Birzeit University-Faculty of Engineering and Technology Electrical and Computer Engineering Department EE2312 Signals &systems

MATLAB _Assignment

Inst.: Dr. Jamal Siam Dr. Ashraf Al-Rimawi

2nd sem-2023

Question I:

Generate and plot the following signals using MATLAB:

- 1. X1(t) = u(t-1) u(t-7)
- 2. A finite pulse $(\pi(t))$ with value = 5 and extension between and center=8
- 3. $X_2(t) = u(t-4) + r(t-7) 2r(t-10) + r(t-13)$ in the time interval [0 20]

Question II:

- 1. Generate and plot the signals $y1(t) = \sin 200\pi(t)$, $y2(t) = \cos 750\pi t$, then determine y1 and plot the signals m(t) = y1 + y2 and n(t) = y1 y2
- 2. Determine, using the MATLAB plots, if the sum and/or difference signals are periodic. In case a signal is periodic, determine its fundamental frequency.)

Question III:

Write the programs that solve the following differential equations using zero initial conditions.

1.
$$5\frac{dy(t)}{dt} + 20y(t) = 15$$

2.
$$\frac{d^2y(t)}{dt^2} + 2\frac{dy}{dt} + 4y(t) = 5\cos 1000t$$

Question IV:

Write the programs that determine the response of the linear time invariant system to the given input and the given initial conditions:

1.
$$\frac{dy(t)}{dt} + 2y(t) = 7u(t)$$
 $y(0) = 2$;

2.
$$\frac{d^2y(t)}{dt^2} + 4\frac{dy}{dt} + 5y(t) = 5\cos 2000t$$
 (y (0) =1, y' (0) =2);

Ouestion V:

Use Simulink (MATLAB) to simulate the following systems then show and plot the step response of the system.

1.
$$5\frac{d^4y(t)}{dt^4} + 8\frac{dy(t)}{dt} + 2y(t) = 4\frac{d^2x(t)}{dt^2} - 12x(t)$$

2.
$$\frac{d^2y(t)}{dt^2} + 2\frac{dy}{dt} + 4y(t) = 5x(t)$$

Question VI:

Write a program that computes and plots the convolution of the functions $x(t) = (10e^{-6t})\pi((t-2)/4), \ y(t) = (10e^{-6t}\cos 100t) \pi((t-6)/6)$

Write a program that computes and plots the spectral representation of the function

1.
$$y(t) = (10e^{-(3/2)t})u(t)$$

1.
$$y(t) = (10e^{-(3/2)t})u(t)$$

2. $y(t) = (10e^{-0.5t}\cos 300t)u(t)$

Question VIII:

Write a program that computes the Laplace transform of the function

3.
$$y(t) = (15 - 15e^{-0.25t})u(t)$$

4.
$$y(t) = (20 - 8e^{-3t} \cos 100t)u(t)$$

Question IX:

Use Simulink (MATLAB) to simulate the following systems in Laplace domain then show and plot the step response of the system.

$$6\frac{d^4y(t)}{dt^4} - 7\frac{d^2y(t)}{dt^2} + \frac{dy}{dt} + 9y(t) = \frac{d^3x(t)}{dt^3} + 5x(t)$$

Question X:

Write a program that determine the inverse Laplace transform of the transfer functions in IV.

Question XII:

Consider the transfer function:

$$H(s) = 10000 \frac{s+3}{s^2 + 6s + 8}$$

- Compute the step response of the system.
- Plot the frequency response (semi-log scale) of the system with transfer function>