

By Saber Hakeem

Interactive E-learning Application

MAIN BOOK

2 nd SEC. 2023 FIRST TERM

Atomic Structure

Lesson One

From: Introduction of atomic structure.

Until: Before atomic emission spectra.

Lesson Two

From: Atomic emission spectra.

Until: Before the quantum numbers.

Lesson Three

From: The quantum numbers.

Until: Before principles of distributing electrons.

Lesson Four

From: Principles of distributing electrons.

Until: The end of the chapter.

The Periodic Table and Classification of Elements

Lesson One

From: The long form (modern)

periodic table.

Until: Before trends and periodicity of

properties in the periodic table.

Lesson Two

From: Trends and periodicity of

properties in the periodic table.

Until: Before metallic and nonmetallic property.

Lesson Three

From: Metallic and nonmetallic property.

Until: Before the oxidation numbers.

Lesson Four

From: The oxidation numbers.

Until: The end of the chapter.

18 Open Book exam models, including:

- Exam of the ministry of Education 2021
- Questions of the exam of 2020
- Guiding model of the Ministry of Education.
- * 15 exam models on the first term curriculum.

CHAPTER

Atomic Structure

Lesson One

From: Introduction of atomic structure.

Until: Before atomic emission spectra.

Lesson Two

From: Atomic emission spectra.

Until: Before the quantum numbers.

Lesson Three

From: The quantum numbers.

Until: Before principles of distributing electrons.

Lesson Four

From: Principles of distributing electrons.

Until: The end of the chapter.

Exam model on the chapter

Learning outcomes

Sy the end of this chapter, the student will be able to :

- . Recognize the historical background of atomic structure.
- · Describe the properties of cathode rays.
- · Discuss Rutherford's atomic model.
- · Resignize Bohr's atomic model.
- . Define the reasons of the inadequacy of Bohr's model.
- . Construes the modification introduced by the modern atomic theory.
- . Explain the concepts of electron cloud and orbital.
- · Define the four quantum numbers.
- Distribute electrons of any atom considering the building-up principle. Hund's rule and Pauli's exclusion principle Approximate the efforts of scientists in the development of chemistry.

Introduction of atomic structure

Until Before atomic emission spectra

Evolution of the concept of the atomic structure

Scientists were interested in studying the atomic structure

- Heisenberg.
- 2 Pauli.
- Schrödinger.
- O Bohr.

- O De Broglie.
- 6 Einstein.
- Planck.

Long time ago man wondered about the nature of matter and its structure ?!

Through the trials done by the scientists to answer this question across different eras, the concept of the atomic structure is evolved (developed).

In the following, the historical evolution of atomic structure concept will be discussed:

- Democritus's idea.
- Boyle's idea.
- Thomson's model of the atom.
- Bohr's model of the atom.

- Aristotle's idea.
- Dalton's model of the atom.
- 6 Rutherford's model of the atom.
- The modern atomic theory.

Democritus's (Greek philosopher) idea

He imagined the possibility of dividing any piece of matter to smaller parts, then dividing those parts into smaller particles and so on, until an indivisible (indestructible) fragment is obtained, he named it an "atom".

Gold dust

Gold atem

Note

atom in the Greek language is a word of two sections :

- a means no.
- tom means divide.

Democritus's atomic concept

2 Aristotle's idea (4th Century B.C)

- He rejected the former concept of the atom and believed that matter whatever its nature - is composed of four components, which are water, air, dust and fire.
- It was believed that cheap metals as iron or copper can be changed into precious ones as gold by changing the proportions of these four constituents.
- This illogical idea had blocked the development in chemistry science for more than thousand years, because the scientists were busy trying to change cheap metals into precious ones.

Boyle's idea (1661)

The Irish scientist Boyle rejected Aristotle's idea about the nature of matter and gave the first definition of the element.

Element is a pure simple substance that can't be changed to simpler forms by the traditional chemical methods.

Dalton's model of the atom (1803)

The English scientist John Dalton stated the first theory about the atomic structure.

The main postulates of Dalton's atomic theory

- 1 The element is composed of very minute particles, named atoms.
- The atom is a very minute indivisible solid particle.

Dalton's atom (solid, indivisible)

- The compounds are formed by the combination of atoms of different elements in simple numerical ratios.
- * This last postulate is known as the law of constant proportion which states that each compound always contains the same elements in the same proportion (by mass) no matter how different the method of its preparation.

Worked Example

32 g of sulphur react completely with 48 g of oxygen to form 80 g of sulphur trioxide. What is the mass of sulphur trioxide which is produced from mixing 16 g of sulphur with excess amount of oxygen under suitable conditions for the reaction?

Idea of answering:

The produced mass of sulphur trioxide = $\frac{80 \times 16}{32}$ = 40 g

Answer: The correct choice is (b)

Test Yourself

The opposite figure represents one of the postulates of an atomic theory that you have studied, these balls represent the atoms of two different elements. Whose theory is this?

- (a) Dalton.
- (b) Democritus.
- (c) Aristotle.
- (d) Boyle.

Idea of answering:

It is shown in the figure that the masses of the atoms of the same elements are but they from one element to another.

This is exactly one of the postulates of's theory.

Answer: The correct choice is

Thomson's model of the atom (1897)

The scientist Thomson carried out many experiments on the electric discharge through gases, from which he had discovered the cathode rays.

Discovery of cathode rays (1897):

- It was known that gases do not conduct electricity under normal conditions of pressure and temperature.
- However, gases conduct electricity in a discharge tube whose two electrodes are connected to an electric source with a suitable potential difference between its poles and under very low pressure.
- If the potential difference between the two poles of the discharge glass tube increases to around 10000 volts, a stream of invisible rays will be emitted from the cathode (the negative pole), causing a fluorescent glow on hitting the tube wall. These rays were named "cathode rays".
- It was later known that these rays are composed of minute particles named "electrons".

Properties of cathode rays :

- They are formed of very fine negatively charged particles with negligible masses (electrons).
- They move in straight lines (where their speed is lower than the speed of light).
- 1 They have a thermal effect.
- O They are affected by both electric and magnetic fields.
- They do not vary with the nature of cathode material, or that of the used gas, this is a strong evidence that they are a fundamental constituent of any matter. In the light of the electrical discharge experiment, Thomson suggested a new atomic model.

Move in straight lines

Negatively charged particles are affected by electric field

Affected by magnetic field

The postulate of Thomson's model

He considered the atom as a solid sphere of uniform positive electric charges in which a number of negatively charged electrons is embedded to make the atom electrically neutral.

Thomson's model of atom (solid)

Thomson's model of atom resembles a watermelon

Test Yourself

Dalton and Thomson agreed on that carbon atom

- a has no spaces within it.
- b is electrically neutral.
- © contains negative electrons.
- d is a homogenous sphere.

Answer: The correct choice is

6

Rutherford's model of the atom (1911)

Rutherford's students Geiger and Marsden had performed his famous laboratory experiment.

Rutherford's experiment

The used tools:

- A deep lead box containing a source of alpha particles inside it.
- A metal sheet lined with a layer of zinc sulphide ZnS
- A very thin gold foil.

Note

Zinc sulphide ZnS is used in detecting the invisible alpha particles, as they glow (flash) at the positions where they collide with this substance

The procedure:

- The positive alpha particles (α) were allowed to collide with the metal sheet, where it was possible to define the location and the number of alpha particles by counting the flashes which appeared on the metal sheet.
- A very thin gold foil was placed between the beam of alpha particles and the metal sheet.

• Rutherford recorded his observations and reached the following conclusions:

Observations:

- (1) The appearance of a large number of flashes at the same positions where they appeared before placing the gold foil.
- (2) The appearance of some flashes on the other side of the metal foil (in front of the foil).
- (3) The appearance of some flashes on both sides of the position where they appeared before and after placing the gold foil.

Explanations:

- * The penetration of the majority of α-particles through the gold foil without deflection.
- * A very small percentage of α-particles did not penetrate the gold foil and reflected (bounced) back.
- * A small fraction of α-particles penetrated the foil but deflected from their path (where one α-particle of every 20000 emitted particles deflected from its path).

Conclusions:

- * Most of the atomic volume is an empty space (i.e. the atom is not a solid ball as proposed by Dalton and Thomson).
- * The atom contains a tiny part of a very high density, and most of the atomic mass is concentrated in this part (was named the nucleus).
- * The dense part of the atom
 (where most of the atomic
 mass is present) has a positive
 charge similar to that of
 α-particles, so they are
 repelled on approaching to
 this part (the nucleus).

Based on his experiment and other else, Rutherford designed the first atomic model on trial basis.

The postulates of Rutherford's atomic theory

1 Atom:

- It is an extremely small sized particle.
- It has a complicated structure which resembles the solar system, since it's composed of a central nucleus (representing the sun), and the electrons revolve around it (representing the planets).

2 Nucleus:

- It is much smaller than the atom and most of the atomic mass is concentrated in it.
- There is a vast space between the nucleus and the orbits of electrons (i.e. the atom is not solid).
- It is positively charged.

Rutherford's atomic model

(1) Electrons :

- They have negligible mass compared to that of the nucleus.
- Their charge is negative and equals the nuclear positive charge (i.e. the atom is electrically neutral).
- They travel around the nucleus at a tremendous speed in special orbits, despite the mutual attraction between them and the nucleus. This attraction force is equal in quantity and opposite in direction to the centrifugal force resulting from their revolving around the nucleus, that is why the electron doesn't fall into the nucleus in spite of the attraction between them.

Drawback of Rutherford's atomic model

Rutherford's theory had failed to explain the atomic structure, because it didn't explain the system in which electrons revolve around the nucleus.

Worked Example

The opposite figure represents the path of a beam of α-particles between two metal sheets in vacuum conditions.

What happens to the reading of the sensitive instrument upon charging the two metal sheets with different charges ?

Metal sheet a - phase !... Source of Sensitive instrument α - particles to detect number of Metal sheet particles

- a It does not change.
- (b) It increases.
- (c) It decreases.
- d It increases for a period of time, then it returns to the initial reading.

Idea of answering:

- : Alpha particles are positively charged.
- .. Upon charging each metal sheet with a different charge, alpha particles repel the positively charged metal sheet drifting away from the sensitive instrument,

Answer: The correct choice is ©

Included information	NET	Incl	uded	info	rmai	ion
----------------------	-----	------	------	------	------	-----

- The scientists verified the presence of the electrons, the protons and the neutrons in the atom throughout the 19th and 20th centuries.
- When a beam of each of these particles is passed through an electric field,
 the following will happen:
 - Neutrons :

They are not deflected (continue in a straight line), as they are electrically neutral.

Protons:

They are deflected towards the negative electrode, as they are positively charged.

• Electrons:

They are deflected towards the positive electrode, as they are negatively charged.

• Electrons are deflected more strongly than the protons, as the mass of the electrons is negligible compared to that of the protons.

Test Yourself

Which of the following are not deflected by the effect of the charged plates?

- (a) Cathode rays.
- (b) Alpha particles.
- © Protons.
- (d) Hydrogen atoms.

Idea of answering:

- : Cathode rays are charged.
- .. The choice (a) is excluded.
- : Each of alpha particles and protons are charged.
- .. The choices (b) and (c) are excluded.

Answer: The correct choice is

Ready Preliminary questions to remember the principal concepts in the lesson

Answer them yourself

Choose the correct answer for each of the following sentences:	Choose	the	correct	answer	for	each o	of the	following	sentences	
--	--------	-----	---------	--------	-----	--------	--------	-----------	-----------	--

(1) Who is the scient	ist who believed that m	atter is composed of wa	ater,
dust, air and fire	?		
a. Bohr.	b. Rutherford.	c. Dalton.	d. Aristotle.
(2) What is the name	of the scientist who wa	s the first to define the	atom?
a. Dalton.		c. Democritus.	
(3) The scientist who	hypothesized that the c	compounds are compose	
combined in a sin	nple numerical ratio is	pounds are compose	ed or certain element
a. Dalton		b. Schrödinger	
c. Thomson		d. Bohr	
(4) Electric discharge	experiment of Thomas	n proved that the atom	
a. is solid.	i inomso	n proved that the atom	, .
b. contains a vast	space.		
c. contains a posit	ively charged and		
d. contains negati	vely charged electrons.		
(5) Which of the follow	win-	conducts electricity ?	
a. Hydrogen gas a	normal conditions.	conducts electricity s	
b. Neon gas upon	its decomposition.	otecutetty ?	
"Eval Edy Hoda	er flacturer		
d. Chlorine gas up	r high pressure and low	Voltage	
6) The cathode rays	inigh pressure and low der low pressure and his consist of very fine parti	gh voltage.	
a. electrons,	consist of very fine parti	cles called	
c. α-particles.		b. protons,	
18		d. photons.	

(7) Which of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved that the example of the following properties is the strong evidence which proved the example of the following properties is the strong evidence which is the following properties in the following properties is the strong evidence which is the following properties in the strong evidence which is the following properties in the strong evidence which is the strong evidence	
b. They move in straight lines.	
c. They consist of very fine particles.	
d. They are not different either in behavior or in nature, even if the material of th	e
cathode is changed.	
(8) Which of the following rays are deflected towards the positive pole when they ar	e
affected by the electric field?	
a. Alpha. b. Cathode. c. Gamma. d. X-rays.	
(9) The scientist (1) stated the first atomic theory, while the scientist (2) designed the first atomic model on trial basis.	
Which of the following identifies who the two scientists are?	
Choices Scientist (2)	
a. Dalies Thomson	
b. Dition Rutherford	
c. Rutherford Dalton	
d. Rutherford Thomson	
(10) The metal sheet used in Rutherford's experiment is lined with a layer of	
a. ZnS ₂ b. ZnSO ₃ c. Zn ₂ S d. ZnS	
(11) In Rutherford's experiment, the deflection of a small fraction of α-particles show	vs that
the atom contains	
a. electrons. b. protons. c. nucleus. d. neutrons.	
(12) Rutherford's theory proved for the first time that the atom	
a. is indivisible. b. is electrically neutral.	
c. contains a vast space. d. is solid.	
(13) The scientist who discovered that the electrons have a negligible mass	
compared to that of the nucleus is	

Open book questions

Answer

The scientist who refused the perception that matter is composed of atoms is

- - (a) Democritus.
 - b Dalton.
 - Anstotle.
 - (d) Bohr.

What is the choice which represents Boyle's idea about the element?

Dalton's model of the atom

- 6 Each of the following is among Dalton's theory postulates, except that.
 - (a) atoms of the elements contain protons, neutrons and electrons.
 - (b) the masses of the atoms of the same element are similar.
 - (c) the atom is indivisible.
 - (d) each element is formed of tiny particles called atoms.
- Which of the following examples agrees with Dalton's postulates?
 - (a) The atoms which are found in a sample of chlorine resemble those which are found in
 - (h) The properties of the molecules of hydrogen and oxygen differ from their properties in

 - (c) Hydropen can combine with oxygen to form water in more than one numerical ratio.

	Which of the following facts does not mate	ch Dalton's atomic model ?
E	(a) The mass of each atom of copper atoms equa	ıls 63.5 u
	(b) The mass of iron atom is less than that of co	pper atom.
	© Uranium-285 nucleus undergoes fission form	ning lead.
	d Hydrogen molecule is composed of two ator	ns.
6	The opposite figure represents one of	5.55 g of hydrogen gas
	the postulates of an atomic theory you have	of hydrogen gas
	studied. Whose theory is this?	Combination
	a Thomson's.	
	b Bohr's.	of oxygen gas 49.95 g
	© Dalton's.	of water
	d Rutherford's.	
5	The ratio of the number of hydrogen atoms to	that of nitrogen atoms in ammonia
	molecule is 3:1, this is consistent with one of	the postulates of
	a Thomson's theory.	Rutherford's theory.
	© Bohr's theory.	Dalton's theory.
8	\bigcirc What is the mass ratio of carbon $\{C = \pm 2\}$ t	o hydrogen [H = 1]
	in methane CH ₄ ?	
	a 1:4	3:2
	©3:1	1)4:1
9	2 48 g of oxygen react completely with 32 g o	of sulphur to form 80 g of sulphur trioxide
	What is the mass which remains in the contain	ner after the end of the reaction,
	produced from adding 100 g of oxygen to 16 $\mathfrak g$	g of sulphur in suitable conditions
	for the reaction ?	
	(a) 40 g) 16 g
	© 100 g	1) 116 g
U	Dalton concurred Democritus that	
	a) the element has no atoms.	
	b the compound is formed by the combination	of its elements in constant ratios.
	c the atom contains a vast space.	
	d the atom is indivisible.	

Thomson's model of the atom

- Electrical neutrality was first mentioned in a Democritus's perception of matter.
 - (b) Dalton's atom.
 - © Boyle's concept of matter.

- (d) Thomson's atom.
- When the potential difference between the two electrodes of a discharge tube reaches around 10000 volts, it is noticed that
 - a) the electrical conductivity of the gas in the tube decreases.
 - (b) the resistance of the gas in the tube to the electron passage increases.
 - © a flash occurs at the cathode on the wall of the discharge tube.
 - d a flash occurs at the anode on the wall of the discharge tube.
- 13 Particle like character of cathode rays is indicated by
 - a) their ability to move in straight lines.
 - (b) their ability to induce flashes on the sensitive plates.
 - their deviation when passed in an electric or a magnetic field
 - d) their thermal effect.
- The apparatus which is illustrated in the opposite figure does not produce cathode rays. What is the modification which should be introduced to obtain the rays?
 - (a) Altering the connection of the electrodes of the source of electricity.
 - (b) Heating the anode instead of the cathode.
 - © Using an alternating current source instead of direct current source.
 - (d) Discharging the air from the tube.
- (IS) Which of the following represents the electrical discharging experiment, and the properties of the produced cathode rays?

Choices	Source of the cathode rays	Effect of an electrical field on these rays
(a)	The position	
b	The negation	and deviated towards the positive electrod
C	The position	The rays are deviated towards the negative electrod
(1)		THE LINE STEP CO.
7	3000	The rays are deviated towards the negative electrod

d	All the following are among the properties of the cathode rays, except being
	(a) a stream of electrons.
	(b) charged particles.
	© moving at the speed of light.
	d deflected by the effect of a magnetic field.
0	7 Cathode rays have
	a mass only. (b) charge only.
	© neither mass nor charge.
	Rutherford's model of the atom
0	8 Rutherford's model of atom
	a) is the recently accepted model of atom.
	b assumed that the atom is solid.
	© explained the unique atomic spectrum of the different elements.
	d assumed that the charge of the electrons equals the charge of the nucleus.
1	9 Which of the following postulates belongs to Rutherford's model but not Thomson's?
	a The atom is a sphere of uniform positive electric charges.
	(b) The atom contains negatively charged electrons.
	© The atom contains a positively charged nucleus.
	d The atom is electrically neutral.
2	Which of the following observations shows the invalidity of the claim that the atom is
	solid, as presumed by Thomson and Dalton ?
	a Deviation of some alpha particles upon collision with the gold foil.
	b Penetration of a small fraction of alpha particles upon collision with the gold foil.
	© Reflection of a small percentage of alpha particles upon collision with the gold foil.
	d Appearance of flashes on the sensitive plate behind the gold foil after falling of
	alpha particles on it.
2	The gold foil experiment which was carried out in Rutherford's lab
	a confirmed Thomson's atomic theory.
	(b) is the base for Dalton's theory.
	© led to discovering the nucleus of the atom.
	d included using of a source of beta particles.

After carrying out Rutherford's experiment using a foil of gold and alpha particles.

- All the following were concluded, except
 - (a) the small size of the nucleus of the atom.
 - b) the charge of the nucleus.
 - c) the atomic masses of the elements.
 - d the presence of the electrons around the nucleus.
- When alpha particles and cathode rays are exposed to an electric field or a magnetic field, they
 - a move with the same speed.
 - b pass in opposite directions from each other.
 - (c) pass together in the same direction.
 - (d) are not affected by either of them.
- Each of the following is passed in an electric field:
 - (1) Aipha rays.

- (2) Cathode rays.
- (3) A group of the nuclei of the atoms of different elements.

Which of the following expresses the path of each of (1), (2) and (3) in this field?

Choices	(1)		
(3)	Deviated towards	(2)	(3)
(a)	the positive pole	Take a straight path	Deviated towards
6	Deviated towards	Deviated towards	the negative pole
©	the negative pole Deviated towards	the positive pole Deviated towards	Take a straight path
(1)	Deviated towards	the positive pole Deviated towards	Deviated towards the negative pole
In Rutheri	the positive pole	the positive pole	Deviated towards

alpha particles which alpha particles to that of alpha particles which bounced back is

- (b) less than 1
- © equal to 1
- d infinite number.

The failure of Rutherford's atomic model is attributed to that it did not explain

- (a) the nature of the movement of the electrons around the nucleus.
- (b) the presence of a nucleus in the atom.
- (c) the presence of attraction forces between the protons and the electrons.
- (d) the presence of space between the nucleus and the electrons.

The illustrated experiment was carried out in a laboratory.

What is the effect of replacing the copper wire with an iron wire on the rays amitted from it? Explain.

Which of alpha particles (A . B or C) will flash at the same position before and after placing the gold foil?

Explain your answer.

- The opposite figure illustrates falling of three α-particles on a gold foil :
 - Particle (A): Moves towards the nucleus of the atom of gold.
 - Particle (B): Moves close to the nucleus of the atom of gold.
 - Particle (C): Moves in the space surrounding the nucleus of the atom of gold.
 - (1) Complete the path of the three particles on the figure.
 - (2) Show the importance of using a huge number of α -particles in this experiment.

Atomic emission spectro

- On heating atoms of a pure element in gaseous or vapor state to high temperatures or exposing them to a low pressure inside an electrical discharge to the mit a radiation called emission spectrum (line spectrum).
- On examining this radiant light by a device called spectres and the state it is composed of a limited number of restricted colored lines separated by slock areas. So, it is called line spectrum.
- The line spectrum is characteristic for each element, this means there are no two elements with the same line spectrum, and this is due to the difference in the atomic number (number of protons) from one element to another.

pplication The line spectrum of hydrogen atom.

* The line spectrum of hydrogen atom appears during examination as four colored lines separated by dark areas, as in the following figure:

Visible line spectrum of hydrogen atom consists of four coloured lines * It is noteworthy to know that the physicists - at that time - were not able to explain this

6

Test Yourself

The line spectrum differs from an element to another due to

- (a) the difference in the number of neutrons in each of them.
- (b) the difference in the mass number of each of them.
- (c) the difference in the electronic configuration of each of them.
- (d) the difference in the number of valence electrons in each of them.

Idea of answering:

Answer: The correct choice is

7/

Bohr's atomic model (1913)

The study of atomic spectra is considered the key which solved the puzzle of the atomic structure. That was achieved by the Danish scientist Niels Bohr upon which he was rewarded the Nobel Prize in 1922

Bohr's postulates

A Points that agree with Rutherford's postulates

- A positively charged nucleus exists in the center of the atom.
- The number of negative electrons (revolving around the nucleus) equals the number of positive protons inside the nucleus.
- During the revolving of the electron around the nucleus, a centrifugal force arises which is equivalent to the attraction force of the nucleus on the electron.

Bohr's model of atom

B New postulates

- Electrons orbit the nucleus in a rapid movement without emission or absorption of any amount of energy and the atom in this case is named stable atom.
- S Electrons orbit the nucleus in definite allowed energy levels. They cannot be found in the regions between these levels, where the electron moves from an energy level to another one via a complete jump.
- depending on the distance between its energy level and the nucleus, the energy level increases as its radius increases. Each energy level is expressed by an integer number called the principal quantum number (n), and the electron revolves in the lowest allowed energy level in its ground state.
- When the electron acquires a quantity of energy - known as quantum by heating or by electric discharge, the electron jumps temporarily to a higher energy level. This is in case that the absorbed quantum of energy is equal to the difference in energies between the two levels, and the atom in this case is known as "excited atom". Since the electron in the excited atom is unstable, it returns back to its original level with emission of the same quantum of energy (photon) in the form of radiant light that appears in the form of a characteristic visible spectral line of a certain wavelength and frequency in addition to other invisible lines.

Electron transition from an energy level to another one takes place via a complete jump

Presuming that the electron can gain or lose fractions of a quantum $(\frac{1}{4} \text{ quantum or } \frac{1}{2} \text{ quantum})$.

The acquired amount of energy (the quantum)
when an electron transfers from its
ground state to the excited state
cquals the amount of energy which is released
when this electron returns back to
its ground state level.

- A lot of atoms absorb different amounts of energy (quanta) in the same time that a lot of excited atoms release other quanta producing spectral lines. These spectral lines indicate the energy levels from which their electrons are transmitted back to the ground state.
- * The opposite figure represents
 the line spectrum of hydrogen
 atom which consists of four
 coloured lines indicating
 the higher energy levels from
 which the electrons transfer to
 the second energy level only.

The visible line spectrum of hydrogen atom consists of four coloured lines (The wavelength of the visible spectrum ranges between 410:656 nm)

Worked Example

The spectral line of hydrogen atom consists of 4 coloured lines. Which of these lines has the highest frequency?

- a Green.
- (b) Blue.
- C Red.
- d Violet.

Idea of answering:

- .. The wavelength is inversely proportional to the frequency.
- The frequency of the violet light is the highest, as its wavelength is lower than those of the other visible spectral lines.

Answer: The correct choice is (d)

Included information

 Transferring the electron of hydrogen atom from higher energy levels to the lower energy levels forms series of electromagnetic radiations,

as shown in this table:

• The transference of the excited electron in hydrogen atom to its original energy level is accomplished by one jump or several successive jumps.

	Electron tra	Spectrum region		
Series	From (n)	To (n)	opean any region	
First	2,3,4,		Ultraviolet (Invisible)	
Second	3,4,5,	2	Visible spectrum	
Third	4.5.6	3	Infrared	
Fourth	5.6.7	4	(Invisible)	

Worked Example

The opposite figure illustrates some travels of the electron of an excited hydrogen atom between the different energy levels.

Which of these travels produces a spectral line of hydrogen atom?

- (a) A
- (b) B
- © C
- (d) D

(C) (A)

Idea of answering:

The spectral line of hydrogen atom is formed when the excited atom is transferred from higher energy levels to the second energy level only.

Answer: The correct choice is ©

Notes

The amounts of energy required to transfer an electron between the different energy levels are not equal, because the distance and the difference in energy between them are not equal.

Emitted light

Transference of an electron between two close energy levels

The quantum required to transfer an electron from an energy level to another decreases as we go farther from the nucleus,

because the energy gap decreases, as we go farther from the nucleus.

(Short wavelength)
Transference of an electron between two
distant energy levels

Test Yourself

What does happen to the spaces between energy levels on moving from (n = 1) to (n = 7)?

- a Decrease by increasing (n).
- b Do not change.
- © Increase by increasing (n)
- d Change irregularly.

Answer: The correct choice is a

Warked Example:

Which of the following transfers of the electron of hydrogen atom is accompanied by releasing the largest amount of energy ?

(a)
$$n = 4 \longrightarrow n = 2$$

(b)
$$n = 5 \longrightarrow n = 4$$

$$(c)$$
 n = 2 \longrightarrow n = 1

(d)
$$n = 4 - n = 3$$

Idea of answering:

- The difference in energy (the energy gap) between two consecutive energy levels decreases as the distance from the nucleus increases.
- The difference in energy between the second energy level (n = 2) and the first energy level (n = 1) is the highest.

Answer: The correct choice is ©

The advantages and drawbacks of Bohr's atomic model Despite the great efforts of Bohr to formulate his atomic model, the quantitative calculations

of his theory didn't match all the experimental results.

Advantages (success) of Bohr's atomic model:

- 1 trintroduced the idea of quantized energy to determine the electron energy in different energy levels in the atom.

Drawbacks of Bohr's atomic model:

The most important defects of Bohr's theory were the following:

- 1 It failed to explain the spectrum of any other element, except hydrogen atom which is the simplest electronic system, where it contains one electron only.
- 1 It considered the electron as a negative charged particle only and ignored its wave properties
- 1 It presumed that it is possible to determine precisely both the location and speed of an electron at the same time, but in fact this is experimentally impossible.
- It described the electron as a particle moving in a circular planar octor this means that hydrogen atom is planar. Later on, it was proved that the hydrogen atom has three dimensional coordinates.

Worked Example

Bohr's atomic model can be applied to

- a, Na 10+ ion.
- b He atom.
- (c) Be2+ ion.
- (d) C⁶⁺ ion.

idea of answering :

- Bohr's atomic model can be applied to an atom (or an ion) that contains only one elector
- ... It can be applied to sodium ion which carries 10 positive charges Na 10+, as it contains only one electron (the atomic number of sodium is $_{11}Na$).

Answer: The correct choice is (a)

A

1

TI

A

B C

W T T

ξl

В

Be

the ap

an

"11

So. Thi

Hei The

the

The

the:

(a) ((c) (

Ans

The principles of modern atomic theory (modified Bohr's model)

The modern atomic theory is based on some essential modifications of Bohr's model.

Among the most important modifications are the following:

- A The dual nature of electron.
- B The Heisenberg uncertainty principle.
- The wave-mechanical theory of the atom.

The dual nature of electron

All the previously mentioned theories considered the electron just as a tiny negatively charged particle. However, all experimental data showed that the electron has a dual nature, as it is a material particle which also has wave properties.

De Broglie

The dual nature of electron

The electron is a material particle which has wave properties.

The Heisenberg uncertainty principle

Bohr's theory presumed that it is possible to determine both the location and velocity of the electron precisely at the same time, but by applying the principles of quantum mechanics, Heisenberg concluded that "the determination of both the velocity and position of

an electron at the same time is practically impossible.

So, to speak in terms of "probability" seems to be more precise".

This is because the electron wave motion doesn't have a certain location.

Heisenberg uncertainty principle

The determination of both the velocity and position of an electron at the same time is practically impossible and this is subjected to the laws of probabilitu.

Test Yourself

The approximate probable percentage of the possibility of determining the position and the speed of an electron whose mass is 9.1×10^{-31} kg together precisely is

(a) 0.0001%

(b) 0.01%

(c)0.1%

Answer: The correct choice is

The wave-mechanical theory of the atom

The Austrian scientist Schrödinger (1926) applied the ideas of Planck,

Emstein, De Broglie and Heisenberg and could:

- Establish the wave-mechanical theory of the atom.
- Derive a wave equation that could be applied to the electron movement in the atom.

On solving Schrödinger's equation, it is possible to:

- Determine the allowed energy levels.
- Define the regions of space around the nucleus, where it is most probable to find the electron in each energy level.
- The wave-mechanical theory changed our concept about the movement of electron, where instead of speaking about the regions between the fixed circular orbits as being completely forbidden for the electrons, this theory introduced the companies of:

Electron cloud

It is the region of space around the nucleus, in which the electron probably exists in all directions and distances (dimensions) (region A).

It is the region within the electron cloud which has high probability of finding the electron (region B).

Application

- Beryllium atom 4Be contains :
 - 2 electrons in level K
 - 2 electrons in level L

Schrödinger

Electron cloud and arbital concepts in ha

Worked Example

What is the correct choice representing each of (X) and (Y) in the opposite figure ?

Choices (X)		(Y)
(a)	Orbital	Orbital
b	Orbit	Electron cloud
0	Orbit	Orbital
d	Orbital	Orbit

Idea of answering:

- : (X) indicates a definite level around the nucleus in which the electron can be found.
- : (X) represents an orbit.
- .. The choices a and d are excluded.
- : (Y) indicates a high probability of finding the electron.
- : (Y) represents an orbital.
- .. The choice (b) is excluded.

Answer: The correct choice is ©

Atomic model	Dalton's	Thomson's	Rutherford's	Bohr's	Modern atomic theory
Atom	 Solid indivisible particle Masses of the atoms of the same element are similar, but they differ from one element to another, 	 Solid sphere of uniform positive electric charges in which a number of negatively charged electrons are embedded resulting in making the atom neutral. 	* Electrically neutral. *	(not solid) I-lectrically neutral Planar.	Contains a vast space (not solid). Electrically neutral.
Nucleus	Was not mentioned yet	Was not mentioned yet	• Much smaller than the atom.	Much smaller than the atom.	Positively charged. Much smaller than the atom. Most of the mass of the atom is contained in it.
Electrons	Were not mentioned yet	Negatively charged particles embedded in the atom.	charged particles, and their total	 Negatively charged material particles (no wave properties yet). They orbit the nucleus in definite orbits, and can not be found in the spaces between these orbits (forbidden regions). The energy of the electron increases as the distance from the nucleus (the radius of its energy) 	 Material particles having wave properties (Dual nature of the electron). It is not possible practically to determine both the velocity of an electron and its position at the same time, so this is desembed as probability distribution (uncertainty principle). The region around the nucleus in which the electron probably exists in all dimensions is called the electron cloud.
			* Their mass is negligible compared to that of the nucleus.	level) increases. * When an electron gains a quantum of energy, it jumps to a higher energy level, and the stable atomic surprised.	* The three dimensional region of space that indicates where there is a high probability of finding at
	The atoms of the different elements combine with each other in simple numerical ratios forming the compounds.		* This theory could not elucidate the system of revolving the electrons around the nucleus.	than hydrogen atom.	1

a. Geiger and Marsden.

Preliminary questions to remember the principal concepts in the lesson

b. Boyle and Dalton.

Answer them yourself

Choose the correct answe	for each of	the following	sentences:
--------------------------	-------------	---------------	------------

(1) Who are the two scientists who agreed on that most of the atom is empty space?

c. Thomson an	c. Thomson and Bohr.		d. Rutherford and Bohr.	
(2) On heating gas	ses or vapors to a high tem	perature under low pres	ssure, they	
a. absorb light	•	b. emit visible or invisible rays.		
c. emit gamma	rays.	d emit alpha parti		
(3) When an electronic	ron absorbs a quantum, it	will transfer to		
a. all higher er	iergy levels.			
b. all lower en	ergy levels.			
c. a higher ene	rgy level fits with the abs.	obel quantum.		
d, a lower ener	rgy level fits with the	Post cumum.		
(4) When the elect		. ⇔aşınal en	ergy levels,	
a. α -particles		¹ D-particles		
e, energy in the	form of line spectra	4 7-rays		
(5) The dual nature	e of the electron means th:			
a, a mass and a		a charge and a wave motion.		
c. a volume and a wave motion.		d a mass and a density.		
(6) The scientist w	ho presumed that it is pos	sible to determine both	the speed and made	
of an electron to	ogether precisely is	**	me speed and position	
a. Heisenberg.		b. Thomson.		
c. Bohr.		d. Boyle.		
the them that the	ne of the scientist who des re forbidden for the electro	stroyed Bohr's belief thons?	at there are regions in	
a. Boyle.	b. Heisenberg.	c. Schrödinger.	d. De Broglie.	

Atomic emission spectra (Line spectra) The line spectrum of an element is characteristic, as no two elements can have the same (a) atomic number. atomic mass. physical state. physical properties. What is the scientific contribution which led to concluding the electron configuration of the elements? (a) Boyle's perception of the element. (b) Analyzing the light emitted from the atoms when they acquire energy. (c) Thomson's atomic model. (d) Rutherford's atomic model. All the following are correct, except (a) the line spectrum of hydrogen atom is formed of four 114 (b) electrons have dual nature. © Bohr's atomic model introduced the concept of quantum to accept d in case of not gaining or losing energy, the atom is described to be stable. According to Bohr's theory, the orbit in which the electron revolves can be determined a) the electron mass. the electron charge. b) the electron energy. d) the nucleus charge. Which of the following graphical figures represents Bohr's concept of the orbit? Probability of presence of the electron Probability of presence of he electron Probability of prevence of he electron Appellin of presence of Distance between the electron and Distance between the nucleus the electron and Distance between the nucleus the electron and Distance between

38

the nucleus

C

the electron and

the nucleus

6	Through studying the line spectrum of an atom, it is possible to know
	a) the isotopes of the element atom.
	b) the energy levels in the atom.
	c the composition of the atom nucleus.
	d the number of the neutrons inside the atom nucleus.
5	Each of the following is correct for the electron, except
	a) the electron in the lower energy level absorbs energy to
	transfer to a higher energy level.
	b the amount of energy which is emitted from the excited electron equals the amount of
	energy which is absorbed by the same electron to reach the same state of excitement.
	c the electron in the first energy level can be at infinite distance from the nucleus.
	d electron can absorb different quanta of energy.
8	The excited electron tends to
	a absorb energy to return to its ground state.
	b) produce light with a definite wavelength and energy.
	© stay in its unstable state
	d settle in a higher energy level
9	On approaching one of lithium salts to the non-luminous region of bunsen flame,
	it acquires red colour, this is explained by that the electrons in the excited atoms of
	lithium
	a) are lost from the atoms.
	(b) their number increases.
	© return to the ground state.
	d transfer to higher levels.
	On comparing the position of the electron in its ground state, with its position
	in the excited state, it is
	a in the second energy level.
	b) in the nucleus.
	© closer to the nucleus.
	d farther from the nucleus.
	20

The ray whose wavelength is 486 nm lie	s in the
(i) infrared region.	(b) ultraviolet region,
© visible region.	d infraviolet region.
The visible line spectrum of hydrogen at	om consists of four coloured line
Which of them has the smallest frequence	y?
(a) The green.	(b) The blue.
© The red.	(d) The violet
The electron in hydrogen atom which is ear remains in the same new energy level. b returns to its ground state accompanied returns to its ground state in one jump of transfers to a higher energy level. If the difference in energy between er then the difference in energy ΔΕ ₂ between the higher than ΔΕ ₁ c equal to ΔΕ ₁ If an electron acquires an amount of energy level L to M, then to transfer from lose an amount of energy equals 1.89 eV	by visible spectrum only. or several successive jumps. hergy levels K and Lequals ΔE_1 on energy levels () approximately ΔE_1 hergy equals 1.89 eV to transfer from L to K, it may
lose an amount of energy equals 1.89 d acquire an amount of energy equals 10.2 eV	eV
acquire an amount of	
In the opposite figure, if an electron in	eV
the energy level M in a hypothetical atom	
Trouble an Trouble	N
1-013 3 V 1/1-10	M
(b) transfers to the level L	-5×10 ⁻¹⁹ J
	l.
transfers to the level K	-10×10 ^{-[9}]
remains in the level M	K - IPs

M Among	the postulates of	of Bohr's atomic model	is that	
---------	-------------------	------------------------	---------	--

- (a) electrons can acquire any amount of energy.
- (b) it is impossible to determine the path of the electrons precisely.
- c) the energies of the electrons in different energy levels are determined through the concept of quantum.
- (d) the electron has a dual nature.

Which of the following statements is consistent with Bohr's postulates?

- (a) Space regions between energy levels are occupied by electrons.
- (b) The atom has no dimensions or spatial directions.
- © The electron is a negative particle with wave properties.
- (d) The electron revolves around the nucleus in all directions.

Bohr's atomic model differs from that of Rutherford, this difference is obvious in Bohr's postulate that the electron

- a produces a spectral line when it loses a quantum.
- (b) is a negatively charged particle.
- © does not produce a spectral line when it loses a quantum.
- d revolves around the nucleus in certain orbits.

The modern atomic trees

Which of the following electronic transitions in hydrogen atom is accompanied by releasing the largest amount of energy ?

- (a) From the orbit M to the orbit L and the position of this electron can be determined.
- (b) From the orbit N to the orbit M and neither the position nor the speed of this electron can be determined precisely.
- © From the orbit L to the orbit K and this electron has a dual nature.
- d From the orbit L to the orbit K and the position and the speed of this electron can be determined precisely.

Each of the following is among the properties of the electron, except that it

- a is a material particle.
- b has wave properties.
- © loses energy when it transfers from one energy level to a higher level.
- d deflects by the effect of a magnetic field.

12	The following statements represent
Ī	no particular order:

- A: The electron has wave properties in addition
- B: The atom contains tiny negatively charged particles. • C : In the center of the atom, a small nucleus is found which is relatively of high density
- D: The atom is solid and indivisible.
- What is the correct sequence of these attempts?

 \bigcirc C \longrightarrow D \longrightarrow A \longrightarrow B

- \widehat{b} , $C \longrightarrow D \longrightarrow B \longrightarrow A$
- $\bigcirc D \longrightarrow B \longrightarrow A \longrightarrow C$
- $\bigcirc D \longrightarrow B \longrightarrow C \longrightarrow A$
- 33 Which of the following statements is a Heisenberg's modification to Bohr's atomic model ?
 - a It is difficult to determine the position and the speed of the contogether precisely
 - b Space regions between energy levels are not forbidden to: Constant Consta
 - © The electron is a particle with wave properties.
 - d Both the speed and the position of the electron can be determined together precisely
- "The actual position of the last electron in iron atom and its speed in a certain moment can not be precisely determined".

The previous statement is an application of

- (a) Hund's rule.
- © uncertainty principle.

- (b) Bohr's model.
- d the dual nature of the electron.
- According to the wave-mechanical theory,
 - a) the electron has a mass as well as wave properties.
 - b) the electrons are found in the orbitals.
 - the nucleus is very small compared to the atom.
 - d the electrons are negatively charged.
- The modern atomic theory agrees with Rutherford's model on that

 - (b) the electrons have wave properties.
 - it is impossible to determine the speed and the position of the electron together precisely d there is a pattern according to which the electrons orbit the nucleus.

Essay questions

In the opposite figure, determine
with explanation the position(s)
in which is (are) impossible for the electron
to be present according to Bohr's atomic model.

- Which is higher in frequency with explanation the red light or the infrared rays?
- 39 Why is it called ultraviolet rays, while the violet light is called so?
- The opposite figure represents

 a part of the components of
 the electromagnetic spectrum.

 Why are the ultraviolet rays
 and the infrared

- In the light of your understanding for Bohr's atomic model.

 Show the change which occurs in each of the energy and the position of an electron when it is excited.
- The opposite table represents the probabilities of the emission spectrum of hydrogen atom.

 Which of these probabilities represents the visible spectrum of hydrogen atom?

 Give reason.

Beele billia.	Electron t	ransfer
Probability	From (n)	To (n)
(A)	2, 3, 4, 5	1
(B)	3, 4, 5, 6	2
(C)	4, 5, 6, 7	3

- The two opposite figures represent two different perceptions for the movement of the electrons around the nucleus, predict :
- Figure (X) Figure (Y)
- (1) The name of the scientist who suggested the perception which is illustrated in the figure (Y).
- (2) The scientific term that represents the region in which the electron can be found in the figure (X).

Quantum numbers

The mathematical solution of Schrödinger's equation in the second numbers that were called quantum numbers. e should know the for

To determine the energy of an electron in multi-electron quantum numbers which describe it, these four qua-

- The principal quantum number (n): It describes the distance of the electron from the nucleus.
- The subsidiary quantum number (/): It describes the shapes of electron cloud in the sublevels,
- 1 The magnetic quantum number (m/): It describes the shape and number of the orbital in which the electron exists.
- O The spin quantum number (m_s) : It describes the spin motion of the electron.

The principal quantum number (n)

- It is used to define the following:
- * The order of principal energy levels or electron shells «Their number in the heaviest
- The number of electrons (e) required to fill a given principal energy level from (i.e. it equals two times the square of the shell number indicated by the letter "n").

Order of the level		The number of electrons required to fill the energy level (2n ²)
1	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$2 \times 1^2 = 2$ electrons
2	T	$2 \times 2^2 = 8$ electrons
3	1	$2 \times 3^2 = 18$ electrons
4	0.000	$2 \times 4^2 = 32$ electrons

- The rule 2n² isn't applied to the energy levels higher than the fourth level, because the atom becomes unstable, if the number of electrons exceeds 32 electrons in any level.
- The principal quantum number has a positive integer numerical values 1, 2, 3, 4, etc, revoluting zeros. Each value is expressed by an alphabetical letter that represents a principal energy level as shown in the following table:

2 The subsidiary quantum number (A

- It determines the energy sublevels within each principal energy level.
- Each principal energy level consists of a number of energy sublevels which are represented by whole numerical values which range between [0:(n-1)], and their number equals its principal quantum number.

Real energy levels in the atom are called energy sublevels

• The energy sublevels take the symbols and values as shown in the following table:

Subsidiary quantum number (1) values [0 : (n - 1)]	0	1	2	3	
Symbols of sublevels	S	p	d	ſ	1

The following table shows the relation between the principal quantum number $\{n\}$ for each energy level and the number of the possible values of the subsidiary quantum number (l), where $\{(n)\}$ value = The number of (l) values $\{(n)\}$ values of $\{(n)\}$ values

	Symbol of the principal energy level	Principal quantum number (n)	Symbols of the sublevels	the subsi quanti number
	K	1	15	()
			25	0
	L	2	//	1
				()
n=1	M	3	9	1
n = 3				2
11=4				()
Energy sublevels in each principal energy level	M	4	In	1
p	N	4	ld.	2
			4/	3

- * It is observed that there is a small difference in the energy of the sublevels in each principal energy level.
- * They can be arranged according to increasing their energy in the following order:

$$s$$

Worked Examples

What are the probable (l) values when (n = 3)?

(a) 0 or 1

(b) 0 or 3

© 0,1 or 2

@0,2 or 3

Idea of answering:

- : Each principal energy level consists of a number of sublevels which equals its
- \therefore No. of the sublevels = 3
- : The choices (a) and (b) are excluded.
- : The probable (l) values range between [0:(n-1)].
- ... The probable (1) values when (n = 3) range between [0: (3 1)] = 0, 1 or 2

Answer: The correct choice is ©

In which of the	following le	vels can the	electron abs	sorb a photon i	but can not
loce one ?					

(a) 3d

(b) 2p

(c) 1s

(d) 2s

Idea of answering :

- * When an electron loses a photon (an amount of energy), it transfers to a lower energy level (closer to the nucleus).
- ... The first energy level is the closest to nucleus, and it consists of only one energy sublevel which is Is
- ... The electron in the sublevel Is can absorb a photon to travel to a higher energy level, but it can not lose a photon.

Answer: The correct choice is C

Test Yourself

Which of the following energy sublevels does not actually exist?

- (a) 2p
- (b) 3d
- (c) 5d
- (d) 3f

Answer: The correct choice is

The magnetic quantum number (m)

- It determines the number of orbitals within a certain energy sublevel from the relation: (2l + 1).
- It determines the spatial orientations (directions in space) of orbitals.
- It is represented by odd number of integer numerical values ranging between (-1, ..., 0, ..., +1).

The following table shows the relation between (l) values and the probable values of the magnetic quantum number (m_f) for the electrons of the first four energy levels:

Values of principal quantum number (n)	Values of subsidiary quantum number (() [0 : (n - 1)]	Symbols of energy sublevels	Values of the magnetic quantum number (m_l) $(-l,, 0,, +l)$	Number of the sublevel orbitals (2 (+1)	Number of the principal level orbitals (n²)
ı	0	ls	0	J	1
	0	2s	0	J	
2	ī	2p	-1·0·+i	3	4
	0	<i>3u</i>	0	J	
3	ł	Зр	-1.0,+1	3	9
	2	34	-2,-1,0,+1,+2	5	
	0	4s	0	1	
4	1	4p	-1.0.+1		
	2	4d	2.1.0.1.42	3	16
	3	45	3.2.1.0.1.12.13	5	10

Test Yourself

• What are the probable (m_l) values when (l=2)?

Idea of answering :

- The probable (m_l) values range between -l, ..., 0, ..., +l
- ... The probable (m_l) values when (l = 2) are

Answer: The correct choice is

Which of the following possibilities of quantum numbers of an electron includes

(a)
$$n = 3$$
, $l = 2$, $m_l = -1$

(b)
$$n = 4$$
, $l = 3$, $m_l = -2$

$$(c)$$
 $n = 1$, $l = 1$, $m_l = +1$

(d)
$$n = 2$$
, $l = 0$, $m_l = 0$

Idea of answering:

When (n = 1), then the value of each of (1) and (m_l) will be only.

Answer: The correct choice is

* The orbitals of the same sublevel are equal in energy and similar in shape, but differ in the direction in space as shown in the following table:

Sublevels	Number of orbitals	Shape in space (electron density)	Figure
s	1	Sphere syn metrical thape around the nucleus.	Orbital Is Orbital 2s
p	3	 Each orbital takes the form of two problem (dumb-bell shaped) at a point of zero electron density (node). Each orbital is perpendicular to the two other orbitals. The axes of the three orbitals take the three spatial orientations, thus they are designated as p_x, p_y and p_z 	Orbital p_x Orbital p_y Orbital p_z
d	5	Complicat	ed shapes
f	7		

• Any orbital cannot be occupied by more than two electrons 2e , each of them rotates around the architecture of the careful o Any orbital cannot be occupied by the meleus (like the earth which rotates around its own axis while revolving around the nucleus (like the earth which rotates around its own axis while revolving around the sun).

Each orbital is filled with 2 electrons:

Sublevel	s	1	p		đ	1	f	
Number of orbitals	1	I	3	1	5	Ţ	7	
Electron capacity	2	[6	1	10	ı	14	

Note

p sublevel becomes saturated with $6e^-$, while d sublevel becomes so, $\frac{1}{2}$ (cd with $10e^-$, because p sublevel contains 3 orbitals, while d sublevel contains 5 $\phi_1 = 18$ and each orbital is filled completely with 2e⁻

Worked Examples

- The orbitals in the same sublevel are different in
 - a) the distance from the nucleus.
 - b the magnetic quantum number.
 - c) shape and size.
 - d the subsidiary quantum number.

Idea of answering:

- .. The orbitals in the same sublevel have the same principal quantum number.
- .. They are at the same distance from the nucleus.
- .. The choice (a) is excluded.
- The values of the magnetic quantum number (m_l) of the orbitals in the same sublevel
- .. The orbitals in the same sublevel are different in the magnetic quantum number.

Answer: The correct choice is (b)

The following figures illustrate the probable electron cloud of the electron of the excited hydrogen atom in two different cases:

What is the principal quantum number (n) which is not probable for the electron in both cases ?

(a) 1

(b) 2

(c) 3

(d) 4

Idea of answering:

- ".' The figures illustrate the probable electron cloud of the electron of an excited hydrogen atom in two different cases.
- .. The electron has already transferred from the first principal energy level (n = 1) to a higher level.
- \therefore The principal quantum number of this electron is not probable to be (n = 1) in any of these cases.

