### (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

## (11)特許出願公開番号

# 特開平8-279295

最終頁に続く

(43)公開日 平成8年(1996)10月22日

| (51) Int.Cl.6   | 識別記号 庁内整理番号    | FI                                                         | 技術表示箇所                                |
|-----------------|----------------|------------------------------------------------------------|---------------------------------------|
| G 1 1 C 16/06   |                | G11C 17/00                                                 | 309F                                  |
| G 0 6 F 12/16   | 3 1 0 7623-5B  | G 0 6 F 12/16                                              | 3 1 0 A                               |
| # H O 1 L 27/10 | 491            | H 0 1 L 27/10                                              | 491                                   |
| :               |                | 審査請求 未請求 請求                                                | R項の数16 OL (全 20 頁)                    |
| (21)出願番号        | 特顏平7-80579     | (71)出願人 000003078<br>株式会社東芝                                | ·                                     |
| (22) 出額日        | 平成7年(1995)4月5日 | 神奈川県川崎市幸区堀川町72番地<br>(72)発明者 白 田 理一郎<br>神奈川県川崎市幸区小向東芝町1 株式会 |                                       |
|                 |                | (72)発明者 丹 沢 徹<br>神奈川県川崎                                    | 開発センター内<br>防市幸区小向東芝町 1 株式会<br>開発センター内 |
|                 |                | (72)発明者 金 箱 和                                              | 範<br>市幸区小向東芝町 1 株式会                   |
|                 |                | (74)代理人 弁理士 佐藤                                             | 一雄 (外3名)                              |

# (54) 【発明の名称】 不揮発性半導体記憶部を含む記憶システム

## (57)【要約】

【目的】 再書込み可能な不揮発性半導体記憶装置における、メモリセルトランジスタの閾値変化による保持データのエラーを防止する。

【構成】 書込み可能な不揮発性半導体記憶装置を含む 記憶システムにおいて、不揮発性半導体メモリのデータ の読出回数が基準値を越えた場合に保持データのエラー 訂正及び再書込みを行う。

【効果】 メモリセルトランジスタの閾値変化による保持データの遷移が減少する。



#### 【特許請求の範囲】

【請求項1】データの再書込み可能な不揮発性メモリセ ル群からなる1つ若しくは複数の記憶領域を有する情報 記憶部と、

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 正回路と、

前記情報記憶部からのデータの読出しを計数する読出回 数カウンタと、

前記情報記憶部が保持するデータの再書込みを行うリフ レッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データの読出しの計 数値が読出基準値を超えると、前記情報記憶部から前記 計数の対象となった読出データを含む記憶領域に属する 全データを読出し、読出したデータを前記誤り検出訂正 回路を経由して前記記憶領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶シス

【請求項2】データの再書込み可能な不揮発性メモリセ ル群からなる1つ若しくは複数の記憶領域を有する情報 20 記憶部と、

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 正回路と、

検出されたデータのエラーを計数する誤り個数カウンタ

前記情報記憶部が保持するデータの再書込みを行うリフ レッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データのエラーの計 数値がエラー基準値を超えると、前記情報記憶部から前 30 記エラー訂正の対象となった読出データを含む記憶領域 に属する全データを読出し、読出したデータを前記誤り 検出訂正回路を経由して前記記憶領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶シス

【請求項3】データの再書込み可能な不揮発性メモリセ ル群からなる1つ若しくは複数の記憶領域を有する情報

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 40 正回路と、

検出されたデータのエラーを計数する誤り個数カウンタ

前記情報記憶部からのデータの読出しを計数する読出回 数カウンタと、

前記情報記憶部が保持するデータの再書込みを行うリフ レッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データの読出の計数 値が読出基準値を超えかつ前記データのエラーの計数値 がエラー基準値を超えると、前記情報記憶部から各計数 50 検出されたデータのエラーを計数する誤り個数カウンタ

の対象となった読出データを含む記憶領域に属する全デ 一夕を読出し、読出したデータを前記誤り検出訂正回路 を経由して前記記憶領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶シス テム。

【請求項4】データの再書込み可能な不揮発性メモリセ ル群からなる1つ若しくは複数の記憶領域を有する情報 記憶部と、

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 正同路と,

前記情報記憶部からのデータの読出しを計数する読出回 数カウンタと、

データを一時記憶するバッファメモリと、

前記情報記憶部が保持するデータの再書込みを行うリフ レッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データの読出しの計 数値が読出基準値を超えると、前記情報記憶部から前記 計数の対象となった読出データを含む記憶領域に属する 全データを前記パッファメモリに読出し、読出したデー 夕を前記誤り検出訂正回路を経由して前記記憶領域に再 度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶シス テム。

【請求項5】データの再書込み可能な不揮発性メモリセ ル群からなる1つ若しくは複数の記憶領域を有する情報 記憶部と、

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 正回路と、

検出されたデータのエラーを計数する誤り個数カウンタ ٤.

データを一時記憶するパッファメモリと、

前記情報記憶部が保持するデータの再書込みを行うリフ レッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データのエラーの計 数値がエラー基準値を超えると、前記情報記憶部から前 記エラー訂正の対象となった読出データを含む記憶領域 に属する全データを前記パッファメモリに読出し、読出 したデータを前記誤り検出訂正回路を経由して前記記憶 領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶シス

【請求項6】データの再書込み可能な不揮発性メモリセ ル群からなる1つ若しくは複数の記憶領域を有する情報

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 正回路上.

٤,

前記情報記憶部からのデータの読出しを計数する読出回数カウンタと、

データを一時記憶するパッファメモリと、

前記情報記憶部が保持するデータの再書込みを行うリフ レッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データの読出の計数値が読出基準値を超えかつ前記データのエラーの計数値がエラー基準値を超えると、前記情報記憶部から各計数の対象となった読出データを含む記憶領域に属する全デ 10ータを前記パッファメモリに読出し、読出したデータを前記誤り検出訂正回路を経由して前記記憶領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶システム。

【請求項7】データの再書込み可能な不揮発性メモリセル群からなる1つ若しくは複数の記憶領域を有する情報 記憶部と、

前記情報記憶部からのデータの読出しを計数する読出回数カウンタと、

データを一時記憶するバッファメモリと、

前記情報記憶部が保持するデータの再書込みを行うリフレッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、前記データの読出しの計数値が読出基準値を超えると、前記情報記憶部から前記計数の対象となった読出データを含む記憶領域に属する全データを前記バッファメモリに読出し、読出したデータを全データが読出された前記記憶領域若しくはこの記憶領域以外の別の記憶領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶シス 30 テム。

【請求項8】データの再書込み可能な不揮発性メモリセル群からなる1つ若しくは複数の記憶領域を有する情報記憶部と、

前記情報記憶部から読出されるデータのエラーを検出 し、読出データのエラーを訂正して出力する誤り検出訂 正回路と、

前記情報記憶部が保持するデータの再書込みを行うリフレッシュ制御手段と、を備え、

前記リフレッシュ制御手段は、配憶システムへの電源投 40 入若しくは電源遮断の際に、前記記憶領域から全データ を読出し、読出したデータを前記誤り検出訂正回路を経 由して前記記憶領域に再度書込む、

ことを特徴とする不揮発性半導体記憶部を含む記憶システム。

【請求項9】前記リフレッシュ制御手段は、記憶システムへの電源投入若しくは電源遮断の際に、前記情報記憶部が保持するデータの再書込みを行う、

ことを特徴とする請求項1乃至7のいずれかに記載の不 揮発性半導体記憶部を含む記憶システム。 【請求項10】前記リフレッシュ制御手段は、前記情報記憶部から各計数の対象となった読出データを含む記憶領域に属する全データを読出し、読出したデータを、前記誤り検出訂正回路を経由して、全データが読出された前記記憶領域以外の別の記憶領域であるリフレッシュ用に特定された記憶領域若しくは空き記憶領域に書込む、

