Probabilidade (PPGECD00000001)

Programa de Pós-Graduação em Estatística e Ciência de Dados (PGECD)

Sessão 5

Raydonal Ospina

Departamento de Estatística Universidade Federal da Bahia Salvador/BA

Variável aleatória

O conceito de variável aleatória (v.a.) é um mecanismo que permite relacionar qualquer resultado de um experimento aleatório com uma medida numérica.

Definição 1

Sejam (Ω,\mathfrak{F}) e (Ω',\mathfrak{F}') espaços mensuráveis. Uma aplicação $X:\Omega\to\Omega'$ se diz $\mathfrak{F}-\mathfrak{F}'$ -mensurável se para cada $A\in\mathfrak{F}'$, a imagem inversa

$$X^{-1}(A) = \{\omega : X(\omega) \in A\} \in \mathfrak{F}.$$

Definição 2

Se $(\Omega',\mathfrak{F}')=(\overline{\mathbb{R}},\mathfrak{B})$ então falamos de funções reais mensuráveis. Se o par $(\Omega',\mathfrak{F}')=(\overline{\mathbb{R}},\overline{\mathfrak{B}})$, em que os reais estendidos são definidos por $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,\infty\}$ e a σ -álgebra associada a $\overline{\mathbb{R}}$ é

$$\overline{\mathfrak{B}}:=\left\{B,B\cup\left\{\infty\right\},B\cup\left\{-\infty,\infty\right\}:B\in\mathfrak{B}\right\},$$

em que $\mathfrak B$ é a σ -álgebra de Borel nos reais, então falamos de funções numéricas mensuráveis.

Definição 3 (Variável aleatória)

Se $(\Omega, \mathfrak{F}, P)$ é um espaço de probabilidade e (Ω', \mathfrak{F}') é um espaço mensurável, então uma função $X: \Omega \to \Omega'$ chama-se (Ω', \mathfrak{F}') -variável aleatória (v.a.) se X é uma função $\mathfrak{F} - \mathfrak{F}'$ -mensurável.

Proposição 1

Seja (Ω, \mathfrak{F}) um espaço mensurável (por exemplo, um espaço de probabilidade) e seja X uma função numérica (assume valores reais). As seguintes afirmações são equivalentes:

- \bigcirc $X \in \mathfrak{F} \mathfrak{B}$ -mensurável
- ② Para cada número real c, o conjunto $\{\omega \in \Omega : X(\omega) > c\} \in \mathfrak{F}$.
- **3** Para cada número real c, o conjunto $\{\omega \in \Omega : X(\omega) \geq c\} \in \mathfrak{F}$.
- **1** Para cada número real c, o conjunto $\{\omega \in \Omega : X(\omega) < c\} \in \mathfrak{F}$.
- Para cada número real c, o conjunto {ω ∈ Ω : X(ω) ≤ c} ∈ S. Além disso, quaisquer das afirmações acima implicam em:
- **1** Para cada número real c, o conjunto $\{\omega \in \Omega : X(\omega) = c\} \in \mathfrak{F}$.

Demonstração.

A prova da proposição anterior é relativamente simples.Lembre sempre de olhar para as imagens inversas dos conjuntos e mostre que $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4) \Rightarrow 5) \Rightarrow 6) \Rightarrow 1)$.

Resolva como exercício.

Exemplo 1

Seja (Ω, \mathcal{F}, P) um espaço de probabilidade em que $\mathcal{F} = \mathcal{B}$ e seja $A \in \mathfrak{F}$ fixo. A função indicadora de A, $\mathbf{1}_A$ definida por

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, \text{ se } \omega \in A \\ 0, \text{ se } \omega \notin A \end{cases}$$

é uma função $\mathfrak{F}-\mathfrak{B}$ mensurável, i.e., $\mathbf{1}_{A}\left(\omega\right)$ é uma variável aleatória. De fato, para $a\in\mathbb{R}$

$$\mathbf{1}_{A}^{-1}\left((a,\infty)\right) = \left\{\omega : \mathbf{1}_{A}\left(\omega\right) > a\right\} = \begin{cases} \Omega, & \text{se } a < 0, \\ A, & \text{se } 0 \leq a \leq 1, \\ \emptyset, & \text{se } a > 1. \end{cases}$$

De forma geral, queremos mostrar que $\mathbf{1}_A$ é uma variável aleatória, ou seja, para todo Boreliano $B \in \mathcal{B}(\mathbb{R})$, temos $\mathbf{1}_A^{-1}(B) \in \mathcal{F}$. Note que a função indicadora $\mathbf{1}_A$ assume apenas dois valores: 0 e 1. Portanto, sua *imagem* é o conjunto $\{0,1\}$.

4/65

Raydonal Ospina (UFBA) Probabilidade

Agora vamos a analisar as imagens inversas (pré-imagem) $\mathbf{1}_A^{-1}(B)$ para um conjunto boreliano arbitrário $B \subset \mathbb{R}$. Como $\mathbf{1}_A$ só assume os valores 0 e 1, a pré-imagem $\mathbf{1}_A^{-1}(B)$ dependerá de quais desses valores pertencem a B. Podemos considerar quatro casos:

Se B não contém 0 nem 1:

$$\mathbf{1}_{A}^{-1}(B)=\emptyset\in\mathcal{F}$$

Pois nenhum ω em Ω satisfaz $\mathbf{1}_A(\omega) \in B$.

2 Se B contém apenas 0:

$$\mathbf{1}_A^{-1}(B) = \{\omega \in \Omega : \mathbf{1}_A(\omega) = 0\} = \Omega \setminus A \in \mathcal{F}$$

Porque $\Omega \setminus A$ é o complemento de A em Ω , e complementos de conjuntos em \mathcal{F} pertencem a \mathcal{F} .

Se B contém apenas 1:

$$\mathbf{1}_{A}^{-1}(B) = \{\omega \in \Omega : \mathbf{1}_{A}(\omega) = 1\} = A \in \mathcal{F}$$

Se B contém 0 e 1:

$$\mathbf{1}_{A}^{-1}(B) = \{\omega \in \Omega : \mathbf{1}_{A}(\omega) \in B\} = \Omega \in \mathcal{F}$$

Note que, em todos os casos, $\mathbf{1}_A^{-1}(B)$ pertence à sigma-álgebra $\mathcal F$ e em particular o resultado é válida para o Boreliano $B=(a,\infty)$, o que prova o resultado anterior.

Variáveis aleatória real

Motivação

Suponha que uma moeda é lançada cinco vezes. Qual é o número de caras? Esta quantidade é o que tradicionalmente tem sido chamada de *variável aleatória*. Intuitivamente, é uma variável porque seus valores variam, dependendo da sequência de lançamentos da moeda realizada; o adjetivo "aleatória" é usado para enfatizar que o seu valor é de certo modo incerto. Formalmente, contudo, uma variável aleatória não é nem "aleatória" nem é uma variável.

Definição 4

Seja (Ω, \mathcal{A}, P) um espaço de probabilidade. Uma função $X: \Omega \to R$ é chamada de variável aleatória se para todo evento Boreliano B, $X^{-1}(B) \in \mathcal{A}$.

Por definição, temos que $X^{-1}(B)=\{\omega\in\Omega:X(\omega)\in B\}$ é o conjunto de elementos do espaço amostral cuja imagem segundo X está em B.

O próximo teorema prova que para determinar se uma dada função real X é uma variável aleatória só precisamos checar que a imagem inversa de intervalos da forma $(-\infty, x]$ pertence à σ -álgebra \mathcal{A} .

