1.Preparation

In this course, we mainly use serial communication. RDK series board sends instructions to the drive board through the serial port to control the rotation angle of the servo.

2.Hardware

RDK series board *1

Servo *1

DuPont line *1

16-channel servo drive board *1

3. Wiring

RDK series board	16-channel servo	drive board	Servo
UART_TXD	RX		Brown line
UART_RXD	TX	S1	Red line
GND	GND		Yellow line

Note:

The yellow line of the servo is connected to the yellow pin of the drive board S1;

The red line of the servo is connected to the red pin of the drive board S1;

The brown line of the servo is connected to the black pin of the drive board S1;

4. Code

First, you need to open the serial port.

According to the communication protocol of the 16-channel servo drive board, the baud rate needs to be set to 9600.

				Protocol		
			IIC	communica	tion	
Address 0x2						
		Numb	er	Angle		
Data 1-16			0-180			
		Serial co	ommu	ınication (b	aud rate 9600)	
	Start bit		Servo number		Servo angle	End bit
Data	'\$' 'A-		'A-P	,	'0-180'	' #'
Eg	Servo1 turn to180°: \$A180#					

According to the pin diagram of RDK X3, we use UART3 port.

111
112
102
27
7
29
15
28
107
25
3
104
108

The code corresponding to opening the serial port is as follows.

```
# 打开串口

def serial_open(n=0):
    global ser
    ser = serial.Serial("/dev/ttyS3",9600,timeout=1)
    if ser.isOpen():
        print( "open success")
        return 0

else:
    print("open failed")
    return 255
```

The code for changing the servo rotation angle is as follows:

```
def UARTServo(servonum, angle):
    servonum = 64 + servonum
    date1 = int(angle/100 + 48)
    date2 = int((angle%100)/10 + 48)
    date3 = int(angle%10 + 48)
    cmd=bytearray([36,servonum,date1,date2,date3,35])
    print(cmd)
    ser.write(cmd)
    time.sleep(0.05)
```

5. Experimental phenomenon

Input command: sudo python3 servo.py

```
Sunrise@ubuntu: ~/Desktop/servo ↑ → □ X

File Edit View Search Terminal Help

sunrise@ubuntu: ~/Desktop/servo$ sudo python3 servo.py

[sudo] password for sunrise:
open success
bytearray(b'$A000#')
bytearray(b'$A180#')

sunrise@ubuntu: ~/Desktop/servo$
```

Only one servo is used in this course.

After successfully executing the command, you can see that the servo changes from 0° to 180° . If you want to connect multiple servo.

You can add multiple UARTServo() functions. The parameter servonum corresponds to the steering gear connected to the drive board.