FYS2140 Kvantefysikk, Løsningsforslag for Oblig 6

18. februar 2014

Dette er løsningsforslaget for Oblig 6 som dreier seg om den harmoniske oscillator. I tillegg finnes løsningsforslag på Oppgave 2.14 fra Griffiths, som var tilleggsoppgave denne uken.

Oppgave 1

a) Konstruer ψ_2 for den harmoniske oscillator.

Svar: Vi vet at ψ_2 kan konstrueres fra grunntilstanden ved å bruke operatoren \hat{a}_+ :

$$\psi_2 = \frac{1}{\sqrt{2!}} \hat{a}_+^2 \psi_0. \tag{1}$$

Vi begynner med grunntilstanden

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2},\tag{2}$$

og bruker først \hat{a}_+ en gang:

$$\hat{a}_{+}\psi_{0} = \frac{1}{\sqrt{2\hbar m\omega}} \left(-i\hat{p} + m\omega\hat{x}\right) \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\sqrt{2\hbar m\omega}} \left(-\hbar\frac{d}{dx} + m\omega x\right) \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left[-\hbar\left(-\frac{m\omega}{2\hbar} \cdot 2x\right) + m\omega x\right] e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} 2m\omega x e^{-\frac{m\omega}{2\hbar}x^{2}}, \tag{3}$$

og så \hat{a}_+ en gang til:

$$\hat{a}_{+}^{2}\psi_{0} = \frac{1}{\sqrt{2\hbar m\omega}} \left(-i\hat{p} + m\omega\hat{x}\right) \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} 2m\omega x e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\hbar} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(-\hbar\frac{d}{dx} + m\omega x\right) x e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\hbar} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left[-\hbar\left(1 - x\frac{m\omega}{2\hbar}2x\right) + m\omega x^{2}\right] e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(\frac{2m\omega}{\hbar}x^{2} - 1\right) e^{-\frac{m\omega}{2\hbar}x^{2}}.$$
(4)

Dette gir

$$\psi_2 = \frac{1}{\sqrt{2!}} \hat{a}_+^2 \psi_0 = \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}} \left(\frac{2m\omega}{\hbar} x^2 - 1 \right) e^{-\frac{m\omega}{2\hbar} x^2}.$$
 (5)

Figur 1: ψ_0 (grønn), ψ_1 (rød) og ψ_2 (ekkel grønn) for $m\omega/\hbar = 1 \,\mathrm{nm}^{-2}$.

b) Tegn ψ_0 , ψ_1 og ψ_2 .

Svar: Se figur 1. Vi velger oss konstanter som gir $m\omega/\hbar = 1\,\mathrm{nm}^{-2}$.

c) Sjekk ortogonaliteten til ψ_0 , ψ_1 og ψ_2 , ved eksplisitt integrasjon. *Hint:* hvis du utnytter symmetrien til integrandene rundt x-aksen så slipper du unna med å gjøre ett integral.

Svar: Ortogonaliteten til to bølgefunksjoner ψ_m og ψ_n er gitt ved

$$\int_{-\infty}^{\infty} \psi_m^* \psi_n \, dx = \delta_{mn},\tag{6}$$

hvor $\delta_{mn} = 1$ dersom m = n og null ellers.

Siden ψ_0 og ψ_2 er symmetriske ("like") rundt x=0 og ψ_1 er antisymmetrisk ("odde"), så er integrandene $\psi_0^*\psi_1$ og $\psi_2^*\psi_1$ anti-symmetriske og integralene dermed automatisk null, noe som oppfyller ortogonalitetskravet i (6). Det gjenstår å teste $\psi_0^*\psi_2$:

