Глава 4. Плоскость и прямая в пространстве

§ 1. Векторное и смешанное произведение векторов

Три некомпланарных вектора $\vec{a}, \vec{b}, \vec{c}$ образуют *правую тройку*, если они удовлетворяют следующему условию: если смотреть из конца вектора \vec{c} , то *кратичайший* поворот от вектора \vec{a} к вектору \vec{b} осуществляется против часовой стрелки. Иначе $\vec{a}, \vec{b}, \vec{c}$ — *левая тройка*. Система координат *Охух* — *правая*, если базисные векторы $\vec{i}, \vec{j}, \vec{k}$ образуют правую тройку, и *левая*, если $\vec{i}, \vec{j}, \vec{k}$ — левая тройка.

Векторным произведением векторов \vec{a} u \vec{b} (обозначается $[\vec{a},\vec{b}]$ или $\vec{a}\times\vec{b}$) называется вектор \vec{c} такой, что выполняются условия:

$$\vec{c} \perp \vec{a}, \vec{b};$$
 (1)

$$\left|\vec{c}\right| = S_{\vec{a},\vec{b}} \tag{2}$$

(длина этого вектора равна площади параллелограмма, построенного на векторах $\vec{a}\ u\ \vec{b}$);

векторы
$$\vec{a}, \vec{b}, \vec{c}$$
 образуют правую тройку. (3)

Замечание. Очевидно, условия (1) — (3) определяют вектор $\vec{c} = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$ однозначно. Условие (3), конечно, относится к случаю, когда векторы \vec{a} u \vec{b} неколлинеарны. Если $\vec{a} \Box \vec{b}$, то условие (2) показывает, что $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \vec{0}$.

Свойства векторного произведения векторов:

$$[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}]$$
 (антикоммутативность); (4)

$$[\vec{a} + \vec{b}, \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}] (\partial u c m p u \delta y m u \varepsilon h o c m \varepsilon); \tag{5}$$

$$[\lambda \vec{a}, \vec{b}] = \lambda [\vec{a}, \vec{b}] \ (\lambda \in \Box). \tag{6}$$

Совокупность свойств (5) и (6) называется линейностью векторного произведения векторов по первому аргументу. Имеет место также линейность по второму аргументу:

$$[\vec{a}, \vec{b} + \vec{c}] = [\vec{a}, \vec{b}] + [\vec{a}, \vec{c}], \quad [\vec{a}, \lambda \vec{b}] = \lambda [\vec{a}, \vec{b}].$$
 (7)

Выражение векторного произведения через координаты векторов

Пусть $\vec{a}=(a_1;a_2;a_3),\ \vec{b}=(b_1;b_2;b_3)$ — векторы, заданные своими координатами в *прямоугольной системе координат*, и \vec{i},\vec{j},\vec{k} — *правая тройка*. Тогда:

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$
 (8)

Если раскрыть определитель, то получится:

$$[\vec{a}, \vec{b}] = (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}.$$
 (9)

Замечание. Для левой системы координат в формуле векторного произведения правую часть равенства следует умножить на (-1).

Смешанным произведением векторов $\vec{a}, \vec{b}, \vec{c}$ (обозначается: $\langle \vec{a}, \vec{b}, \vec{c} \rangle$ или $\vec{a} \vec{b} \vec{c}$) называется число $\langle \vec{a}, \vec{b}, \vec{c} \rangle = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} \vec{c}$.

Свойства смешанного произведения:

$$\left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle = \left\langle \vec{b}, \vec{c}, \vec{a} \right\rangle = \left\langle \vec{c}, \vec{a}, \vec{b} \right\rangle; \tag{10}$$

$$\langle \vec{b}, \vec{a}, \vec{c} \rangle = \langle \vec{c}, \vec{b}, \vec{a} \rangle = \langle \vec{a}, \vec{c}, \vec{b} \rangle = -\langle \vec{a}, \vec{b}, \vec{c} \rangle;$$
 (11)

$$\langle \vec{a} + \vec{a}', \vec{b}, \vec{c} \rangle = \langle \vec{a}, \vec{b}, \vec{c} \rangle + \langle \vec{a}', \vec{b}, \vec{c} \rangle; \quad \langle \lambda \vec{a}, \vec{b}, \vec{c} \rangle = \lambda \langle \vec{a}, \vec{b}, \vec{c} \rangle. \tag{12}$$

Свойства (0) и (11) означают, что смешанное произведение не изменяется при *круговых* перестановках аргументов и умножается на –1 при других перестановках. Свойства (12) выражают *линейность* смешанного произведения векторов по первому аргументу. Имеет место также линейность по второму и третьему аргументу.

Геометрический смысл смешанного произведения

Пусть $V=V_{\vec{a},\vec{b},\vec{c}}$ — объём параллелепипеда, построенного на векторах \vec{a},\vec{b},\vec{c} (считается, что $V_{\vec{a},\vec{b},\vec{c}}=0$, если \vec{a},\vec{b},\vec{c} компланарны). Тогда

$$\left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle = \begin{cases} +V, \text{ если } \vec{a}, \vec{b}, \vec{c} - \text{правая тройка,} \\ -V, \text{ если } \vec{a}, \vec{b}, \vec{c} - \text{левая тройка.} \end{cases}$$
 (13)

Выражение смешанного произведения через координаты векторов

Пусть \vec{e}_1 , \vec{e}_2 , \vec{e}_3 — базисные векторы некоторой системы координат Oxyz (вообще говоря, $\kappa ocoy z o n b h o \check{u}$). Если $\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3$, $\vec{b} = b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3$, $\vec{c} = c_1 \vec{e}_1 + c_2 \vec{e}_2 + c_3 \vec{e}_3$, то

$$\left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \cdot \left\langle \vec{e}_1, \vec{e}_2, \vec{e}_3 \right\rangle. \tag{14}$$

Если же система координат *прямоугольная* и базисные векторы $\vec{i}=\vec{e}_1,\ \vec{j}=\vec{e}_2,\ \vec{k}=\vec{e}_3$ образуют *правую тройку*, то

$$\langle \vec{a}, \vec{b}, \vec{c} \rangle = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$
 (15)

Замечание. Формула (14) верна и в случае, если векторы $\vec{e}_1, \vec{e}_2, \vec{e}_3$ не образуют базиса (но векторы $\vec{a}, \vec{b}, \vec{c}$ выражены через них) – в этом случае левая и правая части равенства (14) равны 0.

Условия коллинеарности и компланарности векторов

$$\vec{a}, \vec{b}$$
 коллинеарны $\Leftrightarrow [\vec{a}, \vec{b}] = 0;$ (16)

$$\vec{a}, \vec{b}, \vec{c}$$
 компланарны $\Leftrightarrow \langle \vec{a}, \vec{b}, \vec{c} \rangle = 0.$ (17)

Решим несколько задач на векторное произведение векторов и его применение.

Задача 1. Найти все векторы, перпендикулярные векторам $\vec{a} = (-1; 3; 2)$ и $\vec{b} = (3; -2; 2)$.

Решение. Один из векторов, перпендикулярных векторам \vec{a} и \vec{b} , — это их векторное произведение $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$, все остальные коллинеарны этому вектору. Найдём $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$ по формуле (8), получим:

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 3 & 2 \\ 3 & -2 & 2 \end{vmatrix} = 6\vec{i} + 2\vec{k} + 6\vec{j} - 9\vec{k} + 4\vec{i} + 2\vec{j} = (10; 8; -7).$$

Таким образом, общий вид векторов, перпендикулярных данным, таков: $\lambda \cdot (10; 8; -7)$, где λ — любое действительное число.

Замечание. Удобно векторное произведение векторов вычислять по формуле (9), представляя её в виде

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}; - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}; \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}.$$
 (18)

Задача 2. Вычислить площадь треугольника с вершинами A = (1; 3; -1), B = (2; -1; 4) и C = (5; 0; 3).

Peшение. Площадь параллелограмма, построенного на векторах \overrightarrow{AB} и \overrightarrow{AC} , равна модулю (длине) вектора $\left[\overrightarrow{AB},\overrightarrow{AC}\right]$. Следовательно, площадь треугольника ABC равна половине модуля этого вектора:

$$S_{\Delta ABC} = \frac{1}{2} \left[\overrightarrow{AB}, \overrightarrow{AC} \right]. \tag{19}$$

Произведём вычисления. $\overrightarrow{AB} = (2-1; -1-3; 4-(-1)) = (1; -4; 5)$

$$\overrightarrow{AC} = (4; -3; 4)$$
. Следовательно, $\begin{bmatrix} \overrightarrow{AB}, \overrightarrow{AC} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & -4 & 5 \\ 4 & -3 & 4 \end{vmatrix} = (-1; 16; 13)$. Отсюда

по формуле (19) получаем:

$$S_{\Box ABC} = \frac{1}{2} |(-1; 16; 13)| = \frac{1}{2} \sqrt{(-1)^2 + 16^2 + 13^2} = \frac{1}{2} \sqrt{426}.$$

Задача 3. Вывести формулу

$$\left[\alpha\vec{a} + \beta\vec{b}, \gamma\vec{a} + \delta\vec{b}\right] = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} \cdot \left[\vec{a}, \vec{b}\right]. \tag{20}$$

Решение. Используя свойства (4) – (7) векторного произведения, получим:

$$\left[\alpha \vec{a} + \beta \vec{b}, \gamma \vec{a} + \delta \vec{b} \right] = \alpha \gamma \left[\vec{a}, \vec{a} \right] + \beta \gamma \left[\vec{b}, \vec{a} \right] + \alpha \delta \left[\vec{a}, \vec{b} \right] + \beta \delta \left[\vec{b}, \vec{b} \right] =$$

$$= 0 - \beta \gamma \left[\vec{a}, \vec{b} \right] + \alpha \delta \left[\vec{a}, \vec{b} \right] + 0 = (\alpha \delta - \beta \gamma) \left[\vec{a}, \vec{b} \right] = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} \cdot \left[\vec{a}, \vec{b} \right].$$

Задача 4. Упростить выражение $\begin{bmatrix} \vec{a} + 2\vec{b}, \vec{a} - 2\vec{b} \end{bmatrix}$.

