Помеченные графы и графы с точностью до изоморфизма. Группа автоморфизмов графа и её свойства.

Помеченные и непомеченные объекты

- Во многих комбинаторных задачах ответ и трудность его нахождения существенно зависят от того, рассматриваются ли помеченные или непомеченные объекты.
- Например, сколько существует различных графов на n вершинах? Ответ на этот вопрос зависит от того, какие графы мы будем считать различными.

1. Помеченные графы

• Пусть n вершин занумерованы числами от 1 до n. Тогда у нас есть C_n^2 пар вершин, каждую из которых можно соединить или не соединить ребром. Итого, получаем:

$$\mathbf{2}^{C_n^2} = \mathbf{2}^{n(n-1)/2}$$

различных графов.

• Графы, все вершины которых занумерованы натуральными числами от 1 до v(G), называют помеченными, а полученное выше количество графов — это число помеченных графов на n вершинах.

2. Непомеченные графы

- Совсем другой результат получается, если никаких пометок на вершинах нет и все вершины считаются идентичными.
- Напомним, что изоморфизмом графов G_1 и G_2 называется биекция $arphi:V(G_1) o V(G_2)$, удовлетворяющая условию:

$$orall x,y \in V(G_1) \ (xy \in E(G_1) \iff arphi(x)arphi(y) \in E(G_2)).$$

• Сами графы G_1 и G_2 в этом случае называют изоморфными. Обозначение: $G_1\cong G_2.$

По сути

• Если мы стираем пометки на вершинах графа, то мы перестаем различать изоморфные друг другу графы. Тогда возникает вопрос о количестве графов с точностью до изоморфизма.

Изоморфизм графов

- Легко видеть, что изоморфность двух помеченных графов это отношение эквивалентности.
- Интересующее нас количество графов с точностью до изоморфизма это число классов эквивалентности.

Пример

• Есть $2^6=64$ помеченных графов на 4 вершинах, но всего 11 попарно неизоморфных графов на 4 вершинах.

Расстановка пометок и автоморфизмы графа

- Посмотрим на этот вопрос с другой стороны. Сколько есть способов расставить пометки на вершинах данного непомеченного графа?
- Другими словами, сколько помеченных графов входят в данный класс эквивалентности?
- Количество классов эквивалентности было бы легко посчитать, если бы все классы содержали одинаковое число элементов. Однако, это,

увы, не так.

• Например, очевидно, что полный граф является единственным элементом своего класса эквивалентности. Но есть n(n-1)/2 помеченных графов на n вершинах ровно с одним ребром — и все они изоморфны.

Способы расстановки пометок

- Всего есть n! способов расставить пометки на данных n вершинах. Но некоторые из этих способов могут давать один и тот же помеченный граф.
- То есть граф может оказаться изоморфен сам себе.

Определение

- **Автоморфизмом графа** G называется изоморфизм из G в G.
- Множество всех автоморфизмов графа G обозначается $\operatorname{Aut}(G)$.

Группа автоморфизмов графа

Замечание

- Итак, автоморфизм графа это перестановка на множестве его вершин, сохраняющая отношение смежности.
- Пусть вершины графа G занумерованы числами от 1 до n. Тогда $\mathrm{Aut}(G)\subset S_n$.

Утверждение

$$\operatorname{Aut}(G) < S_n.$$

Доказательство

• Очевидно, что $e \in \operatorname{Aut}(G)$. Далее нужно проверить замкнутость относительно умножения и взятия обратного элемента.

• Пусть $arphi, \psi \in \mathrm{Aut}(G)$. Поскольку arphi и ψ — биекции, их композиция — также биекция. Далее, для любых $x,y \in V(G)$ имеем:

$$xy \in E(G) \iff \psi(x)\psi(y) \in E(G) \iff \varphi(\psi(x))\varphi(\psi(y)) \in E(G).$$

• Пусть $\varphi \in {
m Aut}(G)$. Поскольку φ — биекция, сохраняющая отношение смежности, то φ^{-1} — также биекция, сохраняющая отношение смежности.

Группа автоморфизмов и её свойства

Определение

Определённая выше группа $\operatorname{Aut}(G)$ называется группой автоморфизмов графа G

Утверждение

- 1. Если $G_1\cong \ G_2$, то $\operatorname{Aut}(G_1)\cong \ \operatorname{Aut}(G_2)$.
- 2. Для любого графа G выполнено $\operatorname{Aut}(G) \cong \operatorname{Aut}(G)$.

