Dropout

Sargur N. Srihari srihari@buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Deep Learning

Regularization Strategies

- 1. Parameter Norm Penalties
- Norm Penalties as Constrained Optimization
- 3. Regularization and Underconstrained Problems
- 4. Data Set Augmentation
- 5. Noise Robustness
- 6. Semi-supervised learning
- 7. Multi-task learning

- 8. Early Stopping
- Parameter tying and parameter sharing
- 10. Sparse representations
- 11. Bagging and other ensemble methods
- 12. Dropout
- 13. Adversarial training
- 14. Tangent methods

Topics in Dropout

- What is dropout?
- Dropout as an ensemble method
- Mask for dropout training
- Bagging vs Dropout
- Prediction intractability

Overfitting in Deep Neural Nets

- Deep nets have many non-linear hidden layers
 - Making them very expressive to learn complicated relationships between inputs and outputs
 - But with limited training data, many complicated relationships will be the result of training noise
 - So they will exist in the training set and not in test set even if drawn from same distribution
- Many methods developed to reduce overfitting
 - Early stopping with a validation set
 - Weight penalties (L^1 and L^2 regularization)
 - Soft weight sharing

Regularization with unlimited computation

- Best way to regularize a fixed size model is:
 - Average the predictions of all possible settings of the parameters,
 - Weighting each setting with the posterior probability given the training data
 - This would be the Bayesian approach
- Dropout does this using considerably less computation
 - By approximating an equally weighted geometric mean of the predictions of an exponential number of learned models that share parameters

Dropout is a bagging method

- Bagging is a method of averaging over several models to improve generalization
- Impractical to train many neural networks since it is expensive in time and memory
 - Dropout makes it practical to apply bagging to very many large neural networks
 - It is a method of bagging applied to neural networks
- Dropout is an inexpensive but powerful method of regularizing a broad family of models

Removing units creates networks

- Dropout trains an ensemble of all subnetworks
 - Subnetworks formed by removing non-output units from an underlying base network
- We can effectively remove units by multiplying its output value by zero
 - For networks based on performing a series of affine transformations or on-linearities
 - Needs some modification for radial basis functions based on difference between unit state and a reference value

Dropout Neural Net

A simple way to prevent neural net overfitting

Drop hidden and visible units from net, i.e., temporarily remove it from the network with all input/output connections. Choice of units to drop is random, determined by a probability p, chosen by a validation set, or equal to 0.5

(a) A standard neural net with two hidden layers

(b) A thinned net produced by applying dropout, crossed units have been dropped

Dropout as bagging

- In bagging we define k different models, construct k different data sets by sampling from the dataset with replacement, and train model i on dataset i
- Dropout aims to approximate this process, but with an exponentially large no. of neural networks

Dropout as an ensemble method

 Remove non-output units from base network.

 Remaining 4 units yield 16 networks

- Here many networks have no path from input to output
- Problem insignificant with large networks

Ensemble of subnetworks

Mask for dropout training

- To train with dropout we use minibatch based learning algorithm that takes small steps such as SGD
- At each step randomly sample a binary mask
 - Probability of including a unit is a hyperparameter
 - 0.5 for hidden units and 0.8 for input units
- We run forward & backward propagation as usual

Feedforward
network

Network with binary vector μ whose elements correspond to input and hidden units

- Elements of μ
- With probability of 1 being a hyperparameter
 - 0.5 for hidden
 - 0.8 for input
- Each unit is
 - Multiplied by corresponding mask

- Forward prop as usual
- Equivalent to randomly selecting one of the subnetworks of previous slide

Formal description of dropout

- Suppose that mask vector μ specifies which units to include
- Cost of the model is specified by $J(\theta,\mu)$
- Drop training consists of minimizing $E_{\mu}(J(\theta,\mu))$
- Expected value contains exponential no. of terms
- We can get an unbiased estimate of its gradient by sampling values of µ

Bagging training vs Dropout training

- Dropout training not same as bagging training
 - In bagging, the models are all independent
 - In dropout, models share parameters
 - Models inherit subsets of parameters from parent network
 - Parameter sharing allows an exponential no. of models with a tractable amount of memory
- In bagging each model is trained to convergence on its respective training set
 - In dropout, most models are not explicitly trained
 - Fraction of subnetworks are trained for a single step
 - Parameter sharing allows good parameter settings

Prediction: Bagging vs. Dropout

Bagging:

- Ensemble accumulates votes of members
- Process is referred to as inference
 - Assume model needs to output a probability distribution
 - In bagging, model i produces $p^{(i)}(y|x)$
 - Prediction of ensemble is the mean $\left|\frac{1}{L}\sum_{i=1}^{k}p^{(i)}(y\,|\,m{x})\right|$

$$oxed{rac{1}{k}\sum_{i=1}^k p^{(i)}(y \mid oldsymbol{x})}$$

Dropout:

- Submodel defined by mask vector µ defines a probability distribution $p(y|x, \mu)$
- Arithmetic mean over all masks is $\left|\sum_{\mathbf{n}} p(y \mid \boldsymbol{x}, \boldsymbol{\mu})\right|$
 - Where $p(\mu)$ is the distribution used to sample μ at training time

Intractability of prediction

Dropout prediction is

$$\sum_{\mu} p(y \mid \boldsymbol{x}, \mu)$$

- It is intractable to evaluate due to an exponential no. of terms
- We can approximate inference using sampling
 - By averaging together the output from many masks
 - 10-20 masks are sufficient for good performance
- Even better approach, at the cost of a single forward propagation:
 - use geometric mean rather than arithmetic mean of the ensemble member's predicted distributions