CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By:

1. Pragya Srivastava-Delhi Technical Campus-Computer Science and Engineering(CSE)

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT- Provided in the PDF

Develop a predictive maintenance model for a fleet of industrial machines to anticipate failures before they occur. This project will involve analyzing sensor data from machinery to identify patterns that precede a failure. The goal is to create a classification model that can predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data. This will enable proactive maintenance, reducing downtime and operational costs.

PROBLEM STATEMENT

To improve efficiency and reduce unexpected breakdowns, this project focuses on developing a machine learning model that can predict failures in industrial machines before they happen. By analyzing real-time sensor data, the system will identify early signs of issues such as tool wear, overheating, or power failure.

Key Points:

- Leverages real-time sensor data (temperature, vibration, voltage, etc.)
- Uses machine learning to classify types of failures
- Aims to enable proactive maintenance
- Reduces downtime, maintenance costs, and safety risks
- Aligns with Industry 4.0 and smart manufacturing goals

PROPOSED SOLUTION

- The proposed system aims to prevent unexpected failures in industrial machines by predicting them in advance using real-time sensor data. By applying machine learning techniques, the system will classify different types of failures to enable proactive maintenance and reduce downtime.
- Data Collection:
 - Use the Kaggle dataset: Predictive Maintenance Classification
 - Includes sensor readings like temperature, pressure, rotational speed, torque, and machine status.
- Data Preprocessing:
 - Clean and preprocess the collected data to handle missing values, outliers, and inconsistencies.
 - Normalize or scale sensor values for better model performance.
 - Apply feature engineering to extract patterns relevant to failure prediction.
- Machine Learning Algorithm:
 - Implement a machine learning algorithm, such as a classification model (e.g., Random Forest, XGBoost, or Neural Network), to predict failure types (e.g., tool wear, heat dissipation issues, power failure) based on sensor data patterns.
 - Consider incorporating other factors such as machine age, operating hours, and workload history to improve failure prediction accuracy.

PROPOSED SOLUTION

Deployment:

- Develop a user-friendly interface or application that provides real-time predictions of machine failure types based on live sensor inputs.
- **Deploy the solution on a scalable and reliable platform**, such as IBM Cloud Lite, considering factors like response time, system uptime, and accessibility for maintenance teams.

Evaluation:

- Assess the model's performance using appropriate classification metrics such as Accuracy, Precision, Recall, F1-Score, and Confusion Matrix.
- Fine-tune the model based on real-time feedback and continuously monitor prediction performance using updated sensor data.
- **Result:** A reliable and accurate system that predicts machine failure types in advance, enabling timely maintenance and reducing unplanned downtime.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and deploying a machine learning-based predictive maintenance system for industrial machinery. Here's a suggested structure for this section:

System requirements

Hardware Requirements:

Processor: Intel Core i3 or higher

RAM: Minimum 4 GB (8 GB recommended)

Storage: At least 500 MB of free disk space

Operating System: Windows, macOS, or Linux

Software Requirements:

- **1.** IBM Cloud (mandatory)
- **2. IBM Watson Studio** for data preprocessing, model development, and deployment
- 3. IBM Cloud Object Storage for storing and managing sensor datasets
- 4. Python 3.8 or above
- **5.** Web browser (Chrome/Firefox)

SYSTEM APPROACH

Library required to build the model

Pre-installed in IBM Watson Studio Environment:

- pandas for data manipulation
- numpy for numerical operations
- scikit-learn for model building and evaluation
- matplotlib & seaborn for visualizations
- xgboost for gradient boosting classifiers
- tensorflow & keras for deep learning (optional)

For IBM Cloud Services Integration:

- ibm-watson-machine-learning to deploy models and create scoring endpoints
- ibm-cos-sdk to access IBM Cloud Object Storage buckets

ALGORITHM & DEPLOYMENT

In the Algorithm section, we outline the machine learning algorithm chosen for predicting machinery failures:

Algorithm Selection:

Snap Random Forest Classifier (or SVM based on comparative model performance)

Data Input:

 Sensor readings such as vibration, temperature, torque, pressure, and rotational speed from industrial machines

Training Process:

Supervised learning using labeled maintenance data (e.g., tool wear, power failure, overheating)

Prediction Process:

 Model deployed on IBM Watson Studio with an API endpoint for real-time failure classification and proactive maintenance alerts

RESULT

RESULT

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 4	O Snap Random Forest Classifier		0.995	HPO-1 FE HPO-2	00:00:46
	2	Pipeline 3	O Snap Random Forest Classifier		0.995	HPO-1 FE	00:00:34
	3	Pipeline 8	O Snap Decision Tree Classifier		0.994	HPO-1 FE HPO-2	00:00:32
	4	Pipeline 2	O Snap Random Forest Classifier		0.994	HPO-1	00:00:08
	5	Pipeline 1	 Snap Random Forest Classifier 		0.994	None	00:00:02

