Project Design Phase-II Technology Stack (Architecture & Stack)

Date	13 May 2023	
Team ID	NM2023TMID01937	
Project Name	Project – Audit AI: A Machine Learning for	
	Detecting Fraud in Audit Data	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Example: Order processing during pandemics for offline mode

Reference: https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

Guidelines:

- Include all the processes (As an application logic / Technology Block)
- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)
- 4. Indicate Data Storage components / services
- 5. Indicate interface to machine learning models (if applicable)

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Graphical User Interface (GUI) for user interaction	HTML, CSS, JavaScript, Flask
2.	Machine Learning Model	Fraud detection model using ML algorithms	Python, Scikit-learn, TensorFlow
3.	Data Processing Logic-1	Pre-processing and data cleaning	Python, Pandas
4.	Data Processing Logic-2	Feature engineering and selection	Python, Scikit-learn
5.	Data Storage	Storage for audit data and processed data	Relational or NoSQL database (e.g. MySQL, MongoDB)
6.	Cloud Storage	Storage Service on Cloud	IBM Cloud Object Storage
7.	External API-1	Integration with financial data providers	APIs from financial data providers (e.g. Bloomberg, Reuters)
8.	Infrastructure (Server / Cloud)	Deployment on Cloud	IBM Cloud, Kubernetes

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Scikit-Learn Flask	Python Python
2.	Security Implementations	Data encryption Secure user authentication and access controls Secure APIs	AES-256 algorithm OAuth2 or JWT for secure user authentication secure APIs to prevent unauthorized access to data

S.No	Characteristics	Description	Technology
3.	Scalable Architecture	microservices architecture	Docker, Kubernetes, Memcached, Linkerd, Azure Autoscale.
		cloud-native architecture	Docker, NGINX, AWS, Amazon RDS, Memcached, AWS Lambda
4.	Availability	Multiple availability zones, using load balancers to distribute traffic across servers, and implementing failover mechanisms to ensure that if one server goes down, the application can continue to run on another server.	Technology used for ensuring availability can include clustering, failover mechanisms, and monitoring tools.
5.	Performance	Handle multiple requests in parallel, Caching mechanisms, Content Delivery Networks, Load testing tools, Query optimization techniques, Asynchronous processing	CDNs, Redis, Memcached, JMeter, indexing, database partitioning

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d