(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 09.02.2005 Bulletin 2005/06
- (21) Application number: 03725791.2
- (22) Date of filing: 15.05.2003

- (51) Int Cl.7: C07D 209/14
- (86) International application number: PCT/JP2003/006076
- (87) International publication number: WO 2003/097598 (27.11.2003 Gazette 2003/48)
- (84) Designated Contracting States:

 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IT LI LU MC NL PT RO SE SI SK TR

 Designated Extension States:

 AL LT LV MK
- (30) Priority: 16.05.2002 JP 2002142126
- (71) Applicant: SHIONOGI & CO., LTD. Osaka 541-0045 (JP)
- (72) Inventors:
 - TANIMOTO, Norihiko c/o Shionogi & Co., Ltd. Osaka-shi, Osaka 553-0002 (JP)

- HIRAMATSU, Yoshiharu c/o Shionogi & Co., Ltd. Osaka-shi, Osaka 553-0002 (JP)
- MITSUMORI, Susumu c/o Shionogl & Co., Ltd. Osaka-shi, Osaka 553-0002 (JP)
- INAGAKI, Masanao c/o Shionogi & Co., Ltd. Osaka-shi, Osaka 553-0002 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) COMPOUND EXHIBITING PGD 2 RECEPTOR ANTAGONISM

(57) A compound having CRTH2 receptor antagonism, represented by the following formula (I). The compound is useful for the treatment of allergic diseases having a relation to eosinophils and the like.

A compound of the formula (I):

$$R^{13}$$
 R^3 (I)

is a group represented by the formula:

and the like, R^1 is carboxy and the like, R^3 is -(CH₂)n-N (-Y)-SO₂-Ar and the like, the other symbols are as defined in claim 1.

wherein

a group represented by the formula:

Description

Technical Field

[0001] This invention relates to a new compound having CRTH2 receptor antagonistic activity.

Background Art

[0002] Prostaglandin D₂ (PGD₂), a metabolite derived from arachidonic acid through PGG₂ and PGH₂, is known to have a variety of potent biological activities. For example, PGD₂ is involved in biological actions such as sleep induction and hormone secretion in the central nervous system, inhibition of platelet aggregation, contraction of airway smooth muscle, and relaxation or constriction of vascular smooth muscle in the peripheral tissue (Pharmacol. Rev. (1994) 46, 205-229). In addition, PGD₂ is the major metabolite of arachidonic acid produced by mast cells and can cause strong bronchoconstriction, increased vascular permeability, and migration of inflammatory cells such as eosinophils. From these findings, PGD₂ is considered to be deeply involved in the pathogenesis in allergic diseases such as asthma.

[0003] Formerly, only DP receptor is known as a PGD₂ receptor and antagonists against its receptor are described in WO 98/25915, WO 01/66520, WO 01/79169 and the like.

[0004] However, it was suggested that there would be other PGD₂ receptors different from DP receptor because BW-245C which is a selective agonist against DP receptor did not have activity for eosinphil infiltration (J. Immunol. (1992) 148, 3536-3542; Invest. Ophthalmol. Vis. Sci. (1990) 31, 138-146; Br. J. Pharmacol. (1985) 85, 367-375; J. Pharmacol. Exp. Ther. (1995) 275, 611-617 etc.). Recently, it was reported that CRTH2 receptor is the other PGD₂ receptor and PGD₂ causes wandering of eosinophils and basophils vir this receptor (J. Exp. Med. (2001) 193, 255-261). [0005] An antagonist against thromboxane A₂ (TXA₂) receptor and a platelet aggregation inhibitor having similar structure to a compound of the present invention are described in JP-A-61-249960, JP-A-62-198659, JP-A-62-249969, JP-A-2-193965, JP-A-3-151360, JP-A-4-230363, JP-A-4-234846, JP-A-4-257578, JP-A-8-157471, JP-A-8-245587, DE 3909600, Eur. J. Med. Chem., (1991) 26(8), 821-827. However, PGD2 antagonistic activity of the above compounds has not been described in them.

[0006] It is described in JP-A-3-151360 that 3-(4-chlorophenylsulfonylamino)-9-(2-carboxymethyl)-1,2,3,4-tetrahydrocarbazole and its ethyl ester have TXA₂ antagonistic activity and TXA₂ synthetase inhibitory activity. However, concrete value of the activities is not described in the document.

[0007] It is described in Eur. J. Med. Chem., 1991, 26(8), 821-827 that 3-(4-chlorophenylsulfonylaminoehtyl)indole-1-acetic acid and 3-(4-chlorophenylsulfonylaminopropyl)indole-1-acetic acid have antagonistic activity against TXA₂/PGH₂ receptor.

[0008] It is described that 3-(4-fluorophenylsulfonamide)-1,2,3,4-tetrahydro-9-carbazole propionic acid is useful for therapeutic agent for allergic dermatitis, allergic dermatitis vir delayed type allergy reaction, and psoriasis in JP-A-7-175991, WO 97/44031, JP-A-11-106337 and JP-A-11-116477. It is described in JP-A-11-322600 that the above compound has depression activity for Chemokine production. Further, it is described in J. Allergy Clin. Immunol. (1992) 89, 1119-1126 that there is possibility that the above compound will have PGD₂ antagonistic activity via DP receptor because it shows a depression effect against bronchus constriction caused PGD₂. However, according to 1) PGD₂ also binds TXA₂ receptor in high concentration range (more than 1 µM) (Eur. J. Pharmacol. (1992) 226, 149-156; Br. J. Pharmacol. (1991) 103, 1883-1888 etc., 2) antagonists against TXA₂ receptor which have weak receptor affinity for DP receptor show the same depression effect (Int. Arch. Allergy Immunol. 1992, 98, 239-246, and 3) selective DP receptor antagonists does not show a depression effect against bronchus constriction caused PGD₂ (Br. J. Pharmacol. (1989) 96, 291-300), it is known time that the above depression effect is caused by depressing the reaction via thromboxane receptor and the above compound does not have direct DP receptor antagonistic activity at the present. [0009] It is described in EP 1170594 that 4 compounds selectively binds CRTH2 receptor in comparison with DP

[0009] It is described in EP 1170594 that 4 compounds selectively binds CRTH2 receptor in comparison with DP receptor. However, the structures of the compounds are not similar to the compound of the present invention and details such as binding activities are not described.

O Disclosure of Invention

55

[0010] The inventors of the present invention find out new compounds having a selective CRTH2 receptor antagonistic activity but not having a TXA₂ receptor antagonistic activity.
[0011] The present invention relates to

I) a compound of the formula (I):

$$R^{13}$$
 R^3 (1)

wherein

5

10

15

20

25

40

45

50

a group represented by the formula:

is a group represented by the formula:

wherein Z^3 is =N- or =C(-R⁷)-;

R4, R5, R6 and R7 are each independently hydrogen, halogen, haloalkyl, carboxy, alkyloxycarbonyl, optionally 30 substituted alkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, a group represented by the formula: -S(O)pR8 wherein p is an integer from 0 to 2 and R8 is alkyl or optionally substituted aryl, a group represented by the formula: -NR9R10 wherein R9 and R10 are each independently hydrogen, alkyl, optionally substituted aryl, optionally substituted aralkyl or acyl, or a group represented by the formula: -OR11 wherein R11 is hydrogen, alkyl, optionally substituted aryl, optionally substituted 35 aralkyl, alkanesulfonyl, optionally substituted arylsulfonyl, optionally substituted aralkylsulfonyl, or haloalkyl; R1 is carboxy, alkyloxycarbonyl, optionally substituted aminocarbonyl or tetrazolyl; Z4 is -N= or -C(-R2)=; R2 is hydrogen, alkyl or halogen;

R¹⁵ is hydrogen or alkyl;

R3 is a group represented by the formula: -(CH2)n-N(-Y)-SO2-Ar wherein n is an integer from 1 to 3; Y is hydrogen. alkyl, alkenyl, alkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroarylalkyl or optionally substituted arylalkenyl; and Ar is optionally substituted aryl or optionally substituted heteroaryl, a group represented by the formula:

wherein r is an integer from 0 to 2; x is an integer from 0 to 3; m is an integer from 1 to 3; a broken line represents the presence or absence of a bond; E is optionally substituted aryl, optionally substituted heteroaryl, alkyl, optionally substituted aralkyl or optionally substituted arylalkenyl, a group represented by the formula:

wherein x is an integer from 0 to 3; m is an integer from 1 to 3; a broken line represents the presence or absence of a bond; E is optionally substituted aryl, optionally substituted heteroaryl, alkyl, optionally substituted aralkyl or optionally substituted arylalkenyl,

a group represented by the formula: $-CR^{23}R^{24}-CR^{25}R^{26}-(CH_2)y-N(-Y)-SO_2-Ar$ wherein Ar and Y are as defined above; y is 0 or 1; one of R^{23} or R^{24} is alkyl, the other is hydrogen, alkyl, or aryl; or R^{23} and R^{24} are taken together to form a group represented by the formula: $-(CH_2)t$ - wherein t is an integer from 2 to 5; R^{25} and R^{26} are each independently hydrogen or alkyloxyalkyl,

a group represented by the formula:

5

10

15

20

25

30

35

40

45

50

55

wherein Y and Ar are as defined above, or a group represented by the formula:

wherein Y and Ar are as defined above and u is 1 or 2; or a group represented by the formula:

is a group represented by the formula:

$$(CH_2)_y$$

$$(CH_2)_{\overline{p}}$$

$$(CH_2)_{\overline{p}}$$

$$(CH_2)_{\overline{p}}$$

$$(CH_2)_{\overline{p}}$$

wherein y is an integer from 1 to 3, and m, p, Y and Ar are as defined above, a group represented by the formula:

wherein m, y and Ar are as defined above, or a group represented by the formula:

- wherein Y and Ar are as defined above; R²⁰ is hydrogen or alkyl; and R²¹ is hydrogen or halogen; but excluding compounds 3-(4-chlorophenylsulfonylamino)-9-(2-carboxymethyl)-1,2,3,4-tetrahydrocarbazole, its ethyl ester, 3-(4-chlorophenylsulfonylaminoethyl)indole 1-acetic acid, and 3-(4-chlorophenylsulfonylaminopropyl)indole acetic acid; or
- R¹³ is hydrogen, alkyl, aralkyl, acyl or a group represented by the formula: -OR¹⁶ wherein R¹⁶ is hydrogen or alkyl, and R¹⁴ is hydrogen or alkyl; or a group represented by the formula:

is a group represented by the formula:

- wherein q is an integer from 0 to 3; R¹⁷ Is hydrogen or alkyl; Z¹ is -CH₂-, -C(=O)-, -C(=NOH)-, or -C(=NOMe)-; Z² is a group represented by the formula: -S(=O)s- wherein s is an integer from 0 to 2, a group represented by the formula: -N(-R²²)- wherein R²² is hydrogen, alkyl, alkyloxycarbonyl or acyl, or a group represented by the formula: -CR¹⁸R¹⁹- wherein R¹⁸ and R¹⁹ are each independently hydrogen, alkyl or aryl; or R¹⁸ and R¹⁹ are taken together to form a group represented by the formula: -(CH₂)t- wherein t is an integer from 2 to 5; R¹ and R¹⁵ are as defined above; and
- 40 a group represented by the formula:

is a group represented by the formula:

45

5

20

25

10

5

wherein Y, E, R²⁰ and R²¹ are as defined above; a prodrug, a pharmaceutically acceptable salt, or a solvate thereof. Further, this invention relates to the following II) to XV).

15

II) A compound as described in I), wherein a group represented by the formula:

20

is a group represented by the formula:

25

30

35

40

wherein Z^3 is =C(-R⁷)-; R⁴,R⁵, R⁶ and R⁷ are as defined in i);

 Z^4 is -C(-R²)=; R² is as defined in I);

R¹⁵ is hydrogen; and

 R^3 is a group represented by the formula: -(CH₂)n-N(-Y)-SO₂-Ar wherein n is an integer from 1 to 3; Y is hydrogen, alkyl, alkenyl, optionally substituted aryl, optionally substituted aralkyl, or optionally substituted heteroarylalkyl; and Ar is optionally substituted aryl or optionally substituted heteroaryl,

a group represented by the formula:

45

wherein r is an integer from 0 to 2; x is an integer from 0 to 3; m is an integer from 1 to 3; a broken line represents the presence or absence of a bond; E is optionally substituted anyl or optionally substituted heteroaryl; or a group represented by the formula:

55

is a group represented by the formula:

$$(CH_2)_y$$
 $(CH_2)_{\overline{p}}$
 $(CH_2)_{\overline{p}}$
 $(CH_2)_{\overline{p}}$
 $(CH_2)_{\overline{p}}$
 $(CH_2)_{\overline{p}}$

wherein y is an integer from 1 to 3, and m, p, Y and Ar are as defined above, a group represented by the formula:

wherein m, y and Ar are as defined above, or a group represented by the formula:

30 wherein Y and Ar are as defined in I), and R²⁰ and R²¹ are hydrogen, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

III) A compound as described in I) or II), wherein Y is alkyl, alkenyl, optionally substituted aryl or optionally substituted aralkyl, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

IV) A compound as described in II), wherein R^3 is a group represented by the formula: -(CH_2)n-N(-Y)-SO₂-Ar wherein n is 2 or 3; Y is hydrogen, alkyl, alkenyl, or aralkyl; and Ar is as defined in I), a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

V) A compound as described in II), wherein R³ is a group represented by the formula:

wherein m is 1; r is 0; x is 2; a broken line represents the presence or absence of a bond; and E is as defined in II), a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

VI) A compound as described in II), wherein a group represented by the formula:

5

10

15

20

25

35

40

45

is a group represented by the formula:

 $(CH_2)_y \qquad \qquad Y \qquad$

wherein m is 2; p is 0; y is 1; Y is hydrogen, alkyl, alkenyl or aralkyl; and Ar is as defined in I), a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

VII) A compound as described in II), wherein a group represented by the formula:

is a group represented by the formula:

wherein m is 1 or 2; y is 1 or 2; and Ar is as defined in II), a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

VIII) A compound as described in II), wherein a group represented by the formula:

is a group represented by the formula:

5

10

15

20

25

30

35

40

45

- wherein Y is hydrogen, alkyl, alkenyl or aralkyl; and R²⁰, R²¹ and Ar are as defined in I), a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
 - IX) A compound as described in any one of I) to VIII), wherein R¹ is carboxy, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
 - X) A compound as described in any one of I) to IX), wherein R⁴, R⁵, R⁶ and R⁷ are each independently hydrogen, halogen, alkyl, alkenyl, optionally substituted aryl or optionally substituted aralkyl, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
- 20 XI) A compound as described in any one of I) to X), wherein R² Is hydrogen or alkyl, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
 - XII) A pharmaceutical composition containing a compound, a prodrug, a pharmaceutically acceptable sall, or a solvate thereof as described in any one of I) to XI).
 - XIII) A pharmaceutical composition as described in XII), which is used for an antagonist against the CRTH2 receptor.
- XIV) A method for treating a disease relating to the CRTH2 receptor, which comprises administrating a compound as described in I).
 - XV) Use of the compound as described in I) for the preparation of a pharmaceutical composition for treating a disease relating to the CRTH2 receptor.
- 35 [0012] The following compounds are included in the compounds represented by the formula (I).

$$R^{5}$$
 CH_{2}
 CH

55

5

15

25

40

15

5

20

25

30

35

$$R^{5}$$
 R^{6}
 R^{15}
 R^{1}
 R^{15}
 R^{1}

40

45

50

wherein each symbol in the above structures is as defined in I).

[0013] The details of the present invention are as follows.

[0014] In the present specification, the term "halogen" means fluoro, chloro, bromo, and iodo. Fluoro, chloro, and bromo are preferred as halogen.

[0015] In the present specification, the term "alky!" employed alone or in combination with other terms includes a straight- or branched chain monovalent hydrocarbon group having 1 to 8 carbon atom(s). Examples of alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, see-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl, and the like. C1 to C6 alkyl is preferred. C1 to C3 alkyl is more preferred.

[0016] In the present specification, the term "cycloalkyl" employed alone or in combination with other terms includes a mono cycloalkyl having 3 to 8 carbon atom. Examples of cycloalkyl are cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclopentyl, cyclopetyl, and the like. C3 to C6 cycloalkyl is preferred.

[0017] In the specification, the term "alkenyl" employed alone or in combination with other terms includes a straightor branched chain monovalent hydrocarbon group having 2 to 8 carbon atoms and one or more double bond(s). Examples of the alkenyl are vinyl, allyl, 1-propenyl, 2-propenyl, crotonyl, isopentenyl, a variety of butenyl isomers and the like. C2 to C6 alkenyl is preferred. C2 to C4 alkenyl is more preferred.

[0018] In the specification, the term "alkynyf" employed alone or in combination with other terms includes a straight

or branched chain monovalent hydrocarbon group having 2 to 8 carbon atoms and one or more triple bond(s). Examples of the alkynyl are ethynyl, 1-propynyl, 2-propynyl and the like. C2 to C6 alkynyl is preferred. C2 to C4 alkynyl is more preferred.

[0019] In the present specification, the term "aryl" employed alone or in combination with other terms includes monocyclic or condensed ring aromatic hydrocarbons. Examples of aryl are phenyl, 1-naphtyl, 2-naphtyl, anthryl, and the like. Phenyl, 1-naphtyl, and 2-naphtyl are preferred. Phenyl is more preferred.

[0020] The term "aralkyl" employed alone or in combination with other terms includes the above mentioned "alkyl" substituted with the above mentioned one or more "aryl" at any possible position. Examples of the aralkyl are benzyl, phenylethyl (e.g., 2-phenylethyl), phenylpropyl (e.g., 3-phenylpropyl), naphthylmethyl (e.g., 1-naphthylmethyl and 2-naphthylmethyl), anthrylmethyl (e.g., 9-anthrylmethyl), and the like. Benzyl, 2-phenylethyl, 1-naphthylmethyl and 2-naphthylmethyl are preferred. Benzyl and 2-phenylethyl are more preferred.

[0021] The term "aralkyl" herein used includes the above mentioned "alkyl" substituted with the above mentioned one or more "aryl" at any possible position. Examples of the aralkyl are benzyl, phenylethyl (e.g., 2-phenylethyl), phenylpropyl (e.g., 3-phenylpropyl), naphthylmethyl (e.g., 1-naphthylmethyl and 2-naphthylmethyl), anthrylmethyl (e.g., 9-anthrylmethyl), and the like. Benzyl, 2-phenylethyl, 1-naphthylmethyl and 2-naphthylmethyl are preferred. Benzyl and 2-phenylethyl are more preferred.

[0022] The term "arylalkenyl" herein used includes the above mentioned "alkenyl" substituted with the above mentioned one or more "aryl" at any possible position. Examples of the arylalkenyl are phenylallyl, naphthylallyl, and the like. [0023] In the present specification, the term "non-aromatic heterocyclic group" includes a 5 to 7 membered nonaromatic ring which contains one or more hetero atoms selected from the group consisting of oxygen, sulfur, and nitrogen atoms in the ring, and the 5 to 7 membered non-aromatic ring may be condensed with two or more rings. Examples of the non-aromatic heterocyclic group are pyrrolidinyl (e.g., 1-pyrrolidinyl, 2-pyrrolidinyl), pyrrolinyl (e.g., 3-pyrrolinyl), imidazolidinyl (e.g., 2-imidazolidinyl), imidazolinyl (e.g., imidazolinyl), pyrazolidinyl (e.g., 1-pyrazolidinyl, 2-pyrazolidinyl), pyrazolinyl (e.g., pyrazolinyl), piperidyl (e.g., piperidino, 2-piperidyl), piperazinyl (e.g., 1-piperazinyl), indolynyl (e.g., 1-indolynyl), isoindolinyl (e.g., isoindolinyl), morphalinyl (e.g., morphalino, 3-morphalinyl), and the like. [0024] In the present specification, the term "heteroary!" employed alone or in combination with other terms includes a 5 to 6 membered aromatic heterocyclic group which contains one or more hetero atoms selected from the group consisting of oxygen, sulfur, and nitrogen atoms in the ring. The aromatic heterocyclic group may be fused with the above mentioned cycloalkyl, above mentioned aryl, above mentioned non-aromatic heterocyclic group, and other heteroaryl at any possible position. The heteroaryl which is a monocyclic or fused ring may be bonded at any possible position. Examples of the heteroaryl are pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), furyl (e.g., 2-furyl, 3-furyl), thienyl (e.g., 2-thienyl 3-thienyl), imidazolyl (e.g., 2- imidazolyl, 4- imidazolyl), pyrazolyl (e.g., 1-pyrazolyl, 3-pyrazolyl), isothiazolyl (e.g., 3-isothiazolyl), isoxazolyl (e.g., 3-isoxazolyl), oxazolyl (e.g., 2-oxazolyl), thiazolyl (e.g., 2-thiazolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyrazinyl (e.g., 2-pyrazinyl), pyrimidinyl (e.g., 2-pyrimidinyl, 4-pyrimidinyl), pyridazinyl (e.g., 3-pyridazinyl), tetrazolyl(e.g., 1H-tetrazolyl), oxadiazolyl (e.g., 1,3,4-oxadiazolyl), thiadiazolyl (e.g., 1,3,4thiadiazolyl), indolizinyl (e.g., 2-indolizinyl, 6-indolizinyl), isoindolyl (2-isoindolyl), indolyl (e.g., 1-indolyl, 2-indolyl, 3-indolyl), indazolyl (e.g., 3-indazolyl), purinyl (e.g., 8-purinyl), quinolizinyl (e.g., 2-quinolizinyl), isoquinolyl (e.g., 3-isoquinolyl), quinolyl (e.g., 2-quinolyl, 5-quinolyl), phthalazinyl (e.g., 1-phthalazinyl), naphthyridinyl (e.g., 2-naphthyridinyl), quinolanyl (2-quinolanyl), quinazolinyl (e.g., 2-quinazolinyl), cinnolinyl (e.g., 3-cinnolinyl), pteridinyl (e.g., 2- pteridinyl), carbazolyl (e.g., 2-carbazolyl, 4-carbazolyl), phenanthridinyl (e.g., 2-phenanthridinyl, 3-phenanthridinyl), acridinyl (e. g., 1-acridinyl, 2-acridinyl), dibenzofuranyl (e.g., 1-dibenzofuranyl, 2-dibenzofuranyl), benzimidazolyl (e.g., 2-benzimidazolyl), benzisoxazolyl (e.g., 3-benzisoxazolyl), benzoxazolyl (e.g., 2-benzoxazolyl), benzoxadiazolyl (e.g., 4-benzoxadiazolyl), benzisothiazolyl (e.g., 3-benzisothiazolyl), benzothiazolyl (e.g., 2-benzothiazolyl), benzofuryl (e.g., 3-benzofuryl), benzothienyl(e.g., 2-benzothienyl), dibenzothienyl (e.g., 2-dibenzothienyl), benzodioxolyl (e.g., 1,3-benzothienyl) zodioxolyl) and the like.

[0025] Thienyl, benzothienyl, dibenzothienyl, benzodioxolyl, oxazolyl, and the like are preferred as heteroaryl of Ar. [0026] The term "heteroarylalkyl" herein used includes the above-mentioned "alkyl" substituted with the above-mentioned one or more "heteroarylalkyl, thiazolylalkyl, isothiazolylalkyl, isoxazolylalkyl are thienylalkyl, furylalkyl, pyrrolylalkyl, imidazolylalkyl, pyrrolylalkyl, isothiazolylalkyl, isoxazolylalkyl, oxazolylalkyl, pyridylalkyl, and the like. Thienylmethyl (e.g., 2- thienylmethyl), thienylethyl (e.g., 2-(thiophen-2-yl)ethyl), furylmethyl (e.g., 2- furylmethyl), furylethyl (e.g., 2-(furan-2-yl)ethyl), pyrrolylmethyl (e.g., 2-pyrrolylmethyl), pyrrolylethyl (e.g., 2-(pyrrol-2-yl)ethyl), imidazolylmethyl (e.g., 2-(imidazol-2-yl)ethyl), pyrazolylmethyl (e.g., 2-(pyrazol-3-yl)ethyl), thiazolylmethyl (e.g., 2-thiazolylmethyl), thiazolylmethyl (e.g., 2-(thiazol-2-yl)ethyl), isothiazolylmethyl (e.g., 3-isothiazolylmethyl), isoxazolylmethyl (e.g., 2-(thiazol-2-yl)ethyl), pyridylmethyl (e.g., 2-(oxazol-2-yl)ethyl), pyridylmethyl (e.g., 2-pyridylmethyl), oxazolylmethyl (e.g., 2-pyridylmethyl), pyridylmethyl (e.g., 2-pyridylmethyl) and the like are exemplified. [0027] Thlenylmethyl is preferred as heteroaryl of Y.

[0028] The term "alkyloxy" herein used are methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy,

sec-butyloxy, tert-butyloxy, and the like. Methyloxy, ethyloxy, n-propyloxy, isopropyloxy and n-butyloxy are preferred. C1 to C3 alkyloxy is more preferred.

[0029] The term. alkylthio herein used are methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio, tert-butylthio, and the like. Methylthio, ethylthio, n-propylthio, isopropylthio and n-butylthio are preferred. C1 to C3 alkylthio is more preferred.

[0030] In the present specification, phenyloxy, naphthyloxy, and the like are exemplified as "aryloxy."

[0031] In the present specification, phenylthlo, naphthylthlo, and the like are exemplified as "arylthlo."

[0032] In the present specification, phenylazo, naphthylazo, and the like are exemplified as "arylazo."

[0033] The term "alkyloxycarbonyl" herein used are methyloxycarbonyl, ethyloxycarbonyl, n-propyloxycarbonyl, isopropyloxycarbonyl, n-butyloxycarbonyl, tert-butyloxycarbonyl, n-pentyloxycarbonyl and the like. Methyloxycarbonyl and ethyloxycarbonyl are preferred. C1 to C3 alkyloxycarbonyl are more preferred.

[0034] In the present specification, the term "acyl" employed alone or in combination with other terms includes alkyl-carbonyl in which alkyl group is the above-mentioned "alkyl" and arylcarbonyl in which aryl group is the above-mentioned "aryl". "Alkyl" and "aryl" may be substituted respectively with substituents exemplified in the following "optionally substituted alkyl" and "optionally substituted aryl". Examples of the acyl are acetyl, propyonyl, butyloyl, benzoyl, and the like.

[0035] In the present specification, the term "haloalkyl" employed alone or in combination with other terms includes the above-mentioned "alkyl" which is substituted with the above-mentioned "halogen" at 1 to 8 positions, preferably, at 1 to 5. Examples of the haloalkyl are trifluoromethyl, trichloromethyl, difluoroethyl, trifluoroethyl, dichloroethyl, trichloromethyl, chloromethyl, and the like. Preferable is trifluoromethyl.

[0036] Examples of the term "acyloxy" herein used are acetyloxy, proplonyloxy, benzoyloxy and the like.

[0037] Examples of the term "alkanesulfonyl" herein used are methanesulfonyl, ethanesulfonyl, n-propanesulfonyl, isopropanesulfonyl, n-butanesulfonyl, isobutanesulfonyl, sec-butanesulfonyl, tert-butanesulfonyl, and the like. Methanesulfonyl and ethanesulfonyl are preferred.

[0038] Examples of the term "arylsulfonyl" herein used are phenylsulfonyl, naphthylsulfonyl, and the like.

[0039] Examples of the term "aralkylsulfonyl" herein used are benzylsulfonyl, phenylethylsulfonyl, and the like.

[0040] Example of the term "heteroarylsulfonyl" herein used is pyrrolylsulfonyl or the like.

30

55

[0041] In the present specification, the term "optionally substituted amino" employed alone or in combination with other terms includes amino which may be substituted with one or two of the above-mentioned "alkyl", above-mentioned "aryl", above-mentioned "heteroaryl", above-mentioned "heteroarylalkyl", above-mentioned "alkyloxycarbonyl" and/or "alkanesulfonyl". Examples of the optionally substituted amino are amino, methylamino, dimethylamino, ethylmethylamino, diethylamino, benzylamino, acetylamino, benzoylamino, methyloxycarbonylamino, methylamino, methylamino, dimethylamino, dimethylamino, ethylmethylamino, diethylamino, diethylamino, diethylamino, dimethylamino, ethylmethylamino, diethylamino, diethylamino, dimethylamino, methanesulfonylamino.

[0042] Examples of the term "optionally substituted aminocarbonyl" herein used are aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, dimethylaminocarbonyl, dimethylaminocarbonyl, dimethylaminocarbonyl, dimethylaminocarbonyl, and the like. Preferable are aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, and methanesulfonylaminocarbonyl.

[0043] In the present specification, the term "optionally substituted ureide" includes ureide substituted with one or more of the above-mentioned "alkyl", above-mentioned "aryl", above-mentioned "aralkyl", above-mentioned "heteroaryl", above-mentioned "above-mentioned "acyl".

[0044] The substituents of "optionally substituted alkyl" are cycloalkyl, alkenyl, alkyliden, hydroxy, alkyloxy, mercapto, alkylthio, halogen, nitro, cyano, carboxy, alkyloxycarbonyl, haloglkyl, haloglkyloxy, optionally substituted aminocarbonyl, acyl, acyloxy, optionally substituted non-aromatic heterocyclic group, aryloxy (e.g., phenyloxy), aralkyloxy (e.g., benzyloxy), alkanesulfonyl, guanidino, an azo group, and the like. These substituents are able to locate at one or more of any possible positions.

[0045] Preferable are alkyloxy, hydroxy, optionally substituted amino, aryloxy, and the like as substituents of "optionally substituted alkyl" for R^4 , R^5 , and R^7 .

[0046] The substituents of "optionally substituted cycloalkyl" are alkyl, cycloalkyl, alkenyl, alkyliden, hydroxy, alkyloxy, mercapto, alkylthio, halogen, nitro, cyano, carboxy, alkyloxycarbonyl, haloalkyl, haloalkyloxy, optionally substituted amino, optionally substituted aminocarbonyl, acyl, acyloxy, aryloxy (e.g., phenyloxy), aralkyloxy (e.g., benzyloxy), alkanesulfonyl, guanidino, an azo group, and the like. These substituents are able to locate at one or more of any possible positions.

[0047] Preferable are alkyl, halogen, and the like as substituents of "optionally substituted cycloalkyl" for R⁴, R⁵, R⁶, and R⁷.

[0048] The substituents of "optionally substituted alkenyl" are alkyl, cycloalkyl, alkyliden, hydroxy, alkyloxy, mercapto, alkylthlo, halogen, nitro, cyano, carboxy, alkyloxycarbonyl, haloalkyl, haloalkyloxy, optionally substituted amino, optionally substituted aminocarbonyl, acyl, acyloxy, aryl, aryloxy (e.g., phenyloxy), aralkyl, aralkyloxy (e.g., benzyloxy),

alkanesulfonyl, guanidino, an azo group, and the like. These substituents are able to locate at one or more of any possible positions.

[0049] Preferable are halogen, aryl, and the like as substituents of "optionally substituted alkenyl" for R4, R5, R6, and R7.

[0050] The substituents of "optionally substituted aryl", "optionally substituted aralkyl", "optionally substituted heter-caryl", "optionally substituted arylsulfonyl", "optionally substituted aralkylsulfonyl", and "optionally substituted non-aromatic heterocyclic group" herein used are alkyl, haloalkyl, cycloalkyl, alkenyl, alkynyl, hydroxy, alkyloxy, haloalkyloxy, aryloxy, aralkyloxy, mercapto, alkylthio, halogen, nitro, cyano, carboxy, alkyloxycarbonyl, acyl, acyloxy, alkanesulfonyl, guanidino, an azo group, optionally substituted amino, optionally substituted aminocarbonyl, aryl which may be substituted with one or more of the substituents selected from Substituents group C, heteroaryl which may be substituted with one or more of the substituents selected from Substituents group C, aralkyl which may be substituted with one or more of the substituents selected from Substituents group C, optionally substituted ureide, and the like. These substituents are able to locate at one or more of any possible positions (Substituents group C; alkyl, haloalkyl, cycloalkyl, alkenyl, alkynyl, hydroxy, alkyloxy, haloalkyloxy, aryloxy, aralkyloxy, mercapto, alkylthio, halogen, nitro, cyano, carboxy, alkyloxycarbonyl, acyl, acyloxy, alkanesulfonyl, guanidino, an azo group, optionally substituted amino, and optionally substituted aminocarbonyl).

[0051] Preferable are alkyl, alkyloxy, halogen, and the like as substituents of "optionally substituted aryl" for R4, R5, R6, and R7.

[0052] Preferable are alkyl, alkyloxy, halogen, and the like as substituents of "optionally substituted aryl" for R⁸.
[0053] Preferable are alkyl, alkyloxy, halogen, and the like as substituents of "optionally substituted aryl" for R⁹ and R¹⁰.

[0054] Preferable are alkyl, alkyloxy, halogen, and the like as substituents of "optionally substituted ary!" for R11.

[0055] Preferable are alkyl, alkyloxy, halogen, and the like as substituents of "optionally substituted aryl" for Y.

25 [0056] Preferable are alkyl, alkyloxy, aryloxy, halogen, benzyl, phenyl which may be substituted with substituents selected from Substituents group B, and the like as substituents of "optionally substituted aryl" for Ar (Substituents group B: alkyl, alkyloxy, aryloxy, halogen, and benzyl).

[0057] Preferable are alkyl, halogen, and the like as substituents of "optionally substituted aralkyl" for R⁴, R⁵, R⁶, and R⁷.

[0058] Preferable are alkyl, halogen, and the like as substituents of "optionally substituted aralkyl" for R⁹ and R¹⁰.

[0059] Preferable are alkyl, halogen, and the like as substituents of "optionally substituted aralkyl" for R11.

[0060] Preferable are alkyl, alkyloxy, nitro, halogen, and the like as substituents of "optionally substituted aralkyl" for Y.

[0061] Preferable are alkyl, alkyloxy, aryloxy, halogen, benzyl, phenyl which may be substituted with substituents selected from Substituents group B, and the like as substituents of "optionally substituted heteroary!" for Ar (Substituents)

ents group B: alkyl, alkyloxy, aryloxy, halogen, and benzyl).

[0062] Preferable are alkyl and the like as substituents of "optionally substituted arylsulfony?" for R¹¹.

[0063] Preferable are alkyl and the like as substituents of "optionally substituted aralkylsulfonyl" for R11.

Best Mode for Carrying Out the Invention

[0064] The compounds represented by the formula (I) of the present invention can be synthesized by reacting the compounds represented by the following formula (IIa) to (IIk):

40

45

50

55

5

$$R^{5}$$
 R^{6}
 R^{15}
 R^{1}
 R^{1}
 $(CH_{2})_{r}$
 $(CH_{2})_{x}$
 $(CH_{2})_{x}$
 $(CH_{2})_{x}$
 $(CH_{2})_{x}$

$$\begin{array}{c|c}
 & \mathbb{R}^5 \\
 & \mathbb{R}^5 \\
 & \mathbb{R}^5 \\
 & \mathbb{R}^{15} \\
 & \mathbb{R}^1
\end{array}$$
(IId)

$$\begin{array}{c|c}
R^5 & R^4 & O & (CH_2)_m \\
R^5 & Z^3 & N & Z^4 \\
R^{15} & R^1
\end{array}$$
(IIf)

25 (IIg)

$$R^{13}$$
 NHY
$$R^{14}$$
 R^{20} (IIh)

(III)

$$R^{17}$$
 $(CH_2)_q$
 R^{15}
 R^{21}
 R^{20}
 (IIj)

45

10

15

20

30

35

40

50

55

wherein R1 is alkyloxycarbonyl and the other symbols are as defined in I) or their salts with 1 to 5 eq. of a compound represented by the formula Ar-SO₂-X¹ or E-SO₂-X¹

wherein Ar and E are as defined in I), and X1 is halogen in an inactive solvent at 0 °C to room temperature for 5 min. to several hours. This reaction can be carried out in the presence of I to 5 eq. of a base. Triethylamine, pyridine, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide and the like are preferred as a base. Pyridine, acetonitrile, dichloromethane, tetrahydrofuran (THF) and the like are preferred as an inactive solvent, and they can be used themselves or mixed solvents with water. [0065] When Y is hydrogen in the above synthesized compound, the compound

wherein Y is alkyl, alkernyl, optionally substituted aryl or optionally substituted aralkyl can be synthesized by reacting with Y-X² wherein X² is halogen, optionally substituted alkanesulfonyloxy or optionally substituted arylsulfonyloxy in an inactive solvent such as THF, diethylether, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile, acetone, toluene and the like in the presence of a base such as sodium hydroxide, potassium hydroxide, potassium t-butoxide, potassium carbonate and the like at 0°C to 80°C for 30 min. to several hours. Further, the compound wherein Y is alkyl, alkenyl, optionally substituted aralkyl and the like can be synthesized by reactive amination. For example, the above compound can be synthesized by reacting the compound represented by the formula (IIa), (IIb), or (IIe) wherein Y is hydrogen with corresponding aldehyde or ketone in a solvent such as THF, dichloromethane and the like in the presence of 1 to 5 eq. of sodium borohydride, sodium cyanotrihydroborate or. triacetoxyborohydride at 0°C to 80°C for 30 min. to several hours. This reaction can be carried out in the presence of 0.1 to 5 eq. of an acidic catalyst such as hydrochloric acid, acetic acid, p-toluenesulfonic acid and the like. After the reaction, the compound represented by the formula (I) can be synthesized by the above-mentioned sulfonylation.

[0066] The compound represented by the formula (I) wherein R¹ is carboxy can be synthesized by acidic hydrolysis or alkali hydrolysis of ester in accordance with the usual hydrolysis condition after the above mentioned reaction.

[0067] The compound represented by the formula (IIe) can be synthesized by the method described in JP-A-8-169879 and the like.

[0068] The compounds represented by the formula (IIa) to (IIk) can be synthesized using the compounds represented by the following formula (IIIa) to (IIIk) as a starting material.

$$R^{5}$$
 R^{5}
 R^{5

wherein each symbol is as defined in I) and Q is hydrogen.

10

15

20

25

30

35

45

50

[0069] The compounds represented by the formula (IIa) to (IIk), their salts of inorganic acid such as hydrochloric acid, sulfuric acid and the like or organic acid such as acetic acid, trifluoroacetic acid and the like can be synthesized in accordance with the following processes 1) to 3);

- 1) An amino group of the compound represented by the formula (IIIa)~(IIIk) wherein Q is hydrogen is protected with amino protecting group such as t-butoxycarbonyl, benzyloxycarbonyl, allyloxycarbonyl and the like in accordance with the method described in PROTECTIVE GROUP IN ORGANIC SYNTHSIS. JOHN WILEY & SONS, INC. and the like
- 2) The indole derivatives having an alkyloxycarbonylmethyl group on its nitrogen atom is synthesized by reacting the obtained compound in the above process with 1 to 5 eq. of a compound represented by the formula: X1-CH₂CO₂R1² wherein X1 is halogen and R1² is alkyl in an inactive solvent such as pyridine, acetonitrile, dichloromethane, THF, DMF, DMSO, acetone, methylethylketone, methylisobutylketone and the like in the presence of 1 to 5 eq. of a base such as sodium hydride, potassium hydride, potassium t-butoxide, potassium carbonate and the like at 0 to 100 °C for 1h to 20h. 0.1 to 1 eq. of a phase transfer catalyst such as tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltriethylammonium chloride, benzyltributylammonium chloride and the like may be added to the above reaction mixture.
- 3) Q, an amino protective group, is deprotected by the usual deprotecting reaction.

[0070] The compounds represented by the formula (IIIc) and (IIId), and the compounds represented by the formula (IIIa), (IIIb), and (IIIe) wherein Y is not hydrogen can be introduced into the compound of the formula (I) by the above mentioned sulfonylation and alkyloxycarbonylmethylation of nitrogen atom on the indole ring without protection of an amino group.

[0071] The compound represented by the formula (I) is a compound having a selective antagonistic activity against CRTH2 receptor but not having an antagonistic activity against TXA_2 receptor. Especially, the compounds represented by the following formula (Ia) to (Ie) are preferred as such a compound.

[0072] A compound of the formula (la):

$$R^5$$
 $(CH_2)_n$
 N
 R^2
 R^1
 (Ia)

wherein R¹ is carboxy or optionally substituted aminocarbonyl; R² is hydrogen or alkyl;

 R^5 , R^6 and R^7 are each independently hydrogen, halogen, alkyl, or a group represented by the formula: $-OR^{11}$ wherein R^{11} is alkyl;

Y is hydrogen, alkyl, alkenyl, phenyl, phenylalkyl which may be substituted with one or more substituents selected from Substituents group A, naphthylalkyl which may be substituted with one or more substituents selected from Substituents group A, or thienylalkyl which may be substituted with one or more substituents selected from Substituents group A (Substituents group A: alkyl, alkyloxy, and nitro);

Ar is phenyl which may be substituted with one or more substituents selected from Substituents group B, biphenyl which may be substituted with one or more substituents selected from Substituents group B, thienyl which may be substituted with one or more substituents selected from Substituents group B or dibenzothlenyl which may be substituted with one or more substituents selected from Substituents group B (Substituents group B: alkyl, alkyloxy, aryloxy, halogen, hydroxy, and benzyl); and

10 n is 1, 2, or 3,

15

20

35

40

45

50

a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

[0073] A compound represented by the formula (lb):

$$R^{5}$$
 $(CH_{2})_{y}$
 $(CH_{2})_{p}$
 $(CH_{2})_{p$

wherein R1 is carboxy or optionally substituted aminocarbonyl;

R⁵, R⁶ and R⁷ are each independently hydrogen, halogen, alkyl, or a group represented by the formula: -OR¹¹ wherein R¹¹ is alkyl:

Y is hydrogen, alkyl, alkenyl, phenyl, phenylalkyl which may be substituted with one or more substituents selected from Substituents group A, naphthylalkyl which may be substituted with one or more substituents selected from Substituents group A, or thienylalkyl which may be substituted with one or more substituents selected from Substituents group A (Substituents group A: alkyl, alkyloxy and nitro);

Ar is phenyl which may be substituted with one or more substituents selected from Substituents group A, biphenyl which may be substituted with one or more substituents selected from Substituents group A, thienyl which may be substituted with one or more substituents selected from Substituents group A, or dibenzothienyl which may be substituted with one or more substituents selected from Substituents group A (Substituents group A: halogen, alkyl, alkyloxy, aryloxy, hydroxy, and benzyl); m is 1 or 2;

p is 0 or 1; and

y is 0, 1, or 2,

a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

[0074] A compound represented by the formula (ic):

$$R^5$$
 R^6
 R^7
 R^1
 $(CH_2)_r$
 $(CH_2)_m$
 $(CH_2)_$

wherein R1 is carboxy or optionally substituted aminocarbonyl;

R² is hydrogen or alkyl;

R⁵, R⁶ and R⁷ are each independently hydrogen, halogen, alkyl, or a group represented by the formula: -OR¹¹ wherein R¹¹ is alkyl;

Ar is phenyl which may be substituted with one or more substituents selected from Substituents group B, biphenyl which may be substituted with one or more substituents selected from Substituents group B, thienyl which may be substituted with one or more substituents selected from Substituents group B, or dibenzothienyl which may be substituted with one or more substituents selected from Substituents group B (Substituents group B: alkyl, alkyloxy, aryloxy, halogen, hydroxy, and benzyl; m is 1, 2, or 3;

r is 0 or 1; and

x is 0, 1, or 2,

5

10

15

25

30

35

40

a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

[0075] A compound represented by the formula (Id):

 R^{5} $(CH_{2})_{y}$ $N-SO_{2}-Ar$ (Id)

wherein R1 is carboxy or optionally substituted aminocarbonyl;

R⁵, R⁶ and R⁷ are each independently hydrogen, halogen, alkyl, or a group represented by the formula: -OR¹¹ wherein R¹¹ is alkyl;

Ar is phenyl which may be substituted with one or more substituents selected from Substituents group B, biphenyl which may be substituted with one or more substituents selected from Substituents group B, thienyl which may be substituted with one or more substituents selected from Substituents group B or dibenzothienyl which may be substituted with one or more substituents selected from Substituents group B (Substituents group B: alkyl, alkyloxy, aryloxy, halogen, hydroxy, and benzyl); m Is 1 or 2; and

y Is 1 or 2,

a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

[0076] A compound represented by the formula (le):

wherein R¹ is carboxy or optionally substituted aminocarbonyl; R⁵, R⁶ and R⁷ are each independently hydrogen, halogen, alkyl, or a group represented by the formula: -OR¹¹ wherein R¹¹ is alkyl;

Y is hydrogen, alkyl, alkenyl, phenyl, phenylalkyl which may be substituted with one or more substituents selected from Substituents group A, naphthylalkyl which may be substituted with one or more substituents selected from Substituents group A, or thienylalkyl which may be substituted with one or more substituents selected from Substituents group A (Substituents group A: alkyl, alkyloxy and nitro); and

Ar is phenyl which may be substituted with one or more substituents selected from Substituents group B, biphenyl which may be substituted with one or more substituents selected from Substituents group B, thienyl which may be substituted with one or more substituents selected from Substituents group B or dibenzothienyl which may be substituted with one or more substituents selected from Substituents group B (Substituents group B: alkyl, alkyloxy, aryloxy, halogen, hydroxy, and benzyl), a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

[0077] The term "solvate" includes, for example, solvates with organic solvents, hydrates, and the like. A solvate may coordinate with an arbitrary number of organic solvent molecules. A hydrate may coordinate with an arbitrary number of water molecules. A hydrate is preferred.

[0078] The term "compound of the present invention" herein used includes a pharmaceutically acceptable salt. The salt is exemplified by a salt with alkali metals (e.g., lithium, sodium, potassium, and the like), alkaline earth metals (e.g., magnesium, calcium, and the like), ammonium, organic bases, amino acids, mineral acids (e.g., hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and the like), or organic acids (e.g., acetic acid, citric acid, maleic acid, fumaric acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like). These salts can be formed by the usual method.

[0079] Prodrug is a derivative of the compound having a group which can be decomposed chemically or metabolically, and such prodrug is a compound according to the present invention which becomes pharmaceutically active by means of solvolysis or by placing the compound in vivo under a physiological condition. The method of both selection and manufacture of appropriate prodrug derivatives is described in, for example. Design of Prodrugs, Elsevier, Amsterdam, 1985). For instance, prodrugs such as an ester derivative which is prepared by reacting a basal acid compound with

a suitable alcohol, or an amide derivative which is prepared by reacting a basal acid compound with a suitable amine are exemplified when the compounds according to present invention have a carboxylic group. Particularly preferred esters as prodrugs are methyl ester, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, isobutyl ester, tert-butyl ester, morpholinoethyl ester, N,N-diethylglycolamido ester, and the like. For instance, prodrugs such as an acyloxy derivative which is prepared by reacting a basal hydroxy compound with a suitable acyl halide or a suitable acid anhydride, or an amide derivative which is prepared by reacting a basal acid compound with a suitable amine are exemplified when the compounds according to present invention have a hydroxy group. Particularly preferred acyloxy derivatives as prodrugs -OCOC₂H₅, -OCO(t-Bu), -OCOC₁₅H₃₁, -OCO(m-COONa-Ph), -COCH₂CH₂COONa, -OCOCH (NH₂)CH₃, -OCOCH₂N(CH₃)₂, and the like. For instance, prodrugs such as an amide derivative which is prepared by reacting a basal amino compound with a suitable acid halide or a suitable acid anhydride are exemplified when the compounds according to present invention have an amino group. Particularly preferred amide as prodrugs are -NHCO (CH₂)₂₀CH₃, -NHCOCH(NH₂)CH₃, and the like.

[0080] The compound of the present invention is not restricted to any particular isomers but includes all possible isomers and racemic modifications.

[0081] The compounds of the present invention show excellent CRTH2 receptor antagonism as described in examples mentioned later. Therefore, the pharmaceutical composition of the prsent invention may be used as a treating and/or preventing agent for allergic diseases having a relation to eosinophils, such as asthma, allergic minitis, allergic dermatitis, morbilli papulosi (guinea worm disease and the like), vasculitis, polyarteritis, dermal eosinophilic granuloma, autoimmune disease (e.g., multiple sclerosis, graft rejection, etc.), simple pulmonary eosinophilia, histiocytosis (Histiocytosis), pneumonia, aspergillosis, pleurisy, sarcoidosis, idiopathic pulmonary fibrosis, eosinophilic leucocytosis, filariasis, schistosomiasis, trichiniasis, coccidioidomycosis, tuberculous, bronchogenic cancer, lymphoma, Hodgkin's disease and the like.

[0082] When the compound of the present invention is administered to a person for the treatment of the above diseases, it can be administered orally as powder, granules, tablets, capsules, pllulae, and liquid medicines, or parenterally as injections, suppositories, percutaneous formulations, insufflation, or the like. An effective dose of the compound is formulated by being mixed with appropriate medicinal admixtures such as excipient, binder, penetrant, disintegrators, lubricant, and the like if necessary. Parenteral injections are prepared by sterilizing the compound together with an appropriate carrier.

[0083] The dosage varies with the conditions of the patients, administration route, their age, and body weight. In the case of oral administration, the dosage can generally be between 0. 1 to 100 mg/kg/day, and preferably 1 to 20 mg/kg/day for adult.

Example

[0084] The following examples and experiments are provided to further illustrate the present invention and are not to be construed as limiting the scope.

[0085] Abbreviations described below are used in the following examples.

Me: Methyl Et: Ethyl

iPr: isopropyl
Ph: Phenyl

Boc: t-butoxycarbonyl THF: tetrahydrofuran

MeOH: Methanol
Naphthyl: naphthyl
Benzyl: benzyl

Thienyl: thienyl Biphenyl: biphenyl

50 Dibenzothiophene: dibenzothiophene

Example 1 Compound la-9 and Compound la-51

[8800]

5 NH_2 Process 1 CO_2Me Process 2 Process 2 Process 3 Process 4 Process 5 Process 5 Process 5 Process 5 Process 6 Process 7 Process 7 Process 7 Process 8 Process 9 Process

20 Process 1

25

[0087] To a solution of tryptamine (1) (20g, 0.125mol) in dioxane (160mL) - water (80mL) was added a mixture of sodium carbonate (39.7g, 0.374mol) and di-tert-butyl dicarbonate (31.5mL, 0.137mol) in dioxane (20mL) at ice-cooling and the resulting mixture was stirred for 2.5 h. After adding 2mol/L hydrochloric acid to the reaction mixture, the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried and concentrated in vacuo to give a residue (42.49 g). 7.0 g of the residue was dissolved in methyl ethyl ketone (150mL). To the mixture were added potassium carbonate (11.15g, 80.7mmol) and methyl bromoacetate (10.2mL, 0.108mol), and the resulting mixture was heated for 48 h at reflux. The mixture was diluted with ethyl acetate. The resulting mixture was washed with dilute hydrochloric acid and aqueous sodium hydrogencarbonate respectively, dried and concentrated in vacuo. The residue was subjected to silica gel column chromatography (hexane: ethyl acetate = 2:1) to give compound (2) (4.57g; yield 51%).

Process 2

[0088] To a solution of Compound (2) (1.5g, 4.5mmol) in dichloromethane (10mL) was added trifluoroacetic acid (10mL) and the mixture was stirred for 10 min. at room temperature. The reaction mixture was concentrated in vacuo and neutralized with 2mol/L aqueous sodium carbonate. The resulting mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried and concentrated in vacuo to give a residue (983 mg). 120 mg of the residue was dissolved in dichloromethane (3mL). To a solution were added triethylamine (0.108mL, 0.775mmol) and 4-fluor-obenzenesulfonylchloride (121mg, 0.622mmol) and the resulting mixture was stirred for 2 h at room temperature. The mixture was diluted with ethyl acetate, washed with dilute hydrochloric acid and aqueous sodium hydrogencarbonate respectively, dried, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (hexane: ethyl acetate = 3:2) to give compound (3) (99mg; yield 46%).

45 Process 3

50

55

[0089] To a solution of compound (3) (99mg, 0.254mmol) in MeOH (1.5mL) - THF (1.5mL) was added 2mol/L aqueous sodium hydroxide (0.76mL, 1.52mmolyand the resulting mixture was stirred for 5.5 h at room temperature. The mixture was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and brine, dried, and concentrated in vacuo to give compound (1a-9) (79mg; yield 83%). The physical property of the compound is shown in Table 12.

