PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 00/0		
C07K	A2	(43) International Publication Date: 6 January 2000 (06.01.00		
(21) International Application Number: PCT/JP9 (22) International Filing Date: 18 June 1999 (1		(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT		
(30) Priority Data: 10/180008 26 June 1998 (26.06.98)	••••	Published Without international search report and to be republished upon receipt of that report.		
(71) Applicants (for all designated States except US): S CHEMICAL RESEARCH CENTER [JP/JP] Nishi-Ohnuma 4-chome, Sagamihara-shi, Ka 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho., Meguro-ku, Tokyo 153-0065 (JP).]; 4– anagav	1, /a		
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi 3-46-50, Wakamatsu, Sagamihara-shi, Ka 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 2 (JP).	anagav 4–1–2	8, .		
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Os Osaka 540-0001 (JP).				

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

A human protein having a hydrophobic domain and comprising any of the amino acid sequences represented by Sequence Nos. 1 to 10, a cDNA coding for said protein, and an expression vector comprising the cDNA as well as an eucaryotic cell comprising the cDNA. The protein can be provided by expression of the cDNA coding for such protein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC -	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG.	Madagascar	. TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israei	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IТ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zcaland		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

DESCRIPTION

HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

5

10

15

20

TECHNICAL FIELD

invention relates to human The present having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells, wherein these membrane protein genes are introduced to express secretory proteins and membrane proteins in large amounts, can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

25

30

Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the material transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there

10

15

20

25

30

are hidden potentialities as medicines. In fact, a number secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents, have been currently employed as medicines. In addition, secretory proteins other than those described above have clinical undergoing trials to develop pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation and the information transmission which are mediated by the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hitherto-cryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in eucaryotic cells to express cDNAs and then screening of the cells expressing

the target active protein by secretion or on the surface of membrane. However, this method is applicable only to cloning of a gene of a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, wherein, after synthesis thereof in the ribosome, this domain works as a secretory signal or remains in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of this cDNA for encoding the secretory proteins and the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domains in the amino acid sequence of the protein encoded by this cDNA.

15

20

25

30

10

5

DISCLOSURE OF INVENTION

The object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as transformation eucaryotic cells that are capable of expressing these DNAs.

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having hydrophobic domains, namely proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 10. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 11 to 21, 23, 25, 27, 29, 31,

10

33, 35, 37 and 39, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformation eucaryotic cells that are capable of expressing these DNAs and of producing the above-mentioned proteins.

BRIEF DESCRIPTION OF DRAWINGS

- Fig. 1 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00631.
- Fig. 2 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02403.
- Fig. 3 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02420.
 - Fig. 4 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10349.
- 20 Fig. 5 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10508.
 - Fig. 6 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10524.
 - Fig. 7 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10529.
- Fig. 8 A figure depicting the 30 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10537.
 - Fig. 9 A figure depicting the

25

10

15

20

25

30

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10549.

Fig. 10 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10551.

BEST MODE FOR CARRYING OUT THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, wherein the method for obtainment by the recombinant technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, recombination of the translation region into a suitable expression vector by the method known in the art leads to expression of a large amount of the encoded protein by using prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case in which one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translation region of this cDNA is subjected to recombination to a vector having an RNA polymerase promoter, followed by addition to an in vitro translation system such as a rabbit riticulocyte

10

15

20

25

30

germ extract, containing lysate or a wheat RNA polymerase corresponding to the promoter. RNA polymerase inhibitors are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase inhibitors are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 pBluescript II, and so on. Furthermore, a membrane protein of the present invention can be expressed as the form incorporated in the microsome membrane, when a canine pancreas microsome or the like is added into the reaction system.

In the case in which a protein of the present invention is produced by expressing the DNA using a microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translation region in the present invention is constructed in an cDNA of the origin, expression vector having an a promoter, ribosome-binding site, a cDNA-cloning site, a terminator etc., which can be replicated in the microorganism, and, transformation the host cells with this after of transformant expression vector, the thus-obtained is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein fragment containing an optional region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion coding for this cDNA can be obtained by cleavage of this fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so

on.

5

10

20

25

30

In the case in which one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be obtained by secretory production or produced as a membrane protein on the cell-membrane surface, when the of this translation region CDNA is subjected recombination to an expression vector for eucaryotic cells a promoter, a splicing region, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus laevis egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins. The expression vector can be introduced in the eucaryotic cells methods known in the art such as the electroporation the liposome the potassium phosphate method, method, method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-

10

15

20

25

30

exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1. to 10. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the proteins or peptides the forms. Such secretory secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are amino acid sequences, expression in the cells affords proteins wherein appropriate eucaryotic sugar chains are added. Accordingly, such proteins or peptides wherein sugar chains are added shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for

10

15

20

25

30

example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A) RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of an oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by containing either of the base sequences represented by Sequence Nos. 11 to 20 or the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded

protein, for each of the cDNAs.

Table 1

Sequence No.	HP number	Cells	Base number	Number of amino acid residues
1, 11, 21	HP00631	Saos-2	1085	238
2, 12, 23	HP02403	Stomach cancer	1168	194
3, 13, 25	HP02420	Stomach cancer	624	139
4, 14, 27	HP10349	Stomach cancer	1121	323
5, 15, 29	HP10508	Stomach cancer	827	231
6, 16, 31	HP10524	Stomach cancer	1189	97
7, 17, 33	HP10529	Saos-2	1500	198
8, 18, 35	HP10537	Saos-2	806	140
9, 19, 37	HP10549	Stomach cancer	1718	201
10, 20, 39	HP10551	Stomach cancer	995	249

5

10

15

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of Sequence Nos. 11 to 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39.

difference is frequently observed in human genes. Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence Nos. 11 to 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 shall come within the scope

In general, the polymorphism due to the individual

of the present invention.

10

15

20

25

30

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one or plural amino acids and/or substitution with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos. 1 to 10.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence in the base sequences represented by Sequence Nos. 11 to 20 or in the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a

10

15

20

25

30

particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in identify potential genetic disorders; patients to probes to hybridize and thus discover novel, related DNA a source of information to derive sequences; as PCR primers for genetic fingerprinting; as probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; antibodies to raise elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) biological fluids; as markers for tissues in which the

10

20

25

30

corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another for example, protein (such as, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation,

10

15

20

25

30

such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. activity of a protein of the present invention evidenced by any one of a number of routine dependent cell proliferation assays for cell including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

10

15

20

25

30

Immunology 133:327-341, 1991; Bertagnolli, et al., J.
Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol.
152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, Davis, L.S. and Lipsky, P.E. In Current Protocols Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C.

10

15

20

25

30

and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or

10

15

20

25

30

other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, erythematosus, rheumatoid arthritis, autoimmune Guillain-Barre pulmonary inflammation, syndrome, thyroiditis, insulin dependent diabetes autoimmune mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory Other conditions, in which immune suppression problems. is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antiqen-

PCT/JP99/03242

specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

10 Down regulating or preventing one or more antigen functions (including without limitation В lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease 15 (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through 20 recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide 25 having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead binding of the molecule to the natural ligand(s) on the 30 immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by

5

10

15

20

25

30

immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Iq fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate

disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production 5 autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in 10 preventing or alleviating autoimmune disorders can determined using a number of well-characterized animal models of human autoimmune diseases. Examples include experimental murine autoimmune encephalitis, lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in 15 NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from

20

25

30

the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

5 1

10

15

20

25

30

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T 5 mediated immune response against the transfected tumor In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class molecules, can be transfected with nucleic acid encoding 10 all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class IIa chain protein and an MHC class IIB chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. 15 Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense 20 construct which blocks expression of an MHC class associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation tumor associated antigens and induce tumor specific 25 immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan,

WO 00/00506 PCT/JP99/03242

23

A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 5 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. 10 Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. 15 Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro

20

25

30

10

15

20

25

assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-1995; Porgador et al., Journal of Experimental 5079, 182:255-260, 1995; Nair et al., Journal of Medicine Virology 67:4062-4069, 1993; Huang et al., Macatonia et al., Journal 264:961-965, 1994; of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood

84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

5 A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. marginal biological activity in support of colony forming of factor-dependent cell lines indicates 10 involvement in regulating hematopoiesis, e.g. and proliferation of supporting the growth progenitor cells alone or in combination with cytokines, thereby indicating utility, for example, treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of 15 erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with 20 chemotherapy to prevent or treat consequent suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use 25 in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell **30** 1 disorders (such as those usually treated transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well

10

15

20

25

30

as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described Methylcellulose colony forming assays, in: Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. pp. 23-39, Wiley-Liss, R.I. Freshney, et al. eds. Vol 1994; Neben et al., Experimental Inc., New York, NY. Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.,

10

15

20

25

30

New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of

PCT/JP99/03242

bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that attributable to the protein of the present invention is tendon/ligament formation. A protein of the induces tendon/ligament-like present invention, which tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation composition induced by a of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of present invention may provide an environment attract tendon or ligament-forming cells, stimulate growth ligament-forming of tendonor cells, differentiation of progenitors of tendon- or ligamentforming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be

5

10

15

20

25

30

10

15

20

25

30

useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be for proliferation of neural cells and regeneration of nerve and brain tissue, i.e. for treatment of central and peripheral nervous diseases and neuropathies, as well as mechanical traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or

10

15

20

25

30

regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

generation activity include, Assays for tissue limitation, those described International without in: Patent Publication No. WO95/16035 (bone, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

10

20

25

30

A protein of the present invention may also exhibit activinor inhibin-related activities. Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without described in: Vale limitation. those et al., Endocrinology 91:562-572, 1972; Ling et al., 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

10

15

20

25

30

protein of the present invention mav chemotactic or chemokinetic activity (e.g., act chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment localized infections. For example, attraction lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for population of cells a can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis)consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those

described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

30 Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or

10

20

25

10

15

20

25

30

inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and ligands (including without limitation, adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide molecule small inhibitors of the or relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, Shevach. W.Strober. Pub. Margulies, E.M. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA Bierer et al., 84:6864-6868, 1987; J. Exp. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

10

. 15

20

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting cell promoting extravasation, or by stimulating suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemiareperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by

10

15

20

25

30

inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors component(s); or effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment hyperproliferative disorders (such as, for example,

psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

The present invention is embodied in more detail by 10 the following examples, but this embodiment intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless 15 otherwise restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. The manufacturer's instructions were used for the compositions as well as for the reaction conditions, in 20 each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

cDNA libraries (W097/33993) of osteosarcoma cell line Saos-2 and cDNA libraries (W097/15596) of tissues of stomach cancer delivered by the operation were used for the cDNA libraries. Full-length cDNA clones were selected from respective libraries and the whole base sequences thereof were determined to construct a homo/protein cDNA bank consisting of the full-length cDNA clones. The

25

15

20

25

30

hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by the full-length cDNA clones registered in the homo/protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 the presence (1982)] to examine or absence hydrophobic region. Any clone that has а hydrophobic being putative as a secretory signal transmembrane domain in the amino acid sequence of encoded protein was selected as a clone candidate.

10 (2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). case, [35S]methionine was added label expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25 μ l volume of the reaction solution containing 12.5 μ l of T_NT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to kit), 2 μ l of an amino acid mixture (methionine-free), 1 2 μ l of [35 S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried out by adding to this reaction system 2.5 μ l of a canine pancreas microsome fraction (Promega). To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDSpolyacrylamide gel electrophoresis. The molecular weight

10

15

20

25

30

of the translation product was determined by carrying out the autoradiography.

(3) Expression by COS7

Escherichia coli bearing the expression vector of the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The culture cells originating from the simian kidney, COS7, were incubated at 37°C in the presence of 5% CO2 in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 \times 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of TRANSFECTAMTM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2. After the culture medium was replaced by a culture medium containing [35S]cystine or

10

20

25

30

[35S]methionine, the incubation was carried out for one hour. After the culture medium and the cells were separated by centrifugation, proteins in the culture fraction and the cell-membrane fraction were subjected to SDS-PAGE.

(4) Clone Examples <HP00631> (Sequence Nos. 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP00631 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 25-bp 5'-nontranslation region, a 717-bp ORF, and a 343-bp 3'-nontranslation region. The ORF codes for a protein consisting of 238 amino acid residues and there existed five putative transmembrane domains. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in COS7 cells, an expression product of about 25 kDa was observed in the membrane fraction.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the golden hamster androgen-regulated protein FAR-17 (PIR Accession No. A54313). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the golden hamster androgen-regulated protein FAR-17 (GH). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 38.0% in the entire

region.

Table 2

The Manager of the state of the

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R22829) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02403> (Sequence Nos. 2, 12, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP02403 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 6-bp 5'-nontranslation region, a 585-bp ORF, and a 577-

25

bp 3'-nontranslation region. The ORF codes for a protein consisting of 194 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 21,959 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the Japanese quail apoptosis regulator NR-13 (SWISS-PROT Accession No. Q90343). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the Japanese quail apoptosis regulator NR-13 (CC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with protein of the the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 31.5% in the entire region.

5

10

15

Table 3

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA098865) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02420> (Sequence Nos. 3, 13, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP02420 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 35-bp 5'-420-bp ORF, nontranslation region, a and 169-bp а nontranslation region. The ORF codes for a protein consisting of 139 amino acid residues and there existed three putative transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

20

25

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,082 predicted from the ORF. When expressed in CO7 cells, an expression product of about 16 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the presence of sequences that were analogous to a yeast hypothetical protein of 15.9 kDa (SWISS-PROT Accession No. P53173). Table 4 shows the comparison of the amino acid sequence between the human invention (HP) and the veast the present protein of hypothetical protein of 15.9 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 43.2% in the entire region.

20

15

10

Table 4

10

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA044799) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10349> (Sequence Nos. 4, 14, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10349 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 16-bp 5'-nontranslation region, a 972-bp ORF, and a 133-bp 3'-nontranslation region. The ORF codes for a protein consisting of 323 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 36,200 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. F13066) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10508> (Sequence Nos. 5, 15, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10508 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of

10

15

20

25

30

a 33-bp 5'-nontranslation region, a 696-bp ORF, and a 98-bp 3'-nontranslation region. The ORF codes for a protein consisting of 231 amino acid residues and there existed four transmembrane domains. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in CO7 cells, an expression product of about 22 kDa was observed in the supernatant fraction and the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA484181) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10524> (Sequence Nos. 6, 16, and 31)

Determination of the whole base sequence of the cDNA insert of clone HP10524 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 308-bp 5'-nontranslation region, a 294-bp ORF, and a 587-bp 3'-nontranslation region. The ORF codes protein consisting of 97 amino acid residues and possessed 6 depicts the domain. Figure transmembrane hydrophobicity/hydrophilicity profile, the obtained Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 21 kDa that was larger than the molecular weight of 10,673 predicted from the ORF. When expressed in COS cells, an expression product of about 26 kDa was observed in the membrane fraction.

10

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the human glycophorin C (SWISS-PROT Accession No. P04921). Table 5 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the human glycophorin C (GP). Therein, the marks of - and * represent a gap and an amino acid residue identical with the protein of the present invention, respectively. The both proteins possessed a homology of 30.5% in the entire region.

Table 5

25 Furthermore, the search of the GenBank using the base of the present cDNA has the sequences revealed registration of sequences that possessed a homology of 90% or more (for example, Accession No. R21992) in EST, but, since they are partial sequences, it can not be judged 30 whether or not any of these sequences codes for the same protein as the protein of the present invention. <HP10529> (Sequence Nos. 7, 17, and 33)

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10529 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 93-bp 5'-nontranslation region, a 597-bp ORF, and an 810-bp 3'-nontranslation region. The ORF codes for a protein consisting of 198 amino acid residues and possessed two transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the fugu rubripes putative protein 2 (GenBank Accession No. AF026198). Table 6 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the fugu rubripes putative protein 2 (FR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 56.1% in the entire region.

