Inhaltsverzeichnis

0	Der Vektorraum \mathbb{R}^n	4
	0.1 Satz (Rechenregeln in \mathbb{R}^n)	5
	0.2 Definition	6
	0.3 Beispiele	6
	0.4 Satz	7
	0.5 Beispiel	8
	0.6 Definition	9
	0.7 Beispiel	10
	0.9 Definition	12
	0.10 Beispiel	12
	0.11 Satz	14
	0.12 Satz	15
	0.13 Definition	16
	0.14 Beispiel	16
	0.15 Satz	17
	0.16 Satz	18
	0.17 Definition	18
	0.18 Satz (Basisergänzungssatz)	18
	0.19 Korollar	18
	0.20 Definition	19
	0.21 Beispiele	19
	0.21 20.0p.c.c	10
1	Algebraische Strukturen	20
	1.1 Definition	20
	1.2 Beispiele	20
	1.3 Definition	21
	1.4 Bermerkung	22
	1.5 Proposition	22
	1.6 Beispiel	23
	1.7 Satz	25
	1.8 Reisniel	26

	1.9 Beispiel	26
	1.10 Satz (Gleichungslösen in Gruppen)	27
	1.11 Beispiel	27
	1.12 Definition	27
	1.13 Beispiele	28
	1.14 Proposition	29
	1.15 Bemerkung	29
	1.16 Definition	29
	1.17 Beispiel	30
	1.18 Proposition (Nullteilerfreiheit in Körpern)	30
	1.19 Definition	30
	1.20 Satz und Definition	31
	1.21 Bemerkung	31
	1.22 Definition	32
	1.23 Satz	32
	1.24 Korollar	32
	1.25 Bemerkung	33
	1.26 Definition	34
	1.27 Satz	34
	1.28 Beispiel	35
	1.29 Korollar	35
	1.30 Definition	36
	1.31 Beispiel	36
	1.32 Satz	36
	1.33 Korollar	37
	1.34 Bemerkung	37
	1.35 Fundamentalsatz der Algebra	38
2	Vektorräume	38
-	2.1 Definition	38
	2.2 Beispiel	38
	2.3 Proposition	40
	2.4 Definition	40

ABBILDUNGSVERZEICHNIS

2.5	Proposition	40				
2.6	Beispiel	41				
2.7	Proposition	41				
2.8	Definition	41				
2.9	Satz	42				
Abbildungsverzeichnis						
1	Ein Vektor dargestellt durch seinen Ortsvektor	5				
2	Vektoraddition durch Parallelogrammbildung	5				
3	Gerade dargestellt durch Vektoren	7				

Ende des SS 2015

0 Der Vektorraum \mathbb{R}^n

$$n \in \mathbb{N} \quad \mathbb{R}^n = \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} : a_1 \in \mathbb{R} \right\}$$

Spaltenvektoren der Länge $n: \begin{pmatrix} a_1 \\ \vdots \\ a \end{pmatrix} = (a_1, \dots, a_n)^t$

 a_1, \ldots, a_n Komponente der Spaltenvektoren.

Wie bei Matrizen:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

 $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$ (Multiplikation entspricht der Matrizenmultiplikation und ist nicht möglich falls n > 1)

Multiplikation eines Spaltenvektors mit einer Zahl (Skalar)

$$a \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} aa_1 \\ \vdots \\ aa_n \end{pmatrix}$$

Addition+Abbildung: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

 \mathbb{R}^n mit Addition und Multiplikation mit Skalaren : \mathbb{R} -Vektorraum

Die Vektoren im $\mathbb{R}^1 (= \mathbb{R})$, \mathbb{R}^2 und \mathbb{R}^3 entsprechen Punkten auf der Zahlengerade, Ebene, dreidimensionalen Raums. Punkte des \mathbb{R}^2 , \mathbb{R}^3 lassen sich identifizieren mit, Ortsvektoren Pfeile mit Beginn in 0 (Komp = 0) und Ende im entsprechenden Punkt

Addition von Spaltenvektoren entspricht der Addition von Ortsvektoren entsprechend der Parallelogrammregel. Multiplikation mit Skalaren a:

Streckung (falls |a| > 1)

Stauchung (falls $0 \ge |a| \ge 1$)

Richtungspunkt, falls a < 0

Abbildung 1: Ein Vektor dargestellt durch seinen Ortsvektor

Abbildung 2: Vektoraddition durch Parallelogrammbildung

0.1 Satz (Rechenregeln in \mathbb{R}^n)

Seien $u, v, w \in \mathbb{R}^n$, $a, b \in \mathbb{R}$ Dann gilt:

a)

(1.1)
$$u + (v + w) = (u + v) + w$$

(1.2)
$$v + 0 = 0 + v = v$$
, wobei 0 *Nullvektor*

 \mathbb{R}^n kommutative

$$(1.3) v + -v = 0$$

Gruppe

$$(1.4) u + v = v + u$$

$$(2.1) (a+b)v = av + bv$$

$$(2.2) a(u+v) = au + av$$

$$(a \cdot b)v = a(bv)$$

$$(2.4) 1v = v$$

b) $0 \cdot v = 0 \text{ und } a \cdot 0 = 0$

Beweis folgt aus entsprechenden Rechenregeln in 0

0.2 Definition

Eine nicht-leere Teilmenge $\mathcal{U} \supset \mathbb{R}^n$ heißt *Unterraum* (oder *Teilraum* von \mathbb{R}^n), falls gilt:

- (1) $\forall u_1, u_2 \in \mathcal{U} : u_1 + u_2 \in \mathcal{U}$ (Abgeschlossenheit bezüglich +)
- (2) $\forall u \in \mathcal{U} \forall a \in \mathbb{R} : au \in \mathcal{U}$ (Abgeschlossenheit bezüglich Mult. mit Skalaren)

 $\mathcal U$ enthält Nullvektor {0} Unterraum von $\mathbb R^n$ (Nullraum) $\mathbb R^n$ ist Unterraum von $\mathbb R$

0.3 Beispiele

a)
$$0 \neq v \in \mathbb{R}^2$$
 $G = \{av : a \in \mathbb{R}\}$ ist Unterraum von \mathbb{R}^n $(a_1v, a_2v \in G, (a_1 + a_2)v \in G$ 2.1 in 0.2 $av \in G, b \in \mathbb{R}(ba)v \in G$

G = Ursprungsgerade durch
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 und v = $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ $n = 2$:

Abbildung 3: Gerade dargestellt durch Vektoren

b) $v, w \in \mathbb{R}^n$

 $E = \{av + bw : a, b \in \mathbb{R}\}$ ist Unterraum von \mathbb{R}^n

$$v = o, w = o : E = \{o\}$$

$$v \neq o \quad w \notin \{av : a \in \mathbb{R}\}$$

$$E = \mathbb{R}^2$$
 $n = 3$: Ebene durch $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ und durch v, w

Ist $w \in \{av : a \in \mathbb{R}\}$, so ist E = G (aus a))

c) $v, w \neq o$

$$G' = \{ w + av : a \in \mathbb{R} \}$$

 $[v \in G' \Leftrightarrow \exists a \in \mathbb{R} : w + av \in o \Leftrightarrow \exists a \in \mathbb{R} : w = (-a)v \in G]$

0.4 Satz

Seien \mathcal{U}_1 , \mathcal{U}_2 Unterräume von \mathbb{R}^n

- a) $\mathcal{U}_1 \cap \mathcal{U}_2$ ist Unterraum von \mathbb{R}^n
- b) $\mathcal{U}_1 \cup \mathcal{U}_2$ ist im Allgemeinen KEIN Unterraum von \mathbb{R}^n
- c) $\mathcal{U}_1 + \mathcal{U}_2 := \{u_1 + u_2 : u_1 : \mathcal{U}_1, u_2 : \mathcal{U}_2\}$ (Summe von \mathcal{U}_1 und \mathcal{U}_2) ist Unterraum von \mathbb{R}^n .

d) $\mathcal{U}_1 \subseteq \mathcal{U}_1 + \mathcal{U}_2$ $\mathcal{U}_2 \subseteq \mathcal{U}_1 + \mathcal{U}_2$ und $\mathcal{U}_1 + \mathcal{U}_2$ ist der kleinste Unterraum von \mathbb{R}^n , der \mathcal{U}_1 und \mathcal{U}_2 enthält. (d.h ist w Unterraum von \mathbb{R}^n mit $\mathcal{U}_1, \mathcal{U}_2 \in w$, so $\mathcal{U}_1 + \mathcal{U}_2 \subseteq W$)

Beweis. a) √

b) c)

0.5 Beispiel

a) **??**b)
$$G_1 = \{av : a \in \mathbb{R}\}$$

 $G_2 = \{aw : a\}$
 $G_1 + G_2 = E$

b)
$$\mathbb{R}^3$$

$$E_1 = \left\{ r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \colon r, s \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} r \\ 0 \\ s \end{pmatrix} \colon r, s \in \mathbb{R} \right\}$$

$$E_2 = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + u \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} u \\ t + u \\ u \end{pmatrix} \right\}$$

