AD-A276 489

ESL-TR-90-28

V.L. HOLMES, J.J. REILLY

MCDONNELL AIRCRAFT COMPANY MCDONNELL DOUGLAS CORPORATION P.O. BOX 516
ST. LOUIS MO 63166-0516

MAY 1990

FINAL REPORT

APRIL 1989 - MAY 1990

APPROVED FOR PUBLIC RELEASE:

94-06240

ENVIRONICS DIVISION

CONFINING LAYER

Air Force Engineering & Services Center ENGINEERING & SERVICES LABORATORY Tyndail Air Force Base, Florida 32403

94 2 24 203

NOTICE

PLEASE DO NOT REQUEST COPIES OF THIS REPORT FROM HQ AFESC/RD (Engineering and Services Laboratory). Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

FEDERAL GOVERNMENT AGENCIES AND THEIR CONTRACTORS
REGISTERED WITH DEFENSE TECHNICAL INFORMATION CENTER
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO:

Defense Technical Information Center Cameron Station
ALEXANDRIA, VIRGINIA 22314

Accesio	on For			
NTIS	CRASI TAR	<u></u>		
	01-356	ij		
Ву				
Distrib	Dr. tabution /			
Availability Codes				
Dist	Avail a Spec			
A-1				

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsplete.

SECURITY CLASSIFICATION OF THIS PAGE

EXECUTIVE SUMMARY

During the period of 15 April 1989 to 18 May 1990, McDonnell Aircraft Company (MCAIR) completed Phase II of the three-phase program to demonstrate that Ion Vapor Deposited (IVD) aluminum coating can replace toxic cadmium processing at the Air Logistics Centers (ALCs). A demonstration of the IVD aluminum process will be conducted at the Warner Robins (WR) ALC during Phase III. This phase will demonstrate the applicability of IVD aluminum as a replacement for cadmium for detail parts that are now processed with cadmium at WR.

Phase I of the program compiled data comparing the IVD aluminum process to the various cadmium processes into a data base handbook. It included a review of aircraft parts now processed with cadmium at the five ALCs to identify parts for which IVD aluminum can immediately replace cadmium without concern. Parts which exhibit "areas of concern" were also identified. Phase II focused on addressing "areas of concern". These are ALC applications where either IVD aluminum by itself is not an adequate replacement for cadmium or insufficient data exists. They included coverage of internal surfaces, lubricity, and to a lesser extent, erosion resistance.

During Phase II, MCAIR demonstrated the effectiveness of both sacraficial-type and barrier-type supplemental protection systems for internal surfaces. Torque-tension data was generated for ALC applications involving threaded ngine hardware and wheel tie-bolts that demonstrates the acceptability of the use of IVD aluminum with proper lubrication. MCAIR suggests that a thicker IVD aluminum coating be used where feasible for erosive applications. Where thickness tolerance is critical, MCAIR demonstrated improved erosion resistance with the use of an aluminum-alloy evaporant containing 12 percent silicon.

MCAIR also supported the procurement and acceptance of a state-of-the-art IVD aluminum coater for the WR-ALC during Phase II. MCAIR prepared the procurement specification, conducted preliminary acceptance testing of the coater at a subcontractor site and final acceptance testing at WR, and trained WR personnel. MCAIR also designed and procured a fixture to hold and mask a

PREFACE

This report was prepared by McDonnell Douglas Aircraft Company, P.O. Box 516, St. Louis, MO 63166-0516, EPA Contract C87-101602, "The Substitution of Ion Vapor Deposited (IVD) Aluminum for Cadmium." The work was done for the Air Force Engineering and Services Laboratory, Tyndall Air Force Base, Florida 32403-5319.

This final report describes the methods used, and the results of the analysis of the Ion Vapor Deposition (IVD) metal plating technique. This technology can save the Air Force millions of dollars in the cost of hazardous waste disposal due to the reduction in the usage of cadmium.

This technical report has been reviewed by the Public Affairs Office (PA) and is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

The work was performed between 15 April 1989 to 19 May 1990. The project officer was Lt Phil Brown.

PHILLIP P. BROWN, 1Lt, USAF, BSC Project Officer

12 F Brown

Elval M Coppel

EDWARD N. COPOLLA, Maj, USAF Chief, Environmental Compliance Division Michael & Katona

MICHAEL G. KATONA Chief Scientist

Mil J. Lamb. NEIL J. LAMB, Col, USAF

Chief, Environics Directorate

TABLE OF CONTENTS

Section	Title	Page
1	INTRODUCTION	1
	A. OBJECTIVE	1 1 3
11	IVD ALUMINUM COATER PROCUREMENT SUPPORT	4
	A. PROCUREMENT SPECIFICATION	4 6 8
III	COVERAGE OF INTERNAL SURFACES	10
	A. PROBLEM	10 10 14
	1. Test Panels	14
	a. Processing Parameters b. Thickness/Uniformity c. Coating System Adhesion d. Corrosion Resistance e. Environmental Impact	15 15 15 19 20
	2. Simulated Production Details	38
	a. Processing Parameters	41 42 42 42
	D. SUPPORTING DATA	47 55 57
IV	TORQUE/TENSION CHARACTERISTICS	59
	A. PROBLEM	59 61 61
	1. Generic Torque-Tension Data	62
	 a. With MIL-T-5544 synthetic graphite- petrolatum	70
	petrolatum	81 83

TABLE OF CONTENTS (CONCLUDED)

Section	Title				
	2. Wheel Tie-Bolt Torque-Tension Data 8	3			
	b. For the 5/8-inch diameter hardware 8	0			
	3. Engine Bolt Torque-Tension Data 9	3			
	a. For TF-30 engine hardware)5)6			
	D. SUPPORTING TORQUE/TENSION DATA	_			
	1. Wheel Tie-Bolts				
	F. CONCLUSION)7			
V	EROSION RESISTANCE CHARACTERISTICS)8			
	A. PROBLEM	08 09 12 14			
VI	CONCLUSION	6			
VII	PHASE III DEMONSTRATION	8			
Appendix					
A	TORQUE-TENSION DATA FOR GENERIC BOLT-NUT WITH DIFFERENT BOLT FINISH - NUT-FINISH - LUBRICANT COMBINATIONS 12	23			
В	TORQUE-TENSION DATA FOR ALC WHEEL TIE-BOLTS FINISHED WITH IVD ALUMINUM OR CADMIUM AND LUBRICATED WITH MIL-T-5544 GRAPHITE - PETROLATUM	75			
С	TORQUE-TENSION DATA FOR ENGINE BOLTS FINISHED WITH IVD ALUMINUM OR DIFFUSED NICKEL-CADMIUM WITH AND WITHOUT ENGINE OIL LUBRICATION)3			

LIST OF FIGURES

Figur	re	Page
1	Schematic of an Ion Vapor Deposition System	4
2	IVD Aluminum Coated 4-Inch Diameter by 18-Inch Long Cylinder	11
3	Typical 4-Inch by 6-Inch 4130 Alloy Steel Test Panel Set Processed With Candidate Internal Surface Protection Systems	16
4	Corrosion Resistance: Alseal 518 Protection System Applied to Bare Alloy Steel Panels	22
5	Corrosion Resistance: Xylar I Protection System Applied to Bare Alloy Steel Panels	. 23
6	Corrosion Resistance: Sermetel CR984-LT Protection System Applied to Bare Alloy Steel Panels	. 24
7	Corrosion Resistance: Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat Protection System Applied to Bare Alloy Steel Panels	. 25
8	Corrosion Resistance: Epoxy Primer, Polysulfide Sealant "Fill and Drain" Protection System Applied to Bare Alloy Steel Panels	. 26
9	Corrosion Resistance: Waterborne Epoxy Primer and Polysulfide Sealant Applied to Bare Alloy Steel Panels	. 27
10	Corrosion Resistance: Zinc Phosphate, Epoxy Primer, Polyurethane Topcoat Protection System Applied to Bare Alloy Steel Panels	. 28
11	Corrosion Resistance: Epoxy Primer, Epoxy Powder Coating Protection System Applied to a Bare Alloy Steel Panel	. 29

LIST OF FIGURES (CONTINUED)

Figur	^ ^	Page
12	Corrosion Resistance: Waterborne Epoxy Primer and Epoxy	
	Powder Coating Applied to Bare Alloy Steel Panels	30
13	Corrosion Resistance: Navy Unicoat and Epoxy Powder Coating Protection System Applied to Bare #110y Steel Panels	31
14	Corrosion Resistance: Epoxy Powder Coating Protection System Applied to Bare Alloy Steel Panels	32
15	Corrosion Resistance: Zinc Phosphate, Zinc-Rich Primer, Xylan 5000 Series Topcoat Protection System Applied to Bare Alloy Steel Panels	33
16	Corrosion Resistance: Zinc Phosphate, P-92 Primer, Xylan 1014 Topcoat Protection System Applied to Bare Alloy Steel Panels	34
17	Corrosion Resistance: Manganese Phosphate, Waterborne Epoxy Primer, High-Solids Polyurethane Protection System Applied to Bare Alloy Steel Panels	35
18	Corrosion Resistance: Waterborne Epoxy Primer and Polysulfide Sealant Protection System Applied to Alloy Steel Panel Coated With Thin IVD Aluminum	36
19	Corrosion Resistance: Zinc Phosphate, P-92 Primer, Xylan 1014 Topcoat Protection System Applied to Alloy Steel Panel Coated With Thin IVD Aluminum	37
20	4-Inch Diameter by 18-Inch Long Cylinder Sectioned After Processing for Testing	40 -

LIST OF FIGURES (CONTINUED)

Figu	re	Page
21	Corrosion Resistance: Alseal 518 Protection System Applied	
	to Cylinder Internal Surface	. 49
22	Corrosion Resistance: Alseal 518, Waterborne Primer,	
	Polyurethane Topcoat Protection System Applied to Cylinder	
	Internal Surface	. 49
23	Corrosion Resistance: Waterborne Primer, Polysulfide Sealant	
	(Sprayed) Protection System Applied to Cylinder Internal	
	Surface	. 50
24	Corrosion Resistance: Waterborne Primer, Polysulfide Sealant	
	(Brushed) Protection System Applied to Cylinder Internal	
	Surface	. 50
25	Corrosion Resistance: Waterborne Primer, Polysulfide Sealant	
	(Fill and Drain) Protection System Applied to Cylinder	
	Internal Surface	. 51
26	Corrosion Resistance: Epoxy Primer, Polysulfide Sealant,	
	Polyurethane Topcoat Protection System Applied to Cylinder	
	Internal Surface	. 51
27	Corrosion Resistance: Manganese Phosphate, Epoxy Primer,	
	Polyurethane Topcoat Protection System Applied to Cylinder	
	Internal Surface	. 52
28	Corrosion Resistance: Manganese Phosphate, Waterborne	
	Primer, High-Solids Topcoat Protection System Applied to	
	Cylinder Internal Surface	. 52

3

LIST OF FIGURES (CONTINUED)

.

可

.

Figu	re	Page
29	Corrosion Resistance: Epoxy Primer and Epoxy Powder Coating Protection System Applied to Cylinder Internal Surface	53
30	Corrosion Resistance: Waterborne Primer and Epoxy Powder Coating Protection System Applied to Cylinder Internal	
	Surface	53
31	IVD Aluminum-Coated Wheel Tie-Bolt and Nut	60
32	Test Setup Used to Generate Generic Torque-Tension Comparisons	68
33	Example of Typical Installation Data Generated During 15- Cycle Reuse Evaluation	69
34	Torque Required to Generate 20,000-Pound Axial Load	81
35	Use of Spacers to Compensate for Bolt Length	86
36	Axial Load Generated in 3/4-Inch Diameter Wheel Tie-Bolt by 2,100 Inch-Pounds of Torque	87
37	Axial Load Generated in 5/8-Inch Diameter Wheel Tie-Bolt by 1,620 Inch-Pounds of Torque	83
38	Axial Load Generated in 9/16-Inch Diameter Wheel Tie-Bolt by 1,860 Inch-Pounds of Torque	91
39	Axial Load Generated in 5/16-Inch Diameter Wheel Tie-Bolt by	Q٦

LIST OF FIGURES (CONCLUDED)

£.

7

Figur	^e	Page
40	Tensife Load Generated by 85 Inch-Pounds of Torque: MS92U9- 13 Bolts - P&V 564706 Nuts	97
41	Comparison of Torque vs. Axial Load for Data Generated by P&W and by MCAIP for Diffused Nickel-Cadmium and IVD Aluminum-Finished Hardware	100
42	Erosion Resistance Test Stand	109

LIST OF TABLES

Taule	•	Page
1	CANDIDATE INTERNAL SURFACE PROTECTION SYSTEMS APPLIED TO PANELS	12
2	PROCESSING PROCEDURES FOR CANDIDATE PROTECTION SYSTEMS APPLIED TO PANELS	17
3	UNIFORMITY AND AVERAGE THICKNESS OF CANDIDATE PROTECTION SYSTEMS	18
4	CORROSION RESISTANCE OF CANDIDATE PROTECTION SYSTEMS IN A FIVE PERCENT NEUTRAL SALT FOG ENVIRONMENT	21
5	HEALTH AND ENVIRONMENTAL IMPACT OF CANDIDATE PROTECTION SYSTEMS	39
ક	SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO THE INTERNAL SURFACES OF THE 4-INCH DIAMETER BY 18-INCH LONG CYLINDERS	40
7	PROCESSING PROCEDURES FOR SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO INTERNAL SURFACES	43
8	UNIFORMITY AND AVERAGE THICKNESS OF SUPPLEMENTAL PROTECTION SYSTEMS (CYLINDER INTERNAL SURFACE)	46
9	CORROSION RESISTANCE OF SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO INTERNAL CYLINDER SURFACES IN A FIVE PERCENT NEUTRAL SALT FOG ENVIRONMENT	48
10	NAS1308-10 BOLT DESCRIPTION	62
9.4	AZCILI OZG MILT DESCRIPTION	5 2

LIST OF TABLES (CONTINUED)

Table		Page
12	BOLT FINISH - NUT FINISH - LUBRICANT COMBINATIONS EVALUATED DURING GENERATION OF GENERIC TORQUE-TENSION DATA	63
	DOWN OF GENERAL PURIOUS DRIVE	0.5
13	LUBRICANTS EVALUATED DURING GENERIC TORQUE-TENSION TESTING FOR WHEEL TIE-BOLTS	65
14	TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD FOR IVD ALUMINUM- AND CADMIUM-FINISHED HARDWARE USING FEL-PRO C-601-S SYNTHETIC GRAPHITE-PETROLATUM LUBRICANT	
	(MIL-T-5544)	71
15	VARIABLES EXAMINED DURING TORQUE-TENSION TESTS ON GENERIC BOLT AND NUT USING FEL-PRO, INC. C-601-S LUBRICANT	72
16	EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING A CADMIUM-PLATED NUT WITH AN IVD ALUMINUM-COATED BOLT IN ADDITION TO C-601-S LUBRICANT	75
17	EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING CARBOWAX AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S LUBRICANT	76
18	EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING EVERLUBE 1346 AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S LUBRICANT	78
19	EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000- POUND LOAD WHEN USING EVERLUBE EM-6256 AS A SUPPLEMENTAL LUBRICANT IN ADDITION 10 C-601-S LUBRICANT	79

LIST OF TABLES (CONTINUED)

Table		Page
20	EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING EVERLUBE EM-6286 AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S LU_RICANT	80
21	TORQUE (INCH-POUNDS) REQUIRED TO PROVIDE 20,000-POUND LOAD FOR IVD ALUMINUM- AND CADMIUM-FINISHED HARDWARE USING	
	MIL-T-83483 MOLYDENUM DISULFIDE - PETROLATUM LUBRICANT	82
22	DESCRIPTION OF WHEEL TIE-BOLTS	84
23	DESCRIPTION OF WHEEL TIE-BOLT NUTS	84
24	AXIAL LOAD (POUNDS) GENERATED IN 3/4-INCH DIAMETER WHEEL TIE-BOLTS BY 2,100 INCH-POUNDS OF TORQUE	86
25	EFFECT OF AXIAL LOAD (POUNDS) GENERATED IN 3/4-INCH DIAMETER WHEEL TIE-BOLTS BY 2,100 INCH-POUNDS OF TORQUE WHEN SUPPLEMENTAL LUBRICANT IS APPLIED TO IVD ALUMINUM-COATED NUT	87
26	AXIAL LOAD (POUNDS) GENERATED IN 5/8-INCH DIAMETER WHEEL TIE-BO! TS BY 1,620 INCH-POUNDS OF TORQUE	88
27	EFFECT ON AXIAL LOAD (POUNDS) GENERATED IN 5/8-INCH DIAMETER WHEEL TIE-BOLTS BY 1,620 INCH-POUNDS OF TORQUE WHEN	20
	SUPPLEMENTAL LUBRICANT IS APPLIED TO IVD ALUMINUM-COATED NUT	89
28	AXIAL LOAD (POUNDS) GENERATED IN 9/16-INCH DIAMETER WHEEL TIE-BOLTS BY 1,860 INCH-POUNDS OF TORQUE	90
29	AXIAL LOAD (POUNDS) GENERATED IN 5/16-INCH DIAMETER WHEEL	
	TIE BOLTE BY 250 INCH-DOUNDS OF TOPOUR	01

LIST OF TABLES (CONTINUED)

Table		Page
30	EFFECT ON AXIAL LOAD (PC"NDS) GENERATED IN 5/16-INCH DIAMETER WHEEL TIE-BOLTS BY 250 INCH-POUNDS OF TORQUE WHEN	
	SUPPLEMENTAL LUBRICANT IS APPLIED TO IVD ALUMINUM-COATED NUT	92
31	DESCRIPTION OF TF30 ENGINE BOLTS	94
32	DESCRIPTION OF TF30 ENGINE NUTS	94
33	COMPARISON OF LOADS GENERATED FOR IVD ALUMINUM-COATED AND	
	DIFFUSED NICKEL-CADMIUM PLATED HARDWARE LUBRICATED WITH OIL:	
	MS9209-13 BOLTS AND P&W 564706 NUTS	97
34	COMPARISON OF AXIAL LOADS GENERATED FOR IVD ALUMINUM COATED	•
	AND DIFFUSED NICKEL-CADMIUM - CADMIUM PLATED HARDWARE	
	LUBRICATED WITH OIL: MS9210-25 BOLTS AND SPS 42FLW-524 NUTS	99
35	COMPARISON OF AXIAL LOADS GENERATED FOR VARIOUS BOLT FINISH -	
	NUT FINISH COMBINATIONS THAT ARE NOT LUBRICATED WITH OIL:	
	MS9210-25 BOLTS AND SPS 42FLW-524 NUTS	100
36	COMPARISON OF AXIAL LOADS GENERATED FOR IVD ALUMINUM-COATED	
	BOLT - CADMIUM-PLATED NUT AND DIFFUSED NICKEL-CADMIUM-PLATED	
	BOLT - CADMIUM-PLATED NUT WHEN LUBRICATED WITH OIL:	
	MS9210-25 BOLTS AND SPS 42FLW-524 NUTS	101
37	EROSION RESISTANCE BASELINE: IVD ALUMINUM AND DIFFUSED	
	NICKEL-CADMIUM	110
38	EROSION RESISTANCE COMPARISON OF ALUMINUM ALLOY EVAPORANTS	111
39	EROSION RESISTANCE OF TOPCCATED IVD ALUMINUM AND METALLIC-	-
	CERAMIC TYPE COATINGS	112

LIST OF TABLES (CONCLUDED)

Table	·	Page
40	IVD ALUMINUM AND DIFFUSED NICKEL-CADMIUM FINISH THICKNESS	
	AFTER ABRASIVE EXPOSURE	113

SECTION I

INTRODUCTION

A. OBJECTIVE

The objective of this program is to verify the applicability of Ion-Vapor-Deposited (IVD) aluminum as a replacement for cadmium processing at the Air Force Air Logistics Centers (ALCs). Whereas cadmium has been widely used as a corrosion-resistant finish on steel, the substitution with IVD aluminum provides acceptable or improved performance in virtually all applications. More importantly, the substitution will make a major contribution to reducing hazardous waste production and its associated adverse effect on the environment.

B. BACKGROUND

Both the aluminum coating and the IVD process are environmentally clean. Cadmium, on the other hand, is a heavy metal and is toxic to humans. Once it escapes into the environment, it can find its way into the water supply or food chain. Also, with electroplated cadmium processing, there are additional hazards associated with cyanide products in the plating bath. On the economic side, a suitable replacement can both reduce life-cycle costs and provide an immediate return on investment by eliminating costs associated with control technology required to meet ratcheting environmental regulations and with hazardous waste collection, storage, and disposal.

There are inherent advantages to the substitution of IVD aluminum for cadmium, in addition to hazardous waste reduction. IVD aluminum outperforms cadmium in preventing corrosion in acidic environments and actual service tests. Also, aluminum coatings can be used at temperatures up to 950°F, whereas cadmium is limited to 450°F. IVD aluminum coatings can be applied to high-strength steel without fear of hydrogen embrittlement. Aluminum coatings can be used in contact with titanium without causing solid metal embrittlement, and they can also be used in contact with fuels; cadmium is

prohibited for these applications. Additionally, IVD aluminum can be used in space applications, whereas cadmium is limited because of sublimation.

The coating requirements for IVD aluminum are specified in MIL-C-83488, the tri-service specification for pure aluminum coatings. After coating, the parts are generally chromate-treated in accordance with MIL-C-5541. This provides additional protection against corrosion, forms a good base for paint adhesion, and is a common treatment for aluminum alloy surfaces. In virtually all applications, IVD aluminum can replace cadmium of equal thicknesses. It can also be applied thicker than cadmium where part tolerance permits; this results in additional corrosion resistance.

The Air Force Environmental Services Center (AFESC) has contracted the McDonnell Aircraft Company (MCAIR) through EG&G, Idaho to demonstrate that IVD aluminum can replace cadmium across-the-board at the ALCs. The thrust of the program is to reduce hazardous waste production. This report addresses Phase II of a three-phase program. The phases are:

Phase I - Data Compilation and Process Evaluation

Phase II - Procurement and Research & Development

Phase III - Demonstration

In Phase I, the technical information providing a comprehensive comparison of the performance of IVD aluminum and the performance of the cadmium processes was compiled. This provided the designer with a readily accessible technical database (Reference 1) to justify the substitution of IVD aluminum for cadmium for about eighty percent of the current ALC applications. This report addresses the other 20 percent of the applications which have been identified as "areas of concern" for eliminating cadmium by the ALCs. These included coverage of internal surfaces, improved lubricity, and to a lesser extent, improved erosion resistance.

C. SCOPE/APPROACH

Phase II activities also included procurement support of an IVD aluminum coater to assure that the Phase III demonstration will be conducted in a state-of-the-art system. The related MCAIR activity is discussed in Section II.

In some cases, the "areas of concern" resulted from a lack of sufficient data. Other areas required the development of supplemental processing to be used in conjuction with the IVD aluminum coating. The approaches used to address the three individual "areas of concern" are presented in Sections III, IV, and V.

The performance of barrier-type and sacraficial-type supplemental protection systems applied to internal surfaces was tested. Data comparing the effect of various bolt finish - nut finish - lubricant combinations on torque-tension was also generated. The erosion resistance of IVD aluminum to diffused nickel-cadmium was compared, and the effect of supplemental topcoats and different IVD aluminum-alloy evaporants were evaluated.

Finally, a "hands-on" approach that MCAIR has proposed for the Phase III demonstration is presented in Section VII.

SECTION II

IVD ALUMINUM COATER PROCUREMENT SUPPORT

A. PROCUREMENT SPECIFICATION

The IVD aluminum coating is applied in production coating equipment called Ivadizers. The basic equipment consists of a steel vacuum chamber, a pumping system, fixturing to hold the parts, an evaporator power supply, and a high-voltage power supply (Figure 1).

The IVD processing sequence consists of pumping the vacuum chamber down to about 10^{-4} Torr. The chamber is then backfilled with argon gas to about 10 microns, and a high negative potential is applied between the parts being coated and the evaporation source. The argon gas becomes ionized and creates a glow discharge around the parts. The positively charged gas ions bombard the negatively charged surface of the parts and performs a final cleaning, which contributes to good coating adhesion.

Figure 1. Schematic of an Ion Vapor Deposition System

Following glow discharge cleaning, aluminum wire is evaporated by being continuously fed into resistance-heated crucibles. As the aluminum vapor passes through the glow discharge, a portion of it becomes ionized. This, in addition to collision with the ionized argon gas, accelerates the aluminum vapor toward the part surface, resulting in excellent coating adhesion and uniformity.

Coater productivity and reliability have been continuously improved since the first unit was installed at the Navy Overhaul Facility at North Island in 1974. There are now approximately 70 Ivadizers in service around the world which primarily serve the aerospace market.

Phase III of the program requires substituting IVD aluminum for cadmium processing for those detail parts that are now protected with cadmium at the WR-ALC. Accordingly, MCAIR prepared a procurement specification (Reference 2) for the coating system to be used for the Phase III demonstration. This document was used as the basis for the procurement of a state-of-the-art coater from Abar-Ipsen Industries.

The WR coating system includes several items that are designed to improve productivity. They include:

- o Parts-holding fixtures designed for: larger parts that are hung stationary while being coated; larger parts that are rotated while being coated; and small parts that are rotated in barrels while being coated.
- O A fixture designed (Reference 3) and fabricated by MCAIR for the C-130 Barrel Hub. It will be used in conjunction with the rotary parts holding rack to both hold the barrel hub and mask areas of the hub which are not to be coated. The fixture will be used to demonstrate improved productivity levels. MCAIR projects that eight barrel hubs can be processed in a 90-minute-coating cycle with additional fixtures of this nature.

Additional pumping capability that basically reduces the pumpdown portion of the IVD aluminum coating cycle by 50 percent or more. A cyropump system will be used in conjunction with the conventional mechanical and diffusion pumping systems. MCAIR has demonstrated that cyropumping efficiently removes water vapor during pumpdown. This benefit is particularly effective when the combination of aluminum buildup in the coating chamber and humid weather conditions often result in pumpdown times of over one hour. The cyropump system will not only reduce pumpdown time to 30 minutes or less under these conditions but will also enable less frequent "cleaning" of the coater to remove aluminum buildup.

MCAIR also included a comprehensive list of spare parts to be procured along with the coater (Reference 2). These spare parts are considered to be adequate to prevent any coater inactivity due to replacement part procurement delays.

Copies of the Reference 2 Procurement Specification and the Reference 3 Fixture Design are available from either WR-ALC/MANEE, W. E. Elmore or MCAIR-Dept. 357, V. L. Holmes.

B. ACCEPTANCE TESTING

MCAIR performed the final acceptance test of the IVD aluminum coater and its associated systems after their installation at the WR-ALC. The tests were designed to demonstrate compliance with the requirements stipulated in Reference 2 and in MIL-C-83488. Final acceptance was based on the following testing:

- O Safety MCAIR simulated failure to demonstrate the proper operation of all safety devices and controls.
- Coating Appearance The IVD aluminum coating was verified to be smooth, fine grained, adherent, uniform in appearance, free from pits, burning, porosity, and other defects. The coating showed no indication of contamination or improper operation of equipment, such as excessively powdered or darkened coatings. Slight discoloration of the coating on test coupons was

removable by glass bead peening. Parts chromated per MIL-C-5541 had a continuous, distinctly colored protective film ranging in color from yellow to iridescent bronze.

- o Adhesion The adhesion of the coating to one-inch by four-inch by 0.040-inch alloy steel test strips was verified by the following tests:
- Scraping Test The surface of the coated article was scraped to expose the basic metal. An examination of the surface at four diameters magnification showed no evidence of nonadhesion.
- Bend-to-Break Test Test strips were clamped in a vise and bent back and forth until strip rupture occurred. An examination of the coating along the break-line at four diameters magnifycation showed no evidence of non-adhesion.
- Glass Bead Paening Test The coating test showed no sign of separation from the base metal when glass bead peened with size 10 glass beads at an operating pressure of 40 psig. This test was performed by slowly fanning the peener nozzle over the test strips at a distance of 6 to 8 inches.
- o Corrosion Resistance Testing MCAIR tested the corrosion resistance of alloy steel panels coated with the various thickness classes defined in MIL-C-83488C in a five-percent neutral salt fog environment per ASTM Method B-117. Type II (chromated) parts coated with Class 1, 2, and 3 coatings showed no evidence of corrosion of the basis metal when exposed for 672, 504, and 336 hours, respectively.
- o Reliability Test The reliability of the IVD aluminum coater was demonstrated by performing ten continuous coating cycles without failure of the system. Coating adhesion as described above was verified after each coating cycle.
- o Vacuum Level Test The coater's pumping system was verified to evacuate a clean, dry chamber to 9×10^{-5} torr within 1 hour without cryopump engagement and within 30 minutes with cryopump engagement.

o Pressure Levels - Base pressure and time in minutes to reach operating pressures for a clean, dry chamber with and without the cryopump engaged were established for the following system components: the roughing pump/blower; the diffusion pump; and the holding pump.

C. PERSONNEL TRAINING

MCAIR provided training at WR for electronic engineers, electrical maintenance technicians, and electronic maintenance technicians which included the following:

- o Review of electrical and electronic systems, including wiring diagrams and drawings
- o Troubleshooting procedures for the current sources and control systems
 - o Electrical and electronic equipment servicing and care
- o Adjustment procedures (locating components, adjustments to be made, values to be measured, equipment required for making adjustments)
 - Applicable circuit board repair procedures
- o Recommended motor, switch, relay, solenoid, etc., maintenance servicing and repair

MCAIR also provided training at WR for operators, mechanical maintenance technicians, and mechanical engineering technicians which included the follow:

- A review of mechanical diagrams and drawings
- o Component location and function

- O Troubleshooting procedures and techniques
- Repair procedures
- o Assembly/disassembly procedures
- 6 Adjustments (how, when and where)
- o Preventive maintenance procedures
- o Valve location and functions
- Valve adjustment and maintenance procedures
- o System operation $\cdot \cdot$
- o Potential operation problems
- o Potential maintenance problems

Personnel from the Ogden (00) ALC also attended the WR training sessions.

SECTION III

COVERAGE OF INTERNAL SURFACES

A. PROBLEM

Although the IVD aluminum process is not confined to line-of-sight application, it does have limitations regarding the ability to coat into deep recesses. Generally speaking, the process can be used effectively to coat into a bore or recess for a distance equal to approximately one times the diameter of the opening. Therefore, for parts with a length-to-diameter ratio greater than 1:1 (or 2:1 if open at both ends), the IVD aluminum coating coverage on portions of the internal surface may be inadequate. For example the internal surface of the figure 2 cylinder which is 4-inches in diameter 18-inches long and open at both ends would be a lited effectively for approximately 4-inches from both ends. The remaining 10-inches of internal surface in the middle of the cylinder would have a thin coating to no coating at all.

Even though techniques may be developed to evaporate aluminum within deep recesses using an internal anode, this procedure could be prohibitively expensive for most applications. Therefore, IVD aluminum by itself cannot be a direct cadmium substitute for some ALC parts, such as landing gear details and turbine shafts, because of internal surface protection requirements. However, there are protection systems that are compatible with IVD aluminum and may qualify as alternatives to cadmium for internal surfaces. Supporting data for such qualification, however, needs to be developed.

B. SOLUTION/APPROACH

Combine IVD aluminum with supplemental protection systems to provide complete coverage of internal surfaces. Candidate protection systems are shown in Table 1 and include:

Figure 2. IVD Aluminum Coated 4-Inch Diameter by 18-Inch Long Cylinder

o Aluminum-filled MIL-C-81751 basecoats - These are aluminum-filled paint-type materials currently in use by the ALCs. The coatings can be brush-or spray-applied to internal surfaces. The coating becomes electrically conductive when either cured at high temperature or burnished with glass beads. The electrically conductive coating provides sacrificial corrosion-resistance protection to alloy steel substrates. Alseal, Sermetel, and Xylar are tradenames of available aluminum-filled coatings suitable for this application.

O Primer, topcoats, and sealants - Combinations of various primers, topcoats, and sealants have shown promise in preliminary testing and may afford acceptable barrier-type corrosion resistance protection to internal surfaces. Standard materials in use by the ALCs like epoxy primers, polyurethane topcoats, and sprayable sealants are candidates.

TABLE 1. CANDIDATE INTERNAL SURFACE PROTECTION SYSTEMS APPLIED TO PANELS.

Supplemental Protection System	Applicable	Protection	Processor e
Material Identification •	Mil-Specs ^b	Type	
Coatings for Industry: Alseal 518	MIL-C-81751	Sacrificial	MCAIR
Whitford: Xylar I	MIL-C-81751	Sacrificial	MCAIR
Sermatech: Sermetel CR984-LT	MIL-C-81751	Sacrificial	Sermatech
Epoxy Primer	MIL-P-23377	Barrier ^e	MCAIR
Polysulfide Sealant	MIL-S-83430	Barrier	
Polyurethane Topcoat	MIL-C-83286	Barrier	
MCAIR: Epoxy Primer Polysulfide Sealant (Fill and Drain)	None MIL-S-83430	Barrier ^c Barrier	MCAIR
Whitford: P-92 Primer	None	Barrier	MCAIR
Whitford: Xylan 1014 Topcoat	None	Barrier	
Whaford: P-92 Primer	None	Barrier	MCAIR
Whitford: Xylan 1010 Topcoat	None	Barrier	
Waterborne Epoxy Primer	MIL-P-85582	Barrier ^c	MCAIR
Polysulfide Sealant	MIL-S-83430	Barrier	
Zinc Phosphate	MIL-P-16232	Barrier	Embee Plating
MCAIR: Epoxy Primer	None	Barrier	
Potyurethane Toncoat	MIL-C-83286	Barrier	
MCAIR: Epoxy Primer	None	Barrier	De Soto
DeSoto: Epoxy Powder Coating	None	Barrier	
Waterborne Epoxy Primer	MIL-P-85582	Barrier ^e	DeSoto
DeSoto: Epoxy Powder Coating	None	Barrier	
NADC Unicoat	None	Barrier ^c	De Soto
DeSoto: Epoxy Powder Coating	None	Barrier	
De Soto: Epoxy Powder Coating	None	Barrier	DeSoto

TABLE 1. CANDIDATE INTERNAL SURFACE PROTECTION SYSTEMS APPLIED TO PANELS (CONCLUDED).

Supplemental Protection System Material Identification®	Applicable Mil-Specs ^b	Protection Type	Processor •
Zinc Phosphate	MIL-P-16232	Barrier	Sunbelt Coating
Whitford: P-92 Primer	None	Barrier	j
Whitford: Xylan 1014 Topcoat	None	Barrier	
Zinc Phosphate	MIL-P-16232	Barrier	Sunbelt Coating
Whitford: Xylan 5611 Primed ^d	None	Barrier ^c	
Whitford: Xylan 5251 Topcoat	None	Barrier	
Manganese Phosphate	MIL-P-16232	Barrier	Embes Plating
Waterbome Epoxy Primer	MIL-C-85582	Barrier ^c	MCAIR
High-Solids Polyurethans Topcoat	MIL-P-85285	Barrier	Embee Plating

a Suppliers:

- Coatings for Industry, Inc.; 319 Township Line Road, Souderton, PA 18964, (215) 723-0919
- Whitford Corporation; Box 507, West Chester, PA 19381, (215) 296-3200
- Sermatech International, Inc.; 155 South Limerick Road, Limerick, PA 19468, (215) 948-5100
- Naval Air Development Center; Warminster, PA 18974

b Military Specifications:

- MIL-P-16232 Phosphate Coating, Heavy, Wang * rese or Zinc Base (for Ferrous Metals)
- MIL-P-23377 Primer Coating, Epoxy Polyamide, Chemical and Solvent Resistant
- -- MIL-C-81751 Coating, Metallic Ceramic
- MIL-C-83286 Coating, Urethane, Aliphatic Isocyanate, for Aerospace Applications
- MIL-C-83430 Sealing Compound, Integral Fuel Tank and Fuel Cell Cavities, Intermittent Use to 350°F (182°C)
- MIL-C-85285 Coating: Polyurethane, High-Solids
- MIL-P-85582 Primer Coatings: Epoxy, VOC Compliant, Chemical Solvent Resistant
- Although these materials are designated barrier, they do contain leachable compounds which provide sacrificial protection.
 - d Zinc Rich, May Provide Some Sacraficial Protection.

e Processors:

- McDonnell Aircraft Company (MCAIR); P.O. Box 516, St. Louis, MO 63166 (314) 233-8663
- Sermatech International, Inc.; 155 South Limerick Road, PA 19468, (215) 948-5100
- Embee Plating; 2136 South Hathaway, Santa Ana, CA 92705 (714) 546-9842
- DeSoto, Inc.; Box 5030, Des Plaines, IL 60017, (312) 391-9365
- Suribelt Coating Company, Inc.; 1805 West Detroit Street, Broken Arrow, OK 74012, (918) 258-8007

Screen candidate protection systems applied to alloy steel test panels by testing for adhesion, coverage and uniformity, and corrosion resistance. Apply selective protection systems which pass the screening tests to the internal surface of cylindrical details representing actual ALC parts. Process the cylinders in the following sequence:

- a. Coat the cylinders with IVD aluminum for external coverage and transitional coverage into the bore of the cylinder.
- D. Brush, spray, or "fill & drain" apply protection systems onto the internal surface of the cylinders covering both bare areas and areas coated with IVD aluminum.
 - c. Section the cylinders lengthwise to expose internal surfaces.
- d. Test the adhesion, coverage and uniformity, and corrosion resistance of the protection systems on the exposed internal surfaces.

C. YEST DATA

Tast Panels

Eighty 4-inch by 6-inch 4130 alloy steel panels were processed with candidate internal surface protection systems. Forty percent of the test panels were left bare. The other sixty percent were first coated with a thin coating (less than 0.0003 inch) of IVD aluminum per MIL-C-83488. These panels simulate internal surface areas coated with less than the minimum acceptable amount of IVD aluminum where the coating transitions from an acceptable thickness to no coating at all. Three different conditions of thin IVD aluminum coatings were evaluated after being overcoated. They are:

As coated (not peened) and not chromated (Type I)

- o Peened, but not chromated (Type I)
- o Peened and chromated (Type II)

i.

The peened and chromated condition is the normal processing mode for IVD aluminum coating. The other two conditions were evaluated for possible benefits in relation to the standard mode when overcoated with the candidate protection systems. One panel of each of the IVD aluminum coating conditions was overcoated with each candidate protection system. In addition, two bare steel panels were processed with each candidate protection system to simulate internal surfaces coated with a trace to no IVD aluminum. A typical test panel set processed with Table I candidate protection systems is shown in Figure 3.

- a. Processing Parameters All of the steel test panels were cleaned using the normal procedures for precleaning alloy steel substrates for IVD aluminum processing. This entails solvent vapor degreasing followed by mechanical grit blasting with #220 aluminum oxide grit at 60 psi. The subsequent processing parameters for each candidate protection system such as application method, number of coats, thickness, and cure time/temperature are given in Table 2.
- b. Thickness/Uniformity Thicknesses were measured with a Magne-Gage at three points across the six-inch length of the panel. The approximate thickness of each protection system component material is shown in Table 2. The total protection system thickness and uniformity is shown in Table 3.
- c. Coating System Adhesion The adhesion of the candidate coating systems was tested as follows:
- The test panel was cleaned with solvent and wiped dry with clean cheesecloth before solvent evaporation.

Bare Steel Panel

dare Steel Panel

Unpeened Type I IVD Aluminum Coated Steel Panel Peened Type I IVD Aluminum Coated Steel Panel Peened Type II
IVD Aluminum Coated
Steel Panel

Figure 3. Typical 4-Inch by 6-Inch 4130 Alloy Steel Test Panel Set Processed With Candidate Internal Surface Protection Systems.

TABLE 2. PROCESSING PROCEDURES FOR CANDIDATE PROTECTION SYSTEMS APPLIED TO PANELS.

Protection System Components	Application Method	Number of Coats	Approximate Component Thickness (in.) Per Cost	Cure Time/Temperature	
Coatings for Industry: Alseal 518	Spray	2	0.0015	60 min @ 500™F	
Whitford: Xylar 1	Spray	2	0.0015	200 min @ 500°F	
Sermatech: Sermetel CR984-LT	Spray	2	0.0008	60 min @ 375°F	
Epoxy Primer	Spray	2	0.0070	60 min @ Room Temp	
Polysulfide Sealant	Brush	1	0.0015	45 min @ 160°F	
Polyurethane Topcoat	Spray	2	0.0015	60 min @ 170°F	
Epoxy Primer	Fill and Drain	1	0.0010	30 min @ 160°F	
Polysulfide Sealant	Fill and Drain	1	0.0160	180 mln @ 160°F	
Whitford: P-92 Primer	Spray	2	0.0003	10 min @ 350°F	
Whitford: Xylan 1014 Tepcoat	Spray	2	0.0003	10 min @ 450°F	
Whitford: P-92 Primer	Spray	2	0.0004	10 min @ 350°F	
Whitford: Xylan 1010 Topcoat	Spray	2	0.0004	10 min @ 450°F	
Waterbome Epoxy Primer	Spray	1	0.0010	30 min @ 160°F	
Polysulfide Sealant	Spray	2	0.0015	180 min @ 160°F	
Zinc Phosphate	Tank Immersion	1	0.0005	Not Required	
Epoxy Primer	Spray	1	0.0010	60 min @ Room Temp	
Polyurethane Topcoat	Spray	2	0.0015	30 min @ 200°F	
Epoxy Primer	Spray	8	0.0010	60 min @ Room Temp	
Epoxy Powder Coating	Spray	1	0.0030	15 min @ 250°F	
Waterborne Epoxy Primer	Spray	1	0.0010	60 min @ Room Temp	
Epoxy Powder Coating	Spray	1	0.0030	15 min @ 250°F	
NADC Unicoat	Spray	1	0.0050	60 min @ Room Temp	
Epoxy Powder Coating	Spray	1	0.0030	15 min @ 250°F	
Epoxy Powder Coating	Spray	1	0.0030	15 min @ 250°F	
Zinc Phosphate	Tank Immersion	1	0.0002	Not Required	
Whitford: P-92 Filmer	Spray	1	0.0002	10 min @ 350°F	
Whitford: Xylan 1014 Topcoat	Spray	2	0.0002	10 min @ 450°F	
Zinc Phosphate	Tank Immersion	1	0.0001	Not Required	
Whitford: Xylan 5611 Primer	Spray	1	0.0010	10 min @ 400°F	
Whitford: Xylan 5251	Spray	1	0.0010	10 min @ 400°F	
Manganese Phosphate	Tank Immersion	1	0.0005	Not Required	
Waterbome Epoxy Primer	Spray	1	0.0010	30 min @ 160°F	
High-Solids Polyurethane Topcoat	Spray	2	0.0010	30 min @ 160°F	

TABLE 3. UNIFORMITY AND AVERAGE THICKNESS OF CANDIDATE PROTECTION SYSTEMS.

Processor:	Protection Thickness (mils)			Average Thickness
Protection System	A	3	C	(mils)
MCAIR: Alseal 518	3.0	3.0	2.9	3.0
MCAIR: Xylar I	3.3	3.4	3.6	3.4
Sermatech: Sermetal CR984-LT	1.5	1.6	1.6	1.6
MCAIR: Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat	5 .5	5.6	5.9	5.7
MCAIR: Epoxy Primer, Polysulfide Sealant (Fill and Drain)	11.5	10.3	13.5	11.8
MCAIR: P-92 Primer, Xylan 1014 Topcoat	1.3	1.3	1.3	1.3
MCAIR: P-92 Primer, Xylan 1010 Topcost	1.7	1.7	1.7	1.7
MCAIR: Waterborne Epoxy Primer, Polysulfide Sealant	4.6	4.9	4.8	4.8
Embee Plating: Zinc Phosphate, Epoxy Primer, Polyurethane Topcoat	4.3	4.3	4.3	4.3
DeSoto: Epoxy Primer, Epoxy Powder Coating	4.8	4.7	4.2	4.6
DeSoto: Waterborne Epoxy Primer, Epoxy Powder Coating	4.4	4.2	4.0	4.2
DeSoto: NADC Unicoat, Epoxy Powder Coating	7.5	7.8	8.1	7.8
DeSoto: Epoxy Powder Coating	3.9	3.1	2.8	3.3
Sunbelt Coating: Zinc Phosphate, P-92 Primer, Xylan 1014 Topcoat	0.8	0.7	0.8	0.8
Sunbelt Coating: Zinc Phosphate, Xylan 5611 Primer, Xylan 5251 Topcoat	1.3	1.3	1.4	1.3
MCAIR. Manganese Phosphate, Waterborne Epoxy Primer, High-Solids Polyurethane Topcoat	3.2	2.8	2.7	2.9

- O A dry tape adhesion test using 3M Company #250 tape was conducted by placing a one-inch wide strip of the tape across the panel pressing the tape down with firm hand pressure against the panel, lifting the loose end of the tape to an angle of 45 degrees to the panel, and removing the tape from the panel with one, abrupt motion.
- O A 4- by 4- by 1/8-inch pad of cheesecloth saturated with tap water was covered with polyethylene film and taped against the panel for 24 hours.
- O After 24 hours, the pad was removed and the panel was wiped dry with clean cheesecloth.
- O The tape test was repeated within 2 minutes after removal of the water-soaked pad.

All of the candidate protection systems passed the dry tape and wet tape adhesion tests.

d. Corrosion Resistance - The corrosion resistance requirement for the candidate internal surface protection systems was established as 672 hours in a five-percent neutral salt fog environment per ASTM B-117. This is the same requirement that MIL-C-83488 invokes on a Class 1, Type II IVD aluminum coating. There are three classes and two types of coatings. Class 1 coatings are the thickest and are generally used because they provide the best corrosion resistance. Class 2 and 3 coatings are thinner and are generally used for parts with tolerance limitations such as fastener threads. Type I does not receive supplementary chemical processing. Type II has a supplementary chromate treatment in accordance with MIL-C-5541. Type II coatings are usually recommended because the chromate conversion coating provides additional corrosion protection and promotes better adhesion of most paint-type topcoats.

The majority of the 16 candidate protection systems applied over bare steel panels not only met but far surpassed the minimum 672 hour corrosion resistance requirement. All of the protection systems applied over a thin XVD aluminum coating (less than 0.0003 inch) met the minimum 672 hour requirement. Minimum corrosion resistance acceptance as well as corrosion resistance duration of the candidate protection systems are shown in Table 4.

Figures 4 through 17 show the protection systems applied to bare (no IVD aluminum) 4-inch by 6-inch alloy steel test panels that met the minimum requirement. Exposure times of 672 hours, 1344 hours, and longer are shown for most of the panels. The panels were put into test at different times and therefore have various periods of exposure. Table 4 lists hours of exposure to the corrosive environment through April 1990. Many of the panels remained in test after this d te. Final salt fog duration results will be included in the proceedings for Phase III of the program.

