OPTIMIZATION OF TURBINE RIM SEALS

J.H. Wagner, D.E. Tew, G.M. Stetson, and J.S. Sabnis Pratt & Whitney West Palm Beach, Florida

ABSTRACT

Experiments are being conducted to gain an understanding of the physics of rim soal oavity ingestion in a turbing stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircrait gas turbine engines of the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolunt to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single stage turbines in order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unstendy data to be obtained in these experiments will be used to

- 1) Quantify the impact of the rim enviry cooling air on the injection process,
 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path,
 3) Quantify the impact of the cooling air on turbine efficiency.
 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.

AGENDA

- Motivation
- Objective Approach
- Description of ExperimentsDescription of Model
 - Initial Results
- Summary

MOTIVATION PROPERTY P

Reduce SFC by reducing rim seal purge air required to cool cavity

Reduced SFC leads to

» Decreased DOC&I

» Decreased emissions

Reduce rim seal cooling air requirements by optimizing rim seal geometries

APPROACH

- Develop understanding of rim seal ingestion process via experiments and analytical models
 - Identify major drivers
- Identify key design levers
 - Ideliniy key desigii kevela

Develop optimized design

Evaluate new design

DESCRIPTION OF EXPERIMENTS

Facility

Diagnostic Techniques

CROSS-SECTION OF RIM SEAL INGESTION RIG

HALF-SPAN TURBINE MODEL

DIAGNOSTIC TECHNIQUES

Technique	Utility
Time-Average Pressure	Evaluate CV models of cavity flow
CO ₂ Concentration	Estimate cavity ingestion(temperatures) (Sc,Pr # analogies)
Unsteady Pressure	Quantify unsteadiness of cavity flow

PRESSURE TAP LOCATIONS

Rotating Wall (Friction) Control Volume Approach Radial press. dist.Radial and tang. velocity dist. മ • Re, R₁ / R₀, h / R₀, m_{cootant} $\dot{m}_{coolant}$ Stationary Wall (Frictionless) Calculate Given **DESCRIPTION OF MODEL**

IMPACT OF COOLANT ON CAVITY C, DISTRIBUTION

OBJECTIVE

Assess impact of coolant on cavity time-average C_p distributions

APPROACH

- Vary coolant to free stream mass flow ratio
- Hold flow coefficient and wheel speed constant

CAVEATS

- Flow coefficient not constant(+/- 5% variation)
- Full uncertainty analysis not yet performed

IMPACT OF COOLANT ON CAVITY PRESSURE DIST. (MODEL)

SUMMARY

Experiments and modeling efforts directed toward reduction of rim seal purge air by optimizing rim seal geometry

- Approach
- 1) Understand physics of ingestion process via experiments
- 2) Develop control volume models(design tools)
 - 3) Design optmized rim seal
- 4) Evaluate optimized design in experiments
- Experiments underway
- Initial modeling results encouraging