Statistiques et Applications Analyse de la variance

aurore.lavigne@univ-lille.fr

• On désire connaître l'effet du sexe sur le salaire :

- On désire connaître l'effet du sexe sur le salaire :
 - => 2 modalités Homme Femme
 - => test de Student de comparaison de moyennes

- On désire connaître l'effet du sexe sur le salaire :
 - => 2 modalités Homme Femme
 - => test de Student de comparaison de moyennes

• On désire connaître l'effet du type de contrat sur le salaire :

- On désire connaître l'effet du sexe sur le salaire :
 - => 2 modalités Homme Femme
 - => test de Student de comparaison de moyennes

- On désire connaître l'effet du type de contrat sur le salaire :
 - => 4 modalités CDD CDI Apprenti Occasionnel

- On désire connaître l'effet du sexe sur le salaire :
 - => 2 modalités Homme Femme
 - => test de Student de comparaison de moyennes

- On désire connaître l'effet du type de contrat sur le salaire :
 - => 4 modalités CDD CDI Apprenti Occasionnel
 - => Analyse de la variance

FIGURE – Salaire horaire en fonction du type de contrat. Source : Rééchantillonnage de la base Postes, 2013, INSEE

Analyse de la variance

L'analyse de la variance offre un cadre d'analyse rigoureux pour l'estimation et le test de l'effet d'une ou plusieurs variables qualitatives sur une variable quantitative.

Vocabulaire :

Les variables qualitatives s'appellent **les facteurs de variabilité** et leurs modalités des **niveaux**. La variable qualitative est la **réponse**.

Plan

- 🚺 Analyse de la variance à un facteur
 - Les données et le modèle
 - Le test d'anova = test de validité globale
 - Tests sur les effets
 - Test sur les contrastes

2 Analyse de la variance à deux facteurs

Les données et le modèle

On considère 1 facteur à k niveaux.

Pour chaque niveau $l \in \{1, 2, \cdots, k\}$, on dispose d'un échantillon de taille n_i d'observations de la variable quantitative.

```
\begin{array}{lll} \text{niveau 1} & Y_1^1, Y_2^1, \cdots, Y_{n_1}^1 \\ \text{niveau 2} & Y_1^2, Y_2^2, \cdots, Y_{n_2}^2 \\ \vdots & \vdots & \vdots \\ \text{niveau } k & Y_1^k, Y_2^k, \cdots, Y_{n_k}^k \end{array}
```

Indépendance

On suppose que les **toutes** les variables sont **indépendantes**.

- Les variables d'un même niveau sont indépendantes : $\forall l \in \{1, 2, \cdots, k\}$, $\forall i \neq j$, Y_i^l et Y_i^l sont indépendantes.
- Les variables de deux niveaux différents sont indépendantes $\forall l \neq m, \ \forall (i,j), \ Y_i^l \ \text{et} \ Y_j^m \ \text{sont indépendantes}.$

Modèle

On suppose de plus que

- toutes les variables suivent une distribution normale
- l'espérance dépend du niveau k
- la variance est identique pour toutes les variables

$$Y_i^l \sim \mathcal{N}(\mu_l, \sigma^2), \quad \forall l \in \{1, \dots, k\}, \quad \forall i \in \{1, \dots, n_l\}$$

Modèle

De manière équivalente, on pourra écrire que

$$Y_i^l = \mu_l + \epsilon_i^l$$
 avec $\epsilon_i^l \sim \mathcal{N}(0, \sigma^2)$ et ind.

• μ_l est l'espérance observée pour le niveau l du facteur.

L'anova est un modèle linéaire

En effet on peut réécrire le modèle ci-dessus de la manière suivante :

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \text{ avec } \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$$

et

$$\mathbf{X} = \begin{pmatrix} \overbrace{1 & 0 & \cdots & 0} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \end{pmatrix} n_{1} \text{ li.}$$
 et $\beta = \begin{pmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{k} \end{pmatrix}$

En conséquence...

