CSCE 2303: Computer Organization and Assembly Language Programming

Project 2 Cache Simulator

Objective:

Simulating a direct mapped cache to measure its performance and mechanisms; hit and miss ratios through variable line/block sizes, running by a variety of applications.

Apparatus:

C++ skeleton: memory reference generator, implemented by the functions memGenA(), memGenB(), memGenD(), memGenE() and memGenF() besides custom test cases.

Method:

Measuring the hit ratio for different addresses' generator for line sizes 4, 8, 16, 32, 64, 128. 1,000,000 memory references are used.

Output:

The source code's output produces the six line sizes simultaneously for quicker sampling in each experiment. This was implemented though an Array containing the cache TAG address and the valid bit only, neglecting the data space since data replacement will not be considered. To make the six line sizes considered, the cache array has [2 * 6] columns and 99999 rows (for simplicity). However, using nested pointers or vectors would have been more optimum. Below are screenshots for the last part in an example of the output format (for memGenA() address generator function).

0x000f4223	(Hit)	0x000f4223 ((Hit)	0x000f4223	(Hit)	0x000f4223	(Hit)	0x000f4223	(Hit)	0x000f4223	(Hit)
0x000f4224	(Miss)	0x000f4224 ((Hit)	0x000f4224	(Hit)	0x000f4224	(Hit)	0x000f4224	(Hit)	0x000f4224	(Hit)
0x000f4225	(Hit)	0x000f4225 ((Hit)	0x000f4225	(Hit)	0x000f4225	(Hit)	0x000f4225	(Hit)	0x000f4225	(Hit)
0x000f4226	(Hit)	0x000f4226 ((Hit)	0x000f4226	(Hit)	0x000f4226	(Hit)	0x000f4226	(Hit)	0x000f4226	(Hit)
0x000f4227	(Hit)	0x000f4227 ((Hit)	0x000f4227	(Hit)	0x000f4227	(Hit)	0x000f4227	(Hit)	0x000f4227	(Hit)
0x000f4228	(Miss)	0x000f4228 ((Miss)	0x000f4228	(Hit)	0x000f4228	(Hit)	0x000f4228	(Hit)	0x000f4228	(Hit)
0x000f4229	(Hit)	0x000f4229 ((Hit)	0x000f4229	(Hit)	0x000f4229	(Hit)	0x000f4229	(Hit)	0x000f4229	(Hit)
0x000f422a	(Hit)	0x000f422a ((Hit)	0x000f422a	(Hit)	0x000f422a	(Hit)	0x000f422a	(Hit)	0x000f422a	(Hit)
0x000f422b	(Hit)	0x000f422b ((Hit)	0x000f422b	(Hit)	0x000f422b	(Hit)	0x000f422b	(Hit)	0x000f422b	(Hit)
0x000f422c	(Miss)	0x000f422c ((Hit)	0x000f422c	(Hit)	0x000f422c	(Hit)	0x000f422c	(Hit)	0x000f422c	(Hit)
0x000f422d	(Hit)	0x000f422d ((Hit)	0x000f422d	(Hit)	0x000f422d	(Hit)	0x000f422d	(Hit)	0x000f422d	(Hit)
0x000f422e	(Hit)	0x000f422e ((Hit)	0x000f422e	(Hit)	0x000f422e	(Hit)	0x000f422e	(Hit)	0x000f422e	(Hit)
0x000f422f	(Hit)	0x000f422f ((Hit)	0x000f422f	(Hit)	0x000f422f	(Hit)	0x000f422f	(Hit)	0x000f422f	(Hit)
0x000f4230	(Miss)	0x000f4230 ((Miss)	0x000f4230	(Miss)	0x000f4230	(Hit)	0x000f4230	(Hit)	0x000f4230	(Hit)
0x000f4231	(Hit)	0x000f4231 ((Hit)	0x000f4231	(Hit)	0x000f4231	(Hit)	0x000f4231	(Hit)	0x000f4231	(Hit)
0x000f4232	(Hit)	0x000f4232 ((Hit)	0x000f4232	(Hit)	0x000f4232	(Hit)	0x000f4232	(Hit)	0x000f4232	(Hit)
0x000f4233	(Hit)	0x000f4233 ((Hit)	0x000f4233	(Hit)	0x000f4233	(Hit)	0x000f4233	(Hit)	0x000f4233	(Hit)
0x000f4234	(Miss)	0x000f4234 ((Hit)	0x000f4234	(Hit)	0x000f4234	(Hit)	0x000f4234	(Hit)	0x000f4234	(Hit)
0x000f4235	(Hit)	0x000f4235 ((Hit)	0x000f4235	(Hit)	0x000f4235	(Hit)	0x000f4235	(Hit)	0x000f4235	(Hit)
0x000f4236	(Hit)	0x000f4236 ((Hit)	0x000f4236	(Hit)	0x000f4236	(Hit)	0x000f4236	(Hit)	0x000f4236	(Hit)
0x000f4237	(Hit)	0x000f4237 ((Hit)	0x000f4237	(Hit)	0x000f4237	(Hit)	0x000f4237	(Hit)	0x000f4237	(Hit)
0x000f4238	(Miss)	0x000f4238 ((Miss)	0x000f4238	(Hit)	0x000f4238	(Hit)	0x000f4238	(Hit)	0x000f4238	(Hit)
0x000f4239	(Hit)	0x000f4239 ((Hit)	0x000f4239	(Hit)	0x000f4239	(Hit)	0x000f4239	(Hit)	0x000f4239	(Hit)
0x000f423a	(Hit)	0x000f423a ((Hit)	0x000f423a	(Hit)	0x000f423a	(Hit)	0x000f423a	(Hit)	0x000f423a	(Hit)
0x000f423b	(Hit)	0x000f423b ((Hit)	0x000f423b	(Hit)	0x000f423b	(Hit)	0x000f423b	(Hit)	0x000f423b	(Hit)
0x000f423c	(Miss)	0x000f423c ((Hit)	0x000f423c	(Hit)	0x000f423c	(Hit)	0x000f423c	(Hit)	0x000f423c	(Hit)
0x000f423d	(Hit)	0x000f423d ((Hit)	0x000f423d	(Hit)	0x000f423d	(Hit)	0x000f423d	(Hit)	0x000f423d	(Hit)
0x000f423e	(Hit)	0x000f423e ((Hit)	0x000f423e	(Hit)	0x000f423e	(Hit)	0x000f423e	(Hit)	0x000f423e	(Hit)
0x000f423f	(Hit)	0x000f423f ((Hit)	0x000f423f	(Hit)	0x000f423f	(Hit)	0x000f423f	(Hit)	0x000f423f	(Hit)
Hit ratio =	: 75%	Hit ratio =	87%	Hit ratio =	93%	Hit ratio =	96%	Hit ratio =	= 98%	Hit ratio =	= 99%

