UNIVASF Eletrônica Digital II

Computador – Simples e Aprimorado

Prof. Rodrigo Ramos godoga@gmail.com

Registradores

- Exemplo de arquitetura simples:
 - Sistema para cálculo aritmético de conteúdo de dois registradores α e β

Sequência de comandos para calcular $\alpha + \beta$

Ciclo	Terminal de controle ativado	Comentário
1	Z, Z_A	Limpa acumulador
2	$R_{\alpha'}W$	Ler de α e escrever em CI
3	R, W _A	CI para Acc passando pelo somador
4	R_{β} , W	Ler de β e escrever em CI
5	R, W_{A}	β somado ao Acc
6	$R_{_{\mathcal{A}}},W_{_{lpha}}$	Acc para α

Controladores

 Sistema sequencial que fornece níveis lógicos temporizados para controlar operações lógicas simples que, juntas, executam operações mais complexas.

• Circuito fundamental para qualquer microprocessador.

Controladores

Controlador para a arquitetura anterior.

- O sistema anterior é eficiente para operações com dois operandos (registradores α e β).
- Caso se necessite operar mais que dois números, devese ter uma arquitetura mais elaborada.
 - Substituição dos registradores por um banco de registradores (memória).
 - Operandos são submetidos às mesmas microoperações -> repetição da sequência para cada operando (a informação a respeito de como cada operando será calculado pode estar na memória)

Memória RAM

- Memória de Acesso Aleatório
- Exemplo:
 - CI com oito palavras de 4 bits cada (oito registradores de 4 bits)

 - Entrada de habilitação (CS)
 - Entrada de Leitura/Escrita (R/W)

Memória RAM

• Estrutura interna

 Considere o sistema que permite (com algumas intervenções manuais) combinar aritmeticamente um grande número de operandos.

- Suponha o seguinte conteúdo da memória RAM e os códigos de instruções.
- Instrução: 2 bits + 6 bits

Observe que a memória armazena as instruções e os dados (operandos) em partes separadas.

Código	Instrução	
00	Parar (stop)	
01	Somar a Acc	
10	Subtrair de Acc	
11	Transferir conteúdo de Acc para	

(-49)+(-79)-(-52)+(121)+(82)

- Operação
 - Suponha que o contador de programa (PC) e o acumulador estejam zerados

Ciclo de busca (fetch cycle): independe da instrução

Tabela 8.10-1 Ciclo de busca (fetch cycle)

Ciclo de relógio	Descrição simbólica da operação	Linha de controle a ser habilitada
Transferir conteúdo do contador o programa para o registrador de end reços da memória	and with the control of the control	
 Transferir instrução endereçada (r local 000000) para o registrador o instruções por (1) habilitação da m mória para conectar a memória a bus, (2) colocação de R/W em 1 pa ler memória, e (3) transferência o palavra no bus para o registrador o 	de ("M" representa palavra d e- memória endereçada) no ra	
instruções; incrementar contador o programa para preparar para faz aparecer a próxima instrução quano a primeira instrução tiver sido co cluída	de PC + 1 → PC er lo	pees o meen meen properties. o saacoéntes e o mstantes de reiógée, que e mstantes

Ciclo de execução

Tabela 8.10-2 Ciclo de executar

Cie	clo de relógio	Descrição simbólica da operação	Linha de controle a ser habilitada
3.	Transferir parte do endereço do registrador (seis bits à direita) para o registrador de endereços da memória (endereço é 59)	IR (ADD) → MAR	TIR
4.	Transferir palavra endereçada da me- mória para o bus e do bus para o registrador CI	$M \rightarrow BUS$ BUS $\rightarrow CI$	$E, R/\overline{W}, W$
5.	Complementar CI	CI → CI	C
6.	Incrementar CI	$CI + 1 \rightarrow CI$	I
7.	Registrar saída do somador no registrador do acumulador	Adder → Acc	w_A

- Arquitetura e organização do computador
 - Quantidade e função dos registradores
 - Interligações entre registradores e memória
 - Frequentes referências a memória usando o MAR (acessado a partir do PC e do IR).
 - Omputadores mais complexos fornecem acesso direto e indireto ao MAR).
 - Tamanho da memória
 - Tipos e operações da ULA
 - Derações de complemento, incremento e adição.
 - ULAs mais sofisticadas efetuam outras operações.

