```
In [1]: #https://thinkingneuron.com/german-credit-risk-classification-case-study-in-python/

In [2]: import pandas as pd import numpy as np 
path='C:/Users/HANNAH_SOPHIE/Desktop/MISCELANEOUS/MISCELANEOUS/ml_quantitative_Python/ml_quantitative/CreditRiskData.csv'

CRDF=pd.read_csv(path, encoding='latin') 
print('Shape before deleting duplicate values:', CRDF.shape)

# Removing duplicate rows if any 
CRDF=CRDF.drop_duplicates() 
print('Shape After deleting duplicate values:', CRDF.shape)

CRDF.head(10)

Shape before deleting duplicate values: (1000, 21) 
Shape After deleting duplicate values: (1000, 21)

GoodCredit checkingstatus duration history purpose amount savings employ installment status ... residence property age other 
0 0 A11 6 A34 A43 1169 A65 A75 4 A93 ... 4 A121 67
```

Out[2]:		GoodCredit	checkingstatus	duration	history	purpose	amount	savings	employ	installment	status	•••	residence	property	age	other
	0	0	A11	6	A34	A43	1169	A65	A75	4	A93		4	A121	67	
	1	1	A12	48	A32	A43	5951	A61	A73	2	A92		2	A121	22	
	2	0	A14	12	A34	A46	2096	A61	A74	2	A93		3	A121	49	
	3	0	A11	42	A32	A42	7882	A61	A74	2	A93		4	A122	45	
	4	1	A11	24	A33	A40	4870	A61	A73	3	A93		4	A124	53	
	5	0	A14	36	A32	A46	9055	A65	A73	2	A93		4	A124	35	
	6	0	A14	24	A32	A42	2835	A63	A75	3	A93		4	A122	53	
	7	0	A12	36	A32	A41	6948	A61	A73	2	A93		2	A123	35	
	8	0	A14	12	A32	A43	3059	A64	A74	2	A91		4	A121	61	
	9	1	A12	30	A34	A40	5234	A61	A71	4	A94		2	A123	28	

10 rows × 21 columns

```
In [3]: %matplotlib inline
    GroupedData=CRDF.groupby('GoodCredit').size()
    GroupedData.plot(kind='bar', figsize=(4,3));
    GroupedData
```

Out[3]: GoodCredit 0 700 1 300 dtype: int64

In [4]: CRDF.describe(include='all')

Out[4]:		GoodCredit	checkingstatus	duration	history	purpose	amount	savings	employ	installment	status	•••	residence	prop
	count	1000.000000	1000	1000.000000	1000	1000	1000.000000	1000	1000	1000.000000	1000		1000.000000	
	unique	NaN	4	NaN	5	10	NaN	5	5	NaN	4		NaN	
	top	NaN	A14	NaN	A32	A43	NaN	A61	A73	NaN	A93		NaN	1
	freq	NaN	394	NaN	530	280	NaN	603	339	NaN	548		NaN	
	mean	0.300000	NaN	20.903000	NaN	NaN	3271.258000	NaN	NaN	2.973000	NaN		2.845000	
	std	0.458487	NaN	12.058814	NaN	NaN	2822.736876	NaN	NaN	1.118715	NaN		1.103718	
	min	0.000000	NaN	4.000000	NaN	NaN	250.000000	NaN	NaN	1.000000	NaN		1.000000	
	25%	0.000000	NaN	12.000000	NaN	NaN	1365.500000	NaN	NaN	2.000000	NaN		2.000000	
	50%	0.000000	NaN	18.000000	NaN	NaN	2319.500000	NaN	NaN	3.000000	NaN		3.000000	
	75%	1.000000	NaN	24.000000	NaN	NaN	3972.250000	NaN	NaN	4.000000	NaN		4.000000	

