1. A compound of the formula (I) or a salt thereof

(l)

$$R^{4}$$
 R^{1}
 X^{1}
 X^{2}
 $C^{1}(C^{2})_{q}(C^{3})_{o}^{-}[L_{p}-R^{3}]_{v}$
 R^{2}

in which

DOFFICHT DEFINITION OF THE PROPERTY OF THE PRO

20

25

 X^1 is a divalent unit selected from the group consisting of O, S(O)_n, NH, N[L_p - \mathbb{R}^3];

 X^2 is a straight-chain or branched (C_1 - C_6)-alkylene, (C_2 - C_6)-alkenylene or (C_2 - C_6)-alkynylene chain which is substituted by w halogen atoms and by k radicals [L_p - R^3];

15 $C^1(C^2)_q(C^3)_o$ is a mono-, bi- or tricyclic radical, where

- e) the rings C¹, C² and C³ are in each case a 3- to 8-membered, saturated or partially saturated ring selected from the group consisting of cycloalkyl, cycloalkenyl, oxiranyl and oxetanyl,
- f) the rings C¹, C² and C³ are in each case linked to each other via one or two joint atoms;

R¹ and R² independently of one another are hydrogen, mercapto, nitro, cyano, halogen, thiocyanato, (C_1-C_6) -alkyl-CO-O, (C_1-C_6) -alkyl-S(O)_n-O, (C_1-C_6) -alkyl-S(O)_n, di- (C_1-C_6) -alkyl-NH-SO₂, (C_1-C_6) -alkyl-SO₂-NH, (C_1-C_6) -alkyl-NH-CO, (C_1-C_6) -alkyl-SO₂-[(C_1-C_6) -alkyl]amino, (C_1-C_6) -alkyl-CO- $((C_1-C_6)$ -alkyl)amino, 1,2,4-triazol-1-yl, (C_1-C_6) -alkyl-O-CH₂, (C_1-C_6) -alkyl-S(O)_n-CH₂, (C_1-C_6) -alkyl-NH-CH₂, $[(C_1-C_6)$ -alkyl]₂N-CH₂, 1,2,4-triazol-1-yl-CH₂, or are (C_1-C_6) -alkyl-(D)_p, (C_2-C_6) -alkenyl-(D)_p,

 (C_2-C_6) -alkynyl- $(D)_p$, (C_3-C_9) -cycloalkyl- $(D)_p$, (C_3-C_9) -cycloalkenyl- $(D)_p$, (C_1-C_6) -alkyl- (C_3-C_9) -cycloalkyl- $(D)_p$ or (C_1-C_6) -alkyl- (C_3-C_9) -cycloalkenyl- $(D)_p$, each of which is substituted by v radicals selected from the group consisting of cyano, nitro and halogen;

5

 R^3 is hydrogen, hydroxyl, halogen, mercapto, amino, nitro, a carbon-containing radical or, if p in X¹ is zero, R³ is oxo, NR⁸, N-OR⁸ or N-NR⁸R⁹;

D is oxygen ar sulfur;

is in each case straight-chain or branched $A_p-[C(R^6)_2]_w-[A_p-C(R^6)_2]_x-A_p$ or A_p-M-A_p ;

with the proviso that 2 or 3 of the variable terms p, w and x shall not simultaneously be zero;

is a divalent unit selected from the group consisting of O, S(O)n, NH, N-Α (C₁-C₆)-alkyl, N-(C₂-C₆)-alkenyl and N-(C₂-C₆)-alkynyl;

is (C_1-C_6) -alkylene, (C_2-C_6) -alkenylene or (C_2-C_6) -alkynylene, each of which M is substituted by w radicals R⁶:

is OR^7 , (C_1-C_4) -alkylthio, halo- $(C_1-\dot{C}_4)$ -alkylthio, (C_1-C_4) -alkenylthio, halo- $(C_2-\dot{C}_4)$ -alkylthio, halo- $(C_3-\dot{C}_4)$ -alkylthio, ha R^4 C_4)-alkenylthio, (C_2 - C_4)-alkynylthio, halo-(C_2 - C_4)-alkynylthio, (C_2 - C_4)-alkylsulfinyl, halo-(C₂-C₄)-alkylsulfinyl, (C₂-C₄)-alkenylsulfinyl, halo-(C₂-C₄)-alkenylsulfinyl, (C₂-C₄)alkynylsulfinyl, halo- (C_2-C_4) -alkynylsulfinyl, $(C_1 \setminus C_4)$ -alkylsulfonyl, halo- (C_1-C_4) alkylsulfonyl, (C_2 - C_4)-alkenylsulfonyl, halo-(C_2 - O_4)-alkenylsulfonyl, (C_2 - C_4)alkynylsulfonyl, halo-(C₂-C₄)-alkynylsulfonyl, cyano, cyanato, thiocyanato, halogen or

phenylthio;

 R^5 is hydrogen, tetrahydropyran-3-yl, tetrahydropyran-4-yl, tetrahydrothiopyran-3-yl, (C_1-C_4) -alkyl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -alkoxy- (C_1-C_4) - $(C_1-C_$

20

25

[=

alkyl, (C_1-C_4) -alkylcarbonyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkylthio, phenyl, the eight last-mentioned groups being substituted by v radicals selected from the group consisting of halogen, (C_1-C_4) -alkylthio and (C_1-C_4) -alkoxy, or two radicals R^5 bonded to a joint carbon atom form a chain selected from the group consisting of OCH_2CH_2O , $OCH_2CH_2CH_2O$, SCH_2CH_2S and $SCH_2CH_2CH_2S$, this group being substituted by w methyl groups, or two radicals R^5 bonded to directly adjacent carbon atoms, together with the carbon atoms to which they are attached, form a 3- to 6-membered ring which is substituted by w radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -alkylthio and (C_1-C_4) -alkoxy;

R⁶ is (C₁-C₄)-alkyl, halogen, cyano or nitro;

R⁷ is hydrogen, (C_1-C_4) -alkyl, halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, formyl, (C_1-C_4) -alkylcarbonyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkylaminocarbonyl, di- (C_1-C_4) -alkylaminocarbonyl, (C_1-C_4) -alkylsulfonyl, halo- (C_1-C_4) -alkylsulfonyl, benzoyl or phenylsulfonyl, the two last-mentioned groups being substituted by v radicals selected from the group consisting of (C_1-C_4) -alkyl, halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halo- (C_1-C_4) -alkoxy, halogen, cyano and nitro;

R⁸ is hydrogen, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_8) -cycloalkyl, aryl, aryl- (C_1-C_6) -alkyl, heteroaryl, heterocyclyl, halo- (C_1-C_4) -alkyl;

is hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₉)-cycloalkyl, aryl, aryl-(C₁-C₆)-alkyl, heteroaryl, heterocyclyl, halo-(C₁-C₄)-alkyl, or, if R⁸ and R⁹ are bonded to one atom or to two directly adjacent atoms, they together with the atoms to which they are bonded form a saturated, partially or fully unsaturated five-to six-membered ring which contains p hetero atoms selected from the group consisting of oxygen, nitrogen and sulfur;

Y is a divalent unit selected from the group consisting of O, S, N-H, N-(C_1 - C_4)-alkyl, CHR⁵ and C(R⁵)₂;

5

20

F. L. I. I. I. W. W. L.

30

- Z is a divalent unit selected from the group consisting of O, S, SO, SO₂, N-H, N- (C_1-C_4) alkyl, CHR⁵ and C(R⁵)₂;
- 5 m and n \setminus are each 0, 1 or 2;

o, p and q are each 0 or 1;

w and x are each 0, 1, 2, 3 or 4;

v is 0, 1, 2 or 3.