Answer: The correct choice is

The spin quantum and

Any orbital cannot be occupied by more than two electrons, each electron spins on its own axis during its orbiting around the nucleus.

- * The spin quantum number defines the type of spin motion of the electron around its axis in the orbital, which is either:
 - Clockwise ($\frac{1}{2}$) with m_s value equals ($\pm \frac{1}{2}$).
 - Anticlockwise (\downarrow) with m_s value equals ($-\frac{1}{2}$).
- * The spin motion of the electron around its own axis in a certain direction results in arising a magnetic field.

The spin motions of the two electrons of the same orbital

*The opposite spin motion of the two electrons of
the same orbital around their own axes results in arising two magnetic fields
in two opposite directions (spin-paired state) (//).

*Orbitals have three different possibilities depending on the number of electrons

	Empty orbital.
1	Half filled orbital contains one electron.
1	Completely filled orbital contains 2 paired electrons that have opposite spinning directions (spin-paired state).
ate	of my fairer state).

Note

Although the two electrons of the same orbital carry the same negative charge, they don't repel each other, because the magnetic field which arises from the spinoring of one electron is in a direction opposing the direction of the other magnetic field arising to the spinning of the other electron and that decreases the repulsive force between the two confrons.

Worked Example

Two electrons in the same atom lie in the second orbital in the same sublevel p in Write the four quantum numbers of the two electrons.

Idea of answering:

- .. The principal level is M
- ... The principal quantum number (n) of each of them is 3
- .. The secondary (subsidiary) quantum number (l) of each of them is 1 .. They both lie in the second orbital.
- ... The magnetic quantum number (m_f) of each of them is 0
- The two electrons in the same orbital are opposite in spin motion. .. The spin quantum number (m_s) of one of them is $(+\frac{1}{2})$ and that of the

1	inswer:	i mem i	S (+1)	-011,	
į	The four quantum numbers		2) and (hat of the av	her is $\left(-\frac{1}{2}\right)$.
	in indipets	n i	1	- O[her is $(-\frac{1}{2})$
	First electron	3	m	h _s	2 /
	Second electron	3	0	+1/2	
			0	-1	
				2	

anticlockwise, and its (m_s) * The direction of motion of the electron around its While, the last electron in contains 8 electrons, then it will spin around its axis will spin around its axis Or anticlockwise (↓) • Either clockwise (†) clockwise, and its (m_e) the first electron in it its numerical value its numerical value When the sublevel d axis (spin motion); Spin (m,) value will be (++). value will be (- 누) is (++): is $(-\frac{1}{2})$. energy level M consists of number of orbitals equals The spatial orientations of * Energy sublevels in each principal | * Number of the orbitals in level (n) from the relation Sublevel p whose value is I consists of a number of Number of the orbitals n each energy sublevel Each orbital is filled each principal energy (1) from the relation: with 2 electrons Magnetic (m,) * The third principal $(2\times1)+1=3$ 2/+1 $3^2 = 9$ orbitals equals the orbitals. Value of (6) Each principal energy level (n) contains a number of energy 0, -, c_1 , The third principal energy the numerical value of (n)". Subsidiary (1) sublevels (1) that equals Three energy sublevels level M consists of: p.d.s energy level. Sublevel which are: 0 level M becomes saturated with The number of the electrons a number of electrons equals principal energy level from * The order of the principal "Their number in the heaviest * The third principal energy required to saturate each Principal (n) $2 \times 3^2 = 18e^{-}$ 0 Z known atom is 7". energy levels. Σ the relation: determination Application Quantum number Used in the oto

Chapter

Summary of the relations between the principal level, the sublevels and the orbitals

Symbol of the principal level	Principal quantum number (a)	The sublevels in each principal level	Secondary quantum number (l)	No. of the orbitals in each subjected (2/+1)	No. of the orbitals in each principal level (m ²)	No. of the electrons required to saturate each principal level (2n²)
K			0		1	$2 \times 1 = 2e^{-}$
L	2	$2s$ 2ρ	0	3	4	$2 \times 4 = 8e^{\circ}$
M	[3]	3s - 3p - 3d - 3d		-(1) -(3) -(5)	9	2 × 9 = 18e-
	4	4p	-[0]	— T — ,	7-16	$2 \times 16 = 32e^{-}$

Preliminary questions to remember the principal concepts in the lesson

Answer them yourself

Choose the correct answer for each	in of the following settlences.
(1) The maximum possible value of the	principal quantum number (n) in
the heaviest known atom in its groun	nd state is
a. 5	b. 6
c. 7	d. 8
(2) The maximum number of electrons t	hat saturates the principal energy level (n)
is given from the rule	
a. 2n	h n-
c. 2n ²	$((2n)^2)$
(3) What is the quantum number whose	cal te may never be zero or a fraction?
a. Principal.	b. Subsidiary.
c. Magnetic.	d. Spin.
(4) The principal quantum number (n) o	f the electron of the sublevel 3s1 equals
a. 0	b. 1
c. 2	d. 3
(5) The symbols s, p, d, f indicate	00
a, principal energy levels.	
b. energy sublevels.	
c. the number of orbitals of the suble	vel.
d. the number of single electrons in t	he individual sublevel.
(6) What is the symbol of the principal le	evel which contains s, p and d only?
a, L	b. M
c. N	d. K

- is
- a. -2
- $c.\frac{1}{2}$

- b. 0
- d. 2
- (8) What is the quantum number whose value for an electron in

the principal level (L) is -1?

a. Principal.

b. Subsidiary.

c. Magnetic.

- d. Spin.
- (9) The number of orbitals in each principal energy level (n) equals
 - a, n^2

b, n-1

 $c.3n^2$

- d. 2n²
- (10) The number of orbitals of the principal level N equals
 - a. 1

b. 9

c. 14

- d. 16
- (11) The orbitals in the same sublevel are
 - a. different in energy.
- b. equal in energy.
- c. different in shape.
- d. different in size.
- (12) What is the maximum number of electrons required to saturate one orbital in
 - a. 2e-

b. 7e-

c. 10e⁻

- d. 14e~
- (13) What are the similar quantum numbers between the 2 electrons of the two orbitals

 - a. a , m. , l

b. n . m, . (

c.n.m.

- $\mathbf{d}.\,\mathbf{n}\,,\,\boldsymbol{\ell}\,,\,\mathbf{m}_{\ell}\,,\,\mathbf{m}_{\varsigma}$
- (14) Which of the following quantum numbers its (their) values are never negative?

c. m, , m,

d. n , l

Multiple choice questions (6).

What are the three quantum numbers which are relied on, to solve the wave equation to explain the behavior of the electron in hydrogen atom?

$$a_n, l, m_s$$

$$(h)\,m_l\,,m_s\,,m_p$$

$$(a) \land (m_\ell, m_\ell, m_g)$$

2 When the electron in hydrogen atom transfers from 4d to 2s, the emitted photon is in the form of

(a) infrared ray.

(b) ultraviolet ray.

(c) visible light.

(d) X ray.

3 All the following describe the sublevel v, except that

- (a) it is found in all principal energy levels of the atom.
- (b) its size increases by increasing to the condi-
- (c) its electron capacity increase
- (d) its shape does not change b

4 What is the sublevel in which the two quantum numbers of the last electron are (n = 2, l = 0)?

$$(\ln^3 2p)$$

Solution Which of the following can be concluded from the relation: 2l + 1 = 5?

- (a) This sublevel is saturated with 10e
- (b) This sublevel is found in the second principal energy level.
- © The maximum value of the magnetic quantum number of the electrons of this sublevel is -3
- (d) The maximum number of electrons which saturate this sublevel is 5e

The electron which has the two quantum numbers, $(n = 3, m_{\ell} = +2)$ must have the value

Which of the following represents an electron in an atom?

It is found in

- (a) the principal energy level L, and its subsidiary quantum number is 2
- b) the principal energy level K, and its magnetic quantum number is +1
- the principal energy level M, and its subsidiary quantum number is 2
- d the sublevel d, and its principal quantum number is 2
- B What is the maximum number of electrons which can be found in the same atom and have the two quantum numbers (n = 4, l = 1)?

(a) 2e

(b) 6e"

(c) 8e

(d) 10e⁻

What is the maximum number of electrons which have the spin. quantum number $(m_s = +\frac{1}{2})$ in the sublevel $(\ell = 3)$?

(a) 3e⁻

(c) 7e⁻

(d) 14e⁻

Number of electrons required to saturate each sublevel is estimated from the relation

a) 2(2(+1)

 $(c) 2n^2$

(b) (2l+1)

(d) n^2

Which of the following quantum numbers values represent an electron in the orbital $3p_{\chi}$?

© n = 3, l = 0, $m_l = +1$

(b) n=3, l=0, $m_l=0$

Questions market

by this mark

their ideas are explained in

the answers

(d) n=3, l=1, $m_{l}=-1$

Which of the following quantum numbers values represent an electron in

(a) n = 5, l = 3, $m_l = +4$, $m_s = +\frac{1}{2}$

(b) n = 5, l = 2, $m_l = -2$, $m_s = +\frac{1}{2}$

(c) n = 5, l = 3, $m_l = +1$, $m_k = +\frac{1}{2}$

 (\widehat{d}) n = 5, $\ell = 4$, $m_{\ell} = -4$, $m_{\epsilon} = -\frac{1}{2}$

The five electrons present in the sublevel $3d^3$ are similar in all the following, except the

(a) principal quantum number.

b subsidiary quantum number.

(c) magnetic quantum number.

d spin quantum number.

 \bigcirc Which of the following graphical figures represents the relation between (ℓ) value and the number of orbitals in the sublevel?

(B) Which of the following graphical figures represents the relation between the number of the electrons which fill the orbital (W) in a certain sublevel and the value of (1) of this sublevel?

16 The energy of the orbital $(3p_+)$ is similar to that of the orbital.

- (a) 4p,
- (c) 3s

- (ii) 2p_

The two orbitals $(2s, 2p_x)$ can be similar in

(a) the energy.

- (b) the shape.
- c) the number of electrons in each of them. (d) the spatial orientation.

18 O The two opposite figures represent two different sublevels.

What is the difference between them?

- (a) Subsidiary quantum number.
- (b) Distribution of electron density.
- © Principal quantum number.
- d Number of orbitals.

Which of the following becomes saturated with the highest number of electrons?

- a One of 4f orbitals.
 - © Principal level (n = 2).

- (b) 3d sublevel.
- (d) One of 3d orbitals.

The electrons of 5d sublevel in one of the atoms cannot

have the magnetic quantum number (a) +1

(c) +2

21 The electron which has the magnetic quantum number (-3)

may have the principal quantum number ...

c) 3

Number of orbitals of the sublevel which has the values (n = 3), $(\ell = 2)$ is

23 The electron which has the four quantum numbers :

 $(n=4,\ell=3,m_\ell=+2,m_s=+\frac{1}{2})$ is found in the sublevel

(a) 3d

(C) 5p

(b) 4f

(d) 6s

Electron (X) has the following quantum numbers : $(n = 3, \ell = 2, m_{\ell} = -1, m_{g} = -\frac{1}{2})$. What are the quantum numbers of the electron (Y) which have the same energy of the electron (X), but it differs from the electron (X) in the spinning motion?

(a) n=3, $\ell=2$, $m_{\ell}=-1$, $m_{s}=+\frac{1}{2}$ (b) n=3, $\ell=1$, $m_{\ell}=-1$, $m_{s}=-\frac{1}{2}$ $C_n = 3 \cdot l = 2 \cdot m_l = 0 \cdot m_s = -\frac{1}{2}$ $C_n = 3 \cdot l = 1 \cdot m_l = 0 \cdot m_s = +\frac{1}{2}$ Which of the following quantum numbers include a mistake?

 $(n=3, l=3, m_1=-2)$

(b) n = 4, l = 2, $m_{l} = +1$

(1) n=3, $\ell=0$, $m_{\ell}=0$ Which of the following quantum numbers do not include a mistake?

 $C_{1} n = 3$, l = 2 , $m_{l} = +3$

(b) $n = 2 \cdot l = -1 \cdot m_l = 0$

(d) n = 4, l = 3, $m_{l} = -2$

Which of the following quantum numbers do not include a mistake?

 $C_{i,n=4}$, l=0, $m_{i}=+1$

(b) n=3, l=1, $m_l=-2$ (1) n=3 . l=2 . $m_{l}=-3$

1	Which of the following quantum	numbers include a mistake ?
1	(a) $n = 6$, $l = 3$, $m_l = +2$	(b) $n = 3$, $l = 2$, $m_l = 0$
l	(c) n = 4, $l = 0$, $m_l = -3$	(d) $n = 3$, $l = 1$, $m_l = -1$

Determine each of the following:

- (1) The possible (l) values of the electrons in the principal energy level (n = 4).
- (2) The possible (m_l) values of the electrons in the sublevel (l=3).
- Show which is higher, with illustrating the reason, the maximum number of electrons in the principal level (n = 2) or the maximum number of electrons in the sublevel (4d).
- Estimate the number of the orbitals which can be occupied with electrons in the principal level (n = 2).
- Estimate the number of the orbitals which are present in the sublevel (f) in the principal level (n = 3).
- Suggest the value of the subsidiary quantum number of the orbital of 4s sublevel.
- The opposite diagram represedure the energy sublevels of the principal energy level (n = 4):

 Complete the blank cells with the suitable magnetic quantum numbers (m_f).

 Sublevel f

 Sublevel f

Calculate the maximum number of electrons that can be found in an atom and have the following quantum numbers:

(1)
$$n = 3$$
 (2) $n = 2$, $l = 0$

Choose which of the following energy sublevels cannot be found in the elements known so far:

Suggest the reason of invalidity of the following quantum numbers combinations:

(1)
$$n = 3$$
 , $l = 3$, $m_l = +2$

(2)
$$n=2$$
 , $l=1$, $m_l=-2$

(3)
$$n = 1$$
 , $l = 0$, $m_l = +\frac{1}{2}$, $m_s = +\frac{1}{2}$

Principles of distributing eli-

There are some important rules, which must be considered in distant

electrons

in the atom. These rules are

Pauli's exclusion principle.

Aufhau (huilding-up) principle.

Hund's rule.

There is another method for the element according to the public mobile gas

that precedes it in the per over table, this will be discussed in [10], 10.7

Pauli's exclusion principle

Pauli's exclusion principle:

States that it is impossible for two electrons in the same atom to have the same four quantum numbers.

W. Pauli

A pplication

The opposite table shows the two electrons of the (.fs) sublevel which are similar in the values of the quantum numbers (n, (, m_f), but they are number (m_s).

The four quantum no.				
The first electron	п	ľ	\mathbf{m}_{l}	m,
The second electron	3	0	0	+1
electron	3	n	0	_1

Worked Example

Write the possible values of the four quantum numbers for each of the following:

- (a) An electron in 2p
- (b) The first electron in 4d
- (c) The second electron in 1s

Answer:

The quantum numbers		n	1	$m_{\ell} = -\ell,, 0,, +\ell$	$m_s = \pm \frac{1}{2}$
	(a)	2	1	-1 or 0 or +1	$+\frac{1}{2}$ or $-\frac{1}{2}$
The possible values of quantum numbers	(b)	4	2	-2	+ 1/2
	(c)	1	0	0	$-\frac{1}{2}$

Test Yourself

In helium atom ₂He,

(a) the values of the spin quantum that it is a spin ar.

- c) the values of the spin quantum () :: 'crent.
- $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\$

Answer: The correct choice is

Aufbau (building-up) principle

Aufbau (building-up) principle :

States that the electrons occupy the sublevels in the order of increasing their energy, the lowest energy sublevels are filled first.

- * Arrangement of sublevels according to their energy depends on :
 - Sum of (n+l).

Ex. Energy of 4s sublevel is lower than that of 3d sublevel, because the sum of (n + l) of 4s sublevel is less than that of 3d sublevel.

Order of the principal energy level.

"In case that the sum of (n + l) value is the same for the two sublevels".

	Sequence of filling energy sublevels
Y	Seque

Sublevels	Sum of (n + l)
3p	3+1=4
4s	4+0=4
3d	3+2=5

Atomic Structure -**Ex.** Energy of 3p sublevel is lower than that

of 4s sublevel, because (n) value of 3p sublevel is lower than that of 4s sublevel.

* The sequence of energy sublevels is arranged ascendingly according to their energy following

the order:

* Filling the energy sublevels:

A simplified method of filling energy sublevels by following the direction of the arrows

"Numbers 1: 8 represent the sum of (n+/) of each supleyel"

Test Yourself

What is the number of the orbitals whose $(n + \ell)$ is less than 5?

(a) 4

(c) 9

Answer: The correct choice is

Worked Example

The opposite table shows the quantum numbers of three electrons (X), (Y)and (Z) in the same atom.

Which of the following statements

Quantum numbers Electron (X)	(n)	(b)	(m _/)	(m _s)
Electron (Y)	4	3	0	+ 1/2
Electron (Z)	6	0	0	$+\frac{1}{2}$
than that	5	2	-1	$-\frac{1}{2}$

- (a) The energy of electron (Y) is higher than that of electron (X). b) The energy of electron (X) equals that of electron (Z).
- © The energy of electron (Z) is higher than that of electron (Y). The energy of electron (Y) is hiphae than the

wering:

of the electron increases with increasing the value of (n 1), and increases

ectron	(X)	(Y)	1	(1)
() value	4+3=7	6+0=6		5+2-7

y of electron (Y) is lower than those of both (X) and (7.) es (a) and (d) are excluded.

alue of electron (Z) is higher than that of electron (X), by of electron (Z) is higher than that of electron (X).

The (b) is excluded.

The correct choice is ©

nic configuration of an energy sublevel can be

nts whose valence electrons are present in sublevels and the sublevels are the sublevels and the sublevels are the sublevel a

$$2s^2$$
, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^1$

the chemical reactions to lose the electrons of the lower energy o

d Example

electronic configuration for the following elements, according to ng-up principle:

Answer:

(1)
$$11^{\text{Na}: Is^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^1}$$

(2) $20^{\text{Ca}: Is^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^2 \cdot 3p^6 \cdot 4s^2}$

(2)
$$_{20}^{\text{Ca}}: 1s^2, 2s^2, 2p^4, 3p^6, 4s^2, 3d^{10}, 4p$$

(1)
$$\frac{11}{20}$$
 Ca: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p$, $4s$
(2) $\frac{1}{20}$ Ca: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p^2$
(3) $\frac{1}{32}$ Ge: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p^2$

It is clear in the electronic configuration of manganese element 25Mn that : Note

t is clear in the electronic configuration of mass
$$3p^6$$
, $4s^2$, $3d^5$ $3p^6$, $4s^2$, $3d^5$

- The farthest electron from the nucleus occupies the sublevel 4s
- The last electron in the atom occupies the sublevel 3d

Worked Example

The electronic configuration of zinc atom $_{30}Zn$ is represented as follows:

$$_{30}$$
Zn: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$

Conclude the quantum numbers of :

- (1) The last electron with the highest energy in the atom of this element.
- (2) The farthest electron from the nucleus of the atom of this element.

Answer:

(1)
$$n = 3$$
, $l = 2$, $m_l = +2$, $m_s = -\frac{1}{2}$ $3d^{10}$ 1 1 1 1 1

(2)
$$n = 4$$
, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$ $4s^2$

Hund's rule

Hund's rule:

States that no electron pairing takes place in a given sublevel

Rules of filling the energy sublevels with electrons, according to Hund's rule:

Rules	Applications
The orbitals of the same sublevel are equal in their energy	The three 2p orbitals are equal in energy are equal in energy
The orbitals of the same sublevel are filled successively by the unpaired electrons firstly, the spinning of single electrons is in the same direction	p_x p_x p_y p_x
Electron pairing takes place in the orbitals of the same sublevel after occupying all orbitals by the unpaired electrons first, and these paired electrons have opposite spin directions (being in a spin-paired state) "According to Pauli's exclusion	2p ⁴
The electron prefers to be paired with another electron in one orbital of the same sublevel rather than being transferred to a matter energy sublevel	2s ¹ 1 2s ² 1 1s ²

Notes)

* The spinning of single (unpaired) electrons in the orbitals in same sublevel is in the same direction.

Because this state gives the atom maximum stability.

* The electron prefers to occupy a separate empty orbital in the same sublevel rather than pairing with another one in the same orbital.

Because when two electrons are paired in one orbital, (in spite of their opposite spins), there must be a repulsive force that decreases the stability of the atom (increasing its energy).

* The electron prefers pairing with another one in an orbital in the same sublevel rather than transferring to the higher energy sublevel.

Because the required energy to overcome the repulsive force between the two paired electrons is less than that required for transferring to a higher energy sublevel.

The electronic configuration of some elements according to building-up principle and Hund's rule:

Element	Atomic number	Electronic configuration according to building-up principle	Electronic configuration according to Hund's rule
Hydrogen	1	Is ¹	15/1
Helium ₂ He	2	1s ²	, 2 1
Lithium ₃ Li	3	ls^2 , $2s^l$	· r
Boron ₅ B	5	$1s^2$, $2s^2$, $2p^1$	$1s^{2}\begin{bmatrix} 1 \\ 1s^{2} \\ 2s \end{bmatrix} \cdot 2s \cdot 2p_{3}^{2}$
Carbon 6C	6	$1s^2, 2s^2, 2p^2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nitrogen ₇ N	7	Is^2 , $2s^2$, $2p^3$	$2p^{3}$ \uparrow \uparrow \uparrow $2s^{2}$ \uparrow $1s^{2}$ $2p_{x}^{2}$ $2p_{x}^{2}$ $2p_{y}^{2}$ $2p_{z}^{2}$ $2p^{5}$ \uparrow \downarrow
Fluorine 9F	9	1s ² , 2s ² , 2p ⁵	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Neon 10 ^{Ne}	10	$1s^2$, $2s^2$, $2p^6$	$1s^{2} \underbrace{1}_{1} 1$

Quantum numbers of electrons of aluminum atom 13Al:

₁₃Al:
$$ls^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^1$

																								-	77
Electron	1	1	I	2	1	3		4	1	5		6	7	}	8	9		10	j	11	Ī	12	I	13	
n		1		1		2		2		2		2	2		2	2		2		3		3		3	
ŧ		0		0	Ī	0	-	0	1	1	1	1	1		1	1	,	1		0	l	0	-	1	-
m_{ℓ}	[0)	0	ĺ	0	1	0	(-1		0	+1		-1	0		+1	}	0	i	0		-1	
m _c		± <u>1</u>		-1		+ 1/2		$-\frac{1}{1}$		$+\frac{1}{2}$		$+\frac{1}{2}$	+ 1/2		$-\frac{1}{2}$	$-\frac{1}{2}$	-	$-\frac{1}{2}$		$+\frac{1}{2}$		$-\frac{1}{2}$		$+\frac{1}{2}$	

Worked Examples

$lackbox{0}$ Predict the possible quantum new $lackbox{0}$ $lackbox{$

Answer:

- Electronic configuration of the atom of 23V is: $1s^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^2 \cdot 3p^6 \cdot 4s^2 \cdot 3d^3$
- The possible quantum numbers are :

$$\hat{I}$$
 n = 4 . $l = 0$. $m_l = 0$. $m_s = \pm \frac{1}{2}$

$$\widehat{1}$$
 $n=4$ $\ell=0$, $m_{\ell}=0$, $m_{s}=\pm\frac{1}{2}$ $\widehat{2}$ $n=4$, $\ell=0$, $m_{\ell}=0$, $m_{s}=-\frac{1}{2}$

$$\hat{3}$$
 $n=3$ $\ell=2$, $m_{\ell}=-2$, $m_{\gamma}=+\frac{1}{2}$

$$\widehat{4}$$
 n = 3, $\ell = 2$, $m_{\ell} = -1$, $m_{s} = +\frac{1}{2}$

$$\mathfrak{T}_{n} = 3 \cdot l = 2 \cdot m_{l} = 0 \cdot m_{s} = +\frac{1}{2}$$

Three elements (X), (Y) and (Z):

- Element (X): Its principal energy level (n = 3) contains 3 electrons.
- Element (Y): Its last sublevel is 3s which is half filled with electrons.
- Element (Z): Its electronic configuration is $1s^2$, $2s^2$, $2p^3$

Which of the following are the atomic numbers of (X), (Y) and (Z)?

Choices	(X)	(Y)	(Z)
. (a)	11	7	13
- B	11	13	7
6	13	11	7
0	13	7	11

- : The electronic configuration of element (X) is : Is^2 , $2s^2$, $2p^6$, $3s^2$, $3p^7$
- \therefore The atomic number of element (X) = 13
- .. The choices (a) and (b) are excluded.
- : The electronic configuration of element (Y) is : Is^2 , $2s^2$, $2p^6$, $3s^1$
- :. The atomic number of element (Y) = 11
- .. The choice (d) is excluded.
- * The atomic number of element (Z) is 7

Answer: The correct choice is (c)

- An element (X) whose electrons are distributed in four principle energy levels, and its last energy level contains 6 electrons:
 - (1) Write the full electronic configuration of the ion (X^{2-}) .
 - (2) What is the number of the unpaired electrons in the last sublevel in the atom of this element?
 - (3) What are the quantum numbers of the last electron in the atom of this element?
 - (1) The full electronic configuration of the element atom (X):

$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p^4$

The full electronic

The full electronic configuration of the ion
$$(X^{2-})$$
:

2 unpaired electronic electronic configuration of the ion (X^{2-}) :

(2) 2 unpaired electrons.

(3)
$$4p^4$$
 $n = 4$, $l = 1$, $m_l = -1$, $m_s = -\frac{1}{2}$

Preliminary questions to remember the principal concepts in the lesson

Answer them yourself

Choose the correct answer for each of the following sentences:

(1) Which of the following sublevels l	has the least energy?
a. <i>ns</i>	b. (n-1)p
c.(n-2)d	1 10 - 31/2
(2) The two electrons of 3s suble	
a. principal quantum name:	quantum number.
c. magnetic quantum number.	programmum number.
(3) $(n + l)$ represents the energy of the	
a. sublevel.	b. orbital.
c. principal level.	d. electron cloud.
(4) When the βd sublevel is completely	y filled with electrons, the new electron occupies
the	
a. 4s sublevel.	b. 4p sublevel.
c. 4d sublevel.	d. 4f sublevel.
(5) If the energy sublevel d in an atom	contains 8e ⁻ , so the number of its
half filled orbitals is	
a. 1	b. 2
c. 4	d. 5
(6) What is the number of completely f	illed orbitals in carbon atom 6C in its ground
state ?	
a. 1	b. 2
c. 3	d. 5

(7) The total number of the half filled orbitals in ₉F atom in its ground state is a. 1 b. 2 c. 3 d. 5 (8) According to Hund's rule, the electron configuration of nitrogen element (7N) $a, 1s^2, 2s^2, 2p^3$ b.2,5 c. $1s^2$, $2s^2$, $2p_x^1$, $2p_y^1$, $2p_z^1$ $d, 1s^2, 2s^1, 2p^4$ (9) The presence of 3 unpaired electrons in phosphorus atom 15P in its ground state can be a. Pauli's exclusion principle. b. Hund's rule. c. the uncertainty principle. d. Aufbau principle. (10) According to Hund's rule the electronic configuration of the last energy level

Pauli's exclusion principle

J	Which of	the	following	statements	is	correct	?	
---	----------	-----	-----------	------------	----	---------	---	--

- a It is possible sometimes to determine the position and the speed of the electron together precisely at the same time.
- The sizes of the orbitals of the same atom are similar.
- The probability of the presence of the electron in the spaces between the energy increases.
- d The two electrons of helium do not have the same four quantum numbers.

2 If two electrons have	ा वा व्यव गरंपण numbers,	it means that t	hese two
electrons are found in			

(a) the same principal level.

b) two different elements atoms.

the same orbital.

d the same sublevel.

3	The two electrons in the same atom which have the same ℓ , $\mathbf{m}_{_{\! S}}$,	values are located
	in the same	

- a sublevel but in different orbitals.
- b principal level but in two different sublevels.
- © orbital.
- principal level but in different orbitals.

a n only.

(b) l only.

© m, only.

d l and m

The values of the spin quantum number of the electrons of the orbitals of the same sublevel differ when the number of its electrons

- equals half the number of the orbitals. (b) is higher than the number of the orbitals.
- is lower than the number of the orbitals. (d) equals the number of the orbitals.

Aufbau principle	
According to building-up principle,	a speed of the nuclea-
According to building-up principle, a it is impossible to determine both the position and the	e speed of the nuclear pani
tirale	
together precisely. b the electron occupies the orbital with the lower energy.	y first.
the orbital contains mostly 2 electrons.	
d the electrons occupy the equal energy orbitals singly f	irst before being paired.
Which is easier, losing an electron from 3d or from 4s?	
3 4s is more easy as it is closer to the nucleus than $3d$	
b 4s is less easy as it is closer to the nucleus than 3d	
© 4s is more easy as it is farther from the nucleus that.	
d 4s is less easy as it is farther from the nucleus that.	
What is the number of the electrons which have magnine	
in cobalt (II) ion 27Co2+ 7	Tantum number (m _l =1)
② 7e- (b) 8e- (c) 10e	(d) 11e-
The total number of the orbitals which are fill to	9
The total number of the orbitals which are filled with elect levels (M + L) of the atom of argon 18 Ar is	rons in the two energy
(a) 4 (b) 8	
Which of the Car	(4) 13
electron in the following represents the possible and	
Which of the following represents the possible quantum nur electron in nitrogen atom?	nbers of the last
$m_1 = 2$, $l = 1$, $m_1 = +1$, $m_2 = +\frac{1}{2}$	
$m_{x} = +\frac{1}{2}$	
	}
$m_s = -\frac{1}{2}$ $m_s = -\frac{1}{2}$ Which of the following are the	
$m_{j}=-1$	
has the following are the	
"as the highest energy in the possible quantum and	
Which of the following are the possible quantum numbers of to the highest energy in vanadium $_{23}V$ atom? (a) $n=3$ (=2 $m_{\ell}=0$ $m_{\ell}=4$ (=2) $m_{\ell}=0$ $m_{\ell}=4$ (=2) $m_{\ell}=0$	he last electron which
(b) $n=3$ (=2 $m_{\ell}=0$ $m_{\ell}=0$ $m_{\ell}=+\frac{1}{2}$ (1=0) $m_{\ell}=-\frac{1}{2}$	And Circum
$ C_{n=4} $, $m_{r=0}$	
$(0)_{0=0}$ $m=1$	
10 = 4	
76 $m_1 = +1$ $m = 1$	
$\frac{1}{2}$	

Atomic Stru

Œ	Which of the following are the quantum numbers of	the	19th	electron	in the	atom of
Ì	chromium 24Cr?					

(a)
$$n = 3$$
 . $l = 0$, $m_l = 0$, $m_s = +\frac{1}{2}$

$$b_{n}=3$$
 , $l=2$, $m_{l}=-2$, $m_{s}=+\frac{1}{2}$

(c)
$$n = 4$$
 , $l = 0$, $m_l = 0$, $m_s = +\frac{1}{2}$

(d)
$$n = 4$$
 , $l = 1$, $m_l = -1$, $m_s = -1$

13 Which of the following combinations of quantum numbers represents the single electron in the atom of gallium element 4Gn ?

Choices	n	1	(m _f)	(,111,)
(a)	3	1	1.1	1 2
(b)	4		1)	1 2
©	4	ţ		10
<u>d</u>	4	2	+1	1 /

14 Which of the electrons that have the following quantum numbers has the highest energy?

(a)
$$n = 3$$
 , $l = 2$, $m_l = +1$, $m_s = +\frac{1}{2}$

(b)
$$n = 4$$
 , $l = 2$, $m_l = -1$, $m_b = +\frac{1}{2}$

© n = 4 ,
$$l = 1$$
 , $m_l = 0$, $m_s = -\frac{1}{2}$

(d)
$$n = 5$$
 , $l = 0$, $m_l = 0$, $m_b = +\frac{1}{2}$

What is the number of the electrons which have the principal quantum number (n = 4) in the atom of potassium element $_{19}K$?

(n = 4) in the atom of potassium element
$$19^{15}$$
 (b) $2e$

What is the number of the electrons which have the same I and m, values in the atom of the element 15X ?

© 4e-

(d) 5e-

Which of the following graphical figures represents the relation between (X) which represents the number of the electrons of the sublevel 3d and (Y) which represents the number of the single (unpaired) electrons in the same sublevel?

What is the number of the electrons which can have the magnetic quantum number -3 in the sublevel $4f^9$?

(a) te

(c) 3e

The last energy objected in an element consists of 3 orbitals X, Y and Z containing only one electron, and the value $(n + \ell)$ of this sublevel equals 5.

What is the atomic number of this element?

(a) 19

(b) 31

(c) 33

(d) 41

An element its valence shell contains a number of electrons equals each of :

- Number of the principal levels.
- Number of the sublevels.
- Number of its orbitals.

What is the symbol of this element?

a JLi

(b) 2He

C 4Be

In iron element 26Fe, the number of the half filled orbitals is equal to the value of one of the quantum numbers of the farthest electron from the nucleus.

Which of the following is this quantum number?

- (a) Principal quantum number.
- (b) Subsidiary quantum number.
- (c) Magnetic quantum number.
- (d) Spin quantum number.

	lectrons of the penultimate principal energy lev
the element whose atom	nic number is 28 ?
(a) 2e ⁻	(b) 8e ⁻
© 14e ⁻	(d) 16e ⁻
\triangle An element (X), the p	orincipal quantum number of its farthest electron
the nucleus is $(n = 4)$, if t	he number of electrons found in the energy level
their number in the level	L
What is the atomic numb	er of (X) ?
(a) 18	(b) 26
© 28	(d) 36
29 What is the electronic con	
atom that has 7 valence e	figuration of the outermost (card) energy level of
(a) $3s^{1}$, $3p^{6}$	
© $3s^2$, $3p^5$	(b) $3s^{1}$, $3p^{4}$, $3d^{2}$
30 The last sublement	(d) $3s^2$, $2p^4$, $3d^1$
The last sublevel in X34	ion is $2p^6$
(i) Zero	half filled orbitals in the atom of X ?
©2	(b) 1
31 Which of the con-	(d) 3
are lost when at	d 3 Tesents the sublevels from which the electrons the element 21 Sc is converted to 2.2.
3s, $4s$	he element a Sc is com which the electrons
© 3d ,4p	resents the sublevels from which the electrons he element $_{21}$ Sc is converted to \mathbf{M}^{3+} ion ?
32 Which of the car	(d) 4s 1-
according to Aug	esents the electronic configuration of $_{40}$ Zr ²⁺ ion
(a) 152, 252, 256 32	e ?
(b) I_{s^2} , $2s^2$, $2p^6$, $3s^2$, $3p^6$, (c) I_{s^2} , $2s^2$, $2p^6$, $3s^2$, $3p^6$, (d) I_{s^2} , $2s^2$, $2p^6$, $3s^2$, $3p^6$, (d) I_{s^2} , $2s^2$, $2p^6$, $3s^2$, $3p^6$, (e)	e? $\frac{4s^2}{3d^{10}}, \frac{4p^6}{4s^2}, \frac{5p^6}{4p^6}, \frac{6s^2}{4s^2}, \frac{6p^2}{4p^6}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{10}$, $4s^2$, $4p^6$, $4d^2$ $3d^{10}$, $4s^2$, $4p^6$, $5s^2$ $3d^{10}$, $4s^2$, $4p^6$, $5s^2$

What is the electronic configuration	which represents an excited atom ?
$a_{9}F: 1s^{2}, 2s^{2}, 2p^{5}$	(b) $_{7}N: 1s^{2}, 2s^{2}, 2p^{3}$
\bigcirc_2 He: ls^2	$\textcircled{d}_{3}\text{Li}: 1s^{2}, 2p^{i}$
Which of the following represents	s the electronic configuration of the atom of
gallium 31Ga in its excited state?	
(a) 2, 8, 17, 3	(b) 2, 8, 17, 4
© 2, 8, 18, 3	(d) 2, 8, 18, 4
Hund's rule	
Which of the following represents	าการอเก motion of the electrons of the last
energy sublevel in 18 Ar atom?	
a 1 1 1	· 9:4111
© 11 11 11	(I)
Which of the following violates Pauli's	s principle ?
a 1 1 1	6 1 1 1 1 1
🗖 🔎 According to Hund's rule and Pauli	i's exclusion principle, the last two electrons
In 3d sublevel in the atom of the elem	nent ₂₆ X are different in the two quantum
numbers	
a l and m	b) n and m _l
© l and m _s	\bigcirc m _{ℓ} and m _{s}
This configuration of fluorine atom 9F	in
is stable state does not obey	
^{a)} Aufbau principle only.	16
Hund's rule only.	
exclusion principle only.	
d both Hund's rule and analysis anim	

- Reuse the opposite figure of the three axes to draw the shapes of the sublevels in the principal level (n = 2).
- Use your knowledge about the quantum numbers to write one of the six possibilities of an electron that is found in one of 3p orbitals.
- According to Pauli's exclusion principle, no two electrons in the same four quantum numbers.

What are the similarities between the possibilities of the ϕ numbers of two electrons found in the orbitals of 2p sublevel ? In what may:

- Verify Pauli's principle on the two electrons of the last orbital at adoride ion 17Cl
- Illustrate with explanation whether each of Pauli's principle and Hund's rule is applied to each of the following cases :

(2) 1 1 1

- Deduce the atomic number of the element whose last electron has the quantum number $(n=2, \ell=1, m_{\ell}=+1, m_{s}=+\frac{1}{2})$
- What is the maximum number of electrons in an atom in which the last electron with the highest energy has the two quantum numbers.

(1) n = 3, $m_{v} = +\frac{1}{2}$

(2) $n \approx 4$, $m_i = +3$

- Predict the possible quantum numbers of the valence electrons of titanium 22 Ti
- An element (x) its electrons are distributed in four principal energy levels, the last level contains 6 electrons:
 - (1) Write the full electronic configuration of the ion χ^2
 - (2) What are the quantum numbers of the third electron in the last energy sublevel in the atom of this element?

Exam model on Chapter 1

- Choose the correct answer for the questions (1): (21)

1 When a sample of phosphorus-35 isotope whose mass is 1 g is left for 14 days, it is found that the mass of the sample decreased by half.

This observation does not match

- (a) Democritus's idea of the atom only.
- (b) Boyle's idea of matter only
- © Dalton's atomic ne
- and Dalton's atomic model. d Democritus's
- the sublevel which has the two values (n = 4, l = 3) 2 The number of to
 - (ii) 2

 - (c) 5
 - (d) 7
- 3 What does the opposite figure represent?

- (b) The two electrons of p_x are in a spin-paired state.
- © The two electrons of the same orbital carry the same charge.
- (d) Pauli's exclusion principle.
- What is the atomic number of the element whose level which has the principal quantum number (n = 3) contains 13 electrons?
 - (a) 17
 - (b) 23
 - (c) 25
 - d) 43

5 The opposite figure demonstrates the energy levels of a hypothetical atom, if an electron transfers from the energy level M to K, then it

d loses an amount of energy equals 12×10^{-19} J

6 What happens to the electron by increasing the distance in the sits orbital and the nucleus?

a Both its kinetic and potential energies decrease.

b lts kinetic energy decreases and its potential energy increases.

© Both its kinetic and potential energies increase.

- d lts kinetic energy increases and its potential energy decreases.
- What is the maximum number of electrons that can have the quantum numbers $(n=3, \ell=1, m_{\ell}=-1)$ in the same atom?

(c) 4c-

(b) 6e-

8 The electrons of the last energy level in neon atom occupy several orbitals which Which of the following represents correctly one of these orbitals?

Choices	a represent	5
CHOICES	Shape of the orbital	
(a)	a tolial	1
(P)		
(6)		
	00	
(4)		

Energy of this orbital compared to the other orbitals

-10×10-11

I

Higher than or equal to them

Higher than or equal to them

Lower than or equal to them

Lower than or equal

- What does (X) represent in the opposite figure?
 - (a) The electron cloud of 2s sublevel.
 - (b) The orbital 2p
 - © The orbital 2s
 - d The second orbit in hydrogen atom.

- On comparing the energy and the charge of the electrons in the energy level I, in Be atom to those of the electrons of the energy level K they are found to have
 - a lower energy but the same charge.
 - b higher energy but the same charge.
 - © lower energy but the same (a) value
 - d higher energy but the same (n) value.
- Which of the following electronic configurations violates aufbau principle?

Which of the following sets of quantum numbers expresses the electron of an excited hydrogen atom ?

(a)
$$n = 4$$
 , $l = 3$, $m_l = -3$

ⓑ
$$n = 4$$
 , $l = 4$, $m_l = -2$

©
$$n = 5$$
 , $l = -1$, $m_{\ell} = +2$

①
$$n = 3$$
 , $l = 1$, $m_l = -2$

- What is the maximum number of electrons in an atom which has the two quantum numbers (n = 2, l = 1)?
 - (a) 2
 - (b) 4
 - © 6
 - @ 10

14 What is the correct order of the orbitals in titanium atom according to the increase of energy? (a) 3s < 3p < 3d < 4s(b) 3s < 3p < 4s < 3d(c) 3s < 4s < 3p < 3d(d) 4s < 3s < 3p < 3d(15) Which of the following electronic configurations represents the ground state of an atom that contains 8 electrons? 16 Among the recently known scientific facts are: (1): The fission of uranium –235 atoms produces atoms of barium –141 and (2): The difference of the mass of oxygen isotope 16 from that of oxygen isotope 17 (3): The mass of the atom of argon –36 equals the mass of sulphur isotope 36 What are the facts which are not consistent with Dalton's atomic model? © (1) and (3) only. (1), (2) and (3). What is the atomic number of the atom of the element whose orbitals contain © 15 (d) 21

18	Which of the following transfers in hydrogen atom produces the largest
	quantum of energy ?
	$ (n = 7) \longrightarrow (n = 6) $
	(b) $(n = 7) \longrightarrow (n = 5)$

phosphorus atom?
(a) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^3$

(c) $(n = 4) \longrightarrow (n = 3)$

(b)
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$

© $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^2$, $4s^4$

(d)
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p$

Among the modifications introduced by the modern atomic theory to the older theories is

- a) it is impossible to determine both the position and speed of the 11th electron in 11 Na atom precisely at the same time.
- b) the electron is negatively charged.
- © most of the atomic volume is an empty space.
- d the spaces between energy levels are forbidden for the electrons.

The opposite electronic configuration Violates

- a Aufbau principle only.
- b Pauli's exclusion principle only.
- © Hund's rule only.
- d Pauli's principle and Hund's rule.

22	The scientists verified the presence of the electrons, protons and neutrons in the atom during the centuries 19 and 20, if a beam of each of them is passed through an electric field (as in the opposite (1) In which direction will the deflection be? Explain.	figure): Beam of per
	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(2) Which of these particles will be deflected more? Explain	

1	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Complete the following table :

(n)	(t)	(m _l)	The orbital
2	1	-1	$2p_{\chi}$
1	0	0	***************************************
4	••••••	+3	************
*****		*****	4p _v
3	2	-2	· · · · · · · · · · · · · · · · · · ·

000	·
0 0	
000	
000	
(1)	(2)
	0 0 0

In the opposite figure:

Which of the two processes

(X) and (Y) requires losing energy?

What is the scientific term

of this amount of energy?

The two opposite figures represent

the emission of the green in

the red light - with no pare who is his

as a result of returning an excited

electron to its ground state in

hydrogen atom.

Which of them represents the green light? Explain.

Figure (1)

Figure (1) 35

Figure (2)

Figure (3)

The Periodic Table and Classification of Element

Lesson One

Lesson Two

Lesson Three

Lesson Four

The long form (modern) periodic table.

Until: Before trends and periodicity of properties in the periodical

Trends and periodicity of properties in the periodicia

Until: Before metallic and nonmetallic property.

Metallic and nonmetallic property.

Until: Before the oxidation numbers.

The oxidation no

Until: The end of the ch.

Exam model on the counter

General objectives of the chapter

By the end of this unit, the student will be able to:

- Describe the long form periodic table.
- Arrange the energy sublevels according to the building-up principle.
- . Identify the type of the element and its properties from its location in the table.
- · Calculate the atomic radius by using bond length.
- Explain the factors affecting the atomic radius across the periods and groups.
- Define the location of the four blocks of the table.
- Find the relationship between the electronic configuration of the elements of the same groups.
- Define the atomic radius, ionization energy, electron affinity and electronegativity.
- Compare between the electron affinity and electronegativity.
- Identify the location of metals and nonmetals.
- Find the relationship between atomic radius, ionization energy and electron affinity in metals and nonnegle
 Identify the relationship between the atomic radius and it.
- Identify the relationship between the atomic radius and the acidic and basic properties. Discuss the ionization of acids and bases as hydroxyl compounds.
- Calculate the oxidation number.
- Explain the oxidation and reduction in different reactions

The modern periodic table

The modern periodic table consists - as shown on the previous page - of :

7 periods (horizontal rows).

18 groups (vertical columns).

The enments are arranged ascendingly according

- · Has storm numbers number of protons
- · Pass paince of filling energy sublevels with electrons according to the Aufbau (but) principle, where each element has one more than the element which precedes it in the sa

the atom is decreal a un its elemental stateber number of positive price number of negative electric

Each period begins by filling a new principal energy level with one electron, then filling the energy sublevels lying in the same principal energy level successively, until we reach the last element in the period which is a noble gas in which all the levels are completely filled with electrons.

Elements of the same group

- * Similar in their chemical properties, as they are similar in the electronic configuration of the last level (the valence shell).
- * Different in the principal quantum number (n) of this last energy level.

Elements of the same period

- * Different in their chemical properties, as they are different in the electronic configuration of the last level (the valence shell).
- * Similar in the principal quantum number (n) of this last energy level.

Test lies

The chemical properties are much alike in the two elements

- (a) 13Al , 14Si
- **b** 4Be . 5B
- © 11 Na , 19 K
- (d) 15P, 16S

Answer: The correct choice is

* The modern periodic table consists of 118 elements distributed in seven horizontal periods, as follows:

•		:		1 .		1	3
Period	First	Second	Third	Fourth	Fifth	Sixth	Seventh
	**********	4	y. 1 www	1		for an annual manage of a	
Number of elements	2	8	8	18	18	32	32
		i		1			1

The elements blocks of the modern periodic table

The table is divided into four main blocks, these blocks are:

The blocks of the modern periodic table

s-block elements

- They are placed in the left side of the table.
- The s-block contains the elements whose outermost electrons occupy the "s" sublevel «except ⁴₂He».
- The s-block consists of two groups of elements, they are:
 - 1A whose electronic configuration ends with ns¹
- 2.5 whose electronic configuration ends with ns^2
- Where "n" stands for the number of the outermost energy level as well as the number of the period.

The two groups of s-block

p-block elements

- . They occupy the right side of the table.
- The p-block includes the elements whose outermost electrons occupy the "p" sublevel and their electronic configurations end with $(ns^2, np^{1:6})$, (except belium $1s^2$).
- The p-block consists of six groups, characterized by the letter "A" except "group zero",
 as follows:

Test Yourself

Which of the following graphical figures represents the relation between the number of the unpaired electrons in the orbitals of 3p sublevel and the number of the protons in the atoms of elements of the third period in the periodic table?

Answer: The correct choice is

d-block elements

- They occupy the middle of the table
- The d-block contains the elements with the outermost elections occupy the "J" sublevel and their electronic. configurations end with $(ns^{1/2},(n/I)d^{I/H})$.
- >/ Included Information The electronic configurations of

the elements of the second all theid transition series as regularly configured as should the table, pages (105), 16-

· Cally

- The d-block consists of "10" vertical columns representing "2" groups which are clar by the symbol "11" except or https://orgov/1115.which consists of "3" vertical columns.
- ullet The d-block elements are classified according to the number of the outermost energy, u_0 and the period number into three series (each contains 10 elements), which are:

• The first transition series:

- It includes the elements in which the "3d" sublevel is filled successively.
- It lies in the fourth period and includes the elements from scandium (21Se) to zinc (30⁷⁸⁾

The second transition series :

- It includes the elements in which the "4d" sublevel is filled successively.
- It lies in the fifth period and includes the elements from yttrium (39Y) to cadmium (48C)

1 The third transition series :

- It includes the elements in which the "5d" sublevel is filled successively. • It lies in the sixth period and includes the elements from lands

Which quantum numbers represent the orbitals that are filled successively with electrons in the elements $_{21}$ Sc to $_{30}$ Zn ?

(a)
$$n = 3$$
, $l = 1$

(b)
$$n = 3, l = 2$$

$$\bigcirc$$
 n = 4, $l = 1$

(d)
$$n = 4$$
, $l = 2$

Idea of answering:

Answer: The correct choice is

f-block elements

- They are separated down the table, to avoid being too long.
- In this block the "f" subjected is filled successively.

The electronic configurations of the elements of f-block are not regularly configured as shown in the table, page (106).

The two series of I-block

The lanthanides series:

- It is placed in the sixth period, in which the "4f" sublevel is filled successively, it includes 14 elements.
- The elements of this series were named inaccurately by rare earths, because they are quite similar in behavior and very difficult to be separated from each other as the outermost energy level for all of them is 6s² as the outermost energy level for all of them is 6s² However, that name is not accurate, as recently their oxides could be separated by ionic exchange.

2 The actinides series:

- It is placed in the seventh period, in which the "5f" sublevel is filled succession it also includes 14 elements.
- All the elements of this series are radioactive (their nuclei are unstable).

Worked Example

What is the block of elements which includes the largest number of elements the sixth period in the periodic table ?

- (a) s-block.
- (b) p-block.
- (c) d-block.
- (d) f-block.

Idea of answering:

The sixth period includes elements of the blocks s, p, d and the p blocks are filled successively with electrons as follows:

				-
The block	8	р	, d	1
The sublevel which is successively filled	s	p	d	1
Number of the orbitals of the sublevel	1	3	5	1
Number of the electrons required to saturate each sublevel	1 / 2 = 2e	$3 \times 2 = 6e^{-}$	$5 \times 2 = 10c$	7 / 2 = 14
Number of the elements of each block in the sixth period	2	6	10	14

It is shown in the table that the number of the elements of f-block is 14 elements, this is the largest number of elements in the sixth period.

