním přeboru ČSR v ROB ve dnech 6. až 8. 6. 1980.

Komise ROB ČÚRRA doporučila pro letošní rok samostatné přebory kategorie A + D, kategorie B a kategorie C, aby byl umožněn start co největšího počtu závodníku s VT odpovídající soutěži I. kvalitativního stupně.

Organizační výbor ve složení Stanislav Opíchal, OK2QJ, (ředitel přeboru), ZMS ing. Boris Magnusek, OK2BFO, (předseda org. výboru), ing. Jiří Zítko. OK2RHS, (tajemník), Libuše Magnusková, OK2RHS, (presentace + start), zajistil v prostoru Hradce n. Moravicí dobré podmínky pro ubytování v autokempinku Svazarmu i terén odpovídající náročnosti přeboru.

Mezí čestnými hosty, kteří se zúčastnili slavnostního zahájeňí, byl mjr. Bronislav Bystroň, předseda MěV Svazarmu v Ostravě, Oldřich Kostka, OK2SKX, delegát ČÚRRA a předseda KRRA SM kraje. Zvlášť míle potěšila návštéva pplk. Jaroslava Vávry, OK1AVZ, a Jiřího Bláhy, OK1VIT, kteří přijeli v sobotu ze současně probíhajícího přeboru ČSR v MVT v Bučovicích a zúčastnili se slavnostního ukončení přeboru.

Sbor rozhodčích byl sestaven z těch, kteří v současné době představují naší špičku v ROB. Pod vedením ing. Josefa Krejčího (hlavní rozhodčí) pracovali v cíli ing. Pavel Šrůta, OK1UP, ing. Antonín Pánek, OK2DW, a Eva Krejčová, na startu sehraná dvojíce ing. Reinhardt Skazík a Liba Magnusková, oba OK2RHS. Stoprocentní jistotu měl organizační výbor v rozhodčích na vysílačích: sehranou čtveřící mezinárodními závody protřelých obstuh z Tišnova -Jára Musil, OK2KEA, Láďa Výrosta, OK2KEA, Ludvík Kos, OK2BSD. Petr Doležal, OK2BSY, výborně doplnil Vladimír Novák, OK2BNV. Provoz vysílačů z dispečinku řídili Jirka Goj, OK2SGJ, a Karel Věntus, OK2SJK. Nad celou organizací bděl státní trenér MS Karel Souček, OK2VH, (sportovní instruktor), který společně s ZMS ing. B. Magnuskem, OK2BFQ, stavěl trať přeboru.

Na startu se sešio 34 závodníků kategorie A a 19 závodnic kategorie D. I když počasí bylo krajně nepříznivé (od rána pršelo, v poledne průtrž mračen) a trať měřila 7.4 km v obou závodech, výsledky potvrdíly dobrou a systematickou práci závodníků v jarním období. Obě soutěže proběhly bez protestů ze strany závodníků, časový harmonogram byl dodržen, a přestože poslední závodník startoval v pásmu 2 m v 17.30 LČ, bylo oficiální vyhlášení s předáním medailí, diplomů a cen ve 20.00, tj. 30 minut po limitu posledního závodníka.

Při této přiležitosti je nutno se zmínit i o přístupu některých krajských rad radioamatérství k nominač nímu klíči. Komise ROB ČÚRRA schválila nominační klíč, který každému kraji zaručoval dostatečný počet závodníků (5 v kat. A a 3 v kat. D) a navíc na zasedání komise ROB 3. 6. 1980 byly tyto počty upraveny. Severočeský kraj neposlal oficiální přihlášku závodníků a navíc vyslal 3 závodníky s III. VT, což odporuje základním pravidlům v ROB. Správným rozhodnutím organizačního a soutéžního výboru nebyli tito závodníci v oficiální startovní listině a startovali mimo soutěž. Již několik let je slabá účast závodníků z Prahy (4) a Středočeského kraje (4).

Výsledky

(údaje v pořadí: umístění, jméno, kraj, počet kontrol, čas v minutách)

kategorie A, 3,5 MHz, delk	a trati 7,4 k	m	
1. Mojmír Sukeník	SM	5	58,58
2. Karel Javorka	SM	5	60,03
3. Jiří Geier	SM	5	68,54
4. Jiří Suchý	sč	5	71,07
5. Ivo Tyl -	sć	5	74,16

kategorie A,	145 MHz.	dėlka trati 7,4 km

 Karel Javork 	(a	SM	5	52,1
2. Jiří Suchý		sč	5	54,1
Jiří Geier		SM	5	55,0
4. Miloslav Raje	chl	SČ	5	62,2
5. ing. Antonín	Bloman	P-M	5	68,0
Celkern 34 závo	dníků.			

kategorie D. 3.5 MHz. délka trati 6.1 km 1. Jana Krejčová 78,53 SČ Zdena Vinklerová 90,09 Alena Trávníčková .IM 91,27 Dana Guňková SM 94.49 5. Dagmar Frydková SM 96,37 kategorie D, 145 MHz, délka trati 6,1 km 1. Alena Trávníčková JM 52,48 Dana Guňková 55.30 SM

νĊ

SM

66.29

68.11

Jana Rosivalová

Zdena Vondráková

Jana Krejčová

Obr. 1. Čs. reprezentantka Zdena Vinklerová z radioklubu Teplice, OK1KPU

Do hodnocení krajských družstev byly započítány 3 nejlepší z kat. A a dvě nejlepší z kat. D. Pořadí se určuje jako v soutěží jednotlivců, a to nejdříve podle počtu nalezených vysílačů a dále podle dosaženého

-		•
SM	23	379,21
٧Č	23	426.19
ZČ	23	509.00
•		
3. JČ.		
SM	23	302,11
ZĆ	23	436,00
FČ	22	367,51
itČ.		
	vč zč 3. Jč.	VČ 23 ZČ 23 3. JČ. SM 23 ZČ 23 FČ 22

ZMS ing. Boris Magnusek, OK2BFQ, předseda komise ROB ČÚRRA

Soustředění na Konopišti

těchto dnech nastupují naší reprezentanti v PLR do bojů o medaile na prvním mistrovství světa v ROB. O jejich přípravě na tento "liškařský svátek" informoval OK1DTW v rubrice ROB v minulém čísle AR. Na jednom z připravných soustředění se byla podívat i redakce AR.

Konalo se uprostřed května (12.-21.) tohoto roku v příjemném prostředí zámku Konopiště nedaleko Benešova. Podle původního planu se měli zúčastnit také reprezentanti PLR, avšak na poslední chvíli svoji účast odmítli.

Náročností odpovídal program soustředění svému účelu; podle slov ústředního trenéra Miroslava Popelika, OK1DTW, "cílem soustředění byla intenzívní technicko-taktická příprava na mistrovství světa." Závodnici absolvovali celkem sedm závodů v obou pásmech, v sobotu a v neděli 17. a 18. května si "odskočili" do Holic na druhý ročník AROS a NROB, zvítězíli tam (v AROS K. Javorka, OK2BPY, v NROB ing. Z. Jeřábek, OK3KXI, a Z. Vinklerová, OK1KPU) a zase se vrátili zpět na Konopiště.

Kromě tréninkových závodů byly náplní soustředění speciální dohledávky a testovací vytrvalostní běhy (pro muže 3 × 5 km s minutovými přestávkami, pro ženy a dorostence 3 × 2,5 km s minutovými

přestávkami). Stejné vytrvalostní testy absolvovalí na téže trati naši reprezentanti v loňském roce, takže mají naši trenéři dobrou možnost hodnotit a srovnávat růst fyzické připravenosti svých svěřenců.

Pod vedením ústředního trenéra Miroslav Popelíka, OK1DTW, a statního trenéra MS Karla Součka, OK2VH, zabezpečoval připravu naší reprezentace trenérsky a technický sbor v tomto složení: MS Emil Kubeš, OK1AUH, ZMS ing. Boris Magnusek, OK2BFQ, ing. Luboš Hermann, OK2SHL, Karel Koudelka, OK1KBN, MS Ivan Harminc, OK3UQ, Miloslav Rajchl, OK1DRM, Jan Moskovský, OK1DMV, Ludvík Kos, OK2BSD, Vladimír Novák, OK2BNV, Jaroslav Musil, OK2KEA, Vladimír Výrosta, OK2KEA, Antonín Růžička a Petr Doležal, OK2BSY.

Obr. 1. Ivana Jaskulková z radioklubu Tišnov, OK2KEA, před startem

Obr. 2. Karel Javorka, OK2BPY, připomíná trochu Satyra, ne však svou rychlostí a životosprávou

Tatranská valaška

ORRA Svazarmu společně s ODPM v Popradě uspořádaly ve dnech 7. až 8. června druhý ročník celoslovenské meziokresní soutěže v ROB o putovní tatranskou valašku pro závodníky kategorie C. Na startu se sešlo více než čtyřicet závodníků a hlavní zásluhu na organizačním zabezpečení a hladkém průběhu soutěže měli členové radioklubu OK3KTY.

Stučné výsledky

(údaje jsou v pořadí: umístění, jméno, okres, počet kontrol, čas)

Kategorie C1, 3,5 MH	z, délka trati 3,3 km	1, 4 k	ontroly
1. Viliam Kováč	Žilina ,	4	62,53
2. Jaroslav Oravec	Čadca	4	63.24
3. Ivan Horský	Stará Lubovňa	4	66.18

Kategorie C2, 3.5 MHz, délka trati 3.3 km, 4 kontroly 1. Oliver Oravec Stará Lubovňa 1 14.09 2. Jozef Kovalčík Poprad 26.32 3. Martin Sedlák Poprad 50.30

Kategorie C1, 145 MHz, délka trati 3,6 km, 4 kontroly **4 80,04** 1. Přemysl Svora Bratislava 2. Dušan Francu Bratislava 89,40 3. Miroslav Fertkevič Stará Lubovňa 3 54 48

Kategorie C2, 145 MHz, délka trati 3,6 km, 4 kontroly 1. Robert Kollár Žilina

Ředitelem soutěže byl Kurt Kawasch, OK3ZFB, hlavním rozhodčím Marcel Déri, OK3CDC.

nfm

Krajské přebory v ROB

23. a 24. 5. 1980 proběhl krajský přebor Severo-českého kraje v obci Kytlice u Nového Boru. Organizačně jej zajistil ORRA v České Lípě za spolupráce radioklubů OK1KNR a OK1ORZ. Soutěžící vyslalo celkem devět okresů Severočeského kraje: Ústí nad Labem, Louny, Děčín, Chomutov, Česká Lipa, Jablonec nad Nisou, Litoměřice, Liberec a nejvíce závodníků přijelo z Teplic. Centrem soutěže bylo rekreační zařízení Energoprojektu Praha, Předsedou organizačního výboru byl Josef Kozibrádek, OK1ORZ (předseda ORRA Česká Lípa), hlavním rozhodčím Jan Němec, OK1AVR. Provoz vysílačů zabezpečoval kolektiv OK1KNR pod vedením Jiřího Luňka,

Přeborníci Severočeského kraje:

pásmo 3.5 MHz kat. A: Jiří Suchý kat. B: Jiří Jirásek

kat. C1 chlapci: Stanislav Erben kat. C1 děvčata: Iveta Suchá

kat. C2: Daniel Česal

násmo 145 MHz kat. A: Miloslav Rajchl

kat. B: Zdeněk Havránek kat. C1 chłapci: Pavel Kožený

kat. C1 děvčata: Iveta Suchá

kat. C2: Daniel Česal.

