Wykład 3 Normalizacja

6. Normalizacja

***** TEMATYKA:

- Cel normalizacji
- Etapy normalizacji
- Związki zależności funkcyjne i niefunkcyjne
- Postacie normalne
- Diagramy zależności
- Akomodacja przekształcanie diagramu zależności w schemat relacyjny

Opis modelu relacyjnego w notacji nawiasowej

- Metoda pozwala w postaci skróconej opisać definicję schematu bazy.
- W opisie najpierw podajemy nazwę relacji (tabeli) a następnie w nawiasie kolejne atrybuty. Jako pierwsze podaje się atrybuty stanowiące klucz główny jednocześnie podkreślając je.

Dla przykładu opisanego wcześniej zapis będzie miał postać:

```
Moduły (NazwaModułu, NrPrac)
Wykładowcy (NrPrac, Pracownik)
Oceny (NazwaModułu, NrStud, TypOceny, Ocena)
Studenci (NrStudenta, Student)
```

6.1. Cel normalizacji

- Normalizacja to proces upraszczania struktury bazy danych w taki sposób, aby osiągnęła ona postać optymalną.
- Normalizacja wykonuje się na etapie projektowania modelu fizycznego danych
- Dzięki normalizacji można uniknąć anomalii błędów lub niespójności w bazie danych (w tym również redundancji).
- 🖊 Można wyróżnić 3 rodzaje anomalii:
 - anomalie przy wstawianiu rekordu
 - dopisanie rekordu powoduje dezaktualizacje innego pala,
 - anomalie przy usuwaniu rekordu
 - usunięcie wiersza powoduje usuniecie większej ilości informacji niż żeśmy zamierzali,
 - anomalie przy modyfikacji rekordu
 - zmiana jednego rekordu powoduje konieczność zmiany zapisów w innych rekordach.

Przykład

Dysponujemy bazą danych z informacjami o studentach, modułach oraz wykładowcach na uniwersytecie

	Moduły					
NazwaModułu	NrPrac	Pracownik	NrStud	Student	Ocena	TypOceny
Systemy relacyjnych baz danych	244	Buczek Jan	34698	Kowalski H.	4.0	zal.
Systemy relacyjnych baz danych	244	Buczek Jan	34698	Kowalski H.	3.5	egz.
Systemy relacyjnych baz danych	244	Buczek Jan	37653	Nowak R.	3.0	zal.
Systemy relacyjnych baz danych	244	Buczek Jan	34610	Lech M.	5.0	zal.
Projektowanie relacyjnych baz danych	244	Buczek Jan	34698	Kowalski H.	3.0	zal.
Projektowanie relacyjnych baz danych	244	Buczek Jan	34698	Kowalski H.	4.0	egz.
Obiektowe bazy danych	445	Kalita Henryk	35785	Woś S.	3.5	egz.
Roproszone bazy danych	247	Wysocki Edward	34789	Janda K.	5.0	zal.

- Co będzie gdy usuniemy studenta Wosia? stracimy informację o Obiektowych bazach danych i wykładowcy Kalicie Henryku anomalia przy usuwaniu
- Co będzie gdy zmienimy wykładowcę Rozproszonych baz danych? musimy zmodyfikować dwa pola: NrPrac oraz Pracownik anomalia przy modyfikacji
- Co będzie gdy wpiszemy nowego studenta na moduł? możliwe to będzie dopiero po uzyskaniu przez niego pierwszego zaliczenia anomalia przy wstawianiu

6.2. Etapy normalizacji

- 1. Zebranie danych
- 2. Przekształcenie do pierwszej postaci normalnej (1PN)
- 3. Przekształcenie do drugiej postaci normalnej (2PN)
- 4. Przekształcenie do trzeciej postaci normalnej (3PN)

Po znormalizowaniu do 3 PN najczęściej tablice są już pozbawione anomalii, jeżeli nie to należy je:

- Przekształcić do postaci normalnej Boyce'a-Codd'a (BCNF)
- * Przekształcić do czwartej postaci normalnej (4PN)
- Przekształcić do piątej postaci normalnej (5PN)

Proces normalizacji jest włożony. To znaczy, że każda wyższa postać normalna jest podzbiorem postaci niższej.

