Sample

April 22, 2021

```
[1]: import pandas as pd
from copy import deepcopy
import matplotlib.pyplot as plt
import re
import numpy as np
from matplotlib import gridspec
import matplotlib
```

1 Helper functions

These are borrowed from the Convert.ipynb file.

```
[2]: headings = ['Building Identifier',
                  'Country',
                   'City',
                   'Quality / Stage of Data',
                   'Construction Date',
                   'Building Type',
                   'Gross Floor Area']
[3]: df = pd.read_excel('../Dataset/dataset.xlsx',header=1).drop('Unnamed: 0',axis=1)
[4]: df
[4]:
         Building Identifier Country City Quality / Stage of Data \
     0
                            1
                                   CA
                                       TOR
                                                              OOIFC
     1
                            2
                                   CA
                                       TOR
                                                              OOIFC
     2
                            3
                                       TOR
                                   CA
                                                              OOIFC
     3
                            4
                                   CA
                                       TOR
                                                              00IFC
     4
                            5
                                   CA
                                       TOR
                                                              OOIFC
     5
                            6
                                   CA
                                       TOR
                                                              OOIFC
     6
                            7
                                   CA TOR
                                                              OOIFC
                                      TOR
     7
                            8
                                   CA
                                                              00IFC
                            9
                                       TOR
                                                              OOIFC
     8
                                   CA
     9
                                       TOR
                           10
                                   CA
                                                              00IFC
     10
                           11
                                   CA
                                       TOR
                                                              00IFC
     11
                           12
                                   CA
                                       TOR
                                                              00IFC
```

12	13	CA	TOR	00IFC
13	14	CA	TOR	OOIFC
14	15	CA	TOR	OOIFC
15	16	CA	TOR	OOIFC
16	17	CA	TOR	00IFC
17	18	CA	TOR	OOIFC
18	19	CA	TOR	OOIFC
19	20	CA	TOR	00IFC
20	21	CA	TOR	00IFC
21	22	CA	TOR	OOIFC
22	23	CA	TOR	OOIFC
23	24	CA	TOR	OOIFC
24	25	CA	TOR	OOIFC
25	26	CA	TOR	OOIFC
26	27	CA	WIN	OOIFC
27	28	CA	TOR	OOIFC
28	29	CA	TOR	OOIFC
29	30	CA	TOR	OOIFC
30	31	CA	TOR	OOIFC
31	32	CA	TOR	OOIFC
32	33	CA	TOR	OOIFC
33	34	CA	TOR	00IFC
34	3 4 35	CA		001FC 001FC
			TOR	
35	36	CA	TOR	00IFC
36	37	CA	TOR	00IFC
37	38	CA	TOR	00IFC
38	39	CA	TOR	OOIFC
39	40	US	NEW	00IFC
40	41	CA	TOR	00IFC
41	42	CA	TOR	OOIFC
42	43	CA	TOR	OOIFC
43	44	CA	TOR	OOIFC
44	45	CA	TOR	00IFC
45	46	CA	TOR	00IFC
46	47	CA	TOR	OOIFC
47	48	CA	RIC	OIARC
48	49	CA	TOR	OOIFC
49	50	CA	TOR	OOIFC
50	51	CA	TOR	00IFC
51	52	CA	TOR	OOIFC
52	53	CA	TOR	OOIFC
53	54	CA	TOR	OOIFC
54	55	CA	TOR	OOIFC
55	56	CA	TOR	OOIFC
56	57	CA	TOR	OOIFC
57	58	CA	TOR	OOIFC
58	59	CA	TOR	OIFBP

\

	Construction	Date	Building	Туре	Gross Floor Area
0		2021		SND	521.18
1		2021		SND	389.24
2		2021		SND	411.64
3		2021		SND	269.56
4		2011		OFF	11248.00
5		2011		APB	11317.00
6		2021		SND	445.99
7		2021		SND	438.45
8		2021		SND	714.07
9		2021		SND	343.24
10		2009		OFF	73083.00
11		1917		SMR	199.93
12		2021		SND	226.89
13		2021		SND	611.73
14		2021		SND	343.44
15		2021		SND	613.38
16		1969		SNR	413.72
17		1969		SNR	333.49
18		2021		SND	178.38
19		2021		SND	323.80
20		2020		SND	837.56
21		2021		SND	587.86
22		2021		SND	568.21
23		2021		SMD	234.73
24		2021		SND	294.84
25		2021		SND	496.77
26		2007		OFF	73600.00
27		2021		SND	643.30
28		2021		SND	701.61
29		2021		SMD	257.75
30		2021		SND	378.70
31		2021		SND	324.16
32		2020		SND	533.53
33		2020		SMD	254.05
34		2021		SND	423.03
35		2021		SND	328.16
36		2021		SND	421.59
37		2020		SND	628.59
38		2021		SND	464.51
39		2017		EDU	8983.00
40		2021		SND	346.14
41		1913		SNR	161.08
42		2021		SND	891.97
43		2021		SND	525.61

44	2021	SND	502.87		
45	2021	SND	379.18		
46	2021	SND	549.65		
47	2016	EDU	6819.00		
48	2020	SND	393.82		
49	2021	SND	648.14		
50	1988	INS	21934.00		
51	2018	APB	53146.02		
52	2018	MIX	33975.25		
53	2017	APB	69784.00		
54	2017	APB	39409.04		
55	2016	APB	53871.00		
56	2020	LNW	137.23		
57	2020	LNW	144.92		
58	2019	LNW	83.10		
59	2021	LNW	234.79		
	000_G2010.20.000_03 00	00.00_kg_1	000_B1010.20.000_03 (00 00.00_kg_1	\
0		NaN		NaN	
1		NaN		NaN	
2		NaN		NaN	
3		NaN		NaN	
4		13704.0		1.776816e+06	
5		NaN		1.514400e+06	
6		NaN		NaN	
7		NaN		NaN	
8		NaN		NaN	
9		NaN		NaN	
10		58008.0		4.029264e+06	
11		NaN		NaN	
12		NaN		NaN	
13		NaN		NaN	
14		NaN		NaN	
15		NaN		NaN	
16		NaN		NaN	
17		NaN		NaN	
18		NaN		NaN	
19		NaN		NaN	
20		NaN		NaN	
21		NaN		NaN	
22		NaN		NaN	
23		NaN		NaN	
24		NaN		NaN	
25		NaN		NaN	
26		NaN		4.480680e+06	
27		NaN N-N		NaN	
28		NaN		NaN	

29	NaN		NaN	
30	NaN		NaN	
31	NaN		NaN	
32	NaN		NaN	
33	NaN		NaN	
34	NaN		NaN	
35	NaN		NaN	
36	NaN		NaN	
37	NaN		NaN	
38	NaN		NaN	
39	NaN		2.191431e+04	
40	NaN		NaN	
41	NaN		NaN	
42	NaN		NaN	
43	NaN		NaN	
44	NaN		NaN	
45	NaN		NaN	
46	NaN		NaN	
47	NaN		3.756000e+04	
48	NaN		NaN	
49	NaN		NaN	
50	NaN		NaN	
51	NaN		NaN	
52	NaN		NaN	
53	NaN		NaN	
54	NaN		NaN	
55	NaN		NaN	
56	NaN		NaN	
57	NaN		NaN	
58	NaN		NaN	
59	NaN		NaN	
	000_C1010.10.000_04 22 00.00_kg_1		000_B2010.10.000_07 46 16.00_kg_2	\
0	NaN	•••	NaN	
1	NaN		NaN	
2	NaN	•••	NaN	
3	NaN		NaN	
4	19397.560000	•••		
		•••	NaN	
5	53877.650000	•••	NaN	
6	NaN	•••	NaN	
7	NaN	•••	NaN	
8	NaN	•••	NaN	
9	NaN	•••	NaN	
10	562574.500000	•••	NaN	
11	NaN		NaN	
12	NaN	•••	NaN	
13	NaN	•••	NaN	
-			11021	

14	NaN	•••	NaN
15	NaN	•••	NaN
16	NaN	•••	NaN
17	NaN	•••	NaN
18	NaN	•••	NaN
19	NaN	•••	NaN
20	NaN	•••	NaN
21	NaN	•••	NaN
22	NaN		NaN
23	NaN		NaN
24	NaN		NaN
25	NaN		NaN
26	354208.227500		NaN
27	NaN		NaN
28	NaN		NaN
29	NaN		NaN
30	NaN		NaN
31	NaN		NaN
32	NaN		NaN
33	NaN		NaN
34	NaN		NaN
35	NaN		NaN
36	NaN		NaN
37	NaN	•••	NaN
38	NaN	•••	NaN
39	8666.292723		NaN
40	NaN		NaN
41	NaN	•••	NaN
42	NaN		NaN
43	NaN	•••	NaN
44	NaN	•••	NaN
45	NaN	•••	NaN
46	NaN	•••	NaN
47	NaN	•••	NaN
48	NaN	•••	NaN
49	NaN	•••	NaN
50	NaN	•••	NaN
51	8194.250000	•••	NaN
52	191988.905000	•••	NaN
53	82694.400000		NaN
54	46298.790000	•••	NaN
55	422839.793489	•••	NaN
56	NaN	•••	NaN
57	NaN	•••	NaN
58	NaN	•••	NaN
59	NaN	•••	67.3

