

Σχεσιακή Άλγεβρα

Κεφάλαιο 4

Γλώσσες Σχεσιακών Αιτημάτων

- ❖ Γλώσσες Αιτημάτων: Επιτρέπουν τη Διαχείριση και την Ανάκτηση Δεδομένων από μια ΒΔ.
- ◆ Το Σχεσιακό Μοντέλο υποστηρίζει απλές και ισχυρές ΓΑ:
 - Τυπικός ορισμός βασισμένος στη Λογική.
 - Διευκολύνει τη διαδικασία βελτιστοποίησης.
- 🕈 Γλώσσες Αιτημάτων != Γλώσσες Προγραμματισμού!

Τυπικές Γλώσσες Σχεσιακών Αιτημάτων

- Φύο μαθηματικές Γλώσσες Αιτημάτων δίνουν τις βασικές γνώσεις για την κατανόηση της SQL:
 - Σχεσιακή Άλγεβρα: Πιο λειτουργική, πολύ χρήσιμη για σχέδια επεξεργασίας. (Με αυτή θα ασχοληθούμε)
 - Σχεσιακός Λογισμός: Περιγράφουμε τι θέλουμε και όχι πώς θα το υπολογίσουμε. (Μη λειτουργικός, δηλωτικός)

Η κατανόηση Άλγεβρας & Λογισμού είναι απαραίτητη για την κατανόηση επεξεργασίας ερωτημάτων με SQL

Εισαγωγικές Έννοιες

- † Ένα αίτημα απευθύνεται σε στιγμιότυπα σχέσεων, και το αποτέλεσμα είναι επίσης στιγμιότυπο σχέσης.
 - Τα Σχήματα των Σχέσεων ενός αιτήματος είναι αμετάβλητα (το αίτημα εκτελείται ανεξαρτήτως στιγμιοτύπου)
 - Το Σχήμα του αποτελέσματος ενός αιτήματος είναι επίσης αμετάβλητο!
 - Συμβολισμός Αριθμημένης Θέσης και Ονομασίας Πεδίου:
 - Ο συμβολισμός θέσης διευκολύνει τους τυπικούς ορισμούς, ο συμβολισμός ονομασίας πεδίου είναι ευανάγνωστος.
 - Και οι δύο χρησιμοποιούνται στην SQL

Παραδείγματα στιγμιοτύπων

* "Sailors" και "Reserves" σχέσεις για τα παραδείγματα.

Θα χρησιμοποιήσουμε συμβολισμό θέσης ή ονομασίας πεδίου, υποθέτουμε ότι οι ονομασίες των πεδίων στα αποτελέσματα των αιτημάτων προκύπτουν από τις ονομασίες των πεδίων των σχέσεων που συμμετέχουν στο αίτημα.

R1

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Σχεσιακή Άλγεβρα

- ♦ Βασικοί Τελεστές:
 - Επιλογή (σ) Επιλέγει υποσύνολα γραμμών σχέσεων.
 - Προβολή (π) Διαγράφει ανεπιθύμητες στήλες σχέσεων.
 - Καρτεσιανό Γινόμενο (Χ) Συνδυάζει 2 σχέσεις.
 - Διαφορά (—) Πλειάδες που υπάρχουν στη σχέση 1 μόνο.
 - Ένωση (∪) Πλειάδες που υπάρχουν στις σχέσεις 1 & 2.
- ◆ Επιπρόσθετες πρέξεις:
 - Τομή, σύζευξη, διαίρεση, μετονομασία: Όχι απαραίτητες, αλλά πολύ χρήσιμες.
- ★ Κάθε τελεστής επιστρέφει μια σχέση, οπότε οι τελεστές μπορούν να συνδυαστούν.

