Inference of Cellular Developmental Time

transition-speed: default transition: fade autosize: false "From Multivariate to Longitudinal Data" April 11, 2017 Caleb Lareau bit.ly/LareauBST245

Overview

- Motivation
- Single cell RNA-Seq
- Model Dataset
- EDA
- Methods of estimating developmental time
- PCA
- Probablistic PCA; Bayesian PCA
- Gaussian Process Latent Variable Modeling

Trajectories...

 ~ 3 million cells ~ 20 billion cells ~ 50 trillion cells

• What are the key points in development for disease?

Questions from developmental biology

- What happens in a cell such that it becomes a brain, toe, or a heart? - When do these decisions get made? "Who" makes them? - How do the developmental trajectories of disease (leukemia / schizophrenia) differ from healthy individuals? - Can we identify important transition points and the genetic signature underlying them?

Waddington Landscape

Some cancers regain stemness programs

Stergachis et al., Cell 2013

Stem cell-likeness in AML

Corces et al. Nature Genetics, 2016

How do we characterize single cells?

Proserpio and Mahata, Immunology 2015

EDA

```
\begin{split} & \text{class: small-code "`\{r,\,\text{eval} = \text{FALSE}\} > \dim(\text{deng})} \\ & [1] \ 17585 \ 255 \\ & \quad \text{sum}(\text{deng} == 0) \ / \ \text{prod}(\dim(\text{deng})) \\ & [1] \ 0.5019552 \\ & \quad \text{head}(\text{sample}(\text{colnames}(\text{deng}))) \\ & [1] \ \text{"earlyblast" "16cell" "4cell" "midblast" "lateblast" "16cell"} \end{split}
```

head(sample(rownames(deng)))

[1] "Gm7073" "Mir697" "Uqcrc2" "Ap2m1" "Slc10a3" "Ccr1"

Linearly increasing

Dropoff

Linear Decreasing

Varying, no clear effect

V-shaped

Transition on/off

Sigmoidal with dropout

Overall picture

 \forall geneg, fit OLS Regression with known timepoint t per cell—

$$\log_2(g+1) \sim \beta_0 + \beta_1 t$$

Permuted

 \forall gene g, fit regression with permuted timepoint t^* per cell

$$\log_2(g+1) \sim \beta_0 + \beta_1 t^*$$

Permuted

 \forall gene g, fit regression with permuted **factor** timepoint t^{**}

$$\log_2(g+1) \sim \beta_0 + \beta_1 t^{**}$$

Statement of problem

Given a matrix \mathbf{Y} of D genes (features) by n samples, determine a latent vector \mathbf{P} with dimension 1 x n that reflects the developmental trajectory of the n cells from the variance in D genes. - D can be thought of has a higher dimension space, and we want to infer d (d < D) latent variables in the gene data. - One of the d latent variables ideally reflects developmental ordering.

Perfect latent variable

class: small-code

"`{r, eval = FALSE} > cor(runif(length(time)) %>% sort(), as.numeric(time) %>% sort())^2

[1] 0.8799669 ""

PCA

Computing PCA

 \mathbf{Y} is a $D \times n$ matrix. Compute the covariance matrix—

$$\mathbf{\Sigma} = E(\mathbf{Y}\mathbf{Y}^{\mathbf{T}}) - \mu\mu^{\mathbf{T}}$$

where $\mu = E(\mathbf{Y})$

Then compute the spectral decomposition of Σ

$$\Sigma a_j = \lambda_j a_j$$

for $j \in (1, ..., D)$ Then a_j represent the eigenvectors of the data matrix **Y**. Note the ordering of j is meaningful—

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_D \ge 0$$

Computing PCA

```
class: small-code "`\{r, eval = FALSE\} > irlba::prcomp_irlba() prcomp() princomp() "."
```

PCA

Correlation with all PCs

Pause...

PCA by itself isn't satisfactory... Ideas for improvements?

Improving on PCA

1) Quantifiying uncertainty 2) Non-linear latent variable inference

Uncertainty

From Buenrostro $et\ al.$ bioRxiv 2017

Mannifold / Non-linear dimension learning

- Next several images taken from slides via Guy Wolf (Yale)
 - These slides can be found here

Factor Analysis

Y is a $D \times n$ matrix. **x** is a $d \times n$ matrix (d < D). Want to relate **x** and **Y** and assume that the relationship is linear—

$$Y = Wx + \epsilon$$

where W is a $D \times d$ matrix.

By convention (after locating the matrix),

$$\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$$

where **I** is the identity matrix of dimension $d \times d$.

