NP Completeness

Yong Wen Chua

https://github.com/lawliet89/np-complete

Computation Complexity Theory

- More than Big Oh Notation
- Classifying computational problems according to their inherent difficulty into different classes
- Relation between the different *classes*

Journey

- 1. Computation Resources
- 2. Decision Problems
- 3. Modelling via Turing Machines
- 4. P
- 5. Non-determinism
- 6. NP
- 7. Reduction
- 8. NP-Complete
- 9. Example proof
- 10. P = NP?

Computation Resources

- Time: Time taken by algorithm to solve. i.e. $\mathrm{TIME}(f(n))$
- Space: Space needed to solve. Includes inputs, outputs, and intermediates. i.e. $\mathrm{SPACE}(f(n))$

Hierarchy Theorem

- More space/time → Solve more (harder) problems.
- Intuitively, you need f(n) time to be able to work with f(n) space at least.
- But the reverse relation between space and time is less intuitive.

Complexity Hierarchy

Decision Problems

Reachability

RCH : Given a directed graph $\ G$ and nodes $\ x$, $\ y$, is there a path from $\ x$ to $\ y$?

Breadth First Search RCH Algorithm

Let s be a set of nodes to process. There are n nodes in the graph.

Initially, $S = \{x\}$.

At each stage, for some $z \in S$:

- remove z from s
- mark z
- Find all unmarked "successors" of z and add them to s

Until y is found or s is empty.

Worst case: each edge is examined once. There are at most n^2 edges.

So $O(n^2)$.

Decidable vs Undecidable

RCH: Decidable

HALT: Given the description of an *arbitrary* program and a finite input, decide whether the program finishes running or will run forever.

This is undecidable.

HALT

Assume an imaginary solver H(p,x) which decides that if some program p will halt for some input x. (i.e. a black box that solves HALT)

Then, we construct program P:

```
program P(y):
   if H(y,y) = halt then
   loop forever
   else:
     return
```

- If H(P,P) = halt then P(P) runs forever.
- If H(P,P) = loop then P(P) halts.

 ${\cal H}$ always gives the wrong answer. Generalized ${\cal H}$ cannot exst.

Tractable vs Intractable

• Tractable problems can be solved in a *feasible* or *practical* amount of time

Cook-Karp Thesis: Tractable = polynomial time (P)

but... is n^{100} or $2^{n/100}$ more practical?

Deterministic Turing Machine (DTM)

- A model of computation used in reasoning about complexity.
- Read/Write head over a tape. Can move right or left. The head stores the current state of the machine
- Symbols on tape
- A table of instructions where given the current state, and the symbol on the tape, decide whether to write to the tape, move left/right, or transition into a new state.

Turing Machine - Binary Successor

State Machine:

Further Modelling

- ullet Use multiple tapes. 1-tape DTM is slower than a k-tape DTM by a polynomial factor.
- Random Access Machines (RAM): DTM is slower than RAM by $O(n^3)$.
- Multi tapes DTM are easy to reason. It's reasonable to use them to model computation.

Invariance Thesis

(similar to Church-Turing Thesis)

All *reasonable* sequential models of computation have the same time complexity as Deterministic Turing Machines (DTM) up to a polynomial.

e.g. RAMs, 1-tape DTM, k-tape DTM

Problems

- A DTM gives a "yes" or "no" answer to a decision problem,
- It is deciding the problem.

e.g. A DTM M decides that $\ _{2}$ is the next integer after $\ _{1}$, but $\ _{0}$ is not.

If M decides a size n problem in f(n) time, then

$$L \in \mathrm{TIME}(f(n))$$

(Formal) Languages

Formally, a language L is a set of strings over a given alphabet Σ , where B is the blank symbol.

Then let $L\subseteq (\Sigma-\{B\})^*$ and M be a DTM with alphabet Σ such that for any $w\in (\Sigma-\{B\})^*$:

- ullet if $w\in L$ then M(w) terminates with yes
- ullet if w
 otin L then M(w) terminates with ullet no

Then we can say M decides L and L is recursive because it is decided by some DTM.

Then iff for any length n=|w| of $w\in (\Sigma-\{B\})^*$, M operates within the time bound f(n), we say

$$L \in \mathrm{TIME}(f(n))$$

Polynomial Time (P)

$$P = \bigcup_k TIME(n^k)$$

That is P is the set of decision problems which can be decided by a DTM in polynomial time for all inputs.

Known Problems in P

- Greatest Common Denominator (GCD)
- PRIMES whether a number is prime
 (https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.
 pdf)

Determinism vs Non-Determinism

For the same input, f(n) is the time taken to solve the input size n.

Notation for non-deterministic runtime: NTIME(f(n))

Non-deterministic Turing Machines (NDTM)

A NDTM M has many possible computation for some input w that is chosen at random.

M(w) represents the tree, with some depth.

NDTM is not practical.

NDTM Modelling

For the same input of size n to a problem L, if over multiple runs of the NDTM M

- It might say "yes" sometimes
- It might say "no" sometimes
- But it must always terminate within time f(n)

Then M decides L and

$$L \in \mathrm{NTIME}(f(n))$$

How is this useful?

- Easier to come up with a non-deterministic algorithm to some problem. (e.g. algorithm to "guess" a path from node x to y)
- Then we can try to simulate this with DTM.
- Define complexity classes with NDTM and their relationship with DTM complexity classes.