Table 6

HP MATLWGGLLRLGSLLSLSCLAL-SVLLLAQLS-DAAKNFEDVRCKCICPPYKENSGHIYN * * * ** ** ** ** 5 MPSDREGLWMLAAFALMTLFLLDNVGVTQAKSFDDVRCKCICPPYRNISGHIYN HP KNISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLY FR RNFTOKDCNCLHVVDPMPVPGNDVEAYCLLCECKYEERSTNTIRVTIIIFLSVVGALLLY HP MVYLTLVEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAOOR 10 *** .* ** FR MLFLLLVDPLIRKPD-PLAQTLHNEEDSEDIQP----QMSGDPARGNTVLERVEGAQQR HP WKLQVQEORKSVFDRHVVLS ** ****** *** FR WKKOVOEORKTVFDRHKML

15

20

Furthermore, the search of the GenBank using the base sequences of the present CDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N33899) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10537> (Sequence Nos. 8, 18, and 35)

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10537 obtained from cDNA libraries of the human osteosarcoma cell line Saos-2 revealed the structure consisting of a 94-bp 5'-nontranslation region, a 423-bp ORF, and a 289-bp 3'-nontranslation region. The ORF codes for a protein consisting of 140 amino acid residues and possessed four putative transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile,

10

15

20

25

30

obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in COS cells, an expression product of about 14 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R36207) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10549> (Sequence Nos. 9, 19, and 37)

Determination of the whole base sequence of the cDNA insert of clone HP10549 obtained from cDNA libraries of the human stomach cancer revealed the structure consisting of an 11-bp 5'-nontranslation region, a 606-bp ORF, and a 1101-bp 3'-nontranslation region. The ORF codes for a protein consisting of 201 amino acid residues possessed three putative transmembrane domains. Figure 9 hydrophobicity/hydrophilicity the obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was larger than the molecular weight of 23,346 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N28687) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10551> (Sequence Nos. 10, 20, and 39)

Determination of the whole base sequence of the cDNA insert of clone HP10551 obtained from cDNA libraries of the human stomach cancer revealed the structure consisting of a 152-bp 5'-nontranslation region, a 750-bp ORF, and a 93-bp 3'-nontranslation region. The ORF codes protein consisting of 249 amino acid residues possessed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the nematode imaginary protein T15B7 (GenBank Accession No. F022985). Table 7 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the nematode imaginary protein T15B7 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 41.3% in the entire region.

5

10

15 •

Table 7

HP MASSDEDGTNGGASEAGEDREAPGKRRRLGFLATAWLTFYDIAMTAGWLVLAIAMVRFYM ..*. *.. . ** ... 5 MSVQTYLVAYNVLQILGWSAILVKTVLGLA SC HP EKGTHRGLYKSIQKTLKFFQTFALLEIVHCLIGIVPTSVIVTGVQVSSRIFMVWLITHSI SC NGLTWPOLYESVEFELKIFOTAAILEVIHAIVGLVRSPVGTTAMOVTSRVVLVWPILHLC HP KPIONEESVVLFLVAWIVTEITRYSFYTFSLLDH-LPYFIKWARYNFFIILYPVGVAGEL 10 SC STARFSIGVPILLVAWSVTEVIRYSFYALSVLKQPIPYFLLYLRYTLFYVLYPMGVSGEL HP LTIYAALPHVKKTGMFSIRLPNKYNVSFDYYYFLLITMASYIPLFPQLYFHMLRQRRKVL **..*.* **... ... **. *... *... *.* *** ***** * **.*. SC LTLFASLNEVDEKKILTLEMPNRLNMGISFWWVLIIAALSYIPGFPOLYFYMIGORKKIL HP HGEVIVEKDD 15 SC GGGSKKKOLIATNONSTLFINYSPKTKROWKCFSAEFVDILCSPFGIFVIVIREESWKSN

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N67509) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell

20

25

membrane, so that they are considered to be proteins controlling the proliferation and the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents relating to the control of proliferation and the differentiation of the cells or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells, wherein these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be in accordance with known methods using isolated sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is

. 10

15

20

25

10

15

20

25

30

a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified of the gene(s) corresponding expression polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, Transgenic animals that have modified genetic provided. control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, of extraneous sequences through insertion corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation accomplished through insertion, can be preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal

et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396: 5,616,491; and 5,679,523; all of which incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders corresponding involving the gene(s), and for development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein,

5

10

15

20

25

10

15

20

25

30

where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions,

more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table

	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer [†]	Temperature
		(bp) [‡]		and Buffer†
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
•			50°C; 1×SSC,50% formamide	
F	RNA : RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50% formamide	·
Н	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
Ī	DNA : RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50% formamide	·
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA : RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA : RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50% formamide	,
P	DNA : RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA : RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
4	1014/1 - 1014/1		45°C; 6×SSC,50% formamide	000, 2000
R	RNA : RNA	<50	T_R^* ; 4×SSC	T _R *; 4×SSC
į IL	I TOTAL TOTAL	1 700	IR 30000	1 x , x

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

†: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

* T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

20

25

30

35

10

15

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the

WO 00/00506 PCT/JP99/03242

59

hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

CLAIMS

- 1. A protein comprising any of the amino acid sequences represented by Sequence Nos. 1 to 10.
- A DNA coding for the protein according to Claim
- 3. A cDNA comprising any of the base sequences represented by Sequence Nos. 11 to 20.
- 4. The cDNA according to Claim 3 comprising any of the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39.
 - 5. An expression vector capable of expressing the DNA according to any of Claims 2 to 4 by in vitro translation or in eucaryotic cells.
- 6. A transformation eucaryotic cell capable of expressing the DNA according to any of Claims 2 to 4 to produce the protein according to Claim 1.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

WO 00/00506 PCT/JP99/03242

Sequence listing

<110> Sagami Chemical Research Center et al.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661101

10 <141> 1999-06-18

<150> JP 10-180008

<151> 1998-06-26

15 <160> 40

<170> Windows 95 (Word 98)

<210> 1

20 <211> 238

<212> PRT

<213> Homo sapiens

<400> 1

25 Met Ala Leu Val Pro Cys Gln Val Leu Arg Met Ala Ile Leu Leu Ser

1 5 10 15

Tyr Cys Ser Ile Leu Cys Asn Tyr Lys Ala Ile Glu Met Pro Ser His

20 25 30

Gln Thr Tyr Gly Gly Ser Trp Lys Phe Leu Thr Phe Ile Asp Leu Val

30 35 40 45

Ile Gln Ala Val Phe Phe Gly Ile Cys Val Leu Thr Asp Leu Ser Ser

50 55 60

	Leu	Leu	Thr	Arg	Gly	Ser	Gly	Asn	Gln	Glu	Gln	Glu	Arg	Gln	Leu	Lys
	65					70					75		1,4			80
	Lys	Leu	Ile	Ser	Leu	Arg	Asp	Trp	Met	Leu	Ala	Val	Leu	Ala	Phe	Pro
·					85					90					95	
5	Val	Gly	Val	Phe	Val	Val	Ala	Val	Phe	Trp	Ile	Ile	Tyr	Ala	Tyr	Asp
				100					105					110		
	Arg	Glu	Met	Ile	Tyr	Pro	Lys	Leu	Leu	Asp	As n	Phe	Ile	Pro	Gly	Trp
			115					120					125			
	Leu	Asn	His	Gly	Met	His	Thr	Thr	Val	Leu	Pro	Phe	Ile	Leu	Ile	Glu
10		130					135					140				
	Met	Arg	Thr	Ser	His	His	Gln	Tyr	Pro	Ser	Arg	Ser	Ser	Gly	Leu	Thr
	145					150					155					160
	Ala	Ile	Суз	Thr	Phe	Ser	Val	Gly	Tyr	Ile	Leu	Trp	Val	Cys	Trp	Val
					165	•				170			9		175	
15	His	His	Val	Thr	Gly	Met	Trp	Val	Tyr	Pro	Phe	Leu	Glu	His	Ile	Gly
				180					185					190		
	Pro	Gly	Ala	Arg	Ile	Ile	Phe	Phe	Gly	Ser	Thr	Thr	Ile	Leu	Met	Asn
			195					200					205			
	Phe	Leu	Tyr	Leu	Leu	Gly	Glu	Val	Leu	Asn	Asn	Tyr	Ile	Trp	Asp	Thr
20		210					215					220				
	Gln	Lys	Ser	Met	Glu	Glu	Glu	Lys	Glu	Lys	Pro	Lys	Leu	Glu		
	225					230					235					
			-													•
	<210	0> 2														
25	<21	1> 19	94													
		2> PI														
	<213	3> Ho	omo s	sapie	ens											
	<400	0> 2														
30	Met	Ala	Asp	Pro	Leu	Arg	Glu	Arg	Thr	Glu	Leu	Leu	Leu	Ala	Asp	Tyr
	1				5					10					15	
	Leu	Glv	Tvr	Cvs	Ala	Arq	Ġlu	Pro	Gly	Thr	Pro	Glu	Pro	Ala	Pro	Ser

				20					23					30		
	Thr	Pro	Glu	Ala	Ala	Val	Leu	Arg	Ser	Ala	Ala	Ala	Arg	Leu	Arg	Glr
			35				•	40	 			. 4	45			
	Ile	His	Arg	Ser	Phe	Phe	Ser	Ala	Tyr	Leu	Gly	Tyr	Pro	Gly	Asn	Arg
5		50					55					60				
	Phe	Glu	Leu	Val	Ala	Leu	Met	Ala	Asp	Ser	Val	Leu	Ser	Asp	Ser	Pro
	65					70					75					80
	Gly	Pro	Thr	Trp	Gly	Arg	Val	Val	Thr	Leu	Val	Thr	Phe	Ala	Gly	Thr
•					85					90					95	
10	Leu	Leu	Glu	Arg	Gly	Pro	Leu	Val	Thr	Ala	Arg	Trp	Lys	Lys	Trp	Gly
	•			100					105				•	110		
	Phe	Gln	Pro	Arg	Leu	Lys	Glu	Gln	Glu	Gly	Asp	Val	Ala	Arg	Asp	Cys
			115					120					125			
	Gln	Arg	Leu	Val	Ala	Leu	Leu	Ser	Ser	Arg	Leu	Met	Gly	Gln	His	Arg
15	:	130			:		135		:.			140				
	Ala	Trp	Leu	Gln	Ala	Gln	Gly	Gly	Trp	qzA	Gly	Phe	Суз	His	Phe	Phe
	145				•	150					155					160
	Arg	Thr	Pro	Phe	Pro	Leu	Ala	Phe	Trp	Arg	Lys	Gln	Leu	Val	Gln	Ala
		•			165					170					175	
20	Phe	Leu	Ser	Cys	Leu	Leu	Thr	Thr	Ala	Phe	Ile	Tyr	Leu	Trp	Thr	Arg
				180					185					190		
	Leu	Leu														
	<210	> 3		i,		•					•					1.
25		> 13														
	<212	> PR	T													
	<213	> Ho	mo s	apie	ens											
	<400															
30	Met	Glu	Ala	Val		Phe	Val	Phe	Ser	Leu	Leu	Asp	Суз	Сув	Ala	Leu
	1				5					10					15	
	Ile	Phe	Leu	Ser	Val	Tyr	Phe	Ile	Ile	Thr	Leu	Ser	Asp	Leu	Glu	Cys

			20					25					30		
	Asp Ty	r Ile	Asn	Ala	Arg	Ser	Cys	Cys	Ser	Lys	Leu	Asn	Lys	Trp	Va]
		35					40	٠				45			
	Ile Pro	o Glu	Leu	Ile	Gly	His	Thr	Ile	Val	Thr	Val	Leu	Leu	Leu	Met
5	50)				55					60				
	Ser Le	ı His	Trp	Phe	Ile	Phe	Leu	Leu	Asn	Leu	Pro	Val	Ala	Thr	Tr
	65				70					75					80
	Asn Ile	∍ Tyr	Arg	Tyr	Ile	Met	Val	Pro	Ser	Gly	Asn	Met	Gly	Val	Phe
				85					90					95	
10	Asp Pro	o Thr	Glu	Ile	His	Asn	Arg	Gly	Gln	Leu	Lys	Ser	His	Met	Lys
			100					105					.110		
	Glu Ala	a Met	Ile	Lys	Leu	Gly	Phe	His	Leu	Leu	Суз	Phe	Phe	Met	Туг
		115					120					125			
	Leu Ty	r Ser	Met	Ile	Leu	Ala	Leu	Ile	Asn	Asp					
15	130)		:		135		·.				• .•		.·	• •.
	<210> 4	1													
	<211> 3	323													
	<212> 1														
20	<213> I	Omo	sapi	ens											
,															
	<400>												_		_
	Met Ala	a Ala	Pro	•	Gly	Ser	Leu	Trp		Arg	Thr	GIn	Leu		Leu
0.5	1			- -	_	_,			.10		~3 -			15	
25	Pro Pro	o Leu			Leu	Thr	Met		Leu	Ala	GIÀ	GTĀ		GIĀ	Thi
	- 2 -		20		_, .	•	0	25	.	01	•	mh	30	C	~
	Ala Se			ATA	Pne	Asp		vaı	Leu	GTÄ	Asp		Ala	Ser	Cys
		35		6 1	•	mb	40	D		**: -	∞	45	D	T	~ 1
20	His Ar		. cys	GIN	Leu		туr	PIO	Leu	HIS		ıyr	PLO	гЛа	GIL
30	51				•	55	3	0 3	~	3	60	nh-	C	w1 -	~
	Glu Gli	ı Leu	ıyr	ALA	_	GIN	Arg	стĀ	cys		Leu	rne	ser	TTE	
	65				70					75					80

	Gln	Phe	• Val	Asp	Asp	Gly	Ile	Asp	Leu	Asn	Arg	Thr	Lys	Leu	Glu	Су
•					85					90					95	
	Glu	Ser	Ala	Cys	Thr	Glu	Ala	Туг	Ser	Gln	Ser	Asp	Glu	Gln	Tyr	Ala
. ***		٠.		100		. •			105			,		110	1'	•
5	Cys	His	Leu	Gly	Cys	Gln	Asn	Gln	Leu	Pro	Phe	Ala	Glu	Leu	Arg	Glr
			115					120					125			
	Glu	Gln	Leu	Met	Ser	Leu	Met	Pro	Lys	Met	His	Leu	Leu	Phe	Pro	Lev
		130					135					140				
	Thr	Leu	Val	Arg	Ser	Phe	Trp	Ser	qeA	Met	Met	Asp	Ser	Ala	Gln	Ser
10	145					150					155					160
	Phe	Ile	Thr	Ser	Ser	Trp	Thr	Phe	Tyr	Leu	Gln	Ala	Asp	Asp	Gly	Lys
					165					170					175	
	Ile	Val	Ile	Phe	Gln	Ser	Lys	Pro	Glu	Ile	Gln	Tyr	Ala	Pro	His	Leu
				180					185			•		190		
15	Glu	Gln	Glu	Pro	Thr	Asn	Leu	Arg	Glu	Ser	Ser	Leu	Ser	Lys	Met	Ser
			195					200					205			
	Tyr	Leu	Gln	Met	Arg	Asn	Ser	Gln	Ala	His	Arg	Asn	Phe	Leu	Glu	Asp
		210					215					220				
		Glu	Ser	qzA	Gly	Phe	Leu	Arg	Суз	Leu	Ser	Leu	Asn	Ser	Gly	Trp
20	225					230					235			-		240
	Ile	Leu	Thr	Thr	Thr	Leu	Val	Leu	Ser	Val	Met	Val	Leu	Leu	Trp	Ile
	1				245					250					255	
	Суз	Cys	Ala	Thr	Val	Ala	Thr	Ala	Val	Glu	Gln	Tyr	Val	Pro	Ser	Glu
				260			· · .		265					270		
25	Lys	Leu	Ser	Ile	Tyr	Gly	Asp	Leu	Glu	Phe	Met	Asn	Glu	Gln	Lys	Leu
			275					280					285			
	Asn		Tyr	Pro	Ala	Ser	Ser	Leu	Val	Val	Val	Arg	Ser	Lys	Thr	Glu
		290					295					300				
	Asp	His	Glu	Glu	Ala	Gly	Pro	Leu	Pro	Thr	Lys	Val	Asn	Leu	Ala	His
30	305					310					315					320
	Ser	Glu	Ile													

```
<210> 5
       <211> 231
       <212> PRT
       <213> Homo sapiens
 5
       <400> 5
       Met Arg Arg Cys Ser Leu Cys Ala Phe Asp Ala Ala Arg Gly Pro Arg
                                             10
       Arg Leu Met Arg Val Gly Leu Ala Leu Ile Leu Val Gly His Val Asn
10
                                        25
       Leu Leu Leu Gly Ala Val Leu His Gly Thr Val Leu Arg His Val Ala
                                     40
                35
       Asn Pro Arg Gly Ala Val Thr Pro Glu Tyr Thr Val Ala Asn Val Ile
                                                     60
            50
                                 55
       Ser Val Gly Ser Gly Leu Leu Ser Val Ser Val Gly Leu Val Ala Leu
        65
                            70
                                                 75
       Leu Ala Ser Arg Asn Leu Leu Arg Pro Pro Leu His Trp Val Leu Leu
                        85
                                             90
       Ala Leu Ala Leu Val Asn Leu Leu Leu Ser Val Ala Cys Ser Leu Gly
20
                                        105
       Leu Leu Leu Ala Val Ser Leu Thr Val Ala Asn Gly Gly Arg Arg Leu
                                    120
                                                        125
               115
       Ile Ala Asp Cys His Pro Gly Leu Leu Asp Pro Leu Val Pro Leu Asp
                                135
                                                    140
           130
25
       Glu Gly Pro Gly His Thr Asp Cys Pro Phe Asp Pro Thr Arg Ile Tyr
                            150
                                                155
       145
       Asp Thr Ala Leu Ala Leu Trp Ile Pro Ser Leu Leu Met Ser Ala Gly
                                            170
                        165
       Glu Ala Ala Leu Ser Gly Tyr Cys Cys Val Ala Ala Leu Thr Leu Arg
30
                                        185
                    180
       Gly Val Gly Pro Cys Arg Lys Asp Gly Leu Gln Gly Gln Val Val Ala
                                                        205
                                    200
               195
```

```
Gly Cys Asp Ala Arg Val Lys Gln Lys Ala Trp Gln Pro Arg Phe Pro
           210
       Cly Ile Lys Val Lys Ala Leu
                          230
       225
 5
       <210> 6
       <211> 97
       <212> PRT
       <213> Homo sapiens
10
      <400> 6
      Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu Met Thr
        1
                                           10
       Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp Gly Ala
                             25
                   20
15
       Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu Thr Leu
                35
                                   40
       Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn Lys Gly
                               55
           50
20
       Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala Ile Val
                           70
                                              75
       Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu Tyr Phe
                                            90
       Ile ·
25
       <210> 7
       <211> 198
       <212> PRT
       <213> Homo sapiens
30
       <400> 7
       Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu Ser
```

