### 18.650 - Fundamentals of Statistics

### 3. Methods for estimation

### Goals

In the kiss example, the estimator was **intuitively** the right thing to do:  $\hat{p} = \bar{X}_n$ .

In view of LLN, since  $p = \mathbb{E}[X]$ , we have  $\bar{X}_n$  so  $\hat{p} \approx p$  for n large enough.

If the parameter is  $\theta \neq \mathbb{E}[X]$ ? How do we perform?

- 1. Maximum likelihood estimation: a generic approach with very good properties
- 2. Method of moments: a (fairly) generic and easy approach
- 3. M-estimators: a flexible approach, close to machine learning

#### Total variation distance

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with a sample of i.i.d. r.v.  $X_1, \ldots, X_n$ . Assume that there exists  $\theta^* \in \Theta$  such that  $X_1 \sim \mathbb{P}_{\theta^*}$ :  $\theta^*$  is the **true** parameter.

**Statistician's goal:** given  $X_1, \ldots, X_n$ , find an estimator  $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$  such that  $\mathbb{P}_{\hat{\theta}}$  is close to  $\mathbb{P}_{\theta^*}$  for the true parameter  $\theta^*$ .

This means:  $| \mathcal{R}(A) - \mathcal{R}(A) |$  is **small** for all  $A \subset E$ .

#### **Definition**

The total variation distance between two probability measures  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is defined by

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \max_{A \subset E} \left| \ \mathcal{P}_{\theta} \left( A \right) - \mathcal{P}_{\theta'} \left( A \right) \ \right|.$$

#### Total variation distance between discrete measures

Assume that E is discrete (i.e., finite or countable). This includes Bernoulli, Binomial, Poisson, . . .

Therefore X has a PMF (probability mass function):  $\mathrm{I\!P}_{\theta}(X=x)=p_{\theta}(x)$  for all  $x\in E$ ,

$$p_{\theta}(x) \ge 0$$
,  $\sum_{x \in E} p_{\theta}(x) = 1$ 

The total variation distance between  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is a simple function of the PMF's  $p_{\theta}$  and  $p_{\theta'}$ :

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \sum_{x \in E} |p_{\theta}(x) - p_{\theta'}(x)|.$$

#### Total variation distance between continuous measures

Assume that E is continuous. This includes Gaussian, Exponential, . . .

Assume that X has a density  $\mathbb{P}_{\theta}(X \in A) = \int_A f_{\theta}(x) dx$  for all  $A \subset E$ .

$$f_{\theta}(x) \geq 0, \qquad \int_{\mathcal{E}} f(x) \, dx = 1.$$

The total variation distance between  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is a simple function of the densities  $f_{\theta}$  and  $f_{\theta'}$ :

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \int \big| f_{\theta}(x) - f_{\theta'}(x) \big| \mathbf{d}_{\mathsf{X}}.$$

## Properties of Total variation

These imply that the total variation is a distance between probability distributions.

#### **Exercises**

Compute:

**b)** TV(Ber(0.5), Ber(0.9)) = 
$$0.4$$

c)TV(Exp(1), Unif[0, 1]) = 
$$\frac{1}{e}$$

d)TV
$$(X, X + a) = 1$$
 
$$|P(X \in \{0, 1\}) - P(X \in \{0, 1\})| = 1$$
 for any  $a \in (0, 1)$ , where  $X \sim \text{Ber}(0.5)$ 

e)TV
$$(2\sqrt{n}(\bar{X}_n-1/2),Z)=1$$
  
where  $X_i \overset{i.i.d}{\sim} \mathrm{Ber}(0.5)$  and  $Z \sim \mathcal{N}(0,1)$ 

# An estimation strategy

Build an estimator  $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$  for all  $\theta \in \Theta$ . Then find  $\widehat{\theta}$  that minimizes the function  $\theta \mapsto \widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$ .



**problem:** Unclear how to build  $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})!$ 

# Kullback-Leibler (KL) divergence

There are **many** distances between probability measures to replace total variation. Let us choose one that is more convenient.

