Introdução a Probabilidade

Diferença entre Modelos Determinísticos e Modelos Probabilísticos

Determinísticos	Probabilísticos (riscos ou chances envolvidas)			
Cálculo da Energia Cinética: $E_{cin} = \frac{1}{2} mv^2$				
Cálculo da aceleração de um corpo: $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$				
resultados esperados, previstos	resultados não previstos			

Há certos fenômenos ou experimentos, que embora, sejam repetidos e sob condições iniciais idênticas, apresentam resultados diferentes. Nesses casos, chamamos fenômenos ou experimentos aleatórios ou causais.

Por exemplo, são aleatórios os seguintes experimentos:

- lançamento de um dado
- números de pessoas que ganham em sorteios na loteria
- números de peças fabricadas com defeitos por uma máquina

Devido ao fato de não sabermos exatamente o resultado de um experimento aleatório, busca-se os resultados prováveis, as chances ou as probabilidades de um determinado resultado ocorrer.

Define-se um **fenômeno ou experimento aleatório**, quando estão envolvidas as seguintes características:

- todos resultado é conhecido
- todo resultado é previsto
- existe uma regularidade ao longo do tempo

Espaço Amostral e Evento

Espaço amostral é o conjunto de todo os resultados possíveis de um experimento aleatório, e será representado pela letra grega Ω "ômega".

Chama-se de espaço amostral <u>discreto</u> quando o mesmo for finito ou infinito enumerável e de <u>contínuo</u> quando for infinito não-enumerável, formado por intervalos de números reais.

Espaço Amostral Finito:

Formado por um <u>número limitado</u> de resultados.

Exemplo: lançamento de um dado

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Espaço Amostral Infinito Enumerável

Formado por um número infinito de resultados, os quais podem ser <u>listados</u>, <u>contados</u>, <u>contabilizados</u>. Exemplo: o número de mensagens enviadas numa rede de computadores

$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, ...\}$$

Espaço Amostral Infinito Não-Enumerável

Formado por intervalos de números reais que podem ser medidos.

Exemplo: medir a quantidade de escrita (M) num HD de estado sólido (SSD) até perder a capacidade gravação.

$$\Omega = \{M, \mathbb{R} / 0 \leq M\}$$

Evento

Chama-se **evento** qualquer subconjunto do espaço amostral.

Exemplo:

A é um evento \Leftrightarrow A $\subseteq \Omega$ [cada elemento ou termo de A é também de Ω]

Seja o experimento do lançamento de um dado.

 $A = \{2, 4, 6\}$ números pares do dado

 $B = \{3, 4, 5, 6\}$ números maiores que 2 do dado

C = {6} somente o número 6

Diz-se que um <u>evento ocorre</u> quando um dos seus resultados esperados aparece <u>como solução</u> do experimento aleatório. Se o dado for lançado e ocorrer como resultado do experimento o número 4, por exemplo, então ocorrem os eventos A e B, mas não ocorre o C.

Como um evento é um subconjunto do espaço amostral, todas os conceitos de teoria dos conjuntos podem ser aplicados a eventos. Veja as principais operações que podem ocorrer com os eventos A e B.

Operação	Notação	Conjunto	Evento
união	$A \cup B$	Reúne elementos dos conjuntos	ocorre quando ocorrer pelo menos um deles (A, B ou ambos)
intersecção	$A \cap B$	Somente os elementos que estão em ambos os conjuntos	ocorre quando ocorrer em ambos os eventos (A e B)
complementar	Ā	Formado pelos elementos que não estão em A	ocorre quando não ocorrer o evento em A (não A)

Exercícios:

- 1) Apresente os espaços amostrais dos seguintes experimentos aleatórios:
- a) lançamento de uma moeda honesta e observação da face voltada para cima
- b) contagem do número de clientes numa fila de banco, que chegam durante uma hora
- c) medição da temperatura, em °C, na cidade de Palmas em um dia no mês de agosto

Definição Clássica de Probabilidade

Se um experimento aleatório tem n resultados <u>igualmente prováveis</u> e o evento A contém n_A elementos desses n resultados, logo a probabilidade de ocorrer o evento A, será:

$$P(A) = \frac{n_A}{n}$$

Exemplo:

Em uma aposta, o vencedor será aquele que tirar um determinado naipe do baralho, previamente escolhido. Qual a probabilidade de se ganhar a aposta?

