

Long read splice alignment — theory and practice

Kristoffer Sahlin

Department of Mathematics, Science for Life Laboratory, Stockholm University

Intended Learning Outcomes

Should

- Learn the basics of an aligner (concepts: seeding, chaining, extension)
- Be able to run minimap2 to obtain alignments
- Think critically about reliability of alignments for downstream analysis
- (Learn some methods for basic sanity checking)

Workshop overview

Theory

- · Long-read alignment (seeding, chaining, extension) à la minimap2
- Long-read splice alignment à la minimap2

Parameters and heuristics

- Seed and window size (k, w) uniqueness and speed
- Some minimap2 specific parameters
- Thresholds

Exercise

Mapping transcripts to references with minimap2

More theory

Aligner variants (uLTRA, deSALT)

Interpreting the output

- SAM format
- MAPQ score and secondary and supplementary alignments
- CIGAR format

Troubleshooting

samtools, BLAT, IGV

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
CACG
ACGA
CGAC
```

k-mers with k=4

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

AGACCCGAT

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

?

AGAC

AGACCCGAT

Read (query)

Index

k-mer Positions

CACG : [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- A match between read and reference
- Types of seeds: **k-mers** (there are others, e.g., spaced k-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

? GACC

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

Read (query)

1. Seeding with k-mers

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

? ACCC AGACCCGAT

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

? CCCG

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

Read (query)

1. Seeding with k-mers

- A match between read and reference
- Types of seeds: **k-mers** (there are others, e.g., spaced k-mers, MEMs etc)
- A k-mer is a substring of length k

```
    ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
    ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....
    ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....
```

? ? CCGA

Index

k-mer Positions

CACG : [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

...

Read (query)

1. Seeding with k-mers

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....
ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....
```

? CGAT

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

...

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

AGACCCGAT

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- A match between read and reference
- Types of seeds: *k*-mers (there are others, e.g., spaced *k*-mers, MEMs etc)
- A k-mer is a substring of length k

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

AGACCCGAT

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- Store only a subset of k-mers (aka sketching or thinning)
- · At least one seed in every "window" guarantee
- Parameter w (window size) controls density

```
CACGACTOTGGTACCTAGACTCGATCGATCGTACTGT....
CACG
ACGA
CGAC
CGAC
GACT
GACT
ACTC
```


- Store only a subset of k-mers (aka sketching or thinning)
- At least one seed in every "window" guarantee
- Parameter w (window size) controls density

```
CACGACTCT GGTACCTAGACTCGATCGATCGTACTGT....
```

```
ACGA
CGAC
GACT
ACTC
CTCT
```

"Minimizers", k = 4, w = 5

- Store only a subset of k-mers (aka sketching or thinning)
- · At least one seed in every "window" guarantee
- Parameter w (window size) controls density

CACGACTCTCGTACCTAGACTCGATCGATCGTACTGT....

"Minimizers", k = 4, w = 5

- Store only a subset of k-mers (aka sketching or thinning)
- At least one seed in every "window" guarantee
- Parameter w (window size) controls density

"Minimizers", k = 4, w = 5

- Store only a subset of k-mers (aka sketching or thinning)
- At least one seed in every "window" guarantee
- Parameter w (window size) controls density

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

AGACCCGAT...

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC : [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

- Store only a subset of k-mers (aka sketching or thinning)
- · At least one seed in every "window" guarantee
- Parameter w (window size) controls density

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT.... ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....
```

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC: [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

. .

Only minimizers in read are queried! -> No hits!

- Store only a subset of k-mers (aka sketching or thinning)
- · At least one seed in every "window" guarantee
- Parameter w (window size) controls density

```
ch1 CACGACTCTGGTACCTAGACTCGATCGTACTGT....
```

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....

. . .

Read (query)

Index

k-mer Positions

CACG: [(ch1,0), (ch17,1202), ...]

AGAC: [(ch1,16), (ch2, 14), ...]

TATA: [(ch2, 25), (ch13, 205), ...]

GACT: ...

. . .

Pick a smaller w to get more seeds

From now on: No more visually pleasant lexicographical order on minimizers!

In practice: A *hash function* is used to scramble ordering -> sample k-mers more uniformly across the set of k-mers

- Find collinear "chains" of seeds
- Collinearity: same order in read and ref
- (Additional: Not too differing in distance)

- Find collinear "chains" of seeds
- Collinearity: same order in read and ref
- (Additional: Not too differing in distance)

