Interference Temperature

Swrangsar Basumatary swrangsar@iitb.ac.in

Indian Institute of Technology Bombay

April, 2013

Introduction

Introduction

 The concept of interference temperature was introduced by the FCC as a new metric for quantifying and managing interference.

Introduction

- The concept of interference temperature was introduced by the FCC as a new metric for quantifying and managing interference.
- Using this model, Cognitive Radios operating in licensed frequency bands would be able to measure their current interference environment and adjust their transmission characteristics so as not to raise the interference temperature over a regulatory limit.

Purpose of the metric

Purpose of the metric

 The purpose of this metric is to remove the subjective context that has been the basis of interference analysis up to now.

Purpose of the metric

- The purpose of this metric is to remove the subjective context that has been the basis of interference analysis up to now.
- Currently, they do a detailed analysis of the surroundings and rely on worst case analysis.
- But relying on worst case analysis leaves much of the spectrum unused.

Driving forces for interference metric

Driving forces for interference metric

Changing landscape

Technological advances have led to increased diversity of spectrum-based consumer applications. This has resulted in an increased demand for spectral resources. Static interference management does not work anymore.

Driving forces for interference metric

Changing landscape

Technological advances have led to increased diversity of spectrum-based consumer applications. This has resulted in an increased demand for spectral resources. Static interference management does not work anymore.

• Increased density and mobility

People are owning more cellular devices. Density of mobile devices has increased and interference management has become more complicated.

Definition of Interference Temperature

Interference temperature, T_I is defined as

$$T_I(f_c, B) = \frac{P_I(f_c, B)}{kB}$$

where

- $P_I(f_c, B)$ is the average interference power centered at frequency, f_c , and covering bandwidth B.
- k is the Boltzmann's constant $k=1.38\times 10^{-23}J/K$

Definition of Interference Temperature

Interference temperature, T_I is defined as

$$T_I(f_c, B) = \frac{P_I(f_c, B)}{kB}$$

where

- $P_I(f_c, B)$ is the average interference power centered at frequency, f_c , and covering bandwidth B.
- $\bullet~k$ is the Boltzmann's constant $k=1.38\times 10^{-23}J/K$

In SI system, the unit of interference temperature turns out to be degrees Kelvin.

Interference Temperature Models

There is ambiguity regarding whether to represent T_I in terms of the transmitter parameters or the receiver parameters. This results into two models ¹:

¹T. Charles Clancy, Formalizing the Interference Temperature Model. Wiley Journal On Wireless Communications And Mobile Computing, 2006.

Interference Temperature Models

There is ambiguity regarding whether to represent T_I in terms of the transmitter parameters or the receiver parameters. This results into two models ¹:

- Ideal model
- @ Generalized model

¹T. Charles Clancy, Formalizing the Interference Temperature Model. Wiley Journal On Wireless Communications And Mobile Computing, 2006.

References