Networks and Systems Security

Dr Sudipta Saha

https://www.iitbbs.ac.in/profile.php/sudipta/

Decentralized and Smart Systems Research Group (DSSRG)

https://sites.google.com/iitbbs.ac.in/dssrg

Computer Science & Engineering, School of Electrical Sciences Indian Institute of Technology Bhubaneswar

IEEE 802.11 Standard

- WiFi
- **Different** *variants* of the **standards** are **differentiated** with a **letter**
- Example:
- 802.11a
- 802.11b
- 802.11g
- 802.11n
- 802.11ac
- And so on... they keep changing the standard (higher speed)....

Brief history

- **802.11a**: (1999):
- Operates in the 5 GHz band with a maximum net data rate of 54 Mbit/s
- *Not* popular.... (equipment was expensive)
- Does not inter-operate with 802.11b
- **802.11b**: (1999)
- operates in the 2.4 GHz band with a maximum net data rate of 11 Mbit/s
- Very popular (maybe because equipment was cheap :))
- You should know that **microwave ovens** also operates in the same **2.4 GHz** range !!!
- **802.11g**: (2003)
- operates in the 2.4 GHz band with a maximum net data rate of 54 Mbit/s
- It is fully **backwards compatible** with **802.11b**.

Brief history

- **802.11n**: (2009)
- Not really a new standard....
- Is an amendment to the existing 802.11 standards....
- Maximum data rate of 600 Mbit/s !!!
- *Most* important amendment:

MIMO (Multiple Input, Multiple Output -- multiple antennas)

MIMO *Signal Processing* uses multiple *antennas* that **send** and **receive data** at the *same* time to improve signal coherence.

Significant increase in the transmission rate...

IEEE 802.11 Structure

An 802.11 Lan is subdivided into cells

Each cell is called a Basic Service Set (BSS)

A BSS is controlled by an Access Point (AP)

Most 802.11 networks consist of multiple APs

The **APs** are **interconnected** together by a **backbone network**.

Each cell uses a different transmission frequency !!!

Signals of *different* frequency do not interfere with each other

Each cell is called a Basic Service Set (BSS)

A BSS is serviced by an Access Point (AP) (a.k.a. a base station)

ESS and BSS

Most 802.11 networks consist of multiple Aps

The Access Points are interconnected together using a "backbone" network.

The *entire* interconnected wireless LAN is called:

Extended
Service Set
(ESS)

The backbone network is called:

The distribution system in 802.11 literature

•The backbone network is usually an Ethe rnet network

Other wireless standards -

Standards typically define the Medium Access Control (MAC) and the Physical layers

	Bluetooth	WiFi (802.11)	WiMax (802.16)
Data rate	2.1 Mbps	54 Mbps	70 Mbps
Link length	10 meters	100 meters	10 km
application	Peripheral devices	LAN	Access

The Wireless Networking environment (Physics...)

- The signal strength of wireless transmission attenuates (= weakens) very rapidly:
- Signal strength decreases at a rate of 1/r³ where r is the distance to the source

• Rapid signal strength attenuation results in: a limited range of reception.

Basics

The Wireless Networking environment

Physics:

The **signal strength** of wireless transmission **attenuates very rapidly** - at a rate of **1/r**³ where **r is the distance**)

This results in a **limited range** of reception.

Example

Reachability: A -> B

 $B \rightarrow A, C$

 $C \rightarrow B, D$

D -> C

- •The letters indicate the physical location of each node
- •The circles indicate the transmission range of each node
 - Node B is in A's range.
 - Nodes A and C are in B's range.
 - Nodes **B** and **D** are in **C**'s range.
 - Node C is in D's range.

Range of 802.11 devices:

- The range is relatively short: 100 feet
- Because of the short distance:
- A node's transmissions will reach other nodes almost instantaneously
- Nodes will *still* be transmitting (a frame) when *other* nodes detect the transmission

• Apparently it seems that Channel sensing can help you *avoid* collisions !!! – Like Ethernet....

Question

 Since the propagation delay is so short, can a wireless node use carrier sensing to avoid collisions?

Yes and No

Let us understand the difference between Wireless and Wired Networks

Career Sensing in Wireless Medium

Wired LAN:

A **transmission** from **any node** will be "**heard**" by **all nodes** in the network

Wireless LAN:

A transmission from a node will only be "heard" by nodes within the range of the transmitting node

The limited range makes a significant difference in the ability to prevent collision by sensing the channel

Issues caused by Limited Range

 There are two well-known problems caused by the limited range of transmissions:

The **Hidden node** problem
The **Exposed node** problem

Hidden Node Problem

Hidden node:

A hidden node is a node that is outside your range

You cannot be aware of its existence

Because you cannot transmit to nor receive anything from that node

Hidden Node

Node A is outside the range of node C

Problem due to hidden node

Due to limited

range, your transmissions may collide with transmissions from hidden nodes without you being aware of them

C wants to send to D

C senses an idle channel

Suppose: Node

C wants to send a message to D...

Node C senses the channel and finds that it is **idle (no transmission)**

Problem due to hidden node

• Node C can be misled by the result because the hidden node A can be transmitting:

The hidden node problem:

A wants to send to B C wants to send to D

A can't hear C C can't hear A

But C's transmission will cause errors at B due to its interference with A.

C cannot hear A's transmission

But, if Node C does transmit

It will cause an collision at node B !!!

Why this is not possible in wired medium?

When C will start CSMA – it will listen to the Carrier

At that time C will sense A is transmitting

 If C starts first then A will get the idea that C is transmitting and hence wait

CS in Wired medium prevents many possibilities of collision

Exposed Terminal / Node Problem

Exposed node:

A **exposed node** is a node that is **within your range**

Exposed nodes:

Problem caused by Exposed Nodes

Suppose

Node B is currently **transmitting** to **Node A**:

Now,

Node C wants to send a message to D...

Exposed node problem:

Node B transmitting to A

Node C wants to send to D

Node C senses the channel and find that it is busy

Node C will be misled by the result because -

Although B is transmitting,

The **transmission** from $B \Rightarrow A$ is harmless

It will **not interfere** with the **transmission** from **C** ⇒ **D**

Problem due to exposed nodes

The exposed node problem:

B wants to send to A
C wants to send to D

B can hear C C can hear B

B and C will think their transmission will collide at the intended destinations

C hear B's transmission

But, if Node C does transmit (to D), it will not cause a collision !!!

Can this issue be there in Wired Medium?

 When C senses B is transmitting – Indeed C should not transmit – as it will be colliding with B's transmission

 So, wireless medium brings the possibility of in parallel transmission – which is limited by the protocol CSMA

 Exposed transmission Limits the possibility of in parallel transmissions

Effectiveness of channel sensing in Wireless network

- Summary of the above results:
- A wireless node finds the channel idle → There is possibility that its transmission will collide with a current transmission from a hidden node
 - •A node that is out of range can interfere with your transmissions
- If a wireless node finds the channel busy →
 There is the possibility than the current
 transmission will not collide with its own
 transmission...
 - •A transmitting node that is in range but do not interfere with your transmissions

CSMA in Wireless Medium

Carrier sensing is not very effective in wireless networks...

Information that a node get from sensing the carrier does not tell him whether his transmission will or will not interfere with another transmission

But... it is not completely useless either -

Usually, there are **some hidden nodes** but **most** of the nodes are **not hidden**

So carrier sensing still makes sense...

But: carrier sensing alone is not sufficient

In addition to carrier sensing, we need other strategies to avoid collision...

Why Collision detection does not work?

- The 802.11 Medium Access Protocol Channel sensing and no collision detection
- Channel sensing is useful:

If there are **no hidden node**:

NO hidden node problem:

carrier sensing will avoid a collision

Collision detection

It is **technically not possible** to **detect collision** in **wireless transmissions** due to the **Hugh difference** in **signal strength**

Signal strength attenuates very rapidly in wireless transmissions (proportional to distance³):

The signal level of the node's own transmission is extremely high:

But: the signal level of another (colliding) transmission is extremely weak → Because the send antenna of the other node is far away from the node's receive antenna..

