Organic Reactions

Organic Reactions

VOLUME 10

EDITORIAL BOARD

ROGER ADAMS, Editor in Chief

ARTHUR C COPE

DAVID Y CURTIN A H BLATT

VIRGIL BOEXELHEIDE FRANK C McGREW CARL NIDMANN

ADVISORY BOARD

LOUIS F FIESES JOHN R JONYSON

> HARDED R. SHYDER ASSOCIATE EDITORS

RAPHAEL PAPPO FREST D BERGMANY

DANTE GINSBURG STANLEY M PARMERTER ROBERT R PHILLIPS

FORMER MEMBERS OF THE BOARD,

NOW DECEASED WEENER F. RACHMANN HOMER ADRING

NEW YORK JOHN WILEY & SONS, INC. LONDON · CHAPMAN & HALL, LIMITED

COPYRIGHT © 1959 BY ROGER ADAMS

All Rights Reserved

This book or any part thereof must not be reproduced in any form without the written permission of the publisher.

Library of Congress Catalog Card Number: 42-20265
PRINTED IN THE UNITED STATES OF AMERICA

PREFACE TO THE SERIES

In the course of nearly every program of research in organic chemistry the investigator finds at necessary to use several off the better-known synthetic reactions. To discover the optimum conditions for the application of even the most familiar one to a compound not previously subjected to the reaction often requires an extensive search of the literature; even then a series of experiments may be necessary. When the results of the investigation are published, the synthesis, which may have required months of work, is usually described without comment. The background of knowledge and experience gained in the literature search and experimentation is thus lost to those who subsequently have occasion to apply the general method. The student of preparative organic chemistry faces similar difficulties. The textbooks and laboratory manuals furnish numerous examples of the application of various syntheses, but only rarely do they convey an accurate conception of the scope and usefulness of the processes.

For many years American organic chemists have discussed these problems. The plan of compiling critical discussions of the more important reactions thus was evolved. The volumes of Organic Reactions are collections of chapters each devoted to a single reaction, or a definite phase of a reaction, of wide applicability. The authors have had experience with the processes surveyed The subjects are presented from the preparative viewpoint, and particular attention is given to limitations, interfering influences, effects of structure, and the selection of experimental techniques. Each chapter includes several detailed procedures illustrating the significant modifications of the method Most of these procedures have been found satisfactory by the author or one of the editors. but unlike those in Organic Syntheses they have not been subjected to careful testing in two or more laboratories. When all known examples of the reaction are not mentioned in the text, tables are given to list compounds which have been prepared by or subjected to the reaction. Every effort has been made to include in the tables all such compounds and references; however, because of the very nature of the reactions discussed and their frequent use as one of the several steps of syntheses in which not all of the intermediates have been isolated, some instances may well have been missed. Nevertheless, the investigator will be able

to use the tables and their accompanying bibliographies in place of most or all of the literature search so often required.

Because of the systematic arrangement of the material in the chapters and the entries in the tables, users of the books will be able to find information desired by reference to the table of contents of the appropriate chapter. In the interest of economy the entries in the indices have been kept to a minimum, and, in particular, the compounds listed in the tables are not repeated in the indices.

The success of this publication, which will appear periodically, depends upon the cooperation of organic chemists and their willingness to devote time and effort to the preparation of the chapters. They have manifested their interest already by the almost unanimous acceptance of invitations to contribute to the work. The editors will welcome their continued interest and their suggestions for improvements in *Organic Reactions*.

CONTENTS

CHAPTER	PAG
1 THE COUPLING OF DISCOSION SALTS WITH ALIPHATIC CARBON ATOMS-Stonley M. Parmerter	
2 THE JAPP-KLINGEMANN REACTION-Robert R Phillips	143
3. The Michael Reaction—Ernst D. Bergmann, David Ginsburg, and Raphael Pappo	179
AUTHOR INDEX, VOLUMES 1-10	557
CHAPTER INDEX, VOLUMES 1-10	559

SUBJECT INDEX, VOLUME 10

CHAPTER 1

THE COUPLING OF DIAZONIUM SALTS WITH ALIPHATIC CARBON ATOMS

STANLEY M. PARMERTER Wheaton College

CONTENTS

								PAG
INTRODUCTION				٠				
MECHANISMS OF THE REACTIONS								4
Scope and Limitations ,								7
Ketones								7
β Keto Acids, Esters, and Amides								10
Malonic Acids, Esters, and Amides								13
Arylacetic Acids and Esters								15
Nitrales								16
Sulfones								18
Nitro Compounds								19
Hydrocarbons								21
Hydrazones								24
Heterocyclic Compounds .								26
Synthetic Applications .			٠.					27
Cinnolines								27
Indazoles								29
Tetrazolium Salts -								29
Thiocarbazones .								29
Amidrazones								30
Amines								30
EXPERIMENTAL CONDITIONS			٠.					30
Diazonium Salts								30
Solvents .								81
pH .								31
Reactant Ratios			٠.					32
Time of the Reaction					٠.			32
	1							

1210
Experimental Procedures
Ethyl α,β-Dioxobutyrate α-Phenylhydrazone
Ethyl Cyanoglyoxalate m-Chlorophenylhydrazone
1-Nitro-1-p-chlorophenylhydrazonoethane
1-(p-Nitrophenylazo)-2,3-dimethyl-1,3-butadiene
N,N'-Diphenyl-C-methylformazan
4-Hydroxy-3-methylcinnolino
4-Hydroxy-5-methylenmonne
TABULAR SURVEY
Table I. Coupling of Diazonium Salts with Ketones
A. Monoketones
B. β-Ketoaldehydes
C. β.Diketones
D. Cyclic β-Diketones
E. 4-Hydroxycinnnolines from o-Aminoketones
Table II. Coupling of Diazonium Salts with β -Keto Acids, Esters, and
Amides
A R Wata Agida
A. p-reto holds
D. prixeto lateta
C. β -Keto Amides
Table III. Coupling of Diazonium Salts with Malonic Acids, Esters, and
Amides
4 Mulania Acida
A. Maiome Acids
D. Maionic Bacons
C. Malonic Amides 6
Table IV. Coupling of Diazonium Salts with Arylacetic Acids and Esters . 6
The 111 Coupling of Diagonath parts with highertrans and 220000
Table V. Coupling of Diazonium Salts with Nitriles
Those v. Coupling of Dissolution Butto With Bullottes
Table VII. Coupling of Diazonium Salts with Nitro Compounds 85 Table VIII. Coupling of Diazonium Salts with Hydrocarbons 95
Thise varie of particular parts with Hydrocarbons 7 7 7 7 7
A. Unsaturated Hydrocarbons 95
B. Compounds Containing a Reactive Methyl Group 9
C. Cinnolines from o-Aminophenylethylenes
D. 4-Hydroxycinnolines from o-Aminophenylacetylenes 103
E. Indazoles from o Toluidines
Table IX. Coupling of Diazonium Salts with Hydrazones 100
A. Simple Hydrazones
B. Hydrazones of Sugars
C. Diformarans from Hydrazones and Diamines
D. Diformazans from Dihydrazones
II. Diformazans from Dibenzalaminoguanidines
F. Hydrazones Which Couple with Elimination of a Substituent 115

DIAZONIUM	COTIDI ING	WITH	AT IDII LTIO	OI DROW	

Table X.	Coupling of Di	azonium	Salts with	Hete	rocycla	Comp	oun	ds		. 1	12
	yrazolonea . cellaneous Hete										12
D Stn	cenaneous mete	rocyclic C	compound	15					•		12
Table XI	Coupling of D	ezonium	Salte wit	h Musc	ellaneo	us Con	npou	nds			13

INTRODUCTION

A diazonium salt will couple with an aliphatic compound containing an activated carbon-hydrogen bond. This discussion is limited to those reactions in which both nitrogen atoms of the diazonium salt are retained in the resulting molecule. The discussion is further limited by the exclusion of coupling reactions which occur with the elimination of a group from an activated methanyl compound, the Japp-Klingemann reaction, as these reactions are discussed in Chanter 2.

Victor Meyer was the first to report the coupling of a diazonium salt with an activated shiphate carhon atom. I He found that benzenediazonium sulfate reacts with the sodium salt of nitroethane to give a colored product which was assigned the azo structure I.

Coupling with other nitroparsffins¹⁻³ as well as with ethyl acetoacetate^{5,7} was soon reported. A question regarding the structure of the reaction products arose when it was discovered that benzendiaronum chloride coupled with diethyl malonate to give a product identical with the bhenlyhydrachno of diethyl mesozalate [1] § 9

$$\begin{aligned} & C_{\theta}H_{\theta}N_{2}CI + CH_{2}(CO_{\theta}C_{\theta}H_{\theta})_{2} \searrow \\ & C_{\theta}H_{\theta}NHNH_{2} + CO(CO_{\theta}C_{\theta}H_{\theta})_{2} \end{aligned} \\ & C_{\theta}H_{\theta}NHNH_{2} + CO(CO_{\theta}C_{\theta}H_{\theta})_{2} \end{aligned}$$

Much of the early work with the coupling reaction was prompted by the desire to determine whether the products were of the azo or hydrazone

- 1 Mover and Ambuhl, Ber., 8, 752 (1875).
- * Meyer and Ambuhl, Ber , 8, 1073 (1875).
- Friese, Ber , 8, 1078 (1875).
- 4 Meyer, Ber., 9, 384 (1878). • Zablin, Ber., 10, 2087 (1877).
- Moyee, Ber., 10, 2075 (1877)
 Zublin, Ber., 11, 1417 (1878).
- te Meyer, Ber , 21, 118 (1888)

	PAGI
Experimental Procedures	3
Ethyl α,β-Dioxobutyrate α-Phenylhydrazone	3
	33
Ethyl Cyanoglyoxalate m-Chlorophenylhydrazone	33
1-Nitro-1-p-chlorophenylhydrazonoethane	
1-(p-Nitrophenylazo)-2,3-dimethyl-1,3-butadiene	3
N,N'-Diphenyl-C-methylformazan	34
4-Hydroxy-3-methylcinnoline	34
Tabular Survey	34
Table I. Coupling of Diazonium Salts with Ketones	35
A. Monoketones	38
B. β-Ketoaldehydes	39
C. β -Diketones	39
	43
D. Cyclic β -Diketones	40
E. 4-Hydroxycinnnolines from o-Aminoketones	3.
Table II. Coupling of Diazonium Salts with β-Keto Acids, Esters, and	
Amides	49
A. β-Keto Acids	49
B. β-Keto Esters	51
C. β-Keto Amides	58
Table III. Coupling of Diazonium Salts with Malonic Acids, Esters, and Amides	64
A. Malonic Acids	64
B. Malonic Esters	65
C. Malonic Amides	67
Table IV. Coupling of Diazonium Salts with Arylacotic Acids and Esters .	69
Table V. Coupling of Diazonium Salts with Nitriles	70
Table VI. Coupling of Diazonium Salts with Sulfones	80
Table VII. Coupling of Diazonium Salts with Sintones	83
Table VIII Coupling of Diazontum Salts with Mirro Compounds	92
Table VIII. Coupling of Diazonium Salts with Hydrocarbons	
A. Unsaturated Hydrocarbons	92
B. Compounds Containing a Reactive Methyl Group	94
C. Cinnolines from o-Aminophenylethylenes	100
D. 4-Hydroxycinnolines from o-Aminophenylacetylenes	102
E. Indazoles from o-Toluidines	103
	106
Table IX. Coupling of Diazonium Salts with Hydrazones	
A. Simple Hydrazones	106
B. Hydrazones of Sugars	115
C. Diformazans from Hydrazones and Diamines	116
D. Diformazans from Dihydrazones	117
E. Diformazana from Dibenzalaminoguanidines	118
F. Hydrazones Which Couple with Elimination of a Substituent	118

and bedeemed the T

with hydrazones. ¹³⁻¹⁹ From the observation that primary hydrazones (IV) couple readily with diazonium salts, whereas secondary hydrazones (V) do not react, ²⁵ he proposed that the first product was an N-azo compound (VI) which rearranged to give the formazan derivative VII. ⁴ A crystalline intermediate, assumed to be the N-azo compound, was solated from the reaction of benzenediazonium chloride with benzaldehyde

phenylhydrazone in alcoholic sodium acetate. 18 Evaporation of an ether solution of this compound produced a formazan.

More recent study of the reaction between benzaldshyde phenyl-hydrazone and benzenediazonum chloride has shown that the product was dependent on the pH of the reaction medium. [19-18] In a solution of pH 3, benzaldshyde p-phenylazophenylhydrazone was isolated. Reaction at pH values of 4 to 8 produced up to 66% peles of 4 benzylidene-1,3-diphenyl-1-tetrazene, whereas at a pH greater than 9 the product was N,N'C-triphenylformazan. The tetrazene changed to the formazan within a few hours at room temperature or rapidly when heated to 90°. Rearrangement also occurred in pyridine or ethanolio potassium hydroxide. The fact that no 1-phenylzon-2-naphthol was formed when the rearrangement was carried out in ethanolic potassium hydroxide containing \$\mathcal{B}_{0}phthol modes described that the reaction was intramolecular.

γ¹C₄H₃CH=NNHC₆H₄(N=NC₆H₅)·p

 $C_{s}H_{1}CH=NNHC_{s}H_{5}+C_{s}H_{1}N_{1}CI \xrightarrow{2\Pi+4} C_{s}H_{1}CH=NNC_{s}H_{5} \\ \stackrel{\wedge}{\underset{N=NC_{s}H_{5}}{\bigvee}} C_{s}H_{1}C=NNHC_{s}H_{5}$

- 13 Busch and Pfeiffer, Ber , 59, 1162 (1926).
- 14 Busch and Schmidt, Ber . 63, 1930 (1930)
- 1º Busch and Schmidt, J prakt. Chem , [2], 129, 151 (1931)
- 18 Busch and Schmidt, J prais Chem , [27, 131, 182 (1931)
- von Pechmann, Ber , 27, 1679 (1894).
 These compounds are named as derivatives of the hypothetical formaran, H_pNN=CHN=NII
 - 100 Hauptmann and Périsse, Experientia, 10, 60 (1934) [C A 49, 4554 (1955)]
 - 100 Hauptmann and Périsse, Chem. Ber , 89, 1081 (1956).

structure. It is difficult to establish with certainty the structures in such cases where two tautomeric forms are possible. However, it is generally assumed that the hydrazone is the stable form whenever coupling occurs at a methyl or methylene carbon. Recently, Wiley and Jarboe have presented ultraviolet and infrared absorption data which corroborate this view. In the limited number of compounds where coupling occurs on a methinyl carbon without the elimination of a group only the azo structure is possible.

MECHANISMS OF THE REACTIONS

Various mechanisms for the coupling reaction have been proposed. Dimroth observed that reaction occurred only with the enol forms of various ketones.⁹ He proposed that the first product was an enol ether which rearranged to give the final product. The isolation of intermediate

$$\begin{array}{c} \text{OH} \\ \downarrow \\ \text{C}_6\text{H}_5\text{N=NOH} + -\text{CH=C-} \rightarrow -\text{CH=C-} \\ \downarrow \\ \text{OH} \\ \text{ON=NC}_6\text{H}_5 \\ \end{array} \rightarrow \begin{array}{c} \text{OH} \\ \downarrow \\ \text{N=NC}_6\text{H}_5 \\ \end{array}$$

O-azo compounds in certain instances gave further support to his proposal.¹⁰⁻¹² However, these intermediates were isolated only from highly substituted aliphatic reactants such as tribenzoylmethane. It is probable that this mechanism is applicable in special cases.

When certain α,α-diarylethylenes react with diazonium salts, a crystalline intermediate can be isolated.^{13,14} This is considered to be the carbonium salt III. The salt readily loses hydrogen halide to give an

$$Ar_2C = CH_2 + Ar'N_2X \rightarrow (Ar_2CCH_2N_2Ar')^+X^- \rightarrow Ar_2C = CHN = NAr' + HX$$

azo compound. Since these intermediates have been isolated only with rather complex molecules, it may be unwise to propose their formation as part of a general mechanism for coupling with all unsaturated hydrocarbons and enols.

Busch has studied the mechanism of the reaction of diazonium salts

⁴⁶ Wiley and Jarboe, J. Am. Chem. Soc., 77, 403 (1955).

⁹ Dimroth, Ber., 40, 2404 (1907).

¹⁰ Dimroth and Hartmann, Ber., 41, 4012 (1908).

¹¹ Dimroth, Leichtlin, and Friedemann, Ber., 50, 1534 (1917).

¹² Auwers, Ann., 378, 243 (1910).

¹³ Dilthey and Blankenburg, J. prakt. Chem., [2], 142, 177 (1935).

¹⁴ Wizinger and Cyriax, Helv. Chim. Acta, 28, 1018 (1945).

Diazotized o-aminoacetophenones also couple intramolecularly with the formation of 4-hydroxycinnolines. This reaction, which is favored by a strongly acidic reaction medium, is believed to proceed through an acid-catalyzed enolization of the carbonyl group.¹⁴

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

SCOPE AND LIMITATIONS

Since the principal factor that influences this reaction is the nature of the aliphatic reactant rather than that of the diazonium salt, the following discussion is based upon the types of compounds that undergo coupling.

Ketones

Few examples of the reaction of a simple ketone with a diazonum sale have been reported. Acctone reacts with benzenediazonum chloride in alkalme solution to give a product! that was later identified as methyl formazyl ketone (IX)²⁵ The methyl group in pyruvic acid likewise reacts with two molecules of diazonium salt²⁷ When one of the hydrogen atoms of acctone is replaced by an activating group, the

$$CH_3COCH_3 + 2C_9H_8N_2CI \rightarrow C_9H_8N = NC = NNHC_9H_8$$
|
| COCH.

τx

Schofield and Simpson J Chem Soc., 1948, 1170
 Bamberger and Wulz, Ber. 24, 2793 (1891)

von Pechmann, Ber , 25, 3190 (1892)
 Bamberger and Muller, Ber , 27, 147 (1894)

However, when the tetrazene was dissolved in a cold solution of hydrogen chloride in ethanol, benzaldehyde phenylhydrazone and benzenediazonium chloride were regenerated.

Most of the current theories formulate the reaction as the direct attack of the diazonium cation on a carbanion or a carbon atom with high electron density. 10c, 19cd Tarbell has proposed such a mechanism for the reaction of a diazonium salt with nitromethane. 20 The reaction of the

$$ArN_2^+ + (CH_2NO_2)^- \rightarrow ArN = NCH_2NO_2 \Rightarrow ArNHN = CHNO_2$$

product with a second molecule of diazonium salt also was postulated as being ionic in nature.

$$\Lambda rN_2^+ + (\Lambda rN = NCHNO_2)^- \rightarrow \Lambda rN = NC = NNH\Lambda r$$
|
| NO.

Although the second reaction seems to be at variance with the experiments of Busch mentioned above, it should be noted that the facts given by Busch do not exclude the possibility of an ionic mechanism for the reaction. Since the reactions in the system appear to be reversible, the isolation of N-azo compounds and the fact that they can generate the final product do not prove that they are intermediates. An alternative explanation for the observation that secondary hydrazones, such as V above, do not react may be that the coupling reaction requires the resonance-stabilized carbanion VIIIa \leftrightarrow VIIIb.²¹

RNHN=CHR
$$\xrightarrow{\text{Base}}$$
 RN=NCHR \longleftrightarrow RNN=CHR VIII a VIII b

The diazonium salts prepared from o-aminophenylacetylenes undergo intramolecular coupling to yield 4-hydroxycinnolines. Schofield and his co-workers believe that the first step in this reaction is the coordination of the diazonium cation with one carbon atom of the acetylene, followed by the addition of hydroxyl ion to the other carbon atom.^{22,23}

$$\begin{array}{c}
\text{OH} \\
\text{C=CH} \\
\text{N=N}
\end{array}$$

¹⁹c Hunig and Boes, Ann., 579, 28 (1953).

¹⁰d Scott, O'Sullivan, and Reilly, J. Am. Chem. Soc., 75, 5309 (1953).

²⁰ Tarbell, Todd, Paulson, Lindstrom, and Wystrach, J. Am. Chem. Soc., 70, 1381 (1948).

³¹ D. S. Tarbell, private communication.

²² Schofield and Simpson, J. Chem. Soc., 1945, 520.

²³ Schofield and Swain, J. Chem. Soc., 1949, 2393.

ethoxalyl group was eliminated when 9-ethoxalylfluorene (XIII) was treated with a diazonium salt.36 The reaction of heterocyclic esters with 2 moles of a diazonium salt is a convenient preparation of C-heterocyclic formazans.36c Ethyl 2-quinolylpyruvate, for example, reacts with p-bromobenzenediazonium chloride to give a 79% yield of the formazan.

$$CH_1COCO_1C_2H_1 + 2p \cdot BrC_4H_1N_2CI \rightarrow C = NNHC_4H_4Br\cdot p$$

The only acetophenones that have been shown to undergo coupling are the o aminoacetophenones. When these amines are diazotized, reaction occurs intramolecularly to give 4-hydroxycinnolines Although this reaction is favored by the presence of electronegative groups ortho or para to the amino group, a 70-75% yield of 4-hydroxycinnoline (XIV)

could be obtained by warming a solution of diazotized o-aminoacetophenone in hydrochloric acid 37 This transformation proceeds smoothly with a variety of substituted o-aminoacetophenones. It has been extended to include o-ammophenacyl halides which give 3-halogenated 4-hydroxycinnolines.24,38 Higher homologs of o-aminoacetophenone produce the corresponding 3 alkyl-4-hydroxycinnolines.39-41

The methylene group in B-diketones reacts readily with diazonium salts. The product may be formulated as the monohydrazone of a triketone Benzovlacetone, for example, has been converted into the monophenylhy drazone XV in 90% yield.42 A variety of \$\beta\$-diketones has been employed in the same general reaction. Cyclic β -diketones, such as

- " Kuhn and Levy. Ber , 61, 2240 (1928).
- see Reed and Haffschmidt, Ann , 581, 23 (1953)
- 37 Keneford and Simpson, J Chem Soc., 1947, 917
- as Schofield Swain, and Theobald, J Chem Soc., 1949, 2399
- 19 Leonard and Boyd, J Org Chem , 21, 419 (1945).
- * Keneford and Simpson, J Chem. Soc . 1943, 354
- 41 Keneford and Simpson, J Chem Soc . 1948, 2318
- " Chattenas and Lie J Chem Soc. 1933, 450

methylene carbon is the one attacked. Compounds of this type that have been investigated include chloroacetone,²⁸ 2,4-dinitrophenyiacetone,²⁹ acetonylpyridinium bromide,³⁰ and a variety of 3-acetonyl-1,2,4-oxadiazoles,^{31,32} The product from acetonylpyridinium bromide had the betaine structure X.

$$(\mathrm{CH_2COCH_2NC_5H_5})^+\mathrm{Br^-} + ({}^{\circ}_{o}\mathrm{H_5N_2Cl} \rightarrow \mathrm{CH_2COCNC_5H_5})$$

$$\mathrm{NNC_6H_5}$$

Dieckmann reported that cyclopentane-1,2-dione reacts with benzene-diazonium chloride to give the 1-phenylhydrazone of cyclopentane-1,2,3-trione.²³ The only instance of the coupling of 2 moles of a diazonium salt with a cyclic ketone was the reaction used by Willstätter to show the presence of two active methylene groups in tropinone (XI).²⁴

The reaction of a diazonium salt with 1-ethoxalylindene (XII) produces the 1-arylazocompound.³⁵ This contrasts with the observation that the

A β -keto sulfone acid retains the acid group when it couples with a diazonium salt. \$^{8,69} For example, the phenylhydrazone XIX has been prepared in 60% yield from 2-oxo-2-phenylethane-1-sulfonic acid.

$$C_8\Pi_1COCH_1SO_3\Pi + C_8H_3N_3CI \rightarrow C_8\Pi_3COCSO_3\Pi$$

| NNHC_8H_8

XIX

The reactions of β-keto esters with dazonium salts have been studied extensively. Products from ethyl acctoacetate and over fifty different diazonium salts have been reported. Good yields of the α-hydrazones of α,β-diketo esters are obtained if 1 mole of the diazonium salt is employed. However, the use of 2 moles of benzenediazonium chlorida causes the elimination of the acetyl group to give an 80% yield of Cevarbethoxy-NN-diphenyldrongarin(XX)-19.

$$\begin{aligned} \text{CH}_{3}\text{COCH}_{2}\text{Co}_{1}\text{C}_{1}\Pi_{4} + \text{C}_{4}\Pi_{4}\text{N}_{4}\text{CI} \rightarrow \text{CH}_{3}\text{COCCO}_{4}\text{C}_{4}\Pi_{4} \\ & \text{NNHC}_{4}\text{H}_{4} \\ \text{CH}_{4}\text{COCCO}_{4}\text{C}_{4}\Pi_{4} + \text{C}_{4}\Pi_{4}\text{N}_{4}\text{CI} \rightarrow \text{C}_{4}\Pi_{4}\text{N} = \text{NCCO}_{4}\text{C}_{4}\Pi_{4} \\ & \text{NNHC}_{4}\Pi_{4} \end{aligned}$$

Diethyl oxaloacetate likewise can react with 1 or 2 moles of benzenediazonium chlorde.⁸⁻³ If 1 mole of the salt is used, the product is diethyl dioxenectante phenylhydrazone (XXI). The addition of 2 moles of diazonium salt in strongly alkeline solution causes the replacement of the ethoxalv1 group

$$c_1H_1o_1CCH_1COCO_1c_1H_3 + c_1H_1N_1CI \rightarrow c_1H_1o_1CCCOCO_1c_1H_1$$
 $NNHC_2H_1$
 $C_1H_1o_1CCCOCO_1c_1H_3 + c_1H_1N_1CI \rightarrow c_1H_1o_1CCN \rightarrow Nc_1H_3$
 $NNHC_2H_1$
 $NNHC_2H_3$

There are no reports of the elimination of groups other than acetyl and ethoxalyl when 2 moles of a diazonium salt react with a β -keto ester

⁴⁵ Parkes and Fisher, J Chem Soc , 1936, 83.

Parkes and Tineley, J. Chem. Soc., 1924, 1861.
 Bamberger and Wheelwight, J. prakt Chem. [2], 65, 125 (1902).

Winhoenus and Jensen, Ber. 25, 3443 (1882).
 Rabuschong, Bull soc chim Franci, [3], 31, 76 (1904).
 Rabischong, Bull soc chim Franci, [3], 31, 83 (1904).

cyclohexane-1,3-dione,43 methone,44-46 and indan-1,3-dione47,48 react as readily as the acyclic analogs.

$$C_6H_5COCH_2COCH_3 + C_6H_5N_3Cl \rightarrow C_6H_5COCCOCH_3$$

$$NNHC_6H_5$$

A limited number of β -keto aldehydes has been investigated.⁴⁹⁻⁵¹ In these compounds, the methylene group reacts in the same manner as in β -diketones.

β-Keto Acids, Esters, and Amides

When a β -keto carboxylic acid is treated with a diazonium salt, carbon dioxide is eliminated. The product from the reaction of benzenediazonium chloride with acctoacetic acid is the 1-phenylhydrazone of pyruvaldehyde (XVI). If 2 moles of diazonium salt are employed, methyl formazyl ketone (XVII) is the product.⁵² In carrying out this reaction, the general practice is to saponify a β -keto ester and then to add the diazonium salt solution directly to the hydrolysis mixture without isolation of the unstable β -keto acid.⁵³⁻⁵⁵

$$\label{eq:ch_3COCH_2CO_2H_2CO_2H_2N_2Cl} \begin{split} & \text{CH}_3\text{COCH} \underline{=} \text{NNHC}_6\text{H}_5 \\ & \text{NVI} \\ \\ & \text{CH}_3\text{COCH} \underline{=} \text{NNHC}_6\text{H}_5 + \text{C}_0\text{H}_5\text{N}_2\text{Cl} \rightarrow \text{C}_6\text{H}_5\text{N} \underline{=} \text{NC} \underline{=} \text{NNHC}_6\text{H}_5 \\ & \text{COCH}_3 \\ \\ & \text{COCH}_3 \\ \end{split}$$

Acctonedicarboxylic acid reacts with 2 moles of diazonium salt with the elimination of both carboxyl groups.^{50,57} The resulting product is a mesoxaldehyde diarylhydrazone (XVIII).

$$CO(CH_2CO_2H)_2 + 2ArN_2Cl \rightarrow CO(CH = NNHAr)_2$$
XVIII

- 43 Vorländer, Ann., 294, 253 (1897).
- 44 Lifschitz, Ber., 47, 1401 (1914).
- 45 Iyer and Chakravarti, J. Indian Inst. Sci., 17A, 41 (1934) [C. A., 28, 4390 (1934)].
- 46 Iyer, J. Indian Inst. Sci., 21A, Pt. 6, 65 (1938) [C. A., 33, 148 (1939)].
- 47 Wislicenus and Reitzenstein, Ann., 277, 362 (1893).
- 4 Das and Ghosh, J. Am. Chem. Soc., 43, 1739 (1921).
- 49 Beyer and Claison, Ber., 21, 1697 (1888).
- 50 Benary, Meyer, and Charisius, Ber., 59, 108 (1926).
- ⁶¹ Benary, Ber., 60, 914 (1927).
- ⁵² Bamberger and Lorenzen, Ber., 25, 3539 (1892).
- ⁶³ Japp and Klingemann, J. Chem. Soc., 53, 519 (1888).
- ⁵⁴ Japp and Klingemann, Ann., 247, 190 (1888).
- 66 Reynolds and Van Allan, Org. Syntheses, 32, 84 (1952).
- ⁵⁸ von Pechmann and Jenisch, Ber., 24, 3255 (1891).
- 67 von Pechmann and Vanino, Ber., 27, 219 (1894).

pigments. The Hansa Yellows are obtained from the reactions of acetoacetanides with varous dazonium salts "-t-* Many variations in the anilide as well as in the discornum salt have been studied in attempts to improve the color, stability, and solubility of the resulting dyes. Limitations of space preclude a survey of the extensive patent literature on this subject. However, those β-keto amides whose coupling has been reported in the general iterature are included in Table IIC. The dyes may be formulated as existing in both hydrazone (XXVI) and azo (XXVII) and b) tautoment forms.

OH

$RCOCCONHAr \Rightarrow RCCCONHAr \Rightarrow RCOCHCONHAr$

NNHAr N≔NAr N≔NAr xxv1 xxv116 xxv11b

Malonic Acids, Esters, and Amides

Malonic acid can react with 1, 2, or 3 moles of a diazonium salt. It appears that the reaction proceeds through the following steps, with decarboxylation occurring in the first and second stages.** Even when

$$CH_1(CO_1H)_1 + ArN_1X \rightarrow ArNHN = CHCO_1H$$

 $ArNHN = CHCO_2H + ArN_2X \rightarrow ArNHN = CHN = NAr$

$$ArNHN=CHN=NAr + ArN_tX \rightarrow ArNHN=C(N=NAr)_t$$

equimolecular amounts of acid and salt are used, the reaction usually gives a mixture of the first two products. The relative amounts of these substances formed depend upon the nature of the diszonium salt employed. Busch and Wolbring were able to isolate the phenylhydrazona XXVIII in Softy yield from the reaction of malonic acid with o-nitro-benzenedazonium chloride, but under similar conditions p-bromobenzenedizonium chloride gave mainly NX-di-(p-bromophenylformazan

 $\begin{array}{lll} \text{o-O_2NC_4U_4NHN=CHCO_3H} & & pBrC_4H_4NHN=CHN=NC_4H_4Br-p \\ & & \text{XXVIII} & & \text{XXIX} \end{array}$

(XXIX).74 A formazan derivative is the main product with either 1 or 2 moles of most diazonium salts.

- er Fierz-David and Ziegler, Helv Chim. Acta. 11, 776 (1928).
- ** Burr and Rowe, J Soc Dyers Colourate, 44, 205 (1928) [C. A., 22, 3400 (1928)].
- ** Rowe, Burr, and Corbibbley, J. Soc. Digret Colourate, 42, 80 (1926) [C A. 20, 1715 [1926]]
 ** von Pechmann, Ber. 25, 3175 (1892).
 - 2 Busch and Wolbring, J proli Chem , [2], 71, 366 (1903)

containing a methylene group. However, by analogy with the Japp-Klingemann reaction (p. 143), it would be expected that other acyl groups could be eliminated as well.

Diethyl acetonedicarboxylate (XXII) reacts smoothly with 1 mole of diazonium salt.^{64,65} There have been no reports of further reaction with the second methylene group present in the molecule.

$$\begin{array}{c} C_2H_5O_2CCH_2COCH_2CO_2C_2H_5 \,+\, C_6H_5N_2Cl \rightarrow C_2H_5O_2CCCOCH_2CO_2C_2H_5 \\ XXII & & \parallel \\ NNHC_6H_5 \end{array}$$

Diethyl oxalocrotonate (XXIII) may be regarded as a vinylog of diethyl oxaloacetate. Its behavior with diazonium salts depends upon the pH of the reaction mixture. When the ester is treated with excess p-bromobenzenediazonium chloride in ethanolic hydrochloric acid, the only product is the monophenylhydrazone XXIV. This product is converted into the azo derivative XXV if sodium acetate is added. The original ester reacts with 2 moles of diazonium salt in dilute ammonia with the loss of the ethoxalyl group.

The coupling of diazonium salts with β -keto anilides has been studied extensively, because the products have found use as yellow dyes and

¹¹ Balow and Höpfner, Ber., 34, 71 (1901).

⁴³ Balow and Göller, Ber., 44, 2835 (1911).

⁴⁴ Prager, Ann., 338, 360 (1905).

 $\begin{array}{c} C_1 H_1 O_1 CC H_1 CH = CH CO_1 C_1 H_1 + C_1 H_1 N_1 CI \rightarrow C_1 H_1 O_1 CC CH = CH CO_1 C_1 H_1 \\ xxxiv \end{array}$

Arylacetic Acids and Esters

The only arylacetic acid that has been observed to couple with diazonium salts is 2.4-dimitrophenylacetic acid.⁷⁷ Decarboxylation occurs as two molecules of the salt attack the α -carbon atom to yield the formazan derivative XXXVI.

Reactions of a variety of diazonum salts with methyl 2,4-dmitrophenylaphacetate have given good yields of the hydrazones of methyl 2,4dimitrophenylgyoxalate (XXXVII).**,1° These hydrazones undergo ring closure in the presence of alkali with the formation of 1-arylindazoles (XXXVIII).**

$$\begin{array}{c|c} O_{1}N & & CH_{1}CO_{2}CH_{4} & \xrightarrow{AINXA} & O_{2}N & & CCO_{2}CH_{4} & \xrightarrow{NaON} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Although diethyl homophthalate does not react with benzenediazonium chloride, homophthalac anhydrade in ethanol-chloroform solution is

Parkes and Aklis, J. Chem. Soc., 1938, 1841.
 Borenhe and Bütschli, Ann., 522, 285 (1938).

^{**} Borsche and Discont, Ann., 510, 287 (1934).

^{**} Moyer, Ber , 22, 319 (1889)

If an acidic solution of a diazonium salt is added to a solution of potassium malonate and sodium nitrite, both nitrosation and coupling take place to yield the azo derivative of formaldoxime.⁷¹

$${\rm ArN_2X} + {\rm CH_2(CO_2K)_2} \xrightarrow{{\rm NaNO_2}} {\rm ArN} = {\rm NCH} = {\rm NOH}$$

Formazyl chloride (XXX) is obtained from the reaction of 2 moles of benzenediazonium chloride with chloromalonic acid.⁷² Alkylmalonic acids are converted into formazyl alkanes (XXXI) in a similar reaction.⁷³

When malonic acid monoethyl ester reacts with a diazonium salt, carbon dioxide is eliminated with the formation of an arylhydrazone of ethyl glyoxalate (XXXII).^{74a} This hydrazone can react with a second mole of diazonium salt to give the formazan XXXIIa. It appears that the formazan is the only product isolated unless there is an o-substituent in the diazonium salt.^{19c,74b} Diethyl malonate, on the other hand, gives the arylhydrazone of diethyl mesoxalate (XXXIII).^{74c} Similarly,

$$CH_2(CO_2C_2H_5)_2 + ArN_2X \rightarrow ArNHN = C(CO_2C_2H_5)_2$$
XXXIII

malonamide and its N-substituted derivatives are converted into the hydrazones of the corresponding mesoxalamides.⁷⁵

Diethyl glutaconate (XXXIV) may be regarded as a vinylog of diethyl malonate. Henrich has studied its reactions with both 1 and 2 equivalents of diazonium salt. The use of 1 equivalent of salt gives diethyl oxoglutaconate phenylhydrazone (XXXV). A second equivalent couples at the other α-carbon atom.

⁷² Fusco and Romani, Gazz. chim. ital., 78, 419 (1946).

⁷³ Walker, J. Chem. Soc., 123, 2775 (1923).

⁷⁴a Leonard, Boyd, and Herbrandson, J. Org. Chem., 12, 47 (1947).

⁷⁴b S. Parmerter and E. J. Hodges, unpublished observations.

⁷⁴c Hantzsch and Thompson, Ber., 38, 2266 (1905).

⁷⁵ Whiteley and Yapp, J. Chem. Soc., 1927, 521.

⁷⁶ Henrich et al., Ann., 378, 121 (1910).

Ring closure to give a 71% yield of 3-cyanoindazole (XLII) takes place when o-aminophenylacetonitrile is diazotized. *** It appears that this cyclization has not been investigated with nuclear-substituted o-aminophenylacetonitriles.

Nitriles in which the cyano group is adjacent to a methinyl carbon vary in their reactions with diazonium salts. Benzylmalononitrile (ΧΙΙΙΙ),** α-cyano-y-hydroxybutyric acid lactone (ΧΙΙΙ),** 1,2,3,4-

tetrahydroacridine-4-carbonitrile (XLV), ss and α -arylsulfonylpropionitriles (XLVI) ss form the azo compounds. Ethyl α -cyanobutyrate is reported to undergo two different reactions. With this ester Favrel isolated the hydrazone XLVII formed by migration of the ethyl group,

$$\begin{array}{c} c_1H_3 \subset \operatorname{HCO}_4C_1H_4 + c_1H_4N_1 \subset I \to \\ \subset \operatorname{C}_1H_5 & c_1H_5 & c_1H_5 \\ \subset c_1H_4N_1N = \subset \operatorname{CO}_4C_2H_4 + c_4H_4N = \operatorname{NCOO}_4C_4H_4 \\ \subset \operatorname{C}_4H_4N_1 \subset \operatorname{NCOO}_4C_4H_4 & \subset \operatorname{NCOO}_4C_4H_4 \\ \subset \operatorname{NCO$$

ssb Pachorr and Hoppe, Ber , 43, 2543 (1910).

^{**} Curtin and Russell, J Am Chem Soc. 73, 4975 (1951)

** Feofilatov and Omshchenko, J Gen Chem U.S.S.R. 9, 325 (1939) [C. A., 34, 379
940]

^{**} Borsche and Mantauffel, Ann , 534, 56 (1938).

converted into the z-phenylhydrazono compound.81 Dimethyl 5-nitrohomophthalate (XXXIX) also couples, and a simultaneous ring closure produces the substituted dihydrophthalazone XL.79

$$O_{2}N \xrightarrow{CH_{2}CO_{2}CH_{2}} + C_{6}H_{5}N_{2}CI \rightarrow O_{2}N \xrightarrow{N} NC_{6}H_{5}$$

$$O_{2}N \xrightarrow{N} CO_{2}CH_{3}$$

$$O_{2}N \xrightarrow{N} CO_{2}CH_{3}$$

$$O_{3}N \xrightarrow{N} NC_{6}H_{5}$$

Nitriles

A nearly quantitative yield of ethyl cyanoglyoxalate phenylhydrazone (XLI) is obtained from ethyl cyanoacetate and benzenediazonium

$$\begin{array}{c} C_{\mathfrak{c}}H_{\mathfrak{z}}N_{\mathfrak{z}}Cl + CH_{\mathfrak{z}}CO_{\mathfrak{z}}C_{\mathfrak{z}}H_{\mathfrak{z}} \rightarrow C_{\mathfrak{c}}H_{\mathfrak{z}}NHN = CCO_{\mathfrak{z}}C_{\mathfrak{z}}H_{\mathfrak{z}} \\ \downarrow & \downarrow \\ CN & CN \\ & NLI \end{array}$$

chloride in the presence of sodium acetate or sodium carbonate.82 A variety of diazonium salts has been used in similar reactions with esters of eyanoacetic acid. Other nitriles that undergo the same type of coupling contain a methylene group between the cyano group and some other activating group. Examples are malononitrile, 83,84 cyanoacetaldehyde, 85,86 cyanoacetanilide, 74a ethyl cyanopyruvate, 86,87 nitroacetonitrile, 88,89 β -iminonitriles, 90,91 and β -sulfonitriles. 92,93 The coupling products from β -ketonitriles form chromium complexes that are dyes. 94 Cyanoacetic acid combines with 2 equivalents of benzenediazonium chloride to produce formazyl cyanide. 954

```
<sup>61</sup> Dieckmann and Meiser, Ber., 41, 3253 (1908).
```

⁸² Krückeberg, J. prakt. Chem., [2], 49, 321 (1894).

⁸³ Schmidtmann, Ber., 29, 1168 (1896).

⁸¹ Lythgoe, Todd, and Topham, J. Chem. Soc., 1944, 315.

es Claisen, Ber., 36, 3664 (1903).

⁸⁶ Borsche and Manteuffel, Ann., 512, 97 (1934).

⁸⁷ Fleischhauer, J. prakt. Chem., [2], 47, 375 (1893).

⁸⁵ Steinkopf and Bohrmann, Ber., 41, 1044 (1908). 85 Steinkopf, J. prakt. Chem., [2], 81, 193 (1910).

⁹⁰ von Meyer, J. prakt. Chem., [2], 52, 81 (1895). ²¹ von Meyer, J. prakt. Chem., [2], 78, 497 (1908).

³² Tröger and Berndt, J. prakt. Chem., [2], 102, 1 (1921).

Tröger and Wunderlich, J. prakt. Chem., [2], 101, 157 (1921).

¹⁴ Long, J. Am. Chem. Soc., 69, 990 (1947).

^{*}sa Wedekind, Ber., 30, 2993 (1897).

o-aminophenylsulfonylacetic acid (sulfazone) (XLIXd) and various diazonium salts. 183

Nitro Compounds

A nitroparaffin that has one or more hydrogen atoms on the ac-arbon atom can couple with a diazonium sait. A mixture of products is obtained from the interaction of nitromethane and benzenediazonium chlorade ¹⁸³. Nitroformaldehyde phenylhydrazone (Li) is obtained when the reaction is carried out in dilute hydrochloric acid. ¹⁸³ However, N.N'-diphenyl-C-nitroformazan (LI) is the principal product in weakly alkaline solution or even at PH 4.5.76 In alkaline solution, a third molecule of diazonium saft causes replacement of the nitro group by a phenyl group.

$$\begin{array}{c} \operatorname{CH}_{1} \operatorname{NO}_{2} \xrightarrow{\operatorname{CAH}_{2} \operatorname{NCO}} \operatorname{C}_{2} \operatorname{H}_{1} \operatorname{NHN} = \operatorname{CHNO}_{2} \xrightarrow{\operatorname{CAH}_{2} \operatorname{NCO}} \\ \operatorname{C}_{2} \operatorname{H}_{2} \operatorname{NHN} = \operatorname{CNO}_{2} \xrightarrow{\operatorname{C}_{2} \operatorname{H}_{2} \operatorname{NHN}} \xrightarrow{\operatorname{C}_{2} \operatorname{H}_{2} \operatorname{NHN}} = \operatorname{CC}_{2} \operatorname{H}_{2} \\ \operatorname{C}_{2} \operatorname{H}_{2} \operatorname{N} = \operatorname{N} & \operatorname{C}_{2} \operatorname{H}_{2} \\ \operatorname{C}_{2} \operatorname{H}_{2} \operatorname{N} = \operatorname{N} & \operatorname{C}_{2} \operatorname{H}_{2} \operatorname{NHN} = \operatorname{CC}_{2} \operatorname{H}_{2} \\ \end{array}$$

The product isolated from the reaction of nitromethane with other diazonium salts usually has been the nitroformazan derivative. **10.108**

Other primary nitroparaffins couple only once to give hydrazones of 1-nitroaldehydes, and secondary nitroparaffins yield azo compounds.

$$\begin{aligned} \text{RCH}_1\text{NO}_2 + \text{ArN}_1\text{X} &\rightarrow \text{RCNO}_2 \\ \parallel & & \parallel \\ \text{NNHAr} \\ \text{R}_2\text{CHNO}_2 + \text{ArN}_2\text{X} &\rightarrow \text{R}_2\text{CNO}_2 \\ \parallel & \parallel \\ \text{N=NAr} \end{aligned}$$

¹⁰² Claam, Ber., 45, 747 (1912)

¹⁰⁴ Bamberger, Schmidt, and Levinstein, Ber , 33, 2043 (1900).

¹⁴³ Bamberger, Ber. 27, 155 (1894)
160 Hubbard and Scott, J. Am. Chem. Soc. 65, 2390 (1943).

as well as the expected azo compound XLVIII.⁹⁹ When an acetyl group is attached at the methinyl carbon, as in ethyl α -cyanoacetoacetate, the Japp-Klingemann reaction occurs with loss of the acetyl group.¹⁰⁰

One example of the loss of the cyano group during a coupling reaction has been reported. The products isolated from the reaction of 3-methylquinoxaline-2-acetonitrile and p-chlorobenzenediazonium chloride in dilute ammonium hydroxide were the formazan (XLVIIIa) and urea.

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2}\text{CN} \end{array} + 2p\text{-ClC}_{6}\text{H}_{4}\text{N}_{2}\text{Cl} \xrightarrow{\text{NH}_{4}\text{OH}} \\ \\ \text{N} \xrightarrow{\text{C}} \\ \text{N} \xrightarrow{\text{C}} \\ \text{NNHC}_{6}\text{H}_{4}\text{Cl}\text{-}p \end{array}$$

Sulfones

A methylene group adjacent to two sulfonyl groups is attacked by a diazonium salt. The normal product is the monophenylhydrazone XLIXa even when an excess of the salt is used. However, in the reaction of p-nitrobenzenediazonium fluoroborate with various sulfones two other products, the arylazosulfone XLIXb and the tetrazolium betaine XLIXc, were isolated also. 10c

Other sulfones that couple with diazonium salts have a methylene group between a sulfonyl and some other activating group such as nitro, 19c, 102 cyano, 19c, 92, 93 carboxyl, 19c, 92 carbethoxy, 19c, 92 or carboxamide. 19c, 92 Class prepared a series of dyes from the cyclic amide of

⁹³ Favrel, Bull. eoc. chim. France, [4]. 47, 1290 (1930).

¹⁰⁰ Favrel, Bull. soc. chim. France, [3], 27, 200 (1902).

¹⁴¹ Backer, Rec. trav. chim., 70, 733 (1951).

¹⁰³ Tröger and Nolte, J. prakt. chem., [2], 101, 136 (1921).

Hydrocarbons

In this section are included aliphatic hydrocarbons and compounds containing a reactive hydrocarbon radical bonded to an aromatic ring

A number of aliphatic hydrocarbons with conjugated double bonds form monozo derivatives with diazonium salts **1..14 The yields are usually low, even with the reactive diazonium salts prepared from p-nitroaniline or 2,4-dinitroaniline Coupling occurs at the carbon atom having the highest electron density. In 1,3-butadiene this is carbon 1, whereas in 1,3-pentadiene it is carbon 4

91

$$\begin{array}{c} p\text{-}O_2NC_4H_4N_1X + CH_5CH = CHCH = CH_2 \rightarrow \\ \text{CH}_5 \\ p\text{-}O_3NC_4H_3N = XC = CHCH = CH_2 \end{array}$$

The only two monoolefins that couple are 2-methylpropene and 2-methyl2-butene 126 The cyclic hydrocarbons cyclopentadiene 127,128 and indene 118
also give monoazo derivatives

The coupling of α,α-diarylethylenes with diazonium salts was discussed above (p. 4). A similar reaction, which occurs intramolecularly when o-aminophenylethylenes are diazotized, is the Widman-Stoermer synthesis of cumolines.¹¹⁻¹¹ The scope of this reaction has been studied by

Simpson and Stephenson, 222 and by Schofield, 223 who have found that good yields of the cinnoline are obtained when R' 28 methyl or aryl and R is hydrogen. Cinnoline formation also occurs when both R and R' are aromatic However, if R' is hydrogen or carboxyl and R is aromatic,

- ns Meyer, Ber. 52, 1468 [1919]

 13 Terent'ev and Demadoss, J. Gen. Chem. U.S.S.R., 7, 2464 [1937] [C. A., 32, 2094
- (1938)].

 111 Ethner and Laus Ber , 39, 2022 (1906)

 112 Terent'ev and Gomberg, J. Gen, Chem U.S.S. R , 8, 662 (1938) [C. A., 23, 1285 (1939)].
 - 110 Widman, Ber., 17, 722 (1884).
 - 116 Stoermer and Fincke, Ber , 42, 3115 (1909) 111 Stoermer and Gaus, Ber., 65, 3104 (1912).
 - III Steermer and Gaus, Ber., as, and (1912).
 - 18 Schofield, J Chem Soc , 1949, 2408

Degradation of the molecule sometimes occurs when a nitroalcohol reacts with a diazonium salt. For example, 2-nitropropanol and benzene-diazonium chloride give formaldehyde and a 78% yield of 1-nitroacetal-dehyde phenylhydrazone. Similarly, 2-nitro-1-butanol is converted into 1-nitropropionaldehyde phenylhydrazone. If the reaction mixture from 2-nitro-1-butanol and a diazonium salt is acidified immediately, the

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CHCH}_2\text{OH} + \text{ArN}_2\text{X} \rightarrow \\ \mid & \\ \mid & \\ \text{NO}_2 \\ \\ & \text{N=NAr} \\ \mid & \\ \text{CH}_3\text{CH}_2\text{CCH}_2\text{OH} \rightarrow \text{CH}_3\text{CH}_2\text{C=NNHAr} + \text{CH}_2\text{O} \\ \mid & \\ \mid & \\ \text{NO}_2 \\ \\ \text{NO}_2 \\ \end{array}$$

2-arylazo-2-nitro-1-butanol (LII) can be isolated.¹⁰⁸ 2-Hydroxy-1-nitroparaffins couple normally to give the phenylhydrazones of 2-hydroxy-1-nitroaldehydes. However, the addition of a second mole of diazonium salt causes the elimination of aldehyde from these products.¹⁰⁷

$$\begin{array}{c} \text{RCHCH}_2\text{NO}_2 \xrightarrow{C_6\text{H}_5\text{N}_2\text{X}} \text{RCHC} = \text{NNHC}_6\text{H}_5 \xrightarrow{C_6\text{H}_6\text{N}_2\text{X}} \\ \mid \quad \mid \quad \mid \quad \quad \\ \text{OH} \qquad \qquad \text{HO} \quad \text{NO}_2 \\ \\ \text{C}_6\text{H}_5\text{N} = \text{NC} = \text{NNHC}_6\text{H}_5 + \text{RCHO} \\ \mid \quad \quad \\ \text{NO}_2 \end{array}$$

Migration of the nitro group is observed when the α-carbon atom holds two other electron-attracting substituents, one of which is a phenyl group. In these instances the nitro group migrates to the position para to the hydrazone group. (If the para position is blocked, the nitro group enters the ortho position.) Examples that have been reported include phenyldinitromethane (LIII),¹⁰⁹⁻¹¹¹ diphenylnitromethane,^{112,113} and α-nitrophenylacetonitrile,¹¹⁴

$$C_6H_5CH(NO_2)_2 + C_6H_5N_2CI \rightarrow C_6H_5C=NNH$$

IJIII

NO.

- 107 Jones and Kenner, J. Chem. Soc., 1930, 919.
- 108 Gochenour and Degering, Proc. Indiana Acad. Sci., 57, 88 (1948) [C. A., 43, 4646 (1949)].
 - 109 Ponzio, Gazz. chim. ital., 39, II, 535 (1909).
 - 110 Ponzio and Macciotta, Gazz. chim. ital., 44, I, 269 (1914).
 - 111 Ponzio and Macciotta, Gazz. chim. ital., 44, 11, 63 (1914).
 - 112 Ponzio, Gazz. chim. ital., 42, I, 525 (1912).
 - 113 Busch and Schäffner, Ber., 56, 1612 (1923).
 - 114 Ponzio and Giovetti, Gazz. chim. ital., 39, II, 546 (1909).

Hydrocarbons

In this section are included aliphatic hydrocarbons and compounds containing a reactive hydrocarbon radical bonded to an aromatic ring.

A number of aliphatic hydrocarbons with conjugated double bonds form monoazo derivatives with diazonium salts **II.**1s The yields are usually low, even with the reactive diazonium salts superpared from p-nitroaniline or 2,4 dinitroaniline. Coupling occurs at the carbon atom having the highest electron density. In I,3-butadiene this is carbon 1, whereas in I,3 pentadiene it is carbon 4

$$p \cdot O_3 \text{NC}_4 \text{H}_4 \text{N}_2 \text{X} + \text{CH}_2 \!\!=\!\! \text{CHCH} \!\!=\!\! \text{CH}_1 \!\!\to\!\! \\ p \cdot O_1 \text{NC}_4 \text{H}_4 \text{N} \!\!=\!\! \text{NCH} \!\!=\!\! \text{CHCH} \!\!=\!\! \text{CH}_2 \!\!$$

$$\begin{array}{c} p\text{-}O_2NC_4H_4N_2X + CH_3CH = CHCH = CH_2 \rightarrow \\ CH_3 \\ p\text{-}O_4NC_4H_4N = NC = CHCH = CH_4 \end{array}$$

The only two monoolefins that couple are 2-methylpropene and 2-methyl2-butene. The cyclic hydrocarbons cyclopentadiene 117,118 and indene 118
also give monoazo derivatives.

The coupling of α,α-diarylethylenes with diazonium salts was discussed above (p. 4). A similar reaction, which occurs intramolecularly when o-aminophenylethylenes are diazotized, is the Widman-Stoermer synthesis of cinnolines ¹¹¹⁻¹¹¹ The scope of this reaction has been studied by

Simpson and Stephenson,³³³ and by Schofield,¹³³ who have found that good yields of the cunnolme are obtained when R' is methyl or aryl and R is hydrogen. Cinnolme formation also occurs when both R and R' are aromatic. However, if R' is hydrogen or carboxyl and R is aromatic,

¹¹³ Meyer, Ber , 52, 1465 (1919).
¹¹⁴ Terent'ev and Demedora, J. Gen. Chem. U.S.S. R., 7, 2464 (1937) [C. A., 32, 2094 (1938)].

Fibner and Laue. Ber. 39, 2022 (1906)
 Terent'ev and Gomberg. J. Gen. Chem. U.S.S. R. 8, 662 (1938) [C. A. 33, 1285 (1939)].

¹¹⁹ Terent'ev and Gomberg, J. Gen Chem U.S.S. R. 6, 602 (1939) [C. A. 33, 1255 (1939)]
119 Widman, Ber., 17, 722 (1984).

¹⁰⁰ Stoermer and Fincke, Ber . 42, 3115 (1909).

Stoermer and Gaus, Ber., 45, 3104 (1912)
 Simpson and Stephenson, J Chem. Soc., 1942, 353

¹⁰ Schofield, J Chem Soc., 1949, 2409

the diazotized amine undergoes the Pschorr reaction to yield a phenanthrene derivative.

When p-methoxyphenylacetylene couples with 2,4-dinitrobenzenediazonium sulfate, a 69% yield of α -p-anisylglyoxal β -2,4-dinitrophenylhydrazone (LIV) is formed.¹²⁴ This reaction is similar to the synthesis

$$CH_{3}O \bigcirc C = CH + HO_{4}SN_{2} \bigcirc NO_{2} \rightarrow$$

$$CH_{3}O \bigcirc COCH = NNH \bigcirc NO_{2}$$

$$IJV$$

of 4-hydroxycinnoline (LV) from diazotized o-aminophenylacetylene.¹²⁵ In each case the elements of a hydroxyl group, derived from the aqueous reaction medium, appear in the product. This ring closure was used first

$$\begin{array}{c}
\text{OH} \\
\text{NH}_2
\end{array}$$

$$\begin{array}{c}
\text{NaNO}_2 + \text{HCI} \\
\text{NINO}_2
\end{array}$$

by von Richter to make 4-hydroxycinnoline-3-carboxylic acid from o-aminophenylpropiolic acid.¹²⁶ Recent examples of the reaction have employed nuclear substituted o-aminophenylacetylenes, o-aminophenylpropiolic acids, and o-aminodiphenylacetylene.^{23,125}

Although styrene does not react with 2,4-dinitrobenzenediazonium sulfate, p-methoxystyrene (LVI) is converted to the 2,4-dinitrophenyl-hydrazone of anisaldehyde by this reagent.¹²⁴ The same product is obtained when the dry diazonium salt is added to an alcoholic solution of anethole (LVII).¹²⁷ Acetaldehyde is eliminated in the second reaction. Other compounds that show a similar coupling with the loss of acetal-dehyde are isoeugenol,¹²⁸ isosafrole,¹²⁷ isoapiole,¹²⁷ and p-propenyl-dimethylaniline.¹²⁹ It is even possible to obtain a 60% yield of p-hydroxybenzaldehyde p-nitrophenylhydrazone from the action of dry

¹²⁴ Ainley and Robinson, J. Chem. Soc., 1937, 369.

¹²¹ Schofield and Simpson, J. Chem. Soc., 1945, 512.

¹²⁵ von Richter, Ber., 16, 677 (1883).

¹²⁷ Quilico and Freri, Gazz. chim. ital., 58, 380 (1928).

¹²⁸ Quilico and Fleischner, Gazz. chim. ital., 59, 39 (1929).

¹²⁹ Quilico and Freri, Gazz. chim. ital., 60, 606 (1930).

p-nitrobenzenediazonium sulfate on an alcoholic solution of p-propenylphenol. 130

The reaction of an $\alpha.\beta$ -unsaturated tertiary amine with a diazonium salt resembles that of an unsaturated hydrocarbon. Coupling occurs at the β -carbon atom, and the amino group is eliminated. If there is a hydrogen substituent on the β -carbon, the β -arylhydrazone of a glyoxal is obtained. However, if there is no hydrogen attached to the β -carbon, the enamine is cleaved to give the hydrazone of a ketone-fix

$$RCH=CHNR'_2 + ArN_2X \rightarrow RCCHO + R'_1NH$$

|
| NNHAr

 R_1C =CHNR' + ArN₁X \rightarrow R_1C =NNHAr + R'NCHO

Methyl groups in the α or γ positions of some heterocyclic compounds combine with diazonium salts. For example, 9-methylacridine (LVIII)

has been coupled with a number of salts to give the arylhydrazones of acridine 9-carboxaldehyde.¹¹¹ If the hetero atom is converted into the onum salt, the activity of the methyl group is increased ¹²¹ 2.33-Trimethylindolenine is an exception, for the base is more reactive than

¹²⁰ Quilico and Fren, Gazz. chim. stal , 59, 600 (1929)

¹³⁴⁰ Crary, Quayle, and Lester, J. Am. Chem. Soc., 73, 5584 (1956).
121 Poral Koshuts and Kharkharov, Bull. acad ecs. U.R.S.S. classe ecs. chim., 1944, 143

[[]C A, 39, 1631 (1945)]
M. Kharkharov, J. Gen. Chem. U.S.S. R., 23, 1175-1181 (1953) [C. A., 47, 12390 (1953)].

the diazotized amine undergoes the Pschorr reaction to yield a phenanthrene derivative.

When p-methoxyphenylacetylene couples with 2,4-dinitrobenzenediazonium sulfate, a 69% yield of α -p-anisylglyoxal β -2,4-dinitrophenylhydrazone (LIV) is formed. This reaction is similar to the synthesis

CH₃O C=CH + HO₄SN₂ NO₂ NO₂ COCH=NNH NO₂ NO₂

$$CH_3O COCH=NNH NO_2$$
LIV

of 4-hydroxycinnoline (LV) from diazotized o-aminophenylacetylene. ¹²⁵ In each case the elements of a hydroxyl group, derived from the aqueous reaction medium, appear in the product. This ring closure was used first

$$\begin{array}{c}
\text{OH} \\
\text{NH}_2
\end{array}$$

by von Richter to make 4-hydroxycinnoline-3-carboxylic acid from o-aminophenylpropiolic acid. Recent examples of the reaction have employed nuclear substituted o-aminophenylacetylenes, o-aminophenylpropiolic acids, and o-aminodiphenylacetylene. 23,125

Although styrene does not react with 2,4-dinitrobenzenediazonium sulfate, p-methoxystyrene (LVI) is converted to the 2,4-dinitrophenylhydrazone of anisaldehyde by this reagent.¹²⁴ The same product is obtained when the dry diazonium salt is added to an alcoholic solution of anethole (LVII).¹²⁷ Acetaldehyde is eliminated in the second reaction. Other compounds that show a similar coupling with the loss of acetal-dehyde are isoeugenol, isosafrole, isosafrole, and p-propenyl-dimethylaniline. It is even possible to obtain a 60% yield of p-hydroxybenzaldehyde p-nitrophenylhydrazone from the action of dry

¹²⁴ Ainley and Robinson, J. Chem. Soc., 1937, 369.

¹²⁵ Schofield and Simpson, J. Chem. Soc., 1945, 512.

¹²⁶ von Richter, Ber., 16, 677 (1883).

¹²⁷ Quilico and Freri, Gazz. chim. ital., 58, 380 (1928).

¹²⁸ Quilico and Fleischner, Gazz. chim. ital., 59, 39 (1929).

¹²⁹ Quilico and Freri, Gazz. chim. ital., 60, 606 (1930).

not take place with secondary hydrazones was mentioned on p 5.19 The reaction of the phenylhydrazones of 2-hydroxy-1-nitroaldehydes with degradation of the molecule to give an aldehyde and nitroformazan was mentioned under the discussion of nitro compounds. The formazans obtained from phenylhydrazones of aldoses have proved to be useful derivatives of these sugars 139a-/

The hydrazones of only two kinds of ketones have been converted into formazans. These are the arylhydrazones of α-keto acids (LXI)19,140-145 and the α-arylhydrazones of α,β-diketobutyric esters (LXII).19,60,162,166 With the first type coupling causes decarboxylation, and with the second type an acetyl group is replaced. These eliminations are very similar to the Japp-Klingemann reaction.

$$\begin{array}{c} \operatorname{RCCO}_2H + \operatorname{C}_2H_4\operatorname{N}_2X \to \operatorname{RCN} = \operatorname{NC}_2H_5 + \operatorname{CO}_2\\ \parallel \operatorname{NNHC}_2H_4 & \operatorname{NNHC}_2H_5\\ \operatorname{LXI} \\ \\ \operatorname{COCCO}_2R + \operatorname{C}_2H_4\operatorname{N}_2X \to \operatorname{C}_2H_5\operatorname{N} = \operatorname{NCCO}_2R + \operatorname{CH}_2\operatorname{CC}_3\\ \end{array}$$

$$\begin{array}{c} \text{CH}_2\text{COCCO}_2\text{R} + \text{C}_8\text{H}_3\text{N}_2\text{X} \rightarrow \text{C}_8\text{H}_8\text{N} \\ \parallel \text{NNHC}_8\text{H}_5 & \parallel \text{NNHC}_8\text{H}_8 \\ \text{LXII} & \text{NNHC}_8\text{H}_8 \end{array}$$

Reports of the isolation of two isomeric forms of unsymmetrical

formazans18,147 have been shown to be erroneous 148-150 The unsymmetrical formazans obtained by both possible routes (A and B) are identical. The isolation of the same compound from both of these reactions has been rationalized by the assumption that the product has the structure of the resonance hybrid of the chelated forms LXIII 146,149

```
1964 Mester, J Am Chem. Soc , 77, 4301 (1955)
1100 Moster and Major, J Am Chem Soc., 78, 1403 (1956).
```

Her Zemplén and Mester, Acta Chim Acad Scs Hung , 2, 9 (1952) [C A , 45, 1966 (1954)]. 1114 Mester and Major, J Am Chem. Soc , 77, 4305 (1955).

ine Mester and Major, J. Am. Chem Soc , 77, 4297 (1955).

Der Zemplen, Mester, Messmer, and Eckhart, Acta Chim Acad Sci Hung , 2, 25 (1952)

[[]C A , 48, 1966 (1954)] 140 Bamberger, Ber , 25, 3547 (1892)

¹⁴¹ Wedckind and Stauwe, Ber , 31, 1746 (1898) 142 Bamberger and de Gruyter, J prakt Chem , [2], 64, 222 [1901].

¹⁴³ Busch and von Beust, Ber , 58, 442 (1925)

¹⁴⁴ Ragno and Bruno, Gazz chim. stal , 78, 485 (1946). 145 Fusco and Romans, Gazz. chum stal , 78, 342 (1948).

¹⁴s Lapworth, J. Chem Soc , 83, 1114 (1903) 147 Fighter and Schuess, Ber., 33, 747 (1900)

¹¹⁸ Kuhn and Jerohel, Ber , 74, 941 (1941). 140 Hunter and Roberts, J Chem Soc , 1941, 820.

¹⁵⁰ Haussor, Jerchel, and Kuhn, Chem Ber , 84, 651 (1951).

Path A: RCH=NNHAr + Ar'N₂Cl
$$\longrightarrow$$
 RC N=N Ar'

Path B: RCH=NNHAr' + ArN₂Cl \longrightarrow RC N=N Ar'

LXIII

A formazan in which the carbon is joined to a carboxyl, 19,70,140,151,152 acetyl, 52,142 or oxalyl group loses that group when it couples with another molecule of diazonium salt.

Heterocyclic Compounds

In this section are included those heterocyclic compounds that have a methylene group with a carbonyl group adjacent to it in the ring. These reactants can exist in the tautomeric enolic form as well.

Of the compounds in this group, the 5-pyrazolones have been investigated most extensively because of the successful use of their azo derivatives as dyes. No attempt has been made to include here all of the pyrazolones that appear in the patent literature. The early patents in this field have been reviewed by Roux and Martinet, 154 and some of the more recent ones have been discussed by Venkataraman. 155 The 1-aryl-3-methyl-5-pyrazolones (LXIV) have been used most frequently in the preparation of dyes. Pyrazolones with a methyl group in the

¹¹¹ Bamberger and Wheelwright, Ber., 25, 3201 (1892).

¹¹⁴ Chattaway and Lye, Proc. Roy. Soc. London, A137, 489 (1932) [C. A., 26, 5555 (1932)].

Bamberger and Müller, J. prakt. Chem., [2], 64, 199 (1901).

¹¹⁴ Roux and Martinet, Rev. gén. mat. color., 27, 115-120, 134-139, 152-155 (1923), 28, 13-14, 74-77 (1924).

¹¹¹ Venkataraman, The Chemistry of Synthetic Dyes, Chapter XVIII, Academic Press, New York, 1952.

4-position fail to react with diazonium salts ¹⁵⁶ On the other hand, pyrazolones with an ethylene, isopropylidene, or benzal group in the 4-position couple with the loss of that substituent, ¹⁵⁷, ¹⁵⁸

Other heterocycles that contain a methylene group active toward diazonum salts melude 3.5-pyrazoldanediones (LXV). 5-isozazolones (LXVI), 1,2,3-triazolo 5-ones (LXVII), 2(3)-thianaphthenone (LXVIII), 3(2)-thianaphthenone (LXIIX), 1-phenyloxndole (LXX), mdoxyl (LXXI), barbuture actd, and homophthalmide.

SYNTHETIC APPLICATIONS

The reactions of diazonum salts with many sliphatic compounds have been used only to prepare derivatives for purposes of characterization. The adaptability of the resction to large-scale syntheses is evident from the quantities of dyes that have been produced from \$\tilde{\text{Accession}}\$ that \$\tilde{\text{depth}}\$ the produced from \$\tilde{\text{Accession}}\$ that \$\tilde{\text{depth}}\$ the produced from \$\tilde{\text{depth}}\$ ketoamides and 5-pyrazolones The Pschort synthesis and related diazonium ring closure reactions are discussed in Chapter 7 of Organic Reactions, Volume 9.

Cinnolines

All of the general methods for the preparation of cinnolines employ the intramolecular coupling of a diazonium salt with some aliphatic substituent

³³⁵ Verkade and Dhont, Rec. trav chim , 84, 165 (1945)

¹⁴⁷ Stolz, Ber , 28, 623 (1895)

¹⁰⁰ Sawdey, Ruoff, and Vittum, J. Am Chem Soc . 72, 4947 (1950)

in the ortho position. The Borsche synthesis¹⁵⁹ from o-aminophenyl ketones (LXXII) has been used to prepare a variety of 3-, 5-, 6-, 7-, and 8-substituted 4-hydroxycinnolines.^{22,24,37-41,159-167a,b} The method of von Richter¹²⁶ based upon o-aminophenylacetylenes (LXXIII) produces 3-carboxy- or 3-phenyl-4-hydroxycinnolines.^{23,125} Cinnolines with alkyl or aryl substituents in the 4 position are obtained by the Widman-Stoermer synthesis from o-aminoarylethylenes (LXXIV).^{119-121,167c}

COCH₂R
$$\xrightarrow{NaNO_2 + HX}$$
 $\xrightarrow{NH_2}$ $\xrightarrow{NaNO_1 + HX + H_1O}$ $\xrightarrow{NH_2}$ $\xrightarrow{NH$

3-Nitrocinnolines have been synthesized by coupling diazotized o-aminobenzaldehyde or o-aminoacetophenone with nitromethane and cyclizing the resulting arythydrazone of nitroformaldehyde. 167d

$$o\text{-RCOC}_{6}H_{4}N_{2}X + CH_{5}NO_{2} \rightarrow R$$

$$o\text{-RCOC}_{6}H_{4}NHN = CHNO_{2} \rightarrow NO_{2}$$

$$(R - H \text{ of CH}_{5})$$

Indazoles

Intramolecular coupling of diazotized o-toluidines has been used to prepare a number of substituted indazoles. This method is best for the synthesis of nitroindazoles (LIX). A good yield of indazole-3-carboxylie acid is obtained via the nitrile XLII from o-aminophenylacetonitrile, \$25,188 A method for the preparation of 1-aryl-6-nitroindazoles (XXXVIII) employs the reaction of a diazonium salt with methyl 2.4-dinitrophenylacetate When the resulting hydrazone is treated with alkali it undergoes ring closure with the loss of one nitro group.78-80

Tetrazolium Salts

When a formazan is oxidized with lead tetrancetate, a tetrazolium salt (LXXV) is produced. The formagans in turn are synthesized by coupling a diazonium salt with an arythydrazone. This general route appears to be the only good one for the preparation of tetrazolium salts. The preparations and uses of formazans and tetrazolium salts have been reviewed by Ried169 and by Nineham 169

$$\begin{array}{c} \text{RCII=NNIIAr} + \text{Ar'N}_{1}X \rightarrow \\ \\ \text{RC=NNIIAr} \xrightarrow{\text{Pic(OCOCII}_{1})_{tr}} \\ \text{N=NAr'} \end{array} \\ \begin{array}{c} \text{N-NAr} \\ \\ \text{N=NAr'} \end{array} \\ \times \\ \begin{array}{c} \text{N-NAr} \\ \\ \text{N=NAr'} \end{array}$$

Thiocarbazones

The first step in the synthesis of thiocarbazones utilizes the reaction of nitromethane with two equivalents of diazonium salt. 20,106,170 The resulting nitroformazan is reduced by ammonium sulfide to the thiocarbazide LXXVI which is oxidized readily to the thiocarbazone,

$$2ArN_1X + CH_9NO_3 \rightarrow ArNHN = CN = NAr
(ArNHN)_1CS $\xrightarrow{(NH_0)_3}$
 S
 $(ArNHNH)_1CS \xrightarrow{(O)} ArNHNHCN = NAr$$$

¹⁴⁹ Romaneau and Lindwall, J Am Chem Soc., 72, 3047 (1950)

¹⁴⁾ Rued, Angew Chem. 84, 391 (1952), Nineham, Chem Revs., 55, 355 (1955).

¹⁰ Oceper and Klingenberg, J Org. Chem., 13, 309 (1948).

A related synthesis starts with chloromalonic acid.^{170a} In this method the chloroformazan is converted directly to the thiocarbazone by sodium hydrogen sulfide.

$$\begin{array}{c|c} Cl & S \\ & | & \parallel \\ 2ArN_2X + ClCH(CO_2H)_2 \rightarrow ArNHN = CN = NAr \xrightarrow{NaSH} ArNHNHCN = NAr \end{array}$$

Amidrazones*

The catalytic reduction of arylhydrazones of α-nitrobenzaldehyde (LXXVII) offers a convenient synthesis of amidrazones. ¹⁷¹ Coupling of a diazonium salt with phenylnitromethane furnishes the required hydrazone. Ponzio obtained the amidrazones from the reaction of the α-nitrobenzaldehyde arylhydrazone with ammonia. ¹⁷²

$$\begin{array}{c} ArN_2X + C_6H_5CH_2NO_2 \rightarrow C_6H_5C \underline{=} NNHAr \xrightarrow{H_2(NI)} C_6H_5C \underline{=} NNHAr \\ | & | \\ NO_2 & | NH_2 \\ LXXVII \end{array}$$

Amines

The only report of the use of the coupling reaction to introduce the amino group into active methylene compounds appears in the patent literature. In this method the phenylhydrazones obtained from ethyl acetoacetate, ethyl cyanoacetate, or acetylacetone and benzenediazonium chloride were reduced with zinc and acetic acid to give the α -acetamido compounds.

EXPERIMENTAL CONDITIONS

Diazonium salts react with so many different types of aliphatic compounds that it is difficult to make generalizations about experimental conditions. However, the following summary may serve as a useful guide.

Diazonium Salts

For the diazotization of most arylamines a solution of sodium nitrite is added to a cold solution of the arylamine in aqueous mineral acid.

¹⁷⁰a Irving and Bell. J. Chem. Soc., 1953, 3538.

^{*} Amidrazones may be represented by the general formula RC(NH₂)=NNHR'. They are indexed in *Chemical Abstracts* as the hydrazones of amides.

¹⁷¹ Jerchel and Fischer, Ann., 574, 85 (1951).

¹⁷² Ponzio, Gazz. chim. ital., 40, I, 312 (1910).

¹⁷³ Pfister and Tishler, U.S. pat. 2,489,927 [C. A., 44, 2552 (1950)].

For weakly basic amines or amino acids it is necessary to employ special techniques. These methods have been reviewed by Saunders. 176

Solvents

These reactions have been conducted most frequently in cold dilute aqueous solutions buffered with sodium acetate. Alcohol or occasionally pyridine or acetic acet is added if the reactants are too insoluble in water. Special reactions that have been carried out under anhydrous conditions were discussed under Scope and Limitations, pp. 22–23.

pH

Reaction can occur between a diazonium salt and many active methylane compounds over a wide pH range. Coupling in dilute hydrochloric acid^{44,42} or in dilute sodium hydroxide⁴⁷³ is usually less satisfactory than coupling in the presence of sodium carbonate or sodium acetate buffers ⁴⁸ The general practice is to use a large excess of sodium acetate.

In the intramolecular coupling reactions used to prepare cinnolunes or indazoles a strongly acide solution is employed. This promotes the coupling reaction and decreases the competing decomposition of the diazonium salt to the phenol. Acidic solutions are used in the reactions of diazonium stalt with hydroarborns for similar reasons.

The optimum reaction conditions for intro compounds vary considerably. It has been customary to employ an aqueous solution of the sodium salt of the act-nitro compound. The coupling of intromethane, on the other hand, proceeds well at a pH of 4.5.18 With intro alcoholo a fallily high pH is required. The reaction of 2-atirot-1-bustonle with p-chlorobenzenedizaonism chloride does not occur below pH 10 8, and best rields are obtained at pH 13 9.18 It has been reported that solutions

²⁷⁴ Saunders, The Aromatic Diazo Compounds, Edward Arnold & Co. London, 1949, 174 von Rothenburg, Ber., 27, 685 (1894)

of 1-N-morpholino-2-nitropropane between pH 7 and 10 explode with great violence during the coupling process.¹⁷⁵²

Reactant Ratios

Equivalent amounts of reactant and diazonium salt are most commonly employed. Excess diazonium salt should be avoided since the product is frequently a hydrazone which can couple with another molecule of the salt to produce a formazan derivative. The latter reaction is favored by a strongly alkaline solution.

Time of the Reaction

Since most of the coupling reactions are rapid, the product can be isolated soon after the diazonium salt has been added. However, the reactions that involve intramolecular coupling require more time for completion. In the preparation of indazoles, the diazotized o-toluidine derivative may be left for several days to effect the ring closure.^{127,128} Likewise, the formation of cinnolines is often slow.^{22,22,104-1072-d} For certain cinnolines this cyclization is accelerated by the use of a warm, strongly acidic reaction medium.^{27,40}

EXPERIMENTAL PROCEDURES

The preparation of pyruvaldehyde 1-phenylhydrazone from acetoacetic acid and benzenediazonium chloride in 73-82% yield is described in Organic Syntheses.⁵⁵

Directions for the preparation of 5-nitroindazole in yields of 72-80% by the intramolecular coupling of diazotized 2-methyl-4-nitroaniline are given in Organic Syntheses. 126

room temperature One liter of water is added before the yellow solid is collected The yield is 229 g. (98%) of product that melts at about 70° , but whose melting point varies markedly with the rate of heating.

Ethyl Cyanoglyoxalate m-Chlorophenylhydrazone. A solution of 38 g (0.30 mole) of m-chloroanilme in 85 mL of concentrated hydrochlore acid and 300 mL of water is cooled to 5° with stiring. Diszotization is effected by the slow addition of a solution of 23 g (0.33 mole) of sodium nitrite in 50 mL of water while the temperature is sheld below 5°. The solution is stirred with activated carbon for an additional ten minutes (temperature below 10°) and filtered. The filtrate is added dropwise during one hour to a well-stirred mixture of 33.0 g (0.30 mole) of ethyl cyanoacetatic in 300 ml of water at 5-10°. Sodium carbonate (100 g) is added in small portions to keep the mixture alkaline to litmus. The mixture is extracted with ether until the extracts are no longer colored. The combined ether extracts are dred over magnesium sulfate and concentrated. The residue is crystallized from ethanol to give 73 g. (1976) of pale-corange crystals, nn. 89-90°.

By the same procedure, diethyl malonate is converted into diethyl mesoxalate m-chlorophenylhydrazone in 78% yield. Likewise, ethyl acetoacetate is converted into ethyl α , β -dioxobutyrate α -m-chlorophenylhydrazone in 78% yield.

I-Nitro-1-p-chilorophenyihydrazonoethane. 1 To a cold solution of 8 tg. (0.066 mole) of p-chioronaline m 17 mi of concentrated hydro-chiorie acid and 200 mi of water is added slowly with sitring a solution of 4 Tg (0.068 mole) of solumn nitrate in 50 ml. of water. The temperature is held at 0.5° during the addition. After ten minutes, the solution is diluted with 1 7 l. of cold water, and 30 g. of sodium acetate trihydrate sadded. Masnahile, 5 g. (0.066 mole) of nitroethane is disolved in an exe-cold solution of 2 6g of sodium hydroxude in 20 ml. of water. The introethane solution is added dropwise during ten munutes to a well-streed solution of the disoonium salt. The temperature of the mixture is held at 5-10° during the addition. After thirty minutes the original is collected. The yield of product melting at 116-118° s 14 g. (100%). Recrystalination from ethanol gives orange-yellow crystals which decompose at 128-12° when placed in a bath proheated to 120°.

1-(p-Nitrophenylazo)-2,3-dimethyl-1,3-buttadiene. ¹³ A warm solution of 13 8 g. (0.10 mole) of p-mitroaniline in 25 ml of concentrated hydrochlorie acid and 25 ml. of water is poured onto 100 g of ice. The mixture is stirred with a solution of 7 g (0.10 mole) of sodium nitrate in 50 ml of water until the solid dissolves The solution is diluted with 100 ml. of water and shaken for two hours with 9 g. (0.11 mole) of

¹⁹⁴⁸ Bamberger and Grob, Ber., 25. 67 (1902)

2,3-dimethyl-1,3-butadiene. The solid is collected and dried to give 12 g. (47%) of product. After recrystallization from acetic acid containing some charcoal, the product melts at 177°.

N,N'-Diphenyl-C-methylformazan.¹³⁹ Aqueous benzenediazonium chloride is prepared by the addition of a solution of 7 g. (0.1 mole) of sodium nitrite in 15 ml. of water to 9.3 g. (0.1 mole) of aniline dissolved in 25 ml. of concentrated hydrochloric acid and 25 ml. of water. A warm solution of 13.4 g. (0.1 mole) of acetaldehyde phenylhydrazone (α or β form) in 100 ml. of ethanol is mixed with a warm solution of 30 g. of sodium acetate trihydrate in 150 ml. of ethanol. The mixture is cooled to 5° with vigorous stirring before the diazonium salt solution is added dropwise. The product separates as an oil which soon solidifies. The solid is collected and washed with a little cold ethanol to give 21 g. (88%) of N,N'-diphenyl-C-methylformazan, which melts at 123°. Recrystallization from ethanol raises the melting point to 125°.

4-Hydroxy-3-methylcinnoline.⁴⁰ To a cold solution of 45.5 g. (0.31 mole) of o-aminopropiophenone in 1.2 l. of concentrated hydrochloric acid is added slowly with stirring 23 g. (0.33 mole) of sodium nitrite in 30 ml. of water. The temperature is kept at 5-10° during the addition. The solution is filtered, and 4 l. of concentrated hydrochloric acid is added to the filtrate. The reaction mixture is warmed at 60° for four hours before it is evaporated to a small volume under reduced pressure. An excess of saturated sodium acetate solution is added to precipitate the product, which is collected and dried to give 40.7 g. (83%) of almost pure 4-hydroxy-3-methylcinnoline. Recrystallization from 50% aqueous ethanol gives slender, silvery needles, m.p. 241-242°.

TABULAR SURVEY OF THE COUPLING OF DIAZONIUM SALTS WITH ALIPHATIC CARBON ATOMS

The tables include those reactions recorded prior to the January, 1956, issue of *Chemical Abstracts*. Some more recent examples are also given. The reactants within a table are in general listed in order of increasing size and complexity.

Where more than one reference is given for a single entry, the yield reported is taken from the first reference. Since yields are but infrequently reported, the omission of parenthesized figures in the product column indicates that no yield was reported:

176c Allen and Bell, Org. Syntheses Coll. Vol. 3, 312 (1955).

	COUPLING	COUPLING OF DIAZONIUM SALTS WITH KETONES		
		A. Monaketanes		
	Substituent(s)			
Ketone	in Amine"	Product (Yield, %)	References	DI
Voetone	ı	C.H.NHN=C(COCH,)N=NC,Hs	25	ΑZ
Moroacetone	1	CH,COC(Cl)=NNHC,H, (30)	88	01
	2-Methyl	CH,COC(CI)=NNHC,H,CH, o (25)	28	VII
	4-Methyl	CH, COC(C!) =NNHC, H, CH, P (15)	88	UM
x,x'-Dichloroacetone	1	CICH, COC(CI)==NNHC, H.	177	1 (
	2-Methyl	CICH, COC(CI) =NNHC, H, CH, -0	177	:01
	4-Methyl	CICH, COC(CI)=NNHC, H, CH, 20	177	UP
x, x-Dichloroacetone	1	(C,H,N=N,CC),	177	LI
	4-Methyl	(p-CH,C,H,N=N),CC,	177	N
rym-Tetrachloroacetone	1	(C,H,N=N),CCJ.	177	1
	4-Methyl	(p-CH, C, H, N=N), CG.	123	VI
Nifroacetone	4-Nutro	CH.COC(NO.)=NNHC.IT.NOm (59)	ģ	TE
Methylsulfonylacetone	4-Nitro	CH.SO.C(COCH.)=NNHC.H.NOp (70)	100	1
4-Imino-2-pentanone	1	CH.COC(N=NC.H.)=C(NH.)CH.	176	ΑL
Pyruvic acid	ł	C.H.NHN CON H. COCO H (67)	169 997	IP
Levuline acid	ŀ	Thformare1+ (88)	100, 001	H
y-Oxopimelic acid	,	Diformazyl** (13-17)	179, 153, 180	ΑT
Cyclopentane-1,2-dione	ļ	Ovelonentana, 1.2.3 fmone 1 whomelively some	193, 180	IC
a-Hydroxy-a-methyl-y-	1	a-Hadrotz-a-mathel. 8 and lower throng and last one of the		C.
oxoglutaric acid lactone		hydrazona	181	AF
Ethyl 3-hydroxy-2,5-dioxo-3-	1	Ethel 3-hadrove-2 & Alove-4 nhamleng-9-anglement		В
cyclopentene-1-carboxylic acid		carboxylin acid	182	ON
2,4-Dinitrophenylacetone	i	1-(2.4-Dintropheny) property 1 2-dione 1 when the		A
2-Nitro-4-	ı	1.(2.N.tm.4.conhomothormathanian)	67	T
carbomethoxyphenylacetone			183	ом
Note: References 177-480 are on pp. 136-142.	a pp. 136-142.			8

of the received $r_1 = 0$ and 0 pp. 130–132. The full name is a derivative of anima. The formula of the formasy radical is $G_1 = 0$ $G_1 = 0$.

T.MILE I—Continued

A. Monoketones-Continued

CII,COCII.

p-Tolyl Phenyl

References 31, 32 31, 33 31, 33 31, 33 31, 32 31, 32 31, 32 31, 32 31, 33 31, 33 m-Nitrophenyl p-Tolyl p-Tolyl p-Tolyl p-Tolyl p-Tolyl -Tolvi o-Tolyl p-Tolyl p-Tolyl n-Tolyl p-Tolyl p-Tolyl p-Tolyl p-Tolyl p-Tolyl p-Tolyl p-Tolyl J-Tolvi Pheny o-Toly P-Toly Substituents in Product, 3.3-Dimethoxybiphenylene p-Dimethylaminophenyl CH,COCC RHNN 2.4-Dimethylphenyl 2.5-Dimethylphenyl p-Carboxyphenyl o-Carboxyphenyl m-Chlorophenyl o-Benzylphenyl p-Chlorophenyl m-Nitrophenyl p-Nitrophenyl o-Nitrophenyl p-Biphenylyl z-Naphthyl 6-Naphthyl m-Anisyl o-Anisyl o-Tolyl Phenyl Phenyl o-Tolyl Phenyl 3,3-Dimethoxybenzidine 1-Dimethylamino x-Naphthylamine 3-Naphthylamine Substituent(s) 2.1-Dimethyl 2,5-Dimethyl 2-Methoxy 3-Methoxy 2-Carboxy 1-Carboxy in Aniline -Phenyl 2-Methyl 4-Methyl 3-Chloro 1-Chlory -Benzyl 2-Nitro 3-Nitro L-Nitro Substituent R in

m-Nitrophenyl

o-Anisyl

2-Methoxy

m-Nitrophenyl

	Sanstanaria			
Ketone	n Androe	Product (Yield, %)	References	
Acetony lpyradinium bromide	ı	CH,COC(C,H,)=NNC,H, (84)	_	
Phenacyl chlonde	1	C,H,COC(CI)=NNHC,II,	E.	
4-Carbomethoxy-3-methyl-5-phenyl-	!	4-Carbomethoxy-3-methyl-5-phenyl-3-cyclohexene-	276	
3-cyclohexenone		1,2-dione 2-phenylhydrazone	NI	
4-Carbethoxy-3-methyl-5-phenyl-3-	1	4.Calbethoxy-3-methyl-5 phenyl-3-cyclohexene-1,2-	276 N.Y.	
cyclohexenone		dione 2-pheny lhydrazone	1 (
4-Carbethoxy-3,5 diphenyl-1,3-cyclo-	1	4 Carbethoxy-3,5-diphenyl-3-cyclohevene-1, 2-dione	24 20 1	
hexachen-1-ol Phenyl 2,4-duntrobenzyl ketone	1	2-phenylhydrazone 2,4-(NO,),C,H,COC(C,H,)==NNHC,H, (quant.)	PLI	
Phenacylpyridinium bromide	1	C,H,COC(NC,H,)-NNC,H, (89)	NG 8	
	2-Nitro	C,H,COC(NC,H,)=NNC,H,NO, o	wir	
	3-Nitro	C,H,COC(NC,H,)=NNC,H,NO,-m	гн . 8	
	4-Nitro	C4H,COC(NC,U,)=NNC,H,NO,-p	ALII 8	
p-Bromophenacylpyridinium bromide	ì	p-BrC,H,COC(\\C,H_1)=\\N\C,H_1 (74)	PHZ	
5-p-Nitrophenacyl-3-p-tolyl- 1 2 4-pradmenie	1	1-(3-p-Tolyi-1,2,4-oxadiazol-5-yl)-3-p-mtrophenyi-		
Officeration of last	2-Methoxy	cthane-1,2-dione 1-phenylhydrazone (65) 1-(3-p-Tolyl-1,2,4-oxadiazol-5-yl)-3-p-ntrophenyl.	c c.	
		ethane-1,2-dione 1-o-methoxyphenylhydrazone (20)	!	
	4-Nitro	1-(3-p-Tolyl-1,2,4-oxadiazol-5-yl).3-p-nitrophenyl-	BOI S	
Tropinone	1	2 4.D. overtrampere dependency (20)		
1-Ethoxalylindene	1	1-Phenylazo-1-ethoxalvindeno	ATI	
	3-Nitro	1-m-Nitrophenylazo-1-ethoxalvlindene		
	4-Nitro	1-p-Nitrophenylazo-1 ethoxalylindene	ន	
Note: References 177-480 are on pp. 136-142.	o. 136-142.		:	
			3:	

TABLE I-Continued

A. Monoketones-Continued

,	ORGA	MIC	REA	C110	NS			
References 186, 185	185, 186	185, 186	185	185, 186	185, 186	185, 186	186 36a	30a $30a$
Product (Yield, %) 2,2'-Methylenebis-(3-hydroxy-5,5-dimethyl-6- phenylazo-2-cyclohexen-1-one) (quant.)	2,2'-Methylenebis-(3-hydroxy-5,5-dimethyl-6-o-folylaza-2-evelohesen-1-ano)	2,2'-Methylenebis-[3-hydroxy-5,5-dimethyl-6-	2,2'-Methylenebis-(3-hydroxy-5,5-dimethyl-6- p -xylylazo-2-cyclohexen-1-one)			લોં	N,N'-Di-(p-bromophenyl)-C-2-quinolylformazan (79) N,N'-Di-(p-bromophenyl)-C-2-quinoxal-leformazan (79) N,N'-Di-(p-bromophenyl)-C-2-quinoxal-leformazan (79)	(78) N,N'-Di-(p-bromophenyl)-C-2-quinazolylformazan N,N'-Di-(p-bromophenyl)-C-2-benzoxazolylformazan (70)
Substituent(s) in Aniline —	2-Methyl	2,3-Dimethyl	2,5-Dimethyl	4-Bromo	α-Naphthylamine	β -Naphthylamine	d-Bromo	4-Bromo 4-Bromo
Ketone O (CII ₃) ₂ CII ₂ (Mathyclemblamethona)							Rthyl 2-quinolylpyruvate Rthyl 2-quinoxalylpyruvate	Ethyl 2-quinazolylpyruvate Ethyl 2-benzoxazolyhpyruvate

N.N'-Di-(p-bromophenyl)-C-2-benzothinzolylformazan N,N'-Di-(p-bromophenyl)-C-(2-(2-benzoxazolyl)\unyl) N,N'-Di-(p-bromophenyl)-C-(2-(2-benzothiazolyl)-

4-Bromo 4-Bromo 4-Bromo vinyl)formazan (46) Product (Yield, %)

formazan

Ethyl 2-oxo-5-(2-benzothiazolyl)-4-Ethyl 2-oxo-5-(2-benzoxazolyl)-4-Ethyl 2 benzothiazolylpyruvate pentenoato pentenoate B. \(\beta\text{-Ketoaldehydes}\)

	Substituent(s)
9-Ketoaldehyde	in Aniline
3-Oxobutyraldehyde	!
	4-Nitro
8 Oxovaleraldehyde	ı
5-Methyl-3-oxo-4-hexenal	ı
8 Oxo-\$-pheny Ipropional dehyde	1
8 Oxo-\$-p tolylpropionaldehyde	1
3-Oxo-β-p-anisylpropionaldehyde	1

CH,COC(CHO)=NNHC,H,NO,-p (17)

C.H.COC(CHO)=NNHC,H, CH,COC(CHO)=NNHC,H; COC(CHO)-NNHC,H,

(CH,),C=CHCOC(CHO)=NNHC,H,

CH,OC, H,COC(CHO)=NNHC,H,

P-CH,C,H,COC(CHO)-NNHC,H,

ny ipropionaldehyde	I
lyipropionaldehyde	I
ıisylpropionaldehyde	ŀ
	Sub In A
-dione	13

CH,COC(COCH,)=NNHC,H,CH,P CH,COC(COCH,)=NNHC,H,CH,P CH,COC(COCH,)=NNHC,H,HP,P CH,COC(COCH,)=NNHC,H,HP,P,CH,COC(COCH,)=NNHC,H,HP,P,P,CH,COC(COCH,PP,P,P,P,P,P,P,P,P,P,P,P,P,P,P,P,P,P,
4-Methyl CH,6 4-Bromo CH,6 2,4-Dhromo CH,6 2,4,6-Tribromo CH,6 2,4,6-Tribromo CH,6 2,7-Nitro CH,7 2,7-Nitro CH,

-NNIIC, II, CII, P (92)

Product (Yield, %)

\$-Diketones င်

stituent(s)

Inline* 4-Bromo 2-Natro

Pentane-2,4 θ-Diketone

. The full name is given when it is awkward to name the arylamine as a derivative of aniline. Note: References 177-480 are on pp. 136-142.

§ These compounds are named as derivatives of the hypothetical formazan, H₃NN=CHN=NH.

TABLE I-Continued

C. \(\beta\to Dikctones\)—Continued

						0	RG	AN	IIC	R	EA	CI	COL	S					
References	188	188, 190	189	190	190	191, 192		191, 192	601 101	101, 102	193) }	19.4		195	196		197	198 199 199 200
Product (Yield, %)	CH ₃ COC(COCH ₃)=NNHC ₆ H ₄ NO ₃ -m	CH,COC(COCH,)=NNHC,H,NO,-p	CH,COC(COCH,)=NNHC,H,CH,-4-NO,-3	CH,COC(COCH,)=NNHC,H,Br-4-NO,-2	CII,COC(COCII,)=NNHC,H,Br,-2,4-NO,-6	3,3'-(4,4'-Biphenylenedillydrazono)bis(pentane-	2,3,4-(frione)	9,9 -(9,9 - Umethyl-4,4'-biphenylenedihydrazono) bis(pentane-2,3,4-4-iono)	3,3'-(3,3'-Dimethoxy-4,4'-biphenylenedilyzdrazone)		P.		4-amino-5-iso-		1-Phenyl-3,5-dimethyl- Pentane-2,3,4-trione 3-arylhydrazone 4-aminopyrazole	Pentane-2,3,1-trione 3-arythydrazone	Pentane, 9 3 definition of the contract of the	z chimic-zioia-tatono 3-arylhydrazone	$\begin{array}{l} \mathrm{CH_3COC(COCH_3)} = \mathrm{NNHC_6H_3NO_3-} \\ \mathrm{CICH_3COC(COCH_2CI)} = \mathrm{NNHC_6H_4NO_3-} \\ \mathrm{CH_3COC(COC_2H_5)} = \mathrm{NNHC_6H_3NO_3-} \\ \mathrm{CH_3COC(COCH_2C_2H_5)} = \mathrm{NNHC_6H_3} \\ \end{array}$
Substituent(s) in Aniline*	3-Nitro	4-Nitro	4-Methyl-3-nitro	4-Bromo-2-nitro	2,4-Dibrome-6-nitro	Benzidine	3.3'-Dimothyd.	benzidine	3,3'-Dimethoxy-	benzidino	4-(3-Methyl-5-phenyl-	pyrazol-1-yl)	4-amino-5-iso-	pyrazolone	1-Phenyl-3,5-dimethyl-4-aminopyrazole	3,5-Dimethyl-4-	5-Amino-3-isopropyl-	1,2,4-trinzolo	4-Nitro 4-Nitro 1-Nitro
<i>β</i> -Diketone	Pentane-2,4-dione (Cont.)																	Dondam n t 11	Londing-2,1-4000 enot othyl ether 1,6-Dichloropentane-2,1-dione Hexane-2,4-dione Hoptane-2,4-dione

6-Methy lheptane-2,4-dione	4-Nitro	(CH,),CHCH,COC(COCH,)=NNHC,H,NO."	109
Heptane-3,5-dione	4-Chloro	C,H,COC(COC,H,)=NNHC,H,CI-p	199
Heptane-2, 1, 6-trione	1	(C,H,NHN=CHCOCHN=NC,H,),CO	201
	ı	2,6-Dimethyl-3,5-diphenylazopyrone	202
Nonano-1,0-dione	4-Chloro	n-C,H,COC(COC,H,-n)=NNHC,H,Cl-n	109
	4-Nitro	"-C.H,COC(COC,H,-")=NNHC,H,NO,-"	199
1-Phenylbutane-1,3-dione	ì	C.II,COC(COCII,)-NNHC,H, (90)	42, 187
	1	C,H,N=NC(COC,H,)=NNHC,H, (25)	203, 204
	2-Nitro	C,H,COC(COCH,)=NNHC,H,NO,-0	202
	4-Nitro	C.H.COC(COCH.)=NNHC,H,NO,-p (quant)	205, 206
	4.Acetamido	C,H,COC(COCH,)=NNHC,H,NHCOCH,-D	207
	2,4-Dibromo	C,H,COC(COCH,)=NNHC,H,Br2.4	42
	2,4,6-Tribromo	C.H.COC(COCH,)=NNHC,H.Br2.4.6	45
	3,5-Dimethyl-4-	1-Phenylbutane-1.2.3-trione 2-(3.5-dimethyl.4-	106
	aminopyrazole	pyrazolyl)hydrazone	
1-6-Anny Ibutane-1,3-drone	4-Nitro	o-CH,OC,H,COC(COCH,)=NNHC,H,NO,-p	208
1,3-dione	4-Nitro	2,4-(CH ₂ O) ₂ C ₆ H ₃ COC(COCH ₃)=NNHC ₆ H ₄ NO ₃₋₇	208
1-(2,4-Diethoxyphenyl)butane-	1	2.4./C H O. O H O. O H O. O.	
1,3-dlone		"" ("" ("" ("" ("" ("" ("" ("" ("" (""	210, 209
1-Then; Ipentane-2,4-dione	4-Nitro	C.H.CH.COCOCOT ANNUAL WAS A	
Z,8-Dunethy Inonane-4,0-dione	4-Nitro	CCH. CHCH CO. C. NNHO H NO.	20.0
1-1 heny hexane-3,5-dione	4-Nitro	del Children and Children and Children	66.7
1,3. Diphen, Ipropane-1,3-dione	,	(C.H.COLC.—NNEC T	211
	4-Nitro	CHOOL WATER	187
	4-Sulfo	C.H.CO.H.C. WARD IN CO. H.C.	199
1,3-Di-p-nitrophenylpropane-1,3-	4-Nitro	(p-0,NC,H,CO),C=NNHC,H,NO	187
aron		Allow the state of	RAT

Note: References 177-480 are on pp. 136-142.

• The full mame is given when it is awkward to name the arylamme as a derivative of aniline. I This product was obtained by the use of excess diazonium salt,

216 216 216 216 216 216 216

CH₃COC(COCO₂C₂H₅)=NNHC₆H₃Cl-m (99) CH₃COC(COCO₂C₂H₅)=NNHC₆H₃Br-m (99) CH₃COC(COCO₂C₂H₅)=NNHC₆H₃No₂-o (73) CH₃COC(COCO₂C₂H₅)=NNHC₆H₃NO₂-o (73) CH₃COC(COCO₂C₂H₆)=NNHC₆H₃NO₂-m (90)

3-Chloro 3-Bromo 2-Nitro 3-Nitro 4-Nitro

TABLE I-Continued

C. \(\beta\to Diketones-Continued\)

	Substituent(s)		
h-Diketono	in Aniline*	Product (Yield, %)	References
1-(3,5-Dimethoxyphenyl)-3-	1	3,5-(CH ₃ O) ₂ C ₆ H ₃ COC(COC ₆ H ₅)=NNHC ₆ H ₅	212
phenylpropane-1,3-dione			
1-(2,4,6-Trimethoxyphenyl)-3-	ļ	2,4,6-(CH,0),C,H,COC(COC,H,)==NNHC,H_	006
phenylpropane-1,3-dione		STT9077777777970000000000000000000000000	607
1-(2,4,6-Trimethoxyphenyl)-3-	[2.4.6-(CH.O), G.H.COC/COC H OCH	0
p-anisylpropane-1,3-dione		NNHC.H.	209
1-(2,4,6-Trimethoxyphenyl)-3-	1	1 (CHOL) OF COCOOCH COLOR	
(2-ethoxyphenyl)propane-1,3-			209
diono		MINITOGIA	
1-(2,4,6-Trimethoxyphenyl)-3-	Į		
(3-methoxy-4-ethoxyphenyl)-		2,4,0-(CH ₃ O) ₃ C ₆ H ₂ COC(COC ₆ H ₃ OCH ₃ -	209
propane-1,3-dione		o-oc_nc-t/=nnHC,Hs	
1,4-Diphenylbutane-1,3-dione	1		
1,5-Diphenylpentane-9 1-dione	, Nit	CeHoUL,COC(COC,H5)=NNEC,H, (quant.)	913
1-(2-Hvdrovy-1 nov.1.41)	OJIINT-T	$(C_6H_5CH_3CO)_3C==NNHC_6H_3NO_3-n$	007
.5-(14upura)-1-unburuh-2-	ı	1-(2-Hydroxy-1-nanhthyl)-3-phonylman 1 8 8	199
pnenyipropane-1,3-dione		trione 9-whom-the-district of the first of t	214
α,γDioxovaleric acid	j	de 2-puenyinydrazone (79)	
Ethyl a.v-dioxovalenete		CH3COC(COCO.H)=NNHC.H.	1
and anowalthe	1	CH, COC(COCO, C. H.) WNHC H AG	215
	2-Methyl	CH. COC.COCO O TO COC. TO COC. COC. COC. C	216, 187
	4-Methyl	CH COCCO C C L 20 L 20 L 20 L 20 L 3-0 (78)	216
	3-Ch.10.20	CTIOCO(COCOTOTA)=NNHC,H,CH,-10 (98)	916
	o-Cinoro	CH.COC/COCO O H) NYTHOUT (C)	210

DIAZONIUM COUPLING WIT	H ALIPHATIC CARBON ATOMS
202 217 187,217 217 217 218 0 0	43 45 45 45 45 45 45 45 45 45 45 45 45 45
Du (h); [\$\phi\$ d \text{iphen}) hazarat lochelidouate \(\frac{1}{1} \) \text{Corotrop} \(\frac{1}{1} \) = NHIGH! \(\frac{1}{1} \) \text{Corotrop} \(\frac{1}{1} \) = NHIGH! \(\frac{1}{1} \) \text{Corotrop} \(\frac{1}{1} \) = NHIGH! \(\frac{1} \) = NHIGH! \(\frac{1} \) = NHIGH! \(\fr	D Cycle & Datener - Discharge Cycle & Datener - Discharge
	4-Methyl 2-Methyl 3-Methyl 4-Methyl 4-Miro pp. 136-142, si a awkward to nai
Dehy) zanthocheldonate e.p. hoxo-p-phenylbutyne seid Bhyt a _p -dioxo-p-phenylbutyne Bhyt a _p -dioxo-p-phenylbutyne sectandelphenylbyne hythachar o-denethyl- brytesou o-greg (4, 4, 4) dioxid-phenyl-genethyl- brytesou o-greg (4, 4) dioxid-phenyl-genethyl- Bytesou o-greg (4, 4) dioxid-phenyl-genethyl- Bytesou o-greg (4, 4)	Cyclobranos 13-danos 5.6-Dimethyleycoloaranos 1.3 diron (methon) 2.3-dathyl 5.6-Dimethyleycoloaranos 1.3 2.3-dathyleycoloaranos 1.3

TABLE I—Continued

D. Cyclic β-Dikelones—Continued

	Substituent(s)		
β-Diketone	in Aniline*	Product (Yield, %)	References
5,5-Dimethyleyelohexane-1,3-	2-Arsono	5,5-Dimethyleyclohexane-1,2,3-trione 2-o-arsonophenyl-hydrazone	220
	3-Arsono	5,6-methyleyclohexane-1,2,3-trione 2-m-arsonophenyl-	220
	onosav-J	nyutazone 5,5-Dimethyleyelohexane-1,2,3-trione 2-p-arsonophenyl-	220
	a-Naphthylamine	nyunazone $6,5$ -unethyleyelohexane-1,2,3-trione 2- α -naphthyl hydminethyleyelohexane-1,2,3-trione 2- α -naphthyl	45
	eta-Naphthylamine	is definition of the state of t	45
	Benzidine	2,2'.4'.4'-Biphenylenedilydrazono)bis-[5,5-dimethyl-	46
	3,3'-Dimethyl- benzidine	cyclonexance, 2, 2'-trione] 2, 2'-(3, 3'-Dimethyl-4', 4'-biphenylenedihydrazono) bis- 15, 5'-dimethylevelohoxana-193.+triona	46
	3,3'-Dimethoxy- benzidine	9,2'-(3,3'-Dimethylovely-4'-biphenylenedilydrazono)bis- [5,5-dimethylovelohovana-1, 2,3-+ional	46
5-Phenyleyelohoxane-1,3-dione	ı	5-Phenyleyclohexane-1,2,3-trione 2-phenylhydrazone (quant.)	221

	enyl- 43	ne 221 enyl- 222	222	SZ3	2885	25 18 27	РНАТИ
hydrazona	4-Carbethoxy-5 phenyleyclohexane-1,2,3-trione 2-phenyl-hydrazone	5-(2-Purylicy elohexane-1,2,3-trione 2-phenylhydrucone 0,0-Dimethylcyclohexane 1,2,3,4,5-pentaone 2,4-diphenyl-	nyurazone 2-Butyryl 6,6-dimethylcyclohexane-1,3,4,5-tetraone 4-phenylhydrazone	2,2'. Methylenebia-(6,6-dimethylcyclohexane-1,3,4,5- tetraune 4-phenylhydrazone)		2,2'-(4,4'-13)phenylenedhhydrazonojbis(indan-1,2,3-trione) 2,3,4'Trioxo-1,2,3,4,4a,9,10,10a-vetaltydrophenanthiene 3 phenylhydrazone	Note: References 177-480 are on pp. 130-142. * The full name is given when it is swkward to name the arylamine as a derivative of aniline.
ı	I	11	1	1	4-Nethyi 4-Nitro \$-Naphthylamno	Benzidine	a pp. 136–142. 5 is awkward to nan
dione	4 Carbethoxy 5 phenyleyelo- hexane-1,3 dione	5 (2-Fury l)cyclohexane-1,3-dione Filicinio acid	2-Butyryl-6,6 dimethylcyclo- hexanc-1,3,5 trione	z,z -methylenebis-(0,6 dimethyl- cyclohexane-1,3,5-tilone)	alon of the	2,4-Dioxo-1,2,3,4,1a,9,10,10a. octahydrophenanthrene	Note: References 177-480 are on pp. 136-142. * The full name is given when it is awkward to

2,4-Dox octahy Note:

2-Amino-6-methoxy 2-Amino-5-methoxy 2-Amino-4-methoxy 2-Amino-3-methoxy

2-Amino-5-chloro

2-Amino-5-bromo 2-Amino-4-chloro 2-Amino-3-chloro 2-Amino-3-bromo

2-Amino-6-nitro 2-Amino-5-nitro 2-Amino-4-nitro 2-Amino-3-nitro

2-Amino-5-iodo

2-Amino-4-methyl 2-Amino-3-methyl

2-Amino

Acctophenone Reactant

TABLE I-Continued

E. 4-Hydroxycinnolines from o-Aminoketones

Substituent(s) in 4-Hydroxycinnoline (Yield, %)

References

7-Methyl (58)	37, 22, 39 164 164
8-Methyl (78) 5-Methoxy (55)	224a
6-Methoxy (53)	224a
7-Methoxy (63)	224a
8-Methoxy (92)	167a
6-Chloro (74)	22, 39
7-Chloro (90-95)	37, 39, 161
8-Chloro (69)	22
6-Bromo (95)	39, 22
8-Bromo (57)	22
0-Iodo	33
5-Nitro (70)	165
6-Nitro (87)	39, 22, 159
7-Nitro (76)	165, 166
8-Nitro (70)	163, 164
8-Chloro** (45)	164
6-Cyano (70-90)	22
7-Acetyl (47)	165
6-Acetumido (33)	39
6-Phenylazo (60)	166
6-(3-Acetylphenylazo) (50)	166

2-Amino-5-(3-acetylphenylazo)

2-Amino-5-acetamido 2-Amino-phenylazo

2-Amino-4-acetyl 2-Amino-5-cyano

3-Chloro (85)

2. Amino-5-bromo-1-methyl 2. Amino-5-chloro-1-methyl 2-Maino-3-chioro-1-methyl 2-Amino-4-methyl-5-metro 2-Amina-4-chloro-5-ntro 2-Amino-1-chlore-3-naire

Phenacyl Chlorule

2.Amino

2- Indno-1,5-dimethoxy

2-Amino-4,5-dimethyl 2-Amino-3,5-dibromo 2. Vinting- 1,5-dichloro 2. Amino-3,4-dichloro

3-Methyl (83)

3-Bromo (73)

.. The 8-cliery compound is obtained if the diazotization is run in hydrochloric acid. Note: 16 ferences 177-180 are on pp. 130-142.

Si

200 166

3-Carbethoxymethyl-7-carbethoxy (13) 3-Carboxymethyl-6,7-dimethoxy (71)

3-Carboxyethyl (53)

3-Ethyl (68)

4,4'-Dihydroxy-6,6'-azocinnoline (69)

6,7-Cyclopenteno (60)

7,8-Cyclopenteno

38 38 38 38 38 38

References

TABLE I—Continued

4-Hydroxycinnolines from o-1minokelones—Conlinued E.

Substituent in 4-Hydroxycinnoline (Yield, %)

Reactant

Miscellancous o-Aminokelones

Ethyl β -(2-amino-4-carbethoxybenzoyl)propionate θ -(2- λ mino-4.5-dimethoxybenzoyl)propionic acid ,2,3,4-Tetrahydro-6-amino-7-acetylnaphthalene 3,3'-Diacetyl-4,4'-diaminoazobenzene y-(2-Aminobenzoyl)butyric acid 5-Amino-6-chloroacetylindane 5-Amino-6-acetylindane 2-Aminobutyrophenone 4-Amino-5-acetylindane

3-Chloro-6,7-cyclohexeno (67) i,8-Cyclohexeno ,2,3,4-Tetrahydro-6-amino-7-chloroacetylnaphthalene

3-Chloro-6,7-cyclopenteno (57)

6.7-Cyclohexeno (70)

Note: References 177-480 are on pp. 136-142.

,2,3,4-Tetrahydro-5-amino-6-acetylnaphthalene

Coupling of Diazonium Salts with p.Keto Acids, Esters, and Amides TABLE II

	Substituential	A. \$-Keto Acids	
\$-Kito Acid	in Anilme*	Product (Yield, %)	References
Arctoacetic acid	1	CII,COCII-NNIIC,II, (73-82)	55, 53, 54,
		CH COCK — NO II A STREET THE COLUMN TO STREET THE COLUMN THE COLUM	225
		C.H.C.N.=NC.H.)=NNHC.H.	52, 226
	4-Mothy !	CH.COC(N=NC.H.CHm)-NNBC B OFF	140
	2-Methory	CII. COCII NNIIC II COLI	22
	2-Nitro	CH COCH NAME IN SEC.	227
	3-Nitro	OIL COORT - NAME OF THE OFFICE	228, 229
	4-Nitro	W-1000 HOUSE WILLIAM TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TO	228
	2,4-Dibromo	CIT COCH - NAME TO SEE A SEE	228
	2-Bromo-4-nifro	OH COURT NAME OF THE PARTY OF T	152
	2.4.6-Trichlom	CH COOK THE PASSING HISTORY	228
	2.4.6-Tribromo	OH COCH	230
	2 ft. Dibmonia facia-	CILCOCH = NAHC, II, Br, -2,4,6	930
	a New Laboratory	CH, CUCH == NNHC, H, Br, -2, 6. NO, -4	000
	administrative	CII, COCH = NNIIC, II, -a	077
Proplems lacuting and		CHI,COC(N=NC, H *) - NNHC 11 . *	222
Diam Manager Condition	4-Nitro	CII COCII - NNHO II NO -	22
Pier organical acid	ı	CH.CVN=NC.R. 1= varies is	130¢
Distriction of the second	ļ	V.Hedrory & dioversity	163
Place of the series	1	C.II. COCII == NNIIC 17	231
		C.II. COCK Mark of The Country of th	232
Note: References 177-180 are on pp. 130-142.	10 are on pp. 130-142.	**** (39)	204, 203

 The full name is given when it is ankward to name the arylamme as a derivative of andine. Note: References 177-180 are on pp. 130-142.

† This product was obtained when 2 equivalents of the diazonium sait were used. ‡ This product was obtained when 3 equivalents of the diazonium sait were used.

TABLE II-Continued

- Continue!
.trist.
J-K cto
- ;

								The second of the State of the second of the	· · · · · · · · · · · · · · · · · · ·																			÷		
	رد. ريا	CHCOCH NNHCHOCH'S	C. E. E. C	S.C. II. SHIS	N. C. C. C. C.	"CNII'NG"	M.COCH - NNHCHICO.H.	*HO,CCH,COCN NCH,OHEALS NNICH OR. ACL.	Trans.	plus on the second of the seco	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N. I. C. I.			ランドンコンツ	いていました。		16. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	では、こうにこれへん	WINDER TO THE PROPERTY OF THE PARTY OF THE P		155 HUHXX	うだった。エンス	できていたソン	The second secon	0. O. 111 . 111	などのというになる。	でいっていていれ	NNHOLL IN THE	NNIH, HIGH ST. L.
	Product (Vield, "5)	CHICOCH -N	CHICOTH NAME HOODING	CHICOCH - N	CHICOCH N	CHICOCH NNHCHINO	CHICOCHEEN	o-110,CC,11,COC	COLCH NNHOHA 133	COCCH- NNIICH CHESTS (-43)	COCCII - NAME THE COCCI	THURN THOSOOTH	CH,COC,SO,H)	CH,COC.SO.H:	CHCOCSOM	CHCOCSOLIC	CH. C2CC-50 115	Off Conserved the		CHICOCROPHE	;	chioshopina	CHCOCSOTH	CHCOCKOTE	C.H.COCKO III	CH COCKED TO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(H'08).)0.7(H)	C.H.COC(SO, H.)	C, H, COC(SO, H)
Sulratituent (2)	in Anilin.	t-Methoxy	1-Chloro	2-Nitro	3-Nitro	1-Nitz	f-Carboxy	2-Hydroxy-5-chloro	1	f-Methyl	4-Chloro	i	f.Chlom	f-Brome	2-Nitm	3-Nitz	F.Nitz	2.4-Dichlora	9 (153,	-, 1-Lytoromin			l-Chloro	f-Bronte	2-Nitro	t-Nitro	2. 1. Dichler	0 (-1)	Official State of the state of	-1.1.1.1 richioro
	β-Keto Acid	Benzoylacetic acid (Cont.)						o-Carboxy benzoylacetic acid	Acetonedicarboxylic acid		(2-Oxo-1-propanesulfonic acid								2-Oxo-2-phenyl-1-othane.	sulfonic acid									

	2,4,6-Tribromo 4-Bromo-2-nitro	$C_iH_iCOC(SO_iH)=NNHC_iH_jBr_1-2.4.6$ $C_iH_iCOC(SO_jH)=NNHC_iH_jBr_4-NO_i-2$	59
	Substituenta	D. B.Reto Estera	DI
&Keto Ester Ethyl formylacetate Ethyl sectoscetate	in Aniline"	Product (Yield, %) HCGC(CO ₂ C,H ₂)==NNHC,H ₂ CH ₂ CC(CO ₂ C,H ₂)==NNHC,H ₃ (01-08)	References 233 236, 6, 7, William
	2-Methyi 4-Methyl	C ₄ H ₁ N=NC(CO ₄ C ₄ H ₄)=NNHC ₁ H ₄ H (80) CH ₅ COC(CO ₄ C ₄ H ₅)=NNHC ₄ H ₅ CH ₄ D ₆ (80-00) CH ₅ COC(CO ₄ C ₄ H ₅)=NNHC ₄ H ₅ CH ₇ P (05)	234, 235 60, 140 237, 238 238, 7, 234, 11
	2-Chloro 3-Chloro 4-Chloro 4-Chloro 2-Bromo 2-Nitro	CH,COC(CO,C,H ₂)~NNHC,H,CO ₂ CH,COC(CO,C,H ₂)~NNHC,H,CO ₂ CH,COC(CO,C,H ₂)~NNHC,H,CO ₃ PCG,H,COC(CO,C,H ₂)~NNHC,H,CO ₂ CH,COC(CO,C,H ₂)~NNHC,H,CO ₂ CH,COC(CO,C,H ₂)~NNHC,H,CO ₂ CH,COC(CO,C,H ₂)~NNHC,H,CO ₂	237 744, 239 239 239 228, 239 228, 239
	3.Nitro	CH ₁ COC(CO ₁ C ₂ H ₂)==NNHC ₂ H ₃ NO ₂ ·m m·O ₁ NC ₄ H ₄ N=NC(CO ₁ C ₄ H ₄)==NNHO ₄ H ₁ NO ₂ ·m† CH ₅ COC(CO ₂ C ₄ H ₂)==NNHO ₄ H ₁ NO ₂ ·p (quant.)	ATIC CA 138 158 158 158 158 158 158 158 15
4-Elboxy 2-Carboxy 3-Carboxy 4-Acetamido	4-Etboxy 2-Carboxy 3-Carboxy 4-Acetamido	P-CHOCHAN TO COLO CAN TO CAN T	RBON ATOM
The full name is given y	Are on pp. 136-142.	The full name is given when it is aukward to name the	

Wher Heference 177-480 are on pp. 150-112.

The foll name is given when it is askward to man the arritantse as a derentive of smilne.

This product was obtained when 2 equivalents of the discontent sail were used.

51

ATOMS

ALIPHATIC CARBON

Note: References 177–180 are on pp. 130–142.

• The full name is given when it is awkward to name the arylamine as a derivative of aniline.

methyl-1-pyrazolyl)

TABLE II-Continued

nued
onti
's_C
Esten
8-Keto
B.

	•		
β-Keto Ester	Substituent(s) in Aniline*	Product (Yield, %)	References
Ethyl acetoacetate (Cont.)	3-Amino-5-iso- propyl-1,2,4- triazole	Ethyl α, β -dioxobutyrate α -(5-isopropyl-1,2,4-triazol-3-yl-) hydrazone	197
	Benzidine	α,α' -(4,4'-Biphenylenedihydrazono)bis(ethyl α,β -dioxobutyrate) (98)	254, 255
	3,3'-Dicarboxy- benzidine	$\alpha_s\alpha'-(3,3'-Dicarboxy-4,4'-biphenylenedihydrazono)$ bis(ethyl $\alpha_s\beta$ -dioxobutyrate)	256
l-Menthyl acetoacetate		$CH_3COC(CO_2C_{10}H_{13}-l)$ =NNHC ₈ H ₅	146
	4-Methyl	$CH_3COC(CO_2C_{10}H_{19}-l)$ =NNHC $_6H_4CH_3-p$	146
	4-Chloro	$p\text{-CH}_3\text{C}_4\text{N} = \text{NC}(\text{CO}_2\text{C}_{10}\text{H}_{19}\text{-}t) = \text{NNHC}_6\text{H}_4\text{CH}_3\text{-}p\dagger$	146
	4-Bromo	$\mathrm{CL}_{3}\mathrm{COC}(\mathrm{CO}_{2}\mathrm{Cl}_{19}^{-1})=\mathrm{NNHC}_{6}\mathrm{H}_{4}\mathrm{Cl}_{7}$	146
Methyl γ -chloroacetoacetate	1	CICH, COC(CO,CH,) =NNHC,H,	257
	2-Methyl	CICH2COC(CO2CH3)=NNHC6H4CH3-0	257
Rthy 1 11-ohlorogootogototo	4-metnyl	$CICH_2COC(CO_2CH_3)$ =NNHC $_6H_4CH_3$ - p	257
- and L-comorphage of the control of		CICH, COC(CO, C, H,)=NNHC, H,	152, 257
	z-methyl	CICH, COC(CO, C, H5)=NNHC, H, CH,-0	257
	4-Methyl	$CICH_2COC(CO_2C_2H_5)$ =NNHC,H,CH,-p	257
	4-Chloro	$CICH_2COC(CO_2C_2H_5)$ =NNHC ₆ H ₄ CI-p	152
	2.4-Dichlono	$CICH_2COC(CO_2C_2H_5) = NNHC_6H_4NO_2-p$	248
	2,4.6-Trichloro	$COC(CO_2C_2H_5) = NNHC_6H_3CI_2-2,4$	152
	2,4,6-Tribromo	CICLECCC(CO2C2L5)=NNHC,H2Cl3-2,4,6	230
	2-Chloro-4-nitro 2,6-Dichloro-4-nitro	CICH,COC(CO,CH,)=NNHC,H,SH3;2,4,6 CICH,COC(CO,CH,)=NNHC,H,SI-2.NO;-4 CICH,COC(CO,CH,)=NNHC H, O, S,	230 248
		2-2-01-07-15-15-07-15-15-07-15-15-07-15-15-07-15	248

Methyl y-bromoacetoacetate

The full mans is given when it is awkward to same the argumine as a derivative of anime, f This product was obtained when 2 equivalents of the diazonium sait were used,

TABLE II-Continued

B. \(\beta\text{-Keto Esters-Continued}\)

	Substituent(s)		
heta-Keto Ester	in Aniline*	Product (Yield, %)	References
Methyl o-methoxybenzoyl-	I	$o ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4 ext{COC}(ext{CO}_2 ext{CH}_3)$ ==NNHC $_6 ext{H}_5$	268
	4-Nitro	o-CH.OC.H.COCKCO.CH.)=NNHC.H.NOo	898
Methyl m-methoxybenzoyl- acetate		m-CH ₃ OC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₅	268
	4-Nitro	m-CH ₃ OC ₆ H ₂ COC(CO ₈ CH ₃)=NNHC ₆ H ₁ NO ₈ - n	268
Methyl p-methoxybenzoyl- acetate	1	$p\text{-CH}_3\text{OC}_6\text{H}_4\text{COC}(\text{CO}_2\text{CH}_3)$ =NNHC $_6\text{H}_5$	268
	4-Nitro	$p\text{-CH}_3\text{OC}_6\text{H}_4\text{COC}(\text{CO}_2\text{CH}_3)$ =NNHC,H,NO,- p	268
Methyl o-chlorobenzoyl- acetate	1	o-CIC,H,COC(CO2CH3)=NNHC,H5	269
	4-Nitro	\circ -CIC ₆ H ₃ COC(CO ₈ CH ₃)=NNHC ₆ H ₃ NO ₈ - σ	569
Methyl m -chlorobenzoyl- n cetate	1	m -CIC, H_4 COC(CO ₂ CH ₃)=NNHC, H_5	269
	4-Nitro	**-CIC.H.GOC/GO.CH.)—NNHC H NO	G
Methyl p -chlorobenzoyl-acetate	1	$p\text{-ClC}_6H_4\text{COC(CO}_2\text{CH}_3)$ =NNHC $_6H_5$	269 269
	4-Nitro	$p\text{-CIC}_6H_4\text{COC}(\text{CO}_2\text{CH}_3)$ =NNHC $_6$ H,NO $_5$ - $_0$	969
Anmeenyl oxalacetate	:	CH ₃ O ₂ CCOC(CO ₂ CH ₃)=NNHC ₆ H ₆ (40)	65 <u>7</u>
Diethyl oxalacetate	Benzidine	[CH ₃ O ₃ CCOC(CO ₂ CH ₃)=NNHC ₆ H ₄ —] ₂ (65)	270
	ſ	$C_2H_5U_2CCOC(CO_2C_2H_6) = NNHC_6H_5$ (75)	62, 61
	2-Methyl	$C_0H_1N=NC(CO_2C_2H_1)=NNHC_0H_2\uparrow$ (76)	63, 61
		OTT OTT TO THE CONTROL OF THE CONTRO	62, 271
	4-Bromo	0-CH ₃ C ₆ H ₄ N=NC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₄ CH ₃ -o† (81)	63
		C_2 L_3 C_3 C_4 C_5	99
	2,4-Dibromo	$C_{\mathbf{L}}C_{\mathbf$	66 273
			!

