Theoretische Physik 1: Mathematische Ergänzungen zur Vorlesung

Philipp Schicho^{a,*}

^aInstitute for Theoretical Physics, Goethe Universität Frankfurt, 60438 Frankfurt, Germany

Abstrakt

Dieses Manuskript ist Teil der Vorlesung "Mathematische Ergänzungen zur Theoretischen Physik 1". Das Ziel dieser Vorlesung sind Vertiefung und Anwendung der mathematischen Methoden, die in der Vorlesung "Theoretische Physik" benötigt werden.

^{*}schicho@itp.uni-frankfurt.de

Inhaltsverzeichnis

1	Einführung		
	1.1	Elementare Funktionen	
	1.2	Komplexe Zahlen und Funktionen	6

Vorbemerkungen

Dr. Philipp Schicho, Phys 02.131

Skript website: pschicho.github.io/lectures/metp1.pdf

Das vorliegende Manuskript basiert auf mehreren Quellen und Skripten:

Literatur

- [1] H. van Hees, Mathematische Ergänzungen zur Theoretischen Physik 1.
- [2] C. B. Lang and N. Pucker, *Mathematische Methoden in der Physik*. Springer Berlin Heidelberg, Berlin, Heidelberg, 3 ed., 2016.
- [3] R. Adams and C. Essex, Calculus: A Complete Course. Pearson, 10 ed., 2022.
- [4] K. Hefft, Mathematischer Vorkurs zum Studium der Physik. Springer Spektrum, Berlin, 2 ed., 2018.
- [5] S. Großmann, Mathematischer Einführungskurs für die Physik. Springer Verlag, Berlin, Heidelberg, 10 ed., 2012.

Abbildung 1: Beispiel Funktionen: $y = x^2/4$ (schwarz), $y = (0.2x^2 - 1)^2 - 8$ (grün), $y = 5 \sin x$ (blau).

1. Einführung

1.1. Elementare Funktionen

Referenzen: [1] Anhang B.

Um physikalische Systeme zu beschreiben benutzen und analysieren wir Funktionen. Dazu betrachten wir vorerst Funktionen einer **reellen**¹ Variablen,

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto f(x) \quad \text{(zum Beispiel} \quad t \mapsto x(t)),$$
 (1.1)

$$f: D \to Z, \quad x \mapsto f(x).$$
 (1.2)

Diese sind eindeutige Abbildungen der reellen Zahlen \mathbb{R} oder einer Definitionsmenge $(D \subseteq \mathbb{R})$ in die reellen Zahlen \mathbb{R} oder einer Zielmenge $(Z \subseteq \mathbb{R})$. Jeder Zahl $x \in D$ wird eine Zahl $y \in \mathbb{R}$ zugeordnet, nämlich y = f(x). Die Menge der Punkte in \mathbb{R}^2 mit den Koordinaten (x, f(x)) heisst **Graph der Funktion** f; siehe Abb. 1. Folgende Definitionen sind relevant für reelle Funktionen:

¹Struktur von ℝ:

 $[\]exists$ zwei Verknüpfungen: $a,b\in\mathbb{R}\Rightarrow a+b\in\mathbb{R}\,, a,b\in\mathbb{R}\Rightarrow a\times b\in\mathbb{R}.$

 $[\]exists$ Nullelement: $a + 0 = a \quad \forall a \in \mathbb{R}$.

 $[\]exists$ Einselement: $a \times 1 = a \quad \forall a \in \mathbb{R}$

 $[\]exists \text{ Inversion: } \forall \, a \in \mathbb{R} \,\, \exists \, -a \in \mathbb{R} \,\, \text{mit } \, a + (-a) = 0, \, \forall \, a \neq 0 \,\, \exists \, \frac{1}{a} \in \mathbb{R} \,\, \text{mit } \, a \times \frac{1}{a} = 1.$

Andere Operationen: $a - b := a + (-b), \frac{a}{b} := a \times \frac{1}{b}$.

