```
In [34]:
#qn 1a
import numpy as np
csv = 'https://www.dropbox.com/s/oqoyy9p849ewzt2/linear.csv?dl=1'
data = np.genfromtxt(csv,delimiter =',')
X = data[:,1:]
Y = data[:,0]
vX = X[:10,:]
tX = X[10:,:]
vY = Y[:10]
tY = Y[10:]
print ('Shape of vX:', vX.shape)
print ('Shape of tX:', tX.shape)
print ('Shape of vY:', vY.shape)
print ('Shape of tY:', tY.shape)
Shape of vX: (10, 4)
Shape of tX: (40, 4)
Shape of vY: (10,)
Shape of tY: (40,)
In [5]:
 # Qn 1b
import theano
import theano.tensor as T
n = X.shape[0]
d = X.shape[1]
learn rate = 0.5
x = T.matrix(name = 'x') #feature matrix
y = T.vector(name = 'y')
w = theano.shared(np.zeros((d,1)),name = 'w')
reg penalty = 0.15
 reg loss = T.sum((T.dot(x,w).T - y)**2)/2/n + reg penalty*(w[0,0]**2 + w[1,0]**2 + w[2,0]**2)/2/n + reg penalty*(w[0,0]**2 + w[0,0]**2 + w[0,0]**2)/2/n + reg penalty*(w[0,0]**2 + w[0,0]**2 
grad_risk = T.grad(reg_loss, wrt=w)
train_model = theano.function(inputs=[],
                                                                    outputs=reg_loss,
                                                                     updates=[(w,w-learn rate*grad risk)],
                                                                    givens={x:tX, y:tY})
#Execupte the gradient descent algoorithm
n steps=50
for i in range(n_steps):
         train model()
print(w.get_value())
[[-0.52706566]
 [ 1.16683314]
  [ 0.04560471]
  [-1.84895354]]
In [11]:
from scipy.optimize import fmin l bfgs b as minimize
csv = 'https://www.dropbox.com/s/oqoyy9p849ewzt2/linear.csv?dl=1'
data = np.genfromtxt(csv,delimiter =',')
def costgrad(w, *args):
        penalty = 0.15
         x = args[0]
         y = args[1]
         n = x.shape[0]
          cost = np.sum((np.dot(x,w).T-y)**2)/2/n + penalty*(w[0]**2 + w[1]**2 + w[2]**2)/2
```

```
a = np.asarray([w[0], w[1],w[2],0])
grad = penalty*(a) + np.dot(np.dot(x.T,x),w)/n- np.dot(x.T,y)/n
return cost, grad

x = data[:,1:]
d = x.shape[1]
w = np.zeros((d,1))
y = data[:,0]

optx,cost,messages = minimize(costgrad,w,args=(x,y), factr = 10, pgtol = 1e-10)
print (optx)
print(cost)

[-0.51575135  1.18644932  0.03302971 -1.86038231]
0.14782238561001965
```

In [14]:

```
#qn 1d
def ridge_regression(tX, tY, 1):
    n = tX.shape[0]
    A = np.eye(4)
    A[3,3] = 0
    b = np.dot(np.dot(np.linalg.inv(n*l*A + np.dot(tX.T,tX)),tX.T),tY)
    return b

print (ridge_regression(X,Y,0.15))
```

[-0.51575135 1.18644932 0.03302971 -1.86038231]

In [16]:

```
#On 1e
import matplotlib.pyplot as plt
%matplotlib inline
tn = tX.shape[0]
vn = vX.shape[0]
tloss = []
vloss = []
index = -np.arange(0,5,0.1)
for i in index:
    w = ridge_regression(tX, tY, 10**i)
    tloss = tloss+[np.sum((np.dot(tX,w)-tY)**2)/tn/2]
    vloss = vloss+[np.sum((np.dot(vX,w)-vY)**2)/vn/2]
print(w)
plt.plot(index,np.log(tloss),'r',label = 'training')
plt.plot(index,np.log(vloss),'b',label = 'validation')
plt.legend(loc='upper left')
plt.show()
#lambda that minimizes validation loss is 0.1
print ('The optimal lambda value is:', pow(10,index[np.asarray(vloss).argmin()]), 'or 10^('+str(ind
ex[np.asarray(vloss).argmin()])+')')
```

[-0.57006903 1.3753366 0.02830073 -1.88456156]

In [19]:

```
#On 2
import numpy.random as rng
import matplotlib.image as mpimg
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
n colors = 32
pic = 'https://www.dropbox.com/s/bmwwfct2qxjfje4/sutd.png?dl=1'
img = mpimg.imread(pic)
img = img[:,:,:3]
w, h, d = tuple(img.shape)
image_array = np.reshape(img, (w * h, d))
def recreate_image(palette, labels, w, h):
    d = palette.shape[1]
   image = np.zeros((w, h, d))
    label_idx = 0
    for i in range(w):
        for j in range(h):
            image[i][j] = palette[labels[label idx]]
            label_idx += 1
    return image
#Original Image
plt.figure(1)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Original image (16.8 million colors)')
plt.imshow(img)
plt.show()
```

Original image (16.8 million colors)

In [22]:

```
#Qn 2a
sample = image_array[rng.randint(w * h, size=1000)] #1000 Random pixel samples
model = KMeans(n_clusters=n_colors, random_state = 0).fit(sample)#partition the colors of these pix
els into 32 clusters
kmeans_palette = model.cluster_centers_ #Colour Palette extract cluster centers
kmeans_labels = model.predict(image_array)

print(kmeans_labels)
plt.figure(2)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Compressed image (K-Means)')
plt.imshow(recreate_image(kmeans_palette, kmeans_labels, w, h))
plt.show()
```