Teorema 1

Seja (Ω, \mathcal{A}) um espaço mensurável. Uma função real $X:\Omega \to R$ é uma variável aleatória se e somente se

$$X^{-1}((-\infty,\lambda]) = \{w : X(w) \le \lambda\} \in \mathcal{A}, \forall \lambda \in R.$$

Considere os seguintes Lemas para a sua demonstração

Lema 1

Seja \mathcal{B} a σ -álgebra de Borel, então $X^{-1}(\mathcal{B}) = \{X^{-1}(\mathcal{B}) : \mathcal{B} \in \mathcal{B}\}$ é uma σ -álgebra de eventos de Ω .

Prova do lema 1.

Considere os três postulados para uma σ -álgebra:

- (i) $\Omega \in X^{-1}(\mathcal{B})$. Como $R \in \mathcal{B}$, nós temos $X^{-1}(R) = \Omega \in X^{-1}(\mathcal{B})$.
- (ii) Se $A \in X^{-1}(\mathcal{B})$, então $A^c \in X^{-1}(\mathcal{B})$. Suponha que $A \in X^{-1}(\mathcal{B})$, então existe $A' \in \mathcal{B}$ tal que $A = X^{-1}(A')$. Como \mathcal{B} é uma σ -álgebra, temos que $(A')^c \in \mathcal{B}$. Logo, $X^{-1}((A')^c) \in X^{-1}(\mathcal{B})$. Como $X^{-1}((A')^c) = (X^{-1}(A'))^c$, temos que $A^c \in X^{-1}(\mathcal{B})$.
- (iii) Se $A_1,A_2,\ldots\in X^{-1}(\mathcal{B})$, então $\cup_{i=1}^\infty A_i\in X^{-1}(\mathcal{B})$. Suponha que $A_1,A_2,\ldots\in X^{-1}(\mathcal{B})$, então existem $A_1',A_2',\ldots\in\mathcal{B}$ tais que $A_i=X^{-1}(A_i')$ para $i\geq 1$. Como \mathcal{B} é uma σ -álgebra, temos que $\cup_{i=1}^\infty A_i'\in\mathcal{B}$. Logo, $X^{-1}(\cup_{i=1}^\infty A_i')\in X^{-1}(\mathcal{B})$. Como $\cup_{i=1}^\infty X^{-1}(A_i')=X^{-1}(\cup_{i=1}^\infty A_i')$, temos que $\cup_{i=1}^\infty A_i\in X^{-1}(\mathcal{B})$.

Dado qualquer classe de conjuntos \mathcal{C} , denotamos por $\sigma(\mathcal{C})$ a menor σ -álgebra contendo \mathcal{C} . Desta forma se $\mathcal{B}'=\{(-\infty,\lambda]:\lambda\in R\}$, então $\mathcal{B}=\sigma(\mathcal{B}')$. O próximo lema prova um resultado semelhante ao do lema anterior, porém mais forte.

Lema 2

 $X^{-1}(\mathcal{B})=\sigma(X^{-1}(\mathcal{B}'))$, isto é, a imagem inversa de eventos Borelianos é igual a menor σ -álgebra contendo as imagens inversas dos intervalos da forma $(\infty,\lambda]$, onde $\lambda\in R$.

Prova do lema 2.

De acordo com Lema 1, $X^{-1}(\mathcal{B})$ é uma σ -álgebra. Como $\mathcal{B}'\subseteq\mathcal{B}$, temos que $X^{-1}(\mathcal{B}')\subseteq X^{-1}(\mathcal{B})$. Então, por definição de menor σ -álgebra, temos que

$$\sigma(X^{-1}(\mathcal{B}')) \subseteq X^{-1}(\mathcal{B}).$$

Para provar igualdade, definimos

$$\mathcal{F} = \{B' \subseteq R : X^{-1}(B') \in \sigma(X^{-1}(\mathcal{B}'))\}.$$

É fácil provar que \mathcal{F} é uma σ -álgebra; nós omitimos os detalhes. Por definição, temos que $X^{-1}(\mathcal{F}) \subseteq \sigma(X^{-1}(\mathcal{B}'))$ e $\mathcal{B}' \subseteq \mathcal{F}$. Como \mathcal{F} é uma σ -álgebra, $\mathcal{B} = \sigma(\mathcal{B}') \subseteq \mathcal{F}$. Portanto.

$$X^{-1}(\mathcal{B}) \subseteq X^{-1}(\mathcal{F}) \subseteq \sigma(X^{-1}(\mathcal{B}')).$$

Prova do Teorema 1.

Agora nós podemos provar o teorema 1. Suponha que $X^{-1}(\mathcal{B}')\subseteq\mathcal{A}$. Por definição de menor σ -álgebra,

$$\sigma(X^{-1}(\mathcal{B}')) \subseteq \mathcal{A}.$$

Então, pelo Lema 2, $X^{-1}(\mathcal{B}) \subseteq \mathcal{A}$, o que implica que X é uma variável aleatória.

De forma gera temos a seguinte definição

Definição 5

(Evento aleatório): Seja X uma variável aleatória definida sobre o espaço de probabilidade $(\Omega, \mathfrak{F}, P)$ e com valores num espaço mensurável (Ω', \mathfrak{F}') . Definimos o evento aleatório como o conjunto

$$\{X \in B\} = \{\omega \in \Omega : X(\omega) \in B\}, \quad \textit{para todo } B \in \mathfrak{F}'.$$

em particular, a definição é válida para variáveis aleatórias reais, i.e., quando $(\Omega',\mathfrak{F}')=(\mathbb{R},\mathfrak{B})$.

Exemplo 2

Seja $(\Omega, \mathfrak{F}, P)$ um espaço de probabilidade com $\mathfrak{F} = \mathcal{P}(\Omega)$. Neste caso, qualquer função X a valores reais é uma variável aleatória. Prove!

Exemplo 3

Um dado é lançado ao acaso uma vez. Neste caso o espaço amostral é $\Omega = \{1, 2, 3, 4, 5, 6\}$. Se observamos o número da face obtida no lançamento podemos definir a variável aleatória X como:

$$X: \quad \Omega \quad \rightarrow \quad \mathbb{R}$$
 $\qquad \qquad \omega \quad \mapsto \quad X(\omega) = \omega,$

a qual atribui a cada elemento ω do espaço amostral Ω um número real $X(\omega)$ da seguinte forma

Logo, dizemos que a variável aleatória assume valores em $X = \{1, 2, 3, 4, 5, 6\}$.

Raydonal Ospina (UFBA)

Probabilidade Induzida

Dada uma variável aleatória X, pode-se definir uma probabilidade induzida P_X no espaço mensurável (R,\mathcal{B}) da seguinte maneira: para todo $A \in \mathcal{B}$, definimos $P_X(A) = P(X^{-1}(A))$. Por definição de variável aleatória, tem-se que $X^{-1}(A) \in \mathcal{A}$, então P_X está bem definida. Resta provar que P_X satisfaz os axiomas K1, K2, e K4' de probabilidade:

De forma geral, temos a seguinte definição

Definição 6

(Distribuição da variável aleatória). Seja $X:(\Omega,\mathfrak{F})\to (\Omega',\mathfrak{F}')$ uma aplicação mensurável e seja P uma medida de probabilidade definida sobre Ω . Então a função

$$P_X(B) = P(\{X \in B\}) = P\left(X^{-1}(B)\right) = P\left(\omega \in \Omega : X(\omega) \in B\right),$$

em que $B \in \mathfrak{F}'$, define uma medida de probabilidade sobre Ω' . A medida P_X chama-se medida transportada ou induzida por X ou, simplesmente, a distribuição da variável aleatória X, já o conjunto $\{X \in B\}$ é o evento aleatório.