Process 4

[0990] To a solution of compound (3) (132mg, 0.339mmol) in N,N-dimethylformamide (2ml) were added benzyl bromide (48µL, 0.407mmol) and potassium carbonate (70mg, 0.509mmol) and the resulting mixture was stirred for 21.5 h at 50 °C. The reaction mixture was poured in water and extracted with ethyl acetate. The organic layer was washed with brine, dried, and concentrated in vacuo. The residue was dissolved in MeOH (2mL) - THF (2mL). To the solution was added 2mol/L aqueous sodium hydroxide(1.1mL, 2.2mmol) and the mixture was stirred for 5 h at room temperature. The resulting mixture was diluted with water and washed with diethyl ether. The aqueous layer was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and brine, dried, and concentrated in vacuo to give compound (la-51) (175mg; yield 99%). The physical property of the compound is shown below

Example 2 Compound Ib-20 and Compound Ib-29

[0091]

5

10

25

35

50

Process 3

Process 3

Process 4 O_2 O_3 O_4 $O_$

Process 1

[0092] To a solution of (3R)-3-amino-1,2,3,4-tetrahydrocarbozole (4) (3.33g, 17.9mmol) described in JP-A-62-198659 in 1,4-dioxane (33mL) was added di-tert-butyl dicarbonate (4.1g, 18.8mmol) and the resulting mixture was stirred for 2 h at room temperature. The residue obtained by vacuum concentration was dissolved in methyl ethyl ketone (52mL). To the mixture were added potassium carbonate (4.52g, 32.7mmol), benzyltriethylammonium chloride (0.74g, 3.26mmol), and methyl bromoacetate (5.00g, 32.7mmol) and the mixture was heated for 4 h at reflux. The insoluble residue was filtered off and the filtrate was concentrated in vacuo. The residue was diluted with ethyl acetate, washed with water, dried, and concentrated in vacuo. The residue was crystallized from hexane - diethyl ether to give compound (5) (4.38g; yield 68%, mp. 127-130 °C).

Process 2

[0093] To a solution of compound (5) (4.25g, 11.9mmol) in ethyl acetate (12mL) was added 4mol/L hydrochloric acidethyl acetate (12mL, 48.0mmol) and the resulting mixture was stirred for 2 h at room temperature. The precipitated crystalline was filtered off and washed with ethyl acetate to give compound (6) (3.44g; yield 98%).

Process 3

[0094] To a solution of compound (6) (295mg, 1.0mmol) in THF (6mL) were added triethylamine (0.30g, 3.0mmol) and 2- thiophene sulfonyl chloride (296mg, 1.62mmol), and the resulting mixture was stirred for 16 h at room temperature. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with dilute hydrochloric acid and water, dried over magnesium sulphate, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (hexane: ethyl acetate = 1:1) to give compound (7) (379mg; yield 94%).

Process 4

[0095] To a solution of compound (7) (371mg, 0.917mmol) in MeOH (1.2mL) - THF (1.2mL) was added 4mol/L aqueous sodium hydroxide (0.6mL, 2.4mmol) and the resulting mixture was stirred for 2 h at room temperature. The reaction mixture was diluted with water, acidified with dilute hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with water, dried over magnesium sulphate, and concentrated in vacuo to give compound (+)-lb-20 (343mg; yleld 91%).

Process 5

[0096] To a solution of compound (7) (243mg, 0.622mmol) in N,N-dimethylformamide (2mL) were added potassium carbonate (0.26g, 1.87mmol) and methyl iodide (0.27g, 1.90mmol) and the resulting mixture was stirred for 2.5 h at room temperature. The reaction mixture was diluted with ethyl acetate, washed with water, dried, and concentrated in vacuo. The residue was dissolved in MeOH (1mL) - THF (ImL). To the mixture was added 4mol/L aqueous sodium hydroxide (0.4mL, 1.6mmol) and the mixture was stirred for 3 h at room temperature. The reaction mixture was diluted with water, acidified with dilute hydroxhloric acid, and extracted with ethyl acetate. The organic layer was washed with water, dried, and concentrated in vacuo. The residue was crystallized form hexane - ethyl acetate to give compound (+)-Ib-29 (217mg; yield 88%). The physical property of the compound is shown below.

Example 3 Compound lc-14

[0097]

10

15

25

30

40

45

50

20 NH Process 1 O₂ Process 2 N CO₂H Ic-14

Process 1

[0098] To a solution of compound (8) (610mg, 3.28mmol, Synthesis, 443 (1997)) in THF (6mL) were added triethylamine (0.50g, 4.92mmol) and 4-fluorobenzenesulfonyl chloride (0.70g, 3.60mmol), and the resulting mixture was stirred for 1.5 h at room temperature. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with dilute hydrochloric acid and water respectively, dried, and concentrated in vacuo. The resulting residue was subjected to silica gel column chromatography (toluene - ethyl acetate = 5:1) to give compound (9) (856mg; yield 76%).

Process 2

[0099] To a solution of compound (9) (800mg, 2.32mmol) in methyl ethyl ketone (8mL) were added polassium carbonate (0.96g, 6.96mmol), benzyltriethylammonium chloride (106mg, 0.464mmol), and methyl bromoacetate (1.06g, 6.96mmol), and the resulting mixture was heated for 2.5 h at reflux. The reaction mixture was diluted with water and extracted with toluene. The organic layer was washed with water, dried, and concentrated in vacuo. The resulting residue was subjected to silica gel column chromatography (toluene - ethyl acetate = 5: 1) and obtained material was dissolved in MeOH (2.8ml) - THF(1.4ml). To the solution was added 4moVL aqueous sodium hydroxide (1.4mL, 5.6mmol) and the mixture was stirred for 2 h at room temperature. The reaction mixture was diluted with water, acidified with dilute hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with water, dried, and concentrated in vacuo. The resulting residue was crystallized from hexane - ethyl acetate to give compound lc-14 (717mg; yield 79%). The physical property of the compound is shown below.

Example 4 Compound Id-2

[0100]

55 Process 1 Process 2 Process 2 CO₂H II Id-2

Process 1

[0101] To a solution of compound (10) (1.25g, 4.59mmol) in methyl ethyl ketone (20mL) prepared by the method described in Journal of Organic Chemistry, 62, 2676(1997) were added potassium carbonate (1.9g, 13.77mmol), methyl bromoacetate (1.74mL, 18.36mmol), and benzyltriethylammonium chloride (209mg, 0.92mmol), and the resulting mixture was heated for 20 h at reflux. The mixture was diluted with ethyl acetate, washed with water and brine respectively, dried, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (hexane - ethyl acetate, 3:1) to give compound (11) (1.18g; yield 75%).

10 Process 2

[0102] To a solution of compound (11) (355mg, 1.03mmol) in diethyl ether (0.5mL) was added 4mol/L hydrochloric acid - ethyl acetate (2.06mL, 8.24mmol), and the resulting mixture was stirred for 3 h at room temperature. The precipitated hydrochloric acid sait was filtered off, washed with diethyl ether, and dissolved in THF (3mL). To this mixture were added triethylamine (0.37mL, 2.66mmol) and 4-fluorobenzenesulfonyl chloride (365mg, 1.88mmol). The resulting mixture was stirred for 16 h at room temperature, diluted with ethyl acetate, washed with dilute hydrochloric acid and aqueous sodium hydrogencarbonate respectively, dried, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (hexane: ethyl acetate = 2:1). The product material was dissolved in MeOH (8mL) - THF(4mL). To the mixture was added 1mol/L aqueous sodium hydroxide (1.8mL, 1.8mmol) and the resulting mixture was stirred for 16 h at room temperature. The reaction mixture was diluted with water and washed with diethyl ether. To the aqueous layer was added dilute hydrochloric acid and the precipitated crystalline was filtered off, washed with water, and dried to give compound Id-2 (192mg; yield 48%). The physical property of the compound is shown below.

Example 5 Compound le-2 and Compound le-5

[0103]

25

Process 1

[0104] To a solution of compound (12) (509mg, 2mmol) prepared by the method described in JP-A-8-169879 in THF (10mL) were added triethylamine (0.84mL, 6mmol) and 4-fluorobenzenesulfonyl chloride (506mg, 2.6mmol), and the resulting mixture was stirred for 19 h at room temperature. The mixture was diluted with ethyl acetate, washed with dilute hydrochloric acid and aqueous sodium hydrogencarbonate respectively, dried and concentrated in vacuo. The residue was subjected to silica gel column chromatography (toluene: ethyl acetate = 4:1) to give compound (13) (725mg; yield 88%).

Process 2

[0105] To a solution of compound (13) (309mg, 0.75mmol) in MeOH (6mL) - THF (3mL) was added Imol/L aqueous sodium hydroxide (1.9mL, 1.9mmol) and the resulting mixture was stirred for 21 h at room temperature. The mixture was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and brine, dried, and concentrated in vacuo. The residue was crystallized from ethyl acetate - hexane to give compound le-2 (287mg; yield 96%). The physical property of the compound is shown below.

Process 3

[0106] To a solution of compound (13) (363mg, 0.88mmol) in N,N-dimethylformamide (3.6ml) were added methyl iodide (250mg, 1.76mmol) and potassium carbonate (182mg, 1.32mmol), and the resulting mixture was stirred for 19

h at room temperature. The reaction mixture was poured into water, extracted with ethyl acetate-hexane (1:2). The organic layer was washed with brine, dried, concentrated in vacuo. The residue was dissolved in MeOH-THF (2:1). To the mixture was added ImoVL aqueous sodium hydroxide (1.8mL, 1.8mmol) and the resulting mixture was stirred for 26 h at room temperature. The mixture was diluted with water and washed with diethyl ether. The aqueous layer was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and brine, dried, and concentrated in vacuo. The residue was crystallized from hexane to give compound le-5 (293mg; yield 84%). The physical property of the compound is shown below.

Example 6 Compound Ih-1

[0107]

10

25

30

35

40

45

50

55

Process 1

[0108] The mixture of p-nitrophenylhydrazine (12) (15.0g, 97.9mmol) and cyclohexanone (10.15ml, 97.9mmol) in acetic acid (45ml) was heated and stirred for 20 minutes at 60 °C. To the reaction mixture was added cone, hydrochloric acid(15ml) and the resulting mixture was heated for 1.5 h at reflux. To the reaction mixture was added water (50ml), heated for 10 minutes at reflux, and allowed to cool to room temperature. The precipitated crystal was filtered off, washed with water, and recrystallized from ethanol-water to give 6-nitrotetrahydrocarbazole (13) (17.0g; yield 80%).

Process 2

[0109] The mixture of compound (13) (6.80g, 31.44mmol), methyl bromoacetate (8.93ml, 94.32mmol), potassium carbonate (13g, 94mmol), benzyltriethylammonium chloride (1.43g, 6.28mmol) in methyl ethyl ketone (100ml) was heated for 1 h at reflux. The reaction mixture was concentrated in vacuo and the resulting residue was diluted with ethyl acetate, washed with water, dried, and concentrated in vacuo. The residue was recrystallized from ethyl acetate - hexane to give compound (14) (7.93g; yield 87%).

Process 3

[0110] The mixture of compound (14) (7.92g, 27.47mmol) and palladium hydroxide (20%wt, 1.0g) in THF (70ml) and MeOH (14ml) was stirred for 7h under hydrogen atmosphere. After removing the catalyst, the reaction mixture was concentrated in vacuo. The residue was subjected to silica gel column chromatography (hexane: ethyl acetate = 1:1) to give compound (15) (5.89g; yield 83%).

Process 4

[0111] To a solution of compound (15) (3.89g, 15.0mmol) in THF (30ml) were added triethylamine (4.18ml, 30mmol) and 4-fluorobenzenesulfonyl chloride (3.07g, 15.8mmol), and the resulting mixture was stirred for 1 h at room temperature. To the reaction mixture was added dilute hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried, and concentrated in vacuo. The residue was crystallized from ethyl acetate - hexane to give compound (16) (5.93g; yield 95%).

Process 5

[0112] To a solution of compound (16) (350mg, 0.84mmol) in MeOH (4ml) - THF (2ml) was added 2mol/L aqueous sodium hydroxide (1mL, 2mmol) and the resulting mixture was stirred for 15 h at room temperature. To the reaction mixture was added dilute hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried, and concentrated in vacuo. The residue was crystallized from ethyl acetate - hexane to give compound lh-1 (268mg; yield 79%). The physical property of the compound is shown below.

[0113] The compounds which were shown in the following Tables were synthesized in a manner similar to those described in Examples 1 to 6.

 \mathbb{R}^4

								R5	Ţ	(CHa)	O ₂
5	Table 1		:						K I	(CH ₂) _n N	Ar
	-							R ⁶	R ⁷ R ¹	iy sa	
10	No	R1	R ²	R4	R ⁵	Re	R ⁷	R15	n	Y	Ar
10	Ta-1	соон	H	H	H	Н	н	H	1	H	C ₆ H ₅
	Ia-2	соон	Н	H	Н	Н	H ·	H	1	H	4-F-C ₆ H ₄
15	Ia-3	соон	H	H	H	· H	Н	Н	1	Me	C ₆ H ₅
,,,	Ia-4	COOH	Н	H	H	н	Н	Н	1	Me	4-F-C ₆ H ₄
•	Ia-5	соон	H	н	н	Н	· H	H	1	CH ₂ C ₆ H ₅	C ₆ H ₅
20	Ia-6	соон	н	Н	H	H	Ħ	· H	1	CH ₂ C ₅ H ₅	4-F-C ₆ H ₄
	Ia-7	соон	H	H	Н	H	н	Н	. 2	H	C ₆ H ₅
	Ia-8	соон	H	H	H	H	н	Н	2	H	2-F-C ₆ H ₄
25 .	Ia-9	соон	H	н	H	н	H	Н	2	H	4-F-C ₆ H ₄
	Ia-10	соон	H	H	H	Н	н	Н	2	Ĥ	2-Me-C ₆ H ₄
	Ia-11	COOH	·H	H	H	H	н	H	2	H	4-Me-C ₆ H ₄
30	Ia-12	соон	н	н	н	н	. H	н	2	H.	4-OMe- C ₆ H ₄
	Ia-13	соон	Н	Н	H	H.	Н	H	2	H	2-thienyl
	Ia-14	COOH	H	H	Н	H	H	H	2	H	3-thienyl
35	Ia-15	соон	н	н	н	н	н	н	2	H	4-F- biphenyl
	Ia-16	соон	н	н	H	H.	Н.	н	- 2	H	C ₆ H ₄ -4- OC ₅ H ₅
40	Ia-17	соон	н	H	H	н	H	H	2	н	dibenzothi ophene-3- yl
	Ia-18	COOH	Me	H	H	H	H	Н	. 2	H	C ₆ H ₅
	Ia-19	СООН	Me	н	н	Н	Ĥ	H	2	Н	2-F-C ₆ H ₄
45	Ia-20	COOH	Me	н	Н	H	H	н	2	H	4-F-C ₆ H ₄
	Ia-21	соон	Me	H	Н	H	H	H	2	Н	2-thienyl
50	Ia-22	COOH	Me	н	H	н	H	H	2	H .	3-thienyl
50	Ia-23	СООН	Н	H	H·	н	Ме	H	2	Н	C ₆ H ₈
	Ia-24	соон	H	H	н	H	Me	Н	2	H	2-F-C ₆ H ₄
55	Ia-25	СООН	H	н	H	Ħ	Ме	Н	2	Н	4-F-C ₆ H ₄
(LT)											

5	Table 2
	No
10	Ia-26
	Ia-27
15	· Ia-28
75	Ia-29
	Ia-30
20 .	Ia-31
20	Ia-32
	Ia-33
25	Ia-34
	Ia-35
	Ia-36
30	Ia-37
	Ia-38
•	Ia-39
35	Ia-40
	Ia-41
	Ia-42
40	Ia-43.
	Ia-44
	Ia-45
	Ta-46

R5 (CH ₂) _{n-N} S A	
R ⁶ N R ² V	
_ 1 1	

		- Ris Ri								1
No	R1	R ²	R4	R ⁵	R ⁶	R ⁷	R15	n	Y	Ar
Ia-26	соон	н	H	· H	н	Me	H	2	н	4-OMe- C ₅ H ₄
Ia-27	соон	H	н	H	H	Me	Н	2	H	3-thienyl
· Ia-28	соон	H	H	OMe	Н	H	Н	2	Н	4-F-C ₆ H ₄
Ia-29	СООН	H	H	OMe	H	H	H	2	н	2-thienyl
Ia-30	соон	H	Н	Cl	H	н	Н	2	H	C ₆ H ₅
Ia-31	соон	H	H	Cl	Н	H	Н	2	· H	2-F-C ₆ H ₄
Ia-32	СООН	H	Н	Cl	H	н	H	2	H	4-F-C ₆ H ₄
Ia-33	соон	H	н	Cl	Ħ	н	H	2	H	4-OMe- C ₆ H ₄
Ia-34	соон	H	H	F	H	н	H	2	н	C ₅ H ₅
·Ia-35	СООН	H	Ħ	F	H	Н	H	2	H	2-F-C ₆ H ₄
Ia-36	соон	H	H	F	H	H	H	2	H	4-F-C ₆ H ₄
Ia-37	СООН	H	H	H	F.	H	H	2	H	4-F-C ₆ H ₅
Ia-38	. соон	H	H	H	H	Ħ	H	2	Me	C_6H_5
Ia-39	соон	H	H	H	Ħ	H.	. н	2	· Me	4-F-C ₆ H ₄
Ia-40	СООН	Н	H	H.	Н	н	H	2	Me	3-thienyl
Ia-41	СООН	Me	H	н	H	H	H	2	Me	4-F-C ₆ H ₄
Ia-42	СООН	Н	H	Н	H	Me	. H	2	Me	4-F-C ₈ H ₄
Ia-43.	соон	Н	н	ОМе	H	H	H	2	Me	4-F-C ₆ H ₄
Ta-44	СООН	Н	н	Cl	H	H.	Н	2	Me	4-F-C ₆ H ₄
Ia-45	COOH	H	H	F	H	H.	H	2	Me .	4-F-C ₆ H ₄
Ia-46	COOH	Н	H	H	F	- H	H	2	Me	4-F-C ₆ H ₅
Ia-47	СООН	Н	н	H	H	н	H	2	CH ₂ CH=CH ₂	4-F-C ₆ H ₄
Ia-48	COOH	H	H	H	Н	H	H	2	iPr	4-F-C ₆ H ₄
Ia-49	СООН	H	H	·H	н	н	Н	. 2	C ₆ H ₅	4-F-C ₆ H ₄
Ia-50	СООН	Н	н	Н	Н	H	Н	. 2	CH ₂ C ₆ H ₅	C ₆ H ₅
Ia-51	соон	н	Н	H	H.	H	н	2	CH ₂ C ₅ H ₅	4-F-C ₆ H ₄
Ia-52	CONHMs	H	H	н	H.	H	н	2	CH₂C₅H₅	4.F.C ₆ H ₄

Table 3

25 .

R⁴ (CH₂)_n N S Ar

No	R¹	R ²	R4	R ⁵	R ⁶	R¹	R15	a _	Y	Ar
Ia-53	СООН	н	н	H	H	Н	H.	2	CH ₂ C ₈ H ₅	4-OMe- C ₆ H ₄
Ia-54	СООН	н	Н	H	H	н	н	2	CH ₂ C ₆ H ₅	3-thienyl
Ia-55	COOH	Me	H	H	H	н	H	2	CH ₂ C ₆ H ₅	4-F-C ₅ H ₄
Ia-56	СООН	H	Н	H	H	Me	H	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ia-57	соон	H	Н	OMe	H	Н	H	2	CH ₂ C ₆ H ₅	4.F-C ₆ H ₄
Ia-58	СООН	H	H	Cl	H	н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ia-59	соон	Н	Н	F	H	H	H	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ia-60	соон	H	H	Н	F	H	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₅
Ia-61	соон	H	H	Ħ	н	H	н	2	CH ₂ C ₆ H ₄ -2- Me	4-F-C ₆ H ₄
Ia-62	соон	н	н	• н	Ĥ	H	Ħ	2	CH ₂ C ₆ H ₄ -4- OMe	4-F-C ₆ H ₄
Ia-63	соон	Н	н	н	н	. н	н	2	CH ₂ C ₆ H ₄ ·4· NO ₂	4-F-C ₆ H ₄
Ia-64	СООН	H	Н	н	H	H.	H	2	CH ₂ -1- naphthyl	4-F-C ₆ H ₄
Ia-65	COOH	H	H	н	H	н	Н	2.	CH ₂ -2-thienyl	4-F-C ₆ H ₄
Ia-66	СООН	H	H	H	·H	H	H	2	CH ₂ CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ia-67	соон	H	H	H	H	H	H	3	H	C ₆ H ₅
Ia-68	СООН	н	н.	H	H	H	H	3	H	2-F-C ₆ H ₄
Ia-69	COOH	Н	H	H	н	н	H.	3	H	4-F-C ₈ H ₄
Ia-70	COOH	·H	н	H	H	H	H	3	H	2-Me-C ₆ H ₄
Ia-71	COOH	·H	н	H	H.	н	H	3	H	4-Me-C ₆ H ₄
Ia-72	соон	н	н	H	н	н	H	3	н	4-OMe- C ₆ H ₄
Ia-73	COOH	H	H	н	н	н	H	3	H	2-thienyl
Ia-74	COOH	H	Н	н	H	н	H	3	Н	C ₆ H ₄ -4- OC ₆ H ₅
Ia-75	соон	Ме	H	н	н	H	H	3	н	C ₅ H ₅
Ia-76	СООН	Ме	н	н	н	н	Н	3	, H	4-F-C ₆ H ₄
Ia-77	соон	H	н	Cl	H	H	Н	3	н	C ₆ H ₅
Ia-78	соон	н	H	Ci	H	н	н	3	. H	2-F-C ₆ H ₄

5	Table 4			•		•				I N	Ar .
							•	R ⁶	R _{R1!}	N R ²	•
	No	R¹	R ²	R4	R ⁵	R ⁶	R,	R15	n	Ă.	Ar
10	Ia-79	СООН	H	H	Cl	H	H	н	3	Н	4-F-C ₆ H ₄
	Ia-80	СООН	н	н	Н	H	н	H	3	Me	C ₆ H ₅
	la-81	СООН	Н	Н	H	H	H	н	3	Me	4-F-C ₆ H ₄
15	Ia-82	COOH	·H	H	H	Н	H	H	. 3	Me	3-thienyl
	Ia-83	СООН	Me	H	н	Н	H	H	3	Me	4-F-C ₆ H ₄
	Ia-84	COOH	Н	H	н	н	H	н	3	CH ₂ C ₆ H ₅	C ₈ H ₅
20	la-85	соон	Н	Н	Н	Н	H .	H	3	CH₂C ₆ H ₅	4-F-C ₈ H ₄
	Ia-86	COOH	Н	н	Н	H ·	H	Н	3	CH ₂ C ₅ H ₅	3-thienyl
	Ia-87	COOH	н	н	Н	н	н	H	2	CH ₂ CH ₂ C ₆ H ₅	4-Me-C ₆ H ₄
25	Ia-88	соон	Н	H	H	Н	Н	· H	2	H	4-Cl-C ₅ H ₄
	Ia-89	соон	Н	н	F	H	н	H	2	Н	4-OMe- C ₆ H ₄
	Ia-90	соон	Н	H	F	H	н	H	2	Н	2-thienyl
30	Ia-91	соон	H	н	H	H	H	H	2·	CH ₂ CH ₂ C ₆ H ₅	2-thienyl
	Ia-92	соон	H	H	Cl	Н	H	H	2	CH ₂ CH ₂ C ₆ H ₅	4-F-C ₅ H ₄
35	Ia-93	соон	Н	н	H.	Н	H.	н	2	CH ₂ CH=CHC ₆ H ₅	4-F-C ₆ H ₄
	Ia-94	соон	H	н	H	н	H	H	2	CH ₂ CH ₂ CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	Ia:95	соон	Н	H	F	H	H	Ħ	2	н	4-Me-C ₆ H ₄
40	Ia-96	COOH	H	H	F	H.	H	H	. 5	H	2-naphthyl
	Ia-97	соон	H	Ħ	F	H	н	H	2	· H	4-NO ₂ - C ₆ H ₄
	Ia-98	COOH	H	H	F·	н	H	H	2	H	1-naphthyl
45	Ia-99	соон	H	H	F	Н	H	H	2	н	4-CN-C ₆ H ₄
	Ia-100	соон	H	H	ОН	н	H	H	2	H.	2-F-C ₆ H ₄
	Ia-101	соон	н	·F	Н	H	H	H	2	H	4-F-C ₆ H ₄
50	Ia-102	COOH	Н	F	H	н	· H	H	2	Me	4-F-C ₆ H ₄
	Ia-103	соон	Н	F	н	H	Н	н	2	CH ₂ C ₆ H ₅	4-F-C ₅ H ₄
	Ia-104	соон	H	H	Cl	H	H	Me	2	H	4-F-C ₆ H ₄

5	Table 5		٠					₽\$ E	R*	(CH ₂) _n -N	O ₂ S_Ar
	No	R1	R2	R4	R ⁵	R ⁶	R7	R15	n	Y	Ar
10	Ia-105	COOH	Н	Н	Cl	H	H	Me	2	Me	4-F-C _c H ₄
	Ia-106	СООН	H	Н	Cl	Н	H	Me	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

EP 1 505 061 A1

5	Table 6	R ⁵ ∶		7 N	1			>	Y I -(CH₂) _p —N	I—SO ₂ —Ar
10	No	R1	R ⁶	R ⁶	R7	У	m	p	Y	Ar
	Гь-1	СООН	Н	Н	Н	1	1	0	H	C ₆ H ₅
	Ib-2	СООН	Н	H	H	1	1	.0	H	4-F-C ₅ H ₄
15	Ib-3	СООН	H	H	H	1	1	0	H	4-Me-C ₆ H ₄
	Ib-4	соон	Н	H	н	1	1	0	. Н	2-thienyl
	Ib-5	СООН	н	н	н	1	1	0	Me	C ₆ H ₈
20	· Ib-6	соон	Н	Н	Н	1	1	0	Me	4-F-C ₅ H ₄
	· Ib-7	соон	н	н	Н	1	1	0	Me	4-Me-C ₆ H ₄
	Ib-8 .	соон	·H	н	Н	1	1	0	Me	2-thienyl
25	Гь-9	соон	Н	н	Н	1	1	0	Et	C ₆ H ₅
	Гь-10	соон	н	H	H	1.	1	.0	CH ₂ C ₆ H ₅	C ₆ H ₅
	Įb-11	соон	н	Н.	·H	1	1	0	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
30	Ib-12	соон	н	н	·H	1	1	0	CH ₂ C ₆ H ₅	4-Me-C ₅ H ₄
	. Ib-13	соон	H	Н	H	1	1	0	CH ₂ C ₆ H ₅	2-thienyl
	Ib-14	СООН	H	н	н	.1	2	0	н	C ₆ H ₅
35	Гb-15	соон	Н	H	н	1	2	0	Н	2-F-C ₈ H ₄
	Ib-16	соон	Н	Н	H	1	2	0	Н	4-F-C _B H ₄
	Ib-17	соон	Н	Н	H	1	2	0	Н	4-Cl-C ₆ H ₄
40	Ib-18	соон	H	H	Ħ	1	2	0	Н	4-Me-C ₆ H ₄
	Ib-19	соон	н	н	H	1	2	0	н	4-OMe-C ₆ H ₄
45	Ib-20	СООН	Н	н	H	1	2	0	Н	2-thienyl

5	Table 7	R ⁵ .	R		T (0) _m	> —	Y I-(CH ₂) _p —N	SO ₂ Ar
10	No	R ¹	R ⁵	R ⁶	R7	ý	m	р	Y	Ar
10	Ib-21	соон	Н	H	Н	1	2	0	H	3-thienyl
	Ib-22	соон	H	H	н	1	2	0	H·	5-benzyl-2- thienyl
15	Гь-23	соон	H	Н	Н	1	2	0	Me	$C_{\epsilon}H_{\epsilon}$
	Ib-24	соон	н.	Н	Н	1	2	0	Me	2-F-C ₆ H ₄
•	Гь-25	соон	H	H	H	1	2	0	Me	4-F-C ₆ H₄
20	Ib-26	соон	H	H	H	1	2	0	Me	4-Cl-C ₆ H ₄
	Ib-27	соон	H	H	H	1	2	0	Me	4-Me-C ₆ H ₄
	Ib-28	COOH	H	н	H	1	.2	0	Me	4-OMe-C ₆ H ₄ ·
25	Ib-29	COOH	H	H	H	1	2	0	Me	2-thienyl
	Ib-30	COOH	H	. H	Н	1	2	0	Ме	3-thienyl
	Ib-31	соон	Н	H	H	1	2	0	М́е	5-benzyl-2- thienyl
30	Ib-32	COOH	H	H	н	1	2	0	Et	4-F-C ₆ H ₄
	Ib-33	COOH	H	н	н	1	2	.0	Et	4-OMe-C ₆ H ₄
•	Ib-34	соон	H	H	Ħ	1	2	0	CH ₂ C ₆ H ₅	4-Me-C ₆ H ₄
35	Гь-35	СООН	Cl	H	H	1	2	0	Ħ	C ₆ H ₅
	Ip-36	соон	Cl	н	н	1	2	0	H	4-F-C ₆ H ₄
	Ib-37	COOH	·C1	H	н	'n	2	.0	Н	4-Me-C ₆ H ₄
40	• Гь-38	соон	Cl	Ĥ	H	1	2	0	H.	4.OMe-C ₆ H ₄
	Ib-39	соон	Cl	H	, H	1	2	0	H	3-thienyl
	Гь-40	СООН	Cl	н	H	1	2	0	Me	C ₆ H ₅
45	Ib-41	соон	Cl	H	H	1	2	0	Me	4-F-C ₆ H ₄
	Ib-42	СООН	CI	H	H	1	2	0	Me	4-Me-C ₆ H ₄
	Ть-43	соон	Cl	Н	н	1.	2	0	Me	4-OMe-C ₆ H ₄
50	Ib-44 .	соон	Cl	H	H	1	2	0	Me	3-thienyl
	Ib-45	соон	CI	н	н	1	2	0	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	Ib-46	СООН	F	H	H	1	2	0	H	4-F-C ₆ H ₄
55	Ib-47	СООН	F	H	Н.	1	2	0	Me	4-F-C ₆ H ₄

5	Table 8	В ⁵ .	I		其	CH ₂		>	Y I-(CH₂) _p —N	, I—SO ₂ —Ar
		т		7 (R ¹				Γ	
10	No .	R ¹	R ⁵	R ⁶	R,	У	m	p	Y	Ar
,,	Ib-48	COOH	F	H	Н	1	2	0	CH ₂ C ₆ H ₅	4-F-C ₅ H ₄
	Ib-49	COOH	Н	H	H	2	1	0	·H	C ₆ H ₅
45	Ib-50	соон	Н	H.	H	2	1	0	H	2-F-C ₆ H ₄
15	Ib-51	СООН	Н	н	H	2	1	0	H.	4-F-C ₆ H ₄
	Ib-52	СООН	Н	H	H	2	1	0	Η.	4-Cl-C ₅ H ₄
	Ib-53	соон	Н	н	H	2	1	0	н	4-Me-C ₆ H ₄
20	Ib-54	соон	Н	н	Ĥ	2	1	0	H	4-OMe-C ₆ H ₄
	Ib-55	соон	H	Н	H	2	1	0	H	2-thienyl
	Ib-56	соон	н	н	H	2	1	0	H	3-thienyl
25	Ib-57	соон	Н	н	н	2	1	0	Me	C ₆ H ₅
	Ib-58	соон	н	Н	Н	2	1	0	Me	4-F-C ₆ H ₄
30	Ib-59	соон	н	Н	Н	2	1	0	Ме	4-Me-C ₆ H ₄
30	Ib-60	соон	H	H	н	2	1	0	Me .	2-thienyl
	Ib-61	.СООН	н	н	H	2	1	0	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
35	Ib-62	соон	Н	н	Н	2	2	0	H	C ₆ H ₅
3.0	Ib-63	соон	н	H .	н	2	2	0	н	4-F-C ₆ H ₄
	Ib-64	СООН	H	H	H	2	2	0	н	4-Cl-C ₆ H ₄
	Ib-65	соон	H	H	H	2	2	0	Н	4-Me-C ₆ H ₄
	Ib-66	соон	H	Н	H	2	2	0	H	4-OMe-C ₆ H ₄
	Tb-67	соон	н	H	Н	2	2	0	H	2-thienyl
45 .	Ib-68	соон	Н	H	H	2	2	0	Me	C ₆ H ₅
•	·Ib-69	соон	H	H	H	2	2	0	Me	4-F-C ₆ H ₄
	Ib-70	соон	· H	Н	н	2	2	0	Me	4-Cl-C ₆ H ₄
50	Ib-71	соон	н	н	Н	2	2	0	Me	4-Me-C ₆ H ₄
	Ib-72	соон	н	Н	н	2	2	0	Me	4-OMe-C ₆ H ₄
	Гь-73	соон	H	H	· H	2	2	0	Me	2-thienyl
55	Ть-74	соон	н	н	н	2	2	0	CH ₂ C ₆ H ₅	C ₆ H ₅

		. R ⁵	_/		_((CH ₂) _y 、		Y	•
5	Table 0		I		\prod			>	-(CH ₂) _p N	I—SO ₂ —Ar
•	Table 9	R ⁶		_ N	((CH ₂)m		·	
	•		Ŕ	/ <u>\</u>	R ¹					
	No	R¹	R ⁵	R ⁶	R ⁷	У	m	р	Y	,Ar
	Ib-75	СООН	Н	H	Н	2	2	0	CH₂C ₆ H ₅	4-F-C ₆ H ₄
	Ib-76	СООН	Н	Н	Н	0	2	1	H	C ₆ H ₅
15	. Ib-77	СООН	H	H	H	0	2	1	H	4-F-C ₆ H ₄
	Тb-78	СООН	H	. H	H	0	2	1	Н	4-Cl-C ₆ H ₄
	Ib-79	СООН	H	H	H	0	2	1	Н	4-Me-C ₈ H ₄
20	Ib-80	СООН	н	Н	Н	0	2	1	H	4-OMe-C ₆ H ₄
	Ib-81	COOH	H	H	H	0	2	1	Н	2-thienyl
	Ib-82	СООН	H	Н	н	0	2	l	Me	C ₅ H ₅
25	· Ib-83	COOH	Н	, H .	H	0	2	1	Me	4-F-C ₆ H ₄
	Tb-84	СООН	H	Н	н	0	2	1	Me	4-Cl-C ₆ H ₄
	Ib-85	COOH	H	н	H	0	2	1	Ме	4-Me-C ₆ H ₄
30	Ib-86 .	СООН	Ħ	н	н	0	2	1	Me	4-OMe-C ₆ H ₄
	Гь-87	соон	H	H	. H	0	2	1	Me	2-thienyl
•	Ib-88	соон	H	Ħ	H	0	2	1	CH ₂ C ₆ H ₅	C ₆ H ₅
35	Ть-89	СООН	H. •	H	H	0	2	1	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	Ть-90	соон	H	H	H	i	1	1	Н	C ₅ H ₅
	Ib-91	соон	H	Ħ	H	1	1	1	н	4-F-C ₅ H ₄
40 :	Љ-92	соон	H	H	H	1	1	ŀ	· H	4-Cl-C ₅ H ₄
	Ib-93	соон	Ħ	H	H	1	1	1	· H	4-Me-C ₆ H ₄
	Ib-94	соон	H	. Н	H	·1	1	1	H	4-OMe-C ₆ H ₄
45	Іь-95	СООН	H	·H	H	1	1	1	Н	· 2-thienyl
	Ть-96	соон	H.	Н	H.	1	1	1	Mę	C ₆ H ₅
•	Ib-97	СООН	H	H	Н	1	1	1	Me	4-F-C ₆ H ₄
50	Гь-98	соон	н	н	H	1	1	1	Me	4-Cl-C ₆ H ₄
	Ib-99 [:]	СООН	H	н	H.	ı	1	1	Me	4:Me-C ₆ H ₄
	Ib-100	СООН	H	н	н	1	1	1	Me	4-OMe-C ₆ H ₄
55	Ib-101	СООН	н	Н	H	1	1	1	Me	2-thienyl

EP 1 505 061 A1

5	Table 10	R ⁵ .	, R	N L	\mathbb{I}			· > -	Υ -(CH ₂) _p —N	—\$O ₂ —Ar
10	No	R1	R ⁵	R ⁶	R7	У	m	P	Y	Ar
	Гь-102	СООН	· H	H	Н	1	1	1	CH ₂ C ₆ H ₅	C_6H_5
	Ib-103	СООН	н	н	Н	1	1	1	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

EP 1 505 061 A1

5	Table l	11					R ⁵		N-SO ₂ -Ar
	No	R¹	R ²	R ⁴	R ⁵	R ⁶	\mathbf{R}^{7}	_ZN	Ar
10	Ic-1	соон	н	н	н	н	н		C ₆ H ₅
15	Ic-2	соон	н	H	н	н	Н	₹ Ny	4-F-C ₆ H ₄
	Ic-3	соон	н	н	н	Н	H	- Ny	4-Me-C ₆ H
20	Ic-4	COOR	H	Н	н	Н	Ħ	N _y	2-thienyl
25	Ic-5	соон	н	н	н	H	H		C ₆ H ₆
	Ic-6	соон	н	н	H	H	н	√N _y	4-F-C ₆ H ₄
30	lc-7	соон	н	Н	н	н	H		4-Me-C ₅ H ₄
	Ic-8	соон	Ĥ	H	н	н	Н		2-thienyl
35	Ic-9	соон	Me	н	н	н	н	, Ny	4-F-C ₅ H ₄
40	Ic-10	соон	н	н	Cl	Ĥ	н	Ny	4-F-C ₆ H ₄
	Ic-11	соон	н	H	F	н	н	, Dry	4-F-C ₆ H ₄

						R	Z-(N-SO2-Ar
Table :	[2					R	N R ²	•
No	R1	R²	R4	R ⁵	R ^g	R.	_z	Ar
Ic-12	соон	н	н	H	н	н	W. Ny	4-F-C ₆ H ₄
Ic-13	соон	н	Н	H	н	Н	*	C ₆ H ₅
Ic-14	соон	Н	н	Ĥ	н	н	Y V	4-F-C ₆ H ₄
Ic-15	соон	н	н	н	Н	н	*	4-Me-C _s H
Ic-16	соон	н	H	н	н	н	*^^*	2-thieny
Ic-17	соон	Me	н	н	н	H	Y Ny	C ₆ H ₅
Ic-18	соон	Me	н	н	н	н		4-F-C ₆ H ₄
Ic-19	соон	н	Н	Cı	H	н	*_\^4	4-F-C ₆ H
Ic-20	соон	H	H	F	н	Ħ	Z/Ny	4-F-C ₆ H
Ic-21	соон	H	н	н	н	H		C ₅ H ₅
Ic-22	соон	H	н	H	н.	H		4-F-C ₈ H
Ic-23	соон	н	H	н	н	н	√N ^λ	C ₅ H ₅
Ic-24	соон	н	н	H	н	н.	√ N ^x	4-F-C ₆ H ₄
Ic-25	соон	H	H	Н	н	н	*_\	C ₅ H ₅
Ic-26	соон	н	н	Н	н	н		4-F-C ₅ H
Ic-27	соон	н	н	н	Ĥ	н	·	2-thienyl

EP 1 505 061 A1

5 .	Table 1	.3					R ^S		N-SO _{2—Ar}
10	No	R¹	R²	R4	R ⁵	R ⁶	R7	_z-(N-	Ar
10	Ic-28	соон	н	H	H	н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C _s H ₅
15	Ic-29	соон	н	Н	н	н	н	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4-F-C ₆ H ₄
20	ſc-30	соон	Н	Н	Ħ	H	H	√N _y	4-OMe-C ₈ H ₄

5	Table 1	4						R ⁶ R ⁷	Z-(N-SO ₂ -Ar R ²
	No	R1	R²	R*	R ⁵	R ⁸	R ⁷	_zN	Ar
10	Ic-31	соон	н	Н	CI	Ħ	н		2-thienyl
	Ic-32	соон	н	H	Me	н	н	, X Ny	4-F-C ₆ H ₄
15	Ic-33	соон	н	н	Me	н	Н	· **	4-Me-C ₆ H ₄
	Ic-34	соон	н	н	Cl	H	H.		C ₆ H ₅
20	Ic-35	соон	н	н	·C1	Ħ	·H	× Vy	CH₂C ₆ H ₅
	Ic-36	соон	н	н	Cl	н	н	Zhy.	4-C1-C ₅ H ₄
25	Ic-37	соон	н	н	Cl	н	н	× Ny	4-Me-C ₆ H₄
	Ic-38	соон	н	Н	F	H	н	Y Ny	4-F-C ₆ H ₄
· 30	Ic-39	соон	Me	H	F	H	н	,	2-thienyl
	Ic-40	соон	Н	н	OMe	Н	H.		4-F-C ₆ H ₄

H

2-thienyl

Ic-41 COOH H H OMe H

40

50

55

				•				A5	z-CN-SO _{2-Ar}
5	Table 1	.5						R ⁶ R ⁷ · C	H ²
	No	R1	R ²	R4	R ⁵	R ⁶	R'	_ZN	Ar
10	Ic-42	соон	н	H	OH	н	н	Z/Ny	4-F-C ₆ H ₆
	Ic-43	соон	н	н	F	н	H	· VNA	nBu
15	Ic-44	соон	Н	Н	F	н	Н	Y Ny	CH ₂ CH=CHC ₆ H ₅
	Ic-45	соон	H	н	F	н	н	× Ny	4-C ₆ H ₅ -C ₆ H ₄
20	Ic-46	соон	H	н	F	н	н	- XNA	Me
	Ic-47	соон	н	н	C ₆ H ₅	H	H	Z Ny	4-F-C ₆ H₄
25	Ic-48	соон	н	H	C ₆ H ₆	H.	H	X_N^X	nBu
	Ic-49	соон	н	H	C ₅ H ₅	н	н	× Ny	2-thienyl
30	Ic-50	соон	н	Н	F.	н	н	* NA	CH ₂ CH ₂ C ₆ H ₅
	Ic-51	соон	н	H	Н	Cl	Н	Z Ny	4-F-C ₆ H ₄
35	c-52	соон	н	Ħ	н	Cl	Н	ZNy.	2-thienyl
	Ic-53	соон	Ħ	H	Cl	H	Ĥ	. ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-F-C ₆ H ₄
40	Ic-54	соон	H	·H	. CI	. н	H	2 Ny	3-F-C ₆ H ₄
	Ic-55	соон	Me	H	Cl	н	н		4-F-C ₆ H₄
45	Ic-56	соон	Me	н	Cl	H.	H	Ny Ny	2-thienyl
	Ic-57	соон	н	Н	Cl	H.	Н	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	nBu
50	Ic-58	соон	н	H	Cl	н	н	*\\\\\	4-CF ₃ -C ₅ H ₄
	Ic-59	соон	н	н	Cl	н	н	* WA	nBu
55	Ic-60	соон	н	H	Cl	н	н	W. J.	Octyl

			•					R ^S	Z(N-SO ₂ Ar
5	Table 1	.6						R ⁶ N	R ²
	No	R ¹	R2	R4	R ⁵	R ⁶	R ⁷	_ZN	Ar
10	Ic-61	соон	н	н	Cl	н	н	W. Jay	l-naphthyl
	Ic-62	соон	н	Н	Cl	H.	н	* NA	4-NO ₂ -C ₆ H ₄
15	Ic-63	соон	н	н	Cl	. н.	н	y_ Ny	4-CN-C ₆ H ₄
	Ic-64	соон	н	Cl	H	н	Н	*	4-F-C ₆ H₄
20	Ic-65	соон	н	Cı	н	н	Н	Z Ny	2-thienyl
	Ic-66	соон	н	Cl	н	н.	н	√ Ny	nBu .
25	Ic-67	соон	Н	н	Cl	Н	Н		5-benzyl-thiophen-2- yl
	Ic-68	соон	Н	н	Cl	н	н	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Quinolin-8-yl
30	Ic-69	соон	н	н	Cl	H	н	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3-thienyl
	Ic-70	соон	н	н	Cl	Н	н		Benzo[b]thiophen-3-yl
35	Ic-71	соон	н	н	Cl	H	н	Y N	2,4-diF-C ₆ H ₃
	Ic-7.2	соон	н	н	Cl	н	.Н	Z Ny	Ме
40	' Ic-73 _.	соон	н	н	ci	H.	н	" Ny	4-OMe-C ₆ H ₄
	Ic-74	соон	н	н	Cl	н	н	Y Ny	CH2CH=CHC6H6
45	Ic-75	соон	H	H	Cl	н	н	Z Z	Pyridin-3-yl .
	Ic-76	соон	Me	н	н	H	н	w Thy	2-thienyl
50	Ic-77	соон	Me	н	Н	- H	н	y Ny	nBu
	Ic-78	соон	Н	н	Ci	H.	н	Y NY	5-Cl-thiophen-2-yl
55	Ic-79	соон	H	н	CI	H	н	* Chy	4-OH-C ₆ H ₄

EP 1 505 061 A1

5	Table I	7						R ⁵ R ⁴ N	Z——N—SO ₂ —Ar
	No	R1	R²	R4	R ⁵	R ⁶	R'	_z(N	Ar
10	Ic-80	соон	Н	н	H	н	Н		4-F-C ₆ H ₄
15	Ic-81	соон	н	н	H	н	н		4-OMe-C ₆ H ₄
	Ic-82	соон	н	H	F.	Н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-F-C ₅ H ₄
20	Ic-83	соон	н	н	F	Н	Н		4-F-C ₅ H ₄
25	Ic-84	СООН	Н	Н	F	Н	н	·	4-F-C ₆ H ₄
2 5	Ic-85	соон	Н	Н	F	Н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-OMe-C ₅ H ₄

Table 18 $(CH_2)_y = N - SO_2 - A$

No	у	m	R¹	. Ar
Id-1	1	2	соон	C ₆ H ₅
Id-2	1.	2	COOH	4-F-C ₆ H ₄
Id-3	1	2	СООН	2-thienyl
Id-4	2	1	СООН	· C ₆ H ₅
Id-5	2	1	соон	4-F-C ₆ H ₄
Id-6	2	.1	СООН	2-thienyl

5	

Table 19

 R^{5} R^{6} R^{7} R^{1} R^{21} R^{20}

Ie-3 COOH H </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>п.</th> <th>R^{1}</th> <th></th>								п.	R^{1}	
Ie-2 COOH H </td <td>No</td> <td>R1</td> <td>R4</td> <td>R5</td> <td>R⁶</td> <td>R7</td> <td>R²⁰</td> <td>R21</td> <td>Y</td> <td>Ar</td>	No	R1	R4	R5	R ⁶	R7	R ²⁰	R21	Y	Ar
Ie-3 COOH H </td <td>Ie-1</td> <td>соон</td> <td>H</td> <td>Н</td> <td>Н</td> <td>H</td> <td>H</td> <td>H</td> <td>· H</td> <td>C₆H₅</td>	Ie-1	соон	H	Н	Н	H	H	H	· H	C ₆ H ₅
Ie-4 COOH H </td <td>Ie-2</td> <td>соон</td> <td>H</td> <td>H</td> <td>Н</td> <td>Н</td> <td>н</td> <td>H</td> <td>H</td> <td>4-F-C₆H₄</td>	Ie-2	соон	H	H	Н	Н	н	H	H	4-F-C ₆ H ₄
Ie-5 COOH H </td <td>Ie-3</td> <td>соон</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>H</td> <td>Н</td> <td>н</td> <td>H</td> <td>2-thienyl</td>	Ie-3	соон	Н	Н	Н	H	Н	н	H	2-thienyl
Ie-6 COOH H </td <td>Ie-4</td> <td>соон</td> <td>H</td> <td>н</td> <td>H</td> <td>Н</td> <td>Н</td> <td>H</td> <td>Me</td> <td>C₅H₅</td>	Ie-4	соон	H	н	H	Н	Н	H	Me	C ₅ H ₅
Ie-7 COOH H </td <td>Ie-5 .</td> <td>соон</td> <td>H</td> <td>H</td> <td>H</td> <td>н</td> <td>H</td> <td>H</td> <td>Me</td> <td>4-F-C₆H₄</td>	Ie-5 .	соон	H	H	H	н	H	H	Me	4-F-C ₆ H ₄
Ie-8 COOH H </td <td>Ie-6</td> <td>соон</td> <td>н</td> <td>Ħ</td> <td>H</td> <td>Н</td> <td>H</td> <td>н</td> <td>Me</td> <td>2-thienyl</td>	Ie-6	соон	н	Ħ	H	Н	H	н	Me	2-thienyl
Ie-9 COOH H </td <td>Ie-7</td> <td>соон</td> <td>H</td> <td>Н</td> <td>H</td> <td>н</td> <td>H</td> <td>Ĥ</td> <td>CH₂C₆H₅</td> <td>$C_{\mathfrak{g}}H_{\mathfrak{g}}$</td>	Ie-7	соон	H	Н	H	н	H	Ĥ	CH ₂ C ₆ H ₅	$C_{\mathfrak{g}}H_{\mathfrak{g}}$
Ie-10 COOH H H F H<	Ie-8	соон	H	H	. Н	H	H	н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-11 COOH H H Me H	Ie-9	COOH	·H	H	H	Н	H	Н	CH ₂ C ₆ H ₅	2-thienyl
Ie-12 COOH H H F H H H Me 4-F-C ₆ H Ie-13 COOH H H F H H H CH ₂ C ₆ H ₅ 4-F-C ₆ H ₆ Ie-14 COOH H H H H H H Me 4-F-C ₆ H ₆ Ie-15 COOH H H H H H H H H-F-C ₆ H ₆ Ie-16 COOH H F H H H H H H H H H-F-C ₆ H ₆ Ie-16 COOH H F H H H H H H H H H H-F-C ₆ H ₆ Ie-17 COOH H F H <	Ie-10	соон	H	H	F	Н	H	H	н	4-F-C ₆ H ₄
Ie-13 COOH H H F H H H CH ₂ C ₆ H ₅ 4-F-C ₆ H ₆ Ie-14 COOH H H Me H H H Me 4-F-C ₆ H ₆ Ie-15 COOH H H H H H H CH ₂ C ₆ H ₅ 4-F-C ₆ H ₆ Ie-16 COOH H F H <t< td=""><td>Ie-11</td><td>соон</td><td>H</td><td>H</td><td>Me</td><td>H</td><td>H</td><td>Н</td><td>Н</td><td>4-F-C₆H₄</td></t<>	Ie-11	соон	H	H	Me	H	H	Н	Н	4-F-C ₆ H ₄
Ie-14 COOH H H Me H H H Me 4-F-C ₆ H Ie-15 COOH H H H H Me H CH ₂ C ₆ H ₅ 4-F-C ₆ H Ie-16 COOH H F H H H H H H 4-F-C ₆ H Ie-17 COOH H F H H H H Me 4-F-C ₆ H Ie-18 COOH H F H<	Ie-12	СООН	H	H	F	H	Ĥ	Н	Me	4-F-C ₅ H ₄
Ie-15 COOH H H H H Me H CH ₂ C ₆ H ₅ 4-F-C ₆ H ₆ Ie-16 COOH H F H	Ie-13	COOH	H	H	F	H	H	H	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-16 COOH H F H<	Ie-14	COOH	н	H	Me	H	H	H	Me	4-P-C ₆ H.
Ie-17 COOH H F H H H H Me 4-F-C ₆ H Ie-18 COOH H F H H H H H Me 4-F-C ₆ H Ie-19 COOH F H H H H H H H H 4-F-C ₆ H Ie-20 COOH F H H H H H H H CH ₂ C ₆ H ₆ 4-F-C ₆ H Ie-21 COOH F H H H H H H CH ₂ C ₆ H ₆ 4-F-C ₆ H	Ie-15	СООН	H	H	H	н	Ме	Н	CH₂C ₆ H ₅	··4-F-C ₆ H ₄
Ie-18 COOH H F H H H H Me 4-F-C ₆ H Ie-19 COOH F H <td>Ie-16.</td> <td>соон</td> <td>H</td> <td>F</td> <td>H</td> <td>Н</td> <td>H</td> <td>Н.</td> <td>Н</td> <td>4-F-C₆H₄</td>	Ie-16.	соон	H	F	H	Н	H	Н.	Н	4-F-C ₆ H ₄
Ie-19 COOH F H<	Ie-17	СООН	н	Ŗ	н	H	H	H	Me	4-F-C ₆ H ₄
Ie-20 COOH F H H H H H Me 4-F-C ₆ H Ie-21 COOH F H H H H H CH ₂ C ₆ H ₅ 4-F-C ₆ H	Ie-18	соон	н	F	H	H	Н	H	Me	4-F-C _c H _e
Ie-21 COOH F H H H H H CH ₂ C ₆ H ₆ 4-F-C ₆ H	Ie-19	COOH	F	H	H	H	H	H	н	4-F-C ₆ H ₄
<u></u>	Ie-20	соон	F	H	H	Н	Н	Ή	. Me	4-F-C _b H ₄
Ie-22 COOH H H H H H F H 4-F-C ₆ H	Ie-21	COOH	F	H	H	H	H	H	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	Ie-22	соон	H	H	H	Н	H	F	H.	4-F-C ₆ H ₄
Ie-23 COOH H H H H H F Me 4-F-C _e H	Ie-23	COOH	H	H	H	Н	H	P	Me	4-F-C ₆ H ₄
Ie-24 COOH H H H H H F CH ₂ C ₆ H ₅ 4-F-C ₆ H	Ie-24	СООН	H	н	H	H	H	F	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-25 COOH H H H F H H Me 4-F-C ₆ H	Ie-25	COOH	H	H	Н	F	Н	Н	Me	4-F-C ₆ H ₄
Ie-26 COOH H H H F H H CH ₂ C ₆ H ₅ 4-F-C ₆ H	Ie-26	COOH	H	H	Н	F	H	H	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-27 COOH H Br H H H H H A-F-C ₆ H	Ie-27	COOH	Н	Br	H	H	Н	Н	H	4-F-C ₆ H ₄

Table 20 R^{5} R^{23} R^{24} R^{25} R^{26} R^{26} R^{2}

	No	R¹	R ²	R ⁵	R ²³	R24	R25	R ²⁶	\mathbb{Z}^3	Y	Ar
	If-1	соон	Me	H	Me	Me	H	н	=CH-	H	4-F-C ₅ H ₄
	If-2	соон	Me	H	Me	Me	Н	H	=CH-	Me	4-F-C ₆ H ₄
	If-3	COOH.	Me	н	Me	Me	Ĥ	Н	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
İ	If-4	соон	Me	н	Me	H	Н	H	=CH-	H	4-F-C ₆ H ₄
	If-5	соон	Me	Н	Me	H	н	Н	=CH-	Me	4-F-C ₆ H ₄
	If-6	соон	Me	H	Me	H	н	Н	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	If-7	соон	H	H	-(CH	2)4-	Ħ	н	=CH-	Me	4-F-C ₆ H ₄
	If-8	соон	H	н	-(CH	2)4-	H	H	=CH∙	CH ₂ C ₅ H ₅	4-F-C ₆ H ₄
	If-9	соон	H	Н	C ₆ H ₅	Н	H	н	=CH-	· H	4-F-C ₆ H ₄
	If-10	соон	Me	H:	C ₆ H ₅	H	H	H	=CH-	Me	4-F-C ₆ H ₄
	If-11	соон	H	H	-(CH	2)3-	н	H	=CH-	н	4-F-C ₅ H ₄ .
	If-12	соон	H	H	-(CH	2)3-	н	Н	≐СН-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	If-13.	соон	H	H	Ме	Me	H	H	=CH-	H	4-F-C ₈ H ₄
	If-14	соон	H	H	Me	Me	H	H	=CH-	Me	4-F-C ₅ H ₄
	If-15	соон	H	Ħ	Me	Me	H	H	≃CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	If-16	соон	н	H	H	н	CH₂O Me	H	=CH- ·	H	4-F-C ₆ H ₄
	If-17	соон	H	Cl.	Мe	Me	H	Н	=CH-	H	4-F-C ₆ H ₄
	If-18	соон	H	Cl	Me	Me	Н	н	=СН-	Me	4-F-C ₆ H ₄
	If-19	соон	H	Cl	Me	Me	Н	H	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	If-20	соон	H	H	Н	н	н	H	=N-	CH ₂ C ₆ H ₃	4-F-C ₆ H ₄

EP 1 505 061 A1

•					Z2-Z'		.NAr
5	Table 21				(CH ₂)	N N	S O ₂
					ı	L _{R1}	
10	No	R1	Z¹	Z²	q	Y	Ar
,,	Ig-1	соон	-CH ₂ -	·CH ₂ -	0	H	4-F-C ₆ H ₄
	Ig-2	соон	-CH ₂ -	-S-	1	H	4-F-C ₆ H ₄
15	Ig-3	соон	-CH ₂ -	·S-	1	Me	4-F-C ₅ H ₄
	Ig-4	соон	-C(=O)-	-CH ₂ -	· 1	Me	4-F-C ₆ H ₄
	Ig-5	соон	·C(=O)·	-CH(Et)-	1	· Me	4-F-C ₆ H ₄
20	Ig-6	соон	-CH ₂ -	-N(COOEt)-	1	H	4-F-C ₆ H ₄
	Ig-7	соон	-CH ₂ -	-N(COOEt)-	1	Me	4-F-C ₆ H ₄
	Ig-8	соон	-CH ₂ -	-N(COOEt)-	1	H	4-OMe-C ₆ H ₄
25	Ig-9	соон	-CH ₂ -	-N(COOEt)-	1 .	Me	4-OMe-C ₅ H ₄
	Ig-10	соон	-CH2-	-N(COMe)-	1	Me	4-OMe-C ₆ H ₄
•	Ig-11	COOH	-CH ₂ -	-CH ₂ -	2	н	4-F-C ₆ H ₄
30	Ig-12	СООН	-CH ₂ -	-CH ₂ -	2	Me	4-F-C ₅ H ₄
	Ig-13	соон	-CH ₂ -	·CH ₂ -	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
	Ig-14	соон	-CH ₂ -	-CH ₂ -	2	Me .	4-QMe-C ₆ H ₄
35	Ig-15	соон	-CH ₂ -	-CH ₂ -	2	Et	4-F-C ₆ H ₄
	Ig-16	соон	-CH ₂ -	-CH ₂ -	2	Me	4-OH-C ₆ H ₄
	Ig-17	COOH	-CH ₂ -	·NH-	2	Me	4-F-C ₆ H ₄
40	Ig-18	соон	-CH₂-	-CH ₂ -	3	н .	4-F-C ₆ H ₄
	Ig-19	соон	-CH ₂	-CH ₂ -	3	Me	4-F-C ₆ H ₄
	Ig-20	соон	-CH ₂ -	-CH ₂ -	3	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
45	Ig-21	СООН	-CH ₂ -	-CH ₂ -	0	Me	4-F-C ₆ H ₄
	Ig-22	соон	-CH ₂ -	-S(=O)-	1	н	4-F-C ₅ H ₄
	Ig-23	соон	-CH ₂ -	-S(≃ O)-	1	Me	4-F-C ₆ H ₄
50	Ig-24	соон	-C(=O)-	·NH-	2	H	4-OMe-C ₆ H ₄
	Ig-25	соон	-C(=O)-	-NH-	2	Me	4-OMe-C ₆ H ₄

EP 1 505 061 A1

Table 22

Z2-Z1 N S Ar

No	R1	Z¹ .	Z²	q	Y	Ar
Ig-26	соон	-C(=NOH)-	-CH ₂ -	1	Me	4-F-C ₆ H ₄
Ig-27	соон	C(=NOMe)-	-CH2-	1	Me	4-F-C ₆ H ₄

EP 1 505 061 A1

5	Table 23					R ¹⁹ R ¹⁸	Y Ar
10	No	R¹	R17	R18	R19	Y	Ar
	Ih-1	СООН	H	н	н	н	4-F-C ₆ H ₄
	Ih-2	соон	н	н	H	Me	4-F-C ₆ H ₄
15	Ih-3	СООН	H	Н	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
-	Ih-4	COOH	H	H	Me	Н	4-F-C ₆ H ₄
	Th-5	соон	Ħ	H-	Me	Me	4-F-C ₆ H ₄
20	Ih-6	соон	H	H·	Me	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
•	Ih-7	СООН	н	H	H	. Me	2-thienyl
	Ih-8	соон	Н	H	H	Me	nBu
25	Ih-9	соон	H	H	H	CH ₂ C ₆ H ₅	2-thienyl
	Ih-10	COOH	H.	H	н	CH ₂ C ₅ H ₅	nBu
	Ih-11	соон	H	·H	H	H	2-thienyl
30	Ih-12	соон	H	H	Н	Me	4-OMe-C ₆ H ₄
	Ih-13	COOH	H	H	H	н .	4-OH-C ₆ H ₄
	Ih-14	соон	H	H	н	Н	4-OMe-C ₆ H ₄
35 .	Ih-15	COOH	H	Н	H	Me	4-OH-C ₆ H ₄
	Ih-16	соон	н	H	£t	Н	4-F-C ₆ H ₄
	Ih-17	соон	H .	H	Et	н	4-OMe-C ₆ H ₄
40	Ih-18	соон	H	H	Et	Me	4-F-C ₆ H ₄
	Ĩĥ-19	соон	н	Н	Et	Me	4-OMe-C ₆ H ₄ .

