

CMSC 471

Resolution Refutation

Conjunctive Normal Form (CNF)

- Resolution works best when the formula is of the special form:
 - it is an ∧ of ∨s of (possibly negated, ¬) variables/literals
- This form is called a Conjunctive Normal Form, or CNF.
- Example:
 - $-(y \lor \neg z) \land (\neg y) \land (y \lor z)$ is a CNF.
 - (x \vee y \vee \neg z) is also a CNF.
 - $(x \wedge y \vee \neg z)$ is <u>not</u> a CNF.

Convert to CNF

- All statements in Propositional Logic can be converted to CNF.
- To convert to CNF:
 - Open up the implications to get ORs.
 - A -> B ≡ ¬ A ∨ B
 - Get rid of double negations. Distribute Negations.
 - ¬¬A≡A
 - $\neg (A \lor B) \equiv \neg A \land \neg B$
 - $\neg (A \land B) \equiv \neg A \lor \neg B$
- Distribute Or over And:
 - AV(B \wedge C) to (AV B) \wedge (AVC)

Convert to CNF: Example

```
    A → (B ∧ C)
    = ¬ A∨ (B∧ C)
    = (¬ A∨ B) ∧ (¬ A∨ C)
```


Sound rules of inference

Examples of sound rules of inference

Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	A, B	$A \wedge B$
And Elimination	$A \wedge B$	Α
Double Negation	$\neg\neg A$	Α
Unit Resolution	$A \vee B$, $\neg B$	Α
Resolution	$A \vee B$, $\neg B \vee C$	$A \lor C$

Resolution Refutation: Steps

Procedure tries to prove a goal P

- 1. Add negation of goal to the KB, ~P
- 2. Convert all sentences in KB to CNF
- 3. Find pairs of sentences with complementary literals that have not yet been resolved.
 - Resolve using rules of Unit Resolution or Resolution
- 4. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- If we get an empty clause (i.e., a contradiction) then P follows from the KB
 - e.g., resolving X with ~X results in an empty clause
- If not, conclusion can't be proved from the KB

Resolution Refutation: Example

- Given the following statements, all of which are assumed to be true:
 - 1. If you go swimming, you will get wet.
 - 2. If it is raining and you are outside, then you will get wet.
 - 3. If it is warm and there is no rain, then it is a pleasant day.
 - 4. You are not wet.
 - 5. You are outside.
 - 6. It is a warm day.

Resolution Refutation: Example

- Convert these statements to propositional expressions.
 - 1. swimming \Rightarrow wet
 - 2. (rain \land outside) \Rightarrow wet
 - 3. (warm \wedge ~ rain) \Rightarrow pleasant
 - 4. ~ wet
 - 5. outside
 - 6. warm

Resolution Refutation: Example

Convert these expressions into a single conjunctive normal form statement.

- 1. (~swimming V wet)
- 2. (~rain V ~ outside V wet)
- 3. (~warm V rain V pleasant)
- 4. (~wet)
- 5. (outside)
- 6. (warm)

Proof using Resolution Refutation

Prove, using resolution that "It is not raining".

To proof: ~rain Assume: ~ (~rain) ≡ rain

This is what we assume.

Knowledge Base(KB)		
1	(~ swimming V wet)	
2	~ rain V ~ outside V wet	
3	~ warm V rain V pleasant	
4	~ wet	
5	outside	
6	Warm	
7	Rain	

Action	Result
Resolve 2, 7	~ outside V wet (8)
Resolve 5, 8	wet (9)
Resolve 4, 9	<u> </u>
	Hence proved, "It is not raining."