Construct DFA equivalent to the given NFA:

2010)	0	· 4(0,4)	
→ À	8A, B 3	A	
B	· (C 3) ·	, Co . 1 2	
C	000	, Ø, , ,	
(D)	. Por	, D	

Given NFA,

to construct DFA, Transition table for DFA is:-

1		
	0	1
→A	EA, B3	A
PAIBY	SAIB, C&	{A, C}
FAIB, CF	1A1B, C, D'9	2 A . (}
8A, 13	{A,B,D3	A .
This, c.D	1 A 18, C, D3	& A, C, D}
	{AIBICIDY	{A, c, n}
	{A,B,D}	{A,D}
[AID]	4A1B1D3	fAID 3

S({A,B},0) → S(A,C) US(B,0) =) {A,B}UC => {A1B, c }. 8({A,B3,1) =) 8(A,1) U 8(B,1) -) AU(=) &A, (4 S(Enis (4,0) =) 8(1,0) U8 (B,0) U8 (C,0) =>{A1B}UCUD= {A1B, C10} 8 ((A,B, 13,1) => S(A,1) US (8,1) US (C1) =) AUCUP = {A,C} 8(A,C3,O) -) S(A,O) U8(C,O) = {4,8300 = {A,B,D} 8 (A, CG, 1) -> 8(A,1) UE(C1) = AUP = A S (A, B, C, D3,0) => 8 (A,0) U8 (B,0) U8 (C,0) U8 (Q0) =) (A , B f U C U D U D = & A, B, C, D 2 S({A1B,C1) 3,1) => 8(A1) U8(B1) U8(C1) U8(D1) = AUCUDUD = &A, C,DZ

Construct the moore machine to determine residue mod 3.

let, $\xi = \{0, 1\}$ $0 = \{0, 1, 2\}$

moore machine: -

Check whether the two DFA: (A) and (B) given be 1,000 are equivalent or not.

	a	6
80,03	Es, 93	29,23
82,23	88,88	d7,53
80,0%	ED, 83	(8/8 g
{s,s}	{s,s}	{s, 5 }

In Epipy one is infermediate state les (2,2) and the other one is final state les (2,2) in Epipy so it is not equivalent.

Design a DFA L(m) = & w| w = &0,13 * & and

Design a DFA L(m) = & w| w = &0,13 * & and

w is a string that does not contain consecutive

1's.

L= \$1,01,001,0101, 101,100,---3 No. of states = 2+1 = 3

Convert the following Melay machine into equivalent

Moore Machine.

all blo 25 a/1, b/1, 24 a/0, 23 b/1

Touth table for melay machine:

Current Current	a		b	
state	next State	Output	went state	Output
21	91	1	92	0
22	24	1	24	
24	23	0	91	
23	92	1	23)

Truth table for moore machine is,

Current	Nent State		Output	
	a	b	00.1	
210	211	92	0	
211	211	92		
92	241	241		
240	23	211	0	
241	93	211		
23	92	93	1	

from above touth table moore machine is shown as:

