# Programozás alapjai C nyelv 9. gyakorlat

Szeberényi Imre BME IIT

<szebi@iit.bme.hu>

Programozás alapjai I. (C nyelv, gyakorlat)

© BME-IIT Sz.I.

2005.11.14.

### Rekurzió

- A feladat algoritmusa eleve rekurzív formában adott (ld: n!).
- A valójában nem rekurzív de valami hasznot húzunk a rekurzióból, pl. sorrend fordítás (ld: számkiíró).

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.

05.11.14

# Rekurzív algoritmus

- Megkeressük azt a legegyszerűbb esetet amiben a megoldás már magától értetődik.
- Megkeressük, hogy hogyan vezethető vissza ismételt egyszerűsítésekkel a legegyszerűbb esetre a feladat.

| Programozás alapiai I. | (C nyely, gyakorlat) | © BME-IIT Sz.I |
|------------------------|----------------------|----------------|

## Rekurzív algoritmus fajtái.

- Hogyan hívja önmagát
  - közvetlen (a hívja a-t)
  - közvetett (a hívja b-t és b hívja a-t)
- Hányszor, hány helyen hívja magát
  - egyszerű
  - többszörös

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

2005.11.14.

### Példa: n!

- Rekurzívan adott az algoritmus. (Ennek ellenére nem a rekurzió a leghatékonyabb megvalósítás.)
- n! = n \* (n-1)!, ha n > 1, egyébként 1.

```
long fakt(int n)
  if (n > 1)
    return(n*fakt(n-1));
  return(1);
```

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

### Példa: n! (2)



### Példa: számkiíró

Írjunk ki 3-as számrendszerben:

$$n = a_n * 3^n + a_{n-1} * 3^{n-1} + \dots + a_1 * 3^1 + a_0$$

- Ha elosztjuk 3-mal akkor a maradék adja az utolsó jegyet.
- Gond: ezt a jegyet kellene utoljára kiírni.
  - lehetne tárolni egy tömbben, de ....
- Megoldás: a rekurzív hívás után írunk ki (a rekurzív hívások során tárolódnak a már kiszámított jegyek).

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

Programozás alapjai I. (C nyelv, gyakorlat)

5.11.14.

# Példa: számkiíró (2) void harki(int n) { int e, m; m = n % 3; if (e = n / 3) harki(e); printf("%d", m); } csak visszatérés után írunk ki printf("%d", m);





# Algoritmus a legenda szerint

- "Átviszem a felső 99 korongot az ezüstrúdra, majd a 100. korongot átrakom az aranyrúdra. Ezután átviszem az ezüstrúdon levő korongokat az aranyrúdra."
- "Elég öreg vagyok, ezért inkább a tanítványomra bízom a 99 korong átrakását. Elegendő nekem a 100. korong mozgatása."

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.

05.11.14. -

# Hanoi tornyai folyt. Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I. 2005.11.14. -12-







### Hanoi tornyai folyt.

```
void Hanoi(int n, char forras, char cel, char seged)
{
    if (n > 0) {
        Hanoi(n-1, forras, seged, cel);
        printf("%d. korongot %c >> %c\n", n, forras, cel);
        Hanoi(n-1, seged, cel, forras);
    }
}
main()
{
        Hanoi(4, 'R', 'A', 'E');
        Hanoi(6, 'R', 'A', 'E');
}
Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.l. 2005.11.14. -16-
```

## Rekurzió összefoglalása

- A rekurzív algoritmusok sokszor kézenfekvőnek tűnnek, de nem biztos, hogy rekurzívan kapjuk a leghatékonyabb megoldást.
- Rekurzív algoritmus helyességét sokszor egyszerűbb belátni.
- A legtöbb rekurzió ciklussá alakítható.
- · Rekurzív adatszerkezetek

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz

05.11.14.

