

BOOTCAMP INOVAÇÃO, PROTOTIPAÇÃO E INTERNET DAS COISAS

SENSOR DE CHUVA PARA ACIONAMENTO DE MOTOR (ABERTURA E FECHAMENTO DE COBERTURAS E JANELAS)

Relatório para entrega referente à atividade avaliativa sobre o projeto de prototipação

Alunos: Adriano Carlos da Silva; Enrique Ribeiro Linares; Eric de Paulo Alves, Gabriela Vitória da Silva; João Pedro Rosa; Letícia Ricardo Hernandes; Leonardo Henrique Faustino; Luciana Macedo Eugenio da Silva; Sofia Fernandes Arruda Vieira da Silva e Victor Gandara Bettoni.

Prof.: Victor Hugo Braguim Canto

1. INTRODUÇÃO

Com o avanço da tecnologia, soluções automatizadas têm se tornado cada vez mais presentes no dia a dia, proporcionando maior praticidade, segurança e eficiência. Um dos desafios enfrentados em residências é a exposição inesperada de ambientes internos e externos à chuva, o que pode causar danos a móveis, eletrônicos e roupas em processo de secagem. Pensando nisso, este projeto propõe o desenvolvimento de um sistema automatizado de cobertura retrátil, utilizando sensores, atuadores e Internet das Coisas (IoT) para monitoramento e acionamento inteligente.

A proposta envolve a criação de um protótipo funcional que, inicialmente, será testado em ambiente interno para calibração dos sensores e validação da lógica de controle. Após essa etapa, uma versão final será implementada em área externa, garantindo resistência às intempéries e adaptabilidade ao ambiente real. O sistema será composto por três camadas principais: hardware (sensores e atuadores), firmware (ESP32 para controle) e software (aplicativo para monitoramento e acionamento remoto).

A automação será baseada em sensores como o DHT22, que mede umidade e temperatura, e um sensor de posição, que garante o funcionamento correto da cobertura. O ESP32 gerenciará a lógica embarcada e a comunicação via Wi-Fi, enviando notificações ao usuário e permitindo controle remoto através de um aplicativo móvel desenvolvido em Blynk ou MIT App Inventor.

Com essa abordagem, o projeto visa oferecer uma solução acessível e eficiente, que reduz prejuízos, aumenta a segurança e proporciona mais comodidade aos usuários, tornando os ambientes mais inteligentes e protegidos contra imprevistos climáticos.

2. JUSTIFICATIVA DO PROJETO

2.1. QUAL O PROBLEMA QUE PRETENDEMOS RESOLVER

A tecnologia está cada vez mais presente no dia a dia, oferecendo praticidade e soluções para desafios cotidianos. Um problema comum enfrentado por muitas pessoas é a exposição indesejada de ambientes internos à chuva quando janelas ou telhados são deixados abertos na ausência dos moradores. Isso pode causar danos a móveis, eletrônicos e outros objetos dentro da residência.

Nosso projeto propõe uma solução inovadora ao automatizar o fechamento de janelas e telhados sempre que for detectada umidade, eliminando a necessidade de intervenção manual. Essa abordagem garante mais segurança e conforto, especialmente para aqueles que passam longos períodos fora de casa e podem ser surpreendidos por mudanças climáticas inesperadas.

Por meio da automação e da tecnologia IoT (Internet das Coisas), nosso sistema permite que o usuário controle remotamente a abertura e o fechamento de janelas e telhados, proporcionando mais comodidade e eficiência. Dessa forma, buscamos tornar os lares mais inteligentes e protegidos contra imprevistos climáticos.

2.2. PORQUE O NOSSO PROJETO É RELEVANTE

A principal razão para a implementação do nosso projeto é o baixo custo dos componentes e o consumo reduzido de energia, tornando-o acessível e eficiente. Além disso, sua aplicação não é complexa, e a facilidade de uso para o cliente final reforça sua relevância para muitas pessoas.

Além de proporcionar mais comodidade, nosso sistema contribui para a proteção dos objetos dentro da residência, evitando prejuízos e aumentando a segurança do ambiente. Com a automação do fechamento de janelas e telhados, prevenimos danos causados por chuvas inesperadas, oferecendo uma solução prática e inteligente para o dia a dia.

3. COMPONENTES

3.1. LOCAL DE DESENVOLVIMENTO DO PROTÓTIPO

O protótipo será desenvolvido, inicialmente, em ambiente interno (indoor) e em escala reduzida, permitindo testes controlados dos sensores, atuadores e da lógica de funcionamento. Após essa fase de validação, uma versão final será implementada em área externa, especificamente onde ocorre a secagem de roupas, com adaptações para garantir resistência às intempéries.

Características do sistema:

- Mobilidade: O sistema será móvel e acoplado a uma estrutura retrátil, como um toldo ou persiana, permitindo que as roupas sejam automaticamente protegidas da chuva.
- **Escalonamento:** A versão inicial (indoor) será utilizada para calibração e ajustes, enquanto a versão final (outdoor) contará com dimensões maiores e materiais duráveis, garantindo um funcionamento eficiente em condições externas.

