Dynamic quantum circuit compilation

[2310.11021]

Kun Fang

School of Data Science
The Chinese University of Hong Kong, Shenzhen
Joint work with Yinan Li, Ruqi Shi, Munan Zhang

Main challenges of Quantum Computing

Scalability

- Existing quantum computers are limited by the **number of qubits** available for computation.
- We need to **make efficient use of qubits** when designing and executing quantum algorithms.

Fidelity

- Current generation of quantum computers are extremely prone to noise.
- Circuit optimization and error correction needed!

•••

Static Quantum Circuit

- Start with state initialization
- Measurement at the end

Static Quantum Circuit

- Start with state initialization
- Measurement at the end

Dynamic Quantum Circuit

- Mid-circuit measurement and reset
- Classically controlled gate

Static Quantum Circuit

- Start with state initialization
- Measurement at the end

Quantum Computation

Dynamic Quantum Circuit

- Mid-circuit measurement and reset
- Classically controlled gate

Quantum Computation +
Classical Computation and Communication

Static Quantum Circuit

- Start with state initialization
- Measurement at the end

Dynamic Quantum Circuit

- Mid-circuit measurement and reset
- Classically controlled gate

Quantum Error Correction!

(Syndrome + Correction)

Superconducting Circuit

- Relatively easy for scaling
- Limited qubit connectivity
- Short coherence time

Trapped Ion

- Extremely long coherence time.
- All-to-all qubit connectivity,
- Relatively hard for scaling up.

Superconducting Circuit

- Relatively easy for scaling
- Limited qubit connectivity
- Short coherence time

Trapped Ion

- Extremely long coherence time.
- All-to-all qubit connectivity,
- Relatively hard for scaling up.

Our main target platform in this work

Hardware Support for Dynamic Quantum Circuit

Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits

A. D. Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K. Minev, Jerry M. Chow, and Jay M. Gambetta Phys. Rev. Lett. **127**, 100501 – Published 31 August 2021

IBM, 2021

Demonstration of the trapped-ion quantum CCD computer architecture

J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes ☑, K. Mayer, C. Ryan-Anderson & B. Neyenhuis

Nature **592**, 209–213 (2021) Cite this article

Honeywell, 2021

Suppressing quantum errors by scaling a surface code logical qubit

Superconducting Circuit

Google Quantum Al

Nature 614, 676–681 (2023) Cite this article

Google, 2023

Midcircuit Qubit Measurement and Rearrangement in a ¹⁷¹Yb Atomic Array

M. A. Norcia et al.

Phys. Rev. X 13, 041034 (2023) – Published 22 November 2023

Atom Computing, 2023

Hardware Support for Dynamic Quantum Circuit

Beating the break-even point with a discrete-variable-encoded logical qubit

Zhongchu Ni, Sai Li, Xiaowei Deng, Yanyan Cai, Libo Zhang, Weiting Wang, Zhen-Biao Yang, Haifeng Yu, Fei Yan, Song Liu, Chang-Ling Zou, Luyan Sun ☑, Shi-Biao Zheng ☑, Yuan Xu ☑ & Dapeng Yu ☑

Nature 616, 56–60 (2023) Cite this article

High-Fidelity Detection on $^{171}\mathrm{Yb}^+$ Qubit via $^2D_{3/2}$ Shelving

Xueying Mai,* Liyun Zhang,* and Yao Lu[†]

¹Shenzhen Institute for Quantum Science and Engineering (SIQSE),
Southern University of Science and Technology, Shenzhen, P. R. China.

²International Quantum Academy, Shenzhen 518048, China.

³Guangdong Provincial Key Laboratory of Quantum Science and Engineering,
Southern University of Science and Technology Shenzhen, 518055, China.

(Dated: March 1, 2024)

SUSTech, 2023

SUSTech, 2024

(yield same sampling results)

$$|q_1\rangle$$
 — H

(yield same sampling results)

(yield same sampling results)

(yield same sampling results)

(yield same sampling results)

(yield same sampling results)

(yield same sampling results)

(yield same sampling results)

(yield same sampling results)

Rewires static quantum circuits into <u>equivalent</u> dynamic circuits using fewer qubits through <u>qubit-reuse</u> strategies.

Hard to compile manually for large circuits.

Automatic Tool Needed!

Take-home Message*

Dynamic Quantum

Circuit Compilation

N-qubit Bernstein-Vazirani Algorithm 2-qubit with Dynamic Circuit $|0\rangle$ — H $|0\rangle$ — H — $|0\rangle - X$ Qubit Saving Swap Reduction Advantages Improved Fidelity

Take-home Message*

- Dynamic circuit compilation reduces the number of qubits required for executing quantum algorithms.
- **Bridging the gap** between theoretical quantum algorithms and their practical implementation on quantum computers with limited resources.
- Complementary to other circuit optimization techniques and can be seamlessly integrated into existing ones.