$\Omega = (C = copas, P = paus, O = ouros, E = espadas)$	Espaço amostral do problema = 4 resultados possíveis
$A = \{C\}$	Escolhe-se um naipe: $C = define-se um evento A$
$P(A) = \frac{n_A}{n}$	Partindo da definição de probabilidade
$P(A) = \frac{1}{4} = 0,25 = 25\%$	

Outra forma de pensar a solução desse problema

 Ω = 52 cartas (13 cartas de C = copas, 13 cartas de P = paus, 13 cartas de O = ouros, 13 cartas de E = espadas)

A={13 cartas de C} Escolhe-se um naipe: C = define-se um evento A $P(A) = \frac{13}{52} = 0.25 = 25\%$

Axiomas e Propriedades da Probabilidade

Seja um experimento aleatório e um espaço amostral Ω associado a ele. A cada evento E_i (i = 1, 2, 3, ...) associaremos um número real denominado probabilidade de ocorrência de E_i $P(E_i)$ que deve satisfazer aos seguintes axiomas¹:

$0 \le P(E_i) \le 1$	afirma que uma probabilidade é sempre um número entre 0 e 1
$P(\Omega) = 1$	afirma que ao se realizar um experimento, sempre vai ocorrer algum dos resultados possíveis e o espaço amostral é chamado de <u>evento certo</u>
Se E_1 , E_2 ,, E_n são eventos mutuamente exclusivos, então: $P(E_1 \cup E_2 \cup E_n) = P(E_1) + P(E_2) + + P(E_n)$	afirma que ao unir os eventos formados por diferentes resultados, a probabilidade de ocorrer essa união é a soma das probabilidades de cada evento.

Veja-se algumas probabilidades básicas:

Axioma: na lógica tradicional, um axioma ou postulado é uma sentença ou proposição que não é provada ou demonstrada e é considerada como óbvia ou como um consenso inicial necessário para a construção ou aceitação de uma teoria. Por essa razão, é aceito como verdade. Disponível em: https://pt.wikipedia.org/wiki/Axioma acesso em 09 fev 2018.

$P(\emptyset) = 0$	O \varnothing é chamado <u>evento impossível</u> . Se um experimento é realizado, algum resultado deve ocorrer $(P(\Omega) = 1)$, logo \varnothing nunca ocorre $P(\varnothing) = 0$.
para $A \subseteq \Omega = \{w_1, w_2, w_3,\}$, então: $P(A) = \sum_{i: \omega_i \in A} P(\omega_i)$	para casos discretos, quando os resultados podem ser listados, então a probabilidade de qualquer evento pode ser obtida pela soma das probabilidades dos resultados individuais
$P(\overline{A}) = 1 - P(A)$	sejam $A \subseteq \Omega$ e \overline{A} o evento complementar de A , logo $A + \overline{A} = \Omega = 1$
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	sejam A e B eventos quaisquer, logo $P(A) + P(B)$, conta-se duas vezes os mesmos resultados do conjunto $A \cap B$, logo para calcular a $P(A-B)$ é necessário excluir uma vez $P(A"B)$

Exercício:

De um conjunto de cinco empresas, deseja-se selecionar, aleatoriamente, uma empresa, mas com probabilidade proporcional ao número de funcionários. O número de funcionários da empresa A é 20, B é 15, C é 7, D é 5 e E é 3.

- a) Qual a probabilidade de cada uma das empresas ser a selecionada?
- b) Qual a probabilidade de a empresa A não ser selecionada?

Probabilidade Condicional

Algumas vezes é interessante calcular a probabilidade de ocorrência de um evento A, dada a ocorrência de um evento B.

Sejam A e B eventos quaisquer e B > 0. Definimos a probabilidade condicional por:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

lê-se: P(A|B) probabilidade de A dado B

De outra forma, queremos calcular a probabilidade de ocorrer o evento A condicionada a ocorrência prévia do evento B.

Exemplo: Seja o lançamento de 2 dados e observamos a face voltada para cima. Tem-se interesse na probabilidade dos seguintes eventos:

Evento A: faces iguais, mas que a soma seja menor ou igual a 5.

