ON SUBLINEARLY QUASISYMMETRIC HOMEOMORPHISMS

Gabriel Pallier - Paris-Sud University, Orsay

February 2019

Subriemannian Geometry and Beyond II - Jyväskylä University

OUTLINE

This talk is about **subinearly quasisymmetric homeomorphisms** between **metric spaces**:

How do they compare to quasisymmetric homeomorphisms?

Where do they come from?

How to produce some?

Do they preserve invariants?

What are they good for?

1

HOW DO THEY COMPARE TO QUASISYMMETRIC HOMEOMORPHISMS?

QUASISYMMETRIC HOMEOMORPHISMS

Z, Z' are metric spaces.

 $\eta:[0,+\infty)\to[0,+\infty)$ is an increasing homeomorphism.

A homeomorphism $f: Z \to Z'$ is **quasisymmetric** if for any distinct x, y, z in X and t > 0,

$$d(x,y) \leqslant td(x,z) \implies d(f(x),f(y)) \leqslant \eta(t)d(f(x),f(z)).$$

QUASISYMMETRIC HOMEOMORPHISMS

Z, Z' are metric spaces.

 $\eta:[0,+\infty)\to[0,+\infty)$ is an increasing homeomorphism.

A homeomorphism $f:Z\to Z'$ is **quasisymmetric** if for any distinct x,y,z in X and t>0,

$$d(x,y) \leqslant td(x,z) \implies d(f(x),f(y)) \leqslant \eta(t)d(f(x),f(z)).$$

Tukia-Väisälä: if Z,Z' are uniformly perfect (e.g. **connected** or Cantor) one may assume $\eta(t)=\sup\{t^\alpha,t^{1/\alpha}\}$ and quasisymmetric homeomorphisms are **biHölder continuous** on bounded subspaces.

RINGS AND ASPHERICITIES

Let $t \geqslant 1$. A pair of subsets (a, a^+) of a metric space is a t-ring if there is a ball B such that $B \subseteq a \subseteq a^+ \subseteq tB$. radius(B) is an **inner radius** and $\tau = \log t$ is called an **asphericity** for (a, a^+) . If $a = a^+$, round set.

A η -quasisymmetric homeomorphism sends t-rings to $\eta(t)$ -rings: it preserves bounded asphericity.

Definition

Let $\sigma \in (0,1)$. A family of rings (a_n,a_n^+) with inner radii σ^n and asphericities τ_n is said to have **sublinear asphericity** if $\tau_n \ll n$. A homeomorphism is sublinearly quasisymmetric if it is biHölder continuous and **preserves sublinear asphericity**.

Figure: Round sets and their images in Euclidean \mathbf{R}^2 .

WHERE DO THEY COME FROM?

HYPERBOLIC CONE AND GROMOV BOUNDARY

The quasisymmetry class of Z can be considered a **Gromov boundary** of a **large-scale structure** or hyperbolic cone Y = Con(Z).

$Z = \partial_{\infty} Y$	Y = Con(Z)
Euclidean R ⁿ	$\mathbb{H}^{n+1} = \{\text{scalar dilation group}\} \ltimes \mathbf{R}^n$
Subriemannian Heis ⁿ	$\mathbb{H}^{n+1}_{\mathbf{C}} = \{\text{Carnot dilation group}\} \ltimes \text{Heis}^n$
Unipotent R ²	{unipotent dilation group} ⋉ R ²
Diagonal R ²	{diagonal dilation group} κ R ²
q.s. homeo $Z \rightarrow Z'$	quasiisometry $Y o Y'$

Sublinearly quasisymmetric homeomorphisms $Z \to Z'$ are boundary maps of **sublinearly biLipschitz equivalences** $Y \to Y'$, that are isomorphisms of the **sublinear large-scale structures** arising from work of Cornulier and Dranishnikov-Smith.

