Example 3. A rectangular box is to be made from 100 m² of cardboard. Find the maximum volume of such a box.

$$\nabla f(x,y,z) = \langle yz, xz, xy \rangle$$

LM equations:
$$y = \lambda(y+z)$$
 1
 $xz = \lambda(x+z)$ 2
 $xy = \lambda(x+y)$ 3

$$\chi$$
 times (1) => $\chi yz = \lambda(\chi y + \chi z)$ (5)
 χ times (2) => $\chi yz = \lambda(\chi y + \chi z)$ (6)
 z times (3) => $\chi yz = \lambda(\chi z + \chi z)$ (7)

max
$$xy \neq xy \neq xy + 2xy + 2yy = 100 (x,y,z>0)$$

$$g(x,y,z)$$

$$Pg(x_1y_1z) = \langle y+z, x+z, x+y \rangle$$

Note: If
$$\lambda=0$$
, then $(0,0)(3)=yz=xz=xy=0$
 $\Rightarrow xy+xz+yz=0$, which contradicts (4)
 $\Rightarrow \lambda$ must be $\neq 0$.

$$\Rightarrow xy = xz \Rightarrow xy = z$$

So ho to LM eys:
$$(\int_{\frac{50}{3}}^{\frac{50}{3}}, \int_{\frac{50}{3}}^{\frac{50}{3}})$$
 $f(\int_{\frac{50}{3}}^{\frac{50}{3}}, \int_{\frac{50}{3}}^{\frac{50}{3}}) = (\int_{\frac{50}{3}}^{\frac{50}{3}})^3$ Abs. min. or max? let's try $(1, 1, 25)$, which satisfies $xy + xz + yz = 50$. $f(1, 1, 25) = 25 < (\int_{\frac{50}{3}}^{\frac{50}{3}})^3$

=)
$$f(\int_{\frac{10}{3}}^{\frac{10}{3}}, \int_{\frac{10}{3}}^{\frac{10}{3}})$$
 is an absolute maximum, since there is another solution
(1,1,25) that satisfies the constraint $xy + xz + yz = 50$ "/ lower f value.