Axiomas

K1.
$$P_X(A) = P(X^{-1}(A)) \ge 0$$
.

K2.
$$P_X(R) = P(X^{-1}(R)) = P(\Omega) = 1$$
.

K4.' Suponha que A_1, A_2, \dots são eventos Borelianos disjuntos. Então,

$$P_X(\cup_i A_i) = P(X^{-1}(\cup_i A_i)) = P(\cup_i X^{-1}(A_i))$$

= $\sum_i P(X^{-1}(A_i)) = \sum_i P_X(A_i).$

Exemplo 4

$$\begin{cases} a, & \text{se } \omega = 1, \\ b, & \text{se } \omega = 2 \text{ ou } \omega = 3, \end{cases}$$

então, a distribuição P_X de X é dada por: $P_X(\emptyset) = 0$, $P_X(\{a\}) = P(\{1\}) = 1/5$, $P_X(\{b\}) = P(\{2,3\}) = 4/5$ e $P(\Omega') = 1$.

Função de Distribuição Acumulada

Para uma variável aleatória X, uma maneira simples e básica de descrever a probabilidade induzida P_X é utilizando sua função de distribuição acumulada.

Definição 7

A função de distribuição acumulada de uma variável aleatória X, representada por F_X , é definida por

$$F_X(x) = P_X((-\infty, x]), \forall x \in R.$$

Propriedades

A função de distribuição acumulada F_X satisfaz as seguintes propriedades:

F1. Se
$$x \le y$$
, então $F_X(x) \le F_X(y)$. (F é não decrescente)

De fato

$$x \le y \Rightarrow (-\infty, x] \subseteq (-\infty, y]$$

 $\Rightarrow P_X((-\infty, x]) \le P_X((-\infty, y])$
 $\Rightarrow F_X(x) \le F_X(y).$

F2. Se $x_n \downarrow x$, então $F_X(x_n) \downarrow F_X(x)$. (F é continua a direita)

De fato. Se $x_n \downarrow x$, então os eventos $(-\infty, x_n]$ são decrescentes e $\cap_n(-\infty, x_n] = (-\infty, x]$. Logo, pela continuidade da medida de probabilidade, tem-se que $P_X((-\infty, x_n]) \downarrow P((-\infty, x])$, ou seja, $F_X(x_n) \downarrow F_X(x)$.

F3. Se $x_n \downarrow -\infty$, então $F_X(x_n) \downarrow 0$, e se $x_n \uparrow \infty$, então $F_X(x_n) \uparrow 1$. (limitada inferiormente por 0 e limitada superiormente por 1 assintoticamente)

De fato. Se $x_n \downarrow -\infty$, então os eventos $(-\infty, x_n]$ são decrescentes e $\cap_n(-\infty, x_n] = \emptyset$. Logo, pela continuidade da medida de probabilidade, tem-se que $P_X((-\infty, x_n]) \downarrow P(\emptyset)$, ou seja, $F_X(x_n) \downarrow 0$. Similarmente, se $x_n \uparrow \infty$, então os eventos $(-\infty, x_n]$ são crescentes e $\cup_n(-\infty, x_n] = \mathbb{R}$. Logo, pela continuidade da medida de probabilidade, tem-se que $P_X((-\infty, x_n]) \uparrow P(\Omega)$, ou seja, $F_X(x_n) \uparrow 1$.

Teorema 2

Uma função real G satisfaz F1–F3 se e somente se G é uma distribuição de probabilidade acumulada.

Demonstração.

Aprova de que se G for uma distribuição de probabilidade acumulada, então G satisfaz F1-F3 foi dada acima. A prova de que toda função real que satisfaz F1-F3 é uma função de probabilidade acumulada é complexa envolvendo o Teorema da Extensão de Carathéodory. Nós apresentamos aqui um esquema de como a prova é feita. Primeiro define-se $P_X((-\infty, X]) = F_X(x), P_X((x, \infty)) = 1 - F_X(x)$, e $P_X((a, b]) = F_X(b) - F_X(a)$. Com esta definição, considera-se a álgebra formada por união finita de intervalos e prova-se que P_X é σ -aditiva nesta álgebra. Finalmente, aplica-se o Teorema da Extensão de Carathéodory para provar que P_X pode ser estendida para todo evento Boreliano.

Nota 1

Uma função de distribuição pode corresponder a várias variáveis aleatórias no mesmo espaço de probabilidade (Ω, \mathcal{A}, P) . Por exemplo, se X tem uma distribuição normal com parâmetros 0 e 1, então por simetria é fácil ver que -X também distribuição normal com parâmetros 0 e 1. Consequentemente, $F_X = F_{-X}$. No entanto, P(X = -X) = P(X = 0) = 0.

Condição F2 significa que toda função distribuição de probabilidade acumulada F_X é continua à direita. Ainda mais, como F_X é não-decrescente e possui valores entre 0 e 1, pode-se provar que ela tem um número enumerável de descontinuidades do tipo salto. Pela continuidade à direita , o salto no ponto x é igual a

$$F_X(x) - F_X(x^-) = F_X(x) - \lim_{n \to \infty} F(x - \frac{1}{n})$$

$$= P_X((-\infty, x]) - \lim_{n \to \infty} P_X((-\infty, x - \frac{1}{n}])$$

$$= \lim_{n \to \infty} P_X((x - \frac{1}{n}, x]).$$

Como a sequência de eventos $(x - \frac{1}{n}, x]$ é decrescente e $\cap_n(x - \frac{1}{n}, x] = \{x\}$. Temos que $\{x\}$ é Boreliano e

$$P_X(x) = F_X(x) - F_X(x^-).$$

Teorema 3

Seja D o conjunto de pontos de descontinuidade da função de distribuição F. Então, D é enumerável.

Demonstração.

Pela monotonicidade, temos que para todo $x \in \mathbb{R}$, $F(x^-) \le F(x) \le F(x^+)$. Logo, $x \in D$ se, e somente se, $F(x^+) > F(x^-)$. Para $n = 1, 2, 3, \ldots$ seja

$$A_n = \{x : F(x^+) - F(x^-) > \frac{1}{n}\}.$$

Então, $D = \bigcup_{n=1}^{\infty} A_n$. Vamos verificar que todo A_n contém menos que n pontos e, portanto, é finito. Dessa forma, D será enumerável.

Por absurdo, suponha que exista A_n que contém n pontos. Assim, $A_n = \{x_1, x_2, \dots, x_n\}$, onde $x_1 < x_2 < \dots < x_n$ e

$$0 \le F(x_1^-) \le F(x_1^+) \le F(x_2^-) \le F(x_2^+) \le \cdots$$
$$\cdots \le F(x_n^-) \le F(x_n^+) \le 1.$$

Então, temos $\sum_{k=1}^n [F(x_k^+) - F(x_k^-)] \le 1$. Mas por definição do conjunto A_n , temos que $F(x_i^+) - F(x_i^-) > \frac{1}{n}$ para todo $x_i \in A_n$. Portanto, $\sum_{k=1}^n [F(x_k^+) - F(x_k^-)] > n \times \frac{1}{n} = 1$, absurdo. Logo, A_n contém menos que n pontos.

