Zero inflated models

Data: College drinking

Survey data from 77 college students on a dry campus (i.e., alcohol is prohibited) in the US. Survey asks students "How many alcoholic drinks did you consume last weekend?"

- drinks: the number of drinks the student reports consuming
- sex: an indicator for whether the student identifies as male
- OffCampus: an indicator for whether the student lives off campus
- FirstYear: an indicator for whether the student is a first-year student

Our goal: model the number of drinks students report consuming.

EDA: drinks

What do you notice about this distribution?

EDA: drinks

- The distribution is right skewed and unimodal
- There is an outlier near 20
- There are more zeros than we would expect from a Poisson distribution!

Comparisons with Poisson distributions

Excess zeros

Why might there be excess
Os in the data, and why is
that a problem for modeling
the number of drinks
consumed?

Excess zeros

The problem:

- There are two groups of people contributing 0s to the data: those who never drink, and those who sometimes drink but didn't drink last weekend
- By itself, a Poisson distribution doesn't do a good job modeling data that is a mixture of these two groups

Why don't I just include whether or not the student drinks as a variable in the model?

But our data deesn't include this variable

Plan: create separate models for drinkers and

Fel non-drinkers then combine

7

Modeling

Let

- + Z_i denote whether student i is a non-drinker (1 = never drinks, 0 = sometimes drinks) (Z_i is not observed in the data,
- $lacktriangledown lpha_i = P(Z_i = 1)$ but we can still imagine tying to madel $\overline{Z_i}$

We believe that α_i depends on whether or not student i is a first year.

What model can I use for the relationship between being a first year student and being a non-drinker?

Modeling non-drinkers

 Z_i denote whether student i is a non-drinker (1 = never drinks, 0 = sometimes drinks)

$$Z_i \sim Bernoulli(lpha_i)$$

$$\logigg(rac{lpha_i}{1-lpha_i}igg) = \gamma_0 + \gamma_1 First Year_i$$

Modeling drinks

 $Y_i =$ number of drinks consumed by student i

If $Z_i=1$ (the student never drinks), what is the probability of consuming 0 drinks?

$$P(Y_i = 0 \mid Z_i = 1) = 1$$

 $y \in \{1, 2, 3, ..., 3\}$
 $P(Y_i = y \mid Z_i = 1) = 0$

Modeling drinks

- $lacktriangledown Y_i = ext{number of drinks consumed by student } i$
- Suppose that whether or not a student identifies as male and whether or not a student lives off campus has some relationship with the number of drinks consumed.

If $Z_i=0$ (the student sometimes drinks), how could I model Y_i ?

If
$$Zi=0$$
, Yi (# orinus) is a cantivariable

=> Poisson distribution?

 Yi $I(Zi=0)$ ~ Poisson(Xi) => $P(Yi=y|Zi=0)$
 $I(Zi=0)$ ~ $I(Zi=0)$ ~ $I(Zi=0)$
 $I(Zi=0)$ ~ $I(Zi=0)$ ~ $I(Zi=0)$
 $I(Zi=0)$ ~ $I(Zi=0)$ ~ $I(Zi=0)$
 $I(Zi=0)$ ~ $I(Zi=0)$ ~ $I(Zi=0)$ ~ $I(Zi=0)$

$$Z_i \sim Bernoulli(lpha_i)$$

So far:
$$\gamma_{\alpha} = \gamma_{\alpha} = \gamma_{\alpha$$

$$P(Y_i = 0|Z_i = 1) = 1$$

$$Y_i|Z_i=0 \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = eta_0 + eta_1 Off Campus_i + eta_2 Male_i$$

Can we fit these models?

Combining models

We can calculate $P(Y_i=y|Z_i=0)$ and $P(Y_i=y|Z_i=1)$. Using the fact that

P
$$(Y_i=y)=P(Y_i=y|Z_i=0)P(Z_i=0)+\ P(Y_i=y|Z_i=1)P(Z_i=1),$$

write down an equation for $P(Y_i=y)$ involving λ_i and α_i . Hint: it will help to separate the cases y=0 and y>0

Combining models

Case 1:
$$y = 0$$

$$P(Y_i = 0) = P(Y_i = 0 | Z_i = 0) P(Z_i = 0) + P(Y_i = 0 | Z_i = 1) P(Z_i = 0)$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

Case 2: y > 0:

ase 2:
$$y > 0$$
:

$$P(x_{i} = y) = P(x_{i} = y \mid Z_{i} = 0) P(Z_{i} = 0) + P(x_{i} = y \mid Z_{i} = 0) P(Z_{i} = 0)$$

$$= P(x_{i} = y) = e^{-\lambda_{i}} \lambda_{i}^{\lambda_{i}} \qquad y = 1, 2, 3, ...$$

$$= P(x_{i} = y) = e^{-\lambda_{i}} \lambda_{i}^{\lambda_{i}} \qquad y = 1, 2, 3, ...$$

