1. A. 1+101=110 B. 中国人民是伟大的。 C. 全体起立! D. 计算机机房有空位吗? 在上面句子中,是命题的是(\mathbf{B}) 2. 设 Q(x): x 是有理数, R(x): x 是实数。命题"某些实数是有理数"在 谓词逻辑中的符号化公式是(D) A. $(\forall x) (Q(x) \rightarrow R(x))$ B. $(\forall x) (Q(x) \land R(x))$ C. $(\exists x) (Q(x) \rightarrow R(x))$ D. $(\exists x) (Q(x) \land R(x))$ 3. 对于集合 $\{1, 2, 3\}$,下列关系中不等价的是(**B**) A. $R = \{ <1,1>, <2,2>, <3,3> \}$ B. $R = \{<1,1>,<2,2>,<3,3>,<1,4>\}$ C. $R=\{<1,1>,<2,2>,<3,3>,<3, 2>,<2,3>\}$ D. $R=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,1\rangle,\langle 3,3\rangle,\langle 2,3\rangle,\langle 3,2\rangle\}$ 4. 设 $A=\{1, 2, 3, 4, 5\}$, $B=\{a, b, c, d, e\}$, 以下哪个函数是从 A 到 B 的 双射函数(B) A. $F = \{<1, b>, <2, a>, <3, c>, <1, d>, <5, e>\}$ B. $F=\{<1, c>, <2, a>, <3, b>, <4, e>, <5, d>\}$ C. $F = \{ <1, b>, <2, a>, <3, d>, <4, a> \}$ D. $F=\{<1, e>, <2, a>, <3, b>, <4, c>, <5, e>\}$ 5. 下列判断不正确的是(**D**) A. $\{n\sqrt{2}|n\in N\}$ 关于普通加法构成群 B. $\{n\sqrt{2}|n\in N\}$ 关于普通乘法构成独异点 C. 所有实数对 $\langle a,b \rangle$ 关于。运算,其中 $\langle a,b \rangle$ 。 $\langle c,d \rangle = \langle a+c,b+d \rangle$ 构成群 D. 实数集 R 关于。运算构成半群, 其中 $a \circ b = 2(a+b)$ 二、判断题(本大题20分,每小题4分) (**X**) 1、命题公式 $p \rightarrow (\neg p \land q)$ 是重言式。 2. $((\forall x) \ A \ (x) \rightarrow B) \Leftrightarrow (\exists x) \ (A \ (x) \rightarrow B)$. (🗸) (<u>\</u>) 3、设 A={a, b, c}, R∈ A×A 且 R={< a, b>,< a, c>}, 则 R 是传递的。 4、n 阶无向完全图 K_n的每个顶点的度都是 n。 (X) 5、根树中除一个结点外,其余结点的入度为1。 (**X**) 三、解答题(计算或者证明题:本大题50分,每小题10分) 1. 设命题公式为 $\neg Q \land (P \rightarrow Q) \rightarrow \neg P$ 。 《 高级语言程序设计 I 》试卷 (A) 第 1 页 共 11 页

- (1) 求此命题公式的真值表;
- (2) 求此命题公式的析取范式;
- (3) 判断该命题公式的类型。

P	Q	$\neg Q$	$P \rightarrow Q$	$\neg Q \land (P \rightarrow Q)$	$\neg P$	$\neg Q \land (P \rightarrow Q) \rightarrow \neg P$
0	0	1	1	1	1	1
0	1	0	1	0	1	1
1	0	1	0	0	0	1
1	1	0	1	0	0	1
	(2) ¬	$Q \wedge (P \rightarrow$	$Q) \rightarrow \neg P \Leftrightarrow \neg (\neg Q)$	$Q \wedge (\neg P \vee \neg P \vee P \vee$	$(Q)) \vee \neg P$

