SEQUENCE LISTING

SEQUENCE LIS <110>

COMPOSITIONS AND METHODS FOR INHIBITING TRANSLATION OF A CHIMERIC <120> **GENE**

<130> 221749

<140>

10/698,070 2003-10-30 <141>

<160> 12

<170> PatentIn version 3.3

<210>

<211> <212> 3763

DNA

<213> Homo sapiens

<400> 1						
	gagaagatgg	cgacttcgaa	caatccgcgg	aaattcagcg	agaagatcgc	60
gctgcacaat	cagaagcagg	cggaggagac	ggcggccttc	gaggaggtca	tgaaggacct	120
gagcctgacg	cgggccgcgc	ggctccaggg	ttccttgaaa	agaaaacagg	tagttaacct	180
atctcctgcc	aacagcaagc	gacccaatgg	ctttgtggac	aactcatttc	ttgatatcaa	240
aagaattcgt	gttggggaga	atctctctgc	aggacaaggt	ggcctccaaa	taaacaatgg	300
acaaagtcag	attatgtcag	ggaccttgcc	tatgagccaa	gcacccctgc	gaaagactaa	360
cactctgcca	tcccatacac	attctcctgg	caatggcctg	tttaacatgg	gcttaaagga	420
ggtaaagaag	gagccaggag	agactctgtc	ttgcagtaag	cacatggatg	gccaaatgac	480
ccaagagaat	atttttccta	ataggtacgg	agacgaccct	ggagaacaac	tgatggatcc	540
tgagctgcag	gaactgttca	atgaactgac	caacatatct	gtgcctccca	tgagtgacct	600
tgaactggag	aacatgatca	atgccaccat	aaagcaggat	gacccattta	acattgactt	660
gggtcagcaa	agccagagga	gcacacctag	gccctcctta	cccatggaga	aaatagtgat	720
caaaagtgaa	tactcaccgg	gcttgactca	gggcccctca	ggctctcctc	agctgaggcc	780
cccatcagct	ggccccgcat	tctccatggc	caactctgcc	ctctccactt	cgtctccaat	840
cccttcagtc	cctcagagcc	aggctcagcc	tcagacaggc	tccggagcaa	gccgggcctt	900
gccaagctgg	caggaagtat	cccatgccca	gcagctcaaa	cagatagctg	ctaatcgtca	960
gcagcatgcc	cggatgcagc	agcaccagca	gcagcaccag	cctaccaact	ggtcagcctt	1020
gccctcctct	gctggaccat	caccaggtcc	atttgggcag	gagaaaatcc	ccagcccttc	1080
ttttggtcag	cagacattca	gcccacagag	ctccccatg	cctggggtag	ctggcggcag	1140

cggccagtcg	aaagtaatgg	ctaactacat	gtacaaggcc	ggcccctcag	cccagggtgg	1200
gcacctagat	gtcctcatgc	agcaaaagcc	tcaggatctc	agtcgaagtt	ttattaacaa	1260
cccgcaccca	gccatggagc	cccgtcaggg	caacaccaag	cctttgtttc	attttaactc	1320
agatcaagcg	aaccagcaga	tgccttctgt	tttgccttcc	cagaacaagc	cttctctcct	1380
acactacacc	caacagcaac	agcagcaaca	gcagcagcag	cagcagcagc	agcagcagca	1440
acagcagcag	cagcagcaac	agcaacagca	acagcaacag	cagagttcaa	tttcagctca	1500
acaacagcaa	cagcagcaga	gctcaatttc	agcccaacag	cagcagcagc	agcaacaaca	1560
gcagcagcag	cagcaacaac	aacagcaaca	acagcagcag	cagcagcagc	aacaaccatc	1620
ttctcagcct	gcccaatctc	taccaagcca	gcctttgcta	aggtcacctt	tgccacttca	1680
gcaaaagctc	ctacttcagc	aaatgcagaa	tcagcccatt	gcaggaatgg	gataccaagt	1740
ctcccaacaa	cagagacagg	atcaacactc	tgtggtaggc	cagaacacag	gccccagtcc	1800
aagtcctaac	ccctgctcaa	atccaaacac	tggaagtggt	tacatgaact	cccagcaatc	1860
actgttgaat	cagcaattga	tgggaaagaa	gcagactcta	cagaggcaga	tcatggagca	1920
gaaacagcaa	cttcttctcc	agcagcagat	gctggctgac	gcggagaaaa	ttgctccaca	1980
agatcagata	aaccgacatt	tgtcaaggcc	acctccagat	tataaagacc	aaagaagaaa	2040
tgtgggcaat	atgcaaccaa	ctgctcagta	ttctggtggc	tcatccacaa	taagcttaaa	2100
ctctaaccag	gctttggcaa	acccagtttc	aacacacacc	attttaactc	ccaattccag	2160
cctcctgtct	acttctcacg	ggacaagaat	gccatcatta	tctacagcag	ttcagaatat	2220
ggggatgtat	ggaaatctgc	cttgtaatca	acctaacaca	tacagtgtca	cttcaggaat	2280
gaatcaattg	acccaacaga	gaaacccaaa	gcaattgtta	gcaaatcaaa	acaaccctat	2340
gatgccacgg	ccacctacct	tagggccaag	taataataac	aatgtagcca	cttttggagc	2400
tggatctgtt	ggtaattcac	aacaattgag	accaaattta	acccatagta	tggcaagcat	2460
gccaccacag	agaacatcaa	acgtaatgat	cacatccaac	acaactgcac	caaactgggc	2520
ctctcaagaa	ggaacaagca	aacagcaaga	agccctgacg	tctgcaggag	tccgcttccc	2580
cacaggtaca	cctgcagcct	ataccccaaa	tcagtcactg	caacaggcag	taggtagcca	2640
gcaattttcc	cagagggcag	tggctcctcc	taaccagtta	acaccagcag	tgcaaatgag	2700
acccatgaac	caaatgagcc	aaacactaaa	tgggcaaacc	atgggtcccc	tcaggggtct	2760
gaatctcaga	cccaatcagc	taagcacaca	gattttgcct	aatttgaatc	agtcaggaac	2820
agggttgaat	cagtcgagga	cgggcatcaa	ccagccacca	tccctgacgc	ccagcaattt	2880
tccttcaccc	aaccaaagtt	ccagggcttt	tcaaggaact	gaccacagca	gtgacttagc	2940
ttttgacttc	ctcagccaac	aaaatgataa	catgggccct	gccctaaaca	gtgatgctga	3000
tttcattgat	tctttattga	agacagagcc	tggtaatgat Page	gactggatga 2	aagacatcaa	3060

