Instituto de Ciências Exatas - Departamento de Matemática Cálculo I - Prof^a Maria Julieta Ventura Carvalho de Araujo

Capítulo 4: Derivada

4.1- A Reta Tangente

Seja y = f(x) uma curva definida no intervalo (a,b) e sejam $P(x_1,y_1)$ e $Q(x_2,y_2)$ dois pontos distintos da curva y = f(x).

Seja s a reta secante que passa pelos pontos $P \in Q$.

Considerando o triângulo retângulo PMQ, na figura ao lado, temos que a inclinação da reta s, ou coeficiente angular de s, é:

$$tg\alpha = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}.$$

Suponhamos agora que, mantendo P fixo, Q se mova sobre a curva em direção a P. Diante disto, a inclinação da reta secante s variará. A medida que Q vai se aproximando cada vez mais de P, a inclinação da secante varia cada vez menos, tendendo para um valor limite constante. Esse valor limite é chamado *inclinação da reta tangente à curva no ponto P*, ou também *inclinação da curva em P*.

Definição:

Dada uma curva y = f(x), seja $P(x_1, y_1)$ um ponto sobre ela. A inclinação da reta tangente à curva no ponto P é dada por

$$m(x_1) = \lim_{Q \to P} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
, quando o limite existe.

Fazendo $x_2 = x_1 + \Delta x$ ou $x_2 = x_1 + h$ podemos escrever:

$$m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}.$$

Equação da Reta Tangente

Se a função f(x) é contínua em $x_1 \in D(f)$, então a reta tangente à curva y = f(x) em $P(x_1, f(x_1))$ é:

a) A reta que passa por P tendo inclinação $m = m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$, se este limite existe. Neste caso, temos a equação: $y - f(x_1) = m(x - x_1)$.

b) A reta
$$x = x_1$$
, se $\lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$ for infinito.

Exemplos:

1. Encontre a inclinação da reta tangente à curva $y = x^2 - 2x + 1$ no ponto (x_1, y_1) .

2	Encontre a equação da reta	tangente à curva	$v = 2x^2 + 3$	no ponto cuia abscissa é 2.

3. Encontre a equação da reta tangente à curva $y = \sqrt{x}$, que seja paralela à reta 8x - 4y + 1 = 0. Lembrete: Duas retas são paralelas se, e somente se, seus coeficientes angulares são iguais.

- 4- Encontre a equação para a reta normal à curva $y = x^2$ no ponto P(2,4). Lembretes:
 - a) Reta normal a uma curva no ponto P é a reta perpendicular à reta tangente à curva no ponto P;
 - b) Duas retas de coeficientes angulares m_1 e m_2 são perpendiculares se, e somente se, m_1 . $m_2 = -1$.

4.2- Velocidade e Aceleração

Suponhamos que um corpo se move em linha reta e que s = s(t) represente o espaço percorrido pelo móvel até o instante t. Então, no intervalo de tempo entre t e $t + \Delta t$, o corpo sofre um deslocamento $\Delta s = s(t + \Delta t) - s(t)$.

1. Velocidade

Velocidade média do corpo no intervalo de tempo entre t e $t+\Delta t$ é o quociente do espaço percorrido pelo tempo gasto em percorrê-lo, isto é, $v_m = \frac{\Delta s}{\Delta t} = \frac{s(t+\Delta t)-s(t)}{\Delta t}$.

Velocidade instantânea do corpo no instante t ou velocidade no instante t é o limite das velocidades médias quando Δt se aproxima de zero, isto é, $v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}$.

2. Aceleração

Aceleração média do corpo no intervalo de tempo entre t e $t+\Delta t$ é dada por $a_m=\frac{\Delta v}{\Delta t}=\frac{v(t+\Delta t)-v(t)}{\Delta t}$.

Aceleração instantânea do corpo no instante t é o limite das acelerações médias quando Δt se aproxima de zero, isto é, $a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t}$.

Exemplos:

- 1. No instante t = 0 um corpo inicia um movimento em linha reta. Sua posição no instante t é dado por $s(t) = 16t t^2$. Determine:
- a) a velocidade média do corpo no intervalo de tempo [2,4];
- b) a velocidade do corpo no instante t = 2;
- c) a aceleração média no intervalo [0,4];
- d) a aceleração no instante t = 4.

2. A equação do movimento de um corpo em queda livre é $s = \frac{1}{2}gt^2$, onde $g = 9.8m/s^2$ é a aceleração da gravidade. Determine a velocidade e a aceleração do corpo em um instante qualquer t.

4.3- A Derivada de uma Função num Ponto

A derivada de uma função f(x) no ponto x_1 , denotada por $f'(x_1)$, é definida pelo limite $f'(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$, quando este limite existe. Neste caso, dizemos que a função f(x) é derivável (ou diferenciável) no ponto x_1 .

Também podemos escrever:
$$f'(x_1) = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
.

Observação: Como vimos, este limite nos dá a inclinação da reta tangente à curva y = f(x) no ponto $(x_1, f(x_1))$. Portanto, geometricamente, a derivada da função y = f(x) no ponto x_1 representa a inclinação da curva neste ponto.

4.4- A Derivada de uma Função

A derivada de uma função y = f(x) é a função denotada por f'(x) tal que seu valor em qualquer $x \in D(f)$ é dado por $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$, se este limite existir.

Dizemos que uma função é derivável (ou diferenciável) quando existe derivada em todos os pontos de seu domínio.

Outras notações podem ser usadas no lugar de y'=f'(x):

- a) $D_x f(x)$ (lê-se derivada de f(x) em relação a x);
- b) $D_x y$ (lê-se derivada de y em relação a x);
- c) $\frac{dy}{dx}$ (lê-se derivada de y em relação a x).

