Summary

Pymicra is a Python package that is designed to make micrometeorological data processing significantly more efficient.

It was written with the goal of becoming a community-driven software that is a full-blown micrometeorology package, not an just eddy-covariance one. It was designed to make research more efficient and to make sharing code easier and it was motivated by many examples of similar initiatives that thrived: Obspy for seismologists [3], Astropy for astrophysicists [2], Sunpy for solar physicists [1], Metpy for weather scientists [4], etc.

Here are a few characteristics that make Pymicra a good candidate to be community-driven:

- Open-source
- Code written with Pymicra is very readable and intuitive
- Visualization of data is extremely easy
- Easy to develop upon (because of well-documented Python code)
- Based on well-known mature Python packages

Pymicra's philosophy is not to "reinvent the wheel". There are already several open-source packages that process, organize and manipulate data very efficiently, so the goal was simply to put them together is a way specifically designed to the micrometeorological community.

Quality control example

```
In [1]: fnames = sorted(glob('mydata/*.out'))
        # Prints reports on screen and writes further info to file
       pymicra.util.qc_replace(fnames, fconfig,
           file lines=36000,
            lower_limits=dict(theta_v=10, mrho_h2o=0, mrho_co2=0),
            upper_limits=dict(theta_v=45),
            spikes_test=True,
            max_replacement_count=360,
            chunk_size=1200,
           outdir='out1',
           replaced_report='rrep.txt')
       fnames2 = sorted(glob('out1/*.out'))
        # Prints reports on screen and writes further info to file
       pymicra.util.qc discard(fnames2, fconfig,
           std_limits = dict(u=0.03, v=0.03, w=0.01, theta_v=0.02),
           dif limits = dict(u=4.0, v=4.0, w=1.0, theta v=2.0),
            chunk size=1200,
           outdir='out2',
           summary_file='discard_summary.csv',
           full_report='frep.txt')
```

Pre-processing and calculation of fluxes example

Pymicra:

A Python tool for Micrometerological Analyses

Tomás L. Chor¹ Nelson L. Dias² tomaschor@ucla.edu nldias@ufpr.br

¹University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences

²Federal University of Paraná, Department of Environmental Engineering

Visualization example

In [3]: data[['u', 'v', 'w']].plot(grid=True)
 plt.show()

Pre-processing

Quality control
Rotation of coords
Calc. of densities
Signal detrending

Processing

Fluxes
Turbulent scales
Spectra
Cross-spectra

Pymicra

Why Pymicra instead of writing my own code?

There are many advantages in migrating to a community package such as Pymicra aims to be, both community-wise and for the individual:

- Package becomes very reliable (more people are constantly checking for bugs and improving)
- The amount of code to process the data is significantly smaller (thus faster to write)
- Sharing your code and understanding other people's is easier
- Code adaptability (no need to keep writing *ad hoc* code for each dataset)
- Flexibility (you can easily use Pymicra to do basic processing and link it to other tools for more specific things)

Pymicra's docs

How to contribute

The code is hosted on Github and any person can fork, develop functionality into it and request a merge back.

Bug reports, suggestions and documentation improvements are also very welcome via Github issues or via email.

Scan the QR code for more information on contributing.

- 8(1):014009, 2015.
 [2] T. et al. Astropy: A community python package for astronomy. *Astronomy & Astrophysics*, 558:A33, 2013.
- [3] L. Krischer, T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron, and J. Wassermann. ObsPy: a bridge for seismology into the scientific python ecosystem. *Computational Science & Discovery*, 8(1):014003, 2015.
- [4] R. May, S. Arms, P. Marsh, E. Bruning, and J. Leeman. Metpy: A Python package for meteorological data, 2008 2017. URL https://github.com/Unidata/MetPy.