Applied Machine Learning

The Data Science Lifecycle Main phases

Learning goals

- Know phases of data science lifecycle
- Identify essential concepts, tools, and methods for each phase

THE DATA SCIENCE LIFECYCLE • "CRISP-DM" n.d.

Lifecycle Management: Process of managing a (product) lifecycle from inception, through engineering, design and manufacturing to deployment and eventual disposal. CRISP-DM (Cross-Industry Standard Process for Data Mining): A widely used framework that formalizes the iterative process of turning data into knowledge.

1. Business Understanding

OVERVIEW BUSINESS UNDERSTANDING

©

Key question: What is the end goal of the project?

- Define the intended output:
 - Report, dashboard, or interactive tool?
 - Scalable pipeline for production use?

Key question: What is the end goal of the project?

- Define the intended output:
 - Report, dashboard, or interactive tool?
 - Scalable pipeline for production use?
- Identify constraints
 - Ethical: Avoid sensitive data use (e.g., address may proxy ethnicity)
 - Legal: Exclude protected attributes (e.g., gender in automated hiring)
 - Reproducibility: Ensure the analysis is fully reproducible in a single step
 - Explainability: All model decisions must be explainable to the user
 - Prediction Latency: Real-time predictions required
 - Model Size: Stay within specified memory constraints

- 1. ML Applicability: Is ML justified?
 - Explore non-ML baselines first (rules, heuristics, simple analytics)
 - Use ML only if it adds clear value over simpler/existing alternatives

- 1. ML Applicability: Is ML justified?
 - Explore non-ML baselines first (rules, heuristics, simple analytics)
 - Use ML only if it adds clear value over simpler/existing alternatives
- 2. Problem Framing: How to frame the task?
 - Imbalanced data: classification vs. anomaly detection?
 - *Pred. maintenance:* failure probability (classif.) vs. remaining lifetime (regr.)?
 - Select the ML task that aligns with your KPI and data characteristics

BUSINESS OBJECTIVES: PERFORMANCE MEASURES

- How to translate key performance indicators (KPIs) to metrics?
 - Spam detection: Job application flagged as spam = unacceptable
 ⇒ Occasional inbox spam is fine ⇒ minimize FP ⇒ maximize precision
 - Airport security: Weapon flagged as laptop = unacceptable
 ⇒ Occasional false alarm is fine ⇒ minimize FN ⇒ maximize recall

BUSINESS OBJECTIVES: PERFORMANCE MEASURES

- How to translate key performance indicators (KPIs) to metrics?
 - Spam detection: Job application flagged as spam = unacceptable
 ⇒ Occasional inbox spam is fine ⇒ minimize FP ⇒ maximize precision
 - Airport security: Weapon flagged as laptop = unacceptable
 ⇒ Occasional false alarm is fine ⇒ minimize FN ⇒ maximize recall
- Multiple objectives: What if improving one metric worsens another?
 - Scalarization: Combine into one score (e.g., F₁)
 - Pareto/frontier: Analyze trade-off without collapsing (e.g., ROC curve)

True Values	Predicted Values		
	Pos	Neg	
Pos	TP	FN	Sensitivity/Recall/TPR = $\frac{TP}{TP + FN}$
Neg	FP	TN	Specificity = $\frac{TN}{TN + FP}$
	$Precision = \frac{TP}{TP + FP}$	$NPV = \frac{TN}{TN + FN}$	$\mathbf{F}_1 = rac{2 \operatorname{Precision Recall}}{\operatorname{Precision} + \operatorname{Recall}}$

BUSINESS OBJECTIVES: VALIDATION STRATEGY

Key question: How to validate the model reliably and realistically?

- 1. Strategic Considerations
 - What should your model generalize to?
 - Blocking factors (e.g., customers, hospitals, product types)
 - Temporal effects (e.g., seasonality, trends)
 - Spatial effects (e.g., regions, branches)
 - Simulate realistic deployment:
 - Time series: Train on data from 2016–2020, deploy in 2021
 - Validation: Mimic deployment train on 2016–2019, validate on 2020

BUSINESS OBJECTIVES: VALIDATION STRATEGY

Key question: How to validate the model reliably and realistically?

- 1. Strategic Considerations
 - What should your model generalize to?
 - Blocking factors (e.g., customers, hospitals, product types)
 - Temporal effects (e.g., seasonality, trends)
 - Spatial effects (e.g., regions, branches)
 - Simulate realistic deployment:
 - Time series: Train on data from 2016–2020, deploy in 2021
 - Validation: Mimic deployment train on 2016–2019, validate on 2020

2. Beware of Data Leakage

- Target Leakage: Features leak future info not available at prediction time
 - Example: "Total Sales in Next Month" used to predict this month
- Train-Test Leakage: Information from the test set is used during training
 - Example: Scaling the full dataset before splitting

2. Data Acquisition and Understanding

DATA SOURCES AND DATA VERSIONING

Key question: What data is available and where does it come from?

- Internal vs. External: External feeds may change format or be discontinued
- Structured vs. Unstructured: Tables vs. free-text, images, audio, etc.
- Databases vs. Files: DBs offer querying, consistency and security
- On-Premise vs. Cloud: Governed by regulations, cost and team expertise

Data Versioning:

- Data can evolve use version control for data, like git for code
- Tools: DVC (Data Version Control), Pachyderm

DATASHEETS • "Gebru et al" 2018

Datasheets summarize key metadata about a dataset's content, structure, provenance, and known limitations to support informed and responsible use.

- Why and how was the data collected?
- What are its limitations and ethical concerns?
- For which tasks is it suitable or unsuitable?