6.2.1 Rozkład relacji (tablic) a normalizacja

Proces przekształcania nieznormalizowanego zbioru danych w pełni znormalizowana bazę danych nosi nazwę dekompozycji odwracalnej (rozkładu odwracalnego)

- Cechy dekompozycji odwracalnej
 - usuwa redundancję z relacji
 - można ją odwrócić przez naturalne złączenie
 - powinna doprowadzić relacje do tzw. postaci normalnej
 - nie powinna powodować utraty zależności istniejących w relacji pierwotnej

6.3. Zależności funkcyjne i niefunkcyjne (wielowartościowe)

- Dwa elementy A i B są w związku zależności (związku determinowania), jeżeli pewne wartości elementu danych B występują zawsze z pewnymi wartościami elementu A.
- Zależność funkcyjna (determinowanie) między elementami danych wskazuje kierunek związku. Jeżeli A determinuje B to związek jest od A do B nie odwrotnie

Element danych B jest funkcyjnie zależny od elementu danych A, jeżeli dla każdej wartości A istnieje jedna jednoznacznie określona wartość B

Element danych B jest niefunkcyjnie zależny od elementy danych A, jeżeli dla każdej wartości elementu danych A istnieje ograniczony zbiór wartości elementu B

- * 1 PN, 2 PN, 3 PN i BCNF dotyczą zależności funkcyjnych
- * 4 PN oraz 5 PN dotyczą zależności niefunkcyjnych

6.3.1. Zależności funkcyjne

- Najważniejszy rodzaj więzów, z jakimi mamy doczynienia w modelu relacyjnym, dotyczy więzów jednoznaczności, które nazywa się również zależnością funkcyjną.
- Nie istnieją metody pozwalające automatycznie określić zależności funkcyjne, aby to uczynić należy dokładnie przeanalizować znaczenie wszystkich atrybutów.

Filmy					
Tytuł	Rok	Długość	Тур	Producent	Gwiazda
Gwiezdne Wojny	1977	124	kolor	Fox	Carrie Fisher
Gwiezdne Wojny	1977	124	kolor	Fox	Mark Hamil
Gwiezdne Wojny	1977	124	kolor	Fox	Harrison Ford
Potężne Kaczory	1991	104	kolor	Disney	Emilio Estavez

W relacji można wyodrębnić zależności:

tytuł, rok \rightarrow długość tytuł, rok \rightarrow typ tytuł, rok \rightarrow producent

Ponieważ wszystkie zależności maja po lewej stronie te same atrybuty można je zapisać:

tytuł, rok → długość, typ, producent

Zależności funkcyjne (podobnie jak inne więzy) dotyczą schematu bazy danych, a nie określonej instancji
Bazy danych Wykład 3

Reguły dotyczące zależności funkcyjnych

* Reguła przechodniości

Aksjomaty Armstronga

- **★** Zbiór atrybutów określa funkcyjnie dowolny jego podzbiór (Zwrotność)
 - np.:nr, nazwisko → nazwisko
- Jeżeli zbiór atrybutów X funkcyjnie określa zbiór atrybutów Y oraz Z jest innym zbiorem atrybutów wówczas suma zborów X i Z funkcyjnie określa sumę Y i Z

$$X \rightarrow Y \Rightarrow X \cup Z \rightarrow Y \cup Z$$

(Rozszerzenie)

- np.: nr → nazwisko to zachodzi również nr, data → nazwisko, data
- ***** Jeżeli X→Y i Y→Z ⇒ X→Z

(Przechodniość)

- $X \rightarrow Y \Rightarrow X \cup Z \rightarrow Z$
- $X \rightarrow Y i X \rightarrow Z \Leftrightarrow X \rightarrow Y \cup Z$
- Jeżeli A= $\{A_1, A_2 ... A_n\}$ to X \rightarrow A \Leftrightarrow X \rightarrow A₁ ... X \rightarrow A_n

Obliczanie domknięcia zbioru atrybutów

Bardzo często należy określić, które pojedyncze atrybuty są funkcyjnie zależne od danego zbioru atrybutów.

Algorytm X-domkniętości:

Krok1: X(0) = X, n=0

Krok2: Jeżeli istnieje zależność $A \to B$ oraz $A \subset X(n)$ i $B \not\subset X(n)$ to $X(n+1) = X(n) \cup B$.

