

What is claimed is:

1 1. A method for processing a single channel audio signal to provide a plurality of
2 audio-channel signals, comprising:

3 separating said single channel audio signal into a first separated signal
4 characterized by a spectral pattern generally characteristic of speech, and a second
5 separated signal;

6 processing said first separated signal to provide a first audio-channel signal; and
7 modifying said second separated signal to produce the remainder of said plurality
8 of audio-channel signals.

1 2. A method for processing an audio signal in accordance with claim 1, wherein
2 said modifying includes:

3 dividing said second separated signal into a plurality of signals; and
4 multiplying one of the latter signals by a predetermined factor.

1 3. A method for processing an audio signal in accordance with claim 2, wherein
2 said factor is variable with respect to time.

1 4. A method for processing an audio signal in accordance with claim 2 wherein
2 said factor applies a gain that is proportional to the time averaged magnitude of said first
3 separated signal divided by the sum of the time averaged magnitude of said first separated
4 signal and the time averaged magnitude of said second separated signal.

1 5. A method for processing an audio signal in accordance with claim 1, wherein
2 said modifying includes

3 dividing said second separated signal into a plurality of signals; and
4 *at least one of* *and said plurality of signals*
time-delaying said second separated signal.

1 6. A method for processing an audio signal in accordance with claim 1, wherein
2 said modifying step provides a left channel signal and a right channel signal.
*Alt
12/27/98*

1 7. A method for processing an audio signal in accordance with claim 6, wherein
2 said modifying step further provides a left surround channel signal and a right surround
3 channel signal.

1 8. A method for processing a single channel audio signal in accordance with claim
2 1, wherein said first audio channel signal is a center channel signal.

1 9. A method for processing a single channel audio signal in accordance with claim
2 8, wherein said processing said first separated signal includes multiplying said first
3 separated signal by a first predetermined factor.

1 10. A method for processing a single audio signal in accordance with claim 9,
2 wherein said modifying step comprises the step of multiplying said second separated signal
3 by a second predetermined factor.

1 11. A method for processing a single audio signal in accordance with claim 10,
2 wherein said first predetermined factor and said second predetermined factor are
3 determined such that an increase the signal strength of said first separated signal coincides
4 with a decrease in the signal strength of said second separated signal.

1 12. A method of processing a single channel audio signal in accordance with claim
2 9, wherein said first predetermined factor is variable with respect to time.

1 13. A method for processing a single channel audio signal in accordance with
2 claim 9, wherein said predetermined factor is proportional to the time averaged magnitude
3 of said first separated signal divided by the sum of the time averaged magnitude of the first
4 separated signal and the time averaged magnitude of the second separated signal.

1 14. An audio signal processing apparatus for processing a single-channel audio
2 signal to provide a plurality of audio channel signals, comprising

3 a separator, for separating said audio signal into a first separated signal
4 characterized by a frequency spectrum characteristic of speech, and a second separated
5 signal; and

6 a first circuit coupled to said separator responsive to said second separated signal

7 for providing a first subset of said plurality of audio channel signals, coupled to said
8 speech separator.

1 15. An audio signal processing apparatus in accordance with claim 14, wherein
2 said first circuit comprises multiple signal paths for said second separated signal,
3 one of said multiple signal paths furnishing a time delay.

1 16. An audio signal processing apparatus in accordance with claim 14, wherein
2 said first circuit comprises multiple signal paths,
3 at least one of said multiple signal paths comprising a multiplier.

1 17. An audio signal processing apparatus in accordance with claim 16, wherein
2 said first multiple signal paths are constructed and arranged to subtractively combine a
3 signal to which said variable gain has been applied with a signal path to which said variable
4 gain has not been applied.

1 18. An audio signal processing apparatus in accordance with claim 14, wherein
2 said first subset of said plurality of audio channel signals comprises a left channel signal
3 and a right channel signal.

1 19. An audio signal processing apparatus in accordance with claim 18, wherein
2 said first subset of said plurality of audio channel signals comprises a left surround channel
3 signal and a right surround channel signal.