$$\int_{-\infty}^{\infty} \psi_0^* \psi_2 \, dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(\frac{2m\omega}{\hbar}x^2 - 1\right) e^{-\frac{m\omega}{2\hbar}x^2} dx$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \int_{-\infty}^{\infty} \left(\frac{2m\omega}{\hbar}x^2 - 1\right) e^{-\frac{m\omega}{\hbar}x^2} dx$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \left[\int_{-\infty}^{\infty} \frac{2m\omega}{\hbar}x^2 e^{-\frac{m\omega}{\hbar}x^2} dx - \int_{-\infty}^{\infty} e^{-\frac{m\omega}{\hbar}x^2} dx \right]$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \left[2 \int_{-\infty}^{\infty} y^2 e^{-y^2} \sqrt{\frac{\hbar}{m\omega}} dy - \int_{-\infty}^{\infty} e^{-y^2} \sqrt{\frac{\hbar}{m\omega}} dy \right]$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \sqrt{\frac{\hbar}{m\omega}} \left[4 \int_{0}^{\infty} y^2 e^{-y^2} dy - \int_{-\infty}^{\infty} e^{-y^2} dy \right]$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \sqrt{\frac{\hbar}{m\omega}} \left[4 \cdot \frac{\sqrt{\pi}}{4} - \sqrt{\pi} \right] = 0, \tag{7}$$

hvor vi har brukt variabelbyttet $y=\sqrt{\frac{m\omega}{\hbar}}x,$ og fra Rottmann integralene:

$$\int_{-\infty}^{\infty} e^{-\lambda y^2} \, dy = \sqrt{\frac{\pi}{\lambda}},\tag{8}$$

$$\int_0^\infty e^{-\lambda y^2} y^k \, dy = \frac{1}{2} \lambda^{-\frac{k+1}{2}} \Gamma\left(\frac{k+1}{2}\right),\tag{9}$$

som sammen med de følgende egenskapene til Gamma-funksjonen: $\Gamma(x+1)=x\Gamma(x)$ og $\Gamma(1/2)=\sqrt{\pi},$ gir

$$\int_0^\infty e^{-y^2} y^2 \, dy = \frac{1}{2} \Gamma\left(\frac{3}{2}\right) = \frac{1}{4} \Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{4}.\tag{10}$$

Oppgave 2

a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstandene ψ_0 og ψ_1 . Det er lov å tenke. Kommentar: i denne og andre oppgaver om den harmoniske oscillator så vil det forenkle regningen dersom du introduserer variablen $\xi = \sqrt{m\omega/\hbar} x$ og konstanten $\alpha = (m\omega/\pi\hbar)^{1/4}$.

Svar: Før vi regner kan det lønne seg å tenke litt. Vi har sett at ψ_0 er en symmetrisk ("like") funksjon om x=0, og ψ_1 anti-symmetrisk ("odde"), det betyr at for begge tilstandene er $|\psi|^2$ en symmetrisk funksjon, og $x|\psi|^2$ anti-symmetrisk. Som et resultat er $\langle x\rangle = \int x|\psi|^2\,dx = 0$ og $\langle p\rangle = m\,d\langle x\rangle/dt = 0$ for begge tilstandene. Vi behøver derfor bare finne $\langle x^2\rangle$ og $\langle p^2\rangle$ for $\psi_0 = \alpha e^{-\xi^2/2}$ og $\psi_1 = \sqrt{2}\alpha\xi e^{-\xi^2/2}$. Vi legger også merke til at

$$\xi = \sqrt{\pi}\alpha^2 x,\tag{11}$$

slik at

$$dx = \frac{1}{\sqrt{\pi}\alpha^2}d\xi. \tag{12}$$

Vi begynner med ψ_0 :

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi_0|^2 dx$$

$$= \int_{-\infty}^{\infty} x^2 \alpha^2 e^{-\xi^2} dx$$

$$= \alpha^2 \int_{-\infty}^{\infty} \frac{1}{\pi \alpha^4} \xi^2 \cdot e^{-\xi^2} \cdot \frac{1}{\sqrt{\pi} \alpha^2} d\xi$$

$$= \frac{1}{\pi^{3/2} \alpha^4} \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} d\xi$$

$$= \frac{1}{\pi^{3/2} \alpha^4} \cdot 2 \int_0^{\infty} \xi^2 e^{-\xi^2} d\xi$$

$$= \frac{1}{\pi^{3/2} \alpha^4} \cdot 2 \cdot \frac{\sqrt{\pi}}{4}$$

$$= \frac{1}{2\pi \alpha^4}$$

$$= \frac{1}{2\pi \alpha^4}, \qquad (13)$$

hvor vi har brukt integralet i ligning (10).

