

Falowniki wektorowe Instrukcja obsługi

Wersja: 160.1.01 20171004.

POWTRAN-POLSKA Sp. z o.o. ul. Garbary 3, 85-229 BYDGOSZCZ www.powtranpolska.pl e-mail: biuro@restal.info NIP: 9671354652

WSTEP

Gratulujemy wyboru falownika POWTRAN serii PI160.

Niniejsza instrukcja zawiera informacje na temat instalacji falownika, ustawienia parametrów pracy, diagnostyki błędów, konserwacji i bezpieczeństwa użytkowania. W celu zapewnienia właściwej instalacji i obsługi falownika, przed przystąpieniem do prac instalacyjnych i uruchomienia, prosimy szczegółowo zapoznać się z niniejszą instrukcją.

W przypadku problemów podczas użytkowania produktów, prosimy kontaktować się z Powtran-Polska Sp. z o.o. lub ze wsparciem technicznym.

Należy zachować niniejszą instrukcję w celu umożliwienia przyszłej obsługi i konserwacji falownika oraz programowania.

Treść niniejszej instrukcji może ulec zmianie bez wcześniejszego powiadomienia. W celu uzyskania aktualnych informacji zapraszamy na naszą stronę internetową www.powtran-polska.pl.

Instrukcja opracowana została na podstawie instrukcji oryginalnej. Nie zawiera ona załączników, które dostępne są w wersji oryginalnej. W przypadku wątpliwości dotyczących treści prosimy odwołać się do instrukcji oryginalnej, która w języku angielskim dołączana jest do każdego egzemplarza falownika oraz dostępna do pobrania na www.powtran-polska.pl.

POWTRAN-POLSKA Sp. z o.o ul. Garbary 3 85-229 BYDGOZCZ

Spis treści

Rozdział 1. Kontrola i środki ostrożności	1
1-1. Kontrola po rozpakowaniu	
1-2. Specjalne środki ostrożności	2
1-3. Środki ostrożności	4
1-4. Zakres stosowania	7
Rozdział 2 Specyfikacja standardowa	8
2-1. Specyfikacja techniczna.	8
2-2. Dane zacisków śrubowych głównych połączeń mocy	8
2-3. Parametry standardowe	9
Rozdział 3 Klawiatura	13
3-1. Panel operatorski	13
3-2. Znaczenie lampek	13
3-3. Znaczenie klawiszy	13
3-4. Znaczenie wyświetlanych znaków	14
3-5. Przykład zmiany parametrów	15
Rozdział 4 Instalacja i uruchomienie	18
4-1. Warunki środowiskowe	18
4-2. Chłodzenie	18
4-3. Schemat połączeń	18
4-4. Zaciski obwodów głównych	19
4-5. Zaciski sterownicze	20
4-6. Środki ostrożności przy okablowaniu	23
4-7. Obwód obejściowy	24
4-8. Uruchomienie	25
Rozdział 5 Parametry i funkcje	26
5-1. Podził menu	26
5-2. Opis parametrów funkcji	56
Rozdział 6 Rozwiązywanie problemów	115
6-1. Komunikaty błędów, rozwiązywanie problemów	115
6-2. Kompatybilnośc elektromagnetyczna EMC	119
6-3. Spełnienie wymagań EMC	119
Rozdział 7 Wymiary	122
7-1. Wymiary	
Rozdział 8 Konserwacja i naprawa	124
8-1. Przeglądy i konserwacja	
8-2. Części do regularnej wymiany	
8-3 Przechowywanie	125

Rozdział 1. Kontrola i środki ostrożności

Falowniki POWTRAN były testowane i sprawdzone fabrycznie. Po zakupie, prosimy sprawdzić, czy opakowanie nie zostało uszkodzone w transporcie oraz czy dane techniczne i model produktu są zgodne z zamówieniem. W przypadku problemów prosimy o kontakt z Powtran-Polska Sp. z o.o. lub wsparciem technicznym.

1-1. Kontrola po rozpakowaniu

- Prosimy sprawdzić, czy opakowanie zawiera zamówione urządznie, egzemplarz instrukcji i karte gwarancyjna.
- Prosimy sprawdzić tabliczkę znamionową umieszczoną na boku urządzenia i upewnić się, że otrzymany produkt jest zgodny z zamówieniem.

1-1-1.Informacje na tabliczce znamionowej

Opis tabliczki znamionowej

1-1-2.Oznaczenie modelu

Oznaczenie modelu

POWTRAN-POLSKA Sp. z o.o.

str. 1

Rozdział 1 Kontrola i środki ostrożności

1-2. Specjalne środki ostrożności

Środki ostrożności w niniejszej instrukcj są podzielone na następujące kategorie:

Niebezpieczeństwo: niebezpieczeństwa wynikające z niewłaściwego działania, które mogą spowodować poważne obrażenia, a nawet śmierć;

Ostrzeżenia: niebezpieczeństwa spowodowane niewłaściwym działaniem, które mogą spowodować umiarkowane lub niewielkie obrażenia, a także uszkodzenie sprzętu.

Etap	Kategoria	Opis
Przed instalacją	Niebezpieczeństwo	 Jeśli podczas wypakowywania znaleziono uszkodzone elementy, stwierdzono braki elementów lub wodę w opakowaniu - nie wolno instalować falownika! Jeśli opis nie zgadza się z nazwą falownika - nie wolno instalować falownika! Falownik należy przenosić ostrożnie, w przeciwnym razie istnieje niebezpieczeństwo uszkodzenia falownika! Nie wolno używać uszkodzonego napędu lub falownika w których brakuje elementów - istnieje niebezpieczeństwo zranienia! Nie wolno dotykać elektronicznych elementów układu sterowania - istnieje niebezpieczeństwo uszkodzenia elektrostatycznego!
Podczas instalacji	Niebezpieczeństwo	 Falownik należy zabudować na metalowych lub opóźniających palenie elementach, zdala od materiałów palnych.! Nieprzestrzeganie może spowodować pożar! Nigdy nie wolno dokręcać śrób konstrukcyjnych wewnątrz falownika, szczególnie srób z czerwonym znakiem!
	Ostrzeżenie	 Nie wolno pozwolić aby jakiekolwiek elementy wpadły do falownika (np.podczas prac elektroinstalacyjnych), może do spowodować jego uszkodzenie. Falownik należy zainstalować w miejscu nie narażonym na wibracje lub bezpośrednie działanie promieni słonecznych. Jeśli dwa lub więcej falowniki są montowane w jednej obudowie należy zwrócić uwagę na miejsce zabudowy i zapewnić właściwą wymainę ciepła.
Podczas łączenia	Niebezpieczeństwo	Wszystkie połączenia muszą być wykonane zgodnie z niniejszą instrukcją przez profesjonalnego elektryka, w przeciwnym razie może pojawić się nieoczekiwane niebezpieczeństwo! Pomiędzy falownikiem a źródłem zasilania musi być zainstalowany wyłącznik zasilania zapewniający przerwę w obwodzie, w przeciwnym razie istnieje niebezpieczeństwo pożaru! Przed podłączaniem przwodów należy sprawdzić, czy przewody nie znajdują się pod napięciem, w przeciwnym razie istnieje niebezpieczeństwo porażenia prądem! Falownik musi być uziemiony zgodnie ze specyfikacją i przepisami, w przeciwnym razie grozi niebezpieczeństwo porażenia prądem elektrycznym i uszkodzenia falownika!

-		
		 Należy zapewnić, aby kable odpływowe z falownika spełniały wymagania bezpieczeństwa i kompatybilności elektromagnetycznej. W szczególności przekrój kabla odpływowego powinien być zgodny z podanym w niniejszej instrukcji i powienien być do kabel ekranowany. W przeciwnym razie może dojść do wypadku i zniszczenia falownika! Nie wolno podłączać rezystora hamującego bezpośrednio do zacisków szyny prądu stałego DC P(+) i P(-) - może do spowodować pożar! Enkoder musi być podłączony przewodem ekranowanym, Każdy z końców ekranu musi być uziemiony!
Przed zasileniem	Ostrzeżenie	 Napięcie zasilania falownika musi być takie samo jak napięcie nominalne. Przewody zasilające (R,S,T) i odpływowe (U,V,W) muszą być podłączone właściwie i nie mogą powodować zwarć na elementach zewnętrznych podłaczonych do falownika. Nie spełnienie tych warunków może spowodować uszkodzenie falownika. Nie wolno wykonywać pomiarów napięcia izolacji dla jakichkolwiek wewnętrznych części falownika. Może do spowodować wypadek i uszkodzenie falownika.
zasiieniem	Niebezpieczeństwo	 Przed podaniem napięcia zasilania płyta czołowa falownika musi być zamknięta. Nie zastosowanie się grozi porażeniem elektrycznym! Podłączanie zewnętrznych akcesoriów musi być zgodne z wytycznymi zawartymi w niniejszym podręczniku. Również i okablowanie musi być zgodne z opisanymi w podręczniku sposobami kablowania. Nie spełnienie tych warunków może spowodować uszkodzenie falownika!
Po zasileniu	Niebezpieczeństwo	 Po podaniu zasilania do falownika nie wolno otwierać płyty czołowej. Nie zastosowanie się grozi porażeniem elektrycznym! Nie wolno dotykć falownika lub elementów zewnętrznych wilgotnymi dłońmi. Nie zastosowanie się grozi porażeniem elektrycznym! Nie wolno dotykać zacisków wejściowych i wyjściowych falownika. Nie zastosowanie się grozi porażeniem elektrycznym! Nie wolno dotykać zacisków zasilających falownika (R,S,T) ani zacisków odpływowych (U,V,W). Falownik automatycznie wykonuje testy bezpieczeństwa we wstępnej fazie po podłączeniu zasilania. Nie zastosowanie się grozi porażeniem elektrycznym!
Podczas pracy	Niebezpieczeństwo	 Nie wolno dotykać wentylatora chłodzącego ani radiatora w celu sprawdzenia temperatury falownika. Może do doprowadzić do poparzenia! Niewykwalifikowany i nieprofesionalny personel nie może obsługiwać falownika. Może do doprowadzić do

POWTRAN-POLSKA Sp. z o.o.

		Ostrzeżenie		do wnętrza nie wpadły jakiekolwiek przedmioty. Mogą one spowodować awarię falownika! Nie wolno wyłączać i załączać falownika poprzez rozłączanie głównego wyłącznika zasilania. Może do spowodować uszkodzenie falownika!
prze	Podczas przeglądów Niebezpieczeństwo		stwo	 Nie wolno naprawiać ani wykonywać przeglądów konserwacyjnych falownika podczas pracy. Nie zastosowanie się grozi porażeniem elektrycznym! Wszelkie naprawy i konserwacje mogą być wykonywane jeżeli na szynie prądu stałego wewnątrz falownika panuje napięcie poniżęj 24 V, W przeciwnym razie napięcie na kondensatorach może spowodować niebezpieczeństwo dla obsługi! Wszelkie naprawy i konserwacje mogą być wykonywane jedynie przez wykwalifikowany personel. Obsługa falownika przez niewykwalifikowany personel może spowodować niebezpieczeństwo dla obsługi lub uszkodzenie falownika! Podczas wymiany falownika na inny egzemplarz wszelkie parametry muszą być przepisane, a przewody przełączone przed podaniem napięcia do falownika.
		uni osti ozi	liosei	
Nr.		Тур		Opis
1	Kontro silnika	ola izolacji	Dla uniknięcia uszkodzenia falownika z powodu niewłaściwej rezystancji izolacji uzwojeń silnika, wykonaj pomiar izolacji silnika przed pierwszym użyciem silnika, po dłuższej przerwie w eksploatacji jak również regularnie. Podcas pomiaru połączenie falownika z silnikiem powinno być rozłączone. Pomiar wykonaj napięciem 500V - izolacja powinna być większa niż 5MΩ.	
2		Jeśli moc nominalna silnika nie odpowiada mocy nomina falownika, w szczególności jeśli silnik jest mniejszy, zapewni wartość zabezpieczenia termicznego w falowniku była ustaw właściwie, lub zabuduj wyłacznik silnikowy pomię		moc nominalna silnika nie odpowiada mocy nominalnej nika, w szczególności jeśli silnik jest mniejszy, zapewnij by ść zabezpieczenia termicznego w falowniku była ustawiona

falownikiem a silnikiem.

ZAkres częstotliwości wyjściowych falownika wynosi od 0Hz do

3200Hz (przy pracy wektorowej 300Hz). Jeśli wymagana jest

praca z częstotliwością powyżej 50Hz zwróć uwagę na

Niektóre częstotliwości wyjściowe falownika mogą powodować

rezonans z urządzeniem napędzanym. Dla uniknięcia tego

zjawiska ustaw częstotliwości przeskoku w falowniku, co

Napięcie wyjściowe z falownika jest modulowane falą

prostokatną, zawierającą dużą ilość harmonicznych. Powoduje do

wytrzymałość mechaniczną urządzeń napędzanych.

pozwoli na uniknięcie częstotliwości rezonansowych.

wzrost temperatury, hałasu i wibracji silnika.

zaprogramowanych parametrów. Może do spowodować

• Falownik należy zabezpieczyć, aby podczas jego pracy

uszkodzenie falownika.

zagrożenia dla osób lub awarii falownika !

• W przypadku konieczności sprawdzenia parametrów silnika, należy zwrócić uwagę na niebezpieczeństwo zranienia podczas wykonywania tych czynności podczas pracy silnika. Nie zastosowanie się grozi wypadkiem

Praca z

czestotliwościa

powyżej niminalnej

Wibracje urządzeń

mechanicznych

Grzanie silnika i

hałas

str. 5

Nr.	Тур	Opis
6	Używanie piezorezystora lub kondensatora do poprawy współczynnika mocy	Używanie piezorezystora lub kondensatora na wyjściu falownika do poprawy współczynnika mocy jest zabronione, gdyż może powodować gwałtowne wzrosty prądu wyjściowego i w efekcie uszkodzenie falownika.
7	Użycie styczników lub łączników na wejściu/wyjściu falownika	Jeżeli na zasilaniu falownika zainstalowany jest stycznik lub łącznik, nie powinien on być używany do startowania lub wyłaczania silnika. Jeśli do konieczne, nie powinno odbywać się częściej niż raz na godzinę. Zbyt częste włączanie lub wyłaczanie napięcia zasilania podczas pracy falownika powoduje skrócenie żywotności kondensatorów. Jeśli stycznik lub łącznik zainstalowane są na wyjściu falownika, nie wolno ich rozłączać podczas pracy silnika, gdyż może do doprowadzićdo uszkodzenia modułu wyjściowego falownika.
8	Praca z innym niż znamionowe napięciem zasilania	Falownik serii PI nie jest przystosowany do pracy z napięciem innym niż nominalne, podane w instrukcji. Podanie niewłaściwego napięcia może spowodować uszkodzenie elementów wewnątrz falownika. W razie konieczności użyj transformatora dostosowującego napięcie zasilania do napięcia nominalnego.
9	Zamiana falownika trójfazowego na dwu- lub jednofazowy	Nie wolno wymieniać falownika trójfazowego na dwu- lub jednofazowy. Może do spowodować nieprawidłowe działanie lub uszkodzenie falownika.
10	Ochrona przeciwprzepięciowa	Falowniki serii PI są wyposażone w urządzenia przeciwprzepięciowe, które chronią przed wysokimi napięciami powstającymi na skutek indukcji. Jeśli jednak takie przepięcia występują często, użytkownik winien zainstalować dodatkowe, zewnętrzne zabezpieczenie nadnapięciowe, na wejściu do falownika.
11	Praca na wysokości	Jeśli falownik jest używany na wysokościach powyżej 1000 m n.p.m, należy zmniejszyć częstotliwość, ponieważ rzadsze powietrze powoduje obniżenie wydajność chłodzenia falownika.
12	Użytkowanie specjalne	W razie potrzeby użycia falownika w sposób inny niż przewiduje niniejsza insrtukcja, np. praca kilku falowników ze wspólną szyną DC, prosimy skonsultować się z pomocą techniczną.
13	Środki ostrożności dotyczące złomowania	Kondensatory elektrolityczne, okablowanie, obwody drukowane i elementy plastikowe, podczas spalania mogą tworzyć toksyczne gazy. Falownik należy zatem utylizować jako odpad przemysłowy
14	Używane silniki	Standardowo, należy używać czteropolowe, asynchroniczne klatkowe silniki indukcyjne lub silniki synchroniczne z magnesami trwałymi. Falownik należy zawsze dobierać zgodnie z prądem nominalnym silnika. Ponieważ w tradycyjnych silnikach nie przystosowanych do pracy z falownkiem, wentylator chłodzący i wał wirnika są połączone na stałe, podczas pracy ze zmniejszoną częstotliwością, wydajność chłodzenia ulega zmniejszeniu. Z tego względu, jeśli silnik będzie miał tendencję do przegrzewania się, należy zabudować dodatkowy wentylator o większej wydajności lub zamienić silnik na przystosowany do pracy z falownikiem.

Nr.	Тур	Opis
		3) Falownik ma zabudowane mechanizmy adaptacji silnika, które dostosowują się do aktualnej sytuacji. Podczas rozruchu należy przeprowadzić identyfikację parametrów silnika lub odpowiednio zmodyfikować wartości fabryczne aby były one zgodne z rzeczywistymi. Niewłaściwy dobór będzie miał wpływ na działanie falownika i ochronę. 4) Jeżeli zwarcie w kablach lub silniku wywoła wewnętrzny alarm falownika, wpierw należy rozłączyć okablowanie i wykonać pomiary rezystancji izolacji, w sposób opisany wcześniej.
15	Inne	 Przed podaniem napięcia, a w szczególności pierwszym podaniem napięcia, należy zamknąć obudowę. Pozwoli do uniknąć narażenia bezpieczeństwa osób, które może być spowodowane uszkodzonymi elementami wewnątrz falownika. Nie wolno dotykać połaczeń wewnętrznych falownika ani żadnych części przed wyłączeniem zasilania falownika, a po wyłączeniu zasilania przez 5 minut po wyłaczeniu się lampek na klawiaturze. Po otwarciu falownika należy sprawdzić przyrządem, czy napięcie na kondensatorach zmniejszyło się poniżej 24 V. W przeciwnym razie grozi niebezpieczeństwo porażenia prądem elektrycznym. Ładunek statyczny zgromadzony na ciele ludzkim może poważnie uszkodzić elementy elektroniczne falownika. Jeśli nie ma zastosowanych środków antystatycznych, nie wolno dotykać rękami elementów wewnątrz falownika. Grozi do uszkodzeniem falownika. Zacisk uziemiający falownika (E or =) powinien być uziemiony trwale zgodnie z wymaganiami przepisów prawa i innymi standardami. Nie wolno wyłączać zasilania falownika podczas pracy silnika. W celu zachowania zgodności instalacji, w której użyty jest falownik, ze standardami CE, może być knieczne zastosowanie dodatkowych, opcjonalnych filtrów.

str. 7

1-4. Zakres stosowania

- Falownik PI160 jest przystosowany do trójfazowych asynchronicznych silników prądu zmiennego i synchronicznych silników z magnesami trwałymi.
- Falownik może być stosowany w sposób przewidzianych w niniejszej instrukcji, niewłaściwe użycie może skutkować pożarem, porażeniem prądem elektrycznym, wybuchem lub innymi zdarzeniami.
- Jeżeli falownik jest używany w takich zastosowaniach jak windy osobowe, systemy lotnicze, systemy bezpieczeństwa, gdzie jego niewłaściwe działanie może przyczynić się do powstania zagrożenia dla osób lub nawet śmierci, przed użyciem bezwzględnie należy skonsultować jego zastosowanie z pomocą techniczną.

Przed użyciem należy szczegółowo zapoznać się z niniejszą instrukcją bezpieczeństwa, instalacji, użytkowania i obsługi. Bezpieczne użytkowanie falowników zależy od właściwego transportu, instalacji, obsługi i konserwacji!

Rozdział 2 Specyfikacja standardowa

2-1. Specyfikacja techniczna

Model falownika	Moc nominalna (kW)	Prąd nominlny na wejściu (A)	Prąd nominlny na wyjściu (A)	Moc silnika (kW)
	Zasilanie jed	Inofazowe 220V	+ 10%	
PI160-0R4G1(Z)	0.4	5.4	2.5	0.4
PI160-0R7G1(Z)	0.75	8.2	4.0	0.75
PI160-1R5G1(Z)	1.5	14.0	7.0	1.5
PI160-2R2G1(Z)	2.2	23	10.0	2.2
	Zasilanie tr	ójfazowe 220V +	10%	
PI160-0R4G2(Z)	0.4	4.1	2.5	0.4
PI160-0R7G2(Z)	0.75	5.3	4.0	0.75
PI160-1R5G2(Z)	1.5	8.0	7.0	1.5
PI160-2R2G2(Z)	2.2	11.8	10.0	2.2
	Zasilanie tı	rójfazowe 380V±	10%	
PI160-0R4G3Z	0.4	2.0	1.2	0.4
PI160-0R7G3Z	0.75	4.3	2.5	0.75
PI160-1R5G3Z	1.5	5.0	3.8	1.5
PI160-2R2G3Z	2.2	5.8	5.1	2.2
PI160-3R7G3Z	3.7	10	8.5	3.7

Uwaga! Moduł hamowania jest opcjonalny dla falowników zasilanych napięciem 220V. Dla serii zasilanej napięciem 380V jest zabudowany standardowo.

2-2. Dane zacisków śrubowych głównych połączeń mocy.

Model falownika	Specyfikacja zacisków śrubowych	Moment dokręcania (Nm)
PI160-0R4G1(Z)	M3	0.5~0.7
PI160-0R7G1(Z)		
PI160-1R5G1(Z)		
PI160-2R2G1(Z)		
PI160-0R4G2(Z)		
PI160-0R7G2(Z)		
PI160-1R5G2(Z)		

PI160-2R2G2(Z)
PI160-0R4G3Z
PI160-0R7G3Z
PI160-1R5G3Z
PI160-2R2G3Z
PI160-3R7G3Z

2-3. Parametry standardowe

	Items	Specifications
Zasilanie	Napięcie i częstotliwość nominalna	Jednofazowe 220V, 50/60Hz; Trójfazowe 220V, 50/60Hz; Trójfazowe 380V, 50/60Hz
Zas	Dopuszczalne fluktuacje	Napięcie:±10%; Częstotliwość:±5% Zniekształcenia wg IEC61800-2.
	Sterowanie	Wysokowydajne sterowanie wektorem pola oparte na DSP.
	Metody sterowania	Sterowanie V/F, wektorowe bez sprzężenia, wektorowe ze sprzężeniem zwrotnym.
	Funkcja auto. podbicia momentu	Pozwala uzyskać wysoki moment na wyjściu przy niskich częstotliwościach (1Hz) metodą V/F.
	Przyspieszanie / zwalnianie	Charakterystyka liniowa lub krzywa typu S. Dostępne cztery zestawy czasów w zakresie od 06500.0s.
	Tryb krzywej V/F	Charakterystyka liniowa, kwadratowa/n-potęgowa, predefiniowalna dowolna krzywa V/F.
	Przeciążalność	Typ G prąd 150% przez 1 minutę, prąd 180% przez 2 sekundy.
	Częstotliwość maksymalna	1. Sterowanie wektorowe: do 300Hz. 2. Sterowanie V/F: do 3200Hz.
ınia	Częstotliwość nośna	0.5 do 16kHz z automatycznym dostosowaniem częstotliwości do charakterystyki obciążenia.
erowa	Rozdzielczość częstotl. zadanej	Zadawanie cyfrowe: 0.01Hz. Zadawanie analogowe: częstotliwość maksymalna×0.1%
System sterowania	Moment startowy	Typ G: 0.5Hz/150% (bezczujnikowe sterowanie wektorowe)
yst	Zakres prędkości	1:100 (bezczujnikowe sterowanie wektorowe)
S	Stabilizacja	Bezczujnikowe sterowanie wektorowe: ≤ ± 0.5%
	częstotlliwości	(nominalnej prędkości synchronicznej)
	Odpowiedź momentu	≤ 40ms (bezczujnikowe sterowanie wektorowe)
	Podbicie momentu	Automatyczne podbicie momentu. (0.1% do 30.0%)
	Hamowanie prądem stałym	Częstotliwość hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0%
	Sterowanie JOG	Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s
	Częstotliwości zadawalne	16 predefiniowalnych prędkości dostępnych poprzez listwę zaciskową.
	Wbudowany PID	System sterowania parametrów procesu realizowany za pomocą regulatora PID.
	Automatyczna regulacja	Automatyczne utrzymanie stałej wartości napięcia

	napięcia(AVR)		wyjściowego przy zmianach napięcia zasilającego.
	Ograniczenie momentu i sterowanie		Moment jest automatycznie ograniczany podczas pracy
			dla zabezpieczenia przed częstymi wyłączeniami
			nadprądowymi. Do kontroli momentu używany jest tryb
			wektorowy ze sprzężeniem zwrotnym.
a	Samok	ontrola obwodów	Po włączeniu zasilania falownik sprawdza obwody
SI	wyjścio	owych po zasileniu	wyjściowe pod kątem doziemienia, zwarć itp.
wła			W celu ograniczenia prawdopodobieństwa wystąpienia
<u>.</u>	Szybki	e ograniczenie	nadmiernego prądu i poprawienia zdolności zapobiegania
kc	prądu		zakłóceniom, zastosowano algorytmy ograniczające prąd
Funkcje własne			wyjściowy.
	Kontro	la czasu	Funkcje kontroli czasu: zakres ustawień 0 do 6500 minut
		Sygnał pracy	Zadawany z wielu źródeł np.; klawiatura/listwa
		Sygnar pracy	zaciskowa/port komunikacyjny RS485
		Zadawanie	Dostępnych jest 8 źródeł zadawania częstotliwości, wśród
		częstotliwości	nich wejścia analogowe DC(0 do 10V i 0 do 20mA),
		eząstetn weser	pokrętło na klawiaturze itd.
	ė	Sygnał startu	Umożliwia wybór pracy "obroty do przodu"/"obroty do
	Sygnały wejściowe	Sygnar starta	tyłu"
	jśc	Wybór wielu	Można ustawić 16 predefiniowalnych prędkości
	¥e.	prędkości	wybieranych sygnałami na wejściach dwustanowych DI
	7	- '	lub z poziomu programu
	Sus	Stop	Podanie sygnału Stop bezpieczeństwa odcina wyjścia
	Sys	bezpieczeństwa	falownika
		Praca z	Sterowanie procesem z funkcją wobulatora
		wobulatorem Kasowanie	Taáli familia gahagni aggalaga iagt alituwna mażna
		błędów	Jeśli funkcja zabezpieczająca jest aktywna, można skasować komunikat błędu automatycznie lub ręcznie.
		Sprzężenie	Sygnał sprzężenia zwrotnego może być doprowadzony do
		zwrotne dla PID	falownika na wejście analogowe 0 do 10V lub 0 do 20mA
		Wyjście pracy Wyjście błędu Wyjście analogowe	Sygnalizuje status pracy silnika, zatrzymanie,
			rozpędzanie/zwalnianie, prędkość ustaloną, status pracy
ca	we		programu.
Praca	Ç.	Wyjście błędu	Parametry wyjść: styk normalnie zwarty 7A/AC 250V
-	yjš	wyjsele siędu	Jedno wyjście analogowe. Można zaprogramować jeden z
	*	Wyjście	16-tu sygnałów wyjściowych takich jak częstotliwość,
	E L	analogowe	prąd, napięcie i inne w standardzie 0 do 10 V lub 0 do 20
	ygı		mA.
	S.	Wyjście	Jedno wyjście dwustanowe, na którym można
		dwustanowe	zaprogramować dowolny z 40-tu parametrów
			W trakcie pracy dostępne ograniczenie częstotliwości,
		podczas pracy	przeskok częstotliwości, kompensacja częstotliwości,
			automatyczny dobór nastaw, regulacja PID.
	Hamowa	nie prądem stałym	Wbudowany regilator PID hamowania prądem stałym
	DC	inic prądem starym	zapewnia wystarczający moment hamowania bez
			przeciążenia prądowego.
	Źródła z	adawania	Są trzy źródła zadawania parametrów: panel operatorski,
	parametrów		listawa zaciskowa i port komunikacyjny RS485. Kanały te
	1		mogą być przełączane na wiele sposobów.
	á		Jest 5 źródeł częstotliwości zadanej: zadawanie cyfrowe,
		zęstotliwości	wejście analogowe (0 do 10V lub 0 do 20 mA), wybór
	zadanej		wielu prędkości port komunikacyjny RS485 Kanały te
			mogą być przełączane na wiele sposobów.
	Wejścia sygnałowe		Falownik wyposażony jest w:

	Wyjścia sygnałowe		 7 wejść dwustanowych DI dla sygnałów PNP lub NPN, jedno z nich jest szybkim wejściem impulsowym (0 do 100 kHz fali prostokątnej) 1 wejście analogowe dla sygnałów 0 do 10V lub 0 do 20 mA.
			Falownik wyposażony jest w: - 1 wyjście dwustanowe DO, - jedno wyjście przekażnikowe - 1 wyjście analogowe (0 do 20mA lub 0 do 10V), pozwalające na wyprowadzenie np.: częstotliwości zadanej lub wyjściowej, prędkości i innych parametrów fizycznych.
zające	Zabezpieczenie falownika		Falownik wyposażony jest w zabezpieczenia: nadnapięciowe, podnapięciowe, nadprądowe, przeciążeniowe, temperaturowe, nadprądowe przed utknięciem, nadnapięciowe przed utknięciem, utraty fazy (opcja), błędu komunikacji na łączu RS485, zakłóceń sygnału sprzężenia zwrotnego PID, awarii enkodera i ziemnozwarciowe
Funkcje zabezpieczające	Pomiar tempe	·	Falownik wyświetla bieżącą temperaturę modułu wyjściowego IGBT.
cje za	Sterowanie we chłodzącym	entylatorem	Może być ustawione
Funk	Reakcja na zanik zasilania		Przerwa poniżej 15 millisekund: kontynuacja pracy. Przerwa powyżej 15 millisekund: automatyczna detekcja prędkości silnika i natychmiastowy restart.
	Śledzenie obro	otów silnika	Falownik automatycznie śledzi obroty silnika po starcie.
	Ochrona parai falownika		Parametry falownika zabezpieczone są przez ustalenie hasła administratora.
ratorski	Wyświetlacz klawiatury LED/OLED	Info. o pracy	Wyświetlacz pozwala monitorować: częstotliwość pracy, częstotliwość zadaną, napięcie DC, napięcie na wyjściu, prąd na wyjściu, moc na wyjściu, mment na wyjściu, stan wejść DI, stan wyjść DO, wartości na wejściach analogowych, aktualną prędkość silnika, wartość zadaną PID w %, wartość sprzężenia zwrotnego PID w %.
Panel operatorski	555, 0555	Info. o błędach.	Falownik zapamiętuje maksymalnie trzy komunikaty błędów wraz z takimi informacjami jak: czas wystąpienia, rodzaj błędu, napięcie, prąd, częstotliwość i stan pracy.
	Wyświetlacz	LED	Wyświetla parametry
	Wybór funkc blokowanie	ji klawiszy i	Falownik pozwala blokować część lub wszystkie klawisze panelu i definiować funkcje niektórych klawiszy.
Komuni kacja	Wbudowany port RS485		Wbudowany moduł komunikacyjny RS485 (izolowany) pozwala na skomunikowanie falownika z urządzeniami zewnętrznymi
	Temperatura p	oracv	-10 °C do 40 °C.
We	Temperatura	- J	
nki ko	przechowywania		-20 °C do 65 °C.
ıru	iyunta Maranta ya przechowywania wilgotność Wibracje		Poniżej 90% R.H, bez kondensacji.
Wa odo	Wibracje		Poniżej 5.9 m/s² (= 0.6g).
śrc	Zabudowa		Wewnątrz, wniejscu wolnym od bezpośrednigo działania promieni słonecznych, korodujących,
POWTI	RAN-POLSK	XA Sp. z o.o.	str. 11

Rozdział 2 Specyfikacja standardowa

	1	
		wybuchowych gazów i pary wodnej, kurzu, gazów
		palnych, mgieł oleju, skroplin lub soli itp.
	Wysokość	Poniżej 1000m n.p.m.
	Poziom zanieczyszczeń	2.
	Stopień ochrony	IP20.
Normy	Bezpieczeństwo	IEC61800-5-1:2007.
	EMC	IEC61800-3:2005.
Metoda chłodzenia		Wymuszone chłodzenie powietrzem.

Rozdział 3 Klawiatura

3-1. Panel operatorski

Panel operatorski

3-2. Znaczenie lampek

Identyfikator		Nazwa	Znaczenie
1	FWD	Praca "do przodu"	Lampka zapalona oznacza, że falownik (silnik) pracuje w kierunku "do przodu".
i stanu	REV	Praca "do tyłu"	Lampka zapalona oznacza, że falownik (silnik) pracuje w kierunku "do tyłu".
Lamki	Hz Identyfikator częstotliwości		Wartość wyświetlana na wyświetlaczu wyrażona jest w hercach (częstotliwość).
	A Identyfikator prądu		Wartość wyświetlana na wyświetlaczu wyrażona jest w amperach (prąd).

3-3. Znaczenie klawiszy

Klawisz	Nazwa	Funkcja
PRG	Ustawianie parametrów / Klawisz wyjścia (Esc)	Wejście do trybu edycji parametrów z menu główneg Wyjście (Esc) z trybu edycji parametrów Wyjście (Esc) z podmenu do menu głównego lub do wyższego poziomu menu.
SHIFT	Klawisz przesunięcia (Shift)	* Wybór pola wpisu danych podczas edycji parametru (np. przejście z jedności na dziesiątki, z dziesiątej na setki itd.).

str. 13

POWTRAN-POLSKA Sp. z o.o.

Rozdział 3 Klawiatura

•	Klawisz zwiększania	Zwiększanie wartości parametru lub funkcji. Znaczenie klawisza może być zmieniane parametrem F6.18.
•	Klawisz zmniejszania	Zmniejszanie wartości parametru lub funkcji. Znaczenie klawisza może być zmieniane parametrem F6.19.
RUN	Klawisz pracy (Run)	Uruchomienie falownika w trybie sterowania z klawiatury.
STOP RESET	Klawisz stop / kasowanie	Zatrzymanie falownika lub kasowanie aktywnego alarmu. Aktywność klawisza definiowana w parametrze F6.00.
ENTER	Klawisz akceptacji	Akceptacja wprowadzonych zmian.
Potencjometr klawiatury		Potencjometr służy do ustawienia częstotliwości pracy falownika gdy F0.02=4.
ENTER >	≫≫ HIFT	Jednoczesne użycie klawiszy powoduje zablokowanie/odblokowanie klawiatury.

3-4. Znaczenie wyświetlanych znaków

Znak na wyświetlacz u	Znaczenie	Znak na wyświetlaczu	Znaczenie	Znak na wyświetlaczu	Znaczenie
	0	- 1	1	2	2
3	3	4	4	5	5
6	6	7	7	8	8
9	9	A	A	Ь	В
Γ	С	В	d	Ε	Е
F	F	Н	Н	1	I
L	L	П	N	П	n
0	0	P	P	۲	r
5	S	Ł	t	U	U
Γ	T	•			-
7	у				

3-5. Przykład zmiany parametrów

3-5-1. Instrukcja wyświetlania i zmiany kodu funkcji

Menu konfiguracyjne falownika PI160 słada się z trzech poziomów:

- Poziom 1 wybór grupy parametrów (np. F1.xx, E2.xx, b0.xx),
- Poziom 2 wybór parametru numeru funkcji w grupie (F1.10, .E2.11, b0.01),
- Poziom 3 edycja wartości parametru.

Strukturę obsługi menu ilustruje poniższy rysunek.

Sposób obsługi menu

Opis: Powrót z menu poziomu 3 do poziomu 2 odbywa się za pomocą klawiszy PRG lub Enter. Różnica polega na tym, że powrót za pomocą klawisza PRG odbywa się bez zapamietania wprowadzonych zmian (wycofanie się) i edytowany będzie ten sam parametr, powrót za pomocą klawisza Enter powoduje zapamiętanie wprowadzonych zmian i przejście edytora do następnego parametru w grupie.

Przykład 1. Zmiana częstotliwości zadanej Ustawienie F0.01 z 50.00 Hz na 40.00 Hz

Przykład 2: Przywrócenie nastaw fabrycznych

Jeżeli na poziomie 3 wartość paramrtru nie miga, nie może być zmieniana. Przyczyny mogą być nastepujące:

- Wartość parametru nie podlega zmianom np. wartości zmierzone takie jak aktualne napięcie na wyjściu falownika,
- Wartość parametru nie może być modyfikowana podczas pracy falownika należy zatrzymać falownik.

3-5-2. Sposób odczytu parametrów w różnych stanach pracy

W stanie postoju lub podczas pracy, użycie klawisza Shift pozwala wyświetlić różne parametry pracy. Parametry, któe będą wyświetlane można konfigurować w menu F6.01 (parametry podczas pracy grupa 1), F6.02 (parametry podczas pracy grupa 2) i F6.03 (parametry wyświetlane podczas postoju 3).

Podczas postoju można wyświetlać 16 parametrów takich jak: częstotliwość zadana, napięcie na szynie prądu stałego DC, stan wejść dwustanowych DI, stan wyjść dwustanowych DO, wartości na wejściach analogowych AI1, AI2, aktualna wartość licznika, aktualna długość, krok pracy przy sterowaniu PLC, aktualna prędkość, wartość zadana regulatora PID, częstotliwość na szybkim wejściu dwustanowym i inne.

W trybie pracy wyświetlane mogą być parametry pracy falownika: częstotliwość pracy falownika, częstotliwość zadana, napięcie na szynie prądu stałego DC, napięcie na wyjściu z falownka, prąd wyjściowy z falownika oraz pozostałe jak wyżej.

Przełączanie i wyświetlanie tych parametrów za pomocą klawisza Shift

Po powrocie zasilania wyświetlany jest parametr, który był wybrany przed wyłaczeniem zasilania.

3-5-3. Ustawienie hasła

Parametry falownika mogą być zabezpieczone hasłem. Hasło ustawiane jest w parametrze y0.01. Wprowadzenie w y0.01 wartości różnej od 0, powoduje ustawienie hasła. Po wprowadzeniu hasła falownik będzie pracował normalnie, jednakże próba wejścia w konfigurację klawiszem PRG spowoduje wyświetlenie komunikatu "----". Wprowadzenie poprawnego hasła pozwala na wejście do konfiguracji, w przeciwnym razie dostęp do konfiguracji będzie zablokowany.

W celu usunięcia zabezpieczenia hasłem, należ wpierw wijśc do konfiguracji, wprowadzić poprawne hasło a następnie wyzerować wartość parametru y0.01.

3-5-4. Autodetekcja parametrów silnika

Wybierając sterowanie wektorowe, przed uruchomieniem silnika należy wprowadzić dane nominalne silnika podane na tabliczce znamionowej. Jeśli dane te nie zostaną wprowadzone, falownik przyjmie dane standardowe. Ponieważ sterowanie wektorowe jest w dużym stopniu zależne od danych silnika, falownik PI160, na ich podstawie dokona autodetekcji pozostalych niezbędnych parametrów silnika zgodnie z parametrami nominalnymi z tabliczki znamionowej. Z

tego względu bardzo ważne jest wprowadzenie do falownika parametrów silnika zgodnych z podanymi na tablicce znamionowej.

Detekcja parametrów silnika przebiega w poniższy sposób.

Wpierw należy wybrać klawiaturę jako źródło sygnałów sterujących poprzez zaprogramowanie F0.11=0. Następnie należy wprowadzić następujące dane nominalne podłączonego silnika:

Parametry silnika		
b0.00: typ silnika (patrzb0.00)	b0.01: moc nominalna	
b0.02: napięcie nominalne	b0.03: prąd nominalny	
b0.04: częstotliwość nominalna	b0.05: prędkość znamionowa	

Dla silników asynchronicznych, jeśli nie można całkowicie odłączyć obciążenia od silnika w parametrze b0.27 należy wybrać b0.27=0 (autodetekcja statyczna parametrów silnika asynchronicznego) a następnie uruchomićfalownik klawiszem Run.

Jeśli całkowite odłączenie obciążenia od silnika jest możliwe w parametrze b0.27 należy wybrać b0.27=1 (zaawansowana autodetekcja parametrów silnika asynchronicznego) a następnie uruchomićfalownik klawiszem Run.

Falownik dokona autodetekcji następujących parametrów silnika:

Parametry silnika		
b0.06: rezystancja stojana b0.07: rezystancja wirnika		
b0.08: indukcyjność rozproszona b0.09: indukcyjność wzajemna		
b0.10: prąd jałowy (silnika nieobciążonego)		

POWTRAN-POLSKA Sp. z o.o.

str. 17

Rozdział 4 Instalacja i uruchomienie

4-1. Warunki środowiskowe

- Temperatura otoczenia -10 oC do 50 oC. Powyżej 40 oC wydajność układu chłodzenia falownika spada o 3% co każdy 1 oC. Nie zaleca się stosowania falownika w temperaturach powyżej 50 oC.
- Brak zakłóceń elektromagnetycznych, falownik używać z dala od źródeł zakłóceń elektromagnetycznych,
- 3. Zapobiec wnikaniu kropelek, oparów, kurzu i opiłków matalu,
- 4. Zapobiec wnikaniu olejów, soli, i korodujących gazów,
- Unikać wibracii.
- Unikać wysokich temperatur i wilgotności lub ekspozycji na deszcz. Wilgotność pomiżej 90%, bez kondensacji.
- 7. Wysokość poniżej 1000 m n.p.m,
- 8. Nie używać w środowisku łatwopalnych, wybuchowych gazów, płynow, lub ciał stałych.

4-2. Chłodzenie

Falownik powinien być montowany w dobrze przewietrzanej przestrzeni na ścianie lub płycie montażowej, z zachowaniem przedstawionych na poniższym rysunku odległości od otzczających przedmiotów:

Sposób zabudowy

4-3. Schemat połączeń

Okablowanie falownika PI160 składa się z części głównej (mocowej) i połączeń sterowniczych. Okablowanie musi być wykonane dobrze, zgodnie z przedstawionymi poniżej schematami.

POWTRAN-POLSKA Sp. z o.o. str. 18

4-4. Zaciski obwodów głównych

4-4-1. Rozmieszczenie zacisków głównych

Opis zacisków obwodów głównych

ZAcisk	Nazwa	Znaczenie
R, S, T Zaciski wejściowe (zasilanie falownika)		Zasilanie trójfazowe podłączyć do R, S, T Zasilanie jednofazowe (230 lub 400VAC) podłączyć do zacisków R, T.
(4)	Zacisk uziemmienia	Uziemić zgodnie z przepisami
P、RB	Zaciski rezystora hamującego	Do podłączenia rezystora hamującego
U. V. W Zaciski wyjściowe falownika (zasilanie silnika)		Silnik trójfazowy podłączyć do U, V, W. Dozwolone jest również podłączenie silnika jednofazowego. W tym przypadku należy skontaktować się z pomocą techniczną.