- No projeto, foram implicitamente "entendidos" alguns aspectos
 - Na execução, fica "entendido" que a próxima instrução está no próximo local da memória.
 - Em uma operação, fica "entendido" que o outro operando encontrase no acumulador.
 - Está "entendido" que o resultado de uma operação deve ficar armazenado no acumulador.
- Sem tais entendimentos, uma instrução teria que especificar:
 - Operação, fonte do primeiro operando, fonte do segundo operando, local de armazenamento e fonte da próxima instrução.
- Economia no comprimento das palavras e, consequentemente da memória e demais registradores.

Projeto do controlador

Interrupções

- Frequentemente é necessário interromper o fluxo cíclico de operação de um computador para que o controlador execute outra sequência de comandos.
- Esta parada é chamada de interrupção.
- Classes de interrupção:
 - De software gerada por resultado de instrução, ex. overflow em operação aritmética.
 - De relógio gerada por relógio interno do processador.
 - ☐ De I/O gerada por dispositivo de I/O para sinalizar conclusão de operação.
 - De falha de hardware gerada na ocorrência de falha.

- Interrupções
 - Controlador modificado para receber interrupção

- Arquitetura aprimorada
 - Memória de palavras de 12 bits
 - 16 instruções (4 bits de instrução)
 - Registrador de propósitos gerais GPR(OP) → OPR → OPR
 (GPR)
 - Registrador de operações (OPR)
 - Conexão entre GPR e PC
 - ULA modificada
 - Linhas tracejadas indicam dado disponíveis independetes de ativação de controle

	- 100		4		
		וחו	ш	ลด	lor-
0			SI C	S S	

•	Arquitetura
	aprimorada

Componentes (exceto controlador) e operações de controle (18

 GPR(AD) refere-se à parte de endereço da instrução (8 bits) e GPR(OP) à parte do operando (4 bits)

microoperações)

	Componente
	Memória
	Contador do programa (PC)
)	Registrador de endereço da memória (MAR)
	Registrador de operação (OPR)
	Registrador de propósitos gerais (GPR)

O rte Unidade lógica e aritmética (ULA)

Simbolismo de controle	Explicação
1. GPR → M	Escreve conteúdo de GPR da memória endereçada
 PC + 1 → PC 	Incrementa PC

GPR (AD) → PC Transfere bits de endereço do registrador de propósitos gerais para PC
 PC → MAR Transfere do PC para MAR
 GPR (AD) → MAR Transfere bits de endereço do registrador

GPR na localização

de propósitos gerais para MAR

6. GPR (OP) → OPR

Transfere bits de operação do registrador de propósitos gerais para OPR

7. M → GPR

Transfere palavra endereçada para GPR

Transfere conteudo do Acc para GPR

9. PC → GPR (AD)

Transfere conteúdo do contador de pro-

grama para a parte de endereços do

10. GPR + 1 → GPR Incrementa GPR
 11. GPR + Acc → Acc Adiciona número no GPR para número no Acc e deixa soma no Acc
 12. 0 → Acc Limpa Acc

GPR

13. ROR F, Acc Gira Acc para a direita através de F
14. ROL F, Acc Gira Acc para a esquerda através de F
15. 0 → F Reset flip-flop F
16. F → F Complementa flip-flop F

16. F → F Complementa flip-flop F
 17. Acc → Acc Complementa Acc

18. Acc + 1 → Acc Incrementa Acc

- Arquitetura aprimorada Instruções de máquina
- É sem dúvida mais conveniente englobar microoperações de controle em instruções únicas, em que se usa mnemônicos.
- Veremos a seguir um conjunto de 16 instruções para o computador aprimorado.

- Arquitetura aprimorada Instruções
- Ciclo de busca, assumindo que PC aponta para primeira instrução.

Ciclo de relógio	Microoperação	Explicação
1	PC → MAR	Transfere local da instrução do contador de programa para o registrador de ende- reço da memória
2	$M \rightarrow GPR$ PC + 1 \rightarrow PC	Transfere palavra endereçada para o registrador de propósitos gerais; incre- menta contador de programa
3	$GPR(OP) \rightarrow OPR$	Transfere parte da operação de instrução para o registrador de operações

- Arquitetura aprimorada Instruções
 - Instruções que ativam apenas um terminal de comando.