Решение. Применяя формулу (20), получим:

$$\begin{bmatrix} \vec{a} + 2\vec{b}, \vec{a} - 2\vec{b} \end{bmatrix} = \begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix} \cdot \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = -4 \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}.$$

Замечание. Скалярное произведение тех же векторов преобразуется к совершенно иному виду, а именно, $(\vec{a}+2\vec{b})(\vec{a}-2\vec{b})=\vec{a}^2-4\vec{b}^2$.

Задача 5. Найти координаты единичного вектора \vec{p} , перпендикулярного векторам $\vec{a}=(2;1;-1)$ и $\vec{b}=(3;0;1)$.

Решение. Забудем пока про условие $|\vec{p}|=1$ и найдём какойнибудь вектор, перпендикулярный векторам \vec{a} и \vec{b} . В качестве такого вектора можно взять, например, их векторное произведение.

такого вектора можно взять, например, их векторное произведение. Вычислим его:
$$\vec{u} = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 3 & 0 & 1 \end{vmatrix} = (1; -5; -3)$$
. Найдём его длину:

 $|\vec{u}| = \sqrt{1+25+9} = \sqrt{35}$. Все векторы, перпендикулярные векторам \vec{a} и \vec{b} , имеют вид $\lambda \vec{u}$, где $\lambda \in \square$. Единичных векторов среди них ровно два: $\vec{p}_1 = \frac{1}{\sqrt{35}}(1; -5; -3)$ и $\vec{p}_2 = -\frac{1}{\sqrt{35}}(1; -5; -3)$.

Задача 6. Площадь треугольника *ABC* равна *S*. На сторонах *AB*, *BC*, *AC* соответственно взяты точки *M*, *N*, *P* такие, что AM:MB=2:1, BN:NC=1:1, CP:PA=3:2. Найти площадь треугольника *MNP*.

Peшeнue (см. рис. 1). Пусть $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$. Выразим через эти векторы \overrightarrow{MP} и \overrightarrow{MN} : $\overrightarrow{MP} = \overrightarrow{MA} + \overrightarrow{AP} = -\frac{2}{3}\overrightarrow{a} + \frac{2}{5}\overrightarrow{b}$,

$$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BN} = \frac{1}{3}\vec{a} + \frac{1}{2}\overrightarrow{BC} = \frac{1}{3}\vec{a} + \frac{1}{2}\left(\vec{b} - \vec{a}\right) = -\frac{1}{6}\vec{a} + \frac{1}{2}\vec{b}.$$

Отсюда получаем:

$$S_{\square ABC} = \frac{1}{2} \begin{bmatrix} \overrightarrow{MP}, \overrightarrow{MN} \end{bmatrix} = \frac{1}{2} \begin{vmatrix} -2/3 & 2/5 \\ -1/6 & 1/2 \end{vmatrix} \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \frac{1}{2} \cdot \frac{4}{15} \cdot \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \frac{2}{15} S.$$

Задача 7. Вывести формулу *двойного векторного произведения:*

$$[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}\,\vec{c}) - \vec{c}(\vec{a}\,\vec{b}) \tag{21}$$

(формула "бац минус цаб".

Решение. Векторное произведение векторов, как видно из определения (1) — (3), не зависит от системы координат. Поэтому мы можем выбрать систему координат так, как нам удобнее. Будем считать, что векторы $\vec{a}, \vec{b}, \vec{c}$ имеют общее начало, совпадающее с началом координат. Пусти ось Ox вдоль вектора \vec{a} (если $\vec{a}=0$, то ось Ox выбирается произвольным образом). Ось Oy выберем так, чтобы векторы \vec{a} и \vec{b} лежали в плоскости Oxy. После того, как выбраны оси абсцисс и ординат, ось аппликат Oz будет определяться однозначно, если потребовать, чтобы оси Ox, Oy, Oz образовывали правую тройку. При таком выборе системы координат векторы $\vec{a}, \vec{b}, \vec{c}$ будут иметь следующие координаты: $\vec{a} = (a_1; 0; 0)$, $\vec{b} = (b_1; b_2; 0)$, $\vec{c} = (c_1; c_2; c_3)$. Вычислим левую и правую части равенства (21). Будем иметь:

$$\begin{bmatrix} \vec{b}, \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ b_1 & b_2 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = (b_2 c_3, -b_1 c_3, b_1 c_2 - b_2 c_1),$$

$$\begin{bmatrix} \vec{a}, \begin{bmatrix} \vec{b}, \vec{c} \end{bmatrix} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & 0 & 0 \\ b_2 c_3 & -b_1 c_3 & b_1 c_2 - b_2 c_1 \end{vmatrix} = (0, -a_1 b_1 c_2 + a_1 b_2 c_1, -a_1 b_1 c_3),$$

$$\vec{b}(\vec{a}\,\vec{c}\,) - \vec{c}(\vec{a}\,\vec{b}\,) = (b_1, b_2, 0) \cdot a_1 c_1 - (c_1, c_2, c_3) \cdot a_1 b_1 =$$

$$= (b_1 a_1 c_1 - c_1 a_1 b_1, b_2 a_1 c_1 - c_2 a_1 b_1, -c_3 a_1 b_1).$$

Значит, левая и правая части равенства (21) совпадают. Таким образом, равенство доказано.

Решим теперь ряд задач на смешанное произведение векторов и его применение.

Задача 8. Найти объём пирамиды *ABCD*, если A = (-1; -3; 0), B = (2; -3; -1), C = (1; -2; 1), D = (0; -2; -1).

Решение. Построим параллелепипед на векторах \overrightarrow{AB} , \overrightarrow{AC} и \overrightarrow{AD} (см. рис. 2). Выясним, как связаны друг с другом объём этого параллелепипеда и объём пирамиды ABCD.

Puc.2.

Пирамида и параллелепипед имеют общую высоту H. Площадь основания пирамиды $S_{\Delta ABC}$ составляет половину площади основания параллелепипеда. Поэтому для объёмов мы будем иметь:

$$V_{\it nupamuды} = rac{1}{3} S_{\Delta \, ABC} \cdot H = rac{1}{3} \cdot rac{1}{2} S_{\it och. \, napann.} \cdot H = rac{1}{6} V_{\it napannenune da}.$$

Объём параллелепипеда найдём с помощью смешанного произведения векторов. Имеем: $\overrightarrow{AB} = (3; 0; -1), \quad \overrightarrow{AC} = (2; 1; 1),$ $\overrightarrow{AD} = (1; 1; -1).$ Отсюда получаем:

$$V_{ABCD} = \frac{1}{6} V_{naparr.} = \frac{1}{6} \left| \left\langle \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right\rangle \right| = \frac{1}{6} \left| \begin{vmatrix} 3 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \right| = \frac{1}{6} \left| -3 - 2 + 0 + 1 - 3 - 0 \right| = \frac{7}{6}.$$

Замечание. Решение предыдущей задачи показывает, что объём треугольной пирамиды можно вычислять по формуле

$$V_{ABCD} = \frac{1}{6} \left| \left\langle \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right\rangle \right|. \tag{22}$$

На самом деле вместо векторов \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} можно брать любые три некомпланарных вектора, построенные на рёбрах пирамиды.

Действительно, возьмём, например, векторы \overrightarrow{AD} , \overrightarrow{DC} , \overrightarrow{CB} (см. рис. 3). Тогда получим:

$$\left\langle \overrightarrow{AD}, \overrightarrow{DC}, \overrightarrow{CB} \right\rangle = \left\langle \overrightarrow{AD}, \overrightarrow{DA} + \overrightarrow{AC}, \overrightarrow{CB} \right\rangle = \left\langle \overrightarrow{AD}, \overrightarrow{DA}, \overrightarrow{CB} \right\rangle + \left\langle \overrightarrow{AD}, \overrightarrow{AC}, \overrightarrow{CB} \right\rangle = 0 + \left\langle \overrightarrow{AD}, \overrightarrow{AC}, \overrightarrow{CA} + \overrightarrow{AB} \right\rangle = 0 + 0 + \left\langle \overrightarrow{AD}, \overrightarrow{AC}, \overrightarrow{AB} \right\rangle.$$

Задача 9. Вычислить $\left\langle \vec{a} + 2\vec{b} - \vec{c}, 3\vec{a} - \vec{b}, 2\vec{a} + 2\vec{b} + \vec{c} \right\rangle$, если $\left\langle 4\vec{a} + \vec{b} + \vec{c}, \vec{b} - 2\vec{c}, 2\vec{a} + 3\vec{b} - \vec{c} \right\rangle = A$.

