Lemma 2 If the Cartesian product $X \times Y$ of Tychonoff spaces X and Y is pseudocompact, then the projection $\pi_X : X \times Y \to X$ transforms functionally closed subsets of $X \times Y$ to closed subsets of X.

Proof. Let X,Y be Tychonoff and $X\times Y$ be pseudocompact. By way of contradiction, suppose that there exists a functionally closed subset Z of $X\times Y$ such that $\pi_X[Z]$ is not closed in X. Let $x_0\in cl_X\pi_X[Z]\backslash\pi_X[Z]\neq\emptyset$. Let $g:X\times Y\to [0,1]$ such that $Z=g^{\leftarrow}(0)$.

Define $f: X \times Y \to [0,1]$ such that $f(x,y) = min\{\frac{g(x,y)}{g(x_0,y)}, 1\}$. By our definition, f is a continuous function. Moreover, $f(x_0,y) = 1$ for all $y \in Y$ and $Z = f^{\leftarrow}(0)$.

Since X is Tychonoff, it is first-countable. Let $\mathcal{B}_{x_0} = \{B_k \in \tau(X) : B_0 \supset B_1 \supset B_2 \supset \cdots \text{ and } x_0 \in B_k, k = 1, 2, 3, \dots \}$ be a neighborhood basis of x_0 . We shall define two sequences, (x_0, y_i) and (x_i, y_i) , and their open neighborhoods (open in $X \times Y$), V_i 's and W_i 's by induction:

Step 1: Pick a point in Z and label it (x_1, y_1) . Since $X \times Y$ is Hausdorff and \mathcal{B} is the neighborhood basis of x_0 , there exist $W_1 \in \tau(X \times Y)$ and $V_1 \in \mathcal{B}$ such that $(x_1, y_1) \in W_1$ and $(x_0, y_1) \in V_1$, and $W_1 \cap V_1 = \emptyset$.

Since $g(x_1, y_1) = 0$, $f(x_1, y_1) = 0$ as well.