Compressed image (K-Means)


```
In [23]:
```

```
from sklearn.metrics import pairwise_distances_argmin
random_palette = image_array[rng.randint(w * h,size=n_colors)] #32 Random pixel samples for palette
print('Predicting color indices on the full image (random)')
random_labels = pairwise_distances_argmin(image_array,random_palette)
print(random_labels)
plt.figure(3)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Compressed image (Random)')
plt.timshow(recreate_image(random_palette, random_labels, w, h))
plt.show()
```

Predicting color indices on the full image (random) [31 12 12 \dots 23 23 23]

2c) To find z that minimizes centroid

2c) To find z that minimizes centroid

 $\sum_{i=1}^m z = 0\\ \sum_{i=1}^m x^i - mz = 0\\ \sum_{i=1}^m x^i\\ \\ \lim_{i=1}^m x^i$ $\lim_{i=1}^m x^i$

```
In [25]:
```

```
import pandas as pd
from IPython.display import display

X_data = pd.read_csv('train.csv')
X_test = pd.read_csv('test.csv')
X_valid = X_data.sample(frac=0.2,random_state=200)
X_train = X_data.drop(X_valid.index)
Y_data = X_data["Survived"]
Y_valid = X_valid["Survived"]
Y_train = X_train["Survived"]
Y_train = X_train["Survived"]
ID_test = X_test["PassengerId"]

display(X_data.head())
display(X_data.describe())
display(X_test.head())
display(X_test.describe())
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	s

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	<i>1</i> 12 000000	418 <u>000000</u>	333 000000	418 <u>000000</u>	418 <u>000000</u>	417 000000

Count	+10.000000	+10.000000	332.000000	+10.000000	+10.000000	4 17.000000
mean	Passengerld 1100.500000	Pclass 2.265550	Age 30.272590	SibSp 0.447368	Parch 0.392344	Fare 35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

In [27]:

```
def preprocess(df):
    df.drop(["Survived"],axis=1,inplace=True,errors="ignore")
    df.drop(["PassengerId","Name","Ticket","Cabin"],axis=1,inplace=True)
    df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)
    df["Fare"].fillna(df["Fare"].median(),inplace=True)
    \verb|df["Age"].fillna(df["Age"].mean(),inplace=| True|)|
    df = df.join(pd.get dummies(df["Embarked"]))
    df.drop(["Embarked"],axis=1,inplace=True)
    df = df.join(pd.get dummies(df["Sex"]))
    df.drop(["Sex"],axis=1,inplace=True)
    df = df.join(pd.get_dummies(df["Pclass"]))
    df.drop(["Pclass"],axis=1,inplace=True)
    df.loc[df.SibSp > 0 ,"Family"] = 1
    df.loc[df.Age < 16, "Child"] = 1
    df["Family"].fillna(0,inplace=True)
    df["Child"].fillna(0,inplace=True)
    return df
X_train = preprocess(X_train)
X_valid = preprocess(X_valid)
X data = preprocess(X data)
X_test = preprocess(X_test)
display(X train.head())
```

	Age	SibSp	Parch	Fare	С	Q	s	female	male	1	2	3	Family	Child
0	22.000000	1	0	7.2500	0	0	1	0	1	0	0	1	1.0	0.0
2	26.000000	0	0	7.9250	0	0	1	1	0	0	0	1	0.0	0.0
3	35.000000	1	0	53.1000	0	0	1	1	0	1	0	0	1.0	0.0
4	35.000000	0	0	8.0500	0	0	1	0	1	0	0	1	0.0	0.0
5	29.449243	0	0	8.4583	0	1	0	0	1	0	0	1	0.0	0.0

In [28]:

```
# Qn 3b
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model.fit(X_train,Y_train)
print("Model score:",model.score(X_valid,Y_valid))
```

Model score: 0.7808988764044944

In [29]:

```
# Qn 3c
logreg = LogisticRegression()
logreg.fit(X_data,Y_data)
```

_	_	
	Features	Coefficient Estimate
0	SibSp	-0.023780
1	Parch	-0.781163
2	Fare	-0.186991
3	С	0.003440
4	Q	0.216724
5	S	0.296774
6	female	-0.114889
7	male	1.514201
8	1	-1.115591
9	2	1.033569
10	3	0.214825
11	Family	-0.849785
12	Child	0.856454

coeff df.columns = ['Features']

display(coeff_df)

coeff df = pd.DataFrame(X data.columns.delete(0))

coeff_df['Coefficient Estimate'] = pd.Series(logreg.coef_[0])

In [32]:

```
Y_test = logreg.predict(X_test)
ans = pd.DataFrame({"PassengerId":ID_test,"Survived":Y_test})
ans.to_csv("submit.csv", index=False)
```

In [33]:

print(ans)#0.7790

L.		
	PassengerId	Survived
0	892	0
1	893	0
2	894	0
3	895	0
4	896	1
5	897	0
6	898	1
7	899	0
8	900	1
9	901	0
10	902	0
11	903	0
12	904	1
13	905	0
14	906	1
15	907	1
16	908	0
17	909	0
1 2	910	1

10)±0	_
19	911	1
20 21	912 913	0
22	914	1
23	915	1
24	916	1
25	917	0
26	918	1
27	919	0
28	920	0
29	921	0
388	1280	0
389	1281	0
390	1282	0
391	1283	1
392	1284	0
393	1285	0
394	1286	0
395	1287	1
396	1288	0
397	1289	1
398	1290	0
399	1291	0
400	1292	1
401	1293	0
402	1294	1
403	1295	0
404 405	1296 1297	0
405	1298	0
407	1299	0
408	1300	1
409	1301	1
410	1302	1
411	1303	1
412	1304	1
413	1305	0
414	1306	1
415	1307	0
416	1308	0
417	1309	0

[418 rows x 2 columns]