Trabajo Práctico Final

Introducción

La obesidad y el exceso de grasa corporal se han convertido en problemas de salud pública de primer orden.

Los métodos más precisos para medir la grasa corporal como la absorciometría de rayos X de doble energía (DXA) o la pletismografía son costosos, requieren equipos especiales y casi siempre se limitan a los grandes centros urbanos.

En el otro extremo, índices simples como el índice de masa corporal (IMC) o la relación cintura-cadera son baratos pero ofrecen una estimación indirecta y a veces poco fiable de la grasa corporal real.

¿Podemos encontrar una forma de, a partir de un reducido número de mediciones antropométricas, precedir con suficiente precisión el porcentaje de grasa corporal de un sujeto?

El objetivo

El conjunto de datos bodyfat.csv contiene observaciones de aproximadamente 250 adultos junto con:

- BodyFat (%): porcentaje de grasa corporal medido por densitometría hidrostatica (variable respuesta).
- Density (g/cc): densidad corporal estimada por desplazamiento de agua.
- Age, Weight, Height
- Circunferencias (cm): Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, Wrist.

Su misión es construir y comparar modelos de regresión que prevean BodyFat usando solo mediciones que pueda tomar fácilmente un nutricionista o un preparador físico con una cinta métrica y una balanza.

Se sugiere abordar, entre otros, los siguientes interrogantes:

- ¿Qué subconjunto mínimo de circunferencias mantiene el error de predicción por debajo de un umbral clínicamente aceptable (por ejemplo, $\pm 3\%$)?
- ¿Existen transformaciones (logaritmos, relaciones, índices) que mejoren la capacidad predictiva?
- ¿Cuánto aporta la información adicional de la densidad corporal (Density) frente a las mediciones puramente antropométricas?
- ¿Cómo influyen variables demográficas como la edad?

Para ello, se recomienda que se tengan en consideración las siguientes pautas generales que hacen a un análisis bayesiano:

- Análisis exploratorio de datos
- Propuesta y ajuste de modelos
 - Descripción matemática
 - Elicitación de los *priors*
 - Pruebas predictivas a priori
 - Ajuste del modelo

- Evaluación de la convergencia de las cadenas de Markov
- Exploración de la distribución a posteriori de los parámetros
- Pruebas predictivas a posteriori
- Evaluación del ajuste del modelo
- Interpretación de parámetros
- Comparación de modelos
- Análisis final y conclusión

Se recomienda fuertemente que se haga uso de diferentes visualizaciones para comunicar los resultados de las diferentes etapas del análisis y que se propongan y evalúen un mínimo de tres modelos.

La presentación deberá incluir:

- Introducción clara al problema
- Definición de las preguntas de investigación
- Descripción del conjunto de datos a utilizar
- Análisis exploratorio de los datos
- Fundamentación y análisis de los modelos propuestos
- Hallazgos, resultados y conclusiones