#### **Definition**

The Kullback- $Leibler^1$  (KL) divergence between two probability measures  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is defined by

$$\mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) = \left\{ \begin{array}{ll} \displaystyle \sum_{x \in E} p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\theta'}(x)}\right) & \text{if $E$ is discrete} \\ \\ \displaystyle \int_{E} \mathsf{f}_{\theta}(\mathsf{X}) \mathsf{f}_{\theta'}\left(\mathsf{X}\right) \mathsf{d}\mathsf{X} & \text{if $E$ is continuous} \end{array} \right.$$

<sup>&</sup>lt;sup>1</sup>KL-divergence is also know as "relative entropy"

# Properties of KL-divergence

- $ightharpoonup \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \neq \mathsf{KL}(\mathbb{P}_{\theta'},\mathbb{P}_{\theta})$  in general
- $ightharpoonup \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \geq 0$
- ▶ If  $\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = 0$  then  $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'}$  (definite) ✓
- $ightharpoonup \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \nleq \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta''}) + \mathsf{KL}(\mathbb{P}_{\theta''},\mathbb{P}_{\theta'}) \text{ in general}$

#### Not a distance.

This is is called a divegue

Asymmetry is the key to our ability to estimate it!

# Maximum likelihood

# estimation

# Estimating the KL

$$\mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[ \log \left( \frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right]$$

$$= \mathbb{E}_{\theta^*} \left[ \log p_{\theta^*}(X) \right] - \mathbb{E}_{\theta^*} \left[ \log p_{\theta^*}(X) \right]$$

So the function 
$$\theta \mapsto \mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta})$$
 is of the form: "constant"  $E_{\mathfrak{F}}$   $(X)$ 

Can be estimated: 
$$\mathbb{E}_{\theta^*}[h(X)] \leadsto \frac{1}{n} \sum_{i=1}^n h(X_i)$$
 (by LLN)

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

### Maximum likelihood

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

$$\begin{aligned} \min_{\theta \in \Theta} \widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) & \Leftrightarrow & \min_{\theta \in \Theta} -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \prod_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(X_i) \end{aligned}$$

This is the **maximum likelihood principle**.

# Likelihood, Discrete case (1)

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with a sample of i.i.d. r.v.  $X_1, \ldots, X_n$ . Assume that E is discrete (i.e., finite or countable).

#### **Definition**

The *likelihood* of the model is the map  $L_n$  (or just L) defined as:

$$L_n : E^n \times \Theta \to \mathbb{R}$$

$$(x_1, \dots, x_n, \theta) \mapsto \mathbb{P}_{\theta}[X_1 = x_1, \dots, X_n = x_n].$$

### Likelihood for the Bernoulli model

**Example 1 (Bernoulli trials):** If  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathrm{Ber}(p)$  for some  $p \in (0,1)$ :

- $E = \{0, 1\};$
- $\Theta = (0,1);$
- $\forall (x_1,\ldots,x_n) \in \{0,1\}^n, \forall p \in (0,1),$

$$L(x_1, \dots, x_n, p) = \prod_{i=1}^n \mathbb{P}_p[X_i = x_i]$$

$$= \prod_{i=1}^n \rho^{\alpha_i} \left( \left( -\rho \right)^{1-\alpha_i} \right)$$

$$= p^{\sum_{i=1}^n \alpha_i} \left( 1-p \right)^{n-\sum_{i=1}^n x_i} \left( 1-p \right)^{n-\sum_{i=1}^n x_i}$$

### Likelihood for the Poisson model

#### Example 2 (Poisson model):

If  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poiss}(\lambda)$  for some  $\lambda > 0$ :

- $ightharpoonup E = \mathbb{N};$
- $\Theta = (0, \infty);$
- $\forall (x_1,\ldots,x_n) \in \mathbb{N}^n, \forall \lambda > 0,$

$$L(x_1, \dots, x_n, \lambda) = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! \dots x_n!}.$$

$$P(X_i = x_i) = \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}$$

### Likelihood, Continuous case

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with a sample of i.i.d. r.v.  $X_1, \ldots, X_n$ . Assume that all the  $\mathbb{P}_{\theta}$  have density  $f_{\theta}$ .