DATA EXPLORATION

Key question: What features are in the data, and what do they reveal?

- Build a data dictionary:
 - Feature meaning, units, valid ranges/category-levels
 - Missing value encoding and special codes
- Examine structure and quality to gain understanding:
 - Compute (stratified) summary statistics and inspect missingness
 - Plot univariate and bivariate distributions
 - Identify outliers, anomalies, imbalances, redundancy, or high correlation
- Watch for confounders: unmeasured variables may distort associations

©

DATA QUALITY

Key question: Is the data fit for modeling? *Garbage in, garbage out.*

- Assess missingness: How many values are missing, and where?
- Detect implausible or inconsistent values (requires domain expertise)
- Standardize formats (e.g., date/time parsing)
- Drop near-constant or non-informative features
- Remove redundancy and obsolete variables

Watch for data bias:

- Sampling bias: E.g., a survey at 10am in the city center misses working adults
- Response bias: Online reviews often reflect extreme opinions, not the median

3. Modeling

FEATURE ENGINEERING

Feature Engineering transforms raw data into informative input variables for modeling.

- Transformation: Scaling, log-transform, one-hot encoding
- Selection: Wrapper and filter methods, model-based importance
- Dimensionality Reduction: PCA, t-SNE
- Creation: Aggregation, binning, interaction terms

Best Practices:

- Avoid overengineering: irrelevant features introduce noise
- Fit transformations only on training data; reuse parameters for test data
- Prevent leakage: never use test data in feature construction

MODEL TRAINING

Treat model training like a scientific experiment:

- Track all inputs precisely:
 - Dataset version
 - Algorithm and hyperparameters
 - Code version (e.g., Git commit/tag)
- Proceed iteratively:
 - Start simple build a fast, interpretable baseline
 - Gradually increase model complexity and validate each improvement

MODEL CONFIGURATION

- How do you track the exact configuration of a model experiment?
- How do you record small changes between experiments?
- Store in plain text (e.g., .yaml, .json) for readability and version control
- Recommended tool: structured configuration managers
 - Python: "Hydra" n.d. structured, hierarchical configuration management
 - R: "R config package" n.d. environment-based YAML setup

MODEL EVALUATION

- Select models based on predefined **metrics** (e.g., accuracy, AUC, RMSE)
- Use the validation or test set in line with your validation strategy
- Assess robustness: How does the model respond to noise, perturbations, or adversarial inputs?
 - ⇒ Add synthetic noise and measure changes in model parameters/performance

INTERPRETATION AND FAIRNESS

To understand and trust your model, apply methods from **Interpretable Machine Learning (IML)**:

- Feature Importance: Which features drive predictions globally?
- Effects & Interactions: Visualize marginal effects and feature interactions
- Local Explanations: Explain individual predictions
- Bias Detection: Reveal fairness issues and unintended discrimination
 - Example: Amazon's 2018 hiring tool penalized resumes with "women's" due to biased training data
 "The Guardian" 2018

MODEL CARDS FOR MODEL REPORTING • "Mitchell et al." 2019

Model Card: Documentation of the model similar to a Datasheet for data

- Model Details: Algorithm, parameters, model version
- Intended Use: Intended use and out-of-scope use cases
- Performance: Key metrics, validation approaches
- Analyses: Feature/target distributions in train/test data
- Ethical Considerations: Failure modes, fairness concerns, inappropriate use

Model Card for Breast Cancer Wisconsin (Diagnostic) Dataset

4. Model Governance

MODEL GOVERNANCE

- Model Governance includes people, processes, and technologies needed to manage and protect your ML models.
- Ensures long-term maintainability and adaptation as requirements evolve.
- Two extremes must be avoided:
 - Repression: too many rules, rigid standards, excessive control
 - Chaos: too much speed, freedom, creativity, and unstructured change

Model governance steps are:

"Developing and deploying ML systems is relatively fast and cheap, but maintaining them over time is difficult and expensive."

• "Hidden Technical Debt in ML Systems" n.d.

DEPLOYMENT

Deployment means making a model accessible to users (humans or other systems).

- Common deployment strategies:
 - One-off: Manually trained and deployed once; no regular updates
 - Batch: Periodically retrained on recent data (e.g., weekly updates)
 - Real-time: Continuously updated on streaming data; often latency-critical
- For frequent updates, establish model versioning and lifecycle tracking
 - Tools like
 ^{™MLflow" n.d.} provide version control and a model registry

MONITORING

Monitoring ensures that deployed models work reliably and flags issues in production:

- **Pipeline Failures**: Bugs in data ingestion or transformation logic
- Data Drift: Changes in input distribution
 - Example: An image classifier trained on summer data fails when images contain winter snow
 - Also affects evolving targets (e.g., new categories or value ranges)
 - Remedy: Label sufficient new data and retrain the model
- Concept Drift: Changes in the meaning of labels
 - Example: Redefining "high blood pressure" from 140mmHg to 135mmHg
 - Remedy: Relabel historical data and retrain

USER FEEDBACK, REINFORCEMENT

Handover: At project completion, engage users and transfer responsibilities:

- System Validation: Confirm with stakeholders that the solution meet their needs
- **Project Handover**: Transfer system ownership to the production team

Feedback loops occur when model outputs influence future inputs:

- **Direct Loops**: A model affects the data it later learns from
 - Example: Netflix recommends certain movies, then only learns from user responses to those
- Hidden Loops: Multiple models indirectly affect each other via the environment
 - Example: Flash crashes triggered by interacting trading algorithms amplifying market reactions

