Unified and unsupervised bilingual phrase alignment in specialized domain Jingshu Liu

Nantes Machine Learning Meetup

2019-12-2

OUTLINE

Introduction

Word-level representation

Sequence-level representation

Unsupervised phrase alignment

Conclusion and perspectives

Introduction

•000

- ► Word-level representation
- ► Sequence-level representation
 - ► Context-independent representation (Compositional)
 - ► Contextualized representation (Language model)
 - ► Short sequence representation
- ► Alignment
 - ► Word-level alignment (bilingual lexicon induction/extraction)
 - ► Alignment vs Translation

$$\arg\max_{y} \prod_{t=1}^{T_y} P(y^t | x, y^1, y^2, ..., y^{t-1})$$
$$\arg\max_{y} P(y | x)$$

► Unsupervised learning (particularly in Neural Machine Translation)

CONTEXT

0000

- ► Semantic analysis software editor.
- ► Key phrase extraction + aspect based sentiment analysis (ABSA).
- ▶ International clients.

A unified monolingual phrase representation is the prerequisite for many NLP applications (term classification/clustering). A cross-lingual phrase representation enables an aggregation of all the monolingual data. Besides, it facilitates the transition from one language to another.

Two principles for sequence modeling

- ▶ Compositional principle. "The meaning of the whole is a function of the meaning of the parts". $(a frying pan) \Rightarrow$ non contextualized
- ► **Syntactical principle.** "You shall know an object by the company it keeps." (... a pain in the neck ...) ⇒ contextualized

What we want at the end...

Align phrases of variable length in specialized domain corpora without cross-lingual information.

- ightharpoonup ankle boot ightharpoonup bottine
- ightharpoonup airflow ightharpoonup flux d'air
- ▶ electric power industry → 发电业 (one word)

where the phrases are short sequences usually between 1 and 5 words.

WORD-LEVEL REPRESENTATION

- ► Word co-occurrence
 - ► COOC + PMI (No learnable parameters)
 - ► TF-IDF (No learnable parameters)
 - ► Glove (With learnable parameters)
- ▶ Word-context prediction $(P(w|c_i) \text{ or } P(c_i|w) \text{ where each probability for the pair } (w, c_i), c_i \in Context \text{ is calculated independently})$
 - ► Word2vec (CBOW, Skip-gram)
 - ► FastText (+subword information)
- ▶ From language modeling (next/mask word prediction based), $(P(w_t|w_1,...w_{t-1})$ or $P(mask_t|w_1,...w_{t-1},w_{t+1},...,w_n)$ where each context is related.)
 - ► ELMo (BiLSTM)
 - ► BERT, XLNET, RoBERTa, XLM, ... (Transformer)

Co-occurrence matrix, window size=3

It is the first vehicle in the world in which passengers pay for their ride upon entering it.

$$v_i^{\text{passengers}} = \begin{cases} 1, & i \in \{\text{world, in, which, pay, for, their}\} \\ 0, & \text{otherwise} \end{cases}$$

Word2vec (CBOW) with a window size of 1.

WORD-LEVEL REPRESENTATION

- ► Word co-occurrence based ⇒ Explicit, not suitable for large-scale calculation except Glove.
- ► Word-context prediction based ⇒ Generalized, dense representations suitable for linear transformations.
- ► From language modeling ⇒ Above + context sensitive (each input has different representations based on the context). But what if one does not have the context for the inference?

SEQUENCE-LEVEL REPRESENTATION

PURE COMPOSITION

TOO NAIVE

- ► Highly dependent on the task-oriented supervised information.
- ► Length sensitive.
- ▶ Word inner relation ignored. This approach treats separately each word of a multi-word sequence, thus the inner relation between them is completely ignored.

Addition

$$v = \sum_{i=1}^{n} v_i \text{ Or,}$$
$$v = \frac{\sum_{i=1}^{n} v_i}{n}$$

- ► Good performance with ability to handle fertility problem.
- ► Order ignored.
- ► Uniform weight.

CONCATENATION

$$v \in \mathbb{R}^{nd}$$

Word order sensitive but variable length phrases are no longer semantically comparable even if we pad them.

