

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2005-255977

(43)Date of publication of application : 22.09.2005

(51)Int.Cl.

C10M169/02
C10M115/08
C10M117/02
C10M117/04
C10M125/04
C10M125/10
C10M125/22
F16C 19/26
F16C 33/66
// C10N 10:02
C10N 10:10
C10N 20:06
C10N 30:06
C10N 40:02
C10N 50:10

(21)Application number : 2004-343721

(71)Applicant : NTN CORP

(22)Date of filing : 29.11.2004

(72)Inventor : MIKAMI EISHIN

(30)Priority

Priority number : 2004032187 Priority date : 09.02.2004 Priority country : JP

(54) GREASE COMPOSITION AND ROLLING BEARING

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a grease composition and to provide a rolling bearing preventing the surface of lubrication from generating friction and attrition on causing a high loading or a sliding movement condition and having an excellent durability for a long period of time.

SOLUTION: The grease composition is obtained by adding an inorganic bismuth additive into the grease composition containing a thickening agent and a base oil, wherein 0.01–15 wt.% of at least one inorganic bismuth additive selected from bismuth powder, bismuth sulfate and bismuth trioxide is added based on the total amount of the grease composition, and at least one compound selected from a urea-based compound and a lithium soap as the thickening agent is used, and the grease composition is used for the rolling bearing.

JP 2005-255977 A 2005.9.22

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2005-255977
(P2005-255977A)

(43) 公開日 平成17年9月22日 (2005.9.22)

(51) Int.Cl.

C10M 169/02
C10M 115/08
C10M 117/02
C10M 117/04
C10M 125/04

F

C10M 169/02
C10M 115/08
C10M 117/02
C10M 117/04
C10M 125/04

テーマコード (参考)

3J101
4H104

審査請求 未請求 請求項の数 6 O.L. (全 9 頁) 最終頁に続く

(21) 出願番号

特願2004-343721 (P2004-343721)

(22) 出願日

平成16年11月29日 (2004.11.29)

(31) 優先権主張番号

特願2004-32187 (P2004-32187)

(32) 優先日

平成16年2月9日 (2004.2.9)

(33) 優先権主張国

日本国 (JP)

(71) 出願人

000102692

NTN株式会社

大阪府大阪市西区京町堀1丁目3番17号

(74) 代理人

100100251

弁理士 和氣 條

(72) 発明者

三上 英信

三重県桑名市大字東方字尾弓3066

NTN株式会社内

F ターム (参考) 3J101 AA13 AAS2 AA42 AAS2 AA82

CA00 BA62 FA32

4H104 AA08C AA13C AA18C BB16B BB19B

BE13B EA08C FA05 LA05 PA01

QA18

(54) [発明の名称] グリース組成物および転がり軸受

(57) [要約] (修正有)

【課題】高荷重または、すべり運動が生じる状態での潤滑面での摩擦摩耗を防止し、長期耐久性に優れたグリース組成物および転がり軸受を提供することである。

【解決手段】グリース組成物は、増ちょう剤と基油を含むグリース組成物に無機ビスマス系添加物を添加してなり、グリース組成物全体に対して、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの無機ビスマス系添加物 0.01~15 重量%を添加し、増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれた少なくとも1つの化合物を使用し、転がり軸受は、上記グリース組成物を使用する。

【選択図】なし

(2)

JP 2005-255977 A 2005.9.22

【特許請求の範囲】**【請求項 1】**

増ちょう剤と基油を含むグリース組成物に、無機ビスマス系添加物を添加してなることを特徴とするグリース組成物。

【請求項 2】

前記無機ビスマス系添加物は、グリース組成物全体に対して、無機ビスマス系添加物 0.01~15 重量%を添加したことを特徴とする請求項 1 記載のグリース組成物。

【請求項 3】

前記無機ビスマス系添加物は、ビスマス粉末、硫酸ビスマスおよび三度化ビスマスから選ばれた少なくとも 1 つの物質であることを特徴とする請求項 1 または請求項 2 記載のグリース組成物。
10

【請求項 4】

前記増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれた少なくとも 1 つの化合物であることを特徴とする請求項 1、請求項 2 または請求項 3 記載のグリース組成物。

【請求項 5】

内輪および外輪と、この内輪および外輪間に介在する複数の転動体とを備え、この転動体の周囲にグリース組成物を封入してなる転がり軸受であって、前記グリース組成物は請求項 1 ないし請求項 4 のいずれか 1 項記載のグリース組成物であることを特徴とする転がり軸受。
20

【請求項 6】

前記転がり軸受が、ころ軸受であることを特徴とする請求項 5 記載の転がり軸受。

【発明の詳細な説明】**【技術分野】****【0001】**

本発明は、高荷重下における潤滑性および耐荷重性に優れるグリース組成物および転がり軸受に関する。

【背景技術】**【0002】**

従来、グリース組成物封入転がり軸受を高荷重条件下で使用する場合には、潤滑グリース組成物の潤滑膜が破断しやすくなる。潤滑膜が破断すると金属接触が起こり、発熱、摩耗が増大する不具合が発生する。そのため、極圧剤（E P 剤）含有グリース組成物を使用して、その不具合を軽減している。
30

転がり軸受の使用条件が過酷になるにつれ、グリース組成物においては、潤滑性および高荷重性を向上させ、潤滑油膜破断による金属接触を防止する必要がある。特に、ころ軸受はつばを有し、つば部で転動体と軌道輪つばがすべり運動するため、つば部で潤滑油膜の破断が起こりやすくなる。

メラミン（イソ）シアヌル酸付加物 100 重量部に対して、ポリテトラフルオロエチレン、二硫化モリブデンおよびモリブデンジオカーバメート（以下、M o D T C と略称）よりなる群から選ばれた固体潤滑剤を 5~1000 重量部の割合で併用した固体潤滑剤含有グリースが開示されている（特許文献 1 参照）。

また、有機ビスマス化合物を含んでなる、転がり軸受用の極圧グリース潤滑剤組成物が開示されている（特許文献 2 参照）。

また、摩耗を低減するため、M o D T C およびポリサルファイドを含有してなるグリース組成物が開示されている（特許文献 3 参照）。

【0003】

(3)

JP 2005-255977 A 2005.9.22

部と「ころ」との間にすべり摩擦が発生する。ころがり摩擦に比べるとすべり摩擦は大きいので、使用条件が過酷になるとつば部の焼付きが生じやすくなる。そのためグリース組成物の交換作業等が頻繁になりメンテナンスフリー化を達成できないという問題がある。

【特許文献1】特開昭61-12791号公報（特許請求の範囲）

【特許文献2】特開平8-41478号公報（特許請求の範囲）

【特許文献3】特開平10-324885号公報（特許請求の範囲）

【発明の開示】

【発明が解決しようとする課題】

【0004】

本発明における課題は、高荷重またはすべり運動が生じる状態での潤滑面での摩擦摩耗を防止し、長期耐久性に優れたグリース組成物およびグリース組成物封入転がり軸受を提供することである。

【課題を解決するための手段】

【0005】

本発明のグリース組成物は、増ちょう剤と基油を含むグリース組成物に、無機ビスマス系添加物を添加してなることを特徴とする。

上記無機ビスマス系添加物は、グリース組成物全体に対して、無機ビスマス系添加物0.01～15重量%を添加したことを特徴とする。

上記無機ビスマス系添加物は、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの物質であることを特徴とする。

上記増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれた少なくとも1つの化合物であることを特徴とする。

【0006】

転がり軸受は、内輪および外輪と、この内輪および外輪間に介在する複数の転動体と、この転動体の周囲にグリース組成物を封入してなり、該グリース組成物は上記記載のグリース組成物であることを特徴とする。

【0007】

本発明のグリース組成物を封入した転がり軸受は、ころ軸受であることを特徴とする。

【発明の効果】

【0008】

本発明のグリース組成物および転がり軸受、特にころ軸受は、耐熱耐久性に優れた無機ビスマス系添加物を使用しているので、極圧性効果を長期間持続することができる。そのため、耐摩耗性とともに、長期間耐久性の要求される鉄道車両、建設機械、自動車駆動機などに好適に利用することができる。

【発明を実施するための最良の形態】

【0009】

本発明のころ軸受用グリース組成物が封入されるころ軸受について図1により説明する。図1はころ軸受の一部切り欠き斜視図である。ころ軸受は内輪1と外輪2との間にころ3が保持器4を介して配置されている。ころ3は内輪1の転走面1aと外輪2の転走面2aとの間でころがり座撃を受け、内輪1のつば部1bとの間ですべり摩擦を受ける。これらの摩擦を低減するためにころ軸受用グリース組成物が封入されている。

