Lecture16: CMOS amplifier, common-source (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Review

- Voltage gain of a common-source amplifier
 - It is given by $A_v = -g_m(R_D||r_O)$.
 - By using a current source, we can maximize the voltage gain.
- Rule to calculate the input/output impedances

Biasing of PMOS devices

- Use a PMOS as a current source
 - The amount of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Real current-source load

- Use a PMOS as a current source.
 - It is not an ideal current source.

$$v_{out} = -g_{m1}(r_{01}||r_{02})v_{in}$$

$$A_{v} = -g_{m1}(r_{01}||r_{02})$$

Self-biasing

- Already covered in Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

Diode-connected load

- Use a diode-connected load.
 - It is not an ideal current source.

$$v_{out} = -g_{m1} \left(r_{O1} || \frac{1}{g_{m2}} || r_{O2} \right) v_{in}$$

$$A_v = -g_{m1} \left(r_{01} || \frac{1}{g_{m2}} || r_{02} \right)$$

Common-gate amplifier

- Why do we study other amplification topologies?
 - Different circuit properties
- Common-gate amplifier

Small-signal model

Let's draw the small-signal model together!

Gain and input impedance

- Neglect the output resistance, r_0 .
 - Voltage gain

$$A_v = +g_m R_D$$

Input impedance

Output impedance

Same with the CS stage

$$R_{out} = r_O ||R_D|$$

Generic form of CS and CG stages

Setting for calculating R_{out}

Source follower

- Also called the "common-drain" stage
 - The drain is ac ground.
- Wait a minute!
 - Is it a real amplifier?

Its core

Gain is less than 1??

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$

You should be able to draw the small-signal model.

Useless?

- Calculate the input and output impedances.
 - Since the gate is the input terminal, the input impedance is very high at low frequencies.
 - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
 - They can serve as good "buffers."

