Mã Đề: CT6K202 Thời gian: 60 phút (Thí sinh không được sử dụng tài liệu)

Cách đặt tên file

 \bullet Tạo một thư mục với tên Mã Đề_MSSV để chứa các file .m Ví du: CT6K202_1211223

• Tạo file .m với tên main.m để làm bài thi. Và trong file main.m ghi chú như sau:

% Ho va ten :
% MSSV :
% Ma De :

Phải đặt tên theo đúng yêu cầu nếu không bài làm sẽ không được tính điểm.

1. Thực hiện các câu sau:

- a) Viết function tính giai thừa của một số n. function [P] = Giaithua(n)
- b) Tạo ma trận Pascal $P(10 \times 10)$ có công thức sau:

$$\mathbf{P}_{ij} = \frac{(i+j-2)!}{(i-1)!(j-1)!}$$

(Sử dụng function ở câu a) để tính giai thừa)

- c) Dùng vòng lặp for để tạo ma trận tam giác trên $\boldsymbol{\mathsf{U}}$ và tam giác dưới $\boldsymbol{\mathsf{L}}$ của ma trận $\boldsymbol{\mathsf{P}}$
- d) Dùng vòng lặp for để tạo ma trận đường chéo $\boldsymbol{\mathsf{I}}$ của ma trận $\boldsymbol{\mathsf{P}}$
- 2. Vẽ và chú thích đầy đủ cho các đồ thị bằng các lệnh xlabel, ylabel, title, legend

a)
$$x = |1 - t|$$
, $y = |t| + 2$, $-3 \le t \le 3$.

b)
$$(x^2 + y^2)^2 - 2(x^2 - y^2) = 0$$
, $-2 \le x \le 2$, $-1 \le y \le 1$

- 3. Viết các function sau:
 - a) Viết function tìm đa thức Chebyshev function [T] = ChebT(n) cho bởi công thức sau:

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad n = 2, 3, ..., T_0(x) = 1, T_1(x) = x.$$

b) Sử dụng function ở câu a) viết function tìm đạo hàm của đa thức Chebyshev function [dT] = D_ChebT(n)

Với d
T là đạo hàm của của đa thức Chebyshev T_n ở trên.

1

4. Viết function sau:

a) Viết function tạo ma trận tam giác trên mà các phần tử trên cùng một đường chéo (đường chéo chính và phụ) của ma trận đều bằng nhau.

function [T] = U_Toeplitz(A) với A là mảng chứa giá trị trên từng đường chéo. $\mathbf{V}\mathbf{i} \ \mathbf{d}\mathbf{u}$:

b) Viết function tạo ma trận mà các phần tử trên cùng một đường chéo (đường chéo chính và phụ) của ma trận đều bằng nhau.

function [T] = Toeplitz(A) với A là mảng chứa giá trị trên từng đường chéo. Ví $d\psi$:

5. Cho đa thức Taylor của hàm f(x) trong lân cận x_0 có công thức sau:

$$P_n(x) = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Viết function như sau:

function [P] = DaThuc_Taylor(f , n , x0)

Với P là đa thức Talor cần tìm, ${\tt f}$ là hàm cần tìm đa thức Taylor, ${\tt n}$ là bậc của đa thức Taylor và ${\tt x0}$ là lân cận ${\tt x_0}$. (Sử dụng vòng lặp for)

2