Taules de contrasts d'hipòtesi més usuals

1 Introducció

En aquest document donarem unes quantes taules especificant tots els contrasts d'hipòtesi paramètrics més usuals.

Donarem les condicions per a cada contrast, l'estadístic a usar en cada cas, la regió crítica i l'interval de confiança corresponent a cada paràmetre que surt en el contrast.

En l'estadístic hem usat la notació següent:

• X_{α} : Donada una variable aleatòria X, direm X_{α} , també anormenat α -quantil, al valor on la funció de distribució de X val α , o sigui,

$$p\left\{ X\leq X_{\alpha}\right\} =\alpha.$$

- Z: Distribució normal N(0,1).
- t_n : Distribució t de Student amb n graus de llibertat.
- χ_n^2 : Distribució khi-quadrat amb n graus de llibertat.
- F_{n_1,n_2} : Distribució F de Fisher-Snedecor amb n_1 i n_2 graus de llibertat.

Les propietats de les distribucions anteriors són:

- Simetria de la normal: $z_{\alpha} = -z_{1-\alpha}$.
- Simetria de la t de Student: $t_{n,\alpha} = -t_{n,1-\alpha}$.
- Permutació dels graus de llibertat de la F de Fisher-Snédecor: $F_{n_1,n_2,\alpha}=\frac{1}{F_{n_2,n_1,1-\alpha}}$.

2 Taula de contrasts d'hipòtesi per al paràmetre μ d'una variable aleatòria normal

2.1 Tipus de contrasts i condicions

Tipus	Condicions	Mostra	Hipòtesi alter- nativa	Cas		
	σ coneguda.		$H_1: \mu \neq \mu_0$	I		
	Població normal o n	n observacions independents.	$H_1: \mu < \mu_0$	II		
	gran.		$H_1: \mu > \mu_0$	III		
			$H_1: \mu \neq \mu_0$	IV		
Una sola mitjana. $H_0: \mu = \mu_0$	σ desconeguda. Població Normal	n observacions independents.	$H_1: \mu < \mu_0$	V		
		•	$H_1: \mu > \mu_0$	VI		
	σ desconeguda. n gran.		$H_1: \mu \neq \mu_0$	VII		
		n observacions independents.	$H_1: \mu < \mu_0$	VIII		
			$H_1: \mu > \mu_0$	IX		
	σ_1 i σ_2 conegudes. Poblacions Normals o n_1 i n_2 grans σ_1 i σ_2 desconegudes. $\sigma_1 = \sigma_2$. Poblacions Normals o n_1 i n_2 grans	n_1 i n_2 observacions totes independents.	$H_1: \mu_1 \neq \mu_2$	X		
			$H_1: \mu_1 < \mu_2$	XI		
			$H_1: \mu_1 > \mu_2$	XII		
			$H_1: \mu_1 \neq \mu_2$	XIII		
Dues mitjanes. $H_0: \mu_1 = \mu_2$		n ₁ i n ₂ observacions totes independents.	$H_1: \mu_1 < \mu_2$	XIV		
			$H_1: \mu_1 > \mu_2$	XV		
	σ_1 i σ_2 desconegudes.		$H_1: \mu \neq \mu_2$	XVI		
	$\sigma_1 \neq \sigma_2$. Poblacions	n_1 i n_2 observacions totes independents.	$H_1: \mu_1 < \mu_2$	XVII		
	Normals o n_1 i n_2 grans.	_	$H_1: \mu_1 > \mu_2$	XVIII		
Continua en la pàgina següent						

