[Aula 05] Linguagens regulares – Autômato finito com movimentos vazios (AFNε)

Prof. João F. Mari joaof.mari@ufv.br

[AULA 05] LR – Autômato finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

ROTEIRO

- Autômato finito com movimentos vazios
- [EX] AFNε: a's antecedem b's
- Computação Computação vazia
- [EX] Computação Computação vazia
- Computação de um AFNε para uma entrada w
- Equivalência entre AFN e AFNs
- [EX] Construção de um AFN a partir de um AFN E

Autômato Finito Com Movimentos Vazios

- Movimentos vazios :
 - Generalizam os movimentos não determinísticos.
- Movimento vazio:
 - Transição sem leitura de símbolo algum da fita;
 - Interpretado como um não-determinismo interno ao autômato;
 - Exceto por uma eventual mudança de estados nada mais pode ser observado.
- Algumas vantagens:
 - Facilita algumas construções e demonstrações.
- AFNε possui o mesmo poder de computação que AFN e AFD:
 - Movimento vazio não aumenta o poder de reconhecimento de linguagens;
 - Qualquer AFNε pode ser simulado por um AFD.

Prof. João Fernando Mari (joaof.mari@ufv.br)

٤

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato Finito Com Movimentos Vazios

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ: alfabeto (de símbolos) de entrada
- Q: conjunto de estados possíveis
- δ: Função programa ou Função de Transição (Função Parcial)

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$$

- Movimento vazio ou transição vazia

$$\delta(p, \epsilon) = \{ q_1, q_2, ..., q_n \}$$

- q₀: Elemento distinguido de Q: estado inicial
- F: Subconjunto de Q: conjunto de estados finais

Autômato Finito Com Movimentos Vazios

Autômato como diagrama

$$-\delta(q, \epsilon) = \{ p_0 \}$$
 $\delta(q, a_1) = \{ p_1 \}$... $\delta(q, a_n) = \{ p_n \}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato Finito Com Movimentos Vazios

- Computação de um AFNε:
 - Análoga à de um AFN.
- Processamento de uma transição vazia:
 - Não determinístico;
 - Assume simultaneamente os estados destino e origem;
 - Origem de um movimento vazio: caminho alternativo.

[EX] AFNE: a's antecedem b's

• $M_7 = (\{a, b\}, \{q_0, q_f\}, \delta_7, q_0, \{q_f\})$

Prof. João Fernando Mari (joaof.mari@ufv.br)

____/

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

Computação – Computação Vazia

- A definição da Computação de um AFNE:
 - É facilitada se primeiro definirmos a computação das transições vazias;
 - Ou simplesmente computação vazia...
 - A partir de um estado ou de um conjunto de estados.

Computação - Computação Vazia

 $M = (\Sigma, Q, \delta, q_0, F)$

Computação Vazia ou Função Fecho Vazio (um estado)

$$\delta \epsilon : Q \rightarrow 2^Q$$

- Indutivamente definida
 - δε(q) = { q }, se δ(q, ε) é indefinida
 - $-\delta \epsilon(q) = \{ q \} \cup \delta(q, \epsilon) \cup (\bigcup_{p \in \delta(q, \epsilon)} \delta \epsilon(p)), caso contrário$
- Computação Vazia ou Função Fecho Vazio (conjunto de estados)

$$\delta \epsilon^* : 2^Q \rightarrow 2^Q$$

– tal que:

$$\delta \epsilon^*(P) = \bigcup_{q \in P} \delta \epsilon(q)$$

- Por simplicidade, $\delta \epsilon$ e $\delta \epsilon^*$
 - Ambas denotadas por δε

Prof. João Fernando Mari (joaof.mari@ufv.br)

9

[AULA 05] LR - Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

[EX] Computação – Computação Vazia

- $\delta \epsilon(q_0) = \{q_0, q_f\}$
- $\delta \epsilon(q_f) = \{q_f\}$
- $\delta \epsilon (\{q_0, q_f\}) = \{q_0, q_f\}$

[EX] Computação – Computação Vazia

- $\delta \epsilon(q_0) = \{q_0, q_2, q_3, q_6\}$
- $\delta \epsilon(q_1) = \{q_1, q_5\}$
- $\delta \epsilon(q_2) = \{q_2, q_6\}$
- $\delta \varepsilon(q_3) = \{q_3\}$
- $\delta \epsilon(q_4) = \{q_4\}$
- $\delta \varepsilon(q_5) = \{q_5\}$
- $\delta \varepsilon(q_6) = \{q_6\}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

1:

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

Computação de um AFNE para uma entrada w

- Computação de um AFNE para uma entrada w:
 - Sucessiva aplicação da função programa...
 - para cada símbolo de w (da esquerda para a direita).
 - Cada passo de aplicação intercalado com computações vazias,
 - até ocorrer uma condição de parada.
- Assim, antes de processar a próxima transição determinar:
 - Todos os demais estados atingíveis exclusivamente por movimentos vazios.

Todos os estados atingidos

depois de ler w.

Computação de um AFNE para uma entrada w

M = (Σ, Q, δ, q₀, F) AFNε

$$\delta^*: 2^Q \times \Sigma^* \rightarrow 2^Q$$

- Indutivamente definida: Todos os estados atingidos depois de ler w e a
 - $-\delta^*(P, \varepsilon) = \delta\varepsilon(P)$
 - $-\delta^*(P, wa) = \delta \varepsilon(R)$ onde $R = \{ r \mid r \in \delta(s, a) \in S \in \delta^*(P, w) \}$

→ computação vazia de R

- Ou de forma mais simples:
 - $\delta^*(P, wa) = \delta \epsilon(r \mid r \in \delta(s, a) e s \in \delta^*(P, w))$
- Parada do processamento, Ling. Aceita/Rejeitada:
 - Análoga à do autômato finito não determinístico.