	1				5					10					15	
	Leu	Ser	Cys	Leu	Ala	Leu	Ser	Val	Leu	Leu	Leu	Ala	Gln	Leu	Ser	Asp
				20				•.	25					30		
	Ala	Ala	Lys	Asn	Phe	Glu	Asp	Val	Arg	Суз	Lys	Суз	Ile	Суз	Pro	Pro
5			35					40					45			
	Tyr	Lys	Glu	Asn	Ser	Gly	His	Ile	Tyr	Asn	Lys	Asn	Ile	Ser	Gln	Lys
		50					55					60				
	Asp	Cys	Asp	Cys	Leu	His	Val	Val	Glu	Pro	Met	Pro	Val	Arg	Gly	Pro
	65	i				70					75					80
10	Asp	Val	Glu	Ala	Tyr	Cys	Leu	Arg	Cys	Glu	Cys	Lys	Tyr	Glu	Glu	Arg
					85					90					95	
	Ser	Ser	Val	Thr	Ile	Lys	Val	Thr	Ile	Ile	Ile	Tyr	Leu	Ser	Ile	Leu
				100					105					110		
	Gly	Leu	Leu	Leu	Leu	Tyr	Met	Val	Tyr	Leu	Thr	Leu	Val	Glu	Pro	Ile
15			115	. : .	: ·			120		٠		:	125	. 5		
	Leu	Lys	Arg	Arg	Leu	Phe	Gly	His	Ala	Gln	Leu	Ile	Gln	Ser	Asp	Asp
		130					135					140				
	Asp	Ile	Gly	Asp	His	Gln	Pro	Phe	Ala	Asn	Ala	His	Asp	Val	Leu	Ala
	145					150					155					160
20	Arg	Ser	Arg	Ser	Arg	Ala	Asn	Val	Leu	Asn	Lys	Val	Glu	Tyr	Ala	Gln
					165					170					175	
	Gln	Arg	Trp	Lys	Leu	Gln	Val	Gln	Glu	Gln	Arg	Lys	Ser	Val	Phe	Asp
				180					185					190		
	Arg	His	Val	Val	Leu	Ser	·								•	
25			195													
	<21	.0> 8														
	<21	1> 1	40													
	<21	.2> P	RT													
30	<21	.3> н		варі	ens											
	<40	8 <0					•									

	Met	: Gly	Arc	y Val	L Ser	Gly	y Le	ı Val	L Pro	Sei	Arg	, Phe	: Let	1 Th	r Le	u Leu	l
	1				5	5				10)				1	5	
	Ala	His	Leu	(Val	L Val	. Val	Ile	Thi	Let	Phe	Tr	Ser	Arc	, Ası	Se	r Asn	ı
	-			20)		•		25	,	•			30)		
5	Ile	Gln	Ala	Сув	Leu	Pro	Lev	Thr	Phe	Thr	Pro	Glu	Glu	туз	: Asp	Lys	
			35					40)				45	٠			
	Gln	Asp	Ile	Gln	Leu	Val	. Ala	Ala	Leu	Ser	Val	Thr	Leu	Gly	Leu	ı Phe	
		50					55					60					
	Ala	Val	Glu	Leu	Ala	Gly	Phe	Leu	Ser	Gly	Val	Ser	Met	Phe	Asn	Ser	
10	65					70					75	•				80	
	Thr	Gln	Ser	Leu	Ile	Ser	Ile	Gly	Ala	His	Cys	Ser	Ala	Ser	Val	Ala	
		•			85					90					95		
	Leu	Ser	Phe		Ile	Phe	Glu	Arg	Trp	Glu	Cys	Thr	Thr	Tyr	Trp	Tyr	
15.				100					105					110			
15	Ile	Phe	•	Phe	Суз	Ser	Ala		Pro	Ala	Val	Thr	Glu	Met	Ala	Leu	
	_,		115	_				120					125				
	Phe		Thr	Val	Phe	Gly		Lys	Lys	Lys	Pro	Phe					
		130					135					140					
20	<210)> Q															
	<211)1														
	<212															*.	
	<213			apie	ens												
									÷	z *			٠.				
25	<400	> 9		*					•				÷		•		
	Met .	Asn	Arg	Thr	Asn	Val	Asn	Val	Phe	Ser	Glu	Leu	Ser	Ala	Pro	Ara	
	1				5					10					15	9	
	Arg .	Asn	Glu	Asp	Phe	Val	Leu	Leu	Leu		Tvr	Val :	Leu	Phe		Met	
				20					25		•			30		1.00	
30	Ala :	Leu	Thr	Phe	Leu :	Met	Ser	Ser		Thr	Phe	Cys (Glv		Phe	Thr	
			35					40				4	45	_ 			
	Gly :	Trp	Lys .	Arg	His (Gly	Ala	His	Ile	Tvr	Leu '	Thr I		Leu	Leu	Ser	

		50	_				55					60				
	Ile	Ala	Ile	Trp	Val	Ala	Trp	Ile	Thr	Leu	Leu	Met	Leu	Pro	Asp	Phe
	65		•			70					75					80
	Asp	Arg	Arg	Trp	Asp	Asp	Thr	Ile	Leu	Ser	Ser	Ala	Leu	Ala	Ala	Ası
5					85					90					95	
	Gly	Trp	Val	Phe	Leu	Leu	Ala	Tyr	Val	Ser	Pro	Glu	Phe	Trp	Leu	Let
				100					105					110		
	Thr	Lys	Gln	Arg	Asn	Pro	Met	Asp	Tyr	Pro	Val	Glu	Asp	Ala	Phe	Cys
			115					120					125			
10	Lys	Pro	Gln	Leu	Val	Lys	Lys	Ser	Tyr	Gly	Val	Glu	Asn	Arg	Ala	Тут
		130					135					140				
-	Ser	Gln	Glu	Glu	Ile	Thr	Gln	Gly	Phe	Glu	Glu	Thr	Gly	Asp	Thr	Let
	145					150					155					160
	Tyr	Ala	Pro	Tyr	Ser	Thr	His	Phe	Gln	Leu	Gln	Asn	Gln	Pro	Pro	Glr
15	٠,				165					170			•	:	175	
	Lys	Glu	Phe		Ile	Pro	Arg	Ala		Ala	Trp	Pro	Ser		Tyr	Lys
				180					185					190		
	Asp	Tyr		Val	Lys	Lys	Glu		Ser							
00			195					200					•			
20	-04		_													
		0> 10														
		1> 24														
		2> PI							٠.							
25	<21.	3> Ho		sapıe	ens	•	.* •	٠.	•			i	•.			
20	-101	n~ 1 <i>(</i>	n											•		
		0> 10		C	N a m	Clu	Asp	Clv	mb =) en	Gl w	Clv.	פות	Sar	Glu	አገድ
	1	ATG	Ser	Ser	7 5	GIU	nap.	GLY	1111	10	GLY	GLY	ALC.	501	15	****
		Clu) Nen	h-a		λla	Pro	Glv	T.vq		Ara	Ara	T.e.11	Glv		Tet
30	GTÀ	GTU	vab	20	GIU	ALU	110	CLY	25	9	y	y	Leu	30		
50	1 1-	ጥኮ~	בומ		יים	ሞb ≻	Phe	ጥህጉ		Tle	פומ	Met	ሞኮ፦		Glv	ጥንተ
	a	TILL	35	ττħ	Ten	****		40	بإسد	**6		با تند .	45		1	1
			33					40					73			

	Leu	Val	Leu	Ala	Ile	Ala	Met	Val	Arg	Phe	Tyr	Met	Glu	Lys	Gly	Thr
		50					55					60				
	His	Arg	Gly	Leu	Tyr	Lys	Ser	Ile	Gln	Lys	Thr	Leu	Lys	Phe	Phe	Gln
	65			• .		70	*."				75		•	. •-		80
5	Thr	Phe	Ala	Leu	Leu	Glu	Ile	Val	His	Cys	Leu	Ile	Gly	Ile	Val	Pro
					85					90					95	
	Thr	Ser	Val	Ile	Val	Thr	Gly	Val	Gln	Val	Ser	Ser	Arg	lle	Phe	Met
				100					105					110		
	Val	Trp	Leu	Ile	Thr	His	Ser	Ile	Lys	Pro	Ile	Gln	Asn	Glu	Glu	Ser
10			115					120					125			
	Val	Val	Leu	Phe	Leu	Val	Ala	Trp	Thr	Val	Thr	Glu	Ile	Thr	Arg	Tyr
		130			•		135					140	٠			
	Ser	Phe	Tyr	Thr	Phe	Ser	Leu	Leu	Ąsp	His	Leu	Pro	Tyr	Phe	Ile	Lys
	145					150					155					160
15	Trp	Ala	Arg	Tyr	Asn	Phe	Phe	Ile	Ile	Leu	Tyr	Pro	Val	Gly	Val	Ala
			•	•	165					170					175	
	Gly	Glu	Leu	Leu	Thr	Ile	Tyr	Ala	Ala	Leu	Pro	His	Val	Lys	Lys	Thr
				180					185					190		
	Gly	Met	Phe	Ser	Ile	Arg	Leu	Pro	Asn	Lys	Tyr	Asn	Val	Ser	Phe	Asp
20			195					200					205			
	Tyr		Tyr	Phe	Leu	Leu	Ile	Thr	Met	Ala	Ser	Tyr	Ile	Pro	Leu	Phe
	,	210					215					220				
		Gln	Leu	Tyr	Phe	His	Met	Leu	Arg	Gln	Arg	Arg	Lys	Val	Leu	His
	225				•	230					235	٠				240
25	Gly	Glu	Val			Glu	Lys	Asp	Asp							
					245											
			·													•
)> 11														
•		> 71		•												
30		!> DN														
	<213	> Ho	mo s	apie	ns											

582

12/45

	<400> 11						
	atggcgcttg	tecectgeea	ggtgctgcgg	atggcaatcc	tgctgtctta	ctgctctatc	6
	ctgtgtaact	acaaggccat	cgaaatgccc	tcacaccaga	cctacggagg	gagctggaaa	12
	ttcctgacgt	tcattgatct	ggttatccag	gctgtctttt	ttggcatctg	tgtgctgact	18
5	gatctttcca	gtcttctgac	tcgaggaagt	gggaaccagg	agcaagagag	gcagctcaag	24
•	aagctcatct	ctctccggga	ctggatgtta	gctgtgttgg	cctttcctgt	tggggttttt	30
	gttgtagcag	tgttctggat	catttatgcc	tatgacagag	agatgatata	cccgaagetg	36
	ctggataatt	ttatcccagg	gtggctgaat	cacggaatgc	acacgacggt	tetgecettt	42
	atattaatcg	agatgaggac	atcgcaccat	cagtatccca	gcaggagcag	cggacttacc	48
10	gccatatgta	ccttctctgt	tggctatata	ttatgggtgt	gctgggtgca	tcatgtaact	540
	ggcatgtggg	tgtacccttt	cctggaacac	attggcccag	gagccagaat	catcttcttt	60
	gggtctacaa	ccatcttaat	gaacttcctg	tacctgctgg	gagaagttct	gaacaactat	66
	atctgggata	cacagaaaag	tatggaagaa	gagaaagaaa	agcctaaatt	ggaa	71
15	<210> 12 <211> 582 <212> DNA <213> Homo	sapiens					
20	<400> 12					,	
	atggccgacc	cgctgcggga	gcgcaccgag	ctgttgctgg	ccgactacct	ggggtactgc	60
	gcccgggaac	ccggcacccc	cgagccggcg	ccatccacgc	ccgaggccgc	egtgetgege	120
	teegeggeeg	ccaggttacg	gcagattcac	cggtcctttt	teteegeeta	cctcggctac	180
• •	cccgggaacc	gcttcgagct	ggtggcgctg	atggcggatt	ccgtgctctc	cgacagcccc	240
25	ggccccacct	ggggcagagt	ggtgacgctc	gtgaccttcg	cagggacgct	getggagaga	300
	gggccgctgg	tgaccgcccg	gtggaagaag	tggggcttcc	agccgcggct	aaaggagcag	360
	gagggggacg	tegeceggga	ctgccagcgc	ctggtggcct	tgctgagctc	gcggctcatg	420
	gggcagcacc	gegeetgget	gcaggctcag	ggeggetggg	atggcttttg	tcacttcttc	480
	aggaccccct	ttccactggc	tttttggaga	aaacagctgg	tccaggcttt	tctgtcatgc	540

ttgttaacaa cagccttcat ttatctctgg acacgattat ta

<210> 13

30

		<212> DNA						
		<213> Homo	sapiens					
	5	<400> 13						
		atggaggegg	tggtgttcgt	cttetetete	ctcgattgtt	gegegeteat	cttcctctcg	6
		gtctacttca	taattacatt	gtctgattta	gaatgtgatt	acattaatgo	tagatcatgt	12
		tgctcaaaat	taaacaagtg	ggtaattcca	gaattgattg	gccataccat	tgtcactgta	18
		ttactgctca	tgtcattgca	ctggttcatc	ttccttctca	acttacctgt	tgccacttgg	24
	10	aatatatatc	gatacattat	ggtgccgagt	ggtaacatgg	gagtgtttga	tccaacagaa	30
		atacacaatc	gagggcagct	gaagtcacac	atgaaagaag	ccatgatcaa	gcttggtttc	36
		cacttgctct	gcttcttcat	gtatctttat	agtatgatct	tagctttgat	aaatgac	41
		<210> 14						
	15	<211> 969						
		<212> DNA				•	• • • • •	
		<213> Homo	sapiens				,	
		<400> 14						
	20	atggcggcgc	cgaaggggag	cctctgggtg	aggacccaac	tggggctccc	geegetgetg	60
		ctgctgacca	tggccttggc	cggaggttcg	gggaccgctt	cggctgaagc	atttgactcg	120
		gtcttgggtg	atacggcgtc	ttgccaccgg	gcctgtcagt	tgacctaccc	cttgcacacc	180
		taccctaagg	aagaggagtt	gtacgcatgt	cagagaggtt	gcaggctgtt	ttcaatttgt	240
		cagtttgtgg	atgatggaat	tgacttaaat	cgaactaaat	tggaatgtga	atctgcatgt	300
	25	acagaagcat	attcccaatc	tgatgagcaa	tatgcttgcc	atcttggttg	ccagaatcag	360
		ctgccattcg	ctgaactgag	acaagaacaa	cttatgtccc	tgatgccaaa	aatgcaccta	420
٠		ctctttcctc	taactctggt	gaggtcattc	tggagtgaca	tgatggactc	cgcacagagc	480
		ttcataacct	cttcatggac	tttttatctt	caagccgatg	acggaaaaat	agttatattc	540
		cagtctaagc	cagaaatcca	gtacgcacca	catttggagc	aggagcctac	aaatttgaga	600
	30	gaatcatctc	taagcaaaat	gtcctatctg	caaatgagaa	attcacaagc	gcacaggaat	660
		tttcttgaag	atggagaaag	tgatggcttt	ttaagatgcc	tetetettaa	ctctgggtgg	720
		attttaacta	caactcttgt	cctctcggtg	atggtattgc	tttggatttg	ttgtgcaact	780