- 2. A benzoylcyclohexanedione as claimed in claim 1, in which
- X¹ is a divalent unit selected from the group consisting of O, S and NH;
- R¹ is chlorine, bromine, fluorine, methyl, ethyl, cyano, nitro, halo-(C₁-C₂)-alkyl;
- R² is halogen, halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkylsulfenyl, (C_1-C_4) -alkylsulfonyl or nitro;
- R^5 is (C_1-C_4) -alkyl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, (C_1-C_4) -alkylcarbonyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkylthio, phenyl, or two radicals R^5 bonded to a joint carbon atom form a chain selected from the group consisting of OCH_2CH_2O , $OCH_2CH_2CH_2O$, SCH_2CH_2S and $SCH_2CH_2CH_2S$, this group being substituted by w methyl groups, or two radicals R^5 bonded to directly adjacent carbon atoms form a bond or, together with the carbon atoms to which they are attached, form a 3- to 6-membered ring which is substituted by w radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -alkylthio and (C_1-C_4) -alkoxy;
- R⁸ is hydrogen, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₈)-cycloalkyl, aryl, aryl-(C₁-C₆)-alkyl, halo-(C₁-C₄)-alkyl,

20

25

3. A benzoylcyclohexanedione as claimed in claim 1, in which X^2 is a straight-chain or branched (C_1 - C_4)-alkylene, (C_2 - C_4)-alkynylene chain, each of which is substituted by w halogen atoms;

R³ is

- a) hydrogen, hydroxyl, hallogen, mercapto, amino, nitro, cyano, formyl,
- b) phenyl, oxazolyl, furanyl or tetrahydropyrrolyl, each of which is substituted by w radicals selected from the group consisting of halogen, cyano, (C₁-C₄)-alkyl, halo-(C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halo-(C₁-C₄)-alkylthio, halo-(C₁-C₄)-alkylthio and R¹⁰,
- (R¹¹)(C₁-C₄)-alkylamino, (R¹¹)₂ amino, R¹¹-oxycarbonyl, R¹¹-carbonyl, R¹¹-carbonyloxy; (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkynyl, (C₁-C₆)-alkyl, (C₃-C₉)-cycloalkyl, (C₃-C₉)-cycloalkyl, (C₃-C₉)-cyloalkenyl, (C₁-C₆)-alkoxy or (C₁-C₆)-alkylthio, each of which is substituted by v radicals selected from the group consisting of formyl, halogen, cyano, nitro, (C₁-C₄)-alkylamino, (C₁-C₄)-dialkylamino, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkylcarbonyl, (C₁-C₄)-alkylcarbonyloxy, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, halo-(C₁-C₄)-alkyl, (C₁-C₄)-alkylthio, halo-(C₁-C₄)-alkylthio, (C₁-C₄)-alkoxy;
- d) a radical of the formula Va, Vb, Vc, Vd, Vj or Vp, or
- e) if p is zero, oxo, NR⁸, N-OR⁸ or N-NR⁸R⁹;
- is hydrogen, (C₁-C₄)-alkylsulfonyl, benzoyl or phenylsulfonyl, the two last-mentioned groups being substituted by v radicals selected from the group consisting of (C₁-C₂)-alkyl, halo-(C₁-C₂)-alkyl, (C₁-C₂)-alkoxy, halo-(C₁-C₂)-alkoxy, halo-equal to the group consisting of (C₁-C₂)-alkyl, halo-(C₁-C₂)-alkyl, (C₁-C₂)-alkoxy, halo-equal to the group consisting of (C₁-C₂)-alkyl, halo-equal to the group consisting consisting of (C₁-C₂)-alkyl, halo-equal to the group consisting consistin