Решение. По формуле (14) получим:

$$A = \begin{vmatrix} 4 & 1 & 1 \\ 0 & 1 & -2 \\ 2 & 3 & -1 \end{vmatrix} \langle \vec{a}, \vec{b}, \vec{c} \rangle = 14 \langle \vec{a}, \vec{b}, \vec{c} \rangle.$$

Следовательно,

$$\langle \vec{a} + 2\vec{b} - \vec{c}, 3\vec{a} - \vec{b}, 2\vec{a} + 2\vec{b} + \vec{c} \rangle = \begin{vmatrix} 1 & 2 & -1 \\ 3 & -1 & 0 \\ 2 & 2 & 1 \end{vmatrix} \langle \vec{a}, \vec{b}, \vec{c} \rangle = -15 \langle \vec{a}, \vec{b}, \vec{c} \rangle = -\frac{15}{14} A.$$

Задача 10. Пусть $\vec{a}, \vec{b}, \vec{c}$ — некомпланарные векторы. Найти значение λ , при котором следующие векторы компланарны: $\vec{p} = \vec{a} - 2\vec{b} + \lambda \vec{c}, \ \vec{q} = 3\vec{a} + \vec{b} - \vec{c}, \ \vec{r} = \vec{a} - \lambda \vec{c}.$

Решение. Применим условие компланарности (17): $\left\langle \vec{p}, \vec{q}, \vec{r} \right\rangle = 0$. Тогда получим:

$$0 = \langle \vec{p}, \vec{q}, \vec{r} \rangle = \begin{vmatrix} 1 & -2 & \lambda \\ 3 & 1 & -1 \\ 1 & 0 & -\lambda \end{vmatrix} \langle \vec{a}, \vec{b}, \vec{c} \rangle = (-8\lambda + 2) \langle \vec{a}, \vec{b}, \vec{c} \rangle.$$

Так как $\vec{a}, \vec{b}, \vec{c}$ некомпланарны, то $\left<\vec{a}, \vec{b}, \vec{c}\right> \neq 0$. Следовательно, $-8\lambda + 2 = 0$, а значит, $\lambda = \frac{1}{4}$.

Задача 11. Объём параллелепипеда равен V. Найти объём треугольной пирамиды, одна из вершин которой — вершина

параллелепипеда, а три другие — центры противоположных граней параллелепипеда.

Решение. Данный параллелепипед *ABCDA'B'C'D'* изображён на рисунке 4. Требуется найти объём пирамиды *AMNP*.

Введём векторы $\vec{a} = \overrightarrow{AD}$, $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{AA'}$. Тогда $V = \left| \left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle \right|$. Объём пирамиды *AMNP* равен $V_{AMNP} = \frac{1}{6} \left| \left\langle \overrightarrow{AM}, \overrightarrow{AN}, \overrightarrow{AP} \right\rangle \right|$.

Найдём векторы \overrightarrow{AM} , \overrightarrow{AN} , \overrightarrow{AP} : $\overrightarrow{AM} = \overrightarrow{AA'} + \overrightarrow{A'M} = \overrightarrow{c} + \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$, $\overrightarrow{AN} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}$, $\overrightarrow{AP} = \overrightarrow{b} + \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{c}$. Отсюда получаем:

$$V_{\rm AMNP} = \frac{1}{6} \left| \left\langle \overrightarrow{AM}, \overrightarrow{AN}, \overrightarrow{AP} \right\rangle \right| = \frac{1}{6} \left| \begin{vmatrix} 1/2 & 1/2 & 1 \\ 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \end{vmatrix} \left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle \right| = \frac{1}{6} \cdot \frac{1}{2} V = \frac{1}{12} V.$$

Задача 12. Ребро куба ABCDA'B'C'D' равно 3. На прямых A'B и B'D взяты отрезки MN и PQ, длины которых равны 1 и 2. Найти объём пирамиды MNPQ.

Решение (см. рис. 5).

Согласно замечанию, сделанному после задачи 8, мы можем вычислять объём пирамиды MNPQ по формуле $V_{MNPQ} = \frac{1}{6} \left| \left\langle \overrightarrow{MN}, \overrightarrow{MP}, \overrightarrow{PQ} \right\rangle \right|$. Оказывается, вектор \overrightarrow{MP} в этой формуле

можно заменить любым вектором, соединяющим точку прямой A'B с точкой прямой B'D, или, другими словами, объём пирамиды не будет меняться, Если отрезок MN перемещать по прямой A'B, а отрезок PQ — по прямой B'D. Проверим, например, что вектор \overrightarrow{MP} можно заменить вектором $\overrightarrow{A'B'}$. Действительно,

$$\langle \overrightarrow{MN}, \overrightarrow{MP}, \overrightarrow{PQ} \rangle = \langle \overrightarrow{MN}, \overrightarrow{MA'} + \overrightarrow{A'B'}, \overrightarrow{MP} + \overrightarrow{PQ} \rangle = 0 + \langle \overrightarrow{MN}, \overrightarrow{A'B'}, \overrightarrow{PQ} \rangle + 0.$$

Пусть $\vec{a} = \overrightarrow{AD}$, $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{AA'}$. Так как объём куба равен 27, то $\left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle = 27$. Так как MN = 1 и $A'B = 3\sqrt{2}$, то $\overrightarrow{MN} = \frac{1}{3\sqrt{2}}\overrightarrow{A'B} = \frac{1}{3\sqrt{2}}\left(\vec{b} - \vec{c}\right)$.

Так как
$$PQ=2$$
 и $B'D=3\sqrt{3}$, то $\overrightarrow{PQ}=\frac{2}{3\sqrt{3}}\overrightarrow{B'D}=\frac{2}{3\sqrt{3}}\left(\vec{a}-\vec{b}-\vec{c}\right)$. Отсюда
$$V_{MNPQ}=\frac{1}{6}\left|\left\langle \overrightarrow{MN},\overrightarrow{MP},\overrightarrow{PQ}\right\rangle\right|=\frac{1}{6}\cdot\frac{1}{3\sqrt{2}}\cdot\frac{2}{3\sqrt{3}}\cdot\left|\left\langle \vec{b}-\vec{c},\vec{b},\vec{a}-\vec{b}-\vec{c}\right\rangle\right|=$$

$$=\frac{1}{27\sqrt{6}}\left|\begin{vmatrix}0&1&-1\\0&1&0\\1&-1&-1\end{vmatrix}\right|\cdot\left|\left\langle \vec{a},\vec{b},\vec{c}\right\rangle\right|=\frac{1}{27\sqrt{6}}\cdot1\cdot27=\frac{1}{\sqrt{6}}.$$

Отметим, что векторное и смешанное произведение векторов (наряду со скалярным произведением) используется не только для вычисления площадей и объёмов, но является одним из основных инструментов ДЛЯ исследования прямых плоскостей пространстве (задач на составление уравнений прямых И плоскостей, взаимное расположение прямых и плоскостей и т.д.).

Задачи для самостоятельного решения

- 1. Даны векторы $\vec{a} = (1; -2; 3), \vec{b} = (1; 0; -3), \vec{c} = (0; 4; 1).$ Вычислить: а) $[\vec{a} + 2\vec{b}, \vec{a} - \vec{c}];$ б) $[[\vec{a}, \vec{b}], \vec{c}] - [\vec{a}, [\vec{b}, \vec{c}]];$ в) $[[\vec{a}, \vec{b}], [\vec{a}, \vec{c}]].$ Ответ: а)(-22; -9; -16); б) (9; -38; 1); в) (26; -52; 78).
- 2. Найти вектор \vec{c} , если известно, что он перпендикулярен векторам $\vec{a} = (2; -1; 3)$ и $\vec{b} = (3; 1; 3)$, длина вектора \vec{c} равна $6\sqrt{10}$ и векторы $\vec{a}, \vec{b}, \vec{c}$ образуют правую тройку. Ответ: (-8; 14; 10).
- 3. Найти высоту AH треугольника ABC, если A=(2;-3;1), $B=(0;1;4),\ C=(-1;1;2).$ Ответ: $\sqrt{\frac{129}{5}}$.
- 4. Площадь параллелограмма, построенного на векторах \vec{p} и \vec{q} , равна S. Найти площадь параллелограмма, построенного на векторах $2\vec{p} + \vec{q}$ и $\vec{p} 3\vec{q}$. Ответ: 7S.
- 5. Вычислить $\left| \left[\vec{i} + 2\vec{j} \vec{k}, 2\vec{i} \vec{j} \right] + \vec{k} \right|$. Ответ: $\sqrt{21}$.
- 6. Известно, что $|\vec{a}|=2$, $|\vec{b}|=3$, $|\vec{a}|=-1$. Найти $|\vec{a}|=1$. Ответ: $\sqrt{35}$.

- 7. Вычислить угол между ненулевыми векторами \vec{a} и \vec{b} , если $\left| \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} \right| = -\vec{a}\vec{b}$. Ответ: $\frac{3\pi}{4}$.
- 8. Найти все векторы, перпендикулярные векторам $2\vec{i} \vec{j} \vec{k}$ и $\vec{i} + 3\vec{j} 4\vec{k}$. Ответ: $\lambda \cdot (1; 1; 1)$.
- 9. $\vec{a}, \vec{b}, \vec{c}$ единичные векторы, образующие правую тройку и составляющие друг с другом углы в 60°. Выразить вектор $\left[\vec{a}, \vec{b}\right] + \left[\vec{b}, \vec{c}\right] + \left[\vec{c}, \vec{a}\right]$ через векторы $\vec{a}, \vec{b}, \vec{c}$. Ответ: $\frac{1}{2\sqrt{2}} \left(\vec{a} + \vec{b} + \vec{c}\right)$.
- 10. Вычислить $\langle \vec{a}, \vec{b}, \vec{c} \rangle$, если $\langle 2\vec{a} \vec{b}, \vec{a} + 3\vec{b} + \vec{c}, \vec{b} \vec{c} \rangle = 5$. Ответ: $-\frac{5}{9}$.
- 11. При каких λ векторы $\vec{a}=(3;-1;4),$ $\vec{b}=(1;0;3),$ $\vec{c}=(\lambda;2;\lambda-1),$ взятые в указанном порядке, образуют правую тройку? Ответ: $\lambda<-5,5.$
- 12. Вычислить $\langle 2\vec{i} 3\vec{j} + 5\vec{k}, \vec{i} + \vec{j}, 2\vec{j} \vec{k} \rangle$. Ответ: 5.
- 13. Найти высоту *DH* пирамиды *ABCD*, если A = (1; 2; -3), B = (0; 1; 1), C = (-4; 1; 1), D = (3; 0; 2). Ответ: $\frac{3}{\sqrt{17}}$.
- 14. Объём параллелепипеда ABCDA'B'C'D' равен V. Найти объём пирамиды AMNP, где M, N, P середины рёбер B'C', C'D' и CC'. Ответ: $\frac{5}{48}V$.
- 15. Объём пирамиды *ABCD* равен V. Найти объём пирамиды *CMNP*, где M, N, P середины рёбер AC, AD, DB. Ответ: $\frac{1}{8}V$.
- 16. Доказать тождества: а) $\langle \left[\vec{a}, \vec{b}\right], \left[\vec{b}, \vec{c}\right], \left[\vec{c}, \vec{a}\right] \rangle = \langle \vec{a}, \vec{b}, \vec{c} \rangle^2;$
 - б) $\left[\vec{a}, \left[\vec{b}, \vec{c}\right]\right] + \left[\vec{b}, \left[\vec{c}, \vec{a}\right]\right] + \left[\vec{c}, \left[\vec{a}, \vec{b}\right]\right] = 0$ (тождество Якоби).
- 17. Вычислить $\left|\left\langle \vec{a}, \vec{b}, \vec{c} \right\rangle \right|$, если $\angle(\vec{a}, \vec{b}) = \angle(\vec{b}, \vec{c}) = \angle(\vec{c}, \vec{a}) = 60^{\circ}$ и $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right| = 1$. Ответ: $\frac{\sqrt{2}}{2}$.

§ 2. Уравнения прямых и плоскостей в пространстве

Перечислим ряд типовых задач на прямые и плоскости в пространстве, которые необходимо научиться решать студенту, изучающему аналитическую геометрию.

1. Составлять уравнение плоскости, проходящей: через три заданные точки, через прямую и точку, через две пересекающиеся прямые, через две параллельные прямые.

- 2. Составлять уравнение прямой, проходящей через две данные точки, являющейся линией пересечения двух данных плоскостей.
- 3. Составлять уравнение плоскости, проходящей через данную точку параллельно данной плоскости, перпендикулярно данной прямой, через две точки параллельно данной прямой, через точку параллельно двум прямым.
- 4. Составлять уравнение прямой, проходящей через заданную точку параллельно заданной прямой, перпендикулярно заданной плоскости.
- 5. Находить точку пересечения прямой и плоскости, двух данных пересекающихся прямых.
- 6. Выяснять взаимное расположение двух прямых, двух прямых, двух плоскостей, трёх плоскостей, прямой и плоскости.
- 7. Находить расстояние между двумя точками, между двумя параллельными прямыми или плоскостями, от точки до прямой, от точки до плоскости, между двумя скрещивающимися прямыми.
- 8. Проектировать точку на прямую, на плоскость, прямую на плоскость.
- 9. Находить точку, симметричную данной точке относительно данной точки, данной прямой, данной плоскости.
- 10. Составлять уравнение прямой (или плоскости), симметричной данной прямой (соотв., плоскости) относительно данной точки, данной прямой, данной плоскости.
- 11. Находить углы между двумя прямыми, двумя плоскостями, прямой и плоскостью.
- 12. Использовать понятие отклонения для определения, "с какой стороны" от прямой или плоскости находится точка.

Уравнения плоскостей и прямых в пространстве

Нормальным вектором плоскости называется любой ненулевой вектор, перпендикулярный этой плоскости. Пусть $\vec{n}=(A,B,C)$ — нормальный вектор плоскости α и $M_0=(x_0,y_0,z_0)$ — фиксированная точка плоскости α (см. рис. 1).

Puc.1.

Точка M=(x,y,z) пространства принадлежит плоскости α тогда и только тогда, когда $\overrightarrow{M_0M} \perp \overrightarrow{n}$, а значит,

$$\overrightarrow{M_0 M} \cdot \overrightarrow{n} = 0 \tag{1}$$

 $(\mbox{\it векторное уравнение} \mbox{плоскости}).$ Из уравнения (1) ввиду того, что $\mbox{\it M}_0\mbox{\it M} = (x-x_0,\,y-y_0,\,z-z_0)$, мы получаем уравнение плоскости в виде

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0,$$
(2)

или

$$Ax + By + Cz + D = 0, (3)$$

где $D = -Ax_0 - By_0 - Cz_0$.

Для того, чтобы составить уравнение плоскости, обычно находят её нормальный вектор и какую-нибудь точку. После этого записывают уравнение в виде (2). Раскрывая скобки и приводя подобные члены, получают уравнение в виде (3).

Если известны длины отрезков, отсекаемых плоскостью от осей координат, то уравнение плоскости пишется сразу:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{4}$$

(уравнение плоскости "в отрезках").

Направляющим вектором прямой называется любой ненулевой вектор, коллинеарный этой прямой. Пусть $\vec{q}=(q_1,q_2,q_3)$ — направляющий вектор прямой l и $M_0=(x_0,y_0,z_0)$ — фиксированная точка прямой (см. рис. 2).

Puc.2.

Точка M=(x,y,z) пространства принадлежит прямой l тогда и только тогда, когда векторы $\overrightarrow{M_0M}$ и \overrightarrow{q} коллинеарны, а значит, для некоторого $t\in\Box$ выполняется равенство

$$\overrightarrow{M_0M} = t\,\overrightarrow{q} \tag{5}$$

(векторное уравнение прямой). Подставив в (5) координаты векторов и точек, получим уравнение прямой в виде

$$\frac{x - x_0}{q_1} = \frac{y - y_0}{q_2} = \frac{z - z_0}{q_3} \tag{6}$$

(каноническое уравнение прямой) или в виде

$$\begin{cases} x = x_0 + q_1 t, \\ y = y_0 + q_2 t, \quad (t \in \Box) \\ z = z_0 + q_3 t, \end{cases}$$
 (7)

(параметрические уравнения прямой).

Решим вначале несколько задач на уравнение плоскости.

Задача 1. Даны точки P = (3; -1; 4) и Q = (2; 2; -3). Составить уравнение плоскости, проходящей через точку P перпендикулярно отрезку PQ.

Решение. В качестве нормального вектора плоскости можно взять вектор $\vec{n} = \overrightarrow{PQ} = (-1; 3; -7)$, а в качестве точки плоскости — точку $M_0 = P$. Подставив в (2), получим: -1(x-3)+3(y+1)-7(z-4)=0, или x-3y+7z-34=0.

Задача 2. Составить уравнение плоскости, проходящей через точки M = (2; -1; 4), N = (0; 2; -5) и P = (1; 3; 0).

 $\overrightarrow{MP} = (-1; 2; 4)$. Нормальный векторы \overrightarrow{MN} и \overrightarrow{MP} : $\overrightarrow{MN} = (-2; 1; -1)$, векторам, поэтому можно взять в качестве нормального вектора их векторное произведение. Имеем:

$$\vec{n} = \begin{bmatrix} \overrightarrow{MN}, \overrightarrow{MP} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 1 & -1 \\ -1 & 2 & 4 \end{vmatrix} = (6; 9; -3) = 3(2; 3; -1).$$

Взяв в качестве M_0 любую из данных точек, например, M и подставив в (2), получим: 2(x-2)+3(y-1)-(z+4)=0, или

Задача 3. Найти угол между плоскостями x+2y+z-11=0 и 2x-2y+5z-2007=0.

Решение. Угол между плоскостями — это угол между их нормальными векторами. Нормальные векторы найдём из уравнений плоскостей: $\vec{n}_1 = (1; 2; 1), \ \vec{n}_2 = (2; -2; 5)$. Следовательно,

$$\cos \varphi = \cos \left(\vec{n}_1, \vec{n}_2 \right) = \frac{\vec{n}_1 \vec{n}_2}{\left| \vec{n}_1 \right| \left| \vec{n}_2 \right|} = \frac{2 - 4 + 5}{\sqrt{1 + 4 + 1} \sqrt{4 + 4 + 25}} = \frac{3}{\sqrt{6} \sqrt{33}} = \frac{1}{\sqrt{22}}.$$

Таким образом, $\varphi = \arccos \frac{1}{\sqrt{22}}$.

Задача 4. Через точку A = (-1; 2; 5) провести плоскость, параллельную плоскости 4x + y - 4z + 5 = 0.

Решение. Нормальный вектор $\vec{n}=(3;1;-4)$ данной плоскости будет годиться и для параллельной плоскости. Подставив в формулу (2) $M_0=A$, получим: 3(x+1)+(y-2)-4(z-5)=0, или 3x+y-4z+21=0.

