Inverse Trigonometric Functions Cheatsheet Exercise 13.2

1 Key Identities

1.1 Sum and Difference Formulas

• Arcsine: $\sin^{-1} A + \sin^{-1} B = \sin^{-1} \left(A\sqrt{1 - B^2} + B\sqrt{1 - A^2} \right)$

Result in
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

• Arctangent: $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A+B}{1-AB} \right), AB < 1$

Result in
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

• Arccosine: $\cos^{-1} A + \cos^{-1} B = \cos^{-1} \left(AB - \sqrt{(1 - A^2)(1 - B^2)} \right)$

1.2 Double-Angle Formulas

- $\sin 2\theta = 2\sin \theta \cos \theta$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
- $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$

1.3 General Identities

- $\bullet \quad \cos(\sin^{-1}x) = \sqrt{1 x^2}$
- $\sin(2\cos^{-1}x) = 2x\sqrt{1-x^2}$
- $\cos(2\sin^{-1}x) = 1 2x^2$
- $\tan^{-1}(-x) = -\tan^{-1}x$
- $\sin^{-1}(-x) = -\sin^{-1}x$
- $\cos^{-1}(-x) = \pi \cos^{-1}x$
- $\tan(\sin^{-1} x) = \frac{x}{\sqrt{1-x^2}}$

2 Key Techniques

2.1 Proving Sum/Difference Identities

1. Let $\sin^{-1} A = \alpha$, $\sin^{-1} B = \beta$, compute $\sin(\alpha + \beta)$ or $\cos(\alpha - \beta)$.

- 2. Use right triangle: For $\tan^{-1} \frac{a}{b}$, opposite a, adjacent b, hypotenuse $\sqrt{a^2 + b^2}$.
- 3. Example: Q.1: $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{25} = \cos^{-1} \frac{253}{325}$

$$\cos\left(\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25}\right) = \frac{12}{13} \cdot \frac{24}{25} - \frac{5}{13} \cdot \frac{7}{25} = \frac{253}{325}.$$

2.2 Proving Double-Angle Identities

- 1. Let $\cos^{-1} x = \theta$, use $\sin 2\theta = 2 \sin \theta \cos \theta$.
- 2. Example: Q.4: $\tan^{-1} \frac{120}{119} = 2 \cos^{-1} \frac{12}{13}$.

$$\tan 2\theta = \frac{2 \cdot \frac{5}{12}}{1 - \left(\frac{5}{12}\right)^2} = \frac{120}{119}.$$

2.3 General Identities

- 1. Substitute $\sin^{-1} x = \alpha$, compute trigonometric function.
- 2. Example: Q.13: $\cos(\sin^{-1} x) = \sqrt{1 x^2}$.

$$\sin \alpha = x, \ \cos \alpha = \sqrt{1 - x^2}.$$

2.4 Evaluating Functions

- 1. For $x = \sin^{-1} a$, compute all trigonometric ratios.
- 2. Example: Q.20: $x = \sin^{-1} \frac{1}{2} \implies \sin x = \frac{1}{2}, \cos x = \frac{\sqrt{3}}{2}, \tan x = \frac{1}{\sqrt{3}}, \csc x = 2, \sec x = \frac{2}{\sqrt{3}}, \cot x = \sqrt{3}.$

3 Common Values

- $\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$, $\sin^{-1}1 = \frac{\pi}{2}$.
- $\cos^{-1}\frac{\sqrt{3}}{2} = \frac{\pi}{6}$, $\cos^{-1}\frac{1}{2} = \frac{\pi}{3}$.
- $\tan^{-1} 1 = \frac{\pi}{4}$, $\tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$.
- $\sin \frac{\pi}{6} = \frac{1}{2}$, $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$.

4 Problem Types

• Sum/Difference Identities: Prove sums equal to inverse function (e.g., Q.6: $\sin^{-1} \frac{3}{5} + \sin^{-1} \frac{8}{17} = \sin^{-1} \frac{77}{85}$).

$$\sin^{-1}\left(\frac{3}{5} \cdot \frac{15}{17} + \frac{8}{17} \cdot \frac{4}{5}\right) = \sin^{-1}\frac{77}{85}.$$

• **Double-Angle Identities**: Relate multiple angles to inverse (e.g., Q.3: $2 \tan^{-1} \frac{2}{3} = \sin^{-1} \frac{12}{13}$).

$$\sin 2\theta = 2 \cdot \frac{2}{\sqrt{13}} \cdot \frac{3}{\sqrt{13}} = \frac{12}{13}.$$

• General Identities: Prove trigonometric identities (e.g., Q.19: $\tan(\sin^{-1} x) = \frac{x}{\sqrt{1-x^2}}$).

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{x}{\sqrt{1 - x^2}}.$$

• Evaluation: Compute trigonometric functions (e.g., Q.20: $x = \sin^{-1} \frac{1}{2}$).

5 Tips and Tricks

- Check domain: Ensure $|x| \le 1$ for $\sin^{-1} x$, AB < 1 for $\tan^{-1} A + \tan^{-1} B$.
- Simplify fractions: Rationalize denominators (e.g., $\frac{2}{\sqrt{13}}$).
- Use identities: $\cos(\sin^{-1} x) = \sqrt{1 x^2}$, $\sin 2\theta = 2\sin\theta\cos\theta$.
- Right triangle: For $\tan^{-1} \frac{a}{b}$, use opposite a, adjacent b.
- Verify signs: Ensure result matches principal range (e.g., $\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$).
- Combine terms: Simplify numerators/denominators before taking inverse (e.g., Q.9: $\frac{513-88}{209+216}=1$).

6 Applications

- Physics: Angle sums in optics or mechanics.
- Calculus: Simplify integrals with inverse functions.
- Geometry: Compute angles in complex figures.