Operasi Dasar String (lanj), Grammar dan Hirarki Chomsky)

(Teori Bahasa dan Automata)

Diberikan string : x = abc

 Prefik string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling belakang dari string w tersebut.

Contoh: abc, ab, a, dan ε adalah semua Prefix(x)

 ProperPrefix string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling belakang dari string w tersebut.

Contoh : ab, a, dan ε adalah semua ProperPrefix(x)

String(x)	abc
Prefix(x)	abc ab a Ø
ProperPrefix(x)	a b a Ø

Diberikan string : x = abc

 Postfix (atau Sufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dari string w tersebut.

Contoh: abc, bc, c, dan ε adalah semua Postfix(x)

 ProperPostfix (atau PoperSufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dari string w tersebut.

Contoh: bc, c, dan ε adalah semua ProperPostfix(x)

String(x)	abc
Postfix(x)	abc bc c Ø
ProperPostfix(x)	b c c Ø

Diberikan string : x = abc

• Head string w adalah simbol paling depan dari string w.

Contoh: a adalah Head(x)

• Tail string w adalah string yang dihasilkan dari string w dengan menghilangkan simbol paling depan dari string w tersebut.

 $Contoh: bc \ adalah \ Tail(x)$

 Substring string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dan/atau simbolsimbol paling belakang dari string w tersebut.

Contoh: abc, ab, bc, a, b, c, dan ε adalah semua Substring(x)

 ProperSubstring string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dan/atau simbolsimbol paling belakang dari string w tersebut.

Contoh: ab, bc, a, b, c, dan ε adalah semua Substring(x)

• Subsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol dari string w tersebut.

Contoh: abc, ab, bc, ac, a, b, c, dan ε adalah semua Subsequence(x)

 ProperSubsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol dari string w tersebut.

Contoh: ab, bc, ac, a, b, c, dan ε adalah semua Subsequence(x)

 Concatenation adalah penyambungan dua buah string. Operator concatenation adalah concate atau tanpa lambang apapun.

Contoh : concate(xy) = xy = abc123

 Alternation adalah pilihan satu di antara dua buah string. Operator alternation adalah alternate atau |

Contoh: alternate(xy) = x | y = abc atau 123

Grammar

Tata bahasa (grammar) didefinisikan sebagai kumpulan dari himpunan-himpunan variabel, simbol-simbol terminal, simbol awal, yang dibatasi oleh aturan-aturan produksi.

Tahun 1959 Noam Chomsky melakukan penggolongan tingkatan bahasa menjadi 4 dan disebut Hirarki Chomsky.

Bahasa	Mesin Otomata	Batasan aturan produksi $lpha ightarrow eta$
Regular / Tipe 3	Finite State Automata Meliputi: Deterministic Finite Automata dan Nondeterminstic Finite Automata	lpha adalah sebuah simbol variabel. eta Maksimal memiliki sebuah simbol variabel yang bila ada terletak pada posisi paling kanan
Bebas Konteks (Context Free)/Tipe 2	Push Down Automata (PDA)	α adalah sebuah simbol variabel
Context Sensitive / Tipe 1	Linier Bounded Automata	$ \alpha \le \beta $
Unrestricted /Structure/ Natural Language/ Tipe 0	Mesin Turing	Tidak ada batasan

Tabel: Hirarki Chomsky

- Dalam pembicaraan grammar, anggota alfabet dinamakan simbol terminal atau token.
- Kalimat adalah deretan hingga simbol-simbol terminal.
- Bahasa adalah himpunan kalimat-kalimat dan anggota bahasa bisa tak hingga kalimat.
- Simbol terminal adalah simbol yang tidak dapat diturunkan lagi. Simbol non-terminal adalah simbol yang masih dapat diturunkan.
- Simbol terminal biasanya menggunakan huruf kecil, seperti, a, b,c,.....
- Simbol non-terminal biasanya menggunakan huruf besar seperti A,B, C, ...
- Simbol-simbol berikut adalah simbol terminal:
 - huruf kecil awal alfabet, misalnya: a, b, c
 - simbol operator, misalnya: +, -, dan ×
 - simbol tanda baca, misalnya: (,), dan;
 - string yang tercetak tebal, misalnya: if, then, dan else.

