CIRCUITOS ELETRÔNICA BÁSICA - M1

Relatório apresentado como requisito parcial para a obtenção da M1 da disciplina de Eletrônica básica do curso de Engenharia de Computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

João Vitor Specht Kogut

Prof. Walter Antonio Gontijo

1. OBJETIVO

O objetivo principal desse trabalho é o desenvolvimento e aplicação de circuitos através de simuladores e teoria para concretizar o conhecimento obtido durante as aulas realizadas ao longo da M1.

2. INTRODUÇÃO

Neste trabalho serão desenvolvidos circuitos e cálculos das mais diversas áreas contidas na matéria de eletrônica básica, principalmente os conceitos de diodos, retificadores, transformadores, capacitores e diversos mais componentes.

Outro ponto é a parte pratica que será realizada ao longo do semestre em laboratório, neste relatório vamos ter conhecimentos de como realizar medidas e como elas devem reagir, assim agilizando nosso processo de aprendizagem.

1)

Encontre a Resistencia equivalente

Com os dados fornecidos foi possível gerar o seguinte circuito:

Através da simulação foi encontrada a resistência equivalente de 10 Ohms, a seguir temos o resultado esperado através de cálculos:

20
$$\Omega$$
 | | 20 Ω + 10 = $\frac{20*20}{20+20}$ = $\frac{400}{40}$ = 10 Ω

Encontre a Resistencia equivalente

Com os dados fornecidos foi possível gerar o seguinte circuito:

Através da simulação foi encontrada a resistência equivalente de 7.5 Ohms, a seguir temos o resultado esperado através de cálculos:

(20
$$\Omega$$
 | | 20 Ω + 20 Ω) = $\frac{20*20}{20+20} = \frac{400}{40} = 10 \Omega + 20 \Omega$
30 Ω | | 10 Ω = 7,5 Ω

$$-vD - i * R = 0$$

$$E = Vd + i * R$$

$$I = \frac{11V}{2,2k\Omega} = 0,005 = 5 \, mA$$

$$11 = VD + 0,005 * 2,2k$$

$$VD = 11 - 0,005 * 2,2k$$

$$VD = 11 - 1,1$$

$$VD = 9.9 V$$

$$VD = VR$$

$$VR = 10 V$$

$$Id = \frac{12}{5,6k}$$

Id = 0.002143 A = 0.214 mA

$$V0 = 0$$

$$Vd2 = 12V$$

$$I = \frac{12+5}{4,7 k+5,6 k} = \frac{17}{10,3k} = 0,0016A = 1,6 mA$$

$$VA = R * i = 4,7k * 0,0016 = 7,52 V$$

$$VR = 5,6 K * 0,0016 = 8,96 V$$

$$v0 = 10,3k * 0,0016 = 16,48 V$$

PARÂMETRO	SIMULADO	TEÓRICO
1	1,59 mA	1,6 mA
VA	7,453 V	7,52 V
VR	8,8 V	8,96 V

Pode-se notar ao centro do gráfico o momento que a chave passa de aberta para fechada, assim permitindo a passagem do sinal de seno.

8) DC sweep

Aqui será analisado um sinal "DC sweep", proporcionado pelas ferramentas integradas ao multisim. Será utilizado o diodo 1N4002G. O DC sweep será de 0 a 1 com incrementos de 0.01V

Após rodar a simulação foi obtido o seguinte gráfico:

Também foi realizado o teste com o diodo 1N3585:

9) Diodo ideal

PARÂMETRO	SIMULADO	CASO TEÓRICO
ID	9,28 mA	1 mA
VD	0,712 V	0 V

10) modelo simplificado

$$I = V * R$$

$$ID = 10V - 0.7V = 9.3 V -> 9.3 * 1k\Omega = 9.3 mA$$

$$VD = 0.7 V$$

	Simulação	Teórico
ID	8,59 mA	9,3 mA
VD	0,710 V	0,7 V

11) Modelo Linear

Considerando que Ravg = 10 Ohm

$$Vf = VD + ID * Rav + ID * VL$$

 $10 = 0.7 + ID * (RaV + VL)$
 $10 = 0.7 + ID (10 + 1000)$
 $1.010 ID = 9.3/1.010$
 $ID = 9.2 mA$
 $Rm\acute{e}dia = 9.2 mA * 10$
 $Rm\acute{e}dia = 0.092 \Omega$
 $VD = 0.77 + 0.092$
 $VD = 0.792 V$

