Character Tables for Representations of Finite Groups

Jared Stewart

April 2, 2016

Table of contents

- Basics of Representation Theory
 - Motivation
 - Group Actions
 - The Definition of a Representation
- 2 Section no.1
 - Subsection no.1.1
- 3 Section no. 2
 - Lists I
 - Lists II
- 4 Section no.3
 - Tables
- Section no. 4
 - blocs
- 6 Section no. 5
 - split screen

Motivation

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- **1** The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- ② The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

In these two examples, S_n acts on the set $\{1,\ldots,n\}$ and D_n acts on the regular n-gon in a natural manner. One may wonder more generally: Given an abstract group G, which objects X does G act on? This is the basic question of representation theory, which attempts to classify all such X up to isomorphism.

Definition

A **group** action of a group G on a set X is a map $\rho \colon G \times X \to X$ (written as $g \cdot x$, for all $g \in G$ and $x \in X$) that satisfies the following two axoims:

$$1 \cdot x = x \qquad \forall x \in X \tag{1}$$

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 $\forall g, h \in G, x \in X$ (2)

Section no.1

Definition

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is an action of G on V that preserves the linear structure of V, i.e. an action of G on V such that

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \qquad \forall g \in G, v_1, v_2 \in V$$
 (3)

$$g \cdot (kv) = k(g \cdot v)$$
 $\forall g \in G, v \in V, k \in F$ (4)

Definition (Alternative definition)

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is any group homomorphism

$$\rho \colon G \to GL(V)$$
.

The two definitions we have given of a linear representation are equivalent.

Proof.

- (\rightarrow) Suppose that we have a homomorphism $\rho\colon G\to GL(V)$. We can obtain a linear action of G on V by defining $g \cdot v = \rho(g)(v)$.
- (\leftarrow) Suppose that we have a linear action of G on V. We obtain a homomorphism $\rho \colon G \to GL(V)$ by defining $\rho(g)(v) = g \cdot v$.

The Dimension of a Representation

Definition

Let $\rho \colon G \to GL(V)$ be a representation of G. The **dimension** of the representation is the dimension of the vector space V.

Examples of Representations

Example

Let V be an n-dimensional vector space. The map $\rho\colon G\to GL(V)$ defined by $\rho(g)=\operatorname{Id}_V$ for all $g\in G$ is a representation of G called the **trival representation** of dimension n.

Examples of Representations

Example

If G is a finite group that acts on a finite set X, and F is any field, then there is an associated **permutation representation** on the vector space V over F with basis $\{e_x\colon x\in X\}$. We let G act on the basis elements by the permutation $g\cdot e_x=e_{gx}$ for all $x\in X$ and $g\in G$. This representation has dimension |X|.

Examples of Representations

Example

A special case of a permutation representation is that when a finite group acts on itself by left multiplication. We take the vector space V_{reg} which has a basis given by the formal symbols $\{e_g|g\in G\}$, and let $h\in G$ act by

$$\rho_{\mathsf{reg}}(h)(e_g) = e_{hg}.$$

This representation is called the **regular representation** of G, and has dimension |G|.

Example

For any symmetric group S_n , the **alternating representation** on $\mathbb C$ is given by the map

$$\rho \colon S_n \to GL(\mathbb{C}) = \mathbb{C}^{\times}$$
$$\sigma \mapsto \operatorname{sgn}(\sigma).$$

More generally, for any group G with a subgroup H of index 2, we can define an alternating representation $\rho\colon G\to GL(\mathbb{C})$ by letting $\rho(g)=1$ if $g\in H$ and $\rho(g)=-1$ if $g\notin H$. (We recover our original example by taking $G=S_n$ and $H=A_n$.)

Definition

A **homomorphism** between two representations $\rho_1\colon G\to GL(V)$ and $\rho_2\colon G\to GL(W)$ is a linear map $\psi\colon V\to W$ that interwines with the action of G, i.e. such that

$$\psi \circ \rho_1(g) = \rho_2(g) \circ \psi \quad \forall g \in G.$$

In this case, we also refer to ψ as a G-linear map.

Definition

An **isomorphism** of representations is a G-linear map that is also invertible.

Title

Each frame should have a title.

unnumbered lists

- Introduction to LATEX
- Course 2
- \bullet Termpapers and presentations with \LaTeX
- Beamer class

• Introduction to LATEX

- Introduction to LATEX
- Course 2

- Introduction to LATEX
- Course 2
- \bullet Termpapers and presentations with \LaTeX

- Introduction to LATEX
- Course 2
- \bullet Termpapers and presentations with \LaTeX
- Beamer class

numbered lists

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX
- Beamer class

Introduction to LATEX

- Introduction to LATEX
- Course 2

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX
- Beamer class

Tables

Date	Instructor	Title
WS 04/05	Sascha Frank	First steps with LATEX
SS 05	Sascha Frank	LATEX Course serial

Tables with pause

A B C

Tables with pause

A B C 1 2 3

Tables with pause

A B C 1 2 3 A B C

blocs

title of the bloc

bloc text

title of the bloc

bloc text

title of the bloc

bloc text

splitting screen

- Beamer
- Beamer Class
- Beamer Class Latex

Instructor	Title
Sascha Frank	LATEX Course 1
Sascha Frank	Course serial