Line Size = 32 Bytes Line Size = 4 Bytes Hit ratio = 96% Hit ratio = 75% Miss ratio = 4% Miss ratio = 25% Hits = 968750Hits = 750000Misses = 31250 Misses = 250000 Compulsory Misses = 2048 Compulsory Misses = 16384 Capcity Misses = 29202 Capcity Misses = 233616 Conflict = 0Conflict = 0 Line Size = 64 Bytes Line Size = 8 Bytes Hit ratio = 98% Hit ratio = 87% Miss ratio = 2% Miss ratio = 13% Hits = 984375Hits = 875000Misses = 15625Misses = 125000 Compulsory Misses = 1024 Compulsory Misses = 8192 Capcity Misses = 14601 Capcity Misses = 116808 Conflict = 0Conflict = 0 Line Size = 128 Bytes Line Size = 16 Bytes Hit ratio = 99% Hit ratio = 93% Miss ratio = 1% Miss ratio = 7% Hits = 992187Hits = 937500Misses = 7813 Misses = 62500 Compulsory Misses = 512 Compulsory Misses = 4096 Capcity Misses = 7301 Capcity Misses = 58404

Furthermore, the types of misses are also calculated amongst the three C's: Compulsory, Capacity and Conflict misses. As shown above, this method particularly aids in measuring the performance of the six line sizes in a single run. Leading to easier observation of trends and effects of changing the line/block size.

Conflict = 0

Conflict = 0

Results

<u>MemGenA</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	75.00%	750000	250000		
8 Bytes	87.50%	875000	125000		
16 Bytes	93.75%	937500	62500		
32 Bytes	96.88%	968750	31250		
64 Bytes	98.44%	984375	15625		
128 Bytes	99.22%	992187	7813		

<u>MemGenB</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	98.36%	983616	16384		
8 Bytes	99.18%	991808	8192		
16 Bytes	99.59%	995904	4096		
32 Bytes	99.80%	997952	2048		
64 Bytes	99.90%	998976	1024		
128 Bytes	99.95%	992187	512		

<u>MemGenC</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	98.36%	983616	16384		
8 Bytes	99.18%	991808	8192		
16 Bytes	99.59%	995904	4096		
32 Bytes	99.80%	997952	2048		
64 Bytes	99.90%	998976	1024		
128 Bytes	99.95%	992187	512		

<u>MemGenD</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	99.90%	998976	1024		
8 Bytes	99.95%	999488	512		
16 Bytes	99.97%	999744	256		
32 Bytes	99.89%	998872	1128		
64 Bytes	99.99%	999936	64		
128 Bytes	100.00%	992187	32		

<u>MemGenE</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	99.59%	995904	4096		
8 Bytes	99.80%	997952	2048		
16 Bytes	99.90%	998976	1024		
32 Bytes	99.95%	999488	512		
64 Bytes	99.97%	999744	256		
128 Bytes	99.99%	992187	128		

<u>MemGenF</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	0.00%	0	1000000		
8 Bytes	0.00%	0	1000000		
16 Bytes	0.00%	0	1000000		
32 Bytes	0.00%	0	1000000		
64 Bytes	0.00%	0	1000000		
128 Bytes	66.49%	992187	500001		

<u>test1</u>					
Line Size	Hit Ratio	Hits	Misses		
4 Bytes	10.71%	107142	892858		
8 Bytes	55.36%	553571	446429		
16 Bytes	77.68%	776785	223215		
32 Bytes	88.84%	888392	111608		
64 Bytes	94.42%	944196	55804		
128 Bytes	97.21%	972098	27902		

Overall Performance Chart

Analysis and Conclusion:

As observed through the different line sizes, increasing the line sizes caused a significant increase in memGenA() and test1()'s hit ratios, besides a slight increase in it in memGenB(), memGenC(), memGenD() and memGen(E). Regarding memGenF(), the presence of hits only appeared in the maximum block size (128 bytes). Which implies that increasing the line size is a valid solution for decreasing the misses' rates. However, keeping in mind that increasing the line size in direct mapped caches decreases the overhead values, it results in reducing the amount of lines in fixed cache sizes. Hence, raising the number of misses caused by conflicts.