- Simbol-simbol berikut adalah simbol non terminal:
 - huruf besar awal alfabet, misalnya: A,B, C;
 - huruf S sebagai simbol awal;
 - string yang tercetak miring, misalnya: expr dan stmt.
- Huruf yunani melambangkan string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya, misalnya : α , β , γ

- Aturan produksi dinyatakan dalam bentuk $\alpha \to \beta$, (dibaca, α menghasilkan β). artinya: dalam sebuah derivasi dapat dilakukan penggantian simbol α dengan simbol β .
- α menyatakan simbol-simbol pada ruas kiri aturan produksi (sebelah kiri tanda \rightarrow).
- β menyatakan simbol-simbol pada ruas kanan aturan produksi (sebelah kanan tanda \rightarrow). Simbol-simbol pada aturan produksi dapat berupa simbol terminal atau simbol nonterminal/variabel.
- Derivasi adalah proses pembentukan sebuah kalimat atau sentensial. Sebuah derivasi dilambangkan sebagai : $\alpha \rightarrow \beta$.
- Sentensial adalah string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya.
- Kalimat adalah string yang tersusun atas simbol-simbol terminal. Kalimat adalah merupakan sentensial, sebaliknya belum tentu.

Grammar:

Grammar G didefinisikan sebagai pasangan 4 tuple : V_T , V_N , S, dan P, dan dituliskan sebagai $G(V_T$, V_N , S, P)

dimana:

 V_T : himpunan simbol-simbol terminal (alfabet) \rightarrow kamus

V_N: himpunan simbol-simbol non terminal

 $S \in V_N$: simbol awal (atau simbol start)

P: himpunan produksi

Contoh:

1.
$$G_1: V_T = \{I, Love, Miss, You\}, V_N = \{S,A,B,C\},$$

$$P = \{S \rightarrow ABC, A \rightarrow I, B \rightarrow Love \mid Miss, C \rightarrow You\}$$

$$S \Rightarrow ABC$$

$$\Rightarrow IloveYou$$

$$L(G1) = \{IloveYou, IMissYou\}$$

2.
$$G_2: V_T = \{a\}, V_N = \{S\}, P = \{S \rightarrow aS \mid a\}$$

$$S \Rightarrow aS$$

$$\Rightarrow aaS$$

$$\Rightarrow aaa$$

$$L(G_2) = \{a, aa, aaa, aaaa, ...\}$$

Aturan produksi:

T → a (dibaca "T menghasilkan a")

• $E \rightarrow T \mid T + E$ (dibaca "E menghasilkan T atau E menghasilkan T + E")

Simbol "|" dibaca 'atau'; digunakan untuk mempersingkat aturan produksi yang

mempunyai ruas kiri yang sama.

Jadi penulisan aturan produksi:

E → T|T+E
 adalah singkatan dari dua buah
 aturan produksi, yaitu:

E → T

E → T+E

Bahasa	Contoh Aturan Produksi
Regular / Tipe 3	$A \rightarrow def$ $A \rightarrow bc$ $A \rightarrow bcdE$ $C \rightarrow D$
Bebas Konteks (Context Free)/Tipe 2	$B \rightarrow CDeFg$ D \rightarrow BcDe
Context Sensitive / Tipe 1	$D \rightarrow ef (D < ef)$ $E \rightarrow \lambda$ (pengecualian)
Unrestricted /Structure/ Natural Language/ Tipe 0	Abc → deF

Berdasarkan komposisi bentuk ruas kiri dan ruas kanan produksinya $(\alpha \to \beta)$, Noam Chomsky mengklasifikasikan 4 tipe grammar :

- 1. Grammar tipe ke-0: Unrestricted Grammar (UG)
 - Ciri : α , $\beta \in (V_T | V_N)^*$, $|\alpha| > 0$
- 2. Grammar tipe ke-1 : Context Sensitive Grammar (CSG)

Ciri :
$$\alpha$$
, $\beta \in (V_T | V_N)^*$, $0 < |\alpha| \le |\beta|$

3. Grammar tipe ke-2: Context Free Grammar (CFG)

Ciri :
$$\alpha \in V_N$$
 , $\beta \in (V_T | V_N)^*$

4. Grammar tipe ke-3: Regular Grammar (RG)

Ciri :
$$\alpha \in V_N$$
, $\beta \in \{V_T, V_T | V_N\}$ atau $\alpha \in V_N$, $\beta \in \{V_T, V_N | V_T\}$

Tipe sebuah grammar (atau bahasa) ditentukan dengan aturan sebagai berikut :

A language is said to be type-i (i = 0, 1, 2, 3) language if it can be specified by a type-i grammar but can't be specified any type-(i+1) grammar.