4-5. Zaciski sterownicze

4-5-1. Rozmieszczenie zacisków sterowniczych

TA TC TB DI1 DI2 DI3 DI4 DI5 DI6 DI7 SPA COM PLC 24V COM 10V AI1 GND DA1

Listwa zacisków sterowniczych

4-5-2. Opis zacisków sterowniczych

Kategoria	Symbol	Nazwa	Funkcja
	+10V GND	Napięcie zasilania +10V	Wyjściowe napięcie zasilania +10V, maksymalne obciążenie:10mA Napięcie do zasilenia potencjometru. Zakres rezystancji potencjometru: $1k\Omega$ do $5k\Omega$
Zasilanie	+24V COM	Napięcie zasilania +24V	Wyjściowe napięcie zasilania +24V używane do zasilenia obwodów wejść (DI) i wyjść (DO) dwustanowych i zewnętrznych przetworników i czujników. Maksymalne obciążenie: 200mA
	PLC	Zacisk wejściowy zasilania zewnętrznego	Jeżeli zewnętrzne napięcia sa używane do sterowania falownika, należy rozłączyć zworę PLC. Zacisk PLC należy podłączyć do zewnętrznego zasilani lub masy, w zależności od polaryzacji sygnałów sterujących.
Wejśćie analogowe	AI1 GND	Zaciski wejścia analogowego AII	1.Zakres wejścia: 0 do 10V / 0 do 20mA, zależny od ustawienia zwory JP3.depends on the selected AII jumper on control panel. 2.Impedancja wejściowa: 20 k Ω dla wejścia napięciowego, 500 Ω dla wejścia prądowego.

str. 19

		ı	,
	DI1	Wielofunkcyjne wejści nr 1	1. Wejścia dwustanowe bipolarne z optoizolacją.
_	DI2	Wielofunkcyjne wejści nr 2	 wejscia dwustanowe oponanie z oproizoracją. Impedancja wejściowa: 3,3 kΩ Zakres napięcia wejściowego dla stanu
owe D	DI3	Wielofunkcyjne wejści nr 3	wysokiego: 24V±20%; 4. Polaryzacja wejść zgodnie z ustawieniem
ustan	DI4	Wielofunkcyjne wejści nr 4	zwory JP2. Używająć zewnętrznego napięcia JP2 należy rozewrzeć.
Wejścia dwustanowe DI	DI6	Wielofunkcyjne wejści nr 6	
Wejś	DI7	Wielofunkcyjne wejści nr 7	Praca "do przodu"
	DI15	Szybkie wejście impulsowe	Poza funkcjami dostępnymi dla wejść DI1 do DI4,DI6, wejście DI5 może być równieżvużywane jako szybkie wejście impulsowe. Maksymalna częstotliwość wejściowa: 100 kHz.
Wyjśćie analogowe	DA1- GND	Analog output terminals	Zwora JP4 pozwala określić rodzaj wyjścia jako napięciowe lub prądowe Zakres napięcia wyjściowego: 0 do 10V. Zakres prądu wyjściowego: 0 do 20mA.
Wyjście dwustanowe	SPA COM	Wyjście dwustanowe DO1	Bipolarne wyjścia dwustanowe z optoizolacją typu OC (open collector) Zakres napięcia wyjściowego: 0 do 24V. Obciążalność prądowa: 0 do 50mA
Wyjście orzekaźnik owe	TA-TC	Styki normalnie otwarte NO	Obciążaność styków 7A, 250VAC. Funkcja wyjśćia programowana parametrem F2.03
W _y prze	ТВ-ТС	Styki normalnie zamkniete NC	wyjscia programowana parametrem F2.05
Wbudowany port RS485	485+	RS485 sygnał różnicowy +	Port komunikacyjny RS485. Do podłączenia portu używać kabla typu "skrętka" lub kabla ekranowanego.
Wbude port F	485-	RS485 sygnał różnicowy -	Zwora JP1 pozwala na dołączenie wewnętrznego terminatora na końcu linii

Do podłączania sygnałów na wejścia i wyjścia dwustanowe należy używać kabli ekranowanych i zachować możliwie niewielką odległość od źródeł tych sygnałów, nie przekraczającą 20 m.

Wejścia dwustanowe falownika są zasilane z wewnętrznego zasilacza falownika, sygnały wejściowe należy zatem doprowadzać w formie styków beznapięciowych..

Przewody sterownicze powinny być prowadzone zdala od przewodów głównych i linii wysokiego napięcia (takich jak kable zasilające falownik, kable odpływowe do silnika, przekaźniki i styczniki). Minimalna odległośc nie powinna być mniejsza niż 20 cm.

Należy również unikać prowadzenia przewodów sterowniczych równolegle z przewodami w których wystepują wysokie napięcia (np. przewodami odpływowymi do zasilania silników.

Sposoby podłaczania styków biernych:

Główne połączenia zasilacza własnego

Główne połączenia zasilacza zewnętrznego

Podłaczenie styków biernych

Uwaga ! Używając zasilacza zewnętrznego, zwora JP2 musi być usunieta, w przeciwnym razie falownik może zostać uszkodzony..

Zasilanie sygnałów typu OC NPN:

Jeżeli sygnały wejściowe pochodzą z tranzystora typy NPN, zgodnie z zastosowanym źródłem napiecia zasilania, należy w odpowiedni sposób ustawić zwore JP2.

Wewnetrzne zasilanie sygnałów NPN

Zewnętrzne zasilanie sygnałów NPN

Zasilanie wejść dwustanowych dla sygnałów OC NPN

Uwaga ! Używając zasilacza zewnętrznego, zwora JP2 musi być usunieta, w przeciwnym razie falownik może zostać uszkodzony..

Zasilanie sygnałów typu OC PNP:

Wewnętrzne zasilanie sygnałów PNP

Zewnętrzne zasilanie sygnałów PNP

Zasilanie wejść dwustanowych dla sygnałów OC PNP

Uwaga ! Używając zasilacza zewnętrznego, zwora JP2 musi być usunieta, w przeciwnym razie falownik może zostać uszkodzony.

4-6. Środki ostrożności przy okablowaniu

A Niebezpieczeństwa

innych ukłaów RC

Przed przystapieniem do prac łaczeniowych należy sie upewnić, czy wyłacznik głowny mocy jest rozłączony. W przeciwnym razie grozi porażeniem elektrycznym.

Prace łączeniowe muszą być wykonywane przez wykwalifikowany personel.

Falownik musi być dobrze uziemiony, w przeciwnym razie istnieje niebezpieczeństwo porażenia prądem elektrycznym lub pożaru!

⚠ Uwagi

Należy się upewnić, czy moc falownik jest zasilany ze źródła o odpowiedniej dla niego mocy elektrycznej. Niewłaściwe zasilanie może byćpowodem zniszczenia falownika.

Należy się upewnić, czy silnik jest odpowiedni do falownika. Użycie niewłaściwego silnika może spowodować jego uszkodzenie lub powodować zadziałenie zabezpieczeń falownika! Nie podłaczać zasilania do zacisków wyiściowych falownika U. V. W. Podłaczenie takie

zniszczy falownik. Nie wolno podłaczać rezystora hamującego bezpośrednio do zacisków (P) i (+). Podłaczenie może spowodować pożar!

- M Do wyjścia U,V,W falownika nie wolno podłączać kondensatorów rozruchowych ani układów
- * Przy wymianie silnika, napięcie zasilania musi być wyłączone
- W Podczas prac łaczeniowych wewnatrz falownika nie wolno pozostawić żadnych elementów metalowych ani przewodó. Grozi do niewłaściwym działaniem falownika lub awarią
- Modłączanie silnika lub napięcia zasilania falownika dozwolone jest tylko przy zatrzymanym silniku
- W celu zminimalizowania wpływu zakłóceń elektromagnetycznych zaleca się stosowanie urządzeń pochłaniających wraz ze stycznikami i przekaźnikami blisko falownika
- Przewody sterownicze doprowadzone do falownika powinny być dobrze izolowane lub wykonane przewodem ekranowanym
- Ponadto okablowanie sterownicze powinno być układane oddzielnie z kablami siłowymi
- ¾ Jeżeli czestotliwość nośna jest mniejsza niż 3 kHz, maksymalna odległość silnika od falownika nie nie powinna przekraczać 50 m, jeśli czestotliwość nośna jest wieksza od 4 kHz odległość ta powinna zostać odpowiednio zmniejszona. Dobrze jest układać kable w metalowych peszlach
- Jeżeli falownik jest wyposażony w dodatkowe peryferia (filtry, dławiki itp), należy zmierzyć ich rezystancje izolacji w stosunku do ziemi używając napięcia probierczzego 1000 V. Zmierzona rezystancja nie powinna być mniejsza niż 4 MΩ
- Jeżeli falownik musi być często uruchamiany, nie wolno wyłączać bezpośrednio jego napięcia zasilania, a w celu uniknięcia uszkodzenia mostka prostowniczego do sterowania należy używać sygnałów z listwy zaciskowej, klawiatury lub portu komunikacyjnego
- W celu unikniecia wypadku, zacisk uziemiający (≟) musi być dobrze i trwale uziemiony. impedancja ziemi powinna być mniejsza niż 10 Ω. W przeciwnym razie wystąpić może prąd
- Parametry kabli zasilających i odpływowych powinny odpowiadać wymaganiom przepisów
- * Moc nominalna silnika nie powinna być większa niż moc nominalna falownika

4–7. Obwód obejściowy

W przypadku wystąpienia awarii lub wyłaczenia falownika, które mogłoby spowodować duże straty, przestoje w produkcji lub inne zagrożenia, dla unikniecia tychże należy wykonać poniżej przedstawiony obwód obejściowy falownika.

Uwaga: Na schemacie, wyłaczniki MCC1 i MCC2 wyposażone sa w mechanizm wykluczający właczenie przeciwstawnych styczników (MCC1 blokuje K3, MCC2 - K2). Obwód obejściowy musi być pod tym względem sprawdzony. Należy również sprawdzić, czy przewody obwodu obeiściowego sa właściwie sfazowane.

4-8. Uruchomienie

Uruchomienie

- Przed podłączeniem zasilania, wpierw należy sprawdzić, czy napięcie zasilania falownika
 jest w zakresie nominalnych napięć wejściowych falownika.
- Podłączyć napięcie zasilające do zacisków R, S i T falownika.
- Wybrać właściwą metodę sterowania.

Rozdział 5 Parametry i funkcje

5-1. Podział menu

Uwaga! Użyte w dalszej części instrukcji oznaczenia (statusy) mają następujące znaczenie:

- "★": W stanie pracy falownika parametr nie może być zmieniany
- "•": Dane aktualne (np. pomiar napięcia), nie może być zmieniany
- "☆": W stanie pracy falownika lub postoju, parametr może być zmieniany;
- "▲": Ustawienie fabryczne", nie zmieniać.
- '_" oznacza, że parametr fabryczny jest zależny od modelu falownika. Szczegóły należy sprawdzić w danych powiązanych.

Limity zmian odnoszą się do parametrów, które mogą być zmieniane.

Niektóre parametry falownika są zarezerwowane przez producenta. Nie są one ujawnione na poniższych listach parametrów, powodując nieciągłość w numeracji parametrów. Wartości tych parametrów nie należy zmieniać.

Parametr y0.01 jest używany jako hasło zabezpieczające. Menu parametrów zostanie udostepnione jedynie po wprowadzeniu poprawnego hasła, o które falownik zapyta w trybie wprowadzania parametrów funkcji lub przy zmianie trybu. Jeśli wartość y0.01=0, ochrona hasłem jest wyłączona.

Menu parametrów w trybie ustawień własnych, nie jest zabezpieczone hasłem.

Parametry podzielone są na następujące grupy:

- grupa F zawiera parametry i funkcje podstawowe,
- grupa E zawiera parametry dodatkowe,
- grupa b zawiera parametry silnika,
- grupa d zawiera parametry funkcji monitorowania

Kod	Nazwa parametru	Opis funkcji
d0	Grupa funkcji monitowowania	Monitoring częstotkiwości, prądu, itd.
F0	Grupa funkcji podstawowych	Ustawianie częstotliwości, tryb sterowania, przyspieszanie i zwalnianie.
F1	Wejścia analogowe i dwustanowe	Funkcje wejść analogowych i dwustanowych.
F2	Wyjścia analogowe i dwustanowe	Funkcje weyść analogowych i dwustanowych.
F3	Grupa sterowania STARTi STOP	Funkcje dla sygnałów sterujących START i STOP.
F4	Parametry sterowania V/F	Parametry sterowania V/F.
F5	Sterowanie wektorowe	Parametry sterowania wektorowego.
F6	Klawiatura i wyświetlacz	Parametry ustawienia funckcji klawiatury i wyświetlacza.
F7	Grupa funkcji dodatkowych	Ustawanie JOG, zęstotliwości przeskoku i innych funkcji dodatkowych.
F8	Usterki i ochrona	Ustawienia parametrów kontroli usterek i ochrony.
F9	Grupa parametrów	Funkcje komunikacyjne MODBUS.

	komunikacyjnych	
	Komunikacyjnych	
FA	Parametry sterowania momentem	Ustawienia parametrów w trybie sterowania momentem.
Fb	Parametry optymalizacji sterowania	Ustawienia parametrów optymalizacji wydajności sterowania.
FC	Grupa parametrów specjalnych	Ustawienia parametrów funkcji specjalnych.
ЕО	Wobulator, ustalona długość, zliczanie impulsów	Ustawienia trybu wobulatora, ustalonej długości i zliczania impulsów.
E1	Sterowanie wielostanowe, proste sterowanie PLC	Ustawienia wielu prędkości, sterowanie PLC.
E2	Grupa funkcji regulator PID	Ustawienia parametrów wewnętrznego regulatora PID.
ЕЗ	Wirtualne wejścia DI i wyjścia DO	Ustawianie parametrów wirtualnych wejść i wyjść dwustanowych.
E8	Funkcje specjalne dla maszyn tnących	Ustawienie parametrów maszyn tnących
b0	Parametry silnika	Ustawiaie parametrów silnika
y0	Zarządzanie funkcjami kodów	Ustawianie kodu zabezpieczającego, inicjalizacja i grupowanie parametrów.
y 1	Lista błędów	Komuniakty o błędch

5-1-1. Grupa d0 - Grupa funkcji monitorujących

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna
1	d0.00	Częstotliwość pracy	Aktualna częstotliwość wyjściowa falownika	0.01Hz
2	d0.01	Częstotliwość zadana	Aktualna wartość częstotliwości zadanej	0.01Hz
3	d0.02	Napięcie DC	Zmierzona, aktualna wartość napięcia na szynie prądu stałego DC	0.1V
4	d0.03	Napięcie na wyjściu	Aktualne napięcie na zaciskach wyjściowych falownika	V
5	d0.04	Prąd na wyjściu	Aktualny prąd wyjściowy falownika	0.01A
6	d0.05	Moc na wyjściu	Aktualna moc na wyjściu falownika	0.1kW
7	d0.06	Moment na wyjściu	Aktualny moment na wyjściu falownika wyrażony w %	0.1%
8	d0.07	Stan wejść DI	Aktualny stan wejść dwustanowych DI	-

9	d0.08	Stan wyjść DO	Aktualny stan wyjść dwustanowych DO	-
10	d0.09	Napięcie na wejściu AI1	Wartość napięcia na wejściu analogowym AII - odpowiada % wartości sygnału wejściowego 10.00V=100%	0.01V
11	d0.11	Napięcie na potencjometrze klawiatury	Napięcie na potencjometrze klawiatury	0.01V
12	d0.12	Wartość licznika zliczeń	Aktualna wartość licznika funkcji zliczających.	-
13	d0.13	Długość licznika	Aktualna długość dla funkcji zliczających	-
14	d0.14	Prędkość obrotowa silnika	Aktualna prędkość obrotowa silnika	-
15	d0.15	Wartość zadana PID	Wartość zadana regulatora PID - wyświetlana tylko podczas pracy regulatora PID, wyrażona w %	%
16	d0.16	Zamienna procesowa PID	Wartość zmiennej procesowej (sprzężenia zwrotnego) regulatora PID - wyświetlana tylko podczas pracy regulatora PID, wyrażona w %	%
17	d0.17	Etap pracy w PLC	Etap pracy algorytmu PLC, wyświetlany podczas pracy algorytmu	-
18	d0.18	Częstotliwość na szybkim wejściu impulsowym	Wartość częstotliwości na szybkim wejściu impulsowym, jednostka: 0.01kHz	0.01kHz
19	d0.19	Sprzężenie zwrotne z enkodera	Wartość sprzężenia zwrotnego z enkodera na karcie PG - dokładność 0.1 Hz	0.1Hz
20	d0.20	Pozostały czas pracy	Wartość pozostała czas pracy do sterowania przebiegiem czasowym	0.1Min
21	d0.21	Prędkość liniowa	Wskazuje wartość prędkości liniowej na szybkim wejściu impulsowym DI5, zgodnie z aktualną ilością impulsów na minutę i wartością w E0.07.	1m/Min
22	d0.22	Aktualny czas pracy silnika	Wskazuje czas, przez który silnik był zasilony.	Min
23	d0.23	Nastawiony czas pracy	Wskazuje nastwiony czas pracy silnika.	0.1Min
24	d0.24	Częstotliwość impulsów na szybkim wejściu HDI(DI5)	Wskazuje częstotliwość impulsów na szybkim wejściu HDI(DI5).	1Hz
25	d0.25	Wartość zadana z łącza komunikacyjnego RS485	Częstotliwość, moment, lub inna wartość sterująca ustawiana przez port	0.01%

			komunikacyjny RS485.	
26	d0.27	Częstotliwość główna	Wartość głównej częstotliwości zadanej wybranej w F0.03.	0.01Hz
27	d0.28	Częstotliwość pomocnicza	Wartość pomocniczej częstotliwości zadanej wybranej w F0.04.	0.01Hz
28	d0.29	Wartość zadana momentu w %	Wyświetla wartość zadaną momentu w trybie sterowania momentem.	0.1%
29	d0.35	Stan pracy falownika	Wyświetla informacje o pracy, postoju i innych parametrach statusowych.	1
30	d0.36	Typ falownika	1.G (stały moment obciążenia) 2.F (charakterystyka pompowowentylatorowa).	-
31	d0.37	Napięcie na wejściu AII przed korekcją	Wartość napięcia na wejściu analogowym AI1, przed korekcją liniową.	0.01V
32	d0.39	Napięcie na potencjometrze klawiatury przed korekcją	Wartość napięcia na potencjometrze klawiatury, przed korekcją liniową.	0.01V

5-1-2. Grupa F0 - Funkcje podstawowe

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F0.00	Sposób sterowania silnikiem	0.Wektorowe bez sprzęż. 1. Wektorowe ze sprzęż. 2. Sterowanie V/F.	2	*
2	F0.01	Wartość zadana obrotów z klawiatury	0.00 Hz do F0.19 (częstotliwości max.).	50.00Hz	☆
3	F0.02	Rozdzielczość wartości zadanej obrotów	1: 0.1Hz 2: 0.01 Hz.	2	*
4	F0.03	Źródło głównej wartości zadanej obrotów	0 do 9.	1	*
5	F0.04	Źródło pomocniczej wartości zadanej obrotów	0 do 9.	0	*
6	F0.05	Sposób odniesienia dla źródła pomocniczej wartości zadanej	0.W stosunku do częstotliwości maksymalnej 1.W stosunku do głównej częstotliwości zadanej	0	☆
7	F0.06	Zakres częstotliwości pomocniczej wartości zadanej obrotów	0% do 150%.	100%	☆
8	F0.07	Sposób przetwarzania źródła częstotliwości zadanej	Cyfra jedności: Wybór źródła częstotliwości Cyfra dziesiątek: Zależność	00	☆

			arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości.		
9	F0.08	Przesunięcie wyniku zależności arytmetycznej głównego i pomocniczego źródła częstotliwości.	0.00 Hz do F0.19 (częstotliwość max)	0.00Hz	*
10	F0.09	Użycie pamięci dla częstotliwości zadawanej cyfrowo po wyłączeniu zasilania	0: Częstotliwość nie zapamietywana 1: Częstotliwość zapamiętana	1	☆
11	F0.10	Parametr zmieniany za pomocą klawiszy ▲/ ▼	0: Częstotliwość pracy 1: Częstotliwość zadana	0	*
12	F0.11	Źróło sygnałów sterujących	0. Klawiatura (LED wyłączona) 1.Listwa zaciskowa (LED zapalona) 2.Port komunikacyjny RS485 (LED miga) 3. Klawiatura+ Port komunikacyjny RS485 4. Klawiatura+ Port komunikacyjny RS485+ Listwa zaciskowa.	0	☆
13	F0.12	Wiązanie źródeł częstotliwości zadanej	Cyfra jedności: źródło dla klawiatury Cyfra dziesiątek: źródło dla listwy zaciskowej Cyfra setek: źródło dla portu komunikacyjnego.	000	☆
14	F0.13	Czas rozpędzania 1	0.00 s do 6500 s.	Depends on models	☆
15	F0.14	Czas zwalniania 1	0.00 s do 6500 s.	Depends on models	☆
16	F0.15	Jednostka dla czasów rozpędzania i zwalniania	0: 1 sekunda 1: 0.1 sekundy 2: 0.01 sekundy.	1	*
17	F0.16	Częstotliwość odniesienia dla czasów rozpędzania i zwalniania	0: F0.19 (częstotliwość maksymalna) 1: Częstotliwośc zadana 2: 100 Hz.	0	*
18	F0.17	Dostosowanie częstotliwości nośnej do temperatury	0: NIE 1: TAK	0	☆
19	F0.18	Częstotliwość nośna	0.5 kHz do 16.0 kHz	Depends on models	☆

20	F0.19	Maksymalna częstotliwość wyjściowa	50.00 Hz do 320.00 Hz	50.00Hz	*
21	F0.20	Źrodło ograniczenia górnego częstotliwości	0: Parametr F0.21 1: Wejści AII 3: Potencjometr klawiatury 4: Szybkie wejście impulsowe 5: Wartość z portu RS485	0	*
22	F0.21	Górne ograniczenie częstotliwości	Od F0.23 (ograniczenie dolne) do F0.19 (częstotliwość max.)	50.00Hz	☆
23	F0.22	Przesunięcie górnego ograniczenia częstotliwości	0.00Hz do F0.19 (częstotliwość max.)	0.00Hz	☆
24	F0.23	Dolne ograniczenie częstotliwości	0.00 Hz do F0.21 (górne ograniczenie)	0.00Hz	☆
25	F0.24	Kierunek obrotów	0: Zgodny 1: Przeciwny	0	☆
26	F0.26	Rozdzielczość wejścia analogowego	0: 0.01Hz; 1: 0.05Hz; 2: 0.1Hz; 3: 0.5Hz	1	
27	F0.27	Typ falownika	1.G (stały moment obciążenia) 2.F (charakterystyka pompowowentylatorowa).	-	•

5-1-3. Grupa F1 - Sygnały wejściowe

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F1.00	Wybór funkcji wejścia DI1		1	*
2	F1.01	Wybór funkcji wejścia DI2		2	*
3	F1.02	Wybór funkcji wejścia DI3	0 to 53	8	*
4	F1.03	Wybór funkcji wejścia DI4	0 10 33	9	*
5	F1.04	Wybór funkcji wejścia DI5		12	*
6	F1.05	Wybór funkcji wejścia DI6		13	*
7	F1.06	Wybór funkcji wejścia DI7	Forward running	0	*
8	F1.10	Tryb sterowania z listwy zaciskowej	0: Dwuprzewodowy typu 1 1: Dwuprzewodowy typu 2 2: Trzyprzewodowy typu 1 3: Trzyprzewodowy typu 2	0	*
9	F1.11	Szybkość zmian przy sterowaniu UP/DOWN (góra/dół)	0.001 Hz/s do 65.535 Hz/s	1.000 Hz/s	☆
10	F1.12	Minimum wejścia krzywej AIC1	0.00 V do F1.14	0.30V	☆

11	F1.13	Wartość odpowiadająca F1.12	-100.00 % do +100.0 %	0.0%	☆
12	F1.14	Maksimum wejścia krzywej AIC1	F1.12 do +10.00 V	10.00V	☆
13	F1.15	Wartość odpowiadająca F1.14	-100.00 % do +100.0 %	100.0%	☆
14	F1.20	Minimum wejścia krzywej potencjometru klawiatury	0.00 V do F1.22	0.00V	☆
15	F1.21	Wartość odpowiadająca F1.20	-100.00 % do +100.0 %	0.0%	☆
16	F1.22	Maksimum wejścia krzywej potencjometru klawiatury	F1.12 do +10.00 V	4V	☆
17	F1.23	Wartość odpowiadająca F1.22	-100.00 % do +100.0 %	100.0%	☆
18	F1.24	Wybór krzywej przetwarzania wejść AI	Cyfra jedności: AII Cyfra setek: Potencjometr klawiatury	321	☆
19	F1.25	Wybór wartości minimalnej wejść AI	Cyfra jedności: AII 0: zgodnie z wartością minimum 1: 0.0% Cyfra setek: Potencjometr klawiatury	000	☆
20	F1.26	Minimalna częsttliwość na wejściu HDI	0.00 kHz do F1.28	0.00 kHz	☆
21	F1.27	Wartość odpowiadająca F1.26	-100.00 % do +100.0 %	0.0%	☆
22	F1.28	Minimalna częsttliwość na wejściu HDI	F1.26 do 100.00 kHz	50.00kHz	☆
23	F1.29	Wartość odpowiadająca F1.28	-100.00 % do +100.0%	100.0%	☆
24.	F1.30	Stała filtru dla DI	0.000 s do 1.000 s	0.010s	☆
25	F1.31	Stała filtru dla AI1	0.00s do 10.00s	0.10s	☆
26	F1.33	Stała filtru dla potencjometru klawiatury	0.00s do 10.00s	0.10s	☆
27	F1.34	Stała filtru dla HDI	0.00s do 10.00s	0.00s	☆
28	F1.35	Logika wejść dwustanowych DI - część 1	Cyfra jedności: DII 0: poziom wysoki 1: poziom niski Cyfra dziesiątek: DI2 Cyfra setek: DI3 Cyfra tysięcy: DI4 Cyfra 10tysięcy: DI5	00000	*
29	F1.36	Logika wejść dwustanowych DI - część 2	Cyfra jedności: DI6 0: high level active 1: low level active Cyfra dziesiątek: DI7	00000	*

			Cyfra setek: DI8 Cyfra tysięcy: DI9 Cyfra 10tysięcy: DI10		
30	F1.37	Czas opóźnienia dla DI1	0.0s do 3600.0s	0.0s	*
31	F1.38	Czas opóźnienia dla DI2	0.0s do 3600.0s	0.0s	*
32	F1.39	Czas opóźnienia dla DI3	0.0s do 3600.0s	0.0s	*
33	F1.40	Powielanie funkcji na wejściach DI	0: nieaktywne 1: aktywne	0	*

5-1-4. Grupa F2 - Sygnały wyjściowe

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F2.02	Wybór fukcji wyjścia przekaźnikowego nr 1 (TA1.TB1.TC1)	0 do 42	2	☆
2	F2.04	Wybór fukcji wyjścia SPA (wyjście typu OC)		1	☆
3	F2.07	D Wybór funkcji wyjścia analogowego DA1.A1 output function selection	0 do 17	0	☆
4	F2.11	Opóźnienie zadziałania wyjścia przekaźnikowego nr 1.	0.0s do 3600.0s	0.0s	☆
5	F2.13	Opóźnienie zadziałania wyjścia SPA,	0.0s do 3600.0s	0.0s	☆
6	F2.15	Wybór stanu aktywnego wyjść dwustanowych DO	Cyfra jedności: SPB 0: logika pozytywna 1: logika negatywna Cyfra dziesiątek: wyjśćie przekaźnikowe nr 1 Cyfra setek: Cyfra setek: Undefined Cyfra tysięcy: SPA Cyfra 10tysięcy: wyjśćie przekaźnikowe nr 2	00000	*
7	F2.16	Współczynnik przesunięcia zera wyjścia analogowego DA1.	-100.0% do +100.0%	0.0%	☆

Grupa F3 - Konfiguracja Startu i Stopu

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F3.00	Tryb uruchomienia.	0: Bezpośrednie 1: Śledzenie prędkości 2: Stert ze wstępnym wzbudzeniem (silnik asynchroniczny AC)	0	☆
2	F3.01	Tryb śledzenia prędkości	0: Start od częstotliwości zatrzymania 1: Start od zera 2: Start od częstotliwości maksymalnej 3: Start na rozpędzonym silniku	0	*
3	F3.02	Współczynnik czasu poszukiwania prędkości.	1 do 100	20	☆
4	F3.03	Częstotliwość początkowa.	0.00Hz do 10.00Hz	0.00Hz	☆
5	F3.04	Czas utrzymywania częstotliwości początkowej.	0.0s do 100.0s	0.0s	*
6	F3.05	Prąd pobudzenia wstępnego DC.	0% do 100%	0%	*
7	F3.06	Czas pobudzenia wstepnego prądem stałym DC.	0.0s do 100.0s	0.0s	*
8	F3.07	Tryb zatrzymania.	0: Zatrzymanie z czasem zwalniania 1: Zatrzymanie wybiegiem	0	☆
9	F3.08	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC.	0.00 Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	*
10	F3.10	Wartość prądu hamowania prądem stałym DC.	0% do 100%	0%	☆
11	F3.11	Czas podawania prądu hamującego DC	0.0s do 100.0s	0.0s	☆
12	F3.12	Szybkość hamowania	0% do 100%	100%	☆
13	F3.13	Tryb rozpędzania i zwalniania	0: Liniowe 1: Zgodnie z krzywą S typu A 2: Zgodnie z krzywą S typu B	0	*
14	F3.14	Proporcje krzywej S przy rozpędzaniu	0.0% do (100.0% do F3.15)	30.0%	*

15	F3.15	Proporcje krzywej S przy zwalnianiu	0.0% do (100.0% do F3.14)	30.0%	*

5-1-5. Grupa F4 - Parametry sterowania V/F

<u> </u>	5. Gi	rupa r4 - Parametry ste	IUwama 1/I		
Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F4.00	Wybór krzywej V/F	0 to11	0	*
2	F4.01	Wzmocnienie momentu	0.0% automatyczne wzmocnienie momentu 0.1 do 30%	0.0%	*
3	F4.02	Częstotliwość wyłączenia wzmocnienia momentu	0.00Hz do F0.19 (częstotliwość maksymalna)	15.00Hz	*
4	F4.03	Własna krzywa V/F - częstotliwość 1	0.00Hz do F4.05	0.00Hz	*
5	F4.04	Własna krzywa V/F - napięcie 1	0.0% do 100.0%	0.0%	*
6	F4.05	Własna krzywa V/F - częstotliwość 2	F4.03 do F4.07	0.00Hz	*
7	F4.06	Własna krzywa V/F - napięcie 2	0.0% do 100.0%	0.0%	*
8	F4.07	Własna krzywa V/F - częstotliwość 3	F4.05 do b0.04 (częstotliwoś nominalna silnika)	0.00Hz	*
9	F4.08	Własna krzywa V/F - napięcie 3	0.0% do 100.0%	0.0%	*
10	F4.09	Współczynnik kompensacji poślizgu	0% do 200.0%	0.0%	☆
11	F4.10	Wzmocnienie kontrolera wzbudzenia V/f	0 do 200	64	☆
12	F4.11	Współczynnik tłumienia oscylacji V/f	0 do 100	-	☆
13	F4.12	Źródło napięcia separowanego V/F	0 do 9	0	☆
14	F4.13	Cyfrowe ustawienie napięcia separowanego V/f.	0V do napięcia znamionowego silnika	0V	☆
15	F4.14	Czas narastania napięcia separowanego V/f	0.0s do 1000.0s	0.0s	☆

5-1-6. Grupa F5 - Parametry sterowania wektorowego

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F5.00	Współczynnik wzmocnienia regulatora	1 do 100	30	☆

		G1			
2	F5.01	Czas zdwojenia regulatora T1	0.01s do 10.00s	0.50s	☆
3	F5.02	Częstotliwość przełączenia 1	0.00 do F5.05	5.00Hz	☆
4	F5.03	Współczynnik wzmocnienia regulatora G2	0 do 100	20	☆
5	F5.04	Czas zdwojenia regulatora T2	0.01s do 10.00s	1.00s	☆
6	F5.05	Częstotliwość przełączenia 2	F5.02 do F0.19 (częstotliwość maksymalna)	10.00Hz	☆
7	F5.06	Praca integratora prędkości	0: dozwolona 1: zabroniona	0	☆
8	F5.07	Źródło ograniczenia momentu w trybie sterowania prędkością	0 do 5	0	☆
9	F5.08	Górne ograniczenie dla ustawienia cyfrowego momentu	0.0% do 200.0%	150.0%	☆
10	F5.09	Wzmocnienie różnicowe w sterowaniu wektorowym	50% do 200%	150%	☆
11	F5.10	Stała czasowa filtra regulatora prędkości	0.000s do 0.100s	0.000s	☆
12	F5.11	Wzmocnienie kontrolera wzbudzenia	0 do 200	64	☆
13	F5.12	Wzmocnienie regulatora wzbudzenia	0 do 60000	2000	☆
14	F5.13	Czas zdwojenia regulatora wzbudzenia	0 do 60000	1300	☆
15	F5.14	Wzmocnienie regulatora momentu	0 do 60000	2000	☆
16	F5.15	Czas zdwojenia regulatora momentu	0 do 60000	1300	☆

5–1–7. Grupa F6 - Klawiatura i wyświetlacz

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F6.00	Funkcje klawisza STOP/RESET	0: Klawisz STOP/RES aktywny tylko w trybie sterowania z klawiatury 1: Klawisz STOP/RES aktywny zawsze	1	☆
2	F6.01	Pierwsza grupa parametrów wyświetlanych w stanie pracy	0x0000 do 0xFFFF	001F	☆
3	F6.02	Druga grupa parametrów wyświetlanych w stanie pracy 2	0x0000 do 0xFFFF	0000	☆
4	F6.03	Wybór parametrów wyświetlanych podczas postoju	0x0000 do 0xFFFF	0033	☆

5	F6.04	Współczynnik wyświetlania szybkości silnika	0.0001 do 6.5000	3.0000	☆
6	F6.05	Ilość cyfr po przecinku dla współczynnika szybkości silnika	0:0 miejsc po przecinku 1:1 miejsce po przecinku 2:2 miejsca po przecinku 3:3 miejsca po przecinku	1	•
7	F6.06	Temperatura modułu wyjściowego falownika	0.0 °C do 100.0 °C	ı	•
8	F6.07	Całkowity czas pracy	0 h do 65535 h	-	•
9	F6.08	Całkowity czas pracy silnika	0 h do 65535 h	-	•
10	F6.09	Całkowity pobór mocy	0 do 65535 kWh	-	•
11	F6.10	Numer seryjny falownika	Numer seryjny falownika	-	•
12	F6.11	Wersja oprogramowania	Wersja oprogramowania płyty sterującej	-	•
13	F6.17	Współczynnik korekcji mocy	0.00 do 10.00	1.00	☆
14	F6.18	Zakres blokady klawiatury	0: Blokowane RUN, STOP 1: Blokowane RUN, STOP, manipulator klawiatury 2: Blokowane RUN, STOP, "▲", "▼" 3: Blokowany STOP	1	☆

5-1-8. Grupa F7 - Funkcje pomocnicze

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F7.00	Częstotliwość pracy Jog	0.00 Hz do F0.19 (częstotliwość maksymalna)	6.00Hz	☆
2	F7.01	Czas rozpędzania Jog	0.0s do 6500.0s	5.0s	☆
3	F7.02	Czas zwalniania Jog	0.0s do 6500.0s	5.0s	☆
4	F7.03	Priorytet dla Jog	0: Wyłączony 1: Załączony	0	☆
5	F7.04	Częstotliwość przeskoku 1	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
6	F7.05	Częstotliwość przeskoku 2	0.00Hz do F0.19(częstotliwość maksymalna)	0.00Hz	☆
7	F7.06	Zakres częstotliwości przeskoku	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
8	F7.07	Zezwolenie na przeskok częstotliwości przy	0: Brak 1: Zezwolenie	0	☆

		•			
		rozpędzaniu lub zwalnianiu			
9	F7.08	Czas rozpędzania 2	0.0s do 6500.0s	Depends on models	☆
10	F7.09	Czas zwalniania 2	0.0s do 6500.0s	Depends on models	☆
11	F7.10	Czas rozpędzania 3	0.0s do 6500.0s	Depends on models	☆
12	F7.11	Czas zwalniania 3	0.0s do 6500.0s	Depends on models	☆
13	F7.12	Czas rozpędzania 4	0.0s do 6500.0s	Depends on models	☆
14	F7.13	Czas zwalniania 4	0.0s do 6500.0s	Depends on models	☆
15	F7.14	Częstotliwość przełączania między czasem rozpędzania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
16	F7.15	Częstotliwość przełączania między czasem zwalniania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
17	F7.16	Czas martwy między zmianą kierunku	0.00s do 3600.0s	0.00s	☆
18	F7.17	Praca "do tyłu"	0: Dozwolona 1: Zabroniona	0	☆
19	F7.18	Tryb pracy z częstotliwością zadaną poniżej minimalnej	0: Praca z zadaną 1: Stop 2: Praca z minimalną	0	☆
20	F7.19	Obniżenie częstotliwości przy przeciążeniu	0.00Hz do 10.00Hz	0.00Hz	☆
21	F7.20	Ustwienie czasu pracy silnika	0h do 36000h	0h	☆
22	F7.21	Ustwaienie dla sygnalizacji czasu pracy silnika	0h do 36000h	0h	☆
23	F7.22	Blokada komendy Start	0: Wyłączona 1: Załączona	0	☆
24	F7.23	Wartość przekroczenia częstotliwości 1 (FDT1)	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
25	F7.24	Histereza częstotliwości FDT1	0.0% do 100.0% wartości FDT1	5.0%	☆
26	F7.25	Szerokość detekcji częstotliwości	0.00 do 100% (częstotliwość maksymalna)	0.0%	☆
27	F7.26	Wartość przekroczenia	0.00Hz do F0.19	50.00Hz	☆

		częstotliwości 2 (FDT2)	(częstotliwość maksymalna)		
28	F7.27	Histereza częstotliwości FDT2	0.0% do 100.0% wartości FDT2	5.0%	☆
29	F7.28	Wartość osiągnięcia częstotliwości - próg 1	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
30	F7.29	Histereza wartości dla progu 1 - F7.28	0.00% do 100.0% (częstotliwość maksymalna)	0.0%	☆
31	F7.30	Wartość osiągnięcia częstotliwości - próg 2	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
32	F7.31	Histereza wartości dla progu 2 - F7.30	0.00% do 100.0% (częstotliwość maksymalna)	0.0%	☆
33	F7.32	Poziom detekcji prądu zerowego	0.0% do 300.0% (prądu nominalnego silnika)	5.0%	☆
34	F7.33	Czas detekcji pradu zerowego silnika	0.01s do 360.00s	0.10s	☆
35	F7.34	Poziom przekroczenia prądu silnika	0.0% (nie wykrywany) 0.1% do 300.0% (prądu nominalnego silnika)	200.0%	☆
36	F7.35	Czas detekcji przekroczenia prądu silnika	0.00s do 360.00s	0.00s	☆
37	F7.36	Poziom przekroczenia prądu silnika - poziom 1	0.0% do 300.0% (prądu nominalnego silnika)	100%	☆
38	F7.37	Histereza wartości dla progu 1 - F7.36	0.0% do 300.0% (prądu nominalnego silnika)	0.0%	☆
39	F7.38	Poziom przekroczenia prądu silnika - poziom 2	0.0% do 300.0% (prądu nominalnego silnika)	100%	☆
40	F7.39	Histereza wartości dla progu 1 - F7.38	0.0% do 300.0% (prądu nominalnego silnika)	0.0%	☆
41	F7.40	Temperatura falownika - poziom kontrolny	0 °C do 100 °C	75°C	☆
42	F7.41	Praca wentylatora chłodzącego	0: Tylko podczas pracy silnika 1: Zawsze	0	☆
43	F7.42	Zezwolenie na funkcje czasowe	0: Wyłączone 1: Załączone	0	*
44	F7.43	Wybór źródła czasu pracy	0: Ustawienie w F7.44 1: Wejście AII 2: Rezerwa 3: Pokrętło panelu	0	*
45	F7.44	Zadany czas pracy	0.0 min do 6500.0 min	0.0Min	*
46	F7.45	Wartość sygnalizacji czasu	0.0 min do 6500.0 min	0.0Min	*

		pracy			
47	F7.46	Częstotliwość wybudzenia	F7.48 (częstotliwość uśpienia) do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
48	F7.47	Opóźnienie wybudzenia	0.0s do 6500.0s	0.0s	☆
49	F7.48	Częstotliwość uśpienia	0.0Hz do F7.46 (częstotliwość wybudzenia)	0.00Hz	☆
50	F7.49	Opóźnienie uśpienia	0.0s do 6500.0s	0.0s	☆
51	F7.50	Dolna granica zabezpieczenia napięciowego wejścia AI1	0.00V do F7.51	3.1V	☆
52	F7.51	Górna granica zabezpieczenia napięciowego wejścia AI1	F7.50 do 10.00V	6.8V	☆

5-1-9. Grupa F8 - Usterki i ochrona

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F8.00	Zabezpieczenie nadprądowe - wzmocnienie	0 do 100	20	☆
2	F8.01	Poziom zabezpieczenia nadprądowego	100% do 200%	150%	☆
3	F8.02	Funkcja zabezpieczenia przeciążeniowego	0: Zabroniona 1: Dozwolona	1	☆
4	F8.03	Wzmocnienie zabezpieczenia przeciążeniowego	0.20 do 10.00	1.00	☆
5	F8.04	Współczynnik dla ostrzeżenia przeciążeniowego	50% do 100%	80%	☆
6	F8.05	Zabezpieczenie przepięciowe - wzmocnienie	0 do 100	0	☆
7	F8.06	Zabezpieczenie przepięciowe	120% do 150%	130%	☆
8	F8.08	Funkcja zabezpieczenia przed utratą fazy wyjściowej	0: Zabroniona 1: Dozwolona	1	☆
9	F8.09	Kontrola zwarcia doziemnego	0: Zabroniona 1: Dozwolona	1	☆

10	F8.10	Ilość automatycznych wyłączeń błędów	0 do 32767	0	☆
11	F8.11	Aktywacja sygnalizacji automatycznych wyłączeń po błędzie	0: Wyłączona 1: Załączona	0	☆
12	F8.12	Czas od wykrycia błędu do skasowania	0.1s do 100.0s	1.0s	☆
13	F8.17	Wybór akcji po wykryciu błędu - grupa 1	Cyfra jedności: Przeciążenie silnika (Err.11) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra dziesiątek: Utrata fazy wejściowej (Err.12) Cyfra setek: Utrata fazy wyjściowej (Err.13)) Cyfra tysięcy: Wyłączenie zewnętrzne (Err.15) Cyfra 10tysięcy: Błąd komunikacji (Err.16)	00000	*
14	F8.18	Wybór akcji po wykryciu błędu - grupa 2	Cyfra jedności: Błąd enkodera (Err.20) 0: Zatrzymanie wybiegiem 1:Przełączenie sterowania na V/F i zatrzymanie w wybranym trybie 2: Przełączenie sterowania na V/F i kontynuacja pracy Cyfra dziesiątek: Błąd pamięci EPROM (Err.21) 0: Zatrzymanie w wybranym trybie 1: Zatrzymanie w wybranym trybie Cyfra setek: Nieużywaned Cyfra tysięcy: Przegrzanie silnika (Err.45) 0: Zatrzymanie w wybranym trybie 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra 10tysięcy: Upływ czasu pracy (Err.26) (tak jak Cyfra tysięcy)	00000	☆
15	F8.19	Wybór akcji po wykryciu błędu - grupa 3	Cyfra jedności: Błąd użytkownika 1 (Err.27) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra dziesiątek: Błąd	00000	☆

			użytkownika 2 (Err.27) Cyfra setek: Upływ czasu zasilenia (Err.29) Cyfra tysięcy: Zanik obciążenia (Err.30) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Zwolnienie do 7% częstotliwości nominalnej i		
			kontynuacja pracy, automatyczny powrót do częstotliwości zadanej, praca jeśli zanik obciążenia nie występuje. Cyfra 10tysięcy: Utrata sygnału sprzężenia zwrotnego regulatora PID podczas pracy (Err.31)		
16	F8.20	Wybór akcji po wykryciu błędu - grupa 4	Cyfra jedności: Zbyt duże odchylenia szybkości (Err.42) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra dziesiątek: Przekroczenie prędkości silnika (Err.43) Cyfra setek: Błąd pozycji inicjalnej (Err.51) Cyfra tysięcy: Nieużywane Cyfra 10tysięcy: Nieużywane	00000	☆
17	F8.24	Częstotliwość pracy po awarii	0: częstotliwość bieżąca 1: częstotliwość zadana 2: częstotliwość górna 3: częstotliwość dolna 4: częstotliwość nieprawidłowa	0	☆
18	F8.25	Wartość częstotliwości nieprawidłowej	60.0% do 100.0%	100%	☆
19	F8.26	Działanie po chwilowym zaniku zasilania	0: Brak akcji 1: Zwalnianie 2: Zwalnianie i stop	0	☆
20	F8.27	Częstotliwość przełączenia czasu zwalniania	50.0% do 100.0%	90%	☆
21	F8.28	Opóźnienie załączenia po powrocie zasilania	0.00s do 100.00s	0.50s	☆
22	F8.29	Wartość napięcia	50.0% do 100.0%	80%	☆

str. 41

		progowego po zaniku zasilania	(standardowego napięcia na szynoe prądu stałego DC)		
23	F8.30	Funkcja ochrony przed spadkiem obciążenia	0: Zabroniona 1: Dozwolona	0	☆
24	F8.31	Poziom detekcji spadku obciążenia	0.0 do 100.0%	10%	☆
25	F8.32	Czas detekcji spadku obciążenia	0.0 do 60.0s	1.0s	☆

5-1-10. Grupa F9 - Parametry komunikacji

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	F9.00	Prędkość transmisji dla MODBUS	0 do 9	5	☆
2	F9.01	Format danych	0: (8-N-2) 1: (8-E-1) 2: (8-O-1) 3: (8-N-1)	0	☆
3	F9.02	Adres falownika	1-250 lub 0 dla adresu rozgłoszeniowego	1	☆
4	F9.03	Czas odowiedzi	0ms-20ms	2ms	☆
5	F9.05	Wybór protokołu	Cyfra jedności: MODBUS 0: niestandardowy MODBUS 1: standardowy MODBUS Tens digit: zarezerwowane	31	☆
6	F9.06	Dokładność odczytu prądu	0: 0.01A 1: 0.1A	0	☆

5-1-11. Grupa FA - Parametry sterowania momentem

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	FA.00	Wybór trybu sterowania	0: sterowanie prędkością 1: sterowanie momentem	0	*
2	FA.01	Wybór źródła wartości zadanej momentu w trybie sterowania momentem	0: klawiatura (FA.02) 1: wejście AII 3: potencjometr klawiatury 4: szybkie wejście impulsowe 5: port komunikacyjny RS485	0	*
3	FA.02	Zakres momentu	-200.0% do 200.0%	150%	☆
4	FA.03	Czas rozpędzania	0.00s do 650.00s	0.00s	☆

5	FA.04	Czas zwalniania	0.00s do 650.00s	0.00s	☆
6	FA.05	Maksymalna częstotliwość przy pracy "do przodu"	0.00Hz do F0.19(częstotliwość maksymalna)	50.00Hz	☆
7	FA.06	Maksymalna częstotliwość przy pracy "do tyłu"	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
8	FA.07	Stała filtra momentu	0.00s do 10.00s	0.00s	☆

5-1-12. Grupa FB - Optymalizacja sterowania

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	FB.00	Funkcja ograniczania impulsów prądu	0: Zabroniona 1: Dozwolona	1	☆
2	FB.01	Próg detekcji niskiego napięcia (dla Err.09)	50.0% do 140.0%	100.0%	☆
3	FB.02	Próg detekcji przepięcia	200.0V do 2500.0V	-	*
4	FB.03	Wybór trybu kompensacji strefy martwej	0: Bez kompensacji 1: Tryb 1 2: Tryb 2	1	☆
5	FB.04	Kompensacja detekcji prądu	0 do 100	5	☆
6	FB.05	Optymalizacja wektorowa bez enkodera	0: Bez optymalizacji 1: Tryb 1 2: Tryb 2	1	*
7	FB.06	Górne ograniczenie częstotliwości dla sterowania DPWM	0.00Hz do 15.00Hz	12.00Hz	☆
8	FB.07	Sposób modulacji PWM	0: Asynchroniczna 1: Synchroniczna	0	☆
9	FB.08	Mechanizm wyciszenia pracy silnika	0: Wyłączony 1 do 10	0	☆
10	FB.09	Strefa martwa czasu	100% do 200%	0	☆

5-1-13. Grupa FC - Parametry rozszerzające

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	FC.01	Współczynnik proporcjonalności prędkości Master/Slave	0.00 do 10.00	0	☆
2	FC.02	Początkowy uchyb regulacji PID	0.0 do 100.0	0	☆

str. 43

5-1-14. Grupa E0 - Wobulator, ustalona długość, zliczanie imp.

