Data Visualization

PGD Batch - 5

Atif Salam

CNIC: 42201-9446591-3

```
Question 1 (20 marks)
```

A dataset containing information about the sales of different products in a retail store is available at sales_data.csv. Analyze the dataset and identify the top-selling products, the most profitable products, and the products with the highest customer satisfaction. Visualize your findings using appropriate charts and graphs.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

path = r"C:\Users\atif\Dropbox\Data Science NED\Data Visualization\
Final Paper\Hybrid Exam Paper\sales_data.csv"
sales = pd.read csv(path, encoding="latin1",
```

parse_dates=["ORDERDATE"])
sales.head()

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	
SA	LES \				
0	10107	30	95.70	2	2871.00
1	10121	34	81.35	5	2765.90
2	10134	41	94.74	2	3884.34
3	10145	45	83.26	6	3746.70
4	10159	49	100.00	14	5205.27

ORDERDATE	STATUS	QTR_ID	MONTH_ID	YEAR_ID	 \
0 2003-02-24	Shipped	_ 1	_ 2	2003	
1 2003-05-07	Shipped	2	5	2003	
2 2003-07-01	Shipped	3	7	2003	
3 2003-08-25	Shipped	3	8	2003	
4 2003-10-10	Shipped	4	10	2003	

0 1 2 27 3 4		Long Air 59 rue Colonel 78934 H	ADDRESSLING port Avenu de l'Abbay Pierre Avi Hillside Du I Strong St	∕e ia ∩.	NaN NaN NaN NaN	NYC Reims Paris	NaN NaN CA	\
DEALSI	ZE			CONTACTLAS		CONTACTFIRSTNAM		
0 Small	10022	USA	NaN		Yu	Kwa	31	
1 Small	51100	France	EMEA	He	nriot	Pau	ıl	
2 Medium	75508	France	EMEA	Da	Cunha	Danie	el	
3 Medium	90003	USA	NaN		Young	Juli	Le	
4 Medium	NaN	USA	NaN		Brown	Juli	Le	
[5 row	s x 25	columns]						

Top Selling Products

```
top_selling_products = sales.groupby("PRODUCTCODE")
["QUANTITYORDERED"].sum().sort_values(ascending=False).head(10)

plt.figure(figsize=(10, 6))
sns.barplot(x=top_selling_products.values,
y=top_selling_products.index, palette="viridis")
plt.title("Top Selling Products")
plt.xlabel("Quantity Sold")
plt.ylabel("Product")
plt.show()
```


Most Profitable Products

```
sales["PROFIT"] = sales["SALES"] - (sales["QUANTITYORDERED"] *
sales["PRICEEACH"])
most_profitable_products = sales.groupby("PRODUCTCODE")
["PROFIT"].sum().sort_values(ascending=False).head(10)

plt.figure(figsize=(10, 6))
sns.barplot(x=most_profitable_products.values,
y=most_profitable_products.index, palette="viridis")
plt.title("Most Profitable Products")
plt.xlabel("Product")
plt.ylabel("Profit")
plt.show()
```


Product Highest Customer Satisfaction

```
sales["COMPLETENAME"] =
pd.concat([sales["CONTACTFIRSTNAME"].astype(str),
sales["CONTACTLASTNAME"]], axis=1).agg(' '.join, axis=1)
high_cust_satis = sales.groupby("PRODUCTCODE")
["COMPLETENAME"].value_counts().sort_values(ascending=False).head(5)
high_cust_satis = high_cust_satis.reset_index(name="COUNTS")

