Отчёт по моделированию

Маткабулова Айсалкын

1 Введение

В данном отчете рассматривается моделирование динамической системы с использованием программной среды Engee. Система включает в себя ступенчатый входной сигнал, интегратор и апериодическое звено первого порядка, заданное передаточной функцией

$$G(s) = \frac{1}{s+1} \tag{1}$$

2 Цели

Провести моделирование системы в Engee и получить её переходную характеристику. Сравнить результаты моделирования с аналитическим решением дифференциального уравнения. Оценить основные динамические параметры системы (постоянную времени, установившееся значение).

3 Запуск моделирования

Запуск моделирования и решение дифференциального уравнения.

4 Анализ результатов моделирования

Выход системы увеличивается. Система не устойчива, она увеличивает сигнал выхода

5 Добавление звена обратной связи

Добавим в схему блок сложения. Посмотрим как изменится выходное значение.

Рис. 1 добавили блок сложения

Оно идет к установившемуся значению. Видим устойчивую систему.

6 Влияние коэффициента знаменателя

Увеличим коэффициент знаменателя, постоянная времени =10. Увидели колебательный процесс, система стремится к своему установившемуся значению равному 1.

7 Реакция на ступенчатую функцию

Зашли в ступенчатую функцию и поставили выходное значение равное 5. Система самостоятельно пришла к своему установившемуся значению 5.

8 Влияние начальных условий

Установим выходное значение равно 0 в ступенчатой функции. На вход подаем нулевое значение. Система остаётся в своём стационарном положении равновесия.

Посмотрим как изменится график, если зайдём в передаточную функцию и сделаем коэффициент усиления 10. Ничего не происходит.

Идем в интегратор, зададим начальное условие 4. Видим устойчивость системы.

Рис. 2 влияние начального условия

9 Перестановка блоков

От перемены мест передаточных функций ничего не меняется. Система затухла и пришла к своему установившемуся значению. Введем дополнительный параметр для оценки движения системы

10 Фазовая характеристика

Построили фазовую характеристику для оценки устойчивости. Система приходит к положению равновесия при отсутствии воздействия.

Рис. 3 фазовая характеристика