PROBABILIDAD Y ESTADÍSTICA

ING. LAURA SUAREZ

CONTROL ESTADÍSTICO DE LA CALIDAD

CONTROL ESTADÍSTICO DE LA CALIDAD

- Calidad: totalidad de particularidades y características de un producto o servicio que inciden sobre su adecuación para satisfacer determinadas necesidades.
- Un proceso está sometido a una serie de factores de carácter aleatorio que hacen imposible que dos productos o servicios sean exactamente iguales.
- Las características no son uniformes y presentan una variabilidad. Esta variabilidad es indeseable y el objetivo ha de ser reducirla lo mas posible o al menos mantenerla dentro de unos límites.

PROCESO

Conjunto de actividades mutuamente relacionadas o que interactúan para transformar entradas en salidas.

Necesidades del alignes

TIPOS DE PROCESOS

VARIABILIDAD DE LOS PROCESOS

- Incapacidad de un procesos de producir la misma calidad de salida en el tiempo (Calidad intrínseca, tiempos, costos)
- Se gestionan los elementos de un proceso para mantener una variabilidad controlada o capacidad del proceso

CAUSAS DE VARIACIÓN

- Causas aleatorias: producen variaciones pequeñas, provenientes de factores que intervienen en el proceso, como puede ser: pequeñas modificaciones de las condiciones ambientales, variaciones imperceptibles en la alimentación eléctrica.
- Causas asignables: producen grandes variaciones no usuales, pudiendo ser: mal puesta a punto, material de mala calidad, etc.

- Consiste en tomar una muestra y realizar una prueba, para ver si se cumple con las especificaciones, y se puede aprobar un lote.
- Esta prueba permite realizar estudios, detectar defectos y medir la calidad a un grado específico de certeza sin tener que probar cada uno de los productos o servicios

Prueba de hipótesis

	H ₀ es Verdadera	H ₀ es Falsa
Continuar el proceso	Decisión Correcta	Error Tipo II Continuar proceso fuera de control
Ajustar el proceso	Error Tipo I Ajusta proceso que está bajo control	Decisión Correcta

Ventajas

- Es menos costoso a otro tipo de estudio, gracias a que se realizan pruebas con menos productos.
- Los productos no se dañan debido al muestreo.
- Reduce los riesgos de errores que puedan cometerse durante la inspección.
- Al identificar los errores, los empleados se sienten motivados para realizar las mejoras

Desventajas

- Hay ciertos riesgos de aceptar lotes malos y rechazar los buenos
- Ofrece poca información sobre la calidad de los productos y del procesos de creación.
- Requiere de mucho tiempo de planificación y documentación.

CONTROL ESTADÍSTICO DEL PROCESO (CEP)

- Se basa en analizar la información aportada por el proceso para detectar la presencia de causas asignables y habitualmente se realiza mediante una construcción gráfica denominada Gráfico de control.
- Para que tenga sentido la aplicación de los gráficos de control, el proceso ha de tener una estabilidad suficiente que, aun siendo aleatorio, permita un cierto grado de predicción

Un gráfico de control permite identificar causas asignables y determinar si un proceso está bajo o fuera de control.

Bajo control: trabaja en presencia de variaciones aleatorias.

Fuera de control: hay variaciones debidas a causas asignables.

GRÁFICO DE CONTROL

GRÁFICO DE CONTROL

Por atributo (Discretos)

Permite establecer controles respecto al número de unidades defectuosas producidas. Si la característica de la calidad es medible, cabe la posibilidad de darle un tratamiento como variable o como atributo. Se utiliza cuando una característica de la calidad no se puede medir en forma continua.

Se utilizan para controlar características de calidad que no pueden ser medidas, y que dan lugar a una clasificación del producto: defectuoso o no defectuoso

Por variables (Continuos)

Permiten estudiar la calidad de características numéricas. Estos gráficos permiten detectar pequeños cambios en la media del proceso, teniendo la capacidad de controlar pequeñas variaciones.