$$\langle p^2 \rangle = \int_{-\infty}^{\infty} \psi_0^* \left(-i\hbar \frac{d}{dx} \right)^2 \psi_0 \, dx$$

$$= -\hbar^2 \pi \alpha^4 \int_{-\infty}^{\infty} \alpha e^{-\xi^2/2} \frac{d^2}{d\xi^2} \alpha e^{-\xi^2/2} \cdot \frac{1}{\sqrt{\pi}\alpha^2} \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} e^{-\xi^2/2} \frac{d}{d\xi} \left(-\xi e^{-\xi^2/2} \right) \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} e^{-\xi^2/2} \left(-e^{-\xi^2/2} + \xi^2 e^{-\xi^2/2} \right) \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} \left(\xi^2 - 1 \right) e^{-\xi^2} \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \left(\frac{\sqrt{\pi}}{2} - \sqrt{\pi} \right)$$

$$= \frac{\hbar^2 \pi \alpha^4}{2}$$

$$= \frac{1}{2} m \hbar \omega, \tag{14}$$

hvor vi har brukt

$$-i\hbar \frac{d}{dx} = -i\hbar \frac{d\xi}{dx} \frac{d}{d\xi} = -i\hbar \sqrt{\pi} \alpha^2 \frac{d}{d\xi}, \tag{15}$$

$$\left(-i\hbar\sqrt{\pi}\alpha^2\frac{d}{d\xi}\right)^2 = -\hbar^2\pi\alpha^4\frac{d^2}{d\xi^2},\tag{16}$$

samt (8) og (10).

Så tar vi for oss ψ_1 :

$$\langle x^{2} \rangle = \int_{-\infty}^{\infty} x^{2} |\psi_{1}|^{2} dx$$

$$= \int_{-\infty}^{\infty} x^{2} \cdot 2\alpha^{2} \xi^{2} e^{-\xi^{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\pi \alpha^{4}} \xi^{2} \cdot 2\alpha^{2} \xi^{2} e^{-\xi^{2}} \cdot \frac{1}{\sqrt{\pi \alpha^{2}}} d\xi$$

$$= \frac{2}{\pi^{3/2} \alpha^{4}} \int_{-\infty}^{\infty} \xi^{4} e^{-\xi^{2}} d\xi$$

$$= \frac{4}{\pi^{3/2} \alpha^{4}} \int_{0}^{\infty} \xi^{4} e^{-\xi^{2}} d\xi$$

$$= \frac{4}{\pi^{3/2} \alpha^{4}} \cdot \frac{3}{8} \sqrt{\pi}$$

$$= \frac{3}{2\pi \alpha^{4}}$$

$$= \frac{3}{2\pi \alpha^{4}}$$

$$= \frac{3}{2\pi \alpha^{4}}$$
(17)

hvor vi har brukt at fra (9) er

$$\int_0^\infty \xi^4 e^{-\xi^2} d\xi = \frac{1}{2} \cdot 1^{-\frac{4+1}{2}} \cdot \Gamma\left(\frac{4+1}{2}\right) = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right) = \frac{3}{8} \sqrt{\pi}.$$
 (18)

