

Basic Deep Learning in Computer Vision

Day 2

Morning: Introduction to Artificial Neural Network

Afternoon: Introduction to Convolution Neural Network

Programme

	Morning	Afternoon
Day 1	 Computer Vision Image Libraries Activity 1: Getting Started with Libraries 	 Image Preprocessing Image Augmentation Activity 2: Image preprocessing Activity 3: Image Augmentation
Day 2	Basic of Neural Network Activity 4: Building NN with Python	 Image Convolution Convolution Neural Network (CNN) Activity 6: Create and use CNN
	 Introduction to Keras Activity 5: Building NN with Keras 	• Quiz

Artificial Neural Network (ANN)

Definition of ANN

- An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron that receives a signal then processes it and can signal neurons connected to it. The "signal" at a connection is a real number, and the output of each neuron is computed by some nonlinear function of the sum of its inputs.
- The connections are called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Neurons may have a threshold such that a signal is sent only if the aggregate signal crosses that threshold.
- Typically, neurons are aggregated into layers. Different layers may perform different transformations on their inputs. Signals travel from the first layer (the input layer), to the last layer (the output layer), possibly after traversing the layers multiple times.
- Ref: https://en.wikipedia.org/wiki/Artificial_neural_network

Brief History of ANN

Brief History of Neural Network

DEVIEW 2015

Ref: https://medium.com/coinmonks/neural-networks-bb11fb9a8266

Inspiration from neural science

- A neuron takes in several signals through dendrites, processes the signals and sends out a signal (spike of electrical activity) through the axon.
- The axon is split into several branches and connects to other dendrites through synapse, forming the biological neural network.

A Neural Node

This is similar to the formula of Linear Regression

Activation function

- Taking inspiration from the biological neuron, there is a need to 'threshold' the output signal. Such function is known as Activation Function.
- Most commonly used function includes Sigmoid, Tanh and Relu

Activation function

- Sigmoid (σ)
 - Limit to 0 to 1

$$f(z) = \frac{1}{1 + e^{-z}}$$

- Tanh Hyperbolic tangent
 - Limit to -1 and 1

$$tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

- Relu Rectified Linear Unit
 - linear positive values
 - Ignore negative value

$$ReLU(z) = egin{cases} 0, & z < 0 \ z, & z \geq 0 \end{cases}$$
 t, ACE@RP

An example of a node

 When Sigmoid is used, the output equation of a neuron is similar to the Logistic Regression. Hence, a neuron node is also interpreted as a classifier.

Forming a hidden layer

Placing several nodes side by side, a layer is formed

Forming a hidden layer

Putting the equations together as a matrix

$$a^{(i)} = \sigma(z^{(i)})$$
 where $z^{(i)} = x^{(i)}W^{(i)}$

Input and Output Layer

- Input layer allows the features (or data) to enters the neural network.
 - The number of input nodes must be equal to the number of features
 - The output of the layer is equal to the feature values
- Output layer produces the predicted labels.
 - The number of output nodes must be equal to the number of labels
 - The output of output layer is calculated similar to the hidden layer
 - It has an additional activation function called Softmax.

Forming a network

- One input layer → zero to many hidden layer(s) → one output layer
- The bias is normally not drawn or shown in a network diagram

Feedforward

Defining the values

Feedforward

Calculate the output

Feedforward example

= [1.4 2.1]

0.5

0.5

 $= \sigma[1.4 \quad 2.1 \quad 2.4]$ 2021 © = [0.80]

0.89

0.92]

Feedforward example

 Multiple inputs can be calculated in just <u>one</u> feedforward pass. The number of inputs is known as

Training of weights

Work flow

 Step 1: Make a prediction (feedforward)

Backpropagation Step 2: Calculate Loss Truth value (label) Step 3: Calculate gradient of the loss function w.r.t. parameters Loss Optimization Step 4: Update parameters by **Function** taking a step in the opposite direction Training • Step 5: Iterate **ANN Predictions** Dataset (features) **Feedforward**

Training of weights

- Loss Function, $J(y, \hat{y})$, calculate how **poorly** our model is performing by comparing what the **model is predicting** with the **actual value** it is supposed to output.
- Regression Loss the model is predicting a continuous value
 - Mean Square Error
 - Mean Absolute Error
- $Loss = \frac{1}{n} * \sum_{i=0}^{n} (Y_i Y_{pred_i})^2$
- Classification Loss the model is predicting a discrete value or specific class.
 - Binary Cross Entropy
 - Categorial Cross Entropy

$$Loss = (Y)(-log(Y_{pred})) + (1 - Y)(-log(1 - Y_{pred}))$$

Ref: https://deeplearningdemystified.com/article/fdl-3

Training of weights

- Optimization Optimizers are algorithms or methods used to change the attributes of your neural network such as weights and learning rate in order to reduce the losses.
 - Stochastic Gradient Descent (SGD)

$$w = w - \alpha \frac{\partial J(y, \hat{y})}{\partial w} \text{ Gradient } \\ \text{Descent}$$

Mini-Batch Gradient Descent

$$w = w - \alpha \frac{\partial J([y], [\hat{y}])}{\partial w}$$

- Momentum
- Adam
- RMSProp

Ref: https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6

Follow the

gradient

Aha! I've seen

this before...