<211> 417

	gttgctacag	ctgtggagca	gtatgttccc	tctgagaagc	tgagtatcta	tggtgacttg	840
	gagtttatga	atgaacaaaa	gctaaacaga	tatccagctt	cttctcttgt	ggttgttaga	900
	tctaaaactg	aagatcatga	agaagcaggg	cctctaccta	caaaagtgaa	tcttgctcat	960
	tctgaaatt						969
5							
	<210> 15						
	<211> 693						
	<212> DNA						
	<213> Homo	sapiens					
10	•						
	<400> 15						
	atgaggcgct	gcagtctctg	cgctttcgac	gccgcccggg	ggcccaggcg	gctgatgcgt	60
	gtgggcctcg	cgctgatctt	ggtgggccac	gtgaacctgc	tgctgggggc	cgtgctgcat	120
	ggcaccgtcc	tgcggcacgt	ggccaatccc	cgcggcgctg	tcacgccgga	gtacaccgta	180
15	gccaatgtca	tctctgtcgg	ctcggggctg	ctgagcgttt	ccgtgggact	tgtggccctc	240
	ctggcgtcca	ggaaccttct	tegeceteca	ctgcactggg	teetgetgge	actagetetg	300
	gtgaacctgc	tettgteegt	tgeetgetee	ctgggcctcc	ttcttgctgt	gteacteact	360
	gtggccaacg	gtggccgccg	ccttattgct	gactgccacc	caggactgct	ggatectetg	420
,	gtaccactgg	atgaggggcc	gggacatact	gactgcccct	ttgaccccac	aagaatctat	480
20	gatacagcct	tggctctctg	gatecettet	ttgctcatgt	ctgcagggga	ggctgctcta	540
	tctggttact	gctgtgtggc	tgcactcact	ctacgtggag	ttgggccctg	caggaaggac	600
1	ggacttcagg	ggcaggtagt	agctgggtgt	gacgcaagag	tgaaacagaa	agcctggcag	660
	ccacggtttc	ctgggattaa	agtcaaagca	tta			693
25	<210> 16						
	<211> 291						
	<212> DNA						
	<213> Homo	sapiens					
							*
30	<400> 16						
	atgaccagcc	tectgactac	tectteteca	agagaagaac	tgatgaccac	cccaatttta	60
	cagcccactg	aggccctgtc	cccagaagat	ggagccagca	cagcactcat	tgcagttgtt	120

WO 00/00506 PCT/JP99/03242

	atcaccgttg	tcttcctcac	cctgctctcg	gtcgtgatct	tgatettett	ttacctgtac	180
	aagaacaaag	gcagctacgt	cacctatgaa	cctacagaag	gtgagcccag	tgccatcgtc	240
. · · · ·	cagatggaga	gtgacttggc	caagggcagc	gagaaagagg	aatattcat	c	291
5	<210> 17						
	<211> 594						
	<212> DNA						
	<213> Homo	sapiens					
10	<400> 17						
	atggcgaccc	tgtggggagg	ccttcttcgg	cttggctcct	tgctcagcct	gtegtgeetg	60
	gegettteeg	tgetgetget	ggegeagetg	tcagacgccg	ccaagaattt	cgaggatgtc	120
	agatgtaaat	gtatetgeee	tccctataaa	gaaaattctg	ggcatattta	taataagaac	180
	atatctcaga	aagattgtga	ttgccttcat	gttgtggagc	ccatgcctgt	gegggggeet	240
15	gatgtagaag	catactgtct	acgctgtgaa	tgcaaatatg	aagaaagaag	ctctgtcaca	300
	atcaaggtta	ccattataat	ttatctctcc	attttgggcc	ttctacttct	gtacatggta	360
	tatettacte	tggttgagcc	catactgaag	aggcgcctct	ttggacatgc	acagttgata	420
	cagagtgatg	atgatattgg	ggatcaccag	ccttttgcaa	atgcacacga	tgtgetagee	480
	cgctcccgca	gtcgagccaa	cgtgctgaac	aaggtagaat	atgcacagca	gcgctggaag	540
20	cttcaagtcc	aagagcagcg	aaagtctgtc	tttgaccggc	atgttgtcct	cagc	594
		•					
	<210> 18						
	<211> 420	*				·	
	<212> DNA		·			÷	
25	<213> Homo	sapiens			,		
	<400> 18						
	atgggccggg	tctcagggct	tgtgccctct	cgcttcctga	cgctcctggc	gcatctggtg	60
	gtcgtcatca	ccttattctg	gtecegggae	agcaacatac	aggeetgeet	gcctctcacg	120
30	ttcacccccg	aggagtatga	caagcaggac	attcagctgg	tggccgcgct	ctctgtcacc	180
	ctgggcctct	ttgcagtgga	gctggccggt	ttcctctcag	gagtetecat	gttcaacagc	240
	acccagagcc	teateteeat	tagaactcac	tataatacat	ccataaccct	atcettette	300

	atattcgagc	gttgggagtg	cactacgtat	tggtacattt	ttgtcttctg	cagtgccctt	360
	ccagctgtca	ctgaaatggc	tttattcgtc	accgtctttg	ggctgaaaaa	gaaacccttc	420
							· ·
	<210> 19						
5	<211> 603						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 19						
10	atgaatagga	ccaacgtcaa	tgtcttttct	gagctttccg	ctcctcgtcg	caatgaagac	60
	tttgtcctcc	tgctcaccta	egtectette	ttgatggcgc	tgaccttcct	catgtcctcc	120
	ttcaccttct	gtggttcctt	cacgggctgg	aagagacatg	gggcccacat	ctacctcacg	180
	atgctcctct	ccattgccat	ctgggtggcc	tggatcaccc	tgctcatgct	tcctgacttt	240
	gaccgcaggt	gggatgacac	catcctcagc	teegeettgg	ctgccaatgg	ctgggtgttc	300
15	ctgttggctt	atgttagtcc	cgagttttgg	ctgctcacaa	agcaacgaaa	ccccatggat	360
	tatcctgttg	aggatgcttt	ctgtaaacct	caactcgtga	agaagagcta	tggtgtggag	420
	aacagagcct	actctcaaga	ggaaatcact	caaggttttg	aagagacagg	ggacacgctc	480
	tatgccccct	attccacaca	ttttcagctg	cagaaccagc	ctccccaaaa	ggaattetee	540
	atcccacggg	cccacgcttg	geegageeet	tacaaagact	atgaagtaaa	gaaagaggc	600
20	age						603
	1						
	<210> 20						
	<211> 747					: * * · · .	
	<212> DNA			•			
25	<213> Homo	sapiens					
	<400> 20						
	atggcgtcca	gcgacgagga	cggcaccaac	ggeggegeet	cggaggccgg	cgaggaccgg	60
	gaggeteeeg	gcaagcggag	gegeetgggg	ttcttggcca	cegeetgget	caccttctac	120
30	gacatcgcca	tgaccgcggg	gtggttggtt	ctagctattg	ccatggtacg	tttttatatg	180
	gaaaaaggaa	cacacagagg	tttatataaa	agtattcaga	agacacttaa	atttttccag	240
	acatttgcct	tgcttgagat	agttcactgt	ttaattggaa	ttgtacctac	ttctgtgatt	300

	gtgactg	ggg	tcca	agtg	ag t	tcaa	gaat	c tt	tatg	gtgt	ggc	tcat	tac	tcac	agta	ta	360
	aaaccaa	tcc	agaa	tgaa	ga g	agtg	tggt	g ct	tttt	ctgg	tcg	cgtg	gac	tgtg	acaga	ag	420
	atcactc	gct	attc	cttc	ta c	acat	tcag	c ct	tett	gacc	act	tgcc	ata	cttc	atta	aa .	480
	tgggccad	gat	ataa	tttt	tt t	atca	tett	a ta	tect	gttg	gag	ttgc	tgg	tgaa	cttc	:t	540
5	acaatat	acg	ctgc	cttg	ec g	catg	tgaa	g aa	aaca	ggaa	tgt	tttc	aat	aaga	cttc	et	600
	aacaaata	aca	atgt	ctct	tt t	gact	acta	t ta	tttt	cttc	tta	taac	cat	ggca	tcata	at	660
	atacctt	tgt	ttcc	acaa	ct c	tatt	ttca	t at	gtta	cgtc	aaa	gaag	aaa	ggtg	cttca	at	720
	ggagaggt	tga '	ttgt	agaa	aa g	gatg	at										747
															•		
10	<210> 23	1 .	•													•	
	<211> 10	085	**														
	<212> DN	AJ.								•				-		•	
	<213> Ho	omo :	sapi	ens													ę.
15	<400> 21	l		i				•	· · · · ·		٠.	· '					•
	cagccggt	cc a	aggc	ctct	gg c	gaac	atg	gcg	ctt	gte	ccc	tgc	cag	gtg	ctg		52
							Met	Ala	Leu	Val	Pro	Cys	Gln	Val	Leu		∴ .
							1				5						•
	cgg atg	gca	atc	ctg	ctg	tct	tac	tgc	tct	atc	ctg	tgt	aac	tac	aag		100
20	Arg Met	Ala	Ile	Leu	Leu	Ser	Tyr	Суз	Ser	Ile	Leu	Cys	Asn	Tyr	Lys		
,	10				15				•	20					25		
	gcc atc	gaa	atg	ccc	tca	cac	cag	acc	tac	gga	ggg	agc	tgg	aaa	ttc		148
	Ala Ile	Glu	Met	Pro	Ser	His	Gln	Thr	Tyr	Gly	Gly	Ser	Trp	Lys	Phe		
•				30					35					40			
25	ctg acg	ttc	att	gat	ctg	gtt	atc	cag	gct	gtc	ttt	ttt	ggc	atc	tgt		196
	Leu Thr	Phe	Ile	Asp	Leu	Val	Ile	Gln	Ala	Val	Phe	Phe	Gly	Ile	Cys		
			45					50					55				
	gtg ctg	act	gat	ctt	tcc	agt	ctt	ctg	act	cga	gga	agt	9 99	aac	cag	•	244
	Val Leu	Thr	Asp	Leu	Ser	Ser	Leu	Leu	Thr	Arg	Gly	Ser	Gly	Asn	Gln		
30		60					65					70					
	gag caa	gag	agg	cag	ctc	aag	aag	ctc	atc	tct	ctc	cgg	gac	tgg	atg		292
	Glu Gln	Glu	Ara	Gln	Leu	Ĺvs	Lvs	Leu	Τl	Ser	Leu	Ara	Asp	ידיד	Met.		

		75					80					85						
	tta	gct	gtg	ttg	gcc	ttt	cct	gtt	ggg	gtt	ttt	gtt	gta	gca	gtg	ttc		340
	Leu	Ala	Val	Leu	Ala	Phe	Pro	Val	Gly	Val	Phe	Val	Val	Ala	Val	Phe		
	90					95					100					105		
5	tgg	atc	att	tat	gcc	tat	gac	aga	gag	atg	ata	tac	ccg	aag	ctg	ctg		388
	Trp	Ile	Ile	Tyr	Ala	Tyr	Asp	Arg	Glu	Met	Ile	Tyr	Pro	Lys	Leu	Leu		
					110					115					120			
	gat	aat	ttt	atc	cca	9 99	tgg	ctg	aat	cac	gga	atg	cac	acg	acg	gtt		436
	Asp	Asn	Phe	Ile	Pro	Gly	Trp	Leu	Asn	His	Gly	Met	His	Thr	Thr	Val		•
10				125					130					135				:
	ctg	ccc	ttt	ata	tta	atc	gag	atg	agg	aca	tcg	cac	cat	cag	tat	ccc		484
	Leu	Pro	Phe	Ile	Leu	Ile	Glu	Met	Arg	Thr	Ser	His	His	Gln	Tyr	Pro		
			140					145					150					
	agc	agg	agc	agc	gga	ctt	acc	gcc	ata	tgt	acc	ttc	tet	gtt	ggc	tat		532
15	Ser	Arg	Ser	Ser	Gly	Leu	Thr	Ala	Ile	Cys	Thr	Phe	Ser	Val	Gly	Tyr		
		155					160					165						
	ata	tta	tgg	gtg	tgc	tgg	gtg	cat	cat	gta	act	ggc	atg	tgg	gtg	tac		580
	Ile	Leu	Trp	Val	Cys	Trp	Val	His	His	Val	Thr	Gly	Met	Trp	Val	Tyr		
	170					175					180					185		
20	cct	ttc	ctg	gaa	cac	att	ggc	cca	gga	gcc	aga	atc	atc	ttc	ttt	ggg		628
	Pro	Phe	Leu	Glu	His	Ile	Gly	Pro	Gly	Ala	Arg	Ile	Ile	Phe	Phe	Gly		
					190					195					200			
. •	tct	aca	acc	atc	tta	atg	aac	ttc	ctg	tac	ctg	ctg	gga	gaa	gtt	ctg		676
	Ser	Thr	Thr	Ile	Leu	Met	Asn	Phe	Leu	Tyr	Leu	Leu	Gly	Glu	Val	Leu	,	•
25				205					210					215				
	aac	aac	tat	atc	tgg	gat	aca	cag	aaa	agt	atg	gaa	gaa	gag	aaa	gaa		724
	Asn	Asn	Tyr	Ile	Trp	Asp	Thr	Gln	Lys	Ser	Met	Glu	Glu	Glu	Lys	Glu		
			220					225					230					
	aag	cct	aaa	ttg	gaa	tgag	jated	caa q	jtote	aaacç	jc aa	agago	ctage	a tte	gaged	gcc .	a	780
30	Lys	Pro	Lys	Leu	Glu													
		235																
	ttga	agad	ete d	ette	ccto	g gg	catt	gge	a gtg	1 3 333	gaga	aaag	gett	ca a	aagga	actt	g	840

	gtggcatcag	caccccctc	ccccaatga	g gacacctttt	atatataaat	atgtataaac	900
. ,	atagaataca	gttgtttcca	aaagaactc	a ccctcactgt	gtgttaaaga	attcttccca	960
	aagtcattac	tgataataac	attttttc	c ttttctagtt	ttaaaaccag	aattggacct	1020
	tggattttta	ttttggcaat	tgtaactcc	a tctaatcaag	aaagaataaa	agtttattgc	1080
5	acttc						1085
		•					
	<210> 22						
	<211> 238						
	<212> PRT						•
10	<213> Homo	sapiens					
	<400> 22						
			Met	Ala Leu Val	Pro Cys Gln	Val Leu	
			1		. 5		
15		a Ile Leu Le	eu Ser Tyr	Cys Ser Ile	Leu Cys Asn	Tyr Lys	
	10		.5	20		25	
	Ala Ile Glu		r His Gln	Thr Tyr Gly	Gly Ser Trp	Lys Phe	
	<u>.</u>	30		35		40	
00	Leu Thr Phe		u Val Ile	Gln Ala Val	Phe Phe Gly	Ile Cys	
20		45		50	55		
	'			Leu Thr Arg	Gly Ser Gly	Asn Gln	
	60		65		70	. ,	
		ı Arg Gln Le	- 1 · · · · · · · · · · · · · · · · · ·	Leu Ile Ser	Leu Arg Asp	Trp Met	
05	75	·	80		85		
25				Gly Val Phe	Val Val Ala		
	90	9		100	•	105	
	Trp Ile Ile		r Asp Arg	Glu Met Ile	Tyr Pro Lys	Leu Leu	
		110		115		120	
20	Asp Asn Phe			Asn His Gly		Thr Val	
30	• 	125		130	135		
				Arg Thr Ser		Tyr Pro	
	140	1	145		150		

		Ser	Arg	Ser	Ser	Gly	Leu	Thr	Ala	Ile	Cys	Thr	Phe	Ser	Val	Gly	Tyr	
			155					160					165					
		Ile	Leu	Trp	Val	Cys	Trp	Val	His	His	Val	Thr	Gly	Met	Trp	Val	Tyr	
		170					175					180					185	
5		Pro	Phe	Leu	Glu	His	Ile	Gly	Pro	Gly	Ala	Arg	Ile	Ile	Phe	Phe	Gly	
						190					195					200		
		Ser	Thr	Thr		Leu	Met	Asn	Phe	Leu	Tyr	Leu	Leu	Gly		Val	Leu	
					205					210					215			
		Asn	Asn	_	Ile	Trp	Asp	Thr		Lys	Ser	Met	Glu			Lys	Glu	
10				220					225					230				
		Lys		Lys	Leu	Glu												
			235															
		403	n. n.	_														
15		<21	0> 2:							·			. :			٠.		
10			1> 1. 2> DI									• .				• .		•
					anie	en g				-								
		~21.	J- 11	. O.I.C	apre	3115												
		<40	0> 2:	3														
20					gcc (gac o	ceg o	etg d	egg (gag d	ege a	acc o	gag (ctg 1	ttg (etg (gee	48
				-			Pro I	_		_	_							
	•			1				5					10				•	
		gac	tac	ctg	ggg	tac	tgc	gcc	cgg	gaa	ccc	ggc	acc	aca	gag	ccg	gcg	96
		Asp	Tyr	Leu	Gly	Tyr	Cys	Ala	Arg	Glu	Pro	Gly	Thr	Pro	Glu	Pro	Ala	
25		15					20					25					30	
		cca	tcc	acg	ccc	gag	gcc	gcc	gtg	ctg	cgc	tcc	gcg	gcc	gcc	agg	tta	144
		Pro	Ser	Thr	Pro	Glu	Ala	Ala	Val	Leu	Arg	Ser	Ala	Ala	Ala	Arg	Leu	
						35					40					45		
		cgg	cag	att	cac	cgg	tcc	ttt	ttc	tcc	gcc	tac	ctc	ggc	tac	ccc	ggg	192
30		Arg	Gln	Ile	His	Arg	Ser	Phe	Phe	Ser	Ala	Tyr	Leu	Gly	Tyr	Pro	Gly	
					50					55					60			
		aac	cqc	ttc	gaq	ctq	gtg	gcg	ctg	atg	gcq	gat	tcc	gtg	ctc	tcc	gac	240

