COMPLÉMENT D'ANALYSE

Impact du sous-variant BA.2 et du relâchement des mesures de contrôle en France métropolitaine

10 mars 2022

Paolo Bosetti^{1*}, Cécile Tran Kiem^{1*}, Alessio Andronico¹, Juliette Paireau^{1,2}, Consortium Emergen\$, Simon Cauchemez¹

¹ Unité de Modélisation Mathématique des Maladies Infectieuses, Institut Pasteur, Université de Paris, CNRS UMR2000; ² Santé Publique France

\$: les membres du consortium Emergen sont listés en annexe

Correspondance: simon.cauchemez@pasteur.fr

*: Contributions égales

AVERTISSEMENTS: Ces scénarios sont faits sur la base de données incomplètes et d'hypothèses incertaines. La propagation du virus SARS-CoV-2 est difficile à anticiper; et la dynamique de l'épidémie peut changer rapidement. Les trajectoires décrites dépendent des hypothèses faites; si les hypothèses ne se réalisent pas, la dynamique observée pourra être différente des projections.

Résumé

- Contexte: Dans un rapport daté du 21 février 2022, nous avions utilisé un modèle mathématique pour anticiper l'impact du sous-variant BA.2 et d'un relâchement des mesures en France métropolitaine. Notre conclusion était que le sous-variant BA.2 ne devrait pas à lui seul conduire à un rebond important de l'épidémie; mais qu'un rebond était possible si les Français relâchaient leurs comportements. Cependant, si l'augmentation des taux de transmission en mars ne dépassait pas 50% des valeurs de janvier-février, ce rebond devrait être d'ampleur limitée.
- **Objectif:** Nous comparons ces projections aux données récentes décrivant la dynamique des cas et de la proportion de BA.2, mettons à jour notre modèle et présentons un éventail plus large de scénarios de relâchement des mesures.

• Résultats :

- Notre modèle a correctement prédit la dynamique de la proportion de BA.2 parmi les cas Omicron: le modèle anticipait que 29% et 45% des cas Omicron seraient BA.2 les 14 et 21 février; les données Flash disponibles le 9 mars indiquent 25% et 40% de cas BA.2 parmi les cas Omicron à ces dates.
- Dans nos modélisations de février, nous explorions des scénarios dans lesquels les Français augmenteraient leurs contacts à partir du 1er mars, conduisant à un plateau des contaminations début mars. Le plateau des contaminations a été observé légèrement plus tôt, suggérant que ces changements ont eu lieu avant le 1^{er} mars. La courbe des cas est proche des projections obtenues sous l'hypothèse qu'à partir du 22 février, les Français ont augmenté leurs contacts d'environ 40% par rapport aux niveaux de janvier-février. Cette augmentation ramène l'intensité des contacts à un niveau légèrement supérieur à celui mesuré en décembre 2021.

Le relâchement des mesures de contrôle le 14 mars devrait encore pousser à la hausse les taux de transmission. Nous explorons donc des scénarios où, à partir du 14 mars, les taux de transmission deviennent 50%-130% supérieurs aux niveaux de janvier-février. En pratique, les Français pourraient anticiper le relâchement des mesures, avec une augmentation des contacts survenant avant le 14 mars. Nous présentons donc également un scénario où ce changement a lieu le 7 mars. Dans tous les scénarios explorés, le pic des cas reste très inférieur au pic de janvier. Il pourrait dépasser 100 000 cas quotidiens en mars dans les scénarios où les taux de transmission augmentent de façon très importante suite au relâchement des mesures de contrôle.

• Discussion:

- Nous explorons des scénarios où les taux de transmission à partir du 14 mars deviennent 50%-130% supérieurs aux niveaux de janvier-février. Afin de donner un peu de contexte, nous estimons que les taux de contacts en décembre 2021 étaient à peu près 30% supérieurs à ceux de janvier-février 2022; alors que les taux de contacts en novembre 2021 étaient à peu 60-70% supérieurs à ceux de janvier-février 2022.
- Nous faisons l'hypothèse que les personnes infectées par un virus Omicron sont immunisées contre les réinfections Omicron pour la durée des simulations (jusqu'au 1^{er} avril 2022). Par ailleurs, nous ne modélisons pas le déclin progressif de l'immunité, ce qui pourrait rendre nos projections trop optimistes. Nous ne modélisons pas non plus l'impact du climat. Afin d'effectuer des projections à plus long terme, il sera important de prendre en compte le déclin de l'immunité et l'effet du climat sur la dynamique épidémique.
- La structure de notre modèle reste très simple. Nous caractérisons la dynamique des infections et des cas au niveau populationnel, sans chercher à modéliser la dynamique des hospitalisations ou à étudier les dynamiques d'infections dans les différents groupes d'âge. Nous avons une description simple de la susceptibilité qui agrège les contributions de la vaccination et des infections passées.