Josef Kozibrádek

pfm

O týden později, 31. 5. až 1. 6. 1980 uspořádala městský přebor MRRA Praha v Loutí u Slapské přehrady za účasti hostujících závodníků z okresu Mladá Boleslav. Ředitelem soutěže byl Pavel Říha, OK1DBB, hlavním rozhodčím ing. Pavel Šrůta, OK1UP. Celkem startovalo 45 závodníků.

Přeborníci Prahy:

pásmo 3.5 MHz

kat. A: ing. Antonín Blomann, Praha 1 kat. D: Alena Šrutová, OK1PUP, Praha 5

kat. C1 chlapci: Jaroslav Zach, Praha 4

kat. C1 devčata: Hana Pankrácová, Praha 4 kat. C2 chlapci: Milan Sibrt, Praha 10

kat. C2 děvčata: Miloslava Krákorová, Praha 10

pásmo 145 MHz:

kat. A: Tômáš Hamouz, Praha 4 kat: D: Alena Šrūtová, OK1PUP, Praha 5

kat. C1 chlapci: Jaroslav Zach, Praha 4

kat. C1 děvčata: Jaroslava Klabníková, Praha 4

kat. C2 chlapci: Lubomír Jíra, Praha 2

kat. C2 děvčata: Miloslava Krákorová, Praha 10.

Krajský přebor Severomoravského kraje pro závodníky kategorie C byl uspořádán 6. až 8. 6. 1980 v obci Tichá. Na startu se šešlo 40 (!) mladých závodníků, hlavním rozhodčím byl Petr Štrof.

Přeborníci Severomoravského kraje:

pásmo 3,5 MHz

kat. C1 chlapci: Pavel Kopříva kat. C1 děvčata: Hana Bělunková

kat. C2 chlapci: Jiří Vaněk

kat. C2 děvčata: Barbora Pešáková

pásmo 145 MHz

kat. C1 chlapci: Petr Svub

kat. C1 děvčata: Eva Mičková kat. C2 chlapci: Roman Vlasák

kat. C2 děvčata: Šárka Ludvíková.

Petr Štrof

Z ostatních krajů jsme výsledky do uzávěrky tohoto čísla nedostali.

Krajské přebory v MVT

V měsíci květnu proběhly krajské přebory v MVT. V ČSSR však pouze čtyři: městský přebor Prahy, přebor Jihomoravského kraje, Severomoravského kraje a Západočeského kraje. Kdybychom se zeptali ostatních KRRA Svazarmu, proč tento sport brzdí okázale ignorují, jistě by nám odpověděly, že u nich radioamatéři nemají o MVT zájem. Podívejme se tedy tam, kde KRRA (MRRA) méně mluví a o to lépe fungují:

Městský přebor Prahy

Konal se ve dvou termínech (kategorie A 17. 5., kategorie B, C, D 24. 5.) v Roblíně, asi 25 km jihozápadně od Prahy. Na startu se sešlo 28 závodníků, hlavním rozhodčím byl ing. Vladimír Váňa, OK1FVV.

Městskými přeborníky Prahy pro rok 1980 byli

v kat. A: Vladimír Sládek, OK1FCW, 386 bodů, v kat. B: Miroslav Kotek, OL1AYV, 383 b., v kat. C: Ivo Kotek, OK5MVT, 352 b., v kat. D: Jiřina Vysůčková, OK5MVT, 388 b.

Celkem bylo uděleno 8 il. VT

Obr. 1. Slib závodníků na přeboru Prahy skládá František Půbal, OKIDFP, sledován (zleva) Miroslavem Kotkem, OKIDMG, PhDr. Vojtěchem Krobem, OKIDVK, a Borisem Kačírkem, OKIDWW

Přebor Západočeského kraje

Proběhl do třetice rovněž 17. května v Nejdku s organizačním zabezpečením OV Svazarmu Karlovy Vary a radioklubu Neidek, OK1KNC, Hlavním rozhodčím byl Ivo Skála, OK1IAM, ředitelkou přeboru Marie Káčereková, OK1IWO. V kategoriích A, B a C startovalo 10 závodníků, ale pro nedostatečné obsazení kategorií nebyly ūděleny tituly přeborníků kraje. Zvítězili

v kat. A: Pavel Káčerek, OK1AWQ, 346 b., v kat. B: Pavel Matoška, OL3BAQ, 343 b., v kat. C: Pavel Suček, OK1KNC, 337 b

Były uděleny 4 II. VT a 4 III. VT.

Přebor Severomoravského kraje

uspořádán za spolupráce radioklubů OK2KVS, OK2KJT a OV Svazarmu Vsetín. 24. května. Z celkem 13 závodníků jich 11 startovalo v kategorii C, zbývající dva v kategorii B. Titul přeborníka byl tedy udělen jenom v kategorii C. Hlavním rozhodčím

był ZMS Tomáš Mikeska, OK2BFN, ředitelem soutěže Ivan Vašťák. Bylo uděleno 5 II. VT a 4 III. VT. Vítězové:

v kat. B: Marek Vymazal, OL7AZX, 291 b., v kat. C: Jiří Mička, OK2KYZ, 391 b.

Mimořádně potěšitelná je stoupající účast v kategorii C – jak je vidět, mládež v radioklubech má o MVT zájem a stačí jej vhodně podchytit.

Přebor Jihomoravského kraje

Ve stejném termínu jako přebor Prahy kategorie A se konal i přebor Jihomoravského kraje. Deset československých reprezentantů se postaralo o vysokou sportovní úroveň, členové radioklubu OK2KZR z iniciativy Antonína Andrieho, OK2BTZ, zabezpečili dobrou organizaci. Mezi 24 závodníky byly však rozděleny pouze dva tituly přeborníka kraje, protože v kategoriích B a D nestartoval potřebný počet soutěžících.

Přeborníky Jihomoravského kraje pro rok 1980 byli vyhlášení

v kat. A: Jiří Nepožitek, OK2BTW, 398 b., v kat. C: Antonín Hájek, OK2KZR, 399 b.

Celkem bylo uděleno 15 II. VT.

Obr. 2. Při přeboru Jihomoravského kraje startovala v kategórii D čs. reprezentantka Lenka Uhrová z radioklubu Třebíč, OK2KAJ

Přebory ČSR a SSR v MVT

ORRA Svazarmu Vyškov a radioklub OKZKLK Agrostavu Bučovice byli vybráni a pověření ČÚRRA Svazarmu uspořádáním letošního přeboru ČSR v MVT ve dnech 6. až 8. 6. 1980. Organizační výbor s předsedou ing. Vítkem Kotrbou, OK2BWH, a tajemníkem Milanem Prokopem, OK2BHV, připravil soutěž v hezkém prostředí pionýrského tábora Jitřenka UP závodů Bučovice.

Hlavní rozhodčí Štěpán Martínek, OK2BEC (obr. 1), řídit sbor rozhodčích ve složení OK2BEW, OK2BFN, OK2BIA, OK2BMZ, OK2BFF, OK2PAE, disciplíny střelba a hod granátem zabezpečovalí členové ZO Svazarmu Bučovice, orientační běh členové oddítu OB ČSTV Vyškov. Propagační vysílání v pásmech KV zajišťovala stanice OK2PGA/p.

V čestném předsednictvu byli zástupci města Bučovic, okresu Vyškov, Jihomoravského kraje i zástupci ČÚRRA Svazarmu pplk. Jaroslav Vávra, OK1AVZ, a Jiří Bláha, OK1VIT.

Velmi nízkou úroveň měla tentokráte zahajovací disciplína práce na stanici. K vítězství stačilo J. Nepožitkovi, OK2BTW, pouze 31 QSO, což - jak každý uzná - je při schopnostech našich předních vícebojařů, při dvou etapách v hodinovém závodě a při jednačtyřicetí soutěžících stanicích dost málo. Budoucí pořadatelé by měli uvažovat o rozdělení této disciplíny na dvě části: zvlášť pro kategorií C a zvlášť pro kategorie A, B a D. Prospěje to jak závodníkům kategorie C, z nichž se většina telegrafní provoz vlastně stále ještě učí, tak i operatérům v ostatních kategoriích, jejichž provozní schopnosti jsou vzájemně mnohem vyrovnanější. Snad by potom nedošlo k tomu, že nad stanici, která si vylosovala soutěžní kód do první etapy HNN 599, po několika minutách dohadování většina i zkušených

Výsledky přeboru ČSR

kategorie A

poř. jméno	značka	misto .	prov.	příj.	vys.	střel.	gran.	ОВ	celk.	VT
Jiří Nepožitek	OK28TW	Prostějov	99	97	100	43	30	100	469	мт
2. Vlast. Jalový	OK2BWM	Biansko	87	95	90	48	30	99	449	l.
3. Vladimír Sládek	OK1FCW	Praha -	92	96	81	37	10	100	426	l.
4. Petr Havliš	OK1PFM	Praha	95	100	81	47	0	100	423	ti.
5. Jar. Hauerland	OK2PGG	Un. Brod	69	91	93	43	20	99	415	¥.

