

Reproduce of ESync

Paper: ESync: Accelerating Intra-Domain Federated Learning

in Heterogeneous Data Centers

Team: Li Kang(models&trainers), Zhao Tian.Y(state

server&deployment), Lee Sen.J(state server&architecture)

Date: 31th / October / 2024

Outline

- 1. Look Back at the Paper
- 2. Architecture Design
- 3. Algorithm Implementation
- 4. Experimental Evaluation
- 5. Appreciation

Background of the paper

Scenario and Feature

- Cross-device FL & Cross-Silo FL
 - Bandwidth-limited **inter-domain** networks (cross WAN),
 - Isolated parties (scale at hundreds or thousands),
 - Uneven and non-i.i.d data distribution.
- Novel scenarios: intra-domain FL in heterogeneous data centers
 - Sufficient bandwidth,
 - Highly heterogeneous computing power.

Idea

Combining the ideas of existing either synchronous or asynchronous algorithms, the paper proposes the **ESync** algorithm.

Fig. 7. ESync timeline with adaptive local iterations.

Visualization of the idea

Fig. 6. Illustration of (a) SSGD and (b) ESync in the early training, and (c) ESync in the later training.

How to implement ESync?

- A novel scheduler.
- An efficient synchronization algorithm (based on SSGD).
- Analyze the trade-off between convergence accuracy and communication efficiency.

Architecture Design Overview

- **State Server**: monitor the status and progress, coordinate the synchronization pace of all workers.
- Parameter Server: average the updates and synchronize the averaged updates to all workers.
- Workers: perform local updates and send their updates to the parameter server.

Fig. 2. Overview of the proposed architecture. ① The worker trains a local model on local data. ② The worker queries the next action from the state server. ③ The state server responds with the next action. ④ The worker pushes an update to the parameter server. ⑤ The worker pulls the averaged update from the parameter server.

State Server

State Server contains

- a message receiver, a message sender,
- a FIFO message queue,
 - buffer the received messages.
- a message router,
 - forward to the handlers
 accoring to msg_type field.
- a state database,
 - lock-free state table.
- and a set of message handlers.

Fig. 3. Implementation of state server.

Message Format & Message Types

- **state reset message**: initiated by the Parameter Server, to initialize the records in the state database.
- ~ report msg: initiated by the worker to synchronize its status and progress to State Server.
- ~ query msg: initiated by the worker to query State Server for the next action.
- response msg: used by State
 Server to inform the querying
 worker of the next action.

Fig. 4. The structure of message.

Algorithm Implementation

Project Overview

Dataset Selection

We chose to test the performance of the **ESync** algorithm in image classification training. So, we use the FashionMNIST, CIFAR10, etc. datasets for experiments.

StateServer Implementation

```
|--- StateServer/
|--- __init__.py
|--- settings.py
|--- urls.py # Django URL configuration file.
|--- wsgi.py # Django Entry Point.
|--- views.py # Core Functionality.
|--- manage.py
```

In the views.py, we implement the core functionality of the StateServer.

- Global variables: num_workers, records, t, epsilon.
- Functions: init_state_server(request), find_stragglers(),
 apply_for_aggregation(request), reset_state_server(request),

Models Implementation

```
|--- models/
|--- alexnet.py
|--- resnet.py
|--- ...
```

Due to the limitation of time, we conducted experiments using only alexnet and resnet from existing frameworks, adapted for training in federated learning with these frameworks.

Hyperparameters for resnet:

- learning rate: 0.001, local lr: 0.001, global lr: 1.0,
- batch size: 64, evaluation duration: 1,
- state server ip: 172.17.73.161, state server port: 9091. Reproduce of ESync | THU FL Project Presentation in 2024 fall

Trainer Implementation

```
|--- trainer/
|--- esync_trainer.py
|--- async_trainer.py
|--- sync_trainer.py
|--- local_trainer.py
```

Taking esync_trainer.py as example, it contains the implementation of a training process for a machine learning model in a distributed environment.

- Imports: time, requests, mxnet, utils.
- Variables: local_lr, global_lr, batch_size, etc.
- Training Loop: Batch Processing, Optimization, Global Synchronization.
- State Report, Response Handling, Evaluation(accuracy, loss, time).

Distributed Training

1. Start the StateServer.

```
python3 SimpleStateServer/manage.py runserver 0.0.0.0:10010
```

The state server will listen on port 10010 in the background to wait for the queries from workers.

2. Start the Schedulers.

```
> DMLC_ROLE=scheduler DMLC_PS_ROOT_URI=172.17.73.161 DMLC_PS_ROOT_PORT=9091 DMLC_NUM_SERVER=1 \
DMLC_NUM_WORKER=4 PS_VERBOSE=1 DMLC_INTERFACE=eth0 \
python3 main.py > scheduler.log &
```

Start the scheduler and listen on port 9091 to wait for the messages from workers.

3. Start the Servers.

```
> DMLC_ROLE=server DMLC_PS_ROOT_URI=172.17.73.161 DMLC_PS_ROOT_PORT=9091 DMLC_NUM_SERVER=1 \
   DMLC_NUM_WORKER=4 PS_VERBOSE=1 DMLC_INTERFACE=eth0 \
   python3 main.py > server.log &
```

The parameter server will create a TCP connection to the scheduler and complete registration automatically by specifying **DMLC_PS_ROOT_URI** and **DMLC_PS_ROOT_PORT** (the same as workers). The aggregation operations will be performed on GPU if **cpu** is set to *False*.

4. Start the Workers.

```
> DMLC_ROLE=worker DMLC_PS_ROOT_URI=172.17.73.161 DMLC_PS_ROOT_PORT=9091 DMLC_NUM_SERVER=1 \
DMLC_NUM_WORKER=4 PS_VERBOSE=1 DMLC_INTERFACE=eth0 \
  python3 main.py -m esync -g 0 -n resnet18-v1 -ll 0.001 -b 64 -dcasgd 0 -s 0
```


Dockerization

We provide a Dockerfile to build the image for the StateServer and the worker.

```
FROM python:3.6
COPY . .
RUN pip install -r requirements.txt
ENTRYPOINT ["python", "main.py", "-dd", "./data/"]
CMD ["-m", "local", "-c", "1", "-e", "1000"]
```

```
tonyzhao@rupa:~/ESync-master$ sudo docker build . -t esync
                   [sudo] password for tonyzhao:
                   [+] Building 29.7s (8/8) FINISHED
                   => [internal] load build definition from Dockerfile
                   => => transferring dockerfile: 271B
                   => [internal] load metadata for dockerproxy.net/library/python:3.6
                    => [internal] load .dockerignore
                    => => transferring context: 2B
                    => => transferring context: 2.58kB
                    => CACHED [1/3] FROM dockerproxy.net/library/python:3.6@sha256:f8652afaf88c25f0d22354d547d892591067aa4026a7fa9a6819df9f300af6fc
                    => [2/3] COPY . .
                    => [3/3] RUN pip install -r requirements.txt -i https://mirrors.sustech.edu.cn/pypi/web/simple
                    => exporting to image
                    => => exporting layers
                    => => writing image sha256:0426194aed524b82aadca7c036f2e11951d1e8c0514556ed04d32008b2d079aa
Reproduce of Estational to docker to /library/estation
```

16

Experimental Evaluation Experimental Setup

- Environment Setup:
- Models and Datasets: AlexNet, ResNet, CIFAR10, FashionMNist.
- Benchmark Algorithms: SSGD, ASGD.
- Training Hyperparameters: ...

Numerical Results

Thanks for your attention!