UNIVERSITY OF SOUTH CAROLINA

MATH-546 Algebraic Structures I

Exam 2 Practice

Problems

Problem 1:

Let $G = \mathbb{Z}_8 \times \mathbb{Z}_6$.

- a. Find the order of ($[3]_8$, $[4]_6$). Justify.
- b. Let H denote the subgroup generated by ([3]₈, [4]₆) and let K denote the subgroup generated by ([1]₈, [0]₆). Prove that $K \subseteq H$.
- c. What is |K|? Justify.

Answer 1:

a.
$$o([3]_8) = 8$$

 $o([4]_6) = 3$
 $o(([3]_8, [4]_6)) = lcm(8, 3) = 24$

b. ([1]₈, [0]₆) = 3([3]₈, [4]₆)
$$\Rightarrow$$
 \langle ([1]₈, [0]₆) \rangle \subseteq H

c.
$$\langle ([1]_8,[0]_6)\rangle=\mathbb{Z}_8\times\{0\}$$
 and $|K|=8\cdot 1=8$

Problem 2:

List all the subgroups of S_3 . Explain why your list is complete (i.e., there are no other subgroups).

Answer 2:

```
 \{(1)\} 
 \{(1), (1 2)\} 
 \{(1), (1 3)\} 
 \{(1), (2 3)\} 
 \{(1), (1 2 3), (1 3 2)\} 
 S_3
```

The order of S_3 is 6 so any subgroup must be of order 1, 2, 3 or 6. There can only be one subgroup of order 1 and only one of order 6. Subgroups of order 2 or 3 must be cyclic since 2 and 3 are prime. All elements of S_3 are included above so there are no missing generators.

Problem 3:

List all the possible orders of elements in S_6 . For each possible order, give two different examples of elements of S_6 that have that order (or state that there is only one such element). Explain why there are no other possible orders.

Answer 3:

The order of a permutation is the least common multiple of the lengths of the disjoint cycles into which it can be decomposed. We look at all possible sets of disjoint cycles; there are 11 (see *Integer Partition* in Wikipedia).

form of disjoint cycles	order
$(a\ b\ c\ d\ e\ f)$	6
$(a\ b\ c\ d\ e)(f)$	5
(a b c d)(e f)	4
$(a\ b\ c\ d)(e)(f)$	4
(a b c)(d e f)	3
$(a\ b\ c)(d\ e)(f)$	6
$(a\ b\ c)(d)(e)(f)$	3
$(a\ b)(c\ d)(e\ f)$	2
$(a\ b)\ (c\ d)\ (e)\ (f)$	2
$(a\ b)\ (c)\ (d)\ (e)\ (f)$	2
(a)(b)(c)(d)(e)(f)	1
$(a \ b \ c) (d \ e) (f)$ $(a \ b \ c) (d) (e) (f)$ $(a \ b) (c \ d) (e \ f)$ $(a \ b) (c \ d) (e) (f)$ $(a \ b) (c) (d) (e) (f)$	6 3 2 2 2

The identity (1) is the only permutation of order 1.

Order 2: $(1\ 2)$ and $(1\ 2)(3\ 4)$.

Order 3: $(1\ 2\ 3)$ and $(1\ 2\ 3)(4\ 5\ 6)$.

Order 4: $(1\ 2\ 3\ 4)$ and $(1\ 2\ 3\ 4)(5\ 6)$.

Order 5: (1 2 3 4 5) and (1 2 3 4 6).

Order 6: (1 2 3 4 5 6) and (1 2 3 4 6 5)

Problem 4:

Let G be a group with |G| = 25. Assume that G is not cyclic. Prove that every $x \in G$ has order equal to 1 or 5.

Answer 4:

If G is not cyclic then there is no element of order 25. The order of every element must divide the order of the group. The only remaining divisors of 25 are 1 and 5. So every element has order 1 or 5.

Problem 5:

- a. Give an example of a group G with |G| = 16 such that G is abelian but not cyclic.
- b. Give an example of a group G with |G| = 24 such that G is not abelian.
- c. Give an example of a group G with |G| = 12 such that G is not abelian.

Explain why your examples have the required properties.

Answer 5:

- a. $\mathbb{Z}_4 \times \mathbb{Z}_4$
- b. $S_3 \times \mathbb{Z}_4$ or S_4
- c. $S_3 \times \mathbb{Z}_2$

 S_3 is not abelian and has order 6. The order of direct products is the product of the orders.

Problem 6:

Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 8 & 7 & 1 & 4 & 9 & 11 & 3 & 2 & 10 & 6 & 12 \end{pmatrix}$$

Write the decomposition of σ into disjoint cycles and find the order of σ .