 $E_1 + E_2$ Unterräume von \mathbb{R}^3 (10.3.b)

$$E_1 \cap E_2 = ?$$

$$v \in E_1 \cap E_2 \iff v = \begin{pmatrix} r \\ 0 \\ s \end{pmatrix} = \begin{pmatrix} u \\ t+u \\ u \end{pmatrix} \iff r = u, t+u = 0, s = u$$

$$E_1 \cap E_2 = \left\{ \begin{pmatrix} u \\ 0 \\ u \end{pmatrix} : u \in \mathbb{R} \right\}$$

$$= \left\{ u \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : u \in \mathbb{R} \right\}$$

$$E_1 + E_2 = ?$$

$$E_1 + E_2 = \mathbb{R}^3$$
, denn :

Es gilt sogar:

$$\mathbb{R}^3 = E_1 + G_2$$
, wobei

$$G_{2} = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\} \subseteq E_{@}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} z \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + y \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x - y) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (z - y) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} x - y \\ 0 \\ z - y \end{pmatrix} + \begin{pmatrix} y \\ y \\ y \end{pmatrix}$$

0.6 Definition

a) $v_1, \ldots, v_m \in \mathbb{R}^n, a_1, \ldots a_m \in \mathbb{R}$

Dann heißt
$$a_1v_1 + \ldots + a_mv_m = \sum_{i=1}^m a_iv_i$$

Linear kombination von v_1, \ldots, v_m (mit Koeffizienten a_1, \ldots, a_m).

[Zwei formal verschiedene Linearkombinationen der gleichen v_1,\dots,v_m können den gleichen Vektor darstellen

$$1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \end{bmatrix}$$

b) Ist $M \subseteq \mathbb{R}^n$, so ist der von M *erzeugte* (oder *aufgespannte*) Unterraum $\langle M \rangle_{\mathbb{R}}$ (oder $\langle M \rangle$) die Menge aller (endlichen) Linearkombinationen, die man mit Vektoren aus M bilden kann.

$$\langle M \rangle_{\mathbb{R}} = \left\{ \sum_{i=1}^{n} a_i v_i : n \in \mathbb{N}, a_i \in \mathbb{R}, v_i \in M \right\} \text{ falls } M \neq \emptyset$$

$$\langle \varnothing \rangle_{\mathbb{R}} := \{\varnothing\}$$

 $M = \{v_1, \dots v_m\}, \text{ so}$

0.7 Beispiel

a)
$$e_i = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

$$\langle e_1, \dots e_n \rangle = \mathbb{R}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

b)
$$\mathscr{U} = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
Ist $\mathscr{U} = \mathbb{R}^3$?

Für welche $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ gibt es geeignete Skalare $a, b, c \in \mathbb{R}$ mit $a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + c \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?

$$a +3b +2c = x$$

$$2a +2b +3c = y$$

$$3a +b +4c = z$$

LGS für die Unbekannten a, b, c mit variabler rechter Seite : Gauß

$$\begin{pmatrix} 1 & 3 & 2 & x \\ 2 & 2 & 3 & y \\ 3 & 1 & 4 & z \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & x \\ 2 & -4 & -1 & y - 2x \\ 0 & -8 & -2 & z - 3x \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 3 & 2 & x \\
0 & 1 & \frac{1}{4} & \frac{2x-y}{4} \\
0 & 0 & 0 & x-2y+z
\end{pmatrix}$$

LGS ist lösbar $\Leftrightarrow x - 2y + z = 0$.

Dass heißt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{U} \iff x - 2y = z = 0$$

$$\mathcal{U} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x - 2y + z = 0, x, y, z \in \mathbb{R} \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ -x + 2y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \in \mathcal{U}$$

Lösungen des LGS: c frei wählen, b, a ergeben sich, (falls x-2y+z=0) z.B $c=0, b=\frac{1}{2}x-\frac{1}{4}y, a=x-3b=-\frac{1}{2}x+\frac{3}{4}y$

Ist x - 2y + z = 0, so ist

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \left(-\frac{1}{2}x + \frac{3}{4}y\right) \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \left(\frac{1}{2}x - \frac{1}{4}y\right) \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \stackrel{5}{\stackrel{4}{=}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{\stackrel{4}{=}} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

$$6x^{2} -3xy + y^{3} = 5$$

$$7x^{3} +3x^{2}y^{2} -xy = 7$$

Definition 0.9

 $v_1, \ldots, v_n \in \mathbb{R}^n$ heißen *linear abhängig*. falls $a_1, \ldots, a_n \in \mathbb{R}$ existieren, *nicht alle* = 0, mit $a_1 v_1 + ... + a_n v_n = 0$.

Gibt es solche Skalare nicht, so hei
SSen v_1, \dots, v_m linear unabhängig (d.h. aus $a_1 v_1 \dots a_n v_n = 0 folgta_1 = \dots = a_n = 0$.

(Entsprechend $\{v_1 \dots v_n\}$ linear abhängig/linear unabhängig)

Per Definition: Ø is linear unabhängig.

0.10 Beispiel

a) $\sigma + v \in \mathbb{R}^n$ Dann ist v linear unabhängig:

Zu zeigen : Ist av = $\sigma \Rightarrow a = 0$

Sei
$$v \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
 Da $v \neq \sigma$

existiert mindestens ein i mit $b_i \neq 0$.

Angenommen
$$\sigma v = \begin{pmatrix} 0b_1 \\ \vdots \\ 0b_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \sigma.$$

Dann $ab_i = 0$ Da $b_i \neq 0$, folgt a = 0.

 σ ist linear abhängig:

$$1 \cdot \sigma = \sigma$$

- b) $v_1 = \sigma. v_2..., v_m$ ist linear abhängig: $\sigma = 1 \cdot \sigma + 0 \cdot v_2 + \ldots + 0 \cdot v_m$
- c) $v, w \in \mathbb{R}^n$

 $\begin{array}{c}
v \neq \sigma \neq w \\
v,w \text{ sind linear} \\
\text{abhängig}
\end{array} \Leftrightarrow$

- $(2) v \in \langle w \rangle_{\mathbb{R}} \Leftrightarrow$
- $(3) w \in \langle v \rangle_{\mathbb{R}} \Leftrightarrow$
- $(4)\langle v \rangle_{\mathbb{R}} = \langle w \rangle_{\mathbb{R}}$

1

v,w linear abhängig $\to \exists a_1,a_2 \in \mathbb{R}$, nicht beide = 0, $a_1v+a_2w=\sigma$. Dann beide $(a_1,a_2)\neq 0$

$$a_1 v = -a_2 w \mid \cdot \frac{1}{a_1}$$
$$v = -\frac{-a_2}{-a_1} w \in \langle w \rangle_{\mathbb{R}} (2)$$

(2)

 $v \in \langle w \rangle_{\mathbb{R}}$ dass heißt v = aw für ein $a \in \mathbb{R}$ Dann $a \neq 0$, da $v \neq \sigma$. $w = \frac{1}{a} \cdot v \in \langle v \rangle_{\mathbb{R}}$ (3)

3

w = bv für ein $b \in \mathbb{R}b \neq 0$, da $w \neq \sigma$.

$$aw \in \langle w \rangle_{\mathbb{R}} \Rightarrow aW = (ab)v \in \langle v \rangle_{\mathbb{R}}$$

$$\langle w \rangle_{\mathbb{R}} \subseteq \langle v \rangle_{\mathbb{R}}$$

 $w = \frac{1}{b}w$ Dann analog $\langle v \rangle \mathbb{R} \subseteq \langle w \rangle_{\mathbb{R}}$

Also
$$\langle v \rangle \mathbb{R} = \langle w \rangle_{\mathbb{R}}$$

(4)

 $v \in \langle v \rangle_{\mathbb{R}} = \langle w \rangle_{\mathbb{R}}$, dass heißt.

