HEAT EXCHANGER FLOW PROBLEM - WEEK 3

The following handouts will guide you through carrying out an investigation across three weeks into the scale-up of a heat exchanger from benchtop approximations to a full scale plant-based shell and tube heat exchanger.

During Week 1 & 2 you investigated the Reynolds number and its effect on heat transfer. This week you will determine the dimensions of a heat exchanger required to carry out a specific heating duty for a plant process.

Following this week you will write your final deliverable as a group, a written report incorporating data across all 3 weeks of your project.

Pre-lab Materials

You are required to watch these videos and read these documents before arriving to the labs. These materials will help you be fully prepared for the tasks required in week 3 of your labs

Effectively Design Shell-and-Tube Heat Exchangers

https://bb.imperial.ac.uk/webapps/blackboard/execute/content/file?cmd=view&mode=designer&content_id=_2389465_1&course_id=_29289_1

Day 1 & 2:

You will need to design a heat exchanger capable of heating 100 kg hr⁻¹ of water from 25 °C to 85 °C. You can carry out this investigation any way you wish. You may want to consider:

- Testing the limits of the current system? Can this heat exchanger carry out this heating duty? If so, explain how and suggest the minimum size of heat exchanger feasible
- If the heat exchanger cannot carry out this heating duty why? Does it need to be larger? Flow regime not optimal for mixing? Is the heating duty even feasible at all?
- Consider if the overall heat transfer coefficient can be calculated more accurately? Can the Nusselt number be found in any other way?