Small Business Loans

Decision Making on Loan Approval

Ed Lee Classification, METIS, July 2022

Background

- SBA audits and approves loans for small businesses
- Banks lend funds based on SBA aproval

Background

 But some businesses end up failing to pay the loan back

→ "Charge-off"

Which businesses are likely to default?

The Dataset

Records of loans approved by SBA

- Raw dataset contains 899,164 entries and 27 columns
- Includes traits of each business, amount approved, loan status (paid in full / charged off)

Tools

All the tools I have utilized were run through Python 3.8

Pandas	EDA, data cleaning, data manipulation, feature engineering
Matplotlib, seaborn	Plots, model visualizations
Scikit-learn	Building classification models (LogReg, random forest, naïve Bayes, AdaBoost), preprocessing data, evaluating model metrics
XGBoost	Building classification models (Xgboost classifier)
imblearn	Testing for class imbalance

EDA & Data Clening

Raw dataset

- Removing rows with invalid values
- Preprocessing
- Feature selection

- Target: Loan Status
- Imbalance: ~20% of all target values were positives (charged-off)

Feature Importance

Before jumping into model comparisons, let's get a rough idea of each feature's impact

'Starting Point' - ROC (LogReg)

Accuracy: 0.820 Precision: 0.979 Recall: 0.002 AUC: 0.703

Result - Models &

Total six models were built:

- 1. 'Baseline' Logistic Regression (default parameter)
- 2. Tuned LogReg (with GridSearchCV)
- 3. Random Forest (tuned with GridSearchCV)
- 4. Naïve Bayes
- 5. AdaBoost
- 6. XGBoost
- Class imbalance was ultimately addressed via class weights

ROC Curves – All Models 0.6

Result - Models &

Choosing the best model:

- Model performances were compared via plotting ROC curve and evaluating its area (ROC AUC)
- Random Forest model yielded the best model

'The Destination' - ROC (RF) 10 0.8 0.6 Random Forest LogReg (Baseline) FP

The Champion:

Metrics improvement over the baseline:

Accuracy: $0.820 \rightarrow 0.938$

Precision: $0.979 \rightarrow 0.970$

Recall: $0.002 \rightarrow 0.681$

AUC: $0.703 \rightarrow 0.961$

Confusion Matrix 80000 475 99457 60000 - 40000 Charged-off 6950 15153 -20000 Paid In Full Charged-off Predicted

The Champion:

Metrics improvement over the baseline:

Accuracy: $0.820 \rightarrow 0.938$

Precision: $0.979 \rightarrow 0.970$

Recall: $0.002 \rightarrow 0.681$

AUC: $0.703 \rightarrow 0.961$

O PEN

https://www.bamboohr.com/small-business/

Further Works

Further optimizations and visualizations

- Employing more features from the dataset ex) Business type, franchise, location...
- Visualizing predicted values, possibly via geocoding with tableau
- More thorough feature engineering
- Further fine-tuning (hyperparameters, etc)

Thank you!

Any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

Please, keep this slide for the attribution