Exemplos:

1. Dada a função $f(x) = 5x^2 + 6x - 1$, encontre f'(2).

2. Dada a função $f(x) = \frac{x-2}{x+3}$, encontre f'(x).

3. Dada $f(x) = \sqrt{x}$, encontre f'(4).

4. Dada $f(x) = x^{\frac{1}{3}}$, encontre f'(x).

4.5- Continuidade de Funções Deriváveis

Teorema

Toda função y = f(x) derivável num ponto $x_1 \in D(f)$ é contínua nesse ponto.

Demonstração:

Sendo
$$f$$
 derivável em x_1 então $f'(x_1) = \lim_{x \to x_1} \frac{f(x) - f(x_1)}{x - x_1}$ existe.

Assim temos:

$$\lim_{x \to x_1} [f(x) - f(x_1)] = \lim_{x \to x_1} \left[\frac{f(x) - f(x_1)}{x - x_1} \cdot (x - x_1) \right] = \lim_{x \to x_1} \frac{f(x) - f(x_1)}{x - x_1} \cdot \lim_{x \to x_1} (x - x_1) = f'(x_1) \cdot 0 = 0.$$

$$\operatorname{Logo}, \lim_{x \to x_1} f(x) = \lim_{x \to x_1} [f(x) - f(x_1) + f(x_1)] = \lim_{x \to x_1} [f(x) - f(x_1)] + \lim_{x \to x_1} f(x_1) = 0 + f(x_1) = f(x_1).$$

Portanto, f é contínua em x_1 .

4.6- Exercícios

Páginas 127 e 128 do livro texto.

4.7- Derivadas Laterais

Definições:

Seja y = f(x) uma função definida no intervalo (a,b) e $x_1 \in (a,b)$.

- a) A derivada à direita de f em x_1 , denotada por $f_+'(x)$, é definida por $f_+'(x_1) = \lim_{h \to 0^+} \frac{f(x_1 + h) f(x_1)}{h} = \lim_{x \to x_1^+} \frac{f(x) f(x_1)}{x x_1}$, caso este limite exista.
- b) A derivada à esquerda de f em x_1 , denotada por $f_-'(x)$, é definida por $f_-'(x_1) = \lim_{h \to 0^-} \frac{f(x_1 + h) f(x_1)}{h} = \lim_{x \to x_1^-} \frac{f(x) f(x_1)}{x x_1}$, caso este limite exista.
- c) Uma função é derivável em um ponto x_1 se, e somente se, as derivadas à direita e à esquerda nesse ponto existem e são iguais.
- d) Quando as derivadas laterais (direita e esquerda) existem e são diferentes em um ponto x_1 , dizemos que o ponto $(x_1, f(x_1))$ é um ponto anguloso do gráfico de f.
- e) Uma função f definida no intervalo [a,b] é derivável em [a,b] se é derivável no intervalo aberto (a,b) e se existem a derivada à direita e a derivada à esquerda da função f em a e b, respectivamente.

Observação: Para fazer uma análise gráfica da existência da derivada em um ponto, podemos traçar retas secantes que passam pelo ponto dado e por outro na sua vizinhança e observar a sua posição limite (posição de tangência). Quando as secantes não têm uma única posição limite ou se tornam verticais, a derivada não existe. No primeiro caso, estamos diante da situação em que as derivadas laterais existem, mas são diferentes (ponto anguloso) e não há reta tangente à curva neste ponto; no segundo caso, as retas

secantes convergem para a posição vertical e, se $\lim_{x \to x_1^+} f'(x) = + \infty$ e $\lim_{x \to x_1^-} f'(x) = - \infty$ ou $\lim_{x \to x_1^+} f'(x) = - \infty$ e $\lim_{x \to x_1^-} f'(x) = + \infty$, dizemos que estamos diante de um ponto cuspidal do gráfico de f, sendo $x = x_1$ a reta tangente neste caso.

Exemplos:

- 1. Seja f a função definida por $f(x) = \begin{cases} 3x-1, & \text{se } x < 2 \\ 7-x, & \text{se } x \ge 2 \end{cases}$
- a) Esboce o gráfico de f.
- b) Mostre que f é contínua em 2.
- c) Encontre f_+ '(2) e f_- '(2).
- d) A função f é derivável em 2? Justifique sua resposta.

- 2. Seja a função $f(x) = (x-2) \cdot |x|$.
- a) Encontre $f_+'(0)$ e $f_-'(0)$.
- b) A função f é derivável em x = 0? Justifique sua resposta.

4.8- Exercícios

Páginas 132 e 133 do livro texto.

4.9- Regras de Derivação

As regras de derivação permitem determinar as derivadas das funções sem o uso da definição.

R1 – Derivada de uma Constante

Se c é uma constante e f(x) = c, para todo $x \in R$, então f'(x) = 0.

Demonstração:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$
.

R2 – Regra da Potência (expoente positivo)

Se n é um número inteiro positivo e $f(x) = x^n$, então $f'(x) = n x^{n-1}$.

Demonstração:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \dots + \binom{n}{n-1}xh^{n-1} + h^n - x^n}{h} = \lim_{h \to 0} \frac{h\left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}xh^{n-2} + h^{n-1}\right]}{h} = \lim_{h \to 0} \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}xh^{n-2} + h^{n-1}\right] = \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}xh^{n-2} + h^{n-1}\right] = \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}xh^{n-2} + h^{n-1}\right] = \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}xh^{n-2} + h^{n-1}\right] = \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}x^{n-1}\right] = \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}x^{n-1}\right] = \left[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-1} + \binom{n}{2}x^{n-1}$$

Exemplos:

a) Se
$$f(x) = x^5$$
 então $f'(x) = 5x^4$.

b) Se
$$g(x) = x \, \text{então} \, g'(x) = 1$$
.

c) Se
$$h(x) = x^{10}$$
 então $h'(x) = 10x^{9}$.

R3 – Derivada do produto de uma constante por uma função

Sejam f uma função, c uma constante e g a função definida por g(x) = cf(x). Se f'(x) existe, então g'(x) = cf'(x).

