Measuring and Characterizing the Performance of Multi-tier Cloud Applications

Ashiwan Sivakumar

Mohammad Hajjat, Shankaranarayanan P N, Sanjay Rao

LANMAN 2015

Motivation for our study

Interactive multi-tier applications are complex

- Multiple components with complex interactions
- Geo-distributed for high availability and low latency

Motivation for our study

Interactive multi-tier applications are complex

- Multiple components with complex interactions
- Geo-distributed for high availability and low latency

Require stringent SLA guarantees

- Amazon: Every 100ms costs 1% in sales
- Google: 0.5 sec delay increase → traffic and revenue drop by 20%

Cloud performance fluctuations

• Can SLAs be met in the cloud?

Studies characterizing performance

Existing studies:

- Measure individual cloud services (E.g. EC2, Blob)
- Other classes of applications (E.g. High performance computing applications)

Our focus:

- Fine-grained per application component measurements of multi-tier apps
- Characterize performance issues experienced in the cloud

Complex transactions in geodistributed multi-tier apps

E.g. Thumbnail, Stocktrader, ERP

Our Contributions

- Characterization of perf.
 in a geo-distributed setting
- Per-component measurements

Key findings:

- Replicas of a component are uncorrelated across
 DCs
- Attributed to a few app components at any time
- Performance issues are short-lived; 90% < 4 mins
- Choosing the best replica combination across
 DCs gives higher latency reduction

Outline

- Monitoring framework & Evaluation setup
- Characterization of poor performance
- Exploiting geo-distribution
- Conclusions

Monitoring framework

Evaluation setup

- Two cloud platforms Microsoft Azure, Amazon AWS
- Four Applications

Users

- Data-intensive : Thumbnail
- Delay-sensitive : Stocktrader, Daytrader
- Social : Twissandra
- Real benchmark workload (E.g. DaCapo)
- Metric server response time (no internet delay)

Server response time

Outline

- Monitoring framework & Evaluation setup
- Characterization of poor performance
- Exploiting geo-distribution
- Conclusions

Dissecting performance into constituent components

Long tail and Variation in all transactions

E.g. Simple login - 99.9%ile/median is 28

Few components show more variation

Analyzing bad performance episodes

Different subset responsible for bad performance at different times

Bad performance episodes are short-lived

Bad performance episodes occur frequently

Persistence of performance

- Auto-correlation function measure
 - Tendency for "server response time" to remain in the same state over time

Other result

- Performance of component replicas across DCs
 - Uncorrelated

Outline

- Monitoring framework & Evaluation setup
- Characterization of poor performance
- Exploiting geo-distribution
- Conclusions

Exploiting geo-distribution

Cross DC path performs better sometimes FΕ BE BLBL BE 5000 4000 Delay (msec) 1000 BAB BBA BBB ABA Combination

Best DC Vs. Best replica redirection strategies

 Best DC: Re-route entire request at the granularity of DCs

 Best replica : Select the best replica combination for each

Best replica combination gives best results

Dealer: per-component request splitting

- <u>Dealer</u>: handle cloud variability in multi-tier interactive apps [CoNEXT 2012, JSAC 2013]
- Per-component re-routing: dynamically split user req's across replicas in multiple DC's at component granularity
- Transient cloud variability: performance problems in cloud services, workload spikes, failures, etc.
- Performance tail improvement:
 - Natural cloud dynamics > 6x

Conclusions

- Presented a performance characterization of multi-tier apps in the cloud
 - To answer the question Can SLA guarantees be met in the cloud?
- Applications experience short-term performance fluctuations frequently attributed to a few app components in a subset of DCs
- Choosing the best replica combination across
 DCs gives higher latency reduction than coarsegrained strategies

Q&A

Backup

Performance by transaction type - Stocktrader

Correlation coefficients

	FE	DB	BS	os	FE-BS	FE-CS	BS-CS	BS-OS	os-cs
FE	1	-0.08	-0.11	-0.04	-0.31	0.03	-0.32	-0.07	-0.04
	DB	1	0.50	0.03	-0.01	-0.01	0.04	0.05	0.02
		BS	1	0.14	0.08	-0.02	0.09	0.14	0.14
			os	1	-0.37	-0.03	-0.40	0.66	0.74
				FE-BS	1	0.01	0.87	-0.31	-0.37
					FE-CS	1	-0.01	-0.02	-0.03
						BS-CS	1	-0.34	-0.41
BS-OS								1	0.71
(a) StockTrader								os-cs	1