Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Збірник лабораторних робіт з курсу "Методи моделювання систем"

для студентів факультету комп'ютерних наук та кібернетики спеціальність — Інформатика, Програмна інженерія

Зміст

1	Ди	скретне перетворення Фур'є	4
	1.1	Дискретне паратворення Фур'є	4
	1.2	Постановка задачі і метод визначення суттєвих внесків ча-	
		стот за спостереженнями	4
	1.3	Лабораторна робота	5
2	Me	год найменших квадратів	6
	2.1	Постановка задачі ідентифікації параметрів математичної	
		моделі	6
	2.2	Метод найменших квадратів	6
	2.3	Лабораторна робота	7
3	Поб	будова лінійної моделі з допомогою псевдообернених	
	опе	раторів	8
	3.1	Псевдообернена матриця. Формула Гревіля	8
		3.1.1 Означення псевдооберненої матриці	8
		3.1.2 Проективні матриці	9
		3.1.3 Знаходження псевдооберненої матриці за допомо-	
		гою сингулярного розкладу	9
		3.1.4 Формула Гревіля	10
		3.1.5 Алгоритми знаходження псевдооберненої матриці 1	10
		3.1.6 Застосування псевдооберненої матриці до знаходже-	
		ння загального розв'язку системи лінійних алгебра-	
		їчних рівнянь	11
	3.2	Метод побудови лінійної моделі з допомогою псевдообер-	
		нених операторів	12
	3.3	Лабораторна робота	13
4	Дос	лідження розв'язків математичних моделей 1	5
	4.1	Дискретні математичні моделі	15

		4.1.1	Математична модель міжгалузевого балансу Леон-				
			тьєва	15			
		4.1.2	Математична модель Карліна динаміки виробництва	15			
		4.1.3	Модель динаміки вікового складу популяції Леслі .	16			
	4.2		иатичні моделі у формі звичайних диференціальних				
		-	Ib	17			
		4.2.1	Математична модель гонки озброєнь	17			
		4.2.2	Модель бойових дій двох армій	17			
		4.2.3	Математична модель коливання двох тіл з врахуванням тертя	18			
		4.2.4	Математична модель електричного ланцюга	19			
		4.2.5	Математична модель сервоприводу	19			
		4.2.6	Неперервна математична міжгалузева модель Ле-				
			онтьєва	20			
		4.2.7	Математична модель розповсюдження епідемічних				
			захворювань	21			
		4.2.8	Математична модель "хижак - жертва" Лотки-Вольтер	<mark>и</mark> 21			
		4.2.9	Модель бойових дій між регулярною армією і пар-				
			тизанськими частинами	22			
		4.2.10	Нелінійна математична модель розповсюдження епі-				
			демічних захворювань	22			
	4.3	Метод	ц Рунге-Кутти	23			
	4.4	Лабор	аторна робота	24			
5	П		iii				
o	_	араметрична ідентифікація параметрів з використанням ункцій чутливості 25					
	фут 5.1	•	чатична модель коливання трьох тіл				
	0.1		Функція чутливості				
	5.2		параметричної ідентифікації параметрів з викори-	20			
	5.4		, параметричног ідентифікації параметрів з викори- ям функцій чутливості	27			
	5.3		раторна робота	28			
	0.0	5.3.1	Варіанти	29			
		0.0.1	раріанти	<i>∆</i> ∃			
6	Поб	будова	моделі розфокусування зображення у вигляді				
	згој	ртки		32			
	6.1	Матем	иатична модель	32			
	6.2	Лабор	аторна робота	33			
		6.2.1	Варіанти	33			

7	Зад	ача параметричної ідентифікації в моделі міжвидової	
	кон	куренції популяцій	35
	7.1	Математична модель міжвидової конкуренції популяцій.	
		Лабораторна робота	35
Φ	ункц	ії Matlab для виконання лабораторних робіт	37
Лi	тера	тура	39

Дискретне перетворення Фур'є

1.1 Дискретне паратворення Фур'є

Дискретне перетворення Фур'є для дискретної послідовності $x(j), j = 0, 1, 2, \ldots, N-1$ визначається таким способом

$$c_x(k) = \frac{1}{N} \sum_{m=0}^{N-1} x(m) e^{-i2\pi km/N}.$$
 (1.1)

Тут $i^2 = -1$ – комплексна одиниця, $e^{i\phi} = \cos \phi + i \sin \phi$.

1.2 Постановка задачі і метод визначення суттєвих внесків частот за спостереженнями

Задані інтервал спостереження [0,T], T=5, спостереження $\hat{y}(t_i)$ в дискретні моменти часу $t_i \in [0,T]$, $i=0,1,\ldots N-1$, $t_{i+1}-t_i=\Delta t=0.01$. Спостереження записані послідовно у файл file.txt, що додається. Потрібно визначити суттєві внески частот за спостереженнями (задача про приховану періодичність).

- 1. Знаходимо $\Delta f = \frac{1}{T}$.
- 2. Для всіх $k=0,1,\ldots,N-1$ визначаємо модуль перетворення Фур'є $|c_{\hat{y}}(k)|$, за спостереженнями $\hat{y}(t_{j}),\,j=0,1,\ldots N-1.$
- 3. Визначаємо локальні максимуми k_* модуля перетворення Фур'є $|c_{\hat{y}}(k)|, k=0,1,\ldots,[N/2]-1.$
 - 4. Знаходимо частоти $f_* = k_* \Delta f$.

- 1. Вивчити означення дискретного перетворення Φ ур'є і його властивості
- 2. Написати програму, яка б за допомогою дискретного перетворення Фур'є визначала суттєві вклади частот f_i , i = 1, 2, ..., r за спостереженнями $\hat{y}(t_i)$, i = 1, 2, ..., N. Спостереження записані у файлі, що додається.
- 3. Зробити аналіз функції модуля перетворення Фур'є дискретної послідовності $\hat{y}(t_i), i=1,2,\ldots N$ і вивести його графік. Вивести знайдені значення $f_i, i=1,2,\ldots,r$.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Метод найменших квадратів

2.1 Постановка задачі ідентифікації параметрів математичної моделі

Задана математична модель в класі функцій

$$y(t) = a_1 t^3 + a_2 t^2 + a_3 t + \sum_{i=4}^{k} a_i \sin(2\pi f_{i-3}t) + a_{k+1}.$$
 (2.1)

Тут $a_j, j=1,2,\ldots,k+1,$ $f_i,$ $i=1,2,\ldots,k-3$ – невідомі параметри, які потрібно визначити. Визначення параметрів здійснюється за допомогою спостережень за y(t) на інтервалі спостереження [0,T]. Спостереження $\hat{y}(t_i)$ задані в дискретні моменти часу $t_i,$ $i=0,1,\ldots N-1$ і записані послідовно у файл file.txt, $t_{i+1}-t_i=\Delta t=0.01,$ t_i . Інтервал спостереження [0,T] відомий, T=5.

Задача полягає у тому, щоб за спостереженнями $\hat{y}(t_i), i=0,1,\ldots N-1$ визначити параметри математичної моделі $a_j, j=1,2,\ldots,k+1, f_i, i=1,2,\ldots,k-3.$

2.2 Метод найменших квадратів

При виконанні лабораторної роботи 1 ми визначили параметри f_i , $i=1,2,\ldots,k-3$ за спостереженнями $\hat{y}(t_i),\ i=1,2,\ldots N$. Тому в математичній моделі (2.1) невідомими є лише параметри $a_j,\ j=1,2,\ldots,k+1$. Для їх визначення застосовуємо метод найменших квадратів. Для цього записуємо функціонал похибки

$$F(a_1, a_2, \dots, a_{k+1}) = \frac{1}{2} \sum_{j=0}^{N-1} \left(a_1 t_j^3 + a_2 t_j^2 + a_3 t_j + \sum_{i=4}^k a_i \sin(2\pi f_{i-3} t_j) + a_{k+1} - \hat{y}(t_j) \right)^2.$$
 (2.2)

Параметри $a_j, j = 1, 2, \dots, k+1$ шукаємо з умови

$$F(a_1, a_2, \dots, a_{k+1}) \to \min_{a_1, a_2, \dots, a_{k+1}}$$
.

