1 2 pages

```
Source | Model | Option
| Model_Option | Help on fd methods | Archived Tests
```

fd_psor2d

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M
- Omega $1 \le \omega \le 2$
- Epsilon

Output parameters:

- Price
- Delta1
- Delta2

```
/*Memory Allocation*/
```

/*Space localisation/* Define the integration domain $D=[-l,l]^2$ using probabilistic estimation.

/*Space Step/*

Define the space step $h = \frac{2l}{M}$.

/*Time Step/*

/*Terminal Values/*

Put the value of the payoff into a vector P

2 pages

/*Homegenous Dirichlet Conditions/*

/*Finite difference Cycle/*

At any time step, described by the loop in the variable *TimeIndex*, we have to solve the linear system with Psor Algorithm (cf. there)

```
/*Psor Cycle/*
```

/*Projection for American case*/

For American options, we compare at each time step the solution in P with the payoff function saved in iv. We save the result in P

```
/*Price*/
/*Delta*/
```

/*Memory Desallocation*/