Binary Search Trees

- basic implementations
- randomized BSTs
- deletion in BSTs

References:

Algorithms in Java, Chapter 12
Intro to Programming, Section 4.4
http://www.cs.princeton.edu/introalgsds/43bst

Elementary implementations: summary

implementation	worst case		average case		ordered	operations
	search	insert	search	insert	iteration?	on keys
unordered array	N	N	N/2	N/2	no	equals()
ordered array	lg N	Ν	lg N	N/2	yes	compareTo()
unordered list	Ν	Ν	N/2	Ν	no	equals()
ordered list	Ν	Ν	N/2	N/2	yes	compareTo()

Challenge:

Efficient implementations of get() and put() and ordered iteration.

Binary Search Trees (BSTs)

Def. A BINARY SEARCH TREE is a binary tree in symmetric order.

A binary tree is either:

- empty
- a key-value pair and two binary trees
 [neither of which contain that key]

equal keys ruled out to facilitate associative array implementations

Symmetric order means that:

- every node has a key
- every node's key is
 larger than all keys in its left subtree
 smaller than all keys in its right subtree

BST representation

A BST is a reference to a Node.

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

smaller keys larger keys

```
private class Node
{
   Key key;
   Value val;
   Node left, right;
}
```

Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
             implements Iterable<Key>
    private Node root;
                                     ← instance variable
    private class Node
                                     ← inner class
        Key key;
        Value val;
        Node left, right;
        Node(Key key, Value val)
            this.key = key;
            this.val = val;
   public void put(Key key, Value val)
   // see next slides
   public Val get(Key key)
   // see next slides
```

BST implementation (search)

BST implementation (insert)

```
root
public void put(Key key, Value val)
                                                          it
                                                               2
{ root = put(root, key, val); }
                                          best
                                                                            2
                                                                      was
                                                                                 worst
                                                             the
                                           put("the", 2)
                                           overwrites the 1
              Caution: tricky recursive code.
                                                                    times
                                                        of
                                                             1
                    Read carefully!
                                                                              put("worst", 1)
                                                                              adds a new entry
private Node put(Node x, Key key, Value val)
   if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if (cmp == 0) x.val = val;
   else if (cmp < 0) x.left = put(x.left, key, val);
   else if (cmp > 0) x.right = put(x.right, key, val);
   return x;
```

BST: Construction

Insert the following keys into BST. A S E R C H I N G X M P L

Tree Shape

Tree shape.

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

BST implementation: iterator?

BST implementation: iterator?

Approach: mimic recursive inorder traversal

```
public void visit(Node x)
{
   if (x == null) return;
   visit(x.left)
   StdOut.println(x.key);
   visit(x.right);
}
```

print S

```
visit(E)
                              Ε
  visit(A)
                              Α
                                  Ε
    print A
                              C
    visit(C)
                                  E
      print C
                      C
                              Ε
  print E
  visit(S)
                              S
    visit(I)
                                 S
                              Ι
      visit(H)
                      Н
                              Н
                                 I S
        print H
                              I
      print I
                      Ι
                              S
      visit(R)
                                 S
                              R
        visit(N)
                                 R S
                              N
           print N
                              \mathbf{R}
                      Ν
        print R
                      R
```

S

To process a node

- follow left links until empty (pushing onto stack)
- pop and process
- process node at right link

BST implementation: iterator

```
public Iterator<Key> iterator()
{ return new BSTIterator(); }
private class BSTIterator
              implements Iterator<Key>
  private Stack<Node>
             stack = new Stack<Node>();
  private void pushLeft(Node x)
       while (x != null)
          stack.push(x); x = x.left; }
   BSTIterator()
     pushLeft(root); }
   public boolean hasNext()
      return !stack.isEmpty(); }
  public Key next()
      Node x = stack.pop();
      pushLeft(x.right);
      return x.key;
```



```
A E
A C E
C E
E H I S
H I S
I N R S
N R S
R S
S
```

13

1-1 correspondence between BSTs and Quicksort partitioning

BSTs: analysis

Theorem. If keys are inserted in random order, the expected number of comparisons for a search/insert is about 2 ln N.

× ≈ 1.38 lg N, variance = O(1)

Proof: 1-1 correspondence with quicksort partitioning

Theorem. If keys are inserted in random order, height of tree is proportional to $lg\ N$, except with exponentially small probability.

mean
$$\approx$$
 6.22 lg N, variance = $O(1)$

But... Worst-case for search/insert/height is N.

e.g., keys inserted in ascending order

Searching challenge 3 (revisited):

Problem: Frequency counts in "Tale of Two Cities"

Assumptions: book has 135,000+ words

about 10,000 distinct words

Which searching method to use?

- 1) unordered array
- 2) unordered linked list
- 3) ordered array with binary search
- 4) need better method, all too slow
- 5) doesn't matter much, all fast enough
- 6) BSTs

insertion cost < 10000 * 1.38 * lg 10000 < .2 million lookup cost < <math>135000 * 1.38 * lg 10000 < 2.5 million

Elementary implementations: summary

implementation	guarantee		averag	e case	ordered	operations
	search	insert	search	insert	iteration?	on keys
unordered array	N	N	N/2	N/2	no	equals()
ordered array	lg N	Ν	lg N	N/2	yes	compareTo()
unordered list	N	Ν	N/2	N	no	equals()
ordered list	Ν	Ν	N/2	N/2	yes	compareTo()
BST	Ν	Ν	1.38 lg N	1.38 lg N	yes	compareTo()

Next challenge:

Guaranteed efficiency for get() and put() and ordered iteration.

Rotation in BSTs

Two fundamental operations to rearrange nodes in a tree.

- maintain symmetric order.
- local transformations (change just 3 pointers).
- basis for advanced BST algorithms

Strategy: use rotations on insert to adjust tree shape to be more balanced

Key point: no change in search code (!)

Rotation

Fundamental operation to rearrange nodes in a tree.

- easier done than said
- raise some nodes, lowers some others

root = rotL(A)


```
private Node rotL(Node h)
{
   Node v = h.r;
   h.r = v.l;
   v.l = h;
   return v;
}
```

```
private Node rotR(Node h)
{
   Node u = h.1;
   h.1 = u.r;
   u.r = h;
   return u;
}
```

A.left = rotR(S)

Root insertion: insert a node and make it the new root.

- Insert as in standard BST.
- Rotate inserted node to the root.
- Easy recursive implementation

```
Caution: very tricky recursive code.

