

Tehnološke osnove iskorištavanja obnovljivih izvora energije

5. Spremanje energije

Spremanje energije

• Što je to?

 Transformacija energije iz prijelaznog (procesnog) oblika u oblik pogodan za pohranu (unutrašnja energija) uz mogućnost ponovne transformacije u prijelazni oblik.

• Zašto?

- Usklađivanje proizvodnje i potražnje
- Rezerva s ciljem sprečavanja "zamračenja"
- Omogućavanje jače integracije OIE
- Osiguranje kvalitete napajanja

Opći kriteriji

1. Efikasnost ciklusa

$$\eta = \frac{E_{\text{izlaz}}}{E_{\text{ulaz}}} = 1 - \frac{E_{\text{gubitaka}}}{E_{\text{ulaz}}} \quad \eta = \frac{E_{\text{izlaz}}}{E_{\text{ulaz}}} = \frac{E_{\text{skladišta}}}{E_{\text{ulaz}}} \cdot \frac{E_{\text{izlaz}}}{E_{\text{skladišta}}} = \eta_{\text{ulaz}} \cdot \eta_{\text{izlaz}}$$

Opći kriteriji

$$e_m = \frac{E_s}{m} \left[J/kg \right]; e_V = \frac{E_s}{V} \left[J/m^3 \right]$$

Gustoća izlazne snage –
$$P_m = \frac{P_{izlaz}}{m} [W/kg]; P_V = \frac{P_{izlaz}}{V} [W/m^3]$$

- Trajanje ciklusa skladištenja: punjenje (τ_c) ; skladištenje (τ_s) ; pražnjenje 4. (τ_d)
- Brzina punjenja i pražnjenja: 5.

$$P_{\rm c} = \frac{\mathrm{d}E_{\rm s}}{\mathrm{d}t} [W]; P_{\rm d} = \frac{\mathrm{d}E_{\rm s}}{\mathrm{d}t} [W]$$

Opći kriteriji

- 6. Kriterij trajnosti životni vijek obično izražen preko broja ciklusa punjenje pražnjenje
- 7. Kriterij ekonomičnosti teško za procijeniti; MJ/US\$ ili kWh/US\$
- 8. Kapacitet (ukupna količina spremljene energije) [kWh, MWh]
- 9. Snaga [kW, MW]
- 10. Dubina pražnjenja (DOD)
- 11. Vrijeme odziva [ms min]
- 12. Kompatibilnost s postojećom infrastrukturom, lakoća implementacije i transporta
- 13. Autonomnost
- 14. Pouzdanost
- 15. Utjecaj na okoliš

Energetska kategorizacija

Slika 10.2: Energetska kategorizacija spremnika energije

Status tehnologija spremanja sa stajališta EES

- Komercijalna: 5 jedinica, 10 godina iskustva po jedinici, jasne financije – povrat uloženog
- Pred-komercijalna: jedno ili više komercijalno postrojenje, nema dovoljno godina rada za jasna iskustva i financije
- Demonstracijska: postoji iskustvo rada
- Razvojna: laboratorijsko, sub-skalirano postrojenje

Status tehnologija u SAD (2007)

Komercijalna	Pred-komer.	Demonstrac.	Razvojna	
Hidro-pumpna	CAES	Zn-Br	Li-ion – EES	
Zamašnjaci – kvaliteta napajanja na strani potrošača	kvaliteta napajanja na		SMES - EES	
	Ni-Cd	V redox	Kondenzatori	
	Na-S	Kondenzatori	Napredne baterije	
	Zamašnjaci – mali			
	Mikro SMES – mali			

Podjela prema stupnju tehnološke zrelosti – 2015.

Technical maturity

Technology Readniness Level (TRL) – International Energy Agency, 2020

		1	Initial idea Basic principles have been defined	
	CONCEPT	2	Application formulated Concept and application of solution have been formulated	Beyond
		3	Concept needs validation Solution needs to be prototyped and applied	the SDS
	SMALL PROTOTYPE	4	Early prototype Prototype proven in test conditions	
	LARGE	5	Large prototype Components proven in conditions to be deployed	
	PROTOTYPE	6	Full prototype at scale Prototype proven at scale in conditions to be deployed	
		7	Pre-commercial demonstration Solution working in expected conditions	Soons of
	DEMONSTRATION	8	First of a kind commercial Commercial demonstration, full scale deployment in final form	Scope of the SDS
		9	Commercial operation in relevant environment Solution is commercially available, needs evolutionary improvement to stay competitive	
	EARLY ADOPTION	10	Integration needed at scale Solution is commercial and competitive but needs further integration efforts	
1.7	MATURE	11	Proof of stability reached Predictable growth	

Technology readiness level of technologies along the low-carbon electricity value chain

