Tek Değişkenli Optimizasyon Yöntemleri

Presentation · April 2016							
DOI: 10.13140/RG.2.2.20379.05929							
CITATION	S	READS					
0		4,517					
1 author:							
	Ismail Can Dikmen						
	Inonu University						
	27 PUBLICATIONS 106 CITATIONS						
	SEE PROFILE						
Some of the authors of this publication are also working on these related projects:							
HIL simulation setup for attitude control of a quadrotor View project							
Project	E-Cameleon View project						

INÖNÜ ÜNIVERSITESI

BILGISAYAR MÜHENDISLIĞI BÖLÜMÜ

KONVEKS ANALIZ VE OPTIMIZASYON

TEK DEĞİŞKENLİ OPTİMİZASYON YÖNTEMLERİ

GIRIŞ

GOLDEN SECTION

FIBONACCI

NEWTON

SECANT

Giriş

Nedir?

Optimizasyon, reel bir fonksiyonu maksimize veya minimize etme probleminin çözümünü, çözüm için izin verilen bir küme dahilindeki reel veya tamsayı değerlerini sistematik bir şekilde kullanarak arama işlemidir.

Neden?

 $X_1, X_2...X_n$

GİRİŞ

Nedir?

Neden?

 $X_1, X_2...X_n$

- Çünkü Optimizasyon "En İyileme" anlamına gelir ve her zaman için istenen bir sonuçtur.
- Bir işin yapılmış olması demek, o işin en iyi şekilde yapıldığı anlamına gelmez. Optimizasyon teknikleri, yapılmış veya yapılmakta olan işin en iyi çözümünü ortaya koymak için kullanılır.
- Bu teknikler kullanılarak ortaya konulmuş olan çözüm, Optimum Çözüm olarak adlandırılır. Hedef her zaman için bu optimum çözümü yakalayabilmektir.
- Optimizasyon, anlamından da anlaşılacağı gibi, her alanda kullanılmaktadır.
 Yapılacak olan bir inşaattan tutun bir web sitesine kadar her alanda bu tekniklere ihtiyaç duyulur.

GiRİŞ

Nedir?

Neden?

 $X_1, X_2...X_n$

Mühendislik uygulamaları örnekleri:

- En az fire malzeme kesme
- Minimum ağırlık ve maksimum mukavemet ile uçak tasarımı
- Uzay araçlarının, füzelerin, dronların vb. yörünge hesaplamaları
- Maliyeti minimuma indirmek için planlı bakım
- Üretim de verimi arttırmak için optimum mesai saatleri
- ..

GİRİŞ

Nedir?

Neden?

 $x_1, x_2...x_n$

Optimizasyon bir probleminin tek değişkenli veya çok değişkenli olması ne demek?

Giriş

Nedir?

Optimizasyon bir probleminin kısıtlarının olması ne demek?

Neden?

x₁,x₂...x_n

TEK DEĞİŞKENLİ OPTİMİZASYON TEKNİKLERİ

GOLDEN SECTION

FIBONACCI

NEWTON

SECANT

TEK DEĞİŞKENLİ OPTİMİZASYON TEKNİKLERİ

GOLDEN SECTION

FIBONACCI

NEWTON

SECANT

Genel Özellikleri:

- Golden Section(Altın Bölme) metodunun temeli İtalyan matematikçi Fibonacci tarafından atılmıştır (1202).
- Metot, optimumun araştırılacağı alanın sürekli daraltılmasına dayanır.
- Bu alan altın orana göre daraltılır.
- Optimizasyon sonucunda çok küçülen alanın optimumu barındırdığı düşünülür.
- İteratif bir yöntemdir.

Altın oran nedir?

- Sembolü ile gösterilir.
- Değeri yaklaşık 1,618'dir.
- Geometri, sanat, mimari ve diğer pek çok alanda karşımıza çıkan bir orandır.

Altın oran nedir?