ことを特徴とする請求項1乃至6のいずれか、又は請求 項8及び9のいずれかに記載の不揮発性半導体記憶部を 含む記憶システム。

「請求項11」前記読出回数カウンタが、前記メモリセル群からなる記憶領域の1つ毎若しくは所定数毎に、該記憶領域の区分に対応するようにして1つ若しくは所定数設けられ、

前記リフレッシュ制御手段は、前記記憶領域の1つ毎若 しくは所定数毎に区分された記憶領域に属する全データ をデータの再書込み単位とする、

ことを特徴とする請求項1、3、4、6、7及び9のいずれかに記載の不揮発性半導体記憶装置。

【請求項12】前記誤り個数カウンタの出力をエラー基 20 準値と比較する比較器が、前記メモリセル群からなる記 憶領域の1つ毎若しくは所定数毎に、該記憶領域の区分 に対応するようにして1つ若しくは所定数設けられ、

前記リフレッシュ制御手段は、前記記憶領域の1つ毎若 しくは所定数毎に区分された記憶領域に属する全データ をデータの再書込み単位とする、

ことを特徴とする請求項2、3、5及び6のいずれかに 記載の不揮発性半導体記憶装置。

【請求項13】前記リフレッシュ制御手段は、前記情報記憶部が保持するデータの再書込みを行う契機を監視する制御プログラムを立ち上げる際に、前回のデータのエラー計数値を今回のエラー比較の基準値として設定する

ことを特徴とする請求項2、3、5、6及び12のいず れかに記載の不揮発性半導体記憶装置。

【請求項14】前記説出回数カウンタ若しくは前記誤り 個数カウンタの各計数値は、前記情報記憶部の計数の対 象となったデータを保持する記憶領域内若しくは該計数 値を保持するために用意された記憶領域内に保存され る、

40 ことを特徴とする請求項11又は12に記載の不揮発性 半導体記憶部を含む記憶システム。

【請求項15】前記リフレッシュ制御手段は、データの 再書込みを行った記憶領域において読出データの誤り検 出を再度行い、この記憶領域において再度エラーが検出 されたときには、この記憶領域内の全データを他の記憶 領域に移す、

ことを特徴とする請求項10に記載の不揮発性半導体記 憶部を含む記憶システム。

【請求項16】前記読出基準値は、前記不揮発性メモリ 50 セル群の読出回数対誤りビット数の分布特性に基づいて

定められる、

ことを特徴とする請求項1、3、4、6及び7のいずれかに記載の不揮発性半導体記憶部を含む記憶システム。

#### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、電気的に書替え可能な不揮発性半導体記憶装置の改良に関し、特に、記憶データのリフレッシュ機能を備えることによって保持するデータの信頼性を向上した不揮発性半導体記憶装置に関する。

#### [0002]

【従来の技術】電気的に書替可能な不揮発性の半導体記 億装置として、例えば、図15及び図16に示すよう な、高集積化が可能なNAND型EEPROM(Electri cally Erasable PROM) が知られている。図15 (a) は、EEPROMの一列分のメモリセルのパター ンを示しており、図15 (b) は、その電気的な等価回 路を示している。同図において、SG1 及びSG2 は選 択線、CG1 ~CG8 はコントロールゲート線、BLは ピット線、S1 及びS2 は選択用トランジスタ、M1~ 20 M8 はメモリセルである。また、図16 (a) 及び図1 6 (b) は、夫々図15 (a) に示されている、A-A'方向、B-B'方向に沿った半導体装置の断面図を 概略的に示している。両図において、211は半導体基 板、212は素子分離の絶縁膜、213はチャネル部の・ 絶縁膜(トンネル酸化膜)、214はフローティングゲ ート、215はゲート間絶縁間膜、216はコントロー ルゲート、217は絶縁膜、218は金属ビット線(B L)、219はソース・ドレイン領域を形成するの高濃 度不純物領域、である。NAND型EEPROMは、図 30 15及び図16に示されるように、複数のメモリセルM 1~M8をそれらのソース、ドレイン219を隣接する もの同士で共有するようにして互いに直列に接続し、こ れを一単位としてビット線BLに接続するものである。

【0003】各メモリセルMは、通常、電荷蓄積層と制御ゲート216が積層された、FETMOS構造を有する。メモリセルアレイは、P型またはN型の基板211に形成されたP型ウエル内に集積形成される。NANDセルのドレイン側は選択ゲートを介してピット線に接続され、ソース側はやはり選択ゲートを介してソース線(基準電位配線)に接続される。メモリセルの制御ゲートは、行方向に連続的に接続されてワード線となる。このような、メモリセル列が複数列設けられて、図17に示すような、EEPROMの実際のメモリセルアレイが形成される。

【0004】次に、NAND型EEPROMの動作について説明する。データの書込み及び読出しは、図17に示されるように、ワード線(CGi)を共有するメモリセル毎に行われる。この単位はページと呼ばれている。データの消去は、ドレイン側とソース側の2つの選択ゲ 50

ート (例えば、SGi1, SGi2) の間にある全ワード線 (例えば、CGi01 ~CGi16) を共有するメモリセル トランジスタ毎に行われる。この単位はプロックと呼ば れる。

【0005】データの書込みは、選択されたメモリセルトランジスタの制御ゲートに20V程度の高電圧を印加し、選択プロックの非選択メモリセルトランジスタの制御ゲートと選択プロックのドレイン側選択ゲートに10V程度の中間電圧を印加する。また、選択プロックのソース側選択ゲートと非選択プロックの選択ゲートに0Vを印加し、ピット線BLには書込みデータに応じて0Vまたは8V程度の中間電圧を夫々印加することによって行われる。ピット線BLに印加された電圧は、選択されたメモリセルトランジスタのチャネルまで伝達され、0Vが印加されたときはチャネルから浮遊ゲートに電子注入が生じ、選択されたメモリセルトランジスタの閾値電圧は正方向にシフトする。8Vが印加されたときは電子注入が起こらず、メモリセルトランジスタの閾値電圧は変化しない。

20 【0006】データの消去は、選択されたブロックの全制御ゲートに0Vを、P型基板またはN型基板及びP型ウエルと全選択ゲートと非選択ブロックの全制御ゲートに20V程度の高電圧を夫々印加することによって行われる。ビット線及びソース線はフローティング状態にされる。これにより、選択されたブロックのすべてのメモリセルトランジスタで浮遊ゲートの電子がチャネルに放出され、瞬値電圧は負方向にシフトする。一方、非選択ブロックのメモリセルトランジスタの瞬値電圧の変動は生じない。

30 【0007】読出しは、選択されたメモリセルトランジスタの制御ゲートに0Vを、それ以外のメモリセルトランジスタの制御ゲート及び選択ゲートに電源電圧を夫々印加して選択されたメモリセルトランジスタ以外のトランジスタを導通させ、選択されたメモリセルトランジスタで電流が流れるか否かを検出することによって行われる。

【0008】従来の不揮発性半導体記憶装置では、記録データの高信頼性を図るために誤り検出訂正回路(ECC)が備えられており、メモリから読み出されたデータはECCによって誤りの訂正が行われている。

#### [0009]

【発明が解決しようとする課題】しかしながら、上述した動作説明から明らかであるように、NAND型EEPROMでは、読出し動作時に非選択メモリセルトランジスタは転送ゲートとして使用されるため、これら読み出されない、非選択メモリセルトランジスタのゲート及び電荷蓄積層間と、電荷蓄積層及びチャネル間とに印加される電界によって、電荷蓄積層に蓄えられた信号電荷がゲートまたはチャネル間に抜けてしまったり、反対に電荷蓄積層に電荷が注入されたりして、メモリセルトラン