```
ch1 CACGACTCTGGTACCTAGACTCGATCGTACTGT....
ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTCA....
ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....
```

AGACCCGATATCGTACTTGT

Read (query)

- Find collinear "chains" of seeds
- Collinearity: same order in read and ref
- (Additional: Not too differing in distance)

- Find collinear "chains" of seeds
- Collinearity: same order in read and ref
- (Additional: Not too differing in distance)

- · Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

- · Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

- · Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

- · Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

Alignment score (AS): $Am - Bx - \sum_{i} O \cdot Eg_{i}$

A: Match score (2) m: #matches

B: Mismatch penalty (4) x: #mismatches

O: Gap open penalty (4) g_i : length of gap i

E: Gap extension penalty (2)

- · Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

Alignment score (AS):
$$Am - Bx - \sum_{i} O \cdot Eg_{i}$$

A: Match score (2) m: #matches

B: Mismatch penalty (4) x: #mismatches

O: Gap open penalty (4) g_i : length of gap i

E: Gap extension penalty (2)

$$AS = 2 \cdot 18 - 4 \cdot 1 - (4 + 2 \cdot 2) - (4 + 2 \cdot 1) = 18$$

- Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

```
ch1 CACGACTCTGGTACCTAGACTCGATCGATCGTACTGT....
ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTCA....
ch3 GCTGACTGTTACAACTATACTCGATCGCCCGTTGTCT....
...