... tous les résultats vus sur le modèle linéaire dans le chapitre sur la régression multiple s'appliquent ici, et notamment :

- l'estimation et les propriétés des estimateurs
- les tests sur les paramètres, ou les comb. lin. de paramètres
- les tests de comparaison de modèles en particulier le test de validité globale du modèle.
- les résidus leur loi et propriétés.

Plan

- Analyse de la variance à un facteur
 - Les données et le modèle
 - Le test d'anova = test de validité globale
 - Tests sur les effets
 - Test sur les contrastes

2 Analyse de la variance à deux facteurs

Problématique

On cherche à savoir si **le facteur** (la variable qualitative) à un effet sur **la réponse** (la variable quantitative).

=> Le test de validité globale du modèle permet de répondre à cette question.

Les deux hypothèses testées sont

- $\mathcal{H}_0: \{\mu_1 = \mu_2 = \dots = \mu_k\}$
- $\mathcal{H}_1: \{\exists l, m \in \{1, 2, \cdots, k\} \text{ tels que } \mu_l \neq \mu_m\}$

Décomposition de la variance

Dans le cadre d'analyse de la variance, on a :

$$SCT = \sum_{l=1}^k \sum_{i=1}^{n_l} (Y_i^l - \overline{Y})^2 \quad SCM = \sum_{l=1}^k n_l (\overline{Y}_l - \overline{Y})^2 \quad SCR = \sum_{l=1}^k \sum_{i=1}^{n_l} (Y_i^l - \overline{Y}_l)^2$$

avec \overline{Y}_l la moyenne pour le niveau $l:\overline{Y}_l=\frac{1}{n_l}\sum_{i=1}^{n_l}X_i^l$.

REMARQUE : L'espace engendré par les colonnes de X est de dimension k, le degré de liberté associé à SCM est donc k-1.

Sous l'hypothèse \mathcal{H}_0

$$\frac{SCM/k-1}{SCR/n-k} \sim \mathcal{F}_{k-1,n-k}$$

Table d'analyse de la variance

Source	Somme des	Degrés de	Som. carrés	Statistique	Proba.
	carrés	liberté	moyens	F	crit.
Facteur	SCM	k-1	$\frac{SCM}{k-1}$	$\frac{SCM/k-1}{SCR/n-k}$	p_c
Résidu	SCR	n-k	$\frac{\widetilde{SCR}}{n-k}$	2 2 2 4 7 1 1 1 1	
Total	SCT	n-1			

Estimation de l'écart-type σ

$$S = \sqrt{\frac{SCR}{n-k}}$$

est un estimateur de l'écart-type σ .

REMARQUES:

- On peut trouver l'estimation de l'écart-type dans la table d'analyse de la variance.
- La quantité $\frac{SCR}{n-k}$ est souvent nommée MSE pour mean square error dans les logiciels de statistiques.

Illustration

```
Residuals 3996 261381
                           65
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
```

Df Sum Sq Mean Sq F value Pr(>F) 3 77452 25817 394.7 <2e-16 ***

CONT_TRAV.C.3

Vérification des hypothèses : homoscédasticité

Vérification des hypothèses : normalité

Plan

- 🚺 Analyse de la variance à un facteur
 - Les données et le modèle
 - Le test d'anova = test de validité globale
 - Tests sur les effets
 - Test sur les contrastes

2 Analyse de la variance à deux facteurs

Ecriture singulière

La plupart des logiciels de statistiques utilisent l'écriture suivante (écriture singulière)

$$Y_i^l = \mu + \alpha_l + \epsilon_i^l$$
 avec $\epsilon_i^l \sim \mathcal{N}(0, \sigma^2)$ et ind.

- μ est la moyenne générale.
- α_l est l'**effet** du niveau l du facteur

Dans ce cas la matrice X devient singulière, la première colonne état la somme des k colonnes suivantes.

$$\mathbf{X} = \begin{pmatrix} \overbrace{1 & 1 & 0 & \cdots & 0}^{k+1 \text{ col.}} \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \end{bmatrix} n_{k} \text{ li.}$$

Identifiabilité

Définition

Soit $\mathcal{P}=\{P_{\theta},\theta\in\Theta\}$ un modèle statistique. On dit que \mathcal{P} est identifiable si et seulement si

$$P_{\theta_1} = P_{\theta_2} \Longrightarrow \theta_1 = \theta_2$$
, pour tout $\theta_1, \theta_2 \in \Theta$.