ジスタが保持している信号データの反転(閾値の圏移) が起こり得る。

【0010】図2は、特定のアドレスのメモリセルのデ ータを読出し続けたときの、全メモリが保持するデータ 中に誤りピットが出現する状態を、読出回数対誤りピッ トの発生数のグラフで概略的に表している。この図か ら、誤り訂正が可能なエラー数が少ない状態であるうち に、これらのデータの読出しが行われるならば、ECC によって元の正しいデータに復元することが可能である ことが判る。しかしながら、特定のアドレスばかりがア 10 クセスされていると、メモリセルの同一プロック内でデ ータ反転が重なっていき、ついには、ECCによる誤り 訂正が不可能となってしまう、ということも判る。

【0011】よって、本発明は、従来の不揮発性半導体 記憶装置における、メモリから読み出されたデータはE CCによって誤りの訂正が行われているものの、読出さ れないメモリセルのデータには誤りが蓄積されていき、 やがてECCによる訂正が不可能になってしまうとい う、不具合を解消することを目的とする。

#### [0012]

【課題を解決するための手段】上記目的を達成するため 本発明の不揮発性半導体記憶部を含む記憶システムは、 データの再書込み可能な不揮発性メモリセル群からなる 1つ若しくは複数の記憶領域を有する情報記憶部と、上 記情報記憶部から読出されるデータのエラーを検出し、 読出データのエラーを訂正して出力する誤り検出訂正回 路と、上記情報記憶部からのデータの読出しを計数する 説出回数カウンタと、上記情報記憶部が保持するデータ の再書込みを行うリフレッシュ制御手段と、を備え、上 記りフレッシュ制御手段は、上記データの読出しの計数 30 値が読出基準値を超えると、上記情報記憶部から上記計 数の対象となった読出データを含む記憶領域に属する全 データを読出し、読出したデータを上記誤り検出訂正回 路を経由して上記記憶領域に再度書込む、ことを特徴と

【0013】また、本発明の不揮発性半導体記憶部を含 む記憶システムは、データの再書込み可能な不揮発性メ モリセル群からなる1つ若しくは複数の記憶領域を有す る情報記憶部と、上記情報記憶部から読出されるデータ のエラーを検出し、読出データのエラーを訂正して出力 40 する誤り検出訂正回路と、検出されたデータのエラーを 計数する誤り個数カウンタと、上記情報記憶部が保持す るデータの再書込みを行うリフレッシュ制御手段と、を 備え、上記リフレッシュ制御手段は、上記データのエラ 一の計数値がエラー基準値を超えると、上記情報記憶部 から上記エラー訂正の対象となった読出データを含む記 憶領域に属する全データを読出し、読出したデータを上 記誤り検出訂正回路を経由して上記記憶領域に再度書込 む、ことを特徴とする。

む記憶システムは、再書込み可能な不揮発性メモリセル 群からなる1つ若しくは複数の記憶領域を有する情報記 **億部と、上記情報記憶部から読出されるデータのエラー** を検出し、読出データのエラーを訂正して出力する誤り 検出訂正回路と、検出されたデータのエラーを計数する 誤り個数カウンタと、上記情報記憶部からのデータの読 出しを計数する読出回数カウンタと、上記情報記憶部が 保持するデータの再書込みを行うリフレッシュ制御手段 と、を備え、上記リフレッシュ制御手段は、上記データ の読出の計数値が読出基準値を超えかつ上記データのエ ラーの計数値がエラー基準値を超えると、上記情報記憶 部から各計数の対象となった読出データを含む記憶領域 に属する全データを読出し、読出したデータを上記誤り 検出訂正回路を経由して上記記憶領域に再度書込む、こ とを特徴とする。

【0015】また、本発明の不揮発性半導体記憶部を含 む記憶システムは、データの再書込み可能な不揮発性メ モリセル群からなる1つ若しくは複数の記憶領域を有す る情報記憶部と、上記情報記憶部からのデータの読出し を計数する読出回数カウンタと、データを一時記憶する 20 バッファメモリと、上記情報記憶部が保持するデータの 再書込みを行うリフレッシュ制御手段と、を備え、上記 リフレッシュ制御手段は、上記データの読出しの計数値 が読出基準値を超えると、上記情報記憶部から上記計数 の対象となった読出データを含む記憶領域に属する全デ 一夕を上記パッファメモリに読出し、読出したデータを 全データが読出された上記記憶領域若しくはこの記憶領 域以外の別の記憶領域に再度書込む、ことを特徴とす る。

#### [0016]

【作用】本発明によれば、ECC補正が有効な時点で不 揮発性半導体装置に書込まれている全データあるいは部 分的なデータの書替え(リフレッシュ)を行うので、読 出されなかったデータを保持するメモリセルに、他のデ 一夕の読出しストレスによる誤りが発生していたときに でも、誤りの数はECC訂正可能な誤り数以下であるた め、正しいデータに修正されて再記録される。

【0017】また、他の本発明によれば、ECC補正を 必要としないエラー発生率の極めて少ない時点で、不揮 発性半導体装置に書込まれているデータのリフレッシュ を行う。

【0018】この結果、ECCの誤り訂正能力を越えて 発生する誤りの頻度を、実使用上問題とならない程度に まで減らすことが可能となる。

#### [0019]

【実施例】以下、本発明の実施例について図面を参照し て説明する。図1は、本発明の第1の実施例を示すプロ ック図である。同図において、1は、例えば、NAND 型EEPROMからなるメモリセルアレイ、2は指定さ 【0014】また、本発明の不揮発性半導体記憶部を含 50 れるワード線を駆動するワード線駆動回路、3は与えら

れたアドレス信号に対応するワード線の駆動をワード線 駆動回路2に指令するロウデコーダ、4は指示されたピット線を駆動する制御回路、5は与えられるアドレス信 号に対応するピット線の駆動を指令するカラムデコーダ、6はアドレス信号を一時保持するアドレスパッファ、7は入出力データを一時保持するデータ入出力パッファ、8はメモリに与えられるコマンドを一時保持するコマンド入出力パッファである。これ等の構成要素1~8によって、情報記憶部である不揮発性半導体記憶装置の本体部分10が構成される。

【0020】更に、11は読出データのエラーチェック 及びエラー訂正を行うECC(誤り検出訂正回路)であ る。ECC11には、例えば、リード・ソロモン(Reed -Solomon) 符号を用いたエラー訂正方式を用いることが 出来る。勿論、パリティチェックを含む他の種々のエラ 一訂正方式のものを使用することが可能である。ECC 11は、エラー訂正によって元のデータに復元するため の付加ビットや情報をデータに追加してメモリセルアレ イに記憶させる機能を有し、更に、エラー訂正を実行す るか否か等を判断するために、エラー数を計数する誤り 20 個数カウンタを備えている。12はCPUのメインメモ リやICメモリカード内でCPUと不揮発性メモリ間に 設けられるパッファメモリ、13はメモリセルアレイ1 からの読出回数を計数する読出回数カウンタ、16はデ ータ処理のためにEEPROMを制御する機能を備える コンピュータシステムのCPU、14はECC11及び CPU16相互間のデータを伝送するデータ線(データ パス)、15はコマンド入出力パッファ8及びCPU1 6間の制御信号を転送する制御線、17はCPU16か らアドレスパッファ6にアドレス信号を伝送するアドレ 30 ス線、18はECC11、パッファメモリ12及び読出 回数カウンタ13相互間を接続する信号線である。

【0021】なお、ECC11及びCPU16相互間のデータ伝送は、図1に点線で示すように、バッファメモリ12を介して行うようにすることが出来る。また、データ線14は、ECC11、バッファメモリ12、その他の機能部分及びCPU16相互間を接続する共通データバスにより構成することが可能である。

【0022】CPU16は、コンピュータシステムにおいてデータ処理を行うCPUを用いることが出来るが、データの記憶装置への書込み、読出しを制御するために、専用化したCPU(制御装置)とすることも可能である。CPU16は、リフレッシュ制御手段を構成する。

