SRI INTERNATIONAL MENLO PARK CALIF FALLOUT SIMULANT DEVELOPMENT. LEACHING OF FISSION PRODUCTS FROM--ETC(U) AD-A047 040 JUL 77 W B LANE, L B INMAN DAHC20-70-C-0394 UNCLASSIFIED NL 1 of 2 ADA047040 Milli Milli Milli Milli

9) Final Report, May 74-Jul 77

Jul 30177

FALLOUT SIMULANT DEVELOPMENT,
Leaching of Fission Products from Nevada Fallout
and Summary of Synthetic Fallout Production

D'william B./Lane Lawrence B./Annan

Prepared for:

DEFENSE CIVIL PREPAREDNESS AGENCY WASHINGTON, D.C. 20301

CONTRACT DAHC20-70-C-0394 OCD Work Unit 3211D

This document has been approved for public release; distribution unlimited.

DDC NOV 22 1977 MEUSELLE

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 · U.S.A.

410 281

mit

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALO				
4. TITLE (and Subtitle) FALLOUT SIMULANT DEVELOPMENT Leaching of Fission Products from	Nevada Fallout	5. TYPE OF REPORT & Final Report May 1970 to Ju				
and Summary of Synthetic Fallout	Production	6. PERFORMING ORG.	REPORT NUMBER			
7. AUTHOR(s)						
		B. CONTRACT OR GRA	NT NUMBER(s)			
William B. Lane						
Lawrence B. Inman		DAHC20-70-C-0	394 New			
9. PERFORMING ORGANIZATION NAME AND ADDR	10. PROGRAM ELEMEN AREA & WORK UNI	T, PROJECT, TASK				
SRI International	3211 D					
333 Ravenswood Avenue						
Menlo Park, CA 94025	12. REPORT DATE	13. NO. OF PAGES				
	July 1977	99				
Washington, D.C. 20301	fense Civil Preparedness Agency 15. SECURITY CLASS. (of this					
	UNCLASSIFIED					
14. MONITORING AGENCY NAME & ADDRESS (if d	iff. from Controlling Office)					
		15a. DECLASSIFICATION SCHEDULE	N/DOWNGRADING			
16. DISTRIBUTION STATEMENT (of this report)						
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)						
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary						
Fallout, Leaching, Radioactivity Nuclear Explosives, SMALL BOY, J			ut,			
,						
\(
20. ABSTRUCT (Continue on reverse side if necessary a Long-term leaching studies	were conducted by	SRI International				
(formerly Stanford Research Inst						
SHASTA, SMALL BOY, JOHNIE BOY, a						
nuclear events was leached by 0.	<pre>1N HC1 (to represe</pre>	nt stomach acid)	and			
distilled water.						
SThe leaching mechanism for						
ducts from SMALL BOY fallout by	0.1N HCl appears to	be controlled b	va -> next -po			

19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

sorption reaction for a few days, after which it is controlled by a diffusion process. Leaching of SMALL BOY fallout by $0.1\underline{N}$ HCl removed 60% of the activity from large particles and 30% from small particles. Leaching by water removed only a few percent of the activity.

Generally, less than 10% of the activity was removed from SHASTA, JOHNIE BOY, or SEDAN fallout by either 0.1N HCl or water.

Synthetic fallout was prepared for Defense Civil Preparedness Agency (DCPA) contractors, including the University of California at Berkeley, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Ridge National Laboratory.

RE: Classified references--Contract No. DAHC-20-70-C-0394, Final Report Document should remain for unlimited distribution per Mrs. Garner, DCPA

FALLOUT SIMULANT DEVELOPMENT Leaching of Fission Products from Nevada Fallout and Summary of Synthetic Fallout Production

By: WILLIAM B. LANE and LAWRENCE B. INMAN

Prepared for:

DEFENSE CIVIL PREPAREDNESS AGENCY WASHINGTON, D.C. 20301

CONTRACT DAHC20-70-C-0394 OCD Work Unit 3211D

SRI Project EGU-8644

This document has been approved for public release; distribution unlimited.

DCPA REVIEW NOTICE

This report has been reviewed in the Defense Civil Preparedness Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Defense Civil Preparedness Agency.

MCCE23108	tar			
7715	V	Vhite S	ection	X
wet.	(uft Se	saita	0
pur two date	F9			
INTERIOR !	10N			
72				
PT B(STA)SU Dist.		(ILABII		
BISTAISU				

SUMMARY

Long-term leaching studies were conducted by SRI International (formerly Stanford Research Institute) with field samples collected at SHASTA, SMALL BOY, JOHNIE BOY, and SEDAN. Fallout from each of these nuclear events was leached by $0.1\underline{N}$ HCl (to represent stomach acid) and distilled water.

The leaching mechanism for the removal of eight-year-old fission products from SMALL BOY fallout by $0.1\underline{N}$ HCl appears to be controlled by a sorption reaction for a few days, after which it is controlled by a diffusion process. Leaching of SMALL BOY fallout by $0.1\underline{N}$ HCl removed 60% of the activity from large particles and 30% from small particles. Leaching by water removed only a few percent of the activity.

Generally, less than 10% of the activity was removed from SHASTA, JOHNIE BOY, or SEDAN fallout by either 0.1N HCl or water.

Synthetic fallout was prepared for Defense Civil Preparedness Agency (DCPA) contractors, including the University of California at Berkeley, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Ridge National Laboratory.

Final Report

July 1977

FALLOUT SIMULANT DEVELOPMENT Leaching of Fission Products from Nevada Fallout and Summary of Synthetic Fallout Production

By: WILLIAM B. LANE and LAWRENCE B. INMAN

Prepared for:

DEFENSE CIVIL PREPAREDNESS AGENCY WASHINGTON, D.C. 20301

CONTRACT DAHC20-70-C-0394 OCD Work Unit 3211D

SRI Project EGU-8644

This document has been approved for public release; distribution unlimited.

DCPA REVIEW NOTICE

This report has been reviewed in the Defense Civil Preparedness Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Defense Civil Preparedness Agency.

SUMMARY

Long-term leaching studies were conducted by SRI International (formerly Stanford Research Institute) with field samples collected at SHASTA, SMALL BOY, JOHNIE BOY, and SEDAN. Fallout from each of these nuclear events was leached by 0.1N HCl (to represent stomach acid) and distilled water.

The leaching mechanism for the removal of eight-year-old fission products from SMALL BOY fallout by $0.1\underline{\mathrm{N}}$ HCl appears to be controlled by a sorption reaction for a few days, after which it is controlled by a diffusion process. Leaching of SMALL BOY fallout by $0.1\underline{\mathrm{N}}$ HCl removed 60% of the activity from large particles and 30% from small particles. Leaching by water removed only a few percent of the activity.

Generally, less than 10% of the activity was removed from SHASTA, JOHNIE BOY, or SEDAN fallout by either $0.1\underline{N}$ HCl or water.

Synthetic fallout was prepared for Defense Civil Preparedness Agency (DCPA) contractors, including the University of California at Berkeley, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Ridge National Laboratory.

CONTENTS

SUMM	ARY	iii
I	INTRODUCTION	1
	Background	1
	Approach	3
II	EXPERIMENTAL DETAILS	7
	Real Fallout and Synthetic Fallout Leaching Experiment	7
	Samples	7
	Procedures	8
	Radionuclide Measurement	13
III	RESULTS AND DISCUSSION	15
	Leaching of SMALL BOY Fallout	15
	Leaching of Cs-134 Tagged Synthetic Fallout	65
	Leaching of SHASTA Fallout	73
	Leaching of SEDAN Fallout	76
	Leaching of JOHNIE BOY Fallout	78
	Development and Production of Fallout Simulants	82
REFE	RENCES	95
חדפידו	RTRIPTON ITCT	0.7

ILLUSTRATIONS

1	Count Rat	te 1	vs Ener	gy Plo	ot of a	a Ty	pical	Lead	he	b	Mí	ne	ra	1					
	and Leach	n A	liquot	Spect	ra .				•	•	•	•		•	•	•		•	16
2	Leaching	of	Eu-155	from	SMALL	BOY	Fa11	out					•	•		•	•	•	21
3	Leaching	of	Eu-152	from	SMALL	BOY	Falle	out											22
4	Leaching	of	Sb-125	from	SMALL	воч	Falle	out											23
5	Leaching	of	Cs-137	from	SMALL	BOY	Falle	out											24
6	Leaching	of	Eu-155	from	SMALL	BOY	Falle	out											27
7	Leaching	of	Eu-152	from	SMALL	BOY	Falle	out											28
8	Leaching	of	Sb-125	from	SMALL	BOY	Falle	out											29
9	Leaching	of	Cs-137	from	SMALL	BOY	Falla	out						•					30
10	Leaching	of	Eu-155	from	SMALL	BOY	Falle	out	•										33
11	Leaching	of	Eu-152	from	SMALL	BOY	Falle	out											34
12	Leaching	of	Sb-125	from	SMALL	BOY	Falle	out		•									35
13	Leaching	of	Cs-137	from	SMALL	BOY	Falle	out	•									•	36
14	Leaching	of	Eu-155	from	SMALL	воч	Fall	out					•						39
15	Leaching	of	Eu-152	from	SMALL	воч	Fall	out											40
16	Leaching	of	Sb-125	from	SMALL	BOY	Fall	out	•										41
17	Leaching	of	Cs-137	from	SMALL	BOY	Fall	out		•		•							42
18	Leaching	of	Eu-155	from	SMALL	воч	Fall	out											45
19	Leaching	of	Eu-152	from	SMALL	воч	Fall	out											46
20	Leaching	of	Sb-125	from	SMALL	воч	Fall	out											47
21	Leaching	of	Cs-137	from	SMALL	BOY	Falle	out											48
22	Leaching	of	Eu-155	from	SMALL	BOY	Fallo	out										•	51
23	Leaching	of	Eu-152	from	SMALL	воч	Fall	out											52
24	Leaching	of	Sb-125	from	SMALL	воч	Fallo	out											53
25	Leaching	of	Cs-137	from	SMALL	BOY	Fallo	out											54

ILLUSTRATIONS (continued)

26	Leaching	of	Eu-155	from	SMALL	BOY	Fallout									57
27	Leaching	of	Eu-152	from	SMALL	воч	Fallout									58
28	Leaching	of	Sb-125	from	SMALL	воч	Fallout								•	59
29	Leaching	of	Cs-137	from	SMALL	BOY	Fallout									60
30	Leaching	of	Cs-134	at 20	Degre	es 1	Thermal	Trea	atn	nen	t					67
31	Leaching	of	Cs-134	at 90	00 Degr	rees	Thermal	Tre	eat	me	nt					69
32	Leaching	of	Cs-134	at 12	200 Deg	grees	Therma	1 Tı	rea	tn	ne r	ıt				71

TABLES

1	Leaching Time Intervals	9
2	Mineral Particles in Nevada Fallout Leaching Tests	10
3	Size and Activity Distributions in Shasta Fallout Particles	11
4	Leachants Used in Shasta Fallout Tests	12
5	Properties of Cs-134 Synthetic Fallout	13
6	Leaching of Particles of Fallout from SMALL BOY Counting Date 4 March 1975	19
7	Leaching of Particles of Fallout from SMALL BOY Counting Date 11 March 1975	25
8	Leaching of Particles of Fallout from SMALL BOY Counting Date 13 March 1975	31
9	Leaching of Particles of Fallout from SMALL BOY Counting Date 16 March 1975	37
LO	Leaching of Particles of Fallout from SMALL BOY Counting Date 20 March 1975	43
11	Leaching of Particles of Fallout from SMALL BOY Counting Date 25 March 1975	49
12	Leaching of Particles of Fallout from SMALL BOY Counting Date 27 March 1975	55
13	Radionuclide Diffusion Constants for SMALL BOY	62
14	Counting Efficienty for 0-1 MeV (Applies to SMALL BOY, SHASTA, SEDAN)	63
15	Radionuclide Activity of SMALL BOY Fallout	64
16	Eight Year Leaching of Cesium from Synthetic Fallout Counting Date 22 April 1975	66
17	Eight Year Leaching of Cesium from Synthetic Fallout Counting Date 8 May 1975	68
18	Eight Year Leaching of Cesium from Synthetic Fallout Counting Date 16 May 1975	70
19	Diffusion Constants for Cs-134 Synthetic Fallout	72

TABLES (continued)

20	Radionuclide Leaching from SHASTA Fallout	74
21	Radionuclide Activity of SHASTA Fallout	75
22	Radionuclide Leaching from SEDAN Fallout	77
23	Radionuclide Leaching from JOHNIE BOY Fallout	79
24	Counting Efficiency for 0-2 MeV (Applies to JOHNIE BOY)	80
25	Radionuclide Activity of JOHNIE BOY Fallout	81
26	Synthetic Fallout for University of California at Berkeley	85
27	Synthetic Fallout for University of Tennessee	89
28	Synthetic Fallout for Colorado State University	91
29	Synthetic Fallout for North Carolina State University	92
30	Synthetic Fallout for Cornell University	93
31	Synthetic Fallout for Oak Ridge National Laboratory	94

I INTRODUCTION

Background

Synthetic fallout preparations for simulating selected properties of fallout are needed in laboratory and field experiments that are designed to evaluate radiological hazards and countermeasure procedures. For example, radioactive tagged particles with a given range in diameters have been produced for use in investigations of the effectiveness with which proposed decontamination methods remove fallout particles from surfaces.1 * In such experiments, the radionuclide is bonded to the particles as a particle tracer so that the measured ratio of the dose rate before and after decontamination can be utilized directly to determine the effectiveness of the method in removing the fallout particles. However, in real fallout, some of the nuclides would be soluble, and these nuclides, carried by fallout particles that fall onto surfaces and are later exposed to conditions of dew and rain, would tend to be leached from the fallout particle and adsorbed by the surfaces.2 After adsorption, all radioelements generally are not removed in decontamination processes as readily as the fallout particles; thus, consideration of the soluble nuclides in decontamination experiments is required to obtain reliable decontamination effectiveness values from such experiments.

Primary interest in the long-term effects of fallout is related to the fact that consumption of contaminated food produces an internal radiological hazard. The uptake of radionuclides by plants through their root

References are listed at the end of this report.

systems would be the principal path of food contamination in the longterm period after a nuclear war. However, at early times after such a war, the soluble nuclides from fallout particles could also be assimilated directly by the leaves and fruit of growing plants.

When contaminated food is consumed by animals and humans, the soluble radionuclides dissolve in the stomach fluids, and some fraction of each passes into the blood stream and thence to other body organs. The remainder, along with the insoluble nuclides, stays with the particles and passes through the digestive tract.

Thus, fallout simulants with a given degree of radionuclide solubility are needed for use in experimental studies of contamination of water sources and radionuclide cycling in the food chain.

Only very limited data on nuclide solubility of real fallout are available. The basic particle matrix of the fallout from nuclear test detonations has been either Nevada soil or Pacific atoll coral. In most of the solubility experiments on these materials, the activity measurements were made only on the total activity that dissolved into test solutions, rather than on amounts of individual nuclides that dissolved. In a hearing before the Special Subcommittee on Radiation of the Joint Committee on Atomic Energy, 3 the following percentages of radioactivity soluble in water were given: (1) for long-range fallout in Great Britain, 50 percent soluble; (2) for fallout from Nevada tower shots--particles less than 44 micorns, less than 2 percent soluble, and particles greater than 44 microns, less than 1 percent soluble; and (3) for fallout particles less than 44 microns from Nevada Operation Jangle underground shots, 5 percent soluble. The soluble activity fraction was given as 60-90 percent in Operation Castle4 and 20 percent in Operation Redwing.5 In some cases the fractions refer to beta count-rate ratios, and in others they refer to gamma count-rate ratios. Further, these results apply to specific samples of fallout and to specific, but variable, times after detonation. Unfortunately, the general problems of radionuclide cycling in food chains, water contamination, and decontamination require more precise information on solubility, leaching, and exchange processes than can be deduced from such data as the above.

Because of the general lack of reliable solubility data on real fallout, models were developed to provide approximate descriptions of fallout
particle properties, such as nuclide solubility, through specifications of
basic dependent parameters (contour ratios) in terms of the ratio of density
factor for a given property of the fallout particles to the standard intensity (r/hr at one hour). The density of the desired fallout property
is then obtained by multiplying the contour ratio by the standard intensity.
The currently available radioelement solubility model for a land surface
detonation assumes that the fraction of an element that condenses on the
exterior of a solid particle is potentially soluble and biologically available. Norman and his coworkers at Gulf General Atomics have investigated
the high temperature diffusion of certain elements in mineral systems;
however, no method has yet been developed to relate the diffusion data to
biological availability.

Approach

As an approach to this problem, leaching experiments—using heat-treated synthetic fallout and real fallout—were conducted. Upon the disestablishment of the Naval Radiological Defense Laboratory (NRDL) in 1969, SRI took custody of a number of field samples collected at SHASTA, SMALL BOY, JOHNIE BOY, and SEDAN. Many of these samples were stored in sealed containers and their history was well documented. Long-term leaching studies were started with synthetic fallout in 1967 and with each of the four nuclear tests in 1968 and 1969 by subjecting the radioactive mineral particles to leaching by 0.1N HC1 (to represent stomach acid) and

distilled water. Each fallout sample was successively leached by fresh aliquots of the leachant so the combined results could be used to describe the leaching process. Results of these tests were previously reported in 1969⁹ and in 1970.¹⁰

The leaching of Cs-134 from synthetic fallout was shown to be described by two mechanisms: initial leaching (10 days) was controlled by an adsorption reaction, while long-term leaching (up to 750 days) was controlled by a diffusion process. As temperatures of the thermal treatment were increased, the overall availability of Cs-134 was decreased, although there was no difference in the diffusion from synthetic fallout heated to 900°C and 1200°C. Fallout from SHASTA had a very small fraction of available radionuclides (1-5 percent) as measured after 615 days of leaching. Fallout from SMALL BOY, JOHNIE BOY, and SEDAN were similarly leached and the results from the first 160 days reported. Leaching of SMALL BOY fallout by 0.1N HC1 removed 60 percent of the activity from large particles, while leaching by water removed only a few percent of the activity. Generally, less than 10 percent of the activity was removed from JOHNIE BOY or SEDAN fallout by either 0.1N HC1 or water.