tcttga	tgaa atc	ttgggga	acaattccta	aagaagaaag	ggaagacaat	ttacaaactc	3120
caagca	ctaa aagg	gcagtat	attacagaaa	ctctgtagag	gctgaactgt	tgatgttcag	3180
gtggac	taca tgaa	agataac	atgcttaaaa	atggaaagca	gaaagtaact	gcagtgatga	3240
acattt'	tggt ccaa	aattctt	gttttaaatc	ttacacctga	aagtaaaata	ttgggatcac	3300
ttttcc	ctgt ctaa	aactcca	ggatacagta	tccaatttat	ccaaacagaa	ctgtggtgtc	3360
aatgtg	taat taa	ttgtgta	aaatagcctt	cccaagtttc	ttttccctg	gaaaataaaa	3420
aaggta	atag aacı	ttgtagt	ttatttaaac	cccatgtcat	gaggaggtac	tagttccaag	3480
caacaa	actc ctta	aatttgc	tctaatagat	aggtatggtt	taatctttcc	attgtgtctt	3540
ttcatt	taat ttto	cctgaag	cttgcaggat	agattgaaat	gttataggtt	tgtttggagt	3600
aaccaa	acag tato	gcaaatt	aagaaaaagc	cagagaacct	agaaaacatc	cagtggatta	3660
cagaat [.]	ttct tcc	ccatatt	cactcctcac	ttttacaatt	ttcccacaat	cctctacttc	3720
agtggg	atgc tgtg	gtctagt	gattaaacaa	aaatatagag	ctg		3763
<210> <211> <212> <213> <223>	2 73 DNA Unknown	one					
<400>	2 ggag atao	gttaac	tacctgttga	agcttgagca	ggtggttaat	ctatctcctg	60
	gttt ttt					-	73
<210> <211> <212> <213>	3 71 DNA Unknown						
<220> <223>	RNAi clo	one					
<400> atgtgca		cttctc	gctgaatgaa	gcttgattcg	gcgagaaggt	cgcgttgcac	60
gatcag	tttt t						71
<210> <211> <212> <213>	4 78 DNA Unknown						
<220> <223>	RNAi clo	one - an	itisense				
<400>	4			Page	3		

	221749.ST25	
gatcaa	aaaa ctgatcgtgc aacgcgacct tctgccgaat caagcttcat tcagcgagaa	60
gatcgc	gctg cacaatcg	78
<210> <211> <212> <213>	5 28 DNA Unknown	
<220> <223>	fragment of Mect1-MAML2 sequence	
<400> ttggca	5 ggag ataggttaac tacctgtt	28
	6 28 DNA Unknown	
<220> <223>	fragment of Mect1-MAML2 sequence	
<400> attgtg	6 cagc gcgatcttct cgctgaat	28
<210> <211> <212> <213>	7 28 DNA Unknown	
<220> <223>	fragment of Mect1-MAML2 sequence	
<400> attcage	7 cgag aagatcgcgc tgcacaac	28
<210> <211> <212> <213>	8 19 RNA Unknown	
<220> <223>	siRNA #1	
<400> ccuaucı	8 uccu gccaacagc	19
<210> <211> <212> <213>	9 19 RNA Unknown	
<220> <223>	complement to siRNA #1	
<400>	9 ggca ggagayagg	19