TRL	Description of rating	Example technologies*
1	Initial idea: basic principles have been defined	Li-Air electric vehicle batteries (TRL 1-2)
2	Application formulation: concept and application of solution have been formulated	Multivalent ions electric vehicle batteries
3	Concept needs validation: solution needs to be prototyped and applied	Chemical reaction thermochemical heat storage
4	Early prototype: prototype proven in test conditions	Active latent heat storage Li-S electric vehicle batteries
5	Large prototype: components proven in conditions to be deployed	Solid state + Li-metal electric vehicle batteries
6	Full prototype at scale: prototype proven at scale in conditions to be developed	Building integrated phase change materials
7	Pre-commercial demonstration: prototype working in expected conditions	High-temperature-latent heat storage (TRL 5-7)
8	First of a kind commercial: commercial demonstration, full-scale deployment in final conditions	Compressed air energy storage (CAES)
9	Commercial operation in relevant environment: solution is commercially available, needs evolutionary improvements to stay competitive	Flywheel Lithium-ion batteries (Li-ion batteries) Redox flow batteries
10	Integration needed at scale: solution is commercial and competitive but needs further integration efforts	Salt cavern storage
11	Proof of stability reached: predictable growth.	Pumped hydro storage (PHS)

🔆 Kategorizacija prema primjeni 🤝

- Mala snaga u izoliranim područjima prvenstveno za mjernu i sigurnosnu opremu
- Srednja snaga u izoliranim područjima individualni električni sustavi (domaćinstva), sela i manji gradovi
- Pokrivanje peakova
- Veliki upravljanje

- Kinetička energija (zamašnjaci)
- Kemijska energija
- Komprimirani zrak
- Gorivne ćelije (vodik)
- Superkondenzatori, supravodiči
- Gravitacijska potencijalna energija
- Termička energija
- Kemijska energija (akumulatori i baterije)
- Komprimirani zrak

Grid-side roles of ESS.

Application	Time scales	Example of EES
Energy arbitrage, load leveling	Hours to days	PHS, NaS, CAES, VRB
Frequency regulation	Seconds to minutes	Li-ion, NaS, FES, VRB
Inertia emulation, oscillation damping, voltage support LVRT	<1 s	LA, NAS, FES, VRB
Primary reserves	10 min	PHS, FES, BES
Secondary reserves	Minutes to hours	PHS
Efficiency use of transmission network	Minutes to hours	Li-ion
Emergency power supply, black start	Minutes to hours	LA

★Tehničke karakteristike – 1. dio

Tehnologija	Nominalna	Vrijeme	Gustoća	Gustoća
Tennologija	snaga [MW]	pražnjenja	snage $[W/l]$	energije [Wh/l]
PHS	100-5000	1-24 h+	0,1-0,2	0,2-2
CAES	5-300	1-24 h+	0,2-0,6	2-6
Zamašnjaci	0-0,25	s-h	5000	20-80
Akumulatori	0-20	$\operatorname{s-h}$	90-700	50-80
Ni-Cd	0-40	s-h	75-700	15-80
Li-ion	0-0,1	min-h	1.300-10.000	200-400
Na-S	0,05-8	s-h	120-160	15-300
VRB	0,03-3	s-10 h	0,5-2	20-70
Zn-Br	0,05-2	s-10 h	1-25	65
Gorive ćelije	0-50	s-24 h +	0,2-20	600
Kondenzatori	0-0,3	ms-1 h	40.000-120.000	10-20
SMES	0,1-10	$\mathrm{ms} ext{-}8~\mathrm{s}$	2.600	6

Tablica 10.2: Tehničke karakteristike spremnika energije - 1. dio[?]

★Tehničke karakteristike – 2.dio

Tehnologija	Vrijeme odziva	Efikasnost [%]	Samopražnjenje po danu [%]	Životni vijek [godine]-[ciklusi]
PHS	min	70-80	Vrlo malo	> 50 - > 15.000
CAES	min	41-75	Malo	> 25 - > 10.000
Zamašnjaci	< s	80-90	100	(15-20)-(104-107)
Akumulatori	< s	75-90	0,1-0,3	(3-15)-(250-1.500)
Ni-Cd	< s	60-80	0,2-0,6	(5-20)-(1.500-3.000)
Li-ion	< s	65-75	0,1-0,3	(5-100)-(600-1.200)
Na-S	< s	70-85	-20	(10-15)-(2.500-4.500)
VRB	s	60-75	Malo	(5-20)-(> 10.000)
Zn-Br	s	65-75	Malo	(5-10)-(1.000-3.650)
Gorive ćelije	s-min	34-44	0	(10-30)-(103-104)
Kondenzatori	< s	85-98	20-40	(4-12)-(104-105)
SMES	< s	75-80	10-15	-

Tablica 10.3: Tehničke karakteristike spremnika energije - 2. dio[?]

Table C1
Total capital cost (TCC) of grid-scale EES systems based on the review of the sources listed in Table 2.

EES technology	Configuration	Total capital cost ^a (TCC), per unit of power rating €/kW			Total capital o	Total capital cost ^a (TCC), per unit of storage capacity ^b €/kWh			
		Min	Average	Max	Min	Average	Max		
PHS	Conventional	1030	1406	1675	96	137	181		
CAES	Aboveground	774	893	914	48	92	106		
	Underground	1286	1315	1388	210	263	278		
Flywheel	High-speed	590	867	1446	1850	4791	25049		
Lead-acid	Advanced	1388	2140	3254	346	437	721		
NaS	-	1863	2254	2361	328	343	398		
Ni-Cd	-	2279	3376	4182	596	699	808		
ZEBRA	-	874	1160	1786	973	1095	1211		
Li-ion	-	2109	2512	2746	459	546	560		
VRFB	-	1277	1360	1649	257	307	433		
Zn-Br	-	1099	1132	1358	170	220	281		
PSB	-	927	1093	1308	1071	1147	1153		
Fe-Cr	-	1376	1400	1425	527	569	611		
Zn-air	-	1313	1364	1415	262	271	417		
Supercapacitors	Double-layer	214	229	247	691	765	856		
EES technology	Configuration	Total capital	cost ^a (TCC), per unit of	power rating €/kW	Total capital	Total capital cost ^a (TCC), per unit of storage capacity ^b €/kWh			
		Min	Average	Max	Min	Average	Max		
SMES	-	212	218	568	5310	6090	6870		
Hydrogen	Fuel cell ^c (FC)	2395	3243	4674	399	540	779		
	Gas turbined (GT)	1360	1570	2743	227	262	457		

^a It should be noted that the capital costs are calculated based on typical discharge time (storage size) for each technology, which is not necessarily the same among different EES systems (for typical discharge time, see the corresponding table for each technology in Appendix A). Minimum and maximum values are the bands of interquartile range (middle-fifty likelihood) and the average value is the median of whole sample, excluding outliers. It should be noted that the costs of grid interconnections and infrastructure requirements are not included in this estimation.

^b For the batteries, the storage capacity is equivalent to the rated DoD.

^c Electrolysis and fuel cell with steel tank storage system.

^d Electrolysis and small-to medium scale gas turbine with underground storage.

Table 1
Best performance and typical figures of main energy storage systems.

Technology	Top power [MW]	Top energy [MW h]	Energy density [W h/kg]	Discharge time	Response time	Round-trip efficiency	Cycle life $\times 10^3$	Capital cost [k\$/kW]	Capital cost [\$/kW h]	Capital cost [\$/MW h/cycles]
PHES	3000	10 ⁴	0.3	10 ¹ h	min	70-85%	20	0.4-5.6	10-350	0.5-3
CAES:										
Underground	300	10^{3}	10-30	$10^{0}-10^{1} h$	min	60-	30	1.7	130-550	4-18
Aboveground	50	10^{2}	_	10¹ h	min	75%	> 10	2.2	430	43
TES	20	10 ¹	70	h	min	-	10	_	5,000	500
FES:										
Commercial	20	5	11-30	min	ms	85%	$10^{1}-10^{2}$	2.3	2,400	25-200
Lab	400	1	1.6	S	ms	-	-	-	-	-
SMES:										
Under	100	$10^{1}-10^{3}$	-	min	ms	90-95%	10	2	> 10,000	1000
development										
Lab	400	10	1.2	S	ms	-	-	-	-	-
EDLC	100	10^{-2}	10-30	S	ms	95%	500	-	4,600	10
ECES:				_						
Advanced lead-acid	10-40	$10^{0}-10^{1}$	25-50	10 ⁰ h	ms	75-85%	3	4.6	130	150
Sodium-sulfur	34	10 ¹	150-120	10° h	S	85-90%	4.3-6	3.5	550	90-130
Sodium-nickel-	1	6	95-120	10° h	S	85%	3-4	3.5	650	150-200
chlorine ^a		Ü	55 125			05/0	٠.	5.5	000	100 200
Lithium-ion	16	20	100-200	10° h	ms	95%	4-8	3-4	600	150-200
Electrolyzer/fuel cells	1	> 10	800-1300	> 10° h	ms	35-45%	50	17	> 10,000	200
Redox flow battery	2-100	6-120	10-50	10 ⁰ –10 ¹ h	ms	85%	> > 13	3.2	900	< < 70

Gravitacijska potencijalna: Sustavi mehaničkog podizanja tijela

- Gravitacijska potencijalna energija tijela na visini h iznad površine Zemlje
- Promjena potencijalne energije zbog radijalnog pomicanja tijela u iznosu Δh
- Praktična primjena utegom pogonjeni zidni satovi
- Mala gustoća energije (100 kg na 10 m iznosi 9810 J odnosno 2,725 Wh) zahtijeva veliku masu ili veliki radijalni pomak
- Svemirski lift? pohrana energije, sredstvo za "lansiranje" solarnih panela

$$\begin{split} E_{\text{pot}} &= \frac{-G \cdot M \cdot m}{R + h}, \\ R &= 6378 \text{ km} \\ \Delta E_{\text{pot}} &= -G \cdot M \cdot m \cdot \left(\frac{1}{R + h + \Delta h} - \frac{1}{R + h}\right) \\ \text{uz } h &<< R \text{ i } \left(h + \Delta h\right) << R \\ \Delta E_{\text{pot}} &= gm\Delta h \end{split}$$

Tehnološke osnove iskorištavanja obnovljivih izvora energije

Gravitacijska potencijalna: Hidro-pumpna pohrana energije (PHS)

