

Projeto de Antenas

Curso: Engenharia de Telecomunicações **Disciplina:** ANT029006 - Antenas e Propagação

Professor: Saul Silva Caetano

Aluna Luiza Kuze Gomes

Sumário

1	Objetivos	2
2	Introdução	2
3	Cálculos e Montagem da Antena	2
4	Medição com VNA	4
5	Diagrama de Radiação	5
6	Variação da Potência em Função da Frequência	10
7	Conclusão	13

1 Objetivos

- Realizar medições com um Analisador Vetorial de Redes (VNA) a fim de observar a variação da relação de onda estacionária (SWR) com a adição de elementos como refletor e diretores na antena Yagi-Uda.
- Gerar e comparar diagramas de radiação para diferentes configurações da antena, avaliando a diretividade, a formação do feixe principal e o impacto dos elementos adicionais na resposta da antena.
- Examinar a relação entre frequência e potência recebida, verificando possíveis variações na eficiência da antena ao longo do espectro analisado e como a inclusão de novos elementos influencia esse comportamento.

2 Introdução

Inicialmente, foi utilizada uma antena contendo apenas um dipolo, servindo como referência para comparação com configurações mais complexas. Posteriormente, foram adicionados elementos como o refletor e diretores para analisar a variação do SWR, a relação entre potência e frequência, e a potência em função do ângulo da antena. Além disso, investigou-se como a adição desses elementos influencia a diretividade, a formação do feixe principal e a eficiência da antena.

Dentre os estudos realizados, buscou-se compreender o impacto de cada elemento na radiação da antena, avaliando suas contribuições para o desempenho geral do sistema.

Este relatório apresenta os cálculos, a metodologia experimental, a análise dos resultados obtidos e as conclusões baseadas nas observações realizadas ao longo do estudo.

3 Cálculos e Montagem da Antena

Cálculo do Comprimento de Onda Dada a frequência de operação de 1 GHz:

$$\lambda = \frac{c}{f} = \frac{3.0 \times 10^8}{1.0 \times 10^9} = 0,30m \tag{1}$$

Comprimento do Dipolo Meio-Onda O comprimento do dipolo ressonante (L') é dado por:

$$L' = \frac{\lambda}{2} = \frac{0,30}{2} = 0,15m \tag{2}$$

Fórmula de Kraus para o Comprimento da Antena A fórmula de Kraus nos dá o comprimento que a antena deve ter e leva em conta o diâmetro da haste (a):

$$L = 0,48\lambda - 2a \tag{3}$$

Foi medido o diâmetro da haste com um paquímetro:

$$a = 0,003m \tag{4}$$

Substituindo os valores:

$$L = 0,48(0,30) - 2(0,003) \tag{5}$$

$$L = 0,144 - 0,006 = 0,138m = 13,8cm$$
 (6)

Razão entre o Diâmetro da Haste e o Comprimento de Onda A relação $\frac{a}{\lambda}$ é dada por:

$$\frac{a}{\lambda} = \frac{0,003}{0.3} = 0,01 \tag{7}$$

Com base nos valores apresentados na Figura 1, os comprimentos dos elementos da antena Yagi foram obtidos considerando a relação entre o diâmetro da haste e o comprimento de onda, adotando 0,02\(\lambda\). No entanto, é necessário reajustar essa relação para o nosso caso específico, que considera $0,25\lambda$.

Figura 1: Comprimento dos elementos para antena YAGI

	LENGTH OF YAGI IN WAVELENGTHS						
		0.4	0.8	1.20	2.2	3.2	4.2
	TH OF ECTOR, λ	0.482	0.482	0.482	0.482	0.482	0.475
	lst	0.424	0.428	0.428	0.432	0.428	0.424
	2nd	1	0.424	0.420	0.415	0.420	0.424
	3rd		0.428	0.420	0.407	0.407	0.420
	4th			0.428	0.398	0.398	0.407
	5th				0.390	0.394	0.403
٠,	6th				0.390	0.390	0.398
5.0	7th				0.390	0.386	0.394
LENGTH OF DIRECTOR, A	8th				0.390	0.386	0.390
9	9th				0.398	0.386	0.390
NG.	10th				0.407	0.386	0.390
5	llth					0.386	0.390
	12th					0.386	0.390
	13th					0.386	0.390
	14th					0.386	
	15th					0.386	
	ING BETWEEN CTORS, IN λ	0.20	0.20	0.25	0.20	0.20	0.308
TO F	RELATIVE IALF-WAVE ILE IN dB	7.1	9.2	10.2	12.25	13.4	14.2
	GN CURVE FIG. 9)	(A)	(8)	(8)	(c)	(B)	(0)
		ELEM		ETER = 0.	00 MHz		•

Fonte: NBS Technical Note 688 [2]

O ajuste foi realizado em sala de aula com o auxílio da relação entre o diâmetro do elemento e o comprimento de onda, conforme apresentado na Figura 2.

