IMPORT LIBRARIES

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
```

LOAD DATASET

```
In [2]: df= sns.load_dataset('iris')
```

In [7]: df.head()

Out[7]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
_			

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

SUMMARY STATISTICS

In [5]: df.describe()

Out[5]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333
	std	0.828066	0.435866	1.765298	0.762238
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

```
In [6]: df['species'].value_counts()
```

Out[6]: species

setosa 50 versicolor 50 virginica 50

Name: count, dtype: int64

BOXPLOTS AND HISTOGRAMS

```
In [8]: df.hist(figsize=(10,8),bins=20)
    plt.suptitle('Histogram of numeric features')
    plt.show()
```

Histogram of numeric features


```
In [9]: plt.figure(figsize=(10,6))
for i, col in enumerate(df.columns[:-1]):
    plt.subplot(2,2,i+1)
    sns.boxplot(data=df,y=col)
plt.tight_layout()
plt.show()
```

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

CORRELATION MATRIX FOR FEATURE RELATIONSHIP

INTERACTIVE PLOTLY VISUALIZATIONS

In [14]: fig=px.scatter_matrix(df, dimensions=df.columns[:-1],color='species', title="Int
fig.show()

Interactive Scatter Matrix

In [15]: fig2= px.box(df, x='species', y='sepal_length', title='Sepal lengthby species')
fig2.show()

Sepal lengthby species

INFERENCES FROM THE VISUALS

- There are no null values in the dataset as it is clean.
- Boxplots show a few mild outliers as Sepal length/width are moderately correlated whereas petal length/width are highly correlated.
- Setosa species is linearly seperable from the other two species.
- Versicolor and Virginica overlap more.
- Petal length and width are strong discriminators for species classification.