Skript Numerische Methoden I

Finite-Elemente-Methoden und Randelemente-Methoden

Christian Kroh

16. November 2013, Dresden

Inhaltsverzeichnis

I.	Ra	indwertaufgaben (RWA)	3	
1.	Formulierung und näherungsweise Lösung von Randwertaufgaben (RWA)			
	1.1.	Randwertaufgabe (RWA)	4	
	1.2.	Formulierung der Randwertaufgabe	4	
		1.2.1. Differentielle Formulierung	4	
		1.2.2. Variationsformulierung	5	
		1.2.3. Prinzip der virtuellen Arbeit	6	
	1.3.	Näherungsweises Lösen einer RWA	6	
		1.3.1. Starke Form	7	
	1.4.	Übung 1	9	
	1.5.	Übung 1 - Lösung	10	
II.	Eir	nführung in die Finite-Elemente-Methode (FEM)	11	
Ш	. Eir	nführung in die Randelemente-Methode (REM)	12	

Teil I. Randwertaufgaben (RWA)

1. Formulierung und näherungsweise Lösung von Randwertaufgaben (RWA)

1.1. Randwertaufgabe (RWA)

- besteht aus
 - Differentialgleichung (DGL) $\underline{D}(\underline{u}(\underline{x})) + \rho(\underline{x}) = \underline{0} \quad \forall x \in \Omega$
 - Randbedingungen (RB) $\underline{D_1}(\underline{u}(\underline{x})) + \underline{r_1}(\underline{x}) = \underline{0} \quad \forall x \in \Gamma_1$
 - Differential operatoren $\underline{D}(...), (\underline{D}_1(...), (\underline{D}_2(...), ...$ Differential operatoren
 - \underline{x} ... Ortsvektor
 - $\underline{\rho},\underline{r_i}$... rechte Seite
 - $-\Gamma_1$... Rand mit <u>wesentlichen</u> Randbedingungen
 - Γ_2 ... Rand mit <u>natürlichen</u> Randbedingungen $\Gamma_1 \cup \Gamma_2 = \Gamma; \Gamma_1 \cap \Gamma_2 = \emptyset$ (für jede Koordinatenwichtung)
- analytische Lösung nur für einfache Problemstellungen
- Annahme:
 - kinematische Annahmen (Bernoulli)
 - kinetische Annahmen

1.2. Formulierung der Randwertaufgabe

Beispiel Zugstab (Graphik Zugstab einfügen)

1.2.1. Differentielle Formulierung

Auswertung von Bilanzgleichungen an einem infinitessimalen Volumenelement

• Gleichgewichtsbedingung:

$$\Downarrow -F_L + F_L + dF_L + q \, dx = 0$$

$$\frac{dF_L}{dx} = -q$$

$$F_L' = -q$$

• kinetische Annahme:

$$F_L = \sigma \cdot A$$

• kinematische Annahme

$$\epsilon = \frac{du}{dx} = u'$$

 \Rightarrow konstitutive Beziehung (Material)

$$\sigma = E \cdot \epsilon$$

 \Rightarrow Einsetzen in die Grundgleichung

$$F_L = \sigma \cdot A = E \cdot \epsilon \cdot A \implies F'_L = (E \cdot A \cdot u')' = -q$$

Annahme: konstanter Querschnitt E A u'' + q = 0 $\forall x \in [0, l]$

- RB:
 - we sentliche RB: $u(x=0) = \tilde{u} = 0$
 - natürliche RB: $F_L(x=l) = F = 0$ E A u'(x=l) = F = 0
- Zuordnung

$$D = E A(...)''$$

$$D_1 = 1(...)$$

$$D_2 = E A(...)'$$

$$\Omega: x \in [0, l]$$

$$\Gamma_1: x=0$$

$$\Gamma_2: x = l$$

1.2.2. Variations formulierung

Grundlage : Variationsrechnung Verformung eines elastischen Systems, sodass eleastisches Gesamtpotential extremal (Minimum)

Voraussetzungen:

 $\bullet\,$ elastisches Materialverhalten

$$\Gamma = \frac{d\Pi_i}{d\epsilon}$$

• Potential der äußeren Lasten

$$F = \frac{d\Pi_{\epsilon}}{du}$$

Variationsformulierung für Mechanik Prinzip vom stationären Wert des elastischen Gesamtsystems

Vorgaben zur Herleitung der DGL und RB:

- Aufstellen des elastischen Gesamtpotentialfelds
- $\bullet\,$ suchen des stationären Werts $\Pi\to \min,\,\max$