	DL	AZ(ONT	UM	0	ου	PLI	NG	WI	тн	ALI	PH	ATI	C C	AR	во	N A	гом	s	57
 270, 273 273, 270	273, 270	65, 274	92	£ :	5 2	8	13	253		274	27.5	1	99	8 8	_		3			
4.4'Biphenylenadıhydrazonobis(dietbyl dioxosuccinate) (76) 3.3'-Dımethyl'4,4'-biphenylenedihydrazonobis(dietbyl dloxosuccinate) (60)	3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(diethyl doxosuccinate) (55-60)	C,H,O,CCH,COC(CO,C,H,)=NNHC,H, (86)	CHO CCH COCCCO, CH. STREET CH. (04)	Call O. CCH. COC(CO. C.H.) INNHO, H. CH., 7 (90)	CH, O. CCH, COC(CO, C, H,)-NNHC, H, CO, H-0 (70)		Dictayl a, p.dioxoglutarate a-[p-(p-phenylmercaptobenzoyl)- phenylhydrazonel (27)	ā	-Pylacolylphenylnydrazone]	Diethyl a, a-diethyl-\$.7-dioxoglutarate y-phenylhydrazone	6-IIydroxy-3-oxo-2-phenylhydrazono-4-hexenoic acid	C.H. N. N. C.H. OHOO C.H.	CHOCCOC(CH=CHCO,CH,)=NNHC,H;§ (18)	P-BrC,H,N=NC(CH=CHCO,C,H,)=NNHC,H,Br-pt	NNHC,H,Br.2	C, U, O, CCOC(CH=CHCO, O, H,)=NNHC, H.OC W 6 22	Note: References 177-480 are on pp. 136-142. The full name is given when it is analyzed to nome the contract of the contract	This product was obtained when 2 equivalents of disconjum sait were used.	This product was obtained by coupling in alcoholic bydrochloric acid.	comment of coupling in the presence of sodium carbonate,
 Benzidine 3,3'-Dunethyl- benzidine	3,3'-Dimethoxy- benzidine		4-Methyl	4-Nitro	2-Carboxy	Z,4.Dimethyl	tobenzoyl)	4-(3,4-Dicarbethoxy- 5-methyl-1-	pyrazolyl)	1	!	1.	4-Bromo		į	4-Ethory	0 are on pp. 136-142. when it is awkward to	ined when 2 equivalent	ned by coupling in alc	and of coupling in the
		Dietnyi acetonedicarboxylate							Diese s	oroglutarate	6-Hydroxy-3-oxo-4-hexenoic acid lactone	Diethyl 5-oxo-2-hexendioate					The full name is given when it is awkward to	This product was obtained when 2 equivalents of diszonium sait wer	This product was obtai	

TABLE II-Continued

cq
9
Ξ
ء.
₹
ē
Ç
- 1
က်
lers
š
2
_
3-Kelo
:4
7
8
ä
-1

						ONG	771	4 T.C	תי	, jes pr	LU.	LIC	אנע	Ö									
	References	278	280, 279	280					References	281, 282	283	283	283	283	283	283	283	283	67. 68	02, 03	67, 68	38.	283
B. \theta-Kelo Esters—Continued	Product (Yield, %)	β, β' . Oxaldihydrazonobis(ethyl α, β -dioxobutyrate)	β, β' -Mesoxaldihydrazonobis(ethyl α, β -dioxobutyrate)	$\alpha, \alpha', \alpha''$ -triphenylhydrazone (72) β, β' -Mesoxaldihydrazonobis(ethyl α, β -dioxobutyrate)	a,a',a"-tri-p-tolylhydrazone (50)		C. B-Keto Amides		Product (Yield, %)	CH3COC(CONHC,H3)=NNHC,H3	CII,COC(CONIIC,H,)=NNIIC,H,CH,-0	$CII_3COC(CONIIC_6II_6)$ =NNIIC_6II_4CII_7- p	CH3COC(CONHC, II,) = NNHC, H, OCH, -0	$CH_3COC(CONHC_6H_6)$ =NNIIC_6H_3OCH_3-p	CII,COC(CONIIC,H,)=NNHC,H,OC,H,-,	$\text{CII}_3\text{COC}(\text{CONHC}_6\text{II}_6) = \text{NNHC}_6\text{II}_3\text{CI}_m$	$\text{CII}_{2}\text{COC}(\text{CONHC}_{0}\text{H}_{5}) = \text{NNHC}_{0}\text{II}_{1}\text{Cl}_{-p}$	CH3COC(CONHC,H5)=NNHC,H,Br-p	CII,COC(CONIIC,II,)=NNIIC,II,NO,-0	CU,COC(CONIC,U,)=NNHC,E,CH,-1-NO,-2	CII,COC(CONIIC,II,)=NNIIC,H,CI-1-NO,-2	CII, COC(CONIIC, II,) = NNHC, H(CH, 1, -2, 4, 6-NO, -3	CII,COC(CONIIC,H,)=NNHC,0H,-a
	Substituent(s) in Aniline*	1	I	4-Methyl				Substituent(s)	in Aniline*	1	2-Methyl	4-Methyl	2-Methoxy	-t-Methoxy	4-Ethoxy	3-Chloro	4-Chloro	4-Bromo	2-Nitro	4-Mothyl-2-nitro	4-Chloro-2-nitro	2,4,6-Trimothyl-3- ntao	a-Naphthylamine
	8-Keto Ester	Oxaldihydrazonobis(othyl	ncetoncetavo) Malondihydrazonobis(ethyl	nceloncetale)					heta-Keto Amido	Acetoncotanilido										-			

	\$-Naphthylamine Anhydrotris o- aminobenzalde-	$\mathrm{CH}_{c}\mathrm{COC}(\mathrm{COMC}_{L})$ =NNHC, H_{c} β $\mathrm{CH}_{c}\mathrm{COC}(\mathrm{COMC}_{L})$ =NNHC, $\mathrm{H}_{c}\mathrm{CHO}_{-0}$	283	
	4-(3,4-Dicarbethoxy- 2,5-dimethyl-	byde 4(3,4-benbethoxy- «,\$-Dioxobutynanlide «-arylhydrazone 2,5-dimethyd-	286	
	4-(3,4-Dicarbethoxy- 5-methyl-1- neracolyl)	pyroyı 1 pyroyı 4(34-dənbəthoxy- a.fl-Dioxobutyranlilde «arylhydrazone 5-methyl-1-	253	
-Acetoacetotoluide	Benzidine	$c_{1,K'}(i,H'.B) phenylemednly dtrazono) bis-(a,\beta dtorobutyrannlide) \\ CH_{3}COC(CONHC,H_{4}CH_{2}O)=NNHC_{8}H_{5}$	283	
-Acetoacetotolude	Denzidine	CH, COCCOUNC, H, CH, ***) = NNHC, H, *-); CH, COCCOUNC, H, CH, ***) = NNHC, H,	282	
-Acetoacetaniside		$CH_1COC(CONHC_1 I_1 OCH_2 P) = NNHC_1 I_1 - I_2$ $CH_1COC(CONHC_1 I_1 OCH_2 - P) = NNHC_1 I_2$	283	
-Acetoacetanisido	Denziane	$\begin{array}{l} \text{CH}_{\text{COCCONHC}, H, OCH_{\text{s}}, p) = NNHC_{\text{s}, H_{\text{s}} - 1_{\text{s}}} \\ \text{CH}_{\text{COCCONHC}, H, OCH_{\text{s}}, p) = NNHC_{\text{s}, H_{\text{s}}} \end{array}$	282	
-Ethoxyacetoacetanilide	p (3.4-Diea bethoxy- 2,5-dimethyl-	Cu4,vOc(CONHC,I,I,OCH,-p)=NNHC,II,-], CH5,COC(CONHC,II,OC,II,-p)=NNHC,II, p-Ethoxy-α,β-dloxobutyranlide α-arylhydrasone	287 288	
-Chloroacetoacetaniido n-Chloroacetoacetaniide	pyrtolyl) Benzidme 4-Chloro 2-nitro Denzidme	CH_COC(CONIC,H,OC,H,*P)=NNHQ,H-7, CH_COC(CONIC,H,CH,O=NNHC,H,CH-NQ,*2 (CH_COC(CONIC,H,CH)=NNHC,H,CH-NQ,*2 (CH_COC(CONIC,H,CH)=NNHC,H,*1	287 67, 68 288	
Note: References 177-480 are on pp. 136-142.	are on pp. 136-142.		187	

The full name is given when it is a swik and to name the arylamine as a derivative of aniline.
 Some monopherythydrazone was negleted.

TABLE II—Continued

G. B-Keto Amides-Continued

	Substituent(s)		
heta-Keto Amide	in Aniline*	Product (Yield, %)	Defi
p-Chloroacetoacetanilide	ı	THE PROPERTY OF THE PROPERTY OF THE	reterences
	Benzidina	CONCONTROLLED CONTROLLED CONTROLL	282
p-Bromoacetoacetanilide		$CH_{COC/CONTIC TIP} = NNIIC_{ell} - J_{ell}$	287
	Bonniding	CHICOC(COMEC, H.Br.p)=NNHC, H.	282
n-Sulfamylocotogogtonilide	Denzigine 9 Mis-	[CH,COC(CONIC,H,Br-p)=NNHC,H,-],	1.50
P Salamy meetoacetaminge	2-Initro	CH,COC(CONIC,H,SO,NH,-p)=NNHC,H,NO,-o	986
	0-1N1CF0	CH,COC(CONHC,H,SO,NH,P)=NNHC,H,NO	000
N-1-1141-114	4-initro	CH3COC(CONHC,II,SO,NH,)NNIIC II VO	000
anide	1	CH,COC(CONHC,H,-x)=NNHC,H,	882
	Donni, I.		3
$N-(\beta-Naphthyl)$ ncetoacet-	Deliziuiie —	$[CH_3COC(CONIIC_{10}H_1-\alpha)=NNHC_4H_1-]_1$	10 00 01
amide		CHICAC(COMICIOHI-)=NNIICH	282
		[CH,COC/CONTIG. II .A)	
with Dipmenylacetoacetamide		(C,H ₃),NCOC(COCH.)—NNHC II NO	285
	3-Nitro	(C,Hs),NCOC(COCH,)=NNHC H NO	288
N.C. Forest	-t-Nitro	(C.H.), NCOC/COCH 1	288
N. S., ferrando	f-Nitro	CH, COCICONITSO III NAME (11, NO 1-p (80-90)	288
Act of the state o	4-Nitro	CH.COCICONIES ATT	280
treetoucetanilide phenyl-	1	CH.C. NNIIC II SO. THE CH.NO.	250
nydrazone		CTISC - MINITEGING (==NNHC, H,)CONHC, H.	202
Benzoylacetanilide	ı	C. 1	281
	4-Methyl	C, H, COC(CONHC, U,)==NNHC, H,	000
	4-Methoxv	CHACOC(CONHC, II,)—NNHC, II, CH, -,	202
	4-Ethoxy	C.H.COCCONIIC, II,) = NNIIC, II, OCH, "	563 6
	4-Chloro	C.H.COC(CONIC H.) WILL HOC, H. P.	283
	Benzidine	[CallsCoc(CONICAL)=NNICAL(Cl.)	283
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	287

Ī

Benzidine

N-p-Chlorophenylbenzoylp-Benzoylacetophenetide p-Benzoylacetotoluide

acetamide

p-Benzoylacetaniside

NNHR.	ľ,	Phenyl	o-Tolyl	p-Tolyl
	22	henyl	henyl	Phenyl

n Andine

COCHLCONHR

Phenyl

Substituent R in

eactant.

| Phenyl |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|

1-Methoxy

2-Methox 2-Methyl 4-Methyl -Ethoxy 3-Chloro -Chloro -Bromo

p-Ethoxypheny m-Chloropheny p-Bromophenyl p-Chloropheny a-Naphthy 9-Naphthyl

p-Anisyl

Note: References 177-480 are on pp. 136-142, 3enzidine

The full name is given when it is awkward to name the arylamine as a derivative of aniline.

Phenyl Phenyl

r-Naphthylamine -Naphthylamine

TABLE II—Continued

C. \(\beta\text{-Kcto}\) Amides—Continued

			References	282	287	282	287	282	585	282	287	282	287	282	287	282	287	585	287	282	287	282 287
Substituents in Product,	соссомия 	NNIIR	R,	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Euphenylene	L'henyl Diet.	Dimension	rnenyl	Biphenylene	rhenyl n	inphenylene	r nenyt Biphenylene
Substituer		l	R	o-Tolyl	o-Tolyi	p-Tolyl	p-Toly!	o-venisy!	0-2AHISYI	Jewisyl -	Jysiny-d	p-Ethoxyphenyl	p-Ethoxyphenyl	m-Chlorophenyl	2-Chlorophened	p-Chlorophenyl	p-Bromonliens!	n-Bromonhours	g-Naphthyl	z-Naphthyl	B-Naphthyl	B-Naphthyl
		Substituent(s)	in Aniline	Ponnithing	Denziume	Bonzidina		Benzidine		Renzidina		Benzidine)	Benzidine	1	Benzidine	1	Benzidine	1	Benzidine	1 :	Benzidine
	Reactant, Substituent R in	COCH, CONHR	. O.	0-101y1	$p ext{-} ext{Tolv}$	•	o-Anisyl		p-Anisyl		$p ext{-Ethoxyphenyl}$		m-Chlorophenyl		p-Chlorophenyl	n-Bromonhonel	r consolnenyi	Nonheller	a-rachnony1	B-Naphthal	I from June J	

			NNHR	
H,O COCH,CONHR		Ež.	'n	
Phenyl	F	Phenyl	Phenyl	
•	2-Methyl	Phenyl	o-Tolyl	
	4-Methyl	Phenyl	p-Tolyl	
	2-Methoxy	Phenyl	o-Anisyl	
	4-Methoxy	Phenyl	p-Anisyl	
	4-Ethoxy	Phenyl	p-Ethoxyphenyl	
	3-Chloro	Phenyl	m-Chlorophenyl	
	4-Chloro	Phenyl	p Chlorophenyl	
	4-Bromo	Phenyl	p-Bromopheny]	
	«-Naphthylamine	Phenyl	a Naphthyl	
	β -Naphthylamme	Phenyl	B-Naphthyl	
o-Tolyl	1	o-Tolyl	Phenyl	
p-Tolyl	1	p-Tolyl	Phenyl	
o-Amsyl	1	o-Anisyl	Phenyl	
p-Antsyl	1	p-Anisyl	Phenyl	
p-Ethoxyphenyl	1	p-Ethoxyphenyl	Phenyl	
m Chlorophenyl	1	m-Chlorophenyl	Phenyl	
p-Chlorophenyl	1	p-Chlorophenyl	Phenyl	
p-Bromophenyl	1	p-Bromophenyl	Phenyl	
a-Naphthyl	1	a-Naphthyl	Phenyl	
b.Naphthyl	1	\$-Naphthyl	Phenyl	
Note: References 177-480 are on pp. 136-142,	e on pp. 136-142.			

TABLE III

COUPLING OF DIAZONIUM SALIS WITH MALONIC ACIDS, ESTERS, AND AMIDES

	,	Keferences	70	07.	240	71	71, 170a	71	71,291	71,240	71		71	71	71	7.1	7.1	72, 170a	72	27 62	73, 170a	S 55	73	202
A. Malonic Acids	Product (Yield, %)	C ₆ H ₅ N=NCH=NNHC, H. (46)	$C_6H_5N=NC(C_6H_5)=NNHC_6H_5$	o-CH3OC6H4N=NCH=NNHC6H4OCH4-0 (67)	p-CH ₃ OC ₆ H ₄ N=NCH=NNHC ₆ H ₄ OCH ₃ - p	p-Brc,H,N=NGH=NNHC H p	$0 \cdot 1C_6 H_4 N = NCH = NNHC_6 H_4 I \cdot 0 1$	0-02NC6HINHN=CHCO.H (50)	m-0,NC,H,N=NCH=NNHC,H,NO,-m	$C_{i}^{A} = C_{i}^{A} = C_{i$		o-CH3OC,H4N=NCH=NOH	o-ClC,H,N=NCH=NOH	Z,4-(CH ₃) ₂ C ₆ H ₃ N=NCH=NOH	a-C ₁₀ H,N=NCH=NOH	h-C10H,N=NCH=NOH	$C_6H_5N=NO(CI)=NNHC_6H_6$ (40-50)	p-CH ₂ C ₆ H ₂ N=NC(CI)=NNHC ₆ H ₂ CH ₂ -11 (40-50)			p-CH,C,H,N=NCCH CH CHAnt.)	C,H,N=NC(CH,C,H,)=NNHC,H,CH,CH,P (50)	C,H,N=NC(CH,COC,H,)=NNHC,H,	
Substituent(s)	in Aniline*	1	:	2-Methoxy	2-Bromo	4-Bromo	2-Iodo	z-initro	4-Nitro	1		2-Methoxy	2-Cilloro	Z, Z-Dillicelly1	8-Nowbell-1	h-mapment.	4-Mothers	4-Nitm	θ -Naphthylamine	1	4-Methyl	1	I	
	Malonic Acid	Malonic acid								Malonic acid and sodium	Henre					Chloromalonic acid			Rehalmatani	Allelmalenie neid	Benzylmalonic acid	Phenneylmalonic acid		

Malonio Ester	in Andine*	Product (Tield, %)	References	-
Ethyl hydrogen malonata	4 %	$p \cdot 0_1 NC_4 \Pi_4 N = NC(CO_5 C_1 H_2) = NNHC_6 H_4 NO_2 \cdot p$ (52) $2_1 4_2 \Pi O_5 C(C) C_4 \Pi_4 N H N = C \Pi CC_6 C_4 H_4$ (52)	19c 74a	IAZUS
	2-Carboxy-5- chloro	2,5.HO ₂ C(Cl)C ₄ H ₂ NHN==CHCO ₂ C ₂ H ₄ (72)	74a	HOM
Dimethyl malonate	2-Methyl	C,H,NIN—C(CO,CH,), o-CH,C,H,NIN—C(CO,CH,),	74b, 293 293	COU
	3-Methyl 4-Methyl	m-CH,CH,CH(NHN=-C(CO,CH)),	293	LLIN
	2-Methory	o-CH,OC,H,NHN=C(CO,CH,),	293	G
	4-Methoxy 2-Nifro	p-CH ₂ OC ₄ H,NHN=C(CO ₂ CH ₂),	293	WII
	3-Nitro	m-0,NC,H,NHN=C(CO,CH,),	202	н
	4-Nitro	P-O,NC,U,NHN=C(CO,CH,),	283	MI.
	2-Carbony	o-HO,CC,H,NHN=C(CO,CH,)	293	ır
	3-Carbony	m-HO,CC,H,NHN=C(CO,CH,),	503	n
	4-Carboxy	P-HO,CC,H,NHN=C(CO,CH,),	006	A.I
	2,4-Dimethyl	2,4-(CH,),C,H,NHN=C(CO,CH,),	806	10
	Benridine	4,4'-Biphenylenedihydrazonobis(dimethyl mesoxalate)	294. 295	C.
Note: Heferences 177-480 are on pp. 136-142.	80 are on pp. 136-	142.		K

B. Malonic Esters

Anhatituent(a)

The full name is given when it is awkward to name the arylamine as a derivative of andine.

This product was obtained when excess diazonium sait was used. Olyoxylic acid o-fodophenythydrazone was also formed i

With excess chloromalonic acid the corresponding 3-aryl-1,3,4-oxadiszol-2-one was formed. N.N. Di-o-nitrophenyiformazan was also formed in 5% yield.

TABLE III—Continued

B. Malonic Esters—Continued

References	294, 295	294, 295	8, 74c, 296	74c	190	242	740	14a	29.4 29.4	. 767	242	72		$298,76$ $297,76,299$ H_3-0 \uparrow
Product (Yield, %)	3,3'-Dimethyl-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (84)	3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (71)	$C_6H_5NHN=C(CO_2C_2H_5)_2$ m - $CiC_6H_1NHN=C(CO_2C_2H_5)_3$ (78)	$p ext{-BrC}_6H_1 ext{NHN} = C(CO_2C_2H_5)_2$	$F \subseteq \mathbb{R} \cap \mathbb{R} \cap \mathbb{R} = \mathbb{C}(\mathbb{CO}_{\mathbb{C}} \cap \mathbb{R}_{+})$ (11) $\mathbb{R} - \mathbb{R} \cap \mathbb{C}(\mathbb{C}_{+} \cap \mathbb{R}_{+})$	p-C ₆ H ₅ C ₆ H ₄ NHN=C(CO ₂ C ₂ H ₅) ₂ (50)	1 4 -CH ₃ O- 2 -O ₂ NC ₆ H ₃ NHN==C(CO ₃ C ₃ H ₅) ₂ (47) 2 -HO ₂ C- 2 -ClC ₆ H ₃ NHN==C(CO ₃ C ₃ H ₅) ₃ (47)	(01)	4,4'-Biphenylenedihydrazonobis(diethyl mesoxalate) 3,3'-Dimethyl-4,t'-biphenylenedihydrazonobis(diethyl mesoxalate) (80)	3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(diethyl mesoxalate)	3,3'-Diearboxy-4,1'-biphenylenedihydrazonobis(diethyl mesoxalate)	$p \cdot O_2NC_6H_1N = NCCI(CO_2C_2H_6)_2$ (quant.) $C_6H_5N = NC(CII = CHCO_3H) = NNHCHC$	CoHonin=C(CO2C3H3)CII=CHCO,CH. 777)	$\begin{array}{l} C_{\mathbf{G}}^{\mathbf{H}_{\mathbf{A}}}N\mathbf{H}\mathbf{N} = C(\mathbf{CO}_{\mathbf{a}}C_{\mathbf{a}}\mathbf{H}_{\mathbf{a}})\mathbf{C}\mathbf{H} = C(\mathbf{CO}_{\mathbf{a}}C_{\mathbf{a}}\mathbf{H}_{\mathbf{a}})\mathbf{N} = \mathbf{NC}_{\mathbf{a}}\mathbf{H}_{\mathbf{a}}^{\mathbf{A}} (62) \\ \mathbf{o} \cdot \mathbf{CH}_{\mathbf{a}}C_{\mathbf{a}}\mathbf{U}_{\mathbf{a}}\mathbf{N}\mathbf{I}\mathbf{I}\mathbf{N} = C(\mathbf{CO}_{\mathbf{a}}C_{\mathbf{a}}\mathbf{H}_{\mathbf{a}})\mathbf{C}\mathbf{H} = C(\mathbf{CO}_{\mathbf{a}}C_{\mathbf{a}}\mathbf{H}_{\mathbf{a}})\mathbf{N} = \mathbf{NC}_{\mathbf{a}}\mathbf{H}_{\mathbf{a}}^{\mathbf{A}}\mathbf{H}_{\mathbf{a}}^{\mathbf$
Substituent(s) in Aniline*		3,3'-Dimethoxy- benzidine	3-Chloro	4-Bromo 4-Nitro	3-Carboxy	4-Phenyl	4-Methoxy-2-nifro 2-Carboxy-5-	chloro	Benzidine 3,3'-Dimethyl- benzidine	3,3'-Dimethoxy- benzidine	3,3'-Dicarboxy- benzidine	+-Nitro	1	2-Methyl
Malonic Ester	Dimethyl malonate (Cont.)		Dietayi malonate								Diethyl ohlowania 1	Glutaconic acid Diethyl glutaconnts		

References 75 75 75 75 75

76 76	24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
$p_{\text{CH}_1GH_1NIN} = C(\text{CO}_1G_1H_1)\text{CH} = C(\text{CO}_1G_1H_1)\text{N} = NG_1H_1G_1H_2$ $o_{\text{C}_1H_1G_1G_1H_1NIN} = C(\text{CO}_1G_1H_1)\text{CH} = C(\text{CO}_1G_1H_1)$ $o_{\text{C}_1H_1G_1G_1H_1NIN} = C(\text{CO}_1G_1H_1)$ $o_{\text{C}_1H_1G_1G_1H_1NIN} = C(\text{CO}_1G_1H_1)$ $o_{\text{C}_1H_1G_1G_1H_1N_1} = C(\text{C}_1G_1H_1)$ $o_{\text{C}_1H_1G_1G_1H_1N_1} = C(\text{C}_1G_1H_1)$	p cCg, I, NIN =-CGO, G, II, Georgia, G, G, G, II, Beorgia, B, G, II, RIN =-GGO, G, II, Georgia, G, II, RIN =-GGO, G, II, Georgia, G, II, Beorgia, B, G, II, Beorgia, B, G, G, II, Beorgia, B, G,
4-Methyl 2-Ethoxy	4-Chlaro 2-Honno 1-Bonno 1-Bonno 1-Bonno 2-L-Dunethyl 2,1-6-Trimethyl

. The full name is given when it is awkward to name the arylamine as a derivative of amiline. Note: References 177-480 are on pp. 136-142.

* This product was obtained when 2 equivalents of dazonium sait were used.
** This product is obtained when 2 equivalents of dazonium sait are used in the presence of sedium extronate.

TABLE III—Continued

B. Malonic Esters—Continued

111110	110115
References 294, 295 294, 295 294, 295 8, 74c, 296 74a 74c 19c 242 96 74a 74a 74a 74a	294 294 294 294 242 72 297 297,76,299 0¶ 76
Product (Yield, %) 3,3'-Dimethyl-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (84) 3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (71) $C_6H_5NHN=C(CO_2C_2H_5)_2$ m -Cl $C_6H_4NHN=C(CO_2C_2H_5)_2$ (73) p -Br $C_6H_4NHN=C(CO_2C_2H_5)_2$ (73) p -Br $C_6H_4NHN=C(CO_2C_2H_5)_2$ (71) p -Co $C_6H_4NHN=C(CO_2C_2H_5)_2$ p -Co $C_6H_4NHN=C(CO_2C_2H_5)_2$ (71) p -Co $C_6H_4NHN=C(CO_2C_2H_5)_2$ p -Co $C_6H_4NHN=C(CO_2C_2H_5)_2$ p -Co $C_6H_4NHN=C(CO_2C_2H_5)_2$ (77) p -Co $C_6C_4NHN=C(CO_2C_2H_5)_2$ (77) p -Co $C_6C_4NHN=C(CO_2C_2H_5)_2$ (77) p -Co $C_6C_4NHN=C(CO_2C_2H_5)_2$ (77) p -Co $C_6C_4NHN=C(CO_2C_2H_5)_2$ (77)	4,4'-Biphenylenedihydrazonobis(diethyl mesoxalate) 3,3'-Dimethyl-4,4'-biphenylenedihydrazonobis(diethyl mesoxalate) (80) 3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(diethyl mesoxalate) 3,3'-Dicarboxy-4,4'-biphenylenedihydrazonobis(diethyl mesoxalate) p-O ₂ NC ₆ H ₄ N=NCCl(CO ₂ C ₂ H ₅) ₂ (quant.) c ₆ H ₅ N=NCOHC=CHCO ₂ H ₃)CH=CHCO ₂ C ₂ H ₅) c ₆ H ₅ NHN=C(CO ₂ C ₂ H ₃)CH=CHCO ₂ C ₂ H ₅) c ₆ H ₅ NHN=C(CO ₂ C ₂ H ₃)CH=C(CO ₂ C ₂ H ₅)N=NC ₆ H ₅ ¶ (62) c ₆ H ₅ NHN=C(CO ₂ C ₂ H ₃)CH=C(CO ₂ C ₂ H ₅)N=NC ₆ H ₅ ¶ (62) c ₆ CH ₃ C ₆ H ₄ NHN=C(CO ₂ C ₂ H ₅)CH=C(CO ₂ C ₂ H ₅)N=NC ₆ H ₅ ¶ (62)
Substituent(s) in Aniline* 3,3'-Dimethyl- benzidine 3,3'-Dimethoxy- benzidine 3-Chloro 4-Bromo 4-Nitro 3-Carboxy 4-Phenyl 4-Nethoxy-2-nitro 2-Carboxy-5- chloro	Benzidine 3,3'-Dimethyl- benzidine 3,3'-Dimethoxy- benzidine 3,3'-Dicarboxy- benzidine 4-Nitro
Malonic Bster Dimethyl malonate (Cont.) Diethyl malonate	Dicthyl chloromalonate Glutaconic acid Diethyl glutaconate

JO DALLINO	DIAZONICA SALIS	COULTNO OF DIAZONION SALIS WITH ARTLACETTO ACIDS AND ESTENS	
200	Substituent(s)	Product (Veld. %)	References
Acid of Land	A DUMPAN	/e/ mar i conocr	
2,4 Dinitropheny facette acid	ı '	2,4 (O,N),C,H,C(N=NC,H,)=NNHC,H,	4
	4 Brome	2,4 (0,N),C,H,C(N=NC,H,Br p)=NNHC,H,Br p	2
	2.4 Dichloro	2.4 (O,N),C,H,C(N=NC,H,C),-2,4)=NNHC,H,C), 2,4	5
	2,4 Dibromo	2,4 (O,N),C,H,C(N=NC,H,Br, 2,4)=NNHC,H,Br, 2,4	=
Methyl 2,4 dinitrophenylacetate	1	2.4 (O.N) C.H.C(CO.CH.)=NNHC.H.	79, 80, 301
	2 Methyl	2.4.(O.N) C.H.O(CO.CH.)=NNHC.H.CH. a (98)	130
	4 Methyl	2.4 (O.N) C.H.C(CO,CH.)=NNHC.H.CH. 9 (75)	78. 302
	4-Methoxy	2.4 (O.N) C.H.CCO.CH.)=NNHC.H.OCH.	20
	Chloro	2,4 (O,N),C,H,C(CO,CH,)=NNHC,H,Cl,p	
	4-Bromo	2.4 (O.N), C.H. C(CO.CH.)=NNHC, H.Br. v	7.
	4 Acetyl	2.4 (O.N. C.H. C/CO.CH.)=NNHC.H.COCH. 9	2
	2 Nitro	Z,4 (O.N), C,H,C(CO,CH,)=NNHC,H,NO, o (30)	2
	3 Nitro	2,4 (O,N),C,H,C(CO,CH,)=NNHC,H,NO, m (15)	2
	4 Nitro	2,4 (O,N),C,H,C(CO,CH,)=NNHC,H,NO, p	20
	2 Carboxy	2,4 (O,N),C,H,O(CO,CH,)=NNHC,H,CO,H o (ouent)	1.0
	4 Carboxy	2.4 (O,N),C,H,C(CO,CH,)=NNHC,H,CO,H p (quant.)	. *
	4 Suife	2,4.(0,N) C.H.C(CO.CH.)=NNHC.H.SO.H.2	305
	2,4 Dunethyl	2,4 (0,N),C,H,C(CO,CH,)=NNHC,H,(CH,), 2,4	
	2,4 Dichloro	2,4 (O.N.C.H.C(CO,CH.)=NNHC.H.Cl. 2,4 (55)	
	2,4 Dibromo	2.4 (O,N) C.H.C(CO,CH.)=NNHC.H.Br. 2.4	
	2,4,6-Trumethyl	2,4 (O.N),C.H.C(CO,CH.)=NNHC.H.(CH.), 2,4,6 (80)	A.
	2,4,6 Truchloro	2,4 (O,N),C,H,C(CO,CH,)=NNHC,H,Cl,-2,4 8 (45)	
	a Naphthyl	2,4 (O,N),C,H,C(CO,CH,)=NNHC, H, a	
	A.Naphthyl	2,4 (O,N),C,H,C(CO,CH,)=NNHC,H, p	
		CO,CH,	
			вс
		-	
Dumethy 1 4 netrohomophthalata	1	O'N'O	
		\}- \}	
		=0	O.M
Methyl 4 carbomethoxy 2 nitropheny lacetate	,	C.H.NHN=CICO.CH.M.H.CO.CH.A NO .	8
Homophyladio anhydrida	1	a Phenylbydratonohomonhthalie anhydede	5.2

Note References 177-180 are on pp. 136-142 • The fall name is given when it is awkward to name the arylamine as a derivative of amiline

TABLE III—Continued

min	
Conti	
ا	
4000	
Talonic .	١
C.	

	Substituent		
	in Aniline	Product (Yield, %)	Nononologi
Diethyl N,N'-malonyldicarbamate (Cont.)	2-Nitro	$o \cdot O_2 NC_6 H_4 NHN = C(CONHCO_3 C_3 H_5)_2$	75
	3-Nitro	0.0_2 NC ₆ H ₄ NHN=C(CONHCO ₃ C ₂ H ₅)N=NC ₆ H ₄ NO ₂ ·0** m·0 ₃ NC ₆ H ₄ NHN=C(CONHCO ₃ C ₅ H ₅),	75 E
	4-Nitro	p-0 ₂ NC ₆ H ₄ NHN=C(CONHCO ₃ C ₃ H ₅) ₃ C H NHN — C(C) NHNN — C(C) NHN	3 5
CII,[CONHN=C(CH3)-	1	$C_6H_5NHN = C(C) = NH_3I_3$ $C_6H_5NHN = C(C) = C(C)$ $C_6H_5NHN = C(C)$ $C_6H_5NHN = C(C)$	300a 280
Ethyl malonanilate	1	C,H.NHN=C/CO,C.H.)CONHC H	1
Methyl N-(a-pyridyl)	1	$C_{i}H_{i}NHN = C(CO_{1}CH_{2})CONHC_{i}H_{i}N - \alpha$ (quant.)	3008
Ethyl N-(y-pyridyl)- malonamate	1	C ₆ H ₆ NHN==C(CO ₂ C ₂ H ₅)CONHC ₅ H ₄ N-γ	3000
Malonamic acid Ethyl malonamate	4-Nitro 4-Nitro	$p \cdot O_2 NC_6 H_4 N = NC(CONH_3) = NNHC_6 H_4 NO_3 \cdot p$ (89) $p \cdot O_3 NC_6 H_4 NHN = C(CO_5 C_5 H_5) CONH (30)$	19c
	Modes Deferment on the	(OG) GTT.TO (9-18-2-)	19c

Note: References 177–480 are on pp. 136–142. ** This product is obtained when 2 equivalents of diazonium salt are used in the presence of sodium carbonate.

305, 310 305, 310 305, 310 314 315 315 10c

3,8'-Dimethoxy-4,4'-biphenylenedihydrazonobis(ethyl 3,3.-Dimethy l-4,4' biphenylenedihydrazonobis(ethy)

3,3'-Dimethoxy-

Penzidine **benzidine** 4-Methyl 4-Bromo 4-Nitro

 $\mathrm{CNC}(\mathrm{CO}_{1}\mathrm{C}_{4}\mathrm{H}_{11}\text{-}n){:==}\mathrm{NNBC}_{4}\mathrm{H}_{5}$ CNC(CO,C,H;-n)=NNHC,H, CNC(CO,C,H,")=NNHC,H,

l-Menthyl cyanoacetate n-Propyl cyanoacetate n-Butyl cyanoacetate n-Amyl cyanoacetate Cyanoacetamide

																	_	
311	312	312	312	88	37.1	310	311	82	82	313	313	311	311	238	238	311	311	305, 310
CNC(CO,C,H_1)=NNHC,H,Br-m CNC(CO,C,H_1)=NNHC,H,Br-m	CNCCOOCH TO WHICH INO. THE TREE	CNCCO CONTROL HOUSE (NO. P. 197)	CHOOLO CHE NAME OF HOLD OF HE	CNCCO OH SHINHCALLONH-W	CNCOO CHENNIC H.CO.CH.	CNCCO H NHC H'SO'H-P	CNC(CO C 17.	CNCCO O TT	CNCICO C TT NHC, II, Cl. 2, 4 (96)	CNCIOO O II	CNCICO O H NILO, H, Br, 2,5	CNC(CO C IV	CNC(CO C TO NNING, H, Cl.2. CH, -4 (71)	CNC/CO C H CHO, H C.H. 2 (92)	CNCICO CHE SANHCOLI-	4.4' Burkery San JOHN Change	3.3. Danett.	every de de diphenylenedibydrazonett
2-Nitro 3-Nitro	4-Nitro	2-Carboxy	3-Carboxy	2-Carbomethoxy	4-Sulfo	2,4-Dimethyl	Z,4,5-Trimethy!	2,4-Dichloro	2,3-Dichloro	4.3-Dibromo	a car	Chloro-4-methyl	*-Chloro-2-methyl	a waphthylamine	P. M. Phthylamine	adiprizione 3 of 2	ord - Dimethyl.	Denzidine

 The full name is given when it is arraward to name the arranne as a derivative of amilia. CNC(CO,C,B,L,C)=NNHC,H,CH,-P CNC(CO,C,B,L,-I)=NNHC,H,B,B,-P CNC(CO,NH,)=NNHC,H,NO,-P CNC(CO,NH,)=NNHC,H,NO,-P Note: References 177-480 are on pp. 136-142

TABLE V

COUPLING OF DIAZONIUM SALIS WITH NITHIES

Nit. il.	Substituent(s)		
Menic	m Amme*	Product (Yield, %)	References
Cynnoncetaldehydo	J	CNC(CHO)=NNIIC, II, (15)	20 110
	4-Bromo	CNC(CHO)=NNHC, H, Br-10	60°, 000
:	4-Nitro	CNC(CHO) = NNIIC(H, NO, -n(H))	90
Cyanoacetic acid	i	C,II,N=NC(CN)=NNIIC,II,	361
	2-Carboxy	0-IIO; (Cc, II, N=NC(CN)=NNIIC, 11, (O. 11, 0, 105)	<i>1</i> 106
	4-Nitro		9.00
	2-Hydroxy-5-chlore		196
Methyl cynnoncetate	. 1		2324
	9-Mothyd		301
	J. Mod Deed	CNC(CO ₂ CH ₂)==NNHC ₆ H ₁ CH ₂ ·o	301
	Dometaling	$CNC(CO_2CH_3) = NNHC_4H_1CH_3 \cdot p$	301
	penglanne	4.C.Biphenylenedihydrazonobis(methyl cyanoglyoxalato)	200
	5,3'-Dimethyl-	3,3'-Dimethyl-1,1'-biphenylenedihydrazonobis(methyl	302 300
	Denzidme	cyanoglyoxalate)	000, 000
	3,3'-Dimethoxy-	3.3'-Dimethoxy-4,4'-biphenylenedilydrazonobistmethan	100
Ethyl evenonedet	benzidine	cyanoglyoxalate)	505, 506
יייין כי אווסעכפועופ	1	CNC(CO,C,II,)=NNHC,II, (quant.)	
			52, 710, 175,
	2-Methyl	CNC/CO C II \ NNITO II WIL	301,307-300
	4-Methyl	O'CONO ON THE PRINCIPLE OF CONO	102 68
	2-Methovy	CNC(CO2C2H3)==NNIIC_II_(CH3-1)	3000
	d-Mothern	CNC(COTC, IIs) =NNIIC, II, OCII, -0	100.5
	Tata	$CNC(CO_1C_1II_1)$ =NNIIC_II_OCII	015
	i-Ednoxy	CNC(CO,C,11,)=NNIIC,11,OC,11	01: 01:
	z-ttydroxy	ONC(CO,C,II,)=NNIIC,II,OII.	310
	o-Hydroxy	CNC(CO,C,II,) = NNIIC II OII	311
	I-Hydroxy	ONC(CO_C,II,)==NNIIC_II_OIL."	311
	o-Chloro	$CNC(CO_2C_2\Pi_k) = NNIIC_3\Pi_1C_3\Pi_2$	311
			7.10

C,H,COC(CN)-NNHC,H,CO,H-2-SO,H-4

2-Carboxy-4-sulfo

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITHILES

Roferongo	740	99	e cc	80, 87 86, 87	74b, 83 84, 19c	90 96	98 88, 89	100	196	316	000	00	. 6	317 718 10
Product (Yield, %)	CNC(CONIIC, Hs)=NNHC, II, OCH, 1. NO, 2	$p\text{-}O_2\mathrm{NC}_6\mathrm{H}_4\mathrm{N} = \mathrm{NC}(\mathrm{CH}_4)(\mathrm{CN})\mathrm{CO}_2\mathrm{C}_4\mathrm{H}_3\dagger$ $\mathrm{C}_6\mathrm{H}_5\mathrm{N} = \mathrm{NC}(\mathrm{C}_4\mathrm{H}_4)(\mathrm{CN})\mathrm{CO}_2\mathrm{C}_4\mathrm{H}_4$	P-BrC,H,N=NC(C,H,)(CN)CO,C,H,§	p-brc.H.NHN=C(CN)COCO.C.H, (3)	$C_{\mathbf{k}\mathbf{l}_{3}}$ $D_{\mathbf{l}_{3}}$	$C_bH_3N=NC(CN)_2CH_4C_6H_3$ (81) $p\cdot O_2NC_6H_4N=NC(CN)_2CH_4C_6H_3$ (87) $p\cdot C_6H_3C_6H_4N=NC(CN)_2CH_4C_4H_3$ (87)	C,H,NHN=C(NO,)CN	P-C ₁ NC ₄ H ₄ NHN=C(NO ₂)CN (59) P-O ₃ NC ₄ H ₄ N=NC(CN)=NNHC ₄ H ₄ NO ₂ - p (72)	p-0,2,NC,H,NHN=C(CN)SO,CH, (63)	CH ₂ COC(CN)=NNHC ₄ H ₃	$^{\text{CH}_3\text{COC}(\text{CN})}=\text{NNHC}_{\text{H}_3}$	C ₆ H ₅ COC(CN)==NNHC ₆ H ₅	$C_bH_sN=C(CH_s)C(CN)==NNHC_tH_s$	C,H,COC(CN)==NNHC,H, C,H,COC(CN)==NNHC,H,CH,-o C,H,COC(CN)==NNHC,H,OH-2-SO,H-5
Substituent(s) in Aniline*	4-Methoxy-2-nitro	4-ivitro	4-Bromo	4-Bromo	4-Nitro	4-Nitro 4-Phenyl	4-Nitro	4-Nitro		I	1 1	1	ı	2-Methyl 2-Hydroxy-5-sulfo
Nitrile	Cyanoacetanilide	Ethyl a-cyanobutyrate	Ethyl cyanopyruvate	Malononitrile	Benzylmalononitrile	Nit.	taltoaceconitrie	Methylsulfinylacetonitrile Methylsulfonylacetonitrile	p-Nitrophenylacetonitrile	heta-Iminobutyronitrile $ heta$ -Oximinobutyronitrile	\$-Iminovaleronitrile	p-Imino-f-phenyl- propionitrile	p-Fhenyliminobutyro- nitrile	Denzoylacetonitrile

	2-Ilydroxy-4-sulfo- 6-nitro-1- naphthylamine	a, 6.Dioxo-3 methoxy-2-naphthylpropionitrie a-(2-hydroxy-4-sulfo-6-nitro-1-naphthylhydrazone)	ž
	2-Hydroxy-3-nitro-	a, \$-Dioxo-3-methoxy-2-naphthylpropionitrile a-(2 hydroxy-3-nitro-4-sulfophenylhydrazone)	94
5.0.7,8-Tetrahydro-2-	2-Hydroxy-4-sulfo-	α,β-Dioxo-β-(5,6,7,8 tetrahydro-2-naphthyl) propionitule	94
5-Acenaphthenoyl- acetontrile	2-Hydroxy-4 sulfo-	4.β-Dioxo β-Gacenaphthyl)propionitnie α-(2-hydroxy-4-sulfo- l-nabhthyllyndraone)	94
2.Thenoy facetonitrile	2-Hydroxy-4-suffo-	a,β-Dioxo-β-(2-threnyl)propropriet a (2-hydroxy-4-sulfo-1-nonth-hybrid-none)	94
2.1\uruylacetoniirile	2-Hydroxy-4-sulfo- 1-naphthylamine	α_{μ} . Divace, β_{μ} . Carrylpropionity is α_{ν} . (2-hydroxy-4-sulfo-1-naphthyllydraxons)	94
	2 Carboxy-4-sulfo	α,β-Dioxo-β (2-furyl)propionitrile α-(2-carboxy-4-	94
	2-Carbory-3-suffo-	sulphopheryllydrazone) x,g.Dioxo-g.Ceturyllydionitrile a-(2-carboxy-3-sulfo-4- ryllowed)as-glassicallydragonery	94
	2-Hydroxy-4-sulfo- 6-nitro-1-	oro-open-spay lazable? \$a,\text{P}.\text{Tox}-\text{\$\text{\$\cdot\)}} \text{\$\text{\$\cdot\}} \text{\$\cdot\}	94
4.4'-Biphenyldscarbonyl- acetonitrile	naphthylamne 2-Carboxy-4-sulfo	$4,4'$. Biphenylenebis- $(x,\beta'$ -dioxopropionitrile) x,x' -di- t^2 -orb-row x_1 and t^2 -di- t^2 -orb-row x_2	į
Pheny sulfony acctonitrile	2-Methyl	C,HSO,C(CN)—NNRCH C,HSO,C(CN)—NNRCH C,HSO,C(CN)—NNRCH C,HSO,C(CN)—NNRCH C,HSO,C(CN)—NNRCH	# 62 E
	3-Methyl 2-Methoxy 4-Methoxy	CHSO.C(CN)=NNHC,H.cul.,m CHSO.C(CN)=NNHC,H.cul.,m CHSO.C(CN)=NNHC,H.coth.,o CHSO.C(CN)=NNHC,H.coth.	2 2 2
· The full name is given	when it is ankward t	The full game is given when it is ankward to name the arrhamine as a derivative of matters.	82

mante the arylamine as a derivative of aniline,

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRILES

	Substituent(s)		
Nitrile	in Aniline*	Product (Yield, %)	References
m-Aminobenzoyl- acetonitrile	2-Hydroxy-4-sulfo-	α,β -Dioxo-m-aminophenylpropionitrile α -(2-hydroxy-4-sulfo-	76
m-Nitrobenzoyl-	2-Hydroxy-4-sulfo-	α, β -Dioxo-m-nitrophenylpropionitrile α -(2-hydroxy-4-sulfo-1-	94
acetonitrile	1-naphthylamine	naphthylhydrazone)	4
m-Carboxybenzoyl- acetonitrile	2-Hydroxy-4-sulfo-	α, β -Dioxo-m-carboxyphenylpropionitrile α -(2-hydroxy-4-	94
2,4-Dimethoxybenzoyl-	2-Hydroxy-4-sulfo-	suno-1-napnanylnydrazone) α.β-Dioxo-2.4-dimethoxxnhenπlmonionitnilo ~ /9 hmd	Š
acetonitrile	1-naphthylamine	4-sulfo-1-naphthylhydrazone).	94
3,4-Dichlorobenzoyl-	2-Hydroxy-4-sulfo-	α,β -Dioxo-3,4-dichlorophenylpropionitrile α -(2-hydroxy-	F 6
acetonitrile	I-naphthylamine	4-sulfo-1-naphthylhydrazone)	£0
acetonitrile	Z-Hydroxy-4-sulfo-	a, b-Dioxo-3, 4, 5-trimethoxyphenylpropionitrile	94
3,4,5-Triethoxybenzovl-	9-Hvd.publiylanine	α-(2-hydroxy-4-sulfo-1-naphthylhydrazone)	
acetonitrile	1-nanhthwlamine	%,p-Dioxo-3,4,5-triethoxyphenylpropionitrile	94
p-(p-Cyanoacetophenyl)-	9. Hydroxy 4.cmffe	a-(z-nyaroxy-4-sulfo-1-naphthylhydrazone)	
benzoylacetonitrile	I-naphthylamine	α, p -Dioxo-p- $(p$ -cyanoacetophenyl)phenylpropionitrile	76
Hexahydrobenzoyl-	2-Hvdroxv-4-snlfo-	%. 2-11, uroxy-4-suito-1-naphthylhydrazone)	
acetonitrile	1-naphthylamine	".p" Dioxocyclonexylpropionitrile \(\alpha \)-(2-hydroxy-4-sulfo- 1-naphthylhydrazone)	94
a-1Napht hoylacetonitrile	2-Hydroxy-4-sulfo-	α,β-Dioxo-1-naphthylpropionitrile ~./9.hv.d	
B-Naphthoylacetonitrile		1-naphthylhydrazone)	94
	2-Ayaroxy-4-sulto- 1-naphthylamine	α,β-Dioxo-2-naphthylpropionitrile α-(2-hydroxy-4-sulfo-	94
o-methoxy-2-naphthoyl-	2-Hydroxy-4-sulfo-	a.B-Diovo-3-mothown 9 months :	
acetonitrile	1-naphthylamine	α-(2-hydroxy-4-sulfo-1-naphthylhydrazone)	76

\$.Naphthylsulfonyl- acrtonitrile	ı	\$-C,0H,SO,C(CN)=NNHC,H,	93
	3-Methyl	β-C ₁₆ H,SO ₂ C(CN)=NNBC,H _c OH,·m β-C ₁₆ H-SO ₂ C(CN)=NNIC,H _c OH,·m	8 8
	4-Ethoxy	\$-CtallsO.C(CN)=NNHC,II,OC,II,-p	8 8
a-l'henylsulfonylpropionitrile	!	C,II,SO,C(CN)(CII,)N=NC,II,	83
	4-Methyl	C,H,SO,C(CN)(CH,N=NC,H,CH,-p	8
	4-Ribory	$C_{\rm H}^{\rm H}_{\rm SO_2}C({\rm CN})({\rm CH_2})N = {\rm NC_1H_2}O{\rm CH_2}$	8
a-p-Chlorophens lsulfonyl- moniontrala		p-cro, H, SO, C(CN) (CH, 1)N=NC, H, p-cro, H, SO, C(CN) (CH, 1)N=NC, H,	5 E
c.p-Bromophenylaufonyl- propionitrile	\$-Naphthylamine 4-Methyl	$p\text{-}\mathrm{GC}_{\mathrm{H}}\mathrm{SO}_{\mathrm{a}}\mathrm{C}(\mathrm{CN})(\mathrm{CH}_{\mathrm{i}})\mathrm{N} = \mathrm{NC}_{\mathrm{i}}\mathrm{H}_{\mathrm{i}}\cdot\beta$ $p\text{-}\mathrm{GC}_{\mathrm{i}}\mathrm{H}_{\mathrm{s}}\mathrm{SO}_{\mathrm{a}}\mathrm{C}(\mathrm{CN})(\mathrm{CH}_{\mathrm{i}})\mathrm{N} = \mathrm{NC}_{\mathrm{i}}\mathrm{H}_{\mathrm{i}}\cdot\beta$	88
a-(f-Naphthylsulfonyl)- propontrile	4-Methory	$\begin{array}{ll} p\text{-BrC}_{*}\Pi_{*}SO_{*}C(GN)(G\Pi_{*})N = NC_{*}\Pi_{*}GG\Pi_{*}p\\ \beta\text{-}C_{*}\Pi_{*}SO_{*}C(GN)(G\Pi_{*})N = NC_{*}\Pi_{*} \end{array}$	93 93
a.Phenoxyacetyl.B-imino-B- phenylpropionstrie	4-Methyl	$\begin{array}{l} \beta \cdot C_1 H_1 \otimes O_1 C(CN)(CH_1)N = NC_1 H_1 CH_2 \cdot p \\ C_1 H_2 O CH_2 CO C(CN)(N = NC_4 H_4)C(=NH)C_4 H_4 \end{array}$	318
f-l'henoxyacetimido-β- phenylpropionitnie	ı	$C_t\Pi_tOC\Pi_tCON==C(C_t\Pi_t)C(CN)==NNHC_t\Pi_t$	319

Note: References 177-480 are on pp. 136-142.
• The full name is given when it is awkward to rame the arylamine as a derivative of anilms.

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRILES

Nitrile	Substituent(s) in Aniline*	Product (Yield, %)	References
Phenylsulfonylacetonitrile 4-Ethoxy	4-Ethoxy	$C_6H_5SO_2C(CN)$ =NNH $C_6H_4OC_2H_5$ - p	92
(00)(11)	2,4-Dimethyl	$C_6H_5SO_2C(CN)=NNHC_6H_3(CH_3)_2-2,4$	92
p-Tolylsulfonylacetonitrile		p-CH,C,H,SO,C(CN)=NNHC,H,	93 50
•	2-Methyl	p-CH3C,H,SO,C(CN)=NNHC,H,CH3-0	36
	3-Methyl	p-CH ₃ C ₆ H ₃ SO ₂ C(CN)=NNHC ₆ H ₄ CH ₃ -m	65
	4-Methyl	p-CH ₃ C ₄ H ₃ SO ₂ C(CN)=NNHC ₆ H ₄ CH ₃ -p	6
	2-Methoxy	p-CH3C,H,SO,C(CN)=NNHC,H,OCH3-0	65
	4-Methoxy	p-CH ₃ C ₆ H ₁ SO ₂ C(CN)=NNHC ₆ H ₁ OCH ₃ - p	93
	4-Ethoxy	p-CH ₃ C ₆ H ₃ SO ₃ C(CN)=NNHC ₆ H ₂ OC ₂ H ₃ -p	92
	2,4-Dimethyl	p-CH,C,H,SO,C(CN)=NNHC,H,(CH,),-2,4	93
p-Bromophenylsulfonyl- acetonitrile	}	p-BrC,H,SO,C(CN)=NNHC,H,	93
	4-Ethoxy	p-BrC, U,SO,C(CN)=NNHC,H,OC,H,-n	22
a-Naphthylsulfonyl- acetonitrile		c-C,oH;SO_C(CN)=NNHC,H; (67)	93
	2-Methyl 4-Methyl 4-Methoxy	α -C ₁₀ H;SO ₂ C(CN)=NNHC ₆ II,CII ₃ -o α -C ₁₀ H;SO ₂ C(CN)=NNHC ₆ II,CH ₃ -p α -C ₁₀ H;SO ₂ C(CN)=NNHC ₆ H,OCH ₃ -p	93 93 93

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRILES

NCC

RHNN

Nitrile

References 32 98 22222 98 98Yield, 2020 50 61 $\mathbb{R}' = m$ -Nitrophenyl R' = p-Tolyl R' = p-Tolyl R' = p-Tolyl 1k' = p-Tolyl CN N=NC6H4OCH3-P CN N=NC6H4Br-p CN N=NC6H4Br-p R = p-Diethylaminophenyl R = p-Diethylaminophenyl R = p-Nitrophenyl R = 0-Anisyl R = Phenyl4-Diethylamino 4-Diethylamino Substituent 2-Methoxy 4-Methoxy in Aniline 4-Bromo 4-Bromo 1-Nitro (3-p-Tolyl-1,2,4-oxadiazol-5-yl)-2,3-Dihydro-1-cyclopenta[b]-(3-m-Nitrophenyl-1,2,4-oxa-1,2,3,4-Tetrahydroacridinequinoline-3-earbonitrile diazol-5-yl)acetonitrile 4-carbonitrile acetonitrile

Ethyl n tolvisulfonvlacetate	1	p-CH,C, H.SO,CICO,C,H,1=NNHC,II,	8
	9.Mathel	TO IN COUNTY OF COUNTY OF THE	! 8
	P.Methyl	Profit of the control	25
	3-Methyl	p-CH,C,H,SO,C(CO,C,H,)=NNHC,H,CH,-m	92
	4-Methyl	p-CII,C, II, SO, C(CO, C, H,)=NNHC, II, CH, **	92
	2-Methoxy	2-CH.C.H.SO.C(CO.C.H.) == NNHC.H.OCH2	86
	4.Methory	P.CH.C. II SO.C.CO. C. II. INVITED IN CO.	1 8
	/ Dale	the state of the s	9 1
	4-Ethoxy	p-cutching the control of the contro	22
	2,4-Dimetbyl	p-CH,C,H,SO,C(CO,C,H,)=NNHC,H,(CH,),-2,4	92
Pheny laulfony lacetarnide	1	C.H.SO.C(CONH.)=NNHC.H.	2
	2-Methyl	C.H.SO,C(CONH.) =NNHC, H.CH.	8
	3-Methyl	C, II, SO, C(CONII,) =NNHC, H, CH,	83
	4-Methyl	C.H.SO, C/CONH.)=NNHC, II, CH	8
	2-Methoxy	C.H.SO.CICONH.) -NNHC.H.OCH.	2 8
	4-Methoxy	CH.SO.CICONIC.)	3 6
	4. Pibory	THE OF THE PARTY OF THE OWNER OF THE OWNER OF THE OWNER OWNE	70
		d-fight to the state of the sta	35
	2,4.Dimethyl	C.H.SO,C(CONH.)=NNHC,H.(CH.), 2.4	35
p-rockenflouylacetamide	ı	P-CH,C.H.SO.C(CONH. 1=NNHC.H.	6
	2-Methyl	P-CH.C.H.SO.CICONIT. 1-NNITIC II OFF	3 8
	3-Methyl	THE PROPERTY OF THE PARTY OF TH	7 6
	4. Marthail	W-FOOT WITH CONTROL OF THE CONTROL O	22
	Trans.	P-LIBCALLSON CONH, MINHCHICH, PP	26
	Z-Methory	p-CH,C,H,SO,C(CONH,)==NNHC,H,OCH,-0	92
	4.Methory	P-CH,C,H,SO,C(CONH,)==NNHC,H,OCH,-,	6
	4-Ethoxy	PCH.C.H.SO.C(CONH. ISNNHC. H. OC. H.	3 8
	2,4-Dimethyl	D-CH.C. II SO CICONII ANNIIO II SILL	7 1
Phenylauffony intromethano		CH SO COM 1 NAMES OF	22
P-Toly lsulfonylnitromethans	4-Nitro	P-CH-C-H SO CAN 1 NAMED IN NO. 11 AND	102
Note: Defendance 170 100		lzz) d.towitrionne lionical contractor d	19c

Note: Meferences 177-480 are on pp. 136-142,

• The full name is given when it is awkward to name the arylamine as a derivative of aniline.
† In addition, some 5-hydroxy-1,3-bis-(p-nitrophenyl)tetracolium betains was formed.

TABLE VI

COUPLING OF DIAZONIUM SALTS WITH SULFONES

	Substituent(s)		
Sulfono	in Aniline*	Product (Yield, %)	References
Bis(methylsulfonyl)methane	j	$(CH_3SO_2)_2C=NNHC_6H_5$ (56)	101
	2-Methyl	(CH ₂ SO ₂) ₂ C=NNHC,H,CH ₃ -0 (43)	101
	4-Methyl	$(CH_3SO_2)_2C=NNHC_6H_4CH_3-p$ (36)	101
	4-Nitro	$(CH_3SO_3)_2C=NNEC_6H_3NO_2-p\dagger$	19c
Bis(ethylsulfonyl)methane	ı	(C2H,SO2)3C=NNHC4H, (43)	101
	2-Methyl	(C ₂ H ₅ SO ₂) ₂ C=NNHC ₆ H ₄ CH ₅ -o (48)	101
	4-Methyl	$(C_1H_5SO_2)_2C$ =NNH $C_6H_1CH_3$ - p (33)	101
	4-Nitro	(C,H,SO,),C=NNHC,H,NO,-p†	19c
Methyl (methylsulfonyl)methyl sulfoxide 4-Nitro	4-Nitro	$p-0_3NC_6H_3N=NC(SO_3CH_3)=NNHC_6H_3NO_3-p\dagger$	19c
Ethyl methylsulfonylacetate	4-Nitro	$CH_3SO_3C(CO_3C_3H_3)$ =NNHC,HJNO,-p (79)	19c
2-(Methylsulfonyl)acetamide	4-Nitro	p-0,NC,H,N=NC(S0,CH,)=NNHC,H,NO,-p (54)	19c
Methyl nitromethyl sulfone	4-Nitro	$CH_3SO_3C(NO_3)$ =NNHC,H,NO,-p (35)	196
Bis(phenylsulfonyl)methane	4-Nitro	$(C_nH_nSO_n)_nC_n=NNHC_nH_nNO_n-n^{\frac{1}{2}}$	196
Bis(methylsulfonyl)methylthiomethane	f	(CH,SO,),C(SCH,)N=NC,H, (60)	390
Phenylsulfonylacetic acid	2-Methyl	C,H,SO,C(N=NC,H,CH,-0)=NNHC,H,CH,-0	99
	2-Methoxy	C,H,SO,C(N=NC,H,OCH,-0)=NNHC,H,OCH,-0	2 6
Ethyl phenylsulfonylacetate	1	C,H,SO,C(CO,C,H,)=NNHC,H.	3 6
	2-Methyl	C,H,SO,C(CO,C,H,)=NNHC,H,CH,-0	76 60 60 60
	3-Methyl	C,H,SO,C(CO,C,H,)=NNHC,H,CH,-,,	1 6
	4-Methyl	$C_bH_bSO_aC(CO_aC_aH_b)$ =NNH $C_aH_aCH_a$ - p	1 6 6
	Z-Methoxy	C,H,SO,C(CO,C,H,)=NNHC,H,OCH,-0	92
	4-Methoxy	C,H,SO,C(CO,C,H,S)=NNHC,H,OCH,-p	92
	4-remoxy	C,H,SO,C(CO,C,H,)=NNHC,H,OC,H,-p	92
	z, r-Dimeenyl	CaH,SO,C(CO,C,H,)=NNHC,H,(CH,)-2,4	92

Ethyl p-tolybulfonylacetate	}	p-CH,C,H,SO,C(CO,C,H,)=NNHC,H,	25
	2-Methyl	P-CH.C.H.SO.C/CO,C.H.) == NNHC.H.CH	95
	3-Methyl	p-CH.C.H.SO,C(CO,C.H.)=NNHC,H,CH,-m	8
	4-Methyl	p-CH,C,H,SO,C(CO,C,H,)-NNHC,H,CH,-P	2
	2-Methoxy	p-CH,C,II,SO,C(CO,C,H,)=NNHC,H,OCIL,-0	20
	4-Methoxy	P-CH.C.H.SO.C(C).C.H.)=NNHC.H.OCH.	20
	4-Ethoxy	P.CH.C.B.SO, C/CO, C.H.) = NNHC, H.OC.HP	8
	2,4-Dimethyl	PCH.C.11, SO. C(CO.C. II.) == NNHC. II. (CH. 1. 2.4	8
Phenylaufonylacetamide	1	C.H.SO.C/CONH.)=NNIIC. II.	60
	2-Methyl	C.H.SO, C(CONH, 1=NNHC, H, CH	8
	3-Methyl	C.H.SO.C.CONH. 1 NNHC.H.CH.	3 5
	4-Methyl	C.H.SO.CCOMIL.)=NNIIC, II.CH20	3 2
	2-Methoxy	C.H.SO.CICONH. F-NNHC.H.OCIL.	3 8
	4-Methoxy	C.H.SO.C/CONH, 1=NNHC, H.OCH2	3 8
	4-Ethory	C.H.SO,C(CONH.)=NNHC,H,OC.H	3 8
	2,4.Dimethyl	C.II.SO.C(CONII,)=NNHC, II.(CII, 1, 2, 4	3 2
p-Tolylsulfonylacetamide	1	P-CH.C.H.SO.C.CONH.)=NNHC.H.	3 2
	2-Methyl	P-CH,C.H.SO, C(CONH,)=NNHC.H.CH	2 8
	3-Methyl	PCH.C. II.SO. C/CONII. 1 NNIIC. II CH	3 5
	4-Methyl	P-CH.C.H.SO.C/COMIL. 1=NNIIC. II CIT.	? &
	2-Methoxy	PCH.C.H.SO.CCONH. Nanner a cert	3 5
	4-Methory	PCH C. P. SO CICONII, Namento et Octo	2 5
	4-Ethory	P-CH C.P. SO. C.CONII.) - NNIIC II OC II	2 2
	2,4-Dimethyl	P.CH.O.R.SO.CICONII.	9 6
Phenylsulfon plaitromethans	1	C.H.SO. O'NO D-NAME OF	22
p-Tolylsulfonvlaitmmethene	(Witness	Strange of the Control of the Contro	202

p-CH,C,H,SO,C(NO,)=NNHC,H,NO,p (23) 4-Nitro areny/antromet/dane

186

Natr. References 177–180 are on pp. 126–112. • The full mans is given when it is swiered to name the arylamine as a derivative of eailine. † La adattion, some & bytmay-1,3-ba-ip-nitrophenyllectusolium betains was formed.

TABLE VI-Continued

COUPLING OF DIAZONIUM SALTS WITH SULFONES

ient(s) Product (Yield, %) References	p-BrC ₆ H ₃ SO ₃ C(NO ₃)=NNHC ₆ H ₅ 102	$m \cdot O_3 N C_6 H_3 C(SO_3 C_6 H_5) = NNHC_6 H_5$	2-(5-Sulfo-1-naphthylazo)sulfazone	ine	iylamine	-(p-2-{3-Sulfo-t-(p-sulfophenylazo)phenylazo]sulfazone 103	ydroxy-3- 2-{p-fp-(4-Hydroxy-3-carboxyphenylazo)-phenyll- 103 yphenylazo)- phenylazo)sulfazone		$2-(p ext{-Sulfophenyhzo})$ sulfazone-7-sulfonylacetic 321	ค่	221 2-(-t-Sullo-1-nuphthylazo)sulfazone-7- 321 sylmine sulfonylacetic acid
Substituent(s) in Aniline* Product (Yield, %)	- p -BrC ₆ H ₄ SO ₂ C(NO ₃)=	— m-0,NC,H,C(SO,C,H	5-Sulfo-1- 2-(5-Sulfo-1-naphthyl	amine -6-	sulfo-l- naphthylamine		. 🚖	phenyl]	4-Sulfo 2-(p-Sulfophenymzo)s	3-Carboxy-4- 2-(3-Carboxy-4-hydrox	damine
Sulfone	p-Bromophenylsul f onylmi f romethane	m-Nitrobenzyl phenyl sulfone	Sulfazone, i.e.,		= 2 -	1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ກວີ '		Sulfazone-7-sulfonylacetic acid		

Note: References 177–480 are on pp. 136–142.
• The full name is given when it is awkward to name the arylamine as a derivative of aniline.

COUPLING OF DIAZONICA SALTS WITH NITH COMPUTATION TABLE VII

	Substituent(x)		
Nitro Compound	in Aniline	Product (Vield. ",)	References
Nitromethane	1	C,II,NIIN-CHNO,	104, 105,
			107, 323
		Chi,N NC(NO,) NNHC,H, (So)	20, 3, 106-
			107, 323
	2-Methyl	o-CH'CH'N - NC(NO) NNHCHIAB	104
	4-Methyl	PCHCHN NCOOP NAME HAD	51
	2-Ethoxy	of HOCH NAMED NAMED OF HO	ક
	4-Bromo	P.B.C., II, N. S.C.(NO,)* NNH, II, III, p.	3
	2-Nitro	9-0,NC,II,NIIN « CHNO, (77)	Talle grath
	4-Natro	PONCH, NAVINO, - NAHCH, NO. P	6
		PO,NC,II,NHN - CHNO, (0)	171.331
	2-Pormyl	PHOCHAIN - CHNO. 633	1.91
	2-Arrity	• CH,COC,H,NHN + CHNO, 000	
	2-Carbony	PHOCE IN CITY OF 1731	
	2-Carlamorthur	ACH CONTRACTOR CITICO AS	
	Control of	(60) (00) - (110) (10)	10.
	1-Carpernory	PCHOCKHONIN-CHNO (w)	Ξ
	O'me-t	PUOPCIL'N=NCINO, NNHCHION D	55
	- Sultamy	P.II, N.O., C. II, N. S. N.C. (N.O.) N. III., III, N.O., N.III., III., N.O., N.III., N.O., N.III., III., N.O., N.III., N.O., N.	501
	2.4-Unmethyl	2.4-(CH,),C,H,N=NC(NO,)=NNHC,H,(CH,), 2.1 (20)	120
	Z-I neny	oC,H,C,H,N=1NC(NO,) -NNHC,H,C,H,-6	f
	3-I Tiens 1	M.C.H.C.H.N. NCNO. N. NIIC. II. C. II.	2 6
	4-Phenyl	P.C.H.C.H.N. NCOND. NNHC H C W.	
	4-Phenoxy	P.C.H.OC.H.N SENCING, SENVINGER OF THE	£ 8
W.f. D.f.		dallio volto variational dallional dalliona dalliona dalliona dalliona dalliona dalliona dalliona dalliona dalliona	6

Note: References 177-480 are on pp. 136-142.

* The full name is given when it is ankward to name the arylamine as a derivative of aniline.

TABLE VI-Continued

COUPLING OF DIAZONIUM SALTS WITH SULFONES

References	102	102	103		103			103	1	103)		39.1	į	321	!	39.1	
Product (Yield, %)	$p ext{-BrC}_6 ext{H}_4 ext{SO}_2 ext{C}(ext{NO}_2) ext{=-NNHC}_6 ext{H}_5$	m-O ₂ NC ₆ H ₄ C(SO ₅ C ₆ H ₅)=NNHC ₆ H ₅	2-(5-Sulfo-1-naphthylazo)sulfazone		2-(8-Hydroxy-6-sulfo-1-naphthylazo)sulfazone			2-[3-Sulfo-4-(p-sulfophenylazo)phenylazo]sulfazone		2 -{ p -[p -(4 -Hydroxy- 3 -carboxyphenylazo)-phenyll-	phenylazo)sulfazone		2- $(p$ -Sulfophenylazo)sulfazone-7-sulfonylacetic		xyphenylazo)sulfazone-7-		2-(4-Sulfo-1-naphthylazo)sulfazone-7-	sulfonylacetic acid
Substituent(s) in Aniline*	1	1	5-Sulfo-1-	naphthylamine	8-Hydroxy-6-	sulfo-1-	naphthylamine			$4-[p-(4-\mathrm{Hydroxy-3-}$	phenylazo)-	phenyl]	4-Sulfo					naphthylamine
Sulfone	$p ext{-}Bromophenyl sulfonylnit romethane$	m-Nitrobenzyl phenyl sulfone	Sulfazone, i.e.,			E :	95.	20.00	S CH2	02			Sunazone-7-sunonylacetic acid					

Note: References 177-480 are on pp. 136-142. \bullet The full name is given when it is awkward to name the arylamine as a derivative of aniline.

G

2-Nitropropane	I	(CH ₃) ₂ C(NO ₂)N=NC ₄ H ₂	2, 333
	4-Methyl	(CH,),C(NO,)N=NC,H,CH,P	333
	4-Chloro	(CH,),C(NO,N=NC,H,CI-p	333
	4-Bromo	(CH,)C(NO,)N=NC,H,Br-p	333
	2-Nitro	(CH,),C(NO,)N=NC,H,NO,.0	333
	3-Nitro	(CH,),C(NO,)N=NC,H,NO,-m	333
	4-Nitro	(CH,),C(NO,)N=NC,H,NO,"	324, 33,
	2-Carboxy	(CH,),C(NO,)N=NC,H,CO,H-0	333
	4-Carbory	(CH,),C(NO,)N=NC,H,CO,H-p	333
	4-Sulfo	(CH ₂) ₂ C(NO ₂)N=NC ₂ H ₂ SO ₃ H-p	325
	4-Acetamido	(CH ₂),C(NO ₂)N=NC,H,NHCOCH, p	333
	2,5-Dichloro	(CH,),C(NO,)N=NC,H,Cl,-2,5	333
	2-Methyl-5-nitro	(CH ₃),C(NO ₃)N=NC,H,CH ₂ -2-NO ₃ -5	333
	2,4,6-Tribromo	(CH,),C(NO,)N=NC,H,Br,-2,4,6	333
	\$-Naphthylamine	(CH,),C(NO,)N=NC,,H,-8	324, 337
	Benzidine	[(CH,),C(NO,)N=NC,H,-1,	333
	4-Phenylazo	P-(C,H,N=N)C,H,N=NC(CH,1,NO,	333
1-Nitro-2-propene	1	CII,=CIC(NO,)=NNHC.H.	234
	2-Methyl	OH, == CHC(NO,) == NNHC, H, CH,	224
	4-Methyl	CH,=CIIC(NO,)=NNHC,H,CH,-v	100
	4-Methoxy	CH2=CHC(NO2)=NNIIC, H, OCH, 20	334
	4-Ethoxy	CH,=CHC(NO,)=NNHC,H,OC,H,-p	234
	4-Chloro	CH2=CHC(NO,)=NNHC,H,CI-p	334
	3-Bromo	CH,=CHC(NO,)=NNHC,H,Br.m.	834
	4-Carboxy	CH, CHC(NO,) =NNHC, H, CO, H-2	756
1-Nitro-n-butsue	ı	n-C,H,C(NO,)=NNHC,H,	101
			;

* The full name is given when it is ankward to name the arylamne as a derivative of sniline. Note: References 177-480 are on pp. 136-142

† The formazan structure is H₁NN=CHN=NH, ‡ In addition, some diarylazon(troethans was formed.

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRO COMPOUNDS

Nitro Compound	Substituent(s) in Aniline*	Product (Yield, %)	References
Nitromethane (Cont.)	α -Naphthylamine β -Naphthylamine	α -C ₁₀ H ₇ N=NC(NO ₂)=NNHC ₁₀ H ₇ - α β -C ₁₀ H ₇ N=NC(NO ₂)=NNHC ₁₀ H ₇ - β (63)	106 106 20
	2-Phenylthio $2-(p-\mathrm{Anisyloxy})$	o-Central of the control of the cont	20
	2-Phenoxy-4-phenyl 2-Phenylthio-4-	N,N'-Di-(2-phenoxy-4-phenyl)phenyl-C-nitroformazan† N,N'-Di-(2-phenylthio-4-phenyl)phenyl-C-nitroformazan†	20 20
Nitroethane	phenyl	CH3C(NO₂)≔NNHC₀H5 (quant.)	326, 1, 2, 107, 171, 324
	2-Methyl	$CH_3C(NO_3)$ = $NNHC_6H_4CH_3$ - o	327
	4-Methyl	CH3C(NO3)=NNHC6H4CH3-P	324, 327
	4-Chloro	CH ₃ C(NO ₂)=NNHC ₆ H ₄ Cl-p (quant.)	1760
	4-Bromo	$CH_3C(NO_2) = NNHC_6H_4Br-p$	328
	3-Nitro	$CH_3C(NO_2)$ =NNHC ₆ H ₄ NO ₂ -m	329
	4-Nitro	$CH_3C(NO_2) = NNHC_6H_4NO_2 - p$	324
	-Sulfo	$CH_3C(NO_2) = NNHC_6H_4SO_3H-p$	325
	2,4-Dichloro	CH ₃ C(NO ₂)=NNHC ₆ H ₃ Cl ₃ -2,4 (95)	330
	2,4,6-Trichloro	CH ₃ C(NO ₂)=NNHC ₆ H ₂ Cl ₃ -2,4,6‡	330, 331
	2,4,6-Tribromo	CH ₃ C(NO ₂)=NNHC ₆ H ₂ Br ₃ -2,4,6 (49);	331
	a-Naphthylamine	$CH_3C(NO_3) = NNHC_{10}H_7 - \alpha$ (5)	332
	θ -Naphthylamine	$CH_3C(NO_3) = NNHC_{10}H_7 - \beta$	324, 332
1-Nitropropane	1	C ₂ H ₅ C(NO ₂)==NNHC ₆ H ₅ (87)	326, 4, 107,
			324
	4-Methyl	C,H,C(NO,)=NNHC,H,CH,-p	324
	o Ment then	Calcon (NO a) == NN HC h 1 NO a-p	324
	p-Naphthylamine	C2H5C(NO2)==NNHC10H7-P	324

4-Nitro-1-butanesulfonic acid 4-Nitro	4-Nitro	p-0,NC,H,N==NC(NO,)(C,H,)CH,SO,H (51)	313
	4 Phenylato	p-(C,H,N=N)C,H,N=NC(NO,)(C,H,)CH,SO,H (56)	343
	3,3'-Dimethoxy-	2,2'-(3,3'-Dimethoxy-4,4'-biphenylenedisazo)bis-[2-nitro-	343
	benzidine	1-butanesulfonic acid] (77)	
2-Nitroethanol	1	HOCH,C(NO,)=NNHC,H, (94)	107, 344
	4 Sulfo	HOCH,C(NO,)=NNHC,H,SO,H-P	344
2-Nitropropanol	1	CH,C(NO ₂)=NNIIC,H, (78)	107
1-Nitro-2-propanol	1	CH,CHOHC(NO,)=NNHC,H,	107
2-Nitro-1-butanol	1	C,H,C(NO,)=NNHC,H,	107
	4-Methyl	HOCH,C(NO,)(C,H,)N=NC,H,CH,-vf	108
	2-Chloro	HOCH,C(NO,)(C,H,)N=NC,H,C)-03	108
	4-Chloro	HOCH, C(NO,)(C,H,)N=NC,H,Cl-p§ (56)	108
		C,H,C(NO,)=NNHC,H,Cl-p	108
	2-Bromo	HOCH,C(NO,)(C,H,)N=NC,H,Br-05	108
	4-Bromo	HOCH,C(NO,)(C,H,)N=NC,H,Br-ps	108
		C,H,C(NO,)=NNHC,H,Br-p	108
	2,5-Dichloro	HOCH, CANO, MC, H. JN NC, H. CL2.55	801
	2-Methyl-4-nitro	C.H.C(NO,)=NNHC.H.CH. 2 NO.4	108
	5 Methyl-3-nitro	HOCH, C(NO.)(C.H.)N=NC.H.CH5-NO35	108
1-Nitro-2-butanol		C.H.CHOITCAO, 1 NAME, II.	101
3-Nitro-2 butanol	1	CH CAN I WHICH	101
1 1 1-Throhlone 2 mitue 9		" Thomas - Control of the	707
nropanol	ı	Cl_CCHOHC(NO_t)=NNHC_H,	107
ional id			

Note: References 177-480 are on pp. 136-142.

. The full name is given when it is awkward to name the arriamme as a derivative of aniline.

f The product was obtained by acidification of the reaction mixture.

| The product was obtained when the alkaline reaction mixture was left for several days.

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRO COMPOUNDS

Nitro Compound	Substituent(s) in Aniline*	Product (Xield, %)	References
9-Nitro-a-butane	3-Nitro	C, H, C(NO,)(CH,1)N=NC, H, NO,-111	333
	4-Carboxy	$C_aH_sC(NO_a)(CH_a)N=NC_aH_sCO_aH_sP$	333
	2,5-Dichloro	$C_{i}H_{i}C(NO_{i})(CH_{i})N=NC_{i}H_{i}CI_{i}-2,5$	333
	2-Methyl-5-nitro	C.H.C(NO.)(CH.)N=NC,H.JCH.2-NO5	333
	2,4,6-Tribromo	$C_2H_3C(NO_2)(CH_3)N=NC_6H_2Br_3-2,4,6$	333
	4-Phenylazo	$C_2H_3C(NO_2)(CH_3)N=NC_6H_1(N=NC_6H_5)-p$	333
2-Methyl-1-nitropropane	[(CH ₅), CHC(NO ₂)=NNHC ₆ H ₅	ເລ
	4-Sulfo	$(CH_3)_2CHC(NO_2)$ =NNHC $_4H_4SO_3H-p$	325
1-Nitro-n-pentane	J	$n-C_1H_9C(NO_2)=NNIIC_6H_5$ (90–100)	326
Dinitromethane	1	$C_6H_5N=NCH(NO_2)_3$	335
	4-Nitro	$p \cdot 0.NC_6H_1NHN = C(NO_2), (37)$	19c
1,3-Dinitropropane	1	C,H,NIIN=C(NO,)CH,C(NO,)=NNIIC,II,	336
	4-Methyl	p-CII,C,II,NIIN=C(NO,)CII,C(NO,)=NNIIC,II,CII,-p	
	4-Methoxy	p-CH ₃ OC ₆ U ₄ NHN=C(NO ₂)CH ₂ C(NO ₂)=NNHC ₆ H ₄ OCH _{3-P}	
1,5-Dinitro-n-pentane	1	CallsNIIN=C(NO2)(CII2)3C(NO2)=NNIIC,II3	
I,7-Dinitro-n-heptane	ŀ	C,H,NIIN=C(NO,)(CII,),C(NO,)=NNIIC,II,	338
Lodonitromethane	j	IC(NO ₂)=NNIIC,II ₃	339
	4-Methyl	$IC(NO_2) = NNIIC_4 II_4 CII_3 \cdot p$	3330
Methazonic acid	ſ	C,H;NHN=C(NO,)CH=NOH	340
Nit no not contide	4-Methyl	p-CH ₃ C ₆ II ₄ NIIN=C(NO ₂)CII=N0II	310
		C,H,NHN=C(NO,)CONII,	80
Methyl nitronectate	0111117-1	P-0,NC,II,NIIN=C(NO,)CONII, (60)	190
Ethyl nitroacetate		$C_6^{\rm cli_3NIIN} = C(NO_2)CO_2 CII_3$ (56)	341
	4-Nitro	p.O.NC,II,NHN=C(NO,)CO,CII,	5 55 5 55 5 55 5 55 5 55 5 55 5 55 5 5

	4-ISenzy lony	C'ILC(NO,)=NNIIC'ILOCII,C'III.' (39)	171	
	3-Nitro	C,II,C(NO,)=NNIIC,II,NO,-m (quant.)	320	
	4-Nitro	$C_{i}H_{i}C(NO_{i}) = NNHC_{i}H_{i}NO_{i}$	111, 172, 350	I
	4-Phenyl	C.II, C(NO,) = NNHC, II, C, II, p (33)	121	οL
	2,4.Dinitro	C,II,C(NO,)=NNIIC,II,(NO,1,-2,4	320	١z
	2-Methyl-4-nitro	C,H,C(NO,)=NNHC,H,CH, 2:NO,4	1	o.
	4-Methyl-2-nitro	C.II.C(NO,)=NNIIC,II,CII, 4-NO, 3	173	IL
	2-Chloro-4-nitro	C.H.C(NO,)=NNHC,H,C1-2-NO,-4	1 2	м
	8-Naphthylamine	C.II, C(NO,) = NNIIC, II, B (31)	1 5	c
	2-(o-Nitrophenyl)	C,II,C(NO,)=NNIIC,II,(C,II,NO,-0)-0 (53)	22.2	οt
	4-Chloro-2-(4-	C.H.C(NO,)=NNHC,H,C1+(C.H,C1-NO, 2),2 (33)	17.15	TI
	chloro-2 nitro-			.15
	Pheny I)			ŧσ
	4-Bromo-2-(4-	C.H.C(NO,)=NNHC.H.Br-4-(C.H.Br-4-NO).	1407	v
	bromo-2-nitro-		Owner, or	VI.
	ppen*1)			ΓH
obenzylcyanide	1	C.H.C(CN)=NNHP.H.NO.m	:	,
	2-Methyl	C.H.CICKI-KVIIC II ON O VO	=	L
	4-Methyl	Paragraphic to the Control of the Co	ž	ır
		Charleton and Charleton Control of the Control of t	114	н
	- Curono	C,H,C(CN)=NNIIC,H,CI-9-NO,-4	111	A'
	4-Chloro	C,H,C(CN)=NNHC,H,Cl-4-NO2	: =	ΓI
	Z-Nitro	C,H,C(CN)=NNIIC,II,(NO.), 2,4	:	c i
	4-Nitro	C,H,C(CN)=NNHC,H,(NO.), 2.4	= :	ÇA
oxy-x-nitrotoluene	1	P-CILOCH.CVC 1-VVIIC II	Ĭ	R
ro-a-nitrotoluene	2-(o-Nitrophenyl)	POCH CINC I WATER IN SO IT YOU	32	BC
initrotoluene		" O NO II ONO . STATE (L. II. NO. 0)-0 (75)	3234	N
ntrotoluene	1	"Control of the Control of Count.)	323	,
	4.Nitm	p-O ₁ NC ₁ H ₂ C(NO ₂)=NNIIC ₂ H ₂	352	T
		polycontactors)=NNIIC,II,NO,p	342	D3
" References 177-480 are on pp. 136-142.	re on pp. 136-142.		•	15

TOWN TO THE TANK ON THE PARTY OF THE PARTY O

4. Donner bear

2-(o-Nitrophenyl) 2 Chloro 4-Chloro -Methy -Nitro -Nitro p-Methoxy-x-nitrotoluene p-Chloro-a-nitrotoluene a,m-Dinitrotoluene z,p-Dimtrotoluene

 The full name is given when it is awkward to name the arylamine as a derivative of aniline. Note: References 177-480 are on pp. 136-142.

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRO COMPOUNDS

Nitro Compound 1,1,1-Trichloro-3-nitro-2-	Substituent(s) in Aniline*	Product (Yield, %) Cl,CCH(O,CCH,)C(NO,)==NNHC,Hs	References 345
propyl acetate	2-Methyl 3-Methyl	$CI_3CCH(O_4CCH_3)C(NO_2) = NNHC_4H_4CH_3 - O$ $CI_3CCH(O_4CCH_3)C(NO_2) = NNHC_4H_4CH_3 - m$	5 5 5
	4-Methyl 4-Chloro	$C_1_3CCII(O_4CCII_3)C(NO_4)=NNHC_4II_4CII_4-p$ $C_1_3CCII(O_4CCII_3)C(NO_4)=NNHC_4II_4CI_p$	2 12 1
	4-Nitro 2,4-Dichloro	$C!_{C}CH(O_{1}CCH_{1})C(NO_{2}) = NNHC_{4}H_{1}NO_{2}p$ $C!_{C}CH(O_{1}CCH_{3})C(NO_{2}) = NNHC_{4}H_{3}C'I_{2}^{-2}A$	2 S
2-Nitro-1,3-propanediol	1	$HOCH_1C(NO_2) = NNHC_4 II_3$ (97)	101 101
2-Mitro-1-Pentanol 1-Nitro-2-pentanol	1	n-C_H,CHOHC(NO_1)=NNHC_H,	107
1-Nitro-2-hexanol	1	n-C,H,CHOHC(NO2)==NNHC,H,	107
2-Nitro-1-phenylethanol	ı	Chichone(No.)=Nnhe,III,	107
3,3,4-Trichloro-1-nitro-2- pentyl acetate		CH,CHCICCI,C(O,CCH,)C(NO,)=NNHC,H,	312
4	4-Methyl	$CH_1CHCICCI_1C(O_1CCH_1)C(NO_2) = NNIIC_1 H_1CH_2 - P$	315
	4-Chloro	CHJCHCICCCICCOJCCHJC(NO2)==NNHC,H,CI-p	00 00 12 12
1-Benzoyl-2-nitroethanol	4-Nit70	p-0,NC,H,N=NC(NO,)=NNHC,H,NO,-p	350
2,4-Dinitro-1,3-diphenyl-1- butanol		C,H,CHOHCH(NO,)CH(C,H,)C(NO,)=NNHC,H,	317
α-Nitrotoluene	4-Methyl 4-Methoxy 4-Butoxy	C ₄ H ₅ C(NO ₂)=NNHC ₄ H ₅ (80) C ₄ H ₅ C(NO ₅)=NNHC ₄ H ₄ CH ₅ -p (40) C ₄ H ₅ C(NO ₅)=NNHC ₄ H ₄ OCH ₅ -p (33) C ₄ H ₅ C(NO ₅)=NNHC ₄ H ₄ OC ₄ H ₅ -p (31)	171, 318, 310 171 171 171

(C)11(CON-a-KC)11(C(1)-4-KO)-6 C)11(CON-a-KC)11(C(1)-4-KO)-6 C)11(CON-a-KC)11(C(1)-4-KO)-6 PC III, C(1)-2-1, III PC III, C(2)-2-1, III PC III, C(2)-2-1, III PC III, C(2)-2-1, III PC III, C(2)-2-1, III PC III, C(2)-2-2, III PC III, C(2)-2-2-2, III PC III, C(2)-2-2-2, III PC III, C(2)-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	4. Methyl-santr (11/CON=SVILI/Lib, 4.1.4) 2. 4. d. Tribramo C. Li, CON=SVILI, Lib, 2.1.4 2. 4. d. Tribramo C. Li, CON=SVILI, Lib, 2.1.4 2. 4. d. Tribramo C. Li, CON=SVILI, Lib, 2.1.4 2. 4. d. M. M. S. d.	94 4	2-Methyl-4-nitro	C,H,CON=NC,H,CH,-3·NO,-4 C,H,CON=NC,H,CH,-1·NO,-9	2 5
24.6 Pribromo Cili (COS = NCII) (19.72, 14, 14 Cili (COS = NCII) (19.72, 14, 14 Cili (COS = NCII) (19.72, 14, 14 Cili (COS = NCII) (19.74, 14, 14 Cili (COS = NCII) (19.74, 14, 14 Cili (COS = NCII) (19.74, 14 Cili (COS = NCIII) (19.74, 14 Cos = NCIII) (19.74, 14 Cos = NCIII) (19.74, 14 Cos = NCIII (19.74, 14 Cos = NCIII) (19.74, 14 Cos = NCIII (19.74, 14 Cos = NCIII) (19.74, 14 Co	Cill, GOC = NVII, Ult, NO. p. CIL, GOC = NVII, Ult, NO. p. CIL, GOC (LG (NOL), ENVIII, Ult, NO. p. CIL, GOC (LG (NOL), ENVIII, Ult, NO. p. CIL, GOC (LG (NOL), ENVIII, Ult, NO. p. CIL, COC (LG (NOL), ENVIII, Ult, NO. p. SAltine 15-both interpropy/interplaning (23) SAltine 15-both interpropy/interplaning (23) CIL, No. 2-both interpropy/interplaning (23) CIL, No. 2-both interpropy/interplaning (23) CIL, No. 2-both interpropy interplaning (23) CIL, No. 2-both interpropy interplaning (23) CIL, No. 2-both interplaning (23) CIL, No. 2-both interplaning (24) CIL, CIL, No. 2-both interplaning (24) CIL, CIL, No. 2-both interplaning (24) CIL, CIL, CIL, CIL, CIL, CIL, CIL, CIL,		Methyl-3-miro	CHICON-NCHICH-4-NO.3	2 2
P. CHI, CHI, CHO, L. SANII CHI, NO, P. F. CHI, COI, LI (CNO, 1—NNII CHI, NO, P. CHOOT LI (CNO, 1—NNII CHI, NO, P. CHOOT LI (CNO, 1—NNII CHI, NO, P. CHOOT LI (CNO, 1—NNII CHI, NO, P. S. Mirro CHI, A. CHO, P. CHI, A. CHI, A. CHI, CHI, CHI, CHI, CHI, CHI, CHI, CHI,	P. CHI, G. (L. (CNO)	ci.	4,6-Tribromo	C,H,CON=NC,H,Br,-2,4,8	91
- p-GIRO (ILCON), ENNIR (LIRO), PANIR (LIRO)	Port (CO) (LGCM), ENNIC (LGCM), ENNIC (LGCM), ENDIC (LGCM)	1		p-CII,C,II,C(NO,)=NNIIC,II,NO,rp	100, 358
4-(2-Miro-2-pleval) interpolylimorpholime (22) 4-(2-Miro-2-pleval) interpolylimorpholime (23) 4-(2-Miro-2-pe-diardipolishosiporpy) planerpholine (23) 4-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (23) 4-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (13) 4-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (14) 5-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (14) 5-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (24) 5-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (25) 5-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (26) 5-(3-Miro-2-pe-diardipolishosiporpy) planerpholine (27) 5-(3-Miro-2-pe-diardipolishosiporpy) planerpholi	4-(2-Miro-2-plevil) interpolylimorphologia 4-(2-Miro-2-plevil) interpolylimorphologia 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorphologia) 4-(2-Miro-2-plevilloripolylimorpholine (23) 4-(2-Miro-2-plevilloripolylimorpholine (23) 4-(2-Miro-2-plevilloripolylimorpholine (23) 4-(2-Miro-2-plevilloripolylimorpholine (23) 4-(2-Miro-2-plevilloripolylimorpholine (23) 4-(2-Miro-2-plevilloripolylimorpholine (23) 4-(2-Miro-2-plevilloripoline) 2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 3-(2-(2-Miro-2-plevilloripoline) 	toluene -	1	p-CH,OC,H,C(NO,)=NNHC,H,NO,rp	109, 358
42. Nurve 2. pelakoprijanijanopis properbaline (23) 42. Nurve 2. pelakoprijanopis properbaline (23) 42. Nurve 2. penitropiskovi pasopropis properbaline (13) 42. Nurve 2. penitropiskovi pasopropis properbaline (14) 42. Nurve 2. penitropiskovi pasopropis properbaline (13) 44. S. Nurve 2. penitropiskovi pasopropiskovi properbaline (13) 45. Nurve 2. penitropiskovi pasopropiskovi properbaline (14) 45. Surphybrane 2. elitteritut jamine (17) 46. Surphybrane 2. elitteritut jamine (17) 47. Surphybrane 2. elitteritut jamine (17) 48. Surphybrane 2. elitteritut jamine (17) 49. Surphybrane 2. elitteritut jamine (17) 49. Surphybrane 2. elitteritut jamine (17) 49. Surphybrane 2. elitteritut jamine (17) 40. Surphybrane 2. elitteritut jamine 2. elitteritut	4-(2-Nure-2-p-chalopspriate) propy plumpholine (21) 4-(2-Nure-2-p-chalopspriate) propy plumpholine (23) 4-(2-Nure-2-p-chalopspriate) propy plumpholine (23) 4-(2-Nure-2-p-chalopspriate) propy plumpholine (14) 4-(2-Nure-2-p-chalopspriate) propy plumpholine (14) 4-(2-Nure-2-p-chalopspriate) plumpholine (15) 4-(2-Nure-2-p-chalopspriate) plumpholine (15) 4-(2-Nure-2-p-chalopspriate) plumpholine (16) 4-(3-Nure-2-p-chalopspriate) plumpholi	•		4-(2-Nitro-2-plieny laropropyl)morpholine (22)	1764
4(2-Nitro-2-tenitrophical) and propriate (13) 4(2-Nitro-2-tenitrophical) and propriate (14) 4(2-Nitro-2-tenitrophical) and proposition (14) 4(2-Nitro-2-tenitrophical) and proposition (14) 4(2-Nitro-2-tenitrophical) and proposition (14) 4(2-Nitro-2-tenitrophical) and propriate (13) 4(2-Nitro-1-tenitrophical) and propriate (13) 4(2-Nitro-1-tenitrophical) and propriate (13) 4(2-Nitro-1-tenitrophical)	4(2-Niro-2-tenitophatao)propip juncaphane (13) 4(2-Niro-2-tenitophatao)propi juncaphane (14) 4(2-Niro-2-tenitophatao)propi juncaphane (14) 4(2-Niro-2-tenitophatao)propi juncaphane (14) 4(2-Niro-2-tenitophatao)propi juncaphane (13) 4(2-Niro-2-tenitophat	÷	-Chloro	4-[2-Nitro-2-(p-chlorophenylaza)propyllmorpholine (26)	1764
4 (2-Niro 2-tennirophialon) propriation (11) 4 (2-Niro 2-tennirophialon) propriation (10) 4 (2-Niro 2-tennirophialon) propriation (11) 4 (2-Niro 2-tennirophialon) propriation (11) 4 (2-Niro 2-tennirophialon) propriation (12) 4 (2-Niro 2-tennirophialon) propriation (13) 4 (2-Niro 2-tennirophialon) propriation (13) 4 (2-Niro 2-tennirophialon) 4 (2-Niro 2-tennirophialon) 5 (2-Niro 2-tennirophialon) 6 (2-Niro 2-tennirophia	4(2-Nure 2-ternatrophalano)proj propriadine (11) 4(2-Nure 2-ternatrophalano)proj propriadine (11) 4(2-Nure 2-ternatrophalano)proj propriadine (11) 4(2-Nure 2-ternatrophalano)proj propriadine (11) 50 4(2-Nure 2-ternatrophalano)proj propriadine (12) 50 50 50 50 50 50 50 50 50 50 50 50 50	ci	·Nitro	4-(2-Nutro-2-(o-nitrophenylazo)propyl)morpholme (32)	1764
4 (2-Nitro 2-to-interprint hazappan) purphylates (10) 4 (2-Nitro 2-to-interprint hazappan) purphylates (11) 4 (2-Nitro 2-to-interprint hazappan) purphylates (13) 4 (2-Nitro 2-to-interprint hazappan) purphylates (24) 4 (2-Nitro 2-to-interprint) purphylates (24) 4 (2-Nitro 2-to-interprint) purphylates (25) 4 (2-Nitro 2-to-interprint) purphylates (25) 4 (2-Nitro 2-to-interprint) purphylates (25) 4 (2-Nitro 2-to-interprint) purphylates (27) 4 (2-Nitro 2-to-interprint) pu	4 (2-Nitro-2-t-onitrophical hazoppup) purphylaine (11) 4 (2-Nitro-2-t-onitrophical hazoppup) purphylaine (13) 4 (2-Nitro-2-t-onitrophylaine) purphylaine (13) 4 (2-Nitro-2-t-onitrophylaine) purphylainephylaine (13) 4 (2-Nitro-2-t-onitrophylainephylaine) (13) 4 (2-Nitro-2-t-onitrophylainephylaine) (13) 4 (2-Nitro-2-t-onitrophylainephylaine) (13) 4 (2-Nitro-2-t-onitrophylainephylaine) 4 (2-Nitro-2-t-onitrophylainephylaine) 4 (2-Nitro-2-t-onitrophylainephylaine) 4 (2-Nitro-2-t-onitrophylainephylaine) 4 (2-Nitro-2-t-onitrophylainephylaine) 4 (2-Nitro-2-t-onitrophylainephyl	rio .	-Nitro	4-[2-Nitro-2-(m-nitrophenylazo)propyl]morpholine (41)	1704
4 (42-Muro 2-to-entropythosylpony) purphabhe (13) 4 (42-Muro 2-to-entropythosylpony) thousphale (24) 4 (42-Muro 2-to-entropythosylpony) thousphale (24) 4 (42-Muro 2-to-entropythosylpony) thousphale (24) 4 (42-Muro 2-to-entropythosylpony) thousphale (25) 4 (42-Muro 2-to-entropythosyls) thousphale (25) 4 (43-Muro 2-to-entropythosyls) 4 (43-Muro 2-to-entropy	4 (42.Nito-2-(excharge)paripanipany) purphabhae (13) 4 (42.Nito-2-(excharge)paripanipany) purphabhae (13) 4 (42.Nito-2-(excharge)paripany) purphabhae (13) 4 (43.Nito-2-(excharge)paripanipany) purphabhae (13) 4 (43.Nito-2-(excharge)paripany) purphabhae (14) 4 (43.Nito-2-(excharge)paripany) purphabhae (14) 4 (43.Nito-2-(excharge)paripany) purphabhae (14) 4 (44.Nito-2-(excharge)paripany) purphabhae (14) 4 (44.Nito-2-(excharge)paripany) pariphabhae (14) 4 (44.Nito-2-(excharge)paripany) pariphabhae (14) 4 (44.Nito-2-(excharge)pariphabhae (14) 4 (44.Nito-2-(excharge	4	Nitro	4 [2-Nitro-2-(p-nitropheny lazo)propy []morpholine (46)	1764
term view of the company of the comp	decouple	ν.	Carboxy	4-[2-Nitro-2-(o-carboxyphenylazo)propyl)morpholine (13)	1784
 4(2-Marco 2-4), Addisologopy Junospadine (18) bylamne 4(2-Marco 2-4), addisologopy Junospadine (23) 4(2-Marco 2-4) and Junospany Junospan	• 442-Miroz 24, delaboperpi Lanjavrijemspoline (18) blame 4-42-Miroz 2-6 malithijazapeny) limenjidane (13) taso (42-Miroz 2-6 malithijazapeny) limenjidane (23) 4-2 Miroz 4-6 planti kanojenyi planenjidane (24) blamina 25-Mirophylaza-2-mirothuji kanine (17) 23-Mirobhylaza-2-mirothuji, 1-4 dalohotane (89) 2-3-Di-3, farentiyi 1-4 dalohotanen-1-1-4 limitrobalane (89) dininbalane (80)	-	Carboxy	4-(2-Nitro-2-(p-carboxyphenylazo)propyl]morpholine (26)	
pojamne (42-Niro-2-fenalhujupupop) jumopjubine (52) 12-(7-Niro-2-fenalhujupupo) jumopjubine (52) 12-(7-Niro-2-fenalhujupupo) jumopjupupupupupupupupupupupupupupupupupupu	pipame (42-Mre 2-Pandhilly paperpop) Innorphilme (25) 120 (12-Mre 2-Pandhilly paperpop) Innorphilme (25) 120 (12-Mre 2-Pandhilly paperpop) Innorphilme (25) 120 (12-Mre 2-Pandhilly paper) 120 (12-Mre 2-Pandhilly paper) 120 (12-Mre 1-Pandhill) 120 (12-Mre 1-Pandhill)	10.0	,4-Dichloro	4-(2-Nitro-2-(2,4-dichlorophenylazo)propyl]morpholine (18)	
4.(2.Musc. 2.(Packup) appropriate (90) 2.(P.Chloropheny) and properly [march 4.0] 3.(P.Chloropheny) and antertriand (10) 3.(2.9) Phys. J. J. Adul Agraeme-1, -dimitribution (87) 2.2. Delta, P. J. Adul Agraeme-1, -dimitribution (89) 2.3. Delta, family benefit agraeme-1, -dimitribution (89) 2. Delta, P. Letter (10) 2. Delt	12.2 Minto 2 (prollen) knopheny knoppenyy knopenyy knopen	α.	-Naplithy lamine	4-(2-Nitro-2-\$-naphthylazopropyl)morpholine (25)	
2-thy-tunophrophysical Scatteribudy harmon (7) 2-thy-tunophrophysical Scatteribudy harmon (7) 2-2-thy-tunophrophysical Scatteribudy harmon (12) 2-2-thy-tunophrophysical Scatteribudy harmon (14) 2-2-thy-tunophysical Scatteribudy harmon (14) 2-2-thy-tunophysical Scatteribudy harmon (14) 3-2-thy-tunophysical Scatteribudy harmon (14) 3-2-thy-tunophy	2-th-Kunorphorylano, 2-thrittholylanne (1) 2-fh-Kunorphorylano, 2-thrittholylanne (1) 2-fh-Kuphthylano, 2-thrittholylanne (1) 2-fh-Kuphthylano, 2-thrittholylanne (8) 2-fh-Kuphthylano, 2-thrittholylane 2-fh-Kuphthylanono-I-I-I 3-fh-Kuphthylanono-I-I-I 3-fh-Kuphthylanono-I-I-I 3-fh-Kuphthylanono-I-I-I 3-fh-Li-Forcivo, 1-m-Kuphthylanono-I-I-I 3-fh-Li-Forcivo, 1-m-Kuphthylanono-I-I 3-fh-Li-Forcivo, 1-m-Kuphthylanono-I-I 3-fh-Li-Forcivo, 1-m-Kuphthylanono-I-I 3-fh-Li-Forcivo, 1-m-Kuphthylanono-I-I 3-fh-Li-Forcivo, 1-m-Kuphthylanono-I 3-fh-Li		Chloro	4-(2-Nitro-2-(p-plien) lazopheny lazo)propyl Jmorpholine (60)	
hylamine 2.6 Naphthylano-2-nitrotributylamine (17) 2.5 Diphoral J. (4.4 dib) quazone-1, 4-diminebulane (89) 2.5 Dic 4.5 entribylendioryphoryl-1, 4-diphoramo-1,4- 6. minthylendioryphoryl-1, 4-diphoramo-1,4- 6. Cill, (5.1), (5.0), (5.1	h) huine 2.p. Niphthylano-2-aitvetribut) lamine (17) 2.3. Phys. J. J. Adah Jarson-1, J. Lininchulane (89) 2.3. Dic. (3, Lenthylenellosyphenyl)-1, J. Adhydrazone-1, 4. diritrobutane PCH_CH_SOC(NO,)=NNHC, H, NO, pp. (13) 199-142.		Comord	2-(p-Unlorophenylazo)-2-ntrotributylamine (7)	170a
2,3-Dipheny1-1,4-diby drazone-1,4-dibit robutane (89) 2,3-Di-6,4-methylenedioxypheny1)-1,4-dibydrazone-1,4- dibitrobatane p-CH_C,H_SOC(NO_1)=NNHC,H_NOP (13)	2.3. Phys. J. 4. dahydranow-1, 4-districtorianse (89) 2.3. Di-3, 4-methystrovilotzyhen) 1.1,4 dahydranom-1,4. districtionarianse pcTLC,11,80C(NO,1=NNIIC,11,NO,1-p. (13) 139-142.		3-Naphthy lamine	2-6-Naphthylazo-2-nitrotributylamine (17)	170-
2.3-Di-(3.4-methylenedloxyphenyl)-1.4-dihydrazono-1,4-dihydrazono-1,4-gillyfol(No)=NNIIC,II,NO,-p (43)	2.3.Di-(3.4-methylenculioxyphenyl)-1.4-dihydrazono-1.4. diatrobutane P-CH_QH_SOC(NO_)=NNHC,H,NOp (43) 130-142.	oputane -	1	2,3-Diphens1-1.4-diby drazonne-1.4-dinity hydona 1803	200
full reputation of the state of	distributions p-CH ₂ C ₄ H ₅ SOC(NO ₄)=NNHC ₄ H ₅ NO ₅ -p (43) 130-142.	lioxy	1	2.3.Di./2 Crackydone Heart Land	350
p-CII,C ₄ H ₅ SOC(NO ₄)=NNHC ₄ H ₄ NO ₄ -p (43)	p-CH ₁ C ₁ H ₂ SOC(NO ₁)=NNHC ₁ H ₂ NO ₁ -p (43) 130-142.	utane		dinitary but and	320
		Jfoxide ≰	-Nitro	p-CII,C,II,SOC(NO,)=NNIIC,II,NO,-p (43)	ě

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITHO COMPOUNDS

91

3-(2,4-Dinitrophenylazo)-2,5-dime(hy)-2,4-hexadiene

2,4-Dinitro

		Company of the Compan	2	
ndene	2,4-Dinitro	1-(2.4-Dintrophenylazo)indene	118	
o-Methoxystyrene	2,4-Dintro	p-CH,OC,H,CH=NNHC,H,(NO,1,-2,4 (21)	124	
Phenylacetylene	4-Nitro	C.H.COCH-NNIC.H.NOp (13)	151	
-Methoxyphenylacetylene	4-Nitro	p-CH,OC,H,COCH=NNHC,H,NOn (33)	124	_
	2,4-Dinitro	p-CH, OC, H, COCH = NNHC, H, (NO.). 2.4 (fig)	2	
Anethole	4-Nitro	p-CH,OC,H,CH=NNHC,H,NO, p (71)†	127	-
	2,4-Dinitro	P-CH,OC, H,CH=NNHC, H, (NO,), -2,4 (62)	127	
-Propenylphenol	4-Nitro	o-HOC, H, CII =NNIIC, H, NO,-p (25)?	130	-
a-t-ropenylphenol	4-Nitro	p-HOC, II, CII == NNHC, II, NO, -p (60) +	130	
sosafrole	4-Nitro	Paperonal p-nitrophenylhydrazone (72.)+	197	
	2,4-Dinitro	Piperonal 2,4-dinitrophenylliydrazonet	1.57	
Isoeugenol	4-Nitro	Vanillin p-nitrophenylhydrazone (801)		
	2,4-Dinitro	Vanillan 2.4-dunitronhens lhydrazone+	9 9	
Isoapiole	4-Nitro	Aniolaldahada mailamhamiltadan	071	-
p-Propenyldimethylamline	4-Netro	a-(Cit) NO is Our State of the	127	
1.1-Dinhenylethylene	3 4 Distant	PICHIPACALCH =NNIICHNO, Pt	120	_
I 1-Bis-(m-folkl)betherland	2,4-Dimitro	(C, H, 1, C - CHN - NC, H, (NO, 1, -2, 1	74	
arrange from the contraction of	4-(p-r-henyi-	(P-CH,C,H,),C=CHN=NC,H,(COC,H,SC,H,-p)-p	13	
	mercaptobenzoyl)			• •
1,1-E18-(p-anisyl)ethylene	4-Nitro	(p-CH,OC,H,),CCHN_NC H NO	:	•"
	4-(p-Phenyl-	(a) the CH. OC. THE NO. II COO II CO.	*	•
	mercantobenzovi	diding the contract of the con	2	
I-Phenyl-1-(p-anisyl)ethylene		TOO I OUT OF THE PARTY OF THE P		٠.
	2,4.Dmitro	P-CH,OC,H,C(C,H,)=CHN=NC,H,(NO,L-2,4 (40)	Z 2	****
Note: References 177 400				•

. The full name is given when it is awkward to name the arylamine as a derivative of amiline. References 177-480 are on pp. 136-142.

‡ When an alcoholic solution of the reactant was added to the dry diazonum salt, the entire side chain was eliminated to give a nearly quantitative yield of N,N-dimethyl.p-(n-nitrophenylazo)aniline.

[†] These products were obtained by the addition of the dry diszonium salt to an ethanolic solution of the reactant.

TABLE VIII

COUPLING OF DIAZONIUM SALTS WITH HYDROCARBONS

A. Unsaturated Hydrocarbons

	Substituent(s)		T. Canada
Hydrocarbon	in Aniline*	Product (Yield, %)	enomonata)
o Medical calculations	4-Amino	$(CH_1)_1C=CHN=NC_1H_1N=NCH=C(CH_1)_1$	116
z-mentytytytytene	2.4-Dinitm	2.4.(0,N),C,H,N=NCH=C(CH ₃),	116
1 9 Dutadione	t-Nitro	p-0,NC,H,N=NCH=CHCH=CH,	300
1,9-Ducatene	2.4-Dinitro	2,1-(0,N),C,H,N=NCH=CHCH=CH, (13)	115
2-Methyl-2-butene	4-Amino	(CH_3) , $C = C(CH_3)N = NC_4H_4N = NC(CH_3) = C(CH_3)$,	116
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CH,)=C(CH,);	116
1,3-Pentadiene	4-Amino	CH_{j} = $CHCH$ = $C(CH_{j})N$ = $NC_{i}H_{i}N$ =	116
		NC(CH ₃)=CHCH=CH ₂	
	4-Nitro	p-0,NC,H,N=NC(CII,)=CHCII=CII,	115, 116
	2,4-Dinitro	2,4.(0,N),C,H3N=NC(CH3)=CHCH=CH2	115, 116
2-Methyl-1,3-butadiene	4-Nitro	p-0,NC,H,N=NCII=C(CII,)CII=CII,	361a
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CH,)=CHCH=CH,	115
2,4-Hexadiene	4-Nitro	p-0,NC,H,N=NC(CH,)=CHCH=CHCH,	116, 360
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CH,)=CHCH=CHCH,	116
2-Methyl-2,4-pentadiene	2,4-Dinitro	2,4-(0,N),C,H,N=NCII=CIICII=C(CII,), (19)	3616
2,3-Dimethyl-1,3-butadiene	4-Nitro	p-0,NC,H,N=NCH=C(CH,)C(CH,)=CH, (47)	115
	2,4-Dinitro	2,4-(0,N),C,II,N=NCII=C(CII,)C(CII,)=CII,	115
Cyclopentadiene	1	I-Phenylazocyclopentadiene (small)	117, 362
	4-Nitro	1-(p-Nitrophenylazo)cyclopentadiene	118
•	2,4-Dinitro	1-(2,4-Dinitrophenylazo)eyclopentadiene	118
2,4-Cyclopentadiene-1- carboxylic acid	2-Hydroxy-5-sulfo	1-(2-Hydroxy-5-sulfophenylazo)-2,4-eyclopentadiene-1- enrboxylic acid (40)	363
2,5-Dimethyl-2,4-hexadiene	4-Amino	3,3'-(p-Phenylenedisazo)bis-(2,5-dimethyl-2,4-hexadiene)	116
	4-Nitro	3-(p-Nitrophenylazo)-2,5-dimethyl-2,1-hexadiene	116

N-Methy lqumaldmum	4-Nitro	1,2-Dihydro-1 methyl-2-(p-nitrophenylazomethylene)-	1329
methosulfate	2,5-Decidoro	qunotine 1,2-Duydro-1-methyl-2-(2,5-dichlorophenylazomethylene)-	1329
	2-Methoxy 5-chloro	quitoline 1.2-Diptorine-1-methyl-2-(2-methoxy-5-chlorophenylazo-	132g
	2-Methoxy-4-nitro	1,2 Dbydrev framenne 1,2 Dbydrev framethyl-2-(2-methoxy-4-nitrophen) lazo-	1329
N-Ethyllepidmum fodide	4-Nitro	1.4-topiene/junoune 1.4-topiene/junoune 2.4-topiene 2.4-topiene	132g
	2,5-Dichloro	quitoine 1.4-Daydro-1-ethyl-4-(2,5-dichlorophenylazomethylene)-	132g
	2-Methoxy 5-chloro	1,4-binophenylate 1-4-(2 methoxy-5-chlorophenylazo-methological actions) and believe the second action of the second actions and the second action of the se	132g
	2 Methoxy-4-nitro	1.4-Dhydro-1-thyl-4-(2-methoxy-4-nitrophenylazo-	1329
2,3,3-Trimethylindolenine	1	metay tenagainonna 3,3-Dimetalbindolenne-2-car boxaldebydo phenyl- hwdanna (ta ta)	132a
	4-Chloro	3,3 Unitethyludolenne-2-carboxaldehyde p-chloro- nhamiltonne-2-carboxaldehyde p-chloro-	1324
	4-Nitro	process in statement (197-201) 3,3-Umethylindolennie-2-carboxaldehyde p-nitrophenyl- hydrarne	132a
1,2,3,3-Tetramethyhndolenium iodide	1	1,2-Dihydro 2-phenylazomethylene-1,3,3-trimethylindoline	133, 135
	4-Nıtro	1,2-Dihydro-2-(p-nitrophenylazomothylene)-1,3,3-	133, 135
	4-Iodo	1,2-meets reconstruction 1,2-meets reconstruction 1,3,3-meets reconstructio	133
Nodes Definement than 12.	2-Methoxy-4-nitro	1,2-minydro 2-f2-methoxy-4-nitrophenylazomethylene)- 1,3,3 temethylindoline	135

Note: References 177-480 are on pp 139-142. " The full hame is given when it is awkward to name the arylamme as a derivative of anilme.

