

10-2)	principle of natural number induction
	Po
	<u> </u>
	$\forall n, p n \rightarrow p (n+1)$
-7	Vn, Pn

10-21 Goal: Prove that something is
Not in an in sinch set (on in & Rec.)
Stralergy:
First, prone that all things in the ret
have some property
Next some flet this doesn't have
Next, proce that they doesn't have that property,
, (· • • • · · · · · · · · · · · · · · ·
Conclude, that they is not in sets Co. What is P? In Prome VAEREG. P (A) Property " 2. Prome TP (x) pumping lemma"
Co what as P?
1. Porter VACREC P(A). Property "
7. Porce of P(x) "oumains
2. Prove $\neg P(x)$ pumping > X & REF

10-4) What is the about all regular languages? There's some DEA that outerply them. and Here's one smallest DFA. 011 & A >00 Every DKA has some number of states Suppose that the DKA accepts a string of length 4 - 0110

10-6/ All regular languages have a DiA. All DFAs the accept infinitely -many sings have exciting loops. All regular languages that are infinite have "the same kind" of infinitely many soring s xyz & A, tun XyyZfA

10-8/ Regular Pumping Property (RPP) : P(2x) -> Prop RPP(A) == FPEN. ¥ (5 c p . 1517 p) J (x,y,z e E* . S=xy Z 1 xy 1 < P 19170) VieN. x o y' o z & A,