Advanced Linear Programming Homework 4

Michael Nelson

Problem 1

Problem 1.a

The feasible region is shaded in grey below (note that this region extends infinitely in the northeast direction).

where A = (1, 15/2) B = (0, 5), C = (0, 3), D = (2, 1), E = (4, 0), and F = (6, 0).

Problem 1.b

We first calculate

$$f_1(A) = -5/2$$
 $f_2(A) = 31$
 $f_1(B) = -5$ $f_2(B) = 20$
 $f_1(C) = -3$ $f_2(C) = 12$
 $f_1(D) = 9$ $f_2(D) = 6$
 $f_1(E) = 20$ $f_2(E) = 4$
 $f_1(F) = 30$ $f_2(F) = 6$

Next we plot these points shade the outcome set in gray below:

Note that the outcome set extends infinitely in the northeast direction again.

Problem 1.c

The Pareto points are f(B), f(C), f(D), and f(E). We shade the Pareto set in red below:

Problem 1.d

The efficient extreme points are *B*, *C*, *D*, and *E*. We shade the efficient set in red below:

Problem 2

Problem 2.a

The Grand objective function for the weight w is

$$z_w = f_1 + wf_2$$

= $5x_1 - x_2 + w(x_1 + 4x_2)$
= $(5 + w)x_1 + (4w - 1)x_2$.

Then the weighted-sum problem with respect to weight w is

$$\begin{aligned} & \text{minimize} z_w = (5+w)x_1 + (4w-1)x_2 \\ & \text{subject to } x \in X \end{aligned}$$

Problem 2.b

When w = 1/3, we have $z_{1/3} = (16/3)x_1 + (1/3)x_2$. Below we draw the feasible region X together with contours of the objective function $z_{1/3}$ (in the image below, we drew $\{z_{1/3} = 1\}$, $\{z_{1/3} = 6\}$, $\{z_{1/3} = 1\}$, $\{z_{1/3} = -9\}$, and $\{z_{1/3} = -4\}$).

Visually we see that C = (0,3) is the optimal solution for the weighted-sum problem.

Problem 2.c

Yes because the gradient of $z_{1/3}$ is [16/3, 1/3] which points in feasible direction.

Problem 2.d

The gradient of $z_w = f_1 + wf_2$ is $\nabla z_w = [1, w]$. An optimal solution to P(w) is efficient for the BOLP if and only if the gradient of z_w points in a feasible direction, i.e. if and only if $0 \le w \le 25/2$.

Problem 3

Problem 3.a

The epsilon-constraint problem $P(\varepsilon_1)$ is given by

minimize
$$f_2(x) = x_1 + 4x_2$$

subject to $x \in X$
 $f_1(x) \le \varepsilon_1$
 $\varepsilon_1 \ge 0$

Problem 3.b

Now suppose $\varepsilon_1 = 0$. Thus the epsilon-constraint problem has the form

minimize
$$f_2(x) = x_1 + 4x_2$$

subject to $-5x_1 + 2x_2 \le 10$
 $x_1 + x_2 \ge 3$
 $x_1 + 2x_2 \ge 4$
 $5x_1 - x_2 \le 0$
 $x_1, x_2 \ge 0$

The feasible region is shaded in grey below and we also plot the contours $\{f_2 = c\}$ for various c as red-dashed lines below:

where G = (2,10) and H = (1/2,5/2). From this, we see that the optimal solution is H with objective value $f_2(H) = 21/2$.

Problem 3.c

Yes because the point H lies on the segment between adjacent extreme efficient points C and D.

Problem 3.d

First we determine what ε needs to be in order for the line $5x_1 - x_2 = \varepsilon$ intersect E: since E = (4,0), we see that $\varepsilon = -20$. The feasible region is shaded in gray below:

Clearly E is the optimal solution which its also an efficient solution for the original BOLP. Furthermore, it is easy to see that for any $\varepsilon < -20$, the point E is still the optimal solution. Next let's determine what ε needs to be in order for the line $5x_1 - x_2 = \varepsilon$ intersect B: since B = (0,6), we see that $\varepsilon = -6$. It is easy to see that if $\varepsilon > -6$, then the feasible region is empty and if $\varepsilon \le 6$, then the optimal solution is always an efficient one too.

Problem 3.e

We plot the feasible region X together with the contours $\{f_1 = \varepsilon_1\}$ and $\{f_2 = \varepsilon_2\}$ for various ε_1 and ε_2 :

Here, the yellow-dashed lines are the contours $\{f_1 = \varepsilon_1\}$ and the orange-dashed lines are the contours $\{f_2 = \varepsilon_2\}$.

Problem 4

- Problem 4.a
- Problem 4.b
- Problem 4.c
- Problem 4.d
- Problem 4.e
- Problem 5
- Problem 5.a
- Problem 5.b
- Problem 5.b.i
- Problem 5.b.ii