Primeiramente, tem-se que definir o espaço amostral desse experimento aleatório, que é formado por 6 fazes de um dado e pelas 6 faces do outro dado, logo temos como Ω = 36, pois são 6 x 6 combinações possíveis de resultados!

$$\Omega = \begin{pmatrix}
(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)
\end{pmatrix}$$

Temos agora, a condicional para que ocorra os eventos:

- C₁: faces iguais: (1,1) (2,2) (3,3) (4,4) (5,5) (6,6)
- C₂: soma seja menor e igual a 5: (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (3,1) (3,2) (4,1)

$$P(C_1|C_2) = \frac{P(C_1 \cap C_2)}{P(C_2)}$$
 Aplicando a equação de probabilidade condicional
$$P(C_1|C_2) = \frac{\frac{2}{36}}{\frac{10}{36}} = \frac{2}{10} = 0,2 = 20\%$$
 1: tem-se que $P(C_1 \cap C_2) = 2$ resultados possíveis 2: o espaço amostral Ω fica restringido à $P(C_2) = 10$ eventos possíveis.

Agora, vejamos a ocorrência do Evento **B: soma das faces menor igual a 5, sabendo que as faces são iguais.**

No evento B temos, de novo, as duas condições:

- C₁: faces iguais: (1,1) (2,2) (3,3) (4,4) (5,5) (6,6)
- C_2 : soma seja menor e igual a 5: (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (3,1) (3,2) (4,1)

$P(C_2 C_1) = \frac{P(C_2 \cap C_1)}{P(C_1)}$	Aplicando a equação de probabilidade condicional
$P(C_2 C_1) = \frac{\frac{2}{36}}{\frac{6}{36}} = \frac{2}{6} = 0,333 = 33,3\%$	1: tem-se que $P(C_2 \cap C_1) = 2$ resultados possíveis 2: o espaço amostral Ω fica restringido à $P(C_1) = 6$ eventos possíveis.

Exercícios:

- 1) Qual é a probabilidade de extrair uma carta de um baralho comum de 52 cartas e obter um Ás, sabendo que ela é uma carta de copas?
- 2) Calcule a probabilidade de obter soma 8 no lançamento de dois dados em que o resultado do lançamento foi dois números ímpares.
- 3) Uma pesquisa realizada entre 1000 consumidores, registrou que 650 deles trabalham com cartões de crédito da bandeira MasterCard, que 550 trabalham com cartões de crédito da bandeira VISA e que 200 trabalham com cartões de crédito de ambas as bandeiras. Qual a probabilidade de ao escolhermos deste grupo uma pessoa que utiliza a bandeira VISA, ser também um dos consumidores que utilizam cartões de crédito da bandeira MasterCard?

Distribuição de Probabilidades

Uma distribuição de probabilidade <u>relaciona quais valores essa variável discreta pode assumir e qual a probabilidade desse valor ocorrer</u>.

Os componentes principais de um modelo estatístico de distribuição de probabilidades são:

- Os possíveis valores que a variável aleatória x pode assumir
- A função de probabilidade associada à variável aleatória x
- O valor esperado da variável aleatória x
- A variância e o desvio padrão da variável aleatória x

Existem 2 tipos de distribuição de probabilidades:

• **distribuição contínua:** quando a variável que está sendo é expressa em uma escala contínua, como no caso de uma grandeza dimensional. As probabilidades são especificadas em termos de intervalos, pois a

probabilidade associada a um número específico é zero e é dada por: $P(a \le x \le b) = \int_a^b f(x) dx$

• **distribuição discreta:** quando a variável que está sendo medida, só pode assumir certos valores, como por exemplo: 1, 2, 3, etc. A probabilidade de que a variável x assuma um valor específico x_0 é dada por: $P(x=x_0)=P(x_0)$

Exemplos de Distribuição Discreta

Números de celulares por habitantes (acima de 14 anos).

celulares	P(celular)		
0	23%		
1	48%		
2	18%		
3	10%		
4	1%		
μ=	1,18%		

Média (Valor Esperado) de uma Variável

O cálculo da média (µ) é dado por:

$$\mu = \sum x . P(x)$$

Exemplo:

A partir do exemplo anterior, segue o cálculo da média

$$\mu = \sum x \cdot P(x)$$

$$\mu = \left(0 \times \frac{23}{100}\right) + \left(1 \times \frac{48}{100}\right) + \left(2 \times \frac{18}{100}\right) + \left(3 \times \frac{10}{100}\right) + \left(4 \times \frac{1}{100}\right)$$

$$\mu = 1,18$$

Cálculo da média de uma varável

Aplicando na fórmula os valores discretos e suas respectivas probabilidades

Resultado da média= 1,18 celulares por pessoa

Variância (σ^2) e Desvio-Padrão (σ)

