Sucesiones de variables aleatorias: Ejemplos y LGN

Julio César Galindo López

Facultad de Ciencias

6 de mayo de 2020

RESUMEN

- c.s. $\Rightarrow \mathbb{P}$ pero $\mathbb{P} \Rightarrow$ c.s.
- ▶ $\mathbb{P} \Rightarrow \text{sub c.s.}$
- $ightharpoonup \mathbb{P} \Leftrightarrow \text{sub sub c.s.}$
- ▶ Para $p \ge 1$, $L^p \Rightarrow \mathbb{P}$ pero $\mathbb{P} \not\Rightarrow L^p$.
- $ightharpoonup \mathbb{P} \Rightarrow \text{dom } L^p$.

$\mathbb{P} \Rightarrow \text{dom } L^p$

EJEMPLO (LA HIPÓTESIS DE DOMINACIÓN ES NECESARIA)

Sea $(T_n)_n$ una sucesión de v.a. tales que

$$\mathbb{P}(T_n = n^2) = \frac{1}{n\sqrt{n}} = 1 - \mathbb{P}(T_n = 0).$$

- ▶ Para $\varepsilon > 0$, tenemos $\mathbb{P}(T_n \ge \varepsilon) = \frac{1}{n\sqrt{n}}$. Por el Lema de Borel-Cantelli, $T_n \to 0$ c.s.
- Por otra parte, $\mathbb{E}[T_n] = \sqrt{n}$ y la sucesión no puede converger en L^1 .

EJEMPLOS

EJEMPLO

Sea $(X_n)_n$ una sucesión de variables aleatorias Bernoulli **independientes** tales que

$$\mathbb{P}(X_n=1)=\frac{1}{n} \qquad \mathsf{y} \qquad \mathbb{P}(X_n=0)=1-\frac{1}{n}.$$

1. $X_n \to 0$ en \mathbb{P} : Para toda $\varepsilon > 0$,

$$\mathbb{P}(|X_n| > \varepsilon) = \frac{1}{n} \to 0, (n \to \infty).$$

2. $X_n \to 0$ en L^1 :

$$\mathbb{E}[X_n] = \frac{1}{n} \to 0, \ (n \to \infty).$$

3. ¿Qué se puede decir sobre la convergencia c.s.? Para $\varepsilon>0$, $\mathbb{P}(X_n>\varepsilon)=\frac{1}{n}$. Si $A_n=\{X_n\geq\varepsilon\}$, entonces $\sum_n\mathbb{P}(A_n)=\infty$. Por independencia y el Lema de Borel-Cantelli, para casi todo ω , una infinidad de $X_n(\omega)$ serán superiores a ε . Por lo que la sucesión no puede converger a 0 c.s.

EJEMPLO

Consideremos un caso particular del ejemplo anterior: Sea $U\sim {\sf unif}[0,1].$ Sea $Z_n={\bf 1}_{\{U<\frac{1}{n}\}}.$ Entonces

$$\mathbb{P}(Z_n = 1) = \mathbb{P}\left(U \le \frac{1}{n}\right) = \frac{1}{n} \qquad \mathbb{P}(Z_n = 0) = 1 - \frac{1}{n}.$$

Hemos visto que la sucesión (Z_n) converge en probabilidad y en L^1 . Veamos que la sucesión *converge casi seguramente*:

En efecto, si ω es fijo, entonces ya que $U(\omega)>0$ (con probabilidad 1), existe n_0 tal que $U(\omega)>\frac{1}{n_0}$. Esto implica que $Z_n(\omega)=0$, para todo $n\geq n_0$.