Quantum Circuit Representations

Directed Acyclic Graph (DAG) Representation

$$G(V = R \cup T \cup I, E)$$

- Root vertices $(r \in R)$, indegree $\delta^-(r) = 0$
- Terminal vertices $(t \in T)$, outdegree $\delta^+(t) = 0$
- Internal vertices $(i \in I)$, $\delta^{-}(i) \neq 0$, $\delta^{+}(i) \neq 0$

Graph Representation Simplified

Simplify the DAG by using the graph reachability

An edge $(r, t) \in E_s$ if a *directed path* from r to t exists within the DAG representation.

Graph Representation Simplified

Simplify the DAG by using the graph reachability

An edge $(r, t) \in E_s$ if a *directed path* from r to t exists within the DAG representation.

Matrix Representation of Graph

Simplified DAG

Bipartite Graph $G_s(R, T, E_s)$

Matrix Representation

- G(V, E), Adjacency matrix A(G), $A_{ij} = 1$ if $(v_i, v_j) \in E$
- For a bipartite graph $G_s(R, T, E_s)$, $A(G_s) = \begin{pmatrix} 0 & B \\ O & O \end{pmatrix}$
- Biadjacency matrix $B(G_s)$, $B_{ij} = 1$ if $(r_i, t_j) \in E$

Matrix Representation of Graph

Simplified DAG

Bipartite Graph $G_s(R, T, E_s)$

Matrix Representation

- G(V, E), Adjacency matrix A(G), $A_{ij} = 1$ if $(v_i, v_j) \in E$
- For a bipartite graph $G_s(R, T, E_s)$, $A(G_s) = \begin{pmatrix} 0 & B \\ O & O \end{pmatrix}$
- Biadjacency matrix $B(G_s)$, $B_{ij} = 1$ if $(r_i, t_j) \in E$

Biadjacency Matrix

$$egin{array}{c|cccc} & t_0 & t_1 & t_2 \\ r_0 & 1 & 1 & 1 \\ r_1 & 1 & 1 & 1 \\ r_2 & 0 & 1 & 1 \end{array}$$

Matrix Representation of Graph

Simplified DAG

Bipartite Graph $G_s(R, T, E_s)$

Matrix Representation

- G(V, E), Adjacency matrix A(G), $A_{ij} = 1$ if $(v_i, v_j) \in E$
- For a bipartite graph $G_s(R, T, E_s)$, $A(G_s) = \begin{pmatrix} 0 & B \\ O & O \end{pmatrix}$
- Biadjacency matrix $B(G_s)$, $B_{ij} = 1$ if $(r_i, t_j) \in E$

Biadjacency Matrix

$$egin{array}{c|cccc} & t_0 & t_1 & t_2 \\ r_0 & 1 & 1 & 1 \\ r_1 & 1 & 1 & 1 \\ r_2 & 0 & 1 & 1 \end{array}$$

Lemma A directed graph is acyclic if and only if its adjacency matrix is nilpotent [1].

Nilpotent matrix $M_{k \times k}$: $\exists 1 \le l \le k$, $M^l = O_k$

First Step: From Circuit to Graph

• $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;

Constraints

- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an **acyclic** graph.

- $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;
- **Constraints**
- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an acyclic graph.

Valid on Simplified DAG

Last Step: From Graph to Circuit

DAG with new edges

Topological

Ordering

DAG with new edges

Feasible Execution Sequence

$$0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 10 \rightarrow 9$$

Quantum Circuit Compilation via Graph Manipulation*

DAG with new edges

Feasible Execution Sequence

Dynamic Circuit Instructions

Dynamic Circuit

Quantum Circuit Instructions						
ID	TYPE	QUBIT	PAR			
0	RESET	0	NONE			
1	RESET	1	NONE			
3	H	0	NONE			
4	H	1	NONE			
6	CX	[0, 1]	NONE			
8	MEASURE	0	NONE			
2	RESET	0	NONE			
5	H	0	NONE			
7	CX	[1, 0]	NONE			
10	MEASURE	0	NONE			
9	MEASURE	1	NONE			

Reallocate 2 to 0

Static Circuit

Static Circuit Instruction

Quantum Circuit Instructions						
ID	TYPE	QUBIT	PAR			
0	RESET	0	NONE			
1	RESET	1	NONE			
2	RESET	2	NONE			
3	H	0	NONE			
4	H	1	NONE			
5	H	2	NONE			
6	CX	[0, 1]	NONE			
7	CX	[1, 2]	NONE			
8	MEASURE	0	NONE			
9	MEASURE	1	NONE			
10	MEASURE	2	NONE			

Static Circuit

Static Circuit Instruction

DAG Representation

Simplified DAG

Static Circuit

Static Circuit Instruction

DAG Representation

DAG with a new edge

Add a new edge

Simplified DAG

Static Circuit

Static Circuit Instruction

DAG Representation

Simplified DAG

Dynamic Circuit Instruction

Quantum Circuit Instructions

[0, 1]

QUBIT PAR

NONE

NONE NONE NONE

NONE

NONE NONE NONE NONE

TYPE

RESET

MEASURE 0

MEASURE 1

Dynamic Circuit

DAG with a new edge

Add a new edge

Seems more edges but actually less restrictive on reachability

CZ gates are commutable

More added edges!