<210 <210 <210 <210	1> 2>	10 19 RNA Unkne	own														
<220 <223		siRN	4 #2														
<400 cag	_	10 uua a	accua	aucu	С												19
<210 <211 <211 <211	1> 2>	11 19 RNA Unkne	own														
<220> <223> complement to siRNA #2																	
<400> 11 gagauagguu aacuaccug												19					
<210 <211 <211 <211	L> 2>	12 1024 PRT Homo	sap ⁻	iens													
<400)>	12															
Met 1	Ala	Thr	Ser	Asn 5	Asn	Pro	Arg	Lys	Phe 10	Ser	Glu	Lys	Ile	Ala 15	Leu		
нis	Asn	Gln	Lys 20	Gln	Ala	Glu	Glu	Thr 25	Ala	Ala	Phe	Glu	Glu 30	val	Met		
Lys	Asp	Leu 35	ser	Leu	Thr	Arg	Ala 40	Ala	Arg	Leu	Gln	Gly 45	Ser	Leu	Lys		
Arg	Lys 50	Gln	٧a٦	val	Asn	Leu 55	Ser	Pro	Ala	Asn	ser 60	Lys	Arg	Pro	Asn		
G]y 65	Phe	۷al	Asp	Asn	Ser 70	Phe	Leu	Asp	Ile	Lys 75	Arg	Ile	Arg	val	G]y 80		
Glu	Asn	Leu	Ser	Ala 85	Gly	Gln	Gly	Gly	Leu 90	Gln	Ile	Asn	Asn	Gly 95	Gln		
Ser	Gln	Ile	Met 100	Ser	Gly	Thr	Leu	Pro 105	Met	Ser	Gln	Аlа	Pro 110	Leu	Arg		
Lys	Thr	Asn 115	Thr	Leu	Pro	Ser	ніs 120	Thr		Ser Page	_	G]y 125	Asn	ĠÌу	Leu		

Phe Asn Met Gly Leu Lys Glu Val Lys Lys Glu Pro Gly Glu Thr Leu Ser Cys Ser Lys His Met Asp Gly Gln Met Thr Gln Glu Asn Ile Phe 145 150 155 160 Pro Asn Arg Tyr Gly Asp Asp Pro Gly Glu Gln Leu Met Asp Pro Glu 165 170 175 Leu Gln Glu Leu Phe Asn Glu Leu Thr Asn Ile Ser Val Pro Pro Met 180 185 190 Ser Asp Leu Glu Leu Glu Asn Met Ile Asn Ala Thr Ile Lys Gln Asp 195 200 205 Asp Pro Phe Asn Ile Asp Leu Gly Gln Gln Ser Gln Arg Ser Thr Pro 210 215 220 Arg Pro Ser Leu Pro Met Glu Lys Ile Val Ile Lys Ser Glu Tyr 235 235 Pro Gly Leu Thr Gln Gly Pro Ser Gly Ser Pro Gln Leu Arg Pro Pro 245 250 255 Ser Ala Gly Pro Ala Phe Ser Met Ala Asn Ser Ala Leu Ser Thr Ser 260 265 270Ser Pro Ile Pro Ser Val Pro Gln Ser Gln Ala Gln Pro Gln Thr Gly 275 280 285 Ser Gly Ala Ser Arg Ala Leu Pro Ser Trp Gln Glu Val Ser His Ala 290 295 300 Gln Gln Leu Lys Gln Ile Ala Ala Asn Arg Gln Gln His Ala Arg Met 305 310 315 320Gln Gln His Gln Gln His Gln Pro Thr Asn Trp Ser Ala Leu Pro 325 330 335 Ser Ser Ala Gly Pro Ser Pro Gly Pro Phe Gly Gln Glu Lys Ile Pro 340 345 350 Ser Pro Ser Phe Gly Gln Gln Thr Phe Ser Pro Gln Ser Ser Pro Met 355 360 365Pro Gly Val Ala Gly Gly Ser Gly Gln Ser Lys Val Met Ala Asn Tyr Page 6