• Ardında yatan fikir...

iii inönü üniversitesi

GOLDEN SECTION METODU

Örnek:

İterasyon sayısı= 0

 $X_1 = 0.3820$

 $X_2 = 0,6180$

 $f(x_1) = 0.3003$

Örnek:

İterasyon sayısı= 1

 $X_1 = 0.3820$

 $X_2 = 0,2361$

 $f(x_1) = 0.3269$

Örnek:

İterasyon sayısı= 2

 $X_1 = 0.3820$

 $X_2 = 0,4721$

 $f(x_1) = 0.3003$

Örnek:

İterasyon sayısı= 3

$$X_1 = 0.3262$$

$$X_2 = 0.3820$$

$$f(x_1) = 0.3054$$

$$f(x_2) = 0.3003$$

Örnek:

İterasyon sayısı= 4

 $X_1 = 0.3820$

 $X_2 = 0,4164$

 $f(x_1) = 0.3003$

Örnek:

İterasyon sayısı= 5

 $X_1 = 0.4164$

 $X_2 = 0,4377$

 $f(x_1) = 0.3003$

 $f(x_2) = 0.3014$

 $x_{min} = 0.416408$

 $f(x_{min}) = 0.300269$

GOLDEN SECTION METODU

Örnek: $f(x) = 5x^2 - 5x$ fonksiyonun x'in [-1, 2] değer aralığında yalnız bir minimum noktası bulunduğu bilindiğine göre golden section metodu ile 5 iterasyon yapıldığında sonuca hangi hassasiyetle yaklaşılacağını hesaplayınız.

```
a = -1.0

b = 5.0

f(a) = f(-1.0) = 10.0

f(b) = f(5.0) = 100.0

10.0 < 100.0 ( f(a) < f(b) )

b = b - (0.381966 * |a - b|) (Aralığı sağdan daraltıyoruz.)

b = 5.0 - 0.381966 * 6.0 = 2.708203

Yeni aralığımız [-1.0, 2.708203] aralığı oldu.
```

GOLDEN SECTION METODU

<u>Örnek:</u> $f(x) = 5x^2 - 5x$ fonksiyonun x'in [-1, 2] değer aralığında yalnız bir minimum noktası bulunduğu bilindiğine göre golden section metodu ile 5 iterasyon yapıldığında sonuca hangi hassasiyetle yaklaşılacağını hesaplayınız.

```
a = -1.0

b = 2.708203

f(a) = f(-1.0) = 10.0

f(b) = f(2.708203) = 23.13082

10.0 < 23.13082( f(a) < f(b) )

b = b - (0.381966 * |a - b|)  (Aralığı sağdan daraltıyoruz.)

b = 2.708203 - 0.381966 * 3.708203 = 1.291796

Yeni aralığımız [-1.0, 1.291796] aralığı oldu.
```

GOLDEN SECTION METODU

Örnek: $f(x) = 5x^2 - 5x$ fonksiyonun x'in [-1, 2] değer aralığında yalnız bir minimum noktası bulunduğu bilindiğine göre golden section metodu ile 5 iterasyon yapıldığında sonuca hangi hassasiyetle yaklaşılacağını hesaplayınız.

```
a = -1.0

b = 1.291796

f(a) = f(-1.0) = 10.0

f(b) = f(1.291796) = 1.884705

1.884705 < 10.0 ( f(b) < f(a) )

a = a + (0.381966 * |a - b|) (Aralığı soldan daraltıyoruz.)

a = -1.0 + 0.381966 * 2.291796 = -0.12461

Yeni aralığımız [-0.12461, 1.291796] aralığı oldu.
```

GOLDEN SECTION METODU

Örnek: $f(x) = 5x^2 - 5x$ fonksiyonun x'in [-1, 2] değer aralığında yalnız bir minimum noktası bulunduğu bilindiğine göre golden section metodu ile 5 iterasyon yapıldığında sonuca hangi hassasiyetle yaklaşılacağını hesaplayınız.

```
a = -0.12461
b = 1.291796
f(a) = f(-0.12461) = 0.700699
f(b) = f(1.291796) = 1.884705
0.700699 < 1.884705 (f(a) < f(b) )
b = b - (0.381966 * |a - b|) (Aralığı sağdan daraltıyoruz.)
b = 1.291796 - 0.381966 * 1.416407 = 0.750776
Yeni aralığımız [-0.12461, 0.750776] aralığı oldu.
```

GOLDEN SECTION METODU

Örnek: $f(x) = 5x^2 - 5x$ fonksiyonun x'in [-1, 2] değer aralığında yalnız bir minimum noktası bulunduğu bilindiğine göre golden section metodu ile 5 iterasyon yapıldığında sonuca hangi hassasiyetle yaklaşılacağını hesaplayınız.

```
a = -0.12461

b = 0.750776

f(a) = f(-0.12461) = 0.700699

f(b) = f(0.750776) = -0.93555

-0.93555 < 0.700699 ( f(b) < f(a) )

a = a + (0.381966 * |a - b|) (Aralığı soldan daraltıyoruz.)

a = -0.12461 + 0.381966 * 0.875388 = 0.209756

Yeni aralığımız [0.209756, 0.750776] aralığı oldu.
```

GOLDEN SECTION METODU

Örnek: $f(x) = 5x^2 - 5x$ fonksiyonun x'in [-1, 2] değer aralığında yalnız bir minimum noktası bulunduğu bilindiğine göre golden section metodu ile 5 iterasyon yapıldığında sonuca hangi hassasiyetle yaklaşılacağını hesaplayınız.

