

Introducción a la Ingeniería, 620432.

Sistemas Númericos

Sistema de numeración binario

- En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe.
- El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno.
- De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula como:

$$1* 2^3 + 0* 2^2 + 1* 2^1 + 1* 2^0$$
, es decir:

$$8 + 0 + 2 + 1 = 11$$

Ejercicios resueltos:

- 1. Convertir (10010110)₂ a decimal.
- Solución:

$$=1*2^{7}+0*2^{6}+0*2^{5}+1*2^{4}+0*2^{3}+1*2^{2}+1*2^{1}+0*2^{0}$$

=128+16+4+2

Conversión Decimal Fraccionario a Binario

• Ejemplo: número decimal 12,6543.

Parte entera

resto: 0

resto: 0

resto: 1

resto: 1

• Parte fraccionaria

Resultado: 1100,1010

Sistema de numeración octal

- El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
- En el sistema de numeración octal, los números se representan mediante **ocho** dígitos diferentes: **0**, **1**, **2**, **3**, **4**, **5**, **6** y **7**.

Conversión de un número decimal a octal

- La conversión de un número decimal a octal se hace mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso.
- Por ejemplo, para escribir en octal el número decimal 122)₁₀ tendremos que hacer las siguientes divisiones:

 Tomando los restos obtenidos en orden inverso se obtiene la cifra octal:

$$122_{10} = 172_8$$

Conversión octal a decimal

 La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal.

Por ejemplo, para convertir el número 237₈ a decimal basta con desarrollar el valor de cada dígito:

$$2*8^{2} + 3*8^{1} + 7*8^{0} =$$
 $128 + 24 + 7 = 159_{10}$
 $237_{8} = 159_{10}$

Conversión de números binarios a octales y viceversa

- Cada dígito de un número octal se representa con tres dígitos en el sistema binario.
- Luego, la forma de convertir un número entre estos sistemas de numeración equivale a "expandir" cada dígito octal a tres dígitos binarios, o en "contraer" grupos de tres caracteres binarios a su correspondiente dígito octal

Decimal	Binario	Octal
О	000	О
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

Sistema de numeración hexadecimal

- En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F.
- Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal.
- El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.

Conversión Binario a Hexadecimal

Para la conversión directa basta con:

1. Dividir en grupos de 4 bits, empezando de derecha a izquierda. En caso de que el último grupo (el que quede más a la izquierda) sea menor de 4 bits se rellenan los faltantes con ceros.

2. Convertir cada grupo de 4 bits en su equivalente hexadecimal

Conversión de números binarios a hexadecimales y viceversa

Se puede establecer una equivalencia directa entre cada dígito hexadecimal y cuatro dígitos binarios

DECIMAL	BINARIO	HEXADECIMAL
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Conversión Binario a Hexadecimal

- Ejemplo: 101011
 - Se divide en grupos de 4 bits y queda:
 10 1011
 - Rellenando con ceros el último grupo (el de la izquierda):

10 1011

- 0010 equivale a 2, mientras que 1011 equivale a B
- Resultado: 2B_h (16=h=hexadecimal)

Conversión Binario a Hexadecimal

• Convertir (10010110)₂ a hexadecimal.

• Solución:

```
= 1001 \ 0110
= 9 6
(10010110)_2 = 96_h
```

Conversión decimal a hexadecimal:

- Convertir (142)₁₀ a hexadecimal.
- · Solución:

 $(142)_{10} = 8E)_h$

Otra forma:

142:2=71 resto 0 71:2=35 resto 1 35:2=17, resto 1 17:2=8 resto 1 8:2 = 4, resto 0 4:2=2, resto 0 2:2=1, resto 0 1:2=0, resto 1

Convertir números Decimales a hexadecimal

Por ejemplo, para convertir a hexadecimal del número 1735₁₀ será necesario hacer las siguientes divisiones:

1735 : 16 = 108 Resto: **7**

108 : 16 = 6 Resto: **C** es decir, 12_{10}

6:16=0 Resto: 6

De ahí que, tomando los restos en orden inverso, resolvemos el número en hexadecimal:

$$1735_{10} = 6C7_{16}$$

Conversión Hexadecimal a Binario

Ejemplo:

 $3C_h$

• 3 = 0011

• C = 1100

• Resultado: 111100

Conversiones decimal a base 3:

Convertir 35₁₀ a base 3.

• Solución:

$$35/3 = 11/3$$
 $3/3 = 1/3 = 11$ $11 = 3$ 1 01 2 0 1 1 $35_{10} = 1022_3$

Ejercicios

- Convierta los siguientes números decimales a binario:
 - 55 =
 - 49 =
- Ejecute las siguientes conversiones de base:
 - $(1001101)_2 = (...)_8$
 - $(32)_6 = (...)_2$

• Convertir (122)₃ a binario.