Polynom. Die (un)endliche Summe von m Monomen heisst Polynom:

$$f(x) = \sum_{n=0}^{m} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m,$$
 (1.3)

$$f(x) = \sum_{n=0}^{m} a_n (x - x_0)^n, \quad x_0 \in \mathbb{R}.$$
 (1.4)

Komposition. Die Hintereinanderausführung zweier (oder mehrerer) Funktionen folgt:

$$(g \circ f)(x) := g(f(x)). \tag{1.5}$$

Beispiel 1.

$$f(x) = x - x_0, g(x) = b_n x^n,$$

$$(g \circ f)(x) = b_n (x - x_0)^n, (f \circ g)(x) = b_n x^n - x_0. (1.6)$$

Umkehrfunktion. Falls die Funktion f(x) bijektiv ist, also die Gleichung y = f(x) eindeutig als x = g(y) gelöst werden kann, nennen wir g die Umkehrfunktion zu f. Bezeichnung üblicherweise: f^{-1} (n.b. nicht $\frac{1}{f}$!). Konkret bedeutet das:

$$y = f(x) = f(f^{-1}(y)) = (f \circ f^{-1})(y) \quad \forall y$$

$$\Rightarrow f \circ f^{-1} = \mathbb{1} := \text{Identität},$$
(1.7)

$$x = f^{-1}(y) = f^{-1}(f(x)) = (f^{-1} \circ f)(x) \quad \forall x$$

 $\Rightarrow f^{-1} \circ f = 1.$ (1.8)

Beispiel 2.

$$f: \mathbb{R}_{+} \to \mathbb{R}_{+}, \quad x \mapsto 2x^{2},$$

$$f^{-1}: \mathbb{R}_{+} \to \mathbb{R}_{+}, \quad x \mapsto \sqrt{\frac{x}{2}}.$$

$$(1.9)$$

Der Definitionsbereich der Funktion ist $D(f) = \mathbb{R}_+$, da diese bijektiv sein muss für die Existenz einer Umkehrfunktion.

Beispiel 3.

$$f(x) = x^m \Rightarrow \exists f^{-1}(x) =: \sqrt[m]{x} \stackrel{!}{=} x^{\frac{1}{m}} \quad f \ddot{u} r \, x > 0.$$
 (1.10)

Die Definition einer allgemeinen Potenz (z.B. x^{μ} , $\mu \in \mathbb{R}$) folgt später.

Reihen. Weitere elementare Funktionen werden durch unendliche Reihen definiert. Eine spezielle Funktion die so definiert werden kann, ist die Exponentialfunktion:

$$f(x) = \sum_{n=0}^{m} a_n x^n , \quad \text{mit} \quad a_n := \frac{1}{n!} := \frac{1}{n(n-1)\dots 1} , \quad \text{und} \quad m \to \infty ,$$
$$\exp(x) := \sum_{n=0}^{\infty} \frac{1}{n!} x^n , \quad e := \exp(1) \approx 2.718\dots . \tag{1.11}$$

Diese Darstellung konvergiert erstaunlicherweise für $\forall x, z.B.$:

$$\exp(-10) = 1 - 10 + \frac{1}{2}100 - \frac{1}{6}1000 + \frac{1}{24}10000 - \dots$$

$$= 1 - 10 + 50 - 166.7 + 416.7 - \dots$$

$$\approx 0.0000453999. \tag{1.12}$$

Die Umkehrfunktion von $\exp(x)$ wird mit $\ln(x)$ bezeichnet:

$$\exp(\ln(x)) = x \quad \forall x \in \mathbb{R}_+,$$

$$\ln(\exp(x)) = x \quad \forall x \in \mathbb{R} \Rightarrow \ln e = 1,$$
 (1.13)

$$\ln(x) = \ln(1+x-1) = \ln(1-[1-x]) = -\sum_{n=1}^{\infty} \frac{1}{n} (1-x)^n, \qquad (1.14)$$

wobei die Reihendarstellung für $0 < x \le 2$ konvergiert.

Weitere elementare Funktionen sind:

• Allgemeine Potenz und Umkehrfunktion:

$$a^{x} := \exp(x \ln a) = \sum_{n=0}^{\infty} \frac{\ln^{n} a}{n!} x^{n}, \quad \text{für} \quad a \in \mathbb{R}_{+},$$

$$(1.15)$$

$$\log_a x := \frac{\ln x}{\ln a} \,. \tag{1.16}$$

Beweis: $y = a^x$, $\ln y = \ln \exp(x \ln a) = x \ln a$. Es gilt: $e^x = \exp(x)$, denn $\ln e = 1$.