TABLE VIII—Continued

A. Unsaturated Hydrocarbons-Continued

References	17	77	* *	1.4		365	366		References	132	132	132	132	133, 134	133, 134
Product (Yield, %)	$[p ext{-}(\mathrm{CH}_3)_2\mathrm{NG}_6\mathrm{H}_4]_3\mathrm{C} = \mathrm{CHN} = \mathrm{NG}_6\mathrm{H}_5$	$[p \cdot (CH_2)_2 NC_6 H_4]_2 C = CHN = NC_6 H_4 NO_2 \cdot p$	$[p\cdot(CH_3)_2NC_6H_4]_2C=CHN=NC_6H_3(NC_2)_2^{-2}, t$ $[p\cdot(CH_3)_2NC_6H_4]_2C=CHN=NC_{14}H_7O_2$ (88)	p-(CH ₃) ₂ NC ₆ H ₄ C(C ₆ H ₅)=CHN=NC ₆ H ₅	$\begin{array}{l} p\cdot (\mathrm{CH_3})_{\mathtt{s}} \mathrm{NC}_{\mathtt{c}} \mathrm{H_1} \mathrm{C}(\mathrm{C}_{\mathtt{c}} \mathrm{H_3}) \!\!=\!\! \mathrm{CHN} \!\!=\!\! \mathrm{NC}_{\mathtt{H_1}} \mathrm{NO}_{\mathtt{s}} p \\ p\cdot (\mathrm{CH_3})_{\mathtt{s}} \mathrm{NC}_{\mathtt{c}} \mathrm{H_1} \mathrm{C}(\mathrm{C}_{\mathtt{c}} \mathrm{H}_{\mathtt{c}}) \!\!=\!\! \mathrm{CHN} \!\!=\!\! \mathrm{NC}_{\mathtt{c}} \mathrm{H_1} \mathrm{(NO}_{\mathtt{s}})_{\mathtt{r}} \!\!-\!\! \mathrm{2.4} \end{array}$	C,H,CH=CHCH=CHN=NC,H,NO2-1)	$2,4\cdot(O_2N)_2C_6H_3N=NCH=C(C_6H_5)C(C_6H_5)=CH_2$	B. Compounds Containing a Reactive Methyl Group	Product (Yield, %)	a-Picolinaldehyde p-nitrophenylhydrazone (58)	2,4,6-Trinitrobenzaldehyde p-nitrophenylhydrazone (86)	1 midazole-z-carboxaldehyde p-nitrophenylhydrazone (64)	9,9-Diarboxy-6-methylpyridine-2-carboxaldehyde p-nitrophenylhydrazone (94)	1,2-Dihydro-1-methyl-2-phenylazomethylenequinoline	1,2-Dinyaro-1-methyl-2-(p-nitrophenylazomethylene)- quinoline
Substituent(s) in Aniline*	1	4-Nitro	1-Aminoanthra-		4-Nitro 2,4-Dinitro	4-Nitro	2,4-Dinitro	B. Compour	Substituent(s) in Aniline	4-Nitro	4-1V1(F0	4-Nitro		4-Nithes	011117-1
Hydrocarbon	1,1-Bis-(p-dimethylamino- phenyl)ethylene			1-Phenyl-1-(p-dimethylamino-phenyl)ethylene		1-Phenyl-1,3-butadiene	2,3-Diphenyt-1,3-butadiene		Reactive Methyl Compound	a-Picoline 9 d. A. Priminitant of the contract	2-Methylimidazole	2,6-Dimethyl-3,5-dicarboxy-	pyridino	teretify idaminam toalde	

TABLE VIII—Continued

B. Compounds Containing a Reactive Methyl Group—Continued

						1	•	1115	AUII	ano						
	References	366a, b	132c	132c	132d	132d	132d	132b, 132d	132d	132g $132b$, $132d$		132d	132d	132g	132b	132b, 132c
7	Product (Yield, %)	Benzothiazole-2-carboxaldehyde p -nitrophenylhydrazone (30)	2-[Bis(phenylazo)methylene]-3-methylbenzothiazoline	2-[Bis-(p-nitrophenylazo)methylene]-3-methylbenzo-thiazoline	2-[Bis-(phenylazo)methylene]-3-methylbenzothiazoline (80)	2-[Bis-(p-tolylazo)methylene]-3-methylbenzothiazoline	2-[Bis-(p-anisylazo)methylene]-3-methylbenzothiazoline	2-[Bis-(p-chlorophenylazo)methylene]-3-methylbenzo- thiazoline	2-[Bis-(o-nitrophenylazo)methylene]-3-methylbenzo-thiazoline	2-(p-Nitrophenylazomethylene)-3-methylbenzothiazoline 2-(Bis-(p-nitrophenylazo)methylene]-3-methylbenzo-	thiazoline	"This (prending) methylenel-3-methylbenzo-thizoline	2-[Bis-(2,5-dichlorophenylazo)methylene]-3-methylbenzo-thiazoline	Ċį	2-[Bis-(p-chlorophenylazo)methylene]-3-ethylbenzo-thiazoline	2-[Bis-(p-nitrophenylazo)methylene]-3-ethylbenzo-thizoline
	Substituent(s) in Aniline	4-Nitro	1	4-Nitro	1	4-Methyl	4-Methoxy	-t-Chloro	2-Nitro	4-Nitro	-Sulfo		2,5-Dichloro	2-Methoxy-4-nitro	4-Chloro	4-Nitro
	Reactive Methyl Compound	2-Methylbenzothiazole	2,3-Dimethylbenzothiazolium iodide		2,3-Dimethylbenzothiazolium methosulfate										2-Methyl-3-ethylbenzo- thiazolium iodide	

	2,5-Dichloro	9,10-Dihydro-9-methyl-10-(2,5-dichlorophenylazo-	1329	
	2,4-Dinitro	metnytene jarnume 9,10-Didydro-bmethyl-10-(2,4-dmitrophenylazo-	14	Di
	2-Methoxy-5-chloro	metary-s-chloro 9,10-Dihydro 0-metarl-10-(2-methoxy-5-chlorophenylazo-	1324	AZ
		methylene)actidine		ON
	2-Methoxy-4 mtro	9,10-Dhydro-9-methyl-10 (2-methoxy 4-nitrophenylazo-	1329	IUA
Acceptance of the second		methylene)acridine		u i
2-weetumido 9 metaylacridine		2-Acetamidoacridine-9-carboxaldchyde phenylhydrazone (66)		CO
	4-1/1/10	2-Acetamidoacridine-9-carboxaldeliyde p nitrophenyl- hvdrazone (55)	132	UP.
9-Methylxanthylum perchlorate	ı	Xanthene-9-carboxaldehyde phenylhydrazone	14	LINC
	4 Nithan			3
•	O'THE O'THE	Annuence-y-carboxadehyde p-nitrophenylbydrazone		W.
O Mathedata and an annual state of	2,4-Dinitro	Xanthene 9-carboxaldehyde 2,4-dinitrophenylhydrazone		IΤ
perchlorate	1	Thoxanthene 9-carboxaldchyde phenylhydrazone	2	HA
	4-Nitro	Thioxanthene-9-car hoxaldehwde assitzonben-ilanda acces		LI
	2,4 Dinitro	Thoxanthene-9-carboxaldebyde 2.4 dintrophen-1	*:	PF
		hydrazone		IAI
1-f.nenyl-3-methyl-4-180-	1	1-Phenyl-3-methyl-4 x-(phenylaxomethyl)ethylidene-2-	1350	П
propynacne-z-pyrazolm-5 one		pyrazolu-5-one (57)		2 (
	4-Nitro	1-Phenyl 3-methyl-4-a (p-nutrophenylazomethyl).	1350	Al
		ethylidene 2-pyrazoline-5-one (76)		RВ
	3-Carboxy	1-Phenyl-3-methyl-4-a-(m-carboxyphenylazomethyl)-	135a	ON
	2.5-Dichloro	T-Phone 2 that 4 to 2		A
		ethylidene-2-pyrazolur-5-one (21)	135a	TO.
		(10) 000 0 000		31

TABLE VIII--Continued

B. Compounds Containing a Reactive Methyl Group—Continued

	Substituent(s)	Product (Yield, %)	References
Reactive Methyl Compound	THE CANONING	out of the state o	131
9-Methylacridine		Acridine-9-carboxattenyde phenymyterzone	131
	2-Methyl	Acridino-9-carboxaldehyde 3-5013 and across	131
	3-Methyl	Acriding-9-carboxaldehyde p-tolylhydrazone	131
	9-Mothovy	Acridine-9-carboxaldehyde o-anisylhydrazone	131
	J-Methoxy	Acridine-9-carboxaldehyde p-anisylhydrazone	131
	4-Hydroxy	Acridine-9-curboxaldehyde p-hydroxyphenylhydrazone	131
	4-Chloro	Acridine-9-carboxaldehyde p-chlorophenylhydrazone	131
	4-Iodo	Acridine-9-carboxaldehyde p-iodophenyllydrazone	131
	2-Nitro	Acridine-9-carboxaldehyde o-nitrophenylhydrazone	131
	3-Nitro	Acridine-9-carboxaldehyde m-nitrophenylhydrazone	131
	4-Nitro	λ cridine-9-carboxaldehyde p -nitrophenylhydrazone	131
	2-Carboxy	Acridine-9-carboxaldehyde o-carboxyphenylhydrazone	131
	3-Carboxy	Acridine-9-carboxaldehyde m-carboxyphenylhydrazone	131
	4-Carboxy	Acridine-9-carboxaldehyde p-carboxyphenylhydrazone	131
	oJlnS-1	λ cridine-9-carboxaldehyde p -sulfophenylhydrazone	131
	2,4-Dimethyl	Acridine-9-carboxaldehyde 2,4-dimethylphenylhydrazone	131
	2,4-Dinitro	Acridine-9-carboxaldehyde 2,4-dinitrophenylhydrazone	131
	2,5-Dimethoxy-4-	Acridine-9-carboxaldehyde 2,5-dimethoxy-4-(phenyl-	132
	phenylamino	amino)phenylhydrazone (43)	
9,10-Dimethylacridinium methosulfate	ĺ	9,10-Dihydro-9-methyl-10-phenylazomethyleneacridine	14
	4-Nitro	$9,10- {\rm Dihydro-9-methyl-10-} (p-nitrophenylazomethylene)-acridine$	14, 132g

TABLE VIII-Continued

B. Compounds Containing a Reactive Methyl Group—Continued

References	135a	135a	135a	135a	135a	135a	
Product (Yield, %)	1-Phenyl-3-methyl-4-a-phenylazomethylbenzylidene-2- pyrazolin-5-one (70)	1-Phenyl-3-methyl-4-a-(p-nitrophenylazomethyl)benzyl-idene-2-pyrazolin-5-one (73)	1-Phenyl-3-methyl-4-a-(o-carboxyphenylazomethyl)-	1-Penryl-3-methyl-4-c-(2,5-dichlorophenylazomethyl)-	Denzyndene-2-pyrazonn-5-one (87) 1-Phenyl-3-methyl-4-a-(4-chloro-2-nitrophenylazomethyl)-	l-Phenyl-3-methyl-4-[a-(p-nitrophenylazomethyl)-m-nitropharylidonel 9-methyl-3-methyl-3-methyl-3-methyl-3-methyl-methyl-methyl)-m-nitropharylidonel 9-methyl-methyl	(26) 900-c-9010c-1-pyrazonne-5-00c (27)
Substituent(s) in Aniline	I	4-Nitro	2-Carboxy	2,5-Dichloro	4-Chloro-2-nitro	4-Nitro	
Reactive Methyl Compound	I-Phenyl-3-methyl-4-α-methyl-benzylidene-2-pyrazolin-5-one					1-Phenyl-3-methyl-4- $(\alpha$ -methyl-4-Nitro m-nitrobenzylidene)-2-	pyrazolin-5-one

C. Cinnolines from o-Aminophenylethylenes

Substituent(s) in Cinnoline (Yield, %)

2.(2'-Amino-5'-chlorophenyl)propene 2-(2'-Amino-4'-chlorophenyl)propene

o-Amino-α-methylstyrene

Amine

137, 138, <u>3</u>76 137, 374, 375, 376

References 130, 138 95b, 168 137, 376

E. Indazoles from o-Toluidines

Product, Substituent(s) in Indazole

4-Methyl-5-nutro (79-86) 5-Methyl-7-nutro (18-53) 5-Methyl 6-natro (75-80 1-Vethyl-7-nitro (100) ·Methyl-6-nitro (91) 5-Methyl-f-nitro (79) 6- Vethyl-4-natro (93) 6-Vethyl-5-mtro (83) 5,7-Dimethyl (small 5,7-Dinitro (31-38) 5-Natro (82-50) 6-Natro (00-96) 4-Nitro (96-98 3-Cyano (71) 7-Nitro (80) (Yield, %) 5-Methyl - (3-5) firectant, Substituent(s) in Aniline 3.3. Directhy 1-4-mitry 2,3-1 rime that 5-niles 2,7 Irlm thy 6-nitro 2.1-Irlimethyl-3 nitro 2,4-Immethyl 5 nitro 2.1 Ismethyl & nitro 2.5- I thrust hy 1 3 miles 2.5. Punethyt-taltro 2,1 Dinitro-6 methyl 2-Webbl-builto S. Methyl 5 miles 2-Nethyl 6-nitro 2-Methyl-3 natro 2,1,4. Trim, th) 1 2 Cyntromethyl 2.6-Dimethyl 2-Verhyl

Note 11st rences 177-450 are on pp. 130-142.
• Tale is an over-all yield from the rates compound.

TABLE VIII-Continued

D. 4-Hydroxycinnolines from o-Aminophenylacetylenes

Substituent(s) in

References	125 125 23 23 23 367, 125, 126 23 125
(Yield, %)	6-Methoxy 6-Ghloro (20*) 6-Bromo (20*) 3-Phenyl (55) 6-Methoxy-3-phenyl 3-Carboxy (60) 3-Carboxy-6-chloro (66) 3-Carboxy-6-bromo (66) 3-Carboxy-6-methoxy (68*) 3-Carboxy-6-methoxy (68*)
Amine	2-Amino-5-methoxyphenylacetylene 2-Amino-5-ellorophenylacetylene 2-Amino-5-bromophenylacetylene 2-Amino-5-bromophenylacetylene 1-(2-Aminophenylpropiolic acid 2-Amino-5-chlorophenylpropiolic acid 2-Amino-5-chlorophenylpropiolic acid 2-Amino-5-bromophenylpropiolic acid 2-Amino-5-methoxyphenylpropiolic acid 2-Amino-5-methylenedioxyphenylpropiolic acid 2-Amino-4,5-methylenedioxyphenylpropiolic acid

380

(80)

Substituents X in

Bis-(2-ammo-4-acetamidophenyl)methane Bis-(2-amino-4-chlorophenyl)methane 3is-(2-ammo-4-cyanophenyl)methane 3is-(2-amino-4-acetylphenyl)methane

Ba-(2.ammo-4.carbethoxyphenyl)methane

Bis-(2-amino-4-carboxyphenyl)methane

Note: References 177-480 are on pp 136-142.

† This product was prepared by tetrazolizing the amine and reacting the tetrazonium salt with sodium azide. • One nitro group was replaced by chloring when the diazotization was run in hydrochloric acid.

Carbethoxy Acetamido Carboxy Acetyl Cyano Chloro

ces

TABLE VIII—Continued

Indazoles from o-Toluidines—Continued

Product, Substituent(s) in Indazole

Reactant, Substituent(s) in Aniline

2,5-Dimethyl-6-nitro 2,6-Dimethyl-3-nitro 3-Chloro-2-methyl-4-nitro 3-Chloro-2-methyl-6-nitro 4-Chloro-2-methyl-6-nitro

(Yield, %)	Referen
6-Methyl-7-nitro (81)	137
7-Methyl-4-(or 6-)nitro (100)	137
4-Chloro-5-nitro (86)	380
4-Chloro-7-nitro	379
5-Chloro-7-nitro	379
7-Chloro-6-nitro* (85)	380
4-Methoxy-7-nitro	379
6-Methoxy-7-nitro (83)	383
4-Diethylsulfamyl-7-nitro	379
5,6-Dimethyl-4-nitro (58)	137
5,6-Dimethyl-7-nitro (20)	137
5,7-Dimethyl-4-(or 6-)nitro (100)	137
5-Methyl-4,6-dinitro (80)	137
7-Methyl-4,6-dinitro (86)	137
6-Methyl-5,7-dinitro (100)	137
5,7-Dinitro-6-sulfo	381
5,7-Dimethyl-4-triazo†	386
5,6-Dimethyl-4,7-dinitro (75-85)	137
5,7-Dimethyl-4,6-dinitro (100)	137

3-Diethylsulfamyl-2-methyl-6-nitro

2,4,5-Trimethyl-3-nitro 3,4,6-Trimethyl-2-nitro 2,4,6-Trimethyl-3-nitro 2,4-Dinitro-6-methyl-3-sulfo

3,6-Dimethyl-2,4-dinitro 2,4,6-Trimethyl-3-amino

2,4-Dimethyl-3,5-dinitro 2,6-Dimethyl-3,5-dinitro 2,5-Dinitro-3,4,6-trimethyl 3,5-Dinitro-2,4,6-trimethyl

3-Methoxy-2-methyl-6-nitro

2,3-Dinitro-6-methyl

3-Methoxy-6-methyl-2-nitro

12

900	200	3984	143	143	143	143	143	148	401	393, 392	52, 226	52	52	389	392	387	393a	392	302	148	389	194	393, 392	389	392	392	
		ı	I	I	I	1	1	34	80	65	68-71	I	1	75	ı	1	72	1	I	81	Quant.	1	46	93	ı	I	
p.O.NC.H.		į	2000	P-0,500,11	, p-0 ::	P.D.C.L.	Town I	S II	S T L	112	Ogitals m.CIT O III	POUR OF	P-HO CO II	C.H.	C.T.	î E	i ii	, E	Î	P-HOSCH	5 Tetrazolei	С.н.	4-HO-SC II	C.H.	C.H.	С.П.	•
2,4-(O ₂ N),C ₄ II,	PNCO			11.0.17	7.10 11 1	H.1.C.11.*	11111111	SC.II.+						1 (C, II, O,)	:						HN=)C						
2,4-(0	(С.П.	2	Ė	2 4-0	2.1.0	24.0	C.13	0H-4	C.H.		CH	C.H.	H.	Choly	C,II,	O,H,	C,H,	C, II,	C,II,	u,	N'II	"I"	ii.	E O	200	110	:
CII,		0,0	0,0		J.0	50	0,0	o o		.03	2	9	ıı,	ri.	11,	(CH)	inchest,	21,12	".	212	Tone and	===			-		A 10 .
ť	Ė	Ħ	Ē	Ė	É	Ħ	Ė	Ę	5	Ē	ŧ	f	٠,	္ ့	Ÿ	3	5	1			,				ï		•

. Only the syn bonies of methyl giveralate 2,4-directly/planyllydrazone gave a formazan. The onti bonies reacted with † The phenyleuffannyl group was replaced by a phenyl group in the coupling reaction. the climination of nitrogen.

Note: References 177-480 are on pp. 136-142.

~

			Yield, % References	- 387	322	88 139, 144, 388	141	=======================================	Quant. 139, 144	Quant. 389	68 $389a$	9888			28 $380c$	Small 1.4.4	144	141		48 120, 144	390	301	300	380
COUPLING OF DIAZONIUM SALTS WITH HYDRAZONES	zi. Simple tiyarazones	RCII=NNHR' + $R'N_2X \rightarrow $ $N=NR''$	18"	C_6H_5	C_0H_b	C, H,	o-O ₂ NC ₆ H ₄	I O I CO I	p-O ₂ NC ₆ H ₄	p-HO ₃ SC ₆ H ₃	p-(C ₆ H ₅ CH=CH)C ₆ H ₄	p-[C ₀ H ₂ C(CN)==CH]C ₀ H ₂	$p \cdot (p \cdot O_2 \cap C_3 \cap I_3 \cap I_3) \cap I_3 \cap $	P-(P-CH ₃ CON HC ₆ H ₄ CH=CH)C ₆ H ₄	D-(Course == N)Cours		E ON O'C	0-0-11.	1192130	11 5 / 2 0 7 7 6	C. 11.	0-0-0		7.10)
Сопрына ок		RCII==N	B,	Cholyl (C24H39O5)	$C_{\rm eII_5}$	Calls	C. II.s	Corts	رو113	2,445, 11,50	Cens	7 II	- 11 T	Cars.		0-0,NC,11.	p-0,NC,H,	p-O ₂ NC,III,	p-0,NC,II,	7-0,NC,II,	2,4-(O,N),C,II,	2,1-(O,N),O,II,	2, 1-(O2N), C, 113	; ;

	p CH ₃ CONH(CH ₂) ₁₈ N(COCH ₂)C ₆ H ₄	1	3950	
	P-[(C,H,),N(CH,),O,C)C,H,	30	3950	
	p-[(C,H,),N(CH,),CH(CH,)NHO,S]C,H,	4.7	395a	
	p (C, H, CH = CH)C, H,	7.4	389a	יט
	p-(p HOC, II, CH = CH)C, II,	32	3894	LA.
	p-(p-BrC,H,CH=CH)C,II,	88	3894	20
	P-P-O,NC,H,CH=CH)C,H,	g	389a	ΝI
	p-(p-cu,conuc,u,cH=cH)c,H,	14	389a	U
	P-(C,115,N==N)C,H,	S	3896	1 (
	P. P. CH. C. H. N. N. N. H.	S	389c	20
	P.D. Cic. H. N. = N)C. H.	12	389e	UE
	P-(P-HOC, H,N=N)C,H	82	3896	L
	P-(P-U,NC,H,N=N)C,H,	22	389	(N)
	P-[P-(CH2)AC,H,N=N)C,H	23	380	Œ
	P-(P CH,CONHC,H,N=N)C,H,	32	380	IV.
	P-[2-Cl 4-HOC,H,N=N)C,H,	27	380°	T.
	p (3-Cl-4-HOC,H,N=N)C,H,	œ	380	H
	Z,5 (CH ₁) ₁ -4-(C ₁ H ₂ N=N)C ₁ H ₂	20	380	AL
	a Capity	8	150, 147, 149	IP
	#C #		330	HA
	4.(C.H.vv.)	41	150, 149, 390	ΙTΙ
	3-Pendul	6	389	C
	6-Quingly	63	395a	CA
	7 Qunolyl	1	3984	RI
	6 Ethory-2 minely	1	398a	30
	6 Methory Sompoled	į	3984	N
	2 Quinolylmethyl	20	395a	A1
	2 Thiazolyl	١	3980	ro.
	5-Methyl-2 thuazolyl	18	398a	MS
p. 136-142		8	3989	

Note: References 177-480 are on pp. 136-142

TABLE IX—Continued

1)2	Yield, % References							394, 18,	13	395						45-60 390											
A. Simple Hydrazones—Commune	18."	$p ext{-}\mathrm{BrC}_{\mathrm{e}}\mathrm{H}_{\mathrm{s}}$	n-O,NC,H,	p-HO,SC, II,	α - $C_{10}\Pi_{2}$	C, II,	C, II,	$C_k^{\prime}H_s^{\prime}$	•		$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	p-i-C ₃ H,C ₆ H ₄	p - n - C_{12} Π_{25} C_{6} Π_{4}	p-CIC ₆ H ₄	$p ext{-}\mathrm{BrC}_6\Pi_4$	p -1 C_6 H_4	o-HOC,HI	o - O_2 N C_6 Π_2	p - O_2 N C_6 H $_4$	p-CH3CONHC, H1	o-HO2CCeH	p-110 ₃ SG ₆ II ₃	W-CollsColl	1-CII 2CONII-2-CIC, 113	4-CII,CONII-3-CIC,II,	4-C11,CON11-2-O2NC,113	
	R R'	11:0	Ĉ.II.	LLS SILS	C, H,	p-BrC,II,	p-O,NC,H,	Č ₆ H ₅			C ₆ H ₅	Cells	C_6II_5	Calls	Cells	CeHs	Cells	$C_{\mathbf{q},\mathbf{H}_{\mathbf{q}}}$	$G_{e H_s}$	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ָרְיּבְּוּ מיניים	C ₀ 11 ₃	(. 6 11 s	68118	2 1 2 3 1 2	
			"-C".H"	2.C.1115	7-C1111-1	"-C"H"	"-C,1113,	Caris			$C_a \Pi_s$	$C_6\Pi_5$	$C_b\Pi_b$	C ₆ 11 ₅	C ₆ H ₃	Cans	ָרֶינֶּינְיִי בינוני	ר _{מוו} י	Cells	C ₆ 115	ב ב ב	2113 7113	2113	2 II.	11.11		00

	DIA	ZO.	NΙ	C3	1 (0	UF	LI	N	3 1	W.I	TF	Į A	\L	[P]	HA	ΤI	С	CA	RI	30	Z,	Αī	CO
308c 308c	3086	303	=	141	141	141	191	141	389c	389	147	198	3984	147, 149, 390	390	390	150, 149	3984	2984	398	387	3894	398a	194
52 52	22 5	75-80	ļ	1	1	1	ı	1	10	26	1	33	ı	I	;	I	30%	1	i	13	1	47	I	ı
β C ₁₀ H, p-(p-C ₁ H,OC ₁ H,OC ₁ H, 3-CH ₂ O-4-(m-CH ₂ OC ₁ H ₂)C ₁ H,	3-CH ₃ O-4-[3,4-(CH ₃ O) ₃ C ₄ H ₃]C ₄ H ₃ 2.5-(CH ₂ O) ₂ -4-(p-O ₃ NC ₂ H ₃ N=N)C ₃ H.	o-Ho,cc,H,	C,II,	o Cic,III.	O,NC,II,	o-HO2CC,II,	m-IIO,CC,H,	p-110,00c,11,	p-(C,H,N=N)C,H,	p (C,H,N=N)C,H,	C,H,	ל'ת'	, בריל ביים	C,H,‡	p CH2C,H2	p-0,NC,H,	Cont.	112	C. III.	p c, 11, c, 11,	1,611,8	P (Californal III) all	L'Arthus C'H	1
p-0,NC,II, p-0,NC,II, p-0,NC,II,	p.O ₂ NC ₂ H ₄	o-no-cc,n	m-HO,CC,H,	W-IIO,CC,H,	w-HO-CC,H	W-HO-CC, II,	m-HO,CC,H,	m-HO,CC,H,	P-HO,CC,H,	p-CH,CONIIC,H,	p-HO ₂ SC,II,	p-11,NO,SC,H	CONFIGURACIO COLUMNICO	a C ₁₀ 13,	-Cleff,	8-C II	(AC II) NCO	AC II O II MOO	DON'S TEST OF THE PARTY OF THE	Cholet (C. II O.)	DOWN IN ON	2-Peruly	2-Quinoly	77-480 .
รับ เรีย (2. กับ	on E	ůn.	H ₂	į.	รู้ เ	1 : 2 :	i i	i c	֓֞֞֞֞֜֞֟֞֓֓֓֓֓֓֓֟֟ ֓֓֞֓֞֓֞֓֓֓֓֞֓֞֓֓֓֓֓֓֓֓֓֓		* I	110	i ii	Ē	C.II.	СП	C.H.	C,H,	C,H,	C,II,	c'n'	ıπ,	C_0H_0	Note: References 1

† These products are probably 4-17/2 constitution of the products are formazines. See ref. 150. Λ 35% yield of the 1-phenylaro-2 naphthylhydrazone of benzaldebyde was obtained also. crerences 147-480 are on pp 136-142,

References

Yield, %

TABLE IX—Continued

A. Simple Hydrazones-Continued

Ľ,

Keferences	398b	9808	389c	398a	19b	961	10	19	390	390	290a	290a	10b	10b	901	q_{01}	107	10b	10^{9}	18, 140	396	961	q_{01}	300	323b	3080	150, 390
Yield, %	7	69	25	I	85	37	-	1		1	ļ	09	10	51	7.4	26	55	20	18	50	(2-51)	10	46	36-58	S	22	41
R.*	1-Mothyl-9-thinzolyl	f-memory = 2. Chinacolvi	2.5-Dimethyl-4-(2-thiazolylazo)phenyl	n-(6-Methyl-2-benzothiazolyl)phenyl	C.II.	n-0,NC,H,	T'O	p-CII,C,H,	α-Cιη1,	β -C ₁₀ H,	o-cii,oc,n,	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_3$	C, Hs	p-0,NC,H	$C_6\Pi_5$	CkH	$C_{\mathbf{k}}H_{\mathbf{s}}$	p-cic,H,	p -(C_6H_5N == N) C_6H_4	CLE	$p ext{-} ext{IC}_{f 6} ext{II}_{f 4}$	C_0H_5	CLII	p -IC $_6$ II $_4$	p - $O_2NC_6\Pi_2$	p.C.H.SC.III	a-Cult,
21		C ₆ 118	روني:	ביים ביים	O-CH-C-H.	o-OH-C.H.	n-CH-C.H.	p-CII,C.H.	"-"-"-".	p-CH,C,H,	o-CH,OC, H,	$p\text{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4^{\bullet}$	o-C,U,OC,U,	o-C,H,OC,H,	p -C $_3$ H $_5$ OC $_6$ II $_1$	o-CIC, H	p -CIC $_{\mathfrak{g}}$ H $_{\mathfrak{g}}$	p-CIC ₆ H ₄	$p ext{-ClC}_{\mathfrak{g}}\mathbf{H}_{1}$	$p ext{-}\mathrm{Br}\mathrm{C}_{6}\mathrm{H}_{4}$	$p ext{-}\mathrm{IC}_6\Pi_4$	o-C ₂ NC ₆ H ₁	12-O2NC,111	p-O_NO_H	Programme	P-O-NCO-II	P-O-NCall

~

	C.H.	C.H.	4	20%
		T	3 8	
	110	Thomas de	96	3954
	2-Pyridyl	p-010,4	1	398a
	2-Quinoly1	p-CIC,II,	1	3984
	C,H,	C,II,	40	195, 395
	p-CH,OC,H,	p-cnioc,n	19	3239
	P-O,NC,H	p-c,H _c ,H	69	3986
	p-O,NC,H,	3-CH,0-4-(m-CH,OC,H,)C,H,	23	3986
	H-N(HN-)C	C,II,	I	402
ا ب	p-(C,H,N=N)C,H,	p-(C,H,CH=CH)C,H	g	3894
, T	P-(C,H,N=N)C,H	p-(C,H,CII—CH)C,H,	40	389a
i di	##3°	C,H.	23	395a
nc'n	C,III,	p-CH,CONHC,H,	11	396a
Profess I	P-CHICONECH,	p-(p-HOC,H,N=N)C,H,	1	389e
p C	i i	ניים,	ı	147
*****	Challe of H o.	p-chaoc, H.	25	395a
	C II	i i	I	387
	i i	, chi	t	70, 204
	1000	C. E.	43	398
		P-Calcan	23	398
	OJA (AU)	รับ ซ	14	402a
	2-Peridel	, C.B.	ı	3984
	2-Ounolel	T T T T T T T T T T T T T T T T T T T	1	3984
	Cholvi (C. H. O.)	21000	ı	3984
	CH	100	I	387
	C.H.	T T T T T T T T T T T T T T T T T T T	I	3984
	C.H.	7.011.00 H	9#	402a
	c'n'	POLICE.	92	402a
	C,B,	o-B.NC.H.	40	402a
eferences 177-48	eferences 177-480 are on mr. 186 146		32	4029

Note: References 177-480 are on pp. 136-142.

.TABLE IX—Continued

A. Simple Hydrazones—Continued

References	398a	398b	398b	9886	398b	405	402	p_{61}	15	389a	323b	323b	398a	398a	19d	398a	398a	323b	p_{61}	395a	395a	380a	3984	398a	398a	380c
Yield, %	and the same of th	99	50	38	22	61	1	I	1	83	43	15	1	1	l	ſ	1	44	1	80	10	1.7	-	ı	1 5	50
R"	$p ext{-CIC}_{\mathfrak{k}}\mathrm{H}_{\mathfrak{s}}$	Č,H,	C,H,	$C_{\mathbf{s}}\mathbf{H}_{\mathbf{s}}$	C_6H_5	C,Hs	m-O,NC,H,	5-Tetrazolyl	C ₆ H ₅	p -(C_6H_5CH == CH) C_6H_4	$p ext{-CIC}_{f k}{f H}_{f j}$	$p ext{-}\mathrm{O}_2\mathrm{NC}_6\mathrm{H}_4$	$p ext{-} ext{ClC}_6 ext{H}_4$	$p ext{-CIC}_6\mathrm{H}_4$	5-Tetrazolyl	5-Tetrazolyl	5-Tetrazolyl	o-CH3OC,H3	5-Tetrazolyl	p-BrC ₆ H ₄	$2,4,6$ -Br ₃ C $_6$ H $_2$	p-(C,H,CH=CH)C,H,	Celle	p-CiC ₆ H,	からにもよった。一人に、日、乙一人に、日、乙一人に、日、乙一人に、日、乙一人に、日、乙一人に、日、乙一人に、日、乙一人に、日、〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇	1100(11010)
R,	2-Quinolyl	2-Thiazolyl	4-Methyl-2-thiazolyl	4-Phenyl-2-thiazolyl	4,5-Diphenyl-2-thiazolyl	H ₂ N(NH=)C	$H_2N(HN=)C$	$H_2N(HN=)C$	$C_{\mathbf{k}}\mathbf{H}_{\mathbf{s}}$	C,H,	$p ext{-} ext{ClC}_6 ext{H}_4$	$p ext{-}O_2\mathrm{NC}_6\mathrm{H}_4$	2-Pyridyl	2-Quinolyl	$H_2N(NH=)C$	2-Pyridyl	2-Quinolyl	o-CH3OC,H1	$H_2N(NH==)C$, can	Cells	Collis	Cens) NCO	2-Fyriayi	C.H.	
я	С.Н.	C.H.	C, H,	c, H,	C_iH_i	C,H,	C,H,	$p ext{-}(\mathrm{CH_3})_2\mathrm{CHC_6H_4}$	$p ext{-}\mathrm{CH_3OC_6H_1}$	$p ext{-}\mathrm{CH_3OC_6H_4}$	$p ext{-}\mathrm{CH_3OC_6H_4}$	$p ext{-}\mathrm{CH_3OC_6H_4}$	p-CH ₃ OC ₆ H ₄	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	p-CH ₃ OC ₆ H ₄	o-CICeH,	o-CIC ₆ H ₄	p-CIC, H ₁	p-010, H.	P-DICELL B-D-C H	7-DIO(11)	P-DICCELL	HOOH-	0-HOC.H.	p-HOC, H,	

reld. %) References	D-Glucose dipherylformazan (41) 1396, 1396 n Glucose pherylvaszone (20) 139a 139a 1304	D Galactose diphenyi(formazan (73) 1790, 139e, 139e, 130e, 1	Ac/Abunou (physil/granasan (81) 1830. 1 Hakmone diphenyflermasan (85) 1806, 180e D-X/lose diphenyflermasan (85) 1839 1830 D-Mannow diphenyflermasan (85) 1830	
Substituent in Andine Product (Yield, %)	- D-Glucose du - D Glucose pl - Anhydro-D-g	4-Bromo D-Galactose D Galactose D Galactose D-Mannose d		
	p-ducose phenylosazone Anhydro D glucose phenylosazone	o-catactose principalydrazone D-Galactose phenylhydrazone D-Galactose p bromophenylhydrazone T-Arabinnose phenylhydrazone T-Arabinnose phenylhydrazone	L. Hlanmose pharyllydracone D. Xi lose pheryllydracone D-Mannose perthacetale pheryllydracone D-Mannose perthacetale pheryllydracone Note: References 177-489 are on pp. 136-142.	

TABLE IX—Continued

A. Simple Hydrazones-Continued

Beferences	100	1020	.102a	398a	3980	3980	398a	398a	402a	390	402d, 139a	400, 402e	402d, $402f$,	4029	f_{50}^{2} , f_{62}^{2}	1326, 402f.	1027	105d	132b, 402f	132b, 402f	132b, 402f.	1024	1325, 402f,	.4029	1028	103
Yield. %	2 5	07.	99 90	j	j	I	1	į	60	76	50	5	<u>;</u>		i	1		55	I	1	J		1		ŝ	83
<u>*</u>	P-(C.II.CIT=CIT)C.II.		p -(C_0 (13N=N) C_0 (11	ה-כוכ"ון	<i>p</i> -CIC ₆ 11,	6-Quinolyl	p-CiC ₆ H ₂	o-Guno(y)	1012	ל ה ט דו	0113		10 J	m:010.11.	D-0.NC.11.		0-11O,CC.11.		11:00-6		9	p-O,NC,11.		(1,11,	o-110,(C.11.	7.0,,4
<u>`</u> ≃	C,II,	, II, O	0.000	o Committee	z-Cumoly:	i complete	2-Quimoly!	1. V	7.11	21.2	C.11.			C, 11,	C, II,		C, IIs	p-ClCg.II,	p-CIC ₆ 11,	p-O ₂ NC ₆ II ₁		P-Ongott		C. II.	Calls	
~	2-Pyridyl	9. Peride	"-Dynished	9-Dunithal	0-Dunitari	L. Dinici,	f-Pyridyl	2-Phenyl-1.2.3-friggol-f-yl	2,0-Dioxy-f-nyrimidyd	2-Quinolyl	2-Quinolyl	2-Benzothinzolyl		2-Benzothiazolyl	2-Benzo(hiazoly)		2-Genzot hiazolyl	2-Defizothiazolyt	2-Denzol minzoly	I Alozou poznaca	9-11 minute 11-11 m	Denzot mazotyt	2. Roward Classical	2-Nonzel George	Libound floor	

28.0 % 2 2

		ν	1.4	Z	×	10	71	COLI
398a	3984	402k, 398a	3984	3984	402k, 398a	402k, 398a	3084	3984
1	1	49	١	1	10	70	}	ì
CII,0	CIIO	CII,0	CH,O	Ħ	cn,o	cm'o	спо	сп,о
່ ກ່າ	2-Pyridyl	C,H,	2-Pyridyl	C,II,	C,III,	c'n'	2-Pyridyl	C, H,
2-Pyridyl	2-Pyridyl	4-Pyridyl	4-Pyridyl	2-Thenyl	2-Thienyl	2-Thianaphthenyl	2-Thianaphthenyl	2-Benzothuzolyl

D. Diformazans from Dihydrazones

	Substituent		
Hydrazone	in Aniline	Product (Yield, %)	Referen
Glyozal dicholylhydrazone	1	Bur-(N-Cholvl-N'-nhonvlformaren)	
Dioxosuccinic acid phenylhydrazone	1	Bis-(N.N'-Diphenylformazon) (umall)	e e
Succinaldehyde bisphenylhydratone	1	C.CEthylenebis-(N.Ndiphonylformeron) (52)	2
Succinaldehyde bisphenylhydrazone	4-Phenylazo	C,C'-Ethylenebis-[N-phenyl-N'-(p-phenylazonhenyl)	1 1
Suberaldehyde bisphenylhydrazone	1	formazan) (29)	
	4-Phenylazo	C,C'.Hexamethylenebis-(N-phenyl-N'-(n-phenylara-	305
Terephthaldehyde bisnhenylbydrazona	1	phenyl)formazan] (39)	500
	4-Carbethoxy	P-t neuytenebis-(N.,Ndipbenyllormazan) (90) P-Phenylenebis-(N-phenyl-N'-/n-onto-thouvenbanyll-	071
		formazan] (47)	=

Note: References 177-480 are on pp. 136-142.

|| The starting material was phenylgyvsylic acid phenylhydrazone. || The product was also obtained from phenylgyvsylic acid phenylhydrazone in 50% yield.

TABLE IX—Continued

. Diformazans from Hydrazones and Diamines

	Refere	179	402	402	402k, 4	398	398	398	3980	4021	3980	3980	4021/	3980	3980	3980	398	402/	402k, 3	398	388
$N_2X \rightarrow \begin{bmatrix} RC=NNHR' \\ N=N \end{bmatrix}$	Yield, %	1	llo6	39	72	11	18	1	1	1	i	!	1	i	1:	49	12	79	10	1 :	İ
$\begin{bmatrix} \\ \\ \end{bmatrix} \leftarrow X_2 N$	Y	Н	H	$_{ m cH_3}$	$_{0}^{\mathrm{CH}_{3}}$	H	$_{ m CH}_{ m 30}$	CH ₃ O	$_{ m cH_3O}$	$_{0}^{\mathrm{CH}_{3}}$	$_{\widetilde{0}}^{\mathrm{CH}_{3}}$	CH ₃ O	OHO OH O	CH3O	OE I	т О	CH ₃ O	O HO	CH ₃ C	OHO CHO	,
RCH=NHNR' + XN ₂	R'	C_6H_5	C_6H_5	$\widetilde{c}_{\mathbf{H_s}}^{\mathbf{H_s}}$	C,Hs	p-0-inc, H.	p-02NC6H4	Z-Fyridyl	Z-Quinolyl	C.H.	2-Fyridyl	Z-«mnonyı	Oct. 5	2-Quinoly	a-O-NC-H	H ON-O-e	C.H.	C.H.	2-Peridel	2-Quinolyl	

2

)_N.		м	u	,U	PL	'IV	G	W	11	H	A	LII	PH	A)	LIC	C (ÇAI	RBC
145	27, 153, 95a 144	2904	290a	70	20	19	52, 142	19	141	141	141	141	141	120	60, 70, 140, 151	10	19	403	403-	4034	403a
11	87-89	70	1	1	Cuant.	i	72	Į	ı	ı	ļ	1	I	I	56	ı	I	83	-	38	4
P-O,NC,H,	o-O ₂ NC ₆ H	OH,OC,H,	P-CH3OC, H4	1 to 1	trong or the	PCL1Valla	in the	of Hg	o-cuto'n	o-O,NC,H,	m O'NCH	p-U2NC,H	Z,4-(CH3),C,H3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Control of the contro	P-CH3C,H4	C. 12.	o-CIC,III,	9-CH,C,H,	o-CiC,II,	o-o-NC,II,
2,4-(CH,),C,H,	C,H,	o-CH3OC, H4	C.H.	C.H.	C.H.	in o	110	i i	i i	7.1	T E	7.1	i ii	T I	i i	P-CILC. W.	TO HOS	11000	1000	P-CIC,H	Tribouto :
110,0 H0,0 H0.0																					n. pp. 136-142
c c c	e e	E E	CII,0,0	C,II,O,C	0'0'H'0	CH,CO	C,II,	c'n'	1 5	C,II,	น้ำเรื่อ	c,II,	02,11,0	C.II.N	N=N'H'	N-N-N-N	. TOTAL	HOCH, CII,	HOCH CIT	HOCH, CH.	Note: Reference

Note: References 177-480 are on pp. 136-142.

TABLE IX—Continued

E. Diformazans from Dibenzalaminoguanidines

F. Hydrazones Which Couple with Elimination of a Substituent

		Yield, %	20	1	Quant.
$RC=NNHR'' + R''N_2X \xrightarrow{OR^-} RC=NNHR'' + R'OH$	N==NK	R."	C ₆ H ₅	2,4-Br ₂ C ₆ H ₃	p-O-NC, H
$ m IR'' + R''N_2X \stackrel{ m OH^-}{} R$		R."	ChE	CaHs	O-CIC, H.
RC=NNB D,	4	R,	HO,C	HO"C	110°C

ĸ

耳耳び

References

143 170α 145 404, 406, 407

107, 408, 409

CHUPLING OF DIAZONIUM SALTS WITH HETSROCYCLIC COS TABLE X

	The state of the s	THE PROPERTY OF THE PROPERTY COMPOUNDS	
Heterocyclic Compound, Subatituent(s) in		.1. 6-Pyrazolones Product (Yield, %), Nubstituent(s) in	
**************************************	Substituent(s) in Aniline*	### ##################################	
2 Vehyl	4-Methyl	4-Phenylazo (quant.) 4-(p-To)jazo) (quant.) 3-Methyi-t-phenylazo 3-Methyi-t-(2-antihaquiponylazo) (onent.)	References 405, 404 405, 404, 406, 40 401, 407, 408
3 Carbory 3 Carbonethory 3 Carbonethory	2-Carboxy	3-Carboxy-t-phenylazo 3-Carboxy-t-(e-carboxyphenylazo) 3-Carboxy-t-(e-carboxyphenylazo) 3-Carbonnetto	407 404 408 409
3 Carbetharymethyl 3-l'henyl	2-Carboxy 2 Carbethoxy 4-Methyl	3-Carbelhoxy-1-phon lazo 3-Carbelhoxy-1-phon lazo 5-Carbelhoxy-1-(o-carboxyphenylazo) 3-Carbelhoxy-1-(o-carboxyphenylazo) 9-Carbelhoxyne(th)1-1-(10-(10)lazo) 9-Carbelhoxyne(th)1-1-(10-(10)lazo)	\$ 5 5 6 2 5 5 6 2 5 5 6 2 5 6 6
	2-Verbyl 4-Verbyl 8-Naphthylamine 8-Naphthylamine	4-Thenyl-4-phenylazo 2-Thenyl-4-(e-tolylazo) 3-Thenyl-4-(e-tolylazo) 3-Thenyl-4-(z-naplithylazo)	65 404, 407, 408, 40 404, 409
Note Beforeness 171-140 are on pp 130-142.	are on 170 112.	J. Henyl - I - (B-naphthylazo)	404, 409

Net (Defended 171-14) are to pp 130-142.

The full name is given when it is an keard to name the ary lamine as a derivative of sulling.

TABLE N—Continued

A. 5-Pyrazolones—Continued

Product (Yield, %), Substituent(s) in

Heterocyclic Compound.

Substituent(s) in

3-(2-Furyl)

-Phenyl

413, 414, 415 415, 416, 417 $\operatorname{References}$ 415, 417 415, 417 415, 417 415, 417 415, 417 415, 417 68, 415 415, 417 415, 417 115, 417 ÷15 417 157 \$0Ŧ 410 **411** 11 112 -Methyl-3-carbethoxy-4-(p-anisylazo) (88) -Phenyl-3-methyl-4-(p-ethoxyphenylazo) -Phenyl-3-methyl-4-(m-chlorophenylazo) -Phenyl-3-methyl-4-(0-ethoxyphenylazo) -Phenyl-3-methyl-4-(p-bromophenylazo) -Phenyl-3-methyl-4-(p-chlorophenylazo) -Phenyl-3-methyl-4-(p-acetylphenylazo) -Phenyl-3-methyl-4-(o-chlorophenylazo) |-Phenyl-3-methyl-4-(m-nitrophenylazo) -Phenyl-3-methyl-4-(o-nitrophenylazo) 1-Methyl-3-amino-4-(p-anisylazo) (41) -Phenyl-3-methyl-4-(p-anisylazo) ·Phenyl-3-methyl-4-(o-anisylazo) -Phenyl-3-methyl-4-(m-tolylazo) -Phenyl-3-methyl-4-(p-tolylazo) -Phenyl-3-methyl-4-(o-tolylazo) -Phenyl-3-methyl-4-phenylazo -Methyl-3-phenyl-4-phenylazo -Acetyl-3-phenyl-4-phenylazo 3-(2-Furyl)-4-phenylazo -Phenyl-4-phenylazo H,c 1 3 CH Substituent(s) in Aniline* 4-Methoxy 4-Methoxy 2-Methoxy 1-Methoxy 2-Ethoxy 4-Ethoxy 3-Methyl 1-Bromo 2-Methyl 4-Methyl 3-Chloro -Chloro t-Acetyl 2-Chloro 2-Nitro 3-Nilro -Methyl-3-carbethoxy -Methyl-3-phenyl I-Phenyl-3-methyl 1-Methyl-3-amino -Acetyl-3-phenyl

TABLE X-Continued

A. 5-Pyrazolones-Confinued

Hete racy elic Compound.

Substituent(s) in

Product (Yield, %), Substituent(s) in	
•	

zκ		=×(
×.= J-	Substituent(s)	ارد ر ارد راد ارد ارد ارد ارد ارد ارد ارد ارد	
11.2°> 2° H	in Aniline*	H,ct2CH	References
1. Pheny 1:3-carbethoxymethy	4-Methyl	1-Phenyl-3-carbethoxymethyl-4- $(p$ -tolylazo) (89)	65
	4-Nitro	1-Phenyl-3-carbethoxymethyl-4-(p-nitrophenylazo) (85)	5) 65
1.3. Diplaces vi	Į	1,3-Diphenyl-4-phenylazo	409, 415, 422
•	2-Methyl	1,3-Diphenyl-4-(o-tolylazo)	400, 415
	3-Methyl	1,3-Diphenyl-4-(m-tolylazo)	415
	4-Methyl	1,3-Diphenyl-4-(p-tolylazo)	409, 415
	2-Methoxy	1,3-Diphenyl-1-(o-anisylazo)	415
	4-Methoxy	1,3-Diphenyl-4-(p-anisylazo)	415
	2-Ethoxy	1,3-Diphenyl-4-(o-ethoxyphenylazo)	415
	4-Ethoxy	1,3-Diphenyl-4-(p-ethoxyphenylazo)	415
	2-Chloro	1,3-Diphenyl-4-(o-chlorophenylazo)	415
	3-Chloro	1,3-Diphenyl-4-(m-chlorophenylazo)	415
	4-Chloro	1,3-Diphenyl-1-(p-chlorophenylazo)	415
	4-Bromo	1,3-Diphenyl-4-(p-bromophenylazo)	415
	2-Nitro	1,3-Diphenyl-4-(o-nitrophenylazo)	415
	3-Nitro	1,3-Diphenyl-4-(m-nitrophenylazo)	415
	4-Nitro	1,3-Diphenyl-4-(p-nitrophenylazo)	415
	3-Sulfo	1,3-Diphenyl-4-(m-sulfophenylazo)	418
	4-Sulfo	1,3-Diphenyl-4-(p-sulfophenylazo)	418
	2,5-Dichloro	1,3-1)iphenyl-4-(2,5-dichlorophenylazo)	415
	4-Chloro-2-methyl	1,3-Diphenyl-4-(4-chloro-2-methylphenylazo)	415

	5-Chlore-2-methyl	L.B. Darbens left (Lechbar, Langer) on the behaved	:	
	A Chiam a	from the state of	212	
	CLIMITE STATE OF	terropients - (telephone 2-nitropients into	2	
	3-Methyl-4-mife	1-3- Probent 1-4-63 methal dander beneficial		
			-	
	1-Colored-Puller	tal the plant of the higher 3 and for her gland	×19	
	2.Naphily lamm	Lat. Duploen y 1-4-(a-caphib) lane	115 415	
	8-Naphthylamne	1.2. Declarated of grapheter		_
		(more form days of a self-such as a	2	
	-2-01100-1	Lat. Diploca J. d. (1 and to-2 marchiter Lane)	417	
	naplithy lamine			•
yl-3-(2-fur.) 1)		1-fluorated to form to dealer meters.		
	9-Vastra	the state of the s	110, 113	•
	1611311-1	1.2 (1.21) 1.3-(1.11) 1).4-(0 (0) (1.21) 1.1	410, 415	_
	3-Methy	1-174 myl-3-(2 furyl) 4 (m taly haza)	100	•
	4-Methy)	dellametized forests (or a. h. t. a		
	2. Methore	The state of the s	110, 413	•••
		1 1 1 1 1 1 1 (2 luc) 1) ((o-min) Laza	410.415	•••
	4-Melboxy	1-Prensi 3 (2 furni)-4-te-animalizada		•
	2-Ethoxy	Lillensky of family for	-	
	A. P. Parana	to the tart of the tart of the start of the	2 T	•
		" I to th) 1-3 (" Iury 1)-4-(per then y ple try lame)	410, 415	••
	Z-t ploft	I-Thenyl 3 (2-furst) 4-(o-chlomothern) and		•
	3-Chlore	Phone Complete Comple	2	•••
	4-Chlory	The state of the s		•••
	- Harris	transport in 1919-19-chloropheny hans	410, 415	•
	(Milotel L	1-Thenyl 3-(2-furyl)-4 (p-bromonlamylam)		•••
	2-Nitz	1-1 hens 1-3, (2 family to mental and	110	•
	3-Nilro	The state of the s	10, 415	•••
	4.Notes	(oral description of the introducts)	110, 415	٠
	200	1-1 tienyt-3-(2-fur) l)-4-(p-mtm-phunylaza)	110	٠.
	o compo	1-Phon 31-3-(2-furs 1)-4-(m-mail. column stars)		•
	4-Sulfo	(-Phenyla-19, formula for the	ž	•••
	2.5-1 hehd.	(AZY) (Manual Manual Ma	413	,,,
	A Call and	(or a series land) 19-4-(2,5-day library length and	****	•••
	Catoron Micelly	1.4 Meny 1-3-(2-fury 1)-4-(4 -chiora 2 months bat		-
	5-Clidoto-2-methyl	1-Parate 3-12-first Date 6 at 1 at 1	=	٠.
	4-Chloro-2-nitro	1-then 1-3-(2-fury) 1-(4-cham-2-rate-rate-rate-rate-rate-rate-rate-rate	2	دں
#: Heft reports 177 400		(mry (dandomin - comp.)	115	13
	011 111 111			

Nefe: Refrences 177-480 are on pp. 130-142.

The full name is given when it is awkward to name the arytamine as a derivative of amine.

TABLE N-Continued

A. 5-Pyrazolones-Continued

Product (Yield, %),

Heterocyclic Compound,

Substituent(s) in

Substituent(s) in

References 410, 415 415 418 110 416 77 125 533 ŝ 120 121 즲 2 2 1-Phenyl-3-(z-phenylbutyramido)-4-(p-anisylazo) (80) 1-(p-Chlorophenyl)-3-methyl-4-(p-chlorophenylazo) 1-Phenyl-3-(2-furyl)-1-(3-methyl-4-sulfophenylazo) 1-(o-Chlorophenyl)-3-methyl-4-(o-chlorophenylazo) 1-Phenyl-3-(2-furyl)-4-(4-chloro-3-sulfophenylazo) -(p-Nitrophenyl)-3-methyl-4-(o-chlorophenylazo) 1-(p-Nitrophenyl)-3-methyl-4-(p-anisylazo) (52) 1-Phenyl-3-(2-furyl)-4-(1-sulfo-2-naphthylazo) 1-(m-Chlorophenyl)-3-methyl-1-(2,4-dichloro-1-(2,4-Dichlorophenyl)-3-methyl-4-phenylazo 1-(o-Carboxyphenyl)-3-phenyl-4-(p-tolylazo) -- (o-Carboxyphenyl)-3-methyl-4-phenylazo 1-(o-Carboxyphenyl)-3-phenyl-4-phenylazo -(m-Nitrophenyl)-3-phenyl-1-phenylazo 1-Phenyl-3-(2-furyl)-4-(x-naphthylazo) 1-Phenyl-3-(2-furyl)-4-(\beta-maphthylazo) 1-p-Tolyl-3-methyl-4-(p-tolylazo) 1-p-Tolyl-3-methyl-4-phenylazo phenylazo) a-Naphthylamine \$-Naphthylamine naphthylamine 3-Methyl-4-sulfo 4-Chloro-3-sulfo Substituent(s) 2,4-Dichloro in Amiline* 4-Methoxy 4-Methoxy 1-Sulfo-2-4-Methyl 4-Methyl 2-Chloro 4-Chloro 2-Chloro I-Phenyl-3-(x-phenylbutyramido) 1-(2,4-Dichlorophenyl)-3-methyl 1-(o-Carboxyphenyl)-3-methyl I-(o-Carboxyphenyl)-3-phenyl 1-(m-Chlorophenyl)-3-methyl 1-(p-Chlorophenyl)-3-methyl 1-(o-Chlorophenyl)-3-methyl 1-Phenyl-3-(2-furyl) (Cont.) 1-(m-Nitrophenyl)-3-phenyl 1-(p-Nitrophenyl)-3-methyl I-p-Tolyl-3-methyl

1-(m-Carbox, plienyl)-3-methyl 1-(p-Carbox, phenyl)-3-methyl	I I	1-(m-Carboxyphenyl)-3-methyl-4-phenylazo 1-(p-Curboxyphenyl)-3-methyl-4-phenylazo	428	
1-to Sulfupliens 1)-3-methy 1	1	1-(o-Sulfophenyl) 3 methyl-4-phenylazo	429	-
I-(p-Suitophenyl)-3-methyl	1	I-(p-Sulfophenyl)-3-methyl-4-phenylazo	430, 431	•••
	4-Nitro	1 (p Sulfophenyl)-3-methyl-4-(p-mtrophenylaza)	430, 432	
	2,5-Dichloro	1-(p-Suffophenyl)-3-methyl-4 (2,5-dichlorophenylazo)	430	
	4-Chloro-2-methyl	I (p Suifophenyl) 3 methyl-4-(4-chloro-2-methyl	430	
		phenylazo)		
	5-Chloro-2-methyl	1-(p-Sulfophenyl)-3-methyl-4-(5-chloro 2 methyl-	430	
		phenylazo)	}	
I-(p-Sulfoppenyl)-3-phenyl	ı	1-(p-Sulfophen; 1)-3 phenyl-4-phenylazo	430	•
	2-Nitro	1-(p Sulfophenyl)-3-phenyl-4-(o-ntrophenylazo)	430	
	4-Nitro	1-(p-Sulfophenyl) 3-phenyl-4-(p-nytrophenylazo)	25	10,
	2,5-Dichloro	1 (p-Sulfophenyl)-3-phenyl-4-(2,5-dichlorophenyl-zo)	8	,
	1-Chloro-2 methyl	1-(p-Sulfophenyl)-3-phenyl-4-(4-chloro-2-methyl-	200	
		phenylazo)	2	
	5-Chloro-2-methyl	1-(p-Sulfophenyl)-3-phenyl-4-(5-chloro-2 methyl-	430	Α.
Introduction to a con-		phenylazo)		
(Promtoppenyt)-3-(z-tury1)	F	1-(p-Sulfophenyl)-3-(2-furyl)-4 phenylazo	430	PE
	2-Nitro	1-(p Sulfophenyl)-3-(2-furyl)-4-(a-nitronhonylazo)	2 5	
	4-Nitro	1 (p-Sulfophenyl)-3-(2 furyl)-4 (p-nifronhanyl-a-)	007	11
	2,5-Dichloro	1-(p-Sulfophenyl)-3-(2-furyl)-4-(2-fophenyl)-4-(2-fophenyl)-4-(2-fophenyl)-4-(2-fophenyl)-4-(3-f	000	·
		phenylazo)	490	UA.
	4-Chloro-2-methyl	I-(p-Sulfophen) I)-3-(2-furyl)-4-(4-chloro-2-methyl-	430	KB
		phenylazo)	2	U.
	o-Culoro-Z-methy]	I-(p-Sulfophenyl)-3-(2-furyl)-4-(5-chloro-2-methyl- phenylazo)	430	N A
Note: References 177-450 are on pp. 136-142.	on pp. 130-142.			ros

Nofo' Riferences 1774-50 are on pp. 130-112.

The fail name is given when it in analyzation the arylaming as a derivative of aniline.

TABLE X-Continued

A. 5-Pyrazolones-Continued

Heterocyclic Compound, Substituent(s) in		Product (Xield, %). Substituent(s) in	
HM. 1. 2	Substituent(s)	0=C ₅ 1 2N 1 1 2 1 2N 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	sonagg
m_2 Cm.Sulfamvlphenvl)-3-methvl	2-Hydroxy-4-sulfo-	1-(m-Suffamylphenyl)-3-methyl-4-(2-hydroxy-4-sulfo-	433
	1-naphthylamine 2-Hydroxy-1-sulfo-	$\begin{array}{c} 1\text{-naphthylazo}) \\ 1\cdot (m\text{-Sulfamylphenyl}) \cdot 3\cdot methyl \cdot 4\cdot (2\cdot hydroxy \cdot 4\cdot sulfo-\\ \end{array}$	££1
	6-nitro-1- naphthylamine	6-nitro-1-naphthylazo)	
L-Diphenylmethyl-3-methyl	4-Methyl	1-Diphenylmethyl-3-methyl-4-(p-tolylazo)	434
1-(2-Naphthyl)-3-methyl	2-Amino-	1-(2-Naphthyl)-3-methyl-4-(2-anthraquinonylazo)	250
	anthraquinone	(quant.)	
1-(2-Anthraquinonyl)-3-methyl		1-(2-Anthraquinonyl)-3-methyl-4-phenylazo	250
	a-Naphthylamine	1-(2-Anthraquinonyl)-3-methyl-1-(\annuphthylazo)	250
	\$-Naphthylamine	1-(2-Anthraquinonyl)-3-methyl-4-(β -naphthylazo)	250
	2-Amino-	1-(2-Anthraquinonyl)-3-methyl-4-(2-anthra-	250
	anthraquinone	quinonylazo)	
1-(2-Benzothiazolyl)-3-methyl	ı	1-(2-Benzothiazoly1)-3-methy1-4-phenylazo	435
	4-Sulfo	1-(2-Benzothiazoly1)-3-methyl-1-(p-sulfophenylazo)	435

Substituent(e)

Helerocyche Reactant	in Anthor	Product (Nield)	Heferences
1-Methyl-3-hydroxy-5-pyrazolone 4-Methuxy imide	4-Methany	1 Methyl 3 hydroxy 4 to methoxy pleny hany 5	3
3-(p-Toly 1)-5-pyrazolone inible 1-Phenyl-3-methyl-5-pyrazolone imide	1.1	3-principle of the principle of pyrameters trained and pyrameters of the pyrameter (50) (37, 430) I Thern I a methyl t phenyland 5 pyrameters made (50) (37, 430)	318 (37, 436
	4-bullo	1-17-ngl-3 methyl-t-tp sufforbenytassis pyramiene	9
1-(o-Folyl)-3-methyl 5-py razolone imido	\$.Naphthylamine	imale I-Prepji 3 methyl-1-t/f naj hthylame5 pyrazolone imide I-(o-Tolyl) 3 methyl-1-plem) lazo-5 pyrazolone imide	8 3
1-Phenyl-3-methyl-5-thiopy razu-	1	1-Prept 3 methyl-t-plenytan 5 thopymandone	411, 412
1-Phen)-5-methyl-3-pyrazalone 1-(o-Tolyl)-5-methyl-3-pyrazalone 1-(p-Tolyl)-5-methyl-3-pyrazalone 1-(p-Hvomophenyl)-5-methyl-3- nyrazalone	1111	l-then) i-tykny lanes methy i gyrandas fefeffyll-tyknytanesmethy i gyrandas efeffyll-tyknytanesmethy i gyrandas efeffyll-tyknytanesmethy efeftomogleny) i-tyknytanesmethy i gyrandase	
1-(o-Carboxyphen) 1)-5-methy 1-3- pyrazolone	ı	1-(0-Carlest) phenyl)-t-phenylam-5 methyl 3 pyrambone	¥
Pytarolulme-3,5-dume 1-Phenylpyrazolulme-3,5-dume	t-Methyl —	4-(p-Tal) Langprazaldine-3,5-dune 1-17-m1-4 ibeny Landrazaldine 3.5-dune	₫:
1-Phenyl-4-ethylpyrazolidine-3,5- dione	4-Methyl	1-19enyl-t-(p-tolylazo)pyrazoluline-3,5-dume 1-19u nyl-t-ellyl-t-ylueny lazopyrazoluline-3,5-dume	: 5 3

Note: References 177–480 are on pp. 136–112. • The full name is given when it is such and to name the arylamine as a derivative of amino.

TABLE X-Continued

B. Miscellaneous Heterocyclic Compounds—Continued

Hotomorrelie Resetant	Substituent(s) in Aniline*	Product (Yield, %)	References
Theory of the transferred		1_(m_Tolv11-4-nhenylayonyrazolidine-3.5-dione	450
1-p-Tolylpyrazolldine-3,3-dione	1	3-Methyl-4-phenylazo-5-isoxazolone (quant.)	451, 227, 452
5-methyl-5-180xazono	2-Methvi	3-Methyl-4-(o-tolylazo)-5-isoxazolone	227
	4-Methyl	3-Methyl-4-(p-tolylazo)-5-isoxazolone	227
	2-Methoxy	3-Methyl-4-(o-anisylazo)-5-isoxazolone	227
•	a-Naphthylamine	3-Methyl-4-(a-naphthylazo)-5-isoxazolone	227
	β -Naphthylamine	3-Methyl-4-(\beta-naphthylazo)-5-isoxazolone	227
3.Phenyl-5-isoxazolone	. !	3-Phenyl-4-phenylazo-5-isoxazolone	453
3-(m-Tolyl)-5-isoxazolone	1	3-(m-Toly1)-4-phenylazo- 5 -isoxazolone	454
$3 \cdot (p-\text{Tolyl}) - 5 \cdot \text{isoxazolone}$	ļ	3-(p-Tolyl)-4-phenylazo-5-isoxazolone	454
3-(m-Chlorophenyl)-5-isoxazolone	4-Nitro	3-(m-Chlorophenyl)-4-(p-nitrophenylazo)-5-isoxazolone	455
3-(m-Nitrophenyl)-5-isoxazolone	4-Nitro	3-(m-Nitrophenyl)-4-(p-nitrophenylazo)-5-isoxazolone	455
3-Anilino-5-isoxazolone	!	3-Anilino-4-phenylazo-5-isoxazolone	450
3-Methyl-5-iminoisoxazole	1	3-Methyl-4-phenylazo-5-iminoisoxazole	90
2-Benzyl-4-imidazolone	4-Nitro	3-Benzyl-5-(p-nitrophenylazo)-4-imidazolone	457
1,2,3-Triazol-5-one	4-Methyl	4-(p-Tolylazo)-1,2,3-triazol-5-one	458
1-Carboxymethyl-1,2,3-triazol-5-	4-Methyl	1-Carboxymethyl-4-(p-tolylazo)-1,2,3-triazol-5-one	458
one			
1-Phenyl-1,2,3-triazol-5-one	1	1-Phenyl-4-phenylazo-1,2,3-triazol-5-one	450
1-Acetylbenzalhydrazide-1,2,3- triazol-5-one	4-Methyl	1-Acetylbenzalhydrazide-4-(p-tolylazo)-1,2,3-triazol-5- one	460
1-Acetylglycinbenzalhydrazide- 1,2,3-triazol-5-one	4-Methyl	$1\hbox{-Acetylglycinbenzalhydrazide-4-} (p\hbox{-tolylazo})\hbox{-}1,2,3-triazol-5-one$	460
Barbituric acid	2-Nitro	5-Oxobarbituric acid phenylhydrazone (quant.) 5-Oxobarbituric acid o-nitrophenylhydrazone	461 461

	4-Nitro 4-Sulfanyl 4-(p-Dimethyl- sulfanylphenyl)-	6-Oxobarbuturio acid p-ntrophenylhydrazone 5-Oxobarbuturio acid p-sulfamylphenylhydrazone 6-Oxobarbuturio acid p-(p-dimethylsulfamylphenyl)- sulfamylphenylhydrazone	461 244 244
N,N'-Diphenylbarbitume acid	sulfamyl	N.NDiphenyl 5-oxobarbitume and phenylhydiazone N.NDiphenyl-5 oxobarbitume and p-nitrophenyl-	462
N.N'-Inplicity 1-5-benzy lbarbitutio acid	ı	hydrazone N,N'.Diphenyl-5 benzyl 5 phenylazobarbituric acid	462
	4-Nitro	N.N.* Diphenyl-5-benzyl-5-(p-nitrophenylazo)- barhitarie acid	462
N.NDiplompi-5-diplompinnethyl: 4-Nitro	4-Nitro	N.N.'-Diphenyl-5-diphenylmethyl-5-(p-nurophenylazo)- barbituric acid	462
N.N - Input by Uniobarbituric acid	- Kiling	N,N'-Diplienyl-5-phenylazothiobarbituric acid	463
N.N. Diplomy 1-5-diplomy has they 1-		N.NDiplienyl-5-(p-nitrophanylazo)lhiobarbitune acid N.NDiplienyl-5-diplienylmethyl-5 phenylazotluo-	463 463
2-Thianaphthenone	1	3 Phenylazo-2-thianaphthenone	461
	*-Naphthylamine	3-(p-Nutrophenylazo)-2-thianaphthenone 3-(x-Naphthylazo)-2-thianaphthenone	15
3-Thamphthenone	4-Nitro	3-(\(\beta\)-Naphthylazo}-2-thuanaphthenone 2-(\(\beta\)-Nutrophenylazo) 3-thanaphthenone	461
3-5-1 namphthenone	11	2-Phenylazo-5-methyl-3-thanaphthenone 2-Phenylazo-3-selenanaphthenone	466
t-Menyloxindolo I-Plenyloxindolo Indoxyl	4-llromu	3-(p-Bromophen) lazo)-6-nifrooxindole 1-Thenyl-3-phenylazooxindole 2-Thenylazolazooxindole	463 468
Note: References 177-480 are on pp. 136-142. • The full name is given when it is aukward to	n pp. 136–142. t is awkward to nam	Note: Beforences 177–180 are on pp. 138–142. • The full name is given when It is an knard to name the aryimmine as a derivative of amilme.	469

TABLE X—Continued

B. Miscellaneous Heterocyclic Compounds—Continued

Heterocyclic Reactant Homophthalimide

Substituent(s)		
in Aniline*	Product (Yield, %)	References
I	a-Phenylazohomophthalimide	470, 471, 472
2-Methyl	α -(o-Tolylazo)homophthalimide	472
3-Methyl	α - $(m$ -Tolylazo)homophthalimide	472
4-Methyl	α - $(p$ -Tolylazo)homophthalimide	472
2-Chloro	α -(o-Chlorophenylazo)homophthalimide	472
2-Nitro	α-(o-Nitrophenylazo)homophthalimide	472
4-Nitro	α - $(p$ -Nitrophenylazo)homophthalimide	472
2-Carboxy	a-(o-Carboxyphenylazo)homophthalimide	472
3-Carboxy	α -(m-Carboxyphenylazo)homophthalimide	472
4-Sulfo	α - $(p$ -Sulfophenylazo)homophthalimide	473
2,4-Dimethyl	α -(2,4-Dimethylphenylazo)homophthalimide	472
4-Methyl-2-nitro	a-(4-Methyl-2-nitrophenylazo)homophthalimide	472
4-Methyl-3-nitro	a-(4-Methyl-3-nitrophenylazo)homophthalimide	472
α -Naphthylamine	α-(1-Naphthylazo)homophthalimide	472
eta-Naphthylamine	α -(2-Naphthylazo)homophthalimide	472
4-Sulfo-1-	x-(4-Sulfo-1-naphthylazo)homophthalimide	473
naphthylamine		
6,8-Disulfo-2-	α -(6,8-Disulfo-2-naphthylazo)homophthalimide	473
naphthylamine		
2-Hydroxy-4-sulfo-	a-(2-Hydroxy-4-sulfo-1-naphthylazo)homophthalimide	473
1-naphthylamine)
Benzidine	α, α' -(4,4'-Biphenylenedisuzo)bis(homophthalimide)	472
3,3'-Dimethyl-	α,α'-(3,3'-Dimethyl-4,4'-biphenylenedisuzo)bis-	479
benzidine	(homophthalimide)	
3,3'-Dimethoxy-	α,α'-(3,3'-Dimethoxy-4,4'-biphenylenedisuzo)bis-	479
benzidine	(homophthalimide)	1

N-Phenylhomophthalimide	1	a-Phenylazo-N-phenylhomophthalimide	474
4-Hydroxycoumarin	ı	3-Phenylazo-4-hydroxycoumarm (91)	475
	4-Methyl	3.(p.Tolylazo).4.hydroxycoumarin (88)	475
	4-Nitro	3-(p-Nitrophenylazo)-4-hydroxycoumarm (75)	
	4-Sulfo	3-(p-Sulfophenylazo)-4-hydroxycoumarm (10)	475 IV:
	4 Sulfamyl	3-(p-Sulfamylphenylazo)-4-hydroxycoumaria (50)	
1-slethyl-4-hydroxycarbostyra	3-Nitro	1-Methyl-3-(m-nitrophenylazo)-4-hydroxyoarbostyril	_
Chiraconic anhydride	ı	7-Ketoglutaconic anhydride phenylhydrazone (87)	
	2-Methyl	y-Ketoglutaconic anhydride o-tolylhydrazone (57)	
	4-Methyl	y-Ketoglutaconic anhydride p-tolylhydrazone (79)	476a
	Z-Methory	y-Ketoglutaconic anhydride o-anisylhydrazone (56)	
	4-Dimethylamino	y-Ketoglutaconic anhydrade p-dunethylaminophenyl-	
		hydrazone (64)	
	2-Carboxy	y-Ketoglutaconic anhydride o-carboxynhenyl-	4750
		hydrazone (80)	
	a-Naphthylamine	y-Ketoglutaconic anhydride a-naphthylliydrazone (86)	4750
8-Methylelutaconte onbridata.	p-ivapathylamine	γ-Ketoglutaconic anhydride β-naphthylhydrazone (87)	
anundamente anni anunde	1	7-Keto-\$-methylglutaconic anhydride phenylhydrazone	
		(10)	
	z-Methoxy	y-Keto-\$-methylglutaconic anhydride o-anisylhydrazone	H.A
		(62)	
	*-Methory	γ·Keto·β-methylglutaconic anhydride p-anisylhydrazone	88
	2.N.fro	(40)	LA
	OFFICE	7-Keto-p-methylglutaconic anhydride o-nitrophenyl-	38
	A. Dissease.	hydrazone (64)	
	Dumeruy ismino	γ-Keto-β-methylglutaconic anhydride p-dimethylamino-	98
	4. Dasthylamin.	poenylhydrazone (72)	A
	OW INTERCED	?-Acto-p-methylglutaconic anhydride p-diethylamino- phenylbydrazone (71)	28 28
Note: Defendent ton			S

Note: References 177–480 are on pp. 136–143.
• The full name is given when it is swkward to name the arylamine as a derivative of aniline.

TABLE X-Continued

B. Miscellancous Heterocyclic Compounds—Continued

	Substituent(s)	•	•
Hotomorrollin Ronofunt.	in Aniline*	Product (Yield, %)	Keterences
neteropeno areaction	4-Sulfo	γ -Keto- β -methylglutaconic anhydride p -sulfophenyl-	qs
p-meenyigineacome annymiae		hydrazone (S5)	1
(com:)	3-Trifluoromethyl	γ -Keto- β -methylglutaconic anhydride m -trifluoromethyl-	qs
		phenylhydrazone (65)	Č
	2,4-Dinitro	γ -Keto- β -methylglutaconic anhydride 2,4-dinitrophenyl-	98
		hydrazone (69)	Š
	a-Naphthylamine	γ -Keto- β -methylglutaconic anhydride α -naphthyl-	86
		hydrazone (85)	;
	θ -Naphthylamine	γ -Keto- eta -methylglutaconic anhydride eta -naphthyl-	98
		hydrazone (85)	
B-Chloroglutaconic anhydride	1	β -Chloro- γ -ketoglutaconic anhydride phenylhydrazone	4766
6-Carboxyglutaconic anhydride	}	\$-Carboxy-7-ketoglutaconic anhydride phenylhydrazone	476c
(trans-aconitic anhydride)		(84)	
\theta-Carbomethoxyglutaconic	1	\$-Carbomethoxy-?-ketoglutaconic anhydride phenyl-	476c
anhydride		hydrazone (70)	
Malonyl-x-aminopyridine	i	3-Phenylazo-4H-pyrido[1,2-a]pyrimidin-4-one (S5)	3000
	4-Carboxy	3-(p-Carboxyphenylazo)-4H-pyrido[1,2-a]pyrimidin-4-one	300_{0}
		(96)	
	4-Carbomethoxy	3-(p-Carbomethoxyphenylazo)-4H-pyrido[1,2-a]-	300b
		pyrimidin-4-one (70)	
	4-Carbethoxy	3-(p-Carbethoxyphenylazo)-4H-pyrido[1,2-a]pyrimidin-	3000
		4-one	
	4-Sulfo	3-(p-Sulfophenylazo)-4H-pyrido[1,2-a]pyrimidin-4-one (93)	3000

Note: References 177-480 are on pp. 136-142. * The full name is given when it is awkward to name the arylamine as a derivative of aniline.

TABLE XI

COUPLING OF DIAZONIUM SALIS WITH MISCELLANEOUS COMPOUNDS

	Substituent		
Reactant	in Aniline	Product (Yield, %)	References
Diazomethane	4-Nitro	Chloroformaldehyde p nitrophenyllydrazone* (85)	4764
Acetaldehyde	1	N,N'-Diphenyl-C-phenylazoformazan (20-30)	153. 27
Ketene diethylacetal	I	1-Phenyl-4-ethoxy-6-pyridazone (35)	477
	4-Ethoxy	1-p-Ethoxyphenyl-4 ethoxy-6-pyridazone+ (21)	477
	4-Nitro	1-p-Nitrophenyl 4-ethoxy-6-pyridazone (25)	477
Wash and American	4-Carpethoxy	1-p-Carbethoxyphenyl-4-ethoxy-6-pyridazone (33)	477
Ethyl aminocrotonate	I	Ethyl a phenylazo-\$-sminocrotonate (52)	478
Edity princhly laminocrotonate	I	Ethyl a-phenylazo-3 methylaminocrotonate (51)	478
Etnyl p diethylaminocrotonate	1	1-Phenyl-3-diethylamino-3-methyl-4-phenylazo-5-	479
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ethoxypyruzoline (75)	
Dis(phenylanitnyl)methane	ı	Bis(Dhenylsulfinyl)formaldebyde phenylhydrazone	900
1-(2-Methylpropenyl)piperidine	4-Chloro	Acetone wehlorophenyllydrozone	905
	4-Nitro	Acetone pentronhenellisdranen	1300
1-(1-Butenyl)piperidine	4-Methory	1 2 Defendance of animal anima	1304
	4-Chlone	the concentence a partial mydrazone (53)	130a
	A North	1.2-Butanedione 2-p chlorophenylhydrazone (65)	130a
N.N. Diethylstyrylemine	A Market	1,2-Butanedione 2-p-nitrophenylhydrazone (41)	130a
Comment of the Comment	4-Chloro	Thenylglyoxal \$-p-anisylhydrazone (76)	130a
	4. N. than	Fuenyigiyoxal \$-p-chlorophenylhydrazone (90)	130a
	4-Carbown	Phenyigiyozal & p-nitrophenylhydrazone (94)	130a
1-(\$-Methylstyryl)biperidine	4.Nifro	Thenylgiyoxal p-carboxyphenylhydrazone (89)	130a
	4-Carbox	Acetophenone p-nitrophenylhydrazone (87)	130a
	2.4-Duntro	A cetanismone p carboxyphenylhydrazone (95)	130a
Note: Defende		Accountments 2,4-amitrophenylhydrazone (97)	130a

DIAZONIUM COUPLING WITH ALIPHATIC CARBON ATOMS

Note: References 177-480 are on pp. 186-142.

[†] Nincleen per cent of N,N'-di-p-ethoxyphenyl-C-carbelhoxyformazan was also formed. The reaction was run in methanol saturated with lithium chloride.

REFERENCES FOR TABLES I-XI

- 177 Favrel, Bull. soc. chim. France, [5], 1, 981 (1934).
- 118 Benary, Reiter, and Soenderop, Ber., 50, 65 (1917).
- 179 Jerchel and Fischer, Ann., 563, 208 (1949).
- 180 Bamberger and Kuhlemann, Ber., 26, 2978 (1893).
- 181 Wolff, Ann., 317, 1 (1901).
- 182 Wislicenus and Schöllkopf, J. prakt. Chem., [2], 95, 269 (1917).
- 181 Borsche, Stackmann, and Makaroff-Semljanski, Ber., 49, 2222 (1916).
- 184 Kröhnke and Kubler, Ber., 70, 538 (1937).
- 185 Kowjalgi and Iyer, Current Sci. India, 19, 210 (1950) [C. A., 45, 863 (1951)].
- 186 Iyer and Kowjalgi, J. Indian Inst. Sci., 34, 81 (1952) [C. A., 46, 8857 (1952)].
- 187 Beyer and Claisen, Ber., 21, 1697 (1888).
- 188 Bulow and Schlotterbeck, Ber., 35, 2187 (1902).
- 188 Bülow and Spengler, Ber., 58, 1375 (1925).
- 190 Chattaway and Ashworth, J. Chem. Soc., 1934, 930.
- 191 Favrel, Bull. soc. chim. France, [3], 27, 328 (1902).
- 192 Favrel, Compt. rend., 128, 318 (1899).
- 103 Reilly, Daly, and Drumm, Proc. Roy. Irish Acad., 40B, 94 (1931) [C. A., 26, 452 (1932)].
- 184 Morgan and Reilly, J. Chem. Soc., 103, 808 (1913).
- 135 Reilly and MacSweeney, Proc. Roy. Irish Acad., 39B, 497 (1930) [C. A., 25, 1523 (1931)].
 - 106 Morgan and Ackerman, J. Chem. Soc., 123, 1308 (1923).
 - 197 Reilly and Drumm, J. Chem. Soc., 1926, 1729.
 - 198 Morgan and Drew, J. Chem. Soc., 119, 610 (1921).
 - 199 Sieglitz and Horn, Chem. Ber., 84, 607 (1951).
 - 200 Claisen and Ehrhardt, Ber., 22, 1009 (1889).
 - 201 Feist and Belart, Ber., 28, 1817 (1895).
 - ²⁰³ Mullen and Crowe, J. Chem. Soc., 1927, 1751.
 - ²⁰² Bamberger and Witter, Ber., 26, 2786 (1893).
 - ¹⁰⁴ Bamberger and Witter, J. prakt. Chem., [2], 65, 139 (1902).
 - 205 Chattaway and Ashworth, J. Chem. Soc., 1933, 1624.
 - 204 Balow, Ber., 32, 2637 (1899).
 - 201 Bulow and Busse, Ber., 39, 2459 (1906).
 - *** Sachs and Herold, Ber., 40, 2714 (1907).
 - 100 Kostanecki and Tambor, Ber., 35, 1679 (1902).
 - 110 Bulow and Sautermeister, Ber., 37, 354 (1904).
 - ²¹¹ Morgan and Porter, J. Chem. Soc., 125, 1269 (1924).
 - 212 Balow and Riess, Ber., 35, 3900 (1902).
 - 313 Bulow and Grotowsky, Ber., 34, 1479 (1901).
 - ²¹⁴ Anand, Patel, and Venkataraman, Proc. Indian Acad. Sci., 28A, 545 (1948) [C. A., 43, 5778 (1949)].
 - 214 Claisen and Roosen, Ann., 278, 274 (1894).
 - 114 Favrel and Jean, Bull. soc. chim. France, [4], 37, 1238 (1925).
 - 217 Bulow, Ber., 37, 2198 (1904).
 - 214 Balow and Nottbohm, Ber., 38, 2695 (1903).
 - 313 Balow and Nottbohm, Ber., 38, 392 (1903).
 - 119 Krishnan, Iyer, and Guha, Science and Culture India, 11, 507 (1940) [C. A., 40, 5712 (1940)].
 - 111 Vorlander and Erig. Ann., 294, 302 (1897).
 - 111 Bochm, Ann., 318, 230 (1901).
 - 333 Boehm, Ann., 329, 269 (1903).
 - 114 Rabe, Ber., 31, 1896 (1898).
 - 214 O-born and Schotleld, J. Chem. Soc., 1955, 2100.
 - 111 den Otter, Rec. trav. chim., 57, 427 (1938).
 - 324 Bamberger, Ber., 24, 3260 (1891).

- ser Schiff and Viciani, Gass. chem. stal , 27, II, 70 (1897). am Chattaway and Ashworth, J. Chem. Soo , 1933, 475.
- 34 Bamberger, Ber , 17, 2415 (1884)
- 293 Chattaway and Lye. Proc. Roy. Soc. London, A135, 282 (1932) [C. A. 28, 5074 (1932)].
- 101 Wolff and Luttrunghaus, Ann , 312, 155 (1900). tes Bamberger and Schmidt, Ber , 34, 2001 (1901).
- sate Wizinger and Herzog, Helv. Chim. Acta, 36, 531 (1953).
- 110 Michael, Ber , 38, 2096 (1905).
- 204 von Richter and Munzer, Ber , 17, 1926 (1884) 215 Bulow and Nober, Ber . 45, 3732 (1912).
- us Goldberg and Kelly, J. Chem. Soc , 1948, 1919
- ur Bolow and Schaub, Ber , 41, 2355 (1908)
- 300 Balow and Engler, Ber . 51, 1246 (1918). se Kjellin, Ber , 30, 1965 (1897)
- 1986 Le Bris and Wahl, Compt rend., 241, 1143 (1955)
- ** von Pechmann and Wedekind, Ber , 28, 1688 (1895).
- 841 Bolow, Ber , 31, 3122 (1898).
- ses Griess, Ber., 18, 950 (1885)
- set Balow, Ber , 33, 187 (1900).
- 144 Mossan., Ann chem farm , Dec 1939, 47 [C. A., 34, 2175 (1940)]
- 244 Chattaway and Parkes, J. Chem Soc , 1935, 1905.
- the Chattaway and Daldy, J. Chem. Soc., 1928, 2756
- 247 Chattaway, Ashworth, and Grimwade, J. Chem. Soc., 1935, 117.
- 545 Chattaway and Ashworth, J Chem Soc , 1833, 475 140 Oddo, Gazz chim, stal., 21, I, 264 (1891).
- 144 Saunders, J Chem. Soc , 117, 1264 (1920).
- am Morgan and Read, J. Chem Soc., 121, 2709 (1922).
- 144 Balow, Ber , 44, 601 (1911)
- 362 Bulow and Baur. Ber . 58, 1926 (1925)
- 254 Wedekind, Ann., 295, 324 (1897).
- 164 Wiginger and Herzog, Hele Chim Acta, 34, 1202 (1951) 314 Bulow and von Reden, Ber , 31, 2574 (1898).
- 517 Favrel, Compt. rend , 145, 194 (1907).
- 316 Favrel, Bull soc. chem. France, [4], 1, 1238 (1907).
- 242 Wolff and Fertig. Ann. 313, 12 (1900)
- ** Wahl and Doll, Bull soc. chun. France, [4], 13, 265 (1913).
- 141 Wahl, Compt rend , 147, 72 (1908).
- 243 Wahl. Bull see chem. France, [41, 3, 946 (1908). 345 Bamberger and Calman, Ber . 18, 2563 (1885).
- 244 Starbn. Ber . 21, 2120 (1888)
- ses Wahl, Bull soc. chim. France, [4], I. 729 (1907).
- 244 Cusa, Gazz chim stal , 50, I, 194 (1920).
- per Bulow and Busse, Ber., 39, 3861 (1906)
- 200 Wahl and Silbersweig, Bull. soc chim France, [4], 11, 61 (1912).
- ** Wahl and Rolland, Ann chem. Parss, [10], 10, 5 (1928). 214 Rabsechong, Bull. soc. chum, France, [3], 31, 87 (1904).
- 171 Chattaway and Humphrey, J. Chem. Soc , 1927, 2793.
- 271 Chattaway and Humphrey, J Chem. Soc , 1927, 1323 am Rabischong, Bull. avc. chim France, [3], 27, 982 (1902).
- 174 Sonn, Ann., 518, 290 (1935) are Tamburello and Carapelle, Gazz chim stal , 37, I, 561 (1907).
- 274 Dieckmann, Ber , 45, 2689 (1912).
- 177 Dieckmann, Ber., 44, 975 (1911).
- 378 Balow, Ber . 40, 3787 (1907). re Bulow, Ber., 41, 641 (1908).
- me Balow and Bozenhardt, Ber., 43, 234 (1910).

- 281 Knorr and Reuter. Ber., 27, 1169 (1894). ²⁸² Andrisano and Pentimalli, Ann. chim. Rome, 40, 292 (1950) [C. A., 45, 6384 (1951)]. ²⁸³ Andrisano, Boll. sci. fac. chim. ind. Bologna, 7, 58 (1949) [C. A., 44, 9404 (1950)]. ²⁸⁴ Morgan and Davies, J. Chem. Soc., 123, 228 (1923). 285 Seidel, Ber., 59, 1894 (1926). 280 Bulow and Dick. Ber., 57, 1281 (1924). ²⁸⁷ Andrisano and Passerini, Ann. chim. Rome, 40, 439 (1950) [C. A., 45, 8775 (1951)]. 288 Chelintsov, J. Gen. Chem. U.S.S.R., 14, 941 (1944) [C. A., 39, 4611 (1945)]. 289 Petersen, Chem. Ber., 83, 551 (1950). ²⁹⁰ Andrisano and Maioli, Ann. chim. Rome, 40, 442 (1950) [C. A., 45, 8775 (1951)]. 2904 Abramovitch and Schofield, J. Chem. Soc., 1955, 2326. ²⁹¹ Busch and Froy, Ber., 36, 1362 (1903). ²⁹² Fusco and Romani, Gazz. chim. ital., 78, 332 (1948). 293 Bülow and Ganghofer, Ber., 37, 4169 (1904). 294 Favrel, Bull. soc. chim. France, [3], 27, 313 (1902). 295 Fayrel, Compt. rend., 128, 829 (1899). 296 Moyer, Ber., 24, 1241 (1891). 207 Honrich and Thomas, Ber., 40, 4924 (1907). 298 Henrich, Monatsh., 20, 537 (1899). 299 Henrich, Ber., 35, 1663 (1902). 300a Shaw, J. Biol. Chem., 185, 439 (1950). ^{300b} Snyder and Robison, J. Am. Chem. Soc., 74, 4910 (1952). 300c Snyder and Robison, J. Am. Chem. Soc., 74, 5945 (1952). 201 Meyer, Ber., 21, 1306 (1888). 302 Hausknecht, Ber., 22, 324 (1889). 303 Wizinger and Biro, Helv. Chim. Acta, 32, 901 (1949). 304 Haller, Compt. rend., 106, 1171 (1888). 305 Favrel, Bull. soc. chim. France, [3], 27, 104 (1902). 306 Favrel, Compt. rend., 127, 116 (1898). ²⁰⁷ Krückeberg, J. prakt. Chem., [2], 46, 579 (1892). 308 Kruckoberg, J. prakt. Chem., [2], 47, 591 (1893). Weissbach, J. prakt. Chem., [2], 57, 206 (1898). 310 Lax, J. prakt. Chem., [2], 63, 1 (1901). 311 Marquardt, J. prakt. Chem., [2], 52, 160 (1895). ³¹² Uhlmann, J. prakt. Chem., [2], 51, 217 (1895). ²¹³ Bulow and Neber, Ber., 49, 2179 (1916). 314 Favrel, Compt. rend., 122, 844 (1896). 315 Bowack and Lapworth, J. Chem. Soc., 85, 42 (1904). 316 Perkin, J. Chem. Soc., 43, 111 (1883). 317 Haller, Compt. rend., 108, 1116 (1889). 318 von Meyer, J. prakt. Chem., [2], 90, 1 (1914). 319 Benary and Hosenfeld, Ber., 55, 3417 (1922). 220 Bucker, Rec. trav. chim., 70, 892 (1951). 221 Finzi and Bottiglieri, Gazz. chim. ital., 48, II, 113 (1918). 322 Bamberger and Schmidt, Ber., 34, 574 (1901). 323 Bamberger, Padova, and Ormerod. Ann., 446, 260 (1925). 323a Jorchel and Elder, Chem. Ber., 88, 1284 (1955). 322b Robbins and Schofield, J. Chem. Soc., 1957, 3186. Dermer and Hutcheson, Proc. Oklahoma Acad. Sci., 23, 60 (1943) [C. A., 38, 2006 (1944)].326 Kappeler, Ber., 12, 2285 (1879). 326 Bamberger, Ber., 31, 2626 (1898).
 - 230 Bamberger and Frei, Ber., 35, 82 (1902).
 - 229 Hallmann, Ber., 9, 389 (1876).
 - 227 Barbieri, Ber., 9, 386 (1876). 228 Wald, Ber., 9, 393 (1876).

- 341 Bamberger and Free, Ber 36, 3833 (1903).
- 212 Oddo and Ampola, Gazz chim stal , 23, I, 257 (1893).
- ate Feasley and Degering, J Org Chem , 8, 12 (1943) 444 Askensey and Meyer, Ber , 25, 1701 (1802)
- Duden, Ber , 28, 2003 (1893)
- ase Keppler and Meyer, Ber , 25, 1709 (1892).
- ser von Braun and Sobecks. Ber . 44, 2526 (1911) ste von Braun and Danziger, Ber . 48, 103 (1913)
- *** Russanow Ber . 25, 2635 (1892)
- 140 Kumich. Ber . 10, 140 (1877) 14 Wieland. .Inn . 328, 250 (1903)
- 344 Meyer and Wertheimer, Ber . 47, 2374 (1914)
- *** Gold and Levine, J Org Chem , 16, 1507 (1951)
- ate Demuth and Meyer, dnn . 258, 28 (1890)
- Me Chattaway, Drewitt, and Parkes, J Chem Soc , 1938, 1693.
- *** Canonica. Gazz chem stal , 79, 738 (1849) 117 Metsenheimer and Heim, Ber , 38, 466 (1905)
- 549 Holleman, Rec true chim , 13, 403 (1894)
- asa Bamberger, Ber , 33, 1781 (1900)
- 20 Ponzio, Gatz chim Hal , 42, I, 525 (1912)
- 31 Bamberger and Scheutz, Ber , 34, 2023 (1901)
- ** Bamberger and Pomsel, Ber . 36, 57 (1903)
- 200 Parkes and Williams, J Chem Soc . 1934, 67 ** von Braun and Kruber, Ber , 45, 384 (1912)
- 244 Ponzio, Gazz chim ital , 38, I, 509 (1908)
- 204 Ponzio and Charrier, Gazz chim stal , 39, I, 625 (1909).
- 20 Ponzio, Gazz chim stal , 39, I. 559 (1909) 264 Ponzio and Charrier, Gazz chim stal , 38, I, 526 (1908).
- ** Sonn and Schellenberg, Ber , 50, 1513 (1917)
- Arbuzov and Rafikov, J Gen Chem U.S.S. R 7, 2195 (1937) [C. A., 32, 515 (1938)].
- Meyer, Irschick, and Schlosser, Ber , 47, 1741 (1914) 3415 Bachman and Hatton, J Am Chem Soc , 66, 1513 (1944).
- 344 Thuele, Ber , 33, 665 (1900)
- ses Sas, Ann , 556, 85 (1944).
- and Quilion and Fiers, Gazs, chim stal , 62, 253 (1932) Terent'ev and Zegelman, Scs. Repts Moscow State Univ., 1938, No 8, 257 [C. A., 32.
- 2516 (1938)]. 344 Allen, Eliot, and Bell, Can J. Res. 17B, 75 (1939).
 - 244 Pierrot and Wahl, Compt rend . 240, 879 (1955).
- sees Prerrot and Wahl, Compt. rend , 239, 1049 (1954).
- 347 Rusch and Klett, Ber . 25, 2847 (1892). 344 Jacobs, Winstein, Henderson, and Spacth, J. Am. Chem. Soc., 68, 1310 (1946).
- Atkunson and Suppson, J Chem Soc., 1947, 808.
- 276 Schofield and Swain, J. Chem Soc , 1949, 1367 171 Sumpson, J Chem Soc , 1948, 573
- 878 Sumpson, J Chem Soc , 1943, 447
- 118 Krahler and Burger, J. Am Chem Soc., 63, 2367 (1941).
- 114 Watt. Nolting, and Grandmougin, Ber , 23, 3635 (1890). 174 Michel and Grandmougin, Ber., 28, 2349 (1893).
- 174 you Answers and Schwegler, Ber., 53, 1211 (1920).
- 177 Gabriel and Stelzner, Ber , 29, 303 (1896)
- 278 Zincke and Malkomessus, Ann., 339, 218 (1905). 579 Soc. anon de met. color et prod chim Francolor, Brit pat 599834 [C A , 42, 7538
- (1948)1 see Petstooles and Sureau, Bull soc chim France, 1950, 466.
- 21 Zincke and Kuchenbecker, Ann . 339, 226 (1905).

```
2012 Morgan and Davies, J. Chem. Soc., 123, 228 (1923).
 Dadswell and Kenner, J. Chem. Soc., 1927, 580.
 286 Duval, Compt. rend., 154, 780 (1912).
 <sup>345</sup> Duval, Compt. rend., 146, 1407 (1908).
 266 Daval, Compt. rend., 144, 1222 (1907).
 241 Capka, Chem. Zvesti, 2, 1 (1948) [C. A., 44, 1523 (1950)].
 288 Bamberger and Pemsel, Ber., 36, 85 (1903).
  389 Jerchel, Ber., 75B, 75 (1942).
  <sup>2894</sup> Nineham, Pain, and Slack, J. Chem. Soc., 1954, 1568.
  Lottré, Hacde, and Schäfer, Hoppe-Seyler's Z., physiol. Chem., 289, 298 (1952) [C. A.,
48, 10677 (1954)].
  280c Libman, Nineham, and Slack, J. Chem. Soc. 1954, 1565.
  Ragno and Oreste, Gazz. chim. ital., 78, 228 (1948).
  201 Ragno and Bruno, Gazz. chim. ital., 77, 12 (1947).
  392 Breusch and Keskin, Rev. fac. sci. univ. Istanbul, 9A, No. 1, 30 (1944) [C. A., 40, 1319
(1946)].
  393 Hausser, Jerchel, and Kuhn, Chem. Ber., 82, 515 (1949).
  2034 Duffin and Kendall, J. Chem. Soc., 1954, 408.
  244 Wislicenus, Ber., 25, 3456 (1892).
  Mattson, Jensen, and Dutcher, J. Am. Chem. Soc., 70, 1284 (1948).
  <sup>895a</sup> Ashley, Davis, Nineham, and Slack, J. Chem. Soc., 1953, 3881.
  256 Fox and Atkinson, J. Am. Chem. Soc., 72, 3629 (1950).
  297 Wedekind, Ber., 32, 1918 (1899).
  <sup>298</sup> Jerchel and Fischer, Ann., 563, 200 (1949).
  298a Ried, Gick, and Oertel, Ann., 581, 29 (1953).
  398b Boyer and Pyl, Chem. Ber., 87, 1505 (1954).
   <sup>3980</sup> Tsou, Cheng, Nachlas, and Seligman, J. Am. Chem. Soc., 78, 6139 (1956).
   298d Ried and Hillenbrand, Ann., 581, 44 (1953).
   399 Ludolphy, Chem. Ber., 84, 385 (1951).
   600 Soyhan, Rev. fac. sci. univ. Istanbul, 17A, 182 (1952) [C. A., 47, 12390 (1953)].
   401 von Pechmann, Ber., 29, 2161 (1896).
   402 Wedekind, Ber., 30, 444 (1897).
   402a Cottrell, Pain, and Slack, J. Chem. Soc., 1954, 2968.
   402b Seyhan, Chem. Ber., 87, 1124 (1954).
   402d Seyhan, Chem. Ber., 88, 646 (1955).
   4026 Seyhan, Chem. Ber., 87, 396 (1954).
   402f Wahl and Le Bris, Bull. soc. chim. France, 1954, 1281.
   4029 Wahl and Le Bris, Compt. τend., 235, 1405 (1952).
   402h Wahl and Le Bris, Compt. rend., 236, 294 (1953).
   4024 Seyhan, Chem. Ber., 88, 212 (1955).
   4025 Seiler and Schmid, Helv. Chim. Acta, 37, 1 (1954).
    402k Ried and Gick, Ann., 581, 16 (1953).
    403 Scott, O'Sullivan, and Roilly, J. Chem. Soc., 1951, 3508.
    403a Duffin and Kendall, J. Chem. Soc., 1955, 3470.
    404 von Rothenburg, J. prakt. Chem., [2], 51, 43 (1895).
    405 Knorr, Ber., 29, 249 (1896).
    408 von Rothenburg, Ber., 26, 2972 (1893).
    407 von Rothenburg, Ber., 27, 790 (1894).
    408 von Rothenburg, J. prakt. Chem., [2], 52, 23 (1895).
    409 von Rothenburg, Ber., 27, 783 (1894).
    410 Torrey and Zanetti, Am. Chem. J., 44, 391 (1910).
    411 Graham, Porter, and Weissberger, J. Am. Chem. Soc., 71, 983 (1949).
    412 Michaelis and Dorn, Ann., 352, 163 (1907).
    412 Knorr, Ann., 238, 183 (1887).
    414 Eibner, Ber., 36, 2687 (1903).
    412 Casoni, Boll. sci. fac. chim. ind. Bologna, 9, 4 (1951) [C. A., 45, 7353 (1951)].
```

- 414 Michaelie, Ann., 338, 183 (1903)
- at Crippe. Long. and Perroncito, Gass chim atd . 62, 944 (1935).
- 410 Casons, Bull see for chim and Buloyne, 9, 13 (1931) [C. A. 45, 7353 (1951)]. 110 Hayashi, Oshima, Tsuruoza, and Seo, Repe Japan Assoc. Advance. Sci., 27, 47 (1942)
- (C A . 44 3238 (1950).
 - 440 Kohlbach, Arch Hem Farm . 11, 00 (1927) [C A . 32, 2897 (1930)]
 - 41 Mackie and Cuties, Rec troe chim . 71, 1198 (1932)
 - ** Knorr and Klots, Ber . 20, 2545 (1897)
 - Wittum, Sandey, Herdie, and Scholl, J. Am Chem Soc., 72, 1833 (1930).
 - ** Chattaway and Strouts, J Chem Soc . 125, 2423 (1924)
 - 400 Michaelis and Willert, Ann . \$38, 171 (1908)
 - " Michaelia, Ann . 372, 129 (1910)
 - 407 Michaelia, Ann. 273, 196 (1910)
 - 400 Michaelie and Horn, Ann , 373, 213 (1910) 500 Sharvin, Arbusov, and Varshavskit, J Chem Ind Moscow, S. 1409 (1929) [C. A., 25,
- 501 (1931)!
 - we Casont, Buil ort for them and Bologue, 9, 9 (1951) [C A . 65, 7255 (1951)]. 445 Mollenhoff, Ber . 25, 1941 (1897)
 - 400 Inflo and Khavin, J Gen Chem U.S.S. R., 17, 222 (1947) [C. A., 42, 903 (1948)]
 - as Hayashi, Hagyama, and Seo, Rept Japan Assoc Advance Ses, 17, 253, 257 (1942)
- [C A . 44 3259 (1850)]
 - 44 Darspeky, J prais Chem . (2), 87, 175 (1903).
 - *** Efros and Davidenkov. J. Gen Chem U.S.S. R. 21, 2046 (1951) [C A , 46, 8100 (1952)]
 - 400 Michaelis and Brust, Ann . 339, 134 (1905)
 - 4" Mohr, J prais. Chem . [2], 79, 1 (1909).
 - ** Michaelia and Klopetock, Ann , 254, 102 (1907) ue Michaelis and Schafer, Ann., 397, 119 (1913).
 - 44 Michaelie and Klappert, 4nn., \$97, 149 (1913)
 - 44 Michaelis and Pander, Ber., 27, 2776 (1904).
 - 40 Michaelis and Pander, Ans. 251, 251 (1908). 44 Michaelia, Ber . 38, 154 (1905).
 - *** Michaelis and Behrens, Ann., 338, 228 (1903).
 - 44 Michaelia, Ann. 358, 127 (1907).
 - 44 Michaelis, Ann , 372, 209 (1910).
 - 441 Michaelis and Burmeister, Ber., 25, 1502 (1892).
 - 44 Michaelia and Simon, Ann., 238, 217 (1905).
 - 44 Michaelia and Schenk, Ber, 41, 2863 (1908).
- 44 Asher, Ber . 20, 1018 (1597). 44 Schiff, Ber . 28, 2731 (1895).
- 40 Schiff and Viciani, Ber., 30, 1159 (1897).
- us Clausen and Zedel, Ber., 24, 140 (1891).
- est Posner and Schreiber, Ber., 57, 1127 (1924).
- 644 Khromov and Poral Koshita, J. Gen Chem. U.S.S.R. 17, 1828 (1947) [C A , 42, 4171 (1948)].
- 44 Worrall, J. Am Chem. Soc., 44, 1551 (1822)
- at Finger and Zeh, J prakt. Chem . [2], 82, 50 (1910).
- 44 Curtius and Thompson, Ber., 39, 4140 (1906).
- see Demroth, Ann , 335, 86 (1904). 44 Curtius and Callan, Ber., 43, 2447 (1910)
 - 401 Kuhling, Ber., 31, 1972 (1898)
 - est Whiteley, J. Chem. Soc., 91, 1330 (1907) see Whiteley and Mauntain, Chem News, 89, 234 (1909).
 - 44 Marschalk, J. pratt Chem., [2], 88, 227 [1913]. 44 Friedlander, Monatsh . 30, 347 (1909).
 - on Auwors and Arndt, Ann , 381, 299 (1911).
 - Mr Lesser and Schoeller, Ber , 47, 2292 (1914).

- 468 Stollé, Hecht, and Becker, J. prakt. Chem., [2], 135, 345 (1932).
- 489 Baeyer, Ber., 16, 2188 (1883).
- 470 Gabriel, Ber., 20, 1198 (1887).
- 471 Pulvermacher, Ber., 20, 2492 (1887).
- 472 Meyer and Vittenet, Compt. rend., 192, 885 (1931).
- 473 Meyer and Vittenet, Compt. rend., 193, 344 (1931).
- 474 Dieckmann, Ber., 47, 1428 (1914).
- 475 Huebner and Link, J. Am. Chem. Soc., 67, 99 (1945).
- 475a Wiley and Ellert, J. Am. Chem. Soc., 77, 5187 (1955).
- 478a Waldmann, J. prakt. Chem., [2], 147, 321 (1937).
- 476b Malachowski and Kalinski, Roczniki Chem., 6, 768 (1926) [C. A., 21, 3615 (1927)].
- 478c Malachowski, Giedroyc, and Jerzmanowska, Ber., 61, 2525 (1928).
- 478d Huisgen and Koch, Naturwiss., 41, 16 (1954) [C. A., 49, 5344 (1955)].
- 477 McElvain and Jelinek, J. Am. Chem. Soc., 65, 2236 (1943).
- 478 Prager, Ber., 34, 3600 (1901).
- 479 Prager, Ber., 36, 1451 (1903).
- 480 Hinsberg, J. prakt. Chem., [2], 85, 337 (1912).

CHAPTER 2

THE JAPP-KLINGEMANN REACTION

ROBERT R PRILLIPS Eastman Kodak Company

CONTENTS

PAGE

143

159

159

161

162

166

167

168

170

172

173

173

174

174

175

. 161

. 144

SCOPE AND APPLICATION		151
EXPERIMENTAL CONDITIONS		157
EXPERIMENTAL PROCEDURES		159
Ethyl Pyrmate o Nitrople milhydrazone		159

Table 1. Derivatives of Formy propionic and Haloacetoscetic Acids

1,2 Cyclobexanedione Monopheny lby drazone

Table III. Aculacetonestic Latera

Table IV. Acyley anoacetic Esters

Table VI 1.3 Dicarbonyl Compounds

Table VII. Miscellaneous Compounds

Table X. Malonic Acid Derivatives

Table XI. Miscellaneous Reactions

B. Reactions Accommuned by Decarboxylation

Table 1X. Cyanoacetic Acid Derivatives .

Table VIII. Acetoacetic Acid Derivatives

TABLEAU SCHOOL OF THE JAPP KINDS WAS REACTION

A Reactions in Which an Acyl Group Is Cleaved

Table 11 Monsaubstituted Arctoacetic Esters

Table V Cyclic Commounds in Ring Ovening Reactions

INTRODUCTION

MECHANISM

INTRODUCTION

In an attempt to prepare the azo ester I by coupling benzenediazonium chloride with ethyl 2-methylacetoacetate, Japp and Klingemann¹ obtained a product which was soon recognized¹-⁴ as the phenylhydrazone of ethyl pyruvate (II). It thus appeared that the acetyl group had been dis-

$$\begin{array}{c} \mathrm{CH_{3}COCHCO_{2}C_{2}H_{5}} + \mathrm{C_{6}H_{5}N_{2}}^{+}\mathrm{Cl}^{-} \rightarrow \begin{bmatrix} \mathrm{CO_{2}C_{2}H_{5}} \\ \mathrm{CH_{3}COC}^{-}\mathrm{N} = \mathrm{NC_{6}H_{5}} \\ \mathrm{CH_{3}} \end{bmatrix} \xrightarrow{\mathrm{H_{2}O}} \\ \mathrm{CH_{3}} \\ \mathrm{I} \\ \\ \mathrm{CH_{3}CO_{2}H_{5}} \\ \mathrm{CH_{3}CO_{2}H} + \mathrm{CH_{3}C} = \mathrm{N} - \mathrm{NHC_{6}H_{5}} \\ \mathrm{II} \end{array}$$

placed; actually the coupling product I was unstable under the conditions of its formation, undergoing hydrolytic scission of the acetyl group and rearrangement of the azo structure. A year later the same authors discovered that, if the substituted acetoacetic ester was saponified and the coupling carried out on the sodium salt, the carboxylate function, rather than the acetyl group, was lost and the product isolated was the phenylhydrazone of biacetyl.^{4,5}

$$\begin{array}{c} \mathrm{CH_{3}COCHCO_{2}^{-}} \xrightarrow{\mathrm{C_{6}H_{5}N_{2}^{+}}} \left[\begin{array}{c} \mathrm{CO_{2}^{-}} \\ \mathrm{CH_{3}COC} \\ \mathrm{CH_{3}} \end{array} \right] \xrightarrow{\mathrm{H_{2}O}} \\ \mathrm{CH_{3}} \end{array} \xrightarrow{\mathrm{CH_{3}COC} = \mathrm{NNHC_{6}H_{5}}} \left[\begin{array}{c} \mathrm{H_{2}O} \\ \mathrm{CH_{3}} \end{array} \right] \xrightarrow{\mathrm{CH_{3}COC} = \mathrm{NNHC_{6}H_{5}}} + \mathrm{HCO_{3}^{-}} \end{array}$$

In later years the reaction has been extended to other systems containing activated methinyl groups. The process can be generalized as shown in the following equation, in which x and y are electron-withdrawing groups.

- Japp and Klingemann, Ber., 20, 2942 (1887).
- ² Japp and Klingemann, Ber., 20, 3284 (1887).
- ³ Japp and Klingemann, Ber., 20, 3398 (1887).
- 4 Japp and Klingemann, Ber., 21, 549 (1888).
- ⁵ Japp and Klingemann, Ann., 247, 190 (1888); J. Chem. Soc., 53, 519 (1888).

$$\begin{array}{c} \mathbf{x} & \mathbf{H} \\ \mathbf{C} & + \mathbf{ArN_1}^* + \begin{bmatrix} \mathbf{x} & \mathbf{N=N-Ar} \\ \mathbf{C} & \mathbf{R} \end{bmatrix} \xrightarrow{\mathbf{H},\mathbf{0}} \\ \mathbf{y} & \mathbf{R} & \mathbf{y} \\ \mathbf{0} & \mathbf{H} + \mathbf{x} - \mathbf{C} = \mathbf{N} - \mathbf{N} \\ \mathbf{H} \\ \mathbf{A} & \mathbf{R} \end{array}$$

MECHANISM

As a spparent from the above equations the Japp-Klingemann reaction is a special case of the coupling of diazonium sails with alphatic compounds (see Chapter I), distinguished by the fact that the coupling product ordinarly undergoes solvolysis as rapidly, or almost as rapidly, as it is formed. It resembles very closely the nitrostation and cleavage of active methinyl compounds discussed in an earlier volume of this series. The first step undoubtedly occurs by the same mechanism as the similar coupling with an active methylene compound (for a discussion see p. 9), and is probably best represented as a direct union of the anion of the active methinyl compound and the diazonium cation, which are shown in the accompanying equation as the forms carrying full unit charges on the atoms that unite in the process.

$$C_6H_6N=N\Theta+\Theta:C_9+C_8H_6N=N-C_9-y$$

Much of the early concern¹⁻⁸ about the mechanism of such couplings dealt with the question of the participation of the enolis forms of the active methunyl compounds and with the status of 0-azo compounds as possible intermediates [p. 4]. Although the mechanism just abown is probably an accurate representation of the coupling of mono-β-keto esters, there can be little doubt but that 0-azo compounds are sometimes first formed from di-β-keto setters and triketones. Thus trhenzoyl-methane yields a coupling product that generates an azo dye upon treatment with β-naphthol and undoubtedly is the dernvative of the enol.¹⁰

Touster, in Adams, Organic Reactions, Vol. 7, Chapter 8, John Wiley & Sons, 1953.
 Dimroth and Hartmann, Ber. 41, 4012 (1908)

Dimroth, Ber , 40, 2404 (1907)

Dimroth and Hartmann, Ber., 40, 4460 (1907).
Dimroth, Leichtlin, and Friedemann, Ber., 50, 1834 (1917)

When it is heated to its melting point it changes to an isomer that does not have this property and must be the C-azo compound.

$$\begin{array}{c} C_6H_5 & COC_6H_5 \\ | & | \\ (C_6H_5CO)_2C = C - O - N = N - C_6H_5 \xrightarrow{Heat} (C_6H_5CO)_2 - C - N = N - C_6H_5 \end{array}$$

The cleavage step is closely similar to the scission of triacylmethanes and of nitroso derivatives of monosubstituted active methylene compounds.⁷ The cleavage is favored by increasing alkalinity of the solution; for example the azo compound III can be obtained from the diazonium salt prepared from 2,4-dinitroaniline and ethyl cyclopentanone-2-carboxylate by coupling in acetic acid solution, but it is rapidly cleaved by aqueous base, yielding IV.¹¹ In analogy with the base-catalyzed

$$\begin{array}{c|c} O & NNHC_6H_3(NO_2)_2 \\ \hline & N=NC_6H_3(NO_2)_2 \rightarrow HO_2CCH_2CH_2CH_2CCO_2C_2H_5 \\ \hline & IV \end{array}$$

cleavage of nitroso esters⁶ the second step of the Japp-Klingemann reaction can be represented as shown. In the decomposition of the

¹¹ Linstead and Wang, J. Chem. Soc., 1937, 807.

product obtained by coupling with a salt of a keto acid, the resonating amon which gives rise to the phenylhydrazone probably results from the loss of carbon dioxide from the carboxylate amon.

Support for the above interpretation of the Japp-Klingemann process can be found in the solation of many intermediate zac compounds, ^{1,13}–14 although not all attempts to obtain these intermediates have been successful. ¹² That the coupling with salts of β -keto acids and malonic acids does not proceed by a direct displacement of the carboxyl group is indicated by the observation that malonate salts of the type V react much more slowly than their decarboxylation products VI ¹³ Thus it appears likely that the malonate salt V undergoes decarboxylation before it reacts with the diazonium salt

$$\begin{array}{c|c} CO_1Na \\ -CR \\ CO_2Na \end{array} - \begin{array}{c} CHR \\ CO_2Na \end{array} - \begin{array}{c} R \\ -CHR \\ CO_2Na \end{array}$$

Azo derivatives of cyclohexanone-2-carboxanilide are relatively stable and can be isolated from coupling reactions of the anilide ¹¹ However,

some of the monoarylhydrazone of cyclohexanedione was formed along with the azoanilide, presumably as a result of hydrolysis followed by decarboxylation

The phenylpyrazolone obtained from ethyl cyclohexanone-2-carboxylate couples with diazotized p-nitroaniline to give the unusually interesting azo derivative VII. Although quite unstable, VII does not undergo the

$$N = NC_4 II_4 NO_4$$

$$NC_4 II_4 + p \cdot O_2 NC_4 II_4 N = N$$

$$N(CII_3)_4$$

$$N(CII_5)_4$$

- 11 Favrel, Bull, soc chim France, [4], 47, 1290 (1930).
- Fatrel, Compt rend. 189, 335 (1927)
 Kalb, Schweitzer, Zellner, and Berthold. Ber. 59, 1860 (1926)
- 11 Frank and Phillips, J Am Chem Soc . 71, 2804 (1949)

Bülow and Hailer applied the Japp-Klingemann reaction to the ethyl esters of several diacylacetic acids. 18 From ethyl propionylacetoacetate they isolated the phenylhydrazone corresponding to cleavage of the propionyl group. The product from ethyl benzoylacetoacetate contained the benzoyl group (loss of acetyl) and that from ethyl phenacetylacetoacetate contained the phenacetyl group (loss of acetyl). It was concluded that in such cleavages the acyl group corresponding to the weaker acid is liberated the more readily (the corrected acidity constants, 22 105 Ka, of the acids concerned are: propionic acid, 1.33; acetic acid, 1.75; phenylacetic acid, 4.88; benzoic acid, 6.27). In a study of the cleavage of unsymmetrical 1,3-diketones of the type RCOCH, COR', Hauser, Swamer, and Ringler²³ found a correlation of the relative yields of the acids RCO₂H and R'CO₂H with the rates of saponification of the ethyl esters of these acids, although the relationship did not hold well with purely aliphatic compounds. On this basis the acetyl group would be expected, contrary to observation, to undergo cleavage in either ethyl benzoylacetoacetate or ethyl propionylacetoacetate (the rate constants, 104 k, for the alkaline hydrolysis of the ethyl esters of the acids are:24 $C_6H_5CO_2C_2H_5$, 5.50; $CH_3CH_2CO_2C_2H_5$, 35.5; $CH_3CO_2C_2H_5$, 69.5).

In the cleavage of substituted cyanoacetic esters during the second stage of the Japp-Klingemann reaction, saponification and decarboxylation invariably occur leading to the phenylhydrazones of α -ketonitriles. Apparently no instance of the scission of the nitrile group has been recorded.

Perhaps one reason why more precise information is lacking on the direction of cleavage of azodiketones in the Japp-Klingemann reaction is that the arythydrazones produced in the process usually are capable of existing in geometrically isomeric forms (e.g., X and XI). Both isomers often are produced, and it may be economical to subject the crude

$$\begin{array}{ccc} \text{NNHC}_0\text{H}_5 & \text{C}_6\text{H}_5\text{NHN} \\ \parallel & \parallel \\ \text{RCCO}_2\text{C}_2\text{H}_5 & \text{RCCO}_2\text{C}_2\text{H}_5 \\ \text{X} & \text{XI} \end{array}$$

²² Ingold, Structure and Mechanism in Organic Chemistry, p. 734, Cornell University Press, Ithaca, N. Y., 1953.

²³ Hauser, Swamer, and Ringler, J. Am. Chem. Soc., 70, 4023 (1948).

Hammett, Physical Organic Chemistry, p. 121, McGraw-Hill Book Co., New York, 1940.

material to the next reaction in a sequence, with purification at a later stage, rather than to isolate the pure arylhydrazone. As a result, yields of the arylhydrazones often are not reported

SCOPE AND APPLICATION

The first requirement for the occurrence of the Japp-Klingemann reaction is the presence of a hydrogen atom of sufficient activity to permit the coupling with the diazonium salt. Although normally two or three electron-withdrawing groups, such as carbonyl, carbethoxyl, cyano, etc., are present in the molecule, only one such group is required if other labilizing influences are operative upon the hydrogen atom concerned For example, 9-ethoxalylifuroene reacts in the typical fashion ¹² A

particularly interesting reaction is that of 9-nitrofluorene; so in the coupling with diazotized aniline the displaced nitro group appears in the para position of the phenythydrazine residue of the product.

A methunyl group in the α -position of a pyridine compound also is reactive enough to participate in the Japp-Kingemann process if one additional activating group is present. For example, 2-n-butyrylpyridine has been prepared in good yield from 2-(2'-yp rid-)lpentanose and by the process abovan 1" A somewhat similar reaction is that of 1-ethoxalyl-1,23,4-tetrahydroacridine and the analogous cyclopenteno derivative."

Kuhn and Levy, Ber. 81, 2240 (1928)
 Ponzio, Gazz chem stal., 42, [II], 55 (1912).

[&]quot; Borsche and Manteuffel, Ann., 534, 56 (1936)

$$\begin{array}{c|c} & C_6H_5N_2^+ \\ \hline \\ & COCO_2C_2H_5 \end{array}$$

$$\begin{array}{c|c} & P^{-BrC_6H_4N_2^+} \\ \hline \\ & NNHC_6H_4Br-p \end{array}$$

In contrast with 9-nitrofluorene, α-nitropropionic acid retains the nitro group in the reaction. Decarboxylation takes place to yield the phenylhydrazone, CH₃C(NO₂)=NNHC₆H₅, identical with the product obtained from nitroethane and benzenediazonium chloride.²⁸

Esters of a great variety of monosubstituted acetoacetic acids have been subjected to the reaction. Chlorine and bromine atoms may serve as the third substituent on the methinyl carbon. These halogen atoms are not removed during the reaction but appear in the products, which are phenylhydrazones of unusual structure, as shown in the equation.^{29,30}

$$\begin{array}{c} \text{CH}_3\text{COCHCO}_2\text{C}_2\text{H}_5 \xrightarrow{\text{C}_4\text{H}_4\text{N}_4^+} \text{C}_6\text{H}_5\text{NHN} = \text{CCO}_2\text{C}_2\text{H}_5 \\ | & | & | \\ \text{Cl} & & | \end{array}$$

One exception to the statement that halogen is not removed is the coupling of 3-bromotriacetic lactone (XII), which furnishes the same arylhydrazone XIII as that obtained from triacetic lactone itself.^{30a} Methylene bis(triacetic lactone) (XIV) on coupling also yields the arylhydrazone XIII.

$$\begin{array}{c} OH \\ H_3C \\ O \\ XII \end{array} \longrightarrow \begin{array}{c} OH \\ H_3C \\ O \\ XIII \end{array} \longrightarrow \begin{array}{c} OH \\ H_3C \\ O \\ O \end{array} \longrightarrow \begin{array}{c} OH \\ OH \\ O \\ O \end{array} \longrightarrow \begin{array}{c} CH_2 \\ O \\ O \end{array}$$

Alkyl-substituted acetoacetic esters are more commonly encountered. The products from such esters are readily reduced and hydrolyzed, and

²⁸ Steinkopf and Supan, Ber., 43, 3239 (1910).

²⁹ Favrel, Compt. rend., 134, 1312 (1902).

²⁰ Favrel, Bull. soc. chim. France, [3], 31, 150 (1904).

³⁰a Wiley and Jarboe, J. Am. Chem. Soc., 78, 624 (1956).

this method of synthesis of α -amino acids has been employed extensively. Examples are the syntheses of alanine^{5,31–34} and methionine.³⁵

$$\begin{array}{c} \operatorname{CH_{4}COCHCO_{3}C_{3}H_{4}} \xrightarrow{\operatorname{CLH_{2}C_{3}}} \operatorname{CH_{3}CCO_{3}H_{4}} \xrightarrow{\operatorname{cut}_{1}} \xrightarrow{\operatorname{cut}_{1}} \operatorname{CH_{3}CHCO_{3}H} \\ \operatorname{CH}_{2} & \operatorname{NNHC_{4}H_{4}} & \operatorname{NNH}_{2} & \operatorname{NNH}_{3} \\ \operatorname{CH_{3}CH_{4}CH_{2}CH_{3}C_{4}H_{4}} \xrightarrow{\operatorname{CH}_{3}CH_{4}CH_{4}CCO_{4}C_{4}H_{4}} \xrightarrow{\operatorname{cut}_{1}} \xrightarrow{\operatorname{cut}_{1}} \xrightarrow{\operatorname{cut}_{1}} \xrightarrow{\operatorname{cut}_{1}} \xrightarrow{\operatorname{cut}_{1}} \xrightarrow{\operatorname{cut}_{1}} \operatorname{CH_{3}CH_{4}CH_{4}CHCO_{4}H_{4}} \\ \operatorname{COCH_{4}} & \operatorname{NNHC_{4}H_{4}} & \operatorname{CH_{3}CH_{4}CH_{4}CHCO_{4}H_{4}} \end{array}$$

The phenylhydrazones from the Japp-Klingemann reaction on sumply substituted acetoacetic esters also have been used extensively in the synthesis of indoles. The Fascher cyclization converts them to esters of substituted indole-2-carboxylic acids. The preparation of ethyl 3phenylindole-2-carboxylate is illustrative.³⁴

$$\overset{\mathrm{CH^{1}COCHCO^{1}C^{1}H^{9}}\rightarrow \ C^{9}H^{7}CH^{2}CCO^{1}C^{1}H^{9}}{\underset{\mathrm{NNHC^{9}H^{9}}}{\overset{\mathrm{H}}{\longrightarrow}}} \overset{\mathrm{H}}{\underset{\mathrm{N}}{\longrightarrow}} \overset{\mathrm{H}}{\underset{\mathrm{C}^{9}G^{1}H^{9}}{\overset{\mathrm{C}^{9}G^{1}H^{9}}{\longrightarrow}}}$$

Substituents in the benzene ring of the indole may be introduced through the use of a substituted benzenediazonium salt in the coupling. Diszonium salts for m2 - and 4-substituted anilizes can give only one product in a simple Fischer cyclication, but two different indoles may be obtained from a *m-substituted aniline," and consequently these have been employed infrequently. Examples of the products obtained from 2- and 4-substituted anilines are shown.**

- Feofilaktov, Compt rend acad. sci U.R.S.S., 24, 755 (1939) [C.A., 24, 1971 (1940)].
 Feofilaktov and others, Bull. acad sci. U.R.S.S. Classe sci. chem., 1940, 259 [C.A., 35, 3060 (1941)].
 - Bamberger, Ber, 25, 3847 (1892)
 Feofilaktov and Zaitseva, J. Gen. Chem. U.S.S.R., 10, 258 (1940) [C. A., 34, 7283
- (1940)].
 Feofilaktov and Ivanova, J. Gen Chem. U.S.S.R., 21, 1684 (1951) [C. A., 46, 3955
- (1952)] ** Manake, Perkin, and Robinson, J. Chem. Soc., 1927, 1.
 - Koelsch, J. Org Chem., 8, 295 (1943).
 Hughes, Lions, and Ritchie, J. Proc. Roy Soc. N. S. Wales, 72, 209 (1938) [C. A., 33,
- 6827 (1939)]

 ** Hughes and others, J. Proc. Roy Soc. N S. Wales, 71, 475 (1937) [C. A., 33, 587 (1939)].

If the substituent in the acetoacetic ester has a carbonyl group attached to the first carbon atom, the phenylhydrazone from the Japp-Klingemann reaction will readily cyclize to a pyrazole. Acetonyl 10 and phenacyl 11

groups, which may bear additional substituents, have been employed in this way.

Acyl derivatives of acetoacetic ester also may be employed. The products are monophenylhydrazones of α, β -diketo esters. Thus ethyl benzoylacetoacetate reacts as shown. 18

$$\begin{array}{c} \text{O} \quad \text{NNHC}_{6}\text{H}_{5}\\ \text{C}_{6}\text{H}_{5}\text{COCHCO}_{2}\text{C}_{2}\text{H}_{5} \xrightarrow{\text{C}_{6}\text{H}_{4}\text{N}_{3}^{+}} \text{C}_{6}\text{H}_{5}\text{C} \text{—CCO}_{2}\text{C}_{2}\text{H}_{5}\\ \text{COCH}_{3} \end{array}$$

⁴⁰ Bischler, Ber., 26, 1881 (1893).

⁴¹ Bischler, Ber., 25, 3143 (1892).

