Single Cycle CPU Design

Here we have a single cycle CPU diagram. Answer the following questions:

- 1. Name each component.
- 2. Name each datapath stage and explain its functionality.

Stage	Functionality
RIG	

- 3. Provide data inputs and control signals to the next PC logic.
- 4. Implement the next PC logic.

Instruction Fetch < Both>

通過影響的主義的地址的成績出對生,再改变化的质

Decode/Register Read (###35)

O 通过Op W.S. Function中的简单效控制信号

@ 读取寄存器中的质

②遇到这即数操作需断有号位扩展

Execute <執行>
Memory <扔有>

完成算术或逻辑运算 bad 和store 指定在这里进行 从内存中模的数据或存数据写入内存的 操作

Register with Signific

省计算结果或从内存中读出的数号国寄存器

Single Cycle CPU Control Logic

Fill out the values for the control signals from the previous CPU diagram.

Instrs.	Control Signals								
misus.	JUMP	branch	RegDst	ExtOp	ALUSrc	ALUCtr	MemWr	MemtoReg	RegWr
add	0	υ '		χ	1)	6010	ଠ	O	
ori	ь	0	Ď	Ó	j	000	0	O	
lw	0	0	n	Ĭ	ĺ	مراه	Ď		
sw	0	0	Ϋ́	ĺ	j	ماه	7	X	Ø
beq	b	1	X	j	D	12/10	D	X	þ
j	i	X	χ	X	X	ΧΧΧΧ	0	X	G

This table shows the ALUCtr values for each operation of the ALU:

Operation	AND	OR	ADD	SUB	SLT	NOR
ALUCtr	0000	0001	0010	0110	0111	1100

Clocking Methodology

lw

- The input signal to each state element must stabilize before each rising edge.
- Critical path: Longest delay path between state elements in the circuit.
- $t_{clk} \ge t_{clk-to-q} + t_{CL} + t_{setup}$, where t_{CL} is the critical path in the combinational logic.
- If we place registers in the critical path, we can shorten the period by reducing the amount of logic between registers.

Single Cycle CPU Performance Analysis

The delays of circuit elements are given as follows:

The delays of circuit elements are given as follows.								
Element	Register	Register	MUX	ALU	Mem	Mem	RegFile	RegFile
	clk-to-q	Setup			Read	Write	Read	Setup
Parameter	t _{clk-to-q}	$t_{ m setup}$	t _{mux}	t _{ALII}	t_{MEMread}	$t_{ m MEMwrite}$	t_{RFread}	$T_{RFsetup}$
Delay(ps)	(30)	20	25	200	250	200	150	(20)

1. Give an instruction that exercises the critical path.

2. What is the critical path in the single cycleCPU?

PC > Instruction Mem > Reco

Write Voter

Road Data 1

3. What are the minimum clock cycle, t_{clk}, and the maximum clock frequency, f_{clk}?

Assume the $t_{clk-to-q} > hold$ time. Mm = 20 + 20 + 40 + 200 + 200 + 200 = 921PS

契他物质 purpose of pipelining?