Multiple Regression

9 试题

1 point

1.

Which of the following is **NOT** a **linear** regression model. *Hint:* remember that a linear regression model is always linear in the parameters, but may use non-linear features.

- $y = w_0 + w_1 x$
- $\bigcirc \quad y = w_0 + w_1 x^2$
- $\bigcirc \quad y = w_0 + w_1 \log(x)$

1 point

2.

Your estimated model for predicting house prices has a large positive weight on 'square feet living'. This implies that if we remove the feature 'square feet living' and refit the model, the new predictive performance will be **worse** than before.

- () True
- False

point	
house p	ete the following: Your estimated model for predicting prices has a positive weight on 'square feet living'. You ld 'lot size' to the model and re-estimate the feature s. The new weight on 'square feet living' [] be
	will not
	will definitely
	might
1 point	
4.	
column square (assum	ouble the value of a given feature (i.e. a specific of the feature matrix), what happens to the leasts estimated coefficients for every other feature?
aduble	e you have no other feature that depends on the discussion discussion discussion depends on the discussion terms.
	•
	d feature i.e. no interaction terms).
	d feature i.e. no interaction terms). They double
	They double They halve
1 point 5.	They double They halve They stay the same
1 point 5.	They double They halve They stay the same It is impossible to tell from the information provided

	An algorithm for minimizing/maximizing a function
\bigcirc	A theoretical statistical result
\bigcirc	An approximation to simple linear regression
	A modeling technique in machine learning
1 point	t
6.	
Gradie	nt descent/ascent allows us to
\bigcirc	Predict a value based on a fitted function
	Estimate model parameters from data
	Assess performance of a model on test data
point 7. Which	of the following statements about step-size in gradient
	nt is/are TRUE (select all that apply)
	It's important to choose a very small step-size
	The step-size doesn't matter
\checkmark	If the step-size is too large gradient descent may not converge
✓	If the step size is too small (but not zero) gradient descent may take a very long time to converge

Let's analyze how many computations are required to fit a multiple linear regression model *using the closed-form solution* based on a data set with 50 observations and 10 features. In the videos, we said that computing the inverse of the 10x10 matrix H^TH was on the order of D^3 operations. Let's focus on forming this matrix **prior** to inversion. How many multiplications are required to form the matrix H^TH ?

Please enter a number below.

5000

1 point

9.

More generally, if you have D features and N observations what is the total complexity of computing $(H^TH)^{-1}$?

- $O(D^3)$
- $O(ND^3)$
- $lacksquare O(ND^2+D^3)$
- \bigcirc $O(ND^2)$
- $\bigcirc \quad O(N^2D+D^3)$
- $O(N^2D)$

I, **伟臣 沈**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

了解荣誉准则的更多信息