Tipus	Condicions	Mostra	Hipòtesi alter- nativa	Cas
Diferència de mitjanes dependents. $H_0: \mu_d = 0$, on $\mu_d = \mu_1 - \mu_2$.	Dues poblacions normals dependents		$H_1: \mu_d \neq 0$	XIX
	o n gran. σ_d	n diferències independents.	$H_1: \mu_d < 0$	XX
	coneguda. (veure (a))		$H_1: \mu_d > 0$	XXI
	Dues poblacions normals dependents.	n diferències independents.	$H_1: \mu_d \neq 0$	XXII
			$H_1: \mu_d < 0$	XXIII
	σ_d desconeguda.		$H_1: \mu_d > 0$	XXIV
	Dues poblacions dependents, n gran.	n diferències independents.	$H_1: \mu_d \neq 0$	XXV
			$H_1: \mu_d < 0$	XXVI
	σ_d desconeguda.		$H_1: \mu_d > 0$	XXVII

 $^{^{(}a)}$ σ_d és la variància de la variable $D=X_1-X_2.$

Estadístic de contrast, regions crítiques i intervals de confiança

Cas	Estadístic	Regió crítica	Interval confiança	p-valor			
I	$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\overline{C}}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$	$2p(Z{\ge} z)$			
II	Normal \sqrt{n}	$\{Z \leq z_{\alpha}\}$	$\left(-\infty, \overline{X} - z_{lpha} \frac{\sigma}{\sqrt{n}}\right)$	$p(Z \leq z)$			
III	N(0,1)	$\{Z \ge z_{1-\alpha}\}$	$\left(\overline{X} - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, +\infty\right)$	$p(Z \ge z)$			
IV	$T = \frac{\overline{X} - \mu_0}{\frac{\tilde{S}}{\sqrt{n}}}$	$\{T \leq -t_{n-1,1-\frac{\alpha}{2}}\} \cup \{T \geq t_{n-1,1-\frac{\alpha}{2}}\}$	$\left(\overline{X} - t_{n-1,1-\frac{\alpha}{2}} \frac{\tilde{S}}{\sqrt{n}}, \overline{X} + t_{n-1,1-\frac{\alpha}{2}} \frac{\tilde{S}}{\sqrt{n}}\right)$	$2p(t_{n-1} \ge T)$			
V	t_{n-1}	$\{T \leq t_{n-1,\alpha}\}$	$\left(-\infty, \overline{X} - t_{n-1,\alpha} \frac{\tilde{S}}{\sqrt{n}}\right)$	$p(t_{n-1} \leq T)$			
VI	veure (a)	$\{T \ge t_{n-1,1-\alpha}\}$	$\left(\overline{X} - t_{n-1,1-\alpha} \frac{\tilde{s}}{\sqrt{n}}, +\infty\right)$	$p(t_{n-1} \ge T)$			
VII	$Z pprox rac{\overline{X} - \mu_0}{rac{\tilde{S}}{\sqrt{n}}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left(\overline{X} - z_{1 - \frac{\alpha}{2}} \frac{\bar{\mathcal{S}}}{\sqrt{n}}, \overline{X} + z_{1 - \frac{\alpha}{2}} \frac{\bar{\mathcal{S}}}{\sqrt{n}}\right)$	$2p(Z \ge z)$			
VIII	Normal $\overline{\sqrt{n}}$	$\{Z{\le}z_{\alpha}\}$	$\left(-\infty,\overline{X}-z_{lpha}rac{ ilde{S}}{\sqrt{n}} ight)$	$p(Z \leq z)$			
IX	N(0,1)	$\{Z \ge z_{1-\alpha}\}$	$\left(\overline{X}-z_{1-\alpha}\frac{\tilde{s}}{\sqrt{n}},+\infty\right)$	$p(Z \ge z)$			