The first part of this report describes the results of continuing the Cs-134, SHASTA, SMALL BOY, JOHNIE BOY, and SEDAN leaching for several years. Gamma spectroscopy using a lithium-drifted germanium diode detector and a 1024 channel spectrometer permits the analysis of leached fallout samples to be reported in terms of individual fission-product radionuclides, instead of in terms of gross gamma counting as was reported earlier. 9,10

The second part of this report describes the production of synthetic fallout for DCPA contractors. Over the years, procedures to simulate many properties of real fallout have been developed and reported. 11,12,13 These procedures have been used in the hot-cell facility at Camp Parks to prepare batches of synthetic fallout for investigators at NRDL, Cornell University,

Oak Ridge National Laboratory, University of Tennessee, University of California, Lawrence Radiation Laboratory, Colorado State University, University of North Carolina, and SRI, which have all used synthetic fallout prepared to their specifications.

II EXPERIMENTAL DETAILS

Real Fallout and Synthetic Fallout Leaching Experiment

Samples

SMALL BOY was a near surface burst in the low kiloton range, JOHNTE BOY was a surface burst in the low kiloton range, and SEDAN was an underground detonation in the 100 kiloton range. SHASTA was a tower shot of 17 kilotons. Close-in fallout from each of these tests was collected at the Nevada Test Site in 1962, and many samples have been stored in the original sealed containers at Camp Parks. Particles of fallout from each of these nuclear events were obtained from the inventory by opening the following samples:

SMALL BOY Sample 100P01

JOHNIE BOY Sample 01-2

SEDAN Sample 7

SHASTA Tarp Sample

Radiochemical properties of the selected fallout particles were documented in 1962 and can be found in References 14, 15, and 16.

Investigators at Oak Ridge National Laboratory requested a synthetic fallout for an ecological study to measure the effects of Cs-137 on a controlled ecological system over a period of years. A preliminary experiment was desired to define some of the parameters, and three 7 lb batches of synthetic fallout tagged with about 1 microcurie of Cs-134 per gram were produced for them. Two grams of each batch was used for leaching.

Procedures

Long-term tests were initiated to measure leaching at extreme dilutions. This was accomplished by adding a 20 ml aliquot of leachant to a measured weight of particles in a 40 ml centrifuge tube. The following day the tube was centrifuged and the clear leachant decanted into another, similar 40 ml tube. A second 20 ml of the same leachant was immediately added to the tube containing the particles. The process of leaching the same fallout particles with fresh aliquots was continued for many years. To date, aliquots of leachants were accumulated over time periods, as shown in Table 1.

SMALL BOY sample 100P01 and JOHNIE BOY sample 01-2 were sieved, and the 16 recovered sieve fractions were leached as shown in Table 2. SEDAN sample 7 was a very large gross sample of many pounds, and 100 grams of it was sieved to provide 7 fractions of fallout as shown in Table 2.

Particles of fallout from SHASTA were separated into magnetic and nonmagnetic fractions by letting the particles fall through a plastic tube between the poles of a large permanent magnet. The particles that fell through the tube were arbitrarily classified as nonmagnetic and those that were retained were classified as magnetic.

The magnetic and nonmagnetic fractions from SHASTA were sieved, weighed, and measured in the well-crystal counter. The data are presented in Table 3 along with the specific activity as measured on 16 January 1968.

Since the mass and activity were both concentrated in the large sizes in this particular SHASTA fallout, leaching tests were limited to particles in the 500-1000 micron diameter size range. Table 4 shows the sample weights and leachants used in the tests.

		Cs-134			SHASTA		SMALL BOY, SEDAN, JOHNIE BOY	SEDAN, JOHN	IE BOY
		△ Time*	2 Time		# Time*	2 Time		A Time*	2 Time
Aliquot	Date	(days)	(days)	Date	(days)	(days)	Date	(days)	(days)
Mineral	6 Feb 67	•	0	16 Jan 68	•	0	11 Nov 69	•	0
-	7 Feb 6'	7	-	18 Jan 68	61	2	12 Nov 69	-	1
N	8 Fcb 67	7	64	22 Jan 68	4	9	13 Nov 69	-	81
m	9 Feb 67	-	က	12 Feb 68	21	27	14 Nov 69	7	es
4	10 Feb 67	7	4	26 Mar 68	43	9	20 Nov 69	9	6
ß	13 Feb 67	ო	7	10 Jun 68	92	146	24 Nov 69	4	13
9	15 Feb 67	8	6	26 Sep 68	108	254		21	34
1	20 Feb 67	so.	14	23 Dec 68	88	342	23 Jan 70	39	73
00	2 Mar 67	10	24	21 Jan 69	29	371	20 Apr 70	87	160
6	4 Mar 67	81	56	10 Sep 69	232	603	28 Aug 70	130	290
10	6 Mar 67	63	28	23 Jan 70	135	738	15 Jan 71	140	430
11	8 Mar 67	61	30	20 Apr 70	87	825	5 May 71	110	240
12	28 Mar 67	20	20	28 Apr 70	00	833	23 Feb 72	294	834
13	11 Apr 67	14	64	15 Jan 71	262	1,095	18 Jan 73	330	1,164
14	5 May 67	24	88	5 May 71	110	1,205	17 Jan 75	729	1,893
15	20 Jun 67	46	134	23 Feb 72	294	1,499			
16	14 Jul 67	24	158	18 Jan 73	330	1,829			
17	15 Aug 67	32	190	17 Jan 75	729	2,558			
18	26 Sep 67	42	232						
19	27 Oct 67	31	263						
50	3 Jan 68	89	331						
21	12 Feb 68	40	371						
22	22 Mar 68	43	414						
23	10 Jun 68	76	490						
24	20 Sep 68	102	205						
25	23 Dec 68	94	989						
56	20 Jan 69	28	714						
27	25 Feb 69	36	150						
28		332	1,082						
8	20 Apr 70	87	1,169						
30	28 Apr 70	œ	1,177						
31	15 Jan 71	262	1,439						
32	5 May 71	110	1,549						
33	23 Feb 72	294	1,843						
34	Jan	330	2,173						
35	22 Apr 75	822	2,995						

* Days at leaching for specified aliquot.

Accumulated days that mineral was leached.

Table 2

MINERAL PARTICLES IN NEVADA FALLOUT LEACHING TESTS

Particle	SMAL	L BOY	JOHN	IE BOY	S	EDAN
Size	Weight	Leachant	Weight	Leachant	Weight	Leachant
(micron)	(g)	(20 ml)	(g)	(20 ml)	(g)	(20 ml)
> 2830			1.8	0.1 <u>N</u>		
2830-1410	0.267	0.1 <u>N</u>	1.9	НОН	2.0	0.1 <u>N</u>
1410- 710	0.345	нон	2.8	0.1 <u>N</u>	2.0	0.1 <u>N</u>
710- 350	0.225	0.1 <u>N</u>	2.6	нон	2.0	0.1 <u>N</u>
350- 177	0.667	нон	3.4	0.1 <u>N</u>	2.0	0.1 <u>N</u> ,H20
177- 88	0.177	0.1 <u>N</u>	4.9	НОН	2.0	0.1 <u>N</u> ,H20
88- 44	0.405	нон			2.0	$0.1\underline{N},H_2O$
88- 62			2.1	0.1 <u>N</u>		
62- 44			1.6	НОН		
< 44	0.338	0.1 <u>N</u>	1.7	0.1 <u>N</u>	2.0	0.1 <u>N</u> ,H ₂ O

Table 3
SIZE AND ACTIVITY DISTRIBUTIONS IN SHASTA FALLOUT PARTICLES

Counted 16 January 1968
Background 378 c/m
Standard 44006 c/m

	Particle Diameter (micron)	Weight (g)	Activity Sample (c/m)	Specific *Activity (c/m/g)
Magnetic				
	500-1000	0.5149	139,717	270,600
	250 - 500	0.0412	2,445	50,170
	105- 250	0.2311	5,279	21,210
	47- 105	0.0754	4,441	53,880
	< 47	0.0105	2,036	157,900
Nonmagnetic				
	500-1000	4.0712	284,500	60,970
	250- 500	2.0480	2,355	964
	105- 250	1.7078	1,477	643
	47- 105	0.0882	832	5,147
	< 47	0.0290	2,633	77,760

^{*}Gross gamma counts per minute per gram.

Table 4

LEACHANTS USED IN SHASTA FALLOUT TESTS

Туре	Weight (g)	Leachant
Magnetic	0.1174	Successive 20 ml water
Magnetic	0.1000	Successive 20 ml 0.1N HC1
Nonmagnetic	0.4865	Successive 20 ml water
Nonmagnetic	0.4995	Successive 20 ml 0.1N HC1

Synthetic fallout was prepared by surface adsorption of Cs-134 on mineral particles from a carrier solution containing stable atoms of major fissions' product elements. Element concentrations in the carrier solution were based on 2×10^{14} fissions being associated with 1 gram of fallout. Seven-pound batches of mineral particles of Wedron sand between 88 and 175 micron diameter were placed in a rotating mixer and sprayed with carrier solution containing Cs-134. After drying in a stream of warm air, one batch was heated to 900° C for one hour, a second batch was heated to 1200° C for one hour, and the third batch was retained in the air-dried condition. Each batch was sampled and assayed, and its solubility, as shown in Table 5, was determined on the basis of overnight leaching of 2 grams of the synthetic fallout by 20 ml of 0.1N HC1.

Since the Oak Ridge study was designed to continue for several years, leaching data covering a few hours seemed inadequate to predict the availability of cesium. Accordingly, long-term tests were initiated to measure the leaching of Cs-134 at extreme dilutions. This was accomplished by setting aside the 20 ml aliquot of 0.1N HCl that resulted from overnight leaching and adding a second, similar aliquot to the once-leached synthetic fallout. This process of leaching the same mineral fraction for random time intervals with fresh aliquots was continued for 2,995 days and resulted in the accumulation of 35 successive leaching aliquots.

Table 5

PROPERTIES OF Cs-134 SYNTHETIC FALLOUT

Batch	Temperature (°C)	Specific Activity* (µCi/g)	Fraction Removed (percent)
1	20	1.31	60.6
2	900	1.34	17.6
3	1200	2.09	4.34

^{*} Specific activity determined by assay on 6 February 1967.

Radionuclide Measurement

The long-term leaching tests of Nevada fallout were terminated on 17 January 1975 and the synthetic fallout tests on 22 April 1975. All mineral particles and leach aliquots were oven-dried prior to counting. A special jig was provided for counting the 40 ml conical centrifuge tubes in a fixed position to insure a constant geometry for all radio-activity measurements.

Pulse height measurements were made with a gamma spectrometer using an Ortec lithium-drifted germanium diode detector, and a Canberra 1024 channel analyzer. The output from the spectrometer was connected to both a teletype printer-paper tape unit and an x-y plotter.

The activity in counts per minute (c/m) of each nuclide was determined by integrating the area under that nuclide's most prominent gamma ray peak.

The efficiency (in counts per disintegration) was determined for each of the nuclides to enable a calculation of number of atoms and equivalent fissions per gram.

III RESULTS AND DISCUSSION

Gamma spectroscopy with a Lithium drifted Germanium diode detector makes possible the interpretation of fission-product activity measurements in terms of individual radionuclides. These quantitative results permit some pertinent observations about the leaching process. The results also show differences among the nuclear shots SMALL BOY, JOHNIE BOY, SEDAN, and SHASTA. Variations from the theoretical composition and concentrations of the nuclides in fallout are demonstrated.

Leaching of SMALL BOY Fallout

A count rate vs energy plot of a typical spectra of leached mineral and leach aliquots is shown in Figure 1. The fission-product nuclides Cs-137 at 661 kev, Sb-125 at 427 kev, and Eu-155 at 85 kev are positively identified as well as the neutron activation product Eu-152 at 343 kev. Other, less prominent, peaks are also marked and are characteristic for the indicated radionuclides.

The area under the peak, from valley to peak to valley, was determined from the digital printout, and this gave a sample activity in counts per minute for each of the nuclides, as shown in Tables 6-12. The mineral activity at the time of individual leach intervals was equal to the final mineral activity plus the sum of all the activity that was previously leached. This permitted the calculation of nuclide concentration in the mineral, C_m , and in the liquid, C_ℓ , at the end of each leaching interval. The fraction of the initial activity, C_0 , that remained was then C_m/C_0 . These values are also presented in Tables 6-12.

The availability of a nuclide for leaching from a fallout particle may represent the degree to which the nuclide forms a solid or liquid solution at a given temperature, the dissolved atoms may become immobilized in

Count Rate vs Energy Plot of a Typical Leached Mineral and Leach Aliquot Spectra. Figure 1.

the structure of the mineral particle. The mechanism for this phenomenon may entail a diffusion and chemical reaction (solution or compound formation), as well as adsorption.

Freundlich derived an empirical expression for the adsorption of a gas by a solid, which has since been used to describe many adsorption reactions, including the chemisorption and ion exchange reactions in soil minerals. Leaching of cesium from the three types of synthetic fallout was investigated through the Freundlich equation, given by

$$C_{m} = kC_{\ell}^{n} \tag{1}$$

where C_{m} and C_{ℓ} are as defined previously and k and n are equation constants. The first few aliquots, extending out to several days' leaching, showed a good fit to the Freundlich expression, and equation constants were reported in Reference 9. No attempt was made to repeat the Freundlich fit for this report; however, the data in Table 6 are complete for an evaluation of the equation constants k and n.

Plotting values of C_{m} and C_{ℓ} from later leaching aliquots (after several days) showed that the chemisorption process as described by the Freundlich equation was no longer controlling the leaching of cesium from the synthetic fallout, and a diffusion limiting mechanism was then investigated using Fick's law, as

$$\frac{c}{\frac{m}{c}} = \frac{6}{\pi^2} \sum_{1}^{\infty} \exp\left[-\sqrt{2}\pi^2 Dt/r_0^2\right]$$
 (2)

where

C is the initial Cs-134 concentration

 C_{m} is the Cs-134 concentration after various leaching times

t is the time of leaching

r is the radius of the fallout particle

D is the diffusion coefficient

The first term of the series is a good approximation when t is sufficiently large, thus

$$\frac{c}{c} \approx \frac{6}{\pi^2} \exp \left[-t/\tau\right] \tag{3}$$

where

$$\tau = r^2/\pi^2 D$$

and equation (3) can be written

$$\log \left(\frac{C_{m}}{C_{0}} \right) = -\frac{1}{\tau} t + k \tag{4}$$

In Reference 9 a plot of $\log(C_m/C)$ and time showed that the leaching process after a few days was controlled by a leaching mechanism. Straight line portions of the curves permitted a solution for the diffusion coefficient, D, using the slope, $1/\tau$, and an assigned particle diameter.

The SMALL BOY data presented in Tables 6 through 12 were tested according to equation 4, and the plots are presented in Figures 2-29. The straight line was obtained by running a least square fit on the four last points.

Table 6

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY STANDARD 40000.000 C/M THERMAL TREATMENT 20 C BACKGROUND .550 C/M PARTICLE SIZE 2830 - 1410 MICRONS LEACHING STARTED 11 NOV. 1969 COUNTING DATE 4 MAP. 1975

CONCENTRATION OF EU-155

	LEACHIN DELTA TIME		ACTIVITY	MINERAL	LIQUID	FRACTION REMAINING
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
MINERAL (.267	GM)		27.20	2092.92		
1 LEACH OF 20		1	54.860	1889.51	2.7155	.9028
2 LEACH OF 20	ML . 1	2	20.300	1815.54	.9875	.8675
3 LEACH OF 20		3	50.000	1630,34	2.4725	.7790
4 LEACH OF 20	ML 6	9	170.840	992,55	8.5145	.4742
5 LEACH OF 20	ML 4	13	97.620	628.99	4.8535	.3005
6 LEACH OF 20		34	91.100	289.85	4.5275	.1385
7 LEACH OF 20	ML 39	. 73	17.820	225.17	.8635	.1076
8 LEACH OF 20	ML 87	160	5.680	205.96	.2565	.0984
9 LEACH OF 20	ML 130	290	6.980	181.87	-3215	.0869
10 LEACH OF 20	ML 140	430	6.980	157.79	.3215	.0754
11 LEACH OF 20	ML 110	540	3.300	147.49	.1375	.0705
	ML 294	834	6.320	125.88	.2885	.0601
	ML 330	1164	2.680	117.90	.1065	.0563
14 LEACH OF 20		1893	5.380	99.81	.2415	.0477

BACKGROUND .160 CONCENTRATION OF EU-152

	LEACHIN	G TIME	ACTIVITY	MINERAL	LIQUID	FRACTION	
	DELTA TIME	SUM TIME	SAMPLE			REMAINING	
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO	
MINEHAL (.267	GMI		4.10	148.31			
1 LEACH OF 20		1	4.600	131.69	.2220	.8879	
2 LEACH OF 20		S	2.360	123.45	.1100	.8323	
3 LEACH OF 20	ML 1	3	3.660	110.34	.1750	.7439	
4 LEACH OF 20	ML 6	9	10.160	72.88	.5000	.4914	
5 LEACH OF 20		13	5.100	54.38	.2470	.3667	
6 LEACH OF 20		34	3.860	40.52	.1850	.2732	
7 LEACH OF 20		73	.740	38.35	.0290	.2586	
8 LEACH OF 20	ML 87	160	1.220	34.38	.0530	.2318	
9 LEACH OF 20		290	1.660	28.76	.0750	.1939	
10 LEACH OF 20	ML 140	430	2.220	21.05	.1030	.1419	
11 LEACH OF 20		540	.540	19.63	.0190	.1323	
12 LEACH OF 20		834	.160	19.63	0.0000	.1323	
13 LEACH OF 20		1164	•900	16.85	.0370	.1136	
14 LEACH OF 20	ML 729	1893	.720	14.76	.0290	.0995	

Table 6 (Concluded)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C
PARTICLE SIZE 2830 = 1410 MICRONS
COUNTING DATE 4 MAR. 1975

