First script

The equation we want to solve is the following:

$$\frac{\partial a}{\partial z} = -\beta_1 \frac{\partial a}{\partial t} - i \frac{\beta_2}{2} \frac{\partial^2 a}{\partial t^2} - \frac{\alpha}{2} a$$

It is integrated using the beam propagation method: the solution in fourier domain is given and it is the exponetial:

$$\tilde{a}(z,\Omega) = a(0,\Omega)e^{iPz}$$

Where P is the propagator of the problem and it is

We can take small step in z, Δz and the solution will be:

$$a(z + \Delta z, T) = \int d\Omega \ \tilde{a}(z + \Delta z, \Omega)e^{-i\Omega T}$$

Setting parameters

```
T=500e-15;
                        %T_max dell'intervallo campionato in s
T0=80e-15;
                        %durata dell'impulso in s
s0=T0/2.355*sqrt(2);
                        %conversion FWHM to sigma
tp0=0;
                        %posizione iniziale dell'impulso in s
beta1=0/(3e8/1.52);
% zmax=50e-6;
                        %distanza massima all'interno del materiale dispersivo
beta2=1*2e-26;
                        %beta_2 for optical fiber
                        %beta_2 for optical silica
% beta2=0*7.6e-26;
% beta2=1*5.3e-26;
                        %beta_2 for CaF2
zmax=0.15;
                        %distanza massima all'interno del materiale dispersivo
% alpha=1*1/22000;
                        % esagerated absortpion
alpha=0*2;
C=-1*-2;\%-2;
                         %initial chirp
SaveVideo=0;
                        % controllo per salvare un video
Ld=s0*s0/abs(beta2);
                        %lunghezza di dispersione
N=1024*8;
                        % numero di tempi campionati
nsteps=30;
                        % numero di passi per la propagazione in z
dz=zmax/nsteps;
```

Fourier replicas

We create a vector with all the time where the pulse is defined and, according to Nyquist theorem of sampling, we divide the frequency domain.

Parameter for the propagation

We define the propagator and the pulse at the beginning. See that you can define new types of pulses

```
Omega=2*pi*f;
Dbeta=beta1*Omega+0.5*beta2*Omega.^2+1i*alpha*0.5;
propagator=exp(1i*Dbeta*dz);
all_intensities=zeros(N,nsteps+1);
zplot=zeros(1,nsteps+1);

A=exp(-(1+1i*C).*((t-tp0).^2/(2*s0^2)));
%figure,plot(t,real(A.*exp(-1i*1e14.*t)))
% A=1.*exp(-(1+1i*C).*(abs(t-tp0)/(2*s0)));
% A=sech(t/T0).*exp(-1i*C*(t-tp0).^2/(2*T0^2));
% w=T0; %width of rectangle
% A=rectpuls(t,2*w);
all_intensities(1:N,1)=abs(A).^2;
```

Propagation

```
figure(1)
set(gcf,'units','normalized','outerposition',[0 0 1 1]);

if SaveVideo
    aviobj2=VideoWriter('Video_Dispersion2.avi');
    aviobj2.FrameRate =10;
```

```
open(aviobj2)
end
sigma0=sqrt(sum(t.^2.*abs(A).^2)/sum(abs(A).^2)-(sum(t.*abs(A).^2)/sum(abs(A).^2))^2);
Broadening(1)=1;
for iz=1:nsteps
    A=ifft(fft(A).*propagator);
    z=(iz-1)*dz;
   fase=unwrap(angle(A));
    chirp=-ifft(fft(fase).*1i.*Omega);
    figure(1)
    subplot(4,1,1)
    plot(t,abs(A).^2);
    xlabel('T [s]')
    ylabel('Intensity')
    ylim([0,1])
    %title(dz*iz)
    title(['z/Ld=' num2str(dz*iz/Ld) ])
    %title(dz*iz/Ld)
    subplot(4,1,2)
    [n_sortf m_sortf] = sort(f);
    B=fft(A);
    plot(f(m_sortf),abs(B(m_sortf)).^2);
    xlabel('f [Hz]')
    ylabel('Intensity')
    xlim([-3e13,3e13])
    ylim([0,1e6])
    subplot(4,1,3)
    plot(t,fase);
    xlabel('T [s]')
    ylabel('Phase')
    subplot(4,1,4)
    plot(t,real(chirp));
    xlabel('T [s]')
    ylabel('Chirp')
    xlim([-T0, T0])
```

```
set(findall(gcf,'-property','FontSize'),'FontName','Times New Roman','FontSize',14)
   set(findobj(gcf,'type','line'),'LineWidth',2)
   pause(.1)
   drawnow
   sigmas = sqrt(sum(t.^2.*abs(A).^2)/sum(abs(A).^2) - (sum(t.*abs(A).^2)/sum(abs(A).^2))^2)
   if SaveVideo
        F=getframe(gcf);
        writeVideo(aviobj2,F);
   end
   %
       pause
   x=dz*iz;
   if abs(beta2)>0
        Broadening(iz+1)=sigmas/sigma0;
   all_intensities(:,iz+1)=abs(A).^2;
   zplot(iz+1)=zplot(iz)+dz;
          text(1100,1000,['t=' num2str(x_position(i)) ' ps'])
end
```



```
% close(fig);
if SaveVideo
```

```
close(aviobj2)
end
```

New plots

First: Broadening during propagation

```
if abs(beta2)>0
    figure(2)
    title ('Broadening Factor')
    plot(zplot/Ld,Broadening, 'ko')
    xlabel('z/L_D')
    title (['\beta_2=', num2str(beta2) ' (SI)'])
    ylabel('Broadening Factor')
    set(findall(gcf,'-property','FontSize'),'FontName','Times New Roman','FontSize',14)
    set(findobj(gcf,'type','line'),'LineWidth',2)
end
```


Second: 3D shape during propagation

```
z=zplot./Ld;
figure(3)
```

```
if beta2>0
    pcolor(z, t*1e12, all_intensities)
    xlabel('z/L_d')
else
    pcolor(zplot, t*1e12, all_intensities)
    xlabel('z/L_d')
end
shading interp
ylabel('t (ps)')
box on
set(findall(gcf,'-property','FontSize'),'FontName','Times New Roman','FontSize',14)
```

0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2-0.3 -0.4 -0.5 0 0.2 1.2 0.4 0.6 0.8 z/L

```
set(findobj(gcf,'type','line'),'LineWidth',2)
```

Third: shape in 2D and palette for propagation

```
Col=jet(length(zplot));
figure(4),hold on
for k=1:length(zplot)
    plot(t*1e12, all_intensities(:,k),'linewidth',2,'color',Col(k,:))
end
```

```
xlabel('t (ps)')
ylabel('Intensity (AU)')
legend(num2str(round(z'*1e2)/1e2))
box on
set(findall(gcf,'-property','FontSize'),'FontName','Times New Roman','FontSize',14)
```


set(findobj(gcf,'type','line'),'LineWidth',2)