北京邮电大学 2020-2021 学年第 11 学期

《通信原理 I》期末考试试题(B卷)

注意事项	闭卷考试,不使用计算器,手机关机、离身							
考试课程	通信原	原理 I	考试时间	ij		2021 年	6月25	日
题号	_		\equiv		四	五.	六	总分
满分	20	16	16		16	16	16	100
得分								
阅卷教师								

一. 选择填空

在候选答案出选出最佳的一个答案写在下面的答题表中,写在别处不得分

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	В	D	В	A	A	D	D	A	В	C
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案	A	С	A	С	С	D	С	A	В	C

1. 将速率为 100kbit/s 的独立等概二进制数据经过差分编码后进行 BPSK 调制,得到的是(1)信号,其主瓣带宽是(2)kHz。

(1)	(A) 2FSK	(B) DPSK	(C) QPSK	(D) OOK
(2)	(A) 50	(B) 100	(C) 150	(D) 200

2. 下列调制方式中,频带利用率最高的是(3),最低的是(4)。给定 E_b/N_0 的条件下,误符号率最低的是(5),最高的是(6)。

(3)(4)(5)(6) (A) 16FSK (B) 16QAM (C) QPSK (D) 8ASK

3. 每个 64QAM 符号携带(7)个比特。若系统的比特速率是 12Mbit/s,则其符号速率是 (8)MBaud。若基带采用滚降因子为 0.5 的升余弦滚降,则其带宽是(9)MHz。

(7)(8)(9) (A) 2 (B) 3 (C) 4 (D) 6

4. 假设 QPSK 和 OQPSK 系统均采用了升余弦滚降,其滚降因子、比特速率、 $E_{\rm b}/N_{\rm 0}$ 都相同,则 QPSK 信号的带宽(10)、包络起伏(11),QPSK 的误比特率(12)。

(10)(11) (12) (A) 比 OQPSK 大 (B) 比 OQPSK 小 (C) 与 OQPSK 相同 (D) 是 OQPSK 的一半

5. 在无 ISI 的 M 进制系统中,能使平均误符号率最小的接收机设计应符合(13)准则。当信号先验等概且通过 AWGN 信道传输时,接收端按最小(14)判决就能使平均误符号率最小。

(13)	(A) 最大后验	(B) 最大似然	(C) 最小后验	(D) 最小似然
(14)	(A) 后验概率	(B) 转移概率	(C) 欧氏距离	(D) 均方误差

班级:

6. 设x(t)是带宽为 3kHz 的带通信号,其最高频率是 20kHz。对x(t)进行理想采样,采样后频谱不发生交叠的最低采样率是(15)kHz。

(15) (A) 10/3 (B) 6 (C) 20/3 (D) 8

7. 某 A 律十三折线 PCM 编码器的设计输入范围是[-64,+64] mV,若采样值为+8.1mV,则编码器的输出码组是(16)。

(16) (A) 11010001 (B) 11100000 (C) 11100001 (D) 11010000

8. 若正交 8FSK 的比特速率是 18kbit/s,则相邻频率之间的频差最小是(17)kHz。

(17) (A) 1 (B) 2 (C) 3 (D) 4

9. 某 4ASK 系统发送 $s \in \{-3,-1,+1,+3\}$,经过 AWGN 信道传输,收端判决器输入为 r=s+z ,其中噪声 z 是零均值高斯随机变量。若 r=-2.9 ,则 ML 判决结果是 $\hat{s}=\underline{(18)}$ 。若已知先验概率是 $P(s=+3)=P(s=-1)=\frac{1}{2}$,则 MAP 判决结果是 $\hat{s}=\underline{(19)}$ 。

(18)(19) (A) -3 (B) -1 (C) +1 (D) +3

10. 下图是某数字调制系统在 I 路观察到的眼图,其中 ab 是最佳判决门限,cd 是最佳采样时刻。从眼图可以看出,该系统的调制方式为(20)。

(20)	(A) 8PSK	(B) 16QAM	(C) QPSK	(D) 16FSK

二.(16分)某基带传输系统发送滤波器、信道及接收滤波器在内的总体传递函数为X(f)。对以下各图,试:

- (1) 判断所示 X(f)对于 1500Baud 的均匀速率传输是否有 ISI;
- (2) 写出该X(f)无 ISI 传输的最高符号速率。

- 1) a 无, b 有, c 无, d 有
- 2) a3000, b2000, c1500, d2250

之一,其中 f_c 充分大。接收框图如下所示,其中高斯白噪声 $n_w(t)$ 的单边功率谱密度为

 N_0 ,判决单元的输入 $l = \frac{1}{T_s} \int_0^{T_s} y(t) dt$ 。 试写出

- (1) 平均比特能量 E_h ;
- (2) 发送 $s_1(t)$ 条件下判决量l的均值、方差、概率密度函数;
- (3) 最佳判决门限;
- (4) 系统的误比特率。

	$E_{\rm b} = \frac{T_{\rm s}}{2}$	均值	1
方差	$\sigma^2 = \frac{N_0}{T_{\rm s}}$	概率密度	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(l-1)^2}{2\sigma^2}}$
门限	0	误比特率	$\frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{T_{\rm s}}{2N_{\rm o}}}\right)$

四. (16 分) 某 16 进制系统通过 AWGN 信道发送星座点 $s \in \Omega = \{s_1, s_2, \cdots, s_{16}\}$,其中 Ω 是归一化正交基函数下的星座图,如图所示。按复数表示, $s_1 = 3 + j$, $s_2 = 1 + 3j$, $s_3 = 2 + 2j$, $s_4 = 1 + j$ 。已知 16 个星座点等概出现。

- (1) 求平均符号能量 Es、星座点之间的最小距离;
- (2) 画出星座点 s_1, s_3, s_4 的 ML 判决域;
- (3) s_1, s_2, s_4 三个星座点中,哪一个的判决错误率最高?

	10 10 0
	$E_{\rm s} = \frac{10 + 10 + 8 + 2}{4} = 7.5$
最小距离	$\sqrt{2}$
	S ₂ S ₃ S ₄ S ₃ S ₁
错误率最高的星座点	s3

姓名:

班级:

五. (16 分) 某量化器的输入
$$X$$
 的概率密度 $p(x) = \begin{cases} 1/8, & |x| \le 2 \\ 1/12, & 2 < |x| \le 4$ 。量化输出为 $1/24, & 4 < |x| \le 6 \end{cases}$

$$Y = \begin{cases} 4, & 2 \le X \le 6 \\ 0, & -2 < X < 2 \text{ o } \end{cases} \vec{\square} \vec{X} :$$

$$-4, & -6 \le X \le -2$$

- (1) 量化器输入功率 $S = E[X^2]$;
- (2) Y的各可能取值的出现概率以及概率 $S_q = E[Y^2]$;
- (3) X,Y的归一化相关系数 $\frac{\mathrm{E}[XY]}{\sqrt{S \cdot S_q}}$;
- (4) 量化噪声功率 $N_q = E[(Y X)^2]$ 。

输入功率	$S = E[X^{2}] = \int_{-\infty}^{\infty} x^{2} p(x) dx = 2 \int_{0}^{6} x^{2} p(x) dx$ $= \frac{1}{4} \int_{0}^{2} x^{2} dx + \frac{1}{6} \int_{2}^{4} x^{2} dx + \frac{1}{12} \int_{4}^{6} x^{2} dx = \frac{2}{3} + \frac{28}{9} + \frac{38}{9} = 8$
出现概率	$P(Y=0) = \frac{1}{2}$, $P(Y=-4) = P(Y=4) = \frac{1}{4}$
输出功率	$S_{\rm q} = 8$
相关系数	$E[XY] = \int_{-6}^{6} p(x)xydx = 2\int_{0}^{6} p(x)xydx = 2\int_{2}^{6} p(x)x \times 4dx$ $= 8\int_{2}^{4} \frac{x}{12}dx + 8\int_{4}^{6} \frac{x}{24}dx = 4 + \frac{10}{3} = \frac{22}{3}$, $\rho = \frac{22}{3 \times 8} = \frac{11}{12}$
量化噪声功率	$N_{q} = E[(Y - X)^{2}] = S + S_{q} - 2E[XY] = \frac{4}{3}$

六.(16分)下图所示的传输系统将四路速率为 R_a =12Mbit/s 的数据流复用为一路速率为R的数据流后通过带宽为30MHz 的带通信道传输。试确定该系统的总比特速率R、频带利用率(bit/s/Hz)、合理的调制方式及升余弦滚降系数。

速率	48Mbps
频带利用率	1.6bit/s/Hz
调制	QPSK
滚降系数	1/4