Probably because they have been less readily available than acetoacetic escape. I,3-diketones have not been extensively employed in the Japp-Klingemann reaction. Among those which have been examined are α -chloro, 4° α -methyl-4° and α -ethyl-acetylacetone. 4° The products are monophenylhydrazones of I,2-diketones, as illustrated for the methyl derivative The same products are available from the substituted β -ket

$$\begin{array}{c} \text{CH}_2\text{COCHCOCH}_2 \xrightarrow{C_1H_1N_1+} \text{CH}_2\text{COCCH}_3 \\ \vdots \\ \text{CH}_2 \end{array}$$

esters, provided the ester group is saponified before the coupling is performed (p 144). Such monophenylhydrazones have been prepared from several substituted acetoacetic esters.

When the Japp-Klingemann reaction is applied to a cyclic β -keto ester, the ring is opened in the second stage of the process. The reaction of ethyl cyclohexanone-2-carboxylate is illustrative. 11.44 Cyclopentanone

derivatives undergo similar ring opening. The products from both series have been employed in the synthesis of amino acids and indoles. The ring opened may be that of a lactone, as in acctobutyrolactone, which yields the phenylhydrazone of ketobutyrolactone so This product also

has found use in the synthesis of amino acids. 46,47 Alternatively the ring opened may be that of a lactam, as in the elegant synthesis of tryptamine

- Dieckmann and Platz, Ber., 38, 2986 (1905)
 Favrel, Bull soc chim. Franci, [3], 27, 336 (1902), Compt. rend., 132, 41 (1901)
- Feofilables and Ivanes, J. Gen. Chem. U.S.S.R. 13, 457 (1943) [O.A. 28, 2355 (1944)].
 Harradonce and Luons, J. Proc. Roy Soc. N.S. Walts, 72, 221 (1932) [C. A. 33, 6838 (1932)].

Feofilaktov and Omehchenko, J Gen Chem. U.S.S. R., 9, 314 (1939) [C. A., 24, 378 (1940)]
 Snyder, Andreen, Cannon, and Poters, J Am. Chem. Soc., 64, 2082 (1942)

and serotonin (5-hydroxytryptamine) based on the coupling with a salt of α-carboxy-α-valerolactone and a Fischer cyclization of the products.^{47a}

As in the reactions of acyclic β -keto esters, the reaction takes the decarboxylation course if the ester is saponified before the coupling. Thus a monophenylhydrazone of cyclohexane-1,2-dione is obtained from ethyl cyclohexanone-2-carboxylate.¹¹

Such compounds may serve as sources of derivatives of ω -aldehydo acids. When the o-nitrophenylhydrazone obtained from cyclopentanone-2-carboxylic acid was allowed to stand in aqueous alcoholic potassium hydroxide for five days it was converted to the o-nitrophenylhydrazone of δ -formylbutyric acid in about 35% yield.¹¹

Monosubstituted cyanoacetic esters couple readily. When the products are hydrolyzed, decarboxylation ensues leading to hydrazones of α -keto nitriles. Substituted malonic esters yield phenylhydrazones of α -keto acids, identical to those which can be obtained from similarly substituted acetoacetic esters.

The diazonium salts used in the reaction include those derived from aniline and its simple substitution products, polysubstituted anilines, benzidine and substituted benzidines, and even antipyrine. The diazonium salt related to the last substance has been coupled with 3-methylpentane-2,4-dione⁴⁸ to give the hydrazone shown in the equation.

$$H_3C_6N-CO$$
 $CN_2^+Cl^- + CH_3COCHCOCH_3 + H_2O \rightarrow$
 CH_3
 H_3C_6N-CO
 CN_3
 CH_3
 H_3CN-C
 CH_3
 CH_3
 CH_3
 CH_3

⁴⁷⁴ Abramovitch and Shapiro, Chemistry & Industry, 1955, 1255.

[&]quot; Morgan and Reilly, J. Chem. Soc., 103, 808 (1913).

It might be expected that diazonium salts in which electron-withdrawing groups are located in ortho or para positions, so that they accentuate the positive character of the diazonium cation, would be most active in the coupling. In couplings with 2-pyridylacetic acid, diazotized p-aminobenzoic acid gave the best results, and diazotized p-nitroaniline and sulfamilie acid were superior, both with regard to the yield and the purity of the products, to diazotized aniline 15 Although few experiments have been carried out with a single active methinyl compound and a variety of diazonium salts in the Japp-Klingemann reaction under identical conditions, the yields from substituted anilines appear to run higher than those from anilme. It is possible that substituents such as the nitro and carboxyl groups may give rise to higher melting and less soluble products, leading to easier isolation as well as to more complete reaction.

If the arylamino portion of a Japp-Klingemann product is to be removed, as in a reduction to an α-amino acid (pp 152-153), the diazonium salt should be selected not only on the basis of the probable yield in the coupling but also with consideration of the character of the second product in the further reaction. For example, if a diazotized aminobenzoic acid were used in a coupling carried out as part of a sequence to an a-ammo acid, the difficulty of separating this product from the regenerated aminobenzoic acid might outweigh any advantage gained in the coupling.

In the preparation of arvihydrazones to be employed in the synthesis of indoles and pyrazoles the choice of the diazonium salt is dietated by the substituents desired in the final product.

EXPERIMENTAL CONDITIONS

Most of the reactions have been run in aqueous medium at about 0°. Occasionally ethanol has been added to increase the solubility.49 In the coupling of 1-ethoxalyl-1,2,3,4-tetrahydroacridine (p. 151) the medium was pyridine diluted with the water in which the diazonium salt was prepared 27 The aqueous solutions usually are buffered with sodium acetate in reactions in which an acyl group is to be cleaved. 20,50 Stronger bases have been used, however. In the conversion of ethyl cyclopentanone-2-carboxylate to the phenylhydrazone of ethyl hydrogen a-ketoadipate. Manske and Robinson⁵¹ employed potassium hydroxide: for the preparation of the similar product from diazotized m-aminobenzoic scid.

⁴ Luons and Sprison, J. Proc. Roy. Soc. N S. Wales, 68, 171 (1932) [C. A., 27, 291 (1933)]. * Favrel and Chrs. Bull. soc. chim. France, [4], 37, 1238 (1925).

Manake and Robinson, J. Chem Soc., 1927, 240

Koelsch³⁷ preferred to carry out the coupling in acid solution and to convert the azo compound so obtained to the substituted hydrazone by a two-minute treatment with boiling 7% aqueous sodium carbonate. Other couplings also have been found to occur under either acid or basic conditions, ^{8,43,52} and even sodium ethoxide has been used as the base.⁵³

If the cleavage of the acyl group from a β-keto ester is desired, the basic solution of the ester should be treated with the diazonium salt immediately.⁵⁴ If such basic solutions are allowed to stand at 0° for periods up to twenty-four hours before the treatment with the diazonium salt, the ester group is removed and the product obtained is a derivative of a 1,2-diketone.^{11,55,56}

The time required for the Japp-Klingemann process varies, with the activity of the methinyl group, from a few seconds to as much as four days. When aqueous solutions are employed the products often separate, and the mixture can be stirred until no further change occurs. The azo compounds, sometimes encountered as intermediates (p. 147), are much more deeply colored (usually red) than the arylhydrazones. Accordingly, a color change sometimes furnishes a useful guide to the course of the reaction.

Most of the reactions have been run with equivalent amounts of the methinyl component and the diazonium salt. The use of excess diazonium salt may result in the loss of some of the product by conversion to the formazyl, as shown in the equation.^{33,57} This appears to be the only

$$\begin{array}{c} CH_3COC = NNHC_0H_5 \,+\, C_0H_5N_2 + Cl^- \rightarrow \\ \\ CH_3 \\ \\ C_0H_5N = NC = NNHC_0H_5 \,+\, CH_3CO_2H \,+\, HCl \\ \\ \\ CH_3 \end{array}$$

serious side reaction in the Japp-Klingemann process, aside from the alternative cleavage of keto esters (above). Another disadvantage to the use of an excess of the diazonium salt is the formation of colored materials and tars as a result of its decomposition when the reaction mixture is allowed to warm.

The products from the Japp-Klingemann reaction usually have been

⁵² Findlay and Dougherty, J. Org. Chem., 13, 560 (1948).

⁵³ Feofilaktov, J. Gen. Chem. U.S.S.R., 17, 993 (1947) [C. A., 42, 4537 (1948)].

⁵⁴ Jackson and Manske, J. Am. Chem. Soc., 52, 5029 (1930).

⁵³ Manske, Can. J. Research, 4, 591 (1931).

⁵⁶ Lions, J. Proc. Roy. Soc. N. S. Wales, 66, 516 (1932) [C. A., 27, 2954 (1933)].

¹⁷ Walker, J. Chem. Soc., 123, 2775 (1923).

recrystallized from ethanol or benzene; 80% acetic acid has been employed in some instances. 58

EXPERIMENTAL PROCEDURES

Ethyl Pyruvate o-Nitrophenylhydrazone. ** To an ice-cold solution of 20.5 g. (0.14 mole) of ethyl 2-methylacetoacetate m 150 ml. of thanol is added 51 ml of 50% aqueous potassium hydroxide. This mixture is then diluted with 300 ml of ice water, and the cold diazonium salt solution, prepared from 20.0 g. (0.14 roade) de-introamline, 60 ml. of concentrated hydrochloric acid, 90 ml of water, and 10.5 g. of sodium nitrite, is rapidly run in with stirring. Stirring is continued for five manutes, at the end of which time the separated ethyl pyruvate o-introphenylhydrazone is collected by filtration. It melts at 106°, after recrystallization from ethanol The yield is 30.0 g. (83%).

1.2-Cyclohexamedione Monophenylhydrazone.⁴⁸ To an ies-cold solution of 36 of g. (0.21 mole) of sthyl cyclohexanone-2-enboyalte m 60 ml. of ethanol is added an ies-cold solution of 12.0 g. of potassum hydroxade in 60 ml. of water. The reaction mixture is held at 0° for twenty-four hours and then diluted with 1 l. of new water. A benzene-duzzonium chloride solution is prepared from 18 6 g. (0.2 mole) of anline, 50 ml. of concentrated hydrochoric scal in 100 ml. of water, and 13.8 g. of sodium nitrite. The cold diazonium solution is then added to the first solution with vigorous stirring and continued cooling in iee, followed immediately by the addition of 30.0 g of sodium acetate. Carbon dioxide is seen to evolve, and the reaction is allowed to continue at 0° until the gas evolution ceases. The solid product which separates is 1,2-cyclohexanchone monophenylhydrazone. It is collected by filtration and recrystallized from ethanol. It melts at 185–186°. The yield is almost quantitative.

TABULAR SURVEY OF THE JAPP-KLINGEMANN REACTION

The following list of Japp-Klingemann reactions includes many examples in which the products were further modified, so that yields are not available. The hit is based on a literature survey to January 1, 1956, but because of the difficulties of locating scattered instances of the reaction in the literature, especially when the products are chiefly of interest as intermediates in further reactions, it probably does not include interest as intermediates in further reactions, it probably does not include

^{**} Feofilahtov and Vanogradova, Compt send acad ses U.R.S.S., 24, 759 [1939] [C. A., 34, 1871 (1940)]

all recorded applications of the Japp-Klingemann reaction. For convenience the reactions in which an acyl group is cleaved are listed separately (section A) from those accompanied by decarboxylation (section B). Accordingly, some compounds will be found in both sections. Section A is subdivided as follows:

- I. Derivatives of nitropropionic, formylpropionic, and haloacetoacetic acids.
 - II. Monosubstituted acetoacetic esters.
 - III. Acylacetoacetic esters.
 - IV. Acylcyanoacetic esters.
 - V. Cyclic compounds.
 - VI. 1,3-Dicarbonyl compounds.
 - VII. Miscellaneous compounds.

Section B is subdivided as follows:

- VIII. Acetoacetic acid derivatives.
 - IX. Cyanoacetic acid derivatives.
 - X. Malonic acid derivatives.
 - XI. Miscellaneous reactions.

A. Reactions in Which an Acyl Group Is Cleaved

TABLE I

DERIVATIVES OF FORMYLPROPIONIC AND HALOACETOACETIC ACIDS
(The group lost in the cleavage is italic.)

Substituent in

Paritinent III			
Ng+ or	Yield,	n	Conversion Product
Otner Diazonium Ionj	%	References	Product
_	_	16	_
_	_	30	
_	_	59	_
S-CH,		30	_
4-CH,	_	30	
	_	29, 30	_
_•	_	59	_
\$-CH.	_	29.30	_
4-CH.	_	29, 30	_
4-Br*	_	60	_
[Certain benzidine			
derivatives	_	30	_
4-CH,	80	61	-
3-CH ₂ , 4-CH ₃	_	61	_
3-CH, 5-CH,	_	61	_
[a-C, H, N, +]	_	81	_
[\$-C ₁₀ H ₁ N ₁ +]	_		_
	_		_
4-Br			_
4-CH ₃	_	62	_
	N _s * or Other Diazonum Ion) 2-CH _s 4-CH _s	N _s * or Yield, Other Diazonum Ion] % 2-CH _s 4-CH _s	N _s or Yield, Other Diazonum Ion % References 16

Note: References 59-118 are on pp. 177-178.

• These reagents have also been coupled with ethyl α-bromoacetoacetate,

ref. 60. † The (-)-menthyl ester.

t Certain reactions of the ethyl ester are entered under ethyl α-chloroacetoacetate.

TABLE II

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

 \mathbf{R}

TABLE II-Continued

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

R $CH_sCOCHCO_sC_sH_s + A_rN_s+X^- \rightarrow [CH_sCOCCO_sC_sH_s]$ Ŕ N−NAr

Ŕ

NNHAP CH₂CO₂H + RCCO₂C₂H₂

Substituent in Substituent R in CH,COCHCO,C,H, Yield. Conversion (Other Diazonium Ion) % References Product си соси. 40 Pyrazole 4-NO.* 67 Pyrazole C,H,O,CCH,CH, 74 113 2-CH, 88 113 3-CH, 34 113 _ 2-C1 60 113

3.C1 72 113 4.01 81 113 2-CO.H Ωß 113 4-SO.H 95 113 4-NO. 87 113 (a.C.,H,N.) 47 113 33 (β-C, H, N, 113 08 112, 113 Indole NCCH,CH. 4-NO. QR. 113 C.H.O.CCH,CH. 68, 69 Indole 52 2-CI 3-CI 52 52 4-C1 2-CII. Amino acid 2-OCH. 52 Indole 52 3-OC11, _ Indole 52 4-OCH. Indole 15 70 с.и.оси.си,си, Indole Good 71 Indole С.П.О.ССИСИ СИ, NHCO.C.H.

Note: References 59-118 are on pp. 177-178.

* The azo compound was isolated; upon standing or upon treatment with aqueous alkali, followed by acidification, it underwent loss of the acetyl group and cyclization to the pyrazole.

TABLE II-Continued

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

TABLE II-Continued

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

CV CO V L BOSO G V

	ÇI	ISCOSII T I	CCOLCINE
Substituent in N ₃ + or [Other Diazonium Ion]	Yield,	References	Conversio Product
-	70	82	Indole
	50	82	Indole
	_	41	Pyrazole
2-CH.	-	40	Pyrazole
		40	Pyrazole
	_	40	Pyrazole
	[Other Diazonium Ion]	Substituent in N ₂ + or Yield, [Other Diazonium Ion] % 70	Substituent in Na* or Yield, [Other Diazonium Ion] % References

TABLE III

ACYLACETOACETIC ESTERS IN THE REACTION:

18

18

18

Note: References 59-118 are on pp. 177-178.

2-CO₂H

4-O2NC6H4†

C6H5CH2CO†

^{*} Reaction course b.

[†] Reaction course a.

TABLE IV

ACYLCYANOACETIC ESTERS IN THE REACTION:

CO.C.H.

$$\begin{array}{c} \text{RCOCHCO}_2\text{C}_2\text{H}_5 \,+\, \text{ArN}_2\text{+X}^- \rightarrow [\text{RCOC}_{\text{\tiny C}}^{\downarrow} - \text{N} = \text{N} - \text{Ar}] \xrightarrow{\text{H}_2\text{O}} \\ \downarrow \\ \text{CN} & \downarrow \\ \text{CN} \end{array}$$

R in Ester

RCO₂H + C=NNHC₆H₅

Refer- Conversion

ences

Product

[Other Diazonium Ion] %

Substituent in

[+N₈] - 20 - (CH₃)₁CHCH₄ - 20, 21 -

TABLE V

CYCLIC COMPOUNDS IN RING-OPENING REACTIONS*

Substituent in

Note: References 59-118 are on pp. 177-178.

See p. 155.

† The bond broken in the ring opening is indicated by the dotted line.

TABLE V-Continued

CYCLIC COMPOUNDS IN RING-OPENING REACTIONS®

Substituent in

	2-NO ₂		38	indo
	4-NO.	_	11	_
	3-OCH, 4-OCH,	90	49	Indo
CH ₃				
CH CO	_	89	89, 116	_
H*CCCH*				
CHCO ₂ C ₂ H ₄				
ĊH				

Note: References 59-118 are on pp. 177-178.
* See p. 155.

† The bond broken in the ring opening is indicated by the dotted line.

§ Methyl cyclohexanone-2-carboxylate was also coupled.

TABLE VI

1,3-DICARBONYL COMPOUNDS (The group that is lost is italic.)

Substituent in

	Substituent in			
Carbonyl Compound	N_2^+ or [Other Diazonium Ion]	Yield, %	Refer-	Con- version Product
CH₃COCHCOCH₃ Cl		69	42 90	
$\begin{array}{c} \mathrm{CH_3COCH}COCO_2C_2II_5 \\ \mid \\ \mathrm{Cl} \end{array}$	_		91	
$\mathrm{CH_3COCH}{COCH_3}$	pringue	_	43	_
1	2-CH ₃		43	_
CH_3	4-CH ₃		43	
	$4-NO_2$		13	_
	$[{}^{+}N_{2}]$ $N_{2}^{+}]$	_	43	
	$[^+\mathrm{N}_2 \overbrace{\mathrm{CH}_3}^{} - \overbrace{\mathrm{CH}_3}^{} \mathrm{N}_2{}^+]$	_	43	
	H_5C_6N — CO CN_2^+ H_3CN — C		48	-
	$\acute{\mathrm{CH}}_{3}$			
CH3COCHCOCH3			43	
OH CH	2-CH ₃	*****	43	
$\mathrm{CH_2CH_3}$	4-CH ₃		43 13	_

Note: References 59-118 are on pp. 177-178.

4-NO2

4-CI

4-Br

13

13

13

43

TABLE VI-Continued 1,3-DICARBONYL COMPOUNDS

(The group that is lost is italic.)

	Substituent in			
	N ₁ + or	***		Con-
		rield,	Refer-	version
Carbonyl Compound	[Other Diazonium Ion]	%	ences	Product
CII,COCHCOCH,	_	00	113	
1		(as acid		
CH2CH2CO2C2H2	2-CH ₃	72	113	_
		(as acid		
	3-CH ₂	85	113	_
		(as acid)		
	4-CH ₃	81	113	_
		(as acid)		
	4-NO.	(as acid)	113	_
			92, 93	
с.н.сосн <i>сно</i>	4-Br	_	8	_
1	4-NO.		8	
Ċ₅H₅	4-10		0	
CH ₄				
in.				
°C				
си снено	_		94	_
н,соси,				
си _ \о́о				
CH				
- 0				
CHCOCH,	_	_	19	_
ale L				
~ Y				
Ö				
_				
0				
CHCOC,H,	_	_	19	_
~ 1				
Ö				
_				
H,C CHCOC,H,	_	_	19	_
CHCOC.H.			10	_
~~				
å				
	155 150			
Note: References 59-118	re on pp. 117-178.			

TABLE VII
MISCELLANEOUS COMPOUNDS

Substituent in

Starting Material $Coco_2c_2H_5$	N_2^+ $*$ 4-OCH_3^* 4-Br^*	Yield, % — — —	References 27 27 27	Conversion Product
NO ₂	—†		26	
$\mathrm{COCO_2C_2H_5}$	‡ 4-NO ₂ ‡		95 25	_
COCH ³		90-96	45, 46, 47	Amino acid
CICH ₂ COCH ₃		83	96, 97	Amino acid
CH ₂ —CO	_		98	

- * The reaction was run in pyridine solution.
- † The nitro group eliminated from the 9 position of fluorene apparently attacked the coupling product, since the *p-nitro*-phenylhydrazone of fluorenone was isolated.
 - ‡ The ethoxalyl group was eliminated.

B. Reactions Accompanied by Decarboxylation

TABLE VIII

AC	ETOACETIC ACID D	ERIVATIV	158	
R m RCHCO ₂ H COCH ₂	Substituent in	Yield, %	References	Conversion Product
СН,	_	Quant.	4, 5, 33	
C.H.	_	_	4, 5	
KO CCH CH.	_	80	99	_
C.H.CH.	_	86	36	Indole
	3-NO.	80	36	_
	2-OCH, 5-OCH,	80	36	_
	3-OCH, 4-OCH,	Quant.	49	_
C.H.COCH,		-	40	Pyrazole
°C ₄ H ₄ CNCH ₂ CH ₂ CH ₂ CH ₂ CH ₃	 3-OCH ₃ 3-CI	86 85	36 36 36	Indole Indole —

TABLE IX

CYANOACETIC ACID DERIVATIVES

${f R}$ in	Substituent in			
RCHCO ₂ H				
1	/ \\N ₂ +	Yield,		Conversion
Ċ≡N		%	References	Product
CH ₃			100, 101	
	2-CH ₃	25	100, 101	
	4-CH ₃	28	100, 101	
C_2H_5	_	31	100, 101	
	2-CH_3	25	100, 101	_
	4-CH ₃	15	100, 101, 102	
	4-Cl	Quant.	102	
C_6H_5	_		102	
$C_6H_5CH_2$	_	30	58, 103	Amino acid
	****	Quant.	102	
	4-CH_3	25	102	
	$4-NO_2$		102	_

Note: References 59-118 are on pp. 177-178.

TABLE X

MALONIC ACID DERIVATIVES

	Substituent in			
R in RCH(CO ₂ H) ₂	$\boxed{\hspace{1cm}} N_2{}^+$	Yield, %	References	Conversion Product
Cl	_	_	59	
	$2\text{-CO}_2\text{CH}_3$	_	59	
CH ₃	_	_	104, 105	
	4-CH_3		104, 105	_
C_2H_5		_	104, 105	_
	2-CH_3		104, 105	
$\mathrm{HO_{2}CCH_{2}CH_{2}}$	_	49	113	
$C_6H_5CH_2$			58, 103	Amino acid
		_	80	Azoformaldoxime

TABLE XI

	MISCELLANEOUS REACTIONS				
	Substituent in				
Starting Material	[Other Diazonium	Yield,	References	Conversion Product	
CH ₂ CHCO ₂ H NO ₂	_	-	28		
CH ₁ CO CH ₂ CH ₂ CH ₃ CH	 2-NO ₂ 4-NO ₃	Quant. — —	11, 56, 106 11 11	Indole — —	
CH ₂ CO CHCONHC ₆ U ₆	2-NO ₂ * 4-NO ₂ *	=	11 11	Ξ	
CH ₁ CO CHCO ₁ H	$\begin{array}{c}$	Quant. Quant. — — Quant.	11, 56 56 11 56 56	Indole Indole Indole Indole Indole	
CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₄ CH ₄ CH ₅		-	107	_	
N CO CHCH,	$_{4}\text{-CO}_{4}\text{C}_{2}\Pi_{6}$	89	108	_	

Note: References 59-118 are on pp. 177-178. • The azo compound was isolated also

the product was α-C₂H₄NNHCOCH(CH₂)=NNHC₄H₄CO₂C₂H₂-(p)

TABLE XI—Continued MISCELLANEOUS REACTIONS

Note: References 59-118 are on pp. 177-178. ‡ The product was 2-n-butyrylpyridine.

REFERENCES FOR TABLES I-XI

- 49 Fusco and Romani, Gazz chim stal , 78, 419 (1946); 78, 342 (1948). 44 Bowack and Lapworth, J. Chem. Soc , 87, 1854 (1905).
- 41 Balow and King, Ann , 439, 211 (1924).
- 41 Lapworth, J. Chem. Soc., 83, 1114 (1903).
- ** Rydon and Siddappa, J Chem. Soc , 1951, 2462
- 44 Hegedus, Helv Chim. Acta, 29, 1499 (1945). 46 Feofilaktov and Zaitseva, J. Gen. Chem. U.S.S. R., 13, 358 (1943) [C. A., 38, 1211
- (1944)) 44 Feofilaktov and Zastseva, J. Gen. Chem. U.S.S.R., 10, 1391 (1940) [C. A., 35, 3606

(1941)) 47 Eastman and Detert. J. Am Chem Soc , 70, 962 (1948)

- Tanaka, J Pharm Soc. Japan, 60, 74 (1940) [C. A., 34, 3735 (1940)]. " King and L'Ecuyer, J Chem. Soc , 1934, 1901.
- 10 Manake, Can J. Research, 4, 591 (1931)
- 71 Pheninger, Ber . 83, 268 (1950).
- Feofilaktov and Blanko. J. Gen. Chem. U.S.S.R., 11, 859 (1941) [C. A., 36, 4096 (1942)]. Feofilaktov, J Gen Chem U.S.S.R., 10, 247 (1940) [C A, 34, 7283 (1940)]
- 14 Bulow and Schlesinger, Ber , 32, 2880 (1899).
- 16 Balow, Ber , 33, 3266 (1900).
- 74 Stolz, Ber., 33, 262 (1900). 77 Bulow and Schleunger, Ber., 33, 3352 (1900).
- 10 Bolow and Baur, Ber., 58, 1926 (1925)
- Feofilaktov and Vinogradova, J Gen. Chem U.S.S.R., 10, 253 (1940) [C A., 34, 7283 (1940)].
 - ** Walker, J. Chem. Soc , 127, 1880 (1925).
- 41 Feofilaktov, Zaitseva, and Surotkina, J. Gen Chem. U.S.S. R., 12, 362 (1943) [C. A., 38, 1211 (1944)1.

 - ** Sempronj, Gazz chim. stal , 68, 263 (1938). ** Rabischong, Bull. soc. chim. France, [3], 31, 91 (1904)
 - 4 Schroeter, Ber , 49, 2697 (1916).
 - 48 Kalb, Schweizer, and Schimpf, Ber., 59, 1858 (1926)
 - 16 Barrett, Perkin, and Robinson, J. Chem. Soc., 1929, 2942.
- " Feofilaktov, Bull good ecs. U R.S.S. Classe ses, chim., 1941, 521 [C A., 37, 2347 (1943))

" Wieland, Garbech, and Chavan, Ann , 461, 295 (1928). M Feofilaktov, J Gen. Chem. U.S.S.R., 21, 362 (1951) [C. A., 45, 7551 (1951)]

- ** Neber and Worner, Ann. 528, 173 (1236)
- " Favrel and Chrz, Bull, soc chem France, [4], 41, 1603 (1927).
- Michiganus and Ruthing, Ann., 379, 229 (1911).
- " Roy and Sen, J Indian Chem. Soc., 10, 347 (1933).
- M Bishop, Clausen, and Sinclair, Ann , 281, 314 (1894).
- ** Wishcenus and Densch, Ber., 35, 759 (1902).
- * Feofilaktov and Onishchenko, Compt. rend. scod. sci. U.B.S.S., 20, 133 (1938) [C. A., 33, 1725 (1939)1.
 - ** Feofilaktov and Onubchenko, J. Gen Chem. U.S.S. R., 9, 331 (1939) IC. A., 34, 379
 - 14 Wolff, Ann., 312, 119 (1900). " Cleme and Welch, J. Chem Sec , 1928, 2621.
 - 100 Favrel, Compt. rend., 132, 983 (1901).
 - 101 Fayrel, Bull. soc chim. France, [3], 27, 193 (1902) ses Walker, J. Chem Soc , 125, 1622 (1924)
- 146 Feofilaktov and Vinogradova, Compt rend acad ses. U.R.S.S., 24, 759 (1939) [C A . 34, 1971 (1940)]. J Gen Chem U.S.S.R., 10, 260 (1940) [C. A., 34, 7283 (1940)].
 - 104 Favrel, Compt. rend , 132, 1336 (1901).

- 105 Favrel, Bull. soc. chim. France, [3], 27, 324 (1902).
- 106 Dieckmann, Ann., 317, 27 (1901).
- 107 Betti, Ber., 32, 1995 (1899).
- 108 Snyder and Robison, J. Am. Chem. Soc., 74, 4910 (1952).
- 109 Feofilaktov and Onishchenko, J. Gen. Chem. U.S.S.R., 9, 325 (1939) [C. A., 34, 379 (1940)].
 - 110 Friedlander, Monatsh., 30, 347 (1909).
- 111 Feofilaktov and Semenova, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenii, Sbornik, 2, 74 (1952) [C. A., 48, 592 (1954)].
- 112 Feofilaktov and Semenova, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenil, Sbornik, 2, 63 (1952) [C. A., 48, 666 (1954)].
 - 113 Feofilaktov and Semenova, Zhur. Obschel Khim., 23, 450 (1953) [C. A., 48, 4443 (1954)].
- ¹¹⁴ Feofilaktov, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenil, Sbornik, 2, 103 (1952) [C. A., 48, 666 (1954)].
 - 115 Polaczkowa and Porowska, Przemsyl Chem., 6, 340 (1950) [C. A., 46, 3039 (1952)].
 - 116 Feofilaktov, J. Gen. Chem. U.S.S.R., 21, 399 (1951) [C. A., 46, 2014 (1952)].
- 117 Feofilaktov and Ivanova, J. Gen. Chem. U.S.S.R., 21, 1851 (1951) [C. A., 47, 2698 (1953)].
- ¹¹⁸ Feofilaktov and Semenova, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenii, Sbornik, 2, 98 (1952) [C. A., 48, 608 (1954)].

CHAPTER 3

THE MICHAEL REACTION*

ERNST D. BERGMANN
Scientific Department, Ministry of Defence,
Tel-Aum

DAVID GINSBURG

Chemistry Department, Israel Institute of Technology, Hasfa

RAPHAEL PAPPO

Department of Organic Chemistry, Hebrew University, Jerusalem

CONTENTS

Introduction						PAGE 182
MECHANISMS OF THE PROCESSES INVOLVED IN THE MICHAE	R	EAG	71	ON		184
The Normal Reaction						184
The Nature of the Amon of the Adduct						185
A Competitive Side Reaction						187
The Reverse or Retrograde Reaction						187
The "Abnormal" Michael Condensation						191
The Question of Para Bridged Intermediates						197
Stereochemistry of the Michael Condensation					٠	199
COPE AND LIMITATIONS						203
Donors				. ,		203
Reactions with Cyclopropane Derivatives						205
The System C=C-C=N						207
Acceptors						
α,β-Ethylenic Aldehydes (Table I)						209
At 1 a Pake leave Votones (Table 11)						

	INGS
α, β -Acetylenic Ketones	. 213
Aromatic α,β-Ethylenic Ketones (Tables III, IV)	216
Heterocyclic α,β. Ethylenic Ketones (Tables V, VI)	219
Cycloalkenones and Acyl Cycloalkenes (Table VII)	
Robinson's Modification of the Michael Condensation (Table VIII)	
p-Quinones and Derivatives (Table IX)	
Acrylonitrile, Other α,β-Ethylenic Nitriles, and Their Amides (Tables X	,
XI, and XIA)	. 229
α,β-Ethylenic Aliphatic Esters (Tables XII, XIII, XIV)	234
Alicyclic and Aromatic α, β-Ethylenic Esters (Tables XV and XVI)	
Unsaturated Keto Esters (Table XVII)	. 238
Aromatic α, β -Acetylenic Esters (Table XVIII)	
Olefins with Substituents Based on Hetero Atoms (N, S, P; Tables XIX	
XX, XXI)	
2- and 4-Vinylpyridines (Table XXI)	
Fulvenes	
Systems That Did Not Undergo Condensation	245
SYNTHETIC APPLICATIONS	, 248
Synthesis of Cyclic Systems	. 248
Cyclopropane Rings	248
Cyclobutane Rings	248
Cyclopentane Rings	248
Cyclohexane and Condensed Alicyclic Ring Systems	249
Aromatic Ring Systems	254
Oxygen-Containing Rings	256
Piperidines and Pyridines	258
Pyrroles	261
Demoligiding and Deleted Ding States	
Pyrrolizidines and Related Ring Systems	263
Synthesis of Amino Acids	203
77	001
EXPERIMENTAL CONDITIONS	. 264
Solvents	264
Catalysts	
Temperature	
Tomperature	, 200
Expansion Programme	. 267
Experimental Procedures	, 201
γ -Acetamido- γ -carbethoxy- γ -cyanobutyraldehyde	. 267
5-Nitro-4,4-dimethylpentan-2-one	267
7-Keto-1-methoxy-13-methyl-5,6,7,9,10,13-hexahydrophenanthrene	267
trans-3-Keto-2-phenylcyclohexaneacetic Acid	268
Methyl 3-Keto-2-phenylcyclohexyl-α-nitroacetate	268
Triethyl α-Acetyltricarballylate	268
Diethyl 6-Keto-4-methyl-2-heptene-1,5-dicarboxylate	269
Havesthyl 3. Butene, 1 1 2 2 3 4. havesselves 144	269
Hexaethyl 3-Butene-1,1,2,2,3,4-hexacarboxylate	269
Diethyl αβ-Diphenylglutarate	269
Dimethyl (α-Phenyl-β-nitroethyl)malonate	209
Ethyl α-Benzoyl-γ-(2-pyridyl)butyrate	, 270

THE MICHAEL REACTION

181

PAGE

Table I. Michael Condensations with α,β-Ethylenic Aldehydes	. 270
Table II. Michael Condensations with Aliphatic α,β-Ethylenic Ketones	. 278
Table III. Michael Condensations with Aromatic α, β-Ethylenic Ketones	. 296
Table IV. Michael Condensations with Ethylenic Ketones of the Dibenzyl	
idene- and Dicinnamylidene-Acetone Type	322
Table V. Michael Condensations with Unsaturated Ketones Contaming	
Heterocyclic Rings	
Table VI. Michael Condensations with 3-Acylconmarins and Related	
Compounds	331
Table VII. Michael Condensations with Cycloalkenones and Acyl Cyclo-	
alkenes	336
Table VIII. Robinson's Modification of the Michael Condensation with	
a.S. Ethylenia Katanas	362
Table IX. Michael Condensations with Quinones and Their Derivatives .	400
Table Y. Muchael Condemnations with Acrylonitrile	415
Table XI. Michael Condensations with Unsaturated Nitriles Other than	
Acrelous-1-	442
Table VI . M. 1. 1. C 1	447
Table VII Minter Condensations with Aliphatic a,p-Ethyleine Acid	450
	450
scetate Death of Dahammathylenemalonate, and Diethyl Indian	478
methylenemalonate	480
Table XIV. Michael Condensations with Aliphatic Dienic and Trienic Esters	484
	489
Table XVI. Michael Condensations with Aromatic α,β-Ethylenic Esters Table XVI.4 Intramolecular Michael Condensations of Aromatic α,β-	
Table XVIA Intramolecular Dienael Condensation Ethylenic Esters	502
	504
Table XVII Michael Condensations with a \$\textit{B}\$-Acetylenic Esters Table XVIII. Michael Condensations with a \$\textit{B}\$-Ethylenic Nitro Compounds	519
Table XVIII. Michael Condensations with α,β-Ethylenic Nitro Compounds Table XIX. Michael Condensations with α,β-Ethylenic Sulfones	523
Table XIX. Michael Condensations with α, β-Ethylenic Sulfenes	535
Table XX. Michael Condensations with 2. and 4-Vmylpyridine, with Table XXI. Michael Condensations with 2 and 4-Vmylpyridine, with	
Table XXI. Michael Condensations with Diethyl Vinylphosphonate Analogs of 2-Vinylpyridine, and with Diethyl Vinylphosphonate	537
Analogs of 2-Vinylpyridine, and with Diethyl 1 Applications Table XXII Donors Used in Michael Condensations	542
ASOR AAII DOROGS COOK	

INTRODUCTION

The Michael condensation in its original scope¹⁻²¹ is the addition of an addend or donor (A) containing an α-hydrogen atom in the system O—C—CH to a carbon-carbon double bond that forms part of a conjugated system of the general formulation C—C—C in an acceptor (B).

The condensation takes place under the influence of alkaline reagents, typically alkali metal alkoxides.

The range of addends is very broad. Generally speaking, all structures O=C-CH in which the hydrogen is active by the Zerewitinoff test will serve as donors in the Michael condensation. In addition, many compounds that do not meet this test of hydrogen activity, such as acetophenone, are effective Michael reactants.

Typical acceptors are α, β -unsaturated aldehydes, ketones, and acid derivatives.

By extension of the original scope, the Michael condensation has come to be understood to include addends and acceptors activated by groups other than carbonyl and carbalkoxyl. The wider scope is encompassed

```
<sup>1</sup> Michael, J. prakt. Chem., [2], 35, 349 (1887).
```

- ² Michael, Am. Chem. J., 9, 115 (1887).
- ³ Michael, J. prakt. Chem., [2], 49, 20 (1894).
- 4 Michael, Ber., 27, 2126 (1894).
- ⁵ Michael, Ber., 33, 3731 (1900).
- ⁶ Michael and Schulthess, J. prakt. Chem., [2], 45, 55 (1892).
- ⁷ von Auwers, Ber., 24, 307 (1891).
- * von Auwers, Koebner, and v. Meyenburg, Ber., 24, 2887 (1891).
- ⁹ von Auwers, Ber., 26, 364 (1893).
- 10 von Auwers and Jacob, Ber., 27, 1115 (1894).
- 11 von Auwers, Ber., 28, 1130 (1895).
- 12 Knoevenagel, Ann., 281, 25 (1894), especially p. 33.
- ¹² Knoevenagel, Ann., 281, 25 (1894), especially p. 53.
- ¹⁴ Knoevenagel, Ann., 289, 131 (1896), especially p. 170.
- 15 Knoevenagel, Ann., 297, 185 (1897).
- 16 Merling, Ber., 38, 979 (1905).
- 17 Knoevenagel and Schwartz, Ber., 39, 3441 (1906).
- 18 Knoevenagel and Mottek, Ber., 37, 4464 (1904).
- 19 Knoevenagel and Speyer, Ber., 35, 395 (1902).
- 20 Connor and McClellan, J. Org. Chem., 3, 570 (1938).
- ²¹ H. Henecka, Chemie der Beta-Dicarbonyl-Verbindungen, Berlin-Goettingen-Heidelberg, 1950.

by this survey, which therefore includes as donors nitriles, nitro compounds, sulfones, and certain hydrocarbons such as cyclopentadiene, indene, and fluorene that contain sufficiently reactive hydrogen atoms. It also includes as acceptor molecules a vniylasifonium compound⁴² and certain hydrocarbons of permanent polar character (finite dipole moment) such as fulvenes. Another hydrocarbon acceptor is the conjugated tetraacetylenic compound which, adds detribly acclomalionate as shown ⁵²⁸

$$\begin{array}{c} \mathrm{CH_3C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} = \mathrm{C} + + + \mathrm{CH_3(CO_3C_3H_3)_2} \rightarrow \\ \mathrm{CH_4C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} + = \mathrm{C}(\mathrm{CH_3)\mathrm{CH_3(CO_3C_3H_3)_2}} \end{array}$$

The relatively few Michael condensations in which acetylenic aldehydes, ketones, and esters serve as acceptors are also considered

The interesting examples of activation of an ethylenic double bond by a neighboring autionium group provided by the observation. That vunyldimethylsulfonium bromide adds methyl acetoacetate and diethyl following equation,

$$(CII_3)_2$$
S— CH = CH_2 + $CII_2COCH_2CO_1C_1H_3$ \rightarrow $(CII_3)_2SCH_2CH_1CH(COCH_3)CO_2C_1H_3$

are good illustrations of the mechanism of the Michael reaction, as set out in the following section.

Unsaturated cyclic quaternary ammonium salts can also act as acceptors in the presence of bases. A recent example is furnished by the 2,7,10-trumethylacridinium halides which react with diethyl malonate in the presence of sodium ethoxide as shown in the accompanying equation.²⁸

Doering and Schreiber, J. Am. Chem. Soc., 77, 514 (1955).
 Bohlmann, Inhoffen, and Politt, Ann., 604, 207 (1957)

¹⁰ Dimensils and Croper, Chen. Ber. 90, 2207 (1937). Other examples are given by Krochike and Hong, Chen. Ber. 90, 2215 (1937). Krochike and Vogt, Are, 900, 211 (1936), and Chem. Ber. 90, 2217 (1937). These restrictors of unstanted qu'yin quarantesq yammicum pseudo bases with ethyl isoctascetias and with antroparaflus. Exercises of unstantesq yammicum pseudo bases with ethyl isoctascetias and with antroparaflus. Exercises of the property
MECHANISMS OF THE PROCESSES INVOLVED IN THE MICHAEL REACTION

The Normal Reaction

From the nature of the alkaline reagents that cause the Michael condensation to occur, it is logical to suppose that they act by removing the α -hydrogen atom from the donor as a proton. The residual anion is

presumably to be viewed as a hybrid of the enolate ion form and the carbanion form, as depicted here, though the subsequent condensation is most readily visualized as involving the carbanion.

The condensation proper occurs when a new bond is formed between the electron-rich carbon of this ion and the most electron-poor carbon of the conjugated system in the acceptor, namely, the β -carbon atom. Where the acceptor has (as shown) carbonyl activation of the α,β double bond, the carbanion product C is a resonance hybrid. It is noteworthy that ability of acceptors to serve in the Michael condensation is enhanced by polarizing substituents (R^{III}, R^{IV}, R^V) that stabilize the ions C.

The proton that converts the ionized product (C) into the keto form isolated (D) may come from another donor molecule. This interpretation accounts for the fact that much less than the equivalent amount of basic reagent often suffices to bring about the condensation. Where a full equivalent of base is employed, the proton is supplied by neutralization of the reaction system.

The over-all reaction has, then, the effect of 1,4 addition of the donor (in fragments O=C-C- and -H) to the conjugated system of the acceptor.

The foregoing description obviously does not apply to those condensations, included as Michael reactions in the larger sense, in which the acceptor is an unsaturated hydrocarbon of permanent polar character. Here the product C must be formulated exclusively as a carbanion, and the over-all reaction has the appearance of 1,2 addition of the donor RH (as R— and —H) to the polarized double bond.

The Nature of the Anion of the Adduct

Where R^{II} is hydrogen, the carbanion C may undergo a proton shift. It must be supposed that the anion readily assumes the form C if this

is more stable than C, as may be the case if the substituent R^I makes the proton of the group R^ICH more highly acide than that of R^ICH

Although on durect isolation the same product is obtained from C and from C, the reactions carried out on the anion may disclose when the change has taken place, as in the following example. The bleshed product from ethyl cyanoacetate and ethyl methacrylate (with a full equivalent of base) can be methylated in alcoholic solution with methyl indide. Upon hydrolysis and decarboxylation, x,x-dimethylglutare

acid (IV) is obtained. This must be derived from III, and the anion is then better represented as II than I, which would be the primary result of the addition outlined in the foregoing.

$$\begin{array}{c} -\ominus \mathrm{CH}(\mathrm{CN})\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5 + \mathrm{CH}_2 \!\!=\!\! \mathrm{C}(\mathrm{CH}_3)\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5 \to \mathrm{CH}(\mathrm{CN})\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Many similar observations of this rearrangement, which is not in itself part of the Michael reaction, have been made in the course of efforts to establish Michael mechanisms.²⁴

From one particular example, it appears that the rearrangement may be impeded in non-hydroxylic solvents. 25,26 Ethyl phenylpropiolate (V) with diethyl sodiomalonate in *inert solvents* gives a yellow sodium salt and in *ethanol solution* a colorless isomer. The formulas VI (before rearrangement) and VII (after rearrangement), respectively, have been assigned to these salts. Diethyl sodiomethylmalonate in benzene also gives a yellow compound VIII with ethyl phenylpropiolate, but no colorless isomer; this is attributed to the lack of an α -hydrogen atom in VIII that would permit shift to the form analogous to VII. It should

be noted that the structures indicated for VI and VIII do not fully explain their yellow color.

²⁴ Ingold and Powell, J. Chem. Soc., 119, 1976 (1921).

²⁵ Gidvani and Kon, J. Chem. Soc., 1932, 2443.

²⁶ Gidvani, Kon, and Wright, J. Chem. Soc., 1932, 1027.

A Competitive Side Reaction

Compounds of the type formulated above as acceptors tend to undergo addition reactions with amons in general, eg, with alkorido amons, which are frequently used as catalysts in the Michael reaction. In such cases, the catalyst competes with the donor for the acceptor molecule.

Although this possibility should always be borne in mind, it seems that only acceptors in which $\mathbb{R}^{11} = \mathbb{R}^{10} = \mathbb{H}$ (acrylates, acrylonitrile) add alkoxide anions availy enough to interfere with the Mishael reaction. It is preferable with these acceptors to carry out the condensation without solvent or in non-hydroxyle media.*

The Reverse or Retrograde Reaction

The Michael reaction is a reversible process adducts D can be split into precursors A and B by the same catalysts that effect the condensation ²⁸ A tendency toward such retrogression can be combatted to a degree by using an excess of one of the reactants, this appears to be a case of mass action affecting an equilibrium. Although few quantitative data are available on the position of the equilibrium, it appears that low temperature favors condensation and elevated temperature retrogressions. ²⁸ Furthermore, retrogression is more likely to occur when the condensation is alow; one of the factors causing alow condensation is the presence of a large number of substituents (R¹⁰¹, R¹⁰¹, R¹⁰) at the a.g. double bond of the acceptor molecule (see p. 247). These two effects are exemplified in

Koelsch, J. Am Chem Soc, 85, 437 (1943).

Grob and Baumann, Helv. Chim. Acta, 38, 594 (1955)
 Dornow and Boberg, Ann., 578, 101 (1952)

the following table in which the yields of condensation product obtained possibly represent the equilibria attained.

Reaction between Diethyl	Yield of Adduct at	
Malonate and	100°	25°
Ethyl crotonate	65	?
Ethyl cinnamate	35	?
Ethyl β,β -dimethylacrylate	30	70
Ethyl α, β, β -trimethylacrylate	Trace?	?

Whenever at least one of the substituents R^I and R^{II} in the donor is hydrogen, the general formulation of the condensation product acquires

the symmetry of a 1,5-diketopentane with hydrogen atoms in the 2 and 4 positions. With such a structure, retrogression can occur to give fragments different from the starting materials. In this process, the bond broken is the one that was originally α,β in the acceptor; the remainder of this end of the molecule is then isolated as a fragment having O=C-CH ("donor") structure. At the same time, the original donor reappears with C=C-C=O ("acceptor") structure. The combination of condensation and retrogression in such cases has the net effect of transferring an alkylidene substituent from the α -carbon of the original acceptor to the α -carbon of the original donor. Thus, the Michael condensation between phenylacetone and α -nitrostilbene gives, inter alia, 3,4-diphenyl-3-buten-2-one (IX),²⁹ and the condensation of isopropyl

$$p-\text{CH}_3\text{OC}_6\text{H}_4\text{CH} = \text{C(CO}_2\text{C}_2\text{H}_5)_2 \xrightarrow{\text{Hydrolysis}} p-\text{CH}_3\text{OC}_6\text{H}_4\text{CH} = \text{CHCO}_2\text{H}$$

p-methoxybenzylidenemethyl ketone with diethyl malonate, when carried out in ethanol as solvent, gives p-methoxycinnamic acid.³⁰ (See equations at top of p. 189.)

Cleavage formally identical with this can occur in molecules of suitable structure, even though they were not formed by a Michael reaction. The

³⁰ Vorlaender and Knoetzsch, Ann., 294, 317 (1897), especially p. 334.

$$C_6H_5CH_2OOCH_3$$
 + C_6H_5CH = $C(NO_2)C_6H_5$ — $C_6H_5CHCH(C_6H_5)$ - $CH(NO_2)C_6H_5$ — $COCH_3$ — C_6H_5C = CH_5CH_5 + $CH_5(NO_2)C_6H_5$ — $CCCH_3$

following examples from the chemistry of natural products illustrate cleavages that may be designated retrograde Michael seactions in a formal sense

1 Dimethyl carvophyllenate (X) is converted by successive treatments with sodium amide in xylene at 130° and with dilute hydrochloric acid into 4.4-dimethyl-2-cyclohexenone (XI) 21

$$(\operatorname{CH}_1)_2 \qquad \operatorname{CH}_2 \circ \operatorname{CH}_3 \qquad \operatorname{CH}_2 \circ \operatorname{CH}_2 \circ \operatorname{CH}_3 \circ \operatorname{CH}_4 \circ$$

 Dimethyl α-tanacetonedicarboxylate (XII) is analogously converted into tanacetophorone (XIII).22

$$(CH^2)^2CH \qquad (CH^2)^2CH$$

$$CO^2CH^2$$

$$(CH^2)^2CH \qquad CH^2CO^2CH^2$$

$$CH^2CO^2CH^2 \qquad CH^2CO^2CH^2$$

st Eachenmoser and Puerst, Experientia, 7, 290 (1951) ## Wallach, Ann. 388, 49 (1912).

3. The conversion of santoric acid (XIV) into santoronic acid (heptane-2,3,6-tricarboxylic acid, XV) has been formulated as follows.³³

4. The phenyl ketone XVII, obtained from 4-cholesten-3-one (XVI), is converted (in its intramolecular aldol form) by heating with alkali at 200-240° to XVIII and vinyl phenyl ketone, which decomposes further into formaldehyde and acetophenone.³⁴

- 5. Pyrolysis of the keto aldehyde XIX gives XX and 2-dodecenal. 35,36
- 6. Similarly, XXI is converted to 2-methylcyclohexanone and XXII.³⁷
- Woodward, Brutschy, and Baer, J. Am. Chem. Soc., 70, 4216 (1948).
- ²⁴ Julia, Eschenmoser, Heusser, and Tarköy, Helv. Chim. Acta, 38, 1885 (1953).
- 22 Achtermann, Hoppe-Seyler's Z. physiol. Chem., 225, 141 (1934).
- M. Laucht, Hoppe-Seyler's Z. physiol. Chem., 237, 236 (1935).
- 27 Cornforth, Hunter, and Popják, Biochem. J., 54, 599 (1953).

Other retrogressions of this type may take place by heating or under base catalysis 38-47

The "Abnormal" Michael Condensation

When the Michael condensation product from ethyl \$.\$.dimethylacrylate and ethyl a-cyanopropionate is methylated (with sodium ethoxide and methyl iodide), the product upon hydrolysis and partial decarboxylation is a.a', B.B-tetramethylglutaric acid (XXVI) 23 This carbon skeleton shows that the methylation product before hydrolysis is XXV. In turn, XXV probably can only arise by methylation of XXIV, where the hydrogen atom replaced is doubly activated (enolizable), because it is generally assumed that (singly activated) a-hydrogen atoms like those in XXIII (the alternative possible precursor of XXV) cannot be methylated

- 34 Hill, J Chem Soc . 1928, 256.
- 16 Leonard, Simon, and Felley, J. Am Chem. Soc , 73, 857 (1951)
- 40 Vorlsender, Ber , 33, 3185 (1900). 41 Vorlander and Koethner, Ann , 345, 158 (1908)
- 42 Meerwein, Ber , 53, 1829 (1920)
 - 4 Smith and Engelhardt, J Amer Chem Soc , 71, 2678 (1949)
 - " Cornelson and Kostanecks, Ber , 29, 240 (1898)
 - 44 Kostanecki and Rossbach, Ber., 29, 1488 (1896).
 - " Meerwein, J prakt, Chem . [2], 97, 225 (1918)
- P Arigoni, Viterbo, Duennenberger, Jeger, and Ruzieka, Hele Chim Acto, 37, 2306 (1954).

by sodium ethoxide plus methyl iodide.* (Hydrolysis of the primary adduct gives α,β,β -trimethylglutaric acid,⁴⁹ which does not permit differentiation between XXIII and XXIV.) The initial condensation product must therefore be not the expected ("normal") XXIII but the ester XXIV, which is formally the result of adding the donor molecule as the fragments CH_3 — and $-CH(CN)CO_2C_2H_5$. This is called the "abnormal" Michael reaction; in this and similar cases studied by

Thorpe and co-workers, the products formed were attributed to literal addition of a methyl group as one portion of the donor. "Abnormal" addition of diethyl methylmalonate involves the apparent adding of the fragments C₂H₅OCO— and —CH(CH₂)CO₂C₃H₅.

In some systems, it is observed that the course of the reaction can be varied at will by the amount of condensing agent employed. For example, 50 diethyl malonate and ethyl crotonate give the normal adduct, triethyl 2-methylpropane-1,1,3-tricarboxylate (XXVII), which, having an enolizable hydrogen atom, can be methylated to triethyl 3-methylbutane-2,2,4-tricarboxylate (XXVIII). The adduct XXVIII is also obtained from ethyl crotonate and diethyl methylmalonate in the presence of one-sixth equivalent of sodium ethoxide. If a full equivalent of the condensing agent is employed, however, an isomer of XXVIII is formed; this must have the "abnormal" structure XXIX, for it contains an

There are occasional observations to the contrary.

⁴⁵ Schlenk, Hillemann, and Rodloff, Ann., 487, 135 (1931).

⁴¹ Cf. Michael and Ross, J. Am. Chem. Soc., 53, 1150 (1931).

³⁰ Michael and Ross, J. Am. Chem. Soc., 52, 4598 (1930).

enolizable hydrogen atom and can be methylated by sodium ethoxide and methyl iodude to yield XXX 'Furthermore, the isomer XXIX can be obtained by the Bichael condensation of ethyl tuglate and diethyl malonate, though this synthesis provides vahid evidence only if the condensation takes the "normal" course. In contrast to the behavior of

CH2C(CO2C2H2)2 CH2CHCH(CH3)CO2C2H2

XXIX, when XXVIII is treated again with sodium ethoxide and subsequently methyl iodide, retrogression takes place to ethyl crotonate and duethyl methylmalonate, the latter being further methylated to diethyl dimethylmalonate

The most widely accepted explanation for the "abnormal" reaction is that of Holden and Lapnorth'. The primary product of the Michael condensation always has the normal formula (e.g., XXVIII from ethyl crotonate and diethyl methylmalonate), however, it is stable only when small quantities of catalyst are employed. In the presence of larger quantities of catalyst, a Duckmann condensation is assumed to occur (XXVIII.—XXXI). This cyclization may be facultated by the presence of a relatively large number of substituents, which could cause a change

in the valence angles, as proposed by Ingold in other cases.^{52,53} The cyclobutanone derivative XXXI in turn is also unstable, particularly as a consequence of the β -keto ester structure; accordingly, it is alcoholyzed to XXIX, which is the product actually obtained.

$$\begin{array}{c} \text{CH}_3\text{CHCH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{C}(\text{CO}_2\text{C}_2\text{H}_5)_2 \\ \text{XXVIII} \\ \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3\text{CH}-\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CO}_2\text{C}_2\text{H}_5 \\ \text{CO}_2\text{C}_2\text{H}_5 \\ \text{XXXI} \\ \end{array} \xrightarrow{\text{CH}_3\text{CH}-\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CO}_2\text{C}_2\text{H}_5 \\ \text{CO}_2\text{C}_2\text{H}_5 \\ \text{XXXI} \\ \end{array} \xrightarrow{\text{XXXI}} \begin{array}{c} \text{CH}_3\text{CHCH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{C}_3\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{C}_3\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{C}_3\text$$

A variation of the Holden-Lapworth mechanism proposed later⁵⁴ is based on the assumption that the intermediary product is not a cyclobutanone derivative but the anion of a hemiacetal. This yields, for the reaction of ethyl crotonate with diethyl methylmalonate, the following reaction sequence.

It was emphasized that the C—C linkage connecting the hemiacetal carbon with the CHCO₂R group is "highly polarized" (symbolized \$\display\$), but the significance of this statement is not clear. An analogous mechanism was suggested for the abnormal Michael reaction between diethyl methylmalonate and ethyl tetrolate.

A possible means of distinguishing between the mechanisms of Thorpe and of Holden and Lapworth should be to use an acyl group in the acceptor in place of the carbalkoxy group, i.e., to use an unsaturated ketone rather than an ester. However, an attempt to make the distinction in this way was confounded by instability of the condensation

¹² Ingold, J. Chem. Soc., 119, 305 (1921).

¹³ Ingold, J. Chem. Soc., 119, 951 (1921).

¹⁴ Heneeka, Fortschr. chem. Forsch., 1, 685 (1950).

product. Benzylideneacstophenone and diethyl methylmalonate should give XXXII according to Thorpe, and XXXIII according to Holden and Lapworth In fact, neither of the two compounds was obtained, but instead a mixture of retrogression products, ethyl a-methylcinnamate and ethyl benzylacetate. These appear to be compatible only with

 $C_1H_1CH == C(CH_2)CO_1C_2H_4$

CaHaCOCH2CO2C2Ha

formula XXXIII, as indicated in the reaction scheme, because if XXXII were formed it would decompose into diethyl benzylidenemalonate and propiophenone.*

Additional evidence on mechanism was sought, with only limited success, by investigations of the condensation of diethyl benzylmalonate with diethyl fumariae, and of diethyl benzylmalonate with trans-tilbenzoyl-ethylene and a-chlorodhenzoylethylene, of diethyl methylmalonate with ethyl eyfoloxene-1-carboxylate and ethyl a-ethylerotonate, and of duethyl ethylmalonate with ethyl tights. Though no direct proof was obtained, this work tended to support the Holden-Lapuworth view ****

An effort by Michael and Ross** to invalidate this conclusion, on the basis that the observed retrogression products could be denied from an adduct of two molecules of busyladenessorhomone and one imbedied of dight) muchly inflorate (see p. 308), foundered on their nability to prepare such a product from dight) muchly finalenate, in spite of its ready repearation from dight) malonate.

⁴ Michael and Ross, J. Am. Chem Soc. 55, 1632 (1933).

^{**} Duff and Ingold, J. Chem. Soc., 1934, 87.

^{**} Gardner and Rydon, J. Chem. Soc., 1938, 45.

^{**} Gardner and Rydon, J. Chem. Soc., 1938, 48.
** Gardner and Rydon, J. Chem. Soc., 1938, 42.

Gardner and Rydon, J. Chem. Soc., 1938, 42.
 Cf. Ingold and Rydon, J. Chem. Soc., 1935, 657.

Attention has recently been called⁶² to the fact that higher yields of "abnormal" Michael products are often obtained from the usual starting materials than by subjecting the "normal" product (synthesized independently) to Michael reaction conditions. This appears to mean that the "normal" product is not necessarily an intermediate in the "abnormal" reaction. Consideration of the experimental results obtained in the condensation of ethyl crotonate and diethyl methylmalonate led to the following suggested pathway of reaction:⁶³ The full equivalent of base required for the abnormal reaction permits the assumption of initial bond formation between the reactants by a kind of Claisen condensation involving an anion (XXXIV) formed from the base and the acceptor.

$$C_{2}H_{5}O \ominus + CH_{3}CH = CHCO_{2}C_{2}H_{5} \leftrightarrows CH_{3}CHCHCO_{2}C_{2}H_{5}$$

$$OC_{2}H_{5}$$

$$XXXIV$$

$$OC_{2}H_{5} OC_{2}H_{5}$$

$$XXXIV + CH_{3}CH(CO_{2}C_{2}H_{5})_{2} \leftrightarrows CH_{3}CHCH - CCH(CH_{3})CO_{2}C_{2}H_{5} \xrightarrow{-C_{2}H_{5}O^{\ominus}}$$

$$CO_{2}C_{2}H_{5}$$

$$CH_{3}CHCHCOCH(CH_{3})CO_{2}C_{2}H_{5}$$

$$CH_{3}CHCHCOCH(CH_{3})CO_{2}C_{2}H_{5}$$

$$CO_{2}C_{2}H_{5}$$

$$XXXV$$

Base-catalyzed loss of ethanol from intermediate XXXV would give the ester XXXVI. This ester may undergo an intramolecular Michael reaction with formation of the cyclobutanone intermediate XXXI postulated by Holden and Lapworth. Alternatively, it was suggested⁶³ that the cyclic intermediate may not have significant independent existence, but that the ester XXXVI can change directly to the observed abnormal product XXXVII by concerted alcoholysis and addition (see equations on p. 197).

A recent kinetic study⁸⁴ of the abnormal reaction between diethyl fumarate and diethyl ethylmalonate showed that the donor anion and diethyl fumarate combine rapidly to form the anion of the normal product

⁴² P. R. Shafer, Ph. D. Thesis, University of Wisconsin, 1951.

⁴³ Shafer, Loeb, and Johnson, J. Am. Chem. Soc., 75, 5963 (1953).

⁴⁴ Tsuruta, Yasuhara, and Furukawa, J. Org. Chem., 18, 1246 (1953).

(distinguished from the abnormal product by specific gravity measurements). Isomerization of this amon to that of the abnormal product was observed to follow as a slow step. If was also observed that excess free diethyl ethylmalonate suppressed the ahnormal reaction even when sodium ethoxide equivalent to the diethyl fumarate was present. This led to the deduction that the first-formed amon can be stabilized by the abstraction of hydrogen ion from free diethyl ethylmalonate in a fast reaction competitive with the isomerization.

$$\begin{array}{ccc} \text{XXXV} & \xrightarrow{-c_2 H_4 \text{OH}} & \text{CH}_2 \text{CH} = \text{C}(\text{CO}_2 C_2 H_3) \text{CO} \xrightarrow{:} \text{CH}(\text{CH}_2) \text{CO}_2 C_2 H_5 & \longrightarrow \\ & \text{XXXV} & \\ \end{array}$$

CH₃CHCH(CO₂C₂H₅)₂
CH₂CHCO₂C₂H₅
CH₃
XXXVII

Definitive evidence that the "almormal" reaction myolves migration of a carboxyl group (in some form or other) has at last been obtained by isotopic tracer experiments. When ethyl cotonate containing C⁰ in the carbethoxyl group was condensed with diethyl methylmalonate, the product was found to result from migration of the labeled carbon atom ⁴o. Eurichment of earbethoxyl groups with O³⁶ in ethyl erotonate, ethyl cinnamate, and diethyl methylmalonate provided further evidence that the condensation of either of the first two with the last (using one equivalent of base as catalyst to favor "abnormal" reaction) proceeds by carbethoxyl imagration. ⁴⁴⁻⁴⁸

With this evidence in hand, it can be firmly concluded that the Holden-Lapworth mechanism is basically correct, though the modifications suggested by Johnson⁶² provide the most plausible view of the detailed reaction course

The Question of Para-Bridged Intermediates

The condensation of 3-methyl-2-cyclohexenone (XXXVIII) and diethyl malonate presents features that have been rationalized***. In a fashion

⁴⁶ Simamura, Inamoto, and Suchiro, Bull Chem Soc Japan, 27, 221 (1934) {C.A. 49, 1995 (1935)}
48 Simamura, J. Chem. Soc., 1955, 1039

er Samuel and Ginsburg, J. Chem. Soc., 1955, 1255 of Cf. Baker and Rothstein, Chemistry & Industry, 1955, 776

Farmer and Ross, J Chem Soc. 127, 2335 (1925)

consistent with and tending to support the Holden-Lapworth eyelo-butanone intermediate. Carried out at room temperature and with one equivalent of sodium ethoxide, the reaction leads to only one identified product, the diethyl ester XXXIX. At the temperature of boiling ethanol, this compound is accompanied by a product of ethanolysis, the open-chain triethyl ester XL.

In this condensation, the "abnormal" position in which the carbethoxy portion of the donor molecule appears is para rather than ortho on the alicyclic ring. By way of explanation, it has been postulated that the primary product would be XLI, from the normal condensation; this was believed to be converted by a Dieckmann reaction into the bicyclic diketone XLII. Ethanolysis of the diketone in the manner indicated by the broken line was believed to lead to XXXIX.

This mechanism was advanced as a parallel to the Holden-Lapworth formulation, but with a cyclohexanone rather than a cyclobutanone intermediate because formation of a para bridge where possible (as in this instance) is more favorable than the alternative XLIII.

However, the suggestion has recently been mades⁴⁴ that a para-bridged intermediate may not be formed in such instance. Instead the expected product of the abnormal Michael reaction, XLIV, may be first produced, and this may undergo ethanolysis (reverse Dickmann) to give the open-chain tricker XXIV, which then cycliege (in a known reaction) to XXXIV.

In any case, it has been shown that the normal adduct XLI is not the precursor of XXXIX, since the latter is produced in higher yield from 3-methyl-2-cyclohexenous and diethyl malonate than from XLI ** It is suggested,*** as in the case mentioned above, that the first step is an exter condensation, either at position 0 (which would myolve subsequent para bridging) or more probably at position 2 via the amon XLVI

$$\bigcap_{i=1}^{CH_1} \cdots \bigcap_{i=1}^{CH_1} cocH_i co_i c_i H_i \quad \text{or} \quad \bigcap_{i=1}^{CH_1} cocH_i co_i c_i H_i$$

This explanation is based on a parallel with the mechanism for the reaction of 3-methyl-2-cyclohexenone with ethyl cyanoacetate, which was outlined on the basis of detailed evidence as involving the following succession of intermediates.

$$\begin{array}{c} \operatorname{CH}_{1} \\ \leftarrow \operatorname{CH}_{2} \\ \subset \operatorname{O}_{1} \subset \operatorname{H}_{1} \\ \subset \operatorname{O}_{1} \subset \operatorname{H}_{2} \\ \subset \operatorname{H}_{1} \\ \subset \operatorname{CH}_{2} \\ \subset \operatorname{CH}_{2} \\ \subset \operatorname{H}_{3} \\ \subset \operatorname{CH}_{4} \\ \subset \operatorname{CH}_{5} \\ \subset \operatorname{CH}$$

Stereochemistry of the Michael Condensation

Little is known about the stenc course of the Michael condensation, although the formation of asymmetric carbon atoms in open-chain products and the possibility of circletons isonerism in alteyche adducts raise a number of stereochemical problems. The formation of diasteromeric adducts has often been noted, e.g., with the following reactants: benzylideneacetone and dimethyl malonate;⁷¹ benzylideneacetophenone and benzyl cyanide,⁷² diethyl succinate,⁷³ and p-tolyl benzyl sulfone;⁷⁴ α-benzylidenepropiophenone and dimethyl malonate;^{75,76} ethyl cinnamate and diethyl methylmalonate;^{50,77} ethyl β-isopropylacrylate and ethyl cyanoacetate;⁷⁸ ethyl cinnamate and ethyl cyanoacetate;^{79,80} ethyl phenylacetate,^{81,82} or benzyl cyanide;^{27,83,84} cinnamonitrile and m-aminobenzyl cyanide;²⁷ 2-nitro-2-butene and benzyl cyanide,⁸⁵ 2-nitro-1-phenyl-1-propene and diethyl malonate;⁸⁶ α-nitrostilbene and diethyl malonate;⁸⁶ and 3-cyano-1,2,5,6-tetrahydropyridine and diethyl malonate.⁸⁷

In the condensation of ethylideneacetone with 7-chloro-4,6-dimethoxycoumaran-3-one, two possible isomers are formed simultaneously;⁸⁸ a similar result was obtained in the condensation with the chlorine-free analog. The reaction between 4-methylcyclohexanone and methyl isopropenyl ketone also leads to two stereoisomeric forms of 3,6-dimethyl-9-hydroxy-2-decalone.⁸⁹

The reaction pairs benzylideneacetophenone-benzyl cyanide⁷² and α -benzylidenepropiophenone-dimethyl malonate^{75,76} represent two different ways in which asymmetric carbon atoms can be formed as a result of a Michael condensation. In the adduct XLVII the α - and β -carbon atoms of the acceptor become asymmetric; in the adduct XLVIII the β -carbon atom of the acceptor and the carbon atom of the donor molecule that is linked to the acceptor become the centers of asymmetry. In view of the undoubted ability of the alkaline condensing agent to invert configuration around carbon atoms substituted as in —CH(CH₃)COC₆H₅

```
Qudrat-I-Khuda, J. Indian Chem. Soc., 8, 215 (1931) [C.A., 26, 123 (1932)].
72 Kohler and Allen, J. Am. Chem. Soc., 46, 1522 (1924).
<sup>72</sup> Stobbe, Ann., 314, 111 (1901).
<sup>74</sup> Connor, Fleming, and Clayton, J. Am. Chem. Soc., 58, 1386 (1936).
<sup>15</sup> Kohler, Am. Chem. J., 46, 474 (1911).
<sup>76</sup> Kohler and Davis, J. Am. Chem. Soc., 41, 992 (1919).
<sup>17</sup> Michael and Ross, J. Am. Chem. Soc., 53, 1150 (1931).
78 Howles, Thorpe, and Udall, J. Chem. Soc., 77, 942 (1900).
19 Carter and Lawrence, Proc. Chem. Soc., 16, 178 (1900).
80 Avery and McGrew, J. Am. Chem. Soc., 57, 208 (1935).
<sup>81</sup> Badger, Campbell, and Cook, J. Chem. Soc., 1949, 1084.
82 Borsche, Ber., 42, 4496 (1909).
43 Avery, J. Am. Chem. Soc., 50, 2512 (1928).
44 Avery and McDole, J. Am. Chem. Soc., 30, 1423 (1908).
85 Buckley, Hunt, and Lowe, J. Chem. Soc., 1947, 1504.
<sup>86</sup> Boberg and Schultze, Chem. Ber., 88, 74 (1955).
```

⁸⁷ Wohl and Losanitsch, Ber., 40, 4698 (1907).

MacMillan, Mulholland, Dawkins, and Ward, J. Chem. Soc., 1954, 429.
 Colonge, Dreux, and Kehlstadt, Compt. rend., 238, 693 (1954).

and —CH(CN)C₄H₃, the product is plated must be an equilibrium maxture of all possible forms. The isolation of diasterconicrides from product maxtures is then evidence that the forms involved are approximately equal energetically.

Both cis and trans forms arise in the condensation of 1-introcyclohexene with p-bromobenzyl cyanide to XLIX, 25 whereas only one isomer (L) is formed from cis-2-hydrindylideneacetomitrile and cyanoacetamide 26

One unsaturated Michael addict LI appears in cis and trans isomeric forms; this is the product of the reaction between acetylacetone and 2 moles of 1-evanobutadene. ⁹¹

When only one adduct is formed, the determination of its configuration is usually difficult due to the lack of reference compounds of established configuration. However, it has been proved that the dicyclic compounds formed from acyl-or carballoxy-cyclohexenes frequently, if not generally, have the trans configuration. This applies to the following cases ethyl cyclopentencearboxylate with eithyl cyanoacetate or dethyl malonate

^{**} Kandish, J Chem Soc., 1931, 922.

et Charlish, Davies, and Rose, J Chem Soc , 1948, 232

(trans only);⁹² acetylcyclohexene and ethyl acetoacetate (trans only);⁹³ acetylcyclohexene and diethyl malonate (cis and trans);^{94–96} 2-methyl-1-butyrylcyclohexene and diethyl malonate (trans only);⁹⁶ 2,6-dimethyl-butyrylcyclohexene and diethyl malonate (trans only);⁹⁶ vinyl cyclohexenyl ketone and diethyl malonate (trans only);¹⁰⁰ 4-methoxy- and 3,4-methylchedioxy-benzalacetophenone and 3-methylcyclohexanone (cis and trans);¹⁰⁰² methyl isopropenyl ketone and 3- and 4-methylcyclohexanone (cis and trans);¹⁰¹ and (÷)-dihydrocarvone and 1-diethylamino-3-pentanone methiodide (cis and trans).¹⁰²

Isomers have also been formed in the self-condensation of 1-acetyl-1-cyclohexene ^{97,98} and in the condensation of 1-acetyl-1-cyclohexene with 1-tetralone. ⁹⁹

In the total synthesis of santonin, 103 use was made of the fact that the Michael condensation of diethyl methylmalonate and 1,10-dimethyl-2-oxo-2,3,4,5,6,10-hexahydronaphthalene introduces the side chain so that

it is cis to the methyl group at C_{10} .¹⁰¹ An analogous observation has been made for 3,5-cholestadien-7-one.

Cis addition is observed in the addition of diethyl malonate, diethyl methylmalonate, and ethyl acetoacetate to methyl bicyclo[2,2,1]hepta-2,5-diene-2-carboxylate^{104a} and in the addition of diethyl malonate to ethyl 1-cyclohexene-1-carboxylate.^{104b}

A tendency for trans addition is evident in the Michael condensation of 2-aryl-2-cyclohexen-1-ones. Here it has been shown with diethyl malonate that a trans compound is obtained, for the product could be related to the known trans-2-phenyley-clohexylacetic acid (LII) 18-184

$$H_{i}C_{i}\bigcap_{C_{i}H_{i}}C_{i}H_{i})_{i} \qquad CH_{i}C_{i}H_{i}$$

It has further been demonstrated that the addition of dibenzyl malonate to 4-phenyl-0.5-phenyl-2-cyclobexenoneion and of methyl nitroacetate to 2-phenyl-2-cyclobexenone takes the same steric course.¹⁰⁸

SCOPE AND LIMITATIONS

Donors

All of the donor molecules appearing in Tables I-XXI are collected in Table XXII. In the slanest complete absence of kinetic studies of the Michael condensation, an exact comparison of the compounds acting as donors in the condensation is impossible. However, in some cases in which the donor contains two active hydrogen atoms, the efficacy of the

¹⁰¹ Bachmann and Fornefeld, J Am Chem Soc , 72, 5529 (1950)

¹⁰⁰ Gineburg and Pappo, J. Chem Soc., 1951, 938.

¹⁴⁷ Bergmann and Szmuszkovicz, J. Am. Chem Soc . 75, 3226 (1953)

¹⁴⁴ Ginsburg and Pappo, J. Chem. Soc., 1953, 1524

activating groups can be compared directly. For example, two carbethoxy groups activate hydrogen more than one carbethoxy¹⁹⁹ or one aldehyde group,¹¹⁰ but one carbonyl group is more effective than one carbethoxy group.¹¹¹ The groups $CH(CH_3)$ and $CH(C_6H_5)$ have greater activating power than a methylene group,^{112–115} and a nitro group is a more powerful activator than a carbethoxy¹¹⁶ or an alkylsulfonyl group.¹¹⁷ It also appears to be generally true that unsaturated ketones are more reactive than nitriles and nitriles more than esters, and that α,β -unsaturated sulfones are least reactive.^{118–122} The behavior of methyl β -cyanocthyl ketone in Michael additions¹²³ confirmed the stronger activating influence of a carbonyl group as opposed to a nitrile group. Recent work¹²⁴ has shown that the phosphonate group — $PO(OR)_2$ also activates hydrogen atoms on the adjoining carbon atom. Like the nitro and sulfoxide functions, it also activates neighboring double bonds to act as acceptors (see Table XXI).

Though one would expect the reactivity of a donor to be related to the degree of enolization in the reaction environment, no simple relationship was found between reactivity and the tendency of the donor to enolize in the pure state. Likewise, the reactivity of a methylene or methine group toward a Grignard reagent (Zerewitinoff test) does not appear to parallel its activity as a donor in the Michael reaction. 126

Generally speaking, one would expect that the degree to which the Michael reaction takes place, as well as its rate, should be importantly influenced by the acidity of the donor and the polarity of the carbon-carbon double bond in the acceptor. As to the former, the acidity of the

hydrogen atom in the group RCH decreases in the following sequence:

```
100 Friedmann, J. prakt. Chem., [2], 146, 79 (1936).
110 Moe, Warner, and Buckley, J. Am. Chem. Soc., 73, 1002 (1951).
111 Hill, Am. Chem. J., 24, 1 (1900).
112 Bachmann and Wick, J. Am. Chem. Soc., 72, 3388 (1950).
113 Bockelheide, J. Am. Chem. Soc., 69, 790 (1947).
114 Frank and Pierle, J. Am. Chem. Soc., 73, 724 (1951).
115 Wilds, Ralls, Wildman, and McCaleb, J. Am. Chem. Soc., 72, 5794 (1950).
118 Leonard, Felley, and Nicolaides, J. Am. Chem. Soc., 74, 1700 (1952).
Buckley, Elliott, Hunt, and Lowe, J. Chem. Soc., 1947, 1505.
116 Truce and Wellisch, J. Am. Chem. Soc., 74, 2881 (1952).
119 Henecka, Chem. Ber., 81, 197 (1948).
120 Henecka, Chem. Ber., 82, 41 (1949).
121 Henecka, Chem. Ber., 82, 104 (1949).
122 Henecka, Chem. Ber., 82, 112 (1949).
123 Chem. Werke Huels, Ger. pat. 811,231 [C.A., 47, 11234 (1953)].
124 Pudovik and Lebedeva, Zhur. Obshchei Khim., 22, 2128 (1952) [C.A., 48, 564 1954]].
```

Connor and Andrews, J. Am. Chem. Soc., 56, 2713 (1934).
 McAlpine and Ongley, Anal. Chem., 27, 55 (1955).

 $R = NO_4 > SO_4 R > CN > CO_4 R > CHO > COR.^{127}$ As to the latter, the electromeric effects of the activating groups which produce polarity in the double bond dimmish in the sequence $CHO > COB > COR > COR = COR = NO_4$. Through possession of appropriate combinations of these groups, certain substances, e.g., β -diketones, β -keto esters or ethyl β -animoreotomate, can act either as donors or acceptors

Donors	Acceptors
сп,со <u>сп,</u> сосн,	OH (Il ¹ C=CHCOCH ²
си³со си ³со³с⁴п³	OII CII²C=CHCO²C¹H²
сн ¹ сбП¹со¹с¹н²	СН³С≕СИСО³С³Н°

Reactions with Cyclopropane Derivatives

A few cyclopropane derivatives have been observed to participate in the Michael condensation. In the reaction of ethyl 1-zyanocyclopropane-learnboylate (LHI) with both ethyl quanocyctate¹²² and diethyl malonate,¹³² ring session occurs.¹³²⁻¹³³ The intermediates LIV and LV cyclize to the conesponding cyclopentanosumide derivatives LIV and LVII, subsequent elimination of the cyano and the second carbethosy group, respectively, leads to desthyl cyclopentanose.^{2,5}-desarboyylate (LVIII). In the analogous reaction between diethyl malonate and diethyl cyclopropane.1.1-denotylate, the same cyclopentanome derivative, LVIII, formed via tetraethyl butane-1,1,4,4-tetracathoxylate can be isolated.^{130,131} The similarity between a double bond and the cyclopropane ring illustrated by this reaction is supported by other

ur Arndt, Scholz, and Frobel, Ane , 521, 111 (1936)

¹⁸ Thorps, J Chem Soc., 95, 1901 (1909)
11 Mitchell and Thorps, J. Chem. Soc., 97, 997 (1910)

¹¹⁰ Bone and Perkin, Jr , J Chem Soc , 67, 108 (1895)

¹⁰ Cf Fittig and Rooder, Ann. 227, 13 (1885) 10 Cf Best and Thorpe, J Chem. Soc. 95, 697, 699 (1909).

Radulescu, Ber., 44, 1018 (1911)
 Kierstead, Linstead, and Wesdon, J. Chem. Soc., 1952, 3616.

evidence,^{135–144} particularly by the recent experiments showing that the enolate of diethyl malonate undergoes a Michael reaction with diethyl 2-vinyleyelopropane-1,1-dicarboxylate (LIX);¹³⁴ this partly follows the

135 Cf. Klotz, J. Am. Chem. Soc., 66, 88 (1944); Roberts and Green, ibid., 68, 214 (1946);

- 136 Kierstead, Linstead, and Weedon, J. Chem. Soc., 1952, 3610.
- 137 Marielle, Peterson, and Ferris, J. Am. Chem. Soc., 70, 1494 (1948).
- 138 Smith and Rogier, J. Am. Chem. Soc., 73, 3831 (1951).
- 139 Smith and Rogier, J. Am. Chem. Soc., 73, 3840 (1951).
- 140 Mariella and Raube, J. Org. Chem., 18, 282 (1953).
- 141 Greenfield, Friedel, and Orchin, J. Am. Chem. Soc., 76, 1258 (1954).
- 142 Perold, J. S. African Chem. Inst., 6, 22 (1953) [C.A., 48, 4314 (1954)].
- 143 Eastman, J. Am. Chem. Soc., 76, 4115 (1954).

Rogers, ibid., 69, 2544 (1947); cf. ref. 137.

144 Eastman and Selover, J. Am. Chem. Soc., 76, 4118 (1954).

above scheme, but partly takes place at the ends of the "conjugated" system. Both reactions occur also in a, \$, y, \$ doubly unsaturated carboxylic acid derivatives (see p. 237).

A similar study has been made 145 of the reaction of ethyl cyanoacetate with ethyl 1-evano-2-vinvlevelopropane-1-carboxylate, synthesized in situ from trans-1.4-dibromo-2-butene and ethyl cyanoacetate The product, obtained in 30% yield, was a mixture of the two cyclopentane derivatives LX and LXI

The System C=C-C=N

The system C-C-C-N behaves like the system C-C-C-O in the Michael reaction The most extensive studies, on the addition of reactive methylene compounds to quinone imides, have been summarized 1450 selected examples are given in Table IX

2-Vinylpyridine and 4-vinylpyridine are suitable acceptors for the Michael reaction (Table XXI). Analogously, phenanthridine-9-carboxaldehyde reacts with 9-methylphenanthridine (LXII) to give 1,2,3-tri-(9-phenanthridyl)propane (LXIII),146 undoubtedly as shown on page 208. The formation of diethyl 4-methyl-5-acetylpyridine-2,6-dicarboxylate (LXVIII) from ethyl acetylpyruvate (LXIV) and ammonia 147 appears to result from reaction of part of the ester with ammonia to give the imine of its enolic form and a subsequent Michael condensation between the latter and the keto form of the original ester or its imme.

In this connection, it should be mentioned that Schiff bases of the benzylideneamline type (but not ketone anils) add, for example, ethyl acctoacctate, 145-150 ethyl oxaloacctate, 140,151 diethyl malonate, 152 ethyl

¹⁴⁴ Kierstead, Linetead, and Weedon, J Chem Soc., 1953, 1799

¹⁴⁴⁴ Adams and Reifschneider, Bull see chim France, 1958, 23.

¹⁴ Caldwell, J Chem Soc . 1952, 2035

¹⁴⁷ Mumm and Bergell, Ber , 45, 3040 (1912) 144 Schiff and Bertini, Ber , 30, 501 (\$897)

¹⁴⁹ Schiff, Ber , 31, 205 (1898).

¹⁴⁰ Schiff, Ber . 31, 601 (1898)

¹⁴¹ Philpott and Jones, J Chem. Soc , 1938, 337 164 Betti, Gazz chim, stal., 30, 11, 301 (1900).

C₂H₅O₂C

LXVIII

cyclopentanone-2-carboxylate,151 ethyl cyanoacetate, malonamide, cyanoacetamide,153 and ethyl nitroacetate,154 according to the following scheme,

$$C_{\mathfrak{g}}H_{\mathfrak{g}}CH = NC_{\mathfrak{g}}H_{\mathfrak{g}} + CH_{\mathfrak{g}}COCH_{\mathfrak{g}}CO_{\mathfrak{g}}C_{\mathfrak{g}}H_{\mathfrak{g}} \rightarrow \quad C_{\mathfrak{g}}H_{\mathfrak{g}}CHNHC_{\mathfrak{g}}H_{\mathfrak{g}}$$

CH,COCHCO,C,H,

The C=N group in Schiff bases and azines appears to behave as a carbonyl group, for these compounds can serve as donors. Examples are furnished by the Schiff bases of aliphatic aldehydes and ketones and of cycloalkanones which can be cyanoethylated in the a position to the carbon atom of the azomethine group 154a The reaction can be illustrated with cyclohexanone azine and methyl acrylate. 1500

Also, one can at least formally explain the reaction of the 3-hydrogen atom of indole (LXIX) with I-ethylthiomethyl-2-naphthol155 by the formulation of indole as the tautomeride LXX, An analogous reaction

is that between indolylmagnesium bromide and compounds of the ω-nitrostyrene type, 156

Acceptors

α,β-Ethylenic Aldehydes (Table I). The condensation of α.βethylenic aldehydes (acrolein, crotonaldehyde, cinnamaldehyde) with suitable acid derivatives110,167-162 (malonates, cyanoscetates, ethyl

- 144 Lazzareschi, Gazz chim stal , 67, 371 (1937) 144 Dornow and Frese, Ann., 578, 122 (1952)
- 1500 Krimm, US pat 2,788,962 [C.A. 51, 6684 (1957)]. 1848 Haring and Wagner-Juareg, Helv Chim Acts, 40, 852 (1957)
- Poppelsdorf and Holt, J. Chem Soc., 1954, 4094.
 Noland, Christensen, Sauer, and Dutton, J. Am. Chem. Soc., 77, 456 (1955). 147 Farmer and Mohta, J Chem Soc , 1931, 2561.
- 150 Staudinger and Rumeka, Helv Chun Acto, 7, 442 (1924)
- Warner and Moo, J. Am Chem Soc., 70, 3470 (1948)
 Warner and Moo, J. Am Chem. Soc., 71, 2536 (1949), U.S. pat. 2,468,352 [C.A., 43, 7505 (1940)
 - 241 Warner and Mos. U.S pat. 2,506,050 [C A., 44, 8946 (1950)]
 - 111 Cope and Synerholm, J Am. Chem. Soc., 72, 5228 (1859).

cyclohexanone-2-carboxylate) leads to derivatives of δ -aldehydo acids. Alkyl substitution in the α position does not appear to influence adversely the ability of the aldehydes to undergo Michael condensation; β substitution, on the other hand, alters the course of the reaction. ^{157,158} (For further synthetic uses of the condensation products see p. 249.)

There are very few examples of condensations between α,β -ethylenic aldehydes and ketones or aldehydes. In the aldehyde- α,β -ethylenic aldehyde condensations secondary reactions regularly accompany the condensation. For example, the product to be expected from the interaction between cinnamaldehyde and phenylacetaldehyde, the dialdehyde LXXI, undergoes an intramolecular Cannizzaro reaction to yield δ -hydroxy- β,γ -diphenylvaleric acid, isolated as its lactone LXXII.

The "dimerization" of α,β -unsaturated aldehydes such as 2-ethyl-2-hexenal which takes place under the influence of aqueous-alcoholic alkali has been explained as a Michael reaction followed by intramolecular aldolization to yield a cyclic product.^{165a}

Table I includes some acceptors having a hydroxy (or alkoxy or amino) group attached to the double bond, i.e., they are the enolic forms of compounds that can also function as donors in the Michael reaction (see p. 205). All primary condensation products from donors that contain a C—NH group in the immediate vicinity of the reactive methylene group spontaneously cyclize with elimination of the hydroxy (alkoxy, amino) groups to yield pyridine derivatives. 166

Meerwein, J. prakt. Chem., [2], 97, 225 (1918).

¹⁴⁴ Hacusermann, Helv. Chim. Acta, 34, 1482 (1951).

¹⁰³ Meerwein, Ber., 53, 1829 (1920).

¹⁴⁵³ Nielsen, J. Am. Chem. Soc., 79, 2518, 2524 (1957).

¹⁶⁶ Dornow, Ber., 72, 1548 (1939). Compare, Baumgarten and Dornow, Ber., 72, 563 (1939).

However, the course of cyclization can sometimes vary. From benzoylacetaldehyde and ethyl β -aminocrotonate one does not obtain the expected ethyl 2-methyl-4-phenylpyridine-3-carboxylate, but the 6-phenyl isomer LXXIV.167 This probably results from the reaction of benzoylacetaldehyde as β-hydroxycinnamic aldehyde (LXXIII) or as hydroxymethyleneacetophenone.

Aliphatic α,β-Ethylenic Ketones (Table II). The Michael condensation of aliphatic α,β-ethylenic ketones proceeds normally; the yields reported are often very high. The ease with which the ethylenic ketones undergo the condensation is exemplified by the fact that substances such as β-naphtholiss or ethyl 3-hydroxy-4,5-benzofuran-2-carboxylatens react with methyl vuryl ketone in their ketonic forms. The same is true for the reactions of 4-hydroxyconmann with ethyldeneacctone and meattyl oxide, respectively.** Compare also the reaction of kojic acid with acry lonitrile.170

^{14*} Speech and Burger, Monolek , 49, 265 (1928).

¹⁰⁸ Miller and Robinson, J. Chem Soc., 1934, 1535 100 Ikawa, Stahmann, and Link, J. Am. Chem. Soc., 56, 902 (1944)

¹¹⁰ Woods, J. Am Chem. Soc. 74, 3959 (1952)

$$\begin{array}{c|c} OH & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OH & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_2\text{H}_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_2\text{H}_5 & \longrightarrow & CO_2\text{C}_2\text{H}_5 \\ \hline \\ OCO_2\text{C}_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_4\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_4\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_4\text{COCH}_3 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_4\text{C}_4\text{C}_5 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_4\text{C}_5 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_5 \\ \hline \\ OCO_2\text{C}_4\text{C}_5 & \bigcirc & CH_2\text{C}_5 \\ \hline \\ OCO_2\text{C}_4\text$$

An example of the reaction of hydroxymethylene ketones is seen in the condensation of the methyl ethyl ketone derivative LXXV with cyano-acetamide (under the catalytic influence of pyridine or piperidine). The primary product cyclizes spontaneously and, dependent on the operating conditions, 2-keto-3-cyano-4-hydroxy-5,6-dimethyl-1,2,3,4-tetrahydropyridine (LXXVI) or its dehydration product, 2-hydroxy-3-cyano-5,6-dimethylpyridine (LXXVII), is obtained.

Mention should finally be made of the behavior of doubly unsaturated ketones. Of this group, two types have been somewhat cursorily investigated. Crotylideneacetone (LXXVIII) yields with diethyl malonate

¹⁷¹ Tracy and Elderfield, J. Org. Chem., 6, 63 (1941).

¹⁷¹ Joshi, Kaushal, and Deshapande, J. Indian Chem. Soc., 18, 479 (1941) [C.A., 36, 4482 (1942)].

in the presence of sodium methoxide a mixture of two substances, of which the predominant one, LXXIX, results from 1,6 addition, the isomer LXXX from 1,4 addition. 223 6-Methyl-1,4-hexaden-3-one (LXXXI) reacts, under the influence of sodium methoxide, both with dethyl

malonate and acetylacetone at the less-substituted end of the molecule only, gwing LXXXII and LXXXIII, respectively ¹⁸ Phorone (LXXXIV) does not react analogously to LXXXI with dethyl malonate in alcoholic solution. Instead the product obtained, LXXXV, ¹⁸ is identical with that obtained from metryl oxide. ¹⁸²²⁻¹⁸² Apparently

$$(CH_2)_2C = CHCOCH = CH_1 \longrightarrow (CH_3)_2C = CHCOCH_1CH_1CH(COCH_1)_3$$

$$(CH_3)_2C = CHCOCH_1CH_2CH(COCH_1)_3$$

$$(CH_3)_2C = CHCOCH_1CH_2CH(COCH_1)_3$$

$$(CH_3)_2C = CHCOCH_1CH_2CH(COCH_2)_3$$

$$(CH_3)_2C = CHCOCH_1CH_2CH(COCH_3)_3$$

$$(CH_3)_3C = CHCOCH_1CH(COCH_3)_3$$

$$(CH_3)$$

phorone reverts to mesityl oxide more quickly than it reacts with the malonate, or the adduct formed suffers retrogression.

 $\alpha.\beta$ -Acetylenic Ketones. Acetylenic ketones that contain the triple bond in the $x \beta$ position would be expected to give $x.\beta$ -olefinic ketones in

- 175 Farmer and Webts, J Chem Soc , 1931, 1904.
- 116 Nazarov and Terekhova, Bull acad sex. U R.S.S. Classe sex chim., 1946, 201 [C.A., 42, 7729-19481]
 - , 7729 (1948)] 171 Vorisender and Gaertner, dam., 304, 1 (1899).
 - 10 Komppa, Ber., 32, 1421 (1999)
 20 Shaper and Tolds Org Syntheses Cull Vol. 2, 200 (1950)
 - 100 Vorlamder, Ann., 294, 273 (1897) 100 Vorlamder and Eng. Ann., 294, 202 (1897)

the Michael condensation, as shown in the formulation. In the cases investigated (acetyl-n-butylacetylene, 180 propionylphenylacetylene, 181

$$\begin{array}{c} \text{RC} = \text{CCOR}' + \text{CH}_2(\text{CO}_2\text{C}_2\text{H}_5)_2 \rightarrow \text{RC} = \text{CHCOR}' \\ & | \\ & \text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \end{array}$$

benzoylphenylacetylene, 182 benzoyl-o-chlorophenylacetylene 183), the primary products from malonic esters and the corresponding sodium alkoxides as catalysts proved too reactive to be isolated; eyelization products were isolated instead. From acetyl-n-butylacetylene, the α -pyrone derivative LXXXVI, which could be converted to 5-n-butyl-resorcinol, was obtained. The phenylacetylene derivatives also cyclized

$$\begin{array}{c}
\text{CH} \\
 & \text{COCH}_3 \\
 & \text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{NaOR} \\
 & \text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{NaOR} \\
 & \text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{COR}'
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{RO}_2\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

to yield α-pyrones, LXXXVII.^{181,182} Analogously, the reaction between cyanoacetamide and propionylphenylacetylene¹⁸¹ or benzoylphenylacetylene¹⁸¹ leads to the substituted 2-pyridols, LXXXVIII. From

$$\begin{array}{c} \text{CH} \\ \text{C_6H_3C} \\ \text{NCCH} \\ \text{CONH_2} \end{array} \xrightarrow{\text{H_3C_6}} \begin{array}{c} \text{H_3C_6} \\ \text{NH} \\ \text{OH} \\ \text{LXXXVIII} \end{array}$$

¹⁴⁰ Anker and Cook, J. Chem. Soc., 1945, 311.

¹⁴¹ Bardhan, J. Chem. Soc., 1929, 2223.

¹⁹¹ Kohler, J. .1m. Chem. Soc., 44, 379 (1922).

¹¹¹ Bickel, J. Am. Chem. Soc., 72, 1022 (1950).

¹¹⁴ Barat, J. Indian Chem. Soc., 7, 851 (1930) [C.A., 25, 2145 (1931)].

5-methyl-3-hexyn-2-one and diethyl malonate in the presence of a small quantity of sodium ethoxide 3-carbethoxy-4-isopropyl-6-methyl-a-pyrone (LXXXIX) was obtained in 59% yield iss

$$\begin{array}{c} \operatorname{CH}^{2}(\operatorname{CO}^{4}\operatorname{C}^{2}\operatorname{H}^{2})^{2} & \to & \operatorname{H}^{4}\operatorname{CO}^{2}\operatorname{C}^{2}\operatorname{H}^{2}\\ & + & & & \operatorname{CO}^{4}\operatorname{C}^{4}\operatorname{H}^{2}\\ & & & & \operatorname{CH}(\operatorname{CH}^{3})^{2} \end{array}$$

Cyclization also takes place in the reaction between methyl ethynyl ketone and 2-methylcyclohexanone Under the influence of sodium hydride, 2-keto-10-methyl-2,5,6,7,8,10-hexahydronaphthalene is formed. 186

In the Michael condensation between ethyl ethynyl ketone and the cyclohexanone derivative XC under the influence of sodium triphenylmethide, very low yields of XCI were obtained. 187 cf. refs. 188 and 189. As similar unsatisfactory results had been recorded in analogous

- 144 Smith and Kelly, J. Am. Chem. Soc., 74, 3305 (1952)
- 144 Woodward and Singh, J Am. Chem Soc., 72, 494 (1950)
- it Cleme and McQuille, J Chem. Sec., 1952, 3839 144 Gunstone and Tulloch, J. Appl. Chem. London, 4, 291 (1954).
- Abe, Harukawa, Ishikawa, Miku, Sumi, and Toga, Proc. Japan. Acad., 28, 425 (1952) [C A., 48, 1317 (1954)].

reactions, 190,191 a systematic study of the reaction between 2-methyl-cyclohexanone (in the form of its metal enolates) and ethyl ethynyl ketone, formed in situ, was undertaken. However, β -chlorovinyl ethyl ketone, β -ethoxyvinyl ethyl ketone, and β -propionylvinylpyridinium chloride gave about the same yields as ethyl ethynyl ketone itself; and β -dimethylaminovinyl ethyl ketone did not react at all with the sodium enolate. Moreover, in addition to the expected 1,10-dimethyl-2-keto-2,5,6,7,8,10-hexahydronaphthalene (XCII), the open-chain product 2-methyl-2-(β -propionylvinyl)cyclohexanone (XCIII) was formed. A

considerable advantage was noted in use of the calcium or the lithium enolate of 2-methylcyclohexanone with β -chlorovinyl ethyl ketone; these gave yields of 12–14 and 20%, respectively, whereas the sodium enolate gave only 3–4%.

Aromatic α,β-Ethylenic Ketones (Tables III, IV). The introduction of aromatic radicals into the terminal positions of the system C=C-C=O appears to increase its polar character and therefore its tendency to undergo the Michael condensation. Perhaps it is for this reason that a very large number of such reactions has been carried out. Those in which the ketone is unsaturated on only one side are summarized in Table III, in which the following order is observed: vinyl phenyl ketones, methyl styryl ketones, phenyl styryl ketones.

The unsaturated ketone dypnone (XCIV) undergoes self-condensation when treated with alkali. The product "dypnopinacol" has been given the formula XCV.^{191–193} Although XCVI has been assumed to be an intermediate,^{191,192} it seems quite unlikely that the methyl group has a

¹⁹⁰ Gunstone and Heggie, J. Chem. Soc., 1952, 1437.

¹⁹¹ Iwanow and Iwanow, Ber., 76, 988 (1943).

¹⁹² Iwanow and Iwanow, Ber., 76, 1148 (1943).

¹⁹³ Meerwein, Ber., 77, 229 (1944).

sufficiently reactive hydrogen to act as a donor. It is suggested by the authors that some of the dyponone is hydrolyzed to acetophenone by analogy with the known hydrolysis of mestyl oxide. Acetophenone then gives the diketone XCVII by Michael condensation; the diketone condenses with another molecule of acetophenone to yield the aldol XCVIII, which cyclizes normally to dyponopuaced

Few doubly unsaturated ketones of the type C₄H₂CH=CHCH=CHCOR appear to have been studied. When ennamyhdeneacetone (XGIX) is treated with diethyl malonate and sodium ethoxide, l,4 addition takes place. The primary product C cyclizes spontaneously, leading to

4-carbethoxy-5-styrylcyclohexane-1,3-dione (I). 175,184,185 Cmnamylideneacetophenone also gives the 1,4 addition products II and III, respectively,
with diethyl malonate and sodium ethoxide. 186 and with acetophenous

Enumeration of formulas begins with I again after C to reduce the complexity of the imbers
 Worlsender, Ber. 38, 2339 (1903).

¹⁹⁹ Vorlaender and Groebel, Aun , 345, 155 (1906), especially p 206.

vorlaceder and Staudinger, Ans , 345, 155 (1906), especially p. 217.

and potassium hydroxide in ethanol.¹⁹⁷ This is in contradiction to the behavior of diethyl cinnamylidenemalonate (see p. 501), which undergoes 1,6 condensation. The adduct III from cinnamylideneacetophenone and acetophenone is accompanied by a product whose formation involves two moles of acetophenone. Condensation of cinnamylideneacetophenone with ethyl acetoacetate gave a substance $C_{28}H_{22}O_3$ of unelucidated structure.¹⁹⁶

Considerable attention has been paid to Michael condensations with doubly unsaturated ketones of the type RCH—CHCOCH—CHR, e.g., dibenzylideneacetone (IV)^{198–200} and dicinnamylidenacetone (V).¹⁹⁸ The experimental material available, summarized in Table IV, shows that the two double bonds in dibenzylideneacetone undergo Michael condensation

independently of each other. If the donor contains two enolizable hydrogen atoms, there is often a secondary intramolecular step leading to a six-membered ring (VI).¹⁹⁸ Substances of the dicinnamylideneacetone type appear to undergo the Michael condensation by 1,4 (not 1,6) addition.¹⁹⁸

$$C_{6}H_{5}CH \xrightarrow{CHC_{6}H_{5}} \xrightarrow{CH_{2}(CO_{2}C_{2}H_{6})_{2}} C_{6}H_{5}CH \xrightarrow{CHC_{6}H_{5}} CH(CO_{2}C_{2}H_{5})_{2}$$

$$C_{6}H_{5}CH \xrightarrow{CHC_{6}H_{5}} CH(CO_{2}C_{2}H_{5})_{2}$$

¹⁹⁷ Wittig and Kosack, Ann., 529, 167 (1937).

¹⁸⁸ Kohler and Dewey, J. Am. Chem. Soc., 48, 1267 (1924).

¹⁰⁰ Kohler and Helmkamp, J. Am. Chem. Soc., 46, 1018 (1924).

³⁰⁰ Marvel and Moore, J. Am. Chem. Soc., 71, 28 (1949).

It is of interest to compare the reactivity of the double bonds in unsymmetrically substituted dibency/idene-actions. In dibency/idene-actions, chlorune in the 2, 3, or 4 position¹⁰¹ or a methoxyl group in the 4 position¹⁰² deactivates the neighboring double bond so that Michael reaction occurs only on the side of the unsubstituted bennese ring. The chlorune atom in α -(3- or 4-chlorobency/lidene)- β -(4'-methoxybency/lidene)-action causes the reaction to take place on the double bond adjacent to the chlorunated nucleus. On the other hand, a bydroxyl group in the 2 or 4 position of the bennese nucleus has a stronger activating influence than a 2-methoxy group or a chlorune atom in the 3 or 4 position. ¹⁰²⁻¹⁰³

It is noteworthy as well as surprising that ethyl acetoacetate condenses with a 4.4-dimethylaminobenzylulene)-β-(2-hydroxybenzylidene)acetone, in the presence of potassium hydroxide as catalyst on the dimethylamino group side, whereas ethyl cyanoacetate with sodium hydroxide as catalyst adds to the side of the 2-hydroxyphenyl radical. The same difference is evident in two other case, listed in Table IV.

Heterocyclic α,β-Ethylenic Ketones (Tables V, VI). In view of the aromate character of the furan system, α,β-ethylenic ketones containing the furyl group should behave like their phenyl analogs 111,168—138. This expectation is borne out by the examples in Table V. A characteristic difference, however, is the fact that almost no secondary cyclization or isomerization reactions take place. Table V also includes a few heterocycles compounds not derived from furan.

Table VI lists a number of other heterocyclic α, β -ethylenic ketones, much you have a promise the exploration of the exploration that α the exploration of α the exploration of α the exploration of α pyrone are included. Its The reaction of γ pyrone and diethyl malonate is somewhat complicated, but it can be assumed that the first step is a Michael condensation to VII, which is followed by ring opening and

- 361 Heilbron and Hill, J. Chem Soc., 1928, 2863
- see Heilbron and Forster, J Chem Soc., 125, 2064 (1924).
- ** Halbron and Hill, J. Chem Soc , 1927, 918
- Jennings and McGookin, J. Chem. Soc., 1834, 1741.
 Heilbron, Forster, and Whitworth, J. Chem. Soc., 127, 2159 (1925)
- Peak and Robinson, J Chem Soc., 1927, 1581.
- Peak and Robinson, J. Chem. Soc., 1927, 1581.

 100 Andrews and Connor. J. Am. Chem. Soc., 57, 895 (1935)
- 200 Drake and Gilbert, J. Am. Chem. Soc., 52, 4965 (1930)
 - *** Klostzel, J Am. Chem Soc , 69, 2271 (1947).
- 110 Turner, J. Am Chem. Soc., 73, 1234 (1951). 111 Koelsch and Sundet, J. Am Chem Soc., 72, 1681 (1950).
- 118 Koelsch and Sundet, J. Am. Chem Soc., 72, 1001 (1900).
- Septra and Seshadra, Proc. Indian Acad. Scs., 16A, 29 (1942) [C A, 37, 880 (1943)]
 Panse, Shah, and Wheeler, J. Indian Chem. Soc., 18, 453 (1941) [C A, 38, 4507 (1942)].
- pane, Shah, and Wheeler, J. Univ. Bomboy. 10, Part 3, 83 (1841) [C.A. 36, 4507 (1942)]

²¹⁰ R. B Woodward, private communication

recyclization. Elimination of one of the carbethoxyl groups makes possible the aromatization to form VIII.

Table VI also includes the Michael condensation between rhodanine and alkylidenerhodanines. In this reaction, α,α-bis-(2-thio-4-ketotetrahydro-5-thiazolyl)alkanes are formed from rhodanine and aliphatic aldehydes.216

Cycloalkenones and Acyl Cycloalkenes (Table VII). The Michael condensations of cycloalkenones and 1-acylcycloalkenes have been listed in a separate table (Table VII) in view of the importance of the products in the synthesis of hydroaromatic polycyclic substances related to the steroids and steroidal alkaloids.

The adducts obtained from acetylcycloalkenes^{83-99,216-218} undergo intramolecular condensation to polycyclic ring systems, as exemplified in the accompanying reactions of 1-acetylcyclohexene (IX).93,98

215 Hewett, J. Chem. Soc., 1938, 50.

²¹⁶ Bradsher, Brown, and Grantham, J. Am. Chem. Soc., 73, 5377 (1951).

²¹⁷ Hawthorne and Robinson, J. Chem. Soc., 1938, 763.

Table VII further includes some cases in which cycloally hideneace tones have been subjected to the Michael condensation ²¹⁻²² Here, too, cyclization of the primary adduct is spontaneous as shown by the formation of X. ²¹. As in many other reactions, the remaining carbethoxyl group is often eliminated in the process.

$$\begin{array}{c} \text{CHCOCH}_{1} \\ + \text{CH}_{2}(\text{CO}_{1}\text{C}_{1}\text{H}_{2})_{2} \rightarrow \\ & \begin{array}{c} \text{CH}_{2}(\text{COCH}_{2} \\ \text{CHCOC}_{2}\text{H}_{3} \\ \text{CO}_{2}\text{C}_{1}\text{H}_{3} \\ \end{array} \\ & \begin{array}{c} \text{CO}_{1}\text{C}_{2}\text{H}_{3} \\ \text{CO}_{2}\text{C}_{3}\text{H}_{3} \\ \end{array} \\ \end{array}$$

Michael condensations with hydroxymethylene- or alloxymethylenecycloalkanones lead to interesting cyclic products The product, e.g., from 2-bydroxymethylenecyclokexanone and cyanoacetamide (in the presence of piperdine or diethylamine), \mathbb{H}^{n} eliminates water between the amide group and the carbonly group of the hydroxyd of the hydroxymethylene group is also eliminated as water, yielding XI ($\mathbb{R}=\mathbb{H}, (\mathbb{H})$).

The dunerization of piperitone²¹³ (XII) appears to be a special case of Michael condensation. The methyl group of one molecule provides the hydrogen for the saturation of the second, the first molecule behaves, therefore, as a vmylog of a methyl ketone and does not utilize the examing hydrogen in the ortho position, perhaps due to sterio highlition by the isopropyl group. Two steteosomers are formed. The structure of the dimetide of piperitone, which is stabilized by hydrogen bond formation.

¹¹⁴ Kandish, J. Chem. Soc., 1931, 952.

¹⁴⁹ Kon and Thakur, J. Chem. Soc , 1930, 2217

Norris and Thorpe, J. Chem. Soc., 119, 1199 (1921)
 Thakur, J. Chem. Soc., 1932, 2147.

¹⁰⁰ Thakur, J. Chem Soc , 1932, 2157

Son.-Gupta, J. Chem Soc., 197, 1347 (1915).
 Taylor, Chemistry & Industry, 1954, 252 Cf. Cole, shif., 1954, 661.

$$\begin{array}{c} 2\\ i \cdot H_{7}C_{3} \\ \downarrow \\ O \\ XII \end{array} \begin{array}{c} CH_{3} \\ \vdots \cdot H_{7}C_{3} \\ \downarrow \\ O \\ O \end{array} \begin{array}{c} CH_{3} \\ \downarrow \\ O \\ O \end{array} \begin{array}{c} CH_{3} \\ \downarrow \\ O \\ O \end{array} \begin{array}{c} CH_{3} \\ \downarrow \\ O \\ O \end{array} \begin{array}{c} CH_{3} \\ \downarrow \\ O \\ O \\ O \end{array}$$

between the carbonyl and the hydroxyl groups,²²⁵ has been indicated by analogy with evidence obtained by degradation of the dimeride of 3,5-dimethyl-2-cyclohexen-1-one.²²⁷

Robinson's Modification of the Michael Condensation (Table VIII). The use of a masked form of the α,β -ethylenic carbonyl compound, which produces the latter in situ, is of practical importance with sensitive ketones and in condensations requiring stringent experimental conditions. Although saturated β -chloroketones had had some use as precursors of the corresponding α,β -ethylenic ketones, ²²³ Robinson and his co-workers ^{93,229–231} introduced the use of β -dialkylaminoketones or their quaternary salts; these decompose gradually into a dialkylamine or trialkylammonium salt and the desired α,β -ethylenic ketone. These starting materials are readily accessible by appropriate Mannich reactions ²³² of saturated ketones and, if necessary, subsequent quaternization as shown in the accompanying reaction sequence.

$$\label{eq:ch3coch3coch2ch2ch2n(CH3)2} \begin{split} \text{CH}_3\text{COCH}_2\text{CH}_2\text{N}(\text{CH}_3)_2 &\rightarrow \\ \text{CH}_3\text{COCH}_2\text{CH}_2\text{N}(\text{CH}_3)_3\text{I} &\rightarrow \text{CH}_3\text{COCH} \\ \text{CH}_2 &\leftarrow \text{CH}_3\text{COCH}_2\text{CH}_2\text{N}(\text{CH}_3)_3\text{I} \end{split}$$

- 228 Briggs and Colebrook, Chemistry & Industry, 1955, 200.
- 227 Ayer and Taylor, J. Chem. Soc., 1955, 2227.
- 228 Allen and Bell, Can. J. Research, 11, 40 (1934) [C.A., 29, 150 (1935)].
- 229 du Feu, McQuillin, and Robinson, J. Chem. Soc., 1937, 53.
- 220 McQuillin and Robinson, J. Chem. Soc., 1938, 1097.
- 221 McQuillin and Robinson, J. Chem. Soc., 1941, 586.
- 232 Blicke, in Adams, Organic Reactions, Vol. 1, Chapter 10, John Wiley & Sons, 1942.

Although these reactions are included here (Table VIII) among Michael condensations, it has not been certain that they proceed by way of the α,β-ethylenic ketone as an intermediate 233 A recent study of these reactions has led to the conclusion that the olefinic intermediate, as outlined by Robinson, occurs whenever there is a hydrogen atom on the carbon atom beta to the nitrogen *

The scope of Robinson's modification of the Michael reaction has been widened by the observation²⁵¹ that 1-dialkylamino-2-nitroalkanes (the Mannich bases of nitroalkanes) can replace the corresponding nitroolefins in Michael condensations.

$$R_{1}NCH_{1}CH(NO_{2})CH_{2}CH_{2} \rightleftharpoons R_{2}NH + CH_{2} \rightleftharpoons C(NO_{2})CH_{2}CH_{3}$$

Another variant is the use of the alkylthic instead of the dialkylamino group. Thus, 1-ethylthiomethyl-2-naphthol reacts as the 1-methylene derivative of the keto form of 2-naphthol,155

*** Brewster and Eliel, in Adams, Organic Reactions, Vol. 7, Chapter 3, John Wiley & Sons. 1953. Note, however, that Bradford and co-workers¹¹⁴ have observed differences of reaction

in cyanoethyletion with β diethylaminoethyl cyanide methodide as compared with cyanoethylation with acrylonitrile, and have assumed that the positive ion NCCH,CH,⊕ is the intermediate This explanation suggests the relation of the Michael condensation to reactions of typical Michael donors with gramine (\$\theta\$ diethylaminoethylindole) and its derivatives 235 260

- 214 Bradford, Meek, Turnbull, and Wilson, Chemistry & Industry, 1951, 839.
- 254 Ehel and Murphy, J Am. Chem Soc., 75, 3589 (1953)
- me Dornow and Theis, Ann , 581, 219 (1953) my Holland and Nayler, J. Chem Soc., 1953, 280
- 504 Gray, J Am. Chem Soc , 75, 1252 (1953).
- ss. Kusman and Witkop, J Am Chem Soc , 75, 1967 (1953)
- Me Atkinson, Poppeledorf, and Williams, J Chem Soc , 1953, 580. sel Jones and Kornfeld, US pat 2,621,187 [C.A., 47, 10557 (1953)].
- 848 Kutscher and Klamerth, Chem Ber , 86, 352 (1953) 840 Browster and Eliel, in Adams, Organic Reactions, Vol. 7, p. 99, John Wiley & Sons,
- 1953 344 Thesing, Chem. Ber , 87, 692 (1954)
- ses Atkinson, J Chem Soc . 1954, 1329 sees Hellmann, Hallmann, and Langens, Chem. Ber , 86, 1346 (1953).
- Hardegger and Corrodi, Helv Chim. Acta, 38, 468 (1955).
 - 184 Albertson, Archer, and Suter, J. Am Chem Soc , 68, 500 (1844) 144 Say der and Smith, J Am Chem Soc , 66, 350 (1944).
 - 140 Lyttle and Wemblat, J. Am Chem. Soc , 69, 2118 (1947) 110 Hegodus, Helv. Chim. Acto, 29, 1499 (1946).
 - 161 Shoemaker and Keowa, J Am. Chem Soc. 76, 6374 (1954).

p-Quinones and Derivatives (Table IX). As in many other reactions, e.g., the Diels-Alder synthesis, p-quinones behave in the Michael condensation as α,β -ethylenic ketones. However, although the enols formed in the Michael condensation of most α, β -ethylenic ketones ketonize spontaneously, the enols formed from quinones are hydroquinones and are stable

Certain of the hydroquinone products are dehydrogenated in situ by an excess of the original quinone, so that the newly formed quinone can undergo a second Michael condensation.²⁵²

$$XIV + NCCH2CO2C2H5 \rightarrow C2H5O2CHC$$

$$OH$$

$$CHCO2C2H5$$

$$OH$$

$$CHCO2C2H5$$

$$\begin{array}{c} CH_3 \\ O \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH$$

²⁵² Wood, Colburn, Jr., Cox, and Garland, J. Am. Chem. Soc., 66, 1540 (1944).

Other hydroquinones undergo cyclization involving the hydroxyl group of the hydroquinone and leading to condensed heterocyclic ring systems As example is the formation of the lactone XV shown on p. 224.253

In other cases not only isocoumarones are formed, but also coumarin derivatives such as XVI 234 When zinc chloride is used to catalyze the

$$\bigcap_{CH^{2}} CH^{2} - CH^{2}COCH^{2}CO^{2}C^{4}\Pi^{2} - \prod_{H^{2}} CH^{2} - CH^{2}CO^{2}C^{2}\Pi^{2}$$

reaction of p-benzoquinone and ethyl acetoacetate, either a mono (XVII)

and Smoth and Prochard J Org Chem. 4, 342 (1939)

Me Smith and Boyack, J. Am Chem Soc., 70, 2690 (1948)

²⁴ Pechmann, Ber., 21, 3005 (1888)

¹⁸⁴ Ikuta, J prokt Chem . [2], 45, 78 (1892) 23' Grache and Levy, Ann., 283, 245 (1894)

when benzoquinone reacts with the imine of ethyl acetoacetate (ethyl β-aminocrotonate). In acetone or anhydrous ethanol as solvent, 2-methyl-3-carbethoxy-5-hydroxyindole (XIX) is formed.258 In the same way,

obtained with N-phenyl-2-methyl-3-carbethoxy-5-hydroxyindole was ethyl β -anilinocrotonate, and the corresponding N-carbethoxymethyl compound from ethyl β -(carbethoxymethylamino)crotonate.

Ordinarily only an unsubstituted carbon atom of the quinone ring is attacked by a donor anion, possibly for steric reasons. Thus, trisubstituted quinones undergo only mono condensation. 254,259,260 However, it

$$\begin{array}{c|c} O & O & O \\ H_3C & H_3C & H_3C & H_3C \\ O & CH_3 & H_3C & CH_2 \\ O & CH_2 & H_3C & CH_2 \\ \end{array}$$

is possible for a tetrasubstituted quinone to participate in the Michael condensation.261-263 A substance like duroquinone (XX) presumably reacts in a tautomeric form (considered to be the intermediate in the "dimerization" of this quinone),264 which is evidently much freer of steric hindrance than the normal form.

In one instance, a methylene quinone (1-methylene-1,2-naphthoquinone, XXI) has been shown to undergo the Michael reaction with diethyl

²¹⁸ Nenitzescu, Bul. Soc. Chim. România, 11, 37 (1929) [C.A., 24, 110 (1930)].

²⁵⁹ Smith and Kaiser, J. Am. Chem. Soc., 62, 133 (1940). 240 Smith and King, J. Am. Chem. Soc., 65, 441 (1943).

²⁶¹ Smith and Dobrovolny, J. Am. Chem. Soc., 48, 1693 (1926).

²⁴² Smith and Kaiser, J. Am. Chem. Soc., 62, 138 (1940).

²⁶³ Smith and Tenenbaum, J. Am. Chem. Soc., 59, 667 (1937). ²⁶⁴ Smith, Tess, and Ullyot, J. Am. Chem. Soc., 66, 1320 (1944).

malonate, though in small yield. In this case, too, cyclization occurred and ethyl 5,6-benzo-3,4-dihydrocoumann-3-carboxylate (XXII) was formed.

$$\bigcap_{XXI}^{CH_2} O \longrightarrow \bigcap_{XXII}^{CH_1(CO_1C_2H_2)_2} \bigcap_{XXII}^{CO_1C_2H_2} O$$

A complicated modification of the Michael reaction of p-quinones has been observed to result from condensation of 1,4-naphthoquinone (cf. ref. 261) with ethyl acetoacetate in the presence of pyridine and pyridinium hydrochloride, *** cf. ref. 267. The final product had lost the acetyl group of the acetoacetate molecule; the same product (1-arbethoxy-2-3 phthaloylpyrrocoline, XXIII) was therefore obtained when ethyl benzoylacetate was employed. The reaction has been formulated as shown.

The complexity of this sequence explains the low yield (14%) as well as the fact that also 2-bromo. and 2,3-dichloro-naphthoquinone and 1,4naphthoquinone-2-sulfonate give the same product, with loss of the polar

XXIII

- *** Smith and Horner, Jr . J. Am Chem. Soc , 60, 676 (1938)
- ⁵⁴ Dynki, Lujkenbunja, and Ernkon, J. Oyr Chen., 19, 176 (1984).
 ⁵⁴ Pyrt and Dorbon, J. An, Chen, Sor, 73, 444 (1984).
 ⁵⁵ Inguinable with that of pyriden. Quancies, however, is relatively universelve and the product described in rf. 258 as derived from quantum have been shown the have been fromed from assequencing presents in the quantum cut. Pratt, Rice, and Luckenbungh, J. An. Chen, Sor, 79, 1121 (1987).

substituents.²⁶⁸ According to Suryanarayana and Tilak,²⁶⁹ 2,3-dichloro-naphthoquinone also yields the same compound (XXIII) when condensed with diethyl malonate or ethyl benzoylacetate. The Indian authors assigned to it, originally, the formula XXIV, but withdrew it later in favor of XXIII.^{270–273}

They further observed, in the condensation of 2,3-dichloro-1,4-naphthoquinone with acetoacetanilide in pyridine, that the ultimate partial degradation of the side chain involved either the acetyl or the anilide group, thus leading both to XXV and XXVI. Compound

$$\begin{array}{c} O \\ \bigoplus \\ CHCO_2C_2H_5 \\ O \\ XXIV \\ O \\ XXV \\ \end{array}$$

XXVI is also obtained when acetoaceto-o-chloroanilide, -o-toluide, or 2-(acetoacetamido)-6-ethoxybenzothiazole is employed instead of the unsubstituted anilide.

An analogous reaction was observed when ethyl acetoacetate in pyridine solution was condensed with chloranil or 2,6-dichloroquinone, leading to a mixture of XXVIIA and XXVIIB. The structure of XXVIIA was proved by its synthesis from tetraethyl 2,5-dichloroquinone-3,6-dimalonate and ethyl acetoacetate in pyridine solution.

50, 15531 (1950)].

²⁶⁸ Michel, Ber., 33, 2402 (1900).

²⁶⁹ Suryanarayana and Tilak, Proc. Indian Acad. Sci., 39A, 185 (1954) [C.A., 49, 12411 (1955)].

²⁷⁰ Suryanarayana and Tilak, Proc. Indian Acad. Sci., 38A, 534 (1953) [C.A., 49, 2396 (1955)].

Suryanarayana and Tilak, Current Sci. India, 22, 171 (1953) [C.A., 48, 14212 (1954)].
 Acharya, Tilak, and Venkiteswaran, J. Sci. Ind. Research India, 14B, 250 (1956) [C.A.,

²⁷³ Acharya, Suryanarayana, and Tilak, J. Sci. Ind. Research India, 14B, 394 (1955) [C.A., 50, 12971 (1956)].

$$C_2H_4O_3C$$

XXVIIB

Chiorani enters also into Michael reactions with β-naphthol or 2-hydroxy-3 naphthamilide. These donors react in their tautomeric keto forms, as in several other instances (see p 211), and cause the loss of the halogen atoms, leading to compounds of the following type

 $(R = H, CONHC_6H_6)$

Acrylonitrile. Other $\alpha_i\beta$ -Unsaturated Nitriles, and Their Amides (Tables X, XI, and XIA). Acrylonitrile has been used as a acceptor in Michael synthesis more uskely than any other derivative of $\alpha_i\beta$ -ethylemic acids. The reaction with acrylonitrile has not only been used for preparative purposes, but it has become a tool for testing organic molecules for enolizable hydrogen atoms. The literature is summarized in Table X, which also brings up to date an earlier review of the cyanotchylation reaction. The

Some interesting generalizations emerge from Table X. In alphabre methyl ketones, a mething group adjacent to the carbonyl is more reactive than a methylene group, and a methylene group is more reactive than a methylene group and a methylene group is more reactive than a methylenen group with the proposition reactive than a methylenen group with the proposition reactive than a methylenen group and proposition with the proposi

abo U.S pat 2,386,736 [C 4 , 46, 7234 (1946)].