		GoodCredi	t checkingst	atus dura	tion history	purpose	amount	savings e	mploy inst	tallment	status	•••	residence	pro
	max	1.00000	0	NaN 72.000	0000 NaN	NaN	18424.000000	NaN	NaN 4	4.000000	NaN		4.000000	
	11 rows	× 21 colum	ns											
	4													
[5]:	_	NA in targe snull(CRDF		t"])										
	CRDF ["GoodCredit	"].isnull().sum()										
[5]:	0													
[]:				ort ProfileR ="CRDF Profi		t")								
[]:														
[6]:	from	sklearn.mod	del_selecti	on import *										
[7]:	CRDF_	train, CRD	test = tr	ain_test_spl	it(CRDF, to	est_size=0	.2)							
[8]:	CRDF_	train.desc	ribe()											
t[8]:		GoodCredit	duration	amount	installment	residence	age	cards	liable	•				
	count	800.000000	800.000000	800.000000	800.00000	800.000000	800.000000	800.000000	800.000000					
	mean	0.298750	20.975000	3332.690000	2.95250	2.845000	35.513750	1.410000	1.158750)				
	std	0.457996	12.143567	2868.318289	1.13108	1.102268	11.410305	0.578635	0.365671					
	min	0.000000	4.000000	250.000000	1.00000	1.000000	19.000000	1.000000	1.000000	1				
	25%	0.000000	12.000000	1385.000000	2.00000	2.000000	27.000000	1.000000	1.000000)				

	GoodCredit	duration	amount	installment	residence	age	cards	liable
50%	0.000000	18.000000	2347.000000	3.00000	3.000000	33.000000	1.000000	1.000000
75%	1.000000	24.000000	3976.750000	4.00000	4.000000	41.250000	2.000000	1.000000
max	1.000000	60.000000	18424.000000	4.00000	4.000000	75.000000	4.000000	2.000000

Out[9]: GoodCredit 0 561 1 239 dtype: int64

In [10]: CRDF_test.describe()

Out[10]: GoodCredit amount installment residence liable duration cards age 200.000000 200.000000 200.000000 200.000000 200.000000 200.000000 200.000000 200.000000 count 0.305000 20.615000 3025.530000 3.055000 2.845000 35.675000 1.395000 mean 1.140000 11.739072 1.066613 1.112277 11.262486 0.575003 0.461563 2624.974247 0.347858 std min 0.000000 4.000000 338.000000 1.000000 1.000000 20.000000 1.000000 1.000000 25% 0.000000 12.000000 1246.000000 2.000000 2.000000 26.750000 1.000000 1.000000

	GoodCredit	duration	amount	installment	residence	age	cards	liable
50%	0.000000	18.000000	2066.000000	3.000000	3.000000	33.000000	1.000000	1.000000
75%	1.000000	24.000000	3773.250000	4.000000	4.000000	43.250000	2.000000	1.000000
max	1.000000	72.000000	14318.000000	4.000000	4.000000	68.000000	4.000000	2.000000

```
In [11]:
```

```
%matplotlib inline
GroupedData=CRDF_test.groupby('GoodCredit').size()
GroupedData.plot(kind='bar', figsize=(4,3));
GroupedData
```

Out[11]: GoodCredit

0 139 1 61 dtype: int64

In [12]:

import seaborn as sn
sn.pairplot(CRDF_train);


```
from pycaret.classification import *
In [15]:
In [16]:
          pycaret.classification.models
Out[16]: <function pycaret.classification.models(type: Union[str, NoneType] = None, internal: bool = False, raise_errors: bool = T
         rue) -> pandas.core.frame.DataFrame>
In [20]:
          from imblearn.under_sampling import RandomUnderSampler
          RUS = RandomUnderSampler()
In [21]:
          clf=setup(CRDF_train, target = 'GoodCredit',
                    fold strategy='kfold',fold=10,
                    fix_imbalance=True, fix_imbalance_method = RUS,
                    session id=123)
```

	Description	Value
0	session_id	123
1	Target	GoodCredit
2	Target Type	Binary
3	Label Encoded	0: 0, 1: 1
4	Original Data	(800, 21)
5	Missing Values	False
6	Numeric Features	3
7	Categorical Features	17
8	Ordinal Features	False
9	High Cardinality Features	False
10	High Cardinality Method	None
11	Transformed Train Set	(559, 68)
12	Transformed Test Set	(241, 68)
13	Shuffle Train-Test	True