Hesapladığımız aralık [0.209756, 0.750776] 0.750776 - 0.209756 = **0.54102**

Formülde yerine koyduğumuzda 0.618⁵ = **0.54087**

Genel Değerlendirme:

- Her iterasyonda çözüm aralığının %38'i elemine edilir.
- n iterasyon sonucunda çözüm aralığı 0,618ⁿ oranında küçülmüş olacaktır.
- n=10 olduğu düşünülürse bulunan çözüm aralığı başlangıç aralığının %1'inden küçük olacaktır.
- Verilen çözüm aralığı içerisinde tek bir minimum nokta içeren fonksiyonlarda kullanılabilir.

TEK DEĞİŞKENLİ OPTİMİZASYON TEKNİKLERİ

FIBONACCI

NEWTON

SECANT

TEK DEĞİŞKENLİ OPTİMİZASYON TEKNİKLERİ

FIBONACCI

NEWTON

SECANT

Genel Özellikleri:

- Fibonacci dizisi temel alınarak çözüm alanı daraltılır.
- Golden Section yönteminde sabit bir oran kullanılırken bu yöntemde her iterasyonde değişen bir oran kullanılır. k iterasyonu için ρ_k bir sonraki iterasyonda ise ρ_{k+1} vb.
- Golden Section metodunda olduğu gibi uygun bir ρ değeri seçilmeye çalışılır. ($0 \le \rho_k \le \frac{1}{2}$)
- İteratif bir yöntemdir.

Genel Özellikleri:

• Fibonacci dizisi...

Genel Özellikleri:

İterasyon k

İterasyon k+1

$$\rho_{k+1}(1-\rho_k) = 1-2\rho_k$$
 $\rho_{k+1} = 1-\frac{\rho_k}{1-\rho_k}$

FIBONACCI METODU

Örnek: $f(x) = -3x^2 + 21.6x + 1$ fonksiyonun maksimum noktasını 0 < x < 25 aralığında 0.5 hassasiyetle bulunuz.

$$F_n = (25 - 0)/0.5 = 50$$

F_n değerininin 50'den büyük olduğu iterasyon sayısını bulacağız.

Fibonacci Metodu

Örnek: $f(x) = -3x^2 + 21.6x + 1$ fonksiyonun maksimum noktasını 0 < x < 25 aralığında 0.5 hassasiyetle bulunuz.

$$\rho_k = \frac{F_{n-k-2}}{F_n} \times (b - a)$$

$$\rho_k = \frac{F_7}{F_9} \times (b_0 - a_0)$$

$$\rho_k = \frac{21}{55} \times (25 - 0) = 9.545$$

$$x_1 = a + 9.545 = 0 + 9.545 = 9.545$$

$$x_2 = b - 9.545 = 25 - 9.545 = 15.455$$

$$f(x_1) = f(9.545) = -66.15$$

$$f(x_2) = f(15.455) = -381.74$$

$$f(x_2) = f(15.455) = -381.74$$

$$f(x_1) > f(x_2)$$

$$f(x_2) = f(15.455) = -381.74$$

$$f(x_1) > f(x_2)$$

$$f(x_2) = f(15.455) = -381.74$$

$$f(x_1) > f(x_2)$$

$$f(x_2) = f(15.455) = -381.74$$

$$f(x_1) > f(x_2)$$

$$f(x_2) = f(15.455) = -381.74$$

$$f(x_1) > f(x_2)$$

$$f(x_2) = f(15.455) = -381.74$$

Fibonacci Metodu

Örnek: $f(x) = -3x^2 + 21.6x + 1$ fonksiyonun maksimum noktasını 0 < x < 25 aralığında 0.5 hassasiyetle

bulunuz.

$$k = 1$$

$$a = 0$$

$$b = x_2 = 15.455$$

$$x_2 = x_1 = 9.545$$

$$f(x_1) = f(5.909) = 23.886$$

 $f(x_2) = f(9.545) = -66.15$

$$f(x_1) > f(x_2)$$

$$f(x_2) = f(9.545) = -66.15$$

$$- f(x_1) > f(x_2)$$

$$x_1 = a + \frac{(F_{9-1-2})}{F_{9-1}} \times (15.455 - 0)$$

$$x_1 = 0 + \frac{13}{34} \times 15.455 = 5.909$$

Örnek: $f(x) = -3x^2 + 21.6x + 1$ fonksiyonun maksimum noktasını 0 < x < 25 aralığında 0.5 hassasiyetle bulunuz.