Celkem 10 závodníků.

kategorie B

Miroslav Kotek	OL1AYV Praha	99	87	96	37	20	100	438	I.
2. Pavel Matoška	OL3BAQ Pizeň	, 60	99	57	38	10	89	353	ff.
3. Libor Ondruš	OK5MVT Praha	57	39	73	30	30	100	329	
4. Martin Zábranský	OL1AZM Prahá	89	21	57	37	10	100	314	
5. Roman Brouček	OK5MVT Preha	98	0	58	40	20	95	311	

Celkem 6 závodníků.

kategorie C

1. Antonín Hájek	OK2KZR Dol. Rožinka	79	99	91	41	40	100	450	I.	
2. Bohuslav Kříž	OK2KZR Dol. Rožínka	64	100	86	42	40	100	432	ſ.	
3. Jiří Mička	OK2KNJ Nový Jičín	95	91	74	37	30	87	414	Ħ.	
4. Vít Kunčar	OK2KRK Uh. Brod	28	9.8	96	32	10 -	94	358	IJ.	
5. Pavel Dudek	OK2KLD Uničov	82	94	·35	30	10	92	343		

Ceikem 17 závodníků.

kategorie D

Jitka Hauerlandová	OK2DGG	Uh. Brod	92	100	79	39	. 10	100	420	II.
2. Olga Havlišová	OKIDVA	Praha	98	96	70	43	20	86	413	11,
Zdena Nováková	OK1DIV	Praha	36	87	60	.37	50	96	366	II.
4. Marie Vítková	OK2BVU	Kunštát	37	94	75	39	0	84	329	
5. Draha Španělová	OK2KFP	Kunštát	57	85	71	31	0	82	326	

Celkem 8 závodnic

protistanic mávla rukou a spojení z deníku vyškrtla. Takový kód je však zjevně nevýhodný až nespravedlivý v každém případě a napřiště by měli pořadatelé podobným žertům zabránit právě proto, že téměř polovina startujících je v kategorii C.

Ostatní disciplíny proběhly hladce a podle očekávání a vítězové byli prakticky známí již v sobotu večer. Závěrečná disciplína orientační běh, která byla odstartována až v neděli dopoledne, už kromě kategorie D, v níž si nechala uniknout velkou přiležitost k vítězství OK1DVA, nic nezměnila v pořadí na předních místech. Proto se zájmem očekáváme, zda v nových pravidlech MVT, který vstoupí v platnost od roku 1981, bude podle vzoru mezinárodních pravidel zrušena paradoxní časová bonifi-

Obr. 1. Průběžné výsledky zapisoval hlavní rozhodčí Š. Martínek, OK2BEC, pozorně sledován závodníky i rozhodčími

kace, zvýhodňující závodníky s horšími výslednými časy, než je čas vítěze. Při dnešní vyrovnanosti závodníků totiž tato desetiprocentní časová bonifi-kace téměř zaručuje, že orientační běh o umístění na předních místech nemůže rozhodovat (v kat. A mělo 7 z 10 startujících 99 nebo 100 bodů).

Příjemným zpestřením sobotního podvečera byl jednohodinový telegrafní, minicontest v pásmu 3,5 MHz, v němž opět zvítězil OK2BTW.

O čtrnáct dní později uspořádala ORRA Komárno z pověření SÚRRA přebor SSR v MVT (20. až 22. 6. 1980). Zúčastnili se ho v hojném počtu i závodníci

Obr. 2. Hlavní rozhodčí přeboru SSR Robert Hnátek, OK3YX, a přebornice SSR pro rok 1980 Margita Komorová, OK3KXC

Výsledky přeboru SSR

1. ing. J. Hruška	OKIMMW Kuchyňa	100	100	84	38	40	100	462	MT
2. Jar. Hauerland	OK2PGG Uh. Brod	64	100	91	41	30	84	410	0.
3. Vlad. Kopecký	OK3CQA Partizánske	36	99	83	42	40	54	354	11.
4. Michal Gordan	OK3KXC Prakovce	58	96	41	32	, 20	82	329	_
5. Stan. Drbal	OK2KLK Bučovice	44	76	63	27	20	93	323	

Celkem 9 závodníků

kategorie B

Petr Prokop	OL6BAT Bučovice	91	92	94	38	. 40	98	453	l.
2. Ed. Majerský	OL8CNG	97	. 88	86	29	40	100	440	l.
3. Jozef Krupár	OLOCHR Prakovce	73	99	97	38	30	100 .	437	I.
4. Dušan Korfanta	OLOCKH Prakovce	_ 80	97	79	28	30	82	396	0.
5. Mir. Kuchár	OK3KXC Prakovce	51	89	74	32	10	98	354	II.

Celkem 9 závodníků

kategorie C

1. Milan Leško	OK3KXC Prakovce	100	100	91	32	20	95	438	· I.
2. Vít Kunčar	OK2KRK Uh. Brod	84	91	90	3	30	100	398	II.
3. Radka Palatická	OK2KZR D. Rožínka	45	89	90	15	30	89	358	Ü
4. Rast. Hrnko	OK3RRC Bytča	62	100	84	3	0	94	343	
5. Luboš Kuchár	OL9CNG	30	84	86	39	30	57	326	

Celkem 12 závodníků.

kategorie D

1. J. Hauerlandová	OK2DGG Uh. Brod	99	100	78	31	30	100	438	i.
2. Marg. Komorová	OK3KXC Prakovce	95	98	83	32	20	88	416	U.
3. Lub. Gordanová	OLOCKC Prakovce	55	88	69	29	30	78	349	
4. Lenka Uhrová	OK2KAJ Třebíč	80	80	52	41	0	84	337	
5. M. Ondrejková	OLBCLN '	.35	22	69	14	0	70	210	

Celkem 5 závodnic

z ČSR a zcela přirozeně každého napadne, proč tato výměna závodníků mezi oběma republikami není oboustranná, když už je tak malý počet soutěží I. a II. stupně.

Ředitelem soutěže byl Vojtech Molnár, OK3TCL, hlavním rozhodčím Robert Hnátek, OK3YX (obr. 2), mezi čestnými hosty byli členové OV KSS, ONV Komárno, OV Svazarmu a za SÜRRA její tajemník Ivan Harminc, OK3UQ.

Před začátkem soutěže položili účastníci věnec k pomníku hrdinů sovětské dunajské flotily, kteří před 35 lety osvobodili Komárno.

MS ing. Jiří Hruška, OK1MMW, rozšířil svoji sbírku trofejí o titul přeborníka SSR pro rok 1980, protože

Obr. 3. . . . a navíc můžete značku OK2DGG slyšet i na radioamatérských pásmech

v době konání přeboru byl ještě ve vojenské základní službě a startoval za radioklub OK3KXH. MS Jitka Hauerlandová, OK2DGG, zopakovala úspěch z přeboru ČSR a dokázala, co všechno se dá zvládnout vedle péče o dvě děti – tříletou Jitušku a půlroční Michalku (obr. 3). I v kategorii B putovalo vítězství do ČSR zásluhou Petra Prokopa, OL6BAT, který si tak vynahradil svou neúčast na přeboru ČSR. V kategoriich B a D byly tedy tituly přeborníků SSR uděleny až závodníkům, kteří se umístili v celkovém pořadí jako

závodníkům, kteří se umístili v celkovém pořadí jakodruzí.

Podzimní soutěž na VKV k Měsíci ČSSP 1980

Soutěž bude uspořádána od 00.00 UTC 1. září do 24.00 UTC 15. listopadu 1980. Bude probíhat v pásmu 145 MHz (kategorie A) a v pásmech 435 MHz a výše (kategorie B). Soutěží se z libovolného QTH, všemi povolenými druhy provozu podle povolovacích podmínek. S každou stanicí lze do soutěže započítat na každém pásmu jedno spojení. Spojení s toutěž stanicí lze pro soutěž opakovat, pokud vysílá z jiného velkého čtverce QTH než při spojení předchozím. Soutěžní spojení je platné, byl-li při něm předán a potvrzen oboustranně report RS nebo RST a úplný čtverce QTH.

Bodování: za každé spojení ve vlastním velkém čtverci OTH se počítají 2 body. Za spojení v sousedních pásech velkých čtverců OTH se počítají 3 body. Za spojení v dalších pásech velkých čtverců OTH vždy o jeden bod více než v pásech předchozích. Jako násobiče se počítají různé velké čtverce QTH, se kterými bylo během soutěže pracováno, a to na každém soutěžním pásmu zvlášť.

Bodový součet za spojení v pásmu 145 MHz – kategorie A, vynásobíme součtem různých velkých čtverců QTH a tak získáme celkový bodový výsledek této kategorie.

V kategorii B jsou pro jednotlivá pásma tyto násobíci koeficienty: 435 MHz – koef. 1, 1296 MHz – koef. 5, 2304 MHz – koef. 10, pásma vyšší než 2,3 GHz – koef. 20. Těmito koeficienty se vynásobí bodový výsledek jednotlivých pásem UHF/SHF. a takto získané body se sečtou. Tento součet bodů vynásobíme součtem různých velkých čtverců QTH, se kterými bylo v jednotlivých pásmech UHF/SHF během soutěže pracováno. Tím je dán celkový výsledek kategorie B.

Hlášení do soutěže obsahuje: značku soutěžící stanice, její stálé QTH, seznam dalších QTH, ze kterých během soutěže pracovala, soutěžní kategorii, body získané za spojení v jednotlivých pásmech (u kategorie B před vynásobením koeficienty), součet bodů ze všech pásem kategorie B po vynásobení koeficienty, počet násobičů v jednotlivých pásmech a jejich součet v kategorii B, celkový počet bodů. Dále hlášení musi obsahovat čestné prohlášení, že byly dodrženy soutěžní a povolovací podmínky, a podpis VO nebo jeho zástupce. Každou kategorii je nutno přihlásit na zvláštním listě. Hlášení se zasílají do desetí dnů po ukončení soutěže přímo na adresu soutěžního referenta VKV komise: Antonín Kříž, Okrsek 0 – č. 2205, 272 01 Kladno 2.

Pořadatel soutěže – ÚRK ČSSR – má právo před vyhlášením výsledků vyžádat si od soutěžících stanic jejich staniční deníky ke kontrole.

OK1MG

Rubriku vede Eva Marhová, OK1OZ, Moskevská 27, 101 00 Praha 10.

BRAVO, OK5YLS!