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	E0.00	Ustawienie sposobu oscylacji	0: Względem częstotliwości środkowej 1: Względem częstotliwości maksymalnej	0	*
2	E0.01	Amplituda oscylacji	0.0% do 100.0%	0.0%	☆
3	E0.02	Współczynnik uskoku	0.0% do 50.0%	0.0%	☆
4	E0.03	Cykl wobulatora	0.1s do 3000.0s	10.0s	☆
5	E0.04	Współczynnik czasu narastania fali	0.1% do 100.0%	50.0%	☆
6	E0.05	Długość ustawiona	0m do 65535m	1000m	☆
7	E0.06	Długość aktualna	0m do 65535m	0m	☆
8	E0.07	Ilośc impulsów na metr	0.1 do 6553.5	100.0	☆
9	E0.08	Pojemność licznika	1 do 65535	1000	☆
10	E0.09	Sygnalizacja zapełnienia licznika	1 do 65535	1000	☆
11	E0.10	Ilość impulsów dla redukcji częstotliwości	0: Niektywne 1 do 65535	0	☆
12	E0.11	Częstotliwość zredukowana	0.00Hz do F0.19 (częstotliwość maksymalna)	5.00Hz	☆

5-1-15. Grupa E1 - Komenda wielostanowa, sterowanie PLC

-		- I		-	
Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	E1.00	Prędkość dla stanu 0	-100.0% do 100.0%	0.0%	⋫
2	E1.01	Prędkość dla stanu 1	-100.0% do 100.0%	0.0%	☆
3	E1.02	Prędkość dla stanu 2	-100.0% do 100.0%	0.0%	☆
4	E1.03	Prędkość dla stanu 3	-100.0% do 100.0%	0.0%	☆
5	E1.04	Prędkość dla stanu 4	-100.0% do 100.0%	0.0%	☆
6	E1.05	Prędkość dla stanu 5	-100.0% do 100.0%	0.0%	☆
7	E1.06	Prędkość dla stanu 6	-100.0% do 100.0%	0.0%	☆
8	E1.07	Prędkość dla stanu 7	-100.0% do 100.0%	0.0%	☆
9	E1.08	Prędkość dla stanu 8	-100.0% do 100.0%	0.0%	☆
10	E1.09	Prędkość dla stanu 9	-100.0% do 100.0%	0.0%	☆

11 E1.10 Prędkość dla stanu 10 -100.0% do 100.0% ☆ 12 E1.11 Prędkość dla stanu 11 -100.0% do 100.0% 0.0% ☆ 13 E1.12 Prędkość dla stanu 12 -100.0% do 100.0% 0.0% ☆ 14 E1.13 Prędkość dla stanu 13 -100.0% do 100.0% 0.0% ☆ 15 E1.14 Prędkość dla stanu 14 -100.0% do 100.0% 0.0% ☆ 16 E1.15 Prędkość dla stanu 15 -100.0% do 100.0% 0.0% ☆ 17 E1.16 Tryb sterowania PLC -100.0% do 100.0% 0.0% ☆ 18 E1.17 Sterowanie PLC - -100.0% do 100.0% 0.0% ☆ 18 E1.17 Sterowanie PLC - -100.0% do 100.0% 0.0% ☆ 19 E1.18 To - Czas pracy dla stanu 0 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 19 E1.18 To - Czas pracy dla stanu 0 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 20 E1.19 Zestaw parametrow przyspieszania i zwalniania dla stanu 0 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 21 E1.20 T1 - Czas pracy dla stanu 1 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 22 E1.21 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 23 E1.22 T2 - Czas pracy dla stanu 2 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 2 2 2 2 2 2 2 2 2	tozu	Liui o itt	ozwiązy wanie problemow			
13 E1.12 Prędkość dla stanu 12 -100.0% do 100.0%	11	E1.10	Prędkość dla stanu 10	-100.0% do 100.0%	0.0%	☆
14 E1.13 Prędkość dla stanu 13 -100.0% do 100.0% 0.0% ☆ 15 E1.14 Prędkość dla stanu 14 -100.0% do 100.0% 0.0% ☆ 16 E1.15 Prędkość dla stanu 15 -100.0% do 100.0% 0.0% ☆ 17 E1.16 Tryb sterowania PLC Ozatrzymanie po zakończeniu programu 1: Utrzynaie wartości końcowej po zakończeniu programu 2: Praca cykliczna Ozfra jedności: Pamięć przy wyłaczeniu zasilania 0: Wyłączenie bez zapamiętania 1: Wyłączenie z zapamiętania 1: Wyłączenie z zapamiętanie w Cyfra dziesiątek Pamięć przy zatrzymaniu 0: Zatrzymanie bez zapamiętania 1: Zatrzymanie z zapamiętania 1: Zatrzymanie z zapamiętania 1: Zatrzymanie z zapamiętania 1: Zatrzymaniu 0: Zatrzymaniu 0: Sztaw parametrow przyspieszania i zwalniania dla stanu 0 O.0s(h) do 6500.0s(h) O.0s(h) ☆ 20 E1.19 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 O.0s(h) do 6500.0s(h) O.0s(h) ☆ 22 E1.21 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 O.0s(h) do 6500.0s(h) O.0s(h) ☆ 23 E1.22 T2 - Czas pracy dla stanu 2 O.0s(h) do 6500.0s(h) O.0s(h) ☆ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 O.0s(h) do 6500.0s(h) O.0s(h) ☆ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 O.0s(h) do 6500.0s(h) O.0s(h) ☆	12	E1.11	Prędkość dla stanu 11	-100.0% do 100.0%	0.0%	☆
15 E1.14 Prędkość dla stanu 14 -100.0% do 100.0% 0.0% ☆	13	E1.12	Prędkość dla stanu 12	-100.0% do 100.0%	0.0%	☆
16 E1.15 Prędkość dla stanu 15 -100.0% do 100.0% 0.0% ☆	14	E1.13	Prędkość dla stanu 13	-100.0% do 100.0%	0.0%	☆
17 E1.16 Tryb sterowania PLC 18 E1.17 Sterowanie PLC - Cyfra jedności: Pamięć przy wyłaczeniu zasilania 0: Wyłączenie bez zapamiętanie 1: Wyłączenie z zapamiętaniem Cyfra dziesiątek Pamięć przy vzatrzymaniu 0: Zatrzymanie bez zapamiętania 1: Zatrzymanie bez zapamiętania 1: Zatrzymanie z zapamiętania 1:	15	E1.14	Prędkość dla stanu 14	-100.0% do 100.0%	0.0%	☆
Tryb sterowania PLC	16	E1.15	Prędkość dla stanu 15	-100.0% do 100.0%	0.0%	☆
wyłaczeniu zasilania 0: Wyłączenie bez zapamiętania 1: Wyłączenie z zapamiętanie 1: Wyłączenie z zapamiętanie 1: Wyłączenie z zapamiętanie 1: Wyłączenie z zapamiętanie 0: Zatrzymanie 0: Zatrzymanie 0: Zatrzymaniu 0: Zatrzymaniu 0: Zatrzymaniu 0: Zatrzymaniu 0: Zatrzymanie bez zapamiętania 1: Zatrzymanie z zapamiętania 1: Zatrzymaniu 0: Zatrzymaniu	17	E1.16	Tryb sterowania PLC	zakończeniu programu 1: Utrzyanie wartości końcowej po zakończeniu programu	0	☆
20 E1.19 Zestaw parametrow przyspieszania i zwalniania dla stanu 0 0 do 3 0 ☆ 21 E1.20 T1 - Czas pracy dla stanu 1 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 22 E1.21 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 0 do 3 0 ☆ 23 E1.22 T2 - Czas pracy dla stanu 2 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 0 do 3 0 ☆	18	E1.17		wyłaczeniu zasilania 0: Wyłączenie bez zapamiętania 1: Wyłączenie z zapamiętaniem Cyfra dziesiątek Pamięć przy zatrzymaniu 0: Zatrzymanie bez zapamiętania 1: Zatrzymanie z	00	☆
20 E1.19 przyspieszania i zwalniania dla stanu 0 0 do 3 0 ★ 21 E1.20 T1 - Czas pracy dla stanu 1 0.0s(h) do 6500.0s(h) 0.0s(h) ★ 22 E1.21 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 0 do 3 0 ★ 23 E1.22 T2 - Czas pracy dla stanu 2 0.0s(h) do 6500.0s(h) 0.0s(h) ★ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 0 do 3 0 ★	19	E1.18	T0 - Czas pracy dla stanu 0	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
22 E1.21 Zestaw parametrow przyspieszania i zwalniania dla stanu 1 0 do 3 0 ☆ 23 E1.22 T2 - Czas pracy dla stanu 2 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 0 do 3 0 ☆	20	E1.19	przyspieszania i zwalniania	0 do 3	0	☆
22 E1.21 przyspieszania i zwalniania dla stanu 1 0 do 3 0 ☆ 23 E1.22 T2 - Czas pracy dla stanu 2 0.0s(h) do 6500.0s(h) 0.0s(h) ☆ 24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 0 do 3 0 ☆	21	E1.20	T1 - Czas pracy dla stanu 1	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
24 E1.23 Zestaw parametrow przyspieszania i zwalniania dla stanu 2 0 do 3 0 ☆	22	E1.21	przyspieszania i zwalniania	0 do 3	0	☆
24 E1.23 przyspieszania i zwalniania dla stanu 2 0 do 3 0 ☆	23	E1.22	T2 - Czas pracy dla stanu 2	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
25 E1 24 T2 Cross pressy dle stepny 2 0.0c/b) de (500.0c/b) 0.0c/b) 4	24	E1.23	przyspieszania i zwalniania	0 do 3	0	☆
23 E1.24 15 - Czas pracy dia statiu 5 0.0s(n) do 0500.0s(n) 0.0s(n) \times	25	E1.24	T3 - Czas pracy dla stanu 3	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
26 E1.25 Zestaw parametrow przyspieszania i zwalniania dla stanu 3 0 do 3 0 ☆	26	E1.25	przyspieszania i zwalniania	0 do 3	0	*
27 E1.26 T4 - Czas pracy dla stanu 4 0.0s(h) do 6500.0s(h) 0.0s(h) ☆	27	E1.26	T4 - Czas pracy dla stanu 4	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
	28	E1.27	Zestaw parametrow	0 do 3	0	☆

		przyspieszania i zwalniania dla stanu 4			
29	E1.28	T5 - Czas pracy dla stanu 5	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
30	E1.29	Zestaw parametrow przyspieszania i zwalniania dla stanu 5	0 do 3	0	☆
31	E1.30	T6 - Czas pracy dla stanu 6	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
32	E1.31	Zestaw parametrow przyspieszania i zwalniania dla stanu 6	0 do 3	0	☆
33	E1.32	T7 - Czas pracy dla stanu 7	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
34	E1.33	Zestaw parametrow przyspieszania i zwalniania dla stanu 7	0 do 3	0	☆
35	E1.34	T8 - Czas pracy dla stanu 8	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
36	E1.35	Zestaw parametrow przyspieszania i zwalniania dla stanu 8	0 do 3	0	☆
37	E1.36	T9 - Czas pracy dla stanu 9	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
38	E1.37	Zestaw parametrow przyspieszania i zwalniania dla stanu 9	0 do 3	0	☆
39	E1.38	T10 - Czas pracy dla stanu 10	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
40	E1.39	Zestaw parametrow przyspieszania i zwalniania dla stanu 10	0 do 3	0	☆
41	E1.40	T11 - Czas pracy dla stanu 11	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
42	E1.41	Zestaw parametrow przyspieszania i zwalniania dla stanu 11	0 do 3	0	☆
43	E1.42	T12 - Czas pracy dla stanu 12	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
44	E1.43	Zestaw parametrow przyspieszania i zwalniania dla stanu 12	0 do 3	0	☆
45	E1.44	T13 - Czas pracy dla stanu 13	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
46	E1.45	Zestaw parametrow przyspieszania i zwalniania dla stanu 13	0 do 3	0	☆

47	E1.46	T14 - Czas pracy dla stanu 14	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
48	E1.47	Zestaw parametrow przyspieszania i zwalniania dla stanu 14	0 do 3	0	☆
49	E1.48	T15 - Czas pracy dla stanu 15	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
50	E1.49	Zestaw parametrow przyspieszania i zwalniania dla stanu 15	0 do 3	0	☆
51	E1.50	Jednostka czasu pracy dla sterowania PLC	0: S (sekundy) 1: H (godziny)	0	☆
52	E1.51	Źródło wartości zadanej prędkości dla stanu 0	0: Podana w E1.00 1: Wejście analogowe AI1 3: Potencjometr klawiatury 4: Szybkie impulsowe wejście dwustanowe 5: Regulator PID 6: Częstotliwość zadana z klawiatury (F0.01) modyfikowalna klawiszami ▲/▼ 7. Wejście analogowe AI3	0	☆

5-1-16. Grupa E2 - Regulator PID

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	E2.00	Źródło wartości zadanej PID	0: Wartość w E2.01 1: Wejście analogowe AI1 2: Wejście analogowe AI2 3: Potencjometr klawiatury 4: Szybkie impulsowe wejście dwustanowe 5: Port komunikacyjny RS- 485 6: Komenda wielostanowa	0	☆
2	E2.01	Wartość zadana PID z klawiatury	0.0% do 100.0%	50.0%	☆
3	E2.02	Źródło zmiennej procesowej PID	0: Wejście analogowe AII 2: Potencjometr klawiatury 4: Szybkie impulsowe wejście dwustanowe 5: Port komunikacyjny RS- 485	0	*
4	E2.03	Kierunek działania PID	0: Na wprost 1: Odwrotnie	0	☆

5	E2.04	Współczynnik skalowania dla wartości zadanej i sprzężenia zwrotnego	0 do 65535	1000	☆
6	E2.05	Maksymalna częstotliwość PID przy pracy "do tyłu"	0.00 do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
7	E2.06	Strefa martwa uchybu regulacji PID	0.0% do 100.0%	0%	☆
8	E2.07	Wartość maksymalna części różniczkującej PID	0.00% do 100.00%	0.10%	☆
9	E2.08	Stała filtru wartości zadanej PID	0.00s do 650.00s	0.00s	☆
10	E2.09	Stała filtru wartości zmiennej procesowej PID	0.00s do 60.00s	0.00s	☆
11	E2.10	Stała filtru wyjścia PID	0.00s do 60.00s	0.00s	☆
12	E2.11	Próg detekcji utraty zmiennej procesowej PID	0.0%: Bez kontroli utraty 0.1% do 100.0%	0.0%	☆
13	E2.12	Czas detekcji utraty zmiennej procesowej PID	0.0s do 20.0s	0.0s	☆
14	E2.13	Wzmocnienie PID - KP1	0.0 do 200.0	80.0	☆
15	E2.14	Czas zdwojenia PID - Ti1	0.01s do 10.00s	0.50s	☆
16	E2.15	Czas wyprzedzenia PID - Td1	0.00s do 10.000s	0.000s	☆
17	E2.16	Wzmocnienie PID - KP2	0.0 do 200.0	20.0	☆
18	E2.17	Czas zdwojenia PID - Ti2	0.01s do 10.00s	2.00s	☆
19	E2.18	Czas wyprzedzenia PID - Td2	0.00 do 10.000	0.000s	☆
20	E2.19	Warunki przełaczenia parametrów PID	O: Bez przełączenia 1: Przełączenie przez listwę zaciskową 2: Automatyczne przełaczenie zgodnie z uchybem regulacji.	0	☆
21	E2.20	Wartość uchybu 1 dla przełączenia parametrów PID	0.0% do E2.21	20.0%	☆
22	E2.21	Wartość uchybu 2 dla przełączenia parametrów PID	E2.20 do 100.0%	80.0%	☆
23	E2.22	Tryb pracy integratora PID	Cyfra jedności: Integrator separowany 0: Zabronione	00	☆

			1: Dozwolone Cyfra dziesiątek: Zachowanie integratora po osiągnięciu ograniczenia na wyjściu 0: Kontynuacja pracy 1: Zatrzymanie		
24	E2.23	Wartość inicjująca PID	0.0% do 100.0%	0.0%	☆
25	E2.24	Czas utrzymywania wartości inicjującej PID	0.00s do 360.00s	0.00s	☆
26	E2.25	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do przodu"	0.00% do 100.00%	1.00%	☆
27	E2.26	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do tyłu"	0.00% do 100.00%	1.00%	☆
28	E2.27	Tryb pracy PID w stanie wylaczenia	0: Nie pracuje 1: Pracuje	1	☆
29	E2.29	Opcja automatycznego obniżenia częstotliwości PID	0: Zabroniona 1: Dozwolona	1	☆
30	E2.30	Częstotliwość wstrzymania zwalniania PID	0.00Hz do F0.19 (częstotliwość maksymalna)	25	☆
31	E2.31	Czas detekcji dla automatycznego obniżenia częstotliwości PID	0s~3600s	10	☆
32	E2.32	Pojemność licznika upływu czasu	10~500	20	☆

5-1-17. Grupa E3 – Dwustanowe wejścia i wyjścia wirtualne

	Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
ſ	1	E3.00	Wybór funkcji wejścia VDI1	0 do 50	0	*
	2	E3.01	Wybór funkcji wejścia VDI2	0 do 50	0	*
	3	E3.02	Wybór funkcji wejścia VDI3	0 do 50	0	*
ſ	4	E3.03	Wybór funkcji wejścia VDI4	0 do 50	0	*
ſ	5	E3.04	Wybór funkcji wejścia VDI5	0 do 50	0	*
	6	E3.05	Stan wejścia VDI	Cyfra jedności: VDII 0: Wyłączone 1: Załaczone Cyfra dziesiątek: VDI2	00000	*

			Cyfra setek: VDI3 Cyfra tysięcy: VDI4 Cyfra 10tysięcy: VDI5		
7	E3.06	Źródło sygnału dla VDI	Cyfra jedności: VDII 0: Wyjście VDOx 1: Określone w E3.05 Cyfra dziesiątek: VDI2 Cyfra setek: VDI3 Cyfra tysięcy: VDI4 Cyfra 10tysięcy: VDI5	11111	*
8	E3.07	Wybór funkcji wejścia AI1 jako wejście dwustanowe DI	0 do 50	0	*
9	E3.10	Wybór logiki wejść AI w użyciu jako DI	Cyfra jedności: AII 0: Poziom wysoki 1:Poziom niski	000	*
10	E3.11	Wybór funkcji wyjścia VDO1	0 do 40	0	☆
11	E3.12	Wybór funkcji wyjścia VDO2	0 do 40	0	☆
12	E3.13	Wybór funkcji wyjścia VDO3	0 do 40	0	☆
13	E3.14	Wybór funkcji wyjścia VDO4	0 do 40	0	☆
14	E3.15	Wybór funkcji wyjścia VDO5	0 do 40	0	☆
15	E3.16	Wybór logiki wyjść VDO	Cyfra jedności: VDO1 0: Pozytywna 1: Negatywna Cyfra dziesiątek: VDO2 Cyfra setek: VDO3 Cyfra tysięcy: VDO4 Cyfra 10tysięcy: VDO5	00000	꺄
16	E3.17	Opóźnienie wyjśćia VDO1	0.0s do 3600.0s	0.0s	☆
17	E3.18	Opóźnienie wyjśćia VDO2	0.0s do 3600.0s	0.0s	☆
18	E3.19	Opóźnienie wyjśćia VDO3	0.0s do 3600.0s	0.0s	☆
19	E3.20	Opóźnienie wyjśćia VDO4	0.0s do 3600.0s	0.0s	☆
20	E3.21	Opóźnienie wyjśćia VDO4	0.0s do 3600.0s	0.0s	☆

5-1-18. Grupa E8 - Maszyny do cięcia - grupa specjalna

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	E8.00	Aktywacja funkcji obsługi maszyn do cięcia	0: Wyłącz. 1: Załączone	0	*
2	E8.01	Czas ruchu posuwistego "do przodu"	0.0 do 600.0s	4.0s	☆
3	E8.02	Czas ruchu wstecznego "do tyłu"	0.0 do 600.0s	2.0s	☆

4	E8.03	Detekcja osiągnięcia częstotliwości 0 Hz	0: Wyłącz. 1: Załączona	0	*
5	E8.04	Poziom sygnalizacji dla wysokiej częstotliwości	0 do 100%	99%	☆
6	E8.05	Poziom wyłączenia sygnalizacji wysokiej częstotliwości	0 do 100%	99%	☆
7	E8.06	Czas opóźnienia sygnalizacji wysokiej częstotliwości	0.0 do 20.0s	0.0s	☆

5-1-19. Grupa b0 - Parametry silnika

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	b0.00	Wybór typu silnika	0: Standardowy silnik asynchroniczny 1: Silnik asynchroniczny do pracy z falownikami	0	*
Figure	b0.01	Moc nominalna	0.1kW do 1000.0kW	Zależnie od modelu	*
Figure	b0.02	Napięcie nominalne	1V do 2000V	Zależnie od modelu	*
Figure	b0.03	Prąd nominalny	0.01A do 655.35A (moc falownika ≤ 55kW) 0.1A do 6553.5A (moc falownika > 55kW)	Zależnie od modelu	*
5	b0.04	Częstotliwość nominalna	0.01Hz do F0.19 (częstotliwość maksymalna)	Zależnie od modelu	*
6	b0.05	Obroty nominalne	1rpm do 36000rpm	Zależnie od modelu	*
7	b0.06	Rezystancja stojana silnika asynchronicznego	0.001Ω do 65.535Ω (moc falownika <= $55kW$) 0.0001Ω do 6.5535Ω (moc falownika > $55kW$)	Dane silnika	*
8	b0.07	Rezystancja wirnika silnika asynchronicznego	0.001Ω do 65.535Ω (moc falownika <= $55kW$) 0.0001Ω do 6.5535Ω (moc falownika > $55kW$)	Dane silnika	*
9	b0.08	Indukcyjność upływu silnika asynchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika > 55kW)	Dane silnika	*
10	b0.09	Indukcyjność wzajemna silnika asynchronicznego	0.1mH do 6553.5mH (moc falownika <= 55kW) 0.01mH do 655.35mH (moc	Dane silnika	*

str. 51

			falownika> 55kW)		
11	b0.10	Prąd jałowy silnika asynchronicznego	0.01A do b0.03 (moc falownika <= 55kW) 0.1A do b0.03 (moc falownika> 55kW)	Dane silnika	*
12	b0.27	Tryb autostrojenia silnika	0: Wyłączone 1: Statyczna autodetekcja parametrów silnika asynchronicznego 2: Zaawansowana autodetekcja parametrów silnika asynchronicznego asynchronicznego	0	*

5-1-20. Grupa y0 - Zarządzanie

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1	y0.00	Inicjalizacja parametrów	0: Wyłączone 1: Przywrócenie fabrycznych wartości parametrów, bez parametrów silnika 2: Czyszczenie historii 3: Przywrócenie fabrycznych wartości parametrów wraz z parametrami silnika 4: Kopia zapasowa bieżących parametrów użytkownika 501: Odtworzenie parametrów użytkownika z kopii zapasowej	0	*
2	y0.01	Hasło użytkownika	0 do 65535	0	*
3	y0.02	Wybór wyświetlania grupy funkcji	Cyfra jedności: Grupa d 0: Nie wyświetlana 1: Wyświetlana Cyfra dziesiątek: Grupa E Cyfra setek: Grupa b Cyfra tysięcy: Grupa y Cyfra 10tysięcy: Grupa L	11111	*
4	y0.03	Wybór wyświetlania grupy parametrów użytkownika	Cyfra jedności: Zarezerwowane Cyfra dziesiątek : Parametry zmienne użytkownika 0: Nie wyświetlane 1: Wyświetlane	00	☆
0.	y0.04	Możliwość zmiany parametrów	0: Dozwolona 1: Parametry nie modyfikowalne	0	☆

5-1-21. Grupa y1 - Usterki

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
5	y1.00	Kod pierwszego błędu	0: Brak usterki 1: Błąd ogólny	-	•
1.	y1.01	Typ drugiej usterki	Przekroczenie prądu przy rozpędzaniu	-	•
2.	y1.02	Typ trzeciej (lub ostatniej) usterki	3: Przekroczenie prądu przy zwalnianiu 4: Przekroczenie prądu przy pracy ze stała prędkością 5: Przekroczenie napięcia przy rozpędzaniu 6: Przekroczenie napięcia przy zwalnianiu 7: Przekroczenie napięcia przy zwalnianiu 7: Przekroczenie napięcia przy pracy ze stała prędkością 8: Napięcie sterownicze poza zakresem 9: Niskie napięcie zasilania 10: Przeciążenie falownika 11: Przeciążenie silnika 12: Utrata fazy na wejściu 13: Utrata fazy na wejściu 13: Utrata fazy na wejściu 14: Przegrzanie falownika 15: Wyłączenie zewnętrzne 16: Nieprawidłowa komunikacja 17: Uszkodzenie stycznika 18: Błąd pomiaru prądu 19: Nieprawidłowości autodetekcji parametrów silnika 20: Błąd karty enkodera PG 21: Nieprawidłowy zapis lub odczyt wartości parametrów 22: Awaria urządzenia 23: Zwarcie doziemne silnika 24: Nieużywane 25: Nieużywane 26: Upływ czasu pracy silnika 27: Błąd użytkownika nr 1 28: Błąd użytkownika nr 1 28: Błąd użytkownika nr 2 29; Osiągnięcie zadanego czasu pracy silnika 30: Spadek obciążenia 31: Utrata sygnału sprzężenia zwrotnego PID podczas pracy regulatora 40: Przekroczenie prądu wyjściowego 41: Przełączenie silnika podczas pracy faolwnika 42: Zbyt duże wahania prędkości	-	•

str. 53

str. 55

1				1	
		43: Przekroczona pęć silnika 45: Przekroczona tem silnika 51: Błąd pozycji inicj COF: Brak komunika falownika z klawi	nperatura jalnej icji		
3.	y1.03	Częstotliwość podczas trzeciej (lub ostatniej) usterki	-	-	•
4.	y1.04	Prąd podczas trzeciej (lub ostatniej) usterki	-	-	•
5.	y1.05	Napięcie na szynie prądu stałego DC podczas trzeciej (lub ostatniej) usterki	-	-	•
6.	y1.06	Stan sygnałów wejściowych podczas trzeciej (lub ostatniej) usterki	-	-	•
7.	y1.07	Stan sygnałów wyjściowych podczas trzeciej (lub ostatniej) usterki	-	-	•
8.	y1.09	Nieużywane	-	-	•
9.	y1.10	Czas zasilania podczas trzeciej (lub ostatniej) usterki		-	•
10.	y1.13	Czas pracy podczas trzeciej (lub ostatniej) usterki	-	-	•
11.	y1.14	Nieużywane	-	-	•
12.	y1.15	Nieużywane		-	•
13.	y1.16	Częstotliwość podczas drugiej usterki		-	•
14.	y1.17	Prąd podczas drugiej usterki	-	-	•
15.	y1.19	Napięcie na szynie prądu stałego DC podczas drugiej usterki	-	-	•
16.	y1.20	Stan sygnałów wejściowych podczas drugiej usterki	-	-	•
17.	y1.23	Stan sygnałów wyjściowych podczas drugiej usterki	-	-	•
18.	y1.24	Nieużywane	-	-	•
19.	y1.25	Czas zasilania podczas drugiej usterki		-	•
20.	y1.26	Czas pracy podczas drugiej usterki	-	-	•
21.	y1.27	Nieużywane	-	-	•

22.	y1.29	Nieużywane		-	•
23.	y1.30	Częstotliwość podczas pierwszej usterki		-	•
24.		Prąd podczas pierwszej usterki	-		
25. Napięcie na szynie prądu stałego DC podczas pierwszej usterki		-			
6	6 Stan sygnałów wejściowych podczas pierwszej usterki		-		
7		Stan sygnałów wyjściowych podczas pierwszej usterki	-		
8	8 Nieużywane		-		
9	9 Czas zasilania podczas pierwszej usterki				
10		Czas pracy podczas pierwszej usterki	-		

5-2. Opis parametrów funkcji

5-2-1. Parametry podstawowe d0.00-d0.39

Grupa do jest używana do obserwacji informacji statusowych pracy falownika. Użytkownik może wyświetlić te informacje Informacje te mogą być wyświetlane na panelu lub przekazane zdalnie do komputera poprzezport komunikacyjny RS485.

Kod funkcji	Nazwa	Jednostka
d0.00	Częstotliwość pracy (Hz)	0.01Hz
Aktualna częst	totliwość wyjściowa falownika	
d0.01	Częstotliwość zadana (Hz)	0.01Hz
Aktualna wart	ość częstotliwości zadanej	
d0.02	Napięcie DC (V)	0.1V
Zmierzona, ak	tualna wartość napięcia na szynie prądu stałego DC	•
d0.03	Napięcie na wyjściu (V)	1V
Aktualne napie	ęcie na zaciskach wyjściowych falownika	
d0.04	Prąd na wyjściu (A)	0.01A
Aktualny prąd	wyjściowy falownika	
d0.05	Moc na wyjściu (kW)	0.1kW
Aktualna moc	na wyjściu falownika	
d0.06	Moment na wyjściu (%)	0.1%
Aktualny mon	nent na wyjściu falownika wyrażony w %	
d0.07	Stan wejść DI	-
Aktualny star kodowania na bita	n wejść dwustanowych DI. Tabela przedstawia stan każdego z ch:	z wejść i sposób

Wortość	pozostała czas pracy do sterowania przebiegiem czasowym	
d0.21	Predkość liniowa	1m/Min
	e wartość prędkości liniowej na szybkim wejściu impulsowym DI5,	
	ią impulsów na minutę i wartością w E0.07	zgodine z
d0.22	Aktualny czas pracy falownika	13.65
	e całkowity czas pracy falownika	1Min
d0.23	Aktualny czas pracy silnika	0.114:
	e czas parcay silnika	0.1Min
d0.24	Częstotliwość impulsów na szybkim wejściu HDI(DI5)	1Hz
	ie częstotliwość impulsów na szybkim wejściu HDI(DI5).	IIIZ
d0.25	Wartość zadana z łącza komunikacyjnego RS485	0.01%
	iwość, moment, lub inna wartość sterująca ustawiana przez port kom	
RS485	twose, moment, tuo mma wartose sterająca asawiana pizeż port kom	umacjinj
d0.27	Częstotliwość główna	0.01Hz
Wartość	głównej częstotliwości zadanej wybranej w F0.03.	
d0.28	Częstotliwość pomocnicza	0.01Hz
Wartość	pomocniczej częstotliwości zadanej wybranej w F0.04.	•
d0.29	Wartość zadana momentu (%)	0.1%
Wyświet	la wartość zadaną momentu w trybie sterowania momentem	
d0.35	Stan pracy falownika	-
Wyświe	tla informacje o pracy, postoju i innych parametrach statusowych.	Format danych
jest następu	iacy:	·
Bit0	0: Stop; 1: "Praca "do przodu"; 2: "Praca "do tyłu"	
Bit1		
Bit2	0: Stała prędkość 1: Rozpędzanie 2: Zwalnianie	
Bit3		
	0: Normalne napięcie na szynie DC	
Bit4	1: Niskie napięcie na szynie DC	
d0.36	Typ falownika	_
1.G (stały m	noment obciążenia)	
d0.37	Napięcie na wejściu AI1 przed korekcją	0.01V
d0.39	Napięcie na potencjometrze klawiatury przed korekcją	0.01V

5-2-2. Funkcie podstawowe F0.00-F0.27

Code	Parameter name	Setting range		Factory setting	Change Limit
	C	Wektorowe bez sprzężenia	0		
F0.00	Sposób sterowania silnikiem	Rezerwa	1	2	*
	Simikiciii	Sterowanie V/F	2		

0: Wektorowe bez sprzężenia

Sterowanie wektorowe w pętli otwartej dla zaawansowanych apikacji sterujących. Jeden falownik może zasilać tylko jeden silnik.

2:Sterowanie V/F control

Sterowanie stosowane dla aplikacji wymagających mniejszej precyzji takich jak zastosowania pompowe i wentylatorowe. Falownik może zasilać więcej niż jeden silnik jednocześnie.

Uwaga! W trybie wektorowym, moce falownika i silnika nie powinny różnić się znacząco. Moc falownika może być wyższa od mocy silnika co najwyżej o dwa stopnie, lub mniejsza maksymalnie o jeden stopień. W przeciwnym razie jakość regulacji może być pogorszona lub nie działać poprawnie.

F0.01	Wartość zadana obrotów z klawiatury	0.00 Hz do F0.19 (częstotliwości max.).	50.00Hz	*
-------	--	---	---------	---

W trybie cyfrowego zadawania obrotów lub motopotencjometru (klawisze ▲▼)
wartośćparametru jest wartością inicjującą wartości zadanej obrotów.

F0.02 Rozdzielczość wartości zadanej obrotów 0.1Hz 1 0.01Hz 2 2 ★

Parametr używany do określenia rozdzielczości odnoszących się do częstotliwości parametrów.

Przy rozdzielczości 0.1Hz, maksymalna częstotliwośćwyjściowa wynosi 3200Hz.

Przy rozdzielczości 0.01Hz, maksymalna częstotliwośćwyjściowa wynosi 320.00Hz.

Uwaga! Modyfikowanie wartości parametru skutkuje zmianą ilości wyświetlanych miejsc po

porzecii	iku wszystkien po	wiązanych parametrow wraz ze zmianą ich wartosci.			
		Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość nie jest zapamiętywana	0		
		Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość jest zapamiętywana	1		
	Zródło głównej	Wejście analogowe AI1	2		
F0.03	wartości zadanej obrotów	Rezerwa	3	1	*
	obiolow	Potencjometr klawiatury	4		
		Szybkie wejście impulsowe HDI	5		
		Sterowanie wielostanowe	6		
		Proste ustawienie PLC	7		
		Regulator PID	8		
		Port komunikacyjny RS485	9		

0: Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość nie jest zapamiętywana.

Watrtością inicjującą jest F0.01. Ustawiona częstotliwość zadana może byćzmieniana przy użyciu klawiszy ▲ i ▼ (lub poprzez zdefiniowanie analogicznych im funkcji na wejściach dwustanowych).

Po zaniku i powrocie zasilania, ustawienie sprzed zaniku napięcia nie jest zapamietywane, a nowa wartość pobrana z F0.01.

 Analogicznie jak 0. Po zaniku i powrocie zasilania, ustawienie sprzed zaniku napięcia jest zapamietane i stanowi ono początkową wartość zadaną obrotów.

Prosimy zauważyć, że F0.09 służy do wyboru, czy zmiany wartości zadanej obrotów w trybie cyfrowego zadawania prędkości będą zapamiętywane po wyłaczeniu falownika czy pomijane. Ponadto, F0.09 nie jest związany z zanikiem napięcia a z normalnym wyłaczeniem falownika.

- 2: Wejście analogowe AI1
- 4: Potencjometr klawiatury
- 6: Ustawienie wielostanowe

W trybie wyboru wielostanowego, różne kombinacje sygnałów na wejściach dwustanowych odpowiadają różnym częstotliwościom zadanym Falownik PI160 pozwala skonfigurować 4 wielostanowe zaciski dla osiągnięcia 16-tu wielostanowych prędkości zadanych. Wartości prędkości zadanych konfiguruje się w grupie E1. Wartości te odnoszą się procentowo do maksymalnej częsttliwości zadeklarowanej w F0.19. W tym trybie w grupie F1 należy skonfigurować dowolne wejścia DI jako "wejścia wielostanowe" parametrami 12, 13, 14 i 15. .

7: Proste ustawienie PLC

W tym trybie pracy częstotliwośc zadana jest przełączana pomiędzy 16-toma zdefiniowanymi w grupie E1 wartościami. Użytkownik może zadeklarować czas utrzymywania się każdej z 16-tu prędkości oraz czas rozpędzania i zwalniania podczas przechodzenia pomiędzy nimi.

8: Regulator PID

Źródłem wartości zadanej jest wyjście regulatora PID. Zasadniczo funkcja jest używana w zamkniętej pętli sprzężenia zwrotnego takiej jak sterowanie ciśnieniem, momentem i innymi parametrami. Wybierając tryb pracy z PID, należy ustawić parametry regulatora w grupie E2.

9: I	Port komunikacyjny RS4	85			
Pl	[160 obsługuje protokół]	ModBus. Korzystanie z tego trybu jest możliw	e po		
zainsta	lowaniu dodtakowej kar	ty RS485.			
		Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość nie jest zapamiętywana	0		
	Źródło pomocniczej	Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość jest zapamiętywana	1		
F0.04	wartości zadanej	Wejście analogowe AI1	2	0	*
	obrotów	Rezerwa	3		
		Potencjometr klawiatury	4		
		Szybkie wejście impulsowe HDI	5		
		Ustawienie wielostanowe	6		
		Proste ustawienie PLC	7		
		Regulator PID	8		

Użycie analogicznie jak F0.03.

Jeżeli pomocnicze źródło wartości zadanej jest używane wspólnie z głównym należy zwrócić uwagę na:

Port komunikacyjny RS485

- Jeśli żródłem pomocniczej wartości zadanej jest źródło cyfrowe, wartość zadana obrotów z klawiatury F0.01 nie jest używana, a regulacja prędkości może odbywać się za pomocą klawiszy ▲,▼ lub odpowiednio zaprogramowanych wejść dwystanowych. w odniesieniu do czestotliwości głównej.
- Jeśli żródłem pomocniczej wartości zadanej jest źródło analogowe (AII, potencjometr klawiatury) lub wejście impulsowe, zakres pomocniczej wartości zadanej ustawiany jest w zakresie do 100% parametrami F0.05 i F0.06.
- Jeśli żródłem pomocniczej wartości zadanej jest wejście impulsowe, użycie jest analogiczne jak wejścia analogowego.

Uwaga !: Oba źródła wartości zadanej - główne i pomocnicze, nie mogą być skonfigurowane na ten sam kanał tzn. F0.03 i F0.04 nie moga mieć tych samych wartości.

SHOTH	Saro wane na ten sam i	tunur tem rotot rroto inte mog	,q mico ej em san			,
	G (1 1 · · ·	W stosunku do częstotliwości ma	aksymalnej	0		
F0.05	Sposób odniesienia dla źródła pomocniczej	W stosunku do źródła 1 głównej częstotliwości zadanej		1	0	☆
	wartości zadanej	2. W stosunku do źródła 2 głównej		2		1
	J	częstotliwości zadanej.		1		
F0.06	Zakres częstotliwości obrotów	pomocniczej wartości zadanej	0% do 150%	100)%	☆

Jeżeli źródło częstotliwości jest ustawione jako jeden z wyborów F0.07 (1, 3 lub 4), te dwa parametry wyznaczają zakres nastawy źródła częstotliwości pomocniczej.

F0.05 jest używane do określenia obiektu odpowiadającego zakresowi ustawień źródła pomocniczej wartości zadanej jako częstotliwości maksymalnej albo do źródła głównej wartości zadanei.

Jeśli w F0.05 wybrano opcję 1, zakres nastaw źródła pomocniczego, będzie podlegać zmianom ustawień głównego źródła częstotliwości, ma to zastosowanie jeżeli zakres nastaw pomocniczego źródła jest mniejszy niż zakres nastwa źródła podstawowego.

Jeśli w F0.05 wybrano opcję 2, zakres nastaw źródła pomocniczego, będzie podlegać zmianom ustawień głównego źródła częstotliwości, ma to zastosowanie jeżeli zakres nastaw pomocniczego źródła jest większy niż zakres nastwa źródła podstawowego.

