Hypothesis Testing

we want to test if a coin is fair.

Null Hypothesis Ho: The coin is fair

Alternative Hypothesis H1: The coin is biased.

we decide to flip the coin 100 times.

Let X be the number of heads in these 100 flips. Then $X \sim Binomial(\Lambda, P)$ where P = Probability of heads.

 $P(\chi=i) = (i00) p^{i} (1-p)^{n-i}$

rejection region R. we set up a . If x6R Her we reject Ho

. If x & R we retain Ho.

Here are the outcomes.

	Ho True	Ho False.
retain Ho	True Negative P= 1-&	Type-Z error P=B.
reject Ho	Type 1 error P=X	True Positive $P \subset 1-\beta$.

want a 17. Chance of a type 1 error. (Want $\alpha = .01$)

is true

X~ Binomial (100, =) distribution.

メル Binomial (100) =) distribution. If Ho is true If X is indeed Binomial (100, \pm) then $P(\chi = 36)$ or $\chi \geq 64$) = .0066 on the other hand. P(X ≤ 37 or X Z 63) = .012 >.01 So We set R to be R= { x: x ≤ 36 o/ x ≥ 64]. What about type II errors? (Robability of B). we usually phrase this in terms of 1-18 which 15 the power of the test. Suppose our coin flips deads 75% of the time. Then Hi. X ~ Binomial (100, 175). If we are testing against. Ho! Xn Binomial (100, .5) He two distributions look like.

If H_1 was true $P(X \notin R) = P(36 < X < 64)$ = $\frac{63}{(=3)} (100) (3/4)^{i} (\frac{1}{4})^{100 \cdot i} = .005$ or .5%.

on the other hand if $x \sim Binomial(100, .6)$ then $P(x \notin R) = 76-1$.

P(X&R) = 76-1.