Interpolacja część 1

Seweryn Tasior, WI, grupa 5

27.03.2025

1 Treść ćwiczenia

Dla poniższej funkcji wyznacz dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona.

$$f(x) = -2x\sin(3x - 3)$$

dla $x \in [-\pi + 1, 2\pi + 1]$.

2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do wykonywania obliczeń zastosowano funkcjonalości biblioteki Numpy. Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6 rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

3 Przebieg ćwiczenia

W ćwiczeniu wykorzystano i zaimplementowano wzory na wartości interpolacji Lagrange'a i Newtona. Do obliczeń użyto N=1000 punktów na przedziale $[-\pi+1,2\pi+1]$, zarówno dla funkcji interpolowanej, jak i wielomianu interpolującego.

Wyznaczono węzły interpolacyjne, rozmieszczone równomiernie lub według pierwiastków wielomianu Czebyszewa. W eksperymentach przyjęto liczbę węzłów n z zakresu:

$$n \in \{2, 3, 4, \dots, 200\}$$

Oszacowanie błędów wykonano na podstawie następujących wzorów:

Błąd średni =
$$\sqrt{\frac{\sum_{x \in P} (f(x) - w(x))^2}{|P|}}$$

Błąd maksymalny =
$$\max_{x \in P} |f(x) - w(x)|$$

Gdzie:

- \bullet f(x) oznacza wartość funkcji interpolowanej w punkcie x.
- \bullet w(x) oznacza wartość wielomianu interpolującego w punkcie x.
- P jest zbiorem punktów, w których obliczane są błędy.
- |P| oznacza moc zbioru P.

Na podstawie uzyskanych wyników sporządzono wykresy porównujące wyniki interpolacji. Wartości błędów średnich i maksymalnych zostały przedstawione w tabelach.

4 Wyniki

4.1 Tabele błędów dla węzłów rozmieszczonych równomiernie

Tabela 1: Zestawienie błędów dla metod Newtona i Lagrange'a przy niewielkiej liczby węzłów

Liczba węzłów	Błąd maksymalny	Błąd średni	
2	$2.03025\ \times 10^{1}$	2.49503	
3	2.14233×10^{1}	3.05794	
4	2.03025×10^{1}	2.49503	
5	$2.59219\ \times 10^{1}$	3.22003	
6	$2.47427\ imes 10^{1}$	3.24710	
7	$3.32532\ imes 10^{1}$	3.74418	
8	$6.46598\ imes 10^{1}$	5.87589	
9	1.01240×10^{2}	9.27847	
15	$2.39097\ \times 10^{2}$	1.31744	
20	1.51471×10^{2}	3.19358	
20	1.51471×10^{2}	3.19358	
25	5.14963	1.04481	
30	9.14233×10^{-2}	1.53379	

Tabela 2: Zestawienie błędów dla wiekszej liczby węzłów

Liczba węzłów	Błąd maks. (Newton)	Błąd maks. (Lagrange)	Błąd średni (Newton)	Błąd średni (Lagrange)
31	3.83204×10^{-2}	3.83205×10^{-2}	$6.54227\ \times 10^{-5}$	$6.54226\ \times 10^{-5}$
32	1.24609×10^{-2}	1.24608×10^{-2}	$2.05028\ \times 10^{-5}$	2.05027×10^{-5}
33	$5.35150\ \times 10^{-3}$	5.35203×10^{-3}	8.88920×10^{-6}	8.89012×10^{-6}
34	1.48162×10^{-3}	1.48148×10^{-3}	2.39717×10^{-6}	2.39695×10^{-6}
35	6.48645×10^{-4}	6.47971×10^{-4}	1.05455×10^{-6}	1.05322×10^{-6}
40	2.33552×10^{-6}	3.69590×10^{-5}	4.12961×10^{-9}	5.92029×10^{-8}
45	3.68650×10^{-4}	1.19237×10^{-3}	5.58059×10^{-7}	1.73637×10^{-6}
50	5.15337×10^{-3}	1.23735×10^{-1}	7.61329×10^{-6}	1.96874×10^{-4}
55	1.17090	1.79410	1.68660×10^{-3}	2.39049×10^{-3}
60	5.70395×10^{1}	3.84546×10^{1}	8.03646×10^{-2}	5.13696×10^{-2}
70	1.55574×10^4	9.77502×10^4	2.10564×10^{1}	$1.10210\ \times 10^2$
80	1.03955×10^8	2.40438×10^8	1.36116×10^{51}	$3.70717\ \times 10^5$
180	$1.02254\ \times 10^{53}$	2.30426×10^{41}	1.37206×10^{50}	2.53646×10^{38}
190	4.64838×10^{57}	3.20022×10^{44}	7.81982×10^{54}	3.34544×10^{41}
200	9.83186×10^{61}	9.73446×10^{47}	$1.38652\ \times 10^{59}$	$1.05693\ \times 10^{45}$

4.2 Tabele błędów dla węzłów rozmieszczonych w zerach Czebyszewa

Tabela 3: Zestawienie błędów dla metod Newtona i Lagrange'a przy niewielkiej liczby węzłów

Liczba węzłów	Błąd maksymalny	Błąd średni	
2	3.74155×10^{1}	4.27847×10^{-1}	
3	$3.36530\ \times 10^{1}$	3.87207×10^{-1}	
4	3.00147×10^{1}	3.27886×10^{-1}	
5	3.16053×10^{1}	2.81927×10^{-1}	
6	2.86345×10^{1}	3.48706×10^{-1}	
7	2.42352×10^{1}	3.34234×10^{-1}	
8	2.41536×10^{1}	2.94079×10^{-1}	
9	2.41271×10^{1}	2.75271×10^{-1}	
10	3.87042×10^{1}	2.45440×10^{-1}	
15	1.35624×10^{1}	6.91149×10^{-2}	
20	3.16772	$5.53152\ \times 10^{-3}$	
25	3.26907×10^{-2}	5.27933×10^{-5}	
30	2.03876×10^{-4}	2.96564×10^{-7}	