### Fa



typedef struct fa\_str {
 int i;
 struct fa\_str \*bal;
 struct fa\_str \*jobb;
} fa elem, \*fa poi;

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

2005.11.14

- 1

| - |      |      |  |  |
|---|------|------|--|--|
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
| _ |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      | <br> |  |  |
|   | <br> | <br> |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      | <br> |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
| _ |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |
|   |      |      |  |  |







### Feladat 1

- Olvassunk be a "binfa.txt" állományból file végéig egész számokat. Tároljuk az adatokat bináris fában!
- Keressünk meg egy adott elemet, és írjuk ki, hogy hányszor fordult elő!
- Írjuk ki nagyság szerint rendezve az adatokat és azok előfordulási számát!

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

2005.11.14.

### Vázlat (adatszerkezet)

```
typedef struct fa str {
                       /* értek */
  int i:
  int sz;
                       /* számláló */
  struct fa str *bal; /* bal mutató */
  struct fa_str *jobb; /* jobb mutató */
} fa elem, *fa poi;
```

Programozás alapjai I. (C nyelv, gyakorlat)

### Vázlat (algoritmus)

gyoker = NULL fp = állomány\_megnyitása() while folvas(fp, i) gyoker = faepit(gyoker, i) folvas(stdin, i) p = keres(gyoker, i)if (p!= NULL) elem kiirása else nem találtuk meg fakir(gyoker)

rogramozás alapjai I. (C nyelv, gyakorlat)

| - |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

# Alprogram spec. - faepit

### fa\_poi faepit(fa\_poi p, int i);

- A paraméterként kapott bináris fába felveszi az integer paraméterként kapott értéket. Azonos érték esetén növeli a számlálót.
- bemenet:
  - fa gyökerére mutató pointer. NULL, ha üres
  - felveendő érték
- kimenet:
  - függvényérték: fa gyökerére mutató pointer

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

2005.11.14.

- -b
- -k

### fa po

- -b
- k

| Alprogram spec folvas                                                                                                                                                                               |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| int folvas(FILE *fp, int *n); ( $\approx$ olvas 8. ea)                                                                                                                                              |          |
| <ul> <li>Integer értékű függvény, beolvassa a következő egészet a paraméterként kapott állományból. A nem számjegy karaktereket eldobja.</li> </ul>                                                 |          |
| <ul> <li>bemenet:</li> <li>megnyitott állomány pointere</li> </ul>                                                                                                                                  |          |
| • pointer a kimenő adatra                                                                                                                                                                           |          |
| <ul> <li>kimenet:</li> <li>olvasott egész (pointer paraméter)</li> <li>függvényérték 1, ha sikerült az olvasás, egyébként 0</li> </ul>                                                              | -        |
| amozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I. 2005.11.14 26 -                                                                                                                              |          |
|                                                                                                                                                                                                     | <u> </u> |
| Alnyogyam snac kovos                                                                                                                                                                                |          |
| Alprogram spec keres                                                                                                                                                                                |          |
| Alprogram spec keres  fa_poi keres(fa_poi p, int i);                                                                                                                                                |          |
|                                                                                                                                                                                                     |          |
| fa_poi keres(fa_poi p, int i);  - Függvény, amely a paraméterként kapott bináris fában megkeres egy elemet.  - bemenet:                                                                             |          |
| fa_poi keres(fa_poi p, int i);  - Függvény, amely a paraméterként kapott bináris fában megkeres egy elemet.                                                                                         |          |
| fa_poi keres(fa_poi p, int i);  - Függvény, amely a paraméterként kapott bináris fában megkeres egy elemet.  - bemenet:  • fa gyökerére mutató pointer. NULL, ha üres  • keresett érték  - kimenet: |          |
| fa_poi keres(fa_poi p, int i);  - Függvény, amely a paraméterként kapott bináris fában megkeres egy elemet.  - bemenet:  • fa gyökerére mutató pointer. NULL, ha üres • keresett érték              |          |

## Alprogram spec. - fakir

### void fakir(fa\_poi p);

- A paraméterként kapott fa elemeit nagyság szerint kiírja.
- bemenet:
  - · fa gyökerére mutató pointer. NULL, ha üres
- kimenet: standard output

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

### Algoritmus - faepit

if a fa üres then új\_elemet\_veszünk\_fel else érték\_azonos then növeljük a számlálót else if kisebb elemet kell felvenni then bal részfát építjük jobb\_részfát\_építjük

Programozás alapjai I. (C nyelv, gyakorlat)

### Algoritmus - faepit

 Az építés algoritmusa rekurzív, ami nem meglepő, hiszen maga az adatszerkezet is rekurzív.