【0010】

本発明のグリース組成物に使用できる基油としては、例えば、鉛油、ポリーオレフィン油(以下、PAOと略称)、エステル油、フェニルエーテル油、フッ素油、さらに、フィッシャートロブシュ反応で合成される合成炭化水素油(GTL基油)などが挙げられる。この中でも、ポリーオレフィン油または鉛油から選ばれた少なくとも一種を使用

(4)

JP 2005-255977 A 2005.9.22

ン、1-オクタデセン、1-ノナデセン、1-エイコセン、1-ドコセン、1-テトラコセン等を挙げることができ、通常はこれらの混合物が使用される。また、鉱油としては、例えば、パラフィン系鉱油、ナフテン系鉱油等の通常潤滑油やグリース組成物の分野で使用されているものをいずれも使用することができる。

【0011】

本発明のグリース組成物に使用できる基油は、好ましくは、40℃における動粘度が20~200 mm²/sec である。20 mm²/sec 未満の場合は、蒸発量が増加し、耐熱性が低下するので好ましくなく、また、200 mm²/sec をこえると回転トルクの増加による軸受の温度上昇が大きくなるので好ましくない。

【0012】

本発明のグリース組成物に使用できる増ちょう剤として、アルミニウム、リチウム、ナトリウム、複合リチウム、複合カルシウム、複合アルミニウムなどの金属石けん系増ちょう剤、下記式(1)のジウレア化合物が挙げられる。好ましくは、ジウレア化合物である。これらの増ちょう剤は、1種類単独で用いても2種類以上組み合わせて用いてもよい。

【化1】

(1)

10

20

(式(1)中のR₂は、炭素数6~15の芳香族炭化水素基、R₁およびR₃は、炭素数6~12の芳香族炭化水素基または炭素数6~20の脂環族炭化水素基または炭素数6~20の脂肪族炭化水素基を示し、R₁およびR₃は、同一であっても異なっていてもよい。)

式(1)で表されるウレア系化合物は、例えば、ジイソシアネートとモノアミンの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、2,4-トリレンジイソシアネート、3,3-ジメチル-4,4-ビフェニレンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネート等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p-トルイジン、シクロヘキシリルアミン等が挙げられる。

30

ウレア化合物は、イソシアネート化合物とアミン化合物を反応させることにより得られる。反応性のある遊離基を残さないため、イソシアネート化合物のイソシアネート基とアミン化合物のアミノ基とは略当量となるように配合することが好ましい。

基油にウレア化合物を配合して各種配合剤を配合するためのベースグリース組成物が得られる。ベースグリース組成物は、基油中でイソシアネート化合物とアミン化合物とを反応させて作製する。

40

【0013】

本発明のグリース組成物には、無機ビスマス系添加物を極圧剤として添加することを必須とする。これら無機ビスマス系添加物は、1種類または、2種類を混合してグリース組成物に添加してもよい。また、添加量は、グリース全体に対して0.01~15重量%であることが好ましい。より好ましくは1~10重量%である。添加量が0.01重量%未満では、耐摩耗性の向上効果が発揮されず、また、15重量%をこえると、回転時のトルクが大きくなってしまい、回転障害を生じるためである。

(5)

JP 2005-255977 A 2005.9.22

、水酸化ビスマス、セレン化ビスマス、テルル化ビスマス、リン酸ビスマス、オキシ過塩素酸ビスマス、オキシ硫酸ビスマス、ビスマス酸ナトリウム、チタン酸ビスマス、ジルコン酸ビスマス、モリブデン酸ビスマス等が挙げられるが、本発明において、特に好ましいのは、耐熱耐久性に優れ、熱分解しにくいため、極圧性効果の高いビスマス粉末、硫酸ビスマスおよび三酸化ビスマスである。

【0014】

本発明のグリース組成物には、必要に応じて公知の添加剤を含有させることができる。この添加剤として、例えば、有機亜鉛化合物、アミン系、フェノール系、イオウ系等の酸化防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレン等の粘度指数向上剤、二硫化モリブデン、グラファイト等の固体潤滑剤等が挙げられる。これらを単独または2種類以上組み合せて添加することができる。¹⁰

