Alphaa Al Assignment

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import numpy as np
```

In [2]:

```
df=pd.read_csv("banknifty-data (1).csv")
```

In [3]:

```
df.head()
```

Out[3]:

	datetime	open	high	low	close	volume
0	2006-01-02	4566.95	4601.35	4542.00	4556.25	0.0
1	2006-01-03	4531.45	4605.45	4531.45	4600.25	0.0
2	2006-01-04	4619.55	4707.60	4616.05	4694.14	0.0
3	2006-01-05	4714.20	4782.64	4670.55	4760.45	0.0
4	2006-01-06	4767.25	4802.80	4703.10	4755.60	0.0

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3448 entries, 0 to 3447
Data columns (total 6 columns):
              Non-Null Count Dtype
#
    Column
               _____
                              object
 0
    datetime 3448 non-null
 1
    open
               3448 non-null
                              float64
                              float64
 2
    high
              3448 non-null
 3
                              float64
    low
               3448 non-null
 4
    close
               3448 non-null
                              float64
                              float64
    volume
              3448 non-null
dtypes: float64(5), object(1)
memory usage: 161.8+ KB
```

In [5]:

df.shape

Out[5]:

(3448, 6)

In [6]:

```
df_copy=df.copy()
```

In [7]:

```
new_df=pd.DataFrame(df.datetime.str[:7])
new_df['mon_perc_ret']=(df.close-df.open)/df.open
new_df
```

Out[7]:

	datetime	mon_perc_ret
0	2006-01	-0.002343
1	2006-01	0.015183
2	2006-01	0.016147
3	2006-01	0.009811
4	2006-01	-0.002444
3443	2019-12	-0.001486
3444	2019-12	-0.001245
3445	2019-12	0.003660
3446	2019-12	-0.001283
3447	2019-12	-0.001764

3448 rows × 2 columns

In [8]:

```
grouped_df=pd.DataFrame(new_df.groupby("datetime")["mon_perc_ret"].mean()).reset_index()
grouped_df.head()
```

Out[8]:

	datetime	mon_perc_ret
0	2006-01	0.000162
1	2006-02	-0.000093
2	2006-03	-0.000525
3	2006-04	-0.001505
4	2006-05	-0.005277

In [9]:

grouped_df

Out[9]:

	datetime	mon_perc_ret
0	2006-01	0.000162
1	2006-02	-0.000093
2	2006-03	-0.000525
3	2006-04	-0.001505
4	2006-05	-0.005277
163	2019-08	-0.002885
164	2019-09	0.002340
165	2019-10	-0.002030
166	2019-11	0.001512
167	2019-12	-0.001108

168 rows × 2 columns

In [10]:

```
grouped_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 168 entries, 0 to 167
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 datetime 168 non-null object
1 mon_perc_ret 168 non-null float64
dtypes: float64(1), object(1)
```

memory usage: 2.8+ KB

In [11]:

```
grouped_df["Year"]=grouped_df.datetime.str[:4]
grouped_df["Month"]=grouped_df.datetime.str[5:7]
grouped_df.head()
```

Out[11]:

	datetime	mon_perc_ret	Year	Month
0	2006-01	0.000162	2006	01
1	2006-02	-0.000093	2006	02
2	2006-03	-0.000525	2006	03
3	2006-04	-0.001505	2006	04
4	2006-05	-0.005277	2006	05

In [12]:

```
grouped_df['Month_name']=grouped_df.Month.map({'01':'Jan','02':'Feb','03':'Mar','04':'Apr',
grouped_df.head()
```

Out[12]:

	datetime	mon_perc_ret	Year	Month	Month_name
0	2006-01	0.000162	2006	01	Jan
1	2006-02	-0.000093	2006	02	Feb
2	2006-03	-0.000525	2006	03	Mar
3	2006-04	-0.001505	2006	04	Apr
4	2006-05	-0.005277	2006	05	May

In [13]:

```
plt.figure(figsize=(20,15))
plt.title("Monthly Returns (%)")
sns.heatmap((np.asarray(grouped_df['mon_perc_ret'])).reshape(14,12),xticklabels=grouped_df.
plt.xlabel("Month")
plt.ylabel("Year")
```

Out[13]:

Text(159.0, 0.5, 'Year')

In [14]:

```
grouped_df['datetime']=pd.to_datetime(grouped_df['datetime'])
grouped_df.head()
```

Out[14]:

	datetime	mon_perc_ret	Year	Month	Month_name
0	2006-01-01	0.000162	2006	01	Jan
1	2006-02-01	-0.000093	2006	02	Feb
2	2006-03-01	-0.000525	2006	03	Mar
3	2006-04-01	-0.001505	2006	04	Apr
4	2006-05-01	-0.005277	2006	05	May

In [15]:

```
grouped_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 168 entries, 0 to 167
Data columns (total 5 columns):
 #
     Column
                   Non-Null Count
                                   Dtype
0
     datetime
                   168 non-null
                                    datetime64[ns]
 1
                                    float64
     mon_perc_ret
                   168 non-null
     Year
 2
                   168 non-null
                                    object
 3
     Month
                   168 non-null
                                    object
                   168 non-null
     Month_name
                                    object
dtypes: datetime64[ns](1), float64(1), object(3)
memory usage: 6.7+ KB
```

In [16]:

```
plt.figure(figsize=(15,8))
plt.plot(grouped_df['datetime'],grouped_df['mon_perc_ret'],label='No Moving average')
plt.plot(grouped_df['datetime'],grouped_df['mon_perc_ret'].rolling(12).mean(),label='12 Mov
plt.legend()
```

Out[16]:

<matplotlib.legend.Legend at 0x1e330a58c10>

From the above time series data we can see that there is a continuous fluctuations in the trend of monthly percentage returns.

