IDENTIFICATION OF ANTIGEN, ASSAY THEREOF AND VACCINE CONTAINING SAID ANTIGEN

Publication number: JP2002399

Publication date: 1990-01-08

Inventor:

BAANAADO FURANSHISU ZABIAA GAN; DAAMOTSUTO FUERITSUKUSU JIERAA

Applicant:

GALWAY G GENE LTD

Classification:

- international:

A61K39/245; A61K39/395; A61P31/12; C07K7/06; C07K7/08; C07K14/00; C07K14/05; C12N1/20; C12N15/10; C12P21/02; C12Q1/68; C12Q1/70; G01N33/569; A61K38/00; C12R1/19; A61K39/245; A61K39/395; A61P31/00; C07K7/00; C07K14/00; C07K14/005; C12N1/20; C12N15/10; C12P21/02; C12Q1/68; C12Q1/70; G01N33/569; A61K38/00; (IPC1-7): A61K39/245; A61K39/395; C07K7/06; C07K7/08; C07K7/10; C07K15/12; C12N1/20; C12N15/00; C12N15/38; C12P21/02; C12Q1/68; G01N33/569

- European:

C12N15/10C15; A61K39/245; C07K14/05; C12Q1/68M10; C12Q1/70B4; G01N33/569K

Application number: JP19880284820 19881110 Priority number(s): IE19870003041 19871111

Also published as:

EP0316170 (A2) EP0316170 (A3) IE873041L (L)

Report a data error here

Abstract not available for JP2002399 Abstract of corresponding document: EP0316170

A method for identifying all of the antigens from a pathogenic organism such as Epstein-Barr Virus which are expressed in vivo comprises generating a gene bank using nucleic acid fragments which include all of the nucleic acid from a given organism and direct screening of said gene bank with serum from a subject with clinical symptoms caused by the pathogenic organism. The antigens identified can be used as a basis for various diagnostic assays and for preparing vaccines.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特許庁(JP)

⑪特許出願公開

② 公 開 特 許 公 報(A) 平2-2399

⑤Int. Cl. 5

識別記号

庁内整理番号

43公開 平成2年(1990)1月8日

C 12 Q 1/68 A 61 K 39/245

ADY S

6807-4B 8829-4C 8829-4C **

審査請求 未請求 請求項の数 21 (全18頁)

風発明の名称 抗原の同定法、そのアツセイ法及びそれを含むワクチン

②特 題 昭63-284820

②出 顋 昭63(1988)11月10日

優先権主張

301987年11月11日30アイルランド(IE)303041/87

@発 明 者 バーナ

バーナード フランシ アイルランド国 ガルウエイ, ソルト ヒル, ボールナロス ザビアー ガンノ ーマ ウエスト, 12, "マーガン"

ン

勿出 顋 人

ジー ジーン ガルウエイ リミテツド

アイルランド国 ガルウエイ, ユニバーシテイー カレツ

ジーガルウエイ(番地なし)

四代 理 人 弁理士 浅 村

外3名

最終頁に続く

明細書の浄書(内容に変更なし)

明 钿 誯

1. 発明の名称

抗原の周定法、そのアツセイ法及びそれを含む ワクチン

- 2. 特許請求の範囲
 - (1) in vivo で発現される病原生物の抗原の全てを同定する方法であつて、病原生物の全ての核酸を含む核酸フラグメントを用いて遺伝子パンクを作成し、次いで該病原生物によつて引き起こされた臨床症状を有する対象から得た血清を用いて該遺伝子パンクを直接スクリーニングすることからなる上記方法。
 - (2) in vivo で発現される抗原をコードする核酸を得る方法であつて、該抗原をコードする配列を含む病原生物の全核酸を核酸フラグメントに移取の分類を発現ベクターに移動し、液核酸フラグメントを発現ベクターに移動し、液体では原核宿主生物のコロニーを該所は動し、次いで該宿主生物のコロニーを該所はあいら得た血液でスクリーニングすることからな

る上記方法。

- (3) 核酸サンプルにおいて反復して存在する領域を同定する方法であつて、生物の核酸の全てを含む核酸フラグメントを用いて遺伝子バンクを作成し、該選伝子バンクを相同性核酸のプローブでスクリーニングし、次いで反復核酸領域の存在を示す強くハイブリダイズするコロニーを同定することからなる上記方法。
- (4) in vivo で発現するEBV抗原をコードするDNAを得る方法であつて、EBV DNAをフラグメントに変換し該フラグメントを発現ペクター中にクローニングし、該発現ペクターで微生物を形質転換し、EBVで感染していることが知られているヒトの血清で該微生物のコロニーをスクリーニングし、次いでイムノボジティブクローンを単離することからなる上記方法。
- (5) 以下に示す配列から選ばれる in vivo EBV 抗原をコードする DNA 配列:

(A)	GC TCT	TCC GGG	GCC AGG	GGG CAG	TGG AGG	CCC	TGG GGC	GGT C	AAG 48;
(8)	GC CCA AGC	AGC GAC CGA	AGG CCG CCG	CTC GGT GCC	ACC CTC CCG	ACC GGC CGC	ACA CAG CTG	GGC CCG GCG	CCC
	CCT GTT	CCT C	CGG 10	GGC 5;	CAG	CCG	CCG	GGG	TTG
(C)	C TGT	CGG	GGT TCA	TGG GAG	TTC	TGC	CCC	TCT ACC	CTC
	TCG	GGC	ACC	CCA	GAG	CCC	CIC	GGG	
	CCC	GCC CGC	TCC	AGG CCT	CGC CTG	CCT AGC	CCC	GGT	
	ΛAA	CCC		GAA	TGT	CTG	AGG	GGA	
	GCC GAG	ACC TC 1	CTC 74;	GGG	GCC	CAG	GCC	CCA	
(D)	GC AGG	000 000	ΛGC 29;	CTC	TCC	CTC	GCG	GAG	
(E)	GG	CGC	CAA	CAG	GCC	TIT.	CAG	ACC	
(L)	AGG	GCG	GCG	GCT	GAA	TGC	CAT	GCC	
	AAA GGC	AGC TTC	GGG TAC	G1G AGG	CCG	GTC ATC	G1G AAC	GCC	
	ACG 117;	CTC	AAG	GGA	GGA	GAG	GGC	C	
(F)	GT	GCC	GTG	CTA	GAT	ATT	TCA	ACT	
	GCC	ACA	GAC	CCC	ATT TCT	TTG AGG	TCC	CAC TGC	
	CTG ATC	CAG	CCA TGG	GC	82;	nuu	100	140	
(G)	A	GTC	CAG	ACG	CTT	TTC	CGC ATC	CAC TGG	
	GG6 GCC	GAG CAC	TAC	TTC GTG	CGC AGG	C	62.	100	
(1)		Ser	Ala	Gly	Irp	Pro	Trp	Gly	Lys
(1)	Ser	Gly	Arg	GIn	Arg		Gly;	w.,,	-1
(2)		Ser	Arg	Leu	Thr		Thr		
	Pro Ser	Asp Arg	Pro Pro	GLy Ala	Leu Pro			Pro Ala	
	Pro	Pro	Arg	Gly	Gln	Pro	Pro	Gly	
	Val;								
(3)		Arg	Gly	Trp	Phe	Cys	Pro	Ser	
	Cys Ser	Pro Gly	Ser Thr	Glu Pro	Glu Glu	Pro Pro	Gly Leu	Thr Gly	
	Pro	Ala	Ser		Arg		Pro		
	Leu	Arg	Ser	Pro	Leu	Ser	Pro	Val	
	Lys	Pro	l.ys	Glu	Cys		Arg	Gly	
	Ala Glu;	Thr	Leu	Gly	Ala	Gin	Ala	Pro	
(4)	۸rg	Pro Gly;	Ser	Leu	Ser	Leu	Ala	Glu	
(5)	۸rg	Gin	GIn	Ala	Phe	Gln	Ihr	۸rg	
·	Ala	۸la		Glu	Cys	His		Lys	
	Ser Phe	Gly fyr		Pro Thr	Val []e	Va I Asn	Ala Ala	Gly Thr	
	Leu	Lys	Gly	Gly	Glu	Gly;		- 141	
/c\	*10	Vol) nu	Aen	IΙο	Sar	The	6 la	

Ala Val teu Asp Ile Ser Thr Ala Pro 11e Leu Ser His Leu

His Ser

Val Arg.