Méthodes

Les détails de notre modèle et de ses hypothèses sont présentés <u>dans notre rapport daté du 21</u> février 2022.

Résultats

Comparaison des projections du 21 février et des données récentes

La Figure 1 compare la dynamique que notre modèle anticipait pour la proportion de cas BA.2 aux données des enquêtes Flash. Notre modèle a correctement prédit la dynamique de la proportion de BA.2 parmi les cas Omicron: le modèle anticipait que 29% et 45% des cas Omicron seraient BA.2 les 14 et 21 février; les données Flash indiquent 25% et 40% de cas BA.2 à ces dates.

Figure 1: Comparaison de la proportion de cas BA.2 parmi les cas Omicron (en %) prédite par notre modèle aux données Flash récentes. Les points en orange correspondent aux données utilisées lors de la calibration du modèle. Les points en bleu correspondent aux données rapportées dans la base EMERGEN du 9 mars 2022 (le point du 28 février n'y est pas encore consolidé).

Dans nos modélisations de février, nous faisions l'hypothèse que les Français augmenteraient leurs contacts à partir du 1er mars, conduisant à un plateau des contaminations début mars. Le

plateau des contaminations a été observé légèrement plus tôt, suggérant que ces changements ont eu lieu avant le 1^{er} mars (Figure 2A). La courbe des cas est proche des projections obtenues sous l'hypothèse qu'à partir du 22 février, les Français ont augmenté leurs contacts d'environ 40% par rapport aux niveaux de janvier-février (Figure 2B). Cette augmentation ramène l'intensité des contacts à un niveau légèrement supérieur à celui mesuré en décembre 2021 (nous estimons que les taux de transmission en décembre 2021 étaient à peu près 30% supérieurs aux taux de transmission de janvier-février).

Figure 2: Comparaison de la dynamique attendue des cas sous l'hypothèse que les Français augmentent leurs contacts de 0-50% le 1er mars (panneau A; il s'agit de l'hypothèse faite dans notre rapport du 21 février) ou le 22 février (panneau B).

Scénarios de relâchement des mesures de contrôle

Nous nous concentrons désormais sur le scénario offrant la meilleure adéquation aux données où l'on fait l'hypothèse que les Français ont augmenté leurs contacts de 40% le 22 février.

Le relâchement des mesures de contrôle le 14 mars devrait encore pousser à la hausse les taux de transmission. Nous explorons donc des scénarios où, à partir du 14 mars, les taux de transmission sont 50%, 70%, 100% ou 130% supérieurs aux niveaux de janvier-février (Figure 3A). Afin de donner un peu de contexte, nous estimons que les taux de contacts en décembre

2021 étaient à peu près 30% supérieurs à ceux de janvier-février 2022 alors que les taux de contacts en novembre 2021 étaient à peu 60-70% supérieurs à ceux de janvier-février 2022.

En pratique, les Français pourraient anticiper le relâchement des mesures, avec une augmentation des contacts survenant avant le 14 mars. Nous présentons donc également un scénario où ce changement a lieu le 7 mars (Figure 3B).

Dans tous les scénarios explorés, le pic des cas reste très inférieur au pic de janvier. Il pourrait dépasser 100 000 cas quotidiens en mars dans les scénarios où les taux de transmission augmentent de façon très importante suite au relâchement des mesures de contrôle.

Figure 3 : Projection de la dynamique des cas sous l'hypothèse qu'à partir du 14 mars, les taux de transmission sont 50%, 70%, 100% ou 130% supérieurs aux niveaux de janvier-février (panneau A). Nous présentons également un scénario où ce changement a lieu le 7 mars (panneau B). Nous nous concentrons sur le scénario offrant la meilleure adéquation aux données où l'on fait l'hypothèse que les Français ont augmenté leurs contacts de 40% le 22 février.

