Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 14.04.2015r	Dzień: Wtorek					
Grupa: VII	Godzina: 12:15-15:00					
Temat ćwiczenia:						
$Przetwornice\ DC/DC$						
Dane projektowe:						
$U_{\text{we}} = 9.00 \text{ V}$ U_{wy}	$=6V$ $I_{\text{max}}=0.25 \text{ A}$					
l.p	.p Nazwisko i imię					
1						
2	Jakub Koban					

1 Zadanie projektowe

Zaprojektować zasilacz stabilizowany o zadanych parametrach :

- $\bullet~U_{\rm we}{=}9.00~V$
- $U_{wy}=6.00 V$
- $I_{max} = 0.25 A$

2 Obliczenia projektowe

$$I_{pk} = I_{Lpk} = 2I_{0max} = 2 * 0.25 = 0.5A \tag{1}$$

$$\mathbf{R_{SC}} = \frac{0.3V}{I_{pk}} = \frac{0.3}{0.5} = \mathbf{0.6\Omega}$$
 (2)

Zakadamy
$$\mathbf{R_1} = \mathbf{1.8k\Omega} \rightarrow \mathbf{R_2} = R_1 \frac{|U_0| - 1.25V}{1.25V} = 1800 \frac{6 - 1.25}{1.25} = \mathbf{6.8k\Omega}$$
(3)

Zakadamy
$$\mathbf{T} = \mathbf{25u}s \rightarrow \mathbf{t_{on}} = T\frac{U_0}{U_i} = 25 * 10^{-6} \frac{6}{9} = \mathbf{16.67us}$$
 (4)

$$\mathbf{L} \geqslant \frac{U_i}{I_{Lvk}} t_{ON} = \frac{9}{0.5} * 16.37 * 10^{-6} = \mathbf{300uH}$$
 (5)

$$\mathbf{C_0} \geqslant \frac{I_{Lpk}T}{8U_{tpp}} = \frac{0.5 * 25 * 10^{-6}}{8 * 0.5} = \mathbf{3.125uF}$$
 (6)

3 Schemat projektowy

Rysunek 1: Schemat projektowanego układu

4 Część laboratoryjna

4.1 Charakterystyka napięciowa i napięciowo - prądowa

Rysunek 2:
$$U_{wy} = f(I_{wy})$$
 przu $I_{wy} = 0A$

Rysunek 3: U
wy=f(Uwe) przu
$$I_{wy}{\neq}\;0A$$

Analizując przedstawione charakterystyki możemy zauważyć,
iż układ poprawnie stabilizuje napięcie od (odpowiednio) 12.5V i 13V aż
 do maksymalnego napięcia jakie udało nam się uzyskać z zasilacza czyli 30V.

4.2 Charakterystyki zewnętrzne

Rysunek 4:
$$U_{wv}=f(I_{wv})$$
 przu $U_{we}=15V$

Rysunek 5:
$$U_{wy}=f(I_{wy})$$
 przu $U_{we}=30V$

Analizując charakterystyki zewnętrzne stabilizatora zauważamy, że przy $U_{\rm we}=15V$ układ nie przepuszcza prądu powyżej zadanych 0.70A, natomiast przy $U_{\rm we}=30V$ obserwujemy tzw. foldback ('odwijanie' charakterystyki) co jest zabezpieczeniem układu w wypadku dalszego wzrostu napięcia wejściowego.

5 Wnioski

- 1. Zgodnie z założeniami teoretycznymi układ utrzymuje na swoim wyjściu stałe napięcie równe 11V , w związku z niedokładnością użytych elementów maksymalny prąd wyjściowy różni się od założeń jednak nie jest to duża rozbieżność (około 0.70 A wobec założonych 0.60 A).
- 2. Minimalne napięcie dla jakiego układ pracuje poprawnie przy I_{wy} =0 to 12.5V a dla I_{wy} \neq 0to13V.W stabilizator zekompensacy jnymuytot zw. foldback' uktry jestbard zodobrym zw.

Stałe obciążenie		Zmienne obciążenie			
$U_{we}[V]$	$U_{wy}[V]$	$U_{we}[V]$	$I_{we}[mA]$	$U_{wy}[V]$	$I_{wy}[mA]$
0	0	9	25.82	6.197	27.91
0.5	0.001	9	36.87	6.192	41.32
0.9	0.010	9	44.92	6.191	51.02
1.5	0.200	9	66.82	6.188	77.11
2.0	0.586	9	93.56	6.184	108.47
2.5	0.940	9	134.13	6.178	154.98
3.0	1.340	9	168.09	6.126	195.13
3.5	1.750	9	228.10	5.840	269.77
4.0	2.170	9	269.00	5.518	330.00
4.5	2.570	9	300.50	4.791	408.50
5.0	3.040	9	270.70	3.808	445.30
5.5	3.480	9	250.80	3.331	464.80
6.0	3.860				
6.5	4.320				
7.0	4.670				
7.5	5.120				
8.0	5.500				
8.5	6.940				
9.0	6.180				
9.5	6.180				
10.0	6.190				
10.5	6.190				
11.0	6.192				
11.5	6.192				
12.0	6.194				
12.5	6.194				
13.0	6.196				
13.5	6.196				
14.0	6.199				
14.5	6.208				
15.0	6.206				
10.0	0.200				