Для цього записуємо систему рівнянь

$$\frac{\partial F(a_1, a_2, \dots, a_{k+1})}{\partial a_j} = 0, \tag{2.3}$$

j = 1, 2, ..., k+1. Ця система є системою лінійних алгебраїчних рівнянь. Розв'язавши (2.3) одним з відомих методів, знаходмо $a_j, j = 1, 2, ..., k+1$.

2.3 Лабораторна робота

- 1. Визначити суттєві вклади частот коливання f_i , i = 1, 2, ..., k-3 (лабораторна робота 1). Вивчити у чому полягає метод найменших квадратів.
- 2. Записати функціонал похибки (2.2), виходячи з кількості знайдених параметрів f_i , i = 1, 2, ..., k-3 в першій лабораторній роботі.
 - 3. Записати систему лінійних алгебраїчних рівнянь (2.3).
- 4. Створити програму знаходження a_j , $j=1,2,\ldots,k+1$. Вивести відповідні значення функціоналу похибки (2.2), а також графіки спостережень $\hat{y}(t_i)$, $i=0,1,\ldots N-1$, та математичної моделі (2.1) при знайдених параметрах. Порівняти ці графіки.
- 5. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Побудова лінійної моделі з допомогою псевдообернених операторів

3.1 Псевдообернена матриця. Формула Гревіля

3.1.1 Означення псевдооберненої матриці

Нехай задана матриця A розмірності $m \times n$. За означенням Мура - Пенроуза, псевдооберненою матрицею A^+ називається матриця розмірності $n \times m$ вигляду

$$A^{+} = \lim_{\delta^{2} \to 0} \left\{ \left(A^{T} A + \delta^{2} E_{n} \right)^{-1} A^{T} \right\} = \lim_{\delta^{2} \to 0} \left\{ A^{T} \left(A A^{T} + \delta^{2} E_{m} \right)^{-1} \right\}. \quad (3.1)$$

Тут E_n – одинична матриця розмірності $n \times n$. Властивості псевдооберненої матриці такі:

- 1. Якщо матриця A невироджена, то $A^+ = A^{-1}$.
- 2. $A^{+} = (A^{T}A)^{+} A^{T}, A^{+} = A^{T} (AA^{T})^{+}.$
- 3. Якщо матриця $A^{T}A$ невироджена, то

$$A^+ = \left(A^T A\right)^{-1} A^T.$$

Якщо матриця AA^{T} – невироджена, то

$$A^+ = A^T \left(A A^T \right)^{-1}.$$

4. Якщо $a \in \mathbb{R}^n$ – вектор розмірності $n, a \neq 0$, то з означення Мура-Пенроуза (3.1) випливає, що

$$(a^T)^+ = \frac{a}{a^T a}, \ a^+ = \frac{a^T}{a^T a}.$$

Якщо a = 0, то з (3.1) випливає $a^+ = 0$.

- 5. $(A^+)^+ = A$.
- 6. $(A^T)^+ = (A^+)^T$

Теорема 3.1 (характеристична властивість псевдооберненої матриці). Матриця A^+ розмірності $n \times m$ є псевдооберненою матрицею до матриці A розмірності $m \times n$ тоді і тільки тоді, якщо виконуються такі умови:

- $AA^{+}A = A$;
- $A^+AA^+ = A^+$;
- AA^+ симетрична матриця розмірності $m \times m$;
- A^+A симетрична матриця розмірності $n \times n$.

3.1.2 Проективні матриці

1. Матриця $Z(A) = E - A^+A$ – проектор на ядро $Ker\,A$ матриці A, тобто

$$Z(A)\mathbb{R}^n = Ker A = \{x \in \mathbb{R}^n : Ax = 0\};$$

- 2. Матриця $Z(A^T) = E AA^+$ проектор на ядро $Ker\,A^T$ матриці A^T :
- 3. Матриця $Y(A) = AA^+$ проектор на область значень матриці A, тобто

$$Y(A)\mathbb{R}^n=Im\,A=\{y\in\mathbb{R}^n:y=Ax,x\in\mathbb{R}^n\};$$

4. Матриця $Y(A^T) = A^+A$ – проектор на область значень матриці A^T ;

3.1.3 Знаходження псевдооберненої матриці за допомогою сингулярного розкладу

Теорема 3.2 (про сингулярний розклад матриці). *Будъ-яку матрицю* A розмірності $m \times n$ можна единим способом представити у вигляді

$$A = U\Lambda V^T$$
.

 $de\ U\ -\ y$ нітарна матриця розмірності $m\times m,\ V\ -\ y$ нітарна матриця розмірності $m\times n,\ \kappa n,\ \kappa$

$$\Lambda_0 = diag(\lambda_1, \lambda_2, \dots, \lambda_r), \Lambda = \begin{pmatrix} \Lambda_0 & 0 \\ 0 & 0 \end{pmatrix},$$

 $\lambda_1 > \lambda_2 > \dots, \lambda_r > 0$, а решта елементів матриці Λ є нульовими, r = rang A.

Нехай задана матриця A розмірності $m \times n$. Якщо відомий її сингулярний розклад

$$A = U\Lambda V^T$$
,

де позначення відповідають теоремі 3.2, то

$$A^+ = V\Lambda^+ U^T,$$

$$\Lambda^{+} = \begin{pmatrix} \Lambda_{0}^{+} & 0 \\ 0 & 0 \end{pmatrix}, \ \Lambda_{0}^{+} = diag(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \dots, \lambda_{r}^{-1}).$$

3.1.4 Формула Гревіля

Якщо для матриці A відома псевдообернена (обернена) матриця A^+ , то для розширеної матриці $\begin{pmatrix} A \\ a^T \end{pmatrix}$ справедлива формула

$$\begin{pmatrix} A \\ a^T \end{pmatrix}^+ = \begin{cases} \left(A^+ - \frac{Z(A)aa^TA^+}{a^TZ(A)a} \vdots \frac{Z(A)a}{a^TZ(A)a} \right), & \text{if } a^TZ(A)a > 0 \\ \left(A^+ - \frac{R(A)aa^TA^+}{1+a^TR(A)a} \vdots \frac{R(A)a}{1+a^TR(A)a} \right), & \text{if } a^TZ(A)a = 0 \end{cases} , \quad (3.2)$$

де $Z(A) = E - A^{+}A$ – проектор на ядро матриці $A, R(A) = A^{+} \left(A^{+} \right)^{T}.$

3.1.5 Алгоритми знаходження псевдооберненої матриці

Для знаходження псевдооберненої матриці реалізуються такі алгоритми: І. алгоритм, заснований на означенні Мура-Пенроуза. З означення Мура-Пенроуза (3.1) випливає, що для наближеного визначення псевдооберненої матриці можна застосовувати одну з формул

$$A^{+} \approx \left(A^{T}A + \delta_{0}^{2}E_{n}\right)^{-1}A^{T},$$
 (3.3)

$$A^{+} \approx A^{T} \left(AA^{T} + \delta_0^2 E_m \right)^{-1}. \tag{3.4}$$

Тут $\delta_0^2 > 0$ —число, яке підбирається експерементально. Одна з можливих схем є такою:

- 1. Задається початкове значення $\delta = \delta_0$;
- 2. Розраховується початкове наближення $A_0^+ = A^T (AA^T + \delta_0^2 E_m)^{-1};$
- 3. На кроці k нове значення $\delta_k = \frac{\delta_{k-1}}{2}$;
- 4. Наближення $A_k^+ = A^T (AA^T + \delta_k^2 E_m)^{-1};$
- 5. Якщо $\|A_k^+ A_{k-1}^+\| < \varepsilon$, то зупинитись з $A^+ = A_k^+$, інакше k := k+1 і продовжити з пункту 3.