#### **Definition**

The *likelihood* of the model is the map L defined as:

$$L : E^n \times \Theta \to \mathbb{R}$$
$$(x_1, \dots, x_n, \theta) \mapsto \prod_{i=1}^n f_{\theta}(x_i).$$

### Likelihood for the Gaussian model

**Example 1 (Gaussian model):** If  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ , for some  $\mu \in \mathbb{R}, \sigma^2 > 0$ :

- $ightharpoonup E = \mathbb{R};$
- $\Theta = \mathbb{R} \times (0, \infty)$
- $\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \ \forall (\mu,\sigma^2) \in \mathbb{R} \times (0,\infty),$

$$L(x_1, \dots, x_n; \mu, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$$

### **Exercises**

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with  $X_1, \ldots, X_n \sim \mathsf{Exp}(\lambda)$ ,

- a) What is E?  $(0, \infty)$
- **b)** What is  $\Theta$ ?  $(\circ, \circ)$
- c) Find the likelihood of the model.  $L(x_1, ..., x_n; \lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n x_i} M(\min_{i \neq i} x_i > 0)$

#### **Exercise**

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with  $X_1, \ldots, X_n \sim \mathsf{Unif}[0, b]$  for some b > 0.

- a) What is E?
  - $(0,\infty)$
- **b)** What is  $\Theta$ ?

c) Find the likelihood of the model.

#### Maximum likelihood estimator

Let  $X_1, \ldots, X_n$  be an i.i.d. sample associated with a statistical model  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  and let L be the corresponding likelihood.

#### **Definition**

The maximum likelihood estimator of  $\theta$  is defined as:

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(X_1, \dots, X_n, \theta),$$

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact that

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \bigcup_{\theta \in \Theta} L(X_1, \dots, X_n, \theta).$$

# Interlude: maximizing/minimizing functions

OPTIMIZATION

Note that

$$\min_{\theta \in \Theta} -h(\theta) \quad \Leftrightarrow \quad \max_{\theta \in \Theta} h(\theta)$$

In this class, we focus on maximization.

Maximization of arbitrary functions can be difficult:



Example:  $\theta \mapsto \prod_{i=1}^n (\theta - X_i)$ 

#### Concave and convex functions

#### **Definition**

A function twice differentiable function  $h: \Theta \subset \mathbb{R} \to \mathbb{R}$  is said to be *concave* if its second derivative satisfies

$$h''(\theta) \le 0$$
,  $\forall \theta \in \Theta$ 

It is said to be *strictly concave* if the inequality is strict:  $h''(\theta) < 0$ 

Moreover, h is said to be (strictly) *convex* if -h is (strictly) concave, i.e.  $h''(\theta) \ge 0$  ( $h''(\theta) > 0$ ).

#### **Examples**:

$$\Theta = \mathbb{R}, \ h(\theta) = -\theta^2, \quad h'(\theta) = -2\theta, \quad h'(\theta) = -2 < 9(5. \text{ Concave})$$

$$\Theta = (0, \infty), h(\theta) = \sqrt{\theta}, k'(\theta) = \frac{1}{2\sqrt{\theta}}, k''(\theta) = -\frac{1}{403/2} < 0 \quad (5.600e)$$

$$\Theta = (0, \infty), h(\theta) = \log \theta, h'(\theta) = \frac{1}{2}, h''(\theta) = \frac{1}{2} < 0 \quad (s. \text{ case})$$

$$\Theta = [0,\pi], \ h(\theta) = \sin(\theta), \ h'(\theta) = \cos(\theta), \ h''(\theta) = . \sin(\theta) \leqslant o \quad (\text{concae})$$

$$\Theta = \mathbb{R}, \ h(\theta) = 2\theta - 3$$
,  $h'(\theta) = 2$ .  $h''(\theta) = 0$ 

### Multivariate concave functions

More generally for a multivariate function:  $h:\Theta\subset\mathbb{R}^d\to\mathbb{R}$ ,  $d \geq 2$ , define the

gradient vector: 
$$abla h(\theta) = \begin{pmatrix} \frac{\partial h}{\partial \theta} & \theta \\ \frac{\partial h}{\partial \theta} & \theta \end{pmatrix} \in \mathbb{R}^d$$

h is concave  $\Leftrightarrow x^{\top} \mathbf{H} h(\theta) x \leq 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta.$ 

h is strictly concave  $\Leftrightarrow x^{\top} \mathbf{H} h(\theta) x < 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta.$ 

#### **Examples**:

$$lackbox{\Theta}=\mathbbmss{R}^2$$
,  $h(\theta)=- heta_1^2-2 heta_2^2$  or  $h(\theta)=-( heta_1- heta_2)^2$ 

$$\Theta = (0, \infty), h(\theta) = \log(\theta_1 + \theta_2),$$

# Optimality conditions

Strictly concave functions are easy to maximize: if they have a maximum, then it is **unique**. It is the unique solution to

$$h'(\theta) = 0,$$

or, in the multivariate case

$$\nabla h(b) = 0 \in \mathbb{R}^d$$
.

