第二章 解析函数

一、选择题:

1. 函数 $f(z) = 3 z ^2$ 在点 $z = 0$ 处	:是()	
(A) 解析的	(B) 可导的	_
(C) 不可导的	(D) 既不解析也不可导	
2. 函数 $f(z)$ 在点 z 可导是 $f(z)$	在点z解析的()	2/2
(A) 充分不必要条件	(B) 必要不充分条件	
(C) 充分必要条件	(D) 既非充分条件也非	必要条件
3. 下列命题中,正确的是()	•	
(A) 设 x, y 为实数,则 \cos	$ x(x+iy) \le 1$	
(B) 若 z_0 是函数 $f(z)$ 的奇。	点,则 $f(z)$ 在点 z_0 不可导	7
(C) 若 u,v 在区域 D 内满足	柯西-黎曼方程,则 <i>f</i> (z) = i	u+iv在D内解析
(D) 若 $f(z)$ 在区域 D 内解机	f ,则 $\overline{if(z)}$ 在 D 内也解析	
4. 下列函数中,为解析函数的是	(7)	
$(A) x^2 - y^2 - 2xyi$	$(B) x^2 + x$	yi
(C) $2(x-1)y+i(y^2-x^2)$	+2x) (D) x3 + iy	3
5. 函数 $f(z) = z^2 \operatorname{Im}(z)$ 在 $\hat{z} = 0$		
(A) 等于 0 (B) 等于 1	(C) 等于-1 (D) 不存在
6. 若函数 $f(z) = x^2 + 2xy - y^2$	$\pm i(v^2 \pm avv - v^2)$ 左旬亚	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
	+ <i>i</i> (y + <i>uxy</i> - x) 在及 p	山内处处肝机,加公关节
数 $a = ($)	(0) 3	(D) 1
$(A) 0 \qquad (B) 1$	(C) 2	(D) -2
7. 如果 $f'(z)$ 在单位圆 $ z $ < 1 内处	业处为零,且 $f(0) = -1$,那	$ z < 1$ 内 $f(z) \equiv ($
(A) 0 (B) 1	(C) -1	(D) 任意常数
8. 设函数 $f(z)$ 在区域 D 内有定义	义,则下列命题中,正确的是	<u>.</u>

	(B) 若Re(f((z)) 在 D 内是一常数	,则 $f(z)$ 在 D 内	是一常数
	(C) 若f(z) =	习 $f(\overline{z})$ 在 D 内解析,	则 $f(z)$ 在 D 内是	一常数
	(D) 若argf((z)在 D 内是一常数,	则 $f(z)$ 在 D 内是	是一常数
9. 设 <i>j</i>	$f(z) = x^2 + iy^2$	2 , $\emptyset f'(1+i) = ($)	
(A)	2	(B) 2 <i>i</i>	(C) $1+i$	(D) $2 + 2i$
10. i ⁱ	的主值为()	-	
(A)	0	(B) 1	(C) $e^{\frac{\pi}{2}}$	(D) $e^{-\frac{\pi}{2}}$
11. $e^{\bar{z}}$	在复平面上()	- YX	
	无可导点 有可导点,且	在可导点集上解析	(B) 有可导。 (D) 处处解析	点,但不解析 近
12. 设	$f(z) = \sin z ,$	则下列命题中,不正	三确的是()	
(A)	f(z)在复平面	面上处处解析	(B) $f(z)$	以2π 为周期
(C)	$f(z) = \frac{e^{iz} - 1}{2}$	e^{-iz}	(D) $ f(z) $	是无界的
13. 设	lpha 为任意实数,	则 1 ^α ()		
	无定义	Now data was	(B) 等于1	Manager Lie Libe Rate and
	是复数, <mark>其</mark> 实 列数中,为实数		(U)	是复数,其模等于1
	$(1-i)^3$		(C) ln i	$(D) e^{3-\frac{\pi}{2}i}$
15. 设	α 是复数,则(()		LJ
(A)	z ^a 在复平面上	二处处解析	(B) z ^α 的模)	$ z _{\alpha}$
(C)	z ^α 一般是多值	直函数	(D) z ^α 的辐射	角为 z 的辐角的 $ \alpha $ 倍

