Buliding a Structurally-Encrypted Relationnal Database

Zheguang Zhao

Brown University zheguang.zhao@gmail.com

October 26, 2020

Data Breach

A data breach is a security violation in which sensitive, protected or confidential data is copied, transmitted, viewed, stolen or used by an individual unauthorized to do so. – Wikipedia.

Data Breach

- "If you have something that you don't want anyone to know, maybe you shouldn't be doing it in the first place." Eric Schmidt, then-CEO of Google, 2009.
- (In)famous data breach: Quora (2018, 100m), Equifax (2017, 145.5m), Yahoo (2017, every account).

Data Breach

- "If you have something that you don't want anyone to know, maybe you shouldn't be doing it in the first place." Eric Schmidt, then-CEO of Google, 2009.
- (In)famous data breach: Quora (2018, 100m), Equifax (2017, 145.5m), Yahoo (2017, every account).
- Just don't have better tools

Snapshot attack

				Supplier	
Customer				Name	Nation
Name	Pay	Nation		Intel	US
Alice	VISA	US		IBM	US
Bob	PayPal	US		RIM	CAN
Bob	PayPal	CAN		Arca	MEX
			•	Intel	MEX

- Setup leaks: table dimension

- Encrypted Selection: $\widetilde{\sigma}$

- Encrypted Projection: $\widetilde{\pi}$

- Encrypted Join: $\widetilde{\bowtie}$

- Encrypted Join: $\widetilde{\bowtie}$

- Query leaks: nothing outside of result; patterns within result

Existing Approaches

Use property-preserving encryption to encrypt every cell.

¹Quantization [HILM02], CryptDB [PRZB11], Monomi [TKMZ13], Cipherbase [ABEKKRV13], SAP SEEED, MS SQL Server Always Encrypted.

Use property-preserving encryption to encrypt every cell.

¹Quantization [HILM02], CryptDB [PRZB11], Monomi [TKMZ13], Cipherbase [ABEKKRV13], SAP SEEED, MS SQL Server Always Encrypted.

Use property-preserving encryption to encrypt every cell.

¹Quantization [HILM02], CryptDB [PRZB11], Monomi [TKMZ13], Cipherbase [ABEKKRV13], SAP SEEED, MS SQL Server Always Encrypted.

Use property-preserving encryption to encrypt every cell.

- Data-recovery attacks [NKW15,DDC16,GSBNR17].

¹Quantization [HILM02], CryptDB [PRZB11], Monomi [TKMZ13], Cipherbase [ABEKKRV13], SAP SEEED, MS SQL Server Always Encrypted.

Use property-preserving encryption to encrypt every cell.

- Data-recovery attacks [NKW15,DDC16,GSBNR17].

¹Quantization [HILM02], CryptDB [PRZB11], Monomi [TKMZ13], Cipherbase [ABEKKRV13], SAP SEEED, MS SQL Server Always Encrypted.

²SPX [KM18], OPX [KMZZ20,ZKMZ21], Pibas [CJJJKRS14].

 $^{^2 \}mbox{SPX}$ [KM18], OPX [KMZZ20,ZKMZ21], Pibas [CJJJKRS14].

²SPX [KM18], OPX [KMZZ20,ZKMZ21], Pibas [CJJJKRS14].

Our Approach

Our Approach

Encrypted Table

- Linear cost:
 - $\mathcal{O}(T)$ time/space.
 - $\mathcal{O}(T)$ precomputation.
- Relational algebra: query optimization; composition.
- Reduce leakage for filtered joins.

Our Approach

Our Approach

Our Approach

Secret key *K* Plaintext cell

"Sel. Token": $F_K(j \parallel T[i,j])$ "Repitition #"

 ET_1, ET_2, ET_3, \cdots

<u>Name</u>	Pay	Nation
Alice	VISA	US
Bob	PayPal	US
Bob	VISA	CAN

<u>Name</u>	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

Subscripted rep #

Name	Pay	Nation
Alice ₁	VISA ₁	US₁
Bob₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} - \mathit{F}_{\mathit{K}}(\mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} - \mathit{F}_{\mathit{K}}(\mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} - \mathit{F}_{\mathit{K}}(\mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} - \mathit{F}_{\mathit{K}}(\mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} - \mathit{F}_{\mathit{K}}(\mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

EV + Metadata

- Closure: good for algebra.

