

- 47 -

CLAIMS:

1. A method for preparing a compound comprising a plurality of cucurbituril groups, the method comprising
5 the steps of:

(a) forming a mixture comprising one or more compounds of the formula (1)

10

A-L-A (1)

wherein:

L is a linking group; and
15 each A is independently selected and is a group of the formula (A)

(A)

20

wherein:

for each unit of the formula (B)

25

- 48 -

(B)

in formula (A),

5 R¹ and R² may be the same or different, and are each independently selected from a bond with L or a univalent radical, or

10 R¹, R² and the carbon atoms to which they are bound together form an optionally substituted cyclic group, or

15 R¹ of one unit of the formula (B) and R² of an adjacent unit of the formula (B) together form a bond or a divalent radical,

20 and

each R³ is independently selected from the group consisting of =O, =S, =NR', =CXZ, =CZR', =CXR" and =CZ₂, wherein Z is an electron withdrawing group, X is halo, and R' is selected from the group consisting of a bond with L, H, an optionally substituted straight chain, branched or cyclic, saturated or unsaturated hydrocarbon radical, or an optionally substituted heterocyclyl radical, and R" is a bond with L;

each R⁶ is independently selected from the group consisting of a bond with L, H, alkyl and aryl;

R⁷ and R⁸ may be the same or different and are

- 49 -

independently selected from the group consisting of H and -CHR⁶OR⁶, or R⁷ and R⁸ together form the group -CHR⁶-O-CHR⁶- , where each R⁶ is independently selected from the group consisting of a bond with L, H, alkyl and aryl;

5

R⁹ and R¹⁰ may be the same or different and are independently selected from the group consisting of H and -CHR⁶OR⁶, or R⁹ and R¹⁰ together form the group -CHR⁶-O-CHR⁶- , where each R⁶ is independently selected from the group 10 consisting of a bond with L, H, alkyl and aryl; and

x is 0 or an integer from 1 to 10;
provided that at least one R¹, R² or R⁶ is a bond with L or
at least one R³ is =NR", =CZR" or =CXR" where R" is a bond
15 with L; and
an acid; and

(b) exposing the mixture to conditions effective for at least some of the groups A to react to form cucurbituril 20 groups, thereby forming a compound comprising a plurality of cucurbituril groups.

2. A method according to claim 1, wherein the mixture further comprises one or more compounds selected from 25 compounds of the formula (6):

(6)

and compounds of the formula (2):

- 50 -

(2)

wherein:

for each unit of the formula (B) :

5

(B)

in the compound of formula (2),
 R¹ and R² may be the same or different, and
 10 are each a univalent radical, or
 R¹, R² and the carbon atoms to which they are bound
 together form an optionally substituted cyclic group, or
 R¹ of one unit of the formula (B) and R² of an adjacent
 15 unit of the formula (B) together form a bond or a divalent
 radical,
 and
 each R³ is independently selected from the group consisting

- 51 -

of =O, =S, =NR, =CXZ, =CRZ or =CZ₂, wherein Z is an electron withdrawing group, X is halo, and R is H, an optionally substituted straight chain, branched or cyclic, saturated or unsaturated hydrocarbon radical, or an
5 optionally substituted heterocyclyl radical;

each R⁵ in formula (2) is independently selected from the group consisting of H, alkyl and aryl;

10 R¹¹ and R¹² may be the same or different and are independently selected from the group consisting of H and -CHR⁵OR⁵, or R¹¹ and R¹² together form the group -CHR⁵-O-CHR⁵-, where each R⁵ is independently selected and is as defined above,

15 R¹³ and R¹⁴ may be the same or different and are independently selected from the group consisting of H and -CHR⁵OR⁵, or R¹³ and R¹⁴ together form the group -CHR⁵-O-CHR⁵-, where each R⁵ is independently selected and is as
20 defined as above; and

y is 0 or an integer from 1 to 9;

and wherein at least some of the cucurbituril groups
25 formed are formed from a group A of one molecule of the formula (1), a group A of at least one other molecule of the formula (1) and one or more molecules of formula (2) or (6).

30 3. A method according to claim 1 or 2, wherein step (b) comprises heating the mixture to a temperature from 20°C to 120°C.

35 4. A method according to claim 1 or 2, wherein step (b) further comprises contacting the one or more compounds of the formula (1) with a compound that can form bridges between groups A, and between a group A and a compound of

- 52 -

formula (2) or (6), and heating the mixture to a temperature from 20°C to 120°

5. A method according to claim 4, wherein the compound
5 that can form bridges between groups A, and between a group A and compound of formula (2) or (6), is selected from the group consisting of compounds of the formula R⁵COR⁵ wherein each R⁵ is independently selected from the group consisting of H, alkyl and aryl, compounds of the formula R⁵OC(R⁵)₂OR⁵ wherein each R⁵ is independently selected from the group consisting of H, alkyl and aryl, trioxane, optionally substituted 3,4-dihydropyran and optionally substituted 2,3-dihydrofuran.

15 6. A method according to claim 4, wherein the compound that can form bridges between groups A, and between a group A and compound of formula (2) or (6), is formaldehyde.

20 7. A method according to any one of claims 1 to 6, wherein R³ is O and R⁶ is H.

8. A method according to any one of claims 1 to 7 wherein L is a polymer.

25 .

9. A method according to any one of claims 1 to 7 wherein L is a group of the formula -(CR₂)_a- (E- (CR₂)_b-)_c(CR₂)_d- or -(CR₂)_a- (E- (CR=CR)_b-)_c(CR₂)_d- wherein:

30 E is -O-, -NR-, -S-, a saturated or unsaturated divalent hydrocarbon radical, or an optionally substituted aliphatic or aromatic divalent heterocyclyl radical; R is H, an optionally substituted straight chain, branched or cyclic, saturated or unsaturated hydrocarbon radical or 35 an optionally substituted heterocyclyl radical; and a, b, c and d are each 0 or an integer from 1 to 30; provided that not all of a, b, c and d are 0.

- 53 -

10. A method according to any one of claims 1 to 7
wherein L is $-(CH_2)_n-$, $-(CH=CH)_n-$, $-O-$, $-NH-$,
 $-CH_2-NH-$, $-CH(CH_3)(CH_2)_nCH(CH_3)-$ or
5 $-(CH_2)_n-N(CH_3)CH_2CH_2N(CH_3)-(CH_2)_p-$,
where n and p are an integer.

11. A compound comprising a plurality of cucurbituril
groups produced by the method of any one of claims 1 to
10 10.