Leu

Thr

Arg Ser

Phe Arg Phe Ile Trp Ala

He

Cys

Phe Arg His Gly

Thr Asp

Leu Pro

Glu Leu

His Tyr

Gln Tro:

Val Gln

- (6) 請求項5記載のDNA配列を含む、DNA 発現ペクター又は発現可能性を有するDNAトラ ンスファーベクター。
- (7) マーカー遺伝子に融合した請求項5記載の DNA配列。
- (8) 請求項6記載のベクターを保持する微生物。
- (9) 請求項 5 記載のDNA配列によつてコード される抗原性EBVペプチドもしくは蛋白質。
- (10) 以下のアミノ酸配列から選ばれるアミノ酸 配列を含む、請求項9記載の抗原性EBVペプチ ドもしくは蛋白質:

- (11) 請求項9又は10記載の抗原性EBVペプ チドもしくは蛋白質を含むワクチン。
- (12) 請求項9又は10記載のEBVペプチドも しくは蛋白質抗原に対して特異的な抗体調製物。 (13) EBVの検出及び測定法であつて、EBV に対する抗体を含むことが知られている又は疑わ れる血清を、請求項9又は10記載のEBVペプ チドもしくは蛋白質抗原と接触せしめ、EBV抗 原とEBVに対する抗体とで免疫化学的反応を起 こさせ、次いでそれ自体公知の方法でEBVに対 する抗体の存在量を測定することからなる上記方
- (14) EBVに対する抗体の検出及び測定用イム ノアツセイ法であつて、
- (a) EBVに対する抗体を含む又は含むこと が疑われる体液サンプルを、請求項9又は10記 載のEBV抗原の不溶化型に加え、
- (b) 免疫化学的反応を起こさせ;次いで
- (c) ラベル化剤に共有粘合した抗EBV抗体 からなるラベル化抗体の一定畳を加えて、サンブ

ル中に存在する EBV 抗体の 壁の指標である 反応 メディウムの 活性を測定する:

ことからなる上記方法。

- (15) EBVに対する抗体の検出及び測定用イム ノアツセイ法であつて、
- (a*) EBVに対する抗体を含む又は含むことが疑われる体液サンプルを、請求項9又は10記載のFBV抗原の不溶化型に加え、
 - (b*) 免疫化学的反応を超こさせ;次いで
- (c*) 反応メディウムに、不溶化型EBV抗 原に結合したEBVに対する抗体に結合する抗ヒ トイムノグロブリン抗体の一定量を加えて、結合 抗ヒトイムノグロブリン抗体のほを測定し、それ によつて結合EBV抗体の量を測定する:

ことからなる上記方法。

- (16) EBV抗休の検出及び測定用イムノアツセイ法であつて、
- (a′) EBV抗体を含む又は含むことが疑われる体液サンプルを、蛋白質吸着物質の表面に加ま・
- (19) EBVに対する抗体の検出及び測定用イム ノアツセイ法であつて、
- (a''') β ガラクトシダーゼに融合した E B V 抗原のある遺を、抗β - ガラクトシダーゼ 抗体の不溶化型に加えて、免疫化学的反応を起こ させ;
- (b") EBVに対する抗体を含む又は含むことが疑われる体被サンプルを加えて、免疫化学的反応を起こさせ:次いで
- (c") 抗ヒトイムノグロブリン抗体の一定針を加えて、免疫化学的反応を起こさせ、結合抗ヒトイムノグロブリン抗体の量を測定することによってEBVに対する抗体の債を測定する:

ことからなる上記方法。

(20) ラベル化EBV抗体とともに体被サンブルを加えて競合結合イムノアツセイを行なつて EBV抗体の質を測定する工程を、工程(b"')及び(c"')に代わつて行なう請求項19記蔵の方法。
(21) 体液中のEBV抗体の検出及び測定用テストパツクであつて、

- (b') ある量のEBV抗原を加えて免疫化学 的反応を起こさせ、次いで
- (c') ラベル化EBV抗体の一定過を加えて、結合EBV抗体の指標であるラベル活性を測定する:

ことからなる上記方法。

- (17) EBV抗原の代わりに、レポーターエレメントに融合したEBV抗原のある類を加えて、 EBV抗体の量をそれ自体公知の方法で測定する 請求項16記載の方法。
- (18) EBVに対する「gM抗休の検出及び測定 用イムノアツセイ法であつて、
- (a") EBVに対する I g M 抗体を含む又は 含むことが疑われる体液サンプルを、抗ヒト I g M 抗体の不溶化型に加え;
- (b") 免疫化学的反応を起こさせ;次いで(c") レポーターエレメントに融合した EBV抗原のある量を加えて、更に免疫化学的反応を起こさせる;

ことからなる上記方法。

- (aa) 請求項 9 又は 1 0 記載の不溶化型 E B V 抗原の一定量:及び
- (bb) 酵熟あるいは放射性ラベル化剤と抗BV 抗体との結合生成物の対応度:

を含む上記テストパツク。

3. 発明の詳細な説明

本発明は、in vivo で発現される抗原及びその診断薬並びにワクチンとしての用途に関する。更に詳細には、ウイルス抗原特にエブスタインーバールウイルス(EBV)抗原及びその診断薬並びにワクチンとしての用途に関する。

精製した抗原を診断テスト用に使用することが益々重要になつて来ている。従来、抗原の精製は生化学方法を用いて精製を何度も繰返すことによつて行なわれている。他の方法として、組換え DNA技術を利用して単離した抗原をクローン化して宿主生物中で発現する方法が、今日では広く使用されるようになつている。

エプスタイン - パールウイルスは、ほとんどの成人が磁染しているヘルペスウィルスの1つであ

る。EBVは伝染性単核症(IM)を引き起こす 病原体でもある。また、EBVはリウマチ性関節 炎にも関係しており、バーキットリンパ腫、上咽 頭部などのB-リンパ腫の病原体でもある。しか しながらEBVは良性の効果も有しており、EBV の人々は上記した病気にかかることなく、EBV の感染によつてEBVに対する抗体が腐性の血清 を持つようになる。

in vitroでは、EBVはB-リンパ球の増殖を促進し、増殖状態あるいは潜伏状態で生存することができる。

EBV感染あるいはFBV再活性化の診断は、 通常、異好性Paul-Bunnel-Davidson(Honospot) テストによつて行なわれており、このテストは EBV抗体と非関連ウマ蛋白質との個発性交差反応を利用したものである。このテストは迅速にかつ安価に行なうことができるが、その原理からまたその有効性がわずか80%程度であることから、 たその有効性がわずか80%程度であることから、 さのテストはラフな診断法として使用できるにす ぎない。またこのテストは、EBV感染は異なつ て フェースを有し そ の 進行性 も 異常 な た め 、 1 0 0 % 有効 か と は 言 え な い も の で あ る 。 従 つ て 、 よ り の 実 で 有 効 な テ ス ト と し て ス ラ イ ド テ ス ト め あ り い で あ 方 法 は E B V 形 質 転 換 網 路 な で で あ あ る を 換 の テ ス ト で は 、 E B V 抗 原 を 使 用 す る も の で あ め な い な の テ ス ト で さ る が が で さ る が な か な で お り な な に 実 施 す る と が で き る が な 練 を で お り な で お り な な に 実 施 り ね 路 が 増 が す る と き う 危 険 性 を 有 す る も の で も あ る 。

