& Uniform continuity.

Recall: $f: (Y, d_X) \rightarrow (Y, d_Y)$ is unif. conti. on $E \subset X$ if $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ at. $\forall v, y \in E$, $\Rightarrow d(f(x), f(y)) < \varepsilon$.

Then $f: (X, d_Y) \rightarrow (Y, d_Y)$ conti. $E \subset X$ opt. $\Rightarrow f$ is unif. condi. on E.

pf: $\forall \xi > 0$, $\forall x \in E$, $\exists \delta_x > 0$ at. $d(x', x) < \delta_x \Rightarrow d(f(x'), f(x)) < \frac{\xi}{2}$.

Consider open cover (x) { B (x) } xeE of E.

 $E cpt. \Rightarrow E \subset \left(B_{\frac{1}{2}\delta_{x_1}}(x_1) \cup \cdots \cup B_{\frac{1}{2}\delta_{x_n}}(x_n)\right) \xrightarrow{\text{for some}} K_1, \dots, K_n \in E.$

Define S:= min { \fr \langle x, , = \fr \fr \rangle x, \rangle \fr \rangle \rangle \rangle \rangle \rangle.

Claim: Yzrze E with d(z.z) < 8 > d(fa), fap) < E.

pf DZIEBÍSX: (Xi) for some io: (1≤i≥n).

Then $d(z_2, x_i) \leq d(z_2, z_i) + d(z_1, x_i) \leq \delta + \frac{1}{2} \delta_{x_i} \leq \delta_{x_i}$

- ⇒ Both ≥1, ≥2 € B_{δxi} (xi).
- > f(≥1), f(≥2) ∈ B (f(xi)).
- $\Rightarrow d(f(\epsilon_1), f(\epsilon_2)) \leq d(f(\epsilon_1), f(\epsilon_2)) + d(f(\epsilon_1), f(\epsilon_2)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Def $f: (Y, dx) \rightarrow (Y, dy)$ is Lipschitz conti. on $E \subset X$ if $\exists k > 0$ at. $dy (f(x), f(y)) \leq K \cdot dx (X, y)$ $\forall x, y \in E$.

Prop: $f: X \longrightarrow Y$ is Lip. contion $E \Longrightarrow unif.$ conti. on E.

Pf Take $\delta = \frac{\varepsilon}{k}$.

e.g. $f: I \longrightarrow \mathbb{R}$ lip conti. : $|f(x) - f(y)| \le k|x-y|$.

Rmk Well show that if f is differentiable of them bounded derivatives,

then f is Lip. conti. (mean value thm.)

The f has bounded derivatives.

However, I f is différentiable w/ unbounded derivatives, but f is unif. conti. (HW).

(1)

Convergence of seq. of fins.

Weakest version pointwise convergence.

Def: X: a set. (fn): seq. of funs. $f_n: X \longrightarrow \mathbb{R}$.

We say $(f_n) \longrightarrow f$ converges pointwisely to $f: X \longrightarrow \mathbb{R}$ if $\forall x \in X$, we have $\lim_{x \to \infty} f_n(x_0) = f(x_0)$.

eg
$$f_n: [0,1] \longrightarrow \mathbb{R}^n$$

$$\times \longmapsto \times^n.$$

- For $x \in [0,1)$. $\lim_{x \to \infty} f_n(x) = \lim_{x \to \infty} x^n = 0$.
- For x=1, $\lim_{n\to\infty} f_n(1) = \lim_{n\to\infty} 1^n = 1$.

5.
$$(f_n) \longrightarrow f$$
 pointwise, where $f(x) = \begin{cases} 0 & x \in [0,1). \\ 1 & x = 1. \end{cases}$

Bad News: pointwise limit of seq. of conti. Fors may not be conti.

More bad news:

eight $f_n(x) = f_n \sin(n^2x) = R \longrightarrow R$. Pointwise limit: $f(x) \equiv 0$. $f_n(x) = n\cos(n^2x) = R \longrightarrow R$.

For most $x \in R$, $(f_n(x))$ is unbounded,

So (f_n) doesn't conv. pointwise.