$$\begin{array}{c|c} \textbf{Space} & & \textbf{Normed R}^2 & \textbf{Unipotent R}^2 & \textbf{Diagonal R}^2 \ (\mu > 1) \\ \textbf{Dilations} & & \left\{ \begin{pmatrix} e^{\tau} & 0 \\ 0 & e^{\tau} \end{pmatrix} \right\} & \left\{ \begin{pmatrix} e^{\tau} & \tau e^{\tau} \\ 0 & e^{\tau} \end{pmatrix} \right\} & \left\{ \begin{pmatrix} e^{\tau} & 0 \\ 0 & e^{\mu \tau} \end{pmatrix} \right\} \end{aligned}$$

HOW TO PRODUCE SOME?

Ingredients

 \cdot The Lebesgue measure λ on [0,1],

Ingredients

- · The Lebesgue measure λ on [0,1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

Ingredients

- · The Lebesgue measure λ on [0, 1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,
- · An infinite rooted binary tree,
- $\cdot \aleph_0$ independent random variables uniformly distributed in $\{\leftarrow, \rightarrow\}$.

Ingredients

- · The Lebesgue measure λ on [0, 1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,
- · An infinite rooted binary tree,
- $\cdot \aleph_0$ independent random variables uniformly distributed in $\{\leftarrow, \rightarrow\}$.

Ingredients

- · The Lebesgue measure λ on [0, 1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,
- · An infinite rooted binary tree,
- $\cdot \aleph_0$ independent random variables uniformly distributed in $\{\leftarrow, \rightarrow\}$.

Ingredients

- · The Lebesgue measure λ on [0, 1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,
- · An infinite rooted binary tree,
- $\cdot \aleph_0$ independent random variables uniformly distributed in $\{\leftarrow, \rightarrow\}$.

Ingredients

- · The Lebesgue measure λ on [0, 1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,
- · An infinite rooted binary tree,
- $\cdot \aleph_0$ independent random variables uniformly distributed in $\{\leftarrow, \rightarrow\}$.

Ingredients

- · The Lebesgue measure λ on [0, 1],
- · A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,
- · An infinite rooted binary tree,
- $\cdot \aleph_0$ independent random variables uniformly distributed in $\{\leftarrow, \rightarrow\}$.

$$M = \lim_{n} \lambda_{n}$$

2nd step: Take the primitive $\phi : [0,1] \to [0,1]$ in the distributional sense.

 \cdot ϕ is not absolutely continuous. The derivative is λ -a.e. 0. The modulus of continuity deviates sublinearly from that of a Lipschitz function: $\log |\phi(x) - \phi(y)| \leq \log |x-y| + v(\log |x-y|)$, sublinear v.

2nd step: Take the primitive $\phi : [0,1] \to [0,1]$ in the distributional sense.

 \cdot ϕ is not absolutely continuous. The derivative is λ -a.e. 0. The modulus of continuity deviates sublinearly from that of a Lipschitz function: $\log |\phi(x) - \phi(y)| \leq \log |x - y| + v(\log |x - y|)$, sublinear v.

3nd step: To get a sublinearly quasisymmetric homeomorphism of the square (torus), consider a product map $\Phi = \phi_1 \times \phi_2$, where ϕ_1 and ϕ_2 are as previously. It is not ACL.

2nd step: Take the primitive $\phi : [0,1] \to [0,1]$ in the distributional sense.

 \cdot ϕ is not absolutely continuous. The derivative is λ -a.e. 0. The modulus of continuity deviates sublinearly from that of a Lipschitz function: $\log |\phi(x) - \phi(y)| \leq \log |x - y| + v(\log |x - y|)$, sublinear v.

3nd step: To get a sublinearly quasisymmetric homeomorphism of the square (torus), consider a product map $\Phi = \phi_1 \times \phi_2$, where ϕ_1 and ϕ_2 are as previously. It is not ACL.

