2018-ma

1

EE24BTECH11027 - satwikagv

1) The image of the half plane $\operatorname{Re}(z) + \operatorname{Im}(z) > 0$ under the map $\omega = \frac{z-1}{z+i}$ is given by

a) $\operatorname{Re}(\omega) > 0$	b) $\operatorname{Im}(\omega) > 0$	c) $ \omega > 1$	d) $ \omega < 1$
2) Let $D \subset \mathbb{R}^2$ denote the closed disc with center at the origin and radius 2. Then			
$\iint\limits_{D} e^{-(x^2+y^2)} dx dy =$			
a) $\pi (1 - e^{-4})$	b) $\frac{\pi}{2} \left(1 - e^{-4} \right)$	c) $\pi (1 - e^{-2})$	d) $\frac{\pi}{2} \left(1 - e^{-2} \right)$
 3) Consider the polynomial p(X) = X⁴ + 4 in the ring Q[X] of polynomials in the variable X with coefficients in the field Q of rational numbers. Then a) the set of zeroes of p(X) in C forms a group under multiplication b) p(X) is reducible in the ring Q[X] c) the splitting field of P(X) has degree 3 over Q d) the splitting field of P(X) has degree 4 over Q 			
 4) Which one of the following statements is true? a) Every group of order 12 has a non trivial proper normal subgroup b) Some group of order 12 does not have a non-trivial proper normal subgroup c) Every group of order 12 has a subgroup of order 6 d) Every group of order 12 has an element of order 12 			
5) For an odd prime p , consider the ring $Z\left[\sqrt{-p}\right] = \left\{a + b\sqrt{-p} : a, b \in Z\right\} \subseteq C$. Then the element 2 in $Z \sqrt{-p} $ is			

6) Consider the following two statements:

a) a unit

P: The matrix $\begin{pmatrix} 0 & 5 \\ 0 & 7 \end{pmatrix}$ has infinitely many LU factorizations, where L is lower triangular with each diagonal entry 1 and U is upper triangular.

d) irreducible

b) a square c) a prime

Q: The matrix $\begin{pmatrix} 0 & 0 \\ 2 & 5 \end{pmatrix}$ has no LU factorization, where L is lower triangular with each diagonal entry 1 and U is upper triangular.

Then which one of the following options is correct?

- a) P is TRUE and Q is FALSE
- b) Both P and Q are TRUE
- c) P is FALSE and Q is TRUE

- d) Both P and Q are FALSE
- 7) If the characteristic curves of the partial differential equation $xu_{xx} + 2x^2u_{xy} = u_x 1$ are $\mu(x, y) = c_1$ and $\nu(x, y) = c_2$, where c_1 and c_2 are constants, then
 - a) $\mu(x, y) = x^2 y, v(x, y) = y$
 - b) $\mu(x, y) = x^2 + y, v(x, y) = y$
 - c) $\mu(x, y) = x^2 + y, v(x, y) = x^2$
 - d) $\mu(x, y) = x^2 y, \nu(x, y) = x^2$
- 8) Let $f: X \to Y$ be a continuous map from a Hausdorff topological space X to a metric space Y. Consider the following two statements:
 - P: f is a closed map and the inverse image $f^{-1}(y) = \{x \in X : f(x) = y\}$ is compact for each $y \in Y$.
 - Q: For every compact subset $K \subset Y$, the inverse image $f^{-1}(K)$ is a compact subset of X.

which one of the following is true?

- a) Q implies P but P does NOT imply Q
- b) P implies Q but Q does NOT imply P
- c) P and Q are equivalent
- d) neither P implies Q nor Q implies P
- 9) Let X denote R^2 endowed with the usual topology. Let Y denote R endowed with the co-finite topology. If Z is the product topological space $Y \times Y$, then
 - a) the topology of X is the same as the topology of Z
 - b) the topology of X is strictly coarser (weaker) than that of Z
 - c) the topology of Z is strictly coarser (weaker) than that of X
 - d) the topology of X cannot be compared with that of Z
- 10) Consider \mathbb{R}^n with the usual topology for n=1,2,3. Each of the following options gives topological spaces X and Y with respective induced topologies. In which option is X homeomorphic to Y?
 - a) $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}, Y = \{(x, y, z) \in \mathbb{R}^3 : z = 0, x^2 + y^2 \neq 0\}$
 - b) $X = \{(x, y) \in \mathbb{R}^2 : y = \sin(\frac{1}{2}), 0 < x \le 1\} \cup \{(x, y) \in \mathbb{R}^2 : x 0, -1 \le y \le 1\}, Y = [0, 1] \subseteq \mathbb{R}$
 - c) $X = \{(x, y) \in \mathbb{R}^2 : y = x \sin(\frac{1}{x}), 0 < x \le 1\}, Y = [0, 1] \subseteq \mathbb{R}$
 - d) $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}, Y = \{(x, y, z) \in \mathbb{R}^2 + y^2 = \mathbb{R}^2 \neq 0\}$
- 11) Let $\{X_i\}$ be a sequence of independent Poisson(λ) and let $W_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then the limiting distribution of $\sqrt{n} (W_n \lambda)$ is the normal distribution with zero mean and variance given by
 - a) 1 b) $\sqrt{\lambda}$ c) λ d) λ^2
- 12) Let $X_1, X_2, X_3, ..., X_n$ be independent and identically distributed random varibles with probability density function given by

$$f_X(x,\theta) = \begin{cases} \theta e^{-\theta(x-1)}, & x \ge 1, \\ 0 & \text{otherwise} \end{cases}$$

Also, let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then the maximum likelihood estimator of θ is

a)
$$\frac{1}{\bar{X}}$$

b)
$$\frac{1}{\bar{X}} - 1$$

c)
$$\frac{1}{(\bar{X}-1)}$$

d)
$$\bar{X}$$

13) Consider the Linear Programming Problem (LPP):

$$\begin{array}{ll} \text{Maximize} & \alpha X_1 + X_2 \\ \text{Subject to} & 2X_1 + X_2 \leq 6, \\ & -X_1 + X_2 \leq 1, \\ & X_1 + X_2 \leq 4, \\ & X_1 \geq 0, X_2 \geq 0, \end{array}$$

where α is a constant. If the (3,0) is the only optimal solution, then

a)
$$\alpha < -2$$

b)
$$-2 < \alpha < 1$$
 c) $1 < \alpha < 2$ d) $\alpha > 2$

c)
$$1 < \alpha < 2$$

d)
$$\alpha > 2$$