SPEECH SPEECH

GROUP MEMBER: Harish Ram, Zeqiu Zhang, Jiachen Sands, Sisi Zhang

TABLE OF CONTENTS

PROJECT MOTIVATION

Background, Goals

SPEECH RECOGNITION TASKS

Emotion, Race, Age, Gender, Accent, Disease

DATA SOURCE & PREPROCESSING

Source, Issues, Solutions

MODEL TRAINING AND PREDICTING

CNN & GUI

PROJECT MOTIVATION

- Understand how speech data can be utilized to understand emotion, race, age, sex, accent and Parkinson's Disease
- Our goal is to develop a highly-accurate, pre-trained Speech Engine
- Designed a GUI to show the classification results based on user input

ANDIO ENGINEER PORTA

Speech Recognition Tasks

DATA

4 Data Sources:

- Emotions, Race, Age, Sex: 7443 .wav files (CREMA-D)
- Accent: 971 .mp3 files for Top 5 labels (Kaggle)
- Parkinson's Disease: 73 .wav files (MDVR-KCL)
- Pseudo-Labeling For Parkinson's Disease: LJSpeech (~13,100 short clips)

Issues:

- Imbalanced Datasets (Age, Accent, Race)
- Large Audio Files (Accent, Parkinson's Disease)

DATA DISTRIBUTION

UDIO ENGIA

DATA SOLUTIONS

- Split Large Audio Files & Remove Silence
 - o Generated 5566 More .wav Files For Accent
 - Generated 657 More .wav Files for Parkinson's Disease
- Combine Prediction Results:
 - Accent: Mode
 - o Parkinson's Disease: Average
- Data Augmentation Methods
 - Adding White Noise
 - Time Shift
 - Pitch Scale, etc
- Autoencoder
 - Condensing and restructuring Mel
 Spectrogram images for feature extraction
- Pseudo-Labeling
 - Adding unlabeled data to increase sample Encircles size of training set

Frequency

MEL SPECTROGRAM

SPECTROGRAM

MEL SPECTROGRAM

N_ftt: 1024 Hop_length: 512 n_mels:128

Time

- It uses the Mel Scale instead of Frequency on the y-axis
- It uses the Decibel Scale instead of Amplitude to indicate colors

CNN

Convolutional

- Kernel and Stride
- Matrix Multiplication on Image
- Feature Extraction

Pooling

- Max Pooling
- Reduce Computation
 Power

Fully Connected

- Linear transformation
- Flatten and returns single vector with class probabilities

Activation

- Computationally Efficient
- Applying gradient calculation
- ReLU

BENCHMARK

Benchmark - CNN3					
Category	#Label	Accuracy	F1		
Accent*	5	58.97%	58.97%		
Age*	5	52.79%	51.79%		
Disease	2	74.47%	69.07%		
Emotion	6	46.88%	46.43%		
Race*	3	72.62%	72.16%		
Sex	2	92.21%	92.21%		
Note: * indicates class imbalance					

PRETRAINED MODELS

There were several convolutional pre-trained models that we used for calculate benchmark scores:

- Resnet18
- Resnet34
- VGG16
- EfficientNet_b2

INEER POP

BEST CNN MODEL

Best CNN Model by Category					
Category	#Label	Model	Accuracy	F1	
Accent*	5	ResNet34	61.10%	60.51%	
Age*	5	ResNet18 82.87% 82		82.73%	
Disease	2	CNN9	93.19%	91.21%	
Emotion	6	CNN9	54.67%	54.43%	
Race*	3	ResNet34	89.95%	89.75%	
Sex	2	ResNet18	97.85%	97.85%	
Note: * indicates class imbalance					

Note: * indicates class imbalance

AUGMENTATION

- 1st Graph: Add white noise with factor 0.5
- 2nd Graph: Time shift with factor
 15

Implemented the following augmentation methods randomly with random factors:

- Add white noise
- Time shift
- Time stretch

AUGMENTATION RESULT

Model F1 Score Before and After Augmentation						
Category	Model	odel Pre-Augmentation Augmentation Method F1 Score F				
Accent	ResNet34	60.51%	Time Shift, White Noise	59.71%		
Age	ResNet18	82.73%	Time Stretch, White Noise	80.92%		
Race	ResNet34	89.75%	Time Shift	90.23%		

- Combined augmented data with original data (doubled sample size)
- Applied combined data on the best Pre-trained models

4 Z Z MIONO

AUTOENCODER

Encoder

- Image is compressed
- Representation of Image is generated

Decoder

Reconstruct Image with same size as input

Purpose

- Pre-training for CNN/Pre-trained models
- Use weights and biases as starting point

AUTOENCODER GRAPH

Using Autoencoder for Pre-training					
Category	CNN3 (with AE) F1				
Accent*	5	58.97%	57.43%		
Age*	5	51.79%	54.78%		
Disease	2	69.07%	72.25%		
Emotion	6	46.43%	47.50%		
Race*	3	72.16%	75.82%		
Sex	2	92.21%	94.36%		
Ninte with the district of the control of the contr					

Note: * indicates class imbalance

PSEUDO-LABELING

Loss = Labeled Loss + Alpha * Unlabeled Loss

$$\alpha(t) = \begin{cases} 0 & t < T_1 \\ \frac{t - T_1}{T_2 - T_1} \alpha_f & T_1 \le t < T_2 \\ \alpha_f & t \ge T_2 \end{cases}$$

