

Index

Uı	nit – 3 → Statistics – I	3
1)	Method 1 → Frequency Distributions	3
2)	Method 2 → Measure of Central Tendency	6
3)	Method 3 → Dispersion	16
4)	Method 4 → Moments	23
5)	Method 5 → Skewness	27
6)	Method 6 → Kurtosis	30

Unit - 3 ---> Statistics - I

Method 1 --> Frequency Distributions

Introduction

- → Statistics is the branch of science where we plan, gather and analyze information about a particular collection of objects under investigation.
- → Statistics techniques are used in every other field of science, engineering and humanity, ranging from computer science to industrial engineering to sociology and psychology.
- → For any statistical problem the initial information collection from the sample may look messy, and hence confusing. This initial information needs to be organized first before we make any sense out of it.

<u>Univariate Analysis</u>

- → Univariate analysis involves the examination across cases of one variable at a time.
- → There are few major characteristics of a single variable that we tend to look at:
 - (1) Frequency distribution
 - (2) Central tendency
 - (3) Dispersion
 - (4) Moment
 - (5) Skewness
 - (6) Kurtosis

Frequency Distribution

→ The distribution is a summary of the frequency of individual values or ranges of values for a variable.

Types of Frequency Distribution

- → There are two types of frequency distribution which is
 - (1) Frequency distribution of ungrouped data
 - (2) Frequency distribution of grouped data

Frequency Distribution of Ungrouped Data

- → The ungrouped frequency distribution is a type of frequency distribution that displays the frequency of each **individual** data value.
- → For Example:

Marks of 10 students are 10, 25, 26, 35, 03, 08, 19, 29, 30, 18.

Frequency Distribution of Grouped Data

(1) Discrete Frequency Distribution

- A discrete frequency distribution is a type of frequency distribution that shows each number and the number of times it appears in a list.
- For Example:

Data of students using library during exam time.

No. reading hours (x _i)	1	2	3	4	5	6
No. of students (f _i)	4	7	8	9	10	2

(2) Continuous Frequency Distribution

- A continuous frequency distribution is a series in which the data are classified into different **class intervals**.
- For Example:

Data of students using library during exam time.

No. reading hours (x _i)	0 – 2	3 – 5	6 – 8	9 – 11
No. of students (f_i)	11	7	8	0

Exclusive Class

 \rightarrow If classes of frequency distributions are 0-2, 2-4, 4-6, ... such classes are known as exclusive classes.

Inclusive Class

 \rightarrow If classes of frequency distributions are 0-2, 3-5, 6-8, ... such classes are known as inclusive classes.

Lower Boundary & Upper Boundary

- → For the class $x_i x_{i+1}$,
 lower boundary is x_i and upper boundary is x_{i+1} .
- → For Example:
 For the class 3 5, Lower boundary is 3 and upper boundary is 5.

Class Length

- \rightarrow A class length for class $x_i x_{i+1}$ is denoted by **c** and defined as $c = \text{Upper Boundary} \text{Lower Boundary} = x_{i+1} x_i$
- → For Example: For the class 3 - 5, class length is 5 - 3 = 2.

Mid-Point of Class

- \rightarrow Mid point of class is used to find x_i in case of continuous frequency distribution.
- → It is defined as follow:

Mid point of class =
$$x_i = \frac{Lower Boundary + Upper Boundary}{2}$$

 \rightarrow For Example:

For the class
$$3-5$$
, mid point is $\frac{3+5}{2}=4$.

Method 2 ** Measure of Central Tendency

Central Tendency

- → The central tendency of a distribution is an estimate of the center of a distribution of values.
- → There are three measures to estimate central tendency which is
 - (1) Mean(\overline{x})
 - (2) Median(M)
 - (3) Mode(Z)

2.1 Mean

- \rightarrow The mean means **average**.
- \rightarrow Mean is denoted by " \bar{x} " and read as x bar.
- → Table of different formulae of mean.

Method	Ungrouped Data	Discrete Grouped Data	Continuous Grouped Data			
Direct Method	$\frac{\sum x_i}{n}$	$\frac{\sum f_i x_i}{\sum f_i}$				
Assumed Mean Method	$\frac{\sum d_i}{n}$	$A + \frac{\sum f_i d_i}{\sum f_i}$				
Step Deviation Method			$A + \frac{\sum f_i u_i}{\sum f_i} \times c$			

- \rightarrow n = total number of observations
- → In case of **continuous frequency distribution**,

 $x_i = mid$ value of the respective class.

