Minkowski Uzayzamanı'nın Matematiği

Batuhan BAYIR

Ankara Üniversitesi - Fizik Bölümü

10.7.2021

Özet

Bugün özel görelilik teorisinin matematiği hakkında konuşacağız.

Bilineer Form Tanımı

Vbir $\mathbb F$ -vektör uzayı olsun, $g:V\times V\to \mathbb F$ olmak üzere, $(\forall v_i,w_i\in V\ \&\ \forall a_i\in \mathbb F)$

- $g(a_1v_1 + a_2v_2, w) = a_1g(v_1, w) + a_2g(v_2, w)$
- $g(v, a_1w_1 + a_2w_2) = a_1g(v, w_1) + a_2g(v, w_2)$

özellikleri sağlanıyorsa $g,\,V$ üzerinde bir **bilineer form**'dur.

Simetri ve Nondejenerelik Özellikleri

g, V vektör uzayı üzerinde bir bilineer form olsun,

- $(\forall v, w \in V): \ g(v, w) = g(w, v)$
- $\blacktriangleright \ (\exists v \ \& \ \forall w \in V): \ g(v,w) = 0 \Longrightarrow v = 0$

ilk özelliğe **simetri** özelliği, ikinci özelliğe **nondejenerelik** özelliği adını veriyoruz.

Matematiksel Fizik'te Iç Çarpım Tanımı

g tekrar V vektör uzayı üzerinde bir bilineer form olsun. g eğer ekstra olarak simetri ve nondejenerelik özelliklerini de sağlıyorsa g artık V vektör uzayı üzerinde bir **iç çarpım**'dır.

Özel olarak (V,g) ikilisine iç çarpım uzayı adını veriyoruz.

Tanımın Tartışılması

$$g: V \times V \to \mathbb{R}$$

- ightharpoonup g(v,v) > 0

Tanımın Tartışılması

$$g: V \times V \to \mathbb{F}$$

kullanamıyoruz!
$$g(v,v) > 0$$
 genelleştirdik!
$$g(v,v) = 0 \implies v = 0$$

Örnek 1

$$\begin{split} g: \mathbb{R}^n \times \mathbb{R}^n &\to \mathbb{R} \\ g(v,w) &= v^1 w^1 + v^2 w^2 + \ldots + v^{n-1} w^{n-1} \text{--} v^n w^n \\ g, \, \mathbb{R}^n \text{ ""uzerinde bir iç çarpımdır"}. \end{split}$$

Örnek 2

$$g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

 $(v, w) \mapsto v^1 w^1 - v^2 w^2$

$$\begin{array}{l} u=(1,2) \Longrightarrow g(u,u)=1\times 1-2\times 2=-3<0\\ v=(1,1) \Longrightarrow g(v,v)=1\times 1-1\times 1=0\\ w=(3,2) \Longrightarrow g(w,w)=3\times 3-2\times 2=5>0 \end{array}$$

Sınıflandırma Tanımı

Vbir vektör uzayı, g'de V üzerinde bir iç çarpım olsun, $\forall v \neq 0 \in V$ için;

- ightharpoonup g(v,v) < 0 is
eg'ye **negatif tanımlı**
- ▶ $g(v,v) \ge 0$ ise g'ye **pozitif tanımlı**

denir. Pozitif tanımlılığın ve negatif tanımlılığın beraber sağlanabildiği durumlar oluyorsa g'ye **belirsiz** denir.

Kuadratik Form Tanımı

V bir vektör uzayı olsun,

$$\mathcal{Q}: V \to \mathbb{F}$$

$$v \mapsto g(v, v)$$

gönderimine kuadratik form adı verilmektedir.

Birim Vektör Tanımı

Eğer herhangi bir v vektörü için, $\mathcal{Q}(v)=\pm 1$ oluyorsa v vektörüne **birim vektör** denir.

İndeks Tanımı

 e_i 'ler V vektör uzayının baz vektörleri olsunlar. $\mathcal{Q}(e_i) = -1$ özelliğini sağlayan e_i baz vektörlerinin sayısına g iç çarpımının **indeksi** adı verilmektedir. (Bazen bu sayıya **r sayısı** da diyoruz.)

Peki bu tanımı neden yaptık?

Teorem 1

giç çarpımının indeksi (
r sayısı) ortonormal baz seçiminden bağımsızdır.

Minkowski Uzayzamanı Tanımı

 \mathbb{R}^4 , 4-boyutlu reel vektör uzayı, g ise indeksi 1 olan iç çarpım olsun. $\mathcal{M} = (\mathbb{R}^4, g)$ ikilisine **Minkowski uzayzamanı** denir.

Hermann Minkowski | 1864-1909

Peki \mathcal{M} fizik yapabilmemiz için tek başına yeterlimi?