	Description	Value
14	Stratify Train-Test	False
15	Fold Generator	KFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	5938
22	Imputation Type	simple
23	Iterative Imputation Iteration	None
24	Numeric Imputer	mean
25	Iterative Imputation Numeric Model	None
26	Categorical Imputer	constant
27	Iterative Imputation Categorical Model	None
28	Unknown Categoricals Handling	least_frequent
29	Normalize	False
30	Normalize Method	None
31	Transformation	False
32	Transformation Method	None
33	PCA	False
34	PCA Method	None
35	PCA Components	None
36	Ignore Low Variance	False
37	Combine Rare Levels	False
38	Rare Level Threshold	None

	Description	Value
39	Numeric Binning	False
40	Remove Outliers	False
41	Outliers Threshold	None
42	Remove Multicollinearity	False
43	Multicollinearity Threshold	None
44	Clustering	False
45	Clustering Iteration	None
46	Polynomial Features	False
47	Polynomial Degree	None
48	Trignometry Features	False
49	Polynomial Threshold	None
50	Group Features	False
51	Feature Selection	False
52	Feature Selection Method	classic
53	Features Selection Threshold	None
54	Feature Interaction	False
55	Feature Ratio	False
56	Interaction Threshold	None
57	Fix Imbalance	True
58	Fix Imbalance Method	RandomUnderSampler

In [22]:

clf_fits=compare_models(include = ['lr','dt','svm','rf','xgboost'], sort='AUC')

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
rf	Random Forest Classifier	0.7103	0.7803	0.7446	0.5310	0.6113	0.3905	0.4125	0.0930
lr	Logistic Regression	0.7084	0.7671	0.7213	0.5236	0.6011	0.3787	0.3956	0.0270

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
xgboost	Extreme Gradient Boosting	0.6870	0.7592	0.7227	0.5057	0.5862	0.3489	0.3695	0.1320
dt	Decision Tree Classifier	0.6440	0.6483	0.6524	0.4565	0.5278	0.2611	0.2775	0.0100
svm	SVM - Linear Kernel	0.4095	0.0000	0.6967	0.2470	0.3507	0.0107	0.0206	0.0080

In [23]:

rf_CRDF=create_model('rf')

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.6429	0.7398	0.7778	0.4667	0.5833	0.3035	0.3341
1	0.7143	0.8166	0.6923	0.4286	0.5294	0.3402	0.3604
2	0.6071	0.7389	0.7143	0.3571	0.4762	0.2143	0.2474
3	0.7143	0.8977	0.9167	0.4231	0.5789	0.4043	0.4737
4	0.6250	0.7259	0.7222	0.4483	0.5532	0.2594	0.2815
5	0.7143	0.8146	0.8500	0.5667	0.6800	0.4400	0.4697
6	0.5536	0.6170	0.4545	0.4348	0.4444	0.0716	0.0717
7	0.7321	0.8717	0.6250	0.7143	0.6667	0.4444	0.4472
8	0.7321	0.8009	0.7647	0.5417	0.6341	0.4324	0.4484
9	0.7636	0.8692	0.8824	0.5769	0.6977	0.5172	0.5488
Mean	0.6799	0.7892	0.7400	0.4958	0.5844	0.3427	0.3683
SD	0.0645	0.0807	0.1279	0.0986	0.0816	0.1267	0.1334

```
In [24]:
```

rf_CRDF

```
In [25]:
```

tuned rf CRDF = tune model(rf CRDF)