- \rightarrow In case of **assumed mean method**, A can be any value from x_i .
- \rightarrow Use below formula to calculate $d_i \& u_i$

$$d_i = x_i - A \quad ; \quad u_i = \frac{x_i - A}{c}$$

Example of Method-2.1: Examples of Mean

С	1	Find	the m	ean o	f data	10.2	, 9.5	, 8.3,	9.7,	9.5, 1	1.1,	7.8, 8	3.8, 9	.5, 1	0.
		Ansv	Answer: 9.44												
Н	2	Find	mean	of fol	lowin	ıg dat	a:								
		(a) 2	2, 8,	4, 6,	10, 1	12, 4,	8, 3	14, 16							
		(b)	10, 9,	21,	16, 1	4, 18	3, 20	, 18,	14,	18, 23	, 16,	18,	4		
		Ansv	ver: (a) 8.4	ŀ,	(b) 1	L5. 64	429							
С	3			ean fo											
		I	Marks	obtai	ned		20		9	25		50	40		80
		Nu	ımber	of stu	ıdent	S	6		4	16		7	8		2
		Ansv	ver: 3	32.23											
Н	4	Find	the m	ean fo	r foll	owin	g dat	a:							
		W	eight'	of stu	dents	5	18	22	30	35	39	9 4	2 4	45	47
		Nu	ımber	of stu	ident	S	4	5	8	8	16	5 4	ŀ	2	3
		Ansv	ver: 3	4 . 5											
Н	5	Find	the m	ean fo	r foll	owin	g dat	a:							
		X	10	20	36	40	50	56	60	70	72	80	88	92	95
		f	1	1	3	4	3	2	4	4	1	1	2	3	1
		Ansv	ver: 5	9.3											
С	6	Find	the	mean	usin	g dir	ect	metho	d, a	ssume	d me	ean n	netho	d ar	nd step
		deviation method:													
		Marks 0-10 10-20 20-30 30-40 40-50													
		No.	of stu	dents		5		10		40		20)		25
		Ansv	ver: 3	80											

H 7 Find the mean if survey regarding the weights (kg) of 45 students of class X of a school was conducted and the following data was obtained:

X	20 – 25	25 – 30	30 – 35	35 – 40	40 – 45	45 – 50	50 - 55
f	2	5	8	10	7	10	3

Answer: 38.83

H 8 The following data represents the no. of foreign visitors in a multinational company in every 10 days during last 2 months. Use the data to find the mean.

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
No. of visitors	12	18	27	20	17	06

Answer: 28

T | 9 | Find the missing frequency from the following data if mean is 19.92.

Class	4 - 8	8 - 12	12 - 16	16 - 20	20 - 24
f	11	13	16	14	?
	24 – 28	28 – 32	32 - 36	36 - 40	
	9	17	6	4	

Answer: 10

C | 10 | Find the missing frequency f_1 and f_2 in the table given below, it is being given that the mean of the given frequency distribution is 50.

Class	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100	Total
f	17	f_1	32	f_2	19	100

Answer: $f_1 = 18$, $f_2 = 14$

T A co-operative bank has two branches employing 50 and 70 workers respectively. The average salaries paid by two respective branches are 360 and 390 rupees per month. Calculate the mean of the salaries of all the employees.

Answer: 377.5

T	12	Find the mean of the following frequency distribution:
---	----	--

Mid value	15	20	25	30	35	40	45	50	55
Frequency	2	22	19	14	3	4	6	1	1
Cumulative	2	24	43	57	60	64	70	71	72

Answer: 27.8472

2.2 Median

- → The median is the value found at the **exact middle** of the set of values.
- \rightarrow Median is denoted by capital letter "M".
- → To compute the median, list all observations in ascending order and then locate the value in the center of the sample.
- → Table of formula of median.

Data	Formula
Ungrouped Data	If n is odd , then $M = \left(\frac{n+1}{2}\right)^{th}$ observation
Discrete Grouped Data	If n is even , then $M = \frac{\left(\frac{n}{2}\right)^{th} \text{ observation} + \left(\frac{n}{2} + 1\right)^{th} \text{ observation}}{2}$
Continuous Grouped Data	$M = L + \left(\frac{\frac{n}{2} - F}{f}\right) \times c$

 \rightarrow Where,

Median class = Class whose cumulative frequency with property min $\left\{ cf \mid cf \geq \frac{n}{2} \right\}$

L = Lower boundary point of the median class

n = Total number of observation (sum of the frequencies)

