Lezione 9

Prerequisiti: Lezione 8.

Congruenze lineari. Teorema Cinese del Resto.

Nella Lezione 8 abbiamo visto che, a causa della compatibilità della congruenza modulo n rispetto alle operazioni aritmetiche, le relazioni di congruenza modulo n possono essere sottoposte a trasformazioni algebriche analoghe a quelle valide per le uguaglianze. Questa lezione è dedicata alla risoluzione dei problemi che sono, nell'ambito della congruenza modulo n, l'equivalente delle equazioni lineari.

Definizione 9.1 Sia n un intero positivo. Si dice *congruenza lineare* (modulo n) il problema di trovare tutti i numeri interi x che soddisfano una relazione di congruenza della forma

$$ax \equiv b \pmod{n}$$
,

dove $a, b \in \mathbb{Z}$ ed $a \neq 0$.

Proposizione 9.2 (*Risolubilità di congruenze lineari*) Sia n un intero positivo e siano $a,b \in \mathbb{Z}$, dove $a \neq 0$. Sia, inoltre, d = MCD(a,n). Allora la congruenza lineare

$$ax \equiv b \pmod{n}$$
 (1)

ammette soluzione se e solo se $d \mid b$. In tal caso, detta x_0 una soluzione particolare, le soluzioni sono tutti e soli i numeri interi

$$x_k = x_0 + \frac{n}{d}k,\tag{2}$$

con $k \in \mathbb{Z}$.

<u>Dimostrazione</u>: Supponiamo dapprima che d divida b. Allora si ha b = dq per qualche $q \in \mathbb{Z}$. In base al Lemma di Bézout (<u>Proposizione 6.15</u>), esistono $s,t \in \mathbb{Z}$ tali che sa+tn=d. Di conseguenza saq+tnq=dq=b. Pertanto asq-b=ntq, e quindi $asq \equiv b \pmod{n}$. Ciò prova che x=sq è una soluzione di (1).

Viceversa, supponiamo che la (1) ammetta soluzione. Allora, detta x una sua soluzione, n divide ax-b, quindi esiste $y \in \mathbb{Z}$ tale che ax-b=ny, ossia ax-ny=b. Poiché d divide ax e ny, segue che d divide b.

Sia ora x un'arbitraria soluzione della (1). Essendo x_0 una soluzione, si ha $ax_0 \equiv b \pmod{n}$, e quindi, $ax \equiv ax_0 \pmod{n}$. Pertanto esiste $q \in \mathbb{Z}$ tale che $a(x-x_0) = nq$, da cui si deduce che $\frac{a}{d}(x-x_0) = \frac{n}{d}q$, così che l'intero $\frac{n}{d}$ divide l'intero $\frac{a}{d}(x-x_0)$. Essendo $\frac{a}{d}$ ed $\frac{n}{d}$ coprimi, in virtù

del Corollario 6.25, dalla Proposizione 6.24 segue che $\frac{n}{d}$ divide $x-x_0$. Quindi, per qualche $k \in \mathbb{Z}$,

 $x - x_0 = \frac{n}{d}k$, ossia $x = x_0 + \frac{n}{d}k$. Ciò prova che ogni soluzione della (1) è data dalla formula (2). Viceversa, si ha che, per ogni $k \in \mathbb{Z}$,

$$ax_k = ax_0 + a\frac{n}{d}k = ax_0 + n\frac{a}{d}k \equiv ax_0 \equiv b \pmod{n},$$

e quindi x_k è soluzione della (1). \square

Esempio 9.3 (a) La congruenza lineare $124x \equiv 117 \pmod{356}$ non è risolubile: infatti d = MCD(356,124) è pari, e quindi non divide 117.

(b) La congruenza lineare $13x \equiv 2 \pmod{29}$ è risolubile: infatti d = MCD(13, 29) = 1, poiché 13 e 29 sono numeri coprimi.

In generale, ogni congruenza lineare (1) in cui a e n sono coprimi è risolubile.

(c) La congruenza lineare $12x \equiv 9 \pmod{75}$ è risolubile: infatti d = MCD(12,75) = 3 divide 9.