LEACHING STARTED 11 NOV. 1969

CONCENTRATION OF SB-125

	LEACHING TIME DELTA TIME SUM TIME		ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING		
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO		
MINERAL 1 .267	GM)		31.90	177.83				
1 LEACH OF 20	ML 1	1	1.900	170.86	.0930	.9608		
2 LEACH OF 20	ML . 1	2	1.020	167.19	.0490	.9402		
3 LEACH OF 20	ML 1	3	1.480	161.80	.0720	.9099		
4 LEACH OF 20	ML 6	9	4.580	144.79	.2270	.8142		
5 LEACH OF 20	ML 4	13	2.780	134.53	.1370	.7565		
6 LEACH OF 20	ML 21	34	.460	132.96	.0210	.7477		
7 LEACH OF 20	ML 39	73	1.020	129.29	.0490	.7270		
B LEACH OF 20	ML 87	160	.340	128.16	.0150	.7207		
9 LEACH OF 20	ML 130	290	.540	126.29	.0250	.7102		
10 LEACH OF 20	ML 140	430	.200	125.69	.0080	.7068		
11 LEACH OF 20	ML 110	540	.420	124.27	.0190	.6988		
12 LEACH OF 20	ML 294	834	.360	123.07	.0160	. 6921		
13 LEACH OF 20	ML 330	1164	.440	121.57	.0200	.6837		
14 LEACH OF 20	ML 729	1893	.640	119.33	.0300	.6710		

BACKGROUND .693 CONCENTRATION OF CS-137

					DELT	LEACHIN	G TIME	SAMPLE	MINERAL	FIGNID	FRACTION REMAINING
			-	-	(0	DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
_	MINE	L & 1			•						
	MINE	FAC		10	GM)			55.70	1559.27		
-		EACH				,	1	24.520	1470.03	1.1913	.9428
		EACH		50		1	2	8.760	1439.82	.4033	.9234
		EACH		50	ML	1	3	23.280	1355.22	1.1293	.8691
	4 6	EACH	OF	20	ML	6	9	60.480	1131.30	2.9893	.7255
	5 L	EACH	OF	20	ML	4	13	43.980	969.18	2.1643	.6216
	6 L	EACH	OF	20	MI	21	34	54.860	766.30	2.7083	.4915
		FACH				39	73	35.000	637.81	1.7153	.4090
-		EACH		20		87	160	33.640	514.42	1.6473	.3299
	9 1	EACH	OF	20	-	130	290	37.120	377.99	1.8213	.2424
		EACH		20	-	140	430	14.760	325.30	.7033	.2086
		EACH		20		110	540	9.460	292.46	.4383	.1876
		EACH		-					258.28		
				50		294	834	9.820		.4563	.1656
		EACH		50	W	330	1164	8.260	229.94	.3783	.1475
	14 L	EACH	OF	50	ML	729	1893	7.080	206.02	.3194	.1321

Figure 2. Leaching of Eu-155 from SMALL BOY Fallout.

Data obtained from Table 6.

Figure 3. Leaching of Eu-152 from SMALL BOY Fallout.

Data obtained from Table 6.

Figure 4. Leaching of Sb-125 from SMALL BOY Fallout.

Data obtained from Table 6.

Figure 5. Leaching of Cs-137 from SMALL BOY Fallout.

Data obtained from Table 6.

Table 7

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY

LEACHING SOLUTION WAS 0.1N MCL STANDARD 40000.000 C/M

THERMAL TREATMENT 20 C BACKGROUND .576 C/M

PARTICLE SIZE 710 - 350 MICRONS LEACHING STARTED 11 NOV. 1969

COUNTING DATE 11 MAR. 1975

CONCENTRATION OF EU-155

	DELTA TI	HING TIME ME SUM TIME	SAMPLE	MINERAL	LIQUID	FRACTION REMAINING	
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO	
MINEFAL (.225	GMI		60.96	3059.26			
1 LEACH OF 20		1	73.200	2736.48	3,6312	.8945	
	ML 1	2	16.080	2667.58	.7752	.8720	
3 LEACH OF 20	ML 1	3	47.100	2460.81	2.3262	.8044	
4 LEACH OF 20	ML 6	9	157.320	1764.17	7.8372	.5767	
5 LEACH OF 20	ML 4	13	82.800	1398.73	4.1112	.4572	
6 LEACH OF 20	ML 21	34	136.560	794.36	6.7992	.2597	
7 LEACH OF 20	ML 39	. 73	53.000	561.37	2.6212	.1835	
8 LEACH OF 20	ML 87	160	17.640	485.53	.8532	.1587	
9 LEACH OF 20	ML 130	290	15.960	417.16	.7692	.1364	
10 LEACH OF 20	ML 140	430	9.840	375.99	.4632	.1229	
11 LEACH OF 20	ML 110	540	4.140	360.15	.1782	.1177	
12 LEACH OF 20	ML 294	834	8.100	326.71	.3762	1068	
13 LEACH OF 20	ML 330	1164	7.860	294.34	.3642	.0962	
14 LEACH OF 20	ML 729	1893	6.420	268.37	.2922	.0877	

BACKGROUND .110 CONCENTRATION OF EU-152

					LEACHIN	G TIME	ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION
				DELTA TIME		SUM TIME				REMAINING
				(DAYS)		(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
MI	NERAL		225	GM)			1.80	125.96		
1	LEACH	OF	50	ML	1	1	6.300	98.44	.3095	.7816
	LEACH				1	5	1.260	93.33	.0575	.7410
3	LEACH	OF	20	ML	1	3	2.880	81.02	.1385	.6433
4	LEACH	OF	50	ML	6	9	5.460	57.24	.2675	.4545
	LEACH				4	13	3.600	41.73	.1745	.3313
6	LEACH	OF	50	ML	21	34	2.100	32.89	.0995	.2611
7	LEACH	OF	20	ML	39	73	2.760	21.11	.1325	.1676
8	LEACH	OF	20	ML	87	160	•110	21.11	0.0000	.1676
9	LEACH	OF	20	ML	130	290	.540	19.20	.0215	.1524
10	LEACH	OF	20	ML	140	430	1.080	14.89	.0485	.1182
11	LEACH	OF	20	ML	110	540	.360	13.78	.0125	.1094
12	LEACH	OF	20	ML	294	834	.360	12.67	.0125	.1006
13	LEACH	OF	20	ML	330	1164	1.020	8.62	.0455	.0685
14	LEACH	OF	20	ML	729	1893	.360	7.51	.0125	.0596

Table 7 (Concluded)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C BACKGROUND .050 C/M
PARTICLE SIZE 710 - 350 MICRONS LEACHING STARTED 11 NOV. 1969
COUNTING DATE 11 MAR. 1975

CONCENTRATION OF SB-125

				DEL	LEACHING TIME		ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
				(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
- MI	VERAL		225	GM)			37.44	224.93		
	LEACH				1	1	1.140	220.09	.0545	.9785
2	LEACH	OF	20	ML	. 1	2	.360	218.71	.0155	.9723
	LEACH				1	3	1.140	213.87	.0545	.9508
	LEACH			ML	6	9	4.140	195.69	.2045	.8700
5	LEACH	05	50	ML	4	13	.360	194.31	.0155	.8639
6	LEACH	OF	50	ML	21	34	1.860	186.27	.0905	.8281
	LEACH			ML	39	73	.540	184.09	.0245	.8184
8	LEACH	OF	50	ML	87	160	•360	182.71	.0155	.8123
9	LEACH	OF	50	ML	130	290	1.020	178.40	.0485	.7931
10	LEACH	OF	20	ML	140	430	.360	177.02	.0155	.7870
11	LEACH	OF	20	ML	110	540	.840	173.51	.0395	.7714
	LEACH			ML	294	834	.240	172.67	.0095	.7676
	LEACH			ML	330	1164	.840	169.16	.0395	.7520
14	LEACH	OF	20	ML	729	1893	.720	166.18	.0335	.7388

BACKGROUND .887 CONCENTRATION OF CS-137

					DELT	LEACHING TIME DELTA TIME SUM TIME		ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
					(0	(SYA	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
	MI	NEHAL		225	GM)			68.04	1793.43		
	1	LEACH	OF	20	ML	1	1	21.060	1703.77	1.0087	.9500
		LEACH		50	ML	1	2	8.940	1667.98	.4027	.9300
	3	LEACH	OF	50	ML	1	3	18.240	1590.85	.8677	.8870
	4	LEACH	OF	20	ML	6	9	67.020	1296.93	3.3067	.7232
	5	LEACH	OF	20	ML	4	13	41.100	1118.20	2.0107	.6235
	6	LEACH	OF	20	ML	21	34	64.440	835.74	3.1777	.4660
	7	LEACH	OF	50	ML	39	73	36.000	679.68	1.7557	.3790
	8	LEACH	01	20	ML	87	160	25.320	571.09	1.2217	.3184
	9	LEACH	OF	20	ML	130	290	20.520	483.83	.9817	.2698
	10	LEACH	OF	20	ML	140	430	12.780	430.97	.5947	.2403
	11	LEACH	OF	20	ML	110	540	6.900	404.24	.3007	.2254
	12	LEACH	OF	20		294	834	8.700	369.51	.3907	.2060
		LEACH		_	ML	330	1164	9.660	330.52	.4387	.1843
-		LEACH		50		729	1893	8.100	298.46	.3607	.1664

Figure 6. Leaching of Eu-155 from SMALL BOY Fallout.

Data obtained from Table 7.

Figure 7. Leaching of Eu-152 from SMALL BOY Fallout.

Data obtained from Table 7.

Figure 8. Leaching of Sb-125 from SMALL BOY Fallout.

Data obtained from Table 7.

Figure 9. Leaching of Cs-137 from SMALL BOY Fallout.

Data obtained from Table 7.

Table 8

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
LEACHING SOLUTION WAS 0.1N HCL STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C BACKGROUND .540 C/M
PARTICLE SIZE 177 - BB MICRONS LEACHING STARTED 11 NOV. 1969
COUNTING DATE 13 MAR. 1975

CONCENT	RATION	OF	EU-15	5
---------	--------	----	-------	---

	LEACHI DELTA TIME	NG TIME	ACTIVITY	MINERAL	LIQUID	FRACTION REMAINING
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
MINERAL (.177	GM)		3.06	229.15		
1 LEACH OF 20		1	8.040	186.78	.3750	.8151
2 LEACH OF 20		ž	2.160	177.63	.0810	.7751
3 LEACH OF 20		3	6.720	142.71	.3090	.6228
4 LEACH OF 20		9	5.640	113.90	.2550	.4970
5 LEACH OF 20		13	2.100	105.08	.0780	.4586
6 LEACH OF 20		34	.900	103.05	.0180	.4497
7 LEACH OF 20		73	2.580	91.53	.1020	.3994
8 LEACH OF 20		160	1.020	88.81	.0240	.3876
9 LEACH OF 20		290	3.720	70.85	.1590	.3092
10 LEACH OF 20		430	3.240	55.59	.1350	.2426
11 LEACH OF 20		540	•540	55.59	0.0000	.2426
12 LEACH OF 20		834	3.240	40.34	.1350	.1760
	ML 330	1164	3.480	23.73	.1470	.1036
	ML 729	1893	2.220	14.24	.0840	.0621

BACKGROUND .090 CONCENTRATION OF EU-152

		LEACHIN DELTA TIME	G TIME	ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
		(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
	MINERAL (.177	GM)		1.14	35.59		
	1 LEACH OF 20	ML 1	1	.480	33.39	.0195	.9381
	2 LEACH OF 20		2 .	.240	32.54	.0075	.9143
		ML 1	3	.090	32.54	0.0000	.9143
		ML 6	9	.840	28.31	.0375	.7952
	5 LEACH OF 20		13	.540	25.76	.0225	.7238
	6 LEACH OF 20	-	34	.960	20.85	.0435	.5857
		ML 39	73	.420	18.98	.0165	5333
-		ML 87	160	.960	14.07	.0435	.3952
	9 LEACH OF 20	ML 130	290	.780	10.17	.0345	.2857
	10 LEACH OF 20	ML 140	430	.090	10.17	0.0000	.2857
	11 LEACH OF 20	ML 110	540	.840	5.93	.0375	.1667
	12 LEACH OF 20	ML 294	834	.090	5.93	0.0000	.1667
	13 LEACH OF 20	ML 330	1164	.090	5.93	0.0000	.1667
-	14 LEACH OF 20	ML 729	1893	.090	5.93	0.0000	.1667

Table 8 (Concluded)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY

LEACHING SOLUTION WAS 0.1N HCL STANDARD 40000.000 C/M

THERMAL TREATMENT 20 C BACKGROUND .360 C/M

PARTICLE SIZE 177 - 88 MICRONS LEACHING STARTED 11 NOV. 1969

COUNTING DATE 13 MAR. 1975

CONCENTRATION OF SB-125

	LEACHIN DELTA TIME		SUM TIME	ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING			
	(DAYS)	(DAYS)	C/H	C/M/GM	C/M/ML	CMIN/CO			
MINERAL (.177				2.52	24.80					
1 LEACH OF 20	MI	1	1	•360	24.80	0.0000	1.0000			
2 LEACH OF 20	ML	1	2	.360	24.80	0.0000	1.0000			
3 LEACH OF 20	ML	1 -	3	.360	24.80	0.0000	1.0000			
4 LEACH OF 20	ML	6	9	.360	24.80	0.0000	1.0000			
5 LEACH OF 20	MI	4	13	.660	23.11	.0150	.9317			
6 LEACH OF 20		21	34	•360	23.11	0.0000	.9317			
7 LEACH OF 20		39	73	.720	21.07	.0180	.8497			
B LEACH OF 20		87	160	.730	18.98	.0185	.7654			
9 LEACH OF 20		130	290	.720	16.95	.0180	.6834			
	ML	140	430	.360	16.95	0.0000	.6834			
11 LEACH OF 20			ALCO CONTROL OF THE PARTY OF TH							
		110	540	.600	15.59	.0120	.6287			
12 LEACH OF 20		294	834	.480	14.92	.0060	.6014			
13 LEACH OF 20	ML	330	1164	.840	12.20	.0240	.4920			
14 LEACH OF 20	ML	729	1893	.360	12.20	0.0000	.4920			

BACKGROUND .270 CONCENTRATION OF CS-137

					LEACHIN A TIME	G TIME	SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
				(0	AYSI	(DAYS)	C/M	C/M/GM	C/M/ML	CHIMICO
MIN	ERAL (.)	77	GM)			5.22	116.27		
1	LEACH	OF	20	ML	1	1	.840	113.05	.0285	.9723
5	LEACH	OF	20	ML	1	2	1.680	105.08	.0705	.9038
3	LEACH	OF	20	ML	1	3	.780	102.20	.0255	.8790
4	LEACH	OF	20	MI	6	9	1.440	95.59	.0585	.8222
5	LEACH	OF	20	ML	•	13	.480	94.41	.0105	.8120
	LEACH		20		21		1.260	88.81	.0495	.7638
7	LEACH	OF	20		39	34 73	•720	86.27	.0225	.7420
8	LEACH	10	20	MI	87	.160	1.620	78.64	.0675	.6764
	LEACH		-	ML	130	290	2.580	65.59	.1155	.5641
	LEACH		20		140	430	1.980	55.93	.0855	.4810
	LEACH		20	-	110	540	.270	55.93	0.0000	.4810
	LEACH		20	_	294	834	1.140	51.02	.0435	.4388
	LEACH		-	ML	330	1164	2.160	40.34	.0945	.3469
	LEACH		20	-	729	1893	2.460	27.97	e1095	.2405

Figure 10. Leaching of Eu-155 from SMALL BOY Fallout.

Data obtained from Table 8.

Figure 11. Leaching of Eu-152 from SMALL BOY Fallout.

Data obtained from Table 8.

Figure 12. Leaching of Sb-125 from SMALL BOY Fallout.
Data obtained from Table 8.

Figure 13. Leaching of Cs-137 from SMALL BOY Fallout.
Data obtained from Table 8.