Задача 5. Составить уравнение плоскости, симметричной плоскости α : 4x-2y+3z+2=0 относительно точки P=(1;-3;6).

Решение (см. рис. 3). Очевидно, искомая плоскость α' параллельна плоскости α .

Puc.3.

Возьмём какую-нибудь точку плоскости α , например, A = (0; 1; 0). Тогда $\overrightarrow{AP} = (1; -4; 6)$, а значит, $\overrightarrow{PA'} = (1; -4; 6)$. Пусть O — начало $\overrightarrow{OA'} = \overrightarrow{OP} + \overrightarrow{PA'} = (1; -3; 6) + (1; -4; 6) = (2; -7; 12).$ Имеем: Следовательно, A' = (2; -7; 12). В качестве нормального вектора плоскости α' можно взять нормальный вектор плоскости α , т.е. $\vec{n}' = \vec{n} = (4; -2; 3)$. Подставив выбранные значения в формулу (2), получим уравнение плоскости α' : 4(x-2)-2(y+7)+3(z-12)=0, или 4x-2y+3z-58=0.

Задача 6. Составить уравнение плоскости, симметричной плоскости 3x + 2y - 4z - 5 = 0 относительно оси ординат.

Решение. Точка, симметричная точке (x; y; z) - это (-x; y; -z). Поэтому уравнение искомой плоскости мы получим, заменив x и yна -x и -y, т.е. 3(-x)+2y-4(-z)-5=0, или 3x-2y-4z+5=0.

Разберём теперь решения задач на уравнение прямой.

Задача 7. Составить уравнение прямой l', параллельной прямой $l: \frac{x-3}{2} = \frac{y+1}{4} = \frac{z}{-3}$ и проходящей через точку K = (2; 2; -5).

Pешение. Направляющий вектор для прямой l' можно взять что у l, т.е. $\vec{q}' = \vec{q} = (2; 4; -3)$. Взяв $M_0 = K$ и подставив выбранные значения в уравнение (6), получим: $\frac{x-2}{2} = \frac{y-2}{4} = \frac{z+5}{-3}$.

Задача 8. Составить уравнение прямой, симметричной прямой l: $\frac{x+1}{-2} = \frac{y}{3} = \frac{z-3}{-4}$ относительно точки P = (2; -1; 4).

Решение (см. рис. 4).

Из уравнения прямой l находим какую-нибудь точку прямой l, например, A=(-1;0;3). Если A' — точка, симметричная точке A относительно P, то $x_P=\frac{x_A+x_{A'}}{2}$, поэтому $x_{A'}=2x_P-x_A=2\cdot 2+1=5$ и аналогично $y_{A'}=2y_P-y_A=-2$, $z_{A'}=2z_P-z_A=5$. Следовательно, A'=(5;-2;5). Подставив в (4), получим: $\frac{x-5}{-2}=\frac{y+2}{3}=\frac{z-5}{-4}$.

Рассмотрим теперь смешанные задачи на плоскость и прямую в пространстве.

Задача 9. Спроектировать точку P = (-1; 4; 0) на прямую $l: \frac{x-5}{1} = \frac{y-3}{2} = \frac{z+13}{-6}$.

Решение (см. рис. 5).

Если мы проведём через точку P плоскость α , перпендикулярную прямой l, то точка пересечения K прямой l и плоскости α и будет проекцией P на l. Возьмём уравнение прямой l и обозначим дроби буквой t. Получим: $\frac{x-5}{1} = \frac{y-3}{2} = \frac{z+13}{-6} = t$. Отсюда получаем параметрические уравнения прямой l:

$$\begin{cases} x = 5 + t, \\ y = 3 + 2t, \\ z = -13 - 6t. \end{cases}$$
 (8)

Составим теперь уравнение плоскости α . Так как прямая и плоскость перпендикулярны, то в качестве нормального вектора плоскости можно взять направляющий вектор прямой, т.е.

 $\vec{n}=(1;2;-6)$. Отсюда по формуле (2) получаем уравнение плоскости α : (x+1)+2(y-4)-6(z-0)=0, или x+2y-6z-7=0. Подставим в это уравнение формулы (8), получим: (5+t)+2(3+2t)-6(-13-6t)-7=0; 41t+82=0; t=-2. Подставляя это значение в формулы (8), получим координаты точки K: x=3, y=-1, z=-1, т.е. K=(3;-1;-1).

Задача 10. Составить уравнение медианы *AM* треугольника *ABC*, если A = (-1; 1; 3; 2), B = (0; -2; 3; 1), C = (4; 0; 5; 2).

Решение. Учащихся не должно смущать то обстоятельство, что треугольник задан в четырёхмерном пространстве. Позже в курсе линейной алгебры будут изучаться произвольные n-мерные пространства для любого натурального n и даже бесконечномерные пространства. Уравнения прямых в n-мерном пространстве — такие же, как в трёхмерном.

Найдём середину M отрезка BC:

$$M = \left(\frac{0+4}{2}; \frac{-2+0}{2}; \frac{3+5}{2}; \frac{1+2}{2}\right) = (2; -1; 4; 1, 5).$$

В качестве направляющего вектора медианы AM можно взять вектор \overrightarrow{AM} , но лучше взять вектор $2\overrightarrow{AM}$, чтобы координаты были целыми числами: $\overrightarrow{q} = 2\overrightarrow{AM} = 2(2+1; -1-1; 4-3; 1, 5-2) = (6; -4; 2; -1)$. Взяв в качестве M_0 точку A, получим уравнение медианы AM:

$$\frac{x_1+1}{6} = \frac{x_2-1}{-4} = \frac{x_3-3}{2} = \frac{x_4-2}{-1}.$$

Задача 11. Найти точку, симметричную точке (3;1;10) относительно плоскости 2x - y + 5z + 5 = 0.

Решение (см. рис. 6).

Составим уравнение прямой l, проходящей через A перпендикулярно плоскости α . Направляющим вектором прямой l может служить нормальный вектор плоскости $\vec{n}=(2;-4;5)$. Теперь можно написать параметрические уравнения прямой l: x=3+2t, y=1-t, z=10+5t. Подставим эти выражения в уравнение плоскости $\alpha: 2(3+2t)-(1-t)+5(10+5t)+5=0; 30t+60=0$. Отсюда t=-2. Мы нашли значение параметра для точки K, т.е. $t_K=-2$. У точки A значение

параметра t равно 0, следовательно, точка B, симметричная точке A относительно K, будет иметь значение параметра, в 2 раза большее, чем K, т.е. $t_B = -4$. Подставив t = -4 в уравнение прямой l, получим: x = -5, y = 5, z = -10. Таким образом, B = (-5; 5; -10).

Задача 12. Прямая l задана как пересечение плоскостей $\alpha: 2x-y+z+4=0$ и $\beta: x+2y-2z+5=0$. Написать каноническое уравнение этой прямой.

Решение (см. рис. 7).

Puc.7.

Пусть $l = \alpha \cap \beta$. Из уравнений плоскостей α и β найдём их нормальные векторы: $\vec{n}_1 = (2; -1; 1), \ \vec{n}_2 = (1; 2; -2).$ Так как прямая l перпендикулярна векторам \vec{n}_1 и \vec{n}_2 , то в качестве направляющего вектора \vec{q} прямой l можно взять их векторное произведение. Таким образом,

$$\vec{q} = [\vec{n}_1, \vec{n}_2] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 1 \\ 1 & 2 & -2 \end{vmatrix} = (0; 5; 5) = 5(0; 1; 1).$$

Найдём какую-либо точку прямой *l.* Для этого решим систему

$$\begin{cases} 2x - y + z + 4 = 0, \\ x + 2y - 2z + 5 = 0 \end{cases}$$

(точнее, найдём какую-нибудь тройку чисел (x; y; z), удовлетворяющее этой системе). Выразим x из второго уравнения: x = -2y + 2z - 5, подставим эти выражения в первое уравнение:

$$2(-2y+2z-5)-y+z+4=0; -5y+5z-6=0.$$

Возьмём y = 0, тогда z = 1,2, отсюда $x = -2 \cdot 0 + 2 \cdot 1, 2 - 5 = -2,6$. Теперь напишем уравнение искомой прямой: $\frac{x+2,6}{0} = \frac{y}{1} = \frac{z-1,2}{1}$.

Нуль в знаменателе первой дроби означает, что у всех точек прямой l абсцисса x = -2,6.

Задача 13. Составить уравнение высоты АН треугольника ABC, если A = (2; -1; 3), B = (3; 1; 4), C = (0; 1; -1).

Решение (см. рис. 8).

Puc. 8.