There are many algorithms to find it numerically: this is the theory of "convex optimization". In this class, often a **closed form formula** for the maximum.

#### **Exercises**

- a) Which one of the following functions are concave on  $\Theta = \mathbb{R}^2$ ?
  - 1.  $h(\theta) = -(\theta_1 \theta_2)^2 \theta_1 \theta_2$
  - 2.  $h(\theta) = -(\theta_1 \theta_2)^2 + \theta_1 \theta_2$
  - 3.  $h(\theta) = (\theta_1 \theta_2)^2 \theta_1 \theta_2$
  - 4. Both 1. and 2.
  - 5. All of the above
  - 6. None of the above
- **b)**Let  $h:\Theta\subset\mathbb{R}^d\to\mathbb{R}$  be a function whose hessian matrix  $\mathbf{H}h(\theta)$  has a positive diagonal entry for some  $\theta\in\Theta$ . Can h be concave? Why or why not?

# Examples of maximum likelihood estimators

Ber: 
$$L(x_1,...,x_n;p) = \prod_{i=1}^{n} \mathbb{R}_p[X_i = x_i] = p^{\frac{n}{2}} x_i \cdot (l-p)^{n-\frac{n}{2}} x_i$$

$$h(p) := \frac{1}{2} L(x_1,...,x_n;p) = \sum_{i=1}^{n} x_i \cdot lgp + \frac{1}{2} (n-\frac{n}{2}) \cdot lg(l-p)$$

$$h(p) = \frac{1}{p} S_n - \frac{1}{1-p} (n-S_n); h'(p) = \frac{1}{p^2} \cdot \hat{S}_n - \frac{1}{(l-p)^2} \cdot (n-S_n) \leq D$$

$$h \text{ is concave, } h(\hat{p}) = D \iff \hat{p} S_n = \frac{1}{1-p} \cdot (n-S_n) = D$$

$$= \sum_{i=1}^{n} \frac{S_n}{n} = X$$

- ightharpoonup Bernoulli trials:  $\hat{p}_n^{MLE} = \bar{X}_n$ .
- Poisson model:  $\hat{\lambda}_n^{MLE} = \bar{X}_n$ .

- Poi:  $L(x_1,...,x_n;\lambda) = \frac{\lambda_n^{\frac{1}{2}}x_i!}{\prod_{i=1}^{n}x_i!} \cdot e^{-\lambda n}$   $h(\lambda) = (gL(x_1,...,x_n;\lambda) = \sum_{i=1}^{n}x_i! \cdot lg\lambda n\lambda lg(\prod_{i=1}^{n}x_i!)$   $h'(\lambda) = \frac{\sum_{i=1}^{n}x_i!}{\lambda} n \; ; \; h'(\lambda) = -\frac{\sum_{i=1}^{n}x_i!}{\lambda^2} \leq 0.$   $his con cave \; ; \; h'(\lambda) = 0 \; \Rightarrow \; \lambda = \frac{1}{n} \cdot \sum_{i=1}^{n}x_i = X$
- ▶ Gaussian model:  $(\hat{\mu}_n, \hat{\sigma}_n^2) = (\bar{X}_n, \hat{S}_n)$ .

$$S_{n} = \frac{1}{2} \left( X_{i} - \overline{X}_{n} \right)^{2}$$

$$A(M,\sigma^{2}) = \frac{1}{(\sigma_{M},\sigma^{2})} \left[ \frac{1}{(\sigma_{M},\sigma^{2})} - \frac{1}{(\sigma_{M},\sigma^{2})} - \frac{1}{(\sigma_{M},\sigma^{2})} - \frac{1}{(\sigma_{M},\sigma^{2})} \right]$$

$$A(M,\sigma^{2}) = \frac{1}{2} \left[ \frac{1}{2} \left( X_{i},...,X_{n},M,\sigma^{2} \right) - \frac{1}{2} \left( X_{i},-M \right)^{2} - \frac{1}{2} \left( X_{i},-M \right)^{2} \right]$$

$$A(M,\sigma^{2}) = \frac{1}{2} \left[ \frac{1}{2} \left( X_{i},M,\sigma^{2} \right) - \frac{1}{2} \left( X_$$