X	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\tilde{c}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left(\overline{\overline{X}}_1\!-\!\overline{\overline{X}}_2\!-\!z_{1-\frac{\alpha}{2}}\widetilde{S},\!\overline{\overline{X}}_1\!-\!\overline{\overline{X}}_2\!+\!z_{1-\frac{\alpha}{2}}\widetilde{S}\right)$	$2p(Z{\ge} z)$			
XI	Normal $N(0,1)$	$\{Z \leq z_{\alpha}\}$	$\left(-\infty, \overline{X}_1 - \overline{X}_2 - z_{lpha} ilde{S} ight)$	$p(Z \leq z)$			
XII	veure (b)	$\{Z \ge z_{1-\alpha}\}$	$\left(\overline{X}_1 - \overline{X}_2 - z_{1-\alpha}\tilde{S}, +\infty\right)$	$p(Z \ge z)$			
XIII	$T = \frac{\overline{X}_1 - \overline{X}_2}{\tilde{S}_{1,2}}$	$\{T{\leq}{-}t_{m,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{m,1-\frac{\alpha}{2}}\}$	$(\overline{X}_1 - \overline{X}_2 - t_{m,1 - \frac{\alpha}{2}} \tilde{S}_{1,2}, \overline{X}_1 - \overline{X}_2 + t_{m,1 - \frac{\alpha}{2}} \tilde{S}_{1,2})$	$2p(t_m> T)$			
XIV	$t_{n_1+n_2-2}$	$\{T \leq t_{m,\alpha}\}$	$(-\infty, \overline{X}_1 - \overline{X}_2 - t_{m,\alpha} \tilde{S}_{1,2})$	$p(t_m \leq T)$			
XV	veure (c), (d), (e)	$\{T \ge t_{m,1-\alpha}\}$	$(\overline{X}_1 - \overline{X}_2 - t_{m,1-\alpha} \tilde{S}_{1,2}, +\infty)$	$p(t_m \ge T)$			
XVI	$T = \frac{\overline{X}_1 - \overline{X}_2}{\tilde{S}_{1,2}}$	$\{T{\leq}{-}t_{f,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{f,1-\frac{\alpha}{2}}\}$	$(\overline{X}_1 - \overline{X}_2 - t_{f,1 - \frac{\alpha}{2}} \tilde{S}_{1,2}, \overline{X}_1 - \overline{X}_2 + t_{f,1 - \frac{\alpha}{2}} \tilde{S}_{1,2})$	$2p(t_f > T)$			
XVII	t_f	$\{T \leq t_{f,\alpha}\}$	$(-\infty, \overline{X}_1 - \overline{X}_2 - t_{f,\alpha} \tilde{S}_{1,2})$	$p(t_f \leq T)$			
XVIII	veure (f), (g)	$\{T{\ge}t_{f,1-\alpha}\}$	$(\overline{X}_1 - \overline{X}_2 - t_{f,1-\alpha} \tilde{S}_{1,2}, +\infty)$	$p(t_f \ge T)$			
XIX	$Z = \frac{\overline{D}}{\frac{\sigma_D}{\overline{D}}}$ Normal	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$(\overline{D} - z_{1 - \frac{\alpha}{2}} \frac{\sigma_D}{\sqrt{n}}, \overline{D} + z_{1 - \frac{\alpha}{2}} \frac{\sigma_D}{\sqrt{n}})$	$2p(Z{\ge} z)$			
XX	$N(0,\stackrel{\checkmark}{1})$	$\{Z\!\leq\!\!z_{lpha}\}$	$(-\infty,\overline{D}-z_{lpha}rac{\sigma_{D}}{\sqrt{n}})$	$p(Z \leq z)$			
XXI	veure (h)	$\{Z \ge z_{1-\alpha}\}$	$(\overline{D}-z_{1-\alpha}\frac{\sigma_D}{\sqrt{n}},+\infty)$	$p(Z \ge z)$			
Conti	Continua en la pàgina següent						

(f)
$$\tilde{S} = n_1 + n_2 - 2$$

(f) $\tilde{S} = \sqrt{\tilde{S}_1^2 + \tilde{S}_2^2}$

$$\tilde{S}_{1,2} = \sqrt{\frac{\tilde{S}_1^2}{n_1} + \frac{\tilde{S}_2^2}{n_2}}$$