Instrução (microoperação)	Explicação	Mnemônico
0 → Acc	Limpar acumulador	CRA
Acc → Acc	Complementar acumulador	CTA
Acc + 1 → Acc	Incrementar acumulador	ITA
0 → F	Limpar flip-flop F	CRF
$\overline{F} \rightarrow F$	Complementar flip-flop F	CTF
PC + 1 → PC	Saltar (skip) para a instrução seguinte se F for zero	SFZ
Girar à direita	Girar à direita através de F e Acc	ROR
Girar à esquerda	Girar à esquerda através de F e Acc	ROL

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
- ADD, end adiciona acumulador operando localizado no endereço de memória end.

Ciclo de relógio	Містоорегаção	Explicação
1	$GPR(AD) \rightarrow MAR$	Transfere endereço do operando de GPR (AD) para MAR
2	$M \rightarrow GPR$	Lé da memória a palavra no local cujo endereço está em MAR
3	GPR + Acc → Acc	Adiciona conteúdo de GPR ao conteúdo de Acc, deixando a soma em Acc

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
- Endereçamento indireto operando é um endereço que contém operando (usado em soma de vários operandos).

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
 - ADDI, end adiciona ao acumulador operando cujo endereço está localizado no endereço de memória end.

Ciclo de relógio	Mjerooperação	Explicação
1	GPR(AD) → MAR	Transfere endereço de GPR para MAR
2	M → GPR	Transfere conteúdo da memória no local endereçado para GPR (GPR terá então endereço do operando)
3	$GPR(AD) \rightarrow MAR$	Transfere endereço do operando para MAR
4	$M \rightarrow GPR$	Transfere operando endereçado para GPR
5	GPR + Acc → Acc	Adiciona conteúdo de GPR ao Acc

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
- STA, end armazena conteúdo do acumulador no endereço de memória end.

Ciclo de relógio	Microoperação	Explicação
1	GPR(AD) → MAR	Transferir endereço de GPR para MAR
2	$Acc \rightarrow GPR$	Transferir conteúdo de Acc para GPR
3	GPR → M	Escrever conteúdo de GPR na memória no endereço retido em MAR

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
- JMP, end salta para instrução localizada em end.

Ciclo de relógio	Microoperação	Explicação
1	$GPR(AD) \rightarrow PC$	Transfere endereço da próxima instrução do GPR para PC

• JMPI, end – salta para instrução cujo endereço está localizada em end.

Ciclo de relógio	Містоорегаção	Explicação
1	GPR (AD) → MAR	Transfere endereço para MAR
2	$M \rightarrow GPR(AD)$	Endereço lido da proxima instrução da memória
3	$GPR(AD) \rightarrow PC$	Transfere endereço da próxima instrução do GPR para PC

Computadoi Endereço da memória

- Arquitetura aprimorada – Instruções
 - Instruções que requerem sequências de microoperações.
- Chamadas de subrotina: trechos recorrentes de programas.

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
- Chamadas de sub-rotina: trechos recorrentes de programas.
- CSR, end armazena endereço de retorno (CALL + 1) no local especificado por end (K) e busca próxima em K + 1.

Ciclo		
de relógio	Microoperação	Explicação
l	GPR(AD) → MAR	Transferir para MAR o endereço onde o endereço de retorno deve ser arma- zenado; este endereço de armazena- mento é K
2	$GPR(AD) \rightarrow PC$ $PC \rightarrow GPR(AD)$	Trocar os conteúdos de PC e GPR(AD) [após a troca, PC retém o endereço K e GPR(AD) retém CALL + 1, uma vez que PC foi incrementado de CALL para CALL + 1 durante o ciclo de busca]
3	$GPR(AD) \rightarrow M$	Transferir GPR (AD) para a memória [o resultado é que endereço CALL + 1 será escrito no local K da memória]
4	PC + 1 → PC	Incrementar PC (PC guardará então ende- reço K + 1; próxima instrução será então tirada do local K + 1, que é a primeira instrução de sub-rotina

- Arquitetura aprimorada Instruções
 - Instruções que requerem sequências de microoperações.
- ISZ, end incrementar e saltar se zero. Ler o número em end, incrementá-lo e retorná-lo ao local original. Se zero, saltar próxima instrução.