1 20. An audio signal processing apparatus in accordance with claim 14, wherein
2 said separator includes a bandpass filter having a pass band corresponding substantially to
3 the band of spectra characteristic of speech.

1 21. An audio signal processing apparatus in accordance with claim 14, further
2 comprising a second circuit coupled to said separator and responsive to said first
3 separated signal for providing a second subset of said plurality of audio channel signals.

1 22. An audio signal processing apparatus in accordance with claim 21, wherein
2 said second subset comprises a single audio channel signal.

1 23. An audio signal processing apparatus in accordance with claim 22, wherein
2 said single audio channel signal is a center channel signal.

- 1 24. An audio signal processing system comprising;
2 an input terminal for a single input channel signal;
3 a center channel output terminal for a center channel output signal C ;
4 a plurality of other output terminals, for a corresponding plurality of other output
5 audio channel signals;
6 a separator for separating said single channel input signal into a speech audio
7 signal and a nonspeech audio signal;
8 a first circuit coupling said speech audio signal to said center channel terminal, and
9 a second circuit, coupling said separator and said plurality of output terminals
10 responsive to said nonspeech signal, providing a corresponding plurality of other audio
11 channel signals.
- 1 25. An audio signal processing system in accordance with claim 24, wherein said
2 second circuit comprises multiple signal paths,
3 one of said multiple signal paths furnishing a time delay.
- 1 26. An audio signal processing system in accordance with claim 24, wherein said
2 circuit comprises multiple signal paths,
3 at least one of said multiple signal paths comprising a multiplier.
- 1 27. An audio signal processing system in accordance with claim 26, wherein said
2 multiplier is coupled to an other output terminal that is a left channel output terminal
- 1 28. An audio signal processing system in accordance with claim 26, wherein said
2 multiplier is coupled to an other output terminal that is a right channel output terminal.
- 1 29. An audio signal processing system in accordance with claim 24, wherein said
2 separator comprises a bandpass filter having a pass band corresponding substantially to the
3 spectrum of speech signals.
- 1 30. An audio signal processing system in accordance with claim 24, further
2 comprising a multiplier coupling said separator to said center channel output terminal and
3 multiplying the output of said separator by a predetermined factor.

1 31. An audio signal processing system in accordance with claim 30, wherein said
2 predetermined factor is variable with respect to time.

1 32. An audio signal processing system in accordance with claim 30 wherein said
2 predetermined factor is proportional to the time averaged magnitude of said speech audio
3 signal.

1 33. An audio signal processing system in accordance with claim 32 wherein said
2 predetermined factor is proportional to the time averaged magnitude of said speech audio
3 signal divided by the sum of the time averaged magnitude of the speech audio signal and
4 the time averaged magnitude of said nonspeech audio signal.

1 34. An audio signal processing system in accordance with claim 24, wherein said
2 second circuit provides a left channel signal L , a right channel signal R , a left surround
3 channel signal L_s , and a right surround channel signal R_s ,

4 further comprising a downmixing circuit coupled to said plurality of other output
5 terminals and to said center channel output terminal, for downmixing said plurality of
6 other output audio channel signals and said center channel signal to provide a plurality of
7 decodable audio channel signals.

1 35. An audio signal processing apparatus in accordance with claim 34, wherein
2 said plurality of decodable audio channel signals consists of two decodable audio channel
3 signals.

1 36. An audio signal processing apparatus in accordance with claim 34, wherein
2 said plurality of decodable audio channel signals consists of three decodable audio channel
3 signals.

1 37. A method for processing a single channel audio signal to provide two
2 decodable audio channel signals decodable into five audio channel signals, comprising:

3 separating said single channel audio signal into a first separated signal
4 characterized by a spectral pattern generally characteristic of speech, and a second
5 separated signal;

6 processing said first separated signal to provide a center channel signal C ;

7 processing said second separated signal to provide a left channel signal L , a right
8 channel signal R , a left surround channel signal L_S , and a right surround channel signal R_S ;

9 combining said center channel signal, the sum signal of said left surround and said
10 right surround channel signals, and said left channel signal to produce a first of said two
11 decodable audio channel signals; and

12 combining said center channel signal, said sum of said left surround and said right
13 surround channel signals, and said right channel signal to produce a second of said two
14 decodable audio channel signals.