従つて、真正なEBV抗原を用いた診断法の開発が必要である。

エプスタイン・バール核抗原(EBNA)、ウィルスカプシッド抗原(VCA)及び他の初期 EBV抗原などの多数のEBV抗原が今日では知られている。

EBVのB95-8株の全DNA配列が決定されており[Baer, R., et al., (1984)
Nature310、207-2111、これによつて

分子生物学の研究が大いに促進されている。

EBVの分子相様の分析が進んでおり、この分析研究は内部反復配列を含む領域について益々精力的に行なわれている(第1図のBamHIWフラグメント参照) [Cheung, A.とKieff, E. (1982) J. Virol., 44、286-294; Jones, H. D.とGriffin, E. B. (1983) Nucleic Acid Res., 11、3913-3936]。今日までに行なわれているこれらの分析は次のようなものである。

(i) ゲノムEBV DNAフラグメントを用いたトランスフェクションの研究であり、これにより、EBV核抗原2(EBNA2)応答を誘導するためにはBamHI Wフラグメントのインタクトコピーが必要であることが明らかにされた[Rymo, L. et al., (1985)
Hueller-Lantzsch, N., et al., (1985)
EMBO J., 4、1805-1811];

(ii) 増殖性の、あるいは非増殖性の感染細胞

から得たウィルス転写体の分析研究であり、これにより、BamHI Wフラグメントに相同性を行する配列が該転写体に含まれていることが示された [King W. et al., (1980)、J. Virol, 36、806-818; Hummel H. とKieff, E. (1982) J. Virol., 43、262-272; Shin, S. et. al., (1983) Virology, 124、13-201;

(iii) スプライシングを受けた転写体に対応する C D N A の配列決定と分析研究であり、これにより、B a m H I Wからのコモンエクソンを有する C D N A クローンのファミリーが同定された [Bodescot, H. et al., (1984) E M B O J., 3、1913-1917; Bodescot, H. et al., (1986) Nucleic Acids Res., 14、2611-2620; Speck, S. とStromminger, J. (1985) Proc. Natl. Acad. Sci., U.S.A., 82、8305-8309; Speck, S. H. et al., (1986) Proc. Natl. Acad. Sci., U.S.A., 81、61986) Proc. Natl. Acad. Sci., U.S.A., 83、9298-9302; Sample J.

et al., (1986) Proc. Natl. Acad. Sci., U.S.A.83,5096~5100);

(iv) 反復コード化エクソンの予想アミノ酸配列から推定されるペプチドを合成しこれを用いる研究により、それらのいくつかに対する抗体はEBV発現蛋白質と反応することが示された
[Dilliner, J. et, al., (1986) Proc.
Natl. Acad. Sci., U.S.A., 83、6641-6645]。

本発明の目的は、in vivo で発現される病原生物の抗原の全てを固定することを可能にする方法及び該抗原の診断薬並びにワクチンとしての用途を促供することにある。

本発明の他の目的は、真正なEBV抗原に基づいたEBVのアツセイ法であつて公知のEBV湖定法及び検出法に比べて感度が良くその測定範囲の広いアツセイ法を提供することにある。

しかして、本発明により、in vivo で発現される病原生物の抗原の全てを固定する方法であつて、 病原生物の全ての核酸を含む核酸フラグメントを

病原生物の全核酸は、1つまたはそれ以上の制限所素を用いてフラグメントに変換される。しかしながら、各種のヌクレアーゼを用いることもでき、また1つもしくはそれ以上のヌクレアーゼとポリメラーゼを組合わせて用いることを現べてする。この報音する前にフラグメントを平滑環に致っても、発酵を核酸フラグメントに変換することができる。

病原生物は、パクテリア、昆虫、ウイルス、酵母、あるいはこれら以外のパラサイトでもよい。 好ましくは病原生物はウイルスである。

以下に、エプスタイン-バールウイルスをモデルとして本発明を説明する。

本意明によつてスクリーニングする血清の対象 はヒトでもヒト以外の動物でもよい。

本発明の方法を用いて、公知の蛋白質コード領域を有する遺伝子の抗原性領域を同定することもできる。

用いて遺伝子バンクを作成し、 該病原生物によつ て引き起こされた臨床症状を有する対象から得た 血清を用いて 該遺伝子バンクを直接スクリーニン グすることからなる上配方法が提供される。

核酸フラグメントは、終止コドンをさけるために、1kb以下の平均の大きさを有するフラグメントが好ましい。このような方法においては、病原生物の核酸を含む配列は全て、発現される概会を有しており、適当な抗原あるいは求める抗体については推定によつて決定されるということはない。

また本発明によれば、in vivo で発現される抗原をコードする核酸を得る方法であつて、該抗原をコードする配列を含む病原生物の全核酸を核酸フラグメントに変換し、該核酸フラグメントを発現ペクターに移し、真核もしくは原核宿主生物を設発現ペクターで形質転換し、該宿主生物のコロニーを該病原生物によつて引き起こされた臨床症状を有する対象から得た血清でスクリーニングすることからなる上記方法が提供される。

ここで使用される核酸はDNAが好ましい。

いずれの病原体も免疫応答を引き起こす。しかして、本発明の方法により、必ず存在する抗原を同定することができる。従つて、本発明の方法により、未だ知られていない分子生物学分野におけるウイルス又は他の抗原を単離することもできる。病原抗原をコードする核酸配列はいずれも、invivoで発現される可能性を持つている。組換えるこれまでの実験ではほとんどの場合、抗原をコードする核酸配列の分子生物学的知識は知られていることが必要であつた。

木発明による上記した方法は、ある遺伝子が抗原をコードすることが知られているような場合には抗原性領域の正確な配列を規定するのに用いることができる。

また本発明によれば、以下に定義するEBV抗原をコードするDNAを得る方法であつて、 EBV DNAをフラグメントに変換し該フラグメントを発現ペクター中にクローニングし、該発現ペクターで做生物を形質転換し、EBVで感染 していることが知られているヒトの血清で該做生物のコロニーをスクリーニングし、次いでイムノポジティブクローンを単離することからなる方法が提供される。

EBV DNAをフラグメントに変換するため には、糾関酵素で消化するのが好ましい。

本発明の方法は、遺伝子中の反復配列を同定するのに用いることができる。

本発明の更に他の局面によれば、核酸サンプルにおいて反復して存在する領域を同定する方法であつて、生物の核酸の全てを含む核酸フラグメントを用いて遺伝子パンクを作成し、該遺伝子パンクを相同性核酸のプローブでスクリーニングし、反関核酸領域の存在を示す強くハイブリダイズが促るコロニーを同定することからなる上記方法が促供される。

木発明により、in vivo でEBV抗原をコードするDNA配列であつて、以下の配列から選ばれるDNA配列が提供される。

配列(A)-(B) はEBVのBamH! Wフラグメントの1部であり、配列(E)、(F)、(G) はそれぞれEBVのBamHIN、BamHIF、BamHIVフラグメントの1部である。

EBV BamHI WフラグメントについてはJones、H. D.とGriffin、B. E. (1983)
(Nucleic Acids Res.、11、3913-3936)のナンパーリング系を用い、他のEBVBamHIフラグメントについてはBaer、R., etal.(前記の通)のナンパーリング系を用いて、上記したDNA配列についてヌクレオチド番号を示すと以下の通りである。

