GAN Computer Generate Art: A GANs Survey

by Bharath Gunasekaran

What is Art?

- An essentially part of human culture
- A way to express imagination, thoughts, memories, and ideas
- Categorized at Visual Arts and Performing Arts

Early Computer Art

- Very Uniform and lifeless
- Require human intervention

Age of Deep Learning

- Advancement of Deep Learning
 - Allow for computer to generate content without human intervention

- GANS
 - Visual Art
 - Musical Art
 - Literary text

What are GANs?

GANs Architectures

All GAN architectures are based on generator and discriminator

- Conditional GAN
- Deep Convolutional GAN (DCGAN)
- Recurrent Adversarial Networks

Conditional GAN

- allowing the generator and discriminator to access auxiliary information such as class labels
- Allow generator to generate content based on a condition

Deep Convolutional GAN

- The generator and the discriminator are made up of convolution networks (CNN)
- Convolution Layers are used to apply up sampling and down sampling
- Good at extract features from images

Recurrent Adversarial Network

- Suitable for sequential or time dependent data such as text or audio generation
- Consists of a encoder and decoder

Common Loss Functions

- Cross-Entropy Loss
- Binary Cross-Entropy Loss
- Mean Square Loss
- KL divergence Loss
- Wasserstein distance

$$H(p,q) = -\sum_{\forall x} p(x)\log(q(x))$$

$$-\frac{1}{N}\sum_{i=1}^{N} y_i \cdot \log (p(y_i)) + (1-y_i) \cdot \log (1-p(y_i))$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$KL(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right)$$

$$l_1(u, v) = \inf_{\pi \in \Gamma(u, v)} \int_{\mathbb{R} \times \mathbb{R}} |x - y| d\pi(x, y)$$

Visual Arts with GANs

- Generate cartoon images from a sketch
 - Conditional GANs
 - U-net Generator
 - CNN discriminator
 - Outperformed existing solutions
- Unconditional Art generation
 - modified DCGANs
 - Deep CNN Generator
 - CONV discriminator
 - 53% better than DCGANs

Source	Task	GAN Type	Loss Function	Generator-Discriminator	Result
				Architecture	
[24]	Generate cartoon	Conditional GAN	Cross entropy, L1	U-Net Generator, CNN-FC	Qualitative only,
	image from sketch		distance for pixel-level	discriminator	outperformed existing
			loss		works
[25]	Generate shoe image	Conditional GAN	Binary cross-entropy	U-Net Generator,	No evaluation
	from sketch		loss for discriminator	Deep CNN discriminator	
[26]	Generate fully	Vanilla GAN with	Auxiliary Losses,	U-Net Generator, DNN	FID 4.18, classification
	colored synthetic	Encoder for image	discriminator is trained	discriminator	score 0.57. 63% evaluators
	images from sketch	style recognition	on style loss & content		preferred images from
			loss. MSE Loss.		proposed model
[27]	Generate painting by	Conditional GAN	Wasserstein Loss	Configurations not	No evaluation
	brushstrokes			provided	
[28]	Unconditional art	DCGAN	Cross entropy loss and	Deep CNNs, CONV	53% of evaluators believe
3.0	generation		added classification,	followed by LeakyReLU	that synthesized images
			style ambiguity losses		were by an artist.
[29]	Generate pre-	StyleGAN	WGAN-GP	Configurations not	No evaluation
	modern Japanese art			provided	
	facial expression				
[31]	Generate face photo	Conditional GAN	Cross entropy	Configurations not	No evaluation, the loss
	from a sketch and			provided	values were reported
	vice versa				
[32]	Generate digits and	Modified	MSE	Generator contains	Generated images not
	character strokes	DCGAN + agent		CONV+LeakyReLU,	evaluated, classification
				Agent is VGG	accuracy 91% on MNIST
[33]	Generate calligraphy	Modified	Binary Cross entropy	Two residual blocks then 4	FID 120.1, 49.3% of the
	and handwritten	conditional GAN	discriminator, cross-	CONV modules generator,	images were identified to
	digits	with multiple	entropy style loss &	1 CONV layer then 6	be synthesized
		encoders for style	Kullback-Leibler	residual blocks	
		& content-	content loss	discriminator	
		encoding			

Music Generation with GANs

- Melody Generation
 - LSTM-based GAN
 - Bi-directional LSTM generator
 - LSTM discriminator
- Generate Pop Music
 - Modified DCGAN
 - o 6 layer with 2 Dense and 4 Convolution Layers generator
 - o 3 layer Discriminator