Kontinuum funktional d.h. Funktion von Funktionen

$$\Pi = \Pi(u(x), u'(x), x) \to \min, \max$$

 $\textbf{notwendige Bedingung} \ \ \text{f\"{u}r stion\"{a}ren Wert} \ (\text{Extremwert})$

$$d\Pi = 0$$
 $d\Pi$... erste Variation von Π

Bsp: Stabproblem - Aufstellen des Potentials

$$\Pi = \Pi_i - \Pi_a$$

$$\Pi_i = \Pi_f \dots \text{Veränderungspotential}$$

$$\Pi_i = \int_{\Omega} \Pi_i^* dV$$

1.2.3. Prinzip der virtuellen Arbeit

- elektrisches Gesamtpotential: Einschränkung auf elastische Potentiallasten
- ⇒ Prinzip der virtuellen Arbeit ist allgemein anwendbar = Prinzip der virtuellen Verschiebung
 - virtuelle Arbeit ∂W wird an einem System verrichtet (durch eine geringfügige Störung ∂u des Verschiebungsfeldes u)
 - Eigenschaften von $\partial u = \text{virtuelle Verschiebung}$
 - * beliebig
 - * infinitessimal
 - * kinematisch zulässig ($\partial u = 0$)
 - Gleichgewicht (GGW) entspricht der Forderung $\partial W = 0$ $\partial W = \partial W_{innen} + \partial W_{außen} = 0$

Beispiel: Stab
$$\partial W = \int G \partial \rho \, dV - \int\limits_0^l q \, du \, dx - F du(l)$$

beliebiges Materialverhalten, keine Einschränkungen

$$\Rightarrow \text{GGW: } \partial W = 0$$

$$\Gamma = E\epsilon, \ \epsilon = u', \ dV = Ad$$

$$\partial W = \int\limits_0^l E A u' \partial u' \, dx - \int\limits_0^l q \partial u \, dx - F du(l) = 0$$

 \Rightarrow partielle Integration, $\partial u(0) = 0$, sonst ∂u beliebig liefert

- EAu'' + q = 0 DGL
- EAu'(l) F = 0 natürliche Randbedingung

1.3. Näherungsweises Lösen einer RWA

Methode der gewichteten Residuen

• Ansatz für Feldvariable, z.B. Verschiebung $u(x) \sim \tilde{u}(x)$

$$\tilde{u}(x) = \sum_{i=1}^{n} g_i(x) u_i$$

 g_i ... Basisfunktion

 u_i ... Ansatzfreiwerte

• DGL und RB werden im Ansatz nicht mehr exakt ermittelt \Rightarrow Residuen $\eta_i(x)$

6

$$D(\tilde{u}(x)) + \rho(x) = \eta(x) \neq 0 \qquad \forall x \in \Gamma$$

$$D_1(\tilde{u}(x)) + r_1(x) = \eta_1(x) \neq 0 \qquad \forall x \in \Gamma_1$$

$$D_L(\tilde{u}(x)) + r_L(x) = \eta_L(x) \neq 0 \qquad \forall x \in \Gamma_L$$

- Multiplikation der Residuen der DGL $\eta(x)$
- \Rightarrow Näherungslösung erfüllt Forderung $\int\limits_W \eta(x)\,w(x)\,dx=0$
- Ziel: GLS zur Berechnung der Freiwerte u_i
- Verfahren definiert durch:
 - * Form der gewichteten Residuen
 - * Wahl der Wichtungsfunktion

1.3.1. Starke Form

$$\int\limits_0^l \eta(x)\,w(x)\,dx=0$$

Beispiel: Zugstab

- \bullet Voraussetzungen: Ansatz ...
 - zweimal stetig (nicht trivial) differenzierbar
 - alle Randbedingungen ($\eta_1 = 0, \, \eta_2 = 0$)
 - \Rightarrow starke Form
- GLS für Freiwerte u_i
 - \Rightarrow verschiedenste Lösungsverfahren, durch unterschiedliche Wahl der Wichtungsfunktion u(x) (z.B. Kollokation, Methode der Momente, Galerkin Verfahren, Minimum des Fehlerquadratintegrals)

Besipiel: DIRAC-Funktion (Kollokation)

$$W(x) = \partial(x - \xi_i) \qquad \partial = \begin{cases} \infty & x = \xi \\ 0 & \text{sonst} \end{cases}$$
$$\int \eta(x) \, \partial(x - \xi) \, dx = \eta(\rho)$$

Maschinenwesen – IFKM, Professur für Nichtlineare Festkörpermechanik

Minimum des elastischen Gesamtpotentials - Beispiel

- Kontinuum $\rightarrow \Pi$ ist ein Funktional, notwendige Bed.: $\delta \Pi = 0$
- Bsp.: Zugstab belastet durch konstante Einzelkraft