Osservazione 9.4 Supponiamo che la congruenza lineare (1) abbia soluzione, ossia che d divida b. Allora $n = \frac{n}{d}d$ divide $ax - b = \left(\frac{a}{d}x - \frac{b}{d}\right)d$ se e solo se $\frac{n}{d}$ divide $\frac{a}{d}x - \frac{b}{d}$. Quindi, in tal caso, la congruenza (1) equivale alla congruenza lineare

$$\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{n}{d}} \tag{3}$$

ove $\frac{a}{d}$ e $\frac{n}{d}$ sono coprimi.

Una soluzione particolare della (3) si trova nel modo seguente. Prima si determinano i coefficienti di un'identità di Bézout

$$\frac{a}{d}s + \frac{n}{d}t = 1,$$

e quindi si prende $x_0 = \frac{b}{d}s$.

Esercizio 9.5 Risolvere la congruenza lineare $12x \equiv 9 \pmod{75}$.

Come stabilito nell'Esempio 9.3 (c), la congruenza è risolubile e d = 3. Essa equivale quindi, in base all'Osservazione 9.4, alla congruenza lineare,

$$4x \equiv 3 \pmod{25}$$

Si ha l'identità di Bézout $4 \cdot (-6) + 25 \cdot 1 = 1$, quindi una soluzione particolare è $x_0 = 3(-6) = -18$. Quindi la soluzione generale è $x_k = -18 + 25k$, con $k \in \mathbb{Z}$.

Un'altra soluzione particolare (che si individua immediatamente) è $x_0 = 7$. Quindi la formula per la soluzione generale si può anche scrivere nella forma $x_k = 7 + 25k$, con $k \in \mathbb{Z}$.

Osservazione 9.6 La congruenza lineare (1) equivale alla seguente equazione in \mathbb{Z}_n :

$$[a]_n z = [b]_n \tag{4}$$

di cui si cercano le soluzioni $z \in \mathbb{Z}_n$.

Corollario 9.7 Se l'equazione (4) è risolubile, essa ha esattamente d = MCD(a, n) soluzioni, e precisamente:

$$z_0 = [x_0]_n$$
, $z_1 = \left[x_0 + \frac{n}{d}\right]_n$, $z_2 = \left[x_0 + 2\frac{n}{d}\right]_n$,..., $z_{d-1} = \left[x_0 + (d-1)\frac{n}{d}\right]_n$.

<u>Dimostrazione</u>: In base alla Proposizione 9.2, se la (4) è risolubile, la sua soluzione generale è $z_k = \left[x_k\right]_n = \left[x_0 + \frac{n}{d}k\right]_n$, ove $k \in \mathbb{Z}$. Fissiamo un indice $k \in \mathbb{Z}$. Siano q ed r il quoziente ed il resto della divisione di k per d. Allora $r \in \{0, ..., d-1\}$ e

$$z_{k} = \left[x_{0} + \frac{n}{d}k\right]_{n} = \left[x_{0} + \frac{n}{d}(dq + r)\right]_{n} = \left[x_{0} + nq + \frac{n}{d}r\right]_{n} = \left[x_{0} + \frac{n}{d}r\right]_{n} = z_{r},$$

e ciò prova che ogni soluzione della (4) è compresa fra quelle elencate nell'enunciato. Resta da provare che queste ultime sono a due a due distinte. Siano h e k numeri interi tali che $0 \le k < h \le d - 1$. Allora

$$0 < x_0 + \frac{n}{d}h - \left(x_0 + \frac{n}{d}k\right) = \frac{n}{d}(h - k) < \frac{n}{d}d = n,$$

da cui segue che *n* non divide $x_0 + \frac{n}{d}h - \left(x_0 + \frac{n}{d}k\right)$, ossia $x_h \not\equiv x_k \pmod{n}$, ossia $z_h \not\equiv z_k$.

Nota L'enunciato del Corollario 9.7 si può riassumere dicendo che la congruenza (1) ha d soluzioni a due a due *non congrue* modulo n, che sono $x_0, x_1, x_2, ..., x_{d-1}$. Queste forniscono un sistema completo di rappresentanti per le classi che sono soluzioni dell'equazione (4).