Annexe - Consortium Emergen

Le consortium EMERGEN est constitué des membres suivants:

Nom	Prénom	Affiliation 1	Affiliation 2
BAL	Antonin	CNR Virus des infections respiratoires	Hospices Civils de Lyon
DESTRAS	Gregory	CNR Virus des infections respiratoires	Hospices Civils de Lyon
JOSSET	Laurence	CNR Virus des infections respiratoires	Hospices Civils de Lyon
LINA	Bruno	CNR Virus des infections respiratoires	Hospices Civils de Lyon
BEHILLIL	Sylvie	CNR Virus des infections respiratoires	Institut Pasteur
ENOUF	Vincent	CNR Virus des infections respiratoires	Institut Pasteur
VAN DER WERF	Sylvie	CNR Virus des infections respiratoires	Institut Pasteur
COLSON	Philippe	CNR-LE Appui au séquençage du SARS-CoV-2	APHM
FOURNIER	Pierre-Edouard	CNR-LE Appui au séquençage du SARS-CoV-2	APHM
HOUHAMDI	Linda	CNR-LE Appui au séquençage du SARS-CoV-2	АРНМ
LEVASSEUR	Anthony	CNR-LE Appui au séquençage du SARS-CoV-2	АРНМ
FOURATI	Slim	CNR-LE Appui au séquençage du SARS-CoV-2	APHP Henri Mondor
PAWLOTSKY	Jean-Michel	CNR-LE Appui au séquençage du SARS-CoV-2	APHP Henri Mondor
RODRIGUEZ	Christophe	CNR-LE Appui au séquençage du SARS-CoV-2	APHP Henri Mondor
BENQUEY	Thibaut	Plateforme AMI	Alpigene - Synlab
DUCREUX	Stéphanie	Plateforme AMI	Alpigene - Synlab
MARTIN-DUNAV IT	Tanguy	Plateforme AMI	Alpigene - Synlab

CADO	Sylvie	Plateforme AMI	Cerba - Cerballiance
HAIM-BOUKOBZ A	Stéphanie	Plateforme AMI	Cerba - Cerballiance
ROQUEBERT	Bénédicte	Plateforme AMI	Cerba - Cerballiance
VERDURME	Laura	Plateforme AMI	Cerba - Cerballiance
DURET	Thomas	Plateforme AMI	Genbio - Inovie
KEMENY	Stéphane	Plateforme AMI	Genbio - Inovie
KEPPI	Bertrand	Plateforme AMI	Genbio - Inovie
RIVRON	François	Plateforme AMI	Genbio - Inovie
CHILLOU	Christian	Plateforme AMI	Laborizon Centre - Biogroup
HOLSTEIN	Anne	Plateforme AMI	Laborizon Centre - Biogroup
JIMENEZ	Mélanie	Plateforme AMI	Laborizon Centre - Biogroup
CHARPENTIER	Charlotte	Réseau ANRS MIE (AC43)	APHP Bichat-Claude Bernard
DESCAMPS	Diane	Réseau ANRS MIE (AC43)	APHP Bichat-Claude Bernard
BELEC	Laurent	Réseau ANRS MIE (AC43)	APHP HEGP
ROQUE	Anne-Marie	Réseau ANRS MIE (AC43)	APHP Paul Brousse
CALVEZ	Vincent	Réseau ANRS MIE (AC43)	APHP Pitié-Salpêtrière
MORAND-JOUB ERT	Laurence	Réseau ANRS MIE (AC43)	APHP Saint Antoine
DELAUGUERRE	Constance	Réseau ANRS MIE (AC43)	APHP Saint-Louis
VALLEE	Eric	Réseau ANRS MIE (AC43)	CH Simone Veil
POGGI	Cécile	Réseau ANRS MIE (AC43)	CH Toulon
MARQUE-JUILL ET	Stéphanie	Réseau ANRS MIE (AC43)	CH Versailles
CASTELAIN	Sandrine	Réseau ANRS MIE (AC43)	CHU Amiens
LAFON	Marie-Edith	Réseau ANRS MIE (AC43)	CHU Bordeaux
PAYAN	Christopher	Réseau ANRS MIE (AC43)	CHU Brest
VABRET	Astrid	Réseau ANRS MIE (AC43)	CHU Caen
HENQUELL	Cécile	Réseau ANRS MIE (AC43)	CHU Clermont-Ferrand