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.6607	0.7602	0.7222	0.4815	0.5778	0.3127	0.3307
1	0.6786	0.7835	0.7692	0.4000	0.5263	0.3180	0.3570
2	0.6607	0.7772	0.7857	0.4074	0.5366	0.3091	0.3508
3	0.6607	0.8807	0.9167	0.3793	0.5366	0.3350	0.4168
4	0.6786	0.6681	0.7778	0.5000	0.6087	0.3571	0.3824
5	0.7321	0.7861	0.8000	0.5926	0.6809	0.4588	0.4741
6	0.5893	0.6417	0.4091	0.4737	0.4390	0.1178	0.1186
7	0.7679	0.8529	0.7083	0.7391	0.7234	0.5236	0.5239
8	0.7321	0.8175	0.7059	0.5455	0.6154	0.4150	0.4232
9	0.7636	0.8390	0.8235	0.5833	0.6829	0.5031	0.5222
Mean	0.6924	0.7807	0.7418	0.5102	0.5928	0.3650	0.3900
SD	0.0529	0.0724	0.1257	0.1039	0.0826	0.1121	0.1114

```
In [26]:
```

tuned_rf_CRDF

Out[26]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight='balanced_subsample', criterion='entropy', max_depth=4, max_features='log2', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0002, min_impurity_split=None, min_samples_leaf=5, min_samples_split=9, min_weight_fraction_leaf=0.0, n_estimators=130, n_jobs=-1, oob_score=False,

random state=123, verbose=0, warm start=False)

In [45]:

plot model(tuned rf CRDF)


```
In [32]: plot_model(tuned_rf_CRDF, plot='feature')
```


In [46]: plot_model(tuned_rf_CRDF,plot='confusion_matrix')


```
In [47]: plot_model(tuned_rf_CRDF, plot = 'boundary')
```



```
In [48]: eval_rf_CRDF = evaluate_model(tuned_rf_CRDF)
```

```
In [42]: interpret_model(tuned_rf_CRDF)
```


In [50]: interpret_model(tuned_rf_CRDF,plot = 'reason')

(js)

Out[50]:

sample order by similarity

interpret_model(tuned_rf_CRDF,plot = 'reason', observation=150) #chose an arbitrary observation for local contribution and

Out[71]:

In [72]: predict_model(tuned_rf_CRDF)

Model Accuracy AUC Recall Prec. F1 Kappa MCC

0 Random Forest Classifier 0.6846 0.8030 0.7188 0.4423 0.5476 0.3260 0.3487

Out[72]:		duration	amount	age	checkingstatus_A11	checkingstatus_A12	checkingstatus_A13	checkingstatus_A14	history_A30	history_A31	histor
	0	15.0	1300.0	45.0	0.0	0.0	0.0	1.0	0.0	0.0	
	1	18.0	1961.0	23.0	0.0	0.0	1.0	0.0	0.0	0.0	
	2	48.0	6143.0	58.0	1.0	0.0	0.0	0.0	0.0	0.0	
	3	21.0	2767.0	61.0	0.0	1.0	0.0	0.0	0.0	0.0	
	4	6.0	518.0	29.0	0.0	0.0	0.0	1.0	0.0	0.0	
	•••										
	236	15.0	2728.0	35.0	0.0	1.0	0.0	0.0	0.0	0.0	
	237	9.0	1313.0	20.0	0.0	0.0	0.0	1.0	0.0	0.0	
	238	14.0	8978.0	45.0	1.0	0.0	0.0	0.0	0.0	0.0	
	239	24.0	6403.0	33.0	0.0	1.0	0.0	0.0	0.0	0.0	
	240	24.0	3757.0	62.0	0.0	0.0	0.0	1.0	0.0	0.0	