Zlatým hřebem prvního pololetí letošního roku v práci i propagaci OK YL je bezesporu vynikající výsledek kolektivní stanice čs. radioamatérek OKSYLS. Je to veliká radost pro nás všechnyl Krásné umístění v části fone vybojovala Zdenka, OK2BBI. A jako za každým vítězstvím, i za tímto výsledkem se skrývá pořádná dřina a veliké úsilí. Nechme promluvit přímo naší závodnici Zdenku:

"Bylo to fajn. Teď už se jen pěkně vzpomíná ... Nejvíc pomohl Jarda, OK2HZ, a můj manžel Franta, OK2VF, který pečoval o moje blaho. Jen krátce: Zima, topení nehřálo, seděla jsem v kožichu, v neděli Franta sehnal teplomet, tak už to bylo lepší. Začal mne navíc bolet zub, protože jsem vlastně 24 hodin mluvila a dýchala studený vzduch. V neděli jsem měla v sobě tři prášky, pusu oteklou a šišlala jsem. Byly i technické problémy, některé se daly vyřeší, ale nejhorší to bylo se spadlou směrovou antěnou pro pásmo 21 MHz, kde jsem očekávala, že udělám ta nejlepší dálková spojení ... Pod svojí značkou bych to určitě vzdala, ale takhle jsem cítila velkou morální povinnost. Nakonec v autobuse, když jsem si kupovala jizdenku, jsem mluvila anglicky."

Zdena vybojovala ještě další cenné umístění: obsadila první místo v hodnocení stanic z jiného než severoamaerického kontinentu a pochopitelně první místo v OK.

Obr. 1. Zdena Vondráková, OK2BBI, na návštěvě u VK7KH v roce 1978

V části CW mezinárodního YL-OM contestu nás se stejným úspěchem reprezentovala pod značkou OK5YLS Gita Lukačková, OK3TMF. Obsadila opět první místo z OK YL stanic a čtvrté místo v celosvěto-vém hodnocení. Její účast byla rovněž poseta tr-ním . . . Znamenalo to ploužit se sněhem, vytáhnout na saňkách s pomocí OMS z OK3KAP veškeré vysílací zařízení, natáhnout mezi zasněženými stromy antény a i když Gita měla možnost si zatopit dveře netěsnily a tak celých 24 hodin musela vydržet v proudu ledového vzduchu. Navíc byl závod po znamenán špatně zvoleným termínem: současné probíhaly tři CW závody (americký, sovětský a mezinárodní YL-OM contest). Ostatní OK YL navázaly v závodě maximálně 44 QSO a povětšíně závod vzdaly pro nepopsatelný zmatek na pásmech, zatímco Gita svoji neskonalou trpělivostí a sebeodříkáním navázala platných 264 QSO s 66 násobiči

Komise žen ÚRRA co nejsrdečněji blahopřeje a děkuje oběma operatérkám, Zdeně. OKZBBI, a Gitě, OK3TMF. za vzornou reprezentaci, výkon a úspěch v mezinárodním YL-OM contestu.

S potěšením můžeme konstatovat, že v letošním mezinárodním YL–OM závodě byla v obou částech závodu vyšší účast než v letech předchozích a rovněž i naší můží se zúčastníli v částí fone ve větším počtu.

Výsledky mezinárodního YL-OM contestu 1980

část fone	
celosvětové pořadí YL	
1. HI8XDJ	235 313 bodů
2. KA4FVU	74 747
3. OK5YLS ~	41 650
4. KT4E	39 330
5. HK3AXT	39 116
6. WA4KOP	31 413
7. WB7QOM	27 831
8. WB7FDE	27 246
9. ON8IC	25 313
10. VP9IX	23 790
OĶ YL	-
1. OK5YLS	· 41 650
2. OK10Z	6 673
3. OK1ARI	4 050
4. OK3TMF	3 630
OK10W nehodnocena-	nedošel deník ze závodu.

cerosverove poragi UM	
1. W2GBX/4	2 806
2. AA4FF	2 247
3. G3VUH	1 831
OK OM	
1. OK3YK	390
2. OK1AGN	325
3. OK2JK	264.
4. OK1DMS	191
5. OK2QX	175
67. OK10FK a OK2SAI	R, 8. OK1DJG, 9. OK1ONI, 10
OKIDHJ 11 OKIPEM	· ·

olocuštová požedí Akk

část CW	
celosvětové pořadí YL	
1. GD4HIT	21 553
2. VP2VFV	20 664
3. WA2WHE	19 713
4. OK5YLS	17 424
5. WB4PRM	15 130

Obr. 2. Tři OK-YL s diplomy YLRL za letošní úspěšnou účast. Zleva Gita Lukačková, OK3TMF, Jarka Vinklerová, OK1ARI, a Eva, OK1OZ

6. DK8LE	13 930
7. W8YL	13 624
8. KT4E	13 035
9. K8ONV	12 075
10. WD8QAD	12 021
OK YL	
1. OK5YLS	17 424
2. OK1ARI	1 344
3. OK3KEU	1 110
4. OK3YCW	110
celosvětové pořadí OM	
1. W4MOY	1 330
2. VE3EMA	891
3. AE7P	813
ОК ОМ	•
1. OK1MAA	41
2. OK2LN	12
	Eva. OK10Z

Rubriku vede ing. Jiří Peček. OK2QX. ZMS Riedlova 12, 750 02 Přerov

Termíny závodů na KV v říjnu 1980

45. 10.	VK-ZL contest, část fone	10.00~10.00
45. 10.	California party	18.00-24.00
5. 10.	Hanácký pohár	06.00-08.00
6. 10.	TEST 160 m	19.00~20.00
1112.10.	VK-ZL contest, část CW	10.00~10.00
1112.10.	9th land QSO party	18.00~24.00
12. 10.	RSGB 21/28 MHz fone	07.00-19.00
17. 10.	TEST 160 m	19.00~20.00
1819.10.	WADM CW	15.00~15.00
19. 10.	RSGB 21 MHz CW	07.00~19.00
2526.10.	CQ WW DX, část fone	00.00-24.00

ARRL závodu v pásmu 160 m se v roce 1979 zúčastnila z ČSSR pouze stanice OK1DIJ. Jeho 5 spojení přineslo zisk 50 bodů. V letošním roce bude účast OK stanic jistě větší!

V budově Ústředního radioklubu Svazarmu byla mezi zástupcí podníku Radiotechníka a komise KV ÚRRA projednána koncepce nového transceiveru, který by měl od roku 1983 postupně nahrazovat zařízení OTAVA v naších radioklubech. Návrh je velmi atraktívní – vstupní atenuátor s diodami PIN. diodové vyvážené směšovače, systém up konvertoru s první mf asi 35 MHz, moderní způsob ladění po skocích asi 100 Hz, digitální stupnice, celé zařízení včetně PA stupné přibližně 100 W osazeno polovodiči. Doufejme, že konečný produkt bude i v sériové výrobě srovnatelný svými parametry se špičkovými zahraničními transceivery, podle kterých byl návrh zpracován. Vzhledem k vysoké pracností, malé sériovosti a ceně jednotlivých součástek nelze počítat s rozšířením tohoto zařízení mezi amatéry.

Předpověď šíření v říjnu

Říjnové podmínky ve dvacetimetrovém pásmu nepřinesou pravděpodobně žádná překvapení. mimo výrazných podmínek ve směru VK-ZL dlouhou cestou kolem 07.00 až 08.00. V některých dnech bude možné tímto způsobem pracovat i v pásmu 21 MHz prakticky ve steiném časovém období a pak též od 22.00 do půlnoci. Jinak bude pásmo 15 m otevřeno v odpoledních hodinách prakticky do všech směrů. V nočních hodinách budou pronikat signály ze směru LU-ZS. Desetimetrové pásmo se bude otevírat již před 06.00 do směrů VK-ZS-VU, později JA-PY a od 12.00 se otevře i směr na karibskou oblast a celý severoamerický kontinent, včetně W6 a W7. Je zapotřebí výborných podmínek v tomto pásmu využít – v příštim roce již pokles sluneční aktivity bude znatelnější a dobré DX podmínky v pásmu 10 metrů budou ustupovat. Nezapomínejte také na nižší pásma – skončením bouřkové činnosti se budou příjmové podmínky i zde zlepšovat. Podzim a jaro je na 160 m nejvhodnější pro spojení mezi severní a jižní potokoulí. V Evropě pak se dá očekávat příliv nových stanic OZ, OY, pravděpodobně i SM a LA. Rovněž v NDR se vedou jednání o povolení provozu radioamatérům v pásmu 160 m.

Výsledky pohotovostního závodu na KV k ČSS 1980

Pravděpodobné první akci na počest Československé spartakiády 1980 v měsici červnu byl radioamatérský pohotovostní závod v pásmu 3,5 MHz, který odstartoval v 04.00 SEČ 1. června 1980. I když tento "rychlý" termín možná někoho zaskočil, v celkovém hodnocení figuruje celkem 49 vojacích značek, což je téměř dostačující počet k tomu, aby dvouetapový dvouhodinový závod byl zajímavý. Pravidla závodu byla netradiční, ale díky jejich přesné a jasné formulací v rubrice KV (ARS/80) se nevyskytla žádná nedorozumění, jak toho v poslední době býváme svědky např. v OK YL-OM závodě nebo Čs. závodě míru. Oproti původně dvěma vyhlášeným kategoriim (vysilací stanice a posluchači) změnil pořadatel soutěže svoje rozhodnutí a závod byl vyhodnocen ve třech kategoriich:

•		•			
kolektivni	stanice				
1. OK3KFO	8400	7. OK3VSZ	3528	13. OK1KQH	660
OK3KYR	8322	8. OK3KME	3000	14. OK2KFJ -	465
OK3KAC	6177	9. OK2KOG	1881	15. OK2KMB	436
4. OK1KSH	5670	10 OK2KQO	1728	16. OK3KXJ	` 150
5. OK1KLX	4650	11. OK1KAY	1326	17. OK3KVT	0
6. OK3KII	4536	12. OK2KUI	1104	18. OK3KNS	0
jednotlivo	i				
1. OK2ABU	9348	11. OK2SAR	4416	21. OK1DJS	2640
2. OK2QX `	7524	12. OK3TEG	4071	22. OK3TAO	2583
OK2BEW	7326	13. OK3CES	4002 -	23. OK2BTT	1806
4. OK2BEH	6912	14. OK2PEM	3600	24. OK1ABF	1344
OK3CLA	5148	15. OK2ŁN	3588	25. OK1JVS	960
6. OK2SMO	4800	16. OK2BRJ	3420	26. OK1AYM	828
7. OK2HI	4656	17. OK1XG/p	3135	27. OK1AIJ	234
8. OK3TOA	4650	18. OKTAXB	2940	28. OK3CAJ	150
9. OK3FON	4575	19. OK1PDQ	2908	29. OK3THL	0
10. OK1TJ	4464	20. OK1PFM	2679	30. OK3TFH	0
posluchad	ž <i>i</i>				
1. OK2-4857	•	19 968			
2. OK1-2195	Q.	8 208			
3. OK1-2217	2	3 225			
4. OK2-2095	7	2 376			

Diskvalifikace: OK1DCL pro chybějící vypočítaný výsledek, Závod vyhodnotil ZMS ing. Miloš Prostecký, OK1MP.

