Circuits

Capacitors and Inductors

Spring 2022

Storage elements

Time dependence

- Until now, everything was happening instantly (DC mode)
- We will discover new elements which have some dependence on time time dependents
- These elements can store and deliver energy

Physical concept

Dielectric material between conductive plates

- Suppose we impose the voltage
- Charge builds up on each of the plates
- The charge stored is directly proportional to the voltage

Equation

$$q = C \cdot v$$

- q: charge in Coulombs (C)
- C: capacitance in Farads (F)
- v: voltage in Volts (V)

$$C = \frac{\epsilon \cdot A}{d}$$

 \bullet ϵ : permittivity in $C^2/N \cdot m^2$

Constitutive equation

$$\begin{array}{c|c}
i(t) & C \\
+ & C \\
\hline
+ & C \\
\hline
- & V(t)
\end{array}$$

$$q(t) = C \cdot v(t)$$

$$q(t) = C \cdot v(t)$$

$$\frac{d}{dt}q(t) = C \frac{d}{dt}v(t)$$

Alternative constitutive equation

$$\begin{array}{c|c}
i(t) & C \\
+ & C \\
\hline
+ & C \\
\hline
- & V(t)
\end{array}$$

$$i(t) = C \cdot \frac{dv(t)}{dt}$$

Very often (but not always!), we will consider that: v(0) = 0

Linearity?

Are capacitors linear elements?

For a voltage $v_1(t)$, then the current is: $i_1(t) = C \frac{dv_1(t)}{dt}$

For another voltage $v_2(t)$, then the current is: $i_2(t) = C \frac{dv_2(t)}{dt}$

Now, we impose a voltage $v(t) = a \cdot v_1(t) + b \cdot v_2(t)$. The current is:

$$i(t) = C \frac{dv(t)}{dt} = C \frac{d(a \cdot v_1(t) + b \cdot v_2(t))}{dt} = aC \frac{dv_1(t)}{dt} + bC \frac{dv_2(t)}{dt}$$
$$i(t) = a \cdot i_1(t) + b \cdot i_2(t)$$

Capacitors are linear

Power absorbed by capacitors

$$p(t) = v(t) \cdot i(t) = v(t) \cdot C \frac{dv(t)}{dt}$$

- If positive: absorbs power (increases the stored energy)
- If negative: delivers power (gives back the stored energy)

Energy stored

The energy stored by a capacitor from time t_0 to time t is:

$$w(t) - w(t_0) = \int_{t_0}^{t} p(\tau) d\tau = \int_{t_0}^{t} v(\tau) \cdot C \frac{dv(\tau)}{d\tau} d\tau$$
$$= C \int_{v(t_0)}^{v(t)} v(\tau) dv(\tau) = \frac{1}{2} C[v(t)^2 - v(t_0)^2]$$

Energy

From previous equation, we can conclude that:

$$w(t) = \frac{1}{2}Cv(t)^2 + cste$$

By convention, the *cste* is chosen to be null. It means that when v is equal to 0, the capacitor does not have any energy stored.

Energy stored:
$$w(t) = \frac{1}{2}Cv(t)^2$$

Observations

$$\begin{array}{c|c}
i(t) & C \\
+ & C \\
\hline
+ & C \\
v(t)
\end{array}$$

$$i(t) = C \cdot \frac{dv(t)}{dt}$$

- When v(t) is constant, then there is no current (i(t) = 0)
- In DC mode, the capacitor is equivalent to an open-circuit
- v(t) cannot change too quickly, otherwise it leads to huge currents (physically possible?)
- $\mathbf{v}(t)$ is actually continuous (cannot have discontinuities)
- Capacitors do not dissipate energy, they store it then deliver it back

Exercise

Find the expression of i(t). Also plot the corresponding timing diagram.

Exercise

Find the expression of i(t). Also plot the corresponding timing diagram.

Exercise

Find the expression of v(t). Also plot the corresponding timing diagram.

At t = 0, the capacitor voltage is $-5 \, \text{V}$.

$$V(t) = V(t_0) + \frac{1}{t_0} (t_0) dt$$

$$i(t) = V(s)$$

to Sot valet

Exercise

Find the expression of v(t). Also plot the corresponding timing diagram. At t=0, the capacitor voltage is $-5\,\mathrm{V}$.