【0023】次に、記憶システムの動作について説明する。CPU16は、通常、不揮発性メモリの本体部分10に対して以下に述べる3つのモードの動作をする。

【0024】データの書込みは、CPU16から、データ線14及びECC11を介してデータ入出力パッファ7に書込むべきデータが供給される。また、CPU16 50

から、書込みコマンドが制御線15を介してコマンド入 出力パッファ8に、書込アドレスがアドレス線17を介 してアドレスパッファ6に、夫々供給される。この結 果、メモリセルアレイ1内の指定アドレスに対応するメ

モリセルに対してデータの書込みが行われる。

10

【0025】データの消去は、CPU16から消去コマンドが制御線15を介してコマンド入出力バッファ8に供給され、また、アドレス信号がアドレス線17を介してアドレスバッファ6に供給されることによって行われ、アドレス指定されたメモリセルアレイ1内の該当するメモリセルのデータがクリアされる。

【0026】データの読出は、CPU16から読出コマンドが制御線15を介してコマンド入出力バッファに供給され、読出アドレスがアドレス線17を介してアドレスバッファ6に与えられることによって行われる。メモリセルアレイ1内の該当するアドレスのメモリセルから読出されたデータは、ビット線制御回路4、データ入出力バッファ7及びECC11を経てデータ線14に出力され、CPU16に取込まれる。

7 【0027】次に、リードストレスによる保持データの 誤り(設定されたトランジスタの閾値変化)の防止及び エラー修正を行う、リフレッシュ動作について説明する。

【0028】リフレッシュ動作に用いられる読出回数カ ウンタ13は、メモリセルアレイ1からの読出し回数を カウントする図示しないカウンタと、カウント値と図示 しないレジスタに設定された比較基準値とを比較する図 示しないコンパレータと、からなり、読出しのカウント 値が予め設定されたリフレッシュの基準値に等しいか若 しくは該基準値を超えるときに、リフレッシュ動作を起 動させる信号を出力する。読出の計数の仕方には、種々 の態様がある。例えば、上記のように、メモリ本体10 への読出命令が単純に積算される場合、メモリ本体10 への読出命令と指定アドレスを考慮して、メモリセルア レイ1内の各プロック毎にアクセスを分けて、各プロッ ク毎に読出しのアクセス数を計数する場合、メモリセル アレイ内の1つ若しくは複数のプロックであるクラスタ 毎に読出しを計数する場合、メモリセルアレイ1内の各 セル毎に読出しを計数する場合、これ等の読出回数の計 数態様を適宜に組合せる場合等である。要求される精 度、コスト等の見地から適当なものが選択される。第1 の実施例では、メモリ本体10への読出アクセスが積算 され、総読出回数(あるいは読出指令回数)がモニタさ れる。

【0029】コンピュータシステムの使用終了時の読出回数カウンタ13内の読出カウント値は、例えば、図示しない電源遮断のルーチンを実行するときに、退避すべきパラメータデータと共にメモリセルアレイ1の所定位置に記憶される。そして、次回のコンピュータシステムの起動時に、読出されてECC11を介して読出回数カ

12

ウンタ13に入力され、前回のリフレッシュからこれま での総読出回数が、今回のカウンタの初期値として設定 される。CPU16によってメモリセルアレイ1から読 出しが行われる度に読出回数カウンタ13の値は1ずつ 増えていく。総読出し回数が基準値に等しくなると、読 出回数カウンタ13はリフレッシュ指令を出力する。こ のリフレッシュ指令は、メモリ本体10のコマンド入出 カバッファ8に供給される。メモリ本体10は、リフレ ッシュ指令に応答してリフレッシュ動作を行う。このリ フレッシュ動作中は、外部からのデータの書込み及び外 10 部への読出しは出来ない。そこで、メモリ本体10は他 のコマンドを受け付けないことを示すビジー信号をコマ ンド入出力パッファ8から制御信号線15を介してCP U16に供給する。リフレッシュ動作では、メモリに書 込まれているデータを読出し、エラー訂正を行って再度 メモリに書込む。この処理によって、EEPROMのセ ルトランジスタ各々の閾値を再設定する。

【0030】まず、読出指令と一連のアドレスを順番に メモリ本体10に与える読出モードにより、リフレッシ ュの対象となった全メモリセルのデータは、メモリセル アレイ1から、データ入出力パッファ7、ECC11を 介してパッファメモリ12に順次に読み込まれる。EC C11を通過する際にデータのエラー訂正が行われる。 その後、メモリセルアレイ1の全メモリセルの保持デー 夕は消去され、リセットされる。次に、書込み指令と一 連のアドレスを順番にメモリ本体10に与える書込みモ ードを行う。パッファメモリ12に保持された全データ はECC11及びデータ入出力パッファ7を介してメモ リセルアレイ1に再書込みされる。上記リフレッシュ動 作においては、ECC11によってエラー訂正されるた 30 め、エラービットが少なければ、誤りのないデータが復 元されてメモリセルアレイ1に再書込みされる。全デー 夕の書込みが終了すると、リフレッシュ動作が終了した ことを示すレディー信号がコマンド入出力バッファ8か ら出力され、CPU16と読出回数カウンタ13に入力 される。この信号により読出回数カウンタ13の計数値 はリセットされ、総読出し回数は0にされる。

【0031】なお、コンピュータシステムあるいは記憶システムの終了時直前には、前述したように、メモリセル1に記憶されている前回の総読出し回数は、今回の読 40出回数カウンタ13の総読出し回数に書替え (更新) られる。

【0032】図3は、本発明の第2の実施例を説明するプロック図である。同図において図1と対応する部分には同一符号を付している。

【0033】この実施例が図1に示される第1の実施例と相違する点は、メモリ本体10内に読出回数カウンタ13を備え、更に、バッファメモリ12に相当する記憶領域をメモリセルアレイ1内の一部の領域に確保することにより、外部のバッファメモリ12を不要にしてい

る。このような、メモリ本体10を複数設ける構成であれば、いわゆるメモリインタリープを採用する構成等に容易に対応することが出来る。

【0034】なお、ECC11と複数のメモリ本体10とをパス接続の他、マルチプレクサを介して接続することが出来る。また、各メモリ本体10毎にECC11及びCPU16を設ける構成とすることも可能である。

【0035】本発明の第3の実施例であるメモリセルアレイのクラスタ毎にリフレッシュを行う場合のリフレッシュ・アルゴリズムについて、図4に示すフローチャートを参照して説明する。この例では、各クラスタ毎に読出し回数が不揮発性メモリに記録される。クラスタはメモリセルアレイのリフレッシュを行う単位であり、例えば、メモリセルアレイ1内における1つ若しくは複数のプロックまたはチップが該当する。

【0036】まず、半導体記憶装置に電源が投入され、図示しないパワーオンリセット回路が動作すると、図4(a)に示されるように、その出力によって不揮発性メモリ1に保持されている第1番目から第n番目のまでの各クラスタについてのn個の総読出し回数の読出しが行われる(S2)。第1番目のクラスタの総読出し回数Yiは、前回のリフレッシュからこれまでの総読出し回数Yiは、前回のリフレッシュからこれまでの総読出し回数を表しており、例えば、第1番目のクラスタ内の特定領域に格納されている。読み出された各クラスタの総読出し回数Y1~Ynは、総読出し回数をカウントするカウンタ13の複数の計数用レジスタに夫々プリセットされる(S4)

【0037】次に、図4(b)に示すように、不揮発性 記憶装置からのデータの読出がモニタされる。クラスタ iへのデータの読出しを行う度に (S12)、カウンタ 13によってクラスタ i の総読出しカウント数Yi を 1 だけ増やし (S14)、総読出し回数Yi が予め設定された最大読出し回数Yc になったかどうかを判定する (S16)。

