

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Sistemas de Controle II ELT331

AULA 13 – Margem de Fase e Margem de Ganho

Prof. Tarcísio Pizziolo

13. Introdução

Sistemas de Fase Mínima em Malha Fechada com Realimentação Unitária Negativa

Compensação com Controlador em Série

13.1. Frequências de Cruzamento

- Frequência de Cruzamento de Ganho (w_a):

É a frequência na qual o |G(jw)| = 1

 $20.\log_{10} |G(jw)| = 20.\log_{10} |1| = 0 dB$

- Frequência de Cruzamento de Fase (w_f):

É a frequência na qual o | G(jw) = -180°

$$G(jw) = -180^{\circ}$$

Diagramas polares de $\frac{K(1+j\omega T_a)(1+j\omega T_b)\cdots}{(j\omega)(1+j\omega T_1)(1+j\omega T_2)\cdots}$

13.2. Margem de Fase e Margem de Ganho

- Margem de Fase (γ):

É o atraso de fase adicional, na Frequência de Cruzamento de Ganho, necessária para que o sistema atinja o limiar de instabilidade.

A margem de fase γ é igual a 180° mais o ângulo de fase $\phi(w_g)$ da Função de Transferência de malha aberta na Frequência de Cruzamento de

Ganho
$$w_g$$
. $\gamma = 180^\circ + \phi(w_g)$; $(\phi < 0)$

$$\gamma > 0 \Rightarrow$$
 Margem de Fase Positiva

$$\gamma < 0 \Rightarrow M \text{ arg em de Fase Negativa}$$

Sistema de Fase Mínima Estável
$$\Rightarrow \gamma > 0$$

O Diagrama de Bode tem ponto crítico para Ganho = 0 dB e Fase = -180°.

- Margem de Ganho (K_α):

É o inverso de $|\mathbf{\ddot{G}(jw_F)}|$ na Frequência de Cruzamento de Fase $\mathbf{w_F}$.

$$K_g = \frac{1}{|G(jw_f)|} \Rightarrow |G(jw_f)| = \frac{1}{K_g}$$

Em dB:
$$K_g(dB) = 20.\log_{10} \left| \frac{1}{G(jw_s)} \right| = -20.\log_{10} \left| G(jw_f) \right|$$

- Se $K_q(dB) > 0$ implica em Sistema **Estável**.
- Se K_q(dB) < 0 implica Sistema Instável.

Diagramas de Bode

Sistemas Estáveis: $\gamma > 0$ e K_{α} (dB) > 0

Exemplo 1

Obtenha as **Margens de Fase e de Ganho** do sistema de controle dado para os casos em que **K = 10** e **K = 100**.

Traçar o Diagrama de Bode para G(jw)H(jw):

$$K = 10 \Rightarrow G(jw)H(jw) = \frac{10}{jw(jw+1)(jw+5)} \Rightarrow G(jw)H(jw) = \frac{2}{jw(1+jw)(1+j\frac{w}{5})}$$

e

$$K = 100 \Rightarrow G(jw)H(jw) = \frac{100}{jw(jw+1)(jw+5)} \Rightarrow G(jw)H(jw) = \frac{20}{jw(1+jw)(1+j\frac{w}{5})}$$

Diagramas de Bode

Diagramas de Bode
$$G(jw)H(jw) = \frac{K}{jw(1+jw)(5+jw)}$$
 (a) com $K = 10$ e (b) com $K = 100$.

Solução:

As Margens de Fase e de Ganho devem ser obtidas do Diagrama de Bode de G(jw)H(jw).

Para K = 10: Margem de Fase $\gamma = 21^{\circ} > 0$ Margem de Ganho K_g (dB) = 8 dB > 0

Portanto o ganho do sistema poderá ser aumentado em **8 dB** antes de ocorrer a instabilidade.

Como $\gamma > 0$ e K_g (dB) > 0 este sistema é ESTÁVEL!

Para K = 100: Margem de Fase $\gamma = -30^{\circ} < 0$ Margem de Ganho K_g (dB) = -12 dB < 0

Como $\gamma < 0$ e K_g (dB) < 0 este sistema é INSTÁVEL!

Exemplo 2 - Idem

Sistema de malha fechada.

Exemplo 3 – Idem

Sistema de malha fechada.