- \Leftrightarrow ($Q \lor \neg (\neg P \lor Q)$) $\lor \neg P \Leftrightarrow \neg (\neg P \lor Q) \lor (<math>Q \lor \neg P$) $\Leftrightarrow I$ (析取范式)
- ⇔ (¬P∧¬Q) ∨ (¬P∧Q) ∨ (P∧¬Q) ∨ (P∧Q) (主析取范式)
- (3) 该公式为重言式
- 2. 用直接证法证明:

前提:
$$(\forall x)$$
 $(C(x) \to W(x) \land R(x))$, $(\exists x)$ $(C(x) \land Q(x))$

结论: $(\exists x) (Q(x) \land R(x))$ 。

- 2, ii(1) $(\exists x)$ $(C(x) \land Q(x))$ P (2)C (c) $\land Q$ (c) ES (1) (3) $(\forall x)$ $(C(x) \rightarrow W(x) \land R(x))$ $(4) C (c) \rightarrow W (c) \land R (c)$ **US**(3) (5) C (c)T(2)I(6)W (c) $\wedge R$ (c) T(4,5)IT(6)I (7)R (c) (8)Q(c)T(2)I(9)Q (c) $\land R$ (c) T(7,8)I $(10) \quad (\exists x) \ (Q \ (x) \ \land R \ (x))$ EG(9)
- 3. 设 R 是集合 $A = \{1, 2, 3, 4, 6, 12\}$ 上的整除关系。
 - (1) 给出关系 R:
 - (2) 给出 COV A
 - (3) 画出关系R的哈斯图:
 - (4) 给出关系R的极大、极小元、最大、最小元。
- 3, $R = \{<1,2>,<1,3>,<1,4>,<1,6>,<1,12>,<2,4>,<2,6>,<2,12>,<3,6>,<3,12>,$ <4,12>,<6,12>} ∪ I_A

 $COV A = \{<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,12>,<6,12>\}$ 作哈斯图如右:

极小元和最小元为1:

第2页共程 《 高级语言程序设计 I 》试卷 (A)

4. 如图所示带权图,用避圈法(Kruskal 算法)求一棵最小生成树并计算它的权值。

解

$$C(T) = 1 + 3 + 4 + 5 + 2 = 15$$

5、设字母a,b,c,d,e,f在通讯中出现的频率为: a:30%,b:25%,c:20%,

d:10%, e:10%, f:5%。试给出传输这 6 个字母的最佳前缀码?问传输 1000 个字符需要多少位二进制位?

解 先求传输 100 个字符所需要的位数。a:30,b:25,c:20,d:10,e:10,f:5 是依照 出现频率得出的个数。构造最优二叉树如下:

需要二进制位数为 $10W(T) = 10 \times \{4 \times (5+10) + 3 \times 10 + 2 \times (20+25+30)\} = 2400$