• Hyperbolische Funktionen

Sinus Hyperbolicus:
$$f : \mathbb{R} \to \mathbb{R}$$
, $\sinh(x) := \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$, (1.17)

Cosinus Hyperbolicus:
$$f: \mathbb{R} \to \mathbb{R}$$
, $\cosh(x) := \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}$, (1.18)

Tangens Hyperbolicus:
$$f: \mathbb{R} \to \mathbb{R}$$
, $\tanh(x) := \frac{\sinh(x)}{\cosh(x)}$. (1.19)

Umkehrfunktionen (nur für bestimmte x): $\operatorname{arsinh}(x)$, $\operatorname{arcosh}(x)$, $\operatorname{artanh}(x)$.

• Trigonometrische Funktionen

Sinus:
$$f: \mathbb{R} \to [-1, 1],$$
 $\sin(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1},$ (1.20)

Cosinus:
$$f: \mathbb{R} \to [-1, 1],$$
 $\cos(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n},$ (1.21)

Tangens:
$$f: \mathbb{R} \setminus \left\{ (\mathbb{Z} + \frac{1}{2})\pi \right\} \to \mathbb{R}, \qquad \tan(x) := \frac{\sin(x)}{\cos(x)}.$$
 (1.22)

Umkehrfunktionen (nur für bestimmte x): $\arcsin(x)$, $\arccos(x)$, $\arctan(x)$.

1.2. Komplexe Zahlen und Funktionen

Referenzen: [1] Abschn. (2.1)–(2.2), [2] Abschn. 4.

Die Erweiterung von den reellen zu den komplexen Zahlen ist durch die Forderung nach der Lösbarbkeit von Polynomgleichungen motiviert. Bei der Lösung quadratischer Gleichungen der Form

$$x^2 + px + q = 0, (1.23)$$

stossen wir auf das Problem, dass für $x \in \mathbb{R}$ stets $x^2 \ge 0$ gilt, d.h. im Rahmen der reellen Zahlen können wir keine Quadratwurzeln aus negativen Zahlen ziehen. Die Lösungungsstrategie für Gl. (1.23) besteht darin, eine quadratische Ergänzung auszuführen. Offenbar gilt nämlich

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} - \frac{p^{2}}{4} + q.$$
 (1.24)

Die Gl. (1.23) ist also äquivalent zu der Gleichung

$$\left(x + \frac{p}{2}\right)^2 = \frac{p^2}{4} - q. \tag{1.25}$$

Wollen wir diese Gleichung nach x auflösen, müssen wir die Wurzel aus der rechten Seite ziehen können. Im Bereich der reellen Zahlen ist das offensichtlich nur möglich, wenn $p^2/4 - q \ge 0$ ist. Dann besitzt die Gleichung entweder eine doppelte (falls $p^2/4 - q = 0$) oder zwei unterschiedliche (falls $p^2/4 - q > 0$) Lösungen. Die Allgemeine Lösung dafür lautet

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}. ag{1.26}$$

Wir erweitern nun die reellen Zahlen durch eine neue, zunächst rein symbolisch zu verstehende, "Zahl" i, die **imaginäre Einheit**, für die

$$i^2 = -1\,, (1.27)$$

gelten soll. Dann hätte für a > 0 die Gleichung $x^2 = -a$ die beiden Lösungen $x = \pm i\sqrt{a}$, wobei wir voraussetzen, dass die **komplexen Zahlen**, die allgemein von der Form

$$z = x + iy, \quad x, y \in \mathbb{R} \,, \tag{1.28}$$

sein sollen, die gewöhnlichen Rechenregeln wie für reelle Zahlen gelten, also die sogenannten Axiome eines **Zahlenkörpers** erfüllen. Dabei soll eine komplexe Zahl definitionsgemäss durch ihren **Realteil** x und **Imaginärteil** y eindeutig bestimmt sein. Wir schreiben

$$Re z = x, \quad Im z = y. \tag{1.29}$$

Nehmen wir dies an, so folgt für die beiden Verknüpfungen zweier komplexer Zahlen

Summe:
$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2),$$
 (1.30)

Produkt:
$$z_1 \times z_2 = (x_1 + iy_1) \times (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2),$$
 (1.31)

wobei wir mehrfach das Assoziativ-, Kommutativ-, und Distributivgesetz verwendet haben und wir i wie eine gewöhnliche Variable behandelt haben. Das Produkt folgt ebenso durch formales Ausmultiplizieren, wobei wir im zweiten Term des Realteils die definierende Eigenschaft (1.27) der imaginären Einheit benutzt haben.

