

Metropolis Algorithm Visualization

Metropolis

La suite $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

Soit f une densité de probabilité. On suppose que X_n est déjà généré. X_{n+1} est défini par:

équivalent à $y = X_n + \varepsilon$ et générer $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

équivalent à accepter y avec probabilité $\min(1, \frac{f(y)}{f(X_n)})$

1. Générer $\boldsymbol{y} \sim \mathcal{N}(X_n, \sigma^2)$

2. Générer $u \sim \mathcal{U}([0,1])$.

3. Si $u < \min(1, \frac{f(y)}{f(X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

L'algorithme

L'algorithme

Algorithme de Metropolis (Gaussien)

Soit f une densité de probabilité. On suppose que X_n est déjà généré. X_{n+1} est défini par:

- 1. Générer $y \sim \mathcal{N}(X_n, \sigma^2)$ équivalent à $y = X_n + \varepsilon$ et générer $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- 2. Générer $u \sim \mathcal{U}([0,1])$. équivalent à accepter y avec probabilité $\min(1, \frac{f(y)}{f(X_n)})$
- 3. Si $u < \min(1, \frac{f(y)}{f(X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

La suite $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Metropolis Algorithm Visualization

Metropolis in action

Exemple en deux dimensions:

