Notes on Algebraic Geometry

Kei Thoma

 $\mathrm{June}\ 25,\ 2024$

Contents

[1]

Definition 0.0.1. Let k be a fixed algebraically closed field. We define affine n-space over k, denoted \mathbb{A}^n or simply \mathbb{A}^n , to be the set of all n-tuples of elements of k. An element $P \in \mathbb{A}^n$ will be called a point, and if $P = (a_1, a_2, \ldots, a_n)$ with $a_i \in k$, then the a_i will be called the coordinates of P.

Definition 0.0.2. For a subset T of the polynomial ring $A = k[X_1, \ldots, X_n]$, we define the zero set of T to be the common zeros of all the elements of T, i.e.

$$Z(T) = \{ P \in \mathbb{A}^n \mid f(P) = 0 \text{ for all } f \in T \}.$$

Definition 0.0.3. A subset Y of \mathbb{A}^n is an algebraic set if there exists a subset $T \subset A = k[X_1, \dots, X_n]$ such that Y = Z(T).

Definition 0.0.4. If $Y \subset \mathbb{A}^n$ is an affine algebraic set, we define the affine coordinate ring A(Y) of Y, to be A/I(Y).

Exercise 0.0.1. Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of the polynomial $f = y - x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k.

Solution. By definition 0.0.4, we simply have $A(Y) = k[X,Y]/(Y-X^2)$. The isomorphism follows from the isomorphism theorem and the map $f: k[X,Y] \to k[X]$ where we set $f(Y) = X^2$.

Exercise 0.0.2. Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.

Solution. A(Z) = k[X,Y]/(XY-1)

We know A(Z) is an k-algebra (see remark). Consider $f: k[X,Y] \longrightarrow k[T]$. We must have $\ker f = (XY - 1)$, thus f(XY - 1) = 0, so f(X) = 1/f(Y)

I'll think about the rigorous details later, but basically $A(Z) \cong k[X, X^{-1}]$

Exercise 0.0.3. Let f be any irreducible quadratic polynomial in k[X,Y], and let W be the conic defined by f. Show that A(W) is isomorphic to A(Y) or A(Z). Which one is it when?

4 CONTENTS

 $Solution. \ \mbox{Let f be irreducible.}$ A(W) = k[X,Y]/(f)

Bibliography

 $[{\it Har77}] \quad {\it Robin Hartshorne}. \ {\it Algebraic Geometry}. \ {\it New York: Springer}, \ 1977.$