Figura 2: Diâmetro do elemento para razão de comprimento de onda

Fonte: NBS Technical Note 688 [2]

Os resultados obtidos a partir desses ajustes, realizados com base na norma técnica, estão apresentados na Tabela 1, onde são comparados os valores originais e os valores ajustados para cada elemento.

Tabela 1: Valores normais e ajustados dos elementos da antena Yagi

Elemento	Valor Normal (λ)	Valor Ajustado (λ)
Refletor	0.482	0.481
1º Diretor	0.428	0.425
2º Diretor	0.420	0.416
3º Diretor	0.420	0.416
4º Diretor	0.428	0.425

Além disso, para a montagem das antenas, as distâncias entre os elementos foram definidas de forma a otimizar o desempenho. A distância entre o refletor e o dipolo foi estabelecida como 0.2λ , resultando em $6~\rm cm$, enquanto a distância entre o dipolo e o diretor foi definida como 0.25λ , resultando em $7.5~\rm cm$. Essas medidas foram essenciais na montagem para validar os cálculos realizados anteriormente. Além das distâncias, também foram definidos os comprimentos dos elementos da antena, sendo o refletor com $14.3~\rm cm$, o dipolo com $14~\rm cm$, o primeiro diretor com $12.8~\rm cm$, o segundo diretor com $12.6~\rm cm$ e o terceiro diretor com $12.8~\rm cm$. Abaixo, a Figura 3 apresenta parte do processo de montagem da antena utilizando essas medidas.

Figura 3: Procedimento de montagem da antena

Fonte: Própria autora

4 Medição com VNA

Para esta etapa do procedimento de experimentação, utilizamos um Analisador Vetorial de Rede (VNA), similar ao mostrado na Figura 4. O VNA é usado para medições de impedância, SWR (Standing Wave Ratio), resistência e reatância. Ele permite a calibração utilizando três padrões: Open (aberto), Short (curto) e Load (carga), essenciais para garantir medições precisas. Além disso, ele também apresenta a Carta de Smith, mas não utilizamos essa funcionalidade neste experimento.

Figura 4: Analisador Vetorial de Rede

Fonte: NanoVNA V2 [1]

Na Tabela 2, são apresentados os dados de SWR (Standing Wave Ratio) e largura de banda para diferentes configurações de antena. Durante a medição, essa etapa apresentou algumas dificuldades, especialmente na determinação dos valores do SWR na frequência superior, que correspondem aos valores máximos encontrados. O objetivo era encontrar um valor semelhante na frequência inferior para obter a mesma variação em dB para ambos os lados. No entanto, esse valor nunca é exatamente 3, como foi instruído para ser somado a partir do SWR em 1 GHz.

A tabela a seguir apresenta os valores medidos, onde **Fi** representa a frequência inferior, **Fs** a frequência superior e **BW** a largura de banda em MHz.

Tabela 2: Medições de SWR e largura de banda para diferentes configurações de antena.

Tipo de Antena	SWR (1GHz)	SWR - Fi	Fi	SWR - Fs	Fs	BW (MHz)
Dipolo	1.232	3.554	676	3.556	1884	1208
Dipolo + Refletor	1.600	3.289	676	3.289	1646	970
Dipolo + Refletor + 1 Diretor	1.805	3.326	740	3.333	2496	1756
Dipolo + Refletor + 3 Diretores	2.025	3.565	640	3.521	2072	1432
Dipolo + Refletor + 4 Diretores	1.895	3.481	668	3.480	2504	1836

Fonte: Própria autora

5 Diagrama de Radiação

Essa etapa consiste em registrar os resultados obtidos a partir do teste de rotação das diferentes configurações da antena, modificando seu ângulo para medir a potência recebida. Com esses dados, foram gerados os diagramas de radiação para cada configuração, permitindo visualizar e compreender o comportamento da antena em diferentes situações.