Se utilizan cuando la característica de calidad que se desea controlar es una variable continua.

GRÁFICOS DE CONTROL POR VARIABLES

Gráficos X - R

Calidad en función de una variable

Para μ y σ conocidos

$$LSC = \mu + 3\frac{\sigma}{\sqrt{n}}$$

$$LCC = \mu$$

$$LIC = \mu - 3\frac{\sigma}{\sqrt{n}}$$

$$\sigma estimado = \frac{\bar{R}}{D2}$$

Coeficientes para estimaciones de σ en gráficos $\bar{X}-R$

Número de unidades	Constantes		
de la muestra n	A ₂	D ₃	D ₄
2	1,880	0	3,267
3	1,023	0	2,574
4	0,729	0	2,282
5	0,577	0	2,114
6	0,483	0	2,004
7	0,419	0,076	1,924
8	0,373	0,136	1,864
9	0,337	0,184	1,816
10	0,308	0,223	1,777
11	0,285	0,256	1,744
12	0,266	0,283	1,717
13	0,249	0,307	1,693
14	0,235	0,328	1,672
15	0,223	0,347	1,653
16	0,212	0,363	1,637
17	0,203	0,378	1,622
18	0,194	0,391	1,608
19	0,187	0,403	1,597
20	0,180	0,415	1,585

GRÁFICOS DE CONTROL POR VARIABLES

Gráficos X - R

Para μ y σ desconocidos

$$LSC = \bar{X} + A2.\bar{R}$$

$$LCC = \bar{X}$$

$$LIC = \bar{X} - A2.\bar{R}$$

$$LSC = D4.\overline{R}$$

$$LCC = \bar{R}$$

$$LIC = D3.\bar{R}$$

Puntos fuera de los límites de control

Corridas o Desplazamiento (8 puntos juntos del mismo lado)

Tendencia 6 o 7 puntos sucesivos en igual tendencia

• Acercamiento de los límites (2 o 3 puntos fuera de las líneas 2 σ)

• Acercamiento a línea central (todos los puntos dentro de las líneas 1,5 σ)

Periodicidad o ciclos

EJEMPLO

 Se dispone de un cierto proceso que se desea verificar si permanece bajo control. Se conoce que la media aritmética es 30cm y la varianza 4 cm2. Para su control se desea construir un gráfico X-R con los siguientes datos obtenidos del proceso y determinar si el mismo está bajo control

$$LSC = \mu + 3\frac{\sigma}{\sqrt{n}}$$
 $LSC = D4.\overline{R}$
 $LCC = \mu$ $LCC = \overline{R}$
 $LIC = \mu - 3\frac{\sigma}{\sqrt{n}}$ $LIC = D3.\overline{R}$

Α	В	С	D	X	R
30	28	27	32	29,25	5
28	32	32	33	31,25	5
34	33	29	29	31,25	5
31	29	26	26	28	5
28	34	27	34	30,75	7
26	32	29	27	28,5	6
26	27	32	30	28,75	6
28	31	30	26	28,75	5
33	28	34	26	30,25	8
29	28	26	33	29	7
31	33	27	32	30,75	6
32	33	32	26	30,75	7
33	31	30	34	32	4
26	29	33	34	30,5	8
31	31	33	34	32,25	3
29	30	27	33	29,75	6
34	31	31	28	31	6
27	34	31	28	30	7
31	32	33	26	30,5	7
33	29	29	32	30,75	4

$$\bar{R} = 5,85$$
 $\sigma = 2$
 $\mu = 30$

$$n = 4$$

$$LSC = 30 + 3\frac{2}{\sqrt{4}} = 33$$
 $LSC = 5,85.2,282 = 16,5$

$$LCC = 30 LCC = 5.85$$

$$LIC = \mu - 3\frac{2}{\sqrt{4}} = 27$$
 $LIC = 5.85.0 = 0$

Gráfico X

Gráfico R

