Table of Fourier Transform Pairs

Function, f(t)	Fourier Transform, F(ω)
Definition of Inverse Fourier Transform	Definition of Fourier Transform
$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$
$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
$f(\alpha t)$	$\frac{1}{ \alpha }F(\frac{\omega}{\alpha})$
F(t)	$2\pi f(-\omega)$
$\frac{d^n f(t)}{dt^n}$	$(j\omega)^n F(\omega)$
$(-jt)^n f(t)$	$\frac{d^n F(\omega)}{d\omega^n}$
$\int_{-\infty}^{t} f(\tau)d\tau$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
$\delta(t)$	1
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
sgn (t)	$\frac{2}{j\omega}$

Fourier Transform Table

UBC M267 Resources for 2005

F(t)	$\widehat{F}(\omega)$	Notes	(0)
f(t)	$\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$	Definition.	(1)
$\frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$	$\widehat{f}(\omega)$	Inversion formula.	(2)
$\widehat{f}(-t)$	$2\pi f(\omega)$	Duality property.	(3)
$e^{-at}u(t)$	$\frac{1}{a+i\omega}$	a constant, $\Re(a) > 0$	(4)
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a constant, $\Re(a) > 0$	(5)
$\beta(t) = \begin{cases} 1, & \text{if } t < 1, \\ 0, & \text{if } t > 1 \end{cases}$	$2\operatorname{sinc}(\omega) = 2\frac{\sin(\omega)}{\omega}$	Boxcar in time.	(6)
$\frac{1}{\pi}\operatorname{sinc}(t)$	$eta(\omega)$	Boxcar in frequency.	(7)
f'(t)	$i\omega\widehat{f}(\omega)$	Derivative in time.	(8)
f''(t)	$(i\omega)^2 \widehat{f}(\omega)$	Higher derivatives similar.	(9)
tf(t)	$i\frac{d}{d\omega}\widehat{f}(\omega)$	Derivative in frequency.	(10)
$t^2 f(t)$	$i^2 \frac{d^2}{d\omega^2} \widehat{f}(\omega)$	Higher derivatives similar.	(11)
$e^{i\omega_0 t}f(t)$	$\widehat{f}(\omega-\omega_0)$	Modulation property.	(12)
$f\left(\frac{t-t_0}{k}\right)$	$ke^{-i\omega t_0}\widehat{f}(k\omega)$	Time shift and squeeze.	(13)
(f*g)(t)	$\widehat{f}(\omega)\widehat{g}(\omega)$	Convolution in time.	(14)
$u(t) = \begin{cases} 0, & \text{if } t < 0 \\ 1, & \text{if } t > 0 \end{cases}$	$rac{1}{i\omega}+\pi\delta(\omega)$	Heaviside step function.	(15)
$\delta(t-t_0)f(t)$	$e^{-i\omega t_0}f(t_0)$	Assumes f continuous at t_0 .	(16)
$e^{i\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	Useful for $\sin(\omega_0 t)$, $\cos(\omega_0 t)$.	(17)

Convolution:
$$(f*g)(t) = \int_{-\infty}^{\infty} f(t-u)g(u) \, du = \int_{-\infty}^{\infty} f(u)g(t-u) \, du.$$
 Parseval:
$$\int_{-\infty}^{\infty} |f(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \widehat{f}(\omega) \right|^2 d\omega.$$

$j\frac{1}{\pi t}$	$\operatorname{sgn}(\omega)$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$	$2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\omega - n\omega_0)$
$rect(\frac{t}{\tau})$	$\tau Sa(\frac{\omega \tau}{2})$
$\frac{B}{2\pi}Sa(\frac{Bt}{2})$	$rect(\frac{\omega}{B})$
tri(t)	$Sa^2(\frac{\omega}{2})$
$A\cos(\frac{\pi t}{2\tau})rect(\frac{t}{2\tau})$	$\frac{A\pi}{\tau} \frac{\cos(\omega\tau)}{(\pi/2\tau)^2 - \omega^2}$
$\cos(\omega_0 t)$	$\pi \big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \big]$
$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
$u(t)\cos(\omega_0 t)$	$\frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \frac{j\omega}{\omega_0^2 - \omega^2}$
$u(t)\sin(\omega_0 t)$	$\frac{\pi}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\omega^2}{\omega_0^2 - \omega^2}$
$u(t)e^{-\alpha t}\cos(\omega_0 t)$	$\frac{(\alpha + j\omega)}{\omega_0^2 + (\alpha + j\omega)^2}$

$u(t)e^{-\alpha t}\sin(\omega_0 t)$	$\frac{\omega_0}{\omega_0^2 + (\alpha + j\omega)^2}$
$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
$e^{-t^2/(2\sigma^2)}$	$\sigma\sqrt{2\pi} e^{-\sigma^2\omega^2/2}$
$u(t)e^{-\alpha t}$	$\frac{1}{\alpha + j\omega}$
$u(t)te^{-\alpha t}$	$\frac{1}{(\alpha+j\omega)^2}$

> Trigonometric Fourier Series

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(\omega_0 nt) + b_n \sin(\omega_0 nt) \right)$$

where

$$a_0 = \frac{1}{T} \int_0^T f(t)dt , a_n = \frac{2}{T} \int_0^T f(t) \cos(\omega_0 n t) dt , \text{and}$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(\omega_0 n t) dt$$