5	Table 24					R ¹⁹ N	Ar Ar
	No	R1	R17	Ris	R19	Y	Ar
10	Ih-20	СООН	H	Н	H ·	Н	C ₆ H ₅
	Ih-21	СООН	Н	· H	Н	Н	4-Me-C ₆ H ₄
	Ih-22	СООН	H	H	H	Me	C ₅ H ₅
15	Ih-23	соон	H	н	Н	· Me	4-Me-C₅H₄
	Ih-24	соон	Н	H	H	Me	CH ₂ C ₆ H ₅
	Th-25	соон	H	H	Н	Me	CH ₂ CH=CHC ₆ H ₅
20	Ih-26	соон	H	Me	Me	H	4-OMe-C ₆ H ₄
	Ih-27	соон	H	Me	Me	H	4-F-C ₆ H ₄
	Ih-28	СООН	H·	Me	Me	H.	2-thienyl
25 .	Ih-29	соон	H	Н	H ·	H	CH ₂ C ₆ H ₅
	Ih-30	СООН	H	н	Н	H	CH ₂ CH=CHC ₆ H ₅
	Іь-31	СООН	Ĥ	Me	Me	~ Me	4-F-C ₆ H ₄
30	Гь-32	соон	н	Me	Ме	Me	4-OMe-C ₆ H ₄
	Ih-33	СООН	H	Me	Me	. Me	2-thienyl
	Ih-34	соон	H	H	$C_{\mathfrak{g}}H_{\mathfrak{s}}$	Ή	4-F-C ₅ H ₄
35	Ih-35	соон	H	H	C ₆ H ₅	H	4-OMe-C ₆ H ₄
ı	Ih-36	соон	H	H	C ₆ H ₅	Me	4-F-C ₆ H₄
	Ih-37	соон	H	H	C ₆ H ₅	Me .	4-OMe-C ₆ H ₄
40	Ih-38	соон	Н	Et	Et	H	4-OMe-C ₆ H ₄
	Ih-39	соон	. H	H	H	H	4-Cl-C ₆ H ₄
	Ih-40	соон	н	H	H	н	4-CF ₃ -C ₆ H ₄
45	Ih-41	соон	H	H	H	Me	4-Cl-C ₆ H ₄
	Ih-42	СООН	H	H	Н	Ме	4-CF ₃ -C ₆ H ₄ ·
	Ih-43	СООН	H	H	H	Me .	3-thienyl
50	Ih-44	соон	H	Ħ	H	Ме	4-OCF ₃ -C ₆ H ₄
	Ih-45	СООН	Н	Et	Et	Me	4-F-C ₆ H ₄
:	Ih-46	СООН	н	Et	Et	Ме	4-OMe-C ₆ H ₄
55	Ih-47.	СООН	н	-(CI	I ₂) ₅ -	н	4-F-C ₆ H ₄

Table	2

	R ¹⁸	N R1	✓ ^{Ar}
--	-----------------	------	-----------------

No	R ¹	R17	R18	R19	Y	Ar
Th-48	СООН	H	·(CH ₂) ₅ -		H · ·	4-OMe-C ₆ H ₄
. Ih-49	СООН	н	н	Н	H	3-thienyl
Ib-50	соон	Н	H	Pr	H	4-F-C ₆ H ₄
Th-51	СООН	H	Н	tBu	Н	4-F-C ₆ H ₄
Ih-52	соон	H	Н	Pr	H	4-OMe-C ₆ H ₄
Ib-53	соон	H	H	tBu	. н	4-OMe-C ₆ H ₄
Th-54	соон	H	H	H	H	4-OCF ₃ -C ₆ H ₄
Ih-55	соон	H	-{C]	H ₂) ₅ -	Me	4-F-C ₆ H ₄
Ih-56	COOH	H	-(C)	H ₂) ₅ -	Me	4-OMe-C ₆ H ₄
Ih-57	соон	н	Н	Pr	Me	4-F-C ₆ H ₄
Ih-58	соон	H	H	tBu	Me	4-F-C ₆ H ₄
Ih-59	соон	H	H	Pr	Me	4-OMe-C ₆ H ₄
Ih-60	соон	Н	H	tBu	Me	4-OMe-C ₆ H ₄
Ih-61	СООН	Н	Н	pentyl	Me	4-F-C ₆ H ₄
Ih-62	· СООН	Н	н	pentyl	Me	4-OMe-C ₆ H ₄
Ih-63	соон	H	H	H	Et	4-OMe-C ₆ H ₄
Ih-64	соон	H	н	H	Pr	4-OMe-C ₆ H ₄
Ih-65	соон	H	H	H	'iBu	4-OMe-C ₅ H ₄
Ih-66	соон	H	Н	н	iPr	4-OMe-C ₆ H ₄
Ih-67	соон	н	Н	H	Et	4-F-C ₆ H ₄
Ih-68	соон	н	н	н	Pr	4-F-C ₅ H ₄
Ih-69	соон	н	H	H	allyl	4-F-C ₆ H ₄
Ih-70	СООН	н	н	н	propargyl	4-F-C ₆ H ₄
Ih-71	COOH	н	H	H	CH ₂ CF ₃	4-F-C ₆ H ₄
Ih-72	СООН	н	н	Н	CH ₂ CH ₂ OH	4-F-C ₆ H ₄
Ih-73	СООН	н	н	Н	cyclopropylmethyl	4-F-C ₆ H ₄
Ih-74	СООН	H	н	н	allyl	4-OMe-C ₈ H ₄

EP 1 505 061 A1

Table 26

R19 N Ar

No	R1	R17	R ¹⁸	R19	Y	Ar
Ih-75	СООН	H	Н	Н	2-methylpropene	4-OMe-C ₆ H ₄
Ih-76	соон	· H	H	H	propargyl	4-OMe-C ₆ H ₄
Ih-77	соон	H	H	H	cyclopropylmethyl	4-OMe-C ₆ H ₄
Ih-78	СООН	H	H	H	CH₂CH₂OH	4-OMe-C ₆ H ₄
Ih-79	СООН	H	H	H	cyclohexylmethyl	4-F-C ₆ H ₄
Ih-80	СООН	H	Н	H	cyclohexylmethyl	4-OMe-C ₆ H ₄
Ih-81	СООН	H	H	Н	CH ₂ OMe	4-F-C ₅ H ₄
Th-82	СООН	H	н	н	CH₂OMe	4-OMe-C ₆ H ₄
Ih-83	СООН	Me	H	н	Me	4-F-C ₆ H ₄
Ih-84	СООН	Me	H	H	Me	4-OMe-C ₆ H ₄

Table 27

N S Ar

No	R1	R ⁵	Z*	Y	Ar
Ii-1	соон	Ме	-N=	Н	4-F-C ₆ H ₄
li-2	соон	Me	·CH=	н	4-F-C ₆ H ₄
· Ii-3	соон	Me	-CH≃	Me	4-F-C ₆ H ₄

Table 28

R ⁵	0 ₂
	N Ar
Ü _{B1}	

No	R1	R ⁵	. Y	Ar
Ij-1	соон	Н	H .	4-F-C ₆ H ₄
Ij-2	СООН	Н	Ме	4-F-C ₆ H ₄
· Ij-3	соон	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

EP 1 505 061 A1

5		. Table 29			R13	N S Ar
10	No	R ¹	R13	Z14	Y	Ar
	Ik-1	соон	Ме	Me	Me	4-F-C ₈ H ₄
	Ik-2	соон	H	Me	Me	4-F-C ₆ H ₄
15	Ik-3	соон	Et	Me	н	4-F-C ₈ H ₄
	Ik-4	. соон	Pr	Me	Ħ	4-F-C ₆ H ₄
	Ik-5	соон	Et	. Me	Me	4-F-C ₆ H ₄
20	Ik-6	соон	iPr	Me	Me	4-F-C ₅ H ₄
	Ik-7	соон	Me	Pr	Me .	4-F-C ₆ H ₄
·	Tk-8	. COOH	Et .	H	Me	4-F-C ₆ H ₄
25	Ik-9	COOH.	Pr	Me	H	4-F-C ₆ H ₄
-	ľk-10	соон	Pr	Me	Me	4-F-C ₆ H ₄
	İk-11	COOH	Et	Pr·	Ħ	4-F-C ₆ H ₄
30	. Ik-12	соон	Et	Pr	H	2-thienyl
	Tk-13	соон	Et	Pr	Me	4-F-C ₆ H ₄
	Ik-14	соон	Et	Pŗ	Me	2-thienyl
35 .	Ik-15	COOH	Pr	Me	H	4-OMe-C ₆ H ₄
	Ik-16	соон	Pr	Me	Me	4-OMe-C ₅ H ₄
	Ik-17	COOH	Et	Pr	Н	4-OMe-C ₆ H ₄

5		Table 30)		R ¹³	Y N S O ₂ Ar
10	No	R¹	R13	Z14	Y	Ar
	Ik-18	соон	Et	Pr	Me	4-OMe-C ₆ H ₄
	Ik-19	соон	CH ₂ C ₆ H ₅	Me	Me	4-F-C ₆ H ₄
15	Ik-20	соон	CH ₂ C ₆ H ₅	Me	Me	4-OMe-C ₆ H ₄
	Ik-21	соон	iBu	Me	Me	4-F-C ₆ H ₄
	Ik-22	СООН	nBu '	Me	н	4-F-C ₆ H ₄
20	Ik-23	COOH	nBu	Me	Н	4-OMe-C ₆ H ₄
	ľk-24	соон	nBu	Me	. Me	4-F-C ₆ H ₄
	Ik-25	соон	nBu	Me	Me	4-OMe-C ₆ H ₄
25	Ik-26	соон	iBu	Me	Н	4-OMe-C ₆ H ₄
	Ik-27	соон	iBu	Me	Me	4-OMe-C ₆ H ₄
	Ik-28	соон	Pr	Me	Et	4-OMe-C ₆ H ₄
30	Ik-29	соон	Pr	Me	Me	4-OH-C ₆ H₄
	Ik-30	соон	CH ₂ C ₆ H ₅	Me	H	4-F-C ₆ H ₄
	Ik-31	COOH	Pr	Me	Ме	4-OEt-C ₆ H ₄
35	Ik-32	СООН	Pr	Me	proprgyl	4-OMe-C ₅ H ₄
	Ik-33	COOH .	CH ₂ C ₆ H ₅	Me	proprgyl	4-OMe-C ₆ H ₄
	Ik-34	соон	iBu	Me	Me	4-F-C ₆ H ₄ .
40	Ik-35	соон	OMe	Me	Me	4-F-C ₅ H ₄ -
	Ik-36	соон	OMe	Me	Me	4-OMe-C ₆ H ₄
	Ik-37	соон	C(=O)Et	Me	Me	4-OMe-C ₆ H ₄
45	Ik-38	соон	C(=O)Et	Me	Et	4-OMe-C ₆ H ₄
	Ik-39	соон	Pr	Me	Me	· C ₅ H ₅
50	Ik-40	соон	Pr	Me	Me	4-Me-C ₆ H ₄
•	Ik-41	соон	Pr	Me	· Me	2-F-C ₆ H ₄
	Ik-42	соон	Pr	Me.	Ме	4-Cl-C ₆ H ₄
55	Ik-43	соон	Pr	Me	Me _.	4-Br-C ₆ H ₄

[0114] The physical properties of the compounds are shown below.

Table 31

	Compound No.	physical properties
5	la-7	1 H-NMR (CDCl ₃) δ 2.95 (m, 2H), 3.28 (m, 2H), 4.62 (br, 1H), 4.81 (s, 2H), 6.84 (s, 1H), 7.06-7.22 (m, 3H), 7.38-7.72 (m, 4H), 7.71-7.74 (m, 2H); IR (CHCl ₃) 3480, 2953, 1731, 1603, 1469, 1447, 1409, 1329, 1162, 1093 cm ⁻¹ ;
10	la-8	¹ H-NMR (CDCl ₃) δ 2.95 (t, J = 6.3 Hz, 2H), 3.31 (dt, J = 5.4 and 6.3 Hz, 2H), 4.79 (t, J = 5.4 Hz, 1H), 4.84 (s, 2H), 6.90 (s, 1H), 6.99-7.22 (m, 5H), 7.41 (d, J = 7.8 Hz, 1H), 7.50 (m, 1H), 7.86 (m, 1H); IR (CHCl ₃) 3482, 3374, 2929, 1732, 1601, 1475, 1453, 1411, 1384, 1335, 1266, 1169, 1156, 1126, 1077, 1015 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₇ FN ₂ O ₄ S·0.4H ₂ O) Calcd. (%): C, 56.36; H, 4.68; N; 7.30; F, 4.95; S, 8.36 Found (%): C, 56.52; H, 4.67; N, 7.10; F, 4.69; S, 8.30
15	la-9	¹ H-NMR (CDCl ₃) δ 2.94 (m, 2H), 3.26 (m, 2H), 4.54 (t, J = 5.7 Hz, 1H), 6.86 (s, 1H), 6.97-7.27 (m, 6H), 7.37 (d, J = 7.8 Hz, 1H), 7.65-7.69 (m, 2H), 7.71-7.74 (m, 2H); IR (KBr) 3422, 3290, 2929, 1731, 1592, 1494, 1469, 1408, 1382, 1328, 1292, 1237, 1166, 1152, 1092, 1013 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₇ FN ₂ O ₄ S·0.5AcOEt) Calcd. (%): C, 57.13; H, 5.03; N, 6.66; F, 4.52; S, 7.63 Found (%): C, 57.36; H, 5.07; N, 6.94; F, 4.58; S, 7.35
20	la-12	¹ H-NMR (CDCl ₃) δ 2.92 (t, J = 6.6 Hz, 2H), 3.21-3.25 (m, 2H), 3.83 (s,3H), 4.50 (br, 1H), 4.80 (s, 2H), 6.80-6.82 (m, 3H), 7.06 (m, 1H), 7.18-7.23 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.60-7.65 (m, 2H); IR (CHCl ₃) 3481, 2967, 2945, 2842, 1732, 1598, 1580, 1498, 1468, 1441, 1409, 1330, 1260, 1155, 1096, 1047, 1030 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₂₀ N ₂ O ₅ S·0.5AcOEt) Calcd. (%): C, 58.32; H, 5.59; N, 6.48; S, 7.41 Found (%): C, 57.95; H, 5.40; N, 6.61; S, 7.73
25	la-13	¹ H-NMR (CDCl ₃) δ 2.97 (t, J = 6.3 Hz, 2H), 3.35 (m, 2H), 4.62 (t, J = 5.7 Hz, 1H), 4.82 (s, 2H), 6.86 (s, 1H), 7.00 (m, 1H), 7.11 (m, 1H), 7.19-7.26 (m, 2H), 7.43-7.51 (m, 3H); IR (CHCl ₃) 3360, 2930, 1732, 1469, 1407, 1382, 1334, 1158, 1092, 1069, 1048, 1016 cm ⁻¹ ; Elemental analysis (C ₁₆ H ₁₆ N ₂ O ₄ S ₂ ·0.4AcOEt) Calcd. (%): C, 52.89; H, 4.84; N; 7.01; S, 16.05 Found (%): C, 52.93; H, 4.88; N, 7.04; S, 16.01
30	la-14	¹ H-NMR (CDCl ₃) δ 2.94 (t, J = 6.3 Hz, 2H), 3.30 (dt, J = 6.0 and 6.3 Hz, 2H), 4.61 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.85 (s, 1H), 7.07-7.27 (m, 5H), 7.42 (d, J = 7.8 Hz, 1H), 7.84 (dd, J = 1.2 and 3.0 Hz, 1H); IR (CHCl ₃) 3481, 2930, 1732, 1469, 1410, 1331, 1157, 1101, 1076, 1015 cm ⁻¹ ; Elemental analysis (C ₁₆ H ₁₆ N ₂ O ₄ S·0.1AcOEt) Calcd. (%): C, 52.77; H, 4.54; N, 7.51; S, 17.18 Found (%): C, 52.39; H, 4.57; N, 7.40; S, 17.00
35		

	Compound No.	Physical properties
10	la-15	¹ H-NMR (CDCl ₃) δ 2.96 (t, J = 6.3 Hz, 2H), 3.29 (m, 2H), 4.56 (m, 1H), 4.81 (s, 2H), 6.88 (s, 1H), 7.03 (m, 1H), 7.13-7.21 (m, 4H), 7.39 (d, J = 7.5 Hz, 1H), 7.51-7.55 (m, 4H), 7.73-7.76 (m, 2H); IR (CHCl ₃) 2930, 1732, 1604, 1519, 1469, 1408, 1331, 1160, 1096, 1047 cm ⁻¹ ; Elemental analysis (C ₂₄ H ₂₁ FN ₂ O ₄ S·0.5AcOEt) Calcd. (%): C, 62.89; H, 5.07; N, 5.83; F, 3.83; S, 6.46 Found (%): C, 62.74; H, 4.97; N, 5.90; F, 3.82; S, 6.54
15	la-16	¹ H-NMR (CDCl ₃) δ 2.94 (t, J = 6.9 Hz, 2H), 3.26 (m, 2H), 4.51 (br, 1H), 4.81 (s, 2H), 6.86-6.94 (m, 3H), 7.03-7.11 (m, 3H), 7.19-7.24 (m, 3H), 7.37-7.63 (m, 3H), 7.64-7.70 (m, 2H); IR (KBr) 3279, 3059, 2930, 1730, 1583, 1488, 1469, 1410, 1382, 1327, 1298, 1245, 1152, 1094, 1013 cm ⁻¹ ; Elemental analysis ($C_{24}H_{22}N_2O_5S$ -0.6AcOEt) Calcd. (%): C; 62.99; H, 5.37; N, 5.57; S, 6.37 Found (%): C, 62.99; H, 5.19; N, 5.77; S, 6.47
50	la-17	¹ H-NMR (CDCl ₃) δ 2.92 (I, J = 6.3 Hz, 2H), 3.31 (m, 2H), 4.66 (m, 1H), 4.73 (s, 2H), 6.80 (s, 1H), 6.91 (m, 1H), 7.06-7.11 (m, 2H), 7.28 (m, 1H), 7.47-7.90 (m, 5H), 8.10 (dd, J = 2.7 and 6.3 Hz, 1H), 8.49 (s, 1H); IR (CHCl ₃) 3480, 2929, 1732, 1670, 1616, 1586, 1468, 1428, 1411, 1377, 1330, 1158, 1077, 1047, 1025, 1015 cm ⁻¹ ;
i5	la-20	¹ H-NMR (CDCl ₃) δ 2.31 (s, 3H), 2.95 (t, J = 6.0 Hz, 2H), 3.19 (dt, J = 6.0 and 6.3 Hz, 2H), 4.37 (t, J = 6.3 Hz, 1H), 4.82 (s, 2H), 6.98-7.18 (m, 5H), 7.30 (d, J = 7.5 Hz, 1H), 7.63-7.68 (m, 2H); IR (CHCl ₃) 2926, 1730, 1594, 1495, 1410, 1375, 1335, 1292, 1167, 1154, 1093 cm ⁻¹

Table 32 (continued)

	Compound No.	Physical properties
5	1a-25	¹ H-NMR (CDCl ₃) δ 2.62 (s, 3H), 2.90 (t, J = 6.3 Hz, 2H), 3.22 (t, J = 6.3 Hz, 2H), 4.53 (br, 1H), 5.03 (s, 2H), 6.74 (s, 1H), 6.93-7.03 (m, 4H), 7.19 (m, 1H), 7.64-7.69 (m, 2H); IR (CHCl ₃) 2940, 1729, 1594, 1495, 1465, 1438, 1408, 1373, 1329, 1292, 1167, 1154, 1093, 1074, 1046, 1014 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.5H ₂ O) Calcd. (%): C, 57.13; H, 5.05; N, 7.01; F, 4.76; S, 8.03 Found (%): C, 57.15; H, 4.99; N, 6.74; F, 4.42; S, 7.72
10	la-28	1 H-NMR (CDCl ₃) δ 2.87-2.92 (m, 2H), 3.19-3.24 (m, 2H), 3.79 (s, 3H), 4.59 (br, 1H), 4.77 (s, 2H), 6.78-7.11 (m, 6H), 6.63-7.68 (m, 2H); IR (CHCl ₃) 2942, 2837, 1731, 1622, 1594, 1492, 1455, 1409, 1333, 1292, 1167, 1153, 1093, 1051, 1014 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₅ S·0.2H ₂ O) Calcd. (%): C, 55.66; H, 4.77; N, 6.83; F, 4.63; S, 7.82 Found (%): C, 55.52; H, 4.87; N, 6.54; F, 4.45; S, 7.55
15	la-32	1 H-NMR (CDCl ₃) δ 2.87 (I, J = 6.3 Hz, 2H), 3.20-3.22 (m, 2H), 4.58 (br, 1H), 4.77 (s, 2H), 6.89 (s, 1H), 6.98-7.18 (m, 5H), 7.62-7.67 (m, 2H); IR (CHCl ₃) 3477, 2930, 1731, 1594, 1495, 1471, 1409, 1376, 1333, 1293, 1167, 1154, 1093, 1073, 1046, 1014 cm ⁻¹

20

	Compound No.	Physical properties
25	la-36	¹ H-NMR (CDCl ₃) δ 2.90 (t, J = 6.6 Hz, 2H), 3.23 (t, J = 6.6 Hz, 2H), 4.44 (br, 1H), 4.83 (s, 2H), 6.93-7.13 (m, 6H), 7.68-7.72 (m, 2H); IR (KBr) 3290, 2664, 2573, 1721, 1629, 1591, 1493, 1460, 1440, 1410, 1346, 1323, 1292, 1252, 1090, 1049, cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₆ F ₂ N ₂ O ₄ S-0.2AcOEt) Calcd. (%): C, 54.80; H, 4.31; N, 6.80; F, 9.22; S, 7.78 Found (%): C, 54.70; H, 4.27; N, 6.68; F, 9.03; S, 7.81
30	la-39	¹ H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.03 (t, J = 7.5 Hz, 2H), 3.34 (t, J = 7.5 Hz, 2H), 4.85 (s, 2H), 6.95 (s, 1H), 7.12-7.23 (m, 5H), 7.55 (d, J = 8.1 Hz, 1H), 7.74-7.79 (m, 2H); IR (CHCl ₃) 3482, 2928, 2865, 1732, 1594, 1495, 1469, 1408, 1383, 1341, 1292, 1166, 1154, 1189, 1044, 1014 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.1AcOEt) Calcd. (%): C, 58.36; H, 5.00; N, 7.02; F, 4.76; S, 8.03 Found (%): C, 58.64; H, 5.07; N, 6.90; F, 4.46; S, 7.90
35	la-41	¹ H-NMR (CDCl ₃) δ 2.35 (s, 3H), 2.78 (s, 3H), 3.02 (t, J = 8.4 Hz, 2H), 3.22 (t, J = 8.4 Hz, 2H), 4.83 (s, 2H), 7.09-7.17 (m, 5H), 7.47 (d, J = 7.5 Hz, 1H), 7.72-7.77 (m, 2H); IR (CHCl ₃) 2928, 2866, 1906, 1731, 1594, 1496, 1469, 1416, 1376, 1341, 1292, 1166, 1154, 1090, 1046, 1013 cm ⁻¹ ; Elemental analysis ($C_{20}H_{21}FN_2O_4S \cdot 0.3H_2O$) Calcd. (%): C, 58.61; H, 5.31; N, 6.83; F, 4.64; S, 7.82 Found (%): C, 58.58; H, 5.11; N, 6.61; F, 4.32; S, 7.46
40	la-42	¹ H-NMR (CDCl ₃) δ 2.62 (s, 3H), 2.78 (s, 3H), 2.99 (t, J = 7.8 Hz, 2H), 3.32 (t, J = 7.8 Hz, 2H), 5.06 (s, 2H), 6.83 (s, 1H), 6.95-7.17 (m, 4H), 7.37 (d, J = 7.8 Hz, 1H), 7.74-7.78 (m, 2H); IR (CHCl ₃) 2933, 2869, 1731, 1594, 1495, 1463, 1439, 1406, 1375, 1342, 1292, 1166, 1154, 1089, 1044, 1014 cm ⁻¹ ; Elemental analysis ($C_{20}H_{21}FN_2O_4S$) Calcd. (%): C, 59.39; H, 5.23; N, 6.93; F, 4.70; S, 7.93 Found (%): C, 59.28; H, 5.26; N, 6.75; F, 4.45; S, 7.66
45	la-43	¹ H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.00 (t, J = 7.8 Hz, 2H), 3.33 (t, J = 7.8 Hz, 2H), 3.86 (s, 3H), 4.81 (s, 2H), 6.88-7.18 (m, 6H), 7.75-7.79 (m, 2H); IR (CHCl ₃) 2930, 1731, 1594, 1490, 1455, 1342, 1166, 1154, 1089, 1045, 1014 cm ⁻¹
50	la-44	¹ H-NMR (CDCl ₃) δ 2.78 (s, 3H); 2.98 (i, J = 7.2 Hz, 2H), 3.32 (i, J = 7.2 Hz, 2H), 4.83 (s, 2H), 7.01 (s, 1H), 7.11-7.20 (m, 3H), 7.47 (s, 1H); 7.74-7.79 (m, 2H); IR (CHCl ₃) 3481, 2928, 2864, 1732, 1594, 1496, 1471, 1342, 1293, 1241, 1166, 1154, 1089, 1072, 1041, 1014 cm ⁻¹
55	la-45	¹ H-NMR (CDCl ₃) δ 2.78 (s, 3H), 2.97 (t, J = 6.9 Hz, 2H), 3.31 (t, J = 6.9 Hz, 2H), 4.83 (s, 2H), 6.97-7.19 (m, 6H), 7.75-7.79 (m, 2H); IR (KBr) 2927, 1730, 1626, 1592, 1489, 1458, 1338, 1293, 1236, 1153, 1087, 1039, 1013 cm ⁻¹ ; Elemental analysis ($C_{19}H_{18}F_2N_2O_4S$ ·0.7MeOH) Calcd. (%): C, 54.92; H, 4.87; N, 6.50; F, 8.82; S, 7.44 Found (%): C, 55.19; H, 4.93; N, 6.33; F, 8.44; S, 7.24

Table 34

	Compound No.	Physical properties
5	la-47	¹ H-NMR (CDCl ₃) δ 2.98-3.03 (m, 2H), 3.38-3.43 (m, 2H), 3.84 (d, J = 6.3Hz, 2H), 4.01 (s, 2H), 5.13-5.18 (m, 2H), 5.64 (m, 1H), 6.81 (s, 1H), 7.07-7.15 (m, 3H), 7.17-7.24 (m, 2H), 7.54 (d, J = 7.8 Hz, 1H), 7.76-7.82 (m, 2H); IR (CHCl ₃) 3503, 2928, 2869, 2656, 2558, 1770, 1733, 1594, 1495, 1469, 1342, 1291, 1165, 1153 cm ⁻¹ ; Elemental analysis ($C_{21}H_{21}FN_2O_4S\cdot0.3H_2O$) Calcd. (%): C, 59.79; H, 5.16; F, 4.50; N, 6.64; S, 7.60 Found (%): C, 59.83; H, 4.91; F, 4.42; N, 6.67; S, 7.52
15	la-48	¹ H-NMR (CDCl ₃) δ 1.05 (s, 3H), 1.07 (s, 3H), 3.12-3.18 (m, 2H), 3.31-3.36 (m, 2H), 4.11 (m, 1H), 4.85 (s, 2H), 6.92 (s, 1H), 7.11-7.26 (m, 5H), 7.68 (d, J = 7.5 Hz, 1H), 7.83-7.88 (m, 2H); IR (CHCl ₃) 3503, 2935, 2875, 2653, 2558, 1733, 1594, 1494, 1468, 1334, 1291, 1187, 1150 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.2H ₂ O) Calcd. (%): C, 59.76; H, 5.59; F, 4.50; N, 6.64; S, 7.60 Found (%): C, 59.80; H, 5.44; F, 4.48; N, 6.65; S, 7.62
20	la-51	¹ H-NMR (CDCl ₃) δ 2.82 (dd, J = 8.1 and 5.1 Hz, 2H), 3.36 (dd, J = 8.1 and 5.1 Hz, 2H), 4.37 (s, 2H), 4.77 (s, 2H), 6.69 (s, 1H), 7.05-7.30 (m, 11H), 7.79-7.84 (m, 2H); IR (CHCl ₃) 3282, 2928, 2871, 1732, 1594, 1496, 1469, 1407, 1384, 1339, 1292, 1165, 1154, 1093, 1068, 1014 cm ⁻¹ ; Elemental analysis (C ₂₅ H ₂₃ FN ₂ O ₄ S·0.8H ₂ O) Calcd. (%): C, 62.43; H, 5.16; N, 5.82; F, 3.95; S, 6.67 Found (%): C, 62.43; H, 5.39; N, 5.64; F, 3.70; S, 6.38
	la-52	¹ H-NMR (CDCl ₃) δ 2.65 (t, J = 7.8 Hz, 2H), 3.24-3.28 (m, 2H), 3.36 (s, 3H), 4.45 (s, 2H), 4.49 (s, 2H), 6.87-7.45 (m, 12H), 7.90-7.95 (m, 2H); IR (KBr) 3434, 2926, 1592, 1494, 1469, 1405, 1380, 1335, 1293, 1234, 1152, 1069, 1013 cm ⁻¹ ;
25	la-55	¹ H-NMR (CDCl ₃) δ 2.13 (s, 3H), 2.78 (t, J = 8.1 Hz, 2H), 3.19 (t, J = 8.1 Hz, 2H), 4.36 (s, 2H), 4.75 (s, 2H), 7.03-7.37 (m, 11H), 7.82-7.87 (m, 2H); IR (CHCl ₃) 2928, 2868, 1659, 1594, 1496, 1469, 1340, 1292, 1165, 1154, 1097, 1015 cm ⁻¹ ; Elemental analysis (C ₂₆ H ₂₅ FN ₂ O ₄ S) Calcd. (%): C, 64.98; H, 5.24; N, 5.83; F, 3.95; S, 6.67 Found (%): C, 65.28; H, 5.24; N, 5.59; F, 3.64; S, 6.31
30	la-56	¹ H-NMR (CDCl ₃) δ 2.58 (s, 3H), 2.79 (t, J = 7.8 Hz, 2H), 3.35 (t, J = 7.8 Hz, 2H), 4.37 (s, 2H), 4.98 (s, 2H), 6.57 (s, 1H), 6.90-7.37 (m, 10H), 7.79-7.89 (m, 2H); IR (CHCl ₃) 3482, 2934, 2871, 1731, 1594, 1496, 1455, 1439, 1406, 1341, 1292, 1165, 1154, 1093, 1070, 1029, 1013 cm ⁻¹ ; Elemental analysis ($C_{26}H_{25}FN_2O_4S$) Calcd. (%): C, 64.98; H, 5.24; N, 5.83; F, 3.95; S, 6.67 Found (%): C, 64.81; H, 5.26; N, 5.60; F, 3.75; S, 6.47
35	la-57	¹ H-NMR (CDCl ₃) δ 2.79 (t, J = 7.5 Hz, 2H), 3.36 (t, J = 7.5 Hz, 2H), 3.79 (s, 3H), 4.37 (s, 2H), 4.73 (s, 2H), 6.66 (s, 1H), 6.78-7.38 (m, 10H), 7.80-7.84 (m, 2H); IR (CHCl ₃) 2937, 1732, 1593, 1491, 1455, 1340, 1292, 1165, 1154, 1093, 1066, 1043, 1014 cm ⁻¹ ;

Table 35

Compound No.	Physical properties
la-58	¹ H-NMR (CDCl ₃) δ 2.77 (I, J = 7.8 Hz, 2H), 3.31 (I, J = 7.8 Hz, 2H), 4.36 (s, 2H), 4.75 (s, 2H), 6.74 (s, 1H), 7.04-7.32 (m, 10H), 7.81-7.86 (m, 2H); IR (CHCl ₃) 3481, 2929, 2868, 1732, 1594, 1496, 1471, 1410, 1386, 1341, 1292, 1165, 1154, 1093, 1071, 1029, 1013 cm ⁻¹ ; Elemental analysis ($C_{25}H_{22}CINF_2O_4S$) Calcd. (%): C, 59.94; H, 4.43; N, 5.59; CI, 7.08; F, 3.79; S, 6.40 Found (%): C, 59.65; H, 4.34; N, 5.48; CI, 6.71; F, 3.62; S, 6.19
la-59	¹ H-NMR (CDCl ₃) δ 2.77 (t, J = 8.1 Hz, 2H), 3.32 (t, J = 8.1 Hz, 2H), 4.36 (s, 2H), 4.76 (s, 2H), 6.76 (s, 1H), 6.80-7.37 (m, 11H), 7.81-7.86 (m, 2H); IR (KBr) 3429, 2927, 1733, 1625, 1594, 1486, 1455, 1408, 1338, 1295, 1241, 1209, 1199, 1166, 1154, 1137, 1097, 1070, 1028, 1014 cm ⁻¹ ; Elemental analysis ($C_{25}H_{22}F_2N_2O_4S$ -0.3AcOEt) Calcd. (%): C, 61.59; H, 4.81; N, 5.48; F, 7.44; S, 6.28 Found (%): C, 61.98; H, 4.83; N, 5.31; F, 7.12; S, 6.13

Table 35 (continued)

	Compound No.	Physical properties
5	la-61	¹ H-NMR (CDCl ₃) δ 2.36 (s, 3H), 2.67-2.72 (m, 2H), 3.23-3.29 (m, 2H), 4.34 (s, 2H), 4.74 (s, 2H), 5.70 (br s, 1H), 6.63 (s, 1H), 7.03 (m, 1H), 7.11-7.27 (m, 9H), 7.81-7.88 (m, 2H); IR (CHCl ₃) 3502, 2929, 2868, 2656, 2558, 1732, 1594, 1495, 1468, 1340, 1240 cm ⁻¹ ; Elemental analysis (C ₂₆ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) Calcd. (%): C, 64.50; H, 5.29; F, 3.92; N, 5.79; S, 6.62 Found (%): C, 64.50; H, 5.24; F, 3.78; N, 5.82; S, 6.61
10	la-62	mp 108-110 °C; ¹H-NMR (CDCl ₃) δ 2.75-2.80 (m, 2H), 3.28-3.34 (m, 2H), 3.77 (s, 3H), 4.27 (s, 2H), 4.64 (s, 2H), 6.13 (br s, 1H), 6.63 (s, 1H), 6.80-6.82 (m, 2H), 7.00-7.15 (m,7H), 7.24 (m, 1H), 7.75-7.80 (m, 2H); IR (Nujol) 2726, 1727, 1612, 1590, 1513, 1494, 1467, 1333, 1246, 1152 cm ⁻¹ ; Elemental analysis (C ₂₆ H ₂₅ FN ₂ O ₅ S·0.3H ₂ O) Calcd. (%): C, 62.21; H, 5.14; F, 3.78; N, 5.58; S, 6.39 Found (%): C, 62.26; H, 5.16; F, 3.56; N, 5.43; S, 6.21
15	la-63	¹ H-NMR (CDCl ₃) δ 2.86 (t, J = 7.4 Hz, 2H), 3.42 (t, J = 7.4 Hz, 2H), 4.34 (s, 2H), 4.80 (s, 2H), 5.35 (br s, 1H), 6.74 (s, 1H), 7.01 (m, 1H), 7.14-7.32(m, 7H), 7.83-7.87 (m, 2H), 7.98-8.01 (m, 2H); IR (Nujol) 2725, 1725, 1591, 1520, 1493, 1465, 1377, 1345, 1235, 1153 cm ⁻¹
20	la-64	mp 163-165 °C; ¹H-NMR (CDCl ₃) δ 2.50-2.56 (m, 2H), 3.24-3.30 (m, 2H), 4.64 (s, 2H), 4.75 (s, 2H), 6.48 (s, 1H), 6.95-7.07 (m, 3H), 7.11-7.22 (m, 3H), 7.32-7.40 (m, 2H), 7.49-7.59 (m, 2H), 7.81-7.93 (m, 4H), 8.29-8.32 (m, 2H); IR (Nujol) 3105, 3061, 1736, 1592, 1492, 1465, 1343, 1333; 1239, 1221, 1170, 1152 cm ⁻¹ ; Elemental analysis ($C_{29}H_{25}FN_2O_4S$) Calcd. (%): C, 67.43; H, 4.88; F, 3.68; N, 5.42; S, 6.21 Found (%): C, 67.20; H, 4.71; F, 3.51; N, 5.30; S, 6.04

Table 36

	Compound No.	Physical properties
30	la-65	¹ H-NMR (CDCl ₃) δ 2.94-2.99 (m, 2H), 3.41-3.46 (m, 2H), 4.57 (s, 2H), 4.79 (s, 2H), 6.77-6.90 (m, 3H), 7.06-7.25 (m, 6H), 7.41 (d, J = 7.8Hz, 1H), 7.75-7.79 (m, 2H); IR (CHCl ₃) 3503, 2929, 2655, 2558, 1733, 1594, 1495, 1469, 1342 cm ⁻¹ ; Elemental analysis ($C_{23}H_{21}FN_2O_4S_2$ ·0.6H ₂ O) Calcd. (%): C, 57.15; H, 4.63; F, 3.93; N, 5.80; S, 13.27 Found (%): C, 57.04; H, 4.48; F, 3.78, N, 5.63; S, 13.44
35	la-66	¹ H-NMR (CDCl ₃) δ 2.82 (t, J = 8.0Hz, 2H), 2.97-3.02 (m, 2H), 3.35-3.48 (m, 4H), 4.79 (s, 2H), 5.99 (bs. 1H), 6.83 (s, 1H), 7.05-7.28 (m, 10H), 7.54 (d, J = 7.5Hz, 1H), 7.73-7.78 (m, 2H); IR (CHCl ₃) 3503, 2932, 2869, 2655, 2558, 1733, 1594, 1496, 1468, 1334 cm ⁻¹ ; Elemental analysis (C ₂₈ H ₂₅ FN ₂ O ₄ S·0.5H ₂ O) Calcd. (%): C, 63.79; H, 5.35; F, 3.88; N, 5.72; S, 6.55 Found (%): C, 64.02; H, 5.29; F, 3.60, N, 5.75; S, 6.26
40	la-69	¹ H-NMR (CDCl ₃) δ 1.86 (m, 2H), 2.75 (t, J = 6.3 Hz, 2H), 3.00 (m, 2H), 4.58 (t, J = 5.7 Hz, 1H), 4.83 (s, 2H), 6.83 (s, 1H), 7.06-7.24 (m, 5H), 7.45 (d, J = 7.8 Hz, 1H), 7.70-7.75 (m 2H); IR (CHCl ₃) 3780, 3369, 2936, 1732, 1594, 1495, 1468, 1410, 1381, 1334, 1292, 1240, 1167, 1154, 1093, 1046, 1014 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.2AcOEt) Calcd. (%): C, 58.28; H, 5.09; N, 6.87; F, 4.66; S, 7.86 Found (%): C, 58.39; H, 5.14; N, 6.96; F, 4.52; S, 7.72
4 5	la-74	¹ H-NMR (CDCl ₃) δ 1.83-1.91 (m, 2H), 2.75 (l, J = 7.2 Hz, 2H), 2.97-3.04 (m, 2H), 4.56 (m, 1H), 4.82 (s, 2H), 6.82 (s, 1H), 6.95-7.12 (m, 5H), 7.19-7.25 (m, 3H), 7.34-7.49 (m, 3H), 7.67-7.75 (m, 2H); IR (CHCl ₃) 3480, 2935, 1732, 1584, 1488, 1469, 1412, 1376, 1332, 1298, 1246, 1154, 1095, 1045, 1022 cm ⁻¹ ; Elemental analysis (C ₂₅ H ₂₄ N ₂ O ₅ S·0.3H ₂ O) Calcd. (%): C, 63.90; H, 5.28; N, 5.96; S, 6.82 Found (%): C, 63.95; H, 5.51; N, 5.72; S, 6.39
50	la-81	¹ H-NMR (CDCl ₃) δ 1.91 (m, 2H), 2.73 (s, 3H), 2.81 (t, J = 6.9 Hz, 2H), 3.60 (t, J = 7.2 Hz, 1H), 4.86 (s, 2H), 6.95 (s, 1H), 7.10-7.23 (m, 5H), 7.54 (d, J = 7.8 Hz, 1H), 7.73 (m, 2H); IR (CHCl ₃) 3481, 2932, 2868, 1731, 1615, 1594, 1494, 1468, 1407, 1378, 1342, 1292, 1166, 1154, 1090, 1014 cm ⁻¹
55	la-85	1 H-NMR (CDCl ₃) δ 1.68-1.77 (m, 2H), 2.56 (t, J = 6.9 Hz, 2H), 3.17 (t, J = 7.8 Hz, 2H), 4.31 (s, 2H), 4.80 (s, 2H), 6.67 (s, 1H), 7.03-7.38 (m, 11H), 7.71-7.77 (m, 2H); IR (CHCl ₃) 3481, 2931, 1732, 1594, 1495, 1468, 1339, 1292, 1165, 1154, 1095, 1013 cm ⁻¹

Table 36 (continued)

Compound No.	Physical properties
la-87	mp 125–126 °C; ¹H-NMR (CDCl ₃) δ 2.39 (s, 3H), 2.81 (m, 1H), 2.99 (m, 1H), 3.33–3.46 (m, 2H), 4.82 (s, 2H), 6.85 (s, 1H), 7.06–7.28 (m, 10H), 7.55 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H); IR (Nujol) 3428, 3081, 3026, 2927, 1713, 1598, 1468, 1325, 1241, 1191, 1149 cm ⁻¹ ; Elemental analysis ($C_{27}H_{28}N_2O_4S$) Calcd. (%): C, 68.04; H, 5.92; N, 5.88; S, 6.73 Found (%): C, 68.07; H, 5.82; N, 5.95; S, 6.60

10

5

Table 37

	Compound No.	Physical properties
15	la-88	¹ H-NMR (CDCl ₃) δ 2.89 (t, J = 6.6 Hz, 2H), 3.21-3.27 (m, 2H), 4.53 (t, J = 6.6 Hz, 1H), 4.81 (s, 2H), 6.92-7.02 (m, 3H), 7.13 (m, 1H), 7.30-7.34 (m, 2H), 7.59-7.62 (m, 2H); IR (KBr) 3290, 3087, 2571, 1721, 1627, 1586, 1490, 1409, 1346, 1323, 1251, 1225, 1163, 1092, 1048, 1013 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₂₆ ClFN ₂ O ₄ S) Calcd. (%): C, 52.62; H, 3.93; N, 6.82; Cl, 8.63; F, 4.62; S, 7.80 Found (%): C, 52.46; H, 3.85; N, 6.62; Cl, 8.25; F, 4.34; S, 7.64
20	la-89	¹ H-NMR (CDCl ₃) δ 2.85 (t, J = 6.6 Hz, 2H), 3.19 (m, 2H), 3.84 (s, 3H), 4.56 (br, 1H), 4.77 (s, 2H), 6.80-6.98 (m, 5H), 7.10 (m, 1H), 7.58-7.64 (m, 2H); IR (CHCl ₃) 2945, 2843, 1732, 1598, 1580, 1498, 1488, 1458, 1410, 1329, 1303, 1260, 1180, 1155, 1096, 1029 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₅ S·0.4H ₂ O) Calcd. (%): C, 55.17; H, 4.82; N, 6.77; F, 4.59; S, 7.75 Found (%): C, 55.30; H, 4.81; N, 6.56; F, 4.33, S, 7.45
25	la-90	¹ H-NMR (CDCl ₃) δ 2.91 (t, J = 6.3 Hz, 2H), 3.34-3.49 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.92-7.15 (m, 5H), 7.48-7.53 (m, 2H); IR (KBr) 3269, 2655, 2565, 1728, 1626, 1584, 1488, 1459, 1433, 1324, 1241, 1096, 1073, 1017 cm ⁻¹ ; Elemental analysis ($C_{16}H_{15}FN_2O_4S_2\cdot 0.3H_2O$) Calcd. (%): C, 49.55; H, 4.05; N, 7.22; F, 4.90; S, 16.54 Found (%): C, 49.89; H, 3.98; N, 6.98; F, 4.54; S, 16.12
30	la-91	mp 95-97°C; 1 H-NMR (CDCl ₃) δ 2.84 (m, 1H), 3.02 (m, 1H), 3.34-3.49 (m, 2H), 4.83 (s, 2H), 6.88 (s, 1H), 7.04-7.29 (m, 9H), 7.52-7.59 (m, 3H); IR (Nujol) 3429, 3087, 3029, 2932, 1713, 1615, 1469, 1406, 1340, 1242, 1190, 1151 cm ⁻¹ ; Elemental analysis ($C_{24}H_{24}N_2O_4S_2$) Calcd. (%): C, 61.52; H, 5.16; N, 5.98; S, 13.69 Found (%): C, 61.39; H, 5.06; N, 5.78; S, 13.66
35	· la-92	mp 113-114.5 °C; ¹ H-NMR (CDCl ₃) δ 2.81 (m, 1H), 2.93 (m, 1H), 3.35-3.42 (m, 2H), 4.79 (s, 2H), 6.88 (s, 1H), 7.07-7.29 (m, 9H), 7.45 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 5.1, 8.7 Hz); IR (Nujol) 3423, 3028, 1720; 1591, 1494, 1470, 1405, 1336, 1293, 1226, 1147, 1094 cm ⁻¹ ; Elemental analysis (C ₂₆ H ₂₄ ClFN ₂ O ₄ S) Calcd. (%): C, 60.64; H, 4.70; N, 5.44; Cl, 6.88; F, 3.69; S, 6.23 Found (%): C, 60.54; H, 4.60; N, 5.29; Cl, 6.70; F, 3.56; S, 6.28
40	la-93	mp 103-107 °C; 1 H-NMR (CDCl ₃) δ 3.05 (m, 2H), 3.45 (m, 2H), 3.96 (d, J = 6.6 Hz, 2H), 4.77 (s, 2H), 5.94 (dt, J = 6.6, 15.6 Hz), 6.37 (d, J = 15.6 Hz, 1H), 6.84 (s, 1H), 7.01-7.33 (m, 10H), 7.49 (d, J = 8.1 Hz, 1H), 7.82 (dd, J = 4.8, 8.7 Hz, 2H); IR (Nujol) 3456, 3058, 1725, 1591, 1493, 1469, 1405, 1334, 1292, 1235, 1165, 1153, 1091 cm ⁻¹ ; Elemental analysis ($C_{27}H_{25}FN_2O_4S\cdot0.3H_2O\cdot0.3MeOH$) Calcd. (%): C, 64.60; H, 5.32; N, 5.52; F, 3.74; S, 6.32 Found (%): C, 64.58; H, 5.33; N, 5.47; F, 3.69; S, 6.53