Замечание

- То есть группы автоморфизмов изоморфных графов всегда изоморфны.
- Но обратное неверно. Например, легко построить граф, не изоморфный своему дополнению. У этих графов группы автоморфизмов будут изоморфны, а сами графы нет.
- Порядок группы автоморфизмов тесно связан с числом способов расставить пометки на вершинах данного непомеченного графа (или, что то же самое, с размером класса эквивалентности по отношению изоморфности, содержащего данный помеченный граф).

Группа автоморфизмов и число способов расставить пометки

Лемма

Пусть G — помеченный граф и n=v(G). Тогда существует ровно $\frac{n!}{|\operatorname{Aut}(G)|}$ помеченных графов на том же множестве вершин, изоморфных G.

Доказательство

- Не умаляя общности, будем считать, что V(G) = [1..n].
- Пусть \mathcal{G}_n множество всех помеченных графов на множестве [1..n].
- Рассмотрим следующее действие группы S_n на множестве \mathcal{G}_n :
 - ullet Для любых $\sigma \in S_n$ и $H \in \mathcal{G}_n$ обозначим через σH граф с:

$$V(\sigma H) = [1..n], \quad E(\sigma H) = {\sigma(x)\sigma(y) \mid xy \in E(H)}.$$

- Тогда:
 - $\circ \langle G \rangle$ множество всех графов на множестве [1..n], изоморфных G;
 - $\operatorname{St}(G) = \operatorname{Aut}(G)$.
- Следовательно, по теореме из курса алгебры получаем, что:

$$|\langle G
angle| = rac{|S_n|}{|\mathrm{St}(G)|} = rac{n!}{|\mathrm{Aut}(G)|}.$$

Задача о числе раскрасок p точек на окружности с точностью до поворота в случае простого p. Вывод малой теоремы Ферма из решения этой задачи.

Задачи о раскрашивании ожерелья

• Сейчас мы отложим на некоторое время задачу о перечислении непомеченных графов и рассмотрим две более простые задачи о перечислении непомеченных объектов.

- 1. На окружности расставлены n точек, разбивающие её на равные дуги. Сколькими способами можно раскрасить эти точки в a цветов, если раскраски, отличающиеся друг от друга поворотом окружности, считаются одинаковыми?
 - \circ Как обычно, под раскраской множества M в a цветов мы понимаем отображение c:M o [1..a].
 - Неформальная формулировка: Дана карусель с n одинаковыми кабинками. Сколькими способами можно раскрасить кабинки в a цветов?
- 2. Тот же вопрос, но одинаковыми считаются раскраски, отличающиеся либо поворотом, либо осевой симметрией.
 - Неформальная формулировка: Дано ожерелье с n одинаковыми бусинками. Ожерелье можно как угодно поворачивать и переворачивать. Сколькими способами можно раскрасить бусинки в a цветов?

Простой частный случай задачи о каруселях

Утверждение

• Пусть $p \in P$. Тогда существует ровно $\frac{a^p-a}{p}+a=\frac{a^p+(p-1)a}{p}$ раскрасок p точек на окружности в a цветов, если раскраски, отличающиеся друг от друга поворотом окружности, считаются одинаковыми.

Доказательство

- Занумеруем все точки в порядке обхода по часовой стрелке числами от 0 до p-1.
 - Номера точек мы будем рассматривать по модулю p.
 - \circ То есть можно считать, что мы нумеруем точки элементами кольца $\mathbb{Z}/p\mathbb{Z}.$
 - Тогда поворот окружности на угол $\frac{2\pi k}{p}$ переводит точку с номером i в точку номер i+k.
 - ullet Число k также можно рассматривать как элемент кольца $\mathbb{Z}/p\mathbb{Z}.$
 - \circ То есть всего получаем p различных поворотов.

• Рассмотрим произвольную раскраску $c: \mathbb{Z}/p\mathbb{Z} o [1..a]$ точек окружности в a цветов.

Простой частный случай задачи о каруселях

- Докажем, что для раскраски c выполнено ровно одно из следующих двух утверждений:
 - либо раскраска не изменяется ни при каком повороте (и тогда цвета всех точек одинаковы);
 - \circ либо все p возможных поворотов приводят к различным раскраскам.
- Пусть раскраска c не изменилась при повороте на угол $\frac{2\pi k}{p}$, где 0 < k < p.
 - \circ Тогда $c(0) = c(k) = c(2k) = \cdots = c((p-1)k)$.
 - \circ Заметим, что $0,k,2k,\ldots,(p-1)k$ это все элементы кольца $\mathbb{Z}/p\mathbb{Z}.$
 - \circ Следовательно, цвета всех точек при раскраске c одинаковы.
- Всего есть a^p различных раскрасок помеченных точек. Среди них есть a одноцветных. Остальные a^p-a раскрасок разбиваются на $\frac{a^p-a}{p}$ классов эквивалентности, по p раскрасок в каждом.
- Итого, получаем $\frac{a^p-a}{p}+a$ раскрасок с точностью до поворота.

