

SILABO MECÁNICA DE FLUIDOS I

ÁREA CURRICULAR: TECNOLOGÍA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-I 1.3 Código de la asignatura : 09026506050

1.4 Ciclo: VI1.5 Créditos: 51.6 Horas semanales totales: 12

1.6.1 Horas lectivas (Teoría, Práctica, Laboratorio) : 6 (T=4, P=0, L=2))

1.6.2 Horas no lectivas : 6

1.7 Condición del curso : Obligatorio

1.8 Requisito(s) : 09025604030 Dinámica

: 09041204040 Ecuaciones Diferenciales

1.9 Docentes : Ing. Gonzalo Fano Miranda

II. SUMILLA

El curso forma parte del área curricular de Tecnología. Es de carácter teórico – práctico. Su propósito es brindar al estudiante los conceptos básicos del comportamiento de un flujo estático y en movimiento para entenderlo y ser aplicado en el diseño, construcción y supervisión de obras de infraestructura hidráulica.

La asignatura comprende las siguientes unidades de aprendizaje: I. Propiedades de los fluidos. II. Estática de fluidos. III. Cinemática y dinámica de Fluidos. IV. Flujo en Tuberías.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Desempeña criterios de aplicación de la mecánica de los fluidos en el campo laboral de la ingeniería civil
- Elabora estudios de flujo en las tuberías de conducción y distribución
- Reconoce la mecánica de los fluidos en los estudios para edificaciones de gran envergadura en los edificios.
- Diseña redes de tuberías para abastecimiento de agua.

3.2 Componentes

Capacidades

- Reconoce los principios de propiedades de los fluidos
- Estudia la acción de la estática de fluidos en las obras hidráulicas
- Aplica al flujo la cinemática y dinámica de fluidos
- Aplica al flujo en tuberías y medición de flujo

Contenidos actitudinales

- Trabaja, en equipo, los proyectos de obras con los fluidos.
- Considera que un estudio de la mecánica de fluidos se puede trabajar en equipo multidisciplinario
- Colabora con la Gerencia de operaciones de una empresa
- Adopta los criterios desarrollados en los principios de la mecánica de los fluidos

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I: PROPIEDADES DE LOS FLUIDOS CAPACIDAD: Conoce los principios de propiedades de los fluidos **HORAS SEMANA CONTENIDOS CONCEPTUALES CONTENIDOS PROCEDIMENTALES** ACTIVIDAD DE APRENDIZAJE T.I. Lectivas (L): - Observa la presentación del sílabo y su socialización. Primera sesión: - Observa presentaciones en Ppt sobre conceptos y definiciones básicas de Introducción al tema - 1 h Definición y clasificación de un fluido, dimensiones y mecánica de fluidos. Desarrollo del tema – 3 h unidades. Ejercicios en aula - 2 h Segunda sesión: 6 Discute y sustenta entre alumnos cuales son las propiedades más importantes De trabajo Independiente (T.I): Fluido como un continuo, esfuerzos en los fluidos. de los fluidos. Resolución tareas - 2 h Propiedades de los fluidos - Observa presentaciones en Ppt sobre la Viscosidad. Trabajo de investigación – 2 h - Resuelve problemas de aplicación, inherentes al tema. Trabajo grupal: 2 h Lectivas (L): Introducción al tema - 1 h Primera sesión: - Visualiza y desarrollan mediciones de laboratorio la propiedad de la Viscosidad. Desarrollo del tema – 3 h Viscosidad dinámica. viscosidad cinemática. - Discute y sustenta entre alumnos, que fluidos son más viscosos y como afectan clasificación de fluidos viscosos. Eiercicios en aula - 2 h 2 al diseño de obras hidráulicas. Segunda sesión: De trabajo Independiente (T.I): Práctica dirigida - Expone sus conclusiones y resultados en un avance del informe. Resolución tareas - 2 h Trabajo de investigación – 2 h Trabajo grupal: 2 h Lectivas (L): Introducción al tema - 1 h Primera sesión: - Observa presentaciones en Ppt sobre otras propiedades. Desarrollo del tema – 3 h Hidrostática. - Discute y sustenta entre alumnos, que otras propiedades de los fluidos influyen Ejercicios en aula - 2 h 3 en el diseño de obras hidráulicas. 6 Segunda sesión: De trabajo Independiente (T.I): Fuerza de presión sobre superficies planas Resolución tareas - 2 h horizontales e inclinadas y sobre superficies curvas - Resuelve problemas de aplicación, inherentes al tema. Trabaio de investigación – 2 h Trabajo grupal: 2 h Lectivas (L): Introducción al tema - 1 h - Observa presentaciones en Ppt sobre fluidos gaseosos y su condición de gas Primera sesión: Desarrollo del tema – 3 h Primera práctica calificada. 4 Ejercicios en aula – 2 h Segunda sesión: - Visualiza y desarrolla mediciones de laboratorio la propiedad de Capilaridad. 6 De trabajo Independiente (T.I): Empuje y flotación: principio de Arquímedes - Discute y sustenta entre alumnos, cómo afecta la capilaridad en obras civiles. Resolución tareas - 2 h - Expone sus conclusiones y resultados en un informe. Trabajo de investigación – 2 h Trabajo grupal- 2 h