5

[] [] [] 20

- R^{11} is hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl or (C₃-C₈)-cycloalkyl.
- 5 4. A benzoylcyclohexanedione as claimed in claim 1, in which
 - X¹ is the divalent unit O;
 - R^4 is OR^7 , (C_1-C_4) -alkylthio, (C_2-C_4) -alkenylthio, (C_1-C_4) -alkylsulfonyl, cyano, cyanato, thiocyanato, or else phenylthio which is substituted by v radicals selected from the group consisting of halogen, (C_1-C_2) -alkyl, (C_1-C_2) -alkoxy, halo- (C_1-C_2) -alkoxy and nitro;
 - R⁵ is hydrogen, (C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkylthio, phenyl, or two radicals R⁵ bonded to directly adjacent carbon atoms, together with the carbon atoms to which they are bonded, form a substituted 3- to 6-membered ring;
 - R¹² is hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, or, if R¹¹ and R¹² are bonded to one atom or to two directly adjacent atoms, they together with the atoms to which they are bonded form a saturated, partially or fully unsaturated five- to six-membered ring which contains p hetero atoms selected from the group consisting of oxygen, nitrogen and sulfur;
 - Y is a divalent unit selected from the group consisting of CHR⁵ and C(R⁵)₂, and
 - Z is a divalent unit selected from the group consisting of O, S, SO₂, N-(C₁-C₄)-alkyl, CHR⁵ and $C(R^5)_2$.
- 5. A benzoylcyclohexanedione as claimed in claim 1, in which 30 R² is halogen, halo-(C₁-C₂)-alkyl or (C₁-C₂)-alkyl sulfonyl;

1. (.) (.) (.) (.) (.)

20

- R^5 is (C_1-C_4) -alkyl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -alkylthio, phenyl, or two radicals R^5 bonded to directly adjacent carbon atoms together with the carbon atoms to which they are attached form a substituted 3- to 6-membered ring;
- 5 R⁷ is hydrogen, (C₁-C₄)-alkylsulfonyl, benzoyl or phenylsulfonyl, and
 - R⁸ is hydrogen, methyl or ethyl, and
 - R² is in the 4-position of the phenyl ring.
 - 6. A benzoylcyclohexanedione as claimed in claim 1, in which
 - X^2 is a straight-chain or branched (C₁-C₄)-alkylene, (C₂-C₄)-alkenylene or (C₂-C₄)-alkynylene chain;
 - R¹ is chlorine, bromine, methyl, trifluoromethyl, cyano or nitro;
 - R² is chlorine, bromine, methylsulfonyl, ethylsulfonyl, trifluoromethyl or nitro;
 - R^4 is OR^7 , (C_1-C_4) -alkylthio, (C_2-C_4) -alkenylthio or phenylthio;
 - R⁵ is hydrogen, (C₁-C₄)-alkyl, or two radicals R⁵ bonded to directly adjacent carbon atoms together with the carbon atoms to which they are attached form a substituted 3- to 6-membered ring;
- 25 A is a divalent unit selected from the group consisting of O, S(O)_n, NH and N-(C₁-C₆)-alkyl;
 - M is (C₁-C₆)-alkylene;
- 30 Y and Z independently of one another are a divalent unit selected from the group consisting of CHR⁵ and C(R⁵)₂.

50h R²10

10

- 7. A herbicidal composition which comprises a herbicidally active content of at least one compound of the formula (I) as claimed in claim 1.
- 8. A herbicidal composition as claimed in claim 7 in mixture with formulation auxiliaries.
- 9. A method of controlling undesired plants, which comprises applying an effective amount of at least one compound of the formula (I) as claimed in claim 1 or of a herbicidal composition as claimed in claim 7 or 8 to the plants or to the site of the undesired plant growth.
- 10. The use of compounds of the formula (I) as claimed in claim 1 or of herbicidal compositions as claimed in claim 7 or 8 for controlling undesired plants.
- 11. The use as claimed in claim 10, wherein the compounds of the formula (I) are employed for controlling undesired plants in crops of useful plants.
- 12. The use as claimed in claim 11, wherein the useful plants are transgenic useful plants.

20

13. A compound of the formula (IIIa)

25

in which T is (C_1-C_4) -alkoxy, hydroxyl or halogen and R^1 , R^2 , R^3 , X^1 , X^2 , C^1 , C^2 , C^3 , L, o, p, q and v have the meanings stated in claim 1) with the exception of compounds in which C^1 are oxiranyl or oxetanyl and the variable terms o and q are both simultaneously zero.