	001_B2010.80.000_07 27 00.00_kg_2	001 B2010 80 000 07 21 13 00 kg 2	\
0	NaN	Nan	`
1	NaN	NaN	
2	NaN	NaN	
3	NaN	NaN	
4	NaN	NaN	
5	NaN	NaN	
6	NaN	NaN	
7	NaN	NaN	
8	NaN	NaN Nan	
9 10	NaN NaN	NaN NaN	
11	NaN NaN	NaN NaN	
12	NaN	NaN	
13	NaN	NaN	
14	NaN	NaN	
15	NaN	NaN	
16	NaN	NaN	
17	NaN	NaN	
18	NaN	NaN	
19	NaN	NaN	
20	NaN	NaN	
21	NaN	NaN	
22	NaN	NaN	
23	NaN	NaN	
24	NaN	NaN	
25	NaN	NaN	
26	NaN	NaN Na N	
27 28	NaN NaN	NaN NaN	
29	NaN	NaN	
30	NaN	NaN	
31	NaN	NaN	
32	NaN	NaN	
33	NaN	NaN	
34	NaN	NaN	
35	NaN	NaN	
36	NaN	NaN	
37	NaN	NaN	
38	NaN	NaN	
39	NaN	NaN	
40	NaN	NaN	
41	NaN	NaN	
42	NaN	NaN Na N	
43	NaN NaN	NaN NaN	
44 45	NaN Nan	NaN NaN	
45	NaN	NaN	

46	NaN	NaN	
47	NaN	NaN	
48	NaN	NaN	
49	NaN	NaN	
50	NaN	NaN	
51	NaN	NaN	
52	NaN	NaN	
53	NaN	NaN	
54	NaN	NaN	
55	NaN	NaN	
56	NaN	NaN	
57	NaN	NaN	
58	NaN	NaN	
59	37.3	112.67	
	004 70040 40 000 00 04 00 00 1	074 45000 40 000 00 44 00 00 1	,
_	001_B2010.10.000_09 24 23.00_kg_2		١
0	NaN	NaN	
1	NaN	NaN	
2	NaN	NaN	
3	NaN	NaN	
4	NaN	NaN	
5	NaN	NaN	
6	NaN	NaN	
7	NaN	NaN	
8	NaN	NaN	
9	NaN	NaN	
10	NaN	NaN	
11	NaN	NaN	
12	NaN	NaN	
13	NaN	NaN	
14	NaN	NaN	
15	NaN	NaN	
16	NaN	NaN	
17	NaN	NaN	
18	NaN	NaN	
19	NaN	NaN	
20	NaN	NaN	
21	NaN	NaN	
22	NaN	NaN	
23	NaN	NaN	
24	NaN	NaN	
25	NaN	NaN	
26	NaN	NaN	
27	NaN	NaN	
28	NaN	NaN	
29	NaN	NaN	
30	NaN	NaN	
	Nan	wan	

31	NaN	NaN
32	NaN	NaN
33	NaN	NaN
34	NaN	NaN
35	NaN	NaN
36	NaN	NaN
37	NaN	NaN
38	NaN	NaN
39	NaN	NaN
40	NaN	NaN
41	NaN	NaN
42	NaN	NaN
43	NaN	NaN
44	NaN	NaN
45	NaN	NaN
46	NaN	NaN
47	NaN	NaN
48	NaN	NaN
49	NaN	NaN
50	NaN	NaN
51	NaN	NaN
52	NaN	NaN
53	NaN	NaN
54	NaN	NaN
55	NaN	NaN
56	NaN	NaN
57	NaN	NaN
58	NaN	NaN
59	2655.54	277.59
	OB1_A5020.10.000_06 11 00.00_kg_1	OB1_A5020.10.000_09 21 16.00_kg_1 \
0	NaN	NaN
1	NaN	NaN
2	NaN	NaN
3	NaN	NaN
4	NaN	NaN
5	NaN	NaN
6	NaN	NaN
7	NaN	NaN
8	NaN	NaN
9	NaN	NaN
10	NaN	NaN
11	NaN	NaN
12	NaN	NaN
13	NaN	NaN
14	NaN	NaN
15	NaN	NaN

16	NaN	NaN
17	NaN	NaN
18	NaN	NaN
19	NaN	NaN
20	NaN	NaN
21	NaN	NaN
22	NaN	NaN
23	NaN	NaN
24	NaN	NaN
25	NaN	NaN
26	NaN	NaN
27	NaN	NaN
28	NaN	NaN
29	NaN	NaN
30	NaN	NaN
31	NaN	NaN
32	NaN	NaN
33	NaN	NaN
34	NaN	NaN
35	NaN	NaN
36	NaN	NaN
37	NaN	NaN
38	NaN	NaN
39	NaN	NaN
40	NaN	NaN
41	NaN	NaN
42	NaN	NaN
43	NaN	NaN
44	NaN	NaN
45	NaN	NaN
46	NaN	NaN
47	NaN	NaN
48	NaN	NaN
49	NaN	NaN
50	NaN	NaN
51	NaN	NaN
52	NaN	NaN
53	NaN	NaN
54	NaN	NaN
55	NaN	NaN
56	NaN	NaN
57	NaN	NaN
58	NaN	NaN
59	889.66	854.98
	300.00	331.00
	000 01010 10 000 07 01 12 00 1 1	OOD B3010 OO OOO O7 O1 12 OO 1 1
0	000_C1010.10.000_07 21 13.00_kg_1	00R_B3010.90.000_07 21 13.00_kg_1
0	NaN	NaN

\

1	NaN	NaN
2	NaN	NaN
3	NaN	NaN
4	NaN	NaN
5	NaN	NaN
6	NaN	NaN
7	NaN	NaN
8	NaN	NaN
9	NaN	NaN
10	NaN	NaN
11	NaN	NaN
12	NaN	NaN
13	NaN	NaN
14	NaN	NaN
15	NaN	NaN
16	NaN	NaN
17	NaN	NaN
18	NaN	NaN
19	NaN	NaN
20	NaN	NaN
21	NaN	NaN
22	NaN	NaN
23	NaN	NaN
24	NaN	NaN
25	NaN	NaN
26	NaN	NaN
27	NaN	NaN
28	NaN	NaN
29	NaN	NaN
30	NaN	NaN
31	NaN	NaN
32	NaN	NaN
33	NaN	NaN
34	NaN	NaN
35	NaN	NaN
36	NaN	NaN
37	NaN	NaN
38		NaN
	NaN	
39	NaN	NaN
40	NaN	NaN
41	NaN	NaN
42	NaN	NaN
43	NaN	NaN
44	NaN	NaN
45	NaN	NaN
46	NaN	NaN
47	NaN	NaN

48	NaN	NaN
49	NaN	NaN
50	NaN	NaN
51	NaN	NaN
52	NaN	NaN
53	NaN	NaN
54	NaN	NaN
55	NaN	NaN
56	NaN	NaN
57	NaN	NaN
58	NaN	NaN
59	127.47	420.29
	00R_B1020.20.000_07 51 13.00_kg_1	
0	naN	
1	NaN	
2	NaN	
3	NaN	
4	NaN	
5	NaN	
6	NaN	
7	NaN	
8	NaN	
9	NaN	
10	NaN	
11	NaN	
12	NaN	
13	NaN	
14	NaN	
15	Nan Nan	
16	NaN NaN	
17	NaN	
18 19	NaN NaN	
20		
	NaN Na N	
21	NaN Nan	
22	NaN Nan	
23	NaN Nan	
24	NaN Nan	
25	NaN Na N	
26	NaN Na N	
27	NaN Na N	
28	NaN Nan	
29	NaN	
30	NaN	
31	NaN	
32	NaN	

```
33
                                        NaN
     34
                                        NaN
     35
                                        NaN
     36
                                        NaN
     37
                                        NaN
     38
                                        NaN
     39
                                        NaN
     40
                                        NaN
     41
                                        NaN
     42
                                        NaN
     43
                                        NaN
     44
                                        NaN
     45
                                        NaN
     46
                                        NaN
     47
                                        NaN
     48
                                        NaN
     49
                                        NaN
     50
                                        NaN
     51
                                        NaN
     52
                                        NaN
     53
                                        NaN
     54
                                        NaN
     55
                                        NaN
     56
                                        NaN
     57
                                        NaN
     58
                                        NaN
     59
                                     315.22
     [60 rows x 2090 columns]
[5]: name_conversion = pd.read_csv('name_conversion.csv')
     building_name_conversion = pd.read_csv('building_type_name_conversion.csv')
[6]: building_name_map = {k['Building Code']:k['Building Type'] for _,k in_
      →building_name_conversion.iterrows()}
[7]: name_map = {k.Code:k.Category for _,k in name_conversion.iterrows()}
[8]: additional_categories_map = {v:k for k,v in {
         'Continuous Footings':'OCF',
         'Foundation Walls':'OFW',
         'Spread Footings':'OSF',
         'Column Piers':'OCP',
         'Columns Supporting Floors':'CSF',
         'Floor Girders and Beams': 'FGB',
         'Floor Trusses':'OFT',
         'Floor Joists':'OFJ',
```

```
'Columns Supporting Roofs': 'CSR',
    'Roof Girders and Beams': 'RGB',
    'Roof Trusses':'ORT',
    'Roof Joists':'ORJ',
    'Parking Bumpers':'OPB',
    'Precast Concrete Stair Treads': 'PCS',
    'Roof Curbs':'ORC',
    'Exterior Wall Construction': 'EWC',
    'Composite Decking':'CPD',
    'Cast-in-Place concrete':'CIC',
    'Floor Structural Frame': 'FSF',
    'Associated Metal Fabrications':'AMF',
    'Floor Construction Supplementary Components': 'FCS',
    'Roof Construction Supplementary Components': 'RCS',
    'Residential Elevators':'ORE',
    'Vegetated Low-Slope Roofing':'VLR',
    'Swimming Pools':'SWP',
    'Excavation Soil Anchors': 'ESA',
    'Floor Trusses':'FTS',
    'Roof Window and Skylight Performance': 'RWS',
    'Rainwater Storage Tanks': 'RST',
    'Gray Water Tanks': 'GWT'}.items()
}
additional_categories_map['OFT'] = 'Floor Trusses'
```