k	а	b	x_1	x_2	$f(x_1)$	$f(x_2)$
1	0	25	9.545	15.455	-66.150	-381.740
2	0	15.455	5.909	9.545	23.886	-66.150
3	0	9.545	3.636	5.909	39.876	23.886
4	0	5.909	2.273	3.636	34.597	39.870
5	2.273	5.909	3.636	4.543	39.876	37.213
6	2.273	4.543	3.182	3.636	39.356	39.870
7	3.182	4.534	3.636	4.089	39.870	39.163
8	3.182	4.089	3.635	3.636	39.880	39.870
9	3.182	3.635				

Yeni aralığımız [3.182, 3.635] oldu. $3.636 - 3.182 = 0.453 \rightarrow \varepsilon < 0.5$

TEK DEĞİŞKENLİ OPTİMİZASYON TEKNİKLERİ

- ✓ GİRİŞ
- **✓** GOLDEN SECTION
- **✓** FIBONACCI

NEWTON

SECANT

- ✓ GİRİŞ
- **✓** GOLDEN SECTION
- **✓** FIBONACCI

NEWTON

SECANT

- Anlatılan metotlar içinde en iyi yakınsayanıdır.
- Ölçülen her x_k noktasında $f(x_k)$, $f'(x_k)$ ve $f''(x_k)$ değerlerinin hesaplanabildiği varsayılır.
- Çözüm için $f''(x_k) = 0$ olmamalıdır.
- İteratif bir yöntemdir.

$$f''(x_i) = \frac{f'(x_i)}{x_i - xi_{+1}}$$
$$f'(x_i) = (x_i - x_{i+1}) \times f''(x_i)$$

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

$$x_{i+1} - xi = -\frac{f'(x_i)}{f''(x_i)}$$

$$x_{i+1} - xi = -\frac{f'(x_i)}{f''(x_i)}$$

$$\varepsilon f''(x_i) = -f'(x_i)$$

Örnek:

$$f(x) = \frac{1}{3}x^3 + \frac{1}{4}x^2 - 0.5x + 1$$
 fonksiyonunun minimum değerini Newton metodu ile hesaplayınız. $\varepsilon = 0.01$, $x_1 = -0.1$

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

$$f'(x) = x^2 + \frac{1}{2}x - 0.5$$

$$f''(x) = 2x + \frac{1}{2}$$

$$x_1 = -0.1 \text{ için, } f'(x_1) = (-0.1)^2 + \frac{1}{2}(-0.1) - 0.5 = -0.54$$

$$f''(x_1) = 2 \times (-0.1) + \frac{1}{2} = 0.3$$

$$x_2 = x_1 - \frac{f'(x_1)}{f''(x_1)}$$

$$x_2 = -0.1 - \frac{-0.54}{0.3} = 1.7$$

$$f(x) = \frac{1}{3}x^3 + \frac{1}{4}x^2 - 0.5x + 1$$
 fonksiyonunun minimum değerini Newton metodu ile hesaplayınız. $\varepsilon = 0.01$, $x_1 = -0.1$

$$f'(x) = x^2 + \frac{1}{2}x - 0.5$$

$$f''(x) = 2x + \frac{1}{2}$$

$$x_2 = 1.7$$
 için,

$$x_2 = 1.7 \text{ için,}$$
 $f'(x_2) = (1.7)^2 + \frac{1}{2}(1.7) - 0.5 = 3.24$ $f''(x_2) = 2 \times (1.7) + \frac{1}{2} = 3.9$

$$x_3 = x_2 - \frac{f'(x_2)}{f''(x_2)}$$

$$x_3 = 1.7 - \frac{3.24}{3.9} = 0.8692$$

Örnek:

$$f(x) = \frac{1}{3}x^3 + \frac{1}{4}x^2 - 0.5x + 1$$
 fonksiyonunun minimum değerini Newton metodu ile hesaplayınız. $\varepsilon = 0.01$, $x_1 = -0.1$

k	x_{i}	$f(x_i)$	$f'(x_i)$	$f''(x_i)$	x_{i+1}
0	-0.1000	1.0522	-0.5400	0.3000	1.7000
1	1.7000	2.5102	3.2400	3.9000	0.8692
2	0.8692	0.9732	0.6902	2.2385	0.5609
3	0.5609	0.8570	0.0951	1.6218	0.5023
4	0.5023	0.8542	0.0034	1.5046	0.5000
5	0.5000	0.8542	0.0000	1.5000	

Genel Değerlendirme:

- Fonksiyonun 1. ve 2. türevlerini kullanır.
- Yakınsama hızı çözülen problemin tipine bağlıdır.
- Keskin dönüşlü fonksiyonlarda zorlanır. Fonksiyon 1. ve 2. dereceden sürekli olmak zorunda.
- Çözüm garanti değildir.