【0038】総読出し回数Yiが基準値Ycに等しいか これを超えると、リフレッシュ動作が行われる(S1 6)。リフレッシュ時には、記憶装置へのアクセス不可 を示すビジー信号 (フラグ) が設定され、CPU16に 出力される。その後、メモリセルアレイ1内のクラスタ iに属するプロック毎に、1ページ目から順番にECC に導入され、誤りがあったときには訂正済みのデータ を、また誤りがないときにはそのままのデータを、クラ スタと同じサイズのパッファメモリに順次に書込む (S 18)。 i 番目のクラスタの全データがパッファメモリ に書込まれたら、クラスタ i 中の全プロックは強制的に 消去され(S20)、訂正済みのデータが再度同クラス 夕に書込まれる(S22)。総読出し回数Yiは「0」 に書替えられ、i番目のクラスタに対応する読出回数カ ウンタはリセットされる(S24)。最後に、レディー 信号(フラグ)が設定されて、ビジー信号はリセットさ

れ、リフレッシュ動作が終了する(S24)。

【0039】なお、ステップS18において、ブロック内のデータをECCによる訂正を行わずに、バッファメモリに順次書込むようにすることが出来る。基準値Ycをエラー発生の確立の小さい値に設定すれば、単に、リフレッシュを繰返すことになり、より簡便な回路構成で保持データのレベル遷移が防止される。また、ステップS22において、データの書込みを行う際に、別の空いているクラスタあるいはブロックに記憶場所を変えて書込むことが出来る。この場合には、例えば、コンピュー 10 タシステムのオペレーティングシステムによって、あるいはメモリ本体のハードウェアに用意されたアドレス変更機能により、プロックアドレスの修正を行うなう。

【0040】コンピュータシステムの装置電源を落とす操作が行われて、パワーオフリセットコマンドが入力され、あるいはプログラム終了の操作が行われると、図4(c)に示すように、シャットダウンルーチンが実行される。不揮発性メモリ1に書込まれているメモリの各クラスタについての総読出し回数Y1~Ynはカウンタの現在値に夫々更新され、保持される(S6)。

【0041】本発明の実施例におけるリフレッシュ動作を開始する基準となる基準読出回数Ycの設定方法について図2を参照して説明する。特定アドレスのメモリデータを読出し続けたときに、初めて1ビット誤る読出し回数Xの期待値は、EEPROMの場合、約10万回であるので、リフレッシュの基準読出し回数Ycを、例えば、その十分の一の1万回に設定する。これにより、1ページ中の1ビット誤りについて訂正能力を持つECCを用いても、ECCの誤り訂正能力を超えて発生する誤り、即ち、2ビット以上の誤りの頻度を、実使用上問題 30とならない程度に減らすことができる。勿論、ECCのエラービット訂正能力をより高いものを用いることによって、リフレッシュ基準値を大きく設定することが可能である。

【0042】逆に、基準読出し回数Ycをエラー発生の確率の十分に低い値に設定すれば、ECCを持たないシステムであっても、エラーの発生する前にリフレッシュを行ってピットの誤り発生を未然に防止することが可能となる。

【0043】図5は、本発明の第4の実施例の構成を示 40 すプロック図である。同図において、図1と対応する部 分には同一符号を付し、かかる部分の説明は省略する。

【0044】基準読出回数Ycが、特定アドレスのメモリデータを読出し続けたときに、初めて1ビット誤る読出し回数の期待値に比べ十分小さく設定されている場合には、総読出し回数Yiが予め設定された基準値Ycに等しくなるたびにリフレッシュ動作を実行する必要は少ない。これは、総読出し回数Yi内に誤る確率が十分に低い、また、読出されたデータがECCによってエラー訂正されるからである。その反面、リフレッシュには一50

定の時間を要するため、コンピュータシステムの作業内 容によってはプロセスの実行待ちを減らしたい場合があ る。

【0045】そこで、この実施例では、総読出し回数Y i が基準値Ycに等しくなったときに、更に、第i番ク ラスタ中のデータに誤りがあるとき、あるいは誤り個数 Eiが予め設定された誤り許容値Ecを越えたときに、 リフレッシュ動作を行うようにしている。総読出し回数 Yiが基準値Ycに等しくなると、読出回数カウンタ1 3はメモリ本体10に対して第1番クラスタの全データ を読み出すよう信号を出す。これらのデータは順次、E CC11を介してパッファメモリ12に読み込まれる。 全データが出力されると同時にシンドローム計算は終了 する。この結果は、誤り個数比較器101に入力され、 予め設定された誤り個数許容値と比較される。誤り個数 が基準値より小さければ、読出回数カウンタ13をリセ ットするのみにして、データに対するリフレッシュ動作 は行われない。誤り個数が基準値に等しいかまたはそれ より大きければ、リフレッシュが実行される。すなわ ち、読出回数カウンタ13をリセットするとともに、第 1番クラスタの全メモリセルの内容はパッファメモリ1 2内に退避される。 該クラスタ内の全メモリセルのデー タはリセットされた後、ECC11によってエラー訂正 されたデータがメモリセルアレイ1に再書込みされる。 【0046】このようにして、クラスタiの総読出し回 数Yiが基準値Ycに等しいかこれを超えた場合でも、 第i番クラスタ中のデータ誤り個数Eiが予め設定され た誤り許容値Ecより小さいときにはECCによって元 のデータが復元可能であり、データに対するリフレッシ ュ動作は行われないので、データ消去及び再書込みが省

【0047】図6は、上記第4の実施例に関わる不揮発性半導体記憶装置のリフレッシュ・アルゴリズムを示すフローチャートである。

【0048】図4(a)に示されるように、電源が投入 されると、自動的に全クラスタの前回のリフレッシュか らこれまでの総読出し回数Yiが読出され(S2)、総 読出し回数をカウントするカウンタにプリセットされる (S4)。その後、CPU16は不揮発性半導体記憶装 置10からのデータの読出をモニタする。データの読出 しが行われると(S12)、カウンタによって総読出し カウント数Yiを1ずつ増やし(S14)、総読出し回 数Yiが予め設定された基準読出し回数Ycになったか どうかを判定する(S16)。総読出し回数Yiが基準 値Ycに等しくなると、全データが読み出され、ECC 11を介してバッファメモリ12に記憶される (S1 8)。これらのデータ中の誤りがECC11によって判 定され、ECC11内の誤り個数カウンタによって個数 Eiが計数される。誤り個数Eiは誤り個数比較器10 1に予め設定されている許容値Ecと比較される(S1

略できる。

リセットされる (S 2 4)。一方、誤り個数が許容値を 越えていなかった場合には (S 1 9)、データの消去及 び再書込み (S 2 0, S 2 2) は行われず、総読出し回 10

【0049】このような、モニタルーチン(S12~S24)が繰返し、実行されることによって、クラスタi~nの書込みデータがリフレッシュされる。

数Yiは0に書替えられリセットされる(S24)。

【0050】装置の電源を落とす操作やプログラム終了の操作が行われると、図4(c)に示されるシャットダウンルーチンが実行される。CPU13は不揮発メモリ内の各クラスタの総説出し回数Y1を失々のクラスタについてのカウンタの現在値に更新し、データを保持させる(S6)。

【0051】図7は、本発明の第5の実施例の構成を示すプロック図であり、特に、メモリセルアレイ1、その中の1つ又は複数のデータ用プロックからなる複数のクラスタ102a~102c(実施例では、説明の便宜上3つであるが、任意数設けられる)、センスアンプ兼ラッチ回路付きピット線制御回路103、ECC11、読出回数カウンタ13、誤り個数比較器101を取り出して示している。

