Installation

To install FragGeneScan, please follow the steps below:

- 1. Untar the downloaded file "FragGeneScan.tar.gz". This will automatically generate the directory "FragGeneScan".
- 2. Make sure that you also have a C compiler such as "gcc" and perl interpreter.
- 3. Run "makefile" to compile and build excutable "FragGeneScan" make clean make fgs

Running the program

1. To run FragGeneScan,

./run_FragGeneScan.pl -genome=[seq_file_name] -out=[output_file_name] -complete=[1 or 0] -train= [train_file_name] -thread=[num_thread]

[seq_file_name]: sequence file name including the full path [output_file_name]: output file name including the full path [whole_genome]: 1 if the sequence file has complete genomic sequences 0 if the sequence file has short sequence reads [train_file_name]: file name that contains model parameters; this file should be in the "train" directory. Note that four files containing model parameters already exist in the "train" directory. [complete] for complete genomic sequences or short sequence reads without sequencing error [sanger_5] for Sanger sequencing reads with about 0.5% error rate [sanger_10] for Sanger sequencing reads with about 1% error rate [454_5] for 454 pyrosequencing reads with about 0.5% error rate [454_10] for 454 pyrosequencing reads with about 1% error rate [illumina_5] for Illumina sequencing reads with about 0.5% error rate [illumina_10] for Illumina sequencing reads with about 1% error rate [num_thread]: number of thread used in FragGeneScan. Default 1.

2. To test FragGeneScan with a complete genomic sequence,

./run_FragGeneScan.pl -genome=./example/NC_000913.fna -out=./example/NC_000913-fgs -complete=1 -train=complete

[NC_000913.fna]: this sequence file has the complete genomic sequence of E.coli (NCBI gene predictions for this genome are available under the same folder example/)

3. To test FragGeneScan with sequencing reads,

 $./run_FragGeneScan.pl - genome = ./example/NC_000913-454.fna - out = ./example/NC_000913-454-fgs - complete = 0 - train = 454_10$

[NC_000913-454.fna]: this sequence file has simulated reads (pyrosequencing, average length = 400 bp and sequencing error = 1%) generated using Metasim

For illumina reads, please use illumina_5 or illumina_10 as the train model.

4. To test FragGeneScan with assembly contigs, ./run_FragGeneScan.pl - genome=./example/contigs.fna -out=./example/contigs-fqs -complete=1 -train=complete

Note: -complete=1 & -train=complete are used as the parameters.

5. To test FragGeneScan with whole genome, ./run_FragGeneScan.pl - genome=./example/NC_000913.fna -out=./example/NC_000913-fgs -complete=1 - train=complete

Output

Upon completion, FragGeneScan generates four files.

1. The first file is "[output_file_name].out", which lists the coordinates of putative genes. This file consists of five columns (start position, end position, strand, frame, score). For example,

```
gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome 108 440 - 3 1.378688 337 2799 + 1 1.303498 2801 3733 + 2 1.317386 3734 5020 + 2 1.293573 5234 5530 + 2 1.354725 5683 6459 - 1 1.290816 6529 7959 - 1 1.326412 8238 9191 + 3 1.286832 9306 9893 + 3 1.317067
```

2. The second file is '[output_file_name].ffn", which lists nucleotide sequences corresponding to the putative genes in "[output_file_name].out". For example,

gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome start=108 e nd=338 strand=-

GTTGTTACCTCGTTACCTTTGGTCGAAAAAAAAAAGCCCGCACTGTCAGGTGCGGGCTTTTTTCTGTGT
TTCCTGTACGCGTCAGCCCGCACCGTTACCTG

TGGTAATGGTGATGGTGGTAATGGTGGTGCTAATGCGTTTCATGGATGTTGTGTACTCTGTAATTT
TTATCTGTCTGTGCGCTATGCCTATATTGGT TAAAGTATTTAGTGACCTAAGTCAA

gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome start=343 e nd=2799 strand=+

TTGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAA GCAATGCCAGGCAGGGGCAGGTGGCCACCGTCC

TCTCTGCCCCGCCAAAATCACCAACCACCTGGTGGCGATGATTGAAAAAAACCATTAGCGGCCAGGA TGCTTTACCCAATATCAGCGATGCCGAACGTAT

TTTTGCCGAACTTTTGACGGGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAACTTTTCGTCGATCAGGAATTTGCCCAAATAAAACAT

GTCCTGCATGGCATTAGTTTGTTGGGGCAGTGCCCGGATAGCATCAACGCTGCGCTGATTTGCCGTG GCGAGAAAATGTCGATCGCCATTATGGCCGGCG

3. The third file is '[output_file_name].faa", which lists amino acid sequences corresponding to the putative genes in "[output_file_name].out". For example,

gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome start=108 e nd=338 strand=-

VVTSLPLVEKKSPHCQVRAFFCVSCTRQPAPLPVVMVMVVVMVVLMRFMDVVYSVIFICLCAMPILVK VFSDLSQ gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome start=343 e nd=2799 strand=+

LKFGGTSVANAERFLRVADILESNARQGQVATVLSAPAKITNHLVAMIEKTISGQDALPNISDAERIFAELL TGLAAAQPGFPLAQLKTFVDQEFAQIKH

VLHGISLLGQCPDSINAALICRGEKMSIAIMAGVLEARGHNVTVIDPVEKLLAVGHYLESTVDIAESTRRI AASRIPADHMVLMAGFTAGNEKGELVVLG

RNGSDYSAAVLAACLRADCCEIWTDVDGVYTCDPRQVPDARLLKSMSYQEAMELSYFGAKVLHPRTIT PIAQFQIPCLIKNTGNPQAPGTLIGASRDEDE

LPVKGISNLNNMAMFSVSGPGMKGMVGMAARVFAAMSRARISVVLITQSSSEYSISFCVPQSDCVRA ERAMQEEFYLELKEGLLEPLAVTERLAIISVVG

DGMRTLRGISAKFFAALARANINIVAIAQGSSERSISVVVNNDDATTGVRVTHQMLFNTDQVIEVFVIG VGGVGGALLEQLKRQQSWLKNKHIDLRVCGV

ANSKALLTNVHGLNLENWQEELAQAKEPFNLGRLIRLVKEYHLLNPVIVDCTSSQAVADQYADFLREGF HVVTPNKKANTSSMDYYHQLRYAAEKSRRKF

LYDTNVGAGLPVIENLQNLLNAGDELMKFSGILSGSLSYIFGKLDEGMSFSEATTLAREMGYTEPDPRD DLSGMDVARKLLILARETGRELELADIEIEP

VLPAEFNAEGDVAAFMANLSQLDDLFAARVAKARDEGKVLRYVGNIDEDGVCRVKIAEVDGNDPLFK VKNGENALAFYSHYYQPLPLVLRGYGAGNDVTA AGVFADLLRTLSWKLGV gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome start=2801 end=3733 strand=+

VKVYAPASSANMSVGFDVLGAAVTPVDGALLGDVVTVEAAETFSLNNLGRFADKLPSEPRENIVYQCW ERFCQELGKQIPVAMTLEKNMPIGSGLGSSAC

SVVAALMAMNEHCGKPLNDTRLLALMGELEGRISGSIHYDNVAPCFLGGMQLMIEENDIISQQVPGF DEWLWVLAYPGIKVSTAEARAILPAQYRRQDCI

AHGRHLAGFIHACYSRQPELAAKLMKDVIAEPYRERLLPGFRQARQAVAEIGAVASGISGSGPTLFALCD KPETAQRVADWLGKNYLQNQEGFVHICRLD TAGARVLEN

4. [output_file_name].gff gene prediction results in gff format.

License

Copyright (C) 2010 Mina Rho, Yuzhen Ye and Haixu Tang. You may redistribute this software under the terms of the GNU General Public License.