NOTA

Este resultado no está en contradicción con el ejemplo anterior debido a que las v.a. no son independientes:

$$\mathbb{P}(Z_n = 1, Z_{n+1}) = \mathbb{P}(Z_{n+1} = 1) = \frac{1}{n+1}$$
 $\mathbb{P}(Z_n = 1)\mathbb{P}(Z_{n+1} = 1) = \frac{1}{n(n+1)}.$

EJEMPLO

EJEMPLO

Sea $(Z_n)_n$ una sucesión de v.a. tales que

$$\mathbb{P}(Z_n = 1) = \frac{1}{n^2}, \qquad \mathbb{P}(Z_n = 0) = 1 - \frac{1}{n^2}.$$

- 1. Convergencia c.s. a 0: Para toda $\varepsilon>0$, consideremos el evento $B_n=\{Z_n\geq \varepsilon\}$. Entonces $\sum_n \mathbb{P}(B_n)<\infty$. Por el Lema de Borel-Cantelli, para casi todo ω , un número finito de $Z_n(\omega)$ serán superiores a ε . Por lo tanto $Z_n\to 0$ c.s.
- 2. Convergencia en \mathbb{P} : c.s. $\Rightarrow \mathbb{P}$.
- 3. Convergencia en L^1 : $\mathbb{E}[Z_n] = \frac{1}{n^2} \to 0$. Por lo tanto, $Z_n \to 0$ en L^1 .

LEY DE LOS GRANDES NÚMEROS LGN

Sea (X_n) una sucesión de v.a. independientes e idénticamente distribuídas. Estamos interesados en la convergencia de la sucesión de v.a. $(M_n)_n$ en donde

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

Se tienen dos tipos de resultados:

- Ley débil de los grandes números (LDGN): convergencia en probabilidad.
- ▶ Ley fuerte de los grandes números (LFGN): convergencia c.s.

LEY DE LOS GRANDES NÚMEROS LGN

TEOREMA (LDGN)

Sea $(X_n)_n$ una sucesión de variables aleatorias independientes e idénticamente distribuídas integrables. Sea $\mathbb{E}[X_1]=m$. Entonces

$$M_n \to_{n\to\infty} m$$
, en \mathbb{P} (y por lo tanto en L^1)

NOTA

La LDGN no es difícil de demostrar (recae en la desigualdad de Chebyshev principalmente).

LEY DE LOS GRANDES NÚMEROS LGN

TEOREMA (LFGN)

Sea $(X_n)_n$ una sucesión de variables aleatorias independientes e idénticamente distribuídas integrables. Sea $\mathbb{E}[X_1]=m$. Entonces

$$M_n \to_{n \to \infty} m$$
, c.s.

NOTA

La prueba de LFGN es mucho más delicada. Realizaremos dos demostraciones:

- 1. Suponiendo segundo momento finito: $\mathbb{E}[X_1^2] < \infty$.
- 2. El caso general.

AGUJA DE BUFFON

El experimento de Buffon consiste en lanzar sucesivamente agujas en una latiz horizontal. Llamamos por E al evento: la aguja intersecta una de las rectas de la latiz. Vimos que, si ℓ es la longitud de la aguja (menor que la distancia, a, entre las rectas horizontales),

$$\mathbb{P}(E) = \frac{2\ell}{a\pi}.$$

Efectuamos una sucesión de lanzamientos de una aguja y denotamos por E_i al evento: en el i-ésimo lanzamiento, la aguja intersecta a una de las rectas de la latiz horizontal. Sea $X_i = \mathbf{1}_{E_i}$ y

$$F_n := \frac{1}{n} \sum_{i=1}^n X_i$$

AGUJA DE BUFFON

Las X_i son v.a. $\mathrm{Ber}(p=\mathbb{P}(E_i)=\mathbb{P}(E))$. Los eventos E_i forman una sucesión de eventos independientes y de misma ley p. Las X_i forman una sucesión de v.a.i.i.d de ley $\mathrm{Ber}(p)$.

Por LFGN:

$$F_n \to \mathbb{E}[X_1] = \mathbb{P}(E)$$
, C.S.

O, equivalentemente,

$$rac{2\ell}{aF_n}
ightarrow \pi$$
 C.S.