DNA配列	ヌクレオチド番号
A	2373-2421
В	2566-2671
С	2658-2832
D	2998-3027
Ε	2712-2831
F	5 5 5 9 3 - 5 5 6 7 4
G	146694-146755

									_
(A)	GC	TCC	GCC	GGG	TGG	CCC	TGG	GGT	AAG
(11)	TCT	GGG	AGG	CAG	AGG	GTC	GGC		48;
(B)	GC	AGC	AGG	CTC	ACC	ACC	ACA	GGC	CCC
	CCA	GAC	CCG	GGT	CTC	GGC	CAG	CCG	
	AGC	CGA	CCG	GCC	CCG	CGC	CTG	GCG	
	CCT	CCT	CGG	GGC	CAG	CCG	CCG	GGG	TTG
	GTT	C	10	5;					
(C)	<u>C</u>	CGG	GGT	TGG	TIC	TGC	CCC	TCT	CTC
	TGT	CCT	TCA	GAG	GAA	CCA	GGG	ACC	
	TCG	GGC	ACC	CCA	GAG	CCC	CTC	GGG	
	CCC	GCC	TCC	AGG	CCC	CCT	CCT	GGT	
	CTC	CGC	TCC	CCT	CTG	AGC	CCC	GTT	
	AAA	CCC	AAA	GAA	TGT	CTG	AGG	GGA	
	GCC	ACC	CTC	GGG	GCC	CAG	GCC	CCA	
	GAG	TC 17	74;						
(0)	GC	CCG	AGC	CTC	TCC	CTC	GCG	GAG	
	AGG	GGC	29;						
(E)	GG	CGC	CAA	CAG	GCÇ	111	CAG	ACC	
	AGG	GCG	GCG	GCT	GAA	TGC	CAT	GCC	
	AAA	AGC	GGG	GTG	CCG	GTC	GTG	GCC	
	GGC	TTC	TAC	AGG	ACC	ATC	AAC	GCC	
	ACG	CTC	AAG	GGA	GGA	GAG	GGC	С	
	117;								
(F)	GT	GCC	GIG	CTA	GAT	ATT	TCA	ACT	
,	GCC	ΛCA	GAC	CCC	ATT	TIG	TCC	CAC	
	CTG	TTA	CCA	CAT	TCT	AGG	TCC	TGC	;
	ATC	CAG	TGG	GC	82;				
(G)	A	GTC	CAG	ACG	CIT	TTC	CGC	CAC	;
•	GGG	GAG	CTC	TTC	CGC	TTC	ATC	TGO	ì

DNA配列(B) と(C) との間の13 bp维複配列は下線で示した。

GCC CAC TAC GIG AGG C

また木発明によれば、配列 (A)-(G) に対応する オープンリーディンフレームを含む DNA配列が 提供される。

また本発明によれば、上記したDNA配列(A)-(G) いずれかから選ばれるDNA配列を含む
DNA発現ペクターが提供される。また本発明によれば、発現可能性を有するDNAトランスファーベクターであつて、上記したDNA配列(A)-(G) のいずれかから選ばれるDNA配列を含む。 おり ストランスファーベクターが提供される。 発現ペクターはブラスミドが好ましく、より具体的にはオープンリーディングフレームブラスミドのにはオープンリーディングフレームブラスミド Proc. Natl. Acad. Sci., U.S.A., 80、4432-4436)である。 該発現ペクターは微生物中に導入して複製することができる。

更に本発明によれば、マーカー遺伝子に融合した上記のDNA配列 (A) - (G) のいずれかから選ば

れたDNA配列が提供される。該マーカー遺伝子は、プラスミドDORF1のB-ガラクトシダーゼ遺伝子が好ましい。

しかして本発明によれば、上記したDNA配列(A)-(G) のいずれかから選ばれるDNA配列を含む発現ベクターを保持する微生物が提供される。特に好適な酸生物は E. coliなどのパクテリアであり、より具体的には、lac 欠損株 E. coliMH3000: ara D139 △ (ara, leu) 7697△ (lac) ×74 gal U gal Krps (str^r) omp R101 (Weinstock, G. H., et al., supra) である。

また木発明によれば、上記したDNA配列(A)-(G)のいずれかから選ばれるDNA配列によってコードされる抗原性EBVペプチド/蛋白質が提供される。特に木発明によれば、上記したDNA配列(A)-(G)のいずれかによつてコードされ、以下に示すアミノ酸配列から選ばれる抗原性EBVペプチド/蛋白質が提供される:

ペプチドをコードする遺伝子のヌクレオチド配列が明らかになれば、そのペプチドは化学的に合成することができる。

また本発明によれば、その塩基配列の翻訳領域がマーカー蛋白質と任意に結合していてもよい上記したEBVベプチド/蛋白質をコードする塩基配列を含む、上記したヌクレオチド配列(A)-(G)またはその等価物の1部もしくは全部を有するDNAを含む組換えDNA発現ベクターが提供される。該マーカー蛋白質はβーガラクトシダーゼ酵素が好適である。

また木発明によれば、上記に定義した抗原性 EBVペプチド/蛋白質を含むワクチンが提供される。

また木発明によれば、上記したEBVペプチドもしくは蛋白質抗原に対して特異的な抗体調製物が提供される。

in vivo で発現される抗原に対する抗体のレベルは患者によつて変動し得るものである。抗原の存在に加えて、抗原量も診断対象の値である。更

1	(1)		Ser	Ala	Gly	Trp	Pro	Trp	Gly	Lys
		Ser	Gly	Arg	Gin	Arg	Val	Gly;		
	(2)		Ser	Arg	Leu	Thr	Thr	Thr	Giy	Pro
	127	Pro	Asp	Pro	GLy	Leu	Gly	Gln	Pro	
		Ser	Arg	Pro	Ala	Pro	Arg	Leu	Ala	
		Pro	Pro	Arg	Gly	Gin	Pro	Pro	Gly	Leu
		Val;	110	**** 9	۵.,					
		Ψ 41 ,								
	(3)		Arg	Gly	Trp	Phe	Cys	Pro	Ser	Leu
		Cys	Pro	Ser	Glu	Glu	Pro	Gly	Thr	
		Ser	Gly	Thr	Pro	Glu	Pro	Leu	Gly	
		Pro	Ala	Ser	Arg	Arg	Pro	Pro	Gly	
		Leu	Arg	Ser	Pro	Leu	Ser	Pro	Val	
		Lys	Pro	Lys	Glu	Cys	Leu	Arg	Gly	
		Ala	Thr	Leu	Gly	Ala	Gin	Ala	Pro	
		Glu;								
			_	_		0	1	41-	01	
	(4)		Pro	Ser	Leu	Ser	Leu	Ala	Glu	
		Arg	Gly;							
	(5)	Arg	Gln	Gln	Λla	Phe	Gin	Thr	۸rg	
		Λla	Ala	Ala	Glu	Cys	His	Ala	Lys	
		Ser	Gly	Val	Pro	Val	Val	Λla	Gly	
		Phe	Tyr	Arg	Thr	He	Asn	Ala	Thr	
		Leu	Lys	Gly	Gly	Glu	Gly;			
	(6)	Ala	Val	Leu	ASD	He	Ser	Thr	۸la	
		Thr	ASP	Pro	He	Leu	Ser	His	Leu	
		Leu	Pro	His	Ser	Arg	Ser	Cys	He	
		GIn	Trp;							
	(7)	Val	Gln	Thr	Leu	Phe	Arg	His	Gly	
	117	Glu	Lou	Phe	Arg	Phe	He	Trp	Λla	
		His	Tyr	Val	Arg.					
		1170	. , .	,	5.					

