ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 28 gennaio 2016

Esercizio A

$R_1 = 15.4 \text{ k}\Omega$	$R_{10} = 8 k\Omega$
$R_2 = 10 \text{ k}\Omega$	$R_{11} = 3.5 \text{ k}\Omega$
$R_4 = 50 \Omega$	$R_{12} = 3.5 \text{ k}\Omega$
$R_5 = 3450 \Omega$	$R_{13} = 10 \text{ k}\Omega$
$R_6 = 2400 \Omega$	$C_1 = 100 \text{ nF}$
$R_7 = 200 \Omega$	$C_2 = 22 \text{ nF}$
$R_8 = 7800 \Omega$	C ₃ = 1.5 nF
$R_9 = 20 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = -1$ V;. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul source di Q_2 sia 11 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_3 = 14720 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 3.7$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 461.3$ Hz; $f_{p1} = 20302.8$ Hz; $f_{z2} = 927.5$ Hz; $f_{p2} = 1797.58$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 7859.5$ Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{AE}(\overline{B}C + \overline{D}) + A\overline{B}C + \overline{D}\overline{C}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 1200 \Omega$	$R_5 = 200 \Omega$
$R_2 = 1 \text{ k}\Omega$	C = 47 nF
$R_3 = 4 \text{ k}\Omega$	$V_{CC} = 6 V$
$R_4 = 200 \Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = -1V$. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 18872 Hz)