110 Barkley and Levine, J. Am. Chem. Soc., 72, 3699 (1950)

XXVIIA

- tre Campbell, Carter, and Slater, J. Chem Sor , 1948, 1741 177 Zellars and Levino, J. Org. Chem. 12, 911 (1948)
- tre Bruson and Niederhauser, US pat 2,437,908 (C 4 . 42, 4196 (1948))
- 119 Bruson and Riener. J. Am. Chem. Soc. 70, 214 (1948)

attacked by the nitrile.^{275,279} In aryl methyl ketones, all three hydrogen atoms of the methyl group react successively with acrylonitrile.²⁷⁷

Nitromethane and nitroethane are reported to give varying yields in the reaction with acrylonitrile. Dinitromethane, on the other hand, readily gives bis(cyanoethyl)dinitromethane, which loses one nitro group, and the scission product reacts with a third molecule of acrylonitrile to yield tris(cyanoethyl)nitromethane. Soo

$$\begin{array}{c} \mathrm{CH_2(NO_2)_2} \rightarrow \mathrm{(NCCH_2CH_2)_2C(NO_2)_2} \xrightarrow{\mathrm{Hydrolysis}} \\ \\ \mathrm{(NCCH_2CH_2)_2CHNO_2} \rightarrow \mathrm{(NCCH_2CH_2)_3CNO_2} \\ \\ \mathrm{XXYIII} \end{array}$$

In some α,β -ethylenic carbonyl and carboxyl compounds, the inherent possibility of tautomerization to the β,γ -unsaturated forms is enhanced by the reaction with acrylonitrile. From mesityl oxide, for example, a mono and a bis adduct are obtained; cf. ref. 764. For the latter, the formula XXIX has been established by degradation. For the former, Bruson and Riener have proposed the α,β -unsaturated structure XXX because of the formation of XXXI by hydrolysis. The evidence does

not exclude the possibility, however, that during hydrolysis the double bond shifts into the α,β position and that the correct structure is the one shown in XXXII. In any event, XXXII undoubtedly represents the structure of the primary product of the interaction between acrylonitrile and mesityl oxide.

Revising a previous statement²⁵³ on the reaction of isophorone with acrylonitrile, Bruson and Riener have obtained mono-, bis-, and

²⁴⁰ Thurston, Can. pat. 443,713 [C.A., 42, 205 (1948)].

¹⁴¹ Wulff, Hopff, and Wiest, Ger. pat. 728,531 [C.A., 38, 376 (1944)].

²³² Bruson and Riener, J. Am. Chem. Soc., 65, 23 (1943).

²²³ Bruson and Riener, J. Am. Chem. Soc., 64, 2850 (1942).

²⁴⁴ Bruson and Riener, J. Am. Chem. Soc., 66, 56 (1944).

tris-cyanocthyl derivatives (XXXIII to XXXV) of isophorone, to which they assigned the following structures (R = CH₂CH₂CN) ²⁵⁵

However, it has been shown we that the mono derivative is XXXVI, as it could be ozonized to yield 3,3-dimethyl-5-ketohexanose and (XXXVII) (after hydrolysis of the nitrale group), whereas XXXIII should have given XXXVIII As in the case of mestyl oxide (p. 239), the tautomeric

form (XXXIX) of mophorone undergoes reaction, the primary product XL then somerizes to an α,β -unsaturated ketone. The infrared spectra of the bis and trıs products reported by Bruon and Riener²⁴⁷ suggest the following structures for the mono-, dr., and tra-cyanoethylated products, reprectively

The alkylation of isophorone takes place in an analogous manner. 267

- Bruson and Riener, J. Am. Chem. Soc., 75, 3585 (1953)
 Julia, Compt. rend., 237, 913 (1953)
- set Conia, Bull soc cham. France, 1954, 690

2-Ethyl-2-hexenal (XLI) also reacts in the β , γ -isomeric form with crotononitrile and β , β -dimethylacrylonitrile.

An interesting point emerges from the behavior of compounds such as indene (XLII),²⁸⁸ which gives a tris(cyanoethyl) derivative. One has to assume that the primary products rearrange to give a new reactive methylene group. In a similar fashion, cyclopentadiene gives a hexacyanoethyl derivative.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

In the reaction of dimethylbenzofulvene (XLIII), which gives a mono derivative XLIV, it has been supposed that an isomerization precedes the reaction.

Kojic acid (XLV) provides an instance in which an enolic hydroxyl group reacts in the tautomeric keto form;¹⁷⁰ after hydrolysis the product is a 6-propionic acid derivative (XLVI) of kojic acid:

²¹⁴ Bruson, J. Am. Chem. Soc., 64, 2457 (1942).

Considerably less work has been done on the Michael condensation with other unsaturated nitriles. The available data, collected in Table XI, deal mainly with cinnamonitrile, 27,289,280 and allyl cyanide, 27,77,117,291 isomerized to crotononitrile by the alkaline reagents that catalyze the Michael condensation. Table XI also includes some data on 1-cyanobutadiene 91,292,293 In contradistinction to α.β.γ.δ-diethylenic ketones (see p 217), the Michael condensation of 1-cyanobutadiene with nitroalkanes takes place in the 1,6 positions, yielding β,γ -unsaturated nitrites 293

 α , β -Unsaturated amides could be expected to react in the same manner as the nitriles. Acrylamide adds, in the presence of benzyltrimethylammonium hydroxide, one molecule of 2-nitropropane, 294 and cinnamamide condenses with diethyl sodiomalonate to give the normal 1.1 adduct which cylizes to yield ethyl 2,6-diketo-4-phenylpiperidine-3carboxylate (XLVII).2946 However, in the reactions studied (Table XIA) acrylamide appears to offer no particular advantage for synthesis, 205

$$C_*H_*CI(=CHCONH_3)$$
 C_*H_3
 - *** Campbell and Faufull, J Chem Soc., 1949, 1239 144 Koelsch, J Am Chem Soc., 65, 2459 (1943)
- 100 Tucker, J. Chem Soc , 1949, 2152
- *** Bruson, U.S. pat. 2.484,883 [C.A., 44, 5904 (1950)] to Charlish, Davies, and Rose, J Chem Soc , 1948, 227 104 Bruson, U S pat. 2,370,142 [C.4. 39, 3544 (1945)]
- 1940 Herrmann and Vorlactidir, Chem Zentr. 1899, L 730 100 Elad and Genaburg, J Chem Soc , 1953, 4137

 α,β -Ethylenic Aliphatic Esters (Tables XII, XIII, XIV). The Michael condensations that have been carried out with α,β -ethylenic aliphatic esters (Table XII) show that activation by a carbalkoxy group is less strong than that effected by a nitro group.

A number of saturated α - and β -hydroxy esters react with ethyl cyanoacetate as if they were first dehydrated to α,β -ethylenic esters, which then undergo the Michael condensation;²⁹⁶ the same applies to certain cyanohydrins.²⁹⁷ In view of the uncertainty of the mechanism, these reactions have not been listed in Table XII. Likewise, the dimerization of methyl acrylate and ethyl acrylate^{5,298–300} can be considered formally as involving a Michael reaction, but it probably proceeds by a different mechanism.

The self-condensation of diethyl glutaconate (XLVIII) under the influence of sodium ethoxide is, by contrast, a typical Michael condensation. It can be formulated as involving an intermediary shift of the double bond. Part of the product aromatizes, by elimination of ethyl acetate, to give diethyl 4-hydroxyisophthalate (XLIX).³⁰¹ One molecule

$$2C_2H_3O_2CCH_2CH=CHCO_2C_2H_3 \rightarrow C_2H_3O_2CCH_2CHCH_2CO_2C_2H_3 \rightarrow C_2H_3O_2CCH_2CHCH=CHCO_2C_2H_3 \rightarrow C_2H_3O_2CCH_2CHCH_2CO_2C_2H_3 \rightarrow CCH_2CO_2C_2H_3 \rightarrow CCH_2CO_2C_2H_3 \rightarrow CCH_2CO_2C_2H_3 \rightarrow CO_2C_2H_3 $

of glutaconate, therefore, acts as a donor, and a second one as acceptor. (Under the influence of metallic sodium, a Claisen condensation takes place.)²⁰² The same interpretation applies to the self-condensation of trimethyl propylene-2,3,3-tricarboxylate, which involves two successive

Michael condensations. The first yields the open-chain ester L, whereas the second is intramolecular and yields the cyclic product LI. 202

The addition of ethyl 5-methylcyclopentanone-2-carboxylate to ethyl crotonate involves the α-hydrogen atom in the 2 position, and not in the 5 position as erroneously stated in the abstract literature 304,305

The Michael reaction is not involved in the condensation of ethyl acetoacetate and diethyl acetone-1,3-dicarboxylate to diethyl 3,5-dihydroxytoluene-2,4-dicarboxylate 200

Table XIII is devoted to reactions of β -hydroxy, β -ethoxy, and β -amino- α - β -thylence esters. These reactions are generally accompanied by the elimination of the β -abstituent (as water, alcohol, or ammona, respectively). For example, when ethyl β -ethoxyacrylate is condensed with diethyl methylmalonate under the catalytic influence of benyltri-methylammonum ethoxide, the expected traester LII not only undergoes othanolysis to diethyl carbonate and the diester LIII but the diester decomposes further to give ethanol and the unsaturated ester LIII β -or β -composes further to give ethanol and the unsaturated ester LIII β -or β -composes further to give ethanol and the unsaturated ester LIII β -or β -composes further to give ethanol and the unsaturated ester LIII β -or β -composes further to give ethanol and the unsaturated ester LIII β -or β -composes further to give ethanol and the unsaturated ester LIII β -or β -composes further to β -composes further to β -verther β -composes further to β -composes further β -composes further

CH2CO2C2H2	CH2CO2C2H2	CHCO2C2H2
снос,и,	CHOC*H*	сн
CH ₂ C(CO ₂ C ₂ H ₃) ₂	сн,сисо,с,н,	сн,спсо,с,п,
IJI	LIH	LIV

The behavior of diethyl 2-ethoxyethylene-l,1-dicarboxylate LV is very similar,305-316 With nitromethane and secondary bases the ester LV

c

¹⁰³ Baker, J. Chers Soc., 1935, 188.

maxer, J. Chern Land Bhattacharayya, J Indian Chem Soc., 24, 249 [1947] (C.d., 43, 2584 (1949)).

Private communication from Dr. B. K. Bhattacharayya Koller and Krakauer, Monoich, 53-54, 931 (1929)

¹⁰⁰ Croxall and Fegley, J Am. Chem Soc., 72, 970 (1930).

ses Menon, J Chem. Soc , 1935, 1061 ers Menon, J Chem Soc , 1938, 1775

¹¹⁴ Simonsen, J Chem Soc., 93, 1022 (1908).

undergoes a curious reaction, which has been represented as a Michael reaction followed by seission of the product according to the accompanying scheme.311 By this reaction, 2-piperidino- and 2-morpholino-1-nitroethylene were obtained in 40 and 34% yield, respectively. Analogously, diethyl 2-ethoxypropylene-1,1-dicarboxylate gave 2-piperidino- and 2-morpholino-1-nitropropene in 21 and 40% yield, respectively.311

$$\begin{array}{c} \text{C}_2\text{H}_5\text{OCH} {==} \text{C}(\text{CO}_2\text{C}_2\text{H}_5)_2 + \text{CH}_3\text{NO}_2 \rightarrow \text{C}_2\text{H}_5\text{OCHCH}(\text{CO}_2\text{C}_2\text{H}_5)_2} \xrightarrow{\text{R}_4\text{NH}} \\ \text{LV} & | \\ \text{CH}_2\text{NO}_2 \\ \\ \text{R}_2\text{NCH} {==} \text{CHNO}_2 + \text{CH}_2(\text{CO}_2\text{C}_2\text{H}_5)_2 + \text{C}_2\text{H}_5\text{OH} \\ \end{array}$$

A β -amino group is not always eliminated. Ethyl β -aminocrotonate312,313 and ethyl a-methyl-\beta-aminocrotonate314 react with diethyl malonate in presence of sodium ethoxide to give the pyridine derivatives LVI. These, however, are not Michael reactions.

It is interesting that dry sodium ethoxide or sodium metal causes a direct condensation of diethyl citraconate (LVII), whereas alcoholic ethoxide solution leads first to isomerization to diethyl itaconate (LVIII) and then to Michael condensation.315 It is equally worthy of note that,

$$\begin{array}{ccc} \mathrm{C_2H_5O_2CC(CH_3)} \!\!=\!\! \mathrm{CHCO_2C_2H_5} & & \mathrm{C_2H_5O_2CC(=\!CH_2)CH_2CO_2C_2H_5} \\ & & \mathrm{LVIII} & & \mathrm{LVIII} \end{array}$$

in the addition of ethyl acetoacetate, ethyl methylacetoacetate, or ethyl cyanoacetate to diethyl citraconate, the a-hydrogen atom of the donor adds to the non-methylated side of the unsaturated ester316 whereas the addition of diethyl malonate to the unsaturated ester involves the methylated side. Diethyl malonate adds in the same direction to diethyl

³¹¹ Hurd and Sherwood, Jr., J. Org. Chem., 13, 471 (1948).

³¹² Knoevenagel and Fries, Ber., 31, 767 (1898).

³¹³ Kooyman and Wibaut, Rec. trav. chim., 65, 10 (1946). 314 Wibaut and Kooyman, Rec. trav. chim., 63, 231 (1944).

³¹⁵ Crossley, J. Chem. Soc., 79, 138 (1901); Proc. Chem. Soc., 16, 90 (1900).

³¹⁶ Mitter and Roy, J. Indian Chem. Soc., 5, 33 (1928) [C.A., 22, 3882 (1928)].

mesaconate, this is the only example of the use of this trans compound as an acceptor in the Michael condensation 517

In the Michael condensation of esters of polycarboxylic acids, two tendencies are apparent First, the highly substituted reaction products tend to dissociate into simpler substances by elimination of some smaller molecules, such as ethanol or diethyl malonate, with formation of a double bond 215,315-321 Second, those adducts containing both an enolizable hydrogen atom and a suitable acceptor structure undergo an intramolecular Michael condensation with the formation of a sixmembered ring. Tetraethyl propylene-1,1,3,3-tetracarboxylate is reported to lead, under the influence of piperidine or sodium ethoxide, to the cyclobutane derivative LIX, 321-322 and piperidine converts diethyl

C₂H₂O₂C(CH₂)HCCH—C(CN)CO₂C₂H₅

3-cyanopropylene-1,3-dicarboxylate and diethyl 4-cyanobutylene-2,4dicarboxylate into the cyclobutanes LX and LXI, respectively 522,523 However, reaction of diethyl acetylenedicarboxylate with tetracthyl ethane 1,1,2,2-tetracarboxylate has been recently shown \$24,225 to give not a cyclobutane derivative but hexaethyl butene-1,1,2,2,3,4 hexacarboxilate Table XIV summarizes our knowledge of the behavior of aliphatic

dienic esters and one trienic ester in the Michael condensation. With the dienic esters, 1,6 addition predominates over 1,4 addition; with the trience ester, 1,8 addition predominates This, however, applies only to esters in which the polar groups are unsymmetrically distributed about the double bond, dualkyl muconates, RO,CCH-CHCH-CHCO,R, undergo 1,4 addition exclusively, giving RO,CCH=CHCHR'CH,CO,R 226

Mr Hope, J Chem Soc . 101, 892 (1912) ste Cornforth and Robinson, J Chem Soc , 1949, 1855

¹¹⁰ Cox and McEhain, J Am Chem Soc . 58, 2459 (1934)

the Cox, Kroeker and McEls ain, J Am Chem Soc., 56, 1173 (1934)

Pti Guthreit. Ber , 34, 675 (1901)

in Ingold, Perren, and Thorpe, J Chem Sor 121, 1765 (1922) especially p 1788 110 Verkede, Jerelag Akad II etenschappen Amsterdam 27, 1130 (1919) [C 4 , 13, 3149

⁽¹⁹¹⁹⁾¹ No. Overberger and Kabasakuhan, J Am Chem Soc., 75, 6008 (1953)

²¹ Read, Chemistry & Industry, 1953, 846

sa Farmer, J Chem Soc . 121, 2015 (1922)

Alicyclic and Aromatic α,β -Ethylenic Esters (Tables XV and XVI). In the alicyclic series, a small number of Michael condensations have been carried out (Table XV). These proceed normally, and the only point of interest is that the reactions of ethyl cyclopentenecarboxylate with ethyl acetoacetate and diethyl malonate, respectively, give exclusively the *trans* form of the reaction products. As pointed out on p. 199, relatively little is known of the stereochemistry of the Michael reaction.

In the aromatic series, even fewer reactions have been studied (Table XVI). Acetophenone gives a Michael condensation with methyl and ethyl einnamate; it is in competition, however, with a Claisen condensation between the reactants under the influence of sodium amide or sodium. Acetone undergoes with alkyl einnamates the Claisen reaction exclusively.^{327,328}

The three dienic esters that have been studied do not give a consistent picture. In two of them 1,6 and in one 1,4 addition takes place, without any obvious difference either in the structure of the unsaturated ester or in the operating conditions.⁵⁶,¹⁹⁴,¹⁹⁵,³²⁹

Ortho-substituted aromatic α,β -ethylenic esters provide ideal structures for internal Michael condensation. If one introduces in the ortho position to the unsaturated ester group a substituent that contains an enolizable hydrogen atom at a suitable distance from the ring, a bicyclic system can be formed easily. This possibility has been utilized with substances of the general formula LXII for the synthesis of bicyclic systems such as LXIII, where X=0, S, or N-alkyl. The pertinent data form the second part of Table XVI, in which an analogous case from the alicyclic series is also included.

Unsaturated Keto Esters (Table XVII). Table XVII contains the scanty material pertaining to the Michael condensation of unsaturated keto esters, in which the double bond is activated both by a keto and an ester group.^{8,120,310,330,331} It is interesting to note that in esters of the type RCOCH=CHCO₂R', the keto group gives a more stable carbanion

²²⁷ Hauser, Yost, and Ringler, J. Org. Chem., 14, 261 (1949).

³²⁸ Ryan and Dunlea, Proc. Roy. Irish Acad., 32B, 1 (1913) [Chem. Zentr., 1913, II, 2039].

Kohler and Engelbrecht, J. Am. Chem. Soc., 41, 764 (1919).
 Errera, Ber., 33, 2969, 3469 (1900).

²³¹ Palit, J. Indian Chem. Soc., 14, 354 (1937) [C.A., 32, 561 (1938)].

than the ester group the Michael condensation with a donor R'H leads to a product of the structure RCOCH, CHR'CO,R'

Theoretically, it should be possible to effect internal Michael condensations with o-acetyl derivatives of cinnamic acid. It has, indeed, been found that methyl o-acctylemnamate reacts with sodium methoxide, but the expected product LXIV could not be isolated in pure form 332

Aromatic α,β-Acetylenic Esters (Table XVIII). In the aromatic series, as in the aliphatic, an acctylenic bond in conjunction with an ester group behaves in the Michael condensation like a double bond (Table XVIII). In certain cases, the correct formulation of the amon of the primary product of the condensation appears uncertain. It has been observed, for example, that the condensation of ethyl phenylpropiolate with diethyl malonate, using ethanolic sodium ethoxide and using sodium in benzene, lead to different amons, formulated as LXV and LXVI,25,26,333,334 This problem is discussed on p 186.

$$[C_{1}H_{1}O_{2}CCH = C(C_{4}H_{1})C(CO_{2}C_{1}H_{1})_{2}]Na \oplus LXV$$

 $[C_{1}H_{4}O_{2}CC = C(C_{4}H_{5})CH(CO_{2}C_{4}H_{5})_{2}]Na^{\oplus}$

T YOUTH

It is often thought that the reaction between acetylenic esters and substances like 2-picoline or quinaldine is a specific case of the Michael condensation, although the components react in a 2 1 ratio Diethvl acetylenedicarboxylate and 2-picoline yield the conjugated diene LXVII:

$$\bigcap_{N} c_{H_{3}} c = c_{ICO_{2}} c_{1} H_{1}) c = c_{IICO_{2}} c_{2} H_{6}$$

$$c_{O_{2}} c_{2} H_{6}$$

LXVII

¹⁹³ Koelsch and Stephens, Jr., J Am Chem Soc., 72, 2209 [1950] 255 Farmer, Ghosal, and Kon, J. Chem Soc., 1936, 1804

⁴⁰⁴ Michael, J Org Chem., 2, 303 (1938)

снои

the acetylenic dimethyl ester with 2-quinaldine gives the analogous, but more complex, product LXVIII.335-337

It is known that similar dimeric forms of acetylenic compounds often occur in the Diels-Alder reaction at least as formal intermediary products.³³⁸

Olefins with Substituents Based on Hetero Atoms (N, S, P; Tables XIX, XX, XXI). A nitro group activates a double bond to which it is attached as it activates adjacent hydrogen atoms. Table XIX summarizes the Michael condensations involving α,β -ethylenic nitro compounds. Data pertaining to hydroxymethylenenitroacetaldehyde (the enolic form of nitromalondialdehyde, LXIX) are included. This

$$O_2NC$$
 + $CH_2CH_3 \rightarrow O_2NCH$ $CHCH_3 \rightarrow$ CHO CO CHO CO CHO CO CHO CO CHO CHO

compound reacts with many donor molecules, including even aliphatic ketones, to give derivatives of 4-nitrophenol. The reaction with methyl ethyl ketone is illustrative. The activating power of the nitrogroup is so great that o- and p-nitrostyrene can also act as acceptors in

$$CH=CH_{2} + CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \rightarrow$$

$$CH_{2}CH_{2}CH(COCH_{3})CO_{2}C_{2}H_{5}$$

$$NO_{2}$$

- 335 Diels, Alder, et al., Ann., 498, 16 (1932).
- 335 Diels and Kech, Ann., 519, 140 (1935).
- ²³⁷ Diels and Pistor, Ann., 530, 87 (1937).
- ³³⁸ Diels and Alder, Ann., 498, 16 (1932); *ibid.*, 505, 103 (1933); *ibid.*, 510, 87 (1934); Diels and Kock, *ibid.*, 556, 38 (1944).
 - 339 Hill and Torrey, Jr., Am. Chem. J., 22, 89 (1899).
 - 340 Hill and Hale, Am. Chem. J., 33, 1 (1905).
 - 341 Hill, Ber., 33, 1241 (1900).
 - ³⁴² Prelog and Wiesner, Helv. Chim. Acta, 30, 1465 (1947).
 - 312 Prelog, Wiesner, Ingold, and Haesliger, Helv. Chim. Acta, 31, 1325 (1948).

the Michael reactions. Formally, the addition of the donor takes place in the γ,δ and ε,ζ positions of the activated unsaturated system, respectively,344

It appears that the S=O bond in sulfoxides and sulfones (Table XX) has sufficient double bond character to conjugate with and activate neighboring ethylenic double bonds.345-254 In this respect, it is recalled that 1,2-bis(arylsulfonyl)ethenes are highly active dienophiles,335 and that vinyl sulfones add aromatic hydrocarbons in the presence of aluminum chloride in the same manner as do α. β-unsaturated ketones. 556 Organomagnesium and organolithium compounds also add 1,4 to α,β-unsaturated sulfones 357

Table XX also includes the Michael reactions of N,N-diethylvinylsulfonanilide358 and the interesting condensations of vinyldimethylsulfonium bromide with ethyl acetoacetate and diethyl malonate 22

Reactions involving diethyl vinylphosphonate, CH2-CHPO(OC2H5)2, a newly discovered type of acceptor in the Michael reaction, are listed in Table XXI It has already been pointed out (p. 204) that compounds containing phosphono groups have sufficiently active hydrogen atoms to serve as donors in the Michael condensation. The reaction referred to here leads to the supposition that the P=O bond, like the S=O bond, is able to form a conjugated system with an adjacent ethylenic linkage.

2- and 4-Vinylpyridines (Table XXI). Although practically no work appears to have been done on the ability of the open-chain system C-C-N to undergo Michael condensations (see p 207), the behavior of 2- and 4-vinylpyridine shows that, at least under certain conditions, this system gives typical Michael products The reactions investigated appear in Table XXI 350

244 Dale and Strobel, J Am Chem Soc , 76, 5172 (1954).

244 Samuel, J Chem Physics, 12, 380 (1944), tbid, 13, 672 (1945), Bergmann and Techudnowsky, Ber., 65, 457 (1932), Lister and Sutton, Trans Faraday Soc., 35, 495 (1939) See, however, Arndt and Eistert, Ber , 74, 423 (1941) 844 Koch, J Chem Soc . 1950, 2892

** Karrer, Antis, and Schwyrer, Helv Chim Acia, 34, 1392 (1951) *** Varsanyı and Ledik, Acta Chim Acad Scs Hung , 3, 243 (1953) [C.A. 47, 11000 (1953)].

319 Kloosterziel and Backer, Res trav chim , 72, 185 (1953).

210 Zollinger, Buschler, and Wittwer, Helv Chim Acta, 36, 1711 (1953) Bordwell and Andersen, J. Am Chem Soc , 75, 6019 (1953)

312 Jaffé, J Phys. Chem , 58, 185 (1954)

349 Price and Morsta, J Am Chem Soc , 75, 4747 (1953).

2.4 Price and Gillis, J Am Chem Soc. 75, 4750 (1953) 311 Truce and McManume, J Am. Chem. Soc., 75, 1672 (1958)

244 Truce, Simms, and Hill, J Am Chem Soc , 75, 5411 (1953). 317 Potter, J Am Chem Soc , 78, 5472 (1954)

300 Buess and Jones, J Am Chem Soc , 76, 6558 (1964). 3.0 For the addition of enclizable hydrogen compounds to the C=N double bond steelf,

see Lazzareschuss and Philpott and Jones, 181

Fulvenes. Calculations as well as physical and chemical evidence have shown that the fulvenes, represented by the formula LXX, possess a polar double bond.^{260,361} It is, therefore, not surprising that fulvenes are

also acceptors in the Michael condensation. The experimental material on the subject is scanty, 362,363 and the only donors that have been tested so far are fluorenes. Thus dibiphenyleneethylene (LXXI) adds fluorene under the catalytic influence of sodium hydroxide, to give an 82% yield

of tribiphenylenepropane (LXXII). The same reaction can be effected between 2,7-dibromofluorene and 2,7,2',7'-tetrabromodibiphenylene-ethylene.

It is to be expected that these highly substituted systems will show a considerable tendency to dissociate (in the way that decaphenylbutane dissociates into pentaphenylethyl).³⁶⁴ Thus one can explain the observation that 9-aminofluorene (LXXIII) reacts with dibiphenyleneëthylene (LXXIV) in the presence of ammonia to give dibiphenyleneëthane (LXXV) and fluorenone imide (LXXVI) by the accompanying equation. 9-Fluorenol behaves analogously. The observation that 2,7,2',7'-tetrabromodibiphenyleneëthylene and fluorene yield the dibromo derivative

²⁴⁰ Pullman, Berthier, and Pullman, Bull. soc. chim. France, 1950, 1097.

²⁴¹ Bergmann and Fischer, Bull. soc. chim. France, 1950, 1084.

²⁶² Pinck and Hilbert, J. Am. Chem. Soc., 68, 2014 (1946).

²⁶³ Pinck and Hilbert, J. Am. Chem. Soc., 88, 2739 (1946).

²⁴¹ Schlenk and Mark, Ber., 55, 2296 (1922).

(LXXVII) and 2,7-dibromofluorene can be understood on the basis of a sequence of condensation and disproportionation steps.

2.7-Dibromofluorene and dibiphenyleneëthylene give with sodium ethoxide as catalyst a 58% yield of α-(2,7-dibromobiphenylene)-β,ydibiphenylenepropane (LXXVII), whereas, in the presence of potassium hydroxide and pyridine, α,β-bis-(2,7-dibromobiphenylene)-y-biphenylenepropane (LXXVIII) is formed. Thermal decomposition of these two compounds gives, inter alia, 2,7-dibromodibiphenyleneethylene, 2,7compounds gives, inter 2,7,2',7'-tetrabromodibiphenylenetthylene, 2,7,2',7'-tetrabromodibiphenylenetthylene, and 2,7,2',7'-tetrabromodibipheny lenecthane (formulas on p 244).

The second fulvene derivative that has been employed as an acceptor

in the Michael condensation is benzylidenefluorene (LXXIX), which adds fluorene in 70% yield under the influence of a mixture of pyridine and aqueous sodium hydroxide. In accordance with the direction of the dipole moment in the semicyclic double bond of the fulvenes, the product is α,γ -dibiphenylene- β -phenylpropane (LXXX).²⁶⁵

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

It is not surprising that formylfluorene, i.e., 9-hydroxymethylenefluorene, is also capable of undergoing the Michael condensation (see pp. 221, 235). Formylfluorene has been converted by reaction with malonic

²⁴⁵ Bergmann and Lavie, J. Am. Chem. Soc., 74, 3173 (1952).

acid (with loss of water and carbon dioxide) to β-{9-fluorenylidene}propionic acid (LXXXI) in 11% yield.344

Systems That Did Not Undergo Condensation

The following is a list of reactant systems that have not given Michael condensation products. The listing is in order of increasing number of carbon atoms in the acceptor.

Acrylonitrile and diethyl acetosuccinate, 267

Methyl vinyl sulfone and ethyl phenylacetate, acetophenone, or benzyl p-tolyl sulfone. 118

Methyl vinyl ketone and "Inhoffen's ketone." 368

Methyl isopropenyl ketone and cyclopentanone.369

Acetylacetone and chloroacetamide, phenylacetamide, benzyl cyanide, ³⁷⁶ or α-cyanopropionamide, ³⁷¹

e, or α-cyanopropionamide. or 1-methyl-3-acetyloxindole. στ Ethyl acrylate and 3-acetyloxindole or 1-methyl-3-acetyloxindole. στ Methyl crotonate and nitropropane in the presence of diethylamine. στο

Mesityl oxide and 2-quinaldine. 778
Crotonaldehyde with N-(1,3-dimethylbutylidene)-1,3-dimethylbutylidene

Ethyl crotonate and 2,7-dibromofluorene. 376

p-Benzoquinone and ethyl N-acetyl- β -aminocrotonate or diethyl aminomethylenemalonate. 277

Borsche and Nicmann, Ber , 69, 1993(1938)

W7 Blood and Linstead, J Chem Soc, 1952, 2255
Punder and Robinson, J. Chem. Soc, 1952, 1224.

¹⁴⁰ Colongo and Dreux, Bull soc chim France, 1952, 47

¹¹ Colonge and Dreat. But so: Colon 2 Colonge and Dreat. But so: Basu, J Indian Chem Soc., 7, 815 (1930) [C A , 25, 1528 (1931)]

Bardhan, J Chem Soc., 1929, 2223
 Julian and Printy, J Am. Chem. Soc., 75, 5301 (1953)

¹⁰ Kloeitel, J. Am Chem Soc., 70, 3571 (1948)

Weiss and Hauser, J. Am Chem. Soc., 71, 2026 (1949)
 Smith, Norton, and Ballard, J. Am. Chem. Soc., 75, 3316 (1953)

³¹⁰ Taylor and Conner, J. Ory. Chem. 8, 695 (1941)

³¹⁰ Taylor and Conner, J. Org. Chem. 5, 595 (1941)
317 Beer, Davenport, and Robertson, J. Chem. Soc., 1953, 1262

3-Methyl-2-cyclopentenone and ethyl acetoacetate. 378

Ethyl α-acetamidoacrylate and oxindole.379

1-Acetylcyclohexene and 6-methoxy-9-methyl-1-keto-1,4,5,6,7,8,9,10octahydronaphthalene.380

Methyl 5-methyl-2-hexenoate or δ-methylsorbate with dimethyl malonate or methyl cyanoacetate.381

1-Acetyl-2-methylcyclohexene with various reagents.382-387

Trimethylquinone and biacetyl or its half-acetal.388

Methyl α-cyano-β-methylsorbate and methyl cyanoacetate. 381

Ethyl β -diethylaminovinyl ketone and 2-methylcyclohexanone.³⁸⁹

Trimethylquinone monomethylimine and 3,3-dimethoxy-2-butanone.388

Methyl 2-hydroxystyryl ketone and ethyl oxaloacetate, ethyl cyanoacetate, or diethyl malonate.38

Methyl α-cyclohexylideneëthyl ketone with diethyl malonate. 390

4-Phenyl-2-methylamino-2-buten-4-one and ethyl cyanoacetate.391

Diethyl 1-pentene-1,3-dicarboxylate and ethyl cyanoacetate. 392

Ethyl cinnamate or diethyl benzylidenemalonate and fluorene or 2,7-dibromofluorene 376

Diethyl 2-acetyl-2-hexene-1,6-dioate and 1-tetralone or 6-methoxy-1tetralone.206,393

2-Dimethylamino- or 2-morpholino-benzosuberone or their methiodides with biacetyl or its monoxime.394

3-Phenyl-5,5-dimethyl-2-cyclohexenone and diethyl malonate, ethyl cyanoacetate, or nitromethane.395

3-Benzylidene-6-formylcyclohexanone and 5-diethylaminopentane-2,3dione-3-monoxime or its methiodide.394

```
<sup>278</sup> Acheson, J. Chem. Soc., 1952, 3415.
```

²⁷⁹ Julian, Printy, Ketcham, and Doone, J. Am. Chem. Soc., 75, 5305 (1953).

Nazarov and Zav'yalov, Izvest. Akad. Nauk S.S.S.R. Oldel. Khim. Nauk, 1952, 437 [C.A., 47, 5365 (1953)].

281 Reid and Sause, J. Chem. Soc., 1954, 516.

²⁰² Bagchi and Banerjee, J. Indian Chem. Soc., 23, 397 (1946) [C.A., 42, 1601 (1948)].

263 Dimroth, Angew. Chem., 59, 215 (1947).

286 Huber, Ber., 71, 725 (1938).

Johnson, Szmuszkovicz, and Miller, J. Am. Chem. Soc., 72, 3726 (1950).

Ludevitz, Dissertation, Goettingen, 1944. ³³⁷ Turner and Voitle, J. Am. Chem. Soc., 72, 4166 (1950).

288 Smith and Dale, J. Org. Chem., 15, 832 (1950).

Hills and McQuillin, J. Chem. Soc., 1953, 4060.

200 Kon, J. Chem. Soc., 1928, 1792.

311 Basu, J. Indian Chem. Soc., 12, 299 (1935) [C.A., 29, 6878 (1935)].

³¹¹ Thorpe and Wood, J. Chem. Soc., 103, 1579 (1913).

Peak, Robinson, and Walker, J. Chem. Soc., 1938, 752.

³³⁴ Tarbell, Wilson, and Ott, J. Am. Chem. Soc., 74, 6263 (1952).

315 Woods, J. Am. Chem. Soc., 69, 2549 (1947).

Benzylideneacetophenone and diethyl cyanomalonate,125 diethyl ethyl malonate, 306 diethyl butylmalonate 125 or diethyl phenylmalonate 125 m. or p-Nitrobenzylideneacetophenone and fluorene. 376

α-Cyanostilbene and ethyl phenylacetate 82

Diethyl cinnamylidenemalonate and methyl cyanoacetate 397

cis-Dibenzoylethylene and diethyl benzylmalonate.58

2-Acetyl-1,3-diphenyl-2-propen-1-al and ethyl tetrahydroanthranilate.298

Ethyl 2,4-diphenylbutadiene-1-carboxylate and ethyl cyanoacetate. 397 2-(Trimethylquinonyl)methylene-3,5,6-trimethyl-2-acetoxy- (or methoxy-)3,5-cyclohexadienone with diethyl malonate or ethyl cyanoacetate 300

Unsaturated carbonyl-bridged system such as

with diethyl malonate or cyanoacetamide. 400

Diethyl benzylidenemalonate and nitroethane

2,3-Dichloro-1,4-naphthoquinone and acetone. 273 Mesityl oxide and cyclohexanone 401

Acrylonitrile and diethyl trimethylsuccinate, which appears to give an O-substituted derivative of the enol form. 402

3-Methyl-4-amino-3-penten-2-one and cyanoacetamide. 398

2-Methylcycloheptylideneacetomtrile and cyanoacetamide. 4020

Examination of these examples does not lead to definite conclusions as to the factors responsible for the failure of the condensation. However, the qualitative impression gained is that many substituents about the reacting centers tend to prevent the reaction in the donors, this can be ascribed to lowering acidity, but steric factors undoubtedly also play a part in interfering with the condensation. As a case in point, the failure of diethyl phenylmalonate to undergo any Michael reaction any be cited.

44 de Benneville, Clagett, and Conner, J. Org. Chem., 8, 680 (1941)

313 Bloom and Ingold, J. Chem Soc., 1931, 2765.

100 Basu, J. Indian Chem Soc. 8, 319 (1931) [C.A., 26, 458 (1932)]. *** Smith, Davis, Jr , and Sogn, J. Am. Chem Soc , 72, 3651 (1950)

400 Allen and Van Allan, J. Org. Chem , 18, 582 (1953)

ses Braude and Wheeler, J. Chem Soc , 1955, 329. 100 Talukder and Bagelu, J. Org. Chem., 20, 13 (1955)

*** Kandish and Linstead, J. Chem. Soc., 1929, 2139. 100 Connor, J Am. Chem. Soc., 55, 4591 (1933).

SYNTHETIC APPLICATIONS

Certain products of the Michael condensation may be used for the preparation of amino acids; others may undergo spontaneous cyclization or cycloisomerization reactions and thus open routes to a variety of ring compounds. In particular, the Robinson modification of the Michael reaction has been utilized for the synthesis of alicyclic ring systems (Table VIII). It seems, therefore, desirable to give a systematic picture of these synthetic possibilities.

Synthesis of Cyclic Systems

Cyclopropane Rings. Compounds that serve as intermediates for the formation of products containing the eyclopropane ring can be obtained by Michael condensation. For example, the product of the Michael reaction between benzylideneacetophenone and dimethyl malonate can be brominated and dehydrobrominated to yield a cyclopropane

$$\begin{array}{c} \text{C}_6\text{H}_5\text{CHCH}_2\text{COC}_6\text{H}_5 \xrightarrow{\text{Br}_2} \begin{array}{c} \text{C}_6\text{H}_5\text{CHCHBrCOC}_6\text{H}_5 \\ | & | & | \\ \text{CH}(\text{CO}_2\text{CH}_3)_2 \end{array} & \xrightarrow{\text{CH}(\text{CO}_2\text{CH}_3)_2} \end{array} \xrightarrow{\text{Mg(OCH}_3)_2} \begin{array}{c} \text{Mg(OCH}_3)_2 \\ \text{CH}_5\text{C}_6 & \text{COC}_6\text{H}_5 \end{array}$$

derivative (LXXXII), as shown in the formulation.⁴⁰⁴ Many highly substituted cyclopropane derivatives can be prepared by this route.

Cyclobutane Rings. It has been reported that cyclobutane derivatives were formed by intramolecular Michael condensation of esters of certain polycarboxylic acids.^{322,323,405} Recent investigations^{324,325} have shown, however, that reaction of diethyl acetylenedicarboxylate with, for example, tetraethyl ethane-1,1,2,2-tetracarboxylate does not give hexaethyl cyclobutane-1,2,3,3,4,4-hexacarboxylate but hexaethyl butene-1,1,2,2,3,4-hexacarboxylate.

Cyclopentane Rings. Cyclopentanone derivatives are formed in situ by Dieckmann condensation of the primary adducts of the Michael condensation between ethyl citraconate (or itaconate) and malonates or

⁴⁰⁴ Kohler and Conant, J. Am. Chem. Soc., 39, 1404 (1917).

⁴⁰⁵ Guthzeit, Weiss, and Shaefer, J. prakt. Chem., [2], 80, 393 (1909).

substituted malonates. \$,145,468 (Compare also the analogous formation of cyclopentanones from cyclopropane derivatives; see pp. 205-207).

Cyclohexane and Condensed Alicyclic Ring Systems. Divinyl ketones of the dibenzylideneacetone type react with donors that contain an active methylene group according to the accompanying general equation, yielding substituted cyclohexanones (LXXXIII) ³³²⁻⁴⁵⁰

$$\begin{array}{c} O \\ \\ R_{I} \end{array} + H_{I}CH_{1}R_{4} \sim \begin{array}{c} O \\ \\ R_{2} \end{array} + R_{I} \end{array}$$

In general, Michael adducts of unsaturated aldehydes and ketones with the distribution of the state of the state of the state of the terminal methyl group of the adduct and the carbonyl group of the original acceptor molecule. In a fair number of cases, this cyclization reaction is secompanied by the elimination of the earbethory group. This reaction is illustrated by the synthesis of the keto esters LXXXIV.^{18,18} and LXXXIV ^{18,18} in al. LXXXIV ^{18,18} and LXXXIV ^{18,18} in al. LXXXIV ^{18,18} in al. LXXIV ^{18,18} in the sate example, the reaction stops at the intermediary addol stage, without the additional dehydration steptos (see constant).

Obviously, the same reaction will take place whenever 1,8-diketones of the above type are formed, e.g., in the condensation product of ethyl cyclohexanon-2-carboxylate and ethylidensectone or benzyldiensectone, yielding LXXXVII (R = CH, or C,H₀). ** A similar cyclization takes place with the adduct of 1-tetralone and ethylidensectoacted or

⁴⁰⁴ Touvonen, John, Sainio, and Kuuamen, Suomen Kemishlehti, SB, 46 (1935) [CA, 30, 2188 (1936].

50 Mannich, Koch, and Borkowsky, Ber, 70, 355 (1937)

⁴⁴⁴ In this and the following formulations, the dotted lines indicate the components from which the starting materials of the cyclisation reaction are formed 498 Rappon, J Chen. Soc. 1936, 1625.

acetylcyclopentene, yielding the tricyclic keto ester LXXXVIII206 and (via LXXXIX) the tetracyclic ketone XC, 88 respectively.

A related reaction is the cyclization of diethyl alkylidenebisacetoacetates. Diethyl methylenebisacetoacetate (XCI), for example, forms XCII: this then loses water and one carbethoxyl group to give the "Hagemann ester" XCIII. In other instances, both carboethoxy groups

are split off and 1-methyl-5-alkyl-1-cyclohexen-3-ones are formed. The reaction of ethyl sodioacetoacetate and ethyl ethoxymethyleneacetoacetate is more complicated, 41e-413 Other examples are the condensation products of mesityl oxide and ethyl benzoylacetate,414 acetylacetone,415

ets Clausen, Ann., 297, 1 (1897), especially p. 49.

⁴¹¹ Luebermann, Ber., 39, 2071 (1906), and previous papers 415 Fosst, Delfs, and Langenkamp, Ber , 59, 2958 (1928).

⁴¹⁵ Fount, Janssen, and Chen, Ber , 60, 199 (1927). ue Beringer and Kuntz, J. Am. Chem. Soc , 73, 364 (1951).

⁴¹⁸ Schenber and Messel, Ber., 48, 238 (1915).

or deoxybenzoin;⁴¹⁶ the 1:2 adducts of diethyl malonate or its monosubstitution products with aerolein and methaerolein;^{110,417} and the condensation products of methyl vinyl ketone with 2-methylcyclopentanone,^{229,239} 2-methylcyclohexanone,²²⁹ or aliphatic ketones.^{418,419}

There are a few cases in which the methyl of an acetyl group other than that of the ethyl acetoacetate component supplies the hydrogen for the water molecule to be eliminated, e.g., in the formation of the cyclohexenones XCIV¹²⁰ and XCV.⁹³ This cyclization is also possible with

unsaturated 1,5-diketones. Obviously, the configuration of the double bond must be cis for cyclization to take place. The product XCVI from acetylacetylene and 2-methylcyclohexanone gives the dienone XCVII.

CO2C2HB

an ethoxy group and a hydrogen atom in the ε position. Cyclic 1,3-diones, such as XCVIII,422 XCIX,423 C,424 and I,424,* are formed. Analogous

adducts derived from ethyl cyanoacetate (instead of malonate) give the same final products, e.g., the cyclohexanedione II $^{425}\,$

*** Mattar, Hastings, and Walker, J. Chem. Soc., 1930, 2455
*** Chuang, Ma, and Tien, Ber. 68, 1946 (1935)

ett Hinkel, Ayling, Dippy, and Angel, J Chem Soc , 1931, 814

^{*} Enumeration of formules begins with I again after C to reduce the complexity of the

umpers.
435 Vorlagender, Ann , 294, 253 (1897)

Analogous behavior has, of course, been observed with the δ -keto esters formed, for example, from β -keto esters and α, β -ethylenic esters.⁴²⁶

Aromatic Ring Systems. When the δ -keto ester contains a double bond in the β , γ position, the final product is a substituted resorcinol; thus the adduct of diethyl malonate and n-butylacetylacetylene gives 5-n-butylresorcinol (see p. 214). Other reaction schemes in which aromatic products are formed in the Michael condensation are described in the remaining paragraphs of this section.

Esters of styrylacetic acid, which can be obtained from arylacetates and diethyl ethoxymethylenemalonate, cyclize to derivatives of α -naphthol (III)²⁰⁸ or hydroxyphenanthrene IV.³⁰⁹ Similarly, the condensation of the enolic forms of β -keto aldehydes and β -diketones with diethyl

$$\begin{array}{c} C_2H_5O_2C \\ \hline \\ CHOC_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ C_2H_5O_2CCH \\ \hline \\ CO_2C_2H_5 \\ \hline$$

Ċ,H,

loss of one carbethoxy group beta to the keto group, leads to tetraethyl cyclohexanone-2,4,4,6-tetracarboxylate (X). This can again undergo a Michael reaction with diethyl ethylene-1,1-dicarboxylate to give XI. Renewed Dieckmann reaction and loss of a carbethoxy group yields as

the final product tetraethyl bicyclo[3.3.1]nonane-2,6-dione-1,3,5,7-tetra-carboxylate (XII).

Oxygen-Containing Rings. δ -Keto esters containing a double bond in the α,β position cyclize by an entirely different course from their β,γ analogs. Thus, although the β,γ compounds form 5-alkylresorcinols (see p. 214), the adducts of diethyl malonate and hydroxymethylene ketone

derivatives lose water or ethanol in the course of condensation, and α -pyrone derivatives such as XIII are formed. Another example is the adduct of ethyl acetoacetate and diethyl ethoxymethylene-malonate or -cyanoacetate. The condensation products of ethyl phenylpropiolate

with ethyl acetoacetate 430,431 and acetylacetone 432,433 behave analogously, giving XIV (R = OC2H3 and CH3, respectively).

An additional case, in which a saturated ô-keto ester is cyclized by enolization of the carbonyl group, is represented by the adduct of cyclohexanone and diethyl benzylidenemalonate . Here, the ε-methylene group is sterically prevented from participation in a potential ring system and the enol lactone XV is formed

y-(o-Hydroxyphenyl)ketones are converted to 2,3-benzo-1,4 dihydropyran derivatives (XVI, R = CH3, CoH5) under the conditions of the

Michael condensation. 263,434 Similar ring closures have been treated in an earlier chapter of Organic Reactions 435 The adduct from 3-chloro-2cyclohexen-1-one and diethyl methylmalonate loses hydrogen chloride

- 430 Pesst and Pomme, Ann , 370, 72 (1909)
- 441 Ruhemann, J Chem Soc , 75, 245 (1899)
- 414 Ruhemann, J. Chem Soc., 75, 411 (1889)
- ess Ruhemann and Cunnington, J Chem Soc. 75, 278 (1899) 414 Forster and Heilbron, J. Chem Soc , 125, 340 (1924)
- gorner and removes, and Adams, in Adams, Organic Reactions, Vol. 8, Chapter 3, John Wiley & Sons, 1954 See especially pp 30-95 and Tables XVI and XVII.

and cyclines to the saturated lactone XVII. Dovey and Robinson have suggested that the formation of 2,4,6 triphenylpyrylium duoroborate

from acetophenone and boron trifluoride takes place by a Michael reaction. However, it has recently been proved that this is not the case. (4)

Piperidines and Pyridines. & Ketonic amides formed by Michael condensations from cyanoacetamide and zißiethylenic ketones undergo cyclization to unsaturated cyano-substituted 2-ketopiperidines (XVIII).

The first of the accompanying examples shows a hydroxylated intermediate, such as has been isolated in a number of reactions. 429

A slightly different scheme applies to the condensation products of cyanoacetamide and α -hydroxymethylene ketones, in which, by the loss of water, a second double bond is introduced into the ring and thus the enolization to 2-hydroxypyridines (XIX and XX) is facilitated. Aminomethylene ketones behave analogously, 398 and cyanoacetamide can

²¹⁶ Paranjpo, Phalnikar, Bhide, and Nargund, Current Sci. India, 12, 150 (1943) [C.A., 37, 6671 (1943)].

⁴³⁷ Dovey and Robinson, J. Chem. Soc., 1935, 1389.

⁴³⁸ Eldersleld and King, J. Am. Chem. Soc., 76, 5437 (1954).

⁴²⁰ Barat, J. Indian Chem. Soc., 7, 321 (1930) [C.A., 24, 4786 (1930)].

to replaced by malonamide. 110 The same result is obtained with the adducts from cyanoacetamide and acetylenic ketones Compounds

having the general structure XXI (R = C, H, or C, H,) are formed 181,184

If the precursor of XXI is shown in the tautomeric form XXIA, it is evident that compounds of type XXIB will be capable of a similar

transformation into pyridine derivatives. Thus "diacetonitrile" and benzylideneacetono give, after spontaneous loss of hydrogen from the primary product, 3-cyano-4-phenyl-2,6-dimethylpyridine (XXII).440

44 Chatterjee, J. Indian Chem. Soc., 29, 323 (1952) [C A , 47, 9972 (1953)].

Likewise, the imine of ethyl acetoacetate condenses with diethyl ethoxymethylenemalonate with loss of ethanol to give diethyl 2-hydroxy-6-methylpyridine-3,5-dicarboxylate (XXIII).⁴⁴¹

Generally speaking, the imines of β -keto esters and β -diketones react in this manner with hydroxymethylene, alkoxymethylene, and aminomethylene ketones and esters. Thus, from 2-hydroxymethylene-cyclopentanone and ethyl iminoacetoacetate, ethyl 5-methyl-4-azaindene-6-carboxylate (XXIV) becomes available. Also ethyl tetrahydroanthranilate (XXV) reacts in the manner of an aminomethylene ester

$$\begin{array}{c|cccc} CONH_2 & CONH_2 \\ \hline \\ NCH_3 & CO_2C_2H_5 & NH \\ \hline \\ XXIV & XXV & XXVI \\ \end{array}$$

giving with malonamide 1-hydroxy-3-keto-2,3,4,5,6,7,8,10-octahydroiso-quinoline-4-carboxamide (XXVI).³⁸¹ The only exception to this rule is the reaction of 2-aminomethylenecyclohexanone (XXVII) with ethyl cyanoacetate, which is claimed⁴⁴⁶ to yield 3-keto-4-cyano-2,3,5,6,7,8-hexahydroisoquinoline (XXVIII). In this connection Berson and

Brown¹²⁷ consider that Hantzsch's synthesis of 1,4-dihydropyndines involves a Michael reaction. These authors assume that, e.g., in the condensation of formaldehyde, ammonia, and ethyl acceptacetate, ethyl β-ammorotonate and ethyl methyleneacetoacetate are formed and then react in the following way:

Another route to the pyridine series is possible in all Michael condensations that lead to 1,5-diketones capable of being cyclized by treatment with ammonia, in these reactions ammonia can be used as the catalyst for the Michael condensation A special example of this general possibility is provided in the reaction of ethyl ammonia is eliminated from the ethyl acetoacetate or cyclohexanore ¹¹⁰ ammonia is eliminated from the primary product XXIX in the first step and utilized in the second step of the subsequent process.

Pyrroles. Clarke and Lapworth⁴⁴ have assumed that the pyrrole synthesis discovered by von Miller and Ploech⁴⁴ mvolves a Michael reaction; thus, one could formulate the synthesis of 1-(p-tolyl)-2,3diphenylpyrvole from x-toludinobenzyl cyanide and emnamidehyde in the presence of potassium hydroxide as folioss. (Compare et 450)

Hernon and Brown, J Am Chem Soc. 77, 444 (1955)
 Clarke and Lapworth, J. Chem Soc. 91, 694 (1907)

Clarke and Lapworth, J. Chem. Soc., 91.
 Miller and Plonchi, Ber., 31, 2718 (1898)
 Bodforse, Ber., 54, 1111 (1931)

Treibs and Derra, 451 however, have suggested that the synthesis proceeds through a hemiacetal of the unsaturated aldehyde (formed by interaction with the solvent, e.g., methanol) and is, therefore, not a Michael reaction.

Pyrrolizidines and Related Ring Systems. The Michael condensation has been employed by Leonard in the preparation of pyrrolizidines (XXX) by reductive cyclization of γ -nitropimelic esters, which are available from nitroparaffins and acrylates or substituted acrylates.^{452–457}

$$\begin{array}{c} 2\mathrm{CH_2}\!\!=\!\!\mathrm{CHCO_2CH_3} \\ + \\ \mathrm{CH_3NO_2} \\ \\ \\ \mathrm{CH_2}\!\!-\!\!\mathrm{CH}\!\!-\!\!\mathrm{CH_2} \\ \\ \mathrm{CH_2}\!\!-\!\!\mathrm{CH}\!\!-\!\!\mathrm{CH_2} \\ \\ | & | & | & | \\ \mathrm{CH_2}\!\!-\!\!\mathrm{NO_2}\!\!-\!\!\mathrm{CH_2} \\ \\ | & | & | & | & | \\ \mathrm{CO_2CH_3} & \mathrm{CO_2CH_3} \\ \end{array}$$

Similarly, the reaction has been extended to the synthesis of 6-methylazabicyclo[5.3.0]decane (XXXI) by 1,6-addition of methyl γ -nitrobutyrate to methyl sorbate, followed by reductive cyclization. 116

There is also a synthesis of an indole derivative XXXII from quinone and ethyl iminoacetate (β -aminocrotonate), ²⁸⁸ which can be formulated as follows. ²⁵⁸

⁴³¹ Treibs and Derra, Ann., 589, 176 (1954).

⁴¹³ Leonard, Hruda, and Long, J. Am. Chem. Soc., 69, 690 (1947).

Leonard and Beck, J. Am. Chem. Soc., 70, 2504 (1948).
 Leonard and Boyer, J. Am. Chem. Soc., 72, 4818 (1950).

¹¹⁵ Leonard and Shoemaker, J. Am. Chem. Soc., 71, 1762 (1949).

Leonard and Felley, J. Am. Chem. Soc., 71, 1758 (1949).
 Leonard and Felley, J. Am. Chem. Soc., 72, 2537 (1950).

$$\bigcap_{OH} \bigcap_{CH^2} \bigcap_{$$

Synthesis of Amino Acids

The observation that substances such as ethyl acetamidomalonate and ethyl phthalimido-malonate or -cyanoacetate act as donors in the Michael condensation has opened a useful avenue to the synthesis of amino acids, 161, 458-462 The preparation of DL-glutamic acid (XXXIII) illustrates this method. 463 The products derived from α,β-ethylenic aldehydes and N-acylated aminomalonates 180,181,460-482,484 and aminocyanoacetates 140,460 are likewise of considerable interest; they are potential

HO,CCH(NH,)CH,CH,CO,H TIXXX

intermediates in the construction of the ornithine system and appear to be the key substances in the biogenesis of a number of alkaloids.445

- 444 Albertson and Archer, J. Am Chem Soc., 57, 2043 (1945) 40 Galat, J Am Chem Soc , 69, 965 (1947)
- 44 Mos and Warner, J. Am. Chem. Soc., 70, 2763 (1948).
- 441 Randerknecht and Nieroann, J. Am Chem. Soc., 72, 2296 (1950) 44 Van Zyl, van Tamelen, and Zuidema, J Am Chem Soc . 73, 1765 (1951).
- so Snyder, Shekleson, and Lewis, J. Am Chem Soc , 67, 310 (1945)
- as Mos and Warner, U.S pat. 2,508,927 [C.A., 44, 6374 (1950)] 44 Robinson, Proc. Univ. Durham Phil. Soc., 8, Pt. 1, 14 (1927-1928) [C A . 23, 1883
- (2029)1

As esters of nitroacetic acid become more generally available, these may also be used in the synthesis of amino acid precursors through the Michael condensation. 106,466

EXPERIMENTAL CONDITIONS

Solvents. If the products are sensitive to alcoholysis or if there is competition between the alkoxide ion and the donor anion for the acceptor molecule, a non-hydroxylic solvent is chosen or the reaction is carried out without solvent. Compare, however, ref. 278. When such competition is encountered or when the enolate of the donor is prepared with difficulty, sodium or sodium amide in an inert solvent may be used. Solvents used most often in the Michael condensation are methanol, ethanol, t-butyl alcohol, ether, benzene, dioxane, and mixtures of these solvents. Ester exchange has been observed in some condensations in which esters were employed as reactants. 163

Catalysts. The following catalysts have been used: sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, potassium isopropoxide, potassium n-butoxide, potassium t-butoxide, potassium α,α -dimethylpropoxide; dry or aqueous sodium or potassium hydroxide, methanolic or ethanolic sodium or potassium hydroxide, potassium hydroxide in t-butanol; metallic sodium or potassium; ammonia, alcoholic ammonia, ammonia in conjunction with ammonium chloride, sodium amide as such or in liquid ammonia; diethylamine, diisopropylamine, piperidine, pyridine, triethylamine, tributylamine, and other trialkylamines; methyltriethylammonium hydroxide, benzyltrimethylammonium hydroxide (Triton B), and its methoxide or butoxide.

Calcium and sodium hydride have been used very rarely; 156,4562,467 the same applies to potassium carbonate 208 and sodium triphenylmethide, 463 which was used as condensing agent for Michael reactions with the ethyl esters of acetic, isobutyric, and phenylacetic acids. The first ester underwent Claisen condensation under these conditions before Michael reaction took place.

Aqueous sodium cyanide was employed as catalyst in the condensations of acrylonitrile with ethyl cyanoacetate or benzyl cyanide. 423

It is worthy of note that the reaction between cyclohexanone or 2-methylcyclohexanone and acrylonitrile, carried out in the presence of

⁴⁴⁴ E. D. Bergmann, unpublished results.

⁴⁴² Fishman and Zuffanti, J. Am. Chem. Soc., 73, 4466 (1951).

McElvain and Lyle, Jr., J. Am. Chem. Soc., 72, 334 (1959).
 Hauser and Abramovitch, J. Am. Chem. Soc., 82, 1763 (1949).

[&]quot; Rogers, U.S. pat. 2,460,536 [C.A., 43, 3446 (1949)].

optically active quartz, coated with sodium, potassium, or lithium ethoxide, has been reported to give slightly optically active products. 470

Several examples have been reported 155,255,471-473 of Michael-type condensations brought about by acidic catalysts such as boron trifluoride, zinc chloride, or sulfur dioxide. Of practical importance are the condensations of pyrrole derivatives with free a positions which react with α,β-unsaturated aldehydes, ketones, acids, and acid derivatives in the presence of acidic catalysts such as boron trifluoride etherate or hydrobromic acid 474,475 As in the case of indole (see p. 209), one can assume that the donor is a tautomeric form of the pyrrole, in which the a position is transformed into an (activated) methylene group This product reacts further to give a dipyrryltrimethine derivative

Thus condensation occurs when ethyl hydroxymethylenephenylacetate is heated with malonic or cyanoscetic acid, 366,476,477 and when methyl vinvi ketone vapor is passed together with acetone or methyl ethyl ketone through a hot tube.419 Particular mention should be made of the possibility offered by the

recent development of strongly basic exchange resins; they appear to be highly promising condensing agents, especially where either a reactant or a reaction product is sensitive to dissolved alkali. Thus acctone or methyl ethyl ketone reacts easily with acrylonitrile in the presence of quaternized cross-linked polyvinylpyridine resin, 478 More complicated reactions can also be catalyzed in this way. 479, 480

- ere Terent'ev, Klabunovskii, and Budovskii, Shornik Statel Obehchel Ahim., 2, 1612 (1953) [C.4 , 49, 5263 (1955)].
- 475 Hauser, J. Am. Chem Soc. 60, 1957 (1938).
- 412 Hauser and Breslow, J Am Chem Soc., 62, 2382 (1940) 474 Berlin and Sherlin, J. Gen Chem. USSE, 8, 16 (1938) [C.A., 32, 5397 (1938)].
- ers Treebs and Michl, Ann., 589, 163 (1954)
 - on Treibe and Herrmann, Ann. 592, 1 (1955). treus and recrement, Ann. Bomboy, 4, 106 (1935) [C.A., 30, 5186 (1936)].
 - 477 Harris, Stiller, and Folkers, J. Am Chem. Soc., 61, 1242 (1939). ** Howk and Langkammerer, U.S. pat. 2.579,580 (C.4., 46, 7114 (1952))
 - 10 E. D. Bergmann and R. Korett, J Org Chem., 21, 107 (1956), 22, 1507 (1958)
 - ses Schmidle and Mansfield, U.S pat. 2,638,070 [C.A., 48, 13715 (1954)]

EXPERIMENTAL PROCEDURES

Y-Acetamido-y-carbethoxy-y-cyanobutyraldehyde. 49 A solution of 50 mg. of sodium in 60 ml of absolute ethanol is mixed with 17 g, of ethyl acetamidocyanoacetate, and the resulting suspension is cooled in a water bath while 7.5 ml. of acrolein is added dropwise. After the addition is complete, the mixture is attreed for two hours and neutralized with glacial acetic acid. The mixture is filtered, and the filtrate, after refrigeration for twenty-four hours, deposits the crystalline product. Filtration yields 15 g. (60%) of material melting at 106-109° Crystal-lization from 55% ethanol raises the melting point to 113.5-114.5°.

5-Nitro-4-dimethyleutan-2-one; 9A mixture of 1 mole of

mestiyl oxide, 10 moles of mtromethane, and 1 mole of diethylamine is allowed to stand at 30° for thurty days Unreacted material is removed by distillation up to 55°/20 mm, and the residue is fractionated. After a forerun of 4-diethylamino-4-methylpentan-2-one (10%), the product datile as an oil, bp. 112-1136°/14 mm. (65%). The product may be completely freed of basic impurities by shaking with 10% hydroehloric acid. After two distillations, a pure product, boiling at 128-129°/22 mm., can be obtained in 55% yields.

The same product may be obtained in 55-60% yield by heating the reaction mixture under reflux for forty-eight hours and treating subsequently as above.

7-Kete-1 methoxy-13-methyl-5.6,7,9,10,13-hexahydrophenanthrene (Robinson's medification). While 15.65 g, of drethylamino-butanone's a swirled gently in a 1-l, flask and cooled m ice, 15.0 g, of methyl todide is added portionwise during thirty minutes. The swring is regulated so as to obtain the crystalline methodde as an even coating on the walls of the flask. When no more liquid remains, the flask is kept in ice for thirty minutes and then under the tep for forty-the minutes. A solution of 20.0 g of 5-methoxy-1-methyl-2-tetralone in 100 ml, of dry thiophens-free benzene is added, ar is expelled by dry nitegen, and a solution of 6.5 g, of potassium in 100 ml, of dry ethanol is added with cooling during free munites.

cooming during are minutes.

Swirling is continued until the methodide dissolves (about thirty Swirling is continued until the precipitate of potassium foddide. The minutes) and is replaced by a precipitate of potassium indide. The mitture is kept in fee for an additional hour, and then holied gently for twenty-five minutes. An excess of 2 N milurio exid is added, followed by enough water to dasolve the potassium sulfate. The betnern layer is separated and the aqueous layer extracted twice with ether. The ether and benzene layers are combined, washed with water, and clarified with

magnesium sulfate, and the solvents are evaporated. The residue is distilled and 23.2 g. of product is collected up to 180°/0.1 mm. Crystallization from ether yields 17 g. of product, m.p. 115–117°. An additional gram of material is obtained by distillation of the mother liquors, making a total yield of 18 g. (71%).

This procedure is a general one, in which sodium methoxide or sodium ethoxide may be used effectively as a catalyst.

trans-3-Keto-2-phenylcyclohexaneacetic Acid. 108 A mixture of 50 g. of 2-phenyl-2-cyclohexen-1-one, 150 g. of dibenzyl malonate, and a solution of potassium t-butoxide, prepared from 1.3 g. of potassium and 20 ml. of t-butyl alcohol, is kept at 60° for three hours, and then left overnight at room temperature. The mixture is acidified with 2.5 ml. of acetic acid and diluted to a volume of 250 ml. with ethyl acetate. Thirteen grams of 10% palladium-charcoal is added, and the mixture is hydrogenated for an hour at room temperature at an initial pressure of 4 atm. The catalyst is filtered, the solvent evaporated, and the residue is heated for 10 minutes at 170-180° to effect decarboxylation of the malonic acid. The residue is taken up in ether, the solution extracted several times with 10% sodium carbonate solution, and the alkaline extract acidified. The product is obtained as a solid, m.p. 125° (55 g., 82%).

Dibenzyl malonate is preferred to diethyl malonate as a donor if further hydrolysis of the Michael condensation adduct is desired.

Methyl 3-Keto-2-phenylcyclohexyl-α-nitroacetate. 106,108 A mixture of 17.2 g. of 2-phenyl-2-cyclohexen-1-one, 23.0 g. of methyl nitroacetate, 486 and 0.025 mole of 30% methanolic solution of benzyltrimethyl-ammonium methoxide 487 is allowed to stand at 60° for twelve hours. The mixture is acidified with acetic acid and extracted with ether, and the extract is washed with water and with sodium bicarbonate solution to remove most of the unchanged ester. After removal of the rest of the unreacted materials by distillation in high vacuum, 26.2 g. of product (90% yield) is obtained as an oil.

Triethyl α-Acetyltricarballylate. 483 To 20 g. of technical potassium hydroxide in 150 ml. of acetaldehyde dipropyl acetal are added 51.6 g. of diethyl maleate and 52 g. of ethyl acetoacetate, the temperature being maintained at 20° during the addition. The temperature then rises spontaneously to 27°, and the mixture is heated at 90° for one hour. After acidification with dilute sulfuric acid, the acetal layer is separated, the solvent is removed, and the residue distilled in vacuum. Some ethyl acetoacetate is recovered, and 65 g. of product is obtained as an oil,

⁴⁴⁴ Feuer, Hass, and Warren, J. Am. Chem. Soc., 71, 3078 (1949).

⁶⁷ Croxall and Schneider, J. Am. Chem. Soc., 71, 1257 (1949). Cf. Meisenheimer, Ann., 397, 295 (1913).

b.p. 189°/12 mm. The yield based on material that entered the reaction is 72%

Diethyl 6-Keto-4-methyl-2-heptene-1,5-dicarboxylate.** To a solution of 2.5 g, of potassium in 120 ml. of absolute t-butyl alcohol are added 98 g of ethyl acctaoctate and 53 g of ethyl solution. The mixture is heated under reflux in an oil bath at 110-120° for twolve hours. The cooled solution is poured into dilute sulfurne acid and the precipitated oil taken up in benzene. After removal of the benzene and unreacted material by distillation, 78 g, of product (75%, yield) is obtained as an almost colorless oil, bp. 1207/9 5 mm.

Hexaethyl 3-Butene-1.1.2.2.3.4-hexacarboxylate. 2:1,225,419 Under anhydrous conditions and with stirring, a mixture of 34 g, of diethyl acetylenedicarboxylate, 66 g of tetraethyl ethane-1,1,2,2-tetracarboxylate, and 10 ml of absolute ethanol is heated to 45° to obtain a clear solution. A solution of 15 g of sodium dissolved in 24 ml of absolute ethanol is added dropwise with rapid stirring. After addition of about 10 drops of ethoxide solution, the temperature of the reaction muxture suddenly ruses to 92° and then slowly falls as the rest of the catalyst is added. As the temperature rises, the color of the solution changes to dark brown. The mixture is poured into 100 ml. of N hydrochloric acid and is exhaustively extracted with other. Evaporation of the other leaves a mixture of solid and oil. The solid is collected and crystallized from 80°, ethanol. The product, obtained in several crops, weighs 48.5 g. (48%) and melts at 78°.

Diethyl g.g.-Diphenylgiutarate. 11.21 One hundred grams of ethyl cinnamate and 100 g of ethyl phenylacetate are mixed with a solution of 4 g. of sodium in 60 ml, of ethanol and heated under reflux for two and one-half hours. The mixture is neutralized with the calculated amount of dilute hydrochloric acid, and enough water is added to produce turbidity. When the solution is cooled, the presjuct crystallizes in quantita tive yield as a mixture of isomers. After several crystallizations from

dilute ethanol, the product melts at 92-93'.

Ethyl α -Benzoyl- γ -(2-pyridyl)butyrate.⁴⁹⁰ To a mixture of 246 g. of freshly distilled ethyl benzoylacetate and 66 g. of freshly distilled 2-vinylpyridine, 1 g. of sodium is added, and the mixture is boiled for five hours. The solution is cooled, acidified, and extracted with ether to remove neutral material. The aqueous layer is made alkaline, the oil that separates is taken up in ether, and the extract is dried over anhydrous calcium sulfate. The ether and 2-vinylpyridine are evaporated under reduced pressure, and the residue is distilled to furnish 135 g. (70%) of the product as a pale orange oil, b.p. 170–175°/0.3 mm.

TABULAR SURVEY OF THE MICHAEL CONDENSATIONS

The following tables summarize the data in the literature through October 1955. Tables I-XXI classify the material according to the unsaturated acceptors. Table XXII lists most of the important donors that have been used in the Michael condensation.

The acceptors in Tables I-XXI have been arranged according to increasing number of carbon atoms unless otherwise stated. Alkyl esters are listed (independent of the number of the carbon atoms in the alkyl group) under the lowest member of the series employed. With each acceptor, the donors have been listed according to the following scheme:

Esters and other acid derivatives (except nitriles)
Keto esters
Cyano compounds
Aldehydes and ketones
Nitro compounds
Sulfones
Miscellaneous donors

Commas between items in the catalyst column separate the components of a catalyst combination; semicolons are used to separate different catalyst combinations.

When yields are cited, the first references cited are those to the articles containing the information on yields.

⁴¹⁰ Bockelheide and Agnello, J. Am. Chem. Soc., 72, 5005 (1950).

TABLE 1 MICHAEL COMPANDAMENT

rences

	STATEMENT CONDENSATIONS A	MACHINE CONDENSATIONS WITH 4,6-ETHYLENIC ALDEHYDES	
Heactants Arrolen and	Catalyst	Product (Xield, %)	Refer
Diethyl malonate	NAOC.H.	A = -CH ₁ CH ₁ CHO	
Dethyl ethylmalonate	(n-C,H,),N	4.C(CO,C,H,), (50)	159,41
Dethyl n-hexylmalonate	NaOC,H,	4C(C,H,)(CO,C,H,), (40)	159, 16
Diethyl n-hexadecylmalonate		40(Co.H., 1)(CO.C. H.)	159, 16
Diethyl bromomalonate	(n-C, M, N; N, O) 17		159, 16
Dethyl formanidamalonate	(n-C,H,),N		159,
Delbyl acetamidomalonate	Na.	ACINHOLDIONCO, C. H.	\$ \$
	NAOCH,	AC(NHCOCH, (CO,C,H,), (ST)	9
	Exchange ream (HO- or CN- form)		462,49
Diethy 1 phthalimidomalonate	at OO W	૦ઇ	

61, 491 81, 491 31, 401

460, 404

Note: References 491-1045 are on pp. 645-555.

When sodum standid was used as the existyst, debydroladogonation took place.
 The product was isolated as the pherylhydrazone.

TABLE I—Conlinued

MICHAEL CONDENSATIONS WITH α, β -ETHYLENIC ALDEHYDES

Heactants A devolein (Cont.) and Diethyl acetoxymalonate CH ₃ CO ₂ C(A)(CO A ₂ C(CO ₂ C ₃ H ₅) ₂ ; CH ₃ CO ₂ C(A)(CO A ₃ C(CO ₂ C ₃ H ₅) ₂ ; CH ₃ CO ₂ C(A)(CO Ethyl acetoacetate NaOC ₂ H ₅ Sthyl acetoacetate NaOC ₂ H ₅ Shoc ₂ H ₅ NaOC ₂ H ₅ CH ₃ COCH(A)CC Ethyl acetoacetate NaOC ₂ H ₅ Shoc ₂ H ₅	sta	Catalyst	Product (Vield, %)	Roforoncos
nted	olein (Cont.) and		10/ invary annual T	
ated	(hyl acetoxymalonate (CO ₂ C ₂ H ₅) ₂	NaOC <u>.</u> Hs NaOC <u>.</u> Hs	$A =\mathrm{CH_2CH_2CHO}$ $\mathrm{CH_3CO_2C(4)(CO_2C_2H_3)_2}$ $A_2\mathrm{C(CO_2C_2H_3)_2}; \ 5,5\text{-dienrbethoxy-1-cyclohexene-1-carboxaldehyde}$	159, 497 110, 417
ated	cH ₂ CHO yl acetoacetate	NaOC <u>.</u> Hs	CH ₃ COCH(A)CO ₂ C ₂ H ₅ (40, 39); 2-cyclohexen- 1-one (20, 23)	498, 499
	yl methylacet oacetate	NaOC ₂ H ₅ Not indicated NaOC ₂ H ₅	$\mathrm{CH_3COCH(4.1)CO_2C_2H_3}$ 2-Cyclohexen-1-one 6-Methyl-2-cyclohexen-1-one (20)	500 501 499
NaOC ₂ H ₅ moncetate NaOC ₂ H ₅ NaOC ₂ H ₆	ył cyclohexanone-2-carboxylate	NaOC ₂ H ₆	O CO2C2H5	162
cyanoncetate NaOC ₂ H _s NaOC ₂ H _s	yl cyanoacetate	NaOC,H,	ACH(CN)CO ₂ C ₂ H ₅ (12); 5-carbethoxy-5-cyano- 1-cyclohexene-1-carboxaldehyde	159, 417, 502, 503
	yl acetamidocyanoacetate CN)CO±C116	NaOC ₂ H ₆ NaOC ₂ H ₆	4c(nhcoch;)(cn)co.c.h, (s2, 60) 4c(cn)co.c.h, (18)	460, 494, 504 110, 417
	cu _s cuo.	٠	ОНО	
Cyclohexancearboxaldelyde SO ₂ (23)	slohexancearboxaldeltyde	, °0%	(82)	472

2-Nitropropane 1-Nitropropan Nitromethane

Nitroethane

CHO

Deoxybenzom Acetylacetone

TABLE I—Continued

2	76					ORG	AN	IC	RE	ACI	Ol	IS							
		References	514	516		514	515 515	515	515		514	166	166	166		165, 164		163	
	Michael Condensations with $\alpha,\beta ext{-Ethylebis}$	Product (Yield, %)	Ethyl 2-amino-6-methylpyridine-3-carboxylate (13)	4,6,6-Trimethyl-1,3-cyclohexadiene-4-carboxal-	· · · · · · · · · · · · · · · · · · ·	Ethyl 2-aninopyridine-3-carboxylate (18)	5-Cyano-2-methylpyridine-3-carboxylate (30) 3-Cyano-2-methylpyridine (4)	3-Acetyl-2-methylpyridine (25)	3-Benzoyl-2-methylpyridine (5)		Ethyl 2-amino-6-methylpyridine-3-carboxylate	Luny1 2,0-dimethylpyridine-3-carboxylate (40) 3-Cyano-2,6-dimethylpyridine (40)	3-Acetyl-2,6-dimethylpyridine (40)	3-Benzoyl-2,6-dimethylpyridine (35)		$CH_3CH_2CHCH(CH_3)C=0$ (42, 15)	(CH ₃), C—CH ₃ —O	OHO(CHO)HOHOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	C,H,OHCOC,H,
	MICHAEL CONDENSATION	ć. Catalyst	None	$NaNH_2$		None	None	None	None		None	None	None	Mone		KOCH ₃ , aq. NaOH, 130–180°	NaOCH.		-
		Reactants	$\begin{array}{l} \beta\text{-}Hydroxycrofonaldehyde and} \\ H_2NC(==NH)CH_5CO_2C_2H_5 \ \end{array}$	β,β- <i>Dimethylacrolein and</i> β,β-Dimethylacrolein	β-Ethoxyacrolein¶ and	H ₂ N C(=NH)CH ₂ CO ₂ C ₂ H ₅	CH ₃ C(—INE)CH ₃ CO ₃ CO ₃ FI ₃ CO	CH ₃ (=NH)CH ₃ COCH ₃	CA3C(=NH)CH2COC6H5	β-Ethoxycrotonaldehyde¶ and	$H_2NC(=NH)CH_2CO_2C_2H_5$ $CH_2C(=NH)CH_2CO_2C_2H_2$	CH,C(=NH)CH,CN	CH ₃ C(=NH)CH ₂ COCH ₃ CH ₂ C(=NH)CH ₂ COC H		α -Mcthyl- β -ethylaerolein and	Isobutyraldchydc	Deoxybenzoin		

		THE MICHAEL REACTION	277
483, 517, 518	164	519 461 461 619 619 464 464 464 463 700 620 620 620 620 620	
n-C ₃ H ₂ CHCH(C ₃ H ₄)CHO (01)	cn,cotnco,c,H, "c,H,cHCHC,H,C,H,C=0 c,H,cH,-CH,C=0	A = C ₁ L CICH_CHO AO(CHL)(OC,CHL), AONCOCHL)(OC,CHL), AONCOCHL)(OC,CHL), AONCOCHCHO,COCHCH, AONCOCHCHO,COCHCH, AO(CHLON)(OCNCO,CHL) AC(CHLON)(OCNCO,CHL) AC(CHLON)(OCNCO,CHL) AC(CHLON)(OCNCO,CHL) AC(CHLON)(OCNCO,CHL) AC(CHLON) (CHL,ACHC)(ANO,CHLON) (CHL,ACHC)(ANO,CHLON) (CHL,ACHC)(ANO,CHLON) Bhy 2 anmo 0 phierylyradan-3-carboxylate (31) 8 r-Heryl 2, d-d-n-pentylvaleralachacton (9)	it reacted as the amidine. Freshyl-fr-propylacrolem. septanni.
KOH, acetal	Aq NaOH, 200°	NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH, NaOOH,	no ether was employed; id in the form of its aceta med in situ by sossion or was formed in situ from I
a-Ethyl-ß n-propylacrolein and Ethyl acetoaoetate	Butyraldehyde**	Civenmelickyjak gad Diebly 1 vicylinakowa i NoCEL Bildy i externolomionie NoCCLI. Bildy i externolomionie na N	Makinok and chyl ester mino elfer was employed; it reacted as the similane. The bubblyday was introduced in the form of its access. The butyradaylde was formed in situ by assume of e-sthy-\$\phi\$- propylaxedcan. I has unsaturated alkahyde was formed in situ by assume of e-sthy-\$\phi\$- propylaxedcan.

TABLE II

Michael Condensations with Aliphatic α, β -Ethylenic Ketones

[C,H,CH2N(CH3)3]OH NaOC2H3
NaOCH ₃
NaOCH,*
NaOC2Hs Na NaOC2Hs
NaOC ₂ H ₆
Na0H

638 53

		IE BICHA
629	089	231
Co ₁ C ₂ H ₄	CO ₂ C ₄ H ₄ (01)	(84) OH.
Not indicated	[6,4,CH,N(CH,1,1)H	NAOCH,
		Ethyl 4-methyl-2-oxo-3-cyclo- berene-1-carboxylate

4-Carbethoxy-3-(a-fury)-3-hydroxycyclohexan-1-one Not indicated Note: References 491-1045 are on pp. 545-555.

Ethyl (a-furoyl)acetate Ethyl benzoylacetate

CO.C.H.

[C,H,CH,N(CH,),]OH

In this condensation the amount of catalyst was twice that used in the preceding condensation. Methyl chloroethyl ketone was employed.

In this experiment the actual reagents used were the ester, acetone, and formaldeby de.

iff When the adduct was hydrolyzed, a 26% over-all yield of (11) piperitone was obtained

TABLE II—Continued

				01.0	*****	0 10132	10110	115			
	References		532			533		531	119, 122	121	123
Michael Condensations with Aliphatic $lpha,eta$ -Ethylenic Ketones	Product, (Yield, %)	$A = CH_3COCH_2CH_2 -$	CO ₂ CH ₃	SS	O A CO2CH3		3	3-Carbethoxy-3-hydroxy-2-methyl-4-phenyl-	cyclobexanone $(A_1_{\mathcal{C}}(CN)_2, (74)$ $C_6H_5CH(A)CN$ $C_6H_5CH(A)CN$		H ₃ C
L CONDENSATIONS W	Catalyst		NaOCH3			$NaOCH_3$	produ ar	Not indicated	NaOCH3 Na Na		KCN
, MICHAE	Reactants	Methyl Finyl Ketone (Cont.) and	Methyl 1-oxo-1,2,3,4-tetrahydro- phenanthrene-2-carboxylate			Methyl 4-oxo-1,2,3,4-tetrahydro- phenanthrene-3-carboxylate		Ethyl phenylpyruvate	Malononitrile Benzyl cyanide Ethyl phenylcyanoacetate		Methyl β-cyanocthyl ketone

638

Methyl ethyl ketono Diethylacetaldebyde 2-Littylbennal	-f Kocu, Kocu,	3.6-Dmethyl-2-cyclobexen-1-one (3) 4,4-Diethyl-2-cyclobexen-1-one 4-n-Butyl-4-cthyl-2-cyclobexen-1-one	634 634 534	
('yelobenanone	Unanune from cyclobexanone	(30–40)	535, 531	
Phrts) lact (one	tc,n,cu,N(cu,)10u	$\bigcap_{C_{i}H_{i}}^{O} \operatorname{cnd} \prod_{i} C_{i} \bigcap_{CH_{i}}^{O} \operatorname{cn}_{i}$	THE MICHAE	
() clokerane-1,3-duno	NaOCH,	·-	L REACTION	
	кон, сп,он	(35)	9	

419 £16 £18 £34

4,4.Dmethyl-2-cyclobexen-1-one (40)

FOCH,

w.but 1 raldchyde 2-1.thylbexanal

Aceton

3,6-Dimethyl-2-cyclohexen-1-one (3) 3-Methyl-2-cyclohexen-1-one (3) 4,4-Diethyl-2-cyclohexen-1-one

f The experiment was run in the vapor phase, in the presence of oxides of group 11 to 1V of the periodic system. I This was reported as the probable structure of the product. Note: References 401-1015 are on pp. 515-555.

References

115

538

TABLE II-Continued

MICHAEL CONDENSATIONS WITH ALIPIATIC &, \(\beta \)- ETHYLENIC KETONES

Product (Yield, %) Reactants

Catalyst

Methyl Vinyl Kelone (Cont.) and

 $A = CH_3COCH_2CH_2$

NaOCH3; (C2Hs)3N

2-Methylcyclohexane-1,3-dione

₹

525, 539

(OH₃),

5,5-Dimethylcyclohexane-1,3-dione KOH, CH3OH

5-Methyl-5- $(\gamma$ -ketobutyl)- $\Delta^{4a.54}$ -octahydronaphthalene-1,6-dione 99

NaOCH₃

5-Methyloctahydronaphthalene-

1,6-dione

ö

වි

[C,H,CH,N(CH,),]OH

Not indicated

6-Methoxy-1-methyl-2-tetralone

531

506, 523 542

506 506, 543

533

and the 3-formyl derwative

S-Hydroxymethylene-4-keto-1,2,3,4- NaOCH,

tetrahydrophenanthrene

CH, CH(A)NO, (49) (CH,), C(A)NO, (69)

NaOCH, NaOCH,

2-Nitropropane Nitromethane Nitroethane

коп

Methyl fluorene-9-carboxylate

[C,H,CH,N(CH,1,10H; ACH,NO, (51) NaOCH,

NaOC,H; t-amines

544

Note: References 491-1045 are on pp. 545-555.

168

TABLE 11-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC &, P-ETHYLENIC KETONES

	Roferences		119	545	545	,	427	246	521 547		122		409	
michael Condensations with the marting apticulation of the condensation of the condens	Product (Yield, %)	$A = CH_3COCH_2CH_2$	$\begin{array}{c c} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	1'-Oxo-2'-(p-oxobutyl)-1',2',3',4'-tetrahydro-1,2-benz-3,4-aceperinaphthane (70)	1'-Oxo-2'-(7-oxobutyl)-1',2',3',4'-tetrahydro-1,2-benz-3,4-aceperinaphthane (26)		2-Hydroxy-4-methylbenzoic acid (55) Diethyl 2-hydroxy-4-methylisonhthalate (49)	CH ₃ COCH ₂ CHOHCH ₂ NO ₂ (4)	25ca) 2-annuo-0-methymeochnite (32) 3-Cyano-2-hydroxy-0-methylpyridine (55–62)	$A = \operatorname{CH_3CHCH_2COCH_3}$	2,3-Dimethyleyclohexane-1,5-dione (10)			277000
L CONDENSATIONS WITH	Catalyst		$ m NaOC_2H_5$	$NaOCH_3$	<i></i> ₽° ⁰ Н̀°ОХ		$N_{0}OC_{2}H_{b}$ $N_{0}OC_{2}H_{b}$	CH ₃ COCH=CHONn None	Piperidine acctate		$NnOC_2II_b$	KOC ₂ H ₅	\u03.	
MICHAE	Reactants	Methyl Vinyl Kelone (Conl.) and	Bthyl 3-hydroxybenzofuran-2- carboxylate	2'-Hydroxymethylene-1'-oxo-1',2',3',4'-tefrahydro-1,2-benz-3,4-aceperinaphthane	Tudeosimathulonoaadosa and	the owner of the contract of t	Ethyl acetoncetate Diethyl acetone-1,3-dicarboxylate	Nitromethane Ethyl malonamate¶	Cyanoacetamide	Ethylideneacetone and	Diethyl methylmalomate	Ethyl 2-oxocyclohexane-1- carboxylate		

538

TABLE II-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC KETONES

CITA	THE COUNTY WATER IN	distinct contractions with the contraction of the c	
Reactants	Catalyst	Product (Yield, %)	References
Ethyl Vinyl Ketone and		$A = CH_3CH_2COCH_2CH_2$	
Diethyl malonate** Ethyl acetoscetate**	NaOC, H,	ACH(CO ₂ C ₂ H ₅) ₂	549
Acetylacetone**	NaOC2H5	CH3COCH(A)COCH3	549
Cyclohexane-1,3-dione	Piperidine		537
CHO (trans)	KOC ₄ H ₀₋₄	A CHO (45-57)	551
Divinyl Ketone and			
2-Methylcyclohexane-1,3-dione	NaOCH,	$ \begin{pmatrix} O & CH_3 \\ & & CH_2 \\ & & CH_2 CH_2 - \end{pmatrix} CO (18) $	c N

Mehyl Isopropenyl Kelone and Ekhyl seckoacetale Ekhyl propionylacetate Ekhyl isobutyrylacetate Aketone Methyl ekhyl ketone	Na Na KOH, C,H ₄ OH KOH, CH ₅ OH KOM, CH ₅ OH	A ~ CH_0OOH(CH_1/CH_1, 3.4-Dmeth_1, 2-grichatera-1-one SEhyl-t-meth_1)-2-grichatera-1-one CH_1,GHTOOH(1,OO_CH_1, (TB) 3.4-Dmethyl-2-grichatera-1-one 3.4-Trimethyl-2-grichatera-1-one;† (10, 43)	420 420 119 418, 552†† 418, 552
Cyclohexanone	кон, сыюп	OH OO (10)	369, 101
4-Methykyclohexanone	кон, сыноп	11,10 (13)	101, cf. 8
		0° \	

Note: References 401-1045 are on pp. 545-555.

** \$\beta\$ Chloroethyl ethyl ketone was employed.

tf When 2-dyndray-2 methylbotan 2-cre was used, natead of the unasturated before, the yield was 11%, if the asmo product was obtained from methyl eithyl betone and formalidayde (46-52%) and from methyl eithyl ketone. and 3-hydroxy-3-methylbutan-2-one (43-49%).

	THE 1	IICHAEL
420 420 119 418, 552†† 418, 552	369, 101	101, cf. 8
A = CH_00OH(OH_1)CH_0 3+Dmethy_8-gridaneau-cone Ethyl-methyl_8-gridaneau-con (CH_1,0H)COH(1,0CO,H_1 (75) 3,6-Dmethyl_8-gridaneau-cone (20) 3,4-Grimethyl_8-gridaneau-cone (20) 3,4-Grimethyl_8-gridaneau-cone;	OH OH (M, M, M)	H ₃ C (13)
Na Na KOH, C ₁ H ₂ OH KOH, CH ₂ OH KOH, CH ₂ OH	кон, с _г н,оп	кон, сывон
Methyl Isopropenyl Ketone and Ethyl acetoacetate Ethyl propomylacetate Ethyl propomylacetate Acetone Methyl ethyl ketone	Сусюнехавове	4-Methylcyclohexanone

Note: References 401-1045 are on pp. 545-555,

* p-Chloroethyl ethyl ketone was employed.

11 When 2 hydroxy 2 methythetin 2-me was used, material of the unasturated ketone, the yield was 11%, 17 The same product was othermed from methy! eldyl ketone and formatidalyse (49-25%) and from methyl kelone and 3-hydroxy-3-methylbutan-2-one (43-49%).

Michael Condensations with Aliphatic α, β -Ethylenic Ketones

			ORGANIC	REACTIONS	•	
References		101		101	101	427 370 370
Product (Yield, %)	$A = \mathrm{CH_3COCH(CH_3)CH_2} -$	$\mathbf{H_3C} \underbrace{\hspace{1cm} \bigcap_{\mathbf{CH_3}}^{\mathbf{O}} (18)}_{\mathbf{CH_3}}$	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	$\begin{array}{c c} & \text{OH} & \text{OH} \\ & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \end{array}$	$i \cdot H_7 C_3$ CH_3 CH_3	Dicthyl 2-hydroxy-4,6-dimethylisophthalate (92) 4,6-Dimethyl-2-pyridone-3-carboxamido 4,6-Dimethyl-3-cyano-2-pyridone
Catalyst Properties P. Catalyst	pu	кон, сеньон		кон, с ₂ н ₆ он	кон, с _е ньон	NaOC ₂ H ₅ None None
MICHAEL Reactants	Methyl Isopropenyl Ketone (Cont.) and	3-Methylcyclohexanone		2-Mcthylcyclohexanone	Tetrahydrocarvone	4-Hydroxy-3-penten-2-one and Diethyl acetone-1,3-dicarboxylate Malonamide Malononitrile

H,NC(==NH)CH,CO,C,H,¶	None	Ethyl 2-amino-4,6-dimethylpyridine-3-carboxyl-	514, 521
Cvaposostamida	None	ate (50, 69)	
	2000	4,0-Diffectivit-z-pyridone 3-carboxamide	370
Cyanoacetamide § §	NH.	3 Cyano-4,6-dimethyl-2-pyndone (87, 100)	553, 371, 554
NCCII, CONHCII, 55	CH,NH2	3 Cyano-1,4,6-trimethyl 2-pyridone	0 10
NCCH,CONHC,H, §§	C,H,NH,	8-Cyano-4,6-dimethyl-1-ethyl-2-pyridone	555
NCULCONHICH, CH. 53	CH, CHCH,NH,	I Allyl 3-cyano-4,6-dimethyl 2-pyridone	555
C11CC11C(=1A11)C11133	None	Methyl 2,4,6-trimethyl-3-pyridyl ketone (>75)	444
4-Amino-3-penten-2-one and Ethyl cyanoacetato N-Methylcyanoacetamide	None None	8-Cyano-4,0-dimethyl-2-pyndone 8-Cyano-1,4,6-tumethyl-2-pyndone	5555 675
Methyl a-Hydroxymethyleneethyl Kelone and	ne and		
Cyanoacetamide	Piperidine	3 Cyano-4 hydroxy 5,6-dmethyl-2,3,4,6-tetra	171, 172
CH,C(==NH)CH,CO,C,H,	None	bydeoxyptratine (23) Ethyl 2.5.4rtmethylbyrrdine.3.combowned	2
3-Hydroxymethylenepenlane-2.5-dione and	, and		ŝ
Cyanoacetamide	NaOC ₂ H,	Compound C _p H ₄ N ₅ O ₂	964
Meetlyl Oxude and		$A = CH_sCOCH_sC(CH_s)_s$	į.
Dunethyl malonate	NaOCIL	4-Carbomethoxy-5,5-dimethylcyclohexane-1,3-	828
Note: References 401-1045 are on pp. 545-555. ¶ The celer mano ether was used. §§ A mixture of ethel commondation.	a pp. 545–555.	(no) amoun	
None in the second seco	ve and ammonia or the	. The appropriate aminomia of the appropriate amine was used in these experiments.	

		ORGANI	CRI	EACTIONS	•			
References	558, 558a	315 82 15, 16, 17, cf. 119	414	416 416, 426 669	414	415 560	501 100	552, 418
Michael Condensations with Aliphatic $\alpha_i\beta$ -Ethylesinic Ketones Catalyst $A = \mathrm{CH_3COCH_2C(CH_3)_2}$	6,5-Dimethyleyclohexane-1,3-dione (67–85) or 4-carbethoxy-5,5-dimethyleyclohexane-1,3-	dione (95–97) 4,5,5-Trimethyleyclobexane-1,3-dione 5,5-Dimethyl-4-phenyleyclobexane-1,3-dione 3,5,5-Trimethyl-2-cyclobexen-1-one (10w)	4-Carbethoxy-5,6-dimethyl-3-phenyl-2-cyclo-	NCCH(4)CO ₂ CH ₂ 4-Gyano-5,5-dinethyleyclohexane-1,3-dione (50) 3-Gyano-6,4-dinethyleyclohexane-1,3-dione (50) (ounnt.)	Control (4) Colls and 5,5-dimethyl-3,4-diphonyl-3-evelohoxon-1-one	6-Acetyl-3,5.5-trimethyl-2-cyclohexen-1-one ACH ₂ NO (63)	5-(9-Pluoreny1)-4,4-dimethylpentan-2-one (15-20) 4-(4-Hydroxycoumariny1)-4-methylpentan-2-one (43)	4.6-Diethyl-3-methyl-2-evelohexenone¶¶ (7, 20)
HABL CONDENSATIONS V Catalyst	$\mathrm{NaOC}_{\mathtt{a}}\mathrm{H}_{\mathtt{b}}$	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅	NaOCLE	Na NaOC ₂ H ₅ NaOC ₂ H ₅	$N_{\rm M}OC_{\rm a}H_{\rm b}$	Na NaOC ₂ H ₅	Calls)and KOLI, pyridine Pyridine	коп, сн.оп
M101 Reactants Mcsityl Oxide (Cont.) and	Diethyl malonate	Diethyl methylmalonate Ethyl phenylacetate Ethyl acetoacetate	Bihyl benzoylncelate	Methyl cynnoacetate Ethyl cynnoacetate Cynnoacetanide	Deoxybenzoin	Acetylacetone Nitromethane	Fluorene 4-Hydroxycoumarin	3-Ethyt-3-buten-2-one and Methyt propyl ketone

Detayl malonate	NaOC, H,	4,5.Dimethyley clohexane-1,3-dione*** (10)	422	
2-Methyl-1-penten-3-one and				
Ethyl propionylacetate Ethyl methylacetoacetate Ethyl ethylacetoacetate	Not indicated Not indicated Not indicated	2,4-Dinethyl-3-ethyl-2-cyclohexenone 3 Ethyl-4,6-dimethyl-2-cyclohexenone 3,6-Diethyl-4-methyl 2 cyclohexenone	420 420	
4-Hydroxy-3-methyl-3-penten-2-one and	pı		ì	
Cyanoacetamide § §	None	3-Cvano-4.5.6-termethal-9-complexes		
NCCH,CONIICH, §§	Piperidine None	a de	562, cf. 563 HI	THE
Elhyl x-Hydroxymethylencelhyl Ketone and	ie and			
CH ₂ C(=NH)CH ₂ CO ₂ C ₂ H ₂	sec-Amine None	3-Cyano-6-ethyl-2-hydroxy-5-methylpyridine Ethyl 6-ethyl-2-5-dimethylys reduce 2-contract		TIAPE
CH _s C(s=NH)CH _s COCH _s Ntronethane	None CH ₃ CH ₂ COC. (==CHON ₃)CH,	(50) Methyl 6-ethyl-2,5-dimethyl-3-pyridyl ketone (46) 6-Hydroxy 4-methyl 6-nitrohexan-3-one (54)	REACTI	REACTI
Methyl B-Ethoxyvanyl Ketone and Cvanoacatamide			ON	ONT
Note. References 491-1045 are on pp. 545-555.	Piperidine 1 pp. 545-555.	3-Cyano 6-methyl-2-pyridone (75)	564	
Anixture of triorymethylone and the ketone was used.	ate and ammonia or the a and the ketone was used	A mixture of thory plantacetake and ammonis or the appropriate annow was used in these experiments. A mixture of thory melypiene and the actions was used. The same product was oblained in 23%, "and a same product was oblained in 23%," and a same product was oblained in 23%, "and a same product was oblained in 23%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," and a same product was oblained in 25%, "and a same product was oblained in 25%," a		
*** The name used in the reference is erroneous.	naldehyde. ce is erroneous.	on methyl propyl ketone and formaldelyde. *** The name used in the reference as erroneous.	20% yield	

3-Methyl-3-penten-2-one and

Ø.
ne
2
•
7
- 6
8
Υ
ı
Ħ
\vdash
ᆸ
m
뻐
_ ₹
н

	S)			0	K
	References		000	200	
	×		CH ₂	(Sinali)	
			E CH		H ₃
ETONES	d, %)				_
MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC KETONES	Product (Yield, %)		CH ₃		
α,β-Етн	Proc		HO=H(
LIPHATIC		0	H. C.	$\overline{}$	
МТТН А			_		
SATIONS	Catalyst	. :		٠,	
CONDE		•		Na	
MICHAEL		e and			
		hyl Keton		none	
. ,	Reactants	yvinyl Et		yclohexa	
	,	β-Methoxyvinyl Ethyl Ketone and	•	2-Methylcyclohexanone	
		_			

422, 567, 568 505, 422 566 3-Cyano-4-ethyl-6-hydroxy-4,6-dimethyl-2-5-n-Propylcyclohexane-1,3-dione (16, 24) 5-Isopropylcyclohexane-1,3-dione (80) piperidone (63) NaOC2H5 NaOC2H5 NaOC,H, 3,4'-Dimethyl-3-penten-2-one and " 4-Methyl-3-hexen-2-one and 5-Methyl-3-hexen-2-one and 3-Hepten-2-one and Diethyl malonate Diethyl malonate Cyanoacetamide

509 370 177 3-Cyano-4-ethoxymethyl-6-methyl-2-pyridone (81) 4,5,5-Trimethylcyclohexane-1,3-dione 3-Cyano-4,6-diethyl-2-pyridone Piperidine NaOC2H5 None 4-Hydroxy-5-ethoxy-3-penten-2-one and 5-Hydroxy-4-hepten-3-one and Diethyl malonate Cyanoacetamide Cyanoacetamide

4-Hydroxy-3-ethyl 3-penten-2-one and Cyanoscetamide	None	3-Cyano-5-ethyl-4,6-dunethyl-2-pyridone	371
Methyl f-Isopropoxyıınyl Kelone and Diethyl malonate	Na	CH,COCH=CHCU(CO,C,H,h and	380
		H ₂ CCO ₀ C ₁ H ₂	
Methyl 4-Oxo-5-hezenoale and		0	
2-Methylcyclohexane-1,3-dione	NaOCH,	CH, CH, CH, COL, CH, CO, CH,	625
6-Methyl 4-kepfen-3-one and Drethyl malonate	NaOC,III,	O 5 Isopropyl-2-methylevelpherane.1 9.4.000 1101	4
4-Elhyl-3-hezen-2-one and		(all) promote a service and a	27
Diethyl malonate Cyanoacetamide	NaOC ₂ H _b NaOC ₂ H _b	5,5-Diethyloyclohexane-1,3-dione (50) 3-Cyano-4,4-diethyl 6-hydroxy-6-methyl-2.	570 540
n-Propyl p-Elhoxyvınyl Ketone and		piperidone (75)	3
Cyanoacetanude	Piperidine	3-Cyano-6-n-ptopyl 2-pyridone (64)	į
Note: References 491-1045 are on pp. 545-555.	. 545-555.		100

Michael Condensations with Allphatic α, β -Ethylenic Keyones

Reactants	Catalyst	Product (Yield, %)	References
Isopropyl β-Ethoxyvinyl Ketone and Cyanoncetamide	Piperidine	3-Cyano-6-isopropyl-2-pyridone (77)	564
3-n-Amyl-3-buten-2-one and Methyl hexyl ketone	кон, сн,он	4,6-Di-(n-amyl)-3-methyl-2-cyclohexenone (23, 33) 418, 552	418, 552
6-Methyl-5-nonen-4-one and Diethyl malonate	$ m NaOC_2H_S$	2-Ethyl-5-methyl-5-n-propylcyclohexane-1,3-dione	671
Decanc-2,4-dione (enol) and		CH_2 C_6H_{13} .	
Gyanoacetamide § §	None	$n \cdot H_{13}C_0 $ Or $H_{10}C_1$ Or $H_{10}C_1$ Or $H_{10}C_1$	ចិច្ច
β-Ethoxyvinyl n-Amyl Ketone and			
Cyanoacetamide	Piperidine	6-n-Amyl-3-cyano-2-pyridone (68)	504

-Melkyl-T-tridecen-6-one and Octhyl malonate	NaOC ₂ H,	$A = n \cdot C_k H_{11}COCH_k C(CH_k)C_k H_{11} \cdot n$ 5-n-Amyl-2-n-butyl-5-methylcyelobexano-1 3.	6	
yanoacetamide	NaOC,H,	dione (60) ACE(CN)CONH, (64)		
-Uydroxymelhyleneheptadecan-2-one and Diethyi acetone-1,3-dicarboxylate	nd NaOC ₂ H _a	Diethyl 2-hydroxy-4-n-pentadorehessakthalada res		
3-Methyl-12-fricosen-11-one and		$A = n \cdot C_{10} H_{21} C(CH_{2}) CH_{22} COC_{1} H_{12}$	421	_
Diethyl malonate	NaOC, II,	5-n-Decyl 5-methyl 2-n-nnylmalah		
Syanoacetamide	NaOC,H,	done (60)	672	
Note: References 491–1015 are on pp. 545–555, If a mixture of clay dynamectals and aumonus or the appropriate s If a mixture of clay year, by the sand aumonus or the appropriate s If The product was obtained after send bydolysis and efectification.	pp. 545-555. ite and ammonia cand the ketone we er acid hydrolysis	Wot: Reference 491-1015 are on pp. 515-553. 1A mixture of tably opnoacetable and mixturen or the appropriate amme was used in these experiments. 1M mixture of traymethyless and the ketons was used, the modified of the product was obtained after and bydolyps and electrication.	572	

TABLE III ζ

				ORGANIC REACTIONS	
	References	573	544	574 228 228 228 574 575 575 576 570 422 442	577
Michael Condensations with aromatic α, β -Ethyrienic Ketones	Product (Yield, %)	$A = C_6H_3COCH_2CH_2$ $ACH(CO_2CH_3)_2 (70), (A)_2C(CO_2CH_3)_2 (sinall)$	A CO ₂ CH ₃	6-Carbethoxy-3-phenyl-2-cyclohexen-1-one (4) ₂ C(CN) ₂ (4) ₂ C(CN) ₂ (4) ₂ C(CN)CO ₂ CH ₃ (70) (4) ₂ C(CN)CONH ₂ (3,6-Diphenyl-2-cyclohexen-1-one C ₆ H ₃ COCH(4)C ₆ H ₃ (60) 2,3,6-Triphenyl-2-cyclohexen-1-one C ₆ H ₃ CH(4)COC ₆ H ₄ C ₆ H _{3-P} (4) ₃ CNO ₂ (6H ₃ CH(4)NO ₂ (82) Ehlyl 3-hydroxybiphenyl-4-carboxylate (42) Diethyl 3-hydroxybiphenyl-4-carboxylate (59) 3-Acetyl-2-methyl-6-phenylpyridine β-Hydroxy-2-mitrobutyrophenone	
HAEL CONDENSATIONS WI	Catalyst	NaOCH3	ном	NaOC, H, NaOCH, NaOC, H, NaOC, H, NaoC, H, NaoC, H, NaoC, H, NaoC	" [CH3COCHCO2C2H5]Na
Mici	Reactants	Vinyl Phenyl Kelone* and Dimethyl malonate	Methyl fluorene-9-carboxylate	Ethyl acetoacetate Malononitrile Methyl cyanoacetate Cyanoacetamide Methyl benzyl ketone Deoxybenzoin Dibenzyl ketone Benzyl p-biphenylyl ketone Witromethane Phenylnitromethane Phenylnitromethane Phenylnitromethane CH ₃ C(=NH)CH ₂ COC ₆ H ₃ Nitromethane Rithyl acetone-1,3-dicarboxylate CH ₃ C(=NH)CH ₂ COC ₆ H ₃ Nitromethane CH ₃ C(=NH)CH ₂ COC ₆ H ₃ Nitromethane	Ethyl acebarcetate

CH,COCH(A)C,II,

A = CH,COCH,CHO,L, 5-Phenylcyclohexane-1,3-dione (75) 4,5-Diphenylcyclohexane-1,3-dione or its 4-carbethoxy derivative

4CH(CO2CH2)

Na, NaOC,H,

NaOCH,

Benzylidencacetone and

Omethyl malonate Dethyl malonate KOII, acetal

NaOC,II,

Ethyl phenylacetate

KOC,H

Ethyl cyclopentanone-2-

earboxylate

Lihyl cyclohexanone-2-Chyl a-cyanobuty rate Cthy | a-c, anocaproate

carboxylate

Ullyl cyanoacetate

Cyanoacetamide

4CH(CO,C,H,), (84)

	THE MICH	IAEL RE	ACTION
3	409	400	121
) " ₂ H ₄ (23) (73) (cthy 4-phenyl 2-mand

CH(CN)CO,C,H, (9)

CO,C,II,

 \$.Chloropropiophenone was actually used in these condensations. Note. References 401-1045 are on pp 545-555

NaOC. II.

NaOCH,

"II,C(-NH)CH,CN

Acetonitrile

lenzyl cyanile Deux3 benzon

3			Ol	RGANIC REACTIONS	3	
	References		86	88	582	209 209 - 209 154
	Michael Condensations with Aromatic α, β -Ethylenic Ketones Catalyst Product (Yield, %)	$A = CH_3COCH_2CHC_6H_5$	O ₆ H ₅	O CG H	(90)	
THE THEORY	ICHAEL CONDENSATIONS WITH Catalyst	~	$\mathrm{NaNH}_{\underline{s}}$	NaNH ₂	Piperidine	(C,H ₆),NH (C,H ₆),NH (C,H ₆),NH (C,H ₆),NH (C,H ₆),NH (C,H ₆),N(CH ₉),1OH
	M. Renctants	Benzylidencacetone (Cont.) and	Cyclohexanone	2-Methyl-1-tetralone	Anthrone	Nitromethane 1-Nitropropane 2-Nitropropane Ethyl nitroacetate

(C,H,O),P(O)CH(A)CO,C,U, (48)

Note: References 491–1045 are on pp. 545–555. \dagger The product was obtained as a salt of the act form.

Triethyl phosphonoacetate

NII, f-amnes

2-Hydroxy-1,4-naphthoquinone

4-Hydroxycoumarm

376

NaOC,H

376

TABLE 111-Continued

Michael Condensations with Aromatic α, β -Ethyleric Ketones

A. Substituted Benzylideneacetones

5-(p-Isopropylphenyl)cyclohexane 1,3-dione (60)

hydroxy 5-methylcyclohexan-1-one

NaOC₂H₃

Aole: Refixnees 491-1045 are on pp 545-555

Diethyl malonate

(CO ₂ C ₂ H ₈)- 409	409	clohexane- 589 589 416	I,COCH, (45) 169	.3-done 690 3-done 890 ,3-done (27) 587	3 H 109		hphenyl)-5- 285
$\mathrm{CH}_{2}\mathrm{COCD}_{1}\mathrm{CH}(\mathbb{C}_{4}\mathrm{H}_{4}\mathrm{OCH}_{4}\mathcal{P})\mathrm{CH}(\mathbb{CO}_{4}\mathbb{C}_{2}\mathrm{H}_{4}).$ $\mathrm{CH}_{2}\mathrm{CH}_{4}\mathrm{CH}_{4}\mathrm{CO}_{2}\mathrm{H}$	CO,C,H,	4-Cyano-5-(p-methoxyphenyl) cyclohexane-1,3-dione (90) $C_b\Pi_b COCH(A)C_b\Pi_b$	OH(C, H, OCH, -p)CH, COCH, (45)	5-(m-Ntrophenyl)cyclobexane-1,3-dtone 6-(p-Ntrophenyl)cyclobexane-1,3-dtone 5-(o-Chlorophenyl)cyclobexane-1,3-dtone (27)	OH CH COH	CII,CII,C(C)	hydroxy 5-methylevelohevan 1
KOC,H,	Koc.Hs	NaOC ₂ H ₅ NaOC ₂ H ₆	Pyridine	NaOC2H, NaOC2H, NaOC2H,	Pyridine	NaOC ₅ II ₅	
Ethyl cyclopentanone-2- carboxylate	Ethyl cyclohexanone-2- carboxylate	Ethyl cyanoacetate Deoxybenzoin	4-IIydroxycoumarın	Diethylmalonate Diethyl malonate Diethyl malonate	4-Hydroxy coumarın	Ethyl a-cyanobutyrate Ethyl acetoacetate	Diethyl malanata
			į	4-Nitro 2-Chloro	4-II) droxy-3-methaxy 4-Hydroxy coumarm	2,3-Dunethoxy 4-Dunethylammo	4-Isopropy1

Michael Condensations with Aromatic α, β -BThylenic Ketones

Reactants	Catalyst	Product (Yield, %)	References
Ethylideneacelophenone and		OH,	
Cyanoacetamide	$\mathrm{NaOC}_2\mathrm{H}_5$	$H_sC_{\sim N}$	591
Hydroxymethylene-p-methylacetophenone and	none and		i i
$CH_3C(=NH)CH_2CO_2C_2H_3$ $CH_3C(=NH)CH_2COCH_3$	None None	Ethyl 2-methyl-6-(p-tolyl)pyridine-3-curboxylate 3-Acetyl-2-methyl-6-(p-tolyl)pyridine	997 442, 557
CH ₃ C(=NH)CH ₂ COC ₆ H ₅	None	$3 ext{-Benzoyl-}2 ext{-methyl-}6 ext{-}(p ext{-tolyl})$ pyridine	<u> </u>
a-Hydroxymethyleneëthyl Phenyl Kelone and	elone and		
$CH_3C(=NH)CH_2CO_2C_2H_5$	None	Ethyl 2,5-dimethyl-6-phenylpyridine-3-carboxylate	557
Benzoylacetone (Enol) and			
Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅	NaOC ₂ H ₅	Diethyl 3-hydroxy-5-methylbiphenyl-2,4- dienhoxylate (47)	127
Cyanoacetamide	$(C_2H_5)_2NH$	3-Cyano-6-methyl-4-phenyl-2-pyridone and	371, 592
Ethyl cyanoacetate	$(C_2H_s)_2NH$	3-cyano-4-methyl-6-phenyl-2-pyridone 3-Carbethoxy-4-methyl-6-phenyl-2-pyridone (low)	370
Malononitrile	(C2H6)2NH	3-Cyano-4-methyl-6-phenyl-2-pyridone	370
3-Amino-1-phenyl-2-buten-1-one and	đ		
Malonamide	None	2-Hydroxy-4-methyl-0-phenylpyridine-3-	301, 308
Ethyl cyanoacctate Cyanoacctamide	NaOC ₂ H ₅ None	3-Cyano-6-methyl-4-phenyl-2-pyridone 3-Cyano-4-methyl-6-phenyl-2-pyridone	301 301

3-Cyano-6-methyl-4-phenyl-2-pyridone (30)

NaOC,II, (C,II,),NH

4. I'henyl-1-methory-3-buten-2-one and

Cyanoacetamide

1. l'henyl-3-ethoxy-2-bulen-1-one and

Cyanoacetamide

3-Cyano-4-methyl-6-phenyl-2-pyridone

‡ This Letune was produced in situ by isomerization of 5-phenyl-4-penten-2-one.

Note: References 491-1015 are on pp. 545-555.

303

Dyridine (?)

NaOC, II, NaOC,II, NaOC, 11

1-Phenyi-2-methyl-2-buten-1-one and

1. Phenyl-3-methyl-2-buten-1-one and

Nitromethane Atroncthane

6-Phenyl-3-penden-2-onet and

Dethyl nulonate

Piperidine.

1-Hydroxy-6-phenyl-1-penten-3-one and

Ethyl Phenacyl Ketone (Enol) and

Cyanoacetamide (Yanoacelamide Call COCH C(CH,) CH NO. (76) 5-Benzyleyclohexane-1,3-dione

423, 422

2-Methyl-4,5-diphenylcyclobexane-1,3-dione (21, 32)

2-Methyl-5-phenyl-cyclohexane-1,3-dione (80) 4-Carbethoxy-2-methyl-5-phenylcyclohexane-

1,3-dione (79)

NaOC, II, NaOC,H None

Lihyl Styryl Kelone and Fillyl phenylactate

Dethyl malonate

NCCII, CONIICII,

None

391 423

3-Cyano-1,4-dimethyl-6-phenyl-2-pyridone and

3-cyano-4-methyl-0-phenyl-2-pyridone

BLE III—Continued

Michael Condensations with Aromatic α, β -Ethylenic Ketones

TITOTIV	TITOTIVE CONTRACTOR		
Reactants	Catalyst	Product (Yield, %)	References
p-Methylbenzoylacelone (Enol) and Cyanoacelamide	$(C_2H_5)_2NH$	3-Cyano-4-methyl-6- <i>p</i> -tolyl-2-pyridone (80) and 3-cyano-6-methyl-4- <i>p</i> -tolyl-2-pyridone (in small	594
NCCH2CONHCH3	$(C_2H_5)_2NH$	amount from the isomeric enol) 3 -Cyano-1,6-dimethyl- 4 - p -tolyl- 2 -pyridone	594
1-Phenyl-3-methylamino-2-buten-1-one and	one and		
Cyanoacetamide	f	3-Cyano-4-methyl-6-phenyl-2-pyridone and 3-cyano-1,4-dimethyl-6-phenyl-2-pyridone	391
Ethoxymethyleneacetophenone and			
Dicthyl malonate	Na enolate of the ester	Ethyl 6-phenylcoumalin-3-carboxylate (44)	211
n-Propyl Styryl Kelone and			
Diethyl malonate :	$ m NaOC_2H_5$	4-Carbethoxy-2-ethyl-5-phenylcyclohexane-1,3-	423
Isopropijl Styryl Ketone and			
Diethyl malonate	NaOC2H5	$(\mathrm{CH_3})_2\mathrm{CHCOCH_2CH(C_6H_5)CH(CO_2C_2H_5)_2}$ (79)	319
Ellyl p-Methoxystyryl Ketone and			
Diethyl malonațe	$NaOC_2H_5$	4-Carbethoxy-5-(p-methoxyphenyl)-2-methylcyclo-	595
Bthyl cyanoacetate	$\rm NaOG_2H_5$	4-Cyano-5-(p-methoxyphenyl)cyclohexane-1,3-dione (55)	580

Trethyl ethane-1,1,2-trearboxylate NaOC₂H₅

Cyclopropyl Slyryl Kelone and

Nitromethane

NaOC, II,

3-Acelyl-1-phenyl-3-buten-2-one and

n-Bulyl Slyryl Ketone and Pheny Intronethane

Dethyl mulonato

1-Actyl-3,4-dihydronaphthalene and

Ethyl acetoacetate

NAOCH,

1- Phenyl 3-cyclopropyl-2-propen-1-one and

Nitromethano

3-Acetyl-4,5-diphenyl-5-nitropentan-2-one (84) 4-Carbethoxy-5-phenyi-2-n-propylcyclohexane-

1,3-dione (35)

Note: References 491-1045 are on pp. 645-555.

8 123

Defenonce	References	597 597 597		598 598, 599 600 600 601	30	594		002	003
Michael Condensations with Aromatic α, β -Ethylenic Ketones	Product (Yield, %)	$A = p \cdot n \cdot C_3 H_7 O C_6 H_4 CO C H_2 C H_2 - (A)_2 C H N O_2 (73)$ $C_6 H_5 C H (A) N O_2 (71)$ $N C C (A)_2 C O N H_2 (83)$	$A = (CH_3)_3CCOCH_2CHC_6H_5$	ACH(CO ₂ CH ₃) ₂ (82) ACH(CO ₂ C ₂ H ₅) ₂ (97, 70§) p-O ₂ NG ₆ H ₄ CH(A)CO ₂ CH ₃ p-O ₂ NG ₆ H ₄ CH(A)CO ₂ C ₂ H ₅ ACH ₂ NO ₂ (80-90)	(CH ₃);CHCOCH;CH(C ₆ H ₄ OCH ₃ -p)CH;CO;H	3-Cyano- 4 -methyl- 6 - p -tolyl- 2 -pyridone (quant.)	Н.С	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ethyl β -(2-oxocyclohexyl)lıydrocinnamate (70)
ONDENSATIONS	Catalyst	NaOH NaOCH ₃ NaOCH ₃		NaOCH, NaOC,H, NaOCH, NaOC,H, NaOCH,	Enolate	(C2H5)2NH		Enolate	Enolate
Міснаві. С	Reactants	Vinyl p-n-Propoxyphenyl Kelone and Nitromethane Phenylnitromethane Cyanoacetamide	Benzalpinacolone and	Dimethyl malonate Diethyl malonate Methyl p-nitrophenylacetate Ethyl p-nitrophenylacetate Nitromethane	Isopropyl p-Methoxystyryl Ketone and Diethyl malonate	3-Ethoxy-1-p-tolyl-2-buten-1-one and Cyanoacetamide	2-Benzylidenecyclohexanone and	Diethyl malonate	

Methoxybenzylidenecyclohexanone and

	808	4 23 82		ef. 603, 806 604 604	3 8 8 8	370, 592	370, 592	575
	c, u, ocu, p	4-Carbethoxy-2-pentyl-5-phenylcyclohexane-	A = C,H,COCH(C,H,)CH,— (4H,CH(A)COC,H.Ch, (88)	5) 74)	p-cic,u,cir(a)coc,u, (71) p-cic,u,cir(a)coc,u, (71) p-(cir,h,Nc,u,cir(a)coc,u, (80)	(5-20)		*G'n'coch*ch'ch'chc'n'occ'n
ana	Na	NaOC ₂ H ₃	кон, сп.он	KOH, CH,OH KOH, CH,OH KOH, CH,OH	KOH, CH,OH KOH, CH,OH KOH, CH,OH	NaOC,H, (C,H,),NH		NaOCII, in pp. 645–555. xperiment
Dun sugungaconstanting and	Diethyl malonate	n-Hexyl Slyryl Kelone and Diethyl malonate	1,2-Diphenyl-2-propen-1-one and Benzyl p-chlorophenyl ketone	Benryl p-tolyl ketone Benryl p-anisyl ketone Deoxybenzoin Phenyl p-chlorobenzyl ketone	Phenyl p-methylbenzyl ketone Phenyl p-dimethylaminobenzyl ketone	Drbenzoyinethane (Enol) and Cyanoscetamide	Vinyl p-Biphenylyl Kelone and December	NaOCH ₃ Note: References 491-1045 are on pp. 645-555. § The acid was isolated in this experiment.