Exemplo 5

Suponhamos que se atira ao acaso uma moeda corrente três vezes consecutivas. Neste caso $\Omega = \{\textit{Cara}, \textit{Coroa}\} \times \{\textit{Cara}, \textit{Coroa}\} \times \{\textit{Cara}, \textit{Coroa}\}$. Definimos

X = "número de caras obtidas".

Note que, $X = \{0, 1, 2, 3\}$. Então, a função de distribuição F_X da variável aleatória X está dada por

Exercício 1

Da definição de função de distribuição podem ser obtidas as seguintes propriedades:

2
$$P(a \le X \le b) = F(b) - F(a^-)$$
.

3
$$P(a < X \le b) = F(b) - F(a)$$
.

1
$$P(X = a) = F(a) - F(a^{-})$$
 (deduz-se então que F é contínua em a , se e somente se, $P(X = a) = 0$).

Se P(a < X < b) = 0 então F é constante sobre o intervalo (a, b).

Tipos de Variável Aleatória

Definição

Raydonal Ospina (UFBA)

Existem três tipos de variáveis aleatórias:

• **Discreta.** Uma variável aleatória X é discreta se assume um número enumerável de valores, ou seja, se existe um conjunto enumerável $\{x_1, x_2, \ldots\} \subseteq R$ tal que $X(w) \in \{x_1, x_2, \ldots\}, \forall w \in \Omega$. A função $p(x_i)$ definida por $p(x_i) = P_X(\{x_i\}), i = 1, 2, \ldots$ e p(x) = 0 para $x \notin \{x_1, x_2, \ldots\}$, é chamada de função probabilidade de X. Note que neste caso, temos

$$F_X(x) = \sum_{i:x_i \leq x} p(x_i).$$

• Contínua. Uma variável aleatória X é contínua se existe uma função $f_X(x) \geq 0$ que é Riemman integrável tal que

$$F_X(x) = \int_{-\infty}^x f_X(t) dt, \forall x \in R.$$

Neste caso, a função f_X é chamada de função densidade de probabilidade de X.

 Singular. Uma variável aleatória X é singular se F_X é uma função contínua cujos pontos de crescimento formam um conjunto de comprimento (medida de Lebesgue) nulo.

21/65

Mais adiante veremos que pode-se decompor qualquer função de distribuição de probabilidade acumulada F_X na soma de no máximo três funções de distribuição de probabilidade acumuladas, sendo uma discreta, uma contínua e outra singular.

Nota 2

Para o caso de funções limitadas, se f é uma função definida num intervalo $[a,b] \subset \mathbb{R}$ e $\mathcal{P}: a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$ é uma partição arbitrária de [a,b]. Dizemos que a função f é Riemann integrável no intervalo [a,b], se existir (e for finito) o limite seguinte: $\lim_{|\mathcal{P}| \to 0} \sum_{i=1}^{n} f(\epsilon_i) \Delta x_i$, independentemente da partição \mathcal{P} do intervalo [a,b], ou de como os pontos ϵ_i pertencentes aos subintervalos $[x_{i-1},x_i]$ são escolhidos, em que $|\mathcal{P}|$ é o comprimento do maior intervalo contido na partição \mathcal{P} e $\Delta x_i = x_i - x_{i-1}$.

Variável Aleatória Discreta

- Se uma variável aleatória é discreta, então pode-se definir uma função de probabilidade p de modo que p(x_i) = P_X({x_i}), i = 1, 2, ..., onde X ⊆ {x₁, x₂, ...} e p(x) = 0 para x ∉ {x₁, x₂, ...}. Toda função de probabilidade é uma função dos reais R e assume valores entre 0 e 1, sendo positiva para um número enumerável de pontos e satisfaz a seguinte propriedade ∑_i p(x_i) = 1.
- Reciprocamente, dada uma função $p: R \to [0,1]$, onde p é positiva para um número enumerável de pontos $\{x_1, x_2, \ldots\}$ e satisfaz $\sum_i p(x_i) = 1$, uma função P definida nos eventos Borelianos de modo que $P(A) = \sum_{x_i \in A} p(x_i)$, $\forall A \in \mathcal{B}$ é uma medida de probabilidade em (R, \mathcal{B}) (verifique os axiomas de Kolmogorov!). Logo, a distribuição de uma variável aleatória discreta X pode ser determinada tanto pela função de distribuição acumulada F_X ou pela sua função de probabilidade p.

Exemplo 6

Consideremos a variável aleatória X que assume os valores 1, 2 e 3, com probabilidades 0,3, 0,5 e 0,2 respectivamente. Então a função de probabilidade de X é

$$p(x) = \begin{cases} 0, 3 & \text{se } x = 1, \\ 0, 5 & \text{se } x = 2, \\ 0, 2 & \text{se } x = 3, \\ 0 & \text{caso contrário.} \end{cases}$$

cujo gráfico é indicado na Figura 1.

Raydonal Ospina (UFBA) Probabilidade 23/65

Variável Aleatória Contínua

Figura: Representação gráfica da função de probabilidade p(x).

Variável Aleatória Contínua

Se uma variável aleatória é (absolutamente) contínua, então existe uma função $f_X(x) \geq 0$ tal que $F_X(x) = \int_{-\infty}^x f_X(t)dt$. Deste modo, F_X é contínua e $f_X(x) = F_X'(x)$, exceto num conjunto de medida de Lebesgue nula. Uma função $f(x) \geq 0$ é densidade de alguma variável aleatória se e somente se, $\int_{-\infty}^{\infty} f(x)dx = 1$, já que neste caso é fácil provar que a função F definida por $\int_{-\infty}^x f(t)dt$ satisfaz as condições F1, F2, e F3, e portanto, pelo Teorema 2 F é uma função de distribuição acumulada. Logo, a distribuição de uma variável aleatória contínua F0 pode ser determinada tanto pela função de distribuição acumulada F1 ou pela sua função de densidade F2.

Uma variável aleatória X tem densidade se F_X é a integral (de Lebesgue) de sua derivada; sendo neste caso a derivada de F_X uma função densidade para X. Este fato pode ser provado utilizando argumentos de Teoria da Medida. Sem recorrer a argumentos envolvendo Teoria da Medida, em quase todos os casos encontrados na prática, uma variável aleatória X tem densidade se F_X é (i) contínua e (ii) derivável por partes, ou seja, se F_X é derivável no interior de um número finito ou enumerável de intervalos fechados cuja união é a reta R.

No gráfico da Figura 2 podemos observar a função de distribuição representada como a área embaixo da curva da função de densidade (painel esquerdo) e como uma função nos valores x (painel direito).

Figura: Representação gráfica de f(x) e F(x).

Das propriedades da F(x) pode-se ver que

$$2(\Delta x)f(x) \approx F(x + \Delta x) - F(x - \Delta x) = P(x - \Delta x < X \le x + \Delta x)$$

isto é, a probabilidade de que X esteja num intervalo de comprimento pequeno ao redor de x é igual a f(x) pelo comprimento do intervalo.

Exemplo 7

Por exemplo, considere

$$F_X(x) = \begin{cases} 0 & \text{se } x < 0, \\ x & \text{se } 0 \le x < 1, \\ 1 & \text{se } x \ge 1. \end{cases}$$

Então X tem densidade pois F_X é contínua e derivável em todos os pontos da reta exceto em $\{0,1\}$.

Exemplo 8

Seja X uma variável aleatória contínua cuja função de distribuição é dada por:

$$F(x) = \begin{cases} 0 & \text{se } x < 0, \\ x & \text{se } 0 \le x < 1, \\ 1 & \text{se } x \ge 1. \end{cases} \quad f(x) = \begin{cases} 1 & \text{se } 0 \le x \le 1, \\ 0 & \text{caso contrário} \end{cases}$$

é uma função de densidade para X.

