Quantum Computing

Outline

- —What is a quantum computer like?
- —How does quantum computing work?
- —Possibilities of quantum computing
- —The realization of quantum Fourier transform

What is a Quantum Computer Like

Companies:

50-qubit

IBM's quantum computer

How Does Quantum Computing Work

Classical computing fundamental unit: bit —

Off: 0

Quantum computing fundamental unit: qubit (quatum bit)

photon

nucleus

On: |1>

Off: $|0\rangle$

Both: $\alpha |1\rangle + \beta |0\rangle$

How Does Quantum Computing Work: Superposition

Picture from: https://zhuanlan.zhihu.com/p/27387032

How Does Quantum Computing Work: Example

2 classical bits:

2 qubits:

bit 1	bit 2			qubit 1		qubit 2	
0	0	α		0	+	0	>
0	1	$oldsymbol{eta}$		0		1	>
1	0	γ		1	+	0	>
1	1	δ		1	+	1	>

2 qubits contain 4 bits of information. N qubits contain 2^N bits of information.

How Does Quantum Computing Work: Entanglement

How Does Quantum Computing Work: Entanglement

How Does Quantum Computing Work

Parallel computer 2 Quantum computer **Problem** Superposition **Processor** GPU/CPU **Entanglement**

How Does Quantum Computing Work

	Quantum computer	Parallel computer		
1. Entanglement	Entanglement between qubits	Independent processor without entanglement		
2. Measurement	One state after measurement	Measure any processors at any time		
3. Computational power	Exponentially increase $(N = 2^n)$	Linearly increase		

Possibilities of Quantum Computing: Cryptography

Possibilities of Quantum Computing: Cryptography

Paralell computing → Large compute power

RSA Algorithm: large integer factorization

$$1529 \div 3 = 509 \dots 2$$
 $1529 \div 5 = 305 \dots 4$
 $1529 \div 7 = 218 \dots 3$
 $1529 \div 11 = 139$
Shor's Algorithm

300-bit large integer factorization 150,000 years

1 second

Possibilities of Quantum Computing

Paralell computing → Large compute power

- Bit coins
- Database search: Grover's Alogrithm
- Quantum computing + Machine learning
- Quantum Fourier transform

Limitation of Quantum Computing

Limitation of Quantum Computing

100~10,000 physical qubits

The Realization of Quantum Algorithms

The Realization of Quantum Algorithms

```
In [6]: # Visualizing quantum circuit
from qiskit.tools.visualization import circuit_drawer
circuit_drawer(qft_n)

WARNING: Unable to compile latex. Is `pdflatex` installed? Skipping latex circuit drawing...
```


The Realization of Quantum Algorithms

```
In [8]: results = job_exp.result()
plot_histogram(results.get_counts())
```


Matplotlib

The Realization of Quantum Fourier Transform

$$x_0, x_1, \dots, x_{N-1} \Longrightarrow \mathsf{DFT} \colon \ y_k \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N} \Longrightarrow \underbrace{y_0, y_1, \dots, y_{N-1}}_{\mathsf{Length} \colon \mathsf{N}}$$
 Length: N

$$x_0, x_1, \dots, x_{n-1} \Longrightarrow \underbrace{|x_1\rangle - \theta - R_2 - R_3}_{|x_2\rangle} \longrightarrow \underbrace{|y_0, y_1, \dots, y_{n-1}\rangle}_{\mathsf{Length} \colon \mathsf{N}}$$
 Length: N

$$N = 2^n$$

The Realization of Quantum Fourier Transform

The Realization of Quantum Fourier Transform

