Дифференцирование

Численно решить дифференциальное уравнение методом Эйлера, модифицированным методом Эйлера, усовершенствованным методом Эйлера и методом Рунге-Кутта 4-го порядка. Каждый метод оформить в помощью отдельной void функции. Значения функции дифференцирования f(x) вычислять с помощью соответствующей double функции f(double, double). Шаг h задавать как 0.5, 0.1, 0.01.

Вывести в файл результаты расчета по каждому из методов для каждого из шагов. В файле указывается шаг и на следующих 5ти строках выводятся результаты расчетов по всем методам (одна строка для x, остальные для значений y по результатам вычислений каждого метода), затем указывается следующий шаг и следующие 5 строк c результатами и t. d. В качестве интервала для расчетов выбрать интервал $[x_0; x_0+10]$. В случае несоответствия интервала и области допустимых значений допускается его ограничение до приемлемых значений.

```
void method_euler(double);
void method euler mod(double);
void method euler improve(double);
void method runge kutt(double);
double f (double, double);
double f1 (double, double);
int main(void) {
 int i = 0;
 double h, step[3] = {0.5, 0.1, 0.01};
 for(i = 0; i < 3; i++) {</pre>
   h = step[i];
   method_euler(h);
   method_euler_mod(h);
   method_euler_improve(h);
   method runge kutt(h);
 }
 return EXIT SUCCESS;
}
void method_euler(double h) {
// -----
// -----
// -----
void method_euler_mod(double h) {
// -----
```

```
// -----
// -----
}
void method_euler_improve(double h) {
// -----
// -----
// -----
}
void method_runge_kutt(double h) {
// -----
// -----
// -----
}
double f (double x, double y) {
    return -----;
}
double f1 (double x, double y) {
    return -----;
}
```

Составить отчет по проделанной работе в рукописной форме на листах формата А4.

Отчет состоит из:

- 1. Титульный лист с указанием названия группы рассматриваемых методов (методы дифференцирования), ФИО и группы студента;
- 2. Общая краткая характеристика методов (что за методы, для чего применяются);
- 3. Описание задачи, описание входных данных, описание подготовки входных данных для использования в программе (исходное уравнение, приведение уравнения к виду y' = f(x,y), нахождение y'' = f(x,y));
- 4. Результаты работы программы (таблица результатами расчета при $x = \frac{x_0 + 10}{2}$);
- 5. Анализ результатов и выводы по проделанной работе (исходя из предположения о том, что результат по методу Рунге-Кутта при h = 0.01 является истинным значением функции f(x)).

h = 0.50						
x =	1.00	1.50	2.00	2.50	3.00	
y_e =	3.00	3.00	2.10	2.13	3.24	
y_em =	3.00	-16.50	-0.51	-0.58	-1.06	
y_ei =	3.00	-14.20	-0.22	-0.11	-2.56	
y_rk =	3.00	0.80	0.45	0.46	0.73	
h = 0.10						
x =	1.00	1.10	1.20	1.30	1.40	
y_e =	3.00	1.80	1.18	0.83	0.62	
y_em =	3.00	2.11	1.55	1.19	0.94	
y_ei =	3.00	0.75	0.32	0.18	0.12	
y_rk =	3.00	2.07	1.50	1.14	0.90	
h = 0.01						
x =	1.00	1.01	1.02	1.03	1.04	
y_e =	3.00	2.88	2.77	2.66	2.56	
y_em =	3.00	2.88	2.77	2.67	2.57	
y_ei =	3.00	2.87	2.74	2.63	2.52	
y_rk =	3.00	2.88	2.77	2.67	2.57	

Авдеев Алексей Александрович	$y' = \frac{y}{x} - \frac{2}{x^2}$; $y(1) = 1$
Азизова Динора Курбоналиевна	$y' + \frac{y}{x} - 2e^x = 0; y(1) = e$
Бизяев Клим Викторович	(y+2y-x)y'=1; y(2)=0
Вяренен Илья Григорьевич	$y'+2xy = 2x^3y; y(0) = \sqrt{2}$
Дворовой Виталий Васильевич	$y' = \frac{2x + 3y - 5}{5x - 5}; y(0) = 1$
Косарев Виталий Владимирович	$xy'+y = (x+1)e^x$; $y(1) = e$
Лощенков Дмитрий Владимирович	$y'-\sin(x) + (2y+1)\cos(x) = 0; y(1) = 0.5$
Майоров Родион Павлович	$y' - \frac{2y}{x+1} = (x+1)^3; y(0) = 0.5$
Мишина Анастасия Олеговна	$x^2 y' = 2xy + 3; y(1) = 0$
Неймышев Игорь Константинович	$y' + \frac{4y}{4x - 3} - \ln(x) = 0; y(1) = 2$
Нергарян Геворг Гарегинович	$4y + xy' = 5x + x^2; y(1) = 0$
Оралов Иван Сергеевич	y'=x-y(x-3); y(0)=0
Поляков Павел Владиславович	$x(1 + y) + y + x^{2}yy' = 0; y(2) = 5$
Селиванова Светлана Вениаминовна	y'=1-(1+x)y+y; y(0)=1
Серажетдинов Денис Дмитриевич	$xy' = \frac{y}{4x} - \frac{4}{xy}$; $y(1) = 4$
Сидоров Сергей Александрович	$y'=y-x^3+6x; y(0)=0$
Скурихина Елизавета Игоревна	$xy'+(x+1)y = 3x^2e^{-x}; y(1) = 0$
Спиченков Евгений Сергеевич	$y' = 2x(x^2 + y); y(0) = -1$
Баранов Евгений Дмитриевич	$5y + xy' = x^2 y; y(1) = 3$
Басистый Илья Витальевич	$y' - \frac{y}{x} = x^2$; $y(1) = 0$
Богодухова Алина Сергеевна	$5yy'-(x^2+1) = x^2y; y(1) = 0.5$