- Mehanička energija gravitacijska potencijalna energija
- Jedini značajni sustav za spremanje energije – gravitacijska potencijalna energija vode,
- 2009. godine u svijetu 300 elektrana (95 GW); EU 2007. 38 GW (4,9%)
- Rotirajuća rezerva, vršna opterećenja, regulacija frekvencije i kontrola napona
- Dva rezervoara gornji i donji,

Tehnološke osnove iskorištavanja obnovljivih izvora energije

- Najstarija Zurich, Švicarska, 1882.
- U početku relativno skupe zbog dvoosovinskog principa rada (pumpa i motor + generator i turbina)
 - Od sredine 20 st. Tandemski sustav motorgenerator na vrhu osovine, ispod pumpa, a na dnu turbina – u početku turbina propelernog tipa (Kaplan), a sada uglavnom Francis
 - Francis može raditi u oba režima 1956.godina
 - U Japanu razvijen dizajn varijabilne brzine 1990
 - U početku "off-peak base loading" za velike termo ili nuklearne elektrane, a sada i za kontrolu frekvencije i u generatorskom i u pumpnom režimu rada

- Izvedba ovisi o Δh :
 - Mali padovi Kaplan/Nagler turbina u tandemskom sustavu s pumpom
 - Srednji padovi do 600
 (700) m –
 jednostupanjska Francis turbina
 - Veliki padovi (1000-1500 m) –
 višestupanjska Francis turbina ili tandemski sustav Pelton turbine i zasebne pumpe (višestupanjske)
- Gubici u spojnim cjevovodima, gubici zbog isparavanja

- Cista pumpna stanica pr. Taum Sauk (SAD)
 - 1963.-1999. 175 MW;
 1999.-2005. 225 MW;
 2005.-puknuće;
 21.4.2010. na mreži
 - 5.366.000 m³; 2.100 m dužina tunela; Δh =244 m; 3,56 GWh (15 h)
- Istraživanja
 mogućnosti uporabe
 podzemnog donjeg
 rezervoara

- Kombinirani pumpni sustav koristi pumpanu i prirodno prolazeću vodu – pr. RHE Velebit
- Gornji rezervoar Štikada nalazi se u Gračačkom polju; vodni tokovi Opsenice, Ričice, Otuče i potoka Krivka
- Donji rezervoar Razovac;
 Zrmanja
- Turbinska snaga 276 MW (Δh =519 m), pumpna 240 MW (Δh =559 m)

Analysis of financial mechanisms in support to new pumped hydropower storage projects in croatia

Krajačić et al., Applied Energy 101 (2013) 161-171

- PHS je najraširenija tehnologija spremanje energije u EES,
- Najpraktičnije na velikim snagama, uz vrijeme rada od nekoliko sati do nekoliko dana i efikasnost od 70-85%,
- Dugačko vrijeme konstrukcije i veliki investicijski troškovi 500-3600 EUR/kW,
- Transformacija postojećih HE,
- U RH:
 - RHE-Velebit (276/240 [G/P] MW)
 - CHE-Fužine (4/4,8 MW)
 - CHE-Lepenica (1,4/1,25 MW)
 - CS- Buško Blato (10,5/10,2 MW) (BiH ali upravlja HEP)

Potencijal u RH za PHS:

- Kontinentalni postojeće instalacije HE
 - Otočni veći otoci (Krk) u kombinaciji s sustavom navodnjavanja i opskrbe vodom; sa solarnim PV sustavima
- Prijedlog: uvođenje poticaja za proizvodnju el.eneg. u PHS ako se na pumpanje troši el.energ. proizvedena u vjetroagregatima (ili PV) – garancija podrijetla (Guaranty of Origin) – plaća se proizvedena energija, a ne ona utrošena na pumpanje
- Procijenjeni interval poticaja: 42-265 EUR/MWh (0,315-1,988 kn/kWh)??
- Vrijeme amortizacija nejasno??

🔆 Kinetička energija: zamašnjaci 🤝

- Kutna brzina ograničena materijalom
- K_m je faktor oblika ovisan o geometriji, primjerice za puni tanki disk je oko 0,6, a za radijalnu šipku oko 0,33

$$E = \frac{1}{2}I\omega^2; I = \int \rho(\vec{x})r^2 d\vec{x}$$

za uniformni disk $I = \frac{mr^2}{2}$

$$\frac{E}{m} = w_m = \frac{\sigma_{\text{max}}}{\rho} K_m$$

Materijal	Maksimalno naprezanje (10 ⁶ Nm ⁻²)	Naprezanje kod dizajna (10 ⁶ Nm ⁻²)
Drvo	125	30
Legura Al	500	
Čelik	2700	900
Karbonska vlakna	1500	750
Kevlar vlakna	1800	1000

Fig. 6. System description of a flywheel energy storage facility.

Selected flywheel energy storage facilities [18,55,57-60].