2 1. Plot sample figures

Here we plot building material mass, and volume histograms.

```
[9]: plt.hist(df[[c for c in df.columns if 'kg' in c]].sum(axis=1));
  plt.title('Histogram of total building material mass')
  plt.xlabel('Kilogrammes')
  plt.ylabel('Count');
```

[9]: Text(0, 0.5, 'Count')

3 2. Investigate a specific material

In this example, we select only columns that match the MasterFormat code for Structural Concrete. Then, we aggregate based on Level 2 UniFormat code.

```
[10]: cols = [d for d in df.columns if '03 31 00' in d]
[11]: f = lambda x: re.split('[_\.\]',x)[1][0:3]
      concrete_df = pd.concat([df[headings],df[cols].groupby(f,axis=1).sum()],axis=1).
       →rename(columns=name_map)
[12]:
      concrete_df
[12]:
          Building Identifier Country City Quality / Stage of Data \
      0
                                    CA
                                        TOR
                                                                OOIFC
      1
                             2
                                    CA
                                        TOR
                                                                OOIFC
                             3
      2
                                    CA
                                        TOR
                                                                OOIFC
      3
                             4
                                    CA
                                        TOR
                                                                OOIFC
      4
                             5
                                    CA
                                        TOR
                                                                OOIFC
      5
                             6
                                        TOR
                                                                OOIFC
                                    CA
      6
                             7
                                    CA
                                        TOR
                                                                OOIFC
      7
                                        TOR
                             8
                                    CA
                                                                OOIFC
                             9
                                    CA
                                        TOR
                                                                OOIFC
```

9	10	CA	TOR	OOIFC
10	11	CA	TOR	OOIFC
11	12	CA	TOR	OOIFC
12	13	CA	TOR	OOIFC
13	14	CA	TOR	OOIFC
14	15	CA	TOR	OOIFC
15	16	CA	TOR	OOIFC
16	17	CA	TOR	OOIFC
17	18	CA	TOR	OOIFC
18	19	CA	TOR	OOIFC
19	20	CA	TOR	OOIFC
20	21	CA	TOR	OOIFC
21	22	CA	TOR	OOIFC
22	23	CA	TOR	OOIFC
23	24	CA	TOR	OOIFC
24	25	CA	TOR	OOIFC
25	26	CA	TOR	OOIFC
26	27	CA	WIN	OOIFC
27	28	CA	TOR	OOIFC
28	29	CA	TOR	OOIFC
29	30	CA	TOR	OOIFC
30	31	CA	TOR	OOIFC
31	32	CA	TOR	OOIFC
32	33	CA	TOR	OOIFC
33	34	CA	TOR	00IFC
34	35	CA	TOR	00IFC
35	36	CA	TOR	00IFC
36	37	CA	TOR	OOIFC
37	38	CA	TOR	OOIFC
38	39	CA	TOR	00IFC
39	40	US	NEW	OOIFC
40	41	CA	TOR	OOIFC
41	42	CA	TOR	OOIFC
42	43	CA	TOR	OOIFC
43	44	CA	TOR	OOIFC
44	45	CA	TOR	OOIFC
45	46	CA	TOR	OOIFC
46	47	CA	TOR	OOIFC
47	48	CA	RIC	OIARC
48	49	CA	TOR	OOIFC
49	50	CA	TOR	OOIFC
50	51	CA	TOR	OOIFC
51	52	CA	TOR	OOIFC
52	53	CA	TOR	00IFC
53	54	CA	TOR	00IFC
54	55	CA	TOR	OOIFC
55	56	CA	TOR	OOIFC

56 57 58 59		57 CA 58 CA 59 CA 60 CA	TOR TOR			00IFC 00IFC 0IFBP 0IFBP	
0 1 2 3 4 5 6 7 8 9 10 11 12	Construction Date 2021 2021 2021 2021 2021 2011 2011 2021 2021 2021 2021 2021 2021 2021 2020		SND SND SND OFF APB SND	Gross	Floor Area 521.18 389.24 411.64 269.56 11248.00 11317.00 445.99 438.45 714.07 343.24 73083.00 199.93 226.89	Foundations 1.709236e+05 1.082862e+05 1.909299e+05 6.736923e+04 0.000000e+00 1.295202e+05 1.174431e+05 1.927680e+05 9.564723e+04 0.000000e+00 9.927316e+04 5.835472e+04	\
13 14 15 16 17 18	2021 2021 2021 1969 1969 2021		SND SND SNR SNR SNR		611.73 343.44 613.38 413.72 333.49 178.38	2.061282e+05 1.436814e+05 1.789777e+05 9.293583e+04 1.186380e+05 6.408230e+04	
19 20 21 22 23	2021 2020 2021 2021 2021		SND SND SND SND SMD		323.80 837.56 587.86 568.21 234.73	4.733438e+04 2.605656e+05 2.455371e+05 1.415184e+05 8.560216e+04	
242526272829	2021 2021 2007 2021 2021 2021		SND OFF SND SND SMD		294.84 496.77 73600.00 643.30 701.61 257.75	9.718853e+04 1.810933e+05 8.183304e+04	
30 31 32 33 34 35	2021 2021 2020 2020 2021 2021		SND SND SND SMD SND SND		378.70 324.16 533.53 254.05 423.03 328.16	1.477228e+05 1.188635e+05 1.627046e+05 8.882102e+04 9.980270e+04 1.238544e+05	
36 37 38 39 40	2021 2020 2021 2017 2021		SND SND SND EDU SND		421.59 628.59 464.51 8983.00 346.14	1.760423e+05 2.298828e+05 1.886381e+05 0.000000e+00 9.748630e+04	

41		1913	SNR	161.08	5.362299e+04
42		2021	SND	891.97	2.157609e+05
43		2021	SND	525.61	2.567725e+05
44		2021	SND	502.87	1.372402e+05
45		2021	SND	379.18	1.437386e+05
46		2021	SND	549.65	1.435894e+05
47		2016	EDU	6819.00	0.000000e+00
48		2020	SND	393.82	7.294707e+04
49		2021	SND	648.14	2.216331e+05
50		1988	INS	21934.00	0.000000e+00
51		2018	APB	53146.02	1.115822e+07
52		2018	MIX	33975.25	4.220040e+06
53		2017	APB	69784.00	7.912944e+06
54		2017	APB	39409.04	9.350736e+06
55		2016	APB	53871.00	1.627512e+06
56		2020	LNW	137.23	3.111394e+04
57		2020	LNW	144.92	3.241172e+04
58		2019	LNW	83.10	3.347723e+04
59		2021	LNW	234.79	8.400714e+04
					0.100.110 01
	Subgrade End	clasuras	Slabs-On-Grade	Substructure	Interior \
^	pubgrade Lin			Dubbulactare	•
0		0.0	6.721219e+04		0.0
1		0.0	3.576043e+04		0.0
2		0.0	3.246461e+04		0.0
3		0.0	1.595211e+04		0.0
4		0.0	0.000000e+00		0.0
5		0.0	0.000000e+00		0.0
6		0.0	3.521918e+04		0.0
7		0.0	4.289057e+04		0.0
8		0.0	8.446873e+04		0.0
9		0.0	2.033114e+04		0.0
10					
11		0.0	0.000000e+00		0.0
		0.0	0.000000e+00 1.971760e+04		
12					0.0
12 13		0.0	1.971760e+04		0.0
13		0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04		0.0 0.0 0.0 0.0
13 14		0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04		0.0 0.0 0.0 0.0 0.0
13 14 15		0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04		0.0 0.0 0.0 0.0 0.0
13 14 15 16		0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04		0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17		0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04		0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18		0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17		0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04		0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18		0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18 19		0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18 19 20 21		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.865710e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18 19 20 21 22		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.865710e+04 6.684690e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18 19 20 21 22 23		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.865710e+04 1.294360e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18 19 20 21 22		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.971760e+04 1.435987e+04 4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.865710e+04 6.684690e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26	0.0	0.00000e	+00	0.0
27	0.0	5.230228e	+04	0.0
28	0.0	6.233222e	+04	0.0
29	0.0	1.211886e	+04	0.0
30	0.0	3.514722e	+04	0.0
31	0.0	2.011968e	+04	0.0
32	0.0	3.674638e	+04	0.0
33	0.0	1.160387e	+04	0.0
34	0.0	3.329286e	+04	0.0
35	0.0	1.931159e	+04	0.0
36	0.0	3.304437e	+04	0.0
37	0.0	5.528816e	+04	0.0
38	0.0	2.866777e	+04	0.0
39	0.0	0.00000e	+00	0.0
40	0.0	2.237098e	+04	0.0
41	0.0	1.235658e	+04	0.0
42	0.0	5.949332e	+04	0.0
43	0.0	3.378685e	+04	0.0
44	0.0	3.951047e		0.0
45	0.0	2.913799e		0.0
46	0.0	3.506390e		0.0
47	0.0	0.00000e		0.0
48	0.0	3.364275e		0.0
49	0.0	6.099032e		0.0
50	0.0	0.000000e		0.0
51	2728008.0	3.647520e		11033448.0
52	1705680.0	3.834720e		5400288.0
53	3246168.0	1.407000e		14052000.0
54	3567720.0	9.045840e		7607280.0
55 56	3438168.0	7.174800e		22907184.0
56	0.0	1.439848e		0.0
57 50	0.0	2.000253e		0.0
58 50	0.0	5.412759e+ 1.962799e+		0.0
59	0.0	1.9627996	FU4	0.0
	Substructure Related A	Activities	Superstructure	\
0	Subbulucture nerated r	0.0	1.938810e+03	`
1		0.0	1.397610e+03	
2		0.0	1.528710e+02	
3		0.0	1.212090e+01	
4		0.0	0.000000e+00	
5		0.0	0.000000e+00	
6		0.0	5.332590e+02	
7		0.0	1.970790e+03	
8		0.0	4.049670e+03	
9		0.0	9.440170e+02	
10		0.0	0.000000e+00	

