Interações entre Droga e Doença por meio de Genes

Mateus Siqueira Batista Nicolas Bissoli Nattis

MC536 - Instituto de Computação, UNICAMP

2020

Proposta

Obter dados de interações entre genes e drogas, e entre genes e doenças.

Através disso, podemos relacionar a interação entre estas drogas e as doenças.

Exemplo:

- Droga A ativa o gene X.
- Gene X tem relação de causa com as doenças α, γ.
- Portanto, a droga A tem relação de causa com as doenças α, γ.

DGldb

- Dados sobre interações droga-gene e o genoma drogável.
- Extraído de mais de trinta fontes confiáveis.
- Dados extraídos via arquivo tsv disponibiliszados.

DisGeNet

- Plataforma contendo uma das maiores coleções publicamente disponíveis de genes e variantes associados a doenças humanas.
- Dados extraídos via banco de dados SQLite disponibilizado.

Lógica

A relação de droga-doença ocorre de modo intuitivo a partir das relações de doença e droga com o gene.

		Droga-Gene	
		ativação	inibição
Gene-Doença	ativação	ativação	inibição
	inibição	inibição	ativação

Tipos de Interação

Modelo Conceitual

Modelo Lógico

```
Drug(DrugId, Name)
Disease(DiseaseId, Name, Class)
```

Modelo Lógico

```
Interaction(<u>InteractionId</u>, DrugId, DiseaseId, Score,
Gene, Type)
Evidence(InteractionId, Pmid, Score)
```

Modelo Lógico de Redes Complexas

Evolução do projeto

- Removemos classes de drogas e aliases (fora do escopo).
- Dividimos as interações do Neo4j em duas.
- Usamos SQLite e TSV ao invés de requisições HTTP (muito lento).

Transformação

- Transformar DISGENET SQLite em TSV.
- Ler TSV das fontes.
- Produzir TSV final.
- Transformar TSV final em SQLite.
- Transformar TSV final em CSV para Neo4j.

Tratamento de Dados

- Confibialidade
 - Os dados coletados possuem níveis de confiabilidade variáveis, que foram levados em conta e tranformados em um <u>Score</u>.
 - Há um Score atrelado ao Dgldb e outro ao DisGeNET.
 Assim, obtivemos um Score global da interação multiplicando um pelo outro.

Destaques

Destaques

```
def parse() -> Dgidb:
   dgidb - pd.read csv(
       encoding='utf-8')
   dgidb = dgidb.dropna()
   scaler = MinMaxScaler()
   dgidb[['interaction_group_score']] = scaler.fit_transform(
       dgidb[['interaction group score']])
   for , row in dgidb.iterrows():
       drug = row['drug_concept_id']
       gene = row['gene_name']
       drug name = row['drug name']
       pmids = str(row['PMIDs']).split(',')
       score = row['interaction_group_score']
       types - str(row['interaction types']).split('.')
               v = dgidb interaction types[x]
           except KevError:
       r.drug_names[drug] = drug_name
       r.interactions[gene].append(
           DrugGeneInteraction(drug, ty, score, pmids))
```

Destaques

```
# Geração de nós
print('Generating nodes.csv')
with open('../data/processed/neo4j/nodes.csv', 'w', newline='') as fout:
    out = csv.writer(fout)
    out.writerow(['id:ID', 'name', ':LABEL'])

with gzip.open('../data/processed/tsv/drugs.tsv.gz', 'rt') as f:
    dict = csv.DictReader(f, delimiter='\t')
    out.writerows([[row['Id'], row['Name'], 'Drug'] for row in dict])

with gzip.open('../data/processed/tsv/diseases.tsv.gz', 'rt') as f:
    dict = csv.DictReader(f, delimiter='\t')
    for row in dict:
        out.writerow([row['Id'], row['Name'], 'Disease'])
    for class_ in row['class'].split(';'):
        disease_classes[class_].append(row['Id'])

out.writerows([[x, x, 'Class'] for x in disease_classes])
```

Dados publicados

Selecione o nome das drogas e doenças das N interações com maior pontuação.

SELECT Dr.Name, Di.Name, I.Type, I.Score FROM Interaction as I, Drug as Dr, Disease as Di WHERE Dr.Id = I.DrugId AND Di.Id = I.DiseaseId ORDER BY I.Score DESC LIMIT 10;

Selecione o nome das drogas e doenças das N interações com maior pontuação.

Dr.Name	Di.Name	I.Type	I.Score
NITISINONE	Tyrosinemia, Type III	0	0.861673561599624
BUROSUMAB	Autosomal dominant hypophosphatemic rickets		0.833348003403456
NITISINONE	Hawkinsinuria		0.669172021242262
THIAMINE	THIAMINE METABOLISM DYSFUNCTION SYNDROME 5 (EPISODIC ENCEPHALOPATHY TYPE)		0.591677082416454
BUROSUMAB	Tumoral Calcinosis, Hyperphosphatemic, Familial, 1		0.500008802042074
BUROSUMAB	Tumoral Calcinosis, Hyperphosphatemic, Familial, 2		0.500008802042074
BUROSUMAB	Hypophosphatemic Rickets		0.416674001701728
BUROSUMAB	TUMORAL CALCINOSIS, HYPERPHOSPHATEMIC, FAMILIAL		0.416674001701728
NITISINONE	Tyrosinemias		0.40333656074876
GLEMBATUMUMAB VEDOTIN	AMYLOIDOSIS, PRIMARY LOCALIZED CUTANEOUS, 3	1	0.4

Quais drogas tem relação com a doença (Acute lymphocytic leukemia) C0023449?

SELECT Dr.Id, Dr.Name, I.Type, I.Score FROM INTERACTION as I, DRUG as Dr, Disease as Di WHERE Di.id = 'C0023449' AND I.DiseaseId = Di.id ORDER BY I.Score DESC LIMIT 10;

Quais drogas tem relação com a doença (Acute lymphocytic leukemia) C0023449?

Dr.Id	Dr.Name	I.Type	I.Score
chembl:CHEMBL398707	HYDROMORPHONE		0.0388903558959012
chembl:CHEMBL3545253	FLORTAUCIPIR F 18		0.0388903558959012
chembl:CHEMBL2	PRAZOSIN		0.0388903558959012
chembl:CHEMBL1621597	IPRATROPIUM		0.0388903558959012
chembl:CHEMBL157101	KETOCONAZOLE		0.0388903558959012
chembl:CHEMBL1670	MITOTANE		0.0388903558959012
chembl:CHEMBL723	CARVEDILOL		0.0388903558959012
chembl:CHEMBL157138	LISURIDE		0.0388903558959012
chembl:CHEMBL2103830	FOSTAMATINIB		0.0388903558959012
chembl:CHEMBL1201250	BENZQUINAMIDE		0.0388903558959012

Quais classes de doenças são mais ativadas pela HYDROMORPHONE?

Uma análise aprofundada é necessária, mas podemos partir da seguinte.

```
MATCH (dr:Drug)-[activates]->(di:Disease)
-[belongs]->(c:Class)
WHERE dr.name='HYDROMORPHONE'
RETURN dr, activates, di, belongs, c
```

Quais classes de doenças são mais ativadas pela

- Podemos deduzir novas interações a partir do grafo?
 - Predição de links.
- Existem tipos de drogas e doenças que interagem mais entre si?
 - Comunidade.