W przeciwnym wypadku zakończ algorytm

Krok 3: n=n+1 i wróć do kroku 2.

Rozważmy relację

Należności (nazwisko, ulica, miasto, województwo, data, wielkość)

Z następującymi zależnościami funkcyjnymi:

```
nazwisko \rightarrow ulica, miasto, województwo nazwisko, data \rightarrow wielkość miasto \rightarrow województwo
```

Wykonując algorytm X-domkniętości otrzymamy:

```
X(0) = {nazwisko, data}
X(1) = {nazwisko, ulica, miasto, województwo, data}
X(2) = {nazwisko, ulica, miasto, województwo, data, wielkość}
X(3) = X(2)
```

6.4. Pierwsza postać normalna 1PN

Relacja (tablica) jest w pierwszej postaci normalnej (1PN) wtedy i tylko wtedy, gdy każdy atrybut niekluczowy jest funkcjonalnie zależny od klucza głównego

- Pierwsza postać normalna to warunek, że wszystkie wartości kolumn muszą być elementarne
- * Elementarne znaczy w tym przypadku niepodzielne. 1 PN wymaga, żeby dla każdej pozycji wiersz-kolumna w tablicy istniała tylko jedna wartość, a nie tablica lub lista wartości.
- Jeśli w kolumnie przechowuje się całe listy wartości, wtedy trudno jest nimi operować.
- * 1 PN zabrania także istnienia powtarzających się grup, nawet jeśli miałyby być one złożone z kolumn elementarnych

Przejście do 1 PN – przykład

Moduły						
KP NazwaModułu	NrPrac	Pracownik	NrStud	Student	Ocena	TypOceny
Systemy relacyjnych baz danych	244	Buczek Jan	34698	Kowalski H.	4.0	zal.
					3.5	egz.
			34610	Lech M.	5.0	zal.
Projektowanie relacyjnych baz danych	244	Buczek Jan	34698	Kowalski H.	3.0	zal.
					4.0	egz.
Obiektowe bazy danych	445	Kalita Henryk	35785	Woś S.	3.5	egz.

* Atrybuty NrStud, Student, Ocena oraz TypOceny nie są funkcyjnie zależne od klucza głównego, pozostałe są zależne. Należy więc utworzyć dwie tabele:

jedna dla atrybutów zależnych

drugą dla funkcyjnie niezależnych atrybutów

→	Moduły		
NazwaModułu		NrPrac	Pracownik

	Oceny			
KP NazwaModułu	NrStud	TypOceny	Student	Ocena
Systemy relacyjnych baz danych	34698	zal.	Kowalski H.	4.0
Systemy relacyjnych baz danych	34698	egz.	Kowalski H.	3.5
Systemy relacyjnych baz danych	34610	zal.	Lech M.	5.0
Projektowanie relacyjnych baz danych	34698	zal.	Kowalski H.	3.0
Projektowanie relacyjnych baz danych	34698	egz.	Kowalski H.	4.0
Obiektowe bazy danych	35785	egz.	Woś S.	3.5

Atrybuty NazwaModułu, NrStud i TypOceny utworzą klucz główny tabeli Oceny

6.5. Druga postać normalna 2PN

Relacja jest w drugiej postaci normalnej wtedy i tylko wtedy, gdy jest w 1PN i każdy atrybut niekluczowy jest w pełni funkcyjnie zależny od klucza głównego

- ★ Tablica ma drugą postać normalną, jeśli jest w 1 PN i każda kolumna nie należąca do żadnego klucza potencjalnego jest całkowicie zależna od klucza głównego.
- Innymi słowy, tablice powinny przechowywać dane dotyczące tylko jednej "rzeczy" (jednostki, obiektu, zdarzenia) oraz ta "rzecz" powinna być opisywalna przez jej klucz główny.
- * Tablica która jest w 1PN może nie być w 2PN tylko wtedy gdy posiada klucz główny złożony bo tylko wówczas któryś z atrybutów może być identyfikowany przez część klucza.