Tabela 4: Zestawienie błędów dla większej liczby węzłów

Liczba węzłów	Błąd maks. (Newton)	Błąd maks. (Lagrange)	Błąd średni (Newton)	Błąd średni (Lagrange)
31	3.83204×10^{-2}	3.83205×10^{-2}	$6.54227\ \times 10^{-5}$	6.54226×10^{-5}
32	1.24609×10^{-2}	1.24608×10^{-2}	2.05028×10^{-5}	2.05027×10^{-5}
33	5.35150×10^{-3}	5.35203×10^{-3}	8.88920×10^{-6}	8.89012×10^{-6}
34	1.48162×10^{-3}	1.48148×10^{-3}	2.39717×10^{-6}	2.39695×10^{-6}
35	6.48645×10^{-4}	6.47971×10^{-4}	1.05455×10^{-6}	1.05322×10^{-6}
40	2.33552×10^{-6}	3.69590×10^{-5}	4.12961×10^{-9}	5.92029×10^{-8}
45	3.68650×10^{-4}	1.19237×10^{-3}	5.58059×10^{-7}	1.73637×10^{-6}
50	5.15337×10^{-3}	1.23735×10^{-1}	7.61329×10^{-6}	1.96874×10^{-4}
55	1.17090	1.79410	1.68660×10^{-3}	2.39049×10^{-3}
60	5.70395×10^{1}	3.84546×10^{1}	8.03646×10^{-2}	5.13696×10^{-2}
70	1.46162×10^2	2.74875×10^{-9}	3.24268×10^{-1}	2.88485×10^{-12}
80	8.24734×10^{8}	5.64844×10^{-8}	$1.49511\ \times 10^6$	6.29232×10^{-11}
		• • •		_
180	5.05008×10^{58}	4.40379×10^{1}	1.05601×10^{56}	4.42207×10^{-2}
190	1.49337×10^{63}	2.10426×10^2	2.34589×10^{60}	2.11831×10^{-1}
200	1.91932×10^{68}	$2.68020\ \times 10^2$	3.44546×10^{65}	2.68466×10^{-1}

4.3 Wizualizacje

4.3.1 Zerowanie się wielomianów interpolucjących dla węzłów rozmieszczonych równomiernie

Rysunek 1: Porównanie interpolacji Lagrange'a i Newtona dla $n \in \{2, 4, 10\}$

4.3.2 Wybrane wykresy przy niewielkich wartościach n dla węzłów rozmieszczonych równomiernie

Rysunek 2: Porównanie interpolacji Lagrange'a i Newtona dla $n \in \{5,8\}$

4.3.3 Zauważenie efektu Rungego dla węzłów rozmieszczonych równomiernie

Rysunek 3: Porównanie interpolacji Lagrange'a i Newtona dla $n \in \{11,15\}$

4.3.4 Zanik efektu Rungego i pojawienie się błędu arytmetycznego dla węzłów rozmieszczonych równomiernie

Rysunek 4: Porównanie zaniku efektu Rungego w interpolacji Lagrange'a i Newtona dla $n \in \{20, 40\}$

Rysunek 5: Porównanie interpolacji Lagrange'a i Newtona po pojawnieniu się widoczynych błędów arytmetycznych $n \in \{65,75\}$

4.3.5 Wybrane wykresy przy niewielkich wartościach n dla węzłów Czebyszewa

Rysunek 6: Porównanie interpolacji Lagrange'a i Newtona dla $n \in \{5,8\}$

4.3.6 Brak efektu Rungego dla węzłów Czebyszewa

Rysunek 7: Porównanie interpolacji Lagrange'a i Newtona dla $n \in \{11, 15, 20\}$

4.3.7 Wybrane wykresy przy wiekszych wartościach n dla węzłów Czebyszewa

Rysunek 8: Porównanie interpolacji Lagrange'a i Newtona dla $n \in \{5, 8\}$

5 Obserwacje

• Dokładność przybliżenia:

- Dla małych wartości n (np. 3, 4, 5) węzły Czebyszewa wykazują nieco lepszą dokładność przybliżeń.
- Wraz ze wzrostem n,dokładność interpolacji znacząco się poprawia, szczególnie dla węzłów Czebyszewa.
- Przy bardzo dużych wartościach n, pojawiają się błędy arytmetyczne, które ograniczają dalszą poprawe dokładności.

• Najlepsze przybliżenie:

- $-\,$ Węzły Czebyszewa polepsz
pszają przybliżenie, szczególnie metoda Lagrange'a.
- Optymalna liczba węzłów zależy od funkcji, ale ogólnie, n w zakresie 20-40 daje bardzo dobre wyniki dla węzłów Czebyszewa.
- Znacząca róznica pomiędzy metodami Lagrange'a i Newtona dla węzłów Czebyszewa, może wynikać ze sposobu obliczeń, który wpływa na kumulacje błędów arytmetycznych

• Efekt Rungego:

- Efekt Rungego jest wyraźnie widoczny dla węzłów równomiernie rozmieszczonych przy n > 10.
- Węzły Czebyszewa eliminują efekt Rungego, zapewniając stabilną zbieżność nawet przy dużych wartościach n.

w zachowaniu wielomianu interpolującego szczególnie dla $n \in \{5,,20\}$.					

– Porównując wykresy dla węzłów równomiernie rozmieszczonych i Czebyszewa, widać znaczącą różnicę