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

[EX] Computação Vazia, Computação.

- $\delta^*(\{q_0\}, abb)$ = $\delta\epsilon(\{r \mid r \in \delta(s, b) \mid e \mid s \in \delta^*(\{q_0\}, ab)\})$ (1)
- $\delta^*(\lbrace q_0 \rbrace, ab)$ = $\delta \epsilon(\lbrace r \mid r \in \delta(s, b) \ e \ s \in \underline{\delta^*(\lbrace q_0 \rbrace, a)})$ (2)
- $\delta^*(\lbrace q_0 \rbrace, \mathbf{a}) = \delta \epsilon(\lbrace r \mid r \in \delta(s, \mathbf{a}) \ e \ s \in \underline{\delta^*(\lbrace q_0 \rbrace, \boldsymbol{\epsilon})} \rbrace)$ (3)
- Como:
 - $-\delta^*(\{q_0\}, \epsilon)\} = \delta\epsilon(\{q_0\}) = \{q_0, q_1, q_2, q_4\}$ considerado em (3)
 - $-\delta^*(\{q_0\}, a) = \{q_0, q_1, q_2, q_4, q_f\}$ considerado em (2)
 - $-\delta^*(\{q_0\}, ab) = \{q_0, q_1, q_2, q_3, q_4\}$ considerado em (1)
- Resulta na computação: $\delta^*(\{q_0\}, abb) = \{q_0, q_1, q_2, q_3, q_4, q_f\}$

Equivalência entre AFN e AFNE

- Classe dos Autômatos Finitos com Movimentos Vazios é equivalente à Classe dos Autômatos Finitos Não determinísticos
- Prova: (por indução)
- Basta mostrar que:
 - A partir de um AFNε M qualquer é possível ...
 - construir um AFN M_N que realiza as mesmas computações.
 - Sendo que M_N simula M.
- AFNε → AFN
 - Construção de uma função programa sem movimentos vazios.
 - Conjunto de estados destino de cada transição não vazia;
 - Ampliado com os demais <u>estados possíveis de serem atingidos</u> exclusivamente por transições vazias.

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

Equivalência entre AFN e AFNs

• M = $(\Sigma, Q, \delta, q_0, F)$ um AFN ε qualquer. AFN construído:

$$M_N = (\Sigma, Q, \delta_N, q_0, F_N)$$

• δ_N : Q × $\Sigma \rightarrow 2^Q$ é tal que:

$$\delta_{N}(q, a) = \delta^{*}(\{q\}, a)$$

- F_N é o conjunto de todos os estados q pertencentes a Q $\delta\epsilon(q) \cap F \neq \emptyset$
 - Estados que atingem estados finais via computações vazias.
- Portanto, linguagem aceita por AFNE:
 - É Linguagem Regular ou Tipo 3.

[EX] Construção de um AFN a partir de um AFN a

• $M_9 = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_9, q_0, \{q_2\}) - AFN\epsilon$

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

[EX] Construção de um AFN a partir de um AFN E

- $F_N = \{ q_0, q_1, q_2 \}$
 - δε(q_0) = { q_0 , q_1 , q_2 }
 - δε(q₁) = { q₁, q₂ }
 - δε(q_2) = { q_2 }

• Na construção de δ_{9N}

$$- \delta_9^*(\{q_0\}, \epsilon) = \{q_0, q_1, q_2\} \xrightarrow{s}$$

$$- \delta_9^*(\{q_1\}, \epsilon) = \{q_1, q_2\}$$

$$-\delta_9^*(\{q_2\}, \epsilon) = \{q_2\}$$

[EX] Construção de um AFN a partir de um AFN E

Assim, δ_{9N} é tal que:

 $-\delta_{9N}(q_0, a) = \delta_9^*(\{q_0\}, a) = \delta_{\epsilon}(\{r \mid r \in \delta(s, a) \mid e \mid s \in \delta^*(\{q_0\}, \epsilon)\}) =$

- δ_{9N}(q₂, a) = δ₉*({ q₂ }, a) = δε({ r | r ∈ δ(s, a) e s ∈ δ*({ q₂ }, ε) }) =

 $\delta \varepsilon (\{q2\}) = \{q_2\}$

 $- \delta_{9N}(q_2, b) = \delta_9^*({q_2}, b) = \delta_8({r | r ∈ \delta(s, b) e s ∈ \delta^*({q_2}, ε)})$ é indefinida.

Prof. João Fernando Mari (joaof.mari@ufv.br)

19

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

[EX] Construção de um AFN a partir de um AFN E

AFN ϵ - M₉ = ({ a, b}, { q₀, q₁, q₂}, δ ₉, q₀, { q₂})

 $M_{9N} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_{9N}, q_0, F_N)$

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 3.
 - + Slides disponibilizados pelo autor do livro.

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER 3)

[FIM]

- FIM:
 - [AULA 05] LINGUAGENS REGULARES Autômato Finito com movimentos vazios
- Próxima aula:
 - [AULA 06] LINGUAGENS REGULARES Expressão regular