Figura: Representação gráfica de f(x) e F(x).

Variável Aleatória Singular

Uma variável aleatória singular é uma variável aleatória ("patológica") cuja função de distribuição acumulada é contínua, mas não é absolutamente contínua em relação à medida de Lebesgue (λ) (comprimento dos intervalos), e cuja distribuição não possui uma parte discreta (não atribui massa de probabilidade a pontos isolados). Em outras

palavras, a função de distribuição aumenta apenas em um conjunto de medida de Lebesgue zero. Formalmente, X é chamada de $singular^1$ se a medida de probabilidade P_X induzida por X satisfaz singularidade em relação à medida de Lebesgue, i.e.,

$$P_X \perp \lambda$$

Isso significa que existe um conjunto $S \subset \mathbb{R}$ tal que:

- $P_X(S) = 1$ (toda a massa de probabilidade está em S).
- $\lambda(S) = 0$ (o conjunto S tem medida de Lebesgue zero).

Em outras palavras, a variável aleatória X assume valores em um conjunto S que é "invisível" para a medida de Lebesgue, já que S tem medida zero sob λ .

¹Duas medidas μ e ν definidas em um espaço mensurável são chamadas de **singulares entre si** (denotado por $\mu \perp \nu$) se existe um conjunto mensurável S tal que: $\mu(S) = 0$ e $\nu(S^c) = 0$, onde S^c é o complemento de S em relação ao espaço de medida. Isso significa que as medidas μ e ν estão concentradas em conjuntos disjuntos, ou seja, não "sobreoõem"em nenhum conjunto com medida positiva.

Exemplo 9 (Função de distribuição de Cantor)

Vamos analisar um exemplo de uma função de distribuição de uma variável aleatória singular conhecida como *função de Cantor*. Esta função é contínua, derivável em todo ponto exceto em um conjunto de medida de Lebesgue nula, mas não é absolutamente contínua. Seja F(x) = 0 se x < 0 e F(x) = 1 se x > 1. Continuemos por etapas:

- Etapa 1: Seja $F(x) = \frac{1}{2}$ para $x \in (1/3, 2/3)$. Então, o valor de F neste intervalo é igual a média dos valores de F nos intervalos vizinhos em que F já está definida: $(-\infty, 0)$ e $(1, \infty)$. F continua sem definição em dois intervalos: [0, 1/3] e [2/3, 1] de comprimento total 2/3.
- Etapa n+1: No terço central de cada um dos 2^n intervalos restantes após a etapa n, seja F(x) igual à média dos valores nos dois intervalos vizinhos onde F já está definida. Por exemplo, na etapa 2 defina F(x) = 1/4 para $x \in (1/9, 2/9)$ e F(x) = 3/4 para $x \in (1/9, 8/9)$. Restarão então 2^{n+1} intervalos (o dobro do número restante após a etapa n), de comprimento total $(2/3)^{n+1}$, em que F ainda não estará definida.

Figura: Função de distribuição de Cantor.

Então definimos F por indução em um número enumerável de intervalos abertos, cujo complementar (ou seja, o conjunto onde F ainda não está definida) é o conjunto de Cantor, um conjunto de comprimento 0.

Podemos estender a definição de F até o conjunto de Cantor C por continuidade: se $x \in C$, a diferença entre os valores de F nos dois intervalos vizinhos após a etapa n é $1/2^n$.

Note que F é monótona não decrescente em C^c . Se a_n é o valor de F no intervalo vizinho esquerdo após a etapa n, e b_n é o valor no intervalo vizinho direito após a etapa n, então, $a_n \uparrow$, $b_n \downarrow$ e $b_n - a_n \downarrow$ 0.

Seja F(x) o limite comum de a_n e b_n . Deste modo F está definida em toda reta e é de fato uma função de distribuição (verifique!).

Seja X uma variável aleatória cuja função de distribuição é F, a função de Cantor. Então X não é discreta e nem contínua pois X não tem densidade F'(x)=0 em C^c e $\int_{-\infty}^x F'(t)dt=0$, ou seja, F não é a integral de sua derivada, ou melhor, não é absolutamente contínua.

Como F é contínua e F'(x)=0 para $x\in C^c$ e C tem comprimento nulo, temos que X é uma variável aleatória singular.

Decomposição de uma Variável Aleatória

Seja X uma variável aleatória qualquer e seja F sua função de distribuição. Se $J = \{x_1, x_2, \ldots\}$ é o conjunto dos pontos de salto de F (se F for contínua $J = \emptyset$), indiquemos com p_i o salto no ponto x_i , ou seja,

$$p_i = F(x_i) - F(x_i^-).$$

Definimos $F_d(x) = \sum_{i:x_i \leq x} p_i$. F_d é uma função degrau não-decrescente: a *parte discreta* de F. Como uma função monótona possui derivada em quase toda parte, seja

$$f(x) = \left\{ \begin{array}{ll} F'(x) & \text{se } F \text{ \'e diferenci\'avel em } x, \\ 0 & \text{se } F \text{ n\~ao \'e diferenci\'avel em } x. \end{array} \right.$$

Seja $F_{ac}(x)=\int_{-\infty}^x f(t)dt$. F_{ac} é não-decrescente, pois a integral indefinida de uma função nao-negativa ($f\geq 0$ porque F é não-decrescente). A sua derivada é igual a f em quase toda parte, de modo que F_{ac} é absolutamente contínua: F_{ac} é a parte absolutamente contínua de F.

Seja $F_s(x) = F(x) - F_d(x) - F_{ac}(x)$. F_s é contínua pois é a diferença de duas funções contínuas. A derivada de F_s é igual a zero em quase toda parte, porque F e F_{ac} têm a mesma derivada f, e F_d possui derivada zero em quase toda parte. Pode-se provar que F_s também é não-decrescente, mas está fora do escopo deste curso. F_s é a parte singular de F.

Raydonal Ospina (UFBA) Probabilidade 32/65

Esta discussão nos dá um método de decompor F em suas partes discreta, absolutamente contínua e singular. Note também que o resultado não diz que a F_{ac} , $F_d(x)$ e $F_{ac}(x)$ sejam funções de distribuição, somente propriedades próximas as de uma função de distribuição, i.e. precisam de normalização.

Exemplo 10

Suponha que $X \sim U[0, 1]$ e Y = min(X, 1/2). Note que

$$F_{Y}(x) = \begin{cases} 0 & \text{se } x < 0, \\ x & \text{se } 0 \le x < 1/2, \\ 1 & \text{se } x \ge 1/2. \end{cases}$$

 F_Y tem apenas um salto em x=1/2 e $p_1=1/2$. Logo, $F_d(x)=0$ se x<1/2 e $F_d(x)=1/2$ se $x\ge 1/2$. Diferenciando F_Y , temos

$$F'_{Y}(x) = \begin{cases} 0 & \text{se } x < 0 \text{ ou } x > 1/2, \\ 1 & \text{se } 0 < x < 1/2. \end{cases}$$

Logo, por definição,

$$f(x) = \begin{cases} 0 & \text{se } x \le 0 \text{ ou } x \ge 1/2, \\ 1 & \text{se } 0 < x < 1/2. \end{cases}$$

Portanto,

$$F_{ac}(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{se } x < 0, \\ x & \text{se } 0 \le x \le 1/2, \\ 1/2 & \text{se } x > 1/2. \end{cases}$$

Como $F_d + F_{ac} = F_Y$, temos que $F_s(x) = 0$, $\forall x \in \mathbb{R}$ e não há parte singular. Uma variável aleatória que possui apenas partes discreta e absolutamente contínua é conhecida como uma variável aleatória mista. Na prática, é pouco provável que surja uma variável aleatória singular. Portanto, quase todas as variáveis aleatórias são discretas, contínuas ou mistas.