F = Cumulative frequency of the class preceding the median class

f = The frequency of the median class

Example of Method-2.2: Median

С	1	Find the r	nedian of	following	g data:							
			Find the median of following data: 20, 25, 30, 15, 17, 35, 26, 18, 40, 45, 50.									
		Answer:	26									
Н	2	Find the r	nedian of	following	g data:							
		(a) 6, 20,	43, 50,	19, 53,	0, 37, 78	, 1, 15.						
		(b) 10, 3	4, 27, 24	1, 12, 27	, 20, 18,	15, 30.						
		(c) 110,	115, 108	, 112, 12	20, 116,	140, 135,	128, 13	2.				
		Answer:	(a) 20,	(b) 22	, (c) 1	118						
Н	3	If the med	dian of th	e data is 2	2, find the	value of a	a: -9 , -4	a, 5, 8,	11.			
		Answer:	-1									
С	4	The given	observat	tions have	e been arra	anged in a	scending	order. If t	he median			
		of the dat	a is 63, fi	nd the val	lue of x fo	r the follo	wing data	ı:				
		29, 32, 4	8, 50, x,	x + 2,	72, 78, 8	4, 95.						
		Answer:	x = 62									
Н	5	Obtain th		size of sh	noes sold f	rom the f	ollowing	data:				
		Size	5	5.5	6	6.5	7	7.5	8			
		Pair	30	40	50	150	300	600	950			
		Answer:	7.5									
С	6	Calculate	the medi	an for the	following	g data:						
		Mai	Marks 20 9 25 50 40 80									
		No. of st	No. of students 6 4 16 7 8 2									
		Answer:	25									
		1111311011										

С	7		following nedian.	table giv	es ma	rks obta	aine	ed by 50	stud	dents	in sta	tist	ics. Find	
			Marks	0 -	- 10	10 - 2	20	20 – 3	30	30	- 40	4	10 - 50	
		No.	of studen	ts	16	12		18			3		1	
		Ansv	nswer: 17.5											
Н	8	Calcu	Calculate the missing frequency from the following distribution, it is being											
		given	that the	median (of the o	distribut	ion	is 24.						
			Marks	0 -	10	10 - 2	0	20 – 3	0	30 -	- 40	4	0 - 50	
		No.	of studen	ts	5	25		X		1	8		7	
		Ansv	ver: x = 2	25										
С	9	The r	nedian of	60 obse	rvation	ns (follo	win	g data) i	is 28	.5. Fir	nd x ar	ıd y	7.	
			Marks	0 -	10 1	10 – 20	20) – 30	30 -	40	40 - 5	0	50 - 60	
		No.	of studen	ts 5		X		20	15	5	у		5	
		Ansv	ver: x = 8	3, y:	7									
Н	10	The f	The following table gives the marks obtained by 50 students in mathematics.											
		Find	Find the median.											
		X	x 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49											
		f	f 4 6 10 5 7 3 9 6											
		Ansv	Answer: 29.5											

2.3 Mode

- → The mode is the **most frequently** occurring value in the set.
- → Mode is denoted by capital letter "Z".
- → The mode is not necessarily unique, like mean and median. we can have data with two modes (bi-modal) or more than two modes (multi-modal).
- → Table of formula of mode.

Data	Formula
Ungrouped Data	Most repeated observation among given data
Discrete Grouped Data	Highest frequency among given data
Continuous Grouped Data	$Z = L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$

