Section 2: Why is \mathbb{Z} better than \mathbb{N} ?

Properties of addition on $\ensuremath{\mathbb{Z}}$

- (A1) Associativity: for $a, b, c \in \mathbb{Z}$, a + (b + c) = (a + b) + c.
- (A2) Commutativity: for $a, b \in \mathbb{Z}$, a + b = b + a.
- (A3) Existence of neutral element: \exists element $0 \in \mathbb{Z}$ s.t. 0 + a = a $\forall a \in \mathbb{Z}$.
- (A4) Existence of opposite: $\forall a \in \mathbb{Z} \exists x \in \mathbb{Z} \text{ s.t. } a + x = 0 \text{ (this } x \text{ is denoted by } -a).$
- (A1), (A2) hold for $\mathbb N$ as well. However, (A3), (A4) fail for $\mathbb N$.
- \mathbb{Z} is "better" than \mathbb{N} .

If $+: S \times S \to S$ satisfies (A1-4), then (S, +, 0) is called an abelian (commutative) group.

Examples of abelian groups: $(\mathbb{Z},+,0)$, $(\mathbb{Q},+,0)$, $(\mathbb{R},+,0)$.

Uniqueness of 0 and -a; subtraction

Observation. The neutral element is unique.

Proof. If
$$0,0'$$
 are neutral elements, then $0 = 0 + 0' = 0'$.

Observation. For $a \in \mathbb{Z}$, its opposite -a is unique.

Proof. Suppose
$$a + x = 0 = a + x'$$
. Then $x = x + 0 = x + (a + x') = (x + a) + x' = 0 + x' = x'$.

Observation. For $a, b \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ s.t. a + x = b. We denote this x by b - a.

Proof. (1) Existence. Take
$$x = b + (-a)$$
, then $x + a = (b + (-a)) + a = b + ((-a) + a) = b + 0 = b$.

(2) Uniqueness. If
$$a + x = b$$
, then $(a + x) + (-a) = b + (-a)$.

LHS =
$$(x + a) + (-a) = x + (a + (-a)) = x + 0 = x$$
, so $x = b + (-a)$.

 \mathbb{N} has only addition, but no subtraction, due to the lack of (A3-4).

Multiplication on \mathbb{Z}

Multiplication: an operation $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.

Properties of multiplication

- (M1) Associativity: for $a, b, c \in \mathbb{Z}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (M2) Commutativity: for $a, b \in \mathbb{Z}$, $a \cdot b = b \cdot a$.
- (M3) Neutral element: \exists element $1 \in \mathbb{Z}$ s.t. $1 \cdot a = a \ \forall \ a \in \mathbb{Z}$.
- **(DL)** Distributive law: $\forall a, b, c \in \mathbb{Z}$, $(a+b) \cdot c = a \cdot c + b \cdot c$.

 $(\mathcal{X}, +, 0, \cdot, 1)$ is called a commutative ring if (A1-4), (M1-3), and (DL) are satisfied.

Examples: $(\mathbb{Z},+,0,\cdot,1)$, $(\mathbb{Q},+,0,\cdot,1)$, $(\mathbb{R},+,0,\cdot,1)$.

Multiplication by 0

Proposition

For any $a \in \mathbb{Z}$, $0 \cdot a = 0$.

In fact, if $(\mathcal{X}, +, 0, \cdot, 1)$ is a commutative ring, then $0 \cdot a = 0$ for any $a \in \mathcal{X}$.

Proof.
$$a = 1 \cdot a = (1+0) \cdot a = 1 \cdot a + 0 \cdot a = a + 0 \cdot a$$
.

Add -a to both sides:

$$0 = a + (-a) = (a + 0 \cdot a) + (-a) = 0 \cdot a.$$

$\ensuremath{\mathbb{Z}}$ is not enough

On \mathbb{Z} , we have + and \cdot ; what else do we want?

Recall: For $a, b \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ (denoted by b - a) s.t. a + x = b.

