

## **PROBLEM**

Employers need to trust intermediaries eg. certificate holders, teachers, and university officials for the legitimacy of certificates and documents.



#### PROBLEM



Sharp rise in fraudulent activities by intermediaries to produce fake diplomas or degree certificates.



Certificates and other personal information are usually stored in a centralized server or data warehouse which is prone to tampering or hacking.



Wasted time and effort on employee educational records verification. Takes around 4-5 days<sup>[1]</sup> on an average for each potential employee.



#### **ICERTNET**

Create a decentralized certificate verification system built on blockchain, allowing employers to verify certifications of their potential employees.



# WHY BLOCKCHAIN?

A DISTRIBUTED CREDENTIAL MANAGEMENT SYSTEM BUILT OVER A BLOCKCHAIN NETWORK HAS MANY ADVANTAGES OVER THE PREVALENT CENTRALIZED, FEDERATED, OR DISTRIBUTED SYSTEMS.

## WHY BLOCKCHAIN?



#### **DECENTRALIZATION**

Ownership and control over data are not centralized by a single governing body on the blockchain.



#### **IMMUTABILITY AND PERSISTENCE**

Immutable records of all historical activities are maintained in an append-only distributed ledger of the blockchain guaranteeing that the system is tamper-resistant.



#### **TRANSPARENCY**

Every participant is aware of all activities and changes to the recorded data. Each transaction is accessible and explorable to all the participants in the network.



#### **TRUSTLESSNESS**

The participants of the network do not necessarily know each other or who they can trust.

## WHY BLOCKCHAIN?



#### DISTRIBUTED AND SHARED

Data present in the distributed ledger is shared with everyone in the network. This removes the need for replication of data making the system cost-efficient.



#### **ANONYMITY**

Data present in the distributed ledger is shared with everyone in the network. This removes the need for replication of data making the system cost-efficient.



#### CONSENSUS

A new block is created only on the basis of some consensus mechanism such as (but not limited to) Proof-of-Work, Proof-of-Stake, Practical Byzantine Fault Tolerance (PBFT), Proof-of-Elapsed Time (PoET), etc., which helps establish trust required for verifying and validating data in a trust-less environment.

## USE CASE & TARGET AUDIENCE

JOB PORTALS
VERIFYING CANDIDATE CREDENTIALS
RECRUITERS AND HR TEAMS
STUDENTS & PROFESSIONALS



#### **RELATED WORKS**



#### **BLOCKCERTS**

Blockcerts provides an open standard and is a project that aims to build a system for creating, sharing, and verifying blockchain-based educational certificates.



#### **CERTCHAIN**

CertChain is a blockchain-based public and efficient audit scheme for TLS connections.



#### **OPEN BADGES**

Open Badges is the world's leading standard for digital badges. Open Badges is not a specific product or platform, but a type of digital badge that is verifiable, portable, and packed with information about skills and achievements.



## **DESIGN**

### **APPLICATION ARCHITECTURE**

- We are following a microservice architecture for the overall design of the application. Each
  component of the application will be a seperate microservice containerized inside docker and
  hosted independently.
- A microservice architecture makes it easy to develop applications based on a distributed system and provides high scalability and fault tolerance.
- We are following a modular structure for scalability and extensibility.
- We are following test-driven development and writing unit tests for each module after it's implemented.

## **HOW DOES IT WORK?**



### **FRAMEWORKS** 1

#### Our implementation uses the following:

• Local Network: Ganache

• Backend: Express

• Frontend: React

Database: MongoDB





### WHY GANACHE?

- Open source
- Supports local blockchain networks for development
- Modular architecture
- Ease of development of DApp
- Can be deployed on any network





## PHASE I

## TARGETS ACHIEVED

- Q Understand blockchain and its use-cases
- Experiment using Web3, React, Solidity & other tech required for DApp development
- @ Creating the smart contract for our app in Solidity
- Q Creating the React App using Express.js as backend and MongoDB as database
- Local setup of Ganache
- Truffle configuration setup



## PHASE II

## TARGETS ACHIEVED

- Q Database and Express server setup
- Certificate generation HTTP request and smart contract
- Q UI for certificate generation
- Authentication with two types of users Organization and Student
- Generate user profiles using Google accounts

## TARGETS ACHIEVED

- Q UI for viewing list of certificates
- Certificates issued by an organizations
- Certificates issued to a student
- Certificate verification to ensure against certificate tampering and illegal insertion in DB
- Q Unit Tests for each component of the DApp

## APP ORCHESTRATION & STAKEHOLDERS



### ORGANIZATION VIEW

- Register as a user of type "Organization"
- Generate certificates for a particular Degree for a particular duration
- Certificates are only issued for the students with an associated account on the network
- Verify certificates issued to students
- View the list of certificates issued by the organization
- Only authorized organizations can take part in the blockchain network
- Public URL of certificate will show the associated student and organization, this will prevent "fake" students claiming certificate to be theirs

#### STUDENT VIEW

- Register as a user of type "Student"
- View list of certificates issued to them
- View and verify certificates issued to them
- Organizations can't tamper with students' data without student knowing
- If certificate is "fake" i.e. certificate is maliciously added to the database or if an existing certificate is tampered, the certificate will show unverified.
- Student can generate the public url to certificate which can be used by employers to verify the certificate

### BLOCKCHAIN VIEW

- The smart contract is deployed as a transaction on the blockchain. The contract gets a unique address which can be used to identify it.
- The students and organizations interact with the smart contract using the public functions of the smart contract that is exposed to them.
- For simplicity, we abstract the endpoints of the smart contract by mapping user interactions with the app to corresponding calls to appropriate functions in the contract
- Each of these interactions with the contract are recorded as transactions in blocks on the blockchain and can be viewed on Ganache.
- Each certificate is a transaction between an organization and a student, where both have a unique identity (address) on the network.

## APP DEMO



## POST-COURSE SCOPE

#### Features

- Authentication using other methods such as GitHub, Facebook, etc.
- Ability to search through different students using name
- Ability to filter certificates by students, date, degree, etc.

#### Deployment

Deploy the app on a public network

#### UI

Make UI responsive for any device layout

#### Error Handling

Verification of courses for which an organization can issue certificates

## **THANK YOU**