 \rightarrow Where,

Modal class = A class with highest frequency

L = Lower boundary of modal class

c = Class length

 f_1 = Frequency of the modal class

 f_0 = Frequency of the class before the modal class

 f_2 = Frequency of the class after the modal class

Relation Between Mean, Median and Mode

 \rightarrow Z = 3M – $2\bar{x}$; where \bar{x} = Mean, M = Median, Z = Mode

Example of Method-2.3: Mode

С	1	If mean	is 16 a	nd med	lian	is 20). Ca	lcu	late t	he n	node	9.			
		Answe	r: 28												
С	2	Find the	e mode	of follo	wii	ng da	ta:								
		(a) 2, 4	, 2, 5,	7, 2,	8, 9	9.									
		(b) 2, 8	(b) 2, 8, 4, 6, 10, 12, 4, 8, 14, 16.												
		Answe	Answer: (a) 2, (b) 4 & 8												
С	3	Find the	Find the mode of following data:												
		2	ζ.	-	11			2	22			33		44	
		1	f 15 20 19 10												
		Answe	Answer: 22												
Н	4	Find the	Find the mode of following data:												
		X	1	2		3	4		5		6	7	8	9	
		f	8	10	1	11	16		20		25	15	9	6	
		Answe	r: 6												
Т	5	Find the	e mode	from th	ne f	ollow	ving	fre	quen	cy d	istri	bution:			
		X	8	9		10)	-	11	1	2	13	14	15	
		f	5	6		8			7	9)	8	9	6	
		Answe	r: 12 8	& 14											
С	6	Find the	e mode	of follo	wii	ng da	ta:								
		Clas	Class 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50												
		f	f 3 5 7 10 12												
			50 - 60 60 - 70 70 - 80 80 - 90 90 - 100												
			15 12 6 2 8												
		Answe	r: 55												

Н	7	Find the mo	de of followi	ng dat	a:						
		Class	200 – 2	220	220 -	- 240	24	0 - 260	26	60 - 280	
		f	7		1	5		21		19	
			280 – 3	300	300 -	- 320	32	0 - 340			
			6		4	4		2			
		Answer: 25	55								
Н	8	Find the mo	de of followi	ng dat	a:						
		Class	400 - 500	500	- 600	600 -	700	700 - 80	0 8	300 – 900	$\left. \left \right \right $
		f	8	1	16	20)	17		3	brack rack ra
		Answer: 65	57.14								
Н	9	The mode o	f the followi	ng data	is 67.	Find th	e miss	sing freque	ency	. X.	
		Amount	40 - 50	50	- 60	60 -	70	70 - 80	8	80 – 90	
		Frequency	5		X	15		12		7	
		Answer: 8									
Т	10	An insuranc	ce company	obtain	ed the	followi	ng da	ta for acci	iden	t claims (in
		thousand ru	ipees) from a	partio	cular re	egion. F	ind its	mean, me	ediar	n and mod	le.
		Amount	1 - 3	3 – 5	5 !	5 – 7	7 –	9 9-	11	11 - 13	3
		Frequency	6	47		75	46	5 1	8	8	_
		Answer: x̄ =	= 6.47,	M = 6	. 2533,	. Z :	= 5.9	825			
С	11	Obtain the r	nean, mode a	and me	edian fo	or the fo	ollowi	ng inform	atior	n:	_
		X	< 10	< 20	< 3	30	< 40	< 50	١	< 60	
		f	12	30	5	7	77	94		100	
		Answer: x̄	= 28, M	= 27 .	407 ,	Z =	25 . 6 2	25			
Т	12	Obtain the r	nean, mediai	n and r	node fo	or the fo	ollowi	ng inform	atior	n:	
		Marks	0 <		10	<	:	20 <		30 <	
		Number of Students	50		3	8		20		5	
		Answer: x̄	•	M = 1	7.222	2, 7	Z = 16	5.6667			_

Method 3 --> Dispersion

Dispersion

- → Dispersion refers to the spread of the values around the central tendency.
- → For Example:
 - -5, 0, 5 and -50, 0, 50 both have the same mean 0 but clearly the data given in the second case much more widely dispersed than those in the first case.
- → So, measures of central tendency are not sufficient for having some idea about dispersion.
- → Measures of dispersion gives the idea about the degree to which numerical data tend to spread about an average life.
- \rightarrow There are certain measures of dispersion which is,
 - (1) Range
 - (2) Standard Deviation
 - (3) Mean Deviation

Range

- → Range is simply the highest value **minus** the lowest value of a set of data values.
- → For Example:

Range of
$$-5, 0, 5$$
 is 10

Reason: Range = Highest value – lowest value =
$$5 - (-5)$$
 = 10

Standard Deviation

- → Standard deviation is a measure that is used to quantify the amount of variation or dispersion of a set of data values.
- \rightarrow It is denoted by " σ " and read as "sigma".

→ Table of different formulae of standard deviation.

Method	Ungrouped Data	Discrete Grouped Data	Continuous Grouped Data
Direct Method	$\sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$	$\sqrt{\frac{\Sigma}{\Sigma}}$	$\frac{f_i x_i^2}{\sum f_i} - \left(\frac{\sum f_i x_i}{\sum f_i}\right)^2$
Assumed Mean Method	$\sqrt{\frac{\sum d_i^2}{n} - \left(\frac{\sum d_i}{n}\right)^2}$	$\sqrt{\frac{\Sigma}{\Sigma}}$	$\frac{f_i d_i^2}{\sum f_i} - \left(\frac{\sum f_i d_i}{\sum f_i}\right)^2$
Step Deviation Method			$\sqrt{\frac{\sum f_i u_i^2}{\sum f_i} - \left(\frac{\sum f_i u_i}{\sum f_i}\right)^2} \times c$

Variance

- → Variance is **expectation** of the squared deviation.
- → It informally measures how far a set of (random) numbers are spread out from their mean.
- \rightarrow It is denoted by capital letter "V" and defined as $V = \sigma^2$.