Commutable Structures are a significant feature in some recent quantum applications.

e.g. Quantum Approximate Optimization Algorithm (QAOA) Circuit

$$U(\vec{\gamma}, \vec{\beta}) = \prod_{i=1}^{p} U_B(\beta_i) \ U_C(\gamma_i)$$

Commutable Structures are a significant feature in some recent quantum applications.

e.g. Quantum Approximate Optimization Algorithm (QAOA) Circuit

$$U(\vec{\gamma}, \vec{\beta}) = \prod_{i=1}^{p} U_B(\beta_i) U_C(\gamma_i)$$
ZZ gate are commutable

Commutable Structures are a significant feature in some recent quantum applications.

e.g. Quantum Approximate Optimization Algorithm (QAOA) Circuit

$$U(\vec{\gamma}, \vec{\beta}) = \prod_{i=1}^{p} U_B(\beta_i) U_C(\gamma_i)$$
ZZ gate are commutable

e.g. Instantaneous Quantum Polynomial (IQP) Circuit

$$\mathcal{C} = H^{\otimes n} D H^{\otimes n}$$

Commutable Structures are a significant feature in some recent quantum applications.

e.g. Quantum Approximate Optimization Algorithm (QAOA) Circuit

$$U(\vec{\gamma}, \vec{\beta}) = \prod_{i=1}^{p} U_B(\beta_i) U_C(\gamma_i)$$
ZZ gate are commutable

e.g. Instantaneous Quantum Polynomial (IQP) Circuit

$$\mathcal{C} = H^{\otimes n} D H^{\otimes n}$$

D is a block of gates diagonal in the computational basis e.g. randomly selecting gates from the set $\{\sqrt{CZ}, T\}$

How to determine if a quantum circuit can be compiled before the actual compilation?

Determine the Reducibility of Quantum Circuits

How to determine if a quantum circuit can be compiled before the actual compilation?

- A quantum circuit is **reducible** if it can be written as an equivalent quantum circuit with fewer qubits.
- Otherwise, it is called **irreducible**.

Approach 1: determine the reducibility from graph

Approach 1: determine the reducibility from graph

Proposition A static circuit is *irreducible* if and only if its simplified DAG is a *complete bipartite graph*.

Time Complexity: $O(m^2/n + mn)$

m is the number of instructions

n is the number of qubits

Approach 2: determine the reducibility from qubit reachability

Definition Given an instruction list of an n-qubit quantum circuit acting on the set of qubits $Q = \{q_0, q_1, ..., q_{n-1}\}$. Then any two-qubit gate introduces two qubit relations:

$$q_i \xrightarrow{k} q_j$$
 and $q_j \xrightarrow{k} q_i$

where q_i and q_j are the qubits upon which the gate operates and k is the order index of the instruction within the list. A qubit q_i is reaches q_j (or, equivalently, q_j is reachable from q_i), denoted as $q_i \rightarrow q_j$, if there exists a sequence of qubit relations

$$q_i \xrightarrow{k_1} q_{l_1}, q_{l_1} \xrightarrow{k_2} q_{l_2}, \dots, q_s \xrightarrow{k_s} q_j$$

such that $k_1 \le k_2 \le \cdots \le k_{s+1}$. Moreover, qubit q_i and q_j are mutually reachable if q_i reaches q_j and vice versa.

CNOT
$$[q_0, q_1]$$
 \longrightarrow $q_0 \xrightarrow{6} q_1$ and $q_1 \xrightarrow{6} q_0$
CNOT $[q_1, q_2]$ \longrightarrow $q_1 \xrightarrow{7} q_2$ and $q_2 \xrightarrow{7} q_1$

Now we have $q_0 \rightarrow q_2$ through

$$q_0 \xrightarrow{6} q_1, q_1 \xrightarrow{7} q_2$$
, but no $q_2 \rightarrow q_0$

Approach 2: determine the reducibility from qubit reachability

Proposition A static quantum circuit is irreducible if and only if any two qubits within this quantum circuit are mutually reachable.

