M8 - 7.1 - Volume Formula Shape WS

Find the volume

Cube

$$V = (area\ of\ base) \times (height)$$

 $V = (l \times w) \times (h)$
 $V = (l \times w) \times (h)$

Rectangular Prism

$$V = (area \ of \ base) \times (height)$$

 $V = (l \times w) \times (h)$
 $V = (l \times w) \times (h)$

$$V = (area\ of\ base) \times (height)$$

 $V = (\pi r^2) \times (h)$
 $V = (\pi r^2) \times (h)$

$$V = (area \ of \ base) \times (height)$$

$$V = \left(\frac{b \times h}{2}\right) \times (H)$$

$$V =$$

M8 - 7.1 - Cube Volume WS

Calculate the volume in the specified units.

$$V = l \times w \times h$$

$$V = 5 \times 5 \times 5$$

$$V = 125 in^3$$

M8 - 7.1 - Rectangular Prism Volume WS

Calculate the volume in the specified units.

$$V = 3 \times 4 \times 5$$
$$V = 60 \, m^3$$

M8 - 7.2 - Cylinder Volume WS

Calculate the volume of the following cylinders.

$$V = A_{base} \times height$$

 $V = \pi r^2 \times h$
 $V = \pi (5)^2 \times 8$
 $V = 25\pi \times 8$
 $V = 200\pi$
 $V = 628.32 \ mm^3$

M8 - 7.2 - Triangular Prism Volume WS

Calculate the volume.

M8 - 7.2 - Volume (Tri Pythag Integers/Sqrt) RVW

Find the following volumes

$\mbox{M8}$ - 7.3 - Volume with Shape HW

Calculate the volume.

M8 - 7.4 - Rectangular Prism Missing Length WS

Find the missing length for the shapes below.

$$V = l \times w \times h$$

$$60 = 2 \times w \times 3$$

$$60 = 6 \times w$$

$$\frac{60}{6} = \frac{6 \times w}{6}$$

$$10 \ cm = w$$