A fa és annak minden részfája

- vagy üres, vagy
- egy gyökérelemből és annak bal és jobb oldali részfájából áll.
- Nem feltétlenül rekurzív, de sokkal egyszerűbb.

| rogramozás alapjai I. (C nyelv, gyakorlat) | © BME-IIT Sz.I. | 2005.11.14. |  |
|--------------------------------------------|-----------------|-------------|--|
|                                            |                 |             |  |

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| • |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

### Implementáció - faepit

· A tömörebb írásmód miatt vezessük be a new makrót, ami megfelelő méretű helyet foglal, és hibát is kezel (visszatér NULL-lal):

```
pointer változó
```

tárolandó objektum típusa

```
#define new(p, obj)\(\)
  if ((p = malloc(sizeof(obj))) == NULL) return(NULL)
```

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

### Implementáció - faepit

```
fa poi faepit(fa poi p, int i)
                                               p csak itt
                                                változik
    if (p == NULL)
     new(p, fa elem); p->bal = p->jobb = NULL;
     p->i=i; p->_{SZ}=1;
                                  bal részfán
    } else if (p->i == i)
                                    tovább
     p->sz++;
    else if (p->i > i)
     p->bal = faepit(p->bal, i);
                                             a változást
      p->jobb = faepit(p->jobb, i);
                                            visszaírjuk (!
   return(p);
ogramozás alapjai I. (C nyelv, gyakorlat)
                                                 2005.11.14.
```

### Algoritmus - keres

if a\_fa\_üres then nincs meg az elem else érték azonos then megtaláltuk else if a keresett elem kisebb then bal részfában keresünk else jobb részfában keresünk

Programozás alapjai I. (C nyelv, gyakorlat)

2005.11.14.

|        |   | _      |
|--------|---|--------|
| _      |   |        |
|        |   |        |
|        |   | <br>-  |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   |        |
|        |   | _      |
|        |   |        |
| - 32 - |   | <br>_  |
|        |   |        |
|        |   |        |
|        |   |        |
|        |   |        |
|        |   |        |
|        | 1 |        |
|        |   |        |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   |        |
|        |   | _      |
|        |   |        |
|        |   | <br>_  |
|        |   |        |
|        |   |        |
|        |   |        |
|        | , | -      |
| 22     |   | _      |
| - 33 - |   | -<br>- |
| - 33 - |   | _      |

## Implementáció - keres

# Algoritmus - fakir if fa\_nem\_üres then begin kiírjuk\_a\_bal\_részfát kiírjuk\_az\_elemet kiírjuk\_a\_jobb\_részfát end 3 31 22 5 22 91 Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.l. 2005.11.14. -35-

# Implementáció - fakir

```
\label{eq:void fakir} \begin{tabular}{ll} void fakir(fa\_poi\ p) & \\ & if\ (p\ !=\ NULL)\ \{ & fakir(p-\ bal); & /*\ bal\ r\'eszfa\ */\ printf("0\%5d\%6d\n",\ p-\ i,\ p-\ sz); & fakir(p-\ jobb); & /*\ jobb\ r\'eszfa\ */\ \} & \\ & \} & \\ \end{tabular}
```

### Implementáció - olvas

```
\label{eq:continuous} \begin{split} & \text{int olvas}(\text{FILE *fp, int *i}) \\ & \{ \\ & \text{int r ;} \\ & \text{while } ((r = \text{fscanf(fp, "'0%d", i)}) == 0) \\ & \text{fscanf(fp, "'0%*c");} \\ & \text{return(r != EOF);} \\ & \} \end{split}
```

### Implementáció - program

### Implementáció - program

### Feladat 2

- Keressünk a fában nem rekurzív algoritmussal! (A legtöbb esetben a rekurzió ciklussá alakítható.)
- "Rajzoljuk" ki a fát!