(a) Distribució
$$t$$
 de Student amb n_1+n_2-2 graus de l'
(b) $m=n_1+n_2-2$
(f) $\tilde{S}_{1,2}=\sqrt{\frac{\tilde{S}_1^2}{n_1}+\frac{\tilde{S}_2^2}{n_2}}$
(g) Distribució t de Student amb f graus de llibertat on
$$f=\begin{bmatrix} \left(\frac{\tilde{S}_1^2}{n_1}+\frac{\tilde{S}_2^2}{n_2}\right)^2\\ \frac{1}{n_1-1}\left(\frac{\tilde{S}_1^2}{n_1}\right)^2+\frac{1}{n_2-1}\left(\frac{\tilde{S}_2^2}{n_2}\right)^2 \end{bmatrix}-2$$
(b) Déclaració la contrata de la contra

 $^{
m (h)}$ D és la variable aleatòria: $D=X_1-X_2$

Cas	Estadístic	Regió Crítica	Interval Confiança	p-valor
XXII	$T = \frac{\overline{D}}{\frac{\tilde{S}_D}{\sqrt{n}}}$	$\{T{\le}{-}t_{n-1,1-\frac{\alpha}{2}}\}{\cup}\{T{\ge}t_{n-1,1-\frac{\alpha}{2}}\}$	$(\overline{D} - t_{n-1,1-\frac{\alpha}{2}} \frac{\tilde{S}_{\underline{D}}}{\sqrt{n}}, \overline{D} + t_{n-1,1-\frac{\alpha}{2}} \frac{\tilde{S}_{\underline{D}}}{\sqrt{n}})$	$2p(t_{n-1}> T)$
XXIII	$t_{n-1}^{\frac{\overline{\sqrt{n}}}{\sqrt{n}}}$	$\{T \leq t_{n-1,\alpha}\}$	$(-\infty, \overline{D} - t_{n-1,\alpha} \frac{\tilde{S}_D}{\sqrt{n}})$	$p(t_{n-1} \leq T)$
XXIV	veure (a), (b)	$\{T \ge t_{n-1,1-\alpha}\}$	$(\overline{D}-t_{n-1,1-\alpha}\frac{\sigma_D}{\sqrt{n}},+\infty)$	$p(t_{n-1} \ge T)$
XXV	$Z pprox rac{\overline{D}}{\tilde{s}_D}$ Normal	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$(\overline{D}-z_{1-\frac{\alpha}{2}}\frac{\tilde{S}_{D}}{\sqrt{n}},\overline{D}+z_{1-\frac{\alpha}{2}}\frac{\tilde{S}_{D}}{\sqrt{n}})$	$2p(Z \ge z)$
XXVI	N(0,1)	$\{Z \leq z_{\alpha}\}$	$(-\infty, \overline{D} - z_{\alpha} \frac{\tilde{S}_{D}}{\sqrt{n}})$	$p(Z \leq z)$
XXVII	(' /	$\{Z \ge z_{1-\alpha}\}$	$(\overline{D}-z_{1-\alpha}\frac{\sigma_D}{\sqrt{n}},+\infty)$	$p(Z \ge z)$

 $^{^{}m (a)}$ D és la variable aleatòria: $D=X_1-X_2$ $^{
m (b)}$ t_{n-1} és la variable t de Student amb n-1 graus de llibertat

