EECS 545: Machine Learning

Lecture 3. Linear Regression

Honglak Lee 1/12/2011

Outline

- Recap: Linear regression
- Regularized Linear Regression
- Locally-weighted Linear Regression
- Kernel Regression
- Classification: K Nearest Neighbor

Supervised Learning

- Goal:
 - Given data X in feature space and the labels Y
 - Learn to predict Y from X
- Labels could be discrete or continuous
 - Discrete labels: classification
 - Continuous labels: regression

Supervised Learning - Regression

"Learning regression function f(X)"

Notation

- In this lecture, we will use
 - x: data (scalar or vector)
 - $-\phi(x)$: features for x
 - t (or y): continuous-valued labels (target values)
- We will interchangeably use
 - $-x^{(n)} \stackrel{\text{def}}{=} x_n$ to denote n-th training example.
 - $-t^{(n)} \stackrel{\text{def}}{=} t_n$ to denote n-th target value.

Regression

Given a set of observations

$$- \mathbf{x} = \{ x_1 \dots x_N \}$$

And corresponding target values:

$$-\mathbf{t}=\{t_1\ldots t_N\}$$

 We want to learn a function y(x,w)=t to predict future values.

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

Linear Regression

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

- The function y(x,w) is linear in parameters w.
 - Goal: find the best value for the weights, w.
- For simplicity, add a bias function $\phi_0(\mathbf{x}) = 1$

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

$$\mathbf{w} = (w_0, \dots, w_{M-1})^T$$
 $\phi = (\phi_0, \dots, \phi_{M-1})^T$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=0}^{M-1} w_j \phi_j(x^{(n)}) - t^{(n)} \right)^2$$

Gradient

$$\frac{\partial E(\mathbf{w})}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)})^{2}$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)}) \frac{\partial}{\partial w_{j}} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)})$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)}) \phi_{j}(x^{(n)})$$

Least squares problem

Gradient (compact, vectorized form)

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (\sum_{j'=0}^{M-1} w_{j'} \phi_{j'}(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$
$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

Batch Gradient Descent

- Given data (x, y), initial w
 - Repeat until convergence

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

where

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (\sum_{j'=0}^{M-1} w_{j'} \phi_{j'}(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$
$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

Stochastic Gradient Descent

- Main idea: instead of computing batch gradient (over entire training data), just compute gradient for individual example and update
- Repeat until convergence

- for n=1,...,N
$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}|x^{(n)})$$

where

$$\nabla_{\mathbf{w}} E(\mathbf{w}|x^{(n)}) = (\sum_{j'=0}^{M-1} w_{j'} \phi_{j'}(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$
$$= (\mathbf{w}^T \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

Closed form solution

- Main idea:
 - Compute gradient and set gradient to 0.
 (condition for optimal solution)
 - Solve the equation in a closed form
- Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=0}^{M-1} w_j \phi_j(x^{(n)}) - t^{(n)} \right)^2$$

We will derive the gradient from matrix calculus

Closed form solution

Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(x^{(n)}) - t^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(x^{(n)}) - t^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(x^{(n)}))^2 - \sum_{n=1}^{N} t^{(n)} \mathbf{w}^T \phi(x^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} t^{(n)2}$$

$$= \frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t}$$

Recap: matrix calculus (check previous review session)

The Data

- The design matrix is an NxM matrix, applying
 - the M basis functions (across)
 - to N data points (down)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

 $\Phi \mathbf{w} \approx \mathbf{t}$

For polynomial falling,

$$\overline{\Phi} = \begin{bmatrix} 1 & \chi_1 & \chi_1^2 & \dots & \chi_1^{M-1} \\ 1 & \chi_2 & \chi_2^2 & \dots & \chi_2^{M-1} \\ \vdots & & & & & & \\ 1 & \chi_N & \chi_N^2 & \dots & \chi_N^{M-1} \end{bmatrix}$$

Gradients and Hessians of Quadratic and Linear Functions (Recap)

$$\bullet \nabla_x b^T x = b$$

- $\nabla_x x^T A x = 2Ax$ (if A symmetric)
- $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Gradient via matrix calculus

Compute gradient and set to zero

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t}$$
$$= \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{t}$$

Solve the resulting equation (normal equation)

$$\Phi^T \Phi \mathbf{w} = \Phi^T \mathbf{t}$$

$$\mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

This is the Moore-Penrose pseudo-inverse: ${f \Phi}^\dagger = ({f \Phi}^T {f \Phi})^{-1} {f \Phi}^T$

applied to: $\mathbf{\Phi}\mathbf{w}pprox\mathbf{t}$

Geometric Interpretation

- Assuming many more observations (N) than the M basis functions $\phi_j(\mathbf{x})$
- View the observed target values $t=\{t_1 \dots t_N\}$ as a vector in an N-dimensional space.
- The M basis functions $\phi_j(\mathbf{x})$ span an M-dimensional subspace.
- $y(x,w_{ML})$ is the point in the subspace with minimal squared error from t.
- It's the projection of t onto that subspace.