Przejście do 2 PN – przykład

Oceny				
KP NazwaModułu	NrStud	TypOceny	Student	Ocena
Systemy relacyjnych baz danych	34698	zal.	Kowalski H.	4.0
Systemy relacyjnych baz danych	34698	egz.	Kowalski H.	3.5
Systemy relacyjnych baz danych	34610	zal.	Lech M.	5.0
Projektowanie relacyjnych baz danych	34698	zal.	Kowalski H.	3.0
Projektowanie relacyjnych baz danych	34698	egz.	Kowalski H.	4.0
Obiektowe bazy danych	35785	egz.	Woś S.	3.5

Tabela Oceny (niebieska) nie jest w 2PN gdyż pole Student nie zależy od całego klucza głównego a jedynie od atrybutu NrStud

Tabele w 2PN

Oceny				
NazwaModułu (NazwaModułu)	NrStud	TypOceny	Ocena	
Systemy relacyjnych baz danych	34698	zal.	4.0	
Systemy relacyjnych baz danych	34698	egz.	3.5	
Systemy relacyjnych baz danych	34610	zal.	5.0	
Projektowanie relacyjnych baz danych	34698	zal.	3.0	
Projektowanie relacyjnych baz danych	34698	egz.	4.0	
Obiektowe bazy danych	35785	egz.	3.5	

Studenci				
NrStud	Student			
34698	Kowalski H.			
34610	Lech M.			
35785	Woś S.			

Moduły					
KP NazwaModułu	NrPrac	Pracownik			
Systemy relacyjnych baz danych	244	Buczek Jan			
Projektowanie relacyjnych baz danych	244	Buczek Jan			
Obiektowe bazy danych	445	Kalita Henryk			

6.6. Trzecia postać normalna 3PN

Relacja jest w trzeciej postaci normalnej wtedy i tylko wtedy, gdy jest w 2PN i każdy atrybut niekluczowy jest bezpośrednio zależny od klucza głównego.

* Tablica jest w trzeciej postaci normalnej jeśli jest w 2 PN i wszystkie kolumny nie należące do żadnego klucza potencjalnego są wzajemnie niezależne.

Przejście do 3 PN – przykład

Moduły			
NazwaModułu	NrPrac	Pracownik	
Systemy relacyjnych baz danych	244	Buczek Jan	
Projektowanie relacyjnych baz danych	244	Buczek Jan	
Obiektowe bazy danych	445	Kalita Henryk	

Jedynie tabela Moduły nie jest w 3PN gdyż pole Pracownik zależy od pola NrPrac a nie bezpośrednio od pola NazwaModułu.

Należy dokonać podziału tabeli

Tabele w 3 PN

Moduły			
NazwaModułu	NrPrac		
Systemy relacyjnych baz danych	244		
Projektowanie relacyjnych baz danych	244		
Obiektowe bazy danych	445		

Wykładowcy				
NrPrac Pracownik				
244	Buczek Jan			
445	Kalita Henryk			

Oceny			
NazwaModułu	NrStud	TypOceny	Ocena
Systemy relacyjnych baz danych	34698	zal.	4.0
Systemy relacyjnych baz danych	34698	egz.	3.5
Systemy relacyjnych baz danych	34610	zal.	5.0
Projektowanie relacyjnych baz danych	34698	zal.	3.0
Projektowanie relacyjnych baz danych	34698	egz.	4.0
Obiektowe bazy danych	35785	egz.	3.5

Studenci		
NrStud	Student	
34698	Kowalski H.	
34610	Lech M.	
35785	Woś S.	

Metoda Bersteina

- Dowolną relację można przekształcić do 3PN korzystając z metody Bernsteina:
 - Krok 1. Przekształć każdą zależność tak aby po prawej stronie był tylko jeden atrybut.
 - Krok 2. Wyeliminuj powtarzające się zależności
 - Krok 3. Przekształć zależność tak aby żaden podzbiór atrybutów stojący po lewej stronie nie określał prawej strony zależności.
 - Krok 4. Połącz zależności z takimi samymi lewymi stronami
 - Krok 5. Znajdź klucz dla relacji pierwotnej. Jeżeli żaden z kluczy nie jest zawarty w zbiorach z kroku poprzedniego to utwórz nowy zbiór z atrybutami klucza.
 - Krok 6. Jeżeli jakiś nowo utworzony zbiór jest rzutem (projekcją) innego, to wyeliminuj ten zbiór