Богомолова Екатерина Алексеевна	$y' = x^2(y+5) - x; y(2) = 10$
Бочаров Михаил Алексеевич	$y' = \frac{y^2}{x - y} - 2xy; y(0) = 1$
Быков Даниил Алексеевич	$y' = \frac{y}{x} - \frac{2x}{x^2}$; $y(1) = 1$
Завадская Елена Дмитриевна	$y' + \frac{y}{x} - 2e^x + x = 0; y(1) = e$
Ильин Денис Владимирович	(3y - x)y' = 1; y(2) = 0
Карими Абдул Кахар	$y'+2xy-x=2x^3y; y(0)=\sqrt{2}$
Кулешов Григорий Вадимович	$y' = \frac{2xy + 3y - 5}{5x - 5}; y(0) = 1$
Линник Константин Игоревич	$xy'+y+x=(x+1)e^x$; $y(1)=e$
Макляев Илья Васильевич	$y'-\sin(x) + (2xy+1)\cos(x) = 0; y(1) = 0.5$
Нуриахметов Артур Марселевич	$y' - \frac{2xy}{x+1} = (x+1)^3; y(0) = 0.5$
Ортаат Чаяна Шолбановна	$x^2 y' = 2xy + 3x; y(1) = 0$
Пастухов Дмитрий Сергеевич	$y' + \frac{4xy}{4x - 3} - \ln(x) = 0; y(1) = 2$
Русаков Михаил Михайлович	$4y + xy' = 5xy + x^2; y(1) = 0$
Сергун Илья Александрович	y' = xy - y(x - 3); y(0) = 0
Туманов Егор Сергеевич	$x(1+xy) + xy + x^2yy' = 0; y(2) = 5$
Чеповский Александр Андреевичй	y'=1-(1+x)y+y; y(0)=1
Шишко Роман Геннадьевич	$xy' = \frac{y}{4x} - \frac{4}{xy}$; $y(1) = 4$
Шумакова Маргарита Сергеевна	$y'=y-x^3+6x; y(0)=0$
Щеголеватых Денис Андреевич	$xy'+(x+1)y = 3x^2e^{-x}; y(1) = 0$
Абросимов Владислав Юрьевич	$y' = 2x(x^2 + y); y(0) = -1$
Бабкин Никита Владиславович	$5y + xy' = x^2y; y(1) = 3$

Бессогонова Полина Эдуардовна	$y' - \frac{y}{x} = x^2$; $y(1) = 0$
Бокова София Владиленовна	$5yy'-(x^2+1) = x^2y; y(1) = 0.5$
Букин Никита Сергеевич	$y' = x^2(y+5) - x; y(2) = 10$
Гилазов Роман Лутвелиевич	$y' = \frac{y^2}{x - y} - 2xy; y(0) = 1$
Гуськова Вероника Александровна	$5yy'-(x^2+1) = x^2y; y(1) = 0.5$
Данилов Виктор Игоревич	$y' = x^2(y+5) - x; y(2) = 10$
Деев Илья Сергеевич	$y' = \frac{y^2}{x - y} - 2xy; y(0) = 1$
Карибов Климентий Гаврилович	$y' = \frac{y}{x} - \frac{2x}{x^2}$; $y(1) = 1$
Клабуков Юрий Васильевич	$y' + \frac{y}{x} - 2e^x + x = 0; y(1) = e$
Курнаков Александр Александрович	$y' - \frac{y}{x} = x^2; y(1) = 0$
Марьин Роман Алексеевич	$5yy'-(x^2+1) = x^2y; y(1) = 0.5$
Огнева Надежда Юрьевна	$y' = x^2 (y + 5) - x; y(2) = 10$
Силаев Александр Александрович	$y' = \frac{y^2}{x - y} - 2xy; y(0) = 1$
Ушаков Алексей Вячеславович	$5yy'-(x^2+1) = x^2y; y(1) = 0.5$
Фицева Евгения Игоревна	$y' - \frac{y}{x} = x^2$; $y(1) = 0$