Table 38

lable od	
Compound No.	Physical properties
la-94	mp 126-129 °C; ¹ H-NMR (CDCl ₃) δ 1.85 (m, 1H), 2.58 (t, J = 7.8 Hz, 2H), 2.99 (m, 2H), 3.19 (t, J = 7.8 Hz, 2H), 3.39 (m, 2H), 4.80 (s, 2H), 6.86 (s, 1H), 7.07-7.29 (m, 10H), 7.50 (d, J = 8.1 Hz, 1H), 7.75 (dd, J = 5.1, 9.0 Hz, 2H); IR (Nujol) 3404, 3056, 1724, 1591, 1492, 1471, 1413, 1340, 1290, 1232, 1154, 1095 cm ⁻¹ ; Elemental analysis (C ₂₇ H ₂₇ FN ₂ O ₄ S) Calcd. (%): C, 65.57; H, 5.50; N, 5.66; F, 3.84; S, 6.48 Found (%): C, 65.48; H, 5.60; N, 5.56; F, 3.77; S, 6.35

55

Table 38 (continued)

•	Compound No.	Physical properties
5	la- 9 5	¹ H-NMR (CD ₃ OD) δ 2.39 (s, 3H), 2.80 (t, J = 7.2 Hz, 2H), 3.10-3.16 (m, 2H), 6.89 (m, 1H), 6.98-7.29 (m, 5H), 7.63-7.66 (m, 2H); IR (KBr) 3293, 2575, 1721, 1628, 1598, 1491, 1459, 1440, 1407, 1321, 1252, 1224, 1187, 1092, 1048 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.2H ₂ O) Calcd. (%): C, 57.91; H, 4.96; N, 7.11; F, 4.82; S, 8.14 Found (%): C, 57.87; H, 4.98; N, 6.85; F, 4.66, S, 7.93
10	la-96	¹ H-NMR (CDCl ₃) δ2.86 (I, J = 6.3 Hz, 2H), 3.25-3.32 (m, 2H), 4.64 (br, IN), 4.74 (s, 2H), 6.85-7.09 (m, 4H), 7.57-7.66 (m, 3H), 7.81-7.89 (m, 3H), 8.33 (s, 1H); IR (KBr) 3281, 1713, 1625, 1588, 1487, 1456, 1411, 1325, 1239, 1216, 1157, 1132, 1102, 1075 cm ⁻¹ ; Elemental analysis (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.3H ₂ O) Calcd. (%): C, 61.18; H, 4.57; N, 6.49; F, 4.40; S, 7.42 Found (%): C, 61.08; H, 4.56; N, 6.22; F, 4.09, S, 7.14
15	la- 9 7	¹ H-NMR (CD ₃ OD) δ 2.82 (t, J = 6.3 Hz, 2H), 3.26-3.44 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 6.76-7.13 (m, 4H), 7.76-7.81 (m, 2H), 8.06-8.10 (m, 2H); IR (KBr) 3280, 3104, 2938, 1721, 1626, 1606, 1583, 1526, 1487, 1410, 1349, 1310, 1254, 1225, 1164, 1092, 1047 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₆ FN ₃ O ₆ S·0.2H ₂ O) Calcd. (%): C, 50.87;H, 3.89; N, 9.89; F, 4.47; S, 7.54 Found (%): C, 50.99; H, 3.86; N, 9.59; F, 4.19, S, 7.31
20 25	la-98 la-98	¹ H-NMR (CDCl ₃) δ 2.73 (t, J = 6.3 Hz, 2H), 3.18-3.22 (m, 2H), 4.71 (t, J = 6.0 Hz, 1H), 6.63 (s, 1H), 6.81-7.05 (m, 3H), 7.45-7.53 (m, 3H), 7.89 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 5.4 Hz, 1H), 8.40 (d, J = 5.4 Hz, 1H); IR (CDCl ₃) 1732, 1487, 1457, 1408, 1328, 1162, 1135, 1079, 1045 cm ⁻¹ ; Elemental analysis (C ₂₂ H ₁₉ FN ₂ O ₄ S-0.5H ₂ O) Calcd. (%): C, 60.68; H, 4.63; N, 6.43; F, 4.36; S, 7.36 Found (%): C, 60.65; H, 4.58; N, 6.26; F, 4.10, S, 7.20
30	la-99	¹ H-NMR. (CDCl ₃) δ 2.88 (t, J = 6.0 Hz, 2H), 3.24-3.28 (m, 2H), 4.35 (br, 1H), 4.78 (s, 2H), 6.92-7.13 (m, 4H), 7.63 (d, J = 6.6 Hz, 2H), 7.79 (d, J = 6.6 Hz, 2H); IR (KBr) 3269, 2655, 2565, 1728, 1626, 1584, 1488, 1459, 1433, 1324, 1241, 1096, 1073, 1017 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₆ FN ₃ O ₄ S ₂ ·0.4H ₂ O) Calcd. (%): C, 55.85; H, 4.14; N, 10.28; F, 4.65; S, 7.85 Found (%): C, 55.91; H, 4.23; N, 9.89; F, 4.33; S, 7.40

35	Compound No.	Physical properties
40	la-100	¹ H-NMR (d ₆ -DMSO) δ 2.68 (t, J = 6.9 Hz, 2H), 2.93-2.98 (m, 2H), 4.09 (br, 1H), 4.81 (s, 2H), 6.59 (dd, J = 6.0 and 2.1 Hz, 1H), 6.70 (s, 1H), 7.00 (s, 1H), 7.09 (d, J = 6.0 Hz, 1H), 7.36-7.42 (m, 2H), 7.78-7.87 (m, 3H), 8.70 (s, 1H); IR (KBr) 3431, 2927, 1732, 1626, 1591, 1494, 1465, 1407, 1322, 1292, 1231, 1151, 1092, cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₇ FN ₂ O ₅ S·H ₂ O) Calcd. (%): C, 52.68; H, 4.67; N, 6.83; F, 4.63; S, 7.81 Found (%): C, 52.41; H, 4.72; N, 6.58; F, 4.38, S, 7.76
45	la-101	¹ H-NMR (CD ₃ OD) δ 2.91 (t, J = 6.9 Hz, 2H), 3.21 (t, J = 6.9 Hz, 2H), 6.63 (m, 1H), 6.93 (s, 1H), 7.04-7.13 (m, 4H), 7.71-7.77 (m, 2H); IR (KBr) 3303, 1721, 1633, 1592, 1557, 1494, 1466, 1440, . 1409, 1327, 1290, 1253, 1235, 1190, 1166, 1152, 1092, 1076, 1046 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₆ F ₂ N ₂ O ₄ S) Calcd. (%): C, 54.82; H, 4.09; N, 7.10; F, 9.63; S, 8.13 Found (%): C, 54.63; H, 4.05; N, 6.97; F, 9.28; S, 7.87
50	la-102	¹ H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.08 (t, J = 7.2 Hz, 2H), 3.35 (t, J = 7.2 Hz, 2H), 4.83 (s, 2H), 6.74 (m, 1H), 6.92-7.17 (m, 5H), 7.74-7.79 (m, 2H); IR (CHCl ₃) 2931, 1732, 1630, 1594, 1557, 1496, 1460, 1408, 1374, 1341, 1292, 1238, 1166, 1154, 1089, 1045 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₈ F ₂ N ₂ O ₄ S·0.4MeOH) Calcd. (%): C, 55.32; H, 4.69; N, 6.65; F, 9.02; S, 7.61 Found (%): C, 55.52; H, 4.50; N, 6.45; F, 8.70, S, 7.31
55	la-103	1 H-NMR (CDCl ₃) δ 2.87 (t, J = 7.8 Hz, 2H), 3.43 (t, J = 7.8 Hz, 2H), 4.40 (s, 2H), 4.60 (s, 2H), 6.62-7.36 (m, 12H), 7.77-7.81 (m, 2H); IR (CHCl ₃) 2930, 1732, 1629, 1593, 1496, 1457, 1406, 1329, 1292, 1154, 1098 cm ⁻¹ .

Table 39 (continued)

	Compound No.	Physical properties
5	la-104	¹ H-NMR (CDCl ₃) δ 1.83 (d, J = 7.2 Hz, 3H), 2.79-2.94 (m, 2H), 3.19-3.49 (m, 2H), 4.55 (br, 1H), 5.07 (q, J = 7.5 Hz, 1H), 6.99-7.20 (m, 5H), 7.63-7.68 (m, 2H); IR (CHCl ₃) 1725, 1594, 1495, 1466, 1409, 1331, 1292; 1167, 1153, 1092, 1062 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₈ CIFN ₂ O ₄ S·0.5H ₂ O) Calcd. (%): C, 52.60; H, 4.41; N, 6.46; C1, 8.17; F, 4.38; S, 7.39 Found (%): C, 52.64; H, 4.36; N, 6.35; CI, 7.95; F, 4.29, S, 7.42
10	la-105	¹ H-NMR (CDCl ₃) δ 1.84 (d, J = 7.2 Hz, 3H), 2.97 (t, J = 8.1 Hz, 2H); 3.31 (t, J = 8.1 Hz, 2H), 5.07 (q, J = 7.2 Hz, 1H), 7.13-7.19 (m, 5H), 7.46 (s, 1H), 7.75-7.80 (m, 2H); IR (CHCl ₃) 1726, 1594, 1495, 1465, 1375, 1342, 1292, 1166, 1154, 1090 cm ⁻¹ ; Elemental analysis (C ₂₀ H ₂₀ CIFN ₂ O ₄ S·0.3H ₂ O) Calcd. (%): C, 54.07; H, 4.67; N, 6.30; Cl, 7.98; F, 4.28; S, 7.22 Found (%): C, 54.09; H, 4.89; N, 5.99; Cl, 7.63; F, 4.03; S, 6.86
15	la-106	¹ H-NMR (CDCl ₃) δ 1.78 (d, J = 7.5 Hz, 3H), 2.77 (t, J = 8.4 Hz, 2H), 3.32 (d, J = 8.4 Hz, 2H), 4.71 (s, 1H), 5.01 (q, J = 7.5 Hz, 1H), 6.91 (s, 1H), 7.08-7.7.38 (m, 10H), 7.82-7.87 (m, 2H); IR (CHCl ₃) 1725, 1594, 1496, 1465, 1341, 1292, 1165, 1154, 1092, 1066 cm ⁻¹ ; Elemental analysis (C ₂₆ H ₂₄ CIFN ₂ O ₄ S 0.3H ₂ O) Calcd. (%): C, 60.01; H,4.76; N, 5.38; Cl, 6.81; F, 3.65; S, 6.16 Found (%): C, 60.24; H, 4.65; N, 5.25; Cl, 6.51; F, 3.55; S, 6.04

	Compound No.	Physical properties
25 30	lb-2	¹ H-NMR (d ₆ -DMSO) δ 2.54-2.68 (m, 2H), 2.89-3.06 (m, 2H), 3.35 (m, 1H), 4.84 (s, 2H), 6.93-7.04 (m, 2H), 7.26-7.32 (m, 2H), 7.45-7.52 (m, 2H), 7.92-7.97 (m, 2H), 8.36 (d, J = 7.8Hz, 1H), 12.96 (br, 1H); IR (KBr) 3429, 3300, 3061, 2913, 2856, 1725, 1592, 1494, 1458, 1432, 1409, 1382, 1340, 1291, 1241, 1167, 1155, 1092, 1002 cm ⁻¹ ; Elemental analysis ($C_{19}H_{17}FN_2O_4S\cdot0.4H_2O$) Calcd. (%): C, 57.68; H, 4.54; N, 7.08; F, 4.80; S, 8.11 Found (%): C, 57.89; H, 4.36; N, 6.76; F, 4.49; S, 7.77
35	lb-6	¹ H-NMR (CD ₃ OD) δ 2.56-2.65 (m, 2H), 2.71 (s, 3H), 2.95-3.04 (m, 2H), 4.75 (d, J = 18 Hz, 1H), 4.80 (d, J = 18 Hz, 1H), 5.36 (m, 1H), 6.96-7.08 (m, 2H), 7.19-7.41 (m, 4H), 7.93-7.98 (m, 2H); IR (KBr) 3413, 2925, 2653, 2551, 1719, 1706, 1616, 1592, 1493, 1461, 1404, 1378, 1335, 1291, 1234, 1151, 1087, 1012 cm ⁻¹ ; Elemental analysis (C ₂₀ H ₁₉ FN ₂ O ₅ S·0.4AcOEt) Calcd. (%): C, 59.27; H, 5.11; N, 6:40; F, 4.34; S, 7.33 Found (%): C, 59.03; H, 4.95; N, 6.34; F, 4.17; S, 7.29
40	lb-11	¹ H-NMR (CD ₃ OD) δ 2.46-2.55 (m, 2H), 2.89-2.98 (m, 2H), 4.30 (d, J = 7.2 Hz, 1H), 4.42 (d, J = 7.2 Hz, 1H), 4.50 (d, 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 5.36 (m, 1H), 6.95-7.39 (m, 11H), 7.96-8.01 (m, 2H); IR (KBr) 3430, 2927, 2859, 1728, 1591, 1493, 1457, 1404, 1381, 1340, 1292, 1236, 1208, 1165, 1153,1092, 1052, 1012 cm ⁻¹ ;
45	lb-16	mp 162-168 °C; ¹H-NMR (d_6 -DMSO) δ 1.77 (m, 1H), 1.92 (m, 1H), 2.46-2.78 (m, 4H), 3.41 (m, 1H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.40-7.48 (m, 2H), 7.90-7.97 (m, 3H), 12.95 (br, 1H); IR (Nujol) 3261,1734,1590,1493,1469,1444,1329,1188,1168,1153 cm-¹; [α] _D ²⁴ +60.4±1.0° (c=1.012, MeOH); Elemental analysis ($C_{20}H_{19}FN_2O_4S$) Calcd. (%): C, 59.69; H, 4.76; F,4.72; N, 6.96; S, 7.97 Found (%): C, 59.51; H, 4.68; F,4.57; N, 6.77; S, 7.78
50	lb-18	¹ H-NMR (d ₆ -DMSO) δ 1.74 (m, 1H), 1.90 (m, 1H), 2.39 (s, 3H), 2.45-2.75 (m, 4H), 3.30(m, 1H), 4.79 (d, J = 19.2 Hz, 1H), 4.88 (d, J = 19.2 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.24 (d, J = 6.9 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 6.6 Hz, 1H), 12.93 (br, 1H); IR (KBr) 3272,2924,1728,1617,1598,1468,1434,1382,1319,1156 cm ⁻¹ ; [α] ₀ ²³ +76.2±1.2° (c=1.010, MeOH); Elemental analysis (C ₂₁ H ₂₂ N ₂ O ₄ S·0.5H ₂ O) Calcd. (%): C, 61.90; H, 5.69; N, 6.87; S, 7.87 Found (%): C, 62.01; H, 5.45; N, 6.81; S, 7.76

Table 41

lb-20	1H MAD (4 DMCO) \$ 1.79 (m 4H) 4.04 (m 4H) 2.49 2.90 (m 4H) 2.47 (m 4H) 4.94 (4 1-
	¹ H-NMR (d_6 -DMSO) δ 1.78 (m, 1H), 1.94 (m, 1H), 2.48-2.80 (m, 4H), 3.47 (m, 1H), 4.81 (d, J = 18.3 Hz, 1H), 4.87 (d, J = 18.3 Hz, 1H), 6.97 (m, H), 7.05 (m, 1H), 7.19 (dd, J = 3.6, 5.1 Hz, 1H), 7.26-7.32 (m, 2H), 7.66 (dd, J = 1.5, 3.6 Hz, 1H), 7.94 (dd, J = 1.5, 5.1 Hz, 1H), 8.12 (d, J = 6.9 Hz, 1H), 12.95 (br, 1H); IR (KBr) 3435,3276,2925,1727,1617,1468,1433,1405,1382,1320,1227,1182,1154 cm ⁻¹ ; [α] _D ²⁴ +70.9±1.1° (c=1.010, MeOH); Elemental analysis (C ₁₈ H ₁₈ N ₂ O ₄ S ₂ ·0.5H ₂ O) Calcd. (%): C, 54.12; H, 4.79; N, 7.01; S, 16.05 Found (%): C, 54.24; H, 4.58; N, 6.90; S, 16.14
Ib-21	¹ H-NMR (d_6 -DMSO) δ 1.77 (m, 1H), 1.95 (m, 1H), 2.46-2.76 (m, 4H), 3.40 (m, 1H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 5.1 Hz, 1H), 7.78 (dd, J = 3.0, 5.1 Hz, 1H), 7.84 (d, J = 6.6 Hz, 1H), 8.20 (m, 1H), 12.95 (br, 1H); IR (KBr) 3271,1728,1616,1468,1433,1382,1319,1206,1183,1153,1101,1075 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₈ N ₂ O ₄ S ₂ ·0.4H ₂ O) Calcd. (%): C, 54.36; H, 4.76; N, 7.04; S, 16.13 Found (%): C, 54.36; H, 4.75; N, 6.92; S, 15.96
Ib-22	¹ H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 1.93 (m, 1H), 2.45-2.76 (m, 4H), 3.41 (m, 1H), 4.22 (s, 2H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.95-7.07 (m, 3H), 7.20-7.37 (m, 7H), 7.48 (d, J = 3.6 Hz, 1H), 12.97(br, 1H); IR (KBr) 3431,3271,2923,1726,1486,1453,1382,1320,1153 cm ⁻¹ ; Elemental analysis ($C_{25}H_{24}FN_2O_4S_2\cdot0.3H_2O$) Calcd. (%): C, 61.78; H, 5.10; N, 5.76; S, 13.12 Found (%): C, 61.76; H, 5.01; N, 5.67; S, 13.12
Ib-25	mp 185-196 °C; ¹H-NMR (d ₆ -DMSO) δ 1.53 (m, 1H), 1.88 (m, 1H), 2.48-2.85 (m, 4H), 2.83 (s, 3H), 4.12 (m, 1H), 4.85 (s, 2H), 6.98 (m, 1H), 7.06 (m, 1H), 7.28-7.32 (m, 2H), 7.45-7.51 (m, 2H), 7.91-7.98 (m, 2H), 12.95 (br, 1H); IR (Nujol) 2683,1715,1592,1490,1465,1473,1335,1288,1167 cm⁻¹; [α] _D ²⁴ +95.0±1.3° (c=1.004, MeOH); Elemental analysis ($C_{20}H_{19}FN_2O_4S$) Calcd. (%): C, 60.56; H, 5.08; F,4.56; N, 6.73; S, 7.70 Found (%): C, 60.34; H, 5.15; F,4.33; N, 6.47; S, 7.43
lb-27	mp 154-160°C; ¹H-NMR (d ₆ -DMSO) δ 1.50 (m, 1H), 1.85 (m, 1H), 2.42 (s, 3H), 2.52-2.78 (m, 4H), 2.80 (s, 3H), 4.10 (m, 1H), 4.82 (d, J = 18.3 Hz, 1H), 4.88 (d, J = 18.3 Hz, 1H), 6.97 (m, 1H), 7.05 (m, 1H), 7.28-7.32 (m, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 12.95 (br, 1H); IR (Nujol) 2658,1714,1598,1465,1335,1288,1165 cm ⁻¹ ; $[\alpha]_D^{24}$ +119.5±1.6° (c=1.012, MeOH); Elemental analysis ($C_{22}H_{24}N_2O_4$ S) Calcd. (%): C, 64.06; H, 5.86; N, 6.79; S, 7.77 Found (%): C, 64.02; H, 5.78; N, 6.75; S, 7.68
	lb-22 lb-25

40	Compound No.	Physical properties
45	Ib-29	Mp 185-196 °C; ¹H-NMR (d_6 -DMSO) δ 1.52 (m, 1H), 1.88 (m, 1H), 2.53-2.82 (m, 4H), 2.86 (s, 3H), 4.11 (m, 1H), 4.82 (d, J = 18.3 Hz, 1H), 4.88 (d, J = 18.3 Hz, 1H), 6.98 (m, 1H), 7.06 (m, 1H), 7.26-7.33 (m, 3H), 7.74 (dd, J = 1.5, 3.6 Hz, 1H), 8.03 (dd, J = 1.5, 5.1 Hz, 1H), 12.93 (br, 1H); IR (Nujol) 2683,1715,1592,1490,1465,1473,1335,1288,1167 cm²; [α] _D ²⁴ +95.0±1.3° (c=1.004, MeOH); Elemental analysis ($C_{20}H_{19}FN_2O_4S$) Calcd. (%): C, 60.56; H, 5.08; F,4.56; N, 6.73; S, 7.70 Found (%): C, 60.34; H, 5.15; F,4.33; N, 6.47; S, 7.43
50	Ib-30	mp 175-180°C; 1 H-NMR (d ₆ -DMSO) δ 1.36 (m, 1H), 1.88 (m, 1H), 2.52 (m, 1), 2.64-2.86 (m, 3H), 2.83 (s, 3H), 4.11 (m, 1H), 4.85 (s, 2H), 6.98 (m, 1H), 7.06 (m, 1H), 7.28-7.32 (m, 2H), 7.45 (dd, J = 1.2, 5.1 Hz, 1H), 7.83 (dd, J = 3.0, 5.1 Hz, 1H), 8.31 (dd, J = 1.2, 3.0 Hz, 1H), 12.93 (br, 1H); IR (Nujol) 3100,2662,1721,1468,1336,1323,1253,1201,1163,1138 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₂₀ N ₂ O ₄ S ₂) Calcd. (%): C, 56.42; H, 4.98; N, 6.93; S, 15.85 Found (%): C, 56.34; H, 4.88; N, 6.85; S, 15.80

Table 42 (continued)

	Compound No.	Physical properties
5	Ib-31	mp 138-140 °C; ¹H-NMR (d_6 -DMSO) δ 1.49 (m, 1H), 1.86 (m, 1H), 2.49-2.77 (m, 4H), 2.81 (s, 3H), 4.02 (m, 1H), 4.25 (s, 2H), 4.85 (s, 2H), 6.96-7.08 (m, 3H), 7.22-7.38 (m, 7H), 7.56 (d, J = 3.9 Hz, 1H), 12.97(br, 1H); IR (Nujol) 1712,1468,1449,1431,1410,1380,1341,1238,1154 cm ⁻¹ ; Elemental analysis ($C_{26}H_{26}N_2O_4S_2$) Calcd. (%): C, 63.13; H, 5.30; N, 5.66; S, 12.97 Found (%): C, 62.99; H, 5.26; N, 5.56; S, 13.00
10	lb-77	mp 160-172 °C; ¹H-NMR (d_6 -DMSO) δ 2.50 (m, 1H), 2.80-3.06 (m, 6H), 4.18 (d, J = 18.0 Hz, 1H), 4.88 (d, J = 18.0 Hz, 1H), 6.94-7.04 (m, 2H), 7.27-7.31 (m, 2H), 7.41-7.48 (m, 2H), 7.85-7.91 (m, 3H), 12.95 (br, 1H); IR (Nujol) 3387,3352,2653,1722,1593,1494,1459,1402,1330,1289,1235,1156 cm ⁻¹ ; Elemental analysis ($C_{20}H_{19}FN_2O_4S$) Calcd. (%): C, 59-69; H, 4.76; F,4.72; N, 6.96; S, 7.97 Found (%): C, 59.40; H, 4.74; F,4.60; N, 7.04; S, 7.91
20	lc-2	mp 142-143 °C; ¹H-NMR (CDCl ₃) δ 2.42 (br s, 2H), 3.31 (t, J = 5.7 Hz, 2H), 3.97 (br s, 2H), 4.87 (s, 2H), 6.21 (br s, 1H), 7.03 (s, 1H), 7.14-7.29 (m, 5H), 7.75 (d, J = 7.8 Hz, 1H), 7.85 (dd, J = 4.8, 8.7 Hz, 2H); IR (KBr) 3348, 1770, 1590, 1491, 1466, 1347, 1331, 1167, 1156, 1095 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₁₉ FN ₂ O ₄ S) Calcd. (%): C, 60.86; H, 4.62; N, 6.76; F, 4.58; S, 7.74 Found (%): C, 60.94; H, 4.65; N, 6.65; F, 4.24; S, 7.70
25	Ic-6	mp 189-194 °C (dec); 1 H-NMR (CDCl $_{3}$) δ 1.56 (m, 1H), 1.84 (m, 2H), 2.06 (m, 1H), 2.40-2,54 (m, 2H), 3.24 (m, 1H), 3.70 (m, 1H), 3.94 (dd, J = 2.1, 11.7 Hz, 1H), 4.84 (s, 2H), 6.88 (s, 1H), 7.13-7.26 (m, 5H), 7.63 (d, J = 7.8 Hz, 1H), 7.76 (dd, J = 5.1, 9.0 Hz, 2H); IR (KBr) 3423, 1706, 1590, 1492, 1468, 1405, 1332, 1288, 1240, 1148 cm $^{-1}$; Elemental analysis (C $_{21}$ H $_{21}$ FN $_{2}$ O $_{4}$ S) Calcd. (%): C, 60.56; H, 5.08; N, 6.73; F, 4.56; S, 7.70 Found (%): C, 60.51; H, 5.12; N, 6.63; F, 4.35; S, 7.58

Table 43

30	Compound No.	Physical properties
35	Ic-8	mp 152-157 °C; 1 H-NMR (CDCl ₃) δ 1.57 (m, 1H), 1.79-1.90 (m, 2H), 2.06 (m, 1H), 2.53-2.65 (m, 2H), 3.26 (m, 1H), 3.70 (m, 1H), 3.94 (m, 1H), 4.84 (s, 2H), 6.90 (s, 1H), 7.10-7.28 (4H, m), 7.51 (m, 1H), 7.58 (m, 1H), 7.64 (d, J = 7.8 Hz, 1H); IR (Nujol) 3424, 3101, 3055, 2930, 1717, 1614, 1579, 1469, 1406, 1337, 1243, 1164, 1146 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₂₀ N ₂ O ₄ S ₂) Calcd. (%): C, 56.42; H, 4.98; N, 6.93; S, 15.85 Found (%): C, 56.37; H, 4.93; N, 6.83; S, 15.68
40	lo-11	mp 212-214 °C; ¹H-NMR (d_6 -DMSO) δ 1.41-1.96 (m, 4H), 2.27-2.42 (m, 2H), 3.06 (m, 1H), 3.64-3.84 (m, 2H), 4.94 (s, 2H), 6.97 (td, J = 2.7, 9.0 Hz, 1H), 7.23 (s, 1H), 7.31 (dd, J = 2.7, 10.2 Hz, 1H), 7.36 (dd, J = 4.5, 9.0 Hz, 1H), 7.42-7.48 (m, 2H), 7.80-7.86 (m, 2H); IR (Nujol) 2654, 2558, 1709, 1624, 1591, 1489, 1458, 1407, 1334, 1319, 1283, 1241, 1192, 1155 cm ⁻¹ ; Elemental analysis ($C_{21}H_{20}F_2N_2O_4S$ -0.2AcOEt) Calcd. (%): C, 57.92; H, 4.82; F, 8.40; N, 6.20; S, 7.09 Found (%): C, 58.06; H, 4.67; F, 8.24; N, 6.36; S, 7.31
45	lc-14	mp 155-156°C; ¹H-NMR (d ₆ -DMSO) δ 1.86 (m, 1H), 2.21 (m, 1H), 3.13 (dd, J = 8.4, 9.6 Hz, 1H), 3.29-3.51 (m, 3H), 3.73 (dd, J = 7.2, 9.6 Hz, 1H), 4.89 (s, 2H), 6.98 (m, 1H), 7.06 (s, 1H), 7.11 (m, 1H), 7.31 (m, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.42-7.49 (m, 2H), 7.88-7.95 (m, 2H), 12.93 (br, 1H); IR (Nujol) 2662, 1732, 1712, 1587, 1490, 1469, 1341, 1333, 1241, 1198, 1162, 1095 cm ⁻¹ ; Elemental analysis ($C_{20}H_{19}FN_2O_4S$) Calcd. (%): C, 59.69; H, 4.76; F, 4.72; N, 6.96; S, 7.97 Found (%): C, 59.55; H, 4.66; F, 4.54; N, 6.83; S, 7.93
50	lc-16	mp 126-133 °C; ¹H-NMR (d ₆ -DMSO) δ 1.84 (m, 1H), 2.22 (m, 1H), 3.17 (dd, J = 8.7, 9.9 Hz, 1H), 3.33-3.55 (m, 3H), 3.76 (dd, J = 7.5, 9.9 Hz, 1H), 4.91 (s, 2H), 7.00 (m, 1H), 7.07 (s, 1H), 7.12 (m, 1H), 7.28-7.40 (m, 3H), 7.75 (dd, J = 1.5, 3.9 Hz, 1H), 8.05 (dd, J = 1.5, 5.1 Hz, 1H), 12.92 (br, 1H); IR (Nujol) 3230, 1752, 1726, 1469, 1333, 1211, 1146, 1098, 1030 cm ⁻¹ ; Elemental analysis ($C_{18}H_{18}N_2O_4S_2\cdot 0.2AcOEt$) Calcd. (%): C, 55.33; H, 4.84; N, 6.86; S, 15.71 Found (%): C, 55.08; H, 4.90; N, 6.83; S, 15.56
55		a, asias, ii, ii.as, ii, a.as, b, ia.aa

Table 43 (conlinued)

	Compound No.	Physical properties
5	lc-18	mp 139-140 °C; 1 H-NMR (1 d ₆ -DMSO) 5 1.84-2.16 (m, 2H), 2.20 (s, 3H), 3.30-3.76 (m, 5H), 4.88 (s, 2H), 6.77.(m, 2H), 7.02 (m, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.50-7.64 (m, 2H), 7.94-8.08 (m, 2H); IR (Nujol) 3075, 2925, 2736, 2656, 2561, 1725, 1590, 1468, 1375, 1351, 1291, 1241, 1152 cm ⁻¹
10	lc-22	mp 185-190 °C (dec); 1 H-NMR (CDCl $_{3}$) δ 2.65 (br t, 2H), 3.36 (t, J = 5.7 Hz, 2H), 3.83 (br s, 2H), 4.78 (s, 2H), 6.10 (br s, 1H), 7.06 (s, 1H), 7.11-7.27 (m, 5H), 7.77 (d, J = 8.1 Hz, 1H), 7.87 (dd, J = 5.1, 9.0 Hz, 2H); Elemental analysis (C $_{21}$ H $_{19}$ FN $_{2}$ O $_{4}$ S) Calcd. (%): C, 60.86; H, 4.62; N, 6.76; F, 4.58; S, 7.74 Found (%): C, 60.59; H, 4.68; N, 6.57; F, 4.29; S, 7.46

Table 44

	Table 44
Compound No.	Physical properties
lc-24	mp 119-124 °C (dec); ¹H-NMR (CDCl ₃) δ 1.86 (m, 2H), 2.11 (m, 2H), 2.45 (m, 2H), 2.77 (m, 1H 3.93 (m, 2H), 4.84 (s, 2H), 6.81 (s, 1H), 7.10 (m, 1H), 7.21-7.27 (m, 4H), 7.51 (d, J = 8.1 Hz, 1H 7.83 (dd, J = 5.1, 9.0 Hz, 2H); IR (KBr) 3422, 1715, 1593, 1493, 1467, 1349, 1333, 1240, 1161 1154 cm-¹; Elemental analysis ($\rm C_{21}H_{21}FN_2O_4S$) Calcd. (%): C, 60.56; H, 5.08; N, 6.73; F, 4.56 S, 7.70 Found (%): C, 60.48; H, 4.98; N, 6.67; F, 4.35; S, 7.55
lc-26	1 H-NMR (CDCl ₃) δ 1.43-1.71 (m, 4H), 2.89 (m, 1H), 3.08 (m, 1H), 3.34-3.49 (m, 2H), 3.92 (m, 1H), 4.86 (s, 2H), 6.93 (s, 1H), 7.15-7.26 (m, 5H), 7.79 (d, J = 7.8 Hz, 1H), 7.87-7.91 (m, 2H); I (KBr) 2927, 1727, 1591, 1493, 1468, 1332, 1292, 1235, 1197, 1152, 1091, 1038 cm ⁻¹ ; Element analysis (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.6H ₂ O) Calcd. (%): C, 59.03; H, 5.24; N, 6.56;F, 4.45; S, 7.50 Four (%): C, 59.38; H, 5.21; N, 6.42;F, 4.12, S, 7.11
lc-29	1 H-NMR (CDCl ₃) δ 1.26-1.65 (m, 6H), 2.97-3.21 (m, 3H), 3.82 (m, 1H), 4.36 (m, 1H), 4.82 (s, 2H), 6.86 (s, 1H), 6.99-7.26 (m, 5H), 7.61 (d, J = 4.8 Hz, 1H), 7.69-7.74 (m, 2H); IR (KBr) 342 2936, 1728, 1591, 1494, 1468, 1330, 1289, 1232, 1149, 1091 cm ⁻¹ ; Elemental analysis (C ₂₂ H ₂₃ FN ₂ O ₄ S·0.4H ₂ O) Calcd. (%): C, 60.37; H, 5.48; N, 6.40;F, 4.34; S, 7.33 Found (%): C 60.53; H, 5.49; N, 6.26;F, 3.97; S, 6.93
lc-30	mp 205-208 °C; ¹H-NMR (d ₆ -DMSO) δ 1.46-1.97 (m, 4H), 2.16-2.37 (m, 2H), 3.07 (m, 1H), 3.64-3.83 (m, 2H), 3.84 (s, 3H), 4.93 (s, 2H), 7.05 (m, 1H), 7.10-7.15 (m, 3H), 7.34 (d, J = 8. Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 9.0 Hz, 2H).
lo-31	mp 155-159 °C; 1 H-NMR (1 H-NMR (1 H-NMR) 2 H-NMR) 2 H-NMR, $^$
lc-32	mp 169-171 °C; 1 H-NMR (1 G-DMSO) 3 1.83 (m, 1H), 2.19 (m, 1H), 3.11 (dd, 3 J = 8.7, 9.3 Hz, 1H 3.29-3.50 (m, 3H), 3.71 (dd, 3 J = 7.5, 9.9 Hz, 1H), 4.84 (s, 2H), 6.93 (dd, 3 J = 1.5, 8.4 Hz, 1H), 7.0 (s, 1H), 7.13 (d, 3 J = 1.5 Hz, 1H), 7.19 (d, 3 J = 8.4 Hz, 1H), 7.42-7.50 (m, 2H), 7.89-7.96 (m, 2H 12.89 (br, 1H); IR (Nujol) 2663, 1730, 1708, 1588, 1492, 1463, 1342, 1243, 1198, 1164, 1096 1025 cm $^{-1}$; Elemental analysis (3 C 3 H 3 FN 3 O Calcd. (%): C, 60.56; H, 5.08; F, 4.56; N, 6.73 S, 7.70 Found (%): C, 60.49; H, 5.08; F, 4.27; N, 6.67; S, 7.40

Table 45

	Compound No.	Physical properties
5	Ic-33	mp 145-149 °C; ¹H-NMR (d_6 -DMSO) δ 1.83 (m, 1H), 2.20 (m, 1H), 2.36 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.34-3.54 (m, 3H), 3.74 (dd, J = 7.5, 9.6 Hz, 1H), 4.86 (s, 2H), 6.94 (dd, J = 1.5, 8.4 Hz, 1H), 7.01 (s, 1H), 7.17 (d, J = 1.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.30 (dd, J = 3.9, 5.1 Hz, 1H), 7.75 (dd, J = 1.5, 3.9 Hz, 1H), 8.05 (dd, J = 1.5, 5.1 Hz, 1H), 12.90 (br, 1H); IR (Nujol) 2662, 1705, 1484, 1463, 1348, 1246, 1156, 1034 cm ⁻¹ ; Elemental analysis ($C_{19}H_{20}N_2O_4S_2$) Calcd. (%): C, 56.42; H, 4.98; N, 6.93; S, 15.85 Found (%): C, 56.33; H, 4.85; N, 6.84; S, 15.54
15	lc-34	mp 145-146 °C; ¹H-NMR (d_6 -DMSO) δ 1.76 (m, 1H), 2.20 (m, 1H), 3.11 (t, J = 9.0 Hz, 1H), 3.27-3.48 (m, 3H), 3.72 (dd, J = 7.5, 9.6 Hz, 1H), 4.90 (s, 2H), 7.10 (s, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.37(d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.61-7.66 (m, 2H), 7.73 (m, 1H), 7.83-7.87 (m, 2H), 12.98 (br, 1H); IR (Nujol) 2663, 1731, 1471, 1446, 1340, 1242, 1198, 1162, 1099, 1029 cmr¹; Elemental analysis ($C_{20}H_{19}ClN_2O_4S$) Calcd. (%): C, 57.34; H, 4.57; Cl, 8.46; N, 6.69; S, 7.65 Found (%): C, 57.00; H, 4.48; Cl, 8.13; N, 6.71; S, 7.43
20	lc-35	¹ H-NMR (d ₆ -DMSO) δ 1.97 (m, 1H), 2.30 (m, 1H), 3.08 (l, J = 9.0 Hz, 1H), 3.29-3.59 (m, 3H), 3.68 (d, J = 8.1 Hz, 1H), 4.50 (d, J = 13.5 Hz, 1H), 4.56 (d, J = 13.5 Hz, 1H), 4.98 (s, 2H), 7.14 (dd, J = 1.8, 8.7 Hz, 1H), 7.29 (s, 1H), 7.36-7.50 (m, 6H), 7.59 (d, J = 1.8 Hz, 1H), 13.01 (br, 1H); IR (KBr) 3439, 2637, 1731, 1471, 1329, 1152 cm ⁻¹ ; Elemental analysis ($C_{21}H_{21}ClN_2O_4S\cdot0.6H_2O$) Calcd. (%): C, 56.84; H, 5.04; Cl, 7.99; N, 6.31; S, 7.23 Found (%): C, 56.96; H, 4.81; Cl, 7.61; N, 6.34; S, 7.17
25	Ic-36	mp 158-159 °C; 1 H-NMR (1 B-DMSO) 3 1.82 (m, 1H), 2.22 (m, 1H), 3.13 (t, J = 9.0 Hz, 1H), 3.28-3.50 (m, 3H), 3.72 (dd, J = 7.5, 9.3 Hz, 1H), 4.91 (s, 2H), 7.13 (dd, J = 1.8, 8.7 Hz, 1H), 7.16 (s, 1H), 7.37(d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.64-7.68 (m, 2H), 7.82-7.86 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2669, 1741, 1726, 1472, 1346, 1246, 1162, 1100, 1086, 1032 cm ⁻¹ .
30	lc-37	mp 195-196 °C; ¹H-NMR (d_6 -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 2.42 (s, 3H), 3.08 (t, J = 9.0 Hz, 1H), 3.26-3.45 (m, 3H), 3.68 (dd, J = 7.5, 9.3 Hz, 1H), 4.90 (s, 2H), 7.10 (s, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.42-7.44 (m, 4H), 7.71-7.74 (m, 2H), 12.98 (br, 1H); IR (Nujol) 2671, 1728, 1470, 1347, 1249, 1199, 1158, 1097, 1030 cm²; Elemental analysis ($C_{21}H_{21}\text{CIN}_2O_4\text{S}$) Calcd. (%): C, 58.26; H, 4.89; Cl, 8.19; N, 6.47; S, 7.41 Found (%): C, 58.18; H, 4.87; Cl, 7.92; N, 6.40; S, 7.28
35		

•

Table 46

	Compound No.	Physical properties
40 45	lc-38	mp 168-168 °C; ¹H-NMR (d_6 -DMSO) δ 1.81 (m, 1H), 2.20 (m, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.27-3.50 (m, 3H), 3.72 (dd, J = 7.5, 9.3 Hz, 1H), 4.90 (s, 2H), 6.95 (m, 1H), 7.15-7.19 (m, 2H), 7.34 (dd, J = 4.5, 9.0 Hz, 1H), 7.40-7.47 (m, 2H), 7.85-7.94 (m, 2H), 12.96 (br, 1H); IR (Nujol) 2662, 1725, 1715, 1587, 1457, 1341, 1333, 1237, 1198, 1160, 1096 cm-¹; Elemental analysis ($C_{20}H_{18}F_2N_2O_4S$) Calcd. (%): C, 57.14; H, 4.32; F, 9.04; N, 6.66; S, 7.63 Found (%): C, 57.15; H, 4.25; F, 8.79; N, 6.54; S, 7.57
50	lc-39	¹ H-NMR (d ₆ -DMSO) δ 1.80 (m, 1H), 2.22 (m, 1H), 3.15 (t, J = 9.0 Hz, 1H), 3.31-3.53 (m, 3H), 3.75 (dd, J = 7.5, 9.6 Hz, 1H), 4.92 (s, 2H), 6.96 (m, 1H), 7.15 (s, 1H), 7.21 (dd, J = 2.4, 9.9 Hz, 1H), 7.28 (dd, J = 3.9, 4.8 Hz, 1H), 7.35 (dd, J = 4.5, 9.0 Hz, 1H), 7.74 (dd, J = 1.2, 3.9 Hz, 1H), 8.03 (dd, J = 1.2, 4.8 Hz, 1H), 12.97 (br, 1H); IR (KBr) 1729, 1626, 1580, 1486, 1457, 1403, 1344, 1225, 1155 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₇ FN ₂ O ₄ S ₂) Calcd. (%): C, 52.24; H, 4.29; F, 4.59; N, 6.77; S, 15.50 Found (%): C, 52.26; H, 4.22; F, 4.46; N, 6.33; S, 15.47
55	Ic-40	mp 157-160 °C; 1 H-NMR (d ₆ -DMSO) 8 1.82 (m, 1H), 2.21 (m, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.30-3.50 (m, 3H), 3.71 (dd, J = 7.5, 9.6 Hz, 1H), 3.74 (s, 3H), 4.83 (s, 2H), 6.75 (dd, J = 2.4, 8.7 Hz, 1H), 6.88 (d, J = 2.4 Hz, 1H), 7.00 (s, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.40-7.48 (m, 2H), 7.88-7.95 (m, 2H), 12.90 (br, 1H); IR (Nujol) 3204, 1742, 1718, 1622, 1586, 1493, 1452, 1338, 1331, 1224, 1151, 1095, 1037, 1027 cm ⁻¹ ; Elemental analysis (1 C ₂₁ H ₂₁ FN ₂ O ₅ S) Calcd. (%): C, 58.32; H, 4.89; F, 4.39; N, 6.48; S, 7.41 Found (%): C, 58.02; H, 5.07; F, 4.22; N, 6.30; S,7.15

Table 46 (continued)

	Compound No.	Physical properties
5	lc-41	¹ H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.23 (m, 1H), 3.14 (i, J = 9.0 Hz, 1H), 3.30-3.52 (m, 3H), 3.75 (m, 1H), 3.75 (s, 3H), 4.85 (s, 2H), 6.76 (dd, J = 2.4, 8.7 Hz, 1H), 6.92 (d, J = 2.4 Hz, 1H), 7.01 (s, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.29 (dd, J = 3.9, 5.1 Hz, 1H), 7.75 (dd, J = 1.2, 3.6 Hz, 1H), 8.04 (dd, J = 1.2, 5.1 Hz, 1H), 12.74 (br, 1H); IR (KBr) 1727, 1622, 1580, 1488, 1454, 1403, 1345, 1226, 1155, 1031 cm ⁻¹ ; Elemental analysis ($C_{19}H_{20}N_2O_5S_2\cdot0.2H_2O$) Calcd. (%): C, 53.81; H, 4.85; N, 6.61; S, 15.12 Found (%): C, 53.85; H, 4.87; N, 6.34; S,15.01
10	lc-42	¹ H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.16 (m, 1H), 3.09 (i, J = 9.0 Hz, 1H), 3.25-3.47 (m, 3H), 3.69 (dd, J = 7.5, 9.9 Hz, 1H), 4.79 (s, 2H), 6.63 (dd, J = 2.1, 9.0 Hz, 1H), 6.72 (d, J = 2.1 Hz, 1H), 6.93 (s, 1H), 7.10 (d, J = 9.0 Hz, 1H), 7.42-7.47 (m, 2H), 7.88-7.93 (m, 2H), (d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.61-7.66 (m, 2H), 7.73 (m, 1H), 8.73 (br, 1H), 12.87 (br, 1H); IR (KBr) 3436, 1730, 1625, 1590, 1492; 1466, 1332, 1293, 1226, 1153, 1096 cm ¹ ; Elemental analysis ($C_{20}H_{19}FN_2O_5S\cdot0.7H_2O$) Calcd. (%): C, 55.73; H, 4.77; F, 4.41; N, 6.50; S, 7.44 Found (%): C, 55.69; H, 4.68; F, 4.05; N, 6.28; S, 7.19

20		Table 47
	Compound No.	Physical properties
25	lc-43	mp 119-123 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.34-1.46 (m, 2H), 1.60-1.79 (m, 2H), 2.03 (m, 1H), 2.36 (m, 1H), 3.02-3.65 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.96 (s, 2H), 6.98 (m, 1H), 7.33-7.44 (m, 3H), 12.96 (br, 1H); IR (Nujol) 3254, 1751, 1626, 1583, 1488, 1456, 1318, 1299, 1274, 1183, 1127, 1095, 1045 cm²¹; Elemental analysis ($C_{18}H_{23}FN_2O_4S$) Calcd. (%): C, 56.53; H, 6.06; F, 4.97; N, 7.32; S, 8.38 Found (%): C, 56.46; H, 5.99; F, 4.76; N, 7.19; S, 8.20
30	Ic-44	mp 178-182 °C; ¹H-NMR (d_6 -DMSO) δ 1.99 (m, 1H), 2.33 (m, 1H), 3.20 (t, J = 9.0 Hz, 1H), 3.23-3.60 (m, 3H), 3.80 (dd, J = 7.5, 9.9 Hz, 1H), 4.91 (s, 2H), 6.95 (m, 1H), 7.29 (s, 1H), 7.31-7.47 (m, 7H), 7.73-7.76 (m, 2H), 12.95 (br, 1H); IR (Nujol) 1719, 1620, 1577, 1486, 1459, 1331, 1228, 1144, 1048, 1023 cm²; Elemental analysis ($C_{22}H_{21}FN_2O_4S$) Calcd. (%): C, 61.67; H, 4.94; F, 4.43; N, 6.54; S, 7.48 Found (%): C, 61.45; H, 4.92; F, 4.27; N, 6.40; S, 7.40
35	lc-45	mp 205-207 °C; $^1\text{H-NMR}$ (d ₆ -DMSO) $^{\circ}$ $^{$
40	lc-46	mp 172-174 °C; ¹H-NMR (d_6 -DMSO) δ 2.20 (m, 1H), 2.36 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.33-3.64 (m, 3H), 3.79 (dd, J = 7.2, 9.0 Hz, 1H), 4.97 (s, 2H), 6.98 (m, 1H), 7.34 (s, 1H), 7.38 (dd, J = 4.2, 9.0 Hz, 1H), 7.44 (dd, J = 2.4, 10.2 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 1722, 1487, 1456, 1318, 1233, 1196, 1141, 1042 cm ⁻¹ ; Elemental analysis ($C_{15}H_{17}FN_2O_4S$) Calcd. (%): C, 52.93; H, 5.03; F, 5.58; N, 8.23; S, 9.42 Found (%): C, 52.76; H, 4.96; F, 5.39; N, 8.15; S, 9.20
4 5	lc-47	mp 171-173 °C; 1 H-NMR (1 G-DMSO) 3 1.88 (m, 1H), 2.26 (m, 1H), 3.17 (t, J = 9.3 Hz, 1H), 3.34-3.57 (m, 3H), 3.76 (dd, J = 6.9, 9.3 Hz, 1H), 4.93 (s, 2H), 7.12 (s, 1H), 7.32 (m, 1H), 7.39-7.48 (m, 6H), 7.63-7.68 (m, 3H), 7.89-7.96 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2668, 1736, 1592, 1493, 1476, 1347, 1335, 1258, 1244, 1187, 1166, 1154 cm 1 ; Elemental analysis (2 G- 2 H- 2 G-V-S) Calcd. (%): C, 65.26; H, 4.84; F, 3.97; N, 5.85; S, 6.70 Found (%): C, 65.29; H, 4.84; F, 3.91; N, 5.75; S, 6.78
55	lc-48	mp 161-163 °C; 1 H-NMR (d ₆ -DMSO) δ 0.89 (t, J = 7.5 Hz, 3H), 1.34-1.46 (m, 2H), 1.61-1.71 (m, 2H), 2.08 (m, 1H), 2.41 (m, 1H), 3.04-3.20 (m, 2H), 3.27-3.58 (m, 3H), 3.68-3.86 (m, 2H), 4.99 (s, 2H), 7.29-7.33 (m, 2H), 7.42-7.48 (m, 4H), 7.68-7.71 (m, 2H), 7.86 (s, 1H), 12.97 (br, 1H); IR (Nujol) 2666, 1715, 1478, 1455, 1325, 1243, 1197, 1133; 1094, 1046 cm ⁻¹ ; Elemental analysis ($C_{24}H_{28}N_2O_4$ S) Calcd. (%): C, 65.43; H, 6.41; N, 6.36; S, 7.28 Found (%): C, 65.16; H, 6.37; N, 6.24; S, 7.29

