Содержание

Линейная алгебра и функция нескольких переменных. Модуль 1. Лекции

1 Линейные пространства

Определение 1.1 (Линейное пространство). Линейное пространство $\mathbb L$ над множеством значений P (элементы будем называть векторами), для которого определены операции сложения и умножеения на скаляр, а также верно:

- 1. $\forall \vec{x}, \vec{y} \in \mathbb{L} \quad \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 2. $\forall \vec{x}, \vec{y} \quad (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- 3. $\exists \vec{0} : \forall \vec{x} \in \mathbb{L} \vec{x} + \vec{0} = \vec{x}$
- 4. $\forall \vec{x} \in \mathbb{L} \exists \vec{y} : \vec{x} + \vec{y}$ существование противоположного вектора $(-\vec{x})$
- 5. $\forall \vec{x} \in \mathbb{L} \quad (\alpha \beta) \vec{x} = \alpha(\beta \vec{x})$
- 6. $\forall \vec{x} \quad 1\vec{x} = \vec{x}$
- 7. $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$
- 8. $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$

В рамках курса считаем линейное пространство над элементами множества

 \mathbb{R} . Примерами линейного пространства могут быть:

- 1. Множество свободных векторов
- 2. n-мерное пространство (R^n)
- 3. Множество непрерывных функция на отрезке
- 4. Множество матриц одинакового размера
- 5. Множество многочленов степени n
- 6. и т.п.

1.0.1 Свойства линейных пространств

Свойство. Нулевый элемент единственен.

Доказательство. Пусть существуют два нулевых элемента: $\vec{0_1}$ и $\vec{0_2}$. Тогда:

$$\vec{0_1} = \vec{0_1} + \vec{0_2} = \vec{0_2} + \vec{0_1} = \vec{0_2}$$

Свойство. Для каждого элемента противоположный единственный.

Доказательство. Пусть существую два противоположных элемента для \vec{x} : $\vec{y_1}$ и $\vec{y_2}$. Тогда:

$$\vec{x} + \vec{y_1} = \vec{0}$$

 $\vec{x} + \vec{y_2} = \vec{0}$
 $\vec{x} + \vec{y_1} = \vec{x} + \vec{y_2}$
 $\vec{y_1} = \vec{y_2}$

Свойство.

$$0 \cdot \vec{x} = \vec{x}$$

Доказательство.

$$0\vec{x} = 0\vec{x} + \vec{0} = (0+1)\vec{x} + (-\vec{x}) = \vec{0}$$

Свойство.

$$(-1) \cdot \vec{x} = (-\vec{x})$$

Доказательство.

$$(-1) \cdot \vec{x} + \vec{x} = (1-1)\vec{x} = \vec{0} = \vec{x} + -\vec{x}$$
$$\implies (-1) \cdot \vec{x} = -\vec{x}$$

Свойство. Уравнение

$$\forall \vec{x}, \vec{y} \in \mathbb{L} \quad \vec{x} + \vec{a} = \vec{y}$$

имеет решение и притом единственное.

Доказательство. Пусть:

$$\vec{a} = \vec{y} + (-\vec{x})$$

Тогда подставляя в изначальное уравнение получаем тождество. $\hfill\Box$

1.1 Линейная зависимость и независимость векторов

Пусть есть некоторый набор векторов $\vec{x_1}, \dots, \vec{x_k} \in \mathbb{L}$.

Определение 1.2 (Линейная комбинация). Линейной комбинацией называется выражение вида:

$$\lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \ldots + \lambda_k + \vec{x_k}$$

Определение 1.3 (Тривиальная линейная комбинация). Линейная комбинация называется *тривиальной*, если все коэффициенты равны нулю.

Определение 1.4 (Нетривиальная линейная комбинация). Линейная комбинация называется *нетривиальной*, если хотя бы один коеффициент не равен нулю.

Определение 1.5 (Линейно зависимая комбинацию). Система векторов называется *линейно-зависимой*, если существует нетривиальная линейная комбинация, равная нулевому вектору.

Теорема 1.1. Чтобы система была линейно зависима, необходимо и достаточно, чтобы любой вектор вектор линейно выражался через остальные.

Свойство. Если в системе векторов существует нулевой вектор, то такая система линейно зависима.

Свойство. Если система векторов содержит линейно зависимую подсистему, то система тоже линейно зависима.

Свойство. Если система векторов линейно независима, то и любая ее подсистема тоже линейно независима.

Свойство. Если векторы x_1, \ldots, x_n линейного пространства \mathbb{L} линейно независимы и вектор $y \in \mathbb{L}$ не является их линейной комбинацией, то расширенная система векторов x_1, \ldots, x_n, y является линейно независимой.

1.2 Базис, размерность пространства

Определение 1.6 (Базис). *Базисом* линейного пространства $\mathbb L$ называют любую упорядоченную систему векторов, для которой выполнены два условия:

- 1. эта система векторов линейно независима;
- 2. каждый вектор в линейном пространстве может быть представлен в виде линейной комбинации векторов этой системы.