Answer: The correct choice is d,

The types of the periodic table elements

• It is possible to classify the elements in the periodic table into four types, which are :

The types of the periodic table elements

1/3	Includ	ed in	for:	OR
-----	--------	-------	------	----

Some significant grather periodic table are grant with characteristic as in the opposit

Number of group	The characteristic name of the group
IA	Alkali metals
2A	Alkaline earth metals
7A	Halogens
0	Noble gases

Noble gases

- They are the elements of group zero "18" which is the last column of p-block.
- They are characterized by having energy levels completely filled with electrons and their electronic configurations end with np^6 , except that of helium 2He which ends with Is^2

He Is²

Ne Neon

Ar Neon

Argon

Kr Krypton

Xe Xenon

Ru Radon

Note ,

Noble gases may form compounds, but with great difficulty, because they are very stable elements as their energy levels are completely filled with electrons.

Worked Example

If the principal quantum number of the last electron in the atom of a noble gas in the What is the number of the orbitals which are completely filled with electrons atom?

(a) 3

(b) 5

d) 9

Idea of answering:

- : This element is a noble element.
- ... All the energy level in its atom are filled with electrons.
- : The principal quantum number of its last electron 1 3
- \therefore The electronic configuration of this atom is $1/\sqrt{2}$.
- \therefore The number of the filled orbitals = 1 + 1 + 3 + 1.

Answer: The correct choice is (d)

Test Yourself

What is the number of the natural noble gase(s) in which /s orbital is filled with electrons

(c) 5

Answer: The correct choice is

The representative elements

- They are the elements of s and p-blocks, except that of group zero.
- They occupy the groups from 1A: 7A
- These elements are characterized by the complete filling of all the energy levels with electrons, except for the outermost level.
- They are active elements, because their outermost energy level tends to reach the completed electronic configuration similar to that of the nearest noble gas $(1s^2 \text{ or } ns^2, np^6)$ by gaining, losing or sharing electrons.

The representative elements tend to reach the electron configuration of the nearest noble gas

Examples-

(Similar to the electronic configuration

16^S $\frac{gains}{2 \text{ electrons}}$ of neon gas $_{10}$ Ne)

15², 2s², 2p⁶, 3s², 3p⁴

15², 2s², 2p⁶, 3s², 3p⁶

Representative elements is the topic of Chapter 4 second term

(Similar to the electronic configuration of argon gas IRAr)

Η,

152

(Similar to the electronic configuration of helium gas affe)

The main t

ments

- They are the element of the liblock.
- They are characterized by having energy levels completely filled with electrons, except the outermost two levels.

Transition elements will be thoroughly discussed next year

- *Example: $_{21}$ Sc: Is^2 , $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^1$
 - In the principal level (n = 4): The sublevel 4p is vacant.
 - In the principal level (n = 3): The sublevel 3d is incompletely filled.

4 The inner transition elements

- They are the elements of the f-block.
- They are characterized by having energy levels completely filled with electrons,

except the outermost three levels.

- * Example: $_{64}$ Gd: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p^6$, $5s^2$, $4d^{10}$, $5p^6$, $6s^2$, $4f^7$, $5d^1$
 - In the principal level (n = 4): The sublevel 4f is incompletely fifted.
 - In the principal level (n = 5): The sublevel 5d is incompletely filled.
- In the principal level (n = 6): The sublevel 6p is vacant.

Test yourself	
(1) What is the type of the element whose at ends with:, $4f^{14}$, $5d^9$, $6s^1$?	
a An inner transition element.	b A main transition element
© A representative element.	d A noble element.
Idea of answering:	
: The two outer principal energy levels with electrons.	and are not complete
The element is	
Answer: The correct choice is	
a Zero b 14 Idea of answering: Inner transition elements start to appear in the Number of the inner transition elements in bot Answer: The correct choice is a	period. the 4 th and the 5 th periods =
The electronic configuration in the light. The periodic table shows a method to express the electronic to the nearest noble gas which precedes the method of the electronic configuration of elements.	ectronic configurations of the alaments
2s'	2

Fe.

 $3s^{t}$

48

55'

6s'

7s'

Sa Ba

34

4d

5d'

6d

He

Ne Ne

II Ar

36 Kr

54 Xe

Rn

17 C1

2p'

 $3p^{l}$

4p^l

5p'

6p'

Cd

• The following table shows the electronic configurations of the atoms of the illustrated elements in the previous periodic table:

The ordinary electronic configuration	Electronic configuration to the nearest noble gas
17 Cl: $1s^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^2 \cdot 3p^5$	$_{17}\text{CI}:[_{10}\text{Ne}], 3s^2, 3p^5$
26 Fe: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^6$	26Fe:[18Ar], 4s ² , 3d ⁶
48 Cd: $1s^2$, $2s^2$, $2p'$ $4s^2$, $3d^{10}$, $4p^6$, $5s^2$, $4d^{10}$	48Cd: [36Kr], 5s ² , 4d ¹⁰
56Ba : $1s^2$, $2s^2$, $2p^{\prime\prime}$. $4x^2$, $3d^{10}$, $4p^6$, $5s^2$, $4d^{10}$, $5p^6$, 6	$_{56}^{2}$ $_{56}^{8}$ Ba : [$_{54}$ Xe], $6s^{2}$

Test Yourself

What is the block of the element whose atom has the electronic configuration :

[Kr], $4d^{10}$, $4f^4$, $5s^2$, $5p^6$, $6s^2$?

- a s-block.
- b p-block.
- © d-block.
- d f-block.

Idea of answering:

- In this atom, the sublevel is not completely filled.
- The element belongs to block.

Answer: The correct choice is

The abnormality of the electron configurations of some elements in the periodictal

The atom becomes more stable where the sublevel is:

• By the same way the electronic configuration of both molybdenum (42Mo) and gadolinium (64Gd).

Test yourself

Is it possible that the sublevel 3d in each of the atoms of 2 elements in the fourth period contains 5 single (unpaired) electrons ?

• The following table represents the electron configurations of the atoms of some elements of the modern periodic table in their ground states :

Atomic	Element	Electron configuration		in their ground states:		
number		Configuration	Atomic number	Eleme	nt Electron configuration	
1	Н	151	34	,		
2	He	$ls^2 = [He]$	26	Fe	$[Ar]$, $3d^{6}$, $4s^{2}$	
3	Li	[He] . 2s ¹	27	Co	$[Ar]$, $3d^7$, $4s^2$	
4	Be	[He] , 2s ²	28	Ni	$[Ar]$, $3d^8$, $4s^2$	
5	В	[He] $.2s^2 .2p^{1}$	29	Cu	$[Ar], 3d^{10}, 4s^{1}$	
6	C	[He] $, 2s^2, 2p^2$	3()	Zn	$[Ar]$, $3d^{10}$, $4s^2$	
7	N		31	Ga	[Ar], 3d ¹⁰ , 4s ² , 4p ¹	
		[He] $.2x^2 .2p^3$	32	Ge	$[Ar]$, $3d^{10}$, $4s^2$, $4p^2$	
8	0	HE 20 2pt	33	As	[Ar], 3d ¹⁰ , 4s ² , 4p ³	
9	F	#: 'p'	.34	Se	[Ar], 3d ¹⁰ , 4s ² , 4p ⁴	
10	Ne	* = [Ne]	35	Br	[Ar], 3d ¹⁰ , 4s ² , 4p ⁵	
11	Na	(N	36	Kr	[Ar], $3d^{10}$, $4s^2$, $4p^6 = [Kr]$	
12	Mg	Page 4x	37	Rb	[Kr], 5s1	
13	Al	$\{Ne\}$, $3x^2$, $3p^4$	38	Sr	[Kr], 5s ²	
14	Si	$[Ne], 3s^2, 3p^2$	39	Y	[Kr], 4d ¹ , 5s ²	
15	P	[Ne], $3s^2$, $3p^3$	40	Zr	$[Kr]$, $4d^2$, $5s^2$	
16	S	[Ne], $3s^2$, $3p^4$	41	Nb	[Kr], 4d ⁴ , 5s ¹	
17	CI	[Ne] $.3s^2 .3p^5$	42	Мо	[Kr], 4d ⁵ , 5s ¹	
18	Ar	[Ne], $3s^2$, $3p^6 = [Ar]$	43	Тс	$[Kr]$, $4d^{5}$, $5s^{2}$	
19	K	[Ar] .4s ¹	44	Ru	$[Kr]$, $4d^7$, $5s^4$	
20	Ca	[Ar], 4s ²	45	Rh	[Kr], 4d ⁸ , 5s ¹	
21	Sc	[Ar], $3d^{1}$, $4s^{2}$	46	j	[Kr] , 4d ¹⁰	
22	Ti	[Ar] $.3d^2 .4s^2$	47		[Kr], 4d ¹⁰ , 5s ¹	
23	v	[Ar], $3d^3$, $4s^2$	48		$[Kr], 4d^{10}, 5s^2$	
24		[Ar] ,3d ⁵ ,4s ¹	49		[Kr] $,4d^{10},5s^2,5p^1$	
25		[Ar] .3d ⁵ .4s ²	50	Sn [[Kr] $.4d^{10}$ $.5s^2$ $.5p^2$	

Atomic number	Element	Electron configuration	Atomic number	Element	Electron configuration
	Sb	(Kr) , $4d^{10}$, $5s^2$, $5p^3$	78	Pt	[Xe], 4f ^{l4} , 5d ⁹ , 6d
51	Te	$[Kr]$, $4d^{10}$, $5s^2$, $5p^4$	79	Au	[Xe], $4f^{14}$, $5d^{10}$
52 53	I	[Kr], $4d^{10}$, $5s^2$, $5p^5$	80	Hg	[Xe] , 4f ¹⁴ , 5d ¹⁰
54	Xe	[Kr], $4d^{10}$, $5s^2$, $5p^6$ = [Xe]	81	Tl	[Xe] .4f ¹⁴ ,5d ¹⁰
55	Cs	[Xe], 6s ¹	82	Pb	[Xe] , 4f ¹⁴ , 5d ¹⁰ ,6 -
56	Ba	$[Xe]$, $6s^2$	83	Bi	[Xe], 4f ¹⁴ , 5d ¹⁰ , 6c ²
57	La	[Xe], $5d^{1}$, $6s^{2}$	84	Po	[Xe], 4f ¹⁴ , 5d ¹⁰ , 6s ²
58	Ce	[Xe], $4f^{l}$, $5d^{l}$, $6s^{2}$	85	- \	(Xe) .4f ¹⁴ .5d ¹⁰ .6s ²
59	PT	[Xe], $4f^3$, $6s^2$	86		(Ne) . 4f ¹⁴ .5d ¹⁰ .6s ² .66
60	Nd	[Xe], $4f^4$, $6s^2$	87		\mathbb{R}^{n} , $7s^{I}$
61	Pm	[Xe], $4f^{5}$, $6s^{2}$	88		$[Rn]$, $7s^2$
62	Sm	[Xe], $4f^6$, $6s^2$	89	:le	$[Rn]$, $6d^{T}$, $7s^{2}$
63	Eu	[Xe], $4f^7$, $6s^2$	90	Th	$[Rn]$, $6d^2$, $7s^2$
6-1	Gd	[Xe], $4f^7$, $5d^1$, $6s^2$	91	Pa	$[Rn]$, $5f^2$, $6d^1$, $7s^2$
65	Тъ	$[Xe], 4f^9, 6s^2$	92	U	$[Rn]$, $5f^3$, $6d^1$, $7s^2$
66	Dy	[Xe], $4f^{10}$, $6s^2$	93	Np	$[Rn]$, $5f^4$, $6d^4$, $7s^2$
67 68	Но	[Xe], $4f^{11}$, $6s^2$	94	Pu	$[Rn]$, $5f^6$, $7s^2$
69	Er	[Xe], $4f^{12}$, $6s^2$	95	Am	$[Rn]$, $5f^7$, $7s^2$
70	Tm Yb	[Xe], $4f^{13}$, $6s^2$	96	Cm	$\{Rn\}, 5f^7, 6d^1, 7s^2$
71	Lu	[Xe], $4f^{14}$, $6s^2$	97	Bk	$[Rn]$, $5f^9$, $7s^2$
72	Hf	[Xe] ,4f ¹⁴ ,5d ¹ ,6s ²	98	Cf	$[Rn]$, $5f^{10}$, $7s^2$
73	Та	[Xe], $4f^{14}$, $5d^2$, $6s^2$ [Xe], $4f^{14}$, $5d^3$, $6s^2$	99	Es	$[Rn], 5f^{II}, 7s^2$
74	w	[Xe], $4f^{14}$, $5d^{3}$, $6s^{2}$ [Xe], $4f^{14}$, $5d^{4}$, $6s^{2}$	100	Fm	$\{Rn\}, 5f^{12}, 7s^2$
75	Re	[Xe], $4f^{14}$, $5d^{5}$, $6s^{2}$	101	Md	[Rn], $5f^{13}$, $7s^2$
76	Os	[Xe], 45 ¹⁴ , 5d ⁶ , 6s ²	102	No	$[Rn]$, $5f^{14}$, $7s^2$
77	Îr	[Xe],4f ¹⁴ ,5d ⁷ ,6s ²	103	Lr	$[Rn]$, $5f^{14}$, $6d^{1}$, $7s^{2}$

petermination of element location in the periodic table

• Period number :

It is determined by the highest principal quantum number (n) in the electronic configuration of the element.

• Group number and symbol:

They are determined by the type of element as shown in the following table:

Type of element	Block	Electronic configuration	Group number		Group symbo
	S	ns ^{1:2}	The number of electrons of the last sublevel (s) The sum of the numbers of electrons in the last two sublevels (s) and (p) "Excluding group zero"		
Representative	р				(A)
Noble gases	p	np ⁶	Group zero (p sublevel is completely fitled with electrons) "In addition to 2He"		_
Main transition	d (n-1		The sum of the numbers of continuous the last (s) sublevel and the (d) sublevel, as follows:	penultimate	
		$ns^{l:2}$, $(n-l)d^{l:10}$	Total number of electrons of ns , $(n-1)d$	Group	(B)
			3:7	3B:7B	Excluding group 8
			8:10	8	5
			11	1B	
			12	2В	

Illustrate the block, type and location of the following elements in the periodic

(1) 12Mg

(2) 32^{Ge}

(3) 36Kr

(4) 25Mn

(5) 29Cu

Answer:

	Element	Electron configuration	Block	Type of element	Period number	Group humb
(1)		1 ₁₀ Nel, 3s ²	s	Representative	3	2A:
(2)	32Ge	$[_{18}\text{Ar}]$, $4s^2$, $3d^{10}$, $4p^2$	р	Representative	4	4A(-
(3)	₃₆ Kr	$[_{18}\text{Ar}]$, $4s^2$, $3d^{10}$, $4p^6$	p	Noble gas	4	zerol
(4)	₂₅ Mn	$[_{18}\text{Ar}]$, $4s^2$, $3d^5$	d	Main transition	4	7B(*
(5)	29Cu	[₁₈ Ar], 4s ¹ , 3d ¹⁰	d	Main transition	4	B

A representative element contains four principal energy levels occupied the last sublevel has three unpaired electrons.

Determine each of the following:

- (1) The electron configuration of its atom.
- (2) Its atomic number.
- (3) Number of completely filled orbitals in the outermost energy level.

Answer:

(1) [Ar],
$$4s^2$$
, $3d^{10}$, $4p^3$

- (2)33
- (3) 1 orbital.
- (4) 5 electrons.

Two elements (X) and (Z) are located in group 6A, if the element (X) is located in the third period, and the element (Z) is located in the fifth period.

What is the atomic number of the element (Y) which lies between them in the same group?

- (a) 31
- **b** 32
- © 33
- (d) 34

Idea of answering:

- : Element (X) is located in the third period, and element (Z) in the fifth period.
- :. Element (Y) is located in the period.
- : The electronic configuration of the atom of this element is:

Answer: The correct choice is

Choose from (B) and (C) what is suitable for (A):

(A) Element		(B)	Type of element	
		The electronic configuration of the outermost level		
(1) Radon	86Rn	(a) $5s^{I}$, $4d^{5}$	(1) Inner transition (an actinide	
(2) Cesium	55 ^{Cs}	(b) $6s^2$, $4f^{14}$, $5d^6$	(2) Main transition (second transseries).	
(3) Bromine	35 ^{Br}	(c) $6s^2$, $4f^{14}$, $5d^{10}$, $6p^6$	(3) Noble.	
(4) Vanadium	23 ^V	(d) $4s^2$, $3d^3$	(4) Main transition (third: series).	
(5) Molybdenum	₄₂ Mo	(e) $6s^2$, $4f^7$, $5d^1$	(5) Inner transition (a lant	
(6) Osmium	76 ^{Os}	$(f) 4s^2, 3d^{10}, 4p^5$	(6) Representative (s-bloc)	
(7) Gadolinium	64Gd	$(g) 6s^2, 4f^8$	(7) Main transition (first transition).	
		(h) 6s ¹	(8) Representative (p-block	

Choose the correct answer for each of the following sentences:

- (1) The elements of the same period are similar in the number of

 - b. protons.
 - c. energy levels.
 - d. neutrons.

in the modern periodic table?	is located in the same period of silicon 14Si
a. ₃₂ Ge	
c. ₁₁ Na	b. ₂₁ Sc
	d. ₃₈ Sr
(3) The element whose atomic numb	per is 5 has similar properties to those of
the element with the atomic numl	ber ·
a. 8	b. 13
c. 14	d. 19
(4) The molecule of the element who	ose electronic configuration ends with np^6
consists of	orectionic configuration ends with np
a. one atom.	b. two atoms.
c. three atoms.	d. four atoms.
(5) The element which is located at th	ne top right of the modern periodic table
is a	and the modern periodic table
a. representative element.	b noble element.
c. main transition element.	d. metallic element.
(6) What is the type of the elements w	whose last electronic configuration is: ns^2 , $np^{1:5}$
a. Representative.	b. Main transition.
e. Inner transition.	d. Noble.
(7) What is the number of the element	ts of f-block?
a. 32	b. 46
c. 28	d. 14
8) What is the sublevel which is succ	essively filled with electrons in
the series of actinides?	
a. <i>3d</i>	b. 4d
c. 4f	d. 5f
9) There is an abnormality in the elec	tronic configuration of each of
a. ₂₄ Cr ³⁺ , ₂₆ Fe ³⁺	b. 48Cd . 30Zn
c. ₂₉ Cu ⁺ , ₂₀ Cu	d. ₂₄ Cr . ₂₉ Cu
27	11

Multiple choice questions

Modern periodic table

Which of the following graphical figures represents the relation between numbers of principal energy levels occupied with electrons and the atomic number of the elements of the same vertical group in the periodic table?

Which of the following graphical figures represents the relation between no valence electrons and the atomic number of the elements of the same group

The properties of the two elements are similar.

- (a) ₁₉K , ₂₀Ca
- © 17CI . 35Br

- (b) 31 Ga . 32 Ge
- d₅₅Cs,₅₆Ba

The chemical properties of both cesium ₅₅Cs and element X are similar. What is the electron configuration of element \mathbf{X} ?

- (C) [Ar] , 3d5 ,4s1

- (b) [Xe] . 6s²
- (1) [Ar] . 3d10 4-2 4-6 501

what is the number of the periods	in the periodic table which lie between
the periods of hydrogen element (H) and argon element () 2
(a) zero.	(b) I period.
© 2 periods.	d 3 periods.
The elements blocks of the modern	
Which of the following are the qua	antum numbers of the last electron in an element
that belongs to p-block ?	
(a) $n = 2$, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$	
(b) $n = 1$, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$	
\bigcirc n = 1, $l = 1$, $m_l = +1$, $m_s = +\frac{1}{2}$	
(d) $n = 3$, $l = 2$, $m_l = +1$, $m_l = +\frac{1}{2}$	
$m = 3, t = 2, m_1 = +1, m_2 = +\frac{1}{2}$	
What is the atomic number of the	second element in d-block elements,
which is located in the fourth period	od ?
a 12	(b) 22
© 38	(1) 39
8 What is the electronic configuration	n of the elements of the penultimate column of
d-block?	
$(n-1)d^{l}$, ns^{l}	(b) $(n-2)d^l$, ns^l
$\bigcirc (n-1)d^2, ns^2$	$ (1) (n-1)d^{10}, ns^{1} $
The elements which follow neon ga	as (10Ne) and precede rubidium element (37Rb) are
located in	
a the third period only.	(h) the fourth period only.
the third and the fourth periods.	d the fourth and the fifth periods.
The types of the periodic table clem	ICHI\
Which of the following elements di	ffers in the electronic configuration of its valence
shell from the other elements in its	group?
a 36Kr	(b) 10K
© p.	(d) 2He

©₄Be

of Elements
ne last electron in its atom has the two
(b) Noble only.
d Representative or main transition
nts the electronic configuration of
(b) [Ar] $.4s^2$, $3d^6$
(1) [Xe], $6s^2$, $5d^1$, $4f^7$
nts the electronic configuration of a tra
ip ⁶
$t_p{}^l$
P0 T O (B N O b b H O O
90 70 f d 2 a b g z a g
numbers of their groups.
iumbers of their groups.
en the representative elements in
en the representative elements in period?
period ?
(b) 2
(1) 10
of the modern periodic table
les of the class
ies of the elements 4Be, 12Mg and 2000
ains a pair of electrons.
ains a
TEMP & DOLL B.

What is the type of the element which contains 2 electrons in the sublevel whose value of the quantum number (/) is 2?

(a) Main transition.

(b) Inner transition.

© Noble.

d Representative.

What is the type of the element whose electronic configuration

is: [Xe],
$$6s^2$$
, $4f^{14}$, $5d^7$?

- (a) Main transition element.
- (b) Inner transition element.
- (c) Representative element.
- (d) Noble element.

The following figure represents a section in the modern periodic table.

Li	Be														0	F	Ne
Na	Mg														S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Min	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr															ı	Xe
Cs	Ba															At	Rn

What is the number of each of the representative and the transition elements in this section ?

Choices	Number of representative elements	Number of transition elements
(a)	21	10
(b)	10	10
<u> </u>	26	5
<u>(d)</u>	5	10

The electronic configuration of silver 47 Ag is

(a) [Ar], 4s2, 4d9

b [Kr], $5s^{I}$, $4d^{I0}$

© [Kr] , 5s2 , 3d9

(d) [Ar], 4s1, 4d10

An element with atomic number 42, the number of its half filled orbitals is

(a) 1

b 4

© 5

d 6

b Na+ and Mg²⁺

(a) Na and Ne

d Mg²⁺ and Na

(c) Mg+ and Ne

What is the compound in which the number of electrons of its positive ion eq. the number of electrons of its negative ion?

(a) MgCl,

(b) NaCl

(c) MgO

(d) MgS

Which of the following represents the location of the element 73X in the modern periodic table?

Choices	Period	Group
(a)	5	7
b	6	13
©	6	5
0	5	5

The electronic configuration of ruthenium ion 44Ru3+ is .

Which of the following statements represents properly the element which in period 3, group (VIIA) in the modern periodic table ?

- a) It forms an ion whose charge is +1
- (b) It is one of d-block elements.
- © Its valence shell contains 5 electrons.
- (d) It is a representative element which is located below fluorine 9F

Sr element is located in the fifth period, group (2A) in the periodic table. What is the electronic configuration of its ion?

An element in the period (n) and gro	up (5B).
Which of the following represents the	electronic configuration of its outer energy levels?
(a) ns^{α} , $(n-1)d^{\alpha}$	(b) ns^2 , $(n-1)f^{14}$, $(n-1)d^3$
$(n^2, (n-2)f^{14}, (n-1)d^3$	(1) ns^2 , $(n-2)f^{14}$, nd^3
What is the atomic number of the ele	ement (X) whose electronic configuration

29	What is the atomic number of the eleme	nt (X) whose electronic configuration
t	ends with: ns^{I} , $(n-I)d^{S}$ and its electrons	s are distributed in 5 principal energy levels ?
	(a) 29	D 24

30	If the element (X) in the periodic table	forms the compounds XCI ₃ , X ₂ O ₃
	then (X) is located in group	T - T

(a) IIIA (b) IA (c) IVA (d) VIIA

1 The electron configuration of the positive ion of the compound MO ends with the sublevel $2p^6$

Which of the following determines the location of element M in the modern periodic table?

Choices	Period	Group
(a)	The fourth	7
Ь	The fourth	9
C	The third	16
(1)	The third	2

32 A divalent representative element is located in p-block in the periodic table. What is the number of the half filled orbitals in the atom of this element?

a 1

© 3

What is the type of the trivalent metal whose ion has the electronic configuration: [Ar]?

Main transition.

(b) Inner transition.

Inert.

d Representative.

- sublevel becomes half filled with electrons. What is the symbol of this element?
 - (a) 13Al
 - (C) ISP
- (b) 14Si
- (d) 16S
- What are the possible quantum numbers of the last electron in the atom of an element which is located in the fourth period, group (7A)?

(a)
$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = -\frac{1}{2}$

(b)
$$n = 4$$
, $l = 3$, $m_l = -1$, $m_s = +\frac{1}{2}$

©
$$n = 4$$
, $l = 2$, $m_l = -2$, $m_s = +\frac{1}{2}$

(1)
$$n = 3$$
, $l = 0$, $m_l = 0$, $m_s = +\frac{1}{2}$

- Make the four quantum numbers of the electron with the highest energy in the ator of a main transition element located in the period (X) are $(3, 2, +2, +\frac{1}{2})$, then the probable four quantum numbers of the last electron in the represeelement which is located at the end of the period (X) are ..
 - $(34,1,0,-\frac{1}{2})$
 - \bigcirc 4.0.0,+ $\frac{1}{2}$

- (b) 3, 1, +1, $+\frac{1}{2}$
- (d) 3, 2, +2, $-\frac{1}{2}$
- The electrons of the atom of a representative element occupy 3 principal enand its last sublevel contains a number of electrons double their number in it first principal level.
 - What is the atomic number of this element?
 - (a) 16
 - (c) 18

- **(b)** 17
- If the electronic configuration of an element atom is [Xe], $6s^2$, $5d^4$, $4f^7$ Which of the following choices represents the distribution of the electrons in
 - (a) 2 8 18 32 4
 - @ 2-8-18-25-9-2

The following figure represents a section in the modern periodic table:

Conclude the difference between the atmoic numbers of the two elements U and T, with explanation.

- Man element (N) its electronic configuration ends as follows: 732 . 6d1 . 5f4
 - (I) What is the type of this element?
 - (2) What is the number of the protons inside the nucleus of the atom of this element?
- Determine the block and the type of the elements which have the following electronic configurations:
 - (1) [Ar], $4s^2$, $3d^5$

- (2) [Kr], 5s1
- Illustrate the electronic configuration of each of the following elements, with writing their atomic numbers:
 - (1) A representative element which is located in period 2, group 5A
 - (2) A noble element located in period 3
- 13 The opposite figure illustrates the atom of one of the elements:
 - (1) Write the electronic configuration of this element atom according to the nearest noble gas.
 - (2) Determine the location of this element in the periodic table.
- The opposite figure represents a section in the periodic table.

 Deduce the atomic number of the element (A),

 with explanation.
- Predict the general formula of the oxides of the representative elements of group (2A).
- In the light of your knowledge of the quantum numbers.

 Why should the 6th period contain 32 elements?

23B

A

57C

The graduation of the representative elements property

The chemical properties and some of the physical properties of the elements depend on their electronic configurations and especially on the valence electrons (the electrons which are found in the outermost principal level).

> Group so. --- IA 2A 3A 4A 5A 6A 7A LI BE BCNOF No. of valence electrons - 1 2

> > The numbers of the valence electrons of the elements in the second period

> > > 2 Ionization potential.

Electronegativity.

We will study the graduation of the following properties in the representative (

- The atomic radius.
- Electron affinity.
- Metallic and nonmetallic property.
- 6 Acidic and basic property.
- Oxidation numbers.

The atomic radius

- The concept of bond length in the covalent compounds differs from that in the ionic
- · By knowing the bond length, we can calculate :
 - Atomic radius.

D lonic radius.

Atomic radius

physically by the distance between the nucleus and the farthest electron, because it is impossible to determine the precise location of an electron around the nucleus (as the wave mechanics theory revealed). But the atomic radius can be calculated by knowing the covalent bond length which is estimated in angstroms (Å).

1 angstrom = 1×10^{-10} meter

Covalent bond length (2r) in a diatomic molecule

Covalent bond length (2r)

is estimated by the distance between the centers of the two nuclei of two bonded atoms.

Atomic radius (r)

is estimated by half the distance between the centers of two similar atoms in a diatomic molecule.

Covalent bond length = Sum of the two atomic radii of the two atoms of the molecule

The atomic radius (r) = $\frac{\text{Bond length in a diatomic element molecule (2r)}}{2}$

The following table shows the bond length and the covalent atomic radius for some molecules:

The molecule	H-H	F-F	CI-CI	Br – Br	1-1
The bond length (Å)	0.6	1.28	1.98	2.28	2.66
The covalent atomic radius (Å)	0.3	0.64	0.99	1.14	1.33

Worked Examples

Off you know that:

- The bond length in chlorine molecule Cl₂ is 1.98 Å
- The bond length between carbon and chlorine atoms
 (C Cl) in carbon tetrachloride CCl₄ is 1.76 Å

What is the atomic radius of carbon atom?

a 0.22 Å

(b) 0.77 Å

© 0.99 Å

(d) 1.21 Å

idea of answering i

Bond length in chlorine molecule Cl₂

The atomic radius of chlorian ...

$$r(Cl) = \frac{1.98}{2} = 0.99 \text{ Å}$$

The atomic radius of carbon = The (C - Cl) bond length - The atomic radius of chic.

Answer: The correct choice is (b)

- \odot The bond length in hydrogen molecule $H_2 = 0.6 \text{ Å}$
 - The bond length in ritrogen molecule $N_2 = 1.4 \text{ Å}$
 - \bullet The bond length in ritric axide molecule NO = 1.36 Å

Calculate:

- (1) The bond length in oxygen molecule O2
- (2) The bond length (O H) in water molecule H2O

(1) The atomic radius of nitrogen = Bond length of N₂ molecule

$$\Gamma(N) = \frac{1.4}{2} = 0.7 \text{ Å}$$

The atomic radius of oxygen = The (N - O) bond length - The atomic rac

$$r(0) = 1.36 - 0.7 = 0.66 \text{ Å}$$

The bond length in oxygen molecule $O_2 = 2 \times \text{The atomic radius of } OXY_2^2$

$$2 \times (O_2) = 2 \times 0.66 = 1.32 \text{ Å}$$

(2) The atomic ratios of hydrogen as Bond length of H₂ molecule

$$1(H) = \frac{0.6}{2} = 0.3 \text{ Å}$$

The bond length (O - H) = The momic radius of oxygen + The atomic radius r(0)+r(H)=0.66+0.3=0.96 Å

B lonic radius

The ionic compounds such as sodium chloride are found in a crystalline form and consist of positive ions (cations) and negative ions (anions),

Ionic bond length is estimated by the distance between the centers of the nuclei of two bonded ions in the formula unit of the crystal.

Ionic bond length sum of the radii of (cation + anion)

The ionic bond length = The sum of two ionic radii in the formula unit

• The ionic radius depends on the number of electrons lost or gained to form ions.

Worked Example

- The ionic radius of lithium (Li^{+}) = 0.68 Å
- The ionic radius of sodium $(Na^+) = 0.98 \text{ Å}$
- The bond length of sodium chloride formula unit $(Na^{\dagger}Cl^{-}) = 2.76 \text{ Å}$

What is the ionic bond length in lithium chloride formula unit?

- (a) 1.66 Å
- (b) 1.78 Å
- © 2.08 Å
- d) 2.46 Å

idea of answering:

- The ionic radius of chloride ion Cl^- = The (Na⁺Cl⁻) bond length The ionic radius of sodium $r(Cl^{-}) = 2.76 - 0.98 = 1.78 \text{ Å}$
- The bond length in lithium chloride formula unit (Li⁺Cl⁻) =

The ionic radius of lithium ion + The ionic radius of chloride ion

$$r(Li^+) + r(Cl^-) = 0.68 + 1.78 = 2.46 \text{ Å}$$

Answer: The correct choice is d

The effective nuclear charge concept (Z-effect)

- The valence electrons are not affected by the complete nuclear charge (the charge of the nucleus protons).
- This is because the inner electrons (core electrons of the inner energy levels) screen a part of this charge from the valence electrons (electrons of interest). So, the actual charge affecting any electron is called the effective nuclear charge (Zeff) which is the actual nuclear charge (positive charge) that affects an electron in an atom.

The attraction and repulwhich affect the valence de

· And the effective nuclear charge (Zeff) is always less than the nuclear charge (the total number of protons present in a nucleus).

The element Li Be B C N Z 0 3 4 5 Zett 6 7 8 1.28 2.42 3.14 3.83 51 4.45 Note

For illustration only

In hydrogen atom, the effective nuclear charge (Z_{eff}) is equivalent to the Charge to repel each other or to screen a part of the electron, and hence no other electron. to repel each other or to acrees a part of the charge of all

The graduation of atomic radius in the periodic table

The graduation of atomic radius property in the elements of the two blocks and p estimated in picometers (pm)

For illustration only

कि lt can be observed from the figure that :

In the horizontal period

The atomic radius decreases as we go from left to right across the same period by increasing the atomic number from 1A to group zero

In the vertical group

The atomic radius increases as we go down the same group by increasing the atomic number from the first to the seventh period

Because the increase in the atomic number results in

The gradual increase in the effective nuclear charge (Z_{eff}) which increases the nuclear attraction to the valence electrons (pulling them closer to the nucleus) leading to the decrease in the atomic radius.

- The increase in the number of the energy levels in each new period.
- The increase in the number of the completely filled energy levels that screen more of the effective nuclear charge from the outer electrons.
- Increasing the repulsive forces between electrons.

General conclusion :

- The atoms of the first group elements (alkalis) are the biggest atoms, while the atoms of the seventh group elements (halogens) are the smallest atoms.
- The biggest element atom in size is cesium (Cs).

The relation between the reduct of atoms and their ions * The radii of atoms differ from the radii of their ions as shown in the following

Metals

* The metal atoms tend to lose their valence electrons during the chemical reaction to form positive ions.

The relationship between metals radil and their positive ions

- The positive ion (the cation) radius is smaller than its atomic radius, as the number of positive protons in the cation is higher than the number of negative electrons. So the attraction of the effective nuclear charge to remaining electrons increases leading to decreasing the size.
- Application The sodium metal tends to lose its valence electron during chemical reactions to form sodium ion of radius smaller than the radius of its atom.

* The nonmetal atoms tend to Palic electrons during the chemical read form negative ions.

The relationship between nonmetals ras and their negative ions

• The negative ion (the anion) radius is larger than its atomic radius, as the number of negative electrons in the anion is higher than the number of positive protons. So the readily forces between electrons inc increasing the number of elany increase in the effective charge leading to increasing

• The chlorine nonmetal tend an electron during chemical form chloride ion of radius the radius of its atom.

Chlorine atom
$$_{17}Cl$$
 Chlorine $_{18}^{2}$, $_{28}^{2}$, $_{2p}^{6}$, $_{3s}^{2}$, $_{3p}^{5}$ $_{18}^{2}$, $_{28}^{2}$, $_{27}^{2}$

Worked Examples

O Arrange the following species descendingly according to the radius $(Fe^{2+}/_{26}Fe/Fe^{3+})$, with explanation.

Answer:

The atomic radius of iron atom ($_{26}$ Fe) > The ionic radius of iron (II) ion Fe $^{2+}$ > The ionic radius of iron (III) ion Fe $^{3+}$, because the atomic radii of metals are larger than the radii of their ions. As the ionic radius of the positive ion decreases, when its charge increases.

Ionic radius of positive ion decreases as its charge increases

- (1) The atom of the metal R is similar to its ion R²⁺ in
 - a) the size.

(b) the charge of the nucleus.

c) the radius.

(d) the number of the electrons.

Idea of answering:

- The radius (and hence the size) of the positive ion is smaller than that of its atom.
- : The choices (a) and (c) are excluded.
- The number of the electrons of the positive ion is lower than the number of the electrons of its atom.
- .. The choice (d) is excluded.
- The number of the protons inside the nucleus of the atom does not change during the formation of the ion.
- ... The charge of the nucleus remains the same.

Answer: The correct choice is (b)

Test Vourself

What happens on moving down the group of halogens from fluorine to iodine ?

- a The ionic radius increases.
- The atomic number of the halogen decreases.
- The atomic radius decreases.
- The number of the valence electrons in the halogen atom increases.

Answer: The correct choice is

Worked Exc

19K+ 12Mg²⁺ 3348^{3}

Arrange the opposite ions descendingly according to their radii.

idea of answering:

It is clear from the electronic configurations of the atoms of these elements that 3 of them are located in the same period (the fourth).

Atomic radii of the elements of
Attended with
the same period decrease with
increasing the atomic numbers.
increasing the ground

Bonent	configuration	Period
12Mg	[Ne], $3s^2$	The third
19 ^K	[Ar], 4s ¹	The fourth
33 ^{As}	[Ar], $4s^2$, $3d^{10}$, $4p^3$	The fourth
35Br	[Ar], $4s^2$, $3d^{10}$, $4p^5$	The fourth

$$\therefore _{19}K > _{33}As > _{35}Br$$

.. The radius of the positive ion is smaller than that of its atom, and the radius of the negative ion is larger than that of its atom.

$$As^{3-} > As^{3-} > Br^{-} >$$

... The ionic radius of 12 Mg2+ is smaller than that of 11 Na+, as each of these elements is in the same period.

.. The ionic radius of 11 Na+ is smaller than that of 19 K+, as these two elements and in the same group.

$$\therefore _{19}K^{+} > _{12}Mg^{2+}$$

Answer:

The correct descending order of the radii of the ions is: $_{33}As^{3-} > _{35}Br^{-} >$

tonization potential (Ionization energy)

If an amount of energy is supplied to an atom - when being in the gaseous st may be excited and transferred to higher energy levels, but if a sufficient and supplied, the most loosely bound electron will be completely removed, givin The minimum amount of this energy is called ionization potential.

an absorbed energy

$$Na_{(g)} + Energy$$
 $Na_{(g)}^+ + e^-, \Delta H = +496 \, k^{\int e^{-k}}$
 $Na_{(g)}^+ + e^-, \Delta H = +496 \, k^{\int e^{-k}}$

• The atom of the same element has more than ionization energy as shown in the following :

First jonization potential	Second lonization potential	Third ionization potential
Is the amount of energy required to remove an electron which is most loosely bound to the nucleus in an isolated gaseous atom $M_{(g)} + \text{Energy} \longrightarrow M_{(g)}^+ + e^-, \Delta H = (+)$ This leads to the formation of an ion which carries one	Is the amount of energy required to remove an electron from a positive ion carries one positive charge M'(g) + Energy — M(g) + e - , $\Delta H = (+)$ This leads to the formation of an ion which carries two positive charges The second ionization potential	Is the amount of energy required to remove an electron from a positive ion carries two positive charges $M_{(g)}^{2+} + \text{Energy} - M_{(g)}^{3+} + e^-, \Delta H = (++++++++++++++++++++++++++++++++++$

Worked Example

In terms of the following equations:

(1)
$$Na_{(g)} \longrightarrow Na_{(g)}^+ + e^- \qquad \Delta H = w$$

(2)
$$Na_{(g)} \longrightarrow Na_{(g)}^{2+} + 2e^{-} \qquad \Delta H = x$$

(3)
$$Na_{(s)} \longrightarrow Na_{(g)}$$
 $\Delta H = y$

(4)
$$Na_{(s)} \longrightarrow Na_{(g)}^{2+} + 2e^{-} \qquad \Delta H = z$$

Which of the following equations represents the second ionization potential of sodium?

- a Equation (2) × Equation (1).
- (b) Equation (2) Equation (1).
- © Equation (3) Equation (1).
- (d) Equation (4) Equation (3).

idea of answering:

- The ionization potential indicates that the atom is in its gaseous state Na(g)
- . The choices © and d are excluded.
- Equation (2) represents both the first and the second ionization potentials, while equation (1) represents the first ionization potential only.
- The equation which represents the second ionization potential only is the difference of subtracting equation (1) from equation (2).

Answer: The correct choice is (b)

lonization potential

• The first ionization potential of noble gases is very high, due to the stability of them electronic configuration and it is difficult to remove an electron from a completely [

* Examples: $_{10}$ Ne: [He], $_{2}s^{2}$, $_{2}p^{6}$ $_{18}$ Ar: [Ne], $_{3}s^{2}$, $_{3}p^{6}$

• The first ionization energy of alkali metals is lower than that of all elements. due to the ease of losing of the valence electron.

* Examples : 11Na : [Ne] , 3s1

₁₀K:[Ar],4s¹

pplication (2) The ionization potentials of magnesium:

The opposite figure expresses the ionization potentials of magnesium. it's clear that:

- The second ionization energy of magnesium is higher than the first one, due to increasing the effective nuclear charge (Z_{eff}).
- The third ionization potential of magnesium is much higher than that of its first and second ones, because it results in the breaking up of a completely filled energy level.

Notice that

The first ionization potential of potassium 19K cower than that of calcium 20Ca, due to losing the valence electron easily, while the second ionization potential of potassium is much higher in that of calcium because it results in breaking a completely filled shell.

Ionization potentials of potassium and calcium

Test Vourself

The opposite figure represents the second ionization potentials of some elements.

Which of them represents 3Li?

a)A

(b) B

(C) C

(d) D

Idea of answering:

The electronic configuration of 3Li is

- The second ionization potential of lithium results in the breakage of a completely filled
- : Its second ionization potential is compared to those of the other elements.

Answer: The correct choice is

Worked Example

The opposite table shows the first three ionization potentials E_1 , E_2 and E_3 of an element.

What is the most stable oxidation state of this element?

,	-		
	a)	4	ı

$$(b) + 2$$

Idea of answering:

- The third ionization potential of this element is much higher than its second ionization potential.
- It results in the breakage of a completely filled (a stable) energy level.
- The element is divalent (belongs to group 2A).
- · Its most stable oxidation state is +2

Answer: The correct choice is b

The graduation of ionization potential in the periodic

Ionization potential increases

Graduation of the ionization potential property in the elements of s and y-blocks
"The values estimated in kJ/mol for illustration"

In the same period

The first ionization potential increases as we move from left to right

In the same group

po

(c

T

el

The first ionization energy decrease we go down the group

This is due to

The increase of the effective nuclear charge and the decrease of the atomic radius, which would lead to increasing the attraction of the nucleus to the valence electrons, so they need higher energy to be separated from the nucleus

- The increase in the number of energy which are completely filled with elecwhich increases the atomic radius.
- The decrease of attraction of the motor to the valence electrons, so the energy required to remove the valence electrons decreas.

i.e the ionization potential is inversely proportional to the atomic radius

Notes

O The ionization potential of phosphorus 15P is higher than the ionization potential of sulphur 16S, although phosphorus precedes sulphur in the same period.

Because the atom becomes more stable when the 3p sublevel is half filled with electrons as in phosphorus atom and removing an electron from it will decrease its stability.

1 The ionization potential of aluminum 13Al is lower than that of magnesium 12Mg. although aluminum comes next magnesium in the same period.

$$_{13}\text{Al}: [\text{Ne}], 3s^2, 3p^l$$

Because the atom becomes more stable when the 3s sublevel is completely filled with electrons as in magnesium atom and removing an electron from it will decrease its stability.

Worked Examples

O Which of the following choices shows two elements having almost the same ionization potential?

Idea of answering:

The following table exhibits the electronic configurations of the atoms of the mentioned elements, and their locations in the periodic table:

Element	Electronic configuration of the element atom	Period number	Group number
₁₃ Al	[Ne] $.3s^2.3p^1$	3	3A
31Ga	[Ar], $4s^2$, $3d^{10}$, $4p^1$	4	3A
38Sr	$[Kr]$, $5s^2$	5	2A
_{IJ} Fr	$[Rn]$, $7s^I$	7	1A

- 37 13Al and 13Ga are closest to each other in terms of the number of their group and the numbers of their periods as well.
- .. Their ionization potentials are almost the same.

Answer : The c	arrect choice is	

Element	Ionizatoion potential (kJ/moj
Al	578
Ga	579
Sr	550
Ge	380
	"E - illustration only"

"For illustration only

The following graphical figures show the first eight ionization potentials of two elements in the third period in the modern periodic table:

What is the formula of the ionic compound which is produced from the combinate of these two elements?

(a) MgCl₂

(b) CaBr₂

(c) Na₂S

(d) K2O

Idea of answering:

- * In figure (1), there is a significant elevation in the 8th ionization potential of this compared to the lower ionization potentials, it means that removing 8 electrons in the atom of this element will lead to breaking a completely filled energy level.
 - .. The valence shell of this element contains 7 electrons, i.e. this element is locate in group (7A) (the halogens), which means that it can be chlorine Cl or bromin.
 - :. The choices © and d are excluded.
- In figure (2), it is clear that the significant elevation appears in the 3rd ionization peof this element.
 - ... The valence shell of this element contains 2 electrons, i.e. this element is located group (2A), so it can be magnesium Mg or calcium Ca, but it is given in the data the question that the element is located in the third period.
 - ... Mg is in the third period, while Ca is in the fourth.
- .. The choice (b) is excluded.

Answer: The correct choice is (a)

Figeriou guilliff

We have mentioned that the removal of an electron from the atom will convert it into a cation, which requires an amount of energy named by the first ionization potential. On the other hand, if the atom gained an extra electron, it will be converted into a negative ion. This is associated with releasing an amount of energy named by electron affinity which is the amount of energy released when an extra electron is added to a neutral gaseous atom.

$$X_{(g)} + e^{-} \longrightarrow X_{(g)}^{-} + Energy$$
, $\Delta H = (-)$

• The magnitude of the electron affinity is high when the added electron makes the sublevel, half filled or completely filled, as in both cases it helps in the stability of the atom.

Test Yourself

Which of the following equations represents the electron affinity of bromine?

(a)
$$Br_{(g)} \longrightarrow Br_{(g)}^+ + e^-$$

©
$$Br_{2(g)} + e^- \longrightarrow 2Br_{(g)}^-$$

(d)
$$Br_{(g)}^{+} + e^{-} - Br_{(g)}$$

Answer: The correct choice is

The graduation of electron affinity in the periodic table

The values of the electron affinities of the first 18 elements in the periodic table "in k]/mol"

In the same period

The electron affinity increases as we move from left to right

In the same group

The electron affinity decreases as we go down the group

This is due to

he increase of the atomic number leads to the decrease in the atomic radius (and hence the atomic size). which incilitates for the nucleus to attract a new electron

The increase of the atomic number leads to the increase in the atomic radius (and hence the atomic size). which hinders the nucleus to attract a new electron

* The electron affinity values for beryllium 4Be, nitrogen 7N and neon 10Ne are class.

$$_{4}$$
Be: ls^{2} , $2s^{2}$. $_{7}$ N: ls^{2} , $2s^{2}$, $2p^{3}$, $_{10}$ Ne: ls^{2} , $2s^{2}$, $2p^{6}$

because the atom will be more stable when the sublevel:

- 2s is completely filled as in case of beryllium atom 4Be
- 2p is half filled as in case of nitrogen atom 7N
- 2p is completely filled as in case of neon atom 10Ne and the addition of an electron to any atom of them will decrease its stability.
- * The electron affinity of chlorine (- 349 kJ/mol) is greater than the electron and fluorine (- 328 kJ/mol), although chlorine follows fluorine in the same group.

 because fluorine atom is smaller in size as it has smaller radius than chlorine atom any new electron will suffer a strong repulsive force with the nine electrons already around the fluorine nucleus which decreases the released energy due to consumer, of this energy to overcome this repulsive force.

Test Yourself

The relation between the electron affinity of sulphur and that of oxygen reservelation between the electron affinity of chlorine and that of fluorine.

Which of these choices represents the correct descending graduation in electric in nitrogen, oxygen and sulphur?

Answer: The correct choice is

$$K_{(g)} + Cl_{(g)} \longrightarrow K_{(g)}^+ + Cl_{(g)}^- \quad \Delta H = ?$$

what is the value of AH?

1303 kJ/mol

(b) 1207 kJ/mol

∂ 767 kJ/mol

(d) 69 kJ/mol

	lonization potential	Electron affinity
Potassium	+418 kJ/mol	-48 kJ/mol
Chlorine	+1255 kJ/mol	-349 kJ/mol

dea of answering:

$$\bullet K_{(g)} \longrightarrow K_{(g)}^+ + e^-$$

$$\Delta H = +418 \text{ kJ/mol}$$

$$\Delta H = -349 \text{ kJ/mol}$$

$$K_{(g)} + Cl_{(g)} \longrightarrow K_{(g)}^+ + Cl_{(g)}^-$$

$$\Delta H = (+418) + (-349) = 69 \text{ kJ/mol}$$

Answer: The correct choice is d

Electronegativity

- When two atoms of two different elements combine together, the ability of one atom of them to attract the electrons of the chemical bond differs from that of the other atom, this attraction force is known as
- electronegativity which is the ability of an atom to attract the electrons of the themical bond to itself.
- The electron affinity differs from the electronegativity, where the electron affinity is which refers to an atom in its single state, while the electronegativity of the elements is represented by relative values and it refers to a combined atom.
 - * The increase of the relative values of the electronegativity means the increase ability of the element atom to attract the electrons of the chemical bond.

- difference in electronegativity between elements plays a very important role in
 - mining the nature of the bond formed between them
- be discussed later in chapter 3 second term).