UNIDAD II: ESTÁTICA DE FLUIDOS

CAPACIDAD: Estudia la acción de la estática de fluidos en las obras hidráulicas

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
5	Primera sesión: Fluidos en movimiento como un sólido (equilibrio relativo). Segunda sesión: Práctica dirigida.	 Observa presentaciones en Ppt sobre la ecuación general de otras propiedades Discute y sustenta entre alumnos, que otras propiedades de los fluidos influyen en el diseño de obras hidráulicas. Resuelve problemas de aplicación, inherentes al tema. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h	6	6
			De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación – 2 h Trabajo grupal - 2 h		
6	Primera sesión: Campo de velocidades, líneas de corriente, trayectoria y trazas, descripción del flujo en movimiento: métodos de Euler y Lagrange. Segunda sesión: Práctica dirigida	 Trabaja en equipos en la aplicación de manómetros para la determinación de presiones relativas con diferentes fluidos. Resuelve problemas donde se tiene que determinar las fuerzas sobre superficies planas y curvas por efectos de la presión hidrostática. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
7	Primera sesión: Segunda práctica calificada. Segunda sesión: Principios básicos de la dinámica de fluidos, análisis diferencial e integral, ecuación de continuidad en forma diferencial e integral.	 Visualiza y desarrolla mediciones de laboratorio las fuerzas sobre superficies planas. Desarrolla un modelo a escala de un elemento sometido a fuerzas hidrostáticas para determinar su estabilidad. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6
8	Examen parcial				

UNIDAD III: CINEMÁTICA Y DINÁMICA DE FLUIDOS

CAPACIDAD: Aplica al flujo la cinemática y dinámica de fluidos

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
9	Primera sesión: Rotación de masas líquidas. Segunda sesión: Ecuación de cantidad del movimiento, fuerzas que actúen sobre una partícula fluida, ecuación integral y diferencial del momentum.	 Observa presentaciones en Ppt sobre clases de flujos y cinemática de fluidos. Visualiza y desarrolla mediciones de laboratorio para caudales en conductos a presión y a superficie libre. Expone sus conclusiones y resultados en un informe. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
10	Primera sesión: Ecuaciones de Navier – Stockes: aplicaciones a flujo laminar interno incompresible y viscoso. Segunda sesión: Práctica dirigida	 Observa presentaciones en Ppt sobre las ecuaciones de Euler, Bernoulli y continuidad. Visualiza y desarrolla mediciones de laboratorio sobre la ecuación de Bernoulli. Expone sus conclusiones y resultados en un informe. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
11	Primera sesión: Ecuación general de conservación de la energía, ecuación de Bernoulli, ecuación de Euler. Segunda sesión: Tercera práctica calificada.	 Trabaja en equipos en la aplicación de la ecuación de la Energía y plantea la aplicación práctica en un caso real de diseño de una obra civil. Resuelve problemas donde se tiene que aplicar la ecuación de energía y determinando además las pérdidas de carga por fricción y accesorios. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6
12	Primera sesión: Flujo interno, número de Reynolds: flujo laminar y turbulento, pérdidas de carga por fricción en flujo laminar y turbulento, ecuación de Darcy, diagrama de Moody, ecuación de Hazen y Williams. Segunda sesión: Práctica dirigida	 Observa presentaciones en Ppt sobre los conceptos y definiciones para el análisis dimensional y semejanza hidráulica. Soluciona ejercicios planteados en clase. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6

