SEQUENCE LISTING

	<	110>	Lok	lowa , Si pers												
	<	120>	Ins	ulin	Hom	olog	Pol.	урер	tide	Zin	s4					
	<	130>	00-	18												
				60/188.544 2000-03-10												
	<160> 12															
	<	170>	Fas	FastSEQ for Windows Version 3.0												
	<; <;	210> 211> 212> 213>	429 DNA	429												
<220> <221> <222>			CDS (1)(429)													
	gcc Ala		tac													48
	gag Glu															96
	ctt Leu															144
	tcc Ser 50															192

gat Asp 65	acc Thr	ttc Phe	ccg Pro	gat Asp	gca Ala 70	gat Asp	gct Ala	gat Asp	gaa Glu	gac Asp 75	agt Ser	ctg Leu	gca Ala	ggc Gly	gag Glu 80	240
ctg Leu	gat Asp	gag Glu	gcc Ala	atg Met 85	ggg Gly	tcc Ser	agc Ser	gag Glu	tgg Trp 90	ctg Leu	gcc Ala	ctg Leu	acc Thr	aag Lys 95	tca Ser	288
ccc Pro	cag Gln	gcc Ala	ttt Phe 100	tac Tyr	agg Arg	ggg Gly	cga Arg	ccc Pro 105	agc Ser	tgg Trp	caa Gln	gga Gly	acc Thr 110	cct Pro	999 Gly	336
gtt Val	ctt Leu	cgg Arg 115	ggc Gly	agc Ser	cga Arg	gat Asp	gtc Val' 120	ctg Leu	gct Ala	ggc Gly	ctt Leu	tcc Ser 125	agc Ser	agc Ser	tgc Cys	384
	aag Lys 130													tag *		429
<210> 2 <211> 142 <212> PRT <213> Homo sapiens												-				
	</td <td>100></td> <td>2</td> <td></td>	100>	2													
Met 1	Ala		_	Met 5	Leu	Leu	Leu	Leu	Leu 10	Ala	Val	Trp	Val	Leu 15	Thr	
Gly	Glu	Leu	Trp 20	Pro	Gly	Ala	Glu	A1a 25	Arg	Ala	Ala	Pro	Tyr 30		Val	
Arg	Leu	Cys 35	Gly	Arg	Glu	Phe	Ile 40		Ala	Val	Ile	Phe 45		Cys	Gly	
Gly	Ser 50	Arg	Trp	Arg	Arg	Ser 55		Пe	Leu	Ala	His 60		Ala	Met	Gly	
Asp 65	Thr	Phe	Pro	Asp	A1a 70		Ala	Asp	G1u	Asp 75		Leu	Ala	Gly	G1u 80	
	Asp	G1u		Met 85		Ser	Ser	Glu	Trp 90		Ala	Leu	Thr	Lys 95		

```
Pro Gln Ala Phe Tyr Arg Gly Arg Pro Ser Trp Gln Gly Thr Pro Gly
                                 105
Val Leu Arg Gly Ser Arg Asp Val Leu Ala Gly Leu Ser Ser Cys
                            120
Cys Lys Trp Gly Cys Ser Lys Ser Glu Ile Ser Ser Leu Cys
    130
                        135
                                             140
      <210> 3
      <211> 14
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Cysteine motif
      <221> VARIANT
      <222> (3)...(13)
      <223> Each Xaa is independently any amino acid residue
            except cysteine.
      <400> 3
Leu Cys Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys
                5
                                    10
      <210> 4
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Motif
     <221> VARIANT
      <222> (3)...(5)
      <223> Each Xaa is independently any amino acid residue
            except cysteine.
     <221> VARIANT
     <222> (4)...(14)
     <223> Each Xaa is independently any amino acid residue
           except cysteine.
```

<400> 4

```
Cys Cys Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys
      <210> 5
      <211> 5
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Motif
      <221> VARIANT
      <222> (2)...(4)
      <223> Each Xaa is independently any amino acid residue
           except cysteine.
      <400> 5
 Arg Xaa Xaa Xaa Arg
 1
                 5
      <210> 6
      <211> 426
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Degenerate polynucleotide sequence encoding the
            polypeptide of SEQ ID NO:2.
      <221> variation
      <222> (1)...(426)
      <223> Each N is independently A, T, G, or C.
      <400> 6
atggcnmgnt ayatgytnyt nytnytnytn gcngtntggg tnytnacngg ngarytntgg
                                                                      60
conggngong argonmgngo ngoncontay ggngtnmgny tntgyggnmg ngarttyath
                                                                     120
mgngcngtna thttyacntg yggnggnwsn mgntggmgnm gnwsngayat hytngcncay
                                                                     180
gargcnatgg gngayacntt yccngaygcn gaygcngayg argaywsnyt ngcnggngar
                                                                     240
ytngaygarg cnatgggnws nwsngartgg ytngcnytna cnaarwsncc ncargentty
                                                                     300
taymgnggnm gnccnwsntg gcarggnacn ccnggngtny tnmgnggnws nmgngaygtn
                                                                     360
ytngcnggny tnwsnwsnws ntgytgyaar tggggntgyw snaarwsnga rathwsnwsn
                                                                     420
ytntgy
                                                                     426
```

<210> 7 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC9736	
<400> 7 ccatacccct gacccctgtt gagat	25
<210> 8 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC9740	
<400> 8 cagaggttcc ctgataccca cacat	25
<210> 9 <211> 55 <212> DNA <213> Artificial Sequence	
<220> <223> Exon 1 sense oligonucleotide primer	
<400> 9 tgaagaaggtc tcgaattcgt cgacaccatg gccaggtaca tgctgctgct gctc	55
<210> 10 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Exon 1 antisense oligonucleotide primer	
<400> 10 tgaagaaggt ctcactccca tagcctcgtg ggccaggatg tctga	45

	0> 11	
	1> 41	
<21	2> DNA	
<21	3> Artificial Sequence	
<22		
~22	3> Exon 2 sense oligonucleotide primer	
<40	0> 11	
tgaagaagg	t ctcaggagat accttcccgg atgcagatgc t	41
		. –
<21	0> 12	
<21	1> 52	
<21	2> DNA	
<21	3> Artificial Sequence	
<22		
~22.	3> Exon 2 antisense oligonucleotide primer	
<40	0> 12	
_	t ctctctagaa ctctagcaaa ggctactgat ttcacttttg ct	52
	5 5511 110 5540 65545 65	02