Electronegativity increases

		1A							
	- 1	H			3A	4A	5A	6A	7A
	1	2.1	2A		В	C	N	0	F
SCS		Li	Be		2.0	2.5	3.0	3.5	4.0
Electronegativity decreases	2	1.0	15		Al	Si	P	S	Cl
dec	,	Na	Mg		1.5	1.8	2.1	2.5	3.0
yi.	3	0.9	1.2	7 (Ga	Ge	As	Se	Вг
gati	4	K	Ca	7 (1.6	1.8	2.0	2.4	2.8
me		0.8	1.0	7	In	Sn	Sb	Te	I
ctr	5	Rb	Sr 1.0		1.7	1.8	1.9	2.1	2.5
ă		0.8		H	Tl	Pb	Bi	Po	At
1	6	Cs 0.7	Ba 0.9	()	1.8	1.9	1.9	2.0	2.2

In the same period

The electronegativity increases as we move from left to right

In the same group

onegativity decreases as w go down the group

This is due to

The increase of the atomic number leading to the decrease of atomic radius, so the ability of the atom to attract the electrons of the bond increases

The increase of the atomic number leading to concrease of atomic radus so the ability of the atom to attract the electrons of the bond works

General conclusion:

- The atoms of nonmetals of group 7A (halogens) are the greatest in the electronegativity, while the atoms of the alkali metals of group 1A are the lowest in the electronegativity.
- Fluorine (F) is the most electronegative element, while cesium (Cs) is the lowest electronegative element.

Worked Example

The opposite figure shows a section in the modern periodic table.

Which of the following represents the electronegativities of these elements?

	33As	
49 ^{ln}	50Sn 51Sb 52Te	53 ^I
	83Bi	

Electronic configuration of

the element atom

[Xe], $6s^2$, $5d^{10}$, $4f^{14}$, $6p^3$

[Ar] $.4s^2$, $3d^{10}$, $4p^3$

[Kr], $5s^2$, $4d^{10}$, $5p^5$

[Kr], $5s^2$, $4d^{10}$, $5p^1$

[Kr], $5s^2$, $4d^{10}$, $5p^4$

[Kr], $5s^2$, $4d^{10}$, $5p^2$

Choices	The highest electronegative element	The lowest electronegative element
(a)	As	Bi
Ъ	1	In
©	I	Bi
d	Те	Sn

Element

33AS

83Bi

53I

40In

52Te

50Sn

Idea of answering:

- * The opposite table exhibit
 configurations of the atom
 elements, and it shows that an arm elements
 are of p-block elements.
 - : Sublevel p in the atom of each of the two elements As and Bi contains the same number of the unpaired electrons.
 - .. The difference in the electronegativity between these two elements is insignificant.
- is insignificant.

 The choice (a) is excluded.
- Sublevel p in the atom of In element contains only one electron, while in the atom of I element, it contains 5 electrons.
- The electronegativity of iodine I will be the highest, and that of indium In will be the lowest.

Answer: The correct choice is (b)

Oliferationie

Lesson Two

11,

पास्त्र है । । एक्ट कि द्वारक्ष्य अस्त्रुष्ट के हैं

for each of the following sentences:

to in the periodic table are those of a

group 4B

hatogens group.

radius is

1.)(1

1.1 1/12

(3) The opposite table represents the electronic configurations of

an atom in the ground state and

of its ion.

152,252,2p4 Electronic configuration of the atom Electronic configuration 152, 252, 2pb of the ion

Which of the following conversions represents this atom?

 $B \longrightarrow B^{3*}$

 $N \longrightarrow N^3$

h Al------ Al³⁺

| P ---- P³

- (4) The element with the smallest atomic radius among the elements of the same group is that which has
 - a the highest number of neutrons inside the nucleus.
 - b the lowest number of protons inside the nucleus.
 - the lowest electronegativity.
 - d the highest number of electrons around the nucleus.

- (5) Which of the fo of calcium?
 - a. Ca_(g)+ Energ
 - Ca + Ener
 - Ca_(g) + e -
 - .1 Ca_(g) + e -
- (6) Which of the the other elem
 - a Lithium. Sodium.
- (7) Increasing the leads to
 - the difficu
 - the ease of
 - increasing
 - d increasing
- (8) Halogens ar
 - a, high elect
 - e, high ioni:
- (9) What is the the atomic
 - a. Ionizatio
 - c. Electron
- (10) In the thir
 - a, the ator
 - b the ato
 - c the ele
 - d, the ato

(5) Which of the following equations represents the second ionization potential of calcium? a. $Ca_{(g)}$ + Energy $\longrightarrow Ca_{(g)}^+ + e^$ b. $Ca_{(g)}^+ + Energy \longrightarrow Ca_{(g)}^{2+} + e^ _{C}$. $Ca_{(g)}^{-} + e^{-} \longrightarrow Ca_{(g)}^{2-} + Energy$ d. $Ca_{(g)}^+ + e^- \longrightarrow Ca_{(g)} + Energy$ (6) Which of the following elements has the highest electronegativity compared to the other elements in the periodic table? b. Fluorine. a. Lithium. d. Cesium. c. Sodium. (7) Increasing the distance between the last electron and the nucleus in an atom leads to a, the difficulty of sharing this electron. b. the ease of losing this electron. c. increasing the attraction between the electron and the nucleus. d. increasing the electronegativity. (8) Halogens are characterized by all the following, except b. small atomic radius. a, high electronegativity. d. small electron affinity. c. high ionization energy. (9) What is the property which decreases in the same period with increasing the atomic number? b. Electron affinity. a. Ionization potential. d. Atomic radius. c.Electronegativity. (10) In the third period, on moving from sodium to argon, both a. the atomic number and the atomic size increase.

b. the atomic number and the electronegativity increase.

c. the electronegativity and the atomic size increase.

d. the atomic size and the ionization potential increase.

The atomic radius

If the length of the bond in A $_2$ molecule equals 1.98 Å, and its length $_{1}$ A $_{1}$ equals 1.29 Å

What is the bond length in B2 molecule?

- @ 0.69 A
- 3.27.A
- € 1.32 Å
- A 6.0 L

Magnesium ion $^{24}_{12}\mathrm{Mg^{2+}}$ contains . .

- 12 protons, 10 electrons.
- 24 protons, 26 electrons.
- © 12 protons, 13 electrons.
- 3 24 protons. 14 electrons.

- (1) Fe
- (c) Fe²⁺

- (h) Fe⁴⁺
- (d) Fe³⁺

The effective nuclear charge is the highest in

- 1 22 Ti
- © 22Ti3+

- (b) 36Fe
- (1) 26Fe³⁺

The atomic radius of fluorine ${}_9{
m F}$ is smaller than that of carbon ${}_6{
m C}$, because

- the quantum numbers of the last electron of F atom are smaller than those of
- that between the electrons of the completely filled p orbitals is stream that between the electrons of the half filled p orbitals.
- the effective nuclear charge of fluorine is larger than that of carbon.
- (d) fluorine is heavier than carbon.

S boirse same saft to the elements of the same period?	4/1
--	-----

.noi The radius of M To suibar of T (i.)

.mois X to aft < noi X to suibs of X atom.

.noi The radius of M to anibat of X ion.

.mots M to start < noi M to suibst of M atom.

 \mathfrak{T}_{80} moi sti ot battavnoo si mota T $_{80}$ muitnotta a nahw naqqah saob tahw

beneqmos suiben sinoi edt mote edt to tedt ot	A cation is formed with slaupe equals	Choices
Smaller	[+	(1)
Larger	[+	9
Smaller	7+	3
Larger	7+	P

i	suibe 1	largest	941	198	รขกา
---	----------------	---------	-----	-----	------

m9 E22 si muibidur to suiber simote aft il @

That is its ionic radius (rounded to the nearest integer)?

liber sinoi and to noiseuberg grieding graduation of the ionic radii

$$^{-6}Na^{+} < F^{-} < Al^{3+} < N^{3-}$$

of these elements?
ⓐ
$$Al^{3+} < Va^{+} < F^{-} < N^{3-}$$

ⓒ $N^{3-} < F^{-} < Va^{+} < Al^{3+}$

The element whose electronic configuration ends with ns^2 , np^4 ,

- its ion has radius smaller than that of its atom.
- mote sti lo teht meht rager than that of its atom.
- d its atom has radius smaller than that of the atom of the element which precedes it oni satom has radius smaller than that of its positive ion.
- in the same group.

- $(1)\frac{138}{235}$
- () 143 144

- $\bigcirc \frac{190}{102}$
- $\bigcirc 1 \frac{58}{157}$
- of the element (X) are: $(4, 3, 0, +\frac{1}{2})$ respectively.

 What is the atomic number of the element (Y) which has the biggest at the same period of the element (X)?
 - @ 10
 - 35

- h 37
- @171

lonization potential

Which of the following elements has the lowest second ionization potential?

, ,

In the equation:
$$X_{(g)} + Energy \longrightarrow Y_{(g)}^{+} + e^{-}$$

The absorbed energy is

cqual to the difference in energy between the outermost energy level and the larger than the difference in energy between the outermost energy level and the larger than the difference in energy between the outermost energy level and the

- half the difference in energy between the outermost energy level and the leaf
- This table shows the first three ionization potentials of magnesium element.

 What is the amount of energy required to obtain magnesium ion which has the same electron configuration of the nearest noble gas?

election comparation	U	tire
(a) +1451 kJ/mol		

Second ionization potential +1451
Third ionization potential +774

(b) +2189 kJ/mol

(d) +9922 kJ/mol

(a) The first and second ionization potentials are from two different energy levels in sodium,

Element	Na	Mg
First ionization potential (k.J/mel)	+496	+738
Second ionization potential (k.J/mol)	+4558	+1451

Lesson Two

while in magnesium they are from the same energy level.

- Electronegativity of sodium is lower than that of magnesium.
- C Losing an electron from magnesium atom causes the other electron to repel with magnesium cation.
- Losing an electron from sodium atom causes the half filling of 2p sublevel, while it requires 'es no two electrons from magnesium atom to cause 2p sublevel to be half filled.
- The difference of tween the two values of first and second ionization potentials is very large in case of the atoms of
 - a neon 10 Ne

(b) potassium 19K

magnesium 12Mg

- d aluminum 13Al
- ${
 m ID}$ If the ionization potential of hydrogen ${
 m H_{(g)}}$ equals +1312 kJ/mol, it is most likely that the second ionization potential of helium $He_{(g)}$ equals
 - a) +5248 kJ/mol

(b) +1312 kJ/mol

() +656 kJ/mol

- (d) +328 kJ/mol
- The opposite figure represents the first ionization potentials of three elements (X), (Y) and (Z), which are successive elements in the periodic table. The element (X) can be

(b) fluorine oF

- (d) nitrogen 7N
- (a) carbon ₆C
- First ionization Ž Atomic number

The opposite graphical figure represents

the first four ionization potentials of

4 elements (A), (B), (C) and (D).

What is the letter of the element which represents aluminum?

22 Which of the following equations is incorrect?

(a)
$$Na + e^- \longrightarrow Na^+ + Energy$$

$$\bigcirc$$
 Mg + Energy \longrightarrow Mg²⁺ + 2e⁻

$$\textcircled{d}$$
 H₂ + Energy \longrightarrow 2H⁺ + 2e⁻

The first and the second ionization potentials of the element (X) which is located in group (2A) in the modern periodic table are represented as follow

(1)
$$X_{(g)} \longrightarrow X_{(g)}^+ + e^-$$

,
$$\Delta H = +589.8 \text{ kJ/mol}$$

(2)
$$X_{(g)}^+ \longrightarrow X_{(g)}^{++} + e^-$$

$$\Delta H = +1145.4 \text{ kJ/mol}$$

What is the probable value of the third ionization potential of (X)?

The following table represents the first five ionization potentials of the element (X) in kJ/mol:

Ionization potential	Cinne					
	First	Second	Third	Fourth	Fifth	
Value of ionization potential (k.J/mol)	+738	+1450	17722			
Indiana in the second		12100	+7733	+10543	+13630	

What is the chemical formula of the compound which is produced from the combination of the element (X) with chlorine ?

C XCI3

 $(d) X_2CI_3$

Which of the following has a higher value in lithium Li than in potassium K?

(b) Atomic radius.

(c) Atomic number.

(d) lonic radius.

which of the following graphical figures represents the relation between the electron affinity and the atomic number in the elements of the third period in the periodic table ?

Twhich of the following choices represents the proper graduation in the electron affinity?

$$_{1}$$
,Cl>gF> $_{16}$ S>80

Chlorine forms a negative ion unlike sodium, because

- chlorine is a gas, while sodium is a solid.
- the atomic size of chlorine is larger than that of sodium.
- the electron affinity of chlorine is larger than that of sodium.
- chlorine is more metallic than sodium.

Which of the following represents the proper graduation?

- Electron affinity ($_{17}Cl < _8O < _9F$). (b) Ionization potential ($_{19}K < _{12}Mg < _{13}Al$)
 - Atomic radius ($_{13}$ As < $_{15}$ P < $_{14}$ Si).
- (d) Ionic radius $({}_{12}Mg^{2+} < {}_{20}Ca^{2+} < {}_{10}K^{+})$.

terbonevativity

In the same period, the element which gains electrons during the chemical reactions

s characterized by

kwer electron affinity.

- (b) higher electronegativity.
- lower first ionization potential.
- (d) larger atomic radius.

Which of the following choices represents the proper graduation in electronegativity?

$$_{6}^{C} < _{7}N < _{14}Si < _{15}P$$

$$^{N} < _{6}C < _{15}P < _{14}Si$$

(b)
$$_{14}Si < _{15}P < _{6}C < _{7}N$$

(d)
$$_{6}C < _{14}Si < _{7}N < _{15}P$$

ability to attract the electrons?

- (a) 5B
- (h) ,O
- (C) 13Al
- (1) 16S
- The following table shows the values of the atomic radii of four elements located in the same group in the periodic table (estimated in angstroms):

Element	A	В	C	D
Atomic radius (Å)	1.9	2.43	1.67	2.65

Which of the following choices is correct?

- (1) The electronegativity of (A) is lower than that of (B).
- (b) The electronegativity of (D) is higher than that of (C).
- (c) The electron affinity of (C) is lower than that of (A).
- (d) The ionization potential of (B) is higher than that of (D).

If you know that :

- (O H) bond length in water molecule = 0.96 Å
- The bond length in oxygen molecule $(O_2) = 1.32 \text{ Å}$

Calculate the covalent radius of hydrogen atom.

If you know that :

- The atomic radius of chlorine = 0.99 Å
- The bond length in ammonia molecule = | Å
- The bond length in hydrogen chloride molecule = 1.29 Å Calculate which is longer, the bond in hydrogen molecule or the bond in nitrogen

In the following table, calculate - with giving reason - the bond length in each of

Atom or ion	Н-	Н	Na	Na ⁴	CI	CI-
Radius (Å)	1.54	0.3	1.86	0.98	0.99	1.81

- (1) The formula unit of sodium chloride.
- (2) Hydrogen chloride molecule.
- Marrange the following elements descendingly, with giving the reason.
 - (1) 17Cl. 12Mg, 20Ca "According to the radius".
 - (2) 12. Br2. F2. Cl2 "According to the bond length in the molecule".
- Choose the number(s) of the statement(s) which illustrate(s) the difference between phosphide ion and phosphorus atom 15P:
 - (1): The atomic radius of phosphorus is larger than the ionic radius of phosphide.
 - (2): Phosphide ion contains higher number of electrons than in phosphorus.
 - (3): Numbers of energy levels which are occupied by electrons in both of them are equal.
- The opposite table shows the atomic and ionic radii of sulphur and calcium:
 - (1) Why is sulphide ionic radius larger than the atomic radius of sulphur?
 - (2) Why is the radius of S²⁻ larger than that of Ca²⁺ despite the similarity in their electronic configuration?

Element	Radius (nm)
₁₆ S	0.104
S ²⁻	0.184
₂₀ Ca	0.197
Ca ²⁺	0.099

- Write the electronic configuration (according to Aufbau principle) of the element which is located in the third period in the modern periodic table, and the difference between its fifth and sixth ionization potentials is very large.
- In the equation:

$$Y_{(g)}^+$$
 + Energy $\longrightarrow Y_{(g)}^{++} + e^-$

- (1) What does the energy represent in the previous equation?
- (2) Which is larger in radius, Y+ or Y++? Why?
- Write the symbolic equation which represents the third ionization potential of titanium (Ti).

The Periodic Table and a

In the light of your studying for :

Ionization potential.

· Radius.

Electronegativity.

Electron affinity.

What are the values required to calculate the change in energy of the reaction

$$Na_{(g)} + Cl_{(g)} \longrightarrow Na_{(g)}^+ + Cl_{(g)}^-$$

Element (M) may have more than one ionization potential, while it has one value of the electron affinity, explain this statement.

In the two compounds of chromium CrO, Cr2O3:

- (1) What is the number of electrons in chromium ion in each of the two compounds? "Knowing that the atomic number of chromium is 24".
- (2) In which formula unit the (Cr O) bond length is longer, CrO or Cr₂O₃? Give reason
- The opposite figures represent the relative sizes of each of 35Br . Br and oF "in no particular order". Choose, with explaining your answer, the proper figure number for each atom or ion.

The following figure represents the first four periods in the periodic tab

			-	_			_	
C				F		G	1	
D	F				Н		Y	
The les	Nove in all	table are not the re						

Choose the symbol(s) of the element which:

- (1) Has the largest radius in the third period.
- (2) Has the lowest ionization potential in group 2 A
- (3) Has the highest electronegativity.
- (4) Forms compounds with great difficulty.
- (5) Has the highest first ionization potential.
- (6) Has an electron affinity higher than (G).

Before the axidation numbers

Metallic and nonmetallic property

At the beginning of the nineteenth century, "Berzelius" was the first scientist who classified elements into two main groups (metals and land), according to their physical properties. Indeed that was before knowing anything about atomic structure.

- This is an old classification which is still currently in use, although there are no boundaries between their properties.
- With the development of our concept of the electronic structure of atoms.

 We can differentiate between metals and nonmetals. In addition to, a third

 group of elements known as metalloids.

Classification of the modern periodic table elements into metals, nonmetals and metalloids

A

Metals

- Their valence shell generally has less than half its capacity of electrons.
- They have large atomic radius which leads to small values for ionization energy and electron affinity.
- They are electropositive elements, due to their tendency to lose electrons of the valence shell and change into positive ions to reach the structure of the nearest noble gas.
- They are good electric conductors, due to the mobility of their few valence electrons, which can transfer from one position to another in the metal structure.

B No

Nonmetals

- Their valence shell generally has more than half its capacity of electrons
- They have small atomic radius which leads to high values for ionization energy and electron affinity.
- due to their tendency to guar to form negative ions that hat the same electron structure of the nearest noble gas.
- (electric insulators), because the valence electrons are strongly bounded the nucleus. Thus it is difficult for the valence electrons to be transferred.

Worked Example

The opposite figure represents a section in the periodic table. In which of the illustrated zones can a diatomic molecule element which does not conduct electricity be found?

C

Idea of answering:

- y Nonmetals and noble gases do not conduct electricity, and they lie on the right side of the periodic table.
- : The choices (a) and (b) are excluded.
- · Zone D in the periodic table contains the noble gases, and these are monatomic elements.
- .. The choice (d) is excluded.

Answer: The correct choice is (c)

Metalloids

- The metalloids are characterized by the following properties:
- They have the metallic appearance and the most properties of nonmetals.
- Their electronegativity is intermediate between metals and nonmetals.
- Their electric conductivity is less than that of metals, but more than that of nonmetals.
- They are used in manufacturing some electronic instruments parts, such as transistors, as they are semiconductors.

The metalloids in the periodic table

The graduation of metallic and nonmetallic property in the periodic table

The metallic property decreases

The nonmetallic property increases

The graduation of the metallic and nonmetallic properties in the periodic table

While

In the same group

The metallic property increases

(the nonmetallic property decreases)

with the increase in the atomic number

as we go down the group, due to

their large atomic radius and the low ionization

potential and electron affinity

In the same period

The period begins with the strong in group IA, then the metallic production decreases gradually by increase the atomic number along the pertill we reach the metalloid.

To the right of the metalloids the nonmetallic property begins to ap-

The period ends with the elements of the highest nonmetallic property in group /A

Note

Cesium Cs is considered
the most active metal
(loses its valence electron easily)

Because the metallic property increases
in the same group by increasing
the atomic number and it is located at
the bottom of the left hand side of the table
(the metal with the lowest ionization potential)

Fluorine F is considered the most active nonmetal

(gains a new electron easily)

Because the nonmetallic property
increases in the same period by increasing
the atomic number and it is located
at the top of the right side of the table
(the most electronegative nonmetal)

pplication The graduation of metallic and nonmetallic property in the third period.

- The following figure expresses the graduation of metallic and nonmetallic property in the third period.
- It is clear that by increasing the atomic number, the metallic character decreases and the nonmetallic character increases.

As the atomic number increases, the metallic property decreases and the nonmetallic property increases

Test Vourself

1 Which of the following represents the electronic configuration of the most electropositive element?

(a) [He], 2s1

(b) [Ne], 352

(c) [Xe], 6s'

(d) [Xe], 6s2

Answer: The correct choice is

1 The opposite table shows the ionization potentials of three metals A, B and C in the same period in the modern periodic table.

Element	A	В	C
lonization potential (k,1/mol)	2800	1500	700

What is the proper graduation of the metallic character of these elements ?

(a)B < C < A

(b)A < C < B

(c) C < B < A

(d) A < B < C

Answer: The correct choice is

6 Acidic and basic property

- When an element combines with oxygen, they form a compound known as the
- There are three types of elements oxides, which are:
 - A Acidic oxides.
- Basic oxides.
- C Amphoteric oxides.

A Acidic oxides

• The nonmetals oxides are usually known as acidic oxides.

because :

• They dissolve in water forming oxygenated acids.

$$CO_{2(g)}$$
 + $H_2O_{(f)}$ \longrightarrow $H_2CO_{3(aq)}$
Carbon dioxide Water Carbonic acid
 $SO_{3(g)}$ + $H_2O_{(f)}$ \longrightarrow $H_2SO_{4(aq)}$
Sulphur trioxide Water Sulphuric acid

- Among the acidic of
- Carbon dioxide (),
- Sulphur trioxide ',
- Nitrogen dioxide
- 2 They react with alkalis forming salt and water.

$$CO_{2(g)}$$
 + $2NaOH_{(aq)}$ - $Na_2CO_{3(aq)}$ + $H_2O_{(f)}$
Carbon dioxide Sodium hydroxide Sodium carbonate Water

Test Vourself

Write the balanced symbolic equation which represents the reaction of sulphur trioxide with sodium hydroxide.

B Basic oxides

- The metals oxides are usually known as basic oxides.
- Some basic oxides are not soluble in water and others are soluble in water forming all .

$$Na_2O_{(s)}$$
 4 $H_2O_{(l)}$ \longrightarrow $2NaOH_{(luq)}$ Sodium oxide Water Sodium hydroxide $K_2O_{(s)}$ + $H_2O_{(l)}$ \longrightarrow $2KOH_{(luq)}$ Potassium oxide Water Potassium hydroxide

• They react with acid forming salt and water :

Among the basic oxides

- Sødium oxide Na₂O
- Potassium oxide K₂O
- Magnesium ozide MgO

H₂O_(f)
Water

+ H₂O_(f)
Water

write the balanced symbolic equation which indicates:

The dissolution of calcium oxide in water.

The reaction of calcium oxide with phosphoric acid.

Amphoteric oxides

That react with acids as basic oxides and react with alkalis as acidic oxides forming to poor cases salt and water.

Among the amphoteric oxides

- Aluminum oxide Al₂O₃
- Zinc oxide ZnO
- Antimony oxide Sb₂O₂
- Tin (II) oxide SnO

$$ZnO_{.5}$$
, + $H_2SO_{4(aq)}$ - $ZnSO_{4(aq)}$ + $H_2O_{(l)}$
 Znc oracle Sulphuric acid Zinc sulphate Water

 $ZnO_{.5}$ + $2NaOH_{(aq)}$ - $Na_2ZnO_{2(aq)}$ + $H_2O_{(l)}$
 Znc oracle Sodium hydroxide Sodium zincate Water

lest Yourself

Write the balanced symbolic equation which indicates:

- (1) The reaction of tin (II) oxide with nitric acid.
- (2) The reaction of tin (II) oxide with sodium hydroxide.

Worked Example

Neutral oxides react neither with acids nor with bases. Which of the following substances are neutral oxides? (b) CO, NO

(a) NO, Na₂O

(d) CO2, NO2

C SnO . K,O

Idea of answering:

- The oxides Na₂O and K₂O are basic oxides which react with acids.
- .. The choices a and c are excluded.
- The oxides CO2 and NO2 are acidic oxides which react with bases.
- .. The choice (d) is excluded.

Answer: The correct choice is (b)

The graduation of acidic and basic property in the periodic table

In the period	In the group				
The basic property of the oxide decreases as	In the group which starts with a metal	In the group whice with a nonn	stark		
the atomic number of the element increases, while the acidic property	The basic property of the oxide increases as the atomic	The acidic properties the hydrogen confinereases as the atomic properties of the acidic properti	of unds		
mereases	number of the element increases, as in group 1A	of the element i	SO.		

Application

The graduation of acidic and basic property in the third period.

• The following figure expresses the graduation of acidic and basic property in the period. It is shown that, as the atomic number increases the basic property decre the acidic property increases.

Hote

The acidic property of hydrogen compounds of group 17 (halogens) increases as the atomic number increases.

because the increase in the atomic number in the group elements leads to the increase in the atomic radius of the halogen, therefore its attraction force to hydrogen atom decreases, making it easier to be ionized.

The graduation of acidic property of halogens

Worked Example

Which of the following graphs represents the relation between the basic property of the element oxide and its ionic radius?

Idea of answering:

- The basic property of the elements oxides decreases by increasing their atomic numbers in the same period.
- The basic property of aluminum oxide is less than that of magnesium oxide.
- The choices (b) and (c) are excluded.
- The basic property of silicon oxide is less than that of aluminum oxide.
- The choice (a) is excluded.

Answer: The correct choice is 'd,

- The oxygenated acids (acids contain oxygen) and bases are considered as hydricy compounds, they can be represented by the general formula (MOH), where M represents the element atom.
- The hydroxy compounds can be ionized by either ways:

As an acid

 The compound will be ionized as an acid if: The (M = O) bond is stronger than the (O-H) bond.

i.e. The attraction between M* and O"is stronger than that between H and O).

> MOH ----- HOM Ottopped Positive acid hydrogen ine

As a base

* The compound will be ionized as a hase! The (O - H) bond is stronger t: the (M-O) bond.

(i.e. The attraction between H⁺ a is stronger than that between N 0"

> $MOH \longrightarrow M^+ + 0$ Base Ne. hydro

Note

If the strength of (M - O) bond and the strength of (O - H) bond are equal, the substance will be ionized as an and or a base depending on the reaction medium. this means that it reacts as a base in the acidic medium and as an acid in the basic medium.

- In general, the attraction between each of $(0^{--}, M^+)$ and $(0^{--}, H^+)$
 - The volume of M atom.
 - The charge of M in the compound

The basic property of sodium hydroxide compound.

when hydrovide is founded as a base,

Age whom atom has a large volume

with our has only one positive change.

methody, the attraction between Na

weensh or

. Phe (O H) bond is stronger than

water (Na - O) bond.

OH on is produced.

OH =

Sabem hydrovak

Sedium ion

Hydroxide ion

Worked Example

Assisted by the electronegativities of the elements shown in the opposite table. What is the correct order which indicates the strength of the acids in the following choices?

1	117.3	THE	-0	-	HC	10
1	PERC		MIN. J	~	TIV.	w

Element	Electronegativity
Cl	3
Br	28
ī	2.5
	cı

iea of answering:

The strength of the oxygenated acid increases when the electronegativity of to central atom increases.

Answer: The correct choice is b

Test Vourself

Four elements P , Q , R and S are located in p-block in the third period in the periodic Table, they are ordered according to electronegativity as follows : S > R > Q > P

Which of the following bonds liberates H+ ion easier?

Answer: The correct choice is

The Peniodic last The strength of the exygenated acids (exyacids)

• The oxygenated acids are represented by the following general formula : The number of oxygen alon. hinded with hydrogen $MO_n(OH)_m$

• The strength of the oxygenated acid (oxyacid) increases as the number of nonbinded exygen atoms (O_n) with hydrogen increases as shown in the following table :

Acid union	Silicate group SiO4	Phosphate group	Sulphate group SO ₄ ²⁻	Perchlorate g-
Oxygenated ecid (exygenate)	Orthosilicic acid H ₄ SiO ₄	Orthophosphoric acid H ₃ PO ₄	Sulphuric acid H ₂ SO ₄	Perchlona acid HClO,
Hydroxy tormula MO ₂₁ (OH) _m	Si(OH) ₄	PO(OH) ₃	SO ₂ (OH) ₂	CIO
	но он	HO HOOH	O O OH	0 (
Ratio n ; m	0:4	1:3	2:2	3
nonbinded oxygen atoms	Zem		2	,
Strength of the acid	Weak	Moderate		
		- Aug	Strong	The strong

Worked Example

Among the oxygenated acids are:

Which of the following is correct for these acids?

- (a) HBrO is the weakest acid among these three acids.
- (b) Oxidation number of bromine in HBrO₃ equals (-1).
- (c) HBrO₂ is the strongest acid among these three acids.
- The ratio (n:m) in HBrO equals (1:1).

Idea of answering:

The following table exhibits the hydroxy formulas of these oxygenated acids, and (n:m) ratio in each of them:

Oxygenated acid	HBrO	HBrO ₂	HBrO ₃
Hydroxy formula	Br(OH)	BrO(OH)	BrO ₂ (OH)
n:m	0:1	1:1	2:1

- The strength of the oxygenated acid increases by increasing the number of nonbinded oxygen atoms with hydrogen.
- : These acids are ordered ascendingly according to the strength as follows:

$$HBrO < HBrO_2 < HBrO_3$$

Answer: The correct choice is a

• Trends and periodicity of properties in the periodic table :

By increasing the atomic number

The following increases:

- The atomic radius.
- The metallic property.
- The acidic property of the nonmetals of group 7A.
- The basic property of metals.

The following decreases:

- The ionization potential.
- The electron affinity.
- The electronegativity.
- The nonmetallic property.

The following increases:

- The ionization potential.
- The electron affinity.
- The electronegativity.
- The nonmetallic property.
- The acidic property.

The following decreases:

- The atomic radius.
- The metallic property,
- The basic property.

Graduation of properties of the elements in the periodic table

Choose the correct answer for each of the following sentences:

- (1) The nonmetals are characterized by
 - , high ionization energy.
 - h. being electropositive elements.
 - small electron affinity.
 - d. large atomic radius.
- (2) Arsenic 33As and antimony 51Sb are similar in
 - a being both from the fourth period elements.
 - h being both from group (5A).
 - being better electrical conductors than the other metals.
 - d the four quantum numbers of the last electron in the atom of each of them.
- (3) Sulphuric acid does not react with
 - a MgO
 - h CO,
 - · Al₂O₃
 - d Na₂O
- (4) What is the substance which dissolves in water forming an alkaline solution?
 - . MgO
 - " Al₂O₃
 - SiO₂
 - SO₂

- (5) Zine oxide reacts with caustic sodu as a (an)
 - a amphoteric oxide.
 - h acidic oxide
 - e basic oxide.
 - d neutral oxide.
- (6) In the opposite figure,
 - a the attraction of O2- to H+ ion increases.
 - b. the attraction of O2- to Na* ion increases.
 - c the strength of the bond between O2- and Na+ increases.
 - d an ionization occurs, and an acid is produced.

- a. hydrogen atoms.
- b oxygen atoms linked to hydrogen atoms.
- c oxygen atoms unlinked to hydrogen atoms.
- d hydrogen atoms unlinked to the nonmetal atoms.

(8) What is the acid which the ratio (n:m) in its hydroxy formula is (3:1) ?

- a. H_aSiO_a
- h H₂PO₄
- c. H₂SO₄
- d. HClO,

Illustrate with the balanced symbolic equations:

- (1) The dissolution of sulphur trioxide gas in water.
- (2) The reaction of carbon dioxide gas with sodium hydroxide.
- (3) The dissolution of potassium oxide in water.
- (4) The reaction of sodium oxide with hydrochloric acid.
- (5) Zinc oxide is an amphoteric oxide.

Answered

Metallic and nonmetallic property

- Upon the classification of the elements, Berzelius might have relied on
 - (a) their atomic numbers.
 - (h) their electron configurations.
 - (c) their degree of electrical and heat conductivity.
 - (d) the quantum numbers of the last electron in the atom of each of them.
- Which of the illustrated elements in the opposite figure loses its valence electrons more easily?

(d) W

- What is the element which can form an ion with charge −2?
 - Selenium 34Se
 - **b** Silicon 14Si
 - © Strontium 38 Sr
 - d lodine 531
- Which of the following sets of elements includes a nonmetal, a metal and a metalloid respectively?

active metal and the most active nonmetal?

active metal at	nd the most design metal	The most active nonmetal
Choices	The most active	$[Ar], 4s^2, 3d^{10}, 4p^6$
(a)	[Ar] . 4s ² , 3d ¹	$1s^2, 2s^2, 2p^5$
(h)	[Xe].6s	$1s^2, 2s^2, 2p^3$
(3)	ls1	[Ne], 3s ² , 3p ⁵
	[Kr] . 5s ¹	

- 6 Nitrogen gas is less active than fluorine gas, because
 - (d) the boiling point of nitrogen is less than that of fluorine.
 - (b) the molar mass of nitrogen is less than that of fluorine.
 - the atomic radius of nitrogen is larger than that of fluorine.
 - d the electronegativity of nitrogen is higher than that of fluorine.
- The opposite figure represents a section in the periodic table: What is the letter which refers to the element that is characterized by having a small atomic radius and not conducting electricity?

(i) A

(C) C

Acidic and basic property

B Element (X) reacts with oxygen forming a gas whose aqueous solution turns fitmus paper into red. What is the location of (X) in the periodic table?

titing halfa	(A)	in the periodic table
Choices	Period	Group
(a)	2	1
(b)	2	2
(1)	3	16
(d)	3	2

among the properties of some nonmetallic elements are :

property (1): One of its oxides dissolves in water forming a strong acid.

property (2): Its last 3p sublevel does not contain any paired electrons.

which of the following is (are) applicable for each of phosphorus 15P

and sulphur to S elements ?

Choices	Phosphorus	Sulphur
	(1) and (2)	(1) only
5	(1) only	(1) and (2)
0	(1) and (2)	(1) and (2)
	(2) only	(1) only

The opposite table shows some elements of the third and fourth periods

3 rd period	Al	Si	P	S	
4th period	Ga	Ge	As	Se	Ì

in the periodic table.

What is (are) the element(s) of the fourth

period whose oxide(s) dissolve(s)

in water forming acidic solution?

As and Ga

(b) Ga and Ge

Ga and Sc

(d) Se only.

A mixture is composed of the oxides of two elements located in the third period in the periodic table, and after their reaction together, the product dissolves in water forming an almost neutral solution.

What are the two oxides composing this mixture?

Al,O, and N,O

Na.O and MgO

Na. O and P4O to

SO and PaO o

Here are six different compounds, which are : ZnO

Na₂O . Al₂O₃ . of the types of these compounds?

Vhat are th	e the correct numbers of the syr		Amphoteric	Neutral	
Choices	Acidic compounds	Basic compounds	compounds	compounds	
(3)	1	2	2	1	
(h)	1	1	3	1	
0	2	2	0	2	
<u>(1)</u>	1	1	2	2	

B What is the formula of the oxide of the element (M) which is located in group (3A) in the periodic table?

(a) M,O,

(c) MO

(b) M₃O₂

(d) M,O,

Why does aluminum oxide disappear on adding a little amount of it to sodium hydroxide solution with stirring?

(a) Because aluminum 13Al is located in the same period of sodium 11Na

(b) Because aluminum oxide reacts as a base with sodium hydroxide.

© Because the basic property decreases in the same period by increasing

(d) Because aluminum oxide reacts as an acid with sodium hydroxide.

The four quantum numbers of the last electron in the atom of the element (X) are: $(n = 3, l = 0, m_l = 0, m_s = +\frac{1}{2})$. Which of the following choices repres

Choices	Its oxide is basic	its ionization Its evidence (X) ?		
(1)	Х	potential is small	Its oxide is amphoteric	Its electronegativity is high
(b)	1	1	1	×
0	1	X	X	X
	X	X	×	1

171

- \square in the opposite figure, if the bond (O-H)is stronger than the bond (M-O), then the electron configuration of the element (M) may end with the sublevel

- (a) 2s¹
- () 2p2

Essay questio

	(E)
Maria .	

- The opposite table represents the quantum numbers of the last electron in the atom of each of (X) and (Y) elements:
 - (1) Write the electronic configurations of the two elements.
 - (2) Which of them is electropositive? Explain.
- 26 In the opposite figure, replace the letters (X), (Y) and (Z) with what is suitable from the elements 12Mg. 13Al and 10K and arrange them according to the metallic property.

	Quantum numbers				
Element	(n)	(1)	(m _j)	(n	
(X)	3	1	0	-1	
(Y)	3	0	0	+1	

- Aluminum oxide reacts with sodium hydroxide forming sodium aluminate who molecule contains a sodium atom, an aluminum atom and two oxygen atom; Write the balanced symbolic equation which represents the reaction of aluminum oxide with.
 - (1) Sodium hydroxide.
 - (2) Sulphuric acid.
- Why does cesium hydroxide ionize as a base, while ClO₃(OH) ionizes as an 20
- The following table represents the third peri

A B STA III III III III III III III III III I	
A D TO THE TAX DIA	
The state of the s	
0	

- (1) What is the number of oxygen atoms numbonded to hydrogen in the :****
- (2) Why is the neide of the element (A) busic oxide?

Oxidation numbers (states)

Oxidation number is a number that refers to the electric charge (positive or negative) that the atom or ion would carry in the compound, whether it is an ionic or a covalent compound.

The significance of oxidation numbers:

The significance of positive and negative oxidation numbers in the ionic compounds differs from that of the oxidation numbers in the covalent compounds.

In ionic compounds

In covalent compounds

Positive oxidation number indicates

The number of electrons that the atom has lost to give a positive ion (cation)

The shift of the electrons away from the less electronegative atom

Negative oxidation number indicates

The number of electrons that the atom has

The shift of the electrons towards the more electronegative atom

O the oxidation number of oxygen in most of its compounds is -2, while its oxidation number in:

- , peroxides equals -1
- Superoxides equals $-\frac{1}{2}$
- . its compound with fluorine equals +2

Oxide	Normal Peroxide		Super	With	
Formula	Na ₂ O	H ₂ O ₂ Na ₂ O ₂	KO,	OF,	
Oxidation no. of oxygen	-2	-1	- <u>1</u>	+2	

O The oxidation number of
hydrogen in most of its
compounds is +1, except in its
compounds with active metals
which are known as active
metal hydrides, its oxidation
number is -1

Compound molecule	HCI	NaH	CaH,	AlH,
Oxidation no. of hydrogen	+1	-1		-1

Active metal hydrides are ionic compounds formed from the combination of an active metal with hydrogen in which hydrogen has an oxidation number —I (negative ion).

O The algebraic summation of the oxidation numbers of the different atoms in the molecule equals zero.

In sodium chloride molecule NaCl:

The oxidation no. of Na (+1) + The oxidation no. of Cl (-1) = zero

The algebraic summation of the oxidation numbers of the atomic groups forming the molecule equals zero.

In the molecule [NH₄]⁺[NO₂]⁻:

The oxidation no. of ammonium group (+1) +

The oxidation no. of nitrite group (-1) = zero

The algebraic summation of the oxidation numbers of the different atoms in an atomic group equals the charge of the group.

In hydroxide group OHT:

The oxidation no. of oxygen (-2) +

The oxidation no. of hydrogen (+1) = -1

Some elements, especially the transition elements have several oxidation numbers which can be calculated by knowing the oxidation numbers of the other elements.

Hydrogen gas evolves

At the anode (the positive electrode) during the electrolysis of sodium hydride melt

At the cathode (the negative electrory during the electrolysis of the acidifical)

Because

The oxidation number of hydrogen in sodium hydride NaH melt is (-1)

(i.e. a negative hydrogen ion)

The oxidation number of hydrogen, acidified water H₂O is (+1)

(i.e. a positive hydrogen ion)

How to assign the oxidation number of an unknown element in a given compound or atomic group

Steps	Application (1)	Application 2
Write the oxidation number of each known element above its atom symbol in the compound molecule or atomic group formula.	+1 ? -2 K ₂ Cr ₂ O ₇	;;; (C(
Multiply the oxidation number of each element by the number of its atoms in the molecule.	K ₂ Cr ₂ O ₇ (1×2) (-2×7)	(Ct
O Assign the oxidation number of unknown element knowing that:		
 The algebraic summation of the atoms of the different elements in the molecule equals zero. The algebraic summation of the atoms of the different elements in the atomic group equals the charge of the group. 	2+2Cr-14=0 2Cr=+12 Cr=+6	C+(- C = C =

warkitd Examples

O Calculate the oxidation number of:

- (1) Chlorine in : (a) Cl2
- ⓑ KClO₄
- (2) Sulphur in : $a^{+}(SO_4)^{2-}$
- h Na2S2O3
- (3) Chromium in: $Cr_2(SO_4)_3$
- (4) Nitrogen in : (NII₄)*(NO₂)*

.
$$1 + C1 + (-2 \times 4) \approx 6$$

$$(SO_4)^2$$

$$(SO_4)^{2-}$$
 , $S + (-2 \times 4) = -2$

$$\frac{1}{5} = \frac{1}{Na_2} \cdot \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{1}{0} \cdot \frac{1}{3}$$

$$(+1 \times 2) + 2S + (-2 \times 3) = 0$$
 $2S = +4$ $5 = +2$

$$2Cr + (-2 \times 3) = 0$$

(A) (NH₄)+(NO₂)⁻ is an ionic compound which consists of two atomic group. the oxidation number of nitrogen in each of them is different.

$$(NH_4)^+$$
, $N + (+1 \times 4) = +1$, $N = 1 - 4$ $\therefore N = -3$

$$N + (-2 \times 2) = -1$$

$$(NO_2)^-$$
, $N + (-2 \times 2) = -1$, $N = -1 + 4 \therefore N = -3$

The nucleus of manganese atom Mn contains 25 protons.

What is the electron configuration of manganese in Mn₃(PO₄),?

$$[Ar]$$
, $3d^6$

© [Ar],
$$3d^3$$
, $4s^2$

Idea of answering:

The oxidation number of manganese in Mn₃(PO₄)₂:

$$^{3}Mn + (2 \times -3) = 0$$

$$4 \text{ Mn} = +2$$

The electron configuration of manganese atom is:

$$25$$
Mn: [Ar], $4s^2$, $3d^5$

The electron configuration of Mn²⁺ ion is:

$$25$$
Mn²⁺: [Ar], $3d^5$

Answer: The correct choice is b

Test Vourself

What are the two ions which form the compound $\mathbf{K}_3\mathbf{P}$?

(a) K* , P1

(c) K1 , P

Idea of answering:

.. The choices . . . and ... are excluded.

** The oxidation number of phosphorus in K₃P is :

$$(3 \times \cdots) + P = 0$$

.. P = ...

.. The choice is excluded.

Answer: The correct choice is

Worked Example

The opposite table shows the oxidation numbers of three elements A , B and C in a compound.

What is the probable molecular formula of this compound?

(b)
$$A_3(BC_4)_2$$

Oxidation in other

Element

A

B

C

Idea of answering:

- : The algebraic summation of the oxidation numbers of the atoms composing the compound must equal zero.
- .. The probable molecular formula is the one in which the algebraic summation of the oxidation numbers of the atoms equals zero.

(a) A,(B,C)2	$(+2 \times 3) + (+5 \times 4 \times 2) + (-2 \times 2) = 6 + 40 - 4 = +42$	
(b) A (BC4)?	$(+2 \times 3) + (+5 \times 2) + (-2 \times 4 \times 2) = 6 + 10 - 16 - 0$	

Answer: The correct choice is 'h

(calculating the change of the oxidation number in an oxidation-reduction reaction (redox reaction)

advantage of using oxidation numbers is that they can help us in determining the type themical change occurring to an element during the chemical reaction.

In the chemical reaction

metal loses one or more electrons jundergoes oxidation).

wits oxidation number increases.

The metal in this case is the reducing agent.

The nonmetal gains one or more electrons (undergoes reduction).

, so its oxidation number decreases

The nonmetal in this case is the oxidizing ugent.

Oxidation -

It is the process of losing electrons resulting in increasing the positive charge

Decreasing the relation

- Reduction -

It is the process of gaining electrons resulting in decreasing the positive charge

Oxidation-reduction process involves changing in the oxidation numbers

liote .

In the balanced equation

Number of the moles of electrons lost by the metal (M)

Number of the moles of electrons gained by the nonmetal (X)

Test Vourself

In the equation : $4A1 + 3O_2 \longrightarrow 2Al_2O_3$, when aluminum atoms lose 12 mol of electrons, so oxygen atoms

(a) gain 4 mol of electrons

(b) gain 12 mol of electrons.

Chose 4 mol of electrons.

d lose 12 mol of electrons.

Idea of answering:

- ∴ No, of moles of the electrons gained by oxygen = ...

Answer: The correct choice is

Worked Examples

Each of the following changes represents either an oxidation or a reduction react except

$$\textcircled{d} V_2 O_3 - V_2 O_5$$

Idea of answering:

- (clo) $(clo)^2$ (clo) $(clo)^$
- : Carbon underwent a reduction process, as its oxidation no. decreased from +4 to +2
- Chlorine underwent an oxidation preas its oxidation no. increased from +1

.. The choice a is excluded.

: The choice b is excluded.

 Neither oxidation nor reduction occurred, because there is no change in the oxidation number of nitrogen.

Answer: The correct choice is C

the type of change juminition or reduction) that decurred to such a type too

A. September

Reduction process occurred to iron, where the oxidation number of iron decreased from +3 to 0

where the condition number of carbon mercaced from 12 to 14

Explain the change (whether oxidation or reduction) that occurred to each of chromium and iron in the following reaction:

$$K_2Cr_2O_7 + 6FeCl_2 + 14HCl \longrightarrow 2KCl + 2CrCl_3 + 6FeCl_3 + 7H_3O$$

Answer:

$$K_2Cr_2O_7$$
 — $CrCl_3$
 $t-1 \times 2) + 2Cr + (-2 \times 7) = 0$ $Cr + (-1 \times 3) = 0$
 $2Cr = +12$
 $Cr = +6$ $Cr = +3$
Reduction process

Reduction process occurred to chromium, because the oxidation number of chromium decreased from +6 to +3

Oxidation process occurred to non, because the oxidation number of tron increased from +2 to +3

OWhat are the oxidizing and the reducing agents

in the reaction : $2H_2S + SO_2 \longrightarrow 2H_2O + 3S$?

Choices	Oxidizing agent	Reducing agent
a	SO ₂	S
b	H ₂ S	SO ₂
©	S	H ₂ S
Ь	SO ₂	H ₂ S

Idea of answering:

- : Sulphur in H₂S underwent an oxidation process, as its oxidation number increased from -2 to 0
- :. H₂S is the reducing agent.
- .. The choices (a) and (b) are excluded.
- : Sulphur in SO₂ underwent a reduction process, as its oxidation number decreased from +4 to 0
- .. SO₂ is the oxidizing agent.

Answer: The correct choice is (d)

$$(+1 \times 2) + S = 0$$

$$S = -2$$
Oxidation

 $\begin{array}{c} ?-2 \\ SO_2 \\ \hline S + (-2 \times 2) = 0 \end{array}$

$$S = +4$$

ODeduce the values of "n" in the following reactions:

(1)
$$S^{6+} + ne^- \longrightarrow S^{2-}$$

(2)
$$2Br^{\Pi} - 2e^{-} \longrightarrow Br_2$$

Answer:

$$(1)6 + (n \times -1) = -2$$
, $6 - n = -2$

(2)
$$2n - (2 \times -1) = 0$$
 , $2n + 2 = 0$, $2n = -2$

$$\Delta/n\approx \pm j$$

Ownat is the total number of electrons in the anion $(SO_4)^{2-}$?

|S = 16|, 40 = 8|

1) 48e

₱ 50e

146e

d) 52c

idea of answering:

. The traditional method:

No. of electrons of the element atoms = No. of element atoms \times No. of electrons in each atom No. of electrons of sulphur atoms = $1 \times 16 = 16e^{-}$

No. of electrons of oxygen atoms = $4 \times 8 = 32e^{-}$

- .. Total no. of electrons of sulphur and oxygen atoms = $16 + 32 = 48e^{-}$
- The anion carries 2 negative charges (i.e. it gained 2 electrons).
- .. Total no. of electrons in the anion = $48 + 2 = 50e^{-}$

• The oxidation number method:

: Oxidation number of oxygen O = -2

Oxidation number of sulphate anion $(SO_4)^{2-} = -2$

$$-2 = S + (4 \times -2)$$

$$S = -2 + 8 = +6$$

- . Oxidation number of sulphur S in this anion = +6
- $^{\circ}$ No. of electrons of $S^{6+} = 16 6 = 10e^{-}$

No. of electrons of
$$O^{2-} = 8 + 2 = 10e^{-}$$

Total no, of electrons in the anion =

No. of electrons of $S^{6+} + (4 \times No. \text{ of electrons of } O^{2-}) = 10 + (4 \times 10) = 50e^{-}$

Answer: The correct choice is (b)

Choose the correct answer for each of the following sentences:

(1) The oxidation number of hydrogen equals (-1) in
a. CaH ₂
b. H ₂ O
c. H ₂ O ₂
d. HCl
(2) During the electrolysis of all the following compounds, hydrogen gas evolves:
the anode, except
a. H ₂ O
b. CaH ₂
c. NaH
d. LiH
(3) The oxidation number of sodium
(3) The oxidation number of sodium in sodium peroxide Na ₂ O ₂ equals
b1
c. +1
d. +2
(4) What is the oxidation number of fluorine in OF ₂ ?
a! a! fluorine in OF ₂ ?
b. +1
c. +2
d. –2
184

steam

Multiple choice questions (©) What is the compound in which nitrogen have two oxidation numbers?