All of the panels processed with candidate protection systems applied over thin IVD aluminum (less than 0.0003 inch) exhibited outstanding corrosion resistance protection. Figures 18 and 19 are examples of protection systems applied over thin IVD aluminum that are still in test for 2500 hours beyond failure of the same protection system applied to bare (no IVD aluminum) panels. Whereas the supplemental protection system offers significant protection by itself on bare areas, the presence of some IVD aluminum coating which does occur on portions of the internal surface further enhances corrosion resistance.

e. Environmental Impact - The functional merits of IVD aluminum versus cadmium processing have been thoroughly discussed in the Phase I Data Base Handbook (Reference 1). However, the most important reason for replacing cadmium with IVD aluminum at the ALCs may be in how the two metals and their respective processing procedures impact the environment.

Aluminum is a non-toxic substance, and the IVD vacuum-coating process is a dry, environmentally clean process. Cadmium, on the other hand, is classified as toxic to humans; waste cadmium must be handled and disposed

TABLE 4. CORROSION RESISTANCE OF CANDIDATE PROTECTION SYSTEMS IN A FIVE PERCENT NEUTRAL SALT FOG ENVIRONMENT.

	Alloy Steel Test Panels ASTM-B117 Salt Fog Resistance					
	Bare	Steel	Thin IVD At on Bare Steel			
Processor: Sacraficial Protection System	672 hr	Duration (hrs)	672 hr	Duration (hrs)		
MCAIR: Alseal 518	Passed	€,048 ^b	Passed	6,048 ^b		
MCAIR: Xylar I	Passed	6,024 ^b	Passed	6,024 ^b		
Sermatech: Sermetel CR984-LT	Passed	1,704 ^b	Not Tested	-		
Processor: Barrier Protection System ⁸						
MCAIR: Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat	Passed	7,176 ^b	Passed	7,176 ^b		
MCAIR: Epoxy Primer, Polysulfide Sealant "Fill and Drain",	Passed	7,152 ^b	Passed	7,152 ^b		
MCAIR: P-92 Primer, Xylan 1014 Topcoat	Failed	-	Passed	6,192 ^b		
MCAIR: P-92 Primer, Xylan 1010 Top∞at	Failed	-	Passed	3,672		
MCAIR: Waterborne Epoxy Primer, Polysulfide Sealant	Passed	1,980	Passed	6,024 ^b		
Embee Plating: Zinc Phosphate, Epoxy Primer, Polyurethane Topcoat	Passed	5,208 ^b	Passed	5,208 ^b		
DeSoto: Epoxy Primer, Epoxy Powder Coating	Passed	2,448	Passed	4,632 ^b		
DeSoto: Waterborne Epoxy Primer, Epoxy Powder Coating	Passed	4,632 ^b	Passed	4,632 ^b		
DeSoto: Navy Unicoat, Epoxy Powder Coating	Passed	2,760	Not Tested	_		
DeSoto: Epoxy Powder Coating	Passed	4,536 ^b	Passed	4,536 ^b		
Sunbelt Coating: Zinc Phospirate, P-92 Primer, Xylan 1014 Topocat	Passed	692	Passed	4,488		
Sunbelt Coating: Zinc Phosphare, Zylan 5611 Primer, Xylan 5251 Topcoat	Passed	1,368	Not Tested	-		
MCAIR: Manganese Phosphate Waterborne Epoxy Primer, High-Solida Polyurethane Topcoat	Passed	1,536 ^b	Not Tested	-		

Although these systems are designated barriers, some component materials contain leachable compounds which
provide sacrificial protection – see Table 1.
 Panels are still in test.

Bare Steel
Overcoated With Alseal 518
672 Hours – 5% Neutral Salt Fog

Bare Steel
Overcoated With Alseal 518
1,344 Hours – 5% Neutral Salt Fog

Bare Steel
Overcoated With Alseai 518
2,016 Hours – 5% Neutral Salt Fog

Figure 4. Corrosion Resistance: Alseal 518 Protection System Applied to Bare Alloy Steel Panels.

Bare Stee! Overcoated With Xylar 1 572 Hours - 5% Neutral Selt Fog

Bare Steel
Overcoated With Xylar 1
1,344 Hours – 5% Neutral Salt Fog

Bare Steel
Overcoated With Xylar 1
5,016 Hours – 5% Neutral Salt Fog

Figure 5. Corrosion Resistance: Xylar I Protection System Applied to Bare Alloy Steel Panels

Bare Steel
Overcoated With Sermetel CR984-LT
672 Hours – 5% Neutral Salt Fog

Bare Steel
Overcoated With Sermetel CR984-LY
1,344 Hours - 5% Neutral Salt Fog

Figure 6. Corrosion Resistance: Sermetel CR984-LT Protection System Applied to Bare Alloy Steel Panels.

Bare Steel
Primer, Sealant and Topcoat
672 Hours – 5% Neutral Salt Fog

Bare Steel
Primer, Sealant and Topcoat
1,344 Hours – 5% Neutral Salt Fog

Bare Steel
Primer, Sealant and Topcost
4,032 Hours – 5% Neutral Salt Fog

Figure 7. Corrosion Resistance: Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat Protection System Applied to Bare Alloy Steel Panels.

Bare Steel
Overcoated With MCAIR Fill and Drain
672 Hours – 5% Neutral Salt Fog

Bare Steel
Overcosted With MCAIR Fill and Drain
1,344 Hours – 5% Neutral Salt Fog

Bare Steel
MCAIR Fili and Drain
4,032 Hours – 5% Neutral Salt Fog

Figure 8. Corrosion Resistance: Epoxy Primer, Polysulfide Sealant "Fill and Drain" Protection System Applied to Bare Alloy Steel Panels.

Bare Steel
Overcoated With Waterborne Primer and Scalant
672 Hours – 5% Neutral Salt Fog

Bare Steel
Waterborne Primer and Sealant
1,344 Hours – 5% Neutral Salt Fog

Figure 9. Corrosion Resistance: Waterborne Epoxy Primer and Polysulfide Sealant Applied to Bare Alloy Steel Panels.

Bara Steel
Phosphate Coating, Primer and Paint
672 Hours – 5% Neutral Sait Fog

Bara Steel
Phosphate Coating, Primer and Paint
2,016 Hours – 5% Neutral Salt Fog

Bare Steel
Phosphate Coating, Primer and Paint
4,200 Hours – 5% Neutral Salt Fog

Figure 10. Corrosion Resistance: Zinc Phosphate, Epoxy Primer, Polyurethane Topcoat Protection System Applied to Bare Alloy Steel Panels.

Bam Steel
Primer and Powder Coating
572 Hours – 5% Neutral Sait Fog

Bare Steel
Primer and Powder Coating
1,344 Hours – 5% Neutral Salt Fog

Figure 11. Corrosion Resistance: Epoxy Primer, Epoxy Powder Coating Protection System Applied to a Bare Alloy Steel Panel.

Sare Steel
Waterborne Primer and Powder Coating
672 Hours – 5% Neutral Salt Fog

Bare Steel Bare Steel
Waterborne Primer and Powder Coating 1,344 Hours - 5% Neutral Salt Fog 3,624 Hours - 5% Neutral Salt Fog

Figure 12. Corrosion Resistance: Waterborne Epoxy Primer and Epoxy Powder Coating Applied to Bare Alloy Steel Panels.

Bare Steel Navy Unicoat and Powder Coating 672 Hours – 5% Neutral Salt Fog

Bare Steel
Navy Unicoat and Powder Coating
1,344 Hours – 5% Neutral Sait Fog

Figure 13. Corrosion Resistance: Navy Unicoat and Epoxy Powder Coating Protection System Applied to Bare Alloy Steel Panels.

Bare Steel
Powder Coating

572 Hours - 5% Neutral Sait Fog

Bare Steel Fowder Coating 1,344 Hours – 5% Neutral Salt Fog

Bare Steel
Powder Coating
3,528 Hours -- 5% Neutral Salt Fog

Figure 14. Corrosion Resistance: Epoxy Powder Coating Protection System Applied to Bare Alioy Steel Panels.

Bare Steel
Zinc Phosphate, Zinc-Rich Primer and One Coat of Xylan 5000 Series Coating
1,008 Hours – 5% Neutral Salt Fog

Figure 15. Corrosion Resistance: Zinc Phosphate, Zinc-Rich Primer, Xylan 5000 Series Topcoat Protection System Applied to Bare Alloy Steel Panels.

Bare Steel
Phosphate Coating, Prime, and Xylan 1014
672 Hours – 5% Neutral Salt Fog

Figure 16. Corrosion Resistance: Zinc Phosphate, P-92 Primer, Xylan 1014 Topcoat Protection System Applied to Bare Alloy Steel Panels.

Bure Steel
Phosphate, Waterborne Primer, High-Solids Topcost
672 Hours – 5% Neutral Salt Fog

Figure 17. Corrosion Resistance: Manganese Phosphate, Waterborne Epoxy Primer, High-Solids Polyurethane Protection System Applied to Bare Alloy Steel Panels.

IVD Aluminum Costed Steel Panel – Peened, Type II
Overcoated With Waterborne Primer and Sealant
672 Hours – 5% Neutral Salt Fog 1,344 Hours – 5% Neutral Salt Fog

IVD Aluminum Coated Steel Panel – Peened, Type II
Overcoated With Waterborne Primer and Sealant
2,688 Hours – 5% Neutral Salt Fog 5,424 Hours – 5% Neutral Salt Fog

Figure 18. Corrosion Resistance: Waterborna Epoxy Primer and Polysulfide Sealant Protection System Applied to Alloy Steel Panel Coated With Thin IVD Aluminum.

IVD Aluminum Coated Steel Panel – Peened, Type II
Overcoated With Phosphate, Primer and Xylan 1014
672 Hours – 5% Neutral Salt Fog 1,344 Hours – 5% Neutral Salt Fog

IVD Aluminum Costed Steel Panel — Peened, Type II Overcoated With Phosphate, Primer and Xylan 1014 3,888 Hours – 5% Neutral Salt Fog

Figure 19. Corrosion Resistance: Zinc Phosphate, P-92 Primer, Xylan 1014 Topcoat
Protection System Applied to Alloy Steel Panel Coated
With Thin IVD Aluminum.

of as a hazardous waste by approved Occupational Safety and Health Administration (OSHA) and Environmental Protection Agency (EPA) procedures. In addition, electroplated cadmium processing introduces additional hazardous materials, such as cyanide in the plating bath, which must be controlled. The thrust to eliminate cadmium processing at the ALCs will reduce hazardous waste production and impreve environmental compliance in general.

It is important there is for supplemental processing that is performed in conjunction with normal 140 aluminum processing be environmentally compliant. Table it addresses the environmental compliance of the candidate protection systems. MCAIR included partier-type coatings in the evaluation that currently meet the most stringent aerospace volatile organic compound (VOC) regulations. Current aircraft paint primers contain chromium corrosion inhibitors which will be controlled by air-toxic regulations that are currently being enacted. The aerospace industry is currently evaluating alternate corrosion inhibitors.

2. Simulated Production Details

Four-inch diameter by 18-inch long 4:30 alloy size? cylinders were selected to simulate production details such as landing gear details. After teing processed with IVD aluminum, these detail parts were adequately coated on external surfaces and on internal surfaces for a distance of about four inches from each end. The remaining ten caches of invernal surface in the middle of the cylinder received a very thin (less than 0.0002 inch) coating which transitioned to no coating at all (see Figure 2). Ten IVD aluminum-coated cylinders were further processed with the supplemental internal surface protection systems listed in Table 5. The cylinders were then sectioned lengthwise (Figure 20). After thickness and uniformity were measured, the supplemental protection systems were tusted for adhesion and corrosion resistance.

TABLE 5. HEALTH AND ENVIRONMENTAL IMPACT OF CANDIDATE PROTECTION SYSTEMS

		lic Organia ound (VOC)	4	Persona' Exposure		
Candidate Protection System	Actual (gravesities)	South California Limit (grams/liter)	Knawn/Suspecied Carcinogen ^b	Limit (PEL) of Solvant ^e		
Alseal 513	0	420	Yes	-		
Xylar I		420	Yes	45		
Sermatel CR984-LT	0	420	Yes	_		
Epoxy Primor	578	3 50	Y38	3 0		
Polysulfide Sealant (Brush)	≱ 71	800	No	100		
Polyurethane Topucat	590	- 1 20	No l	.75		
Epoxy Primer	675	ಟ್	Yes	100		
Polysulfide Sealant (Fili and Drain)	403	6 00	No	100		
P-92 Primer	818	350	λ'n	10		
Nylan 1014 Topcoat	7,30	420	No	10		
P-92 Primer	818	:350	No.	10		
Xylan 1010 Topcozt	7 67	420	No	10		
Waterborne Epoxy Primer	345	350	Yes	25		
Polysulficio Sealant (Spray)	403	600	Νo	100		
Zinc Phosphate	0	•	Yes	_		
Epoxy Primer	575	350	YeL	100		
Polyurethana Topocat	£90	420	No	25		
Epoxy ^D rimor	675	350	Yes	100		
Epoxy Poverter Coating	C	420	No.	-		
l Waterbomo Epoxy Primer	345	300	Yes	25		
Epoxy Powder Coating	0	420	(``	-		
NADC Unicont	420	500	N.	50		
Epoxy Powder Country	0	420	No	_		
Epoxy Powder Coating	0	420	No	-		
Zinc Phosphate	0		Yes	_		
P-92 Printer	818	350	No	10		
Xylan 1014	769	420	No	10		
Zinc Fhosphule	0		Yes	-		
Xylan 5611 Primer	680	350	Yes	100		
Xylan 5201	583	420	Yes	1		
Manganece Phosphate	¢	1	Yes	_		
Waterbonie Spoxy Primer	345	356	Yes	25		
High-Solids Polyurethans Topos	nt 415	423	No	50		

a South Coast Air Quality Management Rule 1/24 -- current or scheduled regulation.

THE CANDELL STATES AND SERVICE STATES AND ASSESSED AND ASSESSED AND ASSESSED ASSESSED.

1

7

tradiditial notection mulmorth citation alcheitm "eet" &

ic Lowest PEL if more than one solvent.

TABLE 6. SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO THE INTERNAL SURFACES OF THE 4-INCH DIAMETER BY 18-INCH LONG CYLINDERS.

Processor: Protection System					
MCAIR	Alseal 518 Alseal 518, Waterborne Primer, Polyurethane Topcoat Waterborne Primer, Polysulfide Sealant (Sprayed) Waterborne Primer, Polysulfide Sealant (Brushed) Waterborne Primer, Polysulfide Sealant (Fill and Drain) Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat				
Embee Plating	Manganese Phosphate, Epoxy Primer, Polyurethane Topcoat				
Embee/MCAIR	Manganase Phosphate, Waterborne Primer, High-Solids Polyurethane Topocat				
DeSoto	Epoxy Primer, Epoxy Powder Coating Waterborne Primer, Epoxy Powder Coating				

Cylinder Corrosion Test Specimens

Manganese Phosphate, Waterborne Primer, High-Solids Polyurethane Enamel Topcoat

GP05-0180-25

Figure 20. 4-Inch Diameter by 18-inch Long Cylinder Sectioned After Processing For Testing.

- a. Processing Parameters The bare steel cylinders were processed in the following sequence:
- (1) IVD aluminum preclean Standard precleaning was used which consists of:
- c Solvent vapor degreasing to remove organic contaminants from the part surface such as grease and oil films, cutting fluids, and corrosion prevention compounds.
- o Grit blasting at 60-70 psi with aluminum oxide to abrasively remove surface oxides. Note: Clean, dry air is required.
 - (2) IVD Aluminum Application The cylinders were coated with IVD aluminum per MIL-C-83488, Class 1, Type II. Class 1 requires a minimum of 0.001 inch of coating on the external surfaces of the cylinders. Type II requires that the aluminum coating be treated with chromate conversation coating per MIL-C-5541.
 - (3) IVD aluminum post-coat procedures The following procedures were performed on all of the cylinders except for the one that was further processed with Alseal 518:
 - o The IVD aluminum coating was burnished (peened) with glass beads at 40 psi prior to chromate conversation coating. Burnishing not only improves corrosion resistance by densifying the coating but also serves as a simple, supplemental adhesion check of the coating.
 - o All of the cylinders were chromated within 24 hours of peening per the following procedure:

1

Immerse cylinders in Alodine 1200 solution for 30 seconds.

- Rinse cylinders thoroughly with ambient temperature tap water to remove all excess Alodine 1200 solution.
- Blow the cylinders dry immediately with clean, dry compressed air.
- Protect the chromated cylinders from contamination and moisture.

Note: Peening deoxidizes the IVD aluminum coating and enables a complete chemical reaction between the IVD aluminum coating and chromate conversion solution. Repeen the IVD aluminum coating if chromating does not occur within 24 hours.

<u>Exception</u>: The cylinder processed with Alseal 518 was peened and chromated after the Alseal 518 was applied.

- (4) Supplemental Protection System Application The cylinders were then further processed with the various Table 6 protection systems per the applicable Table 7 procedure.
- b. Thickness/Uniformity The total coating system thickness and uniformity as measured with a Dualscope is shown in Table B.
- c. Coating System Adhesion The wil-specs controlling the components of the various barrier-type protection systems all impose stringent coating adhesion testing for material qualification. All barrier-type coatings that were applied to cylinder internal surfaces were qualified mil-spec materials other than powder coating. The basic requirements for materials with proven good adhesion characteristics is proper substrate cleaning and application of the material. The internal surfaces were already basically clean from IVD aluminum processing but were grit-blasted again just prior to application of the protection system components per Table 7. The inherent adhesion of Alseal 518 sacrificial-type coatings is not as good as

TABLE 7. PROCESSING PROCEDURES FOR SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO INTERNAL SURFACES.

Processor: Protection Systems	Processing Procedure
MCAIR: Alsaal 518	Cylinder Procedure - Surface Was Grit Blasted With Aluminum Oxide Grit at 60 pai. One Coat of Aseal 518 Was Spray Applied Using Conventional Air Spray Equipment With a 90° Spray Extension. The First Coat Was Cured at Room Temperature for 15 Minutes, Then Baked At 175°F for 45 Minutes. A Second Coat Was Applied and Baked at 175°F. The Completed Coating Was Then Cured at 500°F for 60 Minutes. The Cylinder Was Cut in Two Sections. The Aseal 518 Coating Was Glass Bead Peened at 25 pal to Burnish the Coating for Electrical Conductivity
MCAIR: Alseal 518, Waterborne Primer,	Recommended Production Procedure — In Production, a 360° Spray Extension Should Be Used for All Internal Diameter Spray Applications. The Glass Bead Peening Would Be Performed Using a 90° Nozzle. The Aseal 518 Would Be Overcoated With One Coat of Primer and Two Coats of Polyurethane Topcoat
Polyurethane Topcoat	Cylinder Procedure — A Cylinder Processed With Asea 518 Was Then Coated With One Coat of MIL-P-85582 Waterborne Primer and Two Coats of MIL-C-83286 Gloss White Polyurethane Enamel. All of the Coatings Were Spray Applied Using Conven- tional Air Spray Equipment With a 90° Spray Extension. Each Coat Was Baked for 30 Minutes at 150°F
MCAIR: Waterborne Primer, Polysulfide	Recommended Production Procedure - A 360* Spray Extension Should Be Used for All Internal Diameter Spray Applications.
Sealant (Sprayed)	Oxinder Procedure — Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psl. One Coat of MIL-P-85582 Waterborne Primer Was Spray Applied Using Convantional Air Spray Equipment With a 90° Spray Extension. The Primer Was Cured for 30 Minutes at 160°F. One Coat of MIL-S-83430 Polysulfide Sealant Was Spray Applied and Allowed to Cure for 24 Hours at Room Temperature. Class A-4 Sealant Was Thinned 30 Percent by Volume With Toluens. A Second Coat of Sealant Was Spray Applied. The Coating System Was Cured for 7 Days at Room Temperature
MCAIR: Waterborne Primer, Polysuilide	Recommended Production Procedure - A 360° Spray Extension Should Be Used for All Internal Diameter Spray Applications.
Scalant (Brushed)	Cylinder Procedure — Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psl. One Coat of MIL-P-85582 Waterborne Primer Was Brush Applied and Baked for 30 Minutes at 160°F. One Coat of MIL-S-83430 Polysulfied Sealant Was Brush Applied and Allowed to Cure for 24 Hours at Room Temperature. Class A-1/2 Sealant Was Thinned 10 Percent by Volume With Toluene. A Second Coat of Sealant Was Brush Applied. The Coating System Was Cured for 7 Days at Room Temperature
	Recommended Production Procedure Same as Cylindar Procedure

a See Table 1 for supplier, processor and Mil-spac information.

TABLE 7. PROCESSING PROCEDURES FOR SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO INTERNAL SURFACES (CONTINUED).

Processor: Protection System®	Processing Procedure
MCAIR: Waterborne Primer, Polysulfide Sealant (Fili and Drain)	Ovlinder Procedure — Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psi. The Cylinder Was Fill and Drain Coated With One Coat of MiL-P-85582 Waterborne Primer and Baked for 30 Minutes at 160°F. The Cylinder Was Fill and Drain Coated With MiL-S-83430 Polysulfide Sealant and Allowed to Cure for 24 Hours at Room Temperature. Class A-1/2 Sealant Was Thinned 30 Percent by Volume With Tolune. A Second Coat of Sealant Was and Drain Applied. The Coating System Was Cured for 7 Days at Room Temperature.
	Recommended Production Procedure - Same as Cylinder Procedure.
MCAIR: Epoxy Prime: Polysulfide Sealant, Polyurethane Topcoat	Cylinder Procedure - Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psi. Two Coats of MiL-P-23377 Primer Were Brushed Applied With a 30 Minute Bake at 160°F After Each Coat. One Coat of MiL-S-83430 Polysulfide Was Brush Applied and Allowed to Cure for 24 Hours at Room Temperature. Class A-1/2 Sealant Was Thinned 10 Percent by Volume With Tolune. Two Coats of MiL-C-83286 Gloss White Polyurethane Enamel Were Brushed Applied. The Coating System Was Cured for 7 Days at Room Temperature.
	Recommended Production Procedure Same as Cylinder Procedure.
Embee Plating: Manganese Phosphate, Epoxy Primer, Polyurethane Topcoat	Cylinder Procedure - Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psi and Manganese Phosphate Coated Per MIL-P-16232. One Coat of MIL-P-23377 Primer and Two Coats of MIL-C-83286 Gloss White Polyurethane Enamel Were Spray Applied Using Conventional Air Spray Equipment With a 360° Spray Extension. Each Coat Was Cured at Room Temperature.
	Recommended Production Procedure - Same as Cylinger Procedures.
Embee/MCAIR. Manganese Phosphate, Waterborne Primer, High-Solids Polyurethane Topcoat	Cylinder Procedure — Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psi and Manganese Phosphate Coated Per MiL-P-16232. One Coat of MiL-P-85582 Waterborne Primer Was Spray Applied Using Conventional Air Spray Equipment With a 360° Spray Extension. The Primer Was Cured at Room Temperature. Two Coats of MiL-P-85285 Gloss White High Solids Polyurethane Topcoat Were Spray Applied Using Conventional Air Spray Equipment With a 90° Spray Extension. Each Coat of Topcoat Was Baked at 160°F for 30 Minutes.
	Recommended Production Procedures - A 360° Spray Extension Should Be Used for All Internal Diameter Spray Applications.

a See Table 1 for supplier, processor and Mil-spec information.

BULLION OF THE PARTY OF THE PROPERTY OF THE PARTY OF THE

TABLE 7. PROCESSING PROCEDURES FOR SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO INTERNAL SURFACES (CONCLUDED).

Processor: Protection System ²	Processing Procedure
DeSoto: Epoxy Primer, Epoxy Powder Coating	Cylinder Procedure — Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psi. The Cylinder Was Fill and Drain Coated With One Coat of MiL-P-23377 Primer. The Primer Was Cured at Room Temperature. DeSoto Epoxy Powder Coating Was Applied Using a Fluidized Bed. The Powder Coating Was Cured at 250°F for 15 Minutes.
	Recommended Production Procedure - Same as Cylinder Procedure.
DeSoto: Waterborne Primer, Epoxy Powder Coating	Cylinder Procedure — Surface Was Grit Blasted With Aluminum Oxide Grit at 60 psi. The Cylinder Was Fill and Drain Coated With One Coat of MiL-P-85582 Waterborne Primer. The Primer Was Cured at Room Temperature. DeSoto Epoxy Powder Coating Was Applied Using a Fluidized Bed. The Powder Coating Was Cured at 250°F for 15 Minutes.
	Recommended Production Procedure - Same as Cylinder Procedure.

a See Table 1 for supplier, processor and Mil-spec Information.

TABLE 8. UNIFORMITY AND AVERAGE THICKNESS OF SUPPLEMENTAL PROTECTION SYSTEMS (CYLINDER INTERNAL SURFACE).

	Protection Thickness (mils)											Average	
Processor: Protection System	A			8			C				Thickness		
·	1	2	3	4	1	2	3	4	1	2	3	4	(mils)
MCAIR: Alseal 518	2.5	2.8	3.0	2.5	1.3	1.9	2.2	1.3	2.3	3.0	3.6	2.1	2.4
MCAIR: Alseal S18, Waterborne Primer, Polyurethane Topcoat	5.0	3.8	4.9	3.6	5.0	3.9	2.6	3.3	3.7	3.3	3.1	3.9	3.9
MCAiR: Waterborne Primer, Polyauffide Sealant (Sprayed)	4.2	6.8	6.8	9.5	6.5	6.1	5.5	8.2	7.3	4.1	5.7	8.1	6.6
MCAIR: Waterborne Primer, Polysulfide Sealant (Brushed)	4.1	4.3	4.4	5.3	4.5	2.8	3.5	3.5	3.0	3.3	2.8	2.6	3.7
MCAIR: Waterborne Primer, Polyxulfide Sealant (Fill and Drain)	9 .5	8.5	9.1	6.2	10.4	9.3	9.7	10.2	10.5	10.1	8.0	10.1	9.3
MCAIR: Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat	5.2	5.8	4.3	4.4	4.3	5.5	5.0	4.0	4.9	5.6	4.8	4.3	4.8
Embee Plating: Manganese Phosphate, Epoxy Primer, Polyurethane Topcoat	3.2	3.6	3.8	3.3	3.0	3.2	3.0	3.0	3.2	3.8	3.5	3.0	3 .3
Embee/MCAIR: Manganese Phosphate, Waterborne Primer, High-Solids Polyurethane Topcoat	3.7	3.5	3.3	3.4	4.0	3.7	3.3	3.7	3.7	4.0	3.6	4.1	3.7
DeSoto: Epoxy Primer, Epoxy Powder Coating	2 .5	2.5	2.9	3.2	4.0	4.2	4.1	4.3	4.1	3.0	2.8	3.6	3.4
DeSoto: Waterborne Primer, Epoxy Powder Coating	11.0	3.9	9.9	5.0	11.3	9.6	11.4	8.2	5.4	4.8	5.2	5.5	7.6

that of primers, sealants, and topcoats. The controlling specification, MIL-C-81751, does require coating adhesion after an alloy steel test coupon is bent around a one-inch diameter mandrel. MCAIR has no reservations about the adhesion adequacy of Alseal 518 type coatings for internal surface applications.

d. Corrosion Resistance - A minimum corrosion resistance of 672 hours in a five-percent neutral salt fog environment was also required for the various protection systems applied to the cylinders. The 672-hour requirement was met with eight of the 10 protection systems (Table 9). Similar to the test panels, most of the salt fog duration times easily surpassed the 672 hour requirement. Figures 21 through 30 show the cylinders after 672 and 1344 hours of exposure. Table 9 lists hours of exposure through April 1990. Final salt fog duration results will be included in the proceedings for Phase III of the program.

The two protection systems that failed showed minute amounts of red rust in several small craters in the topcoat that extended to the primer. They appear to have resulted from either outgassing during an improper cure cycle, poor wetting, or contamination. Although these areas are so small that they are not visible in either Figure 28 or 30, they are indicative of the critical need for proper application of barrier-type protection systems.

D. SUPPORTING DATA

MCAIR had previously tested some of the materials used as protection systems and/or protection system components. Selection of these materials as candidate protection system materials was based on previous, positive experience with the material and/or material system.

O Alseal® 518 - MCAIR had demonstrated that Alseal 518 can be successfully applied to damaged IVD aluminum-coated steel panels. MCAIR also applied Alseal® 518 to an alloy steel panel, scribed it and exposed the panel to a five percent neutral salt fog environment for 9,000 hours without substrate

TABLE 9. CORROSION RESISTANCE OF SUPPLEMENTAL PROTECTION SYSTEMS APPLIED TO INTERNAL CYLINDER SURFACES IN A FIVE PERCENT NEUTRAL SALT FOG ENVIRONMENT.

		er Internal Surface l Fog Resistance
Processor: Sacraficial Protection System	672 hr	Duration
MCAIR: Alsoal 518	Passed	1,776 ^b
MCAIR: Alseal 518, Waterborne Primer, Polyurethane Topcoat	Passed	1,344 ^b
Processor: Barrier Type Protection System®		
MCAIR: Waterborne Primer, Polysulfide Sealant (Sprayed)	Passed	1,776 ^b
MCAIR: Waterboma Primer, Polysulfide Sealant (Brushed)	Passed	2,208°
MCAIR: Waterborne Primer, Polysulfide Sealant (Fill and Drain)	Passed	2,208 b
MCAIR: Epoxy Primer, Polysulfide Sealant, Polyurethane Topcoat	Passed	2,208 ^b
Embee Plating: Manganese Phosphate Epoxy Primer, Polyurethane Topcoat	Passed	1,776
Embee/MCAIR: Manganese Phosphate, Waterborne Primer, High-Sollds Polyurethane Topcoat	c	1,344 6
DeSoto: Epoxy Primer, Epoxy Powder Coating	Passed	1,344
DeSoto: Waterborne Primer, Epoxy Powder Coating	c	1,344 b

a. Although these systems are designated barriers, some component materials contain leachable compounds which provide some chemical protection – see Table 1.

b Cylinders are still in test.

c Topcost contained several small craters extending to primer coat. Pencil-point areas of red rust in craters observed at 672 hours. Specimens left in test, with no additional degradation through noted duration.

Cylinder Corrosion Tes! Specimen

Alseel 518 572 Hours - 5% Neutral Salt Fog

Alses 518 1,344 Hours - 5% Neutral Salt Fog

Figure 21. Corrosion Resistance: Alseal 518 Protection System Applied to Cylinder Internal Surface.

Cylinder Corrosion Test Specimen

Alseal 518, Waterborne Primer, Polyurethane Topcoat 572 Hours – 5% Neutral Salt Fog

Alseel 518, Waterborne Primer, Polyurethane Topoost 1,544 Hours – 5% Neutral Salt Fog

Figure 22. Corrosion Resistance: Alseal 518, Waterborne Primer, Polyurethane Topcoat Protection System Applied to Cylinder Internal Surface.

Cylinder Corrosion Test Specimen

Waterborne Primer, Polysulfide Sealant (Sprsy Applied) 872 Hours – 8% Neutral Salt Fog

Waterborne Primer, Polysulfide Sealant (Spray Applied ,1,344 Hours – 5% Neutral Salt Fog

Figure 23. Corrosion Resistance: Waterborne Primer, Polysulfide Sealant (Sprayed)
Protection System Applied to Cylinder Internal Surface.

Cylinder Corrosion Test Specimen

Waterborne Primer, Polysulfide Sealant (Brush Applied) 672 Hours – 5% Neutral Salt Fog

Waterborne Primer, Polysulfide Sealant (Brush Applied) \$,544 Hours -- 5% Neutral Salt Fog

Figure 24. Corrosion Resistance: Waterborne Primer, Polysuifide Sealant (Brushed)
Protection System Applied to Cylinder Internal Surface.

Cylinder Corrosion Test Specimen

Waterborne Primer, Polysulfide Sealant (Fill and Drain Applied) 672 Hours – 5% Neutral Salt Fog

Waterborne Primer, Polysulfide Sealant (Fill and Drain Applied) , 1,344 Hours – 5% Neutral Selt Fog

Figure 25. Corrosion Resistance: Waterborne Primer, Polysulfide Sealant (Fill and Drain) Protection System Applied to Cylinder Internal Surface.

Figure 26. Corrosion Resistance: Epoxy Primer, Polysulfide Scalant, Polyurethane Topcoat Protection System Applied to Cylinder Internal Surface.

1,344 Hours - 5% Neutral Salt Fog

Cylindar Corresion Total Specifican

Manganese Phosphata, Epoxy Primor, Polyurethana Enamel Topocat 672 Hours – 3% Neutral Salt Fogs

Manganese Phosphate, Epoxy Primer, Polyurethane Enamel Topocet 1 1,344 Hours – 8% Neutral Salt Fog

Figure 27. Corrosion Resistance: Manganese Phosphate, Epoxy Primer, Polyurethane Topcoat Protection System Applied to Cylinder Internal Surface.

Manganess Phosphate, Waterborne Primer, High-Solida Polyurethane Enamel Topcoat 672 Hours - 5% Neutral Salt Fog

Manganese Phosphata, Waterborne Primer, High-Solids Polyurethane Enamel Topcost 1,344 Hours - 5% Neutral Salt Fog

Figure 28. Corrosion Resistance: Manganese Phosphate, Waterborne Primer, High Solids Topcoat Protection System Applied to Cylinder Internal Surface.

Cy - Aper Compalion To at Specimen

Epoxy Primer, Epoxy Powder Coating 672 Hours -- 5% Neutral Salt Fog

Epoxy Primer, Epoxy Powder Costing 1,344 Hours – 5% Neutral Sait Fog

Figure 29. Corrosion Resistance: Epoxy Primer and Epoxy Powder Coating Protection System Applied to Cylinder Internal Surface.

Waterborns Primer, Epoxy Powder Coating 672 Hours - 5% Neutral Salt Fog

Waterborne Primer, Epoxy Powder Coating 1,344 Hours – 8% Neutral Salt Feg

Figure 30. Corrosion Resistance: Waterborne Primer and Epoxy Powder Coating Protection System Applied to Cylinder Internal Surface.

corrosion (red rust) (Reference 4). MCAIR also has an alloy steel panel coated with Alseal 518 in an outdoor exposure test in St. Louis. The panel has been in test for five years without red rust.

- o Epoxy primer, polysulfide sealant, polyurathane topcoat MCAIR originally tested the corrosion resistance of the "primer, sealant, and topcoat" on six 3- by 6-inch 4130 alloy steel panels (Reference 5) as a repair procedure. The panels had their paint and IVD aluminum coatings removed from a 0.5- by 1.0-inch area in the center of the panel and the "primer, sealant, and topcoat" repair applied. A diagonal line was scratched in the repair system on three panels. The panels were then subjected to the Naval Air Development Center (NADC) SO₂ salt-fog exposure test for 28 days without red rust. MCAIR then applied the "primer and sealant" protection system to the internal surfaces of a 2.5-inch diameter by 6.5-inch long alloy steel cylinder that was closed on one end. The cylinder was also exposed to the harsh NADC SO₂ salt fog environment for 56 days (28 days by MCAIR and 28 days by NADC) without substrate corrosion.
- o Manganese phosphate, epoxy primer, polyurethane topcoat This protection system is in production use on the Air Force F-15E Piston Assembly Main Landing Gear, P/N 68A412704. This alloy steel detail part is protected with IVD aluminum coating on external surfaces and with the supplemental "phosphate, primer, topcoat" protection system on internal surfaces. This protection system has been used since 1986 with no known problems.
- o Waterborne primers MCAIR has demonstrated in thorough laboratory testing that the performance of low VOC, environmentally compliant waterborne primer per HIL-P-85582 exceeds that of currently used exempt solvent and higher VOC primers per MIL-P-23377.

MCAIR has issued paperwork that allows the use of waterborne primers to meet more stringent environmental regulations in such areas as California and Oklahoma.

- O High-Solids Polyurethane Topcoat MCAIR has also engaged in a thorough evaluation of environmentally compliant topcoats per MIL-C-85285 that are now beginning to replace higher VOC topcoats per MIL-C-83286. Our laboratory evaluation (References 6 and 7) identified several of the high-solids topcoat that met and/or exceeded the performance of the MIL-C-83286 standards.
- o Powder Coating MCAIR tested a Pratt and Lambert Powder Coating (Vitrolon 88-1103) to our in-house requirements for fluid resistance, flexibility, and corrosion resistance for polyurethane topcoats. The powder coating passed all the tests except the reverse impact flexibility test at -65°F (Reference 8).

E. DISCUSSION

, . ,

,ç

MCAIR believes that the ALCs can currently implement the use of any of the Table 6 protection systems other than the two systems that include powder coatings. MCAIR believes that epoxy powder coatings will eventually be implemented by the aerospace industry as will as epoxy primers applied by electrocoating. These processes are commonly used on steel substrates in the industrial sector. They offer 98 percent transfer efficient and low VOC emission. MCAIR believes they are the best prospects for long-term environmental compliance.

MCAIR used Alseal 518 on the cylinders to represent all three of the metallic-ceramic type sacrificial coatings that were tested on panels; namely: Alseal® 518, Xylar® 1 and Sermetel® CR948-LT. These MIL-C-81517 aluminum-filled coatings are used on alloy steel detail by DoD agencies such as the ALCs on engine parts and the Naval Sea Systems Command on marine hardware. MCAIR limited the cure temperature of these coatings to 500°F because of potential use on high-strength steel landing gear components. Although 500°F is an adequate cure temperature, it is not high enough to produce an electrical conductive, sacrificial coating. The glass bead peening processing step (see Table 7) is required to assure a conductive coating.

MCAIR tested Alseal S18 by itself to demonstrate the adequacy of MIL-C-81751 coatings as stand-alone protection systems. In reality, the IVD aluminum - Alseal 518 combination would be painted with a primer and topcoat. Therefore, MCAIR also included a protection system comprised of Alseal 518, primer and topcoat.

MCAIR included both the commonly used mil-spec epoxy primers and polyurethane topcoats as well as newer, low VOC versions of epoxy primer and polyurethane topcoats. The waterborne epoxy primer meets the current California and other pending VOC limits of 350 grams/liter (g/l) for primers. The high-solids polyurethene formulation meets pending topcoat regulations of 420 g/l VOCs for topcoats. MCAIR also included both current and low VOC epoxy primers in conjunction with polysulfide sealant. Polysulfide sealant applied by the "brush" procedure easily meets VOC requirements for sealants (see Table 5). Polysulfide sealant applied by the "spray" and "fill & drain" procedures will be affected by pending regulations such as California Rule 1124 (see Table 5).

MCAIR included the epoxy primer, polysulfide sealant, polyurethane topcoat protection system because of existing MCAIR test data outlined in this section. MCAIR has also both used and recommended this protection system for field repair of damaged IVD aluminum coating.

MCAIR included the manganese phosphate, epoxy primer, polyurethane topcoat protection system which is in current production use on the internal surface on the F-15E main landing gear piston assembly. This landing gear detail is coated with IVD aluminum on external surfaces. MCAIR also included a version of this protection system with the more environmentally compliant primer and topcoat.

The question may be asked, "If a supplemental protection system is adequate for an internal surface, why not use that system over the entire component rather than in combination with IVD aluminum, thus eliminating two-step processing?" The answer is that what may be adequate for internal

surfaces may not be adequate for external surfaces. For example, the sacrificial aluminum-filled paint-type coatings provide excellent corrosion resistance and should be more than adequate to protect internal surfaces. However, internal surfaces are not normally subjected to the more harsh corrosive environments nor to the same harsh demands on coating adhesion as external surfaces. Therefore, the IVD aluminum process is recommended on all external surfaces and on as large a portion of the internal surfaces as possible. The reasons are that in addition to corrosion resistance, IVD aluminum provides superior coating adhesion and superior uniformity and coverage on part edges.

As an example, the external surfaces of landing gear details and turbine shafts are exposed to more harsh conditions than internal surfaces. The abrasive effects of take-offs and landings require a coating that adheres well and is resistant to chipping. The IVD aluminum coating does not chip; it is required that IVD coating adhesion pass the stringent bend-to-break coupon test. In contrast, the aluminum-filled paint type coatings are highly susceptible to the chipping type of nonadhesion. Typically, these coatings will not meet the bend-to-break adhesion requirement.

IVD aluminum also provides excellent coating uniformity and coverage or details in the transition area between external and internal surfaces. These areas often are threaded and/or contain sharp edges. IVD aluminum does not build up on or run off of sharp edges or thread crests/roots regardless of thickness. The paint and spray-type coatings will run off of edges and build up in recesses.

F. CONCLUSION

1

All of the various protection systems, both sacrificial and barrier type, that were applied to the internal surfaces of the alloy steel cylindrical details demonstrated good corrosion resistance characteristics. The protection systems also exhibited acceptable adhesion to the alloy steel substrates, and the various application methods provided acceptable thickness and uniformity.

Higher reliability may be obtained with the MIL-C-81751 coatings because of their sacrificial protection capabilities and with the barrier-type protection systems containing polysulfide sealant because of its flexibility.

Correct processing technique and procedure are critical, especially with the barrier-type protection systems. The potential effectiveness of these systems has been demonstrated with flat panels which are easy to process. At least one of these systems has been in production use for several years on a F-15E landing gear detail.

MCAIR believes that a two-step IVD aluminum plus supplement protection system approach offers an acceptable alternate to processing internal surfaces with cadmium.

SECTION IV TORQUE-TENSION COMPARISONS

A. PROBLEM

Aluminum has a higher coefficient of friction than cadmium. Therefore, a higher torque is required to install aluminum-coated fasteners to a given tension preload than if the fastener was cadmium plated. Fasteners are often installed at particular torques that have been determined to give desired preloads. These torque values are usually required by the overhaul manuals supplied by the original equipment manufacturers (OEMs). The OEMs are naturally reluctant to approve plating substitutions that do not provide similar torque-tension characteristics. Although the difference in torque-tension characteristics between aluminum and cadmium is minimized by the use of lubricants (Reference 1), much of the data generated to date is for shear-type and non-highly loaded tension-type fastener systems. Additionally MCAIR generally uses IVD aluminum-coated bolts/screws with cadmium-plated nuts and generated most of their torque-tension characteristics with that combination.

The Ogden (OO) ALC and Bendix (an OEM) have identified wheel tie-bolts (Figure 31) as a major concern. Eight to 12 tie-bolts are typically used to bolt wheel-halves together on military aircraft. These high-strength alloy steel details are designed to be highly loaded - usually in the range of 60 to 75 percent of the ultimate strength of the fastener. The fastener system (nut and bolt) relies on the installation torque required by the overhaul manual to achieve designed loading. For most wheel tie-bolts, the torque valves required by the overhaul manual are based on a hardware system plated with cadmium for corrosion resistance, and lubricated with MIL-T-5544 synthetic graphite - petrolatum prior -) installation. There is no corresponding torque-tension data for this situation when the hardware is coated with IVD aluminum.

Figure 31. IVD Aluminum-Coated Wheel Tie-Bott and Nut

The Oklahoma City (OC)-ALC, San Antonio (SA) ALC, and Allison (an OEM) have also expressed concern about the use of IVD aluminum on threaded hardware. The SA-ALC had asked Allison for concurrence to use IVD aluminum on T-56 engine details as a replacement for electroplated cadmium and diffused nickel-cadmium. Allison, in turn, gave concurrence (Reference 9) with the exception of threaded engine hardware. Their reluctance to use IVD aluminum on threaded hardware is based on a Pratt & Whitney (P&W) document (Reference 10). P&W reported that considerably more torque is required to load IVD aluminum-coated engine bolts than to load diffused nickel-cadmium plated bolts when lubricated with engine oil. Engine oil is a commonly used lubricant for engine bolts. The following Allison excerpt exemplifies their concern.

"A change in coatings changes the coefficient of friction thus affecting a torque required to achieve a given axial load. A significant change in torque requirements, as a result of IVD Aluminum, would be unacceptable since

production parts would continue to be coated with cadmium. It would be impractical and confusing to have two sets of torque values in assembly instructions and overhaul manuals. This author recommends that IVD aluminum not be used on the parts listed in Attachment 1." (threaded hardware).

B. SOLUTION/APPROACH

....

Document that the difference in torque-tension characteristics between IVD aluminum and cadmium is minimized by the use of lubricants for ALC wheel tie-bolts and threaded engine hardware.

Divide the effort into two tasks:

1. Wheel Tie-Bolts

Develop a generic torque-tension data base for lubricants now in use by the ALCs. Use additional lubricants if required to minimize torque-tension differences. At the conclusion of the generic testing, generate comparative data on actual tie-bolts using both the graphite - petrolatum lubricant now in use by OO-ALC and candidate lubricants identified as having a positive effect by the generic test. Generate data for 15 cycles of reuse which is the designed work-life before refurbishment of the wheel tie-bolts.

2. Threaded Engine Hardware

MCAIR met with OC-ALC to address this issue and coordinate a test program. The program was also coordinated with Allison.

Since other torque-tension (References 11 and 12) comparisons between IVD aluminum and diffused nickel-cadmium reported that torque-tension was essentially unaffected by any differences in the two finishes, it was decided to rerun the one test (Reference 10) that shows considerable differences. Several other factors that were considerations included the very early period of IVD aluminum development in which the Reference 10 data was generated and the possibility that too thick of an IVD aluminum coating was

tested. Additionally the hardware combination consisted of a diffused nickel-cadmium plated bolt and cadmium-plated nut rather than two diffused nickel-cadmium plated components.

C. DATA

1. Generic Torque-Tension Data

NAS1308-10 bolts supplied by Voi-Shan and 47FLW-820 nuts supplied by SPS were used to generate generic torque-tension data for wheel tie-bolts. Descriptions of the bolt and nut are shown in Tables 10 and 11, respectively.

TABLE 10. NAS1308-10 BOLT DESCRIPTION.

Bott	Bolt	Thread Size	Boit L	ength	Corrosion Preventive Finish		
4. •	Designation	and Description	(ir.)	Yotal (in.)	Cadmium	IVD Aluminum	
Shear, Hexagon Head, Ultimate Tensile Strength 160 – 180 ksi	NAS1308-10	0.5000-20 UNJF-3A	0.625	1.360	Per QQ-P-416, Type II, Class 2	Class 3, Type II Per MIL-C-83488	

TABLE 11. 47FLW-820 NUT DESCRIPTION.

Nut Description	NL:	Thread Size	Mut Height	Corrosion Preventive Finish		
Hut Description	Designation	and Description	(hr.)	Cadmium	IVD Aluminum	
Flexioc, Tension Double Hexagon, Flanged, Self- Locking, Alloy Steel, 180 ksi, 450°F, Lightweight	47FLW-820	0.5000-20 UNJF-3B	0.549	Per QQ-P-416, Type II, Class 2	Class 3, Type II Per MIL-C-83488	

Torque-tension and other installation data was generated for fifteen installation cycles of reuse for the various bolt finish - nut finish - lubricant combinations shown in Table 12. A description of each lubricant is shown in Table 13.