Esempio 9.8 Consideriamo la congruenza lineare $12x \equiv 9 \pmod{75}$ dell'Esercizio 9.5. Essa ha d = 3 soluzioni a due a due non congrue modulo 75, e precisamente,

$$x_0 = 7$$
, $x_1 = 32$, $x_2 = 57$.

Le soluzioni dell'equazione $[12]_{75}$ $z = [9]_{75}$ di \mathbb{Z}_{75} sono

$$z_0 = [7]_{75}$$
, $z_1 = [32]_{75}$, $z_2 = [57]_{75}$.

Passiamo ora alla risoluzione di sistemi di più congruenze lineari.

Teorema 9.9 (Prima formulazione del Teorema Cinese del Resto) Sia s un intero maggiore di 1, siano $n_1, n_2, ..., n_s$ interi positivi a due a due coprimi, e siano $b_1, b_2, ..., b_s$ interi. Allora il sistema di congruenze lineari

$$\begin{cases} x \equiv b_1 \pmod{n_1} \\ x \equiv b_2 \pmod{n_2} \\ \vdots \vdots \vdots \vdots \vdots \\ x \equiv b_s \pmod{n_s} \end{cases}$$
 (5)

è risolubile. Inoltre, detta x_0 una soluzione particolare, la soluzione generale è $x_k = x_0 + (n_1 n_2 \cdots n_s) k$, ove $k \in \mathbb{Z}$.

<u>Dimostrazione</u>: Sia $N = n_1 n_2 \cdots n_s$ e, per ogni i = 1, ..., s, sia $N_i = \frac{N}{n_i} = \prod_{j \neq i} n_j$. Allora, per ogni indice i, non avendo n_i , per ogni indice $j \neq i$, alcun fattore primo in comune con n_j , segue che n_i non ha fattori primi in comune con N_i , ossia $MCD(N_i, n_i) = 1$. Pertanto, alla luce della Proposizione 9.2, per ogni i = 1, ..., s, la congruenza lineare

$$N_i x \equiv b_i \pmod{n_i} \tag{i}$$

ammette una soluzione c_i . Sia ora $c = \sum_{i=1}^{s} N_i c_i$. Fissiamo un indice i. Osserviamo che, per ogni $j \neq i$, n_i divide N_i , e quindi anche $N_j c_j$. Pertanto

$$c = N_i c_i + \sum_{i \neq i} N_j c_j \equiv N_i c_i \equiv b_i \pmod{n_i},$$

dove l'ultima congruenza è dovuta al fatto che c_i verifica la (i). Ciò prova che c è una soluzione del sistema (5).

Sia ora $k \in \mathbb{Z}$. Allora, essendo $N \equiv 0 \pmod{n_i}$ per ogni i = 1,...,s, si ha che

$$x_k \equiv x_0 \equiv b_i \pmod{n_i}$$

per ogni i = 1,..., s, ossia x_k è soluzione del sistema (5).

Sia ora x una soluzione di (5). Allora, per ogni indice i, $x \equiv x_0 \pmod{n_i}$, quindi n_i divide $x-x_0$. Poiché gli n_i sono a due a due coprimi, segue che il loro prodotto, ossia N, divide $x-x_0$: ciò è conseguenza del Teorema Fondamentale dell'Aritmetica (Teorema 7.6). Allora, per qualche $k \in \mathbb{Z}$, $x-x_0=kN$, cioè $x=x_k$. \square

Esempio 9.10 Il sistema

$$\begin{cases} x \equiv 2 \pmod{4} \\ x \equiv 6 \pmod{7} \end{cases}$$

è risolubile. Ne determiniamo la soluzione generale secondo il procedimento indicato nella dimostrazione del Teorema Cinese del Resto. Si ha $N = 4 \cdot 7 = 28$, $N_1 = 7$, $N_2 = 4$. Consideriamo le congruenze lineari

$$7x \equiv 2 \pmod{4}$$
$$4x \equiv 6 \pmod{7}$$

Una soluzione della prima è $c_1=2$, una soluzione della seconda è $c_2=5$. Quindi la soluzione generale del sistema è $x_k=N_1c_1+N_2c_2+Nk=34+28k$, ove $k\in\mathbb{Z}$. La più piccola soluzione positiva è $x_{-1}=34-28=6$.