COMS W4701: Artificial Intelligence

Lecture 4: Informed Search

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

A* search

Heuristic function properties

A* search variations

Informed (Heuristic) Search

- DFS, BFS, UCS were uninformed about goal state
- Now suppose we have additional, domain-specific heuristics that estimate state cost to goal
- Heuristic function h(n): Estimated cost of cheapest path from state at node n to a goal state

- We can combine heuristics with cumulative path costs
- Can still follow UCS strategy of expanding cheapest paths first, but prune or delay less promising paths

A* Search

- A* search: Evaluate each node based on both cumulative cost and heuristic value
- f(n) = g(n) + h(n): Sum of path cost to n and estimated cost from n to goal
- Implementation: Priority queue using f(n) as before

Frontier (node n, f = g + h):

- 1. [(*S*, 6)]
- 2.[(a,6)]
- 3. [(f,7),(b,8),(e,10)]
- 4. [(b,8),(d,9),(e,10)]
- 5. [(d,9),(c,10),(e,10)]
- 6. [(G, 9), (c, 10), (e, 10)]

Solution: S, a, f, d, G; cost: 9

Admissibility

- In this graph, A* returns suboptimal solution
 S->G rather than optimal solution S->A->G
- h(A) overestimated the cost from A!
- A heuristic h is **admissible** if $h(n) \le h^*(n)$ where $h^*(n)$ is true cost from n to goal
- In practice, we usually do not know $h^*(n)$
- One strategy to derive admissible heuristics: relax problem specifications by removing constraints, making them easier

Example: Grid Distances

- Grid navigation with goal $g=(x_g,y_g)$ and all transitions having cost 1
- Manhattan distance (L^1 norm): $h_1(x,y) = |x_g x| + |y_g y|$
- **Euclidean distance** (L^2 norm): $h_2(x, y) = \sqrt{(x_g x)^2 + (y_g y)^2}$

n1	n2	n3
n4	n5	n6
n7	n8	n9

- If we have 4-point connectivity (actions = {up, down, left, right}), both heuristics are admissible (h_2 underestimates true costs)
- If we have 8-point connectivity (actions = above + 4 diagonal actions), neither is admissible, but $\frac{1}{\sqrt{2}}h_2$ is!

n1	n2	n3
n4	n5	n6
n7	n8	n9

Heuristic Domination

- In a 4-point connected grid, L^1 norm always $\geq L^2$ norm between two cells
- h_1 dominates h_2 if $h_1(n) \ge h_2(n)$ for all n
- A* using h_1 will be more efficient and never expand more nodes than h_2
- h_1 reflects true costs more accurately
- Suppose we have collection of admissible heuristics h_1, h_2, \dots, h_m
- The composite heuristic $h(n) = \max\{h_1(n), \dots, h_m(n)\}$ is admissible and dominates all other heuristics!

Completeness and Optimality of A*

- Let $g^*(n)$ be cheapest path cost from start to node n
- If optimal goal has cost C^* , all nodes along path satisfy $g^*(n) + h^*(n) = C^*$
- Now suppose that heuristic function is admissible: $h(n) \le h^*(n) \ \forall n$
- Then all nodes along optimal path satisfy $f(n) = g^*(n) + h(n) \le C^*$
- All optimal solution nodes are expanded before any suboptimal goal with cost $C > C^*$
- A* is complete: If it exists, a solution will eventually be found and returned
- A* is **optimal**: Optimal solution will be returned before others with $C > C^*$
- A* improves upon UCS by skipping "useless" nodes that have $g^*(n) + h(n) > C^*$

Consistency

- A stronger heuristic property is consistency (triangle inequality)
- $h(n) h(n') \le c(n, a, n')$ for all n'
- Parent heuristic child heuristic ≤ true cost
- All consistent heuristics are admissible (but not vice versa)
- Most admissible heuristics are also consistent in practice

- Consistency ensures that the first expansion of a node is along cheapest path
- Heuristic consistency ensures that A* is optimally efficient—it expands the fewest nodes compared to any other optimal algorithm with the same heuristic

Satisficing Solutions

- Like BFS or UCS, A* may suffer computationally intractable memory requirements
- Idea: Trade off admissibility for more accurate heuristics to reduce computation
- Return satisficing solutions—suboptimal, but "good enough"
- Weighted A* search: $f(n) = g(n) + \alpha h(n)$
- $\alpha > 1$ focuses the contour of reached states closer to the goal
- Generalizes A* ($\alpha = 1$), UCS ($\alpha = 0$), and greedy best-first ($\alpha \to \infty$)
- Fewer states expanded than A*, but may miss the optimal solution
- Suboptimality: If optimal solution has cost C^* , weighted A* solution may cost up to αC^*

Memory-Bounded Search

- We can also consider A* variants that are more memory-efficient
- **Beam search**: Fixed frontier size, only keep k best nodes at any iteration
- Or set threshold for discarding frontier nodes relative to current lowest f-value
- Iterative-deepening A^* (IDA*): Depth-first iterative deepening search, only considering nodes with f-value not exceeding current cutoff value
- In each iteration, increment cutoff by *smallest f*-value of the skipped nodes
- IDA* yields linear spatial complexity of DFS; each iteration can progress steadily down the tree if f-values tend to increase consistently along paths

Summary

- Domain-specific heuristics can guide search toward goal
- A* search combines true costs and heuristics to evaluate frontier nodes

Admissible heuristics do not overestimate true costs -> A* is optimal

Consistent heuristics satisfy triangle inequality -> A* is optimally efficient

Many other variations of A* to deal with suboptimality, memory limits