CHAPTER 3: Compression Coding

Lecture 12

Define

```
source S with symbols s_1, \ldots, s_q with probabilities p_1, \ldots, p_q code C with codewords \mathbf{c}_1, \ldots, \mathbf{c}_q of lengths \ell_1, \ldots, \ell_q and radix r
```

A code C is

- uniquely decodeable (UD) if it can always be decoded unambiguously
- instantaneous if no codeword is the prefix of another
 Such a code is an I-code.

Decision trees can represent I-codes.

- Branches are numbered from the top down.
- Any radix r is allowed.
- Two codes are equivalent if their decision trees are isomorphic.
- By shuffling source symbols, we may assume that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$.

Define

source
$$S$$
 with symbols s_1, \ldots, s_q with probabilities p_1, \ldots, p_q code C with codewords $\mathbf{c}_1, \ldots, \mathbf{c}_q$ of lengths ℓ_1, \ldots, ℓ_q and radix r

By shuffling source symbols, we may assume that $p_1 \ge p_2 \ge \cdots \ge p_q$. The (expected or) average length and variance of codewords in C are

$$L = \sum_{i=1}^{q} p_i \ell_i \qquad V = \left(\sum_{i=1}^{q} p_i \ell_i^2\right) - L^2$$

By shuffling source symbols, we may assume that $p_1 \ge p_2 \ge \cdots \ge p_q$. The (expected or) average length and variance of codewords in C are

$$L = \sum_{i=1}^{q} p_i \ell_i \qquad V = \left(\sum_{i=1}^{q} p_i \ell_i^2\right) - L^2$$

Example

A code C has the codewords 0, 10, 11 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$. Its average length and variance are

$$L = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2 = \frac{3}{2}$$

$$V = \frac{1}{2} \times 1^2 + \frac{1}{4} \times 2^2 + \frac{1}{4} \times 2^2 - L^2 = \frac{5}{2} - \left(\frac{3}{2}\right)^2 = \frac{1}{4}$$

By shuffling source symbols, we may assume that $p_1 \geq p_2 \geq \cdots \geq p_q$. The (expected or) average length and variance of codewords in C are

$$L = \sum_{i=1}^{q} p_i \ell_i \qquad V = \left(\sum_{i=1}^{q} p_i \ell_i^2\right) - L^2$$

A UD-code is minimal with respect to p_1, \ldots, p_q if it has minimal length.

Example

A code C has the codewords 0, 10, 11 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$. Its average length and variance are

$$L = \frac{3}{2} \qquad \qquad V = \frac{1}{4}$$

It is easy to see that C is minimal with respect to $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$.

A code C has the codewords 0, 10, 11 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$. Its average length and variance are

$$L = \frac{3}{2} \qquad \qquad V = \frac{1}{4}$$

It is easy to see that C is minimal with respect to $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$.

Example

A code C' has the codewords 10, 0, 11 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$. Its average length is

$$L = \frac{1}{2} \times 2 + \frac{1}{4} \times 1 + \frac{1}{4} \times 2 = \frac{7}{4} > \frac{3}{2}$$

We see that C' is not minimal with respect to $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$.

By shuffling source symbols, we may assume that $p_1 \geq p_2 \geq \cdots \geq p_q$.

The (expected or) average length and variance of codewords in C are

$$L = \sum_{i=1}^{q} p_i \ell_i \qquad V = \left(\sum_{i=1}^{q} p_i \ell_i^2\right) - L^2$$

A UD-code is minimal with respect to p_1, \ldots, p_q if it has minimal length.

Theorem

If a binary UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- The code may be assumed to be instantaneous.
- $K = \sum_{i=1}^{q} 2^{-\ell_i} = 1$
- $\bullet \ \ell_{q-1} = \ell_q$
- \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

If a binary UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- The code may be assumed to be instantaneous.
- $K = \sum_{i=1}^{q} 2^{-\ell_i} = 1$
- $\bullet \ \ell_{q-1} = \ell_q$
- \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

Proof

Suppose that $p_m > p_n$ and $\ell_m > \ell_n$.