Demonstração:

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h} = \lim_{h \to 0} c \left[\frac{f(x+h) - f(x)}{h} \right] = c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = cf'(x)$$

Exemplos:

a) Se
$$f(x) = 8x^2$$
 então $f'(x) = 8(2x) = 16x$.

b) Se
$$g(t) = -2t^7$$
 então $g'(t) = -2(7t^6) = -14t^6$.

R4 – Derivada de uma soma

Sejam f e g duas funções e s a função definida por s(x) = (f + g)(x) = f(x) + g(x). Se f'(x) e g'(x) existem, então s'(x) = f'(x) + g'(x).

Demonstração:

$$s'(x) = \lim_{h \to 0} \frac{s(x+h) - s(x)}{h} = \lim_{h \to 0} \frac{\left[f(x+h) + g(x+h)\right] - \left[f(x) + g(x)\right]}{h} = \lim_{h \to 0} \frac{\left[f(x+h) - f(x)\right] + \left[g(x+h) - g(x)\right]}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) + g'(x).$$

Exemplos:

a) Se
$$f(x) = 3x^4 + 8x + 5$$
 então $f'(x) = 3(4x^3) + 8.1 + 0 = 12x^3 + 8$.

b) Se
$$g(t) = 9t^5 - 4t^2 + 2t + 7$$
 então $g'(t) = 45t^4 - 8t + 2$.

R5 – Derivada de um produto

Sejam f e g duas funções e p a função definida por p(x) = (f.g)(x) = f(x).g(x). Se f'(x) e g'(x) existem, então p'(x) = f(x).g'(x) + f'(x).g(x).

Demonstração:

$$p'(x) = \lim_{h \to 0} \frac{p(x+h) - p(x)}{h} = \lim_{h \to 0} \frac{[f(x+h).g(x+h)] - [f(x).g(x)]}{h} = \lim_{h \to 0} \frac{f(x+h).g(x+h) - f(x+h).g(x) + f(x+h).g(x) - f(x).g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)]}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x).\frac{f(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} f(x+h).\frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} f(x+h).\frac{g(x+h)$$

Exemplos:

a) Se
$$f(x) = (2x^3 - 1).(x^4 + x^2)$$
 então $f'(x) = (2x^3 - 1).(4x^3 + 2x) + (6x^2).(x^4 + x^2)$.

b) Se
$$g(t) = \frac{1}{2}(t^2 + 5).(t^6 + 4t)$$
 então $g'(t) = \frac{1}{2}(t^2 + 5).(6t^5 + 4) + \frac{1}{2}(2t).(t^6 + 4t)$.

R6 – Derivada de um quociente

Sejam
$$f$$
 e g duas funções e q a função definida por $q(x) = \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, onde $g(x) \neq 0$.
Se $f'(x)$ e $g'(x)$ existem, então $q'(x) = \frac{g(x).f'(x) - f(x).g'(x)}{[g(x)]^2}$.

Demonstração:

$$q'(x) = \lim_{h \to 0} \frac{q(x+h) - q(x)}{h} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{f(x+$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x) + f(x) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)} = \lim_{h \to 0} \frac{\frac{f(x+h) - f(x)}{h} \cdot g(x) - f(x) \cdot \frac{g(x+h) - g(x)}{h}}{g(x+h) \cdot g(x)} = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \lim_{h \to 0} g(x) - \lim_{h \to 0} f(x) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}}{\lim_{h \to 0} g(x+h) \cdot \lim_{h \to 0} g(x)} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^{2}}.$$

Exemplos:

a) Se
$$f(x) = \frac{2x^4 - 3}{x^2 - 5x + 3}$$
 então $f'(x) = \frac{(x^2 - 5x + 3).(8x^3) - (2x^4 - 3).(2x - 5)}{(x^2 - 5x + 3)^2}$.

b) Se
$$g(x) = \frac{1}{x}$$
 então $g'(x) = \frac{x \cdot 0 - 1 \cdot 1}{x^2} = \frac{-1}{x^2}$.

R7 – Regra da Potência (expoente negativo)

Se $f(x) = x^{-n}$, onde n é um número inteiro positivo e $x \ne 0$, então $f'(x) = -n x^{-n-1}$.

Demonstração:

Como
$$f(x) = x^{-n} = \frac{1}{x^n}$$
 então $f'(x) = \frac{x^n \cdot 0 - 1 \cdot n \cdot x^{n-1}}{(x^n)^2} = \frac{-n \cdot x^{n-1}}{x^{2n}} = -n \cdot x^{-n-1}$.

4.10- Exercícios

Páginas 138 e 139 do livro texto.

4.11- Derivada da Função Composta (Regra da Cadeia)

Teorema

Sejam y = g(u) e u = f(x) funções deriváveis, com $Im(f) \subset D(g)$. Então a composta y = g(f(x)) é derivável e vale a regra da cadeia:

$$y'(x) = g'(u).f'(x) = g'(f(x)).f'(x)$$
, ou seja, $\frac{dy}{dx} = \frac{dy}{du}.\frac{du}{dx}$.

Exemplos:

1. Dada a função
$$y = (x^2 + 5x + 2)^7$$
, determinar $\frac{dy}{dx}$.

2. Dada a função
$$y = \left(\frac{3x+2}{2x+1}\right)^5$$
, encontrar y' .

3. Dada a função $y = (3x^2 + 1)^3 \cdot (x - x^2)^2$, determinar y'.

Proposição (Regra da Potência para Funções Quaisquer)

Se u = g(x) é uma função derivável e n é um número inteiro não nulo, então $\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1}.g'(x) .$

Demonstração:

Fazendo $y = u^n$, onde u = g(x), e aplicando a Regra da Cadeia, temos:

$$\frac{d}{dx}[g(x)]^n = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = n u^{n-1} \cdot g'(x) = n[g(x)]^{n-1} \cdot g'(x).$$

Observação: A Regra da Potência pode ser generalizada como segue e será demonstrada mais adiante: Se u = g(x) é uma função derivável e r é um número racional não nulo qualquer, então $\frac{d}{dx}[g(x)]^r = r[g(x)]^{r-1}.g'(x), \text{ ou seja, } (u^r)' = r u^{r-1}.u'.$

Exemplos:

1- Dada a função $f(x) = 5\sqrt{x^2 + 5}$, determinar f'(x).