Suppose $a, b \in \mathbb{Z}$; can we always find $x \in \mathbb{Z}$ s.t. $a \cdot x = b$? **NO!** For b = 1, $a \neq \pm 1$, the equation $a \cdot x = 1$ has no solutions $x \in \mathbb{Z}$.

To have division, we need to consider Q.

$\mathbb Q$ is better than $\mathbb Z$

- \mathbb{Q} is the set of fractions a/b, with $a \in \mathbb{Z}$, $b \in \mathbb{N}$.
- In Q, addition satisfies (A1-4); multiplication has properties
 - **(M1)** Associativity: for $a, b, c \in \mathbb{Q}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
 - **(M2)** Commutativity: for $a, b \in \mathbb{Q}$, $a \cdot b = b \cdot a$.
 - (M3) Neutral element: \exists element $1 \in \mathbb{Q}$ s.t. $1 \cdot a = a \ \forall \ a \in \mathbb{Q}$.
 - (M4) The inverse: $\forall a \in \mathbb{Q} \setminus \{0\} \exists$ element $x \in \mathbb{Q}$ s.t. $x \cdot a = 1$ (write $x = a^{-1}$).
 - **(DL)** Distributive law: $\forall a, b, c \in \mathbb{Q}$, $(a + b) \cdot c = a \cdot c + b \cdot c$.
- $(\mathcal{X}, +, 0, \cdot, 1)$ is called a field if (A1-4), (M1-4), and (DL) hold.
- \mathbb{R} , \mathbb{C} are fields, but \mathbb{Z} is not ((M4) fails).

Properties of fields

Theorem (Theorem 3.1 - p. 15 of text)

Suppose F is a field. Then:

- If $a, b, c \in F$, and a + c = b + c, then a = b.
- 1 If $a \in F$, then $a \cdot 0 = 0$.
- (-a)b = -ab for all $a, b \in F$.
- (-a)(-b) = ab for all $a, b \in F$.
- If $a, b, c \in F$, ac = bc, and $c \neq 0$, then a = b.
- If $a, b \in F$, ab = 0, then either a = 0 or b = 0.

We proved (ii) for commutative rings. For proofs of other items, see textbook.

Q is not enough

There is no $x \in \mathbb{Q}$ with $x^2 = 2$. Later, we'll see that there exists $x \in \mathbb{R}$ s.t. $x \ge 0$, $x^2 = 2$ (this x is called $\sqrt{2}$).

Theorem (Rational zeros theorem - p. 9 of textbook)

Suppose $p(x)=c_nx^n+\ldots+c_1x+c_0$ is a polynomial, with $c_0,\ldots,c_n\in\mathbb{Z},\ c_0\neq 0,\ c_n\neq 0$. Suppose $p(r)=0,\ r=c/d$, with $c,d\in\mathbb{Z},\ d\neq 0$, and $\gcd(c,d)=1$. Then $c|c_0$ and $d|c_n$.

Notation. gcd = greatest common divisor (factor).

Corollary (Roots of monic $(c_n = 1)$ polynomials)

Suppose $p(x) = x^n + c_{n-1}x^{n-1} + ... + c_1x + c_0$, with $c_0, ..., c_{n-1} \in \mathbb{Z}$, $c_0 \neq 0$. If $r \in \mathbb{Q}$, and p(r) = 0, then $r \in \mathbb{Z}$, $r|c_0$.

Proof. If $r \in \mathbb{Q}$, p(r) = 0, write r = c/d, $c, d \in \mathbb{Z}$, $d \neq 0$, and gcd(c, d) = 1. d divides $c_n = 1$, so $d = \pm 1$. $r = \pm c$, c divides c_0 .

$$\sqrt{2} \notin \mathbb{Q}$$

Corollary (Irrationality of $\sqrt{2}$)

No rational number r satisfies $r^2 = 2$.

