ЗАДАНИЕ ПО МАТЕМАТИКЕ

Вариант 17071 для 7 класса

Решение

Задача 1

Рабочая зона электрической подстанции имеет несколько трансформаторных залов. В начале рабочего дня количество залов, в которых работающих и выключенных трансформаторов было поровну, составляло шестую часть всех залов. Когда в каждом зале включили еще по одному трансформатору, количество залов, в которых работающих и выключенных трансформаторов стало поровну, увеличилось до трети от их общего количества. Могло ли в начале рабочего дня залов, в которых количество работающих и выключенных трансформаторов отличалось на единицу, быть более половины всех залов?

Решение

Пусть общее количество трансформаторных залов равно A. В начале дня залов с равным количеством работающих и выключенных трансформаторов было равно A/6.

Предположим, что утверждение из вопроса задачи верное. При включении одного трансформатора разница между количеством работающих и выключенных трансформаторов изменяется на два. Поэтому в залах, где эти количества отличались на единицу, после включения они также останутся неравными.

В залах, где эти количества изначально были равны, они также станут неравными. Поэтому общее количество M залов, в которых рассматриваемые количества стали не равны, составит

$$M > \frac{A}{2} + \frac{A}{6} = \frac{2A}{3}.$$

Но тогда залов с равным количеством будет менее трети, что противоречит условию.

Ответ: не могло.

Задача 2

Верно ли, что среди любых восьми целых чисел можно выбрать два, разность которых кратна семи?

Решение

При делении на 7 может возникать 7 различных остатков (0, 1, 2, 3, 4, 5 или 6). Поскольку чисел восемь, то хотя бы два из них имеют равные остатки. Следовательно, их разность разделится на 7 без остатка.

Задача 3

В треугольнике ABC сторона AB вдвое короче стороны BC. Биссектриса BD пересекается со средней линией KM (точка K лежит на BC, а M на AB) в точке F. Докажите, что треугольник FAD равнобедренный.

Решение

Треугольники ABF и KBF равны по двум сторонам (AF = FK по условию, BF – общая) и углу между ними (BD – биссектриса).

Следовательно, $\angle BFA = \angle BFK$. Это равенство влечет за собой равенство смежных к ним углов: $\angle DFA = \angle DFK$. Поскольку средняя линия параллельна основанию, то $\angle DFK = \angle ADF$, что вместе с предыдущим равенством доказывает равнобедеренность $\triangle FAD$.

Задача 4

Охотник Пулька для своей собаки Бульки заказал на АлиЭкспресс три куля собачьего корма. Наутро после доставки один куль оказался съеден. Под подозрение попали Торопыжка, Пончик и Сиропчик. Незнайке удалось установить следующее.

Если Торопыжка не ел корм, то Пончик тоже не ел, а Сиропчик ел.

Если Пончик ел, то Сиропчик тоже ел, а Торопыжка нет.

Если Сиропчик ел, то Пончик тоже ел, а Торопыжка нет.

Помогите Незнайке выяснить, кто же съел за ночь целый куль собачьего корма (либо покажите, что информации для этого недостаточно).

Решение.

Занумеруем утверждения (1), (2), (3).

Если Пончик ел, то из (2) и (1) следует, что Пончик не ел. Противоречие говорит о ложности посылки, следовательно, Пончик не ел.

Если Сиропчик ел, то из (3) следует, что Пончик ел, а из (3) и (1) следует, что Пончик не ел. Таким образом, Сиропчик не ел.

Комбинация Торопыжка ел, Пончик – нет, Сиропчик – нет не противоречит ни одному из утверждений. Следовательно, все съел один Торопыжка.

ИЛИ Составим таблицу всех вариантов

	Пончик	Сиропчик	Торопыжка	
1	ел	ел	ел	невозможно в силу (2)
2	ел	ел	нет	невозможно в силу (1)
3	ел	нет	ел	невозможно в силу (2)
4	ел	нет	нет	невозможно в силу (1)
5	нет	ел	ел	невозможно в силу (3)
6	нет	ел	нет	невозможно в силу (3)
7	нет	нет	ел	
8	нет	нет	нет	невозможно в силу (1)

Ответ. Торопыжка все съел, а Пончик и Сиропчик не ели.

Задача 5

Целой частью [x] числа x называется наибольшее целое m такое, что $m \le x$. Например, [-4/3] = -2, $[\pi] = 3$, [2] = 2. Решите в целых числах уравнение

$$\left\lceil \frac{x}{10} \right\rceil + \left\lceil \frac{x+1}{10} \right\rceil + \dots + \left\lceil \frac{x+9}{10} \right\rceil = x^2.$$

Решение.

Докажем, что если x целое, то

$$\left[\frac{x}{10}\right] + \left[\frac{x+1}{10}\right] + \dots + \left[\frac{x+9}{10}\right] = x. \tag{*}$$

Представим x в виде x=10k+m, где $k\in\mathbb{Z}$ (неполное частное), $m\in\{0,1,\ldots,9\}$ (остаток). Тогда величины

$$\left[\frac{x}{10}\right], \left[\frac{x+1}{10}\right], \dots, \left[\frac{x+9-m}{10}\right]$$

будут равны k. Их количество равно 10 - m.

Величины

$$\left[\frac{x+10-m}{10}\right],\ldots,\left[\frac{x+9}{10}\right]$$

будут равны k + 1. Их количество равно m.

Итого получаем

$$\left[\frac{x}{10}\right] + \left[\frac{x+1}{10}\right] + \dots + \left[\frac{x+9}{10}\right] = k \cdot (10-m) + (k+1) \cdot m = 10k + m = x.$$

Таким образом, приходим к уравнению

$$x = x^2$$

которое имеет два решения x = 0, 1.

Ответ. x = 0, 1.