【0052】このうち、メモリセルアレイ1は、複数のクラスタ102a~102cに加えて、一時記憶用プロ 30ック102d及び読出回数誤り個数格納用プロック102eを備えている。また、読出回数カウンタ13は、クラスタ102a~102cの数に対応した数の複数のカウンタR1~R3を持つ。加算演算を別途の部分(例えば、CPU16やECC11の演算部)で行う場合には、カウンタR1~R3は加算値を保持するレジスタであり得る。誤り個数比較器101も、クラスタ102a~102cの数に対応した数の複数の誤り比較器C1~C3を持つ。

【0053】この実施例では、これまでの複数のクラス 40 夕の各々についての、総読出し回数Yiと、前回書込みまたは消去した際に生じた誤り個数Eiとが、クラスタアドレスiに対応付けられて回数誤り個数格納用プロック102e内に全クラスタ分格納されており、それ等のデータが回数誤り個数格納用プロック102eから読み出さる。また、複数のクラスタ102a~102c内に各クラスタの総読出し回数Yiと誤り個数Eiとを格納し、各クラスタ内からそのクラスタiについての総読出し回数Yiと誤り個数Eiとを読出すようにすることが出来る。 50

16

【0054】これ等の総読出し回数Yiと誤り個数Eiのデータは、ECC11を介して夫々読出回数カウンタ13と誤り個数比較器101に入力される。読出された総読出し回数Yiは読出回数カウンタ $R1\sim R3$ のうち読出したクラスタiに対応するものにプリセットされる。また、読出された誤り個数Eiは、誤り個数比較器 $C1\sim C3$ のうち読出したクラスタiに対応するものに比較基準値Eciとしてセットされる。なお、予め一定値を比較基準値Eciとして説出回数誤り個数格納用プロック102eに記憶しておき、これを誤り個数比較器101にセットすることが出来る。この場合には、誤り個数比較器をクラスタ数と同数設ける必要はなく、10で済む。

【0055】 読出回数カウンタ13の各クラスタのカウント値は各クラスタについて読出しが行われる度に、また、誤り個数比較器101の比較基準値Ecは書込み、または、消去後の誤り個数チェックが行われる度に夫々更新される。このようにすることによって、読出ストレスによるデータの誤りが発生したかどうかを、誤り個数Eiと比較基準値Eciとを比較することによって判定できる。総読出し回数Yiが基準値Ycに等しくなり、更に、第i番目のクラスタ中のデータに誤り個数Eiが誤り許容値Eciを越えたときに、リフレッシュ動作を行うようになされている。

【0056】対象のクラスタを、例えば、クラスタ10 2 b とすると、クラスタ102 b 内のデータは1ページ 毎にセンスアンプ兼ラッチ回路付きビット線制御回路1 03に読み出され、ECC11を介して誤り訂正され る。更に、訂正されたデータは一時記憶用クラスタ10 2 dに1ページずつ書込まれる。このようにして、クラ スタ102b内の全データはエラー訂正されて一時記憶 用クラスタ102dに格納される。その後、クラスタ1 02 bは消去され、一時記憶用クラスタ102 dのデー タがクラスタ102bにコピーされる。更に、その後、 一時記憶用クラスタ102dは消去される。ここで、一 時記憶用クラスタ102dとしては、リフレッシュのた めの専用プロックとして固定されていてもよいし、ある いは空いたクラスタを活用することにしてもよい。ただ し、後者の場合には、データの移動に伴ったプロックア ドレスの変更が必要になる。更に、最後の一時記憶用ク ラスタ102dの消去は直ちに実行する必要はなく、時 間節約のためCPU16の空き時間に行ってもよい。

【0057】図8及び図9は、上記実施例に関わる不揮発性半導体記憶装置のリフレッシュ・アルゴリズムを示すフローチャートである。

【0058】装置に電源が投入され、あるいはオペレーティングシステムやアプリケーションプログラム等によって初期化ルーチンの実行が指令されると、図8(a)に示される初期化ルーチンが実行される。

50 【0059】不揮発性メモリの全クラスタ1~nについ

て、前回のリフレッシュからこれまでの総読出し回数Y i と前回書込みまたは消去した際に生じた誤り個数E i が読み出される(S3)。前述したように、読出し回数 誤り個数格納用プロック102eにクラスタ1について の総読出し回数Yi及び誤り個数Eiを予め記録してお くことが出来る。また、各クラスタについてのデータ用 プロック102a~102c内に、各クラスタの総読出 し回数Yi及び誤り個数Eiを予め記憶しておくことも できる。読出された各クラスタについての総読出し回数 Yiは、総読出し回数をカウントするカウンタ13のク ラスタ毎のカウンタにプリセットされる。読出された各 クラスタの誤り個数Eiは、クラスタiに対応する誤り 個数比較器にエラー基準値Eciとしてセットされる (S5)。前回の誤り個数E1を今回のエラー基準値と することによって、前回に比べて今回のエラーが増加し たことを判別することが出来る。

【0060】その後、図9に示される読出回数モニタル ーチンが実行される。CPU16は、データの読出しが 行われる度に、カウンタによって総読出しカウント数を 1 増やし (S 3 4) 、総読出し回数 Y i が予め設定され 20 た最大読出し回数Ycになったかどうかを判定する(S 36)。総読出し回数Yiが基準値Ycに等しくなる と、i番目のクラスタの全データが読み出され(S3 8)、ECC11によって誤りが訂正されて(S4 0)、一時記憶用クラスタに格納される(S42)。こ れらのデータの誤り個数E1は許容値Ecに比較される (S44)。誤り個数Eiが許容値Ecを越えていた ら、クラスタ中の全プロックは消去され(S46)、一 時記憶用クラスタに格納されている訂正済みのデータが 第i番目のクラスタにコピーされる(S48)。その 後、一時記憶用クラスタ内のデータは消去される(S5 0)。総読出し回数Yiは「0」に書替えられ、リセッ トされる (S 5,2)。

【0061】一方、誤り個数が許容値を越えていなかった場合には(S44)、データの消去及び再書込みは行われず、総読出し回数Yiは「0」に書替えられ、リセットされる(S52)。

【0062】 書込みまたは消去後には(S32)、書込みまたは消去されたデータをECC11を介して読出し、誤り個数のチェックが行われる(S62)。誤り個数比較器 101にセットされている誤り個数の基準値が更新される(S64)。

【0063】このような処理( $S32\sim S64$ )がクラスタ $1\sim n$ について繰返し、行われる。装置の電源を落す操作やプログラム終了の指令が発令されると、図8(b)に示されるシャットダウンルーチンが実行される。CPU16は、電源が落ち切る前に、不揮発性メモリ内に記憶されている、各クラスタについての総読出し回数Yi及び誤り個数Eiを、データ用クラスタ102a $\sim 102$ c内あるいは読出回数誤り個数格納用プロッ50

ク102e内に記録し、総読出し回数Yiを現在のカウンタ13の値に、誤り個数Eiを誤り個数比較器の被比較数として現在保持されている値に夫々更新する(S7)。

【0064】前述したように、誤り個数Eiがエラー基準値Eciとしてセットされる場合(S5)には、誤り個数Eiは、ECCのエラー訂正能力(例えば、3ビット)を超えないようにする。

【0065】図10は、本発明の第6の実施例を示すプロック図である。同図において図1と対応する部分には同一符号を付し、かかる部分の説明は省略する。また、図11は、この実施例のリフレッシュ・アルゴリズムを示すフローチャートである。

【0066】本実施例では、電源を投入する度にリフレッシュを行うことにより、読出回数カウンタ13を不要とし、これに伴う操作、例えば、電源を落とす前に総読出し回数Y1等を予め書替える(保存する)操作等をなくすことができる。また、メモリ本体10にパリティチェッカ200を備えることによって、メモリ本体の外部にデータを出力することなく、書込みデータや読出データの誤りの有無を確認することができる。更に、データ書替え時に誤りの有無をチェックして誤りが生じた場合にデータ再書込み先を空きクラスタとしているため、書替え時の誤りを可及的に減らすことが可能となる。