Answer 6:

$$\sigma = (1\ 5\ 4)\ (2\ 8\ 3\ 7\ 11\ 6\ 9)$$

$$o(\sigma) = 3\cdot 7 = 21$$

Problem 7:

Consider the following elements of S_5 :

$$\sigma = (1234), \quad \tau = (235)$$

Write each of the following as a composition of disjoint cycles:

$$\sigma^{-1}$$
, σ^{3} , $\sigma\tau$, $\sigma\tau\sigma^{-1}$.

Answer 7:

$$\begin{split} &\sigma^{-1} = (4\ 3\ 2\ 1) = (1\ 4\ 3\ 2)\\ &\sigma^3 = (1\ 4\ 3\ 2)\\ &\sigma\tau = (1\ 2\ 3\ 4)\ (2\ 3\ 5) = (1\ 2\ 4)\ (3\ 5)\\ &\sigma\tau\sigma^{-1} = (1\ 2\ 3\ 4)\ (2\ 3\ 5)\ (4\ 3\ 2\ 1) = (3\ 4\ 5) \end{split}$$

Problem 8:

Recall that for a group G, the center of G is the set

$$Z(G) \coloneqq \{ x \in G \mid ax = xa \ \forall a \in G \}.$$

Prove that $Z(S_3) = \{e\}.$

Answer 8:

The elements of S_3 are cycles of length 1, 2 or 3.

The 1-cycle element is the identity and clearly $e \in Z(S_3)$.

Let $(a \ b)$ and $(a \ c)$ be distinct elements of S_3 then $(a \ b)$ $(a \ c) = (a \ c \ b)$ but $(a \ c)$ $(a \ b) = (a \ b \ c)$ and so no cycles of length 2 are in $Z(S_3)$.

Let $(a \ b \ c)$ be an arbitrary 3-cycle in S_3 : $(a \ b \ c)(a \ b) = (a \ c)$ but $(a \ b)(a \ b \ c) = (b \ c)$ and none of the 3-cycle elements are in $Z(S_3)$.

Problem 9:

Let $H = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} \subseteq S_4$. Verify that H is a subgroup of S_4 .

Answer 9:

First note that H has the identity plus all possible products of disjoint 2-cycles in S_4 and can be represented as $(a\ b)(c\ d)$ for distinct a, b, c, d. And second, remember that $(a\ b) = (b\ a)$.

Identity and associativity are given.

Each element is its own inverse:

$$(a \ b) (c \ d) (a \ b) (c \ d) = (a \ b) (a \ b) (c \ d) (c \ d) = e$$

Closure: Multiplication of any element by the identity or by itself yields the same element or the identity, respectively. Let $(a \ b) (c \ d)$ be an arbitrary element of H, not e; and a different element, not e, will be of the form $(a \ c)(b \ d)$. Multiplying, we get

$$(a\ b)\ (c\ d)\ (a\ c), (b\ d) = (a\ d)\ (b\ d)$$

which is also in H.

Problem 10:

- a. Does S_7 have an element that has order equal to 12? Give an example or explain why it does not exist.
- b. Does S_7 have an element of order equal to 15? Give an example or explain why it does not exist.

Answer 10:

a.
$$o((1\ 2\ 3\ 4)(5\ 6\ 7)) = 12$$

b. The integer partitions of 7 have to have a length of 15 or of both 3 and 5; both not possible with 7.

Theoretical Questions

Question 1:

Using Lagrange's Theorem, prove that if G is a group with |G| equal to a prime number, then G is cyclic.

Answer:

If p = |G| is prime then subgroups must have order 1 or p. Let $x \in G$ and consider the subgroup generated by x. If $x \neq e$ then $|\langle x \rangle| = 15$ and therefore $\langle x \rangle = G$ and so G is cyclic.

Question 2:

Using Lagrange's Theorem, prove that if p is a prime number and a is an integer not divisible by p, then

$$[a^{p-1}]_p = [1]_p$$

Answer:

Since p is prime, every element of $\mathbb{Z}_p \setminus 0$ has a multiplicative inverse. So $|\mathbb{Z}_p^*| = p - 1$ and every subgroup of \mathbb{Z}_p^* has an order that divides p - 1.

Consider $A = \langle [a]_p \rangle \subseteq \mathbb{Z}_p^*$. Let n = |A|. Then $[a]^n = [a^n] = [1]$ and since there is an integer m such that nm = p - 1 and therefore $[a^{p-1}] = [a^{nm}] = [(a^n)^m] = [1^m] = [1]$