	Simulação	Teórico
ID	8,5 mA	9,2 mA
VD	0,71 V	0,792 V

12) Análise de reta de carga

A seguir o código em python responsável pela análise da reta de carga e a curva do diodo:

```
import math
import matplotlib.pyplot as pp
IS = 1*(10**-16)
Vt = 0.025
Id = []
passo = 0.001
Vd = []
contador = 0.0
id = []
Vcc = 10
rs = 2000
# Calculo de Id
while contador <= 0.8:
    Id.append(IS * ( math.exp(contador/Vt)-1 ) )
    Vd.append(contador)
    contador = contador + passo
pp.plot(Vd,Id, label="Vd Id")
# calculo de reta da carga
for point in range(len(Vd)):
    id.append( (-Vd[point] + Vcc )/rs )
pp.plot(Vd,id, label="Vd id")
pp.show()
```

Gerando o seguinte resultado gráfico, em laranja a reta e em azul a curva do diodo:

13) Ceifadores

Circuitos ceifadores são aqueles capazes de remover uma parte especifica de um sinal.

16) Grampeadores

18) retificadores

Calcule a tensão eficaz na entrada, de pico e média na saída do circuito abaixo:

Com esse diagrama foi possível montar o seguinte circuito:

E as seguintes formas de onda:

$$Vrms = Vpk * \frac{1}{\sqrt{2}}$$

$$Vrms = 5 * \frac{1}{\sqrt{2}} = 3.53V$$

$$Vpk = 4.3V$$

$$Vdc = \frac{4.3}{\pi} = 1.36V$$

DADOS	Simulação	Teórico
Vrms	3.53V	3.53V
Vpk	4.38V	4.3V
Vdc	1.31V	1.36V

Calcule a tensão eficaz na entrada, de pico e média na saída do circuito abaixo:

$$Vrms = Vpk * \frac{1}{\sqrt{2}}$$

$$Vrms = 100 * \frac{1}{\sqrt{2}} = 70.71V$$

$$Vpk = 99.3V$$

$$Vdc = \frac{99.3}{\pi} = 31.6V$$

DADOS	Simulação	Teórico
Vrms	70.7V	70.71V
Vpk	99.55V	99.3V
Vdc	31.4V	31.6V

- $n = \frac{1}{2} = 0.5$
- $V_{p(sec)}=nV_{p(pri)}=0.5\times170=85\,V$
- $V_{p(out)} = V_{p(sec)} 0.7 = 84.3 V$
- $PIV = V_{p(sec)} = 85 V$

$$Vrms = Vpk * \frac{1}{\sqrt{2}}$$

$$Vrms = 170 * \frac{1}{\sqrt{2}} = 120.2V$$

$$Vpk(sec) = 84.3V$$

$$Vpk(saida) = \frac{84.3}{\pi} = 26.83V$$

$$Vdc = \frac{84.3}{\pi} = 26.83V$$

DADOS	Simulado	Teoria
Vrms	120.2V	120.2V
Vpk(sec)	169V	85V
Vpk(saída)	84.1V	84.3V
Vdc	26.7V	26.83V

Considerando os dados ao lado, determine:

- Tensão eficaz no primário de T₁;
 Tensão eficaz no secundário de T₁;
 Tensão média na saída;

- Tensão de pico na saída;Tensão reversa sobre o diodo;
- · Corrente média na saída.

$$Vf = 311 * sen(377 * t) * V$$

 $t = 1$
 $Vf = 220V$
 $R1 = 5$
 $T1 = 60:1$

$$Vpk(sec) = 311 * \frac{1}{60} = 5,18V$$

$$Vpk(saida) = 5,18 - 0,7 = 4,48V$$

$$Vdc = \frac{4,48}{pi} = 1,43V$$

$$TRD = 3,7V$$

	Simulação	Teórico
Vrms	220V	220 V
Vpk	10,4V	5,18V
Vpk(saída)	4,35V	4,48V
Vdc	1,26V	1,43V
VRMS	3,67V	3,7V
VD	3,67V	3,7V

Sendo Vrms = 70,71V foi possível gerar o seguinte circuito:

$$Piv = Vpk(sec) - 0.7$$

$$Vpk(sec - input) = \frac{100}{2} = 50V$$

$$Piv = 50V - 0.7V = 49.3V$$

$$Vpk(sec - saida) = \frac{50}{2} - 0.7 = 24.3V$$

$$Vdc = \frac{2 * 24.3}{pi} = 15.47V$$

	Simulação	Teoria
Vpk(sec) - entrada	49,9V	50V
Vpk(sec) – saída	23,3V	24,3V
Vdc	15,4V	15,47V
PIV	49,8V	49,3V

