Anderson Araújo de Oliveira 11371311

1 Questão 1

1.1 Parte a

As constantes físicas consideramos $\hbar = m = \sigma = e = 1$, a discretização utilizada para calcular a integral foi $\Delta z = 10^{-5}$, usamos a simetria do problema para encontrar os pontos de retornos do potencial sendo eles $x_i = \sqrt{2E}$ e $x_o = -\sqrt{2E}$, para condição de parada do programa consideramos foi $(n + \frac{1}{2})\pi - I < 0,0001$ sendo I o valor da integral. Condições que colocamos para o programa obtivemos os seguintes resultados.

n	energia calculada(J)	energia esperada(J)	erro
0	0,499	0,5	0,001
1	1,499	1,5	0,001
2	2,499	2,5	0,001
3	3,509	3,5	0,009
4	4,499	4,5	0,001
5	5,499	5,5	0,001
6	6,509	6,5	0,009
7	7,499	7,5	0,001
8	8,499	8,5	0,001
9	9,499	9,5	0,001
10	10,509	10,5	0,009

Tabela 1: energia quantizada de um oscilador harmônico

Podemos vê que o erro relativo é bem pequeno comparado ao valor esperado das energias sendo bem perto de $\Delta E \approx 10^{-3}$.

1.2 Parte b

O espaço de fase esperado para nosso problema é parecido com figura 2b, porem só pegamos a parte positiva do momento, por isso só temos a metade da elipse.

2 Parte 2

Umas mudanças no código foram efetuadas para está parte do projeto, o critério de parada consideramos 0,0001 a diferença entre integral e o resultado da integral, os pontos de retorno para o novo potencial, sendo o potencial.

$$v(x) = 4\left(\frac{1}{x}^{12} - \frac{1}{x}^{6}\right) \tag{1}$$

Conseguimos resolver essa equação acima, temos 4 soluções imaginárias e 2 reais que são as que queremos, como E<0 para o potencial que estamos trabalhando os pontos serão reais.

$$x_{\pm} = \sqrt[6]{\frac{-2 \pm 2\sqrt{1+E}}{E}} \tag{2}$$

Assim obtivemos os seguintes resultados para as energias do nosso sistema para as diferentes massas.

$\gamma = 21.7$		$\gamma = 24.8$	
n1	energia(J)	n2	energia(J)
0	-0,770	0	-0,789
1	-0,419	1	-0,470
2	-0,190	2	-0,250
3	-0,060	3	-0,110
4	-0,010	4	-0,030

Tabela 2: energia quantizada de um oscilador harmônico

Podemos notar que as energias de cada estado ficaram mais baixas onde tivemos um aumento de massa no núcleo, quando calculamos o raio de Bohr vemos que o valor depende da massa e da quantidade de prótons no átomo, por isso que os átomos com um núcleo mais denso permite uma quantidade maior de estados.

Figura 3: Espaço de fase para o potencial de Lennard-Jones

3 Parte 3

3.1 A

Para obter o ponto de mínimo devemos encontrar quando a primeira deriva será igual a zero.

$$\frac{\partial v(x)}{\partial x} = 4(\frac{6}{x^7} - \frac{12}{x^{13}}) = 0 \tag{3}$$

Obtermos que $x = \sqrt[6]{2}$.

3.2 B

Obtemos a frequência envolta desse ponto. Estamos trabalhando em uma região onde o potencial tem uma forma de parábola, portanto, podemos considerar que energia terá o seguinte formato $E_n = \hbar \omega$, trabalhando em unidades adimensionais.

$$\frac{E_N}{e} = e_n \tag{4}$$

Vamos agora calcular a 'constante da mola' para obtemos frequência angular, calculando a segunda derivada no ponto de mínimo obtemos esse valor.

$$\frac{\partial^2 v(x)}{\partial x^2} \Big|_{x=\sqrt[6]{2}} = 4\left(\frac{12.13}{x^{14}} - \frac{6.7}{x^8}\right) = 36.2^{\frac{2}{3}} \tag{5}$$

O que obtivemos foi algo adimensional, estamos derivando v(x) em x ambos são adimensionais, assim vamos obter a frequência em unidades de ' γ ', colocaremos o valor que obtivemos dentro de γ , obtemos.

$$e_n = \frac{E_N}{e} = \frac{6.2^{\frac{5}{6}}}{\gamma} \tag{6}$$

3.3 C

Encontraremos a parábola aproximado no ponto $x = \sqrt[6]{2}$.

$$4(x^{-12} - x^{-6}) \approx 18.2^{\frac{2}{3}}(x - \sqrt[6]{2})^2 - 1 \tag{7}$$

Leonard-Jones(J)	Aproximação(J)	Estados
-0.890	-0.890	0
-0.710	-0.670	1
-0.550	-0.460	2
-0.410	-0.250	3
-0.300	-0.030	4
-0.210	0.180	5
-0.140	0.390	6
-0.090	0.610	7
-0.050	0.820	8
-0.020	1.040	9

Tabela 3: energia quantizada para aproximação Lennard-Jones com valor de $\gamma=50$

	Aproximação(J)	Estados
-0.940	-0.940	0
-0.840	-0.830	1
-0.750	-0.730	2
-0.660	-0.620	3
-0.580	-0.510	4
-0.510	-0.410	5
-0.440	-0.300	6
-0.380	-0.190	7
-0.330	-0.090	8
-0.280	0.020	9

Tabela 4: energia quantizada para aproximação Lennard-Jones com valor de $\gamma=100$

Leonard-Jones (J)	Aproximação(J)	Estados
-0.990	-0.990	0
-0.980	-0.980	1
-0.970	-0.970	2
-0.960	-0.960	3
-0.950	-0.950	4
-0.940	-0.940	5
-0.930	-0.930	6
-0.920	-0.910	7
-0.910	-0.900	8
-0.900	-0.890	9

Tabela 5: energia quantizada para aproximação Lennard-Jones com valor de $\gamma=1000$

Uma comparação entre os espaços de fase da parte 1 com a parte 2 vemos uma clara diferença entre eles isso deve ser notado pelo próprio potencial essa diferença aparece em altas energias, quando estamos em baixa energia o potencial se aproxima de uma parábola, contudo a aproximação que realizamos anteriormente discordância entre elas desaparece quando estamos vendo ao redor desse ponto.