Time Complexity: $O(m^2/n + mn)$ m is the number of instructions n is the number of qubits

Approach 3: determine the reducibility from Boolean matrix multiplication

Circuit Composition $c = c_1 \circ c_2$

Approach 3: determine the reducibility from Boolean matrix multiplication

Circuit Composition $C = C_1 \circ C_2$

Quantum Circuit Instructions							
ID	TYPE	QUBIT	PAR				
0	RESET	0	NONE				
1	RESET	1	NONE				
2	RESET	2	NONE				
3	H	0	NONE				
4	H	1	NONE				
5	H	2	NONE				
6	CX	[0, 1]	NONE				
7	CX	[1, 2]	NONE				
14	S	0	NONE				
15	T	1	NONE				
16	H	2	NONE				
17	CX	[0, 2]	NONE				
18	MEASURE	0	NONE				
19	MEASURE	1	NONE				
20	MEASURE	2	NONE				

(d)

Proposition Biadjacency matrix of composite circuit $B(C_1 \circ C_2) = B(C_1) \odot B(C_2)$, where $(A \odot B)_{ij} := \bigvee_{l=0}^{k-1} (A_{il} \wedge B_{lj})$.

e.g.
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \odot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Approach 3: determine the reducibility from Boolean matrix multiplication

• Consider an n-qubit circuit with only one two-qubit gate acting on q_i and q_j , its biadjacency matrix

$$B_{ij} = I_n + E_{ij}^n + E_{ji}^n$$

• Note that any quantum circuit is a composition of elementary gates. Then the biadjacency matrix of a circuit can be calculated as a **sequential Boolean product**

$$B(\mathcal{C}) = B_1 \odot B_2 \odot ... \odot B_m$$

Approach 3: determine the reducibility from Boolean matrix multiplication

• Consider an n-qubit circuit with only one two-qubit gate acting on q_i and q_j , its biadjacency matrix

$$B_{ij} = I_n + E_{ij}^n + E_{ji}^n$$

• Note that any quantum circuit is a composition of elementary gates. Then the biadjacency matrix of a circuit can be calculated as a **sequential Boolean product**

$$B(\mathcal{C}) = B_1 \odot B_2 \odot ... \odot B_m$$

Proposition A static circuit is *irreducible* if and only if its biajdacency matrix is an *all-one matrix*.

Time Complexity: $O(m^2/n + mn)$

m is the number of instructions

n is the number of qubits

Optimal Circuit Compilation

Candidate Matrix

Simplified DAG

 $G_{\rm S}(R,T,E_{\rm S})$

- $(r_i, t_j) \notin E_s \rightarrow (t_j, r_i)$ is a candidate edge
- Candidate Matrix \overline{B} : $\overline{B}_{ij} = 1$ if (t_i, r_j) is a candidate edge
- $\overline{B} = \neg (B^{\mathsf{T}})$, B is the biadjacency matrix

Candidate Matrix

Simplified DAG

 $G_{\rm S}(R,T,E_{\rm S})$

- $(r_i, t_i) \notin E_s \rightarrow (t_i, r_i)$ is a candidate edge
- Candidate Matrix \overline{B} : $\overline{B}_{ij} = 1$ if (t_i, r_j) is a candidate edge
- $\overline{B} = \neg (B^{\mathsf{T}})$, B is the biadjacency matrix

Biadjacency Matrix

$$m{B}(m{G_s}) = egin{array}{ccc} r_0 & t_1 & t_2 \\ r_1 & 1 & 1 & 1 \\ r_2 & 0 & 1 & 1 \end{array}$$

Candidate Matrix

$$\boldsymbol{B}(\boldsymbol{G_s}) = \begin{array}{cccc} t_0 & t_1 & t_2 \\ r_0 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ r_2 \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} & \boldsymbol{\overline{B}}(\boldsymbol{G_s}) = \begin{array}{cccc} t_0 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ t_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{array}$$

Candidate Matrix

Simplified DAG

 $G_{\rm S}(R,T,E_{\rm S})$

- $(r_i, t_i) \notin E_s \rightarrow (t_i, r_i)$ is a candidate edge
- Candidate Matrix \overline{B} : $\overline{B}_{ii} = 1$ if (t_i, r_i) is a candidate edge
- $\overline{B} = \neg (B^{\mathsf{T}})$, B is the biadjacency matrix
- All added edges $F: F_{ij} = 1$ if (t_i, r_j) is added to G_s
- All edges in F should be selected from \overline{B} , i.e. submatrix

Biadjacency Matrix

$$m{B}(m{G_s}) = egin{array}{ccc} r_0 & t_1 & t_2 \\ r_1 & 1 & 1 & 1 \\ r_2 & 0 & 1 & 1 \end{array}$$

Candidate Matrix

$$\mathbf{B}(\mathbf{G_s}) = \begin{array}{c} t_0 & t_1 & t_2 \\ r_0 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ r_2 \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \end{pmatrix} \qquad \mathbf{\overline{B}}(\mathbf{G_s}) = \begin{array}{c} t_0 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ t_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix}$$

Candidate Matrix

Simplified DAG

 $G_{\rm S}(R,T,E_{\rm S})$

- $(r_i, t_i) \notin E_s \rightarrow (t_i, r_i)$ is a candidate edge
- Candidate Matrix \overline{B} : $\overline{B}_{ij} = 1$ if (t_i, r_j) is a candidate edge
- $\overline{B} = \neg (B^{\mathsf{T}})$, B is the biadjacency matrix
- All added edges $F: F_{ij} = 1$ if (t_i, r_j) is added to G_s
- All edges in F should be selected from \overline{B} , i.e. submatrix