THE MICHAEL REACTION

Michael Condensations with Aromatic α, β -Ethylenic Ketones

£			
Reactable	Catalyst	Product (Nield, %)	References
Chalcone, CoHsCH=CHCOCoHs, and	and	f H^2 OO^2 HOO^2 HOO^2 HOO^2	
Dimethy malonate	NaOCH,	ACH(CO.CH3); (80, 94)	15, 101
	Pineridene	ACH(CO,CH ₂), (poor)	=
Diethy molonate	Piperidine: 0.1 equiv.	ACH(CO,C,H,), (71, 93, 98)	30, 55, 125,
Dietnyi maionate	NaOC.II,; KOH, acetal		483, 517, 518
-	1 equiv. NaOC, II3	Diethyl 5-benzoyl-2, 1, 6-triphenyl-1 cyclohexenyl- 1 1-dieneboxylate (70)	ន
Diethyl methylmalonate	Piperidine, NaOC.11,	AC(CH3)(CO2(CH3); (80)	55, 125, 51
	Na	Retrogression products	3206, 607
Diethyl ethylmalonate	NaOC.IIs	Retrogression products	125
Diethyl phenylmalonate	NaOC, H5	AC(C115)(CO;C4H5); (94)	163
Diethyl succinate	NaOC; IIs	денсолг.	77.
		(11,00,11	
Methyl phenylacetate	NaOCIII	C, H3CH(.1)CO, CH3	163, 605
Ethyl phenylacetate	NaOC, IIs	C.H.(H(A)('O.(',H., (02); compound C.,HMO.	82, 125
Ethyl «-phenylbutyrate	NaOC, Hs	C,115C(C,115)(CO;C,115).1 (3)	53
$p ext{-}0_2 ext{NC}_6 ext{H}_4 ext{CH}_2 ext{CO}_2 ext{CH}_3$	Na OCH,	p-0;NC,H,CH(.1)('0;CH, (95)	0.000
p - 0 ₂ N C $_6$ H $_4$ CH $_2$ CO $_2$ C $_4$ H $_5$	NaOC ₂ II ₅	p-0,NC,H,CH(A)(O),C,H,	COO
$p ext{-}0$,NC $_{c}$ H $_{c}$ CH $_{c}$ CO $_{c}$ C $_{c}$ H $_{g}$ - n	NaOC ₊ H ₅	p-0-NC, H1CH(.1)(0), C, H5-m	OH9
		o	
Ethyl acetoacetate	NaOC,11s; piperidine	11.C. C.11.	125, ef. 19

CH3COCH(C4H4)CO4C4H3	NaOC ₅ H _s	n,c, c,u,	123
Ethyl benzoylacetate C ₄ H ₅ COCH ₅ CH(C ₄ H ₅)CH(C ₆ H ₄). CO ₅ C ₂ H ₄	Piperidine, NaOC ₄ H, Na in C ₄ H,	Call COCH(A)CO, Call, (at) Compound Colling,	125
Methyl cyanoacetate Ethyl evanoacetate Uthyl n-butylcyanoacetatu Cyanoacetainide	NaOCH, NaOC _H , NaOC _H , NaOCH,	ACHICYNCO,CH, and (A),C(CN)CO,CH, (6.4) (A),C(CN)CO,CH, (01) (A),C(CN)CO,CH, (03) ACHICVSCONE, (00)	12.12
CH ₃ C(==NH)CH ₂ CN	Piperidine or (C ₄ H ₄) _k NH 1 equiv. NaOC ₄ H ₃ NaOC ₂ H ₃		430 630 630 630 630 630 630 630 630 630 6
Malonontrile Benzyl cyanide	NaOCII, NaOCII,	1,4-dihydro denvative	5 5
Phenylacefaldchyde Dietlyl ketone	NaOCH, NaOCH,	Calicalication (two bomers: 87; 40 and 30) Calicalication(81) Calicational Calication (1)	012
Pracelone Acetophenone	NaOC.H.	(CIII), CCOCIII, and CII, C(A), COCIII, (90-100)	207
ropiophenone n-Butyrophenone	NaOC,H, NaOC,H,	CH,CH(A), (27) and C,H,COC(A), (25) CH,CH(A)COC,H, (51) and CH,C(A),COC,H, (27) CH,CH(CH(A)COC,H, AM, CH,C(A),COC,H, (27)	125 207
Jackyphenone Decxybenzon Dibenzoylmethane	NaOC,H, NaOC,H, NaOC,H,	CH-ACCOC, H, COC, H, COC, CH-ACCOC, H, COC, CH-ACCOC, H, COC,	207
Note: References 491-1045 are on pp. 545-555.	on pp. 545-555,	(I) PHO!(O)!HIS	125

Nder: References 401-1045 are on pp. 545-655. Two recurses activations a non-scales product, C₀, U_MO₀, of unknown structure were obtained.

References

014

TABLE III-Continued

MICHAEL CONDENSATIONS WITH AROMATIC α, β -ETHYLENIC KETONIES

Catalyst

Chalcone, CeHsCH=CHCOCeHs, (Cont.) and

Reactants

Product (Yield, %)

A = CILCHCHICOCAH,

E

ethanol; sec-amines

NaOCH3; NaOH,

Anthrone

NaOH, ethanol

2-Phenyl-2,3-dihydro-y-pyrone

Z

2-(3',4'-Methylenedioxyphenyl)-

2,3-dihydro-y-pyrone

70

016

2-Phenyl-2,3-dihydrobenzo-y-

Aq. NaOH; NaNH; Na

Note: References 491-1045 are on pp. 545-555.

613, 617

616

NaOH, ethanol; (C,H,),NH

NaOII, ethanol

NaOH, ethanol; piperidine NaOC,H,

3-Methylcyclohexanone

613, 616

THE MICHAEL REACTION

Michael, Condensations with Aromatic α, β -Byhylenic Ketones

	THE REPORT OF THE PARTY OF THE		
Beaclants	Catalyst	Product (Yield, %)	References
Chalcone, CellsCII=CHCOCells, (Cont.) and	Cont.) and	$A = C_t H_t CHCH_n COC_t H_s$	
		· · · · · · · · · · · · · · · · · · ·	
Cyclohexame-1,3-dione	Piperidine	(58)	618
Nitromethane	NaOCH3; NB3, ethanol (C2H8)2NH CaH3, CH3OH	.4CH ₃ NO ₂ (75, 88) and (.4) ₂ CHNO ₂ (small) (.4) ₂ CHNO ₂ (two isomers, 77) .4CH ₃ NO ₂ (66-92)	620, 209, 619 621 $466a$
Nitroethano 1-Nitropropano	$(C_2\Pi_b)_2N\Pi_i$; NaOCIII3 $(C_2\Pi_b)_2N\Pi$	CH ₂ CH ₂ CH(A)NO ₂ (two isomers: 78 + 11; quant.) CH ₂ CH ₂ CH(A)NO ₂ (97)	209, 620 209
2-Nitropropano	CaH2, CH30H (C2H5)2NH; NaOCH3; CaH2, CH30H	$\mathrm{CH_3CH_4CH(A)NO_2}$ (65–92) $\mathrm{(CH_3)_3C(A)NO_2}$ (92–96)	$\frac{466a}{209, 466a}$
Ethyl nitvacetate Benzyl p-tolyl sulfane	(C ₂ H ₆) ₂ NH NaOCH ₃	$O_2NCH(A)CO_2C_2H_5$ (94) $C_6H_6CH(A)SO_2C_6H_4CH_5-p$ (two isomers: 15, 11)	622 7-1
Cyclopentadiene	Na derivative; piperidino	$\text{CII}(C_6 \text{H}_6)\text{CH}(\mathcal{A})\text{COC}_6 \text{H}_6 \text{ (Simil)}$	376
		F n	
Ріпорчи	Pyridine, NaOII, 11,0	(Quant.)	362, 623

NaOC, II,

Fluorene

TABLE III—Continued

MICHAEL CONDENSATIONS WITH AROMATIC A, P. ETHYLENIC KITTONES

References 624 625 376 551 55 A = Appropriately Substituted CHICHICH COCH Product (Yield, %) (CH;=CH);CHA (11) (CII,==(II),CII.4 (4) ACH(CO,CH,), (92) ACH(CO,C,II,), ACH, NO. (87) ACH,NO. ACH,NO. NaOCiUs NaOCiUs; NaNH; B. Substituted Chalcones Catalyst NuOCH, NaOC, Hs NaOCH, NaOCH, CH,NO; CU;(CO;CH,); CH;(CO;C;H,); I,4-Pentadiene Addend CH₃NO. CH,NO. Substituent(s) in

> 3-Br4-Br 4'-Br

3 3 and

2,7-Dibromofluorene NaOC, II,

370

Michael Condensations with Aromatic α, β -Ethylenic Ketones

	References		979	ດສຸຄ	108	628 628	504	616
MICHAEL CONDENSATIONS WITH AROMATIC a, printing attributes	Product (Yield, %o)	A = Appropriately Substituted CHICHCHICOCAL 0	O O 0	(50)	(34)	4CH(CO ₄ CH ₄) ₄ (good) 2-Carbethoxy-3-p-methoxyphenyl-	a-partiyt-o-eyetohexen-1-one 3-Cyano-2-hydroxy-1-p-methoxy- phenyt-0-phenyt-1,5-dihydro- pyridine	2 C
WITH AROMATIC A,	Catalyst		(C ₂ H ₅) ₂ NH	NaOH, ethanol	Pyridiue	NaOCH ₂ NaOC ₂ H ₃	Na enolate	всс-Атіпез
EL CONDENSATIONS	Addend		Cyclopentanone	Cyclohexanone	4-Hydroxycoumarin Pyridine	CH,CO,CH,), NAOCH, CH,COCH,CO,C,H, NAOC,H,	иссн.солн.	Cyclopentanone
Місна	Substituent(s) in	3 2 CH=CHCO 6' 5'	2-HO (Cont.)		2′-Н0	4-CH ₃ O		

			THE MICH	AEL F	REAC	NOI				31
616	604, 629	621	614		613	621		614	9	9
· Final Property of the Proper	(Two konnes) C ₆ H ₆ CH(A)COC ₆ H ₅ (42, luttle)	(A)2CHNO,	O Justine	0=		(A),CHNO,	o={	H.	2-Carbethoxy-3-methyl-5-p tolyl-	5-cyclohexen-1-one
ec-Amines; KOII, C,H,OH	KOH, CH4OH;	NaOCH ₃	NaOC ₂ H ₅		NaOH, ethanol	NaOCH,	NaOH, ethanol		NaOCall	
3-Methylcyclohexa- sec-Amines; KOII, none C, HsOII	Deoxybenzom	Nitromethane	2-Phenyl-2,3-di- hydro-y-pyrone		Cyclohexanone	CH,NO,	2-Phenyl 2,3-d1-	hydro-y-pyrone	CH,COCH,CO,C,H, NaOC,H,	e on pp. 545–555.
			4-دار,0		3'-Cit,	±°			€.coH,	Note: References 491-1045 are on pp. 545-555.
			\$		'n	4-CII.			ž	٠,

TABLE 111—Continued

MICHAEL CONDENSATIONS WITH AROMATIC α, β -Ethylenic Keyones

References		430	435	5 5 5		614	877		-10
Product (Yield, %)	A = Appropriately Substituted C ₁ H ₂ CHCH ₂ COC ₂ H ₃	3-('yano-6-hydroxy-4-phenyl-6- p -(olyl-2-piperidone (75)	3-tyano-2-keto-4-phenyl-6-p-tolyl 2,3,4,5-tetrahydropyridine (90)	(.4),CHNO, .4CH(CO,CH ₅),	· •{	0 V. 11s	O CO3C1H, C. C. H, COH, P.	O ===((0)c4113
with anomaine w		Piperidine	NaOC ₂ II ₅	NaOCH3 NaOCH3		Na Na	NaOC ₂ H ₅		Nn n
Michael Condensations with another of the		NCCH, CONH.		CH,NO; CH;(CO;CH,);		2-Phenyl-2,3-di- hydro-y-pyrone	CH1COCH1CO1C1H2 NaOC1H3		2-Phenyl-2,3-di- hydro-7-pyrone
Michael (s) in	CH=CHCO (c)	4'-CH3 (Cont.)		3-NO ₂ 3-Br, 4-CH ₃ O		4,4'-Dimethoxy	4-CH ₃ O, 4'-CH ₃		

			211011		2		313
616	616	621	References	631		481	632, 633
0=	KOH, CH, CH,	ACH,NO, and (A),CHNO,	Product (Yield, %)	H,C,CH—C(CN)C,H,NO,-p	(Malure of attreotsomers)	CH,COCHCO,CH, 3.4-CH,O,CH,COC,H,r,n (A1 5; 48%)	O THE CHARGE OF THE COLL SA (A) THE SET, SPECIAL PRINCE FOR SOME OF
sec-Amines	sec-Ammes; KOH, C ₁ H _s OH	NaOCH,		io"o"ii	(Mlxi)	з,4-си	n-H ₁₁ C _s
Cyclopentanone	3-Methylcyclo- hexanone	CH,NO,	Catalyst one and	NaOCH	lexyl Kelone and	NaOC,H,	
3,4-Methylenedioxy			Reactants a-Bromobenzyludeneacetophenone and	p-0,NC,H,CH,CN	3,4-Methylenedioxyntyryl n-Hexyl Kelone and	Ethyl acctoacelate	Net Reference 43-43-44 as to gr. alia.

Michael Condensations with Aromatic α, β -Ethylenic Ketones

MICHAEL	CONDENSATIONS WI	MICHAEL CONDENSATIONS WITH AMORANIC AND LINES.	
Reactants	Catalyst	Product (Yield, %)	References
trans-Dibenzoylethylene and		$A = C_{H_1} COCH_2 CHCOC_{H_2}$	
Diethyl benzylmalonate Acetophenone	NaOC, II, NaOCH,	C ₆ H ₅ CH ₂ C(A)(CO ₂ C ₂ H ₅); (20) 1,2,3-Tribenzylpropane (1)	1E9 82
1,2-Dibenzoylethane	NaOC, II,	C'H'COCH'CH(7)COC'H' (65)	155
1,1-Dibenzoylethane (Enol) and	HN (H)/	9. Propos formathyl, 1 delinhourd Domeridana	200
c) anoacetamine	77,12/57757)		1
3,4-Diphenyl-3-buten-2-one and			
Phenylnitromethane	(C,11,),NH	1-Nitro-1,2,3-triphenylpentan-1-one (68)	8
2-Benzoyl-1-phenylpropene and			
Dimethyl malonate	NaOCH,	CHECOCHICHEDICHICETTE (COECHE); (two	7.0
2-Methoxy-1,3-diphenyl-2-propen-1-one and	ne and	150mets: 62 -: 10)	
Cyanoacetamide	NaOCII3	3-Cyano-5-methoxy-4,0-diphenyl-2-pyridone	120
Benzoyl-p-toluylmethane (Enol) and			
Cyanoacetamide	(C ₂ II ₆) ₂ NII	3-Cynno-4-phenyl-6-p-tolyl-2-pyridone (31) and 3-cynno-6-phenyl-4-p-tolyl-2-pyridone (17)	370

0=

Deoxybenzoin	NaOC,H,	CH(C,H,CH(C,L,DCOC,H,	416
Slyryl Phenethyl Kelone and		$A = C_4 H_4 CH_4 CH_5 COCH_4 CHC_6 H.$	
Dunethyl malonate Diethyl malonate	NaOCH, NaOCH,	ACII(CO ₄ CH ₃); 4-Carbethoxy-2-benzyl-5-phenylcyclohexana-	423
3-Benroyl-4-phenyl-3-buten-2-one and		1,3-dione (60)	700
Phenylautromethane p-CH ₂ C ₆ H ₄ COCH ₂ C(=:NH)CH ₃	(C ₂ H ₄),NH None	3-Benzoyl-5 mt10-4,5 diphenylpentan-2-one (38) 5-Acetyl-2-methyl-4,6-diphenyl-3-n-tolnorl-3-4.	23
3-Methoxy-3-phenyt-1-p-tolyt-2-propen-1-one and Cyanoacetamide	-one and	dihydropyndine	9
9 Metro	Trible La	3-Cyano-4-phenyl-6-p-tolyl-2-pyradone	370
5-Manazy-1-phenyl-3-p-ansyl-2-propen-1-one and Cyanoacetamide (C.L.),NI	-1-one and (C ₂ H ₃) ₂ NH	3 Cyano 4-p-anisyl-6-phenyl-9-nymdono	
Fluorenylideneacelophenone and		and the state of t	207
Acetophenone	KOH, acetal	9,9-Diphenacylfluorene	į
5-Mestoylacenaphlhylene and			55
Medical indicate	NaOC,H,	5-Mesitoylacenaphtlicne-1-acetic scid** (50)	900
7081. Helemone 401-1615 are on pp. 545-555. The unsaturated ketone was formed to sist from fluorenone and acetophenone. * The acid was obtained after hydrolysis of the adduct	p. 545–555. led in situ from fluor olysis of the adduct	mone and acetophenone.	92

LABLE IV

CETONE TYPE References
D DICINNAMYLIDENE-ACETONE
AND
TH ETHYLENIC KETONES OF THE DIBENZYLIDENE- AND
Ethylen
VITH
CONDENSATIONS WITH E
MICHAEL

EL CONDENSATIONS Y Reactants	with Ethylenic Catalyst	Michael Condensations with Ethylenic Melones of the Product (Yield, %) Reactants Catalyst A. C. T. C.	References
Dibenzylidencacctone and			
	Piperidine NaOCH ₃	ACH(CO ₂ CH ₃) ₂ (59) Dimethyl 2,6-diphenyl-4-oxocyclohexane-1,1-dicarboxylate	198 198
	Piperidine NaOCH.	JCH(CO ₂ C ₂ H ₅) ₂ Diethyl 2,6-diphenyl-4-oxocyclohexane-1,1-dicarboxylate	108
	(C ₂ H ₅) ₂ NH NaOCH ₃ NaOH	CH ₃ COCH(A)CO ₂ C ₂ H ₃ (38) 4-Carbomethoxy-4-cyano-3,5-diphenylcyclohexan-1-one (72) 4-Carbomethoxy-4-cyano-3,5-diphenylcyclohexan-1-one	21 198, 199 199
	NaOC.H.	4-Carbethoxy-4-cynno-3,5-diphenylcyclohexan-1-one (88)	005
		o = <	
3-Methylcyclohexanone	$(C_2H_6)_2NH$	$\operatorname{CH}_{\mathfrak{s}}$ or $\operatorname{A}\operatorname{CH}_{\mathfrak{s}}$	616
	NaOCH3	γ -Cinnamoyl- α,β -diphenylbutyronitrile (two isomers), and 4-cyano-3,4,5-triphenylcyclohexan-1-one (total 44)	959
		00	
	NaOCH	4-Cyano-3,4,5-triphenylcyclohexan-1-one (52) 4-Nitro-3,5-diphenylcyclohexan-1-one	108

Substituted Dibenzylideneacetones Carbant in

Substituent(s) in	Addend	Catalyst	Substituents in Product (Yield, %)
1			c={
Culcochecif Constitution of the Constitution o			
52	CH,COCH,CO,C,H, NaOC,Hs;	NaOC,Hs;	60
24	CII,COCH,CO.C,H, NaOC,H,;	piperidine NaOC ₁ H ₆ ;	" C,H,O,C — (35) 3-m-ClC,H,CH — (31)
15-9	CH,COCH,CO,C,H, NaOC,H,;	piperidine NaOC ₄ H ₆ ;	9-C,H,O,C (88)
2,3'-Di-Cl	CH,COCH,CO,C,H, N.OCH,	piperidine NaOCH3	8-C,H,O,C.— 3-0-ClC,H,—, 5-m-ClC,H,CH.=CH.—
2,1'-D ₁ -C1	CH, COCH, CO, C, H, NAOCH,	Naocii	8-C ₂ H ₂ O ₃ C— 3-9 ClC ₄ H ₄ —, 5-p ClC ₄ H ₄ CH—CH,
3,1'-D _{1-Cl}	CH,COCH,CO,C,H, NaOCH,	NaOCH,	8-C,H,O,C.— 3-m-C,C,H,, 5-7-C,C,H,CII—CII
4-CII,0	CII,(CO,CII,),	Piperidine	b Chiocal Chical
		NaOCH,	CH(CO, CH,), 3-p-Ansayl 4,4-dicarbomethoxy-5-
Note: References 491-1945 am on m. fac any	200		phenylcyclohexan-1-one

Note: References 491-1015 are on pp. 545-555.

203

MICHAEL CONDENSATIONS WITH BTHYLENIC KEYTONES OF THE DIBENZYLIDENE. AND DICINNAMYLIDENE-ACETONE TYPE

TABLE IV-Continued

Addend

Substituent(s) in

Substituted Dibenzylideneacetones—Continued Catalyst

Substituents in Product (Yield, %) References

CII=CIICOCII=CII(

2-110, 2'-೧

3-0-CIC, H, CH = CH -, 5-0-HOC, H, -, 0-C,H,O,C (2S) CH3COCH2CO2C3H5 NaOH, aq.

3

Callacouly Color, Naoch

203

203

3-p-ClC,H,CH=CH-, 5-0-HOC,H,-, 6-C₂H₄O₄C-- (33)

CH,COCH,CO,C,H, NaOH, aq.

ethanol

8-m-ClC,H,CH=CH-, 5-0-HOC,H,-,

CH,COCH,CO,C,H, NaOH, aq.

ethanol

203

2-HO, 4'-CI

CH = CHC4H4C1-P

3-Cl, 4'-HO

4-01, 4'-110

3-Cl. 4'-CH,0

4-Cl. 4-Cli₁0

20.2

ž 204

3-m-ClC,H_CH=CH-, 5-p-HOC,H,-, PCICALCII—CII—, 5-P-HOC,H,—,

CH,COCH,CO,C,H, NaOH, aq. CII,COCII,CO,C,II, NaOH, aq. CU,COCH,CO,C,II, NAOH, 4q.

CH,COCH,CO,C,H, NaOH, aq

ethanol ethano! ethanol ethanol

202

TABLE IV—Continued

MICHAEL CONDENSATIONS WITH BUILTIANIC KENTONES OF THE DIBERZHADENE. AND DICINNAMYLADENE, ACETONE TYPE

Substituted Dibenzylideneacelones—Continued

References		202, 586	202	505	202	108	199		205 205	202
Substituents in Product (Yield, %) O	=\(\bigci_{\sigma_2}^{2\bigci_1}\tau^2\)	3.0-110C ₆ H ₄ CH=-CH-, 5-0-110C ₁ H, (24)	3-o-CH ₃ OC ₃ H ₄ CH==CH=,	S-culocal Cul-	8-0-CH3OC4H4CH==CH-,	4.4-Dicarbomethoxy-3,5-di-p-methoxy-	paeny tey cionexan-1-one 3,5-Di-(p-methoxyphenyl)-4-carbo-	methoxy-4-cyanocyclohexan-1-one 3-p-(CH ₃) ₂ NC ₄ H ₄ CH=-CH,	5-p-(CH ₅),NG ₄ H ₄ —, 6-C ₂ H ₅ O ₂ C— 3-o-HOC ₄ H ₄ CH=—CH—,	b-p-(CH ₃) ₂ NC ₃ H ₄ —, 0-C ₁ H ₃ O ₂ C— p-(CH ₃) ₂ NC ₃ H ₄ CH=CHCOCH ₂ - CH(C ₄ H ₄ OH-ο)CH(CO ₂ H) ₂ *
Catalyst		NaOH, aq.	NaOH, aq.	Z	NaOH, aq.	NaOCH,	NaOCH,	NaOll, aq.	ethanol KOII, aq.	ethanol cthanol
Addend		CII,COCH,CO,C,Hs NaOII, aq.	CH3COCH2CO2C2H5 NaOH, aq.	CH3COCH3CO2C3H8	си,соси,соси,	$\mathrm{CH_3(CO_2CH_3)_2}$	NCCII,CO,CII,	CII,COCII,CO.C.II, NaOII, aq.	CH3COCH3CO2C2H5 KOH, aq.	NCCH,CO.C.II.
Substituent(s) in		2,2′-Di-110	2-110, 2'-CH ₃ 0	2,2'-Di-OH ₃ O		4,4'-Di-CH ₃		4,4'-101-(CI1 ₃) ₂ N	2-110, 4'-(C11 ₃) ₂ N	

THE M	References	REACT	non 188	198	524
### ### ##############################	Product (Yield, %)	4.4-Dicarbomethoxy-3-phenyl-5-styrylcyclo- hexan-1-one	4.4.Dicarbomethoxy-3.p-methoxyphenyl- 5-styrylcyclohexan-1-one	4.4-Dicarbomethoxy-3,5-distyrylcyclo- hexan-1-one	Compound C ₁₁ H ₂₁ N ₁ O ₂
NaOH, aq. ethanol NaOH, aq. ethanol NaOH, aq. ethanol NaOH, aq. ethanol NaOCHs		4,4-Dia	4,4.Du 5-st	4,4-Di	Comp
culcocutco, tal, Naodu, se, culcocutco, tal, Naodu, se, culcocutco, tal, Naodu, se, culcocutco, tal, Culcocu	Catalyst	NaOCH _a refore and	NaOCH,	Na OCH.	NaOC,II, drolysus of the adduct,
Souls, 4-culp, 4-culp, 8 Suo, Soulo, 4-culp, 8 Suo, 4-culp, 4-culp, 8 Suo, 4-culp, 4-culp, 8 Suo, 4-culp, 8 Suo, 4-culp, 8 Suo, 8-culp,	Heactanta Benzylulenconnamylideneacelone and	Dimethyl malonate NaO p-Methorydenrylideneeinnamylideneaeelone and	Innethyl malonate Dicinnamylideneacetone and	Dimethyl malonate 2,6-Dibrnzylulenecyclohezanone and	Cyanoact tannide NaOC _I II, The acid was obtained after hydrolysis of the adduct,

V SI ICI V

MICHAEL CONDENSATIONS WITH UNSATURATED KETONES CONTAINING HETEROCYCLIC RINGS

Reactants	Catalyst	Product (Yield, %)	References
		cincu, cocu,	
	$NaOCH_3$ (C_2H_3) $_3NH$	C ₆ H ₅ CH(-4)CN (81) CH ₃ CH ₂ CH(-4)NO ₂ (75)	121 200
2-Nitropropane Triethyl uposubonografata	$(C_2H_6)_2NH$ $N_2(C_2H_6)_2$	(CH ₂) ₂ C(A)NO ₂ (95)	200
Purfurilidencaectonhenone and		(a) 9====================================	1
	$NaOC_2U_b$	ACH(CO,C,Hs), (75)	210
	NaOC ₂ H ₃	Collococh, 4 (25)	207
	(C ₂ 11 ₆) ₂ N11	CH3CH(A)NO. (70)	808 808
	(C ₂ ,U ₄),NU NaOCH,	(CII ₃) ₃ C(A)NO ₃ (00) C ₆ U ₆ C(I(A)NO ₃	807

208 208 210 210

Furfurylideneacetophenones Containing a Substituent in the Phenyl Group

References

Product (Yield, %)	CHCH,COC,H,R with Substituent B as	1CH, NO, R = 4 Bt (75)	$A_1^{1}H_0^{1}CH(A)NO_0$, $R = 4.0R$ (29) $A_1^{1}CH(A)NO_0$, $R = 4.0H$,	4CH(CO ₁ CH ₂) ₂ , R = 4-cyclohexyl (50)
	A	•	9,	`
Catalyst		NaOCH,	NaOCH,	Nauch,
Adduct		CH,NO.	CH,CH,NO, CH,(CO,C,H,),	CH2(CO2)12
Substituent in	Con-checo	4.Br	4-CH,0 4-Cvclohexv	

	Corco
Product (Yield, %)	COStepHe
Catalyst	
Reactants idene-1-defrators and	

2-Furyildene-8-methoxy-1-letralone and

393

* The malonic eater adduct could not be obtained crystalline so it was hydrolyzed to the acid

TABLE V-Continued

MICHAEL CONDENSATIONS WITH UNSATURATED KETONES CONTAINING HETEROCYCLIC RINGS

Reactants	Catalyst	Product (Yield, %)	References
Benzylidene-2-acetylcoumarone and	•	-	

2-Acetylcoumarone †

$$COCH_2$$
— \int_2
and

Hydroxymethylene-2-acetylthiophene and

Diethyl acetone-1,3-dicarboxylate

Diethyl 2-hydroxy-4-(α -thienyl)isophthalate (61)

NaOC2H5

 $NaOC_2H_5$ Hydroxymethylene-2-acelylpyridine and Diethyl acetone-1,3-dicarboxylate

NaOH

Phenyl \(\beta\)-(4-Quinolyl)vinyl Ketone and

Acetophenone[‡]

1,5-Diphenyl-3-(4-quinolyl)pentane-1,5-dione (87)

638

427

Diethyl 2-hydroxy-4-(a-pyridyl)isophthalate (76)

† A mixture of benzaldehyde and 2-acetylcoumarone was used. Note: References 491-1045 are on pp. 545-555.

‡ A mixture of acetophenone and quinoline-4-carboxaldehyde was used.

637

211

TABLE VI

MICHAEL CONDENSATIONS WITH 3-ACTLCOUMARINS AND RELATED COMPOUNDS

References

Catalyst		None
Reactants	edykoumarın and	anoacetamide

Prperidine

Acetono

R = C.H. (21) R = 3-Coumarinyl R = C,H, (42) R = CH, (32) NH,(NCCH,CONH,) NH, (NCCH, CONH,) NH, (NCCH, CONH,) NH, (NCCH, CONH,)

> Methyl ethyl ketone 3-Acetylcoumarın Acetophenone

222

 The symmetramide could be replaced by makenamide, formamide, or uses without changing the product. The same product was obtained when prperiding was used as a catalyst. The earlier report (ref. 213) that the product with cyanosceta-

+ In these experiments oyanoacctamide was present; its decomposition furnished the ammonia. mide and piperidine was 3-acetyldibydrocoumarin-4-(a cyanoacetamide) could not be confirmed.

MICHAEL CONDENSATIONS WITH 3-ACYLCOUMARINS AND RELATED COMPOUNDS

Reactants

3-Acetylcoumarin (Cont.) and

Catalyst

References

Product (Yield, %)

unless complete structure is shown

Piperidine

3-Acetylcoumarin

Ξ

NH3(NCCH2CONH2)+

Cyclohexanone

Cyanoacetamide	Piperidine	3-Benzoyldıhydrocoumarın-f-(x-cyanoacetamide)	213	
7-Hydrozycoumarın and Cyanoucetamide	Piperdine	7-Uydroxydhydrocoumarin-4-(c-cyanogcetamide) (90)	639	
7-Methozycoumarın and Cyanoacetamido	Prpendine	7-Methoxydihydrocoumarm-4-(z-cyanoscetamide) (90)	629	
2-(p-Methoxybenzylidene/voumaran 2-one‡ and	maran 2-one‡ and	$A = \bigcirc $		THE M
Ethyl acetoacetate Deoxybenzom	NaOC,H4 NaOC,H4	CHOOCHLAND, O	214	CHAEL REA
Cyclohexanone	NaOC,Hs	~ ₹	214	TION
Note: References 491-1045 and		,		

3-Benzoylcoumarın and

Note: References 491-1045 are on pp. 545-555,

i in these experiments cranscreturals was present; its decomposition furnished the armonia. The corresponding & methory compound behaves analogously with ethyl sectoscette, decrydetholm, and cycloberanome; ref. 214a.

TABLE VI-Continued

	.	TABLE VI—Continued	
Мгона	LEL CONDENSATIONS WI	Michael Condensations with 3-acylcoumarins and Related Compounds	
Reactants	Catalyst	Product (Yield, %)	References
y-Pyrone and Diethyl malonate	$ m NaOC_2H_5$	Ethyl p-hydroxybenzoate	215
Alkylidenerhodanines and			
Rhodanine§	NH,OH, NH,CI	$\alpha,\alpha\text{-}Bis\text{-}(2\text{-}thio\text{-}4\text{-}ket otetrahydro\text{-}5\text{-}thiazolyl)ethane and homologs (22–55)$	216
5-Ethoxymethylene-3-methylrhodanine and	odanine and		
3-Methylrhodanine	t-Amines	5,5'-Methylidynebis-(3-methylrhodanine) (31–69)	0.10
3-Phenylrhodanine	$(C_2H_5)_3N$	O O C—C—CH—CII—C H ₃ CN S—C S—C S S S S S S S S S S S S S	640

1.1'-Diphenyl-1'-(P-bromophenyl)-3,3',3"-trimethyl. 1.1',1'-Triphonyl-3,3',3'-trimethy)-{4,4',4'-ter-2.

(4,4,4"-ter-2-pyrazolme)-5,5',5"-trione Pyrazolme).5,5',5'-trione

NOH, (94)	≕ z i
N' N' B'	≠x
$(C_{\mu}H_{a})_{b}N$	methylenerhodanine) and
3-Methytrhodsaine	3,3'-Lihylenebis-(5-ethozymeth

Design Assessed

3-Methylrhodanme 3-1 Benylrhodanine

Salt of 3,3'-ethylenebls-5-(2'-thiono-4'-keto-3"-methyl-Salt of 3.3' ethylenebis 5'(2"-thiono-4"-keto-3" phenyl-5"-thurolidylmethylenerhodanne) (37) 5*-thiazolidylmethylenerhodanine) (50) (C,II,)N (OHO)

1-Phenyl-3-methyl-2-pyrazolm. None 1-(p-Mromophenyl)-3-methyl-2. None pyrazolin-6-one Pyrazol blue and

Note: References 491-1015 are on pp. 545-555.

f The actual ingredients used were rhodanine and various aliphatic aldehydes.

TABLE VII

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

Reactants Catalyst Product (Yield, %) References 2 -Hydroxymethylenecyclopendanone and S-Indanol-d-carboxylic acid (18) $\frac{427}{427}$ Bihlyl acetoacette NaOC,H _s NaOC,H _s Diethyl 5-indanol-J.G-Gicarboxylite (02) $\frac{427}{435}$ Bihlyl acetoacette $\frac{1}{3}$ Diethyl $\frac{1}{3}$ Diethyl acetoacette $\frac{1}{3}$ Diethyl $\frac{1}{3}$ Diethyl maloante $\frac{1}{3}$ NaOCH _s $\frac{1}{3}$ ACH(CO ₂ C,H _s), $\frac{1}{3}$ (00) Niconcollance NaOCH _s $\frac{1}{3}$ NaOCH _s $\frac{1}{3}$ CH ₂ CH ₃ $\frac{1}{3}$ NaOCH _s $\frac{1}{3}$ Oilethyl methylmaloaate NaOCH _s $\frac{1}{3}$ NaOCH _s $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ Dimethyl methylmaloaate NaOCH _s $\frac{1}{3}$ 1			ORGAM	CREACI	TOMO	,		
Catalyst one and NaOC ₂ H ₅ nte NaOC ₂ H ₅ NaOCH ₃ NaOCH ₃ NaOCH ₃	References	122 121 145		642 643 643		430		
one and NaOC ₂ E NaOC ₂ E NaOCE NaOCE NaOCE NaOCE	Product (Yield, %)	5-Indanol-6-carboxylic acid (18) Diethyl 5-indanol-4,6-dicarboxylate (92) 6-Methyl-2,3-dihydro-\theta-prridindene*	o = ()	ACH(CO ₂ C ₂ II ₅) ₂ (90) ACH ₂ NO ₂ (50) CH ₃ CH(A)NO ₂ (57)		OH ₂		
Reactants 2-Hydroxymchylenccyclopendanone Ethyl acetoacetate Diethyl acetone-1,3-dicarboxylate Ethyl \(\beta\)-aminocrotonate 2-Cyclohexen-1-one and Diethyl malonate Nitroethane Nitroethane 3-Chloro-2-cyclohexen-1-one and 1-Acetul-1-cyclonendene and	Catalyst	and NaOC ₂ H ₆ NaOC ₂ H ₆		NaOC ₂ H ₅ NaOCH ₃ NaOCH ₃		NaOCH,		
	Reactants	2-Hydroxymchylenecyclopentanone Ethyl acetoacetate Diethyl acetone-1,3-dicarboxylate Ethyl \(\beta\)-aminocrotonate	2-Cyclohexen-1-one and	Diethyl malonate Nitromethane Nitroethane	3-Chloro-2-cyclohexen-1-one and	Dimethyl methylmalonate	الموايا	r-receiver-r-obconene ana

3

98, 217 206 217
$R = H$ $R = CH_1O (55)$ $R = C_1H_1O$
NaNH, NaNH, NaNH,
Tetralone Methoxy-1-tetralone Ethoxy-1-tetralone

коп, спр

Methyl ethyl ketone Ethyl acetoacetate

NaOH

кон, сн,ои

Cyclobexanone

645, 646‡

Note: References 491-1045 are on pp 545-555.

This product was obtained after hydrolysis and decarboxylation.

2-Bydroxymethylcyclohexanone was used in these experiments.
 A mixture of cyclohexanone and formaldehyde was employed.

TABLE VII-Continued

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

62, 647, cf. 18, 70 62, 647, cf. 69, 175 References 048, 00 649 1-Methylbicyclo[3.3.1]nonan-5-ol-7-one Product (Yield, %) CO,C,H, CH, CH, CH,CO,C,H, CH(CN)CONH. [CeBsCH2N(CH3)3]OCH3 Catalyst NaOC, H. NaOC₂H₅ NH3 3-Methyl-2-cyclohexen-1-one and Reactants Ethyl cyanoacetate Ethyl cyanoacetate Ethyl acetoacetate Diethyl malonate

ĊĦĴ

Note: References 401-1045 are on pp. 515-555.

IC

82

(C,H,CH,N(CH,),)OCH,

CYCLOALICENES
ACXI
AND
MICHAEL CONDENSATIONS WITH CYCLOALRESTONES AND ACYL, CYCLOALRESUES
WITH
CONDENSATIONS
MICHAEL

MICHARL C	ONDENSATIONS WITH (MICHAEL CONDENSATIONS WITH CYCLOALIERONES AND MALL CYC	References
Reactants	Catalyst	Product (Meia, %)	
2-Hydroxymethylenceyclohexanone and Bthyl acetone-1,3-dicarboxylate NaOC ₂ H ₅ Dichyl acetone-1,3-dicarboxylate NaOC ₂ H ₅ Cyanoucetamide Piperidine CH ₃ C(-=:NH)CH ₃ CO ₂ C ₂ H ₅ None	md NaOC ₂ U ₅ NaOC ₂ U ₆ Piperidine; (C ₂ U ₅₎₂ NH None		127 127 224 443, 062
CH ₃ C(=NH)CH ₃ CN CH ₃ C(=NH)CH ₃ COCH ₃ CH ₃ C(=NH)CH ₅ COC ₉ H ₅	None None None	3-Cyano-2-methyl-5,6,7,8-tetrahydroquinoline 3-Acetyl-2-methyl-5,6,7,8-tetrahydroquinoline 3-Benzoyl-2-methyl-5,6,7,8-tetrahydroquinoline	663 663 663
2-Aminomethylenecyclohexanone and Bthyl cyanoacotato	n Na	4-Cyano-3-0x0-2,3,5,6,7,8-hexahydroisoquinoline	977
1-Acetyl-2-methyl-1-cyclopentene and	~≅	ÇП3	
Djethyl malonate	$ m NaOC_2H_b$	$\begin{array}{c} \text{CO}_{a}\text{C}_{a}\text{II}_{b} \\ \text{OO} \\ \text{O} \end{array}$	777
Diethyl phenethylmalonate	NaOO ₂ 11 ₆	Aoid, C ₁₀ H ₂₀ O ₂ (poor)	218

91, 85, 88, 654

7

NAOC, II,

1-Acetyl-1-cyclohezene and

Diethyl malonate

N.OC.H.

Diethyl malonate

Cyclopentylideneactione and

Nauc,III,

Ethyl acetoacetate

NaNII,

Cycloberanone

VJ, cf. 193

Note: References 401-1045 are on pp. 515-535. § At O' the product is sthyl "Abylevsy-Smetly) 1.5,6,1,8,9,10-bready droquinoline-d-carboxy,late.

MICHARI, CONDENSATIONS WITH OXOLOALIGIBNONES AND AGYL, CYCLOALIGIBNIS Product (Yield, %)

References

Reactants

1-Acetyl-1-cycloherene (Cont.) and

Catalyst

KOC, H.

Cyclohoptanone

3

3

CH3CO

NuNII,

1-Acetyl-1-cyclohexene

(Mixture of leomers)

Na NIII

07

313

1-Tetralone

NaNH,

cu-i-Decalone

NaNH,

6-Methoxy-1-tetralone

3 CH, COCH,

> 3,8-Dunethyl-4,7,8,9-tetrahydro- NaNH, 2-Methoxymethylenecyclohexan-1-one and

Indan-1-one

Ethyl acetoacetate

I-Oxo-9-methyl-1,2,5,5,7,8,9,10octahydronaphthalene 2-Hydroxy-5,8,7,8-tetrahydro-3-naphthoic and and ethyl a acetyl-\$-(2-ketocyclohexyl)acrylate

655 656

Note: References 491-1045 are on pp. 545-555.

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACXL CYCLOALKENES

		ORGA	NIC REA	CTIONS				
References	427	941	176	<u>t</u> 2	60	F66	224	
Calulyst Product (Yield, %)	5,7-Dicarbethoxy-8-methyl-6-hydroxy- 1,2,3,4-tetruhydronaphthalene (36)	$CH_3 \qquad CN \qquad CN \qquad CN \qquad CH_3$	$\bigcup_{CN} \bigcup_{and} \bigcup_{m} \bigcup_{N} \bigcup_{N} \bigcup_{m} \bigcup_{n} \bigcup_{m} \bigcup_{m} \bigcup_{n} \bigcup_{m} \bigcup$	CH ₃ ČH ₃ 1,9-Dimethyl-5-hydroxybieyelo[3,3.1]noman-7-one		H_1C = CHCH(CN)CO ₂ C ₂ H ₅	H_3C M_3C M_3C M_3C M_3C M_3C M_3C M_3C	TT 017
Catalyst	an-1-one and tte NaOC:H _s	Piperidine; Na $0 \mathrm{C_2 H_5}$	Piperidine; NaOC $_{ m z}{ m H}_{ m s}$	$nd \\ NaOC_2 II_{\delta}$	hexanone and	(C <u>,</u> 11,),N11	Piperidine; (C ₁ 11 ₅) ₂ NH	
Reactants	2-(x-Hydroxychylidene)cyclohexan-1-one and Diethyl acetone-1,3-dicarboxylate NaOC ₂ H _s	Cyanoucetamide	N-Methyleyanoaeetamide	3,5-Dimethyl-2-cyclohexen-1-one and Ethyl neetoneetate	2-Hydroxymethylenc-5-methyleyelohexanone and	Ethyl cyanoncetate	Cyanoacetamido	

ileyclohexanone and	Na
-Amnomethylene-3-meth	Sthyl cyanoacetate

2-IIydroxymethylene-4-methylcyclohexanone and

sec-Amine Cyanoacetamide

CILC(=NH)CILCO,C,IL

None

CILC = NH)CH, COC, II, CII,C(==NII)CH,COCH,

None None 2-Ammomethylene-4-methylcyclohezanone and

Ethyl cyanoacetate

2-Hydroxymethylene-5-methylcyclohezanone and None CH,C(:=NII)CH,CO,C,H,

None None CH,C(==NH)CH,COC,H, CII,C(≔NII)CII,COCE,

2. Aminomethylene. 5-methylcyclohexanone and Ethyl cyanoacetate Note: References 491-1045 are on pp. 545-555.

5-Methyl-3-oxo-2,8,5,6,8,7,8-hexahydroisoquinoline-4-carbonamide

#

Ethyl 2,6-dinsethyl-5,8,7,8-tetrallydrogunoline-3-3-Acetyl-2,6-dimethyl-5,6,7,8-tetrahydrogunoline carboxylate

443

3-Benzoyl-2,6-dimethyl-5,8,7,8-tetrahydrogumoline

6-Methyl-3-oxo-2,3,5,6,7,8-hexahydrosoqunolme-4-carbonitule

Ethyl 2,7-dimethyl-5,6,7,8-tetrahydrogumoline 3. 3-Acetyl-2,7-dimethyl-5,6,7,8-tetralydroquinolme carboxylate

443 353 653 446

3-Benzoyl-2,7-dimethyl-5,6,7,8-tetrahydroquinoline

7-Methyl-3-oxo-2,3,5,8,7,8-hexahydrosoquinohnef-carbonitrile

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

Reactants	Catalyst	Product (Xield, %)	References
2-Hydroxymethylene-6-methyleyclohexanone and	clohexanone and	«	
Cyanoacetamide	scc-Amine	CH ₃	52 1
CH,C(=NH)CH,CO,C,H;	None	Ethyl 2,8-dimethyl-5,6,7,8-tetrahydroquinoline-3-carboxylate (42)	653
2-Methylene-3-methyleyelohexan-1-one and	1-one and		
3-Methyleyelohexanone	кон, с _* н,он	$\left(\bigcap_{\mathrm{CH}_3} \right)_{2}$	646
2-(x-Hydroxyethylidene)-4-methyleyelohexan-1-one and	leyelohexan-1-one and		
Cyanoacetamide	Piperidine; NaOC ₂ H ₆	H_3C CH_3 CN CN CN CN CN CN CN CN	941

Ethyl 6 methyl-2,3-dihydropyridudene 7-carboxy-Diethyl 3-hydroxybicyclo[5.4.0]bendeca-1(6).2.4triene-2,4-dicarboxylate (61)

Dethyl acetone-1,3-dicarboxylate NaOC2Hs Methyl a-Cyclopentylidenesihyl Kelone and

2-Hydroxymethylenecyclaheplanone and

None

CU,C(-NH)CH,CO,C,U,

230 1-Methylspiro[5.4]decane-2,4-dione (low)

NaOC, H

Dethyl malonate Diethyl malonate Dethyl malonate

3-Methylcyclopentylideneactione and

Cyclohexyluleneacelone and

8-Methylspiro[5.4]decane-2,4-dione

658

1-Carbethoxyspiro[5.5]hendecane-2,4-dione (84) Spiro(5.5]hendecane-2,4-dione (70-80)

Note: References 491-1045 are on pp. 545-555.

NaOC,H,

221, 390

CYCLOALKENES
ACYL
AND
CYCLOALKENONES
WITH (
CONDENSATIONS
MICHAEL

				`				 A113					
	References			629					653		020		96 96
MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND MICH. CYCLOALKENES	Product (Yield, %)		н,с сн,	CH2CH(COCH3)CO2C2H5 (8-20)	o io	H ₃ C CH ₃	CO2C2Hs		Ethyl 2,6,7-trimethyl-5,6,7,8-tetrahydroquinoline-	3-carboxylate	5-Nitromethyl-3,3,5-trimethylcyclohexanone (9)		10-Methyldecalin-1,3-dione (low) 4-Carbethoxy-10-methyldecalin-1,3-dione (good)
CONDENSATIONS WITH	Catalyst	vanone and		$ m NaOC_2H_5$				cyclohexanone and	None		Piperidine	nd	$ m NnOC_2H_3$
MICHAEL	Reactants	2-Methylene-3,3-dimethylcyclohexanone and		Ethyl acetoacetate				2-Hydroxymethylene-4,5-dimethylcyclohexanone and	CH3C(=NH)CH2CO2C2H3	Isophorone and	Nitromethane	1-Acetyl-2-methyl-1-cyclohexene and	Dicthyl malonate

1-Acetyl-8-methyl 1 cyclohexene and

Cyclobexanone

Cyclohexanone

was also obtained. Other authors (ref. 387) describe this compound as the only product of the reaction ¶ in addition, a 49% yield of

was obtained.

MICHAEL CONDENSATIONS WITH OYCLOALKENONES AND ACYL CYCLALKENES

Catalyst Reactants

Product (Yield, %)

References

(C2H5)NH

2-Methylcyclohexanone-1,3-dione

2-Methyl-3-vinyl-2-cyclohexen-1-one and

661

3

(26 crude)

644

3

644

1-Acetylcycloheptene and

Cyclopentanone

NaOCH₃

KOC, H9-1

Cyclohexanone

NaOC, H, 3-Methyl 5-n-propyl-2-cyclohexen-1-one and Diethyl acetone-I,3-dicarboxylate

Piperidine Nitromethane

2-Methylcyclohexyludeneacrtone and Dethyl malonate

** This product is formed from an intermediate of the formula Note: References 491-1045 are on pp. 545-555.

NaOC,H

which has, however, not been isolated,

128

Diethyl 3-hydroxybicyclo[6.4.0]dodeca-1(6),2,4triene-2,4-dicarboxylate (59)

3-Methyl-3-nutromethyl-5-n-propylcyclohexanone (25) 650

1-Carbethoxy-7-methylapiro[5.5]hendecane-2,4-dione

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL, CYCLOALKENES

	•	December (Viola 9/)	References
Reactants	Catalyst	Lionney (Tiem, 70)	
3-Methylcyclohexylideneaeelone and Diethyl undonate	naoc <u>.</u> Hs	S-Methylspiro[5.5]hendecane-2,4-dione	220
Cy anoacel amide	$ m NnOC_2H_{f s}$	(CH_3) (CH_3) (CH_3) (CH_3)	Si Si Si
4-Methylcyclohexylideneacelone and			\$Eir
Ethyl cyanoncetate	NaOC ₂ H ₃	9-Methylspiro[5.5]hendecane-2,4-dione	000
Cynnoacelamide	NaOC ₂ H ₆	$\begin{array}{c} \operatorname{CH}_{\mathfrak{z}} \\ \\ \operatorname{H}_{\mathfrak{z}} \operatorname{C} \\ \\ \operatorname{CN} \end{array} $	ions a a a
Carvone and			
Bthyl acetoacetate	$NnOC_2H_3$	5-Hydroxy-3-isopropenyl-9-methylbicyclo[3.3.1]-	-(31
Bthyl cyanoacetale	(C ₂ H ₆) ₂ NII	nonan-7-one (54) Ethyl 2-methyl-5-isopropenylcyclohexanone-3- cyanoacetate (25-33)	50

CH, CH(CO,C,H,), NaOC, II, De thyl malonate

1-Accest-2,0-dimethyleyelohezene and

NaOC, II, Dethyl malonate

1-1cdyl-0,5-dimethylcyclohexene and

ź Ibethyl a net tyladipate

8 Carbethary 8-methyl-2-cyclohezen-1-one and

Dethyl malonate

Dethyl methylmakonate

Note: References 401-1045 are on pp. 515-555

143

trans(?)-8,10-Dimethyldeculna-1,3-dione

96 660, 96 4-Carbethoxy-8,10-dimethyldecalin-1,3-dione (12)

3

590

188

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

Reactants	Catalyst	Product (Yield, %)	References
1-Bulyryl-2-methyl-1-cyclohexene and Diethyl malonate	ıd NaOC <u>,</u> H5	trans(?)-2-Bthyl-10-methyldecalin-1,3-dione	96
2-Hydroxymcthylenementhone and		ĊĦĴ	
Cyanoacetamide	sec-Amine	$\begin{array}{c c} CN & (20) \\ \hline & & \\ C & & \\ \end{array}$	7000
2-Hydroxymethylenecamphor and		1775	•
Nalonic acid Iyanoacetic acid	None None	eta-Camphorylidenepropionic acid (50) eta-Camphorylidenepropionitrile (80)	366 366
10-Methyl-2-oxo-2,3;4,5,6,10-hexahydronaphthalene and	dronaphthalene and	CH_3	
Diethyl malonate	$\rm NaOC_2 II_5$	O CH(CO ₂ C ₂ H ₅) ₂ (33)	190
2-Hydroxymethylenecyclodecanone and	nd		
Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅	NaOC ₂ H ₅	Diethyl 3-hydroxybicyclo[8.4.0]tetradeca-1(6),2,4-	87
2-Phenyl-2-cyclopenten-1-one and		thene-2,4-dicarboxylate (60)	
Dicthyl malonate Dibenzyl malonate	NaOC ₂ H ₅ KOC ₄ H ₅ -t	Diethyl 2-phenylcyclopentan-1-one-3-malonate (67) 3-Oxo-2-phenylcyclopentane-1-acetic acid (53)##	605 606

Dibenzyl malonate	KOC,U,-t	frans (?)-2-Benzoylcyclopentylmalonic acid	667	
2-Phenyl-2-cyclohexen-1-one and				
Diethyl malonate	NaOC ₁ H ₄	Diethyl trans 2-phenylcyclohexan-1-one-3-malopate 105, 106.	105, 106.	
Dibenzyl malonate	K0C,H9-4	(96) 609, Frans-2-phenylcyclohexan-1-one-3-malonato 108, 609	608, 600	
Methyl cyanoacetate	NaOCH ₂	(96) Methyl 2-phenylcyclohexan-1-one-3-evanoacetate	100.008	
Benzyl cyanoacetate Nitromethane Methyi nitroacetate	KOC,H, I [C,L,CH,N(CH,),]OCH, [C,H,CH,N(CH,),]OCH,	(80) ?rors 3-Cyanonethyl-2-phenylcy-clohexan-1-one (86) 2-Phenyl-3-nitromethyl-gyclohexan-1-one (80) [Refryd frons-2-phenylcy-clohexan-1-one (80)	108	THE MI
6-Phenyl-2-cyclohexen-1-one and		acetate (90)	900 '001	CHA
Dibenzyl malonatett	KOC,H.	frans-6-Phenyleyclohexanone-3-acetic acid tt	100	CL.
4 Phenyl-2-cyclokexen-1-one and				RE

1-Benzoylcyclopentene and

102 929 96 frans(?)-2-Ethyl-8,10 dimethyldecalin-1,3-dione trans-4-Phenylcyclohexanone-3-acetic acid; Compound CashasNaO Note: References 491-1045 are on pp. 545-555. NaOC,H, NaOC, II, 1-Bulyryl-2,6-dimethylcyclohezene and Cyclohexylidenecyclohexanone and Dethyl malonate Cyanoscetamide

KOC, 11,-4

Dibenzyl malonate † †

A mixture of 4- and 6 phenyl-2-cycloloxen-1-one was used in this experiment.
 The product was obtained after hydrolysis and partial decarboxylation.

TABLE VII-Continued

References MICHAEL CONDENSATIONS WITH CYCLOALRENONES AND ACYL, CYCLOALRENES

Reactants .

2-Hydrindanylideneacelone and

Catalyst

NnOC,IIs

Diethyl malonate

9

NaOCalls

Cyanoacetamide

1,10-Dimethyl-2-oxo-2,3,4,5,6,10-hexahydronaphthalene and

Na OC, IIA

Diethyl malonate

671

225

Thomas no beat			
Circuity thanonate	NUC, LL,	trans(?)-2-Benzoyloyclohexylmalonic acid (64)	667
2-Phenyl-2-cycloheplen-1-one and Inbenzyl malonate	K00,H,⁴	Dibenzyl 2-phenylcyclokeptan-1-one-3-malonate (90)	108
1-Acdyl-9-methyl-8-ozo-3,4,6,7,8,9-hezahydronaphthalene and	hezahydronaphthalene and		
Dethyl g-seet vladmate	ź	H, CO, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH	
	l	H2C CH3, CH3, CA2, CH3,	903
1-Acelyl-methoxy-3.4-dihydronaphthalene and	phhalene and		
Elbyl acetoacetato	NAOC ₁ U ₆	CH ₂ O ₂ C ₂ IK ₄	673
Cyclohexane-1,2-dione	ı	CHOCK COOCH,	674
Note: References 491-1045 are on pp. 546-555	on pp. 545-555	-0	

1-Benzoylcyclohexene and

The product was obtained after hydrolysis and partial decemboxylation.

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

	0.				
References	223	. 428		106, 668 106, 668 108, 669 106, 668 106, 668 108, 669 106, 668	667
Product (Yield, %)	CH_2 CH_2 CH_2	Diethyl 3-hydroxybicyclo[10.4.0]-1(6),2,4-triene-2,4-dicarboxylate	$A = \bigcirc $	ACH(CO ₂ CH ₃) ₂ (97) ACH(CO ₂ C ₂ H ₅) ₂ (94) ACH(CO ₂ CH ₂ C ₅ H ₅) ₂ (88) ACH(CN)CO ₂ CH ₃ (95) ACH(CN)CO ₂ CH ₅ (90) ACH(CN)CO ₂ CH ₅ (90) ACH(NO ₂)CO ₂ CH ₃ (90)	trans(?)-2-Benzoylcycloheptylmalonic acid (48)
Catalyst	Kelone and Na	ne and e NaOC ₂ H ₅	iexen-1-one and	NaOCH, NaOC,H; KOC,H;-t NaOCH; NaOC,H; KOC,H;-t [C,H,CH;-t]	7-°H'00X
Reactants	Methyl α-Hydrindanylideneëthyl Ketone and Diethyl malonate Na	$2 ext{-}Hydroxymethylenecyclododecanone}$ and Diethyl acetone-1,3-dicarboxylate $\mathrm{NaOC_2H_5}$	2-(2',3'-Dimethoxyphenyl)-2-eyclohexen-1-one and	Dimethyl malonate Diethyl malonate Dibenzyl malonate Methyl cyanoacetate Ethyl cyanoacetate Benzyl cyanoacetate Methyl nitroacetate	1-Benzoylcyclokeptene and Dibenzyl malonate

Biacetyl monodimethyl ketal

ź

2-(2"3",4". Trumethoxyphenyi)-2-cycloheplen-1-one and Dethyl malonate

K0C,H, 1

Lihyl cyanoacetate

Note: References 481-1045 are on pp. 545-555.

Compound Calin No.

1: The product was obtained after bydrolysu and partial decarboxylation of This product was obtained.

This product was obtained after partial hydrolysis and decarboxylation.

This product results from spontaneous dehydrogenation or disproportionation of the expected compound. Ili The product was obtained after hydrolysis.

CH == CHCOCOCH₃

875 676

î

3-0xo-2-(2',3',4'-trumethoxyphenyl)cycloheptane-1-

acetic acid (72);;

677

TABLE VII—Continued

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

References		675		250 032	(0),2,4,- 428		2,4-
Product (Yield, %)	0	CH=CHCOCOCH ₃	Diet hyl evelopentadocan-1-ong-2-molomote (11)		Diethyl 3-hydroxybicyclo[13.4.0]nonadeca-1(0),2,4,-		Diethyl 3-hydroxybicyclo[14.4.0]eicosa-1(6),2,4-triene-2,4-dicarboxylate (35)
Catalyst	rone and	m Na	NaOC,H,	eanone and	ıte NaOC ₂ H ₅	canone and	ate NaOC2H,
Reactants	2-Isopropoxymethylenebenzosuberone and	Biacetyl monodimethyl ketal	2-Cyclopentadecen-1-one and Diethyl malonate	2-Hydroxymethylenccyclopentadecanone and	Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅	2-Hydroxymethylenecyclohcxadecanone and	Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅

Diethyl 7-oxo-5-cholestene-3-malonate (50) CO2C2He

NaO2C2Hs; piperidine

3,5-Choksladien-7-one and

663

CH4CO1C2H Dethyl malonate

C,H,N(CII,)MgBr

17 The product result from spontaneous dehydrogenation or disproportionation of the expected compound.
This reaction takes place when Note: References 491-1045 are on pp. 545-555

COCH, | CCH, CH, CH, CO, C, H,

is treated with the reagent or when 1-newy) Edudinushyy-1-cyclohearne is condensed with ethyl 2-newyhadpate in the presence of solium anale. co,c,u,

				-10110		
	References	679 629, 681 682 683 683	100	685	989	230
Robinson's Modification of the Michael Condensation of a.A-Ethylenic Kystones	Product (Yield, %)	JCH(CO ₂ C ₂ H ₅) ₂ C ₆ H ₅ C(A)(CO ₂ C ₂ H ₅) ₃ 4-Carbethoxy-3-methyl-2-cyclohexen-1-one 3,6-Dimethyl-2-cyclohexen-1-one 6-Benzyl-3-methyl-2-cyclohexen-1-one Elhyl 2-isobutyryl-5-oxolohexanoute (65)	6-Isopropyl-3-methyl-2-cyclohexen-1-one* (50)	Ethyl 1-methyl-2,4-dioxocyclohexane- 1-pyruvate*	O CH2CH2CO2CH3 (8)	CH ₃ CO ₂ CH ₃ 2-(\(\beta\)-Acotylothyl)-2-carbethoxycyclohexan-1-one
MICHAEL CO	Catalyst .	NaOC ₂ H ₅ NaNH ₂ NaOC ₂ H ₅ — NaOC ₂ H ₅ MaOC ₄ H ₅	$NaOC_2H_5$	NaOC ₂ H ₅	NaOCH ₃ , pyridine	NaOC ₂ H ₆ , pyridine
KOBINSON'S MODIFICATION OF THE	Addend	CH ₂ (CO ₂ C ₂ H ₃) ₂ C ₆ H ₅ CH(CO ₂ C ₂ H ₃) ₂ CH ₃ COCH ₂ CO ₃ C ₂ H ₃ CH ₃ COCH(CH ₃)CO ₂ C ₂ H ₃ CH ₃ COCH(CH ₃)CO ₂ C ₂ H ₃ CH ₃ COCH(CH ₃ C ₆ H ₃)CO ₂ C ₂ H ₃ Ethyl isobutyrylace(ate	Ethyl a-ncetylisovalerate	Diethyl x-methyloxulacetate	Dimethyl α-methyl-β-oxondipate	2-Carbethoxycyclohexan-1-one
	Substituent R in CH ₃ COCH ₂ CH ₂ R	(CH ₃) ₂ N (C ₃ H ₄) ₂ N·CH ₃ I (CH ₃) ₂ N·CH ₃ I (C ₄ H ₅) ₂ N·CH ₃ I	Lenowich 2)	16173. V. (1131		N ₂ (3,II ₆)

CO.C.H.

. This product, piperitone, results from hydrolysis and decarboxylation. Note: References 491-1015 are on pp. 615-555.

TABLE VIII—Continued

		01/0111/10	IVENOTIO	ND.		
References		532	533	691	691	220, 230
Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones in Addend Catalyst Product (Yield, %)	$A = \mathrm{CH_3COCH_2CH_2} -$ A $Co_2 \mathrm{CH_3}$	(ss) (ss)		3-Methyl-2-cyclohexen-1-one (16) O	A (28)	
Iіснавь Сомр Catalyst	HOOM	Naccens Particular Par	$NnOCH_3$	None	None	NaNH2; NaOC2H5
OBINSON'S MODIFICATION OF THE A Addend	Mathyl 1 avs 1 0 9 4 tolanlindae	nechyl 1-0x0-1,5,5,4-eeranydro- phenanthrene-2-carboxylate	Methyl 4-oxo-1,2,3,4-tetrahydro- phenanthrene-3-carboxylate	СН,СОСН,	Cyclopentanone	2-Methylcyclopentanone
Rc Substituent R in	сн,сосн,сн, в	$N \cdot \mathrm{CH}_{3}I$		(C ₂ H ₅) ₂ N		$(C_2H_5)_2N\cdot OH_31$

2-Methylcyclobexanone

Note. Historices 481-1015 are on pp. 545-555.

СН2СО2СН3 (12)

TABLE VIII—Continued

References Robinson's Modification of the Michael Condensation of a, \(\theta \)-Ethylenic Ketones $A = CH_3COCH_2CH_2$ Product (Yield, %) Catalyst 5-Carbomethoxymethyl-2-methyl- NaOCH₃ Addend Substituent R in CH3COCH2CH2R $(C_2H_5)_2N\cdot CH_3I$ (Cont.)

(21) CH2CO2CH3

cyclohexan-1-one

F99

NaNH,

COCH, (40) (CH₃)2

2-Acetyl-3,3-dimethylcyclohexane- NaOCH₃

695

NaNH,

trans-2-Decalone

220

537

NaOCH₃

1-Methyl-2 deculone

Note: 10: firences 101-1015 are on pp. 615-656

. A mixture of this compound with the isomer of the structure

was used. Part of the material was deligategenated to Usigatecky-5-methyl-1-tetralone.

TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

сн,сосн,сн,в Substituent R in

Addend

Catalyst

References

 $A = CH_3COCH_2CH_2$ Product (Yield, %)

4-Cyclohexyl-2-hydroxymethylene-NaOCH₃

cyclohexan-1-one

 $(C_2H_5)_2N \cdot CH_3I$ (Cont.)

700

(76) and

 C_6H_{11}

NaOCH₃ 2-Hydroxymethylene-4-(trans-4'-

hydroxycyclohexyl)cyclohexan-

1-one

2-Hydroxymethylene-4-(trans-4'hydroxycyclohexyl)cyclohexan-

 $(C_2H_5)_2N$

NaOCH₃

(C2H2)2N·CH3I

2-Hydroxymethylene-4-(eis-4'-oxo-NaOCH₃ cyclohexyl)cyclohexan-1-one

532

692

§(82)

532

§(0¥)

(C,H,),N CH,I

(C,H,),N

§ The product resulted from the cyclization of the primary product, which has not been isolated.

Note: References 491-1045 are on pp. 545-555

TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylesic Kistones

References Catalyst Addend

Substituent R in CH3COCH3CH3R

Product (Yield, %)

THOUGHT -- F

1—C,II,CO,II-7"

2-Hydroxymethylene-4-(4'-carboxy- NaOCH3

phenyl)cyclohexan-1-one

(CII₃)₃N·1 (Cont.)

30

NuOCH,

2-Hydroxymethylene-4-(4'-earbomethoxyeyelohexyl)eyelohexan-

l-one

-C.III,CO,CIII-P

NaOCH,

2-Hydroxymethylene-4-(4'-carbomethoxyphenyl)cyclohexan-1-one

30,5

703

NuNII,

(C,11,5),N.C11,1

(Mixture of feamore)

antinomethylene-trans-2-decalone 1.Ilydroxymethylene-3-methyl.

(C, II,), N CII, I

Note: References 491-1045 are on pp. 545-555. || This is the structure assumed by the authors.

705

3,4-Di-(2-methoxyphenyl)-2-cyclohexen-1.

one (52-58)

NaOC,II,

2,2'-Dunethoxydeoxybenzom tetrahydrophenanthrene

(CIL,),N.CIL,I

3-Hydroxymethylene-4-oro-1,2,3,4- NaOCH,

30,

NaNH,

2-Hydroxymethylene-1-oxo-1,2,3,4. NaOCH,

tetrahydrophenanthrope

Robinson's Modification of the Michael Condensation of $\alpha_i \beta$ -Ethylenic Ketones Product (Yield, %) TABLE VIII-Continued Catalyst

Addend

Substituent R in сп,сосн,сн,в

 $A = CH_3COCH_2CH_2$

References

$$COCH_2CH_2$$
 CH_3
 CH_3

528, 706

NaOCH3

2-Methylcyclopentane-1,3-dione

 $(C_2H_b)_2N \cdot CH_3I$ (Cont.)

Piperidine

Cyclohexane-1,3-dione

None

2-Methylcyclohexane-1,3-dione

663

NaOCH3;

663, 706,

None

2-Methylcyclohexane-1,3-dione

708, 709

NaOCH,

2-Methylcyclohexane-1,3-dione

CHONGIL

None

5.5 Dunethylcyclobexane-1,3-dione

538 710

2-Natropropane Nitromethane

(CIL.), (C,IL.),N C, III,N

This compound is formed by ring fission of the primary product,

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

Substituent R in сп,сосп,сы,п

Catalyst

References

NaNH,

(C2H2)N·CH3I

HON

Methyl fluorene-9-carboxylate

N.CII,I

Methyl 9- $(\beta$ -acetylethyl)fluorene-9-

carboxylate (45)

References

544

 $A = (CH_3)_2 NCH_2 CH_2 COCH_2 CH_2 -$

KOC,H, KOC,H,

ACH(CO₂C₂H₅)₂ (25) CH₃COCH(A)CO₂C₂H₅

681

681

Addend

 $A = \mathrm{CH_3COCH_2CH_2}^{--}$ Product (Yield, %)

Product (Yield, %)

Catalyst

Reactants

NCH3-CH3I and

Ethyl acetoacetate Diethyl malonate

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

		ORGAN	IC REACTION	NS	
References	231	632	115, 532	713	714
Product (Yield, %)	CH ₃	Methyl 1-oxo-2-(\(\beta\)-propionylethyl)-1,2,3,4-tetra-hydrophenanthrene-2-carboxylate (96) Methyl 4-oxo-3-(\(\beta\)-propionylethyl)-1,2,3,4-tetra-hydrophenanthrene-3-carboxylate (87)	OH (Enol)	OH (Quant.)	$CH_3 \qquad \text{and} \qquad CH_3 \qquad CH_3 \qquad OH_3 \qquad CH_3 \qquad CH_4 \qquad CH_3 \qquad CH_4 \qquad CH_4 \qquad CH_5 $
Catalyst	NuOC2Hs	NaOCH ₃	$(\mathbb{C}_{\underline{2}}\mathbf{H}_{\underline{5}})_{\underline{3}}\mathbf{N}$	None	NaNH,
Reactants	$CH_3CH_2COCH_2CH_2N(C_2H_5)_2\cdot CH_3I$ and $2 ext{-}Carbethoxyeyclohexanone**}$	Methyl 1-oxo-1,2,3,4-tetrahydrophenanthrene-2- NaOCH ₃ carboxylate Methyl 4-oxo-1,2,3,4-tetrahydrophenanthrene-3- NaOCH ₃ carboxylate	Cyclohexane-1,3-dione	2-Hydroxycyclohexanone	2-Mothylcyclohexanone

715

713

NAOCH,

2-Acetoxycyclohexanone

36

(Cyperobs, 35-4011)

١

(+)-Dhhydrocarvone

Note. References 401-1015 are on pp. 545-555.

44 This compound resulted from the treatment of the crude primary product with boiling potassium hydroxide solution. ** In this instance, the tertlary base was used instead of the quaternary methiodide.

TABLE VIII-Continued

References Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

Reactants

 $CH_3CH_2COCH_2CH_2N(C_2H_5)_2\cdot CH_3I\ (Cont.)\ and$

Catalyst

Product (Yield, %)

 CH_3 CH_3

714

andĊH3

NaNH2

(-)-Dihydrocarvone

ÞЮ

CH,CH,COCH,CH, (30)

HO2CCH(CH3)

664, 718

(15‡‡, 70§§)

Na0CH₃

 $5-(\alpha-Carbonnethoxyethyl)-2-methylcyclo-$

HO2CCH(CH3)

NaNH.

(45, 10)

188, 718

	,	THE MICHAEL REAC
181	230	684
HO,CCHICH, CH, CHI,	Chi, w	(11, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
N.		:

NaNH,

9 Methylhydrindan-d-une

entoeneneens

Natur, H. 3,1.5.Trumethyl-2-cyclohexen-1-one (65) i Hily 1 4 acetylproporate f thy two butyry Lectator

NaO(,II,

Hydretymethyletecatyolana etune

Note the factories that fills are on pp. 545-555

^{**} The compound resulted from the treatment of the crude primary product with boiling polassium by droxide solution. .; Menut two thinks of the keto enter failed to enter into the reaction. il the quarter of the beto ester could be recovered unchanged.

The rater obtained in the traction was hadrolyzed

(74, conversion 65¶¶)

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones Product (Yield, %)

References

Reactants

Catalyst

 $CH_3COCH[CH_2N(CH_3)_2 \cdot C_2H_5I]_2$ and

 $A = CH_3CO\ddot{C}CH_2 -$

CH,

2-Carbethoxycyclohexanone

NaOCH₃

2-Carbethoxyeycloheptanone

Na0CH3

689

(67)

689

NaOCH3

2-Carbomethoxyeycloöctanone

(66, conversion 8911)

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

			ORGANI	C	RE	ACTIONS
References		721	References	Treferences	722	100
Product (Yield, %)	re) and 0 0	H ₃ C and one	OCH ₂	Tomice (Tiem, 70)	3-Isopropyl-2-cyclohexen-1-one	Carvenone (43)
-2	$N(C_2H_5)_2 \ (mixtu)$	cH ₃ O) jest o te	Calabse	I	$ m NaOC_2H_5$
Reactants Catalyst	$CH_3OCH_2COCH_2CH_2N(C_2H_5)_2$ and $CH_3COCH(OCH_3)CH_2N(C_2H_5)_2$ (mixture) and	-dione Pyridine	t water	ngany	Ethyl acetoacetate	Ethyl methylaceloucetate
React	$CH_3OCH_2COCH_2CH_2N(C$	2-Methylcyclohexane-1,3-dione	Substituent R in	(CH ₃) ₂ CHCOCH ₂ CH ₂ N	$(CH_3)_2N$	$0 \\ N \cdot \mathrm{CH}_3 \mathrm{I}$

References 100 3-Isobutyl-2-cyclohexen-1-one (45) Product (Yield, %) NaOC,H Catalyst $(CH_3)_2CHCH_2COCH_2CH_2H_3$ ond Reactants Ethyl acetoacetate

 $(CH_3)_3CCOCH_2CH_2N$ O. CH_3I and Ethyl acetoacetate NaOC $_2$ H $_5$

100

3-t-Butyl-2-cyclohexen-1-one (45)

References

229

Libyl accluances at a

Probatituent It in

** Heferences (101 1015 are on pp 515 555. Lith) othy facetone ctate

Ethol for thylacetouc tate Nafit; Ha. Nafit; Hy-1

TID STILL

MOC.H.

Ethyl acrtuacetate

CHON CHA (F) (1)

THE MICHAEL REACTION

114, 723

References

Product (Yield, %,)

Catalyst

(CH₃), CHCH₂COCH₂CH₂X, Q.CH₃I and

Ethyl acetoncetate

Reactants

(CII₃)₃CCOCH₂CII₂N O.CII₃I and

Ethyl acctoacctate

100

3-Isobutyl-2-eyclohexen-1-one (45)

NaOC,115

200

NaOC₂II_b 3-t-Butyl-2-cyclohexen-1-one (45)

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

		ORG	GANIC	RE	ACTIONS
References		23.	References	25.	100
Product (Yield, %)	re) and	and OCH,	Product (Yield, %)	3-Isopropyl-2-cyclohexen-1-one	Carvenone (43)
7.2	$V(C_2H_5)_2$ (mixtu	O.H.O	Catalyst	ì	NaOC;H,
ants Catalyst	$CH_3OCH_2COCH_2CH_2N(G_2H_8)_2 \ and \ CH_3COCH(OCH_3)CH_2N(G_2H_8)_2 \ (mixture) \ and \ channel{eq:channel}$	dione	Addend	Ethyl acetoacetate	Ethyl methylacetoacetate
Reactants	$CH^3OCH^*COCH^*CH^*N(C^*)$	2-Methylcyclohexane-1,3-dione	Substituent R in (CH ₃) ₂ CHCOCH ₂ CH ₂ R	$(CH_3)_2N$	0 N.CH ₃ I

Reactants

Note: References 491-1045 are on pp. 545-555.

Lthyl acetoacetate

Dethyl malonate

TABLE VIII—Continued

ROBINSON'S MODIFICATION OF THE MICHAEL CONDENSATION OF
$$\alpha,\beta$$
-ETHYLENIC KETONES

Substituent R in Addend Catalyst Product (Yield, %)

O

A =

A =

CH₂R

NaOC.H.

Ethyl n-propylacetoacetate

 $(CH_3)_2N \cdot CH_3I$ (Cont.)

725

NaOC, H

Ethyl allylacetoacetate

NaOC.H.

Ethyl phenylacetoacetate

NaOC2H,

Ethyl benzylacetoacetate

None

Acetylacetone

725

725

691

None

Cyclopentanone

NaOC, II,

Ethyl acetoacetate

CH,N(CH,),-CH,I and

CH1,

Ethyl 7-psperdino-5-oxoheplanoule and 2-Methylcyclohexane-1,3 dione

Ethyl proponylacetate Ethyl acetoacetate

Pyridine

*** The compound is formed by mag fason of the prunary product and reconstanton. When the methodds of ethys' reppendance-translations was employed in commotion with sodium methoride, the disease and was the main product Note: References 491-1045 are on pp 545-555

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

References Product (Yield, %) Catalyst Reactants

2-Diethylaminomethyl-4-methylcyclohexanone Methiodide and

CH,CH(CO,C,H5), (10 NaOC, H

Diethyl malonate

114

CH,CH,CO,C,H,

(87)

CH,

2-Diethylaminomethyl-4-methoxycyclohexanone Methiodide and

NaOC, H, NaOC₂H₅ Ethyl \(\beta\)-oxovalerate Ethyl acetoacetate

697

NaOC.H.

Diethyl malonate

Diethyl 2-(2'-oxocycloheptyl)ethane-1,1-dicarboxylate

Note: References 491-1045 are on pp. 545-555.

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

		,	URGA	NIC REAC	TIONS				
References	729	729		100		References	729		
Product (Yield, %)	3-Cyclohexyl-2-cyclohexen-1-one (30)	nd 4-Acetyl-4-carbomethoxy-1-decalone (47)	0	(47)	ČO₂C₂H₅		$A = -CH_2CH_2CUC_6H_5$ 3-Phenyl-2-cyclohexen-1-one (60)	3-Phenyl-2-cyclohexen-1-one (60) 6-Carbethoxy-3-phenyl-2-cyclohexen-1-one	3-Phenyl-2-cyclohexen-1-one (60)
		oride and 4-Acety	pu		C ₂ H ₅ O ₂ C	Catalyst	KOC,H,-4	KOC,H,-! NaOC,H,	NaOC.H.
Itolianson's moderation of the atolians conservation of the	eta -Dimethylaminoethyl Cyclohexyl Ketone Hydrochloride and Mothyl aceloacetate $\mathrm{KOC_4H_9^{-4}}$	1-(<i>\b-Dimcthylaminopropionyl</i>)-1-cyclohexene Hydrochloride and Methyl acetoacetate KOC ₄ H9-1	1-(ß-Morpholinopropionyl)-1-cyclohexene Methiodide and	NaOC2H5		Addend	Methyl acetoacetate	Ethyl acetoacetate Ethyl acetoacetate	Elhyl neetoneotate
KOB Reactants	β- <i>Dimethylaminoethy</i> Mothyl acetoacetate	1-(β- <i>Dimethylaminop</i> Methyl acetoacetate	1-(β-Morpholinopropi	Diethyl malonate		Substituent R in RCH.COC.II.	(CH ₃) ₂ N·HCl	(CH ₃) ₂ N	O N·CH ₃ 1

Note: References 491-1045 are on pp. 545-555.

TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

	References	729	729		100	References		729	730	5/4	100
:	Product (Yield, %)	3-Cyclohexyl-2-cyclohexen-1-one (30)	nd 4-Acetyl-4-carbomethoxy-1-decalone (47)	0	(77) (77) (CO ₂ C ₂ H ₅	Product (Yield, %)	щ	3-Phenyl-2-cyclohexen-1-one (60)	3-Phenyl-2-cyclohexen-1-one (60)	c-car pentoxy-o-pheny1-z-cyclonexen-1-one	3-Phenyl-2-cyclohexen-1-one (60)
			ride and 4-Acet	p ₁	C ₂ H ₅ O ₂ C	Catalyst		KOC,H,-t	KOC,H,-t		NaOC ₂ H ₅
TOTAL	Catalyst	$\beta\text{-}Dimelhylaminoethyl$ Cyclohexyl Ketone Hydrochloride and Methyl neetoacetate $\mathrm{KOC_4H_9^{-}t}$	1-(eta -Dimethylaminopropionyl)-1-cyclohexene Hydrochloride and Methyl acetoacetate KOC $_4$ H $_9$ - t	1-(ß-Morpholinopropionyl)-1-cyclohexene Methiodide and	$\rm NaOC_2H_{\delta}$	Addend		ø	Ethyi acetoacetate Ethyi acetoacetate		Ethyl acetoacetate
TOT	Reactants	β-Dimethylaminoethyl Methyl acetoacetate	1-(β- <i>Dimethylaminopr</i> Methyl acetoacetate	1-(β-Morpholinopropic	Diethyl malonate	Substituent R in	RCH2CH2COC,H5	(CH ₃) ₂ N·HCl	(CH ₃) ₂ N		O N.CH ₃ I

4-Carbethoxy-2-dichylaminomethylcyclohexanone Methiodule and

Sthyl a,y-diphenylacetoacetate Sthyl a-propionylpropionate Ethyl 180propylacetoacetat Ethyl ethylacetoacetate

Acetylacetone

Ethyl acetoacetate

Ethyl \$-oxovalerate

2-Morpholinomethyl-1-kydrindone Methiodide and Ethyl acetoacetate Note: References 491-1045 are on pp. 545-555.

TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of $\alpha.\beta\text{-}$ Ethylenic Ketones

Addend	Catalyst	Product (Yield, %)	References
		$A = -CH_2CH_2COC_6H_5$	
Hexane-2,5-dione	None None	6-Acetonyl-3-phenyl-2-cyclohexen-1-one (22) .4CH,,COC,H, (40)	691 691
Deoxybenzoin	None	$C_6H_5CH(A)COC_6H_5$ (9)	169
Nitromethane	NaOC ₂ H ₃	ACH,NO, (4),CHNO, (4),CNO,	710
	NaOH	ACH,NO, (13)	691
	None	ACH,NO, (15)	169
Nitroethane	NaOII	ACH(CH ₃)NO ₂ (7) and A ₂ C(CH ₃)NO ₂ (50)	169
Nitroethane	NaOH	.4°C(CH ₃)NO ₂ (30)	691
	NaOC.11.	(06) ON HOLD F Pair (8F) ON (HO)HOF	108
1-Nitropropane	NaOH	JCII(C,H,)NO, (80)	
1-Nitropropane	NaOC, II,	$ACII(C_2II_5)NO_a$ (60)	160
2-Nitropropane	NaOH	(CH ₃), C(A)NO, (12)	160
2-Nitropropane	NaOH	(CH ₃) ₂ C(A)NO ₂ (84)	100
1-Nitro-2-phenylethane	NaOII	C ₆ H ₅ CH ₂ CH(A)NO ₂ (68) and C ₆ H ₅ CH ₂ C(A) ₂ NO ₂ (7)	691
	Hexane-2,5-dione Acetophenone Deoxybenzoin Nitromethane Nitroethane 1-Nitropropane 2-Nitropropane 2-Nitropropane 1-Nitropropane	ne ne ylethane	me None $A = -CH_2CH_2COC_6H_5$ None $A = -CH_2CH_2COC_6H_5$ None $ACH_2COC_6H_5$ (40) None $ACH_2COC_6H_5$ (9) NaOU $ACH_2COC_6H_5$ (9) None $ACH_2COC_6H_5$ (9) ACH_2COC_6H_5 (13) ACH_2COC_6H_5 (13) ACH_2CH_3CHCOC_6H_5 (13) ACH(CH_3)NO_2 (13) ACH(CH_3)NO_2 (13) ACH(CH_3)NO_2 (13) ACH(CH_3)NO_2 (48) and $A_2C(CH_3)NO_2$ (50) NaOH $ACH(CH_3)NO_2$ (48) and $A_2C(CH_3)NO_2$ (30) NaOH $ACH(CH_3)NO_2$ (12) NaOH $ACH(C_2H_5)NO_2$ (12) NaOH $ACH(C_2H_5)NO_2$ (12) NaOH $ACH(C_2H_5)NO_2$ (12) NaOH $ACH_2C(A)NO_2$ (13)

3

4-Carbelhoxy-2 diethylaminomethylcyclohexanone Methiodide und

2-Morpholmomethyl-1-hydrindone Methiodide and Note: References 491-1045 are on pp. 515-555,

Ethyl \$-oxovalerate Ethyl acetoacetate

Sthyl a,y-diphenylacetoacetate

Acetylacetone

729, 730

69

TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of α, β -Ethylenic Ketones

References	;	728 728 720 720 710
Product (Yield, %)	B C ₄ H ₄ OCH ₅ -p	$R = H (40)$ $R = C_2 H_3 (64)$ $R = (CH_3)_2 CH (30)$ $R = CH_3 CO (36)$ $P = CH_3 CO (36)$
	Irochloride and	$R = H (40)$ $R = C_2 H_3 (64)$ $R = (CH_3)_2 CH (30)$ $R = (CH_3CH (30))$ $R = CH_3CO (30)$ p -Methoxy- ω -nitrob
ants Catalyst	урћену! Ксtопе Ну	KOC,H _o -l KOC,H _o -l KOC,H _o -l KOC,H _o -l KOC,H _o -l
Reactants	eta-Dimethylaminoethyl p-Methoxyphenyl Ketone Hydrochloride and	Ethyl acetoacetate Ethyl ethylacetoacetate Ethyl isopropylacetoacetate Acetylacetone Nitromethane†††

4-Methyl-3-phenyl-2-cyclohexen-1-one (40, 38) 2-Methyl-2-nitro-4-phenylhexan-5-one (89) 6-Isopropyl-3-methyl-2-morpholinomethylcyclohexan-1-one Methiodide and KOC, H,-1 β-Morpholino-α-phenylethyl Methyl Ketone and NaOH Ethyl acetoacetate 2-Nitropropane

β-Dimchylaminoisopropyl Phenyl Ketone Hydrochloride and

NaOC.H.

Ethyl acetoacetate

733

R = H R = CH NaOC,H. NaOC,H, 2-Dimethylaminomethyl-1-fefralone and Ethyl methylacetoacetate Ethyl acetoacetate

β-Dinselhylamino-a-(p-methoxyphenyl)elhyl Methyl Ketone Methodide and

NaOCH, 2-Hydroxymethylene-6-methoxy-

hexabydrophenanthrene (46) 3.4-Dimethoxyphenyl β-Dimethylaminoethyl Ketone and 1-tetralone

NaOC, II, Nitromethane

β-Dimethylamino-β-(p-methoxyphenyl)cthyl Methyl Kelone and NaOC,H Nitromethane

P. Demethylamino-B-(3,4-dimethozyphenyl)ethyl Methyl Ketone und

Nitromethane

Note: References 491-1045 are on pp. 545-555.

111 The free base was employed, instead of the hydrochlorule.

721 721

734 2-(p-Methoxyphenyl)-3-0x0-7-methoxy-1,2,3,9,10,10a-

710 1-(3',4'-Dimethoxyphenyl)-4-nitrobutan-1-one

110

710

4-(p-Methoxyphenyl)-5-nitropentan 2-one

4-(3',4'-Dimethoxyphenyl}-5-nitropentan-2-one NaOC,H

TABLE VIII-Continued

Rohinson's Modification of the Michael Condensation of α,β -Ethylenic Ketonis

Reactants	Catalyst	Product (Yield, ".,)	Вебекчисея
p-Dimethytamino-p-(3,4-methytenedioxyphenyt)ethyt Methyl Kelone and Nitromethane 4-(3',4'-Methy	redioxyphenyl)chyl Me NaOC ₂ U ₃	thyl Kelone and 4-(3',4'-Methylenedioxyphenyl)-5-nitropentan-2-one	210
2-Dimethylaminomethylbenzosuberone and	rone and	O CHCH ₂ COCOCH ₃	
Biacetyl mono dimethyl ketal	Na enolate	(Small)	391
p-Dinchylaninochyl &-Methoxy-2-naphthyl Ketone Hydrochloride and Methyl aceteaecetate KOH, (CH ₃) ₂ CHOH - 3-(0'-Methoxy	-2-naphthyt Kelone Hy KOH, (CH ₃) _e CHOH	-naphthyt Ketone Hydrochtoride and KOM, (CM ₃) ₂ CMOH - 3-(9'-Methoxy-2'-naphthyt)eyelohexen-1-one (70)	785 785

4-Nitro-1-(2'-nitro-4',6'-dimethoxyphenyl)-3-phenyllantan-

P-Dimethylamino-p-phenylethyl 2-Nitro-4,5-dimethoxyphenyl Ketone and Na Coults

Nitromethane

22

KOH

Diethyl malonate

CH3C(NHCOCH3) (CO3C3H3)3 Diethyl acetamidomalonato KOli

Note: References 491-1015 are on pp. 515-555.

TABLE VIII—Continued

 $\alpha's$ Modification of the Michael Condensation of α,β -Byhylenic Ketones 2

	1, %) References	ب	736, cf. 737, 738	165	165		251
The state of the s	Product (Yield, %)	CH-CHGOCALA	OII (53)	CH, C(NO,)(CH,);	CH4-	(55) A = CH ₃ CH(NO ₃)CH ₃	9)HOV
Robinson's Modification of the Alchael Condensation of the Control Robinson's Modification of the Artist Condensation of the C	Catalyst		исі, Сұп,он	NaOII	КОП		NaOC ₄ H ₆ -n NaOC ₄ H ₆
	Addend		Dibenzoylmethane	2-Nitropropane	Indole		Diethyl malonate
Rox	Substituent R in	CII ₂ R	(z)	c _i n,s		Substituent R in RCH_CH(NO_)CH_	(i-C ₃ 11,) ₂ N

			1	не м	ICH.	AEL RE	ACTION	:
261	251	251	251	251	120	នីនីនីនី	251, 739 251, 739 251, 739 251, 739 251, 739 251	
ACH(CO,C,H,), (13)	NaOC,H;i NaOC,H;n CH,COCH(A)CO,G,H; (46)	CH ₃ COCH(A)CO ₂ C ₂ H ₅ (17)	C,H,O,CC(A)(COCH,)OH,CO,C,H, (72)	C,II,O,CC(A)(COCII,)CII,CO,C,II, (8)	CH,CH,CH(A)NO, (33)	CH ₂ CH ₂ CH(A)NO ₄ (50) (CH ₃),C(A)NO ₄ (52) (CH ₃),C(A)NO ₂ (43)	$A = CL_CH_CH(NO_1CH_1 - CH_1CH_1NO_1CH_2)$ $A = CL_CH_CH(NO_1CH_2)$ $CH_CH_CH(NO_1CH_2)$ $CH_CH(NO_1CH_2)$ CH_C	
NaOC, U1-n	NaOC,Ht; NaOC,H1-n	NaOC, H ₁ -n	NaOC, Hn	NaOC ₄ II ₂ -n	II,N(CH,),10H	NaOH [C ₄ H ₄ CH ₄ N(CH ₃) ₅]OH NaOH	NaOH NAOH (Chi,C'H,N(CH,),10H NAOH (Chi,CH,N(CH,),10H (Chi,CH,N(CH,),10H NaOH	
Diethyl malonate	Ethyl acetoacctate	Ethyl acetoacetate	Ethyl «-acetylsuccinate	Ethyl a-acetylsucenate	1-Nitropropane	2-Nitropropane	McMiko, Wilgeri 14,211ko, Wilgeri 14,52 14,54 1	
(*)	(,-C,II,),N	z)	(i-C ₄ II,) _k N	Ž)	(1-C,H;),N		Substituent B m RCIL/AROD/KHLCIL, (CHLAN (CHLAN (CLILAN (CLILAN (CHLAN (CHLAN (CHLAN (CHLAN) Meterness	

TABLE IX

MICHARL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

Reactants	Catalyst	Product (Nield, %)	References
p-Benzoquinone and Blhyl acetoaeetate	Zn(1 ₂ (1)	HO CO4C2H	558
		113C 0 C2H3O2C2H3	
CH₅C(~~NH)CH(CH₃)CO₄C₄H₅	Хоне	110[377
C ₂ H ₅ OC(NH)CH ₂ CO ₂ C ₂ H ₅	None	Ethyl 2-ethoxy-6-hydroxyimdole-3-carboxylate (38)	377
Bthyl eyanoncetato	NH ₉ , ethanol	(11(CN)(CO ₄ (C ₂ H ₂) (10) (16) (16) (16) (17(CN)(C ₂ (C ₂ H ₂)	23 23 23
Cyanoacetamide	NH3, ethanol	HO OH (CN)CONH ₂ OH (CN)CONH ₃	707 707

0=

Ethyl acetoaretate

Note: References 491-1015 are on pp. 545-555.

This is the formula assumed by the author.

3 260 Ξ 272

NH, ethanol

Malononitrile

TABLE IX—Continued

MICHAEL CONDENSATIONS WITH QUINOUES AND THEIR DERLIVATIVES

Catalyst

Reactants

Chloranil and

Product (Yield, %)

References

CO3C3H6

Pyridine

Ethyl acetoacetate

Pyridino

272

\$-Naphthol

C(CH2)(CO2C4H2)C(-NH)OH2

Ethyl 2 ethoxy-5-hydroxy-6-methoxyindole-3carboxylate† (40)

None None

CH,C(=NH)CH(CH,)CO,C,H, CILOC(=NH)CH,CO,C,II,

Methoxybenzoquenone and

2-Hydroxy-3-naphthanilide

Note. References 491–1045 are on pp. 515–555. † The position of the methoxyl group has not been determined.

CONHCAH

TABLE IX—Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

		•	ORGA	INIC REA	CTIONS			
References		743		744		253, 745	745	745 746 746
Product (Yield, %)	000	$\begin{array}{c c} \text{Br} & \begin{array}{c c} & \text{CHCO}_2\text{C}_2\text{H}_5 \\ & \text{H}_3\text{C} & \text{CH}_3 & (20) \\ \end{array}$	HO	$ \begin{array}{cccccc} B_{1} & & & & & & & & & & & & \\ \hline HO & & & & & & & & & & & \\ & & & & & & & &$	$A = \frac{\mathrm{H_3C}}{\mathrm{HO}} \bigcirc $		A, $R = H$ (4), and H_3C H_0 H_0 H_0 H_0 H_0	$A, R = COCH_3 (55)$ $A, R = COC_{15}H_{31}$ $A, R = COC_{17}H_{35}$. (27)
Catalyst	попе апд	NaOC <u>.</u> H5	quinone and	Na		Na OC ₂ H ₅	NaOC ₂ H5; Na	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅
A. Reactants	2-Bromo-3,5-dimethylbenzoquinone and	Diethyl malonate	3,5-Dibromo-2,6-dimethylbenzoquinone and	Dicthyl malonate	Trimethylbenzoquinone and	Dicthyl malonate	Ethyl acetoacetate	Ethyl palmitoylacetate Ethyl stearoylacetate

220 36 23.1 254

NaOC, Het MRIUC, Hall

Diethyl rechuty ry Imalonate

Ethyl cyanoacetate

Trimethylbenzogusnone and

 $B, W \approx (CH_s)_s \text{CHFOCHCOCH}(CH_s)_s$ (76) B_i IV. — CH₄COCHUOC H(CH₄)₄ (81) B, $W = CH_1CO(HCOC_{11}H_{11}n$ (11) B. IV - CII, COCHUOCH, (72) A. It = C, II, (32)

> NaOCH, NaOC, H, NaOC, II, NaOC, II,

NaOCII,

Cyanoacetamde Benzyl cyanide Acetylacetone

CH(CH, KTH, CH(CH,) 7(11(CH3)(CH2)3CH(CH3)(CH3)5 NaOC,II, 5,9,13,17-Tetrumthyloctadecane 2,4-dione

NaOC, H

Heptadecane-2,4 dione

2,6-Dimethylheptane-3,5-dione

Isobut yrylacetone

3 Bromomagnesium enolate $B, R' = C \Pi_2 CO(\frac{1}{4} \Pi_2(C \Pi_2)_3 (90))$ Note: References 491-1045 are on pp. 545-555.

3

Acetomesitylene

TABLE IX-Continued

Product (Yield, %)

References

117

MICHAEL CONDENSATIONS WITH QUINONES AND THERE DERIVATIVES

Catalyst Bromotrimethylbenzoquinone and Reactants

Diethyl malonate

NaOC, IIs

Duroquinone and

ž

žž

 $R = COCH_3$ (25) R = CN (20)

 $R=CO_{\rm s}C_{\rm s}H_{\rm b}$

Trimethylethyldenzoquinone and

Diethyl malonate

Methyl cyanoacetate

Ethyl acetoacetate

Diethyl malonate

ź

748

201, cf. 747a, 747b 203 262

Diethyl malonate

Pyridine

NaOH, ethanol

Note: References 491-1045 are on pp. 545-555.

TABLE 1X-Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

Reactants

1,4-Naphthoquinone (Cont.) and

Catalyst

Product (Yield, %)

266

References

Ethyl acetoacetate (Cont.)

Pyridine, pyridine hydrochloride

Ē

Pyridine, pyridine hydrochloride

Ethyl benzoylacetate

HO CO2C2H

9

(OF)

Potassium 1,4-naphthoquinone-2-sulfonate and

Pyridine

Diethyl malonate

267

TABLE IX—Continued

References 266, 269 266266266266269266MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES Product (Yield, %) $A, R = CO_2C_2H_5$ (49, 62) сн.сосн. A, $R = CO_2C_2H_5$ (6) B, $R = CO_2C_2H_5$ (11) $B, R = CO_2CH_3$ (20) $A, R = CO_2CH_3$ (51) $B, R = CO_2CH_3$ (39) B Quinoline, quinoline Quinoline, quinoline Quinoline, quinoline Pyridine, pyridine Pyridine, pyridine hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride Catalyst H H Pyridine 2,3-Dichloro-1,4-naphthoquinone and Reactants Methyl acetoacetate Dimethyl malonate Ethyl acetoacetate Diethyl malonate

CH,CO,C,H,

(20)

			THE MICHAEL	REACTI	ON	
266	27. 772 272 .172 272 .172 272 .172	95 E E E E		265		350
B, H = CO ₄ C ₂ H ₄ (45)	A. B. = COCH, (31) and A. B. = CONHC ₁ H ₁ (8) A. B. = COCH, A. B. = COCH, A. H. = COCH,	A, R = COCH, (36) A, R = COC, H, (13) A, R = COC, H, (3)	B Critis]Î	مردواله	, oh (3)
Quinoline, quinoline	Lyndne lyndne lyndne lyndne lyndne	Pyridine Pyridine Pyridine		, a	ne and	N.
	Acetoacetanisde Acetoacet-ochloronnisde Acetoacet-o-toluide 2-(Acetoacetanisdo)-6-ethox)	Denzolhazule Acetylacelune Acetophenone Dibenzoylmethane	CII, :	Diethyl malonate	2,3-Dımethyl-1,4-naphthoquınone and	Diethyl malonate

Note: References 491-1015 are on pp. 545-555. † This quanne was introduced as its dince,

TABLE IX-Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

References $749a \\ 749a$ 750 750 750 750750 NHSO,C,H, NHSO2C6H5 ACH(CO₂C₂H₅)₂ (57) CH₃COCH(A)CO₂C₂H₅ (90 crude) C₆H₅COCH(A)CO₂C₂H₅ (94 crude) CH₃COCH(A)COCH₃ (25 crude) Product (Yield, %) NHCOC,H, NHCOC,II, (97 crude) CH₃COCII(A)COCH₃ (75) || | ACH(CO,C,H5), (76) 1 NaOCH₃ NaOCH₃ NaOCH₃ NaOCH₃ NaOCH₃ NaOCH₃ Na OCH3 Catalyst 2-Carbethoxyeyelopentanone Ethyl benzoylacetate Reactants Ethyl acetoacetate and pan Diethyl malonate Diethyl malonate Acetylacetone Acetylacetone NSO₂C₆H₅§ NSO_C, II, NCOC.II.

() clobexane-1.3-done

NaOCII, NaOCII, Na OCII,

Ethyl acetoacetate

Dethyl malonate

NSO,C,II. Acety lacetone and

NSO CH Dethyl malonate

Ethyl acetoacetate Acetylacetone

NaOCII, NaOCII, NaOCII,

§ With this compound, ethyl cyanoacetate, malonomitrile, mitromethane, nitroctione and 2-mitropropane gave only tarry products. Note: References 491-1045 are on pp. 545-555.

NHSO,CH,

MISO,CH,

ACHCOCHI,), (82) CH,COCH(AKO,C,H, (95 crude) CH,COCH(AKOCH, (79)

413

333

TABLE IX—Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

References 751 751 751 751 751 $\dot{\rm N}{
m HSO_2C_6H_5}$ NHSO,C,H, C,H,COCH(A)CO2C2H, (90) Product (Yield, %) CH3COCH(A)COCH3 (84) 4CH(CO2C2H2)2 (S3) ACH(CH₃)NO₂ (64) (H) CHNO (84) | (C,H,),N (C,H,),N (C,H,),N (C,H,),N Catalyst $(C_{a}H_{b})_{b}N$ and Ethyl benzoylacetate Reactants NSO₂C₆H₅ NSO,C, II. Diethyl malonate Acetylacetone Nitromethane Nitroethane

NHCOCLE NHCOC,H, ACH(CO₂C₂H₅)₂|| (96) H H NaOCH₃

CH3COCH(A)COCH3|| (99)

NaOCII,

NCOC, II,

Diethyl malonate

Acetylncetone

מאק NCOC. U.S. $\sim NCOC_6 II_5$

NHCOC,H,

NaOCII,

Acetylacetone

(92) JNHCOC, H. CH(COCH₃)₂||

752

I The position in which the substitution has taken place has not been determined. i With diethyl mulonate, this compound gave only an oily product. Note: References 491-1045 are on pp. 545-555.

RYLONITRILE*
в Ас
TIW
CONDENSATIONS
MICHAEL

	References	288	288	288, 753, 482, 288, 754, 754, 755, 754, 755, 754, 755, 754, 755, 754, 755, 756, 756, 756, 756
CONTRACTORS WITH SUCKTIONITRIES.	Product (Yield, %)	A = —CH _a CH _a CN Hean-(\$-cyanoethyl)cyclopentadiene (9) 5,2-Bis-(\$-cyanoethyl)undene (14) 1,1,3-Tris-(\$-cyanoethyl)undene 35)	or (SE)	\$\left(\text{Civil}_{\text{th}}\)\$ \$\left(\text{Civil}_{\text{th}}\)\$ \$\left(\text{Civil}_{\text{th}}\)\$ \$\left(\text{Civil}_{\text{civil}}\)\$ \$\l
100000000000000000000000000000000000000	Cutalyst	[C,H,CH,N(CH,),]OH	{C,H,CH,N(CH,),}OH	ICH, CH, MCH, 1,00H ICH, CH, MCH, 1,00H ICH, CH, MCH, 1,00H Net malassed ICH, CH, CH, MCH, 1,00H ICH, CH, CH, CH, 1,00H ICH, CH, CH, 1,00H ICH, CH, CH, CH, 1,00H ICH, CH, CH, CH, 1,00H ICH, CH, CH, CH, CH, CH, CH, CH, CH, CH,
	Reactants	A. Hydrocarbons Cyclopentaliene Indene	1-Isopropylideneindene	Phosene

TABLE X-Continued

ACRYLONITRILE*
WITH
CONDENSATIONS
MICHAEL

		Onon	NIO III		10110					
References	478, 756, 757	278, 284 284 278, 284 758	478	750	760, 761 762	763, 761	275, 278	702 478	123 275, 278, 478, 701	
Product (Yield, %)	$A = -CH_2CH_2CN$ $(CH_3)_2C(A)CHO (40, 79)$	(C,H ₂),C(A)CHO (75-80) CH ₃ CH ₂ CH ₂ CH=CHC(A)(C ₂ H ₅)CHO (50) C ₄ H ₅ C(A)(C ₂ H ₅)CHO (75, 80) (C ₆ H ₅)(CH ₃)C(A)CHO (74)	$A = -CH_1CH_2CN$ CH_3COCH_2A (19) and $CH_3COC(A)_3$ (32)	СН3СОСП2.4 (8), СП3СОСП(А); (14),	$CH_3COC(A)_3$ (24) $CH_3COC(A)_3$ (75–80) and (A) $_2$ CHCOC(A) $_3$	CH,COC(A),CH, (51, 90) and (A),CHCOC(A),CH,	CH_COCH(A)CH3 (6, 20) and CH3COC(A)2CH3 (47);	CH,COCH(A)CH, and CH,COC(A),CH, (24-30)† CH,COCH(A)CH, and CH,COC(A),CH, (total, 47)	CH,COC(A),CH,CN (82) CH,COCH(A)C,H, (15, 20), CH,COC(A),C,H, (14, 43), and ACH,COC(A),C,H,	
Catalyst	Quaternized polyvinyl- pyridine resin; aq.	KCN KOH, CH,OH KOH KOH, CH,OH KOH	Quaternized polyvinyl-	pyridine resin NaOH	[C,H,CH2N(CH3)]OH	C6H5CH2N(CH3)3 OH Na;	[C,H,CH,N(CH,),]OH KOH, C,H,OH;	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH [C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH Polyvinylpyridine resin	Aq. KCN KOH, C ₂ U ₅ OH; [C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH;	quaternized polyvinyl- pyridine resin
Reactants	B. Aldehydes (Cont.) Isobutyraldehyde	Diethylacetaldehyde 2-Ethyl-2-hexenal 2-Ethylhexanal «-Phenylpropionaldehyde	C. Ketones Acetone			Methyl ethyl ketone			Methyl <i>β</i> -cyanoethyl ketone Methyl <i>n</i> -propyl ketone	

$(C_{1},C_{2},C_{1},O_{1})$ CH,COC(A)(CU ₃), (54); CH,CH,1.10H	CH_3CH(A)COC(A)_3CH_3 (31)	t, C ₂ H ₂ OH; CH ₃ COCH(A)CH(CH ₃), (17) and 275, 761	:5 1	CH_COC(A)=C(CH_s), (10-15) CH_COC(A)=C(CH_s), (10-15)	(40)) (40)‡	(CH ₂) ₂ C(A)COCH(CH ₃) ₂ (40, 10) and 27	CHabbeta (CHabbeta)(CHabbeta)	(OH ₃) ₂ C(A)COC(A)(CH ₂) ₂ (28) and (OH ₃) ₂ C(A)COC(A)(CH ₂) ₂ (small)	5	CH ₃ COC(A) ₃ C ₃ H ₁₁ -tt (31);	(CH,),CHCH(A)COCH,CH(CH,), (35) and 275	JH, 1, 10H (CH, 1, CHCH(A)COCH(A)CH(CH, 1, (10);	nC,II.,COC(A)(CH,), 276	n-C,H,,COC(A)(CH,), 276	"(cH_N(CH_),]OH CH_COC(A),COCH, (49-55)	CH,COC(A),CH,COCH, (46-50)	(CH ₃ N(CH ₃) ₁]OII; 2,2,5,5-Tetra-(\$-cyanoethyl)cyclopentanone (97) 761	LOH:N(CH:),10H: 2.2.5.5-Tetra-(8-rvsnoethy),cyclonentanone (05.07)	
KOH, CLIGH, OH; CH,COC(A)(C	_	KOH, C,H,OH; CH,COCH(A)	_	EDH CHOH:	Holect	_	(CH ₂) ₂ C(A)	ŝ	JOH;	KOH, C ₁ H ₂ OH CH ₂ COC(A		3H,),]OH			I, lou	1,1,10II	[C ₄ H ₅ CH ₂ N(CH ₂) ₃]OII ₄ 2,2,5,5-Tetra KOH	(NICH.), JOH:	[C,H,N(CH,),OC,H,
Methyl isopropyl ketone	Diethyl ketone	Methyl isobutyl ketone	Mestyl oxide	Market a count hotoma	pietry, a anny resource	Disopropyl ketone			Methyl hexyl ketone		Disobutyl ketone		Isopropyl n-amyl ketone	Isopropyl n-nonyl ketone	Acetylacetone	Acetonylacetone	Cyclopentanone		

Note: References 401-1045 are on pp. 545-555.
• Compare the review by Bruson.***

 † A large excess of the ketone was used in this experiment. † The arrytomtrile was formed in sit, from β -chloropropicultrile in the experiments described in ref. 2715.

TABLE X-Continued

ACRYLONITHLE*
WITH
CONDENSATIONS
MICHAEL

Reactants	Catalyst	Product (Yield, %)	References
(Juo) somoto I		$A = -\text{CH}_2\text{CH}_2\text{CN}$	
Cyclohexanone	кон, сл., оп;	$2 \cdot (\beta \cdot \text{Cyanoethyl})$ eyclohexanone (16–19) and	114, 234, 275
	[C,E,CH,N(CE,),JOH	2,z-dr-(p-c) anoctriy 1/2) concernation (±7.7) 2-(β-Cyanocthyl) cyclohexanone (47) or	762, 168
	15/5	2,2-di- $(\beta$ -cyanoethyl)cyclohexanone (18–20)	8
	NaNH ₂	2,2,6,6-Tetra-(\$-cyanoethyt)eyclohexanone (12)§ 275, 284	275, 284
	Na;	z,z,0,0-1 etta-(p-c,anoetn; t)c; cronesamene (c1, c2, c2)	
	HOM		
	NaOH	2-(\beta-Cyanoethyl)cyclohexanone (20) and	768
		$2,2$ -Di- $(\beta$ -eyanoethyl)cyclohexanone (40)	
	Enamine of the ketone	$2-(\beta-Cyanoethy1)$ eyclohexanone (80)	535
	with pyrrolidine		
	NaOC.H.	2- $(\beta$ -Cyanoethyl)cyclohexanone (5), 2,2-di- $(\beta$ -cyano-	700
	1	ethyl)cyclohexanone (5), and 2,2,6,0-tetra-(\(\beta\)-eyano-	
		cthyl)cyclohexanone	
	кон	$2\cdot(\beta$ -Cyanoethyl)cyclohexanone (29) and	769
		$2,2$ -di- $(\beta$ -eyanoethyl)cyclohexanone (26)	
Cyclohexane-1,3-dione	Na OCH,	$2-(\beta$ -Cyanoethyl)cyclohexane-1,3-dione (23)	770
		0	
		(33)	
2,4-Dimethylcyclopentan-1-one	ном		700
		L13C	

		THE	HICHAEL RE.	ACTION
769	769	114 761	114 769 771 535	769
H_2 C H_3	$\Pi_3 C$ (34 crode)	2-Methyl-2-(f-cyanoethyl)cyclohexanone (80) 2-Methyl-2,6,0-trt-(f-cyanoethyl)cyclohexanone (38)	2-(4-Cyanockty)-4-retablycyclokazanone (21) 2-(4-Cyanockty)-4-retablycyclokazano (21) 1-(Arthethoxy-7-cyano-6-methylycylabghas4-one (63) 1-(5-Cyanockty)-7-cyano-6-methylycylabghas4-one (63) 2-(4-Cyanockty)-7-cyano-gwal-pan-1-one (63) 2-(5-Cyanockty)-7-cyano-ycholeghas1-one (63)	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Not indicated	Not indicated	[C,H,CH,N(CH,),]OH [C,H,CH,N(CH,),]OH; KOH	[C ₄ H ₄ OH ₄ N(CH ₄) ₄]OH NaOCH ₄ NaOC ₄ H ₄ Enamine of the ketone KOH, CH ₄ OH	NaOCH,
2,4.Dimethyl-2 cyclopenten-1-one Not indicated	3,6-Dunethyl-2-cyclopenten-1-one Not indicated	2-Methylcyclohexanone	4-Methyleyelohexanone 2-Methyleyelohexane-1,3-diono Cyeloheptanone 2-Cyanocycloheptanono	5,6-Dunethyleyclobexane-1,3- dione

Note: References 491-1045 are on pp. 545-555.

The acrylonitric was formed from eta-chloropropionitrie in the experiments described in reference 275. ++ 102

The acrylomirale was formed in situ from the methiodide of 2 diethylaminocthyl cyanide.

Under more drustle conditions, part of the product was hydrolyzed to 5-1\$-cyanocthyl)-7-cyano-2,2-dimethyl-4-oxobeptans-Under more drastic conditions, this product is hydrolyzed to 7-cyano-5-methyl-4-oxcheptane-1-carboxylic acid (74). 1-earboxviic acid.

TABLE X-Continued

References 234 23.1 Product (Yield, %) $A = -CII_2CII_2CI$ MICHAEL CONDENSATIONS WITH ACRYLONITHILE* (83) Catalyst $NnOC_2II_8$ NuNH, 6,6-Dimethyleyelohexane-1,3-dione (Cont.) Reactants C. Kelones (Conl.)

$$(\mathrm{CH}_{\mathfrak{z}})_{\mathfrak{z}} \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}}_{\mathfrak{z}} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

[U₆II₆CII₂N(CII₃)₃]OII

Isophorone

286

3

	NaOC, II.1.4	(دانای)	5
4-4-Amyleyclohexanone	(C,H,CH,N(CH,),10H; KOH	(C,H,CH,N(CH,),JOH: 2,2,0,5-Tetra-(\$-c) anoethyle-t-t amyley clohexanone KOH	161
2.(Cyclohex-1'-enylycyclo- hexarlone	[C,H,C'H,N'C'H,),]OH	2 (Yelohex-Penyl-2-(fie) anorthy by cholexanone (50) and 2-cyclohex-Penyl-2-0,0 tri (fie) anorthy les cholexanone (20)	338
4-Cyclohex) ley clohexanone	(C,U,CH,N(CH,),)OH; KOH	2.2.0.0. Tetra-(fee) and thyl)-4-cyclohexyley clo- hexanone (80-05)	90
3-Oxo-\$-phenylcyclohexyl-	Келен,менълон	FOLICITACIDADO OF CHICK OF	ARTIA

,

Note: References 491-1015 are on pp. 515-555.

· Compare the review by Bruson, wi

If This structure has been proven (ref. 286) by oxonization to 3,2-dimediyl-5-exolicane-1-carboxylic acid. In ref. 265, . The diketone and recovered to an extent of 31%. When Belloropropountitie and employed instead of acrylemittle, § The acrylonitrile was formed in stu from the methiodide of 2-diethy laminos thy I cyanide, the yield was 21%, and 52% of the diletone was recovered.

was incorrectly assigned to the monosubstitution product.

TABLE X-Continued

	References	112 113 773	761 112	761	368	368
MICHAEL CONDENSATIONS WITH ACRYLONITRILE*	Product (Yield, %)	$A =\text{CH}_2\text{CH}_2\text{CN}$ 2-(\beta-\text{Cyanoethyl})-2-phenylcyclohexanone (63-70) 2-(\beta-\text{Cyanoethyl})-2-phenylcyclohexanone (60) 2-(\beta-\text{Cyanoethyl})-2-phenylcyclohexanone (60)	 2,2,6,6-Tetra-(β-cyanoethyl)-4-(α,α,γ,γ-tetramethylbutyl)cyclohexanone (80-95) 2-Benzylidene-6-(β-cyanoethyl)-6-phenylcyclohexanone (83) 	0	$\begin{array}{c} \text{H}_3\text{C} \xrightarrow{\text{CH}_2\text{CH}_2\text{CO}_2\text{H}} \\ & & \\ \text{(so)}^{\ddagger\ddagger} \end{array}$	H ₃ C H O CH ₂ CH ₂ CO ₂ H
MICHAEL CONDENSAT	Catalyst	NaNH. [G ₆ H ₅ CH ₂ N(CH ₃) ₃]0H	C6,H5CH2N(CH3)3]OH	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]0H; KOH	[C,H5CH2N(CH3)3]0H	[C,H,CH,N(CH,),]OH
	Reactants	C. Ketones (Cont.) 2-Phenylcyclohexanone	4-(α,α,γ,γ-Tetramethylbutyl)- cyclohexanone 2-Benzylidene-6-phenylcyclo- hexanone	α-Tetralone	1-Methyl-cis-2-decalone	1-Methyl- <i>trans-</i> 2-decalone

IC, H, CH, N(CH,), JOH

3-(Methylanimomethylene)-1methyl-frans-2-decalone

108

IC, H, CH, N(CH,), JOH

52

Note: References 491-1045 are on pp. 545-555.

‡‡ This product was isolated after saponification of the adduct. . Compare the review by Bruson,"

TABLE X—Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

Reactants

Catalyst

Product (Yield, %)

References

$$A = -CH_2CH_2CN$$

774

Ø

HO2CCH2CH2, CH2CH2CO2H

368

HO2CCH2CH2

(Windaus acid)

368, 775

[C6H5N(CH3)3]OH

[C6H6N(CH3)3]OH

C. Kelones (Cont.)

CHN(CH₃)C₆H₅

[C₆H₅N(CH₃)₃]0H

(Inhoffen ketone)

CHN(CH₃)C₆H₅

761 761 191 761

C,H,CH,N(CH,),JOH

Acetophenone

or OC, Han Aq. KCN

4-Chloroacetophenone

4-Methoxyacetophenone 4-Methylacetophenone 4-Bromoacetophenone

Propiophenone Phenylacetone

Na enolate

Note: Reterences 491-1095 are on pp. 545-555, Compare the review by Bruson, 274

(CH3)

C, II, COCE(A), (30) and C, II, COC(A), (small) (30% of and 40% & upper) C,H,COC(A), (57-64)

277, 279,

776 767 767

C, H, COC(A), (65) C, H, COC(A), (64)

C,H,CH,N(CH,),]OH; OC.H. CH, N(CH,), JOH CaH,N(CH,),10C,H, C,H,CH,N(CH,),

C, II, COC(A), (57) p-CIC, H, COC(A), p-BrC,H,COC(A),

> C.H.CH,N(CH,), JOH; HON

C,H,CH,N(CH,),JOH, KOH КОП

(C,H,CH,N(CH,), OH; [C,H,CH,N(CH,),]OH;

C,H,CH,N(CII,), JOH;

C,H,C(A),COCH, (86)

C,H,COC(A),CH, (quant.)

p-CH,0C,H,COC(A), p-CH,C,H,COC(A),

C,II,CH(A)COCH, (80)

107

TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDENSAT	MICHAEL CONDENSATIONS WITH ACRALONITHME.	
Renctants	Catalyst	Product (Yield, %)	References
(Just) sound 11 0		$A = -CH_0CH_0CN$	
C. Actonics (Conf.)	HOH CHOH	C'H':COC(7)(CH²)	276
Isobatyrophenone Benzoylacetone	[C,H,CH,N(CH,)]OH	c'H'coc(A),cocH,	277
2,4,6-Trimethylacetophenone	or OC ₄ H ₉ -n [C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH; FOH	$2,4,6-(CH_3)_3C_6H_2COC(A)_3$ (30)	761
Isopropyl benzyl ketone	кон, спрон	C ₆ H ₅ CH ₂ COC(L)(CH ₅) ₂	276
Methyl p-naphthyl ketone	[C,H,CH,N(CH,),]OH	eta - C_{10} H - $COC(A)_3$ C H C	761 276
«-n-Butylprophophenone «-n-Propylputyrophenone	KOII, CH,OH	C,H,COC(A)(C,H,C)(H,-)	276
Deoxybenzoin	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]0H;	C, H, C(A), COC, H, (80)	761
Anthrone	$(C_0H_3CH_2N(CH_3)_3]OII$	9,9-Di-(\$-cyanocthyl)-10-anthrone (89)	288
		0=	
	KOC,H,-4		777
		» ×	
		H CH2CH2CO2H	
		(00-02)	
4-Phenylacet ophenone	$[C_0 \Pi_3 C \Pi_2 N (C \Pi_3)_3] O H;$	4-C,H,C,H,COC(.4)3	761
Dibenzyl ketono	[C,H,CH,N(CH,),]OH; KOH	$\mathrm{C_{b}L_{c}(A)_{2}COCH(A)C_{b}H_{c}}$	761

			тне мі	CHAEL !	REACTION	N		
276 276	277, 279	178	279	178	877	210	178	
C, H,COC(A)(CH3,C,H1,*** CH3,COC(A)(C,H1,***)C,H3	COC(A), (90-93)	H ₃ C(0) COC(A) ₃ (11)	(Quant)	II, C OC(A),	Hic COC(A),OH,	COC(A)CH,CH,	n,c cocu(A)CH,	(45)
кон, си,он кои, си,он	[C,II,CII,N(CII,),]0II or OC,II,"	по(t(t))(сн'))оп	[c,u,cu,N(cH,),]OH	но(ченусну)сну)он	Hottenty(cuty)on	[с,н,сн,м(сн,),юш	ic,u,ch,vicus),jou	
a.n.Octylpropiophenone Mathyl arphenylnonyl ketone	2.Acetylfuran	2-Actyl-G-methyllwan	2-Propuny Huran	3-Acetyl-2,5-directhylfuran	2-190ponj l-6-methylfuran	2-a-Buty rylfuran	2,5-Dunchyl-3-proponylfuran	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Nice: References (01-1045 are on pp. 545-555.

* Venipare the review by Brizon.***

* Arrywatelie was formed in situ from \$-chloropropionitrile.

TABLE X—Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDUCTOR		
Pourdunts	Catalyst	Product (Yield, %)	References
A Tribular	•	$A = -CH_2CH_2CN$	
C. Kelones (Cone.) 2-n-Butyryl-5-methylfuran	[C,II,CH2N(CH3),]OH		778
•		(47)	
3-n-Butyryl-2,5-dimethylfuran	[C,H5CH2N(CH3)]OH	H_3C $COC(A)_2C_3H_5$ (54)	778
2-Acetylthiophene	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH or OC ₄ H ₉ -n	COC(.41) ₃ (S7-S9)	277, 279
2-Acetyl-5-methylthiophene	[C6H2CH2N(CH3)3]0H	Π_3 CC $_{\mathbf{S}}$ COC $_{(A)_3}$ (80)	778
2-Propionylthiophene	[C ₆ H ₅ CH ₂ N(CH ₃) ₅]0H	COC(.A) ₂ CH ₃ (9S)	270
5-Methyl-2-propionylthiophene	[C,II,CII,N(CH,),]OH	$\Pi_3 C $ COC(A) $_2 C H_3$ (70)	778
2-n-Batyrylthiophena	[C,H,CH,N(CH,),JOH	COCH(A)C ₂ H ₆ SCCC(A) ₂ C ₂ H ₆	T78
		(36)	

Note: References 491-1045 are on pp. 545-555, • Compare the review by Bruson,***

TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

		•				
References		769	0) 769	170	761	479
Product (Yield, %)	0 = 4	$OH_3 OH_3$	$(CH_3)_2$ $\begin{pmatrix} O & O & O \\ O & O & O \\ O & O & O \end{pmatrix}$ $(CH_3)_2$ $\begin{pmatrix} O & O & O \\ O & O & O \\ O & O & O \end{pmatrix}$	HOH ₂ C CH ₂ CH ₂ CO ₂ H †† (47)	$ \begin{array}{c c} O = & A & (03) \\ (OH_3)_2 & O(H_3)_2 \end{array} $	$\begin{pmatrix} A \\ C_2 H_6 \end{pmatrix} (71)$
MICHAEL CONDENSATIONS Catalyst		КОН	кон	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH; KOH	[Genenal
Reactants	C. Kelones (Cont.)	1,2-Dimethyloctahydro-4-(1H)- quinolone	2,2-Dimethyl-4-pyranone	Kojic acid	3-Oxo-2,2,5,5-tetramethyltetra- hydrofuran	3-Ethyl-1-methyloxindole

This product was isolated after saponification of the adduct.

