

The K-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks

J. Świątkowski, K. Roth, B. Veeling, L. Tran, J. Dillon, J. Snoek, S. Mandt, T. Salimans, R. Jenatton, S. Nowozin

Let's bring the benefits of Bayesian inference to neural networks!

- noisy estimates of gradients
- slow convergence
- increased number of model parameters

Sources: Blundell et al. "Weight uncertainty in neural networks.", Wikipedia and Shutterstock

Preview

- Gaussian Mean-Field Variational Inference (GMFVI) for Bayesian Neural Networks (BNNs).
- 2. Low-rank in already trained GMFVI BNNs.
- 3. Training a low-rank parameterization of the GMFVI BNNs.

BNN variational posterior

$$\theta^* = \operatorname{argmin}_{\theta} D_{\mathrm{KL}}[q_{\theta}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\mathbf{y})]$$

Variational inference: Cast inference as an optimization problem.

BNN variational posterior

$$\theta^* = \operatorname{argmin}_{\theta} D_{\mathrm{KL}}[q_{\theta}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\mathbf{y})]$$

- Variational inference: Cast inference as an optimization problem.
- Key question: Which parametrization?

$$q(\mathbf{W}) = \mathcal{N}(\boldsymbol{\mu}_q, \boldsymbol{\Sigma}_q)$$

for BNNs, can be a prohibitively large object

Parametrization of variational posterior covariance

Parametrization of variational posterior covariance

- Lot of research exploring " -- ":
 - E.g., Barber & Bishop, 1998..., Zhang et al. 2017, Sun et al. 2017, Mishkin et al., 2018

Parametrization of variational posterior covariance

- Lot of research exploring " -- ":
 - E.g., Barber & Bishop, 1998..., Zhang et al. 2017, Sun et al. 2017, Mishkin et al., 2018
- We investigate the opposite trend "
 ":
 - Fewer parameters to optimize
 - Less noisy gradient estimate and convergence speed-up

How? Exploit low-rank structure!

Preview

- Gaussian Mean-Field Variational Inference (GMFVI) for Bayesian Neural Networks (BNNs).
- 2. Low-rank in already trained GMFVI BNNs.
- 3. <u>Training</u> a <u>low-rank parameterization</u> of the GMFVI BNNs.

CNN, LeNet, CIFAR100, Dense 1

Fraction of explained variance of both $oldsymbol{\mu}_q$ and diagonal $oldsymbol{\Sigma}_q$:

$$\gamma_k^2/\sum_{i'}\gamma_{i'}^2$$

Dense layers of LSTM, IMDB

Dense and conv layers of ResNet-18, CIFAR10

Post-training low-rank approximation

Rank-k approximation of diagonal Σ_q :

MLP, MNIST

$$\lim_{\substack{\longleftarrow \\ \text{output dim}}} \left\{ \sum_{i'=1}^k \gamma_{i'} \mathbf{u}_{i'} \mathbf{v}_{i'}^T \right\}$$

Post-training low-rank approximation

Post-training low-rank approximation

Dense layers of CNN (LeNet, CIFAR100) and LSTM (IMDB):

CNN			LSTM			
Rank	-ELBO ↓	NLL ↓	Accuracy ↑	-ELBO ↓	NLL ↓	Accuracy ↑
Full	3.83 ± 0.020	2.23 ± 0.017	42.1 ± 0.49	0.536±0.0058	0.493 ± 0.0057	80.1±0.25
1	4.33±0.021	2.30 ± 0.016	41.7±0.49	0.687±0.0058	0.491 ± 0.0056	80.0±0.25
2	3.88 ± 0.020	2.24±0.017	$42.2_{\pm 0.49}$	0.621 ± 0.0058	0.494 ± 0.0057	80.1 ± 0.25
3	$3.86{\scriptstyle\pm0.020}$	2.24 ± 0.017	$42.1{\scriptstyle\pm0.49}$	$0.595 \scriptstyle{\pm 0.0058}$	$0.493 \scriptstyle{\pm 0.0056}$	80.1 ± 0.25

Dense and convolutional layers of a ResNet-18 (CIFAR10):

Rank	-ELBO ↓	NLL ↓	Accuracy ↑
Full	122.61 ± 0.012	$0.495 \scriptstyle{\pm 0.0080}$	83.5±0.37
1	122.57 ± 0.012	0.658 ± 0.0069	81.7±0.39
2	122.77 ± 0.012	0.503 ± 0.0080	83.2 ± 0.37
3	$\overline{122.67} \scriptstyle{\pm 0.012}$	0.501 ± 0.0079	83.2 ± 0.37

Generality of the low-rank structure finding

Low-rank structure in posterior standard deviations holds for:

- MLP
- CNN
- LSTM
- <u>Different mode sizes:</u>
 - Small 3 layer MLP
 - Large ResNet-18
- <u>Different layer types:</u>
 - Dense
 - Convolutional

Suggests generality of the low-rank structure finding

Preview

- 1. Gaussian Mean-Field Variational Inference (GMFVI) for Bayesian Neural Networks (BNNs).
- 2. <u>Low-rank</u> in <u>already trained</u> GMFVI BNNs.
- 3. <u>Training</u> a <u>low-rank parameterization</u> of the GMFVI BNNs.