【0067】まず、電源が投入されると図11に示されるプログラムが自動的に起動する。これは、IPL (イニシャルプログラムローダ)やオペレーティングシステムの機能によって実現可能である。1値番目のクラスタから、例えば、ベージ単位で順にデータを読出し(S72)、パリティチェッカ200によって読出したデータの誤りの有無が確認される(S74)。誤りが発生したと判断されると(S76)、データの読出しは中止される。エラーデータが属するクラスタi内の全データは、メモリ本体10の外部に備えられたECC11に読出され、エラー訂正が実行された後、パッファメモリ12に格納される(S78)。なお、メモリ本体10は図3に示すように複数備えることが出来る。

【0068】その後、そのクラスタi内の全プロックのデータは消去され(S80)、訂正されたデータがパッファメモリ12から転送されて再書込みされる(S82)。クラスタiからこの再書込みデータを読出し、パリティチェッカ200によって読出したデータの誤りの有無が確認される(S84)。誤りがあった場合には(S86)、アドレスをメモリ本体10の空きクラスタや予備用のクラスタに変更して(S88)再度データを書込む(S82)。ここで、再書込みされるデータはパッファメモリ12から得られる。この操作は、再書込みデータに誤りがないことが確認されるまで続けられる(S82~S86)。もし、メモリに再書込みを行う空きがない場合には、S88において、メモリエラーを表

すコードをCPU16に出力し、必要により、CPU16に割込処理を行わせて、エラー対策とする。このようにして、クラスタ1からクラスタnまで、全メモリデータのリフレッシュが終了した後(S90~S92)、初めて、CPU16はメモリ本体10にアクセスできるようになる。

【0069】この実施例で期示した、エラーチェックを行ったクラスタとは別のクラスタにデータの書込みを行う技術SA(ステップS78~S88)は、障害の生じたデータブロックの使用をやめ、不具合のないデータブ 10 ロックを使用するという、重要な技術であり、先述した実施例、例えば、図4(b)、図6、図9に示される実施例に組込むことが出来る。なお、上記アルゴリズムでは、電源投入を契機としているが、これを電源遮断の指令を受けたときに実行するように出来る。

【0070】図12に示される実施例は、記憶場所を別の場所に変更する技術SAのルーチンへの適用例を示すものであり、電源源投入から電源オフまでの動作中において、総読出回数Y1が設定基準Ycになったとき、リフレッシュ動作を開始する。また、エラー検出をECC11に替えてメモリ本体のパリティチェッカ200により行っている。

【0071】メモリにアクセスがなされ、クラスタiから読出しが行われると(S104)、クラスタiについての総読出し回数Yiは読出回数カウンタ13によって、1ずつ増えていく(S106)。総読出し回数Yiが基準値Ycを超えない場合には、ルーチンから退出し、基準値Ycを超えると(S108)、クラスタiのデータに対してバリティチェックが行われ(S110)、エラーが発生したかどうかを判別する(S112)。エラーが発生すると、第i番目のクラスタを対象にリフレッシュ動作が実行される(S114)。ここでは、図11に示されるSAと同様に、クラスタiにおいて再書込みエラーが生ずると、別の空きクラスタに書込みが行われる。再書込みが終了すると、データのリフレッシュに対応して新たに新出数を計数するべく、読出回数カウンタ13がリセットされる(S116)。

【0072】図13は、電源投入時あるいは電源遮断時における不揮発性半導体メモリの他のリフレッシュの例を示している。まず、電源の投入あるいは遮断が指令されると、図13に示されるプログラムが自動的に起動する。これは、IPL(イニシャルプログラムローダ)やオペレーティングシステムの機能によって実現可能である。1番目のクラスタから、例えば、ページ単位で順にデータを読出し(S122)、ECC11によって読出したデータの誤りの有無が検出され、クラスタiにおいて誤り数EiがECCの誤り個数カウンタによって計数される(S124)。誤りの数Eiがエラー基準数Ecを超えると、(S126)、ステップS20、S22と同様に、クラスタIのリフレッシュを行う。クラスタi 50

内の全データは、メモリ本体10の外部に備えられたECC11に読出され、エラー訂正が実行された後、バッファメモリ12に格納される。クラスタ1の全データは消去され、エラー訂正されたデータがバッファメモリ12から、クラスタ1に再書込される(S128)。なお、前述した図11のSAに示す、クラスタ1とは別の空きクラスタに書込む技術を適用できる。

20

【0073】ステップS128終了後、あるいはエラー数Eiが基準に満たない場合(S126)、クラスタが最終アドレスかどうか、判別する(S130)。最終アドレスでない場合は、次のクラスタをアドレスして(S132)、エラー検出、リフレッシュ(ステップS124~S128)を繰返す。

【0074】なお、ステップS126において、「Yi=Yc?」とし、図12のステップS116のように読出回数カウンタリセットを適宜に挿入することによって、電源投入時あるいは電源遮断時に、図4(b)に示すような読出数に基づくリフレッシュを行うことが出来る。

7 【0075】図14は、電源投入時あるいは電源遮断時における不揮発性半導体メモリの更に他のリフレッシュの例を示している。まず、電源の投入あるいは遮断が指令されると、図14に示されるプログラムが自動的に起動する。これは、IPL(イニシャルプログラムローダ)やオペレーティングシステムの機能によって実現可能である。

【0076】まず、電源が投入されると、自動的に全クラスタの前回のリフレッシュからこれまでの総読出し回数Y1が読出され、総読出し回数をカウントするカウンタにプリセットされる。1番目のクラスタが指定され(S142)、所定場所に記憶されている読出回数Y1が基準値Ycを超えるかどうかが比較される(S144)。超えない場合には、最終のクラスタかどうかが判別され(Sそ156)、最終のクラスタでない場合、次のクラスタが指定される(S158)。

【0077】 i番目のクラスタの読出回数Yiが基準値Ycを超えると(S148)、クラスタ1の全データが読み出され、ECC11を介してバッファメモリ12に記憶される(S146)。これらのデータ中の誤りがECC11によって判定され、ECC11内の誤り個数カウンタによってエラー個数Eiが計数される。誤り個数Eiは誤り個数比較器101に予め設定されている許容値Ecと比較される(S148)。前述したように、許容値Ecを固定値にあるいは前回のEi等に適宜変更することが出来る。誤り個数Eiが許容値Ecを越えているときは、i番目のクラスタ中の全プロックは消去され(S150)、エラー訂正済みのデータが再度同クラスタに書込まれ、データのリフレッシュが行われる(S150)、エラー訂正済みのデータが再度同クラスタに書込まれ、データのリフレッシュが行われる(S152)。その後、クラスタiについての総読出し回数Yiは「0」に書替えられ、読出回数カウンタはリセット

される (S154)。 一方、誤り個数が許容値を越えていなかった場合には (S148)、データの消去及び再 書込み (S150, S152) は行われず、総読出し回 数Y1は0に書替えられリセットされる (S154)。

【0078】 このような、ルーチン(S144~S158)が繰返し、実行されることによって、クラスタ1~nの書込みデータがリフレッシュされる。

【0079】このようにして、電源投入直後あるいは電源遮断直前に不揮発性メモリ本体の全てのデータの誤り チェックが行われ、誤り個数が許容値を超えたクラスタの全データが読出されて、リフレッシュされる。

【0080】上述した各実施例における特徴部分や要素を更に組合わせて別のリフレッシュのルーチンを形成することが出来る。図示された、メモリ本体10と、ECC11~CPU16とを同一チップ上に形成することが可能である。例えば、不揮発性メモリを内蔵する1チップマイクロコンピュータとして形成することが可能である。