PSEUDO-LABELING RESULTS

Using Pseudo-Labeling on Best CNN Model					
Category	#Label	Model	Before F1	After F1	
Accent*	5	ResNet34	60.51%	58.37%	
Age*	5	ResNet18	82.73%	88.82%	
Disease	2	CNN9	91.21%	75.13%	
Emotion	6	CNN9	54.43%	54.21%	
Race*	3	ResNet34	89.75%	89.28%	
Sex 2		ResNet18	97.85%	98.05%	
Note: * indicates class imbalance					

FINAL SCORES

Speech Classification F1 Scores							
Categories	#Label	CNN3 - Benchmark	CNN3 (with AE)	Best CNN*	Best CNN* (with Aug.)	Best CNN* (with PL)	Wav2Vec2-base
Accent*	5	58.97%	57.43%	60.51%	59.71%	58.37%	63.07%
Age*	5	51.79%	54.78%	82.73%	80.92%	88.82%	85.30%
Disease	2	69.07%	72.25%	91.21%		75.13%	94.67%
Emotion	6	46.43%	47.50%	54.43%		54.21%	76.05%
Race*	3	72.16%	75.82%	89.75%	90.23%	89.28%	94.63%
Sex	2	92.21%	94.36%	97.85%		98.05%	99.40%
Alata tindia da a da a imbalana a Bad ONNIT industra ONNIO Bankato and Bankato							

Note: * indicates class imbalance; Best CNN* including CNN9, ResNet18 and ResNet34.

GU

GRADIO LIBRARY

- Fully connect all models of all categories into GUI
- User is able to choose CNN models or Wav2Vec2 Model

- [2] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. *Insights into imaging*, 9(4), 611-629.
- [3] Dertat, A. (2017, October 8). Applied deep learning part 3: Autoencoders. Medium. Retrieved March 21, 2022, from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
- [4] Shenoy, A. (2019, December 3). Pseudo-labeling to deal with small datasets-what, why & how? Medium. Retrieved April 1, 2022, from https://towardsdatascience.com/pseudo-labeling-to-deal-with-small-datasets-what-why-how-fd6f903213f
- [5] Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in Neural Information Processing Systems, 33, 12449-12460.
- [6] Wei, S., Zou, S., & Liao, F. (2020). A comparison on data augmentation methods based on deep learning for audio classification. In *Journal of Physics: Conference Series* (Vol. 1453, No. 1, p. 012085). IOP Publishing.
- [7] Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011), 1-19.
- [8] Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on challenges in representation learning, ICML (Vol. 3, No. 2, p. 896).
- [9] Li, Z., Ko, B., & Choi, H. J. (2019). Naive semi-supervised deep learning using pseudo-label. *Peer-to-peer networking and applications*, 12(5), 1358-1368.
- [10] Wikimedia Foundation. (2022, April 28). Convolutional Neural Network. Wikipedia. Retrieved April 29, 2022, from https://en.wikipedia.org/wiki/Convolutional neural network

- REFERENCE

 [1] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a convolutional neural network. In 2017 international conference on engineering and technology (ICET) (pp. 1-6). Ieee.
 - [12] Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine, 29(6), 141-142.
 - [13] Velardo, V. (2022, January 1). Musikalkemist/audiodataaugmentationtutorial: Repository hosting code and slides of the audio data augmentation series on the sound of ai yt channel. GitHub. Retrieved February 2, 2022, from https://github.com/musikalkemist/audioDataAugmentationTutorial
 - [14] pytorch.org. (n.d.). Conv2d. Conv2d PyTorch 1.11.0 documentation. Retrieved March 22, 2022, from
 - https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
 - [15] pytorch.org. (n.d.). ConvTranspose2d. ConvTranspose2d PyTorch 1.11.0 documentation. Retrieved March 22, 2022, from https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
 - [16] Admin. (2021, November 16). Python remove silence in WAV using Librosa Librosa tutorial. Tutorial Example. Retrieved February 14, 2022, from https://www.tutorialexample.com/python-remove-silence-in-wav-using-librosa-librosa-tutorial/
 - [17] Eracube. (2020, February 7). Split audio on timestamps librosa. Stack Overflow. Retrieved February 14, 2022, from https://stackoverflow.com/questions/60105626/split-audio-on-timestamps-librosa
 - [18] Rachael Tatman (2018). Speech Accent Archive. Data Retrieved from https://www.kaggle.com/datasets/rtatman/speech-accent-archive?select=recordings
 - [19] Cao H, Cooper DG, Keutmann MK, Gur RC, Nenkova A, Verma R. CREMA-D: Crowd-sourced Emotional Multimodal Actors Dataset. IEEE transactions on affective computing. 2014;5(4):377-390. doi:10.1109/TAFFC.2014.2336244.
 - [20] Hagen Jaeger, Dhaval Trivedi, & Michael Stadtschnitzer. (2019). Mobile Device Voice Recordings at King's College London (MDVR-KCL) from both early and advanced Parkinson's disease patients and healthy controls [Data set]. Data retrieved from https://doi.org/10.5281/zenodo.2867216
 - [21] Ito, K., & Johnson, L. (2017). The LJ speech dataset. The LJ Speech Dataset. Retrieved April 2022, from https://keithito.com/LJ-Speech-Dataset/
 - [22] Kodžoman, V. (2019, May 19). Pseudo-labeling a simple semi-supervised learning method. Retrieved April 29, 2022, from https://datawhatnow.com/pseudo-labeling-semi-supervised-learning/

THANK YOU