【0015】

本発明のころ軸受用グリース組成物は、グリース組成物封入ころ軸受の寿命を向上させることができる。このため、円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受等の封入グリース組成物として使用することができる。

【実施例】

【0016】

実施例1～実施例11

反応容器中で、基油中に増ちょう剤を加え、3本ロールミルを用いて均一化処理して、表1に示すL₁石けん／鉱油系グリース組成物(40℃基油粘度 100 mm²/sec、混和ちよう度 220)、ウレア／PAO系グリース組成物(40℃基油粘度 46 mm²/sec、混和ちよう度 280)、L₁石けん／エスチル油系グリース組成物(40℃基油粘度 30 mm²/sec、混和ちよう度 250)、ウレア／エーテル系グリース組成物(40℃基油粘度 100 mm²/sec、混和ちよう度 300)を得た。さらに、極圧剤として無機ビスマス系添加物を、表1に示す割合で上記グリース組成物に添加して、各実施例のグリース組成物を作製した。得られたグリース組成物につき、以下に記す極圧性評価試験およびころ軸受試験を行なった。結果を表1に併記した。²⁰

【0017】

【表1】

グリース組成物		実施例										
		1	2	3	4	5	6	7	8	9	10	11
グリース (混和部)	L ₁ 石けん／鉱油系グリース	93	15	-	-	99	85	-	-	65	95	25
	フレア／PAO系グリース	-	-	95	95	-	-	-	-	-	-	-
	L ₁ 石けん／エスチル油系グリース	-	-	-	-	-	-	95	-	-	-	-
	ウレア／エーテル系グリース	-	-	-	-	-	-	-	95	-	-	-
極圧剤 (混和部)	無鉛ビスマス	3	-	5	-	-	-	5	-	-	-	-
	三酸化ビスマス	-	5	-	5	1	15	-	5	-	-	-
	ビスマス粉末	-	-	-	-	-	-	-	-	-	5	-
	有機ビスマス化合物 ¹	-	-	-	-	-	-	-	-	-	-	-
	炭酸ビスマス	-	-	-	-	-	-	-	5	-	-	-
	ビスマス酸ナトリウム ²	-	-	-	-	-	-	-	-	5	-	-
	MnDTC ³	-	-	-	-	-	-	-	-	-	-	-
重油添加		-	-	-	-	-	-	-	-	-	-	-
極圧性静荷重試験 ⁴		82	140	170	230	88	460	76	85	51	51	200
ころ軸受試験 ⁵		66	64	38	54	68	67	50	70	43	68	85

【0018】

(6)

JP 2005-255977 A 2005.9.22

う度 280)、し：石けん／エステル油系グリース組成物(40℃基油粘度 30 mm²/sec、混和ちよう度 250)、ウレア／エーテル系グリース組成物(40℃基油粘度 100 mm²/sec、混和ちよう度 300)を得た。さらに、極圧剤として、有機ビスマス化合物またはM。D.T.Cを、表2に示す割合で上記グリース組成物に添加して、各比較例のグリース組成物を作製した。得られたグリース組成物につき、以下に記す極圧性評価試験およびころ軸受試験を行なった。結果を表2に併記した。

【0019】

【表2】

グリース組成物		比較例							
		1	2	3	4	5	6	7	8
グリース (生産部)	し：石けん：人造系グリース	100	-	-	-	95	95	-	95
	ウレア：PAO高グリース	-	100	-	-	-	-	95	-
	し：石けん／エストラル油系グリース	-	-	100	-	-	-	-	-
	ウレア：エーテル系グリース	-	-	-	100	-	-	-	-
極圧剤 (生産部)	純物ビスマス	-	-	-	-	-	-	-	-
	三聚化ビスマス	-	-	-	-	-	-	-	-
	ビスマス粉末	-	-	-	-	-	-	-	-
	有機ビスマス化合物	-	-	-	-	5	-	5	-
	液状ビスマス	-	-	-	-	-	-	-	-
	ビスマス酸ナトリウム	-	-	-	-	-	-	-	-
	MnOTC 21	-	-	-	-	-	5	-	-
	重鉛鉛灰	-	-	-	-	-	-	-	5
極圧性評価試験		15	23	5	14	34	16	82	20
ころ軸受試験		69	74	42	72	62	50	75	34