Определение 1.7. Коэффициенты разложения вектора по базису линейного пространства, записанные в соответствии с порядком векторов в базисе, называют *координатами вектора в этом базисе*.

Теорема 1.2 (О единственности разложения). Разложение по базису *единственно*.

Определение 1.8 (Конечномерное пространство). Пространство называется *конечномерное*, если сущестсвует базис конечного числа векторов.

Определение 1.9 (Бесконечномерное пространство). Пространство называется *бесконечномерное*, если не сущестсвует базис конечного числа векторов.

Теорема 1.3. Если \mathbb{L} – конечномерное пространство, тогда все базисы состоят из конечного числа векторов.

Определение 1.10 (Размерность линейного пространства). Максимальное количество линейно независимых векторов в данном линейном пространстве называют *размерностью линейного пространства*.

$$\dim(\mathbb{L}) = n$$

Линейная зависимость (независимость) равносильна линейной зависимости (независимости) столбцов координат в том же базисе.

1.3 Преобразование координат вектора при замене базиса

Пусть в n-мерном пространстве $\mathbf L$ заданы два базиса:

$$b = (b_1, \dots b_n)$$
 $c = (c_1, \dots c_n)$

Любой вектор мжно разложить по базису b. А значит любой вектор из базиса c может быть представлен как:

$$c_i = \lambda_{1i}b_1 + \ldots + \lambda_{ni}b_n, \quad i = \overline{1, n}$$

Запишем в матричном виде:

$$c_i = b \begin{pmatrix} a_{1i} \\ \dots \\ a_{ni} \end{pmatrix}, \quad i = \overline{1, n}$$

Или

4

$$c = bU \quad U = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & & & \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
 (1.11)

1 ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Определение 1.11 (Матрица перехода). Матрицу U (1.11) называют матрицей перехода от старого базиса b к новому базису c.

Свойство (1). Матрица перехода невырождена и всегда имеет обратную.

Свойство (2). Если в n-мерном линейном пространстве задан базис b, то для любой невырожденной квадратной матрицы U порядка n существует такой базис c в этом линейном пространстве, что U будет матрицей перехода от базиса b к базису c.

Свойство (3). Если U — матрица перехода от старого базиса b к новому базису с линейного пространства, то U^{-1} — матрица перехода от базиса c к базису b.

Свойство (4). Если в линейном пространстве заданы базисы b, c и d, причем U — матрица перехода от базиса b к базису c, а V — матрица перехода от базиса c к базису d, то произведение этих матриц UV — матрица перехода от базиса b к базису d.

2 Линейные подпространства

Определение 2.1 (Линейное подпространства). Подмножество \mathbb{H} линейного пространства \mathbb{L} называют *линейным подпространством*, если выполнены следующие два условия:

- 1. Сумма любых двух векторов из $\mathbb H$ принадлежит $\mathbb H: \vec x, \vec y \in \mathbb H \implies \vec x + \vec y \in \mathbb H;$
- 2. Произведение любого вектора из $\mathbb H$ на любое действительное число снова принадлежит $\mathbb H: \vec x \in \mathbb H, \lambda \in \mathbb R \implies \lambda \vec x \in \mathbb H.$

Определение ?? фактически говорит о том, что линейное подпространство – это любое подмножество данного линейного пространства, замкнутое относительно линейных операций, т.е. применение линейных операций к векторам, принадлежащим этому подмножеству, не выводит результат за пределы подмножества.

В любом линейном пространстве \mathbb{L} всегда имеются два линейных подпространства: само линейное пространство \mathbb{L} и *нулевое подпространство* $\{0\}$. Эти линейные подпространства называют *несобственными*, в то время как все остальные линейные подпространства называют *собственными*.

Определение 2.2 (Нулевое подпространство). *Нулевым подпространством* называется подпространство, состоящее из единственного элелемента – нулевого.

Определение 2.3 (Несобственные пространства). Линейные подпространства $\mathbb L$ и нулевое подпространство линейного пространства $\mathbb L$ называются neco6cmeenhumu.

Определение 2.4 (Собственные пространства). Линейные подпространства линейного пространства $\mathbb L$ за исключением несобственных называются necofcmeenhumu.

Пусть в линейном пространстве \mathbb{L} задана система векторов $\vec{e}_1, \dots, \vec{e}_k$. Рассмотрим множество \mathbb{H} всех векторов в \mathbb{L} , которые могут быть представлены линейной комбинацией этих векторов. Это множество является линейным подпространством в \mathbb{L} . Пусть:

$$\vec{x} = \vec{x}_1 \vec{e}_1 + \ldots + \vec{x}_k \vec{e}_k \quad \vec{y} = \vec{y}_1 \vec{e}_1 + \ldots + \vec{y}_k \vec{e}_k$$

Тогда:

$$\vec{x} + \vec{y} = (\vec{x}_1 + \vec{y}_1) \vec{e}_1 + \dots + (\vec{x}_k + \vec{y}_k) \vec{e}_k \in H$$

 $\lambda \vec{x} = (\lambda \vec{x}_1) \vec{e}_1 + \dots + (\lambda \vec{x}_k) \vec{e}_k \in H$

Описанное линейное подпространство называют линейным подпространством.