Result:

• The node's own transmission will overwhelm the signal from the other node(s)

• Thus, Collision detection in 802.11 is not technically feasible

Thus

- Channel sensing is not foolproof
- Collision Detection does not work

- → FRAMEs may get lost.
- NEED MECHANISM FOR Faster recovery of lost frames

To recover *lost* frame as quickly as possible:

• ACK

- The receiver must send an **ACK** for each **correctly** received frame
- If sender does not receive an ACK for the transmitted frame within a timeout period:
- The sender will retransmit the frame
- MAC level Acknowledgement: Protocol specification is defined in the Medium Access Control (MAC) layer(IEEE 802.11 is just like Aloha)

The MAC level ACK protocol used in IEEE 802.11:

• Sender

- Transmits a frame to receiver
- Wait for an ACK frame within a time out period
- If time out expires, retransmit the frame

- Receiver
- Receives a frame
- Send an ACK frame back to the sender

Problem implementing the MAC level ACK scheme

Consider the following scenario

Node *A* is currently **transmitting** to **node** *B*:

Nodes *C* and *D* are *waiting* for **node** *A* to finish.

- Node B will transmit the ACK frame (to A) as soon as node A is finished
- But: nodes C and D will also transmit as soon as node A is finished !!!

• We need to ensure that the ACK transmission goes before all other transmissions:

We expect the scenario as above.

However in practice the following may happen

• Transmissions from *other* nodes gets *ahead* of node *B*:

- The ACK frame of B will be too late !!!
- Node A will timed out !!!!

Question

• How can we make sure that an ACK frame is transmitted *first* ???

Problem

- The *main* difficulty of this **problem** is the **fact** that:
- Nodes that are ready to transmit are not aware of each other !!!
- Furthermore:
- The nodes must not send messages to each other to solve this problem !!!
- (Because the time it takes to send messages to each other will increase the delay --- the ACK frame will get too late !!!)
- We need a different solution

Formulation of the problem -

• Assigning priority in a distributed manner

• Multiple nodes are waiting for a transmission (node A)

to finish:

 (multiple) nodes will transmit when the transmission is complete

Problem statement ...

- These **nodes** are **not aware** of **each other**
- We must **make sure** that **node B** transmits **first**
- We must do so without using any messages communicated between the nodes

Solution

- When a **node** want to **transmit** a **frame**:
- The node must *first* waits ("defer") a *predefined* amount of time before the node can transmit its frame
- If the channel is idle after waiting the predefined time:
- The **node** will **transmit** the **frame** (immediately)

Solution

- Otherwise [If some other transmission starts]
- The node must wait until the current transmission is over
- Next it should defer the predefined wait time again before transmitting !!!

- Key to prioritizing the ACK transmission:
 - Different types of frames will use different waiting (defer) time !!!
 - Higher priority frames will use a shorter waiting time !!!

Example

Interframe Spacing

- Interframe Spacing (IFS) = the period of time that a (transmitting) node must wait (and listen) before the node can start transmitting a frame
- Partial flow chart of the 802.11 Medium Access Protocol:

•

Explanation:

- A (transmitting) node must listen (monitor) the transmission medium for *IFS* amount of time
- The IFS for different types of frames are different!
- If there are *no* transmissions for *IFS* amount of time, the node will *transmit* its frame
- If the node detect a transmission during the IFS wait time:
- The **node** will **back off** and **try again** later

What is the length of IFS?

Different type of frames uses different IFS durations !!!

```
SIFS = Short Interframe Spacing (has the shortest duration)
SIFS = 28 μsec
```

PIFS = Point Coordination Function (PCF) Interframe Spacing (has the *second* shortest duration)

PIFS = SIFS + 1 Slot Time = $78 \mu sec$

PIFS is used as sensing delay by a **base station** (= coordination point) that operate in a special **transmission coordinator role**

Different IFS values

DIFS = **Distributed Coordination Function (DCF)** Interframe Spacing (has the *"normal"* duration)

DIFS = SIFS + 2 × Slot Time = 128
$$\mu$$
sec = 28 + 2 X 50 = 128

DIFS is used as sensing delay for transmitting *ordinary priority* data frames

EIFS = **Extended** Interframe Spacing (has the **longest duration**)

The EIFS is derived from the SIFS and the DIFS and the length of time it takes to transmit an ACK frame at 1 Mbit/s by the following equation:

EIFS = a SIFS Time + (8 x ACK Size) + a Preamble Length + a PLCP Header Length + DIFS