Coefficient of Variation

- → The Coefficient of Variation is the **ratio** of the standard deviation to the mean and shows the extent of variability in relation to the mean of the population.
- → Coefficient of Variance is defined as

$$C. V. = \frac{\sigma}{\overline{x}} \times 100$$

- → If C.V. is high, then it is less consistent. Similarly, if C.V. is less, then it is more consistent.
- → The higher the Coefficient of Variation, the greater the dispersion.

Mean Deviation

- → The mean deviation is defined as a statistical measure that is used to calculate the average deviation from the mean value of the given data set.
- → In a simple word, the mean deviation is used to calculate how far the values fall from the middle of the data set.
- → Table of different formulae of mean deviation:

Method	Ungrouped Data	Grouped Data
M.D. about Mean	$\frac{\sum x_i - \overline{x} }{n}$	$\frac{\sum f_i x_i - \overline{x} }{\sum f_i}$
M.D. about Median	$\frac{\sum x_i - M }{n}$	$\frac{\sum f_i x_i - M }{\sum f_i}$
M.D. about Mode	$\frac{\sum x_i - Z }{n}$	$\frac{\sum f_i x_i - Z }{\sum f_i}$

Example of Method-3: Dispersion

С	1	Find the standa	Find the standard deviation for the following data:								
		6, 7, 10, 12,	13, 4, 8, 12.								
		Answer: 3. 04	Answer: 3.0414								
Н	2	Find the standa	ard deviation fo	or the following	distribution:						
		X	5	15	25	30					
		f	f 2 1 1 3								
		Answer: 10.6	Answer: 10. 6104								

C	2	D: 1.1	. 1	1.1.		1	· c	.1 C	11 .	1		
С	3	Find ti	ne standa	ard devi	ation a	ind vai	nance fo	r the fo	llowi	ng a	ıstrıb	ution:
		Х	0 - 10	10 - 2	20 20) – 30	30 - 40	0 40 -	- 50	50 -	- 60	60 - 70
		f	6	14		10	8	1	L	:	3	8
		Answ	er: σ = 1	19.6214	4,	V = 38	84. 9993	3				
T	4	Find tl	ne standa	ard devi	ation f	or the	followin	ıg distri	butio	n:		
		С	lass	0 -	100	10	0 – 200	200) – 30	00	30	0 - 400
			f 6 10 18 20									
			400 – 500 500 – 600 600 – 700 700 – 800									
			15 12 10 9									
		Answ	er: 196.	21								
Н	5	Find t	he stand	lard de	viation	and v	ariance	of the	mar	k dis	tribu	tion of 30
		studer	students at mathematics examination in a class as below:									
		Clas	s 10	- 25	25 – 40) 40) – 55	55 – 7	0	70 -	85	85 - 100
		f	:	2	3		0	14		8		3
		Answ	er: σ = 1	19.339	1,	V = 37	4. 0008	3				
С	6	The a	rithmetic	means	of rui	ns sco	red by t	hree ba	atsme	en A	, B an	d C, in the
		same	series o	f 10 inr	nings, a	are 50	,48 and	l 12 re	spect	ively	7. The	e standard
		deviat	ions of	their ru	ıns are	e 15,1	2 and 2	respec	tively	y. W	ho is	the most
		consis	tent of th	ne three	?							
		Answ	er: Bats	man C i	s mor	e cons	istent.					
Н	7		Answer: Batsman C is more consistent. Runs scored by two batsmen A, B in 9 consecutive matches is given below:									
		A										
			B 72 4 15 30 59 15 49 27 26									
			Which of the batsman is more consistent?									
		_	_									
		Answ	er: Bats	man B i	s mor	e cons	istent.					

C 8 Two machines A, B are used to fill a mixture of cement concrete in a beam. Find the standard deviation of each machine & comment on the performances of two machines.

A	32	28	47	63	71	39	10	60	96	14
В	19	31	48	53	67	90	10	62	40	80

Answer: $\sigma_A = 25.4950$, $\sigma_B = 24.4290$

There is less variability in the performance of the machine B.