EXEMPLE: Le modèle de Poisson

$$\{\mathcal{P}(\theta) \text{ tq } \theta \in \mathbb{R}^+\}$$

Cas de l'écriture signulière

Modèle

$$Y_i^l = \mu + \alpha_l + \epsilon_i^l \text{ avec } \epsilon_i^l \sim \mathcal{N}(0, \sigma^2), \text{ ind.}$$

lci, les deux jeux de paramètres $(\mu,\alpha_1,\cdots,\alpha_l,\sigma)$ et $(\mu-1,\alpha_1+1,\cdots,\alpha_l+1,\sigma)$, pour une valeur fixée de $\mu,\alpha_1,\cdots,\alpha_l$ et σ conduisent à la même probabilité. => Le modèle n'est pas identifiable.

Conséquence : On ne peut pas estimer $\mu, \alpha_1, \dots, \alpha_l$.

Ajout de contraintes d'identifiabilité

Pour rendre le modèle identifiable, on va ajouter une contrainte sur une combinaison linéaire des paramètres $\mu, \alpha_1, \dots, \alpha_l$. Par exemple :

$$\begin{cases} \sum_{l=1}^{k} n_l \alpha_l = 0 \\ \alpha_1 = 0 \end{cases}$$
 (1)

Avec la contrainte (1), on estime Avec la contrainte (2), on estime

- \bullet μ par \overline{y}
- α_l par $\overline{y}_l \overline{u}$

- μ par \overline{y}_1 α_l par $\overline{y}_l \overline{y}_1$

ATTENTION:

- Selon les contraintes, les coefficients s'interprètent différemment.
- Si on ne connait pas les contraintes, il ne faut pas chercher à interpréter les tests, et les coefficients.

Illustration avec R

```
> model.tables(aov_cont,type='effects')
Tables of effects

CONT_TRAV.C.3
CONT_TRAV.C.3
   APP   CDD   CDI   TOA
-7.104   0.768   4.947   1.388
```

Tests sur les effets

De nombreux logiciels donnent la probabilité critique du test $\mathcal{H}_0 = \{\alpha_l = 0\}$ contre $\mathcal{H}_1 = \{\alpha_l \neq 0\}$.

ATTENTION:

Selon la contrainte utilisée, la signification du test n'est pas la même.

- Avec (2) : Le test de $\{\alpha_1=0\}$ revient à tester $\{\mu_1=0\}$. "La moyenne du groupe 1 est nulle". Le test de $\{\alpha_2=0\}$ revient à tester $\{\mu_2=\mu_1\}$. "La moyenne du groupe 2 est égale à la moyenne du groupe 1".
- Avec (1) : Le test de $\{\alpha_1 = 0\}$ revient à tester $\{\mu_1 = \mu\}$. "La moyenne du groupe 1 est égale à la moyenne générale".

Illustration

```
> model.tables(aov_cont,type='means')
Tables of means
Grand mean

12.70279

CONT_TRAV.C.3
CONT_TRAV.C.3
   APP   CDD   CDI   TOA
5.599 13.471 17.650 14.091
```

Plan

- Analyse de la variance à un facteur
 - Les données et le modèle
 - Le test d'anova = test de validité globale
 - Tests sur les effets
 - Test sur les contrastes

2 Analyse de la variance à deux facteurs

Contraste

Définition

On appelle contraste L des k moyennes $\mu_1, \mu_2, \cdots, \mu_k$ la somme

$$L = \sum_{l=1}^{k} l_l \mu_l \text{ telle que } \sum_{l=1}^{k} l_l = 0.$$

EXEMPLES:

- $\mu_1 \mu_2$: pour comparer μ_1 à μ_2
- $\mu_1 2\mu_2 + \mu_3$: pour comparer μ_2 à la moyenne de μ_1 et μ_3 .