Na Tabela 3, são apresentados os resultados registrados, juntamente com o diagrama de radiação para a antena contendo apenas um dipolo, conforme ilustrado na Figura 5.

Tabela 3: Medições de potência em diferentes ângulos para antena com um dipolo

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0°	-49.0	12.589	1.000	0.00
45°	-49.6	10.965	0.871	-0.60
90°	-55.0	3.162	0.251	-6.00
135°	-52.3	5.888	0.468	-3.30
180°	-51.9	6.457	0.513	-2.90
225°	-53.5	4.467	0.355	-4.50
270°	-53.9	4.074	0.324	-4.90
315°	-62.5	0.562	0.045	-13.50
360°	-51.5	7.079	0.562	-2.50

Figura 5: Diagrama de radiação para antena com dipolo

Fonte: Própria autora

Na Tabela 4, são apresentados os resultados registrados, juntamente com o diagrama de radiação para a antena contendo um dipolo e um refletor, conforme ilustrado na Figura 6.

Tabela 4: Medições de potência em diferentes ângulos para a antena com 1 dipolo e 1 refletor

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0°	-52.6	5.495	1.000	0.0
45°	-50.3	9.333	1.698	2.3
90°	-56.4	2.291	0.417	-3.8
135°	-58.4	1.445	0.263	-5.8
180°	-48.4	14.454	2.630	4.2
225°	-47.2	19.055	3.467	5.4
270°	-52.5	5.623	1.023	0.1
315°	-51.5	7.079	1.288	1.1
360°	-50.1	9.772	1.778	2.5

Figura 6: Diagrama de radiação para antena com um refletor e um dipolo

Fonte: Própria autora

Na Tabela 5, são apresentados os resultados registrados, juntamente com o diagrama de radiação para a antena completa (um diretor, um refletor e quatro diretores), conforme ilustrado na Figura 7.

Tabela 5: Medições de potência em diferentes ângulos para a antena completa

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0°	-53.0	5.012	1.000	0.0
45°	-48.9	12.882	2.570	4.1
90°	-51.3	7.413	1.479	1.7
135°	-65.9	0.257	0.051	-12.9
180°	-51.2	7.586	1.514	1.8
225°	-51.3	7.413	1.479	1.7
270°	-54.4	3.631	0.724	-1.4
315°	-54.6	3.467	0.692	-1.6
360°	-52.5	5.623	1.122	0.5

Figura 7: Diagrama de radiação para antena completa

Fonte: Própria autora

Na Tabela 6, são apresentados os resultados registrados, juntamente com o diagrama de radiação para a antena com um refletor, um dipolo e um diretor, conforme ilustrado na Figura 8.

Tabela 6: Medições de potência em diferentes ângulos para a antena com 1 dipolo, 1 refletor e 1 diretor

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0°	-43.1	48.978	1.000	0.0
45°	-49.2	12.023	0.245	-6.1
90°	-58.0	1.585	0.032	-14.9
135°	-57.6	1.738	0.035	-14.5
180°	-50.1	9.772	0.200	-7.0
225°	-55.8	2.630	0.054	-12.7
270°	-58.6	1.380	0.028	-15.5
315°	-51.0	7.943	0.162	-7.9
360°	-43.4	45.709	0.933	-0.3

Figura 8: Diagrama de radiação para antena com 1 dipolo, 1 refletor e 1 diretor

Fonte: Própria autora

Na Tabela 7, são apresentados os resultados registrados, juntamente com o diagrama de radiação para a antena com um refletor, um dipolo e três diretores, conforme ilustrado na Figura 9.

Tabela 7: Medições de potência em diferentes ângulos para a antena com 1 dipolo, 1 refeltor e 3 diretores

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0°	-44.0	39.811	1.000	0.0
45°	-58.8	1.318	0.033	-14.8
90°	-59.0	1.259	0.032	-15.0
135°	-64.0	0.398	0.010	-20.0
180°	-46.6	21.878	0.550	-2.6
225°	-58.2	1.514	0.038	-14.2
270°	-66.0	0.251	0.006	-22.0
315°	-54.5	3.548	0.089	-10.5
360°	-45.5	28.184	0.708	-1.5

Figura 9: Diagrama de radiação para antena com 1 dipolo, 1 refletor e 3 diretores

Fonte: Própria autora

6 Variação da Potência em Função da Frequência

O procedimento seguiu com a variação da frequência, mantendo a antena no mesmo ângulo, para analisar a relação entre a frequência e a potência recebida. Os valores obtidos estão registrados nas Tabelas 8, 9, 10, 11 e 12.