NaNO,

(d) NH, NH,

- 2 Which of the atoms that have the following electronic configurations, can form
- the highest number of oxidation states in different compounds?
 - (a) [Ar], $3d^{1}$, $4s^{2}$

(b) [Ar], $3d^2$, $4s^2$

© [Ar], 3d10, 4s2

- (d) [Ar], $3d^5$, $4s^2$
- 3 What is the oxidation number of the transition metal in Al₂(CrO₄)₃?
 - (a) + 3

(b) +5

(c) +6

- (d) + 7
- **M** What is the oxidation number of phosphorus in pyrophosphate ion $(\mathbf{P}_2\mathbf{O}_q)^T$
 - (a) +3.5

(b) +5

(c) +7

- (d) + 10
- S What is the electronic configuration of manganese [$_{25}Mn$] in $Mn_2(SO_4)_3$?
 - (a) [Ar], $3d^6$

(b) [Ar], $3d^4$

(c) [Ar] $.4s^2 .3d^2$

- (d) [Ar] . 4s2 . 3d5
- The electron configuration of oxygen ion in Na₂O₂ is
 - (a) 1s2, 2s2, 2p6

(b) $1s^2$, $2s^2$, $2p^4$

 \bigcirc 1s2, 2s2, 2p3

- (d) Is^2 , $2s^2$, $2p^5$
- When aluminum is oxidized forming Al4+ ion, it loses the last electron from
 - (a) 1s
 - © 2p

- \bigcirc 2s
- (d) 3s

Which of the following elements is	Pasier to be a true
Sulphur.	
© Boron.	(h) Magnesium.
	d Argon.
Which of the following is the strong	est oxidizing agent ?
(a) F ₂	⊕CI,
© Br ₂	(d) CI ⁻
What is the symbol of the element w	hich is the strongest reducing agent in
the period that contains the element	which has the highest electronegativity
in the modern periodic table ?	
(a) Li	(b) Na
© Ar	(d) K
When (MnO ₄) reacts and is converte	ed to Mn ²⁺ , (MnO ₄) ⁻ is
a reduced, as the oxidation number of	f manganese increases.
b) oxidized, as the oxidation number of	of manganese increases.
reduced, as the oxidation number of	f manganese decreases.
d oxidized, as the oxidation number o	f manganese decreases.
All the following reactions are oxidati	on-reduction reactions, except
\bigcirc CH ₄ + Br ₂ \longrightarrow CH ₃ Br + HBr	
$\bigcirc 3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$	(d) $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 + H_2O$
In each of the following conversions the	ne oxidation number of nitrogen changes,
except	
$\bigcirc NO_3 \longrightarrow NO$	$\bigcirc N_2O_4 \longrightarrow NO_3$
$\bigcirc NH_3 \longrightarrow (NH_4)^+$	(1) NO ₂ \longrightarrow N ₂ O ₅
In which of the following changes an o	xidation process occurs to vanadium V ?
(a) VO ₂ V ₂ O ₃	$(b) V_2 O_5 \longrightarrow VO_2$
()V,0,	(1) $V_2O_1 \longrightarrow V_2O_2$

In which of the form
$$Ca(OH)_2$$

$$Ca(OH)_2$$

$$(\hat{b})CO_2 + C \longrightarrow 2CC$$

$$(1) 3CO + Fe2O3 \longrightarrow 2Fe + 3CO2$$

In the reaction: $ClO_3^- + Cl^- \longrightarrow Cl_2 + ClO_2$ Which of the following statements represents this reaction?

- (a) Oxygen is reduced and chlorine is oxidized.
- (b) Oxygen is oxidized and chlorine is reduced.
- Chlorine is oxidized and reduced.
- (d) Oxygen is oxidized and reduced.

The three following reactions take place during thunder storms :

•
$$2NO + O_2 \longrightarrow 2NO_2$$

$$\cdot NO + O_3 \longrightarrow NO_2 + O_2$$

Which of the following choices represents what happens to the molecules of the reactants through these reactions?

Choices	N ₂	NO	03
a	Oxidized	Oxidized	Oxidize
b	Oxidized	Oxidized	Reduce
0	Reduced	Reduced	Oxidize
(1)	Reduced	Reduced	Reducce

In the chemical reaction represented by the following chemical equation:

Ni_(s) + 2HCl_(nq) ----- NiCl_{2(aq)} + H_{2(g)} What does happen to nickel Ni atom?

- (a) Loses le
- (c) Loses 2e

- (b) Gains le-
- (d) Gains 2e-

In the following oxidation-reduction reaction :

$$2Cr_{(nq)}^{3+} + 3Cl_{2(nq)} + 7H_2O_{(\ell)} \longrightarrow Cr_2O_{7(nq)}^{2-} + 6Cl_{(nq)}^{-} + 14H_{(nq)}^{+}$$
he following loses electrons ?

Which of the following loses electrons ?

- (a)CL,
- $O_cH(I)$

- (p) Cl31
- (d) Cr,O2-

In the opposite redox reaction: $Fe^{3+} + Al \longrightarrow Fe + Al^{3+}$ The electrons transfer from

In the process represented by the reaction: CIO --- CIO₃- Which of the following about chlorine is correct?

Choices	Electrons	
		lonic size
(a)	It gains 3 electrons	Decreases
(b)	It gains 3 electrons	Increases
0	It loses 3 electrons	Decreases
(1)	it loses 3 electrons	Increases

Sulphur can act at an exidizing agent and as a reducing agent.
What is the scientific explanation for that?

- (a) Because suppose forms sulphur dioxide as well as calcium sulphide.
- (b) Because sulphur is a nonmetal.
- Because the outermost level in sulphur contains 6 electrons, so it can gain 2 electrons or share its valence electrons with other atoms.
- d Because sulphur dissolves in carbon sulphide as well as in alcohols.
- When NO₂ reacts and is converted to N₂O₄

The oxidation number of nitrogen

(b) increases by 4

a increases by 2

d does not change.

© increases by 8

Nitric acid is prepared in industry according to the following sequence: $N_2 \longrightarrow NH_3 \longrightarrow NO \longrightarrow NO_2 \longrightarrow HNO_3$

What is the correct arrangement of the oxidation numbers of nitrogen in these molecules?

What is the co		NH,	NO	NO ₂	HNO ₃
Choices	N ₂	-3	+2	+4	+5
(a)	0	-3	-2	+4	+5
b		+3	+2	+4	+5
©		+3	-2	-4	-5

The following equation represents an oxidation-reduction reaction:

 $4H_2SO_4 + 3H_2S + K_2Cr_2O_7 - 7H_2O + K_2SO_4 + 3S + Cr_2(SO_4)_3$

What is the number of sulphur atoms which are exposed to an oxidation process in this equation?

(c) 4

1)7

25 The oxidation number of element (X) in most of its compounds is (-1) when it combines with element (Y), they form a compound its formula is Y2X and the oxidation number of (X) in this compound is (± 4)

What are the two elements (X) and (Y)?

Me min our or		
Choices	(X)	(Y)
(1)	F	Н
(b)	Cl	Na
©	С	0
(1)	Cl	O

The table shows the first four ionization potentials of the elements (X) and (Y):

1 st ionization potential	2 nd ionization potential	3 rd ionization potential	4th ionization potential
+590 kJ/mol	+1145 kJ/mol	+4912 kJ/mol	+6491 kJ-mo
+1314 kJ/mol	+3388114		+7469 kJ mo
	+590 kJ/mol	potential potential +590 kJ/mol +1145 kJ/mol	potential potential potential

Which of the following describes the elements (X) and (Y)?

On the combination of

- (a) element (X) with hydrogen, the oxidation number of hydrogen is +1
- (b) element (Y) with hydrogen, the oxidation number of hydrogen is -1
- (c) element (Y) with element (X), element (X) is reduced.
- (d) element (X) with element (Y), element (Y) acts as an oxidizing agent.

In the following equation, the coefficients W, X, Y, Z are whole numbers:

 $[W]ClO_3^- + [X]MnO_4^- + [Y]H^+ \longrightarrow [W]ClO_4^- + [X]MnO_2^- + [Z]H_2O_4^-$

which of the following represents the coefficients W, X and Y?

	ALAIN TO THE PARTY OF THE PARTY		
Choices	(W)	(X)	(Y)
(11)		2	2
(10)	2	2	
(1)	2	2	2
70	1	.3	8
(4)	•,'	2	2

(BrO₃)²- ion. is this conversion an oxidation or a reduction? Explain.

Cakulate the oxidation number of zinc in sodium zincate.

m betermine the oxidizing agent and the reducing agent in the following reaction:

$$2H_2S + SO_2 \longrightarrow 2H_2O + 3S$$

1 The following figure represents a section in the modern periodic table:

Which of the illustrated elements:

- (1) Is characterized by several oxidation states, with mentioning them.
- (2) Has an oxidation state -1 in the active metals hydrides.
- The opposite figure: represents the surface
 - of an ammonium nitrate crystal, determine
 - the exidation number of nitrogen in:
 - (1) The anion.
 - (2) The cation.

- The table shows the quantum numbers of the last electron in the atom of each of 4 elements:
 - (1) Which of the elements shown in the table 1
 - 1. Reduces hydrogen upon combining with it.
 - 2. Is the strongest oxidizing agent.

Element	Quantum 5	
W	n = 3, l = 0, m = 0, m	
X	n = 2, l = 1.m = _ p	
Y	n=3, l=1, m=-1;	
Z	n=3.(=1.m=- n:	

(2) What is the oxidation number of element (Z) when it combines with element (W)?

- the atomic size decreases.
 - the ionization potential decreases.
 - the electronegativity decreases.
 - i) the nuclear charge decreases.

The following table exhibits the electron configuration of six different elements:

10 = 2		
[Kr], 4d ¹⁰ , 5s ²	$[Xe], 4f^9, 6s^2$	[Kr]. 55', 4d'", 3p'', 65'
152	[Xe], $6s^2$, $4f^{14}$, $5d^{10}$, $6p^6$, $7s^7$]	[Xe]. 4f 14, 5d", 65"

What is the number of the elements which are located in s-block?

(1) 6

In which of the following choices is the summation of the two oxidation numbers of manganese and nitrogen - each in its compound - the least ?

Choices	Manganese compound	Nitrogen compound
a	MnCl ₄	N ₂
b	MnCO ₃	NO ₂
©	K ₂ MnO ₄	NH,
(U)	Mn(OH) ₃	NH ₂ OH

Which of the following statements is correct?

- The element with the atomic number 80 is located in the 6th period, group (1B)
- The element with the atomic number 38 is located in the 6th period, group (28)
- The element with the electronic configuration: [Xe], 4f¹⁴, 5d⁵, 6s² is located in
- 6th period, group (7B).
- The element with the electronic configuration: |Ar|, $3d^{10}$, $4s^2$, $4p^4$ is located in
 - 4th period, group (6B).

- - a Na , Zn

- Which of the following represents the correct order of these acidic oxides according
- to the strength of acidity?

 - (b) $P_2O_3 > SO_2 > SiO_2 > Al_2O_3$
 - $\bigcirc P_2O_3 > Al_2O_3 > SO_2 > SiO_2$
 - (d) $Al_2O_3 > SiO_2 > P_2O_3 > SO_2$
- 7 Which of the following represents the proper ascending graduation of the electronegativities of these elements?
 - a S < P < N < 0
 - (h) P < S < N < 0
 - (C) N < O < P < S
 - (d) N < P < S < O
- 8 Which of the following represents the correct relation between the atomic and ionic radius?

Which of the following oxygenated acids has the lowest $\frac{m}{n}$ value ?

which of the following statements is correct?

- Lanthamum and actimium do not belong to lanthamides and actimides.
- The element whose atomic number is 31 is located in the third period.
- The electron configuration of 2-Co does not follow the system: $ns^{1/2}$, $(n-1)d^{1/10}$
- All actinides are synthesized.
- thement (X) is located in the fourth period, group (15) in the modern periodic table.

 Which of the following represents the electron configuration of the last energy level in its atom?
- A orbitals are half filled and s orbital is completely filled.
- a sorbital is completely filled and p orbitals are half filled.
- a orbitals are occupied by electrons and s orbital is half filled.
- porbitals are half filled and s orbital is half filled.
- Which of the following graphical figures represents the graduation of the atomic radii of the elements of group (1A)?

The opposite table shows

the first five ionization potentials of

the element (X).

What is the number of the group of

the element (X) in the modern periodic table ?

	il (k,l mel	
	Second Third	Second Third Fourth

2

13

14

- (in
 - Ap.
 - Cu'

(B) Which of the following oxides react together when dissolved in water?

- (a) Al₂O₃, ZnO
- Na,O, MgO
- Na,O.P.O5
- (I) SO3 . P2O5
- In the reaction: $3NaClO \xrightarrow{\Delta} 2NaCl + NaClO_3$ Which of the following choices represents the oxidation numbers of chloring in the three compounds?

Choices	NaCIO	NaCl	NaClO ₃
	-1	- I	+5
(1)	+1	-1	+5
0	+1	-1	+7
(T ₁)	+2	+1	+7

The electronegativity of aluminum 13A1 is similar to the electronegativity of

- (a) barium saBa
- (b) beryllium Ale
- () magnesium 12Mg
- (d) strontium 38Sr

which of the following graphical figures represents the number of the unpaired electrons in the orbitals of βp sublevel in the elements of the third period in the periodic table?

in the following equations ;

$$W = H \Lambda$$

$$Na_{(g)} \longrightarrow Na_{(g)}^{2+} + 2e^{-}$$

$$\Delta H = x$$

$$Na_{(n)} \longrightarrow Na_{(g)}$$

$$AH = y$$

$$Na_{(g)}^{2+} \rightarrow Na_{(g)}^{2+} + 2e^{-}$$

$$All = 7$$

which of the following equations represents the second ionization potential of sodium?

Equation (2) × Equation (1).

Equation (2) - Equation (1).

Equation (3) - Equation (1).

Equation (4) - Equation (3).

The electronic configuration : [Ne], δv^2 , Sd^{10} , $4f^{14}$, δp^3

represents

an inner transition element.

a main transition element.

a representative element.

4 noble element.

		one in MR	13 1113	The Links	than the number .
(A)	(1) . Number of pro	io and	of Mg ²⁺	and Al ³⁺ is higher	than the number of

(2): Number of neutrons in each of (3): The electronic configurations of Mg^{2+} and Al^{3+} are similar. protons in each of them.

(4) : Numbers of neutrons in both of Mg^{2+} and AI^{3+} are equal. Which of these statements represent $^{27}_{13}\mathrm{Al}^{3+}$ and $^{26}_{12}\mathrm{Mg}^{2+}$ ions ?

(1) and (2) only.

(h) (1) and (3) only.

(3) and (4) only.

(1) (2), (3) and (4).

22 The following table represents the four quantum numbers of the last electron in the atoms of two elements (X) and (Y) in the excited state:

Quantum numbers	(n)	(1)	(m _l)	[m
The electron of the atom of element (X)	3	1	0	1 2
The electron of the atom of element (Y)	6	1	0	1

Which of the two elements when it becomes in its ground state, its electron w have four quantum numbers identical to those of the excited electron of the o element? Explain.

* * * * * * * * * * * * * * * * * * *	
· · · · · · · · · · · · · · · · · · ·	
	bearing .

· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	4 4 4 1 4
# # # # * * * * * * * * * * * * * * * *	
100000000000000000000000000000000000000	
79888888	
· · · · · · · · · · · · · · · · · · ·	
441144400000000000000000000000000000000	
The state of the s	
	444 1
P11414006604m0>>000314070644404	
The state of the s	

	Famen encepted even	3
opposite figure represents		
er tran in the periodic table :	e • • • !	1
(I) What is the block of each of A and B ?		<i>}-</i>
	В	
(2) Write the electronic configuration of each of t	No colormonts	
A and B according to the nearest noble gas.	ine cicinchi's	
(!!*****(!***********************	***************************************	
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	********************	
		_
) ===	-
Iwo compounds HIO and HCIO3:		
(1) Which of them is more acidic? Explain.		
[;+++++++++++++++++++++++++++++++++++++	***************************************	
1.142.4114114114411411141114114141414141		
***************************************	***************************************	
() \$1.1 (***************************************	
(2) Calculate the oxidation number of each of ioc	line and chlorine in	
the two compounds.		
1940-14224-144-144-144-144-144-144-144-144-1		

	2	marks
	Sale fourth period	
wite the electron configurations of two of the	elements of the fourth period.	
where the sublevel d in each of them contains 5 u	inpaired electrons.	

What is meant by that the bond length in NaCl = 2.79 Å?

The opposite figure represents

the first somization potentials of withe elements of the second and the third periods.

ing a telling course on properties of the

্রান্তর হয়ে হয়ে গে vidium ?

Open Book Exam Models

About the curriculum

Answered

	· Chase the correct answer for the following questions:
	The properties of the cathode rays differ from those of alpha rays in
	that they can be observed through flashes.
	that they both move in straight lines,
	that they both are particles.
	the direction of their deflection in an electric field.
4	Bohr's and Rutherford's models are similar in that
	a the electron can gain a quantum of energy.
	the electron can not be found within the regions between the energy levels
	the electron orbits the nucleus in definite constant orbits.
1	the electron is a negatively charged particle.
(3	Which of the following properties is not among those of the line spectrum?
1	It consists of coloured lines separated by lighted areas.
T	Traises from the return of the excited electron to its level.
	Tris produced through heating the atoms of the elements in the state of gas or vapour.
	Each element has a characteristic line spectrum.
0	The opposite figure shows the probabilities of facing
	the electron in the atom.
	The most accurate choice is
	B, C and D are consistent with Bohr's model.
	C A. C and D are consistent with the modern atomic theory.
	B. C and D are consistent with the modern atomic theory.
1	(3) A, B and C are consistent with Bohr's model.
6	Among the modifications of the wave mechanical theory on Rutherford's model
	is
П	that the nucleus of the atom is positively charged.
н	that the atom is electrically neutral.
	that the atom is not solid but contains a vast space.
	the probability of finding the electron in the spaces around the nucleus.

- The values of the sublevels of a principal energy level are up to 2 this principal level is
 - 1 (b) N
- The electron configuration of an atom ends with the sublevel $4d^2$, the number of the orbitals which are occupied by electrons in the principal level n=4 is
 - (l) d (d) 5
- \bigcirc if l=2 , then the values of my and m, of the first electron in the sublevel are

$$m_1 = +2$$
 , $m_n = +\frac{1}{2}$
 $m_2 = -1$, $m_n = -\frac{1}{2}$

$$m_1 = -1$$
 . $m_2 = -\frac{1}{2}$

$$m_f = +1$$
 , $m_s = +\frac{1}{2}$

Element		1	EI B
First ionization potential (k,J/mol)	(*A2		+495
Second ionization potential (k.J/mul)	41,451	1	+4558

The second ionization potential of element (B) is much higher than the second ionization potential of element (A), this is attributed to _______

- (2) losing 2 electrons from the principal level L in (B).
 - breaking the principal level L in (B) and the increase of the positive charge.
 - , breaking the principal level L in (A) and the increase of the positive charge.
 - hising 2 electrons from the principal level M in (A).
- \bigcirc 4 elements are located in one group starting from the second period in the periodic table, so the electron affinity of the element whose electron configuration is $I_{5^2,21^2,2p^6,3s^4}$ equals

0	37
(a)	Y

(12)	The opposite table shows
	the quantum numbers of
Н	the last electron in
	the atoms of some elements.
	Which of these elements is electronegative?
1	○ #

(a) Y

13	The ion X^{3+} electronic configuration ends with $\psi f'$, $4f^{14}$, $5d^8$	
1	This means that element (X) is located in the group	

- (a) HC is more acidic, and (A) has the largest radius.
- b HB is more acidic, and (C) has the largest radius.
- © HC is more basic, and (B) has the smallest radius.
- d HB is more basic, and (A) has the smallest radius.

Element	Electronic configuration
Х	[10Ne]: 3s2, 3p5
Υ	$[_{10}\text{Ne}]:3s^2,3p^2$
Z	$[_{18}\text{Ar}]:4s^2,3d^{10},4p^5$
R	$[_{36} \text{Kr}] : 5s^2, 4d^{10}, 5p^5$

Element	Quantum numbers
X	$n = 3$, $l = 0$, $m_{\ell} = 0$, $m_{s} = +\frac{1}{2}$
Υ	$n = 2, l = 1, m_l = +1, m_s = -\frac{1}{2}$
Z	$n = 2, l = 1, m_l = -1, m_s = -\frac{1}{2}$
R	$n = 3$, $l = 0$, $m_{\ell} = 0$, $m_{s} = -\frac{1}{2}$

Element	The outer electron configuration
A	4s1
В	3p ⁵
С	4p ⁵

group their radii are estimated in angstroms.

Which of the following is correct?

and is collect 3	1.96
a Element (C) has lower electron age.	
a Element (C) has lower electron affinity than el	ement (A).

(b) Element (A) has lower electronegativity than element (B).

© Element (D) has higher electronegativity than element (C).

d Element (B) has higher ionization potential than element (D).

Assisted by the opposite diagram which shows the values of the first ionization potentials of elements of the same group in the periodic table.

The element with the highest metallic property is

(b) Z

d)W

- Questions of 2021 Exam

C

1.52

D

2.4R

В

2.27

(V)	The opposite table shoe:			
	the electronic configuration			
	of the last sublevel in			
	some elements.			

Element	A	В	С	D
The electrons of the last sublevel	$3p^{I}$	3p ⁵	3p ³	3p4

Which of the following is correct?

(a) (B) is a nonmetal and its electron affinity is high.

(b) (C) is a metal and its electron affinity is high.

(c) (A) is a nonmetal and its electron affinity is low.

(d) (D) is a metal and its electron affinity is low.

According to the equation : $X + e^{-} \longrightarrow X^{-} + High energy$ Among the properties of element (X) that

(a) its oxide is amphoteric, and its ionization potential is high.

(b) its oxide is basic, and its ionization potential is high.

(c) its oxide is acidic, and its ionization potential is high.

(1) its oxide is acidic, and its ionization potential is low.

The opposite curve shows the graduation in the value of electron affinity of 4 elements in the third period (not in successive groups).

The correct order of the oxides of these elements relative to the acidic property is

$$\Box$$
 Z < Y < X < W

$$\bigcirc X < Y < Z < W$$

You have the element (X) which is a representative element, and their probable ionization potentials are :

•
$$X \longrightarrow X^+ + e^-$$
 , $\Delta H = +500 \text{ kJ/mol}$

•
$$X^+ \longrightarrow X^{+2} + e^-$$
 , $\Delta H = +675 \text{ kJ/mol}$

•
$$X^{+2} \longrightarrow X^{+3} + e^{-}$$
, $\Delta H = +8780 \text{ kJ/mol}$

Then, the element which precedes it in the same period is located in

a the first group A

b the second group A

© the fourth group A

d the third group A

Three representative elements X , Y and Z are located in one period and three different groups,

the formula of the oxide of each of them is: X2O, YO3 and ZO2

The correct diar according to the atomic radius of each of them is

Choose the correct answer for the follo	owing questions:
$+HNO_{2(nn)}-$	→ NU _{2/0} + ± Cl ₂ + H O
In the equation: $HCl_{(aq)} + HNO_{3(aq)}$ Which of the following represents the process.	revious reaction?
the following tell	
Which of the following with the	HCl is the reducing agent.
ine undergoes reduction	
araci + Habiani	Lite(aq) + Lite(1 _{2(aq)} + 3 _(a)
In the equation: 2FeC _{3(aq)} and 2 (aq) Which of the following represents the pre	evious reaction ?
(a) FeCl ₃ is the oxidizing agent.	
(a) FeCl ₃ is the oxide a cours to sulphur. (b) A reduction process occurs to sulphur.	
(b) A reduction process of	
© H ₂ S is the oxidizing agent.	
d An oxidation process occurs to iron.	dered as follows: X > Z > Y, these
Three different elements, their radii are ord	T VO H.ZO.
elements form the following acids: HXO, I	trangths of these acids?
what he correct according order of the a	freidais or man
OUVO -H 70 -HXO	b) H ₂ ZO ₂ < H ₄ · O ₄
(6)112602 < 1100 < 114 0 4	$HXO < H_2ZO_2 < H_4YO_4$
In the compound $C(OH)_4$, the attraction betw	ween (O, C) is equal to the attraction
between (O. H), so this compound is ionized	
(a) in water as a salt.	according to the type of the medium.
© in basic medium as a base.	in acidic medium as an acid.
In helium atom 2He,	
I me spin quantum quantum har and gi	milar
- 7-1	
the values of the spin quantum number are dil	
m ₁₌₋₁ and the following the distribution of	iterent.

- The electronic configuration of the element (X) ends as follows : ns^{I} , $(n-I)d^{3}$, and its electrons are distributed in 5 principal levels. What is the atomic number of this element? (h) 24(a) 29 (d) 42 (C) 47 Sr element is located in the fifth period, group (2A) in the modern periodic table. Which of the following represents the electronic configuration of its ion? (b) |Ar|, $4s^2$ (1) [Ar], $4s^2$, $3d^{10}$, $4p^6$ (d) [Kr], $5s^2$ © [Kr], $5s^2$, $4d^{10}$, $5p^4$ In terms of the opposite table, Bond F = Fif the length of the bond (C - Br)**Bond length** 1.28人 in $CBr_A = 1.91 \text{ Å}$ What is the length of the bond in CF_4 ? (b) 1.41 Å (1) 1.14 Å
- (c) 0.77 Å (d) 0.64 Å
- **9** Four ions: $_{19}M^+$, $_4Z^{2+}$, $_{12}Y^{2+}$, $_{37}X^+$ What is the correct ascending order of their atomic radii? (a) Z < Y < X < M (h) Y < Z < M < X(c) X < M < Y < Z (1) Z < Y < M < X
- Which of the following choices is correct for the elements $_{19}X$ and $_{17}Y$? (a) It is easier to reduce (X) than (Y). (b) It is easier to oxidize (Y) than (X).
 - © Both (X) and (Y) can be easily reduced. (d) It is easier to oxidize (X) than (Y).
- The opposite table shows some properties of the elements (X) and (Y) which are located in the second period in the periodic table. Which of the following statements is correct? (a) Element (Y) is located in group (6A).

 - (h) Element (X) is located in group (2A).
 - © Element (X) is located in group (6A).
 - (1) Element (Y) is located in group (2A).

Property	(X)	(Y)
Electron affinity	Low	High
lonization potential	Low	High
Oxidation number	+3	-2

 $Br + B_\Gamma$

2.28人

The element whose last principal a an amphoteric oxide.			
	energy level (n = 3	Questions of 202	
an amphoteric oxide	· (11 = 2	Contains 6 elect	G Exam
a neutral oxide.	Chian	sections form	75
The street street.	2 Mil 80	Trian.	
B The highest amount of energy is r	eleacad	ic oxide	
The highest amount of energy is r atom transfers from	cicasea when the	Excited electron	
(a) the orbit M to the orbit L and the		of hydrog	en
a the orbit M to the orbit L, and the horbit N to the orbit M, and no can be determined precisely.	le location of this el	ectron can be d	
can be determined necessary	either the location r	or the speed of a	
Can be determined precisely.		-pace of this electron	מ
the orbit L to the orbit K, and thi	s electron has a dua	l nature	
d the orbit L to the orbit K, and bot	th the location and	the speed of the	
can be determined precisely.		Poed of this electron	
Element (X) is located in the group	(44)		
Which of the following its electron			
O		_	
	(c) X+	\bigcirc \mathbf{x}^{2-}	
On comparing the properties of the	elements of the gi	oup whose electronic	
configuration ends with ns1 to the p	roperties of the of	her elements, it is	
noticed that			
(a) their oxides are basic and their elec	tron affinities are	nigh.	
b their oxides are acidic and their ele			
their oxides are basic and their elec			
d their oxides are amphoteric and the			
What are the values of both principal	and magnetic qua	ntum numbers of	
the penultimate electron in sodium at	om ²³ Na ?		
$a = 3$, $m_{l} = +2$	bn = 3 ,	$m_{\ell} = -1$	
$\bigcirc n=2$, $m_{\ell}=+1$	(d) $n=2$	$m_{\ell} = -2$	
The opposite table shows			
the radii of four different atoms.	Element	A B C	D
Which element amount	Atomic radius 1.	34 Å 2.11 Å 0.73 Å 1	.74 A .
Which element among these elements			
has the highest electronegativity?			
©c	b B		
	. (d) D		

the				
a sixth period.	(b) fifth period.			
© seventh period.	d second period.			
What is the type of the elements in wh	ich the electron configuration ends wit			
$ns^{1:2}$, $np^{1:5}$?				
a Representative.	(b) Main transition.			
© Inner transition.	d Noble.			
In the equation : $MOH \longrightarrow MO^- +$				
If the values presented in the following	choices represent the first ionization			
potentials of the first four elements in t	the same period «with no particular or			
What is the value of the first ionization	potential of (M) ?			
a +580 kJ/mol	(b) +1400 kJ/mol			
c +780 kJ/mol	(1) +520 kJ/mol			
The probability of the presence of the e	laction is an element			
by	nection is represent			
a) the orbital and the electron cloud.				
b the quantum and the line spectrum.				
c the line spectrum and the orbital.				
d the quantum and the electron cloud.				
Dalton and Thomson agreed on that cark	10n atom			
a has no spaces within it.				
© contains negative electrons.	(b) is electrically neutral.			
	d is a homogenous sphere.			
The modern atomic theory agrees with Rutherford's atomic model on				
b that the electrons have wave properties				
c that it is impossible to date	•			
together precisely	he location and the speed of the electron			
d the system of the revolving of the electr	*			
and levelving of the electric	rons around at			

the same period in	(.0)
three metals in the same period in three modern periodic table.	
What is the proper grades what is the proper grades the metallic character of these elem	ents ?
the metallic character	
C < A	

(a)	В	<	C	<	A
1 45 /	-				

$$\bigcirc$$
 A < B < C

Three elements X, Y and Z, their electronic configurations end with ns^{J} . and the values of their electron affinities are ordered as follows: Z>Y>X What is the correct order of graduation of their metallic character?

$$\bigcirc$$
 Y

$$\bigcirc$$
 Z < Y < X

- According to Hund's rule and Pauli's exclusion principle, the last two electrons which have the highest energy in the atom of the element 26X are different in both quantum numbers
 - a l and mi

(b) n and m/

 \odot m, and ℓ

- d me and me
- Bohr's atomic model differencem that of Rutherford. What is the postulate in Bohr's model which clarifies this difference?
 - (a) The electron displays a line spectrum when it loses a quantum.
 - (b) The electron is a negatively charged material particle.
 - © The electron does not display a line spectrum when it loses a quantum.
 - (d) The electron revolves around the nucleus in certain orbits.
- In the opposite graphical figure:

Which of these elements has lower electron affinity?

- (b) Y
- (c) Z
- (d) w

ė	mbol of the energy	y level which contains s . n and .
(29	What is the symbol of the	y level which contains s , p and d
	sublevels only?	(b) M
	(1) L	(d) K
	(C)N	
30	The first ionization potential of to because	fluorine $({}_{9}\mathbf{F})$ is higher than that of $oxygen_{\left({}_{8}O\right)}$
	number of energy levels in flu number of energy levels in flu atomic radius of fluorine > ato atomic radius of fluorine < atomic	omic radius of oxygen.
(31)	What happens when sodium hyd	roxide solution is added to aluminum hydroxide
	 They don't react together, bec. Al(OH)₃ reacts as a base. They don't react together, bec. Al(OH)₃ reacts as an acid. 	ause they are both acids.
(32)		he ion of a trivalent metal is [Ar].
Н	a Main transition.	
	© Inert.	Inner transition.Representative.
(33)	Which of the following statemer the formula Y ₂ X ?	nts represents the ionic compound which has
i	(Y) is a nonmetal, (X) is a meta	T .
	(b) (Y) is a nonmetal, (X) is a metal	lloid
	(Y) is located in group (1A), (X	() is located in group (6.4)
	(Y) is located in group (6A), (X	() is located in group (1A)
34	If the ions A^{2+} , B^{2-} are of two el	ements in the same navied
Ĭ	of the following choices r	enrecente a commenia e la terraria
	and an equivilies of the tw	o elements of these ions ?
		(b) A ≥ B
l	○A>B	

Questions of 2

a sublevel in which th	Questions
What is the subject in the will	le last electron has the two our
numbers $(n = 2, l = 0)$?	le last electron has the two quantum
(a) 2s	(b) 2p
© 1s	\bigcirc 3 p
the orbitals of the same subleve	l are different in
the distance from the nucleus.	(b) the magnetic
Shape and size.	b the magnetic quantum number. d the subsidiary quantum number.
	cupied by electrons in
p sublevel is half filled with elect	cupied by electrons in an atom in which
	(b) 7
a 6	(d) 9
8	
Vhen an electron transfers from th	e level K to the level L, it gains one quantum,
nd when it transfers from ${f K}$ to ${f N},$	it gains
0.5 quantum.	b 1 quantum.
2 quanta.	d 3 quanta.
mong Heisenberg's modifications	ତଃ Bohr's atomic model
it is difficult to determine both the	fogation and the speed of the electron together
around the nucleus precisely.	
the space regions between energy l	evels are not forbidden for the electrons.
ine electron is a material particle w	ith wave properties
both the land	he electron can be determined precisely.

 Choose the correct answer for the following questions 		Choose the correct	answer for the	following questions
---	--	--------------------	----------------	---------------------

The opposite table shows the atomic radii of four elements in the same group in the periodic table estimated in angstroms.

Element	(A)	(B)	(C)	(0)
Atomic radius (Å)	1.96	2.27	1.52	2.48

Which of the following is correct?

- Element (A) has lower electronegativity than that of element (B).
- Element (D) has higher electronegativity than that of element (C).
- Element (C) has lower electron affinity than that of element (A).
- Element (B) has higher ionization potential than that of element (D).
- Bohr's atomic model is distinct from that of Rutherford in that the electrons in Bohr's model
 - revolve in certain orbitals.
 - revolve in high speed.

. The in definite constant energy levels. around the nucleus.

- If the electron gains an amount of energy $e_{a} \cdot v = 2 \text{ eV}$ to transfer from the energy level K to L, so to transfer from the energy level M to L it may
 - lose an amount of energy equals 1.89 eV gain an amount of energy equals 1.89 eV
 - © lose an amount of energy equals 10.2 eV d gain an amount of energy equals 10.2 eV
- The second and third ionization potentials of the element (X) are represented by the following equations:

$$^{\circ}X_{(g)}^{+}$$
 \longrightarrow $X_{(g)}^{2+}$ $+$ e^{-}

$$^{\circ} X_{(g)}^{2+} \longrightarrow X_{(g)}^{3+} + e^{-}$$

$$\Delta H = +1450 \text{ kJ/mol}$$

$$\Delta H = +7730 \text{ kJ/mol}$$

It is concluded from these two equations that the element (X) compared to the element which precedes it in the same period is

- a nonmetal with lower ionization potential
- a nonmetal with higher ionization potential
- a metal with lower ionization potential
- a metal with higher ionization potential

- Two elements (X) and (Y) are located in the same period, their radii are (0.157 Å) and $(1.04 \, \text{Å})$.
 - It is possible when they combine chemically that
 - (a) element (X) undergoes oxidation and element (Y) undergoes reduction
 - (b) element (X) and element (Y) both undergo oxidation.
 - Pelement (X) undergoes reduction and element (Y) undergoes oxidation
 - d neither element (X) nor element (Y) undergoes reduction.
- What is the drawback of Bohr's model which was modified by the modern atomic theory?
 - (a) The electron has wave nature only.
 - (b) The electron is just a negatively charged particle.
 - © The electron has dual nature.
 - (d) The electron revolves around the nucleus in an electron cloud.
- The opposite table shows the electronic configurations of the atoms and ions of some objects. the correct graduation of the excessing ativities

0	۹>	В	>	D	>	C	
---	----	---	---	---	---	---	--

of these elements?

(b) B > C > A > D

© D > C > B > A

(d) A > D > C > B

Atom or ion	Electronic	
Atom or ion	configuration	
A ¹⁻	[Ne]	
B ²⁻	[Ne]	
С	[Ar], 4s1	
D	[Ne], 3s ¹	

- 8 Each of hydrogen and helium contains one energy level.
 - Which of the following describes the two elements?
 - The two elements are different in their line spectra.
 - The two elements are equal in the number of electrons in each of them.
 - The two elements are different in the principal quantum number of their valence electrons.
 - (d) The two elements are similar in their line spectra.

By applying the wave mechanical equation to the last electron in sodium atom 19%

(a) It is possible to determine its location precisely in the energy level M

- (n) it moves buck and forth from the macleus within the energy level M
- (i) its energy is lower than that of the electrons of the energy level L.
- of) it transfers to the energy level Latter losing a quantum.
- (III) to obtain the hydrogen atom visible spectrum of an electron which has been existed to the third energy level M, this electron must
 - (a) lose a quantum lower than that gained
 - (b) lose a quantum which is gained.
 - (c) pain a quantum.
 - (d) lose a quantum higher than that gained.
- (1) The electronic configuration of the element (Z_1,\ldots,Z_r) is the $3p^I$ sublevel. Which of the following choices represents () (4) relative to the elements which precede it in the same per colli-
 - (a) A nonmetal with high electron alf mit;
 - (b) A nonmetal with low electron all mity
 - (c) A metal with high electron affinity
 - (d) A metal with fow electron affmity.
- 1 The electron configuration of element (X) ends with the sublevels : $5s^2$, $4d^{10}$, $5p^5$ Which of the following choices represents the element (X) relative to the elements which precede it in the same period?
 - (a) Its oxide is basic and its ionization potential is small.
 - (b) Its exide is amphoteric and its ionization potential is high.
 - (1) Its exide is acidic and its ionization potential is high.
 - (i) Its oxide is acidic and its ionization potential is small.

	marka 27 kom
Choose the correct answer	er for the questions 1: 21.
Three consecutive elemen	tor the questions 1: 21
The consecutive elemen.	3 ' 9/10 / in at
What is the symbol of the	ion of Z ?
(a) Z ²⁻	(h) 724
© Z -	(b) Z ²⁺
	(d) Z+
Here are 4 hypothetical sym	nbols for four elements ions : (A ²⁺ /B ⁻ /C ⁺ /D ²⁺).
3	enterts represents all these ions a
a The number of electrons	in each of them is higher than that of the protons.
b Their nuclei contain the sa	ame number of neutrons.
© Their nuclei contain the sa	
	of the of them is similar to that of the nearest inert gas.
	_
	the powder which when dissolved in water,
it forms a solution turns the	
What is the probable name of	this element?
a Sulphur.	(b) lodine.
© Carbon.	d Magnesium.
In which of the following:	the electron cloud has the largest size ?
a s ² -	the electron cloud has the largest size?
© Be ²⁺	(b) Al ³⁺
	\bigcirc N^{3-}
What is the number of electrons	s lost or gained by nitrogen atom
	V O 7
oses one electron	(b) It loses two electrons.
© It gains one electron.	
Totali.	d It gains two electrons.

(a) II	111

(h)	1/	11/	1/	_1
	سند		-	

			_
0			A
(d)	1 1V 1		
		-	

Which of the following represents both the location and the block of the element whose atomic number is 24?

	Period	Group	Block
Choices	6	4B	d
(b)	4	6B	d
-0	6	4B	Р
	4	6B	р

8 What is the number of the elements which may form compounds but with great difficulty in the fourth period in the process to ble?

(a) 1

(d)4

What is the number of the elements in which the orbitals of 4d sublevel contain one single (unpaired) electron or more in the ground state?

(a) 7

(c) 9

Which of the following choices represents the electronic configuration of the atom which has higher electron affinity?

(a) [Ne], $3s^2$, $3p^5$

(b) [Ne], $3s^2$, $3p^2$

(c) [Ne], $3s^2$, $3p^6$, $3d^5$, $4s^1$

(d) [Ne], $3s^2$, $3p^4$

Which of the following elements has the highest electronegativity?

3) 13Al

ы за Si

3 16S

(d) 34Se

Which of the following elements has the lowest first ionization energy?

3 5B

⊕ 6C

(d) ₁₄Si

Which choice does represent the correct graduation in increasing the metallic

(i)
$$_{14}Si < _{15}P < _{16}S$$

$$\bigcirc$$
 ₁₃Al < ₃₂Ge < ₅₁Sb

(d)
$$_{35}$$
Br $<_{34}$ Se $<_{33}$ As

Two ions (X⁻) and (Y⁺), both have the same electron configuration [Ar]. Which of the following statements represents the two elements of these ions?

- (a) The atomic radius of element (X) equals half that of element (Y).
- (b) The electronegativity of element (X) equals that of element (Y).
- (c) The first ionization potential of element (X) is lower than that of element (Y).
- (d) The electron affinity of element (Y) is lower than that of element (X).

B Which of the following transitions in an atom of hydrogen produces a photon with the highest energy?

(a)
$$(n = 3) \longrightarrow (n = 1)$$

(b)
$$(n = 5) \longrightarrow (n = 3)$$

(c)
$$(n = 12)$$
 — $(n = 10)$

(d)
$$(n = 22) \longrightarrow (n = 20)$$

16 Which of the following represention as electron configuration of an excited atom?

(a)
$$1s^2$$
, $2s^2$, $2p^1$

(b)
$$1s^2$$
, $2s^2$, $2p^2$

©
$$1s^2$$
, $2s^2$, $2p^2$, $3s^1$

(d)
$$1s^2$$
, $2s^2$, $2p^5$

In the reaction : $ClO_3^- + 5Cl^- + 6H^+ \longrightarrow 3Cl_2 + 3H_2O$

What are the oxidizing and the reducing agents?

Choices	Oxidizing agent	Reducing agent
a	Cl	CIO ₃
Ь	ClO ₃	Cl
©	ClO ₃	H ⁺
d	Cl	H ⁺

(18	Which of the following elements atoms in its ground state could have an electron					
	with the quantum numbers: $(n = 3, 4)$	$l = 2$, $m_l = 0$, $m_s = +\frac{1}{2}$)?				
į	a 11 Na	(b) ₁₂ Mg				
	© 15P	(d) ₂₃ V				
19		l6 g of oxygen gas to form 22 g of CO_2				
1	What is the mass of CO ₂ which is pro	oduced from a mixture formed of 24 g				
	of carbon with 100 g of oxygen gas ?					
	a) 40 g	(b) 44 g				
	© 88 g	d 112 g				
20	All the following are deflected by the	e effect of the charged plates, except				
	a hydrogen atoms.					
	b cathode rays.					
	© alpha particles.					
	d protons.					
21	What is the name of the halogen where a located in the third period in					
	the periodic table ?	•				
	a Chlorine 17Cl					
	b Iodine 531					
	© Bromine 35Br					
	d Astatine 85At					
(2)	Deduce with explanation the oxidation					
	electron has the quantum numbers : (1:	n number of the representative element whose las				
		-0 , $m_s = -\frac{1}{2}$).				
	***************************************	***************************************				
	***************************************	***************************************				

The opposite table shows the quantum numbers of two different electrons in	Quantum numbers Electron (X)	(n) (t) (m _j) (m _j)					
ag atom. Willest	Electron (y)	6 0 0 +1					
the same atomination higher energy ? Explain.	i	2					
Ing.							
***************************************	.,						
10 COLORES CONTRACTOR OF THE PARTY OF THE PA		2 merse					
The following figure represents a section	n in the periodic table	d d					
The following figure 154	17.5						
	, (
,							
vec-venue between the nur	() Calculate the difference between the number of the elements of s-block and						
(1) Calculate the difference networks							
the number of the elements of p-block.							
***********************		\$422774379797774452974445774					
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
(2) What is the missing block (alde?							
(2) What is the man 2							
		2 marks					
	l., ati	on of the basic					
Which of the following graphical figures rep	presents the graduan	on or the or					
Which of the following graphical figures reproperty of the oxides of the elements of the t	hird period in the per	iodic table :					
property of the oxides of the elements of	Basic						
Basic property	property						
*	†						
		Element					
Element	No Ma Al Si P	oxide					
Mg Al Si P oxide	Na Mg Al Si P	1					

Figure (1)

Figure (2)

What is the number of each of the completely filled orbitals and the partially occ
by electrons in the gaseous state of the atom of vanadium element 23V
by electrons in the East of
in its ground state?

Complete the four quantum numbers of the last electron in the element (Y), knowing that it follows the element (X) in the same period in the periodic table:

Quantum numbers	(n)	(1)	(m _ℓ)	(m _s)
The element (X)	3	2	+2	$-\frac{1}{2}$
The element (Y)				******

choose the corre	ct answer for the qu	restions (1): (21).	ŽI morte
to the number	er of the inner trans	ition elements in both	fourth and fifth periods
What is the harm	le ?		
in the periodic tab	(b) 14	© 24	d 28
(i) Zero		-+-ibuting the electro	ns of the elements
If aufbau principle	is disregarded in di	stributing the electro	ns of the elements.
O If autbau principies Ca would be loca	ated III		(d) f-block.
- block	О р Блось	c d-block.	
-tomic	number of the elem	ent in which the orbi	tals of 4p sublevel
What is the atomic	possible number of	single electrons?	
	, F = -	b 26	
(1) 23		(d) 35	
© 33) # i	a highest ionization (ootential?
Which of the follow	ing elements has the	e highest ionization p	
(a) Ne		(d) Te	
© Be			
n Rutherford's expe	riment, upon shooti	ng a beam of	o 4 a
(a) beta particles on a	gold foil, it is absorbe	ed.	
(1) gamma rays on go	old foil, electrons are	liberated from its sur	face.
	gold foil, most of the		
d) helium nuclei on g	gold foil, some of the	m are scattered.	
Understanding the m	ovement of the elec	trons in the atom is l	based on
all the following, exc			
		the presence of the nu	ieleus.
(b) Thomson's atomic	model.	1	
Bohr's model of at	om which is based or	hydrogen atom.	
(d) Schrödinger's equa	ition which introduce	d the concept of the o	rbital.

(0	The weakest halogen acid is	© HF	(d) HCI
	(ii) Iffir	h can be occupi	ed by electrons in the atoms
(8)	What is the number of the orbitals whic	ind in the nerio	dic table, where the electron
ì	of the elements located in the sixth per	ion in the perior	
	has the quantum number ($m_{\ell} = +3$)?		
	(h) 3	© 5	(d) 7
	One of the students presumed wrongly	that the two ele	ectrons (X) and (Y) which are
(9	in the same atom have the following qu	antum numbers	: :
	in the same atom have the following f	$m = +\frac{1}{2}$	
	• Electron (X): $n = 4$, $l = 0$, $m_{l} = 0$,		
	• Electron (Y): $n = 4$, $\ell = 0$, $m_{\ell} = 0$,	$m_{s} = +\frac{1}{2}$	
}	What is the rule or the principle which e	explains this mis	stake ?
	(a) Pauli's exclusion principle.	(b) Aufbau	principle.
	(c) Hund's rule.	(d) Uncertain	inty principle.
		conto sho alastro	an affinity of
a		sems the electric	on annity of
	bromine ?		- 7-
	(a) $Br_{(g)} \longrightarrow Br_{(g)}^+ + e^-$	() Br _(B) + 0	$e^- \longrightarrow Br_{(g)}^-$
	$\bigcirc Br_{2(g)} + e^- \longrightarrow 2Br_{(g)}^-$	$\left(\right)$ Br $_{(g)}^{+}$ + $\left(\right)$	$Br_{(g)}$
(1	Which of the following loses electrons in	n the redox (oxi	dation-reduction) reactions
	(a) The substance which undergoes oxida	ation.	
	(b) The cathode.		
1	© The oxidizing agent.		
	(d) The atom or the ion whose oxidation	number decrease	25
(61	Which of the following is a correct appli		
	Dalton's theory ?	cation of one of	the postulates of
	(a) The atoms of a sample of iron are not	necessarila	:1
	(b) Hydrogen substance is formed of ver	a minutes at the	uar,
	(c) Water is formed from by drawn at	y minute particle	es called ions.
	© Water is formed from hydrogen and o	oxygen elements	in a constant weight ratio.

d Carbon and hydrogen elements combine in different weight ratios to form many

compounds.

the absence of magnetic field of	or electric field which affects the tube of the cathode
rays, the rays	
rays, the formed.	b move in straight lines.
a are not formed. become positively charged.	d do not glow.
© become positive contains the	ne same number of electrons of nitride ion ? $\stackrel{\textstyle \bullet}{\mathbb{D}} N_2$
Which of the following contains the	(b) N
a Na ⁺	
(a) Na	d Ar
© CI transfers from hi	gher energy level to a lower energy level,
When an electron transfer	gher energy level to a lower energy level,
:+ produces	(b) an emission spectrum.
a) an absorption spectrum.	d) gamma rays.
of the following elements has	s chemical properties similar to those of
Which of the fement a Mg?	
magnesium element 12 Mg?	(b) Calcium 20Ca
(a) Sulphur ₁₆ S	d Chlorine 17Cl
© Iron 26Fe	
Which of the following represents	possible quantum numbers of the last electron in
nickel atom 28 Ni ?	
(a) $n = 3$, $\ell = 2$, $m_{\ell} = -1$, $m_{s} = -\frac{1}{2}$	
· ·	
(b) $n = 3$, $l = 2$, $m_l = 0$, $m_s = -\frac{1}{2}$	
© $n = 3$, $\ell = 2$, $m_{\ell} = +1$, $m_{s} = -\frac{1}{2}$	
(d) $n = 3$, $l = 2$, $m_l = +1$, $m_s = +\frac{1}{2}$	
	(f) sublevel in the principal level $(n = 3)$?
a Zero	
© 5	(b) 3
(1) Which as a	(d) 7
Which of the following has the smallest	t radius ?
© Na+	(b) Ne
	(d) CI ⁻

b Hypochlorite ion. d Perchlorate ion. in b Ba(MnO ₄) ₂ d MnO Intum numbers of the farthest e Explain.
b Ba(MnO ₄) ₂ d MnO Intum numbers of the farthest e Explain.
(b) Ba(MnO ₄) ₂ (d) MnO Intum numbers of the farthest e Explain.
d MnO Intum numbers of the farthest e Explain.
ntum numbers of the farthest e
Explain.
Explain.
$+\frac{1}{2}$).
$=-\frac{1}{2}$).
<u> </u>
4**************************************
* *************************************
-
n the periodic table :
11 1 1 1 1 1 1 1
er of representative elements
nents ?
nents ?
continuity and an opposition
,_(,, , , , , , , , , , , , , , , , , ,

The following table represents a section in the periodic table

C D

(1) Its ion carries two positive charges.