Estimation

Un estimateur sans biais de L est

$$\hat{L} = \sum_{l=1}^{l} l_l \hat{\mu}_l = \sum_{l=1}^{l} l_l \overline{X}_l$$

Propriétés

On a

$$\bullet \ (\hat{L}) = L$$

•
$$V(\hat{L}) = \sigma^2 \sum_{l=1}^k \frac{l_l^2}{n_l}$$

0

$$\frac{\hat{L} - L}{S\sqrt{\sum_{l=1}^{k} \frac{l_l^2}{n_l}}} \sim \mathcal{S}_{n-k}$$

Tests sur les contrastes

Tests a priori

On sait a priori à quelle question doit répondre notre analyse. On définit le contraste en fonction de la problématique et on test $\mathcal{H}_0=\{L=0\}$ contre $\mathcal{H}_1=\{L\neq 0\}$.

- Avantages : on réalise peu de tests
- Inconvénients : il faut à l'avance savoir ce que l'on veut tester

Comparaisons multiples a posteriori

On ne sait pas *a priori* ce que l'on cherche, on se trouve dans une démarche exploratoire. On teste tous les contrastes $\mu_l - \mu_{l'}$.

- Avantages : on n'a pas besoin d'avoir une question par avance.
- Inconvénients : tests multiples, on réalise $\frac{k(k-1)}{2}$ tests.

Tests multiples

Soit une famille de m hypothèses de tests \mathcal{H}_{0i} contre \mathcal{H}_{1i} , pour $i \in \{1, 2, \cdots, m\}$.

Definition

On appelle FWER le family wise error rate, la probabilité de rejeter à tort au moins 1 fois une hypothèse \mathcal{H}_{0i} sur les m tests réalisés.

Propriété

Si les m tests sont indépendants et tous de niveau α alors

$$FWER = 1 - (1 - \alpha)^m$$

=> Démonstration

m	1	5	10	20	100
FWER	0.05	0.22	0.40	0.64	0.99

CONSÉQUENCE : On ne contrôle plus le risque de première espèce.

Méthode de Bonferroni

On diminue le risque de première espèce α . On prend $\alpha' = \frac{\alpha}{m}$.

- Avantage : on diminue la probabilité de réaliser au moins une erreur de première espèce sur les m tests.
- Inconvénient : on diminue aussi la puissance du test. On aura des difficultés à repérer les groupes différents.

Etendue Studentisée

Définition

On suppose que $Z_1,Z_2,\cdots,Z_m\sim\mathcal{N}(0,1)$ sont m variables normales standardisées indépendantes. On suppose que $U\sim\chi^2_{\nu}$ est aussi indépendante des Z_i .

L'étendue Studentisé est la variable aléatoire :

$$Q_{m,\nu} = \frac{\max_i Z_i - \min_i Z_i}{\sqrt{U/\nu}}$$

Application au cas des comparaisons multiples

On suppose que $n_1 = n_2 = \cdots = n_k = r$. Nous avons vu que

- \bullet $\frac{\overline{X}_l \mu_l}{\sigma / \sqrt{r}} \sim \mathcal{N}(0, 1)$,
- ullet $\overline{X}_1,\overline{X}_2,\cdots,\overline{X}_k$ sont indépendantes.
- $\bullet \ \frac{(n-k)S^2}{\sigma^2} \sim \chi^2_{n-k}$

On en déduit donc que

$$\frac{(\max_{l} \overline{X}_{l} - \min_{l} \overline{X}_{l}) - (\mu_{M} - \mu_{m})}{S/\sqrt{r}} \sim Q_{k,n-k}$$

avec μ_M (resp. μ_m) l'espérance du groupe M tel que $\mu_M = \max \overline{X}_l$ (resp. m tel que $\mu_m = \min \overline{X}_l$).