11	0.0	0.000000e+00
12	0.0	9.785830e+02
13	0.0	5.381500e+02
14	0.0	0.000000e+00
15	0.0	0.000000e+00
16	0.0	0.000000e+00
17	0.0	7.514840e+03
18	0.0	0.000000e+00
19	0.0	2.111800e+03
20	0.0	3.270810e+03
21	0.0	2.533580e+03
22	0.0	6.016340e+02
23		1.827610e+03
	0.0	
24	0.0	5.977480e+02
25	0.0	2.540900e+03
26	0.0	0.000000e+00
27	0.0	7.189470e+02
28	0.0	2.276420e+02
29	0.0	1.587900e+03
30	0.0	1.096510e+04
31	0.0	5.530400e+03
32	0.0	1.360980e+03
33	0.0	2.177290e+03
34	0.0	6.524310e+02
35	0.0	3.944150e+03
36	0.0	4.401230e+02
37	0.0	8.518740e+02
38	0.0	2.593160e+03
39	0.0	0.000000e+00
40	0.0	2.360810e+02
41	0.0	0.000000e+00
42	0.0	8.599660e+02
43	0.0	1.038810e+03
44	0.0	4.881840e+02
45	0.0	1.267510e+03
46	0.0	1.154890e+03
47	0.0	0.000000e+00
48	0.0	1.835120e+02
49	0.0	1.041320e+03
50	0.0	0.000000e+00
51	133464.0	2.780006e+07
52	112872.0	2.226535e+07
53	169896.0	3.204622e+07
54	276264.0	1.483577e+07
55	93048.0	3.239134e+07
56	0.0	0.000000e+00
57	0.0	0.000000e+00
٠.	5.0	1.300000.00

58 59				.0		00000e+00 00000e+00		
	Exterior	Vertical	Enclosures	Exte	rior	Horizontal	Enclosures	\
0			0.0				0.0	·
1			0.0				0.0	
2			0.0				0.0	
3			0.0				0.0	
4			0.0				0.0	
5			0.0				0.0	
6			0.0				0.0	
7			0.0				0.0	
8			0.0				0.0	
9			0.0				0.0	
10			0.0				0.0	
11			0.0				0.0	
12			0.0				0.0	
13			0.0				0.0	
14			0.0				0.0	
15 16			0.0				0.0	
17			0.0				0.0	
18			0.0				0.0	
19			0.0				0.0	
20			0.0				0.0	
21			0.0				0.0	
22			0.0				0.0	
23			0.0				0.0	
24			0.0				0.0	
25			0.0				0.0	
26			0.0				0.0	
27			0.0				0.0	
28			0.0				0.0	
29			0.0				0.0	
30			0.0				0.0	
31			0.0				0.0	
32			0.0				0.0	
33			0.0				0.0	
34			0.0				0.0	
35 36			0.0				0.0	
36 37			0.0				0.0	
38			0.0				0.0	
39			0.0				0.0	
40			0.0				0.0	
41			0.0				0.0	
42			0.0				0.0	

43		0.0			0.0		
44		0.0			0.0		
45			0.0		0.0		
46			0.0		0.0		
47			0.0		0.0		
48			0.0		0.0		
49			0.0		0.0		
50			0.0		0.0		
51		72	7896.0		537984.0		
52		40	5408.0		392400.0		
53		32	8032.0		799872.0		
54		11	9088.0		0.0		
55		15	9336.0		0.0		
56			0.0		0.0		
57			0.0		0.0		
58			0.0		0.0		
59			0.0		0.0		
	Interior	Construction		Plumbing	-	\	
0		0.0	0.0	0.0	0.0		
1		0.0	0.0	0.0	0.0		
2		0.0	0.0	0.0	0.0		
3		0.0	0.0	0.0	0.0		
4		0.0	0.0	0.0	0.0		
5		0.0	0.0	0.0	0.0		
6		0.0	0.0	0.0	0.0		
7		0.0	0.0	0.0	0.0		
8 9		11307.2	0.0	0.0	0.0		
		0.0	0.0	0.0	0.0		
10 11		0.0	0.0	0.0	0.0		
12		0.0	0.0	0.0	0.0		
13		0.0	0.0	0.0	0.0		
14		0.0	0.0	0.0	0.0		
15		0.0	0.0	0.0	0.0		
16		0.0	0.0	0.0	0.0		
17		0.0	0.0	0.0	0.0		
18		0.0	0.0	0.0	0.0		
19		0.0	0.0	0.0	0.0		
20		0.0	0.0	0.0	0.0		
21		0.0	0.0	0.0	0.0		
22		0.0	0.0	0.0	0.0		
23		0.0	0.0	0.0	0.0		
24		0.0	0.0	0.0	0.0		
25		0.0	0.0	0.0	0.0		
26		0.0	0.0	0.0	0.0		
27		0.0	0.0	0.0	0.0		
				0.0	0.0		

28	0.0	0.0	0.0	0.0
29	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0
31	0.0	0.0	0.0	0.0
32	0.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0
36	0.0	0.0	0.0	0.0
37	0.0	0.0	0.0	0.0
38	0.0	0.0	0.0	0.0
39	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0
41	0.0	0.0	0.0	0.0
42	0.0	0.0	0.0	0.0
43	0.0	0.0	0.0	0.0
44	0.0	0.0	0.0	0.0
45	0.0	0.0	0.0	0.0
46	0.0	0.0	0.0	0.0
47	0.0	0.0	0.0	0.0
48	0.0	0.0	0.0	0.0
49	0.0	0.0	0.0	0.0
50	0.0	0.0	0.0	0.0
51	6816696.0	2494560.0	0.0	80592.0
52	5893176.0	1829328.0	48816.0	62280.0
53	9050592.0	2304480.0	172032.0	0.0
54	5180976.0	861888.0	130152.0	0.0
55	5604960.0	1664448.0	0.0	220992.0
56	0.0	0.0	0.0	0.0
57	0.0	0.0	0.0	0.0
58	0.0	0.0	0.0	0.0
59	0.0	0.0	0.0	0.0

Site Improvements

	1
0	0.0
1	0.0
2	0.0
3	0.0
4	0.0
5	0.0
6	0.0
7	0.0
8	0.0
9	0.0
10	0.0
11	0.0
12	0.0

13	0.0
14 15	0.0
16	0.0
17	0.0
18 19	0.0
20	0.0
21	0.0
22 23	0.0
24	0.0
25 26	0.0
27	0.0
28	0.0
29 30	0.0
31	0.0
32	0.0
33 34	0.0
35	0.0
36	0.0
37 38	0.0
39	0.0
40 41	0.0
42	0.0
43	0.0
44 45	0.0
46	0.0
47	0.0
48 49	0.0
50	0.0
51	0.0
52 53	0.0 18384.0
54	97560.0
55 56	0.0
57	0.0
58	0.0
59	0.0

[13]: Text(0.5, 0, 'Floor Code')

Now, we will aggregate to Level 3 MasterFormat codes, and display these values for the first three entries.

```
[14]: f = lambda x: name_map[re.split('[_\.\]',x)[1][0:3]] #This function takes in a_
       \rightarrow full column name and returns only the Level 3 MasterFormat code.
      concrete_df = df[cols].groupby(f,axis=1).sum()
```

```
[15]: concrete_df.mean().sort_values(ascending=False)
```

```
[15]: Superstructure
                                         2.156826e+06
      Substructure Interior
                                         1.016670e+06
      Foundations
                                         6.750260e+05
                                         5.426285e+05
      Interior Construction
      Subgrade Enclosures
                                         2.447624e+05
      Conveying
                                         1.525784e+05
      Slabs-On-Grade
                                         9.043012e+04
     Exterior Vertical Enclosures
                                         2.899600e+04
     Exterior Horizontal Enclosures
                                         2.883760e+04
     Substructure Related Activities
                                         1.309240e+04
     Special Construction
                                         6.064400e+03
     Plumbing
                                         5.850000e+03
     Site Improvements
                                         1.932400e+03
      dtype: float64
```