3.2. LISTA DE COMPONENTES

Tabela 1: Lista de Componentes

COMPONENTES	FUNÇÃO	MODELO/ESPECIFICAÇÃO
Microcontrolador	Processamento e conexão Wi-Fi	ESP32 DevKitC ou WROOM-32
Módulo de Relé	Acionamento do motor (ligar/desligar)	Relé 5V (1 canal)
Motor de Passo	Movimentação da cobertura (abrir/fechar)	28BYJ-48 (com redução)
Driver de Motor	Controle preciso do motor de passo	ULN2003 ou A4988
Sensor de Umidade	Detectar chuva ou umidade alta	DHT22
Sensor de Posição	Verificar estado da cobertura (aberto/fechado)	Fim de curso mecânico
Fonte de		
Alimentação	Energia para o sistema (ESP32 + motor)	Fonte chaveada 5V/12V (2A)
Estrutura Física	Base e cobertura móvel (ex.: trilhos + lona)	PVC, madeira ou alumínio

Observações:

- Conectividade: O ESP32 utiliza Wi-Fi para comunicação com um aplicativo móvel (ex.: Blynk) para controle remoto.
- Custo Controlado: Optar por componentes acessíveis (motor 28BYJ-48 em vez de servomotores caros).

3.3. ARQUITETURA DE PROJETO

O projeto será estruturado em três camadas principais: Física (Hardware), Controle (Firmware) e Interface do Usuário (Software), garantindo um funcionamento eficiente e integrado.

1. Camada Física (Hardware)

Responsável pela coleta de dados e execução das ações.

Sensores:

- **DHT22:** Mede a umidade e temperatura do ambiente.
- Sensor de posição (fim de curso): Confirma se a cobertura está totalmente aberta ou fechada, evitando desalinhamentos.

Atuadores:

Motor de passo + relé: Aciona a cobertura com base nas leituras dos sensores.

2. Camada de Controle (Firmware – ESP32)

Gerencia a lógica do sistema e a comunicação com o usuário.

Lógica Embarcada:

- Se umidade > limite pré-definido, o motor é acionado para fechar a cobertura automaticamente.
- Se o usuário enviar um comando pelo aplicativo, a cobertura abre/fecha sob demanda.
- O sensor de posição fornece feedback para evitar travamentos ou desalinhamentos.

Comunicação:

 Conexão via Wi-Fi para envio de alertas ao usuário, como: "Cobertura fechada devido à chuva" e integração com o aplicativo para controle.

3. Interface do Usuário (Software)

Facilita a interação e monitoramento do sistema.

Aplicativo Móvel:

- Desenvolvido em plataformas como Blynk ou MIT App Inventor.
- Permite acionamento manual e monitoramento remoto.
- Exibe informações em tempo real, como nível de umidade e estado da cobertura.

Segue abaixo um diagrama simples que representa a nossa visão:

Figura 1: Diagrama

4. CONCLUSÃO

O desenvolvimento deste sistema automatizado de cobertura retrátil demonstra como a tecnologia e a Internet das Coisas podem ser aplicadas para resolver desafios do cotidiano de forma prática e eficiente. A implementação de sensores de umidade e temperatura, aliada ao controle via ESP32 e integração com um aplicativo móvel, permite um gerenciamento inteligente da proteção de ambientes e objetos contra chuvas inesperadas.

Além da comodidade proporcionada pelo acionamento automático e remoto, o projeto também se destaca pelo baixo custo dos componentes e eficiência energética, tornando a solução acessível e viável para diversos cenários. A abordagem modular, com testes em ambiente interno antes da implementação final em áreas externas, garante maior confiabilidade e adaptabilidade ao longo do desenvolvimento.

Com isso, o sistema atende à necessidade de proteger roupas, móveis e eletrônicos, reduzindo prejuízos e aumentando a segurança do ambiente. A automação desse processo não apenas otimiza a rotina dos usuários, mas também demonstra o potencial da tecnologia na criação de soluções inovadoras e funcionais para o dia a dia.

REFEÊNCIAS BIBLIOGRÁFICAS

- ORACLE. Internet of Things (IoT). Disponível em:
 https://www.oracle.com/br/internet-of-things/. Acesso em: 27 mar. 2025.
- STA ELETRÔNICA. Como utilizar o sensor de chuva. Disponível em: https://www.sta-eletronica.com.br/artigos/arduinos/como-utilizar-o-sensor-de-chuva. Acesso em: 27 mar. 2025.
- CAST GROUP. Internet das Coisas (IoT) e automação: transformando indústrias através da conectividade inteligente. Disponível em: <a href="https://www.castgroup.com.br/internet-das-coisas-iot-e-automacao-transformando-industrias-atraves-da-conectividade-inteligente/#:~:text=A%20relação%20entre%20a%20Internet%20das%20Coisas%20e%20a%20Automação,automática%2C%20sem%20intervenção%20hum ana%20direta. Acesso em: 27 mar. 2025.</p>