Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

-1400.000 --1600.000 --1800.000 --2000.000 -

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

-2200.000

-2400.000

Luminositeten øker med en faktor 3.00e+08.

ò

100

200

300

400

Tidspunkt for observasjon (timer)

500

600

700

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) massen til stjerna er 0.2 solmasser og den fusjonerer hydrogen i kjernen

STJERNE B) stjerna fusjonerer helium i kjernen

STJERNE C) stjerna er bare noen hundretusen år gammel men skal allerede snart begynne sin første heliumfusjon

STJERNE D) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 4.443e+06 kg/m3̂ og temperatur 25 millioner K.

Kjernen i stjerne B har massetet
thet 6.349e+06 kg/m3̂ og temperatur 29 millioner K.

Kjernen i stjerne C har massetet
thet 7.895e+06 kg/m3̂ og temperatur 16 millioner K.

Kjernen i stjerne D har massetet
thet 1.887e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne E har massetet
thet $4.244\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 29 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.242e+05 kg/m3̂ og temperatur 35.92 millioner K.

Kjernen i stjerne B har massetet
thet 1.888e+05 kg/m3̂ og temperatur 17.18 millioner K.

Kjernen i stjerne C har massetet
thet 2.304e+05 kg/m3̂ og temperatur 29.81

millioner K.

Kjernen i stjerne D har massetet
thet 1.516e+05 kg/m3̂ og temperatur 21.07 millioner K.

Kjernen i stjerne E har massetet
thet 2.640e+05 kg/m3̂ og temperatur 19.46 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

Observasjon er gjort 112.90 dager etter første observasjon.

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 169.35 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.2897

0.2907

0.2917

0.2927

0.2937

0.2947

0.2957

0.2967

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_4_.png$

0.2915

0.2925

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 225.80 dager etter første observasjon. 0.93 0.88 Normalisert fluks 0.78 0.73 0.68 | 0.2905

0.2935

0.2945

Bølgelengde (nm) minus 656nm

0.2965

0.2955

0.2975

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.63 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.34220 km/t.

Filen 3E.txt

Tog1 veier 79400.00000 kg og tog2 veier 68100.00000 kg.

Filen 4A.png

6.10 6.00 5.90 Tilsynelatende størrelsklasse mv 5.80 5.70 5.60 5.50 5.40 5.30 ó 25 50 75 100 125 150 Observasjonstid (dager)

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 460 km/s.

Filen 4E.txt

Massen til gassklumpene er 5000000.00 kg.

Hastigheten til G1 i x-retning er 49200.00 km/s.

Hastigheten til G2 i x-retning er 56100.00 km/s.

Filen 4G.txt

Massen til stjerna er 18.15 solmasser og radien er 1.10 solradier.