Applied Matrix Theory

ECE-GY 5253 Midterm

Fall 2023

Due: Friday, November 4, 11 am (US Eastern Time)

Problem 1 (30 pts)

Transform the following matrix into one of the canonical forms.

$$A = \left[\begin{array}{rrr} 3 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 1 & 2 \end{array} \right]$$

Solution

The characteristic polynomial is given as:

$$p(\lambda) = (3 - \lambda)(\lambda^2 - 6\lambda + 9) = 0 \tag{1}$$

Thus, the eigenvalues are $\lambda = 3$ with multiplicity 3.

Observe that $(A - \lambda I)x = 0$ has a null space of dimension two, which means \exists two linearly independent eigenvectors to $(A - \lambda I)x = 0$. These are obtained as:

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}. \tag{2}$$

Hence, there is only one (n-2) linearly independent principal vector, which can be obtained as:

$$(A - \lambda I)^2 x_3 = 0 \implies x_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 (3)

Thus,

$$P = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}. \tag{4}$$

Then $A = PJP^{-1}$, where

$$J = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}. \tag{5}$$

Problem 2 (30 pts)

Are the following statements true or false? If true, provide a proof; if false, give a counter-example.

- (a) Let $M \in \mathbb{R}^{n \times m}$ and r = rank(M). There exist $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times m}$ such that M = AB.
- (b) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. A is orthogonal if and only if its eigenvalues all have the absolute value of one.

(c) If $A \in \mathbb{R}^{n \times n}$, then the sum of the *n* eigenvalues of *A* is the trace of *A* and the product of the *n* eigenvalues is the determinant of *A*.

Solution

(a) True.

By the definition of rank, we have

$$\dim(\operatorname{Im}(M)) = \operatorname{rank}(M) = r. \tag{6}$$

Let a_1, \dots, a_r be the basis of the Im(M), and c_1, \dots, c_m be the columns of M. For any $i = 1, \dots, m$, $c_i \in \text{Im}(M)$. Therefore, there exist scalars $b_{i,1}, \dots, b_{i,r}$, such that

$$c_i = b_{i,1}a_1 + \dots + b_{i,r}a_r = \begin{bmatrix} a_1 & \dots & a_r \end{bmatrix} \begin{bmatrix} b_{i,1} \\ \vdots \\ b_{i,r} \end{bmatrix} = \begin{bmatrix} a_1 & \dots & a_r \end{bmatrix} b_i.$$
 (7)

Consequently, we have

$$M = \begin{bmatrix} c_1 & \cdots & c_m \end{bmatrix} = \begin{bmatrix} a_1 & \cdots & a_r \end{bmatrix} \begin{bmatrix} b_1 & \cdots & b_m \end{bmatrix} = AB. \tag{8}$$

(b) True.

(\Rightarrow) Since A is symmetric and orthogonal, we have $A = A^T = A^{-1}$. Let $u \in \mathbb{R}^n$ be the nonzero eigenvalue of A associated with the eigenvalue $\lambda \in \mathbb{R}$, (the eigenvalues of symmetric matrices are all real), that is

$$Au = \lambda u. \tag{9}$$

Since $A = A^T = A^{-1}$, it follows that

$$\lambda A u = \lambda A^T u = u. \tag{10}$$

Combining (9) and (10), we can obtain

$$\lambda^2 u = u. (11)$$

Because $u \neq 0$, $\lambda^2 = 1$, and $|\lambda| = 1$.

(\Leftarrow) Since A is symmetric, there exist an invertible matrix $O \in \mathbb{R}^n$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, such that

$$A = O^{-1}\Lambda O, \quad A^T = A = O^{-1}\Lambda O.$$
 (12)

Since $\Lambda^2 = I_n$, we have

$$A^{T}A = O^{-1}\Lambda O O^{-1}\Lambda O = O^{-1}\Lambda^{2}O = O^{-1}O = I_{n}.$$
(13)

Similarly, $AA^T = I_n$, and therefore, A is orthogonal.