IFSC - Campus São José Página 10

Tabela 8: Medições de potência em diferentes frequências com um dipolo

Frequência (MHz)	Potência (dBm)
900	-47.20
925	-52.20
950	-49.00
975	-48.70
1000	-49.10
1025	-59.50
1050	-52.00
1075	-47.00
1100	-68.00

Tabela 9: Medições de potência em diferentes frequências para a antena completa

Frequência (MHz)	Potência (dBm)
900	-52.0
925	-42.5
950	-53.0
975	-42.4
1000	-56.3
1025	-47.2
1050	-46.0
1075	-45.0
1100	-60.6

Fonte: Própria autora

Tabela 10: Medições de potência em diferentes frequências para antena com 1 dipolo e 1 refletor

Frequência (MHz)	Potência (dBm)
900	-47.3
925	-56.5
950	-54.1
975	-45.0
1000	-49.0
1025	-55.5
1050	-48.5
1075	-45.7
1100	-48.7

Tabela 11: Medições de potência em diferentes frequências com 1 dipolo, 1 refletor e 1 diretor

Frequência (MHz)	Potência (dBm)
900	-49.5
925	-55.3
950	-48.2
975	-48.1
1000	-44.2
1025	-51.1
1050	-39.9
1075	-51.1
1100	-48.4

Fonte: Própria autora

IFSC – CAMPUS SÃO JOSÉ PÁGINA 12

Tabela 12: Medições de potência em diferentes frequências com 1 dipolo, 1 refeltor e 3 diretores

Frequência (MHz)	Potência (dBm)
900	-48.1
925	-53.2
950	-47.3
975	-45.0
1000	-46.5
1025	-48.8
1050	-38.2
1075	-53.7
1100	-54.7

A fim de comparar as diferenças entre os diferentes elementos das antenas, foi elaborado o gráfico da Figura 10, onde todas as implementações da antena foram analisadas em um único gráfico.

Figura 10: Comparação da potência em função da frequência das antenas

Fonte: Própria autora

7 Conclusão

Na teoria, esperava-se que o SWR piorasse à medida que novos elementos fossem adicionados à antena, o que foi confirmado, uma vez que o menor SWR foi obtido com a antena contendo apenas o dipolo (SWR = 1.232). Conforme novos elementos foram adicionados, os valores de SWR se afastaram de 1, como no caso da antena com dipolo, refletor e três diretores, que apresentou um SWR de 2.025. No entanto, esse comportamento não se manteve para a antena com quatro diretores, que não validou completamente essa hipótese. De maneira geral, observou-se um aumento no SWR com a adição de novos elementos.

Os diagramas de radiação não apresentaram um feixe principal estreito e bem definido, com lobos

laterais controlados. Pelo contrário, ao adicionar diretores, o feixe tornou-se levemente mais definido, mas ainda bastante disperso. Esse resultado pode ter sido influenciado pelo ambiente.

É interessante observar que as medições das antenas com um dipolo, um refletor e um diretor, e da antena com um dipolo, um refletor e três diretores, foram realizadas em um dia diferente das demais. Isso levanta a hipótese de que as condições climáticas e a disposição de objetos na quadra, no momento da medição, podem ter sido diferentes, influenciando os resultados obtidos.

Em relação à potência e à frequência obtidas, os valores foram muito próximos entre si. Um ponto interessante é que, no gráfico correspondente, em 900 MHz a potência se manteve quase a mesma para todas as antenas, enquanto em 1100 MHz as diferenças entre as configurações se tornaram mais evidentes.

Referências

- [1] NanoRFE. *NanoVNA V2*. Acesso em: 23 nov. 2024. 2024. URL: https://nanorfe.com/nanovna-v2.html.
- [2] National Bureau of Standards (NBS). *NBS Technical Note 688*. Acesso em: 23 nov. 2024. 1976. URL: https://tf.nist.gov/general/pdf/451.pdf>.