D. Esters and Amides Diethyl malonate	NaOC ₂ H ₄ ; Na	ACH(CO,C,H,), (57-63); (A),C(CO,O,H,), (12)	780, 781,
	IC,H,CH,N(CH,),OH	(A),C(CO,C,H ₃), (82)	288
Melonemide	C.H.OT.NOHALOF	4CH(CO,C,Hs), (27); (42); (43); (CO,C,Hs), (10)	107
Diethyl methylmalonate	[C,H,CH,N(CH,),]OH	4C(CH,)(CO,C,H,), (93)	182
	кон, сп,он	a-Methylglutaric acid;	783
Diethyl n-propylmalonate	кон, сн,он	a-Propylgiutaric acid;	783
Dethyl wbutylmalonate	кон, сп,он	a-n-Butylglutario acid;	783
	Na; NaOCH,; NaOCH,;		282, 781, H
Diethyl n-hexylmalonate	NaOCH, NaOCH,	n C,H,C(A)(CO,C,H,), (82)	
Diethyl n-octylmalonate	NaOCH, NaOC, H.	"-C,H,-C(A)(CO,O,H,), (90)	
Diethyl n-decylmalonate	NaOCH, NaOC,H.	n-C,H,,C(A)(CO,C,H,), (89)	H.A
Diethyl n-dodecylmalonate	NaOCH, NaOCH,	n-C.H., C(A)(CO,C.H.), (02)	
Diethyl n-tetradecylmalonate	NaOCHai NaOC, H.	"-C, II., C(A)(CO, C, II.), (80)	
Diethyl cetylmalonate	NaOCH,: NaOC,H.	n-C.H. (4)(CO.C.H.) (89)	
Tetraethyl ethane-1,1,2,2-tetra-	[O,H,CH,N(CH,),]OH	(C,H,O,C),C(A)CH(OO,C,H,), (77)	SAC SE
carboxylate			
Diethyl phenylmalonate	кон, си,ои	a-Phenylglutaric acid;;	783
	NaOC,H,	C,H,C(A)(CO,C,H,), (72)	
Diethyl benzylmalonate	кон, сп,он	a-Benzylglutaric acidf1	783
	(C,H,CH,N(CH,),JOH	C.H.OH, C(A)(CO.C.H.). (81)	686
Diethyl phenethylmalonate	коп, сн,он	a-Phenethylglutaric acidit	200
Dietnyl 1-naphthylmalonate	кон, сн,он	« (1-Naphthyl)glutaric acid; ** * * ** * * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **	783
Note: References 491-1045 are on pp. 545-555. Compare the review by Bruson. 374	son.214		

TABLE X—Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

Donolonie	Catalyst	Product (Yield, %)	References
Denciation		A = —CH,CH,CN	
D. Esters and Amides (Cont.)	но-но ном	α-(2-Naphthyl)glutaric acid‡‡	783
Diethyl 2-naphthylmalonace Diethyl (1-naphthylmethyl)-	кон, снаон	α -(1-Naphthylmethyl)glutaric acid‡‡	783
malonate	кон, сн,он	α -(2-Naphthylmethyl)glutaric acid‡‡	783
malonate		++ 11000 01004-11-11-11 11 11 11 11 11 11 11 11 11 11	783
Diethyl (β -1-naphthylethyl)-	кон, сн,он	α -(β -1-Naphthylethyl)gluttire actu \dagger	}
malonate Diethyl (8-2-naphthylethyl)-	кон, сн,он	α -(β -2-Naphthylethyl)glutaric acid‡‡	783
malonate		1917 HIMOD IS LOTTO THE	283
Vinylacetamide (or crotonamide) [C ₆ H ₅ CH ₂ N(CH ₃) ₃ JUH	[C,H,CH,N(CH,),JOH	$CH_2 = CHC(A)_2 CONA_2$ (19)) i
		CH ₂ CH ₂ CHCO ₂ H ^{‡‡}	
Diethyl β -(4-methoxy-1-naph-	кон, снаон,	(40) H°CH°CH°C H	786
thyl)cthylmalonate	(CH ₃) ₃ COH	00CH.	
		tthgohoghogho	805
Diethyl β -(5-methoxy-1-naph-thyl)ethylmalonate	КОН, СН ₃ ОН, (СН ₃) ₃ СОН	CH2CH2CO2H (32)	00
		OCH,	

		THE STORMED NEWCTION	
786	780	459 458 460 307, 282 400 282 783 783 787 789 789, 780	101
CH ₂ O CH ₂ CH ₃ (CO ₂ H 40)	choo, ru, ch, ch, ch, ch, ch, ch, ch, ch, ch, ch	CHLOCKHICALICO, 11, 103) CHLOCKHICALICO, 11, 100, 100, 100, 100, 100, 100, 100	7C(CN)(CO*C'IT')C(CN)(CIT')CIT*CIT'CO*C'IT' (83)
коп, сп,оп, (сп,),сон	кон, силон, (сн.),сон	Naoch, Naoch, An Naol Neckingen, Neuh, Joh Neckingen, Neuh, Joh Nolet, Cit, Out Naoch, Ich, Cut, Neuh, Joh	[C,H,CH,N(CH,),]OH
•Dethyl \(\rho(\theta\)-naph-thyl)ethylmalonate	Diethyl & (7-methoxy-1-naph- thyl)ethylmalonate	Dickty) (remanishmente Biby) rectaminantumte Biby) rectaminantumte Chanosectamin Chanosectamin Biby a cantaly a capa- py cantaly a capa- min a comment Biby a capa-ph cantaly: Biby a capa-ph cattaly: Dickty a capa-ph cattaly: Dickty a capa-ph damenty-	Diethyl 3,4-dicyano-3-methyl- butane-1,4-dicarboxylate

CH,CH,CHCO,IIII

Note: References 491-1045 are on pp. 545-555.
* Compare the review by Bruson,***

1‡ This product was isolated after suponification of the adduct.

ABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDENSATIONS HELL		
2) and 1- 2- CF	Catalvst	Product (Yield, %)	References
Reachants		$A = -CH_{s}CH_{s}CN$	
D. Esters and Amides (Cond.)		(60 09) (H. O. OO) (T. O.	792
Ethyl phenylcyanoacetate Diethyl 1,2-dicyano-2-methyl-	KOH, CH ₃ OH [C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH	$C_6H_5C(A)(CN)(CU_3, r_4H_5)$ (93—02) $C_2H_5O_2C(CH_2)_3C(CN)(CH_3)C(A)(CN)CO_2C_3H_6$ (99)	793
pentane-1,5-dicarboxylate Methyl ethylphenylacetate Methyl n-monylphenylacetate	NaOCH ₃ NaOCH ₃	(C,H ₅)(C,H ₅)C(A)CO ₂ CH ₃ (C,H ₅)(n-C ₃ H ₇)C(A)CO ₂ CH ₃	794 794 794
Methyl n-butylphenylacetate Methyl isobutylphenylacetate	NaOCH ₃ NaOCH ₃	$(C_6H_6)(n\cdot C_4H_9)U(A)UO_2UH_3$ $C_6H_6(i\cdot C_4H_9)U(A)UO_2UH_3$ $(C_4H_5(i\cdot C_4H_9)U(A)UO_2UH_3$	794
Methyl diphenylacetate Methyl fluorene-9-carboxylate	NaOCH3 KOH NaOH navidine	$(C_6H_5)_2C(A)CO_2CH_3$ 9-Carbomethoxy-9- $(\beta$ -cyanoethyl)fluorene (94) 9-Carbethoxy-9- $(\beta$ -cyanoethyl)-1-methylfluorene (78)	795 482
Isthyl 1-methylnuorene-v- corboxylato	Mach, Pyllumo		
Ethyl 2,7-dibromofluorene-9- carboxylate	$[\mathrm{C_6H_6CH_2N(CH_3)_3}]\mathrm{OH}$	9-Carbethoxy-9-(\beta-cyanoethyl)-2,7-dibromofluorene (93) 796	3) 796
•		CH ₂ CH ₂ CO ₂ H	
Methyl 4-cyclopental def]-phenanthrene-4-carboxylate	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]0H		797
		(06)	
Elhyl a-furylacelate	[C ₆ H ₆ CH ₂ N(CH ₃) ₃]OH or OC ₄ H ₆ -n	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	277

Ethyl a-thienylacetate	[C,H,OH,N(CH,),]OH or OC,H,***	S C(A) (CO,C,H, (22)	277
Ethyl 2-pyridylacetate	e N	CH(A)CO,C.H. (72)	798
B. Keto Esters and Amides Methyl acetoacetate Ethyl acetoacetate	(C,U,CH,N(CH,),JOH [C,H,CH,N(CH,),JOH or OC,H,-n	CH,COC(A),CO,cH, (49) CH,COC(A),CO,CH (179-80) or CH COCHA A 2CO,CH (179-80) or	760, 761
Ethyl methylacetoacetate	[C,H,CH,N(CH,),]OC,H, NaOC,H, KOH, CH,OH, (CH,),COH	555	761, 767 767 799 766, 800
Ethyl ethylacetoacetate	NaOC,H, - KOH, CH,OH, (CH,I)COH	a-Methylpuracs acid (51)}} CH5,00C(ch1,41)C0C(ch1,61) CH5,00CH(A)CH5,(34)} CH5,0CC(c,H5)(A)C0,c,H1,(62)	800 182 801 800
Ethyl n-propylacetoacetate	— КОН, СИ,ОН, (СИ,),СОН	«-Ethylglutaric acid (02);† CH,COGH(A)CH,CH, (43);†† CH,COC(C,H-m)(A)CO,C,GH, (98)	800 801 800
Note: References 491-1045 and comments	1	c-n-Propylglutaric acid (88);; CH ₃ COCH(A)CH ₂ CH ₃ CH ₃ (36);;	800

Note: References 491-1045 are on pp. 545-555.

Compare the review by Bruson, 111

If This product was isolated after saponification of the adduct.

TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

Renctants	Catalyst	Product (Yield, %)	References
To Water Perfore and Amides (Cont.)		$A = -CH_2CH_2CN$	
E. Acto Botelo una immediation		(67 267 E C CCC) A. E COCC	591 800
Ethyl isopropylacetoacetate	КОН, СН ₃ ОН, (СН ₃) ₃ СОН	$CH_3COC(C_3H_7-i)(A)CO_2C_2H_6$ (31, 43) α -Isopropylglutaric acid (43)‡‡	800
Ethyl allylacetoacetate	КОН, СН ₃ ОН, (СН ₃) ₃ СОН	$CH_3COC(G_2H_5)(A)CO_2C_2H_5$ (76)	800 800
Ethyl n-butylacetoacetate	КОН, СН ₃ ОН, (СН ₃) ₃ СОН	CH ₃ COC($C_4^{\prime}H_5^{-n}$)(A)CO ₂ $C_2^{\prime}H_5$ (74–75) α -n-Butylelutaric acid (75)‡‡	119, 800
		CH3COCH(A)CH2CH2CH2CH3 (35)‡‡	801
Ethyl n-amylacetoacetate	KOH, CH ₃ OH,	$CH_3COC(C_bH_{11}-n)(A)CO_2C_2H_b$ (71)	781, 800
	(CH ₃) ₃ COH; INI		000
		α -n-Amylglutaric acid (71)‡‡	200
	ı	$CH_3COCH(A)(CH_2)_4CH_3$ (32)‡‡	801
Rthyl isonmylacetoacetate	КОН, СН, ОН, (СН,),СОН	$CH_3COC(C_6H_{11}-i)(A)CO_2C_2H_5$ (72)	800
		α -Isoamylglutaric acid (72)‡‡	800
Ethyl n-hexylacetoacetate	КОН, СН, ОН, (СН,),СОН	$CH_3COC(C_6H_{13}-n)(A)CO_2C_2H_5$ (84)	008
		α -n-Hexylglutaric acid (84)‡‡	800
Ethyl phenylacetoacetate	NaOC ₂ H ₆ ; KOH,	$\mathrm{CH_3COC}(\mathrm{C_6H_6})(A)\mathrm{CO_2C_2H_6}$ (27)	802
	СН ₃ ОН, (СН ₃) ₃ СОН		!
Ethyl benzylacotoacetate	$NaOC_2H_b$	$CH_3COC(CH_2C_6H_5)(A)CO_2C_2H_5$ (85)	581
	кон, сн, он, (сн,),сон	$CH_3COC(CH_2C_6H_5)(A)CO_2C_2H_6$ (66)	800
		α -Benzylglutaric acid (66)‡‡	800
	1	$CH_3COCH(A)CH_2C_6H_5$ (31)‡‡	801
Ethyl n-butyrylacetate	[C ₆ H ₆ CH ₂ N(CH ₃) ₃]OH or	$n\text{-}C_3\text{H}_7\text{COC}(A)_2\text{CO}_2\text{C}_2\text{H}_5 \ (34-36,\ 74)$	217, 119
	0C4Hp-n		
	NaOC ₂ H _b	$n\text{-}\mathrm{C_3H_7COCH}(A)\mathrm{CO_2C_2H_5}$ (52)	100

					THE	місн	EL REACTION	437
277	799 780	700, 803	211	681, 799	709	199	119, 121, 654 119 804	
(CH ₂) ₂ CHCOC(A) ₂ CO ₂ C ₂ H ₄ (65–68)	(CH ₃),CHCOCH(A)CO ₃ C ₄ H ₄ (53)	n-C,H,COCH(A)CO,C,H, (38, 67)	C, II, COC(A), CO, C, II, (53)	C, II, COCII (A) CO, C, II, (86, 43)	COCH(A)CO,C,H, (37)	S COCH(A)CO,C,H, (4)	Octring 3-Carbonethaylcamphor (78) 10-Carbonethaylcamphor (78) 10-Carbonethaylcamphor (78)	duct.
[C,11,C1f,N(CH,),]O11 or	NaOCH,	NaOC,H,	[C,H,CH,N(CH,),]OH or	NaOC, II,	NaOC, II,	NaOC ₁ II ₂	KOLI CHIOHI NAOCHI; NANII; [CHICHAROHI] KOHI CHIOH KOHI CHIOH (CHICHAROHI)	After suponification of the ad
Lith; 1 technity explacetate	Ethyl ferrals ry lucetate	Ethyl bexanus Licutate Ethyl beplanus Licutate	Ethyl benzoylactate		Ethyl 2 furnylacetate	Libyl Z-thenoy beetate	2-Carbetharsyychologanome NOIL CH (OIL) NadCH, i. N NadCH, i. N Nethyl camplor-3-carbos) late NOIL CH (OIL) 2-Carbomethory-1-terrabme (CAL)CH, N(CH, NAMC: Reference 43-1016 are on pp. 615-655. Continues the review to the sector of the continues of the sector.	** This product was isolated after suponification of the adduct.

TABLE X—Continued

MICHAEL CONDENSATIONS WITH ACRYLONITHIES*

Rondanis	Catalyst	Product (Yield, %)	References
(Con)		$A = -cu_{cu_{cu}}$	
E. Acto Esters and Amacs Com	HOLV HOUR MA TO TO THE	CH COC(4) CONHCH.	760
Acetoacetanilide		CH COC(4), CONHC, H, Cl-6	740
Acet oncet-2-chloroanilide	Censcus Non 101	CH COC(4), CONIC II, CL-2,5	760
Acetoacet-2,5-dichloroanilide Acetobutyrolactone	Ceneral CH2/10H	2-Aceto-2-(\$\theta\$-cyanocthyl)\text{butyrolactone (80-02)}	581
F. Nitriles			606
Allyl cyanide (or crotononitrile) [CallsCII2N(CII3)3]OII	[C,II,CIII,N(CIII,),]OII	$CH_{CH} = C(A)CN(9)$	203
* * * * * * * * * * * * * * * * * * *	HOLLEHOW HOTELION	(H;=CHC(A)g(N (E))	
Isopropenyi cyanide (or g g dimothydomdonitrilo)	[-\$172-712-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(II,=C(CII,)C(A),CN (11)	283
Donay ovenide	Ag. NaCN	C,11,CH(A)CN (80)	400
Dental cyannac	IC.H.CH.N(CH.), JOH	C, II, C(A), CN (94)	282
	NaOC.II.	C.H.C(A), CN (46)	802
	кон, сн.он, (сн.),сон	C.H.C(A),CN (70)	707
	[C,II,N(CII,),10C,II,	C.II, C(A), CN (00)	707
n-Nitrobenzyl cyanide	(C, H, CH, N (CH,), JOH	p-0,NC,H,C(A),CN (00)	282
o-Chlorobenzyl cyanide	кон, сп,он, (сп,),сон	o-CIG, LI, C(A), CN (47)	800
m-Chlorobenzyl cyanide	кон, спон, (спо)сон	m-CIC,H,(C(A),CN (64)	800
n-Chlorobenzyl cyanide	KOII	p-CiC, 11, C(A), CN (80)	807
m-Bromobenzyl cyanide	кои, сп,ои, (си,),сон	m-BrC, H, C(A), CN (80)	800
p-Bromobenzyl cyanide	коп, силон, (сил),сон	p-BrCell,C(A), CN (84)	800
m-Methylbenzyl cyanide	кон, силон, (сил)соп	m-CII,C,II,C(A),CN (88)	800
p-Methylbenzyl cyanide	коп, сп, оп, (сп,),соп	p-CH ₂ C ₂ U ₄ C(A) ₂ CN (95)	800
\alpha - Phenylpropionitrile	коп, сп,оп, (сп,),соп	(C,HL)(CH,)C(A)CN (55)	758

			,	гне мі	CHAEL REA	CT	ION		
807	283	808	807	808	805a		117, 281	282	281 117 117 808
$p \cdot (\mathrm{CH_3})_1 \mathrm{OHG_6H_4C}(A)_2 \mathrm{ON}$	$\bigcirc C(A)_{\mathbf{i}}CN (37)$	C(A)(C,H _a)ON	α -C ₁₀ $\mathbf{H}_1\mathbf{C}(A)_\mathbf{s}\mathbf{CN}$ (55)	$\bigcirc C(A)(C_{\bullet}H_{\bullet})CN$	Cq.Hs.		(A)2CHNO2 (low); (A)2CNO2 (52)	(A) ₂ CNO ₂ (45) CH ₂ CH(A)NO ₂ (30)	CH.C(A),NO, (67) (CH.J(CANO, 170) 1-Nitro-1-(\$-vancelty1)rycloherane (40) (A),C(NO,1, (34); (4),CNO, (12)
кон	[C,H,CH,N(CH,),]OH	(C,H,CH,N(CH,),)OH	$[\mathrm{C}_{\mathfrak{s}}\mathrm{H}_{\mathfrak{s}}\mathrm{CH}_{\mathfrak{s}}\mathrm{N}(\mathrm{CH}_{\mathfrak{s}})_{\mathfrak{s}}]\mathrm{OH}$	[O4H4CH4N(CH5),10H	Li salt		NaOCH; aq. K,CO,	(C,H,),NH; NaOCH,	Aq. K ₁ CO ₃ Aq. KOH Aq. KOH Aq. solution
p-Isopropylbenzyl cyanide	Cyclohexenylacetonitrile	a-(2-Thienyl)benzyl cyanide	a-Naphthylacelonitrile	a-(1-Cyclohexenyl)benzyl cyanide [C ₆ H ₄ CH ₄ N(CH ₅) ₃]OH	1-Cyano-2-benzoyl-1,2-dhydro- Li salt koquiroline	G. Nura Compounds	Nitromethane	Nitroethane	2-Nutropropane Nitrocycloherane O,NCiiNO,K

Note: References 401-1015 are on pp. 545-555.

* Compare the review by Bruson, ***

TABLE X—Continued

MICHAEL CONDENSATIONS WITH ACRYLONITHILE*

Reactants	Catalyst		References
G. Nitro Compounds (Cont.)		A = —CH ₁ CH ₂ CN	913
CH ₃ O ₂ CCH ₂ CH ₂ C(NO ₂)=NO ₂ Na Aq. solution	Aq. solution	.4C(NO;);CH;CH;('O;CH; n-BrC,H.('(4),NO; (15)	117
p-bromopnenymatrometalisme Methyl 2-mitro-1-phenylpropyl	Aq. NaOH	3.Nitro-3-methyl-4-methoxy-4-phenylvaleronitrile (30)	117
n-butyl sulfone	out. n-Butyl 3-nitro-n-butyl sulfone [CH ₅ N(C ₂ H ₅) ₁]OH	3-Nitro-3-methyl-5-(butylsulfonyl)-1-pentanecarbo- nitrile	117
Ethyl nitroacetate	KOH, ethanol	Ethyl z-nitro-7-eyanobutyrate (19)	811
	[C,H,CII,N(CII,),]OH	O;NCH(A)CO;C;H; (52)	815
		O;NC(A);CO;C;H; (80)	S13
	(C, H,),NH	O,NCH(A)CO,C,H, (diethylamine salt) (81)	G
Methyl 7,7-dinitrobutyrate	Na derivative in water	Methyl 6-cyano-1,4-dinitrohexanoate (51)	810
$Endo({ m nit}$ roethylene) ${ m anthrace}$ ne Na ${ m OCH}_{f s}$	NaOCH,	Ë Ž	813
		3	

faring and				
'henyl benzyl sulfone	[C,H,CII,N(CH,),]OH	C,H,SO,C(A),C,H, (60)	279, 814	
Ally I p-toly I sulfone	[C,H;CII,N(CH,),]OH	p-CH ₂ C ₆ H ₄ SO ₂ CH(A)CH=CH ₂ and	814	
on'c'h'so'cn'co'c'n'	кон, сп,оп	p-CH ₂ C ₆ H ₄ SO ₂ C(A) ₂ CO ₃ C ₂ H ₆	814	
henyl p-chlorobenzyl suffone [[C,H,CH,N(CH,),]OH	[C,H,CH,N(CH,),]OH	$p\text{-ClC}_{\mathfrak{g}}\mathbf{H}_{\mathfrak{g}}\mathbf{C}(A)_{\mathfrak{g}}\mathbf{SO}_{\mathfrak{g}}\mathbf{C}_{\mathfrak{g}}\mathbf{H}_{\mathfrak{g}}$ (60)	816	
f. Phosphonoacetates				
Friethyl Phosphonoacctate	[C,H,CH,N(CH,),]OH	(C ₂ H ₅ O) ₂ P(O)C(A) ₂ CO ₂ C ₂ H ₅ (87)	816	
	NaOC ₂ H ₆	(C ₂ H ₆ O) ₂ P(O)CH(A)CO ₂ C ₂ H ₆ (28)		T
	;	(C,H,O),P(O)C(A),CO,C,H, (27)	124	HE
	Na	(C ₂ H ₈ O) ₂ P(O)CH(A)CO ₂ C ₃ H ₂ (40)	817	χ
	;	(C ₄ H ₅ O) ₂ P(O)C(A) ₃ CO ₃ C ₂ H ₄ (19)		rrc
Dethyl evanometherenhon	A TO STATE OF THE PARTY	(C ₂ H ₆ O) ₂ P(O)C(A) ₂ CO ₂ C ₂ H ₅ (68)	817	H
phonate	logatonin(CH))JOH	$(C_2H_3O)_2P(O)C(CN)(A_2)$ (90)	810	AEI
Triethyl a nicent	X	(C ₂ H _a O) ₂ l'(O)C(CN)(A) ₂ (80)	213	R
Tricthyl «-phosphonohexanoate	NaOC, II,	(C,H,O),P(O)C(CH,)(A)CO,C,H, (58)	124	EAG
	K	(CH 0) PO (C, H, n) (A) (C, H, (71)	124	TI
		(21 17 17 17 17 17 17 17 17 17 17 17 17 17	218	0

H. Sulfones

Note: References 491-1015 are on pp. 545-555.
Compare the review by Reuson 214

of The exists and met komere give analogous reactions. From c- and m-methyl benzylphenyl sultone only undefined olds were formed; the para komer failed to react.

TABLE XI

CONDENSATIONS WITH UNSATURATED NITRILES OTHER THAN ACRYLONITRILE

%) References	77 77 27 111 711	63 63 63	291	291	hydrofluoranthene 754, 755
Product (Yield, %) $A = CH_3CHCH_2CN$	JCH(CN)CO ₂ C ₂ H ₅ (90) CH ₃ C(J)(CN)CO ₂ C ₂ H ₅ C ₆ H ₅ CH(J)CN (70) C ₂ H ₅ CH(J)NO ₂ (80) (CH ₃) ₂ C(J)NO ₂ (80)	H 4	4 CO C.H.	X	$1\hbox{-}(\beta\hbox{-}\mathrm{Cyanopropyl})\hbox{-}1,2,3,4\hbox{-}\mathrm{tetrahydrofluoranthene}$
Michael Condensations with Commentary and Allyl Cyanide) and	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅ ; NaOCH ₃ Aq. NaOH [CH ₃ N(C ₂ H ₅) ₈]OH	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH	кон	кон	[C6H6CH2N(CH3),]OH
MICHAEL CONDEN Reactants Crotononitrite (or Allyl Cyanide) and	Ethyl cyanoacetate Ethyl æ-cyanopropionate Benzyl cyanide 1-Nitropropane 2-Nitropropane	Fluorene	Methyl fluorenc-9-carboxylate	Ethyl fluorene-9-carboxylate	Methacrylonitrile and 1,2,3,4-Tetrahydrofluoranthene

821

855

821

	818, cf. 819 820 820 820
A = CH,OCH,CHCH,CN	ACH(CO,C,H,h, (14) ACIO(TH,I)(CO,C,H,h, (8)) ACIOH,GH,OCH,I)(CO,C,H,h, (80–50) ACIOH,GH,OC,GH,J,CO,C,H,h, (42)
	NaOC,H; NaOC,H; NaOC,H; NaOC,H;
y-Methoxycrolonondrile and	Diethyl malonate Diethyl ethylmalonate Diethyl å methoxyethylmalonate Inethyl å-ethoxyethylmalonate

3-Cyano-1,2,5,6-tetrahydropyrdine	ropyraine and		
Dethyl malonate	NaOC,H,	OH,CO,H	22

Cinchologonic actd, 2 isomers)

HN	NH (< 30)	0,
	<u> </u>	
	NaOCLIS	
	C) anoacetamide	

Cyclopentylideneacelonitrile and

/Z\)
\times)
$_{\rm aOC_2II_5}$	
z	
ide	
acetam	

NaOC,II,

Cycloheryldeneacefondrils and

Cyanoacetamide

443

TABLE X1-Continued

MICHAEL CONDENSATIONS WITH UNSATURATED NITRILLS OTHER THAN AGRYLONITRILE

Donelland	Coladyst	Product (Yield, %)	References
(3-Methyleyclohexylidene)acctonilrile and		HN	
Cyanoacetamide	$N_{\Lambda}OC_2H_b$	CH ₃ CN	402a
(4-Methytcyclohexylidene)acelonitrile and Cyanoacelamido N	trite and NaOC ₂ 11 ₆	$1I_{3}C$ $NII (26)$ CN CN	402a
Cinnamonitrile and		$A = C_0 \Pi_b C \Pi C H_2 C N$	
Diethyl malonate Ethyl phenylacetate Benzyl cyanide p-Methoxybenzyl cyanide m-Aminobenzyl cyanide	NaOC ₂ H ₅ NaOC ₂ H ₅ ; NaOCH ₃ NaOC ₂ H ₅ ; NaOCH ₃ NaOC ₂ H ₆ ; NaOCH ₃	$A \operatorname{CH}(\operatorname{CO}_2 \operatorname{C}_2 \operatorname{H}_6)_2 \text{ (S3)}$ $\operatorname{C}_6 \operatorname{H}_6 \operatorname{CH}(A) \operatorname{CO}_2 \operatorname{C}_2 \operatorname{H}_6 \text{ (50)}$ $\operatorname{C}_6 \operatorname{H}_6 \operatorname{CH}(A) \operatorname{CN} \text{ (S0-S7)}$ $p \cdot \operatorname{CH}_6 \operatorname{OC}_6 \operatorname{H}_4 \operatorname{CH}(A) \operatorname{CN} \text{ (23)}$ $m \cdot \operatorname{LL}_2 \operatorname{NC}_6 \operatorname{H}_4 \operatorname{CH}(A) \operatorname{CN} \text{ (Two isomers: 17, 30)}$	290 27, 805 27, 27
Pluoreno	lo _{ll} oll _s ulollish	(60)	280

33

checophy, an

p-Hchosyennamondrik and Ik nzyl cyanolo	Nath'ills. Nath II,	QUEDRANGURA HANDA HANDA (2)	ñ
2-Hydrindanylodeneaedondede und	~	÷	
C) unoacetambe	Natwi,H ₁	District State of Sta	3
		Cultivarian,	
a-Phenylennamondrile and		A Callentine Result	
Nitromethane Nitro thane	118'6'11'3)	4CH,NO, (41) CH,CHONO, (57)	==
a-(p-Bromophenyl)ennamondrile and Astroethano	and Pys ridan	енинениямованся капан	Ξ
1-Cyano-1,3-butadiene and Diethyl malonate Rifryl acetoscetato	tehentstation	кайнан аймалугаалуга крупулатура кайнан аймалуга	3 3

Note: References 401-1015 are on pp. 545-555.

TABLE XI-Continued

MICHAEL CONDENSATIONS WITH UNSATURATED NITHLIES OTHER THAN ACRYLONITRILE

Defendance	Neletrates		91	16	203	203	203	503			203	
	Product (Yield, %)	$A = -CH_1CH = CHCH_1CN$	A CONTROL O. H.	(A)20(CO)20223 (A)_C(COCH3), (22)		CH CHAINO, and CH.C(A), NO. (total, 05)	OH CHICANO	Control of the Contro	(CH ₃) ₂ C(A)NO ₂ (71)	NO.	T T	>
MICHAEL CONDENSATIONS WITH CIRCLE	Catalyst		HOL A MONTE AND THE	Conscribing Holder	Censons Non 10H	[C, H, CH2N (CH3), JOH	Censulation (CH3)slott	[C,H,CH2N(CH2)JOH	[C,H,CH,N(CH,),]OH		[C,H,CH,N(CH,),10H	
MICHAEL CONDE	Decetonts	Deficients	1-Cyano-1,3-butadiene (Cont.) and	Ethyl cyanoacetate	Acetylacetone	. Nitromethane	Nitroethane	1-Nitropropune	2-Nitropropane		Nitrocyclohexane	

TABLE XIA

IDE 613

Product (Yield, %)	-1,2,3,4,5,6,7,8-octallydroquinoline (10) zoylbutyric acid* (20)	[CHCHCHCHCHCHTCONT]]CO (48)
Catuly at	Nall 2-0xo KOC ₄ II ₅ -t y-Ben	KOC, II, C, II, C
Reactants	heranone phenone	Dibenzyl Letone
	Reactants Catalyst	Reactants Catalyst 2-Oxo-1,23,4.5.0.7.8 KOG,11,4 7-Benzoylbutyrie ac

2-Phenylcyclohexanone

2-Phenylcycloheptanone

Lactam of \$-(2-keto-1-phenylcycloheptyl)propionic acid (31) Lactam of \$-(2-keto-1-phenylcycloheptyl)propionic acid (22)

KOC,H. . This product was obtained after hydrolysis.

TABLE XI4-Continued

MICHAEL CONDENSATIONS WITH ACRYLAMIDE 395 AND METHACRYLAMIDE 823

Product (Yield, %) Catalyst Reactants

Acrylamide (Cont.) and

4-Oxo-1,2,3,4,9,10,11,12-octahydrophenanthrene

KOC,H,-4

KOC, Hot

4,9-Dioxo-1,2,3,4,9,10,11,12-octahydrophenan-

.

Nali

NaOC,III,

Diphenylacetonitrile

+ The yield of lactan was 22%; when the readual reaction maxime was hydrolyzed, the yield of the corresponding acid

* The yield of lactan was 67%; further work up of the mother laquer yielded an additional 19% of the lactan.

TABLE XII

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC ACID DERIVATIVES

References			595	201	COL	824, 525	538	536	263	V63			t o	71	758	SOS	808	000	503	808	808	808	808		808		808	808	823	808
	Troance (11cm, 70)	$A = -CH_1CH_1CO_1CH_3$		4CH(CO ₂ C ₂ H ₅) ₂ (76)	Glutannic acid* (64)	CH COCH(4)CO.C.H. (73, 38)	of 11 -3 f and 6 Lowfords (19)4	Metnyr 5-0x0-0-fleptenoare (197)	Constant (a) Constant (az)	NCCH(A)CO ₂ C ₂ H ₅ (73)	(A)2.C(CN),	(4)C(CN)(CO ₂ C ₂ H ₃)C(CN)(CH ₃)CH ₂ CH ₂ CH ₂ CO ₃ C ₃ H ₃	(65)	C,H,CH(A)CN (20-24)	C, H, C(A)(CH,)CN (43)	C.H.C. AVC.H.)CN		יייייייייייייייייייייייייייייייייייייי	C, H, C(A)(C, H, -1)CN	C, II, C(L)(C, II, S)CN	C.H.C(A)(C,H,,-n)CN	C.H.C.CANCINCH,CH.CH.O.		(6115/145/145/145/145/145/145/145/145/145/	p -CIC, $\Pi_{\mathcal{C}}(A)(C, \Pi_{\mathcal{N}}(N))$ CN		C ₆ H ₅ C(A)(C ₆ H ₆)CN	C,H,C(A)(C,H,1)CN	(C,H,),C(A)ON	C,U,C(A)(C,U,CI-p)CN
MICHAEL CONDENSATIONS TITLE	Catalyst			Na	NaOC.H.	Na Contraction No.	NaUC2HS; IN	Na	[C,H,CH,N(CH,),]OH	NaOC.H,	[C,H,CH,N(CH,),]OH	KOC, H,		NaOCH,; NaNH,	NaOCH.	ICH NCH NOH		[C6H5CH2]\(CH3/3)OH	[C,H,CH,N(CH,),]OH	[C,H,CH,N(CH,),]OH	(C, H, CH, N(CH,), 10 H	HOLL HOW HOLL		[C6H5CH2N(CH3)3]CH	[C,H,CH,N(CH,),]OH		[C,H,CH,N(CH,),]OH	[C,H,CH,N(CH,),]OH	NaOCH ₃	[CeHiCHiN(CHi)]OH
MICHAEL	Reactants	7	Methyl Acrylale and	Diethyl malonate	To the state of th	Dietnyl acetamidomaionaic	Ethyl acetoacetate	Ethyl 5-ethoxy-3-oxopentanoate	Ethyl benzovlacetate	Ethyl evanoacetate	Malononitrile	Diethyl 1,2-dieyano-2-methyl-	pentane-1,5-dicarboxylate	Benzyl cyanide	~- Phonylphonicultrile	. Discouling and mitails	a-runnynnnthine	a-Isopropyibenzyi cyanide	a-Isobutylbenzyl cyanide	a-(2-Thienvl)benzyl cvanide	g-n-Pentylhenzyl cyanide	~-(9-Mothylbutyll)hongyl oxonido	onimica tomodification of the control of	a-(z-ryridyl)penzyl cyanide	α -(2-Pyridyl)- p -chlorobenzyl	cyanide	α-(1-Cyclohexenyl)benzyl cyunide	α-Cyclohexylbenzyl cyanide	Diphenylacetonitrile	α -(p-Chlorophenyl)benzyl evanide

Ethyl (x-tetralylidene)cyano- acetate‡	NaOC, H,	£	827
2-(1'-Cyclobexenyl)cyclo- hexanone	(C ₄ H ₄ CH ₂ N(CH ₃) ₃)0CH ₃	0 0	828
Oxindole	NaOC,Hs	CH,CH,CO,II),§	THE MICH
l-Methyloxindole	NaOC ₂ H _b	$(\operatorname{CII_{t}OI_{t}CO_{t}II)_{t}}_{\operatorname{CII_{t}OI_{t}}}$	IAEL REAC
1-Ethyloxindole	NaOC ₁ H _{\$}	CH,CH,CO,H), CH,CH,CO,H), CH,CH,CO,H),	IION E
Note: References 491–1045 are on pp. 645–555. • This soid was isolated after hydrolyss and partial decarboxylation.	re on pp. 545–555. r hydrolysis and partial d	ecarboxylation.	

C(A)(CN)CO,C,H,

[†] This compound was isolated by partial hydrolysis and decarboxylation, which were accompanied by elimination of one molecule of ethanol.

This compound reacts in the tautomeric #y-unsaturated form.
 This compound was isolated after saponification.

Methyl y-sopropyl-y-nitro-	(C,U,),NII	(CH)(CHC(A)(N)	3	
package	Hotthykentyon	(CH ₁),CHC(A),NO ₁ (20)		
Endejustroethylene.hastlaseena NaOCII,	NaOCH,	Ē 3	21 2	TI
Triethyl phosphonoacetate	NaOC, II, Na (small amount)	CHOPOKHAKOCH (10)	124 817	te atc
Triethyl a-phosphonohexanoate NaOC ₂ H ₃	NaOC, II.	(c',u',o),r'(o'k',a',c',u', (o') (c',u',o),r'(o'k',a',c',u',a',c',u', (o') (c',u',o',a',a',a',a',a',a',a',a',a',a',a',a',a'	7 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	HAE
Diethyl matonate	NaOc.11	ACUICOCCULO,	E 3	L R
Dethyl methylmalonate Dethyl ethylmalonate**	NaOCalla NaOCalla	ACTIVITY OF THE CONTROL OF THE CONTR	33	LACT
Dethyl n-butylmalonatett	NaOC, II,	AC(C,11,-n)(CO,C,11,1, (88)	ž :	103
Diethyl n-hexylmalonate**	NaOC, H.	AC(C,II,3-m)(CO,C,II,), (33)	5 2	۲
Diethyl n-decylmalonate** Diethyl n-decylmalonate**	NaOC, II,	AC(C, U1-n)(CO,C, U1, (41)	23	
Note: References 491-1045 are on pp. 545-555.	e on pp. 515-555.		8	

11 When methyl acrylate and sodium ethoride were employed, an 83% yield of n C,II,C(A)(CO,C,II,I, was obtained, This compound was released in the separation.

The distribution compound was released and a parameter and in anyons adultion; no other entity is was employed.

The distribution compound was replayed as far ex-sedum and in approve adultion.

The distribution was replayed as far ex-sedum and in approve a solution.

In this experiment melly, early also was used as starting material; it was brown-seterfield by the early is adultion.

Oxindole	NaOC,U,	(4), (4), (4), (4), (4), (4), (4), (4),	278
1-Methylo <u>rindolo</u> 1,3-Dimethylorindole	NaOC,H, NaOC,H,		THE
Nitromethane Nitroethane 1-Nitroproprane	(C,H,CH,N(CH,1,10H (C,H,CH,N(CH,1,10H (C,H,CH,N(CH,1,10H	CH, CH, ACHICHNO, CH,CHIANO, (40) or (A),C(CH,,NO, CH,CHIANO,	ę
2-Nitropropane B.B.Dnitroethanol Ethyl nitroacetate	(C,H,CH,N(CH,N,)0H 	CH,Cd4,NO, (CH,ACANO) (NO,ACANO)	2 2 2 2 2 2 2 2 2 2 2 2 2
[C, II,N(CH, I ₁)OH Note: References 491–1945 are on pp. 545–555. The dintro compound was assed as its potasse In the experiment methyl servelsel measures.	[C ₁ H ₁ N(CH ₁) ₁]OH e on pp. 545-555. used as its potassium sal	ACHINO, COGLE, (11) [C.H.N.CH., NOI ACHINO, COGLE, (11) Mat: References 401–1015 are on pp. 515–535. [T. The deline on the control of the complete of the c	

was approximate methy incryitate was used as starting maternal; if was from-reterified by the catalyst solution.

If this experiment, the configuration product was rotherland, but was treated directly with cityly about 15 This product as formed by hydrolytic fastion of the cyclobrance ring.

ë

	THE	міснав	L REACTIO	N	
307	307	303	301		840
95	· (12)	(C,U,CU,N)CH,hOC,H, Dicthyl 3-ethory buttane-2,4-dioxboxylate (19) and dicthyl carbonate, dicthyl 1-butene-1,3-dicarboxylate (18)	C ₄ H ₄ O ₄ CC ₄ C ₄ H ₄ CO ₄ C ₄ H ₄)CH,CO,H
c,u,o,c co,c,u,	CHOCONIA	, Diethyl 3-ethoxy butar diethyl carbonate, late (18)	H,C CO,C,H, HO CO,C,H,	0=	HOH, COLICH, CH, CO, II
NaOC, II,	ארטוייוטריזין (ב'וו'ס'נדיים (ב'וו'ס'נד'	(C,H,CH,N(CH,),10C,H	NaOC, H.		Natico,
Dethyl malonate		Diethyl methylmalonate		Crolonic Acid and	Kojie acid

Note: Befrences 491–1015 are on pp. 545–535. || The dinkte compound was used as its potassions salt in squeous solution; no other catalyst was employed.

TABLE XII-Continued

Michael Condensations with Aliphatic α, β -Ethylenic Acid Derivatives

			ONUN	.,,,	11111011011.	,	
References	5, 851, 50, 850, 7, 8	50, cf. 607	50, cf. 607 852 853	782	180, 851	855	856, 857, 858
Product (Yield, %)	$A = -(\Pi(CH_3)CH_2CO_2C_2H_3)$ $ACH(CO_2C_2H_3)_2$ (38, 53, 95, 98)	2-Methylbutane-1,3,3-tricarboxylic neid§ and 2-methylbutane-1,1,3-tricarboxylic acid§ (0:1,90)	2-Methylbutane-1,1,3-tricarboxylic acid§ (60) C ₆ H ₃ CH(A)CO ₂ C ₂ H ₅ (22) 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(A)CO ₂ C ₂ H ₃ (76)	$\mathrm{CH_3COCH}(A)\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_3$ (60)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 (65) · · · · · · · · · · · · · · · · · · ·	O
Catalyst	NaOC ₂ 11 _s	$NaOC_2H_b$ (1/6 mole)	NaOC ₂ H ₆ (1 mole) K NaOC ₂ H ₆	NaOC ₂ U ₅			KOC ₂ II,
Reactants	Ethyl Crotonate and Diethyl malonate	Diethyl methylmalonate	Ethyl phenylacetate Ethyl 3,4-dimethoxyphenyl-	acelato Ethyl aceloacelate			2-Carbethoxycyclopentanone

tricthyl 2-methylhexame-1,3,6-tricarboxylate§§

Z-Carbetboxy-5-methylcycio- pentanone	кос, и,	11,20 1.4 (44)		
Ehyl cyanoaceiale Ehyl cyanopropioale Ethyl cyanobutyrate Ehyl ccyanobydrocinnamale Cyanoacetamide Benzyl cyanide	NaOC,H, NaOC,H, NaOC,H, NaOC,H, Na enolate NaOC,H,	ACH(CN)CO ₁ C ₁ H ₁ 57 CACA(CN)CO ₂ C ₁ H ₁ (30) CH(CA)CN)CO ₂ C ₁ H ₁ (30) CH(CA)CN)CO ₂ C ₁ H ₁ 3-Cyano-2, d-lance + enelby pipertime CH ₂ CH(CH(CN) (43-48)	859, 840 77, 50 77 80 349 27	т
1-(\$-Diethylaminoethyl}-2- tetralone	NaOC,H,	CH, CH, CH, 18 (C, 14, 14, 14) (CH, CH, CH, CH, 14, 14)	801	не міснае
Nitromethane Triethyl phosphonoacetate	[C,H,CH,N(CH,),]OC,H, ACH,NO, (15) (C,H,I,NH ACH,NO, (15) (-C,H,I,NH ACH,NO, (25) K (C,H,O),P(O)C	4CH,NQ, (35) 4CH,NQ, (15) 4CH,NQ, (23) (C,H,0,Y(0CH,4)CO,C,H, (00)	450 450 450 817	L REACTION
Ethyl a-Chlorocrafonate and Ethyl accioacetate Na enolalo Nofe: References (8)-1045 are on yn 545555	Na enolate e on m. 645.858	H,C Co,C,H,	862	N

200 200

f. This concent was absarded after aspeculación. 18 This producta is Grande D's Publicopter dissains of the alleyclar ring. 18 This producta has not been incluised, but was condensed with etny; if chloroproposate (ref. 505) or ethy) bennoncetato

TABLE XII-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC ACID DERIVATIVES

MICHAEL	MICHAEL COMPANDAMENT		
Reactants	Catalyst	Product (Yield, %)	Keterences
Elhyl β-Hydroxycrotonate and Cyanoacetamide	Piperidine	3-Cyano-6-hydroxy-4-methyl-2-pyridone	378
Ethyl β-Aminocrolonate and Malonoamide Cyanoacetamide	Piperidine Piperidine	6-Hydroxy-4-methyl-2-pyridone-3-carboxamide 3-Cyano-6-hydroxy-4-methyl-2-pyridone	378 391
Ethyl β-Ethoxycrotonate and Cyanoacetamide	Piperidine	3-Cyano-6-hydroxy-4-methyl-2-pyridone	378
Elhyl y-Accloxycrotonate and Nitromethane	[C,H,CH2N(CH3),30C,H,	[C.H.CH.N(CH.)]OC4H, CH3CO2CH2CH(CH3NO2)CH2CO2C2H, (65)	457
Ethyl γ,γ,γ-Triftuorocrotonate and Nitromethane	d $(\mathrm{C_2H_6})_3\mathrm{N}$	CF3CH(CH2NO2)CH2CO2C2H5 (68)	863
Methyl Methacrylate and Diethyl methylmalonate Ethyl acetoacetate	NaOC,Hs NaOC,Hs	$A = -CH_2CH(CH_3)CO_2CH_3$ Triethyl pentane-2,2,4-tricarboxylate (66) $CH_3COCH(CO_2C_2H_5)CH_3CH(CH_3)CO_2CH_3$	864 782
2-Carbethoxycyclopentanone Dinhonylacetonitylla	NaOCH ₃	O CH2CH(CH3)CO2C2H5 CO2C2H5	865
Tipued mecessimine	1/4/Oc2116	(00) NO(E)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	070

TABLE XII-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC ACID DERIVATIVES

MICHAEL	MICHAEL CONDENSITIONS		•
Reactants	Catalyst	Product (Yield, %)	Keterences
Diethyl Methylenemalonate††† and Diethyl malonate Tetmethyl propane-1,1,3,3-	md KOH, C ₂ H ₅ OH KOH, C ₂ H ₅ OH	(C ₂ H ₅ O ₂ C) ₂ CHCH ₂ CH(CO ₂ C ₂ H ₅) ₂ (quant.) Hexaethyl pentane-1,1,3,3,5,5-hexacarboxylate	870 870
tetracarboxylate Ethyl o-nitrophenylacetate	$\rm NaOC_2H_5$	$o-O_2 N C_6 H_4 CH (CO_2 C_2 H_5) CH_2 CH (CO_2 C_2 H_5)_2 (60)$	871, 829, 872
Ethyl acetoacetate	$ m NaOC_2H_5$	Triethyl 2-oxopentane-3,5,5-tricarboxylate (38)	867
Dimethyl Maleate and Diethyl n-butylmalonate Diethyl isoamylmalonate Diethyl n-hexylmalonate Diethyl cyclohexylmalonate Diethyl isoöctylmalonate Benzyl cyanide	Not indicated Not indicated Not indicated Not indicated Not indicated NaOCH ₃	n-C ₄ H ₅ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* i-C ₅ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* c ₆ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* i-C ₆ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* i-C ₆ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* C ₆ H ₂ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H*	873 873 873 873 873 27
Dimethyl Maleate and 2-Nitropropane‡‡‡	$(c_2H_5)_2$ NH·CH $_3$ CO $_2$ H C_2 H $_3$ NH	$(CH_3)_2C(NO_2)CH(CO_2CH_3)CH_2CO_2CH_3$ (69) $(CH_3)_2C(NO_2)CH(CO_2CH_3)CH_2CO_2CH_3$ (80);	832 832
Triethyl phosphonacetate	$(C_2H_b)_2NH$ NaO C_2H_b	(CE ₃) ₂ C=C(CO ₂ CH ₃)CH ₂ CO ₂ CH ₃ (10) (CH ₃) ₂ C(NO ₂)CH(CO ₂ CH ₃)CH ₂ CO ₂ CH ₃ (85) (C ₂ H ₅ O) ₂ P(©)CH(CO ₂ C ₂ H ₅)CH(CO ₂ CH ₃)CH ₂ CO ₂ CH ₃ (13)	832 124
Diethyl Maleate and Diethyl malonate	Na; KOH, acetal	$A =\text{CH}(\text{CO}_2\text{C}_2\text{H}_5)\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5$ $A\text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \ (72)$	483, 6, 517, 518

THE MICHAEL REACTION

hithyl plenty lacetate hithyl acctuacetate	Nation, M. Kull, acetal	CHCHAROCH CHARACOCH CHARACOCH CHARACOCH	478 44
	Na: Na(N)B,	O, C, C, H,	316, 675
2 tate the systemateria	Pyeriduse	(00) (00)	5; 5;
therete eyeusile	KOK'H, NaOK'H, NaOK'H, KOH, acetal	Tetachy) hexare-1,2,3,4-tetracarboxylate (90)§§ CHI,CHI,A VN (52-58) CHI,CHI,A VN (54)	H70 27 483, 617,
2 Methykythdwane 1,2 dome Nathyll,	Nather, III,	Tre thyl 3 no thyl-f-excheptone-1,2,7-tricarboxylate (#2) ff	¥15
franchyl d'umerate and Berthyl Brahamie Blist operanectate E Nits fre faire	6545841 6545841 6545841 6545841	. 4 CH(COATIATIA). 4 CH(COATIATIA). 4 CH(CXAOAAII, 40) (CH ₁ XCAIXO, (CH-SA)	* * 2

TABLE XII-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC ACID DERIVATIVES

T. C.	Kelerences	77, 5, 7, 8, 6, 877, 878	77, 878, 7, 8	5, 879, 7, 8, 77, 878	7, 878 56, 880	875	316, 878	875 879 875 316	881	
	Product (Yield, %)	$A = - \mathrm{CH}(\mathrm{CO}_2 \mathrm{C}_2 \mathrm{H}_5) \mathrm{CH}_2 \mathrm{CO}_2 \mathrm{C}_2 \mathrm{H}_5$ $A \mathrm{CH}(\mathrm{CO}_2 \mathrm{C}_2 \mathrm{H}_5)_2 \ (90, 55)$	$AC(\mathrm{CH_3})(\mathrm{CO_2C_2H_5})_2$	$AC(C_2H_5)(CO_2C_2H_5)_2$ (61, 80)	$AC(C_3H_7-i)(CO_2C_2H_5)_2$ $AC(CH_2C_6H_5)(CO_2C_2H_5)_2$ (23–31)§§§	CH ₃ COCH(A)CO ₂ C ₂ H ₅ and CO ₂ C ₂ H ₅	CH ₃ COC(CH ₃)(A)CO ₂ C ₂ H ₅ and CH ₃ CO ₂ C ₂ H ₅	CH ₂ COC(C ₂ H ₅)(A)CO ₂ C ₂ H ₅ C ₂ H ₅ COCH(A)CO ₂ C ₂ H ₅ CH ₃ COC(CH ₂ C ₆ H ₅)(A)CO ₂ C ₂ H ₅ NCCH(A)CO ₂ H; NCCH(A)CO ₂ C ₂ H ₅	$C_{c}H_{s}CH(CN)C$ $C_{c}H_{s}$ $C_{c}H_{s}$	
MICHAEL CONDENSATIONS	Catalyst	Na; NaOC2Hs	$\mathrm{NaOC_2H_5}$	NaOC ₂ H ₅	$ m NaOC_2H_b$ $ m NaOC_2H_b$	Na; NaOC2Hs	$\rm NaOC_2H_5$	NaOC2Hs NaOC2Hs NaOC2Hs Na	$\rm NaO{\it C_2}H_{\it b}$	
MICHAEL	Reactants	Diethyl Fumarate (Cont.) and Diethyl malonate	Diethyl methylmalonate	Diethyl ethylmalonate	Diethyl isopropylmalonate Diethyl benzylmalonate	Ethyl acetoacetate	Ethyl methylacetoacetate	Bthyl ethylacetoacetate Ethyl propionylacetate Ethyl benzylacetoacetate Ethyl cyanoacetate	Benzyl cyanide	

2-Nifropropane	(C ₂ H ₆) ₂ NH (0 2 mole) (C ₂ H ₆) ₂ NH (1.25 mole)	(CH ₂),C(A)NO ₂ (90) (CH ₂),C—C(CO ₂ C ₂ H ₂)CH ₂ CO ₂ C ₃ H ₃ (83)	832	
Diethyl Chlorofumarate and Ethyl acetoacetate	NaOC ₂ U ₅	CH2COC(CO4C4H5)=C(CO4C4H1)CH4CO4C4H5	882-885	
Ethyl methylacetoacetato	NaOC, Ha		882, 883 885, 862	THE
Ethyl benzylacetoacetate	NaOC, II,	CH.C.H., CH.C.H., CO.C.C.H., 1977	862	MICHAEL

Note: References 491-1045 are on pp. 545-555.

C,H,O,C C,H, nto Coscini

||||| The formula

III By analogy with the behavior of ethyl methylacetoacetate, this formula is more probable than the one originally C'H'O'C/U/CH'C'H' originally (refs. 882-883) assumed has been proven incorrect.

suggested:

TABLE XII-Continued

Michael Condensations with Aliphatic α, β -Ethylenic Acid Derivatives

Reactants	Catalyst	Product (Yield, %)	References
Ethyl eta,eta -Dimethylacrylate and Diethyl malonate	KOC1Hs; NaOC1Hs	$A = (CH_3)_2 CH_2 CQ_2 U_3$ $ACH(CQ_2 C_2 H_3)_2 (35)$	886, 11, 24
Ethyl acetoacetate	Να	$(CII_3)_2 \xrightarrow{CO_2C_2H_3} $	
Ethyl α-cyanopropionate Benzyl cyanide	Na NaOC ₂ U ₅	CH ₃ C(A)(CN)CO ₂ C ₂ H ₂ **** C ₄ H ₃ CH(A)CN (43)	23.33
Ethyl Tiglate and Diethyl malonate	NaOC ₂ H _s	A = -CH(CH ₃)CH(CH ₃)CO ₂ C ₂ H ₃ ACH(CO ₂ C ₂ H ₃) ₂ (15, 63)	50, 59, cf.
Diethyl ethylmalonate Ethyl phenylacetate Ethyl cyanoacetate	NaOC ₂ H ₅ K Na enolato	4C(C;H ₂)(CO ₂ C;H ₃); (14) C ₄ H ₃ CH(A)(O ₂ C;H ₃ 4CH(CN)(O ₂ C;H ₃ (42, 65)	85.1 50 852 50,887,888
Elhyl α-Elhylacrylate and Ethyl acetoacetate	NaOC ₂ U ₆	CH,COCH(CO,C,H,)CH,CH(C,H,)CO,C,H, (20),	880

Methyl cyanoacetate Ethyl cyanoacetate Niromethane	NaOCH, ACH(CN)CO,C Na, NaOCH,; NaOC,H, ACH(CN)CO,C) [C,H,CH,N(CH,1)OH ACH,NO, (51)	NaOCH, NAOCH, ACH(N)CO,CL, (46) NA, NAOCH, ACH(CN)CO,CL, (64) C,H,CH,N(CH,1)OH ACH,N(CH,1)OH ACH,N(C	890, 392 891, 891
Dımethyl Ethylidenemalonate and Deoxybenzoin	I NaOCH _a	C.H.COCH(C.H.)OH(OH.)OH.CO.H (55)*	163
Diethyl Ethylidenemalonale and		$A = \mathrm{CH_1CHCH(CO_1G_1H_6)_2}$	Т
Diethyl malonate 1111	None; Na.	$ACH(OO_2G_4H_F)_k$ (95)	HE M
Ethyl acetaacetate	NaOO ₂ H,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iichael re
Nitromethane	[C,H,CH,N(CH,),]OH ACH,NO, (69)	ACH ₂ NO ₂ (69)	CTIC
Ethyl Ethylidenemalonamate;;;; and	and		ON

 $A = -CH(CH_2CO_2CH_2)_2$

Dimethyl Glutaconale and

. This acid was isolated after hydrolysis and partial decarboxylation. Note: References 491-1045 are on pp. 545-555.

895

CH,CH(CH(CO,C,H,)CONH,l, (73)

KOH; (C,H,),NH

Ethyl malonamate

**** The product has not been isolated, but has been methylated directly.

1114 The same reaction takes place when acetaldehyde and diethyl malonate react in the presence of secondary amines; ### This material is formed in situ from the aldehyde or ketune and the derivative of malonic or cyanoacetic acid. the yield is from 11 (ref. 887) to 55% (ref. 894).

TABLE XII—Continued

Міснаві. Condensations with Aliphatic α, β -Етнуїлєміс Асіd Derivatives

MICHAE	MICHAEL CONDENSATIONS WITH MALLMAIN WIP ELLIN	this man a second and the control of	
Reactants	Catalyst	Product (Yield, %)	References
Ethylidenccyanoacetamide‡‡‡‡ and	пп	CH,	
Cyanoacetamide	кон	$CH_2CH[CH(CONH_2)CN]_2$, NC $CONH_2$ O N NI	896
Ethylidenemalononitrile‡‡‡‡ and Malononitrile	<i>d</i> Piperidine	CH3CH[CH(CN)2]2	ORGA
Elhyl x-Elhylcrolonate and		$A = \mathrm{CH_3CHCH}(\mathrm{C_2H_3})\mathrm{CO_2C_2H_3}$	NIC I
Dicthyl malonate Dicthyl ethylmalonate Ethyl cyanoacetate	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅	4CH(CO ₂ C ₂ H ₅) ₂ (48) 4C(C ₂ H ₅)(CO ₂ C ₂ H ₅) ₂ (39) 4CH(CN)CO ₂ C ₂ H ₅ (60)	COITOAES
Ethyl f-n-Propylacrylate and		0=	NS
Ethyl acetoncetate	$ m NaOC_2H_{b}$	n-H ₂ C ₃ C ₀ .C.H,	808
Nitromethane	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OC ₄ H ₉	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OC ₂ H ₅ n-C ₃ H ₇ CH(CH ₂ NO ₂)CH ₂ CO ₂ C ₂ H ₅ (71)	116
Elhyl β-Isopropylacrylale and Diethyl mulonate	NaOC ₂ 11 ₆	i-c ₂ U ₂ CU(CH ₂ CO ₂ C ₂ H ₆)CH(CO ₂ C ₂ H ₆) ₂	880

88

NaOC, H,	ONCH(CO4,C4,L ₃)CH ₂ CH(O,H ₄ ,n ₃)CO4,C ₄ H ₄ (54)	x 6
NaOC _t H ₅	n-M ₁ ,C ₂ (m)	ä
Naccalla Kocalia	(\$-Carboxymathy)adipse acid (79)* CaH_CH_CH_CHCN\(CO_{C_4}H_5)CH(CH_2CO_4C_4H_5)- CH_CH_CO_5C_4H_4 (48)	86 86
NaOC, H,	OHLORCHCHCHCHCH,COLCHCOCCHC)	ā

Dimethyl 1,2-Dihydromuconate and

Ethyl acetoacetate

Ethyl cyanoacetate

Methyl B-n-Pentylacrylate and Ethyl a.n. Butylacrylate and Ethyl cyanoacetate

Deethyl 1,2-Dihydromuconale and Ethyl phenethylcyanoacetate

Diethyl malonate

8

88

Ethyl 4,4,5,5,6,6,6-heptafluoro-3 nitromethylhexanoate (52) CH,CO,C,H CO,C,H, Lihyl 4,4,5,5,8,6,6-Heptafluoro-2-hexenoate and (C,H,),N NaOC.

Call, CH[CH(CO2Call,)] (quant) Enolate Duthyl Propylidenemalonate and

Diethyl malonate

Nitromethane

8

**** Thus material is formed in situ from the aldehyde or ketone and the derivative of malonic or cyanoacetic acid, . Thus acid was isolated after hydrolysis and partial decarboxylation Note: References 491-1015 are on pp. 515-555.

TABLE XII-Continued

U				O Z, GILL								
	References		890	901, 902, 903, 904	905, 415					415	•	416
LABITA ALL	Michael Condensations with Aliphatic α, β -Ethylenic Acid Derivatives Catalyst	C ₃ H ₆	C ₂ H ₅ CH[CH(CONH ₂)ON] ₂ and H ₂ NOC CONH ₂)ON] ₂ and H ₃ NOC C ₃ H ₄ CH[CH(CONH ₂)ON] ₂ and H ₃ NOC C ₄ CH CONH ₂ CH	$(CH_3)_2CICH(CO_2C_2H_5)_3]_2$ (95, 30, 8)	$\mathrm{CH_3COCH(CO_2C_2H_6)C(CH_3)_3CH(CO_2C_2H_6)_2},$	O CO ₂ C ₂ H ₆	$\left\langle \mathrm{CH}_{\mathfrak{z}}\right\rangle_{\mathfrak{g}}$	O CO ₂ C ₂ H ₅	O CO ₂ C ₂ H ₅	(OH ₅) ₂	o on	$H_3O_{\square}OO_3O_3H_b$
TVI	il Condensations with Catalyst	puv ‡‡	КОН	ie and NaOC ₂ H ₆ ; enolate	$NnOC_2H_b$					$NnOG_aH_b$		NnOO,III6
	Michae Reachants	Propylidenceyanoacelamide‡‡‡‡ and	Cynnoacelamido	Dichyl Isopropylidenemalonate and Dichyl malonato	Billyl nectoncetato					Cynnoncetone§§§§		Acetylncetone

CO,C,H,

ğ

NaOC, B

Ethyl acetoacetate

Sthyl Isopropytdenecyanoaceist;‡‡‡ and Ethyl cyanoaceiate (C,H4) _k N'	\$e‡‡‡‡ and (C,H ₆)kNH NHs	(CH,),QCH(CN)CO,C,Ht,h (10) \$,\$.Dmethylglutarimide (quant.)	906 821
Nitromethane	NaOCH,	Ethyl a-cyano-f,f-dimethyl-y-nitrodutyrate (12)	200
Ethyl 4-Ethozymethyl-2-hexenoals and Diethyl malonate	te and Na	O,H,CH(CH,OC,H,)CH(CH,CO,C,H,)CH(CO,C,H,), (79) 908	806
Ethyl 4,4-Dicthosymethyl-2-hexenoots and Diethyl malonats	nools and NaOC ₂ H ₈	GH.CH(CG,H,h]CH(CH,CO,G,H,b]CH(CO,G,H,b)h (48)	906
n-Bulylidenecyanoacelamide‡‡‡‡ and	‡ and	ON O	y prior
Cyanoacetamide	кои	"-C,H,CH CH CN)CONH, and "-H,C,	968

894 CONE Piperidine; (C,H,),NH (CH,),CHCH[CH(CO,C,H,)], (41) OH, CH Diethyl Isobutylsdenemalonate; ### and Elhyl Isobulylidenecyanoacetals and Diethyl malonate

This material is formed in aiu from the aldehyde or ketone and the derivative of malonic or organoscetic acid.
Indexed of cyanoscetone, a-methylisoxazole was employed. Note: References 491-1045 are on pp. 545-555.

TABLE XII-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC ACID DERIVATIVES

	References	910		8, 317, 911, 912		317, 406
	Product (Yield, %)	$(CH_3)_2CHCH(CN)CONH_2J_2$ (79) CN O	$i ext{-}\mathbf{H}_{r}\mathbf{C}_{3}$ NH (Small) NH CONH ₂	$A = - \mathrm{CH_2CH(CO_2C_2H_6)CH_2CO_2C_2H_6}$ $A\mathrm{CH(CO_2C_2H_6)_2}, triethyl cyclopentanone-2,3,5-tri-carboxylate, ethyl cyclopentanone-3-carboxylate, diethyl cyclopentanone-2,4- (or 2,3-) dicarboxylate,$	$\begin{array}{c} \mathrm{CH}(\mathrm{CO_2C_2H_5})_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C ₂ H ₅ O ₂ C CH ₃ CO ₂ C ₂ H ₅ and C ₂ H ₅ O ₂ C
MICHAEL CONDENSATIONS WITH THE THIRD W	Catalyst	$e\ddagger\ddagger\ddagger$ and $(C_2H_5)_2NH$		$\rm NaOC_2H_5$		$\mathrm{NaOC}_2\mathrm{H}_5$
MICI	Reactants	Isobutylidenecyanoacelamide‡‡‡‡ and Cyanoacelamide (C ₂)		Diethyl Haconate and Diethyl malonate		Diethyl methylmalonate

AC(CH₃)(CO₂C₂H₅)₂ (small)

Tetrsethyl 1,1,2,3-butanetetra- NaOC, II, carboxylate	NaOC, II,	C,H,O,C CO,C,H,	110	
Ethyl acetoacetate	NaOC, Hs	CH,COCH(A)CO,C4H,	316	
		0=		
2.Carbethoxycyclopentanona	(C,H,CH,N(CH,),)OH	CO ₄ C ₂ H ₃ (90 cerula)	913	TH
Ethyl cyanoacetate	NaOC ₂ H,	ACH(CN)CO ₂ C ₂ H ₃ ACH ₃ NO ₂ (25)	316	E MIC
Nitroethane	(1-C ₂ H ₂) ₂ NII (1-C ₂ H ₂) ₂ NH	CH ₂ CH(A)NO ₂ (40)	168	HAE
Diethyl Mesaconale and Diethyl malonalo	$NaOC_tU_t$	C,H,O,COU(CH,)CH(CO,C,H,)CH(CO,C,H,). WAL-781		REAC
Diethyl Citraconate and		Transport Ree - Ree - Control Ree - Cont	10 %	rion
Branch	Na enolate NaOC ₂ II, NaOC ₂ II _s	C.H.O.CCU_C(CUL)(COL,C,U,)CU(CO,C,Hs,), (72) C.U.O.CCH_CH(CO.C,Hs,)CH_CH(CO.C,Hs,), (60)¶¶¶ 2,8,5-Thearbethoxycyclonent.engu.	318, 317	
Note: Meteronces 491-1045 are on pp 545-555 1111 This material is formed in site from the s #### Instead of diethy! itaconate, diethy! cit employed.	e on pp 545-555 in situ from the aldehyonate, diethyl citracona	Met. 1960eces 191-1915 are on pp. 515-555 [High This meteral is framed in a first from the ability of ketons and the derivative of malonic or opanometric acid, and the meter of the ability of ketons and the derivative of malonic or opanometric acid, and the meter of the ability frameworks, digitally effectively only although the acid, and the ability frameworks are acid, and the acid, and th	316 achd.	

nate, which isomerizes under the conditions of the experiment, was employed. If I The citraconate is isomerized to itaconate.

TABLE XII-Continued

Michael Condensations with Aliphatic α, β -Ethylenic Acid Dehivations

Reactants	Catalyst	Product (Yield, %)	References
Diethyl Citraconate (Cont.) and Diethyl malonate (Cont.)	NaOC ₂ U ₅	Diethyl itaconate, diethyl mesaconate, 3-carbethoxy-cyclopentanone, 2,3-(or 3,4-)dicarbethoxycyclopentanone, 2,3,5-tricarbethoxycyclopentanone,	317, 912; cf. 5, 6, 8, 911
		CH(CO ₂ C ₂ H ₂); CO ₂ C ₂ H ₂ CO ₂ C ₂ H ₃	
Diethyl ethylmalonate	Na enolate	c_{1} c_{2} c_{1} c_{2} c_{1} c_{2} c_{2	ເລ
Bthyl acetoacetate	Na; dry NaOC ₂ H ₅	CH,COCH(CO,C,H,)C(CH,)(CO,C,H,)CH,CO,C,H,;	310
Ethyl methylacetoncetate	Na	CH3COC(CH3)(CO2C,143)(CO4C,143)(CH3CO2C,1143)	310
		CO.C.II.	

***** Truncthyl chlorofricarballylate was employed instead of trimethyl aconitate.

CIT. The catraconate is isomerized to itaconate. Note: References 491-1045 are on pp. 545-555.

316

CHICOC(CHI)(COICITIONICHICOICOICITI)

NaOC.H.

C,II, 316		MICHAEL	ylate 915, 878 Le, 1, 0, 10 CT	875	malonate 910	916a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NCCH,CH(CO,CH,I)CH,CO,C,H,YTTTT A = CH,O,CCH,CH(CO,CH,I)CHCO,CH,	ACH(CO ₂ CH ₄), ACH(CO ₂ C ₄ H ₄), ACH ₂ COCH(A)CO ₄ C ₄ H ₄	Pentachyl butane-1,1,2,3,4-pentacarboxylato Tetrachyl butane-1,2,3,4-tetracarboxylate, 2,4-tlearbethoxycyclopentanone	Tetractbyl 2-oxobexane-3,4,5,6.4:etracurboxylato	Diethyl a-cyanoglutaconate and diethyl malonate	Tetracthyl ethylidenebisglutaconate
e N		Na enolate Na enolate Na enolate	Dry NaOC,H, Na	Na enolate	Na and	(C,H,),NH
Rithyl ovannacetate	Trimethy! Aconitate**** and	Directly! malonate Dechy! malonate Ethy! acetoacetate Trishy! Acontate and	Diethyl malonate	Ethyl acetoacetate Tricthyl Isoacandale and	Ethyl cyanoscelate Diethyl Ethylideneglulaconale and	Diethyl glutaconate

TABLE XII-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC α, β -ETHYLENIC ACID DERIVATIVES

		.,.,		•••••	• • • • • • • • • • • • • • • • • • • •			
891, 878, 917, 918	8 11		910	15%	168	917	910	
¿-C,1H,¢CH[C'H(C'O,2C,1H,5)}, [633)	$\alpha_1 \alpha'$ -Dicyano- eta -isobutyłglutaric acid	CH ₂ CH(CH ₃);	H ₂ NOt CN (small)	11 p./j-19iethylglutarimide (quant.)	n-(,,H13CH(CH(CO2C;H3););	n-(,,H ₁₃ CH(CH(CN)CO,H1 ₂	n-C ₂ II ₁₃ CH(CH(CN)CONH ₂); (87),	$\begin{array}{ccc} C_4 H_{13} \cdot n & \\ H_2 N O C & \\ & & \\ $
c‡‡‡‡ and Na enolate; piperidine; (C ₂ H ₃) ₂ NH	****** <i>and</i> Piperidine	+++ and	HN ₂ (2,11 ₂ '))	lale‡‡‡‡ and N113	### and Piperidine; (C ₂ H ₂) ₂ NH	‡‡ and Piperidine	eridine	
Diethyl Isoamylidenemalonal Diethyl malonate	Isoamylidenceyanoacelie Acia Cyanoacelie acid	Isoamylidenceyanoacelamide‡	Cyanoacetamide	Ethyl (3-Pentylidene)cyanoaer Ethyl cyanoacetate	Dichyl Heptylidenemalonale‡ Dicthyl malonate	Heptylidenceyanoacetic Acid‡‡ Cyanoacetic acid	Heptylidenceyanoacelamide‡‡‡‡ Cyanoacetamide	
	memalonale‡‡‡‡ and Na enolate; piperidine; i-C ₄ H ₅ CH[CH(CO ₂ C ₂ H ₅) ₂]; (63) (C ₂ H ₅) ₂ NH	denemalonale‡‡‡‡ and Na enolate; piperidine; i-C ₄ H ₄ CH[CH(CO ₂ C ₂ H ₅) ₂]; (63) (C ₂ H ₅) ₂ NH noacetic Acid‡‡‡‡ and Piperidine \$\alpha z'-Dicyano-\bar{\beta}\text{-isobutylglutaric acid}\$	denemalonale‡‡‡‡ and Na enolate; piperidine; i-C ₄ H ₉ CH[CH(CO ₂ C ₂ H ₅);]; (63) (C ₂ H ₅) ₂ NH ioacelic Acid‡‡‡ and Piperidine \(\alpha, \alpha' \) Oacelamide‡‡‡ and \(\text{Piperidine}\) \(\text{CH_2}CH_2);	denemalonate‡‡‡ and Na enolate; piperidine; i-C ₁ H ₉ CH[CH(CO ₂ C ₂ H ₅) ₂] ₂ (63) (C ₂ H ₅) ₂ NH noacetic Acid‡‡‡ and Piperidine \[\alpha_1 \alpha_2 \alp	remalonale‡‡‡‡ and Na enolate; piperidine; i-C ₄ H ₉ CH[CH(CO ₂ C ₂ H ₅) ₂] ₂ (63) (C ₂ H ₅) ₂ NH cetic Acid‡‡‡ and Piperidine z,z'-Dicyano-\beta-isobutylglutaric acid Piperidine CH ₂ CH(CH ₃) ₂ (C ₂ H ₅) ₂ NH H ₂ NOC (C ₂ H ₅) ₂ (C ₂ H ₅) ₂ H ₂ NOC NII ₃ H ₂ NOC (Small) H ₂ NOC (Small) H ₂ NOC (Small) H ₃ NOC (Small) H ₃ NOC (Small) H ₃ NOC (Small) H ₃ NOC (Small) H ₄ -Diethylglutarimide (quant.)	Piperidine; i-C ₄ H ₃ CH[CH(CO ₂ C ₂ H ₃) ₂] ₂ (63) C ₂ H ₃) ₂ NII C ₂ H ₃ CH[CH(CO ₂ C ₂ H ₃) ₂] ₂ (63) C ₂ H ₃ CNII C ₂	idenemalonate‡‡‡ and Na enolate: piperidine; i·C ₁ H ₉ CH[CH(CO ₂ C ₂ H ₅) ₂] ₂ (63) (C ₂ H ₅) ₂ NH noacetic Acid‡‡‡ and 1 Piperidine (C ₂ H ₅) ₂ NH noacetic Acid‡‡‡ and (C ₂ H ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅) ₂ NH H ₂ NOC (C ₂ H ₅ N ₅ NH H ₂ NOC (C ₂ H ₅ N ₅ NH H ₂ NOC (C ₂ H ₅ N ₅ NH H ₂ NOC (C ₂ H ₅ N ₅ NH H ₂ NOC (C ₂ H ₅ N ₅ NH H ₂ NOC (C ₂ H ₅ N ₅ NH H ₂	idenemalonale‡‡‡‡ and (C ₂ H ₃) ₂ NH noacetic Acid‡‡‡ and Piperidine (C ₂ H ₃) ₂ NH noacetamide‡‡‡ and (C ₂ H ₃) ₂ NH Piperidine; i-C ₄ H ₄ CH[CH(CO ₂ C ₂ H ₂) ₂] (G3) (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₂ NOC (C ₂ H ₃) ₂ NH H ₃ CH[CH(CO ₂ C ₂ H ₃) ₂) ₃ acedic Acid‡‡‡ and Piperidine n-C ₄ H ₁₃ CH[CH(CN)CO ₂ H ₃) ₂ (S7), Piperidine n-C ₄ H ₁₃ CH[CH(CN)CONH ₂) ₂ (S7),

878, 910

tello, eye itelici eye ili xelite eye ili y

ŝ

(CHICO'C)TCHC(CH')(CO'C'H'XCH(CO'C'H')) (13 40)

Na enolate

Diethyl malonate Diethyl malonate

Triethyl 1-Propylene-2,3,3-tricarboxylule and Triethyl 1-Propylenc-1,1,2-tricarboxylafe und Triethyl Ethylenetricarboxylate and

Diethyl mulonate	Na enolate	(C,11,0,C),CHCH(CO,C,11,KH,CH(CO,C,14,5), (61)	054
Tetraethyl Ethylenetetracarbozylate and Dethyl malonate	rylate and Na	Trearballylic acid*	N93, N7M
Tetrachyl 1-Propylene-1,1,3,3-tetracurboxylate and	3-fetracurboxylute and		
Ethyl cyanoacetate	Piperidine	Duthyl y-carls thoxy-a-cyanoglutaconate and dorthyl	177
	NaOC ₄ H ₄	malonate Diethyl y-carbethoxy-x-cyanuglulaconate, diethyl malonate, and diethyl 4.3-dieyanoglularate	916
Trickly! 3-Cyano-1-propylene-1,1,3-fricarboxylate and Ethyl cyanoacetate NaOC,11,	e-1,1,3-tricarboxylate and NaOC,11,	De the a sodies angeletacemele and de technologie	900

Diethyl yearbellury acquiriglataconate and diethyl The second of the second secon methy linalogate Tetraethyl 1-Butene-1,1,3,3-tetracarboxylate and NaOC, II, Ethyl cyanosectate Ethyl eys

1111 This material is formed in situ from the aideligde or ketone and the derivative of malonic or cyanoucetic acid. . This acid was isolated after hydrolysis and partial decarboxylution. Note: References 491-1095 are on pp. 545-555.

TABLE XIII

Michael Condensations with Ethyl Ethonymethylenecyanoacetate, Diethyl Ethonymethylenemalonate, AND DIETHYL AMINOMETHYLENEMALONATE

	TO CHE		
Reactants	Catalyst	Product (Yield, %)	References
Ethyl Ethoxymethylenecyanoaectale and	e and		
Ethyl acetoacetate	NaOC ₂ H,	NaOC, H, C, H, CO, C, H, H, CO, C, H, H, CO, C, H,	310
Diethyl Ethoxymethylenemalonate and	and		660
Diethyl malonate	NaOC, H	(C,H,O,C),C=CHCH(CO,C,H,), District 1-hadroxxmanlthalone-2-4-dicarboxylate*	308
Ethyl phenylacetate Ethyl p-chlorophenylacetate	NaOC, H.	Diethyl 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	300
Ethyl p-bromophenylacetate	NaOC.H,	Diethyl Throughton, Agranghthalene-2,4-dicarboxylate* (11) and 7 hours, 1 hedreworth helpings 3 directorylic acid (13)?	305
Ethyl a-naphthylacetate	NaOC _t H _s	NaOC ₂ H ₅ 1-Hydroxyphenanthrene-2,4-dicarboxylic acid (5)† and a-(1-naphthyl)glutaconic acid†	300
		co;cn,	
Methyl 2-pyridylacetate	None	CO.C.H, CO.	850 850
		'n'o'o'o'	
Ethyl 2-pyridylacetate	None		023
		(

THE MICHAEL REACTION 924 310 135 441 C'H'O'C Diethyl 2-Ammoethylene-1,1-dicarboxylate and None Ethyl 6-methyl-2-pyridylacetate None ECH Ethyl \$-aminocrotonate Ethyl acetoacetate Ethyl acetoacetate

. This compound could be isolated only after distillation of the croads condensation product. Direct hydrolysis of this product proved that it consisted of diethyl a carbethoxy - phenylglutaconate, C,II,O,CIIIC,II,IOH=CICO,C,III,1, † This and was present in the crude product in the form of its ester, but was not isolated as such. Note: References 491-1045 are on pp. 545-555.

Na enolate CaRtor

TABLE XIV

MICHAEL CONDENSATIONS WITH ALIPHATIC DIENIC AND TRIENIC ESTERS

Renctants Cataly Methyl 1,3-Buladiene-1-carboxylate and	Catalyst rrboxylate and	Product (Yield, %) $A =(\Pi_2 C H = C H C H_2 C O_2 C H_2)$	References
Dimethyl malonate Ethyl «-cyanopropionate	Dimethyl malonate NaOCH3; Na Ethyl a-cyanopropionate NaOCH3 (1/8 mole)	JCH(CO ₂ CH ₃) ₂ (75) CH ₃ C(A)(CN)CO ₂ C ₂ H ₃	397, 925, 926 926
Methyl Sorbate and		$A = CH_3CHCH = CHCH_2CO_2CH_3$	
Dimethyl malonate	Na OCH,	ACH(CO_2CH_3)_2 and CH_3CH==CHCHCH_2CO_2CH_3 CH(CO_2CH_3)_2 (Mixture 0:1; 60-70, 80)	925-926, 927, 173
Blhyl α-cyanopropionate Nitromethane Methyl γ-nitrobutyrate	NaOCH ₂ (1/8 mole) (i-C ₃ H ₇) ₂ NH (i-C ₃ H ₇) ₂ NH	ACH ₂ NO ₂ (CN)CO ₂ C ₂ H ₅ (60–70) ACH ₂ NO ₂ (21) O ₂ NCH(A)CH ₂ CH ₂ CO ₂ CH ₃ (32)	926 116 116
Ethyl Sorbate and Dicthyl malonate Ethyl cyanoacetato	$\mathrm{Nn}_{\mathrm{OC}_{\underline{u}}\mathrm{H}_{\boldsymbol{\delta}}}$	HO,CCH,CH=CHCH(CH,)CO,H• CH,CHCH=CHCH,CO,C,H, (77) CH(CN)(CO,C,H,)	928 397
		CH3CH=CHCHCH2CO2C3Hs	

CH(CN)CO2C2HS

THE MICH	AEL REACTION
173	397

OH, CHCH=CHCH(CH,)CO,C,H,

NaOC, II,

Ethyl a-Methylsorbate and

Ethyl cyanoacetate

NaOC, II,

Elhyl \$-Methylsorbale and

Dethyl malonate

CH(CN)CO,C,H,

CU3CUCH ←CHCH2CO2C2H6

KOC, II.

Lthyl acctoacetate

CH(COCH,)CO,C,H,

CH,CHCH=C(CH,)CH,CO,C,H, CH(CO₂C₂H₅)₂ (Mixture 9 1, 39-42) CH(CO.C.H.)

CH,CH-CHC(CH,)CH,CO,C,H,

CH,CHCH=C(CH,)CH,CO,C,H, ĊII(CN)CO1C1H

NaOC, H.

Ethyl cyanoacetate

CH,CII-CHC(CII,)CH,CO,C,II,

CII(CN)CO4C4H

Note: References 491-1015 are on pp. 545-555.

. This product was obtained after hydrolysis and partial decarboxylation

481

TABLE XIV-Continued

Esters
TRIENIC
AND
DIENIC
ALIPHATIC
WITH
CONDENSATIONS
MICHAEL

	379	
	сп,спсн—спсн(со,сп,),	CH(CN)CO,CH,
e-1,1-dicarboxylate and	NaOCH,	
Dunethyl Penla-1,3-diene-1,1-dicarboxylati	Methyl cyanoscetate	

		CH,CH=CHCHCH(CO,CH,),	
		CH(CN)CO,CH,	
Methyl a-Carbomethoxy-5-methylsorbale and	nethylsorbate and		
Dimethyl malonate	Na0CH ₂	(CH ₁) ₁ C=CUCH[CU(CO ₂ CH ₂) ₁] _k (83)	381
Duelkyl Muconate and			
Diethyl malonate	Na	C2H6O4CCH4CH4CH=CHCO4C4H4)CH(CO4C4H4), (32, 90) 931.	931, 325
	NaOC _B H _s (small		620
	quant.)	(70)	300
i		CH(CO,C,H,),	
Ethyl cyanoacetale	NaOC, II,	C.H.O.COH,CH.C(=CHCO,C,H,)CH(CN)CO,C,H, (90)	326
Note: References 491-1045 are on pp. 545-555.	1045 are on pp. 545-5	55.	

TABLE XV

Michael Condensations with Alicyclic $\alpha,\beta\text{-}\textsc{Ethyle}\textsc{ig}$. Esters

Reactants	Catalyst	Product (Yield, %)	References
Methyl 1-Cyclobutene-1-carboxylate and Diethyl malonate KOC ₄ H _g -l Bthyl cyanoacetate KOC ₄ H _g -l	arboxylate and KOC ₄ H ₉ -t KOC ₄ H ₉ -t	Diethyl (2-carbomethoxycyclobutyl)malonate (54) Ethyl (2-carbomethoxycyclobutyl)cyanoacetate (52)	933
Methyl 3,3-Dimethyl-1-cy Diethyl malonate Ethyl cyanoacetate	Methyl 3,3-Dimethyl-1-cyclobutene-1-carboxylate and Diethyl mulonate $\mathrm{KOC_iH_5}$ - Glhyl eyanoacetate $\mathrm{KOC_iH_5}$ - $\mathrm{IOC_iH_5}$ - IOC	nd Diethyl (4-carbomethoxy-2,2-dimethylcyclobutyl)malonate (57) Ethyl (4-carbomethoxy-2,2-dimethylcyclobutyl)cyanoacetate (9)	933
Ethyl 1-Cyclopentene-1-carboxylate and	rboxylate and	$A = $ CO $_2$ CO $_2$ H $_5$	
Diethyl malonate Ethyl acetoacetate	NaOC ₂ H ₅ NaOC ₂ H ₅	JCH(CO ₂ C ₂ H ₆) ₂ (80–85) JCH ₂ CO ₂ C ₂ H ₆ (23), CH ₃ COCH(J)CO ₂ C ₂ H ₈ (8)	92 93
Ethyl cyanoacetate	$ m NaOC_2H_5$	ACH(CN)CO ₂ C ₂ H ₅ (30–35) CO ₄ C ₂ H ₅ CH(CN)CO ₂ H	92, 934, 935
Ethyl 2-Hydroxy-1-cyclopentene-1-carboxylate and	entene-1-carboxylate and		
Ethyl cyanoacetate	Piperidine; KOC ₂ II ₅	CO ₂ C ₂ H ₅ (50, 50)	936
Cyanoacetamide	Piperidine	NC HO OH	937

Ethyl 1-Cyclohexene-1-carboxylate and

ACH(CO,C,H,), (40) Dethyl methylmalonate Ethyl cyanoacetate Diethyl malonate

NaOC₃H₅ NaOC₃H₅ NaOC₂H₅; KOC₃H₅; piperidine

NaOC₂H_a

ACH(CN)(CO2C2115) (74, 35, 18) AC(CH₃)(CO₂C₂H₃), (6)

59, 938 939

윩

AC(CN)(CO,C,H,)CH,CO,C,H,*

Khyl 2-Hydroxycyclohexene-1-carboxylale and

Cyanoacetamide

но см

Elhyl 2-Ammocyclohexene-1-carboxylate and

Piperidine None Cyanoacetamide Malonamide

· The compound was obtained by direct treatment of the condensation product with ethyl bromoacetate. Nofe: References 491-1045 are on pp. 545-555.

carboxamide

398 7

4-Cyano-1-hydroxy-3-oxo-2,3,5,6,7,8-hexahydrosoquinolme 1-Hydroxy-3-oxo-2,3,5,6,7,8-hexahydroisoquinolme-4-

TABLE XV-Continued

ESTERS
c α,β-ΕΤΗΥΙΔΕΝΙΟ
VIJOXOLI
MITH A
CONDENSATIONS
MICHAEL

	IIIOTUTE CONTRACTO		
Reactants	Catalyst.	Product (Yield, %)	References
Ethyl 4-Methyl-1-cyclohexene-1-carboxylate and Ethyl cyanoacetate NaOC ₂ H ₅		Bthyl 1-carbethoxy-4-methyloyclohexane-2-cyanoacetate†	942
Ethyl (3-Methylcyclopentylidene)cyanoacelate‡ and	lene)cyanoacelate‡ and	CH(CN)CO	
Ethyl cyanoucetate	$ m NH_{3}$	$^{\circ}$ NH (60) $^{\circ}$ CH(CN)CO	943
Ethyl Cyclohexylidenceyanoaectate‡ and Ethyl oyanoaectato	a	Cyclohexane-1,1-diacetic acid	221
Ethyl (3-Methyl-2-cyclohexenylidene)cyanoacelate‡ and	nylidene)cyanoacelale‡ ana	GH(CN)CONH ₂	
Ethyl cyanoacetate	NH3	(44) O=(679
		CH ₃ CN	
Ethyl (3-Ethyl-2-cyclohexenylidene)cyanoacelate‡ and	didene)cyanoacelale‡ and	CH(CN)CONIH ₂	
Bthyl cyanoacetate	$ m NH_3$		649
		O_HEO	

and
e)cyanoacelale‡
drındanylıdene
Sthyl (cis-2-IIy

NH, Ethyl cyanoacetate

8

Ethyl (trans-2-Hydrindanylidens)cyanoacelalet and

ij, Ethyl cyanoacetate

(crs-2-II ydrindanyl dene)cyanoacelamide and

Cyanoacetamide

(Irans-2-IIydrindanylıdene)cyanoacelamide} and

Cyanoacetamide

† This product was directly condensed further with ethyl bromosectate or ethyl P-chloropropionats. 7 The compound was formed in situ from ethy! Cymonectate or ethy! \$-chloroprop This compound was formed in situ from ethy! Cymonectate and the corresponding ketone. Note: References 491-1045 are on pp. 545-555.

This compound was formed to silu from cyanoacetamids and the corresponding ketons.

THE MICHAEL REACTION

â

8

TABLE XV—Continued

MICHAEL CONDENSATIONS WITH ALICYCLIC α, β -Ethylenic Esters

Reactants	Catalyst	Product (Yield, %)	References
Ethyl (cis-2-Decalylidene)cyanoacelale and	moacetate and	CN	
Ethyl cyanoacctato	$_{ m NH_3}$	O NO COD	944
Ethyt (trans-2-Decatylidene)oyanoacelate and	yanoacelate and	o, N2-	
Ethyl cyanoacctato	$_{ m NH_3}$	ON O	944

Note: References 401-1045 are on pp. 545-555,

|| When this compound was formed in silu from ethyl cyanoacetate and trans-2-decalone, a 60% yield of the same condensation product was obtained.

ននដ

TABLE XVI

	MICHAEL CONDENSATIONS	MICHAEL CONDENSATIONS WITH AMOUNTH AS L'INTERNA L'ESTRIC	
Reactants	Catalyst	Product (Vield, "o,)	Heference
Ethyl (2-Furyl)acrylate and			
Diethyl malonate	NaOC, H.	_	
		Co Cilicity of Hanner Co.	516

Photos

	(CH'CO'C'H')CH(CO'C'H')
	I JOSN
Ethyl (4-Pyridyl)acrylale an	Diethyl malonate

ŝ

	KOCH	NaNII,
Methyl Crnnamate and	Benzyl cyanide	Acetaphenone

Note: References 491-1045 are on pp. 545-555.

This product was isolated after hydrolysus.

TABLE XVI-Continued

MICHAEL CONDENSATIONS WITH AROMATIC &, \beta-ETHYLENIC ESTERS

		•	
Reactants	Catalyst	Product (Yield, %)	References
Ethyl Cinnamate and		$A = \mathrm{C_6H_5CHCH_2CO_2C_2H_5} \ $	
Diethyl malonate†	$NaOC_2H_b$	ACH(CO ₂ C ₂ H ₅) ₂ (quant.)	2, 24, 878,
Dicthyl methylmalonate	NaOC ₂ H ₅ (catalyt. amt.) NaOC ₂ H ₅ (1 equiv.)	$AC(CH_3)(CO_2C_2H_5)_2$ (50) $C_6H_5CHCCH(CH_3)CO_2C_2H_5$	50 50
		 CH(CO ₂ C ₂ H ₅) ₂ (Mixture of 2 isomers, 40)	
Ethyl isobutyrate	NaOC ₂ H ₅	$(\mathrm{CH_3})_2\mathrm{C}(A)\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5$ (50)	468
Diethyl succinate	NaOC ₂ H ₅	(CA3)2(A)CO ₂ C ₂ A ₃ (20) 2-Phenylbutane-1,3,4-tricarboxylic acid (24)*	$\begin{array}{c} 468 \\ 948 \end{array}$
Ethyl phenylacetate	NaOC ₂ H ₆	$C_6H_5CH(A)CO_2C_2H_6$ (quant.)	81, 82
Ethyl acetoacetatet	(C,H _b) ₃ CNa	$C_{\mathbf{c},\mathbf{c},\mathbf{c}}(A)CO_{\mathbf{c},\mathbf{c},\mathbf{c},\mathbf{c}}(A)$ $CH_{\mathbf{c}}COCE(A)CO_{\mathbf{c},\mathbf{c},\mathbf{c},\mathbf{c}}(60)$	468 468
renyi cyanoacetate	NaOC, H ₅	$NCCH(A)CO_2C_2H_6$ (two isomers, 85)	290, 79,
Cynnoacetamide Ethyl α-cyanobutyrate Ethyl α-cyanoisovalerate Ethyl α-cyanohydrocinna- mate	Na enolate NaOC2Hs NaOC2Hs NaOC2Hs	3-Cyano-2,6-dioxo-4-phenylpiperidine NCC(C ₂ H ₅)(A)CO ₂ C ₂ H ₅ NCC(C ₃ H ₇ -i)(A)CO ₂ C ₂ H ₅ NCC(CH ₂ C ₆ H ₅)(A)CO ₂ C ₂ H ₅	80, 949 843 80 80 80 80

Benzyl cyanide

27, 83, 952, 84 C,H,CH(A)CN (Two isomers: 27 total; 50 total; and 32 + 12 or 44 total)

Call CH(A)CN (80); Call CH(CN)CH(Call CHCO) (Small):

Note: References 491-1095 are on pp. 545-555.

According to ref. 80, amides of cinnamic acid and cinnamonitrile react analogously Hydrolysis of the primary condensaton product affords, with partial decarboxylation, \$-phenylglutaric acid. The primary product from connamamide is . This product was isolated after hydrolysis.

‡ Ethyl acctate was used; it was transformed into ethyl acetoacetate before the reaction with ethyl cinnamate.

TABLE XV1-Continued

Michael Condensations with Aromatic $\alpha \# \operatorname{Behyl}$ ente Esters

		ORGANIC RE	ACTIO:	NS .			
References	83 (5); 950	852	327 327, 953	÷0.	37.4	124.817	813
Product (Yield, %)	$J = C_0 H_0 C H C H_2 C Q_2 C_2 H_5 \\ C_0 H_0 C H (C M) C H (C_0 H_0) C H_2 C Q_2 C H_3 \\ C_0 H_0 C H (A) C M (33); C_0 H_0 C H (C M) C H (C_0 H_0) C H_2 C Q_2 H (35); \\ C_0 H_0 C H (A) C C M H_2 (12)$	$11_{b}C_{a} \underbrace{\begin{pmatrix} O \\ C_{b}\Pi_{b} \\ C_{c}\Pi_{b} \end{pmatrix}}_{CN} C_{b}\Pi_{b} $ (4)	JCH1,COC(CH1,), (64) JCH1,COC(H1, (19) or C,H6COCH1,CH(C,H6)(CH1,)		(10)* (10)* (11]*(211(C ₀ 11 ₀)(211 ₂ CO ₂ 11	$(C_{\underline{u}}\Pi_b O)_{\underline{u}} P(O)(\Omega \Pi(A))(\Omega_{\underline{u}} C_{\underline{u}}\Pi_b)$ (24, 50)	3-()yano-2,6-dloxo-4-(p-nitrophenyl)piperidine
Catalyst	nd NaOCH3 Dry NaOH	NaOC ₂ 11 ₆	NaN11 ₂ NaN11 ₂	{C ₆ H ₆ CH ₃ N(CH ₃) ₃ }OC ₄ H ₉ -n {C ₆ H ₆ CH ₂ N(CH ₃) ₃ }OH	!	NaOC,115; K	Na enolato
Reactants	Elhyl Cinnanade (Cont.) and Benzyl cyanide (Cont.)	γ-Benzoyl-α.β-diphenyl- butyroniteilo	Pinneolone Acetophenone	Nitromethano Bthyl nitroaectate	2-Quinaldine	Tricthyl phasphonoacetate NaOC ₂ 11 ₅ ; K	Ethyl 4-Nitrovinnamate and Cynnoacelamido

Elayi p-11yarozycunamas anu CH3C(≔NH)CH2CO2C2H3 None	None	6-115 droxy-2-methy b-4-pheny lpyradine-3-carboxy he acid (25)*	921	
Bikyl Atropule (x-Pkrnyluczylale) und Trielityl ethane-1,1.2- NaOC ₂ II, carboxylate	crylale) und NaOC ₄ II ₅	"กรรช รำกรัฐกรรชการสมาชิกภาษากรรษกรรม	95	
Ethyl β-Methoxy α-phenylacrylate and Cynnoscelamdo	acrylate and NaOC ₂ II ₈	2,ն-Սմիչ մոտχγ-3-թիօրչ իչ, ուևուշ (2×)	955	TH
β-Methoxy-a-phenylacrylondrule and	murule and	4		Е ИІ
Cyanoacetamide	NaOC,H,	NC C.H. (78)	955	CHA
Blhyl f-Ethoxy-u-(p-chlorophenyt)acrylate and	rophenyl)acrylate and			EL R
Cyanoscetamido	NaOC ₁ II,	TIC CHICLE OF HANGE CHICLE	922	EAC
Lihyl β-Isobutoxy-α-phenylactylale and Cyanoncetamide NuOC _t U ₃	sylacrylate and NaOC ₄ II ₃	enylpyridme (555	rion
β-Isobuloxy-α-phenylaerylondrule and	ylonurule and			

Ethyl \$-Hydroxycinnamate and

Note: References 401-1015 are on pp. 545-555.
• This product was isolated after hydrolysis.

NaOC, II,

C) ano sectamide

TABLE XVI—Continued

Michael Condensations with Aromatic α, β -Ethylenic Esters

	distriction with a second with a		
Reactants	Catalyst	Product (Yield, %)	References
Ethyl p-Methyleinnamate and Ethyl æ-cyanopropionate	NaOC ₂ H ₅	CH3C(CN)(CO2G2H5)CH(C6H4CH3-P)CH2CO2G2H5	80
Elhyl a-Melhylcinnamate and Ethyl cyanoacefate	NaOC ₂ H _s	NCCH(CO,C,H,)CH(C,H,)CH(CH,)CO,C,H, (Two	50, 80
Ethyl Hydroxymethylenephenylaeelate and Malonic acid	rcelate and None	isomets, 55) α-Phenylglutaconic acid (75)*	366
Cyanoacetic acid	None	Ethyl 4-cyano-2-phenyl-2-butenoate (47)	366
Ethyl β-Benzylacrylate and		$A = C_{\bullet}H_{\bullet}CH_{\bullet}CH_{\bullet}CO_{\bullet}C_{\bullet}H_{\bullet}$	
Diethyl malonate Diethyl methylmalonate§ Ethyl cyanoacetate§	Na enolate NaOC ₂ H ₅ NaOC ₂ H ₅	AC(CH,)(CO,C,Hs,), (51) AC(CH,)(CO,C,Hs,), (42) ACH(CN)CO,C,Hs, (67)	956 77 77
f-Isobutoxy-a-phenylerotononitrile and	'o and	HO.	
Gyanoacetamide	NaOC ₂ H ₆	NC $C_{\mathbf{k}}$ C_{\mathbf	955
Dimethyl Benzylidenemalonate and	pu	7 = C'Hrchch(co-ch²)°	
Isobutyraldehyde Deoxybenzoin	NaOCH ₃ NaOCH ₃	(CH ₃) ₂ C(A)CHO (80) C ₆ H ₅ COCH(A)C ₆ H ₅ (44)	957 163

Demethyl m-Nutrobenzylidenemalonale and

Nitromethane Anthrone

NAOCH, NaOCH,

Dimethyl o-Chlorobenzylidenemalonate and

Phenylastromethane

CH(C, E, C1-0)CH(C0, CH,), Piperidine

98

Note. References 491-1045 are on pp. 545-555. This product was isolated after hydrolysis.

Instead of ethyl \$-benzylacrylate, ethyl styrylacetate was employed.

TABLE XVI-Continued

Michael Condensations with Aromatic $\alpha, \beta\text{-Behylebig}$

Ê

NAOCIL, NaOCH,

ACH,NO, (95)

Dimethyl m-Nurobenzylidenemalonale and

Nitromethane Anthrone

Piperidine

NaOCH,

Phenylntromethane

Dimethyl o-Chlorobenzylidenemalonale and

Piperidine

CH(C, E, CI-0)CH(CO, CH,),

ş

§ Instead of ethyl \$-benzylacrylate, ethyl styrylacetale was employed.

Note: References 491-1045 are on pp. 545-555. This product was isolated after hydrolysis.

TABLE XVI-Conlinued

ESTRICS
II AROMATIC «, p-letinylenic
AROMATIC o
WITH
CONDENSATIONS
MICHAEL C

	TIME OF THE PROPERTY OF THE PR		
Reactants	Catalyst	Product (Yield, %)	References
Diethyl Benzylidenemalonate and	e and	$A = C_b \Pi_b \text{CHCH}(\text{CO}_2 \text{C}_2 \Pi_b)_2$	
Diethyl malonate Ethyl acetoacetate	Na enolate NaOC ₂ 11 ₅	ACH(CO ₂ C ₂ H _δ) ₂ (quant.) CH ₃ COCH(A)CO ₂ (' ₂ H ₅ (81)	901
∪11₅C(≔N11)∪11 <u>.</u> CO₂C₂116	None	$C_2H_5O_2C$ C_4H_5 $C_2H_5O_2C_2H_5$ C_2H_5 C_2H_5 $C_2CO_2C_2H_5$ $C_2C_2H_5$ $C_2C_2C_2H_5$ $C_2C_2C_2C_2H_5$ $C_2C_2C_2H_5$ $C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2C_2C_2H_5$ $C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C$	902, 580, 963
Ethyl isobutyrylacetate	NaOC ₂ 11 ₅	(CH ₃),('TICOCH(A)('O ₂ C ₂ H ₅ (05)	196
Anthrone	Piperidine; (C ₂ H ₆) ₂ NH	O (71, 91)	46, 960
Deoxybenzoin Phenylnitromethane Ethyl nitroaecate	NaOC ₂ II ₆ (C ₂ II ₆) ₂ NII; NaOC ₂ II ₆ (C ₂ II ₆) ₂ NII	(%H%COCH(A)(%H% (%H%CH(A)NO2 (80, 52) ACH(NO2)(C2H% (90)	416 29, 965 29

		THE MI	CHAEL REACT	ION
References	000	901	958	906 901 906 416 416
Substituted Dethyl Benzyldenumelomates Catalyst October (Yorld, %)	ê	II CHICLA,CCA,CHCOA,CHL,N Dethyl malonate Na enolate (C,H,O,C),CHCH(C,H,NO,3)CH(CO,C,H,b).	H CHCALANO, SPERICO.C.H.	ολουμςτης λυς-εκτητούς της Αμφοριατία της Αμ
ubstituted Die Catalyst	Piperidine	Na enolate	Pipendine	NaOCH, Na enolate NaOCH, NaOCH, NaOCH, NaOCH, NaOCH,
Addend	Anthrone	Diethyl malonate	Anthrone	Nitromethane Diethyl malonate Nitromethane Deoxybenzoin Deoxybenzoin Deoxybenzoin -1045 are on pp. 54
Substituent(s) in C,H,CH==C(CO,C,H,);	2-Chloro	3.Nitro		4-Nitro Distribution Na. 0. 4-Nitro Distribution Na. 0. 4-Michary Nitromichian Na. 0. 4-Distribution Distribution Distribution Distribution Na. 0. 4-Distribution Distribution Na. 0. 4-Distribution Distribution Na. 0. 4-Distribution Distribution Na. 0. 4-Distribution Na. 0. 4-Distribution 0. 10. 0. 4-Distribution 0. 10. 0.

References

Product (Yield, %)

со<u>.</u>с.нь

TABLE XVI-Continued

Michael Condensations with Aromatic α, β -Ethylenic Esters

Substituted Diethyl Benzylidenemalonates—Continued

Addend

Catalyst

CeHcCH=C(COcCHb)2 Substituent(s) in

4-Acetoxy

Ethyl acetoacetate NaOC, H, 4-CH, CO, C, H, --

COCHE

COCHE

OH, Ethyl propionyl- NaOC, H, p-CH, CO, C, H,

CO.C.II.

acetate

420

ences

968

() Refere	
Product (Yield, %)	C,H,
Catalyst cetate and	
Reactants Why! Benzyludenecyanoa	

Ourthylammondom arts and	(00 '1111)	
Z_	<u>{</u>	L
, S	{	H
HN [‡] (°H°))		
thyl cyanoacetate		

3,5 Dicyano-4,6-diphenyl-2-piperidone (5)

(C,H,),NH

C,H,C(=NH)CH,CN

Elhyl (x-Phenylethylidene)cyanoacetale and

Ethyl acetoacetate

415

Note: References 491-1045 are on pp. 545-555.

TABLE XVI-Continued

MICHAEL CONDENSATIONS WITH AROMATIC α, β -ETHYLENIC ESTERS

Reactants	Catalyst	Product (Yield, %)	References
Benzylidenecyanoacetamide and Cyanoacetamide	ном	C ₆ H ₅ CH ₂ CH(CN)CONH ₂ or C ₆ H ₅ CH==C(CN)CONH ₂	968
		C_6H_5	
Elhyl Cinnamytidencacetate and Diethyl malonate	d NaOC2H5	eta -Stynylglutaric acid (38) ullet	194, 195

Ethyl 3,4-Dihydronaphthoale and

Ethyl acetoacetate

1

Ethyl 4-Phenyl-2-pentenoate and

Ethyl cyanoucetate

C,H,CH(CH,)CH(CH,CO,C,H,)CH(CN)CO,C,H, (50)

970

COSH

8

<u>-1</u>

C,H;CH(CO,CH,),OH,CH(CH(CO,CH,),), C.H.CH -- CHCH(CH, NO,)CH(CO, CH,), (87) 2-Phenylbutane-1,1,3,4-tetracarboxylic acid,* 2-phenylbutane-1,3,4-tricarboxylic acid* CH(CH(CO,C,H,),JCH(NO,)CO,C,H, CHICH(CO,C,H,), CH(C,H,)NO, 3 (CH)NH (C,U,),NH NaOCH, KOC,II, NaOCH, Dimethyl Cinnamplidenemalonale and

THE MICHAEL REACTION

948

072

\$ Benzhydrylglutaric acid* (12-21)

(C,II,),NH

Ethyl a-Cyano-y,y-diphenylcrotonale and

Ethyl eyanoacetater

Diethyl Benzylidenesuccinale and

Dethyl malonate Astromethane

Dunethyl malonate

Ethyl nitroacetate

56, 971

53

23

Duchyl 3. I'yrdylmethylenemalonafe and

1 henylmtromethane

if The is the formula of the expected condensation product; in fact, a pentamethyl eater was isolated. This same product . This product was esoluted after hydrolysus.

Note: Heferences 491-1045 are on pp. 545-555.

is obtained in 97% yield when contamaldehyde and dimetbyl malonate are condensed in the presence of sedium methoxide. . The unsaturated ester was formed in silu from diphonylacetaldebyde and ethyl cyanoacetate.

TABLE XVIA

Intramolecular Michael Condinsations of Aromatic α, β -Ethylesic Esteres

			ORGANI	i. macino		
D. C. Committee	Melekvinces	074, 973	073	22	335	073, 074
	Product (Yield, %)	CO,CO,C,H,	CH, CO, C, H, OCH, (ca)	CH,CO,CH,	CH, H	H,CC,CH,CO,C,H,
	Catalyst	NaOC;111,	NaOC ₂ H ₂	NaOCH3	NaOCH,	NaOC ₂ H,
	Reactant	CH=CHCO,C,H, OCH,CO,C,H,	CH=CHCO,C,H, OCH,CO,C,H,	CH=CHCO,CH, SCH,CO,CH,	o,N CH-CHCO,CH, CH,	$H_{s}c$ $c(cH_{s})=cHcO_{s}c_{s}H_{s}$

3

TABLE XVII

Michael Reactions with $\alpha,\beta\text{-}\textsc{Byilier}$ Keto Beters

á						
References	528	628	628 528	628 628	628	628
Product (Yield, %)	CH2CH2COCH3 and	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NaOII, piperidine 8-11ydroxy-9-methylhydrindane-3,6-dione NaOII $2-(\beta$ -Acetyle(hyl)-2-methylcyclohexane-1,3-dione	NaOH, sec-amine 4-Carbethoxy-3-methyl-2-cyclohexen-1-one NaOH	0011	$2\cdot(\beta\text{-}\mathrm{Acetyl-}\beta\text{-}\mathrm{eurbe(hoxyethyl)}\text{-}2\text{-}\mathrm{formyleyelohexanone}$ (37)
Catalyst	NaOH	NaOH	NaOII, piperidin NaOII	NaOII, sec-amine NaOII	NaOll	NaOII
Reactants	Sodium Methyleneaceloacelate* and 2-Carboxycyclohexanone	2-Carbethoxycyclohexanone	2-Methyleyelopentane-1,3-dione 2-Methyleyelohexane-1,3-dione	Ethyl Methylencaceloacelalet and Ethyl acetoacelale 2-Carbelhoxycyclohexanone	2-Carbethoxy-1-fetralone	2-Formyl-1-cyclohexanone

976, 977

4-Carbethoxy-3-cyano 0-methyl-2-pyridone (82)

976 976

		TH	E M
528		528	
î_	0.0	_	
\mathbb{R}	E o=	=))
	\	_{€	,
YaOH.		NaOH	pud
tone ?			celoacetate
ntane-1,3-c		exane-1,3-d	methylene)a
2-Methylcyclopentane-1,3-dione NaOH		ethylcyclobexane-1,3-dione	Elhyl a.(Aminomethylene)acetoacetale and
2-M.		2-M	Bih

E

Sodium Methyleneacetonedicarboxylate; and

120 8 Ethyl 2-methyl-5,6,7,8-tetrahydroqumolme-3-carboxylate Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (30) Ethyl 2,5,0-trimethylpyridine-3-carboxylate (8) (20-30)

None None None

Ethyl B-Acstylacrylate and Ethyl acetoacetate

Cyclohexanone Acetone

Diethyl malonate

CH,COCH,CH(CO,C,H,)CH(CO,C,H,), Elhyl B. Acelyl-a-hydroxyacrylate (Acelylpyrunate) and NaOC,H,

975

4-Carbethoxy-3-cyano-6-methyl-2-pyridone (15) 4-Carbetboxy-3 cyano-6-methyl-2-pyridone (65) 4-Carbethoxy-3-cyano-6-methyl-2-pyridone NH,; (C,H,),NH Prperidme NAOCH, Cyanoacetamide

K,CO,

CH,C(=NH)OH,CO,C,H,

Diethyl 2,6-dimethylpyridine-3,4-dicarboxylate (90) A mixture of sodium acetoacetate and formaldehyde was employed. Note: References 491-1045 are on pp. 545-555. None

A mixture of sodium acetonedicarboxylate and formaldehyde was employed. A mixture of ethyl acetoacetate and formuldehyde was employed.

A mixture of and my acetoacetate and formuldehyde was employed.

Miohael Reactions with α,β -Byhyllynic Kisto Betters

Reactants	Catalyst	Product (Yield, %)	References
Elhyl β-Acetyl-α-elhoxyacrylale and Cynnoucolannido	K2CO3	2-Carbethoxy-5-cyano-4-methyl-6-pyridone (73)	98
Ethyl 3-Oxo-4-pentenoate and		O 0 H CH.	
2-Methylcyclohexane-1,3-dione	NaOCH3	CH1.CH1.COCH1.CO2.C1.H2 (30) (30) (30)	238
Ethyl &-Acelyl-f-hydroxycrolonale (Diacelylacelale) and Cyanoacelamido	Diaectylaectate) and Pyridino	3-Cyano-4-methyl-6-hydroxy-2-pyridone§	308
Melhyl 6-Oxo-6-heplenoale and		CH ₂	
2-Methylcyclohexane-1,3-dione	NaOCH,	O CH ₂ CH ₂ CO ₂ C ₂ H ₂	638
Elhyl fi-Propionyl-x-hydroxyacrylate (Propionylpyruvate) and Cyanoacolamido Piperidine Elhy (65	c (Propionylpyrurale Piperidino) and Bhyl 3-cyano-6-ethyl-2-hydroxypyridine-4-carboxylate (68)	080

984

CONHC, H, CH, -0 CONHC,H,CH,-0 HQ

ล์		THE MICH	LEL REACTION
981, 982, 983	206	984	981
Diethyl «,a'-dlacetyl-\$-methylgutarate (63)	3 a	CH,CH(CH(COCH,CONHC,H,h (90) CH,CH(CH(COCH,CONHC,H,h (90)	HO CONHC, H, f
NaOC ₁ H _s ; piperidine	Nanii,	Pyridine None	Pyridine
Sthyl a-Ethylideneacedoacetale and Ethyl acetoacetate	1-Tetralone	Khyluleneaceloacelanilule and Acetoacetanilido	Ethylideneacetoacet-o-toluide and

Pyridine Acetoacet-o-toluide

Note: References 491-1045 are on pp. 545-555.

5 Birthy aceted in commanded in this season.
7 Birthy received in commanded in this season.
1 The Product is formed when the reaction in earlied out in Society pyridine.
7 This product is formed when the reaction in earlied out in Society pyridine.

MICHARD, PRACTICAL WITH A B. PURINISMIC INSTO-BSTIBLE

			ORGAN	H.	REACI	101	SS.		
	References	981	181		330		310	310	085
MICHARL REACTIONS WITH \$4/F BTHYLENG INERO INSTRUK	Product (Tield, %)	CH ₃ CH[CH(COCH ₃)CONHC ₆ H ₄ CH ₃ -p] ₂	HO CONHC H (CH ₃ -pC)	,	$N(C) = \left(\frac{(C)_2 C_2 \Pi_3}{C \Pi_3} \right)$		C, H ₂ O ₂ C (CO ₂ C ₂ H ₃)	C ₂ H ₃ O ₂ C (O ₂ C) ₃ H ₅	de) and Ethyl 3-cyano-2-hydroxy-6-propylpyridinc-4-carboxylate (51)
MICHARL REACTION	Catalyst	d Nome	Pyridino	etate and	NnOC',113	ale and	NaOC, 115	NnO('211's	de (n-Badyrylpyrae Piperidine
	Reactants	Ethylideneaectoaect-p-toluide and Acetoaect-p-toluide		Ethyl &-Methoxymethyleneaertoaeetate and	Cyanoncetamide	Ethyl &-Ethorymethyleneacelaacelale and	Diethyl malonate	Ethyl cyanoucetate	Bhyt fen-Batyryt-x-hydroxyaerylate (n-Batyrytpyrurate) and Cyanoacetamide Syanoacetamide ()

) and	Ethyl 3 cyano-2-hydroxy-6-mopropylpyridine-4-carbo
erylate (Isobutyrytpyrusate	K,CO,
Elhyl B-Isobutyryl-a-hydroxya	Cyanoacetamide

Cyanoacetamide	K,CO,	Ethyl 3 cyano-2-hydroxy-6-isopropylpyridine-4-carboxy- late (70)	977
4 Carbonchoxy:3-methyl 2-cyclohexen-1-one and	n-I-one and	CII(CO't's')	
Dechyl malomate	Na enolate	O COOCH	986
Flhyl a-Propyledeneaceloacelale and			
Dibyl acctoacetate	NaOC ₂ U ₆ ; (C ₂ H ₅) ₂ NH	Diethyl α, α' -diacetyl β ethylglutarate	982, 983, 986a
		o=(
	Pyperidine	H_sC_s (60)	982
2-1'ropylideneacoloacelandide and			
Acetuacetamhdo	None	C,H,CH[CH(COCH,)CONHC,H,),	981
		0==	
	Pyridine	HO CONIC, H.	186
		La CONHC, II,	
Note: References 491-1015 are on pp. 545-555.	n pp. 545-655.		

Note: References 491-1016 area on pp. 515-525.

If The elyptone compound was formed it acts from the corresponding abshipts and the keto acid derivative.

This product is formed when the reaction is correct and in boding pyrikins.

This is the structure assumed by the authors.

Estens
KETO
α,β-Ετιινιμενιο
WFFH
L REACTIONS
VICITABL

		(ORGANI	C REA	CLIONS				
References	652	652	790	500	710	600		685	
Product (Yield, %)	Diethyl 2,8-dimethyl-0-hydroxy-5,8,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate	Diethyl 2,7-dimethyl-9-hydroxy-5,6,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate	Diethyl 2,0-dimethyl-9-hydroxy-5,6,7,8,9,10-hexahydro- quinoline-3,4-dicarboxynte	CH2(CH(('OC4H3)CO2C'2H3]1		3,4,5-Triphenyl-2-eyelohexen-1-one	o =<	C ₂ H ₃ O ₂ C C ₂ H ₃ O ₂ C C ₂ H ₃ O ₃ C	(Three stereolsomers)
Catalyst	yoxalale and None	yoxalalo and None	yoxalafe and None	$(\mathrm{C_2H_b})_2\mathrm{NH}$	Benzoylpyravale) o Piperidine	NaOC ₂ 11 ₈		Piperidine	
Reaclants	Ethyl (2-Keto-3-methyloyetohexyl)gli CH3C(==NH)CH2CO2C2H5	ythyl (2-Keto-1-methyleyelohexyl)ytl ∫ M13C(==N11)CH3CO2,C2H6	$Ethyl~(2-Keto-5\cdot methylcyclohexyl)gli\\ CLl_3C(==N11)CLl_3CO_2C_2H_\delta$	Elhyl Methylenebenzoylacetate and Elhyl benzoylacetate	Ethyl f-Benzoyl-x-hydroxyaerylats (Cynnoneolamido	Elhyl 1-Benzylidencaceloacelale and Dooxybenzoln	Elhyl &-Benzylidenraceloacelale and	Bbhyl acoloucelate	
	Catalyst Product (Yield, %)	Catalyst Product (Xield, %) thexyllglyoxalate and Diethyl 2,8-dimethyl-D-hydroxy-5,9,7,8,9,10-hexalydro-quinoline-3,4-dicarboxylate	yst Diethyl 2,8-dimethyl-0-hydroxy-5,0,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate Diethyl 2,7-dimethyl-0-hydroxy-5,6,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate	yst Diethyl 2,8-dimethyl-9-hydroxy-5,8,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate Diethyl 2,7-dimethyl-9-hydroxy-5,6,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate Diethyl 2,0-dimethyl-9-hydroxy-5,8,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate uinoline-3,4-dicarboxylate	piethyl 2,8-dimethyl-0-hydroxy-5,9,7,8,9,10-hexahydro-652 quinoline-3,4-dicarboxylate Diethyl 2,7-dimethyl-0-hydroxy-5,6,7,8,9,10-hexahydro-652 quinoline-3,4-dicarboxylate Diethyl 2,0-dimethyl-0-hydroxy-5,9,7,8,9,10-hexahydro-652 quinoline-3,4-dicarboxylate CH4(CH(COC_4H_3)CO_2C_2H_3)_1	nethylegetohexyl)glyoxalate and nethylegetohexyl)glyoxalate and authylegetohexyl)glyoxalate and nethylegetohexyl)glyoxalate and authylegetohexyl)glyoxalate an	eaclants Catalyst Product (Yield, %) References 3-methylegelohexyl/glyoxalate and quinoline-3,4-dicarboxylate 4-methylegelohexyl/glyoxalate and quinoline-3,4-dicarboxylate 4-methylegelohexyl/glyoxalate and quinoline-3,4-dicarboxylate 5-methylegelohexyl/glyoxalate and quinoline-3,4-dicarboxylate 6-methylegelohexyl/glyoxalate and quinoline-3,4-dicarboxylate 11_2CO_2C_2H_b None Dicthyl 2,7-dinacthyl-9-hydroxy-5,0,7,8,9,10-hexahydro- 6-methylegelohexyl/glyoxalate and quinoline-3,4-dicarboxylate 12_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 12_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 12_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 12_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 13_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 14_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 15_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 16_CO_2C_2H_b None Quinoline-3,4-dicarboxylate 16_CO_	Catalyst Catalyst None Soundle and None quinoline-3,4-dicarboxylate quinoline-3,4-dicarboxylate quinoline-3,4-dicarboxylate quinoline-3,4-dicarboxylate quinoline-3,4-dicarboxylate None quinoline-3,4-dicarboxylate None quinoline-3,4-dicarboxylate (C ₂ H ₂) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₂ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₂ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₂ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₃ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₃ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₃ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate (C ₃ H ₃) ₂ N ₁ 0-hexahydro- quinoline-3,4-dicarboxylate quinoline-3,4-dicarboxy-6-hyenylate quinoline-3,4-dicarboxylate quinoline-3,4-dicarboxy-6-hyenylate quinoline-3,4-dicarboxylate quinoline-3,4-	nts Catalyst Product (Yield, %) References Product (Yield, %) References Aguinoline-3,4-diearboxylate quinoline-3,4-diearboxylate quinoline

513 I The staylonic compound was formed in sain from the corresponding allehyde and the keto acad derivative.

If By selecandersation, part of the CHLCI=NHIKHLEN is converted into \$5.5400 staylon \$2.4.0 tripbenylahydropyraline. Note: References 491-1015 are on pp. 545-555.

Ethyl cyanoacetate	(C,H,),NH		696	
	Aq. (C, II,), NII	$C_2 H_3 O_3 CCH(COCH_3) CH(C_4 H_4) CH(CN) CONH_5; \ $	6963	
		NO CGL, CGL, CGL, CGL, CGL, CGL, CGL, CGL,	THE M	THE M
CH,C(=NU)GH,CN	(с'п', мп	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g ichael rea	CHAEL REA
C.H.C(=NH)CH,CN	NaOCH,	Ethyl 5-cyano-4,6-diphenyl-2-methylpyridine-3-	CTI	CT.
PCH,C,U,C(=NH)CH,CN	NaOCH,	carboxylate; Ethyl 5-cyano-2-methyl-4-phenyl-6 p-tolylpyridine-3-		227
P-CH,OC, II, C(=NII)CH, CN	NaOCH,	carboxylate Ethyl 5-cyano-6-p-methoxyphenyl 2-methyl-4-phenyl-	1 2	
l'henylacetaldehyde	NaOC,II,	pyrdure-3-carboxylate C ₄ H ₄ CH(CH(C, H ₄)CHO)CH(COCH ₃)CO ₂ C ₂ H ₆ (30)	163	

MICHAEL REACTIONS WITH α, β -ETHYLENIC KETO ESTERS

Reactants		Catalyst	Product (Yield, %)	References
Ethyl α-Benzyliden	Elhyl a-Benzylideneacetoacetate (Cont.) and	pu	0	
Anthrone	Z S	NaOC ₂ H _s	(83)	163
Phenylnitromethane		(C ₂ H ₅) ₂ NH	C ₆ H ₆ CHCH(COCH ₃)CO ₂ C ₂ H ₅ 3-Carbethoxy-5-nitro-4,5-diphenyl-2-pentanone (78)	8) 29
		Substituted Ethy	Substituted Ethyl α-Benzylideneacetoacetates	
Substituent(s) in CH ₃ COCCO ₂ C ₂ H ₆	Addend	Catalyst	st Product (Yield, %)	References
OH OH Z				
#4 8			0	
3-Nitro	Ethyl acetoacetate Piperidine	Piperidine	HO CO2C2H3	982, 994

с, п, спсос, п,

NaOC,II,

Deoxybenzoin

Ethyl acetoacetate || Piperidine

4-Nitro

é

Ethyl acetoacetate || NaOC,H,

2-Methoxy

Ethylacetoacetate | Pyridine

3-Cyano 4-Cyano

838 3-NCC,H,CU[CH(COCH,)CO,C,H,), (77)
4-NCC,H,CH[CH(COCH,)CO,C,H,), (77) CH,(O,CH,)-3,4 C, H, OCH, -2 CH.NO.4 30,C,H. 70,C,II,

é 2,4-Methyleneduxy Ethyl acetoacetate | {C,H,CH,N(CH,),10H

I The ethylenic compound was formed in situ from the corresponding aldehyde and the keto acid derivative. Note: References 491-1015 are on pp. 545-555.

MICHAEL REACTIONS WITH α, β -BTHYLENIC KETO ESTERS

Substituted Ethyl a-Benzylidenacetoacetates—Continued

Addend Substituent(s) in

CH,COCCO,C,H,

Catalyst

References

Product (Yield, %)

536

C6H3(OCH3)2-3,4 ČO₂C₂H₅

[C6H6CH2N(CH3)3]OH

Ethyl acetoacetate ||

3,4-Dimethoxy

(17

C₆H₃(OCH₃)₂-3,4 CO₂C₂H₅

(Mixtures of stereoisomers, 34)

MICHABL REACTIONS WITH &, \(\beta \)- ETHYLENIC KETO ESTERS Substituted Ethyl a-Benzylidenaceloacetates—Continued

Addend CH,COCCO,C,H, Substituent(s) in

Product (Yield, %)

References

536

(14)

C₆H₃(OCH₃)₂-3,4 ČO₂C₂H₅

HO,

CO₂C₂H₆ C₆H₃(OCH₃)₂-3,4

(Mixtures of stereoisomers, 34) CO.C.H.