TABLE 12. BOLT FINISH - NUT FINISH - LUBRICANT COMBINATIONS EVALUATED DURING GENERATION OF GENERIC TORQUE-TENSION DATA.

		FI	nish		Supple	nental Lubrica	rtien	
Test	В	olt	N	38	On IVD	On IVD Aiur		Lubricant
No.ª	Cadmium	IVD Aluminum	Cadmiumb	IVD Aluminum	Aluminum Coated Bolt	Coated I		CHOICEIR
1-3	X		Х					C-601-S
3-6		X		X				C-601-S
7-10	X	l I	X					C-601-S
11-13		X		X			[C-601-S
14-17		í x l	X				i	C-601-S
18-22		X		×		X		C-601-S
23-26		X		X			l	C-601-S
27-29	X	1		×		X	l	C-601-S
30-36		×		l x	l	X	1	C-601-S
37		X		×			Ĭ	C-601-S
38		X	}) x	į	X	1	C-601-S
39-41	X	į l	X	ļ	Į.		l	C-670
42-44		X		X	1		ŀ	C-670
45-47) X	}	X ,,	1	1		1	Moly-50
48-50				X	į		1	Moly-50
51-53	×]	X	Ì	1		1	Royco 81MS
54-56		X		X	Ĭ	X	l l	Royco 81MS
57	X]	×	}		}	1	GP-400
58	Ì	X		X) x	}	GP-400
59	i x		X	Ì		Į	Į.	GP-401
60	Ì	X	Ì	×		X		GP-401
61	l x		X	i		Ì	į	GP-460
62	ł) X		X		X	İ	GP-460
63	X	1	X	i	1	j	1	CP-28
64		l x	}	X		l x	l	CP-28
65	X]	X	1		Ï	1	CP-29
66	1	j x	j	i x	1	X	1	CP-29
67	×	ì	X	1	1			CP-42
68	ì	X		i x	1	i x	ì	CP-42
69	×	I	×	l	Į	l	{	Formkote T-50
70	}	X	[X	İ	X		Formkote T-50
71	X	1	×	})	ł	ì	Lubri-Bond A
72	Î	×	1	X		X	1	Lubri-Bond A
73-75	i x		l x	1]			CP-115
76-78	1	l x		X	İ	l x		CP-116
79-81	X		x	ļ	1		l	MIL-T-83483
82-84]	×]	l x	1	X	1	MIL-T-83483

TABLE 12. BOLT FINISH - NUT FINISH - LUBRICANT COMBINATIONS EVALUATED DURING GENERATION OF GENERIC TORQUE-TENSION DATA (CONCLUDED).

		i-In	ish		Supple	mental Lubric	ation	
Test No.	B olf		Nut		On IVD Aluminum	On IVD Ak		Lubricant
	Cadmlum	IVD Aluminum	Cadmlum	IVD Aluminum	Coated Bolt	Carbowax ^e	Other	
85		x		×				Formkote T-50 and C-601-S
8 6		×		×				Perma-Silk-S and C-601-S
87		×		×	×		×	Xylar 101 and C-601-S
8 8		х		×			X	Xylar 101 and C-601-S
89		×		×	x	×		Xylar 101 and C-601-S
90-91		×		×	×		X	Everlube 1346 and C-601-S
92-93	<u> </u> 	×	 	×	×		×	EM-6256 and C-601-S
94-95	 	×		×	×		X	EM-6286 and C-601-S
96-97		×	٠,	×			x	Everlube 1346 and C-601-S
98-99		×		×			x	EM-6256 and
100- 101		×		x			X	C-601-S EM-6286 and C-601-S

a. The data for each test is found in appendix A. The test number corresponds to the Appendix table number. (Example: Data for test number 1 is found in Appendix table A-1.),

b The cadmium nuts were supplied with Carbowax .

c. The IVD aluminum-coated nuts were coated with Carbowax by either SPS Technologies or MCAIR.

TABLE 13. LUBRICANTS EVALUATED DURING GENERIC TORQUE-TENSION TESTING FOR WHEEL TIE-BOLTS.

Lubricant	Supplier ^a	Description	Applicable ^b Mil-Specs	Processor 6
C-601-S	Fel-Pro Incorporated	Paste, Antiselze Thread Compound, Containing 50 Percent Synthetic Graphite and 50 Percent Petrolatum	MIL-T-5544	MCAIR
C-670	Fel-Pro incorporated	Paste Containing 65 Percent Molybdenum Disulfide	None	MCAIR
Moly-50	Fel-Pro incorporated	Paste, Antiseize Thread Compound, Containing 50 Percent Mulybdenum Disulfide and 50 Percent Petrolatum	MIL-T-83483	MCAIR
Royco 81MS	Royal Lubricants Company Incorporated	Lubricating Grease, a Mixture Basically 50 Percent Molybdenum Disulfide and 50 Percent Silicone Oil	DOD-L-25681	MCAIR
GP-400	Graphite Products Company	Paste, Antiseize Lubricant, Containing Approximately 50 Percent Molybdenum Disulfide, 5 Percent Graphite, and 40 Percent Mineral Oil With a Soap Base Thickener	None	MCAIR
GP-401	Graphite Products Company	Paste, Antiseize Lubricant, Containing Approximately 50 Percent Molybdenum Disulfide, 5 Percent Graphite, and 40 Percent Mineral Oil With a Non Soap Base Thickener	None	MCAIR
GP-460	Graphite Products Company	Paste, Antiseize Thread Compound, Containing 50 Percent Synthetic Graphite and 50 Percent Petrolatum	MIL-T-5544	MCAIR
CP-28	E/M Corporation	Paste, Extreme Pressure Assembly Lubricant, Containing 60 Percent Molybdenum Disulfide, an Organic Barlum Compound, Mineral Oil, and Lithlum Grease	None	MCAIR
CP-29	E/M Corporation	Paste, Antiseize Lubricating Compound, Containing Molybdenum Disulfide, Finely Divided Copper Metal Particles, Silica, and Mineral Oil	None	MCAIR
CP-42	E/M Corporation	Paste Containing a High Concentration of Molybdenum Disulfide in a Synthetic Polyalkylene Glycol Base	None	MCAIR

TABLE 13. LUBRICANTS EVALUATED DURING GENERIC TORQUE -TENSION TESTING FOR WHEEL TIE-BOLTS (CONTINUED).

Lubricent	Supplier*	Description	Applicable Mill-Specs	Processor
Formkote T-50	E/M Corporation	A Dry, Solid Film Lubricant Containing a Composition of Lubricating Pigments, Graphite Being One, Suspended in a Modified High Temperature Resin Binder	None	MCAIR
Lubri-Bond A	E/M Corporation	An Air Drying, Soild Film Lubricard Containing Molybdenum Disulfide and Graphite in a Resin Binder	MIL-L-23398	MCAIR
CP-:16	E/M Corporation	Paste, Antiseize Thread Compound, Containing Molybdenum Disulfide, Mineral Oil, and Petrolatum	MIL-T-83483	MCAIR
MIL-T-83483	Armite Laboratories	Paste, Anti-Seize Thread Compound, Containing 50 Percent Molybdenum Disulfide and 50 Percent Petrolatum	MIL-T-83483	MCAIR
Formkote T-50 and C-601-5	E/M Corporation Fel-Pro Incorporated	See Formkote T-50 Above See C-601-S Above	None MIL-Y-5544	MCAIR MCAIR
Perma-Slik S	E/M Corporation	An Air Dried, Solid Film Lubricant Containing Molybdenum Disuffide in a Minimum Amount of Binder	None	MCAIR
mid C-601-S	Fel-Pro Incorporated	See C-601-S Above	MIL-T-5544	MCAIR
Nylar 101	Whitford Corporation	Coating Contains Nonmetallic Fillers in Combination With Ceramic Materials to Extended the Performance	MIL-C-81751 Type I, Class 4	MCAIR
and C-601-S	Fel-Pro incorporated	of Aiuminum Coatings See C-601-S Above	MIL-T-5544	
Everlube 1346	E/M Corporation	An Air Cured, Bonded Solid Film Lubricant Formulated With Molybdenum Disulfide in a Resin Binder	None	E/M Corp
and C-601-S	Fai Pro Incorporated	See C-601-S Above	MIL-T-5544	MCAIR
EM-6256	E/M Corporation	A Bonded Solid Film Lubricant Formulated With Molybdenum Disulfide to Produce Torque-Tension Characteristics Similar to Cadmium Electroplate Plus Wax	None	E/M Corp
and C-601-6	Fel-Pro Incorporated	See C-601-S Above	MIL-T-5544	MCAIR
EM-6286	E/M Corporation	A Bonded Solid Film Lubricant Formulated With Graphite in a Resin Binder	None	E/M Corp
and G-501-S	Fei-Pro Incorporated	See C-E hove	MIL-T-5544	MCAIR

TABLE 13. LUBRICANTS EVALUATED DURING GENERIC TORQUE-TENSION TESTING FOR WHEEL TIE-BOLTS (CONCLUDED).

SCHOOL STREET	Lubricant	Supplier ^e	Description	Applicable ^b Mil-Specs	Processor
	Carbowax	Union Carbide Chemicais and Plastics Company inc	Polyetnylene Glycol 3350, a Non Dry Lubricant (Wax Type) Applied to Cadmium Plated and IVD Aluminum- Coated Nuts to Reduce Galling and Setzing	None	SPS Technologies MCAIR

a Supolien

- Fei-Pro Incorporated, Chemical Products Division, 7450 North McCormick Boulevard, P.O. Sox 1205, Skokle, Illinois 60076-6205
- Royal Lubricants Company Inc. P.O.Box 518, 72 Eagle Rock Avenue, East Hanover, NJ 07367
- Graphite Products Company, P.O. Box 29, Brookfield, Chilo 44403
- E/M Corporation, P.O. Box 2400, 2801 Kent Avenue, West Lafayette, Indiana 47906
- Armite Laboratorias, 1845 Rundolph Street, Los Angelas, California 90001
- · Whitiord Corporation, P.O. Box 507, West Chester, Pennsylvania 19381
- Union Carbide Chemicals and Plastics Co Incorporated, Industrial Chemicals Division, 39 Old Ridgebury Hoad, Denbury, Connecticut 06817-0001

b Military Specifications

- MIL-T-5544 Thread Compound, Antiseize, Graphile Petrolatum
- MIL-T-83483 Thread Compound, Antiseize, Molybdenium Disulfied Petrolatum
- DOD-L-25681 -- Lubricant Molybdanum Disulfide, Silloone
- MIL-L-23398 Lubricant, Solid Film, Air-Cured, Corrosion inhibiting
- . MIL-C-61751 Coating, Metallic Ceramic

c Processors

- McDonnell Aircraft Company (MCAIR), P.O. Box 515, St. Louis, Wassouri 63166
- E/M Corporation, P.O. Box 2400, 3600 Kent Avenue, West Lafayette, Indiana 47506

The torque-tension data was generated by holding the bolt head fixed and rotating the nut. A GSE, Inc. Model FT-500 Fastener Force Transducer and 125 KSI hardened, chamfered washer were installed between the bolt head and nut. The "fastener force transducer" is a miniature load cell developed specifically for measurement of fastener clamping forces. The washer against the bolt head was installed with its chamfered side toward the bolt head to provide clearance for any fillet at the head and shaft interface. The test set-up (Figure 32) allowed the minimum bolt protrusion of 0.080 inch through the self-locking nut as required by Reference 13. It also prevented nut rotation to the end of the threads on the bolt.

The loads generated by the range of torques for the various Table 12 bolt finish - nut finish - lubricant combinations were recorded by a GSE, Inc. Model 233-D Digital Peak Indicator which is compatible to the GSE Inc.

Figure 32. Test Solup Used to Generate Generic Torque-Tension Comparisons.

transducer. Three torque wrenches were used for the torque range to assure the most accurate, mid-range readings. All instrumentation was calibrated on a regular basis and is traceable to National Bureau Standards.

The fastener was loaded to 20,000 pounds during each installation cycle which is 70 percent of its ultimate strength. An example of the typical data generated for each 15-installation cycle evaluation is shown in Figure 33 and consists of:

- o Bolt measurements the shank of each bolt had its diameter and plating or coating thickness measured in three places prior to testing.
- o Nut measurement the plating or coating thickness was measured prior to testing.
- o Lubricant information the name of the lubricant, a brief description, and what it was applied to are listed.
- o Running torque (loading cycle) the maximum torque required 'o engage the locking feature of the self-locking nut was measured on the first,

fifth, tenth, and fifteenth loading cycles. The torque just prior to clampup of the test assemble was recorded.

- o Torque-tension relationship this relationship was established by recording the torque required for the specific range of tensile loads shown in Figure 33. The torque required to generate 10,000- and 20,000-pound loads was measured for all fifteen cycles. Additional torque amounts were recorded at 2,500-pound load increments for the first, fifth, tenth, and fifteenth installation cycles.
- p Breakaway torque the torque required to start nut rotation to relieve the 20,000-pound tensile bolt load was measured for the first, fifth, tenth, and fifteenth removal cycle.
- Running torque (removal cycle) the minimum torque required to disengage the locking feature of the self-locking nut was measured on the first, fifth, tenth, and fifteenth removal cycle. This torque was recorded when a minimum of one and a maximum of two bolt threads extended beyond the nut.

		Running	Terque On Nut (inlb)							•	Running	
Test No.0,6,6	Cycle No.	Terque (inlb, CW	irque Roff t and fib)								Breakreary Torque	Yorque (inlb,
	""	Direction)	2,500	5,900	7,500	18,600	12,500	15,000	17,500	20,000	(ln55)	CCW Direction)
xx	1 2 3 4	100	190	295	415	555 450 400 375	725	875	1,025	1,225 1,250 1,150 1,050	950	90
	5 6 7 8	30	110	195	285	390 350 380 365 355	525	725	925	1.175 1,200 1.150 1.050 1.000	900	20
	10 11 12 13	30	85	165	250	345 345 335 350 380 350	460	625	8 00	975 1,000 975 975 975 950	6 50	20
	14 15	20	80	155	235	330	460	600	775	900	540	15

a. The lubricant was applied to the threads of the bolt and nut.

Figure 33. Example of Installation Data Generated for Typical 15-Cycle Reuse Evaluation.

b EMt Corporation CP-42 lubricant is a paste with a synthetic polyalitylene glycol fluid base containing a high concentration of molyodenum disulfide.

c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00035 in. 47FLW-820 nut: Average coating thickness = 0.00037 in.

Wet lubricants (no cure required) were brush applied to the threaded areas of the nuts and bolts. Only a thin film of lubricant was applied as any excess is squeezed out during tightening of the nut. The wet lubricants were removed with clean cheesecloth and/or solvent and reapplied for each installation. The dry lubricants (cure required) were applied only before the first installation cycle.

The same bolt-nut combination was used for all 15 installation cycles or until termination of a particular 15-cycle evaluation. The same fastener force transducer was used and its calibration was verified to be correct throughout the evaluation. Torque-tension and related installation data was generated for 101 15-cycle evaluations. It is located in Appendix A.

The torque-tension relationships between IVD aluminum and cadmium-finished wheel tie-bolt type hardware is summarized as follows:

a. With MIL-T-5544 synthetic graphite - petrolatum

MCAIR generated an extensive amount of data associated with the use of MIL-T-5544 synthetic graphite - petrolatum lubricants. It is currently required to be applied to wheel tie-bolts and nuts by virtually every applicable overhaul manual.

MCAIR obtained the best MIL-T-5544 lubricant results with the Fel-Pro, Inc. C-601-S lubricant. Its evaluation was recommended by Bendix (an OEM). Data generated for cadmium-plated hardware with C-601-S lubrication is used as baseline data. The torque required to produce a 20,000-pound tensile load for IVD aluminum and cadmium-finished hardware is compared in Table 14. This data shows that in order to obtain a 20,000-pound load:

o Approximately 30 percent more torque is required to load the IVD aluminum-coated hardware during the first installation cycle than to load the cadmium-plated hardware.

- The difference drops to about fifteen percent for the third cycle.
- o The difference drops below 10 percent by the seventh installation cycle and stays between three and eight percent through the fifteenth cycle.

TABLE 14. TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD FOR IVD ALUMINUM- AND CADMIUM-FINISHED HARDWARE USING FEL-PRO C-601-S SYNTHETIC GRAPHITE - PETROLATUM LUBRICANT (MIL-T-5544).

inst'i Cycle	Cd Bolt rand Cd Nut	IVD AI Bolt and IVD AI Nut	% Increase Over Cd-Cd Baseline
1	645	837	29.8
2	663	809	22.0
3	675	774	14.7
4	675	768	13.5
5	669	767	14.7
6	663	739	11.5
. 7	675	727	7.7
8	675	716	6.1
Q	669	718	7.3
10	669	723	8.0
11	663	709	6.9
12	656	689	5.0
13	650	693	6.6
14	650	673	3.5
15	663	703	6.0

MCAIR evaluated a number of variables introduced with the use of the C-601-S lubricant in an attempt to lessen the Table 14 "baseline" difference between IVD aluminum and cadmium. Special attention was given to the first several installation cycles where the difference is more pronounced. These variables are listed in Table 15 along with a brief result summary.

TABLE 15. VARIABLES EXAMINED DURING TORQUE-TENSION TESTS ON GENERIC BOLT AND NUT USING FEL-PRO, INC. C-601-S LUBRICANT.

		Fini	sh		·	Results in Relation to
Test No.*		olt	N	lut	Effect of Test Variable(s)	Torque Required to Generate 20,000 lb
	Cd	IVD AI	Cdb	IVD A!		Loud
1-3	×		X		None	Established as Original Cadmium Baseline for Comparison.
4-8		×		×	None	Established as Original IVD Aluminum Baseline for Comparison.
7	×		X		Leading Bott to 20,000 lb in Two Steps, 10,000 and 20,000 Pounds vs 2,500 pound steps.	No Effect at 20,000 Pounds. The Torque-Tension Curve Had Distinct Break at 10,000 Pounds When Bolt Was Loaded in Two Steps. A Smooth Torque-Tension Curve Was Obtained When Bolt Was Loaded in 2,500 Pound Steps. Retained Procedure to Briefly Stop at Each 2,500 Pound Load Increment to Record Torque.
8-10	×		×		Selection of Torque Wrenches.	Data Accuracy improved. Established as New Cadmium Baseline.
11 – 13		x		X	Test Variables Were the Same as in Tests 8 - 10.	Result Was the Same as in Tests 8 – 10. Established as New IVD Aluminum Baseline.
14 – 17		×	×		Different Bolt and Nut Finishes.	Improvement Over IVD Aluminum Baseline.
18 – 21		×		×	Supplemental Lubricant, Carbowax on Nut.	Improvement Over IVD Aluminum Baseline for 1st Cycle.
22		×		×	Excess Amount of C-601-S Lubricant Applied to Either the Bolt and/or Carbowaxed Nut.	No Appreciable Effect.
23 - 2 6	2	X		x	Bolt Loaded to 20,000 Pounds With and Without Intermediate Stops.	No Appreciable Effect.
27 – 29	x			×	Different ®olt and Nut Finishes.	Improvement Over IVD Aluminum Baseline.
30		x		X	Lubricant Absorption into a More Open, Non-Peened Aluminum Coating.	No Appreciable Effect.

a The data for each test is found in Appendix A. The test number corresponds to the Table number. (Example: Data for Yest: Number 1 is found in Table A-1.).

is The cadmium nots were supplied with Carbowax (Polyethylene Glycol 3350), a wax type lubricant. Carbowax is applied to non-dry film lubricated cadmium plated nots by SPS Technologies to reduce galling and setzing.

TABLE 15. VARIABLES EXAMINED DURING TORQUE-TENSION TESTS ON GENERIC BOLT AND NUT USING FEL-PRO, INC. C-601-S LUBRICANT (CONTINUED).

1

 μ_j

٤.

100

(a

E

		Fin	l s h			Results in Relation to
Test No.ª		olt	N	iut	Effect of Test Variable(s)	Torque Required to Gonerate 20,000 lb
	Cd	IVD AI	Cqp	IA GVI		Load
31		×		X	Polished Coating on Edit and Nut.	No Appreciable Effect.
32		x		x	Thin Coating on the Bolt.	No Appreciable Effect.
3 3		x		x	Thin Coating on the Bolt and Ultrasonic Cleaning the Bolt and Nut After the First Cycle to Remove Any Metal Particles.	No Appreciable Effect.
34		x		x	Multiple Applications of Carbowax on the Boit and Nut.	No Appreciable Effect.
35 - 3 6		x		X	Thin Coating on the Bolt and Nut and Ultrasonic Cleaning the Bolt and Nut After the First Cycle.	No Appreciable Effect.
37 36		x .		X	Aluminum-Zinc Alloy Coating on the Bolt and Nut With and Without Carbowax.	No Appreciable Effect.
90 91		X		×	Supplemental Lubricant Coating, E/M Corporation Evertube 1346, on Bolts and Nuts.	Reduced the Higher Torques Noted With IVD Aluminum- Coated Bolts and Nuts During the First Few Installation Cycles in Flelation to Cadmium.
92 – ¥ 3		×		×	Supplemental Lubricant Coating, E/M Corporation EM-6256, on Boits and Nuts.	Reduced the Higher Torques Noted With IVD Aluminum- Coated Bolts and Nuts During the First Few Installation Cycles in Relation to Cadmium.
94 95		X		×	Supplemental Lubricant Coating, EM Corporation EM-6286, on Loits and Nuts.	Reduced the Higher Torques: Noted With IVD Aluminum- Coated Bolts and Nuts During the First Few Installation Cycles in Relation to Cadmium.

a. The data for each test is found in Appendix A. The test number corresponds to the Table number. (Example: Data for Test Number 1 is found in Table A-1.).

b. The caldmium nuts were supplied with Carbowax (Polyethylene Glycol 3350), a wax type lubricant. Carbowax is applied to non-dry film lubricated cadmium plated nuts by SPS Technologies to reduce galling and selzing.

TABLE 15. VARIABLES EXAMINED DURING TORQUE-TENSION TESTS ON GENERIC BOLT AND NUT USING FEL-PRO, INC. C-601-S LUBRICANT (CONCLUDED).

		Fini	sh			Results in Relation to
Test No.ª	B	olt	Nut		Effect of Test Variable(s)	Torque Required to Generate 20,000 lb
	Cd	IVD AI	Cqp	IVD AI	100, 14,12,12,00	Load
96 97		×		×	Suplemental Lubricant Coating, E/M Corporation Everlube 1346, Applied Only to the Nut.	Comparable to Cadmium-Plated Baseline for the 5-Cycle Test.
98 – 99		×		×	Supplemental Lubricant Coating, E/M Corporation EM-6256, Applied Only to the Nut	Comparable to Cadmium-Plated Baseline for the 5-Cycle Test.
100 — 101		×		×	Supplemental Lubricant Coating, E/M Corporation EM-6286, Applied Only to the Nut.	Comparable to Cadmium-Plated Baseline for 5-Cycle Test.

a. The data for each test is found in Appendix A. The test number corresponds to the Yabie number. (Example: Data for Test Number 1 is found in Yabie A-1.).

The following variables produced the most positive data and are discussed in more detail:

- O Use of a cadmium-plated nut with the IVD aluminum-coated bolt
 - O Use of "supplemental" carbowax lubricant
 - o Use of "supplemental" dry-film lubricants

The combination of IVD aluminum-coated bolts and cadmium-plated nuts is a probability at most of the ALCs. Wheel tie-bolt hardware is refurbished after so many installations and/or by a maintenance schedule. During refurbishment, the bolts usually have their protective finish removed to be inspected and are then refinished at the ALC. They would be refinished

b. The cadmium nuts were supplied with Carbowax (Polyethylene Glycol 3350), a wax type lubricant. Carbowax is applied to non-dry film lubricated cadmium plated nuts by SPS Technologies to reduce galling and setzing.

with IVD alumnium assuming the elimination of cadmium processing at the ALCs. The nuts, however, are usually scrapped due to locking feature wear after repeated installations. Replacement nuts ordered to existing drawings will likely be finished with cadmium for the immediate future.

Table 16 compares the torque-tension relationship of an IVD aluminum coated bolt - cadmium plated nut combination to the cadmium-plated baseline data. In order to obtain a 20,000-pound load:

- o Basically the same torque is required to load both the IVD aluminum coated bolt cadmium plated nut combination and the cadmium-plated combination for the first installation cycle.
- o The difference increases to about 10-12 percent for the IVD aluminum cadmium combination for the next five cycles.
- o The difference then decreases to about 0-3 percent for the seventh through the fifteenth cycle.

TABLE 16. EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING A CADMIUM-PLATED NUT WITH AN IVD ALUMINUM-COATED BOLT IN ADDITION TO C-601-S LUBRICANT.

inst'i Cycle	Cd Bolt and Cd Nut	IVD Al Bolt and Cd Nut	% Increase Over Cd-Cd Baseline
1	645	650	0.8
2	663	742	11.9
3	675	750	11.1
4	675	758	12.3
5	669	750	12.1
6	663	725	0.4
7	675	692	2.5
8	675	683	1.2
9	669	675	0.9
10	669	683	2.1
11	663	667	0.6
· 12	656	667	1.7
13	650	667	2.6
14	650	658	1.2
15	663	667	0.6

MCAIR then determined the effect of applying Carbowax to the IVD aluminum-coated nut prior to applying the C-601-S lubricant. Carbowax is a wax-type lubricant that SPS Technologies applies to standard, cadmium-plated locknuts like the 47FLW-820 test nut unless otherwise specified. It is used to reduce galling and seizing (Reference 14).

Carbowax did lessen the torque required for the IVD aluminum-coated combination in the first installation from about 30 percent to 21 percent. The torque required for subsequent cycles was about the same as that for IVD aluminum without carbowax (Table 14). The torque-tension comparison to the cadmium-plated hardware baseline is shown in Table 17.

TABLE 17. EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING CARBOWAX AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S. LUBRICANT.

inst'i Cycle	Cd Bolt and Cd Nut	IVD AI Bolt and IVD AI Nut ^a	% increase Over Cd-Cd Baseline
9	645	782	21.2
2	663	811	22.3
3	675	782	15.9
4	675	771	14.2
5	669	761	13.8
6	663	750	13.1
7	675	743	10.1
8	675	736	9.0
9	669	725	8.4
10	669	725	8.4
11	663	714	7.7
12	656	704	7.3
13	650	714	9.8
14	650	704	8.3
15	6 63	711	7.2

a Carbowax applied to nut only

MCAIR obtained good results with a group of three dry-film supplemental lubricants recommended by the E/M Corp. for this type of application. The lubricants have either a graphite or a molybdenum disulfide base as described in Table 13. The torque-tension characteristics of IVD aluminum-coated hardware that had these lubricants applied and then topcoated with C-601-S synthetic graphite compared favorably with the cadmium-plated-hardware baseline. In general, the most favorable results occurred before the dry-film lubricant began to wear off. Yorque-tension differences did increase slightly in the last eight installation cycles or so and basically provided the same results for these cycles as IVD aluminum without the supplemental libricant.

MCAIR also evaluated E/M Corp. supplemental lubricants applied only to the IVD aluminum-coated nuts for five installation cycles. Once again, torque-tension characteristics compared favorably. The data indicates that treatment of the nut with only the supplemental lubricant is adequate.

The comparison of IVD aluminum to cadmium-finished hardware when using Everlube 1346 as a supplemental 601 is shown in Table 18. It shows that to obtain a 20,000-pound load in the aluminum-coated hardware:

- o About eight percent more torque is required during the first installation cycle.
- o The difference is basically within five percent for the next 10 cycles.
- o The difference increases to about 7-10 percent for the last five cycles. This compares with the results of C-601-S only on the IVD aluminum-coated hardware (Table 14) and indicates wear removal of the Everlube 1346.

TABLE 18. EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING EVERLUBE 1346 AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S LUBRICANT.

inst'i Cycle	Cd Bolt * and Cd Nut	IVD Al Bolt ^b and IVD Al Nut	% increase Over Cd-Cd Baseline	IVD AI Bolt ^c and IVD AI Nut	% Increase Over Cd-Cd Baseline
1	645	700	8.5	750	16.3
2	6 63	650	(2.0)	675	1.8
3	675	6 50	(3.7)	650	(3.7)
4	675	650	(3.7)	650	(3.7)
5	669	675	0.9	663	(0.9)
6	663	713	6.0	Ì	1
7	675	675	-	•	!
8	675	675	-		i
8	6 69	675	0.9		l
10	669	700	4.6	Ĭ	
11	663	700	4.6	1	į
12	656	700	6.7	1	1
13	650	700	7.7	}	1
14	650	713	9.7		
15	663	713	7.5	Ì	

a Lubricated with C-601-S only.

The comparison of IVD aluminum- to cadmium-finished hardware when using Everlube EM-6256 as a supplemental lubricant is shown in Table 19. It shows that to obtain a 20,000-pound load in the IVD aluminum-coated hardware:

- O Less than five percent more torque is required for the first five installation cycles.
- The differences increases to a maximum of about 15 percent in the thirteenth cycle before decreasing to about 11 percent for the fifteenth cycle.

b. IVD bolt and IVD nut both lubricated with E/M Corp. Everlube EM-1346 prior to application of C-601-S.

c IVD nut only lubricated with E/M Corp. Everlube EM-1346 prior to application of C-601-S.

TABLE 19. EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING EVERLUBE EM-6256 AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S LUBRICANT.

inst'i Cycle	Cd Bolt ^a and Cd Nut	IVD Al Bolt ^b and IVD Al Nut	% Increase Over Cd-Cd Baseline	IVD Al Bolt ^C and IVD Al Nut	% increase Over Cd-Cd Baseline
1	645	663	2.7	688	6.6
2	663	675	1.8	6 25	(5.6)
3	675	675		6 05	(11.6)
4	675	675	_	595	(11.9)
5	669	700	4.6	598	(10.6)
6	663	738	11.3		` '
7	675	700	3.7	!	
8	875	725	7.4	!	
9	669	725	8.4	1	
10	669	725	8.4		
11	663	763	13.1	İ	i
12	656	- 750	14.6		
13	650	750	15.4		
14	650	725	11.5	1	
15	663	738	11.3		

a Lubricated with C-601-S only.

The comparison of IVD aluminum— to cadmium-plated hardware when using EM-6286 as a supplemental lubricant is shown in Table 20. It shows that to obtain a 20,000-pound load in the IVD aluminum-coated hardware:

- About eight percent more torque is required in the first installation cycle.
- o The difference is basically less than five percent for the second through the tenth cycle.
- o The difference increases to a maximum of 10 percent during the last five cycles. This also compares with the results of C-601-S only on the IVD aluminum-coated hardware (Table 14) which indicates wear removal of the EM-6286.

b IVD bolt and IVD nut both tubricated with E/M Corp. Everlube EM-6286 prior to application of C-601-S.

c IVD nut only lubricated with E/M Corp. Evertube EM-6286 prior to application of C-601-S.

TABLE 20. EFFECT ON TORQUE (INCH-POUNDS) REQUIRED TO PRODUCE 20,000-POUND LOAD WHEN USING EVERLUBE EM-6286 AS A SUPPLEMENTAL LUBRICANT IN ADDITION TO C-601-S LUBRICANT.

inst'i Cycle	Cd Bolt ^a and Cd Nut	IVD Al Bolt ^b and IVD Al Nut	% increase Over Cd-Cd Baseline	IVD Al Bolt ^c and IVD Al Nut	% Increase Over Cd-Cd Baseline
1	645	700	7.9	850	0.8
2	663	663	_	625	(5.7)
3	675	675	-	613	(9.2)
4	675	688	1.8	613	(9.2)
5	669	700	4.6	613	(8.4)
6	663	763	13.1	1	•
7	675	713	5.6	}	}
8	675	700	3.7	ł	
9	669	700	4.6	1]
10	669	700	4.6	[1
11	663	700	5.6		
12	656	700	6.7		1
13	650	713	9.7		i
14	650	713	9.7		1
15	663	725	9.4		Į

a Lubricated with C-601-Sionly.

Similar patterns were observed for all three supplemental lubricants when applying them to the IVD aluminum-coated nuts only. The initial torque ranged from 1-16 percent higher in relation to the cadmium-plated-hardware baseline but dropped to values ranging from two percent higher to 12 percent lower for the next four cycles.

Figure 34 presents an overview of the torque-tension characteristics associated with the various factors tested with the use of C-601-S lubricant. It shows:

o The basic difference between IVD aluminum- and cadmium-finished hardware.

b IVD bolt and IVD nut both lubricated with E/M Corp Everlube EM-6286 prior to application of C-601-S.

c IVD nut only lubricated with E/M Corp Everlube EM-6286 prior to application of C-601-S.

- o A positive effect in relation to cadmium-finished baseline when using either of the following:
 - Cadmium-plated nut with IVD aluminum-coated bolt
- Everlube 1346 applied to the IVD aluminum-coated bolt and nut as a supplement to C-601-S

Figure 34. Torque Required to Generate 20,000-Pound Axial Load.

b. With MIL-T-83483 molybdenum disulfide - petrolatum

MCAIR generated data for three different MIL-T-83483 lubricants. Although not widely used by the ALCs, its usage is allowed as an option to MIL-T-5544 by OEMs like Bendix for some wheel tie-bolts. The combined torque-tension characteristics are shown in Table 21. The torque

TABLE 21. TORQUE (INCH-POUNDS) REQUIRED TO PROVIDE 20,000-POUND LOAD FOR IVD ALUMINUM- AND CADMIUM-FINISHED HARDWARE USING MIL-T-83483 MOLYDENUM DISULFIDE — PETROLATUM LUBRICANT.

Inst'i Cycle	Cd Bolt and Cd Nut	IVD AI Bolt and IVD AI Nut	Percent increase Over Cd-Cd
1	6 86	828	20.7
2	581	819	20.3
3	879	808	19.2
4	672	783	16.5
5	663	765	15.4
6	664	767	15.5
7	667	731	10.0
8	659	722	9.6
9	359	703	6.7
10	638	690	8.2
11	649	681	4.9
12	645	680	5.4
13	636	675	6.1
14	626	672	7.3
15	\$20	666	7.4

required to produce a 20,000-pound tensile load in the IVD aluminum— and cadmium—finished hardware is compared in Table 21. The recorded torques for each installation cycle is the average of nine data points for each finish and combines the various MIL-T-83483 lubricants. In order to obtain a 20,000-pound load:

- o Approximately 21 percent more torque is required to load the IVD aluminum-coated hardware during the first installation cycle than to load the cadmium-plated hardware.
- o The difference drops to about 15 percent for the fifth cycle.
- o The difference is below 10 percent for the eighth through fifteenth cycles.

The data generated for the Fel-Pro Inc., Moly-50 and E/M Corp., CP-116 MIL-T-83483 lubricants was similar. Both the IVD aluminum and cadmium-finished hardware lubricated with Armite Laboratories MIL-T-83483 require torque amounts ranging up to 10 percent higher than that required for

the other two. Individual data sheets are located in Appendix A. The Table 21 data compares very closely to the data generated with the MiL-T-5544 lubricant shown in Table 14.

c. With other lubricants

MCAIR did not find any other lubrication that performed as well by itself as the baseline MIL-T-5544 synthetic graphite - petrolatum lubricant other than the MIL-T-83483 molybdenum disulfide - petrolatum lubricant. There was no intention to recommend a change from the basic lubricants in use unless required. Therefore, the performance of the additional lubricants that were tested is not discussed here. However, torque-tension and other installation data is located in Appendix A for all the bolt finish - nut finish - lubricant combinations that are listed in Table 12.

2. Wheel Tie-Bolt Torque-Tension Data

The OO-ALC/MMILBE (F. O. Zvech) provided MCAIR with information on four ALC wheel tie-bolt and nut applications to generate data. After obtaining the hardware, MCAIR replaced the cadmium finish on half of it with IVD aluminum. A description of the bolts and nuts is given in Tables 22 and 23, respectively.

MCAIR recorded torque-tension characteristics to establish a baseline consisting of cadmium-plated bolts and nuts lubricated with C-601-S MIL-T-5544 synthetic graphite. MCAIR Then compared IVD aluminum-coated hardware to the cadmium-plated baseline. Additional comparisons were generated for combinations consisting of:

- o IVD aluminum-coated bolts and cadmium-plated nuts. This combination not only compared favorably in relation to the cadmium-plated baseline in the generic test but is also the most probable ALC combination.
- o IVD aluminum-coated bolt and IVD aluminum-coated nut with the nut treated with a supplemental lubricant prior to the application of the

TABLE 22. DESCRIPTION OF WHEEL THE-BOLTS.

Bolt	Bak	Thread Size	Bott Length		Corrosion Preventiva Finish		
D as cription	Designation	and Description	Grip (in.)	Total (in.)	Cedmium	IVD Aluminum	
Twelve Point External Wrenching – 180,000 psi	NAS632-18	0.7500-16 UNJF-3A	1.125	2.118	Fluoborate Plate Per NAS672	Class 3, Type II, Per MIL-C-83488	
Wheel, Tension, Flanged, Steel, 180 ksi, F _{tu} , 450°F, External Wrenching	GY1810-36 (Goodyear)	0.625-18 UNJF-3A	2.250	3.19	Pluoborate Piate Per NAS672	Class 3, Type II, Per MIL-C-83488	
Wheel, Tension, Flanged, Steel, 220 ksi, F _{tu} , 450°F, External Wrenching, Spline Drive	MS14163- 09048	0.5625-18 UNJF-3A	3.000	4.025	Vacuum Deposited Per MiL-C-8837 Type II, Class 2	Class 3, Type II, Per MiL-C-83488	
Tension, Steel, External Wrenching, Flanged, 12 Point, 180 ksi, 450°F	MS21250- 05016	0.3125-24 UNJF-3A	1.000	1.645	Plate Per QQ-P-415, Type II, Class 2	Class 3, Type II, Per MilC-83488	

TABLE 23. DESCRIPTION OF WHEEL TIE-BOLT NUTS.

Nut Description	Nur	Thread Size	Mut	Corroeion Preventive Finish		
	Designation	and Description	Height (In.)	Cedmium	IVD Aluminum	
Flexioc, Tension, Double Hexagon, Flanged, Self- Locking, Alloy Steel, 180 kai, 450°F, Lightweight	47FLW-1216 (SPS Tech)	0.7500 : 6 UNJF-3년	0.750	Plats Per QQ-P-416, Type II, Class 2	Class 3, Type II, Per MIL-C-63488	
Flexioc, Tension, Double Hexagon, Flanged, Self- Locking, Alloy Steel, 180 ksi, 450°F, Lightweight	47FLW-1018 (SPS Tech)	0.6250-18 UNJF-3B	0.650	Plate Per QQ-P-466, Type II, Class 2	Class 3, Type II, Per MIL-C-83488	
Spline Drive, Flanged, Self-Locking, Alloy Steel, 220 kai, 0.582-18	79502-918	0.562-18 UNJF-3B	0.585 - 0.600	Plate Per QC-F-416, Type II, Class 2	Class 3, Type II, Per MIL-C-83488	
Flexico, Tension, Double Hexagon, Flanged, Sett- Locking, Alloy Steel, 180 ksi, 450°F, Lightweight	42FLW-524 (SPS Tech)	0.3125-24 UNJF-3B	0.363	Plate Per QQ-P-416, Type I, Class 3	Class 3, Type II, Per Mit-C-83488	

C-601-S lubricant. This combination lessened torque-tension differences between IVD aluminum and cadmium in the generic test for the first several installation cycles where differences are most pronounced.

The test set-up is the same as that described for Figure 32 except spacers were used as required to compensate for bolt length. Figure 35 exemplifies spacer use. A GSE, Inc. Model FT-312 Fastener Force Transducer was used for the 5/16-inch diameter bolts and a Model FT-750 transducer was used for the 9/16-, 5/8-, and 3/4-inch diameter bolts. Additional spacers were used to center the 9/16- and 5/8-inch diameter bolts within the transducer. The same two transducers were used as applicable to generate all of the data and their calibration was verified to be correct throughout the evaluation.

The data generated for each set of wheel tie-bolt hardware is located in Appendix B and consists of the same information outlined in Figure 33 except the torque-tension relationship was established by recording the load generated by the required installation torque for each of the four different size bolts.

a. For the 3/4-inch diameter hardware

The torque-tension comparisons generated for the 3/4-inch diameter tie-bolt show that the load generated by a torque of 2100 inch-pounds decreases for IVD aluminum-coated hardware by 10-17 percent in relation to the cadmium-plated baseline (Table 24).

The use of a cadmium-plated nut with the IVD aluminum-coated bolt falls within nine percent of the cadmium baseline. The difference is within five percent for 11 of the 15 installation cycles as shown in Table 24.

The use of a supplemental, dry-film lubricant on the IVD aluminum-coated nut prior to application of MIL-T-5544 lessens the difference between IVD aluminum- and cadmium-finished hardware as shown in Table 25.

The best results were obtained using EM-6286. Differences were less than three percent for the first five installations and no more than 11 percent for the 15 cycles.

Figure 35. Use of Spacers to Compensate for Bolt Length

TABLE 24. AXIAL LOAD (POUNDS) GENERATED IN 3/4 INCH DIAMETER WHEEL TIE-BOLTS BY 2,100 INCH-POUNDS OF TORQUE.

inst'i	Cd Bon ^a	IVD AI Bott ^a	Percent Change	IVD Al Bok [®]	Percent Change
Cycle	and Cd Nut	and IVD AI Nut	From Cd-Cd Baseline	and Cd Nut	From Cd-Cd Bazeline
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	39,543 39,310 39,083 40,023 40,326 42,627 42,200 43,053 42,960 43,740 44,937 44,660 44,323 43,887 43,123	33,800 35,270 33,837 35,240 35,537 36,423 36,460 36,280 37,080 36,847 37,200 37,903 37,373 36,880 38,137	-14.5 -10.3 -13.4 -12.0 -11.9 -14.6 -13.6 -15.7 -15.8 -17.2 -15.1 -15.7 -16.0 -11.6	40,310 42,657 42,657 42,463 42,463 42,097 43,437 44,617 44,370 44,467 43,287 43,050 42,860 43,653 43,667 43,937	+1.9 +8.5 +8.8 +6.1 +4.4 +1.9 +5.7 +3.1 +3.5 -1.0 -4.0 -4.2 -1.5 +0.5 +1.9

a Bott and nut lubricated with C-801-S synthetic graphite before each installation.

TABLE 25. EFFECT ON AXIAL LOAD (POUNDS) GENERATED IN 3/4 INCH
DIAMETER WHEEL TIE-BOLTS BY 2,100 INCH-POUNDS OF
TORQUE WHEN SUPPLEMENTAL LUBRICANT IS APPLIED TO
IVD ALUMINUM-COATED NUT.

inst'i Cycle	Cd Bolt ^a and Cd Nut	RVD AI Bon [®] and IVD AI Nut			Percent Change From C4-C4 Basoline		
1	39,543	31,850 ^b	36,840°	40,070 d	-19.4 b	-6.8°	+1.36
2	39,310	37,630	37,080	39,160	-4.3	 €.7	G.4
3	39,083	36,590	37,320	38,580	-6.4	⊸4.5	-1.3
4	40,023	37,040	39,910	38,940	-7. 5	-0.3	-2.7
5	40,326	38,920	33,690	39,350	-3.5	-16.5	-2.4
5 6 7	42.627	36,900	35,950	39,850	-13.4	-15.6	-6.5
7	42,200	36,520	36,310	39,600	-13.5	-14.0	-6.2
8	43.053	36,310	35,510	38,300	-15.7	-17.5	11.0
ğ	42.960	35,670	36.040	39,460	-14.6	-16.1	8.1
10	43,740	36,820	36,700	39,640	-15.8	-16.1	-6.4
11	44,937	36,280	37.480	39,990	-19.3	-16.6	-11.0
12	44,650	35.870	37.010	39,980	-19.7	-17.1	-10.5
13	44,323	35,760	36.890	40,340	-19.3	-16.8	-0.0
14	43,881	34,900	38,670	39,540	-20.5	-11.9	-0.0
15	43,123	33,840	37,210	40,640	-21.5	-13.7	-5.6

- a Bolt and nut lubricated with C-601-S synthetic graphite before each installation.
- b Nut lubricated with Evertube 1346 dry-film lubricant before application of C-601-S.
- e. Nut lubricated with EM-6256 dry-film lubricant before application of C-601-S.
- d Nut sub-losted with EM-6286 dry-film sub-losns before application of C-801-8.

The torque-tension comparison for the four bolt finish - nut finish - lubricant combinations described above are plotted in Figure 36.

Figure 36. Axial Load Generated in 3/4 Inch Diameter Wheel Tie-Bolt by 2,100 -- fach Feunds of Torque.

b. For the 5/8-inch diameter hardware

The torque-tension comparisons generated for the 5/8-inch diameter tie-bolt show that the load generated by a torque of 1620 inch-pounds decreases for the IVD aluminum-coated hardware by 10-27 percent in relation to the cadmium-plated hardware (Table 26). The decrease generally drops below 20 percent after the second cycle.

TABLE 26. AXIAL LOAD (POUNDS) GENERATED IN 5/8 INCH DIAMETER WHEEL TIE-BOLTS BY 1,620 INCH-POUNDS OF TORQUE.

Inst'i Cycle	Cd Bolt ^a and Cd Nut	IVD At Bott® and IVD At Nut	Percent Change From Cd-Cd Baseline	ND AI Belt and Cd Nut	Percent Change From Cd-Cu Baseline
1	35,390	25,767	27.2	38,214	+8.0
2	33,693	26,213	22.2	34,983	+3.8
2	33,213	27,883	16.0	34,693	+4.5
	34,093	28,730	15.7	35.017	+2.7
4 5 6 7	34,230	28,893	15.6	35,330	+3.2
6	34,057	29,847	12.4	3 5,033	+2.9
7	34,580	27,533	20.4	34,813	+0.7
	34,477	28,170	18.3	35,477	+2.9
8	34,357	28,907	15.9	35,090	+2.1
10	34,080	28,903	15.2	35,333	+3.7
11	32,910	29,437	10.6	35,600	+8.2
12	32,790	28,977	11.6	35.767	+9.1
13	33,720	29,103	13.7	36,000	+6.7
14	32,790	29.327	10.6	35.943	+9.6
15	32,813	29,313	10.7	35,620	.3.6

a Bolt and nut lubricated with C-801-8 synthetic graphite before each installation.

The decrease transitioned to an increase in generated load when using a cadmium-plated nut with the IVD aluminum-coated bolt (Table 26) in relation to the cadmium baseline. Differences were less than 10 percent for all cycles and were within five percent for the second through the tenth cycle.