 $cos(v_{(sneaker, shoe)}, v_{(sneaker)})$ will be $\frac{1}{2}$ if we pad the "sneaker" with zeros. This similarity will be probably lower than:

$$cos(v_{(sneaker, shoe)}, v_{(sneaker, shop)})$$

CBOW/SKIP-GRAM BASED

- ► Consider ngrams as one token during the training of CBOW/Skip-gram. (Mikolov, 2013)
 - ▶ Works relatively well on idiomatic phrases but less effective on compositional ones.
 - ► Cannot treat new phrases that were never passed to the training.
- ► Extended Skip-gram with negative sampling. (Artetxe, 2018) The idea is to update all the ngram vectors in addition to the single word vectors with the same context.

$$E = -\log \sigma(s_{w_O}^T h) - \sum_{w_k \in \mathcal{W}_{neg}} \log \sigma(-s_{w_k}^T h)$$

where h is the output of the hidden layer for the input word and each ngram token in the same window. s is the output of the hidden layer for the unigram context $c \in w_O \cup W_{neg}$.

▶ Better performance for compositional phrases yet new phrases remains unmanageable.

Traditional NN for encoding sequences

- ► Convolutional Neural Network (CNN)
- ► Recurrent Neural Network (denoted by RctNN in our context)
- ► Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
- ► Recursive Neural Network (denoted by RNN in our context)

CNN

RCTNN

LSTM

RNN vs RCTNN

RNN is a generalized version of RctNN with a given tree structure.

Transformers

- ► Multi-head self-attention (Vaswani, 2017).
- ► Transformer encoder (self-attention + Position-wise Feed-Forward Networks which is basically two linear transformations with a ReLU activation in between.)

The self-attention can be viewed as a dynamic fully-connected layer which does not need to change its weight matrix shape for different sized inputs.

The solid lines represent a linear transformation with learnable parameters and the dashed lines mean a dot-product which does not require any parameters.

Pretrained transformers

- ► Most pre trained language models with transformers do not modify the basic transformer cell architecture. What they propose is on the training method of the networks.
- ► We tested BERT-multilang for cross-lingual tasks. Recently we have also qualitatively tested XLM and CamemBert in auto-complete scenario.

FROM WHAT WE HAVE SEEN...

- ► Traditional NNs such as CNN and LSTM have obtained sota results on sequence tasks. In our case they are worse than the addition baseline.
- ▶ Using pre-trained language models (BERT) with fine tuning has set new standards in NLU (glue) tasks. However, apart from the fact that the tasks are sentence-level, fine-tuning such large model with modest size dataset seems to be less effective.
- ▶ Using pre-trained models with feature extraction has obtained very similar results. We would like to incorporate the pre-trained language models with feature extraction as a substitution of word2vec.
- ► Recursive neural network seems promising as it captures the sequence inner relation and fits more short sequences.

What we propose...

- ► Similar to RNN that captures the word inner relation.
- ► Similar to RNN that encodes a sequence into one vector without pooling operation.
- ▶ Does not need information other than the text. (tree-free)

TF-RNN

TF-RNN

$$v_{i,l}^{j} = \tanh(W_{l}v_{i}^{j} + b_{l})$$

$$v_{i-1,r}^{j} = \tanh(W_{r}v_{i-1}^{j} + b_{r})$$

$$v_{i}^{j+1} = \tanh(v_{i,l}^{j} + v_{i-1,r}^{j})$$
...
$$v_{o} = \tanh(Uv_{0}^{n} + b)$$
(1)

- ▶ $W_l \in \mathbb{R}^{d*d}$ et $W_r \in \mathbb{R}^{d*d}$ the weight matrices for associating the left and right context.
- ightharpoonup A vector of the layer j+1 is calculated according to a pair of adjacent nodes from the previous layer j.
- ▶ $U \in \mathbb{R}^{p*d}$. Each linear transformation is followed by an activation.

	RctNN	CNN	Self-Att	TF-RNN
Computational complexity	$O(n \cdot d^2)$	$O(k \cdot n \cdot d^2)$	$O(n^2 \cdot d)$	$O(\frac{n(n-1)}{2} \cdot d^2)$
Dependency length	O(n)	$O(\frac{n}{k})$	O(1)	$O(\frac{n}{2})$

n = sequence length, d = model dimension where we assume $d = d_{input} = d_{hidden} = d_{output}$ for simplifying the comparison. k = kernel width for CNN

- ightharpoonup Quadratic with regard to n. But we treat only the short sequences, n is very small.
- ► The complexity for the self attention is only one head in one layer, so in practice it should be multiplied by $n_h * l$ where n_h is the head number and l the layer number.

HOW TO TRAIN THE NETWORK?