- Ideal leakage: pattern in selected cells.

- Linear cost.

- Extension to Conjunction.

Cust.

Supp.

 ET_S

Closure: Still an ET

- Encrypted join as encrypted selections.
- Linear cost.

Query Optimization

Query Composition

- Encrypted {Selections, Joins, Projections} compose for Conjunctive Queries
 - Anti-Join, Semi-Join, Subqueries, Disjunctions.
- Algebra: ordering ⇒ query optimization.
 - Selection/Projection pushdown (19.8× speedup on TPC-H)
 - Join/Selection reordering (12.6× speedup o TPC-H)

- Recursion: common in Encrypted Selection and Encrypted Join

$$\bigcup_{R \in Z^+} \sigma_{S=F_{stk}(R)} ET$$

- Recursion: common in Encrypted Selection and Encrypted Join

$$\bigcup_{R \in Z^+} \sigma_{S = F_{stk}(R)} ET$$

- Fixed-point Operator: extension beyond relational algebra
 - Not in all database systems: SparkSQL
 - Postgres 8+/MySQL 8+/SQL Server 2005+: Recursive Common Table Expression
 - Oracle 11g Release 2: Recursive Subquery Factoring / CONNECT BY

- Recursion: common in Encrypted Selection and Encrypted Join

$$\bigcup_{R \in Z^+} \sigma_{\mathcal{S} = \mathcal{F}_{\textit{stk}}(R)} ET$$

- Fixed-point Operator: extension beyond relational algebra
 - Not in all database systems: SparkSQL
 - Postgres 8+/MySQL 8+/SQL Server 2005+: Recursive Common Table Expression
 - Oracle 11g Release 2: Recursive Subquery Factoring / CONNECT BY
- Semantics & Optimization

R = 2

R = 2

R = 2

R = 3

R = 3

System

Legacy-Compliant Architecture

- Any SQL database backend
- Encryption transparent to Applications
- Leverage DB optimizations

SparkSQL-based Implementation

- Query Tree partition into Unenc. & Enc.
- Rewrite with Enc. Operators
- Fixed-Point SQL generation
- Custom optimization rule

Benchmark

- PPE-based Schemes: CryptDB [PRZB11], Monomi [TKMZ13]

- PPE-based Schemes: CryptDB [PRZB11], Monomi [TKMZ13]
- STE-based Schemes, EMM-based: SPX [KM18], OPX [KMZZ20,ZKMZ21];

- PPE-based Schemes: CryptDB [PRZB11], Monomi [TKMZ13]
- STE-based Schemes, EMM-based: SPX [KM18], OPX [KMZZ20,ZKMZ21];
- Encrypted Table (ET) Scheme

- PPE-based Schemes: CryptDB [PRZB11], Monomi [TKMZ13]
- STE-based Schemes, EMM-based: SPX [KM18], OPX [KMZZ20,ZKMZ21];
- Encrypted Table (ET) Scheme
- TPC-H scale factor 10 (17GB);

- PPE-based Schemes: CryptDB [PRZB11], Monomi [TKMZ13]
- STE-based Schemes, EMM-based: SPX [KM18], OPX [KMZZ20,ZKMZ21];
- Encrypted Table (ET) Scheme
- TPC-H scale factor 10 (17GB);
- 32GB RAM, 8 CPUs, 5.2TB Storage for SPX and OPX; 1.2TB Storage for CryptDB, Monomi and ET;

Query Time

- ET achieves comparable query overhead ($4\times$) than PPE-based CryptDB but for stronger security.
- ET is two orders magnitude better than STE-based precursors.

Storage

System	Size
Plaintext	17.1GB
CryptDB	4.21×
Monomi	1.72×
SPX	$252.22 \times$
OPX	13.17×
ET	$3.63 \times$

Summary

- STE-based Encrypted Table
 - Linear cost
 - Preserves relational algebra
 - Reduced leakage for conjunction
- Legacy compliant system based on SparkSQL and interace with any SQL DB.
 - Fixed-point operator optimization
- Efficiency comparable to PPE-based CryptDB but with stronger security (4 \times storage and query overhead)

Appendix

Table vs. Multimap

Data Structure	Table	Multimap
Model	Relational (SQL)	Key-Value (NoSQL)
Language	Relational Algebra	Retrieval by Key
Optimality	$\mathcal{O}(T)$	$\mathcal{O}(oldsymbol{Q})$
Basis for EDB	PKFK	SPX,OPX