* Rozważmy relację

Magazyn (nr, mistrz, wydział, materiał, ilość, cena)

Z następującymi zależnościami funkcyjnymi:

nr → mistrz
mistrz → wydział
mistrz, materiał → ilość
materiał → cena

	Magazyn				
Nr	Mistrz	Wydział	Materiał	llość	Cena
1	Malinowski	1	deski	3	80
2	Kowalski	1	parkiet	20	95
3	Malinowski	1	panele	50	35
4	Nowak	2	drzwi	1	850
5	Kowalski	1	drzwi	2	850

- Krok 1. Zależności funkcyjne spełniają wymagania
- Krok 2. Brak zależności redundacyjnych
- Krok 3. Lewe strony są minimalne. Żaden podzbiór atrybutów z lewej strony nie określa prawej strony
- Krok 4,5 . Otrzymujemy pięć relacji

R1 (<u>nr</u>, mistrz)
R2 (<u>mistrz</u>, wydział)
R3 (<u>mistrz</u>, <u>materiał</u>, ilość)
R4 (<u>materiał</u>, cena)
R5 (nr, materiał)

Krok 6. Żadna z otrzymanych relacji nie jest rzutem innej *nie zawiera się w niej)

6.7. Diagramy zależności

- Klasyczna normalizacja opisana jako proces rozkładu odwracalnego ma kilka wad:
 - wymaga aby zbiór danych był w pełni określony,
 - jest bardzo czasochłonna.
- Alternatywą dla klasycznej normalizacji mogą być diagramy zależności.
- Zalety diagramów zależności:
 - nie wymagają pełnego określenia danych
 - czytelny zapis graficzny

6.7.2. Pragmatyka rysowania diagramów zależności

- Zależność między dwoma elementami danych można rysować tylko w jedna stronę (od A do B albo od B do A).
- Jeżeli między elementami istnieje w jedną stronę zależność funkcyjna a w drugą niefunkcyjna to wybieramy kierunek zależności funkcyjnej.
 - Np.: w kierunku od NrPrac do NazwaWydziału jest zależność funkcyjna a w kierunku NazwaWydziału do NrPrac niefunkcyjna.

* Jeżeli w obu kierunkach występują zależności tego samego typu to wybieramy

kierunek, który dla nas jest wygodniejszy.

Zależności mogą być złożone – gdy złożenie kilku elementów determinuje jakiś inny element

★ Jeżeli A determinuje B a b determinuje C to mamy doczynienia z zależnością przechodnią. Wykrycie i usunięcie tego typu zależności jest ważnym elementem procesu normalizacji

6.8 Akomodacja.

Akomodacja to proces przekształcania diagramu zależności w schemat relacyjny

Reguła Boyce'a-Codda

Każdy funkcyjnie determinujący element staje się kluczem kandydującym tabeli. Wszystkie bezpośrednio zależne od niego elementy danych stają się niegłównymi atrybutami tabeli

- ★ Liczba elementów determinujących (z których wychodzą strzałki) wskazuje liczbę wymaganych tabel
- ☀ Element do którego wchodzi strzałka i z którego wychodzi strzałka stanowi klucz obcy

Każdy niefunkcyjnie determinujący element staje się częścią klucza głównego tabeli.

Dokładnie tworzymy klucz główny z determinującego elementu danych i zależnych elementów danych wchodzących w skład związku niefunkcyjnego

6.9. Rysowanie diagramów zależności i postacie normalne

6.10. Postać normalna Boyce'a-Codda (BCNF)

Relacja jest w postaci normalnej Boyce'a-Codda, jeśli tylko z nietrywialnych zależności wynika, że pewien nadklucz wyznacza funkcyjnie jakiś inny atrybut.

- Zależność funkcyjna nietrywialna zależność funkcyjna w której co najmniej jeden z atrybutów typu B znajduje się pośród atrybutów typu A
 - Np.: tytuł, rok → rok, długość
- * Nadklucz zbiór atrybutów który zawiera klucz.

Przykład

- ★ Załóżmy, iż mamy zamodelować sytuację:
 - każdy student może specjalizować się w kilku dziedzinach,
 - student ma jednego asystenta w każdej dziedzinie,
 - każda dziedzina ma kilku asystentów, ale jeden asystent doradza tylko w jednej dziedzinie,
 - każdy asystent doradza kilu studentom w jednej dziedzinie.