(A) 若|f(z)|在D内是一常数,则f(z)在D内是一常数

二、填空题

- 2. 设 f(z) = u + iv 在区域 D 内是解析的,如果 u + v 是实常数,那么 f(z) 在 D 内是 _____

- 5. 若解析函数 f(z) = u + iv 的实部 $u = x^2 y^2$, 那么 f(z) =
- 6. 函数 $f(z) = z \operatorname{Im}(z) \operatorname{Re}(z)$ 仅在点 $z = \underline{\hspace{1cm}}$ 处可导
- 7. 设 $f(z) = \frac{1}{5}z^5 (1+i)z$,则方程 f'(z) = 0 的所有根为_____
- 9. $Im\{ln(3-4i)\}=$
- 10. 方程 $1 e^{-z} = 0$ 的全部解为_____
- Ξ 、 设 f(z)=u(x,y)+iv(x,y) 为 z=x+iy 的解析函数,若记

$$w(z,\overline{z}) = u(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}) + iv(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}), \quad \emptyset \frac{\partial w}{\partial \overline{z}} = 0.$$

- 四、试证下列函数在工平面上解析,并分别求出其导数
 - 1. $f(z) = \cos x \cosh y i \sin x \sinh y$;

2.
$$f(z) = e^{x}(x \cos y - y \sin y) + ie^{x}(y \cos y + ix \sin y);$$

五、设
$$w^3 - 2zw + e^z = 0$$
, 求 $\frac{dw}{dz}$, $\frac{d^2w}{dz^2}$.

六、设
$$f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$
 试证 $f(z)$ 在原点满足柯西-黎曼方程,但却不可导.

七、已知
$$u-v=x^2-y^2$$
,试确定解析函数 $f(z)=u+iv$

八、设 \vec{s} 和 \vec{n} 为平面向量,将 \vec{s} 按逆时针方向旋转 $\frac{\pi}{2}$ 即得 \vec{n} .如果 f(z) = u + iv 为解析函数,

则有
$$\frac{\partial u}{\partial s} = \frac{\partial v}{\partial n}$$
, $\frac{\partial u}{\partial u} = -\frac{\partial v}{\partial s}$ ($\frac{\partial}{\partial s}$ 与 $\frac{\partial}{\partial n}$ 分别表示沿 \vec{s} , \vec{n} 的方向导数).

九、若函数 f(z) 在上半平面内解析,试证函数 $\overline{f(z)}$ 在下半平面内解析.

十、解方程 $\sin z + i \cos z = 4i$.

—、1. (B)

2. (B)

3. (D)

4. (C)

5.(A)

6. (C)

7. (C)

8. (C)

9.(A)

10. (D)

11. (A)

12. (C)

13. (D)

14. (B)

15. (C)

二、填空题

1.
$$1+i$$

1.
$$1+i$$
 2. 常数 3. $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$ 可微且满足 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$, $\frac{\partial^2 u}{\partial x \partial y} = -\frac{\partial^2 v}{\partial x^2}$

4.
$$\frac{27}{4} - \frac{27}{8}i$$

4.
$$\frac{27}{4} - \frac{27}{8}i$$
 5. $x^2 - y^2 + 2xyi + ic$ 或 $z^2 + ic$, c 为实常数

7.
$$\sqrt[8]{2}(\cos\frac{\frac{\pi}{4}+2k\pi}{4}+i\sin\frac{\frac{\pi}{4}+2k\pi}{4}), k=0,1,2,3$$
 8. $e^{-2k\pi}$ $(k=0,\pm 1,\pm 2,\cdots)$

8.
$$e^{-2k\pi}$$
 $(k = 0,\pm 1,\pm 2,\cdots)$

9.
$$-\arctan\frac{4}{3}$$

9.
$$-\arctan\frac{4}{3}$$
 10. $2k\pi i$ $(k = 0,\pm 1,\pm 2,\cdots)$

四、1.
$$f'(z) = -\sin z$$
;

2.
$$f'(z) = (z+1)e^z$$

五、
$$\frac{dw}{dz} = \frac{2w - e^z}{3w^2 - 2z},$$

$$\frac{d^2w}{dz^2} = \frac{-6w(\frac{dw}{dz})^2 + 4\frac{dw}{dz} - e^z}{3w^2 - 2z} = \frac{8w + 6e^zw - 12w^2 - 3e^zw^2 - 4e^z + 2e^zz}{(3w^2 - 2z)^2}.$$

七、
$$f(z) = \frac{1-i}{2}z^2 + (1+i)c \cdot c$$
 为任意实常数.
十、 $z = -2k\pi + i \ln 4 \quad (k = 0,\pm 1,\pm 2,\cdots)$.

$$+, z = -2k\pi + i \ln 4$$
 $(k = 0,\pm 1,\pm 2,\cdots)$