Catalyst

Ethyl acetoacetate|| [C₆H₅CH₂N(CH₃)₃]0H

3,4-Dimethoxy

			THE MI	CHAEL RI	EACTIO	N	5
References	066	186	188	186		981	
Product (Yield, %)	Diethyl a,a'-diacetyl-f-n-herylglutarate	***H _{1,C} **OH ₃	" C,H,,CH[CH(COCH,)CONHC,H,);	HO CHI'S	CONHC ₆ H ₅	HO CONHC, H, CH, -of, H, C CONNC, H, CH, -of, CN, -of,	Note: References 401–1045 are on pp. 515–555. The ethyleine compound was formed a stat from the corresponding aldebyde and the keto and derivative. The product is formed when the reaction is carried out in Soring Pyraine.
Catalyst doacetate and	NaOC ₃ H _z ; (C ₂ H ₅) ₂ NH	Piperidine	mulde and None	Pyridine	-o-toluide and	Pytidine	Note: References 491–1045 are on pp. 545–555. I The thyleine compound was formed so sits from the corresponding aldeby. Thus product is formed when the reaction is earned out in botton pyratine.
Reactants Ethyl a.n.Heptyldsneacetoacetate and	Ethyl acetoacetate		a-r-Heplyhdeneaceloacelanhde and Acetoacelanhde None		a·n-Heptyl deneactloacet-o-toluide and	Acetoacet-o-toluide	Nate: References 491 The ethylenic com

MICHAEL REACTIONS WITH α, β -ETHYLENIC KETO ESTERS

References		184	954	964		200	20	
Product (Xield,%)	O	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ruvate) and Diethyl 2-methyl-6-styrylpyridine-3,4-dicarboxylate (48)	C,H,CHCH(CO,C,Hs)COCH(CH,),	 CH(CO ₂ C ₂ H ₆) ₂ (72)	Diethyl citrylidene-bis-acetoacetate (61)	Ethyl α -benzoyl- γ -nitro- β,γ -diphenylbutyrate (71)	Note: References 491–1045 are on pp. 545–555. The ethylenic compound was formed in situ from the corresponding aldehyde and the keto acid derivative. This product is formed when the reaction is carried out in boiling pyridine.
Catalyst	-toluide and	ryriame	nxyacrylałe (Cinnamoylpy None	rylacelate and NaOC ₂ H ₅	ell and	Piperidine	elate and (C ₂ H ₅) ₂ NH	945 are on pp. 545–555. nd was formed <i>in situ</i> fr 1 when the reaction is <i>ca</i>
Reactants	a-n-Hephylideneaceloacel-p-toluide and	Aceroacer-p-tolude	Ethyl β-Cinnamoyl-α-hydroxyacrylate (Cinnamoylpyruvate) and CH ₃ C(=NH)CH ₂ CO ₂ C ₂ H ₅ None Diethyl	Ethyl ¤-Benzylideneisobutyrylacetate and Diethyl malonate	Ethyl Citrylideneacetoncetatell and	Ethyl acetoacetate	Ethyl Benzylidenebenzoylacetate and Phenylnitromethane (C2H	Note: References 491–1045 are on pp. 545–555. The ethylenic compound was formed in situ fi This product is formed when the reaction is c

TABLE XVIII

MICHAEL CONDENSATIONS WITH a. B. ACETYLENIC ESTERS

		SUPERIOR CONTRACTOR OF THE STREET	
Reactants Methyl Propolate and	Catalyst	Product (Yield, %)	References
1-Tetralone	NaNH ₃ , hq. NH ₃	Methyl 1-tetralone-2-acrylate*	866
Ethyl Propiolate and Dethyl methylmalonale Ethyl acetoacetate	Na NaOC,H,	$A = -CH = CHCO_1C_1H_4$ $CH_2C(A)(CO_1C_1H_4)_4$ (14) $CH_2COCH(A)CO_2C_2H_4$	833 888
6-Methoxy-1-tetralone	NaNH _b hq. NH ₂	CH40	966
1-Keto-1,2,3,4-tetrabydrophenanthrene	NaNH _P liq. NH,	\$	866
a-Phenylbutyronitrile	[O,H,CH,N.	CH,OH,C(C,H,)(A)ON (35)	1000

Note: References 491-1015 are on pp. 645-555.

* The product was directly reduced to methyl 1-tetralone-2-propionate.

20	References	0.	0		RGAN		CTIONS	m		
	Refer	1000	1000	168 1661	1002	1003, 1004		1003		20
Michael Condensations with α, β -Acetxienic Esters	Product (Yield, %)	$A = -\text{CII} = \text{CIICO}_2\text{C}_3\text{II}_3$ $(C_2\text{II}_5)_2\text{NCII}_2\text{CII}_2\text{C}(C_6\text{II}_5)(A)\text{CA} (59)$	$(C_6\Pi_6)_2C(A)CN$ (02)	$A = (H_3C = CHCO_2C_2H_3)$ $ACH(CO_2C_2H_3)_2$	CH ₃ CH ₃	$CH = CHC(CH_3) = CHCOC(A)(CO_2C_2H_3)_2$	CH ₃ CH ₃	CH ₃ CH ₅)=CHCOC(CO ₂ C ₂ H ₅) ₂ (CH ₃ C=CHCN	$A = C_b \Pi_b C = CHCO_a C_b \Pi_b$ $B = \frac{R_b}{M_b}$	
ONDENSATIONS	Catalyst	[C,H,CH,N-	$\{C_6H_5CH_2N^2\}$ $\{C_6H_5CH_2N^2\}$ $(CH_3)_3\}OH$	$ m NaOC_2H_b$		$ m NaOC_2 H_5$		$ m NnOC_2H_5$		Na; NaOC ₂ H ₅
MICHAEL C	Reactants	Ethyl Propiolate (Cont.) and y-Diethylannino-a-phenylbutyronitrile	Diphenylacetonitrile	Ethyl Tetrolate and Diethyl malonate	CH ₃ CH ₃	CH=CHC(CH ₃)=CHCOCH(CO ₂ C ₂ H ₅) ₂	Tetrolonitrile and $CH_3 CII_3$	$\bigcup_{\text{CH}_3}^{\text{CII}=\text{CH}\text{C}(\text{CH}_3)=\text{CII}\text{COCII}(\text{CO}_2\text{C}_2\text{II}_6)_2}$	Ethyl Phenylpropiolate and	Diethyl malonate

432, 433 1009

NaOC, II, NaOC, II, Na enolate

Ethyl fluorene-9-carboxylate

Benzoylacetone Deoxybenzom

		\$-Phenylglutaconic acid t	1000, 1007,	
Diethyl methylmalonate	Na; NaOC, H.	Na; NaOC ₁ H ₄ CH ₂ C(A)(CO ₁ C ₁ H ₄), (14)	333, 25,	
Diethyl benzylmalonate	NaOC,H,	CHICH(CIA)(CO,CHI,)	131	
Ethyl n-propylacetoacciate		CILCOCKANCALL CILC	133	
Ethyl oxaloacetate		B. R. = R. = CO.C.II.	133	
Ethyl benzoylacetate		$B, R, = CO, C, \Pi, R, = C, \Pi,$	131	
Ethyl cyanoacetale		NCCH(A)CO,C,H,	22	7
Acetylacetone	NaOC, H	$CH_{\mathfrak{p}}COCH(A)COCH_{\mathfrak{p}}; B, R_{\mathfrak{p}} = COCH_{\mathfrak{p}}, R_{\mathfrak{p}} = CH_{\mathfrak{p}}$	533	ш
		$B, \Pi_1 = \Pi, \Pi_2 = C\Pi_2$	133	C 2
TOWNS OF THE PARTY				

Ethyl p-Nurophenylpropuolale and

Ethyl acetoacetate

NaOC,H, Ethyl benzoylacetate

Note: References 491-1045 are on pp. 545-555. † This product results from hydrolysis and partial decarboxylation.

53

쯢

CH'NO'-P

MICHAEL CONDENSATIONS WITH α, β -ACETYLENIC ESTERS

Reactants	Catalyst	Product (Yield, %)	References
Ethyl 2,3-Dimethoxyphenylpropiolale and			
Ethyl acetoacetate	$NaOC_2H_5$	5-Carbethoxy-4-(2',3'-dimethoxyphenyl)-6-	1011
Acetylacetone	NaOC ₂ H ₅	menny-a-pyrone (11) 2,3-(CH ₃ O) ₂ C ₆ H ₃ C=CHCO ₂ C ₂ H ₅	1011
2,3-Dimethoxyphenylpropiolonitrile and		CH3COC==C(OH)CH3 (33);	
Acetylacetone	NaOC.H.	2,3-(CH ₃ O),C ₆ H ₃ C—CHCN	1011
		CH ₃ COC==C(OH)CH ₃ (43);	
Diethyl Acetylenedicarboxylate and		$A = C_1H_1O_1CCU = CCO_1C_2H_2$	
Diethyl malonate Diethyl methylmalonate Triethyl ethane-1,1,2-tricarboxylate Tetraethyl ethane-1,1,2,2-tetracarboxylate	Na Na; NaOC2H2 NaOC2H3 NaOC2H3	dCH(CO ₂ C ₂ H ₅) ₂ (30) CH ₃ C(A)(CO ₂ C ₂ H ₅) ₂ Pentacthyl 1-butene-1,2,3,3,4-pentacarboxylate Hexaethyl 1-butene-1,2,3,3,4,4-hexacarboxylate	333 333 325 325, 489
Ethyl acetoacetate Ethyl benzoylacetate	NaOC ₂ H ₅ NaOC ₂ H ₅	(10)§ CH,COCH(A)CO,C,H, C,H,COCH(A)CO,C,H,	433, 1012 433, 1012
Note: References 491-1045 are on pp. 545-555.	555.		

§ Originally (ref. 480), this product was assumed to be a cyclobutane derivative, formed by a second, intramolecular,

Michael reaction. The cyclobutane structure has now been disproved (ref. 325).

The free acid corresponding to this product was actually isolated.

MICHAEL CONDENSATIONS WITH A, B-ETHTLENIC NITTO COMPOUNDS TABLE XIX

Reactants	Catalyst	Product (Yield, %)	References
1-Nuro-1-propene and Ethyl acetoacetate	NaOC,H,	0,NCH,CH(CH,)CU(COCH,)CO,C,H, (31)	1013
CH,¢(≔NCH,)CH,CO,¢,H,	None	H,C CH, (70) CH, (70)	1013
CH ₃ Q=NCH(CH ₃) ₃)CH ₃ CO ₃ C ₃ H ₄	None	H.C. CO,C,U, CH(CH,), CH(CH,)	1013
CH,CC,C,H,CH,CH,NO,1). CH,CC,C,H,	None	H,G CO,C,H, CM, GS) CH(CH,NCH,NO,	1013
2.Nito-1.propene and 2.Nitopropane Methyl 2.nitropropyl ether Methyl 2.nitropropyl aulide	NaOC,U. NaOC,U. NaOCH,	A = CH,CH(NO,)CH,- AC(CH,),NO, (20) AC(NO,)CH,PU,CH, (50) AC(NO,)(CH,NCH,SCH, (30)	1014

THE MICHAEL REACTION

Note: References 491-1045 are on pp. 545-555.

MICHAEL CONDENSATIONS WITH α, β -ETHYLENIC NITNO COMPOUNDS

Reactants	Catalyst	Product (Yield, %)	References
Nitromalonaldehude (Hudroxumethulenenitroacetaldehude) and	thylenenitroacetaldehyde) and		
Ethyl acetoacetate	Alkalı	orali rosinica incin	
Cyanoacetamide	[C,H,CH,N(CH,),]OH	3-Cyano-5-nitro-2-pyridone (93)	111
Levulinic acid	Alkali	2-Hydroxy-5-nitrophenylacetic acid (82)	111
Acetonedicarboxylic acid	Alkali	2-Hydroxy-5-nitrobenzene-1,3-dicarboxylic acid	111
Acetone	Alkali	p-Nitrophenol	330
Methyl ethyl ketone	Alkuli	2-Methyl-4-nitrophenol (90)	111
Acetonylacetone	Alkali	Methyl 2-hydroxy-5-nitrobenzyl ketone,	
		2,2'-dihydroxy-5,5'-dinitrobiphenyl	1015, 1016
Methyl benzyl ketone	Alkali	2-Hydroxy-5-nitrobiphenyl	111, 340,
			341
Dibenzyl ketone	Alkali	2,6-Diphenyl-4-nitrophenol (94)	111, 340,
			341
Cycloöctanone	Na enolate	2,6-Pentamethylene-4-nitrophenol* (10)	342, 343
Cyclononanone	Na enolate	2,6-Hexamethylene-4-nitrophenol (62)	3. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.
Cyclodecanone	Na enolate	2,6-Heptamethylene-4-nitrophenol (6)	51E
Cycloundecanone	Na enolate	2,6-Octamethylene-4-nitrophenol (2)	343
Cyclododecanone	Na enolate	2,6-Nonamethylene-4-nitrophenol (28)	342
Cyclotridecanone	Na enolate	2,6-Decamethylene-4-nitrophenol (70)	342
Cyclotetradecanone	Na enolate	2,6-Undecamethylene-4-nitrophenol (64)	342
Cyclopentadecanone	Na enolate	2,6-Dodecamethylene-4-nitrophenol (74)	342
Cyclohexadecanone	Na enolate	2,6-Tridecamethylene-4-nitrophenol (63)	342
Cycloneptadecanone	Na enolate	2,6-Tetradecamethylene-4-nitrophenol (57)	3.19
Cyclodetadecanone	Na enolate	2,6-Pentadecamethylene-4-nitrophenol (40)	342
Cyclononadecanone	Na enolate	2,6-Hexadecamethylene-4-nitrophenol (43)	343

342 342 342		1017 1018 1018 1019	1020‡ 1020 1020 1017 1021 1031 1031 1031	1-dimethylamino
2,6-lieptadecamethylene-4-nitrophenol (47) 2,6-Octadecamethylene-4-nitrophenol (16) 2,6-lieptacosamethylene-4-nitrophenol	$A = CH_3CH_4CHCH_3NO_2$	OH,GOC(A)(O,H,m)CO,G,H, OH,GHC)(ON)(A)CO,G,H, C,H,GHC,ACN CH,GOCH(A)COOH, (80)	A = OH,OH,OH,OH,OH, ACHOOCH,HO,CH,II, (13) CH,OCHOOCH,II, (13) CH,OCHOOCH, (16) CH,CHC,NO,OH, (18) (CH,CHC,NO,OH, (18) CH,CHC,NO,OH, (18) CH,CHC,NO,OH,OH,OH CH,OCH,OHOOCH,	Note: Beferences (91-1015 are on pp. 645-555. Convent Admenta mans: Pythorispical(2.3.1) [bandea-1(11),4.0-time-11-0]. I salid but of 1-airo-1-binders, Bandea-polited of Northan temberations are mentioned. I salid but pettil, a number of insular products of Northan temberations are mentioned. I almentylmannos-abritotatus was employed instead of 2-airo-1-binders. I bandea of 2-airo-1-binders. I destributions was used. When the convesponding 1-dimethylamino-pupulous was employed, the yelds was seen was used. When the convesponding 1-dimethylamino-pupulous was employed, the yelds was seen was also also also also also also also al
Na enolate Na enolate Na enolate		Na NaOC;H ₃ KOC;H ₁₁ -4 Na	NaOC, H. NaOC, H. Na None NaOC, U. NaOH NaOH	5 are on pp. 545–555. 1 9-Nitrobicyclo[5.3.1]; enc. \$\theta\text{curve}\$ and repropert acception of anniar products of obtutane was employed acception. 1-dichylamino.
Cycloeicosanone Cycloleneicosanone Cyclotracontanone	1-Nuro-1-butene and	Ethyl n-propylacetoacetate Ethyl a-cyanobutyrate Benzyl cyanide† Acetylacetone	2-Nito-Lebetene and Deckly intoloute Brity! theoryumkonde Riby! conconcetale Riby! cyanoweckale! Riby! cyanoweckale! P. Mitopopane!! 2-Mitopopane!! Aretylacetone	Mod. References 101-1015 are on pp. 645-555. Cheward Address amen 'phytholytodic's Jipmiene-I(11),4/0-tri Instead of 'suffer-blackes, phitologopopy sectas was employed. If this period, a number of ments produced of Nichale condensate, I think princh, a number of ments produced of Nichale condensate, I shaneltylamno-2-autobatene was employed instead of 2-autor-1-actual — Identifylamno-2-autobatene was employed instead of 2-autor-1-actual — Identifylamno-2-autobatene was employed.

THE MICHAEL REACTION

compound was employed, the yield was somewhat higher.
I Instead of 2-nitro-1-butene, 1-dimethylamino-2-nitrobutane was employed.

CONTROPINA
NITK
ENIC
p-ETHYLENIC MITHO
ğ
WITH
EL CONDENSATIONS
MICHAEL (

SATE	מוזיניים מו		
Reactants	Catalyst	Product (Yield, %)	References
2-Nitro-2-butene and		$A = CH_3CHCH(NO_2)CH_3$	
Benzyl cyanide Nitroethane	NaOCH, [C,H,CH,N(CH,),]OH;	C _t U ₅ CH(A)NO ₂ (28)	85 1014
2-Nitropropane	NaOC ₂ U ₅ ; piperidine NaOC ₂ U ₅	(CH ₃);C(A)NO ₂ (47)	1014
2-Methyl-1-nitro-1-propene and		$A = (CH_1)_1 CCH_2 NO_1$	
Diethyl malonate Ethyl acetoacetate Ethyl cyanoacetate Benzyl cyanide p-Bromobenzyl cyanide Acetone	NaOC; H _s Na (C; H _s),N KOC; H ₁₁ -t KOC, H ₁₁ -t Na		1026 1017 1018 85 85 85 1022
1-Chloro-3-nitro-2-butene and		₹0/	
2-Nitropropane	NaOC, II,	04-N CH; (35-40)	1023
		(CH ₃),C(NO ₃)C(CH ₂);NO ₂ (10-12) CH ₃ C(NO ₃)=CHCH=-('(CH ₃), (3)	

ethyl malonate	Na	CH1CH1CH(CH1NO1)CH(CO1CH1), (95)	1020	
3,4,4,5,5,5-Heptaftuoro-1-nitro-1-pentene and	o-1-pentene and	$A = \mathrm{CF_1CF_2CF_2CHCH_3NO_3}$		
rtromethane rethyl malonate	NaOCH, NaOC,H,	ACH, NO, (88) ACH(CO, C, H,), (64)	863	
Nuro-3-hexene and rethyl malonate	NaOC2Hs	CH,CH,CH(NO,)CH(C,H,)CH(CO,C,H,);	1020	
thyl a-Nitro-y,y,y-trucklorocrotonale and thyl nitroacetato (C,E)	lonate and (C ₂ H ₂) ₁ NH	Cl ₂ CCH(CH(NO ₂)CO ₄ C ₂ H ₅) ₄ (34)	1024	
Narocyclohezene and Bromobenzył cyanide	кос,п"ч	OH(GN)C ₆ H ₄ Br-p	39	
Nikopropane	NaOC,H.	NO, (Mature of Lonears, 8) (CH1,),NO,	1014	
Note: References 491-1045 are on pp. 545-555.	are on pp. 545–555,	(91)		

TABLE XIX—Continued

Міснаєт Сох
релузатіому мітн α,β -Етнулеміс Nitho Compounds

		ORGAS	HG 1	GEACTIONS
References	813 813	8		329 1025 1017, 1025 1017 1025 1025 154 622 314 314
Product (Yield, %) A == CH ₂ CH ₂ (HCH(NO ₂)CO ₂ CH ₃	дс(NO ₂);СИ ₃ (61) (NO ₂);С(Д)СИ;СИ;СО;СИ ₃	Ethyl 3-(z-furyl)-2,1-dinitrobutaneate (95)	A . C. HICHEND	4CH(CO ₂ CH ₃); 4CH(CO ₂ C ₁ H ₃); 4CH(CO ₂ C ₁ H ₃); CH ₃ COCH(A)CO ₂ C ₂ H ₃ (88) CH ₃ COCH(A)COCH ₃ (78) CH ₃ COCH(A)COCH ₃ (86) ACH(CO ₂ CH ₃); ACH(CO ₂ CH ₃); (87)** CH ₃ CH(A)NO ₂ (94) ACH(CO ₂ CH ₃); (49); ACH(CO ₂ CH ₃); (49); CH ₃ COCH(A)CO ₂ CH ₃ ; (41) CH ₃ COCH(A)CO ₂ CH ₃ ; (41)
Catalyst	NaOH, aq. CH ₂ OH Na derivative, water	(C;H5);NH		Na NaOC; H ₂ Na; (C; H ₃) ₃ N Na; (C; H ₃) ₃ N Na, (C; H ₃) ₃ N (C; H ₃) (NaOC; H ₃ (NaOC;
Reactants Methyl 2-Nitro-2-pentenoate and	1,1-Dinitroethane Methyl 2,2-dinitrobutyrate	1- $(\alpha$ -Furyl)-2-nitrochylene and Ethyl nitroacetate	w-Nitrostyrene and	Dimethyl malonate Diethyl acetoacetate Ethyl acetoacetate Ethyl benzoylacetate Acetylacetone Benzoylacetone Benzoylacetone Benyl nitroacetate Phenylnitromethane o-Nitroslyrene and Dimethyl malonate Diethyl malonate Methyl acetoacetate

Ethyl acetoacetate Ethyl n-butylacetoacetate Methyl cyanoacetate Ethyl cyanoacetate Cyanoacetate	NaOC, II., NaOC, II., NaOCH, NaOC, II., NaOC, II.,	CH.COCHIA.POQ.C.H. (42) CH.COCCHIA.PAIALOQ.C.H. (91) ACII(CN)COQ.C.H. (93) ACII(CN)COQ.C.H. (73) (A.h.C.CN)CONH. (42)	344 344 344 344	
p-Nitrodyrrae and Durachly Insulandae Durbly Insulandae Durbly telahandae Bubly extraocrate Rhyl extraocrate Rhyl by Extraocrate Rhyl or Straocrate State of Straocrate	Naoch, Naoch, Naoch, Naoch, Naoch, Naoch, Naoch, Naoch, Naoch, Naoch, Naoch,	A = p-0,Nq,L(nt,CH, ACHICO,LH, (sit, ALOCOCCH), (sit, ACHICO,LH, (sit, ALOCOCCH), (sit, ACHICO,LH, (sit, ALOCOCCH,NO, CHICOTRO,CH, (sit, CHICOCCH,NO,CH, (sit) (sit, CHICOCCH,NO,CH, (sit, CHICOTRO,CH, (sit, CHICOCCH,NO,CH, CHICOTRO,CH, (sit) (ALOCORCOCCH, (sit) (ALOCORCOCCH, (sit) (ALOCORCOCCH, (sit) (ALOCORCOCCH, (sit) (ALOCORCOCCH, (sit)	22 24 24 24 24 24 24 24 24 24 24 24 24 2	THE MICHAEL REAC
β-Methyl-β-nitroetyrene and Diethyl malonate	Na enolate	Diethyl 3-mitro-2-phenylbutane-1,1-drearboxylate	98	CTION

Note: References 491-1045 are on pp. 545-555.

** The product was isolated as the oct-dictly lammonium salt,

If In eliver as solvent only one of the two disastrements is increed; in alcohol a matture of the two as obtained.

When the restron product as tooked up with acid, this compound is transformed facto 1, I-dente-bethoxy-2-plansylbulas3-one.

TABLE XIX—Continued

Міснает Сомбенватіонѕ мітії α, β -Етінхієміс Nitho Compounds

				ORG	ANI	C RE.	ACTIONS				
References		154, 1024		154, 1024		121	1021		1026	1026 1026	1020
dichael Confensations with aprelimitence Mino Coaroones Catalyst Product (Yield, %)		CH(CH(NO ₂)CO ₂ C ₂ H ₃); (x3, x3)**	(CH[CH(XO ₂)CO ₂ C ₂ H ₂]; (e2, b4)**		CHICH(NO,)CO,C,H,I, (53)**	с, и, сијси(хо,)со, си, ј, (та)	$A = C_{\rm H} C^{\rm HCH}(NO_2) CO_2 C_2 H_2$	3,3-Dicarbethoxy-1-nitro-2-phenylbutyric acid	diethylamide (82) CH,COCH(A)CO,C,H, (85) C,H,CH(A)CN (83) ACH(NO,)CO,C,H, (80, 84-08, 74)••	C4U4CU(A)NO ₂ (82)
caret condensations with	i§§ and	(C, II,),NII	le§§ and	(C,H,),NH	te§§ and	$(C_2H_\delta)_2$ NH	СН, ИН;; (С, Ц,), ИН		$(C_2H_b)_2NH$	(C,H _b),NH (C,H _b),NH (C,H _b),NH	(C,UL),NU
Reactants	Ethyl β-(2-Furyl)-α-nilroacrylulc§§ and	Ethyl nitroacetate	Ethyl α-Nitro-β-(2-pyridyl)acrylate§§ and	Ethyl nitroacetate	Ethyl α -Nitro- β -(3-pyridyl) α crylate $\S\S$ and	Ethyl nitroacetate	Methyl α-Nitrocinnamate§§ and Methyl nitroacetate	Elhyl a-Nitrocinnamale and	Diethyl malonate	Bthyl acctoacetato Bonzyl cyanide Ethyl nitroacetate§§	Phenylnitromethane

Ethyl a.zDimirocinnamatezz and Ethyl nitroacetate	(C,H,),NH	2-0,NC,H,CH(CH(NO,)CO,C,H,1, (82, 68)**	154, 1024
Elhyl a,3.Dınıtrocinnamale§§ and Ethyl nitroacetate	(C,H,),NH	3-0,NC,H,CH(CH(NO,1)CO,C,H,1, (90-95, 66)** 154, 1024	154, 1024
Ethyl a,4-Dinitroennamate and Ethyl weetoacetate	(C,Hg),NH	CHCOCH(CO,C,H,)CH(C,H,NO,-4).	1026
Ethyl mtroacetate§§	(C ₂ H ₄) ₂ NH	CH(NO,)CO,C,H, (65) 4-O,NC,H,CH(CH(NO,)CO,C,H,), (82, 60, 38)** 154, 1034.	154, 1024,
Ethyl 2-Hydroxy-a-nitrocinnamateş§ and Ethyl nitroacetake (C,H,	§ and (C,H,),NH	2-HOC,H,CHICH(NO,)CO,C,H,1, (90, 98)**	1026
Elhyl 4-Hydroxy-a-ndrocinnamale§§ and Elhyl ntroacetate (C,H,	§ and (C _t H ₅) _b NH	4-HOC,H,CH(CH(NO,)CO,C,H.1, (64)**	2
Elbyl 2-Chloro-æ-nitrocinnamaleşş and Ethyl mtroacetate (C _x	md (C ₂ H ₆) ₂ NH	2-Cic, H, CHICHICHO, 100, C. H. 1, 6973**	100
Elhyl 4-Chloro-x-nitrocinnamale and Ethyl aceloacetate	л (С,н,),ун	CHOOLING THOUSAND TO CONTROL	102, 1023
Ethyl cyanoacetate	(C,H,),NH	NOCHCOLO, H. NOHIC TO CLASSICAL COLORS	
Ethyl nitroacetate§§	(C,H,),NH	(85) 4-CIC, E.CHICH(NO.)CO.C. H. J. JOHNS.	1026
Note: References 481–1045 are on pp. 545–555. ** The product was isolated as the act-duthylammonium salt. §§ The unsaturated ester was formed as said from the ester of:	on pp. 545–555, the aci-diethylammonium sa wmed in silu from the ester	The The References 491-1045 are on pp. 545-555. ** The product was builded as the orderly framenium ash. §† The measurest detr was formed in suit from the ester of nitrocesis conducts.	104, 1024
		serie and and the appropriate aldehyde.	

Elhyl a,2-Dınılrocinnamate§§ and

THE MICHAEL REACTION

531

TABLE XIX—Continued

MICHAEL CONDENSATIONS WITH 4, B-ETHYLENIC NITRO COMPOUNDS

	, 1111	STRONG COUNTY OF THE PROPERTY	
Reactants	Catalyst	Product (Yield, %)	References
Ethyl 4-Methoxy-x-nitrocinnamate§§ and Ethyl nitroacetate (C.H	\$\$ and (C ₂ H ₅) ₂ NH	4-CH,OC,H,CH[CH(NO;)CO,C,H,I, (72)**	151
Ethyl β-Methyl-α-nitrocinnamate§§ and Ethyl nitroacetate	CeneCH2N(CH3)3]OCeH9-n	und [C _e H _s CH _s N(CH _s) _s]0C _e H _s -n Diethyl 1,3-dinitro-2-methyl-2-phenylglutarate (70)	151
Ethyl Cyclohexylidenenitroacetate and	and		
Ethyl nitroacetate	[C,H,CH,N(CH,),]0C,H,-n	CH(NO ₂)CO ₂ C ₂ H ₃ CH(NO ₂)CO ₂ C ₂ H ₃	154
Ethyl &-Nitro-b-propylacrylatc§§ and	pı	(19)	
Ethyl nitroacetate	(C,H,),NH	Diethyl 1,9-dinitro-2-n-propylglutarate (95)**	623
Ethyl β-Isopropyl-α-nitroacrylate§§ and Ethyl nitroacetate (C ₂)	and (C _z H _s) _z NH	Diethyl 1,3-dinitro-2-isopropylglutarate••	60
Elhyl β-Isobutyl-α-nitroacrylate§§ and Ethyl nitroacetate	nd (C,H,),NH	Diethyl 1,3-dinitro-2-isobutylglutarata (1901••	ļ 62
2-Nitro-2-phenyl-1-(3'-pyridyl)ethyleneff and Phenylnitromethane CH3NH2	encf.{' and CH ₃ NH ₂	13-Dinitro-1 9 dist to m.	;
		., zamaca, r., z-mpheny 1-z-(3'-pyridy 1)propane (48)	នូ

Dmethyl malonate	NaOCH	ACH(CO ₄ CH ₁) ₂ (85)	965
Dethyl malonate	NaOC,H,	ACH(CO,C,H,), (29)	29, 905
		ACH(CO,C,IL,), (two isomers, 87)***	86
Ethyl acetoacetate	NaOC, H	CH,COCH(A)CO,C,H, (42)	29
Ethyl cyanoacetate	NaOC, II,	C.H.OH, NO, and C.II, OH C/CN)CO, C.H. (60)	28
Acetylacetone	NaOC, H,		55
Phenylacetone	NaOC,H,	C,H,CH(A)COCH, (13); C,H,CH,NO, and	88
		C,H,CH=C(C,H,)COCH,	
Benzoylacetone	NaOC,H,	C,H,COCH(A)COCH, (21)	29
Thenylnitromethane + + +	CH,NH,	C,H,CH(A)NO,; 1-nitro-1,2,3-triphenyl-1-	i

C.H.COCH,CH(NO2)CH(C,H,)CH(CO.CH2) propene; 3,4,5-triphenylsoxazole (65);;; NaOCH, 3-Nuro-1,4-diphenyl-3-bulen-1-one and Dimethyl malonate

THE MICHAEL REACTION

1027

Note: References 491-1045 are on pp. 645-555.

** The product was isolated as the act-diethylanmonum salt,

§§ The unsaturated ester was formed in situ from the ester of nitroacetic acid and the appropriate aldehyde. |||| The unsaturated ester was formed in sifu from ethyl nitroacetate and the appropriate ketone.

17 This compound was formed to a stat from pyridine-Searboxaldshyde and pleaylantromethane. Byon separation of the two isomess, yields of 47 and 17%, respectively, of the pure compounds were obtained.

111 This resiston takes place when benzulebryck and phenylationnethane are condemed in the presence of methylamine.
117 This product is obtained at -20°1, at -6°0°1, at 3°0% yield of C,H,CH(CH(CO,CH,1);CH=CH(CO,H), so obtained, and at -33° 10% of an undentified product, CoLi,NO, which gives the same 2,4 dimitrophenylhydrazone as the products obtained at the lower temperature, 1020

TABLE XIX—Continued

Міснает Сонdensations with α, β -Етнуlenic Nitro Compounds

References Product (Yield, %) Catalyst **\beta-Nitrobenzylideneacetophenone and** Reactant

NaOCH,

Dimethyl malonate

C, H, CH=C(CH(CO, CH,),]COC, H, (20)

CH₂C₆H₆

1029

C,H,COCH =C(NO2)CH2C,H5 and

NaOCH,

Diethyl malonate

Note: References 491-1045 are on pp. 545-555.

Note: References 491-1045 are on pp. 545-555.

MICHAEL CONDENSATIONS WITH A, B-ETHYLENIC SULFONES TABLE XX

	MICHAEL CONDENSATIONS	MICHAEL CONDENSATIONS WITH UP THE THEORY COMPONENT	
Reactants	Catalyst	Product (Yield, %)	References
Methyl Vanyl Sulfone and		A == CH,SO,CH,CH,-	
Preiby molonate	IC.H.CH.NICH.NIOH	(4),C(CO,C,H,), (61)	118
Diethyl phenylmalonate	ICH CH NICH) JOH	AC(C,H,)(CO,C,H,), (58)	118
Ethel acetosciate	IC.H.CH.NICH.), 10H	CH. COC(A), CO. C. H. (70)	118
Ethyl evanoacetate	C. E. CH, N(CH,), JOH	NCC(A),CO,C,H, (81)	118
Benzyl cyanide	C. II, CH, N(CH,), JOH	NCC(A), C.H. (68)	118
Acetylacetone	[C,H,CH,N(CH,),]OH	CH, COC(A), COCH, (36), CH, COCH(A), (24)	118
Phenylacetone	[C,H,CH,N(CH,),)OH	C,H,OH(A)COCH, (61)	118
Nitromethane	Аф. КОП	(A),CNO, (50)	1030
p-Bromophenylnstromethane	[CII,N(C,H,),]OH	p-BrC, H, CH(A)NO, (50)	1030
Phenacyl p-tolyl sulfone	[C,H,CH,N(CH,),JOH	C,H,COCH(A)SO,C,H,CH,-P (61)	118
Bisbenzenesulfonylmethans	[C,H,CH,N(CH,),]OH	(A),C(SO,C,H,), (82)	118
Bismethanesulfonyimethane	[C,H,CH,N(CH,),]011	(A) ₂ C(SO ₃ CH ₂) ₂ (84)	118
Vinyl n-Bulyl Sulfone and		A = n.C,H,SO,CH,CH,—	
Nitroethane	Aq. NaOii	ACH(CH,)NO, (45), (A),C(CH,)NO, (13)	1030
1-Nitropropane	Aq. KOH Aq. NaOH	(A),C(CH,)NO, (75)	1030
		(at) for (felicity and low) felicity	near
and thought autions and			
p-Bromophenylnitromethane	NaOII	i-C ₄ H ₂ SO ₂ CH ₃ CH ₄ CH(NO ₂)C ₄ H ₄ Br-p (30)	1030
Divingl Sulfone and			
2-Nitropropane	Аф. КОН	O,S(CH,CH,C(CH,),NO,),	1030

TABLE XX—Continued

	Michael Condensati	Michael Condensations with α, β -Ethylenic Sulfones		6
Benefants	Catalyst	Product (Yield, %)	References	
Vinul n- Tolul Sulfone and		$A = p \cdot \mathrm{CH_3C_6H_4SO_2CH_2} -$		
Nitromethane	NnOCH ₃	(A)2CHNO2 (91)	1031	
1-Nitropropane	Aq. KOH	(A)2C(C,H ₅)NO ₂	1030	
2-Nitropropane	aq. non	3) v/1-1) 3/6-1-1		
Phenyl Slyryl Sulfone and		:		
Diethyl malonate	Na	$C_6H_5SO_2CH_2CH(C_6H_5)CH(CO_2C_2H_5)_2$ (97)	1031	OR
n-Tolul Sturnl Sulfone and				GA
Diethyl malonate	Na	p-CH ₃ C ₆ H ₄ SO ₂ CH ₂ CH(C ₆ H ₅)CH(CO ₂ C ₂ H ₅) ₂ (quant.)	1032	NIC
				R
Distyryl Sulfone and				\mathbf{E}^{A}
Diethyl malonate	Na	O.S[CH.CH(C,H,)CH(CO.C.H,),], (74)	1033	CT
71. 101 IV C. 1 71 1	::: ::::::::::::::::::::::::::::::::::	HOVE ON HO HO TO		10
rmylsutjonic Acid IX-Einylanitiae and	wae ana			NS
Nitromethane	кон, сн,он	(A) ₃ CNO ₂ (3S-4S)	358	
	Excess KOH, CH,OH	(A) ₂ CHNO ₂ (18)	358	
Nitroethane	кон, сн,он	(A) ₂ C(NO ₂)CH ₃ (18-61), ACH(NO ₂)CH ₃ (31-44)	358	
1-Nitropropane	кон, сн.он	(A),C(NO,)CH,CH, (31), ACH(NO,)CH,CH, (35-40)	358 358 378	
z-mitopropanie	MOH, CHOOR	$(\operatorname{CH}_3)_{\mathfrak{g}}\operatorname{C}(A)\operatorname{NO}_{\mathfrak{g}}$ (53)	202	
Vinyldimethylsulfonium Bromide and	ide and			
Diethyl malonate	Aq. NaOH	3,9-Dicarbethoxypropyldimethylsulfonium salt (48)	61	
Methyl acetoacetate	Aq. NaOH	(8-Acetyl-3-carbomethoxypropyl)dimethylsulfonium	65	
Market Market Company	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	promitee (ps)		

Note: References 401-1045 are on pp. 545-555.

TABLE XXI

MICHAEL CONDENSATIONS WITH 2- AND 4-VINTLPIRIDINE, WITH ANALOGS OF 2-VINTLPIRIDINE, AND WITH DILITIYL VINYLPHOSPHONATE

		THE M	CHAEL RE	MULTUR	•		
	References	1034	1031 1037, 1035 1038 1038 1038	1039, 1040	1034, 1035 1038	1041	
A. 2-Vanylpyridine	Product (Yield, %) $A = \bigvee_{N} CH_{s}CH_{s} -$	ACH(CO ₂ C ₂ H ₂) ₂ (53) ACH(CO ₂ C ₂ H ₂) ₂ (84, 42-43, 62)	(A) _L C(CO ₂ C,H ₁), (42–43) ACC ₄ C,H ₂ (CO ₂ C,H ₁), (38) (CH ₃) _L C(A)CO ₂ C,H ₁ (48) C,H ₂ CH(A)CO ₂ C,H ₁	CH(A)CO,C,H, (41, 81)	CH,COCH(A)CO,C,H, (58, 50) CH,COC(C,H,***)(A)CO,C,H, (3)	0 0 00,0,5,H, (42)	
A. 2.	Catalyst	Na NaOC ₂ H _k	Na Na [O,H,CH,N(CH ₂) ₃]OH	NaOC, H.	Na, NaOC,H, Na,	Na	n are pp. 545-555.
	Donor	Diethyl malonate	Diethyl ethylmalonate Ethyl sobulyrate Ethyl phenylacetate	Ethyl 2-pyridylacetate	Ethyl acetoacetate Ethyl n-butylacetoacetate	2-Carbethoxycyclopentanone	Note: References 491-1045 on are pp. 515-555.

TABLE XXI—Continued

		ORGANIC	REAC	TIO	NS							
	References	490 1038	490	798	798	1042	1038 1038		1038	1035	1038	1038
A. 2-Vinylpyridine—Continued	Product (Yield, %) $A = \bigcup_{\mathbf{N}} \mathbf{CH_2} \mathbf{CH_2} = \mathbf{CH_2}$	C,H,COCH(A)CO ₂ C ₂ H ₅ (70) C,H,COCH(A)CO ₂ C ₂ H ₅ O	A (40)	ACH(CN)CO ₂ C ₂ H ₆ (48)	$\mathrm{CH_3CH}(A)\mathrm{CN}$ (19); $\mathrm{CH_3C}(A)_2\mathrm{CN}$ (39) $\mathrm{C_6H_5CH}(A)\mathrm{CN}$ (77)	CH ₃ CH(A)COCH ₃	OH,COCH(A)COCH, (53), CH,C(A),COCH, (31) CH,COCH(A)CH, (71), CH,COC(A),CH, (31)	$ACH_2COC(A)_2CH_3$ (16)	CH ₃ CH ₂ COCH(A)CH ₃ (53), CH ₃ CH ₂ COC(A) ₂ CH ₃ (32)	CH ₃ COCH(A)COCH ₃ (16), CH ₃ COC(A) ₂ COCH ₃ (7)	$CH_3COC(A)(CH_3)_2$ (65), $ACH_2COC(A)(CH_3)_2$ (31), (4), $CHCOC(A)(CH_2)_2$ (39)	CH ₃ COC(A)CH(CH ₃) ₂ (20) CH ₃ COC(A) ₂ CH(CH ₃) ₂ (34), ACH ₂ COC(A) ₂ CH(CH ₃) ₂ (13)
A. 2-Ving	Catalyst	Na [C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH	Na	Na	Na Na	None	[C ₆ H ₅ CH ₂ N(CH ₃) ₃]OH	34	Na	$NaOC_2H_b$	Na	Na
	Donor	Ethyl benzoylacetate	y-Acetyl-y-butyrolactone	Ethyl cyanoacetate	Propionitrile Benzyl cyanide	Methyl ethyl ketone			Diethyl ketone	Acetylacetone	Methyl isopropyl ketone	Methyl isobutyl ketone

Disopropyl ketone	Na	(CH ₁),CHCOC(A)(CH ₁), (72), ICH: 1.C(A)(CO(A)(CH ₁), (5)	1038	
Hethyl n-amyl ketone	Na ro m.ch. N.ch. 1.10H	5 5	1038 1038	
Dusobutyl ketone	Na		1038	
2,5,6.Trimethyl-4-hepten-3-one* Na Acetophenone Na	Na Na Pre H CH MCH 130 H	(CH ₁) ₁ C(A)COCH—C(CH ₁)CH(CH ₂), (29) C ₁ H ₂ COCH ₂ A (8), C ₁ H ₂ COCH(A), (55) C ₁ H ₂ COCH ₂ A (1)	1038 1038	
Phenylacetone	NaOC,H,	CH,COCH, JC, H, (82)	1041	TH
Proprophenone	Na Na		1038	EM
Deoxybenzom	NaOC ₂ H _s		1041	ICH
2-Acetylfuran	[C,H,CH,N(CH,),]OH	Coch, A (8)	1038	AEL RI
2-Picoline	Na	1,3.Di-(a.pyridyl)propane (33)	454	SACI
		no o		101

Note: References 491-1015 are on pp. 615-656. " This kefone was formed and reacked when methyl isopropyl ketone was brought together with sodium metal and 2-vmylpyridine.

ķ

4-Hydroxycoumarm

480

TABLE XXI-Continued

A. 2-Vinylpyridine—Continued

		ORGANIO	,
References	400	805a	
Product (Yield, %)	$\text{CH}_{2}\text{CH}_{2}\text{CH}(\text{CH}_{3})\text{COC}_{6}\text{H}_{4}\text{OH-2}$	CHICH— (50)	
Catalyst	Ŋ,	Li salt	
Вопот	3-Methyl-f-hydroxycoumarin	1-Cyano-2-benzoyl-1,2-dihydro Li salt boquinoline	

ž z

Ethyl benzoylacetate

y-Picaline

1041

484

Reactants

C. Analogs of 2-Vinylpyridine

2. Vinylquinoline; and

Ethyl benzoylacetate Ethyl acetoacetate Diethyl malonate

NaOC,H, NaOC,H, NaOC,H,

CH3COCH(A)CO2C2H5 (44) C2H5COCH(A)CO2C2H5 (33) ACH(CO2C2H5), (43)

NN CH. CH. −

Dethyl malonate

Catalyst NaOC, II,

D. Duelhyl Vinylphosphonaleset

Product (Yield, %)

4CII(CO,C,II,), (80)

 $A = (C_1 \Pi_1 O)_1 P(O) C \Pi_1 C \Pi_2 -$

Diethyl methylmslonate Diethyl ethylmalonate Diethyl malonate Donor

Dethyl n propylmalonate

thyl n-propylacetoacetate nethyl n-butylmalonate thyl acetoacetate

Ethyl methylcyanoacetate Sthyl ethylcyanoacetate Sthyl cyanoacetate

CH,COC(A)C,H,~nCO,C,H, (10)
NCCHA(CH,CO,C,H, (10)
NCC(A)(CH,CO,C,H, (10)
NCC(A)(CH,CO,C,H, (10)

n-C,H,C(A)(CO,C,H,), (80) CH,COCH(A)(CO,C,H, (15) 2,II,C(A)(CO,C,II,), (59) 4-C,II,C(A)(CO,C,II,), (78) 2H,C(A)(CO,C,H,), (70)

> Ethyl 1sopropyleyanoacetate Ethyl n-butyleyanoacetate Benzyl cyanide

NCC(A)(C, H, n)CO,C, II, (78) NCC(A)(C, II,-i)CO,C, II, (84)

L.II,C(A),CN (8)

Note: References 491-1645 are on pp. 545-555,

† This product is obtained after hydrolysis and decarboxylation

§ When this compound was formed in situ from 1-(β dimethylaminocthyl)isoquinoline methiodide, a more complex reaction This compound was formed in situ from 2-(\$-diethylamincethyl)quinoline methosulfate. product was obtained

50

TABLE XXII

Donors Used in Michael Condensations

Malonates, RCH(CO₂C₂H₅)₂: R = H, Cl, Br, NO₂, methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, β-methoxyethyl, β-ethoxyethyl, phenyl, benzyl, phenethyl, 1-naphthyl, 1-naphthyl, 1-naphthyl, 2-naphthyl, 2-naphthylmethyl, β-(2-naphthylethyl); β-aldehydoethyl, β-aldehydopropyl, acetoxy, formamido, acetamido, phthalimido, R'O₂CCH₂—, (R'O₂C)₂CH—, R'O₂CCH(CH₃)-CH(CO₂R')—, CH₂=C(CO₂C₂H₅)—, β-ionylideneacetyl, isobutyryl.

Dibenzyl malonate, malonamide, ethyl malonamate, ethyl malonamidinate, diethyl α -cyano- β -methylsuccinate, diethyl α -cyano- β , β -dimethylglutarate.

Cyanoacetates, RCH(CN)CO₂C₂H₅: R = H, methyl, ethyl, isopropyl, n-butyl, phenyl, phenethyl, β -aldehydoethyl, acetamido, R'O₂C(CH₂)₃-C(CH₃)(CN)—.

Acetoacetates, $CH_3COCHRCO_2C_2H_5$: R = H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isoamyl, hexyl, phenyl, benzyl, allyl; acetoacetanilide. Ethyl iminoacetoacetate, $CH_3C(=NH)CH_2CO_2C_2H_5$, and its N-methyl derivative; ethyl iminomethylacetoacetate, $CH_3C(=NH)CH(CH_3)CO_2C_2H_5$.

Other ketonic esters: ethyl propionylacetate, butyrylacetate, isobutyrylacetate, hexanoylacetate, γ -ethoxyacetoacetate, palmitoylacetate, stearoylacetate; diethyl acetone-1,3-dicarboxylate, ethyl isobutyrylisobutyrate, ethyl α -acetylsuccinate, ethyl α -acetyladipate, $C_2H_5O_2CCH_2CH_2COCH(CH_3)$ - $CO_2C_2H_5$, ethyl benzoylacetate, ethyl 2-oxocyclohexane-1-carboxylate and its 3-methyl derivative, ethyl 2-oxocyclopentane-1-carboxylate and its 5-methyl derivative, higher cycloalkanone-2-carboxylates, 2-carbomethoxy-1-tetralone, methyl 1-keto-1,2,3,4-tetrahydrophenanthrene-2-carboxylate, ethyl camphor-3-carboxylate, 3-ethoxy-5,5-dimethyl-6-carbethoxy-2-cyclohexen-1-one, ethyl phenylpyruvate (α -keto ester).

Monocarboxylic acid esters: ethyl acetate, ethyl isobutyrate, diethyl glutaconate, diethyl itaconate, ethyl phenylacetate (also $m\text{-NO}_2$, $p\text{-NO}_2$, Cl, Br, and C_2H_5 analogs) and its $\alpha\text{-ethyl}$, n-propyl, n-butyl, isobutyl derivatives, ethyl furan-2-acetate, ethyl thiophene-2-acetate, ethyl $\alpha\text{-naphthylacetate}$, methyl diphenylacetate, ethyl $\alpha\text{-pyridylacetate}$, triethyl phosphonoacetate, triethyl $\alpha\text{-phosphonohexanoate}$.

Ketones: acetone, methyl ethyl ketone, methyl n-propyl ketone,* methyl isopropyl ketone,* methyl isobutyl ketone,* pinacolone, methyl n-butyl ketone,* methyl n-amyl ketone,* diisopropyl ketone,* diisobutyl ketone, isopropyl n-amyl ketone,* isopropyl n-nonyl ketone,* methyl β -cyanoethyl ketone, β , β -diethoxyethyl alkyl ketones, acetylacetone, acetonylacetone,* heptadecane-2,4-dione, octadecane-2,4-dione, isobutyrylacetone, diisobutyrylmethane, cyclopentanone, 2-methylcyclopentane-1,3-dione, cyclohexanone,

* Condensed only with acrylonitrile as acceptor.

2. 3. and (methylcylobetanione, carrennee, dibydro- and tetrahydro-carrence, carrenae, carren

Actophenone, phrajacetom, prepaphenone, asobut prophenone, bennzylactone, dibernj keton, denzybenala, pphenialetj libipeni, dibernsylmethane, 1.2-dibernsylethane, z-methyl-z-n-butylacetophenone, z-methyl-z-n-butylacetophenone, z-wethyl-z-n-propylacetophenone, z-burylacetophenone, z-wethyl-z-n-propylacetophenone, z-burylacetophenone, discherance and life debazyldene derivative, z-adebly-do-de-pre-abovy- and p-carbomethoxyphenylyetoberance, z-phenylycetophenone.

2-Actt/furan, 6-Inethyl?-actf/furan, 2-propon/furan, 6-Inethyl?-propon/furan, 2-5-Inethyl?-actf/furan, 2-5-Inethyl?-propon/furan, 2-5-Inethyl?-propon/furan, 2-5-Inethyl?-propon/furan, 2-2-Inethyl?-I

Aldehydes: acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, diethylacetaldehyde, heptaldehyde, 2-chylhexanal, diethylacetaldehyde, phenylacetaldehyde, x-phenylpropionaldehyde, 2

Nutries: malonominie, accionitiele, proposatielle, cyanosectamide and its Nallyj derivatives plans lyanide and its derivatives nuclearly substituted by e-Cl, mcl, Br, Clip, Nil, p-Br, Clip, OCII, NCi; benzyl cyanide seaubstituted by methyl, chipl, uspropyli, n-butyl, n-pentyl, Sentelhylbutyl, (1-cyclo-heavyl), (g-blobeyl), (g-bl

Condensed only with acrylonitrile as acceptor.

TABLE XXII-Continued

DONORS USED IN MICHAEL CONDENSATIONS

Nitro compounds: nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, 1-nitroisobutane, β , β -dinitroethanol, methyl 2-nitropropyl ether, methyl 2-nitropropyl sulfide, butyl 3-nitrobutyl sulfone, nitrocyclohexane, dinitromethane, phenylnitromethane and its p-bromo derivative, methyl 2-nitro-1-phenylpropyl ether, methyl and ethyl nitroacetates, methyl γ , dinitrobutyrate, diethyl nitromalonate, 1,1-dinitroethane.

Sulfones: phenyl benzyl sulfone, p-tolyl benzyl sulfone, allyl p-tolyl sulfone, ethyl p-toluenesulfoacetate, phenacyl p-tolyl sulfone, bis(benzenesulfonyl)methane, bis(methanesulfonyl)methane.

Hydrocarbons and derivatives: cyclopentadiene, divinylmethane, indene, 1-isopropylideneindene, fluorene, 2-nitrofluorene, 2,7-dibromofluorene, 1-methylfluorene, 9-phenylfluorene, 9-hydroxyfluorene, fluorene-9-carboxylates, ethyl 1-methylfluorene-9-carboxylate, 1,2,3,4-tetrahydrofluoranthene, 2,3,4-trimethyl-1,2-dihydrofluoranthene, 4,5-methylenephenanthrene, methyl 4-cyclopenta[def]phenanthrene-4-carboxylate.

Miscellaneous donors (of occasional use): α-aceto-γ-butyrolactone, ethyl oxaloacetate and its α-methyl derivative, ethyl β -methyl-γ-nitrobutyrate, diethyl succinate, isophorone, 1-formyl-2-keto-10-methyl- $\Delta^{3,6}$ -hexahydronaphthalene, α-naphthol (keto form), ethyl 4-hydroxy-2,3-benzofuran-5-carboxylate (keto form), 4-hydroxycoumarin (keto form), 2-hydroxy-1,4-naphthoquinone (keto form), 2-acetyl-5-cyclohexan-1-one, ethyl (3,4-dihydro-1-naphthyl)cyanoacetate, ethyl (1-methyl-1,2,5,6-tetrahydro-4-pyridyl)acetate, α- and γ-picoline, α- and γ-quinaldine, rhodanine, Inhoffen ketone, kojic acid, 1-methyloxindole, 1,3-dimethyloxindole, methyl oxindole-3-propionate, 2,3-dihydro-2-phenylbenzo-γ-pyrone.

* Condensed only with acrylonitrile as acceptor.

REFERENCES FOR TABLES I-XXII

- *** Warner and Moe, U.S pat. 2,520,668 [C.A. 45, 643 (1951)]. *** Warner and Moe, U.S. pat 2,575,375 [C A . 46, 5081 (1952)].
- 400 Mos and Warner, U.S. pat 2,540,053 [C.A. 45, 5720 (1951)]
- 484 Warner and Moe, US pat 2,523,745 [C 4 , 45, 5719 (1951)].
- 488 Warner and Moe. U S pat 2,523,743 [C A . 45, 5718 (1951)]
- 48 Yamada, Chibata, and Tsurus, J. Phorm. Soc. Jupon, 73, 123 (1953) [C.A., 47, 11132
- 317 Harner and Mor. US pat 2,346,938 [CA. 45, 8035 (1951)].
- 409 Jacquar, Zagdoun, and Fontaine, Bull soc thim. France, 1953, 25
- *** Mousseron, Jacquier, Fontaine, and Zagdoun, Bull. soc chim France, 1954, 1246.
- *** Mos and Warner, U.S. pat 2,610,204 [C.A. 47, 5961 (1953)] ses Jacquier and Fontaine, Bull soc chim France, 1952, 248
- 105 Warner and Moe, US pat 2,532,047 (C A , 45, 2971 (1951))
- *** Warner and Moo, U S pat 2,532,048 [C 4 . 45, 2971 (1951)] see Mos and Warner, US pat 2,551,568 [C.4.46, 133 (1952)]
- 500 Smith, U S pat 2,516,729 [C.4.45, 6217 (1951)]
- 5m bbechter, Ley, and Zeldin, J. Am Chem. Soc., 74, 3664 (1952) ser Harmr and Moe, J Am Chem Sor , 74, 1064 (1952)
- *** NV de Batanfsche Petroleum Maatschappij Brit pat 686,623 [C.A., 46, 11230 (1952)1
 - *** Moe and Warner, U.S. pat 2,599,653 [C.A., 47, 3339 (1953)].
 - ats Mos and Warner, U.S. pat 2,548,960 [C.A. 45, 8036 (1951)] 411 Moe and Warner, U S pat 2.540,054 [C A . 45, 5720 (1951)]
- 610 Mukherjoe and Bhattacharyya, J Indian Chem. Soc. 23, 451 (1946) [C.A., 42, 128 (1948))
 - *** Datiliers Company Ltd , British pat 706,176 [C.A., 49, 9030 (1955)].
 - 414 Dornow and Karlson, Ber , 73, 542 (1940).
 - sts Baumgarten and Dornow, Ber., 72, 503 (1939).
 - *** Fischer and Hultrach, Her , 68, 1726 (1935).
 - 417 Weizmann, Brit, pat 594,182 [C.4 , 42, 2986 (1948)] 414 Weizmann, US pat 2,472,135 [C A , 43, 6654 (1949)]
 - 410 Moe and Warner, US pat 2,523,710 [C.A., 45, 5717 (1951)] *** Moe and Warner, US pat 2,628,980 [C A , 48, 724 (1954)]

 - 11 Dornow and Hargesheimer, Chem Ber., 86, 461 (1953) 48 Kress, U S pat 2,540,257 [C A . 45, 5720 (1951)]
- 148 Tauruta, Bull Inet, Chem. Research, Kyoto Umv , 31, 190 (1953) [C.A., 49, 6183 (1955)].
 - *** Rhingemith, J Am Chem Soc., 58, 596 (1936) 144 Nazarov and Zav'yalov, Itvest Akad, Nauk SSS R. Oldel, Khim Nauk, 1952, 300
- [C.A., 47, 5364 (1953)]
 - 344 Boshme and Mundlos, Chem Ber , 88, 1414 (1953), 41 Walker, J. Chem. Soc., 1935, 1585
- 184 Wieland and Miescher, Helv. Chim. Acta, 33, 2215 (1950), of Miescher and Wieland abed , 33, 1847 (1950)
- 140 Dauben, Tweet, and MacLean, J Am Chem Soc , 77, 48 (1955). 440 Dresding and Tomasewski, J. Am Chem. Soc , 77, 411 (1955).
- 811 Stork, Bull soc chim. France, 1955, 256
 - us Wilds and Worth, J Org Chem . 17, 1149 (1952).
 - 500 Wilds and Werth, J. Org Chem , 17, 1154 (1952)
 - 184 Chem Warke Huels, Ger pat 833,645 [C A 47, 2205 (1953)]
 - Stork, Terrell, and Samuszkovicz, J Am Chem Soc., 76, 2029 (1954). see Walker, J Am Chem Soc , 77, 3665 (1955)
 - 187 Ralle, Wildman, McCaleb, and Wilds, U S pat. 2,574,627 [C.A., 49, 1813 (1955)]. 510 Nazarov and Zav'yalov, Zhur Obshchel Khim , 23, 1703 (1953) [C A , 48, 13667 (1954)]

- 539 Wendler and Slates, U.S. pat. 2,542,223 [C.A., 45, 7599 (1951)].
- 540 Poos, Arth, Beyler, and Sarett, J. Am. Chem. Soc., 75, 422 (1953).
- 541 Sarett and Beyler, U.S. pat. 2,617,828 [C.A., 47, 9365 (1953)].
- Wieland, Ueberwasser, Anner, and Miescher, Helv. Ohim. Acta, 36, 1231 (1953).
- 543 British Colanese Ltd., Brit. pat. 671,412 [C.A., 47, 2198 (1953)].
- 544 Stubbs and Tucker, J. Chem. Soc., 1950, 3288.
- Dannenberg and Dannenberg-von Dresler, Ann., 593, 232 (1955).
- ⁵⁴⁵ Leonard and Simon, J. Org. Chem., 17, 1262 (1952).
- 547 Mariella, Org. Syntheses, 32, 32 (1952).
- ⁵⁴⁸ Wilds and Djerassi, J. Am. Chem. Soc., 68, 1715 (1946).
- 540 Blaise and Maire, Bull. soc. chim. France, [4], 3, 421 (1908).
- 550 Blaise and Maire, Bull. soc. chim. France, [4], 3, 413 (1908).
- ⁵⁵¹ Woodward, Sondheimer, Taub, Heusler, and McLamore, J. Am. Chem. Soc., 74, 4223 (1952).
 - 552 Dreux, Bull. soc. chim. France, 1954, 1443.
 - van Wagtendonk and Wibaut, Rec. trav. chim., 61, 728 (1942).
 - ⁵⁵⁴ Mariella and Leech, J. Am. Chem. Soc., 71, 331 (1949).
 - 555 Guareschi, Chem. Zentr., 1899, I, 289.
 - ⁵⁵⁶ Moir, J. Chem. Soc., 81, 113 (1902).
 - ⁵⁵⁷ Basu, J. Indian Chem. Soc., 12, 289 (1935) [C.A., 29, 6891 (1935)].
 - 558 Steiner and Willhalm, Helv. Chim. Acta, 35, 1752 (1952).
 - 558a Stobbe, Ber., 34, 1955 (1901).
 - 589 Qudrat-I-Khuda, J. Chem. Soc., 1929, 201.
 - 560 Smith and Engelhardt, J. Am. Chem. Soc., 71, 2671, 2676 (1949).
 - 561 France, Maitland, and Tucker, J. Chem. Soc., 1937, 1739.
 - 562 Prelog, Komzak, and Moor, Helv. Chim. Acta, 25, 1654 (1942).
 - 563 Oparina, Ber., 64, 569 (1931).
 - ⁵⁶⁴ Kochetkov, Doklady Akad. Nauk S.S.S.R., 84, 289 (1952) [C.A., 47, 3309 (1953)].
 - 565 Eccott and Linstead, J. Chem. Soc., 1930, 905.
 - 566 Qudrat-I-Khuda, J. Chem. Soc., 1929, 1913.
 - ⁸⁰⁷ Frank and Hall, Jr., J. Am. Chem. Soc., 72, 1645 (1950).
 - 568 Crossley, Proc. Chem. Soc., 17, 172 (1901).
 - 569 Bardhan, J. Chem. Soc., 1928, 2604.
 - 570 Kon and Linstead, J. Chem. Soc., 127, 815 (1925).
 - 671 Kon and Leton, J. Chem. Soc., 1931, 2496.
 - 572 Birch and Robinson, J. Chem. Soc., 1942, 488.
 - 573 Allen and Cressman, J. Am. Chem. Soc., 55, 2953 (1933).
 - 574 Abdullah, J. Indian Chem. Soc., 12, 62 (1935) [C.A., 29, 3995 (1935)].
 - 575 Allen and Barker, J. Am. Chem. Soc., 54, 736 (1932).
 - ⁶⁷⁶ Allen and Bridgess, J. Am. Chem. Soc., 51, 2151 (1929).
 - ⁵⁷⁷ Walker, J. Chem. Soc., 1939, 120.
 - 678 Rosenmund, Herzberg, and Schütt, Chem. Ber., 87, 1258 (1954).
 - ⁶⁷⁹ Vorlaender, Ber., 27, 2053 (1894).
 - 580 Gohdes, J. prakt. Chem., [2], 123, 169 (1929).
 - 681 Albertson, J. Am. Chem. Soc., 72, 2594 (1950).
 - 582 Baddar and Warren, J. Chem. Soc., 1939, 944.
 - 583 Zaugg, J. Am. Chem. Soc., 71, 1890 (1949).
 - 564 Seidman, Robertson, and Link, J. Am. Chem. Soc., 72, 5193 (1950).
 - 585 Starr and Haber, U.S. pat. 2,666,064 [C.A., 49, 380 (1955)].
 - 536 Kuhn and Woiser, Chem. Ber., 88, 1601 (1955).
 - 587 Hinkel, Ayling, and Dippy, J. Chem. Soc., 1935, 539.
 - 508 Horning and Field, J. Am. Chem. Soc., 68, 387 (1946).
 - 589 Friedmann, J. prakt. Chem., [2], 146, 71 (1936).
 - 490 Hinkel and Dippy, J. Chem. Soc., 1930, 1387.
 - ⁵⁹¹ Barat, J. Indian Chem. Soc., 8, 699 (1931) [C.A., 26, 1608 (1932)].
 - ⁶⁹² Basu, J. Indian Chem. Soc., 7, 481 (1930) [C.A., 24, 5752 (1930)].

- *** Linstead and Williams, J. Chem. Soc., 1926, 2735.
- *** Basu, J. Indian Chem Soc. 8, 119 (1931) [C A., 25, 4881 (1931)].
- *** Friedmann, J. prakt. Chem , [2], 146, 65 (1936).
- ** Mukhern, Science and Culture India, 13, 39 (1947) [C.A., 42, 2957 (1948)]. *** Profit. Rungo, and Jumas, J prais Chem , [4], 1, 57 (1954)
 - 100 Hill, J. Am Chem. Soc., 49, 566 (1927)
 - *** Vorisender and Kalkow, Ber . 30, 2268 (1897)
 - *** Avery, Biswell, and Liston, J Am Chem Soc , 54, 229 (1932).
 - 441 Kehler and Rao, J. Am Chem Soc . 41, 1697 (1919).
 - *** Badger, Cook, and Walker, J Chem Soc , 1948, 2011
 - *** Vorisender and Kunze, Ber , 59, 2078 (1926). 404 Mehr, Becker, and Spoerrs, J Am Chem Soc , 77, 984 (1955)
 - *** Wishcenus and Carpenter, Ann., 302, 223 (1898).
 - *** Ziegler and Schnell, Ann , 445, 266 (1925) 497 Michael and Ross, J. Am Chem Soc , 54, 407 (1932), see Michael and Ross, shid., 52,
- 4598 (1930). ** Allen, Massey, and Nicholls, J Am Chem Soc . 59, 579 (1937).
 - 449 Kohler, Graustein, and Merrill, J. Am. Chem. Soc., 44, 2536 (1922)
 - *10 Kohler and Souther, J Am Chem Soc , 44, 2903 (1922)
 - ets Rupe and Stern, Helv Chim Acts. 10, 859 (1927).
 - 412 Upson, Maxwell, and Parmelee, J Am. Chem Soc , 52, 1971 (1930)
 - 418 Allen and Salians, Can. J. Research, 9, 574 (1933) [C A . 28, 2006 (1934)].
- *14 Kaplash, Shah, and Wheeler, J. Indian Chem. Soc., 19, 117 (1942) [C.A., 37, 375 (1943)1
 - *15 Kaplash, Shah, and Wheeler, Current Scs. India, 8, 512 (1939) [C.A., 34, 5830 (1940)]. ** Stobbe, J. pralt Chem , [2], 88, 209 (1912).
 - 117 Cope, Fawcett, and Munn, J. Am. Chem Soc., 72, 3399 (1950).
 - 410 Mikhallov, J. Gen Chem. U.S.S.R., 7, 2950 (1937) [C.A., 32, 5402 (1938)].
 - *10 Kohler, J Am Chem Soc . 46, 503 (1924).
 - *** Kohler, J. Am. Chem Soc , 38, 889 (1915).
 - an Worrall and Bradway, J. Am. Chem. Soc , 58, 1607 (1936).
 - en Dornow and Frees, Ann., 581, 211 (1953).
 - 449 Tucker and Whalley, J. Chem. Soc , 1949, 50 Kohler, Hill, and Bigolow, J. Am. Chem Soc., 39, 2405 (1917).
 - ess Kohler and Williams, J Am Chem. Soc., 41, 1644 (1919).
 - 440 Hill, J. Chem Soc . 1935, 1115.
 - *** Kohler and Conant. J. Am. Chem Soc , 39, 1699 (1917).
 - 410 Petrow, Ber . 63, 898 (1930) 12e Dilthey, Trosken, Plum, and Schommer, J. prakt. Chem., (2), 141, 331 (1934).
 - *** Petrow and Anzus, Ber , 65, 420 (1933)
 - au Allen and Searrew, Can J Research, 11, 395 (1934) [C.A., 29, 121 (1935)].
 - ess Hedenburg and Wachs, J Am. Chem Soc , 70, 2216 (1948).
 - *** Hedenburg, US pat. 2,524,107 [C.A. 45, 811 (1951)]. 444 Lutz and Pelmer, J Am Chem Soc , 57, 1947 (1935).
 - ess Garden and Gunstone, J. Chem Soc., 1952, 2650 *** Fuson and Mange, J. Org. Chem , 19, 806 (1954).
 - est Polonovaks, Person, and Polmanas, Bull. soc. chem. France, 1953, 200.
 - *** Kwartler and Lindwall, J Am. Chem. Soc , 59, 524 (1937).
 - *** Seshadrı and Venkateswarlu, Proc Indian Acad Sci., 15A, 424 (1942) [C.A., 38, 7015
- (1942)1 ass Lo and Croxall, J. Am Chem. Soc., 76, 4166 (1954) ett Westoo. Acta Chem Scand , 7, 355 (1953) [C.A., 48, 3349 (1954)].
 - 848 Bartlett and Woods, J. Am. Chem Soc , 62, 2933 (1940).
 - *** McCoubrey, J. Chem. Soc , 1951, 2931. ess Rosenfelder and Gunsburg, J Chem. Soc., 1954, 2955.
 - *** Colonge, Dreux, and Dalpisce, Compt. rend., 238, 1237 (1954).

- Colonge, Bull. soc. chim. France, 1955, 250.
- Shafer, Loeb, and Johnson, J. Am. Chem. Soc., 75, 5963 (1953).
- 648 Rabe, Ber., 37, 1671 (1904).
- 649 Cronyn and Riesser, J. Am. Chem. Soc., 75, 1664 (1953).
- Nightingale, Erickson, and Shackelford, J. Org. Chem., 17, 1005 (1952).
- 651 Robinson and Saxton, J. Chem. Soc., 1953, 2596.
- 652 Basu, Ann., 530, 131 (1937).
- 853 Basu, Ann., 514, 292 (1934).
- 654 Eistert and Reiss, Chem. Ber., 87, 92 (1954).
- 655 Nazarov and Zav'yalov, Izvest. Akad. Nauk S.S.S.R. Otdel. Khim. Nauk, 1952, 437 C.A., 47, 5365 (1953)].
 - 826 Robinson and Walker, J. Chem. Soc., 1935, 1530.
 - ⁶⁵⁷ Rabe and Appuhn, Ber., 76, 982 (1943). Cf. Rabe, Ann., 360, 1005 (1952).
 - 658 Desai, J. Indian Chem. Soc., 10, 257 (1933) [C.A., 27, 5310 (1933)].
 - 558 Stauffacher and Schinz, Helv. Chim. Acta, 37, 1207 (1954).
 - 880 Rosenmund and Herzberg, Chem. Ber., 87, 1575 (1954).
 - 461 Eschenmoser, Schreiber, and Julia, Helv. Chim. Acta, 36, 482 (1953).
 - ⁶⁶² Qudrat-I-Khuda and Mukherji, J. Chem. Soc., 1936, 570.
 - 662 Friedmann and Robinson, Chemistry & Industry, 1951, 777.
 - Gunstone and Tulloch, J. Chem. Soc., 1955, 1130.
 - Winternitz, Mousseron, and Rouzier, Bull. soc. chim. France, 1954, 316.
 - 444 Amiel, Loeffler, and Ginsburg, J. Am. Chem. Soc., 76, 3625 (1954).
 - 667 Ginsburg, J. Chem. Soc., 1954, 2361.
- ⁶⁶⁸ Pappo and Ginsburg, Bull. Research Council Israel, 1, Pt. 1-2, 145 (1951) [C.A., 46, 7064 (1952)].
- *** Pappo and Ginsburg, Bull. Research Council Israel, 1, Pt. 3, 121 (1951) [C.A., 47, 2161 (1953)].
 - 470 Sen and Neogi, J. Indian Chem. Soc., 7, 305 (1930) [C.A., 24, 4767 (1930)].
 - 671 McQuillin, Chemistry & Industry, 1954, 311.
 - ⁶⁷² Dutta, Chakravarti, and Dutta, Chemistry & Industry, 1955, 170.
 - 672 Mukharji and Raha, Science and Culture India, 19, 569 (1954) [C.A., 49, 5414 (1955)].
 - 676 Birch and Quartey, Chemistry & Industry, 1953, 489.
 - ⁶⁷² Ott and Tarbell, J. Am. Chem. Soc., 74, 6266 (1952).
 - ⁶⁷⁶ Ginsburg, J. Am. Chem. Soc., 76, 3628 (1954).
 - ⁶⁷⁷ Parihar and Dutt, Indian Soap J., 16, 154 (1950) [C.A., 46, 8066 (1952)].
 - 678 Ralls, J. Am. Chem. Soc., 75, 2123 (1953).
 - 479 Mannich and Fourneau, Ber., 71, 2090 (1938).
 - 880 Bardhan, Chemistry & Industry, 1940, 369.
 - 681 Cardwell and McQuillin, J. Chem. Soc., 1949, 708.
 - 432 Jacquier and Boyer, Bull. soc. chim. France, 1955, 8.
 - 482 Jacquier and Boyer, Bull. soc. chim. France, 1954, 717.
 - 884 Roy, Science and Culture India, 19, 156 (1953) [C.A., 48, 13660 (1954)].
 - 685 Martin and Robinson, J. Chem. Soc., 1949, 1866.
 - *** Robinson and Seijo, J. Chem. Soc., 1941, 582.
 - 437 Hussey, Liao, and Baker, J. Am. Chem. Soc., 75, 4727 (1953).
 - Prelog, Wirth, and Ruzicka, Helv. Chim. Acta, 29, 1425 (1946).
 - Prelog, Barman, and Zimmermann, Helv. Chim. Acta, 32, 1284 (1949).
 - Prelog, Ruzicka, Barman, and Frenkiel, Helv. Chim. Acta, 31, 92 (1948).
 - 431 Gill, James, Lions, and Potts, J. Am. Chem. Soc., 74, 4923 (1952).
 - ** Wilds, Hoffman, and Pearson, J. Am. Chem. Soc., 77, 647 (1955).
 - 502 Johnston and Holly, U.S. pat. 2,671,808 [C.A., 49, 3264 (1955)].
 - Banerjee, Chatterjee, and Bhattacharya, J. Am. Chem. Soc., 77, 408 (1955).
 - Buechi, Jeger, and Ruzicka, Helv. Chim. Acta, 31, 241 (1948).
 - *** Robinson and Weygand, J. Chem. Soc., 1941, 386.
 - ** Cook and Robinson, J. Chem. Soc., 1941, 391.
 - *** Cornforth and Robinson, J. Chem. Soc., 1948, 676.

- *** Grob and Jundt, Helv Chem, Acta, 31, 1691 (1948).
- 700 Shunk and Wilds, J Am. Chem. Soc , 71, 3946 (1949).
- 741 Ghosh and Robinson, J. Chem. Soc., 1944, 506 101 Wilds and Shunk, J Am. Chem. Soc , 72, 2383 (1950)
- 182 Martin and Robinson, J. Chem Soc , 1943, 491
- You Mukharji, J. Indian Chem. Soc., 24, 91 (1947) [C A. 42, 1312 (1948)].
- 766 Huang, J Chem. Soc . 1954, 3655.
- Wieland and Misscher, Helv. Chim. Acta, 33, 2215 (1950).
- 761 CIBA, Swiss pat 293,104 [C.A., 49, 3263 (1955)] Chaudhuari and Mukharii, Science and Culture India, 18, 602 (1953) [C.A., 48, 7592
- (1954)1 100 Wendler, Slates, and Tushler, J Am. Chem Soc , 73, 3816 (1951).
 - Reschert and Posemann, Arch Pharm, 275, 67 (1937) [C A, 31, 3984 (1937)]
 - ru Baritrop, J Chem Soc., 1946, 958
 - 112 Cardwell, J. Chem. Soc., 1949, 715 710 Szmuszkovicz and Born, J. Am Chem. Soc , 75, 3350 (1953)
 - 114 McQuillin, J. Chem Soc., 1955, 528.
 - 115 Roy, Chemsetry & Industry, 1954, 1393
 - 18 Howe and McQuillin, J Chem Soc , 1955, 2423
 - Adamson, McQuilin, Robinson, and Simonsen, J Chem. Soc., 1937, 1576. ³¹⁵ Abe, Harukawa, Ishikawa, Miki, Sumi, and Toga, J Am Chem Soc., 75, 2567 (1953).
- Abe, Harukawa, Ishikawa, Miki, Sumi, and Toga, Proc Japan Acad , 29, 113 (1953) [C.A. 48, 10706 (1954)].
 - 750 Roy, Science and Culture India, 19, 266 (1953) [C.A. 49, 1678 (1955)]
 - 781 Szmuszkowicz, J. Org Chem., 19, 1424 (1954)
 - Jacquier and Boyer, Bull soc chim. France, 1954, 442.
 - 12 Mannich and Koch, Ber , 75, 803 (1942).
 - 124 Mannich, Koch, and Borkowsky, Ber., 70, 355 (1937). ¹⁸⁶ Logan, Marvell, La Pore, and D. C. Bush, J. Am. Chem. Soc., 76, 4127 (1954).
 - Jacquier and Lanet, Bull soc. chim France, 1853, 795. Treibs and Muchistaedt, Chem Ber , 87, 407 (1954)
 - 711 Jacquier and Christol, Bull. soc. chim. France, 1954, 556
 - Novello, Christy, and Sprague, J. Am Chem. Soc , 75, 1230 (1953)
 - ne F C Novello, private communication ⁷⁴¹ Cope and Hermann, J. Am. Chem. Soc., 72, 3405 (1950) 241 Harradence and Lions, J Proc Roy, Soc. N.S. 15 ales, 72, 284 (1939) [C.A., 33, 6826
- (1939)] 198 Gill and Lions, J. Am Chem Soc , 72, 3468 (1950)
 - 704 Juday, J Am Chem Soc , 75, 4071 (1953)
 - 105 Novello and Christy, J. Am Chem. Soc , 75, 5431 (1953) 114 Lucherman and Wagner, J. Org. Chem , 14, 1001 (1949)
 - 227 Dalgheab, J. Am. Chem. Soc , 71, 1697 (1948)
 - 188 Eliel, J Am Chem Soc , 78, 43 (1951) 749 Snyder and Hambn, J. Am Chem Soc., 72, 5082 (1950).
 - 240 Bernatck, Acta Chem Scand , 7, 877 (1953) [C.A , 48, 4501 (1954)]. 241 Ionescu, Bull soc. chim. France, [4], 41, 1094 (1927)
 - 744 Smith and Nichols, J Am. Chem Soc., 65, 1739 (1943) 145 Smith and Wiley, J Am Chem Soc , 68, 834 (1946)
 - 744 Smith and Byers, J Am Chem Soc. 63, 612 (1941) 746 Smith and MacMullen, J Am. Chem Soc. 58, 629 (1936) ⁷⁴⁶ Bergel, Jacob, Todd, and Work, J Chem. Soc., 1938, 1375
 - 74 Smith and Johnson, J Am Chem Soc., 59, 613 (1937)
 - 10a Smith, J Am Chem Soc , 58, 472 (1934) rue Smith and Donyes, J. Am Chem Soc., 58, 304 (1936)
 - 144 Smith and Opie, J Am Chem Soc , 63, 932 (1941)
 - 740 Smith and Webster, J. Am Chem Soc., 59, 862 (1937).

- 740a Adams and Acker, J. Am. Chem. Soc. 74, 5872 (1952).
- 750 Adams and Blomstrom, J. Am. Chem. Soc., 75, 3404 (1953).
- 751 Adams and Moje, J. Am. Chem. Soc., 74, 5557 (1952).
- ⁷⁵² Adams and Way, J. Am. Chem. Soc., 76, 2763 (1954).
- 753 CIBA, Swiss pat. 276,141 [C.A., 47, 7546 (1953)].
- 756 CIBA, British pat. 666,713 [C.A., 47, 7546 (1953)].
- 755 Hoffmann and Tagmann, Helv. Chim. Acta, 32, 1470 (1949).
- ²⁵⁶ E. I. du Pont de Nemours and Co., Brit. pat. 576,427 [C.A., 42, 2269 (1948)].
- ¹⁵⁷ Hoch and Karrer, Helv. Chim. Acta, 37, 397 (1954).
- 758 Fuson and Miller, J. Org. Chem., 17, 886 (1952).
- ⁷⁵⁹ Terent'ev and Gurvich, Vestnik Moskov. Univ., 5, No. 5 (1950) [C.A., 45, 7005 (1951)].
- 750 Bruson, U.S. pat. 2,383,444 [C.A., 40, 351 (1946)].
- 761 Bruson and Riener, J. Am. Chem. Soc., 64, 2850 (1942).
- ⁷⁶² Baumgarten and Eifert, J. Am. Chem. Soc., 75, 3015 (1953).
- ⁷⁶² Wiest and Glaser, U.S. pat. 2,403,570 [C.A., 40, 6498 (1946)].
- 764 Frank and McPherson, Jr., J. Am. Chem. Soc., 71, 1387 (1949).
- ⁷⁶⁵ Bruson, U.S. pat. 2,386,736 [C.A., 40, 7234 (1946)].
- 700 Terent'ev and Gurvich, Sbornik Statei Obshchei Khim. Akad. Nauk S.S.S.R., 1, 404 (1953) [C.A., 49, 1047 (1955)].
- 767 Terent'ev, Kost, and Gurvich, Zhur. Obshchei Khim., 22, 1977 (1952) [C.A., 47, 8663 (1953)].
- ⁷⁶⁸ Levina, Shusherina, and Kaminskaya, Doklady Akad. Nauk S.S.S.R., 86, 79 (1952)
 [C.A., 47, 4849 (1953)].
- Nazarov, Shvekgheimer, and Rudenko, Zhur. Obshchei Khim., 24, 319 (1954) [C.A., 49, 4651 (1955)].
 - ²⁷⁰ Nazarov and Zav'yalov, Zhur. Obshchei Khim., 24, 469 (1954) [C.A., 49, 6142 (1955)].
 - ²⁷¹ Stetter and Coenen, Chem. Ber., 87, 990 (1954).
 - 772 Iwanoff, Chem. Ber., 87, 1600 (1954).
 - ²⁷³ Boekelheide, J. Am. Chem. Soc., 69, 790 (1947).
- ⁷⁷⁴ Barkley, Farrar, Knowles, Raffelson, and Thompson, J. Am. Chem. Soc., 78, 5014 (1954).
 - ⁷⁷⁵ Pinder and Robinson, Nature, 167, 484 (1951).
 - 776 Chem. Werke Huels, Ger. pat. 811,350 [C.A., 47, 3337 (1953)].
 - ²²⁷ Daub and Doyle, J. Am. Chem. Soc., 74, 4449 (1952).
 - ¹⁷⁸ Acara and Levine, J. Am. Chem. Soc., 72, 2864 (1950).
 - ¹⁷⁷⁹ Horning and Rutenberg, J. Am. Chem. Soc., 72, 3534 (1950).
 - ²⁸⁰ Albertson and Fillman, J. Am. Chem. Soc., 71, 2818 (1949).
 - ⁷⁸¹ Mikeska, U.S. pat. 2,461,336 [C.A., 43, 4689 (1949)].
 - 781a Hesse and Buccking, Ann., 563, 31 (1949).
- ¹⁸² Smrt and Šorm, Collections Czechoslov. Chem. Communs., 18, 131 (1953) [C.A., 48, 3903 (1954)].
 - ⁷⁸³ Ansell and Hey, J. Chem. Soc., 1950, 1683.
 - ⁷⁸⁴ Floyd, J. Am. Chem. Soc., 71, 1746 (1949).
 - 785 Wideqvist, Arkiv Kemi, 3, 59 (1951) [C.A., 45, 10217 (1951)].
 - 786 Green and Hey, J. Chem. Soc., 1954, 4306.
 - ¹⁸⁷ Newman and McPherson, J. Org. Chem., 19, 1717 (1954).
 - 748 Talukdar and Bagchi, Science and Culture India, 19, 201 (1953) [C.A., 49, 1656 (1955)].
 - ¹⁸⁸ Talukdar and Bagchi, J. Org. Chem., 20, 21 (1955).
 - ⁷⁸⁰ Talukdar and Bagchi, Science and Culture India, 18, 503 (1953) [C.A., 48, 8180 (1954)].
 - 791 Raha and Mukharji, J. Org. Chem., 19, 1376 (1954).
 - ⁷⁹² Horning and Finelli, J. Am. Chem. Soc., 71, 3204 (1949); Org. Syntheses, 30, 80 (1950).
 - ²⁹³ Banerjee and Shafer, J. Am. Chem. Soc., 72, 1931 (1950).
 - ¹³⁴ Walter and Barry, U.S. pat. 2,524,643 [C.A., 45, 7154 (1951)].
 - ¹⁹⁵ Campbell and Tucker, J. Chem. Soc., 1949, 2623.
 - 186 Holbro and Tagmann, Helv. Chim. Acta, 33, 2178 (1950).
 - ⁷⁹⁷ Campbell and Reid, J. Chem. Soc., 1952, 3281.

- ¹⁴⁶ Bockelheide, Linn. O'Grady, and Lamborg, J. Am Chem. Soc., 75, 3243 (1953). 110 Yoho and Levine, J. Am. Chem Soc., 74, 5597 (1952).
- ** Misra and Shukla, J. Indian Chem Soc., 29, 455 (1952).
- en Misra and Shukls, J. Indian Chem Soc., 30, 37 (1953).
- *** Koelsch and Walker, J. Am. Chem. Soc , 72, 346 (1950). *** Nakarawa and Matsuura. J. Phorm. Soc. Japan, 72, 51 (1952) [C.A., 46, 11142 (1952)].
- tes Bachmann and Johnson, J. Am. Chem. Soc., 71, 3463 (1949) *** Kost and Terent'ev, J. Gen. Chem. U.S.S.R., 22, 655 (1952) [C.A., 47, 2759 (1953)].
- *** Boekelheide and Godfrey, J. Am. Chem. Soc., 75, 3679 (1953).
- 100 Miera and Shukla, J. Indian Chem Soc , 29, 201 (1952). *** Rubin and Wighinsky, J. Am. Chem. Soc., 68, 828 (1946).
- ** Tagmann, Sury, and Hoffmann, Helv. Chem Acia, 35, 1541 (1952)
- ses Herzog, Gold, and Geckler, J Am. Chem Soc , 73, 749 (1951).
- 110 Klager, J. Org. Chem., 16, 161 (1951). an Boyd and Leshin, J. Am. Chem Soc . 74, 2675 (1952).
- *** Rodionov and Belikov, Doklady Akad Nauk S.S.S.R., 93, 827 (1953) [C.A., 49, 1650 (1955)].

810 Klauer, J. Org. Chem., 20, 650 (1955).

- 814 Bruson, U.S. pat, 2,435,552 [C.A. 42, 2778 (1948)] 446 Asthana and Misra, J. Indian Chem. Soc., 31, 459 (1954).
- *14 Ladd, U.S. pat. 2,632,019 [C.A. 48, 1418 (1954)]
- su Fiezer and Michalaki, Roceniki Chem., 28, 185 (1954) [C.A., 49, 9493 (1955)].
- 818 Koelsch, J. Am Chem. Soc., 65, 2460 (1943).
- 410 Koelech, J. Am. Chem. Soc., 68, 146 (1946).
- Koelsch and Rolfson, J. Am. Chem. Soc . 72, 1871 (1950). su Birch and Kon, J. Chem. Soc., 123, 2440 (1923).
- 400 Linstead and Millidge, J. Chem. Soc , 1936, 478. Nosterr. Stickstoffwerke A.G., Austrian pat, 176,845 [C.A., 48, 10772 (1954)].
- 334 Albertson, J. Am. Chem. Soc., 70, 669 (1948).
- set Koelsch, J Am. Chem. Soc., 65, 2458 (1943). Sury and Hoffmann, Helo Chim. Acta, 35, 1815 (1953); cf. Tagmann, Sury, and
- Hoffmann, Helv. Chim Acta, 35, 1235, 1541 (1952). ** Johnson, Johnson, and Potersen, J. Am. Chem. Soc., 68, 1926 (1946).
 - *** Schneider, Riener, and Bruson, J. Am. Chem. Soc., 72, 1486 (1950).
 - ** Lloyd and Horning, J. Am Chem Soc , 78, 3651 (1954).
 - *** Bruson, U.S. pat 2,390,918 [C.A , 40, 2456 (1948)].
 - Micheel and Albers, Ann., 581, 225 (1953).
 - att Kloetzel, J. Am. Chem. Soc , 70, 3571 (1948). *** Thedacker and Wendtland, Ann., 570, 33 (1950).
 - 104 Moffott, Org. Syntheses, 32, 86 (1952).
 - ess Brown and van Gulick, J. Am. Chem Soc., 77, 1079 (1955).
 - ** Kleger, US pat. 2,640,072 [O.A , 48, 7626 (1954)].
 - ur Klager, U.S. pat. 2,668,176 [C.A., 49, 4013 (1955)] 100 Floyd and Miller, J. Org. Chem., 18, 882 (1951).
 - sa Kappeler, Stauffscher, Eschenmoser, and Schmz, Hele. Chem. Acts, 37, 957 (1954).
 - see Stauffacher and Sching, Hely. Chim. Acid., 37, 1223 (1954)
 - su Perkin, Jr , and Thorpe, J. Chem. Soc , 85, 128 (1904). 918 Platiner, Fuerst, Meyer, and Keller, Helv. Chim. Acta, 37, 266 (1954).
 - ses Barat, J. Indian Chem. Soc. 8, 37 (1931). Stetter, Buentgen, and Coenen, Chem Ber., 83, 77 (1955).
 - tes Horner, Ann , 548, 117 (1941)
 - an Palazzo and Rosnats, Gozz. chim sioi., 82, 584 (1952).
 - ser Wessblat and Lyttle, US pat 2,506,921 [C.A., 47, 4903 (1953)]. *** Dryamovs, Zav'yslov, and Preobrashenskii, J. Gen. Chem. U.S.S. R., 18, 1733 (1948)
- [C.A., 43, 2625 (1949)] 44 Woods, J. Am. Chem. Soc., 75, 1510 (1953).

- 850 Hunsdiecker, Ber., 75, 1197 (1942).
- 851 Komppa and Rohrmann, Ann. Acad. Sci. Fennicae, A44, No. 3 (1935) [C.A., 30, 2949 (1936)].
 - 852 Scheibler, Emden, and Neubner, Ber., 63, 1557 (1930).
 - 853 Edwards, Jr., and Cashaw, J. Am. Chem. Soc., 76, 6188 (1954).
 - 854 Schilling and Vorlaender, Ann., 308, 184 (1899).
 - 855 Blanchard and Goering, J. Am. Chem. Soc., 73, 5863 (1951).
 - 856 Bhattacharyya, J. Indian Chem. Soc., 22, 214 (1945).
 - 857 Bhattacharyya, Science and Culture India, 8, 426 (1943) [C.A., 37, 5031 (1943)].
 - 858 Herz, J. Org. Chem., 20, 1062 (1955).
 - 859 Chakravarti, J. Indian Chem. Soc., 21, 319 (1944).
 - 860 Hope and Perkin, Jr., J. Chem. Soc., 99, 762 (1911).
 - 861 Barltrop, J. Chem. Soc., 1947, 399.
 - 862 Ruhemann and Wolf, J. Chem. Soc., 69, 1383 (1896).
 - 853 Cook, Pierce, and McBee, J. Am. Chem. Soc., 76, 83 (1954).
 - 864 Noller and Pannell, J. Am. Chem. Soc., 77, 1862 (1955).
 - 865 Talukdar and Bagchi, J. Org. Chem., 20, 25 (1955).
 - 888 von Auwers and Koebner, Ber., 24, 1935 (1891).
 - 867 Ruzicka, Helv. Chim. Acta, 2, 144 (1919).
 - ⁸⁶⁸ Phalnikar and Nargund, J. Univ. Bombay, 4, 106 (1935) [C.A., 30, 5186 (1936)].
- 889 Miwa, Ohsuka, and Sakan, J. Chem. Soc. Japan Pure Chem. Sect., 74, 113 (1953) [C.A., 48, 9962 (1954)].
 - 870 Welch, J. Chem. Soc., 1930, 257.
 - 871 Kotake, Sakan, and Miwa, J. Am. Chem. Soc., 72, 5085 (1950).
 - 872 Romeo, Corrodi, and Hardegger, Helv. Chim. Acta, 38, 463 (1955).
- ⁹⁷³ Phalnikar, J. Univ. Bombay, 19, Sect. A, Pt. 3, Sci. No. 28, 62 (1950) [C.A., 47, 1606 (1953)].
 - 874 Aoki, J. Pharm. Soc. Japan, 66, 51 (1946) [C.A., 45, 6173 (1951)].
 - 875 Ruhemann and Browning, J. Chem. Soc., 73, 727 (1898).
 - 876 Ghosh, J. Indian Chem. Soc., 24, 45 (1947).
 - 877 Staudinger, Ann., 341, 99 (1905).
 - 878 Ruhemann and Cunnington, J. Chem. Soc., 73, 1006 (1898).
 - 879 Challenger and Fishwick, J. Inst. Petroleum, 39, 220 (1953) [C.A., 48, 9355 (1954)].
 - 880 Malachowski, Bilbel, and Biliński-Tarasowicz, Ber., 69, 1295 (1936).
 - 881 Henze, Ber., 33, 966 (1900).
 - 882 Ruhemann, J. Chem. Soc., 71, 325 (1897).
 - 883 Ruhemann and Stapleton, J. Chem. Soc., 77, 804 (1900).
 - 884 Ruhemann and Tyler, J. Chem. Soc., 69, 530 (1896).
 - 885 Woodward and Reed, J. Am. Chem. Soc., 65, 1569 (1943).
 - 886 Perkin, Jr., J. Chem. Soc., 69, 1472 (1896).
 - 887 Ray, J. Am. Chem. Soc., 50, 558 (1928).
 - 888 Blaise, Compt. rend., 136, 243 (1903).
 - 889 Blaise and Luttringer, Bull. soc. chim. France, [3], 33, 760 (1905).
 - 890 Kohler and Reid, J. Am. Chem. Soc., 47, 2803 (1925).
 - 891 Leonard and Shoemaker, J. Am. Chem. Soc., 71, 1876 (1949).
 - ⁸⁹² Komnenos, Ann., 218, 145 (1883).
 - 893 Koetz and Stalmann, J. prakt. Chem., [2], 68, 156 (1903).
 - 894 Knoevenagel, Ber., 31, 2585 (1898).
 - 895 Gupta, J. Chem. Soc., 119, 298 (1921).
 - Bay and Thorpe, J. Chem. Soc., 117, 1469 (1920).
 Diels, Gaertner, and Kaack, Ber., 55, 3439 (1922).
 - 898 Sonn, Ber., 61, 2479 (1928).
 - Robinson and Thompson, J. Chem. Soc., 1938, 2009.
 - 900 Farmer, J. Chem. Soc., 123, 3324 (1923).
 - 901 Koetz, J. prakt. Chem., [2], 75, 433 (1907).
 - *02 Gaind and Guha, J. Indian Chem. Soc., 11, 421 (1934).

- *** Chmo and Wakh, J. Chem. Soc., 1928, 2621.
- ** Kerr. J 1m Chem Soc . 51, 614 (1929)
- ** May urenathan and Guha, J. Indian Inst. Scs., 15A, 13I (1932) [C.A., 27, 321I (1933)]. see Komppa, Ber . 33, 3530 (1900)
- ser Brown and van Gulick, J. Am Chem. Soc , 77, 1083 (1955)
- 24 Zakharkin and Proobrazhouskii, Zhur. Obshchel Ahim , 22, 1890 (1952) [C.A. 47, 7507 (1953)1 888 Bainova, Evatigneeva, Livebute, Kuz'mina, and Preobrazhonskii, Zhur. Obahchei
- Ahm , 23, 149 (1954) [C'.4 , 48, 1360 (1954)]
 - tis Curtis, Day, and Kimmins, J Chem Soc , 123, 3121 (1923).
 - 11 Ingold and Shopper, J Chem Soc , 1926, 1912
 - an Ingold, Shopper, and Thorpo, J Chem Soc. 1926, 1477. sts Arnold Amidon, and Dodson, J Am Chem Soc., 72, 2871 (1950)
 - *14 Berttam, Her . 26, 3291 (1903) 201 Ranganathan, Current Sci. India, 9, 276 (1940) [C A , 34, 7861 (1940)].
 - *** Ingold and Perran, J Chem Soc , 119, 1582 (1921)
 - *** Henrich, Ber , 35, 1663 (1902)
 - 217 Knows nagel, Ger pat 156,560 [Chem Zentr , 1905, I, 56]
 - *** Rube mann and Cummington, J Chem. Soc , 75, 778 (1899)
 - 919 Traube, Rev. 40, 4942 (1907)
 - *19 Malachowski and Czornodola, Ber . 68, 363 (1935)
 - 11 Ingold and Perren, J Chem Soc., 121, 1414 (1922)
 - ers Clausen, Ann , 297, 1 (1897), especially p 88
 - Bockelheide and Ledge, Jr., J Am Chem Soc. 73, 3681 (1951)
 - 11 Botkelheide and Gall, J. Org Chem , 19, 499 (1954).
 - *** Kohler and Butler, J. Am Chem Soc . 48, 1036 (1926)
 - sta Farmer and Heales. J Chem Soc , 1927, 1065
 - 102 Parmer and Mehts, J. Chess Soc , 1930, 1610.
 - Vorlaender, Weissheimer, and Sponnagel, Ann., 345, 227 (1906). 116 Carris, Eng lhardt, Jackson, Kalb, and Sauer, J. Am. Chem. Soc., 74, 5836 (1952).
 - 114 Farmer and Martin, J Chem Soc. 1933, 960
 - Blood, Cartwright, and Linstead, J. Chem Soc., 1952, 2208,
 - Farmer and Mehta, J Chem, Soc., 1931, 1762
 - campbell and Rydon, J Chem. Soc , 1953, 3002 314 Bardhan and Banery, J Chem Soc , 1935, 474
 - *** Sircar, J Chem Soc , 1927, 1252
 - *** Kon and Nanja, J Chem Soc , 1932, 2426 sar Prelog and Metzler, Helv Chim Acta, 29, 1170 (1946)
 - 100 Helfer, Helv Chun Acto, 9, 814 (1926). 84 Bhattacharyya, J Indian Chem Soc , 22, 85 (1945)
 - 340 Chatterjee, J Indian Chem Soc , 14, 417 (1937)
 - sen and Bose, J Indian Chem Soc , 4, 51 (1927),
 - ses Bardhan and Bunory, J Chem Soc , 1935, 476 *** Vogel, J Chem Soc , 1931, 907

 - No. Recchstern, Zechokke, Gehring, and Rona, Hely Chim Acta, 15, 1118 (1932) ** Rubtsov and Mikhluns, Dollady Akad, Nauk S S.S.R., 88, 1003 (1953) [C A , 48, 8782
 - * Herrmann and Vorlacuder, Abhandi naturforsch Ges Halle, 21, 251 (1899)
 - 1954)]
 - *** Stobbe, Ann , 315, 219 (1901) Denni, J Chem Soc . 1932, 1079
 - see Barr and Cook, J Chem Sec , 1945, 438 stt Erleameyer, Jr , Ber , 33, 2006 (1900)
 - ses Helmkamp, Tanghe, and Plats, J Am. Chem Soc , 62, 3215 (1940)
 - M Lawson, Perkin, Jr., and Robinson, J Chem Soc., 125, 626 (1924)

- 650 Hunsdiecker, Ber., 75, 1197 (1942).
- **1 Komppa and Rohrmann, Ann. Acad. Sci. Fennicae, A44, No. 3 (1935) [C.A., 30, 2919 (1936)].
 - 852 Scheibler, Emden, and Neubner, Ber., 63, 1557 (1930).
 - 852 Edwards, Jr., and Cashaw, J. Am. Chem. Soc., 76, 6188 (1954).
 - *54 Schilling and Vorlaender, Ann., 308, 184 (1899).
 - Blanchard and Goering, J. Am. Chem. Soc., 73, 5863 (1951).
 - 856 Bhattacharyya, J. Indian Chem. Soc., 22, 214 (1945).
 - 857 Bhattacharyya, Science and Culture India, 8, 426 (1943) [C.A., 37, 5031 (1943)].
 - 818 Herz, J. Org. Chem., 20, 1062 (1955).
 - 859 Chakravarti, J. Indian Chem. Soc., 21, 319 (1944).
 - 440 Hope and Perkin, Jr., J. Chem. Soc., 99, 762 (1911).
 - **1 Barltrop, J. Chem. Soc., 1947, 399.
 - 852 Ruhemann and Wolf, J. Chem. Soc., 69, 1383 (1896).
 - 862 Cook, Pierce, and McBee, J. Am. Chem. Soc., 76, 83 (1954).
 - *** Noller and Pannell, J. Am. Chem. Soc., 77, 1862 (1955).
 - **5 Talukdar and Bagchi, J. Org. Chem., 20, 25 (1955).
 - von Auwers and Koebner, Ber., 24, 1935 (1891).
 - 887 Ruzicka, Helv. Chim. Acta, 2, 144 (1919).
 - ⁸⁶⁸ Phalnikar and Nargund, J. Univ. Bombay, 4, 106 (1935) [C.A., 30, 5186 (1936)].
 - ⁸⁴⁹ Miwa, Ohsuka, and Sakan, J. Chem. Soc. Japan Pure Chem. Sect., 74, 113 (1953) [C.A., 48, 9962 (1954)].
 - 870 Welch, J. Chem. Soc., 1930, 257.
 - ⁸⁷¹ Kotake, Sakan, and Miwa, J. Am. Chem. Soc., 72, 5085 (1950).
 - *12 Romeo, Corrodi, and Hardegger, Helv. Chim. Acta, 38, 463 (1955).
 - *** Phalnikar, J. Univ. Bombay, 19, Sect. A, Pt. 3, Sci. No. 28, 62 (1950) [C.A., 47, 1606 (1953)].
 - 874 Aoki, J. Pharm. Soc. Japan, 68, 51 (1946) [C.A., 45, 6173 (1951)].
 - 875 Ruhemann and Browning, J. Chem. Soc., 73, 727 (1898).
 - 876 Ghosh, J. Indian Chem. Soc., 24, 45 (1947).
 - 577 Staudinger, Ann., 341, 99 (1905).
 - 878 Ruhemann and Cunnington, J. Chem. Soc., 73, 1006 (1898).
 - ⁵⁷⁹ Challenger and Fishwick, J. Inst. Petroleum, 39, 220 (1953) [C.A., 48, 9355 (1954)].
 - Malachowski, Bilbel, and Bilinski-Tarasowicz, Ber., 69, 1295 (1936).
 - 881 Henze, Ber., 33, 966 (1900).
 - 882 Ruhemann, J. Chem. Soc., 71, 325 (1897).
 - 883 Ruhemann and Stapleton, J. Chem. Soc., 77, 804 (1900).
 - 884 Ruhemann and Tyler, J. Chem. Soc., 69, 530 (1896).
 - 885 Woodward and Reed, J. Am. Chem. Soc., 65, 1569 (1943).
 - 886 Perkin, Jr., J. Chem. Soc., 69, 1472 (1896).
 - 887 Ray, J. Am. Chem. Soc., 50, 558 (1928).
 - 888 Blaise, Compt. rend., 136, 243 (1903).
 - Blaise and Luttringer, Bull. soc. chim. France, [3], 33, 760 (1905).
 - *** Kohler and Reid, J. Am. Chem. Soc., 47, 2803 (1925).
 - ** Leonard and Shoemaker, J. Am. Chem. Soc., 71, 1876 (1949).
 - 892 Komnenos, Ann., 218, 145 (1883).
 - 892 Koetz and Stalmann, J. prakt. Chem., [2], 68, 156 (1903).
 - 534 Knoevenagel, Ber., 31, 2585 (1898).
 - 895 Gupta, J. Chem. Soc., 119, 298 (1921).
 - 896 Day and Thorpe, J. Chem. Soc., 117, 1469 (1920).
 - 897 Diels, Gaertner, and Kaack, Ber., 55, 3439 (1922).
 - *** Sonn, Ber., 61, 2479 (1928).
 - Robinson and Thompson, J. Chem. Soc., 1938, 2009.
 - ⁹⁰⁰ Farmer, J. Chem. Soc., 123, 3324 (1923).
 - 301 Koetz, J. prakt. Chem., [2], 75, 433 (1907).
 - 302 Gaind and Guha, J. Indian Chem. Soc., 11, 421 (1934).

- 1008 Haerds and Thorne, J. Chem. Soc., 127, 1237 (1925).
- 1001 Ruhemann, J. Chem. Soc , 97, 457 (1910).
- 3419 Ruhemann, Ber . 53, 287 (1920).
- 1621 Walker, J Am Chem. Soc., 78, 309 (1954).
- 1012 Ruhemann and Stapleton, J. Chem. Soc., 77, 239 (1900).
- 1015 Grob and Camenach, Helv Chim. Acta, 36, 49 (1953).
- 10th Lambert and Piggott, J. Chem. Soc., 1947, 1489. 1916 Hale and Robertson, Am Chem. J., 39, 685 (1908), cf. Hele, Ber., 45, 1600 (1912).
- 1918 Fanta and Stom, J. Am. Chem. Soc., 77, 1045 (1255). Bahner, U.S. pat. 2.425,276 [C.A., 41, 7410 (1947)]
- less Bahner, U.S pat 2,426,158 [C A , 41, 7410 (1947)]
- 1419 Bahner, U.S. pat 2,447.626 [C.A. 42, 8819 (1948)].
- 1000 Bahner, U.S. pat 2,431,451 [C.A. 42, 2615 (1948)]
- 101 Snyder and Hamlin, J. Am Chem. Soc., 72, 5082 (1950).
- J F Bourland, Thesis, Furdue University, 1941, quoted by Hass and Riley in Chem. Reve . 32, 414 (1943)
 - 1003 Shechter and Conrad, J. Am Chem Soc , 76, 2716 (1954).
 - less Perekalın and Sopova, Zhur. Obshchei Khim., 24, 513 (1954). Dollody Akad. Nauk
- S.S.R., 95, 993 (1954) [C.A., 49, 6180-6181 (1955)]. 1em Dornow and Menzel, Ann., 586, 40 (1954).
 - ter Heim, Ber , 44, 2016 (1911).
 - ten Smith and Kelly, J. Am Chem. Soc., 74, 3300 (1952)
 - 1619 Smith and Davis, J Am. Chem Soc , 78, 5376 (1954)
 - tese Buckley, Charlish, and Rose, J. Chem Soc., 1947, 1514. 1411 Smith and Davis, J. Org. Chem , 15, 824 (1950).
 - 1403 Kohler and Potter, J. Am. Chem. Soc . 57, 1316 (1935)
 - 1003 Backer, Rec. trav. chim , 72, 119 (1953)
 - 1044 Doering and Weil, J Am Chem Soc., 69, 2461 (1947).
 - Bockelheide and Rothehild, J Am Chem Soc., 71, 879 (1949) 1814 Winterfeld and Heinen, Ann., 573, 85 (1951), 578, 171 (1952)

 - Bookelheide and Rothchild, J. Am Chem Soc , 69, 3149 (1947).
 - 100 Wilt and Levine, J Am Chem Soc . 75, 1368 (1953) 1010 Winterfeld, Wald, and Rink, Ann , 588, 125 (1954)
 - Winterfeld, Wald, and Rink, Natureurs, 41, 230 (1954) [C.A., 49, 14739 (1955)]
 - Bockelheids and Mason, J Am Chem Soc., 73, 2356 (1951)
 - less Chifford, U S pat 2,579,419 [C A., 46, 7593 (1952)] issa Bockelheide and Mannetti, J. Am Chem Soc., 73, 4015 (1951).

- 233 Chase and Walker, J. Chem. Soc., 1953, 3548.
- *** Vorlaender and Strunck, Ann., 345, 233 (1906).
- 437 Meerwein and co-workers, J. prokt. Chem., [2], 116, 229 (1927).
- *11 Vachon, Gagnon, and Kane, Can. J. Research, 11, 644 (1934) [C.A., 29, 1087 (1935)].
- *** Kohler and Darling, J. Am. Chem. Soc., 52, 1174 (1930).
- *** Gravel, Naturaliste can., 57, 181 (1931) [C..t., 28, 169 (1934)].
- 361 Bredt, Ber., 24, 603 (1891).
- 562 Knoevenagel and Fries, Ber., 31, 761 (1898).
- 163 Knoovenagel and Brunswig, Ber., 35, 2177 (1902).
- 144 Krocker and McElvain, J. Am. Chem. Soc., 56, 1171 (1934).
- 863 Kohler and Barrett, J. Am. Chem. Soc., 48, 1773 (1926).
- *** Kohler and Darling, J. Am. Chem. Soc., 52, 424 (1930).
- 967 Papadakis, J. Am. Chem. Soc., 67, 1799 (1945).
- ⁸⁴⁸ Papadakis, Seigliano, Chin, and Adrian, J. Am. Chem. Soc., 72, 4250 (1950).
- 140 Palit, J. Indian Chem. Soc., 14, 219 (1937).
- *10 Rabe, Ber., 31, 1890 (1898).
- ⁹⁷¹ Meerwein, Ann., 360, 323 (1908).
- 272 Newman and Joshel, J. Am. Chem. Soc., 60, 485 (1938).
- *73 Koelsch, U.S. pat. 2,507,473 [C.A., 44, 7883 (1950)].
- 374 Koelsch, J. Am. Chem. Soc., 67, 569 (1945).
- *13 Emery, J. prakt. Chem., [2], 53, 308 (1896).
- 974 Henecka, Chem. Ber., 82, 36 (1949).
- *** Isler, Gutmann, Straub, Fust, Böhni, and Stüder, Helv. Chim. Acta, 38, 1033 (1955).
- 114 Mumm and Hueneke, Ber., 50, 1568 (1917).
- *** Mumm and Hueneke, Ber., 51, 150 (1918).
- *** Tracy and Elderfield, J. Org. Chem., 6, 70 (1941).
- 351 Horning, Denekas, and Field, J. Org. Chem., 9, 547 (1914).
- ** Rabe and Elze, Ann., 323, 83 (1902).
- 313 West, J. Biol. Chem., 66, 63 (1925).
- 244 Pastour, Compt. rend., 237, 1094 (1953).
- 385 'Gruber and Schloegl, Monatsh., 81, 83 (1950).
- Nazarov and Zav'yalov, Izvest. Akad. Nauk S.S.S.R. Otdel. Khim. Nauk, 1952, 703 [C.A., 47, 10515 (1953)].
 - *** Wallach, Ann., 323, 135 (1902).
 - 967 Merling, Ber., 38, 979 (1905).
 - *** Merling and Welde, Ann., 366, 119 (1909).
 - 389 Jeger and Buechi, Helv. Chim. Acta, 31, 134 (1948).
 - *** Knoevenagel, Ann., 288, 323 (1895).
 - **1 Mukherji, Science and Culture India, 8, 190 (1942) [C.A., 37, 1994 (1943)].
 - *** Knoevenagel, Ann., 281, 25 (1894).
 - ³³² Cornubert, Borrel, de Demo, Garnier, Humeau, Le Bihan, and Sarkis, Bull. soc. chim. France, [5], 2, 195 (1935).
 - *** Knoevenagel, Ann., 303, 223 (1898).
 - 995 Schilling and Vorlander, Ann., 308, 184 (1899).
 - 996 Dyer, Kidd, and Walker, J. Chem. Soc., 1952, 4778.
 - ** Knoevenagel, J. prakt. Chem., [2], 97, 288 (1918).
 - 208 Bachmann, Fujimoto, and Raunio, J. Am. Chem. Soc., 72, 2533 (1950).
 - *** Simonsen, J. Chem. Soc., 97, 1910 (1910).
 - 1000 Urech, Tagmann, Sury, and Hoffmann, Helv. Chim. Acta, 36, 1809 (1953).
 - 1001 Feist, Ann., 345, 100 (1906).
 - 1002 Feist, Ann., 345, 60 (1906).
 - 1003 Milas, U.S. pat. 2,369,158 [C.A., 39, 5044 (1945)].
 - 1004 Milas, U.S. pat. 2,432,921 [C.A., 42, 2278 (1948)].
 - 1003 Thorpe and Wood, J. Chem. Soc., 103, 1569 (1913).
 - 1006 Feist, Ann., 428, 25 (1922).
 - 1007 Feist, Ann., 428, 40 (1922).

AUTHOR INDEX, VOLUMES 1-10

Adams, Joe T , 8	Govenheham, Tutnorin R , 6
Adkins, Homer, 8	Gutsche, C David, 8
Angral, S J, 8	Ciurene, C David, o
n .	Hageman, Howard A, 7
Bachmann, W E, 1, 2	Hamilton, Chif S , 2
Behr, Lyell C , 6	Hamho, K L 9
Bergmann, Ernst D , 10	Hanford, W E, 3
Berliner, Lanst. 5	Hartung, Walter H , 7
Blatt, \ . [.]	Hassall, C H, 9
Blicke F P. 1	Hauser, Charles R , 1, 8
Brenster, James II. 7	Henne, Albert L., 2
Brown, Weldon G , 6	Hoffman, Roger 1, 2
Druson, Herman Alexander 5	Holmes, H L., 4, 9
DUCK, Johannes S1	House, Herbert O , 9
Butz, Lewis S , 5	Hudson, Boyd E , Jr ,
Carmack, Marvin, 3	Ide, Walter S , 4
Carter, II E , 3	Ingersolt, 1 W , 2
Cason, James, 4	
Cope, Arthur C , 9	Jackson, Ernest L. 2
Corcy, Lluas J, 9	Jacobs, Thomas L. 5
Crounse, Nathan N , 5	Johnson, John R , 1
Nathan N , 5	Johnson, William N. 2. 6
Death as in	Jones, Reuben G , 6
Daub, Guado S , 6	
DeTar, DeLos F. 9	Kloetzel, Milton C , 4
Oprassi, Carl 6	Kornblum, Nathan, 2
Drake, Vathan L , 1	Kosolapoff, to made M to
Dullors, Idrien S . 5	Kulka, Marshall, 7
Llad, Lenst L. 7	Lane, John F 3
* Dietron Wallance at A	Leffler Marin T . 1
Legland, D. C. 6	
	McLlvain, 5 M 4
lover, Louis F , 1	Mckeyer C H. 1
Sciarra, harl, 6	Magericin Barney J. 5
huem Reemold C. 1	Manske Richard H 1
tokkold C. 1	Martin, Liniore I
(a	
(names T A . 2	Morgan, Jack 1 2
	Morton, John W. Jr
	Mosettig, Lin b 4 8
maders, David, 10	Mozingo Rafoh 4

SUBJECT INDEX, VOLUME 10

Since the tables of contents of the individual chapters provide a quite complete index, only those items which are not readily found on the contents pages are indexed here.

Numbers in boldface type refer to experimental procedures

7-Acctamido 3-cai bet lioxy-7-c3 anobutyralilehy de, 267 Acctony hyyridinium bromide, reaction

Acetony lpy i dinium bromide, reaction with diazonium salts, 8

Alkylidenerhodanines, use in Michael reaction, 220 Amidrazones, 30

Amino acids, synthesis via Japp-Klingemann reaction, 153, 155-156 synthesis via Michael maction, 263 Aromatic rings, synthesis via Michael reaction, 254-256

Arylazosulfones, 18 Azines, use in Michael reaction, 209

Betaines, synthesis using diazonium

salts, S 18

Borsche synthesis of cumolines, 28

Cannizzaro reaction, intramolecular,

210 1-Carbethoxy-2,3-phthaloylpyrrocoline,

4-Carbomethoxy-7-nitio-2-phenyl-1(2)phthalazone, 16

phthalazone, 16 Cinnolines, 4-hydroxy-, from diazonium salts, 6-7, 9, 27-28

Widman-Stoermer synthesis, 21, 28 Cleavage of Michael adducts, 188-101 Condensed alleyche compounds, 63 nthesis via Michael reaction, 215-216, 220-221, 249-251

Coumarins, 225, 227
Coupling of diszonium salts with aliphatic carbon atoms, 1-142
climination of groups during, 10-12,

limination of groups during, 10-12, 18, 20, 22-23, 25-27, see also Jappklingemann reaction Cyclobutanes, synthesis via Michael reaction, 237, 248 Cyclobutanones as intermediates in ab-

normal Vichael reaction, 193-197
1,2 Cyclohevanedione monopheny lhydiazone, 159

Cyclohevanes, synthesis via Michael reaction, 249

Cyclopentanes, synthesis via Michael reaction, 248

Cyclopropanes, synthesis via Michael reaction, 248

2,4,6,8-Decatetrayne, as acceptor in Michael reaction, 183 Diazonium salts, coupling with aliphatic carbon atoms, 1-142 reversal of the coupling, 147

reaction with hydrazones, 4-6
reactivity of methylene compounds
toward, 31
Diethyl α, β-diphenylglutarate, 269
Diethyl glutaconate, reaction with diazo-

nium salts, 14-15 self-condensation, 234 Diethyl 6 keto-4-methyl-2-heptene-1,5-

dicarbox late, 269 Diethyl vinylphosphonate, use in

Michael reaction, 241
Dimenzation, of 3,5-dimethyl-2-cyclo-

hexen-1-one, 222 of 2-ethyl-2 hexensl, 210 of methyl acrylate, 234 of piperitone, 221

of piperitone, 221
Dimethylbenzofulvene, behavior in
Michael reaction, 232

Dimethyl (α-phenyl-β-nitroethyl)malonate, 269

Oppenauer oxidation, 6

Pechmann reaction, 7 Periodic acid oxidation, 2 Perkin reaction and related reactions, 1 Pictet-Spengler synthesis of tetrahydroisoquinolines, 6 Pomeranz-Fritsch synthesis of isoquinolines, 6 Preparation of amines by reductive alkylation, 4 Preparation of benzoquinones by oxidation, 4 Preparation of ketenes and ketene dimers, 3 Preparation of phosphonic and phosphinic acids, 6 Preparation of thiazoles, 6 Preparation of thiophenes and tetrahydrothiophenes, 6 Pschorr synthesis and related ring

Reaction of diazomethane and its derivatives with aldehydes and ketones, 8 Reaction of halogens with silver salts of carboxylic acids, 9

closure reactions, 9

Reduction with aluminum alkovides, 2 Reduction with lithium aluminum bydride, 6 Reformatsky reaction, 1 Replacement of aromatic primary aminogroups by hydrogen, 2 Resolution of alcohols, 2

Rosemmund reduction, 4

Schmidt reaction, 3
Selenium dioxide oxidation, 5
Skraup synthesis of quinolines, 7
Sommelet reaction, 8
Stobbe condensation, 6
Substitution and addition reactions of thiocyanogen, 3
Synthesis of aldehydes from carboxylic acids, 8
Synthesis of ketones from acid chlorides and organometallic compounds of magnesium, zinc, and cadmium, 8

von Braum cyanogen bromide reaction,
7

Willgerodt reaction, 3 Wolff-Kishner reduction, 4

18-19 Tetrazolium salts, synthesis via dia-

zonium salts, 29 salts, 29-30

Sulfazone, reaction with diagonium salts, | Triethyl g-acetylcarballylate, 268 Trimethyl propylene-2,3,3-tricarboxylate, self-condensation, 234

Tryptamine, 155

Thiocarbazones, synthesis via diazonium | Widman-Stoermer cannoline synthesis, 21, 28

- N,N'-Diphenyl-C-methylformazan, 24, 34
- N,N'-Diphenyl-C-nitroformazan, 19 Dypnopinacol, 216-217
- Ethyl α -benzoyl- γ -(2-pyridyl)butyrate, 270
- Ethyl cyanoglyoxalate m-chlorophenylhydrazone, 33
- Ethyl α,β-dioxobutyrate α-phenylhydrazone. 32
- Ethyl pyruvate o-nitrophenylhydrazone, 159
- Formazans, preparation via diazonium salts, 9, 11, 13-15, 19, 24, 158 Formazyl chloride, 14
- Hagemann ester, 251
- Hansa yellows, 13
- Heterocyclic rings, synthesis via Michael reaction, 256-263; see also individual heterocyclic rings, e.g. Pyridines
- Hexaethyl 3-butene-1,1,2,2,3,4-hexacar-boxylate, 269
- Holden-Lapworth mechanism of abnormal Michael reactions, 193-197
- Hydrazones, reaction with diazonium salts. 4-6
- α -Hydrazones of α,β -diketo esters, 11 4-Hydroxy-3-methylcinnoline, 34
- Indazoles, synthesis via diazonium salts, 15, 17, 24, 29
- Indene, behavior in Michael reaction, 232
- Indoles, synthesis via Japp-Klingemann reaction, 153
- synthesis via Michael reaction, 226 Isophorone, behavior in Michael reaction, 230
- Japp-Klingemann reaction, 143-178
- 7-Keto-1-methoxy-13-methyl-5,6,7,9,10,-13-hexahydrophenanthrene, 267 trans-3-Keto-2-phenylcyclohexaneacetic acid, 268

- Kojic acid, behavior in Michael reaction, 232
- Mannich bases, use in Michael reaction, 222-223
- Mesityl oxide, behavior in Michael reaction, 230
- Methyl 3-keto-2-phenylcyclohexyl-αnitroacetate, 268
- Michael reaction, 179-555 involving 1,6-addition, 213, 237-238 involving 1,8-addition, 237
- 1-Nitro-1-p-chlorophenyldrazonoethane, 33
- 5-Nitro-4,4-dimethylpentan-2-one, 267 Nitromalondialdehyde, use in Michael reaction, 240
- 1-(p-Nitrophenylazo)-2,3-dimethyl-1,3butadiene, 33
- Phenanthrenes, Pschorr synthesis of, 21-22, 27
- Piperidines, synthesis via Michael reaction, 233, 258-261
- Pyrans, synthesis via Michael reaction, 257
- Pyrazoles, synthesis via Japp-Klingemann reaction, 154
- Pyridines, synthesis via Michael reaction, 207-208, 210-212, 214, cf. 236, 258-261
- α-Pyrones, synthesis via Michael reaction, 214-215, 256-257
- Pyrroles, synthesis via Michael reaction, 261
- Pyrrolizidines, synthesis via Michael reaction, 262
- Pyruvaldehyde 1-phenylhydrazone, 32
- Rearrangement, of carbanions of Michael adducts, 186
 - of nitro groups on treatment with diazonium salts, 20, 151
- Rhodanine, use in Michael reaction, 220
- Schiff bases, use in Michael reaction, 207–209
- Serotonin, 156