Comma commonly denotes or and and Defintion of a Set presupposes 1,2,...,n-1,n which is the definition of a set Must define the relationship between elements and sets first

Ch. 2 Set Theory

1 Element

Define element l

l

2 Identity

Define identity of element l

$$|l| := 1$$

3 Set

3.1 Definition

Define set S as an ordered union of elements s_i

$$S := s_1 \cup s_2 \cup \dots \cup s_{n-1} \cup s_n = \{s_1, s_2, \dots s_n\}$$

3.2 Alternate Notation

$$S := s_i \in S : i = 1, 2, ..., n - 1, n$$

$$S = \{s_1, s_2, ..., s_{n-1}, s_n\}$$

3.3 Magnitude of a Set

$$|S| = |\{x_1, ..., x_N\}| = N$$

3.4 Definition Unordered Set

Set S is unordered if

$$S = \{x_1, x_2, ...x_n\}$$

$$S = S_1 = S_2 = S_N = \{x_{i_1}, x_{i_2}, ..., x_{i_n}\}$$

$$\forall i_1, i_2, ..., i_n,$$

$$\iff x_i, x_j \in S, x_i = x_j, \ \forall i, j \ i \neq j \ (Theorem)$$

3.5 Definition of Unique Set

$$a_i, a_j \in S$$
$$a_i \neq a_j \quad \forall i, j \neq i$$

3.6 Definition of Countable/Uncountable set

Potentially just a line?

4 Topology; Elements to Sets

Every element is a set, but not all sets are elements

5 Comma,

The comma symbol "," is an overloaded symbol

5.1 Comma in Set Theory

5.2 Comma in Counting

Definition of "," = or and & = and Comma might be a union (spoken as "and" but logicall represents or)

6 Universal Set

6.1 Definition

Define Universe, the "Universal Set" containing all elements

$$\Omega := s_i \in \Omega, \forall i$$

7 Empty Set

7.1 Definition

Define Empty Set, the set containing no elements

$$\emptyset \equiv \{\}$$

8 Definition Counting

1,2,3,4,5,...,N

9 Define a line \mathbb{L}

Define line L

$$\mathbb{L} = \{l_0, l_1, l_2, ..., l_{N-1}, l_N, l_{N+1}, ...$$

10 Definition of Span

A function mapping to every element of L?

11 Containment

11.1 Contains

11.2 Equals =

Define set equivalence =

$$S_1 \subseteq S_2; \quad S_2 \subseteq S_1 \iff S_1 = S_2$$

- 11.3 Subset
- 11.4 Proper Subset Citation
- 11.5 Definition of Complement

$$S = \{s_1, s_2, ..., s_N\}$$

$$S^C :=$$

$$s_j : \{s_j \in \Omega\} \cap \{s_j \notin S\}; \ \forall j$$

11.6 Alternate Notation

Wikipedia definition of complement

$$S^C = U - S = \{x \in \Omega : x \notin S\}$$
https://en.wikipedia.org/wiki/Complement (set theory)

Set Operators

- $12 \leftarrow \text{"Assignment"}$
- 12.1 Definition
- 13 Insertion
- 14 Append
- 15 "Deletion"
- 15.1 Definition
- 16 Iteration C
- 16.1 Definition

Define iteration C

17 Definition of No-op

Define ";", the no-op (The C representation of a null statement or no-op)

17.1 Properties of No-op

1. Can be added to any solution S_i and remain a solution for all i anywhere in the order for all j

18 Appendix

18.1 Proofs and Properties

1. $\Omega \subset \emptyset$

- $2. \quad \Omega \cap \Omega = \Omega$
- 3. $\Omega \cup \Omega = \Omega$
- 4. $\Omega \cup \emptyset = \Omega$
- 5. $\Omega \cap \emptyset = \emptyset$
- 6. $\Omega \cap S = S$
- 7. $\Omega \cup S = \Omega$
- 8. $\varnothing \subseteq \Omega$
- 9. $\emptyset \cup \emptyset = \emptyset$
- 10. $\emptyset \cap \emptyset = \emptyset$
- 11. $\emptyset \cap S = \emptyset$
- 12. $\emptyset \cup S = S$
- 13. $\emptyset = \emptyset$
- 14. $\emptyset = \Omega^C$
- 15. $\Omega \subseteq S$