Esercitazione di Laboratorio – Corso di Elettronica 2 anno 2005/2006

Misura della banda passante di un filtro RC-CR

Dati generali:

 $f_{min}(-3dB)=1.6 \text{ kHz}$; $f_{max}(-3dB)=72 \text{ kHz}$

 $Z_{generatore}$ =50 Ω ; $Z_{IN oscilloscopio}$ =1 $M\Omega // 13 pF$

 $Z_{sonda\ compensata} = 10\ M\Omega$

Progetto di massima del filtro passa banda considerando i poli non interagenti

Schema circuitale

Figura 1 Schema

- Si sceglie $R_1 >> Z_{gen}$. Ad esempio $R_1 = 10 \text{ k}\Omega$
- Si sceglie $R_2 << Z_{sonda\ comp}$. Ad esempio $R_2 = 100\ k\Omega$

Quindi

$$C_1 = \frac{1}{2\pi f_{\text{max}} R_1} = \frac{1}{2\pi 72 \cdot 10^3 \cdot 10^4} \cong 220 \text{ pF}$$

$$C_2 = \frac{1}{2\pi f_{\min} R_2} = \frac{1}{2\pi 1.6 \cdot 10^3 \cdot 10^5} \cong 1 \text{ nF}$$

*** per i codici di resistenze e condensatori vedi pagine 6 e 7

Misure da effettuare in laboratorio†

1) Misura della funzione di trasferimento $H(f) = \frac{V_2(f)}{V_1(f)}$

Figura 2 Modulo della funzione di trasferimento

_

[†] Nota: si può utilizzare le tabelle nella pagina 5 per riportare le misure e le carte semilogaritmiche prestampate di pagina 4 per modulo e fase di H(f)

Figura 3 Fase della funzione di trasferimento

- Variare la frequenza del generatore di onda sinusoidale impostando un'ampiezza picco-picco sul display pari a 5 V (corrispondente a $V_1=10$ V, essendo il carico >> di $Z_{gen}=50~\Omega$), fino a trovare la max ampiezza del segnale di uscita V_2 max. Tale frequenza è detta di centro banda e corrisponde a 0 dB. Misurare lo sfasamento tra V_2 e V_1 .
- Variare la frequenza in basso ed in alto rispetto al valore di centro banda fino a trovare un valore della tensione di uscita pari a $\frac{1}{\sqrt{2}}$ $V_{2\,max}$. misurare lo sfasamento per entrambe le frequenze. Calcolare la banda come: B-3dB= f_{max} - f_{min} (fare riferimento alla Figura 2).
- Tracciare i grafici di modulo e fase di H, sull'esempio di Figura 2 e Figura 3, utilizzando i
 fogli pre-stampati: porre i corretti riferimenti sugli assi. Il modulo può essere tracciato,
 per quanto riguarda le ordinate, sia in volt, che direttamente in dB.
 Per velocizzare questo punto, è conveniente ricorrere alle misure automatiche di cui
 l'oscilloscopio dispone, facendo attenzione a:
 - a) visualizzare almeno 5 o 6 periodi del segnale per la misura di fase (variando la base dei tempi)
 - b) utilizzare la limitazione di banda a 20 MHz
- fra f_{min} ed f_{max} conviene acquisire i dati con un intervallo di circa 5 kHz, mentre al di fuori l'intervallo può essere aumentato per risparmiare tempo

Modulo

Fase

Tabella per le misure:

V ₁	f	V_2	V ₂ /V ₁	V ₂ /V ₁ _{dB}	$\angle(V_2/V_1)$

Risultati ottenuti con misure "in frequenza" e condizioni di misura:

f _{(-3dB)min}	Frequenza di taglio inferiore
f _{(-3dB)max}	Frequenza di taglio superiore
f _{0dB}	Frequenza di centro banda
B _{-3dB}	Banda passante
V _{P-P}	Ampiezza picco-picco del segnale in ingresso

Note:	 	

