Uninformed Search

Problem 1:

Optimal Plan: Load(C1, P1, SFO), Load(C2, P2, JFK), Fly(P2, JFK, SFO), Unload(C2, P2, SFO), Fly(P1, SFO, JFK), Unload(C1, P1, JFK)

Only breadth first search produces an optimal plan.

	Expansions	Goal Tests	New Nodes	Plan Length	Time Elapsed:
Breadth first	43	5	180	6	0.0479
<u>search</u>					
Depth limited	101	271	414	50	0.1130
<u>search</u>					
Depth first	21	22	84	20	0.03016
graph search					

Problem 2:

Optimal Plan: Load(C1, P1, SFO), Load(C2, P2, JFK), Load(C3, P3, ATL), Fly(P2, JFK, SFO), Unload(C2, P2, SFO), Fly(P1, SFO, JFK), Unload(C1, P1, JFK), Fly(P3, ATL, SFO), Unload(C3, P3, SFO)

Only breadth first search produces an optimal plan.

	Expansions	Goal Tests	New Nodes	Plan Length	Time Elapsed:
Breadth first	3343	4609	30509	9	26.6800
<u>search</u>					
Depth limited	222719	2053741	2054119	50	1381.6419
<u>search</u>					
Depth first	624	625	5602	619	4.7600
graph search					

Problem 3:

Optimal Plan: Load (C1, P1, SFO), Load(C2, P2, JKF), Fly(P2, JFK, ORD), Load(C4, P2, ORD), Fly(P1, SFO, ATL), Load (C3, P1, ATL), Fly(P1, ATL, JFK), Unload(C1, P1, JFK), Unload(C3, P1, JFK), Fly(P2, ORD, SFO), Unload(C2, P2, SFO), Unload(C4, P2, SFO)

Breadth first search and uniform cost search produce optimal plans.

	Expansions	Goal Tests	New Nodes	Plan Length	Time Elapsed:
Breadth first	14663	18098	129631	12	153.9205
<u>search</u>					
<u>Uniform cost</u>	18223	18225	159618	12	82.5699
<u>search</u>					
Depth first	408	409	3364	392	2.6306
graph search					

Heuristic Search

Problem 1:

All solutions are optimal.

	Expansions	Goal Tests	New Nodes	Plan Length	Time
					Elapsed:
A* with h1 search	55	57	224	6	0.0500
A* with	41	43	170	6	0.0667
h_ignore_preconditions					
A* with h_pg_levelsum	55	57	224	6	1.1676

Problem 2:

All solutions are optimal

	Expansions	Goal Tests	New Nodes	Plan Length	Time
					Elapsed:
A* with h1 search	4853	4855	44041	9	15.9979
A* with	1450	1452	13303	9	5.4546
h_ignore_preconditions					
A* with h_pg_levelsum	4853	4855	44041	9	728.1676

Problem 3:

All solutions are optimal

	Expansions	Goal Tests	New Nodes	Plan Length	Time
					Elapsed:
A* with h1 search	18223	18225	159618	12	81.1557
A* with	5040	5042	44944	12	24.8607
h_ignore_preconditions					
A* with h pg levelsum	18223	18225	159618	12	5119.8050

Analysis:

- The Depth First Search does not return an optimal plan since it goes to the deepest nodes which usually end at convoluted plans.
- Breadth first search returns optimal plans since it checks all the nodes in a given level and only then goes to the next level.
- Ignore precondition heuristic was the fastest since it estimates a good cost for the A star algorithm. It also expands the least nodes in the graph.
- Conclusion: Therefore, the ignore precondition heuristic is the recommended algorithm since it takes the least time and memory.