Bayesian estimation of time-trees:

A journey through a strange land

Luiz Max Carvalho

Postgraduate Symposium 2017 Institute of Evolutionary Biology

Acknowledgements

Andrew Rambaut UoE

Marc Suchard UCLA

Guy Baele KU Leuven

L

Motivation

Phylodynamics of fast-evolving viruses

Inferring spatial and temporal dynamics from genomic data:

Phylogenies*!

* plus complicated models

Trees are hypotheses

The gist of Bayesian phylogenetics

Bayesian paradigm:

Marginalise (integrate), not maximise

Tree space: a strange land

Metropolis-Hastings algorithm

- 1. Propose new tree: $\wedge \rightarrow \wedge^*$
- 2. Compute acceptance ratio: $r = \frac{P(||| \nearrow |) P(\nearrow |) P(\nearrow |)}{P(||| \nearrow |) P(\nearrow |) P(\nearrow |)}$ 3. Accept/Reject: Likelihood **Proposal**
 - if u > r: accept
 - otherwise: reject

MCMC "robot"

Exploring parameter space: burn-in

Exploring parameter space: mixing

Height-preserving kernels: SubTreeLeap

Dengue 4 env (17 taxa, 1485 sites)

RSVA G protein (35 taxa, 629 sites)

YFV prM/E gene (71 taxa, 654 sites)

Metazoans (contemporaneous, 55 taxa, 30257 AA sites)

operator
— default
— STL

Searching trees is hard

Complex, discrete and HUGE parameter space

¹this talk is available online

Searching trees is hard

Complex, discrete and HUGE parameter space

Height-preserving tree rearrangements are good

Use the extra information provided by the tip dates

¹this talk is available online

Searching trees is hard

Complex, discrete and HUGE parameter space

Height-preserving tree rearrangements are good

Use the extra information provided by the tip dates

Tuneable moves are more efficient

Avoid wasting computing power

¹this talk is available online

Searching trees is hard

Complex, discrete and HUGE parameter space

Height-preserving tree rearrangements are good

Use the extra information provided by the tip dates

Tuneable moves are more efficient

Avoid wasting computing power

Much more work is needed

We should prepare for an era of plenty

¹this talk is available online

THE