Dacon Al Bit Trader Competition Day trading with ARIMA

Presenter: Sungguk Cha

Abstract

- 1. We show using past information is important with non-autoregressive CATBOOST.
- Using a simple linear model Autocorrelation Integrated Moving Average (ARIMA), we show that understanding longer time range helps forecasting.
- 3. We ranked **29**/138 (top 21%) in Dacon Al Bit Trader Competition.

Contents

- 1. Introduction
- 2. Approach
- 3. Experiments
- 4. Conclusion

Introduction

Forecasting (time series analysis)

Introduction

Our experiment on Dacon with CATBOOST shows that non-autoregressive approach works poorer than chimpanzee.

Dacon: a bitcoin trading competition

CATBOOST: gradient boosting deep model, it forecasts with a current state only.

Autoregressive:

A statistical model is autoregressive if it predicts future values **based on past values**.

Introduction

In our following experiments, autoregressive models outperform chimpanzee and ranked 29/138 (top 21%) in Dacom competition.

Approach: Statistical models

c is a constant. ϵ is a Normal(0, 1) white noise at time t. ψ and θ are parameters. μ is the expectation.

Autocorrelation (AR(p))

$$X_t = c + \sum_{i=1}^{p} \psi_i X_{t-i} + \epsilon_t$$

Moving Average (MA(q))

$$X_t = \mu + \epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}$$

$$\mu = \sum_{i=0}^{t-1} w_i X_i$$

Autoregressive Moving Average (ARMA(p,q))

$$X_t = c + \epsilon_t + \sum_{i=1}^p \psi_i X_{t-i} + \sum_{i=1}^q \theta_i \epsilon_{t-i}$$

Approach: ARIMA

Autoregressive Integrated Moving Average (ARIMA(p, d, q))

Backshift operator B.

$$BX_{t} = X_{t-1}$$

$$B(BX_{t}) = B^{2}X_{t} = X_{t-2}$$

$$X'_{t} = X_{t} - X_{t-1} = X_{t} - BX_{t} = (1 - B)X_{t}$$

$$X''_{t} = X_{t} - 2X_{t-1} + X_{t-2} = (1 - 2B + B^{2})X_{t} = (1 - B)^{2}X_{t}$$

$$X^{d}_{t} = (1 - B)^{d}X_{t}$$

ARIMA is modeled as following.

$$X_t^d = c + \psi_1 X_{t-1}^d + \dots + \psi_p X_{t-p}^d + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q} + \epsilon_t$$

Experiments

Implementation detail

ARIMA

Used default setting of *statsmodels* library in python to train.

ARIMA(p, 1, 1) for p in [8, 16, 32, 64] are used.

ARIMA X denotes ARIMA(X, 1, 1) model.

Experiments

Implementation detail

Dacon dataset

10종류의 암호화폐

비트코인 포함 (종류 모름)

529개의 샘플

각 샘플은 coin index(0~9) 와 23시간 분봉 (open, high, low, close, volume, quate_av, trades, tb_base_av, tb_quote_av)

각 샘플에 대해서 23시 시점에 [0, 1]개 만큼 사서 2시간 안[0, 119]에 팔아야함

10,000 원시작

대회에 제출하여 채점

Experiments

Results

Approach	Score		
ARIMA(16, 1, 1)	10976.97647		
ARIMA(64, 1, 1)	10952.20946		
ARIMA(32, 1, 1)	10914.36141		
ARIMA(8, 1, 1)	10797.23666		
ARIMA(4, 1, 1)	10797.23666		
Nothing	10000.0		
Baseline-Chimpanzee2	8820.57		
Baseline-Chimpanzee1	6640.34		
CATBOOST	5222.54		

#		팀멤버	점수	제출수	등록일
29	지아봇		10976.97646	7	2분 전
1	씩씩한오리너구리	4	26,085.52387	11	한 시간 전
2	Tinys	9	22,591.49509	7	하루 전
3	이산	(4)	20,717.95157	21	14시간 전
4	킹남지컴퍼니	P	19,640.13688	14	2시간 전
5	ToBigs	4 O 😞 😵	16,960.78941	19	한 시간 전
6	ModuWay	A B B	16,891.40409	11	5일 전
7	정재민		15,993.97509	20	2일 전
8	titanumm		15,758.45809	8	2일 전
9	버터	∅ 0 &	15,358.30881	23	3일 전
10	stat17_hb	•	15,282.79101	4	3일 전

Total 138 entries Ranked top 21%

Conclusion

- We need time information. (I.e., autoregressive model is essential.)
- To capture longer time distance, we need to use a deep model.
- Simple linear model (ARIMA) is effective.