《离散数学》模拟试题

专升本 2013.12

一. 填空

- (1) 设 P: 你努力。Q: 你失败。在命题逻辑中,命题:"除非你努力,否则你将失败。" 可符号化为: $(-P \rightarrow Q)$ 。
- (2) 对于命题公式 A,B,当且仅当(A→B)是重言式时,称 "A 蕴含 B",并记为 A→B。
- (3) 设 P , Q 是命题公式, 德·摩根律为: ¬(P ∧ Q) ⇔(¬P∨¬Q)。
- (4) 令 M(x): x 是大学生, P(y): y 是运动员, H(x, y): x 钦佩 y。则命题"有些大学生不钦佩所有运动员。"可符号化为(∃x(M(x) $\land \forall y$ (P(y) → ¬H(x, y))))。
- (5) 设集合 $E=\{a, b, c\}$, E 的幂集 $P(E)=(\{\Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\})$ 。
- (6) 设 R 为定义在集合 A 上的一个关系,若 R 是(自反的,对称的,传递的),则 R 称为是集合 A 上的等价关系。
- (7) 设集合 A 上的关系 R 和 S, R={<1, a>, <3, b>, <4, d>, <2, e>}, S={<a, b>, <b, c>, <c, d>, <a, d>},则 R∘S=({<1,b>, <1,d>, <3,c>})。
- (8) 一个代数系统<S,*>,其中S是非空集合。*是S上的一个二元运算,如果(运算*是封闭的),则称代数系统<S,*>为广群。
- (9) 设图 G = <V, E >, 如果有图 G´=<V´, E´>, 且(V'⊆V 'E⊆E), 则称 G´是 G 的子图。
- (10) 一棵有 n 个顶点的树含有(n-1)边。 P322
- (11) 如果二元运算运算*对集合 A 封闭,则意味着对任意的 $a,b \in A$ 有 ($a*b \in A$)。
- (13) 设 G 是个具有 S 个结点的简单无向完全图,则 G 有(S*(S-1)/S) 条边。
- (14) 设 G 是个无自环的无向图,其中有 2 个结点的度数为 4,其余结点的度为 2,有 6 条边。则 G 中共有(2)个结点。因此,G 是个(多重)图。
- 二. 判断下列命题的对错。正确的在括号内填 /,错误的在括号内填 x。
- "我们要努力学习" 是命题。 (X) 1. 2. 命题"如果雪是黑的,那么太阳从东方出"是假命题。 (X)3. $(\exists x)(A(x) \rightarrow B(x)) \Leftrightarrow (\forall x)A(x) \rightarrow (\exists x)B(x)$ of \bullet P70 (🗸) (**x**) **4.** 命题公式 (¬**Q**∧(**P**→**Q**))→¬**P** 是重言式。 P19. 永真式 5. 命题公式(P∧Q)∨(¬R→T)是析取范式。P31 析取范式定义 (x) 6. R(x): "x 是大学生。" 是命题。 (X)7. 设 A, B 是任意集合,则 A ⊕ B = (A-B) ∪ (B-A)。P92 (🗸) 8. 集合 A={1,2,3}上的关系{<1,1>,<1,2>,<3,2>,<2,3>}是对称的。 (X)
- 9. 集合 A 的幂集 $\rho(A)$ 上的包含关系是偏序关系。 P140 (\checkmark)

	每个元素都有逆元的半群是群。 不 设 X={1, 2, 3}, Y={a, b }。关系 F={< P147		
13. 14.	P147 n 阶无向完全图 K _n 的每个顶点的度。 设 I 是整数集,+是 I 上的普通加法 经过图中每条边一次且仅一次的回路 根树中除根结点外,其余结点的入度	长,则代数系统 <i,+>是群。 各称为汉密尔顿回路。</i,+>	
16. •	设 A,B 都是合式公式,则 A∧B→-	¬B 也是合式公式。	(🗸)
18.	P→Q⇔¬P∨Q。 对谓词公式(∀x)(P (y) ∨Q (x,y 得到公式 (∀x)(P (z) ∨Q (x, z)) ∧	-	(√) 选进行代入后 (√)
19.	对任意集合 $A \setminus B \setminus C$,有 $(A-B)-C$	$C = (A - C) - (B - C) \circ P95$	(🗸)
三、	一个结点到另一个结点可达或相互可达 在每小题的备选答案中只有一个正 内。		(<mark>×</mark>) [入下列叙述
1.	(1) 如果天气好,那么我去散步。 (2) 2	(4) 明工七左右人間?	
在上	(3) X=3。 面句子中 是命题。	(1)	
	设: P: 王强身体很好; Q: 王强成		好,成绩也
	艮好。"在命题逻辑中可符号化为		
	(1) P v Q		
	(3) P∧¬Q ($(4) P \wedge Q$	
	设 S (x): x 是学生, J (y): y 是教		命题"所有
<u>-</u>	学生都钦佩一些教师"的符号化公式		
	$(1) \forall x \ (S \ (x) \land \forall \ y \ (J \ (y) \land x))$	•	
	$(2) \forall x \exists y \ (S \ (x) \rightarrow (J \ (y) \rightarrow$		
	$(3) \forall x \ (S \ (x) \rightarrow \exists y \ (J \ (y) \land x)$		
	$(4) \exists y \forall x \ (S \ (x) \rightarrow (J \ (y) \land I)$		
4.	下列式子是合式公式的是	. (2) P9	
	$(1) (P \lor Q \land \to Q)$	$(2) \neg (P \land (Q \lor R))$	
	(3)(P¬Q) 下列式子中正确的是	$(4) \land Q \to \land R \to P$	
5.	卜列式子中止确的是	. (4)	
	$(1) \neg (\forall x) P(x) \Leftrightarrow (\exists x) P($	X)	
	$(2) \neg (\forall x) P (x) \Leftrightarrow (\forall x) \neg P$		
	$(3) \neg (\exists x) P (x) \Leftrightarrow (\exists x) \neg P$		
	$(4) \neg (\exists x) P (x) \Leftrightarrow (\forall x) \neg P$		丰 (a) DOF
0.	设 S={Φ, 3, a, {a}}, 则 S 的幂集	P(8) 有	系。(3) P85
7	(1) 8 (2) 12 (3) 近 D 共立义在集会 A 上的一个关系		(A) Y 至 (A)
1.	设 R 为定义在集合 A 上的一个关系		
	(1) 反自反的,对称的和传递的		
0	(3) 自反的,反对称的和传递的 公 A-(1 2 3) P-(1 2) 刚下原		
ð.	设 A={1,2,3},B={1,2},则下歹	11叩氹小坵佛的龙	. (3)