plt.figure(figsize=(8, 6))
sns.barplot(x="COUNTS", y="PRODUCTCODE", hue="PRODUCTCODE",
data=high_cust_satis, palette="viridis")
plt.title("Product Highest Customer Satisfaction")
plt.xlabel("Counts")
plt.ylabel("Products")
plt.show()
```


Question 2 (20 marks)

A dataset containing information about the performance of students in a school is available at Performance.csv. Analyze the dataset and identify the factors that contribute to student success. Visualize your findings using appropriate charts and graphs.

path = r"C:\Users\atif\Dropbox\Data Science NED\Data Visualization\
Final Paper\Hybrid Exam Paper\Performance.csv"
performance = pd.read_csv(path)
performance.head()

	gender	race/ethnicity	parenta	al leve	l of educ	cation	1	Lunch	\
0	female	group B		bac	helor's d	degree	star	ndard	
1	female	group C			some co	ollege	star	ndard	
2	female	group B		m	aster's d	degree	star	ndard	
3	male	group A		asso	ciate's d	degree	free/red	duced	
4	male	group C			some co	ollege	star	ndard	
	test pre	eparation course	e math	score	reading	score	writing	score	
0		none	9	72		72		74	
1		completed	t	69		90		88	

2	none	90	95	93
3	none	47	57	44
4	none	76	78	75

Correlation matrix

```
correlation_matrix = performance.corr()
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm",
fmt=".2f")
plt.title("Correlation Matrix")
plt.show()
```


Visualize scores by gender

```
sns.boxplot(x='gender', y='math score', data=performance)
plt.title("Math Scores by Gender")
plt.show()
```


Reading Scores by Gender

```
sns.boxplot(x='gender', y='reading score', data=performance)
plt.title("Reading Scores by Gender")
plt.show()
```


Writing Scores by Gender

```
sns.boxplot(x='gender', y='writing score', data=performance)
plt.title("Writing Scores by Gender")
plt.show()
```


Visualize scores by race/ethnicity

```
sns.boxplot(x='race/ethnicity', y='math score', data=performance)
plt.title("Math Scores by Race/Ethnicity")
plt.show()

sns.boxplot(x='race/ethnicity', y='reading score', data=performance)
plt.title("Reading Scores by Race/Ethnicity")
plt.show()

sns.boxplot(x='race/ethnicity', y='writing score', data=performance)
plt.title("Writing Scores by Race/Ethnicity")
plt.show()
```


Visualize scores by parental level of education

```
sns.boxplot(x='parental level of education', y='math score',
data=performance)
plt.title("Math Scores by Parental Level of Education")
plt.xticks(rotation=45)
plt.show()

sns.boxplot(x='parental level of education', y='reading score',
data=performance)
plt.title("Reading Scores by Parental Level of Education")
plt.xticks(rotation=45)
plt.show()

sns.boxplot(x='parental level of education', y='writing score',
data=performance)
plt.title("Writing Scores by Parental Level of Education")
plt.xticks(rotation=45)
plt.show()
```


Visualize the impact of lunch on scores

```
sns.boxplot(x="lunch", y="math score", data=performance)
plt.title("Math Scores by Lunch Type")
plt.show()

sns.boxplot(x="lunch", y="reading score", data=performance)
plt.title("Reading Scores by Lunch Type")
plt.show()

sns.boxplot(x="lunch", y="writing score", data=performance)
plt.title("Writing Scores by Lunch Type")
plt.show()
```


Visualize the impact of test preparation course

```
sns.boxplot(x="test preparation course", y="math score",
data=performance)
plt.title("Math Scores by Test Preparation Course")
plt.show()

sns.boxplot(x="test preparation course", y="reading score",
data=performance)
plt.title("Reading Scores by Test Preparation Course")
plt.show()