 $v = a \cdot w$ für ein $a \in \mathbb{R}$

 $a \cdot v + (-a)w = \sigma \Rightarrow v$, w sind linear abhängig ①

$$\mathbf{d}) \quad e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

 e_1, \ldots, e_n sind linear unabhängig.

$$\sigma = a_1 e_1 + \dots + a_n e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow a_1 = a_2 = \dots = a_n = 0$$

e)
$$\binom{1}{2}$$
, $\binom{-3}{1}$, $\binom{6}{2}$ sind linear abhängig \mathbb{R}^2 :

Gesucht sind alle
$$a_i, b_i \in \mathbb{R}$$
 mit $a \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Führt auf LGS für a,b,c:

$$\begin{pmatrix} 1 & -3 & 6 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 6 & 0 \\ 0 & 7 & -10 & 0 \end{pmatrix}$$
c ist frei wählbar

f)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ sind linear abhängig in \mathbb{R}^3 ,

10.8b):
$$\frac{5}{4} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

0.11 Satz

Seien $v_1, \ldots, v_n \in \mathbb{R}^n$

a)
$$v_1, \ldots, v_m$$
 sind linear abhängig ①
$$\Leftrightarrow \exists i \ldots v_i = \sum_{\substack{j=1 \ j \neq i}}^m b_j v_j ②$$

$$\Leftrightarrow \exists i : \langle v_1, \ldots, v_m \rangle_{\mathbb{R}} = \langle v_1, \ldots v_{i-1}, v_{i+!}, \ldots, v_m \rangle_{\mathbb{R}} ③$$

- b) $v_1, ..., v_m$ sind linear unabhängig \Leftrightarrow Jedes $v \in \langle v_1, ..., v_m \rangle_{\mathbb{R}}$ lässt sich auf *genau eine* Weise als Linearkombination von $v_1, ..., v_m$ schreiben.
- c) Sind v_1, \ldots, v_m linear unabhängig und es existiert $v \in \mathbb{R}^n mit v \neq \langle v_1, \ldots, v_m \rangle_{\mathbb{R}}$ dann sind auch v_1, \ldots, v_m, v linear unabhängig

Beweis. a)
$$(1) \Rightarrow (2)$$

 $v_1, \dots v_m$ sind linear abhängig

$$\Rightarrow \exists a_1, \dots, a_m \text{ nicht alle} = 0,$$

$$a_a v_i + \ldots + a_m v_m = 0$$

Sei $a_i \neq 0$

0 DER VEKTORRAUM \mathbb{R}^n

$$a_i v_i = \sum_{\substack{j=1\\j\neq i\\j\neq i}}^m -a_j v_j$$

$$v_i = \sum_{\substack{j=1\\j\neq i\\j\neq i}}^m -\frac{a_j}{a_i} v_j \ \textcircled{2}$$

$$\textcircled{2} \Rightarrow \textcircled{3}$$

 $Klar: \langle v_1, \dots v_{i-1}, v_{i+1}, v_m \rangle_{\mathbb{R}} \subseteq \langle v_1, \dots, v_m \rangle_{\mathbb{R}}$

$$\begin{split} & \text{Zeige} \supseteq \quad v = \langle v_1, \dots, v_m \rangle_{\mathbb{R}}, \text{d.h} \\ & v = \sum_{j=1}^m a_j v_j = \sum_{\substack{j=1 \\ j \neq i}}^m a_j v_j + a_i (\sum_{\substack{j=1 \\ j \neq i}}^m b_j v_j) = \sum_{\substack{j=1 \\ j \neq i}}^m (a_j + a_i b_j) v_j \in \langle v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_m \rangle_{\mathbb{R}} \text{ (2)} \end{split}$$

 $v_i \in \langle v_1 \dots v_m \rangle_{\mathbb{R}} = \langle v_1 \dots v_{i-1}, v_{i+1}, \rangle_{\mathbb{R}}$, dass heißt es existiert $a_1, \dots a_{i-1}, a_{i+1}, \dots a_m \in \mathbb{R}$ mit

$$v_i = \sum_{\substack{j=1\\j\neq i}}^m a_j v_j$$

$$\Rightarrow \sigma = a_1 + v_1 + ... + a_{i-1}v_{i-1} + (-1)v_i + a_{i+1}v_{i+1} + ... + a_mv_m$$
 $v_1 ... v_m$ linear abhängig

0.12 Satz

Sind $v_i, \ldots, v_{n+1} \in \mathbb{R}^n$, so

 $\sin v_i, \dots, v_{n+1}$ linear abhängig.

(Insbesondere ist m > n und $v_i, v_m \in \mathbb{R}^n$, so sind v_1, \dots, v_m linear abhängig)

Beweis. Such alle
$$a_1, \ldots, a_{n+1} \in \mathbb{R}$$
 mit $a_i v_1 + \ldots a_{n+1} v_{n+1} = \begin{pmatrix} 0 \\ \ldots \\ 0 \end{pmatrix}$

Führt zu LGS für a_1, \ldots, a_{n+1} mit Koeffizientenmatrix $(v_1, \ldots, v_2, \ldots, v_{n+1}) = A$

Frage: Hat
$$A \cdot \begin{pmatrix} a_i \\ \vdots \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n$$
 nicht triviale Lösung?

Gauß:

$$\left(\mathbf{A}_{0}^{\binom{0}{1}} \rightarrow\right) \qquad \Box$$

0.13 Definition

Sei \mathcal{U} ein Unterraum von \mathbb{R}^n $B \subseteq \mathcal{U}$ heißt Basis von \mathcal{U} falls:

- (1) $\langle B \rangle_{\mathbb{R}} = U$
- (2) B ist linear unabhängig

$$(\mathcal{U} = {\sigma}, B = \emptyset)$$

0.14 Beispiel

a) $e_1, ..., e_n$ ist Basis von \mathbb{R}^n (kanonische Basis)

$$e_1 = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{pmatrix} \leftarrow i$$

$$\begin{pmatrix} a_i \\ \vdots \\ a_n \end{pmatrix} = \sum_{i=1}^n a_i e_i$$

b)
$$\binom{1}{2}$$
, $\binom{3}{2}$ ist Basis von R^2 :

Sei $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$. Gesucht: $a, b \in \mathbb{R}$ mit $a \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

LGS mit variabler rechter Seite

$$1a + 3b = x$$

$$2a + 2b = y$$

Gauß:

$$\begin{pmatrix} 1 & 3 & x \\ 2 & 2 & y \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & x \\ 0 & -4 & y - 2x \end{pmatrix}$$
Eindeutige Lösung: $b = -\frac{1}{4}y + \frac{1}{2}x$ $a = x - 3b = x + \frac{3}{4}y - \frac{3}{2}x = -\frac{1}{2}x + \frac{3}{4}y$

$$z.B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} 3 \\ 2 \end{pmatrix} \mathbb{R}^2 \langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \rangle$$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \text{ sind linear unabhängig nach 0.10c}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4}\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4}\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \text{ linear unabhängig (0.10c)}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \text{ Basis von } \mathcal{U}$$

0.15 Satz

Jeder Unterraum \mathcal{U} des \mathbb{R}^n besitzt eine Basis.

Beweis. Ist $\mathcal{U} = \{\sigma\}$, so $b = \emptyset$. Sei also $\mathcal{U} \neq \{\sigma\}$.

 v_1 ist linear unabhängig.

 $\langle v_1 \rangle_{\mathbb{R}} \subseteq \mathcal{U}$.

Ist $\mathscr{U} = \langle v_1 \rangle_{\mathbb{R}}$, so ist $\{v_1\}$ Basis von \mathscr{U}

Ist $\langle v_1 \rangle_{\mathbb{R}} \subsetneq \mathcal{U}$.

Sei $v_2 \in \mathcal{U} \setminus \langle v_1 \rangle_{\mathbb{R}}$.

Nach 0.11c) ist $\{v_1, v_2\}$ linear unabhängig. Ist $\langle v_1, v_2 \rangle = \mathcal{U}$, so ist $\{v_1, v_2\}$ Basis von \mathcal{U} .

Ist $\langle v_1, v_2 \rangle_{\mathbb{R}} \subseteq U$ so wähle v_3 usw.

Es existiert $m \neq n$ mit $\langle v_1, \dots v_m \rangle_{\mathbb{R}} = \mathcal{U}$ und v_1, \dots, v_m sind linear unabhängig. (Denn noch 0.12 gibt es im \mathbb{R}^n keine n+1 linear unabhängige Vektoren)

0.16 Satz

Je zwei Basen B_1, B_2 eines Unterraums \mathcal{U} des \mathbb{R}^n enthalten die gleiche Anzahl von Vektoren $|B_1| = |B_2|$.

Insbesondere:

Je zwei Basen des \mathbb{R}^n enthalten n Vektoren

0.17 Definition

Ist \mathscr{U} Unterraum von \mathbb{R}^n , B Basis von \mathscr{U} , |B| = m. Dann ist m die Dimension von \mathscr{U} , $\dim(u) = m$. $\dim(\mathbb{R}^n) = n$, $\dim(\mathscr{U}) \neq n$.

0.18 Satz (Basisergänzungssatz)

Sei $\mathscr U$ Unterraum der $\mathbb R^n$, $M\subseteq \mathscr U$ eine Menge m linear unabhängiger Vektoren. Dann lässt sich M zu einer Basis von $\mathscr U$ ergänzen.

Beweis. Analog zu 0.15

0.19 Korollar

Ist $\mathscr U$ Unterraum des $\mathbb R^n$ und dim $(\mathscr U) = n$, dann ist $\mathscr U = \mathbb R^n$

Beweis. Sei B Basis von \mathcal{U} , also |B| = n.

Nach 0.18 (dort mit $\mathcal{U} = \mathbb{R}^n$, M = B) lässt sich B zu Basis B' von \mathbb{R}^n ergänzen. $\dim(\mathbb{R}^n) = n \Rightarrow |B'| = n$.