H 9 Goals scored by two team A and B in a football season were as shown in the table. Find out which team is more consistent.

Number of goals in a match	0	1	2	3	4
Team A	27	9	8	5	4
Team B	17	9	6	5	3

Answer: Team B is more consistent.

T | 10 | An analysis of monthly wages paid to the workers of two firms A and B | belonging to the same industry gives the following results:

	Firm A	Firm B
Number of workers	500	600
Average daily wage	186	175
Variance of distribution of wages	81	100

- (1) Which firm has a larger wage bill?
- (2) In which firm, is there greater variability in individual wages?
- (3) Calculate average daily wages of all the workers in the firms A & B taken together.

Answer: (1) Firm B, (2) Firm B, (3) 180

Н	11	Lives of two models of refrigerators turned in for new models in a recent								
п	11					111 101 11	ew models	s III a Tece	3110	
		survey are give	survey are given in the adjoining table.							
		Life (in year)	0 – 2	2 – 4	4 – 6	6 - 8	8 – 10	10 - 12	2	
		Model A	5	16	13	7	5	4		
		Model B	2	7	12	19	9	1		
		(1) What is the	e average	life of eac	h model of	f these re	frigerators	5?		
		(2) Which mo	del shows	more uni	formity?					
		Angway (1) F	12061	<i>(</i> 2)	Model D					
11	12	Answer: (1) 5					C 4l C-11			
Н	12	Find the mean	aeviation	about the	mean and	median	for the foll	owing dat	ta:	
		2, 4, 7, 8, 9.								
		Answer: MD(x̄	(2) = 2.4	MD(N	(1) = 2.2					
T	13	Find the mean	Find the mean deviation about the mean, median and mode for the following							
		data:								
		5, 10, 17, 20,	5, 10, 17, 20, 23, 20.							
		Answer: MD(x̄	Answer: $MD(\bar{x}) = 5.5556$, $MD(M) = 5.1667$, $MD(Z) = 5$							
Н	14	Find mean dev	iation abo	out the m	ean, medi	an and n	node for tl	ne followi	ng	
		data:								
		X	2	5	6	8	10	12		
		f	2	8	10	7	8	5		
		Answer: MD(x	(a) - MD(1	M) – MD	7) - 2 2				-	
С	15					on and n	anda for tl	ao followi	——	
C	15	Find mean dev	iation abo	out the m	ean, meur	an anu n	ioue ioi u	ie ioliowi	ing	
		data:				-	1		1	
		X	5	10	15		20	25		
		f	7	4	6		3	5		
l		Answer: MD(x	(3) = 6.32	, MD($\mathbf{M})=6.2,$	MD	$(\mathbf{Z}) = 9$			

C 16 Find mean deviation about the mean, median and mode for the following data:

Class	5 – 25	25 – 45	45 – 65	65 – 85	85 – 105
f	12	8	14	20	6

Answer: $MD(\bar{x}) = 21.33$, MD(M) = 21.904, MD(Z) = 23.466

T | 17 | Find mean deviation about the mean, median and mode for the following data:

Class	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
f	5	10	20	9	6

Answer: $MD(\bar{x}) = 8.28$, MD(M) = 8.20, MD(Z) = 8.30

Method 4 ---> Moments

Moments

- → Moment is the arithmetic **mean** of the various powers of the deviations of items from their assumed mean or actual mean.
- → There are three types of moments which is
 - (1) Moment about mean
 - (2) Moment about assumed mean
 - (3) Moment about zero

Moment bout mean

- → If deviations of data are taken from mean, then it is known as moment about mean.
- → It is also known as central moment.
- \rightarrow It is denoted by " μ_r ".

Moment about assumed mean

- \rightarrow If deviations of data are taken about any assumed value(a) from x_i , then it is known as moment about assumed mean.
- \rightarrow It is denoted by " μ_r' ".

Moment about zero

- \rightarrow If deviations of data are taken about any zero, it is known as moment about zero.
- \rightarrow It is denoted by " $\mathbf{v_r}$ ".
- → Table of different formulae of moment.

Moment about	Ungrouped Data	Grouped Data
Mean (μ _r)	$\frac{\sum (x_i - \overline{x})^r}{n}$	$\frac{\sum f_i (x_i - \overline{x})^r}{\sum f_i}$
Assumed mean (μ'_r)	$\frac{\sum (x_i - a)^r}{n}$	$\frac{\sum f_i (x_i - a)^r}{\sum f_i}$
Zero (v _r)	$\frac{\sum x_i^r}{n}$	$\frac{\sum f_i x_i^r}{\sum f_i}$

Where, r = 1, 2, 3, 4, ...