Es existieren auch "neutrale Elemente" $(z+0=z, z\times 1=z)$ und "inverse Elemente" $(z+(-z)=0, z\times z^{-1}=1)$. bezüglich beider Verknüpfungen. Dies macht die Menge aller komplexen Zahlen, \mathbb{C} , zu einem **Körper**. Weiters können wir auch noch definieren:

Subtraktion:
$$z_1 - z_2 = z_1 + (-z_2) = (x_1 - x_2) + i(y_1 - y_2),$$
 (1.32)

Division: $z_1/z_2 = z_1 \times z_2^{-1} = \frac{z_1 z_2^*}{z_2 z_2^*}$

$$= \frac{(x_1 + iy_1)(x_2 - iy_2)}{x_2^2 + y_2^2} = \left(\frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2}\right) + i\left(\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}\right). \tag{1.33}$$

Hier haben wir uns für die Definition des inversen z_2^{-1} , der Operation der komplexen Konjugation bedient $(z^* \text{ oder } \bar{z})$

$$z^* = x - iy, (1.34)$$

wodurch das Produkt einer komplexen Zahl mit ihrem konjugiert Komplexen

$$zz^* = (x+iy)(x-iy) = x^2 + y^2 + i(xy - yx) \in \mathbb{R}_+.$$
(1.35)

Daher folgt

$$z^{-1} = \frac{z^*}{zz^*} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}.$$
 (1.36)

Abbildung 2: Die Gaußsche Zahlenebene und Polarform einer komplexen Zahl.

Den **Betrag** bzw. Modul, das **Argument**, und die **polare Form** einer komplexen Zahl z definieren wir als

$$|z| = \mod z := \sqrt{zz^*} = \sqrt{x^2 + y^2},$$
 (1.37)

$$\arg z := \phi = \arctan\left(\frac{y}{x}\right),$$
 (1.38)

$$z = x + iy = |z| \left(\frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right) = |z| \left(\cos \phi + i \sin \phi \right). \tag{1.39}$$

Die reellen Zahlen können wir geometrisch durch eine Zahlengerade veranschaulichen. Entsprechend kann man die komplexen Zahlen geometrisch interpretieren, wenn man das Zahlenpaar $(x,y)=(\operatorname{Re} z,\operatorname{Im} z)$ als Komponenten bzgl. eines kartesischen Koordinatensystems in der Euklidischen Ebene interpretiert. Dies ist die **Gaußsche Zahlenebene**. Es ist klar, dass |z| geometrisch die Länge des entsprechenden z repräsentierenden Ortsvektors in der Gaußschen Zahlenebene ist (s. Abb. 2).

Offensichtlich ist $(z^*)^* = z$ für alle $z \in \mathbb{C}$. Weiter ist $\mathbb{R} \subset \mathbb{C}$, denn die komplexen Zahlen mit verschwindendem Imaginärteil sind umkehrbar eindeutig auf \mathbb{R} abbildbar. Offenbar ist $z \in \mathbb{R}$ genau dann, wenn Im z = 0, was zugleich $z^* = z$ impliziert. Wir haben weiter

Re
$$z = \frac{z + z^*}{2}$$
, Im $z = \frac{z - z^*}{2i}$. (1.40)

Die komplexe Konjugation ist auch additiv und multiplikativ

$$(z_1 + z_2)^* = z_1^* + z_2^*, \quad (z_1 z_2)^* = z_1^* z_2^*.$$
 (1.41)

Weil die beiden Verknüpfungen von Addition und Multiplikation zur Verfügung stehen, können wir die beiden kombinieren und **komplexe Polynome** definieren:

$$P_n(z) := \sum_{k=0}^n a_k z^k = a_0 + a_1 z + \dots + a_n z^n.$$
 (1.42)

Die Koeffizienten könnten reell $(a_k \in \mathbb{R})$ oder komplex $(a_k \in \mathbb{C})$ sein. Wiederum existieren

- Komposition $[(g \circ f)(z) := g(f(z))]$
- Umkehrfunktion $[f \circ f^{-1} = f^{-1} \circ f = 1]$.
- Unendliche Reihen $[P_n(z) \text{ mit } n \to \infty]$, die zu weiteren Funktionen führen.

Wir beginnen mit der Exponentialfunktion und übernehmen die entsprechende Potenzreihe einfach von der entsprechenden reellen Funktion als Definition für die Exponentialfunktion (1.11) im Komplexen

$$\exp(z) := \sum_{k=0}^{\infty} \frac{1}{k!} z^k, \quad e := \exp(1).$$
 (1.43)

Auch sie konvergiert für alle $z \in \mathbb{C}$.