Variância (var) é uma medida de dispersão que mostra o **quão distantes os valores estão da média**, ou seja, quanto menor é a variância, mais próximos os valores estão da média; mas quanto maior ela é, mais os valores estão distantes da média.

$$\sigma^2 = var(x) = \sum (x - \mu)^2 \cdot P(x)$$

Desvio-padrão (dp) é simplesmente o resultado positivo da raiz quadrada da variância. Na prática, o desvio padrão indica qual é o **"erro"** se quiséssemos substituir um dos valores coletados pelo valor da média.

$$\sigma = dp = \sqrt{var(x)}$$

Exemplo: Calcular a média (μ) , variância (var) e desvio-padrão (dp) de cada uma das distribuições abaixo.

investimento x (retorno)	P(x)
-5%	10%
-2%	20%
1%	40%
4%	20%
7%	10%

investimento y (retorno)	P(y)
-4%	30%
0%	10%
1%	10%
3%	20%
5%	30%

investimento x	P(x)	$\mu = \sum x^* p(x)$	$var = \sum (x-\mu)^2 * P(x)$	Dp = sqrt (var)
-5%	10%	-0,50%	0,00036	
-2%	20%	-0,40%	0,00018	
1%	40%	0,40%	0,00000	
4%	20%	0,80%	0,00018	
7%	10%	0,70%	0,00036	
	Σ:	1%	0,11%	3,29%

investimento y	P(y)	$\mu = \sum x^* p(x)$	$var = \sum (x-\mu)^2 * P(x)$	Dp = sqrt (var)
-4%	30%	-1,20%	0,00075	
0%	10%	0,00%	0,00001	
1%	10%	0,10%	0,00000	
3%	20%	0,60%	0,00008	
5%	30%	1,50%	0,00048	
	Σ:	1%	0,13%	3,63%

Distribuição Normal (Gaussiana)

A distribuição normal é considerada a distribuição de probabilidades mais importante, pois permite modelar uma infinidade de fenômenos naturais. É sob muitos aspectos, a pedra angular da estatística.

Diz-que uma variável aleatória X tem uma distribuição normal, com média μ (- ∞ < μ < + ∞) e variância σ^2 > 0 se tem a seguinte função de densidade:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\left(\frac{1}{2}\right)\left[\frac{x-\mu}{\sigma}\right]^{2}}, -\infty < x < \infty$$

cujo gráfico, descreve uma curva na forma de sino.

Essa forma de distribuição evidência que há maior probabilidade de a variável aleatória X assumir valores próximos do centro, sendo usada tão extensamente que a notação abreviada:

$$X \sim N(\mu, \sigma^2)$$

é empregada para indicar que a variável aleatória X tem distribuição normal com média μ e variância σ^2 .

Para achar a área sob a curva normal devemos conhecer dois valores numéricos, a média μ e o desvio padrão σ . A Figura a seguir mostra algumas áreas importantes:

Uma distribuição normal tem várias probabilidades importantes:

- $\int\limits_{-\infty}^{\infty}f(x)dx=1$, exigência para todas as funções de densidade $f(x)\!\geqslant\!0$ para todo x
- $\lim_{x \to \infty} f(x) = 0$ $\lim_{x \to -\infty} f(x) = 0$
- $f(\mu+x)=f(\mu-x)$, a densidade é simétrica em torno de μ
- O valor máximo de f ocorre em $x = \mu$
- Os pontos de inflexão de f estão em $x = \mu \pm \sigma$

Distribuição Normal Padronizada

É uma distribuição normal com média μ =0 e variância σ^2 =1, isto é: $Z \sim N(0,1)$. Para obter tal distribuição, isto é, quando se tem uma variável X com distribuição normal com média $\mu \neq 0$ e variância $\sigma^2 \neq 1$, **devemos reduzi-la a uma variável Z**, efetuando o seguinte cálculo:

$$Z = \frac{X - \mu}{\sigma}$$

Assim, a distribuição normal padrão passa a ter média $\mu = 0$ e desvio padrão $\sigma = 1$. Pelo fato da distribuição ser simétrica em relação à média $\mu = 0$, a área à direita é igual à área à esquerda de μ .