1 2 3
AGACCCGATATCGTACTTGT

Read (query)
```


- · Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

ch2 GCACACTGGTACCTAGACACGATCGCCCGTTGTGTCA....

Read (query)

AGACCCGATATCGTACTTGT

- Grow out base-level pairwise extension alignment from seeds
- Get an alignment score

ch2 GCACACTGGTACCTAGACACGAT--CGCCCGTTGTGTCA.... AGACCCGATATCGTAC-TTGT

Alignment score (AS): $Am - Bx - \sum O \cdot Eg_i$

A: Match score (2)

m: #matches

B: Mismatch penalty (4) x: #mismatches

O: Gap open penalty (4)

 g_i : length of gap i

E: Gap extension penalty (2)

$$AS = ?$$

Long-read splice alignment

- · Still seed-chain-extend, but:
 - Several collinear chains (think one per exon)
 - 'Local' extension alignments around exon sites
 - Splice site specific extension penalty (canonical site?)
- · For small introns (same local chain): gap or intron penalty

Long-read splice alignment

- Still seed-chain-extend, but:
 - Several collinear chains (think one per exon)
 - 'Local' extension alignments around exon sites
 - Splice site specific extension penalty (canonical site?)
- For small introns (same local chain): gap or intron penalty

Reference

CACGACTCTGGTACCTAGACTCGATCGATCGTACTGTCGTATGCTA...

Read (query)

CGACTCTGGTACCGATCGATCTGTCGTATG

Long-read splice alignment

- · Still seed-chain-extend, but:
 - Several collinear chains (think one per exon)
 - 'Local' extension alignments around exon sites
 - Splice site specific extension penalty (canonical site?)
- For small introns (same local chain): gap or intron penalty

Reference

CACGACTCTGGTACCTAGACTCGTTCGATCGTACTGTCGTATGCTA...

Read (query)

CGACTCTGGTACCGTTCGATCTGTCGTATG

Parameters (Minimap2)

Many parameters! (and many 'hidden' parameters https://lh3.github.io/minimap2/minimap2.html)

- Seeding:
 - · -k: size of seeds
 - · -w: density of seeds
 - -f: fraction filtering repetitive of seeds
- · Chaining:
 - -n Minimum seeds to include in a chain
 - · -m minimum chaining score
- · Alignment:
 - · -a: extension alignment
 - · Is the base level alignment off? Parameters -A -B -O -E
- For splice alignment:
 - The ensemble '-ax splice' flag typically take care of suitable parameter choices (canonical splice sites)
 - · -u: how to find GT-AG
 - -G Maximum gap on the reference (long introns)
 - -C Cost for a non-canonical GT-AG splicing (Hidden)

Parameters (Minimap2)

Many parameters! (and many 'hidden' parameters https://lh3.github.io/minimap2/minimap2.html)

Poor alignments?

- Error rate/sequence diversity
- Short exons
- Your reference characteristics (e.g., repetitiveness)
- Forgot 'cleaning' (trimming) reads before alignment
 - pychopper (ONT)
 - lima (PacBio)

Prerequisites

- Install minimap2
- Install Python
- Download data:
 - git clone https://github.com/ksahlin/misc.git
 - (or download 'evaluate_instance.py' and the three files in dataset1 folder at https://github.com/ksahlin/misc/tree/main/LongTREC/examples)

Data

- 100kbp simulated 'genome' nucleotides A,C,G,T *randomly simulated*
- Exons of size 1nt, 2nt, 3nt,... 99nt simulated.
- Challenge: Map an error-free transcript containing all exons

• •					ar	nnotati	on.gtf ~		
genome	sim	gene	1	100000		+		gene_id	"ENSG00000223972";
genome	sim	transc	ript	1	100000		+		gene_id "ENSG00000223972";
genome	sim	exon	1001	1001		+		gene_id	"ENSG00000223972";