には、抗原に対する血清中に存在する抗体のクラス(I g M 、 I g A 、 I g G)も、診断用のインデイケーターとして有用である。

また本発明によれば、EBVの検出及び測定法であつて、EBVに対する抗体を含むことが知られている又は疑われる血清を上記した抗原と接触せしめ、EBV抗原とEBVに対する抗体との免疫化学的反応を起こさせ、次いでそれ自体公知の方法でEBVに対する抗体の存在異を測定することからなる上記方法が提供される。EBVに対する抗体は、酵素的に、免疫学的にあるいは放射活性測定により測定することができる。

本発明のEBV抗原は特異的EBV抗体を得る及び単離する手段として使用することができ、またこのEBV抗体は、対応するEBV抗原の検出及び測定用イムノアツセイに用いることの出来るEBVに対する抗体の不溶化型を作成することに使用することができる。

更に本発明によれば、EBVに対する抗体の検出及び測定用イムノアツセイ法であつて、

- (a) EBVに対する抗体を含んでいる又は含んでいることが疑われる体液サンプルを、上記に 定義したEBV抗原の不溶化型に加え:
 - (b) 免疫化学反応を起こさせ;次いで
- (c) ラベル化剤に共有結合した抗EBV抗体からなるラベル化抗体の一定量を加えて、サンプル中に存在するEBV抗体の昆の指標である反応メディウムの活性を測定する:

ことからなる上記方法が提供される。

好ましくは、ラベル化抗体は、酵素又は放射性ラベル化剤に共有結合した抗にBV抗体からなるものであり、反応メディウムの酵素活性又は放射活性は慣用的方法によつて測定できる。上記した変法として、体液サンブルとともにラベル化EBV抗体を制定する競合結合イムノアツセイ法があり、
抜方法によって測定することもできる。

上記した方法における工程(C) は、他の工程によって行なうこともできる。即ち、反応メデイウムに、不溶化型EBV抗原が結合したEBVに対

DYNATECHより販売されているものが挙げられる。 蛋白質吸着用物質の表面にEBV抗原を間接的に コートするためには、該表面に先すEBV抗体を 加えて結合せしめ次いで結合したEBV抗体に EBV抗原を加えることによつて行なうことがで きる。

しかしながら、本発明のEBV抗原は各種のイムノアツセイ法に用いることができる。

しかして、本発明によれば、EBV抗体の検出 及び測定用イムノアツセイ法であつて、

- (a') EBV抗体を含んでいる又は含んでいることが疑われる体液サンプルを、上記した蛋白質吸着用物質の表面に加え:
- (b') EBV抗原のある遺を加えて免疫化学 反応を起こさせ:次いで
- (c′) ラベル化EBV抗体の一定量を加えて、 結合EBV抗体の指標であるラベル活性を測定す る:

ことからなる上記方法が提供される。

上記の工程 (b′) においては、EBV抗原の代

する抗体に更に抗ヒトイムノグロアリン抗体が結合したものの一定度を加え、次いで結合抗ヒトイムノグロプリン抗体量即ち結合EBV抗体質を測定する工程によつて行なつてもよい。抗ヒトイムノグロプリン抗体は抗「gM、抗「gA、抗

EBV抗原は、蛋白質吸着用物質の表面上にい。 接口は間接的ではないでは、、「サウ」をはいては、「サウ」をはいては、「サウ」をはいてはない。 のが好まは、「サウ」をはいては、「サウ」をはいては、「サウ」をはいてはない。 ではないでは、「サウ」をはいては、「サウ」をはいては、「サウ」をはいては、「サウ」をはいてはいいでは、「サウ」をはいている。「サートに、「サート」をはいて、「HHULON」をは、「サート」には、「サート」をは、「サー

わりに、βーガラクトシダーゼ又は他の酵素などのレポーターエレメントに融合したEBV抗原の一定量を加えることとができる。EBV抗・番の店はよって、別定することがであるにはないののカーガラクトシダーゼが融合した結合EBV抗体のβーガラクトシダーゼ活性を測定することができる。このアツセ、常法によりなるレポーターエレメントによって、常法によりを正することができる。

βーガラクトシダーゼ活性を直接測定する代代わりに、ラベル化抗βーガラクトシダーゼ抗体と日日のカーガラクトシダーゼに対ける合うに対した抗け、の対した対したがある。の対した抗βーガラクトシダーゼ抗体である。他ではないがある。他をではないがある。他をではないがある。他をのしば、ターエレメントに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーエレメントに対するラベル化抗βーエレメントに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトに対するラベル化抗βーガラクトシダーゼ抗体である。

使用することもできる。

また本発明によれば、EBVに対する抗体の各種のクラスを測定する方法が提供される。本発明によれば、例えば、EBVに対する「gM抗体の検出及び測定用イムノアツセイ法であつて、

(a") EBVに対する「gM抗体を含む又は 含むことが疑われる体液サンプルを、抗ヒト 「gM抗体の不溶化型に加え:

(b") 免疫化学的反応を起こさせ:次いで (c") レポーターエレメントに融合した EBV抗原のある質を加えて、更に免疫化学的反 応を起こさせる:

ことからなる上記方法が提供される。

レポーターエレメントはβ - ガラクトシダーゼ が好ましい。

EBVに対する「gM抗体の型は、βーガラクトシダーせあるいは他のレポーターエレメントに融合した結合EBV抗原のβーガラクトシダーゼ活性を測定することにより、又はラベル化抗βーガラクトシダーゼ抗体あるいは上記した他のレポ

を加えて、免疫化学的反応を起こさせ、結合抗ヒトイムノグロブリン抗体の量を測定することによりEBVに対する抗体のほを測定する:

ことからなる上記方法が提供される。

上記した方法の場合においても、β-ガラクト シダーゼの代わりに他のレポーターエレメントを 用いることができる。

上記の工程(b″) および(c″) は、他の方法によって行なうこともできる。即ち、ラベル化した EBVに対する抗体と一精に体液サンプリングを加えて競合結合イムノアツセイを行ない、EBVに対する抗体の量を測定することによって行なうこともできる。

サンプルとしては血精サンプルが好ましい。

また本発明によれば、休被中のEBVに対する 抗体を検出及び測定するためのテストパツクであ つて、

- (aa) 上記した不溶化型EBV抗原の一定徴; 及び
 - (bb) 酵素あるいは放射性ラベル化剤と抗

ーターエレメントに対するラベル化抗体を用いて 測定することができる。上記工程(C″) の他の方 法として、βーガラクトシダーゼに融合した EBV抗原の代わりにEBV抗原の一定量を加え る方法を採用してもよい。EBVに対する「gM 抗体の過は、上記したように、ラベル化EBV抗 体を加えることによつて測定できる。

上記した方法は、EBV抗原に対するIGA抗体などの他のクラスの抗体の測定に用いることもできる

また木発明によれば、EBVに対する抗体の検 出及び測定用イムノアツセイ法であつて、

(a‴) βーガラクトシダーゼに融合した EBV抗原のある量を、抗βーガラクトシダーゼ 抗体の不溶化型に加えて、免疫化学的反応を起こ させ;

(b") EBVに対する抗体を含む又は含むことが疑われる体液サンプルを加えて、免疫化学的反応を起こさせ:次いで

(c‴) 抗ヒトイムノグロブリン抗体の一定道

EBV抗体との結合生成物の対応量:

を含む上記テストパックが提供される。テストパックに、酵素と抗EBV抗体との結合生成物が用いられる場合には、該テストパックには酵素活性測定用基質が含まれる。

放射性ラベル化剤は 125 1 が好ましい。

しかしながら、上記の本発明によるイムノアツ セイを実施するために必要な成分であれば、上記のテストパツクはいずれの成分を含んでいてもよい。

以下に図面について説明する。

第1 A 図はEBV B95-8ゲノムを直線的に示したものである。TR及びIRで命名されるタンデムに反復する一群の配列は、US及びUL領域の境界を示すものである。