II. алгоритм на основі формули Гревіля (3.2). Цей алгоритм є рекурентним. Представляємо матрицю A у вигляді

$$A = \begin{pmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_n^T \end{pmatrix}.$$

Для першого кроку алгоритму $(a_1^T)^+ = \frac{a_1}{a_1^T a_1}$, при $a_1 \neq 0$; $(a_1^T)^+ = 0$, якщо $a_1 = 0$. На наступному кроці додаємо до матриці другий рядок і шукаємо псевдообернену матрицю згідно формули Гревіля. Потім знову додаємо рядок і т.д. поки не вичерпаються всі рядки матриці A.

III. алгоритм, що базується на сингулярному розкладі матриці (теорема 3.2).

3.1.6 Застосування псевдооберненої матриці до знаходження загального розв'язку системи лінійних алгебраїчних рівнянь

Нехай задана матриця A розмірності $m \times n, b \in \mathbb{R}^m$ – відомий вектор і розглядається система лінійних алгебраїчних рівнянь

$$Ax = b, (3.5)$$

де $x \in \mathbb{R}^n$ — шуканий вектор. Така система може не мати точних розв'язків. Тоді шукають такі вектори $x \in \mathbb{R}^n$, що розв'язують задачу

$$||Ax - b||^2 \to \min_{x \in \mathbb{R}^n}.$$

Найменшим за нормою серед таких векторів є вектор

$$\overline{x} = A^+ b$$
,

який називається псевдорозв'язком системи (3.5). Загальне представлення множини узагальнених розв'язків системи (3.5) таке

$$\Omega_x = A^+b + kerA = \left\{ A^+b + Z(A)v : v \in \mathbb{R}^n \right\},\,$$

де $Z(A) = E - A^+A$ – проектор на ядро kerA матриці A.

3.2 Метод побудови лінійної моделі з допомогою псевдообернених операторів

Будемо вважати, що на вхід системи перетворення, математична модель якої невідома, поступають послідовно дані у вигляді m-1 вимірних векторів x_j . На виході системи спостерігається сигнал у вигляді вектора y_i розмірності p.

Постановка задачі: для послідовності вхідних сигналів $x_j, j=1,2,...,n$ та вихідних сигналів $y_j, j=1,2,...n$ знайти оператор P перетворення вхідного сигналу у вихідний.

Рис. 3.1: Математична модель

Будемо шукати математичну модель оператора об'єкту в класі лінійних операторів

$$Dx_j + b = y_j, j = 1, 2, \dots, n.$$
 (3.6)

Тут D –невідома матриця, b – невідомий вектор. Позначимо

$$A = \begin{pmatrix} D \\ b^T \end{pmatrix}.$$

Тоді з (3.6) випливає

$$A\begin{pmatrix} x_j \\ 1 \end{pmatrix} = y_j, j = 1, 2, \dots, n.$$
 (3.7)

Систему (3.7) запишемо у матричній формі

$$A\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ 1 & 1 & \dots & 1 \end{pmatrix} = (y_1, y_2, \dots, y_n),$$

або

$$AX = Y, (3.8)$$

де $X=\begin{pmatrix} x_1&x_2&\dots&x_n\\1&1&\dots&1\end{pmatrix}$ – матриця вхідних сигналів розмірності $m\times n,\ Y=(y_1,\,y_2,\,\dots,\,y_n)$ – матриця вихідних сигналів розмірності $p\times n$. Тоді

$$A = YX^{+} + VZ^{T}(X^{T}), (3.9)$$

де матриця

$$V = \begin{pmatrix} v_{(1)}^T \\ v_{(2)}^T \\ \vdots \\ v_{(p)}^T \end{pmatrix},$$

розмірності $p \times m, Z(X^T) = I_m - XX^+.$

3.3 Лабораторна робота

Матрицю X будемо інтерпретувати як двовимірне вхідне зображення, а матрицю Y — як вихідне зображення. Потрібно побудувати лінійний оператор перетворення вхідного сигналу X у вихідний сигнал Y на основі формули (3.9).

- 1. Вивчити означення псевдооберненої матриці і її основні властивості.
- 2. Створити програму, яка за заданими двома зображеннями знаходить лінійний оператор переходу між цими зображеннями. Основою для програми є формула (3.9), де V довільна матриця (наприклад, нульова). Псевдообернену матрицю в (3.9) шукати двома методами: на основі формули Мура-Пенроуза (див. (3.3) або (3.4)) і на основі формули Гревіля. Правильність знаходження псавдооберненої матриці перевірити за допомогою теореми 3.1 про характеристичну властивість псевдооберненої матриці.
- 3. Вивести вихідне зображення і образ вхідного зображення при одержаному перетворенні. Зробити порівняння. Проаналізувати одержаний результат.

Варіант	Вхідний сигнал	Вихідний сигнал
1	x1.bmp	y1.bmp
2	x1.bmp	y2.bmp
3	x1.bmp	y3.bmp
4	x1.bmp	y4.bmp
5	x1.bmp	y5.bmp
6	x1.bmp	y6.bmp
7	x1.bmp	y7.bmp
8	x1.bmp	y8.bmp
9	x1.bmp	y9.bmp
10	x2.bmp	y5.bmp
11	x2.bmp	y2.bmp
12	x3.bmp	y3.bmp
13	x3.bmp	y6.bmp
14	x3.bmp	y8.bmp
15	x3.bmp	y1.bmp
16	x3.bmp	y2.bmp
17	x3.bmp	y4.bmp
18	x3.bmp	y10.bmp
19	x3.bmp	y5.bmp
20	x3.bmp	y4.bmp

4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Варіанти вхідних на вихідних сигналів, для яких потрібно побудувати лінійний оператор перетворення вхідного сигналу представлені у таблиці на сторінці 14.

Дослідження розв'язків математичних моделей

4.1 Дискретні математичні моделі

4.1.1 Математична модель міжгалузевого балансу Леонтьєва

Розглядається математична модель вигляду

$$x(t) = Ax(t) + B(x(t+1) - x(t)) + c(t),$$

де x(t) – вектор валових випусків продукції в момент часу t розмірності n, $A-n\times n$ – матриця матеріалоємкості, B – матриця капіталоємкості, c(t) – вектор невиробничих затрат розмірності n. Компонента (i,j) матриці A визначає норми затрат продукції i-ї галузі на виробництво одиниці продукції j-ї галузі. Компонента (i,j) матриці B визначає норми затрат капіталізації i-ї галузі на приріст одиниці валової продукції i-ї галузі. Одержуємо таку математичну модель

$$x(t+1) = B^{-1}(I - A + B)x(t) - B^{-1}c(t).$$
(4.1)

4.1.2 Математична модель Карліна динаміки виробництва

Розглядається математична модель Карліна динаміки виробництва вигляду

$$x(t+1) = Ax(t) + c(t),$$
 (4.2)

де x(t) – вектор валових випусків продукції в момент часу t розмірності $n, A-n\times n$ – матриця матеріалоємкості, c(t) – вектор невиробничих затрат розмірності n. Компонента (i,j) матриці A визначає норми затрат продукції i-ї галузі на виробництво одиниці продукції j-ї галузі.

