AMENDMENTS TO THE SPECIFICATION:

Before the paragraph beginning at page 1, line 4, insert the following:

--REFERENCE TO COMPUTER PROGRAM LISTINGS

A computer program listing appendix with twelve files is provided on a compact disc as part of the invention disclosure. The material of the twelve files on the compact disc is incorporated by reference. The files included on the compact disc are:

- generate-discretization.mu has a size of 6,241 bytes and was created (stored on the CD-R) on December 12, 2006.

 This file contains the program "generate-discretization", referred to as Appendix 1.
- preparations.mu has a size of 3,101 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the subroutine "preparations", referred to as Appendix 2.
- setup-equations.mu has a size of 17,414 bytes and was created (stored on the CD-R) on December 12, 2006.
 This file contains the subroutine "setup-equations", referred to as Appendix 3.
- solve-equations.mu has a size of 4,681 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the subroutine "solve-equations", referred to as Appendix 4.
- analyze-solution.mu has a size of 22,654 bytes and was created (stored on the CD-R) on December 12, 2006. This file

contains the subroutine "analyze-solution", referred to as Appendix 5.

- appendix6.txt has a size of 10,588 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D100, Order 2, on the grid $(-1,1)^3$, optimize=0, referred to as Appendix 6.
- appendix7.txt has a size of 3,289 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D100, Order 2, on the grid $(-1,1)^3$, optimize=1, referred to as Appendix 7.
- appendix8.txt has a size of 9,465 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D100, Order 2, on the grid (-1,1)^3, optimize=2, referred to in the following as Appendix 8.
- appendix9.txt has a size of 47,206 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D100, Order 4, on the grid $(-2,2)^3$, optimize=0, 30, referred to as Appendix 9.
- appendix10.txt has a size of 4,092 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D100, Order 4, on the grid (-2,2)^3, optimize=1, referred to as Appendix 10.

- appendix11.txt has a size of 49,617 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D100, Order 4, on the grid $(-2,2)^3$, optimize=2, 5, referred to as Appendix 11.
- appendix12.txt has a size of 16,572 bytes and was created (stored on the CD-R) on December 12, 2006. This file contains the output for D200, Order 2, on the grid (-1,1)^3, optimize=0, referred to as Appendix 12.--

Please replace the paragraph spanning pages 8 and 9 with the following:

--An example is a general one-dimensional discretization for a derivative at node i which uses the stencil between the nodes i-m and i+n, where m and n are given positive integers. On the stencil S=(i-m,i-m+1,...,i-1,i,i+1,...,i+n-1,i+n), the approximation of the first derivative can be written as

$$u_{x} = \frac{1}{\Delta x} \left\{ a_{-m} u_{i-m} + a_{-m+1} u_{i-m+1} + \dots + a_{-1} u_{i-1} + a_{0} u_{i} + a_{1} u_{i+1} + \dots + a_{n-1} u_{i+n-1} + a_{n} u_{i+n} \right\}.$$
(1)

The coefficients a_j , $i = j \in S$ a_j , $j \in S$ determine the numerical properties of the discretization. A general description of the above discretization can be found in D1 which discusses the method for obtaining the coefficients a_j . Expression (1) also generalizes to higher derivatives. —

Replace the paragraph beginning at page 47, line 16 with the following:

-- The second derivative $D_2 = \frac{\partial^2 u}{\partial e_1^{21}}$ $D_2 = \frac{\partial^2 u}{\partial e_1^2}$ can be expressed in the grid-based

derivatives u_{xx} , u_{yy} , u_{zz} , u_{xy} , u_{yz} and u_{zx} according to

$$\frac{\partial^{2} u}{\partial x_{1}^{2}} = \cos^{2} \alpha \cos^{2} \beta \frac{\partial^{2} u}{\partial x^{2}} + \sin^{2} \alpha \cos^{2} \beta \frac{\partial^{2} u}{\partial y^{2}} + \sin^{2} \beta \frac{\partial^{2} u}{\partial z^{2}} + 2\cos \alpha \cos^{2} \beta \sin \alpha \frac{\partial^{2} u}{\partial x \partial y} + 2\cos \alpha \cos \beta \sin \beta \frac{\partial^{2} u}{\partial x \partial z} + 2\sin \alpha \cos \beta \sin \beta \frac{\partial^{2} u}{\partial y \partial z}.$$
(21)