Следствие (Малая теорема Ферма)

Дискретная математика. Глава 9. Перечисление непомеченных объектов. А.В. Пастор

ullet Пусть $a\in\mathbb{N}$ и $p\in P$. Тогда $a^p-a\equiv 0\pmod p$.

Лемма Бернсайда о подсчете числа орбит.

Лемма Бернсайда

Определение

Пусть задано действие группы A на множестве X. Тогда для любого $lpha \in A$:

- $\mathrm{Fix}(lpha) \stackrel{\mathrm{def}}{=} \{x \in X \mid lpha x = x\}$ множество неподвижных точек элемента lpha:
- элементы множества $\mathrm{Fix}(\alpha)$ неподвижные точки элемента α .

Неподвижные точки:

- ullet Для $lpha\in A$: $Fix(lpha)=\{x\in X\mid lpha x=x\}$
- Это элементы, которые элемент lpha оставляет на месте

Стабилизатор:

- Для $x \in X$: $St(x) = \{ lpha \in A \mid lpha x = x \}$
- Это подгруппа элементов, фиксирующих $oldsymbol{x}$

Утверждение

$$\sum_{lpha\in A}|\mathrm{Fix}(lpha)|=\sum_{x\in X}|\mathrm{St}(x)|.$$

Доказательство

Обе части равны $|\{(lpha,x)\in A imes X\mid lpha x=x\}|.$

Теорема (Лемма Бернсайда)

Количество орбит действия группы A на множестве X равно:

$$\frac{1}{|A|} \sum_{\alpha \in A} |\operatorname{Fix}(\alpha)|.$$

Доказательство

Присвоим каждому элементу $x \in X$ вес $w(x) \stackrel{\mathrm{def}}{=} \frac{1}{|\langle x
angle|}.$

• Тогда сумма весов элементов любой орбиты равна 1.

• Следовательно, сумма весов всех элементов множества X равна количеству орбит (обозначим его N).

$$N = \sum_{x \in X} w(x) = \sum_{x \in X} rac{1}{|\langle x
angle|} = \sum_{x \in X} rac{|St(x)|}{|\langle x
angle||St(x)|} = rac{1}{|A|} \sum_{lpha \in A} | ext{Fix}(lpha)|.$$

Замечание

Доказанное выше утверждение обычно называют **леммой Бернсайда**. Но оно было известно и ранее. Сам William Burnside в своей книге "Theory of Groups of Finite Order" 1897 года называл первооткрывателем этой леммы Фробениуса. Однако, судя по всему, это утверждение было известно ещё раньше.

Задача о числе раскрасок n точек на окружности с точностью до поворота. Решение для общего случая.

Теорема

Пусть $a,n\in\mathbb{N}$. Тогда существует ровно $\sum_{d\mid n} \frac{\phi\left(\frac{n}{d}\right)a^d}{n}$ раскрасок n точек на окружности в a цветов, если раскраски, отличающиеся друг от друга поворотом окружности, считаются одинаковыми.

Доказательство

- Как и ранее, занумеруем точки на окружности элементами кольца $\mathbb{Z}/n\mathbb{Z}.$
- Пусть $X=\{c\mid c: \mathbb{Z}/n\mathbb{Z} o [1..a]\}$ множество всех раскрасок точек в a цветов.
- Повороты окружности можно рассматривать как действие циклической группы C_n порядка n на этом множестве.
 - \circ Пусть образующая arepsilon группы C_n соответствует повороту на угол $rac{2\pi}{n}.$
 - \circ Тогда элемент ε^k соответствует повороту на угол $\frac{2\pi k}{n}$.
- Пусть раскраска c является неподвижной точкой для элемента $arepsilon^k.$

• Докажем, что раскраска c является d-периодичной, где $d=\gcd(k,n)$ (т. е. $orall i\,(c(i)=c(i+d))$).