241 rows × 71 columns

In []: #final_et_bos = finalize_model(tuned_et_bos)

```
#print(final_et_bos)
 In [ ]:
In [73]:
           rf CRED train pred=predict model(tuned rf CRDF,data=CRDF train)
           rf CRED test pred=predict model(tuned rf CRDF,data=CRDF test)
In [74]:
           rf CRED train pred.head()
Out[74]:
               GoodCredit checkingstatus duration history purpose amount savings employ installment status ... age otherplans housing car
          506
                        0
                                     A13
                                               15
                                                      A34
                                                                       2360
                                                                                        A73
                                                                                                      2
                                                                                                           A93
                                                                                                                    36
                                                                                                                             A143
                                                                                                                                      A152
                                                               A41
                                                                                A63
                                                                                                               ...
          420
                        0
                                     A14
                                               15
                                                      A32
                                                               A40
                                                                       3186
                                                                                A64
                                                                                        A74
                                                                                                      2
                                                                                                          A92 ...
                                                                                                                    20
                                                                                                                             A143
                                                                                                                                      A151
          542
                        1
                                     A11
                                               30
                                                      A32
                                                               A42
                                                                       6350
                                                                                A65
                                                                                        A75
                                                                                                          A93 ...
                                                                                                                    31
                                                                                                                             A143
                                                                                                                                      A152
          412
                        1
                                     A14
                                               12
                                                      A34
                                                               A49
                                                                       2292
                                                                                A61
                                                                                        A71
                                                                                                      4
                                                                                                          A93
                                                                                                                    42
                                                                                                                             A142
                                                                                                                                      A152
                        0
                                                                                                           A93 ...
          520
                                     A14
                                               24
                                                      A34
                                                               A45
                                                                       5507
                                                                                A61
                                                                                        A75
                                                                                                      3
                                                                                                                    44
                                                                                                                             A143
                                                                                                                                      A153
          5 rows × 23 columns
In [77]:
           rf CRED test pred.head()
Out[77]:
                GoodCredit checkingstatus duration history purpose amount savings employ installment status ... age otherplans housing car
          129
                        1
                                     A11
                                               12
                                                      A34
                                                               A40
                                                                       3499
                                                                                A61
                                                                                        A73
                                                                                                      3
                                                                                                          A92 ...
                                                                                                                    29
                                                                                                                             A143
                                                                                                                                      A152
           81
                        0
                                     A14
                                                      A32
                                                                       1213
                                                                                        A75
                                                                                                          A93 ...
                                                                                                                                      A152
                                               15
                                                               A43
                                                                                A63
                                                                                                      4
                                                                                                                    47
                                                                                                                             A142
          836
                        0
                                     A14
                                               12
                                                      A32
                                                                        886
                                                                                        A73
                                                                                                          A92 ...
                                                                                                                    21
                                                                                                                                      A152
                                                               A43
                                                                                A65
                                                                                                                             A143
                                                                                                          A92 ...
          375
                        1
                                     A11
                                               48
                                                      A31
                                                               A49
                                                                       7685
                                                                                A61
                                                                                        A74
                                                                                                      2
                                                                                                                    37
                                                                                                                             A143
                                                                                                                                      A151
                        0
                                                                                                          A93 ...
          377
                                     A14
                                                7
                                                      A33
                                                               A43
                                                                        846
                                                                                A65
                                                                                        A75
                                                                                                      3
                                                                                                                    36
                                                                                                                             A143
                                                                                                                                      A153
          5 rows × 23 columns
In [78]:
           from sklearn import metrics
```

```
In [89]: [metrics.accuracy_score(rf_CRED_train_pred['GoodCredit'], rf_CRED_train_pred['Label']),
    metrics.precision_score(rf_CRED_train_pred['GoodCredit'], rf_CRED_train_pred['Label']),
    metrics.recall_score(rf_CRED_train_pred['GoodCredit'], rf_CRED_train_pred['Label']),
    metrics.f1_score(rf_CRED_train_pred['GoodCredit'], rf_CRED_train_pred['Label'])]

Out[89]: [0.72625, 0.527777777777778, 0.7949790794979079, 0.6343906510851419]

In [90]: [metrics.accuracy_score(rf_CRED_test_pred['GoodCredit'], rf_CRED_test_pred['Label']),
    metrics.precision_score(rf_CRED_test_pred['GoodCredit'], rf_CRED_test_pred['Label']),
    metrics.recall_score(rf_CRED_test_pred['GoodCredit'], rf_CRED_test_pred['Label']))

Out[90]: [0.725, 0.5348837209302325, 0.7540983606557377, 0.6258503401360543]

In []:
```