Weiter benötigen wir noch die trigonometrischen Funktionen. Auch ihre Potenzreihen übernehmen wir aus dem Reellen, d.h. mit (1.20) bzw. (1.21) folgt (nachrechnen!)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!},$$
(1.44)

$$\sin z = x - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}.$$
 (1.45)

Berechnen wir nun

$$\exp(iz) = 1 + iz + \frac{(iz)^2}{2!} + \frac{(iz)^3}{3!} + \cdots$$

$$= \left(1 - \frac{z^2}{2!} + \ldots\right) + i\left(z - \frac{z^3}{3!} + \cdots\right)$$

$$= \left(\sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}\right) + i\left(\sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}\right). \tag{1.46}$$

Dabei haben wir die Reihe so umgeordnet, dass wir in einem Term den Faktor i ausklammern konnten. Das ist bei Potenzreihen erlaubt, da sie in jedem kompakten Bereich der komplexen Ebene absolut konvergiert.

Vergleichen wir nun die Reihen in den Klammern der Gleichung (1.46) mit (1.44) und (1.45), erhält man die **Eulersche Formel** (1707–1783)

$$\exp(iz) = \cos z + i\sin z. \tag{1.47}$$

Für die Polardarstellung der komplexen Zahl (1.39) folgt damit

$$z = |z| \exp(i\varphi). \tag{1.48}$$

Da für die Exponentialfunktion auch im Komplexen die Formel

$$\exp(z_1 + z_2) = \exp(z_1) \exp(z_2) \tag{1.49}$$

gilt, wie man mit Hilfe der Reihe (1.43) beweisen kann, erleichtert dies die Rechnung mit trigonometrischen Funktionen erheblich. Es folgt z.B. genau wie (1.47) auch die Gleichung

$$\exp(-iz) = \cos z - i\sin z. \tag{1.50}$$

Wir haben damit

$$\cos z = \frac{1}{2} [\exp(iz) + \exp(-iz)], \quad \sin z = \frac{1}{2i} [\exp(iz) - \exp(-iz)]. \tag{1.51}$$

Dies erinnert an die Definition der Hyperbelfunktionen

$$\cosh z = \frac{1}{2} [\exp(z) + \exp(-z)], \quad \sinh z = \frac{1}{2} [\exp(z) - \exp(-z)]. \tag{1.52}$$

Vergleicht man (1.51) mit diesen Definitionen folgt sofort, dass

$$\cosh(iz) = \cos z, \quad \sinh(iz) = i\sin z \tag{1.53}$$

gilt. Die trigonometrischen und Hyperbelfunktionen sind im Komplexen also bis auf Konstanten im wesentlichen die gleichen Funktionen, und beide sind durch die Exponentialfunktion definiert.

Genauso folgt aus (1.51)

$$\cos(iz) = \cosh z, \quad \sin(iz) = i \sinh z.$$
 (1.54)

Als Anwendungsbeispiel leiten wir noch die Additionstheoreme für die trigonometrischen Funktionen für reelle Argumente aus (1.49) ab. Es gilt nämlich einerseits wegen der Eulerschen Formel (1.47) und (1.48)

$$\exp[i(\varphi_1 + \varphi_2)] = \cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2),$$

$$\exp[i(\varphi_1 + \varphi_2)] = \exp(i\varphi_1)\exp(i\varphi_2) = (\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 + i\sin\varphi_2)$$
(1.55)

$$= (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) + i(\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2). \tag{1.56}$$

Vergleicht man nun Real- und Imaginärteil von (1.55) und (1.56), folgen die bekannten Additionstheoreme

$$\cos(\varphi_1 + \varphi_2) = \cos\varphi_1 \cos\varphi_2 - \sin\varphi_1 \sin\varphi_2,$$

$$\sin(\varphi_1 + \varphi_2) = \sin\varphi_1 \cos\varphi_2 + \cos\varphi_1 \sin\varphi_2.$$
(1.57)

Es ist leicht zu zeigen, dass diese Additionstheoreme auch allgemein für beliebige komplexe Argumente gelten ($\ddot{U}bung$).

Literatur

- [1] C. B. Lang and N. Pucker, *Mathematische Methoden in der Physik*. Springer Berlin Heidelberg, Berlin, Heidelberg, 3 ed., 2016.
- [2] H. v. Hees, Mathematische Ergänzungen zur Theoretischen Physik 1. 2018.
- [3] R. Adams and C. Essex, Calculus: A Complete Course. Pearson, 10 ed., 2022.