Simulating a NDTM

• A NDTM can be simulated by a DTM for a problem of size n in time $O(C^{f(n)})$ for some constant C>1.

We don't know if the simulation can be improved. (i.e. We don't know if P=NP.)

(Formal) Nondeterministic Acceptance and Time

For some language L, if M returns $\log M$ on some input M, then we say M accetps L. (i.e. it can reject, or never terminate).

A NDTM M operates within time f(n) if M(w) has depth $\leq f(|w|)$.

Then we can say NDTM M decides a language L within time f(n) if

- ullet M operates within time f(n)
- ullet M accepts L

 $L \in NTIME(f(n))$ iff L is decided by some NDTM operating within time f(n).

$$L \in NTIME(f(n))$$

Non-deterministic Polynomial Time (NP)

$$NP = \bigcup_k NTIME(n^k)$$

That is NP is the set of decision problems that can be decided by a NDTM in polynomial time for all inputs.

More usefully: you can "guess" a solution to a NP problem in polynomial time and *verify* that it is a solution in polynomial time.

NP Problems

- ullet All problems in P
- Integer factorization (most likely in NP)
- Graph Isomorphism: Given two graphs, is there a mapping of nodes from one graph to the other so that all the nodes still share the neighbours?
- SAT: Given a set of logic clauses with variables, is there an assignment of boolean values to the variables that will satisfy the clauses?
- Hamiltonian Path (HP): Given an undirected graph, is there a path visiting each node exactly once?
- Decision version of Travelling Salesman (TSP(D)): Is there a route visiting all cities with total distance less than some k?

Reduction

- Algorithm to transform one problem into another
- ullet If we transform L_1 to L_2 , we write $L_1 \leq L_2$
- L_2 is at least as hard as L_1
- If we can efficiently solve L_2 , we can efficiently solve L_1 .
- ullet Karp reduction: this transformation algorithm must be in P.

(Formal) Karp Reduction

 L_1 is Karp reducible to L_2 ($L_1 \leq L_2$) if there is a map f such that

- ullet $x\in L_1$ iff $f(x)\in L_2$ and
- f is in P

Let M_1 decide L_1 , M_2 decide L_2 and M computer f(x). Then

Properties of Reduction

If $L_1 \leq L_2$

- ullet if L_2 is in P, then L_1 in P
- ullet if L_2 is in NP, then L_1 in NP
- \leq is transitive

NP-complete (NPC)

NP-hard: "at least as hard as the hardest problems in NP"

ullet L is NP-hard if for some L' in NP, $L' \leq L \ orall L \in NP$.

Then

L is NP-complete if

- ullet L is in NP
- ullet L is NP-hard

That is NPC problems are the "hardest" in NP

NPC Relation

NPC Problems

- SAT: Proven by Cook-Levin Theorem
- Karp's 21 NP-Complete problems
- TSP(D)
- ullet Knapsack problem: Can a value of at least V be achieved without exceeding the weight W?
- HP
- K-Graph colouring

Huge list of NPC problems

NPC Reduction

Prove that Vertex Cover is NP-Complete

VERTEX COVER: Given an undirected graph G, is there a set of vertices in G smaller than some size k such that all the edges in G have at least one end in the set of vertices?

Strategy:

- Prove VERTEX COVER is in NP
- Reduce a known NP-Complete problem to VERTEX COVER

Handwaving VERTEX COVER is in NP

 \bullet NP: Can guess a set of vertices and then check by examining at most n^2 edges.

3SAT:

Consider a set of boolean variables, and a set of logical clauses where each clause has exactly three variables. Is there an assignment of values to the variables to satisfy the clauses?

One of [Karp's 21 NP-Complete problems]: Known NP-Complete problem

Reduce 3SAT to VERTEX COVER

Consider the clauses: (A \vee A \vee B) \wedge (\neg A \vee \neg B \vee \neg C) \wedge (\neg A \vee B \vee C)

- Nodes for each variable and its complement, joined by an edge
- A "triangle" of variable nodes for each clause
- Add edges between variables of themselves
- ullet For l variables with m clauses, vertex cover of at most l+2m

Vertex Cover

Why $\leq l+2m$?

- l: Either the true/false for each variable: covers the edges between them
- Also cover the edges between the variable and their counterparts in the "triangles"
- Then for each "triangle", at most 2 more edges to cover the internal edges and the edges between the "incorrect" variables and the triangles

Solution to 3SAT

The solution are the cover vertices that are part of the "variable pairs".

Reduction Algorithm

- 2l+3m nodes graph construction
- Can be done in P-time

Thus, VERTEX COVER is NP-complete.

P = NP?

- P problems can be solved efficiently.
- NP problems have no known efficient algorithms to solve.

Consequences in Public Key Cryptrography

- Depend on "difficulty" of problems like Discrete logarithm and integer factorization that are known to be neither in P nor NPcomplete to create "one-way" functions.
- If P=NP, then we can find an effective solution to some NP-complete problem and reduce the rest to that problem to solve them.
- ullet If P
 eq NP then we can show that one-way functions exist.

Consequences in Operation

ullet If P=NP Efficient solution to Integer Linear Programming (for optimization under constraints) and Travelling Salesman