SECTION C

5. Consider two variables **X** and **Y**, for which we have observed a sample of 15 observations:

 $\mathbf{x} = (0.56, 0.23, 1.56, 0.07, 0.13, 1.72, 0.46, 1.27, 0.69, 0.45, 1.22, 0.36, 0.40, 0.11, 0.56)$

$$\mathbf{y} = (2.18, -0.66, 0.21, -2.51, -2.63, 1.27, -0.17, 0.78, 0.02, -0.63, 0.07, 0.46, -0.04, -3.57, 1.63)$$

- (a) Plot A represents the observed values of **x** and **y**. What type of plot is this? Briefly explain.
- (b) Compute and report the value of the correlation coefficient for **x** and **y**. Briefly comment the obtained value. Does this value indicate that there is a causal relation between **X** and **Y**?
- (c) Consider the simple linear regression of \mathbf{y} over \mathbf{x} , $\mathbf{y} = \alpha + \beta \mathbf{x} + \epsilon$, where α is the intercept term, β is the coefficient for \mathbf{x} , and ϵ is the error term. Compute and report the estimates for α and β , given the observed sample. Interpret the estimates' values and their meaning.
- (d) Are the values of α and β estimates in line with what you could have expected from plot A?
- (e) Plot B represents the residual plot of the simple linear regression model $\mathbf{y} = \alpha + \beta \mathbf{x} + \epsilon$. Briefly define the equation of the residuals for the linear regression model fitted in part (c) . Are all the assumptions of the simple linear regression model fulfilled in the above situation? List all of the assumptions and discuss briefly.

[25 marks]

- 6. (a) Suppose that an ordinary deck of 52 cards is shuffled and the cards are then turned over one at a time until the first ace appears. If the first ace is the 20th card to appear, what is the conditional probability that the card following it is the
 - (i) ace of spades?
 - (ii) two of clubs?
 - (b) (i) A gambler has a fair coin and a two-headed coin in their pocket. They select one of the coins at random; when they flip it, it shows heads. What is the probability that it is the fair coin?
 - (ii) Suppose the same coin is flipped a second time, and, again, it shows heads. Now what is the probability that it is the fair coin?
 - (iii) Suppose the same coin is flipped a third time and it shows tails. Now what is the probability that it is the fair coin?
 - (c) There are two machines (M1 and M2), one that requires a single AA battery and another that uses two AAA batteries. There are two AA batteries and four AAA batteries available. Suppose the probability that any particular battery works is *p* and that batteries work or fail independently of one another. Suppose we have to pick one of the machines. For what values of *p* should we pick the machine M1?
 - (d) Two different professors have submitted final exams for duplication. Let X denote the number of typographical errors on the first professor's exam and Y denote the number of such errors on the second exam. Suppose X has a Poisson distribution with parameter μ_1 , and Y has a Poisson distribution with parameter μ_2 , and X and Y are independent.
 - (i) What is the joint probability mass function of X and Y?
 - (ii) What is the probability that at most one error is made on both exams combined?
 - (iii) Obtain a general expression for the probability that the total number of errors in the two exams is m (where m is a nonnegative integer).

[25 marks]

Appendix

Linear Algebra

• The cross product of two vectors in \mathbb{R}^3 is defined by

$$\mathbf{x} \times \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}.$$

where \mathbf{x} and \mathbf{y} are elements in \mathbb{R}^3 .

• Given a point P (with coordinates (p_1, p_2, p_3)) in a plane and a vector \mathbf{n} in \mathbb{R}^3 that is normal to the plane, the implicit equation of the plane is

$$n_1(x - p_1) + n_2(y - p_2) + n_3(z - p_3) = 0.$$

• Given a point P with coordinates (p_1, p_2, p_3) in a plane and two vectors \mathbf{u} and \mathbf{v} that lie in the plane, the parametric equation of the plane is

$$x = p_1 + u_1 s + v_1 t$$

$$y = p_2 + u_2 s + v_2 t$$

$$z = p_3 + u_3 s + v_3 t$$

where $-\infty < s < \infty$ and $-\infty < t < \infty$.

• Given a point P with coordinates (p_1, p_2, p_3) on a line and a vector \mathbf{u} that is parallel to the line, the implicit equation of the line is given by the symmetric equations

$$\frac{x-p_1}{u_1} = \frac{y-p_2}{u_2} = \frac{z-p_3}{u_3}$$

• Given a point P with coordinates (p_1, p_2, p_3) on a line and a vector \mathbf{u} that is parallel to the line, the parametric equation of the line is

$$x = p_1 + u_1 t$$

$$y = p_2 + u_2 t$$

$$z = p_3 + u_3 t$$

where $-\infty < t < \infty$.

