TD 14 - Intégration sur un segment

Exercice 1: Pour $n \in \mathbb{N}$, calculer $I_n = \int_0^{\pi/2} \sin^n t \, dt$. On pourra chercher une relation de récurrence.

Exercice 2: Pour un entier naturel non nul n, on pose $I_n = \int_1^e x^2 (\ln x)^n dx$.

- 1. Calculer I_1 , étudier les variations de la suite $(I_n)_{n\geqslant 1}$ et montrer qu'elle converge.
- 2. Montrer que pour tout $x \in [1, e]$, $\ln x \leqslant \frac{x}{e}$, en déduire la limite de $(I_n)_n$.
- 3. Trouver une relation de récurrence entre I_{n+1} et I_n , en déduire un équivalent de I_n .

Exercice 3: Soit φ une fonction en escalier sur [a,b]. Pour tout $n \in \mathbb{N}$, on note: $u_n = \int_a^b \varphi(x) \sin nx \, dx$. Montrer que $\lim_{n \to +\infty} u_n = 0$. En déduire que ce résultat est conservé pour une fonction φ continue.

Exercice 4: Soit g une fonction de classe \mathcal{C}^1 sur un segment [a,b]. Montrer que $\lim_{n\to+\infty}\int_a^b g(t)\cos(nt)\ dt=0$.

Exercice 5 : Étudier les suites :

a.
$$u_n = \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{n\pi}{n} \right)$$
 b. $u_n = n \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2} \right)$ c. $u_n = \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n-1}}{n\sqrt{n}}$ d. $u_n = \sqrt[n]{\left(1 + \left(\frac{1}{n} \right)^2 \right) \left(1 + \left(\frac{2}{n} \right)^2 \right) \dots \left(1 + \left(\frac{n}{n} \right)^2 \right)}$

Exercice 6 : Soit μ un réel différent de 1 et de -1. Calculer, à l'aide de sommes de Riemann, la valeur de l'intégrale $I_{\mu} = \int_{0}^{\pi} \ln(1-2\mu\cos t + \mu^{2}) \, dt$.

Exercice 7: En encadrant les sommes par des intégrales, donner un encadrement de $u_n = \sum_{k=1}^n \frac{1}{k}$ et de $v_n = \sum_{k=1}^n k \ln k$. En déduire les limites de u_n et v_n ainsi qu'un équivalent en $+\infty$.

Exercice 8: Soit $a \in \mathbb{R}$ tel que a > 0. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} . On pose pour tout $n \in \mathbb{N}^*$:

$$u_n = \int_0^a rac{1}{1+nt} dt$$
 $v_n = \int_0^a rac{f(t)}{1+nt} dt$ $w_n = \int_0^a t^n f(t) dt$

- 1. Calculer u_n pour $n \in \mathbb{N}^*$ et déterminer $\lim_{n \to +\infty} u_n$
- 2. Démontrer que (v_n) converge et déterminer sa limite.
- 3. On suppose maintenant que $0 < a \le 1$. Démontrer que $\lim_{n \to +\infty} w_n = 0$.

Exercice 9: Soient $(a, b) \in \mathbb{R}^2$, a < b. Déterminer une condition nécessaire et suffisante pour qu'une fonction continue f de [a, b] dans \mathbb{R} vérifie : $\left| \int_a^b f \right| = \int_a^b |f|.$

Exercice 10: Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue et telle que $\int_0^1 f(t) \ dt = \frac{1}{2}$. Montrer que f admet au moins un point fixe. Puis, adapter ce résultat à une fonction continue sur [a,b] avec a < b.

Donner un exemple de fonction g définie sur [0,1], sans point fixe et telle que $\int_0^1 g(t) \ dt = \frac{1}{2}$.

Exercice 11 : Soit $\varphi \in \mathcal{C}(\mathbb{R})$. Étudier la continuité et la dérivabilité des applications suivantes :

$$f:x\longmapsto \int_0^1(x-t)arphi(t)\;dt, \qquad \qquad g:x\longmapsto \int_0^x(x-t)arphi(t)\;dt, \qquad \qquad h:x\longmapsto \int_0^1arphi(x+t)\cos(t)\;dt.$$

Exercice 12: On pose pour tout $u \in \mathbb{R}^*$, $I(u) = \int_u^{2u} \frac{\sin(x)}{x^2} dx$.