Contoh Analisa Penentuan Type Grammar

1.Grammar G_1 dengan $P_1 = \{S \rightarrow aB, B \rightarrow bB, B \rightarrow b\}$.

Ruas kiri semua produksinya terdiri dari sebuah V_N maka G₁ kemungkinan tipe CFG atau RG.

Selanjutnya karena semua ruas kanannya terdiri dari sebuah V_T atau string V_TV_N maka G_1 adalah RG(3).

2.Grammar G_2 dengan $P_2 = \{S \rightarrow Ba, B \rightarrow Bb, B \rightarrow b\}$.

Ruas kiri semua produksinya terdiri dari sebuah V_N maka G₂ kemungkinan tipe CFG atau RG.

Selanjutnya karena semua ruas kanannya terdiri dari sebuah V_T atau string $V_N V_T$ maka G_2 adalah RG(3).

Contoh Analisa Penentuan Type Grammar

3.Grammar G_3 dengan $P_3 = \{S \rightarrow Ba, B \rightarrow bB, B \rightarrow b\}$.

Ruas kiri semua produksinya terdiri dari sebuah V_N maka G_3 kemungkinan tipe CFG atau RG.

Selanjutnya karena ruas kanannya mengandung string V_TV_N (yaitu bB) dan juga string V_NV_T (Ba) maka G_3 bukan RG, dengan kata lain G_3 adalah CFG(2).

4.Grammar G_4 dengan $P_4 = \{S \rightarrow aAb, B \rightarrow aB\}$.

Ruas kiri semua produksinya terdiri dari sebuah V_N maka G₄ kemungkinan tipe CFG atau RG.

Selanjutnya karena ruas kanannya mengandung string yang panjangnya lebih dari 2 (yaitu aAb) maka G_4 bukan RG, dengan kata lain G_4 adalah CFG.

5.Grammar G_5 dengan $P_5 = \{S \rightarrow aA, S \rightarrow aB, aAb \rightarrow aBCb\}.$

Ruas kirinya mengandung string yang panjangnya lebih dari 1 (yaitu aAb) maka G_5 kemungkinan tipe CSG atau UG.

Selanjutnya karena semua ruas kirinya lebih pendek atau sama dengan ruas kananya maka G₅ adalah CSG.

6.Grammar G_6 dengan $P_6 = \{aS \rightarrow ab, SAc \rightarrow bc\}$.

Ruas kirinya mengandung string yang panjangnya lebih dari 1 maka G₆ kemungkinan tipe CSG atau UG.

Selanjutnya karena terdapat ruas kirinya yang lebih panjang daripada ruas kanannya (yaitu SAc) maka G_6 adalah UG.

Derivasi Kalimat dan Penentuan Bahasa

Tentukan bahasa dari masing-masing gramar berikut :

1. G_1 dengan $P_1 = \{1. S \rightarrow aAa, 2. A \rightarrow aAa, 3. A \rightarrow b\}.$

Jawab:

Derivasi kalimat terpendek : Derivasi kalimat umum :

$$S \Rightarrow aAa$$
 (1) $S \Rightarrow aAa$ (1)

$$\Rightarrow$$
 aba (3) \Rightarrow aaAaa (2)

. . .

$$\Rightarrow a^n A a^n$$
 (2)

$$\Rightarrow$$
 anban (3)

Dari pola kedua kalimat disimpulkan : $L(G) = \{ aba \mid n \ge 1 \}$

2. G₂ dengan:

$$P = \{1. S \rightarrow aS, 2. S \rightarrow aB, 3. B \rightarrow bC, 4. C \rightarrow aC, 5. C \rightarrow a\}.$$

Jawab:

Derivasi kalimat terpendek : Derivasi kalimat umum :

$$S \Rightarrow aB$$
 (2) $S \Rightarrow aS$

$$\Rightarrow$$
 abC (3) ...

$$\Rightarrow$$
 aba (5) \Rightarrow aⁿ⁻¹S (1)

$$\Rightarrow$$
 aⁿB (2)

$$\Rightarrow$$
 anbC (3)

$$\Rightarrow$$
 and aC(4)

. . .

$$\Rightarrow$$
 aⁿba^{m-1}C (4)

$$\Rightarrow$$
 anbam (5)

Dari pola kedua kalimat disimpulkan : $L_2(G_2) = \{a^nba^m \mid n \ge 1, m \ge 1\}$

