Cluster Analysis

 The aim of the clustering process is to discover overall distribution patterns and interesting correlations among the data attributes.

Steps of Clustering Process

TYPES OF CLUSTERING METHODS

 There are many clustering methods available and each of them may give a different grouping of data set. The choice of the particular method will depend on the type of output desired.

VARIOUS METHODS

- Major clustering methods are classified into following categories:
 - Partitioning methods
 - Hierarchical methods
 - Density based methods
 - Grid based methods
 - Model based methods

Partitioning methods

- The partitioning methods generally result in a set of k clusters, where k ≤ n (no. of objects in database).
- Clusters are formed to optimize an objective partitioning criterion (called similarity function) so that objects within a cluster are similar, whereas objects of different clusters are dissimilar in terms of database attributes.
- Well known methods: k-Means, k-Medoids

K-Means Algorithm

- K-means is one of the simplest unsupervised learning algorithms
- The main idea is to define k centroids, one for each cluster.
- The next step is to consider each data belonging to a given data set and associate it to the nearest centroid.

K-Means Algorithm

- k initial clusters are formed.
- k new centroids are re-calculated and repeat the same process until the centroids do not move any more.

K-Means algorithm

- Unfortunately, there is no general theoretical solution to find the optimal number of clusters
- A simple approach is to compare the results of multiple runs with different k classes and choose the best one according to a given criterion

K-Means Algorithm

- Computational complexity is O(nkt), t is the number of iterations.
- Can be applied only when the mean of a cluster is defined
- Can't apply in some applications, where categorical attributes are involved

K-Means Algorithm

K, the number of clusters is predefined

 Only suitable for discovering clusters of spherical shapes

 It is sensitive to noise and outlier data points since a small number of such data can substantially influence the mean value

K-Modes method

 One variant of k-means is the k-modes method, which extends the k-means paradigm to cluster categorical data by replacing the means of clusters with modes.

K-prototypes method

- The k-means and k-modes methods can be integrated to cluster data with mixed numeric and categorical values, resulting in the kprototypes method.
- A new dissimilarity measures to deal with categorical objects (d(i, j) = (p - m) / p, s.t. p = total no. of variables and m = no. of matches) and a frequency-based method to update mode of clusters are introduced to modify the original k-means algorithm.

Cluster Validation

Cluster Validation

- Many interesting algorithms applied to analyze very large datasets. Most algorithms don't provide any means for its validation and evaluation.
- So it is very difficult to conclude which are the best clusters and should be taken for analysis.

Cluster Validation

- whatever the intention of clustering may be, the number of clusters sought is always unknown (more or less).
- Some internal measures: compactness, connectedness, separation and combinations

Internal measures

Optimal Clusters

- There are several robust strategies for predicting optimal clusters:
 - (1) silhouette index
 - (2) Dunn's index, and
 - (3) Davies-Bouldin (DB) index.
 - (4) Xie-Beni (XB) index
 - (5) *I-index*
 - (6) CS-index

Distance

- Calculate a distance between 2 points p (x₁, y₁) and q (x₂, y₂) in XY-plane.
- Euclidean distance
- Chebyshev distance
- Manhattan distance
- Mahalanobis distance
- Minkowski distance

Distance

Euclidean Distance

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

Manhattan Distance

$$|x_1-x_2|+|y_1-y_2|$$

Chebyshev Distance

$$\max(|x_1 - x_2|, |y_1 - y_2|)$$

Let S and T are clusters formed using partition U. d(x, y) is the distance between two objects x and y belonging to S and T respectively. d (x, y) is calculated using well known metrics such as Euclidean, Manhattan and Chebychev. |S| and |T| are the number of objects in clusters S and T respectively.

(1) The single linkage distance is the closest distance between two objects belonging to two different clusters defined as:-.

$$\frac{1}{2} \delta_{1}(S, T) = \min \left\{ d(x, y) \atop x \in S, y \in T \right\}$$

(2) The complete linkage distance represents the distance between the most remote objects belonging to two different clusters, given as:-

$$\delta_2(S, T) = \max \left\{ \begin{array}{l} d(x, y) \\ x \in S, y \in T \end{array} \right\}$$

(3) The average linkage distance defines the average distance between all the objects belonging to two different clusters, described as:-

$$\delta_{3}(S, T) = \frac{1}{|S||T|} \sum_{\substack{x \in S \\ y \in T}} d(x, y)$$

(4) The centroid linkage distance reflects the distance between the centers *vs* and *vt* of two clusters *S* and *T* respectively, presented below:-where,

$$\delta_4 (S, T) = d (\nu_s, \nu_t)$$

$$v_s = \frac{1}{|S|} \sum_{X \in S} X, v_t = \frac{1}{|T|} \sum_{Y \in T} Y$$

(5) The average of centroids linkage represents the distance between the center of a cluster and all the objects belonging to a different cluster, explained as:-

- There are basically three types of intracluster distances:
- (1) The complete diameter distance is the distance between the most remote objects belonging to the same cluster, as given below:-

$$\Delta_1(S) = \max \{d(x, y)\}$$

 $x, y \in S$

(2) The average diameter distance represents the average distance between all the objects belonging to the same cluster, as defined below:-

$$\Delta_{2}(S) = \frac{1}{|S| \cdot (|S| - 1)} \sum_{\substack{x, y \in S \\ x \neq y}} \{d(x, y)\}$$

(3) The centroid diameter distance defines the double average distance between all of the objects and the cluster's center, as illustrated below:-

$$\Delta_{3}(S) = 2 \left\{ \begin{array}{c} \sum_{\mathbf{x} \in S} d(\mathbf{x}, \overline{\mathbf{v}}) \\ \frac{\mathbf{x} \in S}{|S|} \end{array} \right\}$$
 where
$$\overline{\mathbf{v}} = \frac{1}{|S|} \sum_{\mathbf{x} \in S} \mathbf{x}$$

Dunn's Index

• the Dunn's validation index, DIndex, is defined as:

$$\operatorname{Dindex}\left(\mathbb{U}\right) = \min_{1 \leq i \leq c} \left\{ \min_{1 \leq j \leq c, j \neq i} \left\{ \frac{\delta\left(\mathbb{X}_{i}, \mathbb{X}_{j}\right)}{\max\left\{\Delta\left(\mathbb{X}_{k}\right)\right\}} \right\} \right\}$$

• δ (X_i , X_j) is the intercluster distance i.e. the distance between cluster X_i and X_j and $\Delta(X_k)$ is the intracluster distance of cluster X_k i.e. distance within the cluster X_k .

Dunn's Index

- The goal is to maximize the intercluster distances and minimizing the intracluster distances.
- The large values of Dindex corresponds to good quality cluster.
- Thus the number of clusters that maximizes
 DIndex is taken as the optimal number of
 clusters k

Davies-Bouldin index DBIndex

- Davies-Bouldin Index finds the set of clusters that are compact and well separated.
- The Davies-Bouldin index DBIndex is defined as:

DBIndex (U) =
$$\frac{1}{K} \sum_{i=1}^{K} \max_{i \neq j} \left\{ \frac{\Delta(X_i) + \Delta(X_j)}{\delta(X_i, X_j)} \right\}$$

• Small values of DBIndex (U) represents the good quality clusters k.