

ALGORITHMS FOR MASSIVELY PARALLEL GENERIC HP-ADAPTIVE FEM

June 05, 2020 | Marc Fehling | m.fehling@fz-juelich.de |

Table of contents

Introduction

Fire safety science Computation fluid dynamics

hp-adaptive methods

Finite Element Method Adaptive methods Example: Laplace equation

Parallelization

Example: Laplace equation

Summary & Outlook

Fire safety science

- Civilian safety in metro stations
 - Smoke spread in case of fire
 - Egress routes for pedestrians
- Individual examinations necessary on complex geometries
- Experiments expensive → Alternative: Computer simulations

Figure: Experiments in metro

Figure: Physical model (scale 1:15)

June 05, 2020

Slide 2123

Fire simulation

- Lots of software tools available: FDS, FireFOAM, Ansys Fluent, ...
- Flexible: Scenarios may be varied easily
- But: Large and complex geometries yield lots of workload
- Simulations require a lot of time

Figure: Deflagration of Heptane

Figure: CAD model

Computational fluid dynamics

■ Smoke spread modeled with incompressible Navier-Stokes equations

$$egin{aligned}
abla \cdot oldsymbol{u} &= 0 \
ho_0 \left[\partial_t oldsymbol{u} + (oldsymbol{u} \cdot
abla) oldsymbol{u}
ight] = -
abla oldsymbol{p} +
abla \cdot (2 \, \mu \, oldsymbol{\epsilon}) + oldsymbol{f} \
ho_0 oldsymbol{c}_{oldsymbol{p}} \left[\partial_t \mathsf{T} + (oldsymbol{u} \cdot
abla) \mathsf{T}
ight] = 2 \, \mu \, oldsymbol{\epsilon} :
abla oldsymbol{u} +
abla \cdot (\kappa \,
abla) + oldsymbol{q} - oldsymbol{u} \cdot oldsymbol{f} \ \end{cases}$$

- $lue{}$ Solution via numerical methods \longrightarrow Computational fluid dynamics
- High resolution necessary for ...
 - Large gradients in temperature and velocity
 - Turbulence
 - Flow separation

June 05, 2020

Slide 4|23

Motivation for PhD project

- Fires stay localized in general, not only during ignition phase
- Unnecessarily fine grids bind resources that could be used near the fire
- Demand for effective use of computing power

Goal

- Balance accuracy and workload by adapting resolution
- Accelerate simulations by exploiting hardware

Numerical methods

Adaptation Parallelization

Example: Adaptive mesh refinement

■ Demonstration of adaptive mesh refinement (*h*-adaptive methods) via moving vortex test case as a shape-preserving potential stream.

Figure: Video of velocity magnitude of moving vortex, overlaid with current mesh

June 05, 2020

Slide 6123

Numerical methods

Finite differences

Difference quotients as differential operators

h-adaptive methods

Finite volumes

Balance fluxes on faces between volumes

Conservation laws

h-adaptive methods

Finite elements

Limit function space to piecewise polynomials

hp-adaptive methods

Table of contents

Introduction

Fire safety science Computation fluid dynamics

hp-adaptive methods

Finite Element Method

Adaptive methods

Example: Laplace equation

Parallelization

Example: Laplace equation

Summary & Outlook

June 05, 2020

Slide 8123

 $\varphi(x)$

04

 $\varphi(\mathbf{x})$

Finite element method

Shape functions form nodal basis

$$\varphi_i(x_j) = \delta_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

- lacktriangle Q_p elements from Lagrange interpolation with degree p
- Finite element approximation is linear combination of shape functions

$$u_{hp}(x) = \sum_{i} u_{i} \varphi_{i}(x)$$

June 05, 2020

Coefficients u_i are degrees of freedom

Figure: Q₂ element

Figure: Q₁ element

Slide 9123

Adaptive methods

- Focus computational resources on areas of interest
- Align simulation resolution with complexity of current solution
- Finite Element Method (FEM) provides two different possibilities:

h-adaptation: dynamic cell sizes good for irregular solutions

p-adaptation: dynamic function spaces good for smooth solutions

Combination of both possible

Figure: p-adaptivity

June 05, 2020

Slide 10 | 23

Adaptation criteria

- Which cells to adapt?
- **How** to adapt? *h/p*?
- Manual adaptation
- Automatic adaptation
 - Criterion to indicate adaptation
 - General approach -OR- tied to the problem
- Automatic hp-decision strategies discussed in the dissertation
 - 1 Error prediction based on refinement history [Melenk and Wohlmuth, 2001]
 - 2 Smoothness estimation by decay of Fourier coefficients [Bangerth and Kayser-Herold, 2009]
 - 3 Smoothness estimation by decay of Legendre coefficients [Mavriplis, 1994]

Example: Reentrant corner

- Singularity at reentrant corners for elliptic problems
- L-shaped domain:

$$\Omega = [-1,1]^2 \setminus ([0,1] \times [-1,0])$$

Manufactured Laplace problem

$$-
abla^2 u = 0$$
 on Ω $u = ar{u}$ on $\partial\Omega$ $ar{u} = r^{2/3} \sin{(2/3\,arphi)}$ $\|
abla ar{u}\| = r^{-1/3}$

Figure: L-shaped domain

June 05, 2020

Slide 12|23

Example: Successive refinement

- Initialize coarse mesh
- Solve and refine in multiple cycles for tailored discretization

Figure: Successive refinement

- 1 Calculate refinement criteria (here: error estimates)
- 2 Flag 30%/3% of cells with highest/lowest criterion for refinement/coarsening
- 3 Calculate decision criteria (here: smoothness estimates)
- 4 Flag 90%/10% for *p-/h*-adaptation

Example: Successive refinement

Figure: Polynomial degrees in cycle 5. Zoom 100%.