Rubriku vede ing. Jiří Peček, OK2QK, ZMS. Riedjova 12, 750 02 Přerov.

V květnovém čísle OST byl zveřejněn žebříček DXCC Honor Roll – naše stanice mají toto umístění: OK1ADM v kategorii mix 319 zemí, tedy nejvyšší možný počet. Na dalších místech OK1FF se 317 zeměmi a OK3MM se 316 zeměmi. V kategorii fone má značka OK jen jediného zástupce – OK1ADM s 316 zeměmi, v žebříčku CW není zastoupena žádná OK stanice.

V závěru loňského roku byla mezi americkými amatéry ze žebříčku DXCC Honor Roll uspořádána anketa, které země Jim chybí do počtu 319. Výsledky jsou i pro nás zajímavé, i když k dnešnímu dni bude pořadí poněkud jiné (expedice 8Z4, 3C0, KP5K v té době neměly ještě rozeslány QSL listky). Chybějící země: 7J 21×, BY,6×, 3Y,5×, následují po dvou až třech KP5K, VS9K, 3C0,8Z4, VK0 Heard, 3X, CE0X, CE0Z.

O QSL lístek z BY je tedy velký zájem a nejen mezi amatéry v USA. VE2AGF popisuje v březnovém čísle QST návštěvu ČLR, a setkání s amatéry v Pekingu. Tam je již ustavena oficiální amatérská organizace CRAA. Po dohodě s W6MBA, který každý den vysílal na 14 235 kHz s NBVM. zaznamenal VE2AGF jeho signály v Pekingu na magnetofon. Síla byla S9+, elektromagnetické vlny se tedy této oblastí nevyhýbají. Zatím není známo, kdy bude vysílání úředně povoleno, ale činská amatérská lederace již navázala kontakty s IARU. Skūpiny mladých amatérů však již dnes sestrojují malé vysílače umožňující vzájem-

ná spojení na malou vzdálenost a obchody pro radioamatéry jsou poměrně dobře zásobeny součástkami místní provenience včetně velkých vysílacích elektronek, které jsou však prodávány jen na zvláštní povolení.

Pod značkou LA5KC/3X se během května hlavně na 21 MHz objevovala stanice, jejíž operatér instaloval vysílací zařízení pro guinejské vládní orgány. OSL přes domovskou značku.

Po přidělení nových vysílacích znaků stanicím v NDR byly v některých krajích vyčerpány všechny možnosti a proto se budeme v budoucnu setkávat s dalšími pismeny na posledním místě volacího znaku mimo obvykých A až O.

Jednotlivé kraje mají nyní přidělena tato písmena:

Rostock	A, U	Erfurt	1, Q
Schwerin	В	Gera	J, Y
Neubrandenbur	gC	Suhl	K
Potsdam	D, P	Dresden	L, A
Frankfurt/O	E	Leipzig	M, S
Cottbus	F, X	Karl Marx Stadt	N, T
Magdeburg	G, W	Berlin	0
Halle	H, V		

Prací z ostrova Norfolk skončila v polovině května německo-lucemburská expedice v Pacifiku. Používala volacích značek VK9NM a VK9NG, pro celou expedici vyřizuje QSL DJ5CQ.

Delší dobu pracovala z Lichtenštejnska stanice DA1WA/HB0, ve všech pásmech převážně SSB provozem.

Známý ZS3LK opět navštívil přístav Walvis Bay, odkud vysílal pod svou značkou ZS3LK/3. Podle dosud nepotvrzených zpráv se projednává pro tento přístav zvláštní statut, který by později umožnil vyhlásit Walvis Bay za samostatnou zemi DXCC.

Na kmitočtu 21 230 kHz pracuje denně síť řízená stanicí JA6BEE, kde se vyskytují často vzácné stanice. Každý pátek je to například KC6iN z Východních Karolin, QSL via P. O. Box 296 Ponape, E. C. I. 96941

Závěr května byl ve znamení velmi dobrých podmínek v pásmu 21 MHz, kde bylo možné pracovat s řadou vzácných zemí. Z Guamu se ozvala stanice K6SAD/KH2 – QSL přes VE5QY, dále P29GC – přes VK2BSM, KL7FI, H44CF, HS1AMI, YC2BFZ a řada dalších. Zajímavá je VK síř která se odbývá denné od 05.00 UTC no 21 203 kHz. Dokonce i Tom, VR6TC, při špatných podmínkách na 28 MHz se občas objevil před půlnocí na 21 350 kHz.- Pracovala zde i nová expedice na ostrov lwo Jima JI1KUL/JD1, výhradně telegrafním provozem.

V pásmu 14 MHz bylo možné v ranních hodinách v průběhu celého června navazovat spojení západním směrem, odkud přicházely signály jihoamerických stanic pravidelně v sílách S 9, z oblasti VK-ZL poněkud slaběji, s průměrnými signály S 7.

Od poloviny června měla pracovat stanice z ostrova Bajo Nuevo, od července až do konce roku by měl být obsazen stanicí VK9ZG ostrov Willis a očekává se také letní expedice po afrických zemích – C5, TZ, XT, 5V7, TV. Rovněž ostrovy Serrana Bank měly být navštíveny krátkodobou expedicí.

Velká expedice radioamatérů Dominikánské republiky se chystá na ostrov Catalina, odkud budou vysílat po pod vzácným prefixem HI2. Podobně jako při expedici na ostrov Beata v lednu roku 1979 budou i při této přiležitosti vydány zvláštní známky, kterými bude vyplacen každý direct. Tyto známky jsou vydávány ve velmi malém nákladu a mezi filatelisty je o ně velký zájem.

Ze Sýrie začala vysílat další stánice OE3REB/ YK. Mimo obvyklých druhú provozu v pásmech 160 až 10 metrů má zařízení i pro RTTY provoz, telegraficky se objevuje na 10. kHz od začátku každého pásma, SSB na různých kmitočtech. Jeho signál se nedá přehlédnout, používá rhombickou anténu směrovanou na Evropu.

Zprávy v kostce

A35JL mívá pravidelné skedy se svým QSL manažerem vždy v neděli v 07.00 UTC na 14 227 kHz. ● Ze Súdánu pracovala stanice DF3NZ/ST hlavně na 28 MHz, ale operatér sílbil, že se bude objevovat i na 40 a 80 metrech. ● Ze Španělska se nyní budou často objevovat stanice s prefixem EC – jsou to stanice začátečníků, které mohou pracovat jen telegraficky. ● HH2VP se objevoval v létě často CW na 14 a 21 MHz, QSL přes N4XR. ● 4K1A v Antarktidě patří do zóny 69 ITU. ● ZK1CE (SSB na 14 MHz) požaduje QSL nyní přes manažera AD15.

Hoffner, V.: ÚVOD DO TEORIE SIGNALŮ. SNTL: Praha 1979. 452 stran, 230 obr., 12 tabulek, 1 příloha. Cena váz. 60 Kčs.

Moderní technika sdělování a přenosu informací a dat se neobejde bez důkladného teoretického zpracování principů stejně jako ostatní obory lidské činnosti. Teorie signálů se zabývá matematickým popisem signálů v časové a kmitočtové oblasti (modulací, transformacemí signálů, zkoumáním rusivých jevů, účinnosti přenosu apod.) s cílem nalézt optimální podmínky pro jejich přenos. Kniha autora, známého čtenářům AR a aktivním amatérům i z jeho činnosti v radioamatérském hnutí, je vlastně první českou ucelenou teoretickou publikací z této oblasti.

Autor rozdělil obsah do třinácti kapitol; čtyři kapitoly za úvodem jsou věnovány matematickému aparátu a některým teoretickým problémům, souviejícím s teorií signálů (Matematické základy I -Fourierovy řady, Matematické základy II - Fourierova transformace. Matematické základy III - náhodné signály a Přenos signálu lineárními obvody). V kapitolách 6 až 10 jsou probrány "klasické" způsoby modulace nosné vlny, demodulace, výpočty zkresle-ní apod. (Lineární modulace, Exponenciální modulace, Impulsová modulace, Demodulace lineárně modulovaných signálů a Demodulace úhlově modulovaných signálů). Třetí část knihy tvoří kapitoly 11 a 12, v nichž se autor zabývá moderními způsoby přenosů s využitím kódové modulace s klíčováním nosné vlny (Kódová modulace a Klíčování neboli modulace nosné kódovými signály). Závěrečná třináctá kapitola obsahuje kritéria pro porovnávání jednotlivých způsobů modulace a výsledky těchto porovnání. Text je doplněn seznamem používaných symbolů, výčtem literatury (84 převážně zahraniční tituly) a rejstříkem.

Kniha je určena elektronickým inženýrům zaměřeným na problematiku sdělování, posluchačům vysokých škol a všem pracovníkům ve sdělovací technice, kteří ovládaji základy nezbytného matematického aparátu. Její forma zpracování a nároky na předběžné teoretické znalosti čtenářů odpovidají určenému okruhu čtenářů. "JB-

Vít, V. a kolektív: TELEVIZNÍ TECHNIKA. SNTL: Praha 1979. 928 stran, 1078 obr., 5 tabulek, 1 příloha pod pásku. Cena váz. 80 Kčs.

Masový rozvoj televize přinesl s sebou i velký vzrůst počtu technických pracovníků ať již ve výzkumu, vývoji, výrobě TVP, vysilacích a studiových pracovištích, servisu a v neposlední řadě i amatérských zájemců o tento obor. V současné době se pak zájem soustředuje zejména na barevnou televizi.

Publikace autorského kolektivu, jež je zatím nejobsáhlejším dílem z tohoto oboru, shrnuje zkušenosti z několika desetiletí existence televizní techniky. Záměrem autorů přitom bylo vysvětlit princip televize, jednotlivých zařízení, souvisejících s vytvářením, přenosem a příjmem televizního signálu a především důkladně objasnit činnost všech obvodů TV přijímačů, příčemž je věnována zvyšená pozornost moderním způsobům zapojení. V knize je zahrnuta i měřicí technika a technika průmyslové televize.

