Simulation_Super_Brownian_Motions

Release 1.2.1

Le Chen

CONTENTS:

1	super_bm_simulation1.1 Module contents	3 3
2	Bibliography	5
3	Indices and tables	7
Bi	ibliography	9
Ру	ython Module Index	11
In	dex	13

Authors

Le Chen - Affiliation: Department of Mathematics and Statistics, Auburn University - Emails: le.chen@auburn.edu, chenle02@gmail.com

CONTENTS: 1

2 CONTENTS:

SUPER_BM_SIMULATION

Super Brownian motion is also called *superprocess* in the literature. Check out the Wikipedia page for Superrpocess and the book by Etheridge [Eth00].

1.1 Module contents

This module simulates branching Brownian motions and includes a variety of functionalities:

- Simulate the Motion: Create simulations of branching Brownian motions.
- Plot Paths: Plot the paths of the motion and save them in JPEG and PNG formats.
- Export Data: Export the sample paths to CSV files for further analysis.
- Generate Animation: Create an animation of the branching Brownian motion process.

Credits:

- Author: Le Chen
- Contact: chenle02@gmail.com / le.chen@auburn.edu
- Creation Date: Created at Tue 23 Jan 2024 04:50:37 PM CST
- Acknowledgments: Special thanks to Yimin Zhong (yzz0225@auburn.edu) and Panqiu Xia (pqxia@auburn.edu) for their helpful discussions.

class super_bm_simulation.**Branching_BM**(num_steps=301, update_steps=100, branching_prob=0.5, scale=10, seed=42)

Bases: object

Initialize the Super Brownian Motion simulation with given parameters.

Parameters

- num_steps (int) Number of steps in the simulation. Default is 301.
- update_steps (int) Number of steps between each update. Default is 100.
- **branching_prob** (*float*) Probability of branching at each step. Default is 0.5.
- **scale** (*float*) Scale factor for the motion. Default is 10.
- **seed** (*int*) Seed for random number generation. Default is 42.

Animation (dpi=150)

Generate the animation of the branching Brownian motion.

Branch_or_Die(path_id, step)

Update the specified path based on the branching and dying logic.

This method applies the branching and dying logic to the path identified by path_id at the given simulation step. It determines whether the path should branch, continue, or die.

Parameters

- path_id The identifier of the path to be updated.
- **step** The current step in the simulation process.

Returns

A boolean value; True if the path is still alive after this step, False if it has died.

One_Step(path_id, step)

Go one step for a path.

export_paths()

Export the paths in csv file.

plot_paths()

Plot all the paths of the Brownian motions.

simulate()

Run the simulation of the Brownian motion with branching.

super_bm_simulation.main()

CHAPTER	
TWO	

BIBLIOGRAPHY

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

BIBLIOGRAPHY

[Eth00] Alison M. Etheridge. *An introduction to superprocesses*. Volume 20 of University Lecture Series. American Mathematical Society, Providence, RI, 2000. ISBN 0-8218-2706-5. URL: https://doi.org/10.1090/ulect/020, doi:10.1090/ulect/020.

10 Bibliography

PYTHON MODULE INDEX

S

 $super_bm_simulation, 3$

12 Python Module Index

INDEX

```
Α
Animation()
                (super_bm_simulation.Branching_BM
        method), 3
В
Branch_or_Die()
                                             (su-
        per_bm_simulation.Branching_BM
                                        method),
Branching_BM (class in super_bm_simulation), 3
Ε
export_paths() (super_bm_simulation.Branching_BM
        method), 4
M
main() (in module super_bm_simulation), 4
module
    super_bm_simulation, 3
0
One_Step()
                (super_bm_simulation.Branching_BM
        method), 4
Р
plot_paths() (super_bm_simulation.Branching_BM
        method), 4
S
simulate()
                (super_bm_simulation.Branching_BM
        method), 4
super_bm_simulation
    module, 3
```