Firms/Institutes	Characteristics	Application area
Active Power Company	Clean Source series 100-2000 kW	Backup power supply, UPS systems
Beacon Power Company	100/150 kW a unit, 20 MW/5 MW h plant	Freq. regulation, power quality, voltage support
Boeing Phantom Works	100 kW/5 kW h, HT magnetic bearings	Power quality and peak shaving
Japan Atomic Energy Center	235 MVA, steel flywheel	High power supply to Nuclear fusion furnace
Piller power systems Ltd.	3600-1500 rpm, 2.4 MW for 8 s	Ride-through power and sources of backup power
NASA Glenn research center	$2 \times 10^4 - 6 \times 10^4$ rpm, 3.6 MW h	Supply on aerospace aviation & other transports

Energy management of flywheel-based energy storage device for wind power smoothing

Diaz Gonzales et al., applied energy 110 (2013) 207-219

Elastična: Krute opruge i guma

- Deformacijom tijela u području elastičnosti
- Napetost (naprezanje): $\sigma = F/S$
- Relativna deformacija: $\varepsilon = \Delta x/x$
- U granici proporcionalnosti vrijedi Hookeov zakon:

$$\sigma = \frac{F}{S} = E \cdot \frac{\Delta l}{l}$$

$$\frac{\Delta d}{d} = -\mu \cdot \frac{\sigma}{E}$$

$$W = \int_{0}^{\Delta l} F(x) dx = \frac{1}{2} k (\Delta l)^{2}$$

$$\frac{W}{V} = \frac{\sigma^{2}}{2E}$$
400 J/m³ za čeličnu oprugu

Komprimirani zrak (CAES) – mehanička energijaelastična energija-unutrašnja kalorička energija

- Plinska turbina koja koristi 40%-60% manje plina od klasične plinske elektrane
- Plinovi su stlačiviji od čvrstih tijela i tekućina
- Podzemne šupljine:
 - U naslagama soli (Huntorf $3,1\cdot10^5$ m³ i McIntosh $5,6\cdot10^5$ m³)
 - U stijenama
 - U vodonosnicima
- Karakteristike šupljine poznate tek na završetku instalacije i ovise o temperaturi i tlaku instalacije – potencijalni problem
 - Problem temperature adijabatska ili izotermalna kompresija (nepraktična)
 - Problem tlaka izobarna kompresija uz varijabilni volumen varijabilni volumen spremnika ili povezivanje s vanjskim rezervoarom (pumpna pohrana)

Huntorf CAES (Njemačka)

Turb ins ka snaga	290 MW (max 3 h)
Snaga kompresora	60 MW (max 12 h)
Protok u turbinskom režimu	417 kg/s
Protok u kompresorskom režimu	108 kg/s
Volumen spremnika	140 000 + 170 000
Vrh spremnika	650 m
Dno spremnika	800 m
Max. promjer	60 m
Udaljenost bušotina	220 m
Min. tlak	1 bar
Min.operativni tlak*	20 bar
Min. operativni tlak	43 bar
Max. tlak	70 bar

"ADELE" - ADIABATIC COMPRESSED-AIR ENERGY STORAGE WITH BETTER EFFICIENCY

Spremnici elektrokemijske energije – baterije i akumulatori

- Elektrokemijski
 energetski izvor je
 uređaj u kojem se
 kemijska energija
 direktno pretvara u
 električnu energiju
- Galvani, Volta ("piles a tasses")

- "Baterija ili akumulator je svaki izvor električne energije
 proizvedene izravnim pretvaranjem kemijske energije koji se
 sastoji od jedne ili više primarnih baterijskih ćelija/članaka (koje
 se ne mogu puniti) ili jedne ili više sekundarnih baterijskih
 ćelija/članaka (koje se mogu puniti)." (PRAVILNIK O
 GOSPODARENJU OTPADNIM BATERIJAMA I AKUMULATORIMA
 prosinac 2006.)
- Gorivne ćelije, primarne baterije (nepunjive) i sekundarne baterije (punjive)
- Sve se sastoje od pozitivne elektrode (anode), negativne elektrode (katode) i elektrolita
- Kruto/tekuće/kruto; tekuće/kruto/tekuće; kruto/kruto/kruto
- Kod gorivnih ćelija se aktivna kemijska komponenta (gorivo) dobavlja van sustava elektroda – vodik, metanol,...
- Sa stajališta EES-a izuzetno je važna i AC/DC, odnosno DC/AC konverzija

★Baterijski sustavi – princip rada

Fig. 7. Schematic diagram of a battery energy storage system operation.

🗱 Baterijski sustavi – kemijske reakcije 🥽

Chemical reactions and single unit voltages of main batteries available to EES [4,13,67,68].

Battery type	Chemical reactions at anodes and cathodes	Unit voltage
Lead-acid	$Pb + SO_4^{2-} \iff PbSO_4 + 2e^-$	2.0 V
	$PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \iff PbSO_4 + 2H_2O$	
Lithium-ion	$C + nLi^+ + ne^- \iff Li_nC$	3.7 V
	$LiXXO_2 \iff Li_{1-n}XXO_2 + nLi^+ + ne^-$	
Sodium-sulfur	2Na ← 2Na+ + 2e-	\sim 2.08 V
	$\chi S + 2e^- \iff \chi S^{2-}$	
Nickel–cadmium	$Cd + 2OH^- \iff Cd(OH)_2 + 2e^-$	1.0-
	$2NiOOH + 2H_2O + 2e^- \iff 2Ni(OH)_2 + 2OH^-$	1.3 V
Nickel-metal	$H_2O + e^- \iff 1/2H_2 + OH^-$	1.0-
hydride	$Ni(OH)_2 + OH^- \iff NiOOH + H_2O + e^-$	1.3 V
Sodium nickel	2Na ←⇒ 2Na+ + 2e-	\sim 2.58 V
chloride	$NiCl_2 + 2e^- \iff Ni + 2Cl^-$	