DE ROUGEMONT	Alexis	Réseau ANRS MIE (AC43)	CHU Dijon
MORAND	Patrice	Réseau ANRS MIE (AC43)	CHU Grenoble
JAFFAR-BANDJ EE	Marie-Christine	Réseau ANRS MIE (AC43)	CHU La Réunion
BOCKET	Laurence	Réseau ANRS MIE (AC43)	CHU Lille
ROGEZ	Sylvie	Réseau ANRS MIE (AC43)	CHU Limoges
DOS SANTOS	Georges	Réseau ANRS MIE (AC43)	CHU Martinique
DELAMARE	Catherine	Réseau ANRS MIE (AC43)	CHU Metz
TUAILLON	Edouard	Réseau ANRS MIE (AC43)	CHU Montpellier
SCHVOERER	Evelyne	Réseau ANRS MIE (AC43)	CHU Nancy
FERRE	Virginie	Réseau ANRS MIE (AC43)	CHU Nantes
GIORDANENGO	Valérie	Réseau ANRS MIE (AC43)	CHU Nice
STEPHAN	Robin	Réseau ANRS MIE (AC43)	CHU Nîmes
LEVEQUE	Nicolas	Réseau ANRS MIE (AC43)	CHU Poitiers
THIBAULT	Vincent	Réseau ANRS MIE (AC43)	CHU Rennes
PLANTIER	Jean-Christophe	Réseau ANRS MIE (AC43)	CHU Rouen
BOURLET	Thomas	Réseau ANRS MIE (AC43)	CHU Saint-Etienne
FAFI-KREMER	Samira	Réseau ANRS MIE (AC43)	CHU Strasbourg
IZOPET	Jacques	Réseau ANRS MIE (AC43)	CHU Toulouse
GAUDY	Catherine	Réseau ANRS MIE (AC43)	CHU Tours
ANDREOLETTI	Laurent	Réseau ANRS MIE (AC43)	Faculté de Medecine URCA / CHU Reims
ROUSSET	Dominique	Réseau ANRS MIE (AC43)	Institut Pasteur Guyane
GORGE	Olivier	Réseau ANRS MIE (AC43)	IRBA
MAVINGUI	Patrick	Réseau ANRS MIE (AC43)	PIMIT-La Réunion
GARCIA	Vincent	Réseau LBM ARS	Alphabio
HALFON	Philippe	Réseau LBM ARS	Alphabio
DUDA	Alain	Réseau LBM ARS	Atoutbio

GERMAIN	Hugo	Réseau LBM ARS	Atoutbio
NEYBECKER	Paul	Réseau LBM ARS	Atoutbio
JACQUES	Alexandra	Réseau LBM ARS	Biogroup
CAPRON	Nicolas	Réseau LBM ARS	Biopath
LEROY	Hugues	Réseau LBM ARS	Biopath
SAGOT	Christophe	Réseau LBM ARS	Biopath
FELICI	Charlotte	Réseau LBM ARS	Espacebio
LEVY	Julien	Réseau LBM ARS	Espacebio
BARQUES	Nicolas	Réseau LBM ARS	Eurofin-Biomnis
JACOMO	Véronique	Réseau LBM ARS	Eurofin-Biomnis
NAUDOT	Xavier	Réseau LBM ARS	Eurofin-Biomnis
SAUDEMONT	Camille	Réseau LBM ARS	Eurofin-Biomnis
VIGNOLA	Alexandre	Réseau LBM ARS	Oriade Noviale
ANTONIEWSKI	Christophe	Institut Français de BioInformatique	
BOURI	Laurent	Institut Français de BioInformatique	
CHARRIERE	Nicole	Institut Français de BioInformatique	
CHIAPELLO	Hélène	Institut Français de BioInformatique	
DENECKER-BE RARDINO	Thomas	Institut Français de BioInformatique	
GERBES	François	Institut Français de BioInformatique	
LAURIOU	Suzanne	Institut Français de BioInformatique	
LE BARS	Arthur	Institut Français de BioInformatique	
LE CORGUILLE	Gildas	Institut Français de BioInformatique	
MALABAT	Christophe	Institut Français de BioInformatique	
MEDIGUE	Claudine	Institut Français de BioInformatique	
MENAGER	Hervé	Institut Français de BioInformatique	
MESSAK	Imane	Institut Français de BioInformatique	
MILANESI	Sylvain	Institut Français de BioInformatique	