(1) $A \cap B = \{1, 2\}$ (2) $A - B = \{3\}$ P90
$(3) A \oplus B = \{2, 3\} \qquad (4) B \subseteq A$
9. 命题公式 P 蕴涵 Q 是指。(3)
(1) P与Q都是重言式 (2) P∧Q 是重言式 (2) P∧Q 是重言式
(3) P→Q 为重言式 (4) Q → R 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和
10. 设 A={1, 2, 3, 4, 5}, B={6, 7, 8, 9, 10}, 以下哪个关系是从 A 到 B
的入(单)射函数。(2) 一一对应 (1) F = {<1, 7>, <2, 6>, <3, 5>, <1, 9>, <5, 10>}
(1) $F = \{(1, 7), (2, 6), (3, 7), (4, 9), (5, 10)\}$ (2) $F = \{(1, 8), (2, 6), (3, 7), (4, 9), (5, 10)\}$
(3) $F = \{\langle 1, 7 \rangle, \langle 2, 6 \rangle, \langle 3, 5 \rangle, \langle 4, 6 \rangle\}$
(4) $F = \{\langle 1, 10 \rangle, \langle 2, 6 \rangle, \langle 3, 5 \rangle, \langle 4, 8 \rangle, \langle 5, 10 \rangle\}$
11. 运算"一"是整数集 I 上的普通减法,则代数系统 <i, 一=""> 满足下列</i,>
性质。(4) (1)结合律 (2)交换律 (3)有零元 (4) 封闭性
12. 下列为欧拉图的是。(4) P301, P302
12. 1747444444 <u> </u>
a b
$(1) \qquad (2) \qquad (3) \qquad (4)$
(1) (2) (3) (4)
12 以 I 目
13. 设 I 是整数集,N 是自然数集,P(S) 是 S 的幂集," \times , +, \cap "是普通的乘法,加法和集合的交运算。下面代数系统中
$(1) < I, \times > (2) < I, + > (3) < P(S), \cap > (4) < N, + >$
14. 下列四个有 6 个结点的图
8 2 9 9
(1) (2) (3) (4)
(1) (2) (3) (4) 15. 有 m 条边的图的结点度数总和为。 P274 (4)
15. 有 m 条边的图的结点度数总和为。 P274 (4)
15. 有 m 条边的图的结点度数总和为。 P274 (4) (1) m (2) m-1
15. 有 m 条边的图的结点度数总和为。 P274 (4) (1) m (2) m-1 (3) 2 (m-1) (4) 2m 16. 设: p: 刘平聪明。q: 刘平用功。在命题逻辑中,命题:
15. 有 m 条边的图的结点度数总和为。 P274 (4) (1) m (2) m-1 (3) 2 (m-1) (4) 2m
15. 有 m 条边的图的结点度数总和为。 P274 (4) (1) m (2) m-1 (3) 2 (m-1) (4) 2m 16. 设: p: 刘平聪明。q: 刘平用功。在命题逻辑中,命题: "刘平不但聪明,而且用功" 可符号化为:。(1)
15. 有 m 条边的图的结点度数总和为。 P274 (4) (1) m (2) m−1 (3) 2 (m-1) (4) 2m 16. 设: p: 刘平聪明。q: 刘平用功。在命题逻辑中,命题: "刘平不但聪明,而且用功" 可符号化为:。(1) (1) P∧Q (2) ¬P∨Q