► Encoder-decoder

- ► We have proposed a new training objective: "Wrapped context prediction"
- ▶ Predict the context around a phrase with a specific vector to replace the phrase so that the generated sequence is syntactically complete.
 - Normalization to sea level air density has no significant effect on the result . \rightarrow Normalization to sea level [PHR] has no significant effect on the result . [EOS]
- ► Can be seen as a conditional Skip-gram. In place of using independent one hot vectors, it predicts a continuous sequence where each predicted token is related from an encoded representation.

OVERVIEW

- ▶ Inner relation is captured by the TF-RNN.
- ▶ Context information is captured by the training method.

EXPERIMENTS

- ▶ Phrase synonymy on specialized domain.
- ▶ Phrase similarity on general domain.
- ► Three inputs: static, contextualized and extended skip-gram. The static vectors are domain-specific information reinforced. (Liu, 2018)
- ► Four encoders: CNN, RctNN, Transformer and TF-RNN.

Main results

		Synonymy (MAP)			Similarity (Correlation)	
	Method		WE-en	BC-en	SemEval13 [†]	SemEval17
	Skip-gram-ext	< 0.5	< 0.5	23.30	0.378	76.827
	Static-mean	5.29	12.19	39.65	26.910	38.843
	BERT-reduce	4.07	10.44	26.04	0.754	12.735
Baselines	BERT-mean	4.49	16.59	36.58	19.482	36.378
	ELMo-reduce	1.54	4.09	26.23	35.112	37.968
	ELMo-mean	7.37	5.20	29.27	37.991	36.207
	ELMo-concat	8.97	9.60	28.28	36.233	31.420
	Static-CNN (0.4M)	7.42	15.71	35.75	(29.890)	42.245
Context	Static-Recurrent (0.5M)	12.89	20.53	42.60	(21.720)	42.961
based	Static-Transf. (5M)	4.62	15.82	35.90	(39.524)	49.324
	Static-TF-RNN $(0.5M)$	15.06	33.47	44.84	(22.003)	44.382

- ► Encoder-decoder systems have better results (on SemEval2013 we do not have textual corpus to train the network).
- ► TF-RNN has the best results on specialized domain.

Reinforced embeddings

Task	Embeddings				
lask	ELMo	BERT	Static		
WE-fr	9.57	6.47	15.06		
WE-en	21.39	26.66	33.47		
BC-en	23.61	26.01	44.84		
Semeval2013 †	24.279	3.262	22.003		
Semeval2017	47.703	29.078	44.382		

- ▶ Domain specific information is more important than more advanced architectures.
- ► ELMo is more efficient on general domain while BERT may need more data (831 phrases in SemEval2017) to be effective because it tokenizes words in *subwords*.

Wrapped Context Prediction

Task	Training objectives				
Task	Plain	Context	Wrapped		
WE-fr	9.40	13.35	15.06		
WE-en	30.08	32.85	33.47		
BC-en	39.48	41.49	44.84		
Semeval2013†	16.759	21.376	22.003		
Semeval2017	39.223	43.079	44.382		

- ► The context prediction is meaningful.
- ► Adding a universal token for phrases facilitates the learning.

PHRASE ANALOGY

TF-RNN	ADDITION			
wind power capacity : hydrogen storage :: wind power tank : ?				
hydrogen storage device gas storage tank hydrogen storage system	storage of hydrogen hydrogen storage system hydrogen storage device			
marine mammal : marine epifauna :: marine animal : ?				
marine fish marine environment marine site	epifauna marine non marine			
safety equipment : safety standard :: safety glass : ?				
safety concept safety requirement carbon glass	glass fibre make of glass carbon glass			

Top 3 phrases similar to b - a + a'

WORD ALIGNMENT

► Mikolov, 2013 Mapping by a linear transformation (Bilingual Word Embedding).

$$\arg\min_{W} \sum_{i} ||X_i W - Z_i||^2 \tag{2}$$

- ► Artexte et al 2018 A combination of several improvements.
 - whitening, orthogonal mapping, reweighting, dewhitening, dimension reduction
- ► Lample and Conneau 2019 Pre-trained cross-lingual BERT. (XLM) (word or sequence level)
 - ► BERT + Translation Language Modeling (TLM)

COMPONENTS

- ► Encoder-decoder has proven to be the best framework in our monolingual experiments.
- ▶ Shared encoder. We only use the encoder to generate bilingual multi-word representations once the training is completed.
- ► Training objective: **wrapped context prediction**. We can consider it as a *Denoising* objective in NMT.
- ▶ Pseudo back-translation: we use the bilingual word embedding approach of Artetxe, 2018 to generate synthetic translations in order to have pseudo parallel data for the single-words.