Rekomendacja: główne źródło częstotliwości (F0.03) przyjmuje ustawienie analogowe, pomocnicze źródło częstotliwości (F0.04) przyjmuje ustawienie cyfrowe.

9

		Cyfra jedności	Wybór źródła częstotliwości			
		Główne źródło	częstotliwości	0		
			metyczna pomiędzy głównym a źródłem częstotliwości (wynik ra dziesiątek)	1		
			omiędzy głównym a źródłem częstotliwości	2		
	Sposób	częstotliwości	omiędzy głównym źródłem a zależnością arytmetyczną wnym a pomocniczym źródłem	3		
F0.07	przetwarzania źródła częstotliwości zadanej	częstotliwości	omiędzy pomocniczym źródłem a zależnością arytmetyczną wnym a pomocniczym źródłem	4	00	☆
		Cyfra dziesiątek	Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości			
		Główne+pomo	ocnicze	0		
		Główne-pomo	cnicze	1		
		Max(główne,p	•	2		
		Min (główne,p		3		
		Główne*pomo maksymalna	ocnicze / częstotliwość	4		

Wartość częstotliwości zadanej jest uzyskana przez powiązanie głównego i pomocniczego źródła wartości zadanei.

Cyfra jedności: Wybór źródła częstotliwości:

- 0: Główne źródło czestotliwości
- 1: Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości (wynik wyboru w Cyfra dziesiątek).
- 2: Przełączanie pomiędzy głównym a pomocniczym źródłem czestotliwości odbywa się gdy na wejściu dwustanowym wybrana jest funkcja 18 (przełaczenie czestotliwości). Jeśli na wejściu jest stan niski (0), wybierane jest źródło główne, jeśli stan wysoki (1) - źródło pomocnicze.
- 3: Przełączanie pomiędzy głównym źródłem częstotliwości a zależnością arytmetyczną pomiedzy głównym a pomocniczym źródłem czestotliwości, odbywa się gdy na wejściu dwustanowym wybrana jest funkcja 18 (przełaczenie czestotliwości). Jeśli na wejściu jest stan niski (0), wybierane jest źródło główne, jeśli stan wysoki (1) - zależność arytmetyczna pomiedzy głównym a pomocniczym źródłem częstotliwości.
- 4: Przełączanie pomiędzy pomocniczym źródłem czestotliwości a zależnością arytmetyczną pomiedzy głównym a pomocniczym źródłem czestotliwości, odbywa sie gdy na wejściu dwustanowym wybrana jest funkcja 18 (przełączenie częstotliwości). Jeśli na wejściu jest stan niski (0), wybierane jest źródło pomocnicze, jeśli stan wysoki (1) - zależność arytmetyczna pomiedzy głównym a pomocniczym źródłem czestotliwości.

Cyfra dziesiątek: Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem czestotliwości

- 0: Główne+pomocnicze. Suma wartości obu źródeł.
- 1: Główne-pomocnicze. Różnica wartości obu źródeł
- 2: Max(główne,pomocnicze). Większa z wartości.
- 3: Max(główne,pomocnicze). Mniejsza z wartości.

Ponadto, jeśli wybrana jest zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem czestotliwości, w parametrze F0.08 można ustalić przesuniecie dla wyniku tei zależności. Funkcja ta pozwala reagować elastycznie na różne potrzeby.

4: Główne*pomocnicze / czestotliwość maksymalna. Iloczyn obu wartości podzielony przez częstotliwość maksymalną.

F0.08	Przesunięcie wyniku zależności arytmetycznej głównego i pomocniczego źródła częstotliwo	0.00Hz do F0.19 (częstotliwość maksyma	lna)	0.00Hz	☆
Funkcja jest używana jeżeli źródłem częstotliwości zadanej jest zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości. Wartość parametru jest używana jako przesunięcie wyniku tego działania.					
E0.00	Użycie pamięci dla częstotliwości zadawanej	Częstotliwość nie zapamietywana	0		
F0.09	cyfrowo po wyłączeniu zasilania	Częstotliwość zapamietywana	1	Ī	☆
Fu	nkcia działa ody wybrane jest cyfr	owe zadawanie czestotliwośc	·i		

Funkcja działa gdy wybrane jest cyfrowe zadawanie częstotliwości.

"Czestotliwość nie zapamietywana " oznacza, że wartość czestotliwości zadanej po zatrzymaniu falownika powróci do wartości z parametru F0.01. Zmiany poczynione klawiszami ▲/▼ lub za pomoca synałów na analogocznie skonfigurowanych weiściach dwustanowych zostana pominiete.

"Czestotliwość zapamietywana" oznacza, że wartość czestotliwości zadanej po zatrzymaniu falownika pozostanie niezmienna w stosunku do wartości sprzed zatrzymania. Zmiany poczynione klawiszami ▲/▼ lub za pomoca synałów na analogocznie skonfigurowanych wejściach dwustanowych zostaną zachowane.

E0 10	Parametr zmieniany za pomocą	Częstotliwość pracy	0	0	_
F0.10	klawiszy ▲/ ▼	Częstotliwość zadana	1	U	*

Funkcja działa gdy wybrane jest cyfrowe zadawanie częstotliwości.

Parametr określa, że zmiany poczynione klawiszami ▲/▼ lub za pomoca synałów na analogocznie skonfigurowanych wejściach dwustanowych dotyczą albo częstotliwości pracy albo zadanej. Różnica polega na tym, że podczas rozpędzania lub zwalniania czestotliwość pracy nie iest iednakowa z czestotliwościa zadana. Parametr pozwala na wybór czestotliwości.

		Klawiatura (LED wyłączona)	0		
		Listwa zaciskowa (LED zapalona)	1		
F0.11	Źróło sygnałów	Port komunikacyjny RS485 (LED miga)	2	_	₩.
10.11	sterujących	Klawiatura+ Port komunikacyjny RS485	3	U	^
		Klawiatura+ Port komunikacyjny RS485+ Listwa zaciskowa	4		

Wybór źródła wejściowych komend sterujących takich jak: Start, Stop, praca "do przodu" praca "do tyłu", tryb Jog itd.

0: Klawiatura (LED "LOCAL / REMOTE" wyłączona)

Sterowanie klawiszami RUN, STOP/RESET.

1: Listwa zaciskowa (LED "LOCAL / REMOTE" zapalona):

Aktywne funkcje na wejściach DI: PRZÓD, TYŁ or FJOG.

2: Port komunikacyjny RS485 (LED "LOCAL / REMOTE" miga)

Komendy z portu komunikacyjnego. Wymaga zabudowy karty komunikacyjnej RS485.

- 3. Klawiatura+ Port komunikacyjny RS485
- 4. Klawiatura+ Port komunikacyjny RS485+ Listwa zaciskowa-

F0.12	Wiązanie źródeł	Cyfra jedności	Sterowanie z klawiatury		000	☆
	częstotliwości	Nie powiązane		0		
	zadanej Częstotliwość	Częstotliwość zad	lana z klawiatury	1		
		AI1		2		
		AI2		3		
		Potencjometr klav	wiatury	4		
		Szybkie wejście d	lwustanowe	5		
		Zadawanie wielos	stanowe	6		
		Proste sterowanie	PLC	7		

PID		8	
Port komunikacyjn	y RS485	9	
Cyfra dziesiątek	Sterowanie z listwy zaciskov	vej	
Cyfra setek	Sterowanie z portu komunikacyjnego		

Definicja kombinacji trzech podstawowych źródeł komend sterujących i dziewięciu źródeł częstotliwości zadanej.

Zasada wyboru powyższych źródeł częstotliwości zadanej jest taka sama jak np. wybór źródła głównej częstotliwości zadanej w F0.03. Różne źródła komend sterujących mogą być łączone z różnymi źródłami częstotliwości zadanej. Jeżeli wybrane źródło komend sterujących jest w użyciu i dostępne jest zdefiniowane dla niego źródło częstotliwości zadanej, wtenczas zostanie ono użyte, a źródło zdefiniowane w F0.04 przetnie obowiązywaćyalid.

F0.13	Czas rozpędzania 1	0.0s do 6500s	-	☆
F0.14	Czas zwalniania 1	0.0s do 6500s	-	☆

Wartości te definiują czas niezbędny dla zmian częstotliwości wyjściowej falownika w zakresie od 0 do F0.16.

W falowniku PI160 istnieje możliwość zdefiniowania czterech grup czasów rozpędzania i zwalniania. Grupy te mogą być przełaczane za pomocą sygnałów na odpowiednio zdefiniowanych wejścich dwustanowych. Wartości czasów zdefiniowane sa w następujących parametrach:

Pierwsza grupa: F0.13, F0.14; Trzecia grupa: F7.10, F7.11; Druga grupa: F7.08, F7.09; Czwarta grupa: F7.12, F7.13.

F0.15 Jednostka dla czasów rozpędzania i zwalniania

F0.15 Jednostka dla czasów rozpędzania i zwalniania

F0.15 Jednostka dla czasów rozpędzania i zwalniania

F0.15 Jednostka dla czasów

F0.15 Jednostka dla c

Czasy rozpędzania i zwalniania definiują czas niezbędny dla zmian częstotliwości wyjściowej falownika w zakresie od 0 do F0.16.

Wybór opcji 1 powoduje, że czas rozpędzania i zwalniania zależy od częstotliwości zadanej, czyli czas rozpędzania do częstotliwości zadanej będzie taki jak zdefiniowano. Wybór opcji 2 powoduje, że zdefiniowane czasy dotycza czestotliwości 100 Hz.

•	Częstotliwość odniesienia	F0.19 (częstotliwość maksymalna)	0		
F0.16	dla czasów rozpędzania i	Częstotliwośc zadana	1	0	*
	zwalniania	100Hz	2		

Czasy rozpędzania i zwalniania definiują czas niezbędny dla zmian częstotliwości wyjściowej falownika w zakresie od 0 do F0.16.

Wybór opcji 1 powoduje, że czas rozpędzania i zwalniania zależy od częstotliwości zadanej, czyli czas rozpędzania do częstotliwości zadanej będzie taki jak zdefiniowano. Wybór opcji 2 powoduje, że zdefiniowane czasy dotyczą częstotliwości 100 Hz.

	1				
F0.17	Dostosowanie częstotliwości nośnej do	NIE	0	0	٨.
10.17	temperatury	TAK	1	U	×

Dostosowanie częstliwości nośnej polega na tym, że falownik automatycznie zmienia częstotliwość nośną w zależności od temperatury radiatora - częstotliwość maleje w mairę wzrostu temperatury i powraca do poprzedniej wartości jeśli temperatura maleje.

Funkcja pozwala zmienić wartość częstotliwości nośnej co pozwala poprawić hałąs i wibracje silnika.

Wyższa częstotliwość nośna pozwala uzyskać lepszy kształt sygnału wyjściowego i mniejszy hałas silnika. Jednakże ze wzrostem częstotliwości rosną straty komutacyjne, maleje wydajność i wzrasta temperatura falownika, rozną również straty upływy na pojemnościach elementów zewnętrznych. Przy pracy z mniejszą częstotliwością, powyższe zjawiska zachowyją się odwrotnie.

Każdy silnik inaczej reaguje na wysokie częstotliwości wytwarzane przez falownik. Im większa moc silnika tym częstotliwośćpowinna byćmniejsza.

Najlepsze efekty można uzyskać obserwując pracę silnika. Zmiana częstotliwości nośnej

możę byćwykonana podczas pracy silnika. Zmieniając częstotliwość należy słuchać pracy silnika i tak dobrać częstotliwość aby silnik pracował najciszej, z najmniejszą ilością wysokich tonów.

Zamiany częstotliwości nośnej mają następujący wpływ na pracę silnika:

Częstotliwość nośna	Niski → wysoki
Hałas silnika	Duży → mały
Kształt sygnału wyjściowego	Gorszy → lepszy
Temperatura silnika	Wysoka → niska
Temperatura falownika	Niska → wysoka
Prąd upływu	Mały → duży
Promieniowanie i zakłócenia	Małe → duże

Uwaga! Im wieksza częstotliwośćnośna tym większa temperatura całego urządenia.

F0.19	Maksymalna częstot wyjściowa	liwość	50.00Hz do 32	0.00Hz	50.00Hz	*

Jeżeli źródłem częstotliwości zadanej jest wejście analogowe, komenda wielostanowa lub szybkie wejście impulsowe, If analog input, pulse input (DI5) or multi-stage command in PI160 is selected as frequency source, wartość 100.0% kalibrowana jest względem parametru F0.19.

W celu uzyskania częstotliwości większej niż 320.00 Hz należy zmienić sposób wyświetlania (dokładność) za pomocą parametru F0.02.

		Parametr F0.21	0		
		Wejście AI1	1		
F0.20	Źrodło ograniczenia	Rezerwa	2		_
F0.20	górnego częstotliwości	Potencjometr klawiatury	3	0	_
		Szybkie wejście impulsowe	4		
		Wartość z portu RS485	5		

Górne ograniczenie częstotliwości może byćustawione zarówno na stałe (F0.21) jak również na wejściu analogowym. Jeżeli jest ustawiane na wejściu analogowym, wtedy 100% sygnału na wejściu analogowym odpowiada wartości podanej w F0.19.

Ustawienie górnego ograniczenia częstotliwości jest wymagane. Gdy falownik osiągnie górne ograniczenie częstotliwości dalszy przyrost (wynikający np. z działania regulatora) będzie zatrzymany.

F0.21	C	Od F0.23 (ograniczenie dolne) do F0.19 (częstotliwość max.)	50.00Hz	☆
F0.22	Przesunięcie górnego ograniczenia częstotliwości	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆

Jeśli górne ograniczenie częstotliwości jest ustawiane z wejści analogowego lub z szybkiego wejścia impulsowgo , F0.22 jest używany jako przesunięcie ustawianej wartości ograniczenia. Ostatecznie, w tym przypadku, górne ograniczenie częstotliwości skłąda się z wartości sygnału źródłowego danego w F0.20 i wartości przesunięcia F0.22.

F0.23	Dolne ograniczenie częstotliwości	0.00 Hz do F0.21 (górne ograniczenie)	0.00Hz	☆
-------	-----------------------------------	---------------------------------------	--------	---

Jeśeli wartość zadana częstotliwości jest mniejsza niż wartość dolnego ograniczenia częstotliwości, w zależności od wybory w parametrze F7.18, falownik może zostać zatrzymany, pracować z minimalną prędkością lub z prędkością zerową.

ſ			7 1			
	E0 24	Viarunalz abrotásy	Zgodny	0	_	
	F0.24	Kierunek obrotów	Przeciwny	1	U	×

Parametr pozwala na zmianę kierunku obrotów silnika, bez konieczności zamiany faz zasilających silnik.

Uwaga! Po inicjalizacji parametrów, zostanie przywrócony pierwotny kierunek obrotów. Należy zwrócić na to szczególną uwagę, gdyż zmiana obrotów może być niedozwolona.

F0.26 Rozdzielczość na 0.01Hz 0 1 ☆

	wejściu AI1	0.05Hz	1			
		0.1Hz	2			
		0.5Hz	3			
Za	ależność częstotliwości na w	vejściu AI1 od rozdzielczości.				
F0.27	Typ falownika	G (stały moment obciążenia)	1	-	•	
Parametr do odczytu, informuje jakiego typu jest falownik						

5-2-3. Zaciski wejściowe F1.00-F1.40

Falownik PI160 standardowo wyposażony jest w siedem wielofunkcyjnych wejść dwustanowych, z których jedno (DI5) może byćużywane jako szybkie wejście impulsowe, oraz w trzy wejścia analogowe.

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
F1.00	Wybór funkcji wejścia DI1	0 do 53	1	
F1.01	Wybór funkcji wejścia DI2	0 do 53	2	
F1.02	Wybór funkcji wejścia DI3	0 do 53	0	*
F1.03	Wybór funkcji wejścia DI4	0 do 53	9	*
F1.04	Wybór funkcji wejścia DI5	0 do 53	12	
F1.05	Wybór funkcji wejścia DI6	0 do 53	13	
F1.06	Wybór funkcji wejścia DI7	0 do 53	0	

Powyższe parametry pozwalają ustawić funkcje poszczególnych wejść dwustanowych. Dostępne funkcje, które można przypisać do poszczególnych wejść, opisane są w poniższej tabeli:

Wartość	Funkcja	Znaczenie funkcji				
0	Nieużywany	Wejścia nieużywane powinny być ustawionej jako "Nieużywany" aby zapobiec przypadkowemu zadziałaniu.				
1	Praca do przodu (FWD)	Sygnały pozwalające uruchomić silnik "do przodu" FWD i "do tyłu" REV .				
2	Praca do tyłu (REV)	1 do tylu KEV.				
3	Sterowanie trzyprzewodowe	Wejście używane jako trzeci sygnał w trybie sterowania trzyprzewodowego. Szczegóły w opisie funkkcji F1.10.(tryb sterowania zlistwy zaciskowej).				
4	Praca do przodu w trybie JOG (FJOG)	Sygnały pozwalające uruchomić silnik "do przodu" FJOG i "do tyłu" RJOG w trybie JOG.				
5	Praca do tyłu w trybie JOG (RJOG)	Czestotliwośćpracy i czasy rozpędzania i zwalniania w trybie JOG - patrz funkcje F7.00, F7.01, F7.02.				
6	Zacisk zwiększania ▲	Zmiana częstotliwości poprzez zwiększanie i				
7	Zacisk zmniejszania ▼	zmniejszanie w trybie ustawiania cyfrowego częstotliwości zadanej z listwy zaciskowej.				
8	Stop wybiegiem	Podanie sygnału powoduje, że wyjścia falownika są blokowane. Silnik zatrzymuje się wybiegiem. Sygnał działą tak jak zatrzymanie wybiegiem popisane w F3.07.				
9	Kasowanie błędów (RESET)	Zdalne kasowanie błędów sygnałem podanym na listwę zaciskową. Wykonuje tą samą funkcję co klawisz RESEI na klawiaturze.				
10	Wstrzymanie pracy	Sygnał powoduje, że falownik zwalnia i zatrzymuje silnik, ale wszystkie paramrtry pracy są zapamiętane. Po zaniku sygnału falownik powraca do stanu pracy sprzed pojawienia sięsygnału.				

11	Wyłączenie zewnętrzne sygnałem NO (normalnie otwarty)	Zwarcie wejścia powoduje, że falownik zasygnalizuje błąd Err.15 i wykona działania zabezpieczające zgodnie z opisem funkcji F8.17.			
12	Sterowanie wielostanowe-sygnał 1	Na podstawie bitowej kombinacji tych czterech sygnałów wejściowych. sterowanie wielostanowe			
13	Sterowanie wielostanowe-sygnał 2				
14	Sterowanie wielostanowe-sygnał 3	pozwala ustawić 16 prędkości zadanych lub 16 komend. Sygnał 1 stanowi bit0, sygnał 2 - bit1, sygnał 3 - bit2 i			
15	Sterowanie wielostanowe-sygnał 4	sygnał 4 - bit3. Szczegóły w dalszej części.			
16	Wybór czasów rozpędzania i zwalniania - sygnał 1	Na podstawie bitowej kombinacji tych dwóch sygnałów wejściowych można wybrać każdą z czterech grup czasów rozpędzania i zwalniania. Szczegóły w dalszej części.			
17	Wybór czasów rozpędzania i zwalniania - sygnał 2				
18	Przełączanie źródeł częstotliwości	Used do switch between different frequency sources. Zgodnie z wyborem źródła częstotliwości wg parametru F0.07 sygnał jest wykorzystany do przełączania źródeł częstotliwości.			
19	Czyszczenie nastawy ustalonej klawiszami ▲ i ▼ (listwa, klawiatura)	Jeśli wybrane jest cyfrowe źródło częstotliwości zadanej, sygnał ten jest używany do wyczyszczenia zmian wprowadzonych za pomocąklawiszy (lub analogicznych sygnałów z listwy), co powoduje, że częstotliwość zadana powraca do wartości zdefiniowanej w F0.01.			
20	Przełąćznik źródła komend sterujących	Jeżeli źrółem sygnałów sterujących jest listwa zaciskowa (F0.11=1) sygnał służy do przełączania źródła pomiędzy listwą zaciskową a klawiaturą. Jeżeli źrółem sygnałów sterujących jest port komunikacyjny (F0.11=2) sygnał służy do przełączania źródła pomiędzy portem komunikacyjnym a klawiaturą.			
21	Blokada zmian częstotliwości	Sygnał zapewnia, że falownik nie reaguje na zewnętrzne sygnały sterujące (za wyjątkiem sygnału zatrzymania) utrzymując częstotliwośćwyjąciową na stałym poziomie.			
22	Wstrzymanie dziłania regulatora PID	Regulator PID jest czasowo blokowany. Falownik utrzymuje bieżącą częstotliwość wyjściową, która nie jest zmieniana przez regulator.			
23	Ponowny rozruch sterowania PLC	Jeśli sterowanie PLC zostało wstrzymane i uruchomione ponownie, sygnał jest używany do ponownego rozruchu sterowania PLC od stanu początkowego.			
24	Wstrzymanie pracy oscylatora	Oscylator jest zatrzymany, a częstotliwość wyjściowa falownika ustawiona zostaje na wartości środkowej.			
25	Sygnał wejściowy licznika	Zacisk wejściowy impulsów dla licznika			
26	Kasowanie licznika	Sygnał kasuje stan licznika			
27	Length count input	Zacisk wejściowy impulsów licznika długości.			
28	Length reset	Sygnał kasuje stan licznika długośći			
	Blokada sterowania	Sygnał kasuje stan nezinka diagosei Sygnał blokuje sterowanie momentem, falownik			
29	momentem	Sygnał blokuje sterowanie momentem, falownik przechodzi w tryb sterowania prędkości.			
30	Szybkie wejście impulsowe (tylko dla DI5)	Ustawienie wejścia DI5 jak szybkiego wejścia impulsowego.			

str. 65

	Natychmistowe	Stan aktywny sygnału powoduje, że falownik			
32	hamowanie pradem	przełączony zostanie w tryb hamowania prądem stałym.			
32		przerączony zostanie w tryo namowania prądem starym.			
	stałym DC				
	Wyłączenie				
33	zewnętrzne sygnałem	Rozwarcie wejścia powoduje, że falownik zasygnalizuje			
33	NC (normalnie	błąd Err.15 i zatrzyma silnik			
	zamknięty)				
	Zezwolenie na zmianę	Jeżeli sygnał jest nieaktywny, falownik ignoruje zmiany			
34	częstotliwości	częstotliwości.			
	Praca rewersyjna	Sygnał w stanie aktywnym powoduje, żę regulator PID			
35	regulatora PID				
		pracuje rzeciwnie do kierunku podanego w E2.03			
36	Zewnętrzny STOP	W trybie sterowania z klawiatury, sygnał zatrzymuje			
30	klawiatury	falownik tak jak klawisz STOP klawiatury.			
		Sygnał używany do zmiany źródła sygnałów sterujących			
	D 1. 3.771	pomiędzy listwą zaciskową a portem komunikacyjnym			
37	Przełącznik źródła	RS485. Jeśli źródłem komend jest listwa zaciskowa,			
37	komend sterujących 2	sygnał, jeśli jest aktywny, przełączy źródło komend na			
		portem komunikacyjnym RS485.			
		Sygnał aktywny powoduje zatrzymanie integratora PID			
	Zatrzymanie	(jego wartość pozostanie niezmienna). Sygnał nie			
38	integratora regulatora PID				
		wstrzymuje regulatora w części proporcjonalnej (P) i			
		różniczkowej (D).			
	Przełączenie pomiędzy	Sygnał aktywny powoduje, że główne źródło			
1 20	głównym źródłem	częstotliwości zadanej jest zamieniane na wartość			
39	częstotliwości zadanej	ustaloną w parametrze F0.01.			
	a F0.01	. 1			
	Przełączenie pomiędzy	Sygnał aktywny powoduje, że pomocnicze źródło			
	pomocniczym źródłem	częstotliwości zadanej jest zamieniane na wartość			
40	częstotliwości zadanej	ustaloną w parametrze F0.01.			
	a F0.01	ustaioną w parametrze i 0.01.			
	a 1 0.01	Jeśli wejście dwustanowe DI (E2.19 = 1) jest używane			
	Przełączenie	do zmiany parametrów regulatora PID, to jeśli sygnał			
10					
43	parametrów regulatora	jest nieaktywny użyte są parametry E2.13, E2.14 i E2.15,			
	PID	jeśli sygnał jest aktywny, PID używa parametrów E2.16,			
[E2.17 i E2.18.			
44	Bład użytkownika 1	Jeśli sygnały są aktywne, falownikodpowiednio zgłosi			
	· · · · · · · · · · · · · · · · · · ·	błąd Err.27 i/lub Err.28 i będzie reagował zgodnie z			
45	Błąd użytkownika 2	trybem wybranym jako reakcja na usterkę w parametrze			
45	Diqu uzytkowiika 2	F8.19.			
	D 1 '	W trybie sterowania wektorowego, sygnał przełacza tryb			
	Przełaczenie	sterowania prędkością na tryb sterowania momentem.			
46	sterowania prędkością	Jeśli sygnał jest nieaktywny, falownik pracuje w rrybie			
40	na sterowanie	podanym w FA.00, jeśli nieaktywny, falownik przełączy			
	momentem	się w tryb przeciwny.			
[
		Jeśli sygnał jest aktywny, falownik zatrzyma silnik w			
47	Zatrzymanie bezpieczeństwa	najszybszy sposób, utrzymując prąd wyjściowy na			
		poziomie górnego ograniczenia dla zwalniania. Sygnał			
		jest używany by spełnić wymagania szybkiego			
		wyłaczenia w sytuacji zagrożenia.			
		W każdum trybie pracy (klawiatura, listwa zaciskowa,			
	Zewnętrzny sygnał	port komunikacyjny), sygnał jest używany do			
48	zatrzymania	zatrzymania silnika zgodnie z czasem zwalniania			
	Zani Zymama	czwartej grupy			
		czwariej grupy			

49	Zwalnianie i zatrzymanie prądem stałym DC	Jeśli sygnał jest aktywny, falownik wpierw zwolni do częstotliwości inicjalnej dla hamowania prądem stałym DC, a następnieprzełączy falownik w tryb hamowania prądem stałym DC.		
50	Kasowanie bieżącego czasu pracy	Jeśli sygnał jest aktywny, bieżący czas pracy zostanie skasowany. Funkcja współpracuje z parametrami F7.42 i F7.45.		
51	Rozkaz pracy JOG z F7.54	Rozkaz pracy JOG, z kierunkem zdefiniowanym w F7.54		
52	Kontrola rozłączenia	Poprzez wejście dwustanowe można wprowadzić sygnalizację rozłączenia. Jeśli na odpwiednio zaprogramowanym wejściu dwustanowym pojawi się stan aktywny, falownik się zatrzyma i zgłosi błąd Err.24.		
53	Praca posuwisto- zwrotna	Patrz opis parametrów grupy E8		

Na podstawie bitowej kombinacji czterech sygnałów wejściowych. sterowanie wielostanowe pozwala ustawić 16 stanów. Każdy stan odpowiada jednej z 16-tu zdefiniowanych wartości, w sposób pokazany w poniższej tabeli:

				·y ·· F =		
Sygnał 4	Sygnał 3	Sygnał 2	Sygnał 1	Command setting	Parameters	
WYŁ	WYŁ	WYŁ	WYŁ	Prędkość dla stanu 0	E1.00	
WYŁ	WYŁ	WYŁ	ZAŁ	Prędkość dla stanu 1	E1.01	
WYŁ	WYŁ	ZAŁ	WYŁ	Prędkość dla stanu 2	E1.02	
WYŁ	WYŁ	ZAŁ	ZAŁ	Prędkość dla stanu 3	E1.03	
WYŁ	ZAŁ	WYŁ	WYŁ	Prędkość dla stanu 4	E1.04	
WYŁ	ZAŁ	WYŁ	ZAŁ	Prędkość dla stanu 5	E1.05	
WYŁ	ZAŁ	ZAŁ	WYŁ	Prędkość dla stanu 6	E1.06	
WYŁ	ZAŁ	ZAŁ	ZAŁ	Prędkość dla stanu 7	E1.07	
ZAŁ	WYŁ	WYŁ	WYŁ	Prędkość dla stanu 8	E1.08	
ZAŁ	WYŁ	WYŁ	ZAŁ	Prędkość dla stanu 9	E1.09	
ZAŁ	WYŁ	ZAŁ	WYŁ	Prędkość dla stanu 10	E1.10	
ZAŁ	WYŁ	ZAŁ	ZAŁ	Prędkość dla stanu 11	E1.11	
ZAŁ	ZAŁ	WYŁ	WYŁ	Prędkość dla stanu 12	E1.12	
ZAŁ	ZAŁ	WYŁ	ZAŁ	Prędkość dla stanu 13	E1.13	
ZAŁ	ZAŁ	ZAŁ	WYŁ	Prędkość dla stanu 14	E1.14	
ZAŁ	ZAŁ	ZAŁ	ZAŁ	Prędkość dla stanu 15	E1.15	

Jeżeli sterowanie wielostanowe jest zdefiniowane jako źródło wartości zadanej obrotów, wartość 100% podana w parametrach E01.00 do E1.15 odpowiada maksymalnej częstotliwości zdefiniowanej w parametrze F0.19..Sterowanie wielostanowe prędkości jest również używane dla potrzeb regulatora PID jako źródło odniensienia częstotliwości, w przypadku konieczności przełączania różnych wartości odniesienia.

Sygn	ał 2	Sygnał 1	Wybór grupy czasów			Parametry		
WY	/Ł	WYŁ	Czas przyspieszania/zwalniania - grupa 1 F0.1				F0.14	
WY	Æ	ZAŁ	Czas przyspieszania/zwalniania - grupa 2 F7.08、F7.09			F7.09		
ZA	Ł	WYŁ	Czas przyspieszania/zwalniania - grupa 3 F7.10、F7.11				F7.11	
ZA	Ł	ZAŁ	Czas przyspieszania/zwalniania - grupa 4			F7.12、F7.13		
	Tryb sterowania z listwy zaciskowej			Dwuprzewodowy typu 1	0	0	*	
F1.10			stwy	Dwuprzewodowy typu 2	1			
11.10				Trzyprzewodowy typu 1	2			
				Trzyprzewodowy typu 2	3			
Parametr definiuje cztery tryby wydawania komend za pomocą sygnałów na listwie								

zaciskowej..

0: Sterowanie dwuprzewodowe typu 1

Najczęściej używany tryb sterowania dwuprzewodowego. Sygnały "praca do przodu" (FWD) i "praca do tyłu" (REV) określone są na wejściach DIx, DIy.

Funkcje wejść określone są dla każdego z wejść w grupie F1.xx następująco:

Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)

Z których DIx i DIy są wielofunkcyjnymi zaciskami wejściowymi od DI1 do DI10. Sygnały aktywne są stanem zwartym. Rozwarcie powoduje zatrzymanie falownika.

K1	K2	Komenda
0	0	STOP
0	1	"do tyłu"
1	0	"do przodu"
1	1	STOP

Sterowanie dwuprzewodowe typu 1

1: Sterowanie dwuprzewodowe typu 2

W tym trybie wejście DIx jest używane jako zezwolenie na pracę, DIy określa kierunek. Funkcje wejść określone sa dla każdego z wejść w grupie FI xx nastepująco:

T diliteje wejse omresione.	oq ana nazaego z mejoe m grapi	e i inni następająco.
Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)

Z których DIx i DIy są wielofunkcyjnymi zaciskami wejściowymi od DI1 do DI10. Sygnały aktywne są stanem zwartym. Rozwarcie powoduje zatrzymanie falownika

Uwaga! Wejścia programowane sa tak samo jak w trybie 1.

Sterowanie dwuprzewodowe typu 2

2: Sterowanie trzyprzewodowe typu 1

W tym trybie wejście DIn jest używane jako jako zezwolenie na pracę, wejścia DIx i DIy określają kierunek pracy.

Funkcje wejść określone są dla każdego z wejść w grupie F1.xx następująco:

Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)
DIn	3	Trzeci sygnał w trybie sterowania trzyprzewodowego.

Dla umożliwienia pracy zacisk Dln musi być zwarty. Rozwarcie powoduje zatrzymanie falownika. Sygnały na wejściach Dlx i Dly określają kierunek pracy. Sygnały te aktywne są narastającym zboczem (chwilowe zwarcie.

Sterowanie trzyprzewodowe typu 1

3: Sterowanie trzyprzewodowe typu 2

W tym trybie wejście DIn jest używane jako jako zezwolenie na pracę, wejście DIx stanowi komendę pracy, DIy określaja kierunek pracy.

Funkcje wejść określone są dla każdego z wejść w grupie F1.xx następująco:

Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)
DIn	3	Trzeci sygnał w trybie sterowania trzyprzewodowego.

Dla umożliwienia pracy zacisk Dln musi być zwarty. Rozwarcie powoduje zatrzymanie falownika. Sygnał pracy na wejściu Dlx jest aktywny narastającym zboczem (chwilowe zwarcie), kierunek pracy określa stan wejścia Dly.

Uwaga! Wejścia programowane sa tak samo jak w trybie 1

Komenda
FWD
REV

Sterowanie trzyprzewodowe tryb 2

F1.11 Szybkość zmian przy sterowaniu UP/DOWN (góra/dół) 0.001Hz/s do 65.535Hz/s s

Parametr używany dla ustawienia szybkości zmian wartości, którą zmieniamy za pomocą klawisszy ▲i▼.

Jeżeli F0.02=2 (rozdzielczość wartości zadanej obrotów), zakres wartośc wynosi od 0.001Hz/s do 65.535Hz/s, Jeżeli F0.02=1, zakres wartośc wynosi od 0.01Hz/s do 655.35Hz/s.

F1.12	Minimum wejścia krzywej AIC1	0.00V do F1.14	0.30V	☆
F1.13	Wartość odpowiadająca F1.12	-100.00% do 100.0%	0.0%	☆
F1.14	Maksimum wejścia krzywej AIC1	F1.12 do 10.00V	10.00V	☆
F1.15	Wartość odpowiadająca F1.14	-100.00% do 100.0%	100.0%	☆

Powyższe wartości używane są dla ustnowienia zależności pomiędzy wartością sygnału elektrycznego na wejściu AI i odpowiadającą jej wartością sygnału wejścia AI.

Jeżeli wartość sygnału elektrycznego na wejściu AI jest większa niż F1.14, wartość wyjścia przyjmie wartość z F1.15. Jeżeli wartość sygnału elektrycznego na wejściu AI jest mniejsza niż F1.12, wartość wyjścia przyjmie wartość z F1.13 lub 0.0 w zależności od wyboru w F1.25. Jeśli wartość sygnału elektrycznego na wejściu AI jest pomiędzy F1.12 a F1.14, wartość wejścia przyjmie wartość wyliczoną proporcjonalniez zakresu F1.13 do F1.15.

Jeżeli wejście analogowe skonfigurowane jest jako wejście prądowe, sygnał 1mA odpowiada 0.5V sygnału napieciowego.

Sygnał na wejściu jest poddany filtracji cyfrowej w celu eliminacji wahań spowodowanych

Parametr na poszczególnych cyfrach pozwala zdefiniować jaką wartość przyjmie wejście AI jeżeli sygnał elektryczny na tym wejściu będzie mniejszy niż minimum zdefiniowane dla danej krzywej przyporządkowanej do wejścia. Cyfra jedności i cyfra setek odpowiadają AII i potencjometrowi klawiatury.

Jeżeli wybrano 0, to jeśli sygnał elektryczny na wejściu będzie mniejszy niż minimum, wartość wyjścia przyjmie wartość zdefiniowaną jako minimalną dla danej krzywej przyporządkowanej do wejścia, odpowiednio (F1.13, F1.17, F1.21).

Wybór 1 powoduje, ze przyjeta zostanie wartość 0.00%.

	ybbi i powoduję, ze pizyjęta	Zostanie wartose 0.00 /0.		
F1.26	Minimalna częsttliwość na wejściu HDI	0.00kHz do F1.28	0.00kHz	☆
F1.27	Wartość odpowiadająca F1.26	-100.00% do 100.0%	0.0%	☆
F1.28	Minimalna częsttliwość na wejściu HDI	F1.26 do 100.00kHz	50.00kHz	☆
F1.29	Wartość odpowiadająca	-100.00% do 100.0%	100.0%	☆

	F1.28							
	upa parametrów okre							na
	n wejściu impulsowy:							
	naczenie parametrów	jest analo	ogoczne	jak dla	krzywej AIC1	opis	sanej w paramet	rach
	do F1.15.							
F1.30	Stała filtru dla DI		0.000s				0.010s	☆
	Jstawienie filtru progi							
	atne na zakłócenia, z							
	enia. Jednakże zwięk ianę sygnału elektryc			ıra spo	woduje, ze we	gsci	będą womiej rea	agowac
F1.31	Stała filtru dla AI1	znego na v	wejsciu.	0.00	do 10.00s		0.10s	٠.
F1.31	Stała filtru dla Aff			0.008	3 do 10.008		0.108	☆
F1.33	klawiatury/AI3			0.00s	do 10.00s		0.10s	☆
F1.34	Stała filtru dla HDI			0.00s	do10.00s		0.00s	☆
		Cyfra je	edności	Wejś	cie DI1		00000	
		Aktywn	e pozion	nem wy	sokim	0		
	Logika wejść	Aktvwn	e pozion	nem nis	kim	1		
	dwustanowych	Cyfra						
F1.35	DI - część 1	dziesiąt	ek	wejs	cie DI2			*
		Cyfra se	etek		cie DI3			
		Cyfra ty	/sięcy	Wejś	cie DI4			
		Cyfra		Weiś	cie DI5			
		10tysięc	су	3-				
	Logika wejść	Cyfra jed	ności		Wejście DI6	5		
F1.36	dwustanowych DI	Aktywne	poziome	em wys	okim	0	00000	*
	- część 2	Aktywne	poziome	em nisk	im	1		
		Cyfra d	ziesiątek		Wejście DI7	7		
	Istawienie logiki sygr							
	duje, że zwarcie DI z						e 1), rozwarcie -	-
	ywny (logiczne 0). W				a odwrotny ef	ekt.		
	Czas opóźnienia dla		0.0s do 3				0.0s	*
	Czas opóźnienia dla		0.0s do 3				0.0s	*
	Czas opóźnienia dla		0.0s do 3				0.0s	*
	zas opóźnienia wykr	•		vejściac	h dwustanow	ych,	po zmianie syg	nału
	cznego na zaciskach						•	
F1.40	Powielanie funkcji n	a wejściac		ieaktyv			0	*
	DI			ktywne			,	1.1
٧	Vybór 1 powoduje, że	rozne we	jscia dw	ustanov	ve mogą być j	orogr	amowane tą sar	ną

5-2-4. Zaciski wyjściowe F2.02-F2.19

funkcie. Wybór 0 uniemożliwia takie programowanie

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
F2.02	Wybór fukcji wyjścia przekaźnikowego nr 1 (TA1.TB1.TC1)	0 do 42	2	☆
F2.04	Wybór fukcji wyjścia SPA (wyjście typu OC)	0 do 40	1	☆
	owyższe parametry pozwalają ustawić funkcje posz			vych.

