# The End of the Beginning

# First, Centering

regression... plankton <- read.csv("./data/planktonSummary.csv")</pre> library(car) alm <- lm(DIN ~ SAL\*T, data=plankton)

Centering Before Nonlinear Transformation Reduces

plankton\$int <- with(plankton, cent(SAL) \* cent(T))

Let's say you're going along blisfully with your multiple linear

## First, Centering

```
Suddenly...
```

vif(alm) T SAL-T

# 4.421 27.413 33.299

# [1] 0.9325

cor(plankton\$T, plankton\$T\*plankton\$SAL)

SAT. # 1.115 1.033 1.122

Suddenly... cent <- function(x) x-mean(x)

alm2 <- lm(DIN ~ SAL + T + int, data=plankton) vif(alm2)

Variance Inflation

## Interpretation Changes

```
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 299.5726 2.90911 102.98 0.000e+00
# SAL -7.8375 0.09095 -86.17 0.000e+00
# T -2.4891 0.09154 -27.19 1.415e-149
# int 0.4166 0.01576 26.43 4.274e-142
```

Additive coefficients are evaluated at mean level of each other.

### Never Stop Reading

- ▶ http://www.r-bloggers.com/
- http://andrewgelman.com/
- http://masi.cscs.lsa.umich.edu/~crshalizi/weblog/
   Methods in Ecology & Evolution
- Wellious III Ec
- Significance

Where to from Here?

## Meta-Analysis



The analysis of results from previous studies - summarizes information to get a grand answer to big questions

# Time & Space

David S. Stoffer

With R Examples

Time Series

**Analysis** and



A whole different set of consideration in thinking about correlation structure in complex spatial and temporal landscapes

# Zero Inflated Models and Generalized Linear Miseel Models with R

Zero Inflated or Censored Models

What if you have a LOT of zeroes...but otherwise things look Poisson, Negative Binomial, Normal, or more. What about censored data where an instrument only reads so high or low?

# Generalized Additive Models





# Multivariate Methods

Daniel Borcard François Gillet Pierre Legendre

Numerical Ecology with R

What if you have MANY response variables? Structural Equation Modeling, Clustering, NDMS, and more!

Bayesian Methods



with ecological applications

A different kind of inference with a huge amount of flexibility.

Digging into Causality



MODELS, REASONING.

What is causal inference? When can we draw causal conclusions?

Closing Thoughts

### Course Goals

- Learn how to think about your research in a systematic way to design efficient observational & experimental studies.
- 2. Understand how to get the most bang for your buck from your data.
- 3. Make you effective collaborators with statisticians.
- 4. Make you comfortable enough to learn and grow beyond this class.



We Are Fitting Models

# Think Causally - When you Can

Does X Influence Y?
Might X and Y be influences by a common cause?
How can we design a study to cleanly determine the relationship/effect between X and Y?

 $Y \sim D(F(X))$ 

 $\mathsf{Y} = \beta \mathsf{X} + \epsilon_i$ 

We're Just Fitting a Curve with an Error Distribution

- ► F(X) can take many forms
- D, ε<sub>i</sub> need not just be normal.





# We're Just Fitting a Curve with an Error Distribution



# Moving Beyond Simple Error Structures

$$y_i = \alpha_{j[i]} + \beta_{[j]i}X + \epsilon_{ij}$$

$$cor(\epsilon) = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & 0 & 0 \end{pmatrix}$$

$$cor(\epsilon) = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}$$

Think About What You Are Doing

And this is just a start!

## Think About What You Are Doing Amelia Hoover I CAN HAS ESTIMITS!! c) You and 2 others like this. Amelia Hoover KONFUDUNS INNRVAL KONSISTENTLY INKLOOD ZERO, DO OVERS!! David Mister ...CEEKcan? David January All I can say is "wow". Amelia Hoover update: I CAN HAS INTERACKSHIN Thurs at 17:35 Envily Clough BAYESMENT CAT ATTACK! Thurs at 22:23 Amelia Hoover oh snap. Rob Person COPS I HAZ MADE P-VALYOO ON TEH KARPITZ. Jarrett Byrnes IM IN UR ACZ, MAXIMIZIN MAH LIKLIHOOOZI

Think a priori

I think that Y is predicted by ...

# Consider Your Mode of Inference

Am I testing a null hypothesis? Why?

Do I want to evaluate the relative weight of evidence for multiple

hypotheses? Do I have prior information? Do I want to know about my degree of helief?

Can I even make parameteric assumptions about relationships?

framework

Exploration and Verification are Both Valid

Let's go and build a model v. Let's test a single predictive

### Sample Size

- ▶ How many points to fit a probability distribution?
- Ensure that your effect is not a fluke accident
- $\frac{p^{3/2}}{n}$  should approach 0 for Likelihood (Portnoy 1988 Annals of Statistics)
- i.e.,  $\sim$  10 samples per paramter (1 treatment = 1 parameter, but this is total # of samples)

 ${\color{blue} \textbf{Computational Tools Are Just That - Tools!}}$ 

### Coding Brings You Closer to Your Model

Which helps you understand the model you are fitting better? Select the Model Menu. Select General Linear Model. Click Y as your response. Then click X and your predictor. Click Block. Scroll to a second menu. Select random effects model, and click Block again. Click Run.

lme(Y ~ X, random=~ 1|Block, data=mydata)

### Screen Your Data



### Visualize Your Work



It is likely that no one ever masters anything in which he has not known impotence; and if you agree, you will see that this impotence comes not at the beginning of or before the struggle with the subject, but at the heart of it.

- Walter Benjamin