Apellido y Nombre: _ _ _ _ _ L.U:_ _ _ _ _ L.U:_ _ _ _ _

Realizar cada Problema en hojas separadas.

P1. Para el circuito RC de la figura, donde $V_1 = 40$ [V], $V_2 = 20$ [V], $R_1 = 200$ [Ω], $R_2 = 400$ [Ω], $R_3 = 300$ [Ω], $R_4 = 800$ [Ω] y C = 10 [μF],

a) En el instante que comienza a funcionar el circuito (t=0) y el capacitor se encuentra descargado, hallar la corriente por cada uno de los elementos.

- b) La potencia entregada por las fuentes y la potencia discipada en R_2 .
- c) Una vez que el capacitor se ha cargado completamente $(t \to \infty)$ determinar el voltaje y la carga en el capacitor.

P2. Se tiene una espira con forma de triángulo equilátero de lado l = 10 [cm], la cual lleva una corriente de intensidad I = 1 [A] en el sentido antihorario.

- a) Calcule el campo magnético $\mathbf{B}(P)$ generado por la sección del alambre AB. Indique dirección y sentido.
- b) Haciendo uso de la simetría del problema, calcule el campo magnético ${\bf B}(P)$ generado por toda la espira. Indique dirección y sentido.

Ahora, considere la espira con corriente I=1 [A] inmersa en un campo magnético uniforme $\vec{\bf B}=3$ \hat{k} [T] exterior:

(sin tener en cuenta el campo generado por la espira):

- c) Calcule la fuerza magnética en el tramo AB.
- d) ¿Cuál será la fuerza neta a lo largo de toda la espira?
- e) Dibuja la fuerza magnética para cada uno de los lados de la espira, podría decir si hay torque τ .

Hint (no lo utilice si no lo necesita!!):

$$\int \frac{dx}{((a-x)^2+b^2)^{3/2}} = \frac{x-a}{b^2\sqrt{a^2+b^2-2ax+x^2}}$$

P3. Una espira de cobre rectangular de lado a=10 [cm] y b=30 [cm] posee resistencia R=5 [Ω] se encuentra a una distancia h=5 [cm] por encima de un alambre infinito que lleva una corriente $I(t)=3+t^2$ [A] hacia la derecha como se muestra en la figura.

a) Calcule es el campo magnético $\vec{\mathbf{B}}(t)$ generado por la corriente I(t) del alambre infinito en la región donde se encuentra la espira. Indicando dirección y sentido.

- b) Calcule el flujo magnético ϕ a través de la espira como función del tiempo t.
- c) Calcule la fem inducida sobre la espira como función del tiempo t.
- d) Calcule la corriente inducida I_e sobre la espira como función del tiempo t indicando el sentido de la misma (horario antihorario).
- e) ¿Cambia en algo si la espira se encontraría por debajo del alambre? De ser afirmativo indique que sucederá, en caso contrario no es necesario.