Rozhodovací stromy pro Poker Hands

Martin Lukeš

TABLE I Taulka atributů

Atribut	Význam	Rozsah
C1	Barva první karty	1-4
S1	Hodnota první karty	1-13
C2	Barva druhé karty	1-4
S2	Hodnota druhé karty	1-13
C3	Barva třetí karty	1-4
S3	Hodnota třetí karty	1-13
C4	Barva čtvrté karty	1-4
S4	Hodnota čtvrté karty	1-13
C5	Barva páté karty	1-4
S5	Hodnota páté karty	1-13
Hand Power	Síla ruky	0-11

Abstrakt—Rozpoznání síly ruky v pokeru spolu s pozorováním tellů (manýr, výraz, emoce či zvyk vyjadřující informaci o stavu ruky hráče) oddělují špatné hráče od dobrých. Tento dokument se zaměril na zkoumání síly jednotlivých rukou.

I. ASSIGNMENT

Vyberte si data, která jsou použitelná pro klasifikaci nebo regresi. Data předzpracujte, a naimportujte do DM aplikace. Zvolte si klasifikátor (kNN, lineární a polynomiální separace, rozhodovací strom) nebo regresní algoritmus (kNN, lineární a polynomiální regrese, regresní strom). Najděte nastavení parametrů zvoleného algoritmu tak, aby produkoval co nejlepší modely.

II. INTRODUCTION

Vytvořil jsem model pro rozhodovací stromy. Nicméně pro mnou zvolená data se rozhodovací stromy ukázaly jako nešťastné (moc rozvětvené). Ač byla data rozsáhlá, tak byla již v číselné podobě a bylo nutné je jen normalizovat. Atributy a jejich významy jsou zachyceny v tabulce 1. Poslední atribut Hand Power je tzv. učitel, který vyjadřuje sílu dané ruky. Položek v datech je přes jeden milion, proto jsem použil náhodný vzorek asi 3000 instancí, který pro mé účely postačil.

III. METHODOLOGY

Rozhodovací stromy obsahují v každém listu jednu klasifikační třídu. Každý nelistový uzel stromu zastupuje jednu podmínku na nějaký příznak. Atribut, podle kterého tvoříme rozhodovací pravidlo je vybrán podle hodnoty entropie. Na Figure 1 vidíme vývoj chyby v závislosti na hodnotě parametru splitmin. Z hlediska nejnižší chyby je nejvýhodnější hodnota splitmin = 60. Pokus jsem opakoval, abych si ověřil domněnku o parametru splitmin. Graf druhého pokusu je na Figure 3 a nevyvrací první měření .

Fig. 1. Chyba v závislosti na ohebnosti modelu

vidíme, že nejlepší je vytvořit trénovací množinu z asi 75% dat.

Fig. 2. Učící křivka.

IV. CONCLUSION

Zjistil, že je nejvýhodnější vybrat do trénovací množiny 75 % dat. Parametr splitmin je nejvýhodnější pro hodnotu 60.

REFERENCES

[1] Materiály z přednášek.

Fig. 3. Druhý pokus chyby