

Probability theory and Statistics 2018-09-18 $\,$

Личные	Идентификационный номер	
Фамилия:		
Имя:		
Подпись:		
		3
	Проверен	но 4 ПППППППП 4
В этом блоке не нужно ничег	перемешиван о менять.	
Тип Код экзам	ена	
035 18091800	0001	
Отмечайте ответы аккуратно кр	естиком: Не отмечено:	о о
	Не сгибайте и не пачкайте лис	ст. Используйте синюю или чёрную ручку.
ОТВЕТЫ 1 - 15 а b c d e 1	Ответы 16 - 30 а b c d 16	Ответы 31 - 34 a b c d e 31

- 1. Граф Сен-Жермен извлекает карты в случайном порядке из стандартной колоды в 52 карты без возвращения. Рассмотрим три события: A «первая карта тройка»; B «вторая карта семёрка»; C «третья карта дама пик».
 - (а) События А и В зависимы, события В и С независимы.
 - (b) События A и B зависимы, события B и C зависимы.
 - (c) События A и B независимы, события B и C независимы.
 - (d) События A и независимы, события B и C зависимы.
 - (e) События A и B независимы, события B и C зависимы.
- 2. Функцией плотности случайной величины может являться функция

(a)
$$f(x) = \begin{cases} -1, x \in [-1, 0] \\ 0, \text{ иначе} \end{cases}$$

(b)
$$f(x) = \begin{cases} x - 1, x \in [0, 1 + \sqrt{3}] \\ 0, \text{ иначе} \end{cases}$$

(c)
$$f(x) = \begin{cases} \frac{1}{x^2}, x \in [1, +\infty) \\ 0, \text{ иначе} \end{cases}$$

(d)
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$$

(e)
$$f(x) = \begin{cases} x^2, x \in [0, 2] \\ 0, \text{ иначе} \end{cases}$$

- 3. Известно, что $\mathbb{E}(X)=3$, $\mathbb{E}(Y)=2$, Var(X)=12, Var(Y)=1, Cov(X,Y)=2. Ожидание $\mathbb{E}(XY)$ равно
 - (a) 8
 - (b) 0
 - (c) 6
 - (d) 2
 - (e) 5
- 4. Известно, что $\mathbb{E}(X)=3$, $\mathbb{E}(Y)=2$, Var(X)=12, Var(Y)=1, Cov(X,Y)=2. Корреляция Corr(X,Y) равна
 - (a) $\frac{1}{\sqrt{3}}$
 - (b) $\frac{1}{\sqrt{12}}$
 - (c) $\frac{2}{\sqrt{13}}$
 - (d) $\frac{2}{12}$
 - (e) $\frac{1}{12}$
- 5. Известно, что $\mathbb{E}(X)=3,\ \mathbb{E}(Y)=2,\ \mathsf{Var}(X)=12,\ \mathsf{Var}(Y)=1,\ \mathsf{Cov}(X,Y)=2.$ Дисперсия $\mathsf{Var}(2X-Y+4)$ равна
 - (a) 49
 - (b) 53
 - (c) 45
 - (d) 57
 - (e) 41

- 6. Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то
 - (a) Corr(X, Y) > 0
 - (b) Corr(X, Y) < 0
 - (c) $\forall \alpha \in [0, 1] : Var(\alpha X + (1 \alpha) Y) = 0$
 - (d) X и Y независимы
 - (e) распределение X может быть дискретным
- 7. Если Corr(X, Y) = 0.5 и Var(X) = Var(Y), то Corr(X + Y, 2Y 7) равна
 - (a) 1
 - (b) $\sqrt{3}/2$
 - (c) $\sqrt{3}/3$
 - (d) 0
 - (e) 1/2
- 8. Известно, что $\xi \sim U$ [0; 1]. Вероятность \mathbb{P} (0.2 $< \xi <$ 0.7) равна
 - (a) 0.17
 - (b) 1/4
 - (c) $\int_0^1 \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$
 - (d) 1/2
 - (e) $\int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$
- 9. Случайные величины $\xi_1, \dots, \xi_n, \dots$ независимы и имеют таблицы распределения

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n=\xi_1+\ldots+\xi_n$, то предел $\lim_{n\to\infty}\mathbb{P}\Big(\frac{S_n-\mathbb{E}[S_n]}{\sqrt{\mathsf{Var}(S_n)}}>1\Big)$ равен