The terms T_{xx} , T_{xy} , T_{xz} , T_{yy} , T_{yz} and T_{zz} are obtained by the computer program mentioned before, and are given in appendix 12. The stencils T_{xx} , T_{xy} , T_{xz} , T_{yy} , T_{yz} and T_{zz} have been added in various quantities to the stencils T_{fxx} , T_{fxy} , T_{fxz} , T_{fyy} , T_{fyz} and T_{fzz} to obtain the more symmetric representation of equation 20. This shows once more the use of the degrees of freedom, and the equivalence between two expressions for an approximation of D_p using a different T_f but sharing the basis described by the stencils.—

Replace the list of symbols beginning on page 54 with the following:

--List of symbols

A an amplitude of a Fourier component

A', A'' intermediate bases in the transformation from the grid basis to the local basis B

a,b,c,... components of the vector \vec{a}

 \vec{a} vector of preferential direction

 $B(\vec{e}_1,\vec{e}_2,\vec{e}_3,...)$ a local basis, with \vec{e}_1 along a preferential direction, i.e. $\vec{e}_1//\vec{a}$

 C_c computational coefficients used in the approximation of D_p^A

which are dependent on the numerical formulation used

 C_s computational coefficients used in the approximation of D_p^A ,

in the Finite Difference formulation; weighting coefficients $C_{l,m,n,\cdots}$ the weighting coefficients C_s for node l,m,n,\cdots

 D_n spatial p^{th} derivative, to be discretized

 D_p^A an approximation to D_p

 D_p^{LC} an approximation to D_p in the Finite Difference formulation,

representing a linear combination of values

 $D_p^{\alpha_i}$ an approximation to D_p in the Distribution Method, depending on the distribution coefficients α_i

 $D_p^{\varphi,\psi}$ an approximation to D_p in the Finite Element formulation depending on the basis function φ and the test function ψ

f the flux

I the imaginary unit, such that $I^2 = -1$

 i, j, k, \cdots indices numbering the nodes of a structured grid

 i_{max} , j_{max} , k_{max} maximum indices of a grid

 I_{el} the integral of the derivative D_p over a volume, used in the Residual Distribution Method

M order of the error of a discretization

N number of dimensions

P the point where the derivative is computed

p index for a higher (p^{th}) derivative, or first derivative (p = 1)

 p_1, p_2, p_3, \cdots the powers of the derivatives with respect to \vec{e}_1 , \vec{e}_2 , ... in a mixed derivative

 q_1, q_2, q_3, \cdots arbitrary variables

r an integer summation index r_{max} the maximum value of r in the summation

S the stencil: the set of points used in the computation of the approximation \mathcal{D}_p^A

t the time coordinate $t_{11}, t_{1,2}, \cdots$ coefficients used in the transformation between coordinate systems

 T_{eta} represent the terms in the discretization eta resulting from degrees of freedom which remain when the approximated value D_p^A is optimized

u unknown at a grid point

 u_s unknown at a point of the stencil S

 u_{α} derivative of u with respect to α , e.g. $u_{\alpha} = \frac{\partial u}{\partial \alpha}$

 \vec{x} N-dimensional position vector

 $\vec{\nabla}$ differential operator, $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \cdots\right)^T$

 α_i the distribution coefficient used in the Distribution Method for the distribution of the part $\alpha_i I_{el}$ or $\alpha_i f$ to node i

 Δx , Δy , Δz , ... the mesh spacings in the coordinate directions

 Δt the time increment

 $\frac{\partial u}{\partial x}$ partial p^{th} derivative with of u with respect to x

 $\frac{\partial^p}{\partial x^p}$ derivative with respect to x

 ε_n error term in D_p^A

 $arepsilon_s$ error term in the expression of u_s using a truncated

Taylor series expansion

 \vec{K} the wave number vector

 φ the basis function used in the Finite Element method for representing u over the element

 ψ test function used in the integrals of the derivative in the Finite Element formulation

 ω the angular frequency–