

Art of Problem Solving

2014 China Girls Math Olympiad

China Girls Math Olympiad 2014

Day 1	
1	In the figure of http://www.artofproblemsolving.com/Forum/download/file php?id=50643&mode=view $\odot O_1$ and $\odot O_2$ intersect at two points A, B . The extension of O_1A meets $\odot O_2$ at C , and the extension of O_2A meets $\odot O_1$ at D , and through B draw $BE \parallel O_2A$ intersecting $\odot O_1$ again at E . If $DE \parallel O_1A$, prove that $DC \perp CO_2$.
2	Let $x_1, x_2,, x_n$ be real numbers, where $n \geq 2$ is a given integer, and let $\lfloor x_1 \rfloor, \lfloor x_2 \rfloor,, \lfloor x_n \rfloor$ be a permutation of $1, 2,, n$. Find the maximum and minimum of $\sum_{i=1}^{n-1} \lfloor x_{i+1} - x_i \rfloor$ (here $\lfloor x \rfloor$ is the largest integer not greater than x).
3	There are n students; each student knows exactly d girl students and d boy students ("knowing" is a symmetric relation). Find all pairs (n,d) of integers .
4	For an integer $m \geq 4$, let T_m denote the number of sequences a_1, \ldots, a_m such that the following conditions hold: (1) For all $i = 1, 2, \ldots, m$ we have $a_i \in \{1, 2, 3, 4\}$ (2) $a_1 = a_m = 1$ and $a_2 \neq 1$

$$g_n - 2\sqrt{g_n} < T_n < g_n + 2\sqrt{g_n}.$$

Prove that there exists a geometric sequence of positive integers $\{g_n\}$ such that

Day 2	
5	Let a be a positive integer, but not a perfect square; r is a real root of the equation $x^3 - 2ax + 1 = 0$. Prove that $r + \sqrt{a}$ is an irrational number.

(3) For all $i = 3, 4 \cdots, m, a_i \neq a_{i-1}, a_i \neq a_{i-2}$.

for $n \geq 4$ we have that

Contributors: SCP, sqing

Art of Problem Solving 2014 China Girls Math Olympiad

6	In acute triangle ABC , $AB > AC$. D and E are the midpoints of AB , AC respectively. The circumcircle of ADE intersects the circumcircle of BCE again at P . The circumcircle of ADE intersects the circumcircle BCD again at Q . Prove that $AP = AQ$.
7	Given a finite nonempty set X with real values, let $f(X) = \frac{1}{ X } \sum_{a \in X} a$, where $ X $ denotes the cardinality of X . For ordered pairs of sets (A, B) such that $A \cup B = \{1, 2, \dots, 100\}$ and $A \cap B = \emptyset$ where $1 \le A \le 98$, select some $p \in B$, and let $A_p = A \cup \{p\}$ and $B_p = B - \{p\}$. Over all such (A, B) and $p \in B$ determine the maximum possible value of $(f(A_p) - f(A))(f(B_p) - f(B))$.
8	Let n be a positive integer, and set S be the set of all integers in $\{1, 2,, n\}$ which are relatively prime to n . Set $S_1 = S \cap \left(0, \frac{n}{3}\right]$, $S_2 = S \cap \left(\frac{n}{3}, \frac{2n}{3}\right]$, $S_3 = S \cap \left(\frac{2n}{3}, n\right]$. If the cardinality of S is a multiple of S , prove that S_1 , S_2 , S_3 have the same cardinality.

www.artofproblemsolving.com/community/c3679

Contributors: SCP, sqing