1. Given trees T_1 and T_2 and matching threshold r, to ensure a pq-Gram distance d such that $0 \le d \le r \le 1$, then we must have $|I_1| \ge \frac{1-r}{1+r} |I_2|$.

Proof. Without loss of generality, assume $|T_1| \leq |T_2|$. Let I_1 be the pq-Gram profile corresponding to T_1 , and let I_2 be the pq-Gram profile corresponding to T_2 .

Recall that the pq-Gram distance is defined as

$$dist(T_1, T_2) = 1 - 2 \frac{|I_1 \cap I_2|}{|I_1 \uplus I_2|}.$$

Note that in any case $|I_1 \uplus I_2| = |I_1| + |I_2|$, and in the best case scenario, to maximize $|I_1 \cap I_2|$, $I_1 \subseteq I_2$. Then $|I_1 \cap I_2| = |I_1|$, so we can make the simplification

$$dist(T_1, T_2) = 1 - 2 \frac{|I_1 \cap I_2|}{|I_1 \uplus I_2|} = 1 - 2 \frac{|I_1|}{|I_1| + |I_2|}.$$

Then if r is the threshold such that $0 \le r \le 1$, we want distance d to be such that $0 \le d \le r$, so we must have