- (a) $\int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$
- (b) $\int_{1}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$
- (c) $\int_{1}^{+\infty} \frac{1}{2} e^{-t/2} dt$
- (d) $\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$
- (e) 0.5
- 10. Число посетителей сайта за один день является неотрицательной случайной величиной с математическим ожиданием 400 и дисперсией 400. Вероятность того, что за 100 дней общее число посетителей сайта превысит $40\,400$, приближённо равна
 - (a) 0.3413
 - (b) **0.0553**
 - (c) 0.1359
 - (d) 0.0227
 - (e) 0.9772

- 11. Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием 10 000 рублей. Согласно неравенству Маркова, вероятность того, что очередная выплата превысит 50 000 рублей, ограничена сверху числом
 - (a) 0.2
 - (b) **0.1359**
 - (c) 0.5
 - (d) 0.3413
 - (е) неравенство Маркова здесь неприменимо
- 12. Монетку подбрасывают три раза. Рассмотрим три события: A «хотя бы один раз выпала решка»; B «хотя бы один раз выпал орёл»; C «все три раза выпал орёл».
 - (a) События A и B совместны, события A и C несовместны.
 - (b) События \boldsymbol{A} и \boldsymbol{B} несовместны, события \boldsymbol{A} и \boldsymbol{C} совместны.
 - (c) События A и B несовместны, события B и C совместны.
 - (d) События A и B совместны, события A и C совместны.
 - (e) События A и B несовместны, события B и C несовместны.
- 13. Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием 50 000 рублей и стандартным отклонением 10 000 рублей. Согласно неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего математического ожидания не более чем на 20,000 рублей, ограничена снизу числом
 - (a) 3/5
 - (b) 1/2
 - (c) 3/4
 - (d) 1/4
 - (е) неравенство Чебышёва здесь неприменимо
- 14. Вероятность поражения мишени при одном выстреле равна 0.6. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2016}+\ldots+\xi_n^{2016}}{n}$ при $n\to\infty$ равен
 - (a) 3/5
 - (b) 1/2
 - (c) 0.6^{2016}
 - (d) 3/4
 - (e) 2/5
- 15. Правильный кубик подбрасывается 5 раз. Вероятность того, что ровно два раза выпадет шестерка равна
 - (a) $25/(2^53^5)$
 - (b) 2/5
 - (c) $1/(2^53^5)$
 - (d) 1/36
 - (e) $125/(2^43^5)$

- 16. Правильный кубик подбрасывается 5 раз. Математическое ожидание и дисперсия числа выпавших шестерок равны соответственно
 - (а) 0 и 1
 - (b) 0 и 5/6
 - (с) 5/6 и 5/36
 - (d) 5/6 и 1/36
 - (е) 1 и 5/6
- 17. Правильный кубик подбрасывается 5 раз. Наиболее вероятное число шестерок равняется
 - (a) 5/6
 - (b) только 1
 - (с) только 0
 - (d) **5**
 - (е) 0 и 1
- 18. Правильный кубик подбрасывается 5 раз. Математическое ожидание суммы выпавших очков равно
 - (a) 21
 - (b) 18
 - (c) 3.5
 - (d) 18.5
 - (e) 17.5
- 19. Случайный вектор $(\xi,\eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0\\0 \end{pmatrix};\begin{pmatrix} 1&1/2\\1/2&1 \end{pmatrix}\right)$ и функцию плотности $f_{\xi,\eta}(x,y)=\frac{1}{2\pi a}\exp\left(-\frac{1}{2a^2}(x^2-bxy+y^2)\right)$. При этом
 - (a) $a = \sqrt{3/4}, b = 0$
 - (b) a = 1, b = 0
 - (c) $a = \sqrt{3}/2$, b = 1
 - (d) a = 1, b = 1
 - (e) a = 1/2, b = 1
- 20. Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Если случайный вектор z определён как $z = (\xi 0.5\eta, \eta)^T$, то
 - (a) $(\xi 0.5\eta)^2 + 2\eta^2 \sim \chi_2^2$
 - (b) **Z** является двумерным нормальным вектором
 - (с) компоненты вектора Z зависимы
 - (d) компоненты вектора Z коррелированы
 - (e) $\xi 0.5\eta \sim \mathcal{N}(0; 1)$
- 21. Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны
 - (a) $\mathbb{E}(\xi|\eta=1)=1$, $Var(\xi|\eta=1)=1$
 - (b) $\mathbb{E}(\xi|\eta=1) = 0$, $Var(\xi|\eta=1) = 1$
 - (c) $\mathbb{E}(\xi|\eta=1) = 1/2$, $Var(\xi|\eta=1) = 3/4$
 - (d) $\mathbb{E}(\xi|\eta=1)=1$, $Var(\xi|\eta=1)=1/2$
 - (e) $\mathbb{E}(\xi|\eta=1) = 1/2$, $Var(\xi|\eta=1) = 1/4$