2- Dada a função $g(t) = \frac{t^2}{\sqrt[3]{t^3 + 1}}$, determinar g'(t).

3- Determinar a derivada das seguintes funções:

a)
$$y = x^8 + (2x + 4)^3 + \sqrt{x}$$

b)
$$y = \frac{x+1}{\sqrt{x^2-3}}$$

c)
$$y = \sqrt[3]{6x^2 + 7x + 2}$$

4.12- Derivada da Função Inversa

Teorema

Seja y = f(x) uma função definida em um intervalo aberto (a,b). Suponhamos que f(x) admita uma função inversa x = g(y) contínua. Se f'(x) existe e é diferente de zero para qualquer $x \in (a,b)$, então $g = f^{-1}$ é derivável e vale $g'(y) = \frac{1}{f'(x)} = \frac{1}{f'(\sigma(y))}$.

Demonstração:

Sejam y = f(x) e $\Delta y = f(x + \Delta x) - f(x)$. Observamos que, como f possui uma inversa, se $\Delta x \neq 0$ temos que $f(x + \Delta x) \neq f(x)$ e, portanto, $\Delta y \neq 0$. Como fé contínua, quando $\Delta x \rightarrow 0$ temos que $\Delta y \rightarrow 0$.

Da mesma forma, quando $\Delta y \rightarrow 0$, então $\Delta x = g(y + \Delta y) - g(y)$ também tende a zero.

71

$$\lim_{\Delta y \to 0} \frac{g(y + \Delta y) - g(y)}{\Delta y} = \frac{1}{\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}} = \frac{1}{f'(x)}.$$

Concluímos que g'(y) existe e vale $g'(y) = \frac{1}{f'(x)}$.

Exemplos:

1- Seja
$$y = f(x) = 4x - 3$$
. A sua inversa é dada por $x = g(y) = \frac{1}{4}(y + 3)$. Temos $f'(x) = 4$ e $g'(y) = \frac{1}{4}$.

2- Seja
$$y = 8x^3$$
. Sua inversa é $x = \frac{1}{2}\sqrt[3]{y}$.

Como y'=
$$24x^2$$
 é maior que zero para todo $x \ne 0$ temos $\frac{dx}{dy} = \frac{1}{24x^2} = \frac{1}{24\left(\frac{1}{2}\sqrt[3]{y}\right)^2} = \frac{1}{6y^{\frac{2}{3}}}$.

Para x = 0 temos y = 0 e y' = 0. Logo, não podemos aplicar o teorema para x = 0.

4.13- Derivadas das Funções Elementares

4.13.1 – Derivada da Função Exponencial

Se $y = a^x$, sendo a > 0 e $a \ne 1$, então $y' = a^x . \ln a$. Em particular, se $y = e^x$, então $y' = e^x . \ln e = e^x$.

Demonstração:

Seja $y = f(x) = a^x$. Temos:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x(a^h - 1)}{h} = \lim_{h \to 0} a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h} = a^x \cdot \ln a$$

4.13.2 - Derivada da Função Logarítmica

Se $y = \log_a x$, sendo a > 0 e $a \ne 1$, então $y' = \frac{1}{x} \log_a e$. Em particular, se $y = \ln x$, então $y' = \frac{1}{x} \ln e = \frac{1}{x}$.

Demonstração:

Seja $y = f(x) = \log_a x$. Temos:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\log_a(x+h) - \log_a x}{h} = \lim_{h \to 0} \frac{\log_a \frac{x+h}{x}}{h} = \lim_{h \to 0} \left[\frac{1}{h} \log_a \left(\frac{x+h}{x} \right) \right] = \lim_{h \to 0} \left[\frac{1}{h} \log_a \left(1 + \frac{h}{x} \right) \right] = \lim_{h \to 0} \left[\frac{1}{h} \log_a \left(1 + \frac{h}{x} \right) \right] = \lim_{h \to 0} \left[\lim_{h \to 0} \left(1 + \frac{h}{x} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1}{x/h} \right) \right] = \log_a \left[\lim_{h \to 0} \left(1 + \frac{1$$

4.13.3 – Derivada da Função Exponencial Composta

Se $y = u^v$, onde u = u(x) e v = v(x) são funções de x, deriváveis num intervalo aberto I e u(x) > 0, $\forall x \in I$, então $y' = v \cdot u^{v-1} \cdot u' + u^v \cdot \ln u \cdot v'$.

Demonstração:

Usando as propriedades de logaritmos, podemos escrever $y = u^v = e^{\ln u^v} = e^{v \cdot \ln u}$. Assim, y = (gof)(x), onde $g(w) = e^w$ e $w = f(x) = v \cdot \ln u$.

Como existem as derivadas $g'(w) = e^w$ e $f'(x) = v \cdot \frac{1}{u} \cdot u' + \ln u \cdot v'$, pela regra da cadeia temos:

$$y' = g'(w).f'(x) = e^{w} \left(v.\frac{u'}{u} + \ln u.v' \right) = e^{v.\ln u} \left(v.\frac{u'}{u} + \ln u.v' \right) = u^{v}.v.\frac{u'}{u} + u^{v}.\ln u.v' = v.u^{v-1}.u' + u^{v}.\ln u.v'.$$

Observação: Usando a regra da cadeia obtemos as fórmulas gerais das derivadas das funções exponencial e logarítmica:

$$y = a^{u}$$
 $(a > 0 e a \neq 1) \Rightarrow y' = a^{u}.\ln a.u'$
 $y = e^{u} \Rightarrow y' = e^{u}.u'$
 $y = \log_{a} u \ (a > 0 e a \neq 1) \Rightarrow y' = \frac{u'}{u}\log_{a} e$
 $y = \ln u \Rightarrow y' = \frac{u'}{u}$

Exemplos:

Determinar a derivada das seguintes funções:

a)
$$v = 3^{2x^2 + 3x - 1}$$

b)
$$y = \left(\frac{1}{2}\right)^{\sqrt{x}}$$

c)
$$y = e^{\frac{x+1}{x-1}}$$

d)
$$y = e^{x \cdot \ln x}$$

e)
$$y = \log_2(3x^2 + 7x - 1)$$

f)
$$y = \ln\left(\frac{e^x}{x+1}\right)$$

g)
$$y = (x^2 + 1)^{2x-1}$$

4.13.4 – Derivadas das Funções Trigonométricas

a) Derivada da Função Seno

Se
$$y = senx$$
, então $y' = cos x$.