(c) True

Let $A \in \mathbb{R}^{n \times n}$ whose different eigenvalues are $\lambda_1, \dots, \lambda_s$ with multiplicity m_1, \dots, m_s , i.e.

$$\det(\lambda I_n - A) = \prod_{i=1}^s (\lambda - \lambda_i)^{m_i}.$$
 (14)

For any matrix $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular matrix $P \in \mathbb{R}^{n \times n}$, such that

$$A = P^{-1}JP, \quad \Lambda_i = \begin{bmatrix} \lambda_i & 0 & \cdots & \cdots & 0 \\ 1 & \lambda_i & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \lambda_i & 0 \\ 0 & 0 & \cdots & \cdots & 1 & \lambda_i \end{bmatrix}, \quad J = \text{blockdiag}(\Lambda_i). \tag{15}$$

Then, $\det(A) = \det(P^{-1})\det(J)\det(P) = \det(J) = \prod_{i=1}^s (\lambda_i)^{m_i}$; $\operatorname{trace}(A) = \operatorname{trace}(P^{-1}JP) = \operatorname{trace}(JPP^{-1}) = \operatorname{trace}(J) = \sum_{i=1}^s m_i \lambda_i$.

Problem 3 (40 pts)

Let $A \in \mathbb{R}^{n \times n}$. Suppose that $u \in \mathbb{R}^n$ $(v \in \mathbb{R}^n)$ is nonzero right (left) eigenvector corresponding to the eigenvalue $\alpha \in \mathbb{C}$ $(\beta \in \mathbb{C})$, i.e.

$$Au = \alpha u, \quad v^T A = \beta v^T.$$

Prove that

- 1. If $\alpha \neq \beta$, then $v^T u = 0$.
- 2. If $\alpha = \beta$ and $v^T u \neq 0$, then there exists an invertible matrix $T = [u, T_1]$ with $(T^{-1})^T = [v/(u^T v), M_1]$, where $T_1, M_1 \in \mathbb{R}^{n \times (n-1)}$, such that

$$A = T \begin{bmatrix} \alpha & 0 \\ 0 & N \end{bmatrix} T^{-1}, \quad N \in \mathbb{R}^{(n-1) \times (n-1)}.$$

Solution

1. Since u and v are right and left eigenvectors of A, respectively, we have

$$v^{T}Au = v^{T}(\alpha u) = \alpha v^{T}u$$

= $(\beta v^{T})u$. (16)

Since $\alpha \neq \beta$, $\alpha v^T u = \beta v^T u$ if and only if $v^T u = 0$.

2. Without losing generality, assume that $v^Tu=1$ (we can replace v by $v/(v^Tu)$). Let the columns of T_1 be any basis for the orthogonal complement of v (so $v^TT_1=0$) and consider $T=[u,T_1]$. Let $w=[w_1,\zeta^T]^T$ with $\zeta\in\mathbb{R}^{n-1}$ and suppose that Tw=0. Then

$$0 = v^T T w = v^T (w_1 u + T_1 \zeta) = w_1 v^T u + v^T T_1 \zeta = w_1.$$
(17)

Therefore, $w_1 = 0$ and $0 = Tw = T_1\zeta$, which implies that $\zeta = 0$, since T_1 is full column rank. We conclude that T is nonsingular.

Partition $(T^{-1})^T = [\eta, M_1]$ with $\eta \in \mathbb{R}^n$ and compute

$$I_n = T^{-1}T = \begin{bmatrix} \eta^T \\ M_1^T \end{bmatrix} [u, T_1] = \begin{bmatrix} 1 & 0 \\ 0 & I_{n-1}. \end{bmatrix}$$
 (18)

The identity $\eta^T T_1 = 0$ implies that η is orthogonal to the orthogonal complement of v, so $\eta = av$ for some $a \in \mathbb{R}$. The identity $\eta^T u = 1$ tells us that

$$\eta^T u = a v^T u = 1, \tag{19}$$

so $\eta = v$. Using the identities $\eta^T T_1 = v^T T_1 = 0$ and $M_1^T u = 0$ as well as the eigenvector properties of u and v, compute the similarity

$$T^{-1}AT = \begin{bmatrix} v^T \\ M_1^T \end{bmatrix} A \begin{bmatrix} u & T_1 \end{bmatrix} = \begin{bmatrix} v^T A u & v^T A T_1 \\ M_1^T A u & M_1^T A T_1 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha v^T u & \alpha v^T T_1 \\ \alpha M_1^T u & M_1^T A T_1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & M_1^T A T_1 \end{bmatrix}.$$
 (20)