Also B = B'

$$\mathbb{R}^n = \langle B' \rangle_{\mathbb{R}} = \langle B \rangle_{\mathbb{R}} = \mathscr{U} \qquad \Box$$

0.20 Definition

Ist $\mathscr U$ Unterraum von $\mathbb R^n$, $B=(u_1...,u_m)$ eine geordnete Basis von $\mathscr U$. Nach 0.11b), lässt sich jeder Vektorraum $\mathscr U=\langle B\rangle_{\mathbb R}$ eindeutig als Linearkombination

$$\mathscr{U} = \sum_{i=1}^{m} a_i u_i \quad , a_i \in \mathbb{R}$$

schreiben.

 $(a_1...,a_m)$ heißen *Koordinaten* von u bzgl. der Basis B.

0.21 Beispiele

a) $B(e_1, ..., e_m)$ kanonische Basis von \mathbb{R}^n .

Koordinaten von
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$$
 bzgl. B:

$$(a_1...,a_n)$$
 kartesische Koordinaten.

(Rene Descartes, 1596-1650)

Anfang des WS 2015/16

1 Algebraische Strukturen

13.10.2015

1.1 Definition

Sei $X \neq \emptyset$. Eine *Verknüpfung* auf X ist :

$$\begin{cases} X \times X & \longrightarrow X \\ (a, b) & \longrightarrow a \star b \end{cases}$$
 ('Produkt' von a und b)

★ ist Platzhalter für andere Verknüpfungssymbole, die in speziellen Beispielen auftreten können.

1.2 Beispiele

- a) Addition + und Multiplikation · sind Verknüpfungen auf \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Multiplikation ist *keine* Verknüpfung auf der Menge der negativen ganzen Zahlen.
- b) Division ist keine Verknüpfung auf \mathbb{N} . Division ist Verknüpfung auf $\mathbb{Q}\setminus\{Q\}$, $\mathbb{R}\setminus\{0\}$, $\mathbb{C}\setminus\{0\}$

c)
$$\mathbb{Z}_n \coloneqq \{0, 1, \dots, n-1\}$$
 $(n \in \mathbb{N})$
 $a \oplus b \coloneqq (a+b) \mod n \in \mathbb{Z}_n$
 $a \otimes b \coloneqq (a \cdot b) \mod n \in \mathbb{Z}_n$
Verknüpfungen auf \mathbb{Z}_n
 $n = 7 \colon 5 \otimes 6 = 2$
 $5 \oplus 6 = 4$
 $n = 2 \colon \mathbb{Z}_n = \{0, 1\}$
 $0 \oplus 0 = 0, 1 \oplus 0 = 1, 0 \oplus 1 = 1, 1 \oplus 1 = 0$

d) M Menge, X = Menge aller Abbildungen $M \longrightarrow M$. Verknüpfung auf X: Hintereinanderausführung von Abbildungen: \circ

$$(f,g): M \longrightarrow M$$
, So $f \circ g: M \to M$
 $(f \circ g)(m) = f(g(m)) \in M, m \in M$
Im Allgemeinen ist $g \circ f \neq f \circ g$

e) $X = \{0, 1\}$

2-stellige Aussagen, Junktoren wie \land , \lor , XOR, \Rightarrow , \Leftrightarrow heißen Verknüpfungen auf X. 0 entspricht f, 1 entspricht w.

$$0 \lor 0 = 0, 1 \lor 0 = 1, 0 \lor 1 = 1, 1 \lor 1 = 1$$

 $0 \land 0 = 0, 0 \land 1 = 0, 1 \land 0 = 0, 1 \land 1 = 1$ (= 'Multiplikation')
 $0 XOR 0 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 1 XOR 1 = 0$ (= Addition mod 2)

- f) $X = M_n(\mathbb{R}) = \text{Menge der } n \times n \text{Matrizen "uber } \mathbb{R}$. Matrizenaddition ist Verknüpfung auf X. Matrizenmultiplikation ist Verknüpfung auf X.
- g) *M* Menge. *X* Menge aller endlichen Folgen von Elementen aus M ('Wörter' über M).

Verknüpfung: Hintereinanderausführung zweier Folgen (Konkatenation).

$$M = \{0, 1\}, w_1 = 1101, w_2 = 001$$

 $w_1 w_2 = 110111$
 $w_2 w_1 = 0011101$

1.3 Definition

Sei $X \neq 0$ eine Menge mit Verknüpfung ★.

- a) X, genauer (X, \star) ist Halbgruppe, falls $(a \star b) \star c = a \star (b \star c)$ für alle $a, b, c \in X$. (Assoziativgesetz)
- b) (X, \star) heißt *Monoid*, falls (X, \star) Halbgruppe ist und ein $e \in X$ existiert mit $e \star a = a$ und $a \star e = a$ für alle $a \in X$. e heißt *neutrales Element* (später, e ist eindeutig bestimmt).
- c) Sei (X, \star) ein Monoid. Ein Element $a \in X$ heißt *invertierbar*, falls $b \in X$ existiert (abhängig von a) mit $a \star b = b \star a = e$. b heißt *inverses Element* (das *Inverse*) zu a (später: wenn b existiert, so ist es eindeutig bestimmt).
- d) Monoid (X, \star) heißt *Gruppe*, falls jedes Element in X bezüglich \star invertierbar ist.

e) Halbgruppe, Monoid, Gruppe (X, \star) bezüglich kommutativ (oder *abelsch*) falls $a \star b = b \star a$ für alle $a, b \in X$ (Kommutativgesetz). (Nach: Abel, 1802-1829)

14.10.2015

1.4 Bermerkung

In Halbgruppe liefert jede sinnvolle Klammerung eines Produktes mit endlich vielen Faktoren das gleiche Element.

$$(n=4)$$

$$(a\star(b\star c))\star d = \underset{\mathrm{AG}^{1}}{=} ((a\star b)\star c)\star d = \underset{\mathrm{AG}^{1}}{=} (a\star b)\star (c\star d) = \underset{\mathrm{AG}^{1}}{=} a\star (b(c\star d)) = \underset{\mathrm{AG}^{1}}{=} a\star ((b\star c)\star d)$$

Klammern werden daher meist weggelassen.

$$a^n = \underbrace{a \star \dots \star a}_{n \in \mathbb{R}}$$
 "Potenzen eindeutig definiert"

1.5 Proposition

- a) In einem Monoid (X, \star) ist das neutrale Element eindeutig bestimmt.
- b) Ist (X, \star) Monoid und ist $a \in X$ invertierbar, so ist das Inverse zu a eindeutig bestimmt. Bezeichnung: a^{-1}
- c) Ist (X, \star) Monoid und wenn $a, b \in X$ invertierbar sind, so auch $a \star b$. $(a \star b)^{-1} = b^{-1} \star a^{-1}$
- d) Die Menge der invertierbaren Elemente in einem Monoid (X, \star) bilden bezüglich \star eine Gruppe.

Beweis. a) Angenommen: e_1 , e_2 sind neutrale Elemente. Dann:

$$e_1 = e_1 \star e_2 = e_1 \star e_2 = e_2$$

¹Assoziativgesetz

b) Angenommen a hat 2 inverse Elemente b_1, b_2 also.

$$a \star b_1 = e, b_2 \star a = e$$

$$b_1 = e \star b_1 = (b_2 \star a) \star b_1 = b_2 \star (a \star b_1) = b_2 \star e = b_2 \qquad \text{?}$$

c)
$$(a \star b) \star (b^{-1} \star a^{-1}) = a \star (b \star b^{-1}) \star a^{-1} = a \star e \star a^{-1} = e$$

Analog:
$$(b^{-1} \star a^{-1}) \star (a \star b) = e$$

Also: $(a \star b)^{-1} = b^{-1} \star a^{-1}$

d) \mathcal{I} = Menge der inversen Elemente in (X, \star) ,

 $e \in \mathcal{I}$, dann $e \star e = e$, dass heißt $e^{-1} = e$, \star ist Verknüpfung auf \mathcal{I} .

Zu zeigen: $a, b \in \mathcal{I} \Rightarrow a \star b \in \mathcal{I}$ Folgt aus c).

Assozativgesetz gilt in
$$\mathscr{I}$$
, $a \in \mathscr{I} \Rightarrow a^{-1} \in \mathscr{I}$, denn $(a^{-1})^{-1} = a$

Bemerkung: Multiplikation mit a^{-1} macht Multiplikation mit a (Verknüpfung) rückgängig.

1.6 Beispiel

a) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Halbgruppen bezüglich +.

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind bezüglich + Monoide mit neutralen Element 0.

 $\mathbb{N} = \{1, 2, ...\}$ ist kein Monoid bezüglich +, aber \mathbb{N}_0 .

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Gruppen bezüglich +. Inverses Element zu a : -a

 \mathbb{N} ist keine Gruppe bezüglich +, Inverse Elemente in \mathbb{N}_0 : $\{0\}$

b) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Monoide bezüglich · (neutrales Element 1). Keine Gruppen (in $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ ist 0 nicht invertierbar).

$$\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}$$
 Gruppen.