Table 48

	Compaund No.	Physical properties
5	lc-49	mp 174-178 °C; ¹H-NMR (d_6 -DMSO) δ 1.86 (m, 1H), 2.28 (m, 1H), 3.18-3.57 (m, 4H), 3.78 (dd, J = 6.9, 9.3 Hz, 1H), 4.94 (s, 2H), 7.12 (s, 1H), 7.27 (dd, J = 3.9, 5.1 Hz, 1H), 7.32 (m. 1H), 7.42-7.49 (m, 4H), 7.64-7.70 (m, 3H), 7.75 (dd, J = 1.5, 3.9 Hz, 1H), 8.02 (dd, J = 1.5, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 2664, 1738, 1714, 1476, 1345, 1336, 1251, 1187, 1157, 1020 cm ⁻¹ ; Elemental analysis ($C_{24}H_{22}N_2O_4S$) Calcd. (%): C, 61.78; H, 4.75; N, 6.00; S, 13.74 Found (%): C, 61.73; H, 4.74; N, 5.90; S, 13.62
15	lo-50	mp 160-170 °C; ¹H-NMR (d ₆ -DMSO) δ 1.99 (m, 1H), 2.32 (m, 1H), 3.00 (t, J 8.1 Hz, 1H), 3.17 (t, J = 9.0 Hz, 1H), 3.35-3.61 (m, 5H), 3.83 (dd, J = 7.5, 9.0 Hz, 1H), 4.93 (s, 2H), 6.97 (m, 1H), 7.20-7.43 (m, 8H), 12.94 (br, 1H); IR (Nujol) 3617, 3498, 2625, 1739, 1713, 1488, 1458, 1327, 1224, 1147, 1135, 1049 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}FN_2O_4S-H_2O$) Calcd. (%): C, 58.91; H, 5.62; F, 4.24; N, 6.25; S, 7.15 Found (%): C, 59.09; H, 5.51; F, 4.17; N, 6.12; S, 7.19
20	lo-51	mp 192-194 °C;¹H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.21 (m, 1H), 3.11 (t, J = 9.0 Hz, 1H), 3.27-3.50 (m, 3H), 3.73 (dd, J = 7.5, 9.3 Hz, 1H), 4.89 (d, J = 18.3 Hz, 1H), 4.95 (d, J = 18.3 Hz, 1H), 7.00 (dd, J = 1.5, 8.4 Hz, 1H), 7.11 (s, 1H), 7.40-7.51 (m, 4H), 7.87-7.93 (m, 2H), 12.97 (br, 1H); IR (Nujol) 2641, 1736, 1529, 1492, 1470, 1414, 1335, 1241, 1227, 1178, 1168, 1159 cm ⁻¹ ; Elemental analysis ($C_{20}H_{18}CIFN_2O_4S$) Calcd. (%): C, 54.98; H, 4.15; Cl, 8.11; F, 4.35; N, 6.41; S, 7.34 Found (%): C, 54.95; H, 4.07; Cl, 7.91; F, 4.33; N, 6.40; S, 7.36
25	lc-52	Mp 224-226 °C; ¹H-NMR (d_6 -DMSO) δ 1.81 (m, 1H), 2.22 (m, 1H), 3.15 (dd, J = 8.7, 9.6 Hz, 1H), 3.34-3.53 (m, 3H), 3.75 (dd, J = 7.2, 9.6 Hz, 1H), 4.90 (d, J = 18.3 Hz, 1H), 4.96 (d, J = 18.3 Hz, 1H), 7.01 (dd, J = 1.8, 8-4 Hz, 1H), 7.12 (s, 1H), 7.29 (dd, J = 3.9, 5:1 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.74 (dd, J = 1.5, 3.9 Hz, 1H), 8.04 (dd, J = 1.5, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 1729, 1472, 1341, 1327, 1236, 1200, 1157, 1032 cm ⁻¹ ; Elemental analysis ($C_{18}H_{17}CIN_2O_4S_2\cdot AcOEt$) Calcd. (%): C, 51.09; H, 4.33; Cl, 7.85; N, 6.21; S, 14.21 Found (%): C, 50.97; H, 4.22; Cl, 7.65; N, 6.31; S,14.51
30	lo-53 lo-53	Mp 133-136 °C; ¹H-NMR (d ₆ -DMSO) δ 1.93 (m, 1H), 2.30 (m, 1H), 3.19-3.59 (m, 4H), 3.80 (m, 1H), 4.89 (d, J = 18.9 Hz, 1H), 4.95 (d, J = 18.9 Hz, 1H), 7.12 (dd, J = 2.1, 8.7 Hz, 1H), 7.19 (s, 1H), 7.36-7.50 (m, 3H), 7.53 (d, J = 2.1 1 Hz, 1H), 7.69-7.88 (m, 2H), 12.99 (brs, 1H); IR (Nujol) 3093, 2668, 2575; 1714, 1598, 1472, 1416, 1376, 1351, 1304, 1263, 1248, 1223, 1189, 1164, 1127, 1108 cm ⁻¹ ; Elemental analysis ($C_{20}H_{18}CIFN_2O_4S$) Calcd. (%): C, 54.98; H, 4.15; Cl, 8.11; F, 4.35; N, 6.41; S, 7.34 Found (%): C, 54.68; H, 4.01; Cl, 7.81; F, 4.17; N, 6.38; S, 7.30

Table 49

40	Compound No.	Physical properties
45	Ic-54	mp 162-165 °C; ¹H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.20 (m, 1H), 3.11-3.52 (m, 4H), 3.75 (dd, J = 7.2, 9.6 Hz, 1H), 4.92 (d, J = 18.6 Hz, 1H), 4.94 (d, J = 18.6 Hz, 1H), 7.11 (dd, J = 2.1, 8.4 Hz, 1H), 7.16 (s, 1H), 7.37 (d, J = 8.4Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.53-7.73 (m, 4H), 12.99 (brs, 1H); IR (Nujol) 3084, 2667, 2573, 1710, 1590, 1472, 1415, 1390, 1378, 1345, 1304, 1267, 1249, 1221, 1197, 1162, 1106 cm ⁻¹ ; Elemental analysis ($C_{20}H_{18}CIFN_2O_4S$ -0.1AcOEt) Calcd. (%): C, 54.97; H, 4.25; CI, 7.95; F, 4.26; N, 6.29; S, 7.19 Found (%): C, 54.97; H, 4.11; CI, 7.74; F, 4.36; N, 6.36; S, 7.25
50	lo-55	mp 193-197 °C; ¹H-NMR (d_6 -DMSO) δ 1.94-2.02 (m, 2H), 2.21 (s, 3H), 3.15-3.69 (m, 5H), 4.92 (s, 2H), 6.88 (d, J = 1.5 Hz, 1H), 7.02 (dd, J = 1.5, 8.7 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.50-7.57 (m, 2H), 7.96-8.01 (m, 2H), 13.04 (br, 1H); IR (Nujol) 1734, 1592, 1494, 1469, 1338, 1169, 1159 cm-¹; Elemental analysis ($C_{21}H_{20}CIFN_{2}O_{4}S$) Calcd. (%): C, 55.94; H, 4.47; Cl, 7.86; F, 4.21; N, 6.21; S, 7.11 Found (%): C, 55.78; H, 4.41; Cl, 7.59; F, 4.28; N, 6.25; S, 7.10

Table 49 (continued)

	Compound No.	Physical properties
5	Ic-56	mp 196-201 °C; ¹H-NMR (d_6 -DMSO) δ 1.98-2.07 (m, 2H), 2.21 (s, 3H), 3.24-3.40 (m, 2H), 3.45-3.55 (m, 2H), 3.65 (m, 1H), 4.93 (s, 2H), 7.02-7.05 (m, 2H), 7.36-7.40 (m, 2H), 7.81 (dd, J = 1.5, 3.6 Hz, 1H), 8.13 (dd, J = 1.5, 5.1 Hz, 1H), 13.06 (br, 1H); IR (Nujol) 3278, 1770, 1739, 1470, 1346, 1325, 1231, 1221, 1159, 1089, 1059, 1027 cmr¹; Elemental analysis ($C_{19}H_{19}CIN_2O_4S_2$) Calcd. (%): C, 51.99; H, 4.36; CI, 8.08; N, 6.38; S, 14.61 Found (%): C, 51.86; H, 4.34; CI, 7.75; N, 6.36; S,14.74
10 15	Ic-57	mp 153-161 °C; 1 H-NMR (d ₆ -DMSO) δ 0.94 (t, J = 7.8 Hz, 3H), 1.39-1.52 (m, 2H), 1.67-1.77 (m, 2H), 2.13 (m, 1H), 2.31 (m, 1H), 2.31 (s, 3H), 3.20 (m, 1H), 3.33-3.43 (m, 3H), 3.54-3.76 (m, 3H), 4.96 (s, 2H), 7.07 (dd, J = 2.1, 9.0 Hz, 1H), 7.41 (d, J = 9.0 Hz, 1H), 7.56 (d, J = 2.1 Hz, 1H), 13.06 (br, 1H); IR (Nujol) 3187, 1759, 1713, 1472, 1420, 1380, 1328, 1318, 1301, 1247, 1190, 1142, 1114, 1049 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₂₅ ClN ₂ O ₄ S) Calcd. (%): C, 55.26; H, 6.10; Cl, 8.59; N, 6.78; S, 7.77 Found (%): C, 55.47; H, 6.10; Cl, 8.36; N, 6.77; S, 7.54
20	lo-58	mp 180-183 °C; ¹H-NMR (d_6 -DMSO) δ 1.85 (m, 1H), 2.24 (m, 1H), 3.13-3.55 (m, 4H), 3.77 (dd, J = 7.5, 9.6 Hz, 1H), 4.90(s, 2H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.19 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 12.95 (brs, 1H); IR (Nujol) 3092, 2730, 2665, 2553, 1723, 1695, 1612, 1473, 1403, 1378, 1329, 1289, 1268, 1245, 1233, 1189, 1163, 1140, 1106 cm ⁻¹ ; Elemental analysis($C_{21}H_{18}ClF_3N_2O_4S$) Calcd. (%): C, 51.80; H, 3.73; Cl, 7.28; F, 11.71; N, 5.75; S, 6.59 Found (%): C, 51.65; H, 3.66; Cl, 7.02; F, 11.55; N, 5.76; S, 6.72

Compound No.	Physical properties
Ic-59	mp 136-142 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (t, J = 7.2 Hz, 3H), 1.34-1.47 (m, 2H), 1.59-1.72 (m, 2H), 2.02 (m, 1H), 2.36 (m, 1H), 3.03-3.68 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.97 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 2.1Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3133, 3093, 2664, 2549, 1721, 1697, 1472, 1403, 1389, 1333, 1297, 1277, 1242, 1231, 1199, 1146, 1100 cm ⁻¹ ; Elemental analysis ($C_{18}H_{23}CIN_2O_4S$) Calcd. (%): C, 54.20; H, 5.81; Cl, 8.89; N, 7.02; S, 8.04 Found (%): C, 54.09; H, 5.74; Cl, 8.65; N, 7.00; S, 7.93
lc-60	mp 158-162 °C; 1 H-NMR (d ₆ -DMSO) δ 0.81-0.91 (m, 3H), 1.17-1.46 (m, 10H), 1.58-1.74 (m, 2H), 2.02 (m, 1H), 2.35 (m, 1H), 3.01-3.68 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.97 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 2.1Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3135, 3094, 1720, 1695, 1471, 1403, 1391, 1378, 1333, 1285, 1230, 1199, 1146, 1119 cm ⁻¹ ; Elemental analysis ($C_{22}H_{31}CIN_2O_4S$) Calcd. (%): C, 58.07; H, 6.87; Cl, 7.79; N, 6.16; S, 7.05 Found (%): C, 58.00; H, 6.82; Cl, 7.55; N, 6.20; S, 6.99
lc-61	mp 220-223 °C; ¹H-NMR (d_6 -DMSO) δ 1.92 (m, 1H), 2.29 (m, 1H, 3.15-3.60 (m, 4H), 3.83 (dd, J = 7.5, 9.3 Hz, 1H), 4.86 (s, 2H), 7.09 (s, 1H), 7.10 (dd, J = 2.1, 8.7 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.63-7.77 (m, 3H), 8.11 (m, 1H), 8.16 (m, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.75 (d, J = 7.5 Hz, 1H), 12.96 (brs, 1H); IR (Nujol) 3266, 3064, 3045, 1764, 1736, 1592, 1565, 1506, 1471, 1430, 1404, 1385, 1345, 1329, 1266, 1203, 1187, 1161, 1137, 1111 cm ⁻¹ ; Elemental analysis ($C_{24}H_{21}CIN_2O_4S\cdot0.2H_2O$) Calcd. (%): C, 61.00; H, 4.56; CI, 7.50; N, 5.93; S, 6.79 Found (%): C, 61.11; H, 4.57; CI, 7.33; N, 5.93; S, 6.63
lc-62	mp 195-198 °C; $^1\text{H-NMR}$ (d ₈ -DMSO) δ 1.88 (m, 1H), 2.24 (m, 1H), 3.13-3.59 (m, 4H), 3.77 (dd, J = 7.2, 9.3 Hz,1H), 4.89 (s, 2H), 7.09 (dd, J = 1.8, 8.7 Hz, 1H), 7.18 (s, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.43 (d, J = 1.8 Hz, 1H), 8.06 (d, J 9.0 Hz, 2H), 8.35 (d, J = 9.0 Hz, 2H), 12.97 (brs, 1H); IR (Nujol) 3108, 3068, 1738, 1606, 1530, 1472, 1414, 1401, 1376, 1348, 1320, 1303, 1261, 1238; 1227, 1200, 1179, 1165, 1134, 1103 cm ⁻¹ ; Elemental analysis($C_{20}H_{18}ClN_3O_6S$) Calcd. (%): C, 51.78; H, 3.91; Cl, 7.64; N, 9.06; S, 6.91 Found (%): C,51.59; H, 3.81; Cl, 7.34; N, 8.87; S, 6.84
lc-63	$^1\text{H-NMR}$ (d ₆ -DMSO) δ 1.83 (m, 1H); 2.22 (m, 1H), 3.12-3.83 (m, 5H), 4.83, 4.87 (each s, total 2H), 7.06-7:19 (m, 2H), 7.31-7.43 (m, 2H), 7.89-8.16 (m, 4H); IR (KBr) 3413, 3226, 3091, 2233, 1728, 1611, 1568, 1472, 1437, 1399, 1344, 1282, 1218, 1161, 1107 cm $^{-1}$.

Table 51

	Compound No.	Physical properties
5	Ic-64	Mp 205-206 °C; ¹H-NMR, $(d_{6}$ -DMSO) δ 1.92 (m, 1H), 2.19 (m, 1H), 3.10 (m, 1H), 3.34-3.51 (m, 2H), 3.69-3.79 (m, 2H), 4.90 (d, J = 18.3 Hz, 1H), 4.96 (d, J = 18.3 Hz, 1H), 7.03 (dd, J = 1.2, 7.8 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.23 (s, 1H), 7.33 (dd, J = 1.2, 7.8 Hz, 1H), 7-39-7.45 (m, 2H), 7.85-7.91 (m, 2H), 13.03 (br, 1H); IR (Nujol) 2662, 1723, 1589, 1491, 1476, 1447, 1350, 1332, 1248, 1236, 1182, 1162, 1098, 1029 cm ⁻¹ ; Elemental analysis ($C_{20}H_{18}CIFN_{2}O_{4}S$) Calcd. (%): C, 54.98; H, 4.15; Cl, 8.11; F, 4.35; N, 6.41; S, 7.34 Found (%): C, 55.04; H, 4.13; Cl, 7.79; F, 4.33; N, 6.42; S,7.32
15	lc-65	mp 170-171 °C; ¹H-NMR (d_6 -DMSO) δ 1.93 (m, 1H), 2.21 (m, 1H), 3.14 (m, 1H), 3.37-3.54 (m, 2H), 3.72-3.83 (m, 2H), 4.91 (d, J = 18.6 Hz, 1H), 4.98 (d, J = 18.6 Hz, 1H), 7.03 (dd, J = 1.2, 7.8 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.24 (s, 1H), 7.26 (dd, J = 3.9, 5.1 Hz, 1H), 7.34 (dd, J = 1.2, 8.1 Hz, 1H), 7.70 (dd, J = 1.5, 3.9 Hz, 1H), 8.01 (dd, J = 1.5, 5.1 Hz, 1H), 13.02 (br, 1H); IR (Nujol) 3204, 1755, 1728, 1554, 1453, 1401, 1338, 1326, 1196, 1146, 1033 cm²; Elemental analysis (C ₁₈ H ₁₇ ClN ₂ O ₄ S ₂) Calcd. (%): C, 50.88; H, 4.03; CI, 8.34; N, 6.59; S, 15.09 Found (%): C, 50.87; H, 3.97; CI, 8.10; N, 6.52; S, 14.89
20	lc-66	mp 169-171 °C; 1 H-NMR (d $_{8}$ -DMSO) δ 0.88 (t, J = 7.2 Hz, 3H), 1.32-1.45 (m, 2H), 1.59-1.69 (m, 2H), 2.08 (m, 1H), 2.35 (m, 1H), 2,99-3.14 (m, 2H), 3.21 (dd, J = 8.4, 9.3 Hz, 1H), 3.38-3.54 (m, 2H), 3.88 (dd, J = 6.9, 9.6 Hz, 1H), 4.04 (m, 2H), 5.00 (s, 2H), 7.06-7.14 (m, 2H), 7.37 (dd, J = 1.2, 7.5 Hz, 1H), 7.44 (s, 1H), 13.06 (br, 1H); IR (Nujol) 2660, 1715, 1555, 1480, 1451, 1404, 1327, 1246, 1182, 1140, 1096, 1041 cm ⁻¹ ; Elemental analysis ($C_{18}H_{23}CIN_{2}O_{4}S$) Calcd. (%): C, 54.20; H, 5.81; CI, 8.89; N, 7.02; S, 8.04 Found (%): C, 54.05; H, 5.76; CI, 8.72; N, 7.00; S, 8.03
30	lc-67	mp 170-173 °C; ¹ H-NMR (d_6 -DMSO) δ 1.81(m, 1H), 2.23 (m, 1H), 3.11-3.49 (m, 4H), 3.70 (dd, J = 7.2, 9.6 Hz, 1H), 4.23 (s, 2H), 4.94 (s, 2H), 7.06 (d, J = 3.9 Hz, 1H), 7.13 (dd, 2.1, 8.7 Hz, 1H), 7.18 (s, 1H), 7.21-7.36 (m, 5H), 7.40 (d, J = 8.7 Hz, 1H), 7.50 (d, J = 2.1 Hz, 1H), 7.57 (d, J = 3.9 Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3084, 3027, 2665, 2570, 1731, 1601, 1571, 1554, 1527, 1494; 1472, 1442, 1415, 1380, 1344, 1244, 1198, 1156, 1113 cm ⁻¹ ; Elemental analysis ($C_{25}H_{23}ClN_2O_4S_2$) Calcd. (%): C, 58.30; H, 4.50; Cl, 6.88; N, 5.44; S, 12.45 Found (%): C, 58.15; H, 4.39; Cl, 6.64; N, 5.39; S, 12.35

Table 52

Compound No.	Physical properties
lc-68	mp 207-210°C; 1 H-NMR (d $_{6}$ -DMSO) δ 1.85 (m, 1H), 2.20 (m, 1H), 3.17-3.57 (m, 3H), 3.88 (m, 1H), 4.13 (m, 1H), 4.88 (s, 2H), 7.09 (dd, J = 1.8, 8.7 Hz, 1H), 7.14 (s, 1H), 7.31 (d, J = 1.8 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.70 (dd, J = 4.2, 8.1 Hz, 1H), 7.76 (dd, J = 7.5, 8.1 Hz, 1H), 8.31 (dd, J = 1.5, 8.1 Hz, 1H), 8.42 (dd, J = 1.5, 7.5 Hz, 1H), 8.56 (dd, J = 1.5, 8.1 Hz, 1H), 9.05 (dd, J = 1.5, 4.2 Hz, 1H), 12.94 (brs, 1H); IR (Nujol) 3539, 3214, 3032, 2725, 2614, 1768, 1747, 1726, 1611, 1596, 1561, 1493, 1470, 1419, 1378, 1362, 1338, 1265, 1223, 1211, 1198, 1159, 1140, 1131, 1101 cm ⁻¹ ; Elemental analysis($C_{23}H_{20}CIN_{3}O_{4}S\cdot0.5H_{2}O$) Calcd. (%): C, 57.68; H, 4.42; Cl, 7.40; N, 8.77; S, 6.69 Found (%): C, 57.77; H, 4.32; Cl, 7.18; N, 8.76; S, 6.70
Ic-69	mp 166-170 °C; ¹H-NMR (d_6 -DMSO) δ 1.80 (m, 1H), 2.22 (m, 1H), 3.09-3.51 (m, 4H), 3.73 (dd, J = 7.2, 9.3Hz, 1H), 4.93 (s, 2H), 7.12 (dd, J = 1.8, 8.7 Hz, 1H), 7.16 (s, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.46 (dd, J = 1.2, 5.1 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.82 (dd, J = 3.0, 5.1 Hz, 1H), 8.33 (dd, J = 1.2, 3.0 Hz, 1H), 12.95 (brs, 1H); IR (Nujol) 3112, 3087, 2669, 1743, 1710, 1667, 1469, 1431, 1387, 1363, 1342, 1303, 1247, 1220, 1202, 1155, 1106 cm ⁻¹ ; Elemental analysis ($C_{18}H_{17}\text{CIN}_2O_4S_2$) Calcd. (%): C, 50.88; H, 4.03; CI, 8.34; N, 6.59; S, 15.09 Found (%): C, 50.76; H, 3.92; CI, 8.14; N, 6.53; S, 15.08

Table 52 (continued)

	Compound No.	Physical properties
5	Ic-70	mp 222-226°C; ¹H-NMR (d _G -DMSO) δ 1.85 (m, 1H), 2.22 (m, 1H), 3.13-3.60(m, 4H), 3.82 (dd, J = 7.2, 9.3 Hz, 1H), 4.85 (s, 2H), 7.06 (s, 1H), 7.09 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.47-7.58 (m, 2H), 8.15 (m, 1H), 8.27 (m, 1H), 8.63 (s, 1H), 12.86 (brs, 1H); IR (Nujol) 3275, 3079, 1764, 1734, 1485, 1471, 1454, 1421, 1405, 1386, 1342, 1320,1304,1260, 1241, 1221, 1186, 1159, 1158, 1147, 1114 cm ⁻¹ ; Elemental analysis ($C_{22}H_{19}\text{CIN}_2O_4S_2$) Calcd. (%): C, 55.63; H, 4.03; Cl, 7.46; N, 5.90; S, 13.50 Found (%): C, 55.46; H, 4.12; Cl, 7.17; N, 5.76; S, 13.27
15	lc-71	mp 166.5-168°C; ¹ H-NMR (d_6 -DMSO) δ 1.95 (m, 1H), 2.30 (m, 1H), 3.10-3.61(m, 4H), 3.78 (m, 1H), 4.93 (s, 2H), 7.12 (dd, J = 1.8, 8.7 Hz, 1H), 7.19-7.32 (m, 2H), 7.38 (d, J = 8.7 Hz, 1H), 7.48-7.59 (m, 2H), 7.90 (m, 1H), 13.00 (brs, 1H); IR (Nujol) 3092, 3056, 2731, 2658, 2550, 1722, 1696, 1604, 1473, 1426, 1403, 1384, 1340, 1272, 1233, 1206, 1196, 1163, 1120, 1103 cm ⁻¹ .
20	lc-72	Mp 223-225°C; ¹H-NMR (d ₆ -DMSO) δ 1.99 (m, 1H), 2.37 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.25-3.68 (m, 3H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.98 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 13.00 (br, 1H); IR (Nujol) 3275, 1764, 1744, 1473, 1426, 1398, 1384, 1381, 1361, 1338, 1305, 1253, 1222, 1202, 1175, 1150 cm ⁻¹ ; Elemental analysis ($C_{15}H_{17}CIN_2O_4S$ -0.2AcOEt) Calcd. (%): C, 50.68; H, 5.01; Cl, 9.47; N, 7.48; S, 8.56 Found (%): C, 50.48; H, 4.83; Cl, 9.49; N, 7.68; S, 8.52

25	Compound No.	Physical properties
30	lo-73	mp 196-198°C; ¹ H-NMR (d_8 -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 3.07 (m, 1H), 3.15-3.48 (m, 3H), 3.67 (dd, J = 7.5, 9.3 Hz, 1H); 3.85 (s, 3H), 4.90 (s, 2H), 7.08-7.16 (m, 2H), 7.13 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 9.0 Hz, 1H), 7.44 (d, J = 1.8, 1H), 7.77 (d, J = 9.0 Hz, 2H), 12.98 (br, 1H); IR (Nujol) 3083, 3050, 2667, 2572, 1728, 1593, 1574, 1497, 1473, 1444, 1415, 1381, 1340, 1307, 1258, 1245, 1194, 1157, 1110 cm ⁻¹ .
35	lc-74	mp 195-199°C; ¹H-NMR (d ₆ -DMSO) δ 1.98(m, 1H), 2.33 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.25-3.68 (m, 3H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.98 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3054, 3028, 2645, 2541, 1716, 1616, 1576, 1494, 1470, 1448, 1408, 1381, 1336, 1301, 1261, 1228, 1192, 1146, 1111 cm ⁻¹ ; Elemental analysis ($C_{22}H_{22}ClN_2O_4S$ -0.2AcOEt) Calcd. (%): C, 59.20; H, 4.92; Cl, 7.66; N, 6.06; S, 6.93 Found (%): C, 59.32; H, 4.76; Cl, 7.41; N, 6.19; S, 6.94
40 45	lc-75	.mp 190-193°C; ¹H-NMR (d ₆ -DMSO) δ 1.83 (m, 1H), 2.24 (m, 1H), 3.16 (m, 1H), 3.24-3.57 (m, 3H), 3.78 (dd, J = 7.2, 9.6 Hz, 1H), 4.88 (d, J = 18.2 Hz, 1H), 4.94 (d, J = 18.2 Hz, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.18 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.63 (m, 1H), 8.24 (m, 1H), 8.87 (dd, J = 1.8, 4.8 Hz, 1H), 9.00 (d, J = 1.8 Hz, 1H), 12.99 (brs, 1H); IR (Nujol) 3124, 3083, 3056, 2726, 2594, 2516, 1928, 1843, 1778, 1732, 1612, 1589, 1567, 1553, 1473, 1416, 1357, 1335, 1325, 1273, 1254, 1232, 1210, 1191,1173, 1166, 1116 cm ⁻¹ ; Elemental analysis ($C_{19}H_{18}CIN_3O_4S$) Calcd. (%): C, 54.35; H, 4.32; CI, 8.44; N, 10.01; S, 7.64 Found (%): C, 54.29; H, 4.31; CI, 8.20; N, 9.95; S, 7.43
50	Ic-76	mp 105-107 °C; 1 H-NMR (1 d ₆ -DMSO) 5 1.94-2.20 (m, 2H), 2.29 (s, 3H), 3.30-3.60 (m, 4H), 3.66 (m, 1H), 4.88 (s, 2H), 6.80-7.08 (m, 3H), 7.34 (d, J = 7.8 Hz, 1H), 7.38 (dd, J = 3.6, 4.8 Hz, 1H), 7.80 (dd, J = 1.2, 3.6 Hz, 1H), 8.14 (dd, J = 1.2, 5.1 Hz, 1H); IR (Nujol) 2924, 1748, 1693, 1611, 1467, 1376, 1335, 1292, 1156 cm ⁻¹ .
55	lc-77	mp 125-126 °C; ¹H-NMR (d_6 -DMSO) δ 1.07 (t, J = 7.2 Hz, 3H), 1.38-1.52 (m, 2H), 1.64 (m, 2H), 2.13 (m, 1H), 2.31 (m, 1H), 2.31 (s, 3H), 3.13-3.28 (m, 2H), 3.22-3.80 (m, 5H), 4.92 (s, 2H), 6.94 (m, 2H), 7.35 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H); IR (Nujol) 3243, 3053, 2924, 1755, 1567, 1418, 1321, 1298, 1275, 1180, 1143 cm-¹; Elemental analysis ($C_{19}H_{26}N_2O_4S$) Calcd. (%): C, 60.29; H, 6.92; N, 7.40; S, 8.47 Found (%): C, 59.80; H, 6.86; N, 7.29; S, 8.51

Table 54

	Compound No.	Physical properties
5	Ic-78	mp 140-142°C; ¹H-NMR (d ₆ -DMSO) δ 1.84 (m, 1H), 2.28 (m, 1H), 3.15-3.57 (m, 4H), 3.75 (m, 1H), 4.93 (9, 2H), 7.13 (dd, J = 1.8, 8.7 Hz, 1H), 7.22 (s, 1H), 7.33 (d, J = 4.2 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 4.2 Hz, 1H), 12.90 (brs, 1H); IR (Nujol) 3091, 2670, 2577, 1726, 1567, 1513, 1471, 1445, 1414, 1380, 1357, 1332, 1310, 1266, 1249, 1199, 1180, 1155, 1112 cm-¹; Elemental analysis ($C_{18}H_{16}Cl_2N_2O_4S_2$ ·0.05AcOEt) Calcd. (%): C, 47.13; H, 3.56; Cl, 15.29; N, 6.04; S, 13.83 Found (%): C, 46.95; H, 3.47; Cl, 15.10; N, 6.11; S, 14.02
15	lo-79	mp 220-221 °C; ¹H-NMR (d_6 -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 3.06 (t, J = 9.3 Hz, 1H), 3.22-3.46 (m, 3H), 3.65 (dd, J = 7.5, 9.3 Hz, 1H), 4.91 (s, 2H), 6.92-6-96 (m, 2H), 7.11 (dd, J = 2.1, 8.4 Hz, 1H), 7.13 (s, 1H), 7.37 (d, J = 8.4. Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.64-7.69 (m, 2H), 10.48 (br, 1H), 12.97 (br, 1H); IR (Nujol) 3409, 1741, 1712, 1603, 1586, 1500, 1472, 1440, 1319, 1245, 1151, 1094, 1028 cm²; Elemental analysis ($C_{20}H_{19}CIN_2O_5S$) Calcd. (%): C, 55.24; H, 4.40; Cl, 8.15; N, 6.44; S, 7.37 Found (%): C, 55.21; H, 4.52; Cl, 7.62; N, 6.20; S,7.14
20	Ic-80	¹ H-NMR (CDCl ₃) δ 1.84-1.89 (m, 2H), 2.04-2.17 (m, 3H), 3.49-3.54 (m, 3H), 4.88 (m, 1H), 5.12 (m, 1H), 7.09-7.45 (m, 5H), 7.85-8.08 (m, 3H), 8.30 (m, 1H); IR (KBr) 3387, 1739, 1647, 1591, 1526, 1493, 1467, 1428, 1389, 1343, 1292, 1236, 1152, 1092, 1066, 1011 cm ⁻¹ ; Elemental analysis ($C_{21}H_{19}FN_2O_5S$ ·1.0H ₂ O) Calcd. (%): C, 56.24; H, 4.72; N, 6.25; F, 4.24; S, 7.15 Found (%): C, 56.18; H, 4.56; N, 6.29; F, 4.11, S, 7.06
25	Ic-81	¹ H-NMR (CDCl ₃) δ 1.43–1.68 (m, 4H), 2.88 (m, 1H), 3.09 (m, 1H), 3.34–3.44 (m, 2H), 3.85 (s, 3H), 3.91 (m, 1H), 4.85 (s, 2H), 6.93–6.98 (m, 3H), 720–7.26 (m, 3H), 7.80–7.83 (m, 3H); IR (KBr) 2945, 1728, 1596, 1497, 1468, 1331, 1260, 1153, 1092, 1024 cm ⁻¹ ; Elemental analysis ($C_{22}H_{24}N_2O_5S$ 0.5H ₂ O) Calcd. (%): C, 60.40; H, 5.76; N, 6.40; S, 7.33 Found (%): C, 60.42; H, 5.78; N, 6.27; S, 6.97
30	lc-82	¹ H-NMR (CDCl ₃) δ 1.86-2.20 (m, 4H), 3.45-3.55 (m, 2H), 4.91 (s, 2H), 5.06 (m, 1H), 7.04-7.28 (m, 4H), 7.74 (m,1H), 7.88 (m, 1H), 8.00 (dd, J = 2.4, 6.9 Hz, 2H), 8.10 (s, 1H); IR (KBr) 3433, 2929, 1738, 1626, 1590, 1528, 1493, 1394, 1344, 1293, 1233, 1153, 1092, 1062, 1010 cm ⁻¹ ;
35	lc-83	¹ H-NMR (CDCl ₃) δ 1.86-2.20 (m, 4H), 3.45-3.55 (m, 2H), 4.91 (s, 2H), 5.06 (m, 1H), 7.04-7.28 (m, 4H), 7.74 (m,1H), 7.88 (m, 1H), 8.00 (dd, J = 2.4, 6.9 Hz, 2H), 8.10 (s, 1H); IR (KBr) 3433, 2929, 1738, 1626, 1590, 1528, 1493, 1394, 1344, 1293, 1233, 1153, 1092, 1062, 1010 cm ⁻¹ ; $[\alpha]_D^{22} + 29.0 \pm 0.7^\circ$ (c=1.001, MeOH)
40	Ic-84	¹ H-NMR (CDCl ₃) δ 1.433-1.72 (m, 4H), 2.89 (dd, J = 9.3 and 14.4 Hz, 1H), 3.10 (m, 1H), 3.27 (dd, J = 3.9 and 14.4 Hz, 1H), 3.41 (m, 1H), 3.87 (m, 1H), 4.84 (s, 2H), 6.95-7.02 (m, 2H), 7.11-7.26 (m, 3H), 7.40 (dd, J = 2.4 and 9.6 Hz, 1H), 7.85-7.91(m, 2H); IR (CHCl ₃) 1729, 1593, 1493, 1456, 1348, 1292, 1164, 1154, 1092 cm ⁻¹ ; [α] _D ²² +109.6±1.5 (c=1.003, MeOH)

Table 55

Compound No.	Physical properties
lc-85	¹ H-NMR (CDCl ₃) δ 1.43-1.66 (m, 4H), 2.87 (dd, J = 6.0 and 14.1 Hz, 1H), 3.11 (m, 1H), 3.26 (dd, J = 3.3 and 14.1 Hz, 1), 3.82 (m, 1H), 3.86 (s, 3H), 4.83 (s, 2H), 6.95-7.01 (m, 4H), 7.11 (dd, J 3.9 and 8.7 Hz, 1H), 7.40 (dd, J = 2.4 and 9.3 Hz, 1H), 7.73-7.83 (m, 2H); IR (CHCl ₃) 1730, 1620 1597, 1578, 1497, 1487, 1457, 1338, 1304, 1260, 1155, 1094, 1030 cm ⁻¹ ; $[\alpha]_D^{22}$ +124.6±1.6 (c=1.002, MeOH)
ld-2	mp 220-222 °C; ¹H-NMR (CDCl ₃) δ 2.84 (t, J = 5.7 Hz, 2H), 3.57 (t, J = 5.7 Hz, 2H), 4.42 (s, 2H 4.67 (s, 2H), 7.05-7.25 (m, 5H), 7.35-7.43 (m, 1H), 7.84-7.92 (m, 2H),; IR (CHCl ₃) 3428, 3048 2927, 1727, 1595, 1494, 1467, 1345, 1240, 1169, 1103 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₇ FN ₂ O ₄ \$ Calcd. (%): C, 58.75; H, 4.41; F, 4.89; N, 7.21; S, 8.26 Found (%): C, 58.58; H, 4.37; F, 4.69; N 7.13; S, 8.08

45

Table 55 (continued)

	Compound No.	Physical properties
5	le-2	mp 139-141 °C; ¹H-NMR (CDCl ₃) δ 4.95 (s, 2H), 7.02-7.11 (m, 3H), 7.18-7.25 (m,2H), 7.34 (m, 1H), 7.46 (t, J = 7.7Hz, 1H), 7.68-7.73 (m, 2H), 7.80 (d, J = 1.8 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H); IR (Nujol) 3300, 3245, 3047, 1776, 1736, 1688, 1590, 1493, 1466, 1335, 1285, 1163, 1152 cm ⁻¹ ; Elemental analysis ($C_{20}H_{15}FN_{2}O_{4}S\cdot0.6CH_{3}CO_{2}C_{2}H_{5}$) Calcd. (%): C, 59.62; H, 4.42; F, 4.21; N, 6.21; S, 7.11 Found (%): C, 59.45; H, 4.19; F, 4.14; N, 6.51; S, 7.02
10	le-5	mp 188-191 °C; 1 H-NMR (CDCl ₃) δ 3.28 (d, J = 1.5 Hz, 3H), 5.02 (s,2H), 7.09-7.33 (m, 6H), 7.49 (t, J = 7.8 Hz, 1H), 7.57-7.61 (m, 2H), 7.73 (d, J = 1.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H); IR (Nujol) 3102, 3049, 2728, 1727, 1628, 1591, 1491, 1292, 1228, 1210, 1173, 1150 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₁₇ FN ₂ O ₄ S·0.2H ₂ O) Calcd. (%): C, 60.63; H, 4.22; F, 4.57; N, 6.73; S, 7.71 Found (%): C, 60.52; H, 4.13; F, 4.46; N, 6.82; S, 7.63
15	le-8	mp 212-213 °C; 1 H-NMR (d_6 -DMSO) δ 4.89 (s, 2H), 5.16 (s, 2H), 7.06 (dd, J = 8.4, 2.1 Hz, 1H), 7.13-7.32 (m, 6H), 7.41-7.52 (m, 5H), 7.73-7.77 (m, 2H), 7.84 (d, J = 1.8 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 13.05 (br s, 1H); IR (Nujol) 3063, 3035, 2658, 1705, 1630, 1591, 1232, 1214, 1162 cm-1; Elemental analysis (C_{27} H $_{21}$ FN $_2$ O $_4$ S) Calcd. (%): C, 66.38; H, 4.33; F, 3.89; N, 5.73; S, 6.56 Found (%): C, 66.33; H, 4.26; F, 3.79; N, 5.80; S, 6.53
20	le-10	mp 171-175 °C; ¹ H-NMR (d ₈ -DMSO) δ 5.15 (s, 2H), 6.98-7.07 (m, 2H); 7.32-7.47 (m, 4H), 7.74-7.81 (m, 3H), 8.05-8.10 (m, 2H), 10.10 (s, 1H); IR (Nujol) 3621, 3313, 3107, 3070, 2727, I737, 1702, 1636, 1603, 1592, 1490, 1330, 1164, 1146 cm ⁻¹ .
25	le-11	mp 183-187 °C; 1 H-NMR (1 B-DMSO) 5 2.13 (s, 3H), 5.14 (s, 2H), 7.00-7.95 (m, 10H), 9.61 (s, 1H); IR (Nujol) 3517, 3236, 3105, 3068, 2732, 1735, 1635; 1607, 1591, 1494, 1408, 1335, 1270 cm ⁻¹ ; Elemental analysis(1 C ₂₁ H ₁₇ FN ₂ O ₄ S-0.4H ₂ O) Calcd. (%): C, 60.10; H, 4.28; F, 4.53; N, 6.68; S, 7.64 Found (%): C, 60.28; H, 4.47; F, 4.42 N, 6.54; S, 7.52

30

	Compound No.	Physical properties
35	le-12	mp 201-203 °C; ¹H-NMR (CDCl ₃) δ 3.26 (s, 3H), 4.95 (s, 2H), 6.95-7.02 (m, 2H), 7.09-7.20 (m, 4H), 7.56-7.61 (m, 2H), 7.72 (m, 1H), 7.89 (m, 1H); IR (Nujol) 3106, 3067, 2744, 2657, 2558, 1734, 1635, 1605, 1592, 1495, 1483, 1340, 1236 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) Calcd. (%): C, 58.44; H, 3.96; F, 8.48; N, 6.25; S, 7.16 Found (%): C, 58.49; H, 3.72; F, 8.33 N, 6.37; S, 7.16
40	le-13	mp 215-218 °C; 1 H-NMR (CDCl ₃ +CD ₃ OD) δ 4.82 (s, 2H), 4.86 (s, 2H), 6.92-7.02 (m, 3H), 7.14-7.24 (m, 9H), 7.60-7.86 (m, 3H); IR (Nujol) 3066, 3036, 2656, 1708, 1635, 1605, 1591, 1492, 1483, 1406, 1338, 1232 cm ⁻¹ ; Elemental analysis (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.2AcOEt) Calcd. (%): C, 63.70; H, 4.15; F, 7.25; N, 5.34; S, 6.12 Found (%): C, 63.79; H, 4.04; F, 6.99; N, 5.31; S, 6.11
4 5	le-14	mp 219-225 °C; 1 H-NMR (CDCl ₃ +CD ₃ OD) δ 2.56 (s, 3H), 3.24 (s, 3H), 4.95 (s, 2H), 7.09-7.23 (m, 5H), 7.31 (m, 1H), 7.44 (m, 1H), 7.73-7.77 (m, 3H); IR (Nujol) 2742, 2656, 2560, 1727, 1711, 1632, 1605, 1590, 1495, 1483, 1412, 1339, 1275 cm ⁻¹ ; Elemental analysis (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.2AcOEt) Calcd. (%): C, 61.67; H, 4.68; F, 4.28; N, 6.31; S, 7.22 Found (%): C, 61.82; H, 4.59; F, 4.00; N, 6.31; S, 7.14
50	le-15	mp 194-197 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 2.13 (s, 3H), 4.36 (d, J = 13.5 Hz, 1H), 4.90 (s, 2H), 5.09 (d, J = 13.5 Hz, 1H), 7.07 (s, 1H), 7.13-7.24 (m, 10H), 7.31 (m, 1H), 7.45 (l, J = 7.2 Hz, 1H), 7.73-7.78 (m, 2H); IR (Nujol) 3060, 3032, 2739, 2644, 2557, 1715, 1633, 1604, 1593, 1494, 1478, 1414, 1342, 1240 cm ⁻¹ ; Elemental analysis (C ₂₈ H ₂₃ FN ₂ O ₄ S-0.2AcOEt) Calcd. (%): C, 66.50; H, 4.77; F, 3.65; N, 5.39; S, 6.16 Found (%): C, 66.74; H, 4.76; F, 3.39; N, 5.37; S, 6.04
55	le-16	mp 164-165 °C; 1 H-NMR (1 d ₆ -DMSO) δ 5.16 (s, 2H), 7.08 (dd, J = 1.8, 9.0 Hz, 1H), 7.52-7.45 (m, 4H), 7.54 (dd, J = 4.2, 8.7 Hz, 1H), 7.75-7.79 (m, 2H), 7.86 (d, J = 2.1 Hz, 1H), 7.95 (dd, J = 2.4, 9.3 Hz, 1H), 10.09 (s, 1H); IR (Nujol) 3301, 3191, 3108, 1778, 1691, 1590, 1496, 1474, 1337, 1286 cm ⁻¹ .

Table 56 (continued)

	Compound No.	Physical properties
-5	le-17	mp 187-188 °C; 1 H-NMR (CDCl ₃) δ 3.26 (s, 3H), 4.96 (s, 2H), 7.08-7.21 (m, 6H), 7.55-7.61 (m, 3H), 7.66 (d, J = 0.9 Hz, 1H); IR (Nujol) 2747, 2650, 2566, 2483, 1720, 1593, 1492, 1414, 1348, 1295, 1254 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) Calcd. (%): C, 58.44; H, 3.96; F, 8.48; N, 6.25; S, 7.16 Found (%): C, 58.55; H, 3.77; F, 8.40; N, 6.23; S, 7.34
10	le-18	mp 189-191 °C; 1 H-NMR (CDCl $_{3}$ +CD $_{3}$ OD) δ 4.82 (s, 2H), 4.89 (s, 2H), 7.01 (dd, J = 1.8, 8.7 Hz, 1H), 7.14-7.27 (m, 10H), 7.56 (dd, J = 2.4, 9.0 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.67-7.71 (m, 2H); IR (Nujol) 3089, 3074, 3033, 2742, 2653, 2558, 1710, 1591, 1343, 1296 cm 1 ; Elemental analysis (C $_{27}$ H $_{20}$ F $_{2}$ N $_{2}$ O $_{4}$ S·0.1AcOEt) Calcd. (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 Found (%): C, 63.84; H, 3.95; F, 7.14; N, 5.31; S, 6.33

15

Table 57

	Compound No.	Physical properties
20	le-19	Mp 189-191 °C; ¹H-NMR (d_6 -DMSO) δ 5.19 (s, 2H), 6.99 (m, 1H), 7.21 (dd, J = 2.1, 9.0 Hz, 1H), 7.33-7.46 (m, 4H), 7.51 (d, J = 9.0 Hz, 1H), 7.75-7.79 (m, 3H), 10.15 (s, 1H); IR (Nujol) 3262, 3103, 3061, 2661, 2558, 1715, 1640, 1611, 1590, 1484,1406, 1331, 1294 cm ⁻¹ ; Elemental analysis ($C_{20}H_{14}F_2N_2O_4S$ ·0.1AcOEt) Calcd. (%): C, 57.62; H, 3.51; F, 8.94; N, 6.59; S, 7.54 Found (%): C, 57.43; H, 3.26; F, 8.65; N, 6.46; S, 7.34
25	le-20	Mp 214-217 °C; $^1\text{H-NMR}$ (CDCl $_3$) δ 3.27 (s, 3H), 5.00 (s, 2H), 6.92 (dd, J = 8.1, 9.9 Hz, 1H), 7.06-7.17 (m, 3H), 7.23 (d, J = 8.7 Hz, 1H), 7.32 (dd, J = 2.1, 8.7 Hz, 1H), 7.39 (m, 1H), 7.56-7.63 (m, 2H), 7.70 (d, J = 1.8 Hz, 1H); IR (Nujol) 3087, 2748, 2651, 2568, 2486, 1723, 1637, 1592, 1493, 1308, 1236 cm ⁻¹ ; Elemental analysis ($^2\text{C}_{21}\text{H}_{16}\text{F}_2\text{N}_2\text{O}_4\text{S}$ ·0.1AcOEt) Calcd. (%): C, 58.52; H, 3.86; F, 8.65; N, 6.38; S, 7.30 Found (%): C, 58.64; H, 3.61; F, 8.37; N, 6.39; S, 7.21
30	le-21	Mp 209-213 °C; 1 H-NMR (CDCl ₃ +CD ₃ OD) 5 4.82 (s, 2H), 4.91 (s, 2H), 6.90 (dd, J = 8.1, 9.9 Hz, 1H), 7.08-7.13 (m, 2H), 7.15-7.28 (m, 8H), 7.38 (m, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.68-7.73 (m, 2H); IR (Nujol) 3063, 3033, 2659, 1708, 1641, 1610, 1590, 1492, 1241 cm ⁻¹ ; Elemental analysis (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.1AcOEt) Calcd. (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 Found (%): C, 63.77; H, 3.90; F, 7.21; N, 5.45; S, 6.18
35 40	le-22	mp 153-156 °C; 1 H-NMR (CDCl ₃ +CD ₃ OD) δ 5.13 (s, 2H), 6.92 (dd, J = 1.8, 10.4 Hz, 1H), 7.04-7.12 (m, 2H), 7.25 (td, J = 0.6, 15.0 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.49 (td, J = 1.2, 7.7 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.72-7.77 (m, 2H), 7.96 (d, J = 7.5 Hz, 1H); IR (Nujol) 3236, 3109, 3073, 3050, 2725, 1761, 1732, 1641, 1610, 1591, 1497, 1375,1288 crrr¹; Elemental analysis ($C_{20}H_{14}F_{2}N_{2}O_{4}S$ -0.2AeOEt) Calcd. (%): C, 57.56; H, 3.62; F, 8.75; N, 6.45; S, 7.39 Found (%): C, 57.27; H, 3.39; F, 8.82; N, 6.58; S, 7.49
45	le-23	¹ H-NMR (CDCl ₃) δ 3.25 (s, 3H), 5.22 (s, 2H), 6.91 (dd, J = 2.1, 12.9 Hz, 1H), 7.09-7.16 (m, 2H), 7.28-7.33 (m, 2H), 7.48-7.54 (m, 2H), 7.56-7.62 (m, 2H), 7.94 (d, J = 7.8 Hz, 1H); IR (Nujol) 3505, 3103, 3052, 2729, 2648, 1728, 1639, 1589, 1494, 1297, 1238 cm ⁻¹ ; Elemental analysis ($C_{21}H_{16}F_2N_2O_4S$ ·0.3H ₂ O) Calcd. (%): C, 57.87; H, 3.84; F, 8.72; N, 6.43; S, 7.36 Found (%): C, 57.99; H, 3.79; F, 8.55; N, 6.43; S, 7.07
50	le-24	mp 199-201 °C; 1 H-NMR (CDCl ₃ +CD ₃ OD) δ 4.80 (s, 2H), 5.13 (s, 2H), 6.76 (dd, J = 2.1, 13.2 Hz, 1H), 7.17-7.28 (m, 8H), 7.32 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.49 (m, 1H), 7.67-7.74 (m, 2H), 7.89 (d, J = 7.5 Hz, 1H); IR (Nujol) 3087, 3062, 3032, 2644, 2560, 2470, 1714, 1638, 1585, 1493, 1300, 1249 cm ⁻¹ ; Elemental analysis ($C_{27}H_{20}F_2N_2O_4S$ ·0.1AcOEt) Calcd. (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 Found (%): C, 64.07; H, 3.90; F, 7.17; N, 5.52; S, 6.10

Table 58

	Compound No.	Physical properties
5	le-25	mp 204-206 °C; ¹H-NMR (CDCl ₃) δ 3.27 (s, 3H), 5.22 (s, 2H), 7.09-7.22 (m, 6H), 7.56-7.61 (m, 2H), 7.71-7.74 (m, 2H); IR (Nujol) 3327, 3085, 3046, 2680, 1774, 1637, 1592, 1578, 1339, 1242 cm-¹; Elemental analysis ($C_{21}H_{16}F_2N_2O_4S\cdot0.1AcOEt$) Calcd. (%): C, 58.52; H, 3.86; F, 8.65; N, 6.38; S, 7.30 Found (%): C, 58.60; H, 3.70; F, 8.51; N, 6.44; S, 7.46
10	le-26	mp 194-197 °C; ¹H-NMR (CDCl ₃) δ 4.81 (s, 2H), 5.13 (s, 2H), 7.00 (dd, J = 2.1, 8.7 Hz, 1H), 7.07-7.25 (m, 11H), 7.62-7.69 (m, 3H); IR (Nujol) 3093, 3066, 3040, 3023, 2657, 2561, 1722, 1593, 1581, 1493, 1294, 1236 cm ⁻¹ ; Elemental analysis ($C_{27}H_{20}F_2N_2O_4S$) Calcd. (%): C, 64.02; H, 3.98; F, 7.50; N, 5.53; S, 6.33 Found (%): C, 64.00; H, 3.98; F, 7.26; N, 5.49; S, 6.13
15	le-27	mp 190-191 °C; 1 H-NMR (CDCl ₃ +CD ₃ OD) δ 4.92 (s, 2H), 7.03-7.09 (m, 2H), 7.13-7.23 (m, 3H), 7.54 (dd, J = 1.8, 8.7 Hz, 1H), 7.68-7.73 (m, 3H), 8.10 (d, J = 1.8 Hz, 1H); IR (Nujol) 3263, 3102, 3060, 2657, 1715, 1591, 1487, 1406, 1335, 1286 cm ⁻¹ .
20	le-28	mp 200-202 °C; ¹H-NMR (CDCl ₃ +CD3OD) δ 3.28 (s, 3H), 4.95 (s, 2H), 7.11-7.29 (m, 5H), 7.54-7.61 (m, 3H), 7.69 (d, J = 1.8 Hz, 1H), 8.09 (d, J = 2.1 Hz); IR (Nujol) 3066, 2744, 2658, 2565, 1731, 1454, 1444, 1293, 1247, 1224 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₁₆ BrFN ₂ O ₄ S·0.4AcOEt) Calcd. (%): C, 51.55; H, 3.68; Br, 15.17; F, 3.61; N; 5.32; S, 6.09 Found (%): C, 51.74; H, 3.13; Br, 14.82; F, 3.66; N, 5.60; S, 6.28
25	IF-1	¹ H-NMR (CDCl ₃) δ 1.56 (s, 6H), 2.43 (s, 3H), 3.20 (d, J = 5.7 Hz, 2H), 4.21 (t, J = 5.7 Hz, 1H), 4.82 (s, 2H), 6.85-6.98 (m, 3H), 7.13-7.15 (m, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.49-7.53 (m, 2H); IR (K-Br) 3505, 1728, 1594, 1495, 1478, 1468, 1406, 1340, 1292, 1166, 1154, 1092, 1076 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.6H ₂ O) Calcd. (%): C, 58.75; H, 5.68; N, 6.53; F, 4.43; S, 7.47 Found (%): C, 58.83; H, 5.73; N, 6.32; F, 4.29, S, 7.24
30	If-2	¹ H-NMR (CDCl ₃) δ 1.68 (s, 6H), 2.28 (s, 3H), 2.52 (s, 3H), 3.40 (s, 2H), 4.83 (s, 2H), 7.05 (m, 1H), 7.13-7.18 (m, 4H), 7.71-7.77 (m, 3H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹ ; Elemental analysis ($C_{22}H_{25}FN_2O_4S\cdot0.2H_2O$) Calcd. (%): C, 60.59; H, 5.87; N, 6.42; F, 4.36; S, 7.35 Found (%): C, 60.57; H, 6.01; N, 6.31; F, 4.26, S, 7.15
35	If-3	¹ H-NMR (CDCl ₃) δ 1.58 (s, 6H), 2.10 (s, 3H), 3.71 (s, 2H), 3.96 (s, 2H), 4.56 (s, 2H), 6.47 (d,J = 7.2 Hz, 2H), 6.95-7.15 (m, 8H), 7.56 (d, J = 8.4 Hz, 1H), 7.72-7.77 (m,2H); IR (CHCl ₃) 1729, 1594, 1495, 1479, 1467, 1342, 1292, 1239, 1165, 1154, 1091, 1056 cm ⁻¹ ; Elemental analysis (C ₂₈ H ₂₉ FN ₂ O ₄ S·0.2MeOH) Calcd. (%): C, 65.77; H, 5.83; N, 5.44; F, 3.69; S, 6.23 Found (%): C, 66.15; H, 5.98; N, 5.23; F, 3.40, S, 5.87