genome	sim	exon	2001	2002		+		gene_id	"ENSG00000223972";
genome	sim	exon	3001	3003		+		gene_id	"ENSG00000223972";
genome	sim	exon	4001	4004		+		gene_id	"ENSG00000223972";
genome	sim	exon	5001	5005		+		gene_id	"ENSG00000223972";
genome	sim	exon	6001	6006		+		gene_id	"ENSG00000223972";
genome	sim	exon	7001	7007		+		gene_id	"ENSG00000223972";
genome	sim	exon	8001	8008		+		gene_id	"ENSG00000223972";
genome	sim	exon	9001	9009		+			"ENSG00000223972";
genome	sim	exon	10001	10010		+		gene_id	"ENSG00000223972";
genome	sim	exon	11001	11011		+		gene_id	"ENSG00000223972";
_						40			-

SETUP

- 1. git clone https://github.com/ksahlin/misc.git
- 2. cd misc/LongTREC/examples/
- 3. minimap2 --eqx -a [PARAMS] dataset1/genome.fa dataset1/query.fa > mm2.sam
- 4. python evaluate_instance.py --gtf dataset1/annotation.gtf --samfile mm2.sam

SETUP

- 1. git clone https://github.com/ksahlin/misc.git
- 2. cd misc/LongTREC/examples/
- 3. minimap2 --eqx -a [PARAMS] dataset1/genome.fa dataset1/query.fa > mm2.sam
- 4. python evaluate_instance.py --gtf dataset1/annotation.gtf --samfile mm2.sam

Try steps 3 and 4 on dataset1 with various parameters

SETUP

- 1. git clone https://github.com/ksahlin/misc.git
- 2. cd misc/LongTREC/examples/
- 3. minimap2 --eqx -a [PARAMS] dataset1/genome.fa dataset1/query.fa > mm2.sam
- 4. python evaluate_instance.py --gtf dataset1/annotation.gtf --samfile mm2.sam

Try steps 3 and 4 on dataset1 with various parameters

OUTPUT

#Exact	#Approx	min-E	min-A
7	25	68	37

SETUP

- 1. git clone https://github.com/ksahlin/misc.git
- 2. cd misc/LongTREC/examples/
- 3. minimap2 --eqx -a [PARAMS] dataset1/genome.fa dataset1/query.fa > mm2.sam
- 4. python evaluate_instance.py --gtf dataset1/annotation.gtf --samfile mm2.sam

Try steps 3 and 4 on dataset1 with various parameters

OUTPUT

#Exact	#Approx	min-E	min-A
7	25	68	37

#Exact: Number of exact exon alignments

#Approx: Number of exact OR approximate exon alignments

(alnmt overlaps true exon)

min-E: Smallest exon with an exact exon alignment

min-A: Smallest exon with an exact OR approximate exon alignment nr_exact

Parameters	#E	#A	E_min	A_min
eqx -a	1	1	99	99
eqx -ax splice	6	70	43	18

Parameters	#E	#A	E_min	A_min
eqx -a	1	1	99	99
eqx -ax splice	6	70	43	18
eqx -ax splice -k 10	6	72	43	11
eqx -ax splice -k 10 -w 1	7	69	38	9

Parameters	#E	#A	E_min	A_min
eqx -a	1	1	99	99
eqx -ax splice	6	70	43	18
eqx -ax splice -k 10	6	72	43	11
eqx -ax splice -k 10 -w 1	7	69	38	9
eqx -ax splice -u n	41	79	18	18
eqx -ax splice -u n -k 10	42	81	16	11
eqx -ax splice -u n -k 10 -w 1	40	77	32	9

Parameters	#E	#A	E_min	A_min
eqx -a	1	1	99	99
eqx -ax splice	6	70	43	18
eqx -ax splice -k 10	6	72	43	11
eqx -ax splice -k 10 -w 1	7	69	38	9
eqx -ax splice -u n	41	79	18	18
eqx -ax splice -u n -k 10	42	81	16	11
eqx -ax splice -u n -k 10 -w 1	40	77	32	9
eqx -ax splice -u n -k 10 -B 10 -0 4,12	53	89	12	11
eqx -ax splice -u n -k 10 -w 1 -B 10 -O 4,12	53	91	12	9

Parameters	#E	#A	E_min	A_min
eqx -a	1	1	99	99
eqx -ax splice	6	70	43	18
eqx -ax splice -k 10	6	72	43	11
eqx -ax splice -k 10 -w 1	7	69	38	9
eqx -ax splice -u n	41	79	18	18
eqx -ax splice -u n -k 10	42	81	16	11
eqx -ax splice -u n -k 10 -w 1	40	77	32	9
eqx -ax splice -u n -k 10 -B 10 -0 4,12	53	89	12	11
eqx -ax splice -u n -k 10 -w 1 -B 10 -0 4,12	53	91	12	9
eqx -ax splice -k 7 -w 1 -u n -B 10 -0 4,12	24	42	12	11