Invertierbare Elemente in \mathbb{Z} :: $\{1,-1\}$ \leftarrow Gruppe bezüglich \cdot Eigenes Inverses

c) M Menge.

X = Menge aller Abbildungen $M \longrightarrow M$ mit Hintereinanderausführung \circ als

Verknüpfung.

Monoid, neutrales Element. id_M

$$f \circ id_M = f = id_M \circ f$$

$$id_M(m) = m$$
 für alle $m \in M$.

Invertierbar sind genau die bijektiven Abbildungen $M \longrightarrow M$, Inverse = Umkehrabbildung.

$$f: M \longrightarrow M$$
 bijektiv
 $f \circ f^{-1} = f^{-1} \circ f = id_M$

'Proposition' on page 22 d): Die bijektive
n Abbildung, $M \longrightarrow M$ bilden bezüglich \circ eine Gruppe

- d) $M = \text{Menge z.B } \{0,1\}$, x Menge aller endlichen Folgen über m.Halbgruppe mit Verknüpfung Konkatenation . Nimmt man die leere Folge mit hinzu, ist es das neutrale Element. Dann: Monoid.
- e) $M_n(\mathbb{R})$ Menge der Matrizen über \mathbb{R} .

Addition: neutrales Element 0-Matrix, Inverse zu A ist -A. (M,Addition) ist Gruppe

Multiplikation: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ Halbgruppe mit neutralem Element I_m

f)
$$n \in \mathbb{N}$$
 $\mathbb{Z}_n = \{0, ..., n-1\}$ Verknüpfung \oplus $a \oplus b = a + b \mod n$ (\mathbb{Z}_n, \oplus) ist Gruppe.

Assoziativgesetz: $a, b, c \in \mathbb{Z}_n$

$$(a \oplus b) \oplus c = (a+b \mod n) \mod n$$

$$= ((a+b)+c) \mod n$$

$$= (a+(b+c)) \mod n$$

$$= (a+(b+c)) \mod n$$

$$= (a+(b+c)) \mod n$$

$$= (a+(b\oplus c)) \mod n$$

$$= (a\oplus (b\oplus c))$$

0 ist neutrales Element bezüglich ⊕

0 ist sein eigenes Inverse.

$$1 \le i \le n$$
 $n-i \in \mathbb{Z}_n$ Inverses zu i $i \oplus (n-i)$

$$=(i+(n-i)) \mod n = n \mod n = 0$$

g) $n \in \mathbb{N}, \mathbb{Z}_0$ Verknüpfung 0 n > 1 $a \odot b = a \cdot b \mod n$

 $(\mathbb{Z}_n \otimes)$ ist Monoid

Assoziativgesetz wie bei ⊕.

1 ist neutrales Element bei ⊚ Keine Gruppe bezüglich ⊚, denn 0 hat kein Inverses

1.7 Satz

Sei $n \in \mathbb{N}, n > 1$

a) Die Elemente in (\mathbb{Z}_n, \odot) , die invertierbar bezüglich \odot sind, sind genau diejenigen $a \in \mathbb{Z}_n$ mit ggT(a, n) = 1.

Für solche a bestimmt man das Inverse folgendermaßen:

Bestimme $s, t \in \mathbb{Z}$ mit $s \cdot a + t \cdot n = 1$ (Erweiterter Euklidischer Algorithmus) Dann ist $a^{-1} = s \mod n$

- b) $\mathbb{Z}_n^* := \{a \in \mathbb{Z}_n : \operatorname{ggT}(a, n) = 1\}$ ist Gruppe bezüglich \otimes . $|\mathbb{Z}_n^*| =: \varphi(n)$ Euler'sche φ -Funktion (Leonard Euler 1707-1783)
- c) Ist p eine Primzahl so ist $(\mathbb{Z}_p \setminus 0, \odot)$ eine Gruppe. *Beweis* folgt aus b)

Beweis. a) Angenommen $a \in \mathbb{Z}_n$ invertierbar bezüglich \odot

D.h es existiert $b \in Z_n$ mit $a \odot b = 1$

 $a \cdot b \mod n = 1$, d.h es existiert $k \in \mathbb{Z}$ mit $a \cdot b = 1 + k \cdot n$, $1 = a \cdot b - k \cdot n$ Sei $d = \operatorname{ggT}(a.n)$:

$$d \mid a \implies d \mid a \cdot b$$

$$d \mid n \implies d \mid k \cdot n$$

$$\Rightarrow d \mid a \cdot b - k \cdot n = 1$$

$$\Rightarrow$$
 $d = 1$ $ggT(a, n) = 1$.

Umgekehrt sei $a \in \mathbb{Z}_n$ mit ggT(a, n) = 1

EEA liefert $s, t \in \mathbb{Z}$ mit $s \cdot a + t \cdot n = 1$.

$$(s \mod n) \otimes a = ((s \mod n) \cdot a) \mod n$$

$$= (s \cdot a) \mod n = (1 - t \cdot n) \mod n$$

$$= (1 - (t \cdot n) \mod n) \mod n = 1 \mod n = 1$$
b) 'Proposition' on page 22 d)

1.8 Beispiel

$$n=24$$
, $a=7$ ist invertierbar in (Z_{24}, \odot)
EEA:
$$1=(-2)\cdot 24+7\cdot 7$$

1.9 Beispiel

 $a^{-1} = 7 \mod 24 = 7 = a$

Sei
$$M = \{1, ..., n\}$$

Die Menge der bijektiven Abbildungen auf M (Permutationen) bilden nach 1.6c) eine Gruppe bezüglich Hintereinanderausführung \circ .

Bezeichnung: S_n systematische Gruppe von Grad n

Es ist
$$|S_n| = n!$$
 (Mathe I)
 $z.B : \pi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \in S_3$
 $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \pi$
 $\varrho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$
 $\varrho^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$
 $\varrho \circ \varrho^{-1} = id$
 $\pi \circ \varrho = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
 $\varrho \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

 S_n ist für $n \ge 3$ nicht abelsch (nicht kommutativ)

1.10 Satz (Gleichungslösen in Gruppen)

Sei (G, \cdot) eine Gruppe $a, b \in G$ (in allgemeinen Gruppen schreibt man Verknüpfungen oft als \cdot statt \star , oft auch ab statt $a \cdot b$)

- a) Es gibt genau ein $x \in G$ mit ax = b (nämlich $x = a^{-1}b$) ["Teilen durch" a von links = Multiplikation von links mit a^{-1}]
- b) Es gibt genau ein $y \in G$ mit ya = b (nämlich $y = ba^{-1}$)
- c) Ist ax = bx für ein $x \in G$, so ist a = bIst ya = yb für ein $y \in G$, so ist a = b

Beweis. a) Setze $x = a^{-1}b \in G$. $a \cdot (a^{-1} \cdot b) = (a \cdot a^{-1})b = a \cdot b = b$ Eindeutigkeit : Sei $x \in G$ mit ax = b Multiplikation beide Seiten mit a^{-1} , $x = (a^{-1}a)x = a^{-1}b$

- b) analog
- c) ax = bx Multiplikation mit x^{-1} Dann a = b

1.11 Beispiel

a) Suche Permutation $\xi \in S_3$ mit $\varrho \circ \xi = \pi$ (vgl. 1.9). 'Satz (Gleichungslösen in Gruppen)' on page 27a):

$$\xi = \varrho^{-1} \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

b) 1.10c) gilt in Monoiden, die keine Gruppen sind, im Allgemeinen nicht: Beispiel: (\mathbb{Z}_0, \odot)

$$2 \odot 3 - 0 = 3 \odot 3$$
, aber $2 \neq 4$

1.12 Definition

a) $R \neq \emptyset$ Menge mit 2 Verknüpfungen + und · heißt *Ring*, falls

- (1) (R, +) ist kommutative Gruppe (neutrales Element: 0, *Nullelement*, Inverses zu a : -a b + (-a) =: b a)
- (2) (R, \cdot) ist Halbgruppe

(3)
$$(a+b) \cdot c = a \cdot c + b \cdot c \text{ und } a \cdot (b+c) = a \cdot b + a \cdot c$$
 $(\cdot \text{ vor } +)$ $Distributivgesetz$

- b) Ring R heißt *kommutativer Ring* falls (R, \cdot) kommutative Halbgruppe ist.
- c) Ring R heißt *Ring mit Eins*, falls (R, \cdot) Monoid, neutrales Element $1 \neq 0$ (*Einselement, Eins*)

1.13 Beispiele

- a) $(\mathbb{Z}, +, \cdot)$ ist kommutativer Ring mit 1, invertierbare Elemente bezüglich \cdot sind 1 und -1.
- b) $(\mathbb{Q},+,\cdot),(\mathbb{R},+,\cdot),(\mathbb{C},+,\cdot)$ sind kommutative Ringe mit Eins. Alle Elemente $\neq 0$ sind invertierbar bezüglich \cdot
- c) $n \in \mathbb{N}, n > 1$.

$$\mathbb{Z}_n = \{0, \dots, n-1\}$$

 $(\mathbb{Z}_N, \oplus, \odot)$ ist kommutativer Ring mit Eins:

Wegen 'Beispiel' on page 23 f),g) sind nur die Distributivgesetz zu zeigen:

$$(a \oplus b) \circledcirc c = ((a \oplus b) \cdot c) \mod n$$

$$= (((a+b) \mod n) \cdot c) \mod n$$

$$= ((a+b) \cdot) \mod n$$

$$= (a \cdot c + b \cdot c) \mod n$$

$$= (a \cdot c + b \cdot c) \mod n$$

$$= ((a \cdot c) \mod n + (b \cdot c) \mod n) \mod n$$

$$= a \circledcirc c \oplus b \circledcirc c$$

d) $M_n(\mathbb{R})$, $n \times n$ -Matrizen über \mathbb{R} , mit Matrizenaddition + und, Multiplikation · ist Ring mit Eins.