Slide 14|23

Example: Successive refinement

June 05, 2020

- (a) Fourier coefficient decay
- (b) Legendre coefficient decay
- (c) Refinement history

Figure: Mesh and polynomial degrees of finite elements after 5 consecutive *hp*-adaptations.

Example: Successive refinement

Figure: Error convergence for different strategies

June 05, 2020 Slide 16|23

Table of contents

Introduction

Fire safety science Computation fluid dynamics

hp-adaptive methods

Finite Element Method Adaptive methods

Example: Laplace equation

Parallelization

Example: Laplace equation

Summary & Outlook

Parallelization

- Current computer architectures provide multi-core processors
 - Supercomputers arrange those on distributed nodes
- Using all resources efficiently requires parallelization
 - Distribution of workload and memory demand
- Our approach: Distribution of domain on several processes
 - Each subdomain needs relevant part of the global solution
 - Requires a layer of so called ghost cells
 - Involves communication between processors

Figure: Illustration of locally owned, ghost, and artificial cells

June 05, 2020

Slide 18 | 23

Parallel hp-adaptive FEM

- Combination of hp-adaptive methods with parallelisation
- The non-trivial parts are:
 - 1 Enumeration of degrees of freedom, independent of number of subdomains
 - 2 Consignment of contiguous memory chunks for data transfer
 - 3 Weighted repartitioning for load balancing

Figure: Different finite elements and their number of nodes in 2D

Example: Load balancing

Figure: Mesh decomposition in cycle 5. Weights assigned to cells are $\propto n_{\rm dofs}^{1.9}$.

June 05, 2020

Slide 20123

Example: Strong scaling

Figure: Strong scaling for fixed problem size of \sim 970 million degrees of freedom

Table of contents

Introduction

Fire safety science Computation fluid dynamics

hp-adaptive methods

Finite Element Method Adaptive methods

Example: Laplace equation

Parallelization

Example: Laplace equation

Summary & Outlook

June 05, 2020

Slide 22123

Summary & Outlook

- New algorithm for massively parallel hp-adaptive methods, generally applicable for any FEM software
- Reference implementation in deal.II involves:
 - Enumeration of degrees of freedom, independent of number of subdomains
 - Consignment of contiguous memory chunks for data transfer
 - Weighted repartitioning for load balancing
 - Selection of adaptation strategies for hp-FEM
- Future steps:
 - p-Multigrid methods
 - MatrixFree methods
 - Provide tutorial in deal. II as a manual for a broader audience
 - More applications

MASSIVELY PARALLEL HP-ADAPTIVE FEM Bibliography

June 05, 2020 | Marc Fehling | m.fehling@fz-juelich.de |

Bibliography I

- Ainsworth, M. and Senior, B. (1998).

 An adaptive refinement strategy for hp-finite element computations.

 Applied Numerical Mathematics, 26(1):165–178.
- Arndt, D., Bangerth, W., Clevenger, T. C., Davydov, D., Fehling, M., Garcia-Sanchez, D., Harper, G., Heister, T., Heltai, L., Kronbichler, M., Kynch, R. M., Maier, M., Pelteret, J.-P., Turcksin, B., and Wells, D. (2019). The deal.II Library, Version 9.1.

 Journal of Numerical Mathematics, 27(4):203–213.
- Babuška, I. and Guo, B. (1996).

 Approximation properties of the h-p version of the finite element method.

Computer Methods in Applied Mechanics and Engineering, 133(3):319–346.

Bibliography II

- Babuška, I. and Suri, M. (1990).
 The p- and h-p versions of the finite element method, an overview.

 Computer Methods in Applied Mechanics and Engineering, 80(1):5–26.
- Bangerth, W., Burstedde, C., Heister, T., and Kronbichler, M. (2012).
 Algorithms and Data Structures for Massively Parallel Generic Adaptive
 Finite Element Codes.

ACM Transactions on Mathematical Software, 38(2):14:1-14:28.

- Bangerth, W. and Kayser-Herold, O. (2009).

 Data Structures and Requirements for Hp Finite Element Software.

 ACM Transactions on Mathematical Software, 36(1):4:1–4:31.
- Burstedde, C. (2018).

 Parallel tree algorithms for AMR and non-standard data access.

 arXiv e-prints, page arXiv:1803.08432.

June 05, 2020

Slide 214

Bibliography III

194(2):229-243.

- Eibner, T. and Melenk, J. M. (2007).

 An adaptive strategy for hp-FEM based on testing for analyticity.

 Computational Mechanics, 39(5):575–595.
- Houston, P. and Süli, E. (2005).

 A note on the design of hp-adaptive finite element methods for elliptic partial differential equations.

 Computer Methods in Applied Mechanics and Engineering,
- Kelly, D. W., De S. R. Gago, J. P., Zienkiewicz, O. C., and Babuška, I. (1983). A posteriori error analysis and adaptive processes in the finite element method: Part I-Error Analysis.

International Journal for Numerical Methods in Engineering, 19(11):1593–1619.

Bibliography IV

- Mavriplis, C. (1994).

 Adaptive mesh strategies for the spectral element method.

 Computer Methods in Applied Mechanics and Engineering, 116(1):77–86.
- Melenk, J. M. and Wohlmuth, B. I. (2001).
 On residual-based a posteriori error estimation in hp-FEM.
 Advances in Computational Mathematics, 15(1):311–331.
- Mitchell, W. F. and McClain, M. A. (2014).

 A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations.

ACM Transactions on Mathematical Software, 41(1):2:1-2:39.

JÜLICH Forschungszentrum

June 05, 2020 Slide 4|4