Report-Control Systems Lab

RollNo-190020021

Kushagra Khatwani

Answers-

Q1-

		- 0
	Camlin Page	_
los occomos a sollo so et	Date / /	
statil ever coefficients -]
$Kp = \lim_{n \to \infty} G_1(n) = \infty$		-
500 (10) = 00		
$K_V = \lim_{s \to 0} sG(s) = V_V$		
S->0		
16 - 00. 20		
$1 < \alpha = \lim_{s \to 0} s^2 \zeta_{\mu}(a) = 0$		
steady state evenn-		
steady state evenn-		
unit input (u(t))-	2	
and cours		
$\mathcal{R}(\mathcal{O}) = 1 = 0$,
R(cs) = 1 = 0 $1 + Kp$		
(1.1/4)) -		
(i) namp (+u(+1)-		
$e(\infty) = 1 = 4$		
Kre		
11, + (,2,11) -	1	
ii) parabolic input (+2 u(+1) -		
$e(\infty) = 1 = \infty$		
Ka		-
	*	
20	3	
	V.	
	- resident	
	1	
25		

1)Step input-

Simulink model-

Plot-(Depicts steady state error as T->infinity)

2)Ramp function-

Simulink model-

Plot-(Depicts steady state error as T->infinity)

2)Parabolic input-

Simulink model-

Plot-(Depicts steady state error as T->infinity)

6 2	91(4) Controlly plant; > C(4)
	G(a) = A + 3, $A^{\frac{1}{4}} 3A^{\frac{3}{4}} 6A^{\frac{2}{4}}$
Ans 10	$n(t)$ \rightarrow $k(q(A))$ \uparrow $c(t)$
15	$G_{1}(\Delta) = K(g(\Delta) = K(A+3)$ $Q^{2}(A^{2}+3A+6)$
	This is type I system as M=2.
20	Test input \Rightarrow parabolic Nove $e(\infty) = 0$
	50 e(0) = 1 = 0.1 Ka
25	80 Ka = 10
	lim 2 G(a) = 10
30	$\lim_{S \to 0} \frac{K(A+3)}{A^2+3A+6} = 10$
	$\frac{3K}{62} = 10$ 62 $K = 20$ (controller value)

Parabolic input-

Simulink model-

Plot-(Depicts steady state error as T->infinity)

The value of K was calculated assuming that system is stable. But from the output plot we can see the system was unstable so no value of K exists.

Step input-

Simulink model-

Plot-(Depicts steady state error as T->infinity)

We can see as T->infinity the steady state error approaches zero so design for controller is correct.