Olovni akumulator

- Najstarija i najzrelija baterijska tehnologija s najnižom cijenom
- Primjer mrežne aplikacije 40 MWh u Kaliforniji od 1988. – loša strana je ekonomičnost zbog ciklusnih karakteristika
- Dobra tehnologija za "low-duty cycles" "black start"
- Napredni dizajn dodavanje ugljika negativnoj elektrodi – do 2000 ciklusa

Selected lead-acid battery energy storage facilities [4,13,67,75,76].

Name/locations	Characteristics	Application area
BEWAG, Berlin Chino, California PREPA, Puerto Rico	10 MW/40 MW h	Spinning reserve, frequency control Spinning reserve, load leveling Spinning reserve, frequency control
Metlakatla, Alaska Kahuku Wind Farm, Hawaii Notrees EES project, U.S.	1 MW/1.4 MW h 15 MW/ 3.75 MW h 36 MW/24 MW h	Enhancing stabilization of island grid Power management, load firming, grid integration Solving intermittency issues of wind energy

ZPF-FER-UNIZG obnovljivih izvora energije

NaS baterije

- Visokotemperaturni baterijski sustav koji se sastoji od tekućih elektroda (S-pozitivna i Na-negativna) odvojene keramičkim elektrolitom
- Kroz elektrolit prolaze pozitivni ioni Na i sa S formiraju natrijpolisulfide
- Za vrijeme pražnjenja Na+ ioni idu kroz elektrolit a elektroni idu kroz vanjski krug
- 300°C-350°C, 6 h dnevno, 89% efikasnosti
- U Japanu 190 sustava ukupno 270 MW, 6 h
- Druga visokotemp. je bazirana na kemiji NiNaCl (Zebra baterija)

Selected sodium-sulfur battery energy storage facilities [77,81-83].

Name/locations	Rated power/capacity	Application area
Kawasaki EES test facility, Japan Long Island Bus's BES System, New York, US Rokkasho Wind Farm ES project, Japan Saint Andre, La reunion, France Graciosa Island, Younicos, Germany Abu Dhabi Island, UAE	0.05 MW 1 MW/7 MW h 34 MW/244.8 MW h 1 MW 3 MW/18 MW h 40 MW	The 1st large-scale, proof principle, operated in 1992 Refueling the fixed route vehicles Wind power fluctuation mitigation Wind power on an island Wind & solar power EES for islands, commissioning 2013 Load levelling

34 MW, 245 MWh, za vjetrofarmu od 51 MW, 100% u "on-peak" periodu

Litij ionske baterije

- Na tržištu baterije s najvećom gustoćom energije
- Konvencionalni dizajn: anoda je ugljik, katoda je litij metalni oksid (LiCoO₂ ili LiMO₂), a elektrolit je Li sol u organskom topivu (LiClO₄)
- Prednosti: brzina odziva, gustoća energije i snage, ciklusna efikasnost (97%)
- Nedostaci: utjecaj DoD na životni vijek, traži PC!

Area	Technology	Target application	Date	Benefit
Cathode	Manganese spinel (LMO)	Hybrid electric vehicle, cell phone, laptop	1996	durability, cost
•	Lithium iron phosphate	Segway Personal Transporter, power tools, aviation products, automotive hybrid systems, PHEV conversions	1996	moderate density (2 A·h outputs 70 amperes) operating temperature >
	Lithium nickel manganese cobalt (NMC)		2008	density, output, safety
	LMO/NMC			power, safety (although limited durability)
	Lithium iron fluorophosphate		2007	durability, cost (replace Li with Na or Na/Li)
	Lithium air	automotive	2009	density, safety ⁷¹
	5% Vanadium- doped Lithium iron phosphate olivine		2008	output

Anode	<u>Lithium-titanate</u> <u>battery</u> (LT)	automotive (<u>Phoenix</u> <u>Motorcars</u>), electrical grid bus	2008	output, charging time, durability (20 years, 9,000 cycles), safety, operating temperature (-50–70 °C)
	<u>Lithium vanadium</u> <u>oxide</u>	automotive	2007	density (745Wh/I) ⁷⁸
	Cobalt-oxide nanowires from genetically modified virus		2006	density, thickness ⁷⁹
	3D Porous Particles Composed of Curved 2D Nano- Sized Layers	high energy batteries for electronics and electrical vehicles	2011	specific capacity > 2000 mA·h/g, high efficiency, rapid low-cost synthesis 81
	Iron-phosphate nanowires from genetically modified virus		2009	density, thickness