Table 9

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
THERMAL TREATMENT 20 C
PARTICLE SIZE 44 - 0 MICRONS
COUNTING DATE 16 MAR. 1975

LEACHING SMALL BOY
STANDARD 40000.000 C/M
BACKGROUND 1.660 C/M
LEACHING STARTED 11 NOV. 1969

COUNTING DATE	1	6 MAR. 197	'5				
				С	ONCENTRATION O	F EU-155	
	0	LEACHIN	IG TIME	ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
		(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
HINERAL (.33	8 G	M)		4.68	64.73		
1 LEACH OF 2			1	2.100	63.43	.0220	.9799
2 LEACH OF 2	0 M	i	1 2	1.660	63.43	0.0000	.9799
3 LEACH OF 2	0 M	1	3	4.560	54.85	.1450	.8473
4 LEACH OF 2	0 M	L 6	9	1.660	54.85	0.0000	.8473
S LEACH OF ?			13	1.660	54.85	0.0000	.8473
6 LEACH OF 2		21	34	2.100	53.55	.0220	.8272
7 LEACH OF 2	0 M		73	2.820	50.12	.0580	.7742
B LEACH OF 2		L 87	160	3.780	43.85	.1060	.6773
9 LEACH OF 2	0 M	L 130	290	4.140	36.51	.1240	.5640
10 LEACH OF 2	0 M	L 140	430	1.980	35.56	.0160	.5494
11 LEACH OF 2	0 M	L 110	540	7.020	19.70	.2680	.3044
12 LEACH OF 2	0 M	L 294	834	4.380	11.66	.1360	.1801
13 LEACH OF 2	0 M	L 330	1164	2.580	8.93	.0460	.1380
14 LEACH OF 2	0 M	L 729	1893	1.660	8.93	0.0000	.1380
					ACKGROUND ONCENTRATION O	.280 F EU-152	
	0	LEACHIN		ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
		(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CD
MENERAL / DA					10.40		
MINERAL (.33				•90	13.49	4215	0440
			- 1	•900	11.66	.0310	.8640
3 LEACH OF A	0 1			.900	9.82	.0310	.7281
4 LEACH OF			3	.360	9.59	.0040	.7105
				• 280	9.59	0.0000	.7105
5 LEACH OF 2			13 34	.780	8.11	.0250	.6009
			73	•540	7.34	.0130	.5439
	0 1		160	•420	6.92	.0070	.5132
	0 1			•280	6.92	0.0000	.5132
	0 1		290	•780	5,44	.0250	.4035
	0 M		430	.280	5.44	0.0000	.4035
	0 M		540	•600	4.50	.0160	.3333
	0 M		834	.360	4.26	.0040	.3158
	0 M	The second second	1164	1.080	1.89	.0400	.1404
14 LEACH OF 2	0 M	L 729	1893	.300	1.83	.0010	.1360

Table 9 (Concluded)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
THERMAL TREATMENT 20 C BACKGROUND .280 C/M
PARTICLE SIZE 44 - 0 MICRONS LEACHING STARTED 11 NOV. 1969
COUNTING DATE 16 MAR. 1975

CONCENTRATION OF SB-125

	LEACHIN DELTA TIME	G TIME	ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING	
	(DAYS)	(DAYS)	C/H	C/M/GM	C/M/ML	CMIN/CO	
MINERAL (.338	GM)		2.04	13.14			
1 LEACH OF 20	ML 1	1	.300	13.08	.0010	.9955	
2 LEACH OF 20	ML 1	2	.280	13.08	0.0000	.9955	
3 LEACH OF 20	ML 1	3	.280	13.08	0.0000	.9955	
	ML 6	9	.840	11.42	.0280	.8694	
	ML 4	13	.280	11.42	0.0000	.8694	
	ML 21	34	.600	10.47	.0160	.7973	
7 LEACH OF 20	ML 39	73	.280	10.47	0.0000	.7973	
8 LEACH OF 20	ML 87	160	.720	9.17	.0220	.6982	
9 LEACH OF 20	ML 130	290	.960	7.16	.0340	.5450	-
10 LEACH OF 20	ML 140	430	.280	7.16	0.0000	.5450	
11 LEACH OF 20	ML 110	540	.420	6.75	.0070	.5135	
12 LEACH OF 20	ML 294	834	.540	5.98	.0130	.4550	-
	ML 330	1164	.280	5.98	0.0000	.4550	
	ML 729	1893	.540	5.21	.0130	.3964	

BACKGROUND .840 CONCENTRATION OF CS-137

			DEL	LEACHING TIME DELTA TIME SUM TIME		ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING	
			(1	DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO	
MINERAL		338	GM)			8.46	44.73			
1 LEAG			ML	1	1	1.200	43.67	.0180	.9762	
2 LEAC	H OF	50	ML	1	2	.960	43.31	.0060	.9683	
3 LEAG	H OF	20	ML	1	3	.840	43.31	0.0000	.9683	
4 LEAG	H OF	20	ML	6	9	.840	43.31	0.0000	.9683	
5 LEAG	H OF	20	ML	4	13	.840	43.31	0.0000	.9683	
6 LEAG	H OF	20	ML	21	34	1.140	42.43	.0150	.9484	
7 LEAG	H OF	20	ML	39	73	.900	42.25	.0030	.9444	
8 LEAG	H OF	20	ML	87	160	1.320	40.83	.0240	.9127	
9 LEA		-	ML	130	290	2.100	37.10	.0630	.8294	
10 LEA	40 H	-	ML	140	430	1.620	34.79	.0390	.7778	
11 LEA			ML	110	540	1.800	31.95	.0480	.7143	
12 LEA			ML	294	834	1.740	29.29	.0450	.6548	
13 LEA			ML	330	1164	2.520	24.32	.0840	.5437	
14 LEA			ML	729	1893	1.440	22.54	.0300	.5040	

Figure 14. Leaching of Eu-155 from SMALL BOY Fallout.

Data obtained from Table 9.

Figure 15. Leaching of Eu-152 from SMALL BOY Fallout.

Data obtained from Table 9.

Figure 16. Leaching of Sb-125 from SMALL BOY Fallout.
Data obtained from Table 9.

Figure 17. Leaching of Cs-137 from SMALL BOY Fallout.

Data obtained from Table 9.

Table 10

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C BACKGROUND 1.480 C/M
PARTICLE SIZE 1410 - 710 MICRONS LEACHING STARTED 11 NOV. 1969
COUNTING DATE 20 MAR. 1975

CONCENTRATION OF EU-155

	DELTA TIME	LEACHING TIME ELTA TIME SUM TIME		MINERAL	LIQUID	FRACTION REMAINING
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
MINERAL (.345	GM)		103.56	2264,23		
1 LEACH OF 20	ML 1	1	1.560	2264.00	.0040	.9999
2 LEACH OF 20	ML 1	2	2.040	2262.38	.0280	.9992
3 LEACH OF 20	ML 1	3	2.400	2259.71	.0460	.9980
4 LEACH OF 20	ML 6	9	1.480	2259.71	0.0000	.9980
5 LEACH OF 20	ML 4	13	1.480	2259.71	0.0000	.99A0
6 LEACH OF 20	ML 21	34	5.650	2255.83	.0670	.9963
7 LEACH OF 20	ML 39	73	4.620	2246.72	.1570	.9923
8 LEACH OF 20	ML 87	160	236.340	1565.97	11,7430	.6916
9 LEACH OF 20	ML 130	290	285.060	744.00	14,1790	.3286
10 LEACH OF 20	ML 140	430	75.600	529.16	3.7060	.2337
11 LEACH OF 20	ML 110	540	25.860	458.49	1.2190	.2025
12 LEACH OF 20	ML 294	834	23.760	393.91	1.1140	.1740
13 LEACH OF 20		1164	13.920	357.86	.6220	.1580
14 LEACH OF 20	ML 729	1893	22.860	295.88	1.0690	.1307

BACKGROUND .331 CONCENTRATION OF EU-152

			LEACHIN	IG TIME	ACTIVITY	MINERAL	LIQUID	FRACTION
****			TA TIME	SUM TIME (DAYS)	SAMPLE C/M	C/M/GM	C/M/ML	REMAINING CMIN/CO
MINERAL (.:	145	GM)			5.76	109.00		
1 LEACH OF	Sú	ML	1	1	.720	107.88	.0194	.9897
2 LEACH OF				•	.480	107.44	.0075	.9857
3 LEACH OF	50	ML	1	3	1.500	104.06	.0584	.9546
4 LEACH OF	50	ML	6	9	.900	102.41	.0284	.9395
5 LEACH OF	20	ML	4	13	.331	102.41	0.0000	.9395
6 LEACH OF			21	34	.540	101.80	.0104	.9339
			39	73	.840	100.32	.0254	.9204
		ML	87	160	11.640	67.54	.5654	.6197
9 LEACH OF	-		130	290	13.800	28.50	.6734	.2615
10 LEACH OF			140	430	1.800	24.25	.0734	.2224
11 LEACH OF			110	540	.720	23.12	.0194	.2121
12 LEACH OF	-		294	834		19.73	.0584	.1810
	-				1.500			AND AND THE PARTY NAMED IN COLUMN TWO
	50		330	1164	.840	18.26	.0254	.1675
14 LEACH OF	20	ML	729	1893	1.200	15.74	.0434	.1444
D. IN HCL WAS L	SED	FRO	M THE	TH LEACHING	TO THE 14TH			

Table 10 (Concluded)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C BACKGROUND .270 C/M
PARTICLE SIZE 1410 - 710 MICRONS LEACHING STARTED 11 NOV. 1969
COUNTING DATE 20 MAR. 1975

CONCENTRATION OF SB-125

	LEACHIN	G TIME	ACTIVITY	MINERAL	LIQUID	FRACTION
	DELTA TIME (DAYS)	SUM TIME (DAYS)	SAMPLE C/M	C/M/GM	C/M/ML	REMAINING CMIN/CO
MINERAL (.345	GM)		49.38	180.26		
1 LEACH OF 20	ML 1	1	.270	180.26	0.0000	1.0000
2 LEACH OF 20		2	.660	179.13	.0195	.9937
3 LEACH OF 20	ML 1	3	.900	177.30	.0315	.9836
4 LEACH OF 20	ML 6	9	.420	176.87	.0075	.9812
5 LEACH OF 20	ML 4	13	.900	175.04	.0315	.9711
6 LEACH OF 20	ML 21	34	.660	173.91	.0195	.9648
7 LEACH OF 20		73	.720	172.61	.0225	.9575
B LEACH OF ZO	ML 87	160	6.240	155.30	.2985	.8616
9 LEACH OF 20		290	3.420	146.17	.1575	.8109
16 LEACH OF 20	ML 140	430	.600	145.22	.0165	.8056
11 LEACH OF 20	ML 110	540	.270	145.22	0.0000	.8056
12 LEACH OF 20	ML 294	834	.420	144.78	.0075	.8032
13 LEACH OF 20		1164	.480	144.17	.0105	.7998
14 LEACH OF 20	ML 729	1893	.900	142.35	.0315	.7897
O.IN HCL WAS USE	D FROM THE A	TH LEACHING				

BACKGROUND BACKGROUND .737 CONCENTRATION OF CS-137

				LEACHING TIME			ACTIVITY	MINERAL	LIQUID	FRACTION
	-				TA TIME	(DAYS)	SAMPLE C/M	C/M/GM	C/M/ML	REMAINING CMIN/CO
MI	NERAL	(.	345	GM)			130.44	1543.72		
1	LEACH	OF	20	ML	1	1	1.860	1540.47	.0562	.9979
2	LEACH	OF	20	ML	1	2	1.500	1538.25	.0382	.9965
3	LEACH	OF	20	ML	1	3	1.020	1537.43	.0142	.9959
4	LEACH	OF	20	ML	.6	9	.737	1537.43	0.0000	.9959
5	LEACH	OF	20	ML	4	13	1.380	1535.57	.0322	.9947
6	LEACH	OF	20	MI	21	34	1.260	1534.05	.0262	.9937
7	LEACH	OF	20	MI	39	73	.737	1534.05	0.0000	.9937
8	LEACH	OF	20	ML	87	160	83.700	1293.58	4.1482	.8380
9	LEACH	OF	20	ML	130	290	159.480	833.45	7.9372	.5399
10	LEACH	OF	20	MI	140	430	72.300	626.02	3.5782	.4055
11	LEACH	OF	20	ML	110	540	25.140	555.29	1.2202	.3597
12	LEACH	OF		ML	294	834	23.760	488.55	1.1512	.3165
13	LEACH	OF	20	ML	330	1164	16.800	441.99	.8032	.2863
	LEACH				729	1893	23.520	375.95	1.1392	.2435
	HCL W					BTH LEACHING				

Figure 18. Leaching of Eu-155 from SMALL BOY Fallout.

Data obtained from Table 10.

Figure 19. Leaching of Eu-152 from SMALL BOY Fallout.
Data obtained from Table 10.

Figure 20. Leaching of Sb-125 from SMALL BOY Fallout.

Data obtained from Table 10.

Figure 21. Leaching of Cs-137 from SMALL BOY Fallout.
Data obtained from Table 10.

Table 11

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
LEACHING SULUTION WAS HOH
THERMAL TREATMENT 20 C
PARTICLE SIZE 350 = 177 MICRONS
COUNTING DATE 25 MAR. 1975

LEACHING STARTED 11 NOV. 1969

CONCENTRATION OF EU-155

	LEAC DELTA TI	HING TIME ME SUM TIME	ACTIVITY	MINERAL	LIQUID	FRACTION
	(DAYS)		C/M	C/M/GM	C/M/ML	REMAINING CMIN/CO
MINERAL 1 .667			13.02	258.44		
1 LEACH OF 20		1	1.920	255.83	.0870	.9899
	ML 1	2	1.440	253.94	.0630	.9826
3 LEACH OF 20		3	•600	253.31	.0210	.9802
	ML 6	9	2.400	249.99	.1110	.9673
	ML 4	13	1.740	247.65	.0780	.9582
6 LEACH OF 20	ML 21	34	3.420	242.79	.1620	.9394
7 LEACH OF 20	ML 39	73	2.880	238.74	.1350	.9238
	ML 87	160	104.580	82.22	5.2200	.3181
	ML 130	290	10.440	66.84	.5130	.2586
	ML 140	430	6.480	57.39	.3150	.2221
11 LEACH OF 20	ML 110	540	5.580	49.30	.2700	.1907
12 LEACH OF 20	ML 294	834	6.900	39.22	.3360	.1518
13 LEACH OF 20	ML 330	1164	7.380	28.43	.3600	.1100
14 LEACH OF 20			6.300	19.25	.3060	.0745
.IN HCL WAS USE			TO THE SATE			

BACKGROUND .180 CONCENTRATION CF EU-152

						NG TIME	ACTIVITY	MINERAL	LIQUID	FRACTION
					TA TIME	SUM TIME	SAMPLE			REMAINING
				((DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
MIN	ERAL (667	GM)			1.62	13.04		
1	LEACH	OF	20	ML	1	1	•540	12.50	.0180	.9586
2	LEACH	OF	20	ML	1	2	.180	12.50	0.0000	.9586
3	LEACH	OF	20	ML	1	3	.420	12.14	.0120	.9310
4	LEACH	OF	20	ML	6	9	.600	11.51	.0210	.8828
5	LEACH	OF	20	ML	4	13	.840	10.52	.0330	.8069
6	LEACH	OF	20	ML	21	34	.420	10.16	.0120	.7793
7	LEACH	OF	50	ML	39	73	•660	9.45	0240	.7241
8	LEACH	OF	20	ML	87	160	4.080	3.60	.1950	.2759
9	LEACH	OF	20	ML	130	290	.180	3.60	0.0000	.2759
10	LEACH	10	20	ML	140	430	.240	3.51	.0030	.2690
11	LEACH	OF	20	ML	110	540	.660	2.79	.0240	.2138
12	LEACH	OF	20	ML	294	834	.180	2.79	0.0000	.2138
13	LEACH	OF	20	ML	330	1164	.180	2.79	0.0000	.2138
14	LEACH	OF	20	ML	729	1893	•600	2.16	.0210	.1655
O.IN	HCL WA	5	USEC	FRO	M THE	TH LEACHING				

Table 11 (Concluded)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY STANDARD. 40000.000 C/M THERMAL TREATMENT 20 C BACKGROUND .300 C/M PARTICLE SIZE 350 - 177 MICRONS LEACHING STARTED 11 NOV. 1969 COUNTING DATE 25 MAR. 1975

CONCENTRATION OF SB-125

				DFL'	LEACHIN	G TIME	ACTIVITY SAMPLE	MINERAL	LIQUID	FRACTION REMAINING
-				((DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO
MI	IEPAL (567	GM			6.54	15.63		
	LEACH				1	1	.420	15.65	.0060	.9886
2	LEACH	OF	20	ML	1	2	•900	14.75	.0300	.9318
3	LEACH	OF	20	ML	1	3	•420	14.57	.0060	.9205
	LEACH		20	ML	6	9	.720	13.94	.0210	.8807
	LEACH		50	ML	4	13	.300	13.94	0.0000	.8807
	LEACH		50	ML	21	34	.960	12.95	.0330	.8182
	LEACH		50	ML	39	73	•300	12.95	0.0000	.8182
	LEACH		20	ML	87	160	.840	12.14	.0270	.7670
	LEACH		20		130	290	.420	11.96	.0060	.7557
	LEACH		20	ML	140	430	•540	11.60	.0120	.7330
	LEACH		50		110	540	•540	11.24	.0120	.7102
	LEACH		20	ML	294	834	•600	10.79	.0150	.6818
	LEACH		20		330	1164	.720	10.16	.0210	.6420
14	LEACH	OF	20	MI	729	1893	.840	9.36	.0270	.5909

BACKGROUND .300 CONCENTRATION OF CS-137

						LEACHI	NG TIME	ACTIVITY	MINERAL	LIQUID	FRACTION
						TA TIME	SUM TIME (DAYS)	SAMPLE C/M	C/M/GM	C/M/ML	REMAINING CMIN/CO
	MIN	VEHAL	١,	667	GM)			18.84	140.96		
	1	LEACH	OF	20	ML	1	1	•300	140.96	0.0000	1.0000
	2	LEACH	01	50	ML	1	2	.960	139.97	.0330	.9930
	3	LEACH	0	20	ML	1	3	.480	139.70	.0090	.9911
	4	LEACH	OF	50	ML	6	9	1.080	138.53	.0390	.9828
	5	LEACH	0	20	ML	4	13	1.020	137.45	.0360	.9751
		LEACH				21	34	.900	136.55	.0300	.9687
	7	LEACH	OF	20	ML	39	73	.900	135.65	.0300	.9623
	A	LEACH	OF	20	ML	87	160	18.840	107.86	.9270	.7652
	9	LEACH	0	20	ML	130	290	19.800	78.62	.9750	.5578
		LEACH			MI	140	430	9.420	64.95	.4560	.4608
		LEACH			ML	110	540	6.840	55.14	.3270	.3912
	-	LEACH		-	ML	294	834	6.780	45.43	.3240	.3223
		LEACH			ML	330	1164	6.720	35.80	.3210	.2540
		LEACH			ML	729	1893	5.640	27.80	.2670	.1972
0.	-						BTH LEACHING		21,000	0000	

Figure 22. Leaching of Eu-155 from SMALL BOY Fallout.
Data obtained from Table 11.

Figure 23. Leaching of Eu-152 from SMALL BOY Fallout.
Data obtained from Table 11.

Figure 24. Leaching of Sb-125 from SMALL BOY Fallout.

Data obtained from Table 11.

Figure 25. Leaching of Cs-137 from SMALL BOY Fallout.
Data obtained from Table 11.

