Е

3-3 三角形的全等性質

如圖,矩形 ABCD中,將 \overline{EF} 右邊的部分沿著 \overline{EF} 對

摺,使C點落在A點,D點

落在 G 點。若 $\angle BAE = 30^{\circ}$,則 $\angle GAF = ?$

 $解: 在 \triangle ABE$ 和 $\triangle AGF$ 中

 $\therefore \angle BAE + \angle EAF = \angle EAF + \angle GAF$

 $\therefore \angle BAE = \angle GAF = 30^{\circ}$

如圖,四邊形 ABCD 為正

方形, $E \setminus F$ 兩點分別在 \overline{BC}

解: $:: \triangle ADF \cong \triangle DCE(SAS)$

$$\therefore \angle CDE = \angle DAF = 30^{\circ}$$

$$\nabla \angle DFG = 60^{\circ}$$

$$\therefore \angle AGD = 30^{\circ} + 60^{\circ} = 90^{\circ}$$

如右圖,矩形 ABCD

中,E、F在 \overline{AD} 上,

目 $\overline{BF} = \overline{CE} \circ$ 試問:

- (1) $\triangle ABF$ 是否全等於 $\triangle DCE$?
- (2) 若 $\overline{AB} = 6$, $\overline{DE} = 8$,則 $\overline{BF} = ?$
- **解** (1) 在 $\triangle ABF$ 與 $\triangle DCE$ 中,
- $\therefore AB = CD , BF = \overline{CE} , \angle A = \angle D = 90^{\circ} ,$
- ∴由 RHS 全等性質知△ABF \cong △DCE \circ
 - (2) 由(1)知 $\overline{AF} = \overline{DE} = 8$,

故 $\overline{BF} = \sqrt{6^2 + 8^2} = 10$ 。

答:(1)是;(2)10

如右圖,已知 $\angle B = \angle C$,

 $\overline{DF} = \overline{EF}$, $\overline{BF} = \overline{CF}$,

- (1) $\triangle BDF$ 是否全等於 $\triangle CEF$?
- (2) $\triangle ABE$ 是否全等於 $\triangle ACD$?
- **解** (1) 在 $\triangle BDF$ 與 $\triangle CEF$ 中,

因為 $\angle B = \angle C$, DF = EF,

 $\angle DFB = \angle EFC$ (對頂角相等),

所以由 AAS 全等性質知

△*BDF* ≅ △*CEF*······答

(2) 在 $\triangle ABE$ 與 $\triangle ACD$ 中,因為

$$\angle B = \angle C$$
, $\angle A = \angle A$ (公用角), $\overline{BE} = \overline{BF} + \overline{EF} = \overline{CF} + \overline{DF} = \overline{CD}$,

所以由 AAS 全等性質知

 $\triangle ABE \cong \triangle ACD \cdots$

如右圖, $\angle 1 = \angle 2$,

CD。若四邊形 ABCD 面積為

- 60,求△*ABD* 面積。
- 解 在 \overline{BC} 上取 $\overline{BA'} = \overline{AB}$,建 $\overline{DA'}$

⇒
$$\triangle ABD$$
 \cong $\triangle A'BD$ (SAS 全等性質)

$$\Rightarrow \overline{BA'} = \overline{AB} = \overline{AD} = \overline{A'D} = \overline{CD}$$

$$\nabla \angle BA'D = \angle BAD = 120^{\circ}$$

$$\Rightarrow \angle DA'C = 60^{\circ}$$

∴ △A'DC 為正三角形

$$\Rightarrow \overline{A'C} = \overline{CD} = \overline{BA'}$$

故
$$\triangle ABD = \triangle A'BD = \triangle A'DC = 60 \div 3$$

$$= 20.....$$
答

在 $\triangle ABC$ 與 $\triangle DEF$ 中,已知 $\overline{AB} > \overline{AC}$, \overline{AB}

$$=\overline{DE}$$
 , $\overline{AC}=\overline{DF}$, $\angle B=\angle E$,

$$\angle C$$
=60 $^{\circ}$,則 $\angle F$ =?

- **解** (1) 若 $\triangle ABC\cong \triangle DEF$,則 $\angle F=\angle C=60^{\circ}$ 。
 - (2) 若 $\triangle ABC$ 和 $\triangle DEF$ 不全等,

則
$$\angle F = 180^{\circ} - \angle C$$

= $180^{\circ} - 60^{\circ}$
= 120°

答:60°或120°

小草和小花在假日時參加玻璃工藝課程,兩人分別都製作了一塊三角形的玻璃,在回家的路 途中,兩人都不慎將自己的作品摔破。試回答下列問題:

Q1:如右圖,若小草將三角形玻璃摔成甲、乙、丙、丁4片, 則他只要帶哪一片去玻璃行,即可請師傅再切一塊與原來 大小完全一樣的玻璃?請說明你的原因。

甲,利用三角形 ASA 全等性質

答:甲

Q2:如右圖,若小花將三角形玻璃摔成甲、乙、丙3片,則他最 少要帶哪幾片去玻璃行,即可請師傅再切一塊與原來大小完 全一樣的玻璃?請說明你的原因。

甲、丙,利用三角形 AAS 全等性質

乙、丙,利用三角形 ASA 全等性質

答:甲、丙或乙、丙

選擇題:(南淮階)

- (\mathbb{C})1. 下列各選項中的已知條件,哪一項無法畫出唯一的 $\triangle ABC$?