Geometric Interpretation

• $y(x,w_{ML})$ is the projection of t onto the subspace spanned by the M basis functions $\phi_j(\mathbf{x})$

Slide credit: Ben Kuipers

Back to curve-fitting examples

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Data Set Size: N = 15

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

Q. How do we choose the degree of polynomial?

Regularized Linear Regression

Regularized Least Squares (1)

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 With the sum-of-squares error function and a quadratic regularizer, we get

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

λ is called the regularization coefficient.

$$A \times = b$$

Objective function

Objective function
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

$$= \frac{1}{2} \mathbf{w}^{T} \Phi^{T} \Phi \mathbf{w} - \mathbf{w}^{T} \Phi^{T} \mathbf{t} + \frac{1}{2} \mathbf{t}^{T} \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

Compute gradient and set it zero:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \lambda \mathbf{w}$$

$$= (\Phi^T \Phi + \lambda \mathbf{I}) \mathbf{w} - \Phi^T \mathbf{t}$$

$$= 0$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

Therefore, we get:

$$\mathbf{w}_{ML} = (\Phi^T \Phi + \lambda \mathbf{I})^{-1} \Phi^T \mathbf{t}$$

$$\begin{cases} \frac{1}{2} \sqrt{W} & \text{win} = 1 \text{w} = W \\ \frac{1}{2} \sqrt{W} & \text{win} = 1 \text{w} = W \end{cases}$$

Regularized Least Squares (2)

(W)+(W2)=1

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Lasso "L1 regularization"

Quadratic "L2 regularization"

Regularized Least Squares (3)

 Lasso tends to generate sparser solutions than a quadratic regularizer.

Regularization as constraints:

L2 Regularization: $\ln \lambda = -18$

L2 Regularization: $\ln \lambda = 0$

L2 Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01
	MM//w		

Locally-weighted Linear Regression (a.k.a. instance based regression)

Locally weighted linear regression

 Main idea: When predicting f(x), give high weights for "neighbors" of x.

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Linear regression vs. Locally-weighted Linear Regression

Linear regression

- 1. Fit θ to minimize $\sum_{i} (y^{(i)} \theta^T x^{(i)})^2$.
- 2. Output $\theta^T x$.

Locally-weighted linear regression

- 1. Fit θ to minimize $\sum_i w^{(i)} (y^{(i)} \theta^T x^{(i)})^2$.
- 2. Output $\theta^T x$.

 τ : "kernel width"

- Standard choice: $w^{(i)} = \exp\left(-\frac{(x^{(i)} x)^2}{2\tau^2}\right)$
- The problem can be formulated as a modified version of least squares problem (Programming assignment in HW#1)

Locally weighted linear regression

• Choice of kernel width τ

Figure 3: The estimator variance is minimized when the kernel includes as many training points as can be accommodated by the model. Here the linear LOESS model is shown. Too large a kernel includes points that degrade the fit, too small a kernel neglects points that increase confidence in the fit.

Classification: Kernel regression (a.k.a. instance based regression)

Locally-weighted Linear Regression vs. Kernel regression

- Locally-weighted linear regression
 - 1. Fit θ to minimize $\sum_{i} w^{(i)} (y^{(i)} \theta^T x^{(i)})^2$.
 - 2. Output $\theta^T x$.

 τ : "kernel width"

- Standard choice: $w^{(i)} = \exp\left(-\frac{(x^{(i)} x)^2}{2\tau^2}\right)$
- Kernel regression (using Gaussian kernel)

- output:
$$\frac{\sum_{i} K(x,x^{(i)})y^{(i)}}{\sum_{i} K(x,x^{(i)})}$$

where $K(x,x^{(i)}) = w^{(i)} = \exp\left(-\frac{(x^{(i)}-x)^2}{2\tau^2}\right)$

More generally, any distance metric (other than L2 or Eucleidian distance) can be used

Kernel regression

Examples

Kernel regression: Classification vs Regression

- Note: it is very easy to formulate kernel regression into regression/classification
 - 1. Given training data $D = \{\mathbf{x}_i, y_i\}$, Kernel function $K(\cdot, \cdot)$ and input \mathbf{x}
 - (regression) if $y \in \mathbf{R}$, return weighted average:

$$\frac{\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i) y_i}{\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i)}$$

• (classification) if $y \in \pm 1$, return weighted majority:

$$sign(\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i) y_i)$$

Supervised Learning: Classification

Supervised Learning - Classification

"Learning decision boundaries"

Supervised Learning - Classification

Slide credit: Aarti Singh

Classification problem

- Training data $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
 - For binary classification, $y_n \in \{0,1\}$ or $y_n \in \{-1,1\}$
 - Generally, $y_n \in \{1, ..., C\}$, where C is the number of discrete labels
- Training: train a classifier h(x)
- Testing (evaluation):
 - The learning algorithm produces predictions $h(x_1^{test}), h(x_2^{test}), ..., h(x_m^{test})$ for a set of testing data
 - 0-1 loss:

error =
$$A = \frac{1}{m} \sum_{j=1}^{m} 1[h(x_j^{\text{test}}) \neq y_j^{\text{test}}]$$

 $L_{
m Bufnorum}$

Classification: K-nearest neighbor (a.k.a. instance based classification)

Basic k-nearest neighbor

- Training method:
 - Save the training examples
- At prediction time:
 - Find the k training examples $(x_1, y_1), ... (x_k, y_k)$ that are closest to the test example x
 - Predict the most frequent class among those y_i 's.

"majority vote" $\hat{Y}(x) = \frac{1}{k} \sum_{i} y_i, \quad h(x) = sign(\hat{Y}(x))$

- Note: this $\widehat{Y}(x)$ function can be applied to regression!

K-Nearest-Neighbours for Classification

K-Nearest-Neighbours for Classification

- K acts as a smother
- For $N \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

What is the decision boundary?

Voronoi diagram

Dependence on distance metric (L^q norm)

Slide credit: Ben Taskar

Advantage/disadvantages of instance-based (local) learning algorithms

Advantage:

very flexible, simple, and effective

Disadvantages:

- Expensive: need to remember (store) and search through all the training data for every prediction
- Curse-of-dimensionality: In high dimensions, all points are far
- Irrelevant features: If x has irrelevant, noisy features, distance function becomes useless