	Asn	Arg	Phe	Glu	Leu	Val	Ala	Leu	Met	Ala	Asp	Ser	Val	Leu	Ser	Asp	
			65					70					75		٠.		
	agc	ccc	ggc	acc	acc	tgg	gge	aga	gtg	gtg	acg	ctc	gtg	acc	ttc	gca	288
	Ser	Pro	Gly	Pro	Thr	Trp	Gly	Arg	Val	Val	Thr	Leu	Val	Thr	Phe	Ala	
5		80					85					90					
	ggg	acg	ctg	ctg	gag	aga	ggg	ccg	ctg	gtg	acc	gcc	cgg	tgg	aag	aag	336
	Gly	Thr	Leu	Leu	Glu	Arg	Gly	Pro	Leu	Val	Thr	Ala	Arg	Trp	Lys	Lys	
	95					100					105					110	
	tgg	ggc	ttc	cag	ccg	cgg	cta	aag	gag	cag	gag	ggc	gac	gtc	gcc	cgg	384
10	Trp	Gly	Phe	Gln	Pro	Arg	Leu	Lys	Glu	Gln	Glu	Gly	Asp	Val	Ala	Arg	
					115					120					125		
	gac	tgc	cag	cgc	ctg	gtg	gcc	ttg	ctg	agc	tcg	cgg	ctc	atg	ggg	cag	432
	Asp	Cys	Gln	Arg	Leu	Val	Ala	Leu	Leu	Ser	Ser	Arg	Leu	Met	Gly	Gln	
				130					135					140			
15	cac	cgc	gcc	tgg	ctg	cag	gct	cag	ggc	ggc	tgg	gat	ggc	ttt	tgt	cac	480
	His	Arg	Ala	Trp	Leu	Gln	Ala	Gln	Gly	Gly	Trp	Asp	Gly	Phe	Cys	His	
			145					150					155		•		
	ttc	ttc	agg	acc	ccc	ttt	cca	ctg	gct	ttt	tgg	aga	aaa	cag	ctg	gtc	528
	Phe	Phe	Arg	Thr	Pro	Phe	Pro	Leu	Ala	Phe	Trp	Arg	Lys	Gln	Leu	Val	
20		160					165					170					
	cag	gct	ttt	ctg	tca	tgc	ttg	tta	aca	aca	gcc	ttc	att	tat	ctc	tgg	576
,	Gln	Ala	Phe	Leu	Ser	Cys	Leu	Leu	Thr	Thr	Ala	Phe	Ile	Tyr	Leu	Trp	
	175		•			180					185			•	•	190	
	aca	cga	tta	tta	tgag	, jttt	caa a	actt	ttaa	ac co	egett	ctac	e cto	jece:	aact	gt	630
25	Thr	Arg	Leu	Leu													•
													ė				
	gaco	aact	aa a	atgad	agat	g to	gtgag	jaaca	aga	acto	gagg	gaas	agcad	ect 1	tecec	caccc	690
																gttt	750
																igtgaa	810
30																tccat	870
							•									atctc	930
					_											ataat	990

1050

22/45

ccccaaagta gaaaaagtcc cagtttaaca aagaatgtaa tgttaaaatc acttataagg

	aattett	tga :	aacc	aaat	ce t	ttga	aatc	t aa	ttcc	tggg	act	tcta	ggt	tttt	atagt	t	1110
	aacatac	taa	ttte	ttca	at a	attg	ttaad	e tg	caaa	gttt	taa	taaa	ttt	gtac	cttt		1168
5	<210> 2	4														٠	
	<211> 1	94															
	<212> P	RT								·							
	<213> H		sapio	ens													
10	<400> 2	4															
		Met	Ala	Asp	Pro	Leu	Arg	Glu	Arg	Thr	Glu	Leu	Leu	Leu	Ala		
		1				5					10						
	Asp Tyr	Leu	Gly	Tyr	Cys	Ala	Arg	Glu	Pro	Gly	Thr	Pro	Glu	Pro	Ala		
	15				20					25					30		
15	Pro Ser	Thr	Pro	Glu	Ala	Ala	Val	Leu	Arg	Ser	Ala	Ala	Ala	Arg	Leu	. *.	
				35					40					45			
	Arg Gln	Ile	His	Arg	Ser	Phe	Phe	Ser	Ala	Tyr	Leu	Gly	Tyr	Pro	Gly		
			50					55					60				
	Asn Arg	Phe	Glu	Leu	Val	Ala	Leu	Met	Ala	Asp	Ser	Val	Leu	Ser	Asp		
20		65					70					75					
	Ser Pro	Gly	Pro	Thr	Trp	Gly	Arg	Val	Val	Thr	Leu	Val	Thr	Phe	Ala		
	80					85					90						
	Gly Thr	Leu	Leu	Glu	Arg	Gly	Pro	Leu	Val	Thr	Ala	Arg	Trp	Lys	Lys		
	95				100					105					110		
2 5	Trp Gly	Phe	Gln	Pro	Arg	Leu	Lys	Glu	Gln	Glu	Gly	Asp	Val	Ala	Arg		
				115					120					125			
	Asp Cys	Gln	Arg	Leu	Val	Ala	Leu	Leu	Ser	Ser	Arg	Leu	Met	Gly	Gln		
			130					135					140	*			
	His Arg	Ala	Trp	Leu	Gln	Ala	Gln	Gly	Gly	Trp	Asp	Gly	Phe	Суз	His		
30		145					150					155					
	Phe Phe	Arg	Thr	Pro	Phe	Pro	Leu	Ala	Phe	Trp	Arg	Lys	Gln	Leu	Val		
	160					165					170						

	G	ln	Ala	Phe	Leu	Ser	Cys	Leu	Leu	Thr	Thr	Ala	Phe	Ile	Туг	Let	Trp	
	1	75					180		, t.	٠.,		185			٠, .		190	
	T	hr	Arg	Leu	Leu													
																	٠	
5	<	21	0> 2	5														
	<	21	1> 6	24													•	
	<	21:	2> D	NA														•
	<	21:	3> H	omo	sapi	ens												
10	<	40	0> 2	5														
	t	tte	gacg	gaa	ggag	cggc	gg c	gacg	gagg	a qq	agg (atg (gag (aca (ata	ata	ttc	53
					<i></i>	,,		, ,	, ,,	,,,		Met (
											•	1			• • •	5	- 110	-
-	· a	tc	tte	tet	ctc	ctc	gat	tat	tac	aca	ctc	_	tto	ctc	tog		tac	101
15							,	Cys			: :							101
10	. •	·	+110	Der	10		nsp	Cys	Cys	15	neu	116	File	Leu	20	val	TYL	•
	.			-++			+-+		**-				.					140
																-	aga	149
	P	ıe	TIE		THE	Leu	Ser	Asp		GIU	Cys	Asp	Tyr		Asn	Ala	Arg	4.0
90				25					30					35				٠.
20								aac			-							197
	,Se	er.			Ser	Lys	Leu	Asn	Lys	Trp	Val	Ile	Pro	Glu	Leu	Ile	Gly	
			40					45					50					
				· .				tta										245
	H	LS	Thr	Ile	Val	Thr	Val	Leu	Leu	Leu	Met	Ser	Leu	His	Trp	Phe	Ile	
25	:	55					60		••			65					70	
	ti	:c	ctt	ctc	aac	tta	cct	gtt	gcc	act	tgg	aat	ata	tat	cga	tac	att	293
	Pì	ıe	Leu	Leu	Asn	Leu	Pro	Val	Ala	Thr	Trp	Asn	Ile	Tyr	Arg	Tyr	Ile	
						75					80					85		
	at	:g	gtg	ccg	agt	ggt	aac	atg	gga	gtg	ttt	gat	cca	aca	gaa	ata	cac	341
30	Me	et.	Val	Pro	Ser	Gly	Asn	Met	Gly	Val	Phe	Asp	Pro	Thr	Glu	Ile	His	,
			•		90					95					100			
	a	it	cga	999	cag	ctg	aag	tca	Cạc	atg	aaa	gaa	gcc	atg	atc	aag	ctt	389

WO 00/00506 PCT/JP99/03242

	Asn	Arg	Gly	Gln	Leu	Lys	Ser	His	Met	Lys	Glu	Ala	Met	Ile	Lys	Leu		
			105					110				٠	115					
14 a. i													_	_		tta		7
5	GIY	120		Leu	Leu	Cys	125		Mec	Tyr	Leu	130	ser	Met	TTE	Leu		
Ü	act			aat	gac	tas			ae e a	coat	aa +		at a s	a aa	+200	at	49	^
					Asp		agee	ggu '	guug	ccgc	33 C	cyaa	gcca	y cc	caca	CC	45	U
	135																	
		,tgc:	aca (gttg	agga	ge ea	agag	actt	c tt	aaat	catc	ctt	agaa	ccq	tgac	catago	e 550	0
10													-	_	_	taaagt		0
	attt	aaaa	aaa d	catg												_	624	4
	<210	> 26	5															
	<211	> 13	39						•									
15	<212	> PF	RT	:			-	:	-	.4		• •			•			
	<213	> H	omo s	sapi	ens	-												
	<400	> 26	5									_ _	_	_				
20										F	Met (stu A	та л	/al '		Phe		
20	Val	Dhe	50×	T 011	Tou	Aan	C) rc	C***	710	Tou	1	Dh.a	T	C	5			
	var	FIIC	261	10	Ter	ASP	cys	Cys	15	red	TTE	Pne	Leu	20	vai	туг		
	Phe	Ile	Ile		Leu	Ser	asp	Leu		Cvs	Asn	ጥህን	Tle		Δla	Ara		
			25				<u>-</u> -	30		-1-	p	-1-	35			9		٠
25	Ser	Cys	Суз	Ser	Lys	Leu	Asn		Trp	Val	Ile	Pro		Leu	Ile	Gly		
		40	_		_		45	-	_			50				_		
	His	Thr	Ile	Val	Thr	Val	Leu	Leu	Leu	Met	Ser	Leu	His	Trp	Phe	Ile		
	55					60					65					70		
	Phe	Leu	Leu	Asn	Leu	Pro	Val	Ala	Thr	Trp	Asn	Ile	Tyr	Arg	Tyr	Ile		
30					75					80					85			
	Met	Val	Pro	Ser	Gly	Asn	Met	Gly	Val	Phe	Asp	Pro	Thr	Glu	Ile	His		
				90			•		95					100				

	Asn Arg	Gly Gli	n Leu Lys	Ser His	Met Lys	Glu Ala	Met Ile Lys	Leu
		105		110			115	
	Gly Phe	His Le	u Leu Cys	Phe Phe	Met Tyr	Leu Tyr	Ser Met Ile	Leu
	120	•		125		130	,	•
5	Ala Leu	Ile Ası	n Asp					
••	135	•						•
							•	
	<210> 2	7						
	<211> 1	121			•			
10	<212> D	NA			,		•	' .
	<213> н	omo sapi	iens					
	<400> 2	4						
	gacagag	ggg aaca	aag atg g	reg geg e	cg aag g	gg age et	c tgg gtg ag	g acc 52
15			1.00		* .		u Trp Val Ar	
			1		5		10	
	caa ctg	ggg etc	e eeg eeg	ctg ctg	ctg ctg	acc atg	gcc ttg gcc	gga 100
	Gln Leu	Gly Let	ı Pro Pro	Leu Leu	Leu Leu	Thr Met	Ala Leu Ala	Gly
		15		20)		25	
20	ggt teg	ggg acc	get teg	get gaa	gca ttt	gac tcg	gtc ttg ggt	gat 148
	Gly Ser	Gly Thr	r Ala Ser	· Ala Glu	Ala Phe	Asp Ser V	Val Leu Gly	Asp
	30			35		40	_	-
	acg gcg	tet tge	cac cgg	gee tgt	cag ttg	acc tac	ccc ttg cac	acc 196
	Thr Ala	Ser Cys	s His Arg	Ala Cys	Gln Leu	Thr Tyr I	Pro Leu His	Thr
25	45	_	50			55		60
	tac cct	aag gas	a gag gag	ttg tac	gca tgt	cag aga q	ggt tgc agg	ctg 244
					_		Gly Cys Arg	
	_	-	65	_	70	_	75	
	ttt tca	att tgt	cag ttt	gtg gat	gat gga	att gac 1	tta aat cga	act 292
30						_	Leu Asn Arg	•
		80		F	85	·-··	90	
	aaa tta			gca tat		gca tat t	tcc caa tct	gat 340
		cyt		cyc		J-4		7-0

	Lys	Leu	Glu	Cys	Glu	Ser	Ala	Сув	Thr	Glu	Ala	Tyr	Ser	Gln	Ser	Asp		
		÷	95				: 1,	100					.105			* . *		
	gag	caa	tat	gct	tgc	cat	ctt	ggt	tgc	cag	aat	cag	ctg	cca	ttc	gct	÷	.388
	Glu	Gln	Tyr	Ala	Cys	His	Leu	Gly	Cys	Gln	Asn	Gln	Leu	Pro	Phe	Ala		
5		110					115					120						
	gaa	ctg	aga	caa	gaa	caa	ctt	atg	tcc	ctg	atg	cca	aaa	atg	cac	cta		436
	Glu	Leu	Arg	Gln	Glu	Gln	Leu	Met	Ser	Leu	Met	Pro	Lys	Met	His	Leu		
	125					130					135					140		
	ctc	ttt	cct	cta	act	ctg	gtg	agg	tca	ttc	tgg	agt	gac	atg	atg	gac		484
10	Leu	Phe	Pro	Leu	Thr	Leu	Val	Arg	Ser	Phe	Trp	Ser	Asp	Met	Met	Asp		
					145					150					155			
	tcc	gca	cag	agc	ttc	ata	acc	tct	tca	tgg	act	ttt	tat	ctt	caa	gcc		532
	Ser	Ala	Gln	Ser	Phe	Ile	Thr	Ser	Ser	Trp	Thr	Phe	Tyr	Leu	Gln	Ala		
				160					165					170				
15	gat	gac	gga	aaa	ata	gtt	ata	ttc	cag	tet	aag	cca	gaa	atc	cag	tac		580
	Asp	Asp	Gly	Lys	Ile	Val	Ile	Phe	Gln	Ser	Lys	Pro	Glu	Ile	Gln	Tyr		
			175					180					185					
	gca	cca	cat	ttg	gag	cag	gag	cct	aca	aat	ttg	aga	gaa	tca	tct	cta		628
	Ala	Pro	His	Leu	Glu	Gln	Glu	Pro	Thr	Asn	Leu	Arg	Glu	Ser	Ser	Leu		
20		190					195					200						
	age	aaa	atg	tcc	tat	ctg	caa	atg	aga	aat	tca	caa	gcg	cac	agg	aat		676
	Ser	Lys	Met	Ser	Tyr	Leu	Gln	Met	Arg	Asn	Ser	Gln	Ala	His	Arg	Asn		
	205					210					215					220		
****	ttt	ctt	gaa	gat	gga	gaa	agt	gat	ggc	ttt	tta	aga	tgc	ctc	tct	ctt	٠.	724
25	Phe	Leu	Glu	Asp	Gly	Glu	Ser	Asp	Gly	Phe	Leu	Arg	Cys	Leu	Ser	Leu		
					225					230					235			
	aac	tct	ggg	tgg	att	tta	act	aca	act	ctt	gtc	ctc	tcg	gtg	atg	gta		772
	Asn	Ser	Gly	Trp	Ile	Leu	Thr	Thr	Thr	Leu	Val	Leu	Ser	Val	Met	Val		
				240					245					250				
30	ttg	ctt	tgg	att	tgt	tgt	gca	act	gtt	gct	aca	gct	gtg	gag	cag	tat		820
	Leu	Leu	Trp	Ile	Cys	Суз	Ala	Thr	Val	Ala	Thr	Ala	Val	Glu	Gln	Tyr		
			255				•	260					265					

	gtt ecc tet gag aag etg agt ate tat ggt gae ttg gag ttt atg aat	868
	Val Pro Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn	
	275	
	gaa caa aag cta aac aga tat cca gct tct tct ctt gtg gtt gtt aga	916
_	Glu Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg	
5	290 295 300	
	tet aaa aet gaa gat eat gaa gaa gea ggg eet eta eet aea aaa gtg	964
	Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys Val	
	. 210 315	٠
	303	1010
10	aat ctt gct cat tct gaa att taagcatttt tcttttaaaa gacaa	
	Asn Leu Ala His Ser Glu Ile	
	320	1070
	gtgtaataga catctaaaat teeacteete atagagettt taaaatggtt teattggata	1121
	taggeettaa gaaateaeta taaaatgeaa ataaagttae teaaatetgt g	
15	and the control of t The control of the control of	
	<210> 28	
	<211> 323	
	<212> PRT	
	<213> Homo sapiens	
20		
	<400> 28	
	Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr	
	1 5 10	
	Gln Leu Gly Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly	
25	15 20 25	
20	Gly Ser Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp	
	25 40	
	Thr Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr	
	50 55 60	
	Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg Leu	
30	75	
	65	
	Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn Arg Thr	