Source	Task	GAN Type	Loss Function	Generator-Discriminator Architecture	Result
[34]	Generate	Hybrid VAE	KL Divergence	Four DeCONV layers for both generator	No quantitative evaluation,
	melody for a	and GAN		& discriminator, VAE encoder used three	concluded that
	specific genre			Conv2D	consistency of generated melodies
					was not up to the same level as
					human composition
[36]	Melody	LSTM-based	Bayesian	Bi-LSTM generator and LSTM	Average
	Generation	GAN		discriminator	score of 3.27 on the three
					qualitative metrics, 48% likely to be
					detected as synthetic
[37]	Generate pop	Modified	Cross entropy	Two dense layers followed by four	Mean score around 3 for being
	music	DCGAN		transposed CONV for generator; 2 CONV	pleasant & realistic,
	monophonic			layers followed by a dense layer	4 for interesting people with
	melodies			discriminator	musical backgrounds, 3.4 for people
					without
					musical backgrounds
[39]	Generate	Conditional	Cross entropy	LSTM generators and discriminators	No evaluation was provided
	melodies	GAN			
	based on				
	lyrics				
[41]	Generate	Conditional	Cross entropy	Dense layer followed by 2 LSTM	BLEU-2 score of 0.735, scores of
	melodies	LSTM GAN		followed by a dense layer for generator, 2	about 3.8, 3.5, 4.1 respectively out
	based on			LSTM followed by dense for	of 5 for lyrics, rhythm, and melody
	lyrics			discriminator	by evaluators
[42]	Generate	RNN GAN	Cross entropy	2 LSTM layers for generator, 2 Bi-	No evaluation was provided
	single voice		and Squared	directional LSTM layers followed by a	
	polyphonic		error loss	dense for discriminator	
	music				
[43]	Generate	Conditional	Wasserstein	Generators contain 1D transposed CONV,	The highest score for conditional
	multi-track,	GAN		discriminators 5 contain 1D Conv layers	generation was 3.1 and non-
	polyphonic			followed by one dense layer	conditional was 3.16 out of 5 by
	music				'non-pro' evaluators. For intra-track
					metrics, jamming model performed
					best
[44]	Generate folk	RL GAN	Cross entropy	RNN generators, CNN discriminators	BLEU score of 0.94 and MSE of
[44]	Generate folk music	RL GAN	Cross entropy and policy	RNN generators, CNN discriminators	BLEU score of 0.94 and MSE of 20.6 outperformed baseline

Literary Text Generation

- Chinese Poetry Generation
 - RL GAN
 - o RNN Generator
 - CNN discriminators
 - o BLEU-2 score 0.74
- Generate Poetry from Image
 - GAN encoder and decoder
 - RNN Generator
 - CNN-RNN agent for encoding and decoding painting
 - LSTM for text generation

Source	Task	GAN Type	Loss Function	Generator-	Dataset	Result
				Discriminator		
				Architecture		
[44]	Chinese	RL GAN	Cross entropy and	RNN Generators	16394 Chinese	BLEU-2 score of
	Poetry		policy gradient	and CNN	quatrains	0.74, overall score of
	generation			discriminators		0.54 by human
						evaluators
[45]	Generate	Multiadversarial	Cross entropy and	RNN Generators,	Novel dataset with	Overall BLEU score
	poetry from	GAN with an	policy gradient	GRU-based	paired image and	of 0.77, 7.18 out of
	an image	embedding		discriminator, CNN	poetry	10 overall score by
		model		image encoder and		human evaluators
				RNN poem decoder		
[46]	Generate	Multiadversarial	Cross entropy and	RNN Generator,	Two datasets for	Average scores of
	Shakespearea	GAN with	policy gradient	CNN-RNN agent	generating	3.7, 3.9, and 3.9 ou
	n prose from	encoder and		for encoding and	English poem from	of 5 by evaluators for
	a painting	decoder		decoding painting,	an image, and	content, creativity
				LSTM encoder and	Shakespeare plays	and similarity to
				decoder for	and	Shakespearean styl-
				generating prose	their English	respectively
					translations for text	
					style transfer	
[47]	Chinese	RL GAN	Maximum-	A single layer	Poem-5 and Poem-	BLEU-2 scores of
	Poetry		likelihood	LSTM generator,	7 Chinese Poem	0.76 and 0.55 for th
	generation			two-layer Bi-	dataset	two datasets
				directional LSTMs		respectively
				discriminator		
[48]	Chinese	RNN GAN	Wasserstein	LSTM generator	Poem-5 and Poem-	BLEU-2 scores of
	Poetry		distance	and discriminator	7 Chinese Poem	0.88 and 0.67 for th
	generation			with WGAN-GP	dataset	two datasets
				training		respectively
[50]	Chinese	GAN with a	Ranking objective	LSTM generator,	Over 13,000	BLEU-2 score of
	Poetry	ranking function		CNN-based ranker	Chinese quatrains	0.81, 4.6 out of 10
	generation					overall score by
						human evaluators
[50]	Learn rare	GAN with a	Ranking objective	LSTM generator,	Over 3000	BLEU-2 score of
	words from	ranking function		CNN-based ranker	sentences from	0.914
	Romeo and				Romeo and Juliet	
	Juliet play				play	
[51]	Poetry and	GAN with	Cross entropy	AWD-LSTM [52]	740 classical and	Perplexity score of
	lyrics	language model		and TransformerXL	contemporary	42.5 for poetry and
	generation	generator		[53] language model	English poems and	9.02 for lyrics
				for generator,	1500 song lyrics	generations
				discriminator	across various	
				encoder-decoder	genres	
				pair.		

Challenges

- Image generation require a lot of data to train
- Music generation is time dependent which leads to complex GAN architectures
- Literary GAN research is limited to poetry generation
 - More research need to be done to draw a conclusion

Future Work

- Experiment with smaller dataset and GAN architectures for visual arts generation.
- Implement GANs to generate music in raw audio format as opposed to MIDI file format.
- Implement longer text literary work generations including novels and dramas.
- Propose a well-defined and comprehensive qualitative validation for visual and performing arts

Reference

https://arxiv.org/ftp/arxiv/papers/2108/2108.03857.pdf

All images are originally from the paper