3.1 Pie chart version A: on-pie chart labels for all > 1%

```
[16]: def my_autopct(pct):
          return ('%.2f' % pct) if pct > 1 else ''
      to plot = concrete df.mean().sort values(ascending=False)
      to_plot.plot.pie(figsize=(12,12),colormap='tab20',autopct=my_autopct,labels=[ku
      →if v > 30000 else '' for k,v in to_plot.items()])
      plt.ylabel('')
      plt.title('Percentage of total steel used in each function');
      # plt.legend(loc='center left',bbox_to_anchor=(-0.20, 0.75));
      plt.tight_layout();
```


3.2 Pie version B: external legend with slice labels

```
[17]: fig = plt.figure(figsize=(16,12))
    gs = gridspec.GridSpec(2, 2, width_ratios=[3, 1])
    ax0 = plt.subplot(gs[:,0])

def my_autopct(pct):
        return ('%.2f' % pct) if pct > 1 else ''
    to_plot = concrete_df.mean().sort_values(ascending=False)
    to_plot.plot.pie(ax=ax0,colormap='tab20',autopct=my_autopct,labeldistance=None)
    plt.ylabel('')
    plt.legend(loc='center left',bbox_to_anchor=(-0.20, 0.75));
    plt.tight_layout();

ax1 = plt.subplot(gs[0,1])
```

```
f = lambda x: \
   additional_categories_map[re.split('[_\.\]',x)[3]] \
   re.split('[_\.\]',x)[3] != '000' \
   else \
   name_map['.'.join(re.split('[_\.\]',x)[1:3])]
superstructure_df = df[[c for c in cols if 'B10' in c]].groupby(f,axis=1).sum()
to_plot = superstructure_df.mean().sort_values(ascending=False)
def my autopct(pct):
   return ('%.2f' % ((pct * 0.4335))) if pct > 1 else ''
to_plot.plot.pie(ax=ax1,colormap='Paired',autopct=my_autopct,labeldistance=None)
plt.ylabel('')
plt.legend(loc='center right',bbox_to_anchor=(1, -0.65));
plt.tight_layout();
transFigure = fig.transFigure.inverted()
coord1a = transFigure.transform(ax0.transData.transform([1,0]))
coord2a = transFigure.transform(ax1.transData.transform([0,-0.72]))
coord1b = transFigure.transform(ax0.transData.transform([-0.91,0.35]))
coord2b = transFigure.transform(ax1.transData.transform([0,0.72]))
linea = matplotlib.lines.Line2D((coord1a[0],coord2a[0]),(coord1a[1],coord2a[1]),
                               transform=fig.transFigure,c='black',alpha=0.7)
lineb = matplotlib.lines.Line2D((coord1b[0],coord2b[0]),(coord1b[1],coord2b[1]),
                                transform=fig.transFigure,c='black',alpha=0.7)
fig.lines = linea,lineb,
plt.savefig('concrete_breakdown_pie.pdf')
```


We can produce a pie chart for a single building, also.

```
[18]: mf_codes = pd.read_csv('mf_name_conversion.csv')
[19]: tofind = [
          'Plain Steel Reinforcement Bars',
          'Reinforcement Bars',
          'Structural Steel Framing',
          'Fabric and Grid Reinforcing',
          'Metal Doors',
          'Metal Roof Panel',
          'Metal Stairs',
          'Metal Railings',
          'Steel Decking',
          'Steel Joist Framing',
          'Steel'
     ] #List of terms we are looking to identify in column names.
      tokeep = [
          c for c in mf_codes.Title.values if any(t in c for t in tofind)
      ] #For each codes' corresponding in MasterFormat
      steel_codes = mf_codes[mf_codes.Title.isin(tokeep)]
```

```
[20]: columns_to_keep = []
      for column in df.columns:
          if 'kg' in column:
              code = re.split('_',column)[2]
              for k,c in steel_codes.values:
                   if c in code:
                       columns_to_keep.append(column)
[21]: f = lambda x: mf_codes[mf_codes.Code == str.replace(re.split('_',x)[2],'00','').

strip('.')].values[0][0]
      steel_df = df[columns_to_keep].groupby(f,axis=1).sum()
[22]: (steel_df>0).sum(axis=1).sort_values()
[22]: 15
            1
      42
            1
      22
            1
      36
            1
      7
            1
      34
            1
      31
            1
      35
            1
      55
            2
      58
            2
      40
            2
      41
            2
      1
            2
      43
            2
      24
            2
            2
      23
      21
            2
            2
      20
            2
      54
      44
            2
      17
            2
      16
            2
            2
      30
            2
      14
      45
            2
            2
      12
      11
            2
      32
            2
      9
            2
      33
            2
            2
      3
      18
            2
            3
      0
```

```
52
            3
      53
            3
            3
      56
      46
            3
            3
      39
      29
            3
      37
            3
      28
            3
      27
            3
      26
            3
      25
            3
      13
            3
      10
            3
      2
            3
      38
            3
            3
      5
      6
            3
            3
      8
      57
            4
      4
            4
      49
            4
      50
            4
      48
            4
      47
            4
      19
      51
            4
      59
            4
      dtype: int64
[23]: def my_autopct(pct):
          return ('%.2f' % (pct)) if pct > 1 else ''
      to_plot = steel_df.sum().sort_values(ascending=False)
      to_plot.plot.
      →pie(figsize=(12,12),colormap='tab20',autopct=my_autopct,labeldistance=None)
      plt.legend(loc='center left',bbox_to_anchor=(-0.30, 0.75));
      plt.ylabel('')
      plt.title(f'Percent of total steel used in each function for all buildings');
      plt.tight_layout();
      plt.savefig('steel_composition_pie.pdf')
```


We can also calculate the average for each Level 3 MasterFormat code by year of construction:

```
[26]:
                          Gross Floor Area
                                             Structural Concrete/000
      Construction Date
      1913
                                161.080000
                                                         0.000000e+00
      1917
                                199.930000
                                                         0.000000e+00
                                                         0.000000e+00
      1969
                                373.605000
      1988
                              21934.000000
                                                         0.000000e+00
      2007
                              73600.000000
                                                         0.000000e+00
      2009
                              73083.000000
                                                         0.000000e+00
      2011
                              11282.500000
                                                         0.000000e+00
```

2016	30345.000000	3.595656e+06	
2017	39392.013333	4.084352e+06	
2018	43560.635000	5.893680e+06	
2019	83.100000	0.000000e+00	
2020	418.528571	4.914431e+03	
2021	445.404444	0.000000e+00	
	g	a	
a b .	Structural Concrete/001	Structural Concrete/002 \	•
Construction Date			
1913	1944.380000	0.0	
1917	4972.300000	0.0	
1969	7262.220500	0.0	
1988	0.000000	0.0	
2007	0.000000	0.0	
2009	0.000000	0.0	
2011	0.000000	0.0	
2016	0.00000	2680512.0	
2017	0.000000	989280.0	
2018	0.000000	1511892.0	
2019	0.000000	0.0	
2020	4923.690714	0.0	
2021	11399.123858	0.0	
2021	11399.123838	0.0	
	Structural Concrete (002	Structural Concrete/004 \	
Camatanatian Data	Structural Concrete/003	Structural Concrete/004 \	٠
Construction Date	0.0	0.0	
1913	0.0	0.0	
1917	0.0	0.0	
1969	0.0	0.0	
1988	0.0	0.0	
2007	0.0	0.0	
2009	0.0	0.0	
2011	0.0	0.0	
2016	1686228.0	1057032.0	
2017	1232336.0	778480.0	
2018	1347936.0	1323132.0	
2019	0.0	0.0	
2020	0.0	0.0	
2021	0.0	0.0	
2021	0.0	0.0	
	Structural Concrete/005	Structural Concrete/006 \	
Construction Date	Structural Concrete, 003	Structural Concrete/000 \	١
	0.0	0.0	
1913	0.0	0.0	
1917	0.0	0.0	
1969	0.0	0.0	
1988	0.0	0.0	
2007	0.0	0.0	
2009	0.0	0.0	

2011 2016 2017 2018 2019 2020 2021	0.0 1056780.0 683496.0 2164812.0 0.0 0.0	0.0 1129680.0 679376.0 969060.0 0.0 0.0	
	Structural Concrete/007	Structural Concrete/008	\
Construction Date	0.0	0.0	•••
1913 1917	0.0	0.0	•••
1917	0.0	0.0	•••
1988	0.0	0.0	•••
2007	0.0	0.0	•••
2009	0.0	0.0	•••
2011	0.0	0.0	
2016	1809852.0	857976.0	•••
2017	632520.0	651080.0	•••
2018	752208.0	734688.0	
2019	0.0	0.0	•••
2020	0.0	0.0	•••
2021	0.0	0.0	•••
	Structural Concrete/OB1	Structural Concrete/OP1	\
Construction Date	Structural Concrete/OB1	Structural Concrete/OP1	\
Construction Date	Structural Concrete/OB1 0.000000	Structural Concrete/OP1 0.0	\
			\
1913 1917 1969	0.000000 0.000000 0.000000	0.0 0.0 0.0	\
1913 1917 1969 1988	0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007	0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009 2011 2016	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0	
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0	
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0	
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019 2020	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019 2020	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5412.758585 0.000000 545.221944	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019 2020 2021 Construction Date 1913	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5412.758585 0.000000 545.221944 Structural Concrete/OP2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019 2020 2021 Construction Date 1913 1917	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5412.758585 0.000000 545.221944 Structural Concrete/OP2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019 2020 2021 Construction Date 1913 1917 1969	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5412.758585 0.000000 545.221944 Structural Concrete/OP2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0 0.0 0.0 0.0	\
1913 1917 1969 1988 2007 2009 2011 2016 2017 2018 2019 2020 2021 Construction Date 1913 1917	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5412.758585 0.000000 545.221944 Structural Concrete/OP2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2206668.0 3402456.0 3713916.0 0.0 0.0 0.0 0.0	\