3 Contrats d'hipòtesi per al paràmetre σ d'una normal i pel paràmetre p d'una Bernoulli

3.1 Tipus de contrasts i condicions

Tipus	Condicions	Mostra	Hipòtesi alter- nativa	Cas
			$H_1: \sigma^2 \neq \sigma_0^2$	I
Una sola variància $H_0: \sigma^2 = \sigma_0^2$	Població Normal. μ desconeguda.	n observacions independents.	$H_1: \sigma^2 < \sigma_0^2$	II
			$H_1: \sigma^2 > \sigma_0^2$	III
Dues variàncies.		Dues mostres de	$H_1: \sigma_1^2 \neq \sigma_2^2$	IV
Observacions independents.	Poblacions normals.	grandàries n_1 i n_2 totes independents.	$H_1: \sigma_1^2 < \sigma_2^2$	V
$H_0: \sigma_1^2 = \sigma_2^2$		macpendents.	$H_1: \sigma_1^2 > \sigma_2^2$	VI
Dues variàncies.	Poblacions normals.	Dues mostres independents de	$H_1: \sigma_1^2 \neq \sigma_2^2$	VII
Observacions dependents.		grandària n correlacionades entre si.	$H_1: \sigma_1^2 < \sigma_2^2$	VIII
$H_0: \sigma_1^2 = \sigma_2^2$			$H_1: \sigma_1^2 > \sigma_2^2$	IX
	Població Bernoulli.	n observacions independents.	$H_1: p \neq p_0$	X
Una proporció. $H_0: p = p_0$			$H_1: p < p_0$	XI
			$H_1: p > p_0$	XII
Dues proporcions.	Poblacions Bernoulli.	Dues mostres de grandàries n_1 i n_2 totes independents.	$H_1: p_1 \neq p_2$	XIII
Observacions independents. $H_0: p_1 = p_2$			$H_1: p_1 < p_2$	XIV
			$H_1: p_1 > p_2$	XV
Dues proporcions. Observacions dependents. $H_0: p_a = p_d$	Poblacions Bernoulli.	Dues mostres de grandària n correlacionades entre si.	$H_1: p_a \neq p_b$	XVI
			$H_1: p_a < p_b$	XVII
			$H_1: p_a > p_b$	xvIII

Estadístic de contrast, regions crítiques i intervals de confiança

Cas	Estadístic	Regió Crítica	Interval Confiança	p-valor
I veure (a)	$\chi^2 = \frac{(n-1)\tilde{S}^2}{\sigma_0^2}$	$\{\chi^2 \le \chi^2_{n-1,\frac{\alpha}{2}}\} \cup \{\chi^2 \ge \chi^2_{n-1,1-\frac{\alpha}{2}}\}$	$\left(\frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right)$	$2\min\{p(\chi_{n-1}^2 \le \chi^2),$ $p(\chi_{n-1}^2 \ge \chi^2)$
II	veure (b)	$\{\chi^2 \le \chi^2_{n-1,\alpha}\}$	$\left(0, \frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,\alpha}}\right)$	$p(\chi_{n-1}^2 \le \chi^2)$
III		$\{\chi^2 \ge \chi^2_{n-1,1-\alpha}\}$	$ \begin{pmatrix} \frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,1-\alpha}}, +\infty \\ \frac{\tilde{S}^2_1}{\tilde{S}^2_2} F_{n_1-1,n_2-1,\frac{\alpha}{2}}, \end{pmatrix} $	$p(\chi_{n-1}^2 {\ge} \chi^2)$
IV	22	$\{F \le F_{n_1-1,n_2-1,\frac{\alpha}{2}}\} \cup$	$(\frac{\tilde{S}_{1}^{2}}{\tilde{S}_{2}^{2}}F_{n_{1}-1,n_{2}-1,\frac{\alpha}{2}},$	$2\min\{p(F_{n_1-1,n_2-1} \le F),$
1,4	$F = \frac{\tilde{S}_1^2}{\tilde{S}_2^2}$	$\{F \ge F_{n_1 - 1, n_2 - 1, 1 - \frac{\alpha}{2}}\}$	$\frac{\tilde{S}_{1}^{2}}{\tilde{S}_{2}^{2}}F_{n_{1}-1,n_{2}-1,1-\frac{\alpha}{2}})$	$p(F_{n_1-1,n_2-1} \ge F)$
V	veure (c)	$\{F\!\leq\! F_{n_1-1,n_2-1,\alpha}\}$	$\left(0, \frac{\tilde{S}_1^2}{\tilde{S}_2^2} F_{n_1 - 1, n_2 - 1, 1 - \alpha}\right)$	$p(F_{n_1-1,n_2-1} \leq F)$
VI		$\{F \ge F_{n_1-1,n_2-1,1-\alpha}\}$	$\left(\frac{\tilde{s}_1^2}{\tilde{s}_2^2}F_{n_1-1,n_2-1,\alpha},+\infty\right)$	$p(F_{n_1-1,n_2-1} \ge F)$
VII	$T = \frac{\sqrt{n-2}(S_1 - S_2)}{2\sqrt{S_1 S_2 - S_2^2}}$	$\{T \le t_{n-2,\frac{\alpha}{2}}\} \cup \{T \ge t_{n-2,1-\frac{\alpha}{2}}\}$		$2p(t_{n-2} > T)$
VIII	Distribució t_{n-2}	$\{T \le t_{n-2,\alpha}\}$		$p(t_{n-2} \leq T)$
IX	veure (d), (e), (f), (g)	$\{T \ge t_{n-2,1-\alpha}\}$		$p(t_{n-2} \ge T)$
X		$\{n\overline{p} \le \max_{k \in \mathbb{N}} \{p\{B(n,p_0) \le k\} \le \frac{\alpha}{2}\}\} \cup$		
21	$n\overline{p}$	$\{n\overline{p} \ge \min_{k \in \mathbb{N}} \{p\{B(n, p_0) \ge k\} \le \frac{\alpha}{2}\}\}$		
XI	veure (h), (i)	$\{n\overline{p} \leq \max_{k \in \mathbb{N}} \{p\{B(n,p_0) \leq k\} \leq \alpha\}\}$		
XII		$\{n\overline{p} \ge \min_{k \in \mathbb{N}} \{p\{B(n,p_0) \ge k\} \ge \alpha\}\}$		