Нормальный вектор \vec{n} плоскости ABC можно найти, перемножив векторы \overrightarrow{AB} и \overrightarrow{BC} : $\overrightarrow{n} = \left[\overrightarrow{AB}, \overrightarrow{BC}\right]$. Далее, имеем: $\overrightarrow{AB} = (1; 2; 1)$, $\overrightarrow{BC} = (-3; 0; -5)$. Отсюда

$$\vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 1 \\ -3 & 0 & -5 \end{vmatrix} = (-10; 2; 6) = 2 \cdot (-5; 1; 3).$$

вектор \vec{q} прямой AH должен Направляющий быть перпендикулярен векторам \overrightarrow{BC} : и \vec{n} , поэтому можно взять

$$\vec{q} = \left[\overrightarrow{BC}, \frac{1}{2} \vec{n} \right] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -3 & 0 & -5 \\ -5 & 1 & 3 \end{vmatrix} = (5; 34; -3).$$

Так как найден направляющий вектор прямой АН и известна точка этой прямой (точка A), то можно написать уравнение AH:

$$\frac{x+2}{5} = \frac{y+1}{34} = \frac{z-3}{-3}.$$

Задача 14. Определить, при каком *a* прямые $l_1: \frac{x-1}{3} = \frac{y+2}{a} = \frac{z}{4}$ и $l_2: \frac{x+2}{2} = \frac{y-3}{2} = \frac{z+2}{2}$ пересекаются, и для найденного значения aсоставить уравнение плоскости, проходящей через эти прямые.

Решение. Из уравнений прямых находим их направляющие векторы: $\vec{q}_1 = (3; a; 4)$, $\vec{q}_2 = (2; -3; -2)$. Возьмём на этих прямых по одной точке: $M_1 = (1; -2; 0) \in l_1$, $M_2 = (-2; 3; -2) \in l_2$. $M_1M_2 = (-3, 5, -2)$. Так как координаты векторов непропорциональны, то векторы \vec{q}_1 и \vec{q}_2 неколлинеарны, поэтому прямые l_1 и l_2 будут пересекаться в том и только том случае, если векторы \vec{q}_1 , \vec{q}_2 и $\overrightarrow{M_1M_2}$ будут компланарны. Используя условие компланарности, получим:

$$0 = \langle \vec{q}_1, \vec{q}_2, \overrightarrow{M_1 M_2} \rangle = \begin{vmatrix} 3 & a & 4 \\ 2 & -3 & -2 \\ -3 & 5 & -2 \end{vmatrix} = 18 + 40 + 6a - 36 + 30 + 4a = 52 + 10a.$$

Таким образом, 10a + 52 = 0, откуда a = -5, 2.

Пусть a=-5,2. Тогда прямые пересекаются и через них можно провести плоскость. Обозначим эту плоскость через α . Направляющий вектор \vec{n} плоскости α можно получить как векторное произведение векторов \vec{q}_2 и $\overline{M_1M_2}$:

$$\vec{n} = \begin{bmatrix} \vec{q}_2, \vec{M_1 M_2} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & -2 \\ -3 & 5 & -2 \end{vmatrix} = (4; 10; 1).$$

Взяв в уравнении (2) в качестве M_0 точку M_1 , получим уравнение плоскости α : 4(x-1)+10(y+2)+(z-0)=0, или 4x+10y+z+16=0.

Перед решением следующей задачи сделаем одно замечание. Пусть даны плоскость α и прямая l. Если φ — угол между прямой l и плоскостью α , а ψ — угол между нормальным вектором \vec{n} плоскости α и направляющим вектором \vec{q} прямой l, то

$$\varphi = \frac{\pi}{2} - \psi \tag{9}$$

(см. рис. 9).

Задача 15. В кубе ABCDA'B'C'D' точка M — середина ребра AB. Найти угол между прямой AC' и плоскостью A'MD.

Решение (см. рис. 10).

Puc.10.

Мы можем считать, что ребро куба равно 1. Введём систему координат с началом A, как показано на рисунке. Запишем уравнение плоскости A'MD по формуле (4), как уравнение плоскости "в отрезках":

$$\frac{x}{1} + \frac{y}{1/2} + \frac{z}{1} = 1.$$

Следовательно, нормальный вектор этой плоскости равен $\vec{n} = \left(1; \frac{1}{2}; 1\right)$. Направляющий вектор прямой AC' равен $\vec{q} = (1; 1; 1)$.

Ввиду равенства (9) искомый угол φ будет найден, если мы найдём угол между векторами \vec{n} и \vec{q} . Таким образом,

$$\sin \varphi = \cos \left(\vec{n}, \vec{q} \right) = \frac{\vec{n} \, \vec{q}}{\left| \vec{n} \right| \cdot \left| \vec{q} \right|} = \frac{1 \cdot 1 + \frac{1}{2} \cdot 1 + 1 \cdot 1}{\sqrt{1^2 + \left(\frac{1}{2}\right)^2 + 1^2} \sqrt{1^2 + 1^2 + 1^2}} = \frac{\frac{5}{2}}{\frac{3}{2} \cdot \sqrt{3}} = \frac{5}{3\sqrt{3}}.$$

Следовательно, $\varphi = \arcsin \frac{5}{3\sqrt{3}}$.

§ 3. Расстояние и отклонение точки от плоскости

Пусть α — плоскость, заданная уравнением Ax + By + Cz + D = 0, и $P = (x_p; y_p; z_p)$ — произвольная точка пространства. Тогда расстояние $\rho(P,\alpha)$ от точки P до плоскости α выражается формулой

$$\rho(P,\alpha) = \frac{|Ax_p + By_p + Cz_p + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (10)

В знаменателе этой дроби стоит длина вектора $\vec{n} = (A; B; C)$ — нормального вектора плоскости α . Таким образом, *чтобы найти* расстояние от точки до плоскости, надо подставить координаты точки в уравнение плоскости и разделить полученное число на длину нормального вектора; при этом мы получим число, которое

может быть отрицательным — в этом случае берём его по абсолютной величине.

Если в формуле (10) убрать знак модуля, то мы получим величину

$$\delta(P,\alpha) = \frac{Ax_p + By_p + Cz_p + D}{\sqrt{A^2 + B^2 + C^2}},$$
(11)

называемую *отклонением точки* P *от плоскости* α .

Очевидно, $\delta = \pm \rho$ и $\rho = |\delta|$.

Замечание. Определённое по формуле (11) отклонение отличается от того отклонения, которое принято в ряде учебников (а именно, $\delta = -\rho$, если D > 0, и $\delta = \rho$, если D < 0). Мы будем пользоваться формулой (11).

Геометрический смысл отклонения точки от плоскости точно такой же, как у отклонения точки от прямой на плоскости (см. раздел "Прямая на плоскости"). А именно, *отклонение по абсолютной величине равно расстоянию, причём* $\delta > 0$, *если точка Р находится от плоскости* α *по ту сторону, в которую направлен нормальный вектор* \vec{n} , u $\delta < 0$, *если она находится по другую сторону* (см. рис. 11).

Puc.11.

Разберём задачи на расстояния и отклонения.

Задача 16. Найти расстояние между плоскостями $\alpha: 3x-4y+12z-3=0$ и $\beta: 6x-8y+24z+11=0$.

Решение. Плоскости параллельны, так как их нормальные векторы $\vec{n}_1 = (3; -4; 12)$ и $\vec{n}_2 = (6; -8; 24)$ коллинеарны: $\vec{n}_2 = 2\vec{n}_1$. Поэтому расстояние между этими плоскостями равно расстоянию от какойнибудь точки первой плоскости до второй плоскости. Возьмём точку первой плоскости: $A = (1; 0; 0) \in \alpha$. Тогда

$$\rho(l_1, l_2) = \rho(\alpha, \beta) = \rho(A, \beta) = \frac{|6 \cdot 1 - 8 \cdot 0 + 24 \cdot 0 + 11|}{\sqrt{6^2 + 8^2 + 24^2}} = \frac{6}{2\sqrt{3^2 + 4^2 + 12^2}} = \frac{3}{13}.$$

Задача 17. В прямоугольном параллелепипеде ABCDA'B'C'D' AA'=1, AB=2, AD=3. Найти расстояние от вершины D до плоскости AD'C.

Pешение. Введём систему координат с началом D, как показано на рисунке 12.

Puc.12.

Используя формулу (4), мы можем записать уравнение плоскости AD'C "в отрезках":

$$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1. \tag{12}$$

Нам требуется найти расстояние от точки (0;0;0) до плоскости, заданной уравнением (12). Перенесём единицу в левую часть равенства: $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} - 1 = 0$. Применим формулу (10):

$$\rho(D, AD'C) = \frac{|0+0+0-1|}{\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + 1^2}} = \frac{6}{7}.$$

Задача 19. Определить, лежит ли точка M = (-1; 3; 4) между плоскостями 3x-2y+3z-2=0 и 3x-2y+3z+3=0.

Решение. Обозначим эти плоскости через α и β . Так как плоскости имеют один и тот же нормальный вектор и не совпадают (это видно из уравнений плоскостей), то плоскости параллельны. Вычислим по формуле (11) отклонения:

$$\delta(M,\alpha) = \frac{-3-6+12-2}{} > 0, \qquad \delta(M,\beta) = \frac{-3-6+12+3}{} > 0.$$

Так как отклонения одного знака, то точка *не лежит* между плоскостями (см. рис. 13).

Puc. 13.

Задача 20. Даны плоскости $\alpha: 2x-3y+4z+5=0$, $\beta: 3x+y-2z-1=0$ и точки $P=(1;1;1),\ Q=(2;-1;4)$. Определить, точки P и Q лежат внутри одного, смежных или вертикальных углов, образованных плоскостями α и β .

Решение. Вычисляем отклонения:

$$\delta(P,\alpha) = \frac{2-3+4+5}{\cdots} > 0, \quad \delta(Q,\alpha) = \frac{2\cdot 2+3+4\cdot 4+5}{\cdots} > 0$$

значит, P и Q лежат по одну сторону от плоскости α ;

$$\delta(P,\beta) = \frac{3+1-2-1}{} > 0, \quad \delta(Q,\beta) = \frac{6-1-8-1}{} < 0$$

значит, P и Q лежат по разные стороны от плоскости β . Отсюда следует, что P и Q лежат внутри *смежных* двугранных углов.