Ciclo de relógio	Microoperações	Explicação
1	GPR (AD) → MAR	Transferir para MAR o local do número a ser incrementado
2	$M \rightarrow GPR$	Ler número da memória
3	$GPR + 1 \rightarrow GPR$	Incrementar número
4	$GPR \rightarrow M$	Retornar número à memória
5	$PC + 1 \rightarrow PC$ (se $GPR = 0$)	Saltar próxima instrução se GPR = 0

- Arquitetura aprimorada Instruções
- Conjunto de instruções, juntamente com arquitetura interna dos registradores, caracteriza um microprocessador.
- É importante salientar que a memória RAM não está presente nos microprocessadores.
- Um programa escrito na forma de mnemônicos é conhecido como Assembly. É necessário um montador (assembler) para conversão em código de máquina (bits).

- Arquitetura aprimorada Instruções
- 1. CRA limpar acumulador
- 2. CTA complementar acumulador
- 3. ITA incrementar acumulador
- 4. CRF limpar F
- 5. CTF complementar F
- 6. SFZ saltar próxima instrução se F = 0
- 7. ROR girar acumulador à direita com F
- 8. ROL girar acumulador à esquerda com F
- 9. ADD end adicionar ao acumulador conteúdo de end
- 10.ADDI end adicionar ao acumulador conteúdo do conteúdo de end
- 11.STA end armazenar em end conteúdo do acumulador
- 12.JMP end saltar para end
- 13.JMPI end saltar para posição cujo endereço está em end
- 14.CSR end chamar sub-rotina em end
- 15. ISZ end incrementar e saltar se Z = 0
- HLT parar

Local da

- Arquitetura aprimorada
- Exemplo: Adição de três números.

memória				Explicação
00	CRA	X	×	Limpar Acc
01	ADD	0	6	Adicionar conteúdo de 06 no Acc
02	ADD	0	7	Adicionar conteúdo de 07 no Acc
03	ADD	0	8	Adicionar conteúdo de 08 no Acc
04	STA	0	9	Armazenar conteúdo de Acc no local 09
05	HLT	X	×	Parar
06	0	1	7	Operando em 06
07	0	0	В	Operando em 07
08	0	-1	- C	Operando em 08
09			-	03B será armazenado aqui no fim do programa

No caso geral, é conveniente especificar endereços em forma simbólica.

O montador se responsabiliza pela atribuição de endereço.

- Arquitetura aprimorada
- Exemplo: Adição de três números localizados nas posições W, X e Y da memória, e armazenar em Z.

Local simbólico	Conteúdo do local	Comentário
	CRA	Limpar Acc
	ADD W	Adicionar conteúdo de W a Acc
	ADD X	Adicionar conteúdo de X a Acc
	ADD Y	Adicionar conteúdo de Y a Acc
	STA Z	Armazenar conteúdo de Acc no local Z
	HLT	Parar
W	017	Operando em W
X	00B	Operando em X
Y	01C	Operando em Y
Z	XXX	Local de armazenamento do resultado

- Arquitetura aprimorada
- Exemplo: Programa para subtração.

Rótulo (Label)	Conteúdo	Comentário
	CRA	Limpar Acc
	ADD SUB	Adicionar subtraendo a Acc
	CTA	Complementar Acc
	ITA	Incrementar Acc
	ADD MIN	Adicionar minuendo a Acc
	STA DIF	Armazenar em local rotulado "DIF"
	HLT	Parar -
SUB	09C	Subtraendo em local rotulado "SUB"
MIN	0B7	Minuendo em local rotulado "MIN"
DIF	XXX	Local onde a diferença será armazenada (a diferença será 0B7 - 09C = 01B)

- Arquitetura aprimorada
- Exemplo: Uso de JMP, ISZ e endereçamento indireto Somar 100 parcelas localizadas sequencialmente na memória.

Rótulo (Label)	Conteúdo	Comentário
	CRA	Limpar Acc
LOOP	ADDI ANA	Adicionar ao Acc o número cujo endereço está no local "ANA" (endereço do próximo adendo)
	ISZ ANA	Incrementar endereço de adendo
	ISZ CTR	Incrementar número em local "CTR" e saltar próxima instrução se incremento faz o conteúdo de CTR igual a 0
	JMP LOOP	JMP de volta à instrução rotulada "LOOP"
	STA RES	Armazenar resultado em local "RES"
	HLT	Parar
RES	XXX	Resultado a ser armazenado aqui
ANA	FAD	Este local guarda endereço do próximo adendo
CTR	F9C	Este local guarda contagem de número de adições a serem feitas (representação de - 100 em complemento de dois)
FAD	ADD (1)	100 adendos a serem somados
	ADD (2)	
	ADD (100)	

- Arquitetura aprimorada
- Exemplo: Programa para multiplicação de dois números binários de 4 bits (resultado é um número de 8 bits).

