LL(1) Grammars

Recap: Parsing LL(k) Grammars

- We have seen that CFGs can be parsed with a Nondeterministic Top-Down Automaton (NTA) and that a k-lookahead allows to make the parsing deterministic if the grammar is LL(k)
- The CFG $G = < \Sigma, N, P, S >$ is an LL(k) grammar for a given $k \in \mathbb{N}$ if for all leftmost derivations of the form

$$S \Rightarrow_{l}^{*} wA\alpha \begin{cases} \Rightarrow_{l} w\beta\alpha \Rightarrow_{l}^{*} wx \\ \Rightarrow_{l} w\gamma\alpha \Rightarrow_{l}^{*} wy \end{cases} \text{ such that } \beta \neq \gamma$$

it follows that $first_k(x) \neq first_k(y)$

■ Lemma: $G = < \Sigma, N, P, S >$ is an LL(k) grammar if and only if for all leftmost derivations of the form

$$S \Rightarrow_{l}^{*} wA\alpha \begin{cases} \Rightarrow_{l}^{*} w\beta\alpha \Rightarrow_{l}^{*} wx \\ \Rightarrow_{l} w\gamma\alpha \Rightarrow_{l}^{*} wy \end{cases} \text{ such that } \beta \neq \gamma$$

it follows that $first_k(\beta \alpha) \cap first_k(\gamma \alpha) = \emptyset$

Parsing LL(k)

- Using the property $first_k(\beta\alpha) \cap first_k(\gamma\alpha) = \emptyset$ for deterministic expansion decisions in the NTA requires to compute $first_k(\beta\alpha)$ and $first_k(\gamma\alpha)$ for all $\beta\alpha$ and $\gamma\alpha$ that can appear during the parsing.
- Implementing an efficient parser for LL(k > 1) is not easy
 - See for example the ANTLR parser generator tool http://www.antlr.org/
- Fortunately, for many interesting languages, an LL(1) grammar can be given, and we will see that parsing for LL(1) is rather straight-forward

$first_1$ and $follow_1$ set

- Consider $G = < \Sigma, N, P, S >, X = N \cup \Sigma$
- We have already seen the $first_1$ set: For every $\alpha \in X^*$ we define

$$first_1(\alpha) = \{ a \in \Sigma \mid \exists w \in \Sigma^* : \alpha \Rightarrow^* aw \} \cup \{ \varepsilon \mid \alpha \Rightarrow^* \varepsilon \}$$

■ We now define the $follow_1$ set. It is the set of all terminal symbols (or ε) that can follow a non-terminal symbol $A \in N$:

$$follow_1(A) = \{x \in first_1(\alpha) \mid \exists w \in \Sigma^*, \alpha \in X^* : S \Rightarrow_l^* wA\alpha \}$$

- In the following, we will write fi and fo for $first_1$ and $follow_1$
- We also define the $first_1$ set for a set $\Gamma \subseteq X^*$:

$$fi(\Gamma) = \bigcup_{\gamma \in \Gamma} fi(\gamma)$$

Lookahead sets and LL(1)

■ Given a rule $A \rightarrow \beta \in P$, its *lookahead set* is defined as:

$$la(A \to \beta) = fi\big(\beta \cdot fo(A)\big)$$
 where $\beta \cdot \{a,b,c,...\}$ means $\{\beta a,\beta b,\beta c,...\}$

- Obviously, $a \in la(A \to \beta)$ if and only if $a \in fi(\beta)$ or $(\beta \Rightarrow^* \varepsilon \text{ and } a \in fo(A))$ and $\varepsilon \in la(A \to \beta)$ if and only if $\beta \Rightarrow^* \varepsilon \text{ and } \varepsilon \in fo(A)$
- Important Theorem (not proven here): A grammar is LL(1) if and only if for all rules $A \to \beta \mid \gamma$ (with $\beta \neq \gamma$) $la(A \to \beta) \cap la(A \to \gamma) = \emptyset$
 - Note that $la(\cdot)$ can be easily computed for all rules
 - Does not generally hold for LL(k > 1)

