HW-1 Math 117

Siddharth Deshpande 10/3/2020

Sets (DeMorgan's Identities

1.

- The first law that we are going to prove is:

$$X - \bigcup_{F \in \mathcal{F}} F = \bigcap_{F \in \mathcal{F}} (X - F)$$

i)

$$X - \bigcup_{F \in \mathcal{F}} F \subseteq \bigcap_{F \in \mathcal{F}} (X - F)$$

- Let x be a variable such that, $x \in X - \bigcup_{F \in \mathcal{F}} F$, then, we know that $x \in X$ and $x \notin \bigcup_{F \in \mathcal{F}} F$ by definition.

- Therefore, because $x \notin \bigcup_{F \in \mathcal{F}} F$, we know that $\forall F \in \mathcal{F}, \ x \notin F$ by definition.
- Furthermore, because $x \in X$ and $x \notin F$, $\forall F \in \mathcal{F}$, we know that, $x \in X F$, for all F in the set \mathcal{F} by definition.
- Therefore, $\forall F \in \mathcal{F}, x \in (X F)$. Then, by definition $x \in \bigcap_{F \in \mathcal{F}} (X F)$.
- Therefore, now we know that, $X \bigcup_{F \in \mathcal{F}} F \subseteq \bigcap_{F \in \mathcal{F}} (X F)$

ii)

$$X - \bigcup_{F \in \mathcal{F}} F \supseteq \bigcap_{F \in \mathcal{F}} (X - F)$$

- Let c be a variable such that, $x \in \bigcap_{F \in \mathcal{F}} (X F)$. Therefore, by definition we know that, $\forall F \in \mathcal{F}, \ x \in (X F)$.
- Then, $x \in X$ and $x \notin F$, $\forall F \in \mathcal{F}$ by definition. Then, because $x \notin F, \forall F \in \mathcal{F}$, we know that, $x \notin \bigcup_{F \in \mathcal{F}} F$.
- Since $x \in X$ and $x \notin \bigcup_{F \in \mathcal{F}}^{F \in \mathcal{F}} F$, we know by definition that, $x \in X \bigcup_{F \in \mathcal{F}} F$.
- Therefore, by definition, $X-\bigcup_{F\in\mathcal{F}}F\supseteq\bigcap_{F\in\mathcal{F}}(X-F)$
- Because we have proved that the subset holds in both directions, we know that

$$X - \bigcup_{F \in \mathcal{F}} F = \bigcap_{F \in \mathcal{F}} (X - F)$$

- Now we shall prove the second identity:

$$X - \bigcap_{F \in \mathcal{F}} F = \bigcup_{F \in \mathcal{F}} (X - F)$$

i)

$$\overline{ X - \bigcap_{F \in \mathcal{F}} F \subseteq \bigcup_{F \in \mathcal{F}} (X - F) }$$

- Let x be a variable such that, $x \in X - \bigcap_{F \in \mathcal{F}} F$. Then, by definition we have that, $x \in X$ and, $x \notin \bigcap_{F \in \mathcal{F}} F$.

- Because $x \notin \bigcap_{F \in \mathcal{F}} F$, we know that, $\exists F \in \mathcal{F} : x \notin F$. Without loss of generality, let us denote this element of \mathcal{F} that does not contain x as F_1 .
- Therefore, because $x \in X$ and, $x \notin F_1$, we know that, $x \in (X F_1)$ by definition. But, $F_1 \in \mathcal{F}$, therefore, by definition we know that, $x \in \bigcup_{F \in \mathcal{F}} (X F)$ as, $x \in (X F_1)$ and $F_1 \in \mathcal{F}$.
- Therefore, by definition we have that, $X \bigcap_{F \in \mathcal{F}} F \subseteq \bigcup_{F \in \mathcal{F}} (X F)$

ii)

$$X - \bigcap_{F \in \mathcal{F}} F \supseteq \bigcup_{F \in \mathcal{F}} (X - F)$$

- Let x be a variable such that, $x \in \bigcup_{F \in \mathcal{F}} (X - F)$. Then, we know that $x \in X$ and we also know that, $\exists F \in \mathcal{F} : x \notin F$. Let us call this element of \mathcal{F} which

does not contain x as F_1 .

- Therefore, because $x \notin F_1$ and $F_1 \in \mathcal{F}$ we have by definition that, $x \notin \bigcap_{F \in \mathcal{F}} F$.
- Finally, because $x\in X$ and, $x\notin\bigcap_{F\in\mathcal{F}}F$, by definition we know that, $x\in X-\bigcap_{F\in\mathcal{F}}F.$
- And therefore, by definition, $X \bigcap_{F \in \mathcal{F}} F \supseteq \bigcup_{F \in \mathcal{F}} (X F)$
- Because we have proved the subset holds in both directions we know that,

$$X - \bigcap_{F \in \mathcal{F}} F = \bigcup_{F \in \mathcal{F}} (X - F)$$