(c) 1/2(d) 3/4(e) 1/6

(a) 2/3(b) 1(c) 0(d) 1/3(e) -1

 $\begin{array}{ccc} (a) & -2/3 \\ (b) & -1/3 \\ (c) & 0 \\ (d) & 2/3 \\ (e) & 1/3 \end{array}$

(a) 1/4
(b) 1/96
(c) 1/128
(d) 1/64
(e) 1/16

25. Дисперсия случайной величины ${m Y}$ равна

26. Ковариация случайных величин X и Y равна:

27. Вероятность того, что X < 0.5, Y < 0.5 равна:

ron	ability theory and Statistics: 18091800001
22.	Математическое ожидание случайной величины X при условии $Y=0$ равно
	(a) 1 (b) 1/3 (c) -1 (d) 1/6
23.	(e) 0 На шахматной доске в клетке A1 стоит белая ладья. На одну из оставшихся клеток случайным образом выставляется чёрная ладья. Вероятность того, что ладьи «бьют» друг друга равна
	 (a) 16/63 (b) 14/64 (c) 14/63 (d) 1/2 (e) 16/64
24.	Вероятность того, что $X=0$ при условии $Y<1$ равна
	(a) 0 (b) 1/4

28. Условное распределение X при условии Y=1 имеет вид

(a)
$$f(x) = \begin{cases} 3x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

(b)
$$f(x) = \begin{cases} 3x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

(c)
$$f(x) = \begin{cases} 9x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

(d)
$$f(x) = \begin{cases} 9x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

- (е) Не определено
- 29. В школе три девятых класса: 9A, 9Б и 9В. В 9A классе 50% отличники, в 9Б 30%, в 9В 40%. Если сначала равновероятно выбрать один из трёх классов, а затем внутри класса равновероятно выбрать школьника, то вероятность выбрать отличника равна

(a)
$$(3+4+5)/3$$

- (b) 0.3
- (c) 0.5
- (d) 0.27
- (e) **0.4**

30. Если
$$\mathbb{P}(A) = 0.2$$
, $\mathbb{P}(B) = 0.5$, $\mathbb{P}(A|B) = 0.3$, то

(a)
$$\mathbb{P}(A \cup B) = 0.7$$

(b)
$$\mathbb{P}(A \cap B) = 0.05$$

(c)
$$\mathbb{P}(A \cup B) = 0.8$$

(d)
$$\mathbb{P}(A \cap B) = 0.15$$

(e)
$$\mathbb{P}(B \cup A) = 0.3$$

- 31. Традиционно себя называют Стрельцами люди, родившиеся с 22 ноября по 21 декабря. Из-за прецессии земной оси линия Солнце—Земля указывает в созведие Стрельца в наше время с 17 декабря по 20 января. Предположим, что все даты рождения равновероятны. Вероятность того, что человек, называющий себя Стрельцом, родился в день, когда линия Солнце—Земля указывала в созвездие Стрельца, равна
 - (a) 4/31
 - (b) 4/30
 - (c) 4/35
 - (d) 1/2
 - (e) 5/30
- 32. Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна
 - (a) $C_{10}^1 0.2^1 0.8^9$
 - (b) $C_{10}^1 0.8^1 0.2^9$
 - (c) 1/2
 - (d) 2/10
 - (e) $1 0.8^{10}$

- 33. Среди покупателей магазина мужчин и женщин поровну. Женщины тратят больше 1000 рублей с вероятностью 60%, а мужчины с вероятностью 30%. Только что был пробит чек на сумму 1234 рубля. Вероятность того, что покупателем была женщина равна
 - (a) 0.5
 - (b) 1/3
 - (c) 2/3
 - (d) 0.18
 - (e) 0.3
- 34. Если $F_X(x)$ функция распределения случайной величины, то
 - (a) $F_X(x)$ может принимать значение 2016
 - (b) $F_X(x)$ может принимать отрицательные значения
 - (c) $\lim_{x\to-\infty} F_X(x) = 1$
 - (d) $\mathbb{P}(X \in (a; b]) = F_X(b) F_X(a)$
 - (e) величина X дискретна