Question 1 (a).

Since ABC \cap CD = C and C is a superkey of R 2 (due to the FD C \rightarrow D), the decomposition is lossless.

Question 1 (b).

Since AC \cap ABD = A and A is a superkey of R 1 (due to the FD A \rightarrow BCD), the decomposition is lossless.

Question 1 (c).

A decomposition is lossless join if there exists a sequence of binary lossless-join decompositions that generates that decomposition. It turns out that there is one such decomposition. First, decompose R into R3(A,C,D) and R4(A,B,C,E). This is lossless because R3 \cap R4 = AC, and AC is a superkey of R3. Next, decompose R4 into R1(A,B,C) and R2(A,B,E). This is also lossless because R1 \cap R2 = AB, and AB is a superkey of R1. Therefore, {R1(A,B,C), R2(A,B,E), R3 (A,C,D)} is a lossless-join decomposition.

Question 2 (a).

R is not in BCNF because A \rightarrow E violates BCNF: A is not a superkey of R as {A}+ = ABDE.

Question 2 (b).

The decomposition is lossless-join because $R1 \cap R2 = \{E\}$ and $E \rightarrow BDE$.

Question 2 (c).

Note that {A}+=ABDE. Therefore, on R2, we have {A}+=AE. This indicates that R2 is not in BCNF.

Question 2 (d).

- 1. {E}+ = {EDB}, which indicates that R is not in BCNF. Accordingly, we decompose R into R1(E, B, D) and R2(E, A, C).
- 2. The only non-trivial FD on R1 is $E \rightarrow DB$, and E is a key of R1. Thus, R1 is in BCNF.
- 3. {A}+={AEDB}, and hence, we have {A}+={AE} on R2. This indicates that R2 is not in BCNF. Accordingly, we decompose R2 into R3(A, E) and R4(A, C).
- 4. R3 and R4 are in BCNF since each of them contains only two attributes.
- 5. Therefore, { R1(E, D, B), R3(A, E), R4(A, C) } is a BCNF decomposition of R.

Question 3.

- 1. {B}+=BCDE, which indicates that R is not in BCNF. Accordingly, we decompose R into R1(B, C, D, E) and R2(B, A).
- 2. Since R2 has only two attributes, it is in BCNF.
- 3. For R1, let's examine the closure of each attribute subset:
 - {B}+={BCDE}, which indicates that B is a key of R1.
 - {C}+={BCDE}, which indicates that C is a key of R1.
 - {D}+={D}
 - {E}+={E}
 - {DE}+={DE}
 - All other attribute subsets are superkeys since they are supersets of either B or C.

Therefore, R1 is in BCNF.

4. As a consequence, {R1(B, C, D, E), R2(A, B)} is a BCNF decomposition of R.