Capacitors in parallel

Equivalence

$$v_1(t) = v_2(t) = v(t)$$

$$i(t) = i_1(t) + i_2(t) = C_1 \frac{dv(t)}{dt} + C_2 \frac{dv(t)}{dt} = (C_1 + C_2) \frac{dv(t)}{dt}$$

Capacitors in series

Equivalence

$$v(t) = v_1(t) + v_2(t) = v_1(t_0) + \frac{1}{C_1} \int_{t_0}^t i(\tau) d\tau + v_2(t_0) + \frac{1}{C_2} \int_{t_0}^t i(\tau) d\tau$$

Physical concept

Coil of conducting wire around some magnetic material

- Suppose we impose the current
- It will create a magnetic flux in the material
- The magnetic flux is directly proportional to the current

Equation

$$N \cdot \phi = L \cdot i$$

- \bullet ϕ : flux in Webers (Wb)
- L: inductance in Henrys (H)
- *i*: current in Amperes (A)

$$L = \frac{\mu \cdot N^2 \cdot A}{I}$$

- \blacksquare μ : permeability in N/A²
- N: number of turns

Constitutive equation

$$t(t)$$
 t
 $v(t)$

- $N \cdot \phi(t) = L \cdot i(t)$ Faraday's law: $v(t) = N \frac{d\phi(t)}{dt}$

Alternative constitutive equation

$$\xrightarrow{i(t)}$$
 \xrightarrow{L} $\xrightarrow{V(t)}$ $\xrightarrow{-}$

$$\mathbf{v}(t) = L \frac{di(t)}{dt}$$

Very often (but not always!), we will consider that: i(0) = 0

Linearity?

Are inductors linear elements?

For a current $i_1(t)$, then the voltage is: $v_1(t) = L \frac{di_1(t)}{dt}$

For another current $i_2(t)$, then the voltage is: $v_2(t) = L \frac{di_2(t)}{dt}$

Now, we impose a current $i(t) = a \cdot i_1(t) + b \cdot i_2(t)$. The voltage is:

$$v(t) = L\frac{di(t)}{dt} = L\frac{d(a \cdot i_1(t) + b \cdot i_2(t))}{dt} = aL\frac{di_1(t)}{dt} + bL\frac{di_2(t)}{dt}$$
$$v(t) = a \cdot v_1(t) + b \cdot v_2(t)$$

Inductors are linear

Power absorbed by inductors

$$p(t) = v(t) \cdot i(t) = L \frac{di(t)}{dt} \cdot i(t)$$

- If positive: absorbs power (increases the stored energy)
- If negative: delivers power (gives back the stored energy)

Energy stored

The energy stored by an inductor from time t_0 to time t is:

$$w(t) - w(t_0) = \int_{t_0}^{t} p(\tau) d\tau = \int_{t_0}^{t} L \frac{di(\tau)}{d\tau} \cdot i(\tau) d\tau$$
$$= L \int_{i(t_0)}^{i(t)} i(\tau) di(\tau) = \frac{1}{2} L[i(t)^2 - i(t_0)^2]$$

Energy

From previous equation, we can conclude that:

$$w(t) = \frac{1}{2}Li(t)^2 + cste$$

By convention, the *cste* is chosen to be null. It means that when i is equal to 0, the inductor does not have any energy stored.

Energy stored:
$$w(t) = \frac{1}{2}Li(t)^2$$

Observations

$$\xrightarrow{i(t)}$$
 \xrightarrow{L} $\xrightarrow{V(t)}$ $\xrightarrow{-}$

$$v(t) = L \cdot \frac{di(t)}{dt}$$

- When i(t) is constant, then there is no voltage (v(t) = 0)
- In DC mode, the inductor is equivalent to a short-circuit
- i(t) cannot change too quickly, otherwise it leads to huge voltages (physically possible?)
- \bullet i(t) is actually continuous (cannot have discontinuities)
- Inductors do not dissipate energy, they store it then deliver it back

Exercise

Find the expression of v(t). Also plot the corresponding timing diagram.

 $\begin{array}{c}
\stackrel{i(t)}{\longrightarrow} 10 \text{ mH} \\
+ 0000 \\
v(t)
\end{array}$

Exercise

Find the expression of v(t). Also plot the corresponding timing diagram.

Exercise Signal Control Contro

Find the expression of i(t). Also plot the corresponding timing diagram. At t=0, the inductor current is $-0.5\,\mathrm{A}$.

Exercise

Find the expression of i(t). Also plot the corresponding timing diagram. At t=0, the inductor current is $-0.5\,\mathrm{A}$.

Inductors in series

Equivalence

$$v(t) = v_1(t) + v_2(t) = L_1 \frac{di(t)}{dt} + L_2 \frac{di(t)}{dt} = (L_1 + L_2) \frac{di(t)}{dt}$$

$$L_{eq} = L_1 + L_2$$

$$\blacksquare L_{eq} = L_1 + L_2$$

Inductors in parallel

Equivalence

$$i(t) = i_1(t) + i_2(t) = i_1(t_0) + \frac{1}{L_1} \int_{t_0}^t v(\tau) d\tau + i_2(t_0) + \frac{1}{L_2} \int_{t_0}^t v(\tau) d\tau$$

$$\bullet i(t) = i(t_0) + \left(\frac{1}{L_1} + \frac{1}{L_2}\right) \int_{t_0}^t v(\tau) d\tau \implies \left[\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}\right]$$