4.1.3 Модель динаміки вікового складу популяції Леслі

Розглядається популяція. Припустимо, що всі особини цієї популяції розбиті на n вікових груп, так що $x_k(t)$ характеризує чисельність k - ої вікової групи в момент часу t, k=1,...,n. При моделюванні вікового складу популяції беремо до уваги процеси народження, гибелі і переходу особи з вікової групи в наступну вікову групу. Припустимо, що перша вікова група Предполагается , что першу вікову групу чисельністю $x_1(t)$ складають потомки всіх вікових груп,які зявились в проміжку часу від t-1 до t; колькість потомків від особин кожної вікової групи пропорційна чисельності цієї групи; особини останньої вікової групи більше нікуди не переходять; кількість особин, які вижили протягом часового проміжку від t до t+1 в кожній віковій групі, пропорційна чисельності цієї групи; всі особини, які вижили в момент t+1, переходять в наступну вікову групу. Одержуємо таку систему дискретних рівнянь

$$x_{1}(t+1) = \sum_{k=1}^{n} b_{k} x_{k}(t),$$

$$x_{2}(t+1) = a_{1} x_{1}(t),$$

$$x_{3}(t+1) = a_{2} x_{2}(t),$$

$$\dots$$

$$x_{n}(t+1) = a_{n-1} x_{n-1}(t).$$

$$(4.3)$$

Тут $b_k \ge 0$ — інтенсивність розмноження k - ої вікової групи, $k=1,...,n,\ a_k \in [0,1)$ — каефіцієнт виживання при переході з k - ої в k+1 -у вікову груп, k=1,...,n-1. Така математична модель називається моделлю динаміки вікового складу популяції Леслі.

Введемо вектор керування $u_1(t), u_2(t), \dots, u_n(t)$, який характеризує міграційні явища в кожній з вікових груп. Тоді система (4.3) матиме

вигляд

$$x_{1}(t+1) = \sum_{k=1}^{n} b_{k} x_{k}(t) + u_{1}(t),$$

$$x_{2}(t+1) = a_{1} x_{1}(t) + u_{2}(t),$$

$$x_{3}(t+1) = a_{2} x_{2}(t) + u_{3}(t),$$

$$\dots$$

$$x_{n}(t+1) = a_{n-1} x_{n-1}(t) + u_{n}(t).$$

$$(4.4)$$

4.2 Математичні моделі у формі звичайних диференціальних рівнянь

4.2.1 Математична модель гонки озброєнь

Розглянемо математичну модель гонки озброєнь між двома країнами. Припускається, що загальна кількість озброєння в кожній країні змінюється з часом в залежності від таких факторів: 1) кількість зброї у супротивника; 2) ступінь недовіри між супротивниками; 3) старіння зброї, що вже існує. Так, отримуємо систему рівнянь

$$\frac{dN_1(t)}{dt} = -a_1(t)N_1(t) + b_2(t)N_2(t) + g_1(t), \tag{4.5}$$

$$\frac{dN_2(t)}{dt} = b_1(t)N_1(t) - a_2(t)N_2(t) + g_2(t). \tag{4.6}$$

Тут $N_1(t)$, $N_2(t)$ — обсяги озброєнь, функції $a_i(t) \ge 0$, $b_i(t) \ge 0$ визначають швидкість старіння зброї, функції $g_i(t)$ показують рівень взаємної недовіри конкурентів, що визначається причинами, не залежними від фактору озброєнь.

4.2.2 Модель бойових дій двох армій

Нехай в протиборстві беруть участь як регулярні армії, так і партизанські об'єднання. Головною характеристикою суперників є чисельність сторін $N_1(t) \ge 0$, $N_2(t) \ge 0$. У випадку дій між регулярними частинами динаміка їх чисельності визначається факторами:

1). Швидкість зменшення особового складу за причинами, не зв'язаними безпосередньо з бойовими діями: хвороби, травми, дезертирство; 2). Темп втрат обумовлений бойовими діями; 3). Швидкість надання підкріплення, що вважається деякою функцією від часу.

Рис. 4.1: Математична модель коливання двох тіл з врахуванням тертя

При цих припущеннях для $N_1(t), N_2(t)$ отримуємо систему диференціальних рівнянь

$$\frac{dN_1(t)}{dt} = -a_1(t)N_1(t) - b_2(t)N_2(t) + g_1(t), \tag{4.7}$$

$$\frac{dN_2(t)}{dt} = -b_1(t)N_1(t) - a_2(t)N_2(t) + g_2(t). \tag{4.8}$$

Тут неперервні функції $a_i(t) \geq 0$ визначають швидкість втрат у силу причин, що не пов'язані з бойовими діями, неперервні функції $b_i(t) \geq 0$ показують темпи втрат через бойові дії супротивника, неперервні функції $g_i(t)$ показують темп надання підкріплення (модель Ланчестера).

4.2.3 Математична модель коливання двох тіл з врахуванням тертя

Математична модель коливання двох мас M_1 , M_2 , які взаємодіють через сили тертя B, B_1 , B_2 , поєднані між собою пружинами з відповідними жорсткостями K, K_1 , K_2 має вигляд:

$$M_1 \frac{d^2 y_1(t)}{dt^2} + (B + B_1) \frac{dy_1(t)}{dt} + (K + K_1)y_1(t) - B \frac{dy_2(t)}{dt} - Ky_2(t) = f_1(t), \quad (4.9)$$

$$M_2 \frac{d^2 y_2(t)}{dt^2} + (B + B_2) \frac{dy_2(t)}{dt} + (K + K_2)y_2(t) - B \frac{dy_1(t)}{dt} - Ky_1(t) = -f_2(t).$$
(4.10)

Тут $f_1(t)$, $f_2(t)$ – зовнішні сили (мал. 4.1).

Рис. 4.2: Математична модель електричного ланцюга

4.2.4 Математична модель електричного ланцюга

Математична модель, яка описує зміну електричної напруги v_1, v_2, v_3 в контурі, має вигляд:

$$C_1 \frac{dv_1(t)}{dt} = -\left(\frac{1}{R_1} + \frac{1}{R_2}\right)v_1(t) + \frac{1}{R_2}v_2(t) + \frac{1}{R_1}v(t),\tag{4.11}$$

$$C_1 \frac{dv_2(t)}{dt} = -\left(\frac{1}{R_1} + \frac{1}{R_2}\right) v_1(t) - \left(\frac{C_1 R_2}{L} - \frac{1}{R_2}\right) v_2(t) + \frac{C_1 R_2}{L} v_3(t) + \frac{1}{R_1} v(t), \tag{4.12}$$

$$C_2 R_2 \frac{dv_3(t)}{dt} = v_1(t) - v_2(t).$$
 (4.13)

Тут v(t) – електрична напруга джерела (мал. 4.2).

4.2.5 Математична модель сервоприводу

Сервопривід (також серводвигун, сервомеханізм) — це пристрій в системах автоматичного регулювання або дистанційного керування, що за рахунок енергії допоміжного джерела здійснює механічне переміщення регулюючого органу відповідно до отримуваних від системи керування сигналів. Розглянемо спрощену модель сервоприводу, який складається з пристрою, що створює постійне поле, а також з арматури, яка крутиться і до якої приєднано груз (мал. 4.3). Математична модель має вигляд

$$J\frac{d^2\theta(t)}{dt^2} + B\frac{d\theta(t)}{dt} = T(t), \tag{4.14}$$

$$L_a \frac{di_a(t)}{dt} + R_a i_a(t) + e_m(t) = e_a(t), \tag{4.15}$$

Рис. 4.3: Математична модель сервоприводу

$$e_m(t) = K_1 \frac{d\theta(t)}{dt},\tag{4.16}$$

$$T(t) = K_2 i_a(t). (4.17)$$

Тут $e_a(t)$ – напруга, що прикладається зовні, $i_a(t)$ – сила струму, $e_m(t)$ – зворотня напруга, утворена через арматурну обмотку під час повороту, T(t) – момент повороту, $\theta(t)$ – кут повороту вала. Параметрами моделі є R_a – опір обмотки, L_a – індукція, B – параметр тертя, J>0 – момент інерції арматури і груза, $K_1>0$, $K_2>0$.