Computing lookahead set $la(A \rightarrow \beta) = fi(\beta \cdot fo(A))$

- $fi(\alpha)$ for $\alpha \in X^*$ is the least set such that
 - $fi(a) = \{a\}$ for $a \in \Sigma$
 - $a \in fi(A)$ for $A \to \beta$ if $a \in fi(\beta)$
 - $a \in fi(Y_1 \dots Y_n)$ for $Y_i \in X$ if $\varepsilon \in fi(Y_1) \cap \dots \cap fi(Y_{k-1})$ and $a \in fi(Y_k)$ for some $k \leq n$
 - $\varepsilon \in fi(Y_1 \dots Y_n)$ for $Y_i \in X$ if $\varepsilon \in fi(Y_1) \cap \dots \cap fi(Y_n)$
- fo(A) for $A \in N$ is the least set such that
 - $\varepsilon \in fo(A)$ if A is the start symbol of the grammar
 - $a \in fo(A)$ if there is a rule $B \to \alpha A\beta$ and $a \in fi(\beta)$
 - $a \in fo(A)$ if there is a rule $B \to \alpha A\beta$ with $\varepsilon \in fi(\beta)$, $a \in fo(B)$
- Some useful insights:
 - $A \to a\beta \Rightarrow a \in fi(A)$
 - $A \to B\alpha$ and $\alpha \in fi(B) \Rightarrow \alpha \in fi(A)$
 - $A \to \varepsilon \Rightarrow \varepsilon \in fi(A)$
 - $a \in fi(A) \Rightarrow a \in fi(A\alpha)$

Example

- Is this gramma LL(1) ? $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid a \mid b$
- Let's check:
 - From $F \to a$ follows that $a \in fi(F)$
 - Because of $T \to F$ we also have $a \in fi(T)$
 - Because of $T \to T * F$ we also have $a \in fi(T * F)$
- Remember that

$$la(A \to \beta) = fi(\beta \cdot fo(A))$$

Therefore

$$a \in la(T \to F)$$
 and $a \in la(T \to T * F)$

• We conclude that the LL(1) property does not hold:

$$la(T \to F) \cap la(T \to T * F) \neq \emptyset$$

and therefore the grammar is not LL(1)

• Because if the parsing automaton is in the state $(aw, T\beta, ...)$ it cannot decide whether T should be expanded to F or T * F

What was the problem in our example?

In our example, the problem are rules like this one:

$$T \to T * F \mid F$$

- Everything that appears in the first set of F will be also in the first set of T * F because T * F can be expanded to F * F
- This will also happen if there is an intermediate rule, e.g.,

$$T \to X \mid F$$

$$X \to T * F \dots$$

It's even worse if we only have the rule

$$T \to T * F$$

The automaton would expand in an infinite loop

$$(aw, T\alpha, ...) \Rightarrow (aw, T * F\alpha, ...) \Rightarrow (aw, T * F * F\alpha, ...) \Rightarrow ...$$

- In general, CFG is called *left recursive* if there is a $A \in N$ such that $A \Rightarrow^+ A\alpha$
 - Corollary: if a CFG is left recursive with $A \Rightarrow^+ A\alpha$ then there exists $\beta \in X^*$ with $A \Rightarrow_I^+ A\beta$
- It hold: a left recursive grammar is not LL(k) for any k

Eliminating Left Recursion

Direct left recursion of the form

$$A \rightarrow A\alpha_1 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_n$$

can be replaced by right recursion

$$A \to \beta_1 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \varepsilon$$

without changing the language.

Example:

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid a \mid b$$

can be transformed to

$$E \to TE'$$

$$E' \to +TE' \mid \varepsilon$$

$$T \to FT'$$

$$T' \to *FT' \mid \varepsilon$$

$$F \to (E) \mid a \mid b$$

Eliminating Left Recursion, part 2

Indirect left recursion of the form

$$A \to A_1 \alpha_1$$

$$A_1 \to A_2 \alpha_2$$
...
$$A_{k-1} \to A_k \alpha_k$$

$$A_k \to A\beta$$

can be removed by

- replacing A_1 in the rules where it appears by $A_2\alpha_2$
- then replacing A_2 in the rules where it appears by $A_3\alpha_3$
- etc.
- and as last step: eliminate the resulting direct recursion $A \to A\gamma$

A much easier problem...

Obviously, a grammar with rules like

$$A \to \alpha \beta \mid \alpha \gamma$$

is not LL(k) if the "length" of α is $\geq k$

But this can be fixed easily by replacing those rules by

$$A \to \alpha B$$
$$B \to \beta \mid \gamma$$

This is called *left factorization*

Note how we avoid the dangling else problem (ambiguous grammar) by using an "endif"

Example:

 $S \rightarrow if \ C \ then \ S \ else \ S \ end \ if \ | \ if \ C \ then \ S \ end \ if$ can be turned to

$$S \rightarrow if \ C \ then \ S \ S'$$

 $S' \rightarrow else \ S \ endif \ | \ endif$

Important remarks

- The transformations shown here preserve the language generated by the CFG but not the syntax tree!
- Not every language can be generated by an LL(1) grammar. In fact, there are context free languages that cannot be generated by any LL(k) grammar.
 - Example: $\{a^nbc^n\mid n\geq 1\}\cup \{a^ndc^n\mid n\geq 1\}$ This would require an infinite lookahead to read beyond a^n
- Even worse: for an arbitrary CFG it is undecidable whether there is an LL(k) grammar that generates the same language
- Use tools like http://mdaines.github.io/grammophone/ to check whether a CFG is LL(1). It can also transform to LL(1)
- Transformations are also used by parser generator tools like ANTLR https://www.antlr.org/