

7. Little Oh and Omega

Dr. Swati Agarwal

Agenda

- 1 Little Oh o
- 2 Little Omega ω

Little Oh o

The function f(n) = o(g(n))

For all positive constants c>0 there exists a constant n_0 such that $f(n)< cg(n), \forall n \geq n_0$ where $n_0 \geq 1$

Examples:

1.
$$f(n) = 3n + 2$$
 $f(n) = o(n^2)$

2.
$$f(n) = 4n^3 + 5$$
 $f(n) = o(n^4)$

Little Oh o

Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

An upper bound that is not asymptotically tight.

Little Omega ω

The function $f(n) = \omega(g(n))$

For all positive constants c>0 there exists a constant n_0 such that $f(n)>cg(n), \forall n\geq n_0$ where $n_0\geq 1$

Examples:

1.
$$f(n) = 3n + 2$$
 $f(n) = \omega(1)$

2.
$$f(n) = 4n^3 + 5$$
 $f(n) = \omega(n^2)$

Little Omega ω

Intuitively, in ω -notation, the function f(n) becomes arbitrarily large relative to g(n) as n approaches infinity

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

An lower bound that is not asymptotically tight.

Little o and ω

- $o(n) = \mathcal{O}(n) \Theta(n)$ (can't touch the upper bound)
- $\omega(n) = \Omega(n) \Theta(n)$ (can't touch the lower bound)
- Intersection of Little o and ω is an empty set that's why Little θ does not exist.

Interpretation

•
$$f(n) = \mathcal{O}(g(n))$$
 $f(n)$ grows no faster than $g(n)$

•
$$f(n) = \Omega(g(n))$$
 $f(n)$ grows no slower than $g(n)$

•
$$f(n) = \Theta(g(n))$$
 $f(n)$ grows at the same rate as $g(n)$

•
$$f(n) = o(g(n))$$
 $f(n)$ grows slower than $g(n)$

•
$$f(n) = \omega(g(n))$$
 $f(n)$ grows faster than $g(n)$