Read very carefully!
```


Constructing a BST with root insertion

Ex. ASERCHINGXMPL

Why bother?

- Recently inserted keys are near the top (better for some clients).
- Basis for advanced algorithms.

Randomized BSTs (Roura, 1996)

Intuition. If tree is random, height is logarithmic. Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability 1/(N+1), make it the root (via root insertion) with probability 1/(N+1).

```
private Node put(Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if (cmp == 0) { x.val = val; return x; }
   if (StdRandom.bernoulli(1.0 / (x.N + 1.0))
      return putRoot(h, key, val);
   if (cmp < 0) x.left = put(x.left, key, val);
   else if (cmp > 0) x.right = put(x.right, key, val);
   x.N++;
   return x;   need to maintain count of
   nodes in tree rooted at x
```

Constructing a randomized BST

Ex: Insert distinct keys in ascending order.

Surprising fact:

Tree has same shape as if keys were inserted in random order.

Random trees result from any insert order

Note: to maintain associative array abstraction need to check whether key is in table and replace value without rotations if that is the case.

Randomized BST

Property. Randomized BSTs have the same distribution as BSTs under random insertion order, no matter in what order keys are inserted.

- Expected height is ~6.22 lg N
- Average search cost is ~1.38 lg N.
- Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

Summary of symbol-table implementations

implementation	guarantee		averag	je case	ordered	operations
	search	insert	search	insert	iteration?	on keys
unordered array	N	N	N/2	N/2	no	equals()
ordered array	lg N	Ν	lg N	N/2	yes	compareTo()
unordered list	Ν	N	N/2	N	no	equals()
ordered list	N	N	N/2	N/2	yes	compareTo()
BST	N	Ν	1.38 lg N	1.38 lg N	yes	compareTo()
randomized BST	7 lg N	7 lg N	1.38 lg N	1.38 lg N	yes	compareTo()

Randomized BSTs provide the desired guarantee

Bonus (next): Randomized BSTs also support delete (!)

BST delete: lazy approach

To remove a node with a given key

- set its value to null
- leave key in tree to guide searches
 [but do not consider it equal to any search key]

Cost. O(log N') per insert, search, and delete, where N' is the number of elements ever inserted in the BST.

Unsatisfactory solution: Can get overloaded with tombstones.

BST delete: first approach

To remove a node from a BST. [Hibbard, 1960s]

- Zero children: just remove it.
- One child: pass the child up.
- Two children: find the next largest node using right-left* swap with next largest remove as above.

Unsatisfactory solution. Not symmetric, code is clumsy. Surprising consequence. Trees not random $(!) \Rightarrow sqrt(N)$ per op.

Longstanding open problem: simple and efficient delete for BSTs

Deletion in randomized BSTs

To delete a node containing a given key

- remove the node
- join the two remaining subtrees to make a tree

Ex. Delete 5 in

Deletion in randomized BSTs

To delete a node containing a given key

- remove the node
- join its two subtrees

Ex. Delete S in


```
private Node remove(Node x, Key key)
{
   if (x == null)
      return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if (cmp == 0)
      return join(x.left, x.right);
   else if (cmp < 0)
      x.left = remove(x.left, key);
   else if (cmp > 0)
      x.right = remove(x.right, key);
   return x;
}
```

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

- maintain counts of nodes in subtrees (L and R)
- with probability L/(L+R)
 make the root of the left the root
 make its left subtree the left subtree of the root
 join its right subtree to R to make the right subtree of the root
- with probability L/(L+R) do the symmetric moves on the right

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

- maintain counts of nodes in subtrees (L and R)
- with probability L/(L+R)
 make the root of the left the root
 make its left subtree the left subtree of the root
 join its right subtree to R to make the right subtree of the root
- with probability L/(L+R) do the symmetric moves on the right

```
private Node join(Node a, Node b)
{
   if (a == null) return a;
   if (b == null) return b;
   int cmp = key.compareTo(x.key);
   if (StdRandom.bernoulli((double)*a.N / (a.N + b.N))
        { a.right = join(a.right, b); return a; }
   else
        { b.left = join(a, b.left ); return b; }
}
```


Deletion in randomized BSTs

To delete a node containing a given key

- remove the node
- join its two subtrees

Ex. Delete 5 in

Theorem. Tree still random after delete (!)

Bottom line. Logarithmic guarantee for search/insert/delete

Summary of symbol-table implementations

implementation	guarantee			average case			ordered
	search	insert	delete	search	insert	delete	iteration?
unordered array	Ν	N	N	N/2	N/2	N/2	no
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes
unordered list	Ν	N	N	N/2	Ν	N/2	no
ordered list	Ν	N	N	N/2	N/2	N/2	yes
BST	Ν	N	Ν	1.38 lg N	1.38 lg N	?	yes
randomized BST	7 lg N	7 lg N	7 lg N	1.38 lg N	1.38 lg N	1.38 lg N	yes

Randomized BSTs provide the desired guarantees

Next lecture: Can we do better?