Задача о каруселях: общий случай

- Пусть d=sk+tn линейное представление $\gcd(k,n)$.
- Тогда c(i)=c(i+sk)=c(i+sk+tn)=c(i+d).
- Обратно, любая d-периодичная раскраска, очевидно, является неподвижной точкой для элемента ε^k .
- Итак, $\mathrm{Fix}(arepsilon^k)$ это в точности множество всех d-периодичных раскрасок, где $d=\gcd(k,n)$.
- Тогда $|\mathrm{Fix}(arepsilon^k)|=a^d$, поскольку любая d-периодичная раскраска однозначно задаётся цветами точек $0,1,\ldots,d-1$.
- Следовательно, по лемме Бернсайда, число раскрасок с точностью до поворота равно:

$$rac{1}{n}\sum_{k=0}^{n-1}a^{\gcd(k,n)}.$$

- Далее, запишем числа k и n в виде $k=k_1d$ и $n=n_1d$. Тогда $\gcd(k_1,n_1)=1.$
 - \circ То есть число k_1 можно выбрать $\phi(n_1)$ способами.
 - ullet Следовательно, существует ровно $\phi\left(rac{n}{d}
 ight)$ таких k, что $d=\gcd(k,n)$.
- Таким образом, число раскрасок равно:

$$rac{1}{n}\sum_{k=0}^{n-1}a^{\gcd(k,n)}=\sum_{d|n}rac{\phi\left(rac{n}{d}
ight)a^d}{n}.$$

Задача о числе раскрасок п точек на окружности с точностью до поворота и осевой симмет рии. Решение для общего случая.

Теорема

Пусть $a,n\in\mathbb{N}$. Обозначим через B(n,a) количество раскрасок n точек на окружности в a цветов, если раскраски, отличающиеся друг от друга поворотом окружности или осевой симметрией, считаются одинаковыми. Тогда:

•
$$B(n,a)=rac{1}{2n}\sum_{d|n}\phi\left(rac{n}{d}
ight)a^d+rac{a^m}{2}$$
, при $n=2m-1$;
• $B(n,a)=rac{1}{2n}\sum_{d|n}\phi\left(rac{n}{d}
ight)a^d+rac{a^m(a+1)}{4}$, при $n=2m$.

•
$$B(n,a)=rac{1}{2n}\sum_{d|n}\phi\left(rac{n}{d}
ight)a^d+rac{a^m(a+1)}{4}$$
, при $n=2m$.

Доказательство

В отличие от предыдущей теоремы, здесь нужно рассматривать на множестве всех раскрасок действие группы D_n .

- D_n это группа самосовмещений правильного n-угольника или диэдральная группа.
- В этой группе 2n элементов: n из них соответствуют поворотам, оставшиеся n — осевым симметриям.
- Также эту группу можно представлять себе как группу автоморфизмов цикла на n вершинах.

Задача об ожерелье: общий случай

• Мы уже знаем, что число неподвижных точек поворота на угол $\frac{2\pi k}{n}$ равно $a^{\gcd(k,n)}$

Неподвижные точки для осевой симметрии

- При n=2m-1 любая ось симметрии проходит через одну из отмеченных точек. Остальные 2m-2 точки разбиваются на пары симметричных. Точки в каждой паре должны быть одного цвета. Итого, нам нужно выбрать цвета m точек: по одной точке в каждой паре и точки, лежащей на оси симметрии. Таких раскрасок a^m .
- При n=2m оси симметрии бывают двух видов: $rac{n}{2}$ осей не проходят через отмеченные точки и $\frac{n}{2}$ проходят через две отмеченные точки.

- В первом случае раскраска однозначно задаётся выбором цветов m точек, а во втором выбором цветов m+1 точки.
- То есть в первом случае получаем a^m раскрасок, а во втором a^{m+1} .

Итог

• Тогда при n=2m-1 получаем, что:

$$B(n,a) = rac{1}{2n} \sum_{k=0}^{n-1} a^{\gcd(k,n)} + rac{na^m}{2}.$$

• А при n=2m получаем:

$$B(n,a) = rac{1}{2n} \sum_{k=0}^{n-1} a^{\gcd(k,n)} + rac{n}{2} a^m + rac{n}{2} a^{m+1}.$$

Асимптотика числа графов с точностью до изоморфизма. Эквивалентность \$g_n

 $\sim g_n^{(0)}$ —без доказательства.

Асимптотика числа графов с точностью до изоморфизма

- Введем следующие обозначения:
 - G_n число помеченных графов на n вершинах;
 - $\circ \ g_n$ число графов на n вершинах с точностью до изоморфизма.
- Мы уже знаем, что $G_n=2^{rac{n(n-1)}{2}}.$
- Оказывается, что g_n примерно в n! раз меньше.
 - Неформально это означает, что почти у всех графов группа автоморфизмов тривиальна (т.е. состоит из единственного элемента: тождественного преобразования).