Met Tyr Lys Ala Gly Pro Ser Ala Gln Gly Gly His Leu Asp Val Leu 385 390 395 400 Met Gln Gln Lys Pro Gln Asp Leu Ser Arg Ser Phe Ile Asn Asn Pro 405 410 415His Pro Ala Met Glu Pro Arg Gln Gly Asn Thr Lys Pro Leu Phe His 420 425 430 Phe Asn Ser Asp Gln Ala Asn Gln Gln Met Pro Ser Val Leu Pro Ser 435 440 445 Gln Asn Lys Pro Ser Leu Leu His Tyr Thr Gln Gln Gln Gln Gln Gln 450 460 Gln Gln Gln Gln Gln Gln Gln Ser Ser Ile Ser Ala Gln Gln 485 490 495 Gln Gln Gln Gln Gln Ser Ser Ile Ser Ala Gln Pro Ser Ser Gln Pro Ala Gln Ser Leu Pro Ser 530 535 540 Gln Pro Leu Leu Arg Ser Pro Leu Pro Leu Gln Gln Lys Leu Leu Leu 545 550 555 560 Gln Gln Met Gln Asn Gln Pro Ile Ala Gly Met Gly Tyr Gln Val Ser 565 570 575 Gln Gln Gln Arg Gln Asp Gln His Ser Val Val Gly Gln Asn Thr Gly 580 585 Pro Ser Pro Ser Pro Asn Pro Cys Ser Asn Pro Asn Thr Gly Ser Gly 595 600 605 Tyr Met Asn Ser Gln Gln Ser Leu Leu Asn Gln Gln Leu Met Gly Lys 610 620

Page 7

221749.ST25
Lys Gln Thr Leu Gln Arg Gln Ile Met Glu Gln Lys Gln Gln Leu Leu
625 630 635 640 Leu Gln Gln Gln Met Leu Ala Asp Ala Glu Lys Ile Ala Pro Gln Asp 645 650 655 Gln Ile Asn Arg His Leu Ser Arg Pro Pro Pro Asp Tyr Lys Asp Gln 660 665 670 Arg Arg Asn Val Gly Asn Met Gln Pro Thr Ala Gln Tyr Ser Gly Gly 675 680 685 Ser Ser Thr Ile Ser Leu Asn Ser Asn Gln Ala Leu Ala Asn Pro Val 690 695 700 Ser Thr His Thr Ile Leu Thr Pro Asn Ser Ser Leu Leu Ser Thr Ser 705 710 715 720 His Gly Thr Arg Met Pro Ser Leu Ser Thr Ala Val Gln Asn Met Gly 725 730 735 Met Tyr Gly Asn Leu Pro Cys Asn Gln Pro Asn Thr Tyr Ser Val Thr 740 745 750 Ser Gly Met Asn Gln Leu Thr Gln Gln Arg Asn Pro Lys Gln Leu Leu 755 760 765 Ala Asn Gln Asn Asn Pro Met Met Pro Arg Pro Pro Thr Leu Gly Pro 770 775 780 Ser Asn Asn Asn Val Ala Thr Phe Gly Ala Gly Ser Val Gly Asn 785 790 795 800 Ser Gln Gln Leu Arg Pro Asn Leu Thr His Ser Met Ala Ser Met Pro 805 810 815 Pro Gln Arg Thr Ser Asn Val Met Ile Thr Ser Asn Thr Thr Ala Pro 820 825 830 Asn Trp Ala Ser Gln Glu Gly Thr Ser Lys Gln Gln Glu Ala Leu Thr 835 840 845 Ser Ala Gly Val Arg Phe Pro Thr Gly Thr Pro Ala Ala Tyr Thr Pro 850 855 860 Asn Gln Ser Leu Gln Gln Ala Val Gly Ser Gln Gln Phe Ser Gln Arg 865 870 875 880

Ala	٧al	Ala	Pro	Pro	Asn	Gln	Leu	Thr	Pro	Ala	val	Gln	Met	Arg	Pro
				885					890					895	

Met Asn Gln Met Ser Gln Thr Leu Asn Gly Gln Thr Met Gly Pro Leu $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$

Arg Gly Leu Asn Leu Arg Pro Asn Gln Leu Ser Thr Gln Ile Leu Pro 915 920 925

Asn Leu Asn Gln Ser Gly Thr Gly Leu Asn Gln Ser Arg Thr Gly Ile 930 935 940

Asn Gln Pro Pro Ser Leu Thr Pro Ser Asn Phe Pro Ser Pro Asn Gln 945 950 955 960

Ser Ser Arg Ala Phe Gln Gly Thr Asp His Ser Ser Asp Leu Ala Phe 965 970 975

Asp Phe Leu Ser Gln Gln Asn Asp Asn Met Gly Pro Ala Leu Asn Ser 980 985 990

Asp Ala Asp Phe Ile Asp Ser Leu Leu Lys Thr Glu Pro Gly Asn Asp $995 \hspace{1.5cm} 1000 \hspace{1.5cm} 1005$

Asp Trp Met Lys Asp Ile Asn Leu Asp Glu Ile Leu Gly Asn Asn 1010 1015 1020

Ser