```
E_min
                                                                            A_min
Parameters
                                                   #E
                                                           #A
                                                   1
                                                           1
                                                                    99
                                                                             99
--eqx -a
--eqx -ax splice
                                                   6
                                                           70
                                                                    43
                                                                             18
--eqx -ax splice -k 10
                                                           72
                                                                    43
                                                                             11
--eqx -ax splice -k 10 -w 1
                                                           69
                                                                    38
--eqx -ax splice -u n
                                                   41
                                                           79
                                                                    18
                                                                             18
--eqx -ax splice -u n -k 10
                                                   42
                                                           81
                                                                    16
                                                                             11
--eqx -ax splice -u n -k 10 -w 1
                                                                    32
                                                   40
                                                           77
--eqx -ax splice -u n -k 10 -B 10 -0 4,12
                                                   53
                                                                    12
                                                           89
                                                                             11
--eqx -ax splice -u n -k 10 -w 1 -B 10 -0 4,12
                                                   53
                                                           91
                                                                    12
                                                                             9
--eqx -ax splice -k 7 -w 1 -u n -B 10 -0 4,12
                                                   24
                                                                    12
                                                           42
                                                                             11
```

- Difficult to predict final outcome due to all heuristics and parameters (-w 1)
- Useful to know the basics: k-mer size, fitting to canonical splice sites.
- Extension alignment parameters (A, B, O, E) remains guesswork to this day.
 - But: lower O, E penalties prefers to open gaps helpful to splice alignments

Dataset2: 7% errors

Dataset3: No errors, only GT-AG

Dataset2: 7% errors

Dataset3: No errors, only GT-AG

Parameters	#E	#A	E_min	A_min
eqx -a	1	1	93	93
eqx -ax splice	5	57	61	22
eqx -ax splice -k 10	5	64	61	17
eqx -ax splice -k 10 -w 1	5	66	61	11
eqx -ax splice -u n	29	73	26	22
eqx -ax splice -u n -k 10	30	73	25	17
eqx -ax splice -u n -k 10 -w 1	29	76	26	11
eqx -ax splice -u n -k 10 -B 10 -0 4,12	33	83	17	17
eqx -ax splice -u n -k 10 -w 1 -B 10 -O 4,12	34	89	16	11
eqx -ax splice -k 7 -w 1 -u n -B 10 -O 4,12	12	32	16	15

- With errors/mutations k and w is more influential
- Less exact matches but almost the same amount of exons with approximate mappings

Dataset2: 7% errors

Dataset3: No errors, only GT-AG

Parameters	#E	#A	E_min	A_min
eqx -a	0	1	-	98
eqx -ax splice	76	81	21	16
eqx -ax splice -k 10	76	82	21	12
eqx -ax splice -k 10 -w 1	73	78	24	9
eqx -ax splice -u n	38	80	25	16
eqx -ax splice <mark>-u n -k 10</mark>	38	81	25	12
eqx -ax splice -u n -k 10 -w 1	38	78	25	9
eqx -ax splice -u n -k 10 -B 10 -0 4,12	45	88	12	12
eqx -ax splice -u n -k 10 -w 1 -B 10 -0 4,12	48	91	9	9
eqx -ax splice -k 7 -w 1 -u n -B 10 -0 4,12	18	41	10	10

- Minimap2 is optimised for canonical splice sites!
- However, tuned alignment parameters still finds the most exon sites (91)

Dataset2: 7% errors

Dataset3: No errors, only GT-AG

Parameters	#E	#A	E_min	A_min
eqx -a	0	1	-	99
eqx -ax splice	63	71	32	14
eqx -ax splice -k 10	61	72	35	13
eqx -ax splice -k 10 -w 1	63	76	32	10
eqx -ax splice -u n	23	72	32	14
eqx -ax splice -u n -k 10	23	76	32	13
eqx -ax splice -u n -k 10 -w 1	23	75	32	10
eqx -ax splice -u n -k 10 -B 10 -0 4,12	33	84	16	14
eqx -ax splice -u n -k 10 -w 1 -B 10 -0 4,12	34	88	12	10
eqx -ax splice -k 7 -w 1 -u n -B 10 - <u>0</u> 4,12	9	29	12	10

- With errors/mutations k and w is more influential
- Minimap2 is optimised for canonical splice sites!
- However, tuned alignment parameters still finds the most exon sites (88)

Take-home of the analysis

minimap2

- ✓ Minimap2 'just works' (installation and running easy compared to competition)
- √ There is likely a parameter combination that is suitable for your needs
- The problem is how to find it
- Minimap2 works better with canonical splice sites

General splice alignment

- Don't blindly trust the input alignments for your isoform detection
- Know your dataset and genome
- If you are interested in smaller exons there are better tools (deSALT, uLTRA)

- + uLTRA runs minimap2 under-the-hood to find alignments un unannotated regions
- + It picks the best alignment (alignment score) between uLTRA and minimap2

Alignment

MEM chaining to parts and flanks

Read 1

Read 2

uLTRA v0.0.4.1 results

Dataset 1	Parameters default	#E 94	#A 95	E_min 5	A_min 5
Dataset 2	default	94	95	5	5
Dataset 4	default	94	95	5	5
Dataset 3	default	93	94	5	5

Take-home uLTRA

- √ Uses annotation to refine alignments
- ✓ Robust against different datasets (error rate, canonical or not..)
- ✓ Good for finding small exons (that are part of the annotation)
- √ Has minimap2's accuracy in unannotated regions
- Slower than minimap2 (at least 2 times slower)
- Disk space: prints a lot of intermediate/temporary files

Alternative aligners: deSALT

Alternative aligners: deSALT

- Could not install on my MacBooks (Intel and M1 chip)
- Prediction based on previous analysis: places somewhere between minimap2 and uLTRA in accuracy on these datasets

Accuracy binned by exon size (uLTRA, deSALT, minimap2)

Data from uLTRA paper

No errors (mapping transcripts to genome)

Transcript annotations with 7-8% errors

The alignment of reads:

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT +r002 aaaAGATAA*GGATA

The alignment of reads:

```
ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT +r002 aaaAGATAA*GGATA
```

The resulting SAM file:

QHD VN:1.6 SO:coordinate

@SQ SN:ref LN:45


```
ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT +r002 aaaAGATAA*GGATA
```



```
ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r002 aaaAGATAA*GGATA
+r003 gcctaAGCTAA
```



```
AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
 ref
                aaaAGATAA*GGATA
+r002
+r003
              gcctaAGCTAA
+r004
                             ATAGCT....TCAGC
          A 'flag' Ref start
                                 MAPQ
                                          CIGAR
The resulting SAM file:/
 QHD VN:1.6/SO:coord/inate
 QSQ SN:ref LN:45
 r002
                   3S6M1P1I4M
                                      AAAAGATAAGGATA
        0 ref
               9 30 5S6M
                                                       * SA:Z:ref,29,-,6H5M,17,0;
 r003
                                    O GCCTAAGCTAA
 r004
        0 ref 16 30 6M14N5M
                                    O ATAGCTTCAGC
                              * 0
```



```
AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
 ref
+r002
                aaaAGATAA*GGATA
+r003
              gcctaAGCTAA
+r004
                             ATAGCT....TCAGC
-r003
                                     ttagctTAGGC
          A 'flag' Ref start
                                 MAPQ
                                          CIGAR
The resulting SAM file:/
 QHD VN:1.6 SO:coordinate
 @SQ SN:re# LN:45
 r002
               9 30 3S6M1P1I4M
                                    O AAAAGATAAGGATA
               9 30 5S6M
                                    O GCCTAAGCTAA
                                                       * SA:Z:ref,29,-,6H5M,17,0;
 r003
        0 ref
        0 ref 16 30 6M14N5M
 r004
                                    O ATAGCTTCAGC
 r003 2064 ref 29 17 6H5M
                                    O TAGGC
                                                       * SA:Z:ref.9.+.5S6M.30.1:
                              * 0
```


The alignment of reads:

```
AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
 ref
+r002
                aaaAGATAA*GGATA
              gcctaAGCTAA
+r003
+r004
                              ATAGCT..........TCAGC
                                      ttagctTAGGC
-r003
           A 'flag' Ref start
                                           CIGAR
                                 MAPO
The resulting SAM file:/
 QHD VN:1.6 SO:coordinate
 QSQ SN:ref LN:45
 r002
               9 30 3S6M1P1I4M
                                     O AAAAGATAAGGATA
               9 30 5S6M
                                     O GCCTAAGCTAA
 r003
        0 ref
                                                        * SA:Z:ref,29,-,6H5M,17,0;
 r004
        0 ref 16 30 6M14N5M
                                     O ATAGCTTCAGC
 r003 2064 ref 29 17 6H5M
                                     O TAGGC
                                                        * SA:Z:ref.9.+.5S6M.30.1:
                              * 0
```

Useful links:

- SAM format: https://samtools.github.io/hts-specs/SAMv1.pdf
- Explain SAM flags: https://broadinstitute.github.io/picard/explain-flags.html

Trouble shooting and visualisation

- Samtools:
 - quick sanity check statistics (% aligned reads etc)
- BLAT server version (https://genome.ucsc.edu/cgi-bin/hgBlat)
 - align a single or handful of reads with the absolute best accuracy
 - Extremely slow
 - Not the latest references
 - good for checking selected reads
- Seaview (<u>https://doua.prabi.fr/software/seaview</u>)
 - Align reads against the selves transcript redundancy redundancy checking etc
- IGV (https://igv.org/doc/desktop/):
 - Stacked read view <u>can sometimes be</u> good for gene/transcript level visualisation (SNPs etc)

References

- Seed-chain-extend: Sahlin, K., Baudeau, T., Cazaux, B. et al. A survey of mapping algorithms in the long-reads era. *Genome Biol* 24, 133 (2023). https://doi.org/10.1186/s13059-023-02972-3
- uLTRA: Kristoffer Sahlin, Veli Mäkinen, Accurate spliced alignment of long RNA sequencing reads, *Bioinformatics*, Volume 37, Issue 24, December 2021, Pages 4643–4651, https://doi.org/ 10.1093/bioinformatics/btab540
- **Minimap2**: Li H. (2018) Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 34, 3094–3100.
- **deSALT:** Liu, B., Liu, Y., Li, J. et al. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index. Genome Biol 20, 274 (2019) doi:10.1186/s13059-019-1895-9
- SAM format: Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools, Bioinformatics, Volume 25, Issue 16, August 2009, Pages 2078–2079, https://doi.org/10.1093/bioinformatics/btp352
- Samtools: Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools, Bioinformatics, Volume 25, Issue 16, August 2009, Pages 2078–2079, https://doi.org/10.1093/bioinformatics/btp352
- **BLAT:** https://genome.ucsc.edu/cgi-bin/hgBlat