Table 12

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C
PARTICLE SIZE 88 = 44 MICRONS
COUNTING DATE 27 MAR. 1975

LEACHING STARTED 11 NOV. 1969

			C	ONCENTRATION O	F EU-155	
	DELTA TIME (DAYS)	G TIME SUM TIME (DAYS)	ACTIVITY SAMPLE C/M	MINERAL C/M/GM	C/M/ML	FRACTION REMAINING CMIN/CO
- den-par '						
MINERAL (.405			5.28	40.20		
1 LEACH OF 20	ML 1	1	3.180	38,37	.0370	.9545
2 LEACH OF 20	ML 1	2	2.440	38.37	0.0000	.9545
	ML 1	3	2.440	38.37	0.0000	.9545
4 LEACH OF 20	ML 6	9	4.140	34.17	.0850	.8501
5 LEACH OF 20	MI 4	13	2.940	32.94	.0250	.8194
	ML 21	34	2.440	32.94	0.0000	.8194
7 LEACH OF 20		73	2.440	32.94	0.0000	.8194
8 LEACH OF 20		160	5.760	24.74	.1660	.6155
9 LEACH OF 20	and the second second second	290	3.360	22.47	.0460	.5590
	ML 140	430	6.000	13.68	.1780	.3403
11 LEACH OF 20		540	2.700	13.04	.0130	.3243
12 LEACH OF 20		834	2.440	13.04	0.0000	.3243
13 LEACH OF 20		1164	3.480	10.47	.0520	.2604
	ML 729	1893				
IN HEL WAS USE			3.840 TO THE 14TH	7.01	.0700	.1744

			BACKGROUND CONCENTRATION	.367 OF EU-152	
 LEACHING T	IME M TIME	ACTIVITY	MINERAL	LIQUID	FRACTION REMAINING
(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO

	IN	ERAL	(,	465	GM)			1.14	12,83			
		LEACH				1	1	.720	11.96	.0176	.9322	Ī
	2	LEACH	01	50	ML	1	2	.780	10.94	.0206	.8528	
	3	LEACH	OF	50	ML	1	3	.840	9.78	.0236	.7619	
	4	LEACH	OF	20	ML	6	9	.370	9.77	.0001	.7614	
	5	LEACH	OF	20	ML	4	13	.840	8.60	.0236	.6705	
	6	LEACH	OF	50	ML	21	34	.370	8.60	.0001	.6700	
	7	LEACH	OF	50	ML	21 39	73	•540	8.17	.0086	.6368	
	8	LEACH	OF	20	ML	87	160	.960	6.71	.0296	.5228	
	9	LEACH	OF	20	ML	130	290	.420	6.58	.0026	.5127	
		LEACH				140	430	.370	6.57	.0001	.5123	
		LEACH				110	540	.780	5.56	.0206	.4329	
1	2	LEACH	OF	20	ML	294	834	1.260	3.35	.0446	.2612	
		LEACH				330	1164	.780	2.33	.0206	.1818	
		LEACH				729	1893	.540	1.91	.0086	.1486	
						M THE			••••	••••		

Table 12 (Concluding)

LEACHING OF PARTICLES OF FALLOUT FROM SMALL BOY
STANDARD 40000.000 C/M
THERMAL TREATMENT 20 C BACKGROUND .190 C/M
PARTICLE SIZE 88 - 44 MICRONS LEACHING STARTED 11 NOV. 1969
COUNTING DATE 27 MAR. 1975

CONCENTRATION OF SB-125

1 1 1 1 1 1 3 1 3 1 3 1	2.10 .190 .600 1.080	14.40 14.40 13.38 11.19	0.0000 .0205 .0445	1.0000 .9297
1 1 1 2 1 3	.190 .600 1.080	14.40 13.38 11.19	.0205 .0445	,9297
1 1 2 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1	.190 .600 1.080	14.40 13.38 11.19	.0205 .0445	,9297
1 2 3	1.080	11.19	.0445	,9297
1 3	1.080	11.19	.0445	market a second second
4 0				
9	0190	11.19	0.0000	.7770
4 13	1.020	9.14	.0415	.6346
21 34	.420	8.57	.0115	.5952
39 73	.300	8.30	.0055	.5763
87 160	.540	7.43	.0175	.5163
130 290	•300	7.16	.0055	.4974
140 430	•360	6.74	.0085	.4683
110 540	•190	6.74	0.0000	.4683
294 834	.420	6.17	.0115	.4288
330 1164	.780	4.72	.0295	.3276
729 1893	.190	4.72	0.0000	.3276
	110 540 294 834 330 1164 729 1893	110 540 •190 294 834 •420 330 1164 •780 729 1893 •190	110 540 .190 6.74 294 834 .420 6.17 330 1164 .780 4.72 729 1893 .190 4.72	110 540 .190 6.74 0.0000 294 834 .420 6.17 .0115 330 1164 .780 4.72 .0295

BACKGROUND .895 CONCENTRATION OF CS-137

					LEACHI	NG TIME	ACTIVITY	MINERAL	LIQUID	FRACTION
					A TIME	SUM TIME (DAYS)	SAMPLE C/M	C/M/GM	C/M/ML	REMAINING CMIN/CO
м	NERAL		465	GM1			5.82	18.70		
	LEACH				1	1	•900	18.69	.0002	.9993
	LEACH				1	2	1.020	18.38	.0063	.9828
	LEACH	OF	20	ML	1	3	.900	18.37	.0002	.9822
	LEACH	OF		ML	6	9	.900	18.36	.0002	.9815
	LEACH	OF		ML		13	1.020	18.05	.0063	.9650
	LEACH	OF	20	MI	21	34	.960	17.89	.0033	.9564
	LEACH				39	73	1.140	17.28	.0122	.9241
	LEACH			ML	87	160	1.860	14.90	5840.	.7967
	LEACH			MI	130	290	.900	14.89	.0002	.7960
1	LEACH	OF	20	ML	140	430	1.140	14.28	.0122	.7637
1	LEACH	OF	20	ML	110	540	.900	14.27	.0002	.7630
12	LEACH	OF		ML	294	834	1.680	12.33	.0392	.6594
i	LEACH	OF		ML	330	1164	.900	12.32	.0002	.6587
14	LEACH	OF	20	ML	729	1893	.960	12.16	.0033	.6502
-	HCL W		_	_		BTH LEACHING				.0302

Figure 26. Leaching of Eu-155 from SMALL BOY Fallout.

Data obtained from Table 12.

Figure 27. Leaching of Eu-152 from SMALL BOY Fallout.

Data obtained from Table 12.

Figure 28. Leaching of Sb-125 from SMALL BOY Fallout.

Data obtained from Table 12.

Figure 29. Leaching of Cs-137 from SMALL BOY Fallout.

Data obtained from Table 12.

The constants τ and D in equation (4) for the radionuclides Sb-125, Cs-137, Eu-152, and Eu-155 in SMALL BOY fallout are presented in Table 13. Table 14 lists the characteristic photon that was used in the analysis, the efficiency (counts per disintegration) for the sample geometry and the instrumentation, and the latest published half-life value for each of these radionuclides. The specific activity (c/m/g) and equivalent fissions/g are reported in Table 15. Since Cs-137 was considered a volatile mass chain, Sb-125 an intermediate mass chain, and Eu-155 a refractory mass chain, these data are pertinent to a review of the theory of fallout formation. Eu-152 is a neutron induced activity from the low natural concentration of europium in the Nevada soil. The data suggest that the particles larger than 350 microns came from a different source than the particles smaller than 350 microns or were exposed to a neutron flux that differed by an order of magnitude. Eu-155 was an unexpected contributor to 13-year-old fission product since in Reference 6 it was listed as having a 657-day half-life rather than the 1,800 days shown in Table 14. The yields for mass chain 125 in Reference 6 could not account for the large activity of Sb-125; the activity was more in accord with the yields reported in Reference 20.

In addition to the detailed results presented in Tables 6-12 for SMALL BOY fallout, the leaching after 1,893 days can be summarized as follows:

- 1. Water was about as effective as 0.1N HCl in removing each of the measured radionuclides.
- 2. Leaching of Eu-152 and Eu-155 was not significantly different. From 83-95 percent of the activity was leached in all cases.
- Cs-137 was more readily leached from large particles than from small particles (50 percent).
- 4. Sb-125 was more readily leached from small particles (65 percent) than from large particles (20 percent).

Table 13

RADIONUCLIDE DIFFUSION CONSTANTS FOR SMALL BOY

55 D	(micron ²	43.1	2.72	0.812	0.00903	13.3	1.85	0,0857
Eu-155	F	8,490	10,900	2,270	4,490	7,400	3,310	4,690
Eu-152	(micron ² day ⁻¹)	36.3	6.05	1	0.013	11.4	0.526	0.129
Eu	F	10,100	4,880	1	3,170	8,610	11,700	3,120
137 D	(micron ² day ⁻¹)	39.8	2.84	0.424	0.00459	11.9	1.33	0.0161
Cs-137	-	9,200	10,400	4,360	8,820	8,240	4,600	24,900
.25 D	(micron ² day ⁻¹)	4.76	0.429	0.153	0.00306	0.640	0.364	0.0475
Sb-125	E.	76,900	68,900	12,000	13,200	153,000	16,900	8,470
	Lea- chant	нсл	нсл	HC1	HC1	$_2^{\rm O}$	$^{\rm H}_2^{\rm O}$	н ₂ 0
ameter	Average (micron)	1900	540	135	20	985	246	63
Particle Diameter	Range Average (micron)	2830-1410 1900	710- 350	177- 88	> 44	1410- 710	350- 177	88- 44

Table 14

COUNTING EFFICIENCY FOR 0-1 MeV
(Applies to SMALL BOY, SHASTA, SEDAN)

	* Photon Energy	** Efficiency	*** Half-Life
Nuclide	(MeV)	(c/d)	(days)
Sb-125	0.426	0.00567	9.965×10 ²
Cs-137	0.661	0.00964	1.096×104
Eu-152	0.344	0.00763	5.11 7 ×10 ³
Eu-155	0.086	0.0261	1.800×10 ³
Rh-102m	0.475	0.0148	1.055×10 ³

^{*}Characteristic photon peak used in analysis.

^{**}Counts per disintegration.

^{***}Half-life used in calculations.

Table 15

RADIONUCLIDE ACTIVITY OF SMALL BOY FALLOUT

Eu-155	f*	(c/m/g) (fissions/g)	13.6E14	14.7E14	19.9E14	1.68E14	1.49E14	.262E14	.421E14
Ev	Activity	(c/m/g)	2090	2260	3059	258	229	40.2	64.7
Eu-152	R**	(capture/fissions)	3.35E-4	2,28E-4	1.95E-4	2.39E-4	7.34E-4	15.1E-4	9.86E-4
	Activity	(c/m/g)	148	109	126	13.0	35.6	12.8	13.5
Cs-137	f*	(c/m/g) (fissions/g)	2.95E14	2.92E14	3.39E14	.266E14	.220E14	.035E14	.085E14
0	Activity	(c/m/g)	1560	1544	1793	141	116	18.7	44.7
Sb-125	f *	(c/m/g) (fissions/g)	5.71E14	5.79E14	7.22E14	.508E14	.796E14	,462E14	.422E14
Sb	Activity	(c/m/g)	178	180	225	15.8	24.8	14.4	13.1
Particle	Diameter	(micron)	2830-1410	1410- 710	710- 350	550- 177	177- 88	88- 44	< 44

^{*}Fissions calculated from mass chain yields reported in Dolan, P. J., "Calculated Abundances, and Activities of the Products of High Energy Neutron Fission of Uranium-238," DASA 525, May 1959 (Reference 20).

^{**}Captures/fission of Eu(152/155).

These data should be useful in estimating the fraction of fission product radionuclides that would be available for entry into biological systems. The behavior of Sr-90 would be a most useful addition, and all samples have been retained, should someone desire to sponsor the radiochemical analysis and the beta counting required in Sr-90 determinations.

Leaching of Cs-134 Tagged Synthetic Fallout

The synthetic fallout consisted of a batch heated to 1200°C, a second batch heated to 900°C, and a third batch that was unheated (20°C). Inspection of the counting data in Tables 16, 17, and 18 shows that while more than 90 percent of the Cs-134 was leached from the 900°C and 20°C batches, about 60 percent was removed by 2,995 days of leaching from the 1200°C batch. This covers about the same range of leaching as reported above for Cs-137 in SMALL BOY fallout. The data were further analyzed exactly as described for SMALL BOY, and the resulting straight lines in Figures 30, 31, and 32 were used to calculate the diffusion constants T and D, which are reported in Table 19.

Table 16

EIGHT YEAR LEACHING OF CESTUM FROM SYNTHETIC FALLOUT

LEACHING SOLUTION #AS 0.1N HCL STANDARD 40000.000 C/M
THEHMAL THEATMENT 20 C BACKGROUND 1.000 C/M
PARTICLE SIZE 175 - 38 MICRONS LEACHING STARTED 6 FEB. 1967
COUNTING DATE 22 APR. 1975

CUNCENTRATION OF CS-134

					0.51	LEACHIN		ACTIVITY	MINERAL	FIGUID	FHACTION	
						TA TIME	SUM TIME (UAYS)	SAMPLE	C/M/GM	C/M/ML	REMAINING CMIN/CO	
HART TO S	MI	VERAL .	12.	000	GM)	-		240.00	1917.60			
		LEACH				1	1	2126.300	854.95	106.2650	.4458	
		LEACH		20		i	ž	521.600	594.55	26.0400	.3100	
-		LEACH		20	ML	1	3	215.700	487.20	10.7350	.2541	
		LEACH		20		i	4	99.900	437.75	4.9450	.2283	
		LEACH		_	ML	3	7	87.900	394.30	4.3450	.2056	
		LEACH		20	ML	2	9	30.700	379.45	1.4050	.1979	
	7	LEACH	OF	20	ML	5 .	14	88.100	335.90	4.3550	.1752	
	8	LEACH	OF	20	ML	10	24	34.100	319.35	1.6550	.1665	
-	9	LEACH	OF	20	ML	2	26	20.200	309.75	.9000	.1615	
	10	LEACH	OF	20	ML	2	88	12.000	304.25	.5500	.1587	
	11	LEACH	OF	20	ML	2	30	23.400	293.05	1.1200	.1528	
	15	LEACH	OF	20	ML	50	50	63.300	261.90	3.1150	1366	-
	13	LEACH	UF	20	ML	14	64	26.100	249.35	1.2550	.1300	
	14	LEACH	UF	20	ML	24	88	33.600	233.05	1.6300	.1215	
	15	LEACH	UF	20	ML	46	134	41.900	212.60	2.0450	.1109	
	16	LEACH	OF	20	ML	24	158	27.000	199.00	1.3000	.1041	
	17	LEACH	UF	20	ML	32	190	23.300	188.45	1.1150	.0983	
	18	LEACH	UF	50	ML	42	535	12.700	182.60	.5050	.0952	
	19	LEACH	OF	20	ML	31	263	13.100	176.55	.6050	.0921	
	20	LEACH	UF	20	ML	68	331	9.500	172.30	.4650	. 0899	
	51	LEACH	OF	20	ML	40	371	7.400	169.10	.3200	.0885	-
	55	LEACH	UF	20	ML	43	414	7.000	166.10	.3000	.0866	
		LEACH		20	ML	76	490	9.700	161.75	. 4350	.0844	
	24	LEACH	1 1 1	50	P.L	102	542	15.700	154.40	. /350	.0805	
	25	-		-	FL	44	686	8.200	150.80	,3600	.U786	
	56	LEACH			ML	58	714	2.500	150.05	.0750	.0782	
	51			50	ML	36	750	2.900	149.10	. 0750	.0778	
	(44)	LEACH		-	PL	332	1095	15.600	141.80	.7300	.0739	
		LEACH			P.L	87	1169	4.400	140.10	.1700	.0731	
	30			50	ML	8	1177	9.100	136.05	.4050	.0709	
	-	LEACH			ML	565	1439	8.600	132.25	.3600	.0690	
		LEACH			ML	110	1549	5.300	130.10	.2),50	.0678	
		LEACH			ML	294	1843	15.800	124.20	.5400	.0648	
		LEACH		20		330	2173	6.100	121.65	, 2550	.0634	
	35	LEACH	UF	50	ML	855	2995	5.300	119.50	.2150	.0623	

Figure 30. Leaching of Cs-134 at 20 Degrees Thermal Treatment

Data obtained from Table 16.

Table 17

EIGHT YEAR LEACHING OF CESTUM FROM SYNTHETIC FALLOUT

LEACHING SOLUTION WAS 0.1N MCL STANDARD 40000.000 C/M
THERMAL THEATMENT 900 C BACKGROUND 1.000 C/M
PARTICLE SIZE 175 - 88 MICRONS LEACHING STARTED 6 FEB. 1967
COUNTING DATE 8 MAY 1975

CONCENTRATION OF CS-134

	LEACHIN	G TIME	ACTIVITY MINERAL SAMPLE		LIQUID	FRACTION MEMAINING
	(DAYS)	(UAYS)	C/M	C/M/GM	C/M/ML	CM1N/CO
MINERAL (2.000	(M)		145.70	1633.80		
1 LEACH UF 20		1	665.000	1501.80	33.2000	.6190
2 LLACH UF 20			202.700	1400.95	10.0850	.7640
3 LEACH OF 20			143.400	1329.50	7.1450	.1250
4 LEACH UF 20		4	149.000	1255.50	7.4000	.6846
	ML 3	7	421.600	1045.20	21.0300	.5700
	M. 2	9	280.300	905.55	13.4650	.4938
7 LEACH UF 20		14	598.600	606.15	24.8600	.3309
B LEACH UF 20	ML 10	24	76.400	569.05	3.7700	.3103
9 LEACH OF 20	ML 2	26	57.300	540.90	2,8150	.2950
10 LEACH OF 20		28	55.80v	530.00	1.0900	.2890
11 LEACH OF 20	NL 2	30	18.200	521.40	.8600	.2843
12 LEACH OF 20	HL 20	50	121.000	461.40	6.0000	2516
13 LEACH UF 20	ML 14	64	52.600	435.60	2.5800	.2375
14 LEACH OF 20	HL 24	68	62.800	404.70	3.0900	.2207
15 LEACH OF 20	ML 46	134	95.200	357.60	4./100	.1950
16 LEACH OF 20	ML 24	158	47.80V	334.20	2.3400	.1852
17 LEACH OF 20		140	45.500	311.95	2.2250	.1701
18 LEACH OF 20		232	37.600	293,65	1.8300	.1601
19 LEACH OF 20		263	24.000	261.65	1.1000	.1537
SO FLACH OF 50	ML 68	331	36.900	263,90	1.7950	.1439
	ML 40	3/1	18.700	255.05	.8850	.1391
	ML 43	414	22.200	244,45	1.0600	.1333
23 LEACH UF 20	10 11 1 1 1 1 1 1	490	31.400	224.25	1.5200	.1250
	ML 102	245	41.900	208.80	2.0450	.1139
	ML 94	686	20.700	198.95	. 7650	.1085
	MF 58	714	8.300	195.30	. 3650	.1065
	ML 36	750	8.100	191.75	.3550	.1046
	ML 335	1062	45.900	169.30	2.2450	.0923
	ML 87	1169	14.400	162.60	.6/00	.0887
	ML 8	1177	25.200	150.50	1.2100	.0851
JI LEACH OF 20		1439	17.500	142.25	.8250	.0776
	ML 110	1549	18.30v	133.60	. 9650	.0729
33 LEACH OF 20		1843	37.900	115,15	1.8450	.0628
	ML 330	2173	36.600	97.35	1.7800	.0531
35 LEACH UF 20	ML 822	2995	51.000	72.35	2.5000	.0395

Figure 31. Leaching of Cs-134 at 900 Degrees
Thermal Treatment.
Data obtained from Table 17.