In [17]:

```
plt.figure(figsize=(15,8))
plt.plot(grouped_df['datetime'].iloc[100:125],grouped_df['mon_perc_ret'].iloc[100:125],labe
```

Out[17]:

[<matplotlib.lines.Line2D at 0x1e330ad4a90>]

In [18]:

df.head()

Out[18]:

	datetime	open	high	low	close	volume
0	2006-01-02	4566.95	4601.35	4542.00	4556.25	0.0
1	2006-01-03	4531.45	4605.45	4531.45	4600.25	0.0
2	2006-01-04	4619.55	4707.60	4616.05	4694.14	0.0
3	2006-01-05	4714.20	4782.64	4670.55	4760.45	0.0
4	2006-01-06	4767.25	4802.80	4703.10	4755.60	0.0

In [19]:

date_ind_df=df.set_index('datetime')

In [20]:

```
date_ind_df['open'].plot(figsize=(15,8),label='Open price')
date_ind_df['close'].plot(figsize=(15,8),label='Close price')
date_ind_df['volume'].plot(figsize=(15,8),label='volume price')
date_ind_df['high'].plot(figsize=(15,8),label='High price')
date_ind_df['low'].plot(figsize=(15,8),label='Low price',)
plt.legend()
```

Out[20]:

<matplotlib.legend.Legend at 0x1e330e05eb0>

From above trend it can be seen that all open, close, high, low prices are increasing

In [21]:

```
df.head()
```

Out[21]:

	datetime	open	high	low	close	volume
0	2006-01-02	4566.95	4601.35	4542.00	4556.25	0.0
1	2006-01-03	4531.45	4605.45	4531.45	4600.25	0.0
2	2006-01-04	4619.55	4707.60	4616.05	4694.14	0.0
3	2006-01-05	4714.20	4782.64	4670.55	4760.45	0.0
4	2006-01-06	4767.25	4802.80	4703.10	4755.60	0.0

In [22]:

```
for i in ['open','close','high','low']:
    df[i].plot(kind='kde')
    plt.title(i)
    plt.show()
```


In [23]:

df.describe()

Out[23]:

	open	high	low	close	volume
count	3448.000000	3448.000000	3448.000000	3448.000000	3448.0
mean	14013.821769	14129.682880	13883.132796	14007.342648	0.0
std	7601.245514	7626.954675	7565.885745	7596.458906	0.0
min	3385.400000	3446.750000	3314.550000	3339.700000	0.0
25%	8477.925000	8566.342500	8369.900000	8485.662500	0.0
50%	11379.725000	11460.000000	11262.100000	11362.025000	0.0
75%	18828.805000	18945.425000	18662.655000	18803.425000	0.0
max	32381.000000	32502.800000	32246.050000	32384.950000	0.0

There is no much deviation in prices

```
In [24]:
```

```
for i in ['open','close','high','low']:
    df[i].plot(kind='box')
    plt.title(i)
    plt.show()
```


There is no outlier prices also

In [25]:

df.head()

Out[25]:

	datetime	open	high	low	close	volume
0	2006-01-02	4566.95	4601.35	4542.00	4556.25	0.0
1	2006-01-03	4531.45	4605.45	4531.45	4600.25	0.0
2	2006-01-04	4619.55	4707.60	4616.05	4694.14	0.0
3	2006-01-05	4714.20	4782.64	4670.55	4760.45	0.0
4	2006-01-06	4767.25	4802.80	4703.10	4755.60	0.0

In [39]:

```
plt.figure(figsize=(15,8))
  (df.groupby(df.datetime.str[:7])['close'].mean()-df.groupby(df.datetime.str[:7])['open'].me
  (df.groupby(df.datetime.str[:7])['close'].mean()-df.groupby(df.datetime.str[:7])['open'].me
  # plt.show()
```

Out[39]:

<AxesSubplot:xlabel='datetime'>

-- In the beginning of 2006 there is less difference between monthly open and close price, but later during 2017

and above, we have huge difference between close and open balance

In [40]:

```
plt.figure(figsize=(15,8))
  (df.groupby(df.datetime.str[:7])['high'].mean()-df.groupby(df.datetime.str[:7])['low'].mean
  (df.groupby(df.datetime.str[:7])['high'].mean()-df.groupby(df.datetime.str[:7])['low'].mean
# plt.show()
```

Out[40]:

<AxesSubplot:xlabel='datetime'>

As we can observe that there is gradual increase in diffrence between monthly high and low prices

from above graph it can be concluded that

- 1) there is constant trend during 2006 to 2009
- 2) There was sudden increase in 2010 and continued till 2013
- 3) with gradual increase 2010 to 2015 but prices fallen during 2016.
- 4) However then after it was increasing from 2017 to 2019

In [61]:

```
for i in ['open','close','high','low']:
    plt.figure(figsize=(15,6))
    (df.groupby(df.datetime.str[:4])[i].sum()).plot(kind='bar')
    (df.groupby(df.datetime.str[:4])[i].sum()).plot()
    plt.ylabel(i+' price')
    plt.title('Year wise '+ i +' prices')
    plt.show()
```


In [62]:

```
plt.figure(figsize=(15,6))
(grouped_df.groupby(grouped_df.Year)['mon_perc_ret'].sum()).plot(kind='bar')
```

Out[62]:

<AxesSubplot:xlabel='Year'>

We have profits (+ve monthly returns) only during 2007, 2009, 2010, 2012, 2014 and loses(-ve monthly returns) during 2006, 2008, 2011, 2013, 2015, 2016, 2017, 2018, 2019