Tentukan bahasa dari masing-masing gramar berikut :

$3. G_3$ dengan

 $P_3 = \{1. S \rightarrow aSBC, 2. S \rightarrow abC, 3. bB \rightarrow bb, 4. bC \rightarrow bc, 5. CB \rightarrow BC, 6. cC \rightarrow cc\}.$

Jawab:

Derivasi kalimat terpendek 1: Derivasi kalimat terpendek 3:

 $S \Rightarrow abC$ (2) $S \Rightarrow aSBC$ (1)

 \Rightarrow abc (4) \Rightarrow aaSBCBC (1)

Derivasi kalimat terpendek 2 : \Rightarrow aaabCBCBC (2)

 $S \Rightarrow aSBC$ (1) $\Rightarrow aaabBCCBC$ (5)

 \Rightarrow aabCBC (2) \Rightarrow aaabB*CB*CC (5)

 \Rightarrow aabBCC (5) aabcBC (4) \Rightarrow aaabB*BC*CC (5)

 \Rightarrow aabbBCC (3) \Rightarrow aaabbBCCC

 \Rightarrow aabbbccc (4) \Rightarrow aaabbbcccc (3)

 \Rightarrow aabbcc (6) \Rightarrow aaabbbcCC (4)

 \Rightarrow aaabbbccC (6)

 \Rightarrow aaabbbccc (6)

▶ Dari pola ketiga kalimat disimpulkan : L_3 (G_3) = { $a^nb^nc^n \mid n \ge 1$ }

Menentukan Grammar Sebuah Bahasa

1. Tentukan sebuah gramar regular untuk bahasa $L = \{ a \mid n \ge 1 \}$

Jawab:

$$P_1(L_1) = \{S \to aS \mid a\}$$

2.Tentukan sebuah gramar bebas konteks untuk bahasa:

L₂: himpunan bilangan bulat non negatif ganjil

Jawab:

Langkah kunci : digit terakhir bilangan harus ganjil.

$$Vt = \{0,1,2,...9\}$$

$$Vn = \{S, G, J\}$$

$$P = \{S \rightarrow HT|JT|J; \qquad T \rightarrow GT|JT|J; \qquad H \rightarrow 2|4|6|8; \quad G \rightarrow 0|2|4|6|8; \quad J \rightarrow 1|3|5|7|9\}$$

$$P = \{S \rightarrow GS|JS|J; G \rightarrow 0|2|4|6|8; J \rightarrow 1|3|5|7|9\}$$

Buat dua buah himpunan bilangan terpisah : genap (G) dan ganjil (J)

$$P_2(L_2) = \{S \to J \mid GS \mid JS, G \to 0 \mid 2 \mid 4 \mid 6 \mid 8, J \to 1 \mid 3 \mid 5 \mid 7 \mid 9\}$$

3. Tentukan sebuah gramar bebas konteks untuk bahasa:

 $B.L_3$ = himpunan semua identifier yang sah menurut bahasa pemrograman Pascal dengan batasan : terdiri dari simbol huruf kecil dan angka, panjang identifier boleh lebih dari 8 karakter

Jawab:

Langkah kunci : karakter pertama identifier harus huruf.

Buat dua himpunan bilangan terpisah : huruf (H) dan angka (A)

S
$$\rightarrow$$
HT|H; T \rightarrow HT|AT|H|A; H \rightarrow a|..|z; A \rightarrow 0|..|9
P₃(L₃) = {S \rightarrow H | HT, T \rightarrow AT | HT | H | A,
H \rightarrow a | b | c | ..., A \rightarrow 0 | 1 | 2 | ...}

4. Tentukan sebuah gramar bebas konteks untuk bahasa:

 L_4 = bilangan bulat non negatif genap. Jika bilangan tersebut terdiri dari dua digit atau lebih maka nol tidak boleh muncul sebagai digit pertama.

Jawab:

Langkah kunci : Digit terakhir bilangan harus genap. Digit pertama tidak boleh nol. Buat tiga himpunan terpisah : bilangan genap tanpa nol (G), bilangan genap dengan nol (N), serta bilangan ganjil (J).

$$P_4(L_4) = \{S \to N \mid GA \mid JA, A \to N \mid NA \mid JA, G \to 2 \mid 4 \mid 6 \mid 8, N \to 0 \mid 2 \mid 4 \mid 6 \mid 8, J \to 1 \mid 3 \mid 5 \mid 7 \mid 9\}$$