

Proseminar zelluläre Automaten: Non-polar Token-Pass Brownian Circuits

17.6.2019 Klaus Philipp Theyssen

FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Grundlagen

- token basierte Schaltkreise (Bsp. Petri Netze)
- token pass Schaltkreise
- nicht polare token pass Brown'sche Schaltkreise

Token basierte Schaltkreise

- Signal als Token
- asynchron (kein Takt)

Merge, Fork und Tria sind Schaltkreisprimitive

Token pass Schaltkreise

- Anzahl der Tokens immer gleich
- Tokens verlassen Kabel nicht

Brown'sche Schaltkreise

- Tokens können sich frei bewegen
- Verzögerungen beeinflussen nicht Korrektheit der Berechnung
- Berechnungsschritte reversibel (Deadlocks)

T-Element

- äquivalent zu Merge
- a' k

Äquivalenz von token basiert und token pass

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Äquivalenz von token basiert und token pass

Fork aus T-Elementen

Tria aus T-Elementen

Äquivalenz von token basiert und token pass

T-Element ist Schaltkreisprimitiv für brown'sche token pass Schaltkreise

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Nicht polare token pass Schaltkreise

- Tokens haben keinen Bias mehr
- Terminator Kabel
- Bias auf Ein- und Ausgabekabeln sinnvoll

Nicht polar token pass Schaltkreise

T-Element ist Schaltkreisprimitiv für brown'sche token pass Schaltkreise

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Nicht polarer 1-Bit Speicher

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Lesevorgang

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Schreibvorgang

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

1-Bit Speicher

UND-Gatter

Ausblick

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

UND-Gatter

- Repräsentation von 1 als Token und 0 als Abwesenheit
- Repräsentation von 1 und 0 als Token
- Ausnutzen des Backtrackings aus Deadlocks

0 durch kein Token repräsentiert

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

0 und 1 durch Token repräsentiert

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

0 und 1 durch Token repräsentiert

Grundlagen

1-Bit Speicher

UND-Gatter

Ausblick

Geschwindigkeit der Berechnung

Grundlagen 1-Bit Speicher UND-Gatter Ausblick Zusammenfassung

Klaus Philipp Theyssen – Non-polar Token-Pass Brownian Circuits 21/23

Konkrete Implementierung

Grundlagen 1-Bit Speicher UND-Gatter Ausblick Zusammenfassung
Klaus Philipp Theyssen – Non-polar Token-Pass Brownian Circuits 22/23

Zusammenfassung

Grundlagen 1-Bit Speicher UND-Gatter Ausblick Zusammenfassung
Klaus Philipp Theyssen – Non-polar Token-Pass Brownian Circuits 23/23