

Our Team

UW-Bothell Masters of Computer Science and Software Engineering Students

Harpreet Kaur

Saurav Jayakumar

Machine Learning

95%

Python

90%

 $\mathbb{C}++$

85%

Python

95%

PowerPoint

909

 \mathbb{C}^{++}

85%

SQL 95%

Machine Learning

90%

 $\mathbb{C}++$

85%

Problem Statement

Wear a face mask.

Spread of the Virus!

Solution

Pre-Processing

Greyscaling, Histogram Equalization, Gaussian Filtering.

Mask Detection System

Face Detection

Haar Cascade Detection

Mask Detection

YCrCb + Otsu, Oronasal region selection, Comparison of skin area.

Preprocessing

Grey Scaling

Simplifies the image to a single channel of information, making it easier to detect features or patterns in the image.

It improves the performance of many computer vision tasks, such as edge detection, object detection, and image classification.

Preprocessing

Histogram Equalization

Improves the contrast by redistributing the intensities

Useful for removing shadows and other lighting effects from an image.

Preprocessing

Gaussian Filtering

Used to reduce noise in an image while preserving the overall structure.

The standard deviation of the filter affects the amount of blurring

The size of the filter affects the amount of smoothing applied

Other Preprocessing Methods

Face Detection System

Haar Cascade Classifier

A Haar cascade classifier can be used to detect objects in images.

It creates a series of Haar features. (A mathematical expression that compares brightness of 2 regions of an image.)

It then trains a classifier to identify these features in images.

Once the classifier is trained, it can be used to detect faces in new images.

Face Detection

Haar Cascade Classifier Algorithm

Each feature is a single value obtained by subtracting sum of pixels under the white rectangle from sum of pixels under the black rectangle.

Methods used:

- 1. Haar Cascade Frontal Face Alt
- 2. Haar Cascade Eye Tree Eyeglasses

image

Mask Detection

- 1. YCrCb skin color model (YCrCb + Otsu)
- 2. Oronasal region selection
- 3. Comparison of skin area between eye region and oral and nasal region

Mask Detection Process

YCBCR

y is the light intensity of the color, Cb and Cr is the blue component and red component related to the green component. These components are less sensitive to the human eyes.

Otsu Thresholding

single intensity
threshold that
separate pixels into
two classes,
foreground and background

Oronasal Area

and mouth, calculated using area around eyes

Comparison of skin area

eye is 1.2 times more than skin area around nose and mouth then mask, else no mask

Example of Mask Detection

CR + Otsi

Oronasal Region Selection & Comparison of Skin Area.

Dataset

Face Mask Detection Dataset | Kaggle

contains 7553 images with 3 color channels (RGB). Images of faces with mask are 3725 and images of faces without mask are 3828.

Data Structures

Map, Vector of Matrices, Vector of Rectangles

Classes

objDetect

Testing Methodology

Precision, recall, and accuracy for mask detection

without mas

k 923

without mas k_962

without_mas with_mask_9 k 924 86

without_mas with_mask_8 k 937

without_mas with_mask_8

61

with_mask_9

with mask 8

with mask

63

76

with mask !

88

with mask 8 62

with mask

with mask 8 75

with mask

k 950

Watch Out...

Mask Detection_

Demo Time!!!

Questions?