CSE 40647/60647: Data Science

Fall 2019

## Homework 4: Written Assignments

Handed Out: November 14, 2019 Due: November 29, 2019 11:55pm

Save your homework submission as NETID-hw4-written.pdf.

## 1 FP-Growth (30 points)

A database has 10 transactions. Let  $min\_sup = 2$ . Items are a, b, c, d, and e.

| Trans. ID | Itemset      |
|-----------|--------------|
| 1         | {a, b}       |
| 2         | {b, c, d}    |
| 3         | {a, c, d, e} |
| 4         | {a, d, e}    |
| 5         | {a, b, c}    |
| 6         | {a, b, c, d} |
| 7         | {a}          |
| 8         | {a, b, c}    |
| 9         | {a, b, d}    |
| 10        | {b, c, e}    |

Draw the first FP-tree that the FP-Growth algorithm creates when given this transaction database. By saying the "first", this FP-tree should not be a conditional FP-tree. Use FP-Growth to find all the frequent patterns and their support. Attach the FP-tree (either typed or hand-written+scanned) and write down the patterns and support in your PDF.

#### **Solution:**

The FP-Tree is shown below in Fig. 1 (Dashed links between nodes of same labels are not required) (10 pts)



Figure 1: FP tree.

Apriori algorithm need to generate a huge number of candidate sets and may need repeatly scan the whole database and check a large set of candicates by pattern matching. It is costly to go over each transaction in the databse to determine the support of the candidate itemsets. While FP-growth, adopts a divide-and-conquer strategy which may substantially reduce the size of the data sets to be searched.

Frequent itemsets found (descending order by frequency of each item) (4 pts each):

| Item | Frequent Patterns                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| a    | a                                                                                                                                       |
| b    | <b>b</b> , <b>ba</b> (from <i>b</i> -conditional FP-tree)                                                                               |
| С    | <b>c</b> , <b>cb</b> and <b>ca</b> (from <i>c</i> -conditional FP-tree), <b>cba</b> (from <i>cb</i> -conditional FP-tree)               |
| d    | $\mathbf{d}$ , $\mathbf{dc}$ and $\mathbf{db}$ and $\mathbf{da}$ (from $d$ -conditional FP-tree),                                       |
|      | <b>dcb</b> and <b>dca</b> (from <i>dc</i> -conditional FP-tree), <b>dba</b> (from <i>db</i> -conditional FP-tree)                       |
| e    | <b>e</b> , <b>ed</b> and <b>ec</b> and <b>ea</b> (from <i>e</i> -conditional FP-tree), <b>eda</b> (from <i>ed</i> -conditional FP-tree) |

Conditional FP-trees can easily be derived from Fig. 1 step by step.

# 2 Pattern Evaluation Measures (10 points)

The definitions of two measures, lift and cosine, look rather similar as shown below,

$$lift(A, B) = \frac{s(A \cup B)}{s(A) \times s(B)},\tag{1}$$

and

$$cosine(A, B) = \frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}},$$
(2)

where s(X) is the *relative* support of itemset X. Which measure is *null-invariant*, and which is not, and why? Can you prove it? You must formally define what is null-invariant using the symbols and give your proof.

### **Solution:**

A measure is null-invariant if the value of the measure does not change with the number of null-transactions.

*cosine* is null-invariant while *lift* is not.

Let n be the total number of transactions, and  $count(\neg(A \cup B))$  be the number of null-transactions.

$$lift(A, B) = \frac{s(A \cup B)}{s(A) \times s(B)}$$

$$= \frac{count(A \cup B)}{n} / (\frac{count(A)}{n} \times \frac{count(B)}{n})$$

$$= \frac{count(A \cup B) \times n}{count(A) \times count(B)}$$

$$= \frac{count(A \cup B) \times (count(A \cup B) + count(\neg(A \cup B)))}{count(A) \times count(B)}$$

$$cosine(A, B) = \frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$$

$$= \frac{\frac{count(A \cup B)}{n}}{\sqrt{\frac{count(A)}{n} \times \frac{count(B)}{n}}}$$

$$= \frac{count(A \cup B)}{\sqrt{count(A) \times count(B)}}$$

We can clearly see that *cosine* is invariant with the number of null-transactions, while *lift* is not.

## 3 Closed Patterns (20 points)

A database has 4 transactions as shown below. Let  $min\_sup = 2$ . Items are A, B, C, D, E, F, and G.

| Trans. ID | Itemset             |
|-----------|---------------------|
| 1         | $\{A, C, F, G\}$    |
| 2         | $\{A, B, C, F\}$    |
| 3         | $\{A, B, C, D, F\}$ |
| 4         | {B, D, E}           |

Which patterns from the following are **closed patterns**? Please briefly describe your idea for each pattern on why it is closed or not.

