Ejercicio 10: Se preparan en el laboratorio 100 N de suelo mezclando 70 N de arena (Densidad de partículas = 28,0 N/dm3) y 0.300 l de agua. ¿Cuál es la máxima densidad seca que puede obtenerse con este suelo? ¿Qué volumen ocuparía este suelo si su grado de saturación fuese 0.5?

Ejercicio 11: Se toma un área de 1 x 1 m2. Se considera un problema plano consistente en rellenar dicho cuadrado con tres grupos de círculos, que equivalen a partículas de suelo, que posee 0,2 m, 0,05 m y 0,02 m en partes iguales. Se pide:

- Rellenar el cuadrado dado con la intención de dejar el mínimo espacio de huecos, utilizando el mayor número de partículas de los tamaños citados.
- Calcular la porosidad y el índice de huecos.
- Si las partículas poseen una densidad de 26,5 kN/m3 calcular la densidad seca y saturada del suelo constituido.
- Suponiendo un grado de saturación del 40% calcular la densidad aparente y la humedad.

Ejercicio 12: De una arcilla se conoce su Límite de Retracción (25) y la humedad natural (33). Calcular la disminución de volumen que experimenta si se deseca hasta su límite de retracción. Peso específico de las partículas = 27,2 N/dm.

Ejercicio 13: Se posee una muestra de arcilla natural saturada pesa 0,90 N y tiene una humedad del 41%. Se deseca en estufa y posee un volumen de 31 cm3. Se pide calcular su Límite de retracción (LR). Peso específico de las partículas = 27,0 N/dm.

Ejercicio 14: Una arcilla posee un límite líquido de 65 y un límite plástico de 25. Su humedad natural es del 45 %. Determinar su consistencia en estado natural y su clasificación.

Ejercicio 15: Se sabe que la densidad aparente de una muestra de arcilla es de 19,5 N/dm3 y su contenido de humedad del 25,3%. Determinar el grado de saturación. Dato: Densidad de las partículas igual a 27,0 N/dm3.

Ejercicio 16: Una muestra inalterada de arcilla pesa 1,05 N en estado natural y 0,62 N cuando está seca. Determinar su volumen y su índice de huecos cuando posee una saturación del 75 %. Dato: Densidad de las partículas igual a 27,1 N/dm3.

Ejercicio 17: Se posee una muestra de arcilla firme que posee en su estado natural un peso de 1,32 N y un volumen de 57 cm3. Se seca en estufa y su peso se reduce a 1,22 N. Determinar: Humedad, índice de huecos y grado de saturación. Dato: Densidad de las partículas igual a 27,0 N/dm3.

Ejercicio 18: Una muestra de arcilla saturada pesa de 1,03 N. Se seca en estufa y su peso se reduce a 0,73 N. Determinar: Humedad, índice de huecos, porosidad y densidades seca y saturada. Dato: Densidad de las partículas igual a 27,0 N/dm3.

Ejercicio 19: Un suelo granular posee una densidad seca de 16,5 N/dm3. Posee una humedad del 6%. Se toma 26,5 N/dm3 para la densidad de las partículas. Calcular: Densidades aparente, saturada y sumergida; grado de saturación, porosidad e índice de huecos.

Ejercicio 20: Un suelo natural tiene una humedad del 15%, un grado de saturación de 0.6 y un peso específico de las partículas sólidas de 26,0 N/dm3 . Obtener su índice de poros.

Ejercicio 21: Se dispone en el laboratorio de una muestra cilíndrica de 60 mm de diámetro y 25 mm de altura, con un peso de 80 gr. La humedad de la muestra es del 14%. Determinar el grado de saturación, el peso específico seco, el peso específico natural, el peso específico saturado y el peso específico sumergido (peso específico de las partículas sólidas = 27,0 N/dm3).

Ejercicio 22: El estado tensional de un punto del suelo posee los siguientes valores

$$\sigma_{h} = 200 \text{ Kpa}$$
 $\sigma_{v} = 600 \text{ Kpa}$ $\tau_{xv} = 200 \text{ Kpa}$

Calcular las direcciones y las tensiones principales.

Ejercicio 23: Las tensiones principales en un punto del suelo son

$$\sigma_{min}$$
 = 250 Kpa σ_{max} = 400 Kpa σ_{xy} = 30°

- Calcular las tensiones σ_h , σ_v , τ_{xy} sobre los ejes X e Y
- Calcular las tensiones σ_h , σ_v , τ_{xy} sobre un plano que forme 60 ° con el eje X.

$$\sigma_{\min} = \sigma_{\max} \tan^2(\frac{\pi}{4} - \frac{\varphi}{2}) - 2c \tan(\frac{\pi}{4} - \frac{\varphi}{2})$$

$$\sigma_{\max} = \sigma_{\min} \tan^2(\frac{\pi}{4} + \frac{\varphi}{2}) + 2c \tan(\frac{\pi}{4} + \frac{\varphi}{2})$$

Ejercicio 24: Un suelo granular posee un ángulo de rozamiento (ϕ) de 35°. Se le somete a un estado biaxial en deformación plana siendo su tensión horizontal (σ_x) de 300 kPa. Se pide:

- La máxima tensión vertical soportada.
- La dirección del plano de rotura.
- Las tensiones sobre dicho plano.

Ejercicio 25: Un suelo arcilloso posee un ángulo de rozamiento (ϕ) de 14° y una cohesión de 28 Kpa . Se le somete a un estado biaxial en deformación plana siendo su tensión vertical máxima en el momento de rotura de 200 Kpa. Calcular:

- Los empujes horizontales compatibles con dicha situación.
- La dirección del plano de rotura.
- Las tensiones sobre dicho plano.

Ejercicio 26: En laboratorio se obtienen con una muestra del terreno dos situaciones de rotura de probeta: σ_h = 200 Kpa / σ_v = 600 Kpa y σ_h = 300 Kpa / σ_v = 800 Kpa. Hallar la cohesión y el ángulo de rozamiento interno del suelo.