2009	0.0	0.0
2011	0.0	0.0
2016	1715028.0	1596444.0
2017	2513320.0	2469984.0
2018	2637060.0	2756916.0
2019	0.0	0.0
2020	0.0	0.0
2021	0.0	0.0
	Structurel Concrete (ODA	Structurel Concrete (ODE)
Construction Date	Structural Concrete/OP4	Structural Concrete/OP5 \
Construction Date	0.0	0.0
1913	0.0	0.0
1917	0.0	0.0
1969	0.0	0.0
1988	0.0	0.0
2007	0.0	0.0
2009	0.0	0.0
2011	0.0	0.0
2016	0.0	0.0
2017	1895672.0	508328.0
2018	4093284.0	0.0
2019	0.0	0.0
2020	0.0	0.0
2021	0.0	0.0
2021	0.0	0.0
	Structural Concrete/999	Structural Concrete/B01
Construction Date		
1913	0.0	64035.190000
1917	0.0	114018.460000
1969	0.0	132278.015000
1988	0.0	0.00000
2007	0.0	0.000000
2009	0.0	0.000000
2011	0.0	0.00000
2016	155076.0	0.000000
2017	7736.0	0.000000
2018	558516.0	0.000000
2019	0.0	0.00000
2020	0.0	140301.728571
2021	0.0	161741.376806
	Structural Concrete/B03	Structural Concrete/M00
Construction Date		
1913	0.000000	0.0
1917	0.000000	0.0
1969	0.000000	0.0
1988	0.000000	0.0

2007	0.00000	0.0
2009	0.00000	0.0
2011	0.00000	0.0
2016	0.00000	82056.0
2017	0.00000	0.0
2018	0.00000	597624.0
2019	0.00000	0.0
2020	988.177143	0.0
2021	0.00000	0.0

[13 rows x 58 columns]

We can get the average amount of steel in KG used per building type:

```
[27]: concrete_df.groupby('Building Type').sum().mean(axis=1).

→rename(index=building_name_map).plot(kind='bar',figsize=(12,12))

plt.ylabel('Average amount of structural concrete used (KG)')

plt.title('Average amount of structural concrete used in a building by building type');
```

[27]: Text(0.5, 1.0, 'Average amount of structural concrete used in a building by building type')

4 3. Uncertainty by Building Type

In this section, we look at the uncertainty code associated with each column. We collect these by building type and then report the number of each value per type of building.

```
[28]: uncertainty_level = {}
      for k,v in df.iterrows():
          #Initialise empty lists for each building type as they occur
          if v['Building Type'] not in uncertainty_level.keys():
              uncertainty_level[v['Building Type']] = []
          #Append the uncertainty value for each column that is non-NaN
          for key in v[~v.isna()].keys()[7:]:
              uncertainty_level[v['Building Type']].append(key.split('_')[-1])
[29]: from collections import Counter
[30]: for k,v in uncertainty_level.items():
          uncertainty_level[k] = Counter(v) #Construct a Counter object per building_
       \hookrightarrow type
[31]: uncertainty_level
[31]: {'SND': Counter({'1': 1662, '2': 641, '4': 293}),
       'OFF': Counter({'1': 494, '3': 307}),
       'APB': Counter({'1': 1171, '2': 1, '3': 971}),
       'SMR': Counter({'1': 21, '2': 27, '4': 8}),
       'SNR': Counter({'1': 58, '2': 70, '4': 56}),
       'SMD': Counter({'1': 170, '2': 34, '4': 19}),
       'EDU': Counter({'1': 93, '3': 24, '2': 6}),
       'INS': Counter({'1': 90, '3': 77, '2': 1}),
       'MIX': Counter({'1': 363, '3': 276}),
       'LNW': Counter({'2': 46, '1': 142, '4': 19})}
     Next, we aggregate columns by use code and uncertainty combined, and report the average by
     building type.
[32]: f = lambda x: name_map[re.split('[_\.\]',x)[1][0]] + '/' + x.split('_')[-1].
       →split('.')[0] #From a full code, return only the use code and uncertainty ⊔
      by_function_df = pd.concat([df[headings[1:]],df[cols].groupby(f,axis=1).
       \rightarrowsum()],axis=1)
[33]: by_function_df.groupby('Building Type').mean().rename(index=building_name_map)
[33]:
                                               Construction Date Gross Floor Area \
      Building Type
      Apartment building
                                                     2015.800000
                                                                       45505.412000
      Educational building (University)
                                                     2016.500000
                                                                        7901.000000
      Institutional (Police Headquarters)
                                                     1988.000000
                                                                       21934.000000
     Laneway Suite
                                                     2020.000000
                                                                         150.010000
      Mixed Use (Residential, Office & Cafe)
                                                     2018.000000
                                                                       33975.250000
      Commercial (Office)
                                                     2009,000000
                                                                       52643.666667
```

Semi detached SMR Single detached SNR	2020.6 1917.0 2020.8 1950.3	248.843333 199.930000 478.399730 302.763333			
	Interiors/1 Services/1		Shell/1	\	
Building Type					
Apartment building	5330644.8	1525512.0	2.194912e+07		
Educational building (University)	0.0	0.0	0.000000e+00		
Institutional (Police Headquarters)	0.0	0.0	0.000000e+00		
Laneway Suite	0.0	0.0	0.000000e+00		
Mixed Use (Residential, Office & Cafe)	5893176.0	1878144.0	2.306316e+07		
Commercial (Office)	0.0	0.0	0.000000e+00		
Semi detached	0.0	0.0	1.864267e+03		
SMR	0.0	0.0	0.000000e+00		
Single detached	305.6	0.0			
SNR	0.0	0.0			
	Shell/2 S	Sitework/1 \			
Building Type					
Apartment building	0.000000	23188.8			
Educational building (University)	0.000000	0.0			
Institutional (Police Headquarters)	0.000000	0.0			
Laneway Suite	0.000000	0.0			
Mixed Use (Residential, Office & Cafe)	0.000000	0.0			
Commercial (Office)	0.000000	0.0			
Semi detached	0.000000	0.0			
SMR	0.000000	0.0			
Single detached	13.194162	0.0			
SNR	0.000000	0.0			
	Special Cons	truction And	Demolition/1	\	
Building Type Apartment building			60316.8		
Educational building (University)			0.0		
Institutional (Police Headquarters)			0.0		
			0.0		
Laneway Suite			62280.0		
Mixed Use (Residential, Office & Cafe)			0.0		
Commercial (Office)					
Semi detached			0.0		
SMR			0.0		
Single detached			0.0		
SNR			0.0		
Duilding Type	Substructure	/1 Substruc	ture/2 \		
Building Type Apartment building	2.053918e+	0.	000000		

Educational building (University) Institutional (Police Headquarters) Laneway Suite Mixed Use (Residential, Office & Cafe) Commercial (Office) Semi detached SMR Single detached SNR	5.821718e+04	0.000000 44.805527 0.000000 0.000000 0.000000 8900.860000 5347.871730
D. 13.11	Substructure/4	
Building Type		
~ *-		
Apartment building	0.0000	
Apartment building Educational building (University)	0.0000 0.0000	
Educational building (University)	0.0000	
Educational building (University) Institutional (Police Headquarters)	0.0000	
Educational building (University) Institutional (Police Headquarters) Laneway Suite	0.0000 0.0000 1850.9675	
Educational building (University) Institutional (Police Headquarters) Laneway Suite Mixed Use (Residential, Office & Cafe)	0.0000 0.0000 1850.9675 0.0000	
Educational building (University) Institutional (Police Headquarters) Laneway Suite Mixed Use (Residential, Office & Cafe) Commercial (Office)	0.0000 0.0000 1850.9675 0.0000 0.0000	
Educational building (University) Institutional (Police Headquarters) Laneway Suite Mixed Use (Residential, Office & Cafe) Commercial (Office) Semi detached	0.0000 0.0000 1850.9675 0.0000 0.0000	

Next, we report the total amount of material falling under each uncertainty code by year of construction.

[34]: f = lambda x: x.split('_')[-1].split('.')[0] #Select only the uncertainty code.
pd.concat([df[headings[1:]],df[cols].groupby(f,axis=1).sum()],axis=1).

