Where am I? The symmedian point!

Bill Lionheart

February 3, 2017

What if the GPS goes off?

If the satellite navigation system (GPS,GLONASS) fails how can ships find their position?

What if the GPS goes off?

If the satellite navigation system (GPS,GLONASS) fails how can ships find their position?

Use the old fashioned method of Celestial Navigation.

Measuring the position of the stars and planets and an accurate clock to find our position.

1. Identify the stars or planets you can use.

- 1. Identify the stars or planets you can use.
- 2. Measure the angle it makes to horizon H_o and note time.

- 1. Identify the stars or planets you can use.
- 2. Measure the angle it makes to horizon H_o and note time.
- 3. Look up the point on the earth where that object is directly overhead (GP)

- 1. Identify the stars or planets you can use.
- 2. Measure the angle it makes to horizon H_o and note time.
- 3. Look up the point on the earth where that object is directly overhead (GP)
- 4. From an assumed position AP work out the angle it should make to the horizon and its compass direction (azimuth).

- 1. Identify the stars or planets you can use.
- 2. Measure the angle it makes to horizon H_o and note time.
- 3. Look up the point on the earth where that object is directly overhead (GP)
- 4. From an assumed position AP work out the angle it should make to the horizon and its compass direction (azimuth).
- 5. Difference between measured H_o and calculated H_c angle and the bearing gives you a position line (LOP).

Animation from Wikipedia/Sextant(Marine) Joaquim Alves Gaspar CC BY-SA 2.5

Solve three equations in two variables

$$a_{11}x_1 + a_{12}x_2 = b_1$$

 $a_{21}x_1 + a_{22}x_2 = b_2$
 $a_{31}x_1 + a_{32}x_2 = b_3$

Solve three equations in two variables

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 = b_3$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Solve three equations in two variables

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 = b_3$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$Ax = b$$

$$d_1 = a_{11}x_1 + a_{12}x_2 - b_1$$

$$d_2 = a_{21}x_1 + a_{22}x_2 - b_2$$

$$d_3 = a_{31}x_1 + a_{32}x_2 - b_3$$

$$d_1 = a_{11}x_1 + a_{12}x_2 - b_1$$

$$d_2 = a_{21}x_1 + a_{22}x_2 - b_2$$

$$d_3 = a_{31}x_1 + a_{32}x_2 - b_3$$

$$d = Ax - b$$

$$d_1 = a_{11}x_1 + a_{12}x_2 - b_1$$

$$d_2 = a_{21}x_1 + a_{22}x_2 - b_2$$

$$d_3 = a_{31}x_1 + a_{32}x_2 - b_3$$

$$d = Ax - b$$

Minimize

$$d_1^2 + d_2^2 + d_3^2 = ||d||^2$$

$$||d||^2 \ge 0$$

 $||d||^2 \ge 0$ Differentiate to find minimum point

 $||d||^2 \ge 0$ Differentiate to find minimum point $||d||^2$ is quadratic in x_1 and x_2

$$A^{T}Ax = A^{T}b, \quad A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{pmatrix}$$

$$A^T A x = A^T b$$
, $A^T = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{pmatrix}$
$$x = \left(A^T A\right)^{-1} A^T b$$

$$A^{T}Ax = A^{T}b, \quad A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{pmatrix}$$
$$x = (A^{T}A)^{-1}A^{T}b$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

The bisectors of the angles meet at the centre of the inscribed circle - the *incentre*.

The medians are lines joining vertices to midpoints of the opposite sides. They meet at the *centroid*, the centre of gravity

These centres are typically different

Now reflect the median line (blue) in the bisector (red). The green line is a *symmedian* line

The green lines meet at the *symmedian* point. This is the point that minimizes the sum of squared distances from the sides. Note it is closer to the shorter side.

There is a list: Clark Kimberling's *Encyclopedia of Triangle*Centers.

There is a list: Clark Kimberling's *Encyclopedia of Triangle Centers*.

The Symmedian point is number 6 on the list

There is a list: Clark Kimberling's Encyclopedia of Triangle Centers.

The Symmedian point is number 6 on the list

From:Weisstein, Eric W. "Kimberling Cent er." MathWorld-A Wolfram Web Resource.

There is a list: Clark Kimberling's *Encyclopedia of Triangle Centers*.

The Symmedian point is number 6 on the list

 $From: We is stein, \ Eric \ W. \ "Kimberling \ Cent \ er." \ Math World-A \ Wolfram \ Web \ Resource.$

There are currently 11809

And GPS?

To find your position (including height) using GPS you need the distance to four satellites. The intersection of four planes in three dimensional space.

I will leave it to you to see if you can extend what we have done today to that case!

Notes

- ▶ If you want a quick overview of Celestial Navigation I recommend Blue Planet Cruising School's "Celestial Navigation the missing introduction" http://www.blueplanetcruisingschool.com/celestial-navigation-the-missing-introduction/Diagrams are better than mine!
- ▶ If you are interested in the question I raised about GPS and the symmedian of a tetrahedron, []lease have a go yourself. When you have done that you might consult Jawad Sadek, Majid Bani-Yaghoub, and Noah H. Rhee, Forum Geometricorum, Isogonal Conjugates in a Tetrahedron, Forum Geo, Volume 16 (2016) 4350.