Figura 107 - Circuito 3.5.6 proposto

Considerando os dados ao lado, determine:

• Tensão eficaz no primário de T₁;

• Tensão eficaz no secundário de T₁;

• Tensão média na saída;

- Tensão de pico na saída;Tensão reversa sobre os diodos;
- · Corrente média na saída.

$$v_f(t) = 311 \cdot sen(377 \cdot t)V;$$

$$R_1 = 5 \Omega;$$

$$D_{1_2} = ideais;$$

$$T_1 = \begin{cases} 10:1 \\ 10:1 \end{cases}$$

$$Vpk = 31,1V$$

$$Vpk(saida) = \frac{31,1}{2} - 0,7 = 14,85V$$

$$Vdc = \frac{2 * 14,48}{pi} = 9,45V$$

$$Piv = 30,4V$$

$$lavg = \frac{9,45}{5} = 1,89A$$

	Simulado	Teórico
Vpk(sec)	31,1V	31,1V
Vpk(saída)	14,85V	14,7V
Vdc	4,54V	9,45V
PIV	31,1V	30,4V
lavg	1A	1,89A

Obtenha PIV, tensão de pico na saída e tensão de pico secundária.

$$Vp(\sec) = \sqrt{2} * Vrms = 17V$$

 $Vp(out) = Vp(\sec) - 1.4 = 15.6V$
 $PIV = Vp(out) + 0.7 = 16.3V$

	Simulação	Teórico
Vp(sec)	16,9V	17V
Vp(saída)	15,6V	15,6V
PIV	16,9V	16,3V

Considerando o circuito abaixo:

Considerando os dados ao lado, determine:

- Tensão eficaz no primário de T₁;
 Tensão eficaz no secundário de T₁;
- · Tensão média na saída;
- · Tensão de pico na saída;
- · Tensão reversa sobre os diodos;
- · Corrente média na saída.

$$v_f(t) = 311 \cdot sen(377 \cdot t)V;$$

$$R_1 = 5 \Omega;$$

$$D_{1_4} = ideais;$$

$$T_1 = 60:1.$$

Com estes dados é possível montar o seguinte circuito:

$$Vrms(primario) = 311 * \sqrt{2} = 220V$$

$$Vrms(sec) = \frac{220}{60} = 3,67V$$

$$Vpk(sec) - entrada = 311 * \frac{1}{60} = 5,18V$$

$$Vpk(sec) - saida = 5,18 - 1,4 = 3,73$$

$$Vdc = \frac{2 * 3,73}{pi} = 2,37V$$

$$Piv = Vpk(sec) + 0,7 = 5,88V$$

$$Iavg = \frac{2,37}{5} = 0,47A$$

	Simulação	Teoria
Vrms(sec)	2,16V	3,67V
Vpk(sec)	5,18V	5,18V
Vpk(saída)	3,53V	3,73V
Vdc	1,85V	2,37V
Piv	5,18V	5,88V
lavg	0,45A	0,47ª

Considere um retificador meia onda com vi de 100V pico, frequencia de 60hZ, C 100uF e R 10k. Calcule:

- A) A tensão de pico na saída
- B) A tensão de ripple.
- C) A tensão média na carga

Figura 118 - Enunciado

Medindo a entrada (vermelho) e a carga no capacitor em DC(verde)

Relação de ripple no capacitor (verde) e entrada (vermelho)

$$Vpk(saida) = 100 - 0.7 = 99.3V$$

$$Vripple = \frac{Vp}{fRc} = \frac{99.3}{60 * 10000 * 0.0001} = 1.65V$$

$$Vdc = Vp - \frac{Vripple}{2} = 99.3 - \frac{1.65}{2} = 98.47V$$

	Simulação	Teoria
Vp(saída)	98,4V	99,3V
Vripple	1,53V	1,65V
Vdc	98,4V	98,46V

Repetir o exercício anterior usando um retificador de onda completa:

Medindo a entrada (vermelho) e a carga no capacitor em DC(laranja)

Relação de ripple no capacitor (laranja) e entrada (vermelho)

$$Vpk(saida) = 100 - 1,4 = 98,6V$$

$$Vripple = \frac{Vp}{fRc} = \frac{98,6}{2 * 10000 * 0,0001} = 0,82V$$

$$Vdc = Vp - \frac{Vripple}{2} = 98,19V$$

	Simulação	Teoria
Vp	98,1V	98,6V
Vripple	0,75V	0,82V
Vdc	97,9V	98,19V