O resultado anterior motiva o seguinte teorema

Teorema de decomposição de Jordan

Toda função de distribuição pode ser expressa como uma combinação lineal da forma

$$F(x) = \alpha F_d(x) + \beta F_{ac}(x)$$

para $\alpha, \beta \leq 0$ e $\alpha + \beta = 1$ em que F_d e F_{ac} são genuínas funções de distribuição

Sobre mesmas hipóteses, i.e., seja X uma variável aleatória qualquer e seja F sua função de distribuição. Se $J = \{x_1, x_2, \dots\}$ é o conjunto dos pontos de salto de F (se Ffor continua $J = \emptyset$), indiquemos com p_i o salto no ponto x_i e definamos

$$F_d(x) = \frac{1}{\alpha} \sum_{i:x_i \leq x} p_i.$$

 F_d com $\alpha = \sum_i p_i$. A função F_d é uma função de distribuição discreta. Note que se $\alpha = 1$ então F é uma distribuição discreta. Para $\alpha \neq 1$ definimos

$$F_{ac}(x) = \frac{F(x) - \alpha F_d(x)}{\beta}$$

em que $\beta = 1 - \alpha$ e a $F_{ac}(x)$ é contínua.

34/65

Exemplo 11

Consideremos a seguinte função de distribuição: x=3

$$F(x) = \begin{cases} 0, & x \le 0 \\ 0, 4x, & 0 < x \le 1 \\ 0, 4, & 1 < x < 2 \\ 0, 7, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

O intervalo onde F(x) aumenta continuamente e possui derivada (densidade) é 0 < x < 1, onde:

$$F(x) = 0.4x$$

Temos saltos em x = 2 e x = 3

$$p_1 = F(2) - F(2^-) = 0.7 - 0.4 = 0.3$$

$$p_2 = F(3) - F(3^-) = 1 - 0.7 = 0.3$$

O aumento total devido à parte absolutamente contínua:

$$\beta = F(1) - F(0^+) = 0.4 \times 1 - 0 = 0.4$$

O aumento total devido às partes discretas:

$$\alpha = p_1 + p_2 = 0.3 + 0.3 = 0.6$$

Normalizamos a parte absolutamente contínua para que ela aumente de 0 a 1 no intervalo 0 < x < 1:

$$F_{ac}(x) = \begin{cases} 0, & x \le 0\\ \frac{F(x)}{\beta} = \frac{0.4x}{0.4} = x, & 0 < x \le 1\\ 1, & x > 1 \end{cases}$$

A massa total de probabilidade da parte discreta é $\alpha=$ 0,6. Normalizamos as massas nos pontos de salto:

Em x = 2:

$$p_1 = \frac{p_1}{\alpha} = \frac{0.3}{0.6} = 0.5$$

Em x = 3:

$$p_2 = \frac{p_2}{\alpha} = \frac{0.3}{0.6} = 0.5$$

Construímos a distribuição da parte discreta após a normalização

$$F_{d}(x) = \begin{cases} 0, & x < 2 \\ 0.5, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Note que usando $\alpha = 0.6$ e $\beta = 0.4$:

$$F(x) = \beta F_{ac}(x) + \alpha F_{d}(x) = 0.4F_{ac}(x) + 0.6F_{d}(x)$$

Parte Discreta

Verificamos por intervalos que a combinação de fato reconstruiu a distribuição original

- Para x < 0, temos $F(x) = 0.4 \times 0 + 0.6 \times 0 = 0$
- Para $0 < x \le 1$, temos $F(x) = 0.4 \times x + 0.6 \times 0 = 0.4x$
- Para 1 < x < 2, temos $F(x) = 0.4 \times 1 + 0.6 \times 0 = 0.4$
- Para $2 \le x < 3$, temos $F(x) = 0.4 \times 1 + 0.6 \times 0.5 = 0.4 + 0.3 = 0.7$
- Para $x \ge 3$, temos $F(x) = 0.4 \times 1 + 0.6 \times 1 = 0.4 + 0.6 = 1$

Exemplo 12

Seja X a variável aleatória com função de distribuição dada por:

$$F(x) = \begin{cases} 1 - \frac{1}{2}e^{-\lambda x} & \text{se } x \ge 0, \\ 0 & \text{caso contrário,} \end{cases}$$

em que $\lambda > 0$ é uma constante. A variável aleatória X não é discreta nem contínua pois apresenta um ponto de descontinuidade em x=0. Ou seja é mista. Para $\lambda=1/2$ o gráfico de F(x) é apresentado na seguinte figura.

Aleatória - Uniforme discreta

X tem uma distribuição *aleatória* com parâmetro *n*, onde *n* é um número inteiro, se $X(w) \in \{x_1, x_2, \dots, x_n\}$ e $p(x_i) = \frac{1}{n}$, para $i \in \{1, \dots, n\}$.

- Utilizando a propriedade de aditividade da probabilidade, é fácil ver que para qualquer evento
 - $A \subseteq \{x_1, x_2, \dots, x_n\}$, temos que $P(X \in A) = \frac{||A||}{n}$.
- Aplicações: modelar mecanismos de jogos (dados e moedas balanceados, cartas bem embaralhadas).

Bernoulli

X tem uma distribuição Bernoulli com parâmetro p, onde $0 \le p \le 1$, se $X(w) \in \{x_0, x_1\}$ e $p(x_1) = p = 1 - p(x_0)$.

 Aplicações: modelar a probabilidade de sucesso em uma única realização de um experimento. Em geral, qualquer variável aleatória dicotômica pode ser modelada por uma distribuição Bernoulli.

Binomial

X tem uma distribuição Binomial com parâmetros n e p, onde n é um número inteiro e $0 \le p \le 1$, se $X(w) \in \{0,1,\ldots,n\}$ e $p(k) = \binom{n}{k} p^k (1-p)^{1-k}$, para $k \in \{0,1,\ldots,n\}$. Note que utilizando o Teorema Binomial, temos que

$$\sum_{k=0}^{n} p(k) = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = (p+1-p)^{n} = 1.$$

Logo, esta é uma legítima função probabilidade de massa.

Binomial (cont.)

- Pode-se provar que a soma de n variáveis aleatórias Bernoulli com parâmetro p independentes tem uma distribuição Binomial(n, p).
- Aplicações: modelar a quantidade de erros em um texto de n símbolos quando os erros entre símbolos são assumidos independentes e a probabilidade de erro em um símbolo do texto é igual a p; modelar o número de caras em n lançamentos de uma moeda que possui probabilidade p de cair cara em cada lançamento. Se p = 1/2, temos um modelo para o número de 1's em uma sequência binária de comprimento n escolhida aleatoriamente ou o número de caras em n lançamentos de uma moeda justa.

Geométrica

X tem uma distribuição *Geométrica* com parâmetro β , onde $0 \le \beta < 1$, se $X(w) \in \{0, 1, ...\}$ e $p(k) = (1 - \beta)\beta^k$, para $k \in \{0, 1, ...\}$.

Utilizando o resultado de uma soma infinita de uma Progressão Geométrica, temos que

$$\sum_{k=0}^{\infty} p(k) = \sum_{k=0}^{\infty} (1-\beta)\beta^{k} = (1-\beta)\sum_{k=0}^{\infty} \beta^{k} = 1.$$

Logo, esta é uma legítima função probabilidade de massa.