Silicon/titanium dioxide composite nanowires from genetically modified tobacco virus	explosive detection sensors, biomimetic structures, water- repellent surfaces, micro/nano scale heat pipes	2010	density, low charge time ⁸⁵
Porous silicon/carbon nanocomposite spheres	portable electronics, electrical vehicles, electrical grid	2010	high stability, high capacity, low charge time
nano-sized wires on stainless steel	wireless sensors networks,	2007	density ⁸⁷⁸⁸ (shift from anode- to cathode- limited), durability issue remains (wire cracking)
Metal <u>hydrides</u>		2008	density (1480 mA·h/g) ⁸⁹
Silicon Nanotubes (or Silicon Nanospheres) Confined within Rigid Carbon Outer Shells	stable high energy batteries for cell phones, laptops, netbooks, radios, sensors and EV	2010	specific capacity 2400 mA·h/g, ultra-high Coulombic Efficiency and outstanding SEI stability
Silicon nano-powder in a conductive polymer binder	Automotive and Electronics	2011	high capacity anodes (1400 mA·h/g) with good cycling characteristics

- Dva nova dizajna
 azirana na litijionskoj tehnologiji
 za mrežnu
 aplikaciju:
 - Litij-titan dizajn –
 mangan u katodi i
 titan u anodi
 - Litij željezni fosfat
 dizajn katoda je
 željezni fosfat

figure 10. A 1,000 kWh lithium-ion battery system applied in a utility frequency regulation application (photo courtesy of ZBB Energy Corporation).

"Flow Battery"

- Punjiva gorivna ćelija u kojoj elektrolit koji sadrži elektroaktivne tvari teče kroz elektrokemijsku (reaktorsku) ćeliju i pretvara kemijsku energiju u električnu energiju
- Primjer Zn-Br: vodena otopina soli cinkovog bromida pohranjena je u dva rezervoara, za vrijeme punjenja pumpa pumpa elektrolit kroz reaktorsku ćeliju i metalni Zn se taloži na negativnoj površini a bromid se pretvara u bromin na pozitivnoj površini elektrode reaktorske ćelijei tada se pohranjuje u obliku uljne otopine u drugi rezervoar
- Prednost je modularnost sustava, te mala težina (plastični rezervoari i cijevi), nema samopražnjenja

Tehnološke osnove iskorištavanja obnovljivih izvora energije

Couple	Max. cell voltage (V)	Average electrode power density (W/m²)	Average fluid energy density (W-h/kg)
Iron-tin	0.62	<200	
Iron-titanium	0.43	<200	
Iron-chrome	1.07	<200	
Vanadium-vanadium (sulphate)	1.4	~800	25
Vanadium-vanadium (bromide)			50
Sodium/bromine polysulfide	1.54	~800	
Zinc-bromine	1.85	~1,000	75
Lead-acid (methanesulfonate)	1.82	~1,000	
Zinc-cerium (methanesulfonate)	2.43	<1,200–2,500	

Redox Flow batteries for the storage of renewable energy: A review Alotto et al. Renewable and Sustainable Energy Reviews 29 (2014) 325–335

ZA

- Odvojena pohrana od konverzije
- Membrana
- Nema samopražnjenja
- Moguće duboko pražnjenje
- Lakša manipulacija reaktantima nego kod gor.ćel.
- Lagana kontrola temperature
- Široki raspon primjene

PROTIV

- Mala gustoća snage i energije
- Gubici zbog strujashunta i protoka fluida

Elektomagnetska pohrana energije

- Kapacitivni spremnik (relativno niska gustoća energije, ali velika gustoća snage – bljeskalice),
- Induktivni spremnik; supravodljivi materijali -SMES

$$D = \varepsilon_0 \varepsilon_r E \left[\text{C/m}^2 \right]$$

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d} \left[\text{F} \right]$$

$$w = \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 \left[\text{J/m}^3 \right]$$

$$W = \frac{1}{2} C V_0^2 \left[\text{J} \right]$$

$$w = \frac{1}{2} \frac{B^2}{\mu} = \frac{1}{2} \mu \text{H}^2$$

$$\mu = \mu_0 \mu_r$$

$$E = \frac{LI^2}{2}$$

Pohrana toplinske energije

review on high temperature thermochemical heat energy storage", Pardo et al.,

Renewable and sustainable energy reviews, 32 (2014) 591-610

- Koncept toplinskog kapaciteta (promjena temperature medija za pohranu; senzibilna toplina)
 - Zrela tehnologija (Španjolska PS10, PS20, Andasol 1 i 2; SAD Solar One)

Koncept fazne tranzicije (latentna toplina; *T* = konst)

Infinia is developing a thermal energy storage (TES) system that uses Phase Change Material (PCM) as the thermal storage media and employs the high temperature heat pipes to transfer heat from receiver to PCM and PCM to Stirling engine

• Koncept kemijskih reakcija $\mathbb{Q}+CH_4+H_2O\longleftrightarrow CO+3H_2; \Delta H=206 \text{ kJ/mol}$

- Toplina se pohranjuje endoretmnom a oslobađa egzotermnom reakcijom
- Vrijeme pohrane i mogućnosti transporta su teoretski neograničene
- Nisko (273-573 K) i <u>visoko (573-1273 K)</u> temperaturni sustavi