- (2) Its electron configuration ends with: $4s^2$, $3d^6$
- The compound ClO₂ is formed in industry from the reaction of NaClO₃ with HCl

 Which of the former three compounds is the compound in which the outlation number of chlorine is the highest?
- with sulphuric acid.

Here are 4 oxygenated acids:

Which of these acids has the lowest (n) value? What is this (n) value?

Element Q is located in the group (6A) in the periodic table, its nucleus contains x number of neutrons and y number of protons.

Which of the following choices represents the ion of this element?

(a)
$$x + y_0 Q^{2+}$$

$$\bigcirc x + yQ^{2-}$$

$$(1) {}_{y}^{x}Q^{2-}$$

The oxidation number of carbon equal zero in

Which of the following is an electron configuration of a stable atom?

(a) [Ne]
$$,3s^2,3p^3,4s^1$$

(b)
$$1s^2$$
, $2s^2$, $2p^4$, $4s^2$

© [Ne],
$$3s^2$$
, $3p^6$, $4s^1$

(d)
$$1s^{I}$$
, $2s^{I}$

Which of Dalton's postulates is still valid up till now?

- (a) Atoms are minute particles.
- (h) Atom is indivisible.
- Atoms of the same element have the same mass.
- All the atoms of the same element are different in mass from the atoms of the other elements,

Which of these ions its electronic configuration is not similar to that of a noble gas ?

$$\bigcirc$$
 Mg²⁺

1) +2 and	1-7	OCIO ₄ ?	3 and +5	(c) +2 an	d +7	(1) +3 aı	nd +7
which of	the follo	wing rep	resents the co	orrect gradua	tion in the p	ropertie	s of
he oxide	s of the e	elements	of the third p	eriod ?			
Choices	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO ₃	CI ₂ O.
(a)	Basic	Basic	Amphoteric	Amphoteric	Amphoteric	Acidic	Acidio
<u> </u>	Basic	Basic	Amphoteric	Acidic	Acidic	Acidic	Acidio
0	Basic	Basic	Basic	Amphoteric	Acidic	Acidic	Acidio
<u></u>	Basic	Basic	Amphoteric	Amphoteric	Acidic	Acidic	Acidio
uccessive	$\ell = 3$	(h) n :	all lanthanide = 3, ℓ = 4 = 5, ℓ = 2	c 3 :			
$ \begin{array}{c} a) n = 4, \\ c) n = 4, \end{array} $	$\ell=1$						
\bigcirc n = 4,			nes Pauli's exc	lusion princi	ple, <u>except</u>		
\bigcirc n = 4,				lusion princi	ple, except]	
\bigcirc n = 4,				b M	ple, except]	
$\begin{array}{c} $	e followi	ing match]	

Choices	Charge	Present inside the nucleus
(1)	Negative	No
(b)	Negative	Yes
0	Positive	No
(1)	Positive	Yes

1 The line spectrum of sodium contains one coloured line, while the line spectrum of hydrogen contains 4 coloured lines.

What does this statement indicate?

- (a) Hydrogen molecule is formed of four atoms.
- (b) As the power of the spectroscope increases, the number of lines which can be seen increases.
- There are four excited electrons in hydrogen atom.
- (d) The line spectrum of sodium differs from the line spectrum of the other elements.

(14) According to the modern atomic theory,

- (1) the electron can not be found in the same place two successive times.
- (b) the electrons need to absorb energy photons continuously to move to higher levels.
- \bigcirc the charge of the electron = 1.602 × 10⁻¹⁹ C
- (d) it is impossible to determine the position and the velocity of the electron precisely at the same time.

15 Which of the following sets of quantum numbers is not possible?

(a)
$$n = 2$$
, $l = 0$, $m_l = +1$

$$\bigcirc$$
 n = 2, $\ell = 1$, m_j = +1

©
$$n = 2$$
, $l = 0$, $m_l = 0$

$$n = 2, l = 1, m_l = +1$$

 $n = 2, l = 1, m_l = -1$

16 Which of the following represents the electromic configuration of

manganese (III) ion?

(a)
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^4$

(b)
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^5$, $4s^2$

©
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^2$, $4s^2$

①
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^6$, $4s^2$

Which of the following is correct?

- (a) The elements in the same group have the same number of electrons in the energy levels.
- (b) The elements in the periodic table are ordered according to increasing the number of their protons.
- The metals are on the right and the nonmetals are on the left of the periodic table.
- (d) Active elements are located at the bottom of every group in the periodic table.

Which of the following groups its elements electronic configurations

- (a) 1A
- (c) 3A

- (b) 2A

Which of the following chemical processes is impossible to occur?

(i)
$$Ca_{(g)} + Energy - Ca_{(g)}^{2+} + 2e^{-}$$

©
$$H_{2(g)}$$
 + Energy $\longrightarrow 2H_{(g)}^+ + 2e^-$

 $\overline{\mathfrak{D}}$ Four different elements : $_{12}\mathsf{A}$, $_4\mathsf{B}$, $_{38}\mathsf{C}$, $_{56}\mathsf{D}$

Why do these elements belong to the same group in the modern periodic table?

- (a) Because they are all metals which can combine with oxygen forming oxides with a general formula MO
- (b) Because they are all nonn can form ions with the symbol M²-
- © Because they are all nonn coalence shells contain 2 electrons.
- d Because they are all metai \sim electron configurations end with ns^2

21 Chlorine replaces iodide ion in the second iodide solution according to

the equation : $Cl_2 + 2I^- \longrightarrow I_2 + 2CI^-$

What is the oxidizing agent in this reaction?

- (a) Chloride ions.
- (b) Chlorine gas.
- © lodide ions.
- d lodine vapours.

The electron configuration of the element (X) ends with the sublevel $4s^{I}$ What is the product of ionization of XOH in water? Explain.

	The atoms of the elements in the periodic table -except hydrogen-
	netions nellifolis and order
	the affect of passing all electron carron
,	what is the effect of property of an electric field as shown
	in the opposite figure ? Explain. Electron
1	n the opposite

٠	***************************************
_	
	Can two elements in the fourth period in the periodic table be similar in contain
	3d sublevel in each of them half filled with 5 unpaired electrons?
	Explain your answer.
	Explain your annual and a second a second and a second an
_	
	Study the scheme, then answer :
	Study the scheme, then answer:
	Study the scheme, then answer: $Mg + O_2 \qquad (X)$
	Mg + O ₂ (X)
	Mg + O ₂ (X)+ H ₂
	Mg + O_2 (X) H_2O H_2O H_2O
	Mg + O_2 (X) (X) $+$ H_2 (Y)
	Mg + O_2 (X) (X) (Y) (Y) (Y) (Y) (X)
•	Mg + O_2 (X)
•	Mg + O ₂ (X) + H ₂ SO ₃ + H ₂ O (Y) + H ₂ 1) Write the chemical formula of the two compounds (X) and (Y). (X): (Y): (Y): (Y): (Y) with (Y)
	Mg + O_2 (X)
•	Mg + O ₂ (X) + H ₂ SO ₃ + H ₂ O (Y) + H ₂ 1) Write the chemical formula of the two compounds (X) and (Y). (X): (Y): (Y): (Y): (Y) with (Y)

The opposite table shows the four quantum numbers of the last electron in the atom of each of the element (X) and the element (Y).

Quantum number;	(11)	d.	· say	-
Floment (X)	2	1	0	. [
Flement (Y)	6	1	0	4 1

Which of the two elements when its pure vapours are exposed to low pressure in a discharge tube, its last electron becomes excited, and acquires the same quantum numbers of the other element ? Explain.

6 the opposite table illustrates the radii of some atoms and ions.

Calculate the bond length in each of :

(1) Hydrogen chloride molecule.

0.3 Å	0.99 Å	1.57 Å	0.95 Å	1.81 Å
11	CI	Na	i Na⁺	CI

(2) Sodum chloride formula unit.

	which of the following electronic	configurations belongs to an atom of an element
0	which the difference between its	third and second ionization potentials is very high t
1	which the 32 . 2p6 . 3x1	11e2 . 2e2 . 2ph . 3e2 . 1pl
1	$\frac{1}{15}$ $\frac{15}{15}$ $\frac{2}{15}$ $\frac{2}{15}$ $\frac{3}{15}$ $\frac{2}{15}$ $\frac{3}{15}$	(a) 152, 252, 201 302

When MnO_4^- is converted to Mn^{2+} , this is described as

- a reduction process, because the oxidation number of Mn increases an oxidation process, because the oxidation number of Mn increases a reduction process, because the oxidation number of Mn decreases an oxidation process, because the oxidation number of Mn decreases an oxidation process, because the oxidation number of Mn decreases
- Which of the following oxides is the most basic oxide?

 (a) K_2O (b) K_2O (c) CO_2 (d) MgO
- Which of the following can not be explained by Dalton's model of the atom?
 - The law of constant proment and the compound.

 The difference between the compound.
 - The difference between the same element.
 - The difference in the at 1958es of the elements.
- When the last electron in sodium atom is excited to the energy level (n = 5), it
 - remains in the energy level (n = 5).
 - returns to the energy level (n = 3) in one jump.
 - \bigcirc returns to the energy level (n = 4) then to (n = 2).
 - \bigcirc returns to the energy level (n = 2).
- (2) Each of the following sets of quantum numbers is possible, except.

Choices	(n)	(l)	(\mathbf{m}_{ℓ})	(m _s)
٠ -	3	1	-1	0
	3	2	+2	- 1/2
-	4	3	+2	$-\frac{1}{2}$
-	5	3	+2	+ 1/2

What is the correct electron configuration of magnesium ion Mg²⁺ in the excited state?

- (a) $1s^2$, $2s^2$, $2p^5$, $3s^2$
 - $\odot 1s^2, 2s^2, 2p^6$

- (d) $1s^2$, $2s^2$, $2p^5$, $3s^1$

The following table represents a section in the periodic table :

Which of the following describes one of these elements?

- (a) Element A ends with the electronic configuration : ns^2 , np^6
- (b) Element B has more than one oxidation number.
- © Element C is a metalloid.
- (d) Element D is an inner transition element.

17) Each of the following describes the element $_{17}\mathbb{M}$, except that

- (a) it is an electronegative nonmetal.
- b) it forms M+ which contains 4 unpaired electrons.
- \bigcirc its oxidation numbers range between -1 to +7
- d it forms acidic oxides such as: M2O3 and M2O5

(18) What is the atomic number of the element which is located in the sixth period in the periodic table and it is an alkali earth metal?

(a) 56

(b) 55

(c) 87

(d) 88

The opposite table shows the types of the oxides of four elements which belong to the same group. What is the letter which refers to the element with the lowest electronegativity?

-) R

- (b) **Q**

Element	Type of its oxide
P	Acidic
Q	Amphoteric
R	Amphoteric
S	Basic

Which of the following expresses one of these acids? , HBrO2 , HBrO3 HBrO is the weakest acid among these three acids. Exam Model Oxidation number of bromine in HBrO₃ equals (-1). HBrO₂ is the strongest acid among these three acids. The ratio (n: m) in HBrO equals (1:1). In the reaction : $Sb_2O_3 + 6H^+ + 6e^- \longrightarrow 2Sb + 3H_2O$ What is the change in the oxidation number of Sb? (1) It increases by 3 (b) It decreases by 3 (c) It increases by 6 (1) It decreases by 6 The opposite table shows the ionization potentials (first to fifth) Ionization potential (kJ/mol) of one of the elements of the third First Second Third Fourth period in the modern periodic table. Fifth +577.9 +1820+2750Deduce the electron configuration +11600 +14800 of this element and calcula tots atomic number. The last electron in the atom of an element has the quantum numbers: $(n = 3, \ell = 1, m_{\ell} = -1, m_{s} = -\frac{1}{2})$

Determine the location of this element in the periodic table.

Illustrate the electronic configuration to the nearest noble gas of a representative element which is located in the 4th period, group 5A

	H								73	6			r .	
	Li								В	C		0	F	
	Na Mg				1				Al		P	S	CI	Ār
	Ca	1	V		Fe		Cu	Zn					-	
answer	the follow	ving:											L	
	t is the nu		f the u	ınpair	ed el	ectro	ns in	the id	on o	f Ma	7 7			
1) 11110	C III day							********		. 1416	5 1			
2) Circle	e the two	eleme	nts wi	hich c	ombi	ne to	oethe	r to 1	form	3.0	******	*****	4 .4	*** 1840
elow	s when an	o-nart	icle co	ollide	with	it	Some	1 10	OH	acı	этір	oun	id th	at
_	the name					264								
علمان	me name	OI HIII	comp	Junu.										
*******						*******	*********	* * * * * * * *	******	******	******	*** **	******	
		-						_						
Z T		. 1 I		, .			,		-			0		
you kr	ow that th	e bond	lengt	h in a	mmo	nia n	noleci	ıle N	H ₃	qua	ls 1	Å,	and	
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci i wate	ile N er mo	H ₃ o	equa	ls 1 I ₂ O	Å,	and als (0.96
ı hydro	now that the gen molec e the bone	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci i wate	ile N er mo	H ₃ o	equa ile H	ls 1 I ₂ O	Å, a	and als (0.96
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci i wate	ile N	H ₃ o	equa	ls 1 I ₂ O	Å, a	and als ().96 .
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ile N	H ₃ (equa	ls 1	Å, equ	and als ().96 .
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ule N	H ₃ olecu	equa	ls 1 I ₂ O	Å,	and als (0.96 .
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci	ile N	H ₃ olecu	equa	ls 1 I ₂ O	Å,	and als (D.96 ,
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ile N	H ₃ olecu	equa	ls 1	Å, equ	and als (0.96 .
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ile N	H ₃ olecu	equa	ls 1 I ₂ O	Å, a	and als (D.96 ,
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci	ile N	H ₃ olecu	equa	ls 1 I ₂ O	Å, equ	and als (0.96
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ile N	H ₃ olecu	equa	ls 1 1 ₂ O	Å, a	and als (D.96
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ile N	H ₃ olecu	equa	ls 1 I ₂ O	Å, equ	and als (D.96 ,
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci	ile N	H ₃ olecu	equa	ls 1 1 ₂ O	Å, a	and als (D.96
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	nolect	ile N	H ₃ olecu	equa	ls 1 1 ₂ O	Å, a equ	and als (D.96
ı hydro	gen molec	ule H ₂	equal:	s 0.6	Å, wł	iile îr	noleci	ile N	H ₃ olecu	equa	ls 1 I ₂ O	Å, equ	and als (0.96
a hydrogaiculat	gen molec	ule H ₂	equal	s 0.6 A	Å, wi	ile îr	wate	er mo	olecu	equa	ls 1 1 ₂ O	Å, a	and als (0.96
a hydro	gen molec	ule H ₂	equal	s 0.6 A	Å, wi	ile îr	wate	er mo	olecu	equa	ls 1	equ	and als (0.96
a hydrogical culation	gen molec e the bond	e show	equalin in N	s 0.6 A	Å, wi	ile îr	wate	er mo	olecu	equa	ls 1 1 ₂ O	Å, equ	and als (0.96
a hydrogical culation	gen molec	e show	equalin in N	s 0.6 A	Å, wi	ile îr	wate	er mo	olecu	equa	ls 1 1 ₂ O	equ	and als (0.96
alculation in the second of th	gen molecte the bond	e show	equalin in N	ction to?	in th	e pei	riodic	er mo	olecu	equa	ls 1	equ	als (33
alculation in the second of th	gen molec e the bond	e show	equalin in N	ction to?	in th	e pei	riodic	er mo	olecu	equa	ls 1 1 ₂ O	equ	als (

	marks marks marks marks marks 15 less than	-
Choose the correct answer for	the questions (1): (2)	1
Number of electrons present in	the orbitals of each of s and p sublevels is the same	
in the atom of	and p sublevels is the sam	le
(1) 7N	(b) 11 Na	
© 12 ^{Mg}	(d) ₁₄ Si	

- Theory (A): The electronic shells surround the nucleus which is in the center of the atom.
- Theory (B): The atom is invisible solid sphere.
- Theory (C): The atom contains vast space.

What is the historical order of these three theories?

$$\bigcirc B \longrightarrow C \longrightarrow A$$

$$\bigcirc A \longrightarrow C \longrightarrow B$$

$$(d) B \longrightarrow A \longrightarrow C$$

The ratio between the size of the cation to that of the anion is maximum in

(a) CsI

(b) CsF

(c) LiF

d) NaF

All the following combinations of the quantum numbers are not allowed,

except

(a)
$$n = 2$$
, $l = 2$, $m_l = +1$

(b)
$$n = 2$$
, $l = -1$, $m_l = 0$

$$\bigcirc n = 3, l = 2, m_l = +3$$

(d)
$$n = 4$$
, $l = 3$, $m_l = -2$

Which of the following electron configurations does not verify both Hund's rule and the exclusion principle together?

6 In the opposite table.
What does (X) represent ?

(a) lonization potentian	(a)	Ionization	potential.
--------------------------	-----	------------	------------

(b) Electronegativity.

© Effective nuclear charge.

(d) Electron affinity.

The opposite figure represents an atom of an element.

Which of the following represents (A) and (B) ?

Choices	(A)	(B)
(a)	Orbital	Orbital
b	Electron cloud	Electron cloud
0	Electron cloud	Orbital
d	Orbital	Electron cloud

 \mathbf{C}

6

7

3.14 3.83

9

5.10

4.45

B

5

2.42

Be

4

1.28 1.91

Li

3

Element

Atomic number

(X) values

8 What is the correct order which represents the town are of the single (unpaired) electrons in the ions of these transition elements?

(a)
$$Cu^{2+} > Ni^{2+} > Cr^{3+} > Fe^{3+}$$

(b)
$$Cr^{3+} > Fe^{2+} > Ni^{2+} > Cu^{2+}$$

©
$$Fe^{3+} > Cr^{3+} > Cu^{2+} > Ni^{2+}$$

(d)
$$Fe^{3+} > Cr^{3+} > Ni^{2+} > Cu^{2+}$$

Three acids which are: HClO, HBrO₄, HIO₃

Which choice represents a similarity and a difference between these acids?

Chaine		
Choices	The similarity	The difference
a	Oxidation number of the central atom	
(b)	Their strengths as oxygenated acids	Oxidation number of O atom
(c)	Oxidation number of the	Their hydroxy formula
(I)		Number of oxygen atoms nonbinded to hydrogen
	Oxygenated halogen acids	Their strengths as oxygenated acids

to

Which of the following represents the number of the natural noble gates in

Choices In the same period			A. 100 10
Choices in the same beriod	in group zero	In p-block	
'1) {	6	baniock	In the periodic table
[b] [6	6	6
, 0	5	6	6
6	6	0	5
		17	1

1	n	What are the two	elements	which	have almost	the same inniva-	• t	
V	9		(1)			anne milita	tion potential	?

1) The periodic table includes the known elements arranged according to their

(1), in the group (1A) the metallic property (2)	from the top
the bottom, and in the group a 11 the electronegativity (3)	from
the bottom to the top.	

the numbers (1), (2) and (3) in the previous Which of the following choice statement?

Choices	(1)	(2)	(3)
	atomic numbers	mereases	decreases
1	atomic numbers	increases	increases
	mass numbers	decreases	increases
	mass numbers	increases	decreases

Chlorine has an oxidation number +5 in

(b) NaClO₂

(d) NaClO₄

How many unpaired electrons does a ground state 24Cr2+ ion have?

(b) 2

the quantum numbers of the last electron which has the highest energy —	numbers	(n)	(l)	(\mathbf{m}_{j})	(m _z)
The opposite table shows					
of s and p-blocks.					
d number of transition elements greaters	· Anomber	of the	eleme	nts	
© one of the metalloids.					
b 32 elements.					
a 10 metals.					
The fourth period in the modern periodic	table contains				
d has the same electronic configuration o	of argon.				
© has 18 neutrons.					
b has the symbol Ar ²⁺					
a its nucleus contains 18 protons.					
An ion which contains 18 electrons and it	ts charge is +2 ,				
(d) The element whose atomic number is 5	66 is located in group	(IIIA)), sixth	period	1.
in group (VB), seventh period.					
© The element whose electronic configur	ration is [Rn], $6d^2$, 7s	s² is lo	cated		
in group (IIIB), sixth period.	2	2			
b The element whose electronic configuration	ration is [Xe], $4f^{14}$, 5	d^3 , $6s^2$	is loc	ated	
a The element whose atomic number is 4					
/) The element unboco otomic number it /					

What is the type of the oxide of this element?

(a) Acidic.

(b) Basic.

(c) Neutral.

d Amphoteric.

All the following statements are correct, except

a) the wave mechanical theory of the atom is currently the accepted atomic model.

b the electron moves away from the nucleus upon being excited.

© according to Dalton's atomic model, the elements can combine chemically to form

(d) Rutherford's experiment is the first to discover the presence of the negatively charged

The element was the third in the second which of the form the partially of the partially of the partially of the electron af Fill in the spaces of the following Deduce the relation by the opposite diagram of the partially of the second of the following of the following and the following of the opposite diagram of the partial the spaces of the following of the following of the second of the following of the following of the second of the following of the following of the second of the following of the second of th	ollowing que cupied orb n 3 3 4 5 ole represe finities of the with two sthree value on which is	itals in the least the value halogens.	mu O O O +1	El, $4f^{13}$, $6s^2$ below lanthanides. notinides. ent one of the eladium $_{23}V$? $ \frac{m_s}{-\frac{1}{2}} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} $ Element Fluorine Chlorine Bromine Iodine	Electron affinity - 328 kJ/mol - 348.6 kJ/mol kJ/mol l surk
The opposite figure the postulates of a (1) What is this theo (2) State the postula	theory you ry ?	have studie	(Lead atom	Lead (II) chloride
					2 marky

	Rubidium Rb is one of the alkali metals.
1	Write the symbolic balanced equation which represents the reaction of
	rubidium oxide with water.
	rubidium oxide with
	An element contains one electron in the last sublevel,
	If the quantum numbers of that electron are: $(n = 3, l = 1, m_l = -1, m_s = +\frac{1}{2})$
((1) Calculate the atomic number of the element.

(2) Mention the number of the group in which the element is located.
(2) Mention the number of the group in which the element is located.
_	2) Mention the number of the group in which the element is located. f you know that:
1	f you know that :
1	f you know that: (O – H) bond length in water molecule equal 2.75 Å
1	f you know that :
	f you know that: (O – H) bond length in water molecule equals 1 · · · · · · · · · · · · · · · · · ·
	f you know that: (O – H) bond length in water molecule equals 1 · · · · · Calculate the bond length in hydroger
0	f you know that: (O – H) bond length in water molecule equals 1.75 Å Bond length in oxygen molecule equals 1.75 %. Calculate the bond length in hydrogen
• • • • • • • • • • • • • • • • • • • •	f you know that: (O – H) bond length in water molecule equals 100.75 Å Bond length in oxygen molecule equals 100.25 Å Calculate the bond length in hydrogen

2 marks

Open Book Exam model 6

Choose the correct answer for the questions (1): (21) .

What is the block of the element whose electronic configuration is [Kr], $4d^{10}$, $4f^4$, $5s^2$, $5p^6$, $6s^2$?

(1) s-block.

(b) p-block.

d-block.

(d) f-block.

The opposite table shows the first three ionization potentials $\mathbf{E_1}$, $\mathbf{E_2}$ and $\mathbf{E_3}$ of an element. What is the most stable oxidation state of this element?

7 eV	12.5 eV	12 5 03/
\mathbf{E}_{1}	E ₂	E_3

(a) + 1

(b) +2

(c) +3

(d) +4

Which of the following valence electrons are affected by the highest effective nuclear charge ?

(a) $4s^{I}$

(h) 4p1

(c) 3d1

(d) $2p^3$

Four elements P, Q, R and S are cared in p-block in the third period in the periodic table, they are ordered according to electronegativity as follows : S > R > Q > PWhich of the following compounds liberates H+ ion easier?

 $\bigcirc P - O - H$

(b) S - O - H

© Q-O-H

(d) R - O - H

Iron (II) chloride reacts with chlorine as follows:

$$2\text{FeCl}_2 + \text{Cl}_2 \longrightarrow 2\text{FeCl}_3$$

Which of the following statements is correct?

(a) Fe²⁺ ions are reduced to Fe³⁺ ions and chlorine acts as oxidizing agent.

(b) Fe²⁺ ions lose electrons and chlorine acts as reducing agent.

© Fe²⁺ ions lose electrons and Cl₂ molecules are reduced to Cl⁻ ions.

(d) Cl₂ molecules are reduced to Cl⁻ ions and chlorine acts as reducing agent.

What is the symbol of the element which is located in group (3A), fifth period ^{in the} periodic table ?

(d) 13A1

(c) ..Nb

(d) 49In

10	The electron configuration Is^2 , $2s^2$, $2p^5$, $3s^1$ s	hows
(3)	the ground state of fluorine.	
	(b) an excited state of fluorine.	
	an excited state of neon.	
1	the ground state of O ² - ion.	
63	Bohr's model could explain successfully the spec	trum of
16	(1) the multi-electron atoms.	
	(b) helium.	
ŀ	any atom or ion containing only one electron.	
	(d) hydrogen molecule.	
U	According to Hund's rule and Pauli's exclusion p	
	which have the highest energy in the atom of 26	re element are different in
1	the two quantum numbers	
,	(a) (, m,	L Company of the Comp
j	© l, m _s	m _s
18	The opposite figure represents a same the	
	periodic table. In which of the illustrated areas	A CD
	a diatomic molecule element which does not	В
	conduct electricity is found ?	
	(a) A (b) B	
	© C (1) D	
19	Cathode rays are deflected away from the negative	rely charned metal plate
	recause they are	ery energed metal place,
	on non-material particles.	vely charged.
	emitted from all materials	
20	Which of the following is the electron configuration As^2 , $3d^6$	ici, cuaiged.
	(Ar) , $4s^2$, $3d^6$	n of iron cation in Fe(OH) ₂ ?
	(Kno	wing that the atomic number of iron = 26)
	(Ar) 450 316	
	① [Ar], 452, 3d8	

Which transformation is an oxidation?

The opposite table shows the values of the quantum numbers of the last electron in the atom of the element (X).

Quantum numbers	(n)	I (I	·m	m
Element (X)	4	1	0	+ 1/2

Decade the four questum summers of the last electron in the atom of element (Y) which fallows element X in the same group in the periodic table.

Write the four quantum numbers of the electron number 11 in each of soften minagestun anns

Figure (1) shows the falling are a larger of their tree in circles with different rac

around the trunk

Figure (1)

Figure (2)

In the light of understanding the different atomic theories. What does the symbol (X) in the figure (2) represent ?

The following graph represents the values of the electron affinity of the first twenty elements in the periodic table:

Why were the symbols [He , Be , N , Ne , Mg , Ar] neglected to be mentioned in

this graph !

2 marks

The opposite figure shows of alpha particles, when a bear a foil of gold:

(2) What can be deduced from this observation?

27 Here are five different oxides of different elements:	
Na_2O , MgO , Al_2O_3 , SO_2 , Cl_2O	
Which of these oxides:	
(1) Includes the element bound to oxygen which has the highest oxidation number.	er?
11.4.4.4.	
(2) Dissolves in water forming a monoprotic acid,	
write the balanced symbolic equation which represents this.	

<pre>47***(*********************************</pre>	**1*,

	2 ma

. Choose the correct answer for the questions 1:21.

- Which of the following electronic configurations represents the element that is
- (I) [He], $2s^I$
- ([Xe], 6s1

- (b) [Ne], 3s2
- (d) [Xe], $6s^2$
- Each of the following figures shows the path of the cathode rays emitted from the surface of the cathode plate, except

- The element with the least and the stable electronic
 - (a) sixth period.

(b) fifth period.

© fourth period.

- (d) third period.
- If the radius of the first orbital in H atom equals x Å, so the radius of the second orbital in Li²⁺ ion is
- (a) X Å

 $\bigcirc \frac{4}{3}x$ Å

@ 9xA

- (d) 4x Å
- Which of the following transfers of the electron of hydrogen atom is accompanied by releasing the largest amount of energy?

(b) $n = 5 \longrightarrow n = 2$

 $\bigcirc n = 2 \longrightarrow n = 1$

(d) n = 7 \longrightarrow n = 2

Why are there no values for the electrons	egativities of the elements whose
atomic numbers are 2.10 and 18?	
Because they are gaseous substances.	
Because they are amphoteric.	
Because they are radioactive.	
Because their electronic configurations	are stable.
What is the number of orbitals in the leve	(n=3)?
(a) 3	(b) 5
© 7	d 9
What is the similarity between the metal	atom M and its ion M3+?
(a) The radius.	(b) Number of electrons.
Nuclear charge.	d Ionization potential.
The following electronic configurations i	renresent four different alemente
Which of them has the highest ionization	
(a) [Ne], $3s^2$, $3p^1$	(Ne) 32 3p1
(c) [Ne], $3s^2$, $3p^4$	$C_1[Ar]$, $3d^{10}$, $4s^2$, $4p^3$
Which of the following equations represe	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	CI
$\bigcirc N_2 + O_2 \longrightarrow 2NO$	
① AgNO ₃ + NaCl → NaNO ₃ + AgCl	
Which of the following choices is incompa	
(a) (b) (t) (t)	A A A A
Which of the following represents a mix	ture of two of group zero elements?
(a) (b)	

	a ut using electron configurations includ
0	Which of the following electron configurations includes two unpaired (single)
	$\bigcirc 15^2, 25^2$
	(a) $1s^2$, $2s^2$, $2p^4$ (b) $1s^2$, $2s^2$, $2p^5$ (c) $1s^2$, $2s^2$, $2p^5$ (d) $1s^2$, $2s^2$, $2p^5$ (e) Which of the following processes represents the formation of a strong acid
(4)	Which of the following pro- which of the following pro- as a result of an oxidation process? H_aS H_aS H_aS
	$\bigcirc H_2SO_3 \longrightarrow H_2CO_2$
	Which of the following elements atoms releases the highest amount of energy when a lectron in its gaseous state?
	and an electrical state of the
	The isotopes of the same element are similar in the atomic number and different in
	of the same element are similar in the atomic number and an element
h	The isotopes of the sontradicts the postulates of the atomic theory of
	the mass number, this is the mass number, this is the mass number, this is the mass number.
	(a) Bohr.
	(a) Bohr. Which of the following cases represents the transfer of an excited electron back to
	$\frac{1}{2}$ $\frac{1}$
	(3) $1s^2$, $2s^2$, $2p^6$, $4s^7 1s^2$.
	$\bigcirc [Ar]$, $4s^2 \longrightarrow [Ne]$, $3s^2$
	$(1) 2, 8, 7 \longrightarrow [Ne], 3s^2, 3p^3$
8	The history of proving the presence of a nucleus inside the atom of the element
	goes back to after
(Bohr. b Thomson. C Rutherford. (d) Heisenberg.
9	Which of the following supports the dual nature of the electrons?
	The emission spectrum of hydrogen atom.
(The deflection of some a-particles on collision with gold foil.
1	The penetration of some or particles on collision with gold foil.
1	The properties of the cathode rays.

Which of the following choices represents an impossible combination of quantum numbers ?

Choices	(n)	(l)	(m _l)	(m),)
(a)	3	2	+2	$-\frac{3}{2}$
(h)	3	1	-1	. +1
©	4	3	+2	+ 1/2
(1)	5	2	+3	-1/2

- 21 Each of the following matches Pauli's principle, except ...

 - (I) 1 1 1 1
- What is the difference between the oxide of potassium in potassium permanganate compound and in potassium dichromate compound? Exc a c.

What is the maximum number of electrons can be found in an atom and have the following quantum numbers:

$$(n=1, l=0, m_l=0)$$

po the values in the following table agree with the graduation of the property of ionization potential in the periodic table? Explain.

The element	First ionization potential
Phosphorus ₁₅ P	+1012 kJ/mol
Sulphur ₁₆ S	+1000 kJ/mol

, *****				************

PARTY PARAGRAPH				**********
		****************		********
455447				
\$145114464451645255555665465444444441E	**********		***********	
			************	****

III CONTRACTOR OF THE PROPERTY				
************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

owing figure represen	its a secto	e periodic 1	table.	
owing figure represen	its a section	→ periodic t	table.	
	its a section	e periodic t	table.	
owing figure represen	its a section	→ periodic t	table.	
	its a section	e periodic t	table.	
	its a section	→ periodic t		
	its a secto	∴ periodic (table.	
	its a section	eriodic 1		
	its a section	∴ periodic t		J
	its a secto	e periodic (J R
	its a section	· periodic t		
	its a sector	eperiodic (
owing figure represen	its a section	· periodic t		
				R

silicon, and mention its block in the periodic table.

form a salt that dissolves in				\ (,
2 KOH +	(1)	.][(2)	+ (3)	
Alkali Ac	idic oxid	e	Water	Salt	
(1) Complete the previous dia	agram w	ith chemical	formulas th	at fulfill a cor	rect balance
symbolic chemical equation	on.				
(1):(3):		(2) :		g B H T + + + + + + + + + + + + + + + + + +	
(2) Deduce the values of (n) a	ınd (m) o	of the oxyger	nated acid w	hich is produ	ced from
dissolving the acidic oxide					
***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*********
***************************************				******	*******
******************************		*************			*********
					171441020417
***************************************			_		
•••••••			-		2 ma
The following table illustrate	os the va	ในอริ า.	-		2 mm
he following table illustrate		fues	-		2 man
he molecules of some eleme	ents:				2(4)
he molecules of some eleme The molecule	H-H	(1)		(3)	(4)
he molecules of some eleme The molecule The covalent atomic radius	H – H 0.3 Å	(1) 0.99 Å	1.33 Å	(3) 1.14 Å	(4) 0.64 Å
he molecules of some eleme The molecule The covalent atomic radius	H – H 0.3 Å	(1) 0.99 Å	1.33 Å	(3) 1.14 Å	(4) 0.64 Å
he molecules of some eleme The molecule	H – H 0.3 Å	(1) 0.99 Å	1.33 Å	(3) 1.14 Å	(4) 0.64 Å
he molecules of some eleme The molecule The covalent atomic radius 1) Complete the blanks in the	H – H 0.3 Å	0.99 Å	1.33 Å	1.14 Å s of the first f	(4) 0.64 Å
The molecule The molecule The covalent atomic radius 1) Complete the blanks in the in the halogens group. (1):	H – H 0.3 Å	0.99 Å th the suitab (2):	1.33 Å	1.14 Å s of the first f	(4) 0.64 Å
The molecule The covalent atomic radius 1) Complete the blanks in the in the halogens group. (1): (3):	H – H 0.3 Å table wi	0.99 Å th the suitab (2): (4):	1.33 Å	1.14 Å s of the first f	(4) 0.64 Å
The molecule The molecule The covalent atomic radius 1) Complete the blanks in the in the halogens group. (1):	H – H 0.3 Å table wi	0.99 Å th the suitab (2): (4):	1.33 Å	1.14 Å s of the first f	(4) 0.64 Å
The molecule The covalent atomic radius 1) Complete the blanks in the in the halogens group. (1): (3):	H – H 0.3 Å table wi	0.99 Å th the suitab (2): (4):	1.33 Å	1.14 Å s of the first f	(4) 0.64 Å
The molecule The covalent atomic radius 1) Complete the blanks in the in the halogens group. (1): (3):	H – H 0.3 Å table wi	0.99 Å th the suitab (2): (4):	1.33 Å	1.14 Å s of the first f	(4) 0.64 Å

	marka
- Choose the correct answer for the c	[nestions 1 . 63
The visible spectrum of hydrogen atom shows	
(a) the presence of sublevels in each principal level.	
b) the presence of definite energy levels.	
the possibility of the emission of a quantum from the orbital of 1s	
d the presence of different isotopes of hydrogen atom.	
The electronic configuration of the electronic $(n-1)s^2$, $(n-1)p^6$, $(n-1)d^5$, ns^2	ement (X) ends with the sublevels :
If $(n = 4)$, then the atomic number of	(X) =
(a) 15	(b) 25
© 30	(d) 35
The element (X) is located in the third period, group $(5A)$ and the element (Y) is	
in the fifth period, group (15).	
(a) 31	nent which is located in between them?
© 33	(d) 34
	ing the underlined element has the same
oxidation number ?	my the undermied element has the same
(a) CrSO ₄ , Cr ₂ O ₃	(b) NaClO ₃ , CuCl ₂
© MnCl ₂ , MnO ₂	$\bigcirc SO_3$, H_2SO_4
All the following are among the conclusions of Rutherford's experiment,	
except that	•
(1) the atom contains vast space.	
the nucleus is so much smaller in size than the atom.	
most of the atomic mass is concentrated in the nucleus.	
the electrons revolve around the atom	in definite orbitals.
The maximum number of electrons required to saturate a sublevel can be estimated from the relati	
from the relation	
© 2n ²	(b) $2l + 1$ (d) $4l - 2$
	(d) $4\ell-2$

According to the wave mechanical theory, the letter (D) in the opposite figure represents

Energy levels

- (a) a fixed position of the electron.
- (b) the farthest position from nucleus that an electron can reach.
- (c) a probable position of an electron.
- (d) an impossible position for an electron.
- 8 Among the properties of the nonmetals is that they
 - (a) are reducing agents.
 - (b) form oxides which react with acids.
 - © gain electrons forming cations.
 - d are electronegative elements.
- What is the property which is represented by the vertical axis of the opposite graph of the first 20 elements in the periodic table ?

- (a) Atomic radius.
- (b) Electron affinity.
- © Ionization potential.
- d Electronegativity.
- The number of the electrons of the sublevel d in $_{26}\mathrm{Fe}^{3+}$ ion equals
 - a) the number of the electrons of the sublevel p in $_7$ N atom.
 - b the number of the elements of the second period in the periodic table.
 - c the number of the sublevels in 27Co³⁺ ion.
 - d the number of the electrons of the sublevel p in ${}_{8}O^{-}$ ion.
- Which of the following choices represents the correct ascending graduation in

Choices	Smaller radius — Lar	ger radius
b	Ca^{2+} K^{+} Ar	Ar K ⁺
<u>d</u>	K ⁺ K ⁺ Ca ²⁺	Ca ²⁺

Which of the following quantum numbers combinations belongs to an electron

(a)
$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$

(b)
$$n = 4$$
, $l = 1$, $m_l = +3$, $m_s = -\frac{1}{2}$

$$n = 4, l = 2, m_l = 0, m_s = +\frac{1}{2}$$

(d)
$$n = 4$$
, $l = 4$, $m_l = +3$, $m_s = -\frac{1}{2}$

What are the two elements in which electronegativity of the second element is higher than the electronegativity of the first element?

First element	Second element
F	Fe
Br	CI
Li	K
S	P
	F

Number of electrons equals of neutrons in

$$\odot ^{24}_{12} \text{Mg}^{2+}$$

$$\bigcirc \frac{23}{11}$$
Na⁺

Which of these choices represents the electron configuration of boron element?

Choices	<i>1s</i>	2s	$2p_x$	$2p_v$	$2p_z$
(a)	1)	11	1		
b	†	11	†	†	
0	11	†	†		_
(I)	11	† †	†		

(B) Each of the following reactions is an oxidation—reduction reaction, except

$$\begin{array}{c} \text{ } & \text{$$

- Each of the following oxides reacts with sodium hydroxide solution to form a salt, except
 - (a) Al₂O₃
 - (b) P₂O₅
 - © MgO
 - d SiO2
- 18 The photon which is emitted from the electron of hydrogen atom when it transfers from 4d to 2s is in the form of
 - a infrared ray.
 - b ultraviolet ray.
 - © visible ray.
 - d X-ray.
- Which of the following is correct for the properties of the cathode rays?
 - a) They heat a thin metal sheet that stands in their way, as they move in straight lines.
 - (b) They move a light ball of foam as they move in much lines.
 - They affected by the electrical field as they reconstructed.
 - d They heat a thin metal sheet that stands in their way as they have thermal effect.
- 20 Protactinium is one of the actinides and its electronic configuration is
 - (a) [Xe], $6s^2$, $5d^0$, $4f^6$
 - (b) [Xe], $6s^2$, $5d^3$, $4f^{14}$
 - © [Rn], $7s^2$, $6d^1$, $5f^2$
 - (d) [Rn], $7s^2$, $6d^4$, $5f^{14}$
- What is the maximum number of electrons which have the spin quantum number $(m_s = +\frac{1}{2})$ in the sublevel $(\ell = 3)$?
 - (a) 3
 - **b** 5
 - © 6
 - **d** 7

-	Exam	Model	
		orie!	

The opposite table shows the first five ionization potentials of the element (X).

Deduce the formula of the chloride of the element (X).

	onization	Potentia		-01
First	Second	I I I I I		
+738	+1450	. 500	Fourth	. 14 [1]
			T10543	+13630

23	The reaction of acid with sodium carbonate salt is indicated by the evolution of CO, gas
	bubbles, so if two equal volumes of H ₂ SO ₄ and H ₂ ClO ₃ acids with similar concentrations
	are added to two similar masses of sodium carbonate.
	Deduce the name of the acid which forms the higher number of bubbles in
	the beginning of the reaction. The proving your answer with a scientific proof in
	the light of what you have a read.

	(1930-1941)

1	

A	
AJ	Calculate the difference in the number of the representative elements
	between the first period and the second period in the modern periodic table.

-	

$oldsymbol{\mathfrak{D}}$ The following table illustrates some informations about the elements (X) , (Y) :

The following tooth Element (X)		Element (Y)	
		$(n=2, l=1, m_l=+1, m_s=+\frac{1}{2})$	
the element atom Bond length in the element molecule	0.6 Å	1.4 Å	
Electronic configuration of the element	(1)	(2)	

- (1) Complete the previous table with the electronic configurations of the elements (X) and (Y).
- (2) Predict the bond length of the molecule of the element which precedes the element (Y) in the periodic table.

26 Two electrons in one element atom are located in the ii + c, ii same p sublevel in the principal level L

Write the quantum numbers of the two electrons

27 The opposite figure represents one of the postulates of an atomic theory that you have studied:

(1) What is this theory?

(2) What is the postulate which is represented in this figure?

- The relation between the electron affinity of sulphur and that of oxygen resembles the relation between the electron affinity of chlorine and that of fluorine.

 Which of these choices represents the correct descending graduation in electron affinity in nitrogen, oxygen and sulphur?
 - (1) S > O > N
 - (b) 0 > S > N
 - (c) N > O > S
 - (d)S>N>0
- 8 Neutral oxides react neither with acids nor with bases.
 Which of the following substances are neutral oxides:
 - a NO₂, Na₂O
 - (b) CO, NO
 - © SnO, K2O
 - (d) CO₂, NO₂
- The element whose atomic number is 57 belongs to
 - s-block.
 - d-block.

- (b) p-block.
- d f-block.
- The opposite table shows the quantum numbers (n), (l) of 5 electrons in one atom.

 What is the correct ascending order of the energies of these electrons?
 - II > VI > III > VI > I
 - VI > II > V > I
 - © V < I < III < II < IV
 - (d) V < I < II < III < IV

Electron	(1)	(11)	(III)	(IV)	(V)
(n)	3	5	4	4	4
(1)	2	0	1	2	0

lit are	avidinad and 11 2 503+F	
which is being	oxidized and which is reduced in this rea	
Willen	The steel beautiful this real	iction i

Choices	Fluorine	or this reaction	n ?
Cilorees		Oxygen in OF,	
0	Oxidized	Oxidized	Sulphur
0	Oxidized		Reduced
0	Oxidized	Reduced	Oxidized
3	Reduced	Oxidized	
	Reduced		Reduced
		Reduced	Oxidized

Which of the following graphical figures represents the relation between electronegativity of (sodium, magnesium, aluminum and silicon) and their atomic radii?

- The concept of the atom as the smallest unit of matter was adopted by
 - Democritus and Aristotle.

(b) Boyle and Aristotle.

Democritus and Thomson.

- Bohr and Berzelius.
- The line spectrum differs from an element to another due to
 - the difference in the number of neutrons in each of them.
 - the difference in the mass number of each of them.
 - the difference in the electronic configuration of each of them.
 - d the difference in the number of valence electrons in each of them.
- All the following match Bohr's atomic model, except
 - the line spectrum of hydrogen atom. © Planck's theory.
- (b) Pauli's principle.

(d) Heisenberg's principle.

- The oxide ion 1602 contains
 - a 8 protons, 10 electrons. © 8 protons, 9 electrons.

- (b) 10 protons, 8 electrons.
- (d) 10 protons, 7 electrons.

The metal which is less active than potassium but more active than lithium and beryllium is (a) Na (h) Ca \bigcirc B 18 All the following about the periodic table are correct, except (a) it consists of number of groups more than double the number of periods. (b) the alkali elements differ in the principal quantum number (n). © the energy sublevels are filled with electrons according to the uncertainty principle. d Pauli's principle is applied to every element in the periodic table. 19 What is the total number of valence electrons in the supphate ion $({ m S_2O_3})^{2-}$? (a) 28e⁻ (b) 30e (c) 32e⁻ (d) 34e⁻ 20 What are the two quantum numbers which represent the orbitals that are filled successively with electrons in the elements 21Sc to 30Zn? (a) (n = 3, l = 1)(b) (n = 3, l = 2)(c) (n = 4, l = 1)(d) (n = 4, l = 2)21 What is the number of the orbitals which are completely filled with electrons in the principal level (n = 3) of iodine atom $_{53}I$? (a) 9 (b) 10 (c) 11 (d) 12

petermine the location of the element (X) in the periodic table, knowing that the quantum numbers of its last electron are: $(n = 3, l = 1, m_l = -1, m_s = -\frac{1}{2})$

The following figure represents a section in the modern periodic table:

X

Z

Which of the elements X, Y and Z has the highest second potential energy? Explain.

Explain in the light of what you have studied,

which is more acidic sulphurie acid H₂SO₄ or sulphurous acid H₂SO₃?

B	The opposite figure represents the path of a beam of α-particles between two metal sheet in vacuum conditions: 11 Illustrate on the figure the path of the beam of α-particles if the upper metal sheet becomes negatively charged and the lower metal sheet becomes positively charged.	Source of α-particles	Metal sheet α - particles Metal sheet	Sensitive instrument to detect number of α - particles
	(2) Predict what will happen to the reading of			
	the sensitive instrument after charging the two	o metal shee	ts with differ	ent charges.

The following series of elements is located in one of the modern periodic table periods:

36	Ti	V					Perio	AUC TOTALE	perious.	,
			Cr	Mn	Fe					
45.30	48 .34	14.2 2.3				Co	Ni	C	7-	
_		70 , 3a	**********	452 345	1-2 26		- 1-	Cu	Zn	
Comple	the it.			100	45 , 3d	$4s^2, 3d^7$	42 20	Cu	2	ı
Compli	ete the bla	inks which	h c				13 , 34	**********	45°, 3d"	

anks which are found below Cr, Cu elements with what is suitable for each of them.

Choose the correct answer for the questions (1):(2).

Which of the following represents the proper graduation in electron affinity?

 $\bigcirc 0 > C > N > B$

(b) B > N > C > O

 $\bigcirc O > C > B > N$

(d) O > B > C > N

Breaking (M - O) bond in M - O - H indicates that

- (a) the difference in electronegativity between M and O is lower than that between O and H
- (b) the compound is being ionized according to the reaction medium.
- (c) the difference in electronegativity between M and O is higher than that between O and H
- d) the compound is being ionired as an acid.

Bohr's atomic model can be needed to

(a) Na¹⁰⁺ ion.

(b) He atom.

© Be²⁺ ion.

 \bigcirc C⁶⁺ion.

Which of the following conversions shows an oxidation and a reduction for the same element?

$$^{\bigcirc}$$
 $^{\bigcirc}$ $^{\bigcirc}$

$$\bigcirc C \longrightarrow CO_2$$

What is the number of the orbitals which (n + l) of its electrons is less than 5?

Which of these electron configurations is incompatible with both exclusion principle

The opposite figure represents	Element D
the line spectra of four elements	Blement X
A,D,X, and Z, and of a mixture of	Element Z[] []
two of these elements.	Mixture []
What are these two elements?	750 700 650 600 550 500 450 4 Wavelength (nm)
(a) D and A	(b) X and A
© D and Z	(d) X and Z
Which of the following represents correct	tly the relation between fluorine
and chlorine atoms?	
(a) F < Cl., regarding the energy releas	sed from each of them on gaining an electron.
(b) F < Cl regarding the ability of each of	them to attract the electrons of H - X bond.
© Cl < F regarding half the distance betw	een the two atoms of the molecule of
each of them.	
d) Cl < F regarding the subsidiary - ""	n number of the last electron in each of them
U) CI C I regarding in	• (X (n = 5) contains 5 electrons.
The last principal energy level is a	$\cdot (\chi(n=5))$ Contains 5 electrons.
What is the type of its oxide X_2O_3	
a Acidic.	Neutral.
© Basic.	3) Amphoteric.
Which of the following represents the corr	rect graduation in the atomic radius?
(a) F > Cl > S	(b) S > F > Cl
© Cl > S > F	(d) S > Cl > F
The following figure represents a section in	the periodic table :
me to nothing rigate represents a section in	Tille periodic and a
+ ,	
	(1)
(1) (2) (3)	. (4)
What is the number of the	
and good electric and the element (X), which	th is characterized by a large atomic radiu
a) (1) (b) (2)	ith chlorine XCl ₂ and XCl ₃ compounds?
(b) (2)	© (3) (d) (4)

- (P) and (Q) are two atoms of two different elements:
 - Number of protons in atom (P) is less than that in atom (Q) by 9
 - . Number of unpaired electrons in atom (P) is more than that in atom (Q) by $\mathbf{1}$ What does this indicate about the elements (P) and (Q)?
 - (a) Element (P) is carbon and element (Q) is phosphorus only.
 - (b) Element (P) is nitrogen and element (Q) is sulphur only.
 - Elements (P) and (Q) may be carbon and phosphorus or oxygen and chlorine.
 - (d) Elements (P) and (Q) may be nitrogen and sulphur or oxygen and chlorine.
- What is the number of the sublevels and that of the orbitals which are occupied by electrons in an ion of a metal whose electron configuration ends with the sublevel $(2p^6)$?