Swapping \mathbf{c}_m and \mathbf{c}_n gives a new code with smaller L, a contradiction.

If a binary UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- The code may be assumed to be instantaneous.
- $K = \sum_{i=1}^{q} 2^{-\ell_i} = 1$
- $\bullet \ \ell_{q-1} = \ell_q$
- \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

Proof

Use the Kraft-McMillan Theorem.

If a binary UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- The code may be assumed to be instantaneous.
- $K = \sum_{i=1}^{q} 2^{-\ell_i} = 1$
- $\bullet \ \ell_{q-1} = \ell_q$
- \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

Proof

If K < 1, then the code can be shortened, reducing L, a contradiction.

If a binary UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- The code may be assumed to be instantaneous.
- $K = \sum_{i=1}^{q} 2^{-\ell_i} = 1$
- $\bullet \ \ell_{q-1} = \ell_q$
- \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

Proof

We know that $\ell_{q-1} \leq \ell_q$. If $\ell_{q-1} < \ell_q$, then there must be nodes in the decision tree where no choice is made, implying K < 1, a contradiction.

If a binary UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- The code may be assumed to be instantaneous.
- $K = \sum_{i=1}^{q} 2^{-\ell_i} = 1$
- $\bullet \ \ell_{q-1} = \ell_q$
- \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

Proof

The tree must end with a simple fork:

Therefore, \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.

HUFFMAN'S ALGORITHM (binary)

Input: a source $S = \{s_1, \ldots, s_q\}$ and probabilities p_1, \ldots, p_q

Output: a code C for S, given by a decision tree

Combining phase

- Replace the last 2 symbols s_{q-1} and s_q by a new symbol $s_{q-1,q}$ with probability $p_{q-1}+p_q$.
- Reorder the symbols $s_1, \ldots, s_{q-2}, s_{q-1,q}$ by their probabilities.
- Repeat until there is only one symbol left.

Splitting phase

- Root-label this symbol.
- Draw edges from symbol $s_{a,b}$ to symbols s_a and s_b .
- Label edge $s_a s_{a,b}$ by 0 and label edge $s_b s_{a,b}$ by 1.

The resulting code depends on the reordering of the symbols.

In the place-low strategy, we place $s_{a,b}$ as low as possible. Consider a source s_1, \ldots, s_6 with probabilities 0.3, 0.2, 0.2, 0.1, 0.1, 0.1.

In the place-low strategy, we place $s_{a,b}$ as low as possible.

Consider a source s_1, \ldots, s_6 with probabilities 0.3, 0.2, 0.2, 0.1, 0.1, 0.1.

In the place-low strategy, we place $s_{a,b}$ as low as possible. Consider a source s_1,\ldots,s_6 with probabilities $0.3,\ 0.2,\ 0.2,\ 0.1,\ 0.1,\ 0.1$. The generated code C has codewords

00 10 11 011 0100 0101

and average length L=2.5 and variance V=0.65 .

In the place-high strategy, we place $s_{a,b}$ as high as possible. Consider a source s_1, \ldots, s_6 with probabilities 0.3, 0.2, 0.2, 0.1, 0.1, 0.1.

In the place-high strategy, we place $s_{a,b}$ as high as possible. Consider a source s_1, \ldots, s_6 with probabilities 0.3, 0.2, 0.2, 0.1, 0.1, 0.1. The generated code C has codewords

01 11 000 001 100 101

and average length L=2.5 and variance V=0.25 .

The average length is the same as for the place-low strategy - but the variance is smaller. It turns out that this is always the case, so we will use only use the place-high strategy.

The Huffman Code Theorem For any given source S and corresponding probabilities, the Huffman Algorithm yields an instantaneous minimum UD-code.