Demonstração:

$$y' = \lim_{h \to 0} \frac{sen(x+h) - senx}{h} = \lim_{h \to 0} \frac{2sen\frac{x+h-x}{2}.\cos\frac{x+h+x}{2}}{h} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\cos\frac{2x+h}{2}}{h} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\sin\frac{2x+h}{2}}{2.\frac{h}{2}}.\lim_{h \to 0} \cos\frac{2x+h}{2} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\sin\frac{2x+h}{2}}{2.\frac{h}{2}}.\lim_{h \to 0} \cos\frac{2x+h}{2} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\cos\frac{2x+h}{2}}{2.\frac{h}{2}}.\lim_{h \to 0} \cos\frac{2x+h}{2} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\sin\frac{2x+h}{2}}{2.\frac{h}{2}}.\lim_{h \to 0} \cos\frac{2x+h}{2} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\sin\frac{2x+h}{2}}{2.\frac{h}{2}}.\lim_{h \to 0} \cos\frac{2x+h}{2} = \lim_{h \to 0} \frac{2sen\frac{h}{2}.\sin\frac{2x+h}{2}}{2.\frac{h}{2}}.\lim_{h \to 0} \cos\frac{2x+h}{2}$$

 $= 1.\cos x = \cos x.$

b) Derivada da Função Cosseno

Se
$$y = \cos x$$
, então $y' = -\sin x$.

Demonstração:

$$y' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{-2sen\frac{x+h+x}{2}.sen\frac{x+h-x}{2}}{h} = \lim_{h \to 0} \frac{-2sen\frac{2x+h}{2}.sen\frac{h}{2}}{h} = -2\lim_{h \to 0} \frac{2x+h}{2}.\lim_{h \to 0} \frac{sen\frac{h}{2}}{2.\frac{h}{2}} = -2\sin x.$$

c) Derivadas das demais Funções Trigonométricas

Como as demais funções Trigonométricas são definidas a partir do seno ou cosseno, podemos usar as regras de derivação para encontrar suas derivadas.

Por exemplo, se
$$y = tgx = \frac{senx}{\cos x}$$
 então $y' = \frac{\cos x \cdot \cos x - senx(-senx)}{(\cos x)^2} = \frac{\cos^2 x + sen^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$.

Analogamente, encontramos:

$$y = \cot gx \Rightarrow y' = -\cos \sec^2 x$$

 $y = \sec x \Rightarrow y' = \sec x \cdot t g x$
 $y = \cos \sec x \Rightarrow y' = -\cos \sec x \cdot \cot g x$

Observação: Usando a regra da cadeia obtemos as fórmulas gerais das derivadas das funções trigonométricas:

$$y = senu \Rightarrow y' = cosu \cdot u'$$

 $y = cosu \Rightarrow y' = -senu \cdot u'$
 $y = tgu \Rightarrow y' = sec^2 u \cdot u'$
 $y = cot gu \Rightarrow y' = -cos sec^2 u \cdot u'$
 $y = secu \Rightarrow y' = secu \cdot tgu \cdot u'$
 $y = cos secu \Rightarrow y' = -cos secu \cdot cotgu \cdot u'$

Exemplos:

Determinar a derivada das seguintes funções:

a)
$$y = sen(x^2)$$

b)
$$y = \cos\left(\frac{1}{x}\right)$$

c)
$$y = 3tg\sqrt{x} + \cot g3x$$

d)
$$y = \frac{\cos x}{1 + \cot gx}$$

e)
$$y = \sec(x^2 + 3x + 7)$$

f)
$$y = \csc\left(\frac{x+1}{x-1}\right)$$

4.13.5 – Derivadas das Funções Trigonométricas Inversas

a) Derivada da Função Arco Seno

Seja
$$f:[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 definida por $f(x) = arc senx$.

Então
$$y = f(x)$$
 é derivável em $(-1,1)$ e $y' = \frac{1}{\sqrt{1-x^2}}$.

Demonstração:

Sabemos que:
$$y = arcsenx \Leftrightarrow x = seny, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
. Como (seny) existe e é diferente de zero para

todo
$$y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, aplicando o teorema da função inversa obtemos:

$$y' = \frac{1}{(seny)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - sen^2 y}} = \frac{1}{\sqrt{1 - x^2}}, \text{ para } x \in (-1,1).$$

b) Derivada da Função Arco Cosseno

Seja
$$f:[-1,1] \rightarrow [0,\pi]$$
 definida por $f(x) = arc \cos x$.

Então
$$y = f(x)$$
 é derivável em $(-1,1)$ e $y' = \frac{-1}{\sqrt{1-x^2}}$.

Demonstração:

Usando a relação
$$arc \cos x = \frac{\pi}{2} - arc senx$$
 obtemos:

$$y' = (arc \cos x)' = \left(\frac{\pi}{2} - arc senx\right)' = \frac{-1}{\sqrt{1-x^2}}, \text{ para } x \in (-1,1).$$

c) Derivada da Função Arco Tangente

Seja
$$f: R \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 definida por $f(x) = arc tgx$.

