# Computer Networks

**CMP2205** 

Lecture 6

#### Error Detection and Correction

- Add control information to the original data being transmitted.
- Error detection: enough info to detect error.
  - Need retransmissions.
- Error correction: enough info to detect and correct error.
  - A.k.a., forward error correction (FEC).

## Why?

- Error detection versus error correction.
- Cost-efficiency?
  - Environment.
  - Application.

#### What's an error?

- Frame =  $\mathbf{m}$  data bits +  $\mathbf{r}$  bits for error control.
  - n = m + r.
- Given the original frame f and the received frame f', how many corresponding bits differ?
  - Hamming distance (Hamming, 1950).

### Hamming Distance: Examples

### Hamming Distance

- If f and f' are Hamming distance of d apart, there needs to be d single-bit errors to convert f to f'.
- Error detecting/correcting properties of a code depend on the code's Hamming distance.
  - To detect d errors, need code with Hamming distance d+1.
    - Need d+1 single-bit errors to change a valid f to a valid f'.
    - If receiver sees invalid f', it knows an error occurred.

## **Parity Bit**

- Simple error detecting code.
- Even- or odd parity.
- Example:
  - Transmit 1011010.
  - Add parity bit 1011010 0 (even parity) or 1011010 1 (odd parity).
- Code with single parity bit has Hamming distance of 2!
  - Any single bit error produces frame with wrong parity.

## **Error Correcting Codes**

- To correct d errors, need 2d+1distance code.
  - Code words are 2d+1 apart.
  - With d changes, original frame is closer than any other valid frame.

### Error Correction: Example

- Suppose code with 4 valid words: 000000000, 0000011111, 1111100000, 111111111.
  - Hamming distance is 5.
  - Possible to correct double errors.
  - Example: If 0000000111 arrives at receiver, receiver assumes original must have been 0000011111.
  - But if triple error changes 000000000 into 000000111, not able to correct it properly.

### Hamming Code

- Bits in positions that are power of 2 are check bits. The rest are data bits.
- Each check bit used in parity (even or odd) computation of collection of bits.
  - Example: check bit in position 11, checks for bits in positions, 11 = 1+2+8. Similarly, bit 11 is checked by bits 1, 2, and 8.

# Hamming Code: Example

| Char.                      | 7-bit<br>ascii                                                                       | Check bits                                                                                            |  |  |
|----------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| H<br>a<br>m<br>i<br>n<br>g | 1001000<br>1100001<br>1101101<br>1101001<br>1101110<br>1100111<br>0100000<br>1100011 | 00110010000<br>10111001001<br>11101010101<br>11101010101<br>01101010110<br>01111001111<br>10011000000 |  |  |
| 0                          | 1101111                                                                              | 10101011111                                                                                           |  |  |
| d                          | 1100100                                                                              | 11111001100                                                                                           |  |  |
| е                          | 1100101                                                                              | 00111000101                                                                                           |  |  |
| Order of bit transmission  |                                                                                      |                                                                                                       |  |  |

. Hamming codes can only correct single errors.

•

## **Error Detecting Codes**

- Typically used in reliable media.
- Examples: parity bit, polynomial codes (a.k.a., CRC, or Cyclic redundancy Check).

### Polynomial Codes

- Treat bit strings as representations of polynomials with coefficients 1's and 0's.
- K-bit frame is coefficient list of polynomial with k terms (and degree k-1), from  $x^{k-1}$  to  $x^0$ .
  - Highest-order bit is coefficient of  $x^{k-1}$ , etc.
  - Example: 110001 represents  $x^5 + x^4 + x^0$ .
- Generator polynomial G(x).
  - Agreed upon by sender and receiver.

#### **CRC**

- Checksum appended to frame being transmitted.
  - Resulting polynomial divisible by G(x).
- When receiver gets checksummed frame, it divides it by G(x).
  - If remainder, then error!

## Cyclic Redunancy Check

```
At Transmitter, with M = 1 1 1 0 1 1, compute 2^rM = 1 1 1 0 1 1 0 0 0 with G = 1 1 0 1 T = 2^rM + R [note G starts and ends with "1"]
```

$$\begin{array}{c|c}
\hline
100 \\
100 \\
\hline
100 \\$$

# Cyclic Redundancy Check

At the *Receiver*, compute:

Note remainder =  $0 \leftarrow \rightarrow$  no errors detected

#### **CRC** Performance

- Errors go through undetected only if divisible by G(x)
- With "suitably chosen" G(x) CRC code detects all single-bit errors.
- And more...

#### More on CRC

M= message (m bits)

T= frame (m+r bits)

R= check sum (sequence)

Remainder (r bits)

G= generator polynomial

(r+1 bits)

Want

$$\overline{G} = A + \frac{O}{G}$$
 remainder = 0

Recall  $\frac{N}{D} = A + \frac{R}{D}$   $N=AD+R$ 
 $\frac{N-R}{D} = A = \frac{AD+R-R}{D} = A$ 

### Hamming Code

- Bits in positions that are power of 2 are check bits. The rest are data bits.
- Each check bit used in parity (even or odd) computation of collection of bits.
  - Example: check bit in position 11, checks for bits in positions, 11 = 1+2+8. Similarly, bit 11 is checked by bits 1, 2, and 8.