Tilslutt er

$$\begin{split} \langle p^2 \rangle &= \int_{-\infty}^{\infty} \psi_1^* \left(-i\hbar \frac{d}{dx} \right)^2 \psi_1 \, dx \\ &= \int_{-\infty}^{\infty} \sqrt{2} \alpha \xi e^{-\xi^2/2} \left(-\hbar^2 \pi \alpha^4 \frac{d^2}{d\xi^2} \right) \sqrt{2} \alpha \xi e^{-\xi^2/2} \cdot \frac{1}{\sqrt{\pi} \alpha^2} \, d\xi \\ &= -2\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} \xi e^{-\xi^2/2} \frac{d^2}{d\xi^2} \xi e^{-\xi^2/2} \, d\xi \\ &= -2\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} \xi e^{-\xi^2/2} \frac{d}{d\xi} \left(e^{-\xi^2/2} - \xi^2 e^{-\xi^2/2} \right) \, d\xi \\ &= -2\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} \xi e^{-\xi^2/2} \left(-\xi e^{-\xi^2/2} - 2\xi e^{-\xi^2/2} + \xi^3 e^{-\xi^2/2} \right) \, d\xi \\ &= -2\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} \left(\xi^4 - 3\xi^2 \right) e^{-\xi^2} \, d\xi \\ &= -2\hbar^2 \sqrt{\pi} \alpha^4 \cdot 2 \int_{0}^{\infty} \left(\xi^4 - 3\xi^2 \right) e^{-\xi^2} \, d\xi \end{split}$$

$$= -4\hbar^2 \sqrt{\pi} \alpha^4 \left(\frac{3}{8} \sqrt{\pi} - 3 \cdot \frac{1}{4} \sqrt{\pi} \right)$$

$$= \frac{3}{2} \hbar^2 \pi \alpha^4$$

$$= \frac{3}{2} m \hbar \omega, \tag{19}$$

hvor vi har benyttet oss av (10) og (18).

Det finnes også en enda enklere måte å løse integralene på. Sånn for profesjonelle. Det første vi må innse er at vi kan skrive om relasjonene for heve- og senke-operatorene. Vi hadde

$$\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega\hat{x}), \tag{20}$$

$$\hat{a}_{-} = \frac{1}{\sqrt{2\hbar m\omega}} (+i\hat{p} + m\omega\hat{x}). \tag{21}$$

Summen og differansen av disse vil gi

$$\hat{a}_{+} + \hat{a}_{-} = \sqrt{\frac{2m\omega}{\hbar}} \hat{x}, \tag{22}$$

$$\hat{a}_{+} - \hat{a}_{-} = -i\sqrt{\frac{2}{\hbar m\omega}}\hat{p}, \tag{23}$$

eller

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_+ + \hat{a}_-), \tag{24}$$

$$\hat{p} = i\sqrt{\frac{\hbar m\omega}{2}}(\hat{a}_{+} - \hat{a}_{-}). \tag{25}$$

Med Diracs brakket-notasjon blir for eksempel foreventningsverdiene til x^2 for tilstanden ψ_0 da

$$\langle x^{2} \rangle = \langle \psi_{0} | \hat{x}^{2} \psi_{0} \rangle = \frac{\hbar}{2m\omega} \langle \psi_{0} | (\hat{a}_{+} + \hat{a}_{-})^{2} \psi_{0} \rangle$$

$$= \frac{\hbar}{2m\omega} \langle \psi_{0} | (\hat{a}_{+}^{2} + \hat{a}_{-} \hat{a}_{+}) \psi_{0} \rangle$$

$$= \frac{\hbar}{2m\omega} \left(\langle \psi_{0} | \hat{a}_{+}^{2} \psi_{0} \rangle + \langle \psi_{0} | \hat{a}_{-} \hat{a}_{+} \psi_{0} \rangle \right)$$

$$= \frac{\hbar}{2m\omega} \left(\langle \hat{a}_{-} \psi_{0} | \hat{a}_{+} \psi_{0} \rangle + \langle \hat{a}_{+} \psi_{0} | \hat{a}_{+} \psi_{0} \rangle \right)$$

$$= \frac{\hbar}{2m\omega} \left(\langle 0 | \hat{a}_{+} \psi_{0} \rangle + \langle \psi_{1} | \psi_{1} \rangle \right) = \frac{\hbar}{2m\omega}. \tag{26}$$

b) Sjekk uskarphetsprinsippet for disse tilstandene.