Теорема

$$g_n \sim rac{G_n}{n!} = rac{2^{rac{n(n-1)}{2}}}{n!}.$$

Доказательство

- Пусть G_n множество всех помеченных графов на множестве вершин V = [1..n].
- Как и ранее, рассмотрим следующее действие группы S_n на множестве G_n :
 - ullet для любых $\sigma \in S_n$ и $H \in G_n$ обозначим через σH граф с

$$V(\sigma H) = V$$
 и $E(\sigma H) = \{\sigma(x)\sigma(y) \mid xy \in E(H)\}.$

Неподвижные точки

- Нам нужно посчитать число неподвижных точек для перестановки $\sigma \in S_n.$
- Для этого рассмотрим множество $V^{(2)}$ двухэлементных подмножеств множества V.
 - \circ Другими словами, $V^{(2)}$ это множество рёбер полного графа K_n на множестве вершин V.
- Заметим, что группа S_n действует также и на множестве $V^{(2)}$:

$$\sigma \cdot xy \stackrel{\mathrm{def}}{=} \sigma(x)\sigma(y).$$

Тем самым, каждая перестановка $\sigma\in S_n$ индуцирует перестановку $\sigma'\in S(V^{(2)})$, а группа S_n индуцирует подгруппу $S_n^{(2)}\subset S(V^{(2)})$, состоящую из всех перестановок множества $V^{(2)}$ вида σ' .

- ullet Группа $S_n^{(2)}$ называется парной группой группы $S_n.$
- ullet Фактически, мы построили гомоморфизм групп $S_n o S(V^{(2)}).$
- \circ Группа $S_n^{(2)}$ это образ данного гомоморфизма.
- \circ Нетрудно проверить, что при n>2 группы S_n и $S_n^{(2)}$ изоморфны.

Рёберные циклы

• Для перестановки $\sigma \in S_n$ нас будут интересовать циклы соответствующей ей перестановки $\sigma' \in S_n^{(2)}$. Эти циклы мы будем называть рёберными циклами перестановки σ .

Свойства графов

- Заметим, что граф $G \in G_n$ является неподвижной точкой для перестановки $\sigma \in S_n$, если и только если для любого рёберного цикла C перестановки σ либо $C \subset E(G)$, либо $C \cap E(G) = \emptyset$.
- Тем самым, $|\mathrm{Fix}(\sigma)|=2^{q(\sigma)}$, где $q(\sigma)$ число рёберных циклов перестановки σ .
- Тогда по лемме Бернсайда:

$$g_n = rac{1}{n!} \sum_{\sigma \in S_n} 2^{q(\sigma)}.$$

Оценка $q(\sigma)$

- Обозначим через $S_{n,k}$ множество перестановок из S_n , имеющих ровно n-k неподвижных точек.
- Пусть $g_n^{(k)} = rac{1}{n!} \sum_{\sigma \in S_{n,k}} 2^{q(\sigma)}$. Тогда:

$$g_n = \sum_{k=0}^n g_n^{(k)}.$$

- ullet Очевидно, что $g_n^{(0)} = rac{1}{n!} 2^{rac{n(n-1)}{2}}.$
- ullet То есть нам нужно доказать, что $g_n \sim g_n^{(0)}.$

Лемма

• Если $\sigma \in S_{n,k}$, то:

$$q(\sigma) \leq C_n^2 + rac{1}{2}(k-nk+rac{k^2}{2}).$$

Итог

- Заметим, что $|S_{n,k}| \leq C_n^k \cdot k! = rac{n!}{(n-k)!} \leq n^k.$
- Тогда:

$$g_n^{(k)} \leq rac{1}{n!} |S_{n,k}| 2^{rac{n(n-1)}{2} + rac{1}{2}(k-nk+k^2)} \leq g_n^{(0)} \cdot n^k \cdot 2^{rac{1}{2}(k-nk+k^2)}.$$

• Следовательно:

$$1 \leq rac{g_n}{g_n^{(0)}} \leq \sum_{k=0}^n n^k \cdot 2^{rac{1}{2}(k-nk+k^2)}.$$

• При $n o \infty$:

$$rac{g_n}{g_n^{(0)}}
ightarrow 1.$$

• Таким образом:

$$g_n \sim g_n^{(0)} = rac{G_n}{n!} = rac{2^{rac{n(n-1)}{2}}}{n!}.$$