 Aplicações: modelar o tempo de espera medido em unidades de tempo inteira até a chegada do próximo consumidor em uma fila, até a próxima emissão de um fóton, ou até a primeira ocorrência de cara numa sequência de lançamentos de uma moeda

Binomial Negativa ou Pascal

É uma generalização da distribuição geométrica. Suponha que ao invés de estarmos interessados no tempo de espera até a primeira ocorrência de um evento, estejamos interessados em calcular o tempo de espera até a r-ésima ocorrência de um evento. Seja Y o tempo de espera necessário a fim de que um evento A possa ocorrer exatamente r vezes. Temos que Y=k se, e somente se, A ocorrer na (k+1)-ésima repetição e A tiver ocorrido r-1 vezes nas k repetições anteriores. Assumindo independência entre os experimentos, esta probabilidade é igual $p\binom{k}{r-1}p^{r-1}(1-p)^{k-r+1}$. Portanto,

$$P(Y = k) = {k \choose r-1} p^r (1-p)^{k-r+1}$$
, onde $k \ge r-1$.

Note que se r=1, temos que Y tem uma distribuição geométrica com parâmetro $\beta=1-p$. No caso geral, dizemos que Y tem uma distribuição *Binomial Negativa ou Pascal*.

Relação entre as Distribuições Binomial e Binomial Negativa

Se $X \sim Binomial(n,p)$ e $Y \sim Pascal(r,p)$, então temos que $\{X \geq r\} = Y+1 \leq n$, ou seja, o número de sucessos em n repetições de um experimento é maior ou igual a r se, e somente se, o tempo de espera para o r-ésimo sucesso for menor ou igual a n-1. Portanto.

$$P(X \ge r) = P(Y \le n-1).$$

Relação entre as Distribuições Binomial e Binomial Negativa

Observe que estas duas distribuições tratam de experimentos repetidos.

- A distribuição binomial surge quando lidamos com um número fixo de experimentos e estamos interessados no número de sucessos que venham a ocorrer.
- A distribuição binomial negativa é encontrada quando fixamos o número de sucessos e então registramos o tempo de espera necessário.

Zeta ou Zipf

X tem uma distribuição Zeta ou Zipf com parâmetro α , onde $\alpha>1$, se $X(w)\in\{1,2,\ldots\}$ e

$$p(k) = \frac{k^{-\alpha}}{\zeta(\alpha)}, k = 1, 2, \dots,$$

onde $\zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha}$ é conhecida como a função Zeta de Riemann.

- A função de probabilidade Zeta ou Zipf é um exemplo de uma distribuição de cauda pesada; observe que ela tem decaimento polinomial.
- Aplicações: número de consumidores afetados por um blackout, tamanhos de arquivos solicitados em transferência via Web e atraso de pacotes na internet.

Hipergeométrica

A distribuição hipergeométrica descreve o número de sucessos em uma sequência de n amostras de uma população finita sem reposição.

Considere que tem-se uma carga com N objetos dos quais D têm defeito. A distribuição hipergeométrica descreve a probabilidade de que em uma amostra de n objetos distintos escolhidos da carga aleatoriamente exatamente k objetos sejam defeituosos.

Formalmente, se uma variável aleatória X segue uma distribuição hipergeométrica com parâmetros N, D, e n, então a probabilidade de termos exatamente k sucessos é dada por

$$p(k) = \frac{\binom{D}{k} \binom{N-D}{n-k}}{\binom{N}{n}}.$$

Esta probabilidade é positiva se: $N-D \ge n-k$, ou seja $k \ge \max(0, D+n-N)$, e $k \le \min(n, D)$.

Hipergeométrica (cont.)

- Quando a população é grande quando comparada ao tamanho da amostra (ou seja, N for muito maior que n) a distribuição hipergeométrica é aproximada razoavelmente bem por uma distribuição binomial com parâmetros n (tamanho da amostra) e p = D/N (probabilidade de sucesso em um único ensaio).
- Note que se a amostragem é feita com reposição, temos que a distribuição correta é dada por uma Binomial(n, D/N).

Poisson

X tem uma distribuição *Poisson* com parâmetro λ , onde $\lambda \geq 0$, se $X(w) \in \{0, 1, \ldots\}$ e $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$, para $k \in \{0, 1, \ldots\}$. Por definição, temos que para todo x real,

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}.$$

Utilizando este fato, temos que

$$\sum_{k=0}^{\infty} p(k) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$$

 Aplicações: modelar a contagem do número de ocorrências de eventos aleatórios em um certo tempo T, como número de fótons emitidos por uma fonte de luz de intensidade I fótons/seg em T segundos (λ = IT), número de clientes chegando em uma fila no tempo T (λ = CT), número de ocorrências de eventos raros no tempo T (λ = CT).

Poisson como um Limite de Eventos Raros de Binomial

Suponhamos que chamadas telefônicas cheguem em uma grande central, e que em um período particular de três horas (180 minutos), um total de 270 chamadas tenham sido recebidas, ou seja, 1,5 chamadas por minuto. Suponhamos que queiramos calcular a probabilidade de serem recebidas k chamadas durante os próximos três minutos.

Ao considerar o fenômeno da chegada de chamadas, poderemos chegar à conclusão de que, a qualquer instante, uma chamada telefônica é tão provável de ocorrer como em qualquer outro instante. Como em qualquer intervalo de tempo, temos um número infinito de pontos, vamos fazer uma série de aproximações para este cálculo.

Poisson como um Limite de Eventos Raros de Binomial

Para começar, pode-se dividir o intervalo de 3 minutos em nove intervalos de 20 segundos cada um. Poderemos então tratar cada um desses nove intervalos como um ensaio de Bernoulli, durante o qual observaremos uma chamada (sucesso) ou nenhuma chamada (falha), com probabilidade de sucesso igual a $p = 1, 5 \times \frac{20}{60} = 0, 5$. Desse modo, poderemos ser tentados a afirmar que a probabilidade de 2 chamadas é igual a $\binom{9}{2}(0,5)^9 = \frac{9}{128}$. Porém, este cálculo ignora a possibilidade de que mais de uma chamada possa ocorrer em um único intervalo. Então, queremos aumentar o número n de subintervalos de tempo de modo que cada subintervalo corresponde a 180 segundos e então a probabilidade de ocorrência de uma chamada em um subintervalo é igual a $p=1,5\times\frac{180}{60a}$. Desta maneira temos que np=4,5 permanece constante ao crescermos o número de subintervalos. Utilizando novamente o modelo binomial, temos que a probabilidade de ocorrerem k chamadas é dada por: $\binom{n}{k} (\frac{4.5}{8})^k (1 - \frac{4.5}{8})^{n-k}$. Queremos saber então o que acontece com esta probabilidade guando $n \to \infty$. A resposta como veremos a seguir é que esta distribuição tende a distribuição de Poisson e este resultado é conhecido como limite de eventos raros.

