Constraint-based Modeling of Cellular Networks

Exercise 9 – Duality, OptKnock 15. 12. 2022

$$A_{ineq}x \ge b_{ineq}$$

$$A_{eq}x = b_{eq}$$

$$x_i \ge 0$$

 $\max [b_{ineq}^T, b_{eq}^T] y$

subject to

$$[A_{ineq}^T, A_{eq}^T] y \le c$$

$$y_j \ge 0$$
; $1 \le j \le m_1$

There are specific relations we can use to transform primal and dual LP into each other.

$$A_{ineq}x \geq b_{ineq}$$

$$A_{eq}x = b_{eq}$$

$$x_j \geq 0$$

max	b_{ineg}^{T} ,	b_{ea}^{T}	lγ
	ı~ ınea,	~ ey	7

subject to

$$[A_{ineq}^T,A_{eq}^T]y\leq c$$

$$y_j \ge 0$$
; $1 \le j \le m_1$

Minimization Problem	Maximization Problem
If the Constraint is	The Associated Variable is
>=	>=0
<=	<=0
=	Unrestricted
If the Variable is	The corresponding Constraint is
>=0	<=
<=0	>=
Unrestricted	=

 $A_{ineq}x \ge b_{ineq}$

$$A_{eq}x = b_{eq}$$

$$x_j \ge 0$$

max	b_{ineq}^T ,	b_{ea}^{T}	lу
	liley'	cy	/

subject to

$$[A_{ineq}^T,A_{eq}^T]y\leq c$$

$$y_j \ge 0; 1 \le j \le m_1$$

Minimization Problem	Maximization Problem	
If the Constraint is	The Associated Variable is	
>=	>=0	
<=	<=0	
=	Unrestricted	
If the Variable is	The corresponding Constraint is	
>=0	<=	
<=0	>=	
Unrestricted	=	

$$\min 3x_1 + 2x_2 + x_3$$

subject to

 $2x_1 + x_2 \ge 2$ $x_2 + 3x_3 = 1$ $x_1 \ge 0$

$$x_2 \ge 0$$

$$x_3 \ge 0$$

 $A_{ineq}x \geq b_{ineq}$

$$A_{eq}x = b_{eq}$$

$$x_j \ge 0$$

$\max \left[b_{ineq}^T, b_{eq}^T\right]$
--

subject to

$$[A_{ineq}^T, A_{eq}^T]y \le c$$

$$y_j \ge 0; 1 \le j \le m_1$$

Minimization Problem	Maximization Problem	
If the Constraint is	The Associated Variable is	
>=	>=0	
<=	<=0	
=	Unrestricted	
If the Variable is	The corresponding Constraint is	
>=0	<=	
<=0	>=	
Unrestricted	=	

$$\min 3x_1 + 2x_2 + x_3$$

subject to

Example

$$2x_1 + x_2 \ge 2$$

$$x_2 + 3x_3 = 1$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_3 \ge 0$$

$$\max 2y_1 + y_2$$

$$2y_1 \le 3$$

$$y_1 + y_2 \le 2$$

$$3y_2 \le 1$$

$$y_1 \ge 0$$

Implementation of simplified OptKnock

In the E. coli core model do following changes:

- Set the lower bound of 'Fumarase' (FUM) to zero
- Set the lower bound of 'ATP maintenance requirement' reaction to zero

$$\min \sum_{i} y_{i}$$
s.t.
$$Nv = 0$$

$$v_{bio} \ge 0.9 \cdot z^{*}$$

$$v_{FUM} \ge 1.5 \cdot w_{FUM}$$

$$v > 0$$

 \forall_i , $1 \leq i \leq n$ (n being the number of model reactions)

$$(1 - y_i) \cdot \varepsilon \le v_i$$

$$v_i \le (1 - y_i) \cdot v_i^{max} + y_i \cdot \varepsilon$$

$$y \in \{0,1\}$$

$$\min \sum_{i} y_{i}$$
 s.t. From FBA: $z^{*} = \max w_{bio}$
$$Nv = 0$$

$$w_{min} \leq w \leq w_{max}$$

$$v_{bio} \geq 0.9 \cdot z^{*}$$

$$v_{FUM} \geq 1.5 \cdot w_{FUM}$$

$$v \geq 0$$

 \forall_i , $1 \leq i \leq n$ (n being the number of model reactions)

$$(1 - y_i) \cdot \varepsilon \le v_i$$

$$v_i \le (1 - y_i) \cdot v_i^{max} + y_i \cdot \varepsilon$$

$$y \in \{0,1\}$$

$$\min \sum_{i} y_{i}$$
s.t.
$$Nv = 0$$

$$v_{bio} \ge 0.9 \cdot z^{*}$$

$$v_{FUM} \ge 1.5 \cdot w_{FUM}$$

$$v > 0$$

From FBA:
$$z^* = \max w_{bio}$$

$$Nw = 0$$

$$w_{\min} \le w \le w_{max}$$

Do we have to split reversible reactions?

 \forall_i , $1 \leq i \leq n$ (n being the number of model reactions)

$$(1 - y_i) \cdot \varepsilon \le v_i$$

$$v_i \le (1 - y_i) \cdot v_i^{max} + y_i \cdot \varepsilon$$

$$y \in \{0,1\}$$

$$\min \sum_{i} y_{i}$$
s.t.
$$Nv = 0$$

$$v_{bio} \ge 0.9 \cdot z^{*}$$

$$v_{FUM} \ge 1.5 \cdot w_{FUM}$$

From FBA:
$$z^* = \max w_{bio}$$

$$Nw = 0$$

$$w_{\min} \le w \le w_{max}$$

Do we have to split reversible reactions?

 \forall_i , $1 \leq i \leq n$ (n being the number of model reactions)

 $v \geq 0 \leftarrow$

$$(1-y_i) \cdot \varepsilon \leq v_i$$

$$v_i \leq (1-y_i) \cdot v_i^{max} + y_i \cdot \varepsilon$$
 Given constant: solve with $\varepsilon = 1e-6$
$$y \in \{0,1\}$$

OptKnock

$$(1 - y_i) \cdot \varepsilon \le v_i \le (1 - y_i) \cdot v_i^{max} + y_i \cdot \varepsilon$$

$$\varepsilon = 1e - 6$$

$$y_i = 1$$
 $0 \le v_i \le \varepsilon$

$$y_i = 0$$
 $\varepsilon \le v_i \le v_i^{max}$