The use of a supplemental, dry-film lubricant on the IVD aluminum-coated nut prior to the application of MIL-T-5544 lessen the difference between IVD aluminum- and cadmium-finished hardware as shown in Table 27. The best results were obtained using EM-6256. Differences were less than five percent for the first four installation cycles and no more than 10 percent for the 15 cycles.

TABLE 27. EFFECT ON AXIAL LOAD (POUNDS) GENERATED IN 5/8 INCH DIAMETER WHEEL TIE-BOLTS BY 1,620 INCH-POUNDS OF TORQUE WHEN SUPPLEMENTAL LUBRICANT IS APPLIED TO IVD ALUMINUM-COATED NUT.

Inst'i Cycle	Cd Boit ^a and Cd Nut	WD Al Beit ^s and IVD Al Nut			Percent Change From Cd-Cd Baseline		
1	35,390	33,475 b	34,905°	34,615 ^d	-5.4	-1.4°	-2.2 ^t
2	3 3.693	32.115	32,455	31,410	-4.7	-3.7	-6.8
2 3	33.213	32,265	31.825	31,675	-2.9	-4.2	-4 .6
4	34.093	29,555	33,330	29,635	-13.3	-2.2	-13.1
5	34,230	30,475	32,060	29.025	-11.0	-6.3	-15.2
5 6 7	34.057	29,300	32,200	30,520	-14.0	-5.5	-10.4
7	34,580	29,455	30,980	30.810	-14.8	-10.4	-10.9
8	34,477	29,655	31,900	29,460	-14.0	-7.8	-14.6
9	34,357	29,200	31,530	29,940	-15.0	-8.2	-12.9
10	34,080	29,235	31,150	28,985	-14.2	-8 .6	-15.0
11	32.910	29.575	30.695	28,770	-10.1	-6.7	-12.6
12	32,790	28,900	30,950	29,075	-11.9	-5.5	-11.3
13	33,720	28,980	31,000	29,170	-14.0	-8.1	-13.5
14	32,790	28,575	30,315	28,830	-12.9	-7.5	-12.1
15	32.813	29,975	30,655	28,390	-8.6	-6.6	-13.5

- a Bolt and nut subricated with C-601-S synthetic graphite before each installation.
- b Nut lubricated with Everlube 1346 dry-film lubricant before application of C-801-S.
- e Nut lubricated with EM-6256 dry-film lubricant before application of C-601-S.
- d Nut lubricated with EM-6286 dry-film lubricant before application of C-601-S.

The torque-tension comparisons for the four bolt finish - nut finish - lubricant combinations described above are plotted in Figure 37.

Figure 37. Axial Load Generated In 5/8 Inch Diameter Wheel Tie-Bolt by 1,820 Inch-Pounds of Torque.

c. For the 9/16-inch diameter hardware

The torque-tension comparisons :generated for the 9/16-inch diameter tie-bolts show that the load generated by a torque of 1860 inch-pounds decreases for the IVD aluminum-coated hardware by 7-34 percent in relation to the vacuum cadmium-coated bolt and cadmium-plated nut (Table 28). The difference was less than 10 percent only in the first installation cycle.

TABLE 28. AXIAL LOAD (POUNDS) GENERATED IN 9/16 INCH DIAMETER WHEEL TIE-BOLTS BY 1,860 INCH-POUNDS OF TORQUE.

inst'i Cycle	Vac Cd Bolt* and Cd Nut	ND AI Soft ^a and IVD AI Nut	Percent Change From Cd-Cd Baseline	IVD AT Boll " and Cd Nut	Parcent Change From Cd-Cd Baseline
1	37,283	34,820	-6.6	39,910	+7.0
2	37.803	29,530	-21.8	40,700	♦7.7
2	39,000	27,190	-30.3	40,110	+2.8
4	39,803	30.450	-23.5	40.620	+2.1
5	41,230	31,340	-24.0	40.070	-2.8
5 6	42,317	29,740	-29.7	40,140	-6.1
7	42.567	29,500	-30.1	39,760	-6.6
8	42,173	29,430	-30.2	40,080	-5.0
9	42,270	29,540	-30.1	40,000	-5.4
10	42,407	29,800	-29.7	41,070	-3.2
11	43,887	29,580	-32.6	41,390	-6.7
12	44,570	29,170	-34.5	40,880	-8.3
13	43.820	29,200	-33.4	40.630	-7.3
14	44,467	29,360	-34.0	39,770	-10.6
15	44,353	29,550	-33.4	38,520	-13.2

a Bolt and nut lubricated with C-601-S synthetic graphite before each installation.

The decrease transitions to an increase in generated load for the first four cycles when using a cadmium-plated nut with the IVD aluminum-coated bolt (Table 28) in relation to the cadmium baseline. Differences were less than 10 percent for the first 13 cycles.

The torque-tension comparisons for the bolt finish - nut finish - lubricant combinations described above are plotted in Figure 38.

Figure 38. Axial Load Generated in 9/16 Inch Diameter Wheel Tie-Bolt by 1,860 Inch-Pounds of Torque.

d. For the 5/16-inch diameter hardware

The torque-tension comparisons generated for the 5/16-inch diameter tie-bolts show that the load generated by a torque of 250 inch-pounds is essentially the same for the IVD aluminum- and cadmium-finished hardware (Table 29).

TABLE 29. AXIAL LOAD (POUNDS) GENERATED IN 5/16 INCH DIAMETER WHEEL TIE-BOLTS BY 250 INCH-POUNDS OF TORQUE.

inst'i Cycle	Cd Bolt and Cd Nut	IVD AI Bott ^a and IVD AI Nut	Percent Change From Cd-Cd Bassline	IVD AI Bok ^a and Cd Nut	Percent Change Frem Cd-Cd Baseline
1	8,378	8,112	-3.2	9,267	+10.6
2	7,897	7,995	+1.2	9,086	415.1
2	8,177	8,585	♦5.0	8,524	+4.2
	8,229	8,897	+8.1	8,652	45.1
4 5 6	8,294	8,222	-0. s	8,742	♦5.4
Š	8,492	8,552	+0.7	9,011	46.1
7	8,543	8,750	+2.4	9,004	45.4
	8,773	8,840	+0.8	9,093	+3.6
Ď	8,571	8,823	+2.9	9,292	+8.4
10	8,885	8,748	-1.5	9,404	+5.8
11	8,720	8,729	40.1	9,328	+7.0
12	8,827	8,797	-0.3	9,614	+8.9
12 13	8,798	8,923	+1.4	9,691	+10.3
14	8,910	8,748	♦1.8	9,809	+10.1
15	8,757	8,813	+0.6	9,762	411.5

a. Bolt and nut lubricated with C-601-S synthetic graphite before each installation.

The use of a cadmium-plated nut with the IVD aluminum-coated bolt increased the load generated in the IVD aluminum-coated bolt in relation to the cadmium baseline (Table 29). The increase is generally within 11 percent for 14 of the 15 installation cycles.

The use of a supplemental, dry film lubricant on the IVD aluminum-coated nut prior to application of MIL-T-5544 also increased the load generated in the IVD aluminum-coated bolt in relation to cadmium baseline (Table 30). The differences were generally less than 10 percent. The best results were obtained using Everlube 1346. Differences were less than seven percent for all 15 cycles.

TABLE 30. EFFECT ON AXIAL LOAD (POUNDS) GENERATED IN 5/16 INCH DIAMETER WHEEL TIE-BOLTS BY 250 INCH-POUNDS OF TORQUE WHEN SUPPLEMENTAL LUBRICANT IS APPLIED TO IVD ALUMINUM-COATED NUT.

inst'i Cycle	Cd Bolt ^a and Cd Nut	8	ND AI Bolt ^o md IVD AI Nu	t	Percent Change Fram Cd-Cd Baseline			
1	8,378	8,1925	9,518°	9,332 ^d	2.2 b	+13.6°	+11.4 ^d	
2	7,8 97	8,373	8,806	8,542	+6.0	411.5	48.2	
2	8,177	8,540	8,617	8,440	+4.4	+5.4	+3.2	
4	8,229	8,598	8,772	8,851	44.5	+6.6	∻7.6	
5	8,294	8,429	8,461	8,774	+1.6	+2.0	+5.6	
5 6	8,492	8,624	8,556	8,974	+1.6	₩.8	+5.7	
7	8,543	9,102	6,977	9,199	+6.5	+5.1	+7.7	
8	8,773	8,966	9,046	9.202	+2.2	43.1	44.9	
8	8,571	8,990	8,985	9,328	+4.9	+4.8	+8.8	
10	8,885	8,956	9,178	9,518	+0.8	+3.3	+7.1	
ii	8,720	9,250	9,128	9,538	46.1	44.7	+9.4	
12	8.827	9,118	9,180	9,634	+3.3	44.0	+9.1	
13	8,798	9,180	9,299	9,509	+4.3	+5.7	+7.3	
14	8,910	9,462	9,374	9,734	+6.2	+5.2	+9.2	
15	8,757	9,120	9,087	9,878	44.1	+3.8	+12.8	

a Bolt and nut lubricated with C-801-S synthetic graphite before each installation.

b Nut boricated with Everlube 1345 (by firm bubricant before application of C-601-9.

c. Nut lubricated with EM-6256 dry-film lubricant before application of C-601-8.

d Nut lubricated with EM-6295 dry-film lubricant before application of C-601-8.

The torque-tension comparisons for the four bolt finish - nut finish - lubricant combinations described above are plotted in Figure 39.

Figure 39. Axial Load Generated in 5/16 Inch Diameter Wheel Tie-Bolt by 250 Inch-Pounds of Torque.

3. Engine Bolt Torque-Tension Data

MCAIR coordinated a test program with the OC-ALC (References 15, 16, 17) in which torque-tension comparisons were established for the following TF30 engine hardware:

- o The OC-ALC/MMPRA (D. L. Evans) supplied MS9209-13 diffused nickel-cadmium plated bolts and Pratt & Whitney (P&W) 564706 cadmium-plated nuts that are used on the TF30 assembly. The 1/4-inch diameter hardware is lubricated w*h MIL-L-23699 engine oil before installation.
- o MCAIR obtained MS9210-25 diffused nickel-cadmium plated bolts and P&W 767709 cadmium-plated nuts to repeat a P&W test (Reference 10). The P&W test showed significantly lower loads developed with the IVD

aluminum-coated hardware in relation to diffused nickel-cadmium plated bolt and cadmium-plated nut hardware combinations at similar torque values. P&W tested the 5/16-inch diameter hardware lubricated with MIL-L-23699 engine oil.

MCAIR removed the diffused nickel-cadmium and cadmium platings from half of the hardware. These nuts and bolts were then coated with an IVD aluminum, Class 3, Type II coating per MIL-C-83488 to meet the design requirement for thickness which is 0.0003-0.0005 inches. Descriptions of the bolt and nut are shown in Tables 31 and 32, respectively.

TABLE 31. DESCRIPTION OF TF30 ENGINE BOLTS.

Bolt Description	Bolt	Thread Size	Bolt Length		Corrosion Preventive Finish		
	Designation ,	and Description	Grip (in.)	Total (in.)	Cedmium	IVD Aluminum	
Machine-Steel, AMS 6304, Diffused Nickel-Cadmium Plated, Double Hexagon Extended Washer Head, 0.3125-24 UNJF-3A	MS9210-25	0.3125-24 UNJF-3A	0.940 —	1.875	Diffused Nickel- Cadmium Plate Per AMS 2416	Class 3, Type II, Per MiL-C-83488	
Machine-Steel, AMS 6304, Diffused Nickel-Cadmium Plated, Double Hexagon Extended Washer Head, 0.250-28 UNJF-3A	MS9209-13	0.2500-28 UNJF-3A	0.128 0.188	0.938	Diffused Nickel- Cadmium Piste Per AMS 2416	Class 3, Type II, Per MIL-C-83488	

TABLE 32. DESCRIPTION OF TF30 ENGINE NUTS.

Nut Description	Nut	Thread Size	Nut	Corrosion Proventive Finish		
	Designation	and Description	Height	Cedmium	IVD Aluminum	
Flexioc, Tension, Double Hexagon, Flanged, Self- Locking, Alloy Steel, 180 ksi, 450°F Lightweight	42FLW-524 (SPS Yech)	0.3125-24 UNJF-3B	0.363	Plate Per QQ-P-416, Type I, Class 3	Class 3, Type ii, Per MiL-C-83488	
Double Hexagon, Self- Locking, Alky Steel	564706 (P&W)	0.2500-28 UNJF-3B	0.363	Plate Per QQ-P-416, Type II, Class 2	Class 3, Type II, Per MIL-C-83489	

The torque-tension data was generated by holding the bolt head fixed and rotating the nut. The test set-up was the same as that described for Figure 32 except a GSE, Inc. Model FT-250 Fastener Force Transducer was used for the 1/4-inch diameter hardware and a Model FT-312 was used for the 5/16-inch diameter hardware. The same transducers were used, and their calibration was verified to be correct, throughout the evaluation.

a. For TF-30 engine hardware

ĕ,

MCAIR generated torque-tension data for six-sets of MS9209-13 bolts and PAW 564706 nuts with the following bolt finish - nut finish - lubricant combinations:

- Three-set's had the bolts and nuts coated with IVD aluminum and were lubricated with MIL-L-23699 engine oil.
- o Three-sets had the bolts plated with diffused mickel-cadmium and the nuts plated with cadmium and were lubricated with MIL-L-23699 engine oil.

A thin film of engine oil lubricant was brush applied to the threaded areas of the nuts and bolts. The lubricant was removed and reapplied between each installation. The data generated for each set of fasteners is located in Appendix C. and consists of the same information outlined for Figure 33 except:

- O Running torque (loading cycle), breakaway torque, and running torque (removal cycle) were measured on the first and fifth loading/removal cycles.
- O Torque-tension relationship this relationship was established by recording the tensile loads generated by 65 and 85 inch-pounds of torque which is the normal installation range. The tensile load generated

by 85 inch-pounds of torque was measured for five cycles. The tensile load generated by 65 inch-pounds of torque was recorded for the first and fifth installation cycles.

The torque-tension comparisons generated during this test (Table 33) show that the lubricated IVD aluminum-coated hardware was actually more highly loaded by both 65 and 85 inch-pounds of torque during the first two installation cycles than was the diffused nickel-cadmium plated bolt — cadmium plated nut combination. The torque-tension relationship transitioned during the second, third, and fourth cycles from being slightly more lubricious with IVD aluminum plus oil to being slightly more lubricious with diffused nickel-cadmium and cadmium plus oil. The load generated in the IVD aluminum-coated hardware ranges from 41 percent higher to 13 percent lower using the load generated in diffused nickel-cadmium plated hardware as the baseline. The items to be considered include:

- o The higher load generated by 85 inch-pounds of torque for the IVD aluminum-coated condition during the first installation cycle does not "overload" the fastener. The average generated load of 2493 pounds is only 33 percent of the ultimate strength of the bolt.
- The total "scatter" between the highest and lowest IVD aluminum loads and the highest and lowest diffused nickel-cadmium loads is only 14 percent at the high end and 6 percent at the low end. In other words, the highest loaded IVD aluminum cycle (first) produces a 14 percent improvement over the highest loaded diffused nickel-cadmium cycle (fourth) while the lowest IVD aluminum cycle (fifth) produces a 6 percent improvement over the lowest loaded diffused nickel-cadmium cycle (first). See Figure 40.

b. For repeat of test

MCAIR generated torque-tension data for 14-sets of MS9210-25 bolts and SPS 42FLW-524 nuts with the following bolt finish - nut finish - lubricant combinations to repeat the PAW test (Reference 10):

TABLE 33. COMPARISON OF LOADS GENERATED FOR IVD ALUMINUM-COATED AND DIFFUSED NICKEL-CADMIUM PLATED HARDWARE LUBRICATED WITH OIL:

MS9209-13 BOLTS AND P&W 564706 NUTS.

installation Cycle		i (lb) Generated lb) of Torque	Percent Change From Cadmium ^a Baseline
	Cadmium	IVD Aluminum ^b	·
1 5	1109 1560	1785 1476	481 5
		d (ib) Generated L-lb) of Torque	
1	1767	2493	441
2	1899	2090	+10
3	2017 1919		- -5
4	2178 1896		-13
5	2142	1679	-12

a. Cadmium indicates a diffused nickel-cadmium plated bolt and a cadmium plated nut.

Figure 40. Tensile Load Generated by 85 inch-Pounds of Torque: MS9209-13 Bolts – P&W 564706 Nuts.

b IVD aluminum indicates an IVD aluminum coated bolt and nut.

- o Six-sets had the bolts and nuts finished with IVD aluminum. Three sets were lubricated with MIL-L-23699 engine oil. The other three-sets were not lubricated.
- o Six-sets had the bolts finished with diffused nickel-cadmium and the nuts with cadmium. Three sets were lubricated with MIL-L-23699 engine oil. The other three-sets were not lubricated.
- o Two-sets had the bolts finished with IVD aluminum and the nuts finished with cadmium. One set was lubricated with MIL-L-23699 engine oil. The other set was not lubricated.

For the lubricated hardware, a thin film of engine oil was brush applied to the threaded areas of the nuts and bolts. The lubricant was removed and reapplied between each installation. The data generated for each set of fasteners is located in Appendix C and consists of the same information outlined for Figure 33 except:

- o Running torque (loading cycle), breakaway torque, and running torque (removal cycle) were recorded on the first and fifth loading/removal cycles (first only for non-lubricated hardware).
- o Torque-tension relationship The tensile load generated by 100, 200, and 300 inch-pounds of torque was measured for five installation cycles (one cycle only for non-lubricated hardware) which was a repeat of the PaW test procedure (Reference 10).

The torque-tension comparisons (Table 34) generated during this test show a decrease in axial load generated by the lubricated IVD aluminum-coated hardware in relation to the lubricated diffused nickel-cadmium baseline. The decrease, however, is in the area of 20 percent and may fall into an acceptable installation range. In contrast, the PAW data showed decreases in the amount of load generated by aluminum-coated hardware in the area of 70 percent.

TABLE 34. COMPARISON OF AXIAL LOADS GENERATED FOR IVD ALUMINUM COATED AND DIFFUSED NICKEL-CADMIUM - CADMIUM PLATED HARDWARE LUBRICATED WITH OIL: MS9210-25 BOLTS AND SPS 42FLW-524 NUTS.

installation Cycle		i (ib) Generated L-lb) of Torque	Percent Decrease From Cadmium ⁸ Baseline
	Cadmlum ⁶	IVD Aluminum	
1 5	2452 2017	2013 1571	17.9 22.1
:		i (ib) Generated 1ib) of Torque	
,	Cadmium [®]	IVD Aluminumb]
1 5	5465 4039	4506 3370	17.5 16.6
		d (lb) Generated nlb) of Torque	
	Cadmium	IVD Aluminumb	
1 5	8269 6300	6366 4795	23.0 25.0

a. Cadmium indicates a diffused nictiel-cadmium plated bott and a cadmium plated nut.

Figure 41 shows the original data generated by P&W plotted against the newly generated MCAIR data. The P&W data was unique in that it is the only entry in the MCAIR test data library that shows such wide differences in torque-tension characteristics between IVD aluminum and cadmium when using lubrication.

The value of lubricating IVD aluminum-coated hardware is exemplified by comparing the decrease in generated loads when comparing non-lubricated IVD aluminum to non-lubricated diffused nickel-cadmium. In this situation, there is a decrease in generated load of 50 percent and more (Table 35) with IVD aluminum.

b IVD aluminum indic-ties an IVD aluminum coaled bolt and nut.

Figure 41. Comparison of Torque vs Axial Load for Data Generated by P&W and by MCAIR for Diffused Nickel-Cadmium and IVD Aluminum-Finished Hardware.

TABLE 35. COMPARISON OF AXIAL LOADS GENERATED FOR VARIOUS
BOLT FINISH - NUT FINISH COMBINATIONS THAT ARE NOT
LUBRICATED WITH OIL: MS9210-25 BOLTS AND
SPS 42FLW-524 NUTS.

Torque (inlb)		(ial Load (ib) Gene by 100 intb of To	Percent Decrease From Cadmium ^s Baseline			
	Cq-Cqa	IVD AI-IVD AI ^b	IVD AI-Cdc	MD AHVD AI	IVD Al-Cd°	
100 200 300	2,919 6,353 9,091	1,107 2,005 4,719	2,876 5,529 7,886	62.1 68.4 48.1	1.5 14.9 13.2	

a Cd-Cd indicates a diffused nickel-cadmium plated bolt and a cadmium plated nut.

b IVD ALIVD Al Indicates an IVD aluminum coated bolt and nut.

c IVD AI-Cd indicates an IVD aluminum-coated built and a cadmium-plated nut.

MCAIR projects that the combination of IVD aluminum-coated bolts and cadmium-plated nuts is a probability at most of the ALCs for reasons stated earlier in this section. The torque-tension data for this combination is snown in Table 36. It shows a decrease in the axial load generated in the IVD aluminum-coated bolt in the first cycle. This transitions to a substantial increase in axial load generated in the fifth cycle.

TABLE 36. COMPARISON OF AXIAL LOADS GENERATED FOR IVD ALUMINUM-COATED BOLT – CADMIUM-PLATED NUT AND DIFFUSED NICKEL-CADMIUM-PLATED BOLT – CADMIUM-PLATED NUT WHEN LUBRICATED WITH OIL: MS9210-25 BOLTS AND SPS 42FLW-524 NUTS.

Installation ^a Cycle		i (ib) Generated ib of Torque	Percent Change From Cd-Cd Baseline
	Cq-Cq _p	IVD AI-Cd	
1 5	2,452 2,017	2,624 3,091	+7.0 +53.2
	by 2 00 In	lb of Torque	
	Cq-Cq	IVD AI-Cd	:
1 5	5,465 4,039	5,145 6,080	-5.9 +50.5
	by 300 in	lb of Torque	
	Cd-Cd	IVD AI-Cd	
1	8,269	8,785	+8.2
5	8,638	8,933	+3.4
3	7,666	9,678	+26.2
4	6,987	9,189	+31.5
5	6,300	8,592	+36.0

e. All bolts and nuts subricated with MIL-L-23600 engine oil

D. SUPPORTING TORQUE/TENSION DATA

The following torque-tension data was compiled during Phase I of this program (Reference 1).

MCAIR stated in Reference 1 that aluminum has a higher coefficient of friction than cadmium. Therefore, a higher torque is required to install aluminum-coated fasteners to a given tension preload than if the fastener was

b Od-Cd indicates a diffused nichel-oadmium plated bolt and cadmium-plated nut.

s: IVD AI-Cd indicates an IVD aluminum-coated bolt and cadmium-plated nut.

cadmium plated. It was also reported that the use of a lubricant on the aluminum-coated fastener and/or nut, however, eliminates or greatly reduces torque-tension differences. This section of supporting data compares torque-tension values for IVD aluminum, cadmium, and diffused nickel-cadmium finished fasteners with and without the use of lubricants.

SPS Technologies (Reference 18) generated torque-tension data for IVD aluminum-coated and cadmium-plated alloy steel hardware; H-11 EBW22-4-22 bolts and F22 locknuts. When both the bolt and nut were coated with IVD aluminum, approximately 60 percent more torque was needed to produce a 2000 pound tension load then when both were cadmium-plated. Using a cadmium-plated nut with the IVD aluminum-coated bolt reduced the difference to approximately 15 percent. When the IVD-coated nuts and bolts were lubricated with cetyl alcohol, the torque for a given induced tension load was actually 70 percent less than if the nut and bolt were cadmium-plated. In this test, therefore, the effect of the lower lubricity of the IVD aluminum coating was more than offset by the addition of a lubricant.

MCAIR compiled data from two series of torque-tension tests (Reference 19) conducted during formal qualification of IVD aluminum as an acceptable alternative to cadmium. In the first series of tests, the initial torque required to develop a 1200-pound tension load in 3/16-inch diameter nonlubricated, IVD aluminum-coated or cadmium-plated bolts was measured for various nut configurations. The relative torque differences, based on an average of 8 tests for each condition, are as follows:

- O An 8 percent higher torque was required using IVD aluminum versus cadmium when the torque was applied to cadmium-plated, nonlocking, nonlubricated nuts.
- o An 8 percent higher torque was required using IVD aluminum versus cadmium when the torque was applied to cadmium-plated, dry-film-lubricated, self-locking nuts.

- O The same torque was required using IVD aluminum- and cadmium-finished bolts when the torque was applied to the bolts with cadmium-plated, dry-film-lubricated, self-locking nuts.
- O A 36 percent higher torque was required using IVD aluminum versus cadmium when the torque was applied to the bolts with cadmium-plated, dry-film-lubricated, self-locking gang channel nuts.

In the second series of tests, the initial torque required to induce a specific tension load in 3/16-inch diameter. IVD aluminum-coated or cadmium-plated bolts was measured. Some of the bolts were lubricated and the torque was applied to cadmium-plated, dry-film-lubricated, self-locking nuts. The test results are as follow:

o A 10 percent higher torque was required using IVD aluminum versus cadmium to attain a 560-pound load in a nonlubricated bolt.

1

7.

- o An 8 percent higher torque was required using IVD aluminum versus cadmium to attain a 560-pound load in a lubricated bolt.
- o The torques required using IVD aluminum and cadmium finishes were approximately the same to attain a 2000-pound load in a lubricated bolt.

Boeing conducted torque-tension tests comparing IVD aluminum and diffused nickel-cadmium on nonlubricated H-11 steel bolts (Reference 11). The bolts were loaded to 50 percent of their yield strength. The torque-tension curves produced using the IVD aluminum finish were nearly identical to those produced using diffused nickel-cadmium.

The Hi-Shear Company also evaluated torque-tension using IVD aluminum and diffused nickel-cadmium on lubricated H-11 pin and collar type fasteners (Reference 12). They reported that torque-tension was essentially unaffected by any differences in the two finishes.

In contrast however, PaW reported that a considerably higher torque was required with IVD aluminum in comparison to diffused nickel-cadmium (Reference 10). Axial load versus applied torque for 30 bolts (MS9210-21) finished with IVD aluminum and diffused nickel-cadmium was evaluated. The effect on engine oil on the bolts was also measured since it was common practice to dip the bolt in oil before assembly. In all cases, the IVD aluminum-finished bolts required a higher torque to produce the same axial load than did the diffused nickel-cadmium-finished bolts. For example, the diffused nickel-cadmium finished bolt was torqued to 70 inch-pounds to produce a load of 1000 pounds while the aluminum-finished bolt required 168 inch-pounds. MCAIR repeated this test earlier in this section and reported torque-tension differences of about 20 percent between IVD aluminum and diffused nickel-cadmium.

A review of production operations involving the use of IVD aluminum as a replacement for cadmium on fasteners verifies the relative ease that such a changeover can be accomplished for most applications. Some of these operations have been ongoing for the past 14 years. For the most part, they have been accomplished with no more than the use of a lubricant and without significant changes to installation procedures or tools.

E. DISCUSSION

MCAIR generated a significant fastener installation databank by recording torque-tension and other installation characteristics for 174 sets of hardware with various bolt finish - nut finish - lubricant combinations. This activity was directed at wheel tie-bolts and threaded engine hardware. These applications were identified as being areas of concern when replacing cadmium processing with IVD aluminum at the ALCs.

Torque-tension data was generated to:

Establish a baseline for the cadmium finishes and lubricants now in use at the ALCs.

- o Directly compare IVD aluminum-coated bolts and nuts to the cadmium-plated baseline.
- o Directly compare the combination of IVD aluminum-coated bolts and cadmium-plated nuts to the cadmium-plated baseline.
- c Establish procedures/lubricants which will lessen the basic difference between IVD aluminum and cadmium without impacting existing ALC procedures.

1. Wheel-Tie Bolts

MCAIR conducted evaluations on generic wheel tie-bolts first. This study established a baseline for cadmium-plated hardware with synthetic graphite - petrolatum lubrication per MIL-T-5544 which is now in use at the ALCs. The study also indicated that the use of MIL-T-5544 and MIL-T-83483 lubrications produced the best results of the various lubricants tested for cadmium-plated hardware. MIL-T-83483 is allowed as an optional lubricant for some wheel tie-bolts but its use is minimal in comparison to MIL-T-5544 at the ALCs. Therefore, the baseline for the actual cadmium-plated wheel tie-bolts was also established with MIL-T-5544.

Direct comparisons between IVD aluminum— and cadmium—finished wheel tie-bolts lubricated with MIL—T-5544 established that more torque is required to generate a specific load in the IVD aluminum—coated hardware. The difference is generally most pronounced for the first installation or two and is in the general area of 20 percent. This difference lessens with installations as the IVD aluminum coating is "broken in". There was no indication of galling or seizing during the 15-cycle installation. In fact, the IVD aluminum—coated hardware trended to be more lubricious with usage. A "break-in" installation cycle or two would be advantageous providing the hardware is lubricated for each installation.

The combination of IVD aluminum-coated bolts and cadmium-plated nuts compared very favorably in all cases with the cadmium-finished baseline for both the generic evaluation and testing of actual wheel tie-bolt hardware.

This combination is the most probable at the ALCs. Nuts are usually scrapped during a maintenance overhaul for both economical and functional reasons. New nuts that are then used with the refurbished bolts are vendor supplied with a cadmium finish. There are no current plans to change the finish on vendor-supplied hardware.

The use of a supplemental dry-film lubricant applied to the IVD aluminum-coated nut prior to application of MIL-T-5544 synthetic graphite difference between hardware lessens aluminum-coated cadmium-finished baseline. The effect of the dry-film supplemental lubricant is the most pronounced during the first several installations before it begins to wear. Once worn, this combination basically tracks the results of IVD aluminum coating without supplemental dry-film. The benefit during the first several installation cycles is significant in that the most difference between IVD aluminum and cadmium otherwise occurs in the first several cycles. The use of a supplemental lubricant on IVD aluminum-coated nuts should have little impact on the ALCs as lubricated nuts would be vendor supplied. A finish change to IVD for vendor-supplied hardware would include a requirement for the dry film lubricant.

2. Engine Bolts

The torque-tension baseline for the threaded engine hardware was established for the actual ALC practice; namely, diffused nickel-cadmium plated bolts and cadmium-plated nuts lubricated with MIL-L-23699 engine oil.

Direct comparisons between IVD aluminum-coated and the cadmium baseline produced mixed results. The IVD-coated hardware was more highly loaded during the first few installation cycles for the MS9209-13 bolts and Paw 564706 nuts. The cadmium-finished hardware was more highly loaded for the

MS9210-25 bolts and SPS 42FLW-524 nuts. Toroue-tension characteristics for both aluminum and cadmium varied significantly during a five-cycle evaluation. There was more consistency with IVD aluminum as generated loads dropped for subsequent installations during both tests. Generated loads for cadmium increase in one test and decrease in the other. There was little difference between aluminum and cadmium when their perspective highs and lows were compared.

The use of a cadmium-plated nut with the IVD aluminum-coated bolt resulted in significantly sigher loads generated in the IVD aluminum - cadmium combinations when comparing relative installation cycles. This difference once again was greatly reduced when comparing perspective highest loads.

MCAIR suggests that the only significant concern may be with the use of a combination consisting of an IVD aluminum-coated bolt and nut with no lubrication. Even without lubrication, the difference is greatly alleviated with the use of a cadmium-plated nut.

F. CONCLUSION

MCAIR concludes that both wheel tie-bolts and engine bolts can be refurbished by the ALCs with IVD aluminum in place of both cadmium and diffused nickel-cadmium without torque-tension concerns when used with either cadmium-plated or IVD aluminum-coated nuts and existing ALC lubricants.

MCAIR suggests, however, that in the event of concern, the ALCs may want to consider the use of a supplemental dry-film lubricant plus the standard MIL-T-5544 lubricant on the nuts when using IVD aluminum-coated wheel tie-bolts and nuts.

SECTION V

EROSION RESISTANCE CHARACTERISTICS

A. PROBLEM

IVD aluminum is relatively soft, as is cadmium. Neither is well suited for applications requiring a high degree of erosion resistance. Diffused nickel-cadmium is more erosion resistant than cadmium by itself and is commonly used by the ALCs on engine details. IVD aluminum can easily be applied thicker than what is normal for nickel-cadmium, and this advantage may result in comparable erosion resistance or even improved erosion/corrosion resistance. Thicker IVD aluminum coatings may not always be possible, however, because of tolerance limitations. Therefore, an improvement in erosion resistance is desired when there is a requirement to use thinner IVD aluminum coatings.

B. SOLUTION/APPROACH

Preliminary erosion resistance testing of an IVD aluminum basecoat enhanced by an erosion resistant topcoat was encouraging. It is proposed that this work be continued. Work by Chromalloy Compressor Technologies, for example, demonstrated the erosion-resistant characteristics of an IVD aluminum basecoat with their specially formulated conversion topcoat (Reference 20). Although the comparison was not with a cadmium process, it does indicate the potential for such combination coatings.

Another area that may be investigated is the erosion resistance of various aluminum alloys applied by the IVD process. An aluminum alloy different than the soft, basically pure, 1100 aluminum alloy that is normally used may well provide improved crossion resistance.

C. DATA

MCAIR initially generated comparative erosion resistance data between IVD aluminum coating and diffused nickel-cadmium. After establishing baselines with these two protective finishes, MCAIR evaluated the effect of different sealcoats/topcoats, additional aluminum alloys as the IVD evaporant, as well as ceramic-metallic paint-type coatings in relation to the baseline values.

The various finishes were applied to 4-inch by 6-inch alloy steel panels. All of the comparative data was generated by glass bead peening. BT-10 glass beads were used at peen pressures of 40 and/or 60 psi. The peener nozzle was held six-inches above the finished panel in such a manner as to provide a 90-degree-impingement angle. The erosion resistance test stand is shown in Figure 42.

Figure 42. Erosion Resistance Test Stand.

Erosion rates are based on the first indication of penetration through the protective finish to the substrate. It is noteworthy to mention that the failure mode for IVD aluminum coatings generally consisted only of a small void(s) within the erosion pattern area in the coating. The remaining aluminum coating in the pattern area was generally 0.0001-0.0003 inch which would still offer corrosion- and erosion-resistance protection. Diffused nickel-cadmium, on the other hand, eroded more evenly with virtually no protective finish remaining in the erosion-pattern area.

Erosion-resistance baselines are shown in Table 37 for IVD aluminum coating using 1100 aluminum and for diffused nickel-cadmium. The 1100 alloy aluminum wire is the standard evaporant used with the IVD process and is 99 percent pure aluminum at a minimum. The baseline data indicates that the erosion rate for 1100 alloy IVD aluminum coating is 3.5-4.0 times faster than that for diffused nickel-cadmium.

TABLE 37. EROSION RESISTANCE BASELINE:
IVD ALUMINUM AND DIFFUSED
NICKEL-CADMIUM.

	Erosion Hate (mile per second)					
Protective Finish	40 pei	60 psl				
IVD Aluminum	0.0048	0.0087				
Diffused Nickel-Cadmium	0.0012	0.0025				

These differences can be readily offset for most applications involving refurbished engine details with a thicker IVD aluminum coating that can be easily applied without functional degradation.

MCAIR, however, did evaluate the effect of various sealcoats/topcoats and aluminum-alloy evaporants for those applications where coating thickness may

be a factor. The best results were obtained with an aluminum-alloy evaporant that contained 12-percent silicon. This finish, which can be deposited with standard IVD aluminum coating equipment, showed an improvement of 40-percent over the standard 1100 aluminum alloy when peened at 40 PSI (Table 38).

TABLE 38. EROSION RESISTANCE COMPARISON OF ALUMINUM ALLOY EVAPORANTS.

Aluminum Alloy	Erosion Rate (mils per second)					
Evaporant	40 psi	60 psi				
1100 AJ *	0.0048	0.0087				
Al-6% \$1 b	0.0046	შ.0071				
Al-12% Sic	0.0029	0.0072				

- a. Alloy contains approximately 99% aluminum.
- b Alloy contains approximately 94% aluminum 6% elicon
- c Alby contains approximately 88% aluminum 12% allicon

Approximately 54 panels were tested with the various finishes shown in Table 39. Erosion-resistance data generated by MCAIR and also shown in Table 29 indicates that none of the finishes performed better than the IVD aluminum-baseline finish. Additionally, most of the Table 39 protection finishes resulted in thicknesses that may be too thick for applications where a thinner (0.005-0.007 inch) finish is desired.

The application of the Zylan 1010 topcoat did improve the erosion resistance of the IVD aluminum basecoat. Although the topcoat material itself was removed readily by the glass beads, Table 39 shows that the erosion rate of the sealed-aluminum basecoat was improved in relation to the Table 37 baseline rale at both 40 and 60 psi.

TABLE 39. EROSION RESISTANCE OF TOPCOATED IVD ALUMINUM AND METALLIC-CERAMIC TYPE COATING.

	Erosion Rate (mils/second) Based On							
Protective Finish	Total Coatin	g Thickness	IVD Aluminum Thickne					
	40 pai	60 pei	40 psi	60 psi				
Topcoated IVD Aluminum								
Whitford Corporation			1					
Xylan 1010	0.0066	0.0130	0.0028	0.0056				
Xylan 1331	0.0150	0.0355	0.0052	0.0132				
Xylan 1840	0.0067	0.0239	0.0035	0.0124				
Metallic-Ceramic Coatings								
Whitiord Corporation								
Xylar 1	1.4606	1.9000	ĺ					
Sermatech International, Inc.								
Semetel CR 962	0.0459	0.1600	j					
Semetel CR 984LT	0.4955	0.8571	1					
Sermatech XP 901213	0.0460	0.0574	1					
Coatings for Industry								
Aiseal 518	0.7415	0.7500						

D. SUPPORTING EROSION RESISTANCE DATA

Pratt & Whitney (P&W) compared the erosion resistance of 1VD aluminum and diffused nickel-cadmium finished compressor vanes by measuring the thickness of the two finishes after exposing the vanes to a liquid abrasive (Reference 21).

Erosion testing was performed at room temperature using a silicon exide abrasive at an impingement angle of 90 degrees for 1 minute intervals. The pressure was held at 80 psi at a target distance of six inches.

The IVD aluminum coating eroded faster than the diffused nickel-cadmium plating. Table 40 tabulates the results of the test.

TABLE 40. IVD ALUMINUM AND DIFFUSED NICKEL-CADMIUM FINISH THICKNESS AFTER ABRASIVE EXPOSURE.

		Thickness (mile)					
	Location	0 min		2 min			
IVD	A	1.0	0.9	0.2			
	В	1.7	1.6	1,5			
	Č	1.8	1.8	1.4			
	Ď	0.4	0.3	0			
	E	0.7	0.7	0.4			
	F	0.4	0.4	0.1			
	G	1.3	1.2	0.8			
	H	2.0	1.0	1.7			
	3	2.2	1.8	1.6			
NICd	A	0.3	0.2	0.2			
	В	0.5	0.5	0.5			
	Ċ	0.7	0.5	0.6			
	D	0.1	0.1	0			
	Ē	0.2	0.1	C.1			
	F	0.2	0.1	€0.1			
	G	0.5	0.3	0.5			
	H	0.7	0.7	0.6			
	j	0.6	0.7	0.6			

In other tests conducted by P&W (Reference 22), IVD aluminum with a standard chromate conversion coating was shown to erode faster than the combination coating of diffused nickel-cadmium. However, because the IVD aluminum coating was applied thicker (1.5 mils vs 0.7 mils), there was adequate IVD aluminum remaining at the conclusion of the test. importantly. IVD aluminum provided better protection to the substrate as the erosion process occurred. With diffused nickel-cadmium, the cadmium erodes very rapidly. leaving only the nickel coating which offers no anodic protection to the substrate. In fact, the Reference 22 testing by PAW showed IVD aluminum to be the best coating tested on 410-alloy steel. Specifically, IVD aluminum outperformed both diffused nickel-caddium and Emplate nickel-422/cadmium in an erosion/corrosion environment. This was true for IVD aluminum samples supplied both with and without a standard chromate conversion coating, and a sample supplied with a Chromalloy proprietary conversion coating.

E. DISCUSSION

The data generated by MCAIR once again verified that IVD aluminum is not as erosion resistant as diffused nickel-cadmium.

However, IVD aluminum can be functionally applied several times thicker than diffused nickel-cadmium. Aluminum coating can actually be applied to thicknesses of 0.0020-0.0030 without a build-up of stresses on the part edge. nickel-cadmium 15 usually limited to 0.0005-0.0007 Additionally, supporting data indicates that IVD aluminum is superior to diffused nickel-cadmium ni the critical of corrosion and areas erosion-corrosion resistance.

It should also be noted that the difference in erosion resistance between the two finishes was not expressed as a major ALC concern as were coverage of internal surfaces and torque-tension characteristics. In fact, the SA-ALC has concurrence from Allison to substitute aluminum for cadmium on non-threaded T-56 engine details (Reference 9).

Although the various topcoats/sealcoats evaluated by MCAIR did not improve erosion resistance, an IVD aluminum alloy evaporant containing 12 percent silicon did improve the baseline when subjected to a peen pressure of 40 psi.

There were some abnormalities in the data generated by MCAIR particularly in relation to existing data for the metallic ceramic paint-type coatings. It is recognized that these coatings are currently in use by the ALCS for engine applications, and that their use has OEM concurrence. It is also recognized that different abrasive medium, pressures, impingement angles, etc. all have different effects on erosion resistance of the various protection systems.

F. CONCLUSION

The erosion resistance difference between IVD aluminum and diffused nickel-cadmium finishes is minimized by the capability of applying a thicker finish with the IVD process.

Where finish thickness tolerance is critical, the use of an aluminum evaporant containing 12 percent silicon improves performance over the 1100 aluminum alloy evaporant.

SECTION VI

CONCLUSION

Phase I of this program reviewed detail parts processed with cadmium at the ALCs. It concluded that approximately 80 percent of the parts could be processed with IVD aluminum without concern and identified those parts for which there was some concern.

Phase II addressed those areas of concern. Both barrier— and sacraficial—type protection systems that can be used to supplement the use of IVD aluminum for applications involving internal surfaces are identified in this report. Torque—tension data generated for such ALC concerns as wheel tie—bolts and engine bolts can also be found in this report. The data indicates that these bolts can be refurbished with IVD aluminum by the ALCs with little to no concern. For applications that now require diffused nickel—cadmium for erosion resistance, it is suggested that a thick IVD aluminum coating (0.0015–0.0025 inch) be used to compensate for differences in erosion rates.

The contents of the Phase I database handbook (Reference 1) and of this report indicate that IVD aluminum can replace cadmium processing at the ALCs. Although this substitution may involve additional processing steps and/or minor functional degradation for a small percent of the ALC applications, MCAIR believes that the overall benefit far exceeds the few limitations.

IVD aluminum coating has successfully undergone extensive laboratory and in-service testing as a substitute for cadmium -- many of those tests results are documented in Reference 1. IVD aluminum is an excellent corrosion resistant finish which offers performance advantages over cadmium for most applications. Because the IVD aluminum operation is clean, simple, and mon-labor intensive, and because facility and space requirements are minimal and require no special pollution-related systems, it is a cost-competitive process. Cadmium costs are increasing because of environmental and health related laws and regulations. At the same time, IVD aluminum costs are decreasing because of productivity advances associated with its increased usage. Most importantly, aluminum is nontoxic, and the IVD process is environmentally clean.

MCAIR looks forward to the Phase III demonstration of the IVD aluminum process at the WR-ALC. It will be conducted with a state-of-the-art coating system procured during Phase II. It is projected that the Phase III demonstration will strongly support the elimination of hazardous waste producing cadmium processing at WR.

SECTION VII

PHASE III DEMONSTRATION

MCAIR will demonstrate the applicability of IVD aluminum at WR during Phase III of the program as an across-the-board replacement for all detail parts that are now processed by WR with cadmium.

MCAIR has proposed that a "hands-on" strategy be employed at the WR-ALC to implement the usage of IVD aluminum. "Hands-on" coordination with responsible departments was used successfully to implement the usage of the then new process at HCAIR. During Phase III:

- o Supplemental processing needs such as part preclean processing equipment, special coater hooks and fixtures to increase throughput, post-coat processing equipment, and supplemental processing equipment will be reviewed and coordinated with Industrial Engineering at WR.
- o Activities such as reviewing drawings/parts, defining coating thickness classes, identifying supplemental processing needs, and reviewing process specifications will be coordinated with WR Material Management.
- o Quality Assurance guidelines will be coordinated with WR by reviewing and defining acceptance performance requirements, test procedures and equipment needs.
- o WR Manufacturing will be assisted in demonstrating the feasibility of applying IVD aluminum to any and/or all WR detail parts that are now processed with cadmium over a four month period of time. This time period should provide adequate part selection, maximum training, and verification of coating conformance to MIL-C-83488. This effort will include establishment of coating procedure cards for individual detail parts to promote repeatability. Productivity gains attributable to the use of a state-of-the-art coater and special holding fixtures, like that designed for the C130 Propeller Hub, will also be established.

O Environmental compliance progress will be verified with WR Environmental Engineering.

MCAIR believes that the effort at WR will justify elimination of cadmium processing at that facility.

While it is planned to bring all of the ALCs together during the WR program, there are distinct divergencies of ALC responsibility as well as different "areas of concern" in substituting for cadmium. To address these areas, MCAIR also recommends that the other four ALCs be given some individual attention to help meet the ultimate goal of the elimination of cadmium processing at all of the ALCs.

MCAIR has proposed that applicable supplemental processing be reviewed with the other four ALCs. This effort would include recommendations for specific applications and a review of environmental compliance considerations. A program would also be coordinated with each of the other four ALCs in which procedures developed during Phase II of the program and/or those demonstrated at WR will be demonstrated on a minimum of five mutually acceptable detail parts for each of the ALCs. An acceptable demonstration site will be coordinated with each of the ALCs. This task will also include as much "hands-on" coordination as the budget allows.

REFERENCES

- 1. Holmes, V. L., Muchlberger, D. E., and Reilly, J. J., The Substitution of IVD Aluminum for Cadmium, MCAIR Report C87-101602, January 1989.
- Procurement Specification, <u>State-of-the-Art Six Foot Diameter by 12 Foot Long Ivadizer®</u>, McDonnell Aircraft Company, St. Louis, Missouri, 4 May 1989.
- 3. Engineering Drawing T-058974, <u>C-130 Barrel Hub Mounting Fixture</u>, HcDonnell Aircraft Company, St. Louis, Hissouri, 20 February 1990.
- Holmes, V. L., <u>Ion Vapor Deposited (IVD) Aluminum Coating Development</u>,
 MDC Report Q0885-11, McDonnell Aircraft Company, St. Louis, Missouri, 31 March 1987.
- 5. Wilson, B. C., Evaluation of a Repair Procedure for IVD Aluminum Coated Steel Parts, MCAIR TM 256.7281, McDonnell Aircraft Company, St. Louis, Missouri, 16 April 1982.
- 6. Malakelis, E., <u>Testing of High-Solids Topcoats</u>, MCAIR Technical Memo (TM) 256.88.0356.01, 18 November 1988.
- 7. Malakelis, E., <u>High-Solid Flat Gray Topcoats and NADC Flexible</u>
 <u>Primer/Topcoat</u>, MCAIR Technical Memo (TM) 256.89.0177.01, 12 June 1989.
- 8. Malakelis, E., Evaluation of Pratt and Lambert Powder Coating (Vitralon 88-1103, MCAIR Technical Memo (TM) 256.88.0005.01, 15 January 1988.
- 9. Leach, J. F. (Allison) to Elsasser, A. (SA-ALC), <u>Ion Vapor Deposition of Aluminum Coating on T56 Components</u>, Letter 88-AR-098, Allison Gas Turbine, Indianapolis, Indiana, 9 March 1988.