Example of Method-4: Moments

С	1	Find the first four moments about assumed mean 5, actual mean and zero for
		the data 1, 3, 7, 9, 10.

Answer:
$$\mu = 0$$
, 12, -12, 208.8

$$\mu' = 1,$$
 13, 25, 233.8

$$v = 6$$
, 48, 420, 3808.8

Answer:
$$\mu = 0$$
, 10.24, 19.162, 213.5872

$$\mu' = 0.6$$
, 10.6, 37.8, 281.8

$$v = 14.6,$$
 223.4, 3579.8, 57225.8

C	3	Calculate the four moments about assumed mean 5, actual mean and zero for
		following distribution.

X	2	3	4	5	6
f	1	3	7	3	1

Answer:
$$\mu = 0$$
, 0.9333, 0, 2.5333

$$\mu' = -1$$
, 1.9333, -3.8 , 9.1333

$$v=4, \qquad 16.\,9333, \qquad 75.\,2, \qquad 348.\,1333$$

T | 4 | Calculate the four moments about assumed mean 15, actual mean and zero for following distribution.

X	5	10	15	20	25
f	6	10	14	6	4

Answer:
$$\mu = 0$$
, 34, 40.5, 2707

$$\mu' = -1, \qquad 35, \qquad -62.5, \qquad 2750$$

$$v = 14$$
, 230, 4212.5, 83375

H 5 Calculate the moments about assumed mean 3, actual mean and zero for following distribution:

X	1	2	3	4	5	6
f	5	4	3	7	1	1

Answer: $\mu = 0$, 2.0862, 0.5017, 9.0299

 $\mu' = -0.0952,$ 2.0952, -0.0952, 8.9524

v = 2.9048, 10.5238, 43.1905, 191.6667

C Calculate the moments about assumed mean 25, actual mean and zero for following distribution:

Class	0 - 10	10 - 20	20 - 30	30 - 40
f	1	3	4	2

Answer: $\mu = 0$, 81, -144, 14817

 $\mu' = -3$, 90, -900, 21000

v = 22, 565, 15850, 471625

H 7 Calculate the moments about assumed mean 35, actual mean and zero for following distribution:

X	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
f	8	12	20	30	15	10	5

Answer: $\mu = 0$, 236.76, 264.336, 141290.0876

 $\mu' = -1.8,$ 240, -1020, 144000

v = 33.2, 1339, 60440, 2957125

T 8 Calculate the moments about assumed mean 65, actual mean and zero for following distribution:

Class	60 - 62	63 - 65	66 - 68	69 – 71	72 – 74
f	5	18	42	27	8

Answer: $\mu = 0$, 8.5275, -2.6933, 199.3759

 $\mu' = 2.45, \qquad 14.53, \qquad 74.69, \qquad 516.13$

v = 67.45, 4558.03, 308586.79, 20930221.03

Method 5 ---> Skewness

Skewness

- → In symmetrical distribution, the mean, median, and mode is equal.
- → When a frequency distribution is not symmetrical, it is known as asymmetrical or skewed.
- → Skewness means lake of symmetry.

Measures of Skewness

- → Measure of skewness give us an idea about the extent of lopsidedness in a data.
- → The various measures of skewness are
 - (1) Karl Pearson's method
 - (2) Method of moments

Karl Pearson's Method

→ Karl Pearson's coefficient of skewness is defined as

$$Skewness = \frac{Mean - Mode}{Standard Deviation}$$

Method of Moments

→ Measure of skewness is obtained from moment about mean and defined as

Skewness =
$$\beta_1 = \frac{(\mu_3)^2}{(\mu_2)^3}$$

- → Note:
 - The skewness value can be either positive or negative or zero or even undefined.
 - If skewness value is zero, then the distribution is known as symmetric.
 - If standard deviation is zero, then the skewness is not defined.
 - Positive skewness: The right tail is longer; the mass of the distribution is concentrated on the left.
 - Negative skewness: The left tail is longer; the mass of the distribution is concentrated on the right.