53/65

Poisson como um Limite de Eventos Raros de Binomial

Consideremos a expressão geral da probabilidade binomial,

$$p(k) = {n \choose k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$
$$= \frac{n(n-1)\cdots(n-k+1)}{k!} p^k (1-p)^{n-k}.$$

Como queremos estudar o caso em que np é constante, façamos $np=\alpha$, ou seja, $p=\alpha/n$ e $1-p=\frac{n-\alpha}{p}$. Então,

$$p(k) = \frac{n(n-1)\cdots(n-k+1)}{k!} (\frac{\alpha}{n})^k (\frac{n-\alpha}{n})^{n-k}$$
$$= \frac{\alpha^k}{k!} [(1)(1-\frac{1}{n})\cdots(1-\frac{k-1}{n})][1-\frac{\alpha}{n}]^{n-k}$$

Poisson como um Limite de Eventos Raros de Binomial

Fazendo $n \to \infty$, temos que os termos da forma $(1-\frac{j}{n})$, para $1 \le j \le k-1$, tendem para 1 e como existe um número fixo k deles, o seu produto também tende a 1. O mesmo ocorre com $(1-\frac{\alpha}{n})^{-k}$. Finalmente, por definição do número e, temos que $(1-\frac{\alpha}{n})^n \to e^{-\alpha}$ quando $n \to \infty$. Portanto,

$$\lim_{n} p(k) = e^{-\alpha} \frac{\alpha^{k}}{k!},$$

ou seja obtemos a expressão de Poisson.

Mais geralmente, pode-se provar o seguinte teorema:

Poisson como um Limite de Eventos Raros de Binomial

Teorema 4

Se $\lim_{n\to\infty} np_n = \alpha > 0$, então

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = e^{-\alpha} \frac{\alpha^k}{k!}.$$

Demonstração.

Nós utilizamos os seguintes fatos:

- 3 $(1-x)^n \le e^{-nx}$, para $x \ge 0$.
- **1** $(1-x)^n \ge e^{-nx-nx^2}$, para $0 \le x \le \frac{1}{2}$.

Usando fatos 2, 3, e 4, nós obtemos $\lim_{n\to\infty} (1-p_n)^{n-k} = \lim_{n\to\infty} e^{-(n-k)p_n}$. Logo, usando fato 1,

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \lim_{n\to\infty} \frac{(np_n)^k}{k!} e^{-(n-k)p_n} = e^{-\alpha} \frac{\alpha^k}{k!}.$$

Raydonal Ospina (UFBA)

Uniforme

X tem uma distribuição *uniforme* com parâmetros a e b, onde a e b são números reais e a < b, se a função densidade de X é igual a

$$f_X(x) = \frac{1}{b-a}U(x-a)U(b-x).$$

- Este modelo é frequentemente usado impropriamente para representar "completa ignorância" sobre valores de um parâmetro aleatório sobre o qual apenas sabe-se estar no intervalo finito [a, b].
- Também é frequentemente utilizada para modelar a fase de osciladores e fase de sinais recebidos em comunicações incoerentes.

Exponencial

X tem uma distribuição Exponencial com parâmetro λ , onde $\lambda>0$ é um número real, se a função densidade de X é igual a

$$f_X(x) = \lambda e^{-\lambda x} U(x).$$

 Aplicações: modelar tempo de vida de componentes que falham sem efeito de idade; tempo de espera entre sucessivas chegadas de fótons, emissões de elétrons de um cátodo, ou chegadas de consumidores; e duração de chamadas telefônicas.

Qui-quadrado

X tem uma distribuição Qui-quadrado com parâmetro n, onde n é número natural, se a função densidade de X é igual a

$$f_X(x) = \frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}U(x),$$

onde $\Gamma(p)=\int_0^\infty x^{p-1}e^{-x}dx$ para p>0 é a função gama. n é conhecido como número de *graus de liberdade* da distribuição qui-quadrado.

- Pode-se provar que a soma dos quadrados de n variáveis aleatórias independentes com distribuição normal padrão possui uma distribuição qui-quadrado com n graus de liberdade.
- A distribuição Qui-quadrado tem inúmeras aplicações em inferência estatística. Por exemplo, em testes qui-quadrados e na estimação de variâncias.

Gama

X tem uma distribuição Gama com parâmetros α e β , onde $\alpha>0$ e $\beta>0$ são números reais, se a função densidade de X é igual a

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} U(x).$$

• Pode-se provar que a soma de α variáveis aleatórias exponenciais independentes com média $1/\beta$ tem uma distribuição Gama. É fácil ver que se $\alpha=1$, temos uma distribuição exponencial com parâmetro β , e se $\alpha=n/2$ e $\beta=1/2$ temos uma distribuição Qui-quadrado com n graus de liberdade.

Beta

Dizemos que X tem uma distribuição Beta com parâmetros α e β , onde $\alpha>0$ e $\beta>0$ são números reais, se a função densidade de X é igual a

$$f_X(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{\int_0^1 u^{\alpha - 1}(1 - u)^{\beta - 1} du} U(x)U(1 - x)$$
$$= \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}(1 - x)^{\beta - 1} U(x)U(1 - x),$$

onde $B(\alpha,\beta)$, para $\alpha>0,\beta>0$, é a função beta que é o fator de normalização que garante que f_X é uma densidade.

- Distribuições Beta são usadas exaustivamente em Estatística Bayesiana, pois elas são uma família de distribuições a priori conjugadas para distribuições binomiais e geométricas.
- A distribuição beta pode ser utilizada para modelar eventos que tem restrição de estar em um intervalo finito.

t de Student

X tem uma distribuição t de Student com parâmetro n, onde n é número natural, se a função densidade de X é igual a

$$f_X(x) = \frac{\Gamma[(n+1)/2]}{\Gamma[n/2]\sqrt{\pi n}} (1 + \frac{x^2}{n})^{\frac{-(n+1)}{2}},$$

onde n é conhecido como número de graus de liberdade da distribuição t de Student.

- Pode-se provar que se Z tem uma distribuição normal padrão, V tem uma distribuição qui-quadrado com n graus de liberdade e Z e V forem independentes, então Z/V/n tem uma distribuição t de Student com n graus de liberdade.
- A distribuição t de Student é bastante utilizada em inferência estatística. Por exemplo, pode-se utilizá-la para calcular intervalos de confiança para a média de uma amostra quando a variância da população não é conhecida.

Pareto

X tem uma distribuição Pareto com parâmetros α e τ , onde α e τ são números reais positivos, se a função densidade de X é igual a

$$f_X(x) = \alpha \tau^{\alpha} x^{-\alpha-1} U(x-\tau).$$

 A distribuição de Pareto é o exemplo mais fundamental de uma distribuição contínua de cauda pesada. Ela pode ser utilizada para modelar distribuição de riquezas; atrasos em transmissão de pacotes; e duração sessões de Internet.

Normal ou Gaussiana

X tem uma distribuição *Normal (ou Gaussiana)* com parâmetros m e σ , onde m e $\sigma > 0$ são números reais, se a função densidade de X é igual a

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-m)^2}{2\sigma^2}}.$$

- Historicamente, esta distribuição foi chamada de "normal" porque ela era amplamente aplicada em fenômenos biológicos e sociais que era sempre tida como a distribuição antecipada ou normal.
- Se m=0 e $\sigma=1$, diz-se que X tem uma distribuição normal padrão ou normal reduzida.
- Aplicações: modelar ruído térmico em resistores e em outros sistemas físicos que possuem um componente dissipativo; ruídos de baixa-frequência como os em encontrados em amplificadores de baixa frequência; e variabilidade em parâmetros de componentes manufaturados e de organismos biológicos (por exemplo, altura, peso, inteligência).

Cauchy

X tem uma distribuição Cauchy com parâmetro a>0, se a função densidade de X é igual a

$$f_X(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + x^2}.$$

 A razão entre duas variáveis aleatórias com distribuição Normal padrão independentes tem uma distribuição Cauchy com parâmetro 1.