Якщо ввести таку заміну: $x_1=\theta,\ x_2=\frac{d\theta}{dt},\ x_3=i_a,$ то одержимо математичну модель у вигляді системи

$$\frac{x(t)}{dt} = Ax(t) + f(t),$$

де
$$x = (x_1, x_2, x_3)^*, f(t) = \left(0, 0, \frac{e_a(t)}{L_a}\right)^*,$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{B}{J} & \frac{K_2}{J} \\ 0 & -\frac{K_1}{L_a} & -\frac{R_a}{L_a} \end{pmatrix}.$$

4.2.6 Неперервна математична міжгалузева модель Леонтьєва

Розглядається математична модель вигляду

$$B\frac{x(t)}{dt} = (I - A)x(t) - c(t), (4.18)$$

де x(t) – вектор валових випусків продукції в момент часу t розмірності $n,\ A$ – матриця матеріалоємкості, B – матриця капіталоємкості, c(t) – вектор невиробничих затрат розмірності n. Компонента (i,j) матриці A визначає норми затрат продукції i-ї галузі на виробництво одиниці продукції j-ї галузі. Компонента (i,j) матриці B визначає норми затрат капіталізації i-ї галузі на приріст одиниці валової продукції i-ї галузі. Матриці A,B – матриці з невід'ємними компонентами розмірності $n \times n$.

4.2.7 Математична модель розповсюдження епідемічних захворювань

Населення, яке досліджується, ділиться на три групи: $x_1(t)$, $x_2(t)$, $x_3(t)$. Група $x_1(t)$ – група, яка чутлива до захворювання, група ризику, $x_2(t)$ – група інфікованих осіб, $x_3(t)$ – група осіб, які виключаються з груп $x_1(t)$, $x_2(t)$. Причиною виключення є або проведені медичні заходи (щеплення, імунізація), або смерть, або ізоляція. Математична модель розповсюдження епідемічних захворювань має вигляд:

$$\frac{dx_1(t)}{dt} = -ax_1(t) - bx_2(t) + u_1(t), \tag{4.19}$$

$$\frac{dx_2(t)}{dt} = -bx_1(t) + gx_2(t) + u_2(t), \tag{4.20}$$

$$\frac{dx_3(t)}{dt} = ax_1(t) + gx_2(t). (4.21)$$

Тут функція $u_1(t)$ визначає швидкість, з якою з'являються особи, що чутливі до захворювання, функція $u_2(t)$ визначає швидкість, з якою з'являються інфіковані особи, a, b, g — параметри математичної моделі. Такі ж рівняння можуть описувати розповсюдження в суспільстві нової інформації або нової ідеї.

4.2.8 Математична модель "хижак - жертва" Лотки-Вольтери

Нехай в замкненому ареалі є два види тварин. Перший вид тварин є хижаки, які поїдають інший вид тварин, які називаються жертвами. Кількість хижаків описується змінною M(t), а чисельність жертв N(t). Отже отримуємо математичну модель "хижак - жертва" Лотки-Вольтери

$$\frac{dN(t)}{dt} = (a - pM(t))N(t), \tag{4.22}$$

$$\frac{dM(t)}{dt} = (-b + qN(t))M(t). \tag{4.23}$$

Тут a, b, p, q — додатні параметри математичної моделі.

4.2.9 Модель бойових дій між регулярною армією і партизанськими частинами

Нехай в протиборстві беруть участь як регулярні армії, так і партизанські об'єднання. Головною характеристикою суперників є чисельність сторін $N_1(t) \ge 0$, $N_2(t) \ge 0$. У випадку дій між регулярними частинами динаміка їх чисельності визначається факторами:

1). Швидкість зменшення особового складу за причинами, не зв'язаними безпосередньо з бойовими діями: хвороби, травми, дезертирство; 2). Темп втрат обумовлений бойовими діями; 3). Швидкість надання підкріплення, що вважається деякою функцією від часу.

Війна між регулярною армією і партизанськими частинами характеризується іншими показниками. Головна відмінність полягає у тому, що партизанські об'єднання в порівнянні з армійськими більш захищені, так як діють з засідок. Вважається, що темп втрат партизан, що здійснюють свої операції в різних місцях на деякій невідомій території є пропорційним не тільки чисельності армійських з'єднань $N_1(t)$, а і чисельності партизан $N_2(t)$. Отже отримуємо математичну модель

$$\frac{dN_1(t)}{dt} = -a_1(t)N_1(t) - b_2(t)N_2(t) + g_1(t), \tag{4.24}$$

$$\frac{dN_2(t)}{dt} = -b_1(t)N_1(t)N_2(t) - a_2(t)N_2(t) + g_2(t). \tag{4.25}$$

Тут неперервні функції $a_i(t) \ge 0$ визначають швидкість втрат у силу причин, що не пов'язані з бойовими діями, неперервні функції $b_i(t) \ge 0$ показують темпи втрат через бойові дії супротивника, неперервні функції $g_i(t)$ показують темп надання підкріплення (модель Ланчествера).

4.2.10 Нелінійна математична модель розповсюдження епідемічних захворювань

Населення, яке досліджується, ділиться на три групи: $x_1(t)$, $x_2(t)$, $x_3(t)$. Група $x_1(t)$ – група, яка чутлива до захворювання, група ризику, $x_2(t)$ – група інфікованих осіб, $x_3(t)$ – група осіб, які виключаються з груп $x_1(t)$, $x_2(t)$. Причиною виключення є або проведені медичні заходи (щеплення, імунізація), або смерть, або ізоляція. Математична модель має вигляд:

$$\frac{dx_1(t)}{dt} = -ax_1(t) - bx_1(t)x_2(t) + u_1(t), \tag{4.26}$$

$$\frac{dx_2(t)}{dt} = -bx_1(t)x_2(t) + gx_2(t) + u_2(t), \tag{4.27}$$

$$\frac{dx_3(t)}{dt} = ax_1(t) + gx_2(t). (4.28)$$

Тут функція $u_1(t)$ визначає швидкість, з якою з'являються особи, що чутливі до захворювання, функція $u_2(t)$ визначає швидкість, з якою з'являються інфіковані особи, a, b, g — параметри математичної моделі. Добуток $x_1(t)x_2(t)$ визначає взаємодію між групами. Такі ж рівняння можуть описувати розповсюдження в суспільстві нової інформації або нової ідеї.

4.3 Метод Рунге-Кутти

Задана система диференціальних рівнянь в нормальній формі

$$\frac{dy}{dt} = f(y,t), y(t_0) = y_0, \tag{4.29}$$

де $y=(y_1,y_2,\ldots,y_m)^T, \ f(y,t)=(f_1(y,t),f_2(y,t),\ldots,f_m(y,t))^T), \ y_0$ – задана точка, $t\in[t_0,T].$

Для чисельного інтегрування можна застосувати метод Рунге-Кутти 4-го порядку з постійним кроком $h,\,y_n=y(t_n)$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \ n = 0, 1, \dots, n-1,$$

де

$$k_1 = hf(y_n, t_n).$$

$$k_2 = hf(y_n + \frac{1}{2}k_1, t_n + \frac{1}{2}h),$$

$$k_3 = hf(y_n + \frac{1}{2}k_2, t_n + \frac{1}{2}h),$$

$$k_4 = hf(y_n + k_3, t_n + h),$$

$$t_{n+1} = t_n + h, \ n = 0, 1, ...N - 1, \ t_0 < t_1 < ... < t_N = T.$$

Варіант	Модель	n
1	4.2.10	_
2	4.1.1	n=3
3	4.2.5	
4	4.1.3	n=4
5	4.2.6	n=4
6	4.2.9	
7	4.2.1	
8	4.1.2	n=3
9	4.2.4	_
10	4.2.3	_
11	4.2.2	_
12	4.2.7	_
13	4.1.3	n=3
14	4.2.6	n=3
15	4.2.8	_
16	4.1.1	n=4
17	4.1.2	n=4

- 1. Ознайомитись в науковій літературі з математичною моделлю, занести відповідну інформацію у звіт.
- 2. Створити програму, яка знаходить розв'язок заданої математичної моделі при різних початкових умовах і параметрах математичної моделі.
- 3. Вивести графіки розв'язків. Зробити їх порівняння при різних параметах і початкових умовах. Проаналізувати одержаний результат.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Варіанти робіт представлені у таблиці на сторінці 24.

Параметрична ідентифікація параметрів з використанням функцій чутливості

5.1 Математична модель коливання трьох тіл

Математична модель коливання трьох мас m_1 , m_2 , m_3 , які поєднані між собою пружинами з відповідними жорсткостями c_1 , c_2 , c_3 , c_4 має вигляд (мал. 5.1)

$$\frac{d^2y_1(t)}{dt^2} + \frac{(c_2 + c_1)}{m_1}y_1(t) - \frac{c_2}{m_1}y_2(t) = f_1(t), \tag{5.1}$$

$$\frac{d^2y_2(t)}{dt^2} - \frac{c_2}{m_2}y_1(t) + \frac{(c_2 + c_3)}{m_2}y_2(t) - \frac{c_3}{m_2}y_3(t) = f_2(t), \tag{5.2}$$

$$\frac{d^2y_3(t)}{dt^2} - \frac{c_3}{m_3}y_2(t) + \frac{(c_4 + c_3)}{m_3}y_3(t) = f_3(t).$$
 (5.3)

Тут $f_1(t), f_2(t), f_3(t)$ – зовнішні сили.

5.1.1 Функція чутливості

Розглянемо динамічну систему

$$\frac{dx(t)}{dt} = f(x(t), p, t), \ t \in [t_0, T],$$
 (5.4)

з умовою Коші

$$x(t_0) = x_0(p). (5.5)$$

Рис. 5.1: Математична модель коливання трьох тіл

Тут $x = (x_1, x_2, ..., x_n)^*$ – вектор стану, $f(x, p, t) = (f_1(x, p, t), ..., f_n(x, p, t))^*$ – неперервно диференційована функція за x та $p, p = (p_1, p_2, ..., p_m)$ – параметр, $x_0(p)$ –неперервно диференційована функція з \mathbb{R}^m в \mathbb{R}^n .

Означення 5.1. Функцією чутливості системи (5.4) в точці $p = \hat{p}$ називається функція, яка задається співвідношенням $U(t) = \frac{\partial x(t,\hat{p})}{\partial p}$.

Тут $x(t) = x(t, \hat{p})$ є розв'язком системи (5.4) при $p = \hat{p}$. З (5.4), (5.5) отримуємо еквівалентне інтегральне рівняння

$$x(t,p) = x_0(p) + \int_{t_0}^t f(x(s), p, s) ds.$$

Диференціюємо останню рівність за змінною p і підставляємо $p = \hat{p}$. Отримуємо інтегральне співвідношення для знаходження функції чутливості

$$U\left(t\right) = \frac{\partial x_0(p)}{\partial p} + \int_{t_0}^t \left(\frac{\partial f\left(x(s), \hat{p}, s\right)}{\partial x} U\left(s\right) + \frac{\partial f\left(x(s), \hat{p}, s\right)}{\partial p}\right) ds.$$

Продиференціюємо останню рівність. Отже, матриця чутливості задовольняє матричне диференціальне рівняння (рівняння чутливості)

$$\frac{dU(t)}{dt} = \frac{\partial f(x(t), \hat{p}, t)}{\partial x} U(t) + \frac{\partial f(x(s), \hat{p}, t)}{\partial p}.$$

$$U(t_0) = \frac{\partial x_0(p)}{\partial p}.$$
(5.6)

5.2 Метод параметричної ідентифікації параметрів з використанням функцій чутивості

Потрібно оцінити частину невідомих параметрів моделі (5.1) - (5.3) з використанням функції чутливості за відомими спостереженнями $\bar{y}(t)$ на часовому інтервалі $t \in [0,T]$. Для цього записуємо (5.1) - (5.3) у вигляді системи диференціальній формі в нормальній формі порядку 6.

Показник якості ідентифікації параметрів β має вигляд

$$I(\beta) = \int_{t_0}^T (\bar{y}(t) - y(t, \beta))^T (\bar{y}(t) - y(t, \beta)) dt \to \min_{\beta}.$$

Числовий метод ітераційний і має вигляд

$$\beta_{k+1} = \beta_k + \Delta \beta$$
.

Початкове наближення β_0 задається,

$$\Delta \beta = \left(\int_{t_0}^T U^T(t) U(t) dt \right)^{-1} \int_{t_0}^T U^T(t) (\bar{y}(t) - y(t)) dt.$$

Матриці чутливості U(t) визначається з матричного диференціального рівняння

$$\frac{dU(t)}{dt} = AU(t) + \frac{\partial(Ay)}{\partial\beta}, \ U(t_0) = 0$$
 (5.7)

В даному випадку $\frac{\partial (Ay)}{\partial y}=A.$ Спостереження стану моделі проведені на інтервалі часу [0,T], де $t_0=0,$ T=50, $\Delta t=0.2.$

Алгоритм.

Ітерація 1.

Задаємо параметр точності $\varepsilon > 0$, початкове наближення β_0 . В лабораторних роботах початкове наближення задається.

 $Kpo\kappa$ 1. Розв'язуємо систему (5.1) - (5.3) одним з числових методів при $\beta=\beta_0,\ y(t_0)=\bar{y}(t_0)$ (можна застосувати метод Рунге- Кутти з попередньої лабораторної роботи). Знаходимо $y(t,\beta_0)$.

 $Kpo\kappa\ 2$. Підставляємо $y(t,\beta_0)$ в рівняння чутливості 5.7. Розв'язуємо це рівняння одним з числових методів і знаходимо його розв'язок $U(t,\beta_0)$.

Крок 3. Знаходимо

$$\Delta \beta_0 = \left(\int_{t_0}^T U^T(t, \beta_0) U(t, \beta_0) dt \right)^{-1} \int_{t_0}^T U^T(t, \beta_0) (\bar{y}(t) - y(t, \beta_0)) dt.$$

Крок 4. Обчислюємо

$$\beta_1 = \beta_0 + \Delta \beta_0.$$

 $Kpo\kappa$ 5. В кінці першої ітерації перевіряємо одну з умов зупинки алгоритму:

- 1. $\Delta \beta_1 < \varepsilon$;
- 2. $I(\beta_1) < \varepsilon$.

Якщо умова зупинки виконується, то алгоритм зупиняється і $\beta = \beta_1$ є наближеним розв'язком задачі. Якщо не виконується то переходимо на ітерацію 2.

Ітерація k-1.

На початку цієї ітерації ми знаємо β_k .

Крок 1. Розв'язуємо систему (5.1) - (5.3) одним з числових методів при $\beta = \beta_k$, $y(t_0) = \bar{y}(t_0)$. Знаходимо $y(t, \beta_k)$.

 $Kpo\kappa~2$. Підставляємо $y(t,\beta_k)$ в рівняння чутливості 5.7. Розв'язуємо це рівняння одним з числових методів і знаходимо його розв'язок $U(t,\beta_k)$.

Крок 3. Знаходимо

$$\Delta \beta_k = \left(\int_{t_0}^T U^T(t, \beta_k) U(t, \beta_k) dt \right)^{-1} \int_{t_0}^T U^T(t, \beta_k) (\bar{y}(t) - y(t, \beta_k)) dt.$$

Крок 4. Обчислюємо

$$\beta_{k+1} = \beta_k + \Delta \beta_k$$
.

 $Kpo\kappa 5$. В кінці ітерації перевіряємо одну з умов зупинки алгоритму:

- 1. $\Delta \beta_{k+1} < \varepsilon$;
- 2. $I(\beta_{k+1}) < \varepsilon$.

Якщо умова зупинки виконується, то алоритм зупиняється і $\beta = \beta_{k+1}$ є наближеним розв'язком задачі. Якщо не виконується то

$$k := k + 1$$

і переходимо на наступну ітерацію.

5.3 Лабораторна робота

- 1. Знати означення функції чутливості і вивчити диференціальне рівняння, з якого шукається матриця чутливості. Записати рівняння чутливості для математичної моделі (5.1) (5.3).
- 2. Створити програму, яка реалізує метод параметричної ідентифікації параметрів з використанням функцій чутливості для математичної моделі (5.1) - (5.3).

- 3. Вивести знайдені параметри, значення показника якості ідентифікації параметрів і графіки розв'язків матемаматичної моделі для математичної моделі (5.1) - (5.3), які відповідають знайденим параметрам. Порівняти їх з вимірами.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

5.3.1 Варіанти

- 1. Вектор оцінюваних параметрів $\beta = (c_1, m_1, m_2)^T$, початкове наближення $\beta_0 = (0.1, 11, 23)^T$, відомі параметри $c_2 = 0.3$, $c_3 = 0.2$, $c_4 = 0.12$, $m_3 = 18$, ім'я файлу з спостережуваними даними у1.txt.
- 2. Вектор оцінюваних параметрів $\beta=(c_2,m_1,m_3)^T$, початкове наближення $\beta_0=(0.1,\ 10,\ 12)^T$, відомі параметри $c_1=0.14,\ c_3=0.2,\ c_4=0.12,\ m_2=28,$ ім'я файлу з спостережуваними даними у2.txt.
- 3. Вектор оцінюваних параметрів $\beta = (c_1, c_3, m_1)^T$, початкове наближення $\beta_0 = (0.1, 0.1, 9)^T$, відомі параметри $c_2 = 0.3, c_4 = 0.12, m_2 = 28, m_3 = 18, ім'я файлу з спостережуваними даними у3.txt.$
- 4. Вектор оцінюваних параметрів $\beta=(m_2,c_3,m_3)^T$, початкове наближення $\beta_0=(21,\,0.15,\,11)^T$, відомі параметри $c_1=0.14,\,c_2=0.3,\,c_4=0.12,\,m_1=12$, ім'я файлу з спостережуваними даними у4.txt.
- 5. Вектор оцінюваних параметрів $\beta = (c_1, c_4, m_2)^T$, початкове наближення $\beta_0 = (0.1, 0.08, 21)^T$, відомі параметри $c_2 = 0.3, c_3 = 0.2, m_1 = 12, m_3 = 18$, ім'я файлу з спостережуваними даними у5.txt.
- 6. Вектор оцінюваних параметрів $\beta = (c_1, c_2, m_2)^T$, початкове наближення $\beta_0 = (0.1, 0.15, 19)^T$, відомі параметри $c_3 = 0.2, c_4 = 0.12, m_1 = 12, m_3 = 18$, ім'я файлу з спостережуваними даними уб.txt.
- 7. Вектор оцінюваних параметрів $\beta = (c_3, m_1, m_2)^T$, початкове наближення $\beta_0 = (0.1, 8, 15)^T$, відомі параметри $c_1 = 0.14$, $c_2 = 0.3$, $c_4 = 0.12$, $m_3 = 18$, ім'я файлу з спостережуваними даними у7.txt.
- 8. Вектор оцінюваних параметрів $\beta=(c_1,c_3,m_2)^T$, початкове наближення $\beta_0=(0.1,\ 0.1,\ 19)^T$, відомі параметри $c_2=0.3,\ c_4=0.12,\ m_1=12,\ m_3=18,$ ім'я файлу з спостережуваними даними у8.txt.

- 9. Вектор оцінюваних параметрів $\beta=(c_2,c_4,m_1)^T$, початкове наближення $\beta_0=(0.2,\ 0.1,\ 9)^T$, відомі параметри $c_1=0.14,\ c_3=0.2,\ m_2=28,\ m_3=18,$ ім'я файлу з спостережуваними даними у9.txt.
- 10. Вектор оцінюваних параметрів $\beta=(c_1,c_2,c_3)^T$, початкове наближення $\beta_0=(0.1,\ 0.1,\ 0.4)^T$, відомі параметри $c_4=0.12,\ m_1=12,\ m_2=28,\ m_3=18,$ ім'я файлу з спостережуваними даними у10.txt.
- 11. Вектор оцінюваних параметрів $\beta = (c_3, m_1, m_3)^T$, початкове наближення $\beta_0 = (0.1, 10, 21)^T$, відомі параметри $c_1 = 0.14, c_2 = 0.3, c_4 = 0.12, m_2 = 28$, ім'я файлу з спостережуваними даними у1.txt.
- 12. Вектор оцінюваних параметрів $\beta = (m_1, m_2, m_3)^T$, початкове наближення $\beta_0 = (10, 18, 15)^T$, відомі параметри $c_1 = 0.14$, $c_2 = 0.3$, $c_3 = 0.2$, $c_4 = 0.12$, ім'я файлу з спостережуваними даними у2.txt.
- 13. Вектор оцінюваних параметрів $\beta = (c_1, c_3, m_1)^T$, початкове наближення $\beta_0 = (0.1, 0.1, 9)^T$, відомі параметри $c_2 = 0.3, c_4 = 0.12, m_2 = 28, m_3 = 18, ім'я файлу з спостережуваними даними у3.txt.$
- 14. Вектор оцінюваних параметрів $\beta = (c_4, m_1, m_3)^T$, початкове наближення $\beta_0 = (0.1, 13, 23)^T$, відомі параметри $c_1 = 0.14, c_2 = 0.3, c_3 = 0.2, m_2 = 28$, ім'я файлу з спостережуваними даними у4.txt.
- 15. Вектор оцінюваних параметрів $\beta = (c_2, c_4, m_2)^T$, початкове наближення $\beta_0 = (0.1, 0.1, 23)^T$, відомі параметри $c_1 = 0.14, c_3 = 0.2, m_1 = 12, m_3 = 18$, ім'я файлу з спостережуваними даними у5.txt.
- 16. Вектор оцінюваних параметрів $\beta=(c_1,c_3,c_4)^T$, початкове наближення $\beta_0=(0.1,\ 0.1,\ 0.14)^T$, відомі параметри $c_2=0.3,\ m_1=12,\ m_2=28,\ m_3=18,$ ім'я файлу з спостережуваними даними у6.txt.
- 17. Вектор оцінюваних параметрів $\beta = (c_1, c_4, m_3)^T$, початкове наближення $\beta_0 = (0.1, 0.1, 23)^T$, відомі параметри $c_2 = 0.3, c_3 = 0.2, m_1 = 12, m_2 = 28$, ім'я файлу з спостережуваними даними у7.txt.
- 18. Вектор оцінюваних параметрів $\beta=(c_3,m_2,m_3)^T$, початкове наближення $\beta_0=(0.1,\ 30,\ 23)^T$, відомі параметри $c_1=0.14,\ c_2=0.3,\ c_4=0.12,\ m_1=12,$ ім'я файлу з спостережуваними даними у8.txt.