Candidate Matrix

$$\bar{\mathbf{B}}(\mathbf{G_s}) = \begin{array}{cccc}
 & t_0 & r_1 & r_2 \\
 & t_0 & 0 & 0 & 1 \\
 & t_1 & 0 & 0 & 0 \\
 & t_2 & 0 & 0 & 0
\end{array}$$

$$\mathbf{F} = \begin{array}{cccc}
 & t_0 & r_1 & r_2 \\
 & 0 & 0 & 1 \\
 & t_1 & 0 & 0 & 0 \\
 & t_2 & 0 & 0 & 0
\end{array}$$

Added edges

$$\mathbf{F} = \begin{array}{cccc} t_0 & r_1 & r_2 \\ t_0 & 0 & 1 \\ t_1 & 0 & 0 & 0 \\ t_2 & 0 & 0 & 0 \end{array}$$

Optimal Quantum Circuit Compilation as a Binary Integer Programming Problem

Simplified DAG Biadjacency Matrix Candidate Matrix

Graph Manipulation

- $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;
- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an acyclic graph.

$$\alpha \coloneqq \max \sum_{i,j=0}^{n-1} F_{ij} \quad \text{Maximized added edges}$$
 s. t. $F_{ij} \le \bar{B}_{ij}$, $\forall i,j \in \{0,1,\dots,n-1\}$
$$\sum_{j=0}^{n-1} F_{ij} \le 1, \forall i \in \{0,1,\dots,n-1\}$$

$$\sum_{i=0}^{n-1} F_{ij} \le 1, \forall j \in \{0,1,\dots,n-1\}$$

$$\binom{O_n \quad B}{F \quad O_n} \quad nilpotent$$

Optimal Quantum Circuit Compilation as a Binary Integer Programming Problem

Simplified DAG Biadjacency Matrix Candidate Matrix

Graph Manipulation

- $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;
- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an acyclic graph.

$$\alpha \coloneqq \max \sum_{i,j=0}^{n-1} F_{ij} \quad \text{Maximized added edges}$$
 s. t. $F_{ij} \le \bar{B}_{ij}, \forall i,j \in \{0,1,\dots,n-1\}$
$$\sum_{j=0}^{n-1} F_{ij} \le 1, \forall i \in \{0,1,\dots,n-1\}$$

$$\sum_{i=0}^{n-1} F_{ij} \le 1, \forall j \in \{0,1,\dots,n-1\}$$

Optimal Quantum Circuit Compilation as a Binary Integer Programming Problem

Simplified DAG Biadjacency Matrix Candidate Matrix

Graph Manipulation

- $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;
- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an acyclic graph.

$$\alpha \coloneqq \max \sum_{i,j=0}^{n-1} F_{ij} \quad \text{Maximized added edges}$$

$$\text{s.t.} F_{ij} \leq \overline{B}_{ij}, \forall i,j \in \{0,1,\dots,n-1\}$$

$$\left\{ \sum_{j=0}^{n-1} F_{ij} \leq 1, \forall i \in \{0,1,\dots,n-1\} \right\}$$

$$\left\{ \sum_{i=0}^{n-1} F_{ij} \leq 1, \forall j \in \{0,1,\dots,n-1\} \right\}$$

$$\left\{ C_{n}, B_{n} \right\}$$

Optimal Quantum Circuit Compilation as a Binary Integer Programming Problem

Simplified DAG Biadjacency Matrix Candidate Matrix

Graph Manipulation

- $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;
- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an acyclic graph.

$$\alpha \coloneqq \max \sum_{i,j=0}^{n-1} F_{ij}$$
 Maximized added edges

$$s. t. F_{ij} \le \bar{B}_{ij}, \forall i, j \in \{0, 1, ..., n-1\}$$

$$\int_{j=0}^{n-1} F_{ij} \le 1, \forall i \in \{0, 1, \dots, n-1\}$$

$$\sum_{i=0}^{n-1} F_{ij} \le 1, \forall j \in \{0, 1, \dots, n-1\}$$

$$\begin{pmatrix} O_n & B \\ F & O_n \end{pmatrix}$$
 nilpotent

Optimal Quantum Circuit Compilation as a Binary Integer Programming Problem

Simplified DAG Biadjacency Matrix Candidate Matrix

Graph Manipulation

- $\forall (t,r) \in E'$, it has $t \in T$ and $r \in R$;
- $\forall (t,r) \in E'$, it has outdegree(t) = 1 and indegree(r) = 1;
- $G' = (R \cup T, E \cup E')$ is an acyclic graph.

$$\alpha \coloneqq \max \sum_{i,j=0}^{n-1} F_{ij} \qquad \text{NP-hard} \ [^*]$$

$$\text{s. t. } F_{ij} \le \overline{B}_{ij}, \forall i,j \in \{0,1,\dots,n-1\}$$

$$\begin{cases} \sum_{j=0}^{n-1} F_{ij} \le 1, \forall i \in \{0,1,\dots,n-1\} \\ \sum_{i=0}^{n-1} F_{ij} \le 1, \forall j \in \{0,1,\dots,n-1\} \end{cases}$$

$$\begin{pmatrix} O_n & B \\ F & O_n \end{pmatrix} \quad nilpotent$$

- [1] Hanru Jiang. 2024. Qubit Recycling Revisited. Proc. ACM Program. Lang. 8, PLDI, Article 198 (June 2024), 24 pages.
- [*] The author in [1] proved that an equivalent optimization problem is NP-hard.