V úvodní části je všeobecně stručně vysvětlen princip přenosu obrazů v televizní technice. Dále je obsah rozdělen na čtyři obsáhlé části. V první z nich (Technika přenosu a přijímací antény) jsou tři kapitoly, věnované snímací technice ČB televize, přenosu TV signálu a televizním přijímacím anténám. Druhá část je věnována televizním přijímačům. Každá z osmi kapitol této části pojednává o určitém funkčím celku přijímače (vf a mf zesilovače, obrazové demodulátory a zesilovače, regulační obvody v zesilovačích obrazového signálu, zvuková část TVP, oddělovací obvody a úprava synchronizačních impulsů, synchronizační obvody, rozkladové obvody, pomocné obvody v TVP). Ve třetí části jsou popisovány principy barevné televize a příslušné obvody přijímačů (základy kolorimetrie v televizi, slučitelný přenos, snímací zařízení pro barevnou televizi, dekódovací část přijímačů BTV, barevná obrazovka a její obvody). Čtvrtá část obsahuje dvě kapitoly; jedna je věnována měřicím přistrojům.

měření a nastavování TVP, druhá průmyslové televizí (včetně stručné zmínky o TV hrách). V krátkém dodatku, napsaném během tisku knihy, upozorňují autoři na moderní způsoby elektronické volby a paměti kanálů s využitím kmitočtových syntezátorů. Za seznamem základní literatury se 153 tituly uzavírá text knihy rejstřík.

Kniha, která se nepochybné stane základním literárním pramenem všech techniků i zájemců o tento obor, je psána velmi srozumitelnou a názornou formu: k názornosti přispívá i velké množství obrázků černobílých i barevných. Zpracováním námětu i technickou a grafickou úpravou se řadí tato publikace mezi nejlepší v naší technické literatuře a neměla by chybět v knihovně každého, kdo se zajímá af profesionálně, nebo amatérsky o černobílou a barevnou televízí. –Ba-

Častou odezvou našich čtenářů na rubriku "Přečteme si" jsou stížnosti, že tu či onu knihu zájemci marně sháněji, popř. dotazy, zda si mohou knihu objednat poštou a kde. Protože zejměna u publikace Televizní technika lze předpokládat velký zájem našich čtenářů, opakujeme pro ty, kteří přehlédli stránkový inzerát v AR-A č. 6/1980, že

knihu obdrží nebo si mohou objednat poštou v prodejně KNIHA; technická literatura, Karlovo nám. 19, 120 00 Praha 2 (jednotlivcům jsou knihy zasílány na dobírku, organizacím na fakturu).

Funkamateur (NDR), č. 5/1980

Signály z oběžné dráhy (3) – Nové součástky z podniku VEB Kombinat Mikroelektronik – Amatérské reproduktorové soustavy a kmitočtové výnybky – Koncepce zařízení pro diskotéky – Signání generátor s IO typu CMOS – Využití ví části z poškozeného přenosného přijímače Kosmos – Amatérské číslicové hodiny, řízené krystalem – Proměnný zatěžovací odpor pro velký výkon – Polovodičové součástky z produkce NDR 1980 – Zapojení jednoduchých zkoušeček se svítivými dlodamí – Použití IO v zařízeních dálkového ovládání pro modeláře (5) – Amatérské zařízení pro pásmo 19 GHz – Digitální automatické dolaďování kmitočtu – Částečně automatizovaná modelová železnice.

Radio, Fernsehen, Elektronik (NDR), č. 5/1980

Vzorkovací obvod s velkým dynamickým rozsahem – Integrovaný časovač E 355 D – E 350 D, integrovaný dělič v technice I²L – Programovatelné spojovací pole se sběrnicí IEC – Bytesériové bitparalelní interface – Sériový přenos dat v mikropočítačovém systému K1510 – Moderní napájeci zdroje (5) – Pro servis – Informace o polovodičových součástkách 165, 166 – Keramické polovodiče – U 705 D, univerzální integrovaný senzorový spínač – Regulační obvody s IO MAA723 pro stabilizaci teploty čipu – Použítí negatívních odporů v zesilovačích – Systém barevné televize PAL (5) – Zkušenosti s gramofonem PA 225 třídy hi-fi – Fotoelektronické spouštění blesku – Univerzální zkoušečka logických stavů.

Radio-amater (Jug.), č. 5/1890

Nf filtr pro amatérská zařízení – Jednoduchý regulátor šířky stereofonní základny – Anténa Quad s měnitelným směrovým diagramem – Generátor funkcí (2) – Fázově modulovaný vysílač pro 144 MHz – Audovizuální logická sonda – Sluneční články v praxi – Radiový systém dálkového ovládání (16) – Pasívní součástky pro elektroniku (3) – Jednoduchý přijímač VKV – Náhrada termistoru v oscilátoru –

na řílen 1980

Na říjen 1980 je naše předpověď založena na ionosférickém indexu Ф_{F2} ≈ 187 jánských, což odpovídá asi R₁₂ = 139. Při nedávné diskusi na severo-českém setkání radioamatérů jsem zjistil, že dosud ne všichni uživatelé předpovědi si uvědomují, že

10 12 16 19 20 22 24

0

Praha-Buenos Aires

0

- UTC vyznačené křivky znamenají 50 % pravděpodobnost spojení. 10 % pravděpodobnost dostaneme, když hodnoty kmitočtů násobíme 1,15 (v časopise QST je tento dolní decil označován jako HPF, tj. highest possible frequency = nejvyšší možný kmitočet).

10 12 14 20 22 24

0

4

16 18

Praha - Los Angeles (pres západ)

6

Křivku s pravděpodobností 90 % (horní decil) dostaneme, když hodnoty kmitočtů násobíme 0,85. Mezinárodně je tento kmitočet označován FOT, tj. fréquence optimale de traffic = optimální provozní kmi-

20

Praha-Wellington(pres západ)

8 10 12

Podružné hodiny Iskra – Společné zapojení dvou transformátorů – Vf předzesilovací stupeň – Indikace stavů - Rubriky.

Rádiótechnika (MLR), č. 3/1980

Integrované nf zesilovače (34) – Údaje továrních přístrojů: transceiver s digitální stupnicí, vf voltmetr a reflektometr, televizor s úhlopříčkou 116 cm -Postavme si transceiver SSB TS-79 (14) - Dimenzování KV spojů (11) – Anténa F9FT s impedancí 50 Ω – Amatérská zapojení: nf část přijímače FM, zajímavý superreakční přijímač, logická sonda – Kurs číslicové sdělovací techniky (3) - Údaje TV antén - Moderní Dopplerovy radiolokátory – Vyvážené modulátory se Schottkyho diodami – Stereofonní dekodér v přijímači Sirius - Zjednodušené návrhy usměrňovacích obvodů (3) - Měřič tranzistorů a diod - Programování kalkulátoru PTK-1072 (8) - Řízení displejů LCD s časovým multiplexem – Použití mikroprocesorů – Radiotechnika pro pionýry.

ELO (SRN), č. 6/1980

Aktuality - Magnetický záznam obrazu - Dvoumetrová stereofonní základna při vzájemné vzdálenosti reproduktorů 60 cm - Potřebný průřez vodičů pro připojování reproduktorových soustav – Opotře-bování hrotů přenosek – Kazetový magnetofon SONY TC-K45 - Jednoduché poplašné zařízení do automobilu – Malý digitální syntetizér (2) – Nf zesilovač TAA 611 A, B, C – Amatérské převaděče v SRN, Švýcarsku a Rakousku - Signafizace vyzvánění telefonu hlasem kukačky – Jak pracují displeje LCD – O mikroprocesorech (22) – Úvod do tranzistorové spínací techniky (7) – Z výstavy v Hannoveru 1980 - Tipy pro posluchače rozhlasu

INZERC \mathbf{E}

Inzerci přijímá Vydavatelství Naše vojsko, inzertní oddělení (Inzerce AR), Vladislavova 26, 113 66 Praha 1. tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 20, 6, 1980, do kdy isme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuvěřejníme. Text inzerátu pište na stroji nebo hůlkovým písmem, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Anténní rotátor a dálkové ovládání (1000). M. Schwarz, Varnsdorfská 332, 190 00 Praha 9, tel.

Několik párů křížových ovladačů (MO 7-79), otevřený typ, elektrická neutralizace, osazeny pot. 5k/N TP160 (na přání jinou hodnotu), povrch žlutě eloxován. (Pár 500 Kčs.) Jiří Mikšovský, Vinice 104/II, 290 01 Poděbrady.

Kotouč. magnetofon ZK-146 Stereo (2500). Výborný. P. Tomášek, Brandlova 6, 370 06 Č. Budějovice. IO SN7473, PCF7439 (à 25), KFY18, 34, 46, (30, 25, 25), KC509, 147-149 (4, 3), KYZ70 a 75 (à 25). Ján Hajro, Nagyova 11, 830 00 Bratislava

IO MBA810 (60), MH7410, 30, 50, 53, 74 (10, 10, 25, 40, 30), KD501, 503 (70, 130), KY710 (10), KYY79 (20), všetko nové, ďalej použité Z574M a mikrospínače 220 V, kryštál 10 000 kHz (60, 6, 80). Ján Bolješik, Karola Adlera 22, 830 00 Bratislava.

Navíječka plynulé otáčky, posuv drátu do Ø 1 mm (1200), autotrafo 250 V/2.5 A + odděl, trafo ve skříni 220 V 500 VA (600). Nový DU20 (2500). V. Beranová, 337 01 Rokycany 314/III.

Hudba a zvuk, r. 67 a 71 (à 40). Ing. Petr Veigl, nám bří. Synků 9, 140 00 Praha 4-Nusle.

Trafo 220 V/ 3, 6, 10, 18, 25 V ~ 2A (200). Jaromír Zahradník, Luhanova 1824, 688 01 Uh. Brod. Téměř dokončené zesil. podle RK 4/70 a vylepš

G 4W (2500), různé Ge tranzistory a různý materiál (850). Miroslav Grim, Turgeněvova 2/893, 736 01 Havířov 1 - Smrky.

Tuner ST100 ve výborném stavu (3000) a 2 reprosoustavy ARS825 (650) i jednotlivě. Karel Hála, 571 43 Potštejn 280.

