MATH 20510. Accelerated Analysis III Lecture 1

March 24, 2025

Definition 0.1. A family of sets A is called a ring if, for every $A, B \in A$,

- (i) $A \cup B \in A$
- (ii) $A \setminus B \in A$

Definition 0.2. A ring A is called a σ -ring if for any $\{A_n\}_1^\infty \subseteq A$,

$$\bigcup_{1}^{\infty} A_n \in A$$

Note. This implies that $\bigcap_{1}^{\infty} A_n \in A$.

Definition 0.3. ϕ is a *set function* on a ring A if for every $A \in A$,

$$\phi(A) \in [-\infty, \infty]$$

Definition 0.4. A set function ϕ is additive if for any $A, B \in A$ such that $A \cap B = \emptyset$,

$$\phi(A \cup B) = \phi(A) + \phi(B)$$

Definition 0.5. A set function ϕ is *countably additive* if for any $\{A_n\} \subseteq A$ such that $A_i \cap A_j = \emptyset$, $\forall i \neq j$,

$$\phi\left(\bigcup_{1}^{n} A_{n}\right) = \sum_{1}^{n} \phi(A_{n})$$

In the last two we assume that there are no $A, B \in A$ such that $\phi(A) = -\infty, \phi(B) = \infty$.

Remark 0.6. If ϕ is an additive set function,

- (i) $\phi(\emptyset) = 0$.
- (ii) If A_1, \ldots, A_n are pairwise disjoint then $\phi(\bigcup_1^n A_n) = \sum_1^n \phi(A_n)$.
- (iii) $\phi(A_1 \cup A_2) + \phi(A_1 \cap A_2) = \phi(A_1) + \phi(A_2)$.
- (iv) If ϕ is nonnegative and $A_1 \subseteq A_2$ then $\phi(A_1) \leq \phi(A_2)$.
- (v) If $B \subseteq A$ and $|\phi(B)| < \infty$ then $\phi(A \setminus B) = \phi(A) \phi(B)$.

Theorem 0.7. Let ϕ be a countably additive set function on a ring A. Suppose $\{A_n\} \subseteq A$ such that $A_1 \subseteq A_2 \subseteq \ldots$ and $A = \bigcup_{1=1}^{\infty} A_n \in A$. Then $\phi(A_n) \to \phi(A)$ as $n \to \infty$.

Proof. Set $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$. Note

(i) $\{B_n\}$ is pairwise disjoint.

(ii) $A_n = B_1 \cup B_2 \cup \cdots \cup B_n$.

(iii)
$$A = \bigcup_{1}^{\infty} B_n$$
.

Hence $\phi(A_n) = \sum_{1}^{\infty} \phi(B_j)$, $\phi(A) = \sum_{1}^{\infty} \phi(B_j)$ and the conclusion follows.

Definition 0.8. An interval $I = \{(a_i, b_i)\}_1^n$ of \mathbb{R}^n is the set of points $x = (x_1, \dots, x_n)$ such that $a_i \leq x_i \leq b_i$ or $a_i < x_i \leq b_i$, etc. where $a_i \leq b_i$.

Note. \emptyset is an interval.

Definition 0.9. If A is the union of a finite number of intervals, we say A is elementary.

We denote the set of elementary sets by E.

Definition 0.10. If I is an interval of \mathbb{R}^n , we define the volume of I by

$$vol(I) = \prod_{i}^{n} (b_i - a_i)$$

If $A = I_1 \cup I_2 \cup \cdots \cup I_k$ is elementary, and the intervals are disjoint, then

$$\operatorname{vol}(A) = \sum_{1}^{k} \operatorname{vol}(I_j)$$