NAOUAR	Naïra	Institut Français de BioInformatique	
ROSNET	Thomas	Institut Français de BioInformatique	
SALGADO	David	Institut Français de BioInformatique	
SAND	Olivier	Institut Français de BioInformatique	
SEILER	Julien	Institut Français de BioInformatique	
VAN HELDEN	Jacques	Institut Français de BioInformatique	
AMZERT	Abdelkader	Inserm	ITMO Technologies de la Santé
LAHMANI	Imane	Inserm	ITMO Technologies de la Santé
LETHIMONNIER	Franck	Inserm	ITMO Technologies de la Santé
SAHNOUNE	Samy	Inserm	ITMO Technologies de la Santé
LESAULNIER	Frédérique	Inserm	
DEBARRE	Florence	CNRS	
SIMON-LORIER E	Etienne	Institut Pasteur	
BARRET	Anne-Sophie	Santé publique France	Direction Maladies Infectieuses
BERNARD-STO ECKLIN	Sibylle	Santé publique France	Direction Maladies Infectieuses
CASTRO-ALVAR EZ	Javier	Santé publique France	Direction Maladies Infectieuses
CHE	Didier	Santé publique France	Direction Maladies Infectieuses
DE VALK	Henriette	Santé publique France	Direction Maladies Infectieuses
DJELLOUL	Mehdi	Santé publique France	Direction Maladies Infectieuses
FERI	Adeline	Santé publique France	Direction Maladies Infectieuses
FOURNIER	Lucie	Santé publique France	Direction Maladies Infectieuses
MAISA	Anna	Santé publique France	Direction Maladies Infectieuses
SAUVAGE	Claire	Santé publique France	Direction Maladies Infectieuses
SCHAEFFER	Justine	Santé publique France	Direction Maladies Infectieuses
AHAMADI	Amina	Santé publique France	Direction des Régions
BREMBILLA	Alice	Santé publique France	Direction des Régions

CHENT	Souhaila	Santé publique France	Direction des Régions
GBAGUIDI	Gwladys	Santé publique France	Direction des Régions
HAMIDOUCHE	Mohamed	Santé publique France	Direction des Régions
HUCHET-KERVE LLA	Caroline	Santé publique France	Direction des Régions
LAMY	Anais	Santé publique France	Direction des Régions
MASTROVITO	Brice	Santé publique France	Direction des Régions
MERCIER	Alizé	Santé publique France	Direction des Régions
PICARD	Gwenola	Santé publique France	Direction des Régions
RIONDEL	Adeline	Santé publique France	Direction des Régions
SPACCAFERRI	Guillaume	Santé publique France	Direction des Régions
LE STRAT	Yann	Santé publique France	Direction Appui, Traitement et Analyses de données
SUDOUR	Jeanne	Santé publique France	Direction Appui, Traitement et Analyses de données
ARFAOUI	Adel	Santé publique France	Direction des Systèmes d'Information
LAMPE	Paul-Henri	Santé publique France	Direction des Systèmes d'Information
MALLEJAC	Sophie	Santé publique France	Direction des Systèmes d'Information
HACHIN	Clothilde	Santé publique France	
NARDY	Stéphane	Santé publique France	
COIVOUS	Aude	Santé publique France	Direction Achats et Finances
MEREAU	Anne-Laure	Santé publique France	Direction Achats et Finances
MORIN-LANDAI S	Angélique	Santé publique France	Direction Achats et Finances
ORTIZ	Sonia	Santé publique France	Direction Achats et Finances
COIGNARD	Bruno	Santé publique France	Direction Maladies Infectieuses
BOZORGAN	Anne	Santé publique France	Direction Maladies Infectieuses
YAZDANPANAH	Yazdan	ANRS Maladies Infectieuses Emergentes	

ANRS|Maladies Infectieuses Emergentes RAOUL Hervé

ANRS|Maladies Infectieuses Emergentes BRUGEROLLES Claire

ANRS|Maladies Infectieuses Emergentes MADELAINE Claire

ANRS|Maladies Infectieuses Emergentes BEAUREPERE Romane