EXPERIMENTS

- ► Bilingual phrase alignment.
- ► Two corpora in specialized domains. (WE, BC)
- ► Three language pairs. (en-es/fr/zh)
- ► Input: pre-trained reinforced cross-lingual fastText embeddings.
- ► Two baseline approaches. (Compositional method with context projection, Addition)
- ► Five different phrase encoders. (RctNN, CNN, LSTM, TXM, TF-RNN)
- ► Results in MAP. (mean average precision)

Main results

Dataset		Met	Method E		Enc	oder	Our	
Corpus	Phrases	CMCBP	ADD	Rec.	CNN	LSTM	TXM	method
	sw (72)	35.72	47.46	46.71	45.12	46.25	43.37	47.76
\mathbf{BC}	n2n (21)	68.73	81.10	28.52	62.10	50.05	59.26	86.11
en-es	p2q (9)	-	42.18	1.11	10.65	7.04	4.49	49.11
	all (108)	-	52.85	36.78	43.04	43.72	43.22	55.40
	sw (15)	65.56	78.25	77.22	78.33	79.36	85.56	79.44
WE	n2n (61)	42.09	57.37	6.16	40.84	18.64	41.82	62.19
en-fr	p2q (14)	-	15.83	< 0.5	10.07	9.09	12.35	37.95
	all (90)	-	55.77	17.25	43.33	27.42	44.53	62.10
	sw (15)	63.35	77.92	88.89	75.78	87.18	84.44	87.62
WE	n2n (61)	35.94	62.68	7.31	40.33	23.07	44.68	61.35
en-es	p2q (14)	-	43.28	< 0.5	28.57	17.86	37.20	46.21
	all (90)	_	62.20	19.77	44.41	32.94	50.14	63.38
	sw (17)	-	53.43	70.26	76.47	71.43	65.92	66.50
WE	n2n (47)	-	23.34	17.53	16.55	25.24	18.86	23.01
en-zh	p2q(26)	-	4.97	5.13	7.60	2.37	5.80	12.32
	all (90)	-	22.67	23.91	25.28	27.36	23.98	28.13
WE	n2n (40)	67.32	78.36	46.07	68.51	44.82	48.47	88.01
en-fr	p2q (33)	-	34.38	2.38	20.01	7.93	28.25	41.83
Liu2018	all (73)	-	58.48	26.06	46.59	28.13	39.33	67.13

- ► Our system has obtained the best overall results. Especially on the different length phrase alignment.
- ► The additive approach remains a solid approach. But between linguistically distant language pairs (English-Chinese), all encoder-decoder systems outperform the addition based approach.
- ► Transformer encoder is designed for long sequence tasks.

IN SINGLE-WORD MODE

	BC		WE	
Method	en-es	$\mathbf{e}\mathbf{n}\text{-}\mathbf{f}\mathbf{r}$	en-es	en-zh
Mikolov, 2013	39.96	91.33	87.27	45.88
Artetxe, 2018	49.13	95.56	90.39	73.52
Our method	45.96	89.44	88.89	58.75

- ▶ Not too much degradation compared to Artetxe (2018).
- ▶ Better results compared to Mikolov et al. (2013).
- ► The proposal manages to hold a comparable performance for the standard bilingual word alignment task.

EXAMPLES

Dataset	Source	Addition	Our method
BC	breast cancer	cáncer mamario	cáncer de mama
en-es	cell death	muerte celular	muerte
WE	blade tip	angle des pales	côté supérieur de la pale
en-fr	Darrieus rotor	rotor tripale	rotor vertical
WE	airflow	freno aerodinámico	flujo de aire
en-es	wind power plant	electricidad del viento	planta eólica
WE	wind vane	偏航 □ 电机	风向标
en-zh	electricity power	电力	电力

Conclusion

- ► A new architecture to encode phrases in a unified way without the need for a syntax tree.
- ► A new training objective for unsupervised encoder-decoder systems.
- ▶ A pseudo *back-translation* to help the cross-lingual training.

PERSPECTIVES

► Extract-Edit (Wu, 2019) ⇒ synthetic translations for multi-words.

Diagram extracted from Wu et al, 2019

ightharpoonup XLM \Rightarrow end-to-end model but needs parallel data to fine-tune.

BIBLIOGRAPHY

https://www.meetup.com/fr-FR/ Nantes-Machine-Learning-Meetup/events/266311758/ Many thanks!