Por ser uma distribuição muito usada, existem tabelas a qual encontramos a resolução de suas integrais. Assim, a tabela fornece áreas acima de valores não negativos que vão desde 0,00 até 3,09. Veja o gráfico da curva normal padronizada na figura abaixo.

Distribuição Normal Padrão

Exemplo: Suponha que o tempo necessário para atendimento de clientes em uma central de atendimento telefônico siga uma distribuição normal de média de 8 minutos e desvio padrão de 2 minutos.

Seja X: tempo necessário para atendimento de clientes em uma central de atendimento telefônico $X\sim N(8,2)$.

a) qual é a probabilidade de que um atendimento dure menos de 5 minutos?

$$P(X<5)=P\left(Z<\frac{5-8}{2}\right)=P(Z<-1,5)$$
 Cálculo da variável Z da dist. normal padronizada $P(X<5)=P(Z<-1,5)=0.93319$ Conforme a tabela do cálculo da área de Z $1-P(Z<-1,5)=1-0.93319=0.0668$ Obtemos o resultado

portanto, a probabilidade de que um atendimento dure menos de 5 minutos é 6,68%.

b) mais do que 9,5 minutos?

$$P(X>9,5)=P\left(Z>\frac{9,5-8}{2}\right)=P(Z>0,75)$$
 Cálculo da variável Z da dist. normal padronizada $P(X>9,5)=P(Z>0,75)=0,77337$ Conforme a tabela, o valor do cálculo de $P(Z>9,5)$ $1-P(Z>0,75)=1-0,77337=0,22663$ Obtemos o resultado

portanto, a probabilidade de que um atendimento dure mais do que 9,5 minutos é 22,66%.

c) entre 7 e 10 minutos?

$$P(7 < X < 10) = P\left(\frac{7 - 8}{2} < Z < \frac{10 - 8}{2}\right)$$

$$P(X > 7) = P(Z > 7) = P\left(\frac{7 - 8}{2}\right) = -0.5$$

$$P(X > 7) = P(Z > -0.5) = 0.69146$$

$$1 - P(Z > -0.5) = 1 - 0.69146 = 0.30854$$

$$P(X < 10) = P(Z < 10) = P\left(Z < \frac{10 - 8}{2}\right) = 1$$

$$P(X < 10) = P(Z < 10) = 0.84134$$
Cálculo da variável Z da dist. normal padronizada para o intervalo entre 7 e 10 minutos.

1° o cálculo de P(X > 7)

Valor de P(X > 10)

Valor de P(X < 10)

portanto, a probabilidade de que um atendimento dure entre 7 e 10 minutos é 53,28%.

Exercícios: Seja Z uma variável aleatória com distribuição normal padrão. Calcule e faça o gráfico da distribuição normal padronizada:

Obtemos o resultado

a) P(Z > 1,65)

P(7 < X < 10) = 0.84134 - 0.30854 = 0.5328

- b) P(Z < 1,65)
- c) P(Z > 6)
- d) P(-3< Z <2)

Tabela de Distribuição Normal Padrão

Ф (х)	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99896	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,99980	0,99981	0,99981	0,99982	0,99983	0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988	0,99988	0,99989
3,7	0,99989	0,99990	0,99990	0,99990	0,99991	0,99992	0,99992	0,99992	0,99992	0,99992
3,8	0,99993	0,99993	0,99993	0,99994	0,99994	0,99994	0,99994	0,99995	0,99995	0,99995
3,9	0,99995	0,99995	0,99996	0,99996	0,99996	0,99996	0,99996	0,99996	0,99997	0,99997

Introdução a Estatística

Sequência de Fibonacci

Referências Bibliográficas

BARBETTA, PEDRO ALBERTO; REIS, MARCELO MENEZES; BORNIA, ANTONIO CESAR. **Estatística** para Cursos de Engenharia e Informática. São Paulo: ed. Atlas, 2004

DANTE, LUIS ROBERTO. Matemática Contexto e Aplicações, vol 2. 3ª ed. São Paulo: ed. Ática, 2004

DANTE, LUIS ROBERTO. Matemática Contexto e Aplicações, vol 3. 3ª ed. São Paulo: ed. Ática, 2004

Probabilidade e Estatística. Disponível em: <<u>https://www.youtube.com/watch?v=eFyAyz6Xy6g</u>> acesso em 08 fev 2018