Principali codici dei condensatori ceramici e poliestere

SIGLE	ripor	tate	sui (OND	Ξ	NSATORI				
Picofarad	А	В	С	D		Picofarad	Α	В	С	D
0,5	0.5	p5				1.000	102	1n	.001	
1,0	1	1p0		. }		1.200	122	1n2	.0012	
1,2	1.2	1p2				1.500	152	1n5	.0015	
1,5	1.5	1p5				1.800	182	1n8	.0018	
1,8	1.8	1p8				2.200	222	2n2	.0022	
2,2	2.2	2p2		! !		2.700	272	2n7	.0027	
2,7	2.7	2p7				3.300	332	3n3	.0033	
3,3	3.3	3p3		1		3.900	392	3n9	.0039	
3,9	3.9	3p9		1		4.700	472	4n7	.0047	
4,7	4.7	4p7		1 1		5.600	562	5n6	.0056	
5,6	5.6	5p6				6.800	682	6n8	.0068	
6,8	6.8	6p8				8.200	822	8n2	.0082	
8,2	8.2	8p2				10.000	103	10n	.01	u01
10	10	10		}		12.000	123	12n	.012	u01
12	12	12				15.000	153	15n	.015	u01
15	15	15				18.000	183	18n	.018	u018
18	18	18				22.000	223	22n	.022	u02
22	22	22	}	ł		27.000	273	27n	.027	u02
27	27	27				33.000	333	33n	.033	u03
33	33	33				39.000	393	39n	.039	u03
39	39	39				47.000	473	47n	.047	u04
47	47	47	ſ	(56.000	563	56n	.056	u05
56	56	56				68.000	683	68n	.068	u06
68	68	68				82.000	823	82n	.082	u08
82	82	82				100.000	104	100n	.1	u1
100	101	n10	ĺ	[120.000	124	120n	.12	u12
120	121	n12				150.000	154	150n	.15	u15
150	151	n15				180.000	184	180n	.18	u18
180	181	n18				220.000	224	220n	.22	u22
220	221	n22	[270.000	274	270n	.27	u27
270	271	n27				330.000	334	330n	.33	u33
330	331	n33				390.000	394	390n	.39	u39
390	391	n39	}	ļ	ļ	470.000	474	470n	.47	u47
470	471	n47	ĺ			560.000	564	560n	.56	u56
560	561	n56				680.000	684	680n	.68	u68
680	681	n68				820.000	824	820n	.82	u82
820	821	n82	ļ)]	1 microF	105	1 1) 1	1u

CONDENSATORI CERAMICI

Nella prima colonna il valore della capacità come può risultare stampato sul corpo del condensatore se espresso in "picofarad". Nella seconda colonna il valore espresso secondo il codice giapponese, in cui la terza cifra indica quanti ZERI occorre aggiungere dopo i due primi numeri. Nella terza colonna B si noterà che la lettera "p" posta tra due numeri equivale ad una virgola.

CONDENSATORI POLIESTERE

Nella prima colonna, il valore di capacità espressa in "picofarad", mentre nelle altre colonne indicate A-B-C-D, come queste capacità possono venire stampigliate sul corpo dei condensatore. Su questi condensatori le lettere K-M-J poste dopo il numero indicano la TOLLERANZA seguita dalla tensione dilavoro. Nella colonna A si noterà che la lettera "n" posta tra due numeri , equivale ad una virgola.

Codice delle resistenze con 4 fasce

Alcuni dettagli sulla codifica dei condensatori non polarizzati

Condensatori ceramici

Esistono principalmente due tipi:

- a disco (a sinistra nella foto)
- multistrato (a destra nella foto)

Hanno generalmente capacità tra 1pF e 100nF. Ideali in alta frequenza.

Condensatori poliestere

Esistono principalmente due tipi:

- metallizzato (a sinistra nella foto)
- mylar (a destra nella foto)

Hanno generalmente capacità tra 1nF e 1µF. Ideali in bassa frequenza.

Esistono diversi codici di identificazione:

•Codice alfanumerico:

Si utilizza la lettera dell'unità di misura, al posto della virgola, quindi:

4p7 significa 4,7pF

n47 significa 0,47nF = 470pF

4n7 significa 4.7nF (indicato anche μ0047 cioè 0.0047μF)

47n significa 47nF (indicato anche μ047 cioè 0,047μF)

470n significa 470nF (indicato anche μ47 cioè 0,47μF)

47p significa 47pF, ma si può indicare anche soltanto "47", in quanto si sottintende "pF" se non indicato.

Codice numerico a tre cifre:

Sul corpo sono stampate 3 cifre, di cui le prime due corrispondono alle prime due cifre del valore di capacità, e la terza al numero di zeri da aggiungere. Il valore è espresso in pF, quindi:

472 significa 4.700 pF = 4.7 nF

(Ossia: Prima cifra = 4 - Seconda cifra = 7 - Numero di zeri da aggiungere = 2)

471 significa 470pF

470 significa 47pF (indicato anche come "47", sottintendendo lo zero)

4.7 significa 4,7pF (il puntino si utilizza solo per capacità inferiori ai 10pF)

473 significa 47.000 pF = 47 nF

474 significa 470.000pF = 470nF

104 significa 100.000pF = 100nF

 $105 \text{ significa } 1.000.000 \text{pF} = 1 \mu \text{F}$

•Codice con puntino iniziale (solo per capacità dell'ordine del nF)

Se sul corpo del condensatore c'è un numero preceduto da un puntino, significa che il valore è espresso in μF , e il puntino corrisponde alla virgola preceduta dallo zero. Quindi:

.0047 significa $0.0047\mu F = 4.7nF$

.047 significa 0.047μ F = 47nF

.47 significa $0.47\mu F = 470nF$

L'equivoco dell' "1"

Eccezionalmente per le capacità da 1pF e quelle da 1μ F, può capitare di trovare sul loro corpo lo stesso numero: "1".

E allora, se su un condensatore c'è scritto "1", come fare a stabilire se è da 1pF o da 1 μ F? Generalmente quello da 1pF è ceramico, mentre quello da 1 μ F è al poliestere, e di solito, quello da 1 μ F è fisicamente più grande.