- 10. Fischer, R., <u>SVD Aluminum Coatings for Protection of Steel Turbine</u>

 <u>Components</u>, Report No. FR 9865, Pratt & Whitney Aircraft Group, Hartford,
 Connecticut.
- 11. McCann, T. J., <u>Evaluation of Aluminum Plating for Replacement of Cadmium Plating on Non-Aluminum Fasteners</u>, Report No. 06-47111, The Boeing Company, Renton, Washington, 1978.
- 12. Hi-Shear Corporation, <u>A Comparison of IVD Coating</u>.
- 13. Design Handbook for McDonnell Aircraft Company, Table 63, 1989.
- 14. Specification, <u>Carbowax Treatment</u>, SP-P-1520, SPS Technologies, Jenkintown, PA.
- 15. Holmes, V. L. (MCAIR), to Nguyen, L., (OC-ALC/MAENP), Torque/Tension Concerns and Test Parts from OC-ALC for Phase II of ECAG Contract, C87-101602, "Demonstration of Ion Vapor Deposited Aluminum", Letter 0029/84-86, McDonnell Aircraft Company, St. 10uis, Missouri, 17 July 1989.
- 16. Reilly, J. J. (MCAIR), to Evans, D. L., (OC-ALC/MMPRA), <u>Letter 1594G</u>, McDonnell Aircraft Company, St. Louis, Missouri, 30 October 1989.
- 17. OC-ALC/MMPRA (Evans, D. L.) to MCAIR (Holmes, V. L.), <u>Torque/Tension</u>
 <u>Concerns of IVD Aluminum</u>, OC-ALC Letter, Oklahoma City, Oklahoma, 20
 December 1989.
- 18. Leister, T. C., <u>Evaluation of Ion-Vapor-Deposition (IVD) Coater on Fasteners</u>, SPS Laboratories Report No. 6237, Philadelphia, Pennsylvania, September 1983.
- 19. Paleen M. J., <u>Summary of Tests on Ivadizer Aluminum Coated Fasteners</u>, MDC Report A5517, McJonnell Aircraft Company, St. Louis, Nissouri.

- 20. Speirs, K., Blaise, J. and Johnson, B., <u>Chromalloy IVD on Disks and Spacers</u>, Chromalloy Compressor Technologies, Dallas, Texas, April 1982.
- 21. Fischer, R., IVD Al Coatings for Protection of Steel Turbine Components,
 P&W Report FR9865, Pratt & Whitney Aircraft Group, Hartford, Connecticut,
 November 1982.
- 22. McDaniel, P. L. and Cellich, N. A., <u>Evaluation of Properties of Commercially Available Coatings Suitable for Use on 410 Steel (AMS5504)</u>

 <u>Compressor Components</u>, Lab No. 24714, Account No. E991-01-500-72, Pratt & Whitney Aircraft Group, Hartford, Connecticut, November 1982.

APPENDIX A

TORQUE-TENSION DATA FOR GENERIC BOLT-NUT WITH DIFFERENT BOLT FINISH - NUT FINISH -LUBRICANT COMBINATIONS

TABLE A-1. TORQUE-TENSION TEST DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-601-S.

	Renning			Torque On Nut (inlb) ^d								Russing
Test No. ^{a,b,c}	Cycle No.	Terque (InIb, CW		Bell Leed (%)							Breaksway Terque	Terque (inlb,
	Direction)	Direction)	2,500	5,800	7,500	15,000	12,508	15,800	17,586	26,900	(lalb)	CCW Direction
1	1 2 3 4	38	96	180	250	335 290 300 265	445	530	600	660 660 660 600	48 0	33
	5 6 7 8	33	9 6	144	190	275 275 2 2 265 265	36 0	430	580	600 600 600 500	3 60	35
	10 11 12 13 14	35	108	168	230	265 300 275 300 265 290	395	520	540	600 660 600 660 600 660	385	38
	15	34	108	, 168	230	310	410	530	540	660	410	37

- a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b Fel-Pro incorporated C-801-S tubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-801-S tubricant was applied to the threads of the bolt and nut.
 - c NAS1306-10 bolt: Average plating thickness = 0.4967 in., average plating thickness = 0.00030 in.
 - 47FLW-820 nut: Average plating thickness 0.00041 in.
 - at Turque increments of 60 in.-to at maximum bolt load is larger than normal increments of 25 in.-to

TABLE A-2. TORQUE-TENSION TEST DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-601-S.

			Runaing					Runaing					
	Tool n.e.e.	Cycle No.	Yerc te (inlb, CW			Breaksway Terque	Terque (inlb,						
			Direction)	2,500	5,000	7,500	18,000	12,500	15,000	17,500	20,800	(inib)	CCW Direction)
	2	1 2 3 4	53	120	180	265	335 310 300 290	410	480	540	660 660 660	395	43
		5 6 7 8	42	108	156	230	290 290 290 290 290	370	480	540	660 660 660 660	39 5	45
		10 11 12 13 14	46	108	168	230	300 290 290 300 300	38 5	480	540	660 660 660 660 660	410	43
L		15	43	108	168	230	300	385	470	540	560	395	44

- a: Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. Fel-Pro incorporated C-801-6 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mil.-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.
 - c. NAS1308-10 bolt. Average shank diameter = 0.4986 in., everage plating thickness = 0.00043 in. 47FLW-620 nut: Average plating thickness = 0.00039 in.
 - d Torque increments of 60 in.-ib at maximum bolt load is larger than normal increments of 25 in.-ib.

TABLE A-3. TORQUE-TENSION TEST DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-601-S.

					Breaksway Torque	Running						
Test No.5,5,6	Cycle No.					Torque (inth.						
•				5,000	7,500	18,980	12,500	15,000	17,500	28,000	(is松)	CCW Direction)
3	1 2 3 4	33	108	156	240	325 290 240 240	370	460	600	720 660 600 600	430	31
	5 6 7 8	29	96	144	205	240 250 240 240	350	430	480	600 600 600 600	350	32
	10 11 12 13 14	36	96	156	204	240 265 250 250 250 250 250	3 50	430	480	600 600 600 600 600	3 60	36
	15	42	120	180	240	300	395	470	540	660	370	37

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-4. TORQUE-TENSION TEST DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INC. C-801-S.

		Receipy Torque (inIn, CW Direction)				50	Beilerme N					
Test No. ^{a,b,c}	Cycle No.				Brasikaway Teruus	Torque (inib, CCW						
40. * *			2,500	5,000	7,500	12,900	12,600	46,000	17.60à	20,800	(iuib)	Obreasiess)
4	1 2 3	128	192	300	360	430 420 340	530	600	660	790 840 780 780	cno	97
	4 6 7 8	43	108	204	25 2	360 360 320 300 300	470	6 00	6 60	780 780 720 720	520	41
	10 11 12	35	96	168	216	300 290 290 310 300	420	500	540	720 720 720 720 860	470	3).
	13 14 15	32	86	156	228	280 300	420	520	600	720	430	70

a. Nut did not have wax lubricant (Carbowau: Polyethylene Glycol 3350) applied.

⁶ Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average plating thickness = 0.4985 in., average plating thickness = 0.00033 in. 47FLW-820 nut: Average plating thickness = 0.00038 in.

d. Torque increments of 60 in.-to at maximum bolt load is larger than normal increments of 25 in.-tb.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphile and 50% policiatum formulated to meet.

MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

e NAS1308-10 bolt: Average shank diarreter ~ 0.4988 in., everage coating thickness ~ 0.00058 in. 47FLW-820 nut: Average coating thickness ~ 0.00047 in.

d Torque increments of 60 in.-lb at maximum bolt load is larger than normal increments of 25 in.-lb.

TABLE A-5. TORQUE-TENSION TEST DATA FOR IVD ALUMIMUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running					Homeley					
Yazi No.a.b.s	Cycle No.	Torque (inlb, CW Direction)			Brenksway Tarqua	Torque (inib.						
			2,508	B,880	7,569	16,000	12,588	16,000	17,506	20,368	(iaih)	CCW Direction)
5	1 2 3 4 5 6 7 8	127 52	120	276 192	340 252	410 360 350 340 320 310 310 320 310	480	540 530	600 600	720 720 720 720 720 720 720 660 660	520 430	124 6:
	10 11 12 13 14 15	45 43	96 96	156 168	240	290 300 280 290 280 290	37V 400	470 480	540 540	660 660 660 660 660	410	55 50

a. Hut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-6. TORQUE-TENSION TEST DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INC. C-601-8.

		Running Yerque (inib, CW Direction)	ł		Brooksway Torque	Reening Torque (inib,						
Test No.8,8,6	Cycle No.											
			2,500	5,800	7,500	18,900	12,500	15,400	17,580	28,000	(iaib)	CCW Direction)
6	1 2 3 4 5	111 38	216 120	300	350 290	460 400 350 340 320	540 410	\$00 490	720 480	840 780 780 720 660	580 430	96 47
	6 7 8 9					300 300 300 300				660 660 660 660		
	10 11 12 13 14	33	108	180	252	300 300 290 290 290	400	470	540	660 720 660 660 660	410	39
	15	36	108	168	260	300	410	480	540	660	400	36

a 14th did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

⁸ Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphile and 50% petrolatum formulated to meet MIL-7-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c NAS1306-10 bolt: Average shank diameter = 0.4966 in., average coating thickness = 0.00049 in. 47FLW-820 nut: Average coating thickness = 0.00046 in.

d Torque increments of 80 in. 4b at maximum bolt load is larger than normal increments of 25 in. 4b.

is Fel Pro incorporated C-801-8 lubricant is a paste containing 50% synthesic graphite and 50% petroletum formulated to meet MilL-7-8544. The C-801-S lubricant was applied to the threads of the bolt and nut.

e NAS1308-10 bott: Average shank dameter ~ 0.4990 in., average coating thickness ~ 0.00055 in. 47FLW-820 nut: Average coating thickness ~ 0.00053 in.

di Torque incremente of 60 in.-to at maximum bolt load is larger than normal incremente of 25 in.-th

TABLE A-7. TORQUE-TENSION TEST DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-601-S.

		Runaing			Brooksway Torque	Running Terque (lalb.						
Test No.2,5,4,4	Cycle No.	Tarqua (inlb, CW Direction)										
			2,500	5,008	/,500	19,900	12,500	15,800	17,500	28,800	(inib)	CCW Direction)
7	1 2 3 4	38	8 8	145	225	305 275 260 250	385	460	550	650 650 700 675	36 0	34
	5 6 7 8	34	91	141	200	270 250 250 260 265	34 5	450	565	675 675 700 700	380	23
	10 11 12 13	24	81	143	200	260 270 265 265 265	350	450	575	700 700 700 700 700 700	39 0	31
	15	31	84	136	200	265	355	455	575	700	400	37

a. Nut supplied with wax subricent (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-8. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-601-S.

		Running Torque (inib, CW Direction)	•		Breaksway Terque	Renning Yorque (inib,						
Test No.a.b.c.d	Cycla No.											
			2,500	5,800	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
8	1 2 3 4 5 6 7	36 33	91 81	136 132	190	270 240 260 290 265 275 320	330 355	415 450	495 590	580 675 675 700 675 650 675	320 320	27 3 1
	8 0 10 11 12 13	36	84	136	250	325 285 305 305 305 315	395	460	565	675 675 650 650 650 650	290	3 5
•	14 15	34i	8 6	141	205	310 275	3 60	450	535	650 650	340	35

a. Nut supplied with wax tubricant (Carbowax Polysthylene Glycol 3350) applied.

b. Fel-Pro incorporated C-601-G lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

[#] NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00030 in. 47FLW-820 nut: Average coating thickness = 3.00049 in.

d There was one stop at 10,000 lb instead of each load increment, as normally done, for cycles 1, 5, 10 and 15.

is Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolistum formulated to meet MiL-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter -- 0.4985 in., sverage coating thickness -- 0.00034 in. 47FLW-820 nut: Average coating thickness -- 9.000 in.

d. Yest was a repeat of test 1 with optimized procedure and equipment.

TABLE A-9. TORQUE-TENSION YEST DATA FOR CADMIUM-PLATED SOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-601-S.

		Runaing				Torque (e Nut (ia	6)		:		Russing
Test No.4,5,e,d	Cytie No.	Yarque (inlb, CW				Sell	Lood (lb)				Breaksway Forque	Terque (inib,
		Direction)	2,500	5,800	7,500	10,000	12,500	15,800	17,500	22,800	(iab)	CCW Direction)
v	1 2 3 4	51	106	175	245	320 285 245 240	400	475	5 50	650 625 625 625	35 5	47
	5 5 7 8	41	90	145	205	275 255 250 250 250 255	340	425	520	625 650 650 650 625	320	46
	10 11 12 13	51	102	150	200	255 270 255 265 265 250	330	430	540	650 625 625 600 600	335	51
İ	15	46	75	150	215	275	350	435	520	625	325	58

- a. Nut supplied with wax subricant (Carbowax Polyethylene Glycol 3350) applied.
- b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-7-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.
- c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00033 in.
 - 47FLW-820 nut: Average coating thickness = 0.0037 in.
- d Test was a repeat of test 2 with optimized procedure and equipment.

TABLE A-10. TORQUE-TENSION TEST DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INC. C-801-S.

			Russing		ينت احتكف به		Yarque O	n Ned (in	. -15)				Running
	Tool No.E.S.A.A	Cycle No.	Terque (M15, CW				Pe R	Lead (%)				Branksway Torque	Terque (inIb,
		""	Direction)	2,500	5,668	7,500	18,000	12,580	15,000	17,500	20,000	(lub)	CCW Direction)
	10	1 2 3 4	54	113	175	250	320 305 300 295	405	490	590	700 700 700 700	405	45
		5 6 7 8	84	115	170	240	310 285 285 285 285 280	390	485	600	700 675 675 675	420	58
		10 11 12 13	58	107	155	210	285 275 275 275 275 280	370	475	570	675 675 675 650 650 850	39 0	59
<u></u>		15	5 5	112	165	225	300	380	490	600	\$75	360	61

- a Nut supplied with wax subricant (Carbowsx Polyethylene Glycol 3550) applied.
- b Fel Pro incorporated C-801-8 tribricant is a paste containing 50% symulatic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-801-6 lubricant was applied to the threads of the bolt and nut.
 - NAS1308-10 bolt: Average shank clameter ~ 0.4990 in., average plating thickness ~ 0.00035 in. 47FLW-820 nut; Average plating thickness ~ 0.00042 in.
 - d Test was a repeat of test 3 with optimized procedure and equipment.

TABLE A-11. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED C-601-S.

		Ruseing				Turque C	ia Nut (is	. -13)				Running
Test No.5.5.	Cycle Na.	Terque (inib. CW				Bak	Lood (N)				Breakeway Torque	Terque (inib, CCW
		Direction)	2,500	5,900	7,500	18,800	12,580	15,080	17,500	28,850	(ia#)	Direction)
11	1 2 3	93	180	250	335	435 405 385 340	\$30	650	775	900 850 850 825	625	80
	5 6 7	37	123	205	290	370 340 325 300	475	600	725	875 875 850 825	600	42
	10 11 12 13	31	111	160	225	305 315 305 300 290 275	405	515	650	825 800 800 775 750 700	475	33
	14 15	33	83	139	205	275	385	490	650	750	440	27

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-12. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		galanus	المساحد و			Torque C	e Nut (in	10)				Running
Tost No.4,6,4,4	Cycle No.	Terque (lulà, CW				Ban	Load (16)				Broaksway Torque	Terque (inib.
••••		Direction)	2,500	5,800	7,500	18,800	12,500	15,000	17,500	20,000	(in16)	CCW Direction)
12	1 2 3 4 5	160 46	250 117	335 180	370 250	510 390 360 330 330 285	650 445	725 525	8 50	950 825 750 725 725 700	700 445	141 40
	7 8 9 10 11 12 13	36	98	185	250	280 285 280 325 285 275 275 275	415	505	625	700 700 700 725 725 700 700 675	450	45
	15	38	103	185	225	290	385	485	595	700	410	33

a. Nut did not have wax lubroant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4988 in., average coating thickness = 9.00045 in. 47FLW-820 nut: Average coating thickness = 0.00047 in.

di Test was a repeat of test 4 with optimized procedure and equipment.

b Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mit.-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

ic NAS1308-10 bolt. Average shank diameter = 0.4987 in., average coating thickness = 0.00047 in.

⁴⁷FLW-820 nut: Average coating thickness -- 5.00044 fr.

d. Test was a repeat of test 5 with optimized procedure and equipment.

TABLE A-13. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Russing				Yerqus C	in Met (in	. -16)				Running
Tesi 610,4,5,4,4	Cycle No.	Terque (inib, CW				Bet	Lund (ib)				Greaksway Torque	Tarque (inib, CCW
	""	Birection)	2,500	£,600	7,500	18,000	12,508	15,800	17,580	28,000	(inib)	Direction
13	1 2 3	113	185	265	325	425 370 340 370	510	& 25	700	825 800 800 800	550	118
	5 6 7 8	5 3	121	175	250	335 310 340 345	425	54 5	6 50	775 750 760 750	485	52
	10 11 12 13	52	107	155	250	320 315 320 305 300	400	490	6 00	700 700 725 700 700	415	45
	14	34	91	, 155	220	295 295	380	480	600	700	410	43

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-14, TORQUE-TENSION DATA FOR IVO ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	Ì	Reaning				Yerque (ha Niut (im	I			1	Running
Test No.1.1.14	Cycle He.	Yerque (inib, CW		'		Bok	Load (%)		······································		Breaksway Yarqua	Terque (inib,
		Direction)	2,580	5,000	7,500	18,806	12,500	15,800	17,589	20,000	(in16)	CCW Direction
14	1 2 3	44	101	160	215	295 300 330 320	3 55	440	505	575 675 700 700	305	59
	5 6 7	5 1	121	195	270	335 315 305 300	410	510	6 25	725 700 700 700	425	6 0
	10 11 12 13	36	114	185	255	300 330 305 300 305	410	495	600	675 675 650 675 678	390	48
	13 14 15	41	103	175	240	305 305 310	385	490	600	675 700	410	46

at Nut supplied with wax lubricant (Carbowax Polyethylune Glycol 3350) applied.

⁶ Fel-Pro Incorporated C-601-S subricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S subricant was applied to the threads of the bolt and nut.

c NAS1308-10 bott: Average shank diameter = 0.4987 in., average coating thickness = 0.00041 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00066 in.

el Test was a support of test 6 with optimized procedure and equipment.

b. Fel Pro incorporated C-801-8 fubricant is a paste containing 50% synthetic graphite and 50% petrolistum formulated to must MIL-T-5544. The C-801-8 fubricant was applied to the threads of the bolt and nut.

NAS1308-10 bolt: Average shank diameter = 0.4987 in., everage coating thickness = 0.00080 in. 47FLW-820 nut: Average oceang thickness = 0.00042 in.

d Test was an evaluation of different bolt and not finishes and the torquing procedure. There was one stop at 10,000 pounds instead of each load increment, as normally close, for cycles 1, 5, 10, and 15.

TABLE A-15. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Russing				Terque C	ia Nat (la	ik)				Running
Tota No.16,14,4	Cycle No.	Yerque (inlb, CW				Box	Lead (Ih))			Breaksway Yorque	Torque (inib,
••••		Direction)	2,500	5,908	7,500	16,800	12,500	15,989	17,580	28,800	(ia ii)	CCW Direction)
15	1 2 3 4	34	96	160	230	310 320 320 325	395	465	550	675 775 800 800	360	3 3
	5 6 7 8 9	51	107	170	250	330 285 260 280	425	520	€50	775 725 700 675 675	45 5	52
	10 11 12 13 14	39	89	133	205	275 275 265 260 265 255	35 5	460	560	675 650 650 650 650	360	41
	15	36	84	130	200	265	360	455	550	650	350	31

g. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-16. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Renaing				Yarqua O	n Nut (ia	. -%)				Awnning
Tost No.4,6,4,6	Cycle No.	Torque (inib, CW				Roll	Load (lb)				Bruskaway Terque	Terque (inib,
		Direction)	2,500	5,000	7,500	10,600	12,500	15,000	17,500	20,800	(inib)	Direction
16	1 2 3 4	64	123	185	255	315 325 335 335	390	460	530	625 675 725 725	315	€7
	5 6 7 8	74	139	210	275	340 330 310 300	420	520	625	725 700 675 675	420	69
	10 11 12 13	40	106	180	230	295 305 290 285 285	380	470	5 55	650 675 650 650 650	365	47
	14 15	46	101	165	220	285 290	365	460	545	650 650	350	41

a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00043 in. 47FLW-820 nut: Average coating thickness = 0.00050 in.

di Test was an evaluation of different bolt and nut finishes with optimized procedure and equipment.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4989 in., siverage coating thickness = 0.00046 in.

⁴⁷FLW-820 nut: Average coating thickness ~ 0.00044 in.

d. Test was an evaluation of different bolt and nut finishes with optimized procedure and equipment.

TABLE A-17. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Yerque C	in Med (in	. -1 2)				Running
Test No.a,b,e,d	Cycle No.	Yorque (la -ib, CW				Bet	Leed (B)				Breeksway Torque	Torque (in1b,
		Direction)	2,500	5,860	7,560	18,800	12,598	15,806	17,500	29,000	(is2)	Direction
17	1 2 3 4 5	හ ස	111	165	235 285	310 330 380 350 350	38 0 43 0	465 530	550 €50	650 775 725 750 750	3 50	59 79
	6 7 8 9 10	46	97	150	210	320 300 275 285 275 265	350	450	5 55	750 700 700 700 700 700	415	6 2
	12 13 14 15	45	98	, 150	205	275 270 265 275	360	470	585	700 700 \$75 700	390	48

- a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.
 - c. NAS1306-10 bolt: Average shank diameter ~ 0.4967 in., average coaling thickness ~ 0.00043 in. 47FLW-820 nut: Average coating thickness - 0.00035 is.
 - d Test was an evaluation of different bolt and nut finishes with optimized procedure and equipment.

TABLE A-18. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-501-S.

	1	Renning				Terque C	in Mut (in	. -%)				Reaning
Test Na.a.b.s.A	Cycle No.	Terque (inib, CW				Bok	Lead (地)				Breaksway Torque	Terque (inlb,
		Direction)	2,500	5,900	7,500	18,900	12,500	15,988	17,500	28,890	(inlb)	CCW Direction
18	1 2 3 4 5	103 48	190	265 190	335 270	415 350 355 410 345	510 445	625 550	700 675	800 875 875 875 825	490 510	9 2 81
	6 7 8 9			,		350 325 340 340				825 800 800 775		
	10 11 12 13 14	48	110	170	245	340 345 325 320 310	435	495	650	775 750 725 725 725	470	47
-	15	34	95	155	235	320	395	485	625	725	420	41

- a Nut had wax tubricant (Carbowax Polyethylene Glycol 3350) applied.
- 5 Fel-Pro Incorporated C-601-S tubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.
 - c NAS1306-10 bolt: Average shank diameter = 0.4988 in., average coating thickness = 0.00045 in.
 - 47FLW-820 nut: Average coating thickness 0.00048 in.
- d Test was an evaluation of an IVD aluminum- and carbowax-coated rut and the torquing procedure. There was one stop at 10,000 pounds instead of each load increment, as normally done, for cycles 1, 5, 10, and 15.

TABLE A-19. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Russing				Torque 0	in Nat (in	#)			D b	Running
Test No.s.b.s.d	Cycle No.	Terque (inlb, CW		ه ساکنیست		Bex	Leed (%)				Breaksway Terque	Terque (in%), CCW
Me 'malaka		Direction)		8,900	7,500	18,060	12,500	15,804	17,580	28,600	(iaib)	Directica)
19	1 2 3	73	132	205	285	370 355 365	460	54 5	650	750 800 800 775	450	76
	4 5 6 7 8	30	113	185	275	345 355 315 310 305	460	560	675	800 775 750 775	495	29
	10 11 12 13	21	95	150	240	305 330 300 285 260	410	515	625	750 750 725 700 700	445	20
	14	18	82	134	200	255 285	380	485	600	675 700	400	17

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-8544. The C-801-S lubricant was applied to the threads of the bolt and nut.

© NAS1306-10 bolt: Average shank diameter = 0.4967 in., average coating thickness = 0,00047 in.

47FLW-820 nut: Average coating thickness - 0.00044 in.

d Test was an evaluation of an IVD aluminum- and carbowax-coaled nut with optimized procedure and equipment.

TABLE A-20. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Resulting				Tarqua O	e Nut (la	i ė)				Running
Test No.s.b.s.d	Cycle Ne.	Terque (inib, CW				Roll	Lead (ib)				Breaksway Forque	Terque (bnlb,
••••		Direction)		5,000	7,600	18,600	12,500	15,000	17,500	28,900	(inlb)	CCW Direction
20	1 2 3	84	132	190	270	340 325 335 315	440	520	650	725 800 800 775	440	91
	5 6 7 8	39	100	155	230	320 315 290 300	420	52 5	650	775 725 725 725	475	42
	10 11 12 13	36	96	150	230	265 295 305 310 270	380	475	570	700 700 700 700 700	405	36
•	14	34	87	145	215	270 295	370	460	555	700 675	375	34

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro incorporated C-601-5 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-5 lubricant was applied to the threads of the bolt and nut.

c NAS1306-10 bolt: Average shank diameter = 0.4967 in., average coating thickness = 0.00043 in.

47FLW-820 nut: Average coating thickness - 0.00051 in.

d Test was an evaluation of an IVD sturminum- and carbowax-coated nut with optimized procedure and equipment.

TABLE A-21. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	ļ	Remains				Torque C	in läut (in	D ;				Running
Tast No.0.b.c.d	Cycle No.	Terque (ialb, CW				Bolt	Leed (%)				Breaksway Torque	Terque (irib,
		(noite stid	2,500	5,800	7,580	12,880	12,588	15,800	17,500	20,800	(ia16)	ECW Direction
21	1 2 3 4	77	133	190	255	335 315 315 300	415	500	60 0	700 750 750 750	425	68
	5 6 7 8 9	42	104	142	210	295 290 285 300	3.	→ 25	580	700 725 700 700	425	21
	10 11 12 13 14	45	8 3	147	205	280 295 265 260 255 285	365	465	570	700 700 675 675 675	415	17
	15	34	9 5	- 149	200	265 265	345	435	530	650 650	350	13

a. Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

34

=f

ď.,

TABLE A-22. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Torque C	in Not (in	. -1 1)				Running
Test No.45,4,4	Cycle Ne	Terque (in15, CW				Box	Lond (Ib)	,			Breakaway Terque	Terque (inib.
		Direction)	2,500	5,000	7,500	18,800	12,500	15,808	17,500	28,000	(is16)	Direction)
22	1 2 3 4	110	175	205	270	355 345 325 335	440	5 55	675	775 800 750 750	495	115
·	5 6 7 8	45	115	175	235	325 275 275 280 270	420	515	62 5	725 700 725 700 700	440	45
	10 11 12 13 14	40	105	165	225	300 270 260 255 245	385	475	600	700 700 700 700 725 725	425	40
	15	35	100	145	195	270	355	460	580	750	440	35

a. Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4988 in., average coating thickness = 0.00048 in. 47FLW-820 nut: Average coating thickness = 0.00049 in.

d. Test was an evaluation of an IVD aluminum- and carbowax-coaled nut with optimized procedure and equipment.

b. Fei-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

e. NAS1308-10 bolt: Average shank diameter = 0.4985 in., average oceting thickness = 0.00032 in.

⁴⁷FLW-820 nut: Average coating thickness - 0,00044 in.

at Test was to evaluate the procedure for applying the lubricant onto the bolt and carbowax-coased nut.

TABLE A-23. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-501-8.

		Running			•	Forque (in Nai (in	b)			İ	Running
Test No.a.b.s.d	Cycle No.	Terque (inib, CW		·		Delt	Lond (lb)				Breaksway Torque	Torque (inib.
4-2-		Direction)	2,560	5,000	7,500	18,800	12,508	15,000	17,588	20,000	(inb)	SCW Birection)
23	1 2 3 4 5 6 7	102 43	180	260 170	335 230	435 305	550 385	6 50 48 5	750 580	850 775 700 700 700 675 675 650	6 50 43 0	117 42
	.9 10 11 12 13 14 15	33	8 3	125	180 185	250 255	330 325	43 5	56 0	650 675 625 625 625 600 650	3.95 3.90	37

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

47FLW-820 nut: Average coating thickness - 0.00051 in.

TABLE A-24. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Terque (a Nut (iu	. -%)				Running
Test No.5,5,6,4	Cycle No.	Terque (islè, CW				Bell	Leod (%)				Breskaway Terque	Tergue (inlb,
••••		Direction)	2,560	8,000	7,500	19,900	12,508	15,808	17,550	26,800	(iaib)	CCW Direction)
24	1 2 3	117	175	245	320	400	490	590	700	825 825 825 825	545	118
	5 6 7 8	56	115	170	235	315	410	520	650	775 725 725 725 725	470	52
	10 11 12 13 14	41	92	145	220	295	380	470	560	725 700 700 675 675 675	405	43
	15	39	84	134	200	280	355	450	540	675	365	41

a. Nut did not have wax tubricant (Carbowsx Polyethylene Glycol 3350) applied.

47FLW-820 nut: Average coating thickness - 0.00056 in.

b. Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mill-T-5344. The C-801-S lubricant was applied to the threads of the bolt and nut.

e NAS1308-10 bolt: Average shank diameter - 0.4967 in., sverage coating thickness - 0.00048 in.

di Test was evaluation of lorquing procedure. There was a stop at 10,000 pounds to record torque applied to nut for cycles 1, 5, 10, and 15 and no stop at 10,000 pounds for all other torque-tension cycles.

b. Fel-Pro Incorporated C-801-5 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet.

Mit.-T-5544, The C-601-5 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter - 0.4990 in., average coating thickness - 0.00050 in.

d Text was evaluation of torquing procedure. There was a stop at each load increment to record torque applied to nut for cycles 1, 5, 10, and 15 and no stop at 10,000 pounds for all other torque-tension cycles.

TABLE A-25. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Tarque C	e Nut (la	ib)				Running
Test No.3.4.4	Cycle No.	Tarque (in, ib, CW				Bell	Load (lb))			Breakeway Terque	Torque (InIb.
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,800	20,600	(inib)	CCW Direction)
25	1 2 3 4	107	175	245	330	410	510	625	725	850 850 775 775	5 70	96
	5 6 7 8	42	114	170	260	345	435	540	650	800 750 750 750 750 775	525	43
٠	10 11 12 13	37	109	155	230	3 10	400	510	850	750 925 800 750	475	30
	14	33	103	165	230	315	410	520	650	725 750	455	3 5

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-26. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-801-S.

		Running				Terque C	n Nut (in	ib)				Running
Taxt No.s,s,s,s	Cycle No.	Torque (in1b, CW				Bell	Lead (lb)				Breaks way	Terque (inib,
NO. 1		Direction)	1	5,000	7,500	10,000	12,500	15,000	17,500	29,800	(lalb)	Orestion)
26	1234	96	160	235	310	400	505	595	650	775 775 775 776 750	495	103
	5 6 7 8	38	106	165	235	315	410	525	650	775 775 725 700 700	495	3/
	10 11 12 13	34	96	155	220	305	415	515	650	750 700 700 700 675	450	34
	14 15	32	92	145	205	275	385	475	585	725	420	34

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 33:50) applied.

b Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MilL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00041 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00051 in.

d Test was evaluation of torquing precedure. There was a utop at each load increment to record torque applied to nut for cycles 1, 5, 10, and 15 and no otop at 10,000 pounds for all other torque-tanelon cycles.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mit.-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

[©] NAS1308-10 bolt: Average shank diameter = 0.4990 in., average coating thickness = 0.00048 in.

⁴⁷FLW-820 nut: Average coating thickness = 0.00049 in.

d. Test was evaluation of forquing procedure. There was a stop at each load increment to record forque applied to nut for cycles 1, 5, 10, and 15 and no stop at 10,000 pounds for all other torque-tension cycles.

TABLE A-27. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND IVID ALUMINUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-501-5.

		Ronning		APRILLIA CENTRA		Porque (in ideal (in	(4)				Reserving
Test Mc. a. b. a. d	Cycle No.	Terque (in.45, CW				Bok	Loci (ii)				Ervelousey Torque	Turque (inib.
		Direction)	2,500	5,901	7,560	19,958	12,509	18,990	17,500	28,000	(inii)	Direction)
27	1 2 3 4 5	40 25	9 5 8 0	145 125	215	290 255 235 215 230	365 310	445 400	635 495	625 600 560 575 565	360 340	3 0 20
	5 7 8 9					220 230 245 250				575 586 955 500		
	10 11 12 13 14	30	90	140	190	250 200 200 200 276 260	320	410	495	650 650 650 625 625	320	30
	15	35	110	160	220	285	365	450	555	675	370	Í

- a. Nut had wax subricant (Carbowax Polyethylene Glyoul 3350) applied.
- to Fel-Pro Incorporated C-801-S tubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mill-T-5544. The C-801-S tubricant was applied to the threads of the bolt and nut.
 - c NAS1308-10 bolt: Average shank diameter = 0.4967 in., siverage costing thickness = 0.00039 in. 47FLW-820 nut: Average costing thickness = 0.00049 in.
 - d Test was an evaluation of dissimilar finishes on tive bolt and nut with optimized procedure and equipment.

TABLE A-28. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND IVD ALUMINUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-3.

		Ruminy			•	Terque C	e Hed (he	(b)				Hunnising
Test No.5,5,5,6	Cycle No.	Terque (imlb, CW				Dek	Land (ib))			Sireakswej Terque	Tarque (isis,
		Direction)	2,500	5,900	7,500	18,85%	12,600	16,888	17,606	22,935	(issKo)	CCW Direction
28	1234	60	120	180	240	320 265 270 270	39 6	470	570	675 \$50 625 625	360	40
	5678	50	105	165	225	305 300 280 270	385	470	505	650 675 675 630	263	50
	10 11 12 13 14	65	115	170	225	270 290 275 270 280 275	36 5	460	565	650 650 650 650 675 675	3/50	\$ 0
	15	60	115	170	225	295	380	480	595	700	405	70

- a. Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b Fet-Pro Incorporated C-801-S tubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mill-T-5544. The C-601-S tubricant was applied to the threads of the bolt and nut.
 - c NAS1308-10 bolt: Average shank diarneter 0.4987 in., average coating thickness 0.00040 in.
 - 47FLW-820 nut: Average coating thickness = 0.00049 in.
 - d Test was an evaluation of disalmillar finishes on the bolk and nut with optimized procedure and equipment.

TABLE A-29. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND IVD ALUMINUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		gainnufi			,	Torque C	w Mut (in	· -i)				Hunning
Test No.a.b.c.d	Cycle No.	Terque (inib, CW				Bolt	Leed (Ib)				Breskaway Torque	Torque (inib,
		Direction)	2,500	8,000	7,500	18,600	12,500	15,900	17,500	20,800	(inlb)	CCW Direction)
29	1 2 3 4 5 6 7 8 9 10 11 12 13	45 35 40	8 5 8 5	150 135 165	200 190 230	265 225 230 220 245 265 230 275 285 280 275 285	300 325 360	415 405 440	49 5 48 5 53 0	580 570 545 575 585 575 600 625 650	315 300 335	30 30 35
	14 15	40	105	165	215	275 290 290	365	460	555	675 675 650	360	45

ध रिप्रा इत wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

47FLV/-CEU nut: Average coating thickness - 0.00048 in.

TABLE A-30. YORQUE-TENSION DATA FOR IVO ALUMINUM-COATED BOLT AND IVO ALUMI

			Running				Terque O	n Nut (in	tb)				Running
	Yest No.s.b.c.a	Cycla No.	Yorque (inlb, CV)				Bott	Load (ib)				Breaksway Torque	Yorque (inlb.
	••••	}	Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
	30	3 4	115	210	280	355	440 415 310 300	530	650	750	850 825 750 750	565	100
		5678	55	120	175	230	310 295 290 305 285	39 5	510	∯50	775 760 775 750 750	480	50
		10 11 12 13 14	40	105	165	220	310 280 275 260 260	400	515	650	750 725 725 725 725 725	480	40
1		15	40	95	150	210	285	390	495	625	750	460	40

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3050) applied.

^{5:} Fel-Pro Scooperated C-801-S libricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mit-T-5544. The C-901-S libricant was applied to the threads of the bolt and nut.

[©] ft/AS1369- (5 Doft: Average shank diameter = 0.4990 in., average coating thickness = 0.00035 in.

of Test was an evaluation of dissimiliar finishes on the bolt and nut with optimized procedure and equipment.

b Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolistum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to stie threads of the bott and nut.

c NAS1308-10 bolt: Average shank diameter - 0.4988 in., average coating thickness - 0.00034 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00046 in.

d Test was an evaluation of the IVD aluminum coating applied to the bolt. Bolt was tested as obtailed. Normally, it bolts and nuture glass bead peened and chemical conversion coated.

TABLE A-31. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-5.

		Running				Terque C	in Nut (la	. -13 :)				Running
Yest No.4,5,c,4	Cycle No.					B oll	Leed (lb)				Breaksway Terque	Torque (inib.
		Direction)	2,800	8,506	7,500	10,000	12,500	15,903	17,F00	29,000	(la h)	CCW Direction)
31	1 2 3 4	120	170	255	350	445 360 365 295	54 5	G 50	750	875 825 750 725	62 5	115
	5 6 7 8 9	45	110	160	225	305 340 320 260 250	390	480	600	725 750 725 700 700	490	55
	10 11 12 13 14	45	9 5	155	200	265 270 270 280 280	365	470	580	700 700 725 709 750 725	470	40
	15	40	105	185	225	295	390	495	625	725	475	35

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-32. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Test	Cycle	Hunning Torque					n Riut (in Lond (lb)				Breakaway Torquo	Running Torque (inlb,
Mg,s,¢,s,d	No.	(inlb, CW Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	CCW Direction)
32	1 2 3 4	85	155	220	280	355 310 290 340	440	535	650	750 725 725 725 775	440	90
	5	40	110	190	260	330	425	525	€50	750	455	50

a Nut had wax lubricant (Carbowax Polyethylens Glycol 3350) applied.

b. Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolaturn formulated to meet. Mil.-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00031 in. 47FLW-820 nut: Average coating thickness = 0.00040 in.

d. Test was to evaluate the effect of a polished IVD aluminum coating on the torque-tension characteristics of the bolt and nut

b. Fei-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphike and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4982 in., average ocating thickness = 0.00015 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00045 in.

d. Test was an evaluation of a very thin IVD aluminum coating on the bolt and a normal thickness of IVD aluminum coating on the nut.

TABLE A-33. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Tost	Cycle	Runalng Bugun		**			n Nut (in Lead (ib)				Breaksway Tergus	Running Terque (lalb.
M o.a.b.a.c	No.	(inib, CW Direction)	2,500	5,00u	7,500		12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
33	1 2 3 4 5	90	140	200 195	270 265	365 385 355 355 355	440 460	53 5	650 700	750 825 800 825 825	445 535	85

a Nut had wax lubricant (Caliboryto: Polyethylene Glycol 3350) applied.

TABLE A-94. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

			Runsing				Corque O	n Nut (in	Hb)				Running
	Tast Ko.a.b.c.d	Cycle No.	Torque (inib, CW				Bott	Load (lb)				Breaksway Torque	Torque (inib,
ĺ			Direction)	2,500	5,000	7,500	10,00ti	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
The second second	34	1 2 3 4	85	125	190	265	350 340 310 300	440	535	650	750 800 750 775	450	80
l		5	40	8 5	150	215	300	405	520	650	775	\$00	40

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S subricent is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5541. The C-601-S lubricant was applied to the threads of the bolt and nut.

[©] NAS1308-10 bolt: Average shank dismeter = 0.4983 in., average coating thickness = 0.00018 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00046 in.

d Test was an evaluation of a very thin IVD attribution on the bolt and a normal thickness of IVD attribution on the stut. In addition, any metal particle contamination in the fubricant was removed by ultrasonically cleaning the bolt and nut after the first torque tension cycle.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MfL-T-5544, The C-601-S lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00035 in.

⁴⁷FLW-820 nut: Average coating thickness - 0 00048 in.

d Test was to evaluate the effect of multiple applications of carbowax on the bolt/nut forque-tension characteristics. The carbowax was applied to the bolt and nut.

TABLE A-35. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Terque C	n Nut (in	16)			Danahaway	Running
Test No.4,6,4,4	Cycle No.	Torque (inlb, CW				Bell	Lead (%)		_		Breaksway Terque (inth)	Tarque (inlb, CCW
		Discution	2,500	5,000	7,500	10,900	12,500	15,000	17,500	28,800		Direction)
35	1 2 3 4	90	140	210	285	370 350 355 340	460	55 5	650	750 800 800 750	480	8 5
	5	50	105	165	245	320	405	51 0	625	750	450	45

a: Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-36. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-D.

Г			Running				Torque C	n Nut (In	tb)			04	Running
	Test No.a.b.c.d	Cycle	Torque (inib, CW				Bolt	Load (ib)				Breaksway Torque	Torque (inib,
			Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	CCW Direction)
	36	1 2 3 4	50	110	175	260	345 370 450 360	430	535	650	750 875 900 850	460	60
Î.		5	40	115	200	285	380	490	600	750	900	625	40

a Nut had wax lubricant (Carbowax Polyethylune Glycol 3350) applied.

b Fel-Pro incorporated C-601-S tubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S tubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4880 in., average coating thickness = 0.00018 in. 47FLW-820 nut: Average coating thickness = 0.00028 in.

d Test was an evaluation of a very thin IVD aluminum coating on the bolt and nut. In addition, any metal particle contamination in the lubricant was removed by ultrasonically cleaning the bolt and nut after the first torque-tension cycle.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shallk diameter = 0.4884 in., average coating thickness = 0.00017 in. 47FLW-820 nut: Average coating thickness = 0.00031 in.

d. Test was an evaluation of a very thin IVO aluminum conting on the bolt and nut, in addition, any metal particle contamination in the jubicant was removed by ultrasonically cleaning the bolt and nut after the first torque-tension cycle.

TABLE A-37. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Aunning				Tarque C	m Nut (in	Ib)				Munning
Tosi Na.4,4,4	Cycle No.	Torque (inib. CW				Bolt	Lead (lb)				Breskaway Torque	Yorque (inlb.
		Direction)	2,500	5,000	7,500	10,000	12,500	15,600	17,500	20,500	(inlb)	CCW Direction)
37	1 2 3 4 5 6	50 46	110 85	185	265 200	360 295 290 285 270 270	460 350	555 475	675 595	800 725 775 800 725 800	510 470	60 40
	7 8 9 10 11 12	30	115	190	265	270 265 270 355 295	48 0	625	775	800 800 850 900 850 800	60 0	30
	13 14 15	20	80	120	190	260 260 260 255	350	465	625	775 750 750	445	25

a. Not fild not have wax lubricant (Carbowax Polyathylane Glycol 3350) applied.

TABLE A-38. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Aunning				Torque C	In Nut (In	Ib)				Munning
Test No.s.b.c.s	Cycle No.	Torque (inlb, CW				Zelt	Load (lb)				Breakaway Yarque	Torque (in -lb.
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	Direction
38	1234567	100 40	175 95	240 155	330 215	415 335 305 300 295 295	505 390	625 515	725 650	825 800 800 800 800 800	560 520	80 40
	8 9 10 11 12 13	30	8 5	135	200	300 290 290 270 270 265 250	370	500	625	850 850 800 775 750 750 700	450	30
	14	30	80	135	180	250 260	350	465	590	700 725	410	300

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthesic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0 4985 in., average conting thickness = 0.00042 in.

⁴⁷FLW-820 nut. Average coating thickness = 0 00048 in.

d. Test was an evaluation of an IVD aluminum-zinc coating from an aluminum alloy containing 20% zinc. The aluminum-zinc-coated bolt and not were glass bead peened and chamically conversion coated.

b Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

⁴ NAS1308 10 bolt: Average shank diameter - 0.4987 in., average coating thickness - 0.00044 in.

⁴⁷FLW-820 nut: Average coating thickness -- 0 00047 in.

d. Test was an evaluation of an IVD aluminum-zinc coating from an aluminum alloy containing 20% zinc. The aluminum-zinc-coated bolt and nut were glass bead peened and chemically conversion coated. In addition, carbowax was applied to the aluminum-zinc-created nut.

TABLE A-39. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-670.

		Running				Tarqua D	la Nat (in	. -\$ b)				Running
Test No. ^{a,b,z}	Cycle No.	Terque (inib. CW				Box	Lood (lb)				Breaksway Yerque	Terque (intb,
••••		Oirection)	2,500	5,900	7,500	10,000	12,500	15,000	17,560	28,900	(inib)	CCW Direction
39	1 2 3	56	113	180	260	335 360 365 370	455	525	6 50	775 950 950 950	565	52
	5 6 7 8	48	112	170	260	370 360 350 350	500	650	8 25	975 1,000 975 975	700	50
	9 10 11 12 13 14	29	105	170	250	335 335 320 315 305 325	450	625	725	925 875 850 800 850 850	600	38
	15	31	93	170	255	380	465	575	700	825	625	36

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycot 3350) applied.

TABLE A-40. TORQUE-TENSION DATA FOR CADM:UM-PLATED BOLT AND CADM:UM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-570.

		Running				Torque O	n Nut (im	ib)				Running
Tost No.4.4.4	Cysle No.	Torque (inib, CW				Bott	Loud (lb)				Breskaway Terque	Torque (inib,
		Direction)		5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
40	1 2 3 4 5	53 43	109	180	255 270	325 375 355 375 380	415 510	525 675	650 850	725 925 975 975 1,000	550 750	39 43
	5 7 3					360 370 345 355				1,000 975 950 925		
	10 11 12 13 14	36	102	165	235	330 315 320 375 325	455	550	750	850 850 825 825 800	625	32
	15	33	95	170	255	330	425	500	625	750	575	27

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-570 lubricant contains 65% molybdenum disulfide suspended in a soft pasts. The C-670 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bott. Average shank diameter = 0.4988 in., average coaling thickness = 0.00040 in. 47FLW-920 nut. Average coaling thickness = 0.00043 in.

b. Fel-Pro Incorporated C-670 lubricant contains 65% molybdenum disulfide suspended in a soft paste. The C-670 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00041 in. 47FLW 820 nut. Average coating thickness = 0.00042 in.

