|                                                           | School:                      | Campus:                |
|-----------------------------------------------------------|------------------------------|------------------------|
| No Transport day                                          | Academic Year: Subject Name: | Subject Code:          |
| Centurion UNIVERSITY Shaping Lives Empowering Communities | Semester: Program: Bı        | ranch: Specialization: |
|                                                           | Date:  Applied and Act       | tion Learning          |

(Learning by Doing and Discovery)

Name of the Experiement: Security First – Understanding Blockchain Attacks

# \* Coding Phase: Pseudo Code / Flow Chart / Algorithm

### **ALGORITHM:**

- 1.Start
- 2.Study common blockchain attack types:

51% Attack

Sybil Attack

Replay Attack

Smart Contract Reentrancy Attack

- 3. Choose one attack type for simulation (Reentrancy Attack).
- 4. Write two Solidity smart contracts:

VulnerableBank — a simple deposit-withdraw contract that's unsafe.

Attacker — malicious contract exploiting the reentrancy bug.

- 5. Deploy both contracts in Remix IDE.
- 6.Deposit Ether into the VulnerableBank.
- 7.Use Attacker contract to call the vulnerable function repeatedly to drain funds.
- 8. Observe loss of funds in the victim contract.
- $9. Discuss\ how\ the\ issue\ can\ be\ mitigated\ using\ the\ Checks-Effects-Interactions\ pattern.$

10.End

# \* Software used

- 1.Remix IDE
- 2.MetaMask Wallet
- 3.Ethereum Test Network (Sepolia)

# \* Testing Phase: Compilation of Code (error detection)

#### 1.Write Vulnerable Smart Contract

### 2.Write Attacker Smart Contract

# 3.Deployment

Deploy VulnerableBank.sol first.

Copy its deployed address.

Now deploy Attacker.sol contract using that address in its constructor.

# \* Testing Phase: Compilation of Code (error detection)



# \* Implementation Phase: Final Output (no error)

## 1. Victim Setup

In VulnerableBank, call deposit() from 2–3 different accounts with 1 Ether each. Total bank balance = 3 Ether.

### 2.Launch Attack

From Attacker contract, call attack() and send 1 Ether.

Observe multiple recursive withdrawals triggered from fallback function.

#### 3.Results

Check getBalance() of attacker — shows drained funds.

Check total bank balance — now reduced drastically.





## \* Observations

- 1.The Reentrancy Attack demonstrates how unprotected external calls can lead to fund loss in smart contracts.
- 2.Secure coding practices like Checks-Effects-Interactions and Reentrancy Guards are essential to protect blockchain applications.

### **ASSESSMENT**

| Rubrics                               | Full Mark | Marks Obtained | Remarks |
|---------------------------------------|-----------|----------------|---------|
| Concept                               | 10        |                |         |
| Planning and Execution/               | 10        |                |         |
| Practical Simulation/ Programming     |           |                |         |
| Result and Interpretation             | 10        |                |         |
| Record of Applied and Action Learning | 10        |                |         |
| Viva                                  | 10        |                |         |
| Total                                 | 50        |                |         |

Signature of the Student:

Name:

Regn. No.:

Page No.....

\*As applicable according to the experiment. Two sheets per experiment (10-20) to be used.