Summary of Explored Circuits

Quantum circuits	Original	Compiled
Deutsch-Jozsa algorithm	n	2(1)
Bernstein-Vazirani algorithm	n	2(1)
Simon's algorithm	2n	3
Quantum Fourier transform	n	n
Quantum phase estimation	n	n
Shor's algorithm	n	n
Grover's algorithm	n	n
Quantum counting algorithm	n	n
Linearly entangled circuit with l layers	n	l+1
Circularly entangled circuit with l layers	n	3
Pairwisely entangled circuit with l layers	n	2l + 1
Fully entangled circuit	n	n
Diamond-structured quantum circuit	2n	n+1
MBQC with cluster state of size (w, d)	wd	w+1
MBQC with brickwork state of size (w, d)	wd	w+1
Quantum ripple carry adder circuit	n(4)	4(3)

Cases in red indicates the compiled width is optimal and cases in blue indicates irreducible circuit.

e.g. Deutsch-Jozsa algorithm

e.g. Deutsch-Jozsa algorithm

e.g. Deutsch-Jozsa algorithm

e.g. Deutsch-Jozsa algorithm

Optimal Solution

$$F = \sum_{i=0}^{n-2} E_{i,i+1}^{n+1} \qquad n_{opt} = 2$$

Oracle Implementation

Candidate Matrix

$$\begin{pmatrix} O_n & B \\ F & O_n \end{pmatrix}$$
 nilpotent

Optimal Circuit Compilation for Maximizing Qubit Reuse

e.g. Grover's algorithm

Optimal Circuit Compilation for Maximizing Qubit Reuse

e.g. Grover's algorithm

Optimal Circuit Compilation for Maximizing Qubit Reuse

e.g. Grover's algorithm

- Note that the compilation depends on the specific circuit **implementation**.
- It is **possible** that there exist another circuit decomposition for Grover that is reducible.

Heuristic Algorithms How to add as many edges as possible?

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

MRV Heuristic: Designate the variable with the fewest valid values (i.e., the minimum remaining values) as the next one for value assignment

e.g. Sudoku Solver select the empty cell with the fewest potential values for the next value assignment

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

MRV Heuristic: Designate the variable with the fewest valid values (i.e., the minimum remaining values) as the next one for value assignment

e.g. Sudoku Solver select the empty cell with the fewest potential values for the next value assignment

Procedure

- Identify the terminal t_i with the fewest candidate roots (smallest row sum)
- Connect t_i with a candidate root r_j with the least number of choices of terminals
- Update candidate matrix and proceed to next iteration

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

- Identify the terminal t_i with the fewest candidate roots (smallest row sum)
- Connect t_i with a candidate root r_i with the least number of choices of terminals (smallest column sum)
- Update candidate matrix and proceed to next iteration

e.g. 5-qubit Bernstein-Vazirani

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

- Identify the terminal t_i with the fewest candidate roots (smallest row sum)
- Connect t_i with a candidate root r_i with the least number of choices of terminals (smallest column sum)
- Update candidate matrix and proceed to next iteration

e.g. 5-qubit Bernstein-Vazirani

Candidate Matrix

$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)$$

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

• Identify the terminal t_i with the fewest candidate roots (smallest row sum)

e.g. 5-qubit Bernstein-Vazirani Identify an Edge

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

- Identify the terminal t_i with the fewest candidate roots (smallest row sum)
- Connect t_i with a candidate root r_i with the least number of choices of terminals (smallest column sum)

e.g. 5-qubit Bernstein-Vazirani Identify an Edge

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

- Identify the terminal t_i with the fewest candidate roots (smallest row sum)
- Connect t_i with a candidate root r_i with the least number of choices of terminals (smallest column sum)
- Update candidate matrix and proceed to next iteration

e.g. 5-qubit Bernstein-Vazirani Identify an Edge

Update graph and biadjacency matrix Update Candidate Matrix

Algorithm 1: Minimum Remaining Values (MRV) Algorithm

Worst-case Time Complexity $O(mn + n^3)$

e.g. 5-qubit Bernstein-Vazirani Identify an Edge

Update graph and biadjacency matrix Update Candidate Matrix

$$\begin{pmatrix}
0 & 1 & 1 & 1 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Algorithm 2: Greedy Algorithm