(Folgt aus Rechenregeln für Matrizen, Mathe II) Eins: E_n $n \times n$ -Einheitsmatrix Für $n \ge 2$ ist $M_n(\mathbb{R})$ kein kommutativer Ring

1.14 Proposition

Sei $(R, +, \cdot)$ ein Ring. Dann gilt für alle $a, b \in R$.

- a) $0 \cdot a = a \cdot 0 = 0$
- b) $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- c) $(-a) \cdot (-b) = a \cdot b$

Beweis.

- a) $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$ Addiere auf beiden Seiten $-(0 \cdot a)$ $0 = 0 \cdot a + 0 = 0 \cdot a$
- b) $(-a) \cdot b + ab = ((-a) + a) \cdot b = 0 \cdot b = 0$ $\Rightarrow (-a) \cdot b = -(ab) \text{ Analog } a \cdot (-b) = -(ab)$
- c) $(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$

1.15 Bemerkung

a) In einem Ring mit Eins sind 1 und –1 bezüglich · invertierbar.

$$1 \cdot 1 = 1$$
 $(1^{-1} = 1)$
 $(-1) \cdot (-1) = 1$ $(1.14c)$, dass heißt. $(-1)^{-1} = -1$

0 Ist nie bezüglich Multiplikation invertierbar, denn $0 \cdot a = 0 \neq 1$. 1.14a)

b) Es kann sein dass 1 = -1 gilt. Zum Beispiel:

$$(\mathbb{Z}_2, \oplus, \odot)$$
 $1 \oplus 1 = 0$ $1 = -1$

1.16 Definition

Ein kommutativer Ring $(R, +, \cdot)$ mit Eins heißt *Körper*, wenn jedes Element $\neq 0$ bezüglich Multiplikation invertierbar ist.

²Distributivgesetz

1.17 Beispiel

- a) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Körper, \mathbb{Z} nicht.
- b) $(\mathbb{Z}_n, \oplus, \otimes)$ ist genau dann ein Körper, wenn n eine Primzahl. \mathbb{Z}_n ist kommutativer Ring mit 1.

'Beispiele' on page 28c: Die invertierbaren Elemente in \mathbb{Z}_n sind alle $a \in \mathbb{Z}_n$ mit ggT(a, n) = a

1.18 Proposition (Nullteilerfreiheit in Körpern)

Ist K ein Körper, $a, b \in K$, mit $a \cdot b = 0$, so ist a = 0 oder b = 0

Beweis.

Sei $a \cdot b = 0$ Angenommen $a \neq 0$. Dann existiert $a^{-1} \in K$ $0 \underset{1.14a)}{=} a^{-1} \cdot 0 \underset{\text{Vor.}}{=} a^{-1} (a \cdot b) = (a^{-1} \cdot a) \cdot b = b$

Beispiel: $R = (\mathbb{Z}_6, \oplus, \otimes)$ $2 \otimes 3 = 0$ $2 \neq 0, 3 \neq 0$

1.19 Definition

Sei K ein Körper,

- a) Ein (Formales) Polynom über K ist ein Ausdruck $f = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n = \sum_{i=0}^n a_ix^i$ wobei $n \in \mathbb{N}_0$, $a_i \in K$. (Manchmal f(x) statt f, +-Zeichen hat zunächst nichts mit einer Addition zu tun. a_i Koeffizienten von f Ist $a_i = 0$ so kann man in der Schreibweise von f $0 \cdot x^i$ auch weglassen. Statt a_0x^0 schreibt man a_0 , statt a_1x^1 schreibt man a_1x . Sind alle $a_i = 0$, so f = 0, Nullpolynom. Ist $a_i = 1$, so schreibt man x^i statt $1x^i$
- b) Zwei Polynome f und g sind gleich, wenn $entweder\ f=0$ und g=0 oder $f\neq 0$ und $g\neq 0$ d.h $f=\sum_{i=0}^n a_i x^i$, $a_n\neq 0$

$$g = \sum_{i=0}^{m} a_i x^i, b_m \neq 0$$

und $n = m$ und $a_i = b_i$ für $i = 0...n$

c) Menge aller Polynome über K. K[x]

Wir wollen K[x] zu einem Ring machen. Wie?

Beispiel:
$$f = 3x^2 + 2x + 1$$
,
 $g = 5x^3 + x^2 + x \in Q[x]$
 $f + g = 5x^3 + 4x^2 + 3x + 1$
 $f \cdot g = (3^x + 2x + 1) \cdot (5x^3 + x^2 + x)$
 $= 15x^5 + 10x^4 + 5x^3 + 3x^4 + 2x^3 + x^2 + 3x^2 + 2x^2 + x$
 $= 15x^5 + 13x^4 + 10x^3 + 3x^2 + x$

27.10.2015

Satz und Definition 1.20

K Körper. K[x] wird zu einem kommutativen Ring mit Eins durch folgenden Verknüpfungen.

$$f = \sum_{i=0}^{n} a_i x^i, g = \sum_{i=0}^{m} b_i x_i \text{ so}$$

$$f + g \sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i$$

$$f \cdot g = \sum_{i=0}^{n+m} c_i x^i, \text{wobei } c_i = \sum_{i=0}^{i} a_i b_{i-j}$$
(Faltungsprodukt)

In beiden Fällen sind Koeffizienten a_i mit i > n bzw. b_i mit i > m gleich 0 zu setzen. Das Einselement ist 1 (= $1x^0$)

Das Nullelement ist das Nullpolynom.

$$-f = \sum_{i=0}^{n} (-a_i) x^i$$

 $-f=\sum_{i=0}^n (-a_i)x^i$ $(K[x],+,\cdot)$ heißt *Polynomring* in einer Variable *Beweis:* Nachrechnen

1.21 Bemerkung

a)
$$f = \sum_{i=0}^{n} a^{i} x^{i} \in K[x], a \in K \subseteq K[x]$$
$$a \cdot f = \sum_{i=0}^{n} (a \cdot a_{i}) x^{i}$$

$$x \cdot f = \sum_{i=0}^{n} a_i x^{i+1} = a_n x^{n+1} + \dots + a_0 x$$

b) Das +- Zeichen in der Definition der Polynome entspricht genau der Addition der *Monome* $a_i x^i$.

tion der *Monome*
$$a_i x^i$$
.
 $(a_0 x^0 + a_1 x^1) = a_0 x^0 + a_1 x^1$
Add. aus 1.20

1.22 Definition

Sei
$$0 \neq f \in k[x], f = \sum_{i=0}^{n} a_i x^i, a_n \neq 0.$$

Dann heißt n der Grad in f, Grad(f) = n

 $Grad(0) := -\infty$

 $Grad(f) := 0 : Konstante Polynome = \neq 0$

1.23 Satz

Sei K ein Körper, $f, g \in K[x]$.

Dann ist $Grad(f \cdot g) = Grad(f) + Grad(g)$

(Konvention: $-\infty + n = n + (-\infty) = (-\infty + \infty)$,

Sei $f \neq 0$ und $g \neq 0$

$$f = \sum_{i=0}^{n} a_i x^i, a_n \neq 0, n = \text{Grad}(f)$$

$$g = \sum_{i=0}^{m} b_i x^i, b_m \neq 0, m = \text{Grad}(g)$$

Koeffizienten von x^{n+m} in $f \cdot g : a_n b_m \neq 0$

1.24 Korollar

Sei K ein Körper

- a) Genau die konstanten Polynome $\neq 0$ sind in K[x] bezüglich · invertierbar Insbesondere ist K[x] kein Körper
- b) Sind $f, g \in K[x]$ mit $f \cdot g = 0$, so ist f = 0 oder g = 0 (Nullteilerfreiheit in K[x])
- c) Sind $f, g_1, g_2 \in K[x]$ mit $f \cdot g_1$ und ist $f \neq 0$, so ist $g_1 = g_2$

Beweis.

a) Sei $f \in K[x]$ invertierbar bezüglich · . Dann ist $f \neq 0$ und es existiert $g \in K[x]$ mit $f \cdot g = 1$.