Powyższe parametry pozwalają ustawić funkcje poszczególnych wyjść dwustanowych. Dostępne funkcje, które można przypisać do poszczególnych wyjść, opisane są w poniższej tabeli:

Wartość Funkcja Znaczenie funl

1 Praca falownika 2 Sygnalizacja awarii 3 Przekroczenie prędkości FDT1 Przekroczenie wartości częstotliwości zdefiniowanej jako FDT1. Patrz funkcje F7.23 i F7.24 4 częstotliwości FDT2. Patrz funkcje F7.23 i F7.24 5 praca z częstotliwości F7.25. 5 praca z częstotliwości przekości prową 6 ostrzeżenie o przeciążeniu silnika alarm poprzedzający 7 ostrzeżenie o przeciążeniu silnika alarm poprzedzający 8 przecpelnie licznika 9 Sygnalizacja 2 szpednie licznika 9 Sygnalizacja 2 szpednienia licznika 10 osiągnięcie długości 11 Zakończenie cyklu 12 Upływ calkowitego czasu pracy 13 Ograniczenie momentu 14 Ograniczenie momentu 15 Gotowość do pracy 16 Osiągnięcie gómej częstotliwości 17 Osiągnięcie gómej częstotliwości 18 Ograniczenie momentu 19 Zbyt nskie napięcie 20 Kygnalizacja stanu w którym falownik, pstałacy definiowane spa w F8.02 i F8.03, poziom ostrzeżenia F8.04. Sygnalizacja zabełnienia licznika, podanej w E0.08. Sygnalizacja zapełnienia licznika, podanej w E0.09. Sygnalizacja zapełnienia licznika, podanej w E0.09. Sygnalizacja zakończenia pojedynczego cyklu sterowania Pt.C PLC. Sygnal jest genrowany na czas 250 ms. Sygnalizacja upływu człkowitego czasu pracy 2 osiągnięcie dolnej częstotliwości i częstotliwości i częstotliwości i częstotliwości i częstotliwości i częstotliwości i przekracza wartość ograniczenie przed utknięciem. Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi zadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracy. Sygnalizacja stanu w którym częstotliwości (F0.20). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygn	0	Nieużywany	Wyjścia nieużywane powinny być ustawionej jako "Nieużywany" aby zapobiec przypadkowemu zadziałaniu.
2 Sygnalizacja awarii 3 Przekroczenie prędkości FDT1 Patrz funkcje F7.23 i F7.24 4 Osiągnięcie częstotliwości FDT1. Patrz funkcje F7.23 i F7.24 5 Osiągnięcie częstotliwości F7.25. 5 Praca z częstotliwości przeciażeniu silnika alarm poprzedzający ostrzeżenie o przeciążeniu silnika alarm poprzedzający ostrzeżenie przeciążenia F8.04. 8 Przepełnienie licznika Sygnalizacja przepełnienia licznika, podanej w E0.08. 9 Sygnalizacja Sygnalizacja przepełnienia licznika, podanej w E0.08. 9 Sygnalizacja Sygnalizacja przepełnienia licznika, podanej w E0.09. 10 Osiągnięcie długości Sygnalizacja osiągnięcia lub przekroczenia długości podanej w E0.05. 11 Zakończenie cyklu sterowania PLC Sygnalizacja przepełnienia przekroczenia długości podanej w E0.05. 12 Upływ całkowitego cygnalizacja upływu człkowitego czasu pracy (F6.07) zadeklarowanego w F7.21. 13 Ograniczenie częstotliwości przekracza wartość ograniczenie częstotliwości opracyl. 14 Osiągnięcie dolnej częstotliwości (mie działa w stanie wyłączenia) 15 Gotowość do pracy 16 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) 17 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) 18 Zbyt nskie napięcie 19 Zbyt nskie napięcie 20 Ustawienie komunikacji 20 Ustawienie komunikacji 21 Częstotliwość zerowa kontrola 2 Patrz opis protokolu komunikacji 22 Częstotliwość zerowa kontrola 2 Sygnalizacja jest aktywna również, gdy falownik pstukacyony.	1	Praca falownika	Falownik w trybie pracy, częstotliwość może być równa
Przekroczenie prędkości FDT1 Przekroczenie wartości częstotliwości zdefiniowanej jako FDT1. Patrz funkcje F7.23 i F7.24 Osiągnięcie częstotliwości Praca z częstotliwości przestotliwości przeciążeniu silnika darm poprzedzający ostrzeżenie o przeciążeniu silnika darm poprzedzający przestotliwości przest	2	Svonalizacia awarii	
4 Osiągnięcie częstotliwości PTJ PTJ PTJ I I I I PTJ PTJ I I I I I PTJ I PTJ I I I I I PTJ I PTJ I I I I I PTJ I PTJ I I I I I I PTJ I PTJ I I I I I I PTJ I PTJ I I I I I I I I I I I I I I I I I I I			• • • • • • • • • • • • • • • • • • • •
Praca z Częstotliwości Praca z Sygnalizuje stan w którym falownik jest załaczony, ale częstotliwości perową Sygnalizuje stan w którym falownik jest załaczony, ale częstitliwość wyjściowa wynosi 0 Hz.	3		3
Sygnalizacja zapełnienia licznika obiązenie cylubacja zapełnienia licznika, podanej w E0.08. Sygnalizacja zbizania się obciążenia silnika do poziomu alarmowego, który spowoduje zadziałanie zabezpieczenia falownika. Parameytry zabezpieczenia przeciążeniowego definiowane są w F8.02 i F8.03, poziom ostrzeżenia F8.04. Ostrzeżenie o przeciążeniu silnika alarm poprzedzający Przepełnienie licznika Sygnalizacja zapełnienia licznika, podanej w E0.08. Sygnalizacja zapełnienia licznika Sygnalizacja zapełnienia licznika, podanej w E0.08. Sygnalizacja zapełnienia licznika, podanej w E0.09 Sygnalizacja sytacja zakończenia pojedynczego cyklu sterowania PLC PLC. Sygnal jest generowany na czas 250 ms. Sygnalizacja sytuacji, gdy częstotliwość zadana przekroczy śprne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakresem. W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenie przed utkinięciem. Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) Osiągnięcie dolnej częstotliwości (mie działa w stanie wyłączenia) Sygnalizacja stanu w którym częstotliwości (F0.20). Sygnalizacja stanu w którym częstotliwości (F0.20). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja pod	4	częstotliwości	
darmowego, który spowoduje zadziałanie zabezpieczenia falownika. Parameytry zabezpieczenia przeciążeniowego definiowane są w F.80.2 i F.8.03, poziom ostrzeżenia F.8.04. Ostrzeżenie o przeciążeniu silnika - alarm poprzedzający definiowane są w F.80.2 i F.8.03, poziom ostrzeżenia F.8.04. Ostrzeżenie o przeciążenie przeciążeniem falownika. Sygnał pojawia się na 10 s przed zadziałaniem zabezpieczenia przeciążenia falownika. Przepełnienie licznika Sygnalizacja przepełnienia licznika, podanej w E0.08. Sygnalizacja zapełnienia licznika, podanej w E0.09 Sygnalizacja zakończenia przekroczenia długości podanej w E0.05. Sygnalizacja zakończenia pojedynczego cyklu sterowania PLC. Sygnał jest generowany na czas 250 ms. Sygnalizacja upływu człkowitego czasu pracy (F6.07) czasu pracy zadeklarowanego w F7.21. Sygnalizacja sytuacji, gdy częstotliwość zadana przekroczy górne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakresem. W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utkniejem. Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. Sygnalizacja stanu w którym częstotliwość pracy będzie większa niż górne ograniczenie częstotliwość (F0.20). Sygnalizacja działa tylko gdy falownik pacuje. Sygnalizacja dyłko dwłownika. Patrz opis protokołu komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi o Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	5	częstotliwością	
7 przeciążeniu silnika - alarm poprzedzający falownika. 8 Przepełnienie licznika Sygnalizacja przepełnienia licznika, podanej w E0.08. 9 Sygnalizacja zapełnienia licznika Sygnalizacja zapełnienia licznika, podanej w E0.09 10 Osiągnięcie długości Zakończenie cyklu sterowania PLC Sygnalizacja zakończenia pojedynczego cyklu sterowania PLC Sygnalizacja zakończenia pojedynczego cyklu sterowania PLC Sygnalizacja sytuacji zgło zestotliwości Sygnalizacja sytuacji, gdy częstotliwośc zadana przekroczy górne (w górę) lub dolne (w dół) ograniczenie częstotliwości wyściowa jest poza tym zakresem. 14 Ograniczenie momentu W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem. 15 Gotowość do pracy Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. 16 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) Sygnalizacja stanu w którym częstotliwości (F0.20). 17 Osiągnięcie dolnej częstotliwości (pożestotliwości (nie działa w stanie wyłączenia) Sygnalizacja stanu w którym częstotliwości (F0.20). 28 Osygnalizacja zbyt niskiego napięcia falownika 20 Ustawienie komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi O Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	6	przeciążeniu silnika -	alarmowego, który spowoduje zadziałanie zabezpieczenia falownika. Parameytry zabezpieczenia przeciążeniowego
9 Sygnalizacja zapełnienia licznika Sygnalizacja zapełnienia licznika, podanej w E0.09 10 Osiągnięcie długości Sygnalizacja osiągnięcia lub przekroczenia długości podanej w E0.05. 11 Zakończenie cyklu sterowania PLC PLC. Sygnał jest generowany na czas 250 ms. 12 Upływ całkowitego czasu pracy Sygnalizacja upływu człkowitego czasu pracy (F6.07) zadeklarowanego w F7.21. 13 Ograniczenie częstotliwości Sygnalizacja sytuacji, gdy częstotliwość zadana przekroczy górne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakresem. 14 Ograniczenie momentu Wtybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem. 15 Gotowość do pracy Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. 17 Osiągnięcie górnej częstotliwości (nie działa w stanie wyłączenia) Sygnalizacja stanu w którym częstotliwości (F0.20). 18 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. 19 Zbyt nskie napięcie Sygnalizacja zbyt niskiego napięcia falownika 20 Ustawienie komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi O Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłączony.	7	przeciążeniu silnika -	się na 10 s przed zadziałaniem zabezpieczenia przeciążenia
Sygnalizacja zapemienia licznika Sygnalizacja zapemienia licznika, podanej w E0.09	8	Przepełnienie licznika	Sygnalizacja przepełnienia licznika, podanej w E0.08.
Takończenie cyklu sterowania PLC 12	9	30	Sygnalizacja zapełnienia licznika, podanej w E0.09
11 sterowania PLC 12 Upływ całkowitego czasu pracy 13 Ograniczenie częstotliwości 14 Ograniczenie momentu 15 Gotowość do pracy 16 Osiągnięcie górnej częstotliwości 17 Osiągnięcie dolnej częstotliwości 18 Osiągnięcie dolnej częstotliwości 18 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) 19 Zbyt nskie napięcie 20 Upływ całkowitego czasu pracy (F6.07) zadeklarowanego w F7.21. Sygnalizacja sytuacji, gdy częstotliwość zadana przekroczy górne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakresem. W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem. Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. Sygnalizacja stanu w którym częstotliwość pracy będzie większa niż górne ograniczenie częstotliwości (F0.20). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. Patrz opis protokołu komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	10	Osiągnięcie długości	
12 Upływ całkowitego czasu pracy Sygnalizacja upływu człkowitego czasu pracy (F6.07) zadeklarowanego w F7.21. 13 Ograniczenie częstotliwości Sygnalizacja sytuacji, gdy częstotliwość zadana przekroczy górne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakrosem. 14 Ograniczenie momentu W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem. 15 Gotowość do pracy Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowość pracyl. 16 Osiągnięcie górnej częstotliwości (pracy będzie większa niż górne ograniczenie częstotliwości (F0.20). 17 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) Sygnalizacja stanu w którym częstotliwości (F0.20). 18 Zbyt nskie napięcie Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. 19 Zbyt nskie napięcie Sygnalizacja zbyt niskiego napięcia falownika 20 Ustawienie komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi O Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	11		
13 Ograniczenie częstotliwości górne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakresem. 14 Ograniczenie momentu W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem. 15 Gotowość do pracy 16 Osiągnięcie górnej częstotliwości większa niż górne ograniczenie częstotliwości pracył. 17 Osiągnięcie dolnej częstotliwości (pożestotliwości	12	1 0	Sygnalizacja upływu człkowitego czasu pracy (F6.07)
14 Ograniczenie momentu momentu a wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem. Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. Osiągnięcie górnej częstotliwości Sygnalizacja stanu w którym częstotliwości pracy będzie większa niż górne ograniczenie częstotliwości (F0.20). Sygnalizacja stanu w którym częstotliwości (F0.20). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. 19 Zbyt nskie napięcie Sygnalizacja zbyt niskiego napięcia falownika 20 Ustawienie komunikacji Patrz opis protokołu komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	13	C	górne (w górę) lub dolne (w dół) ograniczenie częstotliwości
15 Gotowość do pracy 17 Osiągnięcie górnej częstotliwości 18 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) 19 Zbyt nskie napięcie 20 Ustawienie komunikacji 21 Częstotliwość zerowa - kontrola 2 22 Częstotliwość zerowa - kontrola 2 18 Gotowość do pracy będzie usterek, na wyjściu zasygnalizowana będzie gotowośćdo pracyl. Sygnalizacja stanu w którym częstotliwość pracy będzie większa niż górne ograniczenie częstotliwość (F0.20). Sygnalizacja stanu w którym częstotliwość pracy będzie mniejsza niż dolne ograniczenie częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. Sygnalizacja zbyt niskiego napięcia falownika Patrz opis protokołu komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	14		moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed
18 Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) 19 Zbyt nskie napięcie 20 Ustawienie komunikacji 23 Częstotliwość zerowa - kontrola 2 Sygnalizacja górne ograniczenie częstotliwość (F0.20). Sygnalizacja stanu w którym częstotliwość pracy będzie mniejsza niż dolne ograniczenie częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. Sygnalizacja zbyt niskiego napięcia falownika Patrz opis protokołu komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	15	Gotowość do pracy	napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo
częstotliwości (nie działa w stanie wyłączenia) Sygnalizacja stanu w ktorym częstotliwośc pracy będzie mniejsza niż dolne ograniczenie częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. 19 Zbyt nskie napięcie Sygnalizacja zbyt niskiego napięcia falownika 20 Ustawienie komunikacji Patrz opis protokołu komunikacji Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	17		
20 Ustawienie komunikacji Patrz opis protokołu komunikacji 23 Częstotliwość zerowa - kontrola 2 Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	18	częstotliwości (nie działa w stanie	mniejsza niż dolne ograniczenie częstotliwości (F0.23).
20 komunikacji Patrz opis protokofu komunikacji Częstotliwość zerowa - kontrola 2 Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	19	, , ,	Sygnalizacja zbyt niskiego napięcia falownika
23 - kontrola 2 0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony.	20		· ·
24 Upływ czasu zasilenia Sygnalizacja upływu czasu zasilenia (F6.08)	23		0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest
	24	Upływ czasu zasilenia	Sygnalizacja upływu czasu zasilenia (F6.08)

25	Przekroczenie częstotl. FDT2		zenie wartości częstotliwości zdefiniowanej jako ttrz funkcje F7.26 i F7.27.				
26	Przekroczenie częstotl poziom 1	F7.28. Pa	rzekroczenie wartości częstotliwości zdefiniowanej w 7.28. Patrz funkcje F7.28 i F7.29.				
27	Przekroczenie częstotl poziom 2		zenie wartości częstotliwości zdefiniowanej w trz funkcje F7.30 i F7.31.				
28	Przekroczenie prądu wyjściowego - poziom 1		zenie wartości prądu wyjściowego zdefiniowanej w trz funkcje F7.36 i F7.37.				
29	Przekroczenie prądu wyjściowego - poziom 2		zenie wartości prądu wyjściowego zdefiniowanej w trz funkcje F7.38 i F7.39.				
30	Upływ czasu pracy	czasu pra- zawsze oc zerowany					
31	Wartość AI1 poza zakresem	analogow zabezpiec	Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII)				
32	Brak obciążenia	Sygnaliza	acja pracy falownika w stanie bez obciążenia.				
33	Praca "do tyłu"	Sygnalizacja, że falownik pracuje "do tyłu"					
34	Praca z niskim prądem	Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33.					
35	Przekroczenie temperatury	, ,	acja przekroczenia temperatury falownika (F6.06) owanej w F7.40.				
36	Przekroczenie prądu wyjściowego		rądem wyjściowym o wartości większej niż vana w F7.34. Patrz funkcje F7.34 i F7.35.				
37	Osiągnięcie dolnej częstotliwości (działa w stanie wyłączenia)	mniejsza	ncja stanu w którym częstotliwość pracy będzie niż dolne ograniczenie częstotliwości (F0.23). ncja działa również gdy falownik nie pacuje.				
38	Wyjście alarmu	Sygnaliza	acja wystąpienia alarmu				
39	Ostrzeżenie przekroczenia temperatury		acja przekroczenia temperatury falownika (F6.06) wwanej w F8.35.Wartość temperatury podana jest w				
40	Upływ bieżącego czasu pracy		acja upływu czasu zadeklarowanego w F7.45.				
41	Alarm rozłaczenia		acja zatrzymania na skutek sygnału rozłączenia o na wejście dwustanowe				
42	Wysoka częstotliwość na wyściu	Patrz opis	s parametrów grupy E8				
F2.07	Wybór funkcji wyjścia an						
			ego DA1 to 0V do 10V, lub 0mA do 20mA. poszczególnych wyjść, opisane są w poniższej				
Wartoś	ć Funkcja		Zakres wyjściowy				
0	Częstotliwość pracy	0 do maksymalnej częstotliwości pracy					

	2	Prąd wyjściowy	0 do dwukrotnej wartości prądu nominalnego silnil (b0.03)	ka			
	3	Moment wyjściowy	0 do dwukrotnej wartości momentu nominalnego silnika				
	4	Moc wyjściowa	0 do dwukrotnej wartości mocy nominalnej silnika (b0.01)				
	5	Napięcie wyjściowe	0 do 1,2* wartość napięcia nominalnego silnika (b0.02)				
	6	Szybkie wyjście impulsowe	0.01kHz do 100.00kHz				
	7	Wartość wejścia AI1	0V do 10V lub 0 do 20mA				
	10	Zmierzona długość	0 do maksymalnej ustawionej wartości				
	11	Stan licznika	0 do maksymalnej ustawionej wartości				
	12	Wartość zadana z portu komunikacyjnego	0.0% do 100.0%				
	13	Prędkość silnika	0 do prędkości nominalnej silnika (b0.05)				
	14	Prąd wyjściowy	0.0A do100.0A (Moc falownika≦55kW) 0.0A do 1000.0A (Moc falownika>55kW)				
	15	Napięcie na szybnie prądu stałego DC	0.0V do 1000.0V				
	17	Główna wartość zadana częstotliwości	0 do maksymalnej częstotliwości wyjściowej				
I	72.11	Opóźnienie zadziałania wyjścia przekaźnikowego nr 1.	0.0s do 3600.0s 0.0s	☆			
I	F2.13	Opóźnienie zadziałania wyjścia	SPA, 0.0s do 3600.0s 0.0s	☆			
_							

Ustawienie czasów opóźnienia wystawienia sygnałów na wyjściach dwustanowych po zmianie ich wartości

		Cyfra jedności	Rezerwa		00000	
	DO output terminal active status selection	Tens digit	Wyjście przekaźnikowe nr 1		00000	
		Positive logic		0		
F2.15		Anti-logic		1		☆
1.2.13		Hundreds digit	Reserve			~
		Thousands digit	SPA			
		Tens thousands digit	Reserve			

Funkcja definiuje logikę wyjść dwustanowych.

0: Logika pozytywna - w stanie aktywnym wyjście jest załączone (zwarte), w stanie nieaktywnym wyłaczone (rozwarte);

1: Logika negatywna - w stanie aktywnym wyjście jest wyłączone (rozwarte), w stanie

nieaktywnym właczone (zwarte):

meant	meakty wityin widezone (Ewarte),.,						
F2.16	Współczynnik przesunięcia zera wyjścia analogowego DA1.	-100.0% do 100.0%	0.0%	☆			
F2.17	Współczynnik nachylenia (wzmocnienie) wyjścia analogowego DA1.	-10.0 do 10.0	1.00	☆			

Funkcje używane są do określenia charakterystyki wyjściowej wyjść DA1 i DA2.

Przykładowo dla wyiścia DA1:

ył oznacza minimalne napięcie lub prąd na wyjściu DA1, yż oznacza minimalne napięcie lub prad na wyjściu DA1 jakie może zostać wystawione.

y1=10V lub 20mA*F2.16*100%

v2=10V lub 20mA*(F2.16+F2.17)

Ustawienia fabryczne F2.16 = 0.0%, F2.17 = 1, co daje na wyjściu sygnał 0 do 10V lub 0 do 20mA) co odpowiada fizycznemu minimum i maksimum sygnału na wyjściach...

Przykład 1:

Zmiana zakresu 0 do 20mA na zakres 4 do 20mA

Współczynnik dla minimalnego prądu wyjściowego wyznaczamy ze wzoru y1 = 20mA * F2.16 * 100% - w wyniku otrzymujemy F2.16=20%, bo 4=20*F2.16

Współczynnik dla maksymalnego pradu wyjściowego wyznaczamy ze wzoru:

y2=20mA*(F2.16+F2.17) - w wyniku otrzymujemy F2.17=0.8, bo 20=20*(20%+F2.17).

Przykład 2:

Zmiana zakresu 0 do 10V na zakres 5 do 10V

Współczynnik dla minimalnego sygnału wyjściowego wyznaczamy ze wzoru y1 = 10V * F2.16 * 100% - w wyniku otrzymujemy F2.16=0%, bo 0=10*F2.16

Współczynnik dla maksymalnego sygnału wyjściowego wyznaczamy ze wzoru: y2=10V*(F2.16+F2.17) - w wyniku otrzymujemy F2.17=0.5, bo 5=10*(0%+F2.17).

5-2-5. Konfiguracja Startu i Stopu F3.00-F3.15

Kod	Nazwa parametru	Zakres nastaw			Wart ość fabry czna	Status
	Tryb uruchomienia.	Bezpośrednie	0			
		Śledzenie prędkości	1		☆	
F3.00		Start ze wstępnym		0		
		wzbudzeniem (silnik	2			
		asynchroniczny AC)				

0: Start bezpośredni

Jeżeli czas hamowania prądem stałym DC jest ustawiony na 0, falownik startuje bezpośrednio od częstotliwości początkowej. Jeżeli czas hamowania prądem stałym DC jest różny od 0, falownik wpierw wykona hamowaniepradem stałym, a następnie startuje od czestotliwości poczatkowej. Stosuje się w aplikacjach o małej bezwładności mechanicznej i w przypadkach gdy silnik może się kręcić podczas startu.

1: Start ze śledzeniem prędkości

Falownik wpierw kontroluje prękość i kierunek obrotów silnika. Następnie uruchamia silnik od zmierzonych obrótów. Stosuje się gdy możliwe sa gwałtowne zaniki napięcia wymagające ponownego natychmiastowego rozruchu z dużym obciążeniem. Dla zapewnienia dobrego restartu należy precyzyjnie określić parametry grupy b0.

2: Stert ze wstepnym wzbudzeniem (silnik asynchroniczny AC)

Funkcja dostępna tylko dla silników asynchronicznych. Polega na wytworzeniu wst epnego pola magnetycznego w silniku, zanim silnik zacznie pracować. Przed użyciem zapoznać się z opisem parametrów F3.05 i F3.06.

Jeżeli czas wstępnego wzbudzenia wynosi 0, falownik opuści proces wzbudzenia silnika i wystartuje bezpośrednio od częstotliwości początkowej.

F3.01	Tryb śledzenia prędkości	Start od czestotliwości poprzedniego zatrzymania się	0	0	_
F3.01		Start od zera	1	1	^
		Start od częstotliwości maksymalnej	2		

W trybie śledzenia predkości falownik automatycznie wykrywa predkość silnika i bezuderzeniowo przejdzie do dalszego rozpędzania w sposób łagodny

Dla skrócenia czasu poszukiwania prędkości wirującego silnika należy wybrać najodpowiedniejszy tryb poszukiwania:

0: Start od czestotliwości, przy której faolwnik został poprzedniow yłączony - najczęściej używana opcja..

1:	Start od zera.				
2:	Start od częstotliwości maksymal	lnej - zalecane dl	a dużych obciążeń s	silnika.	
F3.02	Współczynnik czasu poszukiwa	nia prędkości.	1 do 100	20	☆
W trybie śledzenia prędkości im podany czas jest mniejszy, tym proces detekcji prędkości					
przebie	ega szybciej, ale zbyt krótki czas n	noże spowodowa	ać, że wynik będzie	niewiarygo	odny.
F3.03	Czestotliwość poczatkowa.	0.00Hz do 10.0	00Hz	0.00H	☆

F3.03	Częstotliwość początkowa.	0.00Hz do 10.00Hz	0.00H z	☆
F3.04	Czas utrzymywania częstotliwości początkowej.	0.0s do 100.0s	0.0s	*

Podczas startu, falownik wpierw, przez czas utrzymywania, pracuje z częstotliwością początkową, a po jego upływie startuje do wartości zadanej.

Częstotliwość początkowa F3.03 nie jest ograniczona częstotliwością minimalną. Ale jeśli ta jest mniejsza od minimalnej, falownik nie wystartuje.

Czas utrzymywania częstotliwości początkowej jest nieaktywny podczas przełączania kierunków pracy.

Czas utrzymywania częstotliwości początkowej nie jest uwzględniany do czasu rozpędzania, jest za to brany pod uwagę w sterowaniu PLC.

Przykład 1:

F0.03=0 źródło częstotliwości zadanej ustawione na wybór cyfrowy

F0.01=2.00Hz cyfrowa wartość zadana wynosi 2.00Hz

F3.03=5.00Hz czestotliwość poczatkowa wynosi 5.00Hz

F3.04=2.0s czas utrzymywania częstotliwości początkowej wynosi 2.0s,

 \mbox{W} tym przypadku falownik będzie w stanie spoczynku z częstotliwością $0.00\mbox{Hz}.$

Przykład 2:

F0.03=0 źródło częstotliwości zadanej ustawione na wybór cyfrowy

F0.01=10.00Hz cyfrowa wartość zadana wynosi 10.00Hz

F3.03=5.00Hz częstotliwość początkowa wynosi 5.00Hz

F3.04=2.0s czas utrzymywania częstotliwości początkowej wynosi 2.0s

W tym przypadku falownik rozpędzi się do 5.00Hz w czasie 2.0s, anastepnie do 10.00Hz z czasem rozpedzania.

F3.05	Prąd wzbudzenia wstępnego DC	0% do 100%	0%	*
F3.06	Czas wzbudzenia wstepnego prądem stałym DC.	0.0s do 100.0s	0.0s	*

Prąd stały DC, ogólnie używany jest do zatrzymania i rozruchu silnika. Wzbudzenie wstepne jest używane do wytworzenia indukcyjnego pola magnetycznego w silniku i poprawienia w ten sposób rozruchu silnika.

Jeżeli prąd wzbudzenia wstępnego lub czas wzbudzenia wstepnego są równe 0, rozruch z prądem wzbudzenia wstępnego nie będzie realizowany.

Uwaga ! Prąd wzbudzenia wstępnego DC wyrażony jest w % prądu nominalnego falownika.

F3.07	Tryb zatrzymania	Zatrzymanie z czasem zwalniania	0	☆
F3.08	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC	0.00 Hz do F0.19 (częstotliwość maksymalna)	0.00H z	☆
F3.09	Czas opóźnienia hamowania prądem stałym DC.	0.0s do100.0s	0.0s	☆
F3.10	Wartość prądu hamowania prądem stałym DC	0% do 100%	0%	☆
F3.11	Czas podawania prądu hamującego DC	0.0s do 100.0s	0.0s	☆

Hamowanie prądem stałym poleg an tym, że jeżeli częstotliwość wyjściowa falownika osiąnie wartość F3.08, falownik odłacza napięcie zasilania od silnik i odlicza czas opóźnienia F3.09. Po upływie tego czasu, przez czas F3.11 na zaciski silnika podawany jest prąd stały DC,

powodujący zatrzymanie silnika. Czas podawania prądu hamującego DC należytak dobrać aby zapewnić zatrzymanie silnika, gdyż w procesie hamowania prądem stałym DC falownik nie kontroluje predkości silnika.

Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC nie powinna być ustawiona na zbyt wysokim poziomie, gdyż grozi to przekroczenim prądu hamowania i wystąpieniem alarmu od przekroczenia prądu.

Wartość prądu hamowania prądem stałym DC odnosi się do prądu nominalnego silnika (b0.03). Im większy prąd hamowania tym proces hamowania szybszy, ale grozi wystąpienie alarmu od przekroczenia prądu.

Jeżeli czas podawania prądu hamującego DC wynosi 0, proces nie jest realizowany.

Schemat procesu hamowania prądem stałym DC

F3.12	Szybkość hamowania	0% do 100%	100%	6	☆
T1	Turk magnadaania i	Liniowe	0		
	Tryb rozpędzania i zwalniania	Zgodnie z krzywą S typu A	1	1 0	*
		Zgodnie z krzywą S typu A	2		

Parametr pozwala na wybór trybu zmian częstotliwości w procesie rozpędzania i zwalniania.. 0: Rozpędzanie i zwalnianie liniowe

Częstotliwość wyjściowa wzrasta lub opada liniowo zgodnie z zadeklarowanymi czasami rozpędzania i zwalniania. Falownik PI160 pozwala zdefiniować cztery grupy czasów rozpędzania i zwalniania, wybierane sygnałami na listwie zaciskowei (F1.00 do F1.08).

1: Krzywa S typu A

Częstotliwość wyjściowa wzrasta lub opada zgodnie z krzywą typu S. Krzyw ata jest używana gdy wymagany jest łągodny proces rozruchu i/lub hamowania. Parametry F3.14 i F3.15 odpowiednio definiują proporcje sekcji początkowej i końcowej krzywej S.

2: Krzywa S typu B

Krzywa ta używana jest w przypadku pracy silnika z częstotliwościami przewyższającymi częstotliwość nominalną silnika, gdy konieczne jest uzyskanie szybkich czasów rozpędzania i zwalniania W tym trybie pracy, częstotliwość nominalna silnika jest zawsze punktem przegięcia krzywei S.

Jeśli częstotliwość jest większa od częstotliwości nominalnej silnika, czas rozpędzania i zwalniania wynosi::

$$t = \left[\frac{4}{9} \times \left(\frac{f}{f_b}\right)^2 + \frac{4}{9}\right] \times T$$

POWTRAN-POLSKA Sp. z o.o.

gdzie ,'f' częstotliwość zadana, 'fb'częstotliwość nominalna silnika .'T' czas rozpędzania od 0 do fb.

F3.14	Proporcje krzywej S przy rozpędzaniu	0.0% do (100.0% do F3.15)	30.0%	*
F3.15	Proporcje krzywej S przy zwalnianiu	0.0% do (100.0% do F3.14)	30.0%	*

Schemat krzywej S typu A

Schemat krzywej S typu B

Parametry F3.14 i F3.15 odpowiednio definiują proporcje sekcji początkowej i końcowej krzywej S. Wartości muszą spełniać warunek: F3.14 + F3.15 ≤ 100.0%.

Na schemacie krzywej A, t1 jest czasem zdefiniowanym w F3.14, nachylenie w tym przedziale stopniowo wzrasta. t2 jest czasem zdefiniowanym w F3.15, nachylenie w tym przedziale stopniowo spada do 0.Nachylenie krzywej pomiędzy czasami t1 i t2 jest stałe powodując liniową zmianę częstotliwości wyjściowej.

5-2-6. V/F control parameters F4.00-F4.14

Gupa funkcji F4 dotyczy sterowania typu V/f (napięcie/częstotliwość). Nie stosuje się do sterowania wektorowego.

Sterowanie V/F stosuje się w większości aplikacji, w szczególności w zastosowaniach wentylatorowych, pompowych i innych uniwersalnych, w przypadku zasilania przez falownik wielu silników oraz gdy moc falownika odbiega od moocy zastosowanego silnika.

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
		Liniowa V/f	0		
		Własna V/f	1		
	Wybór krzywej V/f	Kwadratowa V/f	2	0	*
		Wykładnicza w stopniu 1,2	3		
F4.00		Wykładnicza w stopniu 1,4	4		
14.00		Wykładnicza w stopniu 1,6	6		
		Wykładnicza w stopniu 1,8	8		
		Nieużywane	9		
		Całkowita separacja V i f	10		
		Częściowa separacja V i f	11		

- 0: Liniowa V/f dla zwykłych obciążeń stało-, lub zmiennomomentowych.
- 1: Włąsna krzywa V/F. Dla nietypowych zastosowań. Zależność V/f programuje się za pomocą parametrów F4.03 do F4.08.
 - 2: Kwadratowa V/F. Odpowiednia dla wentylatoró, pomp i napędów odśrodkowych.

3 do 8: Charakterystyki V/f pomiędzy liniową a kwadratową V/F.

10: Tryb całkowicie separowanych V i f. W tym trybie częstotliwość wyjściowa i napięcie na wyjściu są od siebie niezależne. Częstotliwość wyjściowa jest zadawana prze źródło częstotliwości, zaś napięcie wyjściowe zależne od ustawienia F4.12. (separowane źródło napięcia V/F). Tryb separowanego V i f ma zastosowanie do ogrzewania indukcyjnego, zasilania falowników, silników momentowych itp.

11: W trybie częściowo separowanch V i f,napięcie V jest proporcjonalne do częstotliwości f, ale zależność pomiędzy nimi jest określona w F4.12 parameters, co więcej, proporcja V do f zależy rónież od nominalnego napięcia silnika i nominalnej częstotliwości podanych w grupie b0..Podsumowująć, jeżeli napięcie wejściowe źródła zasilania wynosi X (X w zakresie 0 do 100%), napięcie wyjściowe V i częstotliwość wyjściowa f, mogą być powiązane zależnością: V/f=2*X*(napięcie nominalne silnika)/(częstitliwość nominalna silnika)

F4.01	Wzmocnienie momentu	0.0% automatyczne wzmocnienie momentu 0.1 do 30%	-	*
F4.02	Częstotliwość wyłączenia wzmocnienia momentu	0.00Hz do F0.19 (częstotliwość maksymalna)	15.00Hz	*

Wzmocnienie momentu jest głównie używane do wzmocnienia charakterystyki momentu przy niskich częstotliwościach w trybie sterowania V/f. Jeśli moment przy niskich częstotliwościach jest za mały, silnik może nie ruszyć. Jeśli moment przy niskich częstotliwościach jest za duży silnik będzie nadwzbudzony, co spowoduje wzrost prądu wyjściowego i zmniejszenie wydajności.

Wzmocnienie momentu należy stosować przy pracy z dużymi obciążeniami przy rozruchu. Jeżeli wzmocnienie momentu ustawione jest na 0%, falownik automatycznie wyznaczy wzmocnienie momentu w zależności od rezystancji stojana.

Częstotliwość wyłączenia wzmocnienia momentu:to częstotliwość przy której wzmocnienie momentu jest odcinane i napięcie wyjściowe "powraca" na zdefiniowaną krzywą V/f.

Schemat działania wzmocnienia momentu

F4.03	Własna krzywa V/F - częstotliwość 1	0.00Hz do F4.05	0.00Hz	*
F4.04	Własna krzywa V/F - napięcie 1	0.0% do 100.0%	0.0%	*
F4.05	Własna krzywa V/F - częstotliwość 2	F4.03 do F4.07	0.00Hz	*
F4.06	Własna krzywa V/F - napięcie 2	0.0% do 100.0%	0.0%	*
F4.07	Własna krzywa V/F - częstotliwość 3	F4.05 do b0.04 (częstotliwość nominalna silnika)	0.00Hz	*
F4.08	Własna krzywa V/F - napięcie 3	0.0% do 100.0%	0.0%	*

Parametry definiuja kształt własnej krzywej V/f.

Krzywa powinna być uzależniona od charakterystyki obciążenia silnika. Poszczególne parametry powinny spełniaćzależności: V1<V2<V3, F1<F2<F3. Ustawienie krzywej jest pokazane na poniższym rysunku.

Ustawienie zbyt wysokiego napięcia przy niskich czestotliwościach może spowodować przegrzanie silnika aż do jego spalenia, wystąpienie przeciążenia prądowego skutkującego

Parametr ma zastosowanie tylko dla silników asynchronicznych.

Kompensacja poślizgu V/f kompensuje odchylenia częstotliwości silnika asynchronicznego przy zwiększaniu się obciążenia co pozwala utrzymać stabilną prędkość podczas zmian obciążenia.

Jeżeli kompensacja poślizgu ustawiona jest na 100%, kompensacja jest równa nominlanemu poślizgowi przy nominalnej mocy silnika na podstawie parametrów z grupy b0.

Ustawiająć współczynnik kompensacji poślizgu należy tak go dobrać aby przy nominalnej częstotliwości wyjścia, prędkość silnika była równa prędkości nominalnej.

F4.10 Wzmocnienie kontrolera wzbudzenia V/f 0 do 200 64 ☆

Podczas zwalniania, mechanizm może powstrzymywać wzrost napięcia na szynie prądu stałego DC co pozwoli uniknąć jego przekroczenia i alarmu.. Im większa wartość parametru, tym silniejsze dziłanie hamujące.

Jeżeli podczas zwalniania pojawia się alarm zbyt wysokiego napięcia na szynie prądu stałego DC, wartość parametru należy zwiększyć. Zbyt duże jednak zwiększanie wartości parametru bęzi epowodować wzrost prądów hamowania.

W zastosowaniach o niskiej inercji obciążenia oraz w przypadku stosowania rezystora hamującego, kiedy to zwalnianie nie powoduje wzrostu napięcia na szynie prądu stałego DC, wartość parametru należy ustawić na 0.

F4.11 Współczynnik tłumienia oscylacji	V/f 0 do 100	0	☆
--	--------------	---	---

Parametr służy do ochrony silnika przed drganiami występującymi przy pracy w trybie V/f. Jeśli zjawiska oscylacji nie występują, wartość parametru należy ustawićna 0. Im większa wartość parametru, tym większe tłumienie drgań.

Użycie mechanizmu tłumienia drgań wymaga ustawienia włąściwych wartości prądu nominalnego silnika i prądu jałowego silnika. Niewłaściwe wartości spowodują niewłaściwe działanie mechanizmu.

GETGIG	ne meenamzma.					
		Ustawieni	e cyfrowe (F4.13)	0		
		Wejście A	I1	1		
		Rezerwa		2		
		Potencjom	etr klawiatury	3		
	₹ ₹ 11	Szybkie w	ejście impulsowe (DI5)	4	0	☆
F4.12	Zródło separowanego napięcia V/f	Źródło wielostanowe		5		
1 7.12		Sterowanie PLC		6		
		Regulator PID		7		
		Port komu	nikacyjny RS485	8		
		100.0% odpowiadające napięciu nominalnemu silnika (b0.02)				
F4.13	Cyfrowe ustawienie napię separowanego V/f.	cia	0V do napięcia znamionowego silnika		0V	☆

F4.14	Czas narastania napięcia separowanego V/f	0.0s do 1000.0s	0.0 s	☆
-------	--	-----------------	----------	---

5-2-7. Sterowanie wektorowe F5.00-F5.15

Grupa parametrów F5 odnosi się do trybu sterowania wektorowego

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
F5.00	Współczynnik wzmocnienia regulatora G1	1 do 100	30	☆
F5.01	Czas zdwojenia regulatora T1	0.01s do 10.00s	0.50s	☆
F5.02	Częstotliwość przełączenia 1	0.00 do F5.05	5.00Hz	☆
F5.03	Współczynnik wzmocnienia regulatora G2	0 do 100	20	☆
F5.04	Czas zdwojenia regulatora T2	0.01s do 10.00s	1.00s	☆
F5.05	Częstotliwość przełączenia 2	F5.02 do F0.19 (częstotliwość maksymalna)	10.00Hz	☆

Grupa parametrów dotyczy pracy w trybie sterowania prędkością.

W zależności od częstotliwości pracy falownik dostosowuje prędkośc dziłania reguatora PI. Jeżeli częstotliwość pracy jest mniejsza niż F5.02, parametry regulatora pobierane są z F5.00 i F5.01. Jeżeli częstotliwość pracy jest większa niż F5.05, parametry regulatora pobierane są z F5.03 i F5.04. W przedziale prędkości pomiędzy F5.02 a F5.05, parametry regulatora przeliczane są liniowo, zgodnie z przedstawioną na rysunku zależnością:

Zmiana parametrór regulatora PI

Poprze zamianę parametrów regulatora, falownik dostosowuje charakterystykę prędkości odpowiedzi dynamicznej sterowania wektorowego.

Im większe wzmocnienie, tym odpowiedź szybsza, ale jest niebezpieczeństwo powstania oscylacji.

Im czas zdwojenia większy, tym wolniejsza odpowiedź ale i zakłócenia zewnętrzne mają większy wpływ na działanie regulatora. Mały czas zdwojenia daje szybszą odpowiedź ale może powodować oscylacje.

Jeżeli parametry fabryczne nie są odpowiednie należy tak dobrać parametry regulatora, aby odpowiedź dynamiczna była w miare szybka i ay nie powstawały oscylacje.

F5.06	Praca integratora prędkości	Dozwolona	0	0	₹-
1 3.00		Zabroniona	1	· ·	^
F5.07	Źródło ograniczenia momemtu	Zgodnie z nastawą F5.08	0	0	☆
	w trybie sterowania prędkością	Wejście AI1	1		
	w trybie sterowania prędkością	Rezerwa	2		
		Potencjometr klawiatury	3		
		Szybkie wejście impulsowe	4		

		Port komunikacyjny	5		
1F5.U8	Górne ograniczenie dla ustawienia cyfrowego momentu	0.0% do 200.0%		150.0%	☆

W trybie sterowani prędkością, maksymalna wartość momentu wyjściowego falownika jest ograniczona przez wartość sygnału ograniczającego. Parametr F5.07 służy do wyboru źródła tego sygnału. Jeżeli źródłem jest wejście analogowe, szybkie wejście impulsowe lub port komunikacyjny, 100% odpowiada wartości F5.08. 100% ustawione w F5.08 odpowiada momentowi nominalnemu falownika.

less and a			
Wzmocnienie różnicowe w sterowaniu	500/ 1 2000/	4.500/	
F5.09 W Zinochienie Toznicowe w sterowaniu	50% do 200%	150%	×
wektorowym			

W bezczujnikiwym sterowaniu wektorowym, parametr jest używany do ustawienia prędkości silnika i stabilności. Przy niskich częstotliwościach pracy z obciążeniem należy zwiekszyć wartość parametru.

]	F5.10	Stała czasowa filtra regulatora prędkości	0.000s do 0.100s	0.000s	☆

W trybie sterowania wektorowego parametr zwiększa czas filtracji przy gwałtownych zmianach prędkości. Under vector control mode, properly increases the filter time when speed fluctuate wildly. Nie należy jednak zwiększać wartości parametru nadmiernie gdyż efekt opóźnienia możę spowodować uderzenia.

opoznienia mozę spowodować aderzenia.			
F5.11 Wzmocnienie kontrolera wzbudzenia w sterowaniu wektorowym	0 do 200	64	☆

Podczas zwalniania, mechanizm może powstrzymywać wzrost napięcia na szynie prądu stałego DC co pozwoli uniknąć jego przekroczenia i alarmu.. Im większa wartość parametru, tym silniejsze dziłanie hamujące.

Jeżeli podczas zwalniania pojawia się alarm zbyt wysokiego napięcia na szynie prądu stałego DC, wartość parametru należy zwiększyć. Zbyt duże jednak zwiększanie wartości parametru bęzi epowodować wzrost prądów hamowania.

W zastosowaniach o niskiej inercji obciążenia oraz w przypadku stosowania rezystora hamującego, kiedy to zwalnianie nie powoduje wzrostu napięcia na szynie prądu stałego DC, wartość parametru należy ustawić na 0.

F5.12	Wzmocnienie regulatora wzbudzenia	0 do 60000	2000	☆
F5.13	Czas zdwojenia regulatora wzbudzenia	0 do 60000	1300	☆
F5.14	Wzmocnienie regulatora momentu	0 do 60000	2000	☆
F5.15	Czas zdwojenia regulatora momentu	0 do 60000	1300	☆

Powyższe parametry pętli prądowej regulatora sterowania wektorowego są określane automatycznie po wykonaniu zaawansowanego samostrojenia silnika asynchronicznego lub synchronicznego i w zasadzie nie należy ich modyfikować.

Jednakże wartość wzmocnienia jest wartością dobraną na stałe i nie adoptuje się do bieżących warunków. Dlatego, żejeżli parametry te są zbyt wysokie, co może powodować oscylacje, należy je ręcznie zmniejszyć.

5-2-8. Klawiatura i wyświetlacz F6.00-F6.18

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
F6.00	Eunkaja klavijeza	Klawisz STOP/RES aktywny tylko w trybie sterowania z klawiatury Klawisz STOP/RES aktywny zawsze	0	1	☆
F6.01	Pierwsza grupa parametrów wyświetlanych w stanie pracy	0000 do FFFF		001F	☆

Ilustracia dla F6.01

Jeśli powyższe parametry mają być wyświetlane podczas pracy falownika, wpier należy w odpowiednim miejscu podać "1", a następnie uzyskaną w ten sposób wartośc 16-to bitową przekonwrtować do postacji heksadecymalnej.

Na przykład, jeśli AII ma być wyświetlane, aAI2 nie, bit 9 należy ustawić na "1", bit 10 na "0", itd dla pozostalych parametrów:

Numer bitu	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wartość bitu	0	1	1	1	1	0	1	0	0	1	0	0	1	1	1	1

wartośc bitu dzielimy na cztery grupy.

Bity	15-12	11-8	7-4	3-0
Wartości	0111	1010	0100	1111

Po zamianie zapisu binarnego na heksadecymalny w wyniku otrzymujemy wartość 0x7A4F).

Bin.	Hex.	Bin.	Hex.	Bin.	Hex.	Bin.	Hex.
0000	0	0100	4	1000	8	1100	С
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	A	1110	Е
0011	3	0111	7	1011	В	1111	F

P0.02	Druga grupa parametrów wyświetlanych w	0x0000 do	0000	₩.
	stanie pracy 2	0xFFFF	0000	A

Ilustracja dla F6.02

Jeśli powyższe parametry mają być wyświetlane podczas pracy falownika, wpier należy w odpowiednim miejscu podać "1", a następnie uzyskaną w ten sposób wartośc 16-to bitową przekonwrtować do postacji heksadecymalnej.

W grupach F6.01 i F6.02 ustawiamy te parametry, które mają byćwyświetlane podczas pracy falownika.

pracy	iaio wiiika.			
F6.03	Wybór parametrów wyświetlanych podczas postoju	0x0000 do 0xFFFF	0013	☆

15 14 13 12 11 10 9 8	PID	imp. (kHz)	Częstotliv Napięcie Stan wejś Stan wyj	ść DO na AII (V)	C (V)
Jeśli powyższe parametry mają odpowiednim miejscu podać "1", a przekonwrtować do postacji heksad Współczynnik wyświetlania	ı być w następi ecymal	nie uzyskaną w ten sposób wa nej.	artośc 16-to	bitową	T .
F6.04 szybkości silnika		0.0001 do 6.5000	3.00	000	☆
Parametr pozwala przeskalowa	ć warte	ość prędkości silnika dla potr	zeb wyświe	etlacza. Pa	atrz
opis parametru F6.05	_				
Ilość cyfr po przecinku dla		niejsc po przecinku	0		
F6.05 współczynnika szybkości		niejsce po przecinku	1	1	☆
silnika		niejsca po przecinku	2		
Znaczenie parametru jest następ		niejsca po przecinku	3		
Jeśli współczynnik F6.04=3.000 pracy silnika wynosi 40.00Hz, prędko F6.06 Temperatura modułu wyjśc	a ilośc ość siln iowego	ika wyniesie: 40.00 * 3.000 falownika	= 1200 0.0 °C	-	•
Wyświetla temperaturę modułu zabezpieczania termicznego.	ı IGBT	. Dla różnych modeli falown	ika, różne s	ą wartośc	
F6.07 Całkowity czas pracy	0 h	do 65535 h		_	•
Wyświetla całkowity czas pracy			wartość za	dana	•
zdefiniowaną w F7.21, na wyjściu d wysoki					
F6.08 Całkowity czas pracy falow		0 h do 65535 h		-	•
Wyświetla całkowity czas prac					
osiągnie wartość zadaną zdefiniowa	ną w F	7.20, na wyjściu dwustanow	ym z przyp	isaną funl	ccją
(24) pojawi sę stan wysoki.	0.4	- (5525 1-WI-		_	-
F6.09 Całkowity pobór mocy Wyświetla całkowity pobór mo		o 65535 kWh		-	•
F6.10 Numer seryjny falownika		mer seryjny falownika			
F6.11 Wersja oprogramowania		rsja oprogramowania płyty si	arniacai		
F6.17 Wersja oprograniowania Współczynnik korekcji mocy		0 do 10.00	erującej	1.00	☆
Jeżeli, podczas pracy falownika	a. wyśy	vietlana wartość mocy na wy	iściu falow	nika różn	i sie
od od aktualnej mocy falownika, za					
F6.18 Zakres blokady klawiatury	1 2	b: Blokowane RUN, STOP : Wszytkie klawisze d: Blokowane RUN, STOP, "		1.00	☆
Jednoczesne naciśnięcie klawis	szy EN	TER+SHIFT, powoduje zabl	okowanie/o	dblokowa	anie

5–2–9.	Funkcje	pomocnicze	F7.00-F7.5	51

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status	
-----	-----------------	---------------	----------------------	--------	--

F7.00	Częstotliwość pracy JOG	0.00 Hz do F0.19 (częstotliwość maksymalna)	6.00Hz	☆
F7.01	Czas rozpędzania JOG	0.0s do 6500.0s	5.0s	☆
F7.02	Czas zwalniania JOG	0.0s do 6500.0s	5.0s	☆

Definicja częstotliwości zadanej i czasów rozpędzania i zwalniania w trybie JOG. Podczas pracy w trybie JOG, tryb startu jest ustalony jako start bezpośredni F3.00=0, tryb zatrzymania jako zatrzymanie z czasem zwalniania F3.07=0.

