Name of Test	Tests for	Statement
n^{th} -term Test	Divergence	If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
Integral Test	Con & Div	If $a_n = f(n)$ for some continuous function f that is
		positive and decreasing, then $\sum_{n=1}^{\infty} a_n$ converges/diverges
		if $\int_{1}^{\infty} f(x) dx$ converges/diverges.
p-Test	Con & Div	If $p \le 1$ then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges. If $p > 1$ then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.
Geometric Series	Con & Div	The series $\sum_{n=1}^{\infty} ax^n$ diverges if $ x \ge 1$ and converges to
		$\frac{a}{1-x}$ if $ x < 1$. Note that no matter what x is, we have
		the n^{th} partial-sum $S_n = a \frac{1 - x^n}{1 - x}$.
(Direct) Comparison Test	Con & Div	Let $0 \le a_n \le b_n$ for all n . Then if $\sum_{n=1}^{\infty} b_n$ converges,
		$\sum_{n=1}^{\infty} a_n \text{ must converge as well. On the flipside, if } \sum_{n=1}^{\infty} a_n$
		diverges then $\sum_{n=1}^{\infty} b_n$ diverges too.
Limit Comparison Test	Con & Div	If $a_n > 0$ and $b_n > 0$ and if $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$, then $\sum_{n=1}^{\infty} a_n$
		and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge.
Ratio Test	Con & Div	If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, then $\sum_{n=1}^{\infty} a_n$ converges. Furthermore, if
		$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1, \text{ then } \sum_{n=1}^{\infty} a_n \text{ diverges. If } \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1,$
Alternating Series Test	Convergence	then the test is <i>inconclusive</i> . If $0 < a_{n+1} < a_n$ (decreasing) and $\lim_{n \to \infty} a_n = 0$, then
		$\sum_{n=1}^{\infty} (-1)^n a_n \text{ converges. Failing either of the first two criteria means the test is } inconclusive.$
Absolute Convergence	Convergence	If $\sum_{n=0}^{\infty} a_n $ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
		n=1 $n=1$