Computabilità e Algoritmi - 21 Marzo 2014

Soluzioni Formali

Esercizio 1

Problema: Enunciare e dimostrare il teorema di Rice.

Soluzione:

Enunciato del Teorema di Rice: Sia $A \subseteq \mathbb{N}$ un insieme saturato tale che $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A non è ricorsivo.

Definizione: Un insieme $A \subseteq \mathbb{N}$ è saturato se per ogni $x, y \in \mathbb{N}$: se $x \in A$ e $\phi_x = \phi_y$, allora $y \in A$.

Dimostrazione: [La dimostrazione è identica a quella dell'Esercizio 1 dell'esame precedente]

□

Esercizio 2

Problema: Sia $A \subseteq \mathbb{N}$ un insieme e sia $f : \mathbb{N} \to \mathbb{N}$ una funzione calcolabile. Dimostrare che se A è r.e. allora $f(A) = \{y \in \mathbb{N} \mid \exists x \in A. \ y = f(x)\}$ è r.e. Vale anche il contrario?

Soluzione:

Parte 1: Se A è r.e., allora f(A) è r.e.

Poiché A è r.e., esiste una funzione calcolabile q tale che A = dom(q).

Definiamo la funzione h: $\mathbb{N} \to \mathbb{N}$ come:

```
h(z) = f(g(z))
```

h è calcolabile perché è composizione di funzioni calcolabili.

Ora osserviamo che:

```
f(A) = \{f(x) : x \in A\} = \{f(x) : x \in dom(g)\} = \{h(z) : z \in dom(g)\} = cod(h)
```

dove $cod(h) = \{h(z) : z \in dom(h)\}\$ è l'insieme dei valori di output di h.

Per il Teorema di Proiezione, cod(h) è r.e., quindi f(A) è r.e. □

Parte 2: Il contrario non vale

Controesempio: Sia f(x) = 0 per ogni $x \in \mathbb{N}$ (funzione costante calcolabile). Sia $A = \overline{K}$ (complemento dell'insieme di arresto).

Allora $f(A) = f(K) = \{0\}$, che è ovviamente r.e. (anzi, ricorsivo).

Tuttavia, $A = \bar{K}$ non è r.e.

Esercizio 3

Problema: Sia $X \subseteq \mathbb{N}$ finito, $X \neq \emptyset$ e si definisca $A_x = \{x \in \mathbb{N} : W_x = E_x \cup X\}$. Studiare la ricorsività di A_x .

Soluzione:

 A_x è saturato: Se $x \in A_x$ e $\phi_x = \phi_y$, allora $W_x = W_y$ e $E_x = E_y$, quindi $W_y = E_y \cup X$, cioè $y \in A_x$.

 $A_x \neq \emptyset$: Costruiamo esplicitamente un elemento di A_x . Poiché X è finito, possiamo costruire un programma che:

- 1. Su input y, calcola una funzione che ha codominio esattamente X
- 2. Ha dominio esattamente X

Sia e un indice per la funzione identità ristretta a X, cioè:

```
\phi_e(y) = \{ y \text{ se } y \in X \}
\{ \uparrow \text{ altrimenti} \}
```

Allora $W_e = X e E_e = X$, quindi $W_e = E_e \cup X = X \cup X = X$, cioè $e \in A_x$.

 $\mathbf{A_x} \neq \mathbb{N}$: Sia $\mathbf{e_0}$ un indice per la funzione totalmente indefinita. Allora $\mathbf{W_{e0}} = \varnothing$ e $\mathbf{E_{e0}} = \varnothing$. Poiché $\mathbf{X} \neq \varnothing$, abbiamo $\mathbf{W_{e0}} = \varnothing \neq \mathbf{X} = \varnothing \cup \mathbf{X} = \mathbf{E_{e0}} \cup \mathbf{X}$, quindi $\mathbf{e_0} \notin \mathbf{A_x}$.

Conclusione: Per il Teorema di Rice, A_x non è ricorsivo.

 A_x non è r.e.: Applicando il Teorema di Rice-Shapiro. Consideriamo la funzione totalmente indefinita $\emptyset \notin A_x$, ma ogni sua estensione finita che include elementi di X sarà in A_x . Questo viola le condizioni di Rice-Shapiro per la r.e.

Ā_x non è r.e.: Similmente, considerando funzioni che soddisfano parzialmente la condizione ma non completamente. □

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \exists k \in \mathbb{N}. k \cdot x \in W_x\}.$

Soluzione:

B è ricorsivamente enumerabile:

```
sc_{\beta}(x) = 1(\mu t. \exists k \le t. S(x, k \cdot x, t))
```

Questa è calcolabile: per ogni x, enumeriamo W_x e verifichiamo se esiste qualche multiplo di x che appare nell'enumerazione.

B non è ricorsivo: Dimostriamo che $K \leq_m B$.

Definiamo g(x,y) tramite:

```
g(x,y) = \{ y \quad \text{se } x \in K 
\{ \uparrow \quad \text{altrimenti} \}
```

Per il teorema S-m-n, esiste s calcolabile tale che $\varphi_{s(x)}(y) = g(x,y)$.

Verifichiamo la riduzione:

- $x \in K \Longrightarrow W_{s(x)} = \mathbb{N} \Longrightarrow s(x) \in W_{s(x)}$ (prendendo k=1) $\Longrightarrow s(x) \in B$
- $x \notin K \Longrightarrow W_{s(x)} = \emptyset \Longrightarrow nessun multiplo di s(x) è in <math>W_{s(x)} \Longrightarrow s(x) \notin B$

Quindi K \leq_m B, e poiché K non è ricorsivo. B non è ricorsivo.

B non è ricorsivamente enumerabile: Poiché B è r.e. ma non ricorsivo, per il teorema fondamentale, B non è r.e. □

Esercizio 5

Problema: Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che l'insieme B dell'esercizio precedente non è saturato.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione totale calcolabile $f : \mathbb{N} \to \mathbb{N}$, esiste $e \in \mathbb{N}$ tale che $\phi_e = \phi f(e)$.

Dimostrazione che B non è saturato:

Utilizziamo il secondo teorema di ricorsione con una funzione opportuna.

Definiamo f(x) come un indice per la funzione che:

```
\phi f(x)(y) = \{ x \text{ se } y = 2x \}
\{ \uparrow \text{ altrimenti} \}
```

Per il secondo teorema di ricorsione, esiste e tale che $\phi_e = \phi f(e)$.

Questo significa:

$$\phi_e(y) = \{ e \quad \text{se } y = 2e \}$$

Quindi $W_e = \{e\} e \ 2e \in W_e$.

Poiché $2e = 2 \cdot e \ e \ 2e \in W_{e}$, abbiamo $e \in B$.

Ora consideriamo φf(e). Abbiamo:

```
\phi f(e)(y) = \{ e \quad se \ y = 2e \}
\{ \uparrow \quad altrimenti \}
```

Quindi Wf(e) = $\{e\}$, e per essere in B dovremmo avere $k \cdot f(e) \in Wf(e) = \{e\}$ per qualche k.

Questo significa $k \cdot f(e) = e$, cioè f(e) = e/k per qualche $k \in \mathbb{N}$.

Ma possiamo scegliere f in modo che f(e) non sia un divisore di e (ad esempio, f(e) = e+1).

In questo caso, f(e) \notin B mentre e \in B, ma ϕ_e = ϕ f(e).

Questo viola la proprietà di saturazione, quindi B non è saturato.

□