- ✓ GİRİŞ
- **✓** GOLDEN SECTION
- **✓** FIBONACCI
- **✓** NEWTON

SECANT

- ✓ GİRİŞ
- **✓** GOLDEN SECTION
- **✓** FIBONACCI
- **✓** NEWTON

SECANT

- f' nün kökünü bulma temellidir.
- Lineer interpolasyon kullanır.

- Newton metodunda ikinci dereceden türevin hesaplanması bazı problemlerde çok zor olabilir.
- İkinci türevin yaklaşık değerinin kullanılması böyle durumlarda işlem kolaylığı sağlar.
- İkinci türevin, birinci türev bilgisi kullanarak sonlu farklarla yaklaşıklığı:

$$f''(x) = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

Genel Özellikleri:

• İkinci türev ifadesi Newton metodunun formülünde yerine koyulursa Secant metodunun formülü elde edilir.

$$f''(x) = \underbrace{\frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}} \qquad x_{k+1} - xk = -\frac{f'(x_k)}{f''(x_k)}$$

Genel Özellikleri:

• İkinci türev ifadesi Newton metodunun formülünde yerine koyulursa Secant metodunun formülü elde edilir.

$$f''(x) = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}} + x_{k+1} - xk = -\frac{f'(x_k)}{f''(x_k)} \rightarrow x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})} f'(x_k)$$

Örnek:

$$f(x) = -\frac{1}{2}x^4 - x^3 + 6x^2 + 6x + 4$$
 fonksiyonunu Secant metodu ile minimize edin.

$$x_0$$
=-1.6, x_{-1} =-1.7

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})} f'(x_k)$$

$$f'(x) = -2x^3 - 3x^2 + 12x + 6$$

$$f'(x_0) = -2x_0^3 - 3x_0^2 + 12x_0 + 6$$

$$f'(x_0) = -2(-1.6)^3 - 3(-1.6)^2 + 12(-1.6) + 6$$

$$f'(x_0) = -2(-1.6)^3 - 3(-1.6)^2 + 12(-1.6) + 6$$

$$f'(x_0) = -12.688$$

$$f(x) = -\frac{1}{2}x^4 - x^3 + 6x^2 + 6x + 4$$
 fonksiyonunu Secant metodu ile minimize edin.

$$x_0$$
=-1.6, x_{-1} =-1.7

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})} f'(x_k)$$

$$f'(x) = -2x^3 - 3x^2 + 12x + 6$$

$$f'(x_{-1}) = -2(-1.7)^3 - 3(-1.7)^2 + 12(-1.7) + 6$$

$$f'(x_{-1}) = -13.244$$

iii inönü üniversitesi

SECANT METODU

$$f(x) = -\frac{1}{2}x^4 - x^3 + 6x^2 + 6x + 4$$
 fonksiyonunu Secant metodu ile minimize edin.

$$x_0$$
=-1.6, x_{-1} =-1.7

$$f'(x_{-1}) = -13.244$$

$$f'(x_0) = -12.688$$

$$x_1 = x_0 - \frac{x_0 - x_{-1}}{f'(x_0) - f'(x_{-1})} f'(x_0)$$

$$x_1 = -1.6 - \frac{-1.6 + 1.7}{-12.688 - 13.244} (-12.688)$$

$$f(x) = -\frac{1}{2}x^4 - x^3 + 6x^2 + 6x + 4$$
 fonksiyonunu Secant metodu ile minimize edin.

$$x_0$$
=-1.6, x_{-1} =-1.7

k	$x_{\rm i}$	$f'(x_i)$
0	-1.6000	12.668
1	0.6820	12.154
2	-0.4345	0.38369
3	-0.4709	-0.1072
4	-0.4630	-0.00060131
5	-0.4630	-0.00060131

- ✓ GİRİŞ
- **✓** GOLDEN SECTION
- **✓** FIBONACCI
- **✓** NEWTON
- **✓** SECANT

Sorularınız varsa cevaplamaya hazırım...

TEŞEKKÜRLER