• Pattern 1: {D}

• Pattern 2: {A, B, C, F}

• Pattern 3: {B, F}

• Pattern 4: {B, D}

• Pattern 5: {A, C, F}

### **Solution:** (4 pts each)

Idea: according to the definition of closed pattern, which is: A pattern X is closed if X is frequent and there exists no super pattern Y such that  $X \subset Y$ , and X and Y has the same support.

**Pattern 1** {**D**}: not closed pattern because  $\{D\} \subset \{B, D\}$  and they have the same support 2.

Pattern 2 {A, B, C, F}: closed pattern.

**Pattern 3** {**B**, **F**}: not closed pattern because {B, F}  $\subset$  {A, B, C, F} and they have the same support 2.

Pattern 4 {B, D}: closed pattern.

**Pattern 5** {**A**, **C**, **F**}: closed pattern.

# 4 Sequential Patterns (20 points)

A sequence database has 3 sequences as shown below. Items in the same parenthesis means they were got together in one event. Let  $min\_sup = 2$ . Items are A, B, C, D, F, and G. Which patterns from the following are **sequential patterns**? Please briefly describe your idea for each pattern on why it is a good sequential pattern or not.

| Seq. ID | Sequence    |
|---------|-------------|
| 1       | (AB)C(FG)G  |
| 2       | (AD)CB(ABF) |
| 3       | AB(FG)      |

• Pattern 1: ACF

• Pattern 2: (FG)B

• Pattern 3: (FG)

• Pattern 4: B(FG)

• Pattern 5: GF

**Solution:** (4 pts each)

Idea: sequential pattern should has  $min\_sup = 2$ .

**Pattern 1 ACF**: Sequential pattern, has  $min\_sup = 2$  and can be found in Seq1 and Seq2.

**Pattern 2 (FG)B**: Not sequential pattern because its support is 0.

**Pattern 3** (**FG**): Sequential pattern, has  $min\_sup = 2$  and can be found in Seq1 and Seq3. **Pattern 4** B(**FG**): Sequential pattern, has  $min\_sup = 2$  and can be found in Seq1 and Seq3.

**Pattern 5 GF**: Not sequential pattern because its support is 0.

### CSE 40647/60647: Data Science

Fall 2019

### Homework 4: Programming Assignments

Handed Out: November 12, 2019 Due: November 25, 2019 11:55pm

Save your homework submission as *NETID-hw4-programming.zip*. The zip file has one pdf file *NETID-hw4-programming.pdf*, one code file, the Dataset-apriori.txt file, and one README file.

In the README file, please specify the python version you used and how to run your code in command line.

## Apriori (50 points)

Please use **Python** to solve the problem. You are NOT allowed to directly call any frequent pattern mining functions (like the Apriori functions in Scikit).

A database has 10 transactions. Let  $min\_sup = 2$ . Items are a, b, c, d, and e.

| Trans. ID | Itemset      |
|-----------|--------------|
| 1         | {a, b}       |
| 2         | {b, c, d}    |
| 3         | {a, c, d, e} |
| 4         | {a, d, e}    |
| 5         | {a, b, c}    |
| 6         | {a, b, c, d} |
| 7         | {a}          |
| 8         | {a, b, c}    |
| 9         | {a, b, d}    |
| 10        | {b, c, e}    |

Use Python to implement Apriori to find all frequent patterns (i.e., frequent itemsets) and their counts from the transaction database.

**Output:** Write down the patterns and their support in the pdf. Save your code as NETID-hw4.py.

### **Solutions**:

1-itemset candidates C1:

a: 8; b: 7; c: 6; d: 5; e: 3.

Compare C1 with minimum support. The frequent 1-itemsets F1:

a: 8; b: 7; c: 6; d: 5; e: 3.

2-itemset candidates C2: ab: 5; ac: 4; ad: 4; ae: 2; bc: 5; bd: 3; be: 0; cd: 3; ce: 2; de: 2.

Compare C2 with minimum support. The frequent 2-itemsets F2:

ab: 5; ac: 4; ad: 4; ae: 2; bc: 5; bd: 3; cd: 3; ce: 2; de: 2.

3-itemset candidates C3: abc: 3; abd: 2; bcd: 2; cde: 1; acd: 2; ace: 1; ade: 2.

Compare C3 with minimum support. The frequent 3-itemsets F3:

abc: 3; abd: 2; bcd: 2; acd: 2; ade: 2.

There is no frequent 4-itemsets.