Procédure de comparaisons multiples de Tukey

On considère les m=k(k-1)/2 hypothèses $\mathcal{H}_{0ll'}=\{\mu_l=\mu_{l'}\}$, Pour les k(k-1)/2 contrastes linéaires $\mu_l-\mu_{l'}$.

1. Calculer la différence

$$|\overline{X}_l - \overline{X}_{l'}|$$

2. Rejeter les hypothèses $\mathcal{H}_{0ll'} = \{\mu_l = \mu_{l'}\}$ si

$$|\overline{X}_l - \overline{X}_{l'}| > R_{crit}$$

avec

$$R_{crit} = Q_{k,n-k,1-\alpha} S / \sqrt{r}$$

Cette procédure permet de contrôler le FWER.

Justification de la procédure de Tukey

Si toutes les hypothèses $\mathcal{H}_{0ll'}$ sont vérifiées simultanément, alors,

$$\frac{(\max_{l} \overline{X}_{l} - \min_{l} \overline{X}_{l})}{S/\sqrt{r}} \sim Q_{k,n-k}$$

=> Démonstration

Justification de la procédure de Tukey

Si toutes les hypothèses $\mathcal{H}_{0ll'}$ sont vérifiées simultanément, alors,

$$\frac{(\max_{l} \overline{X}_{l} - \min_{l} \overline{X}_{l})}{S/\sqrt{r}} \sim Q_{k,n-k}$$

=> Démonstration

La procédure permet de contrôler le FWER.

$$FWER = \text{(Au moins une des hypothèses } \mathcal{H}_{0ll'} \text{ est rejetée à tort.)}$$

= α

=> Démonstration.

Justification de la procédure de Tukey

Lemme

Soient $Z_l = \overline{X}_l - \mu_l$, pour $l \in \{1, 2, \dots, k\}$ telles que

$$((\max_{l} \overline{Z}_{l} - \min_{l} \overline{Z}_{l}) < R_{crit}) = 1 - \alpha,$$

alors,

$$(|\overline{Z}_l - \overline{Z}_{l'}| < R_{crit}, \text{ pour tout } l, l') = 1 - \alpha.$$

Intervalle de confiance simultané

Définition

L'intervalle de confiance simultané pour les paramètres μ_1,μ_2,\cdots,μ_k est l'ensemble des points $\mu_{10},\mu_{20},\cdots,\mu_{k0}$, tels qu'aucune des k(k-1)/2 hypothèses de test $\mathcal{H}_{0ll'}=\{\mu_{l0}-\mu_{l'0}\}$ ne soit rejetée avec la procédure de test.

Probabilité critique ajustée

Définition

La probabilité critique ajustée du test $\mathcal{H}_{0ll'}=\{\mu_l=\mu_{l'}\}$ contre $\mathcal{H}_{1ll'}=\{\mu_l\neq\mu_{l'}\}$ est la plus petite valeur du risque de première espèce α telle que $\mathcal{H}_{0ll'}$ est rejetée par la procédure de test.

La région de rejet dépend de α

$$p_{adj}$$
 est telle que $R_{crit}(p_{adj}) = |\overline{x}_l - \overline{x}_{l'}|$.

Illustration

> TukeyHSD(aov cont)

```
Tukey multiple comparisons of means
   95% family-wise confidence level
Fit: aov(formula = sal hor ~ CONT TRAV.C.3, data = subdata)
$CONT TRAV.C.3
           diff
                       lwr
                                         p adj
                                 upr
CDD-APP 7.87187 6.9422807 8.801459 0.0000000
CDT-APP 12.05058 11.1209907 12.980169 0.0000000
TOA-APP 8.49198 7.5623907 9.421569 0.0000000
CDT-CDD 4.17871 3.2491207 5.108299 0.0000000
TOA-CDD 0.62011 -0.3094793 1.549699 0.3161723
TDA-CDT -3.55860 -4.4881893 -2.629011 0.0000000
```

Illustration

Plan du cours

- Analyse de la variance à un facteur
 - Les données et le modèle
 - Le test d'anova = test de validité globale
 - Tests sur les effets
 - Test sur les contrastes

2 Analyse de la variance à deux facteurs