Televizní hry - nové jap. (2000). Jiří Wochner, Horácké divadlo, 586 47 Jihlava.

Univerzálny konvertor pre prevod noriem (CCIR, OIRT), podľa časopisu HaZ (200), Milan Pizur, sídl. II. bl. M1, 066 01 Humenné.

Mgf. MK125 automatic (900). Vlastik Hejmal, Renneská tř. 23, 639 00 Brno.

5 ks AY-3-8500 (à 700), konc. zos. TW120 (1000), bar. hudbu + stmievače + panel 100 žiar. (2000), 74151, 74195 (à 100), 74154 (à 120), 75154 (à 180), 7490 (à 80), 7474 (à 70). M. Ondrejkov, 058 84 Vyšné Hágy. Barevnou přenosnou televizi Elektronika 430, úhl.

26 cm 12/220 V (5000), kytarový effekt. Mouth Tube (4500). K. Šťastný, Ostrčilova 5, 400 01 Ústí n. L. Kaz. mgf Hitachi TRQ220 + mikrofon (1000).

P. Appel, Školská 233/6, 017 01 Považská Bystrica. B73 v zár. (à 5700), gramo NC150 + VM2101 (1400), stereo radio Proxima. F. Polek, Svinčany 21, 533 61 p. Choltice.

RC generátor BM365 (1500), voltohmmetr BM289 (1500). Ivan Zeman, Bábkové divadlo, 949 01 Nitra. SGS ATES TDA2020 (300). Len pisomne. Milan Suchoň, Podjavorinskej 25, 917 00 Trnava

BF905 (120), 40673 (100), LM324, 3900 (65, 75), BF245C (40), 2-KU607 (150), 2N3055 (80), KP101 (40), BStCC0146 (250), TXC03C60 (80). Len plsomne. Ferd. Suchoň, Botanická 1/77, 917 00 Trnava.

ARS821 2 ks (1000), Dual DN201 nepoužitý (400), Praktika EF2 v záruce (5200). O. Procházka, Balbínova 13, 120 00 Praha 2.

MH7490 (70). Nepoužité, M. Kvas, Na vršku 7, 150 00 Praha 5, tel. 52 55 07.

TESLA.service - oscilátor TM534-B, amat. oscilograf, Omega I. (800, 750, 400). Jaroslav Hájek, Na strouze 1720, 560 02 Česká Třebová.

Oživenou desku Hi-Fi zesil. 12 W (250) s MDA2010, kapesní přij. "Puk", SV (250), R. Potměšil, Budovcova 387, 290 01 Poděbrady.

Konc. zesli. 2× 50 W, vstup linka (1300), předzes pro mgd přen. s OZ (200), tyrist, zap dle AR12/77 (300). P. Dobiáš, Těsnohlídkova 10, 613 00 Brno.

Serva Varioprop (260), páry kryštalov (340), cyklovač stieračov (140) a iné, zoznam zašlem, kúpim rôzne obč. radiost. a pojítka, prenosné i stabilné (i vadné a neúplné), rôzne vadné el. mer. prístroje, osciloskop, závitníky a očká M1,6; 2,5; 2,6; 7. E. Ďuriník, Vlčince B-1/VI, 010 00 Žilina.

ICL7106, ICL7107 (1490), displeje 3,5 miestne 13 mm (450), spolu 1900, kompletný DMM (2990), jednotlivé segmenty 13 mm (119), LED Ø 5 (19), AY-3-8500 (599), 555 (49), 556 (59), 4793 (99), 4792 (89). Ivan Matušík, Nábr. Svobodu 56, 801 00 Bratislava. Len pisomne

723, 741, 555 (80, 67, 57), 7812, 7824, LM309K (150, 150, 185), MC1496 (270), FET2N5458 = BF245C (38), GU32, RE125A (117, 105), STV140/60, STV280/80 (15, 13, 45), RL12P35 (30), jazýč. relé 24 V různá (25–40), keram. C5 – 10 nF do 250 V polštářkové (à 0,50), koupim ICM7207A, ICM7208, 11C90. Jiří Mašek, 5. května 1460, 440 01 Louny.

Gramo Dual CS721 (10500), reproskrine Sanyo SX551 60 W/8 Ω (8000 za pár), kazet. Dual C919-1 (7500). G. Kovér, Galaktická 14, 040 01 Košice.

HI-FI zesilovač TEXAN, orig. konc. stupeň, repro-box 50 W (4000). Karel Stejskal, Brodského 1672, 140 00 Praha 4-Jižní město, Chodov.

Stoiní kazetový mag. Sanyo RD4300E (7000). O. Tománek, Kolského 1435, 149 00 Praha 4.

Tranzistory 2N3055(70). P. Kramarz, Soukenická 27,

Dlody LED Ø 3, Ø 5 z, ž, č (15). P. Zach, U Jedličkova ústavu 1351, 140 00 Praha 4.

MP120 - 600 mV/250 μA (100), MP80 pošk. kryt (50), 16/150 V 4 × (à 40), ARE467, ARV168 (à 35), relé ve vakuu (150), spec. lad. C $6\times$ 4,7 pF (450), oživ. otáčkoměr bez měř. (100), jap. sluch. OCMC – 8Ω (800), Z6W se vstupem pro mag. př. (mech. nedoděl.) + 2 reproskříně – komplet. (1000), polské čas. relé v lic. 1 s až 60 h (500), koupím 3× 739 (749), 2× 723 (TO), 12× 741 (4× DIL, 8× TO), 2× 709 (503), LED diody. Václav Kouba, Blahníkova 14, 130 00 Praha 3. IO AY-3-8500 (500), ICL7107 + display (dohromady 2000), LED diody Ø 3 a Ø 5 č, z, ž (16). Ing. Jaroslav Veselý, Újezd 16, 118 00 Praha 1.

Malý usm. (Graetz) do 10 A (à 50), stolní dig. hodiny s budíkem 6 míst (2000), projektor AM8 na film standart 8 + synchr, zvuku (700), autotrafa 0 až 380 V/2,5 A (500), 0 až 250 V/20 A (800), obr. 592QQ44 (300), součásti k TVP Nišava – kan volič + tlač. souprava (100). skříň mezifr. + elektronky (à 10), repr. (20), vn trafa AT611, AT505 (à 50), Nišava, Rubín, Oravan (à 30), vych cívky, Nišava, Lotos (à 20), kan. voliče Oravan, Rubín (à 30), vn trafo, Junosť 401B bez vn cívky (50), orig. dokum. k modulu Intersil 7106, 7107 (à 30). Koupím: 3,5 m LCD displej k m. 7106, CD4030, CM4072. Ing Martin Jurčo, V zápolí 1252/27, 145 00 Praha 4-Michle, tel. 42 14 41 po 16. hod.

Icomet (500), kapacitní normál TM330 (400), konver tor 4952A-d (300), B7S2 (450), gyrátor TCA580 (100), MP 120 100 µA (160). K. Mach, Slovanská 165, 307 09

Triak KT772 (à 50, výběr 60). Z. Lehečka, U podjezdu 12, 773 00 Olomouc

Komplementární páry KF507/517 (35). Koupím SFW10,7MA, SFE10, 7MA, F. Tarabus, 763 24 Viachovice 254.

KOUPĚ

10 MC1310P, µA749, MM5316, BFR14B, BF900, BF905, BFY90. Kdo poradí s přijímačem nad 106 MHz. VI. Šimůnek, nám. Zd. Nejedlého 14, 415 01 Teplice.

Kúpime: 4 ks hlbokotónove reproduktory Ø 15", 200 W sin/8Ω, citlivosť cca 100 dB/W/m pre reprod. hudbu. Tiež digitálny multimeter LED resp. LCD display na 4 miesta, elektron. poistka, str. U – 1 μ V, 10 Hz = 100 kHz/5 M Ω , ss U = 1 V/5 M Ω , R: 1 Ω = 1 MΩ. Fonoklub SZM, p. s. 41, 040,32 Košice.

SG60 v dobrém stavu. Popis a cena. M. Provazník, Vilsnice 58, 407 04 Děčín 12.

Privileg LC10000 nový zo zárukou, popis a cena L. Adam, 941 09 Jatov

Osciloskop a různé IO TTL a LED diody – typ, cena. M. Nosek, Řípec 65, 391 82 p. Veselí n. L. II.

Stol. digitál hodiny, popis, cena. J. Adámek, Chaloupky 581, 698 01 Veself n. Mor.

Kondenz. trimry a kostřičky s kryty na vst. jednotku VKV podle AR2/77, různé IO. M. Klíma, Líšná 22, 592 03 Sněžné.

Tlačiareň PC-100 A (príp. B) ku TI-58. Oskár Svitanič, Solovjevova 41, 040 01 Košice.

TTL, ECL, OZ, FET, LED, Murata, krystaly 100 kHz atd., osciloskop nad 50 MHz. J. Mikel, 763 07. Hřív. Újezd 60.

Mech. část B42 (B45, B4) - i bez motoru. L. Nerad, Alešova 72, 290 01 Poděbrady.

Repro ARE568 2 ks, ARV168 2 ks, pouze nové,

nepoužité. Miroslav Dux, 277 15 Tišice 178.

Hi-Fi 2× 15 W i na desce. Miroslav Příkop, Klicperova 1012, 258 01 Vlašim.

10 ks μΑ741 nebo ekvivalent. Milan Dvořák, Helfertova 23; 613 00 Brno.

TCA440, AFD455, tantaly: M68, 1M, 2M2, 4M7, mf trafo 7× 7 čierné. Igor Kianička, Hollého 11/D, 920 01 Highovec

Kalkulačku Elka 130, nefungující, případně vrak. Udejte cenu. Fr. Kozmík, Hrbová 1565, 755 01 Vsetín. Obrazovku 7QR20, len. novú - kvalitnú + masku a stienenie. J. Belan, Laskar 852, 972 71 Nováky.

Reproduktory ARZ669 nebo ARN664 - 2 ks. lng. Jan Číp, Sekaniny 1802, 708 00 Ostrava 4.

AY-3-8500, 7474, 90, 93 a min. mgf Stuzzi Memocord K60 apod. Pavel Holik, Prostřední 3373, 760 01 Gottwaldov

Malý osciloskop vert. 11 MHz, nutně! V. Schwarz, Máchova 17, 120 00 Praha 2, tel. 25 63 94.