→groupby('Construction Date').mean()

[34]:	Gross Floor Area	1	2	4
Construction Date				
1913	161.080000	6.169728e+04	4282.290000	0.000000
1917	199.930000	1.100899e+05	8900.860000	0.000000
1969	373.605000	1.126800e+05	26860.270500	0.000000
1988	21934.000000	0.000000e+00	0.000000	0.000000
2007	73600.000000	0.000000e+00	0.000000	0.000000
2009	73083.000000	0.000000e+00	0.000000	0.000000
2011	11282.500000	0.000000e+00	0.000000	0.000000
2016	30345.000000	3.441223e+07	0.000000	0.000000
2017	39392.013333	3.814654e+07	0.000000	0.000000
2018	43560.635000	5.329740e+07	0.000000	0.000000
2019	83.100000	3.871077e+04	179.222109	0.000000
2020	418.528571	1.550909e+05	5112.262857	0.000000
2021	445.404444	1.713452e+05	4515.933278	205.663056

5 4. Material Intensity

We can easily calculate material intensity by dividing columns which are measured in kilograms by the Gross Floor Area:

```
[35]: kilogram_columns = [d for d in df.columns if 'kg' in d]
      df mi = df[kilogram columns].div(df['Gross Floor Area'],axis=0)
[36]: kilogram_columns = [d for d in df.columns if 'kg' in d]
      df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)
      f = lambda x: name map[re.split('[ \.\ ]',x)[1][0:3]]
      pd.concat([df[headings[1:]],df_mi[kilogram_columns].groupby(f,axis=1).
       [36]:
         Country City Quality / Stage of Data Construction Date Building Type
              CA TOR
                                        00IFC
                                                             2021
      0
                                                                            SND
              CA TOR
                                        OOIFC
                                                             2021
                                                                            SND
      1
      2
              CA TOR
                                        OOIFC
                                                             2021
                                                                            SND
      3
              CA TOR
                                        OOIFC
                                                             2021
                                                                            SND
      6
              CA TOR
                                        OOIFC
                                                             2021
                                                                            SND
      7
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
      8
              CA
                  TOR
                                        00IFC
                                                             2021
                                                                            SND
      9
              CA TOR
                                        00IFC
                                                             2021
                                                                            SND
                 TOR
                                        00IFC
                                                             2021
      12
              CA
                                                                            SND
      13
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
      14
                 TOR
              CA
                                        OOIFC
                                                             2021
                                                                            SND
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
      15
      18
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
      19
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
                 TOR
                                                             2020
      20
              CA
                                        OOIFC
                                                                            SND
      21
              CA TOR
                                        00IFC
                                                             2021
                                                                            SND
                                                             2021
      22
              CA
                  TOR
                                        OOIFC
                                                                            SND
      24
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
      25
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
      27
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
      28
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
              CA TOR
                                        OOIFC
                                                             2021
      30
                                                                            SND
      31
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
                  TOR
                                        00IFC
                                                             2020
      32
              CA
                                                                            SND
      34
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
      35
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
      36
              CA
                  TOR
                                                             2020
      37
                                        OOIFC
                                                                            SND
      38
              CA
                 TOR
                                        OOIFC
                                                             2021
                                                                            SND
              CA TOR
                                                             2021
      40
                                        OOIFC
                                                                            SND
      42
              CA TOR
                                        00IFC
                                                             2021
                                                                            SND
      43
              CA
                  TOR
                                        OOIFC
                                                             2021
                                                                            SND
              CA TOR
                                        OOIFC
                                                             2021
                                                                            SND
      44
```

```
TOR
45
        CA
                                     OOIFC
                                                           2021
                                                                            SND
46
        CA
             TOR
                                                           2021
                                                                            SND
                                     OOIFC
        CA
48
             TOR
                                     OOIFC
                                                           2020
                                                                            SND
49
        CA
             TOR
                                     OOIFC
                                                            2021
                                                                            SND
    Gross Floor Area
                       Conveying
                                   Exterior Horizontal Enclosures
0
               521.18
                               0.0
                                                            11.137992
1
               389.24
                               0.0
                                                            5.461939
2
               411.64
                               0.0
                                                            3.786074
3
               269.56
                               0.0
                                                            6.503479
6
               445.99
                               0.0
                                                            11.933511
7
               438.45
                               0.0
                                                           12.707195
8
               714.07
                               0.0
                                                           12.865930
               343.24
9
                               0.0
                                                            4.300619
12
               226.89
                               0.0
                                                           12.424245
13
               611.73
                               0.0
                                                            5.140200
14
               343.44
                               0.0
                                                            6.494467
15
               613.38
                               0.0
                                                           13.090524
18
               178.38
                               0.0
                                                            9.782438
19
               323.80
                               0.0
                                                            9.824569
20
               837.56
                               0.0
                                                           13.521848
21
               587.86
                               0.0
                                                            6.949783
22
               568.21
                              0.0
                                                           12.754287
24
               294.84
                               0.0
                                                            3.650542
                              0.0
25
               496.77
                                                            5.352985
27
               643.30
                               0.0
                                                           11.769043
               701.61
                                                           11.799093
28
                               0.0
30
               378.70
                               0.0
                                                            5.522739
31
               324.16
                               0.0
                                                            5.361174
32
               533.53
                               0.0
                                                            8.494907
34
               423.03
                               0.0
                                                           11.102019
35
                               0.0
                                                           10.234937
               328.16
36
               421.59
                               0.0
                                                           12.223172
37
                               0.0
               628.59
                                                           10.408758
38
               464.51
                               0.0
                                                            4.118745
40
               346.14
                               0.0
                                                           11.787081
42
               891.97
                               0.0
                                                           10.710312
43
               525.61
                               0.0
                                                           18.918490
44
               502.87
                               0.0
                                                            6.014586
45
               379.18
                               0.0
                                                            6.169302
46
                               0.0
                                                            11.310711
               549.65
48
               393.82
                               0.0
                                                           16.116861
49
               648.14
                               0.0
                                                            9.684756
    Exterior Vertical Enclosures
                                                       Interior Finishes
                                     Foundations
0
                        136.939623
                                      335.649367
                                                                 8.309413
1
                         69.018253
                                      281.318698
                                                                 6.490936
```

```
2
                                      464.462195
                                                                4.574905
                        101.450370
3
                        188.215196
                                      255.359136
                                                                8.510443
6
                         61.325975
                                      295.116668
                                                                 6.391063
7
                        130.552921
                                      269.468463
                                                                 6.584780
8
                        104.310510
                                      276.917123
                                                                 6.563894
                        210.632241
9
                                      283.893850
                                                                8.940907
12
                                      261.874926
                        186.668275
                                                                 6.134611
13
                        102.332008
                                      343.714248
                                                                7.638991
14
                                      424.099610
                                                                 7.860800
                        147.104280
15
                        156.986570
                                      298.537712
                                                                8.068881
18
                        112.523711
                                      371.149916
                                                                 9.551856
19
                                      148.769711
                        186.570501
                                                                 9.483653
20
                         91.689386
                                      317.583491
                                                                7.152371
21
                         94.557055
                                      428.185321
                                                                 6.754074
22
                         83.789887
                                      255.012975
                                                                 7.860492
24
                        127.856507
                                      261.274626
                                                                 4.807604
25
                         89.883144
                                      251.725837
                                                                 5.921358
27
                         83.949693
                                      156.365248
                                                                 8.492430
28
                         53.418023
                                      266.164355
                                                                 7.952623
30
                        164.214896
                                      403.602589
                                                                7.221059
31
                        190.512918
                                      377.853541
                                                                 6.597902
32
                         68.518430
                                      309.062696
                                                                 6.648595
34
                        154.072547
                                      243.607664
                                                                 4.717349
35
                        184.202156
                                      388.744353
                                                                 5.648226
36
                        158.716507
                                      424.443503
                                                                5.625641
37
                        136.076590
                                      369.744859
                                                                 5.699975
                                      412.845205
38
                        151.068033
                                                                7.621364
40
                        146.479339
                                      287.564257
                                                                7.916204
42
                        213.677214
                                      245.205806
                                                                7.577250
43
                        109.529933
                                      498.010299
                                                                7.954358
44
                         91.481074
                                      278.679758
                                                                4.564488
45
                        172.418003
                                      391.303861
                                                                 6.339432
46
                        127.866168
                                      266.468237
                                                                 6.701647
48
                        140.069509
                                      188.980245
                                                                10.629628
                                      347.187490
49
                        131.118584
                                                                 5.089382
                                                     Special Construction
    Plumbing
               Site Improvements
                                    Slabs-On-Grade
0
         0.0
                              0.0
                                        273.972401
                                                                        0.0
1
         0.0
                              0.0
                                                                        0.0
                                        192.874465
2
         0.0
                              0.0
                                        170.733356
                                                                        0.0
3
         0.0
                              0.0
                                        124.186526
                                                                        0.0
6
         0.0
                              0.0
                                        153.061618
                                                                        0.0
7
         0.0
                              0.0
                                        211.910108
                                                                        0.0
8
         0.0
                              0.0
                                        266.709576
                                                                        0.0
                                        138.510228
9
         0.0
                              0.0
                                                                        0.0
         0.0
12
                              0.0
                                        129.263543
                                                                        0.0
13
         0.0
                              0.0
                                        165.513154
                                                                        0.0
```