1: 次亜電子型ビスマス

2: Molysen A (ベンダーセルド社製) モリブデンジオカーバート

【0020】

極圧性評価試験：

極圧性評価試験装置を図2に示す。評価試験装置は、回転軸5に固定されたφ40×10のリング状試験片6と、この試験片6と端面8にて端面同士が擦り合わされるリング状試験片7とで構成される。ころ軸受用グリース組成物を端面8部分に塗布し、回転軸5を回転数 2000 rpm、図2中右方向のアキシャル荷重 490 N、ラジアル荷重 392 Nを負荷して、極圧性を評価した。極圧性は両試験片のすべり部の摩擦摩耗増大により生じる回転軸5の振動を振動センサにて測定し、その振動値が初期値の2倍になるまで試験を行ない、その時間を測定した。

回転軸5の振動値が初期値の2倍になるまでの時間が長いほど極圧性効果が大となり、優れた耐熱耐久性を示す。したがってグリース組成物の耐熱耐久性の評価は、測定された上記時間の長さにて各実施例と各比較例とを対比させて行なった。

ころ軸受試験：

30206円すいころ軸受にグリース組成物を3.6 g 封入し、アキシャル荷重 980 N、回転数 2600 rpm、室温にて運転し、回転中のつば部表面温度を測定した。運転開始後、4~8 時間までのつば部表面温度の平均値を算出した。

つば部と「ころ」との間に発生するすべり摩擦が大きくなると回転中のつば部表面温度

(7)

JP 2005-255977 A 2005.9.22

表1および表2においてL_i石けん／鉱油系グリース組成物のデータを、各実施例と各比較例とを対比すると、極圧剤の種類では、有機ビスマス化合物よりも無機ビスマス系添加物が、極圧性評価試験およびころ軸受試験において優れた耐熱耐久性を示した。

実施例1-1および比較例5に示すように、特にビスマス粉末は、有機ビスマスに比して約6倍の耐熱耐久性を示すことがわかる。また、実施例2および比較例5に示すように、特に三酸化ビスマスは、有機ビスマスに比して約3倍の耐熱耐久性を示すことがわかる。これらのことから無機ビスマス系添加物が有機ビスマス化合物よりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。

また、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスの中では、ビスマス粉末が最も良好な耐熱耐久性を示した。

【0022】

三酸化ビスマスの添加量が実施例5の1重量部、実施例2の5重量部、実施例6の15重量部と増加するにつれて極圧性効果が増加する傾向を示すが、三酸化ビスマスの添加量を15重量部と添加量5重量部の3倍に増加させても、極圧性効果の増加は約1.4倍に留まる。これは三酸化ビスマスの添加量が15重量部に近づくと、回転時のトルクが大きくなつて、発熱が増大し、回転障害を生じる傾向にあるためと考えられる。

また、比較例8に示すように、亜鉛粉末を添加した場合には、耐熱耐久性が著しく悪化し、無機化合物ではあっても亜鉛粉末には極圧性効果が認められなかつた。これは亜鉛の融点が低く、グリースの耐熱性を向上させることができなかつたためと考えられる。

【0023】

表1および表2においてウレア／PAO系グリース組成物、L_i石けん／エステル油系グリース組成物、ウレア／エーテル系グリース組成物のデータを、各実施例と各比較例とを対比すると、ウレア／PAO系グリース組成物の場合、極圧剤の種類では、有機ビスマス化合物よりも硫酸ビスマスおよび三酸化ビスマスといった無機ビスマス系添加物が優れた耐熱耐久性を示す。実施例3、実施例4および比較例7に示すように、硫酸ビスマスは有機ビスマスに比して約3倍の耐熱耐久性を示し、三酸化ビスマスは有機ビスマスに比して約4倍の耐熱耐久性を示すことがわかる。これは無機ビスマス系添加物が有機ビスマス化合物よりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。

【0024】

また、実施例7および比較例3に示すように、L_i石けん／エステル油系グリース組成物の場合、硫酸ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約13倍の耐熱耐久性を示した。

また、実施例8および比較例4に示すように、ウレア／エーテル系グリース組成物の場合、三酸化ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約6倍の耐熱耐久性を示した。以上のことから、硫酸ビスマスおよび三酸化ビスマスといった無機ビスマス系添加物が極圧性効果を長時間持続することができる。

