数季电路与逻辑设计

Digital circuit and logic design

● 第一章 基本知识

主讲教师 于俊清

■提纲

数字信号与系统

数制及其转换

带符号二进制数的代码表示

几种常用的编码

■几种常用的编码

二进制表示的十进制编码

可靠性编码

字符编码

■几种常用的编码

■十进制数的二进制编码(BCD码)

BCD - Binary Coded Decimal

▶ 十进制数的二进制编码

十进制数的二进制编码

十进制数	8421码	2421码	余3码		
0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1	0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1	0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0		
未选用的编码	1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1	0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0	0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1		

一十进制数串在机器中的表示

■几种常用的编码

二进制表示的十进制编码

可靠性编码

字符编码

■可靠性编码

为了减少或者发现代码在形成和传送过程中可能发生的错误

可靠性编码的作用是为了提高系统的可靠性

介绍两种可靠性编码:

奇偶校验码

格雷码

→奇偶校验

有效信息(被校验的信息)部分可能是奇性(1的个数为奇数)也可能是偶性

奇偶两种校验都只需配一个校验位,就可以使整个校验码满足指定的奇偶性要求

■奇偶校验

奇校验

$$P = b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_6 \oplus b_7 \oplus b_8$$

偶校验

$$P = b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_6 \oplus b_7 \oplus b_8$$

■奇偶校验

校验位的取值

被校验信息	奇校验位取值	偶校验位取值		
10 10 10 10	1	0		
11 00 11 01	0	1		
11 01 00 11	0	1		
10 01 10 01	1	0		
10 10 11 00	1	0		
11 10 11 00	0			

●奇偶校验的特点

一种常见的简单校验,只需要1位校验码

只具有发现错误的能力,不具备对错误定位和纠正错误的能力

只具有发现一 串二进制代码 中,同时出现 奇数个代码出 错的能力 如果同时发生 偶数个代码出 错,奇偶校验 失效

■奇偶校验的性能

■格雷码 (Gray Code)

特点

任意两个相邻的数, 其格雷码仅有一位不 同

作用

避免代码形成或者变换过程中产生的错误

■4位二进制码对应的典型格雷码

十进制数	4位二进制码	典型格雷码	
0	0000	0000	
1	0001	0001	
2	0010	0011	
3	0011	0010	
4	0100	0110	
5	0101	0111	
6	0110	0101	
7	0111	0100	
- 8	1000	1100	
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	
15	1111	1000	

▶格雷码的转换

▶格雷码的转换

二进制到格雷码的转换

$$G_{n-1} = B_{n-1}$$

$$G_i = B_{i+1} \oplus B_i$$

■格雷码的用途

在数字系统中,数字0或1是用电子器件的不同状态表示的

若采用二进制数,当数据按照升序或者降序变化时,每次增1或者减1,可能使多位变化

例如:二进制表示的十进制数由7变为8,要4位同时发生变化,0111变为1000

显然,当电子器件的变化速度不一致时,便会产生错误的代码,例如:产生1111(假定最高位变化比低3位快)、1001(假定最低位变化比高3位慢)等错误代码

格雷码从编码上杜绝了这类错误

■几种常用的编码

二进制表示的十进制编码

可靠性编码

字符编码

■字符编码 (ASCII-American Standard Code for Information Code)

b7b6b5 b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SPACE	0	@	P		P
0001	SOH	DC1	!	1	A	Q	A	Q
0010	STX	DC2	17	2	В	R	В	R
0011	ETX	DC3	#	3	С	S	C	S
0100	EOT	DC4	S	4	D	T	D	T
0101	ENO	NAK	%	5	E	U	E	U
0110	ACK	SYN	&	6	F	V	F	V
0111	BEL	ETB	,	7	G	W	G	W
1000	BS	CAN	(8	Н	X	Н	X
1001	HT	EM)	9	I	Y	I	Y
1010	LF	SUB	*	:	J	Z	J	Z
1011	VT	ESC	+	;	K	[K	{
1100	FF	FS	,	<	L	\	L	
1101	CR	GS	-	=	M	}	M]
1110	so	RS		>	N	1	N	~
1111	SI	US	/	?	0	←	0	DEL

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

■课后作业

■课堂作业

将下列十进制数转换成二进制、八进制和十六进制数(二进制小数精确到小数点后4位)