sns.boxplot(x="test preparation course", y="writing score",
data=performance)
plt.title("Writing Scores by Test Preparation Course")
plt.show()
```


Question 3 (20 marks)

A dataset containing information about the weather in a city is available at weatherHistory.csv. Analyze the dataset and identify the trends in temperature, precipitation, and humidity over time. Visualize your findings using appropriate charts and graphs.

path = r"C:\Users\atif\Dropbox\Data Science NED\Data Visualization\
Final Paper\Hybrid Exam Paper\weatherHistory.csv"
weather = pd.read_csv(path)
weather.head()

	Formatted	Date	9	Summary	Precip	Type
Temperature (
0 2006-04-01	00:00:00.000	+0200	Partly	Cloudy		rain
9.472222						
1 2006-04-01	01:00:00.000	+0200	Partly	Cloudy		rain
9.355556						
2 2006-04-01	02:00:00.000	+0200	Mostly	Cloudy		rain
9.377778						
3 2006-04-01	03:00:00.000	+0200	Partly	Cloudy		rain
8.288889						
4 2006-04-01	04:00:00.000	+0200	Mostly	Cloudy		rain
2 2006-04-01 9.377778 3 2006-04-01 8.288889	02:00:00.000 03:00:00.000 04:00:00.000	+0200	Partly	Cloudy		

```
8.755556
   Apparent Temperature (C)
                              Humidity Wind Speed (km/h) \
0
                                  0.89
                                                  14.1197
                   7.388889
1
                                  0.86
                                                  14.2646
                   7.227778
2
                   9.377778
                                  0.89
                                                   3.9284
3
                   5.944444
                                  0.83
                                                  14.1036
4
                   6.977778
                                  0.83
                                                  11.0446
   Wind Bearing (degrees) Visibility (km)
                                             Loud Cover Pressure
(millibars)
                    251.0
                                    15.8263
                                                    0.0
1015.13
                    259.0
                                    15.8263
                                                     0.0
1015.63
                    204.0
                                    14.9569
                                                    0.0
1015.94
                    269.0
                                    15.8263
                                                    0.0
1016.41
                    259.0
                                                    0.0
                                    15.8263
1016.51
                       Daily Summary
   Partly cloudy throughout the day.
   Partly cloudy throughout the day.
1
   Partly cloudy throughout the day.
   Partly cloudy throughout the day.
   Partly cloudy throughout the day.
weather["Formatted Date"] = pd.to datetime(weather["Formatted Date"],
utc=True)
weather.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 96453 entries, 0 to 96452
Data columns (total 12 columns):
#
     Column
                                Non-Null Count
                                                Dtype
- - -
 0
     Formatted Date
                                96453 non-null
                                                datetime64[ns, UTC]
 1
     Summary
                                96453 non-null
                                                object
 2
     Precip Type
                                95936 non-null
                                                object
 3
     Temperature (C)
                                96453 non-null
                                                float64
4
                                96453 non-null
                                                float64
     Apparent Temperature (C)
 5
     Humidity
                                96453 non-null
                                                float64
     Wind Speed (km/h)
                                96453 non-null
 6
                                                float64
 7
     Wind Bearing (degrees)
                                96453 non-null
                                                float64
 8
     Visibility (km)
                                96453 non-null float64
 9
     Loud Cover
                                96453 non-null
                                                float64
 10 Pressure (millibars)
                                96453 non-null float64
```

```
11 Daily Summary 96453 non-null object dtypes: datetime64[ns, UTC](1), float64(8), object(3) memory usage: 8.8+ MB
```

For Temperature Over Time

```
plt.figure(figsize=(12, 6))
sns.lineplot(x="Formatted Date", y="Temperature (C)", data=weather)
plt.title("Temperature Trends Over Time")
plt.xticks(rotation=45)
plt.show()
```


For Precipitation

```
plt.figure(figsize=(8, 5))
sns.countplot(x="Precip Type", data=weather)
plt.title("Precipitation Type Distribution")
plt.show()
```


For Humidity Over Time

```
plt.figure(figsize=(12, 6))
sns.lineplot(x="Formatted Date", y="Humidity", data=weather)
plt.title("Humidity Trends Over Time")
plt.xticks(rotation=45)
plt.show()
```


Correlation Matrix

```
correlation_matrix = weather.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
plt.show()
```