WO 00/00506 PCT/JP99/03242

				80					85					90		
	Lys	Leu	Glu	Cys	Glu	Ser	Ala	Cys	Thr	Glu	Ala	Tyr	Ser	Gln	Ser	Ası
			95			. :		100			٠	•	105			
	Glu	Gln	Tyr	Ala	Cys	His	Leu	Gly	Суз	Gln	Asn	Gln	Leu	Pro	Phe	Ala
5		110					115					120				
	Glu	Leu	Arg	Gln	Glu	Gln	Leu	Met	Ser	Leu	Met	Pro	Lys	Met	His	Let
	125					130					135					140
	Leu	Phe	Pro	Leu	Thr	Leu	Val	Arg	Ser	Phe	Trp	Ser	Asp	Met	Met	Asp
					145					150					155	
10	Ser	Ala	Gln	Ser	Phe	Ile	Thr	Ser	Ser	Trp	Thr	Phe	Tyr	Leu	Gln	Ala
				160					165					170		
	Asp	Asp	Gly	Lys	Ile	Val	Ile	Phe	Gln	Ser	Lys	Pro	Glu	Ile	Gln	Туг
			175					180					185			
	Ala	Pro	His	Leu	Glu	Gln	Glu	Pro	Thr	Asn	Leu	Arg	Glu	Ser	Ser	Lev
15		190				:.	195		•			200	•	•		. :
	Ser	Lys	Met	Ser	Tyr	Leu	Gln	Met	Arg	Asn	Ser	Gln	Ala	His	Arg	Asr
	205					210					215					220
	Phe	Leu	Glu	Asp	Gly	Glu	Ser	Asp	Gly	Phe	Leu	Arg	Суз	Leu	Ser	Lev
					225					230					235	
20	Asn	Ser	Gly	Trp	Ile	Leu	Thr	Thr	Thr	Leu	Val	Leu	Ser	Val	Met	Val
	,			240					245					250		
	Leu	Leu	Trp	Ile	Cys	Cys	Ala	Thr	Val	Ala	Thr	Ala	Val	Glu	Gln	Тут
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	į	255		. •			260					265			
	Val	Pro	Ser	Glu	Lys	Leu	Ser	Ile	Tyr	Gly	Asp	Leu	Glu	Phe	Met	Asr
25		270					275					280				
	Glu	Gln	ГÀа	Leu	Asn	Arg	Tyr	Pro	Ala	Ser	Ser	Leu	Val	Val	Val	Arc
	285					290					295					300
	Ser	Lys	Thr	Glu	Asp	His	Glu	Glu	Ala	Gly	Pro	Leu	Pro	Thr	Lys	Va]
					305					310					315	
30	Asn	Leu	Ala	His	Ser	Glu	Ile									
				320												

	<21	0> 2	9														
	<21	1> 8	27													· . :	
	<21	2> D	NA														
5	<21	3> H	omo	sapi	ens												
																•	
	<40	0> 2	9														
	aac	agcg	gcc (ctgc	ggct	gg c	gegg	cgga	c gg	g at	g ag	g cg	c tg	c ag	t ct	e tgo	5
										Me	t Ar	g Ar	g Cy	s Se	r Le	u Cys	;
10										•	1			;	5		
	gct	ttc	gac	gcc	gcc	cgg	ggg	ccc	agg	cgg	ctg	atg	cgt	gtg	ggc	ctc	10
	Ala	Phe	Asp	Ala	Ala	Arg	Gly	Pro	Arg	Arg	Leu	Met	Arg	Val	Gly	Leu	
			10					15					20				
	gcg	ctg	atc	ttg	gtg	ggc	cac	gtg	aac	ctg	ctg	ctg	ggg	gcc	gtg	ctg	15
15	Ala	Leu	Ile	Leu	Val	Gly	His	Val	Asn	Leu	Leu	Leu	Gly	Ala	Val	Leu	a de la co
		25		•			30					35					-
	cat	ggc	acc	gtc	ctg	cgg	cac	gtg	gcc	aat	ccc	ċgc	ggc	gct	gtc	acg	198
	His	Gly	Thr	Val	Leu	Arg	His	Val	Ala	Asn	Pro	Arg	Gly	Ala	Val	Thr	·
	40		٠			45					50					55	
20	ccg	gag	tac	acc	gta	gcc	aat	gtc	atc	tct	gtc	ggc	tcg	ggg	ctg	ctg	240
	Pro	Glu	Tyr	Thr	Val	Ala	Asn	Val	Ile	Ser	Val	Gly	Ser	Gly	Leu	Leu	
					60		•			65					70		
	٠.												agg		+ .		294
	Ser	Val	Ser	Val	Gly	Leu	Val	Ala		Leu	Ala	Ser	Arg	Asn	Leu	Leu	
25				75					80					85			
		•											ctg				342
	Arg	Pro		Leu	His	Trp	Val		Leu	Ala	Leu	Ala	Leu	Val	Asn	Leu	
			90					95					100				
00													gct				390
30	Leu		Ser	Val	Ala	Суз		Leu	Gly	Leu	Leu		Ala	Val	Ser	Leu	
		105					110					115					
	act	gtg	gcc	aac	ggt	ggc	cgc	cgc	ctt	att	gct	gac	tgc	cac	cca	gga	438

	Thr	Val	Ala	Asn	GIY	GTĀ	Arg	Arg	Leu	Ile	Ala	Asp	Cys	His	Pro	Gly		
	120					125					130					135	1	
	ctg	ctg	gat	cct	ctg	gta	cca	ctg	gat	gag	ggg	ccg	gga	cat	act	gac		486
	Leu	Leu	Asp	Pro	Leu	Val	Pro	Leu	Asp	Glu	Gly	Pro	Gly	His	Thr	Asp		
5					140					145					150			
-	tgc	ccc	ttt	gac	ccc	aca	aga	atc	tat	gat	aca	gcc	ttg	gct	ctc	tgg		534
	Сув	Pro	Phe	Asp	Pro	Thr	Arg	Ile	Tyr	Asp	Thr	Ala	Leu	Ala	Leu	Trp		
				155					160					165				
	atc	cct	tct	ttg	ctc	atg	tct	gca	ggg	gag	gct	gct	cta	tct	ggt	tac		582
10	Ile	Pro	Ser	Leu	Leu	Met	Ser	Ala	Gly	Glu	Ala	Ala	Leu	Ser	Gly	Tyr		
			170					175					180					
	tgc	tgt	gtg	gct	gca	ctc	act	cta	cgt	gga	gtt	ggg	CCC	tgc	agg	aag		630
	Cys	Суз	Val	Ala	Ala	Leu	Thr	Leu	Arg	Gly	Val	Gly	Pro	Суз	Arg	Lys		
	٠.	185					190					195						:
15	gac	gga	ctt	cag	ggg	cag	gta	gta	gct	ggg	tgt	gac	gca	aga	gtg	aaa		678
	Asp	Gly	Leu	Gln	Gly	Gln	Val	Val	Ala	Gly	Суз	Asp	Ala	Arg	Val	Lys		
	200					205					210					215		
	cag	aaa	gcc	tgg	cag	cca	cgg	ttt	cct	ggg	att	aaa	gtc	aaa	gca	tta		726
	Gln	Lys	Ala	Trp	Gln	Pro	Arg	Phe	Pro	Gly	Ile	Lys	Val	Lys	Ala	Leu		
20					220					225					230	-		
	tgaa	a tat	ggca	cta	aagt	gact	ga g	gctac	ccaga	C C	aatga	atcct	: gta	agge	cago			780
	Caca	agaac	ta a	aaaa	caac	a at	tatt	atta	a aac	etget	ctg	gatt	ctc					827
					٠.													
0-		0> 30												•				
25		l> 23																
		2> PF																
	<213	3> Hc	mo s	apie	ens													
00	<400)> 30)								_		_	_		_		
30											Arg	Arg	Cys		Leu	Суз		
					_					1				5				
	Ala	Phe	Asp	Ala	Ala	Arq	Gly	Pro	Arq	Ara	Leu	Met	Ara	Val	Gly	Leu		

			10					15					20			
	Ala	Leu	Ile	Leu	Val	Gly	His	Val	Asn	Leu	Leu	Leu	Gly	Ala	Val	Let
		25		4.		٠.	30				* . v .	35				
	His	Gly	Thr	Val	Leu	Arg	His	Val	Ala	Asn	Pro	Arg	Gly	Ala	Val	Thr
5	40					45					50					55
	Pro	Glu	Tyr	Thr	Val	Ala	Asn	Val	Ile	Ser	Val	Gly	Ser	Gly	Leu	Leu
					60				•	65					70	
	Ser	Val	Ser	Val	Gly	Leu	Val	Ala	Leu	Leu	Ala	Ser	Arg	Asn	Leu	Leu
				75			•		80		·			85		
10	Arg	Pro	Pro	Leu	His	Trp	Val	Leu	Leu	Ala	Leu	Ala	Leu	Val	Asn	Leu
			90					95					100			
	Leu	Leu	Ser	Val	Ala	Суз	Ser	Leu	Gly	Leu	Leu	Leu	Ala	Val	Ser	Leu
		105					110					115				
	Thr	Val	Ala	Asn	Gly	Gly	Arg	Arg	Leu	Ile	Ala	Asp	Cys	His	Pro	Gly
15	120					125					130	•				135
	Leu	Leu	Asp	Pro	Leu	Val	Pro	Leu	Asp	Glu	Gly	Pro	Gly	His	Thr	Asp
					140					145					150	
	Cys	Pro	Phe	Asp	Pro	Thr	Arg	Ile	Tyr	Asp	Thr	Ala	Leu	Ala	Leu	Trp
			•	155					160					165		
20	Ile	Pro	Ser	Leu	Leu	Met	Ser	Ala	Gly	Glu	Ala	Ala	Leu	Ser	Gly	Tyr
	•		170					175	•				180			
	Cys	Cys	Val	Ala	Ala	Leu	Thr	Leu	Arg	Gly	Val	Gly	Pro	Суз	Arg	Lys
		185					190					195				
	Asp	Gly	Leu	Gln	Gly	Gln	Val	Val	Ala	Gly	Суз	Asp	Ala	Arg	Val	Lys
25	200					205					210					215
	Gln	Lys	Ala	Trp	Gln	Pro	Arg	Phe	Pro	Gly	Ile	Lys	Val	Lys	Ala	Leu
					220					225					230	
	<210	> 31													•	
30	<211	> 11	.89													
	<212	> DN	IA.													
	<213	> Ho	ന്നറ ഒ	anie	ng						٠					

	<400> 31	
	gtegeeteee ggteeeggee eggetaetge getgegeeea eteegetetg gageetggge	60
	gegggteetg acetteeegg eceteteetg acacetggtg gatggegtea ecagaactee	120
5	tagetgtgga accetagggt acctgttace gegetttgge gaaactgggt tegetgetga	180
	tttgcgaacc tttgcctgac tttctcaggc cttgagagat ctaagtaaat ttggtggccc	240
	attgaaagga cctggagaga gcgtatgaag atctgcctct tctccaagaa actcaaccac	300
	tagtgaca atg acc agc ctc ctg act act cct tct cca aga gaa ctg	350
	Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu	•
10	1 5 10	
	atg acc acc cca att tta cag ccc act gag gcc ctg tcc cca gaa gat	398
	Met Thr Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp	
	15 20 25 30	
	gga gec age aca gea etc att gea gtt gtt atc acc gtt gtc ttc etc	446
15	Gly Ala Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu	
	35 40 45	
	acc ctg ctc tcg gtc gtg atc ttg atc ttc ttt tac ctg tac aag aac	494
	Thr Leu Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn	
	50 55 60	
20	aaa ggc agc tac gtc acc tat gaa cct aca gaa ggt gag ccc agt gcc	542
•	Lys Gly Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala	
	65 70 75	
	ate gte cag atg gag agt gae ttg gee aag gge age gag aaa gag gaa	590
•	Ile Val Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu	
25	80 85 90	
	tat ttc atc taatgactcc caggccccaa ggagcttatt cctggctcca t	640
	Tyr Phe Ile	
	95	
	egetaacaeg ttgactgett attatgggaa agttttetet gaageeaggg agaageattg	700
30	attgatgtgg gcaaatccaa gctccagcca ggtcgcagtc ccaaatgccg acatcactga	760
	ctccagggac cagggacatg gagaaagctg tttatgatat ctttaaccag gccctcttac	820
	tagagetggt gtttgtgaet ggeeaacaag atgtggetat geeaggggae atetgagtat	880

940 1000

1060

1120 1180 1189

	gtgcccagtc	atcttttt	tc acagg	rttgaa g	gagagaaa	agatttt	gag ttaaggtcat
	tggctgctct	actotgto	cc ctacc	tggtc ac	ctagtgat	agccccag	tg gagatactgt
	ccatacaagg	tettecea	ga ggctg	gatac ca	ıcagtaaaa	ggccaggc	ca ggaggggtag
	gagactatgg	agatetta	ee teetg	ataaa to	tgctacac	cccctaat	et gagecettee
5 ,	tttccgtgtt	ccccaaca	ac ctcat	getta eg	rtgattttt	attcaaat	ta aaaattttca
. 🗈	ttgctacag				•		
•							
	<210> 32						
	<211> 97						
10	<212> PRT						•
	<213> Homo	sapiens					
	<400> 32						
	Met	Thr Ser	Leu Leu	Thr Thr	Pro Ser	Pro Arg	Glu Glu Leu
15			5			10	
	Met Thr Thr	Pro Ile	Leu Gln	Pro Thr	Glu Ala	Leu Ser	Pro Glu Asp
	15		20		25		30
	Gly Ala Ser	Thr Ala	Leu Ile	Ala Val	Val Ile	Thr Val	Val Phe Leu
		35			40		45
20	Thr Leu Leu	Ser Val	Val Ile	Leu Ile	Phe Phe	Tyr Leu !	Tyr Lys Asn
		50		55	•		60
	Lys Gly Ser	Tyr Val	Thr Tyr	Glu Pro	Thr Glu	Gly Glu	Pro Ser Ala
	65			70		75	
	Ile Val Gln	Met Glu	Ser Asp	Leu Ala	Lys Gly	Ser Glu	Lys Glu Glu
25	80		85		,	90	
	Tyr Phe Ile						
	95						•
							:
	<210> 33		•	•		• .	
30	<211> 1500						
	<212> DNA						
	<213> Homo :	sapiens					

<4	00)>	3	3
~4	υι	,,		_

	ctg	tgcc	tga (gcct	gagc	ct g	agcc	tgag	c ct	gagc	ccga	gcc	ggga	gcc	ggtc	acaac	ıg	60
	gct	ccgg	gct	gtgg	gacc	gc t	gggc	cccc	a gc	g at	g gc	g ac	c ct	g tg	g gg	a ggo	•	114
5	•									Me	t Al	a Th	r Le	u Tr	p Gl	y Gly	•	
											1				5			
	ctt	ctt	cgg	ctt	ggc	tcc	ttg	ctc	agc	ctg	tcg	tgc	ctg	gcg	ctt	tcc		162
	Leu	Leu	Arg	Leu	Gly	Ser	Leu	Leu	Ser	Leu	Ser	Cys	Leu	Ala	Leu	Ser		
			10					15					20					
10	gtg	ctg	ctg	ctg	gcg	cag	ctg	tca	gac	gcc	gcc	aag	aat	ttc	gag	gat		210
	Val	Leu	Leu	Leu	Ala	Gln	Leu	Ser	Asp	Ala	Ala	Lys	Asn	Phe	Glu	Asp		
		25					30					35						
	gtc	aga	tgt	aaa	tgt	atc	tgc	cct	ccc	tat	aaa	gaa	aat	tct	ggg	cat		258
	Val	Arg	Суз	Lys	Суз	Ile	Cys	Pro	Pro	Tyr	Lys	Glu	Asn	Ser	Gly	His		
15	40					45					50	:		٠		55		•
										gat								306
	Ile	Tyr	Asn	Lys		Ile	Ser	Gln	Lys	Asp	Суѕ	Asp	Cys	Leu		Val		
					60					65					70			
										gat								354
20	Val	GLu	Pro		Pro	Val	Arg	Gly		Asp	Val	Glu	Ala		Cys	Leu		
	,			. 75					80					85				
			_	-					_	agc		_			_			402
	Arg	cys		Сув	гла	туг	GIU		Arg	Ser	ser	Val		TTE	г'nз	Val		
25	200	s++	90		+-+	ata	taa	95	++				100		+			450
									_	ggc Gly				_		_		430
		105	110	116	-y-	Deu	110	116	nea	GIY	Leu	115	Deu	Leu	TYL	risc		
	ata		a++	eat	ata	a++		666	p+9	ctg	996		000	ata	+++	aas		498
										Leu								470
30	120	- Y	TIELL	TIIL	neu	125	GIU	210	775	neu	130	ALY.	ALY	Tan	Eng	135		
		<i></i>	027	++~	a+e		a (+	ast.	as+	as+		aa-	as+	asa.	086			546
			_	_					-	gat Asp			· .		-			740
								200	بربدء				برجيد	حبد	للترب			