Current Values:

$$x = 2, y = 4$$

 $w = 0.2, b = 0.5$

Assume:

- Activation function = Linear
- Loss function = MSE
- Optimization = SGD (one sample used)
- Learning rate = 0.1

Step 1: Make a prediction

$$\hat{y} = xw + b$$

= 2 * 0.2 + 0.5
= 0.9

Step 2: Calculate the Loss

$$J(y, \hat{y}) = (y - \hat{y})^2$$

= $(4 - 0.9)^2$
= 9.61

$$J(y,\hat{y}) = (y - \hat{y})^{2}$$

$$= y^{2} - 2y\hat{y} + \hat{y}^{2}$$

$$= y^{2} - 2y(xw - b) + (xw - b)^{2}$$

$$= y^{2} - 2xyw + 2by + x^{2}w^{2} - 2bxw + b^{2}$$

$$= x^{2}w^{2} - (2bx + 2xy)w + (y^{2} + 2by + b^{2})$$
or
$$= b^{2} + (2y - 2xw)b + (y^{2} - 2xyw + x^{2}w^{2})$$

Step 3: Calculate the gradient

$$J(y,\hat{y}) = (y - \hat{y})^{2}$$

$$= y^{2} - 2y\hat{y} + \hat{y}^{2}$$

$$= y^{2} - 2y(xw - b) + (xw - b)^{2}$$

$$= x^{2}w^{2} - (2bx + 2xy)w + (y^{2} + 2by + b^{2})$$

$$J = c_1 w^2 + c_2 w + c_3$$

$$J(w)$$

$$\nabla_w J < 0$$
Negative gradient
$$b^2$$

$$minimum: \nabla_w J = 0$$

$$\frac{\partial J}{\partial w} = 2x^2w - 2x(b+y)$$
= (2)(2 * 2)(0.2) - (2)(2)(0.5 + 4)
= 1.6 - 18
= -16.4

Step 4: Update the weights

$$w = w - \alpha \frac{\partial J(y, \hat{y})}{\partial w}$$

= 0.2 - (0.1)(-16.4)
= 1.84

Try out the same approach to update the bias.

- Step 5: Iterate
 - A learning curve will be produced

Ref: https://www.kaggle.com/ryanholbrook/overfitting-and-underfitting

Epochs

'Epoch' refers to a single pass of whole dataset.

Backpropagation

• To train the weights of a neural network, we need to find the gradient of each weights.

Want: $\frac{\partial J(y_i, \hat{y_i})}{\partial J(y_i, \hat{y_i})}$

This is very difficult.

Backpropagation

- Using Chain Rule and Calculus
- The calculated values can be "propagate back" from the higher layers to the lower layers.
- Although the formula is long, but it can be quickly calculated by the computer.

$$\frac{\partial J(y,\hat{y})}{\partial W^{(3)}} = (\hat{y} - y) \cdot a^{(3)}$$

$$\frac{\partial J(y,\hat{y})}{\partial W^{(2)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot a^{(2)}$$

$$\frac{\partial J(y,\hat{y})}{\partial W^{(1)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot W^{(2)} \cdot \sigma'(z^{(2)}) \cdot X$$

Where: $\sigma'(z) = \sigma(z)(1 - \sigma(z))$

Backpropagation (optional)

- Explain by YouTube channel 3Blue1Brown
 - Check out the series on Neural Network.
 - https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1 67000Dx ZCJB-3pi

https://www.youtube.com/watch?v=tleHLnjs5U8

15 Mins Break

Activity 4 – Building NN with Python

Step 1:

Watch and listen to the instructor's demonstration

Step 2:

Work through the activities

Individual Activity

Keras

- Keras is one of the 5 most popular deep learning framework
- Built on Tensorflow 2.0 which allows Keras to run on GPUs as well as TPUs.
- It is very easy to use and create deep neural networks
- Homepage: https://keras.io/
- API reference: https://keras.io/api/