【産業上の利用可能性】

【0025】

本発明のグリース組成物および転がり軸受は、耐熱耐久性に優れた無機ビスマス系添加物を使用しているので、極圧性効果を長期間持続することができる。そのため、耐摩耗性とともに、長期間耐久性の要求される鉄道車両、建設機械、自動車電装機などに好適に利用できる。

【図面の簡単な説明】

【0026】

(3)

JP 2005-255977 A 2005.9.22

- 1 内輪
- 2 外輪
- 3 ころ
- 4 保持器
- 5 回転軸
- 6、7 リング状試験片
- 8 端面

【図 1】

【図 2】

(9)

JP 2005-255977 A 2005.9.22

フロントページの続き

(51)Int.Cl.	F I	テーマコード(参考)
C 10 M 125/10	C 10 M 125/10	
C 10 M 125/22	C 10 M 125/22	
F 16 C 19/26	F 16 C 19/26	
F 16 C 33/66	F 16 C 33/66	Z
// C 10 N 10:02	C 10 N 10:02	
C 10 N 10:10	C 10 N 10:10	
C 10 N 20:06	C 10 N 20:06	Z
C 10 N 30:06	C 10 N 30:06	
C 10 N 40:02	C 10 N 40:02	
C 10 N 50:10	C 10 N 50:10	

JP 2005-255977 A5 2008.4.17

【公報種別】特許法第17条の2の規定による補正の掲載**【部門区分】**第3部門第3区分**【発行日】**平成20年4月17日(2008.4.17)**【公開番号】**特開2005-255977(P2005-255977A)**【公開日】**平成17年9月22日(2005.9.22)**【年通号数】**公開・登録公報2005-037**【出願番号】**特願2004-343721(P2004-343721)**【国際特許分類】**

C 10 M 169/02	(2006.01)
C 10 M 115/08	(2006.01)
C 10 M 117/02	(2006.01)
C 10 M 117/04	(2006.01)
C 10 M 125/04	(2006.01)
C 10 M 125/10	(2006.01)
C 10 M 125/22	(2006.01)
F 16 C 19/26	(2006.01)
F 16 C 33/66	(2006.01)
C 10 N 10/02	(2006.01)
C 10 N 10/10	(2006.01)
C 10 N 20/06	(2006.01)
C 10 N 30/06	(2006.01)
C 10 N 40/02	(2006.01)
C 10 N 50/10	(2006.01)

[F I]

C 10 M 169/02	
C 10 M 115/08	
C 10 M 117/02	
C 10 M 117/04	
C 10 M 125/04	
C 10 M 125/10	
C 10 M 125/22	
F 16 C 19/26	
F 16 C 33/66	Z
C 10 N 10/02	
C 10 N 10/10	
C 10 N 20/06	Z
C 10 N 30/06	
C 10 N 40/02	
C 10 N 50/10	

【手続補正書】**【提出日】**平成20年3月3日(2008.3.3)**【手続補正1】****【補正対象書類名】**特許請求の範囲

(2)

JP 2005-255977 A5 2008.4.17

増ちょう剤と基油を含むグリース組成物に、該グリース組成物全体に対して、無機ビスマス系添加物 0.01~15 重量%を添加してなるグリース組成物であって、

前記増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれる少なくとも1つの化合物であり、

前記基油は、ポリ- α -オレフィン油、鉱油、エステル油およびエーテル油から選ばれる少なくとも1つの油であることを特徴とするグリース組成物。

【請求項2】

前記無機ビスマス系添加物は、グリース組成物全体に対して、無機ビスマス系添加物 1~15 重量%を添加したことを特徴とする請求項1記載のグリース組成物。

【請求項3】

前記無機ビスマス系添加物は、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの物質であることを特徴とする請求項1または請求項2記載のグリース組成物。

【請求項4】

内輪および外輪と、この内輪および外輪間に介在する複数の転動体とを備え、この転動体の周囲にグリース組成物を封入してなる転がり軸受であって、前記グリース組成物は請求項1ないし請求項3のいずれか1項記載のグリース組成物であることを特徴とする転がり軸受。

【請求項5】

前記転がり軸受が、ころ軸受であることを特徴とする請求項4記載の転がり軸受。