EIFS is used as sensing delay for transmitting *ordinary priority* data frames when it has *recently* received a *corrupted* frame

IFS and Frame Priority

• Interframe Spacing IFS defines Priority of the frames

• The **length** of the **interframe space** determines the **priority** of a frame

The shorter the duration (length) of an interframe space, the higher the assigned priority of that frame will be

Example: ACKs frames have the highest priority

Various types of IFS in 802.11

- SIFS = Short Interframe Spacing (has the *shortest* duration): SIFS = $28 \mu sec$
- SIFS is used as sensing delay for transmitting ACK frames
- PIFS = Point Coordination Function (PCF) Interframe Spacing (has the *second* shortest duration)
- PIFS = SIFS + 1 Slot Time = $78 \mu sec$
- PIFS is used as sensing delay by a base station (= coordination point) that operates in a special coordination mod

Various types of IFS in 802.11

- DIFS = Distributed Coordination Function (DCF) Interframe Spacing (has the "normal" duration)
- PIFS = SIFS + $2 \times Slot Time = 128 \mu sec$
- DIFS is used as sensing delay for transmitting data frames
- EIFS = Extended Interframe Spacing (has the longest duration)
- EIFS = ACK frame duration + SIFS + DIFS EIFS is used by a transmitting node that received a *corrupted* data frame

Use of EIFS

• Every node in IEEE
802.11 will continuously receive and CRC check all frames!!!

•

Use of EIFS

- If a received frame contains an (CRC) error then:
- A node will defer EIFS duration instead of DIFS before transmitting a data frame

Reason

- We think of the following possibility
- The *corrupt* frame may be a data frame for *another* node (far away -- that's why it was corrupt)
- *That* (other) node may have received the data frame *correctly*!
- By waiting EIFS, the node will let the other node transmit the ACK frame without collision !!!

Examples

Suppose node A just finished sending a data frame to B

Node B wants to send an ACK frame back to node A

But in the mean time, **node C** wants to send a **data frame** to a **node D**

Timing diagram

Use of EIFS

- The EIFS is a very long waiting duration in 802.11
- It is not intended for regulating priority but to overcome a problem

Background

- Stations monitor frames transmissions on the transmission medium continuously
- This monitoring includes computing the CRC on the frames
- The EIFS is used in DCF when a station wants to send a data frame after it has monitored an erroneous frame i.e., the previous MAC frame was incomplete or has an incorrect CRC.

Intuition

- When I receive a corrupted packet
 - I infer that some is trying to send a packet to someone else (if not intended to me)
 - Now, since I am not receiving the actual packet, obviously I am not able to see the ACK packet also
 - Therefore, I should wait until the sender receives the ACK packet or complete any back off too
 - Here if I wait only for a DIFS period then with high chance when I will do CS – the node from which the corrupted packet came would be receiving ACK – which will get corrupted due to my transmission
 - So wait for EIFS

EIFS

C receives the frame with an error (it might be interference at C or it's slightly out of range)

B receives the frame correctly

B will send the ACK frame C will **not** hear it

Under normal operation, C will transmit after delaying DIFS

C will sense an idle channel after DIFS and transmit...

Result: collision an important ACK frame at node A

Compare the two Scenarios

Here C can see A – roughly – but cant sense transmissions from B

So ACK will not been seen by C

So should wait longer if gets an indication that B may send an ACK

Here C can see A and B both

So, may wait for DIFS and then start

In case there is ACK transmission, C can sense it and wait more

EIFS based solution

node has detected a corrupted frame

Solution:

Make C wait long enough for the (short)

ACK frame from B to finish

This longer waiting time is EIFS

Overview of 802.11 Medium Access Control protocol

- IEEE 802.11 uses slotted transmission
- Slotted transmissions (in general) will reduce the likelihood of collisions
- Since nodes in the 802.11 network cannot detect collisions, there is no "wasting" of slots when collision is detected....
- Duration of a slot in 802.11 is:
- $\sigma = 20 \mu sec$
- (A message can be longer than one slot)

- Modes of MAC protocol operations
- The **802.11 MAC protocol** can operate in **2 different** modes:
- Centralized mode without contention
- Distributed mode with contention