$$\sum_{i=1}^{n} (X_i - \mu)^2$$

$$S_1 = \sum_{i=1}^n x_{1,i}^2$$
, on $x_{1,i} = X_{1,i} - \overline{X}_1$

Ilibertat (b) Distribució khi quadrat amb
$$n-1$$
 graus de llibertat (c) Distribució F de Fisher-Snedecor amb n_1-1 i n_2-1 graus de llibertat (d) $S_1=\sum\limits_{i=1}^n x_{1,i}^2$, on $x_{1,i}=X_{1,i}-\overline{X}_1$ (e) $S_2=\sum\limits_{i=1}^n x_{2,i}^2$, on $x_{2,i}=X_{2,i}-\overline{X}_2$

(f)
$$S_3 = \sum_{i=1}^n x_{1,i} x_{2,i}$$

⁽a) Si μ fos coneguda, l'estadístic és $\chi^2=\frac{\sum\limits_{i=1}^n(X_i-\mu)^2}{\sigma_0^2}$ i la seva distribució és χ^2_n (distribució khi quadrat amb n graus de

 $^{^{\}mathrm{(g)}}$ Distribució t de Student amb n-2 graus de llibertat

 $[\]overline{p}$ és la proporció mostral $^{\rm (i)}$ $B(n,p_0)$ és la distribució binomial de paràmetres n i p_0

