ИТМО

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ОТЧЕТ

по лабораторной работе

Исследование переходных процессов в электрических цепях

Группа *Р3331*

Вариант *049*

Выполнил(а): Чураков Александр Алексеевич

Дата сдачи отчета: 21.10.2025

Дата защиты:

Контрольный защиты: 03.11.2025

Количество баллов:

Цель работы: исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

Bap	U _m , B	опыт 1	опыт 2.1 <i>R</i> , Ом	<i>L</i> , Гн	С, мкФ	
049	6	120	480	60	1,44	100

Ход работы

1.1 RC цепь

Графики переходных процессов и измерения по графикам

$$au = \frac{t_{0,5}}{\ln(2)} = \frac{8.3 * 10^{-3}}{0,6931} = 0,011975 \ c = 11975 \ \mathrm{MKC}$$

Расчетные формулы и расчеты

$$I(0+) = \frac{E+U_c}{R} = \frac{12+0}{120} = 100 \text{MA}$$

$$I(\infty) = I(0-) = 0 \text{ MA}$$

$$U_C(0+) = E(0+) = 6 \text{ B}$$

$$U_C(\infty) = E(0+) = 6 \text{ B}$$

$$\tau = RC = 120 * 100 * 10^{-6} = 0.012 c$$

Таблица экспериментальных и расчетных данных

-	1 word was a second and a second a second and a second an									
	_	Тип			I(const),		U_c (const),			
	R, [OM]	С, [мкФ]	данных	I(0+), MA	мА	$U_{c}(0+)$, B	В	t, мкс		
			эксп.	100	0	-6	6	11975		
	120	25	расч.	100	0	-6	6	12000		

Графики переходных процессов и измерения по графикам

$$au = \frac{t_{0,5}}{\ln(2)} = \frac{8.2 * 10^{-3}}{0,6931} = 0,0118309 \ c = 11831 \ {
m MKC}$$

Расчетные формулы и расчеты

$$I(0+) = \frac{E(0-)}{R} = \frac{(-6)}{120} = -0.05 A = -50 \text{ MA}$$

$$I(\infty) = \frac{E(0+)}{R} = \frac{6}{120} = 50 \text{ MA}$$

$$U_L(0+) = E(0+) = 12 \text{ B}$$

$$U_L(\infty) = 0 \text{ B}$$

$$\tau = \frac{L}{R+R_k} = \frac{1.44}{120+0} = 12 \text{ MC}$$

Таблица экспериментальных и расчетных данных

		Тип		I(const),		U₋(const),	
R, [OM]	L <i>,</i> [мГн]	данных	I(0+), MA	мА	U _L (0+), B	В	t, мкс
		эксп.	-50	50	12	0	11831
120	25	расч.	-50	50	12	0	12000

Схема исследуемой RLC цепи

.tran 500m

Расчетные формулы и расчеты

$$\delta = \frac{R}{2L} = \frac{480}{2 * 1,44} = 166,667 c^{-1}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1,44 * 100 * 10^{-6}}} = 83,33 \frac{1}{c}$$

$$s_1 = -\delta + \sqrt{\delta^2 - \omega_0^2} = -22.37 c^{-1}$$

$$s_2 = -\delta - \sqrt{\delta^2 - \omega_0^2} = -310.97 c^{-1}$$

$$s_1 - s_2 = (-22.329) - (-311.004) = 288.675$$

$$L(s_1-s_2)=1.44 \times 288.675=415.7$$

$$rac{E_{\Sigma}}{L(s_1-s_2)} = rac{12}{415.7} = 0.0289$$

$i(t) = 0.0289 \, (e^{-22.329t} - e^{-311.004t}) \, { m A}$

Тогда
$$I(0 +) = i(0) = 0$$
 [A]

$$u_L(t) = E_{\Sigma} \cdot (s_1 \cdot e^{s_1 t} - s_2 \cdot e^{s_2 t}) / (s_1 - s_2)$$

$$u_L(t) = 12 * \frac{-22.37 * e^{-22.37t} - (-310.97)e^{-310.97t}}{-22.37 - (-310.97)}$$

$$= \frac{12}{288.6} * (-22.37 * e^{-22.37t} - (-310.97) * e^{-310.97t})$$

$$= 0.0416 * (-22.37 * e^{-22.37t} - (-310.97) * e^{-310.97t})$$

$$= -0.93 * e^{-22.37t} + 12.936 * e^{-310.97t}$$

Тогда
$$U_L(0+) = u_L(0) = 12 \text{ B}$$

$$u_C(t) = E(0+) - E_{\Sigma} \cdot (s_1 \cdot e^{s2t} - s_2 \cdot e^{s1t}) / (s_1 - s_2)$$

$$u_C(t) = 6 - 12 * \frac{-22.37 * e^{-310.97t} - (-310.97)e^{-22.37t}}{-22.37 - (-310.97)} = 6 + 0.93 * e^{-310.97t} - 12.936 * e^{-22.37t} [B]$$

Тогда
$$U_{\mathbb{C}}(0+) = u_{\mathbb{C}}(0) = -6 \text{ B}$$

$$t_p = \frac{3}{|s_1|} = \frac{3}{22.37} = 134108 \text{ MKC}$$

Таблица экспериментальных и расчетных данных

R, [Ом]	L, мГн	С, [мкФ]	Тип данных	U_C(0+) [B]	U_L(0+) [B]	I(0+) [A]	t_p [мкс]
	-		эксп.	-6	12	0	136661
480	144	25	расч.	-6	12	0	134108

2.2 RLC цепь -колебательный процесс

Схема исследуемой RLC-цепи

Графики переходных процессов и измерения по графикам

$$T = 78 \text{ MC}$$

$$I_{m1} = 70,943 \text{ MA}$$

$$I_{m2} = 14,031 \text{ MA}$$

$$\omega_c = \frac{2\pi}{T} = \frac{2\pi}{78*10^{-3}} = 80,554 \text{ c}^{-1}$$

$$\delta = \frac{\ln\left(\frac{I_{m1}}{I_{m2}}\right)}{T} = \frac{\ln\left(\frac{70,943}{14,031}\right)}{78*10^{-3}} = \frac{0,809}{78*10^{-3}} = 20,118 \text{ c}^{-1}$$

Расчетные формулы и расчеты

$$\delta = \frac{R}{2L} = \frac{60}{2 * 1,44} = 20,833 c^{-1}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{1,44 * 100 * 10^{-6}} = 83,333 c^{-1}$$

$$\omega_c = \sqrt{w_0^2 - \delta^2} = \sqrt{83,33^2 - 20,833^2} = 80,687 c^{-1}$$

Таблица экспериментальных и расчетных данных

		C,	Тип		
R, [OM]	L, мГн	[мкФ]	данных	δ c ⁻¹	W _c C ⁻¹
			эксп.	20,118	80,554
60	144	25	расч.	20,833	80,687

ВЫВОДЫ по работе

В ходе работы были изучены переходные процессы в цепях первого и второго порядков. Экспериментальные измерения и графики совпали с теоретическими.