Krystal 27,060 MHz. J. Rajtora, Polit. vězňů 595, 252 01 Říčany

Dvě repr. skříňky Philips nebo Grundig 4-10 W/4 Ω, starší typ nebo samostatné repr. 2× bas. 2× výškové Elektronky: 2× ECL800, EM87, EAF80I, ECC83. Popis. Otakar Jeřábek, Bubenečská 13/308 II. p., 160 00 Praha 6.

Repro ARN668 - 4x. Miroslav Mokren, Kohal - tr SNP 61, 040 11 Košice.

FE tranzistory jedno a dvoubázové na VKV, keramické filtry SFW10, 7, dekodér MČ1310P. Oldřich Čírek, Strakatého 12, 636 00 Brno 36.

Magnetofon Braun, Akal; 3 motory, 100% stav. Zdeněk Slabý, Puškinova 1215, 500 02 Hradec Krá-

8 ks 7490, 15 ks LED Ø 3, LM340-05, LM341-12, LM341-24, 74S51, 74S112, 74LS90. J. Lörinc, ČSA 333, 018 41 Dubnica n. V.

Nabídněte písemně (cena) – prvotřídní dvojice

KD607 - 617, KU611 a dál IO, KC; KF, KT, KY, KA, KZ, NŽ a jiné polovodiče (zahraniční). Stanislav Pařík, 735 43 Albrechtice 215.

Kníhu, Baudyš: Československé přijímače. Miroslav Zeman, Bulharská 12, 612 00 Brno 12.

Dekodér PAL. S. Drábková, Blatenská 12, 300 00

LED, TTL, IO, tranz., j. relé, digitr., NE555, BFX aj.

Milan Sýkora, Vrchlického 3, 678 01 Blansko. Reproduktory ARN664, ARO667, ARV161 vše 2×. Vilém Kučera, 435 22 Braňany 142

LED diody a NE555. Zd. Šrámek, Pohratická 1850/ 77. 412 01 Litoměřice.

2 ks ARN664, 2 ks ARE589, 2 ks ART481, výhybky, kompl. souč. a panel zesilovače stereo dle AR5/77 (1200). Koupím E88CC. Č. Goral, Terasa 700, 739 61 Třinec

Univerzální konvertor pro převod OIRT na CCIR a naopak, v dobrém stavu. Michal Kotil, Polabiny, Chemiků 130, 530 09 Pardubice.

LM1818, XR2206, 3055/2955 alebo podobné výk. rôzne IO, OZ, LED diody, tantaly, 7QR20, ARV161. P. Gašparík, Humenská 23, 040 11 Košice

IO - MC1310P, μA741, μA748, μA723, tranzistory BF900, 44673, BF905, LED zel. červ. Ø 3,5 mm. R. Kubíček, Nad rybníkem 227, Mařatice, 686 01 Uher Hradiště

BM366, BM342, krystal 11.66 MHz, BF245C, 40673. NE555, XR2206, MC1496. A. Mareš, Ratibořice 24, 391 42 Rat. Hory

Hledač kov. předm. P. Hojsík, Brožíkova 430, 530 09 Pardubice.

μΑ749, BFR14, BFR15, BFR91, AF279S, AF239S.

Old. Krabec, 270 51 Lužná 427. AY-3-8500, LED diody, krystal 27,120 MHz, výbojka IFK120. Vlast. Hejmal, Renneská 23, 639 00 Brno.

Přístroj na hledání kovů v zemí alespoň do 3 metrů.

Lubo Šesták, 908 63 Radošovce. IO741, 748, 1458, 7493, 74141, EH1048, BC tranzistory, LED diody, KD607, 617 apod. miniaturní přepínače a jackové zdířky. J. Langr, Haklova 1172, 508 01 Hořice v Podkr.

Hradlovú fotonku 1PP75 (môžu byť aj dva kusy) a logaritmický potenciometr 47 k. (Môže byť aj lineárny) Marek Šmihla, Internátna 19, 974 01 Banská Bystrica.

AY-3-8500, CM4072, CT7002 (MM5316), D747 (LQ410), MP40 1 A/40 mV, TR161 (TR106), TR191 -TR193, TP011, ferit. hrn. jadro J14H12, kliešte TESLA na IO. D. Sojka, Nemocničná 1947/42, 026 01 Dolný Kubín.

VÝMĚNA

Dynamo 24 V/ 900 W 1400 ot. vhodné na sváření za MH7490 4x, 7442 3x, 74141 3x, digitrony 3x. J. Voitela, 435 42 Janov 270/11.

Dvoupap. osc. Křižík D581 a nf gen. 12× GO14 za serv. osc., příp. prodám a koupím. Koupím repro 100-150 W zahr, výr. Ladislav Machala, Koněvova 14, 674 01 Třebíč.

Polovodiče i zahr. vvměním za AR 2, 8, 10/69, 12/78 - RK 4, 5,/66, 1, 2 - RK 4, 5/66, 1, 2, 6/67, 2/72, 4/75, 5/79 a Roč. ST75 nebo prodám a koupím. Seznam zašlu. Jaroslav Kalina, Nové sídliště 397, 331 51 Kaznějov.

Calibook USA 1980 vyměním za DX nebo prodám. Jaroslav Buňata, Ženíškova 2401, 400 11 Ústí n. L.

OBLASTNÍ SPRÁVA RADIOKOMUNIKACÍ STŘEDNÍ ČECHY

se sídlem v Liblicích u Českého Brodu

přijme

pro svá pracoviště v Praze a ve Velvarech techniky do nepřetržitého provozu při obsluze vysílačů. Požadované vzdělání ÚSO směr elektro. Zařazení T 9 dle RPMS + odměny + připlatky za soboty, neděle, svátky + PHV.

Nabízíme práci v čistém a klidném prostředí. Nástup ihned! Náborová oblast Praha a Kladno.

ELEKTRONIKA INFORMUJE

Zákazníci, kteří si v letošním roce u nás zakoupili osm základních dílu pro stavbu stereofonního gramofonu TG120AS nebo základní šasi TG120ASM 330 6080, obdrželi spolu s výrobkem "Odpovědní lístek", pomocí kterého chceme získat poznatky a připomínky pro ověření a další zlepšování kvality.

Všechny nové připomínky vítáme a zároveň upozorňujeme, že 30. září t. r. je uzávěrka tématického úkolu – "NOVÉ ŘEŠENÍ FUNKCÍ A DOPLŇKŮ GRAMOFONU TG120 JUNIOR" – k celostátní přehlídce HIFI-AMA 1980. Tento úkol vyhlásil ÚV Svazarmu spolu s podnikem Elektronika. Tři nejlepší řešení budou odměněna zvláštní cenou podniku. Podrobnosti se dozvíte v seznamu tématických úkolů, který na požádání obdržíte při své návštěvě ve středisku členských služeb podniku Elektronika, Ve Smečkách 22, Prana 1. Z naší nabídky stavebnic Vám nabízíme:

RS070 Pionýr – širokopásmový skříňkový reproduktor 5 W - MC 140 Kčs.

Jednoduchý akustický zářič s velkou účinností, vhodný především pro stereofonní zesilovače a magnetofony, s výkonem do 5 W. Mimořádně jednoduchá stavba a nízká cena odpovídají možnostem zájemců, kteří hledají vhodný začátek pro vlastní experi-menty v elektroakustice.

TW40SM JUNIOR - stereofonní zesilovač 2× 20 W - MC 1900 Kčs. Kompletní soubor stavebních dílů s oživeným předzesilovačem a osazeným koncovým stupněm k rychlé montáži včetně stavebního návodu.

TW120S – koncový zesilovač 2× 60 W – MC 1860 Kčs. Oživená kompletní stavebnice včetně návodu. Je určena pro dva ozvučovací sloupy RS508 nebo 2 až 4 reproduktorové soustavy RS238B.

Kromě našeho dalšího sortimentu hotových výrobků stavebnic a staveních dílů Vám nabízíme celou řadu

konstrukčních prvků jako jsou: otočné a tahové stereofonní potenciometry, základní řadu spojovacích tří, pěti a sedmikolíkových vidlic a zásuvek, slídové izolační podložky pod výkonové tranzistory 1 a 2NT4312. Aktuální nabídku podle okamžitého stavu našich skladových zásob obdržíte při Vaší návštěvě ve středisku členských služeb v Praze.

ELEKTRONÍKA – středísko členských služeb, podnik ÚV Svazarmu Ve Smečkách 22, 110 00 Praha 1

Telefony: prodejna 24 83 00 odbyt 24 96 66 telex 12 16 01

Mimopražští zájemci se musí se svými požadavky obrátit na Dům obchodních služeb Svazarmu – Valašské Meziříčí, Pospíšilova 12, tel. č. 2688 nebo 2060.

DŮM OBCHODNÍCH SLUŽEB SVAZARMU

Valašské Meziříčí, Pospíšilova 12/13, tel. 2060, 2688

nabízí

ORIENT 80 - zaměřovací radiopřijímač pro ROB pro sportovce I.-III. výkonnostní třídy.

- s buzolou + hodiny + brašna

obj. č. 3200004 2810 Kčs

- bez buzoly + hodiny + brašna obj. č. 3200001 **HODINY** obj. č. 3200005 2040 Kčs 240 Kčs 78 Kčs BRAŠNA obj. č. 3200006

V ceně přijímače není zahrnuta cena hodinek a brašny. CVRČEK - stavebnice bzučáku-pro výcvik telegrafie

začátečníků a branců. 240 Kčs

obj. č. 3200204 MINIFOX AUTOMATIC 78 – přenosný vysílač pro výcvik vrcholových sportovců a pro soutěže ROB I.-III. kvalifi-

kačního stupně. 3550 Kčs obj. č. 3200100

TW40BSM JUNIOR - stavebnice hifi stereofonního zesilovače k rychlému sestavení o sinusovém výkonu 2× 20 W.

obj. č. 3303344

TW120 JUNIOR - kompletní stavebnice k rychlému sestavení. Univerzálně použitelný koncový HiFi zesilovač s max. výkonem 2× 60 W.

obj. č. 3301100 1860 Kčs RS508B - dvoupásmový reproduktorový sloup - impe-,

dance 8 \O. obj. č. 3304044 2500 Kčs

R\$516B - dvoupásmový reproduktorový sloup - impedance 16 Ω .

obi. č. 3304045 STAVEBNÍ NÁVOD na TW40 JUNIOR 2500 Kčs

obi. č. 5101002

6 Kčs

STAVEBNÍ NÁVOD na TW120 JUNIOR obj. č. 5101001

4 Kčs