TABLE A-41. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-670.

		Running				Terque 0	la Nut (in	. -1)				Running
Test No.5,6,4	Cycle No.	Terque (inlb, CW				3oli	Lead (Ib)		.	,	Breaksway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	28,880	(inib)	CCW Direction)
41	1 2 3 4 5 6 7 8	67 61	131	205 195	295 280	390 325 345 355 375 360 335 330	485 535	675	725 825	875 950 1,000 1,000 975 950 900 850	625 700	52 57
	9 10 11 12 13 14 15	45	93 96	155 155	225 215	330 320 300 295 280 270 285	425	625 5 75	750 650	900 875 850 825 800 775 800	6 50	39

a Nut supplied with wax jubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-42. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-670.

	1	Running				Terque 0	n Nut (in	\b)				Running
Tosi No.u.b.e	Cycle No.	Torque (inIt, CW				Not	Loud (lb)				Breaknway Torque	Torque (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	CCW Linedian
42	1 2 3 4	89	190	270	350	460 450 410 360	575	750	950	1,075 1,050 1,050 975	825	69
	5 6 7 8	39	123	215	280	370 485 410 375 345	495	650	825	975 1,150 1,050 1,000 950	725	43
	10 11 12 13 14	32	104	185	250	355 355 325 340 320	480	625	8 00	975 950 950 925 900	700	31
	15	27	94	155	230	335	460	600	800	925	675	27

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-670 lubricant contains 65% molybdonum disulfide suspended in a soft pasts. The C-670 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4990 in., sverage coating thickness = 0.00037 in. 47FLW-820 nut: Average coating thickness = 0.00043 in.

b Fel-Pro Incorporated C-670 lubricant contains 65% molybdenum disulfide suspended in a soft paste. The C-670 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter -- 0.4988 in., average coating thickness -- 0.00051 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00045 in.

TABLE A-43. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-670.

		Rymping				Terque 0	n Nut (in	. -16)				Running
Yest No.2,6,6	Cycle No.	Terque (inlb, CW				Bett	Lead (Ib)				Breaksway Terque	Tarque (inib,
		Direction)	2,500	5,000	7,500	10,800	12,500	15,800	17,500	28,800	(inlb)	CCW Direction)
43	1 2 3	79	185	275	360	455 470 445	550	700	8 75	1,050 1,100 1,125	850	82
	5 6 7 8	36	100	185	300	380 420 360 345 320	5 05	700	\$0 0	1,050 1,000 975 875 850	775	36
	10 11 12 13	29	91	170	280	325 425 315 325 320	490	625	725	850 875 825 825 825	600	30
	14	29	84	160	240	310 330	450	550	650	750 800	525	24

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-44. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED C-670.

		Running				Terque C	in Mut (in	lb)				Kunning
Test No.s.s.c	Cycle No.	Torque (inlb, CW				Bott	Load (lb)				Breskaway Torque	Torque (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	CCW Direction
44	1 2 3 4	93	195	305	450	545 450 430 415	650	775	925	1,175 1,050 1,000 975	850	85
	6789	26	107	195	260	345 325 320 310 295	460	625	700	900 900 850 825 825	650	24
	10 11 12 13	22	88	155	225	305 315 310 300 300	425	535	6 50	775 825 800 800	500	21
	15	20	84	150	220	305	410	525	725	800	525	19

a. Nut did not have wax lubricant (Carbowax Polyethylene Giycol 3350) applied.

b. Fel-Pro Incorporated C-670 lubricant contains 55% molyhdenum disulfide suspendor! in a soft paste. The C-670 lubricant was applied to the threads of the bolt and nut.

c: NAS1308-10 bolt: Average shank diameter = 0.4989 in., average coating thickness = 0.00051 in. 47FLW-820 nut: Average coating thickness = 0.00053 in.

b. Fel-Pro Incorporated C-670 lubricant contains 65% molybdenum distiffide suspended in a soft paste. The C-670 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter ~ 0.4988 in., average coating thickness = 0.00049 in. 47FLW-820 nut: Average coating thickness ~ 0.00048 in.

TABLE A-45. TORQUE-) ENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED MOLY-50.

	ĺ	Running	_			Torque C	in Nut (in	. -t b)		_		Running
Test No. ^{a.b.c}	Cycle No.	Turque (inib. CW				Bott	Lead (lb)				Breaksway Torque	Yorque (inlb,
•••	""	Direction)	2,500	5,000	7,500	10,000	12,500	15,800	17,500	28,900	(inlb)	CCW Direction
45	1 2 3	41	102	165	230	300 290 280 270	3 65	455	525	650 650 650 650	3 55	31
	5 6 7 8	35	86	140	215	290 285 270 280	340	415	510	625 625 625 625	325	36
	10 11 12 13	31	78	137	210	265 290 275 275 270	375	455	525	625 600 600 600 600	310	28
	14	27	81	144	205	270 290	350	440	530	575 600	290	26

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-46. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED MOLY-50.

		Running				Torque O	n Nut (in	lb)				Running
Test No.*.*,c	Cycle No.	Torque (in -1b, CW				Bon	Load (ib)				Breaksway Torque	Torque (in2b,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
46	1 2 3	47	111	170	245	310 245 255 260	395	475	575	650 600 650 650	375	43
	5 6 7 8	3 3	78	130	190	260 240 245 245	320	420	510	625 625 650 650	32 0	37
	9 10 11 12 13	31	87	115	180	245 255 245 250 250	335	435	520	650 650 650 650 650	345	38
	14	31	81	139	195	230 270	350	440	530	600 625	325	34

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro incorporated Moly-50 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum formulated to meet MIL-T-83483. The Moly-50 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 boll. Average shank diameter = 0.4986 in., average coating thickness = 0.00031 in. 47FLW-820 nut: Average coating thickness = 0.00040 in.

b. Fell-Pro Incorporated Moly-50 lubricant is a paste containing 50% molybdenum dimittide and 50% petrolatum formulated to meet MIL-T 13483. The Moly-50 lubricant was applied to the threads of the bolt and nut.

c i .S1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00033 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00041 in.

TABLE A-47. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED MOLY-50.

		Running				Terque O	ai) tuK ai	8b)			o	Running
Test No.2,5,6	Cycle No.	Tarque (inlb, CW			,	Bolt	Lead (ib)				Torque	Torque (inlb.
		Direction)	2,500	5,000	7,500	10,900	12,500	15,900	17,500	20,000	(diai)	CCW Direction
47	1 2 3 4	41	92	160	230	310 250 245 240	395	480	600	700 625 600 600	43 5	41
	5 6 7 8	31	87	140	195	240 250 250 245	315	395	490	590 600 575 585	3 03	3 5
	9 .10 11 12 13 14	32	84	132	190	245 245 230 240 230 230 225	315	400	490	585 560 590 575 555 560	310	34
	15	32	77	124	180	235	3 05	3 80	475	570	265	29

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated Moly-50 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum formulated to meet MilL-T-83483. The Moly-50 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 boit: Average shank diameter = 0.4987 in., average coating thickness = 0.00031 in. 47FLW-820 nut. Average coating thickness = 0.00037 in.

TABLE A-48. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED MOLY-50.

Γ			Running				Torque O	n Nut (in	lb)			Baratania.	Running
	Test No.2.5,s	Cycle No.	Torque (inlb, CW				Bott	Load (lb)				Breakaway Torqua	Torque (inlb, CCW
	NO. * *	""	Dire (on)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	Direction)
	48	2 3	118	210	300	375	460 395 370 355	5 50	650	750	875 875 850 825	575	88
		5 6 7 8	51	124	195	295	375 330 320 310	480	525	600	750 775 750 750	475	48
		10 11 12 13	36	98	155	240	305 325 315 305 300 295	435	540	650	725 725 750 775 725 725	440	34
		14 15	32	91	155	230	313	415	525	650	725	420	29

a Nut did not have wax fubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated Moly-50 tubricant is a paste containing 50% molybdenum disulfide and 50% petrolaturn formulated to meet MIL-T-83483. The Moly-50 tubricant was applied to the threads of the bolt and nut.

 NAS1308-10 bolt: Average shank diameter = 0.4990 in., average coating thickness = 0.00058 in, 47FLW-820 nut: Average coating thickness = 0.00052 in.

TABLE A-49. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED MOLY-50.

		Running				Terque C	n Nut (in	lb)			_	Running
Test No.1,5,6	Cycle No.	Torque (inib, CW				Box	Lead (lb)				Breakaway Torque	Torque (inib,
		Direction)	2,500	5,000	7,500	10,600	12,500	15,000	17,500	20,000	(inlò)	CCW Direction)
49	1 2 3 4	66	155	220	295	360 355 325 325	425	520	625	700 750 725 725	425	78
	5 6 7 8	43	115	160	220	290 290 265 260 265	375	460	565	675 700 650 650 650	370	41
	10 11 12 13 14	27	81	138	195	270 255 250 250 250	33 5	420	525	650 650 625 650 650	36 0	28
	15	23	71	122	185	250	340	415	530	650	3 35	26

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-50. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED HUT LUBRICATED WITH FEL-PRO INCORPORATED MOLY-50.

		Rusning				Torque O	in Nut (In	ib)				Running
Test No. ^{a,b}	Cycle	Torque (inlb, CW				Bon	Load (ib)				Breakaway Torque	forque (inib,
••••	1,10	Direction)	2,500	5,000	7,500	10,900	12,500	15,000	17,500	20,050	(inlb)	Direction
50	1 2 3	102	180	255	315	395 355 320 300	475	545	650	750 750 700 650	455	83
	5 6 7 8	43	113	165	240	310 275 270 265	395	500	650	700 725 675 650	420	46
	10 11 12 13	34	83	135	180	245 240 230 240 235	305	400	495	580 570 575 595	315	36
	14 15	31	86	142	175	235 235	305	395	455	575 565	290	32

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-F J incorporated Moly-50 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum formulated to meet MIL-T-83483. The Moly-50 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4990 in., average coating thickness = 0.00043 in. 47FLW-820 nut: Average coating thickness = 0.00053 in.

b Fel-Pro Incorporated Moly-50 lubricant is a paste containing 50% prolybdenum disulfide and 50% petrolatum formulated to meet MIL-T-83483. The Moly-50 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt. Average shank diameter = 0.4988 in., average coating thickness = 0.00052 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00051 in.

TABLE A-51. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ROYAL LUBRICANTS COMPANY, INC. ROYCO 81MS.

		Running			•	Torque 0	in Nut (in	(b)				Running
Test No.ª,*,¢	Cycle No.	Terque (inlb, CW				Bolt	Lead (lb)				Breskaway Torque	Tarque (inlb,
 .		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	525	CCW Direction)
51	1 2 3 4 5	81 135	17V 225	235 330	315	415 470 675 650	510	625 9 00	725	825 1,075 >1,200 1,350		77
	6 7 8	135	233	356	445	585 575 550 480 390	750	900	1,100	1,325 1,275 1,200 1,075 975	1,050	135
	10 11 12 13 14	90	175	245	325	420 380 380 370 405	\$ 40	700	800	950 950 925 925 925	650	110
	15	85	160	240	325	425	560	700	825	950	675	90

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-52. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ROYAL LUBRICANTS COMPANY, INC. ROYCO 81MS.

		Running				O supreT	n Nut (in	lb)				Running
Test No. ^{a,h,e}	Cycle No.	Torque (inlb, CW				Soft	Load (lb)				Breaksway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,900	17,500	20,000	(inib)	CCW Direction)
52	1 2 3 4 5 6 7 9 10 11 12 13	55 80 35	125 195	210 330 215	305 475 295	405 540 565 625 625 525 460 415 370 395 340 350	525 750 470	700 950 589	800 1.150 750	925 1,300 1,200 1,275 1,375 1,250 1,025 975 900 875 925 925 900	775 1,200 650	55 85 √ 0
	14 15	45	120	200	295	345 375	470	585	750	875 900	650	55

[&]amp; Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Royal Lubricants Company, Inc. Royco 81MS lubricant is a mixture basically 50% molyhdenum disulfide and 50% silicone oil formulated to meet MIL-L-25681. The Royco 81MS lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00034 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00041 in.

b. Royal Lubricants Company, Inc. Royco 81MS lubricant is a mixture basically 50% molybdenum disulfide and 50% silicone oil formulated to meet MIL-L-25681. The Royco 81MS lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter - 0.4988 in., average coating thickness - 0.00040 in. 47FLW-820 nut: Average coating thickness - 0.00040 in.

TABLE A-53. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ROYAL LUBRICANTS COMPANY, INC. ROYCO 81MS.

		Running				Torque C	in Nut (in	. -tb)	-			Running
Test No. ^{4,0,0}	Cycle No.	Torque (inlb, CW				Boit	Load (lb)				Breaksway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
53	1 2 3	50	13 5	240	335	465 510 575	600	725	800	925 1,150 1,250 1,350	750	45
	4 5 6 7 8 9	75	200	340	475	625 625 550 510 480	800	1,025	1,225	1,450 1,350 1,275 1,150 1,025	1,225	70
	10 11 12 13 14	45	105	185	280	420 385 350 345 315 315	515	675	800	925 950 900 875 875	700	40
	15	35	95	180	300	415	540	625	750	850	575	40

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-54. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ROYAL LUBRICANTS COMPANY, INC. ROYCO 81MS.

		Running			•	Torque 0	n Nut (in	1 b)			Dan dimunan	Running
Test No. ^{a,b,c}	Cycle No.	Torque (inlb, CW				Bott	Load (lb)				Breaksway Torque	Torque (in15,
****	"	Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,600	(inlb)	CCW Direction
54	1 2 3	160	290	405	535	675 700 700 825	8 50	1,025	1,175	1,225 1,400 1,575	875	200
	5 6 7 8	55	200	360	525	725 650 600 530	900	۱,125	1,350	1,425 1,300 1,200 1,150 1,125	1,100	55
	10 11 12 13 14	38	131	220	320	495 440 455 490 435 450	600	825	9 50	1,025 1,100 1,150 1,175 1,200	725	40
	15	38	140	230	350	485	650	825	9 50	1,125	825	

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

47FLW-820 nut: Average coating thickness - 0.00050 in.

b. Royal Lubricants Company, Inc. Royco 81MS lubricant is a mixture basically 50% molybdenum disulfide and 50% silicone oil formulated to meet MIL-L-25681. The Royco 81MS lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.60042 in. 47FLW-820 nut: Average coating thickness = 0.00040 in.

b. Royal Lubricants Company, Inc. Royco 81MS lubricant is a mixture basically 50% molybdenum disulfide and 50% silicone oil formulated to meet MIL-L-25681. The Royco 81MS lubricant was applied to the threads of the boll and nut.

c. NAS1308-10 bott: Average shank diameter = 0.4987 in., average coating thickness = 0.00041 in.

TABLE A-55. TORQUE-TENSION DATA FOR IVO ALUMINUM-COATED BOLT AND IVO ALUMINUM-COATED NUT LUBRICATED WITH ROYAL LUBRICANTS COMPANY, INC. ROYCO 81MS.

		Running				Terque C	n Hut (in	. -%)			_	Running
fest No.2,2,2,2	Cycle No.	Torque (inlb, CW				Bolt	Load (lb)				Breakaway Torque	Terque (inlb.
•••		Direction)	2,500	5,800	7,500	10,000	12,500	15,900	17,500	20,000	(inlb)	CCW Direction)
55	1 2 3 4 5	185 40	335 170	500 290	650 390	775 775 600 580 495	9 50 6 50	1,100 825	1,275 1,050	1,450 1,475 1,350 1,350 1,250	1,250 1,025	165 45
	6 7 8 9					520 480 505 435			.,000	1,200 1,200 1,200 1,075	,,,,,,,	
	10 11 12 13 14	30	125	200	295	400 435 425 440 395	500	725	8 75	1,025 975 925 975 875	7 50	30
	15	30	145	230	320	400	490	595	725	900	625	25

a Nut had wax tubricant (Carbowax Polyethylenie Glycol 3350) applied.

TABLE A-56. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ROYAL LUBRICANTS COMPANY, INC. ROYCO 81MS.

		Running				Torque C	n Nui (in	10)				Running
Test No.*.*.	Cycle No.	Torque (inià, CW				Bott	Load (ib)				Breaksway Torque	Torqua (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(InIb)	CCW Direction)
56	1 2 3 4 5	95 27	205 165	295 305	375 475	475 525 600 600 545	570 675	700 850	850 1,050	950 1,100 1,300 1,350 1,325	750 1,050	155 35
	6 7 8 9 10	20	120	230	375	530 585 560 510 465 415	545	6 75	800	1,200 1,200 1,175 1,100 950 950	700	25
	12 13 14 15	20	110	210	310	420 410 420 455	510	6 00	725	925 875 900 850	550	20

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Royal Lubricants Company, Inc. Royco 81MS lubricant is a mixture basically 50% molybdenum disuifide and 50% silicone oil formulated to meet MIL-L-25681. The Royco 31MS lubricant was applied to the threads of the bott and not.

c NAS1308-10 bolt. Average shank diameter ~ 0.4990 in., average coating thickness ~ 0.00050 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00045 in.

b. Royal Lubricants Company, Inc. Royco 81MS lubricant is a mixture basically 50% molybdenum disulfide and 50% stilicone of formulated to meet MIL-L-25681. The Royco 81MS lubricant was applied to the threads of the bott and nut.

c NAS1308-10 bolt: Average shank diameter ~ 0.4987 in., average coating thickness ~ 5.00046 in.

⁴⁷FLW-820 nut: Average coating thickness = 0.00046 in.

TABLE A-57. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH GRAPHITE PRODUCTS COMPANY GP-400.

			Running				Terque C	n Nut (in	i b)				Running
•	Tast No.a.a.c	Cycle No.	Terque (inib, CW				Boll	Lead (Ib)				Breaksway Torque	Terque (inib,
			Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,800	20,000	(inlb)	CCW Direction)
	57	1 2 3 4 5 6 7 8 9 10	55 50 40	130 115 110	200 190	285 290 260	390 405 420 400 425 420 365 355 340 340 310	520 540 430	675 675 5 55	800 775 725	900 950 950 900 925 925 925 900 875 875 825	675 675 600	50 50 40
		12 13 14 15	40	105	165	255	370 360 310 365	4 55	54 0	675	800 800 750 775	48 5	50

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-58. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH GRAPHITE PRODUCTS COMPANY GP-400.

		 Running				โดญข อ C	n Hut (in	lb)				Running
Test No.=,b,c	Cycle No.	Torque (inlb, CW				Bott	Load (lb)				Brankaway Torque	Torque (inlb,
••••		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
58	1 2 3 4 5 6 7 8	125 4 5	200	285 195	365 280	470 455 410 425 390 370 360 340	570 510	72S 675	875 825	1,025 1,075 1,100 1,050 950 950 900 850	750 700	110 40
	8 9 10 11 12 13 14	4 0 3 5	100	170 165	240 230	320 325 310 300 300 305 315	440 410	555 525	700 650	825 850 850 800 800 800	575	4 0

a Nut had wax lubricant (Carbowax Polyethylene Giycol 3350) applied.

b Graphite Products Company GP-400 lubricant is a paste containing approximately 50% molybdenum disulfide, 5% graphite, and 40% mineral oil with a soap base thickener. The GP-400 lubricant was applied to the threads of the bolt and nut.

c. NAS1306-10 bolt. Average shank diameter = 0.4987 kn., average coating thickness = 0.00032 kn.

⁴⁷FLW-820 nut: Average coating thickness - 0.00043 in.

b Graphite Products Company GP-400 lubricant is a paste containing approximately 50% molybdenium disulfide, 5% graphite, and 40% mineral oil with a soap base thickener. The GP-400 lubricant was applied to the threads of the bolt and trut.

c. NAS1306-10 bolt: Average shank diameter = 0.4986 in., "verage coating thickness = 0.00034 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00048 in.

TABLE A-59. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH GRAPHITE PRODUCTS COMPANY GP-401.

		Running				Terque C	n Hut (in	. -# b)				Running
Test No. ^{a,b,s}	Cycle No.	Terque (inib, CW Direction) 2,1				Boît	Load (Ib)				Breaksway Torque	Torque (inlb,
			2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
59	1 2 3 4	75	135	210	300	400 295 290 285	5 35	700	800	950 750 800 775	725	60
	5 6 7 8	50	110	170	230	310 300 290 285 290	420	5 30	675	800 800 775 800 200	5 70	45
	10 11 12 13 14	30	90	145	210	290 290 275 275 270 265	380	490	625	800 800 775 775 775	5 50	35
	15	30	95	145	205	275	360	455	580	750	485	35

a Nut supplied with wax jubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-60. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH GRAPHITE PRODUCTS COMPANY GP-401.

		Running		14.0 M. W. W. W. W. W. W. W. W. W. W. W. W. W.	ENTYTHE STATE	Terque O	n Nut (is	{ b)				Running
Test No.ª.à.e	Cycle No.	Torque (in15, CW				Bolt	Load (lb)				Breakaway Terque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(lnlb)	CCW Direction)
60	1 2 3 4 5 6 7 8 9	115 35 30	170 9 0 75	260 160	365 230 200	480 395 360 330 310 285 290 280 275 270	600 415 380	725 535	875 675	1,025 950 925 900 825 825 825 800 825 825	825 575 54 5	110 40 30
	11 12 13 14 15	20	70	125	185	260 270 275 255 265	360	3 60	650	775 200 775 750 775	450	25

a Nul had wax subricant (Carbowax Polyethylone Glycol 3350) applied.

b Graphite Products Company GP-401 lubricant is a paste containing approximately 50% molybdenum disulfice, 5% graphite, and

^{40%} mineral oil with a non soap base thickener. The GP-401 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00032 in. 47FLW-820 nut. Average coating thickness = 0.00039 in.

b Graphite Products Company GP-401 lubricant is a paste containing approximately 50% molybdenum disulfide, 5% graphite, and 40% mineral oil with a non soap base thickener. The GP-401 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00035 in. 47FLW-820 nut: Average coating thickness = 0.00040 in.

TABLE A-61. TORQUE TEASION DAYA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH GRAPHITE PRODUCTS COMPANY GP-460.

		Hunning				Terque C	n Nut (in	. -15)				Running
Test No.s.b.s	Cycle No.	Terqus (inib, CW				Box	Lead (lb)				Breaksway Terque	Yarqua (inlb,
		Missessian) [2,500	5,600	7,500	10,000	12,500	15,000	17,500	20,000	(inlò)	CCW Direction)
61	3		95	160	245	355 315 245 250	465	570	650	750 700 625 625	465	35
	5 6 7 8 9	30	85	135	190	265 255 270 285 270	3 55	445	550	650 650 675 700 700	375	30
	10 11 12 13 14	40	95	140	200	275 265 260 270 255	385	480	585	700 650 650 650 650	410	40
	15	40	90	135	190	260	350	455	565	700	395	40

a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-62. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD-ALUMINUM COATED NUT LUBRICATED WITH GRAPHITE PRODUCTS COMPANY GP-460.

		Running				Torque O	n Nut (to	Ib) ⁴				Running
Test No.8,9,8	Cycle No.	Torquo (inlb, CV/				Bott	Lead (lb)				Breaksway Torque	Torque (inlb, CCW
		Direction	2,500	5,000	7,500	18,000	12,500	15,900	17,500	20,000	(lnlb)	Direction)
62	1 2 3	125	205	295	380	485 420 375 315	600	700	\$00	925 850 800 750	700	120
	4 5 6 7	45	110	165	235	315 310 300 285	410	505	6 50	750 750 750 750	480	50
	10 11 12 13	40	105	160	230	280 305 300 285 270	405	515	675	775 825 825 750 750	545	50
	14 15	35	100	155	215	265 295	385	505	650	750 750	465	40

a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Graphite Products Company GP-460 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544. The GP-460 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter ~ 0.4988 in., average coating thickness ~ 0.00038 in. 47FLW-820 nut: Average coating thickness ~ 0.00036 in.

b Graphite products company GP-460 lubricant is a paste containing 50% symmetic graphite and 50% petroletum formulated to most MiL-T-5544. The GP-460 lubricant was applied to the timeads of the bolt and out.

c. NAS1308-10 bott: Average shank diameter - 0.4965 in., average coating thickness - 0.00036 in.

⁴⁷FLW-920 nut: Average coating thickness - 0.00045 in.

TABLE A-63. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH \(\text{L/M} CORPORATION CP-28. \)

		Running				Terque C	n Nut (in	8 6)d				Running
Test No.s.b.s	Cycle No.	Tarque (inih, CW				Bog	Loud (Ib)				Breaksway Tarque	Terque (inib.
		Direction)	2,500	5,000	7,588	18,000	12,500	15,000	17,500	20,800	(inth)	Direction)
63	1 2 3 4	70	125	200	295	405 325 305 300	520	6 50	\$00	950 825 800 800	700	50
	5 6 7 8	5 0	105	170	240	315 285 280 290	425	5 55	725	850 800 800 800 775	600	50
	10 11 12 13 14	40	95	160	235	275 315 290 280 285 280	415	52 0	675	800 775 775 775 775 750	56 0	45
	15	35	90	145	210	285	380	480	650	775	480	40

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-64. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD-ALUMINUM COATED NUT LUBRICATED WITH E/M CORPORATION CP-28.

		Running				Terque C	in Nut (in	ib)d	·			Running
Yest No.*.*.*	Cycle No.	Torque (inib, CW				Bon	Lead (lb)				Breaksway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
64	1 2 3 4 5 6 7 8 9 10 11	130 40 35	260 135	380 215	300 285	650 450 455 410 395 375 370 380 360 375 350 360	800 515 505	925 675 675	1,050 800 800	1,200 1,625 1,000 975 950 950 950 925 925 900	92 5 650 650	110 45 40
	13 14 15	30	110	180	255	355 .) 3	475	625	750	875 850 850	550	30

a. Nut supplied with wax lubric ant (Carbowax Polyethylene Glycol J. 50) applied.

b E/M corporation CP-28 lubricant is a paste containing 60% molybdenum disulfide, an organic barium compound, mineral ell, and lithium grease. The CP-28 lubricant was applied to the divends of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00033 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00037 in.

b. E/M corporation CP-28 lubricant is a paste containing 60% molybdonum disulfide, an organic barium compound, mineral oil, and lithlum grease. The CP-28 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter - 0.4969 in., average coating thickness - 0.00034 in.

⁴⁷FLW-820 nut. Average coating thickness - 0.00043 in.

TABLE A-65. TORQUE-TENSION DATA FOR IVD CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH E/M CORPORATION CP-29.

			Running				Torque D	n Nut (in	1 b)				Running
	Test No.a.s.e	Cycle	Torque (inib. CW				Bott	Load (ib)				Breaksway Torque	Torque (inlb.
	****		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	Direction)
	65	1 2 3	50	170	245	315	390 415 400 370	470	£50	650	750 900 875 850	430	45
		5 6 7 8	30	150	210	285	365 360 350 360	450	555	700	850 850 850 850	5 35	30
		9 10 11 12 13	35	145	260	385	335 360 340 355 330	425	550	700	\$25 \$50 \$50 \$50 \$50	540	35
]		14	40	125	200	260	325 335	415	520	650	800 800	515	35

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-66. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION CP-29.

		Running			,	Tomus O	n Nut (in	lb)				Running
Test No. ^{a,b,e}	Cycle No.	Torque (in1b, CW				Bolt	Load (lb)				Breaksway Torque	Torque (in1b,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
6 6	1 2 3 4	75	210	370	480	625 650 500 470	775	925	1,050	1,200 1,300 1,025 975	925	75
	5 6 7 8	35	160	260	3 50	445 445 410 385 390	535	675	800	950 1,000 975 925 925	650	30
	10 11 12 13 14	30	155	270	390	540 350 365 370 365	500	625	700	900 825 650 875 850	580	30
	15	30	150	265	380	500	625	750	850	1,000	675	30

a Nut had wax lubricant (Carbowax Polyethylene Glycoi 3350) applied.

b EM Corporation CP-29 lubricant is a complex mixture containing molybdenum disulfide, finely divided copper metal particles,

silica, and mineral oil. The CP-29 tubricant was applied to the threads of the bolt and nut. c. NAS1308-10 bolt: Average shank diameter = 0.4985 in., average coating thickness = 0.00031 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00043 in.

h E/M Corporation CP-29 lubricant is a complex mixture containing molybdenum disulfide, finely divided copper metal particles, silica, and mineral oil. The CP-29 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter ~ 0.4985 in., average coating thickness ~ 0.00035 kis.

⁴⁷FLW-820 nut: Average coating thickness - 0.00045 in.

TABLE A-67. TORQUE-YENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH E/M CORPORATION CP-42.

		Ruaning			•	Yarque C	e Nut (in	. -16)			8 31	Running
Test No.a.b.e	Cycle No.	Terque (inib, CW				Bott	Load (Ib)				Breaksway Torque	Torque (inib,
		Direction)	2,500	5,000	7,500	16,000	12,500	15,800	17,500	20,000	(inlb)	CCW Direction)
67	1 2 3	8 5	150	220	310	410 430 390	5 25	675	775	900 1,050 1,075 1,075	600	75
	5 6 7 8	65	130	210	290	395 395 375 350 330	530	725	900	1,100 1,050 1,000 975	825	70
	10 11 12 13	40	105	170	235	310 330 330 330 345	455	65 0	800	925 950 925 950 950	650	45
	14	35	110	180	260	340 340	445	575	775	925 950	650	35

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-68. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION CP-42.

			Running				Torque C	n Hut (in	. -1 b)				Running
	Test No.a.b.c	Cycle	Torque (inib, CW				Bott	Load (lb)				Breaksway Torque	Torque (in1b,
			Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
	68	2 3 4	100	190	295	415	555 450 400 375	725	875	1,025	1,225 1,250 1,150 1,050	950	90
		5 6 7 8	30	110	195	235	390 350 380 365 355	525	725	925	1,175 1,200 1,150 1,050	906	20
i i		10 11 12 13	30	85	165	250	345 335 350 380	460	625	800	1,000 975 1,000 975 975	650	20
		14 15	20	80	155	235	350 330	460	600	775	950 900	540	15

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation CP-42 lubricant is a paste with a synthetic polyatkytene glycol base containing a high concentration of molybdenum disulfide. The CP-42 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4985 in., average coating thickness = 0.00031 in. 47FLW-820 nut: Average coating thickness = 0.00040 in.

b E/M Corporation CP-42 lubricant is a paste with a synthetic polyalkylene glycol base containing a high concentration of molybdenum disulfide. The CP-42 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0.4986 in., average coating thickness = 0.00036 in. 47FLW-820 nut: Average coating thickness = 0.00047 in.

TABLE A-69. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH E/M CORPORATION FORMKOTE T-50.

		Running		•	-	Terque C	in Nut (in	lb)				Running
Test No. ^{a,b,c}	Cycle No.	Torque (in1b, CW				Bolt	Lead (lb)				Branksway Torque	(in8b,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,900	17,500	20,000	(inlb)	Direction)
69	12345678	8 5 9 0	190 250	295 400	38 5 56 0	480 550 575 600 700 675 725 700	585 800	700 850	90 0	875 850 875 900 975 1,000 1,000	600 750	8 5
	9 10 11 12 13	100	340	575	725	725 900 750 750 775	975	1,025	1,100	1,075 1,200 1,100 1,125	850	110

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-70. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION FORMKOTE T-50.

		Running		•		Torque C	n Nut (in	lb)			Dan alaman	Running Torque
Test No. ^{a,b,c}	Cycle No.	Torque (inlb, CW				Bott	Load (lb)				Breaksway Torque	(inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inIb)	Direction)
70	1 2 3	90	200	315	410	510 600 700	600	725	800	900 1,075 1,375	625 1,100 ^d	105

a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation FormkoteT-50 is a dry film lubricant containing graphite suspended in a high temperature resin binder. The Formkote T-50 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter, = 0.4985 in., average plating thickness = 0.00030 in., average plating and lubricant thickness = 0.00047 in.

⁴⁷FLW-820 nut: Average plating thickness = 0.00044 in., average plating and lubricant thickness = 0.00075 in.

d. Since the nut was starting to bind on the bolt due to loss of lubrication, the test was terminated.

b E/M Corporation Formkote T-50 is a dry film lubricant containing graphite suspended in a high temperature resin binder. The Formkote T-50 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter -- 0.4986 in., average coating thickness -- 0.00035 in. average coating and lubricant thickness -- 0.00044 in.

⁴⁷Ft, W-820 nut: Average coating thickness - 0.00045 in., Average coating and lubricant thickness - 0.00059 in.

d Since a high breaksway torque indicated the nut was starting to bind, test was terminated.

TABLE A-71. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH E/M CORPORATION LUBRI-BOND A.

		Running				Terque 0	n Nut (in	10)				Running
Test No.º,b,s	Cycle No.	Terque (inib, SW				Belt	Lead (lb)				Breaksway Terque	Terqua (inlb.
_		Direction)	2,500	5,000	7,500	10,000	12,500	15,900	17,500	20,000	(inlb)	CCW Direction)
71	1 2 3 4	90	225	370	515	000 000 000	675	750	8 50	925 1,075 1,125 1,100	650	80
	5 6 7 8 9	50	210	355	495	650 500 455 445 410	775	92 5	1,025	1,150 900 850 825 800	8 50	55
	10 11 12 13 14	40	125	220	320	425 455 445 455 480	530	650	750	825 850 850 850 875	550	35
	15	40	145	250	370	510	650	750	800	900	600	40

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-72. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION LUBRI-BOND A.

ľ			Running				Terque O	n Hut (in	lb)			2	Running
	Tost No. ^{a.b.s}	Cycle No.	Torque (inlb, CW				Boil	Load (ib)				Breakaway Torque	Torque (inib,
			Direction)	2,500	5,000	7,500	10,080	12,500	15,900	17,500	20,000	(inib)	CCW Direction)
	72	1 2 3 4	80	190	310	410	480 580 650 750	570	650	775	900 1,050 1,125 1,275	600	70
		5	33	200	380	570	800	1,000	1,150	1,250	1,475	1,225	285

Nut supplied with wax lubricant (Carbowax Polyethylone Glycol 3350) applied.

b E/M Corporation Lubri-Bond A is an air trying, solid film lubricant containing molybdenum disulfide and graphile in a resin binder. The Lubri-Bond A lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00035 in., average shank diameter with lubricant = 0.4994 in., average plating and lubricant thickness = 0.00058 in.

⁴⁷FLW-820 nut: Average coating thickness = 0.00042 in., Average plating and lubricant thickness = 0.00129 in.

E/M Corporation Lubri-Bond A is an air drying, solid film lubricant containing molybdenum disuffide and graphite in a resin binder.

Lubri-Bond A lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt. Average shank diameter = 0.4986 in., average coating thickness = 0.00033 in., average shank diameter with lubricant = 0.4995 in., average coating and lubricant thickness = 0.00069 in.

⁴⁷Ft.W-820 nut. Average coating thickness = 0.00047 in., Average coating and lubricant thickness = 0.00159 in.

d Since increasing torques implied loss of kibrication, test was terminated.

TABLE A-73. TORQUE-TENSION TEST DATA FOR AN IVO ALUMINUM-COATED BOLT AND IVO ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION CP-42.

		Running				Torque 0	n Nut (in	. -1 b)				Running
Test No.3,5,6	Cycle No.	Terque (inIb, CW				Belt	Leed (lb)				Breaksway Terque	Yerque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction
73	1 2 3 4	10 0	190	295	415	555 450 400 375	725	875	1,025	1,225 1,250 1,150 1,050	950	90
	5 6 7 8	30	110	195	285	390 350 380 365	5 25	725	925	1,175 1,200 1,150 1,050	900	20
	10 11 12 13 14	30	85	165	250	355 345 335 350 380 350	460	625	800	1,000 975 1,000 975 975 950	6 50	20
	15	20	80	155	235	330	460	600	775	900	540	15

a. The lubricant was applied to the threads of the bolt and nut.

TABLE A-74. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH E/M CORPORATION CP-116.

		Running		••		Torque O	n Nut (in	Ib)				Running
Tesi No.º,5,s	Cycle No.	Torque (inlb, CW				Bolt	Load (lb)				Breakaway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
74	1 2 3 4 5	40 40	120	170 150	250 220	335 280 270 265 275 275	445 370	495 455	570 550	700 700 675 650 650 675	420 . 365	35 40
	7 8 9 10 11 12	38	90	145	205	280 280 275 265 260 260	350	425	520	700 675 675 625 650 650	330	38
	13 14 15	35	55	135	190	255 250 250	315	405	500	625 625 600	300	35

a Nut supplied with wax lubricant (Carbowax Polyethylens Glycol 3350) applied.

b E/M Corporation CP-42 lubricant is a paste with a synthetic polyatkylene glycol fluid base containing a high concentration of molybdenum disulfide.

c. NAS1308-10 bolt: Shank diameter - 0.4987 in., coating thickness - 0.00035 in.

⁴⁷FLW-820 nut: coating thickness = 0.00037 in.

b EM Corporation CP-116 is a complex mixture consisting of molybdenum disulfide, mineral oil, and petrolatum. The CP-116 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0.4986 in., average coating thickness = 0.00036 in. 47FLW-820 nut: Average coating thickness = 0.00046 in.

TABLE A-75. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH E/M CORPORATION CP-116.

		Running				Terque C	n Hut (in	此)			63	Running
Test No.5,8,6	Cycle No.	Terque (inlb, CW		·· · ·		Bott	Lead (lb)				Breaksway Yerque	Terque (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,900	17,500	20,600	(inlb)	CCW Direction)
75	1 2 3 4	45	110	175	235	315 260 260 270	395	490	590	700 675 650 675	405	35
	5 6 7 0	40	90	140	205	270 270 270 270 270	350	440	545	650 650 675 675 675	375	35
	9 10 11 12 13	35	95	155	215	270 280 270 280 280 280 265	360	465	560	675 675 675 675 675 650	38 0	35
	15	35	90	145	205	265	345	450	545	650	330	

a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation CP-116 is a complex mixture consisting of molybdenum disulfide, mineral oil, and petrolatum. The CP-116 liubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00040 in.

47FLW-620 nut: Average coating thickness - 0.00039 in.

TABLE A-76. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION CP-116.

		Running			•	Torque O	n Nut (in	tb)				Ruaning
Test No.*.h.:	Cycle No.	Torque (in1b, CW				Bott	Load (Ib)				Breaksway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,600	12,500	15,000	17,500	20,000	(inlb)	CCW Direction
76	1 2 3 4	90	160	230	310	400 390 370 345	500	625	72 5	850 850 850 850	550	8 0
	5 6 7 8	45	140	215	305	400 365 325 320 310	505	650	750	850 800 750 750 700	550	40
	10 11 12 13 14	30	90	165	240	335 315 295 295 290	405	490	590	700 700 700 700 675 650	390	30
	15	30	80	150	210	300	365	450	540	650	345	30

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. E/M Corporation CP-116 is a complex mixture consisting of molytidenum disulfide, mineral off, and petrolatum. The CP-116 lubricant was applied to the threads of the bolt and nut.

© NAS1308-10 bolt. Average shank diameter = 0.4984 in., average - pating thickness = 0.00035 in.

47FLW-820 nut. Average coating thickness - 0 00045 in.

TABLE A-77. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION CP-116.

		Running		- · · - · ·		Terque 0	in Net (in	lb)				Running
Yest No.a.b.c	Cycle No.	Torque (in -lb, CW				Bolt	Lead (lb)				Breaksway Torque	Torqua (in. ib,
		Direction;	2,500	5,000	7,500	10,000	12,500	15,000	97,500	20,000	(inlb)	CCW Direction)
77	1 2 3 4	90	155	235	325	430 325 310 295	500	625	700	800 700 700 675	420	60
	5 6 7 8	45	9 5	150	210	280 280 275 275 276 270	350	445	5 35	650 675 650 650 650	375	40
	10 11 12 13 14	35	80	130	190	210 260 250 250 250 255	350	430	52 5	\$50 625 625 625 625	355	3 5
	15	30	80	155	190	260	340	435	535	650	355	30

a. Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-70. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION CP-116.

			Aunning				Torque C	in Nut (in	lb)				Running
	Test Ho.s.b.c	Cycle No.	Torque (infb, CW				Bott	Lead (lb)				Breakaway Torque	Torque (inlb,
	This is recorded		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	29,000	(inib)	CCW Direction)
	ý«	1 2 3 4	110	185	265	340	420 350 330 330	510	625	700	800 750 775 775	490	90
		5 6 7 8	50	100	165	225	310 305 290 290	400	500	625	750 750 750 700 700	410	50
A		10 11 12 13	4,	8 5	135	195	280 270 270 265 260	345	430	540	675 650 675 650 650	34 5	35
		14 15	30	80	135	190	260 265	355	445	5 60	850 650	355	30

a Nut had wax tuber aim (Ca.

では、10mmのでは、1

b EM Corporation CP-116 is a complex mixture consisting of molybdenum disulfide, mineral oil, and petrolatum. The CP-116 tubricant was applied to the threads of the bolt and nut.

C N7 51308-10 bolt: Average shank diameter = 0.4985 in., average coating thickness = 0.00039 in.

⁴⁷FLW-820 nut: Average couting thickn as - 0.00041 in.

ax Polyethylene Glycol 3350) applied.

b E/M Corporation CP-116 is complex mixture consisting of molybdonum disulfide, mineral oil, and petrolatum. The CP-116 fubricant was applied to the threads of the holf and nut.

c. NAS1308-10 bc.1. Amerage shank db. calor → 0.4988 lb., average coating thickness → 0.00045 lb., 47FLW-820 nut; All rage costing thinkness → 0.00045 lb.

TABLE A-78. YORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ARMITE LABORATORIES MIL-T-83483.

		Running				Terque C	ia Rut (in	lb)				Running
Test No.5.6.4	Cycle No.	Torque (in!b, CW				Beli	Lead (lb)				Breaksway Yorque	forque (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,800	(inlb)	CCW Direction)
79	1 2 3 4 5	50 30	120	195 195	270 260	355 350 350 345 320	425 395	5 05	6 25 5 75	700 725 750 725 700	390 370	40 30
	6 7 8 9			100	200	310 300 315 310	3 33	400	0.0	700 700 700 700	3 ,5	
	10 11 12 13 14	30	110	185	250	305 300 300 300 300	3 80	445	530	700 700 700 700 700	345	30
	15	30	105	180	245	310	400	475	5 55	675	360	30

a. Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

47FLW-820 nut: Average coating thickness - 0.00044 in.

TABLE A-80. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ARMITE LABORATORIES MIL-T-83483.

		Running				C suprof	in Nut (in	8b);				Running
est No.a.k.e	Cycla No.	Torque (in!b, CW				Bom	(d) bec.				Breakaway Torque	Torque (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	28,000	(inlb)	CCW Direction)
80	1 2 3 4	35	190	175	240	320 310 330 340	395	470	540	650 700 725 750	350	30
	5 6 7 8	30	105	180	250	320 330 310 305 305	405	480	570	700 700 700 700	390	30
	10 11 12 13 14	30	100	170	235	310 300 295 300 290	400	490	590	700 725 725 700 700 675	415	30
	15	25	80	150	200	270	350	430	530	650	345	25

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Armite Laboratories MIL-T-83463 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum. The MIL-T-83483 lubricant was applied to the threads of the bolt and nut.

c NAS1306-10 bott: Average shank diameter = 0.4988 in., average ocating thickness = 0.00037 in.

b. Armite Laboratories MiL-T-83483 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum. The MiL-T-83483 lubricant was applied to the threads of the bott and nut.

c. NAS1308-10 bolt: Avera v. -hank diameter = 0.4987 km, average coating thickness = 0.00035 kn.

⁴⁷FLW-820 nut: Average conting thickness ~ 0.00042 in.

TABLE A-81. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ARMITE LABORATORIES MIL-T-83483.

		Running				Terque 0	in Nut (in	t b)				Running
Test No.e.b,c	Cycle No.	Torque (inib, CW				ZoX	Load (ib)				Breaksway Terque	Torque (inlb.
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	CCW Direction
81	1 2 3 4	45	120	210	280	360 365 330 320	450	555	675	750 750 725 700	455	40
	5 6 7 8	40	100	170	235	310 310 300 295 300	390	490	600	725 725 725 725 725 725	415	40
	10 11 12 13 14	40	90	150	215	285 285 270 265	360	450	5 60	675 675 700 650 650	385	49
	15	35	85	140	205	270	340	440	535	650	340	40

a Nut supplied with wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-82. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ARMITE LABORATORIES MIL-T-83483.

		Running			,	Torque 0	n Nut (in	!b)				Running
Test No.s.b.c	Cycle No.	Torque (inlb, CW				Bolt	Load (lb)				Breaksway Torque	Torque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inl5)	CCW Direction
82	1 2 3 4	90	180	265	350	440 435 375 350	540	675	750	875 900 875 800	570	70
	5 6 7 8	55	145	220	290	375 360 335 320	465	560	675	800 800 775 750	510	50
	10 11 12 13 14	40	120	190	250	315 320 305 310 295 295	405	5 10	650	750 750 700 700 700 700 675	455	40
	15	35	100	165	220	290	3 80	465	550	675	365	35

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Armite Laboratories MIL-T-83483 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum. The MIL-T-83483 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00032 in. 47FLW-820 nut: Average coating thickness = 0.00041 in.

b. Armite Laboratories MiL-T-83483 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum. The MiL-T-83483 lubricant was applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0.4988 in., average coating thickness = 0.00037 in. 47FLW-820 nut: Average coating thickness = 0.00043 in.

TABLE A-83. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ARMITE LABORATORIES MIL-T-83483.

		Running				Terqua 0	n Nut (ka	#b)			67	Running
Tast No.a.b.e	Cycle No.	Terque (lalb, CW				Bolt	Louid (fb)				Broaksway Terque	Yerque (inib,
****		Direction)	2,500	5,000	7,500	10,600	12,500	15,800	17,500	20,800	(inla)	CCW Direction
83	1 2 3 4		175	280	375	450 400 405 405	540	650	775	875 875 900 900 900	600 500	80 35
	5 6 7 8	40	125	220	310	400 390 355 355 355	510	6 50	775	875 825 800 800	900	35
	10 11 12 13	35	100	165	245	340 315 325 310 315	430	530	650	750 725 725 725 725 725	420	35
	15	30	75	150	225	315	420	505	625	725	390	30

a Nut had wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-84. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ARMITE LABORATORIES MIL-T-83483.