Então
$$y = f(x)$$
 é derivável e $y' = \frac{1}{1+x^2}$.

Demonstração:

Sabemos que:
$$y = arctgx \Leftrightarrow x = tgy$$
, $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Como (tgy) ' existe e é diferente de zero para todo

$$y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, aplicando o teorema da função inversa obtemos:

$$y' = \frac{1}{(tgy)'} = \frac{1}{\sec^2 y} = \frac{1}{1 + tg^2 y} = \frac{1}{1 + x^2}.$$

d) Derivada da Função Arco Cotangente

Seja $f: R \to (0,\pi)$ definida por $f(x) = arc \cot gx$.

Então
$$y = f(x)$$
 é derivável e $y' = \frac{-1}{1+x^2}$.

Demonstração:

Usando a relação $arc \cot gx = \frac{\pi}{2} - arc tgx$ obtemos:

$$y' = (arc \cot gx)' = \left(\frac{\pi}{2} - arc tgx\right)' = \frac{-1}{1+x^2}$$
.

e) Derivada da Função Arco Secante

Seja
$$f: (-\infty, -1] \cup [1, +\infty) \rightarrow \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$$
 definida por $f(x) = arc \sec x$.

Então
$$y = f(x)$$
 é derivável em $(-\infty, -1) \cup (1, +\infty)$ e $y' = \frac{1}{|x|\sqrt{x^2 - 1}}$.

Demonstração:

Usando a relação $arc \sec x = arc \cos \left(\frac{1}{x}\right)$ e a regra da cadeia obtemos:

$$y' = \left(arc \sec x\right)' = \left(arc \cos \left(\frac{1}{x}\right)\right)' = \frac{-1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}} \left(\frac{1}{x}\right)' = \frac{-1}{\sqrt{\frac{x^2 - 1}{x^2}}} \cdot \frac{-1}{x^2} = \frac{1}{\frac{x^2 \cdot \sqrt{x^2 - 1}}{\sqrt{x^2}}} = \frac{1}{\frac{x^2 \cdot \sqrt{x^2 - 1}}{|x|}} = \frac{1}{\frac{x^2 \cdot \sqrt{x^2 - 1}}{|x|}}$$

$$= \frac{|x|}{|x|^2 \cdot \sqrt{x^2 - 1}} = \frac{1}{|x| \cdot \sqrt{x^2 - 1}} \text{ , onde } |x| > 1.$$

f) Derivada da Função Arco Cossecante

Seja
$$f: (-\infty, -1] \cup [1, +\infty) \rightarrow \left[-\frac{\pi}{2}, 0\right] \cup \left[0, \frac{\pi}{2}\right]$$
 definida por $f(x) = arc \csc x$.

Então
$$y = f(x)$$
 é derivável em $(-\infty, -1) \cup (1, +\infty)$ e $y' = \frac{-1}{|x|\sqrt{x^2 - 1}}$.

Demonstração:

Usando a relação $arc \csc x = arc sen\left(\frac{1}{x}\right)$ e a regra da cadeia obtemos:

$$y' = \left(arc \operatorname{cossec}x\right)' = \left(arc \operatorname{sen}\left(\frac{1}{x}\right)\right)' = \frac{1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}} \cdot \left(\frac{1}{x}\right)' = \frac{1}{\sqrt{\frac{x^2 - 1}{x^2}}} \cdot \frac{-1}{x^2} = \frac{-1}{\frac{x^2 \cdot \sqrt{x^2 - 1}}{\sqrt{x^2}}} = \frac{-1}{\frac{x^2 \cdot \sqrt{x^2 - 1}}{|x|}} = \frac{-1}{\frac{x^2 \cdot \sqrt{x^2 - 1}}{|x|}}$$

$$=\frac{-|x|}{|x|^2.\sqrt{x^2-1}}=\frac{-1}{|x|.\sqrt{x^2-1}}$$
, onde $|x|>1$.

Observação: Usando a regra da cadeia obtemos as fórmulas gerais das derivadas das funções trigonométricas inversas:

$$y = arc \ senu \Rightarrow y' = \frac{u'}{\sqrt{1 - u^2}}$$

$$y = arc \ cosu \Rightarrow y' = \frac{-u'}{\sqrt{1 - u^2}}$$

$$y = arc \ tgu \Rightarrow y' = \frac{u'}{1 + u^2}$$

$$y = arc \ cot \ gu \Rightarrow y' = \frac{-u'}{1 + u^2}$$

$$y = arc \ secu \Rightarrow y' = \frac{u'}{|u| \cdot \sqrt{u^2 - 1}}$$

$$y = arc \ cos \ secu \Rightarrow y' = \frac{-u'}{|u| \cdot \sqrt{u^2 - 1}}$$

Exemplos:

Determinar a derivada das seguintes funções:

a)
$$y = arc sen(x+1)$$

b)
$$y = arc tg \left(\frac{1-x^2}{1+x^2} \right)$$

4.13.6 – Derivadas das Funções Hiperbólicas

Como as Funções Hiperbólicas são definidas em termos da função exponencial, podemos determinar suas derivadas usando as regras de derivação já estabelecidas.

Por exemplo, se
$$y = senhx = \frac{e^x - e^{-x}}{2}$$
 então $y' = \frac{1}{2}(e^x - e^{-x}(-1)) = \frac{1}{2}(e^x + e^{-x}) = \cosh x$.

Analogamente, obtemos as derivadas das demais funções hiperbólicas.