Table 18

EIGHT YEAR LEACHING OF CESTUM FROM SYNTHETIC FALLOUT

LEACHING SOLUTION WAS 0.1N HCL STANDARD 40000.000 C/M
THERMAL TREATMENT 1200 C BACKGROUND 1.000 C/M
PARTICLE SIZE 175 - BB MICRONS LEACHING STARTED 6 FEB. 1967
COUNTING DATE 16 MAY 1975

CUNCENTRATION OF CS-134

	LEACHING TIME DELTA TIME SUM TIME		ACTIVITY SAMPLE	MINERAL	LIQUID	FHACTION REMAINING		
	(DAYS)	(DAYS)	C/M	C/M/GM	C/M/ML	CMIN/CO		
MINEHAL (2.000			1707.30	2597.50				
1 LEACH OF 20	141.	1	291.100	2452.45	14.5050	.9442		
2 LEACH OF 20	14L - 1	2	55.700	2425.10	2.7350	. 4336		
3 LEACH OF 20		3	47.400	2401.90	2.3200	.9247		
4 LEACH OF 20	ML 1	4	31.900	2386.45	1.5450	.9187		
5 LEACH UF 20		7	10.600	2351.65	3,4800	. 9054		
		9	57.100	2323.60	2.8050	.8946		
1 LEACH OF 20		14	183.500	2232.35	9.1250	. 8594		
B LEACH OF 20			44.500	2210.60	2.1750	.8510		
		26	57.500	2182.35	2.8250	.6402		
10 LEACH OF 20	-	5 58	17.000	2174.35	.000	.0371		
11 LEACH UF 20		30	50.600	2164,55	. 4800	.8333		
12 LEACH UF 20			250.200	2039.95	12.4000	. 1854		
13 LEACH UF 20			114.100	1483.40	5,6550	.7636		
14 LEACH OF 20			142.400	1912.70	7.0/00	.7364		
15 LEACH OF 20			241.400	1792.50	12,0200	.6901		
16 LEACH OF 20			128.000	1729.00	6.3500	.6656		
17 LEACH UF 20			123.800	1667.60	6.1400	.6420		
18 LEACH OF 20			127.800	1604.20	6.3400	.6176		
19 LEACH OF 20			60.700	1574.35	2.4650	.6061		
SO FFACH OF SO			104.400	1522.65	5.1/00	.5862		
21 LEACH OF 20			59.800	1493.25	2.4400	.5749		
	ML 43		55.600	1460.95	3.2300	.5624		
	ML 76	The second of the second	99.400	1412.25	4.8700	.5437		
24 LEACH OF 20			144.200	1340.65	7.1000	.5161		
) ML 94		93.600	1546.32	4.1300	.5002		
26 LEACH OF 20			32.600	1283,55	1,5000	.4941		
27 LEACH UF 20			31.100	1268.50	1.5050	.4884		
SE LEACH OF SE			160.200	1185.90	8.2000	.4566		
29 LEACH OF 20			42.300	1165,25	2.0050	.4486		
		11/7	71.000	1120.25	4.5000	.4313		
31 LEACH OF 20			69.200	1086.15	3.4100	.4182		
32 LEACH OF 20		The second secon	44.800	1064.25	2.1900	.4097		
33 LEACH UF 20			117.400	1006.05	5.8200	.3873		
34 LEACH OF 20			118.600	947.25	5.8800	.3647		
35 LEACH UF 20	ML 82	2995	189.200	853,15	9.4100	.3285		

Figure 32. Leaching of Cs-134 at 1200 Degrees
Thermal Treatment.
Data obtained from Table 18.

Table 19
DIFFUSION CONSTANTS FOR Cs-134 SYNTHETIC FALLOUT

Tempera- ture (°C)	Particle Diameter (micron)	тт	D (micron ² /day)
20	101	8470	0.0305
900	101	2220	0.116
1200	101	5220	0.0495

Leaching of SHASTA Fallout

The separate leach aliquots had insufficient activity for individual counting so they were combined and counted in one tube to yield a total leaching fr m 17 aliquots over a period of 2,558 days. The data, which are presented in Table 21, reveal that SHASTA fallout particles were very insoluble. Generally there was little leaching except for Eu-152, which was a neutron induced radionuclide.

The SHASTA fallout particles listed in Table 3 were counted, and the data were used to compute the specific activity (c/m/g) and equivalent fissions/g as reported in Table 21.

Table 20

RADIONUCLIDE LEACHING FROM SHASTA FALLOUT

55	Leached (%)	0.930	0.236		0.730	0.239
Eu-155	Activity (c/m)	115	152 0.360		106	150
152	Leached (%)	36.2	1		18.6	100
Eu-152	Activity (c/m)	1.80	3.00		3.30	0.540
.37	Leached (%)	3.84	0.562		1.46	0.005
Cs-137	Activity (c/m)	180	223 1.26		185 2.76	254 0.12
Sb-125	Leached** (%)	10.4	I		9.84	13.1
-Sb-	Activity (c/m)	6.70	3.00		4.40	1.10
	* Particle Magnetic	Mineral*** HC1	Mineral $_{\rm H_2^O}$	Nonmagnetic	Mineral HC1	Mineral H ₂ 0

*Particle diameter 1000-500 micron.

^{**}Combined leaching of 17 aliquots over 2,558 days.
***Fallout mineral weights in Table 4.

Table 21

RADIONUCLIDE ACTIVITY OF SHASTA FALLOUT

Eu-155	Activity f* (c/m/g) (fissions/g)	1300 26.4 E+14 334 6.78 E+14	300 6.09 E+14 4.57 0.093E+14	71.7 1.46 E+14 2.98 0.061E+14	153 3.11 E+14 46.5 0.94 E+14	519 10.5 E+14 214 4.34 E+14
Eu-152	R** (2/155)	1.5 E-04 1: 0.98E-04	1.1 E-04 1.9 E-04	1.3 E-04 8.5 E-04	1.1	6.1 E-04 1.5 E-04
Eu	Activity (c/m/g) (15	41.0	6.84	1.91	1 1	65.5
Cs-137	f* (fissions/g)	3.94 E+14 1.27 E+14	0.60 E+14 0.014E+14	0.27 E+14 0.012E+14	0.69 E+14 0.098E+14	2.42 E+14 1.09 E+14
CS	Activity (c/m/g)	1871 602	285	126 5.83	326 46.4	1150
Sb-125	f* Activity (fissions/g)	6.71 E+14 1.70 E+14	2.30 E+14 0.026E+14	0.69 E+14 0.021E+14	1.29 E+14 0.30 E+14	9.95 E+14 2.71 E+14
-qs	Activity (c/m/g)	67.0	23.0	6.84	12.9	99.4
Particle	Type	Magnetic Nonmagnetic	Magnetic Nonmagnetic	Magnetic Nonmagnetic	Magnetic Nonmagnetic	Magnetic Nonmagnetic
Pa	Diameter (micron)	1000-500	500-250	250-105	105- 47	> 44

*Fissions calculated from mass chain yields reported in Dolan, P. J., "Calculated Abundances, and Activities of the Products of High Energy Neutron Fission of Uranium-238," DASA 525, May 1959 (Reference 20).

**Captures/Fission of Eu nuclides (152/155).

Leaching of SEDAN Fallout

The individual leach aliquots were also combined to yield a total leaching from 14 aliquots over 1,893 days. Only Cs-137 and Rh-102m could be measured in the SEDAN fallout. Table 22 shows that in general little was leached from the particles.

Table 22

RADIONUCLIDE LEACHING FROM SEDAN FALLOUT

	R**	0.0373	0.0377	0.0335		0.0237		0.0148		0.0107	
Ħ	Leached (%)	5.60	3.06	19.6	1	11.4		14.8	1	35.1	1
Rh-102m	Activity (c/m)	15.18	11.40	6.90	96.9	5.58	6.42	4.14	09.9	3.78	7.62
Cs-137	Leached (%)	3.52	1	15.1	1	1	1	24.3	1	8.00	7.22
Cs-	Activity (c/m)	8.22	99.9	4.38	4.80	4.80	4.20	6.36	7.80	13.4	13.1
	Mineral 2g Leachant 20 ml	Mineral HC1	Mineral HC1	Mineral HC1	Mineral H ₂ O	Mineral HC1	Mineral $_{ m H_2O}$	Mineral HC1	Mineral $_{ m H_2^O}$	Mineral HC1	Mineral $_{\rm H_2^O}$
Particle	Diameter (micron)	2830-1410	1410- 710	350- 177		177- 88		88- 44		< 44	

*Combined leaching from 14 aliquots over 1,893 days. **Atoms Rh-102/fission(137).

Leaching of JOHNIE BOY Fallout

The individual leach aliquots were combined to yield a total leaching from 14 aliquots over 1,893 days. Table 23 presents the data. Co-60 was an important contributor, and it was measured along with the Cs-137, Eu-152 and Eu-155, which were also present. Eu-152 and Eu-155 appear to be the only nuclides that were appreciably leached. Significantly, the Cs-137 was tightly held by the fallout particles.

Table 24 shows the counting efficiencies that were used for the 0-2 MeV range, which was necessary to include the Co-60.

Table 25 lists the specific activity and equivalent fissions for each of the particle size ranges of JOHNIE BOY fallout as well as that for a sintered slag that was deposited in the downwind pattern.

Table 23

RADIONUCLIDE LEACHING FROM JOHNIE BOY FALLOUT

09	Leached	(%)		0.00		0.74		0.56		00.00		00.00		19.2		00.00		00.00
09-02	Activity	(c/m)	7.68	00.0	16.1	0.120	7.14	0.04	3.30	0.00	2.82	00.0	2.52	0.600	1.80	00.0	1.56	0.00
Eu-155	Leached	(%)		00.00		6.03		00.00		00.00		28.7		00.00		30.4		40.7
Eu-	Activity	(c/m)	8.76	0.00	9.61	1.26	12.5	0.00	6.48	00.0	5.82	2.34	3.42	0.00	3,30	1,44	2.88	1.98
.152	Leached	(%)		16.0		9.40		0.270		20.8		10.0		39.1		20.7		9.30
Eu-152	Activity	(c/m)	6.42	1.22	19.1	1.98	11.2	0.03	2.52	99°0	4.86	0.54	0.84	0.54	1,38	0.36	2,34	0.24
Cs-137	Leached*	(%)		2.94		00.0		96.0		00.00		00.00		00.0		00.0		00.00
Cs-	Activity	(c/m)	5.28	.16	7.86	00.0	10.3	0.10	2.70	00.0	2.94	00.00	1.38	00.0	1.86	00.00	2.88	00.00
Particle	Diameter	(micron)	>2830**	HC1	2830-1410	Н20	1410-710	HC1	710- 350	H ₂ 0	350- 177	HC1	88- 62	HC1	62- 44	H ₂ 0	< 44	HC1

*Combined leaching from 14 aliquots over 1,893 days. **For mineral weights see Table 2.

Table 24

COUNTING EFFICIENCY FOR 0-2 MeV
(Applies to JOHNIE BOY)

Nuclide	Photon* Energy MeV	Efficiency** (c/d)	Half-life*** (days)
Cs-137	0.661	0.00964	1.096×10 ⁴
Eu-152	0.344	0.0189	5.117×10 ³
Eu-155	0.086	0.0419	1.800×10 ³
Co-60	1.172	0.0037	$\textbf{1.921}\!\!\times\!\!\textbf{10}^{3}$

^{*}Characteristic photon peak used in analysis.

^{**}Counts per disintegration.

^{***}Half-life used in calculations.

Table 25

RADIONUCLIDE ACTIVITY OF JOHNIE BOY FALLOUT

09-00	R***	c/m/g) (captures/f)	22.1E-3	21.6E-3	15.0E-3	13.5E-3	12.8E-3	85.7E-3	14.5E-3	14.4E-3	28.5E-3
o	Activity	(c/m/g)	4.27	8,46	2.55	1.27	0.830	5.29	1.13	0.920	15.38
u-155	f*	(c/m/g) (fissions/g)	31.7E11	67.2E11	29.1E11	16.2E11	11.1E11	10.6E11	13.4E11	11.0E11	92.7E11
Eu-155	Activity f*	(c/m/g)	3.87	10.3	4.48	2.49	1.71	1.63	2.06	1.69	14.3
Eu-152	Activity R**	(c/m/g) (captures/f)	3.47E-3	4.60E-3	4.21E-3	1.84E-3	3.96E-3	1.16E-3	1.97E-3	3.86E-3	36.1E-3
ы	Activity	(c/m/g)	3.57	10.0	3.99	76.0	1.43	0.400	0.860	1.38	109
5-137	f*	(c/m/g) (fission/g)	5.54E11	7.82E11	6.97E11	1.97E11	1.63E11	1.25E11	2.19E11	2.19E11	31.2E11
ő	Activity	(c/m/g)	2.93	4.14	3.69	1.04	0.860	099.0	1.16	1.69	16.5
Particle	Diameter	(micron)	>2830	2830-1410	1410- 710	710-350	350- 177	88- 62	62- 44	< 44	Slag

*Fissions calculated from mass chain yields reported in Dolan, P. J., "Calculated Abundances, and Activities of the Products of High Energy Neutron Fission of Uranium-238," DASA 525, May 1959 (Reference 20).

^{**}Atoms of Eu-152 per fission (155)

Development and Production of Fallout Simulants

Over the years, the Camp Parks hot-cell facilities, operated by SRI, have developed and expanded to satisfy the requirements of many studies sponsored by the DCPA.

Radioactive particles from 44-700 microns in diameter comprise a large fraction of local fallout from a land surface nuclear explosion. Four particle size groups, namely, 44-88, 88-175, 175-350, and 350-700 microns were produced to cover the range.

Radiotagging consists of spraying a weak acid solution of a selected radioisotope on a weighed charge of mineral particles as they are tumbled in a rotating mixer. The particles are then dried. A nonleaching synthetic fallout is produced by "fixing" the radioisotope with an overcoat of sodium silicate and fusing the sodium silicate layer at 1093°C to seal in the radionuclide.

Facilities are available for producing gram, pound, or ton quantities of synthetic fallout, tagged with microcurie, millicurie, or curie amounts of radioactivity.

Two hot-cells are available for handling curie amounts of radio-isotopes. One cell is fitted with a pair of Model 8 Hevi-Duty Master Slave manipulators, and the other cell with a pair of Model 4 manipulators. Radioisotopes that have been processed include: kilocuries of Ba-140, La-140, Pm-147, and T1-204; multicuries of Sr-85, Sr-90, Zr-95, Nb-95, Ru-103, Ru-106, I-131, Cs-137, Ce-144, Lu-177 and Au-198; millicuries of Rb-85, Cs-134; and gross fission products.

More than 100 batches of Y-90 labeled sand were prepared to specification. For this purpose, a Sr-90 generator was installed in a shielded glove box inside the smaller hot-cell in July 1967. To meet the requirements of expanding programs, the Sr-90 activity was increased in increments

until a total of 50 curies was contained in the "cow." The Y-90 daughter was "milked" from the Sr-90 parent repeatedly, sometimes at 2-week intervals, by precipitating the strontium nitrate in nitric acid. The strontium nitrate was dissolved in 25 ml of distilled water and precipitated with 125 ml of 90 percent HNO₃. The acid solution containing the carrier-free Y-90 was filtered off and transferred to the second hot-cell, where it was evaporated to dryness and redissolved in another 25 ml of distilled water. Then 2 grams of inactive strontium nitrate was added and precipitated with 125 ml of 90 percent HNO₃, and the Y-90 acid solution was again filtered off, evaporated to dryness, and dissolved in 100 ml of 0.1 N HNO₃. About 40 curies of Y-90 was usually available at this point, and a 4 pi ionization chamber measurement of a 100 microliter aliquot determined the fraction of the 100 ml volume required for labeling a particular batch of sand. For certain very high purity requirements, the Y-90 was further processed to lower the Sr-90 impurities.

Sufficient Wedron quartz sand to meet the batch requirement was prepared by wet-sieving and Ro-Tapping to ensure that all particles were within the specified size range. The sand was added to the rotating drum of a ball mill that was operated inside the second hot-cell, and the calculated volume of carrier-free Y-90 solution was sprayed on the tumbling particles. The radioisotope-labeled sand was dried by the heat from a hot plate placed under the rotating drum. Then 10 ml of sodium silicate was sprayed into the rotating drum to overcoat the particles. After the particles were again dried, the synthetic fallout was transferred to a crucible and placed in a muffle furnace at 1066°C for one hour. The finished product was cooled, assayed, and packaged for shipment.

Very little Sr-90 was carried over in the nitric acid solution from the first precipitation because on 18 March 1974 an assay of the "cow" still showed 50 curies of Sr-90.

After six years of "milking" the Y-90 generator became inoperative and the Sr-90 was packaged and shipped to Nevada for burial as radioactive waste.

Tables 26 through 31 record the pertinent information on the synthetic fallout that was produced over the years.