		Running				Torque C	n Nut (in	. -1 b)				Running
Test No.e,b,c	Cycle No.	Torque (inib. CW				Bolt	Load (lb)				Breakaway Torque	Torque (inib,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,800	17,500	20,000	(inib)	CCW Direction)
84	1 2 3 4	135	240	330	420	515 420 455 420	625	725	800	925 875 900 850	675	100
	5 6 7 8	50	155	230	310	395 365 370 370	480	600	725	825 800 800 800	575	50
	10 11 12 13	4 0	120	190	270	350 335 335 335 320	435	535	650	775 750 725 750 725	420	40
	14 15	40	115	185	250	325 315	400	495	585	725 700	385	40

a Nut had wax lubricant (Carbowax Polyethylenia Glycol 3350) applied.

b Armite Laboratories MIL-T-83483 lubricant is a paste containing 50% molybdenum disulfide and 50% petrolatum. The MiL-T-83483 lubricant was applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4988 in., average coating thickness = 0.00038 in. 47FLW-820 nut: Average coating thickness = 0.00043 in.

b. Armite Laboratories MIL-T-83483 lubricant is a paste containing 50% mot/odenum disulfide and 50% petrolatum. The MIL-T-83483 lubricant was applied to the threads of the bolt and run.

c NAS1308-10 bolt: Average shank diameter = 0.4985 th., average coating thickness = 0.60034 in. 47FLW-820 nut: Average coating thickness = 0.00040 in.

TABLE A-85. FORQUE-YENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION FORMKOTE T-50 AND FEL-PRO INCORPORATED C-601-S.

		Running			من يردب الجروات ال	issano O	ni) tulii ni	ib)				Nunning
Test No.a.b.c.d	Cycle Ka.	Torque (inlb, SW				Bon	Luad (lb)				Breaksway Torque (inlb)	Terque (intb, CCW
		Direction)	2,500			12,000	12,500	15,000	17,500	20,000		Direction)
8 5	1 2 3	110	175	240	335	440 390 845 300	52 0	G2 5	725	800 800 750 750	525	100
	5	45	115	176	235	305	395	505	625	775	490	45

a Nut old not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

d. The Formkote T-50 was removed after the first torque-tension cycle during utrasonic cleaning.

TABLE A-86. TORQUE-YENSION SATA FOR IVO ALIMINUM-COATED BOLT AND IVO ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION PERMA-SLIK'S AND FEL-PRO INCORPORATED C-501-S

		Rusning		***************************************		Torque O	n Nut (in	lb) ⁴	· · · · · · · · · · · · · · · · · · ·		Danakassass	Running
Test No.s.b.r.d	Cycle No.	Torque (inlb, CW				Ko3	Load (lh)				Breaknway Torque (inib)	Torque (inlb, CCW
		Direction)	2,500	5,000	7,503	10,000	12,500	15,000	17,500	20,000		Diraction)
86	1 2 3	110	19 5	280	365	455 355 330 315	545	650	750	850 800 800 800	565	110
	5	50	110	165	235	320	425	560	675	800	520	55

Nut did not have wax lubricant (Carbowax Poryethylane Glyxol 3350) applied.

b E/M Corporation Formkote T-50 is a dry film subricant containing graphilis suspended in a high temperature resin binder. Fel-Pro incorporated C-601-S subricant is a paule containing 50 percent synthetic graphite and 50 percent petrolatum formulates to meet MIL-T-5544. The C-801-S tubricant with applied over the Formkote T-50 subricant. Both subricants were applied to the threads of the bolt and nut.

c. NAS1308-10 bolt: Average shank diameter = 0.4989 in., average coating thickness = 0.00036 in., average shank diameter with Formkote T-50 - 0.4999 in., average coating and Formkote T-50 thickness = 0.00042 in., 47FLW-820 nut: Average coating thickness = 0.00046 in., average coating and Formkote T-50 0.00046 in.

b. EM corporation Perma Silk Sib an air driad solid film lubricant containing molybdenumdisulfide in a minimum amount of binder. Fel-Pro incorporated C-601-S lubricant is a pusie containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Perma-Silk S lubricant. Both lubricants were applied to the threads of the bolt and nut.

c. NAS1308-10 bolt. Average shank diameter = 0.4986 in., average conting thickness = 0.00037 in., average shank diameter with Perma-Sik S = 0.4989 in., average coulding thickness = 0.00038 in.

⁴⁷FLW-820 nut: Avarage costing thickness ~ 0.00041 in., average coating and Perma-Sik S thickness ~ 0.00074 in.

d. Perma-Slik S were off the throads of the bott and nut aries three torque-tension cycles.

TABLE A-87. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT OVERCOATED WITH WHITFORD CORPORATION XYLAR 101 AND LUBRICATED WITH FEL-PRO INCORPORATED C-801-S.

		Running				Terque C	a Mui (lu	26)				Hunning
Test No.3,5,4	Cycle No.	Terque (inlb, CW				Boli	L*86 (lb)				Breskaway Tarque (dada)	Torque (inih, CCW
		Direction)	2,500	6,000	7,500)	12,500	15,200	17,500	20,800		Direction)
87	1 2 3 4	8 5	185	295	365	460 410 385 320	570	675	775	\$00 \$25 \$00 860	625	6 0
	5	30	9 5	150	2 25	310	410	520	5 50	750	460	25

a Nut did not have wax subricant (Carbowax Polyethylenc Glycol 3350) applied.

TABLE A-88. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD
ALUMINUM-COATED NUT OVERCOATED WITH WHITFORD COPPORATION XYLAS
101 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-6M-S.

		Running				Torque C	n Nut (in	l b)				Running
Test No.0,5,6	Cycle No.	Torque (inib, CW				Bott	Luad (lb)				Breaksway Torque	Tarque (inle,
		Direction)	2,500	5,600	7,500	10,000	12,500	15,000	17,500	20,000	(lnlb)	Direction)
88	1 2 3 4	110	225	315	420	525 445 360 315	650	725	825	950 850 725 725	700	120
	5	40	110	170	235	310	400	510	900	700	440	45

a Nut did not have wax fubricant (Carbowax Polyethylene Glycol 3350) applied.

b Whitford Corporation Xylar 101 coating contains nonmetallic fillers in coincination with carantic materials to extend the performance of aluminum coatings. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthesis graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Xylar 101 coating on threads of the bolt and nut.

c: NAS1308-10 bott: Average shank diameter = 0.4985 in., average coating thickness = 0.00000 in., average shank diameter with Xylar 101 = 0.4990 in., average coating and Xylar 101 thickness = 0.00053 in.

⁴⁷FLW-920 nut: Average coating thickness = 0.00041 in , average coating and Xylar 101 thickness = 0.00060 in .

b Whitford Corporation Xylar 101 coating contains nonmetatic filters in combination with ceramic materials to extend the performance of aluminum coatings. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolaturin formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Xylar 101 coating on threads of the bolt and nut.

c NAS1308-10 bolt: Average shank diameter = 0.4986 in., average coating thickness = 0.00040 in.
47FLW-820 nut: Average coating thickness = 0.00067 in. average coating and Xylar 101 thickness = 0.00067 in.

TABLE A-89. TORQUE-TENSION DATA FOR IVD ALUMINUM-COAYED BOLT OVERCOATED WITH WHITFORD CORPORATION XYLAR \$55 AND FOR IVD ALUMINUM-COATED NUT AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	Test No.a.b.c	Cycla No.	Aunning Torque (in12, CW					n Hut (in Leed (id)		*****		Breskaway Torque	Running Terque (inlb,
ĺ			Direction)	2,500	5,000	7,520	19,000	12,500	46.00g	17,600	20,000	(iulb)	CCW Direction)
	89	1234	130	173	250	330	420 370 29 0 280	220	625	700	800 750 700 700	52 5	115
Į		6	40	100	150	210	230	375	470	575	700	420	40

s. Nut did not have wax substicant (Corbowax Polysthylena Glycol 3350) applied.

b Whitford Corporation Xylar 101 coating contains nonrestalic filters in combination with ocramic materials to extend the performance of aluminum coatings. Fol-970 incorporated C-061 S lubricant is a paste containing 50% synthetic graphite and 50% petrolature formulated to meet MiL-Y-5344. The C-601-S lubricant was applied over the Xylar 101 coating on threads of the bolt and nut.

c NAS1308-10 bolt. Average shalik diameter = 0.4984 kn., average counting thickness = 0.00033 kn., average shalik diameter with Xylai 101 = 0.4989 kn., average coating and Xylar 101 discusses = 0.00052 kn.

47FLW-820 nui. A.wrage coating thickness = 0.00045 m.

TABLE A-90. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND FEL-PRO INCORPORATED C-601-S.

			Running				Torque 0	n Nut (in	lb }				Running
	Yund Moje, d. s	Cycle No.	Forque (irlb, CW				Bott	Lead (lb)				Breaksway Torque	Torque (inlb,
			Direction)	2,500	8,000	7,500	18,000	12,500	15,000	17,500	20,000	(inlb)	CCW Diraction)
	60	1 2 3 4	60	105	160	230	310 305 285 270	400	470	570	700 675 650 650	390	55
		5 6 7 8	40	105	160	22 5	305 305 300 300	395	5 00	600	700 700 700 700	400	45
		10 11 12 13 14	30	35	145	215	290 285 270 265 265 255	370	475	590	700 700 725 700 700 700	420	30
<u> </u>		15	25	75	130	190	260	350	450	570	700	400	30

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

一大は からい こうかん かんしょう

b. E/M Corporation Evertube 1346 is an alrectived, bonded sold film lubricant formulated with molybdersum disutfide in a resin binder. Fel-Pro Incorporated C-6u1-5 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-7-5544. The C-601-S lubricant was applied over the Evertube 1346 lubricants were applied to the threads of the bolt and nut.

c. NAS1308-10 bolt. Average shank diam-ter = 0.4986 in., average coating thickness = 0.00032 in., average shank diameter with Everlube 1346 = 0.4995 in., average coating and Everlube 1346 thickness = 0.00081 kg.

47FUW-620 nut: Average coating thickness = 0.00042 in., average coating and Evenute 1346 thickness = 0.00092 in.

TABLE A-91. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND FEL-PRO INCORPORATED C-601-S.

		Running				Terque C	n Hut (in	!b)				Aunning
Test No.*,b,s	Cycls No.	Torque (inib, CW				Balt	Load (lb)				Breaksway Torque	(inlb.
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction)
91	1 2 3 4	70	115	185	250	330 275 200 270	405	505	600	700 625 650 650	390	60
	5 6 7 8	45	9 5	145	205	270 330 270 270	360	455	560	650 725 650 650	36 5	50
	10 11 12 13	40	165	155	215	265 285 265 270 265	375	465	56 5	650 700 675 700 700	405	40
	14	35	85	130	185	270 260	350	450	570	725 725	420	35

a. Nut tild not have was lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-92. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-5256 AND IFEL-PRO INCORPORATED C-661-S.

		Ì	Running				Torque S	n Nut (In	lb)				Hunning
•	Tust No.4.4.e	Cycle No.	Torque (inlb, CW				Balt	Lond (Ib)				Breskaway Torque	Torque (inlb.
			Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(in15)	Direction)
	92	1 2 3 4	65	115	165	245	330 320 315 300	425	490	560	675 700 725 700	370	55
		5 6 7 8 9	40	110	160	220	295 310 270 265	380	490	600	775 775 700 700	415	40
		10 11 12 13	35	90	145	205	270 275 270 270 270 270 265	3 65	470	58 0	700 700 700 700 700 700	400	35
		15	35	\$5	145	200	270	3 60	470	590	700	410	30

a. Not did not have wax lubricant (Carbo-vax Polyathylune tillycol \$350) applied.

b E/M Corporation Evarlube 1345 is an air-cured, bonded actid film lubricant formulated with molybdenum disulfide in a resin binder. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Evertube 1346 lubricant. Buth lubricants were applied to the threads of the bolt and nut.

c NAS1308-10 bott: Average shank diameter = 0.4997 in., sverage costing thickness = 0.00033 in., average shank diameter with Everlube 1346 = 0.4998 in., average coating and Everlube 1346 thickness = 0.00073 in.

⁴⁷FLW-820 nut: Average coating thickness - 0.00046 in., average coating and Evertuile 1346 thickness - 0.00095 in.

b E/M Corporation EM-6256 is a bonded solid film labricant formulated with molybden in disulfide in a resin binder to produce forque-tension characteristics similar to cadmium electroplate plus wax. Fel-Pro Incorporated C-601-S lubricant is a paste consuming 50% synthetic graphite and 50% petrolatum formulated to most MiL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant. Both lubricant, were applied to the threads of the bolt and nut.

c NAS 1308-10 bolt. Average thank diameter ~ 0.4986 in., average coating thickness ~ 0.00031 in., average shank diameter with EM-6256 ~ 0.4993 in., average coating and EM-6256 thickness ~ 0.00072 in.

⁴⁷FLW-820 nut: Average costing thickness = 0.00048 in., average costing and EM-5256 thickness = 0.00048 in.

TABLE A-93. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND FEL-PRO INCORPORATED C-601-S.

		Running				Torque 0	n Nut (in	Ib)				Running
Test No.a,b,e	Cycle No.	Torque (inlb, CW				Bolt	Load (lb)				Breakaway Torque	Vorque (in15,
		Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	CCW Direction
93	1 2 3 4	55	115	175	250	330 290 280 270	410	490	560	650 650 625 650	335	50
	5 6 7 8 9	35	90	150	205	275 350 305 320 300	370	470	570	675 750 700 750	370	35
	10 11 12 13	30	85	135	200	285 330 290 275 270	390	510	\$ 25	750 750 825 800 800 750	455	35
	15	30	80	135	200	275	375	495	650	775	460	30

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

47FLW-820 nut: Average coating thickness -- 0.00047 in., average coating and EM-6256 thickness -- 0.00080 in.

TABLE A-94. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND FEL-PRO INCORPORATED C-601-S.

		Running				Torque C	n Nut (in	lb)				Running
Test No.*.*.	Cycle No.	Torque (inlb, CW				Bolt	Load (ib)		1		Breakaway Torque	Torque (inib,
		Direction)	2,500	E,000	7,500	10,000	12,500	15,000	17,500	20,000	(inib)	CCW Direction
94	1 2 3 4	90	140	193	250	325 300 255 255	405	500	600	700 625 625 650	405	85
	5 6 7 8	40	100	150	210	280 335 325 285 275	365	470	580	675 775 725 700	380	50
	10 11 12 13 14	35	100	155	220	290 285 290 290 270	370	475	590	700 700 700 700 700 700	420	35
	15	35	80	140	210	375	390	500	625	725	430	35

a Nul did not have way lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation EM-6256 is a bonded solid film lubricant formulated with molybdenum disulfide in a restribinder to produce torque-tension characteristics similar to cadmium electropiate plus wax. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mit.-Y-5544. The C-601-S lubricant was applied over the EM-6256 subricant. Both lubricants were applied to the threads of the bolt and nut.

c. NAS1308-10 boll: Average shank diameter = 0.4983 in., average coaling thickness = 0.00034 in., average shank diameter with EM-6256 = 0.4987 in., average coaling and EM-6256 thickness = 0.00060 in.

b E/M Corporation Eigl-6288 is a bonded solid film jubricant formulated with p sphile in a resin binder. Fel-Pro Incorporated C-601-5 jubricant is a paste containing 50% synthetic graphile and 50% petrolature formulated to main MiL-T-5544.

The C 601-S Littirk ant was upplied over the EM-6286 littireant. Both littiricants were applied to the threads of the bolt and nut.

c: NAS1308-10 bolt: Arrorage shark diameter in 4.963 in , average coating thickness = 0.00026 in , average shank diameter with in EM 4286 = 0.4995 in , average coating and EM 4286 thickness = 0.00118 in .

⁴⁷FLW-820 nut: Average oxising thickness -- 0 00047 in., average coating and EM-9286 thickness -- 0 00161 in.

TABLE A-95. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND FEL-PRO INCORPORATED C-601-S.

	{	Running			•	Journe C	n Nut (in	. -16)			B a branch	Running Terque
Tost No.a,b,c	Cycle No.	Terque (inlb, CW				Bett	Lead (ib)	/			Breaksway Torque	(inib.
WO. * *	"-	Direction)	2,500	5,000	7,500	10,000	12,500	15,900	17,500	20,800	(inlb)	Direction)
9 5	1 2 3 4	75	125	180	250	335 325 300 310	425	510	600	700 700 725 725	415	\$ 0
	5 6 7 8	40	110	170	235	315 320 310 280	410	515	625	725 750 700 700	445	40
	10 11 12 13	35	90	155	210	275 280 280 270 280	365	460	570	700 700 700 700 725 725	410	3 5
	14	35	90 .	150	215	235 290	395	515	625	725	440	35

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-96. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD
ALUMINUM-COATED NUT LUBRICANT WITH E/M CORPORATION EVERLUBE 1346
AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Test	Cycle	Running Torque					n Nut (in Load (ib)				Breakaway Torque	Running Torque (inib.
No.ª.à,e	No.	(inlb, CW Direction)	2,500	5,000	7,500			· · · · · · · · · · · · · · · · · · ·	17,500	28,000	(inlb)	CCW Direction)
96	1 2 3 4	70	135	200	270	345 320 330 315	440	530	6 50	750 700 700 700	425	75
	5	30	95	165	245	320	405	505	625	725	420	30

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b EM Corporation EM-6286 is a bonded solid film lubricant formulated with graphite in a resin binder, Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544.

The C-601-S lubricant was applied over the EM-6286 lubricant. Both lubricants were applied to the threads of the both and nut. c. NAS1308-10 bolt: Average shank diameter = 0.4982 in., average coating thickness = 0.00030 in., average shank diameter with

EM-8286 = 0.4995 in., average coating and EM-6286 thickness = 0.00105 in. 47FLW-820 nut: Average coating thickness = 0.00047 in., average coating and EM-8286 thickness = 0.00112 in.

b E.M. Corporation Evertube 1346 is an air-cured, bonded solid film lubricant formulated with molybdenum disulfide in a resin binder. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Evertube 1346 lubricant. Both lubricants were applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0.4986 in., average coating thickness = 0.00034 in.

⁴⁷FLW-820 nut: Average coating thickness = 0.00047 in., average coating and Everlube 1346 thickness = 0.00091 in.

TABLE A-97. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICANT WITH E/M CORPORATION EVERLUBE 1346 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Terque C	a Nut (in	. -1 b)			Breaksway	Running Terque
Test No.a.b.c	Cycle No.	Torque (inlb, CW				Balt	Lead (Ib)				Terque (inib)	(inIb, CCW
,,,,,,,	7.0	Direction)	2,500	5,600	7,500	10,000	12,500	15,000	17,500	20,000		Direction)
97	1 2 3	100	165	220	290	360 290 260 240	450	575	650	750 650 600 600	510	110
	5	35	75	130	205	275	330	405	500	600	360	40

Nut did not have wax subricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE A-98. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED JOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICANT WITH E/M CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Γ			Running				Torque O	n Hut (in	1৯)			D-colonia.	Running Yorque
	Test No.a,b,z	Cycle No.	Torque (in. lb, CW				Bott	Load (lb)				Breaksway Torque (inib)	(inlb.
1			Direction)		5,000	7,500	10,000	12,500	15,000	17,500	20,000		Direction)
	98	1 2 3	70	130	190	250	320 315 275 270	410	510	600	700 650 650 625	435	80
		5	35	80	135	195	265	330	430	480	625	370	35

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

2 NAS1308-10 bolt: Average shank diameter = 0.4987 in., average coating thickness = 0.00041 in.

b EM Corporation Everlube 1346 is an air-cured, bonded solid film lubricant formula ed with molybdenum disuffide in a resin binder.

Fel Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolation formulated to meet MiL-T-5544.

The C-601-S lubricant was applied over the Everlube 1346 lubricant. Both lubricants were applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0.4987 in., average coating thickness = 0.00039 in. 47FLW-820 nut: Average coating thickness = 0.00047 in., average coating and Everlube 1346 thickness = 0.00079 in.

b EM Corporation EM-6256 is an air-cured, bonded solid film lubricant formulated with molybdenum disulfide in a resin binder. Fet Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant. Both lubricants were applied to the threads of the bolt and nut.

⁴⁷FLW-820 nut; Average coating thickness = 0.00040 in., average coating and EM-6256 thickness = 0.00064 in.

TABLE A-99. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICANT WITH EM CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-631-S.

			Russing				Terqua C	te fret (la	-44)				Ruening Terçue
1	Test Cycle No. ^{n.b.s} No.	Terque (in -ib, CW				Bot	Land (B,				Tarque (in -b.	(m -b.	
			Direction)		5,066	7,500	16,000	:2.804	15.980	17,166	26,800	(to -5,	Devertion,
	99	1 2 3 4	65	12C	190	260	335 305 256 240	420	485	6 00	\$75 \$30 \$30 \$50 \$65	383	60
[5	35	50	143	180	235	300	39 5	485	5 °C	275	40

a. Nut did not have was authorant (Carbowas Polyethylene Glyco: 3350, applied

TABLE A-100. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICANT WITH E/M CORPORATION EM-6285 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running				Torque O	n Nut (in	lb)	(to 2 to to all 44			Running
Test No.a.b.c	Cycle No.	Torque (inlb, CW				Bott	Load (ib)				Breaksway Torque	Terque (inlb,
		Direction)	2,500	5,000	7,500	10,000	12,500	15, 0 00	17,500	20,000	(inlb)	CCW Direction)
100	1 2 3 4	70	110	160	225	305 280 270 270	370	460	540	625 625 600 600	370	65
	5	35	80	140	200	265	345	415	500	6 00	345	40

a. Nut did not have wax subricant (Carbowax Polyethylene Glycol 3350) applied.

⁵ E/M Corporation E44-8256 is an avisured pointed solid firm schools for formstated with implytocenum disturbed in a few swidter. Fel-Pro Incorporated C 601.5 Subnocini is a pas is containing 50% synthetic graphile and 90% politicians terminated to make blue. T 5044 The C-601.5 Subnocini was applied over the EN-6256 subnocini. Both subnocinis were applied to the divisions and find not

c NAS1308 10 bott. Average shank diameter = 0.4686 in laverage bosting Pricindets = 0.00042 in 47FLW-820 nut. Average bosting thickness = 0.00043 in laverage bosting and EM-8256 thickness = 0.00073 in

b E/M Corporation EM-6286 is an air-cured, borided solid film lubricant formulated with molybdenum disulfide in a resin binder.
Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the EM-6286 lubricant. Both lubricants were applied to the threads of the bolt and nut.

[&]amp; NAS1308-10 bott. Average shank diameter = 0.4986 in., average coating thickness = 0.00039 in.

⁴⁷FLW-820 nut: Average coating thickness = 0 00043 in., average coating and EM-5286 thickness = 0.00128 in.,

TABLE A-101. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICANT WITH E/M CORPORATION EM-6286 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Γ			Running		البريون التالي	•	Terque 0	n Nui (la	86)				Running
	Test No.a.b.c	Cycle No.	Torque (inlb, CW				Bet	Lead (lb)				Breaksway Torque	Terque (inlb, CCW
			Direction)	2,500	5,000	7,500	10,000	12,500	15,000	17,500	20,000	(inlb)	Direction)
	101	1 2 3 4	110	165	220	280	335 280 270 290	390	475	560	675 625 625 625	395	110
L		5	50	90	150	220	290	360	425	510	625	360	40

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b EM Corporation EM-6285 is an air-cured, bonded solid film lubricant formulated with molybdenum disulfide in a resin birder.
Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet M°L-T-5544.
The C-601-S lubricant was applied over the EM-6286 lubricant. Both lubricants were applied to the threads of the bolt and nut.

c NAS1308-10 bolt. Average shank diameter = 0.4985 in., average coating thickness = 0.00035 in, 47FI,W-820 nut. Average coating thickness = 0.00046 in., average coating and EM-6286 thickness = 0.00150 in.

APPENDIX B

TORQUE-TENSION DATA FOR ALC WHEEL TIE-BOLTS FINISHED WITH IVD ALUMINUM OR CADMIUM AND LUBRICATED WITH MIL-T-5544 GRAPHITE-PETROLATUM

TABLE 8-1. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tem	ni) tuM aO suj	Ib)		<u> </u>	Running
Test No.a.b.c	Cycle No.	Torque (inlb, CW			Bott Lead (Ib))		Breaksway Terque	Torque (inlb,
		Direction)	500	1,000	1,500	1,800	2,100	(inlb)	CCW Direction)
1	1 2 3 4	185	8,100	17,770	27,530	31,520	36,340 37,460 37,070 37,290	1,550	110
	5 6 7 8 9 10 11 12 13	140	11,120	21,130	30,250	33,810	38,280 42,150 43,190 43,920 44,560 45,110 45,530 46,970 46,840	1,500	100
	14 15	130	12,500	24,070	34,260	39,480	45,100 44,710	1,400	100

a Nut was supplied with a wax lubricant (Carbowax Polyathylene Glycol 3350) applied.

TABLE B-2. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	lb)			Running
Test No.a.a.c	Cycle No.	Torque (inlb, CW			Bott Lead (lb))		Yorque Yorque	Yorque (inlb,
••••	""	Direction)	500	1,000	1,500	1,800	2,100	(inlb)	CCW Direction
2	1 2 3 4	180	10,970	23,330	33,640	38,110	42,640 41,460 40,100 41,790	1,450	160
	5 6 7 8 9 10 11 12	170	9,690	21,720	31,920	36,430	40,940 43,510 42,660 43,160 42,780 44,020 45,730 44,220	1,500	180
	13 14 15	150	10,780	21,170	30,740	35,600	43,700 42,900 41,430	1,450	160

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS632-18: Average shank diameter = 0.7486 in., average plating thickness = 0.00038 in. 47FLW-1216 nut: Average plating thickness = 0.00043 in.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS632-18: Average shank diameter = 0.7482 in., everage liating thickness = 0.00030 in.

⁴⁷FLW-1216 nut: Average plating thickness - 0.00041 in.

TABLE B-3. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Aunning		Torq	ue On Nut (in	lb)			Running
Test No.4,3,4	Cycla No.	Torque (inib, CW			Boll Load (lb)			Breaksway Terque	forque (inlb,
113.	""	Direction)	500	1,000	1,500	1,800	2,100	(Inlb)	CCW Direction)
3	1 2 3 4	190	9,770	20,800	30,640	34,590	39,650 39,010 40,080 40,990	1,600	165
	5 6 7 8 9	150	11,000	21,420	32,140	36,940	41,760 42,220 40,750 42,080 41,540	1,500	185
	.10 11 12 13 14 15	150	11,050	22,040	32,440	36,380	42,090 43,550 42,790 42,430 43,660 43,230	1,450	170

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-4. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	1	Running		Tert	ue Ox Hul (la	ib)]	Running
Test No.a.b.c	Cyale No.	Torque (inib, CW			Sett Load (Ib)			Breaksway Torque	Torque (inib, CCW Diraction)
		Direction)	500	1,000	1.500	1,500	2,100	(inlb)	
4	1 2 3 4	270	5,920	14,650	23,480	28,000	33,030 35,200 32,680 35,340	1,600	260
	5 6 7 6 9	120	10,790	19,620	27,180	3,045	34,790 36,410 37,140 36,130 36,920	1,600	130
	10 11 12 13 14						37,170 38,370 39,780 38,760 37,820		
	15	110	14,210	23,800	31,450	35,790	39,740	1,600	120

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the 2c4 and nut.

c NAS632-18: Average shank diameter = 0.7483 in., sverage plating thickness = 0.00031 in. 47FLW-1216 nut: Average plating thickness = 0.00050 in.

b Fel-Pro Incorporated C-601-S tubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S tubricant was applied to the threads of the bolt and nut.

c NAS632-18; Average shank diameter = 0.7484 in., average coating thickness = 0.00035 in.

⁴⁷FLW-1216 nut: Average coating thickness - 0.00038 in.

TABLE B-5. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	ue On Nut (in	ılb)			Running
Test No.0,b,c	Cycle No.			(Boll Lead (ib))		Breaksway Torque (inib)	Torque (inib, CCW Direction)
		Direction)	500	1,608	1,500	1,800	2,100		
5	1 2 3 4	360	4,600	14,990	24,190	28,070	32,480 34,880 34,820 34,530	1,700	315
	5 6 7 8	130	10,430	20,160	28,060	31,990	35,790 35,870 35,960 36,860 37,580	1,600	140
	10 11 12 13						37,080 36,970 37,570 36,720		
	14	90	13,650	22,520	31,540	35,150	37,020 39,210	1,550	100

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-6. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	ı. -1 b)		Breaksway Torque (inib)	Running
Tost No.a.a.s	Cycle No.	Torque (inib, CW			Bolt Load (Ib))			Torque (inlb,
		Direction)	800	1,000	1,500	1,800	2,100		CCW Direction)
6	1 2 3	320	5,340	17,420	27,580	31, 94 0	35,890 35,730 34,010 35,850	1,500	330
	5 6 7 8 9 10 11 12 13 14	130	a,3 60	18,830	27,630	31,400	36,030 36,990 36,280 35,850 36,740 36,290 36,260 36,360 36,640 35,800	1,550	120
	15	100	11,760	20,560	28,640	31,650	35,800 35,460	1,550	100

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS632-18: Average shank diameter = 0.7480 in., average coating thickness = 0.00041 in. 47FLW-1216 nut: Average coating thickness = 0.00038 in.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS832-18: Average shank diameter ~ 0.7482 in., average coating thickness = 0.00038 in. 47FLW-1216 nut: Average coating thickness = 0.00039 in.

TABLE B-7. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	ib)			Sunning
Test No.º.b.c	Cycle No.	Terque (inib, CW			Boll Lead (lb)			Breaksway Torque	Torque (inib, CCW Direction)
		Direction)	800	1,600	1,500	1,800	2,100	(ialb)	
7	1 2 3 4	320	7,650	18,660	28,430	32,550	38,920 43,770 43,160 42,170	1,500	22 0
	5 6 7 8 9 10 11 12 13	140	10,350	20,770	31,400	35,9 50	42,130 43,200 44,010 45,680 46,090 45,250 42,860 42,990 43,320	1,400	130
	14 15	100	13,290	23,590	34,190	38,920	43,360 44,470	1,400	130

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-8. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	1	Running		Torq	jue On Net (in	i. ⊣b)			Running
Test No.8.6,s	Cycle No.	Torque (inlb, CW			Boll Load (lb))		Breaksway Torque (inlb)	Tarque (inlb,
		Direction)	500	1,000	1,500	1,800	2,100		CCW Direction)
8	1 2 3 4	260	6,930	18,630	30,320	35,370	42,110 43,250 42,360 43,080	1,450	310
	5 6 7 8 9 10 11 12	160	10,250	21,750	32,130	37,650	43,360 43,480 42,550 42,670 43,540 41,650 43,910 42,960	1,450	180
	13 14 15	135	14,090	24,420	33,850	38,450	43,420 44,680 44,140	1,450	140

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c NAS632-18: Average shank diameter = 0.7485 in., average coating thickness = 0.00041 in. 47FLW-1216 nut: Average plating thickness = 0.00039 in.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

NAS632-18: Average sharik diameter = 0.7482 in., average coating thickness = 0.00039 in. 47FLW-1216 nut: Average plating thickness = 0.00039 in.

TABLE 8-9. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Terq	ue Ca Nut (ia	i b)			Running
Test No. ^{a,b,c}	Cycle No.			(Bolt Lead (tb)			Breakaway Terque (infb)	Terque (inib, ECW
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	""	Direction)	500	1,800	1,500	1,800	2,100		Direction)
9	1 2 3	280	9,290	20,420	3 0,610	34,700	39,900 40,750 42,090 42,140	1,450	310
	5 6 7 8 9	140	10,290	20,590	31,120	35,430	40,800 43,630 47,290 44,760 43,770 42,960	1,400	190
	11 12 13 14 15	110	13,810	23,170	32,560	37,300	42,380 42,530 41,980 42,960 43,200	1,400	130

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-10. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	lb)			Running
Test No.s.b.c	Cycle No.	ycle Torque			Boll Load (16)	· · · · · · · · · · · · · · · · · · ·		Freekaway Torque (is!b)	Torque (inib,
2.2.			500	1,300	1,509	1,800	2,100		CCW Direction)
10	1 2 3 4	370	2,760	14,810	23,380	27,600	31,850 37,630 36,590 37,040	1,700	430
	5 6 7 8 9 10 11 12	170	12,770	22,580	30,530	34,520	38,920 36,900 36,520 36,310 36,670 36,820 36,280 35,870	1,600	190
	13 14 15	130	8,960	17,640	25,430	28,860	35,760 34,900 33,840	1,600	150

E. Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c. NAS632-18: Average shank diameter = 0.7480 in., average coating thickness = 0.00038 in. 47FLW-1216 nut: Average plating thickness = 0.00042 in.

c. NAS632-18: Average shank diameter = 0.7483 in., average coating thickness = 0.00041 in.

⁴⁷FLW-1216 nut: Average coating thickness = 0.00036 in., average coating and Everlube 1346 thickness = 0.00067 in.

TABLE B-11. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		nainau?		Terq	ue On Nut (in	. -1 b)			Running
Test No.a.b.:	Cycle No.	Torque (inib, CW		1	Bolt Lead (lb)			Breaksway Tarque	Torque (inlb,
		Direction)	500	1,000	1,500	1,800	2,100	(inlb)	CCW Direction)
11	1 2 3	340	3,050	13,170	24,470	29,200	36,840 37,080 37,320 39,910	1,600	375
	5 6 7 8 9 10 11 12 13	130	7,690	17,050	24,910	28,750	33,690 35,950 36,310 35,510 36,040 36,700 37,480 37,010 36,890	1,550	150
	14 15	100	10,270	21,220	29,530	33,0 60	38,670 37,210	1,600	100

a Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-12. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	Ì	Running		Torq	ue On Nut (in	lb)			Running
Test No.s.b.c	Cycle No.	Torque (inib, CW		1	Boll Load (lb)			Breakaway Torque	Torque (inlb,
	}	Direction)	500	1,000	1,500	1,800	2,100	(inlb)	CCW Direction)
12	1 2 3 4	330	5,250	16,810	27,930	32,370	40,070 39,160 38,580 38,940	1,600	320
	5 6 7 8 9 10 11 12	170	10,550	20,810	30,290	34,250	39,350 39,850 39,600 38,300 39,460 39,640 39,990 39,980 40,340	1,550	150
	14 15	120	12,510	23,890	32,160	36,470	39,540 40,640	1,500	110

a Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation EM-6255 is a bonded solid film lubricant formulated with molybdenum disulfide in a resin binder to produce forque-tension characteristics similar to cadmium electroplate plus wax. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c NAS632-18 bolt: Average shark diameter ~ 0.7482 in., average coating thickness ~ 0.00039 in. 47FLW-1216 nut: Average coating thickness ~ 0.00041 in., average coating and EM-6256 thickness ~ 0.00061 in.

b E/M Corporation EM-6286 is a bonded solid film lubricant formulated with graphite in a resin binder. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MiL-Y-5544. The C-601-S lubricant we applied over the EM-6286 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

s. NAS632-18 bolt: Average shank diameter -- 0.7485 in., average coating thickness -- 0.00042 in.

⁴⁷FLW-1216 nut: Average coating thickness = 0.00044 in., average coating and EM-6286 thickness = 0.00096 in.

TABLE 8-13. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		prof	ue On Nut (in	. -15)			Running
Test No.a.b.c	Cycle No.	Terkue (inlb, CW		(Belt Lead (lb)			Breakstray Torque (inib)	Torque (inlb, CCW Direction)
		Direction)	400	700	1,900	1,300	1,620		
13	1 2 3	100	7,340	14,890	23,300	3 0,830	38,550 35,970 33,980 33,250	1,000	100
	5 6 7 8 9 10 11 12 13	\$ 0	8,0 50	14,530	22,340	26,010	33,410 33,260 34,830 34,380 33,860 34,180 32,220 31,730 32,900	1,025	75
	14	80	8,770	14,210	21,010	27,020	31,680 31,510	1,050	80

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-14. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		preï	jue On Nut (in	lb)		l	Running
Test No.a.b.c	Cycle No.	Torque (inlb, CW			Boll Lead (lb))		Breaksway Torque	Torque (inib,
		Direction)	400	700	1,000	1,300	1,620	(diai)	CCW Direction)
14	1 2 3 4 5	115 80	7,450 7,900	14,660 13,810	23,070 22,100	27,780 28,370	34,430 32,450 32,740 33,990 34,310	975 1,000	110 &5
	5 6 7 8 9 10		,,,,,,			20,010	34,480 34,290 34,480 33,770 32,030 31,190	1,000	
	12 13 14 15	70	8,690	14,220	21,060	25,300	31,030 32,480 31,570 32,040	1,050	70

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-601-S subricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-801-S subricant was applied to the threads of the bolt and nut.

c GY1810-35 bolt: Average shank dismeter = 0.6236 in., everage plating thickness = 0.00040 in. 47FLW-1018 nut: Average plating thickness = 0.00037 in.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mit-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c GY1810-36 bolt: Average shank diameter = 0.6238 in., average plating thickness = 0.00044 in, 47FLW-1018 nut: Average plating thickness = 0.00038 in.

TABLE B-15. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tarq	ue On Nut (in	, -15)			Running Terque
Text No.5.5,6	Cycle No.	Terque (inib, CW			Bolt Lead (lb)			Breaksway Torque	(inib. CCW Direction)
4.0,		Direction)	400	700	1,900	1,200	1,620	(inlb)	
15	1 2 3	115	7,490	14,190	21,480	26,550	33,190 32,660 32,920 35,040	1,000	95
	5 6 7 8 9 10 11 12 13	80	8,490	14,100	22,040	28,920	34,970 34,430 34,620 34,570 35,440 36,030 35,320 35,610 35,780	1,050	5 0
	14 15	70	9,980	15,160	22,550	28,360	35,120 34,890	1,050	75

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-16. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Test Cust		Running	· — ·	Torq	ue On Nut (In	lb)		Breaksway Torque (inib)	Running Torque (inib, CCW Direction)
Test No.a.b.s	Cycle No.	Torque (inIb, CW		1	Bon Load (lb)				
****		Direction)	400	700	1,000	1,300	1,620		
16	1 2 3 4 5	150 70	5,790 6,200	11,670 12,260	17,910 19,800	23,430 24,770	28,530 26,290 28,870 28,640 29,520	1,150 1,050	130 75
	6 7 8 9 10						30,520 25,240 26,570 27,670 27,620 28,060		
	12 13 14 15	60	7,420	13,590	20,020	24,300	27,980 27,760 28,120 28,450	1,100	60

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphile and 50% petrolatum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and mut.

c GY1810-36 bolt: Average shank diameter – 0.6237 in., average plating thickness – 0.00040 in. 47FLW-1018 nut: Average plating thickness – 0.00036 in.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synihetic graphite and 50% petrolatum formulated to meet MilL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c GY1810-36 bolt: Average shank diameter = 0.6233 kn., average coating thickness = 0.00036 kn. 47FLW-1018 nut: Average coating thickness = 0.00034 kn.

TABLE B-17. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	0	Running		Terq		Greatmeny Torque	Running Yorque (inlb.		
Test No.s.b.c	Cycle No.		-						
•••		Direction)	400	700	1,000	1,300	1,820	(inib)	CCW Direction)
17	1 2 3 4	200	3,620	9,680	16,210	21,200	26,980 28,400 25,570 27,400	1,100	195
	5 6 7 8 9 10 11 12 13	110	6,600	13,110	19,090	23,050	27,910 28,890 27,410 29,170 29,470 29,900 20,710 29,059	₹, 150	100
	14 15	70	8,140	14,110	20,090	24,930	29,790 29,540 29,340	1,050	75

a Nut was supplied with a wax lubricant (Carbowax Polystrylene Glycot 3350) applied.

TABLE B-18. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	ue On Nut (in	lb)			Running Yarque
Test No.a.b.s	Cycla No.	Torque (inlb, CW		I	olt Load (lb)			Breakaway Torque	(inib, CCW Direction)
••••		Direction)	400	700	1,000	1,300	1,620	(inlb)	
18	1 2 3 4	170	3,310	8,230	13,200	17,060	21,790 23,950 29,210 30,150	1,050	180
	5 6 7 8 9 10 11 12 13	70	9,200	15,170	21,100	25,230	29,250 30,130 29,950 28,770 29,580 29,120 30,540 29,900 29,760 30,320	1,100	75
	15	60	9,100	15,370	21,320	25,290	30,140	1,100	55

a Nut was supplied with a wax lut-icant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphile and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c GY1810-36 bolt: Average shank dismeter = 0.6234 in., average coating thickness = 0.00040 in. 47FLW-1018 nut: Average coating thickness = 0.00037 in.

b Fel-Pro incorporated C-601-S Loricani is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c GY1810-36 bolt: Average shank diameter -- 0.6231 in., everage coating thickness -- 0.00038 in. 47FLW-1018 nut: Average plating thickness -- 0.00036 in.

TABLE B-19. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tere	jua On Nut (in	i. -%)		J .	Running
Test No.2,5,6	Cycle No.	Terque (inlt, CW		İ		Breaksway Terque	Torque (istlb,		
		Direction)	400	700	1,900	1,300	1,820	(inib)	CCW Direction)
19	1 2 3 4 5	70 50	10,050 9,640	18,060 16,330	27,160 24,380	36,810 33,110	40,320 37,810 37,470 38,290 38,140 37,680	\$50 1,050	8 0 8 0
	7 8 9 10 11 12						37,120 37,050 37,260 37,270 36,550 36,960		
	13 14 15	45	11,000	17,200	24,530	31,780	37,640 37,250 36,590	1,050	50

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-20. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	l b)			Running
Test No.2,5,6	Cycle No.				•	Breaksway Torque	Torque (inlb,		
••••	""	Direction)	400	700	1,000	1,300	1,620	(inlb)	Diraction)
20	1 2 3 4	70	8,210	14,960	23,900	32,060	37,250 34,640 33,490 33,630	1,000	75
	5 6 7 8 9 10 11 12 13	60	9,120	14,320	21,800	29,480	34,820 35,010 34,740 36,620 35,980 35,670 36,440 36,580 36,870 36,950	1,050	60
	15	60	9,990	16,450	24,230	31,250	36,580	1,050	

a Nut was supplied with a wax lubricant (Carbowax Polyothylone Glycol 3350) applied.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c GY1810-35 bult: Average shank diameter = 0.5234 in., average coating thickness = 0.00035 in. 47FLW-1018 nut: Average plating thickness = 0.00040 in.

b. Fel-Pro incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mill.-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c GY1810-36 bolt: Average shank dismister = 0.8231 in., average coating thickness = 0.00037 in. 47FLW-1018 nut: Average plating thickness = 0.00041 in.

TABLE B-21. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Terc	que On Nut (in	lb)		Breaksway Torque (inlb)	Running Torque (inlb, CCW Direction)
Vest No.11,6,0	Cycle No.				Boll Lead (Ib))			
		Direction)	400	700	1,800	1,300	1,620		
21	1 2 3 4	120	6,910	14,450	22,390	30,980	37,970 3,250 33,120 33,130	1,100	130
	2 3 4 5 6 7 8 9 10 11 12 13	8,100	13,800	20,880	28,340	33,030 32,410 32,580 32,760 32,030 33,060 33,810 33,760 33,490	1,150	85	
	14 15	6 0	000,0	14,610	21,770	29,560	33,630 33,690	1,100	65

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

47FLW-1018 nut; Average plating thickness - 0.00034 in.

TABLE B-22. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

Tasi Cuali		Running		Torq	jue On Nut (in	lb)			Running
Test No.s.b.e	Cycle No.	Torque (inlb, CW			Bolt Load (lb))		Breaksway Torque	Torque (inlb.
		Direction)	400	790	1,000	1,300	1,620	(inlb)	CCW Direction)
22	1 2 3 4 5 6 7 8 9 10 11 12 13	260 R 5	3,320 7,770	11,130 12,750	18,750 18,410	26,150 23,700	31,260 29,100 29,340 24,960 27,300 26,770 28,020 29,060 28,690 28,840 28,330 27,920 28,240	1,150 1,200	220 90
	14 15	60	6,810	13,010	18,570	24,480	27,950 28,400	1,200	65

a. Nut did not have a wax lubricant (Carbowax Polyetriylene Glycol 3350) applied.

b. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c GY1810-36 bolt: Average shank diameter - 0.6235 in., average coating thickness - 0.00041 in.

b E/M Corporation Everlube 1346 is an air-cured, bonded solid film lubricant formulated with molybdenum disulfide in a resin binder specifically for high temperature applications and antisetze capabilities. Fet-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mil.-T-5544. The C-601-S lubricant was applied over the Everlube 1346 lubricant on the threads of the nut such to the threads of the IVD aluminum-coated bolt.

c GY1810-36 bott: Average shank diameter = 0.8231 in., average coating thickness = 0.00041 in.

⁴⁷FLW-1018 nut: Average coating thickness = 0.00037 in., average coating and Everlube 1346 thickness = 0.00061 in.

TABLE B-23. TORQUE-TERSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Aunning		Tare	us On Nut (in	ib)			Running
Test No.3.5.s	Cycle No.	Torque (inib, CW				Breakeway Terque	Terque (inib, CCW		
		Direction)	400	700	1,000	1,300	1,520	(lalb)	Direction)
23	1 2 3 4 5 6 7 8 9 10	180 80	8,370 9,600	15,340 16,590	21,760 23,040	29,360 29,060	35,960 35,130 35,190 34,510 33,650 31,830 30,890 30,250 39,710 29,630 30,820	1,150	200 90
	12 13 14 15	65	9,670	16,653	22,710	28,270	29,880 29,720 29,200 31,550	1,200	60

a Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-24. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	ue On Nut (in	îb)]	Running
Test No.=,b,c	Cycle No.					Breakaway Yorque	Torque (inlb,		
			400	700	1,000	1,300	1,620	(inlb)	CCW Direction)
24	1 2 3	190	4,690	13,010	20,880	29,810	36,100 34,920 33,700 34,130	1,100	225
	5 6 7 8 9 10 11 12 13 14	80	9 ,840	15,500	21,310	27,310	32,540 33,620 31,090 31,780 31,800 31,570 29,930 30,130 30,420 29,520	1,150	100
	15	55	10,730	16,590	22,320	28,140	30,450	1,050	65

a. Nut did not have a wax lubricant (Cerbowax Polyethylena Glycol 3350) applied.

b EAR Corporation Everlube 1346 is an air-cured, bonded solid film lubricant formulated with molybdunum disulfide in a resin binder specifically for high temperature applications and antiseize capabilities. Fet-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% patrolatum formulated to make MIL-T-5544. The C-601-S lubricant was applied over the Everlube 1346 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bott.

c GY1810-36 bott: Average shank diameter = 0.6231 in., average coating thickness = 0.00033 in.