• WO 00/00506 PCT/JP99/03242

	140	145	150	
•	ttt gca aat gca cac g	at gtg cta gcc cgc tcc	cgc agt cga gcc aac	594
	Phe Ala Asn Ala His A	sp Val Leu Ala Arg Ser	Arg Ser Arg Ala Asn	
	155	160	165	
5	gtg ctg aac aag gta g	aa tat gca cag cag cgc	tgg aag ctt caa gtc	642
	Val Leu Asn Lys Val G	lu Tyr Ala Gln Gln Arg	Trp Lys Leu Gln Val	
·	170	175	180	•
	caa gag cag cga aag t	ct gtc ttt gac cgg cat	gtt gtc ctc agc	687
	Gln Glu Gln Arg Lys S	er Val Phe Asp Arg His	Val Val Leu Ser	
10	185	190	195	
	taattgggaa ttgaattcaa	ggtgactaga aagaaacagg	cagacaactg gaa	740
	agaactgact gggttttgct	gggtttcatt ttaatacctt	gttgatttca ccaactgttg	800
	ctggaagatt caaaactgga	agcaaaaact tgcttgattt	ttttttcttg ttaacgtaat	860
	aatagagaca tttttaaaag	cacacagete aaagteagee	aataagtett tteetatttg	920
15	tgacttttac taataaaaat	aaatctgcct gtaaattatc	ttgaagtcct ttacctggaa	980
	caagcactet ettttéace	acatagtttt aacttgactt	tcaagataat tttcagggtt	1040
	tttgttgttg ttgttttttg	tttgtttgtt ttggtgggag	aggggaggga tgcctgggaa	1100
	gtggttaaca actttttca	agtcacttta ctaaacaaac	ttttgtaaat agaccttacc	1160
	ttctattttc gagtttcatt	tatattttgc agtgtagcca	gcctcatcaa agagctgact	1220
20	tactcatttg acttttgcac	tgactgtatt atctgggtat	ctgctgtgtc tgcacttcat	1280
	ggtaaacggg atctaaaatg	cctggtggct tttcacaaaa	agcagatttt cttcatgtac	1340
	tgtgatgtct gatgcaatgc	atcctagaac aaactggcca	tttgctagtt tactctaaag	1400
	actaaacata gtcttggtgt	gtgtggtctt actcatcttc	tagtaccttt aaggacaaat	1460
* 1 *	cctaaggact tggacacttg	caataaagaa attttatttt		1500
25				
	<210> 34			
	<211> 198			
	<212> PRT			
	<213> Homo sapiens		•	
30				
	<400> 34	•		

											Mec	ALA	THE	rea	Trp	GTÄ	GTÄ
	•					٠.		٠.			1				5		
		Leu	Leu	Arg	Leu	Gly	Ser	Leu	Leu	Ser	Leu	Ser	Cys	Leu	Ala	Leu	Ser
•				10					15					20			
5		Val	Leu	Leu	Leu	Ala	Gln	Leu	Ser	Asp	Ala	Ala	Lys	Asn	Phe	Glu	Asp
			25					30					35				
		Val	Arg	Cys	Lys	Cys	Ile	Cys	Pro	Pro	Tyr	Lys	Glu	Asn	Ser	Gly	His
		40					45					50					55
		Ile	Tyr	Asn	Lys	Asn	Ile	Ser	Gln	Lys	Asp	Cys	Asp	Суз	Leu	His	Val
10						60					65					70	
		Val	Glu	Pro	Met	Pro	Val	Arg	Gly	Pro	Asp	Val	Glu	Ala	Tyr	Cys	Leu
					75					80					85		
	,	Arg	Cys	Glu	Cys	Lys	Tyr	Glu	Glu	Arg	Ser	Ser	Val	Thr	Ile	Lys	Val
				90		:			95			, .		100			
15	•	Thr	Ile	Ile	Ile	Tyr	Leu	Ser	Ile	Leu	Gly	Leu	Leu	Leu	Leu	Tyr	Met
			105					110					115				
		Val	Tyr	Leu	Thr	Leu	Val	Glu	Pro	Ile	Leu	Lys	Arg	Arg	Leu	Phe	Gly
		120					125					130					135
		His	Ala	Gln	Leu	Ile	Gln	Ser	Asp	Asp	Asp	Ile	Gly	Asp	His	Gln	Pro
20						140					145			·		150	
		Phe ,	Ala	Asn	Ala	His	Asp	Val	Leu	Ala	Arg	Ser	Arg	Ser	Arg	Ala	Asn
					155					160				•	165		
•		Val	Leu	Asn	Lys	Val	Glu	Tyr	Ala	Gln	Gln	Arg	Trp	Lys	Leu	Gln	Val
	-			170					175			.1 +1	٠.	180		٠.	
25		Gln		Gln	Arg	Lys	Ser		Phe	Asp	Arg	His		Val	Leu	Ser	
			185					190					195				
)> 35														
00			.> 80														
30			!> DN		_												
		<213	> Hc	e om	apie	ns											

	<40	0> 3	5														
	gtt	cgtc	tag	attt	gtcg	gc t	tgcg	ggga	g ac	ttca	ggag	tag	ctgt	ctc ·	tgaa	cttc	ea 60
	geo	tcag	aga	ccgc	cgcc	ct t	gtcc	ccga	g gg		·	· .				gg ct ly Le	
5											1	•	,		5	- -,	
	gtg	ccc	tct	cgc	ttc	ctg	acg	ctc	ctg	gcg	cat	ctg	gtg	gtc	gtc	atc	163
	Val	Pro	Ser	Arg	Phe	Leu	Thr	Leu	Leu	Ala	His	Leu	Val	Val	Val	Ile	
			10					15					20				
	acc	tta	ttc	tgg	tcc	egg	gac	agc	aac	ata	cag	gcc	tgc	ctg	cct	ctc	211
10	Thr	Leu	Phe	Trp	Ser	Arg	Asp	Ser	Asn	Ile	Gln	Ala	Cys	Leu	Pro	Leu	
		25					30					35					
				CCC				_	_	_	_		_	_		_	259
			Thr	Pro	Glu	Glu	Tyr	Asp	Lys	Gln	Asp	Ile	Gln	Leu	Val	Ala	
	40					45					50					55	
15	gcg	ctc	tct	gtc	acc	ctg	ggc	ctc	ttt	gca	gtg	gag	ctg	gcc	ggt	ttc	307
	Ala	Leu	Ser	Val	Thr	Leu	Gly	Leu	Phe	Ala	Val	Glu	Leu	Ala	Gly	Phe	
					60					65					70		
	ctc	tca	gga	gtc	tcc	atg	ttc	aac	agc	acc	cag	agc	ctc	atc	tcc	att	355
	Leu	Ser	Gly	Val	Ser	Met	Phe	Asn	Ser	Thr	Gln	Ser	Leu	Ile	Ser	Ile	•
20				75					80					85			
	, 999	gct	cac	tgt	agt	gca	tcc	gtg	gcc	ctg	tcc	ttc	ttc	ata	ttc	gag	403
	Gly	Ala	His	Cys	Ser	Ala	Ser	Val	Ala	Leu	Ser	Phe	Phe	Ile	Phe	Glu	
			90			÷		95					100			. · · .	
	cgt	tgg	gag	tgc	act	acg	tat	tgg	tac	aţt	ttt	gtc	ttc	tgc	agt	gcc	451
25	Arg	Trp	Glu	Cys	Thr	Thr	Tyr	Trp	Tyr	Ile	Phe	Val	Phe	Суз	Ser	Ala	
		105					110					115					
	ctt	cca	gct	gtc	act	gaa	atg	gct	tta	ttc	gtc	acc	gtc	ttt	ggg	ctg	499
	Leu	Pro	Ala	Val	Thr	Glu	Met	Ala	Leu	Phe	Val	Thr	Val	Phe	Gly	Leu	
	120					125					130					135	•
30	aaa	aag	aaa	ccc	ttc	tgat	taco	ett d	catga	acgg	ga ac	cta	aggad	e gaa	agcc		550
	Lys	Lys	Lys	Pro	Phe												

	tacaggggca	agggccgctt	cgtattcct	g gaagaaggaa	ggcataggct	teggttttee 610
	cctcggaaac	tgcttctgct	ggaggatat	, tgttggaata	attacgtctt	gagtetggga 670
	ttatccgcat	tgtatttagt	gctttgtaat	: aaaatatgtt	ttgtagtaac	attaagactt 730
	atatacagtt	ttaggggaca	attgagatgg	, ctgaactact	gaataaaaaa	aaaacaacge 790
5	tgttttctag	teetge				806
	<210> 36					
	<211> 140				,	
	<212> PRT					
10	<213> Homo	sapiens				
	<400> 36					
				Met Gly	Arg Val Ser	Gly Leu
•					5	
15	Val Pro Sei	r Arg Phe L	eu Thr Leu	Leu Ala His	Leu Val Val	Val Ile
	10	0	15		20	
		e Trp Ser A	rg Asp Ser	Asn Ile Gln	Ala Cys Leu	Pro Leu
	25		30		35	
				Lys Gln Asp	Ile Gln Leu	Val Ala
20	40		45	50		55
	Ala Leu Sei		eu Gly Leu		Glu Leu Ala	
		60		65		70
	Leu Ser Gly	•	et Phe Asn	• '	Ser Leu Ile	Ser Ile
	:	75		80	85	
25				Ala Leu Ser	Phe Phe Ile	Phe Glu
	90		95		100	
	_	ı Cys Thr Ti	_	Tyr Ile Phe	Val Phe Cys	Ser Ala
	105		110		115	
20					Thr Val Phe	_
30	120		25	130		135
	Lys Lys Lys					
		140				

	<210> 37					
	<211> 1718					
	<212> DNA	-		~		
5	<213> Homo	sapiens				
	<400> 37					
	ttgtcctgac	c atg aat a	gg acc aac gt	c aat gtc tt	t tet gag ett	tee 50
		Met Asn A	g Thr Asn Va	l Asn Val Ph	e Ser Glu Leu	Ser
10		1	5		10	
	gct cct cg	t cgc aat gad	a gac ttt gtc	ctc ctg ctc	acc tac gtc c	etc 98
	Ala Pro Ar	g Arg Asn Glu	1 Asp Phe Val	Leu Leu Leu	Thr Tyr Val I	.eu
	15		20	25		
	ttc ttg at	g gcg ctg acc	ttc ctc atg	tcc tcc ttc	ace tte tgt g	igt 146
15	Phe Leu Me	t Ala Leu Thi	Phe Leu Met	Ser Ser Phe	Thr Phe Cys G	ly
	30	35	•	40		45
	tcc ttc ac	g ggc tgg aag	g aga cat ggg	gcc cac atc	tac ctc acg a	itg 194
	Ser Phe Th	r Gly Trp Lys	Arg His Gly	Ala His Ile	Tyr Leu Thr M	let
		50		55	60	
20					ctg ctc atg c	
	Leu Leu Se		Trp Val Ala	Trp Ile Thr	Leu Leu Met L	eu
		65	70		75	
	cct gac tt	t gac cgc agg	, tgg gat gac	acc atc ctc	age tee gee t	tg 290
0.5	_			Thr Ile Leu	Ser Ser Ala L	eu
25	8		85		90	
					agt ccc gag t	
		n Gly Trp Val		_	Ser Pro Glu P	he
	95		100	105	·	
00					cct gtt gag g	•
30					Pro Val Glu A	_
	110	115		120		25
	get tte tgi	t aaa cct caa	ctc gtg aag	aag agc tat	ggt gtg gag a	.ac 434

	Ala Phe Cys 1	Lys Pro Gln Leu V	al Lys Lys Ser	Tyr Gly Val Glu Asn	
		130	135	140	
	aga gcc tac t	tct caa gag gaa a	itc act caa ggt	ttt gaa gag aca ggg	482
	Arg Ala Tyr S	Ser Gln Glu Glu I	le Thr Gln Gly	Phe Glu Glu Thr Gly	
5	1	145	150	155	
	gac acg ctc t	tat god occ tat t	cc aca cat ttt	cag ctg cag aac cag	530
	Asp Thr Leu 1	Tyr Ala Pro Tyr S	er Thr His Phe	Gln Leu Gln Asn Gln	
	160	1	65	170	
	cct ccc caa a	aag gaa ttc tcc a	tc cca cgg gcc	cac gct tgg ccg agc	578
10	Pro Pro Gln I	Lys Glu Phe Ser I	le Pro Arg Ala	His Ala Trp Pro Ser	
	175	180		185	
	cct tac aaa g	yac tat gaa gta a	ag aaa gag ggc	age taactetgte etgaag	630
	Pro Tyr Lys A	Asp Tyr Glu Val L	ys Lys Glu Gly	Ser	
	190	195	200		
15	agtgggacaa at	gcagccgg gcggcag	atc tagegggage	tcaaagggat gtgggcgaaa	690
	tettgagtet te	tgagaaaa ctgtaca	aga cactacggga	acagtttgcc tccctcccag	750
	cctcaaccac aa	ittetteea tgetggg	gct gatgtgggct	agtaagactc cagttettag	810
	aggegetgta gt	atttttt tttttt	gtc tcatccttag	gatacttctt ttaagtggga	870
	gteteaggea ac	tcaagttt agaccet	tac tctttttgtt	tgttttttga aacaggatct	930
20	tgetetgtea ee	caggettg agtgeag	tgg tgcgatcaca	geceagtgea gectegacea	990
	cctgtgctca ag	caateete ecatete	cat ctcccaaagt	gctgggatga caggcgtgag	1050
•	ccacagetce ca	geetagge cettaate	ctt gctgttattt	tccatggact aaaggtctgg	1110
	tcatctgage tc	acgctggc tcacaca	get etaggggeet	getectetaa eteacagtgg	1170
	gttttgtgag ge	tctgtggc ccagage	aga cctgcatatc	tgagcaaaaa tagcaaaagc	1230
25	ctctctcagc cc	actggeet gaatetad	cac tggaagccaa	cttgctggca cccccgctcc	1290
	ccaaccette tt	geetgggt aggagag	gct aaagatcacc	ctaaatttac tcatctctct	1350
	agtgetgeet ca	cactgggc ctcagcag	get ecceageace	aattcacagg tcacccctct	1410
	cttcttgcac tg	toccoaaa ottgotgi	ca attecgagat	ctaatctccc cctacgctct	1470
			•	gctccttgtc aggagaattt	1530
				teteatettg caccecaace	1590
		•		agtgggcatg gtctcctaat	1650
				tacaataaag atataataac	1710

	cactett	t														171
	<210> 3 <211> 2	01	. :	· ·					•			14.7			· · · · · · · · · · · · · · · · · · ·	er eget Tyset (
5	<212> P <213> H		sapio	ens												
	<400> 3	8						-		_						
10				Asn	Arg	Thr		Val	Asn	Val	Phe		Glu	Leu	Ser	
10	Ala Pro) ra	1	yan	Glu	Aen	5 Phe	t/al	Leu	Len	Lou	10	(The pro-	1721	Lou	
	15	ALY	ar 9	non	GIU	20	FIIC	Vai	nea	neu	25	Ť11T	TÄT	Val	Dea	
	Phe Leu	Met	Ala	Leu	Thr		Leu	Met	Ser	Ser		Thr	Phe	Cys	Gly	
	30				35					40				-	45	
15	Ser Phe	Thr	Gly	Trp	Lys	Arg	His	Gly	Ala	His	Ile	Tyr	Leu	Thr	Met	
,	•			50				•	55	•				60		
	Leu Leu	Ser	Ile	Ala	Ile	Trp	Val	Ala	Trp	Ile	Thr	Leu	Leu	Met	Leu	**
			65					70					75	•		:
	Pro Asp	Phe	Asp	Arg	Arg	Trp	Asp	Asp	Thr	Ile	Leu	Ser	Ser	Ala	Leu	121.
20		80			_		85					90				
	Ala Ala	Asn	Gly	Trp	Val		Leu	Leu	Ala	Tyr		Ser	Pro	Glu	Phe	
	95	T 011	mb~	7	Cln	100) an	Dwa	Mat	7	105	D	17-1	~ 1	2	
	Trp Leu 110	Terr	1111	тур	115	Arg	, wan	PIO	Mec	120	TAT	PIO	vai	GIU	125 .	,
25	Ala Phe	Cvs	Lvs	Pro		Leu	Val	Lvs	Lvs		TVE	Glv	Val	Glu		
		-2-		130					135		-1-	2		140		
	Arg Ala	Tyr	Ser	Gln	Glu	Glu	Ile	Thr	Gln	Gly	Phe	Glu	Glu	Thr	Gly	
			145					150					155			
	Asp Thr	Leu	Tyr	Ala	Pro	Tyr	Ser	Thr	His	Phe	Gln	Leu	Gln	Asn	Gln	
30		160					165		•			170				
	Pro Pro	Gln	Lys	Glu	Phe	Ser	Ile	Pro	Arg	Ala	His	Ala	Trp	Pro	Ser	
	175					180					185			•		