K-tied Normal distribution

W_1 Parameters:
$$\mu_{q_1}$$
, Σ_{q_1}

W_1 Parameters: $oldsymbol{\mu}_{q_1}$, $oldsymbol{\mathrm{U}}_1$, $oldsymbol{\mathrm{V}}_1$

K-tied Normal distribution - training performance

MLP, MNIST

K-tied Normal distribution - training performance

MLP, MNIST

K-tied Normal increases gradient SNR

$$SNR = E[g_b^2] / Var[g_b]$$

Rank k	MNIST, MLP Dense 2, 1000 5000		SNR at step 9000	
full	4.13±0.027	$4.45{\scriptstyle\pm0.091}$	3.21 ± 0.035	
1	5840±190	$158\pm$ 3.8	5.3±0.20	
2	7500±240	$140_{\pm 11}$	4.3±0.26	
3	7000±270	$117_{\pm 1.7}$	$4.1{\scriptstyle\pm0.20}$	

K-tied Normal speeds up convergence

Donle la	MNIST, MLP, -ELBO at step				
Rank k	1000	5000	9000		
full	42.16±0.070	$26.52 \scriptstyle{\pm 0.016}$	$15.39 \scriptstyle{\pm 0.016}$		
1	43.11±0.039	14.85 ± 0.017	2.06 ± 0.027		
2	42.74±0.090	13.97 ± 0.023	1.82 ± 0.017		
3	$42.63 \scriptstyle{\pm 0.068}$	13.61 ± 0.020	1.80 ± 0.031		

Increased convergence speed

Let's bring the benefits of Bayesian inference to neural networks

Thank you!

Review

- Gaussian Mean-Field Variational Inference (GMFVI) for Bayesian Neural Networks (BNNs).
- 2. <u>Low-rank</u> in <u>already trained</u> GMFVI BNNs.
- 3. <u>Training</u> a <u>low-rank parameterization</u> of the GMFVI BNNs.

Heatmaps of conv posterior stddevs

Reshaping conv layers e.g.: [3, 3, 10, 20] -> [3 * 3 * 10, 20].

Relation to other work

Relation to Matrix-Variate Normal

We investigate per layer GMFVI posterior matrices

$$\mathbf{a}_l = \mathbf{h}_l \mathbf{W}_l + \mathbf{b}_l, \qquad \mathbf{h}_{l+1} = f(\mathbf{a}_l), \qquad \mathbf{W}_l \in \mathbb{R}^{m imes n}$$
 $q(\mathbf{W}) = \mathcal{N}(\mu_q, \mathbf{\Sigma}_q) = \prod_{i=1}^m \prod_{j=1}^n q(w_{ij}), \quad ext{with} \quad q(w_{ij}) = \mathcal{N}(\mu_{ij}, \sigma_{ij}^2),$ $\mathbf{\mu}_q = ext{vec}(\mathbf{M}), \quad \mathbf{M} \in \mathbb{R}^{m imes n}$ $\mathbf{\Sigma}_q = ext{diag}(ext{vec}(\mathbf{A}^2)) \qquad \mathbf{A} \in \mathbb{R}_+^{m imes n}$

0.12

We prose a k-tied Normal variational posterior that exploits the low-rank structure

$$q(\mathbf{W}) = \mathcal{N}(oldsymbol{\mu}_q, oldsymbol{\Sigma}_q)$$
 $oldsymbol{\Sigma}_q = ext{diag}(ext{vec}(\mathbf{A}^2)) \quad \mathbf{A} \in \mathbb{R}_+^{m imes n}$ $oldsymbol{A} pprox \mathbf{U} \mathbf{V}^T$

 $k\text{-}tied\text{-}\mathcal{N}(\mathbf{W}; \boldsymbol{\mu}_q, \mathbf{U}, \mathbf{V}) = \mathcal{N}(\boldsymbol{\mu}_q, \operatorname{diag}(\operatorname{vec}((\mathbf{U}\mathbf{V}^T)^2))),$

K-tied Normal posterior reduces the number of parameters without reducing performance

Model & Dataset	Rank k	-ELBO ↓	NLL ↓	Accuracy ↑	#Par. [k]↓
MNIST, MLP	full	0.501 ± 0.0061	0.133 ± 0.0040	$96.8{\scriptstyle\pm0.18}$	957
MNIST, MLP	1	0.539±0.0063	0.155 ± 0.0043	96.1 ± 0.19	482
MNIST, MLP	2	0.520 ± 0.0063	$0.129 \scriptstyle{\pm 0.0039}$	$96.8 \scriptstyle{\pm 0.18}$	484
MNIST, MLP	3	0.497 ± 0.0060	0.120 ± 0.0038	$96.9_{\pm 0.18}$	486
CIFAR100, CNN	full	3.72 ± 0.018	2.16 ± 0.016	$\overline{43.9}_{\pm 0.50}$	4,405
CIFAR100, CNN	1	3.65 ± 0.017	2.12 ± 0.015	45.5 ± 0.50	2,262
CIFAR100, CNN	2	3.76 ± 0.019	$2.15{\scriptstyle\pm0.016}$	44.3 ± 0.50	2,268
CIFAR100, CNN	3	$3.73 \scriptstyle{\pm 0.018}$	2.13 ± 0.016	44.3 ± 0.50	2,273
IMDB, LSTM	full	0.538 ± 0.0054	0.478 ± 0.0052	$79.5{\scriptstyle\pm0.26}$	2,823
IMDB, LSTM	1	0.592 ± 0.0041	0.512 ± 0.0040	77.6±0.26	2,693
IMDB, LSTM	2	0.560 ± 0.0042	0.484 ± 0.0041	$78.2{\scriptstyle\pm0.26}$	2,694
IMDB, LSTM	3	0.550 ± 0.0051	0.491 ± 0.0050	78.8 ± 0.26	2,695

K-tied Normal speeds up convergence

