CS4246 / CS5446

Tutorial Week 6

Muhammad Rizki Maulana

rizki@u.nus.edu

First

(c) Atari games. Atari games have 128 bytes of RAM, 18 actions, and 33,728 screen pixels taking values from 0-127.

Question

(c) Atari games. Atari games have 128 bytes of RAM, 18 actions, and 33,728 screen pixels taking values from 0-127.

1 byte = 256 values (-128 ... 127)

State:

Ram 256¹28

(c) Atari games. Atari games have 128 bytes of RAM, 18 actions, and 33,728 screen pixels taking values from 0-127.

State:

Ram 256^128 Pixels not MDP

Only contains position information, no velocity and acceleration!

Image credit: ATARI Games, breakout

(c) Atari games. Atari games have 128 bytes of RAM, 18 actions, and 33,728 screen pixels taking values from 0-127.

State:

Ram 256¹²⁸

Pixels not MDP, might need to consider more than one frames

2 frames can capture velocity:

$$v_t = pos_t - pos_{t-1}$$

4 frames can capture acceleration:

$$\mathbf{a}_{\mathsf{t}} = \mathbf{v}_{\mathsf{t}} - \mathbf{v}_{\mathsf{t}-1}$$

Image credit: ATARI Games, breakout

(c) Atari games. Atari games have 128 bytes of RAM, 18 actions, and 33,728 screen pixels taking values from 0-127.

State:

Ram 256¹²⁸

Pixels not MDP, might need to consider more than one frames

Actions: 18

Transitions & Rewards: depends on the game

Image credit: ATARI Games, breakout

Second

(a) Assume a finite horizon problem with horizon 1 (only 1 action is to be taken). What is the value function and the optimal action in each state?

Question

$$V_1(s_1) = 1$$

$$V_1(s_1) = 1 a^*(s_1) = a_1$$

$$V_1(s_1) = 1 a^*(s_1) = a_1$$

$$V_1(s_1) = 1$$
 $a^*(s_1) = a_1$ $V_1(s_2) = 3$

$$V_1(s_1) = 1$$
 $a^*(s_1) = a_1$ $V_1(s_2) = 3$ $a^*(s_2) = a_1 \text{ or } a_2$

$$a_1(s_2) = 3$$
 $a_1(s_2) = a_1 \text{ or } a_2$

(b) Assume a finite horizon problem with horizon 2 (2 actions is to be taken). What is the value function and the optimal action in each state?

Question

$$V_2(s_i) = \max_{a} (R(s_i, a) + \gamma \sum_{j=1}^{2} P(s_j | s_i, a) V_1(s_j)).$$

$$V_2(s_i) = \max_{a} (R(s_i, a) + \gamma \sum_{j=1}^{2} P(s_j | s_i, a) V_1(s_j)).$$

(b) Assume a finite horizon problem with horizon 2 (2 actions is to be taken). What is the value function and the optimal action in each state?

$$V_2(s_i) = \max_{a} (R(s_i, a) + \gamma \sum_{j=1}^{2} P(s_j | s_i, a) V_1(s_j)).$$

For state 1 action 1

$$value = 1 + 0.9(0.9 * 1 + 0.1 * 3) = 2.08.$$

(b) Assume a finite horizon problem with horizon 2 (2 actions is to be taken). What is the value function and the optimal action in each state?

$$V_2(s_i) = \max_{a} (R(s_i, a) + \gamma \sum_{j=1}^{2} P(s_j | s_i, a) V_1(s_j)).$$

For state 1 action 1

$$value = 1 + 0.9(0.9 * 1 + 0.1 * 3) = 2.08.$$

For state 1 action 2

$$value = 0 + 0.9(0.9 * 3 + 0.1 * 1) = 2.52.$$

(b) Assume a finite horizon problem with horizon 2 (2 actions is to be taken). What is the value function and the optimal action in each state?

$$V_2(s_i) = \max_{a} (R(s_i, a) + \gamma \sum_{j=1}^{2} P(s_j | s_i, a) V_1(s_j)).$$

For state 1 action 1

$$value = 1 + 0.9(0.9 * 1 + 0.1 * 3) = 2.08.$$

For state 1 action 2

$$value = 1 + 0.9(0.9 * 1 + 0.1 * 3) = 2.08.$$

$$value = 0 + 0.9(0.9 * 3 + 0.1 * 1) = 2.52.$$

(b) Assume a finite horizon problem with horizon 2 (2 actions is to be taken). What is the value function and the optimal action in each state?