《 高级语言程序设计 I 》试卷 (A) 第 6 页 共 11 页

			B (2)				
10 V			(4)		人田二《名	⇒ ∧ / →	WL 日 + WL 9
				(x): x 是实数。 (1)	命趣"在	事一 个有理	
)) (2) (∀:	x) (Q ($\mathbf{x}) \wedge \mathbf{R} (\mathbf{x})$))
((3) (∃·	x) (O ($(\mathbf{x}) \to \mathbf{R} (\mathbf{x})$)) (4)(∃:	x) (O (x) ∧ R (x	•))
				实数集上的闭1			
			(1		<u>~ 1.4 4 b ></u>	1 22 174 7	(1 ([o,1] · ·
	(1)	[3, 4]	(2) (3,4	(3) {3,4}			J [3, 6]
20. 对	于集合	$\{1, 2, 3\},$	下列关系「	中不等价的是 _		(2)	
	(1)	R={<1,1	l>, <2,2>, <	3,3>}			
	(2)	R={<1,1	1>,<2,2>,<3,3	3>,<1,4>}			
	(3)	R={<1,1	>,<2,2>,<3,3	3>,<3, 2>,<2,3>}			
	(4)	R={<1,1	>,<2,2>,<1,2	2>,<2,1>,<1,3>,<	3,1>,,<3,	3>,<2,3>,<	3,2>}
21.	是合 S 的	り幂集 P(S)关于集合的	的并运算"∪"的	的零元为		(2)
				(3) 没有 (4	` '		
				集: { (1, 2), (
				3的一棵生成树为	<i></i>		P324 (1)
				, 4), (3, 5) } , 3), (2, 4) }			
	_			, 5), (2, 4) } , 5), (4, 5) }			
				, 5), (4, 5) }			
	尼成下列			, ,			
	-			$P \rightarrow Q)) \rightarrow \neg P$		表;	
		题公式($(\mathbf{P} \wedge (\mathbf{Q} \rightarrow \mathbf{R}))$	 →S 的析取范 	式。		
真值表	_		D 0	0 (0 0)	5 (0 (7)	
P 0	Q 0	¬Q 1	P→Q 1	$\neg Q \land (P \rightarrow Q)$	¬P (- 1	¬Q ∧(P→(1	Į)) →¬P
	1	0	1	0	1	1	
1	0	1	0	0	0	1	
1	1	0	1	0	0	1	
析耳	取范式	4 :	P31				
	(P ^	(O -> R	$(\mathbf{S}) \rightarrow \mathbf{S}$				
	(1 //	(Q / I					
\Leftrightarrow	¬ (P)	∧ (¬ Q ∨.	R)) ∨ S				
\Leftrightarrow	¬ P∨-	¬(¬Q∨I	(\mathbf{S})) \vee (\mathbf{S})				
\Leftrightarrow	¬ P ∨	(Q∧¬R) v S				

$$\forall x \ (P \ (x) \rightarrow Q \ (x)) \Rightarrow \forall x \ P \ (x) \rightarrow \forall x \ Q \ (x)$$

证明:

- ① (∀x)P(x) P (附加前提)
- ② P(u) US(全称指定规则),①
- $(\forall x)(P(x) \rightarrow Q(x))$ P
- $\textcircled{4} P(u) \rightarrow Q(u) \qquad US, \textcircled{3}$
- $\bigcirc Q(u)$ $T, 2, 4, I_{11}$
- ⑥ (∀x)Q(x) UG(全称推广规则),⑤

