344.063/163 KV Special Topic: Natural Language Processing with Deep Learning N-gram Representations with Convolutional Neural Networks

Navid Rekab-Saz

navid.rekabsaz@jku.at

Institute of Computational Perception

Agenda

- N-Gram Embeddings with CNN
- CNN in practice
 - Document classification
 - From characters to word embedding
 - CNN in information retrieval models

Agenda

N-Gram Embeddings with CNN

- CNN in practice
 - Document classification
 - From characters to word embedding
 - CNN in information retrieval models

 Pooling: element-wise operation on input vectors resulting to an output vector

- Pooling: element-wise operation on input vectors resulting to an output vector
- MaxPool: element-wise maximum of inputs

- Pooling: element-wise operation on input vectors resulting to an output vector
- MaxPool: element-wise maximum of inputs
- AvgPool: element-wise average of inputs

Sentence embedding – RNN

Sentence embedding – RNN

Sentence embedding - RNN

Sentence embedding – attention networks

N-gram embeddings

N-gram embeddings

Convolutional Neural Networks for NLP

- In many NLP models, we can benefit from the vectors which correspond to every sequence of input with a certain length
 - Like bi-gram, tri-gram, 4-gram embeddings

This lecture

- First part: How to create n-gram embeddings using Convolutional Neural Nets (CNNs)
- Second part: How to use these embeddings in different NLP models

CNNs

- CNNs are widely used to extract features from images
 - CNNs capture position-invariant patterns from the input data, where ...
 - the patterns are captured by a set of kernels
- Kernel (or filter)
 - A kernel is a set of parameters, ...
 - applied to every sequence of input values of a certain length ...
 - to create the output vector in respect to that sequence

Example: 2d Image data with Conv2d

Computing convolution

1×1	0×0	8×0	0	1
4×0	2×1	5×1	1	0
3×1	2×1	0×0	0	2
9	3	6	1	4
2	3	4	1	3

$$1 \times 1 + 0 \times 0 + 8 \times 0 + 4 \times 0 + 2 \times 1$$

+ $5 \times 1 + 3 \times 1 + 2 \times 1 + 0 \times 0 = 13$

Output (convolved feature)

```
13 ··· ··· ... ... ...
```


$$\frac{\text{Kernel}}{k = 3 \times 3}$$

Computing convolution

Output channel

$$|C_{out}| = 1$$

```
13 ... ...
```


 $+5 \times 1 + 3 \times 1 + 2 \times 1 + 0 \times 0 = 13$

 $0 \times 1 + 8 \times 0 + 0 \times 0 + 2 \times 0 + 5 \times 1$ $+1 \times 1 + 2 \times 1 + 0 \times 1 + 0 \times 0 = 8$

Computing convolution

$$\frac{\text{Output channel}}{|C_{out}|} = 1$$

```
13
                • • •
```


Computing convolution

 $+1 \times 1 + 2 \times 1 + 0 \times 1 + 0 \times 0 = 8$

```
1\times0 0
2×1
       5×0
2\times0
       0\times1
               0×1
3\times1
       6×1
               1×0
                       3
```

 $2 \times 1 + 5 \times 0 + 1 \times 0 + 2 \times 0 + 0 \times 1$ $+0 \times 1 + 3 \times 1 + 6 \times 1 + 1 \times 0 = 11$

Output channel $|C_{out}| = 1$

```
13
                    • • •
                    • • •
```

Calculate other values!

Input		anne <i>C_{in}</i>		-	RG	<u>(B)</u>		<u>erne</u> = 3>	_	<u>C</u>	<u>ompu</u>	ting	g con	<u>/olu</u>	<u>tion</u>		Outp C	out cl	
$C_{in}^{(1)}$	1 4 3 9 2	0 2 2 3 3	8 5 0 6 4	0 1 0 1 1	1 0 2 4 3		1 0 1	0 1 1	0 1 0	1×1 4×0 3×1 9 2	2×	1	8×0 5×1 0×0 6 4	0 1 0 1	1 0 2 4 3				
$C_{in}^{(2)}$	1 3 5 0	7 1 0 2 0	4 3 9 6 2	6 2 5 4 3	0 1 4 8 2		0 0 1	0 0 0	0 0 0	1×0 3×0 5×1 0	1×	0	4×0 3×0 9×0 6 2	2	0 1 4 8 2	$C_{out}^{(1)}$	28 	•••	
$C_{in}^{(3)}$	3 4 2 6 4	1 2 1 2 1	0 2 0 0	0 0 0 2 3	6 7 1 2 6		0 1 1	1 0 1	1 1 0	3×0 4×1 2×1 6 4	2× 1× 2 1	0	2×1 0×0 0	0 0 0 2 3	6 7 1 2 6				
									-	$0 \times 0 + 8 \times 0$ $7 \times 0 + 4 \times$							-		

 $+ (3\times0 + 1\times1 + 0\times1 + 4\times1 + 2\times0 + 2\times1 + 2\times1 + 1\times1 + 0\times0)$ = 28

Parameters are shown in red

$$\frac{\text{Input channels}}{|C_{in}| = 4}$$

$$\frac{\text{Kernel}}{k = 3}$$

Computing convolution

$$\frac{\text{Output channel}}{|C_{out}| = 1}$$

 $\mathbf{w}_{i}^{(j)}$

kernel weights for jth input channel and ith output channel

 $\frac{\text{Input channels}}{|C_{in}| = 4}$

 $\frac{\text{Kernel}}{k = 3}$

w_i
kernel weights for
jth input channel and
ith output channel

Computing convolution

1×1	0×0	8×0 0	1
1×0	7×0	4×0 6	0
[3×0	1×1	0×1 0	6
4×1	2×0	1×1 0	2

 $(1\times1 + 0\times0 + 8\times0) + (1\times0 + 7\times0 + 4\times0) + (3\times0 + 1\times1 + 0\times1) + (4\times1 + 2\times0 + 1\times1) = 7$

$$\frac{\text{Output channel}}{|C_{out}| = 1}$$

 $\frac{\text{Input channels}}{|C_{in}| = 4}$

 $\frac{\text{Kernel}}{k = 3}$

w_i^(j)
kernel weights for
jth input channel and
ith output channel

Computing convolution

1×1	0×0	8×0 0	1
1×0	7×0	4×0 6	0
3×0	1×1	0×1 0	6
4×1	2×0	1×1 0	2

 $(1\times1 + 0\times0 + 8\times0) + (1\times0 + 7\times0 + 4\times0) + (3\times0 + 1\times1 + 0\times1) + (4\times1 + 2\times0 + 1\times1) = 7$

1	0×1	8×0	0×0 1
1	7×0	4×0	6×0 0
3	1×0	0×1	0×1 6
4	2×1	1×0	0×1 2

 $(0 \times 1 + 8 \times 0 + 0 \times 0) + (7 \times 0 + 4 \times 0 + 6 \times 0) + (1 \times 0 + 0 \times 1 + 0 \times 1) + (2 \times 1 + 1 \times 0 + 0 \times 1) = 2$

$\frac{\text{Output channel}}{|C_{out}| = 1}$

$$C_{out}^{(1)}$$
 $\frac{7}{2}$ \cdots output sequence length = 3

 $\frac{\text{Input channels}}{|C_{in}| = 4}$

 $\frac{\text{Kernel}}{k = 3}$

w_i(j)
kernel weights for
jth input channel and
ith output channel

Computing convolution

1×1	0×0	8×0 0	1
1×0	7×0	4×0 6	0
[3×0	1×1	0×1 0	6
4×1	2×0	1×1 0	2

 $(1\times1 + 0\times0 + 8\times0) + (1\times0 + 7\times0 + 4\times0) + (3\times0 + 1\times1 + 0\times1) + (4\times1 + 2\times0 + 1\times1) = 7$

1	0×1	8×0	0×0 1
1	7×0	4×0	6×0 0
3	1×0	0×1	0×1 6
4	2×1	1×0	0×1 2

 $(0 \times 1 + 8 \times 0 + 0 \times 0) + (7 \times 0 + 4 \times 0 + 6 \times 0) + (1 \times 0 + 0 \times 1 + 0 \times 1) + (2 \times 1 + 1 \times 0 + 0 \times 1) = 2$

 $(8\times1 + 0\times0 + 1\times0) + (4\times0 + 6\times0 + 0\times0) + (0\times0 + 0\times1 + 6\times1) + (1\times1 + 0\times0 + 2\times1) = 17$

 $\frac{\text{Output channel}}{|C_{out}| = 1}$

 $C_{out}^{(1)}$ 7 2 17

output sequence length = 3

1-dimensional CNN applied to word embeddings

$\frac{\text{Input channels}}{|C_{in}| = 4}$

 $\frac{\text{Kernel}}{k = 3}$

Computing convolution

 $\frac{\text{Output channel}}{|C_{out}|} = 1$

Number of input channels $|C_{in}|$ = dimension of word embedding.

Conv1d sees every dimension as a channel

W_i
kernel weights for
ith output channel

Number of output channels $|C_{out}|$ = dimension of n-gram embeddings

 W_1

$C_{in}^{(4)}$	1	0	8	0	1		
$C_{in}^{(3)}$	1	7	4	6	0		
$C_{in}^{(2)}$	3	1	0	0	6		
$C_{in}^{(1)}$	4	2	1	0	2		
$e^{(1)}e^{(2)}e^{(3)}e^{(4)}e^{(5)}$							
$\chi^{(1)}\chi^{(2)}\chi^{(3)}\chi^{(4)}\chi^{(5)}$							

1	0×1 8×0 0×0	1
1	7×0 4×0 6×0	0
3	1×0 0×1 0×1	6
4	2×1 1×0 0×1	2

N-gram embeddings

1-dimensional CNN in NLP

$$\frac{\text{Input channels}}{|C_{in}| = 4}$$

$\frac{\text{Kernels}}{k=3}$

Output channels $|C_{out}| = 2$

 \boldsymbol{W}_{i} : kernel weights for ith output channel

N-gram embeddings

Other notions

Padding:

- adds zero vectors to the beginning and end of the sequence

Stride:

- The length of the steps over the sequence on which the convolutions are applied
- Default is 1

More notions with graphic:

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

N-gram embeddings

N-gram embeddings

1-dimensional CNN in NLP

 $\rho(1) \rho(2) \rho(3) \rho(4) \rho(5)$

$$\frac{\text{Kernels}}{(k=3)}$$

Output channels $|C_{out}| = 2$

Informal formulation of the calculation in Conv1D:

CNN – summary

- A model to capture patterns in local proximities, learnt through many (linear) kernels
 - Output embeddings are position-invariant
- NLP mostly uses Conv1D
 - in_channels is the dimension of input embeddings
 - out_channels is the dimension of output embeddings
 - kernel_size is the length of n-gram

CONV1D

CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE]

Agenda

- N-Gram Embeddings with CNN
- CNN in practice
 - Document classification
 - From characters to word embedding
 - CNN in information retrieval models

Document classification

Document classification with CNNs

- 1. Create unigram, bigram, trigram, etc. embeddings
- Apply pooling to merge embeddings of each n-gram over whole the sequence, resulting in several n-gram features
- 3. Concatenate n-gram features as the final document feature (document embedding)

Document classification

- Unigram embeddings (k = 1)? ... can't we just use the original word embeddings?
 - Unigram CNN adds an extra neural network layer with very few additional parameters
 - CNN with k=1 applies the same parameters to all word embeddings (position invariant)
 - Unlike fully connected a feed forward layer which is position variant and adds a lot more parameters

Composing word embeddings from character embeddings

- Instead of predefined word vectors (static word embeddings), compose the embedding of a word from the embeddings of its characters
 - Define one vector for every character
 - The embedding matrix will be much smaller in comparison with the ones of word embeddings
 - Use CNNs to create a word embedding from its character embeddings
 - In the same way that we created a document embedding from word embeddings
 - Each CNN results in a character N-gram embedding

Word embeddings from character embeddings

Task: Language modeling

Figure 2: Plot of character n-gram representations via PCA for English. Colors correspond to: prefixes (red), suffixes (blue), hyphenated (orange), and all others (grey). Prefixes refer to character n-grams which start with the start-of-word character. Suffixes likewise refer to character n-grams which end with the end-of-word character.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. (2016, March). Character-aware neural language models. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 30, No. 1).

Word embeddings from character embeddings Task: part-of-speech tagging

Dos Santos, C., & Zadrozny, B. (2014, June). Learning character-level representations for part-of-speech tagging. In *International Conference on Machine Learning* (pp. 1818-1826). PMLR.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. (2016, March). Character-aware neural language models. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 30, No. 1).

CNN word embeddings from character embeddings

Pros:

- Overall, less parameters in comparison with static word embeddings
- This method resolves the difficulties of handling out-of-vocabularies (OOV)
- Semantic and syntactic regularities are transferred across words, which can benefit some words by providing better generalization

Cons:

- Achieving word embeddings require some computation (feedforward through the CNNs)
- Since every word is composed solely from character embeddings, the quality of some word embeddings might not be as good as static word embeddings

A neural information retrieval model – recap

For details look at Natural Language Processing course - Lecture 6: Information Retrieval with Neural Networks: https://www.jku.at/en/institute-of-computational-perception/teaching/alle-lehrveranstaltungen/natural-language-processing/

Reference: Xiong, C., Dai, Z., Callan, J., Liu, Z., & Power, R. (2017). End-to-end neural ad-hoc ranking with kernel pooling. In *Proceedings of the 40th International ACM SIGIR conference on research and development in information retrieval*

The same model enhanced with n-gram embeddings

Dai, Z., Xiong, C., Callan, J., & Liu, Z. (2018). Convolutional neural networks for soft-matching n-grams in ad-hoc search. In *Proceedings of the eleventh ACM international conference on web search and data mining*