Método do subgradiente (para convexas) (1 l: R R função convexa, não necessaria-mente diferencianl. Caso <u>não</u> diferenciant caso diferenciant χ^* min. $f \Leftrightarrow 0 \in \partial f(\chi^*)$ (global) $\chi^* \min f \Leftrightarrow \nabla f(\chi^*) = 0$ (global) me todo subgradiente: xx+1=xx-txgx, gx ∈ Of(xx) me todo gradiente: $\chi^{K+1} = \chi^{K} - t_{K} \nabla f(x^{K}),$ $t_{k} > 0$ $t_{\kappa}>0$

Morenna (condição de otimalidade) (2 Seja f: R" > R converca. Então 2* é minimizador de f se, e somente se, $0 \in \mathcal{I}(x^*).$ $\text{brown:} \Leftarrow) \circ \in \partial f(x^*) \Rightarrow f(x^*) = f(x^*) +$ $O^{t}(y-\chi^{*}) \leq f(y)$, $\forall y \Rightarrow \chi^{*} \in \text{minimizador}$ global de f. =>) Se x* é minimizador de f então

a fin de satisfages $f(y) \ge f(x^*) + g^{\dagger}(y - x^*), \forall y,$ e sufficiente escolher g = 0; dado que $f(y) \ge f(x^*), \forall y. Jsto e, 0 \in \partial f(x^*)$ Werva Coes: 1) Anando f e diferenciant em x^* , o resultado diz que x^* min $\Leftrightarrow \nabla f(x^*) = 0$, o que recai no que ja conheciamos.

2) OE If(x*) <u>mão</u> significa que l' If(x*) so possua O como subgradiente. Vor exemplo, x=0 é minimizados $de f(x) = |x| e \partial f(0) = [-1, 1] \ni 0.$ 3) O fato de Iflet) poder conter subgradi-entes não nulos atrapalha estabelecermos um critério de parada para algoritmos: um algoritmo poderia obter x* sem que

pudéssemos decidis paras declarando 15 minimizados en contrado", simplesmente plo fato que en geral não calculamos Todo o conjunto If (x*). Em geral apenas 1 subgradiente é computado. Vor exemplo, considere f(x) = |x| e a sequencia $\chi_{\kappa} = 1 \longrightarrow \chi^* = 0$. Cuperar de convergu ao minimizador, If(xx)=114.

Deja que mesmo se x=0 for al com 6 cado, um algoritmo poderia computar $1 \in \partial f(x^*) = [-1, 1].$ (geralmente e isso que acontece!). Los há formas de tentar contornar isso, p. en Calculando gradientes randomicamente ao redor de x* e tomando uma média, ou utilizando sulodiferenciais aproximados... (não precisaremos disso!)

4) Portanto o critério por maximo de 27 terações atingido poderá ser acionado mesmo que já estejamos indo a solução. 5) ligora, se dermos sorte de calcular um subgradiente q ~ 0, podemos parar 1 0 teorema anterior garante um minimizados. Vamos fazer o teste de parada Ngl & E pois e Barato.

Mé todo de subgradiente Dados x' \in R", K \in O Calcule q K E 2 f(x K) KK-KH1 (opcional) PAREK $\chi^{K+1} = \chi^{K} - t_{K} q^{K}$

Convergência do mátodo do subgradiente para funções convexas · f: R^ → R converea (=> mé todo bem definido) · 7 x 4 sequência gerada pelo método. Un resultado fundamental: Jema: Vara todo y el temos $\|\chi^{K+1} - y\|^2 \le \|\chi^K - y\|^2 - 2t_K(f(\chi^K) - f(y)) + t_K Hg_K\|^2$

Thouar $\|\chi^{k+1} - y\|^2 = \|\chi^k - t_k g^k - y\|^2$ $= 11x^{k} - yN^{2} - 2t_{k}(g^{k})^{t}(x^{k} - y) + t_{k}^{2} Ng^{k}N^{2}$ < 12x-y12-2tx (f(xx)-f(y))+tx 11gx112 onde a uttima designaldade seque do fato q' \in \int \frac{1}{(n')}

Para f commera, é commen estudar a convergência mos seguintes casos: 1) passo constante: tx=t>0, +x 2) passo decrescente: ? tx / tal que $t_{k}>0, \forall k, t_{k}\to 0$ e $\sum t_{k}=\infty$. Ci ideia é refinar a lourca proseimo a solução $(t_k \rightarrow 0)$ sem dan passos munito pequenos $(2t_k = \infty)$. Por esemplo, $t_k = 1_k$.

3) to escolhido din ami comente, tendo (12 em reista limitantes para o valor Stimo f* (costuma funcionar melhor ma pratica). Hipôtese comun: H1) Éxiste uma constante C> sup l'al. Olos: à compacidade de If(ax) mão implica H1; pois c independe de K.

1) Convergencia com passo constante tx=t. 13 Leorema: luxonha valida H1 e tx=t>0, 4x. (i) Se $f'=\inf f(x)=-\infty$ entar $f_{\infty} = \lim\inf_{k \to \infty} f(x^k) = f^*$ (ii) le f*>-0 então $f_{\infty} \leq f^* + t_{\infty}^{\alpha}.$

Contes de demonstrar o teorema, note que (ii) mão garante que o método atinja O valor otimo p*: Seso é coerente, pois com passo constante, o maximo de garantía é convergir à uma vizinhança do minimizados! Prova: Vamos mostrar (i) e (ii) simultanea-15
mente. Su ponha que o resultado mão valha.
Então existe E>0 constante tal que $f_{\infty} > f^* + \frac{tc^2}{2} + 2E$ (vale para $f^* = -\infty$ e $f^* > -\infty$). Excuste $g \in \mathbb{R}^n$ tal que $f_{\infty} > f(y) + \frac{tc}{2} + 2E$. (1)Lambern, para todo K>1, tomos f(GC) > foo-E

pois for = liminf f(xx) (de fato, le for = $-\infty$ então $f(x^{\kappa}) > f_{\infty}$ e se $f_{\infty} > -\infty$ então $?f(x^{\kappa}) = limitada inferiormente, e logo$ $<math>?inf = f(x^{\kappa}) + \rightarrow f_{\infty}$. Somando (1) e (2) Obtemos $f(\alpha^{k}) - f(y) > \frac{tc^{d}}{2} + \varepsilon$.

Do loma e da hipôtere 41, seque que

 $\|x^{k+1} - y\|^2 \le \|x^k - y\|^2 - 2t(f(x^k) - f(y)) + t\|g^k\|^2$ $\leq \ln x - y \ln^2 - 2t \left(\frac{t c^2}{2} + \varepsilon \right) + t^2 c^2$ $= \|\chi - y\|^2 - 2tE.$ Ciplicando essa designaldade successivamente, $11x^{k+1} - y 11^2 \le 11x^k - y 11^2 - 2t E$ $\le 11x^{k-1} - y 11^2 - 4t E$ $-100 - 411^2 - 2(x+1) + 2$

Tomando K>> 1 obtemos uma contradi [12] ção pois 1/2°-y11²-2(x+1)t E >> - 00. Isso completa a demonstração. 2) Convergencia con passo de crescente $t_{k} \rightarrow 0^{+}, \sum_{k=0}^{\infty} t_{k} = \infty$ $\chi \rightarrow \chi^*$