

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400093-India (Autonomous College Affiliated to University of Mumbai)

Department of Computer Science and Engineering

Course – Advanced Data Visualization (ADV)

Name	Tejal Subhash Komb
UID	2021600037
Batch	A
Lab no	08

Aim :- To design interactive dashboards and create visual storytelling using D3.js on a dataset related to Environment cover, covering basic and advanced charts.

Objectives:-

- 1. To understand how to use D3.js for data visualization.
- 2. To implement basic charts like Bar chart, Pie chart, Histogram, Timeline chart, Scatter plot, and Bubble plot.
- 3. To implement advanced charts like Word chart, Box and whisker plot, Violin plot, Regression plot (linear and nonlinear), 3D chart, and Jitter.
- 4. To draw observations and insights from each chart.
- 5. To create an interactive storytelling dashboard using the above visualizations.

Dataset:-

_	, ,			_	
1	States/UTs	2010-2011	2009-10	2008-09	
2	Andaman a	0	7	1	
3	Andhra Pra	1119	1837	2442	
4	Arunachal	485	576	786	
5	Assam	1322	2511	1901	
6	Bihar	81	397	143	
7	Chandigarl	0	0	0	
8	Chhatisgar	1074	2835	2849	
9	Dadra and	0	0	0	
10	Daman and	0	0	0	
11	Delhi	1	0	0	
12	Goa	3	0	2	
13	Gujarat	101	179	182	
14	Haryana	5	29	21	
15	Himachal F	6	125	168	
16	Jammu an	7	30	117	
17	Jharkhand	192	1314	430	
18	Karnataka	370	428	604	
19	Kerala	10	106	166	
20	Lakshadwe	0	0	0	
21	Madhya Pr	1451	2386	2894	
22	Maharasht	882	1789	2257	
23	Manipur	1275	2487	1477	
24	Meghalaya	879	1743	1010	
25	Mizoram	1691	4675	3434	

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400093-India (Autonomous College Affiliated to University of Mumbai)

Department of Computer Science and Engineering

Dataset description:-

The dataset represents the number of occurrences of a certain event or metric across various States and Union Territories (UTs) in India over three consecutive years: 2010-2011, 2009-2010, and 2008-2009.

Implementation :- D3.js Dashboard

1] **Yearly Trend (Overall progression**): This is a line graph showing the overall progression over the years 2007-2008, 2008-2009, 2009-2010, and 2010-2011.

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400093-India (Autonomous College Affiliated to University of Mumbai)

Department of Computer Science and Engineering

The x-axis represents the years, and the y-axis represents the values, which range from 0 to 14,000. The graph shows a significant increase in values from 2009-2010 to 2010-2011, indicating a notable upward trend in the data over the given period.

2] **Top Performing States (Current year leaders)**: This is a bar chart showing the top-performing states for the current year.

The x-axis lists the states: California, Texas, New York, Florida, and Illinois. The y-axis represents the values, which range from 0 to 1,200. All the states have values close to 1,000, with California having the highest value, indicating that California is the leading state in the current year based on the measured metric.

3] **State-wise Comparison (Year by year analysis)**: This is a grouped bar chart showing a year-by-year analysis for different states.

The x-axis lists the states: California, Texas, New York, Florida, Illinois, Ohio, Georgia, Pennsylvania, North Carolina, and Michigan. The y-axis represents the values, which range from 0 to 3,000. Each state has three bars representing the years 2009 (yellow), 2010 (red), and 2011 (blue). The chart shows the comparison of values for each state across these three years, providing a clear visual comparison of how the metric has changed over time for each state.

4] Distribution Plot (Share by state):

- **Type**: Circular pie chart
- **Description**: This pie chart shows the distribution of shares by state.
- States Included:
 - o Andhra Pradesh
 - o Mizoram
 - o Manipur
 - o Assam
 - o Madhya Pradesh

Each state is represented by a different color segment of the pie chart, illustrating their respective shares. This visualization provides a clear comparison of the proportional shares among the listed states.

5] Growth Analysis Plot (Year-over-year change):

- **Type**: Bar chart
- **Description**: This bar chart displays the year-over-year change in growth for different states.
- States Included:
 - o Manipur
 - o Arunachal
 - o Assam
 - o Nagaland

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400093-India (Autonomous College Affiliated to University of Mumbai)

Department of Computer Science and Engineering

o Mizoram
All the bars are colored brown and show negative growth, indicating a decline in year-over-year change for each state. This chart highlights the decrease in growth across these states over the specified period.
Conclusion: The data visualizations highlight key insights. The demonstrates how shares are divided among five states, showcasing Andhra Pradesh, Mizoram, Manipur, Assam, and Madhya Pradesh's contributions. The reveals a uniform trend of negative growth across states like Manipur, Arunachal, Assam, Nagaland, and Mizoram, indicating a consistent decline in their year-over-year metrics. Overall, these visualizations stress the need to address the negative growth trends while recognizing the current share distribution among states.