Svar: For ψ_0 har vi

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{1}{2} \frac{\hbar}{m\omega}},$$
 (27)

og

$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{1}{2} m \hbar \omega},$$
 (28)

slik at

$$\sigma_x \sigma_p = \sqrt{\frac{1}{2} \frac{\hbar}{m\omega}} \sqrt{\frac{1}{2} m\hbar\omega} = \frac{1}{2} \hbar, \tag{29}$$

som er akkurat på uskarphetsgrensen, ψ_0 (med gaussisk form) er altså en tilstand med minimal uskarphet.

For ψ_1 har vi

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{3}{2} \frac{\hbar}{m\omega}},$$
 (30)

og

$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{3}{2} m \hbar \omega},$$
 (31)

slik at

$$\sigma_x \sigma_p = \sqrt{\frac{3}{2} \frac{\hbar}{m\omega}} \sqrt{\frac{3}{2} m\hbar\omega} = \frac{3}{2} \hbar, \tag{32}$$

som større enn uskarphetsgrensen.

c) Beregn $\langle K \rangle$ (forventningsverdien for kinetisk energi) og $\langle V \rangle$ (forventningsverdien for potensiell energi) for disse tilstandene. (Du har ikke lov til å gjøre noen nye integral!) Er summen hva du ville forvente?

Svar: Forventningsverdien til kinetisk energi K finnes fra relasjonen $K = p^2/2m$, som gir

$$\langle K \rangle = \frac{1}{2m} \langle p^2 \rangle. \tag{33}$$

For ψ_0 er da

$$\langle K \rangle = \frac{1}{2m} \cdot \frac{1}{2} m \hbar \omega = \frac{1}{4} \hbar \omega,$$
 (34)

og for ψ_1 er

$$\langle K \rangle = \frac{1}{2m} \cdot \frac{3}{2} m \hbar \omega = \frac{3}{4} \hbar \omega.$$
 (35)

Forventningsverdien til potensiell energi $\langle V \rangle$ finnes fra HO potensialet $V(x) = \frac{1}{2}m\omega^2x^2$, som gir

$$\langle V \rangle = \frac{1}{2} m \omega^2 \langle x^2 \rangle. \tag{36}$$

For ψ_0 er da

$$\langle V \rangle = \frac{1}{2} m \omega^2 \cdot \frac{1}{2} \frac{\hbar}{m \omega} = \frac{1}{4} \hbar \omega,$$
 (37)

og for ψ_1 er

$$\langle V \rangle = \frac{1}{2} m\omega^2 \cdot \frac{3}{2} \frac{\hbar}{m\omega} = \frac{3}{4} \hbar\omega.$$
 (38)

For både ψ_0 og ψ_1 er summen av forventningsverdiene til kinetisk og potensiell energi lik forventningsverdien til Hamilton-operatoren for tilstanden, $E_0 = \frac{1}{2}\hbar\omega$ og $E_1 = \frac{3}{2}\hbar\omega$.

Oppgave 3

For grunntilstanden til en harmonisk oscillator, hva er sannsynligheten (med tre desimalers presisjon) for å finne partikkelen utenfor det klassisk tillatte området? *Hint:* klassisk sett så er energien til en oscillator $E=\frac{1}{2}ka^2=\frac{1}{2}m\omega^2a^2$, hvor a er amplituden (maksimumsutslaget). Derfor går det klassisk tillatte området for en oscillator med energi E fra $-\sqrt{2E/m\omega^2}$ til $\sqrt{2E/m\omega^2}$. Slå opp den numeriske verdien for det intregralet du behøver.

