Lab 9: Métodos Iterativos para Sistemas Lineares

INF1608 – Análise Numérica

Departamento de Informática, PUC-Rio

Para estes exercícios, considere a representação de matrizes quadradas $A_{n\times n}$ como um vetor de vetores do Lab 0.

- 1. Para a solução de sistemas lineares na forma $A\mathbf{x} = \mathbf{b}$, onde assume-se que A é uma matriz estritamente diagonal dominante, pede-se:
 - (a) Implemente o método iterativo de Gauss-Seidel:

$$A = L + D + U$$

$$\mathbf{x}_{k+1} = D^{-1}(\mathbf{b} - U\mathbf{x}_k - L\mathbf{x}_{k+1})$$

Na prática, basta atualizar o vetor solução in place, componente a componente:

$$x_i = \frac{b_i - \sum_{j \neq i} A_{ij} x_j}{A_{ii}}$$

Escreva uma função que receba como parâmetros a dimensão do problema n, a matriz A, o vetor independente b, a aproximação inicial da solução x e a tolerância de erro aceitável. A iteração deve terminar quando a norma-2 do vetor resíduo ($\mathbf{r} = \mathbf{b} - A\mathbf{x}$) tiver valor menor ou igual à tolerância. A função deve armazenar a solução final em x e retornar o número de iterações efetuado. O protótipo da função é dado por:

int gaussseidel (int n, double** A, double* b, double* x, double tol);

(b) Seguindo a mesma interface, implemente o método iterativo de Gauss-Seidel com sobre-relaxamento (w > 1.0). Isto é, a função deve avaliar cada $\mathbf{x}_{k+1}[i]$ com o método de Gauss-Seidel e ajustar $\mathbf{x}_{k+1}[i]$ com a fórmula do relaxamento:

$$\mathbf{x}_{k+1}[i] = (1-w)\mathbf{x}_{k}[i] + w\mathbf{x}_{k+1}[i]$$

A função também deve receber o fator de relaxamento, w, como parâmetro adicional. O protótipo da função é dado por:

2. Teste, analise e compare a eficiência dos métodos achando as soluções dos sistemas abaixo, usando tolerância 10^{-7} , fator de relaxamento igual a 1.1 e solução inicial igual ao vetor nulo. O programa de teste exibe na tela o número de iterações e a solução encontrada para cada um dos métodos.

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} , \begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & 1 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} e$$

$$\begin{bmatrix} 3 & -1 & 0 & 0 & 0 & 0.5 \\ -1 & 3 & -1 & 0 & 0.5 & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & 0.5 & 0 & -1 & 3 & -1 \\ 0.5 & 0 & 0 & 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 1.5 \\ 1 \\ 1 \\ 1.5 \\ 2.5 \end{bmatrix}$$

Sabe-se que as soluções destes sistemas são [1, 2], [2, -1, 1] e [1, 1, 1, 1, 1, 1], respectivamente.

Agrupe os protótipos das funções pedidas em um módulo "metiter.h" e as implementações em um módulo "metiter.c". Escreva o teste em outro módulo "main.c".

Entrega: O código fonte deste trabalho (isto é, os arquivos "metiter.c", "metiter.h" e "main.c", e eventuais códigos de laboratórios passados usados na solução) deve ser enviado via página da disciplina no EAD até 1 hora após o final da aula. O sistema receberá trabalhos com atraso (com perda de 1 ponto na avaliação) até o fim do dia.