	Pro Tyr	Lys A	sp Tyr G	lu Val	Lys Lys	Glu Gly	Ser			
	190		1	95		200				
	<210> 3	39			* - *	74 94		-		•
5	<211> 9	95								
	<212> I)NA								
	<213> F	iomo sai	piens							
	<400> 3	19								
10	agagetg	get geg	ccgagcc	ccctg	egege tg	cacatggg	gegeetg	acg gaag	cggcgg	60
	cagcggg	cag cg	etetegg	gctgc	agget gg	gcagggtc	ccctccc	acg ctcc	tgeege	120
	tgtctcc	cac gto	ccccagg	tgege	ggcca cc	atg gcg	tcc agc	gac gag	gac	173
						Met Ala	Ser Ser	Asp Glu	Asp	
			٠.			1		5		
15								gag gct	•	221
	Gly Thr		y Gly A	la Ser		Gly Glu		Glu Ala	Pro	
		10			15	-	20			
								ctc acc		269
20	GIY LYS		g Arg L	30	Pne Leu	Ala Thr	_	Leu Thr	Phe	
20			a eta e		aaa taa	++++	35	ott soo	nt a	217
*								att gcc Ile Ala		317
	40			45	CI, IIP	50	Deu Ala	TIG MG	55	
		ttt ta	t atg g	aa aaa	gga aca		ggt tta	tat aaa		365
25								Tyr Lys		
			60			65	_	70		
	att cag	aag ac	a ctt a	aa ttt	ttc cag	aca ttt	gee ttg	ctt gag	ata	413
	Ile Gln	Lys Th	r Leu Ly	ys Phe	Phe Gln	Thr Phe	Ala Leu	Leu Glu	Ile	
		7	5		80			85		
30	gtt cac	tgt tt	a att g	ga att	gta cct	act tct	gtg att	gtg act	aaa	461
	Val His	Cys Le	u Ile G	ly Ile	Val Pro	Thr Ser	Val Ile	Val Thr	Gly	
		90			95		100			

	gtc	caa	gtg	agt	tca	aga	atc	ttt	atg	gtg	tgg	ctc	att	act	cac	agt	509
	Val	Gln	Val	Ser	Ser	Arg	Ile	Phe	Met	Val	Trp	Leu	Ile	Thr	His	Ser	
		105					110					115					
	ata	aaa	cca	atc	cag	aat	gaa	gag	agt	gtg	gtg	ctt	ttt	ctg	gtc	gcg	557
5	Ile	Lys	Pro	Ile	Gln	Asn	Glu	Glu	Ser	Val	Val	Leu	Phe	Leu	Val	Ala	
,	120					125					130					135	
	tgg	act	gtg	aca	gag	atc	act	ege	tat	tcc	ttc	tac	aca	ttc	agc	ctt	605
	Trp	Thr	Val	Thr	Glu	Ile	Thr	Arg	Tyr	Ser	Phe	Tyr	Thr	Phe	Ser	Leu	
					140					145					150		
10	ctt	gac	cac	ttg	cca	tac	ttc	att	aaa	tgg	gcc	aga	tat	aat	ttt	ttt	653
	Leu	Asp	His	Leu	Pro	Tyr	Phe	Ile	Lys	Trp	Ala	Arg	Tyr	Asn	Phe	Phe	
				155					160					165			
	atc	atc	tta	tat	cct	gtt	gga	gtt	gct	ggt	gaa	ctt	ctt	aca	ata	tac	701
	Ile	Ile	Leu	Tyr	Pro	Val	Gly	Val	Ala	Gly	Glu	Leu	Leu	Thr	Ile	Tyr	
15	•		17.0		٠.			175		٠.		÷	180				
	gct	gcc	ttg	ccg	cat	gtg	aag	aaa	aca	gga	atg	ttt	tca	ata	aga	ctt	749
	Ala	Ala	Leu	Pro	His	Val	Lys	Lys	Thr	Gly	Met	Phe	Ser	Ile	Arg	Leu	
		185					190					195					•
	cct	aac	aaa	tac	aat	gtc	tct	ttt	gac	tac	tat	tat	ttt	ctt	ctt	ata	797
20	Pro	Asn	Lys	Tyr	Asn	Val	Ser	Phe	Asp	Tyr	Tyr	Tyr	Phe	Leu	Leu	Ile	·
	200			•		205					210					215	
	acc	atg	gca	tca	tat	ata	cct	ttg	ttt	cca	caa	ctc	tat	ttt	cat	atg	845
	Thr	Met	Ala	Ser	Tyr	Ile	Pro	Leu	Phe	Pro	Ģln	Leu	Tyr	Phe	His	Met	
	:	•			220					225					230		
25	tta	cgt	caa	aga	aga	aag	gtg	ctt	cat	gga	gag	gtg	att	gta	gaa	aag	893
	Leu	Arg	Gln	Arg	Arg	Lys	Val	Leu	His	Gly	Glu	Val	Ile	Val	Glu	Lys	
			•	235		•			240		·			245			
	gat	gat	taaa	atgat	ct o	etgea	aaca	aa gg	rtget	tttt	. cca	agaat	aac	caa	gatta	acc t	950
	Asp	Asp															
30															٠		
	ana			·++ o ·	+					-++							005

	<210>	40													
	<211>	249													
	<212> 1	PRT													
* * * *	<213> I	Homo	sapi	ens			·	· . · .					•		
5															
*	<400> 4	10													
									Met	Ala	Ser	Ser	Asp	Glu	As
									1				5	ı	
	Gly Thr	. Asn	Gly	Gly	Ala	Ser	Glu	Ala	Gly	Glu	Asp	Arg	Glu	Ala	Pr
10		10)				15					20			
	Gly Lys	Arg	Arg	Arg	Leu	Gly	Phe	Leu	Ala	Thr	Ala	Trp	Leu	Thr	Ph
	25	•				30					35				
	Tyr Asp	Ile	Ala	Met	Thr	Ala	Gly	Trp	Leu	Val	Leu	Ala	Ile	Ala	Met
• •	40				45					50					55
15	Val Arg	Phe	Tyr	Met	Glu	Lys	Gly	Thr	His	Arg	Gly	Leu	Tyr	Lys	Sei
				60					65					70	
	Ile Gln	Lys	Thr	Leu	Lys	Phe	Phe	Gln	Thr	Phe	Ala	Leu	Leu	Glu	Ile
			75					80					85		
	Val His		Leu	Ile	Gly	Ile		Pro	Thr	Ser	Val	Ile	Val	Thr	Gl
20		90		_	_		95					100			
	Val Gln		Ser	Ser	Arg		Phe	Met	Val	Trp		Ile	Thr	His	Ser
	105		_,			110		_		_	115				
	Ile Lys	Pro	ITE	GIN		GIU	Glu	Ser	Val		Leu	Phe	Leu	Val	
25	120	17-1		<i>α</i> 1	125	mb			. ·	130	_		· .	_	135
20	Trp Thr	AgT	The	140	TTG	THE	Arg	туг		Pne	Tyr	Thr	Phe		Leu
	Ten Aen	via	Ton		(Treese	Dho	T1.	T	145	21-	>		>	150	-
	Leu Asp	UTS	155	PIO	TÄT	Pne	TTG	160	тгр	AIA	Arg	тут		Pne	Pne
	Ile Ile	Len		Dro	T/all	Glw	val.		C1	~1··	T 011	T	165	T1.	
30	~=0 110	170	-11-	FIU	AGI	GTÅ	175	ντα	GTĀ	GIU	ren		TILL	TTE	TÄI
30	Ala Ala		Pro	uie	t/e1	Twe		ጥኮ፦	Gl••	Mo+	Dha	180	T1-	A	T
	185					190	-70	****	ory.		195	SeT	TTG	мц	TEÜ

WO 00/00506 PCT/JP99/03242

	Pro	Asn	Lys	Tyr	Asn	Val	Ser	Phe	Asp	Tyr	Tyr	Tyr	Phe	Leu	Leu	Ile
	200	, .				205					210			,		215
	Thr	Met	Ala	Ser	Tyr	Ile	Pro	Leu	Phe	Pro	Gln	Leu	Tyr	Phe	His	Met
			•		220	,	, ,		• •	225					230	
5	Leu	Arg	Gln	Arg	Arg	Lys	Val	Leu	His	Gly	Glu	Val	Ile	Val	Glu	Lys
				235					240					245		
	Asp	Asp														

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 00/00506
C12N 15/12, C07K 14/705, C12N 5/10	A3	(43) International Publication Date: 6 January 2000 (06.01.00)
(21) International Application Number: PCT/JP99 (22) International Filing Date: 18 June 1999 (18		(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(30) Priority Data: 10/180008 26 June 1998 (26.06.98)	, ,	Published With international search report.
(71) Applicants (for all designated States except US): SA CHEMICAL RESEARCH CENTER [JP/JP]; Nishi-Ohnuma 4-chome, Sagamihara-shi, Kar 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2 Naka-cho,, Meguro-ku, Tokyo 153-0065 (JP).	4– nagaw	1. va
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [3-46-50, Wakamatsu, Sagamihara-shi, Kar 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, 4 Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 21- (JP).	nagaw 1–1–2	va
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Pr IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osa Osaka 540-0001 (JP).		

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

A human protein having a hydrophobic domain and comprising any of the amino acid sequences represented by Sequence Nos. 1 to 10, a cDNA coding for said protein, and an expression vector comprising the cDNA as well as an eucaryotic cell comprising the cDNA. The protein can be provided by expression of the cDNA coding for such protein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ .	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD.	Republic of Moldova	TG	✓ Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy .	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Келуа	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

Internal I Application No PCT/JP 99/03242

A CLASSIE	FICATION OF SUBJECT MATTER		
IPC 6	C12N15/12 C07K14/705 C12N5/10		
According to	International Patent Classification (IPC) or to both national classificati	on and IPC	
B. FIELDS	SEARCHED		
Minimum do	cumentation searched (classification system followed by classification C12N C07K	symbols)	
IPC 0	CIZN CO/K		
	ion searched other than minimum documentation to the extent that su	ch documents are included in the fields sear	ched
Documentat	ion searched directinan minimum decemenation to the state of		
	ata base consulted during the international search (name of data base	and where practical search terms used)	
Electronic d	ata base consulted during the international search (name of data base	wild, where present the comment of the	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relev	vant passages	Acievalli to claim 140.
	THE STATE OF THE PROPERTY OF T	CENE INC	1-6
Х	WO 98 21328 A (KATO SEISHI ;PROTE (JP); SEKINE SHINGO (JP); SAGAMI	CHEM R)	* *
	22 May 1998		ļ
	see abstract	10	
	see page 17, last paragraph - pag paragraph 1	e 10,	
		/	
			254
			**
,			
	·		
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
° Special o	ategories of cited documents :	"I later document published after the inter	national filing date
"A" docum	ent defining the general state of the art which is not	or priority date and not in conflict with to cited to understand the principle or the	ory underlying the
'E' eartier	dered to be of particular relevance document but published on or after the international	invention "X" document of particular relevance; the of	aimed invention
filing	ent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the doc	zument is taken alone
which	n is cited to establish the publication date of another on or other special reason (as specified)	"Y" document of particular relevance; the of cannot be considered to involve an inv document is combined with one or mo	entive step when the
O docum	nent referring to an oral disclosure, use, exhibition or resens	ments, such combination being obviou	is to a person skilled
	nent published prior to the international filing date but than the priority date claimed	in the art. """ document member of the same patent t	amily
1	actual completion of the international search	Date of mailing of the international sea	rch report
1		1 8. 02. 2000	
	20 October 1999		
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk		
!	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Lejeune, R	

INTERN IONAL SEARCH REPORT

lnegil	al:	Application No
PCT/J	Ρ	99/03242

		PCT/JP 99/03	3242
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Rele	evant to claim No.
X	DATABASE EMBL Accession Number N94214, 19 April 1996 HILLIER L ET AL: "za27c03.rl Homo sapiens cDNA clone 293764 5' similar to PIR:A54313 androgen-regulated protein FAR-17 - golden hamster"		1-6
	XP002119529 cited in the application 97.8% identity in 357 BP overlap with SEQ ID 11 see page 17, last paragraph - page 18, paragraph 1		
Α	D'ANDREA ET AL: "Molecular Cloning of NKB1. A Natural Killer Cell Receptor for HLA -B Allotypes" JOURNAL OF IMMUNOLOGY, vol. 155, no. 5, 1 September 1995, pages 2306-2310 2310, XP002111500 see abstract paragraph 1 see page 2307, right-hand column, line 16 - paragraph 1		1-6
A	GILLEN C M ET AL: "Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human." JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 271, no. 27, 5 July 1996, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US, pages 16237-16244, XP002119528 see abstract paragraph 1		1-6
A .	KYTE J ET AL: "A SIMPLE METHOD FOR DISPLAYING THE HYDROPATHIC CHARACTER OF A PROTEIN" JOURNAL OF MOLECULAR BIOLOGY, vol. 157, no. 1, 5 May 1982,		1-6
	pages 105-132, XP000609692 cited in the application see the whole document paragraph 1		
P,X	DATABASE EMBL Accession Number AF151861, 1 June 1999 LIN C W: "Homo sapiens CGI-103 protein mRNA, complete cds." XP002119530 99.4% identity in 699 BP overlap with SEQ ID 11 see the whole document paragraph 1		1-6
	-/		

INTERNATIONAL SEARCH REPORT

Interns 31 Application No PCT/JP 99/03242

		PCI/JP 9	9/03242
C.(Continua Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	<u> </u>	Relevant to claim No.
T	DATABASE EMBL Accession Number AF153605, 30 June 1999 KIM M K ET AL: "Homo sapiens androgen induced protein (AIG-1) mRNA, complete cds." XP002119531 99.7% identity in 714 BP overlap with SEQ ID NO 11 see the whole document paragraph 1		1-6

Intel ..ional application No. PCT/JP 99/03242

INTERNATIONAL SEARCH REPORT

BxI	Obs rvati ns where certain laims were found unsearchable (Continuation of item 1 of first she t)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. D	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Int	ternational Searching Authority found multiple inventions in this international application, as follows:
1.	see additional sheet As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🗴	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-6 (partially), see additional sheet, subject 1.
Rema	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-6 partially

A protein comprising the amino acid sequence SEQ ID NO 1, a DNA SEQ ID NO 11 or 21, encoding this protein, as well as an expression vector capable of expressing this sequence and a eukaryotic cell expressing the DNA

2. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 2 and DNA SEQ ID 12 and 23 $\,$

3. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 3 and DNA SEQ ID 13 and 25 $\,$

4. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 4 and DNA SEQ ID 14 and 27 $\,$

5. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 5 and DNA SEQ ID 15 and 29

6. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 6 and DNA SEQ ID 16 and 31 $\,$

7. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 7 and DNA SEQ ID 17 and 33 $\,$

8. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 8 and DNA SEQ ID 18 and 35 $\,$

9. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 9 and DNA SEQ ID 19 and 37 $\,$

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

10. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 10 and DNA SEQ ID 20 and 39

INTERNATIONAL SEARCH REPORT

li.... mation on patent family members

Interna al Application No PCT/JP 99/03242

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9821328	A	22-05-1998	AU 4885297 A EP 0941320 A	03-06-1998 15-09-1999

Form PCT/ISA/210 (patent family annex) (July 1992

OLIGH WALE BLANK (USPTO)