Chapter 4

The Processor

Performance Issues

- Longest delay determines clock period
 - Critical path: load instruction
 - Instruction memory → register file → ALU → data memory → register file
- Not feasible to vary period for different instructions
- Violates design principle
 - Making the common case fast
- We will improve performance by pipelining

Pipelining Analogy

- Pipelined laundry: overlapping execution
 - Parallelism improves performance

Four loads:

- Speedup= 8/3.5 = 2.3
- Non-stop:
 - Speedup= 2n/0.5n + 1.5 ≈ 4= number of stages

MIPS Pipeline

- Five stages, one step per stage
 - 1. IF: Instruction fetch from memory
 - 2. ID: Instruction decode & register read
 - 3. EX: Execute operation or calculate address
 - 4. MEM: Access memory operand
 - 5. WB: Write result back to register

MIPS Pipelined Datapath

Execution in a Pipelined Datapath