• Reduktion auf diskretes System $\delta\Pi=0 o rac{d\Pi}{du}=0$

$$\Pi = \int_{0}^{I} \frac{1}{2} EAu'(x)^{2} dx - Fu(I) \text{ mit } u'(x) = \varepsilon = \frac{u(I)}{I} = \text{konst.}$$

$$\Pi = \int_{0}^{I} \frac{1}{2} EA \frac{u^{2}(I)}{I^{2}} dx - Fu(I) = \frac{1}{2} EA \frac{u^{2}(I)}{I} - Fu(I)$$

• notwendige Bedingung für stationären Wert (Minimum)

$$\frac{d\Pi}{du} = \frac{EA}{I}u(I) - F = 0 \rightarrow u(I) = \frac{FI}{EA}$$
Numerische Methoden I – FEM/REM

Dresden, 23.10.2013

Folie 3 von 8

Maschinenwesen – IFKM, Professur für Nichtlineare Festkörpermechanik

Minimum des elastischen Gesamtpotentials - Beispiel

$$\Pi = \frac{1}{2}EA\frac{u^2}{I} - Fu$$

Dresden, 23.10.2013

Numerische Methoden I – FEM/REM

Folie 4 von 8

Näherungsverfahren auf Basis der starken Form -Übersicht

- ullet Einarbeitung der RB in den Ansatz $ightarrow ilde{u} = g_0(x) + \sum_{i=1}^n g_i(x) u_i$
- Gewichtetes Residuum $\int\limits_0^I \underbrace{(EA\tilde{u}^{\prime\prime}(x)+p(x))}_{\eta(x)} w_i(x) \ dx = 0 \rightarrow i = 1 \dots n$ Gleichungen für u_i

Verfahren	Wichtungsfunktion	GLS (n Gleichungen) aus
Kollokation	Dirac-Impuls $w_i(x) = \delta(x - \xi_i)$	$ \eta(\xi_i) = 0 \rightarrow EAu''(\xi_i) + p(\xi_i) = 0 $
Methode der Momente	n linear unabhängige Funktionen $w_i(x) = x^i, i = 0 \dots n - 1$	$\int_{0}^{I} \eta(x) w_{i}(x) \ dx = 0$
Galerkin-Verfahren	Basisfunktionen des Ansatzes $w_i(x) = g_i(x)$	$\int_{0}^{I} \eta(x)g_{i}(x) dx = 0$
Minimum des Fehler- quadratintegrals	$w_i(x) = \frac{\partial \eta(x)}{\partial u_i}$	$\int_{0}^{I} \eta^{2}(x) dx \rightarrow \min$

1.4. Übung 1

Numerische Methoden 1 – FEM/REM Dr.-Ing. M. Kästner

WS 2013/2014

Übung 1

Zugstab mit elastischer Bettung – Methode der gewichteten Residuen (starke Form)

Abbildung 1: a) Zugstab mit elastischer Bettung, b) differentielles Stabelement

Der in Abb. 1 a) dargestellte Zugstab ist am Knoten 1 mit der Verschiebung $u_a = 0.1$ mm, am Knoten 2 mit der Kraft $F_b = 10^4$ N und der konstanten Streckenlast $q_0 = 100$ N/mm belastet. Unter Berücksichtigung der verschiebungsproportionalen elastischen Bettung $q_c = c \cdot u$ ist anhand eines differentiellen Stabelements die Differentialgleichung (DGL) der Randwertaufgabe (RWA) herzuleiten.

Mittels der "Methode der gewichteten Residuen" ist mit dem polynomialen Verschiebungsansatz

$$u(\mu) = u_0 + u_1 \mu + u_2 \mu^2$$
, mit $\mu = x/L$

eine Näherungslösung zu ermitteln. Bestimmen Sie die Ansatzfreiwerte mittels:

- 1. Kollokationsmethode
- 2. Methode der Momente
- 3. Verfahren von Galerkin
- 4. Verfahren vom Minimum des Fehlerquadratintegrals

für die Fälle a) $c=0~\mathrm{N/mm^2}$ und b) $c=100~\mathrm{N/mm^2}$ und vergleichen Sie die Ergebnisse mit der exakten Lösung.

Analytische Lösung:

Analytische Lösung:
$$c = 0: \\ u(x) = -\frac{q_0}{2EA}x^2 + C_0x + C_1 \\ \text{mit} \\ C_0 = \frac{F_b + q_0L}{EA} \\ C_1 = u_a \\ C_2 = \frac{u_a - \frac{q_0}{c} - \frac{F_b}{\beta e^{\beta L}EA}}{1 + e^{-2\beta L}} \\ C_2 = \frac{u_a - \frac{q_0}{c} - \frac{F_b}{\beta e^{\beta L}EA}}{1 + e^{-2\beta L}}$$

1.5. Übung 1 - Lösung

usw.

Teil II.

Einführung in die Finite-Elemente-Methode (FEM)

Teil III.

Einführung in die Randelemente-Methode (REM)