Observação: Usando a regra da cadeia obtemos as fórmulas gerais das derivadas das funções hiperbólicas:

$$y = senhu \Rightarrow y' = \cosh u \cdot u'$$

 $y = \cosh u \Rightarrow y' = senhu \cdot u'$
 $y = tghu \Rightarrow y' = sech^2u \cdot u'$
 $y = \cot ghu \Rightarrow y' = -\cos sech^2u \cdot u'$
 $y = sechu \Rightarrow y' = -\sec hu \cdot tghu \cdot u'$
 $y = \cos sechu \Rightarrow y' = -\cos sechu \cdot cotghu \cdot u'$

Exemplos:

Determinar a derivada das seguintes funções:

a)
$$y = senh(x^3 + 3)$$

b)
$$y = \sec h(2x)$$

c)
$$y = \ln[tgh(3x)]$$

d)
$$y = \cot gh(1 - x^3)$$

4.13.7 – Derivadas das Funções Hiperbólicas Inversas

Vimos que $y = \arg senhx$ pode ser expresso na forma $y = \ln(x + \sqrt{x^2 + 1})$. Assim,

$$y' = \frac{\left(x + \sqrt{x^2 + 1}\right)'}{x + \sqrt{x^2 + 1}} = \frac{1 + \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}} \cdot 2x}{x + \sqrt{x^2 + 1}} = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \cdot \frac{1}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}.$$

Analogamente obtemos as derivadas das demais funções hiperbólicas inversas.

Observação: Usando a regra da cadeia obtemos as fórmulas gerais das derivadas das funções hiperbólicas inversas:

$$y = \arg senhu \Rightarrow y' = \frac{u'}{\sqrt{u^2 + 1}}$$

$$y = \operatorname{argcosh} u \Rightarrow y' = \frac{u'}{\sqrt{u^2 - 1}}, u > 1$$

$$y = \arg tghu \Rightarrow y' = \frac{u'}{1 - u^2}, |u| < 1$$

$$y = \operatorname{arg} \cot ghu \Rightarrow y' = \frac{u'}{1 - u^2}, |u| > 1$$

$$y = \arg \sec hu \Rightarrow y' = \frac{-u'}{u\sqrt{1-u^2}}, \ 0 < u < 1$$

$$y = \operatorname{arg} \operatorname{cos} \operatorname{sec} hu \Rightarrow y' = \frac{-u'}{|u|\sqrt{1+u^2}}, u \neq 0$$

Exemplos:

Determinar a derivada das seguintes funções:

a)
$$y = x^2 . \operatorname{arg} \cosh x^2$$

b)
$$y = \arg tgh(sen3x)$$

c)
$$y = x.\arg senhx - \sqrt{x^2 + 1}$$

4.14- Tabela Geral de Derivadas

Sejam u e v funções deriváveis de x e c, α e a constantes.

(1)
$$y = c \Rightarrow y' = 0$$

(2)
$$y = x \Rightarrow y' = 1$$

(3)
$$y = c \cdot u \Rightarrow y' = c \cdot u'$$

$$(4) \quad y = u + v \implies y' = u' + v'$$

(5)
$$y = u \cdot v \Rightarrow y' = u \cdot v' + v \cdot u'$$

(6)
$$y = \frac{u}{v} \Rightarrow y' = \frac{v \cdot u' - u \cdot v'}{v^2}$$

(7)
$$y = u^{\alpha}, (\alpha \neq 0) \Rightarrow y' = \alpha \cdot u^{\alpha - 1} \cdot u'$$

(8)
$$y = a^u (a > 0, a \ne 1) \Rightarrow y' = a^u \cdot \ln a \cdot u'$$

$$(9) \quad y = e^u \Rightarrow y' = e^u \cdot u'$$

(10)
$$y = \log_a u \Rightarrow y' = \frac{u'}{u} \log_a e$$
.

(11)
$$y = \ln u \Rightarrow y' = \frac{u'}{u}$$

(12)
$$y = u^{\nu} \Rightarrow y' = \nu \cdot u^{\nu-1} \cdot u' + u^{\nu} \cdot \ln u \cdot v'$$

(13)
$$y = \operatorname{sen} u \Rightarrow y' = \cos u \cdot u'$$

(14)
$$y = \cos u \Rightarrow y' = -\sin u \cdot u'$$

(15)
$$y = tg \ u \Rightarrow y' = sec^2 \ u \cdot u'$$

(16)
$$y = \cot u \Rightarrow y' = -\csc^2 u \cdot u'$$

(17)
$$y = \sec u \Rightarrow y' = \sec u \cdot \operatorname{tg} u \cdot u'$$

(18)
$$y = \csc u \Rightarrow y' = -\csc u \cdot \cot u \cdot u'$$

$$(19)^{0} y = \arcsin u \Rightarrow y' = \frac{u'}{\sqrt{1 - u^2}}$$

(20)
$$y = \arccos u \Rightarrow y' = \frac{-u'}{\sqrt{1 - u^2}}$$

(21)
$$y = \text{arc tg } u \Rightarrow y' = \frac{u'}{1 + u^2}$$

(22)
$$y = \operatorname{arc cotg} u \Rightarrow y' = \frac{-u'}{1 + u^2}$$

(23)
$$y = \operatorname{arc} \sec u$$
, $|u| \ge 1 \Rightarrow y' = \frac{u'}{|u| \sqrt{u^2 - 1}} \cdot |u| > 1$

(24)
$$y = \operatorname{arc cosec} u$$
, $|u| \ge 1 \Rightarrow y' = \frac{-u'}{|u| \sqrt{u^2 - 1}}$, $|u| > 1$

(25)
$$y = \operatorname{senh} u \Rightarrow y' = \cosh u \cdot u'$$

(26)
$$y = \cosh u \Rightarrow y' = \sinh u \cdot u'$$

(27)
$$y = \operatorname{tgh} u \Rightarrow y' = \operatorname{sech}^2 u \cdot u'$$

(28)
$$y = \operatorname{cotgh} u \Rightarrow y' = -\operatorname{cosech}^2 u \cdot u'$$

(29)
$$y = \operatorname{sech} u \Rightarrow y' = -\operatorname{sech} u \cdot \operatorname{tgh} u \cdot u'$$

(30)
$$y = \operatorname{cosech} u \Rightarrow y' = -\operatorname{cosech} u \cdot \operatorname{cotgh} u \cdot u'$$