Mit 1.23:

$$0 = \operatorname{Grad}(1) = \operatorname{Grad}(f \cdot g)$$
$$= \operatorname{Grad}(f) + \operatorname{Grad}(1).$$

Also:
$$Grad(f) = 0 (= Grad(g))$$

Dass heißt f ist konstantes Polynom.

Ist umgekehrt
$$f = a \in L$$
, $a \ne 0$, so $f^{-1} = a^{-1} \in K$

b) Folgt aus 1.23:

$$-\infty = \operatorname{Grad}(0) = \operatorname{Grad}(f \cdot g)$$

= $\operatorname{Grad}(f) + \operatorname{Grad}(g)$

$$\Rightarrow$$
 Grad $(f) = -\infty$ oder Grad $(g) = -\infty$, d.h $f = 0$, oder $g = 0$

c)
$$fg_1 = fg_2$$

 $\Rightarrow 0 = fg_1 - fg_2 = f \cdot (g_1 - g_2)$
Da $f \neq 0$, folgt mit b)
 $g_1 - g_2 = 0$, d.h $g_1 = g_2$

1.25 Bemerkung

a) Jedem Polynom $f = \sum_{i=0}^{n} a_i x^i \in K[x]$

kann man eine Funktion $K \to K$ zuordnen. $a \in K \longmapsto f(a) = \sum_{i=0}^{n} a_i a^i \in K$ (Polynomfunktion aus Analysis $K = \mathbb{R}$)

Aufgrund der Definition von Addition/Multiplikation von Polynomen gilt:

$$(f+g)(a) = f(a) + g(a)$$
$$(f \cdot g)(a) = f(a) \cdot g(a)$$

Es kann passieren, dass zwei verschiedene Polynome die gleiche Funktion beschreiben.

Z.B
$$K = \mathbb{Z}_2 = \{0, 1\}$$

 $f = x^2, g = x$
 $f \neq g$
 $f(1) = 1 = g(1)$
 $f(0) = -g(0)$

Über unendlichen Körpern passiert das nicht (später)

b) Schnelle Berechnung von f(a):

$$f = a_0 + a_1 x + \dots + a_n x^n$$

$$f(a) = a_0 + a(a(a_1 + a(a_2 + \dots + a(a_{n-1} + aa_n)))$$

Horner-Schema

1.26 Definition

K Körper, $f, g \in K[x]$ f teilt g $(f \mid g)$ falls $g \in K[x]$ existiert mit $g = g \cdot f$ (Falls $g \neq 0 \mod f \mid g$, so ist $Grad(f) \leq Grad(g)$ nach 'Satz' on page 32)

1.27 Satz

 $K \, \text{K\"{o}rper}, \, 0 \neq f \in K[x], g \in K[x]$

Dann existiert eindeutig bestimmte Polynome q, r

$$(1) g = q \cdot f + r$$

(2)
$$\operatorname{Grad}(r) < \operatorname{Grad}(f)$$

(Beweis WHK, Satz 4.69)

Division mit Rest

.10.2015

1.28 Beispiel

a)
$$g = x^4 + 2x^3 - x + 2$$
, $f = 3x^2 - 1$, $f, g \in Q[x]$

$$\left(\begin{array}{ccc} x^4 + 2x^3 & -x + 2 \\ -x^4 & +\frac{1}{3}x^2 \\ \hline & 2x^3 + \frac{1}{3}x^2 & -x \\ \hline & & -2x^3 & +\frac{2}{3}x \\ \hline & & & \frac{1}{3}x^2 - \frac{1}{3}x & +2 \\ \hline & & & & -\frac{1}{3}x + \frac{19}{9} \end{array}\right)$$

b)
$$g = x^4 - x^2 + 1$$
 $f = x^2 + x$ $f, g \in \mathbb{Z}_3[x]$
 $x^4 + 3x^3 + 1 : x^2 + x = x^2 + 2x$
 $-(x^4 + x^3)$
 $2x^3 + 2x^2 + 1$
 $-(2x^3 + 2x^2)$

1.29 Korollar

K Körper, $a \in K$.

 $f \in K[x]$ ist genau dann durch (x - a) teilbar, wenn f(a) = 0 (d.h a ist Nullstelle von f)

$$[f=g\cdot(x-a),q\in K[x]]$$

Beweis.

Falls $x - a \mid f$, so existiert $q \in K[x]$ mit f = q(x - a).

Dann
$$f(a) = q(a) \cdot \underbrace{(a-a)}_{=0} = 0.$$

Umgekehrt: Angenommen f(a) = 0. Division mit Rest von f durch x - a:

$$f=q\cdot(x-a)r,q,r\in K[x]$$

$$Grad(r) < Grad(x - a) = 1, r \in K$$

Zeige: r = 0.

$$r = f - q \cdot (x - a)$$

Setze $a \in K$ ein.

$$r = f(a) - q(a) \cdot (a - a) = 0 - 0 = 0$$

 $f = q \cdot (x - a)$

1.30 Definition

K Körper $a \in K$ heißtm-fache Nullstelle von $f \in K[x]$, falls $(x-a)^m \mid f$ und $(x-a)^{m+1} \nmid f$.

Dass heißt $f = q \cdot (x - a)^m$ und $q(a) \neq 0$

1.31 Beispiel

$$x^5 + x^4 + 1 \in \mathbb{Z}_3[x]$$

In \mathbb{Z}_3 hat f die Nullstelle 1
'Korollar' on page 35: $x - 1 (= x + 2)$ teilt f
Dividiere f durch $x - 1$:
 $f = (x^4 + 2x^3 + 2x + 2) \cdot (x - 1)$

1.32 Satz

K Körper, $f \in K[x]$, $Grad(f) = n \ge 0$ (dass heißt $f \ne 0$).

Dann hat f höchstens n Nullstellen in K (einschließend Vielfachheit). Genauer: Sind a_1, \ldots, a_k die verschiedenen Nullstellen von f, so ist

 $f = g \cdot (x - a_1)^{m_1} \cdot \dots \cdot (x - a_k)^{m_k}$, m_i Vielfachheiten der Nullstellen a_i , g hat keine Nullstelle in K6

Beweis. Durch Induktion nach n.

n = 0: $f = a_0 \neq 0$, ohne Nullstelle. \checkmark .

Sei n > 0. Behauptung sei richtig für alle Polynome von Grad < n.

Hat f keine Nullstellen, $g = f \checkmark$

Hat f Nullstellen $a_1 \dots, a_k, k \ge 1$

so
$$f = q \cdot (x - a_1)^{m-1}$$
 (nach Definition) $q(a_1) \neq 0$.

$$Grad(q) = n - m_1 < n$$

Wir zeigen:

q hat genau die Nullstellen a_2, \ldots, a_k mit Vielfachheiten m_2, \ldots, m_k .

Klar: Jede Nullstelle von q ist Nullstelle von f, Dass heißt q hat höchstens Nullstellen a_2, \ldots, a_k .

Diese Nullstellen hat q mit Vielfachheit $0 \ge n_i \ge m_i$, denn $(x - a_i)^{m_i} | q \Rightarrow (x - a_i)^{n_i} | f$

Sei
$$i \in \{2, ..., k\}$$
. Es ist $f = s \cdot (x - a_i)^{m_i}$, $s \in K[x]$, $s(a_i) \neq 0$

$$q = q_1 \cdot (x - a_i)^{n_i}$$
, $q_1 \in K[x]$, $q(a_i) \neq 0$, $((x - a_i)^0 = 1)$

$$f = q_1(x - a_1)^{n_i} \cdot (x - a_1)^{m_1}$$
 'Korollar' on page 32c):

$$s(x-a_i)^{m_i-n_i} = q_1 \cdot (x-a_1)^{m_1}$$

Ist $m_i > n_i$, so ist $m_i - n_i > 0$

$$0 = s(a_i)(a_i - a_i)^{m_i - n_i} = q(a_i)(a_i - a_i) \neq 0E$$

Dass heißt $.n_i = m_i.i, 2..., k$

$$q = g(x - a_2)^{m_2} \dots (x - a_k)^{m_k}, \text{ g ohne Nullstelle in } K$$

$$f = g(x - a_1)^{m_2} \dots (x - a_2)^{m_1} \qquad \text{(Nach Induktions vor sauss etzung)}$$

1.33 Korollar

K Körper, $f, g \in K[x]$, $m = \max(Grad(f), Grad(g))$

Gibt es m+1 Elemente $a_1, \ldots, a_{m+1} \in K$, paarweise verschieden, mit $f(a_i) = g(a_i)$, $i = 1, \ldots, m+1$ so f = g.

