Máquina de Turing

Características del proceso de cálculo de una persona

- Se concentra en una porción restringida del papel
- Trabaja con un número finito de símbolos
- Puede cambiar la sección de papel en que se concentra (de acuerdo al símbolo que observa y a sus estado mental)
- Pasa por un número finito de estados mentales distinguibles
- Se asume que siempre contará con el papel suficiente para sus cálculos (se asume infinito)

Máquina de Turing

cinta de papel infinita

En cada instante, la máquina se encuentra en algún estado q_i , perteneciente al conjunto finito Q de todos los estados posibles

$$Q = \{q_0, q_1, q_2, \dots q_n\}$$

Configuración inicial

- La máquina siempre comienza en el estado inicial q_0
- Si existe un string de entrada, la máquina comienza apuntando al primer símbolo de este string.
- Si no existe un string de entrada escrito en la cinta, sólo hay símbolos "B" en cada celda de la misma)
- El string de entrada estará limitado por infinitos B a izquierda y derecha. Además no hay ningún símbolo B en medio del string

Comportamiento de la máquina de Turing

- El comportamiento de la máquina está definido por una función de transición (programa)
- Dependiendo del símbolo en la celda actual y del estado corriente, la máquina efectúa en un único paso de computación las siguientes acciones
 - 1. Cambia de estado (o vuelve a elegir el actual)
 - 2. Escribe un símbolo en la celda actual, reemplazando lo que allí había (puede escribir el mismo símbolo que estaba)
 - 3. Mueve el cabezal a la izquierda o la derecha, exactamente una celda

Ejemplos

Estando en el estado q1, leyendo el símbolo c en la celda corriente, lo reemplaza con el símbolo a y mueve la cabeza a la derecha

Comportamiento de la máquina de Turing

- El programa de la MT no es un programa secuencial sino que es una función matemática de transición.
- La máquina trabaja haciendo "pattern matching", es decir busca en su programa cuál es la línea (transición) que debe aplicar según su estado actual y símbolo leído.
- Si no existe ninguna transición definida para el estado actual y símbolo leído la máquina se detiene.
- ¿Que ocurriría si más de una línea hiciese "pattern matching" en el mismo momento?
 - Cómo se imagina que actuaría la MT
 - ¿El programa de la MT seguiría siendo una función matemática?
 - El modelo de MT no determinísticas (MTND) que veremos más adelante busca precisamente el efecto anterior. Además se define de tal forma que el programa sigue siendo una función matemática

Más ejemplos de transiciones

Más ejemplos de transiciones

Actividades-Resolver con MT

Supongamos cadenas formadas sólo por símbolos a y b.

- Una MT que borra el primer símbolo de la cadena sólo si es un símbolo a
- Una MT que borra el primer símbolo de la cadena
- Una MT que borra todos los símbolos de la cadena
- Una MT que borra los símbolos de la cadena en las posiciones pares
- Una MT que hace zig-zag sobre la cadena de entrada recorriéndola hacia la derecha y luego hacia la izquierda indefinidamente.

Actividades-Resolver con MT

- Escribir símbolos "1" a la derecha indefinidamente
- Escribir símbolos "0" a la izquierda indefinidamente
- Escribir la palabra "casa"
- Escribir indefinidamente "casa casa casa casa" hacia la izquierda
- Escribir "1" hacia la derecha y "0" hacia la izquierda en zigzag indefinidamente, es decir me voy a derecha para escribir un 1 al final, y cambio el sentido hacia la izquierda para escribir un 0, y cambio sentido hacia la derecha, así indefinidamente

¿Qué hacen las siguientes máquinas de Turing?

Ejercicios (se deja como tarea)

- Sumar 1 al número unario existente en la cinta Γ = {1,B}. En unario, el número n se representa como una cadena de n símbolos 1 (el cero es un string vacío).
- Construir una máquina de Turing que haga un corrimiento a derecha del string binario en la cinta, marcando con un símbolo especial "#" la celda que correspondía al primer símbolo desplazado. Γ = {B,#,0,1}.

Ejercicio (5 minutos para realizarlo en clase)

 Construir una máquina de Turing que agregue un bit de paridad a una secuencia binaria para que la cantidad de "1" sea par. Γ={0,1,B}

El conjunto Γ es el conjunto de símbolos que pueden encontrarse en la cinta. Este dato es importante porque la máquina se detiene cuando se encuentra en una situación indefinida.

Ejercicio