Rótulo (Label)	Conteúdos	Comentário
	CRA STA SP	Limpar local onde a soma dos produtos SP, isto é, resul- tado da multiplicação, será armazenada
LOOP	ADD MR	Carregar o conteúdo do local MR em Acc
	ROR	Girar à direita para deslocar bit mais à direita do multi- plicador dentro de F
	STA MR	Colocar multiplicador deslocado de volta ao local MR
	SFZ	Saltar (skip) próxima instrução se F = 0
	JMP 1	Saltar (jump) para instrução em local rotulado "1" (desde que F ≠ 0)
	ЈМР 0	Saltar (jump) para instrução em local rotulado "0" (desde que $F = 0$)
1	CRA ADD MD	Carregar conteúdo de local MD em Acc
	ADD SP	Adicionar conteúdo do local SP a Acc
	STA SP	Armazenar conteúdo de Acc no local SP
	CRF	Limpar flip-flop F
0	CRA ADD MD	Carregar conteúdo do local MD em Acc
	ROL	Girar à esquerda
	STA MD	Colocar multiplicando deslocado de volta ao local MD
	ISZ CTR	Incrementar contador
	JMP LOOP	Contador não zero, saltar (jump) de volta para instrução em "LOOP"
•	HLT	Parar
CTR,	FF4	Representação hexadecimal de -12
MD	Multiplicando	Local para guardar multiplicando •
MR	Multiplicador	Local para reter multiplicador
SP	xxx	Local para reter resultado (limpo pelas duas primeiras instruções)

- Arquitetura aprimorada
- Exemplo: Programa para cálculo da operação $N_1N_2 + N_3N_4$. Como há multiplicações repetidas, pode-se usar sub-rotina.

Rôtulo (<i>Lahel</i>)	Conteúdo	Comentário
A B C D	N ₁ N ₂ N ₃ N ₄	Locais A , B , C e D da memória retêm números N_1 , N_2 , N_3 e N_4 a serem combinados em $N_1N_2 + N_3N_4$
T	FF4	Representação hexadecimal de -12
	CRA ADD A STA MD	Coloca N ₁ no local "MD", reservado ao multiplicando na sub-rotina da multiplicação
	CRA ADD B STA MR	Coloca N ₂ no local "MR", reservado ao multiplicador na sub-rotina da multiplicação
	CSR MULT	Chama sub-rotina no endereço "MULT"
	CRA STA PR	Limpa local "PR" a ser usado para armazenar o resultado parcial N_1N_2
	ADD SP STA PR	Armazena resultado parcial N ₁ N ₂ no local "PR"
	CRA ADD C STA MD CRA ADD BD STA MR	Coloca N ₃ e N ₄ em "MD" e "MR", onde eles são acessíveis para sub-rotina da multiplicação
	CSR MULT	Chama novamente sub-rotina da multiplicação
	CRA ADD SP	Carrega Acc com N ₃ N ₄ do local "SP"
	ADD PR	Adiciona N_1N_2 do local "PR" para formar $N_1N_2 + N_3N_4$
	HLT	Pára, deixando $N_1 N_2 + N_3 N_4$ em Acc

MULT		Retém endereço de retorno (mutável)
	CRA ADD T STA CTR	Coloca -12 no local da memória rotulado "CTR"
	CRA STA SP	Sub-rotina da multiplicação
LOOP	ADD MR ROR STA MR SFZ JMP 1 JMP 0	
1	CRA ADD MD ADD SP STA SP	•
	Cont	inuação da sub-rotina da multiplicação
0	CRF CRA ADD MD ROL STA MD ISZ CTR JMP LOOP	
	JMPI MULT	Retorna ao programa principal
CTR MD MR SP PR		Locais da memória rotulados reservados ao contatlat multiplicando, multiplicador, soma de produtua par ciais e aos resultados parciais