14	0.0	0.0	129.532248	
15	0.0	0.0	166.414337	
18	0.0	0.0	223.398638	
19	0.0	0.0	158.178114	
20	0.0	0.0	143.282268	
21	0.0	0.0	237.918968	
22	0.0	0.0	199.364347	
24	0.0	0.0	131.174185	
25	0.0	0.0	242.284758	
27	0.0	0.0	152.407914	
28	0.0	0.0	169.419640	
30	0.0	0.0	179.868896	
31	0.0	0.0	132.696247	
32	0.0	0.0	135.390288	
34	0.0	0.0	147.458950	
35	0.0	0.0	128.887840	
36	0.0	0.0	147.225241	
37	0.0	0.0	186.334547	
38	0.0	0.0	145.273403	
40	0.0	0.0	139.821081	
42	0.0	0.0	138.994603	
43	0.0	0.0	139.646277	
44	0.0	0.0	182.059329	
45	0.0	0.0	158.446049	
46	0.0	0.0	154.805714	
48	0.0	0.0	198.860705	
49	0.0	0.0	199.209464	
	Subgrade Enclosures	Substructure	Interior	/
0	9.652903		0.000000	
1	6.851955		0.000000	
2	11.298572		0.000000	
3	4.351465		0.000000	
6	9.478642		0.054452	
7	4.218921		0.000000	
8	8.902623		0.000000	
9	9.601245		0.000000	
12	3.818403		0.935612	
13	7.722754		0.000000	
14	9.135529		0.000000	
15	4.868508		0.467438	
18	0.000000		0.000000	
19	4.617006		0.000000	
20	7.131170		0.000000	

0.0 0.0

0.000000

0.000000

0.000000

21

22

24

7.959752

6.339651

7.469048

25	9.448689	0.078017
27	0.00000	0.096759
28	11.919460	0.000000
30	7.509119	0.330172
31	5.073992	0.000000
32	8.867868	0.000000
34	0.00000	0.000000
35	4.762839	0.000000
36	9.538939	0.000000
37	6.039206	1.461249
38	9.071017	0.000000
40	7.568785	0.394416
42	4.540919	0.371810
43	6.720435	0.000000
44	6.092739	0.000000
45	9.489156	0.195110
46	6.042229	0.499896
48	6.057127	1.647329
49	7.221222	1.208104

	Substructure	${\tt Related}$	Activities	Superstructure	Water	And	Gas	Mitigation
0			0.0	30.228003				0.0
1			0.0	26.271523				0.0
2			0.0	23.756286				0.0
3			0.0	30.517748				0.0
6			0.0	39.906513				0.0
7			0.0	39.907474				0.0
8			0.0	38.291591				0.0
9			0.0	35.370538				0.0
12			0.0	35.355314				0.0
13			0.0	33.388004				0.0
14			0.0	39.370016				0.0
15			0.0	40.958564				0.0
18			0.0	63.006044				0.0
19			0.0	36.597047				0.0
20			0.0	28.734226				0.0
21			0.0	37.457583				0.0
22			0.0	36.265538				0.0
24			0.0	30.389475				0.0
25			0.0	43.728928				0.0
27			0.0	35.393414				0.0
28			0.0	39.408113				0.0
30			0.0	82.392236				0.0
31			0.0	46.380703				0.0
32			0.0	25.469871				0.0
34			0.0	35.666107				0.0
35			0.0	49.404111				0.0

```
0.0
                                                                               0.0
36
                                             34.035382
37
                                  0.0
                                             47.065025
                                                                               0.0
38
                                  0.0
                                                                               0.0
                                             37.921434
40
                                  0.0
                                            27.740220
                                                                               0.0
42
                                  0.0
                                             29.045531
                                                                               0.0
43
                                  0.0
                                             33.265489
                                                                               0.0
                                  0.0
44
                                            37.265275
                                                                               0.0
45
                                  0.0
                                                                               0.0
                                             46.860447
                                  0.0
                                                                               0.0
46
                                             31.152827
48
                                  0.0
                                             49.899420
                                                                               0.0
49
                                  0.0
                                                                               0.0
                                             38.021046
```

[37 rows x 21 columns]

```
[38]: f = lambda x: master_format_convert[re.split('[_\.\ ]',x)[4]]
toplot = pd.concat([df[headings[1:]],df_mi[kilogram_columns].groupby(f,axis=1).

→sum()],axis=1).sort_values(['Building Type'])
```

```
[39]: types_to_keep = ['APB','SND','SNR','SMR','SMD','ADU','SEC','ROW','LNW']
    toplot = toplot[toplot['Building Type'].isin(types_to_keep)]
    building_type_map = {
        'APB':'Mid to high-rise buildings',
        'SND':'Newly Constructed Single family dwellings',
        'SNR':'Renovated Single family dwellings',
        'SMD':'Newly Constructed Single family dwellings',
        'SMR':'Renovated Single family dwellings',
        'ADU':'Newly Constructed Single family dwellings',
        'SEC':'Newly Constructed Single family dwellings',
        'ROW':'Newly Constructed Single family dwellings',
        'LNW':'Laneway Houses'
}

toplot['Building Type'] = toplot['Building Type'].replace(building_type_map)
toplot = toplot.sort_values('Building Type')
```

```
[40]: fig, ax = plt.subplots(figsize=(10,7))
      cols = toplot.columns[6:]
      margin_bottom = np.zeros(len(toplot))
      cmap = plt.get_cmap('tab10')
      for num, col in enumerate(cols):
          values = toplot[col].values
          toplot[col].plot.bar(x='Year',y='Value', ax=ax, stacked=True,
                                          bottom = margin_bottom, color=cmap(num),__
       →label=col)
          margin_bottom += values
      plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
      plt.ylabel('Material Intensity (kg/m^2)')
      plt.xlabel('Building ID ')
      ax2 = ax.twiny()
      ax2.set_xlim(0, len(toplot))
      ax2.set_xticks([k for k,v in enumerate(toplot['Building Type'].values) if v !=u
      →toplot['Building Type'].values[k-1] or k==0])
      for tick in ax2.get_xticklabels():
          tick.set_rotation(90)
      ax2.set_xticklabels([v for k,v in enumerate(toplot['Building Type'].values) if_
      →v != toplot['Building Type'].values[k-1] or k==0])
      ax2.set_xlabel("Building Type")
      plt.grid(color='black',linewidth=2)
     plt.show()
```



```
toplot[col].plot.bar(x='Year',y='Value', ax=ax, stacked=True,
                                    bottom = margin_bottom, color=cmap(num),__
→label=col)
   margin_bottom += values
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.xlabel('Building ID')
plt.ylabel('Building element category contribution (%) to material intensity')
ax2 = ax.twiny()
ax2.set_xlim(0, len(toplot))
ax2.set_xticks([k for k,v in enumerate(toplot['Building Type'].values) if v !=_
→toplot['Building Type'].values[k-1] or k==0])
for tick in ax2.get_xticklabels():
   tick.set_rotation(90)
ax2.set_xticklabels([v for k,v in enumerate(toplot['Building Type'].values) if
→v != toplot['Building Type'].values[k-1] or k==0])
ax2.set_xlabel("Building Type")
plt.grid(color='black',linewidth=2)
plt.show()
```



```
[43]: f = lambda x: name_map[re.split('[_\.\]',x)[1][0]] + '/' + re.split('[_\.\_
       \rightarrow]',x)[-1]
      toplot = df_mi[kilogram_columns].groupby(f,axis=1).sum()
[44]: df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)
      df_mi = df_mi.div(df_mi.sum(axis=1),axis=0)
      f = lambda x: name_map[re.split('[\.\]',x)[1][0]] + '/' + re.split('[\.\_
      \rightarrow]',x)[-1]
      toplot = df_mi[kilogram_columns].groupby(f,axis=1).sum()
      for i in range(1,5):
          toplot[f'Total/{i}'] = 0
      for k,v in toplot.iteritems():
          toplot[f'Total/{k.split("/")[1]}'] += v
      toplot_out = deepcopy(toplot)
      for k,v in toplot.iteritems():
          toplot_out[k] = (v/toplot[[c for c in toplot.columns if k.split('/')[0] in_u
      \rightarrowc]].sum(axis=1)) * int(k.split('/')[1])
      f = lambda x: x.split('/')[0]
      toplot_out = pd.concat([df['Building Type'],toplot_out.groupby(f,axis=1).
      →sum()],axis=1).sort_values('Building Type')
      toplot_out = toplot_out.reset_index()
      toplot_out['index'] += 1
      toplot_out['index'] = toplot_out['index'].astype('str')
[45]: toplot_out = toplot_out[toplot_out['Building Type'].isin(types_to_keep)]
      toplot_out['Building Type'] = toplot_out['Building Type'].
       →replace(building_type_map)
      toplot_out = toplot_out.sort_values('Building Type')
[46]: from matplotlib.lines import Line2D
      fig, ax = plt.subplots(figsize=(7,15))
      ax.set_xlim(1,5)
      ax.set_ylim(1,len(toplot_out))
      # ax.set_yticks(toplot_out['index'])
      handles = []
      for v,m,c in_
       →[('Interiors','o','blue'),('Shell','X','green'),('Total','*','red'),('Substructure','s','or
          ax.scatter(x=toplot_out[v].values,y=toplot_out['index'].values, marker=m,_
       \rightarrowcolor=c, s=75)
          handles.append(
              Line2D([0], [0], marker=m, color='w', label=v,
                                     markerfacecolor=c, markersize=15)
      plt.legend(handles=handles,bbox_to_anchor=(1.05, 0.5), loc='lower left')
      plt.ylabel('Building Identifier')
```

```
plt.xlabel('Average Uncertainty by MI')
plt.grid()
ax2 = ax.twinx()
ax2.set_ylim(0, len(toplot_out))
ax2.set_yticks([k for k,v in enumerate(toplot_out['Building Type'].values) if v_\tous if the proof of the p
```


