- Standard Perceptron: set w_i=0 for each feature i
 - set aⁱ=0 for each example i
 - For t=1..T, i=1..n:
 - $-y = sign(w \cdot \phi(x^i))$
 - $\overset{\text{- if y \neq y^i}}{\cdot} \overset{\text{y = y^i}}{w} = w + y^i \phi(x^i)$
 - aⁱ += vⁱ
 - At all times during learning:

 $w = \sum a^k \phi(x^k)$

- set aⁱ=0 for each example i • For t=1..T, i=1..n:
 - $y = sign((\sum a^k \phi(x^k)) \cdot \phi(x^i))$

Kernelized Perceptron:

- $= sign(\sum a^k K(x^k, x^i))$
- if $y \neq y^i$ • $a^{i} += v^{i}$
 - Exactly the same

computations, but can use K(u,v) to avoid enumerating the features!!!