Choices	Number of sublevels	Number of orbitals occupied by electrons
a	6	5
b	5	3
0	5	7
d	3	5

Which of the following graphs represents the relation between the basic property of the element oxide and its ionic radius?

- In which of the following pairs of substances do the nitrogen atoms have the same
 - $^{\textcircled{a}}$ HNO $_3$, N $_2$ O $_5$
 - (b) NO, HNO2
 - © N2, N2O
 - 1 HNO₂, HNO₃

10 In the experiment which is illustrated in the opposite figure.

What is the postulate which could not be concluded from this experiment?

- (a) The atom is not solid.
- (b) The atom contains a positively charged part.
- (c) It is possible that the electrons are present in the electron cloud which surrounds the nucleus.
- (d) The dense part in the atom occupies a tiny space.

The following table shows the first seven ionization potentials of the element (X):

	le	onization	potentia	ls (kJ/mo	ol)	
First	Second	Third	Fourth	Fifth	Sixth	Seventh
+870	+1800	+3000	+3600	+5800	+7000	+13200

Which of the following statements is true for the element (X)?

- (a) It contains a half filled p sublevel.
- (b) It forms with beryllium a compound whose for the best,
- © It is located in the fourth period in the periodic to but
- d It has a first ionization potential less than that of the element which precedes it in the periodic table.
- The actual path of the last electron in sodium atom cannot be precisely determined, the previous statement is an application of
 - (a) Hund's rule.

(b) uncertainty principle.

© Bohr's rule.

- (d) the dual nature of electron.
- The electronic configuration of molybdenum element 42 Mo is

(b) [Kr], $5s^2$, $4d^4$

© [Kr], 5s1 , 4d5

(d) $[Kr] . 5s^2 . 4d^5$

Which of the following includes an orbital of 3d sublevel that contains one pair of electrons, while its 4s sublevel is completely filled with electrons ?

- (b) 26 Fe
- © 28Ni²⁺
- \bigcirc 38 Sr^{2+}

Arsenic atom 33 As gains 3 electrons when it combines with sodium to form Na3As Exam Model What are the four quantum numbers of the first electron of these gained

(a)
$$n = 4$$
, $l = 0$, $m_l = -1$, $m_s = -\frac{1}{2}$

(b)
$$n = 4$$
, $l = 1$, $m_l = -1$, $m_s = -\frac{1}{2}$

©
$$n = 3$$
, $l = 0$, $m_l = 0$, $m_s = +\frac{1}{2}$

(d)
$$n = 3$$
, $l = 1$, $m_l = -1$, $m_s = -\frac{1}{2}$

What is the block in the periodic table in which most of the metallic elements are located?

The only compound that Dalton knew the ratios of its components was water (as in the table), lo, thought that the ratio between the number of hydrogers a sens to the number of oxygen atoms, equals 1; 1

Oxygen	Hydrogen
87%	13%

What is the molecular formula of water as patron thought?

Arrange the following oxygenated acids ascendingly according to their strength:

Acid (2)

Acid (3)

Show the oxidation and the reduction processes where the following equation, with determining the oxidizing agent to the street the street that the street the street that the street the street that the stre	laments which have	the following electronic configurations into
(2) $1s^2, 2s^2, 2p^5$ (3) $1s^2, 2s^2, 2p^6$ (4) $1s^2, 2s^2, 2p^6, 3s^2, 3p^5$ (5) $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^1$ (6) $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}$ (6) $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}$ (7) Show the oxidation and the reduction processes y_1 he following equation, with determining the oxidizing agent y_1 and y_2 are the last energy sublevel contains four principal energy levels occupied by electron the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.	lassify the elements which the	type of the elements of each group :
(4) $1s^2, 2s^2, 2p^6$ (3) $1s^2, 2s^2, 2p^6$ (4) $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}$ (5) $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}$ (6) $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}$ (7) Show the oxidation and the reduction processes where the following equation, with determining the oxidizing agent agent: $2P + 5HCIO + 3H_2O \longrightarrow 2H_2^{-1}$ A representative element contains four principal energy levels occupied by electron the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.	wo groups, with mentioning the t	(0) 1-2 201
Show the oxidation and the reduction processes with the following equation, with determining the oxidizing agent agent: $2P + 5HCIO + 3H_2O \longrightarrow 2H_3$ A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.	1) $1s^2$, $2s^2$, $2p^5$	
Show the oxidation and the reduction processes where the following equation, with determining the oxidizing agent agent: 2P + 5HClO + 3H ₂ O		
Show the oxidation and the reduction processes with the following sequation, with determining the oxidizing agent sequent: $2P + 5HClO + 3H_2O \longrightarrow 2H_2I$ A representative element contains four principal energy levels occupied by electron the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		(6) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$
A representative element contains four principal energy levels occupied by electrons the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		***************************************
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		***************************************
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		
A representative element contains four principal energy levels occupied by electrons the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		the following
A representative element contains four principal energy levels occupied by electrons the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.		Cutoff processing
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.	equation, with determining the o	xidizing agent in a grant :
A representative element contains four principal energy levels occupied by electro the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons.	2P + 5HClO	0+3H ₂ O
the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons. (2) The electrons required to convert this element to an ion with an above		
the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons. (2) The electrons required to convert this element to an ion with an above.	198((4)1)41-41-41-41-41-41-41-41-41-41-41-41-41-4	
the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons. (2) The electrons required to convert this element to an ion with an above.	***************************************	***************************************
the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons. (2) The electrons required to convert this element to an ion with an above.		** ************************************
the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons. (2) The electrons required to convert this element to an ion with an above.		
the last energy sublevel contains three unpaired electrons. Calculate the number of (1) The orbitals which are completely filled with electrons. (2) The electrons required to convert this element to an ion with an above.	A	
(2) The electrons required to convert this element to an ion with an above.		
(2) The electrons required to convert this element to an ion with an above	che last energy sublevel contains the	hree unpaired electrons. Calculate the number of
(2) The electrons required to convert this element to an ion with an electronic configuration similar to the noble gas which follows it.	(1) The orbitals which are complete	ely filled with electrons.
(2) The electrons required to convert this element to an ion with an electronic configuration similar to the noble gas which follows it.	**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(2) The electrons required to convert this element to an ion with an electronic configuration similar to the noble gas which follows it.	***************************************	44,723,401,444,444,444,444,444,444,444,444,444
(2) The electrons required to convert this element to an ion with an electronic configuration similar to the noble gas which follows it.	***** *****************************	***************************************
configuration similar to the noble gas which follows it.	(2) The electrone same	
configuration similar to the noble gas which follows it.	configuration air at	ert this element to an ion with an electronic
	configuration similar to the nob	ole gas which follows it.

Open Book Exam model 11

Choose the correct answer for the questions

. The second assumption: Matter is able to be changed infinitely.

Who were the first to assume these assumptions?

Choices	First assumption	Second assumption
0	Schrödinger	Heisenberg
0	Bohr	Boyle
0	Dalton	Rutherford
	Democritus	Aristotle

6	All the	following	sets	of	auan	
6	WILL THE	TOHOTHING	3662	W.	Market .	

mbers are possible, except

(a)
$$n = 3$$
, $l = 2$, $m_1 = -2$, $m_s = -$

$$0 = 4, l = 0, m_l = 0, m_s = -\frac{1}{2}$$

①
$$n = 3$$
, $l = 2$, $m_l = -3$, $m_s = +\frac{1}{2}$

①
$$n = 5$$
, $\ell = 3$, $m_{\ell} = 0$, $m_{s} = -\frac{1}{2}$

Which of the following sublevels can absorb a photon but can not lose one?

- (a) 3d
- (b) 2p

(c) Is

(d) 2s

Which of these elements can have positive or negative oxidation number in its compounds?

- O Cesium.
- Olodine.

- b) Fluorine.
- (d) Krypton.

Assuming disregarding aufbau principle.

- What is the block which calcium element would belong to?
- Od-block,

- (b) p-block.
- (d) f-block.

Two aqueous solutions, which are: The first: M₁ – O – H The second: M₂ – O – H If the electronegativities of the elements are : $[M_1 = 3A, M_2 = 1.2, O = 3.5]$ What are the types of the two solutions? Second solution First solution Choices Basic (a) Acidic (b) Acidic Acidic (0) Basic Acidic (p) Basic Basic 7 What is the electron configuration of the valence electrons of the element whose atomic number is 23? (a) 3d⁵ $\bigcirc 3d^2, 4s^1, 4p^1$ 8 Metals which are located in the beginning of each period are characterized by a) small atomic radius. high ionization potential. high electronegativity. d low ionization potential. 9 What is the maximum number of electrons that have the quantum numbers (a) 2 © 10 (J) 18 Which of the following elements is the strongest reducing agent? © Zn (b) Mg What is the equation which represents the first ionization potential of barium? (d) Cu (b) $Ba_{(g)}^+ \longrightarrow Ba_{(g)}^{2+} + e^-$ © $Ba_{(g)}^{2+} + e^{-} \longrightarrow Ba_{(g)}^{+}$

(X) and (Y) are two different elements in the third period in the periodic table, so if:

. The oxide of the element (X) is insoluble in water but it reacts with each of NaOH and HCI

* the chloride of the element (Y) is soluble in water forming colourless acidic solution.

Which of the following choices represents the elements (X) and (Y) ?

Choices	Element (X)	Element (Y)
(4)	ΔI	P
(1)	ΔI	Zn
	Mg	P
(d)	Mg	Si

(B) The element (Q) forms an ion having the following properties:

• Has the same electron config. , . . . noble gas which precedes it in the periodic table,

Number of its protons is higher than that of its electrons.

Formed by losing electrons free

Which of the following element

. he element (Q) ?

(a) Aluminum (13A1).

b, Calcium (20Ca).

© Copper (20Cu).

J Sulphur (16S).

$igoplus egin{aligned} oldsymbol{U} & oldsymbol{\Pi} & old$ What are the two elements (X) and (Y)?

hoices	Element (X)	Element (Y)
(1)	₁₂ Mg	₁₃ Al
(b)	7N	₈ O
0	₁₀ Ne	11Na
(1)	₁₉ K	₁₁ Na

What is the reducing agent in the reaction: $H_2S + I_2 \longrightarrow S + 2H^+ + 2I^-$?

08

БІ,

d) H⁺

- Which of the following statements represents properly the effective nuclear charge? 1 It decreases in the same period in the periodic table by increasing the atomic number.
 - h It increases in the same period in the periodic table with moving from left to right,

 - ① It does not change in the same period in the periodic table by increasing
 - (1) It increases then decreases in the same period in the periodic table with moving from
- Which of the following choices states the types of lithium and magnesium elements?

hich of the land		Magnesium	
Choices	Lithium		
	Nonmetal	Metal	
(1)		Nonmetal	
(b)	Nonmetal	Metal	
(c)	Metal		
	Metalloid	Metalloid	
(1)	111010111111111111111111111111111111111		

(18) Which of the following choices represents the electron affinity of chlorine?

(a)
$$Cl_{(g)}^- \longrightarrow Cl_{(g)}^+ + e^-$$

$$\bigcirc$$
 $Cl_{(g)}^{2}$ $+ e^{-}$

The opposite figure represents a section in the periodic table.

Which of the following groups

its elements exist as monatomic gases?

20 What is the electronic configuration of the first element in p-block in the fourth period in the periodic table?

(1) [Ar],
$$4s^2$$
, $3d^{10}$, $4p^1$

$$\bigcirc$$
 [Ar], $4s^I$

$$\bigcirc$$
 [Kr], $5s^2$, $4d^{10}$, $5p^1$

$$\bigcirc$$
 [Kr], $5s^{I}$

11	In 1806, the scientist Joseph Proust found that a given chemical components in a fixed ratio (by mass), he called the components in a fixed ratio (by mass), he called the components in a fixed ratio (by mass).	Exam Model
1	contains its components in a fixed ratio (by mass), he called that believes	ound always
	definite proportion.	ef the law of
	What is the atomic theory which explained the law of definite propor Dalton's atomic theory.	**-
		tion simply?
	Thomson's atomic theory.	
	© Bohr's atomic theory.	
	(d) Rutherford's atomic theory.	
(8)	was Pauli's principle applied to the distribution of the electrons in the following. Explain. 11 11 11 12 12 12 12 12 12 12 12 12 12 1	owing orbitals?
		3=15
(3)	why is it difficult to obtain in the third period, group (1A)?	
	** / **********************************	
	***************************************	h+h44127
	Daniel Allerania and Allerania	
(23)	Illustrate the oxidizing agent and the reducing agent in the reaction who represented by the equation: $6H^+ + 6I^- + ClO_3^- \longrightarrow 3I_2 + 3H_2O + O_3$	ich

ccount nero	eption	ns 01	The	IIIO	A CITT					(1)					(
iferent perc e electrons	050111	d th	e nu	cleu	ıs.					•						
e electrons hich of the	HIOUI	in the	e th	e 170	ssibi	lity o	f									
hich of the	em ass	HILLE	29 LTI	c sha	alect	tron										
etermining	the po	Sitic	n o	the	CJCC.	an ic										
ecisely? T	o who	om t	his a	issu	mpu	כו ווּט										
ttributed?)															
	. ,		157517		*****						*****		, 122/11	,,,,,,,	,,,,,,	,,,,,,
1) Determi	**********	,	*****			*******		, ,,,,,,,	4 P 4 = V V I		***					
(2) What is	the bl	lock	of tl	nis e	leme	nt ?			, , , , , ,		. ,					
2) What is	the bl	lock	of tl	nis e	leme	nt ?			, , , , , ,		. ,					
2) What is	the bl	lock	of tl	nis e	leme	nt ?			, , , , , ,		n pe	riod	lic t	able	i	He
2) What is The follow	ing fig	gure	of tl	nis e	leme	nt ?			, , , , , ,		n pe	riod	lic t	able	F	Ne
2) What is The follow	ing fig Be	gure	of tl	nis e	leme	nt ?	on in	the	mo	deri	n pe	rioc	lic t	able o s	F Cl	Ne Ar
2) What is The follow	ing fig Be	gure	of th	nis e	lementes a	nt ?	on in	the	mo	der	n pe	rioc C Si Ge	N P As	o s se	F Cl Br	Ne Ar Kr
(2) What is	ing fig H Li Be Na Mg K Ca Rb Sr	ock gure	of the illustration	v Nb	lementes a	at ? secti	on in	the Ni Pd	Cu Ag	deri Zn Cd	B Al Ga	rioc C Si Ge	N P As	o S Se Te	F Cl	Ne Ar
(2) What is	ing fig H Li Be Na Mg K Ca Rb Sr	ock gure	of the illustration	v Nb	lementes a	at ? secti	on in	the Ni Pd	Cu Ag	deri Zn Cd	B Al Ga	rioc C Si Ge	N P As	o S Se Te	F Cl Br	Ne Ar Kr
2) What is The follow	ing fight like the black like the bl	ock gure Sc Y	of the illustration of the	v Nb	lementes a	nt ? secti	on in	the Ni Pd	Cu Ag	deri Zn Cd	B Al Ga	rioc C Si Ge	N P As	o S Se Te	F Cl Br	Ne Ar Kr

Choose the correct answer for the questions 1: 21

What is the electron configuration which is consistent with Pauli's principle?

(b) $1e^2 \cdot 2e^2 \cdot 2p^7$

(1)
$$Is^2, 2s^2, 2p^7$$

ⓑ
$$1s^2, 2s^2, 2p^6, 3s^3$$

(d)
$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6$$

Which of the following graphical figures represents the change in the ionic radius along the third period elements from Na to CI?

The following reaction represents the total reaction in the rechargeable nickel-cadmium battery: $Cd + 2NiOOH + 4H_2O \longrightarrow Cd(OH)_2 + 2Ni(OH)_2H_2O$ What are the oxidation numbers of nickel before the beginning of the reaction and at the end of it respectively?

$$(b) +2 +3$$

$$(1) + 3 + 2$$

What is the least principal quantum number (n) of the two electrons in the first orbital in d sublevel?

(b) 2

3

(d) 4

The following figure represents a section in the periodic table.

What is the choice which represents the movement from a metal to a metalloid?

(1) E ---- A

			nest electronegativ				
(a) Alumi		(1) Sulphur.					
C Phosp		term is correct ?					
Which of	the following cho	ices is correct.	cut	CI+CI ²			
Choices	$Cl_{(g)} \longrightarrow Cl_{(g)}^-$	$Cl_{(g)}^{-} \longrightarrow Cl_{(g)}$	$Cl_{(g)} \longrightarrow Cl_{(g)}^+$	(g) (l)			
(1)	Electron affinity	Ionization potential					
(b)	_	lonization potential	Ionization potential	_			
0	Electron affinity	-	-	Ionization potentia			
(1)	_	-	Ionization potential	Electron affinity			
When When When	a beam of gamma a beam of helium a a beam of helium a	rays falls on a gold atoms falls on a gold nuclei falls on a gold	I sheet, it is absorbe sheet, it liberates ele I sheet, it is deflecte to leave the content of t	ectrons. ed.			
When When When When The two enumber	a beam of gamma a beam of helium a a beam of helium a electrons of the sal	rays falls on a gold atoms falls on a gold nuclei falls on a gold me orbital in any a	sheet, it liberates ele Labort, it is deflecte	ectrons. ed.			
When When When When The two enumber	a beam of gamma a beam of helium a beam of helium a electrons of the sa	rays falls on a gold atoms falls on a gold nuclei falls on a gold nuclei falls on a gold me orbital in any a	sheet, it liberates elected sheet, it is deflected to be to	ectrons. ed. the quantum			
When When When When The two enumber	a beam of gamma a beam of helium a a beam of helium a electrons of the same	rays falls on a gold atoms falls on a gold nuclei falls on a gold nuclei falls on a gold me orbital in any a	sheet, it liberates ele I sheet, it is deflecte	ectrons. ed. the quantum			
When When When When The two enumber make my my what is the whole when when when when when when when whe	a beam of gamma a beam of helium a a beam of helium a electrons of the same	rays falls on a gold atoms falls on a gold nuclei falls on a gold nuclei falls on a gold me orbital in any a gold rons which have the	sheet, it liberates elected sheet, it is deflected to be to	ectrons. ed. the quantum			
When When When When The two enumber make my ms What is the iron atom	a beam of gamma a beam of helium a a beam of helium a electrons of the same b m ne number of elect ?	rays falls on a gold atoms falls on a gold nuclei falls on a gold nuclei falls on a gold me orbital in any a gold rons which have the	sheet, it liberates elected sheet, it is deflected to heet it is deflected to heet in	ectrons. ed. the quantum (1) n rs $(n = 3)$, $(l = 2)$			
When When When When The two enumber make my ms What is the iron atom	a beam of gamma a beam of helium a a beam of helium a electrons of the same b m ne number of elect ? b 4 eory of the atomic	rays falls on a gold atoms falls on a gold nuclei falls on a gold nuclei falls on a gold me orbital in any a gold rons which have the	sheet, it liberates elected sheet, it is deflected to heet to	ectrons. ed. the quantum (1) n rs (n = 3), (l = 2)			
When When When When The two enumber The two enumber m _s What is the iron atom 2 3 ohr's the chat	a beam of gamma a beam of helium a a beam of helium a electrons of the sale b m ne number of elect ? b 4 eory of the atomic ctrons move in the	rays falls on a gold atoms falls on a gold atoms falls on a gold nuclei falls on a gold me orbital in any a gold rons which have the structure agrees we orbitals around the structure agrees we orbitals around the structure agrees we are gold to a gold to a gold the structure agrees we orbitals around the structure agrees we are gold to a gold the structure agrees we are gold to a gol	sheet, it liberates elected to heart it is deflected to heart in the elected to heart in the equantum number atomic and the modern atomic and the modern atomic and the modern atomic and the modern atomic and the equantum number atomic and the modern atomic and the	ectrons. ed. the quantum (d) n es (n = 3), (ℓ = 2) (d) 8 emic theory on			
When When When When The two enumber The two enumber m _s What is the iron atom 2 3 ohr's the chat	a beam of gamma a beam of helium a a beam of helium a electrons of the sale b m ne number of elect ? b 4 eory of the atomic ctrons move in the	rays falls on a gold atoms falls on a gold atoms falls on a gold nuclei falls on a gold me orbital in any a gold rons which have the structure agrees we orbitals around the structure agrees we orbitals around the structure agrees we are gold to a gold to a gold the structure agrees we orbitals around the structure agrees we are gold to a gold the structure agrees we are gold to a gol	sheet, it liberates eld sheet, it is deflected to heet	ectrons. ed. the quantum (d) n es (n = 3), (ℓ = 2) (d) 8 emic theory on			
When When When When The two enumber The two enumber m _s What is the iron atom 2 Sohr's the chat the ele the print	a beam of gamma a beam of helium a a beam of helium a beam of helium a electrons of the same b m he number of elect ? b 4 eory of the atomic ctrons move in the ctrons lose energy a ncipal level (n).	rays falls on a gold atoms falls on a gold atoms falls on a gold nuclei falls on a gold me orbital in any a gold rons which have the structure agrees we orbitals around the structure agrees we orbitals around the structure agrees we are gold to a gold to a gold the structure agrees we orbitals around the structure agrees we are gold to a gold the structure agrees we are gold to a gol	sheet, it is deflected to heart in the modern ato nucleus.	ectrons. ed. the quantum (d) n es (n = 3), (ℓ = 2) (d) 8 emic theory on			

Which of the following choices represents the electron configuration of the atom and

Choices	Cu	Cu ⁺	
(1)	$[Ar], 4s^{l}, 3d^{l0}$	[Ar], 3d ¹⁰	Cu ²⁺
(1)	$[Ar], 4s^2, 3d^9$	$[Ar], 4s^{1}, 3d^{9}$	$[Ar], 3d^9$ $[Ar], 3d^9$
0	[Ar], 4s ¹ , 3d ¹⁰	$[Ar], 4s^{\prime}, 3d^{9}$	$[Ar], 3d'$ $[Ar], 4s^{1}, 3d^{8}$
	$[Ar], 4s^2, 3d^9$	$[Ar], 4s^2, 3d^8$	[Ar], $4s^2$, $3d^7$

Which of the following equations represents the second ionization potential of oxygen?

(1)
$$O_{(g)} \longrightarrow O_{(g)}^{2+} + 2e^{-}$$

$$\bigcirc O_{(g)} \longrightarrow O_{(g)}^+ + e^-$$

$$\bigcirc O_{(g)}^- + e^- \longrightarrow O_{(g)}^{2-}$$

$$() \, O^+_{(g)} \longrightarrow O^{2+}_{(g)} + \mathrm{e}^-$$

Mhy does the absorption spectrum of hydrogen contain separate lines?

- (h) Because it contains only one e- otron.
- © Because it contains only one groten.
- (d) Because the spectrum is reconsectal low temperature.

The following ionic equation represents one of the chemical reactions:

$$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5Fe_{(aq)}^{2+} \longrightarrow Mn_{(aq)}^{2+} + 4H_{2}O_{(l)} + 5Fe_{(aq)}^{3+}$$

Which of the following statements is correct?

- (i) Each Fe²⁺ ion gains 5 electrons.
- (b) Each H+ ion is oxidized.
- © The oxidation number of Mn is changed from -1 to +2
- The oxidation number of Mn is changed from +7 to +2

What happens to the spaces between energy levels on moving from (n = 1) to (n = 7)?

- (a) Decrease by increasing (n).
- (b) Do not change.

() Increase by increasing (n).

(d) Change irregularly.

- a the atomic radius decreases.
- b the ionic radius increases.
- the first ionization potential increases.
- d the electronegativity increases.
- Two elements in the periodic table are symbolized hypothetically by the symbols (R) and (T), if the element (R) is located in group (4A) and the element (T) is located in group (6A).

What is the formula of the compound produced from the combination of the two elements?

- a RT
- © RT₂

- **b** RТ₆
- $\mathbb{E}^{\mathbb{R}_2 T}$
- The following table represents the properties of leur elements $(W\,,X\,,Y$ and Z) in the third period in the periodic table :

Element	(W)			(Z)
Reaction with cold water	Reacts vigorously	Does not react	Reacts slowly	Reacts slowly
Reactions of the element oxide	Reacts with acids	Reacts with bases	Reacts with acids and bases	Reacts with acids

Which of the following choices represents increasing the atomic number of these elements ?

 \bigcirc W < X < Y < Z

 \bigcirc W < Z < Y < X

 \bigcirc Y < W < X < Z

20 Each of the following can be confirmed undoubtedly, except

- a) the number of energy levels which are occupied by electrons in 12Mg atom.
- b) the number of orbitals which are occupied by unpaired electrons in 26Fe atom.
- c) the position and the speed of the electron in hydrogen atom at a certain moment.
- d the difference of the properties of the cathode rays with the difference of the type of the substance of the cathode.

The two electrons which have the same / and m/ values are located in the same
The two electrons are principal level.
1 sublevel.
© orbital.
ntoms of the elements of the
$r_{\text{constign}} (1s^2 - 2s^2 - 2n^7)$ incorrect?
Why is the electronic configuration $(1s^2, 2s^2, 2p^7)$ incorrect?
The state of the s
T merk
Co ³⁺ ion in its gaseous ground state?
How many unpaired electrons are present in 27Co3+ ion in its gaseous ground state?
I mark
(a) when the electric state of the electric
What are the types of the el
in the periodic table ?
I murk
The opposite figure represents one of
the postulates of an atomic theory that
you have studied:
(1) What is the name of this theory?

(2) State the postulate represented in the figure.
Postulate represented in the figure.

-
7

26	In the process which	h is represented	by the	following	equation
----	----------------------	------------------	--------	-----------	----------

$$\operatorname{Zn}_{(g)} + \operatorname{S}_{(g)} \longrightarrow \operatorname{Zn}_{(g)}^{2+} + \operatorname{S}_{(g)}^{2-}$$

- (1) What is the name of the required energy when $Zn_{(g)}$ is converted to $Zn_{(g)}^+$?
- (2) Suggest one use for the solid substance which is produced from the combination of the previous cation and anion.

Į	2 marks

Phosphoric acid H₃PO₄ is used in the fertilizers:

(1) Deduce the number of oxygen atoms with the said.

(2) Write the balanced symbolic equation which represents the reaction of phosphoric acid with magnesium oxide.

2 marks

Open Book Exam model 13

. Con the correct and ear for the que tron

The ability of the gases to conduct electricity can be enhanced by

- Increasing the pas pressure as well as the potential difference by tween the two electrodes of the conducting tobe.
- between the two electrodes of the conducting tube.
- () decreasing the gas pressure and increasing the potential difference vetween the two electrodes of the conducting tube.
- between the two electrodes of the conducting tube.

(a) The energies of the difference

in the atom or ion which contains one electron

depend on

March of the following sets of atomic numbers belongs to elements located in group 16 in the periodic table ?

What is the electron configuration which represents an excited atom?

Mich of the following elements atoms gains an electron with higher difficulty

y Karlens,

Strygen.

- (h) Nitrogen.
- (d) Radium.

The opposite table shows the oxidation numbers of three elements A, B and C in a compound. What is the probable molecular formula of this compound?

Element	A	В	C
Oxidation number	+2	+5	-2

(4) A3(B4C)2

 \bigcirc A₂(BC₃)₂

 \bigcirc A₃(BC₄)₂

d ABC,

Each of the following relations represents correctly one property in the elements of the periodic table, except

Choices	Relation	Property
(a)	$Fe^{3+} > Fe^{2+}$	Ionic radius
(h)	O > N	Second ionization potential
©	Cu > Zn	· · · · / · / · / · / · / · · / · · / · · · / · · · · / ·
(1)	Ti > In	· · · · · · · · · · · · · · · · · ·

8 How many quanta are released when the electron in hydrogen atom jumps from (n = 4) to (n = 1)?

(II) 6

(c) 2

9 What is the number of the points in $2p_x$ orbital in which the electron density equais zero ?

(a) Zero

(b) 1

(i) Infinite number.

Which of the following groups includes metalloids?

(a) Group 8

(b) Group 16

© Group 2

d Group 18

A beam of Na⁺, K⁺ and Ar particles passes between two charged plates. What is the correct figure which represents the effect of the charged plates

12 The opposite compound is formed of four elements W , X , Y and Z, which are located in different groups in the periodic table. What are the numbers of the groups of this compound elements in the periods sable?

$$Z - W \equiv W - \frac{Z}{W} - \frac{Y}{X} - \frac{W}{W} - Z$$

$$Z = \frac{Z}{Z} - \frac{Z}{Z} - \frac{W}{Z} - \frac{Z}{Z}$$

Choices	(W)	¥	(Y)	(Z)
5	Group (3A)	(:1)	Group (6A)	Group (1A)
6	Group (4A)	Group (3A)	Group (6A)	Group (7A)
5.	Group (3A)	Group (5A)	Group (2A)	Group (1A)
9	Group (4A)	Group (5A)	Group (6A)	Group (7A)

Which of the following diatomic molecules has the shortest bond length?

$$\frac{1}{2} \frac{N_2}{1}$$

$$\bigcirc$$
 O₂

Which of the following changes represents an oxidation process?

15 The following table represents a section in the periodic table:

ille tollott				Gro	ups			
Periods	(1.4.)	(2A)	(3A)	(4A)	(5A)	(6A)	(7A)	(0)
	(1A)	1	(2.2)				X	
(2)	V	W					7.	
(3)	Y						2.3	

Which of the following statements is correct?

- (a) Element (V) is more active than element (Y).
- (b) Element (Z) is more active than element (X).
- © The electronegativity of element (Y) is less than that of element (V).
- d The metallic property of element (W) is stronger than that of element (V).

16 Each of the following electron configurations is consistent with Hund's rule, except

- (a)||||

$oldsymbol{w}$ What are the possible values of the quantum numbers $oldsymbol{n}$ and $oldsymbol{m}_j$ of an electron in one of the orbitals of 5p sublevel?

- (a) $n = 1, 2, 3, 4, 5/m_i = +1$
- (b) $n = 1, 2, 3, 4, 5/m_1 = -2, -1, 0, +1, +2$
- © $n = 5 / m_f = -1, 0, +1$
- (1) $n = 5 / m_1 = +1$

The nucleus of manganese atom Mn contains 25 protons.

What is the electron configuration of manganese in $Mn_3(PO_4)_2$?

- (a) [Ar], 3d6
- (b) [Ar], 3d⁵
- © [Ar] , 3d³ ,4s²
- (d) [Ar] $,3d^5,4s^2$

The opposite table represents the values of the first five ionization potentials of an element in the third period. Which of the following illustrates the correct sequence of the orbitals from which the five electrons are lost in the different ionization processes?

_ lo	nization	potentia	ls (k t/a	
First	Second	Third	Fourth	•
+578	+1817	+2745	. 11	,11(1)
			1113/8	+14831

$$1s \longrightarrow 2s \longrightarrow 2p \longrightarrow 3s \longrightarrow 3p$$

$$? 3p \longrightarrow 3s \longrightarrow 2p \longrightarrow 2s \longrightarrow 1s$$

$$b$$
 $ls \longrightarrow ls \longrightarrow 2s \longrightarrow 2s \longrightarrow 2s$

- Which of these elements their number is the highest in the fourth period in the periodic table?
 - p-block elements.
 - Transition elements.

- (b) Representative elements.
- (d) Metals.
- 📵 What is the chemical formula of the oxygenated acid which is formed of hydrogen, bromine and oxygen elements \cdots the ratio of (n:m) in it is (1:1)?
 - BrO4
- (b) HB: C
- © HBrO,
- d HBrO,
- which are illustrated in the following table:

	Li	Li ⁺	Cl	CIT
The radius	1.57 Å	0.68 Å	0.99 Å	1.81 Å

Does the opposite figure represent a cathode tube? Confirm your answer with one reason from what you have studied.

High voltage

The opposite figure represents the several transitions of an electron in one of the atoms. Which of these transitions represents an emission quantum (photon) ? Explain.

n = 4 -		į				
n = 3 - $n = 2 -$	1			1		
	-		í		4	
n = 1 -			[
	A	B	C	D	E	

23 The opposite figure represents the locations of the elements W.X.Y and Z. in the periods (2) and (3) in the periodic table, the element Y reacts with chlorine forming YCl_e compound.

Second period			W	•			
	*					-	
Third period	-	\mathbf{X}			Y		Z.

Answer the following:

- (1) Determine the number of the group of the
- (2) What is the maximum oxidation pure but

in its compounds?

Study the following scheme, then ar ...

$$\frac{1}{\sqrt{2N}} + O_2 + Compound(N) = \frac{1}{\sqrt{2N}} + \frac{1}{\sqrt{2$$

- (1) Write the electronic configuration of the cation of the compound (Y)
- (2) What is the name of compound (Z)?

The following figures illustrate the possible electron cloud of the excited hydrogen electron in two different cases :

) Write the possible (l) and (m_l) values of each electron in these two	o cases.
) What is the principal quantum number (n) which is not possible fo	r this
electron in the two cases?	

2 marks

Open Book Exam model 14

In the equation : $4Al + 3O_2 \longrightarrow 2Al_2O_3$ when aluminum loses 12 mol of electrons. so oxygen

- a gains 4 mol of electrons.
- (c) loses 4 mol of electrons.

- gains 12 mol of electrons.
- d loses 12 mol of electrons.

2 Which of the following choices represents the quantum numbers of the 19th electron in the atom of an element with atomic number 24?

the atom of a	n element with			m,
Choices	n		1111/	
<u>a</u>	4	0	0	*3
(b)	4	1		
0	3	2		
1	3	2		

Which of the following represents the electron configuration and and am atom in the ground state that violates aufbau principle only?

Which of the following describes each of (X) and (Y) in the opposite figure ?

Choices	(X)	(Y)
<u>a</u>	Orbital	Orbital
0	Orbit	Electron cloud
0	Orbit	Orbital
0	Orbit	Orbit

	electron configurations belo	ong to the ato	oms of known e	lements
a the following	electron configurations sen		on a mount	rements,
except (a) [Kr], 5s ² , (c) [AΓ], 4s ¹ ,	4d ⁸	(b) [Kr], 5.	$s^2, 4d^{10}$	
Based on the	equation and the table: $K_{(g)}^+ + Cl_{(g)}^- \Delta H = ?$		lonization potential	Electron affinity
what is the va	lue of ΔH of this process?	Potassium	+418 kJ/mol	-48 kJ/mol
(a) 1303 kJ/mo		Chlorine	+1255 kJ/mol	-349 kJ/mol
(a) Calcium.		in the fourth line and its (l) (b) Mangane (d) Cesium.	value is the lea	he value ist ?
	wo ions forming Li ₃ N ?			i^{3+}, N^{3-}
a Li+, N3-	(b) Li ₃ ⁺ , N ⁻	© Li ⁺ , N ⁻	(d) L	i ⁿ , N
* MO _(s) + 2HCl * XO _{2(g)} + 2Na(equations represent the probact (X) with hydrochloric acid and $H_{(aq)} \longrightarrow MCl_{2(aq)} + H_2O_{(l)}$ $\longrightarrow Na_2XO_{3(aq)} + H_2O_{(l)}$ obable symbols of (M) and (X)	d sodium hydi		of the two
Choices	Element (M)	Element	(X)	

ces	Element (M)	Element (X)
	Al	Cl
	K	С
	Mg	С
	Na	Cl

What is the correct order of the strengths of these acids?

(a) HIO	>	HBrO	>	HClO
---------	---	------	---	------

(b) HClO > HBrO > HIO

© HIO > HClO > HBrO

(d) HBrO > HClO > HIO

The opposite figure illustrates some travels
of the electron of hydrogen atom between
the different energy levels.
Which of these lines represents a visible
and the second 7

spectral line of hydrogen atom ?

- (a) A
- (b) B
- © C
- (d) D

Electronegativity
2.1
3.5
3
2.8
2.5

What is the atomic number of the element (X)?

- (a) 22
- (b) 24
- (c) 25
- (d) 26

f 18 The chemical formula of the mineral talc (magnesium silicate) is : ${
m Mg_3Si_4O_{10}(OH)_2}$ What is the oxidation number of silicon in the mineral talc?

- (a) 4
- (c) + 2
- (d) + 4

The following figure represents a section in the periodic table :

What is the proper order which represents the gradual ascending in the metallic property of the illustrated elements in this section ?

$$\bigcirc Q < P < R < S$$

(B) Which of the following equations represents the third ionization energy of bismuth Bi element?

(a)
$$Bi_{(g)}^+ \longrightarrow Bi_{(g)}^{3+} + e^-$$

©
$$Bi_{(g)}^{2+} + e^{-} \longrightarrow Bi_{(g)}^{3+}$$

(b)
$$Bi_{(s)}^{2+} \longrightarrow Bi_{(s)}^{3+} + e^{-}$$

(d)
$$Bi_{(g)}^{2+} \longrightarrow Bi_{(g)}^{3+} + e^{-}$$

16 What are the assumed quantum neribers of the electron which is added to gallium ($_{31}{
m Ga}$) atom when this electron is in its stable state ?

(a)
$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$

©
$$n = 4$$
, $\ell = 0$, $m_{\ell} = 0$, $m_{s} = +\frac{1}{2}$
① $n = 3$, $\ell = 0$, $m_{\ell} = 0$, $m_{s} = -\frac{1}{2}$

(a)
$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$
(b) $n = 3$, $l = 2$, $m_l = +2$, $m_s = +\frac{1}{2}$

(1)
$$n = 3$$
, $\ell = 0$, $m_{\ell} = 0$, $m_{s} = -\frac{1}{2}$

Which of the following graphical figures represents the graduation of the electronegativity property in the elements of the third period (excluding argon) ?

The most active nonmetal in the periodic table is the element which is

- a the last in group zero.
- the last in group (2A).

- (b) the first in group (7A).
- d the first in group (5A).

When a beam of α-particles collides with a very thin gold foil (as represented in the figure), the final direction of most of these particles is

- (a) A
- (b) B
- © C
- (d) D

Which of the following electron configurations violates Pauli's principle?

- a 1 1 1
- **b 1 1 1**
- (d) 11 11 1 1 1 1

The opposite figure represents an excited hydrogen atom.

What is the name of (C) which is produced from the movement of the electron from level

- (a) Excited electron.
- b Stable electron.
- Quantum.
- (d) Visible spectrum.

What is the block of the elements which contains the highest number of the fifth period elements in the periodic table?

a Calculate of the Orbitals in the prince	Exam Model
Calculate the number of the orbitals in the principal level occupied by electrons in the actinides.	(n = 5) which can be
	30 06

A sample of an organic compound its mass is 10 g is compound to the percentage of carbon and hydrogen elements.	Osed of O2 201 =
* -O*** VICINCING I	0 a sample
of the same compound its mass is 5 g? Explain.	
What is the name of the first scientist who suggested this a	answer ?
	and well ?

	2 marks
Compare between perhapsis acres (1989) and humahan	2 marks
Compare between perbromic acro abr O ₄ and hypobromou	is acid HBrO in terms of :
Compare between perbromic acro abro, and hypobromou (1) Strength of the acid, with explanation.	us acid HBrO in terms of :
Compare between perbromic acid (1800) and hypobromou (1) Strength of the acid, with explanation.	is acid HBrO in terms of :
Compare between perbromic acto about and hypobromou(1) Strength of the acid, with explanation.	as acid HBrO in terms of :
Compare between perbromic acid abro, and hypobromou (1) Strength of the acid, with explanation.	as acid HBrO in terms of :
Compare between perbromic acid and hypobromou (1) Strength of the acid, with explanation.	is acid HBrO in terms of :
······································	is acid HBrO in terms of :
Compare between perbromic actions and hypobromous (1) Strength of the acid, with explanation. 2) The oxidation number of browing is each of these with illustrations.	is acid HBrO in terms of :
······································	is acid HBrO in terms of :
Compare between perbromic acros and hypobromout (1) Strength of the acid, with explanation. 2) The oxidation number of bromine in each of them, with illustrations.	is acid HBrO in terms of :
	is acid HBrO in terms of :
······································	is acid HBrO in terms of :

2 00

the periodic ta	Die :		(D)	(E)
(A)	(B)	(C)	(17)	
[Ne] , 3s ¹		***********		
table, with wr	iting the quant	um numbers of the		n element (D) at
2) Write the symelement (E) w		which represents	s the reaction of	one of the oxide
alcium element		n element	130.300	ond group
n the periodic t	able :			
n the periodic t	able :		ther than its ator	
n the periodic t	able :			
n the periodic t	able: nic radius of sti		Her than its ator	
n the periodic t	able: nic radius of sti	ontium Sr ²⁺ snia	Her than its ator	
n the periodic t	able: nic radius of sti	ontium Sr ²⁺ snia	Her than its ator	
n the periodic to	able: nic radius of sti	ontium Sr ^{2*} sma	Her than its ator	
n the periodic to	able: nic radius of str	ontium Sr ^{2*} sma	Her than its ator	nic radius ?

Imark

Choose the correct answer for the questions 11:21.

Which of the following statements about the groups of the periodic table is correct?

- (a) All groups contain metals and nonmetals.
- The elements in the same group have the same number of electrons.
- The chemical activity of the elements of group (1A) decreases by increasing the number of protons.
- (I) H* is easier to be separated from the halogen acids with increasing the atomic number of the halogen.

All the following represent main transition elements, except

- (1) 41Z
- (h) Y: [Ar], $4s^2$, $3d^1$
- © W: [Xe], $6s^2$, $4f^{14}$, $5d^4$
- X_{011}

(HClO/HClO₂/HClO₄/HClO₃)

What is the oxidation number of chlorine in the strongest acid?

(a) + 7

(h) + 5

(c) +3

l+(b)

The opposite figure represents a section in the periodic table.

Which of the following represents the electronegativity

for these elements?

		33As		
49 ^{In}	₅₀ Sn	51 Sb	₅₂ Te	53 ^I
		₈₃ Bi		

Choices	The most electronegative element	The least electronegative element
(a)	As	Bi
(b)	I	In
0	I	Bi
0	Te	Sn

What is the correct historical order of these models?

6 What are the quantum numbers of the eighth electron in oxygen atom?

(a)
$$n = 2$$
, $\ell = 1$, $m_{\ell} = -1$, $m_{s} = -\frac{1}{2}$

(b)
$$n = 2$$
, $l = 1$, $m_l = +1$, $m_s = +\frac{1}{2}$

$$\bigcirc$$
 n = 2 , ℓ = 1 , m_{ℓ} = +1 , m_{s} = $-\frac{1}{2}$

①
$$n = 2$$
, $l = 0$, $m_l = -1$, $m_s = +\frac{1}{2}$

An element has the electron configuration: $[36].4f^{14}.5d^2.6s^2$

What is the location of this element in the periorise table?

a Sixth period, group (1).

Sixth period, group (2).

© Sixth period, group (4).

Sixth period, group (17).

8 Each of the following determines the type of the element according to its electron configuration, except

Choices	Electron configuration	Type of the element
(a)	$ns^{1:2} \rightarrow ns^2, np^6$	Representative
Ь	$1s^2$ or ns^2 , np^6	Noble gas
©	$(n-1)d^{1:9}$, ns^{1} or 2	Main transition
<u>(1)</u>	$(n-2)f^{1:14}$, $(n-1)d^{1}$ or 0 , ns^{2}	Inner transition

The radius of Li⁺ ion is close to that of

- a Na⁺ ion.
- © Mg²⁺ ion.

- (b) Be²⁺ ion.
- (d) Al³⁺ ion.

Which of the following processes is accompanied by releasing energy?

(a)
$$Sc_{(g)} \longrightarrow Sc_{(g)}^+ + e^-$$

$$f_{(g)} \longrightarrow F_{(g)}^{+} + e^{-}$$

$$\bigcirc N_{(g)} - e^- \longrightarrow N_{(g)}^-$$

All the following oxides behave similarly during the chemical reactions,

except

(a) MgO

(b) SnO

© ZnO

- (d) PbO
- Which of the following energy sublevels does not actually exist?
 - (a) 2p
 - (c) 5d

- (b) 3d
- (d) 3f
- B What is the property which is represented by the vertical axis in the opposite graphical figure?
 - a Atomic radius.
 - b Electron affinity.
 - © The first ionization potential.
 - d Electronegativity.

- Vertical axis 0 10 20 30 40 Atomic number
- Germanium Ge is located in the same group of carbon and silicon in the periodic table. Which of the following choices represents the correct formulae of the different compounds of germanium?

_	Germanium chloride	Germanium hydride	Germanium oxide
	GeCl	GeH	GeO
	GeCl	GeH ₄	GeO ₂
	GeCl ₄	GeH	GeO
	GeCl ₄	GeH _A	GeO ₂

What is the change which happens when a phosphorus atom 15P is converted to a phosphide ion ?

hosphiae	on:	Total number of electrons		
Choices	Number of unpaired electrons	Increases		
(a)	Increases	Illeteases		
	Decreases	Increases		
<u>(b)</u>		Does not change		
©	Increases			
(J)	Decreases	Does not change		
(u)				

16	How does the strength of the elements as reducing	agents	change	through
1	the third period from Na to Ar ?			

a Decreases regularly.

(b) Increases regularly.

© Decreases then increases.

d Increases then decreases.

What is the ascending graduation of the following elements in terms of the atomic radius ?

(a) Cs < Na < Mg < Ba

Mg < Na < Ba < Cs

© Mg < Ba < Na < Cs

() Ba < Mg < Na < Cs

In which of the following elements the ore half as he subtevel are occupied by electrons?

(i) ₄₇Ag

(1) 56Ba

© 63Eu

(1) 77 Ir

Which of the following transition of the electron of hydrogen atom produces visible light emission ?

(a) (n=1) \longrightarrow (n=2).

(b) $(n = 5) \longrightarrow (n = 2)$.

© $(n = 3) \longrightarrow (n = 4)$.

(d) $(n = 3) \longrightarrow (n = 1)$.

- (i) Electrons revolve around the nucleus in definite orbitals.
- The mass and the positive charge of the atom are concentrated in its center.
- © The atoms of the same element are similar in mass.
- d The electron is a particle with mass and has the properties of waves.

Use the following redox reaction to answer the question:

$$MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$
on, electrons transfer from

During the reaction, electrons transfer from

$$\bigcirc$$
 MnO₄ \longrightarrow Fe²⁺

The following table illustrates the ionization potentials (from the fifth to the eighth) of two elements (\mathbf{X}) and (\mathbf{Y}) in the third period in the periodic table :

Element		lonization pot	entials (kJ/mol)
	Fifth	Sixth	Seventh	Eighth
(X)	+7012	+8496	+27107	
(Y)	+6542	+9362		+31671
		T7504	+11018	+33606

(I) What is the number of the group of element (Y)? Explain.

(2) Write the electronic configuration of the element (X) according to aufbau principle.

The opposite figure represents one of the postulates of an atomic theory that you studied:

(1) What is the name of this theory?

(2) State the postulate which is represented in the figure.

(1) Is there changing in the path of	Beta particles N	Anguetic Alph	a particles Eli
the particles in both cases?		S	
***********************************	Figure (1)	Figure (2)
(2) Compare between the path of each	**	,	- Marc (2)
alpha particles and beta particles wh	nen they both pass		
through the electric field which is ili	lustrated in figure	(2).	

	***************************************		}*************************************
The following figure represents a section i	n the periodic table		
A		BC	D
	₹ <u>7</u> ←	F	
Determine the symbol and the block.			
		**************	*******
	* **** ** 1****** *, *********	****************	*********
Write the symbolic equation which repr	esents the electron	affinity of se	elenium elem
		************	******
Illustrate the electronic configuration	of the two is c		
copper 29 Cu elements in case of their sir	milerity	zinc ₃₀ Zn an	d
er and all	many.		
**************************************		111111111111111111111111111111111111111	

By JOHN I SOURT

GUIDE ANSWERS

Md SEC. 2023 FIRST TERM

Answers of Chapter I lesson One

Ideas of answering the questions with the coloured numbers are clarified in the following pages :

Question number	1	2	3	4	5	6	7	8	9	10
Answer	c	c	a	d	c	c	d	c	d	d

Question number	11	12	13	14	15	16	17	18	19	20
Answer	d	d	c	d	d	c	d	d	C	d

Question number	21	22	23	24	25	26
Answer	С	c	ь	c	a	a

Question	of answering some of the multiple choice questions
	Idea of answering
	Boyle's idea about the element is that it is a pure simple substance that can not be decomposed to simpler substances by any known chemical method. The correct choice is (c)
	Among Dalton's postulates are: * The masses of the atoms of the same element are similar. : The choice (a) is excluded.

- * The masses of the atoms differ from one element to another.
- : The choice (b) is excluded.
- * The element atom is indivisible (can not undergo fission process).
- :. The correct choice is ©
- One of Dalton's postulates is that the compounds (just as water) are composed by the combination of the elements atoms (as oxygen and hydrogen in water) in simple numerical ratios.
- :. The correct choice is ©

100			
		A-15.	
	и		
100	н		
	ш		

Element	C	H
Mass of the element in CH ₄	12 g	$4 \times 1 = 4 g$
Mass ratio of the elements in CH ₄	$\frac{12}{4} = 3 \text{ g}$	$\frac{4}{4} = 1 \text{ g}$

:. The correct choice is (c)

Mass of the produced sulphur trioxide = $\frac{16 \times 80}{32}$ = 40 g

Sulphur	reacts with	Oxygen
32 g		48 g
16 g		? g

Reacting mass of oxygen =
$$\frac{16 \times 48}{32}$$
 = 24 g

Mass of oxygen remaining unreacting = 100 - 24 = 76 g

- . The mass which remains in the container
 - Sulphur trioxide mass + Remaining oxygen mass
 - =40 + 76 = 116 g
- : The correct choice is (d)

In Rutherford's experiment:

- * A small fraction of α -particles were deflected from their path.
- * A very small percentage of α-particles bounced back Hence, the ratio between the number of alpha particles which are deviated (deflected) to that which bounce back is more than 1
- .. The correct choice is (a)

Answers of essay questions

- There is no effect / Because cathode rays do not differ in their behaviour or nature with the difference of the cathode material.
- Particles (B) / As they pass in the spaces of the atom.

