Large-Scale Mitochondria Segmentation

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

Connectomics

Need for Connectomics

- 1. Correlation between neuron wirings with
 - a. Cognition
 - b. Intelligence
 - c. Consciousness
- 2. How memory is stored
- 3. Evolution of wirings with age
- 4. Diseases

Mitochondria

- 1. Powerhouse of the cell
- 2. Responsible for
 - a. Neuronal development ¹
 - b. Developmental Brain Diseases¹
- 3. Relevant mitochondria features
 - a. Morphology
 - b. Number density
 - c. Dysfunctionality and more

¹Geurim Son and Jinju Han, "Roles of mitochondria in neuronal development" in BMB Reports 2018.

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

Mitochondria Segmentation

Mitochondria Segmentation

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

Challenges

- 1. Non-convex Morphology
- 2. Mitochondria in close vicinity
- 3. Annotated data and Generalization
 - a. Training data: 1x6Kx4Kx300
 - b. Test data: 49X4KX4KX1K

Challenges

- 1. Non-convex Morphology
- 2. Mitochondria in close vicinity
- 3. Annotated data and Generalization
 - a. Training data: 1x6kx4kx300
 - b. Test data: 49X4kX4kX1k

Challenges

- 1. Non-convex Morphology
- 2. Mitochondria in close vicinity
- 3. Annotated data and Generalization
 - a. Training data: 1x6kx4kx300
 - b. Test data: 49X4kX4kX1k

Train

Test

Output

Expected Output

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

Related Work

1. Boundary Prediction

- a. Distance Transform
- b. Seed Generation
- c. Flood filling rule
- d. False merges

2. Deep Watershed²

- a. Discretized watershed maps with the boundaries at the same level
- b. Cut at specific energy level
- c. Poor connectivity

²M. Bai and R. Urtasun, "Deep Watershed Transform for Instance Segmentation". In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5221–5229, 2017. 2, 3, 5

Related Work

1. Boundary Prediction

- a. Distance Transform
- b. Seed Generation
- c. Flood filling rule
- d. False merges

2. Deep Watershed²

- a. Discretized watershed maps with the boundaries at the same level
- b. Cut at specific energy level
- c. Poor connectivity

²M. Bai and R. Urtasun, "Deep Watershed Transform for Instance Segmentation". In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5221–5229, 2017. 2, 3, 5

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

1. Ground Truth -> Energy Map

- a. Recursive erosion of boundary pixels
- b. Distance transform using skeleton pixels
- Normalization of distance transform

2. Track changes in connectivity

- a. Augment model with loss functions
- b. More weight for keypoints (skeleton ends and branch points) in loss function

³O. Ronneberger and P.Fischer and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" in MICCAI 2015, vol. 9351, pp. 234-241, 2015

(Energy Map)

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

Previous Approaches

- 1. Connected Components
 - a. False Merges
- 2. CC with Binary Erosion/Dilation
 - a. False Splits
- 3. Watershed
 - a. Oversegmentation

Previous Approaches

- 1. Connected Components
 - a. False Merges
- 2. CC with Binary Erosion/Dilation
 - a. False Splits
- 3. Watershed
 - a. Oversegmentation

Previous Approaches

- 1. Connected Components
 - a. False Merges
- 2. CC with Binary Erosion/Dilation
 - a. False Splits
- 3. Watershed
 - a. Oversegmentation

Marker Generation for Watershed

- 1. Threshold Energy Map
 - a. Marker generation
- 2. Binarize CC output
 - a. Mask Generation
- 3. Watershed

- 1. Motivation
- 2. Problem Statement
- 3. Challenges
- 4. Related Work
- 5. Method
- 6. Post-processing
- 7. Results

Results (Annotated Cell Body)

Matching Criteria: > 0.8 IoU

	True Positives	False Positives	False Negatives
Initial Prediction	49	12	20
After Error Correction	59	12	10

Precision/Recall (by pixel): 94% / 96%