> Complex Exponential Fourier Series

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{j\omega nt}$$
, where $F_n = \frac{1}{T} \int_0^T f(t) e^{-j\omega_0 nt} dt$

Some Useful Mathematical Relationships

$\cos(x) = \frac{e^{jx} + e^{-jx}}{2}$	
$\sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$	
$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$	
$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$	
$\cos(2x) = \cos^2(x) - \sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	
$2\cos^2(x) = 1 + \cos(2x)$	
$2\sin^2(x) = 1 - \cos(2x)$	
$\cos^2(x) + \sin^2(x) = 1$	
$2\cos(x)\cos(y) = \cos(x - y) + \cos(x + y)$	
$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y)$	
$2\sin(x)\cos(y) = \sin(x-y) + \sin(x+y)$	

Useful Integrals

$\int \cos(x)dx$	$\sin(x)$
$\int \sin(x)dx$	$-\cos(x)$
$\int x \cos(x) dx$	$\cos(x) + x\sin(x)$
$\int x \sin(x) dx$	$\sin(x) - x\cos(x)$
$\int x^2 \cos(x) dx$	$2x\cos(x) + (x^2 - 2)\sin(x)$
$\int x^2 \sin(x) dx$	$2x\sin(x) - (x^2 - 2)\cos(x)$
$\int e^{\alpha x} dx$	$\frac{e^{\alpha x}}{a}$
$\int xe^{\alpha x} dx$	$e^{ax}\left[\frac{x}{a} - \frac{1}{a^2}\right]$
$\int x^2 e^{\alpha x} dx$	$e^{ax}\left[\frac{x^2}{a} - \frac{2x}{a^2} - \frac{2}{a^3}\right]$
$\int \frac{dx}{\alpha + \beta x}$	$\frac{1}{\beta}\ln\!\left \alpha+\beta\!x\right $
$\int \frac{dx}{\alpha^2 + \beta^2 x^2}$	$\frac{1}{\alpha\beta}\tan^{-1}(\frac{\beta x}{\alpha})$

Engineering Tables/Fourier Transform Table 2

From Wikibooks, the open-content textbooks collection

< Engineering Tables

Jump to: <u>navigation</u>, <u>search</u>

unitary, ordinary frequency Fourier transform $G(f) \equiv$ $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(t) e^{-i\omega t} dt$ $\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)$ $\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{rect}\left(\frac{\omega}{2\pi a}\right)$ $\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{tri}\left(\frac{\omega}{2\pi a}\right)$ $\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{sinc}^2\left(\frac{\omega}{2\pi a}\right)$ Fourier transform unitary, angular frequency $G(\omega) \equiv$ $g(t) \equiv$ Signal $12 \operatorname{sinc}^2(at)$ $11 \sin(at)$ 10 rect(at)13 tri(at) $14 e^{-\alpha t^2}$

Remarks

The rectangular pulse and the normalized sinc function

Dual of rule 10. The rectangular function is an idealized low-pass filter, and the sinc function is the non-causal impulse response of such a filter.

tri is the triangular function

Dual of rule 12.

Shows that the Gaussian function $\exp(-at^2)$ is its own Fourier transform. For this to be integrable we must have Re(a) > 0.

$$e^{iat^2} = e^{-at^2} \begin{vmatrix} 1 \\ \alpha = -ia \end{vmatrix} \cdot e^{-i\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right)} & \sqrt{\frac{\pi}{a}} \cdot e^{-i\left(\frac{x^2 f^2}{a} - \frac{\pi}{4}\right)} & \sqrt{\frac{\pi}{a}} \cdot e^{-i\left(\frac{x^2 f^2}{a} - \frac{\pi}{4}\right)} & \text{common in optics}$$

$$\cos(at^2) \qquad \frac{1}{\sqrt{2a}} \cos\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right) & \sqrt{\frac{\pi}{a}} \cos\left(\frac{\pi^2 f^2}{a} - \frac{\pi}{4}\right)$$

$$\sin(at^2) \qquad \frac{1}{\sqrt{2a}} \sin\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right) & \sqrt{\frac{\pi}{a}} \cos\left(\frac{\pi^2 f^2}{a} - \frac{\pi}{4}\right)$$

$$e^{-a|f|} \qquad \sqrt{\frac{2}{\pi}} \cdot \frac{a^2 + \omega^2}{a^2 + \omega^2} \qquad \frac{2a}{a^2 + 4\pi^2 f^2} \qquad a^{>0}$$

$$\frac{1}{\sqrt{|f|}} \qquad \frac{1}{\sqrt{|f|}} \qquad \frac{1}{\sqrt{|f|}} \qquad \text{the transform is the function iself}$$

$$J_0(t) \qquad \sqrt{\frac{2}{\pi}} \cdot \frac{\cot(\frac{\omega}{a})}{\sqrt{1 - \omega^2}} \qquad \frac{2 \cdot \cot(\pi f)}{\sqrt{1 - 4\pi^2 f^2}} \qquad \frac{J_{a}(t) \text{ is the Bessel function of first kind of order 0, rect is the transform.}}{\sqrt{1 - 4\pi^2 f^2}} \qquad \frac{J_{a}(t)}{\sqrt{1 - 4\pi^2 f^2}} \qquad Chebyshev polynomial of the second kind the complexity of the second kind the se$$

Retrieved from "http://en.wikibooks.org/wiki/Engineering Tables/Fourier Transform Table 2"

Category: Engineering Tables