# Consistency of maximum likelihood estimator

Under mild regularity conditions, we have

$$\hat{\theta}_n^{MLE} \xrightarrow[n \to \infty]{\mathbb{P}} \theta^*$$

This is because for all  $\theta \in \Theta$ 

$$\frac{1}{n}$$
 by  $L(X_1, \dots, X_n, \theta) \xrightarrow[n \to \infty]{\mathbb{P}}$  "constant"  $- KL(\mathcal{P}_{8}, \mathcal{P}_{8})$ 

Moreover, the minimizer of the right-hand side is  $\theta^*$  if the parameter is identified.

Technical conditions allow to transfer this convergence to the minimizers.

### Covariance

$$\hat{\vartheta} = \left( \begin{array}{c} \overline{X_n} \\ \widehat{S_n} \end{array} \right)$$

How about asymptotic normality?

In general, when  $\theta \subset \mathbb{R}^d, d \geq 2$ , its coordinates are not necessarily independent.

The **covariance** between two random variables X and Y is

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \mathbb{E}[X \cdot Y] - \mathbb{E}[X](Y - \mathbb{E}[Y])$$

$$= \mathbb{E}[X \cdot (Y - \mathbb{E}[Y])]$$

$$= \mathbb{E}[(X - \mathbb{E}[X]) Y]$$

### **Properties**

- $ightharpoonup \operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$
- ▶ If X and Y are independent, then Cov(X,Y) = 0

In general, the **converse is not true** except if  $(X,Y)^{\top}$  is a **Gaussian vector**, i.e.,  $\alpha X + \beta Y$  is Gaussian for all  $(\alpha,\beta) \in \mathbb{R}^2 \setminus \{(\mathfrak{d},\mathfrak{d})\}$ 

Take  $X\sim \mathcal{N}(0,1)$ ,  $B\sim \mathsf{Ber}(1/2)$ ,  $R=2B-1\sim \mathsf{Rad}(1/2)$ . Then

$$Y = R \cdot X \sim N(0,1)$$

But taking  $\alpha = \beta = 1$ , we get

Actually Cov(X,Y)=0 but they are not independent: |X|=|Y|



### Covariance matrix

The covariance matrix of a random vector  $X = (X^{(1)}, \dots, X^{(d)})^{\top} \in \mathbb{R}^d$  is given by

$$\Sigma = \mathbf{Cov}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)\left(X - \mathbb{E}(X)\right)^{\top}\right]$$

This is a matrix of size  $\frac{1}{4} \times \frac{1}{4}$ 

The term on the ith row and jth column is

$$\Sigma_{ij} = \mathbb{E}\left[\left(X^{(i)} - \mathbb{E}(X^{(i)})\right)\left(X^{(j)} - \mathbb{E}(X^{(j)})\right)\right] = Cov\left(X^{(i)}, X^{(i)}\right)$$

In particular, on the diagonal, we have

$$\Sigma_{ii} = \text{Cov}(X^{(i)}, X^{(i)}) = \text{Voc}(X^{(i)})$$

Recall that for  $X \in \mathbb{R}$ ,  $Var(aX + b) = \overset{2}{\circ} Var(X)$ . Actually, if  $X \in \mathbb{R}^d$  and A, B are matrices:

$$Cov(AX + B) = Cov(AX) = ACov(X) A^{T} = A\Sigma A^{T}$$

### The multivariate Gaussian distribution

If  $(X,Y)^{\top}$  is a Gaussian vector then its pdf depends on 5 parameters:

$$\mathbb{E}[X], Vor(X), \mathbb{E}[Y], Vor(Y)$$
 and  $Cov(X, Y)$ 

More generally, a Gaussian vector<sup>3</sup>  $X \in \mathbb{R}^d$ , is completely determined by its expected value and  $\mathbb{E}[X] = \mu \in \mathbb{R}^d$  covariance matrix  $\Sigma$ . We write

$$X \sim \mathcal{N}_d(\mu, \Sigma)$$
.

It has pdf over  $\mathbb{R}^d$  given by:

$$f(\mathbf{x}) = f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right)$$

<sup>&</sup>lt;sup>3</sup>As before, this means that  $\alpha^{\top}X$  is Gaussian for any  $\alpha \in \mathbb{R}^d, \alpha \neq 0$ .

#### The multivariate CLT

The CLT may be generalized to averages or random vectors (also vectors of averages).

Let  $X_1, \ldots, X_n \in \mathbb{R}^d$  be independent copies of a random vector Xsuch that  $\operatorname{IE}[X] = \mu$ ,  $\operatorname{Cov}(X) = \Sigma$ ,

such that 
$$\mathbb{E}[X] = \mu$$
,  $\operatorname{Cov}(X) = \Sigma$ , 
$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_{\mathbf{d}}\left(0, \sum_{i=1}^{n}\right)$$
 Equivalently 
$$\sqrt{n} \sum_{i=1}^{n} \left(\bar{X}_i - \mu\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_{\mathbf{d}}(0, I_d)$$

### Multivariate Delta method

Let  $(T_n)_{n\geq 1}$  sequence of random vectors in  ${\rm I\!R}^d$  such that

$$\sqrt{n}(T_n - \theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, \Sigma),$$

for some  $\theta \in \mathbb{R}^d$  and some covariance  $\Sigma \in \mathbb{R}^{d \times d}$ .

Let  $g: \mathbb{R}^d \to \mathbb{R}^k$   $(k \ge 1)$  be continuously differentiable at  $\theta$ . Then, k functions take multiple value(d).

where 
$$\nabla g(\theta) = \frac{\partial g}{\partial \theta}(\theta) = \left(\frac{\partial g_j}{\partial \theta_i}\right)_{\substack{1 \leq i \leq \mathbf{d} \\ 1 \leq j \leq \mathbf{k}}} \in \mathbb{R}^{d \times k}$$
.

rows are gradients of function from g\_1 to g\_k columns are function g\_j take partial derivative with respect from x\_1 to x\_d

#### Fisher Information

#### Definition: Fisher information

Define the log-likelihood for one observation as:

$$\ell(\theta) = \log L_1(X, \theta), \quad \theta \in \Theta \subset \mathbb{R}^d$$

Assume that  $\ell$  is a.s. twice differentiable. Under some regularity conditions, the *Fisher information* of the statistical model is defined as:

$$I(\theta) = \mathbb{E}\left[\nabla \ell(\theta) \nabla \ell(\theta)^{\top}\right] - \mathbb{E}\left[\nabla \ell(\theta)\right] \mathbb{E}\left[\nabla \ell(\theta)\right]^{\top} = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right].$$

If  $\Theta \subset \mathbb{R}$ , we get:

$$I(\theta) = \operatorname{var} \left[\ell'(\theta)\right] = -\operatorname{I\!E} \left[\ell''(\theta)\right]$$

# Fisher information of the Bernoulli experiment

Let  $X \sim \text{Ber}(p)$ .

$$\ell(p) = X \log p + (1-X) \log (1-p)$$

$$\ell'(p) = \frac{X}{P} - \frac{1-X}{1-P} \qquad \text{var}[\ell'(p)] = \frac{1}{P(1-P)}$$

$$\ell''(p) = -\frac{X}{P^2} - \frac{1-X}{(1-P)^2} \qquad -\mathbb{E}[\ell''(p)] = \frac{1}{P(1-P)}$$

# Asymptotic normality of the MLE

#### **Theorem**

Let  $\theta^* \in \Theta$  (the *true* parameter). Assume the following:

- 1. The parameter is identifiable.
- 2. For all  $\theta \in \Theta$ , the support of  $\mathbb{P}_{\theta}$  does not depend on  $\theta$ ;
- 3.  $\theta^*$  is not on the boundary of  $\Theta$ ;
- 4.  $I(\theta)$  is invertible in a neighborhood of  $\theta^*$ ;
- 5. A few more technical conditions.

Then,  $\hat{\theta}_n^{MLE}$  satisfies:

# The method of moments

## **Moments**

Let  $X_1, \ldots, X_n$  be an i.i.d. sample associated with a statistical model  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ .

- Assume that  $E \subseteq \mathbb{R}$  and  $\Theta \subseteq \mathbb{R}^d$ , for some  $d \geq 1$ .
- Population moments: Let  $m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], \ 1 \leq k \leq d.$
- ▶ Empirical moments: Let  $\hat{m}_k = \overline{X_n^k} = \bot \sum_{i=1}^n X_i^k$ ,  $1 \le k \le d$ .
- From LLN,

$$\hat{m}_k \xrightarrow[n \to \infty]{\mathbb{P}/a.s} \mathbf{m}_{\kappa} (\mathfrak{d})$$

More compactly, we say that the whole vector converges:

$$(\hat{m}_1, \dots, \hat{m}_d) \xrightarrow[n \to \infty]{\mathbb{P}/a.s} (\mathbf{m}, \mathbf{O}), \dots, \mathbf{m}_a(\mathbf{O})$$

## Moments estimator

Let

$$M: \Theta \to \mathbb{R}^d$$
  
 $\theta \mapsto M(\theta) = (m_1(\theta), \dots, m_d(\theta)).$ 

Assume M is one to one:

$$\theta = M^{-1}(m_1(\theta), \dots, m_d(\theta)).$$

#### **Definition**

Moments estimator of  $\theta$ :

$$\hat{\theta}_n^{MM} = M^{-1}(\mathbf{m}_1, \dots, \mathbf{m}_L),$$

provided it exists.

# Statistical analysis

- ▶ Recall  $M(\theta) = (m_1(\theta), \dots, m_d(\theta));$
- lacksquare Let  $\hat{M}=(\hat{m}_1,\ldots,\hat{m}_d)$ .
- Let  $\Sigma(\theta) = \operatorname{Cov}_{\theta}(X_1, X_1^2, \dots, X_1^d)$  be the covariance matrix of the random vector  $(X_1, X_1^2, \dots, X_1^d)$ , which we assume to exist.
- ightharpoonup Assume  $M^{-1}$  is continuously differentiable at  $M(\theta)$ .

# Method of moments (5)

**Remark**: The method of moments can be extended to more general moments, even when  $E \not\subset \mathbb{R}$ .

- Let  $g_1, \ldots, g_d : E \to \mathbb{R}$  be given functions, chosen by the practitioner.
- Previously,  $g_k(x) = x^k$ ,  $x \in E = \mathbb{R}$ , for all  $k = 1, \ldots, d$ .
- ▶ Define  $m_k(\theta) = \mathbb{E}_{\theta}[g_k(X)]$ , for all k = 1, ..., d.
- Let  $\Sigma(\theta) = \text{Cov}_{\theta}(g_1(X_1), g_2(X_1), \dots, g_d(X_1))$  be the covariance matrix of the random vector  $(g_1(X_1), g_2(X_1), \dots, g_d(X_1))$ , which we assume to exist.
- Assume M is one to one and  $M^{-1}$  is continuously differentiable at  $M(\theta)$ .

## Generalized method of moments

Applying the multivariate CLT and Delta method yields:

#### **Theorem**

$$\sqrt{n}\left(\hat{\theta}_{n}^{MM}-\theta\right)\xrightarrow[n\to\infty]{(d)}\mathcal{N}\left(0,\Gamma(\theta)\right) \qquad (\text{w.r.t. } \mathbb{P}_{\theta}),$$

where 
$$\Gamma(\theta) = \left[\frac{\partial M^{-1}}{\partial \theta} \left(M(\theta)\right)\right]^{\top} \Sigma(\theta) \left[\frac{\partial M^{-1}}{\partial \theta} \left(M(\theta)\right)\right].$$

## MLE vs. Moment estimator

Comparison of the quadratic risks: In general, the MLE is more accurate.

MLE still gives good results if model is misspecified



Computational issues: Sometimes, the MLE is intractable but MM is easier (polynomial equations)

# **M**-estimation

## M-estimators

#### Idea:

- Let  $X_1, \ldots, X_n$  be i.i.d with some unknown distribution  $\mathbb{P}$  in some sample space E ( $E \subseteq \mathbb{R}^d$  for some  $d \ge 1$ ).
- ▶ No statistical model needs to be assumed (similar to ML).
- ▶ Goal: estimate some parameter  $\mu^*$  associated with  ${\rm I\!P}$ , e.g. its mean, variance, median, other quantiles, the true parameter in some statistical model...
- Find a function  $\rho: E \times \mathcal{M} \to \mathbb{R}$ , where  $\mathcal{M}$  is the set of all possible values for the unknown  $\mu^*$ , such that:

$$\mathcal{Q}(\mu) := \mathbb{E}\left[\rho(X_1, \mu)\right]$$

achieves its minimum at  $\mu = \mu^*$ .