Svar: Sannsynligheten for å finne en partikkel i grunntilstanden i et forbudt område (utenfor det klassiske maksutslaget) er gitt ved

$$P_{\text{forbudt}} = \int_{a}^{\infty} |\psi_0|^2 dx + \int_{-\infty}^{-a} |\psi_0|^2 dx = 2 \int_{a}^{\infty} |\psi_0|^2 dx,$$
 (39)

hvor vi har utnyttet at ψ_0 er symmetrisk om x=0 (en "lik" funksjon), slik at integralet fra $-\infty$ til -a er identisk med integralet fra a til ∞ . Energien til grunntilstanden er $E_0 = \frac{1}{2}\hbar\omega$, slik at

$$a = \sqrt{\frac{2E_0}{m\omega^2}} = \sqrt{\frac{\hbar}{m\omega}}. (40)$$

Med variabelbyttet $\xi = \sqrt{m\omega/\hbar} x$ gir dette en integrasjonsgrense på $\xi(a) = 1$. Integralet blir:

$$P_{\text{forbudt}} = 2 \int_{1}^{\infty} \alpha^{2} e^{-\xi^{2}} \cdot \frac{1}{\sqrt{\pi}\alpha^{2}} d\xi$$

$$= \frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-\xi^{2}} d\xi$$

$$\simeq \frac{2}{\sqrt{\pi}} \cdot 0.1394 \simeq 0.157. \tag{41}$$

Sannsynligheten er altså nesten 16%.

Oppgave 4 Tilleggsoppgave — ikke oblig!

En partikkel befinner seg i grunntilstanden til en harmonisk oscillator med

frekvens ω når vi plutselig endrer fjærkonstanten slik at frekvensen blir $\omega'=2\omega$, uten at vi endrer bølgefunksjonen (nå vil selvsagt $\Psi(x,t)$ utvikle seg forskjellig fordi vi har endret Hamiltonoperatoren). Hva er sannsynligheten for at en senere måling av energien til partikkelen vil gi verdien $\hbar\omega/2$? Hva er sannsynligheten for å få $\hbar\omega$?

Svar: De nye tillatte energiene til den harmoniske oscillatoren etter endringen av frekvensen er $E'_n = (n + \frac{1}{2})\hbar\omega' = 2(n + \frac{1}{2})\hbar\omega$ med n = 0, 1, 2, ..., altså er ikke $\hbar\omega/2$ en energi vi kan måle lengre (en egenverdi til hamiltonoperatoren), og sannsynligheten for å måle dette er derfor null.

Sannsynligheten for å få $\hbar\omega$, den nye grunntilstandsenergien, er $P_0=|c_0|^2$, hvor c_0 er koeffisienten til den nye grunntilstanden i ekspansjonen av de nye tilstandene med høyere frekvens. c_0 finnes som vanlig fra Fouriers triks

$$c_0 = \int_{-\infty}^{\infty} \psi_0^{\prime *}(x) \Psi(x, 0) \, dx. \tag{42}$$

Initialtilstanden her er gitt fra den tidligere grunntilstanden (der partikkelen var før vi endret fjærkonstanten)

$$\Psi(x,0) = \psi_0(x) = \alpha e^{-\xi^2/2}.$$
(43)

Bølgefunksjonen til den nye grunntilstanden finner vi ved å gjøre byttene $\alpha'=2^{1/4}\alpha$ og $\xi'=\sqrt{2}\xi$

$$\psi_0'(x) = \alpha' e^{-\xi'^2/2} = 2^{1/4} \alpha e^{-2\xi^2/2} = 2^{1/4} \alpha e^{-\xi^2},$$
 (44)

slik at

$$c_{0} = \int_{-\infty}^{\infty} 2^{1/4} \alpha e^{-\xi^{2}} \cdot \alpha e^{-\xi^{2}/2} \cdot \frac{1}{\sqrt{\pi} \alpha^{2}} d\xi$$

$$= \frac{2^{1/4}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-3\xi^{2}/2} d\xi$$

$$= \frac{2^{1/4}}{\sqrt{\pi}} \sqrt{\frac{\pi}{3/2}}$$

$$= 2^{1/4} \sqrt{\frac{2}{3}}$$
(45)

hvor vi har brukt integralet (8). Dette gir en sannsynlighet for å finne partikkelen i den nye grunntilstanden på $P_0 = \frac{2\sqrt{2}}{3} \simeq 0.9428$.