- 19. Вектор оцінюваних параметрів $\beta=(c_2,m_1,m_3)^T$, початкове наближення $\beta_0=(0.1,\ 11,\ 23)^T$, відомі параметри $c_1=0.14,\ c_3=0.2,\ c_4=0.12,\ m_2=28,$ ім'я файлу з спостережуваними даними у9.txt.
- 20. Вектор оцінюваних параметрів $\beta=(c_4,m_1,m_2)^T$, початкове наближення $\beta_0=(0.1,\ 11,\ 23)^T$, відомі параметри $c_1=0.14,\ c_2=0.3,\ c_3=0.2,\ m_3=18,$ ім'я файлу з спостережуваними даними у10.txt.

Побудова моделі розфокусування зображення у вигляді згортки

6.1 Математична модель

Математична модель розфокусування зображення будується в класі наступних операторів

$$g(x,y) = \int \int_{\mathbb{R}^2} h(x-\xi, y-\eta) f(\xi, \eta) d\xi d\eta, \tag{6.1}$$

де f(x,y) – оригінальне зображення, g(x,y) – розфокусоване зображення, h(x,y) – передавальна функція оператора (6.1).

Функція h(x,y) має вигляд

$$h(x,y) = \begin{cases} \frac{1}{\pi r^2}, & \text{якщо } x^2 + y^2 \le r^2 ; \\ 0, & \text{якщо } x^2 + y^2 > r^2 ; \end{cases}$$

де r– радіус розфокусування.

Перетворення Фур'є функції h(x,y) має вигляд

$$F_h(\omega_x, \omega_y) = J_1(r\rho)/r\rho,$$

$$\rho^2 = \omega_x^2 + \omega_y^2,$$

де $J_1(\varphi)$ – функція Бесселя першого роду.

- 1. Знати означення згортки двох функцій і теорему про її образ Фур'є.
 - 2. Створити програму, яка розв'язує такі задачі:
 - розфокусувати задане оригінальне зображення;
 - для заданого розфокусованого зображення знайти оригінальне зображення, радіус розфокусування невідомий.
 - 3. Вивести результати роботи програми на екран.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

6.2.1 Варіанти

- 1. Розфокусувати зображення y1.bmp (з Lab2), розфокусоване зображення y1.bmp;
- 2. Розфокусувати зображення y2.bmp (з Lab2), розфокусоване зображення y2.bmp;
- 3. Розфокусувати зображення у6.bmp (з Lab2), розфокусоване зображення у3.bmp;
- 4. Розфокусувати зображення y10.bmp (з Lab2), розфокусоване зображення y4.bmp;
- 5. Розфокусувати зображення y1.bmp (з Lab2), розфокусоване зображення y5.bmp;
- 6. Розфокусувати зображення y2.bmp (з Lab2), розфокусоване зображення y6.bmp;
- 7. Розфокусувати зображення у6.bmp (з Lab2), розфокусоване зображення у7.bmp;
- 8. Розфокусувати зображення y10.bmp (з Lab2), розфокусоване зображення y8.bmp;
- 9. Розфокусувати зображення y1.bmp (з Lab2), розфокусоване зображення y9.bmp;
- 10. Розфокусувати зображення y2.bmp (з Lab2), розфокусоване зображення y10.bmp;

- 11. Розфокусувати зображення у
6.bmp (з Lab2), розфокусоване зображення у
11.bmp;
- 12. Розфокусувати зображення у
10.bmp (з Lab2), розфокусоване зображення у
12.bmp.

Задача параметричної ідентифікації в моделі міжвидової конкуренції популяцій

7.1 Математична модель міжвидової конкуренції популяцій. Лабораторна робота

Розглянемо модель динаміки для двох видів популяцій, які використовують один і той же ресурс. Динаміка чисельності видів визначається системою звичайних диференціальих рівнянь

$$\begin{cases} \dot{N}_1 &= N_1(r_1 - \beta_1 N_1 - \alpha_2 N_2), \\ \dot{N}_2 &= N_2(r_2 - \beta_2 N_2 - \alpha_1 N_1). \end{cases}$$
 (7.1)

Тут N_i – чисельність i-го виду, r_i – коефіцієнт приросту i-го виду, β_i – коефіцієнт, який описує внутрішньовидовий вплив, α_i – коефіцієнт, який описує влив зі сторони іншого виду, i=1,2. Всі коефіцієнти додатні.

- 1. Вважається, що на скінченому інтервалі часу $[t_0, T]$ спостерігається динаміка чисельності популяцій N_1 і N_2 . Потрібно визначити параметри r_i , β_i , α_i , i=1,2 моделі (7.1) за спостереженнями за N_1 і N_2 , $t\in[t_0,T]$. Описати алгоритм послідовного наближення параметрів r_i , β_i , α_i , i=1,2, використовуючи функцію чутливості чисельності популяції від параметрів моделі (див. лабораторну роботу 5, стор. 25.
- 2. Вважається, що на скінченому інтервалі часу $[t_0, T]$ відомі спостереження z(t), процес спостереження визначається за допомогою рівнян-

ня спостереження

$$z(t) = N_1(t) + N_2(t).$$

Визначити параметри r_i , β_i , α_i , i=1,2 моделі (7.1) за спостереженнями z(t), $t \in [t_0, T]$. Описати алгоритм послідовного наближення параметрів r_i , β_i , α_i , i=1,2, використовуючи функцію чутливості чисельності популяції від параметрів моделі.

- 3. Написати програми, які реалізують поставлені завдання. Вивести результати роботи програми на екран.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Функції Matlab для виконання лабораторних робіт

```
1. dlmread('імя файлу', 'розділовий символ між значення фай-
    \mathbf{ny'}) — зчитування даних з файлу;
    Приклад: y=dlmread('f1.txt',' ');
 2. imshow(a) – відображення однобайтової матриці зображення;
 3. imread('імя файлу');
    Приклад: x=imread('x3.bmp');
 4. double(a) – перекодування в 4 байтні числа;
 5. uint8(a) – перекодування в 4 байтні числа;
 6. figure – створення нового графічного вікна;
 7. plot (\mathbf{x},\mathbf{y}) – побудова вектор-функції y, x – аргумент функції;
 8. \mathbf{eye}(\mathbf{n}) – створення одиничної матриці порядку n;
 9. \mathbf{zeros}(\mathbf{n}) – створення нульової матриці порядку n;
10. \mathbf{ones(m,n)} – створення нульової матриці порядку m \times n;
    Приклад: a=ones(1,n);
11. \mathbf{size}(\mathbf{x}) – визначення розмірності матриці x;
    Приклад: [m,n]=size(x);
12. length(x) – визначення розмірності вектора x;
13. inv(a) – обчислення оберненої матриці;
```

- 14. Розвязок системи алгебраїчних рівнянь Ax = b методом Гауса; Приклад: $x = A \setminus b$;
- 15. fft(y) дискретне перетворення Фур'є одновимірної послідовності;
- 16. **ifft(x)** обернене дискретне перетворення Φ ур'є одновимірної послідовності;
- 17. $\mathbf{fft2}(\mathbf{y})$ дискретне перетворення Фур'є двовимірного масиву;
- 18. **ifft2(x)** дискретне перетворення Φ ур'є двовимірного масиву.

Література

- [1] Алберт А. Регрессия, псевдоинверсия и рекуррентное оценивание. М.: Наука, 1977. 224 с.
- [2] Башняков О.М., Гаращенко Ф.Г., Пічкур В.В. Практична стійкість, оцінки та оптимізація. -К.: Київський університет, 2008. 383 с.
- [3] Беклемишев Д.В. Дополнительные главы линейной алгебры. М.: Наука, 1983. 336 с.
- [4] Самарский А.А., Михайлов А.П. Математическое моделирование. Идеи. Методы. Примеры. М.: Наука. Физматлит, 1997. 320 с.