Chapter 2 Vector Space

Examples of Vector Spaces

 \mathbb{R}^{3}

set of real vectors with three components

$$\vec{\mathbf{a}} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} \quad \vec{\mathbf{b}} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \quad \vec{\mathbf{a}} + \vec{\mathbf{b}} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 + \mathbf{b}_1 \\ \mathbf{a}_2 + \mathbf{b}_2 \\ \mathbf{a}_3 + \mathbf{b}_3 \end{bmatrix}$$

- 1) given $\vec{a} \in V$ and scalar c, then $c\vec{a} \in V$
- \Rightarrow 2) given $\vec{a} \in V$ and $\vec{b} \in V$, then $\vec{a} + \vec{b} \in V \checkmark$

Definition of Vector Space

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every u, v, and w in V and every scalar (real number) c and d, then V is called a vector space.

Addition:

 u + v is in V. 	- 44						東方	e e	
1. U Y D H Y .		111	_	76.7	11.63	1.10	W		
	4	344		- 1	113	-1111	F 1		

2.
$$u + v = v + u$$

3.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

- V has a zero vector 0 such that for every u in V, u + 0 = u.
- For every u in V, there is a vector in V denoted by -u such that u + (-u) = 0.

Closure under addition

Associative property

Additive inverse

Scalar Multiplication:

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

10.
$$1(\mathbf{u}) = \mathbf{u}$$

$$\mathbf{a} + \mathbf{b} \in W$$
, where $\mathbf{a} \in W$, $\mathbf{b} \in W$ -------(1)
 $k \ \mathbf{a} \in W$, where $\mathbf{a} \in W$ ------(2)
 $zero \ vector \in W$ ------(3)

Recall: A Subspace

A subspace of a linear space V is called a subspace if:

- a) W contains the neutral element 0 of V
- b) W is closed under addition
- c) W is closed under scalar multiplication

2-2 線性獨立與伸展

- 基本名詞和內容:
- 1) 線性獨立 (L.I.) 與線性相依 (L.D.)
- 2) 伸展 (span)
- 3) 基底 (basis)
- 4) 維度 (dimension)

2-2 線性獨立

定理

• 已知 a_i 為 R^n 之向量,若矩陣 $A=[a_1\ a_2\ a_3\\ a_n]_{nxn}$,若且唯若 $a_1\ a_2\ a_3\\ a_n$ 為 L.D., 則|A|=0,即 A 為奇異矩陣。

2-2 伸展

定理:伸展 (span)

2-3 基底 與維度

定理:基底 (Basis)

定理:維度 (Dimension)

• 以物理意義而言,維度就是自由度 (degrees of freedom)的數目。

2-4 矩陣的四個基本子空間

m×n矩陣

a_{i,j} n行

1 2 3

a_{1,1} a_{1,2} a_{1,3} · · ·

2 a_{2,1} a_{2,2} a_{2,3} · · ·

3 a_{3,1} a_{3,2} a_{3,3} · · ·

: : : : : : .

Rn

 A_{mxn}

Rm

定理:列空間 (Row Space)

 $\mathbf{R}(\mathbf{A})$

定理:行空間 (Column Space)

C(A)

定理:零空間 (Null Space)

定理:左零空間 (Left Null Space)

方程組 Ax=0 之解 x 所形成的集合,N(A)

方程組 $A^Tx=0$ 之解 x 所形成的集合, $N(A^T)$ ($x^TA=0$)

2-4 矩陣的四個基本子空間

. Orthogonality of the Four Subspaces

...: This update of Figure 4.2 shows the true action of A on $x = x_r + x_n$. Row space vector x_r to column space, nullspace vector x_n to zero.