Özel Görelilik Teorisi

Özel Görelilik Teorisi $:= \mathcal{M} + \text{Fiziksel Postülatlar}$

- ► (Denklik Prensibi) Fizik yasaları birbirlerine göre sabit hızla hareket eden tüm sistemlerde aynıdır.
- ▶ Işık hızı $c=3\times 10^8 [\frac{metre}{saniye}]$ sabit değerine sahiptir. Bu değer evrendeki en yüksek hız değeridir.

Özel Görelilik'te Vektörlerin Sınıflandırılması

\mathcal{M} 'den bir w vektörü alalım:

- ightharpoonup g(w,w) < 0 ise w zamansal (timelike) vektör
- ightharpoonup g(w,w) = 0 ise w ışıksal (lightlike) vektör
- ightharpoonup g(w,w) > 0 ise w uzaysal (spacelike) vektör olarak adlandırılır.

Sınıflandırmanın Fiziksel Yorumu

Özel görelilik teorisinde konum vektörleri w=(ct,x,y,z) formundadır (c ışık hızı, $t\in\mathbb{R}$).

$$\frac{g(w,w)\dots 0}{c^2t^2 + x^2 + y^2 - z^2 \dots 0}$$
$$c^2t^2 \dots - x^2 - y^2 + z^2$$

Lemma (Cauchy-Schwarz Eşitsizliği)

 $x=(x^1,x^2,x^3)$ ve $y=(y^1,y^2,y^3)$ \mathbb{R}^3 'te iki vektör olsun. $(x^1y^1+x^2y^2+x^3y^3)^2\leq ((x^1)^2+(x^2)^2+(x^3)^2)((y^1)^2+(y^2)^2+(y^3)^2)$ eşitsizliği geçerlidir. Eşitlik durumunun sağlanabilmesi xile y vektörlerinin $lineer\ bağımlı$ olmasıyla mümkündür.

İspat: Dinleyiciye bırakılmıştır.

Sol Resim Cauchy | Sağ Resim Schwarz

Teorem 2

 $v, w \in \mathcal{M}$ iki *ışıksal vektör* olsun. v ile w'nun birbirlerine paralel olabilmesi için gerek ve yeter şart (\iff) v ile w'nun birbirlerine dik olmasıdır. Teorem 2'nin İspatı: (paralellik ⇒ diklik)

vveyaw'dan biri0vektörüyse her şey bariz. $v,w\neq 0$ olsun.

Diyelim ki v, wışıksal vektörleri birbirlerine paralel olsunlar. Bu durumda $\lambda \in \mathbb{R}$ için $v = \lambda w$ eşitliği sağlanacaktır. Şimdi bu eşitliği kullanarak v ile w'nun iç çarpımına bakalım:

$$g(v, w) = g(\lambda w, w) = \lambda g(w, w) = \lambda \cdot 0 = 0.$$

Böylece v ile w'nun birbirlerine dik olduğunu ispatlamış olduk.

Teorem 2'nin İspatı: (diklik ⇒ paralellik)

$$g(v,v) = (v^{1})^{2} + (v^{2})^{2} + (v^{3})^{2} - (v^{4})^{2} = 0$$

$$g(w,w) = (w^{1})^{2} + (w^{2})^{2} + (w^{3})^{2} - (w^{4})^{2} = 0$$

$$g(v,w) = v^{1}w^{1} + v^{2}w^{2} + v^{3}w^{3} - v^{4}w^{4} = 0$$

$$(v^{1}w^{1} + v^{2}w^{2} + v^{3}w^{3})^{2} = (v^{4}w^{4})^{2} = (v^{4})^{2}(w^{4})^{2}$$
$$(v^{1}w^{1} + v^{2}w^{2} + v^{3}w^{3})^{2} = ((v^{1})^{2} + (v^{2})^{2} + (v^{3})^{2})((w^{1})^{2} + (w^{2})^{2} + (w^{3})^{2})$$
$$(v^{1}, v^{2}, v^{3}) = \lambda(w^{1}, w^{2}, w^{3})$$

$$v^{4} = \frac{v^{1}w^{1} + v^{2}w^{2} + v^{3}w^{3}}{w^{4}} = \frac{\lambda((w^{1})^{2} + (w^{2})^{2} + (w^{3})^{2})}{w^{4}}$$
$$v^{4} = \frac{\lambda(w^{4})^{2}}{w^{4}} = \lambda w^{4}$$
$$\implies \boxed{(v^{1}, v^{2}, v^{3}, v^{4}) = \lambda(w^{1}, w^{2}, w^{3}, w^{4})}.$$

Teorem 3

 \mathcal{M} 'de birbirine dik olan zamansaliki vektör yoktur.