Table 59

10210 00		
Compound No.	Physical properties	
If-4	1 H-NMR (CDCl ₃) δ 1.38 (d, J = 6.6 Hz, 3H), 2.29 (s, 3H), 3.07-3.36 (m, 3H), 4.29 (d, J = 9.0 Hz, 1H), 4.81 (d, J = 5.1 Hz, 2H), 6.91-7.27 (m, 6H), 7.54-7.59 (m, 2H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹ ; Elemental analysis (C ₂₀ H ₂₁ FN ₂ O ₄ S·1.2MeOH) Calcd. (%): C, 57.49; H, 5.87; N, 6.32; F, 4.29; S, 7.24 Found (%): C, 57.55; H, 5.65; N, 6.14; F, 4.22, S, 7.23	
lf-5	1 H-NMR (CDCl ₃) δ 1.48 (d, J = 8.9 Hz, 3H), 2.35 (s, 3H), 2.57 (s, 3H), 3.02 (m, 1H), 3.36 (m, 1H), 3.65 (m, 1H), 4.82 (s, 2H), 7.04-7.17 (m, 5H), 7.58 (d, J = 8.7 Hz, 1H), 7.68-7.73 (m, 2H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹	
lf-6	¹ H-NMR (CDCl ₃) δ 1.31 (d, J = 6.6 Hz, 3H), 2.17 (s, 3H), 3.15-3.23 (m, 2H), 3.70 (q, J = 6.6 Hz, 1H), 4.17 (s, 2H), 4.76 (s, 2H), 6.96-7.23 (m, 10H), 7.40 (d, J = 7.8 Hz, 1H), 7.69-7.74 (m, 2H); IR (CHCl ₃) 2974, 2932, 2876, 1731, 1594, 1496, 1468, 1409, 1339, 1292, 1240, 1165, 1153, 1089, 1022 cm ⁻¹ ; Elemental analysis (C ₂₇ H ₂₇ FN ₂ O ₄ S·1.1MeOH) Calcd. (%): C, 63.70; H, 5.97; N, 5.29; F, 3.59; S, 6.05 Found (%): C, 64.02; H, 5.78; N, 5.20; F, 3.42, S, 5.70	

Table 59 (continued)

	Compound No.	Physical properties
5	If-7	¹ H-NMR (CDCl ₃) 5 1.73-1.85 (m, 4H), 2.02-2.23 (m, 4H), 3.30 (s, 2H), 4.86 (s, 1H), 6.91 (s, 1H), 7.04-7.21 (m, 5H), 7.60 (d, J = 8.1 Hz, 1H), 7.70-7.75 (m, 2H); IR (CHCl ₃) 2961, 2874, 1594, 1494, 1468, 1340, 1292, 1240, 1155, 1089 cm ⁻¹ ; Elemental analysis ($C_{23}H_{25}FN_2O_4S \cdot 0.2H_2O$) Calcd. (%): C, 61.65; H, 5.71; N, 6.25; F, 4.24; S, 7.16 Found (%): C, 61.74; H, 5.93; N, 5.96; F, 3.93, S, 6.95
10	If-8	¹ H-NMR (CDCl ₃) δ 1.65-1.80 (m, 4H), 2.00-2.09 (m, 4H), 3.64 (s, 2H), 3.80 (s, 2H), 4.58 (s, 2H), 6.47 (s, 1H), 6.54 (d, J = 7.8 Hz, 2H), 6.97-7.15 (m, 7H), 7.37-7.45 (m, 2H), 7.67-7.72 (m, 2H); IR (CHCl ₃) 2960, 2874, 1731, 1592, 1495, 1468, 1339, 1292, 1239, 1165, 1154, 1092, 1022 cm ⁻¹ .
15	If-9	mp 117-120 °C; ¹H-NMR (CDCl ₃) δ 3.50-3.69 (m, 2H), 4.34 (t, J = 7.5 Hz, 1H), 4.58 (br t, J = 6.0 Hz, 1H), 4.80 (d, J = 18.3 Hz, 1H), 4.81 (d, J = 18.3 Hz, 1H), 6.84 (s, 1H), 7.01 (m, 1H), 7.08 (t, J = 9.0 Hz, 2H), 7.17-7.30 (m, 8H), 7.72 (dd, J = 5.1 9.0 Hz, 2H); IR (Nujol) 3351, 3295, 3063, 1727, 1706, 1614, 1592, 1494, 1468, 1406, 1331, 1241, 1165, 1152 cm ⁻¹ ; Elemental analysis (C ₂₄ H ₂₁ FN ₂ O ₄ S·0.4AcOEt) Calcd. (%): C, 63.04; H, 5.00; N, 5.74; F, 3.90; S, 6.57 Found (%): C, 62.73; H, 4.75; N, 5.77; F, 3.91; S, 6.58

20

Table 60

	Table 60
Compound No.	Physical properties
lf-10	mp 167-170 °C; 1 H-NMR (CDCl ₃) δ 2.61 (s, 3H), 3.36 (dd, J = 7.8, 13.5 Hz, 1H), 3.93 (dd, J = 7.8, 13.5 Hz, 1H), 4.55 (t, J = 7.8 Hz, 1H), 4.87 (s, 2H), 7.06 (m, 1H), 7.10 (s, 1H), 7.13 (t, J = 9.0 Hz, 2H), 7.20-7.31 (m, 7H), 7.43 (br d, J = 8.1 Hz, 1H), 7.70 (dd, J = 5.1, 9.0 Hz, 2H); IR (Nujol) 3429, 3030, 1722, 1704, 1592, 1493, 1469, 1406, 1332, 1237, 1150, 1087 cm ⁻¹ ; Elemental analysis (C ₂₅ H ₂₃ FN ₂ O ₄ S) Calcd. (%): C, 64.36; H, 4.97; N, 6.00; F, 4.07; S, 6.87 Found (%): C, 64.28; H, 4.93; N, 5.91; F, 3.85; S, 6.73
If-11	¹ H-NMR (CDCl ₃) δ 2.00-2.41 (m, 6H), 3.30 (d, J = 6.0 Hz, 2H), 4.21 (t, J = 5.7 Hz, 1H), 4.84 (s 2H), 6.82-6.98 (m, 4H), 7.13-7.27 (m, 3H), 7.45-7.50 (m, 2H); IR (CHCl ₃) 2984, 2934, 2875, 1731 1594, 1496, 1468, 1408, 1333, 1292, 1240, 1167, 1154 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.4H ₂ O) Calcd. (%): C, 59.53; H, 5.19; N, 6.61; F, 4.48; S, 7.57 Found (%): C, 59.49; H, 5.23; N, 6.35; F, 4.20, S, 7.34
if-12	¹ H-NMR (CDCl ₃) δ 1.91-1.95 (m, 2H), 2.25-2.42 (m, 4H), 3.74 (s, 2H), 3.92 (s, 2H), 4.70 (s, 2H), 6.53 (s, 1H), 6.67 (d, J = 8.1 Hz, 2H), 6.97-7.38 (m, 9H), 7.62-7.67 (m, 2H); IR (CHCl ₃) 2932, 1731, 1593, 1495, 1468, 1333, 1292, 1239, 1163, 1153, 1089 cm ⁻¹ ; Elemental analysis (C ₂₈ H ₂₇ FN ₂ O ₄ S·0.8H ₂ O) Calcd. (%): C, 64.55; H, 5.53; N, 5.38; F, 3.65; S, 6.15 Found (%): C, 64.61; H, 5.27; N, 5.08; F, 3.35, S, 5.87
lf-13	¹ H-NMR (CDCl ₃) δ 1.43 (s, 6H), 3.17 (d, J = 5.7 Hz, 2H), 4.20 (t, J = 6.0 Hz, 1H), 4.83 (s, 2H), 6.85 (s, 1H), 6.90-6.97 (m, 3H), 7.21 (d, J = 3.6 Hz, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.49-7.54 (m, 2H); IR (CHCl ₃) 2971, 2933, 2878, 1731, 1594, 1496, 1467, 1408, 1386, 1331, 1292, 1239, 1194 1167, 1154, 1092, 1076 cm ⁻¹ ; Elemental analysis (C ₂₀ H ₂₁ FN ₂ O ₄ S·0.5H ₂ O) Calcd. (%): C, 58.10 H, 5.36; N, 6.78; F, 4.59; S, 7.76 Found (%): C, 58.05; H, 5.31; N, 6.55; F, 4.34, S, 7.58
lf-14	1 H-NMR (CDCl ₃) δ 1.54 (s, 3H), 2.26 (s, 3H), 3.37 (s, 2H), 4.86 (s, 2H), 6.89 (s, 1H), 7.07-7.22 (m, 5H), 7.69-7.77 (m, 3H); IR (CHCl ₃) 2974, 2929, 1731, 1594, 1495, 1480, 1467, 1340, 1292, 1240, 1166, 1155, 1089, 1020 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.3H ₂ O) Calcd. (%): C, 59.50; H, 5.61; N, 6.61; F, 4.48; S, 7.56 Found (%): C, 59.59; H, 5.62; N, 6.39; F, 4.26, S, 7.42
lf-15	¹ H-NMR (CDCl ₃) δ 1.47 (s, 3H), 3.67 (s, 2H), 3.96 (s, 2H), 4.61 (s, 2H), 6.51-6.54 (m, 3H), 6.95-7.15 (m, 7H), 7.37 (d, J = 4.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.71-7.76 (m, 2H); IR (CHCl ₃) 2972, 2931, 1731, 1594, 1495, 1468, 1339, 1292, 1239, 1165, 1154, 1091, 1056 cm ⁻¹ .

Table 61

Compound No.	Physical properties
If-16	¹ H-NMR (CDCl ₃) δ 2.91 (i, J = 6.3 Hz, 2H), 3.34-3.49 (m, 2H), 4.63 (i, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.92-7.15 (m, 5H), 7.48-7.53 (m, 2H); IR (KBr) 3285, 2232, 1729, 1627, 1582, 1488, 1414, 1324, 1250, 1159, 1092, 1047 cm ⁻¹ ; Elemental analysis ($C_{16}H_{15}FN_2O_4S_2\cdot 0.3H_2O$) Calcd. (%): C, 49.55; H, 4.05; N, 7.22; F, 4.90; S, 16.54 Found (%): C, 49.89; H, 3.98; N, 6.98; F, 4.54, S, 16.12
If-17	¹ H-NMR (CDCl ₃) δ 1.42 (s, 6H), 3.12 (s, 3H), 3.45 (br, 1H), 4.79 (s, 2H), 6.90-7.24 (m, 6H), 7.51-7.56 (m, 2H); IR (KBr) 3283, 2966, 2926, 1736, 1590, 1494, 1474, 1409, 1337, 1320, 1293, 1242, 1167, 1153 cm ⁻¹ ; Elemental analysis (C ₂₀ H ₂₀ ClFN ₂ O ₄ S·0.3H ₂ O) Calcd. (%): C, 54.07; H, 4.67, N, 6.30; Cl, 7.98; F, 4.28; S, 7.22 Found (%): C, 54.06; H, 4.65; N, 6.26; Cl, 7.79; F, 4.13, S,7.12
If-18	1 H-NMR (CDCl ₃) δ 1.52 (s, 6H), 2.22 (s, 3H), 3.32 (s, 2H), 4.83 (s, 2H), 6.92 (s, 1H), 7.14-7.21 (m, 4H), 7.63 (s, 1H), 7.74-7.78 (m, 2H); IR (CHCl ₃) 2974, 2929, 1731, 1594, 1495, 1474, 1341, 1292, 1240, 1167, 1155, 1089, 1020 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₂ ClFN ₂ O ₄ S·0.3H ₂ O) Calcd. (%): C, 55.03; H, 4.97; N, 6.11; Cl, 7.74; F, 4.15; S, 7.00 Found (%): C, 55.36; H, 5.13; N, 5.90; Cl, 7.34; F, 3.93; S, 7.00
lf-19	1 H-NMR (CDCl ₃) δ 1.44 (s, 6H), 3.63 (s, 2H), 3.95 (s, 2H), 4.59 (s, 2H), 6.43 (d, J = 7.8 Hz, 2H), 6.57 (s, 1H), 6.94-7.17 (m, 5H), 7.33-7.38 (m, 3H), 7.75-7.80 (m, 2H); IR (CHCl ₃) 1732, 1594, 1495, 1475, 1341, 1292, 1165, 1154, 1091, 1056 cm ⁻¹ .
If-20	¹ H-NMR (CDCl ₃) δ 3.05-3.10 (m, 2H), 3.51-3.56 (m, 2H), 4.44 (s, 2H), 5.00 (s, 2H), 7.07-7.13 (m, 3H), 7.24-7.44 (m, 8H), 7.70-7.82 (m, 2H); IR (KBr) 1736, 1622, 1589, 1509, 1492, 1455, 1320, 1230, 1162, 1148, 1096 cm ⁻¹ ;Elemental analysis (C ₂₄ H ₂₂ FN ₃ O ₄ S) Calcd. (%): C, 61.66; H, 4.74; N, 8.99; F, 4.06; S, 6.86 Found (%): C, 61.53; H, 4.72; N, 8.91; F, 3.91, S, 6.53.
lg-1	mp 217-219 °C; ¹H-NMR (d_6 -DMSO) δ 2.36-2.79 (m, 6H), 4.80 (s, 2H), 6.71 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.17 (d, J = 8.7 Hz, 1H), 7.31-7.37 (m, 2H), 7.69-7.74 (m, 2H), 9.83 (s, 1H), 13.00 (br, 1H); IR (Nujol) 2926, 1725, 1592, 1492, 1476, 1347, 1237, 1149 cm ⁻¹ ; IR (Nujol) 3207, 2925, 2853, 1738, 1587, 1464, 1150 cm ⁻¹ ; Elemental analysis ($C_{19}H_{17}FN_2O_4S$) Calcd. (%): C, 58.75; H, 4.41; F, 4.89; N, 7.21; S, 8.26 Found (%): C, 58.71; H, 4.39; F, 4.65; N, 7.07; S, 8.03
lg-2	mp 223-226°C; 1 H-NMR (d ₆ -DMSO) δ 2.80-2.88 (m, 2H), 2.94-3.00 (m, 2H), 3.69 (s, 2H); 4.85 (s, 2H), 6.75 (dd, J = 1.8, 8.4 Hz, 1H), 7.12 (d, J = 1.8 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.29-7.39 (m, 2H), 7.68-7.77 (m, 2H), 9.96 (br s, 1H); IR (Nujol) 3228, 3105, 3070, 3047, 2924, 2854, 1734, 1590, 1467, 1332, 1226, 1182, 1167, 1151 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₇ FN ₂ O ₄ S ₂ ·0.3AcOEt) Calcd. (%): C, 54.28; H, 4.18; F, 4.43; N, 6.53; S, 14.94 Found (%): C, 54.05; H, 3.98; F, 4.29; N, 6.55; S, 14.92

Table 62

40

45

Compound No.	Physical properties
lg-3	mp 214-217°C; ¹ H-NMR (d_6 -DMSO) δ 2.81-2.92 (m, 2H), 2.93-3.03 (m, 2H), 3.17 (s, 3H), 3.70 (s, 2H), 4.92 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 7.12 (d, J = 2.1 Hz, 1H), 7.33 (d, J = 8.7 Hz, 1H), 7.38-7.48 (m, 2H), 7.56-7.64 (m, 2H), 13.08 (br, 1H); IR (Nujol) 3103, 2923, 2742, 2656, 2554, 1724, 1591, 1478, 1342, 1239, 1169, 1147 cm ⁻¹
lg-4	mp 218-220 °C; ¹H-NMR (d_6 -DMSO) δ 2.05-2.18 (m, 2H), 2.43 (t, J = 6.3 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 3.18 (s; 3H), 5.09 (s, 2H), 6.91 (dd, J = 2.1, 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.49 (d, J = 8.7 Hz, 1H), 7.57-7.62 (m, 2H), 7.66 (d, J = 2.1 Hz, 1H); IR (Nujol) 3501, 3335, 2925, 2854, 1714. 1631, 1592, 1473, 1454, 1343, 1265, 1239, 1172, 1152 cm²; Elemental analysis ($C_{21}H_{19}FN_2O_5S\cdot H_2O$) Calcd. (%): C, 56.24; H, 4.72; F, 4.24; N, 6.25; S, 7.15 Found (%): C, 56.18; H, 4.72; F, 4.14; N, 6.15; S, 7.07

Table 62 (continued)

	Compound No.	Physical properties
5	lg-5	mp 220-222 °C; ¹H-NMR (d_6 -DMSO) δ 0.94 (t, J = 7.5 Hz, 2H), 1.40-1.57 (m, 1H), 1.72-2.00 (m, 2H), 2.19-2.40 (m, 2H), 2.80-3.06 (m, 2H), 3.18 (s, 3H), 5.08 (s, 2H), 6.90 (dd, J = 2.1, 8.7 Hz, 1H); 7.38-7.45 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H), 7.57-7.62 (m, 2H), 7.68 (d, J = 2.1 Hz, 1H), 13.30 (br, 1H); IR (Nujol) 2924, 2854, 1733, 1593, 1534, 1477, 1464, 1353, 1206, 1172 cm ⁻¹ ; Elemental analysis ($C_{23}H_{23}FN_2O_5S$) Calcd. (%): C, 60.25; H, 5.06; F, 4.14; N, 6.11; S, 6.99 Found (%): C, 60.04; H, 5.15; F, 3.90; N, 6.07; S, 6.78
10	lg-6	mp 128-130°C; ¹ H-NMR (d_6 -DMSO) δ 1.22 (t , J = 6.0 Hz, 3H), 2.67 (br t , 2H), 3.72 (t , J = 6.0 Hz, 2H), 4.09 (t , J = 7.2 Hz, 2H), 4.47 (t , 2H), 4.84 (t , 2H), 6.77 (t , t , 2H, 8.4 Hz, 1H), 7.07 (t , 1H), 7.26 (t , t , 2H, 2H2, 2H3, 7.70-7.75 (t , 2H3, 9.88 (t , 1H3, 13.00 (t , 1H3); IR (Nujol) 3187, 2925, 2854, 1764, 1678, 1585, 1468, 1448, 1269, 1235, 1171, 1158 cm ⁻¹ .
15	lg-7	mp 200-202°C; ¹H-NMR (d ₆ -DMSO) δ 1.22 (t, J = 7.2 Hz, 3H), 2.71 (br t, 2H), 3.18 (s, 3H), 3.74 (br t, 2H), 4.09 (q, J = 7.2 Hz, 2H), 4.49 (s, 2H), 4.92 (s, 2H), 6.79 (dd, J = 1.8, 9.0 Hz, 1H), 7.10 (br, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.39-7.45 (m, 2H), 7.56-7.62 (m, 2H), 13.00 (br 1H); IR (Nujol) 2925, 2854, 1697, 1677, 1476, 1340, 1238, 1147 cm²; Elemental analysis ($C_{23}H_{24}FN_3O_6S\cdot0.4H_2O$) Calcd. (%): C, 55.61; H, 5.03; F, 3.82; N, 8.46; S, 6.46 Found (%): C, 55.58; H, 5.10; F, 3.71; N, 8.39; S, 6.41
25	lg-8	mp 229-232°C; ¹H-NMR (d_6 -DMSO) δ 1.22 (t, J = 6.9 Hz, 3H), 2.67 (br t, 2H), 3.72 (t, J = 6.0 Hz, 2H), 3.77 (s, 3H), 4.06 (q, J = 7.2 Hz, 2H), 4.47 (s, 2H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.07 (d, J = 2.1 Hz, 1H), 6.99-7.03 (m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.59-7.63 (m, 2H); IR (Nujol) 3309, 3218, 2925, 2853, 1741, 1644, 1598, 1491, 1259, 1247, 1155 cm ⁻¹ .

	Compound No.	Physical properties
30 35	lg-9	mp 232-234°C; ¹ H-NMR (d ₆ -DMSO) δ 1.22 (t, J = 6.9 Hz, 3H), 2.71 (br t, 2H), 3.13 (s, 3H), 3.74 (t, J = 5.7 Hz, 2H), 3.85 (s, 3H), 4.09 (q, J = 6.9 Hz, 2H), 4.49 (s, 2H), 4.92 (s, 2H), 6.79 (dd, J = 1.8, 8.7 Hz, 1H), 7.08-7.11 (m, 3H), 7.34 (d, J = 8.7 Hz, 1H), 7.43-7.47 (m, 2H); IR (Nujol) 3143, 2925, 2854, 1722, 1690, 1598, 1497, 1472, 1229, 1163 crrr¹; Elemental analysis ($C_{24}H_{27}N_3O_7S$) Calcd. (%): C, 57.47; H, 5.43; N, 8.38; S, 6.39 Found (%): C, 57.48; H, 5.41; N, 8.28; S, 6.23
	lg-10	mp 245-250°C; ¹ H-NMR (d_6 -DMSO at 80°C) δ 2.11 (s, 3H), 2.78 (br, 2H), 3.14 (s, 3H), 3.80 (br, 2H), 3.85 (s, 3H), 4.55 (s, 2H), 4.85 (s, 2H), 6.80 (br d, J = 8.7 Hz, 1H), 7.05-7.08 (m, 3H), 7.28 (d, J = 8.7 Hz, 1H), 7.47-7.51 (m, 2H); IR (Nujol) 2923, 2853, 1737, 1596, 1474, 1340, 1259, 1162 cm ⁻¹ .
40	lg-11	mp 209-211 °C; 1 H-NMR (d ₆ -DMSO) δ 1.60-1.90 (m, 6H), 2.60-2.76 (m, 4H), 4.87 (s, 2H), 6.69 (dd, J = 1.8, 8.7 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 7.17 (d, J = 8.7 Hz, 1H), 7.31-7.38 (m, 2H), 7.70-7.75 (m, 2H), 9.80 (s, 1H), 12.90 (br, 1H); IR (Nujol) 3220, 2922, 2854, 1733, 1593, 1482, 1323, 1194, 1149 cm ⁻¹ ; Elemental analysis ($C_{21}H_{21}FN_2O_4S$) Calcd. (%): C, 60.56; H, 5.08; F, 4.56; N, 6.73; S, 7.70 Found (%): C, 60.48; H, 4.92; F, 4.32; N, 6.68; S, 7.56
4 5	lg-12	mp 157-160 °C; 1 H-NMR (CDCl ₃) δ 1.70-1.93 (m, 6H), 2.66-2.79 (m, 4H), 3.22 (s, 3H), 4.83 (s, 2H), 6.80 (dd, J = 1.8, 8.7 Hz, 1H), 7.03 (d, J = 8.7 Hz, 1H), 7.08-7.16 (m, 3H), 7.57-7.63 (m, 2H); IR (Nujol) 2923, 2853, 1725, 1592, 1480, 1346, 1235, 1148 cm ⁻¹ ; Elemental analysis (C ₂₂ H ₂₃ FN ₂ O ₄ S) Calcd. (%); C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.45 Found (%); C, 60.98; H, 5.42; F, 4.10; N, 6.41; S, 7.43
55	lg- 13	mp 155-157 °C; ¹H-NMR (CDCl ₃) δ 1.60-1.92 (m, 6H), 2.60-2.74 (m, 4H), 4.76 (s, 4H), 6.66 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.09-7.28 (m, 7H), 7.65-7.70 (m, 2H); IR (Nujol) 2923, 2854, 1726, 1593, 1479, 1346, 1241, 1167, 1153 cm ⁻¹ ; Elemental analysis (C ₂₈ H ₂₇ FN ₂ O ₄ S) Calcd. (%): C, 66.39; H, 5.37; F, 3.75; N, 5.53; S, 6.33 Found (%): C, 66.39; H, 5.40; F, 3.53; N, 5.51; S, 6.09

Table 63 (continued)

Compound No.	Physical properties
Ig-14	mp 144-150 °C; ¹H-NMR (d_6 -DMSO) δ 1.61-1.76(m, 4H), 1.78-1.90 (m, 2H), 2.60-2.76 (m, 4H), 3.13 (s, 3H), 3.84 (s, 3H), 4.93 (s, 2H), 6.64 (dd, J = 1.8, 8.4 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 7.07-7.10 (m, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.45-7.49 (m, 2H); IR (Nujol) 2926, 2853, 1727, 1596, 1496, 1477, 1353, 1256, 1243, 1162, 1151 cm $^{-1}$; Elemental analysis ($C_{23}H_{26}N_2O_5S$) Calcd. (%): C, 62.42; H, 5.92; N, 6.33; S, 7.25 Found (%): C, 62.72; H, 5.83; N, 6.18; S, 7.08

10

Table 64

	Compound No.	Physical properties
15	lg-15	mp 151-155 °C; ¹ H-NMR (d_6 -DMSO) δ 0.97 (t, J = 6.9 Hz, 3H), 1.61-1.76 (m, 4H), 1.78-1.90 (m, 2H), 2.62-2.76 (m, 4H), 3.60 (q, J = 6.9 Hz, 2H), 4.94 (s, 2H), 6.58 (dd, J = 1.8, 8.4 Hz, 1H), 7.01 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.38-7.45 (m, 2H), 7.63-7.68 (m, 2H); IR (Nujol) 2924, 2854, 1728, 1592, 1478, 1345, 1233, 1170, 1143 cm ⁻¹ ; Elemental analysis ($C_{23}H_{26}N_2O_5S$) Calcd. (%): C, 62.14; H, 5.67; F, 4.27; N, 6.30; S, 7.21 Found (%): C, 61.99; H, 5.39; F, 4.08; N, 6.31; S, 7.04
20	lg-16	mp 186-189 °C; ¹H-NMR (d_6 -DMSO) δ 1.60-1.76 (m, 4H), 1.78-1.90 (m, 2H), 2.60-2.80 (m, 4H), 3.10 (s, 3H), 4.94 (s, 2H), 6.64 (dd, J = 1.8, 8.7 Hz, 1H), 6.85-6.89 (m, 2H), 7.03 (d, J = 1.8 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.33-7.37 (m, 2H), 10.47 (br s, 1H), 12.96 (br s, 1H); IR (Nujol) 3400, 2924, 2853, 1722, 1600, 1586, 1498, 1476, 1444, 1321, 1251, 1144 cmr¹; Elemental analysis ($C_{22}H_{24}N_2O_5S$ -0.3H $_2O$) Calcd. (%): C, 60.90; H, 5.71; N, 6.46; S, 7.39 Found (%): C, 60.85; H, 5.38; N, 6.25; S, 7.18
30	lg-17	mp 264-266 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.96-2.07 (m, 2H), 2.97 (t, J = 6.3 Hz, 2H), 3.13-3.20 (m, 2H), 3.17 (s, 3H), 5.02 (s, 2H), 6.82 (dd, J = 2.1, 8.7 Hz, 1H), 7.37-7.45 (m, 3H), 7.55-7.64 (m, 3H), 7:96 (d, J = 2.1 Hz, 1H); IR (Nujol) 3521, 3381, 2924, 2854, 1713, 1614, 1592, 1528, 1476, 1445, 1339, 1254 cm ⁻¹ ; Elemental analysis ($C_{21}H_{20}FN_3O_5S\cdot H_2O$) Calcd. (%): C, 54.42; H, 4.78; F, 4.10; N, 9.07; S, 6.92 Found (%): C, 54.43; H, 4.82; F, 3.96; N, 8.83; S, 6.67
35	lg-18	mp 193-197 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.32-1.68 (m, 8H), 2.63-2.79 (m, 4H), 4.85 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 7.00 (d, J = 1.8 Hz, 1H), 7.17 (d, J = 8.7 Hz, 1H), 7.31-7.37 (m, 2H), 7.70-7.75 (m, 2H), 9.79 (s, 1H); IR (Nujol) 3280, 2924, 2853, 1703, 1594, 1475, 1331, 1291, 1244, 1167, 1153 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}FN_2O_4S$) Calcd. (%): C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.47 Found (%): C, 61.21; H, 5.31; F, 4.29; N, 6.42; S, 7.47
40	lg-19	mp 175-177 °C; ¹ H-NMR (d_6 -DMSO) δ 1.35-1.71 (m, 8H), 2.66-2.82 (m, 4H), 3.18 (s, 3H), 4.92 (s, 2H), 6.71 (dd, J = 2.1; 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.37-7.43 (m, 3H), 7.57-7.62 (m, 2H); IR (Nujol) 2925, 2851, 1729, 1590, 1478, 1347, 1243, 1162, 1150 cm ⁻¹ ; Elemental analysis ($C_{23}H_{25}FN_2O_4S$) Calcd. (%): C, 62.14; H, 5.67; F, 4.27; N, 6.30; S, 7.21 Found (%): C, 62.01; H, 5.72; F, 4.01; N, 6.15; S, 7.08
4 5	lg-20	mp 188-192 °C; ¹H-NMR (d_6 -DMSO)) δ 1.32- 1.70 (m, 8H), 2.60-2.78 (m, 4H), 4.81 (s, 2H), 4.86 (s, 2H), 6.66 (dd, J = 1.8, 8.7 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 7.15-7.29 (m, 6H), 7.43-7.46 (m, 2H), 7.70-7.75 (m, 2H); IR (Nujol) 2924, 2853, 1713, 1596, 1474, 1343, 1164, 1153 cm ⁻¹ ; Elemental analysis ($C_{29}H_{29}FN_2O_4S$) Calcd. (%): C, 66.90; H, 5.61; F, 3.65; N, 5.38; S, 6.16 Found (%): C, 66.87; H, 5.59; F, 3.52; N, 5.37; S, 6.01

50

Table 65

Compound No.	Physical properties
lg-21	mp 165-175 °C; ¹H-NMR (d_6 -DMSO) δ 2.38-2.79 (m, 6H), 3.16 (s, 3H), 4.88 (s, 2H), 6.67 (dd, J = 2.1, 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.56-7.61 (m, 2H); IR (Nujol) 2924, 2855, 1730, 1592, 1469, 1343, 1242, 1234, 1150 cm ⁻¹ ; Elemental analysis ($C_{20}H_{19}FN_2O_4S$) Calcd. (%): C, 59.69; H, 4.76; F, 4.72; N, 6.96; S, 7.97 Found (%): C, 59.73; H, 4.72; F, 4.69; N, 6.90; S, 7.90

Table 65 (continued)

	Compound No.	Physical properties
5	lg-22	mp 261-265°C; ¹H-NMR (d ₆ -DMSO) δ 2.80-3.15 (m, 4H), 3.88 (d, J = 15.3 Hz, 1H), 4.09 (d, J = 15.3 Hz, 1H), 4.90 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 7.15 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.29-7.39(m, 2H), 7.67-7.76 (m, 2H), 9.89 (br s, 1H), 13.04 (br, 1H); IR (Nujol) 3560, 3316, 3166, 3102, 3069, 2924, 2724, 2599, 2506, 1896, 1717, 1590, 1466, 1242, 1227, 1166, 1155 cm ⁻¹
10	lg-23	mp 239-244°C; ¹H-NMR (d ₆ -DMSO) δ 2.90-3.15 (m, 4H), 3.17 (s, 3H), 3.90 (d, J = 15.3 Hz, 1H), 4.10 (d, J = 15.3 Hz, 1H), 4.97 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 7.20 (d, J = 1.8 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.40-7.47 (m, 2H), 7.55-7.64 (m, 2H), 13.13 (br, 1H); IR (Nujol) 1718, 1590, 1479, 1348, 1234, 1152 cm⁻¹; Elemental analysis($C_{20}H_{19}FN_2O_5S_2$) Calcd. (%): C, 53.32; H, 4.25; F, 4.22; N, 6.22; S, 14.24 Found (%): C, 53.15; H, 4.47; F, 4.20; N, 6.19; S, 14.23
15	lg-24	mp 251-254 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.96-2.05 (m, 2H), 2.93 (t, J = 6.3 Hz, 2H), 3.11-3.20 (m, 2H), 3.76 (s, 3H), 4.94 (s, 2H), 6.92 (dd, J = 2.1, 8.7 Hz, 1H), 6.98-7.03 (m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.50 (t, J = 5.1 Hz, 1H), 7.58-7.63 (m, 2H), 8.00 (d, J = 2.1 Hz, 1H), 9.73 (s, 1H); IR (Nujol) 3429, 3171, 2924, 2853, 1745, 1595, 1577, 1481, 1450, 1269, 1154 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₁ N ₃ O ₆ S·H ₂ O) Calcd. (%): C, 54.65; H, 5.02; N, 9.11; S, 6.95 Found (%): C, 54.58; H, 4.58; N, 9.05; S, 7.00
25	lg-25	mp 251-254 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.96-2.05 (m, 2H), 2.97 (l, J = 6.3 Hz, 2H), 3.12 (s, 3H), 3.12-3.21 (m, 2H), 3.84 (s, 3H), 5.01 (s, 2H), 6.81 (dd, J = 2.1, 9.0 Hz, 1H), 7.05-7.11 (m, 2H), 7.37 (d, J = 9.0 Hz, 1H), 7.44-7.49 (m, 2H), 7.57 (l, J = 4.8 Hz, 1H), 7.99 (d, J = 2.1 Hz, 1H), 13.2 (br, 1H); IR (Nujol) 3451, 3316, 2925, 2854, 1747, 1721, 1612, 1596, 1534, 1475, 1444, 1339, 1258 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}N_3O_6S$ - 1.1H ₂ O) Calcd. (%): C, 55.36; H, 5.32; N, 8.80; S, 6.72 Found (%): C, 55.21; H, 5.10; N, 8.85; S, 6.84
30	lg-26	dp 217-219 °C; ¹H-NMR (d ₆ -DMSO) δ 1.84-2.00 (m, 2H), 2.64-2.81 (m, 4H), 3.16 (s, 3H), 4.98 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 7.35-7.61 (m, 5H), 7.74 (d, J = 2.1 Hz, 1H), 10.39 (s, 1H), 13.0 (br, 1H); IR (Nujol) 3400, 2925, 2854, 1705, 1605, 1590, 1476, 1459, 1418, 1377, 1316, 1231, 1170, 1157 cm-¹; Elemental analysis ($C_{21}H_{20}FN_3O_5S$) Calcd. (%): C, 56.62; H, 4.53; F, 4.26; N, 9.43; S, 7.20 Found (%): C, 56.59; H, 4.39; F, 4.37; N, 9.26; S, 7.12

35

	Compound No.	Physical properties
ю	lg-27	dp 203-208 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.84-1.97 (m, 2H), 2.60-2.78 (m, 4H), 3.18 (s, 3H), 3.76 (s, 3H), 4.99 (s, 2H), 6.85 (dd, J = 2.1, 8.7 Hz, 1H), 7.38-7.66 (m, 6H), 7.74 (d, J = 2.1 Hz, 1H), 13.0 (br, 1H); IR (Nujol) 3179, 2925, 2854, 1736, 1592, 1471, 1376, 1345, 1172, 1149 cm ⁻¹ ; Elemental analysis ($C_{22}H_{22}FN_3O_5S$) Calcd. (%): C, 57.51; H, 4.83; F, 4.13; N, 9.14; S, 6.98 Found (%): C, 57.40; H, 4.65; F, 4.18; N, 8.95; S, 7.03
5	lh-1	mp 218-222 °C; 1 H-NMR (1 G-DMSO) 5 1.65-1.88 (m, 4H), 2.50-2.60 (m, 4H), 4.79 (s, 2H), 6.72 (dd, J = 1.2, 9.0 Hz, 1H), 7.03 (d, J = 1.2 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.31-7.37 (m, 2H), 7.69-7.75 (m, 2H), 9.80 (s, 1H), 12.90 (br, 1H); IR (Nujol) 3221, 2925, 2854, 1737, 1587, 1478, 1403, 1231 cm ⁻¹ .
o	lh-2	mp 179-182 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.50-2.64 (m, 4H), 3.17 (s, 3H), 4.86 (s, 2H), 6.69 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.39-7.49 (m, 2H), 7.58-7.63 (m, 2H); IR (Nujol) 2926, 1725, 1592, 1492, 1476, 1347, 1237, 1149 cm ⁻¹ ; Elemental analysis ($C_{21}H_{21}FN_2O_4S$) Calcd. (%): C, 60.56; H, 5.08; F, 4.56; N, 6.73; S, 7.70 Found (%): C, 60.38; H, 5.07; F, 4.44; N, 6.73; S, 7.71
5	lh-3	mp 198-202 °C; $^1\text{H-NMR}$ (d ₈ -DMSO) δ 1.64-1.86 (m, 4H), 2.44-2.60 (m, 4H), 4.80 (s, 4H), 6.64 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 7.16-7.30 (m, 6H), 7.40-7.49 (m, 2H), 7.68-7.78 (m, 2H); IR (Nujol) 2924, 2854, 1727, 1594, 1494, 1475, 1346, 1243 cmr 1 ; Elemental analysis (C ₂₇ H ₂₅ FN ₂ O ₄ S) Calcd. (%): C, 65.84; H, 5.12; F, 3.86; N, 5.69; S, 6.51 Found (%): C, 65.53; H, 5.11; F, 3.73; N, 5.63; S, 6.30

Table 66 (continued)

Compound No.	Physical properties
lh-4	mp 180-183 °C; ¹H-NMR (d_6 -DMSO) δ 1.07 (d , J = 6.9 Hz, 3H), 1.44 (m , 1H), 1.74-1.98 (m , 2H) 2.10 (m , 1H), 2.52-2.70 (m , 3H), 4.78 (s , 2H), 6.72 (dd , J = 2.1, 8.7 Hz, 1H), 7.02 (d , J = 1.5 Hz 1H), 7.17 (d , J = 8.4 Hz, 1H), 7.30-7.40 (m , 2H), 7.68-7.78 (m , 2H), 9.80 (br s, 1H), 12.91 (br , 1H); IR (Nujol) 3217, 2953, 2853, 2721, 1733, 1567, 1418, 1321, 1298, 1180, 1143 cm ⁻¹ ; Elemental analysis ($C_{21}H_{21}FN_2O_4S$) Calcd. (%): C, 60.56; H, 5.08; F, 4.56; N, 6.73; S, 7.70 Found (%): C, 60.35; H, 5.09; F, 4.41; N, 6.66; S, 7.67
lh-5	mp 100-101 °C; 1 H-NMR (d ₆ -DMSO) δ 1.07 (d, J = 6.9 Hz, 3H), 1.46 (m, 1H), 1.74-1.94 (m, 2H) 2.10 (m, 1H), 2.40-2.75 (m; 3H), 3.17 (s, 3H), 4.83 (s, 2H), 6.67 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 7.38-7.48 (m, 2H), 7.55-7.63 (m, 2H), 12.90 (br, 1H) IR (Nujol) 3103, 3068, 2854, 2726, 1726, 1619, 1475, 1346, 1293, 1235, 1171 cm ⁻¹ ; Elementa analysis ($C_{22}H_{23}FN_2O_4S$ -0.2AcOEt) Calcd. (%): C, 61.11; H, 5.53; F, 4.24; N, 6.25; S, 7.16 Found (%): C, 60.90; H, 5.44; F, 4.01; N, 6.43; S, 7.38

20	Compound No.	Physical properties
25	ih-6	mp 176-178 °C; 1 H-NMR (d ₆ -DMSO) δ 1.06 (d, J = 6.9 Hz, 3H), 1.41 (m, 1H), 1.70-1.84 (m, 2H), 2.08 (m, 1H), 2.42-2.70 (m, 3H), 4.79 (s, 4H), 6.64 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 7.14-7.30 (m, 5H), 7.40-7.50 (m, 2H), 7.66-7.76 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3106, 2854, 1717, 1594, 1494, 1291, 1251, 1235, 1188, 1165, 1154 cm ⁻¹ ; Elemental analysis ($C_{28}H_{27}FN_2O_4S$) Calcd. (%): C, 66.39; H, 5.37; F, 3.75; N, 5.53; S, 6.33 Found (%): C, 66.19; H, 5.36; F, 3.52; N, 5.43; S, 6.33
30	lh-7	mp 205-210 °C; $^1\text{H-NMR}$ (
35 40	lh-8	mp 134-136 °C; ¹H-NMR (d_6 -DMSO) δ 0.86 (t, J = 7.2 Hz, 3H), 1.30-1.46 (m, 2H), 1.58-1.70 (m, 2H), 1.72-1.90 (m, 4H), 2.54-2.66 (m, 4H), 3.03-3.12 (m, 2H), 3.26 (s, 3H), 4.87 (s, 2H), 7.07 (dd, J = 2.1, 8.7 Hz, 1H), 7.32 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 3042, 2923, 2739, 2650, 2549, 1723, 1583, 1411, 1385, 1323, 1234, 1213, 1136 cmr¹; Elemental analysis ($C_{19}H_{26}N_2O_4S$) Calcd. (%): C, 60.29; H, 6.92; N, 7.40; S, 8.46 Found (%): C, 60.41; H, 6.77; N, 7.37; S, 8.16
40	lh-9	mp 222-225 °C; 1 H-NMR (1 B-DMSO) 3 1.66-1.88 (m, 4H), 2.40-2.64 (m, 4H), 4.81 (s, 4H), 6.68 (dd, J = 2.1, 8.7-Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.12 (m, 7H), 7.57 (dd, J = 1.2, 3.6 Hz, 1H), 8.02 (dd, J = 1.2, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 3122, 2923, 2737, 2652, 2558, 1722, 1584, 1403, 1349, 1155 cm $^{-1}$.
45	ih-10	mp 143-145 °C; 1 H-NMR (d ₆ -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.34-1.50 (m, 2H), 1.66-1.89 (m, 6H), 2.50-2.60 (m, 4H), 3.11-3.22 (m, 2H), 4.81 (s, 2H), 4.88 (s, 2H), 6.99 (dd, J = 2.1, 8.7 Hz, 1H), 7.14-7.23 (m, 6H), 7.30 (d, J = 2.1 Hz, 1H), 12.99 (br, 1H); IR (Nujol) 3030, 2853, 2728, 2647, 1725, 1582, 1408, 1385, 1296, 1134 cm ⁻¹ ; Elemental analysis (C ₂₅ H ₃₀ N ₂ O ₄ S) Calcd. (%): C, 66.05; H, 6.65; N, 6.16; S, 7.00 Found (%): C, 65.67; H, 6.40; N, 6.21; S, 6.95
50 55	lh-11	mp 218-220 °C; 1 H-NMR (1 H-NMR (1 H-NMR) (1

Table 68

	Compound No.	Physical properties
5	lh-12	mp 174-176 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.40-2.64 (m, 4H), 3.12 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 7.08 (d, J = 9.0 Hz, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.45 (d, J = 9.0 Hz, 2H), 12.97 (br, 1H); IR (Nujol) 2925, 2746, 2662, 2563, 1727, 1709, 1595, 1474, 1380, 1350, 1246, 1149 cmr¹; Elemental analysis ($C_{22}H_{23}FN_2O_4S$) Calcd. (%): C, 61.67; H, 5.65; N, 6.54; S, 7.48 Found (%): C, 61.40; H, 5.69; N, 6.44; S, 7.22
	lh-13	mp 225-228 °C; 1 H-NMR (d ₆ -DMSO) δ 1.66-1.96 (m, 4H), 2.44-2.60 (m, 4H), 4.77 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 2.1 Hz, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 9.0 Hz, 2H), 9.51 (br s, 1H), 12.99 (br, 1H); IR (Nujol) 3456, 3289, 2924, 1720, 1590, 1284, 1260, 1145 cm ⁻¹ .
15	Ih-14	mp 189-194 °C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.86 (m, 4H), 2.44-2.60 (m, 4H), 3.76 (s, 3H), 4.78 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 6.97 (m, 3H), 7.08 (d, J = 9.0 Hz, 2H), 7.60 (d, J = 8.7 Hz, 1H), 9.52 (br s, 1H), 12.92 (br, 1H); IR (Nujol) 3296, 3203, 2924, 1723, 1403, 1295, 1145 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₂ N ₂ O ₅ S·0.3AcOEt) Calcd. (%): C, 60.85; H, 5.35; N, 6.76; S, 7.74 Found (%): C, 60.47; H, 5.58; N, 6.35; S, 7.27
	ih-15	mp 114-118 °C; ¹ H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.44-2.66 (m, 4H), 3.10 (s, 3H), 4.84 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 2.1 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.34 (d, J = 9.0 Hz, 2H), 12.99 (br, 1H); IR (Nujol) 3376, 2924, 1728, 1586, 1499, 1376, 1329, 1283, 1226, 1147 cm ⁻¹ .
25	Ih-16	mp 182-185 °C; ¹H-NMR (d_6 -DMSO) δ 0.98 (t, J = 9.9 Hz, 3H), 1.35-1.64 (m, 4H), 1.90-2.18 (m, 2H), 2.50-2.70 (m, 3H), 4.80 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.32-7.38 (m, 2H), 7.70-7.75 (m, 2H), 9.83 (s, 1H); IR (Nujol) 3287, 2956, 2922, 2853, 1722, 1590, 1492, 1469, 1404, 1254, 1163, 1148 cm²; Elemental analysis ($C_{22}H_{23}FN_2O_4S$) Calcd. (%): C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.45 Found (%): C, 61.25; H, 5.36; F, 4.30; N,6.43; S, 7.19
35	lh-17	mp 186-188 °C; ¹H-NMR (d ₆ -DMSO) δ 0.98 (t, J = 6.9 Hz, 3H), 1.37-1.64 (m, 4H), 1.92-2.18 (m, 2H), 2.50-2.70 (m, 3H), 3.77 (s, 3H), 4.79 (s, 2H), 6.74 (dd, J = 1.8, 8.7 Hz, 1H), 7.00-7.17 (m, 4H), 7.59-7.63.(m, 2H), 9.65 (s, 1H); IR (Nūjol) 3223, 2924, 2853, 1727, 1594, 1260, 1143 cm ⁻¹ ; Elemental analysis ($C_{23}H_{26}N_2O_5S$) Calcd. (%): C, 62.42; H, 5.93; N, 6.33; S, 7.11 Found (%): C, 62.21; H, 5.88; N,6.27; S, 7.11
40	lh-18	mp 153-155 °C; $^1\text{H-NMR}$ (d ₆ -DMSO) δ 0.97 (t, J = 7.2 Hz, 3H), 1.35-1.68 (m, 4H), 1.90-2.18 (m, 2H), 2.54-2.72 (m, 3H), 3.17 (s, 3H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.4 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.38-7.45 (m, 2H), 7.57-7.62 (m, 2H); IR (Nujol) 2924, 1719, 1592, 1476, 1345, 1237, 1146 cm ⁻¹ ; Elemental analysis ($^2\text{C}_{23}\text{H}_{25}\text{FN}_2\text{O}_4\text{S}$) Calcd. (%): C, 62.14; H, 5.67; F, 4.27; N, 6.30; S, 7.21 Found (%): C, 62.38; H, 5.84; F, 4.00; N,6.10; S, 6.83

Table 69

45

50

Table 09	
Compound No.	Physical properties
lh-19	mp 119-122 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (t, J = 6.9 Hz, 3H), 1.37-1.70 (m, 4H), 1.92-2.18 (m, 2H), 2.50-2.74 (m, 3H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.07-7.10 (m, 2H), 7.24 (d, J = 8.4 Hz, 1H), 7.44-7.48 (m, 2H); IR (Nujol) 2925, 1719, 1597, 1579, 1476, 1342, 1245, 1150cm ⁻¹ ; Elemental analysis ($C_{24}H_{28}N_2O_5S$) Calcd. (%): C, 63.14; H, 6.18; N, 6.14; S, 7.02 Found (%): C, 63.30; H, 6.38; N, 5.94; S, 6.61
Ih-20	mp 193.200°C; ¹ H-NMR (d ₆ -DMSO) δ 1.65-1.86 (m, 4H), 2.46-2.60 (m, 4H), 4.78 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.45- 7.60 (m, 3H), 7.65-7.72 (m, 2H), 9.78 (s, 1H), 12.93(brs, 1H); IR (Nujol) 3206, 1765, 1735, 1584, 1478, 1459, 1448, 1435, 1398, 1366, 1349, 1334, 1309, 1282, 1265, 1236, 1204, 1147 cm ⁻¹ ; Elemental analysis ($C_{20}H_{20}N_2O_4S$) Calcd. (%): C, 62.48; H, 5.24; N, 7.29; S, 8.34 Found (%): C, 62.29; H, 5.23; N, 7.18; S, 8.24

Table 69 (continued)

	Compound No.	Physical properties
5	Ih-21	mp 182-190°C; ¹H-NMR (d_6 -DMSO) δ 1.67-1.87 (m, 4H), 2.30 (s, 3H), 2.46-2.60 (m, 4H), 4.78 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 9.71 (s, 1H), 12.93 (br s, 1H); IR (Nujol) 3222, 3114, 3062, 1756, 1738, 1596, 1478, 1456, 1417, 1404, 1381, 1365, 1346, 1322, 1303, 1291, 1280, 1260, 1194, 1146 cmr¹; Elemental analysis ($C_{21}H_{22}N_2O_4S$) Calcd. (%): C, 63.30; H, 5.56; N, 7.03; S, 8.05 Found (%): C, 63.21; H, 5.53; N, 6.99; S, 7.98
10 15	Ih-22	mp 199-205°C; ¹ H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.44-2.64 (m, 4H), 3.16 (s, 3H), 4.86 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.51-7.62 (m, 4H), 7.70 (m, 1H), 12.99 (br s, 1H); IR (Nujol) 3063, 2743, 2653, 2552, 2454, 1721, 1738, 1615, 1579, 1476, 1440, 1425, 1411, 1387, 1364, 1345, 1332, 1309 1290, 1266, 1240, 1213, 1190, 1173 1157 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₂ N ₂ O ₄ S) Calcd. (%): C, 63.30; H, 5.56; N, 7.03; S, 8.05 Found (%): C, 63.16; H, 5.48; N, 6.95 S, 7.83
20	Ih-23	mp 182-188°C;¹H-NMR (d ₆ -DMSO) δ 1.68-1.89 (m, 4H), 2.40 (s, 3H), 2.45-2.64 (m, 4H), 3.14 (s, 3H), 4.86 (s, 2H), 6.66 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 12.97 (br s, 1H); IR (Nujol) 2655, 2553, 1712, 1619, 1597, 1477, 1407, 1383, 1365, 1343, 1306, 1290, 1267, 1243, 1213, 1185, 1168, 1148, 1121, 1110 cm⁻¹; Elemental analysis ($C_{22}H_{24}N_2O_4S$) Calcd. (%): C, 64.06; H, 5.86; N, 6.79; S, 7.77 Found (%): C, 64.14; H, 5.84; N, 6.73; S, 7.61

Table 70

Compound No.	Physical properties
lh-24	Mp 240-250°C; ¹H-NMR (d ₆ -DMSO) δ 1.71-1.90 (m, 4H), 2.54-2.66 (m, 4H), 3.25 (s, 3H), 4.47 (s, 2H), 4.88 (s, 2H), 6.99 (dd, J = 1.8, 8.4 Hz, 1H), 7.18 (d, J = 1.8 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.34-7.42 (m, 5H), 12.99 (br s, 1H); IR (Nujol) 2657, 2557, 1710, 1620, 1603, 1582, 1496, 1479, 1456, 1440, 1412, 1383, 1340, 1311, 1289, 1269, 1250, 1217, 1190, 1173, 1160, 1140 cm⁻¹; Elemental analysis ($C_{22}H_{24}N_2O_4S$ -0.2AcOEt) Calcd. (%): C, 63.67; H, 6.00; N, 6.51; S, 7.45 Found (%): C, 63.75; H, 5.96; N, 6.51; S, 7.38
Ih-25	mp 218-226°C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.90 (m, 4H), 2.50-2.65 (m, 4H), 3.25 (s, 3H), 4.86 (s, 2H), 7.02 (dd; J = 1.8, 8.4 Hz, 1H), 7.24 (d, J = 15.3 Hz, 1H), 7.29-7.47 (m, 5H), 7.37 (d, J = 15.3 Hz, 1H), 7.69-7.77 (m, 2H), 12.95 (br s, 1H); 1R (Nujol) 3057, 2662, 2568, 1721, 1616, 1578, 1478, 1451, 1410, 1385, 1338, 1307, 1290, 1253, 1212, 1179, 1166, 1154, 1133 cm ⁻¹ ; Elemental analysis ($C_{23}H_{24}N_2O_4S$ -0.2AcOEt) Calcd. (%): C, 64.65; H, 5.84; N, 6.34; S, 7.25 Found (%): C, 6.45; H, 5.80; N, 6.36; S, 7.26
lh-26	mp 114-118 °C; 1 H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.44-2.66 (m, 4H), 3.10 (s, 3H), 4.84 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 2.1 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.34 (d, J = 9.0 Hz, 2H), 12.99 (br, 1H); IR (Nujol) 3376, 2924, 1728, 1586, 1499, 1376, 1329, 1283, 1226, 1147 cm ⁻¹
lh-27	mp 165-168 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (s, 6H), 1:52-1.62 (m, 2H), 2.31 (s, 2H), 2.50-2.60 (m, 2H), 4.80 (s, 2H), 6.71 (dd, J = 1.8, 8.7 Hz, 1H), 7.00 (d, J = 1.8 Hz, 1H), 7.25 (d; J = 8.7 Hz, 1H), 7.30-7.39 (m, 2H), 7.68-7.76 (m, 2H), 9. 82 (br s, 1H), 12.91 (br, 1H); IR (Nujol) 3252, 2925, 1752, 1590, 1467, 1291, 1233, 1146 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}N_2FO_4S$) Calcd. (%): C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.49 Found (%): C, 61.42; H, 5.57; F, 4.20; N, 6.70; S, 7.17
lh-28	mp 122-125 °C; $^1\text{H-NMR}$ (d ₆ -DMSO) δ 0.98 (s, 6H), 1.54-1.64 (m, 2H), 2.33 (s, 2H), 2.52-2.60 (m, 2H), 4.82 (s, 2H), 6.77 (dd, J = 1.8, 8.7 Hz, 1H), 7.04-7.10 (m, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.40 (dd, J = 1.5; 3.6 Hz, 1H), 7.82 (dd, J = 1.5, 4.8 Hz, 1H), 9.93 (br s, 1H), 12.90 (br, 1H); IR (Nujol) 3250, 3112, 2923, 2666, 1709, 1474, 1411, 1251, 1159 cm $^{-1}$