§ 4. Расстояние от точки до прямой в пространстве. Расстояние между скрещивающимися прямыми

Пусть l — прямая с направляющим вектором \vec{q} и A — точка прямой l (см. рис. 14). **Расстояние от точки** P **до прямой** l выражается формулой

Пусть l_1, l_2 — скрещивающиеся прямые, \vec{q}_1, \vec{q}_2 — их направляющие векторы и M_1, M_2 — какие-либо точки, лежащие на прямых l_1, l_2 соответственно (см. рис. 15). **Расстояние между скрещивающимися прямыми** l_1, l_2 можно вычислить по формуле

Замечание. Если прямые l_1, l_2 пересекаются (но не совпадают), то формула (14) к ним также применима и она показывает, что расстояние между прямыми равно 0. По формуле (14) нельзя вычислять расстояния между параллельными прямыми.

Задача 21. Найти расстояние от точки P = (1; -2; 1) до прямой $l: \frac{x-3}{2} = \frac{y+1}{-3} = \frac{z}{1}$.

Решение. Из уравнения прямой найдём её направляющий вектор и точку: $\vec{q} = (2; -3; 1)$ и A = (3; -1; 0). Отсюда $\overrightarrow{PA} = (2; 1; -1)$. По формуле (13) получим:

$$\rho(P,l) = \frac{\begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 2 & -3 & 1 \end{vmatrix}}{\begin{vmatrix} \vec{q} & \vec{q} & \vec{q} \\ \end{vmatrix}} = \frac{\begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 2 & -3 & 1 \end{vmatrix}}{\sqrt{4+9+1}} = \frac{|(-2;-4;-8)|}{\sqrt{14}} = \frac{2\sqrt{1+4+16}}{\sqrt{14}} = \sqrt{6}.$$

Задача 22. Найти расстояние между прямыми x = 2y = 3z и x = 2y + 1 = 3z - 2.

Решение. Обозначим данные прямые l_1 и l_2 . Прямые параллельны, они имеют один и тот же направляющий вектор $\vec{q} = \left(1; \frac{1}{2}; \frac{1}{3}\right)$, поэтому формулу (14) применять нельзя. Применим формулу (13), т.е. найдём расстояние от точки одной прямой до

другой прямой. Имеем: $P = (0; 0; 0) \in l_1$, $A = \left(0; -\frac{1}{2}; \frac{2}{3}\right) \in l_2$. Отсюда $\overrightarrow{PA} = \left(0; -\frac{1}{2}; \frac{2}{3}\right)$. по формуле (13) получаем:

$$\rho(l_1, l_2) = \rho(P, l_2) = \frac{\left| \overrightarrow{PA}, \overrightarrow{q} \right|}{\left| \overrightarrow{q} \right|} = \frac{\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 0 & -1/2 & 2/3 \end{vmatrix}}{\sqrt{1 + 1/2 & 1/3}} = \frac{\left| (-1/2; 2/3; 1/2) \right|}{7/6} = \frac{1/6\sqrt{9 + 16 + 9}}{7/6} = \frac{\sqrt{34}}{7}.$$

Задача 23. Найти расстояние между прямыми x = y + 1 = z и x = y = 2.

Решение. Обозначим данные прямые l_1 и l_2 . Направляющий вектор прямой l_1 равен $\vec{q}_1=(1;1;1)$. Прямая l_2 параллельна оси Oz, поэтому за направляющий вектор этой прямой можно взять вектор $\vec{q}_2=(0;0;1)$. Так как $\vec{q}_1\not\sqsubseteq\vec{q}_2$, то можно применять формулу (14). В качестве точек M_1,M_2 этих прямых возьмём $M_1=(0;-1;0)$ и $M_2=(2;2;0)$. По формуле (14) получаем:

$$\rho(l_1, l_2) = \frac{\left| \left\langle \vec{q}_1, \vec{q}_2, \overline{M_1 M_2} \right\rangle \right|}{\left| \begin{bmatrix} \vec{q}_1, \vec{q}_2 \end{bmatrix} \right|} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 2 & 3 & 0 \end{vmatrix}}{\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix}} = \frac{1}{\left| (1; -1; 0) \right|} = \frac{1}{\sqrt{2}}.$$

Задача 24. Ребро куба равно *а*. Найти расстояние между скрещивающимися диагоналями двух смежных граней куба.

Решение (см. рис. 16).

Будем временно считать, что ребро куба равно 1, затем полученную величину умножим на a. Вычислим расстояние между

прямыми B'D' и C'D (другие диагонали дадут такой же результат). Введём систему координат, как показано на рисунке. Имеем: $D=(0;0;0), \qquad B'=(1;1;1), \qquad C'=(1;0;1), \qquad D'=(0;0;1), \qquad \overline{DD'}=(0;0;1).$ Направляющие векторы $\vec{q}_1, \quad \vec{q}_2$ прямых равны: $\vec{q}_1=\overline{D'B'}=(1;1;0), \quad \vec{q}_2=(1;0;1).$ По формуле (14) получаем:

$$\rho(B'D',DC') = \frac{\left|\left\langle \vec{q}_{1},\vec{q}_{2},\overline{DD'}\right\rangle\right|}{\left|\left[\vec{q}_{1},\vec{q}_{2}\right]\right|} = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}} = \frac{1}{\left|(1;-1;-1)\right|} = \frac{1}{\sqrt{3}}.$$

Следовательно, $\rho(B'D',DC') = \frac{a}{\sqrt{3}}$.

Задача 25. Выяснить взаимное расположение плоскостей 2x + y - 2z - 5 = 0, x + y + z + 3 = 0 и 5x + 2y - 7z - 10 = 0.

Решение. Нормальные векторы этих плоскостей равны: $\vec{n}_1 = (2; 1; -2), \quad \vec{n}_2 = (1; 1; 1), \quad \vec{n}_3 = (5; 2; -7).$ Вычислим их смешанное

произведение: $\langle \vec{n}_1, \vec{n}_2, \vec{n}_3 \rangle = \begin{vmatrix} 2 & 1 & -2 \\ 1 & 1 & 1 \\ 5 & 2 & -7 \end{vmatrix} = 0$. Таким образом, векторы

 $\vec{n}_1, \vec{n}_2, \vec{n}_3$ компланарны. Так как никакие два из этих векторов не коллинеарны, то возможны следующие варианты взаимного расположения плоскостей (см. рис. 17): (а) плоскости попарно пересекаются по трём параллельным прямым, (б) плоскости проходят через одну прямую.

Рис. 17

Чтобы различить эти две ситуации, решим систему уравнений

$$\begin{cases} 2x + y - 2z - 5 = 0, \\ x + y + z + 3 = 0, \\ 5x + 2y - 7z - 10 = 0. \end{cases}$$

Из первого уравнения y = -2x + 2z + 5. Подставим во второе: x + (-2x + 2z + 5) + z + 3 = 0, откуда x = 3z + 8, а значит,

y = -2(3z+8) + 2z + 5 = -4z - 11. Подставим в третье уравнение: 5(3z+8) + 2(-4z-11) - 7z - 10 = 0, т.е. 8 = 0, что невозможно. Таким образом, система решений не имеет, т.е. плоскости не имеют общей точки, а значит, имеет место случай (а).

Задача 26. Составить уравнение геометрического места точек, равноудалённых от прямых x = -2y = 3z и x + 2 = -2y - 1 = 3z + 4.

Решение. Обозначим данные прямые через a и b. Прямые имеют один и тот же направляющий вектор $\vec{q} = \left(1; -\frac{1}{2}; \frac{1}{3}\right)$, значит, они параллельны или совпадают. Возьмём по одной точке этих прямых: $A = (0;0;0) \in a$, $B = \left(-2; -\frac{1}{2}; -\frac{4}{3}\right) \in b$. Так как $A \not\in b$, то a и b — различные параллельные прямые. Проведём плоскость α через прямые a и b, в этой плоскости проведём прямую c посередине между a и b, а затем через прямую c проведём плоскость β , перпендикулярную плоскости α (см. рис. 18).

Рис. 18

Очевидно, плоскость β — это и есть искомое геометрическое место точек, равноудалённых от прямых a и b. Нормальным вектором плоскости α может служить вектор

$$\vec{n} = \begin{bmatrix} \vec{q}, \overrightarrow{AB} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1/2 & 1/3 \\ -2 & -1/2 & -4/3 \end{vmatrix} = \frac{1}{6}(5; 4; -9).$$

Нормальный вектор \vec{n}_{β} плоскости β перпендикулярен векторам \vec{q} и \vec{n} , поэтому можно взять

$$\vec{n}_{\beta} = \begin{bmatrix} 6\vec{q}, 6\vec{n} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 6 & -3 & 2 \\ 5 & 4 & -9 \end{vmatrix} = (19; 64; 39).$$

В качестве точки плоскости β можно взять точку K – середину

отрезка *AB*. Имеем:
$$K = \left(\frac{0-2}{2}; \frac{0-\frac{1}{2}}{2}; \frac{0-\frac{4}{3}}{2}\right) = \left(-1; -\frac{1}{4}; \frac{-2}{3}\right)$$
. Подставив в

формулу (4), получим:
$$19(x+1)+64\left(y+\frac{1}{4}\right)+39\left(z+\frac{2}{3}\right)=0$$
, или $19x+64y+39z+61=0$.