F7.03	Priorytet dla JOG	Wyłączony	0	0	٠,
		Załaczony	1		×

Parametr określa czy priorytet JOG jest załaczony czy też nie. Jeżeli priorytet jest załączony, to otrzymanie komendy pracy w trybie JOG podczas pracy powoduje, że falowni przejdzie w tryb JOG.

F7.04	Częstotliwość przeskoku 1	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
F7.05	Częstotliwość przeskoku 2	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
F7.06	Zakres częstotliwości przeskoku	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆

Jeżeli częstotliwość zadana jest w zakresie częstotliwości przeskoku, aktualna częstotliwość zostanie zmieniona tak wyjść ze strefy zabronionej. Przeskok częstotliwości pozwala uniknąć rezonansów mechanicznych silnika.

Falownik PI160 pozwala ustawić dwie częstotliwości przeskoku. Jeśli obie częstotliwości ustawione są na o, funkcja nie jest realizowana. Poniższy rysunek wyjaśnia działenie funkcji przeskoku.

Schemat działania przeskoku częstotliwości

17.07 rozpodzeniu lub zwelnieniu	E7 07	Zezwolenie na przeskok częstotliwości przy	Brak	0	0	4
Tozpędzaniu lub zwannaniu Zezwolenie I	rozpędzaniu lub zwalnianiu	Zezwolenie	1	U	×	

Funkcja pozwala zdefiniować, czy przeskok częstotliwości jest dozwolony w procesie przyspieszania i zwalniania, czy też nie.

Jeśli jest zezwolenie, jeśli częstotliwość pracy znajdzie się w zakresie częstotliwości przeskoku, zostanie ona zwiększona, o podwójną wartość zakresu częstotliwości przeskoku. Poniższy rysunek wyjaśnia działenie funkcji.

Schemat działania przeskoku częstotliwości przy rozpędzaniu i zwalnianiu

F7.08	Czas rozpędzania 2	0.0s do 6500.0s	-	☆
F7.09	Czas zwalniania 2	0.0s do 6500.0s	-	☆

F7.10	Czas rozpędzania 3	0.0s do 6500.0s	-	☆
F7.11	Czas zwalniania 3	0.0s do 6500.0s	-	☆
F7.12	Czas rozpędzania 4	0.0s do 6500.0s	-	☆
F7.13	Czas zwalniania 4	0.0s do 6500.0s	-	☆

Falownik PI160 pozwala na zdefiniowanie czterech grup czasów rozpędzania i zwalniania odpowiednio F0.13\F0.14 i i powyższe trzy grupy.

Znaczenie - patrz opis parametrów F0.13 i F0.14. Grupy te przełączane są poprzez różne kombinacje wielofunkcyjnych wejść dwustanowych - partz opis funkcji F1.00 do F1.07..

F7.14	Częstotliwość przełączania między czasem rozpędzania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
F7.15	Częstotliwość przełączania między czasem zwalniania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆

Funkcja jest aktywna gdy wybrany jest silnik 1 i żadne wejśćie dwustanowe DI nie jest skonfigurowane jako przełączające pomiędzy grupami czasów rozpędzania i zwalniania. Funkcja jest używana do automatycznej zmiany czasów rozpędzania i zwalniania, przy osiągnięciu zadanych częstotliwości podczas pracy falownika.

Schemat przełączania czasów rozpędzania i zwalniania

Jeśli częstotliwość pracy jest mniejsza niż F7.14, aktywny jest czas rozpędzania z grupy 2 Powyżej tej częstotliwości - aktywny jest czas rozpędzania z grupy 1.

Jeśli częstotliwość pracy jest większa niż F7.15, aktywny jest czas zwalniania z grupy 2. Poniżej tej częstotliwości - aktywny jest czas zwalniania z grupy 1.

	, , , , , , , , , , , , , , , , , , , ,	8 17		
F7.16	Czas martwy między zmianą kierunku	0.00s do 3600.0s	0.0s	☆

Podczas zmiany kierunku obrotów, jest to czas przez który po zatrzymaniu silnika falownik wstrzymuje rozruch w przeciwną stronę.

	Schemat działania czasu martwego			
F7.17 Praca "do tvlu"	Dozwolona	0	0	J.
F7.17 Praca do tylu	Zabroniona	1	1 0 1	×

W niektórych przypadkach praca silnika w przeciwną stronę może być niepożądana. Funkcja pozwala na wyłączenie możliwości prcy silnika "do tyłu". Ustawienie fabryczne zezwala na prace "do tyłu"..

	F7.18 Tryb pracy z częstotliwością- zadaną poniżej minimalnej	Praca z zadaną	0			
		Stop	1	0	\Rightarrow	
Zadaną	zadaną pomzej minimaniej	Praca z minimalną	2			
	Parametr pozwala wybrać sposób zachowania się falownika w sytuacji gdy wartość zadana					

Rozdział 6 Rozwiązywanie problemów

często	tliwośći jest mniejsza niż dolne	ograniczenie częstotliwości.		
F7 10	Obniżenie częstotliwości przy	0.00Hz do 10.00Hz	0.00Hz	৵
1 7.19	przeciążeniu		0.00112	^

Obniżenie częstotliwości przy przeciążeniu ma na celu zmniejszenie obciążenia falownika w poprzez obniżenie częstotliwości. Pozwala to uniknąć wyłączenia awaryjnego spowodowanego chwilowym bądź incydentalnym przekroczeniem prądu wyjściowego lub mocy. Funkcję stosyje się głównie przy zasilaniu wielu silników z jednego falownika w sytuacji gdy jeden z silników zostanie przeciążony.

F7.20 Ustwaienie dla sygnalizacji przekroczenia oh do 36000h oh oh					
	F7.20	50 31	0h do 36000h	0h	☆

Jeżeli czas zasilenia falownika F6.08 osiągnie wartość podaną w F7.20 falownik zasygnalizuje ten stan na odpowiednio skonfigurowanym wyjściu dwustanowym.

	gg	j		
F7.21	Ustwaienie dla sygnalizacji przekroczenia czasu pracy	0h do 36000h	0h	☆

UseParametr używany do ustawienia czasu pracy falownika, w celu umożliwienia jego wyłaczenia po zadanym czasie.

Jeżeli czas pracy falownika F6.07 osiągnie wartość podaną w F7.21 falownik zasygnalizuje ten stan na odpowiednio skonfigurowanym wyjściu dwustanowymd to set the running time of inverter. When the total power-on time (F6.07) reaches the set time F7.21, the inverter multifunction digital DO outputs ON signal

F7.22 E	Blokada komendy Start	Wyłączona	0	0	4
1.7.22	Siokada Koilichdy Staft	Załączona	1	U	~

Parametr odpowiada za funkcje bezpieczeństwa falownika.

Jeżeli komenda startu jest podana do falownika w stanie gdy wyłączone jest napięcie zasilania, po jego powrocie falownik zostanie uruchomiony. Aby zabezpieczyć się przed takim zachowaniem się falownika, należy ustawić parametr na 1. W takiej sytuacji, po powrocie napięcia, falownik, zanim uruchomi silnik, będzie oczekiwał podania komendy stop, a dopiero potem uruchomi silnik.

F7.23	Wartość przekroczenia częstotliwości 1 (FDT1)	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
F7.24	Histereza częstotliwości FDT1	0.0% do 100.0% wartości FDT1	5.0%	☆

Sygnalizacja przekroczenia częstotliwości podanej w F7.23.

Jeżeli częstotliwość wyjściowa przekroczy F7.23, falownik zasygnalizuje ten fakt odpowiednio skonfigurowanym sygnałem na wyjściu dwustanowym DO. Sygnalizacja zostanie wyłaczona po zmniejszeniu się częstotliwości wyjściowej o wartość histarezy (F7.23*F7.24) poniżej F7.23, co ilustruje poniżzy rysunek.

Schemat detekcji

Sygnalizacja stanu w którym częstotliwość wyjśćiowa różni się o mniej niż F7.25 od częstotliwości zadanej. Funkcja służy do wykrycia osiągnięcia przez falownik częstotliwości zadanej

Zaaanic	J·			
F7.26	Wartość przekroczenia częstotliwości 2 (FDT2)	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
F7.27	Histereza częstotliwości FDT2	0.0% do 100.0% wartości FDT2	5.0%	☆
A	nalogicznie jak FDT1. Patrz op	pis parametrów F7.23, F7.24.		
F7.28	Wartość osiągnięcia częstotliwości - próg 1	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
F7.29	Histereza wartości dla progu 1 - F7.28	0.00% do 100.0% (częstotliwość maksymalna)	0.0%	☆
F7.30	Wartość osiągnięcia częstotliwości - próg 2	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
F7.31	Histereza wartości dla progu 2 - F7.30	0.00% do 100.0% (częstotliwość maksymalna)	0.0%	☆

Jeżeli częstotliwość wyściowa zbliży się do częstotliwości podanej w F7.28 (F7.30) na odległość mniejszą niż podana w F7.29 (F7.31) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

Schemat detekcji osiągnięcia częstotliwości

F7.32	Poziom detekcji prądu	0.0% do 300.0% (prądu	5.0%	☆	l
	zerowego	nominalnego silnika)			l
F7.33	Czas detekcji pradu zerowego silnika	0.01s do 360.00s	0.10s	☆	

Rozdział 6 Rozwiązywanie problemów

Schemat działania detekcji prądu

Jeżeli prąd wyjściowy falownika jest mniejszy lub równy niż poziom detekcji prądu zerowego (F7.32) i utrzymuje się dłużej niż przez czas detekcji pradu zerowego silnika (F7.33) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

F7.34	Poziom przekroczenia prądu silnika	0.0% (nie wykrywany) 0.1% do 300.0% (prądu nominalnego silnika)	200.0%	☆
F7.35	Czas detekcji przekroczenia prądu silnika	0.00s do 360.00s	0.00s	☆

Schemat detekcji przekroczenia prądu

Jeżeli prąd wyjściowy falownika przekroczy poziom detekcji (F7.34) i utrzymuje się dłużej niż przez czas detekcji (F7.35) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

Zuprog	ranio wanjin w jjoera awasanow	, 111.		
F7.36	Poziom przekroczenia prądu	0.0% do 300.0% (prądu	100	☆
17.50	silnika - poziom 1	nominalnego silnika)	%	*
F7.37	Histereza wartości dla progu	0.0% do 300.0% (prądu	0.0%	☆
1.7.37	1 - F7.36	nominalnego silnika)	0.070	~
F7.38	Poziom przekroczenia prądu	0.0% do 300.0% (prądu	100	☆
17.30	silnika - poziom 2	nominalnego silnika)	%	A
F7.39	Histereza wartości dla progu	0.0% do 300.0% (prądu	0.0%	☆
F/.39	1 - F7.38	nominalnego silnika)	0.0%	×

Jeżeli prąd wyjściowy zbliży się do poziomu podanego w F7.36 (F7.38) na odległość mniejszą niż podana w F7.37 (F7.39) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym

Schemat detekcji soiągnięcia prądu wyjściowego
40 | Temperatura falownika - 0 °C do 100 °C

POWTRAN-POLSKA Sp. z o.o.

☆

str. 90

	poziom kontrolny					
Je	eżeli temperatura modu	łu IGE	BT falownika osiągnie wartość	odanąw	F7.40, falor	wwnik
zasygn	alizuje ten stan na odp	owidn	io zaprogramowanym wyjściu	dwustan	owym.	
F7.41	Praca wentylatora	Tylk	o podczas pracy silnika	0	0	☆
1.7.41	chłodzącego	Zaw	sze	1	U	×
F	unkcja nie zaaplikowar	ıa.				
F7.42	Zezwolenie na funkcje	, '	Wyłączone	0	0	٨.
F1.42	czasowe	- 2	Załączone	1	U	☆
		1	Ustawienie w F7.44	0		
	Wybór źródła czasu	,	Wejście AI1	1	0	
F7.43	pracy		Rezerwa	2	U	☆
			Pokrętło panelu	3		
		,	Wartość 100% na AI odpowiad	a F7.44		
F7.44	Zadany czas pracy	•	0.0Min do 6500.0Min	1	0.0Min	☆
		1		1		

Parametry używane dla funkcji sterowania czasowego falownika..

Jeżeli ustawione jest zezwolenie na funkcje czasowe (F7.42=1) czas liczony jest od załączenia silnika. Po wyłączeniu silnika czas jest zerowany.

Jeżeli czas pracy silnika przekroczy wartość podaną w F7.43 i F7.44, silnik zostanie automatycznie wyłączony. Falownik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

100% sygnału na wejściach analogowych odpowiada wartości parametru F7.44.

F7.45	Wartość sygnalizacji czasu pracy	0.0 min do 6	5500.0 min	0.0Min	☆
Je	eżeli bieżący czas pracy silnika osiąg	gnie wartość F7	,45, falownik zas	sygnalizuje t	en stan

na wyj	sciu awustanowym skoniigurowanym	i jako – Opiyw bieżącego czasu pr	acy	
F7.46	Częstotliwość wybudzenia	F7.48 (częstotliwość uśpienia) do F0.19 (częstotliwość maksymalna)	0.00 Hz	*
F7.47	Opóźnienie wybudzenia	0.0s do 6500.0s	0.0s	☆
F7.48	Częstotliwość uśpienia	0.0Hz do F7.46 (częstotliwość wybudzenia)	0.00 Hz	☆
F7.49	Opóźnienie uśpienia	0.0s do 6500.0s	0.0s	☆
Znacze	enie parametrów opisane w FC.02.			
F7.50	Dolna granica zabezpieczenia napięciowego wejścia AI1	0.00V do F7.51	3.10 V	☆
F7.51	Górna granica zabezpieczenia napięciowego wejścia AI1	F7.50 do 10.00V	6.80 V	☆

Jeżeli wartość sygnału na wejściu AII bęzie większa niż F7.51 lub mniejsza niż F7.50, na odpowiednio skonfigurowanym wyjściu dwustanowym zasygnalizowany zostanie stan " Wartość AII poza zakresem "

5-2-10. Usterki i ochrona F8.00-F8.32

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1 FX ()()	Zabezpieczenie nadprądowe - wzmocnienie	0 do 100	20	☆
F8.01	Zabezpieczenie nadprądowe	100% do 200%	150%	☆

Jeżeli prąd podczas przyspieszania lub zwalniania przekroczy wartość F8.01, falownik zmniejszy częstotliwość wyjściową podczas rozpedzania lub w pracy ze stałą prędkością dopóki prąd nie obniży się poniżej wartości F8.01.

Szybkość reakcji zależy od ustawienia parametru F8.00. Im większa wartość tym reakcja falownika szybsza. Dla napędów o dużej bezwładności wartość prarmetru może być większa, dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.00=0, funkcja

Funkcja zabezpieczenia Przeciążeniowego D.20 do 10.00 D.00 D.	jest wy	łączona.						
Przeciążeniowego	F8 02			•			1	☆
Funkcja zabezpiecza silnik przed przegrzaniem spowodowwanym pracą z zbotajązeniem. Jeżeli funkcja jest wyłączona, zaleca się zastosowanie wyłącznika silnikow zasilaniu silnika. Jeśli funkcja jest włączona (F8.02=1) falownik sprawdza, czy silnik nie jest przec zgodnie z krzywą zabezpieczenia przeciążeniowego. Przeciążenie jest wykrywane gd zprzekroczy wartość 220% x (F8.03) x prąd nominalny silnika przez 60 sekund. Wartość F8.03 należy ustawić zgodnie z parametrami nominalnymi silnika! F8.04 Współczynnik dła ostrzeżenia F8.04 przeciążeniowego Funkcja jest używana dla uprzedzenia o alarmie przeciążeniowym silnika, co realizow jest poprzez sygnalizację na odpowiednio zaprogramowanym wyjściu dwustanowy DO. Współczynnik jest używany do określenia wyprzedzenia sygnalizacji ostrzeżenia w stosun alarmu. Im większa wartość, tym ostrzeżenie bardziej zbliżone do poziomu alarmowego. Zabezpieczenie przepięciowe Jeżeli podczas zwalniania napięcie na szynie prądu stałego DC przekroczy wartość F8. falownik powstrzyma proces zwalniania poprzez utrzymanie stałej wartości częstotliwości wyjściowej do czasu rozładowania zakumulowanej energii, po czym proces zwalniania będz contynuowany. Jeżeli F3.12nie jest ustawiony na 0, falownik wygeneruje sygnał pozwlający ozładowanie energii w zewnętrznym rezystorze hamującym. Szybkość reakcji zależy o du stawienia parametru F8.05. Im większa wartość tym reak falownika szybsza. Dla napędów o dużej bezwładności wartość parmetru może być więks dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.05=0, funl jest wyłączona. F8.08 Kontrola zwarcia doziemnego Jeśli funkcja jest aktywna, po zasileniu falownika na zaciski wyjściowe UVW zostani chwilę podane napięcie celem sprawdzenia zwarcia doziemnego. F8.10 Ilość automatycznych wyłączeń błędów 0 do 32767 0 Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczyna zasilającego. Aktywacja sygnalizacji automatycznych wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po c	10.02		Zał	ączona	1		•	^
beciążeniem. Jeżeli funkcja jest wyłączona, zaleca się zastosowanie wyłącznika silnikow zasilaniu silnika. Jeśli funkcja jest włączona (F8.02=1) falownik sprawdza, czy silnik nie jest przec zgodnie z krzywą zabezpieczenia przeciążeniowego. Przeciążenie jest wykrywane gd przekroczy wartość 220% x (F8.03) x prąd nominalny silnika przez ponad 1 sekundę, lub 1/F8.03) x prąd nominalny silnika przez 60 sekund. Wartość F8.03 należy ustawić zgodnie z parametrami nominalnymi silnika! F8.04 Współczynnik dla ostrzeżenia 50% do 100% 80% Funkcja jest używana dla uprzedzenia o alarmie przeciążeniowym silnika, co realizow jest poprzez sygnalizację na odpowiednio zaprogramowanym wyjściu dwustanowy DO. Współczynnik jest używany do określenia wyprzedzenia sygnalizacji ostrzeżenia w stosun alarmu. Im większa wartość, tym ostrzeżenie bardziej zbliżone do poziomu alarmowego. F8.05 Zabezpieczenie przepięciowe 120% do 150% 130% Jeżeli podczas zwalniania napięcie na szynie prądu stałego DC przekroczy wartość F8. falownik powstrzyma proces zwalniania poprzez utrzymanie stałej wartość częstotliwości wyjściowej do czasu rozładowania zakumulowanej energii, po czym proces zwalniania będz contynuowany. Jeżeli F3.12nie jest ustawiony na 0, falownik wygeneruje sygnał pozwlający rozładowanie energii w zewnętrznym rezystorze hamującym. Szybkość reakcji zależy od ustawienia parametru F8.05. Im większa wartość tym reak falownika szybsza. Dla napędów o dużej bezwładności wartość prarmetru może być więks dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.05=0, funl jest wyłączona. F8.08 Funkcja zabezpieczenia przed utratą Zabroniona 0 1 1 pracy wyjściowej Dozwolona 1 1 1 pracy wyjściowej Dozwolona Dozwolona 1 1 1 pracy wyjściowej Dozwolona Dozw		przeciążeniowego						☆
Wartość F8.03 należy ustawić zgodnie z parametrami nominalnymi silnika! F8.04	obciążer zasilanio Jeś zgodnie	niem. Jeżeli funkcja jest wyłączo u silnika. li funkcja jest włączona (F8.02= z krzywą zabezpieczenia prze	ona, zalec =1) falow ciążeniov	a się zastoso nik sprawdza vego. Przecia	wanie w a, czy si ążenie je	yłączn Ilnik n est wy	iika silni ie jest p krywane	kowego r rzeciążon gdy prą
F8.04 Współczynnik dla ostrzeżenia przeciążeniowego Funkcja jest używana dla uprzedzenia o alarmie przeciążeniowym silnika, co realizow jest poprzez sygnalizację na odpowiednio zaprogramowanym wyjściu dwustanowy DO. Współczynnik jest używany do określenia wyprzedzenia sygnalizacji ostrzeżenia w stosun alarmu. Im większa wartość, tym ostrzeżenie bardziej zbliżone do poziomu alarmowego. F8.05 Zabezpieczenie przepięciowe - wzmocnienie F8.06 Zabezpieczenie przepięciowe 120% do 150% 130% Jeżeli podczas zwalniania napięcie na szynie prądu stałego DC przekroczy wartość F8. falownik powstrzyma proces zwalniania poprzez utrzymanie stałej wartość i częstotliwości wyjściowej do czasu rozładowania zakumulowanej energii, po czym proces zwalniania będz contynuowany. Jeżeli F3.12nie jest ustawiony na 0, falownik wygeneruje sygnał pozwlający rozładowanie energii w zemętrznym rezystorze hamującym. Szybkość reakcji zależy od ustawienia parametru F8.05. Im większa wartość tym reak falownika szybsza. Dla napędów o dużej bezwładności wartość prarmetru może być więks dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.05=0, funl jest wyłączona. F8.08 Funkcja zabezpieczenia przed utratą Zabroniona 0 1 pozwolona 1 1 pozwolona 1 1 pozwolona 1 1 pozwolona 2 pozwolona 1 pozwolona 2 poswolona 2 pozwolona 2 pozwolona 2 pozwolona 1 pozwolona 2 poswolona 2 poswo	F8.03)	× prąd nominalny silnika przez 60	sekund.	, ,				
jest poprzez sygnalizację na odpowiednio zaprogramowanym wyjściu dwustanowy DO. Współczynnik jest używany do określenia wyprzedzenia sygnalizacji ostrzeżenia w stosun alarmu. Im większa wartość, tym ostrzeżenie bardziej zbliżone do poziomu alarmowego. Zabezpieczenie przepięciowe		Współczynnik dla ostrzeżenia						☆
F8.05 wzmocnienie	jest po Współ	przez sygnalizację na odpowiedni czynnik jest używany do określen ı. Im większa wartość, tym ostrzeź	o zaprogi ia wyprze	amowanym v edzenia sygna	vyjściu o dizacji o	łwusta: strzeże	nowy DC nia w sto). sunku do
Jeżeli podczas zwalniania napięcie na szynie prądu stałego DC przekroczy wartość F8. alownik powstrzyma proces zwalniania poprzez utrzymanie stałej wartośći częstotliwości wyjściowej do czasu rozładowania zakumulowanej energii, po czym proces zwalniania będz contynuowany. Jeżeli F3.12nie jest ustawiony na 0, falownik wygeneruje sygnał pozwlający rozładowanie energii w zewnętrznym rezystorze hamującym. Szybkość reakcji zależy od ustawienia parametru F8.05. Im większa wartość tym reak falownika szybsza. Dla napędów o dużej bezwładności wartość prarmetru może być więks dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.05=0, funl jest wyłączona. F8.08 Funkcja zabezpieczenia przed utratą Zabroniona 0 1 pozwolona poże wyłączona pozwolona pozwolona poże wyłączona 1 pozwolona poże wyłączona poże wyłączona 1 pozwolona poże wyłączona poże wyłączeń błędów 0 do 32767 0 pozwolona pod podane napięcie celem sprawdzenia zwarcia doziemnego. F8.10 Ilość automatycznych wyłączeń błędów 0 do 32767 0 pozwolona poże wyłączeń poże wyłączeń poże w pożeki poże przez falownik samoczyna kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych wyłączona 0 pożeki pobłędzie pożeki pobłędzie pobłędzie pobłędzie pobłędzie pożeki pobłędzie pobłędzie pobłędzie pobłędzie pobłędzie pobłędzie pobłędzie pożeki pobłędzie	F8.05		0 do 10)			0	☆
Jeżeli podczas zwalniania napięcie na szynie prądu stałego DC przekroczy wartość F8. falownik powstrzyma proces zwalniania poprzez utrzymanie stałej wartośći częstotliwości wyjściowej do czasu rozładowania zakumulowanej energii, po czym proces zwalniania będz kontynuowany. Jeżeli F3.12nie jest ustawiony na 0, falownik wygeneruje sygnał pozwlający rozładowanie energii w zewnętrznym rezystorze hamującym. Szybkość reakcji zależy od ustawienia parametru F8.05. Im większa wartość tym reak falownika szybsza. Dla napędów o dużej bezwładności wartość prarmetru może być więks dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.05=0, funl jest wyłączona. F8.08 Funkcja zabezpieczenia przed utratą Zabroniona 0 1	F8.06	Zabezpieczenie przepięciowe	120% d	o 150%		13	30%	☆
F8.08 Funkcja zabezpieczenia przed utratą Zabroniona 0 Dozwolona 1 Dozwolona II D				energii, po c	zym pro	ces zw	alniania l	będzie
F8.09 Kontrola zwarcia doziemnego Wyłączona 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ozładov S: falown dla naj	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezy zybkość reakcji zależy od ustawie iika szybsza. Dla napędów o duże pędów o małej bezwładności - na	iony na 0 ystorze ha nia paran j bezwład	energii, po c , falownik wy mującym. netru F8.05. Ii ności wartość	zym pro generujo m więks: ź prarme	ces zwa e sygna za wart tru moz	alniania l nł pozwla tość tym że być w	będzie jący na reakcja iększa,
Funkcja pozwala wybrać, czy kontrola fazy jest aktywna czy też nie F8.09 Kontrola zwarcia doziemnego	ozładov Sz falown dla naj jest wy	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezy zybkość reakcji zależy od ustawie ika szybsza. Dla napędów o duże pędów o małej bezwładności - na płączona.	iony na 0 ystorze ha nia paran j bezwład poziomie	energii, po c , falownik wy mującym. netru F8.05. In ności wartość wartości fabr	zym pro generujo m więks: ź prarme	ces zwa e sygna za wart tru moz Jeżeli I	alniania l nł pozwla tość tym że być w	będzie jący na reakcja iększa,
F8.09 Kontrola zwarcia doziemnego Wyłączona 0 1 1 1 Jeśli funkcja jest aktywna, po zasileniu falownika na zaciski wyjściowe UVW zostani chwilę podane napięcie celem sprawdzenia zwarcia doziemnego. F8.10 Ilość automatycznych wyłączeń błędów 0 do 32767 0 Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczynn kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych Wyłączona 0 Załączona 1 0 O Załączona 1 Deśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	falown dla nap jest wy	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o dużejoędów o małej bezwładności - na raczona. Funkcja zabezpieczenia przed uti	iony na 0 ystorze ha nia paran j bezwład poziomie	energii, po c , falownik wy mującym. netru F8.05. In ności wartość wartości fabr	zym pro generujo m więks: ź prarme	ces zwa e sygna za wart tru moz Jeżeli I	alniania l ał pozwla tość tym że być w F8.05=0,	będzie jący na reakcja iększa,
Jeśli funkcja jest aktywna, po zasileniu falownika na zaciski wyjściowe UVW zostani chwilę podane napięcie celem sprawdzenia zwarcia doziemnego. F8.10 Ilość automatycznych wyłączeń błędów Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczynn kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych Wyłączona 0 Załączona 1 O Szlączona 1 O Szlączona 1 O Szlączona 1 O Szlączona 1 Seśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	falown dla nap jest wy	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o dużejedów o małej bezwładności - na draczona. Funkcja zabezpieczenia przed utrazy wyjściowej	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zah	energii, po c , falownik wy mującym. netru F8.05. In ności wartość wartości fabr proniona zwolona	zym pro- vgeneruje m więks: ć prarme rycznej.	za wart tru moz Jeżeli I	alniania l ał pozwla tość tym że być w F8.05=0,	będzie jący na reakcja iększa, funkcja
Jeśli funkcja jest aktywna, po zasileniu falownika na zaciski wyjściowe UVW zostani chwilę podane napięcie celem sprawdzenia zwarcia doziemnego. F8.10 Ilość automatycznych wyłączeń błędów 0 do 32767 0 Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczynn kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych wyłączona 0 Załączona 1 OZałączona 1 Deśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	rozładov Sz falown dla nap jest wy F8.08	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ilka szybsza. Dla napędów o dużejędów o małej bezwładności - na jałączona. Funkcja zabezpieczenia przed utrazy wyjściowej	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zab Toa rola fazy j	energii, po c , falownik wy mującym. netru F8.05. Ii ności wartość wartości fabr proniona zwolona est aktywna c	zym pro- vgeneruje m więks: ć prarme rycznej.	ces zwa e sygna za wart tru mo: Jeżeli F	alniania lał pozwla tość tym że być w F8.05=0,	będzie jący na reakcja iększa, funkcja
chwilę podane napięcie celem sprawdzenia zwarcia doziemnego. F8.10 Ilość automatycznych wyłączeń błędów 0 do 32767 0 Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczynn kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych wyłączona 0 Załączona 1 OZałączona 1 OZałączona 1 OZałączona 1 Deśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	rozładov Sz falown dla nap jest wy F8.08	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ilka szybsza. Dla napędów o dużejędów o małej bezwładności - na jałączona. Funkcja zabezpieczenia przed utrazy wyjściowej	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zab Doz rola fazy j	energii, po c, falownik wy mującym. netru F8.05. Ii ności wartość wartości fabr proniona zwolona est aktywna c	zym pro- vgeneruje m więks: ć prarme rycznej.	ces zwa e sygna za wart tru mo: Jeżeli F	alniania lał pozwla tość tym że być w F8.05=0,	będzie jący na reakcja iększa, funkcja
F8.10 Ilość automatycznych wyłączeń błędów 0 do 32767 0 Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczynn kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych wyłączona 0 Załączona 1 0 Jeśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	falown dla nap jest wy F8.08	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o duże pedów o małej bezwładności - na płączona. Funkcja zabezpieczenia przed utifazy wyjściowej unkcja pozwala wybrać, czy kontr	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zab Doz rola fazy j Zał	energii, po c, falownik wy mującym. netru F8.05. Ii ności wartość wartości fabroroniona zwolona est aktywna c łączona	zym progeneruje m więks: ź prarme cycznej.	ces zwie sygnaza wartru mo: Jeżeli H	alniania lał pozwła dość tym że być w 78.05=0,	będzie jący na reakcja iększa, funkcja
Parametr określa ile kolejno pojawiających się błędó będzie przez falownik samoczynn kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych Wyłączona 0 Załączona 1 OZałączona 1 OZAŻączona 1 OZA	rozładov S: falown dla nap jest wy F8.08 F8.09	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o duże pedów o małej bezwładności - na pełączona. Funkcja zabezpieczenia przed utrazy wyjściowej unkcja pozwala wybrać, czy kontra kontrola zwarcia doziemnego eśli funkcja jest aktywna, po zasile	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zał Doz rola fazy j Zał eniu falow	energii, po c, falownik wy, mującym. netru F8.05. Ii ności wartość wartości fabroroniona zwolona est aktywna c łączona ączona znika na zacis	zym proc generuje m więks: ź prarme cycznej czy też n	ces zwie sygnaza wartru mo: Jeżeli H	alniania lał pozwła dość tym że być w 78.05=0,	będzie jący na reakcja iększa, funkcja
kasowanych. Jeśli ilośćbłędów przekroczy tą wartość, falownik pozostanie w stanie błędu i wyłączy silnik. Jeżeli F8.10 ≥ 1, falownik zostanie uruchomiony po chwilowym zaniku napięcia zasilającego. F8.11 Aktywacja sygnalizacji automatycznych wyłączona 0 Załączona 1 Jeśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	rozładov S: falown dla nap jest wy F8.08 F6 F8.09	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ilka szybsza. Dla napędów o dużejędów o małej bezwładności - na połączona. Funkcja zabezpieczenia przed utrfazy wyjściowej unkcja pozwala wybrać, czy kontrola zwarcia doziemnego eśli funkcja jest aktywna, po zasile podane napięcie celem sprawdzest	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zat Doz rola fazy j Zat eniu falow nia zwarce	energii, po c, falownik wy mującym. netru F8.05. Ii ności wartość wartości fabroroniona zwolona est aktywna c łączona ączona znika na zacisia doziemneg	zym prozgeneruje m więks: ź prarme czy też n ski wyjśc	ces zwie sygnaza wartru mo: Jeżeli H	alniania la pozwlad pozwlad pozwlad pozwlad pozwlad pozwlad poź w	będzie jący na reakcja iększa, funkcja
Wyłączeń po błędzie Załączona I U Jeśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy	rozładov S: falown dla nap jest wy F8.08 F1 F8.09 Je chwilę	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o dużejędów o małej bezwładności - na połączona. Funkcja zabezpieczenia przed utrazy wyjściowej unkcja pozwala wybrać, czy kontra kontrola zwarcia doziemnego eśli funkcja jest aktywna, po zasiłe podane napięcie celem sprawdzej llość automatycznych wyłączeń	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zab Doz rola fazy j Zał eniu falow nia zwarca	energii, po c, falownik wy mującym. netru F8.05. In ności wartość wartości fabroroniona zwolona est aktywna c łączona ączona mika na zacisia doziemneg	zym procygeneruje m więks: ź prarme cycznej	ces zwie sygnaza warttru mo: Jeżeli F 0 1 ie 0 1 ciowe U	alniania lał pozwlatość tym że być w 78.05=0,	będzie jący na reakcja iększa, funkcja
	F8.09 F8.10 Parasasowar Para	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o dużej pędów o małej bezwładności - na jałączona. Funkcja zabezpieczenia przed utrazy wyjściowej unkcja pozwala wybrać, czy kontra Kontrola zwarcia doziemnego podane napięcie celem sprawdzej Ilość automatycznych wyłączeń ametr określa ile kolejno pojawianych. Jeśli ilośćbłędów przekroczy silnik.	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zab Do: rola fazy j Wy Zał eniu falow nia zwarc i błędów jących sic y tą warto uruchom	energii, po c , falownik wy mującym. netru F8.05. Ii ności wartość wartości fabr oroniona zwolona est aktywna o taczona aczona mika na zacis ia doziemneg 0 do 32° tybędó będzie ść, falownik	zym procygenerujem więks: ź prarme rycznej	za warttru mo: Jeżeli F 0 1 ie io iowe U	alniania la li pozwla tość tym że być w 38.05=0, 1 1 JVW zos 0 k samoczanie błęci	będzie jący na reakcja iększa, funkcja
KIOIC SĄ KASOWAIIC W FAIHACII UZIAIAIHA IUHKCJI F8.1U	rozładov S: falown dla naj jest wy F8.08 F8.09 Je chwilę F8.10 Par casowar wyłączy Je zasilaj:	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o dużej pędów o małej bezwładności - na jałączona. Funkcja zabezpieczenia przed utrazy wyjściowej unkcja pozwala wybrać, czy kontra Kontrola zwarcia doziemnego eśli funkcja jest aktywna, po zasile podane napięcie celem sprawdzej Ilość automatycznych wyłączeń zametr określa ile kolejno pojawianych. Jeśli ilośćbłędów przekroczycilnik. żeli F8.10 ≥ 1, falownik zostanie acego. Aktywacja sygnalizacji automaty wyłączeń po błędzie	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zał Do: rola fazy j Wy Zał eniu falow nia zwarc n błędów jących sie y tą warto uruchom	energii, po c, falownik wy, mującym. netru F8.05. Ii ności wartości wartości fabroroniona zwolona est aktywna c łączona wnika na zacisia doziemneg 0 do 32′c błędó będzie ść, falownik wyłącze Załączo Załączo	zym procygeneruje m więks: c prarme cycznej czy też n	za warttru moz Jeżeli F 0 1 ie 0 1 sciowe U	alniania lał pozwlad rość tym rość rość rość rość rość rość rość rość	będzie jący na reakcja iększa, funkcja
F8.12 Czas od wykrycia błędu do skasowania 0.1s do 100.0s 1.0s Czas oczekiwania pomiędzy wykryciem błędu, a jego automatycznym skasowanie. Je	F8.09 F8.10 Chwile F8.10	owany. Jeżeli F3.12nie jest ustaw wanie energii w zewnętrznym rezyzybkość reakcji zależy od ustawie ika szybsza. Dla napędów o dużej pędów o małej bezwładności - na jałączona. Funkcja zabezpieczenia przed utrazy wyjściowej unkcja pozwala wybrać, czy kontra Kontrola zwarcia doziemnego eśli funkcja jest aktywna, po zasile podane napięcie celem sprawdzej Ilość automatycznych wyłączeń zametr określa ile kolejno pojawianych. Jeśli ilośćbłędów przekroczycilnik. żeli F8.10 ≥ 1, falownik zostanie acego. Aktywacja sygnalizacji automaty wyłączeń po błędzie	iony na 0 ystorze ha nia paran j bezwład poziomie ratą Zał Do: rola fazy j Zał eniu falow nia zwarc n błędów jących sie y tą warto uruchom rcznych	energii, po c, falownik wy, mującym. netru F8.05. Ii ności wartości wartości fabroroniona zwolona est aktywna c łączona dożiemneg 0 do 32′c błędó będzie ść, falownik iony po chwil wyłącze Załączo ustanowych I	zym procygeneruje m więks: c prarme cycznej czy też n	za warttru moz Jeżeli F 0 1 ie 0 1 sciowe U	alniania lał pozwlad rość tym rość rość rość rość rość rość rość rość	będzie jący na reakcja iększa, funkcja

Przeciążenie silnika

(Err.11)

str. 91

Wybór akcji po

wykryciu błędu -

F8.17

F8.11=1, przez ten czas sygnalizowany będzie błąd.

Cyfra jedności

00000

 \Rightarrow

	grupa 1	Zatrzymanie v	vyhiagiam		0	1
	grupa i				1	
		Zatrzymanie w wybranym trybie Kontynuacja pracy			2	
			Cyfra Utrata fazy			
		dziesiątek	wejściowej (Err.	12)		
		Cyfra setek	Utrata fazy			
		Syria secen	wyjściowej (Err	.13)		
		Cyfra tysięcy	Wyłączenie			
			zewnętrzne (Err	.15)		
		Cyfra 10tysięc		ji		
			(Err.16)	-		
		Cyfra jednośc	i Błąd enkodera			
			(Err.20)		00000	
		Zatrzymanie v	wybiegiem	0		
		Przełączenie s	terowania na V/F i	1		
			w wybranym trybie			
F0 10	Wybór akcji po		terowania na V/F i	2		
F8.18	wykryciu błędu -	kontynuacja p				
	grupa 2	Cyfra dziesiąt	ek Błąd pamięci EPROM (Err.)	21)		
			EFROM (EII.	21)		
		Zatrzymanie v	vybiegiem 0			
		Zatrzymanie v				
		trybie	v wyoranym 1			
		Cyfra jedności Błąd użytkownika 1				
		Cyna Jeanosei	(EIT.27)			
		Cyfra dziesiąte	Błąd użytkowni	ka 2		
ı				(Err.27) Upływ czasu		
		Cyfra setek	zasilenia (Err.29	1)		
			Zanik obciążeni			
		Cyfra tysięcy	(Err.30)	а		
	Wybór akcji po	Zatrzymanie w		0		
F8.19	wykryciu błędu -		wybranym trybie	1		☆
	grupa 3	Zwolnienie do	7% częstotliwości			
			ontynuacja pracy,			
		automatyczny		2		
		częstotliwości	zadanej, praca jeśli			
			ia nie występuje.]
İ			Itrata sygnału sprzęże			
		10tysiecy Z	wrotnego regulatora l			
		l P	odczas pracy (Err.3	1)		
			byt duże odchylenia			
	Wyshów olsoji w -		zybkości (Err.42)	0		
F8.20	Wybór akcji po wykryciu błędu -		Zatrzymanie wybiegiem 0 Zatrzymanie w wybranym trybie 1		00000	☆
1.0.70	grupa 4	Kontynuacja p		2	00000	×
1	Stupu 4		rzekroczenie prędkoś	ici		
1			ilnika (Err.43)			
T /	1' 1 "7 4		" C 1 '1 ' ' ' ' '1'	11.11	L	l

Jeśli wybrano "Zatrzymanie wybiegiem" falownik wyświetli błąd i zatrzyma silnik, Jeśli wybrano " Zatrzymanie w wybranym trybie " falownik wpierw zatryzma silnik w wybranym trybie, po czym wyświetli błąd,

Jeśli wybrano " Kontynuacja pracy " falownik będzie kontynuował pracę i błąd.

		Częstotliwość bieżąca	0		
	awarii	Częstotliwość zadana	1		*
F8.24		Częstotliwość górna	2	0	
		Częstotliwość dolna	3		
		Częstotliwość nieprawidłowa	4		
F8.25	Wartość częstotliwości nieprawidłowej	60.0% do 100.0%	100		☆

Jezeli falownik wykryje błąd, a ustawiona jest funkcja obsługi błędu: "Kontynuacja pracy", falownk wyświetli komunikat błędu i bęzie kontynuował pracę z częstotliwością wybraną w F8.24. Jeśli F8.24=4, wartością częstotliwości zadanej będzie F8.25. Wartość ta odnosi się do częstotliwości maksymalnej.

	Działanie po chwilowym zaniku	Brak akcji	0		
F8.26	zasilania	Zwalnianie	1	0	☆
	Zasiidiia	Zwalnianie i stop	2		
F8.27	Częstotliwość przełączenia czasu zwalniania	50.0% do 100.0%		90%	☆
F8.28	Opóźnienie załączenia po powrocie zasilania	0.00s do 100.00s		0.50s	☆
F8.29	Wartość napięcia progowego po zaniku zasilania	50.0% do 100.0% (standardowego napięcia na szynie prądu stałego DC)		80.0%	☆

Działanie po zaniku zasilania

Funkcja służy do podtrzymania pracy falownika w wyniku chwilowego zaniku zasilania lub obniżenia się napięcia na szynie pradu stałego DC, poprzez odzyskanie energii z silnika w wyniku gwałtownego zwolnienia jego pracy.

Jeżeli F8.26=1 to w momencie gdy napięcie na szynie pray stałego DC spadnie poniżej F8.29, to silnik zacznie hamować zgodnie z F7.11 (trzcia grupa czasów). Po osiągnięciu częstotliwości F8.27 nastąpi przełączenie czasu zwalniania na F7.13 (czwarta grupa czasów) i wg tego czasu falownik będzie zwalniał aż do całkowitego zatrzymania lub powrotu napięcia zasilania. Jeśli w czasie zwalniania nastąpi powrót napięcia na szynie pradu stałego DC F8.29 i będzie utrzymywał się przez czas opóźniena F8.28, to falownik przywróci wyjśćiową częstotliwość pracy.

Jeżeli F8.26= to w momencie gdy napięcie na szynie pray stałego DC spadnie poniżej F8.29, falownik będzie zwalniał aż do całkowitego zatrzymania się.