(31)
$$y = \arg \operatorname{senh} u \Rightarrow y' = \frac{u'}{\sqrt{u^2 + 1}}$$

(32)
$$y = \arg \cosh u \Rightarrow y' = \frac{u'}{\sqrt{u^2 - 1}}, \quad u > 1$$

(33)
$$y = \arg \tanh u \Rightarrow y' = \frac{u'}{1 - u^2}, |u| < 1$$

(34)
$$y = \arg \cosh u \Rightarrow y' = \frac{u'}{1 - u^2}, |u| > 1$$

(35)
$$y = \arg \operatorname{sech} u \Rightarrow y' = \frac{-u'}{u\sqrt{1 - u^2}}, \quad 0 < u < 1$$

(36)
$$y = \operatorname{arg cosech} u \Rightarrow y' = \frac{-u'}{|u| \sqrt{1 + u^2}}, \quad u \neq 0$$

4.15- Exercícios

Páginas 159, 160, 161, 162 e 163 do livro texto.

4.16- Derivadas Sucessivas

Definição

Seja f uma função derivável. Se f' também for derivável, então a sua derivada é chamada derivada segunda de f e é representada por f''(lê-se f duas linhas) ou $\frac{d^2 f}{dx^2}$ (lê-se derivada segunda de f em relação a x).

Se f "é uma função derivável, sua derivada, representada por f ", é chamada derivada terceira de f.

A derivada de ordem n ou n-ésima derivada de f, representada por $f^{(n)}$, é obtida derivando-se a derivada de ordem (n-1) de f.

Exemplos:

1- Se
$$f(x) = 3x^2 + 8x + 1$$
, então $f'(x) = 6x + 8$ e $f''(x) = 6$.

2- Se
$$f(x) = tgx$$
, então $f'(x) = \sec^2 x$ e $f''(x) = 2\sec x \cdot \sec x \cdot tgx = 2\sec^2 x \cdot tgx$.

3- Se
$$f(x) = \sqrt{x^2 + 1}$$
, então

$$f'(x) = \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}} \cdot 2x = x(x^2 + 1)^{-\frac{1}{2}} e f''(x) = x \cdot \left(-\frac{1}{2}\right) \cdot (x^2 + 1)^{-\frac{3}{2}} \cdot 2x + (x^2 + 1)^{-\frac{1}{2}} \cdot 1 = \frac{1}{\sqrt{x^2 + 1}} - \frac{x^2}{\sqrt{(x^2 + 1)^3}}.$$

4- Se
$$f(x) = 3x^5 + 8x^2$$
, então $f'(x) = 15x^4 + 16x$, $f''(x) = 60x^3 + 16$, $f'''(x) = 180x^2$, $f^{(4)}(x) = 360x$, $f^{(5)}(x) = 360$ e $f^{(n)}(x) = 0$, $n \ge 6$.

5-
$$f(x) = e^{\frac{x}{2}}$$
, então $f'(x) = \frac{1}{2}e^{\frac{x}{2}}$, $f''(x) = \frac{1}{4}e^{\frac{x}{2}}$, $f'''(x) = \frac{1}{8}e^{\frac{x}{2}}$, $f^{(n)} = \frac{1}{2^n}e^{\frac{x}{2}}$.

6- Se
$$f(x) = senx$$
, então $f'(x) = cos x$, $f''(x) = -senx$, $f'''(x) = -cos x$, $f^{(4)} = senx$, ou seja,
$$f^{(n)}(x) = \begin{cases} cos x & \text{, para } n = 1,5,9,... \\ -senx & \text{, para } n = 2,6,10,... \\ -cos x & \text{, para } n = 3,7,11,... \end{cases}$$

$$senx & \text{, para } n = 4,8,12,...$$

4.17- Derivação Implícita

Definição - Função na forma implícita

Consideremos a equação F(x,y) = 0. Dizemos que a função y = f(x) é definida implicitamente pela equação F(x,y) = 0, se substituirmos y por f(x) em F(x,y) = 0, esta equação se transforma em uma identidade.

Exemplos:

1- A equação $x^2 + \frac{1}{2}y - 1 = 0$ define implicitamente a função $y = 2(1 - x^2)$.

De fato, substituindo $y = 2(1-x^2)$ na equação $x^2 + \frac{1}{2}y - 1 = 0$, obtemos a identidade $x^2 + \frac{1}{2} \cdot 2(1-x^2) - 1 = 0$.

2- A equação $x^2 + y^2 = 4$ define implicitamente uma infinidade de funções.

Por exemplo, $y = \sqrt{4 - x^2}$, $y = -\sqrt{4 - x^2}$, $h_c(x) = \begin{cases} \sqrt{4 - x^2} & \text{se } c \le x \le 2 \\ -\sqrt{4 - x^2} & \text{se } -2 \le x < c \end{cases}$, onde $c \in R$, -2 < c < 2.

81

3- Nem sempre é possível encontrar a forma explícita de uma função definida implicitamente, como por exemplo y = f(x) definida implicitamente pela equação $y^4 + 3xy + 2\ln y = 0$.

A Derivada de uma Função na Forma Implícita

Suponhamos que F(x,y) = 0 define implicitamente uma função derivável y = f(x). Os exemplos que seguem mostram que, usando a regra da cadeia, podemos determinar y' sem explicitar y.

1- Sabendo que y = f(x) é uma função derivável definida implicitamente pela equação $x^2 + y^2 = 4$, determinar y'.

2- Sabendo que v =	f(x) é definida pela equação	$xy^2 + 2y^3 = x - 2y$, determinar y	•

3- Se
$$y = f(x)$$
 é definida por $x^2y^2 + x.seny = 0$, determinar y' .

4- Determinar a equação da reta tangente à curva
$$x^2 + \frac{1}{2}y - 1 = 0$$
 no ponto $(-1,0)$.

5- Determinar as equações da reta tangente e da reta normal à circunferência de centro (2,0) e raio 2, nos pontos de abscissa 1.

4.18- Exercícios