Proof. Suppose, for the sake of contradiction, $r \in \mathbb{Q}$, $r^2 = 2$. r is a root of the monic polynomial $p(x) = x^2 - 2$. By Corollary, $r \in \mathbb{Z}$, r|(-2). Thus, $r = \pm 1$, or ± 2 . Check: $1^2 = (-1)^2 = 1 \neq 2$, $2^2 = (-2)^2 = 4 \neq 2$. Contradiction!

Proof of Rational Zeros Theorem

Theorem (Rational zeros theorem – p. 9 of textbook)

Suppose $p(x) = c_n x^n + \ldots + c_1 x + c_0$ is a polynomial, with $c_0, \ldots, c_n \in \mathbb{Z}$, $c_0 \neq 0$, $c_n \neq 0$. Suppose p(r) = 0, r = c/d, with $c, d \in \mathbb{Z}$, $d \neq 0$, and $\gcd(c, d) = 1$. Then $c|c_0$ and $d|c_n$.

Part 1:
$$d|c_n$$
. $0 = p(\frac{c}{d}) = c_n \frac{c^n}{d^n} + c_{n-1} \frac{c^{n-1}}{d^{n-1}} + \ldots + c_1 \frac{c}{d} + c_0$. Multiply by d^n : $0 = c_n c^n + c_{n-1} c^{n-1} d + \ldots + c_1 c d^{n-1} + c_0 d^n$. $c_n c^n = -c_{n-1} c^{n-1} d - \ldots - c_0 d^n$. d divides RHS (right hand side), hence LHS. $\gcd(d, c^n) = 1$, hence $d|c_n$.

Part 2:
$$c|c_0$$
. $0 = c_n c^n + c_{n-1} c^{n-1} d + \ldots + c_1 c d^{n-1} + c_0 d^n$. $c_0 d^n = -c_n c^n - \ldots - c_1 c d^{n-1}$. c divides RHS, hence LHS. $\gcd(c, d^n) = 1$, hence $c|c_0$.

Section 3 (order)

Definition: A relation \leq on a set S is called linear (total) order if:

- (O1) Totality: for $a, b \in S$, either $a \leq b$, or $b \leq a$.
- (O2) Antisymmetry: if $a \leqslant b$ and $b \leqslant a$, then a = b.
- (O3) Transitivity: if $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$.

Write a < b if $a \le b$, and $a \ne b$.

Examples of totally ordered sets. (\mathbb{Z}, \leqslant) , (\mathbb{Q}, \leqslant) ,

Example. $S = \mathcal{P}(\{1,2\})$. We say $A \leqslant B$ if $A \subset B$.

(O2) and (O3) are satisfied, but (O1) fails:

take $A = \{1\}$ and $B = \{2\}$.

Ordered fields

Definition: A field F is called ordered if it is equipped with linear order \leq s.t.:

- (O4) If $a, b, c \in F$, and $a \leq b$, then $a + c \leq b + c$.
- (05) If $a, b, c \in F$, $a \le b$, and $c \ge 0$, then $ac \le bc$.

Examples of ordered fields. (\mathbb{Q}, \leqslant) , (\mathbb{R}, \leqslant) .

 \mathbb{C} is a field, but cannot be equipped with a linear order.

Properties of ordered fields

Theorem (Theorem 3.2 – p. 16 of text)

Suppose F is an ordered field, $a, b, c \in F$. Then:

- If $a \leqslant b$, then $-b \leqslant -a$.
- **1** If $a \leqslant b$, and $c \leqslant 0$, then $bc \leqslant ac$.
- $0 \leqslant a^2 \text{ (for all } a \in F).$
- \circ 0 < 1.
- **1** If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Proof of (iii). $b \ge 0$, hence, by (O5), $0 \cdot b \le ab$. But, $0 \cdot b = 0$.

Fact. \mathbb{C} is not an ordered field.

Proof. $\mathbb C$ is a field. Suppose, for the sake of contradiction, that \leqslant determines a linear order on $\mathbb C$. Recall: $\iota^2=-1$, where $\iota=\sqrt{-1}$. Then -1>0, hence 1=-(-1)<-0=0. However, 1>0.