ON THE

e.f.
$$f_n(x) = \frac{2n^2x}{(1+n^2x^2)^2}$$
 on $[0,1]$, Pointaix limit. $f = 0$.

$$\int_0^1 f_n(x) dx = \int_0^1 \frac{2n^2x}{(1+n^2x^2)^2} dx = \int_1^1 \frac{du}{u^2} = 1 - \frac{1}{(1+n^2)^2}$$
So $\lim_{x \to \infty} \int_0^1 f_n(x) dx = 1$, $\lim_{x \to \infty} \int_0^1 f(x) dx = 0$.

Need a stronger notion of convergence.

(fn) → f pointwise ⇔ YE>O, YXOEX, ∃ N=N(E, XO)>O at. Ifn(XO)-f(XO) < E YN>N.

Def. X: a set. (fn) seq. of fens. $fn: X \longrightarrow \mathbb{R}$.

We say (fn) ASA converges uniformly to $f: X \longrightarrow \mathbb{R}$ if $\forall E>0$, $\exists N>0$ at. $|f_n(x_0)-f_{(x_0)}| < E$ $\forall E>0$, $\forall E>0$.

8 unif. => pointwise.

No bad news for unificonvi

Then 1) (X_{id}) -metric space. $f_n: X \longrightarrow \mathbb{R}$ conti. $(f_n) \longrightarrow f$ unif. conv. Then f is also anti.

- Thm 2) $f_n: [a,b] \longrightarrow \mathbb{R}$ differentiable., f_n' conti. If $(f_n) \longrightarrow f$ unif, and $(f_n') \longrightarrow g$ unif. Then f is differentiable and f'=g.
 - 3) $f_n: Earb \longrightarrow \mathbb{R}$ integrable., $(f_n) \longrightarrow f$ unif. Then f is integrable and $\lim_{a \to \infty} \int_a^b f_n(x) dx = \int_a^b f_{n,n}(x) dx$.

$$f_n: [0] \longrightarrow \mathbb{R} \qquad f_n: [0] \longrightarrow \mathbb{R} \qquad f_n \longrightarrow f = \begin{cases} 0 & \text{$X \in [0]$} \end{cases}$$

$$\times \longrightarrow \times^n \qquad \text{uniformly??}$$

| No | Let $E = \frac{1}{2}$, $\forall N > 0$, | Want to find $X \in [0,1]$ at. $|f_n(x) - f(x)| \ge \frac{1}{2}$.

Actually, Ynzo, we can find x ∈ [011] At. Ifn w)-fin = 1/2.

eig
$$f_n(x) = \frac{1}{n} \sin(nx)$$
. $= \mathbb{R} - \mathbb{R}$. $(f_n) \rightarrow f = 0$ (fif.)
 $\forall \xi > 0$, take $N = \frac{1}{n} \sum_{k=0}^{n} f_k$. Then

Vn>N. we have |fn(x)-f(x)|= | Insin(nx)|≤ In eo < ε. Vx∈R'

Alternative interpretation of unif. conv.

X: a set.

Define a metric space B(X) as follows:

- . (B(X) = { bounded fens f: X → R}.
- · d (fifz) := sup | fix fix).

Lemna (fn) seq. of bounded fors. fn: $X \to \mathbb{R}$ converge unif. to f. \Leftrightarrow (fn) conv. to f in B(X).

PE 1 The unif. limit f of bounded fins is also bounded (HW).

So f & B(X).

(fn)→fin B(x) ⇔ YE>O, JN>O at dBon (fn, f)< € Yn>N ⇔ YE>O, JN>O at Ifn(x)-fon | < € Yn>N, YxeX.

of of Thull) (\frac{\xi}{3} - trick).

Wis: Yx. ∈ X, YE70, ∃8>0 pt. dx(x,x0) < 8 > |fa)-f(x0)| < E.

Trick $|f(x)-f(x)| \leq |f(x)-f_n(x)|+|f_n(x)-f_n(x)|+|f_n(x)-f(x)|$

Control by (fu) - f unif.

- P. JN> at. |fn(x)-f(x) | < \frac{1}{2} \ \text{tn>N, } \ \text{Y}.
 - · Pick any n>N. Stace for conti. ∃ 870 at. Ifo(x)-fo(x) < ₹ ¥ d(x,x) < ₹.