Assignment Number 02

Name: Mihir Unmesh Patil

Roll No: TYCOC213

Batch: C/C-3

Aim

The primary objective of this assignment is to analyze the relationship between input features and output variables using **regression models**. The study involves:

- Linear and Polynomial Regression to analyze the relationship between hours spent driving and risk score.
- Comparison of regression models (Linear Regression, Ridge, Lasso, and ElasticNet) on the Diabetes dataset.
- 3. Performance evaluation of models using Mean Squared Error (MSE) and R² Score.
- 4. **Visualization of model predictions, residuals, and feature importance** for better interpretability.

Objectives

- Implement Linear and Polynomial Regression for predicting risk scores based on driving hours.
- Apply **StandardScaler** for feature normalization in the diabetes dataset.
- Train and compare multiple regression models (Linear, Ridge, Lasso, and ElasticNet).
- Compute **performance metrics (MSE, R² Score)** for evaluating regression models.
- Analyze model residuals and feature importance for interpretation.
- Visualize results using plots for better insights.

Theory

Regression Analysis

Regression is a statistical technique used to model relationships between a dependent variable (y) and one or more independent variables (X). It is widely used in **predictive modeling** to estimate unknown values based on known data.

Linear Regression

Linear Regression finds the best-fitting straight line through data points using the equation:

y=mX+c where:

- y is the predicted value,
- m is the slope (coefficient),
- x is the independent variable,
- c is the intercept.

The model minimizes the **Mean Squared Error (MSE)** to find the optimal m and c.

Polynomial Regression

Polynomial Regression extends Linear Regression by introducing polynomial terms:

$$y = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \dots + a_n X^n$$

where higher-degree terms allow for modeling **non-linear** relationships in data.

Regularized Regression Models

Regularization techniques are used to **prevent overfitting** by adding penalty terms to the loss function. The following methods were implemented:

- 1. Ridge Regression (L2 Regularization)
 - Adds a penalty on large coefficients using L2 norm:

$$J(heta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p heta_j^2$$

- o Helps in reducing overfitting but does not eliminate features entirely.
- 3. Lasso Regression (L1 Regularization)
 - Uses L1 norm for penalty:

$$J(heta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p | heta_j|$$

- 4.
- Shrinks some coefficients to **zero**, performing **feature selection**.
- 5. ElasticNet Regression
 - Combines L1 and L2 penalties:

$$J(heta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda_1 \sum_{j=1}^p | heta_j| + \lambda_2 \sum_{j=1}^p heta_j^2$$

o Offers the benefits of both Ridge and Lasso.

Performance Metrics

The models were evaluated using:

1. Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Measures how close predictions are to actual values. Lower MSE indicates better fit
- 2. R² Score (Coefficient of Determination)

$$R^2=1-rac{\sum_{i=1}^n(y_i-\hat{y}_i)^2}{\sum_{i=1}^n(y_i-ar{y})^2}$$
 (where $ar{y}=rac{1}{n}\sum_{i=1}^ny_i$).

o Indicates how well independent variables explain the variance in the dependent variable. Higher R² is better.

Results

CODE:

Assignment_02_ML.ipynb

Part 1: Driving Hours vs Risk Score Analysis

We applied **Linear Regression** and **Polynomial Regression** (degree=3) to analyze the relationship between **hours spent driving** and **risk score**.

Model	R²
	Score
Linear Regression	0.437
Polynomial Regression	0.808

- Linear Regression resulted in an R² score of 0.437, indicating a moderate correlation.
- Polynomial Regression (degree=3) achieved a much higher R² score of 0.808, suggesting that a nonlinear model fits the data better.
- **Visualization** showed that the polynomial curve captured patterns in the data more effectively than a straight-line fit.

Part 2: Diabetes Dataset - Model Comparison

We compared **Linear Regression**, **Ridge**, **Lasso**, **and ElasticNet** on the **Diabetes dataset** after standardizing the features.

Model	MSE	R² Score
Linear Regression	2900.19	0.453
Ridge Regression	2892.01	0.454
Lasso Regression	2824.56	0.467
ElasticNet	2888.70	0.455

Observations:

- Lasso Regression had the lowest MSE (2824.56) and the highest R² Score (0.467), making it the best-performing model.
- Ridge Regression and ElasticNet performed slightly better than Linear Regression, but not as well as Lasso.
- **Feature importance analysis** showed that Lasso regression effectively eliminated less relevant features, improving model efficiency.

Residual Analysis

Residual plots were created to check for any patterns in prediction errors:

- The **residuals were randomly distributed**, indicating that the models performed reasonably well.
- No significant heteroscedasticity (patterned residuals) was observed, which confirms the validity of the regression assumptions.

Feature Importance Analysis

- Feature importance was plotted for Linear, Ridge, Lasso, and ElasticNet models.
- Lasso Regression eliminated some features, suggesting that certain attributes in the diabetes dataset had low predictive value.

Conclusion

This assignment demonstrated the effectiveness of various **regression techniques** for **predictive modeling**.

Key Takeaways

- 1. Driving Hours vs Risk Score Analysis
 - Polynomial Regression (degree=3) outperformed Linear Regression, proving that a non-linear approach is better suited for modeling driving risk based on hours driven.
- 2. Diabetes Dataset Model Comparison
 - Lasso Regression provided the best performance with lowest MSE and highest R² score, suggesting that some features were unnecessary.
 - Ridge Regression and ElasticNet performed slightly better than Linear Regression, showing that regularization helps improve model performance.
 - Feature selection played a crucial role in improving the predictive power of models.
- 3. Practical Implications
 - Polynomial Regression can be useful for modeling relationships that are not purely linear, such as risk assessments in automotive safety.
 - Lasso Regression is beneficial when working with high-dimensional datasets, such as medical records, where selecting the most relevant features is important.
 - Regularization techniques (Lasso, Ridge, ElasticNet) prevent overfitting, making models more generalizable to unseen data.

References:

https://pmc.ncbi.nlm.nih.gov/articles/PMC2988441/pdf/nihms-248275.pdf