EI M5

2010-11

MATHEMATIK

u(v(x))

Stunde vom 08.10.2010

In dieser Stunde haben wir uns wieder mit der Kettenregel beschäftigt. Und wir haben die Produktregel kennengelernt, die wie die Kettenregel dabei hilft, kompliziertere Funktionen abzuleiten.

Tafelbild

Wir haben hier neben der Funktion $f(x)=\sin(x^2)$ noch einige weitere Funktionen mit der Kettenregel abgeleitet, insbesondere haben wir die Hausaufgaben besprochen. Für $f(x)=\sin(x^2)$ muss man $u(v)=\sin(v)$ setzen und $v(x)=x^2$. Dann kann man $u'(v)=\cos(v)$ und v'(x)=2x bestimmen und in die Formel der Kettenregel einsetzen: $f(x)=\cos(x^2)2x=2x\cos(x^2)$.

Die Funktion $f(x)=x\sin(x)$ wiederum kann mit der Kettenregel NICHT abgeleitet werden. Hier sind zwei gleichberechtigte Funktionen x und $\sin(x)$ miteinander multipliziert. Auch hier gibt es eine Regel, die Produktregel. u(x)=x, $v(x)=\sin(x)$ und damit u'(x)=1 bzw. $v'(x)=\cos(x)$. Die Regel besagt, dass f'=u'v+v'u. Das wäre hier: $f'(x)=1\sin(x)+\cos(x)x=\sin(x)+x\cos(x)$.