## Hamming Code: Example

|       | 7-bit   |                           |
|-------|---------|---------------------------|
| Char. | ASCII   | Check bits                |
|       |         |                           |
| Н     | 1001000 | ÓÓ110010000               |
| а     | 1100001 | 10111001001               |
| m     | 1101101 | 11101010101               |
| m     | 1101101 | 11101010101               |
| i     | 1101001 | 01101011001               |
| n     | 1101110 | 01101010110               |
| g     | 1100111 | 01111001111               |
|       | 0100000 | 10011000000               |
| С     | 1100011 | 11111000011               |
| 0     | 1101111 | 10101011111               |
| d     | 1100100 | 11111001100               |
| е     | 1100101 | 00111000101               |
|       |         | Order of bit transmission |

- . Hamming codes can only correct single errors.
- . But, to correct bursts of errors, send column by column.

## Error Detecting Codes

- Typically used in reliable media.
- Examples: parity bit, polynomial codes (a.k.a., CRC, or Cyclic redundancy Check).

### Polynomial Codes

- Treat bit strings as representations of polynomials with coefficients 1's and 0's.
- K-bit frame is coefficient list of polynomial with k terms (and degree k-1), from  $x^{k-1}$  to  $x^0$ .
  - Highest-order bit is coefficient of  $x^{k-1}$ , etc.
  - Example: 110001 represents  $x^5 + x^4 + x^0$ .
- Generator polynomial G(x).
  - Agreed upon by sender and receiver.

#### **CRC**

- Checksum appended to frame being transmitted.
  - Resulting polynomial divisible by G(x).
- When receiver gets checksummed frame, it divides it by G(x).
  - If remainder, then error!

#### More on CRC

M= message (m bits)

T= frame (m+r bits)

R= check sum (sequence)

Remainder (r bits)

G= generator polynomial

(r+1 bits)

Want

$$\frac{T}{G} = A + \frac{O}{G}$$
 remainder = 0

Recall  $\frac{N}{D} = A + \frac{R}{D}$   $\frac{N}{D} = A + \frac{R}{D}$   $\frac{N}{D} = A + \frac{R}{D}$   $\frac{N}{D} = A + \frac{R}{D} = A$ 

## Cyclic Redunancy Check

```
At Transmitter, with M = 1 1 1 0 1 1, compute 2^rM = 1 1 1 0 1 1 0 0 0 with G = 1 1 0 1 T = 2^rM + R [note G starts and ends with "1"]
```

# Cyclic Redundancy Check

At the *Receiver*, compute:

Note remainder =  $0 \leftarrow \rightarrow$  no errors detected

#### CRC Performance

- Errors go through undetected only if divisible by G(x)
- With "suitably chosen" G(x) CRC code detects all single-bit errors.
- And more...

#### Flow + Error Control

How do Layer 2 protocols implement them?

What's a frame?

| F | Н | Payload | T | F |
|---|---|---------|---|---|
|---|---|---------|---|---|

- . What's F?
- . What's in T?
- . What's in H?

### Header and Trailer

- Trailer typically has checksum.
  - How is it used/processed?
- Header has: type, sequence number, and ack.

### Stop-and-Wait

- Simplest form of flow control.
- How does it work? (assume error-free channel)
  - (1) Send 1 frame;
  - (2) Wait for ACK.
  - (3) Go to 1.

## Stop-and-Wait: Pros and Cons

- Very simple!
- But, poor link utilization.
  - High data rates.
  - Long propagation delay.

# Noisy Channels



### Stop-and-Wait in Noisy Channels

- Need timers, retransmissions, and duplicate detection.
- Use sequence numbers.
  - Why?
  - Distinguish frames.
  - How large (e.g., in number of bits) are sequence numbers?

### ARQ Protocols

- Automatic Repeat Request.
  - Protocols that wait for ACK before sending more data.
- ACKs now are used for flow AND error control.
- What can happen?
  - At receiver: frame arrives correctly, frame arrives damaged, frame does not arrive.
  - At sender: ACK arrives correctly, ACK arrives damaged, ACK does not arrive.

### ARQ Protocols

- Sender:
  - Send frame 0.
  - Start timer.
  - If ACK 0, arrives, send frame 1.
  - If timeout, re-send frame 0.

- Receiver:
  - \*\*Waits for frame.
  - If frame arrives, check if correct sequence number.
  - Then send ACK for that frame.
  - Go to (\*\*)

### Simplex versus Duplex Transmission

- Simplex:
  - Send data in one channel and control in another channel.
- Duplex:
  - Send data and control on the same chanel.

#### Can we do better?

- Can we do better?
  - Piggybacking.
  - Bi-directional transmission.
  - Wait for data packet and use that to piggyback the ACK.
  - Use ACK field: only a few additional bits in the header.
- But, how long should Layer 2 wait to send an ACK?
  - ACK timers!

## Sliding Window Protocols

- Window: number of "outstanding" frames at any given point in time.
- Every ACK received, window slides...

## Sliding Window Example



 A sliding window of size 1, with a 3-bit sequence number.(a) Initially; (b) After the first frame has been sent; (c) After the first frame has been received;(d) After the first acknowledgement has been received.