(2) To find out the ratio between the numbers of penetrating, reflected trial basis particles to identify the atomic structure on

Answers of Chapter Lesson Imp

Ideas of answering the questions with the colorest of the clarified in the following pages:

ופטדעה העדמפונ	1	2	3	4	5,	6	7	8	9	10
Laswer	3	Ъ	2	Ъ	a	Ъ	C	Ъ	С	С

תפלידעה הטלפונ	11	12	13	14	15	16	17	18	19	20
Answer	a	· a	b	a	d	c	Ъ	b	d	d

הפלודונות רטוצפונט	21	22	23	24	25	26	27	28	29	30
Answer	c	C	c	b	C	d	c	b	a	c

Question number	31	32	33	34	35	36
Answer	С	d	a	c	b	a

Ideas of answering some of the multiple choice questions:

POALES MAN A MAN A	of answering some of the multiple choice questions
Question number	Idea of answering
S	According to Bohr's model, the electron orbits the nucleus in a definite specific orbit. (i.e. there is one constant probability for the presence of the electron at a certain distance from the nucleus).
The same of the same of the same of	: The correct choice is (a)

Answers of essay questions

- Position (C) / Because the spaces between the engineer the engineer of the electrons.
 - Position (x) / Because the electron revolves in the energy even in t
- The red light frequency / Because the wavelength of the red light is lived than that of infrared rays and the frequency is inversely proportional to the wavelength.
- Because the frequency of the violet light is within the range of the frequencies of the visible spectrum, while the ultraviolet rays frequency is higher than that of the visible light.
- As the wavelength of ultraviolet rays is less than 410 nm and that of infrared rays is higher than 656 nm, consequently they both are out of the visible spectrum.
- The energy of the electron increases and it transfers from its stable energy level to a higher energy level (farther from the nucleus).
- B / Because the visible spectrum is formed of the emission of quanta when the excited electron travels from the energy levels which are higher than (n = 2) to the energy level (n = 2) only.
- (1) Bohr.
 - (2) Electron cloud.

Answers of Chapter lesson Three

Ideas of answering the questions with the coloured numbers are clarified in the following pages:

Question number	1	2	3	4	5	6	7	8	9	10
Answer	C	C	c	a	a	d	С	b	c	a

Question number	11	12	13	14	15	16	17	18	19	20
Answer	d	С	С	ь	С	b	c	C	b	d

Question number	21	22	23	24	25	26	27	28
Answer	d	c	b	a	С	d	a	c

Ideas of answering some of the multiple choice questions:

Question	Idea of answering
	 ∴ n = 4 , l = 1 ∴ The sublevel is 4p ∴ Each p sublevel consists of 3 orbitals, and each orbital becomes saturated by 2 electrons. ∴ The maximum number of electrons = 3 × 2 = 6e⁻ ∴ The correct choice is (b)

- 9
- $\cdot \cdot \cdot l = 3$
- \therefore The sublevel is f sublevel.
- The sublevel f consists of

 7 orbitals, each of them becomes

 7 und with 2 electrons, one of them spins clockwise (1)
 - filled with 2 electrons, one of them spins clockwise (†) and its $m_s = +\frac{1}{2}$, and the other spins anticlockwise (†) and its $m_s = -\frac{1}{2}$
- : The maximum number of electrons which have $(m_s = +\frac{1}{2}) = 7e^{-\frac{1}{2}}$
- :. The correct choice is ©
- 10
- : The number of the orbitals of each sublevel can be estimated from the relation (2l+1).
- : Each orbital becomes saturated by 2 electrons.
- .. The number of the electrons required to saturate each sublevel is estimated from the relation 2(2l+1).
- :. The correct choice is (a)
- 14
- \therefore As the value of (1) increases, the number of the orbitals increases.
- :. The choices (a) and (d) are excluded.
- : No. of the orbitals of the sublevel is estimated from the relation (2l + 1).
- : When (l = 0), the number of the orbitals is 1 (not 0).
- : The choice (c) is excluded.
- : The correct choice is (b)
- 15
- : Any orbital can not contain more than 2 electrons.
- .. The number of the electrons required to saturate any orbital is constant (2e⁻) no matter the (l) value is.
- : The correct choice is ©

- 18
- The two figures are spherical symmetrical shapes around the nucleus.
- .. The two figures represent two s sublevels (with the same (l=0), and the same distribution of electron density).
- .. The choices (a) and (b) are excluded.
- : The two figures differ in size.
- .. The two sublevels differ in the principal quantum number (n).
- .. The correct choice is (c)
- 19

This table shows the number of electrons required to saturate each choice:

	a	b	C	d
Choices	One of 4f orbitals	3d sublevel	Principal level (n = 2)	One of 3d orbitals
No. of the electrons which saturate it	2e ⁻	$2 \times 5 = 10e^{-}$	$2(n)^2 = 2(2)^2$ = $8e^-$	2e ⁻

- :. The correct choice is (b)
- 24
- : Electron (Y) and electron (X) have the same energy.
- .. Both of them have the same n and \(\ell \) values.
- .. The choices (b) and (d) are excluded.
- The spinning motion of electron (Y) differs from that of electron (X).
- : Electron (X) has m_s value = $-\frac{1}{2}$
- : Electron (Y) has m_s value = $+\frac{1}{2}$
- :. The correct choice is (a)

25

When n = 3

- ... The possible values of (l) are 0, 1 and 2 only.
- :. The correct choice is ©

Answers of essay questions

- (1) Values of (l): 0, 1, 2, 3
 - (2) Values of $(m_l):-3,-2,-1,0,+1,+2,+3$
- Number of electrons in the principal level $(n = 2) = 2n^2 = 8$ electrons. Number of electrons in the sublevel $4d = 2 \times 5 = 10$ electrons.
 - : The maximum number of electrons in 4d sublevel is higher than that in the principal level (n = 2).
- Number of orbitals = $n^2 = 2^2 = 4$ orbitals.
- 📆 Zero.
- 330
- - Sublevel p $\begin{bmatrix} -1 & 0 \\ \end{bmatrix} + 1$
 - Sublevel s 0
- (1) Number of electrons = $2n^2 = 2 \times 3^2 = 18$ electrons.
 - (2) Number of electrons = Number of electrons of 2s sublevel = 2 electrons.
- 36 2d, 3f, 1p
- (1) Because the possible values of (l) in the principal level (n = 3) are 0, 1, 2 only.
 - (2) Because the possible values of (m_l) in the sublevel (l=1) are -1, 0, +1 only.
 - (3) Because (m_l) values are integer numbers only whether positive or negative, and the possible value of (m_l) of the sublevel (l=0) is only 0

Answers of Chapter Lesson Four

Ideas of answering the questions with the coloured numbers are clarified in the following pages

- Alexandron	1	2	3	1	5	6	7	8	9	10
Question number					h	h	С	d	b	2
Answer	d	b	1 1	C	1					

Question number	11	12	13	14	15	16	17	18	19	20
Answer	a	С	С	b	a	c	C	b	b	Ъ

Question number	21	22	23	24	25	26	27	28	29	30
Answer	c	b	b	b	c	a	d	c	c	В

Question number	31	32	33	34	35	36	37	38
Answer	b	b	d	b	c	b	d	c

Ideas of answering some of the multiple choice questions?

Question	PEID
number	Idea of answering

- : The two electrons of the same sublevel which have the same m_s value must be located in two different orbitals.
- .. The two electrons differ in the magnetic quantum number my only.
- : The correct choice is (c)

- .. Number of electrons of the last energy level
 - = The total number of electrons of the sublevels ds and dp
 - = 2 + 2 = 4 electrons
- :. The correct choice is (c)

By increasing the number of the electrons in the sublevel 3d, the number of single electrons increases up to 5 single electrons.

half filled $3d^5$

- :. The choices (a) and (c) are excluded.
- ∴ Pairing of electrons
 in the orbitals of
 3d sublevel
 (according to Hund)
 starts after the half
 filling of these orbitals,

which results in decreasing the number of the single (unpaired) electrons until it reaches zero.

: The correct choice is (b)

.. The sublevel which consists of 3 orbitals is p

$$:: n + l = 5$$

$$\therefore$$
 n = 4

:. The last sublevel in this element atom is 4p

.. The electron configuration of this element atom i.:

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}, 4p^1$$

 \therefore The atomic number of this element = 31

:. The correct choice is b

The principal quantum number of the furthest electron from the nucleus n=4

: The farthest electron is found in the 4th principal energy level

"No. of electrons in the level M is double that it level L lite."

.. The electronic configuration of the atom of this element is

 \therefore The atomic number of element (X) = 23

: The correct choice is (2)

"The last sublevel in Not ion is 200

... The electronic configuration of X steers and until it is the

.. The number of balt silked arthurs in

A the connect observe in (2)

charmon plant and the states and the states of the states

The observation and and the same and interest

The other man experience and the second seco

It can be written like: 2,8,18,3

- .. This electronic configuration does not represent an excited atom.
- .. The choice (c) is excluded.
- .. The correct choice is (b)

 $18^{Ar}: 1s^2, 2s^2, 2p^6, 3s^2, 3p^6$

- · The last sublevel in Ar atom 3p contains 6e
- : The choice (a) is excluded.
- .. The two electrons of the same orbital can not have the same spin quantum number.
- :. The choices (b) and (d) are excluded.
- : The correct choice is (c)

26X: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^6$

- \therefore The last two electrons are found in 3dsublevel in 2 different orbitals.
- .. The two electrons differ in the quantum numbers my and ms
- ... The correct choice is (d)

Answers of essay questions

2s orbital

 $2p_{_{\rm Y}}$ orbital

 $2p_{y}$ orbital

2p, orbital

Any of these answers is correct:

• n = 3 ,
$$l = 1$$
 , $m_l = -1$, $m_s = +\frac{1}{2}$

• n = 3 ,
$$l = 1$$
 , $m_l = 0$, $m_s = +\frac{1}{2}$

$$m = 3$$
, $l = 1$, $m_s = +\frac{1}{2}$

$$m = 3$$
, $l = 1$, $m_s = -\frac{1}{2}$

$$m = 3$$
, $l = 1$, $m_s = 0$, $m_s = -\frac{1}{2}$
 $m = 3$, $l = 1$, $m_s = -\frac{1}{2}$

$$n = 3$$
, $l = 1$, $m_0 = -\frac{1}{2}$

- The similarities are: The principal quantum number ($\ell=2$) and the subsidiary quantum number ($\ell=1$).
 - · They may differ in: The magnetic quantum number

$$(m_f) \approx -1$$
 or 0 or +1
and the spin quantum number $(m_s) \approx 4 \frac{1}{2}$ or $-\frac{1}{2}$

$$(2)_{17}(1:1s^2,2s^2,2p^6,3s^2,3p^6)$$

The last two electrons have the same (n), (l), (m) but they differ in (m)

Quantum numbers	(n)	(1)	(m _f)	(m _s)
First electron	3	1	i 1	+ 1
Second electron	3		+ 1	2

- (1) Pauli's principle is not applied due to the presence of two electrons with the same four quantum numbers in the first orbital of p sublevel.
 - Hund's rule is applied where the pairing of the electrons did not happen before all orbitals were occupied with unpaired electrons float.
 - (2) Pauli's principle is applied as there are no two electrons have the time four quantum numbers.
 - Hund's rule is applied where the pairing did not happen before all orbitals were occupied with unpaired electrons first
- The last electron is found in the third orbital of 2p sublimel.
 - .. The electronic configuration of the element is

$$1s^2, 2s^2, 2p^3$$

.. The atomic number = 7

(1) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^5$

:. Maximum number of electrons = 25 electrons.

(2) 15^{2} $.25^{2}$ $.2p^{6}$ $.35^{2}$ $.3p^{6}$ $.45^{2}$ $.3d^{10}$ $.4p^{6}$ $.5p^{2}$ $.4d^{10}$ $.5p^{6}$ $.6p^{2}$ $.4p^{18}$

: Maximum number of electrons = 70 electrons.

The electronic configuration:

Ti:
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^2$

... The quantum numbers of the valence electrons, respectively, are:

①
$$n=4$$
 , $l=0$, $m_l=0$, $m_s=+\frac{1}{2}$

$$\mathfrak{D}_n = 4$$
 , $\ell = 0$, $m_{\ell} = 0$, $m_{s} = -\frac{1}{2}$

$$3 n=3$$
, $l=2$, $m_1=-2$, $m_s=+\frac{1}{2}$

①
$$n=3$$
 . $\ell=2$. $m_{\ell}=-1$. $m_{s}=+\frac{1}{2}$

[5] In . The electronic configuration of the alien of the element of a

The electronic configuration of the angle in

Answers of the exam model of chapter

Question number	1	2	3	4	5	6	7	8	9	10
Answer	d	d	b	С	d	b	d	a	С	b

Question number	11	12	13	14	15	16	17	18	19	20
Answer	С	a	С	b	b	d	C	d	С	a

Question number	21
Answer	b

- (1) The electrons: Are deflected towards the positive electrode / As they are negatively charged.
 - The protons: Are deflected towards the negative electrode / As they are positively charged.
 - The neutrons: Are not deflected / As they are neutral.
 - (2) The electrons deflection is stronger than that of the protons / Due to the negligible mass of the electron compared to that of the proton.

Orbital	(m _l)	(l)	(n)
$2p_x$	-1	1	2
1.5	()	0	1
4f	+3	3	4
411	()	1	4
3 d	-2	2	3

- 2- Rutherford's atomic model.
- 2) The presence of negatively charged electrons mide its enough for the atom to be electrically neutral
- 3 The process (X).
 - * The quantum.
- Figure (2) / Because the wavelength of the green light in home that of the red light.
- * Figure (2) / 3p_y
 - Figure (3) / 2p_v

Answers of Chapter 2 lesson One

Question number	1	2	3	4	5	6	7	8	9	10
Answer	c	d	C	d	b	b	b	d	С	d

Question number	11	12	13	14	15	16	17	18	19	20
Answer	a	c	c	c	a	b	a	a	a	Ь

Question number	21	22	23	24	25	26	27	28	29	30
Answer	d	b	c	c	c	d	a	c	d	a

Question number	31	32	33	34	35	36	37	38
Answer	d	b	a	d	a	a	a	c

Ideas of answering some of the multiple choice questions:

Question	Idea of answering
	 By increasing the atomic numbers of the elements down the same vertical group in the periodic table, the number of the principal energy levels which are occupied by electrons increases. The choices (b) and (d) are excluded.

- : The choice (a) is excluded.
- :. The correct choice is (c)

The following table shows the electronic configuration. of the atoms and the ions of the compounds mentioned in the choices and the number of the electrons in each of them.

Electronic configuration of the element atom	Electronic configuration of its ion	No. of electrons in the lor
$12^{\text{Mg}}: 1s^2, 2s^2, 2p^6, 3s^2$	$Mg^{2+}: 1s^2, 2s^2, 2p^6$	16)
$17\text{Cl}: 1s^2, 2s^2, 2p^6, 3s^2, 3p^5$	$CI^-: 1s^2, 2s^2, 2p^6, 3s^2, 3p^6$	
$11^{\text{Na}}: 1s^2, 2s^2, 2p^6, 3s^1$	$Na^+: 1s^2, 2s^2, 2p^6$	10
$_{8}O:1s^{2},2s^{2},2p^{4}$	$0^{2-}:1s^{2},2s^{2},2p^{6}$	
16 S: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^4$	$S^{2-}: 1s^2, 2s^2, 2p^6, 3s^2, 3p^6$	18

- : No. of Mg²⁺ electrons ≠ No. of Cl electron...
- : The choice (a) is excluded.
- : No. of Na⁺ electrons ≠ No. of CT electrons.
- : The choice (b) is excluded.
- : No. of Mg^{2+} electrons = No. of O^{2-} electrons.
- : The correct choice is (c)

The 4 quantum numbers of the last electron which has the highest energy in the atom of the transition element are:

n = 3, l = 2, $m_l = +2$, $m_s = +\frac{1}{2}$

- \therefore The electron with the highest energy exist in the sublevel $3d^5$
- ... The electron configuration of this element atom is: [Ar], $4s^2$, $3d^5$
- The electron configuration of the last representative element in the same period of this transition element is: [Ar], $4s^2$, $3d^{10}$, $4p^5$, [1]
- .. The quantum numbers of the last electron in this representative element are:

$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = -\frac{1}{2}$

.. The correct choice is (a)

Answers of essay questions

It is obvious in the figure that the first period is not present, consequently :

- Element (T) is located in the fourth period, group (2A), so its electronic configuration is [Ar], $4s^2$
 - \therefore The atomic number of (T) = 18 + 2 = 20
- Element (U) is located in the fifth period, group 7 (7B), so its electronic configuration is [Kr], $5s^2$, $4d^5$
 - \therefore The atomic number of (U) = 36 + 2 + 5 = 43

The difference between their atomic numbers = 43 - 20 = 23

(1) Inner transition (an actinide).

- (2) : The electronic configuration of the element X ends with Is2
 - ... The electronic configuration of this element begins with the inert gas at the end of the sixth period which is radon 80 Rn
 - No. of the protons in the nucleus of its atom = Its atomic number
 - ... No. of the protons in the nucleus of its atom = 86 + 2 + 1 + 4= 93 protons

	Block	Type
1)	d	Main transition
2)	S	Representative

12

Element	Electronic configuration	Atomic number
(1)	[He], $2s^2$, $2p^3$	7
(2)	[Ne], $3s^2$, $3p^6$	18

(1) [He], $2s^2$, $2p^1$

(2) • Period: Second.

• Group: 13 (3A).

Element 23B electronic configuration: [Ar], $4s^2$, $3d^3$

:. It is located in the fourth period, group 5 (5B).

Consequently element A is located in the fifth period, group 4 (4B)

- , and its electronic configuration: [Kr], $5s^2$, $4d^2$
- \therefore The atomic number of A = 36 + 2 + 2 = 40
- The metals of group (2A) tend to lose their valence electrons during the chemical reactions, forming M²⁺ ion.
 - .. The general formula of their oxides: MO
- The 6^{th} period begins with filling the principal level (n = 6) with electrons, and according to the Aufbau principle, the following sublevels are filled with electrons in the elements in this period : $6s^2$, $4f^{14}$, $5d^{10}$, $6p^6$
 - \therefore Number of orbitals = 1 + 7 + 5 + 3 = 16 orbitals.
 - The orbitals of these sublevels are occupied by 32 electrons, so that this period contains 32 elements.

Answers of Chapter 2 lesson Two

Ideas of answering the questions with the coloured numbers are clarified in the following pages:

Question number	1	2	3	4	5	6	7	8	9	10
ALITY WEST	d	a	d	d	c	ь	c	c	a	a

Question number	11	12	1.3	14	15	16	17	18	19	20
Answer	b	b	C	a	c	b	a	b	a	a

Question number	21	22	23	24	25	26	27	28	29	30
Answer	c	a	d	b	a	d	a	c	d	b

Question number	31	32	33
Answer	b	b	d

Ideas of answering some of the multiple choice questions:

of sodium is larger than its ionic radius.
nem is more than 1 (d) are excluded, hem in (c) approaches 1 (cluded,

The 4 quantum numbers show that the last electron in this element atom exists in the sublevel 4f, consequently, element (X) is located in the 6th period.

11	1	m	111
-1	(1	()	+ 1/2

- : Element (Y) is located in the same period of (X) and has the largest atomic size.
- .: Element (Y) is located in the 6th period, group (IA).
- The electronic configuration of element (Y) which is : [Xe] . 6x shows that its atomic number is 55
- :. The correct choice is (c)

$X_{(g)}$ + Energy $\longrightarrow X^+ + e^-$

- : This equation represents the first ionization potential (gained energy) of an element which must be higher than the difference in energy between the last energy level (the valence shell) and the level Q which is the last energy level in the heaviest known atom, as this ionization potential (absorbed energy) is required to liberate the electron which is most loosely bound to the nucleus (the valence electron).
- :. The correct choice is (c)

- The atomic number of element (X) is less than both atomic numbers of (Y) and (Z).
- :. The choices (b) and (c) are excluded.
- The electron configurations of carbon and nitrogen are:

$$_{6}^{C}: 1s^{2}, 2s^{2}, 2p^{2}$$
 $_{7}^{N}: 1s^{2}, 2s^{2}, 2p^{3}$

$$_{7}N: 1s^{2}, 2s^{2}, 2p^{3}$$

- \therefore The atom of $_7N$ is more stable than that of $_6C$, as its 2p sublevel is half filled with electrons, so the loss of an electron from this half filled sublevel decreases its stability, hence its first ionization potential is higher.
- .. The correct choice is (a)

- .. The valence shell of aluminum contains 3 electrons.
- .. The fourth ionization potential of aluminum is much higher than the third.
- :. The correct choice is (c)

- The third ionization potential of element X is much higher than the second.
- .. X is a divalent metal.
- .. Chlorine is a monovalent nonmetal.
- .. The formula of the compound produced from the combination of X with chlorine is XCl₂
- :. The correct choice is (b)

- : By increasing the atomic number, the electron affinity increases in the same period.
- :. The choices b and c are excluded.
- The increase in the electron affinity in the same period is not regular.
- .. The choice (a) is excluded.
- :. The correct choice is d

34

The atomic radius of oxygen = $\frac{\text{Bond length in O}_2 \text{ molecule}}{2}$

:.
$$r(O) = \frac{1.32}{2} = 0.66 \text{ Å}$$

The atomic radius of hydrogen =

(O - H) bond length - The atomic radius of oxygen

$$\therefore$$
 r (H) = 0.96 - 0.66 = 0.3 Å

The atomic radius of hydrogen =

(H - Cl) bond length - The atomic radius of chlorine

$$\therefore$$
 r (H) = 1.29 - 0.99 = 0.3 Å

:.
$$2r(H_2) = 2 \times 0.3 = 0.6 \text{ Å}$$

The atomic radius of nitrogen =

(N - H) bond length - The atomic radius of hydrogen

$$r(N) = 1 - 0.3 = 0.7 \text{ Å}$$

:.
$$2r(N_2) = 2 \times 0.7 = 1.4 \text{ Å}$$

- .. The bond length of nitrogen molecule (1.4A) is longer than that of hydrogen molecule (0.6A).
- (1) The bond length in the formula unit of NaCl = $r(Na^+) + r(Cl^-)$ = 0.98 + 1.81 = 2.79 Aas it is an ionic compound.
 - (2) The bond length in HCl molecule = r(H) + r(Cl) $= 0.3 + 0.99 = 1.29 \,\mathrm{A}$ as it is a covalent compound.
- (1) 20 Ca > 12 Mg > 17 Cl / As the radius increases in the same group by increasing the atomic number and decreases in the same period by increasing the atomic number.
 - (2) $I_2 > Br_2 > Cl_2 > F_2$ / As the radius (and consequently the bond length) increase in the same group by increasing the atomic number.
- The statements (2) and (3).
- (1) Because the increase in the number of the negative electrons more than the number of the positive protons in sulphide anion increases the repulsion forces between the electrons, leading to increasing the size of the anion.
 - (2) Because the number of positive protons in Ca²⁺ is higher than the number of positive protons in S^{2-} , consequently the effective nuclear charge in Ca²⁺ is higher, so this causes the radius to decrease.

- The onization potential is very high compared to the 5th iomzanton potential
 - .. Removing the oth electron requires breaking a completely filled [cyk], consequently this element has 5 electrons in its valence shell.
 - : It is located in the third period,
 - :. Its electronic configuration is : Is^2 , $2s^2$, $2p^6$, $4s^2$, $3p^3$
 - (1) Second ionization potential,
 - (2) Y⁺ is larger in radius / As the ionic radius of the positive ion decreases by increasing its positive charge.
 - $Ti_{(g)}^{2+} + Energy \longrightarrow Ti_{(g)}^{3+} + e^{-}$, $\Delta H = (+)$
 - First ionization potential of sodium Na_(g) and the electron affinity of chlorine Cl_(g)
 - Because the element M atom may lose an electron forming M⁺ ion, and it may lose second electron forming M²⁺, and so on...

 While the electron affinity is a property of a single gaseous atom only, which forms a negative ion when it gains an electron.
 - (1) Number of electrons in chromium ion Cr^{2+} in CrO = 22 electrons.
 - Number of electrons in chromium ion Cr^{3+} in $Cr_2O_3 = 21$ electrons.
 - (2) The bond length in the formula unit of chromium (II) oxide is longer/
 As its ionic radius increases by decreasing the positive charge,
 hence the bond length increases.
 - Figure (1): 9F Figure (2): 35Br Figure (3): Br As the ionic radius of the negative ion is larger than its atomic radius and the radius increases in the same group by increasing the atomic number.
 - (1) B
- (2)D
- (3)1
- (4),(5) K
- (6) 1, Y

Ideas of answering the questions with the coloured numbers are clarified in the following pages :

Question number	1	2	3	4	5	6	7	8	9	10
Answer	C	d	a	d	ь	С	a	c	d	d

Question number	11	12	13	14	15	16	17	18	19	20
Answer	С	d	a	d	b	a	a	d	a	b

Question number	21	22	23	24
Answer	С	d	d	a

Ideas of answering some of the multiple choice questions:

Question number	Idea of answering
	It is obvious in the graphical figure that the ionization potentials of the two elements (X) and (Z) are relatively high. ∴ The choices a and c are excluded. ∵ The electron configurations of the atoms of the two elements (Y) and (W) are: 3Y: [He], 2s¹ 11W: [Ne], 3s¹

This shows that element (W) follows element (Y) directly in their group (1A).

- .. The atom of element (W) loses its valence electron easier than the atom of element (Y).
- :. The correct choice is (d)
- 1
- The mixture of the two oxides dissolves in water forming a neutral solution.
- .. One of these oxides is acidic and the other is basic.
- ·· Na₂O and MgO are basic oxides, while SO₃ and P₄O₁₀ are action oxides.
- .. The choices (b) and (d) are excluded.
- : The two oxides are of elements of the third period, while managen lies in the second period.
- :. The choice (a) is excluded.
- : The correct choice is c

21

From the hydroxy formula of the oxygenated acid which is shown in the opposite figure, it is concluded that this element shares 6 electrons in the formation of the bonds.

- : The probable electronic configuration of the last principal level in M atom is : ns . np
- : The correct choice is (e)

The following table shows the oxygenated acid of each anion and its hydroxy formula:

Anion	SO ₄ ²⁻	ClO ₂	ClO ₃	C10 ₄
Oxygenated acid	H ₂ SO ₄	HClO ₂	HCIO ₃	HClO ₄
Hydroxy formula	SO ₂ (OH) ₂	ClO(OH)	ClO ₂ (OH)	ClO ₃ (OH)

- : The strength of the oxygenated acid increases by increasing oxygen atoms nonbinded to hydrogen in it.
- :. HClO₁ is the strongest oxygenated acid.
- :. The correct choice is (d)

- :: (O-H) bond is stronger than (O-M) bond.
- .. The compound is being ionized as a base.
- .. M⁺ ion is an ion of a metal of s-block.
- :. The correct choice is (a

Answers of essay questions

- **Element** (X): [Ne] $.3s^2$ $.3p^5$
 - Element (Y): [Ne] . 3s1
 - (2) Element (Y) / As it is a metal, which tends to lose the electron of its valence shell forming a positive ion with the same electronic configuration of the nearest noble gas that precedes it in the periodic table.
- *(X/Mg), (Y/K), (Z/Al).
 - Ordering according to the metallic property: K > Mg > Al
- $(1) Al_2O_3 + 2NaOH \longrightarrow 2NaAlO_2 + H_2O$
 - (2) $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O_4$
- As (O H) bond is stronger than (Cs O) bond in cesium hydroxide. while (Cl = O) bond is stronger than (O - H) bond in $ClO_3(OH)$.
- (1) 3 atoms.
 - (2) As when it dissolves in water, it yields a basic solution

Ideas of answering the questions with not suitable and an series in the following pages:

Question number	1	2	3	4	5	6	. 7	8	9	10
Answer	b	d	C	6		d	G	Ь	8	à
Question number	11	12	13	14	1.5	16	17	18	19	20
Answer	C	d	С	Ċ	i	C		C	b	b
	1					26	77	74		
Question number	21	22	23	24						
Answer	C	С	d	3	b	ď	ď	<u>d</u>		

Ideas of answering some of the multiple choice questions:

uestion	Idea of answering
number	$ \circ = so + 3s + Cr. (so)$
	4H ₂ SO ₄ + 3H ₂ S + K ₂ Cr ₂ O ₇ → 7H ₂ O + K ₂ SO ₄ + 3S + Cr ₂ (SO ₄) ∴ Obviously, the oxidation number of sulphur in sulphate group (SO ₄ ²⁻) does not change in any of its compounds. It does not participate in the oxidation-reduction process. ∴ Sulphur of H ₂ S is exposed to an oxidation process.
	 ∴ Sulphur of H₂S is exposed in ∴ 3H₂S → 3S S = -2

the matchanium mountain of Thirty !

The containing numbered entered the and Hear wetter 2

the chancela pand (h) are excluded.

en utation municipal et le sur le s 4 in centre en ils conservations

11611

the consect chance is (d)

The atomic primps (10), Milly and Clar are meneralent.

Ozulatnop muniter of Man in Mal

Ordenium number of Clin ClOA

Combilen munder of the in theto,

To halance the number of each of the lost and the gained electrons in the oxidation reduction reaction, this requires to multiply :

Department 1 . 7 3

Equation 2, x 2

.. The consect choice is (d)

Amswers of essay questions

$$Br + (-2) = -1$$

$$Br + (-2 \times 3) = -2$$

$$Br = +1$$

$$Br = +4$$

exidation

Bromine has been oxidized. As its oxidation number increased from +1 to +4

Sodium zincate
$$\overline{Na}_{3}Z_{n}O_{2}$$

$$(-1 \times 2) + Z_{n} + (-2 \times 2) = 0$$

$$\therefore Z_{n} = -4 - 2 = +2$$

- The oxidizing agent is SO₂
- The reducing agent is H₂S

(1) Element (D) / Electronic configuration:
$$[Ar]$$
, $4s^2$, $3d^5$
Oxidation numbers: $(+2, +3, +4, +5, +6, +7)$.

(2) Element (A).

(2) Cation:
$$(NH_4)^+$$

 $N + (-2 \times 3) = -1$
 $N = +5$
(2) Cation: $(NH_4)^+$
 $N + (+1 \times 4) = +1$
 $N = -3$
(1) 1. (W).

(2) -2

V

Answers of the exam model of chapter

Question number	1	2	3	4	5	6	7	8	9	10
Answer	a	a	d	С	d	a	b	d	d	a

Question number	11	12	13	14	15	16	17	18	19	20
Answer	b	d	b	b	c	b	b	a	b	c

Question number	21
Answer	d

- Element (Y) / Because when its atom returns to the stable state, the electron moves from a higher energy level (n = 6) to a lower energy level (n = 3).
- (1) p-block.
 - (2) Element (A): [He], $2s^2$, $2p^6$

Element (B): [Ar], $4s^2$, $3d^{10}$, $4p^3$

- (1) * The hydroxy formula of HIO is I(OH)
 - * The hydroxy formula of HClO₃ is ClO₂(OH)
 - .. HClO₃ is stronger / Because the strength of the oxygenated acid increases with increasing the number of oxygen atoms nonbinded to hydrogen in this acid.

$$(2) * H1O : +1 + 1 - 2 = 0 , I = +1$$

$$*1 -2 \\ *HCIO_3 : +1 + CI + (-2 \times 3) = 0 , CI = +5$$

$$\mathbf{23}^{\text{Cr}}: [Ar], 4s^{1}, 3d^{5}$$

$$\mathbf{25}^{\text{Mn}}: [Ar], 4s^{2}, 3d^{5}$$

- Na and Cl ions which are combined in the formula unit of NaCl crystal equals 2.79 Å
- Ne: [He], $2s^2$, $2p^6$
 - Due to the stability of the electronic system of neon and the difficulty of the separation of an electron from a completely filled energy level.

Answers of the questions of 2021 cam

							-			
		2	3	4	5	6	7	8	9	
		Ċ	3	С	d	d	C	C	b	1
	11	12	13	14	15	16	17	18	19	20
1. 5 may	•	•				-			d	2

ECT TITLES	21
2 - 01 7 1	6
2	Ċ

Answers of the questions of 2020 exam

Question number	1	2	3	4	5	6	7	8	9	10
Answer	d	a	d	b	С	d	a	Ь	d	d

Question number	11	12	13	14	15	16	17	18	19	20
Answer	a	b	С	b	c	c	С	d	a	b

Question number	21	22	23	24	25	26	27	28	29	30
Answer	a	a	a	d	d	d	a	С	b	d

Question number	31	32	33	34	35	36	37	38	39
Answer	d	a	С	a	a	b	d	b	a

Answers of the guiding model

Question number	1	2	3	4	5	6	7	8	9	10
Answer	d	b	a	d	c	ь	a	a	b	a

Question number	11	12
Answer	С	c
Answer	C	C

Question number 1 2 3 4 5 6 7 8 9							•				
Answer h d d	redimun notte.	1	2	3	4	5	6	7	83	7	11
a c c h	Antwell	b	d	d	a	C	C	h	E)	Į,	1

Question number	11	12	13	14	15	16	17	18;	17	20
E. There's	C	C	d	d	él	C	ь	d		3
The second secon	•							7		

Question number	21
Answer	3

- Oxidation number of the clement = +2 Because the electronic configuration of the alement end; with the sublevel ns2, so its atom tends to lose two electrons to give a great a ion that carries two positive charges.
- Electron (X)/As the sum of (n-l) of 4j survivies of (4+3=7) and the electron (X) is higher than the sum of in -1, of he in the part if, a time to of the electron (Y).
- (1): Number of elements of i-c. xk = 12 elements Number of elements of p-block = 34 elements.
 - .. The difference between them = 36 12 = 24 elements
 - (2) Elements of f-block

- Figure (1).
- $(20)_{23}V:1s^2.2s^2.2p^6.3s^2.3p^6.4s^2.3d^3$

Number of completely filled orbitals = 1 + 1 + 3 + 1 + 3 + 1 = 10 orbitals. Number of partially occupied orbitals = 3 orbitals.

$$(n = 4)$$
, $(l = 1)$, $(m_l = -1)$, $(m_s = +\frac{1}{2})$.

Answers of exam model

Question number	1	2	3	4	5	6	7	8	9	10
Answer	a	C	c	b	d	b	C	-3	2	þ

Question number	11	12	13	14	15	10	17	18	19	20
Answer	a	С	b	a	b	b	b	a	c	d

Question number	21
Answer	c

21Sc: [Ar], $4s^2$, $3d^1$

The second set / As it represents the electron of 4s sublevel that occupies the 4th energy level which is the farthest from the nucleus.

- (1) : Number of representative elements = 43 elements.

 Number of main transition elements ≈ 40 elements.
 - ∴ The difference between them = 43 40 ≈ 3 elements.

(2)

(1) (C)

- (2)(0)
- NaClO₃ / Where the oxidation number of chlorine = +5
- HClO/n = Zero

Answers of exam model

Question number	1	2	3	4	5	6	7	8	9	10
Answer	b	C	d	C		C	d	b	1	h

Question number	11	12	13	14	15	16	17	18	19	20
Answer	C	a	d	d		il	D	C	h	d

Question number	21
Answer	b

- "The electron configuration of element X ends with the sublevel ds
- . X is potassium 19K
- A KOH is ionized as a base, as its atomic size is large, and its ion carries one positive charge, so its attraction to oxygen ion O² decreases, and (O-H) bond becomes stronger than (K-O) bond, and hence negative hydroxide ion is formed.

- The electrons are deflected towards the positive electrode / As they are negatively charged.
- 24 Cr: [Ar], $^{4s^1}$, $^{3d^5}$ Yes Due to the similarity between chromium and manganese, where the atom is more stable when 3d sublevel is half filled with electrons.
- (2) $MgO_{(s)} + H_2SO_{4(aq)} \longrightarrow MgSO_{4(aq)} + H_2O_{(l)}$ Compound (X) Compound (Y)

 Compound (Z)
- Element (X) / As it requires to be excited to absorb an amount of energy sufficient for the electron to transfer from the lower energy level (n = 2) to the higher energy level (n = 6).
- The bond length in the molecule of hydrogen chloride = r(H) + r(Cl) = 0.3 + 0.99 = 1.29 Å
 - (2) The bond length in the formula unit of sodium chloride $= r(Na^{+}) + r(C\Gamma) = 0.95 + 1.81 = 2.76 \text{ Å}$

Question number	1	2	3	4	5	6	7	8	9	16
Answer	С	d	С	d	a	a	C	d	c	p

Question number	11	12	13	14	15	16	17	18	19	20
Answer	a	С	b	a	d	С	b	a	d	a

Question number	21
Answer	b

- The electronic configuration: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$ Atomic number = 13
- The electronic configuration of the element: [Ne], $3s^2$, $3p^4$. The element is located in the third period, group 6A (16).
- [Ar], $4s^2$, $3d^{10}$, $4p^3$
- 23 (1) Zero.
 - (2) Zinc (Zn) and sulphur (S) combine together to form zinc sulphide.
- Atomic radius of hydrogen = $\frac{\text{Bond length in hydrogen molecule}}{2}$

$$r(H) = \frac{0.6}{2} = 0.3 \text{ Å}$$

Atomic radius of nitrogen =

Bond length in NH₃ molecule – Atomic radius of hydrogen

$$r(N) = 1 - 0.3 = 0.7 \text{ Å}$$

Atomic radius of oxygen =

Bond length in H₂O molecule – Atomic radius of hydrogen

$$r(0) = 0.96 - 0.3 = 0.66 \text{ Å}$$

0

 \mathbf{a}

Bond length in NO molecule =

Atomic radius of nitrogen + Atomic radius of oxygen

$$r(N) + r(O) = 0.7 + 0.66 = 1.36 \text{ Å}$$

- (1) The atomic numbers of these elements.
 - (2) All of them are metalloids.

Answers of exam model

E	A TO	7
T.	1	

Question number	1	2	3	4	5	6	7	8	9	10
Answer	С	b	b	d	a	c	b	d	d	b

Question number	11	12	13	14	15	16	17	18	19	20
Answer	a	b	c	С	a	d	d	d	d	b

0	
Question number	21
Answer	b

Bromine: - 324.5

lodine: - 295

Each principal energy level consists of a number of energy sublevels equals its number (n value = Number of l values).

- (1) Dalton's theory.
 - (2) Compounds are formed by the combination of atoms of different elements in a simple numerical ratio.

$$\mathbb{R}_{2}O_{(s)} + H_{2}O_{(l)} \longrightarrow 2RbOH_{(aq)}$$

- (1) The electronic configuration: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$ \therefore The atomic number = 13
 - (2) Group number 3A (13).

$$r (O) = \frac{1.32}{2} = 0.66 \text{ Å}$$

 $r (H) = 0.96 - 0.66 = 0.3 \text{ Å}$
 $2r (H_2) = 2 \times 0.3 = 0.6 \text{ Å}$

Question number	1	2	3	4	5	6	7	8	9 1	0
Answer	d	b	d	b	С	d	b	b	b	

Question number	11	12	13	14	15	16	17	18	19 20
Answer	a	a	a	c	c	c	d	c	bc

Question number	21
Answer	b

$$m = 3$$
 , $l = 0$, $m_1 = 0$, $m_2 = +\frac{1}{2}$

- The orbital.
- Because the values of the electron affinity of these elements are nearly zero, where the atom becomes more stable when the sublevels:
 - · 1s. 2s. 3s are completely filled as in He, Be, Mg
 - · 2p. 3p are completely filled as in Ne, Ar
 - 2p is half filled as in N

 And adding a new electron to any of these atoms decreases its stability.
 - (1) (B) and (C).
 - (2) The charge of the nucleus is similar to the charge of positive alpha particles, so it repels them on approaching to it.
 - (1) * SO₂ oxide.
 - *Oxidation number: $\stackrel{?}{SO}_2$, $S + (-2 \times 2) = 0$, $\therefore S = +4$
 - (2) * Cl₂O oxide.
 - * The equation: $Cl_2O + H_2O \longrightarrow 2HClO$

Ovestron number	1	2	3	4	5	6	7	8	9	10
Kriewer	c	a	C	b	C	d	d	c	b	c

Canada Day										
American	11	12	13	14	15	16	17	18	19	20
	C	C	c	C	d	c	b	b	d	d

- Zero / As potassium is among the elements of group (1A), where the oxidation number of any metal in this group in its compounds = +1
- 2 electrons.
- No / Because the ionization potential of phosphorus 15P is higher than that of sulphur 16S despite the fact that it precedes sulphur in the same period.

$$_{15}P:[Ne], 3s^2, 3p^3$$

$$_{16}S:[Ne], 3s^2, 3p^4$$

This is because the atom is more stable when 3p sublevel is half filled as in case of phosphorus, so removing an electron from this atom decreases its stability.

- Q/s-block.
- 26 (1) (1) CO₂
 - (2) H_2O
 - (3) K₂CO₃
 - (2) The oxygenated acid: H₂CO₃ The hydroxy formula: CO(OH)2

$$n=1$$
, $m=2$

(3) Br - Br

(2)
$$I - I$$

(4) $F - F$

(2)
$$r(H) + r(CI) = 0.3 + 0.99 = 1.29 \text{ Å}$$

Question number	1	2	3	4	5	6	7	8	9	10
Answer	b	b	c	d	d	a	С	d	b	d

Question number	11	12	13	14	15	16	17	18	19	20
Answer	a	a	b	d	a	d	c	C	d	c

Question number	21
Answer	d

- 2 XCI₂
- Sulphuric acid H₂SO₄ / As it is more active, where the number of oxygen atoms nonbinded with hydrogen in sulphuric acid SO₂(OH)₂ is higher than in ClO(OH)₂
- Number of the representative elements in the first period = 1 element. Number of the representative elements in the second period = 7 elements. The difference between them = 7 - 1 = 6 elements.
- (2) Zero.

(2) $1s^2$, $2s^2$, $2p^3$

ım numbers	n	1	m	ms
electron	2	1	-1	$+\frac{1}{2}$
nd electron	2	1	-1	- 1

- (1) Dalton's theory.
 - (2) The element is composed of very minute particles called atoms.

9		7
	2	

uestion number	1	2	3	4	5	6	7	8	9	10
Answer	d	c	a	d	C	a	a	b	C	-

Question number	11	12	13	14	15	16	17	18	19	20
Answer	b	C	C	С	d	a	a	c	c	b

Question number	21
Ariswer	a

- The electronic configuration of the element ends with $3p^4$ sublevel.
- .. The element is located in the third period, group 6A (16). $23 \times :1s^2, 2s^2, 2p^6, 3s^1$

 $Y:1s^2,2s^2,2p^6,3s^2,3p^4$

 $Z = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2$

Hement X / Because this results in breaking a completely filled energy level

Sulphuric acid : SO₂(OH)₂

increases by increase by increases by increase by increases by increases by increases by increases by increase by incre with hydro with hydrogen.

(2) The reading of the sensitive instrument decreases.

$$26 \text{ r (H)} = 1.29 - 0.99 = 0.3 \text{ Å}$$

$$2\text{r (H}_2) = 2 \times 0.3 = 0.6 \text{ Å}$$

$$\text{r (N)} = 1 - 0.3 = 0.7 \text{ Å}$$

$$2\text{r (N}_2) = 2 \times 0.7 = 1.4 \text{ Å}$$

.. Bond length in nitrogen molecule (N_2) is longer than that in hydrogen molecule (H_2) .

27
 Cr: $4s^{1}$, $3d^{5}$

$$Cu: 4s^{1}, 3d^{10}$$

Answers of exam model 10

Question number	1	2	3	4	5	6	7	8	9	10
Answer	C	C	:	a	d	d	b	a	d	d

Question number	11	12	13	14	15	16	17	18	19	20
Answer	C	d	d	d	a	c	d	b	c	b

Question number	21
Answer	b

- d-block.
- 23 HO
- Acid (3) > Acid (1) > Acid (2).

25

	First group	Second group
Elements	1, 2, 4, 5	3,6
Type of elements	Representative elements	Noble

- P Oxidation H₃PO₄ , HClo Reduction HCl

 Reducing agent : P , Oxidizing agent : HClo
- (1) The electronic configuration: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p^3$ Number of completely filled orbitals = 1 + 1 + 3 + 1 + 3 + 1 + 5= 15 orbitals.
 - (2) 3 electrons.

Question number	1	2	3	4	5	6	7	8	9	10
Answer	d	С	C	С	C	a	b	d	c	b

Question number	11	12	13	14	15	16	17	18	19	20
Answer	d	a	b	d	a	b	С	b	d	a

Question number	21
Answer	a

- No/Due to the similarity of the two electrons of 1s sublevel in all four quantum numbers.
- $\mathbb{E}[M:1s^2,2s^2,2p^6,3s^1]$ Because the second ionization potential of the element M is very high, where it causes breaking of a completely filled energy level.
- $(ClO_3)^-$ Reduction Cl^- , I^- Oxidation I_2

Oxidizing agent: (ClO₃)⁻ Reducing agent: I⁻

- Figure (2) / Bohr.
- The electronic configuration: $1s^2$, $2s^2$, $2p^3$ The location: Second period, group 5A (15).
- (1) 29 elements. (2) [Ar], 4s², 3d¹⁰, 4p²

Question number	1	2	3	4	5	6	7	8	9	10
Answer	d	c	d	c	d	d	c	d	a	C

Question number	11	12	13	14	15	16	17	18	19	20
Answer	b	a	d	a	d	a	b	c	b	c

Question number	21
Answer	c

- Because p sublevel contains three orbitals, each orbital is filled with 2 electrons.
- 23 Co^{3+} : [Ar], $4s^0$, $3d^6$
 - .. Number of unpaired electrons: 4 electrons.
- Representative, main transition, inner transition and noble elements.
- 25 (1) Dalton's theory.
 - (2) Masses of the atoms of the same element are similar, but they differ from an element to another.
 - (1) First ionization potential.
- (2) Used in detecting invisible alpha particles, where it flashes when these particles could be a sold and the second and the particles collide with it.
 - ... Number of nonbinded oxygen atoms with hydrogen in this will a 3MgO + 2H DC (1) : The hydroxy formula of the acid: PO(OH)3
 - (2) $3\text{MgO} + 2\text{H}_3\text{PO}_4 \longrightarrow \text{Mg}_3(\text{PO}_4)_2 + 3\text{H}_2\text{O}$

Question number	1	2	3	4	5	6	7	8	9	10
Answer	C	a	С	d	a	b	a	d	b	b

Question number	11	12	13	14	15	16	17	18	19	20
Answer	d	d	С	b	c	С	d	b	d	d

Question number	21
Answer	С

 22 r(Li⁺) + r(Cl⁻) = 0.68 + 1.81 = 2.49 Å

23 Yes / As the cathode rays move in straight lines.

B, C and D / Because the excited electron transfers in the atom from higher energy level to lower energy level (its ground state).

25 (1) 3A (13)

(2) + 6

26 (1) : Compound (Y) : ZnSO₄

: The electronic configuration of the cation Zn^{2+} : [Ar], $3d^{10}$

(2) Sodium zincate.

(1) Case (1): l = 0Case (2): l = 1, $\mathbf{m}_l = 0$ (2) n = 1 $m_{l} = 0$

Question number	1	2	3	4	5	6	7	8	9	10
Answer	b	a	a	c	d	d	a	a	c	b

Question number	11	12	13	14	15	16	17	18	19	20
Answer	c	c	d	b	d	a	a	b	a	c

21
С

- 22 d-block.
- \odot Sublevels: 5s, 5p, 5d, 5f
 - \therefore Number of orbitals = 1 + 3 + 5 + 7 = 16 orbitals.
- 24 7.7% (H): 92.3% (C)

As the proportions (ratios) of the components of the compound remain constant, no matter how different its mass, according to Dalton's postulate.

(BrOH), as the strength of the acid increases by increasing the number of nonbinded oxygen atoms with hydrogen.

$$^{+1?}_{(2)}$$
 $^{+2?}_{HBrO}$, $1 + Br - 2 = 0$

$$\therefore$$
 Br = +1

$$^{+1?}_{HBrO_4}^{-2}$$
, $1 + Br + (-2 \times 4) = 0$

$$\therefore$$
 Br = +7

(1) The electronic configuration of the element (C): [Ne], $3s^2$, $3p^1$ The quantum numbers of the last electron in the atom of the element (D)

$$n=3$$
, $l=1$, $m_l=0$, $m_s=+\frac{1}{2}$

$$(2) E_2 O_5 + 3 H_2 O \longrightarrow 2 H_3 E O_4$$

(1) Because increasing the number of positive protons more than that of negative electrons results in increasing the nucleus effective charge leading to decreasing the size of the ion.

(2) Ca:
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$

Number of orbitals = 1 + 1 + 3 + 1 + 3 + 1 = 10 orbitals.

Answers of exam model

R	

Question number		1							
Answer	1 2	3	4	5	6	7	8	9	10
	dc	a	b	d	a	С	a	c	d

number 11					•				
Answer	12	13	14	15	16	17	18	19	20
a	d	c	d	b	a	b	d	b	b

diam'.	The same of the sa
-0001	number
The same of the sa	MINOR
200	

21

(1) 7A (17) / Because the 8th ionization potential of element (Y) is much higher than its 7th ionization potential.

(2) (X):
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^4$

- (1) Dalton's theory.
 - (2) Compounds are formed by the combination of atoms of different elements in simple numerical ratios.
- (1) Yes.
 - (2) Alpha particles: Are deflected slightly towards the negative electrode.

Beta particles: Are deflected significantly towards the positive electrode.

- Symbol: F
 Block: p
- $26 \operatorname{Se}_{(g)} + e^{-} \longrightarrow \operatorname{Se}_{(g)}^{-} + \operatorname{Energy} , \quad \Delta H = (-)$
- $^{27}_{29}\text{Cu}^+: [Ar], 3d^{10}$ $^{30}\text{Zn}^{2+}: [Ar], 3d^{10}$