Linkage disequilibrium, haplotypes, and GWAS

Human gene mapping has two general flavors

Frequency of disease-causing allele in population

Common variants facilitate genome-wide association (GWA) mapping

The Human Haplotype Map (HapMap) identified 10 million common variants

Do we have to test them all?

Common variants facilitate genome-wide association (GWA) mapping

Our relatedness means that variants are correlated in populations

Correlation between variants is called linkage disequilibrium (LD)

Linkage disequilibrium (LD) is the non-random association of alleles at different loci

LD makes genotyping easier and cheaper

Many alleles that exist today are from ancient mutation events

That allele spreads throughout the population, then another mutation occurs

Let's think about these chromosomes with different arrangements of alleles as haploid gametes

Mutations arose in particular genetic backgrounds, so not every allelic combination is present

Recombination creates new arrangements of ancestral alleles

Before recombination

After recombination

Linkage disequilibrium is the non-random association of alleles at different loci

Chromosomes are mosaics

Degree of mosaicism depends on:

- Recombination rate
- Mutation rate
- Population size
- Natural selection

Combinations of linked alleles close together reflect ancestral haplotypes

Haplotype frequencies in a population

Let's say we have two linked loci (rs1 and rs2) that each have two alleles (A or a and B or b)

Four combinations exist: A B

A b

a B

a b

 p_A = frequency of A in the population or proportion of gametes with A

 $p_a = 1 - p_A$

 p_B = frequency of B in the population or proportion of gametes with B

 $p_b = 1 - p_B$

p_{AB} = frequency of A and B occurring together in the same gamete or frequency of the AB haplotype

These numbers come from genotyping populations

Haplotype frequencies in a population

Let's say we have two linked loci (rs1 and rs2) that each have two alleles (A or a and B or b)

 p_A = frequency of A in the population or proportion of gametes with A

$$p_a = 1 - p_A$$

 p_B = frequency of B in the population or proportion of gametes with B

$$p_b = 1 - p_B$$

 p_{AB} = frequency of A and B occurring together in the same gamete or frequency of the AB haplotype

At equilibrium, the probability of A and B occurring together is the just probability that A and B independently occur in the same gamete

If p_A * p_B != p_{AB}, then non-random association or disequilibrium is observed

Haplotype frequencies in a population

 p_A = frequency of A in the population or proportion of gametes with A

$$p_a = 1 - p_A$$

 p_B = frequency of B in the population or proportion of gametes with B

$$p_b = 1 - p_B$$

 p_{AB} = frequency of A and B occurring together in the same gamete or frequency of the AB haplotype

How to calculate LD?

The Disequilibrium coefficient D_{rs1-rs2}

$$D_{rs1-rs2} = p_{AB} - p_{A} * p_{B}$$

When in equilibrium, $D_{rs1-rs2} = 0$

Otherwise, $D_{rs1-rs2} > or < 0$

The sign is arbitrary. Set rs1, rs2 to the common alleles.

Range depends on allele frequencies, so comparisons between different pairs of markers are difficult.

How to calculate LD?

The correlation is the preferred term:

$$r^2 = (D_{rs1-rs2})^2 / (p_A * (1 - p_A) * p_B * (1 - p_B))$$

Remember $D_{rs1-rs2} = p_{AB} - p_A * p_B$

Ranges between 0 and 1 with 0 being equilibrium and 1 being perfect linkage

How to calculate LD? An example

 $r^2 = (D_{rs1-rs2})^2 / (p_A * (1 - p_A) * p_B * (1 - p_B))$ Remember $D_{rs1-rs2} = p_{AB} - p_A * p_B$

What is the disequilibrium between two markers rs1 and rs2 with two forms A or a and B or b?

We genotype 500 people to get:

Haplotype	Number
AB	600
Ab	100
аВ	200
ab	100

Convert to numbers of alleles into haplotype frequencies:

Haplotype	Number	Frequency
AB	600	0.6
Ab	100	0.1
аВ	200	0.2
ab	100	0.1

How to calculate LD? An example

$$r^2 = (D_{rs1-rs2})^2 / (p_A * (1 - p_A) * p_B * (1 - p_B))$$
 Remember $D_{rs1-rs2} = p_{AB} - p_A * p_B$

What is the disequilibrium between two markers rs1 and rs2 with two forms A or a and B or b?

Frequencies of haplotypes:

Haplotype	Number	Frequency
AB	600	0.6
Ab	100	0.1
аВ	200	0.2
ab	100	0.1

Convert to frequencies of alleles:

$$p_A = p(AB) + p(Ab)$$

 $p_a = 1 - p_A$
 $p_B = p(AB) + p(aB)$
 $p_b = 1 - p_B$

Allele	Number	Frequency
А	700	0.7
а	300	0.3
В	800	0.8
b	200	0.2

How to calculate LD? An example

$$r^2 = (D_{rs1-rs2})^2 / (p_A * (1 - p_A) * p_B * (1 - p_B))$$
 Remember $D_{rs1-rs2} = p_{AB} - p_A * p_B$

What is the disequilibrium between two markers rs1 and rs2 with two forms A or a and B or b?

Convert to frequencies of alleles:

$$p_A = p(AB) + p(Ab)$$

 $p_a = 1 - p_A$
 $p_B = p(AB) + p(aB)$
 $p_b = 1 - p_B$

•	Allele	Number	Frequency
	А	700	0.7
	а	300	0.3
	В	800	0.8
	b	200	0.2

Haplotype	Number	Frequency
AB	600	0.6
Ab	100	0.1
аВ	200	0.2
ab	100	0.1

$$D_{rs1-rs2} = 0.6 - 0.7 * 0.8 = 0.04$$

$$r^2 = 0.04^2 / (0.7 * 0.3 * 0.8 * 0.2) = 0.048$$

Linkage disequilibrium decreases by distance and generation time

Recombination is key!

Linkage disequilibrium varies among different populations

Recombination is key!

Linkage disequilibrium is often shown as a triangle correlation plot

SNV#1 and SNV#2 have high LD SNV#2 and SNV#3 have high LD SNV#1 and SNV#3 have low LD

Kim et al. Molecular Medicine Reports 2013

LD leads to population structure - alleles found together in populations

Relatedness of people caused by non-random mating is called population structure (or stratification)

LD leads to population structure - alleles found together in populations

LD leads to population structure - alleles found together in populations

Correlation between marker and disease-causing allele drastically affects how well mappings will work

Big haplotype blocks (long-range LD) = coarse mapping

Small haplotype blocks (little LD) = fine mapping

How many people need to be genotyped?