第1B図はEBV B95-8ウイルスゲノム のBamHI制限酵素地図を直線的に示したものである。

第2図は、本発明で調製される抗原コード配列を含むクローン化EBV DNAフラグメントが

Smal 部位に挿入された発現ベクターDORF1を 示す。

第3回は、本発明によつて調製されるEBV B95-8ゲノムパンクを抗EBVヒト血清でスクニーニングして単離されたイムノボジテイプクローンを示す。

第4図は、第3図で示したイムノボジテイプクローンをClaIで消化後に選択されるプラスミドDNAを示す。

第 5 図は、 E B V B 9 5 - 8 の B a m H I フラ グメントの ³² P - ラベル化 8 0 3 bp P V u II サ フフラグメントでプロープされる第 4 図のプラス ミト D N A のサザンプロツト分析のオートラジオ グラフィーを示す。

第 6 図は、 E B V B 9 5 - 8 B a m H I W フラグメントのシングルコピーを示し、 更 に、 転写及び/又は 発現される ことが知られた 配列の相対的位置及びリーデングフレームを表わす。 クローンA - D (C L A, C L B, C L C, C L D)で示される薄い 黒いパーは、本発明による E B V

枯した。このDORF1は次の特徴点を有している。即ち、(i)非活性のβーガラクトシダーゼゼ 電 伝子を含んでいる:(iii)βーガラクーニング グ を 有している:(iii) この部位に 挿入 フーゼ 部位 で り ストーター 配列 O ア ア ロース に で で 出現 の で と い な と じ 、 このため βーガラクトシ を の は か 生 じ し て 発現されるようになる。

EBV DNAを保持する発現ベクターで上記した lac 欠損株 E. coli MH3000を形質転換した。発現ベクター PORF1と E. coli MH3000は、G. H. Weinstock から贈られた。配列(G) は E. coli株 J. M. 105でも機能を有していた。

EBV DNAを含むプラスミドを保持した
E. coliサンプル、 PEBV - A、 PEBV - B、
PEBV - C、 PEBV - D、 PEBV - E、
PEBV - F及び PEBV - Gを、Mational

抗原をコードする発現 D N A 配列 (A) - (D) を表わす。

第7図は、EBV B95-8ゲノムを示し、 本発明によるEBV抗原をコードするDNA配列 (A)-(0) の相対的位置を表わす。

以下の実施例により本発明を更に詳細に説明する。

実施 例 1

EBV抗原発現クローンの単剤

University Research Institute for Biomedicine (フロリダ、U.S.A)及び Hicrobiological Associates Inc. (ベテスタ、メリーランド、U.S.A)から、EBV B95-8DNAを購入した。このDNAは部分的分解が行なわれており平均1kb以下の大きさのフラグメントである。このDNAをS1ヌクレアーゼ及びT4DNAボリメラーゼをを用いて平滑未端とし、オープンリーディングフレーム発現ベクターPORF1(第2図)[Heinstock et al., (1983)supra]のユニーク Smal 部位へ連

Collection of Industrial and Harine

Bacteria Limited (NCIMB)に1988年 10月24日に寄託し、受託番号NCIB400 75、NCIB40076、NCIB40077、 NCIB40080、NCIB40081がそれ それ付きれている。

プラスミドDNAは、標準CSC & /エチジウムプロミド遠心法 [Haniatis, T. et al., (1982) Holecular Cloning, a Laboratory Hanual — Cold Spring Harbour, Cold Spring Harbour, New York) により調製した。プラスミドDNAは、アルカリ溶解法 [Birnboim, H. C. と Doly, J. (1979) Nucleic Acids Res. 7、1513—1523]を用いてミニ溶解物から調製することもできる。

形質転換は、Dagert、H と Erlich、S. D. (1979) Gene 6、23に記載された方法に従って行なった。形質転換体は、アミビシリンと5-プロモ-4-クロロ-3-インドリル-β-D-ガ

ラクトピラノシドを含む培地にプレートした。 60,000個の組換体からなるジーンバンク について、IM退者から得た血清を用いてEBV 抗原の発現能を調べた。この血清は、Regional Hospital, Galway, Irelandで伝染性単核症と診 断された患者から採取した。ジーンバンクについ てはHecleic Acid Res. 16、7(Walls, 0. et

al., 1988)にも記載されている。

12-O-テトラデカノイルホルボール-13
-アセテートで誘導されたP3HR-1細胞、
Raji 御胞をそれぞれ含むスライド上で、間接蛍光 抗体法 [Henle, W. とHenle, G. (1966)

J. Bacteriol...91、1248-1256] により、EBAのウイルスカプシツド抗原(VCA)、
初期抗原(EA)に対する抗体レベルを測定して
診断した。EBV核抗原(EBNA)に対する抗体
体価は、Raji 細胞を用いてACIF [Reedman,
B. H.とKlein, G. (1973) Int. J. Cancer,
11、499-520] により測定した。EAに

パツファーA1:0.17M NaC &
0.01M TrisHC & (pH8.0)
0.1mM PMSF(フェ
ニルメタンスルホニルフルオ
ライド)
1.0mM KI。

対する抗体の力価は定量せず、+又は一でスコア

バツファーA2: バツファーA1+0,01% SDS(ナトリウムドデシル スルフェート)。

バツファーA 1 + 3 % B S A ウシ血清アルアミン)(又は ミルク蛋白質 (Cadbury の Harvel: Harvelはトレードマーク))+O.1%ナトリウムアジド。
 (実験を行なう日に調製した)。

バツファーB1: バツファーA1+0.1% Triton(Friton はトレードマ ーク)×100、 1 m M EDTA。 -付けを行なつた所、ほとんどの血清は+であつ

E. coli蛋白質と交差反応する抗体があるために生じる初期のパツクグランドをなくすために血精の前処理が必要であつた。 E. coli蛋白質を動したアフィニティークロマトグラフィーに動物を透り、このスクリーによってが強力によって単離された陽性クローンは、第3

Young, R. A. と Davies, R. W. (1983) Proc. Natl. Acad. Sci., U. S. A. 80、1194-1196に記載された方法に、Walls, D. ot al., (1988) (Neucleic Acids Res. 16、7)の方法を加味して若干変更し以下に示すようにして、ニトロセルロースフィルター上でin situ でスクリーニングすべきコロニーを溶解した。

方法:

以下に示す各種のパツファーを調製した。

バツファーB2:バツファーB1+0.1% SDS。

バツファーB3:パツファーB1+3%BSA (又は5% Harvel)+0.1 %ナトリウムアジド。 (実験を行なう日に調製した)。

血清の処理:

次いで以下の方法に従つて、4日間に直つて、 ヒト抗EBV血清を用いて発現パンクについて免 疫学的スクリーニングを実施した。

第1日

(1) コロニーを適当な選択培地で37℃で一 晩生育せしめた。コロニーのレブリカコピーを他 のプレート上に置いた。

第2日

- (2) ニトロセルロースフイルターをコロニーを含むプレート上に置き、5分間放躍した。得られるニトロセルロースフイルターコロニーを、ベトリ皿のバツファーA1とライソザイム(2gントリーので、クロロホルムに没した Whatman 5 4 1 フィルターとにはいた。クロロホルムに没した Whatman 5 4 1 フィルターをペトリーのフタの中に置き、フターンを溶解した。
- (3) 次いでフィルターを取り、コロニー側を 上にして、パツファーA2(7㎡)を含む新しい 即に1時間設した。この工程及びこれに続く全て の工程は空温で実施した。
 - (4) フイルターを取り、コロニー側を上にし
- (10) フィルターをパツファーB1(7㎡で1 〇分間)で洗浄した。
 - (11) 工程(10)をくり返した。
- (12) フィルターをパツファーB3(7㎡)で 15分間洗作した。
- (13) フィルターを、 ¹²⁵ [蛋白質 A (Sigma)
 (約2×10⁶ cpm / フィルター: パツフアー
- B 3 で希釈)とともに1晩インキュペートした。