Zero-inflated Poisson (ZIP) model

$$P(Y_i=y) = \left\{ egin{array}{ll} e^{-\lambda_i}(1-lpha_i) + lpha_i & y=0 \ rac{e^{-\lambda_i}\lambda_i^y}{y!}(1-lpha_i) & y>0 \end{array}
ight.$$

where

$$\logigg(rac{lpha_i}{1-lpha_i}igg) = \gamma_0 + \gamma_1 First Year_i$$

$$\log(\lambda_i) = eta_0 + eta_1 Off Campus_i + eta_2 Male_i$$

This is called a *mixture* model (it is a mixture of two different models). We *can* fit this model on the observed data (we don't need to observe Z_i)

Zero-inflated Poisson (ZIP) model

$$P(Y_i=y) = \left\{ egin{array}{ll} e^{-\lambda_i}(1-lpha_i) + lpha_i & y=0 \ rac{e^{-\lambda_i}\lambda_i^y}{y!}(1-lpha_i) & y>0 \end{array}
ight.$$

where

$$\logigg(rac{lpha_i}{1-lpha_i}igg) = \gamma_0 + \gamma_1 First Year_i$$

$$\log(\lambda_i) = eta_0 + eta_1 Off Campus_i + eta_2 Male_i$$

What do
$$\alpha_i$$
 and λ_i represent?

 $\alpha_i = P(s + \omega_{ent} i) = a es not a rink)$
 $\gamma_i = a e rage + of a rinks consumed by a student who sees a rink$

Zero-inflated Poisson (ZIP) model

$$P(Y_i=y) = \left\{ egin{array}{ll} e^{-\lambda_i}(1-lpha_i) + lpha_i & y=0 \ rac{e^{-\lambda_i}\lambda_i^y}{y!}(1-lpha_i) & y>0 \end{array}
ight.$$

where

$$\logigg(rac{lpha_i}{1-lpha_i}igg) = \gamma_0 + \gamma_1 FirstYear_i$$

$$\log(\lambda_i) = eta_0 + eta_1 Off Campus_i + eta_2 Male_i$$

What do $lpha_i$ and λ_i represent?

 α_i = probability the student doesn't drink, λ_i = average number of drinks if the student *does* drink

Class activity

https://sta214-s23.github.io/class_activities/ca_lecture_25.html

Class activity: The fitted model

$$P(Y_i=y) = \left\{ egin{aligned} e^{-\lambda_i}(1-lpha_i) + lpha_i & y=0 \ rac{e^{-\lambda_i}\lambda_i^y}{y!}(1-lpha_i) & y>0 \end{aligned}
ight.$$

$$\log\!\left(rac{\widehat{lpha}_i}{1-\widehat{lpha}_i}
ight) = -0.60 + 1.14 First Year_i$$

$$\log(\widehat{\lambda}_i) = 0.75 + 0.42~OffCampus_i + 1.02~Male_i$$

What is the estimated probability that a first year student never drinks? λ :

$$\log(\frac{\hat{\alpha}_{1}}{1-\hat{\alpha}_{1}}) = -0.60 + 1.14$$
=7 $\hat{\alpha} = 0.63$

The fitted model

$$P(Y_i=y) = \left\{ egin{array}{ll} e^{-\lambda_i}(1-lpha_i) + lpha_i & y=0 \ rac{e^{-\lambda_i}\lambda_i^y}{y!}(1-lpha_i) & y>0 \end{array}
ight.$$

$$\log\!\left(rac{\widehat{lpha}_i}{1-\widehat{lpha}_i}
ight) = -0.60 + 1.14 First Year_i$$

$$\log(\widehat{\lambda}_i) = 0.75 + 0.42~OffCampus_i + 1.02~Male_i$$

What is the estimated average number of drinks for a male student who lives off campus and sometimes drinks? $\hat{\chi}$

$$\frac{1}{1} = e_{x1} \frac{3}{3} 0.75 + 0.42 + 1.02 \frac{3}{3} = 8.93$$

The fitted model

$$P(Y_i=y) = \left\{ egin{aligned} e^{-\lambda_i}(1-lpha_i) + lpha_i & y=0 \ rac{e^{-\lambda_i}\lambda_i^y}{y!}(1-lpha_i) & y>0 \end{aligned}
ight.$$

$$\log\!\left(rac{\widehat{lpha}_i}{1-\widehat{lpha}_i}
ight) = -0.60 + 1.14 First Year_i$$

$$\log(\widehat{\lambda}_i) = 0.75 + 0.42~OffCampus_i + 1.02~Male_i$$

What is the estimated probability that a male first year student who lives off campus had at least one drink last weekend?

$$P(4i70) = 1 - P(4i = 0)$$

$$= 1 - (e^{-2i}(1-2i) + 2i)$$

$$= 0.37$$

$$= 0.63$$

$$= 0.63$$

$$= 0.63$$