Table 70 (continued)

Compound No.	Physical properties
Ih-29	mp 155-160°C; ¹H-NMR (d_6 -DMSO) δ 1.72-1.93 (m, 4H), 2.54-2.66 (m, 4H), 4.30 (s, 2H), 4.86 (s, 2H), 6.96 (dd, J = 2.1, 9.0 Hz, 1H), 7.22 (d, J = 2.1 Hz, 1H), 7.25-7.40 (m, 6H), 9.40 (s, 1H), 12.95 (br s, 1H); IR (Nujol) 3568, 3438, 3349, 3195, 3060, 2728, 2537, 1728, 1713, 1625, 1583, 1469, 1456, 1438, 1427, 1411, 1378, 1350, 1318, 1279, 1257, 1243, 1217, 1192, 1172, 1146, 1130 cm²¹; Elemental analysis ($C_{21}H_{22}N_2O_4S$) Calcd. (%): C, 63.30; H, 5.56; N, 7.03; S, 8.05 Found (%): C, 63.00; H, 5.75; N, 6.91; S, 7.88

Table 71

	Compound No.	Physical properties
15 20	Ih-30	Mp 208-213°C; ¹ H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.50-2.62 (m, 4H), 4.80 (s, 2H), 6.92 (dd, J = 1.8, 8.7 Hz, 1H), 7.15 (d, J = 15.3 Hz, 1H), 7.20 (d, J = 1.8 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.27 (d, J = 15.3 Hz, 1H), 7.33-7.42 (m, 3H), 7.58-7.66 (m, 2H), 9.53 (s, 1H), 12.92 (brs, 1H); IR (Nujol) 3279, 3259, 3241, 3044, 3023, 2652, 2550, 2362, 1729, 1713, 1618, 1589, 1576, 1490, 1469, 1449, 1430, 1412, 1403; 1384, 1351, 1318, 1308, 1275, 1260, 1237, 1214; 1198, 1175, 1136 cm ⁻¹ ; Elemental analysis ($C_{22}H_{22}N_2O_4S$) Calcd. (%): C, 64.37; H, 5.40; N, 6.82; S, 7.81 Found (%): C, 64.28; H, 5.50; N, 6.78; S, 7.56
25	lh-31	mp 112-115 °C; 1 H-NMR (1 d ₆ -DMSO) 3 0.99 (s, 6H), 1.54-1.66 (m, 2H), 2.34 (s, 2H), 2.56-2.66 (m, 2H), 3.16 (s, 3H), 4.87 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.36-7.46 (m, 2H), 7.57-7.66 (m, 2H), 12.95 (br, 1H); IR (Nujol) 2915, 1725, 1709, 1475, 1345, 1308, 1291, 1239, 1166 cm 4 1.
3 <i>0</i>	Ih-32	mp 180-184 °C; ¹H-NMR (d_{8} -DMSO) δ 0.99 (s, 6H), 1.56-1.64 (m, 2H), 2.33 (s, 2H), 2.54-2.66 (m, 2H), 3.21 (s, 3H), 3.84 (s, 3H), 4.87 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 1.5 Hz, 1H), 7.08 (d, J = 9.0 Hz, 2H), 7.26 (d, J = 9.0 Hz, 1H), 7.46 (d, J = 9.0 Hz, 2H), 12.97 (br, 1H); IR (Nujol) 3084, 2923, 2675, 2563, 1734, 1712, 1584, 1474, 1347, 1253, 1159 cmr¹; Elemental analysis ($C_{24}H_{28}N_{2}O_{5}S$) Calcd. (%): C, 63.14; H, 6.18; N, 6.14; S, 7.05 Found (%): C, 62.92; H, 5.98; N, 6.09; S, 6.76
35	Ih-33	mp 174-180 °C; ¹H-NMR (d_6 -DMSO) δ 0.99 (s, 6H), 1.57-1.65 (m, 2H), 2.35 (s, 2H), 2.54-2.65 (m, 2H), 3.20 (s, 3H), 4.87 (s, 2H), 6.71 (dd, J=2.1, 9.0 Hz, 1H), 7.03 (d, J=2.1 Hz, 1H), 7.21-7.32 (m, 2H), 7.45 (dd, J=1.5, 3.6 Hz, 1H), 8.00 (dd, J=1.2, 2.1 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 2923, 2745, 2657, 2560, 1731, 1597, 1579, 1474, 1335, 1308, 1265, 1240; 1147 cm-¹; Elemental analysis ($C_{21}H_{24}N_2O_4S_2$ ·0.2AcOEt) Calcd. (%): C, 58.31; H, 5.59; N, 6.48; S, 14.83 Found (%): C, 58.16; H, 5.73; N, 6.22; S, 14.25
40	Ih-34	mp 146-149 °C; ¹H-NMR (d_{8} -DMSO) δ 1.90-2.18 (m, 2H), 2.57-3.02 (m, 5H), 4.84 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 7.22-7.39 (m, 8H), 7.69-7.73 (m, 2H), 9.84 (s, 1H), 13.00 (br, 1H); IR (Nujol) 3208, 2925, 2854, 1729, 1592, 1495, 1286, 1240, 1197, 1156, 1146 cm ⁻¹ ; Elemental analysis ($C_{26}H_{23}FN_{2}O_{4}S$ -0.3H ₂ O) Calcd. (%): C, 64.53; H, 4.92; F, 3.93; N, 5.79; S, 6.63 Found (%): C, 64.52; H, 4.55; F, 3.82; N,5.75; S, 6.48
45	Ih-35	mp 152-155 °C; ¹H-NMR (d_{6} -DMSO) δ 1.90-2.19 (m, 2H), 2.53-3.02 (m, 5H), 3.76 (s, 3H), 4:83 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.98-7.38 (m, 9H), 7.59-7.62 (m, 2H), 9.66 (s, 1H), 13.00 (br, 1H); IR (Nujol) 3305, 2924, 2853, 1716, 1594, 1474, 1258, 1152 cm ⁻¹ ; Elemental analysis ($C_{27}H_{26}N_{2}O_{5}S\cdot0.3H_{2}O$) Calcd. (%): C, 65.53; H, 5.41; N, 5.65; S, 6.47 Found (%): C, 65.53; H, 5.28; N,5.38; S, 6.12

55

Table 72

	Compound No.	Physical properties
5	Ih-36	mp 204-206 °C; ¹H-NMR (d_6 -DMSO) δ 1.95-2.18 (m, 2H), 2.54-3.02 (m, 5H), 3.16 (s, 3H), 4.90 (s, 2H), 6.72 (dd, J = 2.1, 9.0 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H), 7.20-7.61 (m, 10H); IR (Nujol) 2925, 2854, 1726, 1589, 1476, 1346, 1336, 1254, 1224, 1148 cm ⁻¹ ; Elemental analysis ($C_{27}H_{25}FN_2O_4S$) Calcd. (%): C, 65.84; H, 5.12; F, 3.86; N, 5.69; S, 6.513 Found (%): C, 65.542; H, 4.94; F, 3.87; N,5.61; S, 6.48
10	lh-37	mp 121-124 °C; 1 H-NMR (d ₆ -DMSO) δ 1.94-2.19 (m, 2H), 2.52-3.03 (m, 5H), 3.12 (s, 3H), 3.81 (s, 3H), 4.89 (s, 2H), 6.72 (d, J = 8.7 Hz, 1H), 6.99 (s, 1H), 7.06-7.09 (m, 2H), 7.20-7.47 (m, 8H); IR (Nujol) 2924, 2853, 1741, 1689, 1596, 1480, 1458, 1340, 1259, 1197, 1180, 1162, 1150 cm ⁻¹
15	Ih-38	mp 168-172 °C;¹H-NMR (d ₆ -DMSO) δ 0.81 (l, J = 7.8 Hz, 6H), 1.21-1.40 (m, 4H), 1.60 (t, J = 6.0 Hz, 2H), 2.28 (s, 2H), 2.50 (m, 2H), 3.76 (s, 3H), 4.78. (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.97-7.03 (m, 3H), 7.15 (d, J = 8.7 Hz, 1H), 7.57-7.62 (m, 2H), 9.62 (s, 1H), 12.95 (br, 1H); IR (Nujol) 3303, 2924, 2853, 1719, 1598, 1498, 1486, 1469, 1404, 1254, 1155 cm⁻¹; Elemental analysis ($C_{25}H_{30}N_2O_5S$) Calcd. (%): C, 63.81; H, 6.43; N, 5.95; S, 6.65 Found (%): C, 63.54; H, 6.31; N,5.90; S, 6.65
20 25	lh-39	mp 188-197°C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.46-2.62 (m, 4H), 4.79 (s, 2H), 6.71 (dd, J = 1.8, 8.7 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 9.87 (s, 1H), 12.90 (brs, 1H); IR (Nujol) 3208, 3084, 1755, 1736, 1581, 1474, 1419, 1404, 1381, 1365, 1348, 1333, 1384, 1322, 1304, 1279, 1261, 1198, 1154 cm⁻¹; Elemental analysis ($C_{20}H_{19}CIN_2O_4S$) Calcd. (%): C, 57.34; H, 4.57; Cl, 8.46; N, 6.69; S, 7.65 Found (%): C, 57.28; H, 4.75; Cl, 7.94; N, 6.86; S, 7.39
30	Ih-40	mp 170-175°C; ¹ H-NMR (d ₆ -DMSO) δ 1.68-1.87 (m, 4H), 2.43-2.60 (m, 4H), 4.79 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 8.7 Hz, 2H), 7.92 (d, J = 8.7 Hz, 2H), 10.03 (s, 1H), 12.91 (brs, 1H); IR (Nujol) 3216, 3046, 1754, 1738, 1605, 1593, 1472, 1423, 1405, 1380, 1366, 1340, 1325, 1306, 1294, 1282, 1265, 1216, 1194, 1173, 1154, 1110 cm ⁻¹ ; Elemental analysis ($C_{21}H_{19}F_3N_2O_4S$) Calcd. (%): C, 55.75; H, 4.23; F, 12.60; N, 6.19; S, 7.09 Found (%): C, 55.94; H, 4.46; F, 12.31; N, 6.46; S, 6.94
35	lh-41	mp 162-165°C; 1 H-NMR. (d ₆ -DMSO) 5 1.68-1.89 (m, 4H), 2.46-2.65 (m, 4H), 3.17 (s, 3H), 4.86 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 12.90 (brs, 1H); IR (Nujol) 3095, 2743, 2656, 2556, 1729, 1711, 1584, 1476, 1444, 1427, 1411, 1385, 1346, 1310, 1280, 1267, 1242, 1213, 1189, 1173, 1156 cm-1; Elemental analysis (2 1H ₂₁ CIN ₂ O ₄ S·0.05AcOEt) Calcd. (%): C, 58.22; H, 4.93; Cl, 8.11; N, 6.41; S, 7.33 Found (%): C, 58.32; H, 4.94; Cl, 7.85; N, 6.68; S, 7.30

Table 73

Compound No.	Physical properties
lh-42	mp 181-188°C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.44-2.64 (m, 4H), 3.21 (s, 3H), 4.87 (s, 2H), 6.70 (dd, J = 1.8, 8.7 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 12.99 (brs, 1H); IR (Nujol) 3111, 3085, 3053, 2739, 2653, 2552, 1733, 1712, 1609, 1582, 1477, 1447, 1426, 1408, 1386, 1366, 1348, 1327, 1311, 1281, 1267, 1239, 1214, 1191, 1174, 1158, 1128, 1110 cm ⁻¹ ; Elemental analysis (C ₂₂ H ₂₁ F ₃ N ₂ O ₄ S) Calcd. (%): C, 56.65; H, 4.54; F, 12.22; N, 6.01; S, 6.87 Found (%): C, 56.77; H, 4.62; F, 11.93; N, 6.30; S, 6.88
Ih-43	mp 227-232°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.46-2.64 (m, 4H), 3.18 (s, 3H), 4.86 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.11 (dd, J = 1.5, 5.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.77 (dd, J = 3.0, 5.1 Hz, 1H), 8.03 (dd, J = 1.5, 3.0 Hz, 1H), 12.99 (brs, 1H); IR (Nujol) 3120, 3086, 2742, 2651, 2552, 2455, 1721, 1615, 1577, 1499, 1475, 1439, 1425, 1410, 1386, 1362, 1342, 1309, 1267, 1240, 1209, 1190, 1174, 1152, 1101 cm ⁻¹ ; Elemental analysis ($C_{19}H_{20}N_2O_4S_2$) Calcd. (%): C, 56.42 H, 4.98; N, 6.93; S, 15.85 Found (%): C, 56.15; H, 4.93; N, 6.87; S, 15.71

Table 73 (continued)

	Compound No.	Physical properties
5	Ih-44	mp 164-168°C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.44-2.64 (m, 4H), 3.21 (s, 3H), 4.87 (s, 2H), 6.70 (dd, J = 1.8, 8.7 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 12.99 (brs, 1H); IR (Nujol) 3016, 2745, 2658, 2560, 1721, 1591, 1581, 1477, 1446, 1427, 1414, 1389, 1351, 1334, 1310, 1293, 1264, 1246, 1212, 1190, 1162, 1102 cm⁻¹; Elemental analysis ($C_{22}H_{21}F_3N_2O_5S$) Calcd. (%): C, 54.77; H, 4.39; F, 11.81; N, 5.81; S, 6.65 Found (%): C, 54.69; H, 4.28; F, 11.56; N, 5.82; S, 6.59
10	Ih-45	mp 97-100 °C; ¹ H-NMR (d_6 -DMSO) δ 0.82 (t , J = 7.5 Hz, δ H), 1.21-1.40 (t , d H), 1.63 (t , d Hz, d Hz, d H), 2.31 (t Hz, d Hz,
15	lh-46	mp 103-105 °C; $^1\text{H-NMR}$ ($^1\text{d}_6$ -DMSO) δ 0.82 (^1L , ^1L 1.20-1.40 (m, 4H), 1.63 (br t, 2H), 2.30 (s, 2H), 2.55 (br t, 2H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, ^1L 2.1,8.7 Hz, 1H), 6.95 (d, ^1L 2.1 Hz, 1H), 7.07-7.10 (m, 2H), 7.24 (d, ^1L 8.7 Hz, 1H), 7.44-7.48 (m, 2H); IR (Nujol) 2925, 2854, 1758, 17.39, 1683, 1599, 1474, 1338, 1264, 1182, 1164, 1153 cm ⁻¹ .
20	Ih-47	Mp 160-163 °C; 1 H-NMR (d ₆ -DMSO) δ 1.24-1.57 (m, 10H), 1.66 (t, J = 6.0 Hz, 2H), 2.36 (s, 2H), 2.53 (br t, 2H), 4.78 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.31-7.37 (m, 2H), 7.70-7.75 (m, 2H), 9.79 (s, 1H), 12.9 (br, 1H); IR (Nujol) 3297, 3278, 2919, 2854, 1746, 1720, 1590, 1468, 1251, 1162, 1151 cm ⁻¹ .

	Compound No.	Physical properties
30	lh-48	mp 201-204 °C; ¹ H-NMR (d_6 -DMSO) δ 1.24-1.59 (m, 10H), 1.66 (t, J = 6.0 Hz, 2H), 2.36 (s, 2H), 2.53 (br t, 2H), 3.77 (s, 3H), 4.78 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 6.99-7.16 (m, 3H), 7.15 (d, J = 8.7 Hz, 1H), 7.59-7.63 (m, 2H), 9.62 (s, 1H), 12.5 (br, 1H); IR (Nujol) 3249, 2924, 2853, 1737, 1595, 1470, 1329, 1262, 1154 cm ⁻¹ .
35	Ih-49	mp 198-205°C; ¹ H-NMR (d ₆ -DMSO) δ 1.68-1.86 (m, 4H), 2.46-2.60 (m, 4H), 4.80 (s, 2H), 6.76 (dd, J = 1.8, 8.7 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.22 (dd, J = 1.5, 5.1 Hz, 1H), 7.66 (dd, J = 3.0, 5.1 Hz, 1H), 7.96 (dd, J = 1.5, 3.0 Hz, 1H), 9.71 (s, 1H), 12.93 (brs, 1H); IR (Nujol) 3205, 3103, 1735, 1478, 1459, 1435, 1401, 1365, 1349, 1333, 1312, 1281, 1264, 1206, 1146 cm ⁻¹ ; Elemental analysis (C ₁₈ H ₁₈ N ₂ O ₄ S ₂) Calcd. (%): C, 55.37; H, 4.65; N, 7.17; S, 16.42 Found (%): C, 55.22; H, 4.56; N, 7.04; S, 16.15
40	Ih-50	mp 177-181 °C; 1 H-NMR (d_{6} -DMSO) δ 0.91 (t, J = 6.9 Hz, 3H), 1.30-1.50 (m, 6H), 1.90-2.16 (m, 2H), 2.46-2.70 (m, 3H), 4.77 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.30-7.38 (m, 2H), 7.67-7.75 (m, 2H), 9.81 (br s, 1H); IR (Nujol) 3294, 3102, 3069, 3032, 2919, 2667, 2573, 1722, 1590, 1470, 1403, 1341, 1293, 1254 cm ⁻¹
4 5	Ih-51	mp 112-115 °C; ¹H-NMR (d_6 -DMSO) δ 0.96 (s, 9H), 1.21-1.48 (m, 2H), 2.02-2.30 (m, 2H), 2.42-2.78 (m, 3H), 4.77 (s, 2H), 6.70 (dd, J = 1.8, 8.7 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.30-7.40 (m, 2H), 7.68-7.77 (m, 2H), 9.80 (br s, 1H); IR (Nujol) 3249, 2923, 2662, 1711, 1591, 1495, 1477, 1414, 1339, 1295, 1241, 1194, 1156 cm $^{-1}$.
50	lh-52	mp 168-171 °C; 1 H-NMR (d $_{6}$ -DMSO) δ 0.92 (t, J = 6.6 Hz, 3H), 1.32-1.52 (m, 6H), 1.90-2.16 (m, 2H), 2.46-2.76 (m, 3H), 3.76 (s, 3H), 4.74 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 6.96-7.06 (m, 3H), 7.13 (d, J = 8.7 Hz, 1H), 7.60 (d, J = 9.0 Hz, 2H), 9.61 (s, 1H); IR (Nujol) 3302, 3017, 2923, 2669, 2563, 1720, 1594, 1471, 1402, 1336, 1253, 1193 cm $^{-1}$
55	lh-53	mp 179-181 °C; 1 H-NMR (d_6 -DMSO) δ 0.96 (s, 9H), 1.21-1.50 (m, 2H), 2.00-2.30 (m, 2H), 2.40-2.78 (m, 3H), 3.76 (s, 3H), 4.77 (s, 2H), 6.72 (dd, J = 1.8, 8.7 Hz, 1H), 6.96-7.08 (m, 3H), 7.12 (d, J = 8.7 Hz, 1H), 7.59 (d, J = 8.7 Hz, 2H), 9.61 (br s, 1H); IR (Nujol) 3665, 3297, 2923, 2666, 2570, 1718, 1594, 1470, 1403, 1254, 1194 cm ⁻¹ .

Table 74 (continued)

Compound No.	Physical properties
Ih-54	mp 151-158°C; 1 H-NMR (d $_6$ -DMSO) δ 1.67-1.86 (m, 4H), 2.44-2.61 (m, 4H), 4.79 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H), 9.89 (s, 1H), 12.93 (brs, 1H); IR (Nujol) 3287, 3104, 3038, 1720, 1592, 1487,1473, 1411, 1399, 1376, 1366, 1355, 1336, 1292, 1247, 1209, 1170, 1152 cm ⁻¹ .

10

5

Table 75

	Table 13		
	Compound No.	Physical properties	
15	Ih-55	mp 155-158 °C; ¹H-NMR (d_6 -DMSO) δ 1.23-1.53 (m, 10H), 1.68 (t, J = 6.0 Hz, 2H), 2.39 (s, 2H), 2.56 (br t, 2H), 3.17 (s, 3H), 4.86 (s, 2H), 6.68 (dd, J = 2.1, 9.0 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 9.0 Hz, 1H), 7.38-7.63 (m, 4H); IR (Nujol) 2917, 2854, 1725, 1590, 1478, 1342, 1233, 1146 cm-¹; Elemental analysis ($C_{26}H_{29}FN_2O_4S$) Calcd. (%): C, 64.44; H, 6.03; F, 3.92; N, 5.78; S, 6.62 Found (%): C, 64.12; H, 6.16; F, 3.59; N, 5.52; S, 6.18	
20	Ih-56	mp 132-135 °C; ¹H-NMR (d_6 -DMSO) δ 1.22-1.54(m, 10H), 1.66 (t, J = 6.0 Hz, 2H), 2.38 (s, 2H), 2.56 (br t, 2H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.07-7.11 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.45-7.49 (m, 2H); IR (Nujol) 2917, 2854, 1725, 1597, 1496, 1477, 1338, 1255, 1236, 1148 cm ⁻¹	
25	Ih-57	mp 161-163 °C; ¹H-NMR (d_6 -DMSO) δ 0.92 (t, J = 6.9 Hz, 3H), 1.22-1.50 (m, 5H), 1.62-1.78 (m, 1H), 1.90-2.18 (m, 2H), 2.46-2.74 (m, 3H), 3.17 (s, 3H), 4.84 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.38-7.48 (m, 2H), 7.56-7.64 (m, 2H); IR (Nujol) 2924, 2746, 2657, 2561, 1716, 1591, 1476, 1347, 1307, 1289, 1242, 1148 cm ⁻¹ ; Elemental analysis ($C_{24}H_{27}N_2FO_4S$) Calcd. (%): C, 62.86; H, 5.93; F, 4.14; N, 6.11; S, 6.99 Found (%): C, 62.92; H, 6.09; F, 3.93; N, 6.20; S, 6.69	
30	lh-58	mp 162-164 °C; ¹H-NMR (d_6 -DMSO) δ 0.97 (s, 9H), 1.28-1.58 (m, 2H), 2.02-2.30 (m, 2H), 2.42-2.80 (m, 3H), 3.17 (s, 3H), 4.84 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.36-7.46 (m, 2H), 7.56-7.64 (m, 2H), 12.98 (br, 1H) ; IR (Nujol) 3100, 3080, 3049, 2924, 2743, 2633, 1590, 1437, 1412, 1344, 1235, 1169, 1145 cm ⁻¹	
35	In-59	mp 152-155 °C; ¹H-NMR (d_6 -DMSO) δ 0.92 (t, J = 6.9 Hz, 3H), 1.30-1.54 (m, 6H), 1.90-2.16 (m, 2H), 2.46-2.76 (m, 3H), 3.12 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 13.00 (br s, 1H); IR (NuJol) 2952, 2752, 2665, 2569, 1729, 1598, 1576, 1499, 1476, 1345, 1308, 1246, 1153cm-¹; Elemental analysis ($C_{25}H_{30}N_2O_5S$) Calcd. (%): C, 63.81; H, 6.43; N, 5.95; S, 6.81 Found (%): C, 63.72; H, 6.38; N, 6.00; S, 6.68	
40	Ih-60	mp 140-144°C; ¹ H-NMR (d_6 -DMSO) δ 0.97(s, 9H), 1.24-1.50 (m, 2H), 2.00-2.30 (m, 2H), 2.40-2.78 (m, 3H), 3.13 (s, 3H), 3.84 (s, 3H), 4.84 (s, 2H), 6.68 (dd, J = 2.1, 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 9.0 Hz, 2H), 7.22 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H), 13.00 (br, 1H); IR (Nujol) 2924, 2746, 2641, 2559, 1717, 1596, 1578, 1476, 1341, 1241, cm ⁻¹ ; Elemental analysis ($C_{26}H_{32}N_2O_5S$) Calcd. (%): C, 64.44; H, 6.66; N, 5.78; S, 6.66 Found (%): C, 64.23; H,	
45		6.78; N, 5.90; S, 6.36	

Table 76

50	Compound No.	Physical properties
	lh-61	mp 169-171 °C; ¹ H-NMR (d_6 -DMSO) δ 0.89 (t, J = 6.9 Hz, 3H), 1.20-2.19 (m, 12H), 2.57-2.76 (m, 3H), 3.17 (s, 3H), 4.85 (s, 2H), 6.70 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (m, 3H), 4.85 (s, 2H), 6.70 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26
55		(d, J = 8.4 Hz, 1H), 7.38-7.46 (m, 2H), 7.57-7.62 (m, 2H), 13.00 (br s, 1H); IR (Nujol) 2920, 2854, 1720, 1591, 1476, 1346, 1240, 1146 cm $^{-1}$; Elemental analysis ($C_{26}H_{31}FN_2O_4S$) Calcd. (%): C, 64.18; H, 6.42; F, 3.90; N, 5.76; S, 6.59 Found (%): C, 64.20; H, 6.46; F, 3.66; N, 5.80; S, 6.52

Table 76 (continued)

	Compound No.	Physical properties
5	Ih-62	mp 157-160 °C; ¹H-NMR (d_6 -DMSO) δ 0.89 (l, J = 6.9 Hz, 3H), 1.26-2.19 (m, 12H), 2.54-2.76 (m, 3H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.06-7.12 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.43-7.48 (m, 2H), 13.00 (br s, 1H); IR (Nujol) 2924, 2854, 1721, 1597, 1496, 1476, 1338, 1256, 1242, 1149 cm ⁻¹ ; Elemental analysis ($C_{27}H_{34}N_2O_5S$) Calcd. (%): C, 65.04; H, 6.87; N, 5.62; S, 6.43 Found (%): C, 64.92; H, 6.88; N, 5.62; S, 6.42
10 15	Ih-63	mp 183-189 °C; ¹H-NMR (d ₆ -DMSO) δ 0.95 (t, J = 7.2 Hz, 3H), 1.74-1.84 (m, 4H), 2.51-2.60 (m, 4H), 3.55 (q, J = 7.2 Hz, 2H), 3.84 (s, 3H), 4.86 (s, 2H), 6.62 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.49-7.54 (m, 2H), 13.04 (br, 1H); IR (Nujol) 3201, 3114, 1767, 1748, 1593, 1579, 1493, 1477, 1458, 1427, 1377, 1324, 1308, 1257, 1189, 1154, 1084, 1065, 1057 cm-¹; Elemental analysis ($C_{23}H_{26}N_2O_5S$) Calcd. (%): C, 62.42; H, 5.92; N, 6.33; S, 7.25 Found (%): C, 62.36; H, 5.91; N, 6.32; S, 7.07
20	Ih-64	mp 146-150 °C; ¹H-NMR (d ₆ -DMSO) δ 0.84 (t, J = 7.2 Hz, 3H), 1.25-1.36 (m, 2H), 1.70-1.88 (m, 4H), 2.50-2.61 (m, 4H), 3.44 (t, J = 6.9 Hz, 2H), 3.84 (s, 3H), 4.85 (s, 2H), 6.62 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.06-7.11(m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.47-7.52 (m, 2H), 12.92 (br, 1H); IR (Nujol) 2744, 2654, 2557, 1741, 1720, 1596, 1580, 1494, 1475, 1440, 1414, 1375, 1342, 1306, 1255, 1240, 1176, 1168, 1148, 1107, 1092, 1072, 1058, 1033 cm ⁻¹ ; Elemental analysis ($C_{24}H_{28}N_2O_5S\cdot0.4AcOEt$) Calcd. (%): C, 62.52; H, 6.39; N, 5.70; S, 6.52 Found (%): C, 62.58; H, 6.44; N, 5.76; S, 6.30
25	Ih-65	mp 200-210 °C; ¹ H-NMR (d_6 -DMSO) δ 0.86 (d , J = 6.6 Hz, 6H), 1.41 (m , 1H), 1.70-1.88 (m ; 4H), 2.50-2.64 (m , 4H), 3.32 (d , J = 6.6 Hz, 2H), 3.84 (s , 3H), 4.85 (s , 2H), 6.64 (dd , J = 2.1, 8.7 Hz, 1H), 6.95 (d , J = 2.1 Hz, 1H), 7.05-7.10 (m , 2H), 7.26 (d , J = 8.7 Hz, 1H), 7.45-7.50 (m , 2H); IR (Nujol) 3150, 2575, 2421, 1738, 1715, 1621, 1596, 1579, 1497, 1476, 1467, 1426, 1376, 1366, 1320, 1307, 1265, 1211, 1180, 1146, 1090, 1069, 1055 cm ⁻¹ ; Elemental analysis ($C_{25}H_{30}N_2O_5S$) Calcd. (%): C, 63.81; H, 6.43; N, 5.95; S, 6.81 Found (%): C, 63.72; H, 6.32; N, 5.89; S, 6.55

Table 77

	Compound No.	Physical properties
35	lh-66	mp 184-193 °C; 1 H-NMR (d_6 -DMSO) δ 0.97 (d, J = 6.9 Hz, 6H), 1.72-1.89 (m, 4H), 2.51-2.65 (m, 4H), 3.85 (s, 3H), 4.47 (m,1H), 4.87 (s, 2H), 6.63 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.08-7.13(m, 2H), 7.29 (d, J = 8.7 Hz, 1H), 7.62-7.67 (m, 2H); IR (Nujol) 3261, 1750, 1713, 1596, 1577, 1498, 1476, 1378, 1364, 1338, 1318, 1303, 1265, 1217, 1183, 1146, 1112, 1086 cm ⁻¹ .
40	Ih-67	mp 183-186 °C; 1 H-NMR (d ₆ -DMSO) δ 0.97 (t, J = 7.2 Hz, 3H), 1.70-1.90 (m, 4H), 2.53-2.64 (m, 4H), 3.60 (q, J = 7.2 Hz, 2H), 4.86 (s, 2H), 6.63 (dd, J = 1.8, 8.7 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.62-7.68 (m, 2H); IR (Nujol) 2925, 2854, 1725, 1711, 1592, 1476, 1341, 1243, 1182, 1172, 1148 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}N_2O_4S$) Calcd. (%): C, 61.38; H, 5.39, F, 4.41; N, 6.51; S, 7.45 Found (%): C, 61.12; H, 5.55; F, 4.14; N, 6.33; S, 7.08
4 5	Ih-68	mp 182-184 °C; ¹H-NMR (d ₈ -DMSO) δ 0.85 (t, J = 7.5 Hz, 3H), 1.24-1.41 (m, 2H), 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 3.51 (t, J = 6.3 Hz, 2H), 4.86 (s, 2H), 6.64 (dd, J = 1.8, 8.7 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.62-7.66 (m, 2H); IR (Nujol) 2925, 2854, 1727, 1709, 1592, 1492, 1475, 1341, 1291, 1241, 1172, 1146 cm⁻¹; Elemental analysis ($C_{23}H_{25}N_2O_4S$) Calcd. (%): C, 62.14; H, 5.67, F, 4.27; N, 6.30; S, 7.21 Found (%): C, 61.94; H, 5.70; F, 4.07; N, 6.32; S, 6.96
55	lh-69	mp 165-168, °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 4.22 (d, J = 5.7 Hz, 2H), 4.85 (s, 2H), 4.99-5.13 (m, 2H), 5.62-5.80 (m, 1H), 6.66 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.39-7.46 (m, 2H), 7.64-7.69 (m, 2H); IR (Nujol) 2925, 2853, 1727, 1709, 1592, 1493, 1477, 1344, 1243; 1166, 1154 cm-¹; Elemental analysis ($C_{23}H_{23}FN_2O_4S$) Calcd. (%): C, 62.43; H, 5.24; F, 4.29; N, 6.30; S, 7.25 Found (%): C, 62.22; H, 5.27; F, 4.12; N, 6.32; S, 6.99

Table 77 (continued)

	Compaund No.	Physical properties
5	Ih-70	mp 199-204 °C; ¹H-NMR (d ₆ -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 3.20 (br t, 1H), 4.49 (d, J = 2.4 Hz, 2H), 4.87 (s, 2H), 6.77 (dd, J = 1.8, 8.4 Hz, 1H), 7.08 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.39-7.46 (m, 2H), 7.68-7.73 (m, 2H); IR (Nujol) 3292, 2925, 2854, 1724, 1592, 1477, 1337, 1238, 1155 cm ⁻¹ ; Elemental analysis ($C_{23}H_{21}FN_2O_4S$) Calcd. (%): C, 62.71; H, 4.81; F, 4.31; N, 6.36; S, 7.28 Found (%): C, 62.55; H, 4.91; F, 4.10; N, 6.32; S,7.21
10	lh-71	mp 164-167 °C; ¹ H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 4.55 (d, J = 9.0 Hz, 2H), 4.86 (s, 2H), 6.70 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.67-7.73 (m, 2H); IR (Nujol) 2920, 2854, 1724, 1710, 1593, 1495, 1478, 1344, 1240, 1167, 1155 cm ⁻¹ .

15

Table 78

	Compound No.	Physical properties	
20	Ih-72	mp 143-147 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 3.33-3.50 (m, 2H), 3.61 (t, J = 6.3 Hz, 2H), 4.73 (br s, 1H), 4.86 (s, 2H), 6.65 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.63-7.69 (m, 2H); IR (Nujol) 3610, 3439, 2925, 2854, 1724, 1710, 1591, 1493, 1476, 1341, 1238, 1166, 1153 cm ⁻¹	
25	Ih-73	mp 184-189 °C; ¹H-NMR (d_6 -DMSO) δ 0.05-0.10 (m, 2H), 0.31-0.37 (m, 2H), 1.70-1.91 (m, 4H), 2.52-2.60 (m, 4H), 3.45 (d, J = 6.9 Hz, 2H), 4.86 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.37-7.44 (m, 2H), 7.62-7.68 (m, 2H); IR (Nujol) 2923, 2854, 1725, 1712, 1592, 1492, 1470, 1343, 1241, 1164, 1151 cm-¹; Elemental analysis ($C_{24}H_{25}FN_2O_4S$) Calcd. (%): C, 63.14; H, 5.52; F, 4.16; N, 6.14; S, 7.02 Found (%): C, 63.05; H, 5.54; F, 3.95; N, 6.13; S, 6.88	•
30 35	lh-74	mp 139-144 °C; ¹H-NMR (d_8 -DMSO) δ 1.70-1.88 (m, 4H), 2.49-2.63 (m, 4H), 3.84 (s, 3H), 4.18 (d, 6.3 Hz, 2H), 4.84 (s, 2H), 4.98 (dd, J = 1.5, 10.2 Hz, 2H), 5.08 (dd, J = 1.5, 17.1 Hz, 1H), 5.70 (m, 1H), 6.63 (dd, J = 2.1, 8.7 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.50-7.55 (m, 2H), 13.00 (br, 1H); IR (Nujol) 2753, 2651, 2570, 1719, 1597, 1578, 1496, 1477, 1464, 1444, 1417, 1377, 1341, 1308, 1252, 1179, 1155, 1092, 1060, 1022 cm ⁻¹ ; Elemental analysis ($C_{24}H_{26}N_2O_5S$) Calcd. (%): C, 63.42; H, 5.77; N, 6.16; S, 7.05 Found (%): C, 63.26; H, 5.54; N, 6.19; S, 6.82	
40	Ih-75	mp 134-138 °C; ¹H-NMR (d_6 -DMSO) δ 1.44 (s, 3H), 1.54 (s, 3H), 1.70-1.86 (m, 4H), 2.49-2.63 (m, 4H), 3.84 (s, 3H), 4.31 (d, 6.9 Hz, 2H), 4.85 (s, 2H), 5.04 (m, 1H), 6.64 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.06-7.11(m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.49-7.54 (m, 2H), 13.00 (br, 1H); IR (Nujol) 2742, 2655, 2558, 1721, 1596, 1580, 1496, 1476, 1465, 1441, 1413, 1388, 1376, 1364, 1338, 1306, 1256, 1242, 1213, 1177, 1155, 1112, 1094, 1080, 1036 cm¹; Elemental analysis ($C_{26}H_{30}N_2O_5S$) Calcd. (%): C, 64.71; H, 6.27; N, 5.80; S, 6.64 Found (%): C, 64.68; H, 6.04; N, 5.82; S, 6.36	
4 5	Ih-76	mp 193-202 °C; ¹H-NMR (d_6 -DMSO) δ 1.72-1.88 (m, 4H), 2.49-2.64 (m, 4H), 3.16 (t, J = 2.4 Hz, 1H), 3.84 (s, 3H), 4.44 (d, 2.4 Hz, 2H), 4.86 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 7.07 (d, J = 2.1 Hz, 1H), 7.05-7.10(m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.53-7.58 (m, 2H), 13.02 (br, 1H); IR (Nujol) 3281, 3030, 2746, 2657, 2562, 1721, 1597, 1580, 1499, 1477, 1462, 1438, 1426, 1413, 1388, 1329, 1306, 1265, 1245, 1154, 1098, 1034 cm ⁻¹ ; Elemental analysis ($C_{24}H_{24}N_2O_5S$) Calcd. (%): C, 63.70; H, 5.35; N, 6.19; S, 7.09 Found (%): C, 63.61; H, 5.36; N, 6.29; S, 6.89	

Table 79

	Compound No.	Physical properties
5	lh-77	mp 176-189 °C; ¹H-NMR (d_6 -DMSO) δ 0.02-0.08 (m, 2H), 0.30-0.36 (m, 2H), 0.77 (m, 1H), 1.70-1.88 (m, 4H), 2.49-2.64 (m, 4H), 3.41 (d, J = 6.9 Hz, 2H), 3.84 (s, 3H), 4.86 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.05-7.10 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.49-7.54 (m, 2H), 12.96 (br, 1H); IR (Nujol) 3146, 1739, 1594, 1579, 1496, 1477, 1442, 1426, 1397, 1377, 1339, 1319, 1303, 1263, 1216, 1187, 1146, 1089, 1065, 1047 cm³; Elemental analysis ($C_{25}H_{28}N_2O_5S$) Calcd. (%): C, 64.08; H, 6.02; N, 5.98; S, 6.84 Found (%): C, 63.97; H, 6.09; N, 6.05; S, 6.63
15	lh-78	mp 167-177 °C; ¹H-NMR (d_6 -DMSO) δ 1.72-1.89 (m, 4H), 2.49-2.65 (m, 4H), 3.34 (t, J = 6.6 Hz, 2H), 3.56 (t, J = 6.6 Hz, 2H), 3.84 (s, 3H), 4.68 (br, 1H), 4.85 (s, 2H), 6.64 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.50-7.54 (m, 2H), 12.96 (br, 1H); IR (Nujol) 3554, 3230, 1770, 1747, 1593, 1578, 1495, 1478, 1458, 1396, 1377, 1325, 1301, 1261, 1221, 1185, 1156, 1088, 1060 cm ⁻¹ ; Elemental analysis ($C_{23}H_{26}N_2O_6$ S) Calcd. (%): C, 60.25; H, 5.72; N, 6.11; S, 6.99 Found (%): C, 60.09; H, 5.60; N, 6.07; S, 6.87
20	lh-79	mp 185-197 °C; ¹H-NMR (d_6 -DMSO) δ 0.85-1.25 (m, 6H), 1.52-1.90 (m, 9H), 2.49-2.63 (m, 4H), 3.38 (d, J = 7.2 Hz, 2H), 4.86 (s, 2H), 6.66 (dd, J = 2.1, 8.7 Hz, 1H), 6.93 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.36-7.43 (m, 2H), 7.57-7.63 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3110, 3052, 2735, 2656, 2548, 1734, 1710, 1593, 1492, 1472, 1423, 1407, 1384, 1343, 1289, 1234, 1169, 1153, 1099, 1091, 1063 cm ⁻¹ ; Elemental analysis ($C_{27}H_{31}FN_2O_4S$) Calcd. (%): C, 65.04; H, 6.27; F, 3.81; N, 5.62; S, 6.43 Found (%): C, 64.81; H, 6.26; F, 3.69; N, 5.58; S, 6.32
25 30	lh-80	mp 197-207 °C;¹H-NMR (d ₆ -DMSO) δ 0.84-1.20 (m, 6H), 1.52-1.88 (m, 9H), 2.49-2.63 (m, 4H), 3.34 (d, J = 6.9 Hz, 2H), 3.83 (s, 3H), 4.85 (s, 2H), 6.65 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 7.04-7.09 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.44-7.50 (m, 2H), 13.03 (br, 1H); IR (Nujol) 3159, 1740, 1580, 1499, 1475, 1445, 1387, 1376, 1365, 1349, 1321, 1306, 1265, 1198, 1161, 1142, 1091 cm ⁻¹ ; Elemental analysis ($C_{28}H_{34}N_2O_5S$) Calcd. (%): C, 65.86; H, 6.71; N, 5.49; S, 6.28 Found (%): C, 65.79; H, 6.74; N, 5.52; S, 6.24
35	Ih-81	mp 177-180 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.88 (m, 4H), 2.49-2.63 (m, 4H), 3.82 (s, 3H), 4.85 (s, 2H), 5.02 (s, 2H), 6.70 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.35-7.43 (m, 2H), 7.68-7.75 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3059, 3012, 2741, 2654, 2550, 1726, 1707, 1593, 1496, 1478, 1444, 1426, 1410, 1387, 1338, 1296, 1235, 1213, 1179, 1156, 1110, 1099, 1082, 1033 cm³; Elemental analysis ($C_{22}H_{23}FN_2O_5S$) Calcd. (%): C, 59.18; H, 5.19; F, 4.26; N, 6.27; S, 7.18 Found (%): C, 59.08; H, 5.29; F, 4.05; N, 6.19; S, 6.96

Table 80

Compound No.	Physical properties
lh-82	mp 153-157 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.88 (m, 4H), 2.49-2.63 (m, 4H), 3.31 (s, 3H), 3.83 (s, 3H), 4.84 (s, 2H), 4.99 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.03-7.08 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.55-7.60 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2747, 2656, 2561, 1726, 1597, 1579, 1498, 1476, 1442, 1414, 1386, 1338, 1307, 1260, 1242, 1178, 1157, 1140, 1113, 1097, 1066, 1037 cm-¹; Elemental analysis ($C_{23}H_{26}N_2O_6$ S) Calcd. (%): C, 60.25; H, 5.72; N, 6.11; S, 6.99 Found (%): C, 60.14; H, 5.82; N, 6.09; S, 6.97
lh-83	mp 189-193 °C; ¹H-NMR (d_6 -DMSO) δ 1.09 (d , J = 6.3 Hz, 3H), 1.30-1.45 (m , 1H), 1.80-2.00 (m , 2H), 2.07-2.80 (m , 4H), 3.16 (s , 3H), 4.85 (s , 2H), 6.67 (dd , J = 2.1, 8.7 Hz, 1H), 7.01 (d , J = 2.1 Hz, 1H), 7.27 (d , J = 8.7 Hz, 1H), 7.39-7.62 (m , 4H), 12.91 (br , 1H); IR (Nujol) 2923, 2854, 1730, 1592, 1476, 1346, 1237, 1150 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}FN_2O_4S$) Calcd. (%): C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.45 Found (%): C, 61.34; H, 5.42; F, 4.21; N, 6.62; S, 7.30

Table 80 (continued)

	Compound No.	Physical properties
5	Ih-84	mp 157-161 °C; ¹H-NMR (d_6 -DMSO) δ 1.09 (d, J = 6.6 Hz, 3H), 1.30-1.45 (m, 1H), 1.80-2.00 (m, 2H), 2.10-2.80 (m, 4H), 3.12 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.67 (dd, J = 2.1, 9.0 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.07-7.27 (m, 2H), 7.45 (d, J = 9.0 Hz, 1H), 7.44-7.48 (m, 2H), 13.00 (br, 1H); IR (Nujol) 2924, 2853, 1724, 1595, 1475, 1341, 1248, 1151 cm ⁻¹ ; Elemental analysis ($C_{22}H_{23}FN_2O_4S$) Calcd. (%): C, 62.42; H, 5.92; N, 6.33; S, 7.25 Found (%): C, 62.41; H, 5.93; N, 6.48; S, 7.19
10	li-1	1 H-NMR (CDCl ₃) δ5.17 (s, 2H), 7.07-7.45 (m, 7H), 7.58 (t, J = 2.1 Hz, 1H), 7.70 (m, 1H), 7.81-7.91 (m, 3H); IR (KBr) 3249, 1730, 1610, 1591, 1495, 1495, 1475, 1390, 1324, 1235, 1168, 1153, 1090, 1011 cm ⁻¹ ;Elemental analysis (C ₂₁ H ₁₆ FN ₃ O ₄ S·MeOH) Calcd. (%): C, 57.76; H, 4.41; N, 9.19; F, 4.15; S, 7.01 Found (%): C, 57.72; H, 4.07; N, 8.80; F, 4.10, S, 7.06
15	li-2	1 H-NMR (CDCl ₃ +CD ₃ OD) δ 4.87 (s, 2H), 6.99 (m, 1H), 7.08-7.42 (m, 9H), 7.73 (d, J = 7.8 Hz, 1H), 7.82 (m, 2H); IR (KBr) 3254, 1726, 1607, 1590, 1550, 1494, 1468, 1406, 1378, 1335, 1293, 1238, 1166, 1153, 1089 cm ⁻¹ ;Elemental analysis (C ₂₂ H ₁₇ FN ₂ O ₄ S·0.8MeOH) Calcd. (%): C, 60.84; H, 4.52; N, 6.22; F, 4.22; S, 7.12 Found (%): C, 60.52; H, 4.13; N, 6.19; F, 3.85; S, 6.99
20	li–3	1 H-NMR (CD $_{3}$ OD) δ 3.33 (s, 3H), 5.08 (s, 2H), 7.02 (m, 1H), 7.17-7.51 (m, 8H), 7.64-7.76 (m, 4H); IR (CHCl $_{3}$) 3066, 2928, 1727, 1591, 1550, 1493, 1469, 1380, 1349, 1293, 1234, 1175, 1151, 1087 cm $^{-1}$.
25	lj-1	1 H-NMR (CDCl ₃) δ 1.55-2.30 (m, 6H), 3.34 (m, 1H), 3.82 (m, 1H), 4.77 (br, 1H), 4.82 (s, 2H), 6.75-7.25 (m, 6H), 7.45-7.91 (m, 3H); IR (KBr) 3275, 2955, 1731, 1592, 1494, 1469, 1328, 1292, 1237, 1152, 1092, 1014 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₁ FN ₂ O ₄ S·1.1H ₂ O) Calcd. (%): C, 57.57; H, 5.38; N, 6.39; F, 4.34; S, 7.32 Found (%): C, 57.73; H, 5.08; N, 6.11; F, 4.04, S, 6.87

Table 81

30	Compound No.	Physical properties
	lj-2	¹ H-NMR (CDCl ₃) δ 1.59-2.18 (m, 6H), 2.70 (s, 3H), 3.25 (m, 1H), 4.56 (m, 1H), 4.83 (s, 2H), 6.80 (s, 1H), 7.07-7.22 (m, 6H), 7.51 (m, 1H), 7.75-7.87 (m, 2H); IR (KBr) 2952, 1729, 1591, 1493, 1469, 1335, 1292, 1233, 1152, 1087, 1013 cm ⁻¹ .
35	lj-3	¹ H-NMR (CDCl ₃) δ 1.43-2.18 (s, 6H), 3.17 (s, 1H), 4.26-4.82 (m, 5H), 6.59-7.44 (m, 12H), 7.75-7.87 (m, 2H); IR (KBr) 3433, 2951, 1731, 1591, 1494, 1469, 1337, 1292, 1235, 1152, 1092 cm ⁻¹ .
40	lk-1	mp 165-179 °C; ¹H-NMR (d_6 -DMSO) δ 2.09 (s, 3H), 2.23 (s, 3H), 3.17 (d, J = 0.6 Hz, 3H), 4.90 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.39-7.44 (m, 2H), 7.57-7.62 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3211, 1766, 1739, 1590, 1492, 1481, 1461, 1418, 1377, 1326, 1291, 1264, 1238, 1177, 1137, 1095, 1082, 1063 cm-¹; Elemental analysis ($C_{19}H_{19}FN_2O_4S$) Calcd. (%): C, 58.45; H, 4.91; F; 4.87; N, 7.18; S, 8.21 Found (%): C, 58.46; H, 4.76; F, 4.57; N, 7.12; S, 8.18
45 50	lk-2	mp 206-208 °C(dec); ¹ H-NMR (d_6 -DMSO) δ 2.31 (s, 3H), 3.16 (s, 3H), 4.93 (s, 2H), 6.72 (dd, J = 2.1, 8.4 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.38-7.44 (m, 2H), 7.55-7.60 (m, 2H); IR (Nujol) 3105, 3055, 2657, 2566, 1721, 1591, 1556, 1494, 1480, 1453, 1399, 1349, 1338, 1294, 1241, 1230, 1167, 1151, 1089, 1065 cm ⁻¹ ; Elemental analysis ($C_{18}H_{17}FN_2O_4S$) Calcd. (%): C, 57.44; H, 4.55; F, 5.05; N, 7.44; S, 8.52 Found (%): C, 57.50; H, 4.44; F, 4.99; N, 7.39; S, 8.47
55	lk-3	mp 172-178 °C; ¹H-NMR (d ₆ -DMSO) δ 1.02 (t, J = 7.5 Hz, 3H), 2.20 (s, 3H), 2.53 (q, J = 7.5 Hz, 2H), 4.83 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.30-7.38 (m, 2H), 7.67-7.74 (m, 2H), 9.77 (s, 1H), 12.98 (br, 1H); IR (Nujol) 3254, 1726, 1589, 1487, 1410, 1377, 1333, 1289, 1246, 1233, 1167, 1088 cm ⁻¹ ; Elemental analysis ($C_{19}H_{19}FN_2O_4S$) Cakd. (%): C, 58.45; H, 4.91; F, 4.87; N, 7.18; S, 8.21 Found (%): C, 58.39; H, 4.88; F, 4.75; N, 7.21; S, 8.18

Table 81 (continued)

Compound No.	Physical properties
lk-4	mp 165-171 °C; ¹H-NMR (d_6 -DMSO) δ 1.19 (d, J = 6.9 Hz; 6H), 2.20 (s, 3H), 3.05 (septet, J = 6.9 Hz, 1H), 4.80 (s, 2H), 6.75 (dd, J = 1.8, 8.4 Hz, 1H), 7.01 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.31-7.39 (m, 2H), 7.67-7.73 (m, 2H), 9.72 (s, 1H), 13.00 (br, 1H); IR (Nujol) 3250, 3124, 1741, 1591, 1483, 1377, 1318, 1293, 1200, 1146, 1088 cm ⁻¹ ; Elemental analysis ($C_{20}H_{21}FN_2O_4S$) Calcd. (%): C,59.39; H, 5.23; F, 4.70; N, 6.93; S, 7.93 Found (%): C, 59.28; H, 5.19; F, 4.58; N, 6.93; S, 7.86
lk-5	mp 161-167 °C; ¹H-NMR (d ₆ -DMSO) δ 1.02 (t, J = 7.5 Hz, 3H), 2.23 (s, 3H), 2.55 (q, J = 7.5 Hz, 2H), 3.18 (s, 3H), 4.91 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.55-7.62 (m, 2H), 12.99 (br, 1H); IR (Nujal) 3185, 1766, 1478, 1328, 1180, 1143, 1087 cm ⁻¹ ; Elemental analysis ($C_{20}H_{21}FN_2O_4S$) Calcd. (%): C, 59.39; H, 5.23; F, 4.70; N, 6.93; S, 7.93 Found (%): C, 59.33; H, 5.16; F, 4.58; N, 6.93; S, 7.82