Greedy Algorithm

Makes a locally optimal choice at each step

Algorithm 2: Greedy Algorithm

Greedy Algorithm

Makes a locally optimal choice at each step

Maximize the possibility to add more edges in subsequent steps

Algorithm 2: Greedy Algorithm

Greedy Algorithm

Makes a locally optimal choice at each step

Maximize the possibility to add more edges in subsequent steps

Procedure

- **Temporarily** integrates the edge into the simplified DAG and update the candidate matrix
- Score the candidate edge as the **summation** of all elements within the updated candidate matrix
- Randomly select a candidate edge with the highest score

Algorithm 2: Greedy Algorithm

• **Temporarily** integrates the edge into the simplified DAG and update the candidate matrix

e.g. 5-qubit Bernstein-Vazirani

Edge under evaluation

```
\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
\hline
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
```

Algorithm 2: Greedy Algorithm

• **Temporarily** integrates the edge into the simplified DAG and update the candidate matrix

e.g. 5-qubit Bernstein-Vazirani

Edge under evaluation

$\left(\begin{array}{cccccccccc} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$

Update candidate matrix

Algorithm 2: Greedy Algorithm

- **Temporarily** integrates the edge into the simplified DAG and update the candidate matrix
- Score the candidate edge as the **summation** of all elements within the updated candidate matrix

e.g. 5-qubit Bernstein-Vazirani

Edge under evaluation

$$\begin{pmatrix}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Update candidate matrix

Score matrix

$$\left(\begin{array}{ccccccccccc}
0 & 3 & 7 & 6 & 0 \\
3 & 0 & 3 & 3 & 3 \\
0 & 3 & 0 & 7 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right)$$

Algorithm 2: Greedy Algorithm

- **Temporarily** integrates the edge into the simplified DAG and update the candidate matrix
- Score the candidate edge as the **summation** of all elements within the updated candidate matrix
- Randomly select a candidate edge with the highest score

 (randomness helps to avoid the dependence of the circuit relabeling, better performance in practice)

e.g. 5-qubit Bernstein-Vazirani

Edge under evaluation

$$\begin{pmatrix}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Update candidate matrix

Score matrix

Algorithm 2: Greedy Algorithm

Worst-case Time Complexity $O(mn + n^5)$

e.g. 5-qubit Bernstein-Vazirani

Edge under evaluation

$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)$$

Update candidate matrix

$$\begin{pmatrix}
0 & \mathbf{0} & 1 & 1 & 0 \\
0 & \mathbf{0} & 0 & 0 & 0 \\
0 & \mathbf{0} & 0 & 1 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & \mathbf{0} & 0 & 0 & 0
\end{pmatrix}$$

Score matrix

$$\left(\begin{array}{ccccccc}
0 & 3 & 7 & 6 & 0 \\
3 & 0 & 3 & 3 & 3 \\
0 & 3 & 0 & 7 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right)$$

Heuristic Algorithm III: Hybrid Algorithm

Algorithm 3: Hybrid Algorithm

Brute Force Search
Optimality of solution

Trade-off between optimality
and execution time

Heuristic Algorithm
Time-efficient

- Brute force search on a designated subset of terminals $T_E \subseteq T$, which exhaustively enumerates all feasible edge additions. Hierarchy level: $L = |T_E|$
- For each feasible addition, employ MRV heuristic (or other heuristics) to identify edges can be added to the remaining terminals in $T \setminus T_E$.
- Select the best solution among all enumeration.

Heuristic Algorithm III: Hybrid Algorithm

Algorithm 3: Hybrid Algorithm

Hierarchy level: $L = |T_E|$

Brute Force Search $\stackrel{L=n}{\longleftarrow}$ Hybrid Algorithm $\stackrel{L=0}{\longleftarrow}$ MRV (or other) Heuristic

Heuristic Algorithm III: Hybrid Algorithm

Algorithm 3: Hybrid Algorithm

Hierarchy level: $L = |T_E|$

Brute Force Search $\stackrel{L=n}{\longleftarrow}$ Hybrid Algorithm $\stackrel{L=0}{\longleftarrow}$ MRV (or other) Heuristic

Worst-case Time Complexity $O(n^L m^2 (n-L)^2)$

Numerical Evaluation Performance of the heuristic algorithms?

*Demonstrating Quantum Supremacy

Reducibility Factor $r = 1 - \frac{compiled\ width}{original\ width} \in [0, 1)$

The larger, the better

- [1] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. *Nature* 574, 505-510 (2019).
- [2] Alexis Morvan et al. Phase transition in Random Circuit Sampling. arXiv:2304.11119 (2023).
- [3] Yulin Wu et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
- [4] Qingling Zhu et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin 67, 240-245 (2022).

*Demonstrating Quantum Supremacy

Interesting Observation I

- [1] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. *Nature* 574, 505-510 (2019).
- [2] Alexis Morvan et al. Phase transition in Random Circuit Sampling. arXiv:2304.11119 (2023).
- [3] Yulin Wu et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
- [4] Qingling Zhu et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin 67, 240-245 (2022).