Insbesondere: Ist K unendlich $f, g \in K[x]$ mit f(a) = g(a) für alle $a \in K$, so ist f = g

Beweis.
$$f-g \in K[x]$$
, $Grad(f-g) \le m$.
 $f-ghat m+1$ Nullstellen $a_1, \dots a_{m+1}$
 $1.32 \ f-g=0, f=g$

1.34 Bemerkung

Über $\mathbb{Q}, \mathbb{R}, \mathbb{Z}_p(p \text{ Primzahl})$ gibt es Polynome beliebig hohen Grades ohne Nullstellen

Über \mathbb{Q} , \mathbb{R} : $(x^2 + 1)^m$ hat Grad(2m), keine Nullstellen in \mathbb{Q} , \mathbb{R} über \mathbb{Z}_p z.B $(x^p - x + 1)^m$ hat Grad(pm), ohne Nullstellen (ohne Beweis)

1.35 Fundamentalsatz der Algebra

Ist $f \in \mathbb{C}[x]$, $f \neq 0$ so ist $(f = a_n x^n + ... + a_0)$ $f = a_n (x - c_1)^{m_1} ... (x - c_k)^{m_k}$, $a_n.c_i,...,c_k \in \mathbb{C}$ (Nullstellen mit Vielfachen m_1, m_2) $m_1 + ... + m_k = \text{Grad}(f)$ Grad(f) = n f hat n Nullstellen (einschließend Vielfachheit)

2 Vektorräume

3.11.2015

2.1 Definition

Sei K ein Körper. Ein K-Vektorraum V besitzt Verknüpfung + bezüglich derer eine Kommutative Gruppe ist (Neutrales Element σ , Nullvektor, Inverses zu $v \in V : -v$). Außerdem existiert Abbildung $K \times V \longrightarrow V$

$$(a, v) \longmapsto av, a \in K, v \in V$$

("Multiplikation"von Elementen aus V, ("Vektoren") mit Körperelementen ("Skalare")), so dass gilt:

lare)), so dass gift:
$$(a + b)v = av + bv \text{ für alle } a, b \in K, v \in V$$

$$a(v + w) = av + aw \text{ für alle } a \in K, v, w \in V$$

$$(ab)v = a(bv) \text{ für alle } a, b \in K, v \in V$$

$$\text{in } K$$

$$1v = v \text{ für alle } v \in V.$$

2.2 Beispiel

a) K Körper, $n \in \mathbb{N}$

$$K^{n} = \left\{ \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} : a_{i} \in K \right\} \text{ ist K-Vektorraum bezüglich } \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

$$a \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} = \begin{pmatrix} aa_{1} \\ \vdots \\ aa_{n} \end{pmatrix} \text{ für alle } a \in K, \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix}, \begin{pmatrix} b_{1} \\ \vdots \\ ab_{n} \end{pmatrix} \in K^{n}. \text{ Raum der } Spaltenvektoren$$

$$\text{der } L\ddot{a}nge \ n \ \ddot{u}\text{ber } K.$$

2 VEKTORRÄUME 2.2 Beispiel

Entsprechend: Raum der Zeilenvektor,
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = (a_1, \dots, a_n)^t$$

Für $K = \mathbb{R} : \mathbb{R}^n$

n=2,3 Elemente aus $\mathbb{R}^2,\mathbb{R}^3$, identifizierbar mit Ortsvektor der Ebene oder des 3-dimensionalen Raumes.

- b) Sei K ein Körper Polynomring K[x] ist ein K-Vektorraum, bezüglich
 - Addition von Polynomen
 - Multiplikation von Körperelementen mit Polynomen

$$a\left(\sum_{i=0}^{n} a_i x^i\right) := \sum_{i=0}^{n} (aa_i) x^i \in K[x]$$

(Multiplikation von Polynomen mit Polynom Grad ≤ 0)

- 2.1 folgt aus den Ringeingenschaften von K[x]
- c) K Körper. V = Abbildung $(K,K) = \{\alpha : K \to K : \alpha \text{Abbildung}\}\ \text{Addition auf V}$ $\alpha + \beta \in V(\alpha + \beta)(x) = \alpha(x) + \beta(x)$ für alle $x \in K$ Skalare Multiplikation:

$$a \in \mathbb{R}$$
, $\alpha \in V(a\alpha)(x) = a \cdot \alpha(x)$ Für alle $x \in K$

Nachrechnen: Damit wird V ein K-Vektorraum

2.3 Proposition

K Körper, V, K - VR

- a) $a \cdot \sigma = \sigma$
- b) $0 \cdot v = \sigma$
- c) $(-1) \cdot v = -v$ a,b,c Für alle $v \in V$

2.4 Definition

K Körper, VK - VR.

 $\emptyset + U \subseteq V$ heißt Unterraum (Untervektorraum, oder Teilraum) von V, falls U bezüglich Addition auf V und der skalaren Multiplikation mit Elementen aus K selbst K Vektorraum ist.

2.5 Proposition

U ist Unterraum von V

 \Leftrightarrow

- (1) $u_1 + 1_2 \in U$ für alle $u_1, u_2 \in U$
- (2) $au \in U$ für alle $u \in U$, $a \in L$ (Nullvektor in U = Nullvektor in V)

Beweis. $\Rightarrow \checkmark \Leftarrow$: Da $U \neq \emptyset$, existiert $u \in U$.

 $\sigma=0\cdot u\in U$

 $u \in U \Rightarrow -u = (-1)u \in U$

Mit (1): (U, +) ist kommutative Gruppe. Restliche Axiome gelten auch für U, K.

2 VEKTORRÄUME 2.6 Beispiel

2.6 Beispiel

- a) V K VR, so ist V Unterraum von V. und $\{0\}$ ist Unterraum von V (*Nullraum*)
- b) Betrachte K[x] als K VR. (2.2). Sei $n \in \mathbb{N}_0$. $U = \{ f \in K[x] : \operatorname{Grad}(f) \le n \}$ Unterraum von K[x]

2.7 Proposition

Seien U_1 , U_2 Unterräume von K-VR V.

- a) $U_1 \cap U_2$ ist Unterraum
- b) $U_1 + U_2 := \{u_1 + u_2 : u_1 \in u_1 \in U_2, u_2 \in U_2\}$ ist Unterraum von V (Summe von Unterräume)
- c) $U_1 + U_2$ ist der kleinste Unterraum von V, der $U_1 \cup U_2$ enthält.
- d) $U_1 \cap U_2$ ist im Allgemeinen kein Unterraum. Beweis: 0.4

2.8 Definition

V K-VR

a) $v_1, \ldots, v_m \in V, \ a-i, \ldots a_m \in K$ Dann heißt $a_1v_1 + \ldots a_mv_m = \sum_{i=1}^m a_iv_i \in V$ Linearkombination von v_1, \ldots, v_m (mit Koeffizienten a_1, \ldots, a_m).

[Beachte: Zwei formell verschiedene Linearkombinationen derselben Vektoren können den gleichen Vektor darstellen z.B. in \mathbb{R}^2 :

$$1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3cd \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

2.9 Satz 2 Vektorräume

b) Ist $M \subseteq V$, so ist der von M erzeugte oder aufgespannte Unterraum $\langle M \rangle_k$ (oder kurz ($\langle M \rangle$) die Menge aller endlichen Linearkombination, die man mit Vektoren aus M bilden kann:

mit Vektoren aus
$$M$$
 bilden kann: $\langle M \rangle = \{\sum_{i=1}^{n} a_i v_1 : n \in \mathbb{N}, a_i \in K, v_i \in M\}$ $\langle \emptyset \rangle_K \coloneqq \{\emptyset\}$ $M = \{v_1, \dots, v_m\} : \langle M \rangle = : \langle v_1, \dots, v_m \rangle$

c) Ist $\langle M \rangle_K = V$, so heißt M *Erzeugungssystem*

2.9 Satz

$$V K$$
–VR, $M \subseteq V$

- a) $\langle M \rangle_K$ ist Unterraum von V
- b) $< M>_K$ ist der kleinste Unterraum von V, der M enthält. Insbesondere: Sind u_1, u_2 Unterräume von V, so ist $< U_1 \cup U_2>_K=U_1+U_2$ Beweis: 0.7

Index

Abbildung, 20

abelsch, 22

Assoziativgesetz, 21

Distributivgesetz, 28

Division mit Rest, 34

Einselement, 28

Erweiterter Euklidischer Algorithmus,

25

Euler'sche φ -Funktion, 25

Grad, 32

Gruppe, 21

Halbgruppe, 21 Horner-Schema, 34

Inverse, 21

inverses Element, 21

invertierbar, 21

K-Vektorraum, 38 Koeffizienten, 30

kommutativer Ring, 28

Kommutativgesetz, 22

Komponente, 4 Konkatenation, 21

Konstante Polynome, 32

Körper, 29

Linearkombination, 9

Matrizenaddition, 21, 28

Matrizenmultiplikation, 4, 21, 28

Monoid, 21 Monome, 32

neutrales Element, 21

Nullelement, 28

Nullpolynom, 30

Nullraum, 6

Nullteilerfreiheit, 30, 32

Nullvektor, 38

Ortsvektoren, 4

Parallelogrammregel, 4

Permutationen, 26

Polynom, 30 Polynomring, 31

Ring, 27

Ring mit Eins, 28

Spaltenvektoren, 4, 38

systematische Gruppe, 26

Unterraum, 6

Vektor, 5

Vektorraum, 4 Verknüpfung, 20

Verknüpfungssymbole, 20

Zahlengerade, 4