- 1. Justifier que I(u) est bien définie, pour tout $u \in \mathbb{R}^*$, et que la fonction I ainsi définie est paire.
- 2. Montrer que pour x positif, on a $x \frac{x^3}{6} \leqslant \sin x \leqslant x + \frac{x^3}{6}$ à l'aide de la formule de Taylor à l'ordre 2.
- 3. En déduire un encadrement de I(u), pour u positif, faisant intervenir l'intégrale $J(u) = \int_{u}^{2u} \frac{1}{x} dx$.
- 4. Calculer J(u), et en déduire la limite de I(u) quand u tend vers 0.
- 5. Déterminer un autre encadrement de I(u). Étudier $\lim_{u\to +\infty} I(u)$.

Exercice 13: On considère la fonction F définie par $F(x) = \int_x^{2x} \frac{1}{\sqrt{4+t^4}} dt$.

- 1. Démontrer que F est définie sur \mathbb{R} et que F est impaire, puis étudier le signe de F sur \mathbb{R}^+ .
- 2. Montrer que pour tout $x \ge 0$, on a $\frac{x}{\sqrt{4+16x^4}} \le F(x) \le \frac{x}{\sqrt{4+x^4}}$, puis en déduire $\lim_{x \to +\infty} F(x)$.
- 3. Démontrer que F est dérivable sur \mathbb{R} . Déterminer F' et dresser le tableau de variation de F.
- 4. Pour x>0, on pose $h(x)=x\int_x^{2x}\left(\frac{1}{\sqrt{4+t^4}}-\frac{1}{t^2}\right)\,dt$. Démontrer que $\lim_{x\to+\infty}h(x)=0$ et en déduire un équivalent de F au voisinage de $+\infty$.

Exercice 14: Calculer une primitive $\int \frac{1}{\sqrt{x(a-x)}} dx$ où a est un réel donné positif. On commencera par préciser le domaine de définition de la fonction à intégrer et on utilisera les 4 méthodes suivantes :

- 1. en posant l'un des 3 changements de variables suivants
 - a) le changement de variables $u=\sqrt{x}$, b) $x-\frac{a}{2}=\frac{a}{2}\cos\theta$, c) $x=a\sin^2\varphi$,
- 2. en écrivant de manière canonique le trinôme $x(a-x)=\alpha(1-u^2)$.

En déduire la formule : $\arcsin\left(\frac{2x}{a}-1\right)-2\arcsin\left(\frac{\sqrt{x}}{\sqrt{a}}\right)=\frac{\pi}{2}$ pour tout x dans un domaine à préciser.

Exercice 15: On définit pour x réel, la fonction u par $u(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$

- 1. (a) En utilisant une formule de Taylor à l'ordre 1, montrer que $\forall y \in [-2,2], \qquad |e^y-1-y| \leqslant \frac{1}{2}y^2e^2$.
 - (b) Soit $x \in \mathbb{R}$ fixé. Pour $h \in \mathbb{R}^*$, on pose $d(h) = \frac{u(x+h) u(x)}{h} + \int_0^1 e^{-x(1+t^2)} dt$. Écrire d(h) sous la forme d'une seule intégrale $d(h) = \int_0^1 \frac{e^{-x(1+t^2)}}{h(1+t^2)} A(h,t) dt$ avec A une fonction de h et t que l'on précisera.
 - (c) En utilisant une question précédente, pour $y=-h(1+t^2)$, avec $0<|h|\leqslant 1$, prouver que $|d(h)|\leqslant K.|h|$ où K est une constante indépendante de h que l'on ne cherchera pas à calculer.
 - (d) En déduire que u est dérivable en x et que $u'(x) = -\int_0^1 e^{-x(1+t^2)} dt$
- 2. On pose, pour tout réel x, $v(x)=u(x^2)$ et $w(x)=\left(\int_0^x e^{-t^2}\ dt\right)^2$.
 - (a) Montrer que v et w sont dérivables sur $\mathbb R$ et calculer, pour tout réel x, v'(x) et w'(x).
 - (b) Pour tout $x \in \mathbb{R}^*$, prouver que w'(x) = -v'(x) à l'aide du changement de variables $t = x \times z$. Et pour x = 0?
 - (c) Calculer v(0) + w(0). Que peut-on dire de la fonction v + w?
- 3. (a) Que vaut $\lim_{a \to +\infty} ae^{-a}$? En déduire qu'il existe un réel A (que l'on ne cherchera pas à déterminer) tel que $a > A \Longrightarrow 0 < e^{-a} < \frac{1}{a}$.
 - (b) On suppose ici que x>A, montrer que $0\leqslant u(x)\leqslant \frac{1}{x}\int_0^1\frac{1}{(1+t^2)^2}\ dt$. En déduire $\lim_{x\to +\infty}u(x)$ puis $\lim_{x\to +\infty}v(x)$.
 - (c) En déduire que $\ell = \lim_{x \to +\infty} \int_0^x e^{-t^2} dt$ existe et donner sa valeur.