Chapter 1

Known Results on Finite Generation

Throughout this section, \mathcal{G} will be a Kac-Moody group with rank 3 Weyl group W over a field k. We will also assume that W is defined by the coxeter diagram with edge labels $a, b, c \in \{3, 4, 6\}$ with $a \leq b \leq c$ and $c \geq 4$. This last condition ensures that W is hyperbolic. Let Σ be the Coxeter complex of W. Let Φ^+ be the positive roots of Σ , and for any $\alpha \in \Phi^+$ we will let \mathcal{U}_{α} be the root group associated to α .

For any vertex v of σ , there will be some walls of Σ which pass through v, and for each of these walls we have a unique positive root. We will call these the **positive roots at v** and denote them by Φ_v . Recall that $\operatorname{st}(v)$ is defined as all the chambers containing v as a vertex. If there are n positive roots at v then $|\operatorname{st}(v)| = 2n$. Furthermore, it is possible to label the positive roots at v as $\alpha_1, \ldots, \alpha_n$ in such a way that $\alpha_i \cap \alpha_j \subset \alpha_k$ for any $1 \leq i \leq k \leq j \leq n$. This ordering is unique upto a reversal of the form $\alpha_i \mapsto \alpha_{n+1-i}$. This possible reversal will not matter in most cases and if it does then a choice of α_1 will be specified. It does however allow us to unambigiously define α_1 and α_n as the **simple** roots at v. They are the unique positive roots at v whose intersection is contained in all other positive roots at v.

Now we can define \mathcal{U}_v to be the subgroup of \mathcal{G} generated by all of the root groups of the positive roots at v. That is

$$\mathcal{U}_v = \langle \mathcal{U}_\alpha | \alpha \text{ is a positive root at } v \rangle = \langle \mathcal{U}_\alpha | \alpha \in \Phi_v \rangle$$

Most of the time the group \mathcal{U}_v is generated by $\mathcal{U}_1, \mathcal{U}_n$ which are the simple root groups at v. However, there are some exceptions to this. Let $\mathcal{U}'_v = \langle \mathcal{U}_1, \mathcal{U}_n \rangle$ where 2n = |st(v)|. Then we have the following results about the \mathcal{U}_v which comes from the known theory about rank 2 Moufang Polygons.

Lemma 1. Let v be a vertex of Σ with |st(v)| = 2n. Let $\mathcal{U}'_v = \langle \mathcal{U}_1, \mathcal{U}_n \rangle$ where $\mathcal{U}_1, \mathcal{U}_n$ are the root groups of the simple roots at v. Then we can describe $[\mathcal{U}_v : \mathcal{U}'_v]$ with the following table

$$\begin{array}{c|cccc}
n & |k| & [\mathcal{U}_v : \mathcal{U}'_v] \\
\hline
4 & 2 & 2 \\
6 & 2 & 4 \\
6 & 3 & 3
\end{array}$$

and $[\mathcal{U}_v : \mathcal{U}_v'] = 1$ in all other cases. In other words, $\mathcal{U}' = \mathcal{U}$ with the exception of the 3 cases above.

We can in fact say a little more than that when |k| = 2 and n = 6.

Lemma 2. Suppose that \mathcal{U} is defined over $k = \mathbb{F}_2$ and v is a vertex of Σ with |st(v)| = 2n = 12. Then it is possible to label the positive roots at v as $\mathcal{U}_1, \ldots, \mathcal{U}_6$ in such a way that $\mathcal{U}_v'' = \langle \mathcal{U}_1, \mathcal{U}_5, \mathcal{U}_6 \rangle$ has index 2 in \mathcal{U}_v .

These two lemmas together give the following corollary.

Corollary 1. Suppose v is a vertex of Σ with |st(v)| = 2n and $\mathcal{U}_1, \mathcal{U}_n$ the simple roots at v. Suppose that $[\mathcal{U}_v : \mathcal{U}_v'] \geq 2$. Let H be the cyclic group of order |k| where k is the field over which \mathcal{U} is defined. Then there is a surjective group homomorphism, call it $\phi_v : \mathcal{U}_v \to H$ such that $\phi_v(\mathcal{U}_1) = \phi_v(\mathcal{U}_n) = \{1\}$.

Proof. Let $\mathcal{U}'_v = \langle \mathcal{U}_1, \mathcal{U}_n \rangle$. Since $[\mathcal{U}_v, \mathcal{U}'_v] \neq 1$ we know we must be in one of the three exceptional cases above. If n = 4 and |k| = 2 then $[\mathcal{U}_v, \mathcal{U}'_v] = 2$ and thus \mathcal{U}'_v is a normal subgroup of \mathcal{U}_v and the quotient has order 2. So we can define $\phi_v : \mathcal{U}_v \to H$ to be the quotient map $\mathcal{U}_v to \mathcal{U}_v / \mathcal{U}'_v$.

If n = 6 and |k| = 3 then $[\mathcal{U}_v : \mathcal{U}_v'] = 3$. But \mathcal{U}_v is a 3-group and thus \mathcal{U}_v' is normal and the quotient has order 3, so we can construct ϕ_v as before.

Now suppose n=6 and |k|=2. Then by Lemma 2, we can define $\mathcal{U}''_v = \langle \mathcal{U}_1, \mathcal{U}_5, \mathcal{U}_6 \rangle$ so that $[\mathcal{U}_v : \mathcal{U}''_v] = 2$ and thus \mathcal{U}''_v is normal and the quotient has order 2. In this case we can define ϕ_v to be the quotient map $\mathcal{U}_v \to \mathcal{U}_v/\mathcal{U}''_v$.

The following corollary will show that we do not have very much wiggle room when defining ϕ_v , and thus if we can write any function which "looks like" ϕ_v then they must be esentially the same.

Corollary 2. Suppose v is a vertex of Σ with |st(v)| = 2n and $\mathcal{U}_1, \mathcal{U}_n$ the simple root groups at v. Let ϕ_v be defined as in the previous corollary. Then $\ker \phi_v$ is the unique, proper, normal subgroup of \mathcal{U}_v which contains \mathcal{U}_1 and \mathcal{U}_n .

Proof. If n = 4 and |k| = 2 or n = 6 and |k| = 3 then the result is clear as $\mathcal{U}'_v = \langle \mathcal{U}_1, \mathcal{U}_n \rangle = \ker \phi_v$ is normal and has prime index, so there can be no other proper normal subgroups containing it.

If n = 6 and |k| = 2 then $[\mathcal{U}_v : \mathcal{U}_v'] = 4$ but \mathcal{U}_v' is not a normal subgroup. It can be shown if N is a normal subgroup containing \mathcal{U}_v' then $\mathcal{U}_5 \subset N$ as well, and thus $\mathcal{U}_v'' \subset N$. But $[\mathcal{U}_v : \mathcal{U}_v''] = 2$ and thus \mathcal{U}_v'' is the only proper normal subgroup containing $\mathcal{U}_1, \mathcal{U}_n$ as desired.

This isn't really a proof but I will fill in the details later. I was more just reminding myself of the arguments.

The general theory gives us the following result

Theorem 1. Let \mathcal{G} be a Kac-Moody group over k with rank 3 Weyl group W as before. For any vertex v of Σ , let $\mathcal{U}'_v = \langle \mathcal{U}_1, \mathcal{U}_n \rangle$ where $\mathcal{U}_1, \mathcal{U}_n$ are the simple roots at v. If $\mathcal{U}'_v = \mathcal{U}_v$ for all $v \in \Sigma$ then \mathcal{U} is finitely generated.

I use this lemma later. This isn't organized yet but I wanted to have it so my reference aren't broken.

Lemma 3. Let $\alpha, \beta, \beta + \alpha, \beta + 2\alpha$ be the positive roots of a root system of type C_2 and \mathcal{U} the unipotent subgroup of $C_2(\mathbb{F}_2)$. Then $\mathcal{U} = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+\alpha} \rangle = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+2\alpha} \rangle$.