|    | Random Forest                                                                                   |
|----|-------------------------------------------------------------------------------------------------|
| A  | Reguession and Classification & Adele Cutter                                                    |
| 7  | Reguession and Classification.  Introduced -> heo Brieman & Adele Cutter                        |
|    | 2001.                                                                                           |
| ** | No assumptions  OB everor estimation -> Out of Bag  (Internal validation)  data  (Lord of data) |
|    | data (Ind of data)                                                                              |

Original Sample 3 Sauble 2 Sauple 1 acumacy

General Original data Sample 3 Sample 2 Sample 1 DI1 0/13 0/P2 0/1 Classification -> Voting

Mathematical

| Feature 1 | feature 2 | Target |
|-----------|-----------|--------|
| 1         | 2         | 0      |
| 3         | 4         |        |
| 4 5       | 5         | 1      |

Create Samples/Subset Subset 1 0

| Subset2 |    |   |  |  |
|---------|----|---|--|--|
| FI      | f2 |   |  |  |
| 2       | 3  | 0 |  |  |
| 3       | 1  | 1 |  |  |
| 4       | 5  |   |  |  |
| 5       | 6  |   |  |  |

Subset 3



F1>2.5 f1 < 2.5

Model Training Completed \* Prediction f1=3, f2=4Apply on each DT Voting --> final = 1 DII -> 1 D72 ->0 DT3 -> 1

When to Use + Complex & Non-linear data \* Very large dataset \* They can berform
good even we have
missing values + revent overefitting

When Not to Use \* High-D data with less rows | data points \* When majority features aux categorical \* Klighty Computational Intensive. Large-scale problems fact : Rf are also called "black-box model"