第 4 日

- (14) 工程(9) をくり返した。
- (15) フィルターをパツファーB 1 (7 配) で1 5 分間洗浄した。
- (16) 工程(15)を更に15分間くり返した。
- (17) フィルターを乾燥し、-70℃で12-
- 4 8 時間増感スクリーンでオートラジオグラフィーに付し、結合抗体を検出した。

実施例2

BamHIWでコードされるEBV抗原を発現するクローンの固定

抗原発現が腐性である、即ち血清中に存在する

て、 パツファー A 1 (7 ml)中で 1 0 分間 リンス した。

- (5) フィルターを取り、 D N A S e (2 μ g ノ m () を含むパツフアー A 1 (7 m () 中で前配と 同様にしてインキュペートした。
- (6) フィルターを取り、パツファーA1(7 20) 中で10分間リンスした。次いでフィルター をガラスペトリ皿に移した。ガラスペトリ皿は以 下の全ての工程で用いた。
- (7) フィルターをバツファーA3 (7 ml / フィルター)中で1時間インキュペートした。この 工程中は、上記した血滑処理を実施した。
- (8) 血清(前記の血清の処理で将た上清)を パツファーB3(7㎡)中に希釈し、この中でフィルターをインキュペートした。次いでフィルターをゆつくりと境拌しながら一晩インキュペート した。

第3日

(9) 血清を含むパツファーを除き、フィルターをパツファーB2(7㎡)で10分間洗浄した。

抗体に対応する抗原を有するコロニーとして選択され精製されたコロニーのEBV DNAの配列決定を行ない、EBV遺伝子マツブ上でのオーブンリーディングフレームの位置を固定した。

Bam HI W領域のプローブを調製するため に、商業的に入手し得るインタクトEBV B9 5-8DNAをBamHlで消化しpORF1に クローン化した。このパンクを、分解した全 EBV DNAをプロープとしてスクリーニング した。スクリーニングすべきコロニーを、製造業 者の指針に基づき、82㎜ニトロセルロースフィ ルター(SchleicherとSchvell)に移し、製造業 者の指針に基づくハイブリダイゼーションプロト コールでハイブリダイゼーションを行なつた。消 化したプラスミドのサザンプロツト分析は、 O. 4 M N A O H をトランスファーパツファー として用いてHybond N(トレードマーク、 Amersham) 上で行なつた。DNAプロープはオリ ゴラベル化法 [Feinborg, A. P. と Vogelstein, B. (1983) Analytical Biochem., 132, 6

- 131によつて作成した。強くハイブリダイズ するコロニーを分析用に採取した。そのほとんど は、EBV BamHI Wコピーを有する PORF1組換えDNAを保持していることが、 その大きさ及び以下の結果から判つた、Wの80 3 b p P v u Ⅱ - B a m H I サプフラグメント (第6図)を単離し、放射標識化して、イムノボ ジティブクローンから得たプラスミドDNA調製 物のCLaI消化物を探索するのに用いた。その 枯果は第4及び第5回に示した。3個のイムノポ ジティブクローンのプラスミドDNAについて、 ポジティブハイブリダイゼーションが観察された。 特に第4図に示すように、クローン化ウイルス DNAフラグメントは1.3kbベクター配列に結 合しており、そのフラグメントの大きさが増して いることがその存在を示している。レーン1は DORF1を含み、レーン2-9はイムノポジテ イアクローンのDORF1組換えDNAを含む。 レーンMは入サイズマーカー(HindⅡ消化) を含み、レーンWは精製EBV B95-8

置を決定した。すべての配列は、発現ベクター中 での翻訳方向と同じ方向を有するオープンリーデ イングフレームの1部であつた。しかしながら、 1つのコピー上で一緒にアラインメントを行なつ た所、これらの配列は、13bpの重複DNAを含 むフラグメントを2個有する3つの異なるオープ ンリーディングフレームの1部であることが判つ た(第6図)。これらの領域からすでに同定され ているDNA配列の位置及び特徴付けが行なわれ ているcDNA [Bodescot, H. et al., (198 4) supra; Bodescot, M. et al., (1986) supra ; Speck, S. et al., (1986) supra ; Sample, J.et al., (1986) supra] 並びに 抗原をコードする配列は第6図に示されている。 そして注目すべきことは、本発明によつて明らか にされたDNA配列は、これらの遺伝子の1部と して知られていなかつたことである。

第 6 図に示すように、第 1 、第 2 及び 第 3 フレームは、第 1 図の スタンダードマツブで 左から右へ示した 3 つの可能なリーディングフレームを表

B a m H I W を含む。第 5 図は、 B a m H I W を含む。第 5 図は、 B a m H I W m ³² P - ラベル化 8 0 3 b p P V u II サブフラグメントでプローブした第 4 図のゲルのサザンブロットのオートラジオグラフを示す。 三つのクローン、 C L A 、 C L B 及び C L C 並びにB a m H I W 自身に、ポジティブハイブリダイゼーションが 観察された。

実施例3

BamH!W抗原発現フラグメントのDNA配列分析

PORF1への挿入体をBamHIフラグメントとしてベクターM13mp10 (Amersham) にサプクローン化し、ジデオキシ法によつて配列分析を行なつた。DNA配列データを、Hicrogenie (トレードマーク) ソフトウエアパツケージ及びGcnbank (トレードマーク) データベースを用いて分析した。これらのデータから得られる配列を公知のEBV B95-8配列[8aer ct al...(1984) supra]と比較することによつて、BamHI Wにおけるそれらの配列の正確な位

わしている。神い垂直な線は終止コドンの位置を 示している。前記したように、薄い黒い水平の線 は公知の配列を示している。これらには、本発明 によるDNA配列(A)-(B) が含まれており、また 抗原を有する他の配列 [Dillner, J., et al., 1986) Proc. Natl. Acad. Sci., U. S. A., (83、6641-6645]も含まれている。 白い水平のパーで表わされる配列は抗原をコード しないものと推定されているものである [Dillner, J. et al., (1985) EMBOJ., 4, 1813-1818; Dillner, J., et al., (1986) supra]. W1 E W 2 は c D N A のラージファミリーに存在するエクソン を示す「Bodescot, H., et al., (1984) supra; Speck, S. & Stroninger, J. (1985) supra; Sample J., et al., (1986) supra]. 第6図のベースラインは、実施例2でクローン CLA-CLDのプロープとして用いた Bam HI Wの803bpサブフラグメント(塩 **基数2269-3072)を作成するのに使用し**

たPVuI部位の位置を示す。このプローフは、 前記したエクソンW1とW2の配列を含まないも のである。

上記実施例で用いた方法は、EMBO Journal 7、4、pp 1 1 9 1 - 1 1 9 6 (1988) に記載されている。

本発明に関連して、BamH11 W反復領領域の EBV ORF、及びin vivo で抗域を代子を見り、及びin vivo で領域をデートを見りの領域をデートを見いの領域をデータをを受けるとのアプグメンンテートを得るのアグメンンテートを提出といるのでのである。に、アクノスのあるは、アクノスのあるは、アクノスをもののが強力をできるののが強力をできるとののが強力をできませんが、では、アクローンを対しているのは、アクローンを対対には、アクローンを対対には、アクローンを対対には、アクローンを対対になって、ないのでは、アクローンを対対には、アクローンを対対には、アクローンを対対には、アクローンを対対は、アクローンを対対は、アクローンを対対は、アクローンを対対は、アクローンを対対は、アクローンを対対は、アクローンを対対は、アクローンを対対は、アクローンを対し、アクローンでは、アクローンを対し、アクローンを対しているというには、アクローンとは、アクローンとは、アクローンとは、アクローンのでは、アクローンとは、アクローン

al., (1984、1986) supra; Speck, S.とStrominger J., (1985) supra; Speck et al., (1986) supra; Sample, J. et al., (1986) supra] から判断して、これらのクローンのいくつかは周じ蛋白質の異なる部分をコードしている可能性がある。