Example of Method-5: Skewness

С	1	Compute the Karl Pearson's coefficient of skewness for data:
		25, 15, 23, 40, 27, 25, 23, 25, 20
		Answer: -0.03
		Allswer: -0.05
Н	2	Find skewness by the method of moments for data:
		38.2, 40.9, 39.5, 44, 39.6, 40.5, 39.5.
		Answer: 1. 3035
С	3	Karl Pearson's coefficient of skewness of a distribution is 0.32, its standard
		deviation is 6.5 and mean is 29.6. Find the mode for the distribution.
		Answer: 27. 52
Н	4	Karl Pearson's coefficient of skewness of a distribution is 0.3, its variance is
		8 and mean is 200. Find the mode and median for the distribution.
		Answer: 195. 2, 198. 4
С	5	For a group of 10 items, $\sum x = 452$, $\sum x^2 = 24270$ and mode is 43.7 then,
		find Karl Pearson's coefficient of skewness.
		Answer: 0.077

C 6 From the marks scored by 100 students in section A and 100 students in section B of a class, the following measures were obtained

Section A	$\mu_A = 55$	$\sigma_A = 15.4$	Mode = 58.72
Section A	$\mu_B = 53$	$\sigma_{\rm B} = 15.4$	Mode = 48.83

Determine which distribution of marks is more skewed.

Answer: Section B is more skewed

T 7 From the marks scored by 120 students in section A and 120 students in section B of a class, the following measures were obtained

Section A	$\mu_A = 46.83$	$\sigma_A = 14.8$	Mode = 51.67		
Section A	$\mu_{B} = 47.83$	$\sigma_{\rm B} = 14.8$	Mode = 47.07		

Determine which distribution of marks is more skewed.

Answer: Section A is more skewed

H 8 Find Karl Pearson's coefficient of skewness and skewness based on the method of moments for the following data:

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 – 50
f	13	20	30	25	12

Answer: -0.1135, 0.0085

T 9 Find skewness of the following data using method of moment.

X	5	10	15	20	25	30	35
f	8	15	20	32	23	17	5

Answer: 0.01141

H 10 Prove that the skewness of the following data is 0.0390 using method of moment.

Class	0 – 10	10 - 20	20 - 30	30 - 40
Frequency	1	3	4	2

Method 6 ---> Kurtosis

Kurtosis

- → Measures of central tendency, dispersion and skewness of a random variable cannot give a complete idea about the probability distribution.
- → So, another characteristic, Kurtosis is required.
- → Kurtosis measures the flatness/peakedness of a distribution.
- \rightarrow It is denoted by " β_2 " defined as

$$\beta_2 = \frac{\mu_4}{(\mu_2)^2}$$

- → Note:
 - The greater the value of β_2 , the more peaked is the distribution.
 - When the value of $\beta_2 = 3$, the curve is normal curve and the distribution is known as **mesokurtic**.
 - When the value of $\beta_2 > 3$, the curve is more peaked than normal curve and the distribution is known as **leptokurtic**.
 - When the value of β_2 < 3, the curve is less peaked than normal curve and the distribution is known as **platykurtic**.

Example of Method-6: Kurtosis

Н	1	Find the Kurtosis for the data 1, 3, 7, 9, 10. Also comment on type of distribution.											
		Answer: Ku	Answer: Kurtosis = 1.45, Distribution is platykurtic										
С	2	Find the Kurtosis for the following data. Also comment on type of											
		distribution.	distribution.										
		X	x 2 3 4 5 6										
		f 1 3 7 3 1											
		Answer: Kurtosis = 2. 9082, Distribution is platykurtic											

Н	3	Find the kurtosis for the following data. Also, Comment on type of distribution.										
		Class	0 - 1	0 - 10		10 - 20		20 - 30		30 - 40		
		f	1	1		3		4		2		
		Answer: Kur	tosis = 2.	. 2583, Distribution is platykurtic								
С	4	Find out the k	urtosis of t	the fol	lowing	data:						
		Class	0 - 10	10 -	- 20	20 - 3	0	30 - 4	0 40	- 50		
		f	10	2	0	40	20 10		10			
		Answer: 2.5										
Н	5	Find out the k	curtosis of t	the fol	lowing	data:						
		Class 0 - 10 10 - 20 20 - 30 30 - 40										
		f 1 4 3 2										
		Answer: 2.102										
Т	6	Find the coeff	icient of va	riatio	n, β_1 and	$d \beta_2$ for	the	e followir	ng data:			
		x 170 -		190 –	200 -	210		220 -	230 -	240 -		
		f 52	190 68	200 85	210 92	100		230 95	240 70	250 28	_	
			00	00	94	100	,	90	70	20	$\perp \mid \parallel$	
		Answer: C. V.	= 9.4,	$\beta_1 =$	0.0034	Ι, β	82 =	2.0340)			

* * * * * End of the Unit * * * * *