622	Senzibilna	Latentna	Termokemijska
Volumna gustoća energije	Mala – 50 kWh/m³	Srednja – 100 kWh/m³	Velika – 500 kWh/m³
Masena gustoća energije	Mala: 0,02-0,03 kWh/kg	Srednja: 0,05-0,1 kWh/kg	Velika: 0,5-1 kWh/kg
Temperatura pohrane	Identična temp. punjenja	Identična temp. punjenja	Ambijentalna temp.
Vrijeme pohrane	Ograničeno (temp. gubici)	Ograničeno (temp. gubici)	Neograničena
Transport	Male udaljenosti	Male udaljenosti	Neograničeno
Zrelost	Industrijski nivo	Pilotska postrojenja	Laboratorijski nivo
Tehnologija	Jednostavna	Srednja	Kompleksna

KEMIJA: Odabir reakcije PROCESNO INŽINJERSTVO: •Reverzibilnost Postrojenje •Brzina reakcije Dimenzioniranje Operativni uvjeti postrojenja •Životni vijek •Optimizacija procesa katalizatora •kinetika **MATERIJALI:** •Korozija •Utjecaj nečistoća **TES** sustav Cijena konstrukcijskog materijala **PRIJENOS TOPLINE:** SISTEMSKA ANALIZA: Dizajn izmjenjivača topline •Tehnoekonomske analize Dizajn katalitičkog reaktora •Sigurnost •Karakteristike prijenosa topline

•Termodinamička optimizacija

Zanimljivosti

 Vodikova ekonomija-gorivne ćelije: efikasnost elektrolize 70%; efikasnost gorivnih ćelija 50%
 → efikasnost tehnologije 35%

Kako radi gorivna ćelija s PEM membranom

Comparison of Fuel Cell Technologies

Fuel Cell Type	Common Electrolyte	Operating Temperature	System Output	Electrical Efficiency	Combined Heat and Power (CHP) Efficiency	Applications	Advantages
Polymer Electrolyte Membrane (PEM)*	Solid organic polymer poly- perfluorosulfonic acid	50 - 100°C 122 - 212°F	<1kW - 250kW	53-58% (transportation) 25-35% (stationary)	70-90% (low- grade waste heat)	Backup power Portable power Small distributed generation Transportation Specialty vehicles	Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90 - 100°C 194 - 212°F	10kW - 100kW	60%	>80% (low- grade waste heat)	- Military - Space	Cathode reaction faster in alkaline electrolyte, leads to higher performance Can use a variety of catalysts
Phosphoric Acid (PAFC)	Liquid phosphoric acid soaked in a matrix	150 - 200°C 302 - 392°F	50kW - 1MW (250kW module typical)	>40%	>85%	- Distributed generation	Higher overall efficiency with CHP Increased tolerance to impurities in hydrogen
Molten Carbonate (MCFC)	Liquid solution of lithium, sodium, and/or potassium carbonates, soaked in a matrix	600 - 700°C 1112 - 1292°F	<1kW - 1MW (250kW module typical)	45-47%	>80%	Electric utility Large distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP
Solid Oxide (SOFC)	Yttria stabilized zirconia	600 - 1000°C 1202 - 1832°F	<1kW - 3MW	35-43%	<90%	Auxiliary power Electric utility Large distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte reduces electrolyte management problems Suitable for CHP Hybrid/GT cycle

^{*}Direct Methanol Fuel Cells (DMFC) are a subset of PEM typically used for small portable power applications with a size range of about a subwatt to 100W and operating at 60 - 90°C.

For print copies of this fact sheet, please call the DOE Energy Efficiency and Renewable Energy Information Center at 877-EERE-INF(O)/877-337-3463.

December 2008

U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov

Application	Matching Electricity Supply to Load Demand	Providing Backup Power to Prevent Outages	Enabling Renewable Technologies	Power Quality
Discharged Power	< 1MW to 100's of MW	1 – 200 MW	20kW to 10 MW	1 kW to 20MW
Response Time	< 10min	< 10ms (prompt) < 10 min (conventional)	< 1sec	< 20ms
Energy Stored	1 MWh to 1000 MWh	1 MWh to 1000 MWh	10 kWh to 200 MWh	50 to 500 kWh
Need for high efficiency	High	Medium	High	Low
Need long cycle or calendar life	High	High	High	Medium

Storage	Pumped	Compressed	Batteries	Flywheels	SMES	Capacitors
Technology	Hydropower	Air Storage				
Energy Storage Capacity	< 24,000 MWh	400 - 7200 MWh	<200 MWh	< 100 kWh	0.6 kWh	0.3 kWh
Duration of Discharge at maximum power level	~ 12 hours	4 – 24 hours	1 – 8 hours	Minutes to 1 hour	10 s	10 s
Power Level	< 2000MW	100-300 MW	< 30 MW	< 100 kW (each)	200 kW	100 kW
Response Time	30 ms	3 -15 min (large scale)	30 ms	5 ms	5 ms	5 ms
Cycle Efficiency	0.87	0.8	0.70 - 0.85	0.93	0.95 1	0.95 1
Lifetime	40 yrs	30 yrs	2-10 yrs	20 yrs	40 yrs	40 yrs