⁴⁷FLW-1018 nut: Average coating thickness = 0.00034 in., average coating and Everlube 1346 thickness = 0.00082 in.

b. E/M Corporation EM-6256 is a bonded solid film lubricant formulated with molybdenum disulfide in a resin binder to produce forque-tension characteristics similar to cadmium electroplate plus wax. Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c GY1810-36 bolt. Average shank diameter - 0.6231 In., average coating thickness - 0.00040 in.

⁴⁷FLW-1018 nut: Average coating thickness = 0.00036 in., average coating and EM-6256 thickness = 0.00053 in.

TABLE B-25. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Aunaing		Terq	ue On Nut (ia	lb)		Breakaway Terque (inib)	Running Torque (inlb, ECW Direction)
Tost Ng.s.u.z	Cycle No.	Torque (inlb, CW		1	Bolt Lead (15))			
••••	"	Direction)	400	700	1,000	1,300	1,620		
25	1 2 3 4	200	5,560	11,950	20 ,520	26,470	33,710 29,990 29,950 32,530	1,200	180
	5 6 7 8 9 10 11 12	8 5	8,540	15,040	21,180	26,840	\$1,580 30,780 \$0,870 32,020 31,260 30,730 31,460 31,770	1,290	90
	13 14 15	55	9,490	15,510	20,960	26,660	31,580 31,110 30,860	1,200	65

a. Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied,

TABLE B-26. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	1	Running		Torq	ue On Nut (in	.나)		<u>.</u> .	Running
Test No.n.h.c	Cycle No.					Breakaway Torque	Torque (inib.		
•••	""	Directions	400	700	1,000	1,300	1,620	(InIb)	CCW Direction)
26	1 2 3 4	180	5,880	13,570	21,990	29,680	31,920 29,590 30,430 28,830	1,000	200
	5 6 7 8 9 10	80	8,700	15,230	21,040	26,630	28,570 28,840 29,810 29,100 29,340 27,870 27,040	1,050	110
	12 13 14 15	75	7,020	12,860	18,620	24,430	27,030 27,620 26,440 26,290	1,100	90

a Nut did not have a wax lubricant (Carbowax Pulyethylene Glycol 3350) applied.

b E/M Corporation EM-6256 is a bonded solid film lubricant formulated with molybdenum disulfide in a resin binder to produce torque-tension characteristics similar to cadmium electroplate plus wax. Fel-Pro incorporated C-601-S lubricant is a page containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant on the threads of the nut and to the threads of the iVD aluminum-coated bolt.

c: GY1810-36 bolt: Average shank diameter = 0.6230 in., average coating thickness = 0.00040 in.

⁴⁷FLW-1018 nut: Average coating thickness -- 0.00036 in., average coating and EM-6256 thickness -- 0.00048 in.

b E/M Corporation EM-6286 is a bonded solid film lubricant formulated with graphite in a resin binder. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied over the EM-6286 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c GY1810-36 bolt: Average shank diameter = 0.6232 in., average coating thickness = 0.00040 in.

⁴⁷FLW-1018 nut: Average coating thickness = 0 00033 in., everage coating and EM-6286 thickness = 0.00065 in.

TABLE B-27. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-801-S.

		Running		Torq		Breakaway	Running Torque		
Test No.a.b.c	Cycle No.	Terque (inlb, CW	Box Lead (Ib)						(inIb,
	1	Direction)	400	700	1,900	1,300	1,620	(intb)	Direction)
27	2 3	190	7,09 0	16,110	24,010	31,560	37,310 33,230 32,920 30,440	1,150	210
	5 6 7 8 9 10 11 12	100	8,370	13,980	19,570	25,150	29,480 32,200 31,810 29,820 30,540 30,100 30,500 31,120	1,200	8 5
	13 14 15	75	8,80,0	14,500	20,330	26,360	30,720 31,220 30,490	1,200	90

a Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

c GY1810-36 bolt: Average shank diameter = 0.6233 in., average coating thickness = 0.00034 in. 47FLW-1016 nut: Average coating thickness = 0.00034 in., average coating and EM-6286 thickness = 0.00105 in.

TABLE B-28. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND FEL-PRO INCORPORATED C-601-S.

		Running	_	Torq	ue On Nut (ia	. નb)			Running
Test No.0,0,0	Cycle No.	Tarque (inlb, CW		1	Boll Load (1b)	1		Engue Torque	Torque (inlb,
		Direction)	400	700	1,060	1,300	1,620	(inIb)	CCW Direction)
28	1 2 3 4	85	9,130	15,960	23,030	30,420	36,190 30,019 25,650 25,760	1,050	80
	5 6 7 8 9 10 11 12 13	65	7,660	13,370	18,140	22,670	25,820 25,870 26,160 26,940 26,880 27,070 26,680 28,000 27,540	1,100	60
	14 15	25	8,450	14,230	19,650	24,590	27,690 27,080	1,150	30

a. Nut did not have a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation EM-8286 is a bonded solid film lubricant formulated with graphite in a resin binder. Fel-Pro Incorporated C-601-8 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MiL-T-5544. The C-601-S lubricant was applied over the EM-6286 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bott.

b E/M Corporation Everlube 1346 is an air-cured, bonded solid film fubricant formulated with molybdenum disuffide in a resin binder specifically for high temperature applications and antiseize capabilities. Fel-Pro incorporated C-601-S lubricant is a pasta containing 50% synthetic graphite and 50% petrolatum formulated to meet. MiL-T-5544. The C-601-S lubricant was applied over the Everlube 1346 lubricants. Both lubricants were applied to the threads of the bolt and nut.

c GY1810-36 bolt. Average shank diameter = 0.6235 in., average coating thickness = 0.00036 in., average shank diameter with Everlube 1346 = 0.6244 in., average coating and Everlube 1346 thickness = 0.00057 in.

⁴⁷FLW-1018 nut: Average coating tinckness - 0 00031 in., average coating and Everlube 1346 thickness - 0.00066 in.

TABLE B-29. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND FEL-PRO INCORPORATED C-601-S.

	Part Music	Running		Tora	ue On Nut (in	ıIb)			Aunning Terque (inib. CCW Direction)
Vest No.1.3.4	Cycle No.	Tarque (InIb, CW			Boll Load (lb))		Breaksway Tarque	
		Direction)	400	700	1,000	1,300	1,620	(inib)	
29	1 2 3 4	170	7,150	15,260	24,730	34,010	39,100 35,820 32,920 31,080	1,000	185
	5 6 7 8 9 10	9 5	8,290	14,460	20,090	25,520	29,080 27,690 27,340 28,840 29,080 29,010 29,140	1,150	100
	12 13 14 15	8 0	8,100	14,080	19,370	24,970	25,740 28,430 28,610 27,940	1,150	85

a. Nut did not have a wax lubricant (Carbowax Polyethylens Glycol 3350) applied.

TABLE B-30. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMI

		Running		preT	ue On Nut (In	.4b)		<u>] </u>	Running
Text No.s.b.s	Cycle No.	Torque (inib, CW			Bolt Load (ib)			Breaksway Torque	Torque (in1b. CCW Direction)
Mu.		Direction)	400	700	1,000	1,300	1,620	(inib)	
30	1 2 3	130	8,120	14,930	23,480	30,880	35,460 33,840 32,350 31,420	1,050	150
	5 6 7 8 9 10 11 12	6 5	9,660	15,246	20,790	2 5,940	30,120 29,390 29,390 28,430 27,830 28,450 28,230 28,340	1,100	75
	12 13 14 15	40	9,770	15,150	20,320	25,430	28,560 28,000 28,380	1,100	50

a Nut did not have a wax lubricant (Carsowax Polyethylene Glycol 3350) applied.

b E/M Corporation EM-6286 is a bonded solid film lubricant formulated with molybdenum disulfide in a resin binder to produce torque-tension characteristics similar to cadmium electroplate plus wax. Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. MIL-T-5544. The C-601-S lubricant was applied over the EM-6296 lubricant. Both lubricants were applied to the threads of the bolt and nut.

c GY1610-36 bolt: Average shank diameter = 0.6233 in., average coating thickness = 0.00034 in., average shank diameter with EM-6256 = 0.6237 in., average coating and EM-6256 thickness = 0.00055 in.

⁴⁷FLW-1018 nut: Average coating thickness - 0.00040 in., overage coating and EM-6256 thickness - 0.00051 in.

b E/M Corporation EM-5286 is a bonded solid film lubricant formulated with graphite in a resin binder. Fel-Pro Incorporated C-601-8 lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-8 lubricant was applied over the EM-6286 lubricant. Both lubricants were applied to the threads of the bolt and nut.

e: GY1810-35 bott: Average shank diameter = 0.5233 in., average coating thickness = 0.00038 in., average charit dismeter with EM-6285 = 0.6245 in., average coating and EM-6286 thickness = 0.00092 in.

⁴⁷FLW-1018 nut. Average counting thickness - 0.00033 in., average counting and EM-6286 thickness - 0.00100 in.

TABLE B-31. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tero	pue On Nut (is	ı. -15)			Running
Test No. ^{a,b,e}	Cycle No.				Box Lead (lb))		Breaksway Terque	Torque (inlb, CCW Direction)
		Direction)	G ÜÜ	900	1,200	1,560	1,860	(iaib)	
31	1 2 3 4	40	13,150	19,700	25,630	36,040	34,940 36,540 38,120 38,420	1,200	20
	5 6 7 8 9 10 11 12 13	20	13,5 60	19,270	26,250	33,180	39,680 40,650 41,700 40,770 41,000 41,300 41,200 41,350 41,150	1,200	20
	14 15	20	14,230	21,280	27,790	37,090	42,100 42,750	1,150	15

a It is not known if the nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-32. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	ı. -lb)		1_	Running
Test No.=,b,s	Cycle No.	Terque (in1b, CW				Breaksway Torque	Torque (inlb,		
		Direction)	600	900	1,200	1,560	1,850	(inib)	CCW Direction)
32	1 2 3 4	30	13,540	20,170	27,290	33,300	37,110 37,530 39,010 40,310	1,300	30
	5 6 7 8 9 10 11 12	20	16,220	24,200	30,560	38,420	42,750 44,200 44,250 44,350 44,850 45,200 47,850	1,050	20
	13 14 15	15	17,010	24,510	32,690	41,350	49,150 47,950 48,350 47,800	950	15

a it is not known if the nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet Mit-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS14153-09048 bott: Average shank diameter = 0.9611 in., average coating thickness = 0.00048 in. 79502-918 nut: Average plating thickness = 0.00060 in.

b. Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 holt: Average shank clamster = 0.5611 in., average coating thickness = 0.00038 in. 79502-918 nut. Average plating thickness = 0.00047 in.

TABLE B-33. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tarq	jua On Nut (la	ı. -lb)			Running Terque (inlb, CCW Direction)
Test No.2,5,6	Cycle No.	Terque (inib, CW			Bolt Lead (ib))		Frenksway Forque (inib)	
		Direction)	600	905	1,200	1,560	1,860		
33	1 2 3 4	30	14,220	22,160	29,040	35,830	39,800 39,340 39,870 40,680	1,250	25
	5 6 7 8 9	15	14,900	21,530	28,370	35,940	41,260 42,100 41,750 41,400 40,960 40,720	1,200	15
	11 12 13 14 15	10	16,300	22,510	29,240	36,260	42,610 43,210 42,360 42,950 42,510	1,200	10

a it is not known if the nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-34. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (in	lb)		J	Running
Test No.3,5,6	Cycle No.			1	Breaksway Yorque	Torque (inlb,			
140.	""	Direction)	600	800	1,200	1,560	1,860	(in.·ib)	CCW Direction)
34	1 2 3	30	11,910	17,620	22,720	27,610	31,330 25,040 23,540 28,150	1,400	25
	5 6 7 8	10	11,640	17,400	21,340	25,210	28,070 26,870 27,520 28,290	1,450	10
	10 11 12						28,780 28,580 29,140 29,210		
	13 14 15	5	12,410	17,620	22,380	26,780	29,420 29,560 29,750	1,400	5

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MilL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 bolt: Average shank diameter = 0.5615 in., average coating thickness = 0.00072 in. 79502-918 nut: Average plating thickness = 0.00062 in.

b Fel-Pro Incorporated C-801-S lubricant is a paste containing 30% synthetic graphile and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 bolt: Average shank diameter = 0.5610 in., average coating thickness = 0.00050 in. 79502-918 nut: Average coating thickness = 0.00044 in.

TABLE 8-35. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Runsing		Terq	ue On Nut (in	fb)			Running
Test No.a.b.s	Cycle No.				Bolt Load (lb)			Breaksway Torque	Torque (inib, CCW Direction)
	""	Direction)	600	908	1,200	1,560	1,860	(inib)	
35	1 2 3	40	12,220	18,980	25,690	32,180	38,090 33,310 30,380 32,300	1,350	35
	5 6 7 8 9 10 11 12 13	15	13,110	19,310	24,050	29,440	33,680 31,240 30,410 30,500 30,710 30,050 29,380 28,290 28,340 29,090	1,400	15
	14 15	10	13,010	17,630	22,450	26,690	29,810	1,400	10

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-36. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	ue On Nut (in	Ib)			Running
Text No.s.b.s	Cycle No.	Torque (inlb, CW			Bolt Load (Ib))		Breakawsy Torque	Torque (inlb,
		Direction)	600	200	1,200	1,560	1,860	(inib)	CCW Direction)
36	1 2 3 4	30 15	11,610	17,770 18,740	24,640 23,800	30,960 2,849	35,040 30,250 27,660 30,910 32,260	1,400	30 15
	5 6 7 8 9 10 11 12 13		·				31,110 3,057 29,500 29,140 30,760 30,210 30,020 29,840 29,420		
 	15	10	11,430	17,170	21,640	26,240	29,090	1,400	10

a. Nut had a wax fubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-7-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 bott: Average shank diameter = 0.5608 in., average coating thickness = 0.00044 in. 79502-918 nut: Average coating thickness = 0.00045 in.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MilL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 bott: Average shank diameter - 0.5604 in., average coating thickness - 0.00034 in. 79502-918 nut: Average coating thickness - 0.00047 in.

TABLE B-37. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		preT	jua C : Nul (in	. -%)			Running
Test No.4,5,4	Cycla No.	Torque (inlb, CW			NoX Lead (lb)			Breaksway Terque	Torque (inlb, CCW Direction)
	""	Direction)	600	900	1,200	1,560	1,850	(inlb)	
37	1 2 3 4	30	12,440	19,410	27, 9 80	34,510	39,020 40,120 38,870 40,620	1,300	25
	5 6 7 8 9	15	14,350	19,940	28,010	34,810	40,489 40,940 40,370 39,200 38,560 40,480	1,350	10
	11 12 13 14 15	5	14,310	20,350	27,480	33,900	42,280 42,720 42,360 40,790 38,850	1,300	5

a It is not known if the nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-38. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-501-S.

		Running		Terq	ve On Nut (in	Ib)		<u> </u>	Running
Test No.4,4,4	Cycle No.	Torque (inlb, CW			Bolt Load (Ib)			Breaksway Torque	Torque (inlb, CCW Direction)
MO.	""	Direction)	688	900	1,200	1,560	1,860	(inib)	
38	1 2 3	35	12,450	19,590	27,120	34,380	40,280 42,100 43,950 42,180	1,300 :	40
	5 6 7 8 9 10 11 12	20	15,420	22,500	29,440	36,820	42,190 41,680 41,730 43,280 42,560 42,510 42,930 41,800	1,300	20
	13 14 15	15	14,950	21,600	27,730	34,600	42,260 41,170 39,840	1,250	10

a it is not known if the nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-Y-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 bolt: Average shank diameter = 0.5610 in., average coating thickness = 0.00041 in. 79502-918 nut: Average plating thickness = 0.00046 in.

b Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS14163-09048 bolt: Average shank diameter = 0.5506 in., average coating thickness = 0.00041 in. 79502-918 nut: Average plating thickness = 0.00055 in.

TABLE B-39. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

	Î	Renaing	 -	Ters	jue On Nut (is	1#)			Running
Tosi No.a.b.s	Cycle No.	Tarqua (inib, CW			Bull Load (lb))		Breaksway Terque	Terque (inib,
		Direction)	600	900	1,200	1,560	1,960	(ia ib)	CCW Direction)
39	1 2 3 4	35	13,100	20,970	27,970	34,220	40,430 39,880 37,510 39,050	1,350	30
	5 6 7 8 9 10 11 12 13	15	13,780	19,690	26,230	32,050	37,350 37,610 37,180 37,760 38,870 39,720 38,960 38,120 37,280	1,300	15
	14 15	10	13,060	19,080	25,770	31,640	37,360 36,880	1,300	10

a. It is not known if the nut had a wax lubricant' (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-40. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Yen	jue On Nut (in	16)		Breakaway	Running
Test No s.s.c	Test Cycle Torque No. 1010, CV	Torque	Bolt Lead (ib)						Torque (inlb,
		Direction)	50	100	150	200	250	(in1b)	CCW Direction)
40	1 2 3 4	20 10	\$80 2,233	2,994 4,138	4,920 5,702	6,652 6,991	8,030 7,287 7,976 8,011 8,052	145 145	20
	5 6 7 8 9 10 11		2,200	,,,,,,	0,102		7,886 8,480 8,550 8,024 8,530 8,570		
	12 13 14 15	10	1,914	3,969	5,863	7,415	8,280 8,054 8,780 8,550	140	10

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphile and 50% petrolatum formulated to meet 6/IL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c: MS14163-09048 bott: Average shank clameter = 0.5307 in., average coating thickness = 0.00043 in. 70502-918 nut: Average plating thickness = 0.00042 in.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-7-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

⁶ MS21250-05016 bolt: Average shank diameter = 0.3115 in., average coating thickness = 0.00040 in. 42FLW-524 nut: Average plating thickness = 0.00041 in.

TABLE 8-41. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Terq	ue On Nut (in	ib)			Running Terque
Test No.3,5,s	est Cycle Terque	Terque				Brankaway Torque	(inlb.		
	Direction)	50	100	150	200	250	(lalb)	CCW Direction)	
41	1 2 3 4 5 6 7 8 9 10 11 12	20 10	1,707 2,077	3,590 3,794	5,555 5,292	7,267 6,877	8,825 8,125 7,996 7,905 8,290 8,700 8,510 8,880 8,840 9,025 8,530 8,800	145	15
	13 14 15	10	2,261	4,317	5,177	7,520	8,990 8,800 8,770	125	10

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-42. TORQUE-TENSION DATA FOR CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running	_	Ton	que On Nut (ii	n lb)		. .	Running
Test No.3,5,5	Cycle No.	Torque (inIb, CW			Bolt Load (lb		Breakaway Torque	(inib.	
•	""	Direction)	50	100	150	200	250	(inlb)	CCW Direction)
42	1 2 3 4 5	20 10	1,735 2,507	3,806 4,484	5,423 6,049	6,912 7,406	8,340 8,280 8,560 8,770 8,540	145	20
	8 9 10						8,890 8,640 8,890 8,850 9,100		
	11 12 13 14 15	10	2,571	4,667	6,417	7,820	9,060 9,420 9,350 9,150 8,950	125	10

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bott: Average sharik diameter = 0.3112 in., average coating thickness = 0.00043 in. 42FLW-524 nut: Average plating thickness = 0.00040 in.

b Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphile and 50% petrolatum formulated to meet MiL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bolt: Average shank diameter – 0.3113 in., average coating thickness – 0.00035 in. 42FLW-524 nut: Average plating thickness – 0.00039 in.

TABLE B-43. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tel	que On Nut (ia16)			Running
Yest No.a.b.c	Cycle No.	Torque (inib, CW			Bell Lead (II	9)		Breaksway Torque	Terque (iaib.
		Direction)	80	100	150	200	250	(inlb)	CCW Direction)
43	1234	30	1,208	3,048	4,776	6,737	8,320 8,500 9,250	140	35
	5 6 7 8 9 10 11 12	20	1,583	3,384	5,054	6,716	9,640 8,440 8,910 9,100 9,600 9,450 9,220 9,375 9,570 9,540	140	20
	14 15	10	2,284	4,347	6,417	8,074	9,500 9,460	120	10

a Nut had a wax Jubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE B-44. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORTED C-601-S.

		1	Running		To	rque On Nut (i	n. -15)			Running
	Yest No.a.b.a		(inlb, CW			Broaksway Terque	Torque (inth,			
Ĺ		<u> </u>	Direction)	50	100	150	200	250	(in1b)	CCW Direction)
Ì	44	1 2 3 4	40	1,291	3,137	4,792	6,438	7,847 7,780 8,340	130	30
		5 6 7 8	15	2,237	3,937	5,379	6,951	8,650 8,300 8,800 8,790 8,440 8,740	135	15
		10 11 12 13 14	10	2,089	4,018	5,704	7,151	8,720 8,800 8,750 8,870 8,600 5,500	130	10

Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b FeI-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to most MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bolt: Average shank diameter = 0.3115 in., average coating thickness = 0.00038 in. 42FLW-524 nut: Average coating thickness = 0.00047 in.

b Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petroletum formulated to most MIL-7-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bolt: Average shank diameter ~ 0.3110 in., average coating thickness ~ 0.00033 in. 42FLW-524 mit: Average coating thickness ~ 0.00048 in.

TABLE 8-45. TORQUÉ-TENSION DATA FOR IVO ALUMINUM-COATED BOLT AND IVO ALUMINUM-COATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Ter	que On Nut (i	n. -lb)			Running
Test No.u.b.e	Cycla No.	Terque (inIb, CW			Box Lead (It))		Terque	Torque (inlb,
		Direction)	50	100	150	200	250	(inib)	ECW Direction)
45	1 2 3 4	35	940	3,077	5,180	6,647	8,170 7,704 8,165 8,400	140	40
	5 6 7 8 9	15	1,972	3,867	5,404	6,765	7,927 7,857 8,360 8,480 8,280	150	15
	10 11 12 13 14 15	10	2,056	3,894	5,399	6,888	8,305 8,011 8,070 8,360 5,143 8,480	135	10

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-46. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Torq	jue On Nut (ir	ılb)			Running
Test No.2,5,5	Test Cycle Torque No. (inib.	Torque (inib, CW			Breakzway Torque	Torque (inlb.			
		Direction)	50	100	158	200	250	(lalb)	CCW Direction)
46	1 2 3 4 5 6 7 8 9 10 11 12 13	30 15	1,342 1,375	3,15? 3,457	4,907 5,122	6,534 6,693	8,250 8,048 7,931 8,700 8,320 8,360 8,420 8,810 8,950 9,156 9,010 9,340 9,035	140	35 15
	14 15	10	2,037	4,376	6,327	7,994	9,430 9,270	105	10

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-801-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet. Mil.-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bott: Average shank diameter = 0.3111 in., average coating thickness = 0.00033 in, 42FLW-524 nut: Average coating thickness = 0.00049 in.

^{5.} Fel-Pro incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bolt: Average shank diameter = 0.3111 in., average pating thickness = 0.00032 in. 42FLW-520 nut: Average plating thickness = 0.00045 in.

TABLE 8-47. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

			Running		Ter	que On Nut (i	n(5)			Hunning
'	Test C No.a,b,a	Cycle No.	Torque (inlb, CW			gusagrinn?.	fortus fin13,			
		""	Direction)	58	183	150	200	250	(1213)	W23 (naitsetiO
	47	1 2 3 4	20	1,437	3,352	5,291	7,374	9,280 9,220 8,086 8,430	115	20
		5 6 7 8 9 10 11 12 13	10	2,053	3,987	5,736	7,157	8,890 9,640 9,320 9,000 9,050 9,460 9,450 9,620 6,000	130	
		14 15	10	2,104	4,189	5,997	7,010	19,920 \$,530	110	10

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glyco: 3350; applied.

TABLE 8-48. TORQUE-TENSION DATA FOR IVD ALUMINUM-COAVED BUILT AND CAUMIUM-FULLYED NUT LUBRICATED WITH FEL-PRO INCORPORATED CAUGUS.

		Running		Ten	que On Nuî (is	alb)			Running
Test No.3,6,4	Tast Cycle	Torque (inlb, CW			Terque	in. dir.			
	""	Direction)	50	100	150	201	2445;	(inik)	Direction)
46	1 2 3 4 5 6 7 8 9 10 11 12 13	30 15	1,394 2,218	3,356 4,085	5,449 5,605	8,632 7,312	10.27% 9,901 9,555 9,116 9,015 9,034 9,273 9,468 9,576 9,596 9,524 9,882 10,178	125 120	10
	13 14 15	10	2,011	4,156	5,982	8,224	9,978 10,437	120	10

a Nut was supplied with a wax subricant (Carbowax Polyethylene Glycol 3350) applied.

b. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphito and 50% juliant terminated to meet Mill-T-5544. The C-601-S lubricant was applied to the threads of the bolt and nut.

c MS21250-05016 bolt: Average shank diameter = 0.3112 in., average coating thickname = 0.15055 in. 42FLW-520 nut: Average plating thickness = 0.00035 in.

b. Fel-Pro Incorporated C-801-S lubricant is a poste containing 50% synthetic graphile and 50% petrolatum increaled to meet MIL-T-5544. The C-801-S lubricant was applied to the threads of the bolt and nut.

c MS21250-C5016 bolt: Average shank diameter ~ 0.3110 in., average coating thickness ~ 0.00036 in. 42FLW-520 nut; Average plating thickness ~ 0.00042 in.

TABLE 8-49. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

			Running		Ter	que On Nut (i	xlb)	<u></u>		Running
Ç	Teet Na.###	Cycle No.	Torque (inlb, CW			Bolt Lund (It))		Breaks way	Torque (inlb,
			Direction)	80	100	150	200	250	(inib)	Ctrection)
	49	1 2 3 4 5 6 7 8 9 10 11 12 13	25 10	1,438 7,698	3,291 3,704	5,123 5,327	6,686	8,316 8,401 8,512 8,228 8,381 8,638 8,940 8,859 8,718 8,759 8,759 8,965 8,807 8,866	140	10
	,	15	10	2,108	3,935	5,755	7,498	9,349 8,904	140	10

a. Nut did not have were lubricant (Carbowax Pulyethylene Glycol 3350) applied.

TABLE 8-50. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EVERLUBE 1346 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Ton	que On Nut (l	nIb)		Breaksway Torque (inlb)	Running
Yest No.1.1.	Cycle No.	Torque (inlb, CW			Bolt Load (Ib)			Torque (inib. CCW Direction)
		Direction)	80	100	150	200	250		
50	1 2 3 4	35	832	2,780	4,427	6,178	8,069 8,345 8,596 8,968	145	35
	5 6 7 8 9 10 11 12 13	15	2,252	3,889	5,405	6,918	8,477 8,611 9,264 9,072 9,261 9,153 9,535 9,430 9,475	140	15
	1.6	10	1,917	3,747	5,580	7,641	9,575 9,335	130	10

a. Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation Evertube 1346 is an air-cured, bonded solid film lubricant formulated with molybdenum disultide in a resin binder specifically for high temperature applications and antiseize capabilities. Fel-Pro Incorporated C-601-. Iubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Evertube 1346 lubricant on the threads of the out and to the threads of the five aluminum-coated bolt.

c MS21250-05016 bolt. Average shank diameter = 0.3110 in., average coating thickness = 0.00032 in.

⁴²FLW-524 nut: Average costing thickness ~ 0.00035 in., average costing and Everlube 1346 thickness ~ 0.00094 in.

b EAM Corporation Evertible 1346 is an air-cured, bonded solid film lubricant formulated with molybdonum disulfide in a resin binder specifically for high temperature applications and antiseize capabilities. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthatic graphile and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the Everlube 1346 lubricant on the threads of the riut and to the threads of the IVD aluminum-coated bolt.

c. MIS21250-05016 bolt. Average shank districter -- 0.3111 in., average coating thickness -- 0.00037 in.

⁴²FLW-524 mut: Average costing thickness - 0.00034 in, average coating and Everlube 1346 thickness - 0.00104 in.

TABLE B-51. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Russing		Ten	que On Nut (i	nIb)]	Running
Tost No.0,6,8	Cycle No.				Bolt Lead (It)		Brooksway	Torque (inib. CCW Direction)
315 , * *	"	Direction)	50	160	150	200	250	(In1b)	
51	1 2 3 4	3 0	1,232 2,225	3,474	5,205 5,835	7,368 7,491	10,053 9,368 8,874 9,173 8,875	130	40
	5 6 7 8 9 10		2,223	4,131	9,035	1,481	9,159 9,475 9,046 9,172 9,550 9,082		
:	12 13 14 15	10	1,927	4,148	5,969	7,976	9,233 9,386 9,357 9,206	140	10

a Nut did not have wax lubricant (Carbowsx Polyethylene Glycol 3350) applied.

TABLE B-52. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6256 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Tore	que On Nut (In	ılb)]	Running Terque (inlb. CCW Direction)
Yest No.*.k,s	Cycle No.	Torque (inib, CW			Bolt Load (lb))		Breaks way Torque (in1b)	
110.	""	Direction)	50	100	150	200	250		
52	1 2 3 4 5 6 7 8 9	20 10	1,643 1,289	3,739 3,347	5,527 5,053	7,290 6,658	8,983 8,245 8,360 8,372 8,047 7,953 8,479 9,045 6,796 8,805	140	35 10
	11 12 13 14 15	5	2 ,276	4,376	6,206	7,688	9,175 9,127 9,212 9,392 8,968	130	10

a. Nut rlid not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b. E/M Corporation EM-6256 is a bonded solid film lubricant formulated with molybdenum disulfide in a resin binder to produce torque-tension characteristics similar to cadmium electroplate plus witx. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c MS21250-05016 bolt: Average shank diameter = 0.3113 in., average coating thickness = 0.00038 in.

⁴²FLW-524 nut: Average coating thickness = 0.00034 in., everage coating and EM-6256 thickness = 9.00057 in.

b EAM Corporation EM-6256 is a bonded solid film lubricant formulated with molybdenum disulfide in a resin binder to produce torque-tension characteristics similar to cadmium electroplate plus wax. Fel-Pro Incorporated C-601-S lubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the EM-6256 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c MS21250-05016 bolt: Average shank diameter = 0.3110 in., average coating thickness = 0.00033 in.

⁴²FLW-524 nut: Average coating thickness = 0.00035 in., average coating and EM-6256 thickness = 0.00051 in.

TABLE B-53. TORQUE-TENSION DATA FOR IVD ALUMINUM-CJATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Ter	que On Nist (i	nib)			Running
Test Na.s.b.c	Cycle No.	Torque (inib, CW			Bott Lead (ib)		Breaksway Forque	Terque (inib, CCW Direction)
	""	Direction)	50	160	150	200	250	(in82)	
53	1 2 3 4	25	1,624	3,635	5,421	7,140	9,261 8,303 8,209 8,498	130	30
	5 6 7 8 9 10 11 12	20	1,647	3,526	5,142	6,932	8,451 8,599 8,779 8,712 5,961 9,012 2,157 9,156	145	15
	13 14 15	5	2,529	4,588	6,456	8,164	9.092 £,410 9,557	140	_ ′3

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE 8-54. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND FOR IVD ALUMINUM-COATED NUT LUBRICATED WITH E/M CORPORATION EM-6286 AND THEN BOTH PARTS LUBRICATED WITH FEL-PRO INCORPORATED C-601-S.

		Running		Ton	que On Nut (ii	n 1b)		<u></u>	Running
Test No.3,5,6	Cycle No.	Torque			Boll Lead (lb)		Breaksway Turque (inlb)	Terque (inlb, CCW Direction)
•••		Direction)	50	100	150	200	250		
54	1 2 3 4 5 6 7 8 9 10 11 12 13	25 10	1,514	3,754 4,143	5,792 5,873	7,661 7,590	9,403 8,780 8,670 9,204 9,098 9,349 9,619 9,692 9,754 10,024 9,918 10,072 9,926	140	35 15
	14 15	10	2,735	4,837	5,734	8,508	10,057 10,199	130	10

a Nut did not have wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b E/M Corporation EM-6286 is 1 bonded solid film lubricant formulated with graphite in a resin binder. Fel-Pro Incorporated Flubricant is a paste containing 50% synthetic graphite and 50% petrolatum formulated to meet MIL-T 5544. The C-601-S lubricant applied over the EM-6286 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c MS21250-05016 bolt: Average shank diameter = 0.3110 in., average coating this less = 0.00031 in. 42FLW-524 nut: Average coating thickness = 0.00038 in., average coating and EM-5286 thickness = 0.00084 in.

b EM Corporation EM-6286 is a bonded solid film lubricant formulated with graphite in a resin binder. Fet-Pro theorporated C-601-S lubricant is a paste containing 50% synthetic graphile and 50% petrolatum formulated to meet MIL-T-5544. The C-601-S lubricant was applied over the EM-6286 lubricant on the threads of the nut and to the threads of the IVD aluminum-coated bolt.

c MS21250-05016 bolt: Average shank diameter = 0.3110 in., average coating thickness = 0.00032 in. 42FLW-524 nut: Average coating thickness = 0.00097 in., average coating and EM-5286 thickness = 0.00081 in.

APPENDIX C

TORQUE-TENSION DATA FOR ENGINE BOLTS FINISHED WITH 10D ALUMINUM OR DIFFUSED NICKEL-CADMIUM WITH AND WITHOUT ENGINE OIL LUBRICATION

TABLE C-1 TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ENGINE OIL.

		Running		Terq	ue On Nut (in	l ia)			Running
Vezi No a.b.c	Cycle No.	Terque (InIb, CW		(Torque	Terque (inib,		
		Direction)	_	25	45	65	\$ 4	(inlb)	Direction)
1	1 2 5 4	40	-	-	205	1,029	1,877 1,930 2,040 2,063	6 5	35
	5	20	-	337	3,50	1,420	2,507	65	20

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b Mil.-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the boit and nut.

MS9209-13 bolt: Average plating thickness = 0.00046 in.
 P&W 564706 nut: Average plating thickness = 0.00043 in.

TABLE C-2. TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ENGINE OIL.

	est Cycle Running Terque (inib, CW		Tor	eup On Nut (in	ı8b}			Running	
Test No.a.h.s		Terque	.,,		Breaksway Terque	Torque (inib,			
	""	Direction)	-	25	45	65	85	(Inlb)	CCW Direction)
2	1 2 3 4 5	20 15	-	277 538	724 1,015	1,135 1,520	1,557 1,689 1,838 2,049 2,027	65 65	20 15

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b MIL-L-23699 engine oil was used as the jubricant. The engine oil was applied to the threads of the bolt and nut.

c MS9209-13 bott: Average plating thickness ~ 0.00045 in. P&W 564706 nut: Average plating thickness ~ 0.00051 in.

TABLE C-3. TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ENGINE OIL.

ſ	· · · · · · · · · · · · · · · · · · ·	Running	Runaino		Terq	pe On Nut (in	i ib)		Basebasses	Running
	Test Cycle Na.a.b.e Na.	Cycle No.	Terque (inib, CW		1	Breskeway Torque	Torque (inib, CCW			
į	••••		Direction)	-	25	45	\$ 6	85	(ia2b)	Direction)
	3	1 2 3 4	25	-	66	647	1,164	1,867 2,079 2,174 2,421	65	25
l		5	10		487	1,246	1,739	2,343	60	10

a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE C-4. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ENGINE OIL.

_		Running Torque (in16, CW		neï		Running			
Tost No.s.h.s	Cycle Ho.			_		Breakaway Terque	Torque (inib,		
		Direction)	_	28	45	6 5	85	(iaib)	CCW Direction)
4	1 2 3 4	10	-	573	1,185	1,863	2,632 2,372 2,150 2,078	60	10
	5	5	-	690	1,122	1,613	2,034	85	5

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b MiL-L-23599 engine oil was used as the lubricant. The engine oil was applied to the thmads of the bult and nut.

c MS9209-13 bott: Average plating thickness - 0.00035 in. P&W 564706 nut: Average plating thickness - 0.00049 in.

b MIL-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the bolt and nut.

c MS9209-13 bolt: Average coating thickness = 0.00031 in. P&W 564705 nut: Average coating thickness = 0.00043 in.

TABLE C-5. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ENGINE OIL.

		Renning		Ton	jue De Nut (in	. -%)			Running Yerque
Test No.3.5.4	Cycla No.				Breaksway Torque	(inib, CCW			
		Direction)	-	25	45	\$ 5	26	(infb)	Direction)
5	1 2 3	15	-	\$93	914	1,494	2,166 1,804 1,749 1,786	60	15
	5	16		580	990	1,384	1,777	65	5

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE C-6. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ENGINE OIL.

				Torq		Sreakaway Torquo	Running Torque (inib,		
Test No. ^{n,h,s}	Cycle No.								
		Direction)	_	25	45	86	85	(inlb)	CCW Direction)
6	1 2 3 4	15	-	503	1,166	1,998	2,681 2,094 1,858 1,824	60	10
	5	3	-	541	987	1,431	1,827	65	2

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b MIL-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the bolt and nut.

c MS9209-13 bolt: Average coating thickness = 0.00044 in. P&W 564706 nut: Average coating thickness = 0.00047 in.

b MIL-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the bolt and nut.

c MS9209-13 bolt: Average coating thickness = 0.00036 in. P&W 564706 nut; Average coating thickness = 0.00047 in.

TABLE C-7. TORQUE-TENSION DAYA FOR A DIFFUSED NICKEL-CADMIUM BOLT AND CADMIUM-PLATED NUT.

ĺ			Ruening		Ten	jue Da Nut (is	ı. -lb)		B	Running
	Test No.a,b,s	Cycle No.	Tarque (inib, CW			Bolt Luad (ib)		Breaksway Terque (inlb)	Torque (inib, CCW
			Direction)	100	160	200	250	300	(18.40)	Direction)
i	7	1	25	2,707	4,254	5,731	7,118	8,411	200	20

- a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. The bolt and nut were assembled dry without an engine oil tubricant.
- c MS9210-25 bolt: Average shank diameter = 0.2879 in., average coating thickness = 0.00027 in. 42FLW-524 nut: Average plating thickness = 0.00047 in.

TABLE C-8. TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM BOLT AND CADMIUM-PLATED NUT.

		Runnina	٠,	Ton	ue On Nut (i	1 lb)		Breaksway Torque (inlb)	Running
Test No. ^{a,b,c}	Cycle No.	Torque (in15, CW			Bolt Load (ib)		Torque	Torque (inib, CCW
		Direction)	100	150	200	250	200	(1KID)	Direction)
8	1	20	3,239	5,145	7,153	8,784	9,993	165	25

- a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. The bolt and nut were assembled dry without an engine oil lubricant.
- c MS9210-25 bolt. Average shank diameter = 0.2875 in., average coating thickness = 0.00032 in. 42FLW-524 nut: Average plating thickness = 0.00044 in.

TABLE C-9. TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM BOLT AND CADMIUM-PLATED NUT.

	Test No.s,s,s	Cycle No.	Running Torque (inib. CW			que On Nut (ii Bok Lead (ib			Breaksway Terque (in!b)	Running Torque (inlb.
ĺ	MO	, Mb.	Direction)	100	160	200	250	300	(lnlb)	CCW Direction)
	9	1	20	2,811	4,583	6,175	7,687	8,869	170	20

- a Nut was supplied with a wax subricant (Caubowax Polyethylene Glycol 3350) applied.
- b. The bolt and nut were assembled dry without an engine oil lubricant.
- c MS9210-25 boft: Average shank dameter = 0.2878 in., avurage coating thickness = 0.00029 in. 42FLW-524 nut: Average plating thickness = 0.00052 in.

TABLE C-11. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT.

		Running		Ten	que On Nut (li	ılb)		Breskaws; Torque (inib)	Running
Test No.a.b.s	Cycle No.	Torque (inib. CW			Soft Lead (ib)			Tarque (inib.
		Direction)	180	150	200	250	\$00	(1A'-10)	CCW Direction)
11	1	50	1,089	2,181	3,119	4,046	4,965	250	50

- a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. The bolt and nut were assembled dry without an engine oil lubricant.
- c MS9210-25 boht: Average shank diameter 0.2871 in., average coating thickness 0.00037 in. 42FLW-524 nut: Average coating thickness 0.00034 in.

TABLE C-12. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT.

Γ			Running	,	Ton	que On Wut (is	ıIb)		Broaksway Torque (inlb)	Running
	Test No.s.b.e	Cycle No.	Torque (inib, CW			Bolt Load (ib)			Torque (inlb.
			Direction)	100	150	200	250	300	(IA18)	CCW Direction)
	12	1	50	1,127	2,031	2,892	3,752	4,581	235	50

- a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. The bolt and nut were assembled dry without an engine oil lubricant.
- c MS9210-25 bolt. Average shank diameter 0.2875 in., average coating thickness 0.00039 in, 42FLW-524 nut: Average coating thickness 0.00037 in.

TABLE C-10. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT.

		Running		Torque On Hut (in16)				J .	Running
Test No.a.b.c	Cycle No.	Terque (inlb, CW			Bolt Load (lb))		Breaksway Torque (inib)	Torque (inlb, CCW Direction)
		Direction)	100	150	200	250	300		
10	1	45	1,106	2,211	3,036	3,809	4,610	220	45

- a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b The bolt and nut were assembled dry without an engine oil lubricant.
- e MS9210-25 bolt: Average shank diameter 0.2875 in., average coating thickness 0.00039 in. 42FLW-524 nut: Average coating thickness 0.00030 in.

TABLE C-13. TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ENGINE OIL.

Γ			Running		Yen	pe On Nut (le	. -b)		Basalaman	Running
	Test No.a.s.e	Cycle No.	Terque (inib, CW	· · · · · · · · · · · · · · · · · · ·		Beit Load (ib)			Breaksway Yerque	Terque (inib.
	•••		Direction)	150	150	200	250	200	(iab)	CCW Direction)
	13	1 2 3 4	20	2,343	4,075	5,597	6,960	8,408 9,402 8,095 7,527	180	25
		5	10	2,320	3,420	4,365	5,420	6,468	195	15

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

TABLE C-14. TORQUE-TENSION DATA FOR A DIFFUSED NICKEL-CADMIUM-PLATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ENGINE OIL.

		Running		Ton	que On Nut (la	i ib)			Running
Test No.a.a.c	Cycle No.	Torque (inIb, CW			Bolt Lead (ib)		Breakaway Torque	Torque (inib,
		Birection)	100	150	200	250	300	(inib)	CCW Direction)
14	1 2 3 4	30 20	2,561 1,714	4,062 2,867	5,332 4,039	6,883 5,083	8,130 7,873 7,236 6,445 6,133	185	30 20

a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

b MIL-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the bolt and nut.

c MS9217-25 bolt: Average shank diameter = 0.2882 in., everage coating thickness = 0.00038 in. 42FLW-324 nut: Average plating thickness = 0.00040 in.

b MiL-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the bolt and nut.

c MS9210-25 bott: Average shank diameter = 0.2876 in, average coating thickness = 0.00034 in. 42FLW-524 nut: Average plating thickness = 0.00046 in.

TABLE C-15. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND IVD ALUMINUM-COATED NUT LUBRICATED WITH ENGINE OIL.

		Reaning		Ten	jus On Nut (le	i. -lb)			Running
Tost No.a.b.a	cycle No.	Terque (inib, CW			Bolt Lead (15)			Breaksway Torque	Terqua (init,
		Direction)	100	150	200	250	200	(inib)	CCW Direction)
15	1 2 3 4	25	2,337	3,825	5,082	6,167	7,079 4,869 5,196 5,088	240	30
	5	10	1,805	2,755	3,547	4,259	4,882	250	10

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

		Running		Yan	(ii) hulk nO eur	1 1 b)			Running
Test No.4,6,6	Cycle No.	Torque (inlb, CW			Bott Load (lb))		Breaksway Forque	Torque (inib,
		Direction)	100	150	200	250	300	(inib)	CCW Direction)
16	1 2 3 4	40	1,175	2,381	3,204	3,908	4,647 4,119 4,639 4,910	225	40
	5	10	1,446	2,455	3,325	3,992	4,629	230	10

a Nut had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.

)

b MIL-L-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the bolt and nul.

c MS9210-25 bhit: Average shank diameter -- 0.2873 in., everage coating thickness -- 0.00037 in. 42FLW-524 nut: Average coating thickness -- 0.00036 in.

b MIL4-23699 engine oil was used as the lubricant. The engine oil was applied to the threads of the troit and nut,

c MS9210-25 bolt: Average shank diameter = 0.2876 in., everage coating thickness = 0.00034 in. 42FLW-524 nut: Average coating thickness = 0.00036 in.

TABLE C-17. TORQUE-TENSION DATA FOR IVD ALLUMINUM-COATED BOLT AND

Γ			Running		Yor	jus On Kai (k	·	***************		galacuid
	Tost Ne.s.s.s	Cycle Ne.	Terque (inlb, CW			202 L eed (12)	3		Terque Terque	rupieT ,diai) W32
			Direction)	180	550	200	255	2000	(in8b)	Direction)
	17	1 2 3 4 5	25 15	2,528 1,462	3,993 2,446	5,233 3,237	6,310 3,982	7,372 4,645 4,536 4,641 4,605	225	30 10

- a. Not had a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b MiL-L-23699 engine oil was used as the lubric ant. The engine oil was applied to the time the bolt and nut.
- MS9210-25 bolt: Average shank diarneter = 0.2874 in., average coating thickness = 0.00037 in. 42FLW-524 nut; Average coating thickness = 0.00041 in.

TABLE C-18. TORQUE-TENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT LUBRICATED WITH ENGINE OIL.

		Running		Terc	jue On Nut (le	ı(b)			Rusning
Tost No.s.b.e	Cycle No.	Terque (inib, CW		_	Boll Lond (tb))		Breaksway Terque	Tergue (lnth.
		Direction)	100	150	200	250	300	(inlb)	Direction)
18	1	15	2,624	4,024	5,145	7,381	8,785 8,933 9,678 9,189	165	20
		5	3,091	4,559	6,080	7,301	8,592	170	10

- a. Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b Mil. 1-23699 engine oil was used as the jubricant. The engine oil was applied to the threads of the boit and nut.
- MS9210-25 bott. Average shank diameter + 0.2873 in., everage coating thickness + 0.00042 in. 42FLW-524 nut: Average plating thickness + 0.00046 in.

TABLE C-19. TORQUE-YENSION DATA FOR IVD ALUMINUM-COATED BOLT AND CADMIUM-PLATED NUT.

	Test No.º.b.s	Cycle No.	Running Yorque (inib, CW Direction)	Torque On Nut (inlb) Bolt Lead (ib)					Breaksway Terque	Hunning Torque (inib.
ł										
				100	150	200	250	300	(inlb)	CCW Direction)
l	19	1	25	2,876	4,406	5,529	6,725	7,886	190	30

- a Nut was supplied with a wax lubricant (Carbowax Polyethylene Glycol 3350) applied.
- b. The bolt and nut were assembled dry without an engine oil lubricant.
- c MS9210-25 bolt: Average shank diameter 0.2877 in., average coating thickness 0.00034 in. 42FLW-524 nut; Average plating thickness 0.00039 in.