Specjalizacje (NrStud, Dziedzina, NrPrac)

Specjalizacje			
NrStud	NrStud Dziedzina NrPrac		
123456	Informatyka	234	
234567 Systemy informacyjne 345		345	
345678	Inżynieria oprogramowania	456	

Przedstawiony schemat spełnia wymogi 3PN

Przykład c.d.

Specjalizacje (NrStud, Dziedzina, NrPrac)

Specjalizacje		
NrStud Dziedzina NrPrac		
123456 Informatyka 234		
234567 Systemy informacyjne 345		345
345678 Inżynieria oprogramowania 456		

Zauważmy że pomimo normalizacji do 3PN występują anomalie::

- zmiana specjalizacji przez studenta 123456 powoduje utratę informacji o NrPrac 234,
- nie można wstawić informacji o NrPrac 789, który jest asystentem z Informatyki tak długo jak długo jakiś student nie wybierze tej specjalności,
- usunięcie studenta 345678 powoduje jednoczesne usunięcie informacji o Nr 456.

Należy dokonać dekompozycji tabeli Specjalizacje:

Schemat 1

AsystenciStudenta (NrStudenta, NrPrac)
DziedzinyAsystenta (NrPrac, Dziedzina)

Schemat 2

AsystenciStudenta (<u>NrStudenta</u>, <u>Dziedzina</u>)
DziedzinyAsystenta (<u>NrPrac</u>, Dziedzina)

6.11. Czwarta postać normalna (4PN)

Relacja jest w czwartej postaci normalnej, wtedy i tylko wtedy gdy z nietrywialnych zależności wielowartościowych wynika, że pewien nadklucz wyznacza jakiś inny atrybut.

- * Relacja jest w 4PN, gdy zbiór atrybutów X określa wielowartościowo (niefunkcyjnie) Y to zachodzi jeden z następujących warunków:
 - Y jest puste lub zawiera się w X,
 - Suma zbiorów X i Y jest kompletnym zbiorem atrybutów dla danej relacji,
 - X zawiera klucz.
- * Aby przejść z 3 PN do 4 PN, szukamy tabel, które zawierają dwie lub więcej niezależnych zależności wielowartościowych.

Przykład

- Załóżmy, iż mamy przechowywać:
 - informację o pracownikach,
 - umiejętnościach pracowników,
 - znajomości języków przez pracowników.
 - Pracownik może posiadać wiele umiejętności oraz znać kilka języków (umiejętności nie są związane ze znajomością języków).

Tabele przed i po normalizacji do 4PN

Pracownicy			
NrPrac	NrPrac Umiejętność Język		
123456	Obsługa komputera	angielski	
123456	Obsługa komputera	francuski	
123456	Prawo jazdy	angielski	
234567	Prawo jazdy	niemiecki	
234567	Obsługa komputera	angielski	

Umiejętności		
NrPrac	Umiejętność	
123456 Obsługa komputera		
123456 Prawo jazdy		
234567 Prawo jazdy		
234567 Obsługa komputera		

Języki		
NrPrac	Język	
123456	angielski	
123456	francuski	
234567	niemiecki	
234567	angielski	

6.12. Piątą postać normalna (5PN)

Relacja jest w piątej postaci normalnej jeżeli jest w 4 PN i nie istnieje jej rozkład odwracalny na zbiór mniejszych tabel

- * Załóżmy, iż mamy przechowywać:
 - informację o dealerach samochodów,
 - produktach sprzedawanych przez dealerów,

PunktySprzedarzy			
Dealer Producent Typ			
Auto Zbyt	Ford	osobowy	
Auto Zbyt	Opel	dostawczy	
Cztery Kółka	Ford	dostawczy	
Cztery Kółka	Opel	osobowy	

Dealerzy reprezentują firmy, firmy wytwarzają produkty i dealerzy sprzedają te produkty (diagram zależności). Nie można dokonać rozkładu struktury pokazanej na diagramie gdyż np.: Auto Zbyt sprzedaje samochody osobowe marki Ford i dostawcze marki Opel, a nie sprzedaje dostawczych fordów ani osobowych opli.