

Facultad de Ingeniería Universidad Nacional de La Plata

Cátedra: Circuitos Electrónicos II

AMPLIFICADORES SINTONIZADOS DE PEQUEÑA SEÑAL

TRABAJO PRÁCTICO Nº 3

URL: http://www.ing.unlp.edu.ar/electrotecnia/electronicos2/

Trabajo Práctico Nº 3:

AMPLIFICADORES DE RF DE PEQUEÑA SEÑAL

Problema Nº 1:

La figura 1 representa un circuito simple sintonizado, la frecuencia de trabajo es de 500KHz Se desea conocer:

- a) C: capacidad de sintonía, Q_D: Q descargado
 y Δf: ancho de banda.
- **b)** Aplicando la aproximación de banda estrecha, obtener un circuito equivalente paralelo LCR.
- Fig.1
- c) El circuito en cuestión es conectado como carga de una etapa amplificadora, como muestra la Figura 2, calcular la relación de transformación para obtener una banda pasante de 25 KHz (suponer $r_{DS} \rightarrow \infty$)
- d) Calcular la relación de transformación, para obtener la máxima transferencia de potencia a la carga y determinar el ancho de banda resultante.

Problema Nº 2:

Dado el circuito de la Figura 3, calcular C₁, C₂ y las pérdidas de inserción (PI)

$$\Delta f = 0.5 \text{ MHz}$$

$$Q_D = 100$$

$$f = 10.7 \text{ MHz}$$

Problema Nº 3:

Calcular una etapa amplificadora simple sintonizada, utilizando un circuito integrado CA3028 como dispositivo activo.

Datos:

$$f$$
 s = 10,7 MHz Δf = 0,25 MHz
Gan. de pot. mín.: 30 dB V cc = 9 V
Rg = 1 k Ω R c = 2,5 k Ω

Polarizar el dispositivo, de manera que se lo considere unilateral y respetando el punto de funcionamiento estático, para el cuál el fabricante presenta los datos de los parámetros.

Problema Nº 4:

El circuito de la figura muestra la etapa amplificadora de radiofrecuencia de antena de un transceptor portátil de banda ciudadana de 27 MHz.

Datos del elemento activo con su polarización y de las bobinas:

$$Y_{11} = (0.9 + j1.7)mS$$
 $Y_{12} = (0.01 + j0.006)mS$ $Q_{Din} = 180$
 $Y_{21} = (35 - j15)mS$ $Y_{22} = (0.5 + j0.03)mS$ $Q_{Dout} = 120$

Calcular:

- La pérdida de inserción de cada circuito sintonizado en veces y en db.
- La ganancia del dispositivo activo y la total de toda la etapa en veces y en db.
- El ancho de banda de cada circuito sintonizado y el total (Δf).
- Si una estación llegara a la entrada con una señal de $20 \mu V$. ¿Cuál será la tensión eficaz que llegará al mezclador de dicha estación?
- Verificar con la herramienta matemática adecuada que la elección para la adaptación en la entrada ($g_g = g_p + g'_{11}$), es la que nos aseguro en este caso, la máxima transferencia de potencia.

Problema Nº 5:

En el circuito de la Figura 4, se utiliza un amplificador CA 3028 en la configuración cascode.

Fig. 4

Datos:
$$Av = 49 \text{ dB}$$
 $f_0 = 10,7 \text{ MHz}$ $Vc = 400 \mu \text{ volts}$

 $PI_{T1} = 0 dB$ $PI_{T2} = -6 dB$ $R_C = 400 \Omega$ $Rg = 300 \Omega$

Se pide calcular: Vg, GPT.

Problema Nº 6:

En la Figura 5 se muestra el diagrama esquemático simplificado de una etapa de FI para receptor de FM:

Datos:

Filtros cerâmicos: Murata SFELF10M7FA0G-B0

$$I_1 = I_2 = CA 3028$$
 (cascode)

$$Rg = 5 \ K\Omega \ R_{\rm C} = 330\Omega \quad R_1 = 4,7 \\ K\Omega \quad R_2 = 330\Omega \ R_3 = 390\Omega \quad R_4 = 390\Omega$$

 $Rd = 2,15 \text{ K}\Omega$ (resistencia de entrada del detector)

Si se desea una Vd = 2 V, calcular la Vg necesaria.