Table 26

SYNTHETIC FALLOUT FOR UNIVERSITY OF CALIFORNIA AT BERKELEY

Batch	Date	Time	Weight	Particle Size (micron)	Iso-	Specific Activity (mCi/g)	Activity
UC- 1	2 Aug 67		Carrier Free		Y-90		90/mCi
2	28 Aug 67		Carrier Free		Y-90		90/mCi
3	11 Sep 67		Carrier Free		Y-90		70 mCi
4	9 Oct 67	0900	Carrier Free		Y-90		120 mCi
5	20 Nov 67	0900	Carrier Free		Y-90		10 curies
6	20 Dec 67	0900	Carrier Free		Y-90		1 curie
7	7 Feb 68	0900	Carrier Free		Y-90		3 curies
8	6 Mar 68		Carrier Free		Y-90		6.97 curies
9	19 Aug 68		Carrier Free		Y-90		5.57 curies
10	5 Nov 68	1200	Carrier Free		Y-90		5.40 curies
11	12 Dec 68	0800	Carrier Free		Y-90		9.05 curies
12	3 Mar 69	1400	Carrier Free		Y-90		9.83 curies
13	18 Mar 69	1300	25 g		Y-90	1.30	
14	18 Mar 69	1300	25 g		Y-90	12.1	
15-1	4 Apr 69	0800	40 g		Y-90	0.17	
15-2	4 Apr 69	0800	40 g		Y-90	0.52	
15-3	4 Apr 69	0800	40 g		Y-90	2.04	
15-4	4 Apr 69	0800	40 g		Y-90	8.8	
15-5	4 Apr 69	0800	40 g		Y-90	11.1	
15-6	4 Apr 69	0800	Carrier Free		Y-90		3 curies
16-1	12 May 69	1300	500 g		Y-90	0.045	
16-2	12 May 69	1300	500 g		Y-90	0.134	
16-3	12 May 69	1300	500 g		Y-90	0.383	
16-4	12 May 69	1300	500 g		Y-90	1.13	
16-5	12 May 69	1300	500 g		Y-90	3.36	
16-6	12 May 69	1300	500 g		Y-90	10.1	
17	16 Jun 69	0800	Carrier Free		Y-90		6 curies
17-1	18 Aug 69	2110	500 g	88-175	Y-90	0.728	
17-2	18 Aug 69	2110	500 g	88-175	Y-90	1.38	
17-3	18 Aug 69	2110	500 g	88-175	Y-90	3.67	
17-4	18 Aug 69	2110	500 g	88-175	Y-90	7.59	
18	24 Feb 70	0900	Carrier Free		Y-90		5 curies
19	31 Mar 70	1115	3,500 ml		Y-90	0.097	
20	31 Mar 70	0900	Carrier Free		Y-90		5 curies
20-1	14 Apr 70	1630	75 0 g	88-175	Y-90	0.196	

Table 26 (continued)

						Particle		Specific	
						Size	Iso-	Activity	
Batch	Date		Time	Weigh	it	(micron)	tope	(mCi/g)	Activity
UC-20-2	14 Apr	70	1630	750		88-175	Y-90	0.446	
20-3	14 Apr	70	1630	750	5	88-175	Y-90	1.37	
20-4	14 Apr	70	1630	750	5	88-175	Y-90	4.66	
21-1	29 Apr	70	1430	750		88-175	Y-90	0.175	
21-2	29 Apr	70	1430	750	5	88-175	Y-90	0.460	
21-3	29 Apr	70	1430	750	5	88-175	Y-90	2.03	
21-4	29 Apr	70	1430	750	5	88-175	Y-90	7.43	
22-1	12 May	70	1400	750	5	88-175	Y-90	0.263	
22-2	12 May	70	1400	750	5	88-175	Y-90	0.916	
22-3	12 May	70	1400	750	5	88-175	Y-90	2.55	
22-4	12 May	70	1400	750	5	88-175	Y-90	8.07	
23	26 May	70	0915	500 1	il of	f 0.1N HC1	Y-90		3.64 curies
24-1	8 Jun	70	0900	abou	1 0	curie in 500 ml 0	. 1N H	Cl of Y-90	
24-2	8 Jun	70	0900	abou	14	curies in 500 ml	0.1N	HC1 of Y-90	
25	14 Jul	70	0715	Carrie	Fre	ee	Y-90		1.84 curies
26-1	4 Aug	70	1250	800	5	88-175	Y-90	0,350	
26-2	4 Aug	70	1250	800	5	88-175	Y-90	0.408	
26-3	4 Aug	70	1250	800	5	88-175	Y-90	1.08	
26-4	4 Aug	70	1250	800	5	88-175	Y-90	3,50	
26-5	4 Aug	70	1250	800	5	88-175	Y-90	8.17	
27-1	9 Sep	70	1330	800	5	88-175	Y-90	0.413	
27-2	9 Sep	70	1330	800	5	88-175	Y-90	1.31	
27-3	9 Sep	70	1330	800	5	88-175	Y-90	3.87	
27-4	9 Sep	70	1330	800	5	88-175	Y-90	8.03	
28-1	11 May	71	1345	500	5	88-175	Y-90	0.350	
28-2	11 May	71	1345	500	5	88-175	Y-90	0.825	
28-3	11 May	71	1345	500	S	88-175	Y-90	1.61	
28-4	11 May	71	1345	500	ç	88-175	Y-90	3.09	
28-5	11 May	71	1345	500	5	88-175	Y-90	6.02	
28-6	11 May	71	1345	500	5	88-175	Y-90	16.7	
29-1	18 May	71	1255	500	,	88-175	Y-90	0.269	
29-2	18 May	71	1255	500	5	88-175	Y-90	0.386	
29-3	18 May	71	1255	500	S	88-175	Y-90	1.33	
29-4	18 May	71	1255	500	5	88-175	Y-90	4.53	
29-5	18 May	71	1255	500	5	88-175	Y-90	7.06	
29-6	18 May		1255	500	5	88-175	Y-90	18.8	
30-1	25 May	71	1325	500	Ç	88-175	Y-90	0.346	
30-2	25 May	71	1325	500		88-175	Y-90	0.829	
30-3	25 May	71	1325	500		88-175	Y-90	1.41	
30-4	25 May	71	1325	500	5	88-175			

SRI INTERNATIONAL MENLO PARK CALIF
FALLOUT SIMULANT DEVELOPMENT. LEACHING OF FISSION PRODUCTS FROM--ETC(U)
JUL 77 W B LANE, L B INMAN
DAHC20-70-C-0394 AD-A047 040 UNCLASSIFIED NL 2 of 2 ADA047040 END DATE FILMED

Table 26 (continued)

				Particle		Specific	
				Size	Iso-	Activity	
Batch	Date	Time	Weight	(micron)	tope	(mCi/g)	Activity
UC-30-5	25 May 71	1325	500 g	88-175	Y-90	5.86	
30-6	25 May 71	1325	500 g	88-175	Y-90	20.5	
31-1	2 Jun 71	1335	500 g	88-175	Y-90	0.209	
31-2	2 Jun 71	1335	500 g	88-175	Y-90	0.470	
31-3	2 Jun 71	1335	500 g	88-175	Y-90	1.60	
31-4	2 Jun 71	1335	500 g	88-175	Y-90	3.27	
31-5	2 Jun 71	1335	500 g	88-175	Y-90	5.62	
31-6	2 Jun 71	1335	500 g	88-175	Y-90	21.8	
32-1	8 Jun 71	1315	500 g	88-175	Y-90	0.266	
32-2	8 Jun 71	1315	500 g	88-175	Y-90	0.290	
32-3	8 Jun 71	1315	500 g	88-175	Y-90	0.575	
32-4	8 Jun 71	1315	500 g	88-175	Y-90	1.93	
32-5	8 Jun 71	1315	500 g	88-175	Y-90	2.41	
32-6	8 Jun 71	1315	500 g	88-175	Y-90	10.1	
33-1	15 Jun 71	1330	500 g	88-175	Y-90	0.122	
33-2	15 Jun 71	1330	500 g	88-175	Y-90	0.210	
33-3	15 Jun 71	1330	500 g	88-175	Y-90	1.08	
33-4	15 Jun 71	1330	500 g	88-175	Y-90	3.30	
33-5	15 Jun 71	1330	500 g	88-175	Y-90	5.36	
33-6	15 Jun 71	1330	500 g	88-175	Y-90	13.3	
34-1	18 Apr 72	1330	500 g	88-175	Y-90	0.030	
34-2	18 Apr 72	1330	500 g	88-175	Y-90	0.132	
34-3	18 Apr 72	1330	500 g	88-175	Y-90	0.814	
34-4	18 Apr 72	1330	500 g	88-175	Y-90	2.76	
34-5	18 Apr 72	1330	500 g	88-175	Y-90	6.51	
34-6	18 Apr 72	1330	500 g	88-175	Y-90	20.7	
35-1	16 May 72	0820	7 00 g	88-175	Y-90	0.446	
35-2	16 May 72	0820	7 00 g	88-175	Y-90	1.14	
35-3	16 May 72	0820	7 00 g	88-175	Y-90	2.73	
35-4	16 May 72	0820	7 00 g	88-175	Y-90	6.65	
35-5	16 May 72	0820	700 g	88-175	Y-90	14.68	
36-1	20 Jun 72	0830	7 00 g	88-175	Y-90	0.514	
36-2	20 Jun 72	0830	7 00 g	88-175	Y-90	0.716	
36-3	20 Jun 72	0830	700 g	88-175	Y-90	2.36	
36-4	20 Jun 72	0830	700 g	88-175	Y-90	6.05	
36-5	20 Jun 72	0830	700 g	88-175	Y-90	13.9	
37-1	26 Jun 73	0920	700 g	88-175	Y-90	0.168	
37-2	26 Jun 73	0920	7 00 g	88-175	Y-90	0.362	

Table 26 (concluded)

				Particle		Specific	
				Size	Iso-	Activity	
Batch	Date	Time	Weight	(micron)	tope	(mCi/g)	Activity
UC-37-3	26 Jun 73	0920	700 g	88-175	Y-90	1.44	
37-4	26 Jun 73	0920	700 g	88-175	Y-90	2.00	
37-5	26 Jun 73	0920	7 00 g	88-175	Y-90	5.36	
38-1	17 Jul 73	0830	7 00 g	88-175	Y-90	0.384	
38-2	17 Jul 73	0830	700 g	88-175	Y-90	0.924	
38-3	17 Jul 73	0830	7 00 g	88-175	Y-90	1.68	
38-4	17 Jul 73	0830	700 g	88-175	Y-90	6.59	
38-5	17 Jul 73	0830	700 g	88-175	Y-90	14.4	
39-1	11 Sep 73	0830	7 00 g	88-175	Y-90	0.016	
39-2	11 Sep 73	0830	700 g	88-175	Y-90	0.320	
39-3	11 Sep 73	0830	700 g	88-175	Y-90	0.980	
39-4	11 Sep 73	0830	700 g	88-175	Y-90	2.63	
39-5	11 Sep 73	0830	700 g	88-175	Y-90	6.10	
40	19 Mar 74	0920	1350 ml	total 4.62 cu	ries of	Y-90	
41-1	16 Apr 74	0845	700 g	88-175	Y-90	0.298	
41-2	16 Apr 74	0845		88-175	Y-90	0.500	
41-3	16 Apr 74	0845		88-175	Y-90	1.98	
41-4	16 Apr 74	0845		88-175	Y-90	3.66	
41-5	16 Apr 74	0845	700 g	88-175	Y-90	12.7	
38-5 39-1 39-2 39-3 39-4 39-5 40 41-1 41-2 41-3 41-4	17 Jul 73 11 Sep 73 19 Mar 74 16 Apr 74 16 Apr 74 16 Apr 74	0830 0830 0830 0830 0830 0830 0920 0845 0845	700 g 700 g 700 g 700 g 700 g 700 g 1350 ml 700 g 700 g 700 g	88-175 88-175 88-175 88-175 88-175 total 4.62 cu 88-175 88-175 88-175	Y-90 Y-90 Y-90 Y-90 Y-90 Y-90 Y-90 Y-90	14.4 0.016 0.320 0.980 2.63 6.10 Y-90 0.298 0.500 1.98 3.66	

Table 27

SYNTHETIC FALLOUT FOR UNIVERSITY OF TENNESSEE

			Weight	Particle Size		Specific
Batch	Date	Time	(g)	(micron)	Isotope	Activity
UT - 1	14 Jun 68	1500	200	88-175	Y-90	29.8 mCi/g
2	8 Jul 68	0300	400	88-175	Y-90	13.9 mCi/g
3	6 Aug 68	1530	400	88-175	Y-90	5.46 mCi/g
4	10 Sep 68	1210	400	88-175	Y-90	19.8 mCi/g
5	8 Oct 68	1030	200	88-175	Y-90	11.5 mCi/g
6	5 Nov 68	1300	200	88-175	Y-90	14.1 mCi/g
7	29 Nov 68	1200	200	88-175	Y-90	30.5,mCi/g
8	7 Jan 69	1300	200	88-175	Y-90	12.1 mCi/g
9	11 Feb 69	1400	300	88-175	Y-90	15.5 mCi/g
10	18 Mar 69	1300	300	88-175	Y-90	12.1 mCi/g
11	22 Apr 69	1330	300	88-175	Y-90	13.6 mCi/g
12	27 May 69	0800	300	88-175	Y-90	11.2 mCi/g
13	1 Jul 69	0830	600	88-175	Y-90	12.7 mCi/g
14	12 Aug 69	0900	600	88-175	Y-90	13.2 mCi/g
15	16 Sep 69	0810	600	88-175	Y-90	12.1 mCi/g
16	21 Oct 70	0800	600	88-175	Y-90	9.08 mCi/g
17	9 Dec 70	0800	600	88-175	Y-90	3.08 mCi/g
						(lownot
						shipped)
18	13 Jan 71	0730	37	88-175	Y-90	12.1 mCi/g
19	24 Feb 71	0730	600	88-175	Y-90	17.1 mCi/g
20	7 Apr 71	0800	600	88-175	Y-90	12.5 mCi/g
21	26 May 70	0740	600	88-175	Y-90	15.9 mCi/g
22	14 Jul 70	0730	600	88-175	Y-90	14.9 mCi/g
23	25 Aug 70	0815	600	88-175	Y-90	15.8 mCi/g
24	6 Oct 70	0900	300	44- 88	Y-90	10.7 mCi/g
					Sc-46	1.36 µCi/g
25	1 Dec 70	0945	300	44- 88	Y-90	11.2 mCi/g
					Sc-46	$1.5 \mu Ci/g$
25-1	1 Dec 70	0945	600	44- 88	Sc-46	$1.5 \mu Ci/g$
26	12 Jan 71	0830	300	88-175	Y-90	22.8 mCi/g
					Sc-46	1.9 µCi/g
26-1	12 Jan 71	0830	500	88-175	Sc-46	$1.9 \mu Ci/g$
27	2 Nov 71	0845	300	88-175	Y-90	19.2 mCi/g
					Sc-46	1.7 µCi/g

Table 27 (concluded)

Batch	Dat	e_	Time	Weight (g)	Particle Size (micron)	Isotope	Specific Activity
UT-27-1	2 Nov	71	0845	100	88-175	Sc-46	1.7 µCi/g
28	17 Aug	71	0635	600	88-175	Y-90	17.6 mCi
						Sc-46	1.16 µCí
				300	88-175	Sc-46	1.16 µCi
29	31 Aug	71	0800	600	88-175	Y-90	17.5 mCi
						Sc-46	2.32 µCi
				300	88-175	Sc-46	2.32 µCi
30	19 Oct	71	0830	600	88-175	Y-90	19.9 mCi/g
						Sc-46	0.85 µCi/g
				300	88-175	Sc-46	$0.85 \mu Ci/g$
31	30 Nov	71	0800	600	88-175	Y-90	15.3 mCi/g
						Sc-46	0.095 µCi/g
				300	88-175	Sc-46	0.095 µCi/g
32	25 Jan	72	0845	700	88-175	Y-90	18.0 mCi/g
33	14 Nov	72	0730	700	88-175	Y-90	14.3 mCi/g
34	2 May	72	0745	800	88-175	Y-90	16.8 mCi/g
35	6 Jur	72	0800	800	88-175	Y-90	18.7 mCi/g
36	18 Sep	72	0830	800	88-175	Y-90	15.3 mCi/g
37	5 Dec	72	0730	800	88-175	Y-90	13.4 mCi/g
38	7 May	73	0800	600	88-175	Y-90	18.8 mCi/g
39	24 Jul	73	0800	800	88-175	Y-90	15.2 mCi/g

Table 28

SYNTHETIC FALLOUT FOR COLORADO STATE UNIVERSITY

Batch		Date		Time	Wei	ght	Particle Size (micron)	Isotope	Specific Activity (µCi/g)
CU- 1	15	Aug	68	0800	120	1b	88-175	Lu-177	0.091
2	13	Sep	68	0800	120	1b	175-350	Lu-177	0.088
3	15	May	69	0830	500	g	175-350	Lu-177	1.47
4	12	Jun	69	0800	20	1b	88-175	Lu-177	1.05
5	12	Jun	69	0800	20	1b	175-350	Lu-177	1.00
6	3	Jul	69	0830	20	1b	175-350	Lu~177	0.994
7	3	Jul	69	0830	20	1b	88-175	Lu~177	1.05
8	23	Jul	69	0900	20	1b	88-175	Lu~177	1.12
9	23	Jul	69	0900	20	1b	175-350	Lu~177	1.10
10	13	Aug	69	0900	20	1b	88-175	Lu-177	1.09
11	13	Aug	69	0900	20	1b	175-350	Lu~177	1.06
12	4	Sep	69	0900	20	1b	88-175	Lu-177	1.08
13	4	Sep	69	0900	20	1b	175-350	Lu~177	0.800
14	23	Sep	69	1310	20	1b	88-175	Lu~177	1.25
15	23	Sep	69	1310	20	1 b	175-350	Lu~177	1.19
16	1	Dec	70	1100	480	g	88-175	Lu-177	15.1

Table 29

SYNTHETIC FALLOUT FOR NORTH CAROLINA STATE UNIVERSITY

Batch	Date	Time	Weight (g)	Particle Size (micron)	Isotope	Specific Activity (mCi/g)
NC-1	29 Jul 69	0800	500	44-88	Y-90	3.03
NC-2	29 Jul 69	0800	500	44-88	Y-90	7.78