Factor Analysis II

Specify the error,

$$\epsilon \sim \mathcal{N}(0, \mathbf{\Psi})$$

where we assume Ψ to be a diagonal matrix D x D. - Assuming the diagonal structure of Ψ means that all observertional correlations is due to the latent variables. - In other words, Y_i for $i \in (1,...,n)$ are conditionally independent given \mathbf{x}

Factor Analysis III

Then Y_i for $i \in (1, ..., n)$,

$$Y_i|x_i \sim \mathcal{N}(0, \mathbf{\Psi})$$

Then we can integrate out the latent variables-

$$p(Y_i|\mathbf{W}, \mathbf{\Psi}) = \int p(Y_i|x_i, \mathbf{W}, \mathbf{\Psi})p(x_i)dx_i$$

Under this specification, we can write the MVN distribution for our observations-

$$\mathbf{Y} \sim \mathcal{N}(0, \mathbf{C}), \mathbf{C} = \mathbf{W}\mathbf{W}^{\mathbf{T}} + \mathbf{\Psi}$$

Computing PCA via Factor Analysis

Young-Whittle Factor Analysis (1950s) ψ_i element of the diagonal of Ψ ; add constraint $\psi_i = \sigma^2$ Assume σ^2 known, MLE yields same W as PCA

$$\mathcal{L} = \frac{-N}{2} \{ D \log(2\pi) + \log |\mathbf{C}| + \operatorname{tr}(\mathbf{C}^{-1}\mathbf{\Sigma}) \}$$

$$\mathbf{C} = \mathbf{W}\mathbf{W^T} + \mathbf{\Psi}$$

$$\mathbf{x} = \mathbf{C}^{-1} \mathbf{W}^{\mathbf{T}} \mathbf{Y}$$

Probablistic PCA (Tipping and Bishop)

- Assuming σ^2 may not be reasonable; want to estimate it from the data (keep in likelihood)
- Can estimate \mathbf{W}, σ^2 using EM & with a prior over \mathbf{x}

For $\mathbf{W}_{\mathrm{MLE}}$,

$$\sigma_{MLE}^2 = \frac{1}{D-d} \sum_{j=d+1}^{D} \lambda_j$$

• Similarly, we can integrate over W given a prior, yielding

$$\mathbf{x} \sim \mathcal{N}(\mathbf{C}^{-1}\mathbf{W}^{\mathbf{T}}\mathbf{Y}, \sigma^2 C^{-1})$$

Bayesian PCA

Bayesian PCA

- α_i represents the inverse of the variance
- for large α_i , contribution of latent factor i is low.
- Solved by EM / similar algorithm

Bayesian / Probablistic PCA in R

```
class: small-code "'{r, eval = FALSE} library(pcaMethods)
pca()
resPPCA <- pca(data, method="ppca", center=FALSE, nPcs=5) resBPCA <-
pca(data, method="bpca", center=FALSE, nPcs=5)
"'
```

Non-linear

$$\begin{split} \mathbf{Y} \sim \mathcal{N}(0, \mathbf{C}), \mathbf{C} &= \mathbf{W} \mathbf{W}^{\mathbf{T}} + \mathbf{\Psi} \\ \mathbf{C}(\mathbf{W_i}, \mathbf{W_j}) &= \mathbf{W_i^T} \mathbf{W_j} + \sigma^2 \delta_{ij} \\ \mathbf{C}(\mathbf{W_i}, \mathbf{W_j}) &= \theta_{rbf} \exp \left(\frac{-\gamma}{2} (\mathbf{W_i} - \mathbf{W_j})^T (\mathbf{W_i} - \mathbf{W_j}) \right) + \dots \end{split}$$

- (2) being a special case (linear, iid) of (3)
- Computationally more challenging, but there are fast algorithms out there

GPLVM

GPLVM

```
class: small-code "'{r, eval = FALSE} library(pseudogp) fit <- fitPseudotime(data, smoothing_alpha = 30, smoothing_beta = 6, iter = 1000, chains = 1) posteriorBoxplot(fit) "'
```

$GPLVM-Note able\ application$

GPLVM

GPLVM versus PCA 1

```
class: small-code  \begin{tabular}{ll} $\operatorname{class: small-code} \\ \begin{tabular}{ll} $\operatorname{cor}(\operatorname{pca\$rotation}[,1], \ \operatorname{as.numeric}(\operatorname{time}))^2 \\ \begin{tabular}{ll} $(1] \ 0.5933009 \\ & \operatorname{cor}(\operatorname{gplvm\_means}, \ \operatorname{as.numeric}(\operatorname{time}))^2 \\ \begin{tabular}{ll} $(1] \ 0.783522 \ \begin{tabular}{ll} $(1] \ 0.783522 \ \begin{tabular}{ll} $(1] \ 0.783522 \ \begin{tabular}{ll} $(1] \ \begin{tabular}{ll}
```

GPLVM versus PCA 2

Wrapping up...

- GPLVM provide both a probablistic and non-linear latent variable inference structure - All other published algorithms provide point estimates, difficult to ascertain uncertainty - Under this framework, Bayesian priors are allowed, which have been useful in published studies - Tools and methods useful in many data analyses contexts (including machine learning) - Motivated here by single cell analysis

Detailed look at early embryo neurogenesis?

Thanks!