F8.30	Funkcja ochrony przed	Zabroniona	0	0		☆
F6.50	spadkiem obciążenia	Dozwolona	1	U	×	
F8.31	Poziom detekcji spadku obciążenia	0.0 do 100.0%		10.0%	,	☆
F8.32	Czas detekcji spadku obciążenia	0.0 do 60.0s		1.0s	,	☆

Jeżeli funkcja ochrony przed spadkiem obciążenia jest załączona F8.30=1 to jeśli falownik stwierdzi, że prąd wyjściowy falownika jest mniejszy niż poziom detekcji F8.31 i stan ten utrzymuje się dłużej niż przez czas podany w F8.32, falownik obniży częstotliwość wyjściową o 7%. Podczas działania funkcji, jeśli poziom prądu obciążenia powróci, falownik powróci do częstotliwości wyjściowej.

5-2-11. Parametry komunikacji F9.00-F9.06

Kod	Nazwa parametru	Zakres nastav	v	Warto ść fabryc zna	Stat us
		300BPS	()	
		600BPS	1		
		1200BPS	2	:]	
		2400BPS	3	;	
F9.00	Prędkość transmisji	4800BPS	4		
F9.00	MODBUS	9600BPS	4		
		19200BPS	(5	
		38400BPS	7	7	
		57600BPS 8			
		115200BPS	ò)	
	Format danych	Bez parzystości (8-N-2))	
F9.01		Parzysty (8-E-1)		0	☆
1.9.01		Nieparzysty (8-O-1) 2		:	
		Bez parzystości (8-N-1)	3	;	
F9.02	Adres falownika	1-250 lub 0 dla adresu rozgłoszeniowego		1	☆
F9.03	Czas odowiedzi	0ms-20ms			☆
F9.04	Timeout komunikacji	0.0 (Wyłączony); 0.1 do 60	.0s		
		Cyfra jedności	MODBUS		
		Niestandardowy MODBUS	0		
		Standardowy MODBUS	1		
E0.05	W. I. (I I .	Cyfra dziesiątek	Profibus-DP	30	☆
F9.05	Wybór protokołu	PPO1	0	30	¥
		PPO2	1		
		PPO3 2			
		PPO5	3		
F9.06	Dokładność odczytu	0.01A	0	0	☆
r9.00	prądu	0.1A	1	U	M

5-2-12. Parametry sterowania momentem FA.00-FA.07

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna		Status
FA.00	Wybór trybu sterowania	Sterowanie prędkością	0	0	+
FA.00	wybor trybu sterowania	Sterowanie momentem	1	U	^

Wybór trybu sterowania pędkością lub momentem.

Tryb sterowania prędkością lub momentem może byćwybierany arówno za pomocą FA.00 jak rownież za pomocą odpowiednio zaprogramowanych wejść dwustanowych (funkcje 29 i 46).

Jeśli wejścia te nie sa skonfigurowane, to o trybie pracy decyduje FA.00.

Jeśli wejście skonfigurowane jako przełącznik trybu sterowania (f. 46) jest nieaktywne to o trybie sterowania decyduje FA.00. Jeśli jest aktywne to tryb pracy jest przeciwny do wybranego w FA.00. Jeśli wejście blokady sterowania momentem (f. 29) to wykonywany będzie tylko tryb sterowania prędkością.

		Klawiatura (FA.02)	0		
	Wybór źródła wartości	Wejście AI1	1		
FA.01	zadanej momentu w	Rezerwa		0	*
	trybie sterowania	Potencjometr klawiatury		0	
	momentem	Szybkie wejście impulsowe	4		
		Port komunikacyjny RS485	5		
FA.02	Zakres momentu	-200.0% do 200.0%		150%	☆

Parametr używany do wyboru źródła wartości zadanej momentu.

100% zakresu momentu (FA.02) odpowiada momentowi nominalnemu falownika.

Jeśli wartość momentu (FA.02) jest większa od 0, falownik pracuje "do przodu", jeśli ujemna "do tyłu".

Jeśli w FA.01 wybrano 1,2,4 lub 8 100% synału na wejściu odpowiada wartości w FA.02.

FA.03	Czas narastania momentu	0.00s do 650.00s	0.00s	☆
FA.04	Czas opadania momantu	0.00s do 650.00s	0.00s	☆

W trybie sterowania momentem różnica pomiędzy momentem wyjściowym a momentem obciążenia decyduje o zakresie zmian prędkości silnika i obciążenia, co powoduje, że prędkość silnika może się gwałtownie zmieniać powodując hałas lub naprężenia mechaniczne. Ustawiając czasy narastania i opadania momentu można złagodzić te zmiany.

Jeśli jednak szybkie zmiany monentu są wymagane, parametry należy ustawić na 0.

Na przykład jeśli dwa silniki pracują z tym samym obciążeniem, aby zapewnić równomierne obciążenie obu silników, jeden z nich należy skonfigurować na sterowanie prędkości (master) a drugi na sterowanie momentem (slave). Aktualny moment wyjściowy pierwsego falownika (master) musi być użyty jako wartość zadana mamentu dla drugiego falownika (slave). Ponieważ moment wyjściowy drugiego falownika (slave) musi szybko podążać za momentem na wyjściu pierwszego (master), oba parametry muszą być ustawione na 0.

FA.05	Maksymalna częstotliwość przy pracy "do przodu"	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
FA.06	Maksymalna częstotliwość przy pracy "do tyłu"	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆

Parametry wyznaczają maksymalną częstotliwość pracy "do przodu" i "do tyłu" w trybie sterowania momentem.

W trybie sterowania momentem, jeśli moment obciążenia jest mniejszy niż moment wyjściowy falownika, prędkość silnika będzie wzrastać. Dla uniknięcia "rozbiegnięcia się" silnika i innych następstw mechanicznych należy zdefiniować maksymalną wartość częstotliwości do jakiej silnik może się rozpędzić.

FA.07 Stała filtra momentu 0.00s do 10.00s 0.00s

5-2-13. Parametry optymalzacji sterowania FB.00-FB.08

Kod	Nazwa parametru	Zakres nastaw		artość ryczna	Status
FB.00	Funkcja ograniczania	Zabroniona	0	1	☆
1 D.00	impulsów prądu	Dozwolona	1	1	^

Funkcja ograniczenia impulsów prądu pozwala ograniczyć oddziaływanie gwałtownych skoków prądu wyjściowego na działanie falownika. Jeżeli falownik długookresowo jest poddany oddziaływaniu impulsów prądu na wyjściu, może się grzać lub ulec uszkodzeniu. W

przypadku występowania tego typu zakłóceń falownik zasygnalizuje Err.40.

FB.01 Próg detekcji niskiego napięcia (dla Err.09) 50.0% do 140.0% 100.0% ☆

Parametr ustawia próg sygnalizacji niskiego napięcia, sygnalizowany komunikatem Err.09. Wartość 100% odpowiada nasępującym poziomom napięcia:

220V (jedno- lub trójfazowe): 200V,

tróifazowe 380V: 350V.

FB.02 Próg detekcji przepięcia 200.0V do 2500.0V 810V ☆

Ustawienie programowego punktu detekcji przepięcia nie ma wpływu na ustawienie sprzętowego punktu detekcji przepięcia. Wartości fabryczne są następujące:

Napięcie	Nastawa fabryczna
Jednofazowe 220V	400.0V
Trójfazowe 220V	400.0V
Trójfazowe 380V	810.0V
Trójfazowe 480V	890.0V
Trójfazowe 690V	1300.0V

Uwaga! Wartości fabryczne stanowią maksymalną wartość zabezpieczenia. Ustawienie wartości powyżej fabrycznych nie będzie miało wpływu na działanie falownika.

FB.03 Wybór trybu ko strefy martwej	Wybór trybu kompensacji	Bez kompensacji	0		
		Tryb 1	1	1	☆
	strety martwej	Tryb 2	2		

Zasadniczo nie ma potzeby zmieniać wartości parametru. Jedynie, jeśli wymagany jest specjalny kształt napięcia wyjściowego lub występują oscylacje lub inne nieprawidłowości, można zmienić tryb kompensacji. Tryb 2 przeznaczony jest dla falowników o dużych mocach.

FB.04	Kompensacja detekcji prądu	0 do 100			5	☆
Parametr służy do ustawienia kompensacji odczytu prądu .Watości nie należy zmianiać.						ianiać.
FB.05	Optymalizacja wektorowa bez enkodera	Bez optymalizacji		0		
		Tryb 1		1	1	☆
		Tryb 2		2		
FB.06	Górne ograniczenie częstotliwości dla sterowania DPWM	0.00Hz do 15.00Hz			12.00Hz	☆
FB.07	Sposób modulacji PWM	Asynchroniczna 0			0	₹-
		Synchroniczna	1] 0		×

Funkcje aktywne w sterowaniu V/f. Modulacja synchroniczna PWM polega na tym, że częstotliwość nośna liniowo zmienia się w zależności od częstotliwości wyjściowej falownika w celu zapewnienia niezmienności współczynnika - częstotliwość nośna do wyjściowej, dla uzyskania wysokiej jakości kształtu napięcia wyjściowego.

Przy niskich częstotliwościach modulacja synchroniczna nie jest potrzebna, gdyż współczynnik częstotliwość nośna do wyjściowej jest względnie wysoki. Modulacja asynchroniczna jest w tym przypadku lepsza.

Jeżeli częstotliwość przekracza 85Hz, modulacja synchroniczna staje się skuteczna . When the operating frequency is higher than 85Hz, the synchronous modulation takes effect.

	Mechanizm	Wyłączony	0		
FB.08	wyciszenia pracy silnika	Głębokość modulacji	1 to 10	0	☆

Użycie funkcji powoduje, że monotonny i piskliwy dźwięk silnika staje się łagodniejszy co pomaga zredukować emisję zakłóceń elektromagnetycznych. Wartość 0 powoduje, że funkcja jest wyłączona.

5-2-14. Parametry rozszerzające FC.00-FC.02

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
FC.01	Współczynnik proporcjonalności prędkości Master/Slave	0.00 do 10.00	0	☆

Ustawienie wartości 0 wyłącza funkcję.

Ustawienie wartości parametru powoduje, że adres komunikacyjny urządzenia Master (F9.02) ustawiony jest na 248, a Slave'a od 1 do 247. Częstotliwość wyjściowa Slave'a = Częstotliwość zadana Master'a * FC.01 + Zmiany wprowadzone klawiszami ▲i ▼ lub za pomocą odpowiednio skonfigurowanych wejść DI..

FC 02 Poczatkowy uchyb regulacji PID 0.0 do 100.0 0

Jeżeli wartość bezwzglęna uchybu regulacji PID jest większa niż FC.02, dla zabezpieczenia się przed wielokrotnym startem, falownik wystartuje jedynie jeśli częstotliwość wyjściowa falownika jest większa niż częstotliwość wybudzenia (F7.46). Podczas pracy falownika, jeśli wartośc sprzężenia zwrotnego PID jest większa od wartości zadanej i jeśli częstotliwość wyjściowa jest mniejsza lub równa F7.48 (częstotliwość uśpienia), falownik przejdzie w tryb uśpienia po czasie F7.49 zatrzymując się wybiegiem.

Jeśi falownik jest w stanie uśpienia i podana jest komenda startu oraz wartość bezwzględna uchybu regulacji PID jest większa niż FC.02 to, jeżeli częstotliwość wyjściowa PID jest większa lub równa F7.46 (częstotliwość wybudzenia) falownik wystartuje po czasie F7.46 (opóźnienie wybudzenia)

Użycie funkcji wymaga ustawienia E2.27 = 1.

5–2–15. Wobulator, ustalona długość i zliczanie impulsów E0.00-E0.11

Funkcja wobulatora jest stosowana w aplikacjach tekstylnych, chemicznych i innych, gdzie odbywają się procesy przewijania i nawijania. Funkcja wobulatora powoduje, że częstotliwość wyjściowa będzie oscylowała do góry i do dołu, aby oscylowała centralnie wokół częstotliwości zadanej., jak pokazano na rysunku. Amplituda ustawiana jest w E0.00 i E0.01. Jeśli E0.01=0wobulator nie będzie pracował.

Schematic diagram of wobbulate operating

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
E0.00	Ustawienie sposobu oscylacji	Względem częstotliwości środkowej	0	0	4
		Względem częstotliwości maksymalnej	1	0	Ж

Parametr wyznacza linię odniesienia dla oscylacji						
E0.01	Amplituda oscylacji	0.0% do 100.0%	0.0%	☆		
E0.02	Współczynnik uskoku	0.0% do 50.0%	0.0%	☆		

Parametry określają amplitudę oscylacji i wartość uskoku.

Jeśli oscylacja ustalona jest względem wartości środkowej (E0.00=0), amplituda wobulacji (AW) = wartość zadana częstotliwości (F0.07) × E0.01.

Jeżeli oscylacja ustalona jest względem wartości maksymalnej (E0.00=1), amplituda wobulacji AW = częstotliwośc maksymalna (F0.19) × E0.01.

Jeżeli współczynnik uskoku jest wybrany, jest on wyrażony w % względem amplitudy oscylacji tzn.: współczynnik uskoku = amplituda wobulacji × E0.02.

Jeśli oscylacja ustalona jest względem wartości środkowej (E0.00=0) współczynnik uskoku jest wartością zmienną. Jeżeli oscylacja ustalona jest względem wartości maksymalnej (E0.00=1), współczynnik uskoku jest ustalony na stałe.

E0.03	Cykl wobulatora	0.1s do 3000.0s	10.0s	☆
E0.04	Współczynnik czasu narastania fali	0.1% do 100.0%	50.0%	☆

Cykl wobulatora to czas zakończenia cyklu wobulacji.

Współczynnik czasu narastania fali (E0.04) wyrażonu jest w % czasu cyklu wobu;latora (E0.03), wyraża się zależnością: Czas narastania = E0.03 × E0.04 i wyrażony jest w sekundach. Odpowiednio czas opadania = E0.03 × (1 - E0.04).

E0.05	Długość ustawiona	0m do 65535m	1000m	☆
E0.06	Długość aktualna	0m do 65535m	0m	☆
E0.07	Ilośc impulsów na metr	0.1 do 6553.5	100.0	☆

Parametry definiują funkcę ustalonej długości.

Informacje o aktualnej długości (E0.06) są wyliczane jako ilość impulsów zliczonych z wejść dwustanowych (programowanych fiunkcją 27), przemnożonych przez ilość impulsów na metr (E0.07). Jeśli aktualna długość jes większa od długości ustawionej (E0.05) falownik zasygnalizuje ten stan wysokim stanem na wyjściu dwustanowym zaprogramowanym jako "osiągnięcie długości".

Podczas pracy w trybie zliczania długości wejścia dwustaniwe DI mogą być użyte do kasowania licznika długości (funkcja 28 - patrz opis parametrów F1.00 do F1.09).

Jeśli źródło impulsów pracuje z dużą częstotliwością, do ich zliczania należy użyć szybkiego wejścia impulsowego DI5.

E0.08	Pojemność licznika	1 do 65535	1000	☆
E0.09	Sygnalizacja zapełnienia licznika	1 do 65535	1000	☆
	Impulsy zliczane 1 1 2 1			1 L_

Schemat obrazujący działanie funkcji

Wartość zliczeń pobierana jest z wejścia dwustanowego (programowanych fiunkcją 25). Jeśli źródło impulsów pracuje z dużą częstotliwością, do ich zliczania należy użyć szybkiego wejścia impulsowego DI5.

Jeśli zliczona ilość impulsów osiągnie wartość E0.08, falownik zasygnalizuje ten stan wysokim stanem na wyjściu dwustanowym zaprogramowanym jako "osiągnięcie pojemności licznika" i licznik przestanie zliczać.

Jeśli zliczona ilość impulsów osiągnie wartość E0.09, falownik zasygnalizuje ten stan wysokim stanem na wyjściu dwustanowym zaprogramowanym jako "osiągnięcie sygnalizacji zapełnienia licznika", licznik będzie zliczał dalej, aż do osiągnięcia wartości E0.08.

Na schemacie obrazującym działanie funkcji ustawiono E0.08 = 8 i E0.09 = 4.

E0.10	Ilość impulsów dla redukcji częstotliwości		0: Niektywne 1 do 65535	0	☆
E0.11	Częstotliwość zredukowana	0.00Hz do F0.19 (częstotliwość maksymalna)		5.00Hz	☆

Jeżeli ilość zliczonych impulsów na wejściu dwustanowym zaprogramowanym funkcją 25 powiększona o E0.10 osiągnie wartość E0.08falownik automatycznie zmieni częstotliwość pracy na wartość E0.11.

Uwaga! Dla skasowania licznika należy podaś sygnał aktywny na wejście dwustanowe DI zaprogramowane funkcją 26.

5-2-16. Komenda wielostanowa, sterowanie PLC E1.00-E1.51

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
E1.00	Prędkość dla stanu 0	-100.0% do 100.0%	0.0%	☆
E1.01	Prędkość dla stanu 1	-100.0% do 100.0%	0.0%	☆
E1.02	Prędkość dla stanu 2	-100.0% do 100.0%	0.0%	☆
E1.03	Prędkość dla stanu 3	-100.0% do 100.0%	0.0%	☆
E1.04	Prędkość dla stanu 4	-100.0% do 100.0%	0.0%	☆
E1.05	Prędkość dla stanu 5	-100.0% do 100.0%	0.0%	☆
E1.06	Prędkość dla stanu 6	-100.0% do 100.0%	0.0%	☆
E1.07	Prędkość dla stanu 7	-100.0% do 100.0%	0.0%	☆
E1.08	Prędkość dla stanu 8	-100.0% do 100.0%	0.0%	☆
E1.09	Prędkość dla stanu 9	-100.0% do 100.0%	0.0%	☆
E1.10	Prędkość dla stanu 10	-100.0% do 100.0%	0.0%	☆
E1.11	Prędkość dla stanu 11	-100.0% do 100.0%	0.0%	☆
E1.12	Prędkość dla stanu 12	-100.0% do 100.0%	0.0%	☆
E1.13	Prędkość dla stanu 13	-100.0% do 100.0%	0.0%	☆
E1.14	Prędkość dla stanu 14	-100.0% do 100.0%	0.0%	☆
E1.15	Prędkość dla stanu 15	-100.0% do 100.0%	0.0%	☆
E1.13 E1.14 E1.15	Prędkość dla stanu 13 Prędkość dla stanu 14	-100.0% do 100.0% -100.0% do 100.0% -100.0% do 100.0%	0.0% 0.0% 0.0%	☆ ☆ ☆

Komenda wielostanowa może być użyta np. jako źródło częstotliwości zadanej, jako źródło zmiennej procesowej regulatora PID itd. Wartość komendy podawana jest w jednostkach względnych w zakresie -100.0% do 100.0%. Jeśli komenda jest źródłem wartości zadanej obrotów, jej zakres (100%) odnosi się do do częstotliwości maksymalnej, jeżeli komenda jest źródłem zmiennej procesowej regulatora PID, wartość procentowa podawana jest bezpośrednio do regulatora, bez przetwarzania.

Komenda wielostanowa jest podawana do falownika poprzez wejścia odpowiednio zaprogramowane wejścia dwustanowe.- patrz opis funkcji F1.00 do F1.09.

Laprog	granico mante mejbera ame	stano ver pauz opio ranneji i rico do i ri	· · ·		
	Turih stanovnomia	Zatrzymanie po zakończeniu programu	0		
E1.16	Tryb sterowania PLC	Utrzyanie wartości końcowej po zakończeniu programu	1	0	☆
		Praca cykliczna	2		

Schemat wykonywanego pojedynczego programu PLC przedstawiony jest na poniższym rysunku.. W pojedynczym programie PLC, jako źróódło wartości zadanej obrotów, znak zaprogramowanej wartości w E1.00 do E1.15 decyduje o kierunku obrotów, wartość ujemna obroty "do tyłu", dodatnia - "do przodu".

Jako źródło częstotliwości, program PLC pracuje w trzech trybach:

0: zatrzymanie falownika po zakończeniu pojedynczej pętli programu

Po zakończeniu programu falownik zostanie zatrzymany. Ponowny rozruch wymaga podania komendy start.

1: utrzyanie wartości końcowej po zakończeniu programu

Po zakończeniu programu falownik pracuje z obrotami i w kierunku w jakim zakończony został program.

2: praca cykliczna

Po zakończeniu programu automatycznie uruchamiany jest kolejny cykl.

Schemat działania programu PLC

	Selection accounted programme 1250								
		Cyfra	Pamięć przy wyłaczeniu						
E1.17	Sterowanie PLC - zapamiętanie stanu pracy	jedności	zasilania						
		Wyłączenie b	Wyłączenie bez zapamiętania			٠.			
		Wyłączenie z zapamiętaniem		1	00				
		Cyfra dziesiątek	Pamięć po zatrzymaniu		00	×			
		Zatrzymanie bez zapamiętania		0					
		Zatrzymanie	z zapamiętaniem	1					

Wybór opcji "... z zapamiętaniem" oznacza, że po wyłączeniu zasilania (zatrzymaniu) falownik zapamięta na jakim etapie realizacji programu PLC się znajduje i z jaką prędkością sterowany jest silnik. Po porwocie zasilania (ponownym uruchomieniu) falownik będzie kontynuował od miejsca zatrzymania.

Wybór opcji "... z zapamiętaniem" oznacza, że po wyłączeniu zasilania (zatrzymaniu)

falownik rozpocznie cykl od początku.

E1.18	T0 - Czas pracy dla stanu 0	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.19	Zestaw parametrow przyspieszania i zwalniania dla stanu 0	0 do 3	0	☆
E1.20	T1 - Czas pracy dla stanu 1	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.21	Zestaw parametrow przyspieszania i zwalniania dla stanu 1	0 do 3	0	☆
E1.22	T2 - Czas pracy dla stanu 2	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.23	Zestaw parametrow przyspieszania i zwalniania dla stanu 2	0 do 3	0	☆
E1.24	T3 - Czas pracy dla stanu 3	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.25	Zestaw parametrow przyspieszania i zwalniania dla stanu 3	0 do 3	0	☆
E1.26	T4 - Czas pracy dla stanu 4	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.27	Zestaw parametrow przyspieszania i zwalniania dla stanu 4	0 do 3	0	☆
E1.28	T5 - Czas pracy dla stanu 5	0.0s(h) do 6500.0s(h)	0.0s(h)	☆

E1.29	Zestaw parametrow przyspieszania i zwalniania dla stanu 5	0 do 3	0	☆
E1.30	T6 - Czas pracy dla stanu 6	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.31	Zestaw parametrow przyspieszania i zwalniania dla stanu 6	0 do 3	0	☆
E1.32	T7 - Czas pracy dla stanu 7	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.33	Zestaw parametrow przyspieszania i zwalniania dla stanu 7	0 do 3	0	☆
E1.34	T8 - Czas pracy dla stanu 8	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.35	Zestaw parametrow przyspieszania i zwalniania dla stanu 8	0 do 3	0	☆
E1.36	T9 - Czas pracy dla stanu 9	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.37	Zestaw parametrow przyspieszania i zwalniania dla stanu 9	0 do 3	0	☆
E1.38	T10 - Czas pracy dla stanu 10	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.39	Zestaw parametrow przyspieszania i zwalniania dla stanu 10	0 do 3	0	☆
E1.40	T11 - Czas pracy dla stanu 11	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.41	Zestaw parametrow przyspieszania i zwalniania dla stanu 11	0 do 3	0	☆
E1.42	T12 - Czas pracy dla stanu 12	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.43	Zestaw parametrow przyspieszania i zwalniania dla stanu 12	0 do 3	0	☆
E1.44	T13 - Czas pracy dla stanu 13	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.45	Zestaw parametrow przyspieszania i zwalniania dla stanu 13	0 do 3	0	☆
E1.46	T14 - Czas pracy dla stanu 14	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.47	Zestaw parametrow przyspieszania i zwalniania dla stanu 14	0 do 3	0	☆
E1.48	T15 - Czas pracy dla stanu 15	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
E1.49	Zestaw parametrow przyspieszania i zwalniania dla stanu 15	0 do 3	0	☆
7	estaw parametrów odpowiadających posz	czególnym stanom pracy y	w sterowaniu	PI C -

Zestaw parametrów odpowiadających poszczególnym stanom pracy w sterowaniu PLC - czas pracy dla każdego ze stanów oraz odpowiadający mu zestaw czasów przyspieszania i zwalniania:

iama.						
	0: F0.13, F0.	.14	2: F7.10、F7.11			
	1: F7.08 F7.	.09	3: F7.12, F7.13			
Jednostka o	zasu pracy dla	s (sekun	dy)	0	0	₩.
sterowania	PLC	h (godz	h (godziny)		U	~
		Podana v	w E1.00	0		
		Wejście analogowe AI1		1		
		Rezerwa		2		
		Potencjo	Potencjometr klawiatury			
	3			4	0	☆
prçakoseran	a stallu 0	Regulato	or PID	5		
		klawiatu	ry (F0.01)	6		
	Jednostka o sterowania Źródło warto	0: F0.13、F0.	0: F0.13、F0.14 1: F7.08、F7.09 Jednostka czasu pracy dla sterowania PLC	O: F0.13、F0.14 2: F7.10、F7.11 1: F7.08、F7.09 3: F7.12、F7.13 Jednostka czasu pracy dla sterowania PLC S (sekundy) h (godziny) Podana w E1.00 Wejście analogowe AII Rezerwa Potencjometr klawiatury Szybkie impulsowe wejście dwustanowe Regulator PID Częstotliwość zadana z klawiatury (F0.01) modyfikowalna klawiszami	0: F0.13、F0.14 2: F7.10、F7.11 1: F7.08、F7.09 3: F7.12、F7.13 Jednostka czasu pracy dla sterowania PLC s (sekundy) 0 h (godziny) 1 Podana w E1.00 0 Wejście analogowe AII 1 Rezerwa 2 Potencjometr klawiatury 3 Szybkie impulsowe wejście dwustanowe 4 Regulator PID 5 Częstotliwość zadana z klawiatury (F0.01) modyfikowalna klawiszami 6	0: F0.13、F0.14 2: F7.10、F7.11 1: F7.08、F7.09 3: F7.12、F7.13 Jednostka czasu pracy dla sterowania PLC s (sekundy) 0 h (godziny) 1 Podana w E1.00 0 Wejście analogowe AII 1 Rezerwa 2 Potencjometr klawiatury 3 Szybkie impulsowe wejście dwustanowe 4 Regulator PID 5 Częstotliwość zadana z klawiatury (F0.01) modyfikowalna klawiszami 6

5-2-17. Regulator PID E2.00-E2.32

Regulator PID służy do sterowani procesem w zamkniętej pętli sprzężenia zwrotnego z regulowanym parametrem. Struktura regulatora składa się z części proporcjonalnej (P) całkującej (I) i różniczkującej (D). Wartością wejściową regulatora jest uchyb regulacji wyznaczony jako różnica pomiędzy wartością zadaną a wartością zmiennej procesowej (regulowany parametr). Na tej podstawie i na podstawie określonych parametrów regulacji, regulator wylicza wartość wyjściową, która może być wartością zadaną obrotów falownika. Regulator może być użyty np. do regulacji ciśnienia, temperatury, przepływu i innych parametrów fizycznych procesu technologicznego.

Schemat ideowy regulatora PID

Kod	od Nazwa parametru Zakres nastaw		W	artość	Status	
Kou	Nazwa parametru	Zaki es nastaw	fab	ryczna	Status	
		Wartość w E2.01	0			
E2.00		Wejście analogowe AI1	1			
		Rezerwa	2			
	Źródło wartości zadanej	Potencjometr klawiatury	3	0	☆	
L2.00	PID	Szybkie impulsowe wejście dwustanowe	4	O	^	
		Port komunikacyjny RS-485	5			
		Komenda wielostanowa	6			
E2.01	Wartość zadana PID z klawiatury	0.0% do 100.0%	5	0.0%	☆	
Pa	rametry określają źródło war	tości zadanej regulatora PID.				
Ot	oie wartości podane są w jedn	ostkach względnych w zakresie 0 d	o 1009	% .		
		Wejście analogowe AI1	0			
	Źródło zmiennej procesowej	Rezerwa	1	0		
		Potencjometr klawiatury	2			
E2.02	PID	Rezerwa	3		☆	
		Szybkie impulsowe wejście	4			
		dwustanowe				
		Port komunikacyjny RS-485	5			
		ci zmiennej procesowej regulatora				
W	artość podana jest w jednostk	ach względnych w zakresie 0 do 10	0%			
E2.03	Kierunek działania PID	Na wprost	0	0	☆	
E2.03	Kieruliek uziaiailia FID	Odwrotnie	1	U	^	
	Współczynnik skalowania	dla				
E2.04	wartości zadanej i sprzężen	ia 0 do 65535		1000	☆	
	zwrotnego					
W	artości zadana i sprzężer	nia zwrotnego dla PID podaw	vane	są w j	ednostkach	
bezwyn	niarowych (%) odpowiednio	d0.15 i d0.16.				

100.0% wartości sprzężenia zwrotnego dla PID odpowiada ustawieniu E2.04. Jeśli np.										
	=2000 a wartość dla PID wyn	osi 50%,	wartość parametru wyświe	etlanego	W					
d0.15wyniesie 1000.										
E2.05	Maksymalna częstotliwość PID przy pracy "do tyłu"	Maksymalna częstotliwość PID przy pracy "do tyłu" Maksymalna częstotliwość maksymalna)				☆				
W niektórych przypadkach wartość wyjśćia regulatora PID może być ujemna, co										
	riada pracy "do tyłu". Może to					ia.				
	etr służy do ograniczenia mal									
"do tył	u".		, .							
	Strefa martwa uchybu regul	lacji PID	0.0% do 100.0%		0	☆				
Je	eżeli uchyb regulacji PID (róż	znica pon	niędzy wartośćią zadaną PI	D a wart	ością s	przężenia				
zwrotr	nego) będzie mniejsza od E2.0	06, uchyb	regulacji zostanie wyzero	wany, co	skutku	ije tym,				
że war	tość wyjścia nie będzie się zr	nieniać.								
E2.07	Wartość maksymalna częśc	i	0.00% do 100.00%	0.	10%	☆				
7	różniczkującej PID	1 .	' 1	1 /						
	byt duża wartość części różni				oscyka	cje.				
	etr służy do ograniczenia war		31 3 0							
E2.08	Stała filtru wartości zadane		0.00s do 650.00s	0.00		. ☆				
	Vartość zadana regulatora PID									
	tej wartości. Parametr określ									
	100%, sygnał wejściowy do		a osiągnie wartość 100%.	Przez ten	czas je	ego				
wartos	ć będzie się zmieniała liniow Stała filtru wartośći	0.		l						
E2.09	zmiennej procesowej PID	0.00s d	o 60.00s	0.00s		☆				
E2.10	Stała filtru wyjścia PID	0.00s d	o 60.00s	0.00s		☆				
	arametry używane do filtrowa									
	ygładza nagłe zmiany tych w									
dłuższ			p	-r	8	j				
T0 44	Próg detekcji utraty zmienn	ei	0.0%: Bez kontroli		0.0					
E2.11	procesowej PID	. 3	0.1% do 100.0%		%	☆				
	Czas detekcji utraty zmienn	ei								
E2.12	procesowej PID	5	0.0s to 20.0s		0s	☆				
P	arametr pozwala określić, czy	falowni	k ma kontrolować utrate sy	gnału zn	niennei					
	owej czy też nie. Jeżeli warto									
mniejs	za niż E2.11, i stan ten utrzy:	nuje się į	orzez czas dłuższy niż E2.1	2, falow	nik zgł	osi alarm				
Err.31.		5 (1	· •		Ü					
E2.13			0.0 do 200.0	80.	0	☆				
E2.14	Czas zdwojenia PID - Ti1		0.01s do 10.00s	0.50	Os	☆				
E2.15	·		0.00s do 10.000s	0.00	0s	☆				
	zmocnienie regulatora PID I									
wartość	wyjścia części proporcjo	onalnej	regulatora będzie równa	wartos	sci ma	aksymalne				
częstotli										
	as zdwojenia Ti1: czas po									
	części proporcjonalnej -				ału wy	yjściowego				
	regulatora. Im mniejszy czas tym większy wpływ na wartość wyjśćia regulatora.									
C-		:	1:1d1:::	: : - : -	- 1000	/ 4 - 4 !				

Czas wyprzedzenia Td1: oznacza, że jeżeli uchyb regulacji zmieni się o 100%, wartość wyjścia części różniczkującej regulatora będzie równa wartości maksymalnej częstotliwości.

	Falownik PI160 pozwala określić dwa zestawy parametrów Kp, Ti, Td.					
E2.16	Wzmocnienie PID - Kp2		0.0 do 200.0	(1	20.0	☆
E2.17	Czas zdwojenia PID - Ti2		0.01s do 10.00s	2	2.00s	☆
E2.18	Czas wyprzedzenia PID - T	d2	0.00 do 10.000	0.	.000s	☆
E2.19	Warunki przełaczenia	Bez przełączenia		0	0	☆
	parametrów PID	Przełą	czenie przez listwę			

		zaciskową Automatyczne przełaczenie zgodnie z uchybem regulacji				
				2		
E2.20	Wartość uchybu 1 dla przeła parametrów PID	ączenia	0.0% do E2.21	2	0.0%	☆
	Wartość uchybu 2 dla przełączenia parametrów PID tegration time Ti2		E2.20 do 100.0%	80.0%		☆

Parametry E2.19, E2.20 i E2.21 pozwalają ustalić warunki przełączania parametrów regulatora PID w sposób następujący:

- 0: Przełączanie nieaktywne.
- 1: Grupy parametrów mogą być przełączane poprzez odpowiednio zaprogramowane wejście dwustanowe DI (funkcja 43). Stan nieaktywny wejścia powoduje wybór pierwszej grupy parametrów (E2.13 do E2.15), stan nieaktywny wybór drugiej grupy parametrów (E2.16 do E2.18).
- 2: W trybie automatycznym, jeśli wartość uchybu regulacji jest mniejsza niż E2.20, aktywna jest pierwsza grupa parametrów (E2.13 do E2.15). Jeśli wartość uchybu regulacji jest większa niż E2.21, aktywna jest druga grupa parametrów (E2.16 do E2.18). Jeśli wartość uchybu regulacji jest pomiędzy E2.20 a E2.21, poszczególne parametry obliczane są zgodnie z liniową charakterystyką.

Automatyczna zmiana parametrów PID

		Cyfra jedności	integrator separowany		00	
		Zabroniony		0		
Tayla massy		Dozwolony		1		
E2.22	Tryb pracy integratora PID	Cyfra dziesiątek	zachowanie integratora po osiągnięciu ograniczenia na wyjściu	ı		☆
		Kontynuacja pracy		0		
		Zatrzymanie		1		

Parametr pozwla ustalić tryb pracy integratora PID.

Integrator separowany: Jeśli funkcja załączona i na wejście dwustanowe zaprogramowane funkcją 38 jest stan wysoki, integrator regulatora zostanie zatrzymany. Część proporcjonalna i różniczkowa regulatora będą działać dalej. Jeżeli funkcja jest wyłączona, integrator nie będzie zatrzymywany.

Jeżeli watość wyjścia regulatora PID osiągnie wartość maksymalną, integrator może zostać zatrzymany (wybór 1) lub może kontynuować prace (wybór 0)

Losta	c zacizjinanj (w jeor 1) ide in			
E2.23	Wartość inicjująca PID	0.0% do 100.0%	0.0%	☆
E2.24	Czas utrzymywania wartości inicjującej PID	0.00s do 360.00s	0.00s	*

Po uruchomieniu falownika, wartość wyjśćiowa regulatora PID jest inicjowana na wartość E2.23, i utrzymywana przez czas E2.24, po upływie którego regulatr zaczyna działać. Ilustruje to poniższy rysunek.

Inicjalizacja pracy regulatora PID

E2.25	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do przodu"	0.00% do 100.00%	1.00%	☆
E2.26	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do tyłu"	0.00% do 100.00%	1.00%	☆

Maksymalna dozwolona zmiana wartości wyjścia regulatora PID w jednym cyklu obliczeniowym (2ms). Pozwala uniknąć niestabilnej pracy regulatora w przypadku szybkich zmian sygnałów wejściowych.

ſ	F2 27	Tryb pracy PID w stanie	PID nie pracuje	0	0	₹-
	E2.27	wylaczenia	PID pracuje	1	U	~

Parametr pozwala określić czy regulator PID pracuje gdy jest wyłączony, czy nie pracuje. Regulator będąc wyłączonym nie ma wpływu na częstotliwośc wyjściową falownika, ale może dokonywać obliczeń własnego sygnału wyjściowego.

E2 20	Opcja automatycznego obniżenia częstotliwości	Zabroniona	0	0	₩.	
12.29	PID	Dozwolona	1	U	A	

Jeśli funkcja jest załączona, to jeżeli uchyb regulacji jest zerowy, falownik obniża częstotliwość wyjściową o 0,5 Hz i tak długo jak uchyb regulacji będzie zerowy częstotliwość będzie obniżana o kolejne 0,5 Hz co czas podany w E2.31. Po zmianie wartości uchybu regulacji, czestotliwość powraca do wartości wyjściowej.

E2.30	Częstotliwość	•	0.00Hz do F0.19	25Hz	☆
	zwalniania PIF)	(czestotliwość maksymalna)		

Funkcja działa jeżeli jest załączona opcja automatycznego obniżenia częstotliwości PID. Jeżeli watość zmiannej procesowej jest większa od wartości zadanej, falownik systematycznie obniża częstotliwość (patrz opis parametru E2.29 do wartości E2.30, po czym zaczyna zliczać ilość upływ czasu podany w E2.31. Jeżeli zliczona ilość przekroczy wartość E2.32, falownik zostanie zatrzymany.

Jeśli podczas procesu zliczania wartość zmiannej procesowej obniży się poniżej wartości zadanej, falownik przywróci poprzednią częstotliwość zadaną

E2.31 Czas detekcji dla automatycznego obniżenia częstotliwości PID		0s do 3600s	10	☆
Pai	rametr odliczający czas pomiędzy kolejnymi re	dukcjami częstot	liwości wyjście	wej.
E2.32	Pojemność licznika upływu czasu	10 do 500	20	☆

Funkcja związana z ustawieniem częstotliwości zatrzymania PID. Jeżeli upłynie czas detekcji dla automatycznego obniżenia częstotliwości PID, falownik będzie zwalniał do zatrzymania.

5-2-18. Wirtualne wejścia i wyjścia dwustanowe E3.00-E3.21

POWTRAN-POLSKA Sp. z o.o.

Kod Nazwa parametru		Zakres nastaw	Wartość fabryczna	Status
E3.00	Wybór funkcji wejścia VDI1	0 do 53	0	*

E3.01	Wybór funkcji wejścia VDI2	0 do 53	0	*
E3.02	Wybór funkcji wejścia VDI3	0 do 53	0	*
E3.03	Wybór funkcji wejścia VDI4	0 do 53	0	*
E3.04	Wybór funkcji wejścia VDI5	0 do 53	0	*

Wejścia wirtualne pełnią taką samą rolę jakwejścia dwustanowe falownika. Można do nich przypisać takie same funkcje jak do wejść fizycznych (atrz opis funkcji F1.00 do F1.09)..

		Cyfra jedności	wejście VDI1			
		Nieaktywne		0		
E3.05		Aktywne		1		
	Stan wejścia VDI	Cyfra dziesiątek	wejście VDI2		00000	*
		Cyfra setek	wejście VDI3			
		Cyfra tysięcy	wejście VDI4			
		Cyfra 10tysięcy	wejście VDI5			
		Cyfra jedności w	rejście VDI1			
		VD1 o stanie decyduje wyjście VDOx		0		
		VD1 o stanie de	cyduje E3.05	1		
E3.06	Źródło sygnału dla VDI	Cyfra dziesiątek	wejście VDI2		11111	*
		Cyfra setek	wejście VDI3			
		Cyfra tysięcy	wejście VDI4			
		Cyfra 10tysięcy	wejście VDI5			

Wejścia wirtualne tym różnią się od wejść fizycznych, że stan wejść wirtualnych może być określony na dwa sposoby wyboerane parametrem E3.06..

Jeśli VDI jest uzależnione od stanu wyjścia dwustanowego VDO, parametr pozwala wybrać jedno z wyjść VDOx(x=1 do 5).

Parametr E3.05 pozwala ustalić na stałe stan weiścia VDI.

Przykład 1.

Realizacja następującej funkcji: "Falownik zgłasza alarm i wyłącza się jeśli AI1 przekroczy górna lub dolna wartość."

Ustawienia: stan VDI uzależniony od VDO, do VDI1 przypisujemy funkcję "Błąd użytkownika 1" (E3.00=44); ustawiamy VDI1 w tryb zależności od VDO1 (E3.06=xxx0); ustawiamy wyjście VDO1 jako "Wartość AI1 poza zakresem" (E3.11=31). Kiedy wejście AI1 przekroczy górny lub dolny zakres, wyjście VDO1 zostanie aktywowane, co spowoduje aktywację wejścia VDI1. VDI1 zgłosi "Błąd użytkownika 1", co spowoduje, że falownik zasygnalizuje błąd 27 i się wyłączy.

Przykład 2.

Realizacja następującej funkcji: "Fruchomienie falownika po powrocie zasilania".

Ustawienia: VDI ustawiamy na stałe parametrem E3.05, do wejścia VDI1 przypisujemy funkcję "Praca do przodu (FWD)" (E3.00=1); ustawiamy VDI1 jako zależne od E3.05 (E3.06=xxx1); ustawiamy stan wysoki na VDI1 (E3.05=xxx1). Źródło komend sterujących wybieramy jako "terminal" (F0.11=1), wyłączamy zabezpieczenie (F7.22=0). Po powrocie zasilania i inicjalizacji falownika, na wejściu VDI1 pojawia się stan wysoki (wejście aktywne) co uruchamia falownik do pracy "do przodu".

E3.07	Wybór funkcji wejścia AI1 jako wejście dwustanowe DI 0 do 53			0	*
E3.10	Wybór logiki wejść AI w użvciu iako DI	Cyfra jedności AI1 Poziom wysoki	0	000 AI2	*
	uzyciu jako Di	Poziom niski	1	AIZ	

Ta grupa parametrów jest używana, gdy wejścia analogowe AI są wykorzystane jako wejścia dwustanowe. Napięcie odpowiadające stanowi wysokiemu (wejście aktywne) wynosi co najmniej 7V, stanowi niskiemu (wejście nieaktywne) co najwyżej 3 V.

Przyporządkowanie funkcji dla tak skonfigurowanego wejścia analogowego jest analogiczne jak dla wejść DI - patrz opis parametrów F1.00 do F1.09.

Na poniższym rysunku przestawiona sposób interpretacji sygnału na wejściu AI użytym jako DI:

Interpretacji sygnału na wejściu AI

			sygnatur na megsetti 111			
	Wybór funkcji	Zgodnie ze star	nem na DI1	0		
E3.11	wyjścia VDO1	Zgodnie z opise - grupa F2.	em wyjść dwustanowych	1 do 40	0	☆
	Wybór funkcji	Zgodnie ze star	Zgodnie ze stanem na DI2			
E3.12	wyjścia VDO2	Zgodnie z opiso - grupa F2.	em wyjść dwustanowych	1 do 40	0	☆
	Wybór funkcji	Zgodnie ze stane	em na DI3	0		
E3.13	wyjścia VDO3	Zgodnie z opise grupa F2.	m wyjść dwustanowych -	1 do 40	0	☆
	Wybór funkcji	Zgodnie ze stan	em na DI4	0		
E3.14	wyjścia VDO4	Zgodnie z opise grupa F2.	m wyjść dwustanowych -	1 do 40	0	☆
	Wybór funkcji	Zgodnie ze stanem na DI5		0		
E3.15	wyjścia VDO5	Zgodnie z opisem wyjść dwustanowych - grupa F2.		1 do 40	0	☆
		Cyfra jedności	VDO1	•		
		Logika pozytyw	na	0		
		Logika negatyw	na	1		
E3.16 Wybór logiki wyjść VDO		Cyfra dziesiątek	VDO2		00000	☆
		Cyfra setek	VDO3			
		Cyfra tysięcy	VDO4			
		Ten Cyfra tysięcy	VDO5			
E3.17	Opóźnienie wyjść	ia VDO1	0.0s do 3600.0s		0.0s	☆

E3.18	Opóźnienie wyjśćia VDO2	0.0s do 3600.0s	0.0s	☆
E3.19	Opóźnienie wyjśćia VDO3	0.0s do 3600.0s	0.0s	☆
E3.20	Opóźnienie wyjśćia VDO4	0.0s do 3600.0s	0.0s	☆
E3.21	Opóźnienie wyjśćia VDO4	0.0s do 3600.0s	0.0s	☆

Funkcje, które można przypisać do wyjść dwustanowych VDO i DO są analogiczne. Ponadto, dla uzyskania prostych zależności sterujących, wyjścia VDO mogą być przypisane do odpowiadającym im wejść dwustanowych DI.