• Orthogonal projection of **u** on **a**:

$$\operatorname{proj}_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u}.\mathbf{a}}{||\mathbf{a}||^2} \ \mathbf{a}$$

Vector component of **u** orthogonal to **a**:

$$\mathbf{u} - \text{proj}_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2} \ \mathbf{a}$$

Calculus

Differentiation

f(x)	f'(x)		
x^n	nx^{n-1}		
$\ln x$	$\frac{1}{x}$		
e^x	e^x		
e^{ax}	ae^{ax}		
a^x	$a^x \ln a$		
$\cos x$	$-\sin x$		
$\sin x$	$\cos x$		
$\tan x$	$\sec^2 x$		
$\cos^{-1}\frac{x}{a}$	$-\frac{1}{\sqrt{a^2-x^2}}$		
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$		
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$		

Product Rule for Differentiation

$$y = uv$$
, $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient Rule for Differentiation

$$y = \frac{u}{v}, \quad \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Chain Rule for Differentiation

$$y = u(v(x)), \quad \frac{dy}{dx} = \frac{du}{dv}\frac{dv}{dx}$$

Integration

Constants of integration omitted.

Constants of integration omitted.			
f(x)	$\int f'(x)$		
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1}$		
$\frac{1}{x}$	$\ln x$		
e^x	e^x		
e^{ax}	$\frac{1}{a}e^{ax}$		
$a^x \ (a > 0)$	$\frac{a^x}{\ln a}$		
$\cos x$	$\sin x$		
$\sin x$	$-\cos x$		
$\tan x$	$\ln \sec x $		
$\cos^2 x$	$\frac{1}{2}\left(x + \frac{1}{2}\sin 2x\right)$		
$\sin^2 x$	$\frac{1}{2}\left(x - \frac{1}{2}\sin 2x\right)$		
$\frac{1}{\sqrt{a^2 - x^2}} \left(a > 0 \right)$	$\sin^{-1}\frac{x}{a}$		
$\frac{1}{x^2 + a^2} \left(a > 0 \right)$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$		
$\frac{1}{x\sqrt{x^2 - a^2}}$	$\frac{1}{a}\sec^{-1}\frac{x}{a}$		
$\frac{1}{\sqrt{x^2 + a^2}}$	$\left \ln \left \frac{x + \sqrt{x^2 + a^2}}{a} \right \right $		
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $		
$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln\left \frac{x+\sqrt{x^2-a^2}}{a}\right $		

Integration by parts

$$\int u \, dv = uv - \int v \, du$$

Page 9 of 14

Tautologies

- 1. $P \vee \neg P$ Law of the excluded middle
- 2. $\neg (P \land \neg P)$ Law of non-contradiction
- 3. $\neg \neg P \leftrightarrow P$ Law of double negation
- 4. $(P \land Q) \rightarrow P$ Basis for simplification
- 5. $(P \land Q) \rightarrow Q$ Basis for simplification
- 6. $P \to P \lor Q$ Basis for addition
- 7. $Q \to P \lor Q$ Basis for addition
- 8. $Q \rightarrow (P \rightarrow Q)$
- 9. $\neg P \rightarrow (P \rightarrow Q)$
- 10. $[P \land (P \rightarrow Q)] \rightarrow Q$ Modus ponens
- 11. $[\neg Q \land (P \to Q)] \to \neg P$ Modus tollens
- 12. $\neg P \land (P \lor Q) \rightarrow Q$
- 13. $P \rightarrow [Q \rightarrow (P \land Q)]$
- 14. $[(P \to Q) \land (Q \to R)] \to (P \to R)$ Transitivity of implications
- 15. $(P \to Q) \to [(P \lor R) \to (Q \lor R)]$
- 16. $(P \to Q) \to [(P \land R) \to (Q \land R)]$
- 17. $[(P \leftrightarrow Q) \land (Q \leftrightarrow R)] \rightarrow (P \leftrightarrow R)$ Transitivity of equivalences
- 18. $\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$ De Morgan's law
- 19. $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$ De Morgan's law
- 20. $\neg (P \rightarrow Q) \leftrightarrow P \land \neg Q$
- 21. $(P \to Q) \leftrightarrow (\neg P \lor Q)$
- 22. $(P \leftrightarrow Q) \leftrightarrow [(P \to Q) \land (Q \to P)]$
- 23. $(P \leftrightarrow Q) \leftrightarrow [(P \land Q) \lor (\neg Q \land \neg P)]$
- 24. $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$ Law of contraposition (The contrapositive)
- 25. $[(P \to Q) \land (P \to R)] \leftrightarrow [P \to (Q \land R)]$
- 26. $[(P \to R) \land (Q \to R)] \leftrightarrow [(P \lor Q) \to R]$ Basis for proof by cases
- 27. $[P \to (Q \to R)] \leftrightarrow [(P \land Q) \to R]$
- 28. $(P \to Q \land \neg Q) \leftrightarrow \neg P$ Basis for indirect proofs
- 29. $[(P \land (Q \lor R)] \leftrightarrow [(P \land Q) \lor (P \land R)]$ Law of distributivity
- 30. $[(P \lor (Q \land R))] \leftrightarrow [(P \lor Q) \land (P \lor R)]$ Law of distributivity
- 31. $(P \land Q) \leftrightarrow (Q \land P)$ Law of commutativity
- 32. $(P \lor Q) \leftrightarrow (Q \lor P)$ Law of commutativity
- 33. $[(P \lor (Q \lor R)] \leftrightarrow [(P \lor Q) \lor R]$ Law of associativity
- 34. $[(P \land (Q \land R)] \leftrightarrow [(P \land Q) \land R]$ Law of associativity