*Demonstrating Quantum Supremacy

Interesting Observation II

- [1] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. *Nature* 574, 505-510 (2019).
- [2] Alexis Morvan et al. Phase transition in Random Circuit Sampling. arXiv:2304.11119 (2023).
- [3] Yulin Wu et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
- [4] Qingling Zhu et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin 67, 240-245 (2022).

*Demonstrating Quantum Supremacy

- [1] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. *Nature* 574, 505-510 (2019).
- [2] Alexis Morvan et al. Phase transition in Random Circuit Sampling. arXiv:2304.11119 (2023).
- [3] Yulin Wu et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
- [4] Qingling Zhu et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin 67, 240-245 (2022).

Google Random Circuit Sampling (GRCS)

The larger the number of cycles

The less reducible the circuit

Reducibility Factor

^[1] Sergio Boixo et al. Characterizing quantum supremacy in near-term devices. *Nature Phys* 14, 595–600 (2018).

^[2] GRCS. https://github.com/sboixo/GRCS

Numerical Evaluation: QAOA circuits

QAOA circuits for max-cut problem on random 3-regular graph

Commutable ZZ gates

Our methods account for **commutable gates**, which leads to better performance.

^[1] Matthew DeCross et al. Qubit-reuse compilation with mid-circuit measurement and reset. arXiv:2210.08039 (2022).

Numerical Evaluation: Random Quantum Circuits

Normal Random Circuit

$$r = \frac{\# of \ two - qubit \ gates}{\# of \ qubits}$$

Outperforms in approximately 87.6% of cases, with a strict advantage over 49.6% of random circuits

[1] Matthew DeCross et al. Qubit-reuse compilation with mid-circuit measurement and reset. arXiv:2210.08039 (2022).

Numerical Evaluation: Random Quantum Circuits

Random IQP Circuit

A lot of commutable gates

Outperforms in nearly 100% of instances

[1] Matthew DeCross et al. Qubit-reuse compilation with mid-circuit measurement and reset. arXiv:2210.08039 (2022).

Numerical Evaluation: Noisy Simulation

Noisy Simulation of a 11-qubit Bernstein-Vazirani Algorithm

Compilation reduces the number of qubits required, allowing us to choose physical qubits with better performance.

11-qubit Trapped-Ion Quantum Computer^[1]

Experiment Results

Qubit reduce up to 82% and probability improve 9%

[1] K. Wright et al. Benchmarking an 11-qubit quantum computer. *Nature Communications* 10, 5464 (2019).

Summary

Large-Scale Quantum Algorithm

Quantum Computer with Limited Resource

Dynamic Quantum

Circuit Compilation

- Qubit Saving
- **Advantages** Swap Reduction
 - Improved Fidelity

Challenges

- Hardware Support for Dynamic Circuit
- Reducibility of Quantum Advantageous Applications

Thanks for your attention!

See arXiv:2310.11021

for more details.

Frequently Asked Questions

- Q: Dynamic circuit compilation also increases the circuit depth, why do we mainly focus on minimizing the circuit width?
- A: Our work aims to explore the **fundamental limits** of qubit reuse compilation. The circuit depth may be reduced if mapping is considered. Besides, our framework is also **adaptable to other scenarios**, such as <u>optimizing tradeoffs among circuit width</u>, depth, and related factors.
- Q: It seems that many important quantum algorithms (e.g. Shor) are irreducible...
- A: Dynamic circuit compilation depends on the **specific circuit implementation.** It's possible that certain decompositions could be reducible. The compilation at the algorithmic level is left for future work.
- Q: Real machine evaluation?
- A: We do hope to have the opportunity to test our methods on real quantum device.

Appendix

Numerical Evaluation: Noisy simulation

Noisy Simulation of a 11-qubit Bernstein-Vazirani Algorithm

Qubit Mapping and Probability of getting correct outcome

	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9	q_{10}	probability
BV_11	Q_3	Q_0	Q_2	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9	Q_{10}	Q_1	66.2%
BV_10	Q_3	Q_0	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9	Q_{10}	Q_1	-	66.7%
BV_9	Q_3	Q_0	Q_4	Q_6	Q_7	Q_8	Q_9	Q_{10}	Q_1	-	-	68.5%
BV_8	Q_3	Q_0	Q_4	Q_6	Q_7	Q_8	Q_9	Q_1	-	-	-	69.1%
BV_7	Q_3	Q_0	Q_4	Q_7	Q_8	Q_9	Q_1	-	-	-	-	70.5%
BV_6	Q_3	Q_0	Q_4	Q_7	Q_9	Q_1	-	-	-	-	-	71.5%
BV_5	Q_3	Q_0	Q_7	Q_9	Q_1	-	-	-	-	-	-	73.1%
BV_4	Q_3	Q_0	Q_7	Q_1	-	-	-	-	-	-	-	73.6%
BV_3	Q_3	Q_0	Q_1	-	-	-	-	-	-	-	-	74.1%
BV_2	Q_3	Q_1	-	-	-	-	-	-	-	-	-	74.3%