UNIDAD IV: FLUJO EN TUBERÍAS

CAPACIDAD: Aplica al flujo en tuberías y medición de flujo

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS
				L	T.I.
13	Primera sesión: Pérdidas de carga locales, tubería simple, sistema de tuberías, línea de gradiente hidráulico y de energía, tuberías en serie, equivalentes, ramificadas y en paralelo. Segunda sesión: Práctica dirigida.	 Elabora un informe sobre los pasos de solución de problemas de similitud y semejanza dinámica. Explica la aplicación de los conceptos y teoremas a casos reales en obras hidráulicas. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6
14	Primera sesión: Práctica de Laboratorio. Segunda sesión: Cuarta práctica calificada	 Observa presentaciones en Ppt sobre las nociones de capa límite laminar turbulenta. Organiza y explica el flujo y arrastre de cuerpos sumergidos. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
15	Primera sesión: Exposiciones de proyectos de investigación. Segunda sesión: Continuación con las exposiciones de proyectos de investigación	 Observa presentaciones en Ppt sobre las funciones de corriente Organiza y explica las aplicaciones a redes de flujo. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
16	Examen final			·	
17	Entrega de promedios finales y acta del curso				

V. ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE+EP+EF)/4 PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3 PL = (Lb1+Lb2+Lb3+Lb4) /4

Donde: MN : Menor Nota de Prácticas

PF : Promedio Final Calificadas.

EP : Examen parcial W1 : Primer Trabajo de Investigación EF : Examen Final PL : Promedio de Laboratorios PE : Promedio de evaluaciones Lb1...Lb4 : Nota de laboratorio

P1,...P4 : Prácticas Calificadas

VIII. FUENTES DE CONSULTA.

8.1 Bibliográficas

- Cengel Y.A., Cimbala, J. (2011). Mecánica de Fluidos. Fundamentos y Aplicaciones. México: Mc Graw Hill.
- Crespo A (2009). Mecánica de Fluidos. Segunda reimpresión. España: Thomson.
- Crowe C.T., Roberson J.A., y Elger D.F.; Engineering Fluid Mechanics (7a ed). Nueva York: Wiley.
- Mott R. (2015) Mecánica de Fluidos Aplicada. México: Prentice Hall Hispanoamericana S.A.
- Pérez G. J., y Herrero, M. R. (2012). *Mecánica de Fluidos*. Bellisco Ediciones Técnicas y Científicas. Madrid: España,
- Potter M., y Wiggert D. (2012). Mecánica de Fluidos. Prentice Hall Hispanoamericana S.A.
- Scott, P. (2011). Applied and Computational Fluid Mechanics. Jones and Bartlett Publishers. Boston: U.S.A.
- Streeter V.L., Wylie E.B., y Keich W.B. (2012). Mecánica de Fluidos. (9na Ed.). Colombia: Mc. Graw Hill.
- White, F.M. (2011). Mecánica de Fluidos. 6ta Ed). México: Mc Graw Hill.

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica	
(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.	
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas, restricciones económicas, ambientales, sociales, políticas, éticas de salubridad y seguridad.	
(d)	Trabajar adecuadamente en un equipo multidisciplinario.	
(e)	Identificar, formular y resolver problemas de ingeniería.	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	
(g)	Comunicarse con su entorno, en forma efectiva.	
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.	
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.	
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil.	
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines.	