Cas	Estadístic	Regió Crítica	Interval Confiança	p-valor
X	$Z = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$\{Z \leq z_{\frac{\alpha}{2}}\} \cup \{Z \geq z_{1-\frac{\alpha}{2}}\}$	$\begin{array}{c} (\overline{p}+z_{\frac{\alpha}{2}}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}},\\ \overline{p}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}) \end{array}$	$2p(Z{\geq} z)$
XI	Normal $N(0,1)$ veure (a)	$\{Z \leq z_{\alpha}\}$	$\left(-\infty,\overline{p}+z_{1-lpha}\sqrt{rac{\overline{p}(1-\overline{p})}{n}} ight)$	$p(Z \le z)$
XII	(1)	$\{Z \ge z_{1-\alpha}\}$	$\left(\overline{p}+z_{\alpha}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}},+\infty\right)$	$p(Z{\ge}z)$
XIII	$Z = \frac{\overline{p}_1 - \overline{p}_2}{\sqrt{\overline{pq}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\{Z \leq z_{\frac{\alpha}{2}}\} \cup \{Z \geq z_{1-\frac{\alpha}{2}}\}$	$\begin{split} &(\overline{p}_1 - \overline{p_2} + z_{\frac{\alpha}{2}} \sqrt{\overline{pq} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, \\ &\overline{p}_1 - \overline{p_2} - z_{\frac{\alpha}{2}} \sqrt{\overline{pq} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}) \end{split}$	$2p(Z \ge z)$
XIV	Normal $N(0,1)$ veure (b), (c)	$\{Z \leq z_{\alpha}\}$	$\left(-\infty, \overline{p}_1 - \overline{p_2} + z_{1-\alpha} \sqrt{\overline{pq} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}\right)$	$p(Z \leq z)$
XV		$\{Z \ge z_{1-\alpha}\}$	$\left(\overline{p}_1 - \overline{p_2} + z_{\alpha} \sqrt{\overline{pq} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, +\infty\right)$	$p(Z{\ge}z)$
XVI	$Z = \frac{\overline{p}_{1 \bullet} - \overline{p}_{\bullet 1}}{\sqrt{\frac{b+d}{n^2}}}$	$\{Z \le z_{\frac{\alpha}{2}}\} \cup \{Z \ge z_{1-\frac{\alpha}{2}}\}$	$(\overline{p}_{1\bullet} - \overline{p}_{\bullet 1} + z_{\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}},$ $\overline{p}_{1\bullet} - \overline{p}_{\bullet 1} - z_{\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}})$	$2p(Z \ge z)$
XVII	Normal $N(0,1)$ veure (d)	$\{Z \leq z_{\alpha}\}$	$\left(-\infty, \overline{p}_{1 \bullet} - \overline{p}_{\bullet 1} + z_{1-\alpha} \sqrt{\frac{b+d}{n^2}}\right)$	$p(Z \leq z)$
XVIII	veure (u)	$\{Z \ge z_{1-\alpha}\}$	$\left(\overline{p}_{1\bullet} - \overline{p}_{\bullet 1} + z_{\alpha} \sqrt{\frac{b+d}{n^2}}, +\infty\right)$	$p(Z \ge z)$

⁽a) Aquest estadístic és vàlid si $np(1-p)\geq 3$ i \overline{p} és la proporció mostral (b) $\overline{p}=\frac{n_1\overline{p}_1+n_2\overline{p}_2}{n_1+n_2}$ (c) $\overline{q}=1-\overline{p}$

⁽d) L'estadístic de contrast es pot posar com $Z = \frac{\frac{b}{n} - \frac{d}{n}}{\sqrt{\frac{b+d}{n^2}}}$. Per fer el contrast, hem de construir la taula següent:

		Mostra després			
,		Éxit	Fracàs	Freqüència	Proporció
Mostra abans	Èxit	a	b	a+b	$\overline{p}_{1\bullet} = \frac{a+b}{n}$
	Fracàs	d	c	c+d	$\overline{p}_{2\bullet} = \frac{c+d}{n}$
	Freqüència	a+d	b+c	n	
	Proporció	$\overline{p}_{\bullet 1} = \frac{a+d}{n}$	$\overline{p}_{\bullet 2} = \frac{b+c}{n}$		1

Per tant a representa el nombre d'individus en les dues mostres (abans i després) que han obtengut èxit, b el nombre d'individus que han obtengut èxit en la mostra d'abans i fracàs en la mostra de després, c el nombre d'individus que han obtengut fracàs en les dues mostres i d el nombre d'individus que han obtengut èxit en la mostra de després i fracàs en la mostra d'abans. Les proporcions \overline{p}_{1ullet} i $\overline{p}_{ullet 1}$ les donen les fórmules en la taula anterior.