 - (A) $\overline{AB} = 8$, $\overline{AC} = 3$, $\angle A = 60^{\circ}$ (B) $\overline{AB} = 8$, $\overline{BC} = 6$, $\angle C = 90^{\circ}$

 - (C) $\angle A = 20^{\circ}$, $\overline{AB} = 8$, $\overline{BC} = 3$ (D) $\angle A = 45^{\circ}$, $\angle B = 75^{\circ}$, $\overline{AC} = 8$
- (D) 2. 如右圖,直線 $L \to \overline{AB}$ 的中垂線,且交 \overline{AB} 於 M, P 為直線 L 上 的一點,則下列敘述何者錯誤?

- (B) $\angle 1 = \angle 2$
- (C) $\triangle PAM \cong \triangle PBM$ (D) $\angle A$ 和 $\angle B$ 互餘
- (A) 3. 如右圖,已知P點在 $\angle BAC$ 的角平分線上,且 $PM \perp AB$, $\overline{PN} \perp \overline{AC}$,則可根據下列何種全等性質說明 $\triangle APM \cong \triangle APN$?

- (A) AAS
- (B) RHS
- (C) ASA
- (D) SAS
- (\mathbb{C}) 4. 如右圖,若D點在 $\angle BAC$ 的角平分線上,則再加上下列 哪一個條件仍無法確定 $\triangle ABD \cong \triangle ACD$?

(B)
$$\angle B = \angle C$$

(C)
$$\overline{BD} = \overline{CD}$$
 (D) $\overline{AB} = \overline{AC}$

(D)
$$\overline{AB} = \overline{AC}$$

- (A) SSS
- (B) ASA (C) AAA
- (D) SAS

二、填充題:

1. 如右圖,在坐標平面上,O為原點,已知 $\triangle AOD$ 為等腰直角 三角形, \overline{AB} 、 \overline{DC} 均垂直 x 軸。若 A 點坐標為 (-3,4) , 則 D 點坐標為___(4,3)___。

2. 如下圖(三), $\triangle ABC$ 中, $\angle ABC = 90^{\circ}$, $\overline{AB} = 3$, $\overline{BC} = 4$ 。若四邊形 ACDE 為正方形,則 $\frac{9}{2}$, $\overline{BE} = \sqrt{58}$ \circ △ABE 面積為

3. 如下圖(四), $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$, $\overline{BE} = \overline{CF}$, $\overline{BD} = \overline{CE}$ 。若 $\angle A = 36^{\circ}$,則 $\angle EDF = 54$ 度。

- 4. 如上圖 (Ξ) , $\triangle ABC$ 和 $\triangle BPQ$ 都是正三角形。若 $\angle BAQ$ =42°,則 $\angle CPQ$ = 18 度。
- 5. 如上圖(六), $\triangle ABC$ 中,已知 $\overline{AC} = \overline{BC}$, $\overline{AD} \perp \overline{BC}$, $\overline{BE} \perp \overline{AC}$, $\overline{BD} = 2$, $\overline{BC} = 5$, $\triangle ABO$ 面積為 2.5,則 $\triangle AOE$ 面積為 ______。

三、計算題:(康宣力)

- 1. 如右圖,將圖(一)長方形 ABCD 沿著對角線 \overline{BD} 摺疊,如圖(二),則:
 - (1) 試說明 $\triangle ADE \cong \triangle C'BE \circ$

- (2) 若 $\overline{AD} = 1$, $\overline{AB} = 4$,则 $\overline{AE} = ?$
- 解:(1) 因為ABCD 為長方形,所以 $\overline{AD} = \overline{BC}$, $\angle A = \angle C = 90^\circ$

因為沿著 \overline{BD} 摺疊, $\triangle DBC \cong \triangle DBC'$,所以 $\angle C = \angle C'$, $\overline{BC} = \overline{BC'}$

在 $\triangle ADE$ 與 $\triangle C'BE$ 中, $\overline{AD} = \overline{C'B}$, $\angle A = \angle C' = 90^{\circ}$, $\angle AED = \angle C'EB$ 所以 $\triangle ADE \cong \triangle C'BE$ (AAS 全等性質)

(2) 因為 $\triangle ADE \cong \triangle C'BE$,所以 $\overline{DE} = \overline{BE}$,設 $\overline{AE} = x$, $\overline{DE} = \overline{BE} = 4-x$ 所以 $(4-x)^2 = x^2 + 1^2 \Rightarrow x = \frac{15}{8}$,故 $\overline{AE} = \frac{15}{8}$

數學好好玩

九階數獨的基本規則

- 1、圖形由 9×9 的方格構成。
- 2、每排、每列或每個 3×3 的方格中,都必須填上 $1\sim9$,且不可重複。
- 3、所用的方法只需推理不必計算。
- 4、答案只能有一種。

新湖m數獨第 1 題 答案

		1-9/1-7		ロハ				
3	2	8	1	4	9	5	7	6
6	1	4	5	7	2	8	9	3
9	7	5	8	3	6	2	1	4
1	4	6	3	8	7	9	5	2
2	8	7	6	9	5	4	3	1
5	3	9	2	1	4	7	6	8
8	5	3	9	2	1	6	4	7
4	6	1	7	5	8	3	2	9
7	9	2	4	6	3	1	8	5

新湖 m 數獨第 1 題 開始時間:

				4	9	5	7	
6		4	5					3
		5						4
	4	6		8				2
	8	7				4	3	
5				1		7	6	
8						6		
4					8	3		9
	9	2	4	6				