

Quantum Physics Lecture 11

Applications of Steady state Schroedinger Equation

Box of more than one dimension

Harmonic oscillator

1

Waves/particles in a box of >1 dimension

Consider 2-D box Potential U = 0 between x = 0 and x = aAnd between y = 0 and y = bU infinite elsewhere

Wavefunction Ψ expressed as $\Psi(x,y) = f(x)g(y)$ - Separation of variables

Steady state Schrödinger Equation inside box, where U = 0

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2 \Psi(x,y)}{\partial x^2} + \frac{\partial^2 \Psi(x,y)}{\partial y^2}\right) = E\Psi(x,y) \qquad (Recall\ H\Psi = E\Psi)$$

Put in $\Psi(x,y) = f(x)g(y)$ - noting partial differentials!

Waves/particles in a 2-D box (cont.)

$$-\frac{\hbar^2}{2m} \left(g(y) \frac{\partial^2 f(x)}{\partial x^2} + f(x) \frac{\partial^2 g(y)}{\partial y^2} \right) = Ef(x)g(y)$$
nus
$$-\frac{\hbar^2}{2m} \left(\frac{1}{f(x)} \frac{\partial^2 f(x)}{\partial x^2} + \frac{1}{g(y)} \frac{\partial^2 g(y)}{\partial y^2} \right) = E$$

Only one term is x dependent, and it equals a constant

$$\frac{\partial^2 f(x)}{\partial x^2} = -C$$
 So $\frac{\partial^2 f(x)}{\partial x^2} = -Cf(x)$ Which we have seen before...

Solutions, using boundary conditions, are $f(x) = A \sin \frac{n\pi x}{a}$ with $C = \frac{n^2 \pi^2}{a^2}$

Similarly, for y dependence $g(y) = B \sin \frac{m \pi y}{L}$

Hence the energy levels in the box are $E_{n,m} = \frac{\hbar^2}{2m} \left(\frac{n^2 \pi^2}{a^2} + \frac{m^2 \pi^2}{b^2} \right)$

With **TWO** quantum numbers n,m needed to specify the state

3

Waves/particles in a 2-D box (cont.)

 Ψ is specified by the quantum numbers n & m

There are as many states as there are possible n,m combinations (N.B. n & m are positive)

Two distinct wave functions are **DEGENERATE** if they have the same energy.

e.g. the states 1,3 and 3,1 are degenerate if a = b

If a/b is irrational there are no degeneracies

Readily extended to 3-D....

Useful, especially when filling box with more than one particle.

C.f. black body cavity

Examples: 2,3 and 3,2 wavefunctions

Harmonic Oscillator

Examples: mass on spring, diatomic molecule...

Hooke's Law: "restoring force" F = -kx

$$-kx = m \frac{d^2x}{dt^2}$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

$$x = A \cos \omega t$$

Where
$$\omega = \sqrt{\frac{k}{m}}$$

Potential energy $U = (1/2)kx^2$ (potential well, parabolic) **Expect** (1) quantised energy,

- (2) $E_{min} \neq 0$
- (3) particle outside the classical limits A

Apply SSSE to Harmonic Oscillator

$$\frac{d^{2}\psi}{dx^{2}} + 2m / \hbar^{2} \left(E - \frac{1}{2}kx^{2}\right)\psi = 0$$

$$or \quad \frac{d^{2}\psi}{dx^{2}} + \left(\frac{2mE}{\hbar^{2}} - \frac{km}{\hbar^{2}}x^{2}\right)\psi = 0$$

$$write \quad y = \left(\frac{\sqrt{km}}{\hbar}\right)^{\frac{1}{2}}x \quad and \quad dy^{2} = \left(\frac{\sqrt{km}}{\hbar}\right)dx^{2}$$

$$\frac{d^{2}\psi}{dy^{2}} + (\alpha - y^{2})\psi = 0 \qquad \alpha = \frac{\frac{2mE}{\hbar^{2}}}{\frac{\hbar}{2}}$$

$$\alpha = \frac{2E}{\hbar}\sqrt{\frac{m}{k}} = \frac{2E}{\hbar}\omega$$

Results for Harmonic Oscillator

Solution <u>requires</u>:

$$\frac{d^2\psi}{dy^2} + (\alpha - y^2)\psi = 0$$

$$\alpha = 2n + 1$$
 for $n = 0, 1, 2, 3 ...$

$$E_n = \frac{\hbar\omega}{2}\alpha = \frac{\hbar\omega}{2}(2n+1) = (n+\frac{1}{2})\hbar\omega$$

$$E_0 = \frac{\hbar\omega}{2}$$
 a.k.a. "zero point energy

Recall Planck's assumption & blackbody formula (*Lecture 8*): Oscillator energies assumed $E_n = \hbar \omega n$

Later, found additional detail & statistics, C_v etc. but... Right ideas on quantisation: "fortunate guesswork!"

7

Wavefunctions of Harmonic Oscillator

Comparing with infinite square well case, ψ has approximately same shape except:

- (1) width of well is changing
- (2) ψ extends beyond classical limit
- (3) amplitude increases at well edge

Look at (2) and (3) via the probability density.....

Probability Density of Harmonic Oscillator

- (1) Finite probability of particle outside the classical limits
- (2) the quantum picture only approaches the classical picture at large n values (classical probability maximum at extremities of oscillation slower)
- Correspondence Principle

Footnote: compare square well $[E_n \propto n^2]$ and harmonic oscillator $[E_n \propto (n+1/2)]$ and Bohr H atom $[E_n \propto -1/n^2]$ for energies.

Differing shapes of the potential wells.