Определение 2.5. Линейной оболочкой линейного пространства $\mathbb L$ называется совокупность всех конечных линейных комибнаций векторов данной системы.

2.1 Ранг системы векторов

Определение 2.6 (Ранг системы векторов). *Рангом системы векторов* в линейном пространстве называют размерность линейной оболочки этой системы векторов.

Теорема 2.1. Ранг системы векторов $a = (a_1, \dots, a_k)$ линейного пространства $\mathbb L$ равен:

- 1. максимальному количеству линейно независимых векторов в системе а;
- 2. рангу матрицы, составленной по столбцам из координат векторов a_1, \dots, a_k в каком-либо базисе линейного пространства $\mathbb L$.

2.2 Евклидово пространство

Определение 2.7 (Евклидово пространство). Линейное пространство $\mathbb E$ называют *евклидовым пространством*, если в этом пространстве задано скалярное умножение, т.е. закон или правило, согласно которому каждой паре векторов $\vec{x}, \vec{y} \in \mathbb E$ поставлено в соответствие действительное число (\vec{x}, \vec{y}) , называемое скалярным произведением. При этом выполняются следующие аксиомы скалярного умножения:

- 2. $(\vec{x} + y, \vec{z}) = (\vec{x}, \vec{z}) + (\vec{y}, \vec{z});$ 3. $(\lambda x, \vec{y}) = \lambda(\vec{x}, \vec{y}), \quad \lambda \in \mathbb{R};$
- 4. $(\vec{x}, \vec{x}) > 0$, причём $(x, \vec{x}) = 0$ тогда и только тогда, когда $\vec{x} = \vec{0}$.

Замечание. Т.е. евклидово пространство – это пространство, в котором определена операция скалярного произведения.

Свойство (1).

$$(\vec{x}, \lambda \vec{y}) = \lambda(\vec{x}, \vec{y})$$

Свойство (2).

$$(\vec{x}, \vec{y} + \vec{z}) = (\vec{x}, \vec{y}) + (\vec{x}, \vec{z})$$

Свойство (3).

$$(\vec{x}, \vec{0}) = 0$$

Неравенство Коши – Буняковского

Теорема 2.2. Для любых векторов \vec{x}, \vec{y} евклидова пространства \mathbb{E} справедливо неравенство:

$$(\vec{x}, \vec{y})^2 \le (\vec{x}, \vec{y})(\vec{y}, \vec{y})$$

Определение 2.8 (Угол между векторами). Углом φ между ненулевыми $\textit{векторами}\ \vec{x}$ и \vec{y} в евклидовом пространстве \mathbb{E} называют такое значение $\varphi \in (0,\pi)$ что:

$$\cos \varphi = \frac{(x,y)}{\|x\| \|y\|}$$

где
$$||x|| = \sqrt{(x,x)}$$
, а $||y|| = \sqrt{(y,y)}$

2.4Норма вектора

Определение 2.9. Функцию, заданную на линейном пространстве \mathbb{L} , которая каждому вектору $\vec{x} \in \mathbb{L}$ ставит в соответствие действительное число $\|\vec{x}\|$, называют *нормой*, если она удовлетворяет следующим аксиомам нормы:

- 1. $\|\vec{x}\| > 0$, причем равенство $\|\vec{x}\| = 0$ возможно только при $\vec{x} = \vec{0}$;
- 2. $\|\lambda \vec{x}\| = |\lambda| \|\vec{x}\|, \lambda \in \mathbb{R};$

3. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ (неравенство треугольника).

Теорема 2.3. Всякое скалярное умножение в евклидовом пространстве определяет норму согласно формуле

$$||x|| = \sqrt{(\vec{x}, \vec{x})}$$

2.5 Ортогональные системы векторов

Определение 2.10. Два вектора в евклидовом пространстве называют *ортогональными*, если их скалярное произведение равно нулю.

$$\vec{x} \perp \vec{y} \iff (\vec{x}, \vec{y}) = 0$$

Говорят, что вектор \vec{x} в евклидовом пространстве $\mathbb E$ ортогонален подпространству $\mathbb H$, и обозначают $\vec{x} \perp \mathbb H$, если он ортогонален каждому вектору этого подпространства.

Определение 2.11 (Ортогональная система вектором). Систему векторов евклидова пространства называют *ортогональной*, если любые два вектора из этой системы ортогональны.

Теорема 2.4. Любая ортогональная система ненулевых вектором всегда линейно независима.

Определение 2.12 (Ортогональный базис). Если базис евклидова пространства представляет собой ортогональную систему векторов, то этот базис называют *ортогональным*.

Определение 2.13. Ортогональный базис называют *ортонормированным*, если каждый вектор этого базиса имеет норму, равную единице.