Задачи для самостоятельного решения

- 1. Вычислить угол между прямой $\frac{x-1}{2} = \frac{y+13}{-2} = \frac{z+2}{3}$ и плоскостью 2x-3y+4z=0. Ответ: $\arcsin\frac{22}{\sqrt{493}}$.
- 2. Составить уравнение плоскости, проходящей через точку (1;0;-2) параллельно плоскости 2x-3y+7z-13=0. Ответ: 2x-3y+7z+12=0.
- 3. Составить уравнение плоскости, проходящей через точки (-3;1;1), (0;-2;2) и параллельной прямой $\frac{x-1}{-2} = \frac{y+1}{-1} = \frac{z}{3}$. Ответ: 8x+11y+9z+4=0.
- 4. Составить уравнение плоскости, проходящей через ось ординат и точку (-1; 3; 2). Ответ: 2x + z = 0.
- 5. Составить уравнение геометрического места точек, равноудалённых от точек (0; -2; 2) и (-1; 2; 5). Ответ: x-4y-3z+11=0.
- 6. Составить уравнение прямой, проходящей через точку $(0;-2;2) \qquad \text{параллельно} \qquad \text{прямой} \qquad \frac{x-1}{-2} = \frac{y+1}{-1} = \frac{z}{3}. \qquad \text{Ответ:}$ $\frac{x}{-2} = \frac{y+2}{-1} = \frac{z-2}{3}.$
- 7. Через точку (-1; 3; 2) провести прямую, перпендикулярную плоскости 2x+3z+4=0. Ответ: $\frac{x+1}{-2}=\frac{y-3}{0}=\frac{z-2}{3}$.
- 8. Через прямую x = y = -z провести плоскость, параллельную прямой x = 2y 1 = -3z + 1. Ответ: x 4y 3z = 0.
- 9. Через точку (-1; 2; 5) провести плоскость, перпендикулярную плоскостям x = z и x + y 2z + 55 = 0. Ответ: x + y + z 6 = 0.
- 10. Составить уравнение плоскости, симметричной плоскости 3x+y-4z-6=0: а) относительно начала координат, б) относительно оси Ox, в) относительно плоскости Oyz, г) относительно плоскости z=5, д) относительно точки (1;-3;4).

Ответ: a) 3x+y-4z+6=0; б) 3x-y+4z-6=0; в) 3x-y+4z+6=0; г) 3x+y+4z-46=0; д) 3x+y-4z+38=0.

- 11. Составить уравнение прямой, симметричной прямой $\frac{x+2}{3} = \frac{y-1}{-2} = \frac{z-3}{4}$: а) относительно начала координат, б) относительно оси Ox, в) относительно плоскости Oyz, г) относительно плоскости z=5, д) относительно точки (1;-3;4). Ответ: а) $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z+3}{4}$; б) $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{4}$; в) $\frac{x-2}{-3} = \frac{y-1}{-2} = \frac{z-3}{4}$; г) $\frac{x+2}{3} = \frac{y-1}{-2} = \frac{z-7}{-4}$; д) $\frac{x-4}{3} = \frac{y+7}{-2} = \frac{z-5}{4}$.
- 12. Найти точку пересечения плоскости x+2y-3z+4=0 и прямой, проходящей через точки (2;-1;0) и (0;1;-2). Ответ: (3;-2;1).
- 13. При каких a прямая $\frac{x-2}{2} = \frac{y+1}{a} = \frac{z}{a-4}$ а) параллельна плоскости 3x y + 2z + 11 = 0; б) перпендикулярна этой плоскости? Ответ: а) a = 2; б) таких a нет.
- 14. При каких a прямые $\frac{x+1}{2} = \frac{y-a}{-3} = \frac{z}{-4}$ и $\frac{x}{3} = \frac{y}{-4} = \frac{z+5}{-4}$ скрещивающиеся? Ответ: $a \neq 2,25$.
- 15. Спроектировать точку (4;1;-3) на плоскость x+y-3z+8=0. Ответ: (2;-1;3).
- 16. Спроектировать точку (-1; 3; 2) на прямую x = y = z. Ответ: $\left(\frac{4}{3}; \frac{4}{3}; \frac{4}{3}\right)$.
- 17. Спроектировать ось Ox на плоскость x + y + z = 1. Ответ: $\frac{x-1}{2} = \frac{y}{-1} = \frac{z}{-1}.$
- 18. Найти расстояние от точки (1; 2; 3) до плоскости x+y-z=1. Ответ: $\frac{1}{\sqrt{3}}$.
- 19. Найти расстояние между плоскостями x-z=1 и z-x=5. Ответ: $3\sqrt{2}$.
- 20. Составить уравнение плоскости, расположенной на одинаковых расстояниях от плоскостей x+y-3z+8=0 и 2x+2y-6z-3=0. Ответ: 4x+4y-12z+13=0.
- 21. На оси ординат найти точку, равноудалённую от плоскостей x+y-4z=3 и x-y=5. Ответ: (0;-9;0) и (0;-3;0).
- 22. Найти расстояние от точки (-2; -1; 3) до прямой x = y = 2. Ответ: 5.
- 23. Найти расстояние от начала координат до прямой x = 2 t, y = 3 + 2t, z = -1 2t. Ответ: $\sqrt{10}$.

- 24. Найти расстояние между прямыми $\frac{x-1}{2} = \frac{y+2}{-2} = \frac{z-2}{3}$ и $\frac{x}{2} = \frac{y-1}{-2} = \frac{z+1}{3}$. Ответ: $\sqrt{42/17}$.
- 25. Найти расстояние между прямыми x = y = -z и x = 1 2t, y = -t, z = 3 + t. Ответ: $3/\sqrt{2}$.
- 26. Найти расстояние между прямой x = 2 t, y = 3 + 2t, z = 1 2t и осью абсцисс. Ответ: $2\sqrt{2}$.
- 27. Ребро куба равно a. Найти расстояние между скрещивающимися диагональю куба и диагональю грани куба. Ответ: $\frac{a}{\sqrt{6}}$.
- 28. Боковые грани правильной шестиугольной призмы являются квадратами со стороной a. Вычислить расстояние между скрещивающимися диагоналями двух смежных граней призмы. Ответ: $\frac{a}{\sqrt{7}}$.
- 29. На прямой x = -1 + 2t, y = 3t, z = 3 t найти точку, удалённую от оси абсцисс на расстояние, равное 5. Ответ: (-3; -3; 4) или (2,2;4,8;1,4).
- 30. На оси абсцисс найти все точки, равноудалённые от прямых $\frac{x+2}{1} = \frac{y+6}{-1} = \frac{z-12}{4}$ и $\frac{x}{1} = \frac{y+2}{0} = \frac{z-8}{1}$. Ответ: (1; 0; 0) и (-5; 0; 0).
- 31. Выяснить взаимное расположение плоскостей: a) 2x-y-z=1, 3x+2y-3z=1 и 5x-6y-z=-1; б) x+y=1, x+z=2 и y+z=3; в) 3x+2y-2z=-4, 2x+y-z=-2 и 6x+5y-5z=-10. Ответ: a) пересекаются по параллельным прямым; б) пересекаются в точке; в) проходят через одну прямую.
- 32. Составить уравнение биссектрисы AL треугольника ABC, в котором A=(4;5;-1), B=(6;1;4), C=(5;5;-3). Ответ: $\frac{x-4}{12}=\frac{y-5}{-4}=\frac{z+1}{-1}.$
- 33. Найти угол между гиперплоскостями $2x_1 + 3x_3 6x_4 + 11 = 0$ и $x_1 + x_2 x_3 + x_4 + 31 = 0$ (в четырёхмерном пространстве). Ответ: 60°
- 34. Спроектировать точку (3; 9; -2; 4) на гиперплоскость $x_1 x_2 + 3x_3 2x_4 + 64 = 0$ (в четырёхмерном пространстве). Ответ: (-1; 11; -8; 8).
- 35. Найти точку, симметричную точке (2;4;-1) относительно прямой $\frac{x-9}{2} = \frac{y+1}{-1} = \frac{z+4}{-3}$. Ответ: (8;-2;5).

- 36. Даны точки A = (-1; -3; 10) и B = (1; -2; 8). На оси абсцисс найти точку C такую, что площадь треугольника ABC равна 2. Ответ: (13; 0; 0) и (8,5; 0; 0).
- 37. Даны точки A = (-1; -11; 3) и B = (0; -7; -6). На плоскости x + y 3z + 8 = 0 найти точку C такую, что ABC равнобедренный прямоугольный треугольник с гипотенузой AB. Ответ: (-3; -5; 0) и $\left(-\frac{7}{3}; -\frac{16}{3}; -\frac{29}{3}\right)$.
- 38. Даны прямые x-3=y-6=z-4 и $\frac{x+4}{4}=\frac{y-1}{1}=\frac{z-3}{2}$. Составить уравнение общего перпендикуляра к этим прямым, пересекающего данные прямые. Ответ: $\frac{x}{1}=\frac{y-2}{2}=\frac{z-5}{-3}$.
- 39. Через точку (5;11; -1) провести прямую, пересекающую прямые x = y = z и $\frac{x-2}{7} = \frac{y+1}{-2} = \frac{z-5}{-2}$. Ответ: $\frac{x-5}{1} = \frac{y-11}{4} = \frac{z+1}{-2}$.