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

Name	Pay	Nation
Alice ₁	VISA ₁	US ₁
Bob ₁	PayPal ₁	US ₂
Bob ₂	VISA ₂	CAN ₁

Conjunction

 $\sigma_{Play=VISA \land Name=Bob}$

Conjunction

 $\sigma_{Play} = VISA \land Name = Bob$

Conjunction ^{OPlay=VISA∧Name=Bob}

 $\Longrightarrow \widetilde{\sigma}_{\textit{stk}_{\textit{VISA}}} \quad \widetilde{\sigma}_{\textit{stk}_{\textit{Bob}}} \iff \\ \begin{matrix} \mathsf{I} & \mathsf{I} \\ \mathsf{ET} & \mathsf{ET} \end{matrix}$

Conjunction $\sigma_{Play=VISA \land Name=Bob}$

Conjunction $\sigma_{Play=VISA \land Name=Bob}$


```
\widetilde{\sigma}_{	extit{stk}_{	extit{Bob}}} | \widetilde{\sigma}_{	extit{stk}_{	extit{VISA}}} | ET
```



```
\overset{\widetilde{\sigma}_{\textit{stk}_{\textit{Bob}}'}}{\Longrightarrow} \widetilde{\sigma}_{\textit{stk}_{\textit{VISA}}}
\vdash
ET
```



```
\Longrightarrow \widetilde{\sigma}_{\mathit{stk}'_{\mathit{Bob}}} \quad \digamma_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}}) \vdash \widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} \vdash \mathsf{ET}
```


$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk'_{Bob}}} \quad F_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\widetilde{\sigma}_{\mathit{stk_{\mathit{VISA}}}}$$

$$\mathsf{I}$$

$$\mathit{ET}$$

$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk}'_{\mathit{Bob}}} \quad \textit{F}_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}}$$

$$\mathsf{I}$$

$$\mathit{ET}$$

$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk'_{Bob}}} \quad F_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\widetilde{\sigma}_{\mathit{stk_{\mathit{VISA}}}}$$

$$\mathsf{I}$$

$$\mathit{ET}$$

$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk'_{Bob}}} \quad F_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\vdash \widetilde{\sigma}_{\mathit{stk_{VISA}}}$$

$$\vdash \mathsf{ET}$$

$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk'_{Bob}}} \quad F_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\widetilde{\sigma}_{\mathit{stk_{\mathit{VISA}}}}$$

$$\parallel$$

$$\mathit{ET}$$

Only check on smaller ET

$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk}'_{\mathit{Bob}}} \quad \textit{F}_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}}$$

$$\mathsf{I}$$

$$\mathit{ET}$$


```
\Longrightarrow \widetilde{\sigma}_{\mathit{stk}'_{\mathit{Bob}}} \quad \digamma_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}}) \vdots \widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}} \vdots \mathsf{ET}
```


$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk}'_{\mathit{Bob}}} \quad \digamma_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\vdots$$

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}}$$

$$\vdots$$

$$\mathsf{ET}$$

$$\Longrightarrow \widetilde{\sigma}_{\mathit{stk}'_{\mathit{Bob}}} \quad F_{\mathit{K}}(\mathit{Name} \parallel \boxed{\mathsf{Bob}} \parallel \mathit{Pay} \parallel \boxed{\mathsf{VISA}})$$

$$\widetilde{\sigma}_{\mathit{stk}_{\mathit{VISA}}}$$

$$\mathsf{I}$$

$$\mathit{ET}$$

Security

- Setup leaks: table dimension

- Encrypted Selection: $\widetilde{\sigma}$

- Encrypted Projection: $\widetilde{\pi}$

- Encrypted Join: $\widetilde{\bowtie}$

- Encrypted Join: $\widetilde{\bowtie}$

- Query leaks: nothing outside of result; patterns within result

Simulation

Show: leaks patterns in query result and nothing else.

Simulation

Show: leaks patterns in query result and nothing else.

- Non-adaptive security: swap non-queried cells with random noise

Simulation

Show: leaks patterns in query result and nothing else.

- Adaptive security in ROM: $F_K(x) \doteq H(K \parallel x)$, $E_K(m) \doteq (r, H(K \parallel r) \oplus m)$ for random K, r.

