Dire	ct solution	for flux
	K	num cell
zone 1	0.01	4
zone 2	0.1	4
zone 3	1	5
Keq	0.02921	
a	0.02921	

z	K zone cell	K cell	н	q	zone 1	1	zone 2	zone 3
60	1	0.01	60			1	0	0
55	1	0.01	44.7903	0.03042		1	0	0
50	1	0.01	29.5807	0.03042		1	0	0
45	1	0.01	14.3712	0.03042		1	0	0
40	2	0.1	6.00616	0.03042		0	1	0
35	2	0.1	4.4854	0.03042		0	1	0
30	2	0.1	2.96474	0.03041		0	1	0
25	2	0.1	1.44417	0.03041		0	1	0
20	3	1	0.60791	0.03041		0	0	1
15	3	1	0.4559	0.0304		0	0	1
10	3	1	0.30392	0.0304		0	0	1
5	3	1	0.15196	0.03039		0	0	1
0	3	1	0	0.03039		0	0	1

Map of node and cell numbers						
	node	cell				
1	-		1			
2	-		2			
3	-		3			
4	-		4			
5	-		5			
6	-		6			
7	-		7			
8	-		8			
9	-		9			
10	-		10			
11	-		11			
12	-		12			
40			40			

The Challenge:

Create a 1D, vertical steady state model with constant head top and bottom boundaries.

Show, based on the flux with depth, that the model is steady state. Repeat this for a homogeneous and for a heterogeneous column.

Show that the steady state flux agrees with the direct calculation based on the harmonic mean average K.

Show the steady state head profile for a column with approximately equal-thickness layers with different K values.

Use this profile to explain why the equivalent hydraulic conductivity, Keq, is closer to the lower of the K values.