Lecture 13

Michael Brodskiy

Professor: M. Onabajo

October 31, 2024

- General Amplifier Analysis Procedure
 - DC bias circuit analysis/design
 - * Consider only DC sources (remove AC sources)
 - * Ensure operation in the active region
 - * Take desired Q-point parameters into account $(g_m, r_\pi, \text{ etc.})$
 - AC Analysis
 - * Draw the AC equivalent circuit with the appropriate BJT model
 - * Consider only AC sources (remove DC sources)
 - * Midband (medium-frequency AC analysis):
 - · Capacitor \rightarrow short-circuit, inductor \rightarrow open-circuit
 - * Frequency-dependent analysis
 - · Capacitor and inductor go to their frequency-dependent impedances
 - Removal of Sources
 - * Voltage source \rightarrow replace with a short-circuit
 - * Current source \rightarrow replace with an open-circuit
- The Early Effect (BJT Output Resistance)
 - As V_C increases, the depletion width of the B-C junction widens
- The Darlington Pair Configuration
 - Two transistors, cascaded with the second's base connected to the first's emitter
 - $-\beta_{eff} = \beta_1 + \beta_2 + \beta_1 \beta_2 \approx \beta_1 \beta_2$
 - $-V_{BEeff} = V_{BE1} +_{BE2} \approx 2V_{BE1}$
 - For active mode: $V_{CE} > V_{BE2} + V_{CE1(min)}$

• Current Sources

- Ideal
 - * An ideal source will tolerate any voltage (V_z) across its terminals
 - * Infinite output resistance
- Practical
 - * A minimum compliance voltage must be maintained to guarantee a certain output current: $V_z > V_{comp}$
 - * Finite output resistance

• Current Mirror concept

- Often, a "golden current source" is replicated at multiple locations on the chip or printed circuit board (PCB)
- Integrated circuit applications
 - * I_{REF} can be on the chip or outside of the chip
 - * Accurate reference (I_{REF}) generation is costly (expensive components or requirement for a lot of chip area)
 - * The use of current mirrors is more efficient than generating multiple reference currents

• BJT as a Current Source

- Requirements for a reliable collector current:
 - * A fixed V_{BE} must be generated
 - * The BJT should operate in the active region $(V_z > V_{CEmin})$
- A Diode-Connected BJT
 - * Connect a reference current source to the collector, then short the collector to base
 - * This ensures $V_C = V_B$, and forces the BJT to remain in the active region. The emitter generates Q_{ref} ("diode-connected")
 - * The reference voltage generation:

$$I_C = I_S \left[e^{V_{BE}/V_T} - 1 \right] \approx I_s e^{V_{BE}/V_T}$$

$$V_1 = V_{BE} \approx V_T \ln \left(\frac{I_C}{I_S} \right)$$

• A Simple Current Mirror

- The diode-connected Q_{ref} produces a reference voltage at the base of the diode-connect BJT

- Connect another BJT's base to the base of the diode-connected BJT
- $-V_{em}=0[V]$ and $V_{ba}=V_x$ are identical for both BJTs
 - * Forces I_{mirror} (the current into the collector of the second BJT) to be equal to the reference current I_{ref} (ignoring base currents) if $Q_1 = Q_{ref}$
 - * With different BJT characteristics:

$$I_{mirror} \approx \frac{A_1}{A_{ref}} I_{ref} = \frac{I_{S1}}{I_{Sref}} I_{ref}$$

- Resistor-Transistor Logic (RTL)
 - Gives good insights into the concept of using analog transistors for digital signal processing
 - Logic states: high ("1") or low ("0")
 - RTL logic levels: V_{CC} or $\approx .2 .3[V]$
 - Not popular anymore