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

2005.11.14.

### Algoritmus - keres

```
if a fa üres then
   nincs_meg_az_elem
else érték azonos then
   megtaláltuk
else if a keresett elem kisebb then
   bal részfában keresünk
   jobb_részfában_keresünk
```

Programozás alapjai I. (C nyelv, gyakorlat)

### Implementáció - keres2

```
fa_poi keres2(fa_poi p, int i)
                                             ciklus
     while (p != NULL) {
                                        elhagyása, mert
                                          megtaláltuk
        if (p->i == i)
          break; -
        if (p->i > i)
          p = p->bal;
        else
                                      megtaláltuk,
          p = p - jobb;
                                      vagy NULL
     return(p); -
rogramozás alapjai I. (C nyelv, gyakorlat)
```

### Alprogram spec. - farajz

void farajz(fa\_poi p, int m);

- A paraméterként kapott bináris fát "kirajzolja" a paraméterként kapott margóval.
- bemenet:
  - fa gyökerére mutató pointer. NULL, ha üres
  - · margó
- kimenet:
  - 90 fokkal elforgatott "rajz" a fa elemeiről.

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

2005.11.14.

## Algoritmus - farajz

if fa nem üres then begin növeljük\_a\_margót kiírjuk\_a\_jobb\_részfát kiírjuk a margót kiírjuk az elemet kiírjuk a bal részfát csökkentjük\_a\_margót end

Programozás alapjai I. (C nyelv, gyakorlat)

### Implementáció - farajz

```
void farajz(fa poi p, int m)
                             növeljük
  if (p != NULL)
                                               (m-1)*5 szóköz
                              a szintet
       farajz(p->jobb, m); jobb részfa */printf("%*$%5d\n", (m-1)*5, "", gy->i);
       farajz(p->bal, m);
                                      /* bal részfa */
                           csökkentjük
                             a szintet
```

rogramozás alapjai I. (C nyelv, gyakorlat)

## Próbafuttatás eredménye

Input: (file) 20 30 25 10 7 8 5 4 31 20 30 9 7 7 7 7

Input: (standard)

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT Sz.I.

| 7: |   | 5 |
|----|---|---|
| 4  | 1 |   |
| 5  | 1 |   |
| 7  | 5 |   |
| 8  | 1 |   |
| 9  | 1 |   |
| 10 | 1 |   |
| 20 | 2 |   |
| 25 | 1 |   |
| 30 | 2 |   |
| 31 | 1 |   |
|    |   |   |

| 31          |
|-------------|
| 30          |
| 25          |
| 20          |
| 10          |
| 9           |
| \ _8        |
| 7           |
| 5           |
| 4           |
| 2005.11.14. |

# Összefoglalás

- A keresés gyorsítása érdekében a láncolt adatszerkezetet fába rendeztük.
- Fa: az adatszerkezet az egyes elemeknél elágazhat.
- Kétfelé ágazó fákat bináris fának nevezzük.
- A bináris fa és annak minden részfája vagy üres, vagy a gyökérelemből és annak bal és jobboldali részfájából áll.

Programozás alapjai I. (C nyelv, gyakorlat) © BME-IIT S

5.11.14.

# Összefoglalás (2)

- Ha egy elemnek nincs utódja, akkor azt levélelemnek nevezzük.
- Ha az összes levél azonos szinten van, akkor a fa kiegyensúlyozott.
- Rekurzív adatszerkezet. Rekurzív algoritmusokkal egyszerűbb kezelni.

| A keresés az ele<br>logaritmusával a        | mek 2-es alap   | ρú          |     |
|---------------------------------------------|-----------------|-------------|-----|
| Programozás alapjai I. (C nyelv, gyakorlat) | © BME-IIT Sz.I. | 2005.11.14. | - 4 |
|                                             |                 |             |     |