$$V_2(s_i) = \max_{a} (R(s_i, a) + \gamma \sum_{j=1}^{2} P(s_j | s_i, a) V_1(s_j)).$$

For state 1 action 1

$$value = 1 + 0.9(0.9 * 1 + 0.1 * 3) = 2.08.$$

For state 1 action 2

$$value = 0 + 0.9(0.9 * 3 + 0.1 * 1) = 2.52.$$

Max = 2.52 (action 2

$$value = 3 + 0.9 * 3 = 5.7.$$

$$V(s_2) = 3 + 0.9(3 + 0.9(...))$$

$$V(s_2) = 3 + 0.9(3 + 0.9(...)) = \frac{3}{1 - 0.9} = \frac{3}{0.1} = 30$$

Geometric series

$$V(s_2) = 3 + 0.9(3 + 0.9(...)) = \frac{3}{1 - 0.9} = \frac{3}{0.1} = 30$$

Geometric series

(c) What is the optimal infinite horizon policy?

If action a_1 is taken, the value of the policy must satisfy

$$V(s_1) = 1 + 0.9(0.9V(s_1) + 0.1 * 30)$$

giving $V(s_1) = 19.47$.

$$V(s_2) = 3 + 0.9(3 + 0.9(...)) = \frac{3}{1 - 0.9} = \frac{3}{0.1} = 30$$

Geometric series

0.9 1.0 1.0 81 R=1 R=0 a2 0.9 R=3

Discount factor: 0.9

(c) What is the optimal infinite horizon policy?

If action a_1 is taken, the value of the policy must satisfy

$$V(s_1) = 1 + 0.9(0.9V(s_1) + 0.1 * 30)$$

giving $V(s_1) = 19.47$.

If action a_2 is taken, the value of the policy must satisfy

$$V(s_1) = 0 + 0.9(0.9 * 30 + 0.1V(s_1))$$

giving $V(s_1) = 26.7$.

$$V(s_2) = 3 + 0.9(3 + 0.9(...)) = \frac{3}{1 - 0.9} = \frac{3}{0.1} = 30$$

Geometric series

(c) What is the optimal infinite horizon policy?

If action a_1 is taken, the value of the policy must satisfy

$$V(s_1) = 1 + 0.9(0.9V(s_1) + 0.1 * 30)$$

giving
$$V(s_1) = 19.47$$
.

If action a_2 is taken, the value of the policy must satisfy

$$V(s_1) = 0 + 0.9(0.9 * 30 + 0.1V(s_1))$$

giving $V(s_1) = 26.7$.

$$V(s_2) = 3 + 0.9(3 + 0.9(...)) = \frac{3}{1 - 0.9} = \frac{3}{0.1} = 30$$

Geometric series

Third

a) What is the size of the state space of this MDP? Can this MDP be efficiently solvable with value iteration as M grows?

a) What is the size of the state space of this MDP? Can this MDP be efficiently solvable with value iteration as M grows?

 n^M

a) What is the size of the state space of this MDP? Can this MDP be efficiently solvable with value iteration as M grows?

 n^M Value iteration: runtime exponential in M (not good!)

s

Doesn't depend on M, if D is small then all good!

$$\pi_{UCT}(n) = \operatorname*{argmax}_{a} \Big(\hat{Q}(n,a) + c \sqrt{\frac{\log(N(n))}{N(n,a)}} \Big)$$

$$\pi_{UCT}(n) = \operatorname*{argmax}_{a} \left(\hat{Q}(n,a) + c \sqrt{\frac{\log(N(n))}{N(n,a)}} \right)$$

A:
$$\frac{2}{4} + \sqrt{\frac{\log 16}{4}} = 1.5$$

$$\pi_{UCT}(n) = \operatorname*{argmax}_{a} \left(\hat{Q}(n,a) + c \sqrt{\frac{\log(N(n))}{N(n,a)}} \right)$$

A:
$$\frac{2}{4} + \sqrt{\frac{\log 16}{4}} = 1.5$$

B:
$$\frac{8}{12} + \sqrt{\frac{\log[16]}{12}} = 1.244$$

$$\pi_{UCT}(n) = \operatorname*{argmax}_{a} \Big(\hat{Q}(n,a) + c \sqrt{rac{\log(N(n))}{N(n,a)}} \Big)$$

A:
$$\frac{2}{4} + \sqrt{\frac{\log 16}{4}} = 1.5$$

$$\sqrt{\frac{\log 16}{4}} = 1.5$$

$$B = \frac{8}{12} + \sqrt{\frac{\log 16}{12}} = 1.244.$$

Question?

<EOF>