# Examples (1)

- If  $E=\mathcal{M}={\rm I\!R}$  and  $\rho(x,\mu)=(x-\mu)^2$ , for all  $x\in{\rm I\!R},\mu\in{\rm I\!R}$ :  $\mu^*=\text{E[X]}$
- If  $E=\mathcal{M}=\mathbb{R}^d$  and  $\rho(x,\mu)=\|x-\mu\|_2^2$ , for all  $x\in\mathbb{R}^d,\mu\in\mathbb{R}^d$ :  $\mu^*=\{(1,1),(2,1)\}$
- If  $E=\mathcal{M}={\rm I\!R}$  and  $\rho(x,\mu)=|x-\mu|$ , for all  $x\in{\rm I\!R},\mu\in{\rm I\!R}$ :  $\mu^*$  is a major of  ${\rm I\!P}.$

# Examples (2)

If  $E=\mathcal{M}=\mathbb{R}$ ,  $\alpha\in(0,1)$  is fixed and  $\rho(x,\mu)=C_{\alpha}(x-\mu)$ , for all  $x\in\mathbb{R}$ ,  $\mu\in\mathbb{R}$ :  $\mu^*$  is a  $\alpha$ -quantile of  $\mathbb{P}$ .

#### Check function

$$C_{\alpha}(x) = \begin{cases} -(1-\alpha)x & \text{if } x < 0 \\ \alpha x & \text{if } x \ge 0. \end{cases}$$



## MLE is an M-estimator

Assume that  $(E, \{\mathbb{P}_{\theta}\}_{\theta \in \Theta})$  is a statistical model associated with the data.

#### **Theorem**

Let  $\mathcal{M} = \Theta$  and  $\rho(x,\theta) = -\log L_1(x,\theta)$ , provided the likelihood is positive everywhere. Then,

$$\mu^* = \theta^*$$

where  $\mathbb{P} = \mathbb{P}_{\theta^*}$  (i.e.,  $\theta^*$  is the true value of the parameter).

## **Definition**

▶ Define  $\hat{\mu}_n$  as a minimizer of:

$$Q_n(\mu) := \frac{1}{N} \sum_{i=1}^{N} \rho(X_i, \mu).$$

Examples: Empirical mean, empirical median, empirical quantiles, MLE, etc.

# Statistical analysis

- Let  $J(\mu) = +\frac{\partial^2 Q}{\partial \mu \partial \mu^{\top}}(\mu)$  (=  $+\mathbb{E}\left[\frac{\partial^2 \rho}{\partial \mu \partial \mu^{\top}}(X_1, \mu)\right]$  under some regularity conditions).
- Let  $K(\mu) = \operatorname{Cov}\left[\frac{\partial \rho}{\partial \mu}(X_1, \mu)\right]$ .
- **Remark:** In the log-likelihood case (write  $\mu = \theta$ ),

$$J(\theta) = K(\theta) = \mathcal{I}(\theta)$$
 (Fisher infraotion)

# Asymptotic normality

Let  $\mu^* \in \mathcal{M}$  (the *true* parameter). Assume the following:

- 1.  $\mu^*$  is the only minimizer of the function Q;
- 2.  $J(\mu)$  is invertible for all  $\mu \in \mathcal{M}$ ;
- 3. A few more technical conditions.

Then,  $\hat{\mu}_n$  satisfies:

$$\hat{\mu}_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu^*;$$

52/54

## M-estimators in robust statistics

### **Example: Location parameter**

If  $X_1, \ldots, X_n$  are i.i.d. with density  $f(\cdot - m)$ , where:

- ► f is an unknown, positive, even function (e.g., the Cauchy density);
- ightharpoonup m is a real number of interest, a *location parameter*;

How to estimate m?

- M-estimators: empirical mean, empirical median, ...
- Compare their risks or asymptotic variances;
- ► The empirical median is more *robust*.

## Recap

- ► Three principled methods for estimation: maximum likelihood, Method of moments, M-estimators
- ightharpoonup Maximum likelihood is an example of M-estimation
- Method of moments inverts the function that maps parameters to moments
- All methods yield to asymptotic normality under regularity conditions
- Asymptotic covariance matrix can be computed using multivariate  $\Delta$ -method
- ► For MLE, asymptotic covariance matrix is the inverse Fisher information matrix