Proposition

 ϕ and Φ are sublinearly quasisymmetric. The asphericity distorsions at scale s for ϕ and Φ are bounded by $(\sum_{n<\log_2 s} \epsilon_n)$ (in fact they are a.e. much lower).

DO THEY PRESERVE INVARIANTS?

DIMENSIONS

The **topological dimension**, the **conformal dimension** are invariant under quasisymmetric homeomorphisms.

DIMENSIONS

The **topological dimension**, the **conformal dimension** are invariant under quasisymmetric homeomorphisms.

$$\operatorname{Cdim}(Z) = \inf \left\{ p > 0 : \operatorname{mod}_{p}^{\{\tau_{j}\}}(\operatorname{nonconstant\ curves\ in\ } Z) = 0 \right\}.$$

 $\{ au_j\}$ are asphericity parameters for Caratheodory/packing measures. Can be sublinearized and **sometimes computed** using the diffusivity lemma from conf. dim theory.

DIMENSIONS

The **topological dimension**, the **conformal dimension** are invariant under quasisymmetric homeomorphisms.

$$\operatorname{Cdim}(Z) = \inf \left\{ p > 0 : \operatorname{mod}_p^{\{\tau_j\}} (\operatorname{nonconstant\ curves\ in\ } Z) = 0 \right\}.$$

 $\{\tau_j\}$ are asphericity parameters for Caratheodory/packing measures. Can be sublinearized and **sometimes computed** using the diffusivity lemma from conf. dim theory.

Space Normed R ² Diagonal R ² Carnot group with CC metric d Self-similar (nongeodesic) nilpotent		Sublinear conformal dimension
		2
		$1+\mu$
		Hdim(d)
		trace of the generator of dilations.

Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.

- Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.
- Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

- Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.
- Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

- Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.
- Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

One can define functions of locally bounded p-energy \mathcal{W}^p ; if φ is a sublin-q.s. homeo then $\mathcal{W}^p(\Omega) \overset{\sim}{\to} \mathcal{W}^p(\varphi^{-1}\Omega)$ for Ω an open in the target. $\mathcal{W}^p(\Omega)$ is a Fréchet algebra whose **spectrum** is a quotient of Ω , the largest space of leaves that it separates.

WHAT ARE THEY GOOD FOR?

METRIC GEOMETRY OF NEG. CURVED 3-DIM LIE GROUPS

Metric classifications of Lie groups (with left invariant Riemannian metrics): quasiisometry, sublinear biLipschitz equivalence, may be made isometric.

METRIC GEOMETRY OF NEG. CURVED 3-DIM LIE GROUPS

Metric classifications of Lie groups (with left invariant Riemannian metrics): quasiisometry, sublinear biLipschitz equivalence, may be made isometric.

Csq of Xie 2011 and of Carrasco Piaggio 2014)

Two three dimensional (solvable) negatively curved Lie groups are quasiisometric if and only if they can be made isometric.

Csq of P. 2019

Two three dimensional negatively curved Lie groups are SBE if and only if they can be made isometric to each other, or to \mathbb{H}^3 and {Unipotent dilation group} $\times \mathbb{R}^2$ respectively.

METRIC GEOMETRY OF NEG. CURVED 3-DIM LIE GROUPS

Metric classifications of Lie groups (with left invariant Riemannian metrics): quasiisometry, sublinear biLipschitz equivalence, may be made isometric.

Csq of Xie 2011 and of Carrasco Piaggio 2014)

Two three dimensional (solvable) negatively curved Lie groups are quasiisometric if and only if they can be made isometric.

Csq of P. 2019

Two three dimensional negatively curved Lie groups are SBE if and only if they can be made isometric to each other, or to \mathbb{H}^3 and {Unipotent dilation group} \times \mathbb{R}^2 respectively.

Mathod 1 Suhlinger conformal dimension - trace

HIGHER DIM NEG. CURVED LIE GROUPS: OVERVIEW

HIGHER DIM NEG. CURVED LIE GROUPS: OVERVIEW