て、in vivo で発現され抗原性を示すと考えられる 7 個の D N A フラグメントを単離した。 更に他の D N A フラグメントも間様に単離した。 ここで同定した 7 個の E B V 抗原は、 E B V 抗原は、 E B V 抗原と、 またサンプル中の E B V に対する抗体の存在を診断するのに使用できるものである。 これらの 抗原の存在、 レベル及 びクラスと E B V による 病 型との 関係を 明らかにするには、 詳細な 臨床 研究が必要である。

第 6 図に示すように、 E B V B 9 5 - 8 の大きな内部反復配列は、ウイルスにおいて約 1 1 回線返されており、その結果、上記で示した配列(A)-(D) のいすれをもそれと同定するのが不可能である。しかしながら、 C L B と C L D の終止コドンが有効に作用するとすれば、 C L A からC L D のすべてから得られるフラグメントは異なる O R F の 1 部である。 3 個の異なるリーデのングフレームが使用されている。 E B V 領域でのスプライシングの今日の知識 [Bodescot, H., et

に発現される場合もあり、時々発現される場合も あり、また快して発現されない場合もあると言え る

前記した実験デザインからして、、CLL組織の1部の現であるグルーでの細胞が他のがあるいがからしてを含現が他ののがあるしたを含現される発明で使かるした。 本発明で使かる ロー・スを発明では、本発明ではないのののはないののはは、本発明ではないののはないが、ないなどには、ないなどには、ないののははいいののははないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないののには、ないの

上記の実験から、伝染性単核症ではEBVによってDNA配列 (A)-(G) が発現されていることが示される。EBVを保持したセルラインB95-

B、Raji及びNamalwa から調製したRNAのノー ザンプロツト分析では、ラージ内部反復配列の P v u II - B a m H I サブフラグメントあるいは CLFで見られる配列と相同性を示す転写体は検 出できなかつた。また、EBV B95-8セル ラインのポリアデニル化細胞質RNAから調製し たCDNAバンクからは、この領域の配列を含む クローンは単雄されなかつた。このEBVB95 - 8 セルラインは H. Perricavdetから入手したも のである [Bodescot et al., (1984、198 6) supra 〕。これらの結果を全て考え合わせる と、本発明のウイルス配列CL-A-CLD及び CLFは1つのグループの細胞又は組織で発現さ れ、EBVの発現を調節する同様の一進の囚子を セルカルチャーは持つていないことが判る。ある いはまた、本発明の配列を発現するEBV株は血 精源として対象となつた人々に広く存在している ことを示している。EBV B95~8DNAを 保持しているセルラインのmRNAを用いた同様 の実験では、CLEとCLGの商者が対応する

反復配列自体がいくつかの異なる蛋白質をコード していることを示している。 7 個の発現エピドー ブが、それぞれ独立の伝染性単核症において同時 に存在していることが示された。これらの

(CLA-CLD及びCLF)エピドープの多くは、これまで報告されておらず、また本発明で用いた如き実験に基いたものではない。本発明の実験はin vivo での状態を反映したものである。

木発明により調製されるDNA配列(A)-(G)はいずれも、既に報告されているEBNA蛋白質の1部をコードするものではなく、CLA-CLDは、内部反投領域の主要部にわたるスプライスされた転写体に対応するこれまでに報告されているCDNAのいずれにも存在しない。B95-8RNAから調製されたCDNAパンクではそれらが検出されなかつたことは、それらはヒトの体内でin vivo で発現されるものであつて、セルカルチャーでの条件下では発現されないことを示している。

4. 図面の簡単な説明

CDNA配列をポジティブに同定した。

上記したように、本発明に従つて、 E. coli発現スクターを用いてラージEBV B95~8ゲノムDNAバンクを調製し、ヒトIA 息密 おして 将られる イムノボジティブクローンを、 W 領域 アクロースクリーニングした。 ウィルスラーブ の配列 も含む イムノボジティブクローン 3 個を選択した。

第 1 図の A は、 E B V B 9 5 - 8 ゲノムを直 線的に示す。

第1図のBは、EBV B95-8ウイルスゲ ノムのBam H I 制限酵素地図を直線的に示す。 第2図は、クローン化EBV DNAフラグメ ントを含む発現ベクターpORF1を示す。

第3回は、EBV B95-8ゲノムパンクの スクリーニングによつて単聞されるイムノボジテ イプクローンを示す写真である。

第 4 図は、イムノボジティブクローンから得られるプラスミド D N A を示す写真である。

第5図は、第4図のプラスミドDNAのサザン プロツト分析の結果を示す写真である。

第6図は、EBV 895-8 Bam H I Wフラグメントのシングルコピーを示す。

第 7 図は、EBV B95-8 ゲノムを直線的 に示す。

代理人 浅 村 皓

第1頁の続き									
®Int.Cl.⁵					識別記号	7	庁内整理番号		
С	07	K	7/06 7/08 7/10 15/12		ZNA	Z	8318-4H 8318-4H 8318-4H 8318-4H		
С	12	N	1/20 15/38			G	8515-4B		
Ğ //(C		777CPC	21/02 33/569 1/20 1:19) 21/02 1:19)			C G	6712-4B 7906-2G		

②発 明 者 ダーモット フェリッ アイルランド国 ガルウエイ (番地なし), ユニバーシイ クス ジェラード ウ テイ カレッジ ガルウエイ, デバートメント オブ マ オールズ イクロバイオロジイ気付

手統補正警(自発) 二年 1月18日

特許庁長官殿

1. 事件の表示

昭和63 年初許顯第 284820号

2. 発明の名称

抗原の同定法、そのアッセイ法 及びそれを含むワクチン

3. 補正をする岩

『炉との関係 特許出願人

住 所 氏 名 (名 称)

ジー ジーン ガルウエイ リミテッド

4.代理人

居 所

〒100 東京都千代田区大手町二丁目2番1号 新 大 手 町 ビ ル ヂ ン グ 3 3 1 個 話 (211) 3 6 5 1 (代 皮)

氏 名

(6669) 洩 村

皓

5. 補正命令の日付

阳 fn 年

6. 稲正により増加する発明の数

7. 稲正の対象

明細書

1, 1, 18

8. 補正の内容 別紙のとおり

明細書の浄書(内容に変更なし)

手統 抽 正 枳(方式)

平成 1 年 3 月 27 日

特許庁長官殿

1. 事件の設示 昭和 63 年 特許原第 284820 号

2. 発明の名称

抗原の同定法、そのアッセイ法及びそれを含むワクチン

3. 相正をする搾物類人 ま作との関係 氏名(名称)

ジー ジーン ガルウェイ リミテッド

4. 代 瑪 人

展 所 〒100東京都千代田区大手町二丁目2前1号 斯大 手 町 ピ ル チ ン ク 331 電 路 (211) 3651 (代 裏) 氏 名 (6569) 井理士 ※翌 オナ 6番ボー・・・・

5. 袖正命令の日付 平成 1年 3月 7日

6. 補正により増加する請求項の数

7. 初正の対象

願書の特許出願人の住所の欄

顕書の特許出願人(法人)代表者氏名の個

代理権を証明する書面

8. 補正の内容 別紙のとおり

額書に最初に添付した図面の浄書(内容に変更なし)