Inference Rules

1 Rules of inference involving no quantifiers

- 1) **Propositional Consequence (PC):** In a proof, any statement that is a propositional consequence of previous steps in the proof can be asserted.
- 2) Modus Ponens: In a proof containing both P and $P \to Q$, the statement Q can be asserted.

$$\begin{array}{c} P \\ P \to Q \\ \hline \vdots Q \end{array}$$

3) Conditional Proof/Direct Proof: Assume P. If Q can be proven from the assumption P, then the implication $P \to Q$ can be asserted.

Assume
$$P$$
Intermediate steps
$$Q$$

$$\therefore P \to Q$$

4) Indirect Proof/Proof by Contradiction/Reductio ad Absurdum: Assume $\neg P$ and prove ANY contradiction, then P holds.

Assume
$$\neg P$$
Intermediate steps
Any contradiction
 $\therefore P$

5) **Proof by Cases:** $Q \vee R$ is one of the steps of the proof. $Q \to P$ and $R \to P$ are also steps in the proof. Then P can be asserted.

$$Q \lor R$$

Assume Q
Intermediate steps P (end of case 1)
Assume R
Intermediate steps P (end of case 2)
 $\therefore P$

6) **Biconditional Rule:** If the implications $P \to Q$ and $Q \to P$ appear in the course of the proof, then $P \leftrightarrow Q$ can be asserted.

$$P \to Q$$

$$Q \to P$$

$$\therefore P \leftrightarrow Q$$

7) **Substitution:** Let S(P) be a statement containing P as a sub-statement. Let S(P/Q) denote a statement that results from S(P) by replacing one or more occurrences of the statement P by the statement Q. From $P \to Q$ and S(P), S(P/Q) can be asserted provided no free variables of P or Q become quantified in S(P) or S(P/Q).

$$P \leftrightarrow Q$$

$$S(P)$$

$$\therefore S(P/Q)$$

8) Conjunction: If statements P and Q appear as steps in the proof, the compound statement $P \wedge Q$ can be asserted.

$$\frac{P}{Q}$$

$$\therefore P \wedge Q$$

9) Modus Tollens: If $P \to Q$ and $\neg Q$ are both steps in the proof, then $\neg P$ can be asserted.

$$\begin{array}{c} P \to Q \\ \neg Q \\ \hline \cdot \neg P \end{array}$$

10) Contrapositive Conditional Proof: If the assumption $\neg Q$ leads to the conclusion $\neg P$, then the implication $P \rightarrow Q$ can be asserted.

Assume
$$\neg Q$$

Intermediate steps $\neg P$
 $P \rightarrow Q$

2 Rules of inference involving quantifiers

11) De Morgan's Laws for Quantifiers (Axioms):

(a)
$$\neg(\forall x P(x)) \leftrightarrow \exists x \neg P(x);$$

(b)
$$\neg(\exists x P(x)) \leftrightarrow \forall x \neg P(x);$$

- 12) Universal Specification Axiom (US): If the domain of the variable is not empty, $\forall x P(x) \rightarrow P(t)$ can be asserted, where t is an object in the domain and P is a statement depending upon one free variable.
- 13) Universal Generalization Rule of Inference (UG): If P(x) can be proven, where x is a free variable representing an arbitrary element of a certain domain, $\forall x P(x)$ can be asserted.
- 14) Existential Specification Rule of Inference (ES): If a step of the form $\exists x P(x)$ appears in the proof, P(c) can be asserted, where c is a constant symbol.
- 15) Existential Generalization Axiom (EG): $P(t) \to \exists x P(x)$ can be asserted, if t is an object in the domain of x (assumed not empty).

Statistical Formulas

- Covariance: $Cov(z,h) = \frac{1}{n} \sum_{i=1}^{n} (z \bar{z}) (h \bar{h})$
- Variance: $var(z) = \frac{1}{n} \sum_{i=1}^{n} (z \bar{z})^2$
- Standard deviation: $sd(z) = \sqrt{var(z)}$
- Slope coefficient (linear regression of z over $h) : \, \hat{\beta} = r \frac{sd(z)}{sd(h)}$
- Intercept (linear regression of z over h): $\hat{\alpha} = \bar{z} \hat{\beta}\bar{h}$
- Sample mean of z: \bar{z}

Probability Distributions

Distribution	$\frac{pdf/cdf}{p^{x}(1-p)^{1-x}}$	Mean	Variance
Bernoulli	$p^{\gamma}(1-p)^{\gamma}$	p	p(1-p)
Binomial	$\binom{n}{x}p^{x}(1-p)^{n-x}$	np	np(1-p)
Poisson	$\frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ
Exponential	$\lambda e^{-\lambda x}$ for $(x \ge 0)$, 0 for $(x < 0)$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$
Normal	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2