

FIG.1-3 A Communication New/ork

(DTE: DATA TERMINAL EQUIPEMENT)

HOST COMPUTER

8 : CONCENTRATOR

O : MULTIPLEXER

· TERMINAL

(DTE)

A: SWITCH NODE

DCE : DATA CIR IT - Terminating Equipe

Evolution of transport technologies

Public Network Principles

Fig 1.9 Basic Elements of a Telephone Network

Fig. 1.14 Single-Trunk CATV Layout

The AMPS system with cell sites located at the center of each cell

Fig. 1-12 Frequency reuse pattern among cells

Fig. 1.10 Packet Radio - Based Networks

A mixture of small cells in the center city and large cells in the outskirts can coexist within a single system

Signal measurements from adjacent cell sites provide the MTSO with the information necessary to hand off a mobile when another cell site can better serve the mobile

Fig. 1.13 Cell Splitting

Fig. 1.11 Satellite Worldwide Coverage

FIG.1-5 Comparison Between Circuit Switching, Message Switching and Packet Switching

USER DATA TRANSMISSION

Point-to Point-Lines

FIG.1-4 Bursty data

Evolution of switching technologies

Switching Technologies - Summary

- Driving forces (mid of 80th) Common platform for different types of traffic
- ISDN is not suitable (N-ISDN low bit rates, circuit switching)
- ATM will not become as the most important switching technology since 2000s
- Main competitors (Performance/Price)

```
# Ethernet (LANs)
```

```
# xDSL (Access)
```

IP/MPLS (Backbones)

Du: Data Unit

Hi: Layer i Header (i=1,2,...,7)

Fig 1.7 OSI Reference Model Architecture

Open system Mad Interconnection (052) model
(7-layer model)
ISO MODEL FOR

NETWORK ARCHITECTURE

Fig 1.6 Concept of Layering

IP and the IETF Model

Application

Transport

Network

Data Link

Physical

Network Layer (Layer 3)

- End-to-End Addressing/Delivery
- "Best Effort" Service

Putting IP to work

Voice

- Delay
- Delay Variation
- Loss

Data

- Delay
- Delay Variation
- Loss

Video

- Delay
- Delay Variation
- Loss

Multimedia

- Delay
- Delay Variation
- Loss

IP's Role in the network's segment

Premise

- LAN/Desktop
- Campus Backbone

Access

- Low Speed (56/64)
- Medium Speed (E1)
- High Speed (>E1 to SDH)
- Integrated Access

Backbone

- Voice
- Data
- Video
- Multimedia

Why use IP?

- -Wide acceptance
 Internet popularity
 Global reach
 - IP StandardsMature standardsInteroperability

IP Protocol characteristics

Simple protocol

Good general purpose protocol

"Best Effort" Protocol

IP summary

Globally popular
Originally developed for data
Mature standards
Interoperability
"Best Effort" Protocol
Voice over IP gaining popularity

We need a better Internet

Reliable as the phone Working right away as a TV set Mobile as a cell phone and Powerful as a computer **Next Generation Networks**

Main directions of improvement

- 1. Scalability
- 2. Security
- 3. Quality of service
- 4. Mobility