Table 82

	Table 62
Compound No.	Physical properties
lk-6	Mp 210-217 °C; ¹ H-NMR (d_6 -DMSO) δ 1.18 (d, J = 7.2 Hz, 6H), 2.24 (s, 3H), 3.07 (septet, J = 7.2 Hz, 1H), 3.19 (s, 3H), 4.89 (s, 2H), 6.77 (dd, J = 2.1, 9.0 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 9.0 Hz, 1H), 7.36-7.44 (m, 2H), 7.56-7.62 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3241, 1771, 1750, 1587, 1482, 1324, 1178, 1086 cm ⁻¹ ; Elemental analysis ($C_{21}H_{23}FN_2O_4S$) Calcd. (%): C, 60.27; H, 5:54; F, 4.54; N, 6.69; S, 7.66 Found (%): C, 60.04; H, 5.61; F, 4.30; N, 6.49; S, 7.30
lk-7	Mp 121-124 °C; ¹H-NMR (d_{6} -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.43-1.55 (m, 2H), 2.10 (s, 3H), 2.64 (t, J = 7.5 Hz, 2H), 3.18 (s, 3H), 4.89 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.05 (d, J = 2.1 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.40-7.47 (m, 2H), 7.60-7.66 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3232, 1766, 1747, 1480, 1327, 1183, 1143, 1088 cm ⁻¹ ; Elemental analysis ($C_{21}H_{23}FN_2O_4S$) Calcd. (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 Found (%): C, 60.17; H, 5.51; F, 4.45; N, 6.73; S, 7.53
lk-8	Mp 175-177 °C; 1 H-NMR (6 -DMSO) 5 1.16 (t, J = 7.2 Hz, 3H), 2.58 (q, J = 7.2 Hz, 2H), 3.18 (s, 3H), 4.92 (s, 2H), 6.80 (dd, J = 2.1, 9.0 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.14 (s, 1H), 7.29 (d, J = 9.0 Hz, 1H), 7.39-7.45 (m, 2H), 7.57-7.63 (m, 2H), 12.95 (br, 1H); IR (Nujol) 2655, 1730, 1711, 1591, 1481, 1389, 1345, 1251, 1177, 1156 cm $^{-1}$; Elemental analysis (1 -H 1 -PN 2 -O 4 -S) Calcd. (%): C, 58.45; H, 4.91; F, 4.87; N, 7.18; S, 8.21 Found (%): C, 58.41; H, 4.94; F, 4.77; N, 7.03; S, 7.99
lk-9	Mp 225-240 °C; ¹ H-NMR (d_6 -DMSO) δ 0.79 (t, J = 7.2 Hz, 3H), 1.34-1.46 (m, 2H), 2.18 (s, 3H), 2.48 (t, J = 7.2 Hz, 2H), 4.74 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.29-7.37 (m, 2H), 7.66-7.72 (m, 2H), 9.73 (brs, 1H); IR (Nujol) 3265, 1754, 1712, 1590, 1484, 1462, 1377, 1332, 1290, 1236, 1200, 1158, 1087 cm ⁻¹ ; Elemental analysis ($C_{20}H_{21}FN_2O_4S\cdot0.2H_2O$) Calcd. (%): C, 58.87; H, 5.29; F, 4.66; N, 6.87; S, 7.86 Found (%): C, 58.75; H, 5.12; F, 4.46; N, 6.82; S, 7.82
Ik-10	Mp 160-174 °C; ¹ H-NMR (d_6 -DMSO) δ 0.81 (t, J = 7.2 Hz, 3H), 1.34-1.46 (m, 2H), 2.23 (s, 3H), 2.50 (t, J = 7.2 Hz, 2H), 3.19 (s, 3H), 4.91 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.36-7.43 (m, 2H), 7.55-7.60 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3243, 1767, 1587, 1482, 1325, 1178, 1140, 1085 cm ⁻¹ ; Elemental analysis ($C_{21}H_{23}FN_2O_4S$) Calcd. (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 Found (%): C, 60.22; H, 5.57; F, 4.32; N, 6.62; S, 7.59

Table 83

	Compound No.	Physical properties
5	lk-11	Mp 165-173 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (l, J = 7.5 Hz, 3H), 1.05 (t, J = 7.5 Hz, 3H), 1.39-1.49 (m, 2H), 2.53-2.62 (m, 4H), 4.81 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 7.32-7.36 (m, 2H), 7.70-7.75 (m, 2H), 9.79 (s, 1H); IR (Nujol) 3270, 2666, 1709, 1594, 1494, 1479, 1466, 1427, 1408, 1379, 1361, 1329, 1290, 1239, 1195, 1163, 1091 cm-¹; Elemental analysis ($C_{21}H_{23}FN_2O_4S$) Calcd. (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 Found (%): C, 60.10; H, 5.49; F, 4.43; N, 6.63; S, 7.63
15	lk-12	mp 182-190 °C; ¹H-NMR (d_6 -DMSO) δ 0.91 (t, J = 7.5 Hz, 3H), 1.09 (t, J = 7.5 Hz, 3H), 1.40-1.53 (m, 2H), 2.53-2.63 (m, 4H), 4.83 (s, 2H), 6.79.{dd, J = 2.1, 8.7 Hz, 1H), 7.05-7.08 (m, 1H), 7.12 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.39-7.41 (m, 1H), 7.82-7.84 (m, 1H), 9.90 (s, 1H); IR (Nujol) 3249, 3103, 3081, 2660, 1708, 1480, 1468, 1429, 1404, 1378, 1362, 1334, 1235, 1198, 1158, 1091, 1017 cm²; Elemental analysis ($C_{19}H_{22}N_2O_4S_2$) Calcd. (%): C, 56.14; H, 5.45; N, 6.89; S, 15.78 Found (%): C, 56.05; H, 5.45; N, 6.74; S, 15.56
20	Ik-13	mp 134-137 °C; ¹H-NMR (d_6 -DMSO) δ 0.91 (I, J = 7.5 Hz, 3H), 1.04 (I, J = 7.5 Hz, 3H), 1.41-1.54 (m, 2H), 2.54-2.65 (m, 4H), 3.18 (s, 3H), 4.88 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.38-7.44 (m, 2H), 7.57-7.63 (m, 2H), 13.09 (br, 1H); IR (Nujol) 3063, 2659, 2558, 2464, 1706, 1592, 1493, 1476, 1430, 1418, 1378, 1343, 1322, 1291, 1234, 1194, 1168, 1149, 1085, 1064 cm ⁻¹ ; Elemental analysis ($C_{22}H_{25}FN_2O_4S$) Calcd. (%): C, 61.09; H, 5.83; F, 4.39; N, 6.48; S, 7.41 Found (%): C, 61.05; H, 5.79; F, 4.25; N, 6.40; S, 7.45
25	lk-14 -	mp 130-132 °C; 1 H-NMR (d ₆ -DMSO) δ 0.92 (t, J = 7.5 Hz, 3H), 1.07 (t, J = 7.5 Hz, 3H), 1.42-1.54 (m, 2H), 2.54-2.66 (m, 4H); 3.21 (s, 3H), 4.89 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H), 7.22 (d, J = 2.1 Hz, 1H), 7.22-7.25 (m, 2H), 7.47 (dd, J = 1.2, 3.6 Hz, 1H), 8.00 (dd, J = 1-2, 5.1 Hz, 1H), 12.99 (br, 1H); IR (Nujol) 3102, 3075, 2654, 2554, 1723, 1477, 1422, 1405, 1379, 1350, 1236, 1227, 1194, 1149, 1085, 1061, 1015 cm $^{-1}$; Elemental analysis ($C_{20}H_{24}N_2O_4S_2$) Calcd. (%): C, 57.12; H, 5.75; N, 6.66; S, 15.25 Found (%): C, 56.90; H, 5.74; N, 6.60; S, 15.17
30 35	lk-15	mp 235-250 °C; 1 H-NMR (d ₆ -DMSO) δ 0.80 (t, J = 7.2 Hz, 3H), 1.34-1.47 (m, 2H), 2.18 (s, 3H), 2.48 (t, J = 7.2 Hz, 2H), 3.75 (s, 3H), 4.69 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.96-7.01 (m, 2H), 7.11 (d, J = 8.7 Hz, 1H), 7.52-7.57 (m, 2H), 9.52 (brs, 1H); IR (Nujol) 3254, 1744, 1596, 1485, 1460, 1375, 1260, 1170, 1092, 1028 cm ⁻¹ ; Elemental analysis ($C_{21}H_{24}N_2O_5S\cdot0.4H_2O$) Calcd. (%): C, 59.53; H, 5.90; N, 6.61; S, 7.57 Found (%): C, 59.61; H, 5.69; N, 6.61; S, 7.57

40	Compound No.	Physical properties	
4 5	lk-16	mp 152-162 °C; ¹H-NMR (d_6 -DMSO) δ 0.82 (t, J = 7.2 Hz, 3H), 1.34-1.46 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 3.14 (s, 3H), 3.83 (s, 3H), 4.91 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 7.04-7.09 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.42-7.47 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3222, 1765, 1741, 1593, 1482, 1379, 1327, 1306, 1265, 1177, 1142, 1088, 1017 cm ⁻¹ ; Elemental analysis ($C_{22}H_{26}N_2O_5$ S) Calcd. (%): C, 61.38; H, 6.09; N, 6.51; S, 7.45 Found (%): C, 61.26; H, 6.12; N, 6.52; S, 7.51	
50	Ik-17	mp 173-183 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.05 (t, J = 7.5 Hz, 3H), 1.38-1.51 (m, 2H), 2.53-2.61 (m, 4H), 3.76 (s, 3H), 4.80 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz; 1H), 6.99-7.02 (m, 2H), 7.04 (d, J = 1.8 Hz, 1H), 7.11 (d, J = 8.7 Hz, 1H), 7.59-7.62 (m, 2H), 9.61 (s, 1H); IR (Nujol) 3241, 3170, 3013, 1759, 1732, 1597, 1577, 1498, 1478, 1466, 1383, 1355, 1321, 1263, 1190, 1146, 1090, 1028 cm ⁻¹ ; Elemental analysis ($C_{2Z}H_{26}N_2O_5S$) Calcd. (%): C, 61.38; H, 6.09; N, 6.51; S, 7.45 Found (%): C, 61.05; H, 6.05; N, 6.51; S, 7.32	

Table 84 (continued)

	Compound No.	Physical properties
	lk-18	mp 114-116 °C; ¹H-NMR (d ₆ -DMSO) δ 0.92 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H), 1.41-1.54 (m, 2H), 2.54-2.65 (m, 4H), 3.14 (s, 3H), 3.83 (s, 3H), 4.88 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.07-7.09 (m, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.45-7.48 (m, 2H); IR (Nujol) 3314, 3100, 3067, 1767, 1742, 1596, 1579, 1497, 1480, 1465, 1377, 1342, 1318, 1302, 1263, 1168, 1138, 1088, 1060 crrr¹; Elemental analysis ($C_{21}H_{20}F_2N_2O_4S \cdot 0.2AcOEt$) Calcd. (%): C, 61.85; H, 6.46; N, 6.06; S, 6.94 Found (%): C, 61.66; H, 6.47; N, 6.08; S, 6.88
5	lk-19	mp 162-169 °C; 1 H-NMR (d_6 -DMSO) δ 2.29 (s, 3H), 3.13 (s, 3H), 3.91 (s, 2H), 4.95 (s, 2H), 6.78 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1Hz, 1H), 7.06-7.36 (m, 8H), 7.49-7.56 (m, 2H), 13.02 (br, 1H); IR (Nujol) 3149, 1739, 1590, 1476, 1415, 1376, 1346, 1165, 115,1 cm ⁻¹ ; Elemental analysis ($C_{25}H_{23}FN_2O_4S$) Calcd. (%): C, 64.36; H, 4.97; F, 4.07; N, 6.00; S, 6.87 Found (%): C, 64.31; H, 4.88; F, 3.95; N, 5.97; S, 6.73
,	lk-20	mp 192-197 °C; 1 H-NMR (d ₆ -DMSO) δ 2.29 (s, 3H), 3.08 (s, 3H), 3.83 (s, 3H), 3.92 (s, 2H), 4.94 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 6.96-7.24 (m, 8H), 7.29 (d, J = 8.7 Hz, 1H), 7.40-7.44 (m, 2H), 13.02 (br, 1H); IR (Nujol) 1703, 1598, 1496, 1479, 1338, 1256, 1146, 1090, 1027 cm ⁻¹ ; Elemental analysis (2 C ₂₆ H ₂₆ N ₂ O ₅ S) Calcd. (%): C, 65.25; H, 5.48; N, 5.85; S, 6.70 Found (%): C, 64.95; H, 5.49; N, 5.70; S, 6.35

25	Compound No.	Physical properties
3 <i>0</i>	lk-21	mp 140-147 °C; ¹H-NMR (d_6 -DMSO) δ 0.80 (d, J = 6.6 Hz, 6H), 1.60 (septet, J = 6.6 Hz, 1H), 2.22 (s, 3H), 2.38 (d, J = 6.6 Hz, 2H), 3.19 (s, 3H), 4.92 (s, 2H), 6.78 (dd, J = 2.1, 8.7 Hz, 1H), 6.85 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 1H), 7.35-7.43 (m, 2H), 7.55-7.62 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3253, 1766, 1587, 1481, 1324, 1177, 1139, 1085 cm ⁻¹ ; Elemental analysis ($C_{22}H_{25}FN_2O_4S$) Calcd. (%): C, 61.09; H, 5.83; F, 4.39; N, 6.48; S, 7.41 Found (%): C, 60.97; H, 5.75; F, 4.23; N, 6.37; S, 7.32
35	lk-22	mp 137-142 °C; ¹H-NMR (d_6 -DMSO) δ 0.85 (t, J = 7.2 Hz, 3H), 1.14-1.40 (m, 4H), 2.19 (s, 3H), 2.50 (t-like, 2H), 4.84 (s, 2H), 6.76 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.30-7.36 (m, 2H), 7.67-7.72 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3255, 3106, 3041, 2652, 2550, 1714, 1592, 1484, 1466, 1407, 1378, 1351, 1332, 1290, 1233, 1199, 1169, 1159, 1091 cm¹; Elemental analysis ($C_{21}H_{23}FN_2O_4S$) Calcd. (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 Found (%): C, 60.22; H, 5.52; F, 4.39; N, 6.78; S, 7.56
40	lk-23	mp 130-140 °C; ¹H-NMR (d_6 -DMSO) δ 0.86 (t, J = 6.9 Hz, 3H), 1.15-1.42 (m, 4H), 2.18 (s, 3H), 2.50 (t-like, 2H), 3.76 (s, 3H), 4.82 (s, 2H), 6.75 (dd, J = 2.1, 9.0 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 8.97-7.02 (m, 2H), 7.16 (d, J = 9.0 Hz, 1H), 7.56-7.61 (m, 2H), 9.57 (s, 1H), 12.95 (br, 1H); IR (Nujol) 3248, 3076, 2651, 2553, 1714, 1598, 1578, 1499, 1484, 1465, 1410, 1379, 1328, 1301, 1261, 1232, 1181, 1157, 1093, 1029 cm⁻¹; Elemental analysis ($C_{22}H_{26}N_2O_5S$) Calcd. (%): C, 61.38; H, 6.09; N, 6.51; S, 7.45 Found (%): C, 61.21; H, 6.04; N, 6.48; S, 7.27
4 5	lk-24	mp 125-129 °C; 1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-NMR (1 H-N), 6.78 (1 H-N), 6.78 (1 H-N), 6.78 (1 H-N), 6.87 (1 H-N), 6.87 (1 H-N), 7.28 (1 H-N), 7.36-7.43 (1 H-N), 7.55-7.61 (1 H-N), 13.03 (1 H-N); IR (Nujol) 3253, 3121, 3091, 3074, 1768, 1591, 1479, 1416, 1377, 1327, 1292, 1229, 1186, 1166, 1137, 1099, 1087, 1072, 1055 cm ⁻¹ ; Elemental analysis (1 H-2 1 H-2 1 H-2 1 H-2 1 H-1 1 H
55	lk-25	mp 140-145 °C; 1 H-NMR (1 d ₆ -DMSO) 8 0.86 (t, J = 7.2 Hz, 3H), 1.18-1.41 (m, 4H), 2.22 (s, 3H), 2.50 (t-like, 2H), 3-14 (s, 3H), 3.83 (s, 3H), 4.90 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 7.04-7.09 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.42-7.47 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3241, 3090, 3066, 3016, 1764, 1737, 1702, 1593, 1576, 1495, 1481, 1467, 1457, 1415, 1378, 1328, 1305, 1264, 1172, 1141, 1087, 1017 cm ⁻¹ ; Elemental analysis (1 C ₂₃ H ₂₈ N ₂ O ₅ S) Calcd. (%): C, 62.14; H, 6.35; N, 6.30; S, 7.21 Found (%): C, 62.04; H, 6.23; N, 6.29; S, 7.09

Table 86

	Compound No.	Physical properties
5	lk-26	mp 139-147 °C; ¹H-NMR (d_6 -DMSO) δ 0.79 (d, J = 6.6 Hz, 6H), 1.63 (m, 1H), 2.18 (s, 3H), 2.37 (d, J = 6.6 Hz, 2H), 3.76 (s, 3H), 4.84 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 6.96-7.01 (m, 2H), 7.16 (d, J = 8.7 Hz, 1H), 7.55-7.60 (m, 2H), 9.54 (s, 1H), 12.90 (br, 1H); IR (Nujol) 3325, 3254, 3098, 3077, 1748, 1595, 1578, 1484, 1464, 1436, 1418, 1378, 1333, 1317, 1304, 1291, 1260, 1203, 1166, 1141, 1112, 1091 cm ⁻¹ ; Elemental analysis ($C_{22}H_{26}N_2O_5S$) Calcd. (%): C, 61.38; H, 6.09; N, 6.51; S, 7.45 Found (%): C, 61.13; H, 6.13; N, 6.55; S, 7.24
15	lk-27	mp 148-160 °C; ¹H-NMR (d_6 -DMSO) δ 0.80 (d , J = 6.6 Hz, 6H), 1.61 (m , 1H), 2.22 (s , 3H), 2.37 (d , J = 6.6 Hz, 2H), 3.15 (s , 3H), 3.83 (s , 3H), 4.91 (s , 2H), 6.77 (dd , J = 2.1, 8.4 Hz, 1H), 6.84 (d , J = 2.1 Hz, 1H), 7.03-7.08 (m , 2H), 7.26 (d , J = 8.4 Hz, 1H), 7.42-7.47 (m , 2H), 12.96 (b r, 1H); IR (Nujol) 3252, 3097, 3077, 3058, 3025, 1750, 1724, 1595, 1577, 1482, 1465, 1415, 1373, 1320, 1305, 1270, 1212, 1188, 1163, 1144, 1091, 1053, cm $^{-1}$; Elemental analysis ($C_{23}H_{28}N_2O_5S$) Calcd. (%): C, 62.14; H, 6.35; N, 6.30; S, 7.21 Found (%): C, 62.16; H, 6.39; N, 6.32; S, 7.22
20	. lk-28	mp 150-175 °C; ¹H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.5 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.48 (t, J = 7.5 Hz, 2H), 3.58 (q, J = 7.2 Hz, 2H), 3.83 (s, 3H), 4.91 (s, 2H), 6.71 (dd, J = 1.8, 8.7 Hz, 1H), 6.83 (d, J = 1.8 Hz, 1H), 7.04-7.09 (m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.48-7.53 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3178, 1762, 1742, 1728, 1594, 1577, 1476, 1379, 1328, 1306, 1261, 1181, 1139 cm²¹; Elemental analysis ($C_{23}H_{28}N_2O_5S$) Calcd. (%): C, 62.14; H, 6.35; N, 6.30; S, 7.21 Found (%): C, 61.87; H, 6.31; N, 6.33; S, 6.94
25	lk-29	mp 153-165 °C; ¹H-NMR (d_6 -DMSO) δ 0.83 (t, J = 7.5 Hz, 3H), 1.36-1.48 (m, 2H), 2.23 (s, 3H), 2.50 (t, J = 7.5 Hz, 2H), 3.12 (s, 3H), 4.89 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 6.83-6.88 (m, 2H), 6.91 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.31-7.36 (m, 2H), 10.48 (br, 1H), 13.03 (br, 1H); IR (Nujol) 3177, 1719, 1586, 1479, 1442, 1377, 1335, 1241, 1222, 1152 cm-¹; Elemental analysis ($C_{21}H_{24}N_2O_5S$) Calcd. (%): C, 60.56; H, 5.81; N, 6.73; S, 7.70 Found (%): C, 60.38; H, 5.94; N, 6.52; S, 7.32
30 35	lk-30	mp 202-210 °C; ¹ H-NMR (d ₆ -DMSO) δ 2.27 (s, 3H), 3.89 (s, 2H), 4.88 (s, 2H), 6.75 (dd, J = 2.1, 8.4 Hz, 1H), 7.01 (d, J = 2.1Hz, 1H), 7.07-7.33 (m, 8H), 7.62-7.68 (m, 2H), 7.97 (s, 1H), 12.98 (br, 1H); IR (Nujol) 3263, 1709, 1594, 1481, 1411, 1379, 1334, 1292, 1234, 1169 cm ⁻¹ ; Elemental analysis (C ₂₄ H ₂₁ FN ₂ O ₄ S) Calcd. (%): C, 63.70; H, 4.68; F, 4.20; N, 6.19; S, 7.09 Found (%): C, 63.47; H, 4.75; F, 3.93; N, 6.17; S, 6.74

	Compound No.	Physical properties
40	lk-31	mp 130-155 °C; 1 H-NMR (1 G-DMSO) 3 0.82 (t, J = 7.5 Hz, 3H), 1.33-1.45 (m, 5H), 2.23 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 3.14 (s, 3H), 4.10 (q, J = 7.2 Hz, 2H), 4.90 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 7.02-7.07 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.40-7.45 (m, 2H), 12.93 (br, 1H); IR (Nujol) 3247, 1739, 1594, 1480, 1415, 1377, 1304, 1256, 1153 cm ⁻¹ .
45 50	Ik-32	mp 90-96 °C; ¹H-NMR (d_6 -DMSO) δ 0.81 (t, J = 7.5 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.48 (t, J = 7.5 Hz, 2H), 3.19 (t, J = 2.4 Hz, 1H), 3.83 (s, 3H), 4.46 (q, J = 2.4 Hz, 2H), 4.90 (s, 2H), 6.82 (dd, J = 2.1, 8.4 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.04-7.09 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 7.53-7.58 (m, 2H), 13.03 (br, 1H); IR (Nujol) 3588, 3310, 2642, 1733, 1707, 1687, 1599, 1580, 1499, 1479, 1465, 1414, 1379, 1345, 1257, 1159, 1029 cm ⁻¹ ; Elemental analysis ($C_{24}H_{26}N_2O_5S\cdot0.8H_2O$) Calcd. (%): C, 61.47; H, 5.93; N, 5.97; S, 6.84 Found (%): C, 61.56; H, 5.69; N, 5.87; S, 6.58
55	Ik-33	mp 144-157 °C; ¹H-NMR (d_8 -DMSO) δ 2.29 (s, 3H), 3.10 (t, J = 2.1 Hz, 1H), 3.82 (s, 2H), 3.89 (s, 2H), 4.41 (d, J = 2.1 Hz, 2H), 4.94 (s, 2H), 6.82 (dd, J = 2.1, 8.7 Hz, 1H), 7.00-7.24 (m, 8H), 7.31 (d, J = 8.7 Hz, 1H), 7.52-7.55 (m, 2H), 13.06 (br, 1H); IR (Nujol) 3291, 2644, 1933, 1716, 1598, 1579, 1498, 1475, 1346, 1335, 1262, 1240, 1158, 1095 cm ⁻¹ ; Elemental analysis ($C_{28}H_{26}N_2O_5S$) Calcd. (%): C, 66.91; H, 5.21; N, 5.57; S, 6.38 Found (%): C, 66.65; H, 5.26; N, 5.56; S, 6.14

Table 87 (continued)

Compound No.	Physical properties
lk-34	mp 123-130 °C; ¹H-NMR (d_6 -DMSO) δ 0.80 (d, J = 6.9 Hz, 6H), 1.59 (septet, J = 6.9 Hz, 1H), 2.22 (s, 3H), 2.37 (d, J = 6.9 Hz, 2H), 3.22 (t, J = 2.4 Hz, 1H), 4.52 (d, J = 2.4 Hz, 2H), 4.92 (s, 2H), 6.84 (dd, J = 1.8, 8.7 Hz, 1H), 6.96 (d, J = 1.8 Hz, 1H), 7.30 (d, J = 8.7 1H), 7.35-7.42 (m, 2H), 7.67-7.72 (m, 2H), 13.03 (br, 1H); IR (Nujol) 3307, 2654, 1732, 1592, 1493, 1475, 1379, 1350, 1246, 1168, 1096 cm ⁻¹ ; Elemental analysis ($C_{24}H_{25}FN_2O_4S$) Calcd. (%): C, 63.14; H, 5.52; F, 4.16; N, 6.14; S, 7.02 Found (%): C, 62.99; H, 5.36; F, 4.25; N, 6.13; S, 7.44
lk-35	mp 157-160 °C; 1 H-NMR (d ₅ -DMSO) δ 2,21 (s, 3H), 3.18 (s, 3H), 3.70 (s, 3H), 4.90 (s, 2H), 6.77 (dd, J=2.1, 8.7 Hz, 1H), 7.01 (d, J=2.1 Hz, 1H), 7.33 (d, J=8.7 1H), 7.38-7.55 (m, 2H), 7.56-7.62 (m, 2H), 13.05 (br, 1H); IR (Nujol) 1741, 1592, 1485, 1469, 1385, 1343, 1298, 1292, 1267, 1240, 1204, 1171, 1090, 1059 cm ⁻¹ ; Elemental analysis (C ₁₉ H ₁₉ FN ₂ O ₅ S) Calcd. (%): C, 56.15; H, 4.71; F, 4.67; N, 6.89; S, 7.89 Found (%): C, 56.28; H, 4.62; F, 4.37; N, 6.90; S,7.70

	Compaund No.	Physical properties
25	lk-36	mp 170-180 °C; ¹H-NMR (d_6 -DMSO) δ 2.21 (s, 3H), 3.14 (s, 3H), 3.69 (s, 3H), 3.83 (s, 3H), 4.90 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.32 (d, J = 8.7 Hz, 1H), 7.43-7.48 (m, 2H), 13.03 (br, 1H); IR (Nujol) 1726, 1597, 1498, 1479, 1415, 1383, 1338, 1305, 1266, 1254, 1150, 1091, 1026, 1011 cm ⁻¹ ; Elemental analysis ($C_{20}H_{22}N_2O_6S$) Calcd. (%): C, 57.40; H, 5.30; N, 6.69; S, 7.66 Found (%): C, 56.78; H, 5.33; N, 6.64; S, 7.30
<i>30</i>	lk-37	mp 142-152 °C; ¹H-NMR (d ₆ -DMSO) δ 1.04 (t, J = 7.2 Hz, 3H), 2.63 (s, 3H), 2.72 (q, J = 7.2 Hz, 2H), 3.17 (s, 3H), 3.84 (s, 3H), 5.11 (s, 2H), 6.93 (dd, J = 2.1, 8.7 Hz, 1H), 7.08-7.13 (m, 2H), 7.46-7.51 (m, 4H), 13.30 (br, 1H); IR (Nujol) 3544, 3355, 1734, 1693, 1598, 1577, 1513, 1498, 1477, 1459, 1412, 1378, 1341, 1262, 1208, 1161, 1149, 1107, 1092, 1066, 1034 cm⁻¹; Elemental analysis ($C_{22}H_{24}N_2O_6S\cdot0.4H_2O$) Calcd. (%): C, 58.50; H, 5.53; N, 6.20; S, 7.10 Found (%): C, 58.43; H, 5.67; N, 6.23; S, 6.88
35	lk-38	mp 105-115 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H), 2.63 (s, 3H), 2.69 (q, J = 7.2 Hz, 2H), 3.61 (q, J = 7.2 Hz, 2H), 3.84 (s, 3H), 5.12 (s, 2H), 6.89 (dd, J = 1.8, 8.7 Hz, 1H), 7.08-7.13 (m, 2H), 7.41 (d, J = 1.8 Hz, 1H), 7.49-7.57 (m, 3H), 13.32 (br, 1H); IR (Nujol) 3313, 1729, 1631, 1596, 1576, 1509, 1496, 1479, 1461, 1446; 1412, 1378, 1337, 1260, 1221, 1188, 1147, 1107, 1092, 1065, 1028 cm ⁻¹ ; Elemental analysis ($C_{23}H_{26}N_2O_6S \cdot 0.5H_2O$) Calcd. (%): C, 59.09; H, 5.82; N, 5.99; S, 6.86 Found (%): C, 59.18; H, 5.72; N, 6.11; S, 6.99
40	lk-39	mp 169-176 °C; 1 H-NMR (d ₆ -DMSO) 8 0.81 (t, J = 7.5 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 3.18 (s, 3H), 4.90 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.51-7.59 (m, 4H), 7.70 (m, 1H), 13.00 (br, 1H); IR (Nujol) 3060, 2756, 2658, 2564, 1729, 1708, 1584, 1480, 1447, 1415, 1380, 1335, 1307, 1246, 1170, 1146, 1085, 1069, 1053 cm ⁻¹ ; Elemental analysis (C ₂₁ H ₂₄ N ₂ O ₄ S) Calcd. (%): C, 62.98; H, 6.04; N, 6.99; S, 8.01 Found (%): C, 62.88; H, 5.76; N, 6.93; S, 7.95
4 5	lk-40	mp 130-136 °C; ¹ H-NMR (d_6 -DMSO) δ 0.82 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.39 (s, 3H), 2.50 (t, J = 7.2 Hz, 2H), 3.18 (s, 3H), 4.90 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.34-7.42 (m, 4H), 13.00 (br, 1H); IR (Nujol) 3284, 3048, 1750, 1722, 1597, 1580, 1481, 1456, 1416, 1375, 1338, 1321, 1308, 1290, 1205, 1193, 1166, 1146, 1087, 1055 cm ⁻¹ ; Elemental analysis ($C_{22}H_{26}N_2O_4S$) Calcd. (%): C, 63.75; H, 6.32; N, 6.76; N, 6.76; N, 6.76; S, 7.74
		6.32; N, 6.76; S, 7.74 Found (%): C, 63.58; H, 6.05; N, 6.73; S, 7.94

Table 89

	Compound No.	Physical properties
5	lk-41	mp 152-159 °C; ¹H-NMR (d_6 -DMSO) δ 0.79 (t, J = 7.2 Hz, 3H), 1.31-1.43 (m, 2H), 2.22 (s, 3H), 2.48 (t, J = 7.2 Hz, 2H), 3.32 (s, 3H), 4.89 (s, 2H), 6.80 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.25-7.31 (m, 2H), 7.46-7.53 (m, 2H), 7.73 (m, 1H), 13.01 (br, 1H); IR (Nujol) 3081, 3026, 2756, 2656, 2596, 2562, 1730, 1709, 1596, 1475, 1448, 1416, 1380, 1350, 1269, 1244, 1211, 1182, 1172, 1142, 1124, 1072, 1051 cm ⁻¹ ; Elemental analysis ($C_{21}H_{23}FN_2O_4S$) Calcd. (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 Found (%): C, 60.29; H, 5.36; F, 4.57; N, 6.63; S, 7.62
15	lk-42	mp 147-154 °C; ¹H-NMR (d_6 -DMSO) δ 0.82 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 3.19 (s, 3H), 4.91 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.49-7.53 (m, 2H), 7.61-7.65 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3276, 3097, 1770, 1581, 1479, 1417, 1396, 1378, 1324, 1185, 1174, 1162, 1143, 1092, 1055, 1011 cm-¹; Elemental analysis ($C_{21}H_{23}CIN_2O_4S$) Calcd. (%): C, 57.99; H, 5.33; Cl, 8.15; N, 6.44; S, 7.37 Found (%): C, 58.05; H, 5.01; Cl, 7.79; N, 6.46; S, 7.36
20	lk-43	mp 143-150 °C; ¹H-NMR (d_6 -DMSO) δ 0.83 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 3.19 (s, 3H), 4.91 (s, 2H), 6.78 (dd, J = 2.1, 8.7 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.41-7.45 (m, 2H), 7.75-7.79 (m, 2H), 12.98 (br, IH); IR (Nujol) 3021, 2655, 1717, 1574, 1478, 1467, 1415, 1387, 1377, 1357, 1251, 1190, 1170, 1156, 1069 cm-¹; Elemental analysis ($C_{21}H_{23}BrN_2O_4S$) Calcd. (%): C, 52.61; H, 4.84; Br, 16.67; N, 5.84; S, 6.69 Found (%): C, 52.70; H, 4.56; Br, 16.11; N, 5.82; S, 6.67

Experiment 1 Binding activity to CRTH2

25

30

40

45

50

55

[0115] The membrane fraction prepared with CRTH2-transfected K562 cells was used for a binding assay. To a binding-reaction solution (50 mM Tris/HCl, pH 7.4, 10 mM MgCl₂) the membrane fraction (0.06 mg) and 3 nM [³H] PGD₂ (172 Ci/mmol) were added, and the mixture was reacted at room temperature for 60 min. After the reaction, the mixture was filtered through a glass fiber filter paper and washed several times with cooled physiological saline, then the radioactivity retained on the filter paper was measured. The specific-binding ratio was calculated by subtracting the non-specific binding ratio which is the radioactivity similarly measured in the presence of 10 μ M PGD₂ from the total binding. The inhibitory activity of each compound was expressed as the concentration required for 50 % inhibition (IC₅₀), which was determined by depicting a substitution curve by plotting the binding ratio (%) in the presence of each compound, where the binding ratio in the absence of a test compound is 100 %. The results are shown below.

Table 90

Table 90	
Compound No.	CRTH2 inhibitory activity IC ₅₀ (μM)
la-15	0.037
la-20	0.022
la-32	0.018
la-36	0.015
la-39	0.045
la-41	0.034
la-44	0.023
la-45	0.019
la-47	0.051
la-48	0.057
la-51	0.02
la-52	0.024
la-55	0.042

Table 90 (continued)

Compound No.	CRTH2 inhibitory activity IC ₅₀ (μΜ)
la-57	0.057
la-58	0.033
la-59	0.023
la-61	0.045
la-62	0.049
la-63	0.054
la-65	. 0.027
la-66	0.037
la-85	0.08
lb-6	0.055
(+)-lb-16	0.0059
(+)-lb-18	0.013
(+)-lb-20	0.0079
lb-21	0.012
(+)-lb-25	0.0036

Table 91

Compound No.	CRTH2 inhibitory activity IC ₅₀ (µМ)
(+)-lb-27	0.0062
(+)-lb-29	0.0049
lb-30	0.0053
lb-31	0.059
lc-2	0.021
lc-6	0.0045
lc-14	0.0055
lc-24	0.068
le-2	0.039
le-5	0.018
le-8	0.026
If-1	0.019
If-4	0.016
If-9	0.012
lg-3	0.0097
lg-4	0.0078
lg-11	0.01
lg-14	0.0083
lg-15	0.0075
lg- 16	0.0036

.

55 °

Table 91 (continued)

Compound No.	CRTH2 inhibitory activity IC ₅₀ (μM)
· Ig-18	0.019
lh-2	0.0099
lh-3	0.033
lh-4	0.024
lh-5	0.023
lh-6	0.034
II-1	0.035
li-2	0.035
li-3	0.064
lj-1	0.026
lj-2	0.053
lj-3	0.053

Table 92

Compound No.	CRTH2 inhibitory activity IC ₅₀ (μM)
lk-1	0.048
lk-2	0.086
lk-3	0.051
lk-4	0.047
lk-5	0.019

Experiment 2 Evaluation of antagonistic activity to CRTH2

10

15

20

25

30

35

45

50

55

[0116] To evaluate the antagonistic activity of compounds against CRTH2, calcium mobilization assay induced by PGD₂ was performed using CRTH2 transfectants.

[0117] The human CRTH2-transfected K562 cells were suspended at 2×10^6 cells/ml in assay buffer (10 mM HEPES buffer, pH 7.4, 0.1% Bovine serum albumin), and were incubated with Fura-2 AM (2 μ M) for 60 min at room temperature. After washing cells were resuspended again with assay buffer, incubated at 37°C, and then treated with various concentrations of compounds for 2 min. The emitted fluorescence was measured on a calcium analyzer (CAF-110) after addition of PGD₂. The antagonistic activity of each compound at 1 μ M was expressed as percent inhibition of the calcium mobilization in drug-untreated cells. The results are shown below.

Table 93

Compound No.	antagonistic activity to CRTH2 (% INH)
la-9	94
la-51	91
lb-31	96
lb-16	100
lb-25	100
Ic-6	100
lb-29	100
la-36	89

Table 93 (continued)

Compound No.	antagonistic activity to CRTH2 (% INH)
Ic-19	91
lc-31	98
lc-34	94
lc-53	60
lc-54	85
lc-55	100
lc-56	100
lc-57	100
lh-2	91

Formulation example

20 Formulation example 1

5

10

15

25

30

35

40

45

50

55

[0118] Granules are prepared using the following ingredients.

Ingredients	The compound represented by the formula (I)	10 mg
	Lactose	700 mg
	Corn starch	274 mg
	HPC-L	16 mg
		1000 mg

[0119] The compound represented by the formula (I) and lactose are made pass through a 60 mesh sieve. Com starch is made pass through a 120 mesh sieve. They are mixed by a twin shell blender. An aqueous solution of HPC-L (low mucosity hydroxypropylcellulose) is added to the mixture and the resulting mixture is kneaded, granulated (by the extrusion with pore size 0.5 to 1 mm mesh), and dried. The dried granules thus obtained are sieved by a swing sieve (12/60 mesh) to yield the granules.

Formulation 2

[0120] Powders for filling capsules are prepared using the Mowing ingredients.

Ingredients	The compound represented by the formula (I)	10 mg
	Lactose	79 mg
	Corn starch	10 mg
	Magnesium stearate	1 mg
		100 mg

[0121] The compound represented by the formula (I) and lactose are made pass through a 60 mesh sieve. Com starch is made pass through a 120 mesh sieve. These ingredients and magnesium stearate are mixed by a twin shell blender. 100 mg of the 10-fold trituration is filled into a No. 5 hard gelatin capsule.

Formulation 3

[0122] Granules for filling capsules are prepared using the following ingredients.

Ingredients	The compound represented by the formula (!)	15 mg
	Lactose	90 mg

(continued)

	Corn starch	42 mg
	HPC-L	3 mg
		150 mg

[0123] The compound represented by the formula (I) and lactose are made pass through a 60 mesh sieve. Com starch is made pass through a 120 mesh sieve. After mixing them, an aqueous solution of HPC-L is added to the mixture and the resulting mixture is kneaded, granulated, and dried. After the dried granules are lubricated, 150 mg of that are filled into a No. 4 hard gelatin capsule.

Formulation 4

5

10

15

20

30

35

40

45

50

55

[0124] Tablets are prepared using the following ingredients.

Ingredients	The compound represented by the formula (i)	10 mg
	Lactose	90 mg
	Microcrystal cellulose	30 mg
	CMC-Na	15 mg
	Magnesium stearate	5 mg
		150 mg

[0125] The compound represented by the formula (1), lactose, microcrystal cellulose, and CMC-Na (carboxymeth-ylcellulose sodium salt) are made pass through a 60 mesh sieve and then mixed. The resulting mixture is mixed with magnesium stearate to obtain the mixed powder for the tablet formulation. The mixed powder is compressed to yield tablets of 150 mg.

Industrial Applicability

[0126] The pharmaceutical composition and the compound of the present invention show superior CRTH2 receptor antagonistic activity and are useful for an agent for treating or preventing allergic diseases.

Claims

1. A compound of the formula (I):

$$R^{13}$$
 R^3 (I)

wherein

a group represented by the formula:

is a group represented by the formula:

wherein Z^3 is =N- or =C(-R⁷)-;

R4, R5, R6 and R7 are each independently hydrogen, halogen, halogen, halogen, alkyloxycarbonyl, optionally substituted alkyl, optionally substituted alkyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aryl, optionally substituted aryl, a group represented by the formula: -S(O)pR8 wherein p is an integer from 0 to 2 and R8 is alkyl or optionally substituted aryl, a group represented by the formula: -NR9R10 wherein R9 and R10 are each independently hydrogen, alkyl, optionally substituted aryl, optionally substituted aralkyl or acyl, or a group represented by the formula: -OR11 wherein R11 is hydrogen, alkyl, optionally substituted aryl, optionally substituted aralkyl, alkanesulfonyl, optionally substituted arylsulfonyl, optionally substituted aralkylsulfonyl, or haloalkyl; R1 is carboxy, alkyloxycarbonyl, optionally substituted aminocarbonyl or tetrazolyl;

Z4 is -N= or -C(-R2)=; R2 is hydrogen, alkyl or halogen;

R¹⁵ is hydrogen or alkyl;

R3 is a group represented by the formula: -(CH₂)n-N(-Y)-SO₂-Ar wherein n is an integer from 1 to 3; Y is hydrogen, alkyl, alkenyl, alkynyl, optionally substituted aryl, optionally substituted arylatically substituted heteroaryl, a group represented by the formula:

30

5

10

15

20

25

wherein r is an integer from 0 to 2; x is an integer from 0 to 3; m is an integer from 1 to 3; a broken line represents the presence or absence of a bond; E is optionally substituted aryl, optionally substituted heteroaryl, alkyl, optionally substituted aralkyl or optionally substituted arylalkenyl, a group represented by the formula:

35

40

45

50

wherein x is an integer from 0 to 3; m is an integer from 1 to 3; a broken line represents the presence or absence of a bond; E is optionally substituted aryl, optionally substituted aralkyl or optionally substituted arylalkenyl,

a group represented by the formula: $-CR^{23}R^{24}-CR^{25}R^{26}-(CH_2)y-N(-Y)-SO_2-Ar$ wherein Ar and Y are as defined above; y is 0 or 1; one of R^{23} or R^{24} is alkyl, the other is hydrogen, alkyl, or aryl; or R^{23} and R^{24} are taken together to form a group represented by the formula: $-(CH_2)t$ - wherein t is an integer from 2 to 5; R^{25} and R^{26} are each independently hydrogen or alkyloxyalkyl,

a group represented by the formula:

wherein Y and Ar are as defined above, or a group represented by the formula:

5

10

15

20

25

30

35

40

45

wherein Y and Ar are as defined above and u is 1 or 2; or a group represented by the formula:

is a group represented by the formula:

wherein y is an integer from 1 to 3, and m, p, Y and Ar are as defined above, a group represented by the formula:

wherein m, y and Ar are as defined above, or a group represented by the formula:

wherein Y and Ar are as defined above; R²⁰ is hydrogen or alkyl; and R²¹ is hydrogen or halogen; but excluding compounds 3-(4-chlorophenylsulfonylamino)-9-(2-carboxymethyl)-1,2,3,4-tetrahydrocarbazole, its ethyl ester, 3-(4-chlorophenylsulfonylaminoethyl)indolel-acetic acid, and 3-(4-chlorophenylsulfonylaminopropyl)indole acetic acid; or

R¹³ is hydrogen, alkyl, aralkyl, acyl or a group represented by the formula: -OR¹⁶ wherein R¹⁶ is hydrogen or alkyl, and R¹⁴ is hydrogen or alkyl: or

a group represented by the formula:

is a group represented by the formula:

wherein q is an integer from 0 to 3; R^{17} is hydrogen or alkyl; Z^1 is $-CH_2$ -, -C(=O)-, -C(=NOH)-, or -C(=NOMe)-; Z^2 is a group represented by the formula: $-S(=O)_8$ - wherein s is an integer from 0 to 2, a group represented by the formula: $-N(-R^{22})$ - wherein R^{22} is hydrogen, alkyl, alkyloxycarbonyl or acyl, or a group represented by the formula: $-CR^{18}R^{19}$ - wherein R^{18} and R^{19} are each independently hydrogen, alkyl or aryl; or R^{18} and R^{19} are taken together to form a group represented by the formula: $-(CH_2)$ t- wherein t is an integer from 2 to 5; R^1 and R^{15} are as defined above; and a group represented by the formula:

is a group represented by the formula:

wherein Y, E, R²⁰ and R²¹ are as defined above; a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

~

is a group represented by the formula:

wherein Z^3 is =C(- R^7)-; R^4 , R^5 , R^6 and R^7 are as defined in claim 1;

 Z^4 is -C(-R²)=; R² is as defined in claim 1;

R15 is hydrogen; and

10

15

20

25

30

35

40

45

50

 R^3 is a group represented by the formula: -(CH₂)n-N(-Y)-SO₂-Ar wherein n is an integer from 1 to 3; Y is hydrogen, alkyl, alkenyl, optionally substituted aryl, optionally substituted aralkyl, or optionally substituted heteroarylalkyl; and Ar is optionally substituted aryl or optionally substituted heteroaryl,

a group represented by the formula:

wherein r is an integer from 0 to 2; x is an integer from 0 to 3; m is an integer from 1 to 3; a broken line represents the presence or absence of a bond; E is optionally substituted aryl or optionally substituted heteroaryl; or a group represented by the formula:

is a group represented by the formula:

$$(CH_2)_y$$
 $(CH_2)_{\overline{p}}$
 $(CH_2)_{\overline{p}}$
 $(CH_2)_{\overline{p}}$

wherein y is an integer from 1 to 3, and m, p, Y and Ar are as defined above, a group represented by the formula:

$$(CH_2)_y$$
 $N-SO_2-Ar$

wherein m, y and Ar are as defined above, or a group represented by the formula:

- wherein Y and Ar are as defined in claim 1, and R²⁰ and R²¹ are hydrogen, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
 - 3. A compound as described in Claim 1 or Claim 2, wherein Y is alkyl, alkenyl, optionally substituted aryl or optionally substituted aralkyl, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
 - 4. A compound as described in Claim 2, wherein R³ Is a group represented by the formula: -(CH₂)n-N(-Y)-SO₂-Ar wherein n is 2 or 3; Y is hydrogen, alkyl, alkenyl, or aralkyl; and Ar is as defined in claim 1, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
- 5. A compound as described in Claim 2, wherein R³ is a group represented by the formula:

wherein m is 1; r is 0; x is 2; a broken line represents the presence or absence of a bond; and E is as defined in claim 2, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

6. A compound as described in Claim 2, wherein a group represented by the formula:

is a group represented by the formula:

$$(CH_2)_y$$
 $(CH_2)_p$ - wherein m is 2; p is 0; y is 1; Y is hydrogen, alkyl, alkenyl or aralkyl; and Ar is as defined in claim 1, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.
 - 7. A compound as described in Claim 2, wherein a group represented by the formula:

55

45

5

15

is a group represented by the formula:

10

5

15

wherein m is 1 or 2; y is 1 or 2; and Ar is as defined in claim 2, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

20

8. A compound as described in Claim 2, wherein a group represented by the formula:

25

30

is a group represented by the formula:

35

40

wherein Y is hydrogen, alkyl, alkenyl or aralkyl; and R^{20} , R^{21} and Ar are as defined in claim 1, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

9.

 A compound as described in any one of Claims 1 to 8, wherein R¹ is carboxy, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

10. A compound as described in any one of Claims 1 to 9, wherein R⁴, R⁵, R⁶ and R⁷ are each independently hydrogen, halogen, alkyl, alkenyl, optionally substituted aryl or optionally substituted aralkyl, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

50

11. A compound as described in any one of Claims 1 to 10, wherein R² is hydrogen or alkyl, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof.

12. A pharmaceutical composition containing a compound, a prodrug, a pharmaceutically acceptable salt, or a solvate thereof as described in any one of Claims 1 to 11.

55

13. A pharmaceutical composition as described in Claim 12, which is used for an antagonist against the CRTH2 receptor.

	14.	A method for treating a disease relating to the CRTH2 receptor, which comprises administrating a compound as described in Claim 1.
5	15.	Use of the compound as described in Claim 1 for the preparation of a pharmaceutical composition for treating a disease relating to the CRTH2 receptor.
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06076

A CLASSIFICATION OF SUBJECT MATTER Int.Cl' C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454, According to International Patent Classification (IPC) or to both mational classification and IPC					
Molmum	S SEARCHED ocumentation searched (classification system followed	by classification symbols)			
Int.	ci' compang/14, 209/94, 209/80	5, 209/88, 401/04, 403/0	14,		
	409/12, 409/14, 471/04, 20	09/16, 403/06, 401/06, 4	401/14,		
	487/04, 231/56, 495/04, A6	IK31/403, 31/405, 31/443	3, 31/434,		
Documenta	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched		
1	•				
1					
	lata base consulted during the international search (nan	se of data base and, where practicable, sea	rch terms used)		
CAPI	US, REGISTRY (STN)				
1					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Caregory*	Citation of document, with indication, where ag	propriate, of the relevant passages	Relevant to claim No.		
Y	EP 473024 Al (BAYER A.G.),		1-4,6,9-13,		
1	04 March, 1992 (04.03.92),	. office	15		
A	& DE 4027278 A & JF & US 5223517 A	4-257578 A	5,7,8		
1	& 05 3223317 K	!			
Y	EP 451634 A2 (BAYER A.G.),		1-4,6,9-13,		
	16 October, 1991 (16.10.91),	0000077 3	15		
		. 2039873 A . 9102609 A			
		237709 A			
		221995 A			
	& IL 97795 A				
1		•			
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.	- A A		
Special categories of cited documents: "I" later document published after the international filing date or					
	"A" document defining the general state of the art which is not priority date and not in conflict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention				
"P" earlier	daimed invention cannot be				
date considered novel or cannot be considered to involve an inver- "L" document which may throw doubts on princity claim(s) or which is step when the document is taken alone					
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot expected program (as special p					
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such					
means combination being corridge to a person stilled in the art "P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed					
Date of the actual completion of the international search Date of mailing of the international search report					
22 J	uly, 2003 (22.07.03)	12 August, 2003 (12	.08.03)		
}					
114410 272		Authorized officer			
Japanese Patent Office					
Francisco No No		Telephone No			

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06076

Y EP 425906 A2 (BAYER A.G.), 08 May, 1991 (08.05.91), 6 NO 9004487 A 6 CA 2028621 A 6 FI 9005294 A 6 AU 9063848 A 6 US 5039670 A 6 PT 95728 A 6 US 5096897 A 6 US 5374647 A 6 PH 27484 A Y JP 11-322600 A (BAYER YAKUHIN KABUSHIKI KAISHA), 24 November, 1999 (24.11.99), (Family: none) Y JP 11-116477 A (BAYER YAKUHIN KABUSHIKI KAISHA), 27 April, 1999 (27.04.99), (Family: none) Y JP 8-175991 A (BAYER YAKUHIN KABUSHIKI KAISHA), 1-4,6,9- 15 Y JP 8-175991 A (BAYER YAKUHIN KABUSHIKI KAISHA), 1-4,6,9- 15 Y Chemical Abstracts, Vol.117, abs.No.19896 A JP 11-343279 A (SHIONOGI 6 CO., LTD.), 14 December, 1999 (14.12.99), (Family: none) NO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), 6 EP 1211513 Al 6 NO 2002000837 A	 -	tion). DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
08 May, 1991 (08.05.91), 6 NO 9004487 A 6 CA 2028621 A 6 FI 9005294 A 6 AU 9063848 A 6 US 5039670 A 6 PT 95728 A 6 ZA 9008637 A 6 US 5374647 A 6 PH 27484 A Y JP 11-322600 A (BAYER YAKUHIN KABUSHIKI KAISHA), 24 November, 1999 (24.11.99), (Family: none) Y JP 11-116477 A (BAYER YAKUHIN KABUSHIKI KAISHA), 27 April, 1999 (27.04.99), (Family: none) Y JP 8-175991 A (BAYER YAKUHIN KABUSHIKI KAISHA), 1-4,6,9- 15 (Family: none) Y Chemical Abstracts, Vol.117, abs.No.19896 A JP 11-343279 A (SHIONOGI 6 CO., LTD.), 14 December, 1999 (14.12.99), (Family: none) A WO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), 6 EP 1211513 Al 6 NO 2002000837 A EP 1170594 A2 (PFIZER PROD. INC.), 09 January, 2002 (09.01.02),			1-4, 6, 9-13,
JP 11-322600 A (BAYER YAKUHIN KABUSHIKI KAISHA), 24 November, 1999 (24.11.99), (Family: none) Y	Y	08 May, 1991 (08.05.91), a NO 9004487 A	
27 April, 1999 (27.04.99), (Family: none) Y	Y	JP 11-322600 A (BAYER YAKUHIN KABUSHIKI KAISHA), 24 November, 1999 (24.11.99),	1-4,6,9-13,
Og July, 1996 (09.07.96), (Family: none) Y Chemical Abstracts, Vol.117, abs.No.19896 A JP 11-343279 A (SHIONOGI & CO., LTD.), 14 December, 1999 (14.12.99), (Family: none) A WO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), & EP 1211513 Al & NO 2002000837 A EP 1170594 A2 (PFIZER PROD. INC.), 09 January, 2002 (09.01.02),	Y	27 April, 1999 (27.04.99),	1-4,6,9-13,
A JP 11-343279 A (SHIONOGI & CO., LTD.), 14 December, 1999 (14.12.99), (Family: none) A WO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), & EP 1211513 A1 & NO 2002000837 A BP 1170594 A2 (PFIZER PROD. INC.), 09 January, 2002 (09.01.02),	Y .	09 July, 1996 (09.07.96),	1-4,6,9-13,
A 14 December, 1999 (14.12.99), (Family: none) A WO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), 6 EP 1211513 A1 6 NO 2002000837 A EP 1170594 A2 (PFIZER PROD. INC.), 09 January, 2002 (09.01.02),	Y	Chemical Abstracts, Vol.117, abs.No.19896	1-4,6,9-13,
Ol March, 2001 (01.03.01), EP 1211513 Al EN 0 2002000837 A EP 1170594 A2 (PFIZER PROD. INC.), 13,15	A	14 December, 1999 (14.12.99),	1
09 January, 2002 (09.01.02),	A	01 March, 2001 (01.03.01),	13,15
	A	09 January, 2002 (09.01.02),	13,15
· · · · · · · · · · · · · · · · · · ·			

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06076

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. X Claims Nos: 14 because they relate to subject matter not required to be searched by this Authority, manely: The invention as set forth in claim 14 pertains to method for treatment of the human body by therapy.				
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be earned out, specifically:				
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06076

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl' 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched(International Patent Classification (IPC))

Int.Cl7 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

. Minimum documentation searched (classification system followed by classification symbols)

Form PCT/ISA/210 (extra sheet) (July 1998)