CSE340: Computer Architecture Assignment 3 Solution

Chapter 3 (Arithmetic for Computers)

Question 01

Multiplicand = 13 (Decimal) and multiplier = 17 (Decimal) Complete the multiplication following the Optimized multiplication algorithm.

Solution:

17 = 10001

13 = 01101 (converting it into 5 bits as well)

Iteration	Multiplicand 01101	Product 00000 10001
1	01101	01101 10001
		00110 11000
2	01101	00011 01100
3	01101	00001 10110
4	01101	00000 11011
5	01101	01101 11011
		00110 11101

ALTER COO (4) FOI CONTRACTOR

Solve of Question - 02

A B B 9 6 09

= 1010 TOTT TOTT 1001 OILO 0000 1001

1 0101011 1011 1001 0110 0000 1001

Sign exponent fraction

bit (biased)

biased exponend = 0101011 = 43

bias = $2^{n-1} - 1 = 2^{7-1} - 1 = 63$

: exponent = 43 - 63 = -20

the decimal value = (-1) sign (1+ fraction) x2

= (-1) (1.1011 1001 0110 0000 1001) x2

=- 1.1011 1001 0110 00001001 x 2

= -1.050100336 ×10-6

(Ans.)

Solve of Question- 03:

70 . 78955 = 1000110 . 1100 1010 000 111111111

G 1.000110 1100 1010 000 111111111 x 26

bias = $2^{n-1} - 1 = 2^{n-1} = 2^{n-1}$

: biased exponent = 6+255 = 261

261 = 100000101 - biased exponent

Sign bit = 0

floating point pepsiesentation:

sign biased fraction bit exponent

(Ans.)

Solve of Question 4-(a):

50.7869 = 110010. 1100 1001 0111 = 1.10010 11001001 0111 x 25

79.83 = 1001111.1101 0100 0111 $= 1.001111 1101 0100 0111 \times 2^{6}$

Match the lower exponent with ligher ones

50.7869 = 000 0.110010 1100 1001 0111 x 26

 $79.83 = 1.001111 1101 0100 0111 \times 2^{6}$

29.58 = 0.011101 1001 0100 0111 x 26

101000000001100100110\$ x 26

(Ans.)

Solve of Question 4-(b)

 $a = 64.2486 = 1000000 \cdot 0011111110$ $= 1.000000 0011111110 \times 2^{6}$

 $6 = 49 \cdot 1832 = 110001 \cdot 001011101110$ = $1 \cdot 10001001011101110 \times 2^{5}$

 $a \times b = (1.000000000011111110 \times 1.10001001011101110)$

= 1.1000 1010111 1111 001110 x 211

Answer to the question no: 5

```
We have to subtract -4.0210 from 28.4810

28.4810 - (-4.0210)

= 28.4840 + 4.0210
```

```
28.4840 = 11100.01111.0111. = Normalize
                       4.0210 = 100.000001010....
        0.4840×2=0.968
11100
        0.068×2 = 1.036
  0.936×2 = 1.872 Normalize
        · 872×2 = 1.744 01 [1.00000001010×22
         · 744 × 2=1:488
        488 x 2 2 0 0 76
       00.976×2=1.952
           ·952×2=1.904
 =) 1.110001111011 x 5, + 1.00000001010x 5, agg 1.110001111011 x 5, + 0.010000001010x 5,
         Sigoha 2 = 1'808
        =) 50 (1.110001111011+ 0.0100000001010)
           10.00001 × 24 => 1000001
              malize >232.5
           normalize
```

```
value for addition: 1.000001X 25
   Actual exponent 5
  Bias = 2-1 = 27-128-1=127
 : Biased exponent = 5+127 = 132
   size of exponent field = 8 bits
   0 & 955 reserved.
      : range = 1 to 25 B
    as 121322254 on on underflow.
           Arower to the question no: 6
  A = 0.000101 \times 2
B = 10.1 \times 2^{-90}
= 1.01 \times 2^{-89}
-89 NOIN A NB 07 1'01 X 2 89
   (0101000 = 1001 X 1.01 X 2 -83-83
                     10 1178011.
1.01
      100 00 01.1001 X2
```

Actual exponent = - 178 12 fraction bits, I sign bit .: exponent bit (18-12-1) B bits

| B bits

| B bits

| B bits

| B bits Biased exponent = -178+1B undertflow. Answer to the question no: 7 Plw f, o(x,0) ; f, = 9 (g+h) - (i+j) Flw f2, D(X1); f2 = h flw f3,0(x12) ; f3 = i Plw fu, 0 (x13) i fy =) fadds fs, fi, fz i fs=gth Fadd. 3 Fo, f3, f4; f6: i+j faub. 5 fb, fs, fb ; fa=fb-fb fow fo, D(Xin)

Answer to the question no: 8

(2)

In our exponent field there is no sign bit.

For single precision, all 8 exponent bits are used to represent the value of the exponent. In that case we can only show the positive values rranging from 0 to 255. We can represent a huge number but no small numbers where the exponent is below 0. To include those numbers we add a bias value to the actual exponent which simply places the number forom the negative rranges in othe positive range as well:

long	multipication	Optimized multiplication
Product	2 negisters needed	2 negisters needed
multi pliere	1 register needed	No registers needed directly placed into the lower half of the product
multiplicand	2 negisters needed	1 register needed
Shifting	multiplicand left shift multiplier right shift. 2 shift instructions to be executed	product right shift shift instruction to be executed

Based on the discussion above we can clearly identify that aptimized multiplier uses lesser amount of physical devices and fewer instructions as well making it easier to compute