Deployment of best pipeline ML model and input values for testing the ML model

RESULT EXPLANATION

Model Building & Deployment Workflow (4 Key Steps)

1.Relationship Map

- Visualizes how different ML pipelines are constructed
- Shows interaction of algorithms (e.g., Random Forest) with feature engineering and tuning

2. Pipeline Leaderboard

- Ranks pipelines based on accuracy
- Best model: Random Forest with 99.5% accuracy (Pipeline P4)
- Includes HPO (Hyperparameter Optimization) and FE (Feature Engineering)

3. Pipeline Progress Map

Step-by-step AutoAl model building process:
 Data Ingestion → Preprocessing → Model Selection → HPO → Final Pipelines

4.Deployment & Testing

- Deployed model tested with new machine data
- Predicts failure types in real time based on sensor inputs

Explanation of Prediction Results – Multiclass Classification (IBM Watsonx.ai)

Overview:

Prediction Goal: Identify type of machinery failure using trained ML model

Input: 5 test records

Model Type: Multiclass classification

• Output: Failure type with confidence score

Pie Chart - Prediction Distribution:

- Visual breakdown of how many times each class was predicted
- Shows 1 record each for No Failure, Tool Wear Failure, Overstrain Failure
- 2 records predicted as Power Failure

Bar Chart - Confidence Level Distribution:

- All predictions are **high-confidence** (96%–100%)
- Indicates that the model is very certain about its classifications

Interpretation:

- The deployed model is correctly identifying multiple types of failures, showing its multiclass capabilities.
- High confidence across all predictions implies the model is well-trained and reliable for industrial use.
- **Useful for maintenance teams** to proactively respond to specific failure types before they occur.

CONCLUSION

- The predictive maintenance model developed in this project successfully demonstrated the potential of machine learning in identifying and classifying industrial machinery failures before they occur.
- By leveraging sensor data such as temperature, vibration, and torque, the Snap Random Forest classifier was trained to predict failure types including tool wear, power failure, and overheating.
- Deployment on IBM Cloud Lite enabled real-time monitoring through API endpoints, making the system both scalable and accessible. Challenges such as noisy data and model tuning were addressed through preprocessing and performance evaluation.
- Overall, the project underscores the value of data-driven maintenance strategies in minimizing machine downtime, reducing costs, and improving operational efficiency in industrial settings.

FUTURE SCOPE

- The predictive maintenance system can be enhanced by integrating additional data sources such as acoustic emissions, oil quality, and ambient environmental conditions to improve failure prediction accuracy.
- Algorithmic improvements, including hyperparameter tuning and ensemble learning techniques, can further optimize model performance and reduce false positives.
- The system can be scaled to monitor machinery across multiple plants, cities, or even countries, enabling centralized and consistent maintenance strategies across large industrial networks.
- Incorporating edge computing would allow real-time processing of sensor data directly on-site, reducing latency and dependency on cloud infrastructure.
- Future upgrades could also explore **advanced machine learning models** such as deep neural networks or reinforcement learning to handle complex failure patterns and adapt to evolving machine behavior.

REFERENCES

- Carvalho, T. P., Soares, F. A. A. M., Vita, R., et al. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
- Zhang, W., Yang, D., Wang, H. (2019). Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Systems Journal, 13(3), 2213–2227. https://doi.org/10.1109/JSYST.2018.2813800
- Kaggle Dataset Predictive Maintenance Classification
 Shivam Bansal (2018). *Machine Predictive Maintenance Classification Dataset*.
 https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification
- **Breiman, L.** (2001). *Random Forests*. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
- IBM Watson Studio Documentation
 IBM Cloud Docs. Deploying Machine Learning Models Using IBM Watson Studio. https://www.ibm.com/cloud/watson-studio
- Scikit-learn Documentation
 Pedregosa, F., et al. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. https://scikit-learn.org/stable/documentation.html
- García, S., Luengo, J., Herrera, F. (2015). *Data Preprocessing in Data Mining*. Springer. https://doi.org/10.1007/978-3-319-10247-4

In recognition of the commitment to achieve professional excellence

Pragya Srivastava

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 15, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/e8bcc579-c13d-4799-85ba-dd623684c7c5

In recognition of the commitment to achieve professional excellence

Pragya Srivastava

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/0f51f731-0513-48cc-8b34-cf2f8f815566

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Pragya Srivastava

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Pragya Srivastava

for the completion of

Introduction to Retrieval Augmented Generation

(ALM-COURSE_3825461)

According to the Adobe Learning Manager system of record

Completion date: 30 Jul 2025 (GMT)

, ,

Learning hours: 1 hr 30 mins

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Pragya Srivastava

for the completion of

Ethical Considerations for Generative AI

(MDL-571)

According to the Moodle system of record

Completion date: 31 Jul 2025 (GMT)

Learning hours: 1 hr 30 mins

THANK YOU