Jeśli przy wyborze funkcji VDO wybrano 0, stan wyjścia dwustanowego VDO jest zależny od stanu odpowiadającego mu wejścia dwustanowego DI (tzn, VDO1=DI1, VDO2=DI2 itd.).

Jeśli przy wyborze funkcji VDO wybrano wartość inną niż 0, funkcja wyjśćia jest zgodnia z opisem wyjść dwustanowych - grupa F2..

Logika wyjść VDO ustalona jest w E3.16

W E3.17 do E3.21 zdefiniowany jest czas opóźnienia wyjść VDO. Funkcja działa w ten sposób, że stan na wyjściu VDO pojawi się po zdefiniowanym czasie od momantu zmiany stanu wyjśćia. Np. jeśli wartość wyjścia VDO1 jest uzależniona od DI1, to zmiana stanu na VDO1 nastąpi po zadanym czasie po zmianie stanu na DI1..

5-2-19. Funkcje dla maszyn do cięcia E8.00-E8.06

Kod	7. Funkcje dia maszyn do c Nazwa parametru		kres na				rtość yczna	Status		
E8.00	Praca w trybie obsługi maszyn do cięcia	Wyłąc Załącz			0		0	*		
	Jeśli praca w trybie obsługi maszyn do cięcia jest załączona i sygnały sterujące podawane z wejść dwustanowych F0.11 = 1 lub 4, należy ustawić sterowanie trzyprzewodowe.									
E8.01	Czas ruchu posuwistego "do przodu"		0.0 do	600.0s		4	.0s	☆		
funkcją	W w trybie obsługi maszyn do cięcia, jeżeli wejście dwustanowe zaprogramowane jest funkcją 53 i jest stan wysoki na tym wejściu, parametr, w ruchu posuwisto-zwrotnym, wyznacza czas pracy "do przodu".									
E8.02	Czas ruchu wstecznego "do tyłu"		0.0 do	600.0s		2	.0s	☆		
W w trybie obsługi maszyn do cięcia, jeżeli wejście dwustanowe zaprogramowane jest funkcją 53 i jest stan wysoki na tym wejściu, parametr, w ruchu posuwisto-zwrotnym, wyznacza czas pracy "do tyłu".										
E8.03	28.03 Detekcja osiągnięcia wysokiej częstotliwości Wyłączona Załączona				1	0	*			
	zwolenie na kontrolę wysokiej częstot nie będzie działać niezależnie od wyb		Jeśli fu	nkacja	jest	załacz	zona, a E	8.04=0,		
E8.04	Poziom sygnalizacji wysokiej częstot			0 do 1			99%	☆		
zaprogr parame	rametr odnosi sie do częstotliwości zac ramowane jest funkcją 42 i częstotliwo trze, wyjście dwustanowe przejdzie w Poziom wyłączenia sygnalizacji wyso	ść wyjśc stan akt	iowa je	st więk	sza zd	niż us efiniov	tawiona	W		
E8.05	częstotliwości							, ,		
Parametr odnosi sie do częstotliwości zadanej . Jeżeli którekolwiek wyjście dwustanowe zaprogramowane jest funkcją 42 i częstotliwość wyjściowa jest miejsza niż ustawiona w parametrze, wyjście dwustanowe przejdzie w stan nieaktywny. Zaprogramowana wartość musi być mniejsza niż E8.04.										
E8.06	Czas opóźnienia sygnalizacji wysokie częstotliwości			0.0~			0.0 s	☆		
	zas opóźnienia sygnalizacji osiągnięcia 1 dwustanowym	wysoki	ej częst	otliwoś	ci p	odanej	w E8.0	4 na		

5-2-20. Parametry silnika b0.00-b0.27

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
b0.00	Wybór typu silnika	Standardowy silnik asynchroniczny	0	0	*
00.00	wyboi typu siiiika	Silnik asynchroniczny do pracy z falownikami	1	U	^
b0.01	Moc nominalna	0.1kW do 1000.0kW	-	*	
b0.02	Napięcie nominalne	1V do 2000V	1V do 2000V		
ь0.03	Prąd nominalny	0.01A do 655.35A (moc falownika ≤ 55kW) 0.1A do 6553.5A (moc falownik 55kW)	1	*	
b0.04	Częstotliwość nominalna	0.01Hz do F0.19 (częstotliw maksymalna)	⁄ość	-	*
b0.05	Obroty nominalne	1rpm do 36000rpm		-	*

W parametrach b0.00 do b0.05 należy podać dane z tabliczki znamionowej silnika. Wprowadzenie poprawnych wartości odpowiada za właściwą pracę falownika w szczególności w trybie sterowania wektorowego oraz jest niezbędne dla identyfikacji parametrów silnika.

Prąd nominalny silnika powinien zawierać się w zakresie 30 do 100% prądu nominalnego silnika. Parametr ten odpowiada za zabezpieczenie przeciażeniowe i nadprądowe silnika.

0				
b0.06	Rezystancja stojana silnika asynchronicznego	0.001Ω do 65.535Ω	1	*
b0.07	Rezystancja wirnika silnika asynchronicznego	0.001Ω do 65.535Ω	-	*
b0.08	Indukcyjność upływu silnika asynchronicznego	0.01mH do 655.35mH	-	*
b0.09	Indukcyjność wzajemna silnika asynchronicznego	0.01mH do 655.35mH	-	*
b0.10	Prąd jałowy silnika asynchronicznego	0.01A do b0.03	-	*
	. 1006 1 1010			

Parametry b0.06 do b0.10 są parametrami charakterystycznymi dla silnika asynchronicznego i nie znajdują się na tabliczce zmnamionowej silnika. Są one wyznaczane przez falownik w procesie identyfikacji.

Zmiana wartości b0.01 lub b0.02, powoduje, że falownik automatycznie przeliczy wartości parametrów b0.06 do b0.10.

Dla silników asynchronicznych, jeśli nie wszystkie z tych parametrów zostały zidentyfikowane przez falownik, ich wartości należy wprowadzić na podstawie danych producenta

		Wyłączone	0		
b0.27	Tryb autostrojenia	Statyczna autodetekcja parametrów silnika asynchronicznego.	1	0	*
	silnika	Zaawansowana autodetekcja parametrów silnika asynchronicznego.	2		

Jeżeli jest możliwość odłączenia obciążenia od silnika, w celu uzyskania lepszych wyników należy wybrać autodetekcję zaawansowaną. Jeśli nie ma takiej możliwości, należy wybrać autodetekcje statyczna.

Dla przeprowadzenia autostrojenia, wpierw należy przełączyć sterowanie na sterowanie z klawiatury, wybrać tryb autostrojenia, a następnie nacisnąć klawisz RUN. Falownik wykona autostrojenie.

Autostrojenie realizowane jest w następujących trybach:

- 0: Wyłaczone.
- 1: Statyczna autodetekcja parametrów silnika asynchronicznego
- Wymagane jest wprowadzenie wartości parametrów b0.00 do b0.05. Podczas strojenia,

falownik określi wartości parametrów b0.06 do b0.08...

2: Zaawansowana autodetekcja parametrów silnika asynchronicznego

Podczas autodetekcji zaawansowanej falownik wpierw określa parametry jak dla detekcji statycznej, a następnie rozpędzi silnik do 80% częstotliwości nominalnej silnika w czasie zgodnie z F0.13, a po upływie odpowiedniego czasu, zatrzyma silnik w czasie zgodnie z F0.14 kończąc detekcję.

Przed wykonaniem autodetekcji zaawansowanej muszą być podane nie tylko parametry b0.00 do b0.05, ale również należy zdefiniować typ enkodera i impulsowanie (b0.29, b0.28).

Dla silników asynchronicznych autodetekcja zaawansowana pozwala określić parametry b0.06 do b0.10, sekwencję sygnałów AB enkodera (b0.31) oraz parametry pętli prądowej w sterowaniu wektorowym F5.12 do F5.15.

Uwaga! Autodetekcja silnika może być przeprowadzony tylko w trybie sterowania z klawiatury. W innych trybach sterowania falownikiem, autoodetekcja jest niemożliwa do wykonania

5-2-21. Zarządzanie y0.00-y0.04

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
		Wyłączone	0		
y0.00		Przywrócenie fabrycznych wartości parametrów, bez parametrów silnika	1		
	Inicjalizacja parametrów	Czyszczenie historii	2		
		Przywrócenie fabrycznych wartości parametrów wraz z parametrami silnika	3	0	*
		Kopia zapasowa bieżących parametrów użytkownika	4		
		Odtworzenie parametrów użytkownika z kopii zapasowej	501		

- 1: Przywraca ustawienia fabryczne, bez parametrów silnika, F0.02, informacji o błędach, licznika czasu pracy, licznika czasu zasilania i licznika energii.
- 2: Czyszczenie wartości parametrów: informacji o błędach, licznika czasu pracy, licznika czasu zasilania i licznika energii.
 - 3: Przywraca ustawienia fabryczne, wraz z parametrami silnika.
- 4: Zapamiętuje bieżące parametry użytkownika do kopii zapasowej. Pozwala w łatwy sposób odtworzyć parametry w przypadku wprowadzenia błędnych danych..

501 Odtworzenie parametrów użytkownika z kopii zapasowej.

v0.01 Hasło użytkownika 0.do 65535 0 ☆					
joiot Thasic adjune within	y0.01	Hasło użytkownika	0 do 65535	0	☆

Jeżeli ustawiona jest wartość różna od 0, włączona jest ochrona hasłem. Powoduje to, że przed wejściem do menu konfiguracji należy podać właścwe hasło. Niepodanie hasła uniemożliwia weście w konfiguracje.

Wartość 0 wyłacza działanie funkcji

	waitose o wyiącza działane funkcji.								
y0.02	Wybór wyświetlania	Cyfra jedności	Grupa d		11111	*			
	grupy funkcji	Nie wyświetlana		0					
		Wyświetlana		1					
		Cyfra dziesiątek	Grupa E						
		Nie wyświetlana		0					
		Wyświetlana		1					
		Cyfra setek	Grupa b						
		Nie wyświetlana		0					

		Wyświetlana		1		
		Cyfra tysięcy	Grupa y1			
		Nie wyświetlana		0		
		Wyświetlana		1		
		Cyfra 10tysięcy	Grupa L			
		Nie wyświetlana		0		
		Wyświetlana		1		
y0.03	Wybór wyświetlania grupy parametrów użytkownika	Cyfra jedności:Nieu Cyfra dziesiątek: P zmienne użytkownii 0: Nie wyświetlane 1: Wyświetlane	arametry		00	☆
y0.04	Możliwość zmiany parametrów	Dozwolona 0 Parametry nie modyfikowalne 1			0	☆

Użytkownik może zdecydować, czy parametry konfiguracji falownika mogą być modyfikowalne, czy też nie, zabezpieczając się tym samym przed ryzykiem ich przypadkowej zmiany.

Wybór 1 powoduje, że wszystkie parametry są tylko wyświetlane, ale nie mogą być zmieniane.

5-2-22. Błędy i usterki y1.00-y1.30

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
y1.00	Kod pierwszego błędu	0 do 51	-	•
y1.01	Kod drugiego błędu	0 do 51	-	•
y1.02	Kod trzeciego (lub ostatniego) błędu	0 do 51	-	•

Record inverter recently three failure types, 0 for trouble-free. About the possible causes and solutions of each fault code, please refer to the relevant specification

Fault type table

Kod	Typ usterki	Kod	Typ usterki
0	Brak usterki	17	Uszkodzenie stycznika
1	Błąd ogólny	18	Błąd pomiaru prądu
2	Przekroczenie prądu przy rozpędzaniu	19	Nieprawidłowości autodetekcji parametrów silnika
3	Przekroczenie prądu przy zwalnianiu	21	Nieprawidłowy zapis lub odczyt wartości parametrów
4	Przekroczenie prądu przy pracy ze stała prędkością	22	Awaria urządzenia
5	Przekroczenie napięcia przy rozpędzaniu	23	Zwarcie doziemne silnika
6	Przekroczenie napięcia przy zwalnianiu	26	Upływ czasu pracy silnika
7	Przekroczenie napięcia przy pracy ze stała prędkością	27	Błąd użytkownika nr 1
8	Napięcie sterownicze poza zakresem	28	Błąd użytkownika nr 2
9	Niskie napięcie zasilania	29	Osiągnięcie zadanego czasu pracy silnika
10	Przeciążenie falownika	30	Spadek obciążenia

	11	Przeciążenie silnika		31		nału sprzężenia zw racy regulatora	vrotne	go PID	
	12	Utrata fazy na wejści	11	40		enie prądu wyjściowego			
	13	Utrata fazy na wyjści	fazy na wyjściu		Przełączen	ie silnika podczas pracy			
	14	Przegrzanie falownika		43	falownika Przekrocz	ona prędkość silni	ka		
	15	Wyłączenie zewnętrz		51		cji inicjalnej	Ku		
	_	Nieprawidłowa komu		COF	, ,	unikacji falownika	z klas	wieture	
1	16	1				unikacji ialowinka			
y1.		Częstotliwość podczas t Prąd podczas trzeciej (lu	J .		J /		-	•	
		Napięcie na szynie prąd	u stałego I	C pod	lczas trzeciei	(lub ostatniei)	-		
y1.	05	usterki		- F		(•	
			Stan sygn	ałów:					
		Stan sygnałów	BIT9 BIT8	BIT7 BIT	BIT5 BIT4 BI	T3 BIT2 BIT1 BIT0			
		wejściowych podczas	DIO DI9	DI8 DI7	7 DI6 DI5 DI	4 DI3 DI2 DI1			
y1.	06	trzeciej (lub ostatniej)			st aktywne (s			•	
		usterki				iony jast na 1. Sta	n		
					wietlany jest				
		Stan syg		,	i sposob nez	by ośmiobitowej			
		usterki odpowod sygnałów powstałe		A NC.	REL1 NC				
y1.	07			ście je	st aktywne (stan wysoki)		•	
, , ,						iony jast na 1. Sta	n.		
				ygnałów wyświetlany jest jako wartość					
				powstałej w ten sposób liczby ośmiobitowe.					
			NC ni	•					
y1.	09	Czas zasilania falownika				vnik był zasilony o	do	•	
_		trzeciej (lub ostatniej) u			enia błędu				
y1.		Czas pracy silnika do trz			iej) usterki			•	
y1.		Częstotliwość podczas d Prąd podczas drugiej usi	0 3	erk1				•	
		Napięcie na szynie prąd	u stałego I	C nod	lezas				
y1.	15	drugiej usterki	u statego i	e poc	iczas			•	
-	1.0	Stan sygnałów wejściow	ych podcz	as	A 1 .	1 100			
y1.	10	trzeciej (lub ostatniej) us			Analogi	cznie jak y1.06		•	
y1.	17	Stan sygnałów wyjściow		as	Analogi	cznie jak y1.07		•	
<i>J</i> 1.	- /	trzeciej (lub ostatniej) us	terki .		Analogicznie jak y1.07				
y1.	19	Czas zasilania falownika	a do drugie	j	Analogo	ocznie jak y1.09		•	
y1.	20	usterki Czas pracy silnika do drugiej usterk			Analogo	ocznie jak y1.10		•	
y1.		Czas pracy silnika do drugiej usterk Częstotliwość podczas pierwszej us		sterki	Analogo	cznie jak y 1.10		•	
y1.	_	Prąd podczas pierwszej usterki						•	
		Napięcie na szynie prąd	u stałego I	C pie	rwszej				
y1.	25	drugiej usterki			J			•	
·.1	26	Stan sygnałów wejściow	ych podcz	zas	Analogo	ocznie iak v1 06			
y1.	20	pierwszej usterki			Allalogo	Analogocznie jak y1.06			
y1.	27	Stan sygnałów wyjściow	yych podcz	zas	Analogo	ocznie jak y1.07		•	
_		pierwszej usterki	. 4:-						
y1.	29	Czas zasilania falownika do pierwszej		Analogo	ocznie jak y1.09		•		

	11	Przeciążenie silnika		31		gnału sprzężenia zwrotnego PII pracy regulatora		go PID
	12	Utrata fazy na wejściu	1	40		enie prądu wyjściowego		
	13	3 Utrata fazy na wyjściu		_		nie silnika podczas pracy		
	14	4 Przegrzanie falownika		43		ona prędkość silni	ka	
	15	Wyłączenie zewnętrzi	ne	51	Błąd pozy	cji inicjalnej		
	16	Nieprawidłowa komu	nikacja	COF	Brak kom	unikacji falownika	z kla	wiatura
y1.							- 1	•
y1.							-	•
y1.	.05	Napięcie na szynie prądu usterki	u stałego I	DC pode:	zas trzeciej	(lub ostatniej)	-	•
y1.	.06	Stan sygnałów wejściowych podczas trzeciej (lub ostatniej) usterki	ejściowych podczas zeciej (lub ostatniej) DIO DIS DIS DIS DIS DIA DIS DI2 DI1 Jeśli wejście jest aktywne (stan wysoki)			•		
y1.	.07	Stan sygnałów wyjściowych podczas trzeciej (lub ostatniej) usterki Stan sygnałów BIT4 BIT3 BIT2 BIT1 BIT0 NC SPA NC. REL1 NC Jeśli wyjście jest aktywne (stan wodpowodający mu bit ustawiony sygnałów wyświetlany jest jako powstałej w ten sposób liczby oś NC nieużywane.			viony jast na 1. Sta jako wartość	n	•	
y1.	.09	Czas zasilania falownika trzeciej (lub ostatniej) us			z jaki falov nia błędu	vnik był zasilony d	lo	•
y1.		Czas pracy silnika do trz			j) usterki			•
y1.		Częstotliwość podczas d		erki				•
y1.	.14	Prąd podczas drugiej ust Napięcie na szynie prądu		OC node	700			•
y1.	.15	drugiej usterki	u statego I	oc pouc	zas			•
y1.	.16	Stan sygnałów wejściowy trzeciej (lub ostatniej) ust	terki		Analogi	cznie jak y1.06		•
y1.	.17	Stan sygnałów wyjściow trzeciej (lub ostatniej) us	terki		Analogi	cznie jak y1.07		•
y1.	.19	Czas zasilania falownika do drugio usterki			Analogo	ocznie jak y1.09		•
y1.	.20	Czas pracy silnika do drugiej uster			Analogo	ocznie jak y1.10		•
y1.	.23	Częstotliwość podczas p		ısterki				•
y1.	.24	Prąd podczas pierwszej						•
y1.	.25	Napięcie na szynie prąd drugiej usterki		•	vszej			•
y1.	.26	Stan sygnałów wejściow pierwszej usterki			Analogo	ocznie jak y1.06		•
y1.	.27	Stan sygnałów wyjściow pierwszej usterki	ych podc	zas	Analogocznie jak y1.07		•	

	usterki		
y1.30	Czas pracy silnika do pierwszei usterki	Analogocznie jak y1.10	•

Rozdział 6 Rozwiązywanie problemów

Falownik PI160 jest skutecznie chroniony na wypadek niewłaściwej pracy instalacji zewnętrznych. W poniższej tabeli przedstawione są identyfikowane przez falownik błędy i usterki. W przypadku ich wystąpienia informacje z tabeli pomogą przeanalizowaćprzyczyny błędów i podjąć właściwe działania zaradcze.

W przypadku uszkodzenia falownika lub usterek, których nie uda się wyjaśnić proszimy o kontakt z obsługa techniczna.

6-1. Komunikaty błędów, rozwiązywanie problemów

W przypadku nieprawidłowości w pracy wywołana zostanie funkcja zabezpieczająca, falownik wyłączy zasilany silnik i zasygnalizuje awarię poprzez aktywację odpowidnio zaprogramowanego wyjścia dwustanowego oraz wyświetlenie stosownego komunikatu błędu na wyświetlaczu. W przypadku wystąpienia błędu w pracy falownika użytkownik ma możliwość samodzielnego sprawdzenia kodu usterki, przeanalizowania powodu wyłączenia i podjęcia działań naprawczych, zgodnie z informacjami przedstawionymi w niniejszym rozdziale. Jeśli wyeliminowanie usterki przez użytkownika nie będzie możliwe, prosimy o kontakt ze wsparciem technicznym.

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
1	Err.01	Błąd ogólny	1.Zwarcie doziemne na wyjściu 2. Zbyt długie przewody do silnika i falownika 3. Przegrzanie falownika 4. Niewłaściwie wykonane połączenia wewnątrz falownika 5. Awaria panela (klawiatury) 6. Nieprawidłowa praca falownika	1. Usunąć zwarcie 2. Zabudować dłąwik sieciowy lub filtr silnikowy 3. Sprawdzić, czy powietrze chłodzące opływa włąściwie i czy wentylator pracuje poprawanie 4. Właściwie podłączyć oprzewodowanie
2	Err.02	Przekroczenie prądu przy rozpędzaniu	1. Zbyt krótki czas rozpędzania 2. Zbyt wysokie podbicie momentu lub niewłaściwa charakterystyka V/f 3. Zbyt niskie napięcie 4. Zwarcie lub doziemienie na zaciskach wyjściowych falownika 5. Brak identyfikacji parametrów przy pracy wektorowej 6. Nieoczekiwane uruchomienie silnika, któty był w ruchu. 7. Nagłe zwiększenie obciążenia przy rozruchu. 8. Zbyt mała moc falownika	1. Zwiększyć czas rozpędzania 2. Zmienić wartość podbicie momentu lub charakterystykęV/f 3. Doprowadzić napięcie o poprawnej wartości 4. Usunąć błędy połączeń zewnętrznych 5. Wykonać identyfikację parametrów silnika 6. Wykonać rozruch na wirującym silniku lub poczekać na zatrzymanie się silnika. 7. Usunąć zbyt duże obciążenie 8. Zmienić falownik na urzązenie o większej mocy
3	Err.03	Przekroczenie prądu przy zwalnianiu	Zwarcie lub doziemienie na zaciskach wyjściowych falownika Brak identyfikacji parametrów przy pracy wektorowej	Usunąć błędy połączeń zewnętrznych Wykonać identyfikację parametrów silnika Zwiększyć czas zwalniania Doprowadzić napięcie o

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
			3. Zbyt krótki czas zwalniania 4. Zbyt niskie napięcie 5. Nagłe zwiększenie obciążenia przy zwalnianiu. 6. Brak jednostki hamującej lub rezystora hamowania	poprawnej wartości 5. Usunąć zbyt duże obciążenie 6. Zabudować jednostkę hamującą lub/i rezystor hamujący
4	Err.04	Przekroczenie prądu przy pracy ze stała prędkością	Zwarcie lub doziemienie na zaciskach wyjściowych falownika Brak identyfikacji parametrów przy pracy wektorowej Zbyt niskie napięcie Nagłe zwiększenie obciążenia przy pracy Zbyt mała moc falownika	1. Usunąć błędy połączeń zewnętrznych 2. Wykonać identyfikację parametrów silnika 3. Doprowadzić napięcie o poprawnej wartości 4. Usunąć zbyt duże obciążenie 5. Zmienić falownik na urzązenie o większej mocy
5	Err.05	Przekroczenie napięcia przy rozpędzaniu	Brak jednostki hamującej lub rezystora hamowania Zbyt wysokie napięcie zasilania Przyspieszanie na skutek działania siły zewnętrznej. Zbyt krótki czas rozpędzania	Zabudować jednostkę hamującą lub/i rezystor hamujący Doprowadzić napięcie o poprawnej wartości Zlikwidować wpływy zewnętrzne lub zainstalować rezystor hamujący Zwiększyć czas rozpędzania
6	Err.06	Przekroczenie napięcia przy zwalnianiu	Zbyt wysokie napięcie zasilania Zwalnianie na skutek działania siły zewnętrznej Zbyt krótki czas zwalniania Brak jednostki hamującej lub rezystora hamowania	Doprowadzić napięcie o poprawnej wartości Zlikwidować wpływy zewnętrzne lub zainstalować rezystor hamujący Zwiększyć czas zwalniania Zabudować jednostkę hamującą lub/i rezystor hamujący
7	Err.07	Przekroczenie napięcia przy pracy ze stała prędkością	Zmiany prędkości na skutek działania siły zewnętrznej Zbyt wysokie napięcie zasilania	Zlikwidować wpływy zewnętrzne lub zainstalować rezystor hamujący Doprowadzić napięcie o poprawnej wartości
8	Err.08	Napięcie sterownicze poza zakresem	Napięcie zasilania poza zakresem	Dostosować napięcie zasilania do wymagań specyfikacji
9	Err.09	Niskie napięcie zasilania	Chwilowy zanik zasilania Napięcie zasilania poza zakresem Niewłaściwe napięcie na szynie prądu staałego Uszkodzony prostownik lub rezystor rozruchowy falownika Uszkodzona klawiatura. Uszkodzona płyta główna	Usunąć sygnalizację błędu Dostosować napięcie zasilania do wymagań specyfikacji Skorzystać z pomocy technicznej
10	Err.10	Przeciążenie falownika	Zbyt mała moc falownika Zbyt duże obciążenie silnika lub silnik utknął	Zmienić falownik na urzązenie o większej mocy Zmniejszyć obciążenie lub strawdzić warunki pracy silnika

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
11	Err.11	Przeciążenie silnika	Zbyt wysokie napięcie zasilania Niewłąściwa wartość wzmocnienia zabezpieczenia przeciążeniowego F8.03 Zbyt duże obciążenie silnika lub silnik utknął	Doprowadzić napięcie o poprawnej wartości Dostosować F8.03. Zmniejszyć obciążenie lub strawdzić warunki pracy silnika
12	Err.12	Utrata fazy na wejściu	1.Uszkodzenie płyty głównej. 2. Zadziałało zabezpieczenie nadnapięciowe 3. Uszkodzenie płyty komputera 4. Uszkodzenie w linii zasilającej	Wymienić falownik, płytę główną lub stycznik Skorzystać z pomocy technicznej Sprawdzić i wyeliminować istniejące problemy na linii zasilającej
13	Err.13	Utrata fazy na wyjściu	Niewłaściwe połączenie falownika z silnikiem asymetria na wyjściu falownika podczas pracy silnika Uszkodzenie płyty głównej Uszkodzenie modułu wyjściowego	Usunąć błędy w połączeniach zewnętrznych Sprawdzić uzwojenia silnika i wyeliminować nieprawidłowości Skorzystać z pomocy technicznej
14	Err.14	Przegrzanie falownika	Zablokowany przepływ powietrza chłdzącego Uszkodzony wentylator Zbyt wysoka temperatura zewnętrzna Uszkodzony termistor Uszkodzenie modułu wyjściowego	Udrożnić przepływ powietrza chłdzącego Wymienić wentylator Obniżyć temperaturę zewnętrzną Wymienić termistor Wymienić moduł wyjściowy
15	Err.15	Wyłączenie zewnętrzne	Pojawienie się sygnału wyłączenia zewnętrznego na wejściu DI falownika	Skasować sygnalizację
16	Err.16	Nieprawidłow a komunikacja	Niewłaściwy kabel komunikacyjny Niewłaściwe ustawienia zewnętrznej karty komunikacyjnej F9.07 Niewłaściwe ustawienia parametrów komunikacji F9 Podłączone urządzenie nie pracuje poprawnie	Sprawdzić kabel komunikacyjny Ustawić właściwe parametry komunikacji i karty komunikacyjnej Sprawdzić działanie podłączonego urządzenia
17	Err.17	Uszkodzenie stycznika	Utrata fazy zasilającej Niewłaściwe połączenia lub uszkodzona płyta główna	Sprawdzić i usunąć błędy w linii zasilającej wymienić falownik, płytę główną lub stycznik
18	Err.18	Błąd pomiaru prądu	1.Sprawdzić czujnik Halla 2.Panel pracuje niewłaściwie	Wymienić panel Wymienić czujnik Halla
19	Err.19		Niewłaściwie wprowadzone parametry silnika z tabliczki znamionowej Przekroczony czas	Wprowadzić poprawne parametry silnika z tabliczki znamionowej Sprawdzić kabel zasilający silnik

Nr.	Błąd	Kod błędu	Możliwo przyczyny	Rozwiązanie problemów				
Nr.	Diąu	Koa biędu	Możliwe przyczyny identyfikacji parametrów	Rozwiązanie problemow				
21	Err.21	Nieprawidłow y zapis lub odczyt wartości parametrów	Uszkodzony EEPROM	Wymienić płytę sterującą				
22	Err.22	Awaria urządzenia	Przepięcie Zybyt duży prąd	Usunąć przyczyny usterek				
23	Err.23	Zwarcie doziemne	Silnik zwarty do ziemi	Wymienić kabel zasilający silnik lub silnik				
26	Err.26	Upływ czasu pracy silnika	Błąd licznika czasu	Wyczyścić informacje historyczne przy użyciu parametrów inicjalizacyjnych funkcji				
27	Err.27	Błąd użytkownika nr 1	Aktywny stan na wejściu zaprogramowanym jako wejście błędu użytkownika	Skasować sygnalizację usterki				
28	Err.28	Błąd użytkownika nr 2	Aktywny stan na wejściu zaprogramowanym jako wejście błędu użytkownika	Skasować sygnalizację usterki				
29	Err.29	Osiągnięcie zadanego czasu pracy silnika	Zadany czas pracy został osiągnięty	Wyczyścić informacje historyczne przy użyciu parametrów inicjalizacyjnych funkcji				
30	Err.30	Spadek obciążenia	Prąd wyjściowy falownika mniejszy niż F8.31	Sprawdzić, czy silnik nie został odłączony lub zmienić ustawienia parameterów F8.31, F8.32				
31	Err.31	Utrata sygnału sprzężenia zwrotnego PID podczas pracy regulatora	Wartość sygnału sprzężenia zwrotnego PID poniżej wartości podanej jako minimalna w E2.11	Sprawdzić wartość sygnału sprzężenia zwrotnego PID lub zmienić ustawienie parameteru E2.11				
40	Err.40	Przekroczenie prądu wyjściowego	Zbyt wysokie obciążenie falownika lub silnik zablokowany Falownik o zbyt małej mocy	Obniżyć obciążenie silnika lub sprawdzić, czy silnik nie jest zablokowany mechanicznie Wymienić falownik na urządzenie o wiekszej mocy				
41	Err.41	Przełączenie silnika podczas pracy faolwnika	Zmiana wartości prądu silnika poprzez odpowiednio zaprogramowane wejście dwustanowe w trakcie pracy silnika	Przełączenie silnika może się odbywać tylko przy zatrzymanym silniku				
43	Err.43	Przekroczona pędkość silnika	Parametry silnika nie były zidentyfikowane Niewłaściwe ustawienie parametrów enkodera Niewłaściwe ustawienie parametrów F8.13 i F8.14.	Przeprowadzić identyfikację parametrów silnika Ustawić właściwe parametry enkodera Ustawić właściwe wartości parametrów F8.13 i F8.14				
51	Err.51	Błąd pozycji inicjalnej	Zbyt duża różnica pomiędzy zaprogramowanymi parametrami silnika a ich	Wprowadzić włąściwe parametry silnika, sprawdzić, czy prąd nominalny silnika nie				

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów		
			bieżącą wartością	jet zbyt mały		
-	COF	Brak komunikacji falownika z klawiaturą	Uszkodzona klawiatura Zbyt długi przewód pomiędzy klawiaturą a falownikiem	Wymienić klawiaturę. Sprawdzić odległość klawiatury od silnika i ewentyalnie zmniejszyć		

6-2. Kompatybilnośc elektromagnetyczna EMC

6-2-1. Definicja

Kompatybilność elektromagnetyczna to z jednej strony zdolność urządzenia elektrycznego do prawidłowej pracy w warunkach istnienia dużych zewnętrznych zakłóceń elektromagnetycznych, a z drugiej to niska emisja zakłóceń elektromagnetycznych na zewnątrz przez samo urządzenie.

6-2-2. Standardy EMC

Falownik PI160 spełnia wymagania dyrektyw:

EMC:EN61800-3:2004+A1:2012 (Elektryczne układy napędowe mocy o regulowanej prędkości -- Część 3: Wymagania dotyczące EMC i specjalne metody badań).; EN 61000-6-3:2007+A1:2011; EN61000-3-2:2014; EN61000-3-3:2013; EN61000-6-1:2007:

LVD EN 61800-5-1:2007 (IEC 61000-2-2:2002; IEC 61000-4-2:2008; IEC 61000-4-3:2008; IEC 61000-4-4:2012; IEC 61000-4-5:2014; IEC 61000-4-6:2008; IEC 61000-4-11:2008

6-3. Spełnienie wymagań EMC

6-3-1. Wpływ wyższych harmonicznych

Wyższe harmoniczne napięcia zasilania mogą uszkodzić falownik, dlatego w systemach zasilających, w których występuje duża ilość harmonicznych wymagane jest stosowanie dławików sieciowych po stronie zailania falownika.

6-3-2. Zakłócenia elektromagnetyczne i środki ostrożności

Są dwa źródła zakłóceń elektromagnetycznych. Jedno to zakłócenia generowane przez otoczenie falownika mające wpływ na działanie falownika, drugie to zakłócenia generowane przez falownik i emitowane do otoczenia.

W celu zminimalizowania wpływu tych zakłóceń należy stosować następujące środki ostrożności:

- 1) Zacisk uziemiający falownika (E) oraz wszystkich innych urządzeń elektrycznych w jego otoczeniu powinny być dobrze uziemione;
- 2) Przewody siłowe na zasilaniu falownika i odpływowe do silnika nie powinny być prowadzone równolegle z przewodami niskoprądowymi (sterowniczymi). Przewody te należy prowadzić w osobnych korytach i prostpadle do siebie.
- 3) Przewody odpływowe z falownika, zasilające silnik muszą być przewodami ekranowanymi lub na całej swej długości muszą być układane w metalowych rurach. Ekrany na obu końcach przewodów muszą być dobrze uziemione. To samo dotyczy przewodów sterowniczych.
- Jeżeli odległość silnika od falownika przekracza 30 m, pomiędzy falownikiem a silnikiem należy stosować filtr wyściowy lub dławik silnikowy.

6-3-3.Ochrona przed zakłóceniami zewnętrznymi

Ogólnie zakłócenia elektromagnetyczne oddziałujące na falownik są generowane przez styki przekaźników i styczników, rozłaczniki zasilania, wyłączniki instalacyjne itd. Jeśli falownik zgłasza błędy wynikające z oddziaływania tych zakłóceń należy zastosować następujące środki zaradcze:

- 1) Stosować tłumiki przeciwzakłóceniowe na wyjściu z tych urządzeń.
- 2) Instalować dławiki sieciowe na wejściu zasilania do falownika, zgodnie z informacjami zawartymi w rozdziale 6.3.6.
- Stosować kable ekranowane do połaczeń mocy i sterowniczych. Końce ekranów obustronnie uziemić.

6-3-4. Ochrona przed emisją zakłóceń przez falownik

Zakłócenia elektromagnetyczne spowodowane są emisją promieniowania elektromagnetycznego przez falownik oraz przewodnictwem falownika. Oba te zakłócenia mają wpływ na urządzenia montowane w otoczeniu falownika poprzez wyindukowanie napięć elektrostatycznych oraz powstanie zakłóceń elektromagnetycznych, co może powodować niewłaściwe działanie tych urządzeń.

Dla ochrony tego sprzętu należy stosować następujące środki zaradcze:

- 1) Urządzenia niskoprądowe takie jak mierniki, odbiorniki sygnałów pomiarowych, czujniki pomiarowe, a w szczególności jeśli są montowane w pobliżu falownika lub we wspólnej obudowie mogą podlegać załóceniom generowanym przez falownik. W celu zapobieżenia skutkom zakłóceń generowanych przez falowniki, urządzenia te należy instalować z dala od falowników, a kable sygnalowe ekranować. Końce ekranów obustronnie uziemić. Należy również stosować pierścienie ferromagnetyczne (zakres tłumienia 30 do 1000 kHz); owijając je dwu- lub trzykrotnie przewodami odpływowymi z falownika, lub stosować filtry EMC na wyjściu z falownika.
- 2) Jeżeli urządzenia zewnętrzne i falownik zasilane są z tego samego źródła zasilania, zakłócenia mogą przenosić sie przez sieć zasilającą. W celu ich zminimalizowani anależy stosować filtr EMC na zasileniu falownika, zgodnie z informacjami zawartymi w rozdziale 6.3.6.
- 3) Urządzenia zewnętrzne powinny być osobno uziemione, co pozwoli uniknąć wpływu zakłóceń powstających z powodu prądów upływnościowych z falownika.

6-3-5. Ochrona przed prądami upływu

POWTRAN-POLSKA Sp. z o.o.

Falowniki powodują powstawanie zakłóceń spowodowanych prądami upływu. Zakłócenia te powstają w związku z prądami upływu do ziemi oraz upływnością międzyfazową.

1) Czynniki wpływające na prąd upływu do ziemi i zapobieganie.:

Pomiędzy kablami a ziemią istnieje pojemność rozproszona. Jest ona tym większa im dłuższe kable zasilające silnik. Należy zatem dążyć do maksymalnego skrócenia odległości pomiędzy falownikiem a silnikiem. Również i częstotliwośc nośna sygnału a wyjściu z falownika ma wpływ na upływ do ziemi. Im wyższa częstotliwośc nośna tym większy prą upływu. Dla zminimalozowania należy zatem minimalizować częstotliwość nośną. Jednakże jej redukcja może skutkować zwiększonym hałasem silnika. Innym sposobem redukcji upłuwności do ziemi jest stosowanie dławików solnikowych.

2) Czynniki wpływające na międzyfazowy prąd upływu i zapobieganie.

Pomiędzy przewodami wyjściowymi z falownika istnieje pojemność rozproszona. Duża ilość harmonicznych może powodować rezonans pomiędzy przewodami, który będzie skutkował międzyfazowymi prądami upływu. Prądy te mogą zakłócić działenie wyłaczników termiczych stosowanych na wyjściu z falownika, które są nieprzystosowane do wysokich częstotliwości. W związku z tym nie zaleca sie używania zabezpieczeń termicznych na wyjściu z falownika lub stosowanie jedynie urządzeń przystosowanych do sygnałów niesinusoidalnych.

6-3-6. Środki ostrożności przy stosowaniu filtrów na wejściu i wyjściu

1) Stosując filtry lub dławiki należy rygorystycznie przestrzegać parametrów znamionowych

tych urządzeń w odniesieniu do parametrów znamionowych falowniików. Metalowe obudowy filtrów i dławików powinny buć dobrze uziemione.Ponadto uziemienie filtrów i dławików powinno być wykonane w tym samym miejscu co uziemienie falownika i obudowy, w której jest on zabudowany.

2) Filtr sieciowy powinien być zabudowany maksymalnie blisko falownika.

Rozdział 7 Wymiary

7-1. Wymiary

7-1-1. Widok zewnętrzny

Widok zewnętrzny

7-1-2. Wymiary obudów PI160

Obudowa	Napięcie zasilania	Тур	Moc (kW)	Wymiary (mm)				Wymiar zabudowy (mm)			Waga (kg)
				L	W	Н	h	a	b	d	
1M2	Single phase 220V	G	0.4~0.75	142	85	122.8	112	130	73	φ5.3	0.8

	Three phase 220V	G	0.4~0.75								
1M3	Single phase 220V	G	1.5~2.2	151.6	100. 6	127.5	116.6	139.7	88.7	φ5.3	1
	Three phase 220V	G	1.5~2.2								
	Three phase 380V	G	0.4~3.7								

7–1–3. Wymiary klawiatury

Rozdział 8 Konserwacja i naprawa

8-1. Przeglądy i konserwacja

Podczas użytkowania falownika, poza rutynową kontrolą podczas pracy niezbędne są również

regularne przeglady w regularnych okresach, nie dłuższych niż 6 miesięcy.

Kor	trola	Punkt	Element	Kontrola do	Metoda	Kryteria	
Rutyna	Regular.	kontrolny	Element	wykonania	Metoda	Kryteria	
√		Wyświetlacz	LED	Poprawna praca	Kontrola wzrokowa		
√	V	Chłodzenie	Wentylator	Kontrola hałasu i wibracji	Kontrola wzrokowa i słuchowa	Brak nieprawidło wości	
√		Obudowa	Warunki otoczenia	Temperatura, wilgotność, pył, szkodliwy gaz	Kontrola wzrokowa, słuchowa, węchowa		
√		Zaciski wejściowe i wyjściowe	Napięcie	Kontrola wartości napięć	Pomiar R, S, T i U, V, W.	Zgodność z danymi	
			Ogólne	Przegrzanie, zapylenie, zablokowany przepływ powietrza chłodzącego	Kontrola wzrokowa, wyczyścić, udrożnić prepływ powietrza	Brak nieprawidło wości	
	\checkmark	Połączenia główne	Kondensatory elektrolityczne	Kontrola nieprawidłowości	Kontrola wzrokowa	Brak nieprawidło wości	
			Przewody i prowadnice	Kontrola luzów zamocowania	Kontrola wzrokowa	Brak nieprawidło wości	
			Zaciski śróbowe	Kontrola luzów	Dokręcić śruby	Brak nieprawidło wości	

[&]quot;√" oznacza koniecznośc wykonania działań rutynowych i regularnych.

Podczas prac kontrolnych nie należy rozłączać połączeń ani wstrząsać urządzeniem.

Do pomiarów należy używać włąściwych urządzeń pomiarowych. Do pomiarów napięcia zasilania można używać woltomierza klasycznego, do pomiaru napięcia na wyjściu U, V, W woltomierza z funkcją RMS. Do pomiaru prądu wyjściowego amperomierza cęgowego, do wyjściowego amperomierza cęgowego z RMS.

8-2. Części do regularnej wymiany

W celu zapewnienia niezawodnej pracy falownika, poza regularnymi przeglądami i konserwacją należy okresowo wymianiać niektóre wewnętrzne elementy.

Użycie i wymiana tych elementów powinna odbywać się zgodnie z wymogami poniższej tabeli, z uwzglęnieniem jednak lokalnych warunków pracy falownika, obciążenia i bieżącego stanu falownika.

Nazwa części	Standardowy czas pracy			
Wantylator chłodzący	1 do 3 lata			
Kondensator na szynie DC	4 do 5 lat			
Płyta główna (PCB)	5 do 8 lat			

8-3. Przechowywanie

Jeżeli falownik ma nie być używany (czasowo lub w długim okresie czasu), po zakupie należy przesięwziąć następujące działania:

- Przechowywać w dobrze przewietrzanym, suchym miejscu, bez kurzu lub pyłu metalowego, o temperaturze zewnętrznej zgodnej z wymaganiami specyfikacji standardowej;
- Nie należy wykonywać testów napięciowych gdyż mogą one skracać żywotność falownika. Pomiary rezystancji izolacji wykonywać napięciem 500 V. Napięcia tego nie wolno podać na moduł IGBT falownika. Wartośc rezystancji izolacji nie powinna być mniejsza niż 4MΩ.

POWTRAN-POLSKA Sp. z o.o.
ul. Garbary 3, 85-229 BYDGOSZCZ
tel./fax +48 52 321-41-97,
www.powtranpolska.pl
e-mail: biuro@restal.info

NIP: 9671354652

Serwis techniczny kom. 51263866