Activity 5 – Building NN with Keras

Hidden Layer ∈ R⁸

```
model = Sequential()
model.add(Dense(8, input_shape=(13,), activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```

Exercises:

- Add a hidden layer with 10 nodes
- Change the optimizer

Step 1:Watch and listen to the instructor's demonstration

Input Layer ∈ R13

Output Layer ∈ R1

Step 2:

Work through the activities

Individual Activity

60 mins Lunch Break

Lunch break xx:xx - yy:yy

Image Convolution

36

Image Convolution

 In image processing, convolution is the process of transforming an image by applying a kernel over each pixel and its local neighbors across the entire image. The kernel is a matrix of values whose size and values determine the transformation effect of the convolution process.

Types of Kernel / Filters

- Basic image pre-processing or enhancement
 - Sharpening, Brightness, Blurring, etc
 - https://medium.com/@bdhuma/6-basic-things-to-know-about-convolutiondaef5e1bc411
- Feature extraction
 - Line detector
 - · edge detector

Vertical Line Detector

-1	2	-1
-1	2	-1
-1	2	-1

Horizontal Line Detector

-1	-1	-1
2	2	2
-1	-1	-1

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Types of Kernel / Filters

Pattern extraction

Patterns, grids

Padded input

Padded kernel

Cross-correlated result

https://developer.nvidia.com/discover/convolution

Non-standard Kernels

- Transpose, Dilated, Deformable
- https://towardsdatascience.com/types-of-convolution-kernels-simplifiedf040cb307c37

Grid Size

- The number of pixels a kernel "sees" at once
- Typically use odd numbers so that there is a "center" pixel
- Kernel does not need to be square

Height: 3, W	'idth: 3	Height: 1, Width: 3	Height: 3, Width: 1	

Padding

- Using Kernels directly, there will be an "edge effect"
- Pixels near the edge will not be used as "center pixels" since there are not enough surrounding pixels
- Padding adds extra pixels around the frame
- So every pixel of the original image will be a center pixel as the kernel moves across the image

0	0	0	0	0	0	0	0
0	3	3	4	4	7	0	0
0	9	7	6	5	8	2	0
0	6	5	5	6	9	2	0
0	7	1	3	2	7	8	0
0	0	з	7	1	8	3	0
0	4	0	4	3	2	2	0
0	0	0	0	0	0	0	0

-10 -13 1 -9 3 0

6 × 6

Padding

Three form of padding

- Zero padding Added pixels with a value of 0
- One padding Added pixels with a value of 1
- Replicate padding Added pixels with the edge values of the image

https://pt.slideshare.net/zertux/nonlinear-filtering

Stride

- The "step size" as the kernel moves across the image
- Can be different for vertical and horizontal steps (but usually is the same value)
- When stride is greater than 1, it scales down the output dimension

Stride 2 Example – No Padding

	-1	1	2	
	1	1	0	
	-1	-2	0	
kernel				

Depth

- In images, each pixel may be represented by multiple values. This is also known as image mode.
- The number of values is referred to as "channels"
 - RGB image 3 channels
 - CMYK 4 channels
- Kernel of the same "depth" in order to convolute the input channels.
- The output of the convolution will have the same depth or channel.

More on Image Convolution (optional)

https://www.youtube.com/watch?v=8rrHTtUzyZA

Convolution Neural Network

Basic Idea

• The image convolution formula is very similar to the output formula of neural network.

Image Convolution	Maps to	Neural Network
Input	→	Input nodes
Kernel	→	Weights
Output	→	Output nodes

Basic Idea

- The network is not fully connected. Each output node (pixel) is only connected to its convolve input nodes (pixels)
- Same set of weights (kernels) across the entire image
- Training of the weights can be applied
 - The trained weights form the kernel that is best to analyse the images
- A convolution layer consists of n-number of kernels. Each kernel will convolve with the input image(s) to produce nnumber of output images.
- The activation function of a convolution layer is Relu because (i) there is no requirement of 'thresholding' the convoluted output image, and (ii) there is no negative values in an image.

Pooling layer

- Shrinks the dimensions of an image (or reduce its size) by mapping a patch of pixels to one value.
 - Max-pooling
 - Average-pooling

2	1	0	-1		
-3	8	2	5		8
1	-1	3	4	maxpool	1
0	1	1	-2		

Pooling layer

- To enables scale-invariant and shift-invariant
- Simulate convolution of bigger dimension

Dropout layer

- Randomly removes one or more nodes from a network
- To prevent overfitting of the model
- Dropout is ONLY performed during training

Ref: https://medium.com/analytics-vidhya/a-simple-introduction-to-dropout-regularization-with-code-5279489dda1e

Flatten layer

 transforms a two-dimensional matrix of features into a vector that can be fed into a fully connected neural network classifier

https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-examples/

Forming the CNN

 By combining the convolution, pooling, flatten and dense (fully connected) layers, they formed a Convolution Neural Network.

How CNN works

Each layer extracts the features with increasing complexity

How CNN works

 The dense layers (classifier) puts these features together to determine what is the image.

Ref: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

How CNN works (Optional)

- Explain by YourTube channel deeplizard
 - Check out the series on CNN
 - https://www.youtube.com/playlist?list=PLZbbT5o_s2xq7Lwl2y8_QtvuXZedL6tQU

https://www.youtube.com/watch?v=YRhxdVk sls

15 Mins Break

Activity 6 – CNN on CIFAR-10

Exercises:

- Visit

https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html for an interactive learning of the CNN.

Step 1:

Watch and listen to the instructor's demonstration

Step 2:

Work through the activities

Individual Activity

Survey

Scan this QR-Code for the course feedback survey

Go to this link for the quiz: