Excel Functions for the Standard Normal and T Distributions

Charlie Nuttelman

NOTE: The .DIST versions of each of the functions below will <u>output probability</u> as a function of percentage points (the "x-value", in other words) of the distribution. The .INV versions will <u>output the x-value corresponding to probability</u>. Most are left-tailed formulas, some are right-tailed formulas (usually indicated with a .RT at the end), and some are two-tailed (indicated with .2T at the end).

NORMAL DISTRIBUTION

NORM.DIST(x,mean,standard_dev,cumulative) – Provides the cumulative frequency (left-tailed) (if **cumulative** is **TRUE**) corresponding to the normal distribution of mean **mean** and standard deviation **standard_dev** to the left of **x**. For this class, it is rare to use **FALSE** as the final argument unless you want to generate a plot of **f**(**x**) in Excel.

Example: The area of to the left of 5 beneath the normal distribution with mean 4 and standard deviation 3 is: **NORM.DIST(5,4,3,TRUE)** = 0.632

NORM.INV(probability,mean,standard_dev) – Outputs the x-value (percentage point) that has probability proportion to the left of it based on the normal distribution with mean **mean** and standard deviation **standard_dev**.

Example: The x-value corresponding to an area (probability) of 0.3 to the left of it based on a normal distribution with mean 4 and standard deviation 3 is: **=NORM.INV(0.3,4,3)** = 2.43

STANDARD NORMAL DISTRIBUTION

NORM.S.DIST(z,cumulative) – Outputs the cumulative frequency (left-tailed) (if **cumulative = TRUE**) corresponding to a z-value of **z** based on the standard normal distribution. If **cumulative = FALSE**, it outputs f(z), the probability density function. Note that this is the same as $\Phi(z)$ in the "Percentage Points of the Standard Normal Distribution" table.

Example: The area to the left of z = 0.7 of the standard normal distribution is given by: **=NORM.S.DIST(0.7,TRUE)** = 0.758

NORM.S.INV(probability) – Outputs the z-value (percentage point) with **probability** proportion to the left of it (left-tailed) based on the standard normal distribution. Note that the output of this function is the same as $\Phi^{-1}(P)$, where P is probability. In other words, the z-value corresponding to P proportion of the distribution to the left of it.

Example: The z-value that has 80% of the distribution to the left of it is: **=NORM.S.INV(0.8)** = 0.842

Percentage Points of the Standard Normal Distribution

In setting up confidence intervals on the mean and performing hypothesis tests on the mean (variance known), we need to determine the parameter z_{α} or $z_{\alpha/2}$. These are the z-values that have α or $\alpha/2$ proportion of the distribution to the right of them, respectively. In order to calculate these "percentage points" of the standard normal distribution, we can use the NORM.S.INV function in Excel:

 z_{α} =NORM.S.INV(1-alpha)

 $z_{\alpha/2}$ =NORM.S.INV(1-alpha/2)

T DISTRIBUTION

T.DIST(x,deg_freedom,cumulative) – Outputs the left-tailed, cumulative probability [F(x)] of the T distribution up to **x** (if **cumulative** = **TRUE**) based on **deg_freedom** degrees of freedom. If **cumulative** = **FALSE**, it outputs f(x), the probability density function.

Example: The area to the left of x = -0.5 of the T distribution with 9 degrees of freedom is:

=T.DIST(-0.5,9,TRUE) = 0.315

T.DIST.RT(x,deg_freedom) – Outputs the right-tailed cumulative probability of the T distribution with **deg_freedom** degrees of freedom.

Example: The area to the right of x = 0.4 of the T distribution with 12 degrees of freedom is:

=T.DIST.RT(0.4,12) = 0.348

T.DIST.2T(x,deg_freedom) – Outputs the area underneath the T distribution with **deg_freedom** degrees of freedom that is to the left of -x and to the right of x. This is useful when calculating P-values for two-tailed hypothesis tests when variance is unknown.

Example: The area the right of x = 0.5 and to the left of -0.5 under the T distribution with 12 degrees of freedom is: **=T.DIST.2T(0.5,12)** = 0.626. Note that this is twice the area calculated using the **T.DIST** function or the **T.DIST.RT** function: **=T.DIST(-0.5,12)** = **T.DIST.RT(0.5,12)** = 0.313

Example: P-value of a two-tailed hypothesis test ($s=1.5, \bar{x}=11.8, n=7$):

 $H_0: \mu = 10$

 $H_1: \mu \neq 10$

Convert \bar{x} to test statistic: $t_0 = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{11.8 - 10}{1.5 / \sqrt{7}} = 3.175$

Then, use the **T.DIST.2T** function to determine the P-value: **=T.DIST.2T(3.175,6)** = 0.0192

T.INV(probability,deg_freedom) – Given the cumulative left-tailed **probability** (area), outputs the corresponding x-value (percentage point) of the T distribution with **deg_freedom** degrees of freedom.

Example: The x-value (percentage points) of the T distribution with 15 degrees of freedom corresponding to a left-tailed probability of 0.7 is: **=T.INV(0.7,15)** = 0.536

T.INV.2T(probability,deg_freedom) – Splits **probability** into two equal tails of the T distribution with **deg_freedom** degrees of freedom and outputs the corresponding positive x-value (percentage point).

Example: The x-value (percentage point) when we split probability = 0.6 equally into two tails of the T distribution with 6 degrees of freedom is: **=T.INV.2T(0.6,6)** = 0.553. The **T.INV.2T** function can be useful when calculating confidence intervals on the mean (variance unknown, see below).

T.INV.RT – You would expect Excel to have a **T.INV.RT** function, but this function does not exist!

Percentage Points of the T Distribution

In setting up confidence intervals and performing hypothesis tests on the mean (variance unknown), we need to determine the parameter t_{α} or $t_{\alpha/2}$. These are the t-values that have α or $\alpha/2$ proportion of the distribution to the right of them, respectively. In order to calculate these "percentage points" of the T distribution, we can use the T.INV or T.INV.2T functions in Excel, shown here for the T distribution with 11 degrees of freedom:

 t_{α} =T.INV(1-alpha,11)

 $t_{lpha/2}$ =T.INV.2T(alpha,11) [note that we could have also used T.INV(1-alpha/2,11)]

The above calculations can be used to calculate the data presented in the "Percentage Points of the T Distribution" table on the course website.

CONFIDENCE INTERVALS

CONFIDENCE.NORM(alpha,standard_dev,size) – Outputs the half-interval for a two-sided confidence interval on the mean (variance known). In other words, for the $(1-\alpha)$ -% confidence interval defined by the following, this function outputs the amount $z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.

$$P\left[\bar{x} - z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right] = 1 - \alpha$$

Example: A sample of n = 7 items yields a sample average of 3.8. It is known that the population standard deviation is 1.6. What is a 95% confidence interval ($\alpha = 0.05$) on the mean of the population?

Lower 95% CI limit: **=3.8-CONFIDENCE.NORM(0.05,1.6,7)** = 2.61

Upper 95% CI limit: **=3.8-CONFIDENCE.NORM(0.05,1.6,7)** = 4.99

We are 95% sure that the population mean (μ) lies between 2.61 and 4.99.

CONFIDENCE.T(alpha,standard_dev,size) – Outputs the half-interval for a two-sided confidence interval on the mean (variance unknown). In other words, for the $(1-\alpha)$ -% confidence interval defined by the following, this function outputs the amount $t_{\frac{\alpha}{2},n-1} \cdot \frac{s}{\sqrt{n}}$.

$$P\left[\bar{x} - t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}}\right] = 1 - \alpha$$

Example: A sample of n = 10 items yields a sample average of 12.9 and sample standard deviation of 2.4. Population standard deviation is unknown. What is a 90% confidence interval ($\alpha=0.10$) on the mean of the population?

Lower 90% CI limit: **=12.9-CONFIDENCE.T(0.1,2.4,10)** = 11.51

Upper 90% CI limit: **=12.9-CONFIDENCE.T(0.1,2.4,10)** = 14.29

We are 90% sure that the population mean (μ) lies between 11.51 and 14.29.