 Solución recomendada: Se convierte primero a decimal y luego a binario

$$\bullet = 1*3^2 + 2*3^1 + 2*3^0$$

$$\bullet = 9 + 6 + 2$$

$$17/2 = 8$$
 $8/2 = 4$ $4/2 = 2$ $2/2 = 1$ $1/2 = 0$
 1

$$122_3 = 10001_2$$

- Convertir (110101.1011)₂ a decimal.
- · Solución:
 - Parte entera: 110101

$$\bullet = 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

$$\bullet = 32 + 16 + 4 + 1$$

• Parte fraccionaria: .1011

$$\bullet = 1*2^{-1}+0*2^{-2}+1*2^{-3}+1*2^{-4}$$

$$\bullet$$
 = 0.5 + 0.125 + 0.0625

• Resultado: 53.6875

- Convertir 43.8125)₁₀ a binario
- · Solución:
 - Parte entera: 43
 - \bullet 43 = 101011
 - Parte fraccionaria: 0.8125
 - 0.8125 * 2 = 1.625
 - \bullet 0.625 * 2 = 1.25
 - \bullet 0.25 * 2 = 0.5
 - 0.5 * 2 = 1.0
 - $\bullet = 0.1101$
 - $43.8125)_{10} = 101011.1101)_2$

- Convertir 25.5)₁₀ a base 3
- Solución:
 - Parte entera: 25
 - $25 = 221_3 (25/3=8, \text{ resto } 1; 8/3=2, \text{ resto } 2; 2/3=0, \text{ resto } 2)$
 - Parte fraccionaria: 0.5
 - \bullet 0.5 * 3 = 1.5
 - \bullet 0.5 * 3 = 1.5
 - = .11
 - $25.5)_{10} = 221.1)_3$

• Ejercicios las siguientes sentencias son correctas:

•
$$(1101)_2 = (9)_{10}$$

•
$$(1101)_2 > (11)_{10}$$

Ejemplo

El valor del número hexadecimal 1A3F₁₆:

$$1A3F_{16} = 1*16^3 + A*16^2 + 3*16^1 + F*16^0$$

$$1*4096 + 10*256 + 3*16 + 15*1 = 6719$$

$$1A3F_{16} = 6719_{10}$$

Ejemplo

Por ejemplo, para expresar en hexadecimal el número binario 101001110011₂ bastará con tomar grupos de cuatro bits, empezando por la derecha, y reemplazarlos por su equivalente hexadecimal:

- $1010_2 = A_{16}$
- $0111_2 = 7_{16}$
- $0011_2 = 3_{16}$
- y, por tanto: 101001110011₂ = A73₁₆

En caso de que los dígitos binarios no formen grupos completos de cuatro dígitos, se deben añadir ceros a la izquierda hasta completar el último grupo. Por ejemplo:

 $101110_2 = 00101110_2 = 2E_{16}$

Ejemplo

$$101001011_2 = 513_8$$

Ejercicio 1:

Exprese en código binario, los números decimales siguientes:

- 191
- 25
- 67
- 99
- 135
- 276

Ejercicio 2:

 Indique cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio 3:

 Dados dos números binarios: 01001000 y 01000100 ¿Cuál de ellos es el mayor? ¿Podría compararlos sin necesidad de convertirlos al sistema decimal?

Ejercicio 4:

Convierte los siguientes números decimales en octales:

- 63₁₀
- 513₁₀
- · 119₁₀

Ejercicio 5:

Convierte al sistema hexadecimal los siguientes números decimales: 351910, 102410, 409510

Ejercicio 6:

Convierte al sistema decimal los siguientes números octales:

- · 45₈
- · 125₈
- · 625₈

Ejercicio 7:

Expresa en el sistema decimal las siguientes cifras hexadecimales:

- 2BC5₁₆
- 100₁₆
- 1FF₁₆

Ejercicio 8:

Convierte los siguientes números binarios en octales:

- 1101101₂
- 101110₂
- 11011011₂
- 101101011₂

Ejercicio 9:

Convierte a hexadecimales los siguientes números binarios:

• 1010100101011101010₂

• 111000011110000₂

1010000111010111₂

Ejercicio 10:

Realice las siguientes conversiones:

•
$$(F6)_{16} = (...)_2$$

•
$$(4B8)_{16} = (...)_2$$

•
$$(11011001001)_2 = (...)_{16}$$

http://forums.cisco.com/CertCom/game/binary_game_page.htm

Ejercicio 11:

 Complete la siguiente tabla, realizando las conversiones que corresponda.

Binario	Octal	Decimal	Hexadecimal	Base 4
10110110				
11000111				
11110001				
10001111				
11111111				
11011011				

Facultad de Ciencias Empresariales

