Package 'meaca'

October 25, 2020

2 estimate_sigma

btw_gene_corr

Calculate sample (Pearson) correlations among gene clusters

Description

Calculate sample (Pearson) correlations among gene clusters

Usage

```
btw_gene_corr(expression_data, trt, go_term, standardize = TRUE)
```

Arguments

expression_data

the expressoin matrix.

trt treatment indicators, 1 for treatment, 0 for control group go_term an indicator vector. 1 for genes in the test set, 0 otherwise

standardize whether the data should be standardized. It is recommended to set TRUE for

MEACA

Value

A 1 by 3 data frame containing values for ρ_1 , ρ_3 and ρ_2 respectively.

testSetCor Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

Description

Estimate sample covariance and calculate the gene-level statistics

Usage

```
estimate_sigma(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a list

sigma a covariance matrix

t_val a vector of gene level test statistics

meaca_multiple 3

meaca_multiple	meaca-multiple.	
----------------	-----------------	--

Description

meaca for testing multiple gene sets.

Usage

```
meaca_multiple(
  expression_data,
  trt,
  geneset,
  standardize = TRUE,
  min_set_size = 5,
  fdr_method = "BH"
)
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels.

gene sets to be tested, format similar to msigdb gene set ensemble downloaded geneset

 $from \ broad \ institute \ see \ https://www.gsea-msigdb.org/gsea/doc/GSEAU serGuideFrame.$

standardize whether the data should be standaridzed.

the minimum number of genes contained for a gene set to be considered. min_set_size fdr_method which method is ued to adjust the p values. see arguments in function p. adjust.

Value

A data frame containing 10 columns

name of the gene set being tested set_name set_size the size of the test set whether the test set is up- or down-regulated status the raw p value from MEACA by chi-square test р1 p1 value adjusted by multiple comparison procedure p1_fdr p2 two-sided test p-value using normal distribution p2_fdr p2 value adjusted by multiple comparison procedure testSetCor

Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

See Also

```
meaca_single
```

4 meaca_single

Examples

meaca_single

meaca-single.

Description

meaca for single gene set test.

Usage

```
meaca_single(expression_data, trt, go_term, standardize = TRUE)
```

Arguments

expression_data

the expressoin matrix.

trt treatment indicators, 1 for treatment, 0 for control group.

go_term an indicator vector. 1 for genes in the test set, 0 otherwise.

standardize whether the data should be standaridzed. It is recommended to set TRUE for

MEACA

Value

a list

stat the test statistic

p1 chi-square test p value

status "up" or "down", the direction of differential expression

p2 two-sided test p-value using normal distribution

Examples

simulate_expression_data

Simulate expression data.

Description

simulate normally distributed expression data with desired DE probabilities for genes in the test set and for those not in the test set..

Usage

```
simulate_expression_data(
    size,
    n_gene,
    n_test,
    prop,
    de_mu,
    de_sd,
    rho1,
    rho2,
    rho3,
    data_gen_method = "chol",
    seed = 123
)
```

Arguments

size	number of samples to be simulated	
n_gene	total number of genes to be simulated	
n_test	number of genes in the test set.	
prop	a vector of length 2, proportion of DE genes within go term and outside go_term, corresponding to p_t and p_b .	
de_mu, de_sd	if the gene is DE, delta ~ N(de_mu, de_sd)	
rho1	a scalar, correlation between two test genes (i.e., ρ_1 in the paper)	
rho2	a scalar, correlation between two background genes (i.e., ρ_2 in the paper)	
rho3	correlation between a test gene and a background gene (i.e., ρ_3 in the paper)	
data_gen_method		
	data generation method; if 'data_gen_method = MASS', then mvrnorm is used, otherwise see function rmvnorm	
seed	the seed used for simulation (for reproducibility purpose)	

Value

a list

data a expression matrix of m by n, where m is the number of genes and n is the

number of samples.

trt sample labels of length n, 1 for treatment and 0 for control.

go_term gene labels of length m, 1 for go_term genes and 0 otherwise.

sigma true covariance matrix upon which data is simulated.

Examples

```
t1 <- simulate_expression_data(size = 50, n_gene = 500, n_test = 100, prop = c(0.1, 0.1), de_mu = 2, de_sd = 1, rho1 = 0.1, rho2 = 0.05, rho3 = -0.05, data_gen_method = "cho1", seed = 123)
```

standardize_expression_data

standardize expression data, with method described in the paper.

Description

Standardize the expression data.

Usage

```
standardize_expression_data(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a matrix of the same dimension as input data.

transform_count_edgeR

transform_count_edgeR Perform count matrix transformation using edgeR procedure

Description

Perform count matrix transformation using edgeR procedure

Usage

```
transform_count_edgeR(y, group)
```

Arguments

```
y the expression count matrix, columns being samples, rows being genes group a vector of treatment label (e.g., 0 for control, 1 for treatment).
```

Value

a matrix of transformed data

See Also

```
camera.DGEList
```

Examples

```
mu <- matrix(10, 100, 4)
group <- factor(c(0,0,1,1))
design <- model.matrix(~group)
set.seed(123)
library(edgeR)
y0 <- matrix(rnbinom(100*4, mu=mu, size=10),100,4)
y <- DGEList(counts=y0, group=group)
y <- estimateDisp(y, design)

iset1 <- 1:10
camera.DGEList(y, iset1, design)

# the Pvalue should be the same
y2 <- transform_count_edgeR(y = y0, group = group)
camera(y2, iset1, design)
meaca_single(expression_data = y2, trt = group, go_term = rep(c(1, 0), c(10, 90)),
standardize = TRUE)</pre>
```

8 transform_count_vst

transform_count_vst

Perform variance stabilizing transformation for the count matrix data

Description

Perform variance stabilizing transformation for the count matrix data

Usage

```
transform_count_vst(y, group, ...)
```

Arguments

```
y the expression count matrix, columns being samples, rows being genes group a vector of treatment label (e.g., 0 for control, 1 for treatment).
... other parameters used in varianceStabilizingTransformation
```

Details

It is absolutely critical that the columns of the count matrix and the rows of the column data (information about samples) are in the same order. For more details, see https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Value

a matrix of transformed data

See Also

variance Stabilizing Transformation

Examples

```
library(DESeq2) set.seed(123) y \leftarrow \text{matrix}(\text{rbinom}(6000, 20, 0.4), \text{ nrow} = 1000) \\ \text{trt} \leftarrow c(0, 0, 0, 1, 1, 1) \\ \text{yr} \leftarrow \text{transform\_count\_vst}(y = y, \text{ group} = \text{trt}) \\ \text{go\_term} \leftarrow \text{rep}(c(1, 0), c(100, 900)) \# \text{first } 100 \text{ genes in the test set} \\ \text{meaca\_single}(\text{expression\_data} = \text{yr}, \text{ trt} = \text{trt}, \text{ go\_term} = \text{go\_term}, \text{ standardize} = \text{TRUE}) \\ \end{cases}
```

Index

```
btw_gene_corr, 2
camera.DGEList, 7
estimate_sigma, 2
meaca_multiple, 3
meaca_single, 3, 4
mvrnorm, 5
p.adjust, 3
rmvnorm, 5
simulate_expression_data, 5
standardize_expression_data, 6
transform_count_edgeR, 7
transform_count_vst, 8
varianceStabilizingTransformation, 8
```