1 38. A method for processing a single channel audio signal in accordance with claim
2 37, further comprising scaling said center channel signal and said sum of said left surround
3 and said right surround channel signals by center and surround factors respectively

1 39. A method for processing a single channel audio signal in accordance with claim
2 38, further comprising reversing the phase of said sum component comprising one of said
3 first and second decodable audio signal relative to said sum component comprising the
4 other decodable audio signal.

1 40. A method for processing a single channel audio signal to provide three
2 decodable audio channel signals subsequently decodable into five audio channel signals,
3 comprising:

4 separating said single channel audio signal into a first separated signal
5 characterized by a spectral pattern generally characteristic of speech, and a second
6 separated signal;

7 processing said first separated signal to form a center channel signal comprising a
8 first decodable audio signal;

9 processing said second separated signal to provide a left channel signal, a right
10 channel signal, a left surround channel signal, and a right surround channel signal;

11 combining a sum of said left surround and said right surround channel signals with
12 said left channel signal to produce a first of said two decodable audio channel signals; and

13 combining said sum of said left surround with said right surround channel signals,
14 and said right channel signal to produce a third of said decodable audio channel signals.

1 41. A method for processing a single channel audio signal in accordance with claim
2 40, further comprising scaling by a predetermined surround factor.

1 42. A method for processing a single channel audio signal in accordance with claim
2 41 further comprising reversing the phase of one of said sum comprising one of said
3 second and third decodable audio signals relative to the other of and said second and third
4 decodable audio signals.

1 43. A method for processing two input audio channel signals to provide more than
2 two output audio channel signals comprising:

3 separating each of said two input audio channel signals into a first separated signal,
4 characterized by a spectral pattern generally characteristic of speech, and a second
5 separated signal;

6 combining said first separated signal of said first input audio channel signal with
7 said first separated signal of said second input audio channel signal to form a first of said
8 more than two output audio channel signals;

9 said second separated signal of said first input signal comprising a second of said
10 more than two output audio channel signals; and

11 said second separated signal of said second input signal comprising a third of said
12 more than two output channel signals.

13 44. A method for processing two input audio channel signals in accordance with
14 claim 43, wherein said second separated signal of said first input signal comprises a
15 ~~provides a~~ left channel signal and said second separated signal of said second input signal
16 comprises a right channel signal.

*GPA
OK
dkshs*

1 45. A method for processing two input audio channel signals in accordance with
2 claim 43, wherein said first of said more than two output audio channel signals comprises
3 a center channel signal.

1 46. A method for processing two input audio channel signal in accordance with
2 claim 43, further comprising
3 differentially combining said second separated signal of said first input signal with
4 said second separated signal of said second input signal to form a fourth of said more than

5 two output audio channel signals; and
6 differentially combining said second separated signal of said second input signal
7 with said second separated signal of said first input signal to form a fifth of said more than
8 two output audio channel signals.

1 47 An audio signal processing apparatus for processing two audio channel signals
2 to provide more than two output audio channel signals comprising,

3 a first separator, for separating a first of said two audio channel signals into a first
4 separated signal characterized by a spectral pattern characteristic of speech and a second
5 separated signal comprising a first of said more than two output audio channel signals;

6 a second separator, for separating a second of said two audio channel signals into a
7 first separated signal characterized by a spectral pattern characteristic of speech, and a
8 second separated signal comprising a second of said more than two output audio channel
9 signals; and

10 a first combiner, for combining said first separated signal of said first audio channel
11 signal and said first separated signal of said second audio channel signal to provide a third
12 of said more than two output audio channel signals.

1 48. An audio signal processing apparatus in accordance with claim 47, further
2 comprising

3 a second combiner for differentially combining said first output audio channel
4 signal with said second output channel signal to provide a fourth of said more than two
5 output audio channels; and

6 a third combiner for differentially combining said second output audio channel
7 signal with said first output audio channel to provide a fifth of said more than two output
8 audio channels.