Προβολή

- ◆ Διαγράφει τα γνωρίσματα εκτός λίστας προβολής.
- ◆ Το Σχήμα του αποτελέσματος περιέχει μόνο τα πεδία της λίστας προβολής, με ονομασίες αυτές που έχουν στη μοναδική σχέση εισόδου.
- Ο τελεστής προβολής διαγράφει τα διπλότυπα!
 - Σε πραγματικά συστήματα συνήθως δε διαγράφονται τα διπλότυπα εκτός κι αν το ζητήσει ο χρήστης.

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age
35.0
55.5

$$\pi_{age}(S2)$$

Επιλογή

- Επιλέγει γραμμές που ικανοποιούν τη συνθήκη επιλογής.
- Δεν υπάρχουν διπλότυπες εγγραφές!
- * Το Σχήμα του αποτελέσματος ίδιο με της μοναδικής Σχέσης.
- ★ Το αποτέλεσμα μπορεί να είναι είσοδος για νέο σχεσιακό τελεστή! (Συνδυασμός τελεστών.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating>8}(S2))$$

Ένωση, Τομή, Διαφορά

- Όλοι οι τελεστές έχουν ως είσοδο δύο Σχέσεις που πρέπει να είναι συμβατές ως προς την ένωση:
 - Ίδιο πλήθος πεδίων.
 - Αντίστοιχοι τύποι πεδίων.
- Το Σχήμα του αποτελέσματος;

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$$S1 \cup S2$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

Καρτεσιανό Γινόμενο

- ◆ Οι γραμμές του S1 συνδυάζονται με αυτές του R1.
- * Το Σχήμα του αποτελέσματος έχει ένα πεδίο με όνομα που κληρονομείται για κάθε πεδίο των S1 & R1.
 - Πρόβλημα: Κοινό πεδίο sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

 $[\]clubsuit$ Τελεστής μετονομασίας: ρ ($C(1 \rightarrow sid1, 5 \rightarrow sid2)$, $S1 \times R1$)

Συζεύξεις

 \bullet Συνθήκη Σύζευξης: $R \bowtie_{c} S = \sigma_{c}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- **Σχήμα αποτελέσματος** καρτεσιανού γινομένου
- 🕈 Λιγότερες πλειάδες, ευκολότερος ο υπολογισμός

Συζεύξεις

Σύζευξη ισότητας: Ειδική περίπτωση συνθήκης σύζευξης. Η συνθήκη *c* περιέχει μόνο **ισότητες.**

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

- **Σχήμα αποτελέσματος:** όμοιο με καρτεσιανού γινομένου με μοναδικό αντίγραφο του πεδίου ισότητας.
- Φυσική σύζευξη: Σύζευξη ισότητας όλων των κοινών πεδίων. Συμβολίζεται απλά ως: S1⋈ R1

Διαίρεση

- ◆ Δεν είναι πρωτογενής τελεστής, είναι χρήσιμος για αιτήματα της μορφής:
 - Εντοπίστε τους ναύτες με κράτηση σε όλες τις βάρκες.
- ★ Έστω Α Σχέση με 2 πεδία, x και y. B μόνο το πεδίο y:
 - $A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - π.χ., Α/Β περιέχει όλες τις πλειάδες x (ναύτες) για τις οποίες για κάθε πλειάδα y (βάρκα) του Β, η υπάρχει μία πλειάδα xy στον Α.
- ◆ Γενικότερα, x και y μπορεί να είναι λίστες πεδίων. y είναι λίστα πεδίων του B, και xy είναι λίστα πεδίων του A.