Table 30

SYNTHETIC FALLOUT FOR CORNELL UNIVERSITY

				Particle		Specific
			Weight	Size		Activity
Batch	Date	Time	(g)	(micron)	Isotope	(mCi/g)
CO-1	30 Jun 66	0800	185	44-63	Cs-137	0.076
2	25 Aug 66	0800	175	44-63	Sr- 85	0.202
3	9 Jan 67	0800	125	44-63	I-131	1.04

Table 31

SYNTHETIC FALLOUT FOR OAK RIDGE NATIONAL LABORATORY

Batch		D	ate	<u>. </u>	Time	Wei	ght	Particle Size (micron)	Isotope	Specific Activity
OR- 1	6	F	eb	67	0900	7	1b	88-175	Cs-134	1.31 µCi/g
2	6	F	eb	67	0900	7	1b	88-175	Cs-134	1.34 µ Ci/g
3	6	F	eb	67	0900	7	1b	88-175	Cs-134	2.09 µ Ci/g
4	20	0	ct	67	0900	20	g	44- 88	Sr- 90	9.70 mCi/g
5	27	M	ау	68	0800	160	1b	88-175	Cs-137	46.7 mCi/1b
6	27	M	ау	68	0800	140	1b	88-175	Cs-137	36.6 mCi/1b
7	11	. M	ar	68	0900	30	g	88-175	Sr- 90	19 μ Ci/g
7	(a) 11	. M	ar	68	0900	30	g	88-175	Sr- 90	6 µCi/g
8	25	J	un	69	0835	18	1b	44- 88	Rb- 86	$4.29 \mu \text{Ci/g}$
9	25	J	un	69	0835	18	1b	88-175	Rb- 86	$5.62 \mu \text{Ci/g}$

REFERENCES

- William B. Lane and James D. Sartor, STONEMAN II Tests of Reclamation Performance, Volume I, The Production, Dispersal and Measurement of Synthetic Fallout Material, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-334, 6 June 1960
- W. L. Owen and J. D. Sartor, Radiological Recovery of Land Target Components - Complex I and Complex II, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-570, 25 May 1962
- 3. "Biological and Environmental Effects of Nuclear War," presentation at hearings before the Special Subcommittee on Radiation, Joint Committee on Atomic Energy, Washington, D.C., 1959
- 4. R. N. Anderson and R. M. Railey, Decontamination of Ships' Painted Surfaces, III. Contamination-Decontamination Behavior of Lanthanum, Barium, Zirconium, Niobium in Seawater Fallout, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-830, 4 August 1964
- N. H. Farlow and W. Schell, Physical, Chemical, and Radiological Properties of Slurry Particulate Collected During Operation Redwing, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-170, May 1957
- 6. Carl F. Miller, Fallout and Radiological Countermeasures, Volumes I and II, SRI Project IMU-4021, Stanford Research Institute, Menlo Park, California, January 1963
- 7. _____, Fallout Nuclide Solubility, Foliage Contamination, and Plant Part Uptake Contour Ratios, SRI Project IMU-4021, Stanford Research Institute, Menlo Park, California, July 1963
- 8. J. Norman and P. Winchell, Cloud Chemistry of Fallout Formation, Gulf General Atomics, GACD-7095, 30 June 1965
- 9. William B. Lane, Fallout Simulant Development: Synthetic Fallout Facilities at Camp Parks, and Two Year Leaching of Cesium from Synthetic Fallout and Fission Product from SHASTA Fallout, SRI Project 7236, Stanford Research Institute, Menlo Park, California, September 1969
- 10. ______, Fallout Simulant Development; Leaching of Fission

 Products from Nevada Fallout and Properties of Iodine-Tagged Simulant,

 SRI Project 7968, Stanford Research Institute, Menlo Park, California,

 June 1970

- 11. William B. Lane, Fallout Simulant Development: The Sorption Reactions of Cerium, Cesium, Ruthenium, Strontium, and Zirconium-Niobium, SRI Project MU-5068, Stanford Research Institute, Menlo Park, California, November 1965
- , Fallout Simulant Development: Temperature Effects on the Sorption Reactions of Cesium on Feldspar, Clay, and Quartz, SRI Project MU-6014, Stanford Research Institute, Menlo Park, California, March 1967
- , Fallout Simulant Development: Temperature Effects on the Sorption Reactions of Strontium on Feldspar, Clay, and Quartz, SRI Project MU-6503, Stanford Research Institute, Menlo Park, California, March 1968
- P. D. LaRiviere et al., Fallout Collection and Gross Sample
 Analysis, (U), Project 2.9, Operation SUN BEAM, Shot SMALL BOY,
 POR-2215, U.S. Naval Radiological Defense Laboratory, May 1963
 (SECRET RESTRICTED DATA)
- D. E. Clark et al., Fallout Sampling and Analysis: Radiation
 Dose Rate and Dose History at (16) Locations, (U), Project 2.9,
 Operation SUN BEAM, Shot JOHNIE BOY, POR-2289 (WT-2289), U.S.
 Naval Radiological Defense Laboratory, October 1963 (SECRET)
- William B. Lane, Some Radiochemical and Physical Measurements of Debris from an Underground Nuclear Detonation, Project SEDAN, Civil Effects Test Office Project 62.90, PNE 229F, 7 January 1964
- 17. Carl F. Miller, Gamma Decay of Fission Products From The Slow-Neutron Fission of U-235, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-187, 11 July 1957
- Olof Samuelson, Ion Exchangers in Analytical Chemistry (New York: Wiley and Sons, Inc., 1953), p. 33
- 19. W. Jost, Diffusion in Solids, Liquids, and Gases, Third Edition (New York: Academic Press, Inc., 1960), p. 46
- 20. Dolan, P. J., "Calculated Abundances, and Activities of the Products of High Energy Neutron Fission of Uranium-238," DASA 525, May 1959.

DISTRIBUTION LIST

No. of Copies

Defense Civil Preparedness Agency		Mr. Burke Stannard	
Research Directorate		Defense Research Board	
Attn: RE(ADM)		Defense Res. Analysis Establishmer	nt
Washington, D.C. 20301	40	National Defense Headquarters	
		Ottowa 4, Ontario, Canada	1
Chief			
Joint Civil Defense Support Group		Dr. Carl F. Miller	
Office of Chief of Engineers		Center for Planning and Research,	Inc.
Department of the Army		Post Office Box 553	
Forrestal Building, IF035		Moriarty, NM 87035	1
Washington, D.C. 20314	1		
		Defense Documentation Center	
Ballistic Research Laboratory		Cameron Station	
Attn: Librarian		Alexandria VA 22314	20
Aberdeen Proving Ground, MD 21005	1		
		Project Director	
National War College		Engineer Strategic Studies Group	
Attn: Librarian		6500 Brooks Lane, N.W.	
Fort Leslie J. McNair		Washington, D.C. 20315	1
Washington, D.C. 20315	1		
		Technical Library	
Commander NMCSSC		USA-MERDC	
Pentagon, RM BE685		Building 315	
Washington, D.C. 20310	1	Fort Belvoir, VA 222060	ļ
Weapons Systems Evaluation Group		Defense Nuclear Agency	
Attn: Dr. Harold Knapp		Attn: Librarian	
400 Army-Navy Drive		Washington, D.C. 20305	1
Arlington, VA 22202	1		
		Defense Intelligence Agency	
Energy Research & Develop. Adm.		Attn: DS-4A	
Headquarters Library, G049		Washington, D.C. 20301	1
Washington, D.C., 20545	1		
		Director Disaster and Defense	
Civil Defense Tech. Services Cen.		Services Staff	
College of Engineering		Agricultural Stabilization and	
University of Florida		Conservation Service	
Gainesville, FL 32601	1	U.S. Department of Agriculture	
		Washington, D.C. 20250	1

Dikewood Corporation		President	
1009 Bradbury Drive, S.E.		Naval War College	
University Research Park		Attn: Code 1212	
Albuquerque, NM 87106	1	Newport, RI 02840	1
Albuquerque, NM 8/100	1	Newport, RI 02040	-
Institute for Defense Analysis		National Academy of Sciences	
Attn: Dr. Leo Schmidt		Advisory Committee on Emergency	
400 Army-Navy Drive		Planning	
Arlington, VA 22202	1	Attn: Dr. Lauriston Taylor	
		2101 Constitution Avenue, NW	
SRI International		Washington, D.C. 20418	
Attn: Mr. William White		,	
Arlington, VA 22209	1	Oak Ridge National Laboratory	
,		Attn: Dr. Conrad Chester	
URS Research Company		Oak Ridge, TN 37831	1
Attn: Mr. William H. Van Horn		540 H2485, 211 57652	
155 Bovet Road		SRI International	
San Mateo, CA 94402	1	Attn: Mr. Philip J. Dolan	
541 Haces, 61 71102		Menlo Park, CA 94025	1
Dr. Bernard Shore		nento latik, oil 54025	-
Lawrence Livermore Laboratories		Mr. Bert Greenglass	
P. O. Box 808		Director, Office of Administration	
Livermore, CA 94550	1	Program Planning and Control	
22702		Department of Housing and Urban	
Dr. Rudolph J. Engelmann		Development	
Division of Biomedical and		Washington, D.C. 20410	1
Environmental Research (DBER)		madiffically 5.0. 20410	-
Energy Research & Development Adm.		Dr. Daniel Willard	
Washington, D.C. 20545	1	Office of Operations Research	
madilington, 5.0. 20545		Office of Under Secretary of Army	
U.S. Army War College		Room 2E729, Pentagon	
Attn: Library		Washington, D.C. 20310	1
Maxwell Air Force Base, AL 26052	1	manington, b.o. 20320	-
THE WOLL WILL LOUGE BASE, MI 20032	•	Center for Naval Analysis	
Director Development Center		Attn: Head Studies Mgmt Group	
Marine Corps Development and		1401 Wilson Boulevard	
Education Command		Arlington, VA 22209	1
Quantico, VA 22134	1		•
,		AFOSR Library	
Dikewood Corporation		1400 Wilson Boulevard	
Attn: Mr. Walter Wood		Arlington, VA 22209	1
1009 Bradbury Drive, SE		Table on State of Sta	-
University Research Park			
Albuquerque, NM 87106	1		
minducique, Min 0/100	-		

Energy Research & Development Adm. Attn: Mr. William W. Schroebel Division of Biomedical and Environmental Research Washington, D.C. 20545	Mr. William T. Cox Agricultural Engineers Federal Extension Service U.S. Department of Agriculture Washington, D.C. 20250
Human Sciences Research Attn: Dr. Peter G. Nordlie	University of Pittsburgh Department of Sociology
Westgate Industrial Park P. O. Box 370 McLean, VA 22101	Attn: Dr. Jiri Nehnevajsa Pittsburgh, PA 15213
Dr. Stanley I. Auerback	Federal Preparedness Agency Attn: Dr. James Pettee
Director, Environmental Sciences Div. Building 2001 Oak Ridge National Laboratory	Mail Building, Room 3235 Washington, D.C. 20405
Oak Ridge, TN 37831 1	Dr. Martin O. Cohen Mathematical Applications Group, Inc.
Disaster Research Center Ohio State University 404B West 17th Avenue	3 Westchester Plaza Elmsford, NY 10523
Columbus, OH 43210	Dr. Charles Eisenhauer National Bureau of Standards
American Technical Assistance Corp. Attn: Mr. Elwyn Bull 7655 Old Springhouse Road	Center for Radiation Research Washington, D.C. 20234
McLean, VA 22101	U.S. Army Engineer Waterways Experiment Station
University of California Department of Economics	Attn: Mr. W. B. Lane P. O. Box 631
Attn: Professor Jack Hirschleifer Los Angeles, CA 90024 1	Vicksburg, MS 39180
Center for Planning & Research, Inc. Stanford Professional Center Attn: Mr. Richard K. Laurino 750 Welch Road	
Palo Alto, CA 94304 1	
Mr. James A. Davis Emergency Preparedness Division Agricultural Stabilization and Conservation Service U.S. Department of Agriculture	
South Building, Room 6628 Washington, D.C. 20250	

SRI INTERNATIONAL Menlo Park, California

FALLOUT SIMULANT DEVELOPMENT, Leaching of Piesion Products from Nevada and Summary of Synthetic Fallout Production by W. B. Lane and L. B. Inman, Final Report, July 1977, SRI Project No. EGU 8644, 105 pages, Contract No. DANC20-70-C-0394, Work Unit No. 3211D. UNCLASSIFIED.

Long term <u>leaching</u> studies were conducted by SRI International (formerly Stanford Research Institute) with field samples collected at <u>SHASTA</u>, <u>SHALL BOY</u>, <u>JORNIE BOY</u>, and <u>SEDAN</u>. <u>Fallout</u> from each of these <u>nuclear explosions</u> was <u>leached</u> by 0.1<u>M</u> HCI (to represent stomach acid) and distilled water.

The <u>leaching</u> mechanism for the removal of eight-year-old fission products from <u>SMALL BOY fellout</u> by 0.1M HCl appears to be controlled by a sorption reaction for a few days, after which it is controlled by a diffusion process. <u>Leaching</u> of <u>SMALL BOY fallout</u> by 0.1M HCl removed 60% of the <u>redioactivity</u> from large particles and 30% from small particles.
<u>Leaching</u> by water removed only a few percent of the <u>radioactivity</u>.

Generally, less than 10% of the <u>radioactivity</u> was removed from SHASTA, JOHNIE BOY, or <u>SEDAN fallout</u> by either 0.1N HCl or water.

Synthetic fallout was prepared for Defense Civil Preparelines; Agency (DCPA) contractors, including the University of California 4t Berkeley, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Flidge National Laboratory.

SRI INTERNATIONAL Menlo Park, California

PALLOUT SIMULANT DEVELOPMENT, Leaching of Fission Products from
Nevada and Summary of Synthetic Fallout Production by W. B. Lane and L. B.
Inman, Final Report, July 1977, SRI Project No. ECU 8644, 105 pages,
Contract No. DAHC20-70-C-0394, Work Unit No. 3211D. UNCLASSIFIED.

Long term <u>leaching</u> studies were conducted by SRI International (formerly Stanford Research Institute) with field samples collected at <u>SMASIA</u>, <u>SMALL BOY</u>, <u>JOPNIE BOY</u>, and <u>SEDMI</u>. <u>Fallout</u> from each of these <u>nuclear explosions</u> was <u>leached</u> by 0.1 MCI (to represent stomach acid) and distilled water.

The <u>leaching</u> mechanism for the removal of eight-year-old fission products from <u>SMALL BOY failout</u> by 0.1M HCl appears to be controlled by a sorption reaction for a few days, after which it is controlled by a ditfusion process. <u>Leaching</u> of <u>SMALL BOY failout</u> by 0.1M HCl removed 60% of the <u>radioactivity</u> from large particles and 30% from small particles.
<u>Leaching</u> by water removed only a few percent of the <u>radioactivity</u>.

Generally, less than 10% of the <u>radioactivity</u> was removed from <u>SHASTA</u>, <u>JOHNIE BOY</u>, or <u>SEDAN failout</u> by either 0.1<u>N</u> HCl or water.

Synthetic fallout was prepared for Defense Civil Preparedness Agency (DCRA) contractors, including the University of California at Berkeley, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Ridge National Laboratory.

SRI INTERNATIONAL Menlo Park, California

FALLOUT SIMILANT DEVELOPMENT, Leaching of Pission Products from Newada and Summary of Synthetic Fallout Production by W. B. Lane and L. B. Inman, Final Report, July 1977, SKI Project No. EGU 8644, 105 pages, Contract No. DAMK20-70-C-0394, Work Unit No. 2211D. UNGLASSIFIED.

Long term <u>leaching</u> studies were conducted by SRI International (formerly Stanford Research Institute) with field samples collected at SHASTA, SMALL BOY, JOHNIE BOY, and SEDAN. Failout from each of these nuclear explosions was <u>leached</u> by 0.1N HCl (to represent stomach acid) and distilled water.

The <u>leaching</u> mechanism for the removal of eight-year-old fission products from <u>SMALL BOY fallout</u> by 0.1M HCl appears to be controlled by a sorption reaction for a few days, after which it is controlled by a diffusion process. <u>leaching of SMALL BOY fallout</u> by 0.1M Hcl removed 60% of the <u>radioactivity</u> from large particles and 30% from small particles.
<u>Leaching</u> by water removed only a few percent of the <u>radioactivity</u>.

Generally, less than 10% of the <u>radioactivity</u> was removed from <u>SHASTA</u>, JOHNIE BOY, or <u>SEDNY fallout</u> by either 0.1N HCl or water.

Synthetic fallout was prepared for Defense Civil Preparedness Agency (DCRA) contractors, including the University of California at Berkedny, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Ridge National Laboratory.

SRI INTERNATIONAL

FALLOUT SIMULANT DEVELOPMENT, Leaching of Fission Products from Nevada and Summary of Synthetic Pallout Production by W. B. Lane and L. B. Inman, Final Report, July 1977, SRI Project No. EGU 8644, 105 pages, Contract No. DAHC20-70-C-0394, Work Unit No. 3211D. UNCLASSIFEED.

Long term <u>leaching</u> studies were conducted by SRI International (formerly Stanford Research Institute) with field samples collected at <u>SHASIA</u>, <u>SMALL</u>, <u>BOY, JORNIE BOY</u>, and <u>SEDAN</u>. <u>Fallout</u> from each of these <u>nuclear explosions</u> was <u>leached</u> by 0.1N HCl (to represent stomach acid) and distilled water.

The <u>leaching</u> mechanism for the removal of eight-year-old fission products from <u>SMALL BOY failout</u> by 0.1<u>M</u> HCl appears to be controlled by a sorption reaction for a few days, after which it is controlled by a diffusion process. <u>leaching of <u>SMALL BOY failout</u> by 0.1<u>M</u> HCl removed 60% of the <u>radioactivity</u> from large particles and 30% from small particles.

<u>Leaching</u> by water removed only a few percent of the <u>radioactivity</u>.</u>

Generally, less than 10% of the <u>radioactivity</u> was removed from SPASTA. JOHNIE BOY, or <u>SEDAN fallout</u> by either 0.1N HCl or water.

Synthetic fallout was prepared for Defense Civil Preparedness Agency (DCPA) contractors, including the University of California at Berkeley, University of Tennessee at Oak Ridge, Colorado State University, North Carolina State University, Cornell University, and Oak Ridge National Laboratory.