七、求下面公式的主析取范式与主合取范式,并写出相应的成真赋值

$$\neg ((P \to Q) \land (R \to P)) \lor \neg ((R \to \neg Q) \to \neg P)$$
P34

P	Q	R	$\neg ((P \to Q) \land (R \to P)) \lor \neg ((R \to \neg Q) \to \neg P)$
T	Т	Т	F
T	Т	F	Т
T	F	T	Т
T	F	F	Т
F	Т	Т	F
F	Т	F	Т
F	F	Т	F
F	F	F	F

《 高级语言程序设计 I 》试卷 (A) 第 8 页 共 11 页

```
主析取范式: m<sub>110</sub>/m<sub>101</sub>/m<sub>100</sub>/m<sub>010</sub>
```

 $= (P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R)$

主合取范式: $m_{111} \wedge m_{011} \wedge m_{001} \wedge m_{000}$

 $=(P \lor Q \lor R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$ 八、用直接证法证明:

前提:

 $(\forall x) (C(x) \rightarrow (W(x) \land R(x))), (\exists x) (C(x) \land O(x))$

结论: $(\exists x)(O(x) \land R(x))$ 。

证明:

前提: $(\forall x)(C(x) \rightarrow (W(x) \land R(x)))$

 $(\exists \mathbf{x})(\mathbf{C}(\mathbf{x}) \land \mathbf{Q}(\mathbf{x}))$

结论: $(\exists x)(Q(x) \land R(x))$

推理: ① $(\forall x)(C(x) \rightarrow (W(x) \land R(x)))$ P

- ③ C(a) ∧Q(a) ES(存在指定规则), ②
- $\textcircled{4} \quad C(a) \rightarrow (W(a) \land R(a)) \qquad US, \textcircled{1}$

- $\bigcirc Q(a)$ T, $\bigcirc J_2$

- ⑩ (∃x)(Q(x) ∧R(x)) EG(存在推广规则), ⑨

九、设 R 是集合 $A = \{1, 3, 4, 6, 8, 9, 18\}$ 上的整除关系。 P140

- (1) 给出关系 R;
- (2) 给出 COV A
- (3) 画出关系 R 的哈斯图;
- (4) 给出关系 R 的极大、极小元、最大、最小元。

解

- (1) R={<1, 1>, <1, 3>, <1, 4>, <1, 6>, <1, 8>, <1, 9>, <1, 18>, <3, 3>, <3, 6>, <3, 9>, <3, 18>, <4, 4>, <4, 8>, <6, 6>, <6, 18>, <8, 8>, <9, 9>, <9, 18>, <18, 18>}
- (2) $COVR = \{\langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 3, 6 \rangle, \langle 3, 9 \rangle, \langle 4, 8 \rangle, \langle 6, 18 \rangle, \langle 9, 18 \rangle \}$

- (4) R 的极大元为8和18、没有最大元,极小元为1、最小元是1.
- 十、求带权图 G 的最小生成树,并求最小生成树的权。 P326

最小生成树的权 W(T)=3+4+7+10=24

《 高级语言程序设计 I 》试卷 (A) 第 10 页 共 11 页

十一、给定权为 1, 9, 4, 7, 6 和 3,构造一颗最优二叉树,并求此最优二叉树的权 。P334

解

t 片树叶 V_i (i=1, 2, ···, t), 带权 W_i, L(V_i)为 V_i的层数, 最优二叉树的权。

 $\mathbb{W}(\mathbf{T}) = \mathbb{W}_1 * \mathbb{L}(\mathbb{V}_1) + \mathbb{W}_2 * \mathbb{L}(\mathbb{V}_2) + \cdots + \mathbb{W}_t * \mathbb{L}(\mathbb{V}_t)$

最优二叉树的权 W(T)=(1+3)*4+4*3+(9+6+7)*2=72

《 高级语言程序设计 I 》试卷 (A) 第 11 页 共 11 页