Παραδείγματα Διαίρεσης Α/Β

sno	pno	pno	pno	pno
s1	p1	p2	p2	p1
s1	p2		p4	p2
s1	p3	B1	<i>B</i> 2	p4
s1	p3 p4		<i>D 2</i>	В3
s2	p1	sno		DO
s2	_	s1		
s2 s3	p2 p2	s2	sno	
s4	p2	s3	s1	sno
s4	p4	s4	s4	s1
1	Ä	A/B1	A/B2	<i>A/B3</i>

Έκφραση του Α/Β με Βασικούς Τελεστές

- + Η Διαίρεση δεν είναι πρωτογενής τελεστής.
 - (Το ίδιο ισχύει και για τις συζεύξεις, αλλά οι συζεύξεις είναι τόσο συχνές που υλοποιούνται με ειδικό τρόπο.)
- **♦ Ιδέα**: Για *A/B*, υπολογίζουμε όλες τις τιμές *x* που δεν αποκλείονται από κάποια τιμή του *y* στο *B*.
 - Η τιμή *x αποκλείεται* αν όταν συνενωθεί με κάποια τιμή *y* του *B*, προκύπτει συνδυασμός *xy* εκτός του *A*.

Αποκλειόμενες πλειάδες x:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B: $\pi_{\chi}(A)$ – Όλες οι αποκλειόμενες πλειάδες

Να βρεθούν τα ονόματα των ναυτών με κράτηση στη βάρκα #103

$$\Rightarrow$$
 Λύση 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

$$\Rightarrow$$
 Λύση 2: ρ (Templ, $\sigma_{bid=103}$ Reserves) ρ (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

$$\Rightarrow$$
 Λύση 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Να βρεθούν τα ονόματα των ναυτών με κρατήσεις σε κόκκινη βάρκα

♦ Η πληροφορία για τα χρώματα υπάρχει μόνο τον Boats. Έτσι, χρειάζεται επιπλέον σύζευξη:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

♦ Μια πιο αποδοτική λύση

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

♦Ο βελτιστοποιητής καταλήγει μόνος στη δεύτερη

Να βρεθούν τα ονόματα των ναυτών με κρατήσεις σε κόκκινη ή πράσινη βάρκα

◆ Επιλογή όλων των κόκκινων ή πράσινων, και φυσικές συζεύξεις για τα ονόματα:

$$\rho \; (\textit{Tempboats}, (\sigma_{color = 'red' \; \lor \; color = 'green'} \; \textit{Boats}))$$

 $\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$

♦ Ο Tempboats ορίζεται και με ένωση! (Πώς;)

Να βρεθούν τα ονόματα των ναυτών με κρατήσεις σε κόκκινη και πράσινη βάρκα

♦ Η προηγούμενη προσέγγιση δε λειτουργεί! Νέα προσέγγιση: ναύτες με κράτηση σε κόκκινη, ναύτες με κράτηση σε πράσινη, υπολογισμός της τομής (το sid είναι κλειδί του Sailors):

$$\rho \; (\textit{Tempred}, \, \pi_{\textit{sid}}((\sigma_{\textit{color} = '\textit{red'}}, \textit{Boats}) \bowtie \mathsf{Reserves}))$$

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Να βρεθούν οι ναύτες με κρατήσεις σε όλες τις βάρκες

★ Χρήση διαίρεσης. Τα Σχήματα των Σχέσεων εισόδου πρέπει να επιλεγούν προσεκτικά:

$$\rho \ (Tempsids, (\pi_{sid,bid} Reserves) / (\pi_{bid} Boats))$$
 $\pi_{sname} (Tempsids \bowtie Sailors)$

* Εύρεση ναυτών με κρατήσεις στις βάρκες 'Interlake' :

....
$$/\pi_{bid}(\sigma_{bname=Interlake}, Boats)$$

Περίληψη

- ◆ Το σχεσιακό μοντέλο διαθέτει απλές και ισχυρές γλώσσες αιτημάτων.
- ♦ Η Σχεσιακή Άλγεβρα είναι πιο λειτουργική. Είναι χρήσιμη για την αναπαράσταση σχεδίων εκτέλεσης αιτημάτων.
- Διάφοροι τρόποι έκφρασης ενός αιτήματος. Ένας βελτιστοποιητής αιτημάτων επιλέγει τον πιο αποδοτικό.