What do character-level models learn about morphology? The case of dependency parsing

Clara Vania, Andreas Grivas, and Adam Lopez c.vania@ed.ac.uk, andreasgrv@gmail.com, alopez@inf.ed.ac.uk

ILCC, School of Informatics, University of Edinburgh

Motivation

- Character-level models are effective for MRLs.
- Do we need to explicitly model morphology?
- Compare character-level input with morphological annotations (oracle):

character \rightarrow w, a, n, t, s oracle \rightarrow want, +VB, +3rd, +SG, +Pres

Task: Dependency Parsing

Character-level models outperform word, but not as effective as the oracle

			1	1
$Model \to$	word	char-Istm	oracle	imp.
↓ Language				o/c
Finnish	8.08	88.4	88.8	0.4
Turkish	61.6	68.6	69.5	0.9^{\dagger}
Czech	89.3	90.6	92.0	1.4^{\dagger}
English	88.9	89.4	89.9	0.5
German	84.5	84.5	86.5	2.0^{\dagger}
Hindi	93.1	93.3	93.3	_
Portuguese	85.5	86.0	86.5	0.5
Russian	90.1	92.4	93.3	0.9^{\dagger}
Spanish	86.9	87.4	87.7	0.3
Urdu	87.0	87.1	87.0	-0.1
Arabic	70.9	72.1	72.7	0.6
Hebrew	69.8	69.8	70.0	0.2
			T.	1

Table 1: Label Attachment Score (LAS).

Why do characters beat word?

Character-level models are effective for OOV handling.

dogs vs. sloths

- Parameter sharing between pairs of observed training words also helps.

dog vs. dogs

Why do morphemes beat characters?

- Morphological analysis disambiguates words.

{r,e,a,d} vs. {read, SG, 3rd, Pres}
{r,e,a,d} vs. {read, SG, 1st, Past}

- Morphology helps for $nouns \rightarrow subjects$ and objects.

Characters and Case Syncretism

Maša čitaet **pis/mo**Masha read.3SG **letter.Acc**'Masha reads a letter.'

Na stole ležit **pis/mo** on table lie.3SG **letter.nom** 'There's a letter on the table.'

The oracle relies on case

• Train a classifier to predict case given a learned representation from specific layers, i.e., output of:

Explicitly modeling case improves parsing accuracy

- Multi-task learning: use case prediction as an auxiliary task.
- Augment character input with predicted case*:

(*) We use the same dataset for case prediction.

Conclusion

- Character-level models learn some aspects of morphology.
- For dependency parsing, case syncretism shown to be difficult for character-level models.
- **Explicitly modeling case improves** neural dependency parsing.