【0081】また、メモリ本体10とECC11~CPU16とを別々のチップ上に形成し、マルチチップモジ 20ュールによって1つのパッケージに収めることが可能である。勿論、メモリ本体10と、ECC11~CPU16とを配線基板上にモジュール化して構成することが出来る。

【0082】また、実施例では、電源の投入を契機にして読出回数モニタルーチン等のリフレッシュサブルーチンを実行したが、これに限られるものではない。例えば、電源の遮断の指令を受けた場合や、コンピュータシステムのオペレーティングシステムからの指令によって、あるいはアプリケーションプログラムからのサブル 30ーチンコール(あるいは関数呼出し)によって適宜に不揮発性メモリのリフレッシュを実行することが可能である。

【0083】このように、本発明の実施例によれば以下のような効果を得ることが出来る。

【0084】第1に、電源を落としても前回までの総読 出し回数をカウントすることができるので、最大読出し 回数になったら正しいデータに書替えることができる。

【0085】第2に、不揮発性メモリ本体内に一時記憶専用のメモリ領域、あるいは空きメモリ領域、あるいは バッファメモリに訂正データを一時記憶できるため、もとのデータを消去して再書込みを行える。

【0086】第3に、誤り個数比較器を用いることによって、リフレッシュ動作に誤り個数の条件、即ち誤り個数が設定された許容値以上かどうかという条件を加えられるため、誤り個数が基準値より少ない場合に不必要となるリフレッシュ動作が行われないようにできる。

【0087】第4に、最大競出し回数をはじめて1ビット誤る競出し回数の期待値以下に設定することによって、読出しストレスによる誤りが発生していても、誤り 50

の個数がECC訂正可能な誤り数以下であるうちに正しいデータにリフレッシュできる。この結果、誤り訂正能力を越えて発生する誤りの頻度を、実使用上問題とならない程度に減らすことができる。

【0088】第5に、総読出し回数や誤り個数を専用の クラスタに記憶するようにすることによって、これらの 数の更新を一度のアクセスによって行い得る。

【0089】第6に、誤り個数の基準値をデータ書替えの際に生じた誤り個数に等しくすることによって、誤り個数を読出しによる誤りの数と書替えによる誤りの数に分けることができるため、読出しによる誤りが発生したときにリフレッシュできる。

【0090】第7に、リフレッシュ時に誤りが許容数以下となるまでクラスタアドレスを空きクラスタに変えていくことによって、書込みに失敗したクラスタの消去を空き時間に行えるようになり、また、リフレッシュの条件となる誤り個数比較のための基準値を固定できるため誤り個数基準値の読出しや更新の必要をなくせる。

【0091】第8に、電源投入時または遮断時に必ずリフレッシュ動作を行うようにすることによって、読出し回数をメモリ本体内に格納する必要をなくすことができる

#### [0092]

【発明の効果】以上述べたように本発明によれば、従来保持データのリフレッシュは行われていない、書替え可能な不揮発性メモリにおいて、メモリセルトランジスタの関値変化による保持データの状態遷移によってエラーが生じる前に再書込(リフレッシュ)し、あるいはエラー訂正可能なエラーの発生範囲内で、保持データを正しいデータに復元した後再書込みを行うので、読出回数に影響されないで、正しいデータを保持し続けることが可能な不揮発性半導体メモリシステムが得られる。

#### 【図面の簡単な説明】

【図1】本発明の実施例を示すブロック図である。

【図2】読出回数と誤りビットの発生数との関係を説明するグラフである。

【図3】本発明の他の実施例を示すプロック図である。

【図4】図4 (a) は、実施例における初期化ルーチンを説明するフローチャートである。図4 (b) は、実施例のリフレッシュ動作を説明するフローチャートである。図4 (c) は、実施例におけるシャットダウンルーチンを説明するフローチャートである。

【図5】本発明の他の実施例を示すプロック図である。

【図6】実施例のリフレッシュ動作を説明するフローチャートである。

【図7】本発明の他の実施例を示すプロック図である。

【図8】図8 (a) は、図7に示す実施例における初期 化ルーチンを説明するフローチャートである。図8

(b) は、図7に示す実施例におけるシャットダウンル ーチンを説明するフローチャートである。 【図9】図9は、図7に示す実施例のリフレッシュ動作 を説明するフローチャートである。

【図10】本発明の他の実施例を示すプロック図である。

【図11】図10に示す実施例の電源投入後のリフレッシュ動作を説明するフローチャートである。

【図12】図10に示す実施例の読出回数に基づくリフレッシュ動作を説明するフローチャートである。

【図13】図10に示す実施例の電源投入後の他のリフレッシュ動作を説明するフローチャートである。

【図14】電源投入後の更に他の実施例を説明するフローチャートである。

【図15】従来の不揮発性半導体メモリの構成を説明する説明図である。

【図16】従来の不揮発性半導体メモリの構成を説明する断面図である。

【図17】従来の不揮発性半導体メモリのメモリセルア レイ構成を説明する説明図である。 【符号の説明】

- 1 メモリセルアレイ
- 2 ワード線駆動回路
- 3 ロウデコーダ
- 4 ビット線制御回路
- 5 カラムデコーダ
- 6 アドレスパッファ
- 7 データ入出力パッファ
- 8 コマンド入出力パッファ
- 10 10 メモリ本体
  - 11 エラー検出訂正 (ECC) 回路
  - 12 パッファメモリ
  - 13 読出回数カウンタ
  - 14 データ線
  - 15 制御線
  - 16 CPU
  - 17 アドレス線

[図1] [図2] [図3] メモリ本体 取ロバット製 メモリセルアレイ 統出回数 ピット放射御回路 カラムデコーダ アドレスパッファ コマンド入出力パッファ 【図5】 ECC一関り個数カウンタ 10 バッファメモリ 統出直数カウンタ 101 CPU > 誤り倒数比較器 競出回数カウンタ





【図9】



[図10]



【図16】





[図13]







[図12]



【図14】



フロントページの続き

# (72)発明者 百 冨 正 樹 神奈川県川崎市幸区小向東芝町1 株式会 社東芝多摩川工場内

DIALOG(R)File 351:Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.

011031221 \*\*Image available\*\* WPI Acc No: 1997-009145/199701

XRPX Acc No: N97-008349

Memory system containing non volatile semiconductor memory e.g. NAND type EEPROM - in which read data is again written into memory area by error detection correction circuit

Patent Assignee: TOSHIBA KK (TOKE )

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date JP 8279295 Α 19961022 JP 9580579 Α 19950405 199701 B JP 3176019 B2 20010611 JP 9580579 19950405 200135 Α

Priority Applications (No Type Date): JP 9580579 A 19950405

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 8279295 A 20 G11C-016/06

JP 3176019 B2 20 G11C-016/02 Previous Publ. patent JP 8279295

#### Abstract (Basic): JP 8279295 A

The memory system includes an information memory provided in the form of a memory cell array (1). The array contains memory cell groups in which data re-write operation is possible. Error during data read operation from the memory, is detected. An error detection/connection circuit (11) connects and output any error in read data.

A counter (13) computes the data read out frequency. A refresh control part performs data re-write operation, on the contents of the information memory. When the data read out frequency exceeds a reference value, error correction of stored data and data rewrite operations are carried out. The read data is again written into the memory area, through the error detection connection circuit.

ADVANTAGE - Improves data reliability and consistency. Prevents error generation due to variation in threshold value. Suppresses data transition.

Dwg.1/17

Title Terms: MEMORY; SYSTEM; CONTAIN; NON; VOLATILE; SEMICONDUCTOR; MEMORY; NAND; TYPE; EEPROM; READ; DATA; WRITING; MEMORY; AREA; ERROR; DETECT; CORRECT; CIRCUIT

Derwent Class: T01; U13; U14

International Patent Class (Main): G11C-016/02; G11C-016/06

International Patent Class (Additional): G06F-012/16; H01L-027/10

File Segment: EPI