KADI SARVA VISHWAVIDHYALAYA,

Gandhinagar

BE Semester-III (NOV 2013)

Mathematics -III (CC301A)

(DIFFERENTIAL EQUATION & INTEGRAL TRANSFORM)

Max Marks: 70 Duration: 3 hr.

[5]

[5]

Instruction: 1) Answer each section in separate Answer sheet.

- 2) Use of Scientific calculator is permitted.
- 3) All questions are compulsory.
- 4) Indicate clearly, the options you attempt along with its respective question number.
- 5) Use the last page of main supplementary for rough work.

Section I

- Solve following differential equations: [5] O.1 (i) (a) $(x^2-y^2)dx=2xy dy$ (b) $(1+y^2)dx=(tan^{-1}y-x) dy$ Find Laplace transform of (i) $f(t)=t \cos t$ (ii) $f(t)=e^{at} \cosh bt$ [5] (ii) [5] Solve partial differential equation $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos 2y$ (iii) Solve differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x}sinx$. [5] (iii) [5] Solve by the method of undetermined coefficient Q.2 (i) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x \sin x.$ Obtain the Fourier series for the function $f(x)=2x+1, -\pi < x < \pi$ (ii) [5] Solve by the method of variation of parameter [5] (i) $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ [5] Find Z-transform of the function $f(k) = \cos \alpha k$. (ii)
 - $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = x^3$ **OR**

(i)

(ii)

Q.3

Using Convolution theorem, find $L^{-1}\left\{\frac{1}{s^2(s-1)}\right\}$.

Solve Cauchy Euler differential equation

- Find the Fourier transform of $f(t) = \begin{cases} e^{-at} & for \ t > 0, & a > 0 \\ 0 & for \ t < 0, & a > 0 \end{cases}$ [5] (i) [5] (ii) Form PDE from z=y+f(x+ln, y). Section II Q.4 (i) Find the orthogonal trajectories of the family of rectangular [5] hyperbolas $x^2-y^2=a^2$. Find Laplace transform of $f(t)=(1-e^{-t})/t$. [5] (ii) Solve $y'' + 4y' + 3y = 4e^{-x}$ given that y=0, y'=2 when x=0. (iii) [5] [5] (iii) If $Z\{f(k)\}=F(z)$ then Prove that (i) $Z\{k \ f(k)\}=-z(d/dz)F(z)$ (ii) $Z\{a^k \ f(k)\}=-F(z/a)$ [5] Solve by Exactness method $x^2 e^y dx + \frac{x^3 e^y}{3} dy = 0$ Q.5 (i) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = 3x^2$. [5] (ii) Define Laplace transform and write any two properties of it. [5] (i) Find the Fourier cosine and sine transform of $f(x)=e^{-ax}$, a>0. [5] (ii) [5] Q.6 (i) Solve by the general method $\frac{d^2y}{dx^2} + y = \csc x$. Find the Fourier series of $f(x) = \begin{cases} x, & -\frac{\pi}{2} < x < -\frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$ [5] (ii)
 - (i) Solve $xy^2p + x^2y = (x^2-y^2)z$ [5]
 - (ii) Solve (a) $L^{-1} \left[\frac{s+10}{s^2-s-2} \right]$ [5]

BEST OF LUCK

Exam Seat no.

KADI SARVA VISHWAVIDHYALAYA,

Gandhinagar

BE Semester-III (NOV 2014) Mathematics -III (CC301A)

(DIFFERENTIAL EQUATION & INTEGRAL TRANSFORM)

Max Marks: 70 Duration: 3 hr.

Instruction: 1) Answer each section in separate Answer sheet.

- 2) Use of Scientific calculator is permitted.
- 3) All questions are compulsory.
- 4) Indicate clearly, the options you attempt along with its respective question number.
- 5) Use the last page of main supplementary for rough work.

Section I

- Q.1 (i) Find Laplace transform of (i) $f(t) = e^{-3t} t^2 \sin 2t$ [5]
 - (ii) $f(t) = \begin{cases} 0, & 0 \le t \le 2 \\ 3, & when t \ge 2 \end{cases}$
 - (ii) Solve following differential equations: [5]
 - (a) (x+y)ydx+(y-x)dy=0 (b) $\frac{dv}{dx} = \left(\frac{x+y+1}{x+y+3}\right)^2$
 - (iii) Find the Fourier sine transform of $f(x)=e^{-2x}+e^{-3x}$, x>0 [5]
 - (iii) Solve following Partial differential equation [5] $\frac{\partial^2 z}{\partial x^2} 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+y}$
- Q.2 (i) Solve Cauchy Euler differential equation $x^{2} \frac{d^{2}y}{dx^{2}} x \frac{dy}{dx} + 2y = x \log x$ [5]
 - (ii) Find Z-transform of the function $f(k)=2^k\cos(3k+2)$ [5]
 - (i) Solve by the method of variation of parameter [5] $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 3x^{3/2} e^{x}$
 - (ii) Obtain the Fourier series for the function $f(x)=\sin \alpha x$, $-\pi < x < \pi$. [5]

Q.3 (i) Form PDE from
$$z=f(x+iy)+g(x-iy)$$
 [5]
(ii) Find the orthogonal trajectories of the cordioid $r=a(1+\cos\theta)$ [5]
(i) Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = xe^{4x}$. [5]
(ii) Find $L^{-1}\left\{\frac{2s^2-6s+5}{(s-1)(s-2)(s-3)}\right\}$. [5]
Section II
Q.4 (i) Solve $y'' - 4y = 2e^{2t} + e^4$ given that $t=0$, $y=0$ by Laplace [5] Transform.
(ii) Find the Fourier half range cosine series of $f(x)=c-x$ with [5] period 2c.
(iii) Solve $\frac{dy}{dx} + y = e^{-x}$, given that $y(1)=4$. [5]
(iii) Solve $px+qy=pq$ [5]
Q.5 (i) Solve by the method of undetermined coefficient $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = e^{3x}$. (ii) Define Convolution theorem and evaluate $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$. [5]
(i) Find Z-transform of following function $f(x)=3(2^k)-4(3^k)$, $k\ge 0$
(ii) Compute $L(f(1))$ if $F(1)=\left\{\frac{sint}{n} = 0 < t < \pi \\ n < t < 2\pi \end{aligned}$ extended periodically with period 2π . [5]
(ii) Solve $(D-3D'-2)^2z = 2e^{2x} \tan(y + 3x)$ [5]
(ii) $y''-2ky'+k^2=e^x$, $k\ne 1$ [5]
(ii) Using Fourier integral formula, show that: $\int_0^\infty \frac{\cos \lambda x}{\lambda^2+a^2} d\lambda = \frac{\pi}{2a}e^{-ax}$

		Exam Seat No:	
664		KADI SARVA VISHWAVIDYALAYA B.E 3 rd SEMESTER EXAMINATION (NOV 2015) SUBJECT: Differential equations and Integral Transforms (Code: CC301A)	
		:27/11/2015 Time: 3 hour Marks: 70	
	 Ans Use All Indi 	oction: wer each section in separate Answer Sheet. of scientific Calculator is permitted. questions are compulsory. cate clearly, the option you attempted along with its respective question number. the last page of main supplementary for rough work.	
		$\underline{\underline{\mathbf{Section:1}}}$	
Q.	1 (a)	Solve the differential equation $\frac{dy}{dx} = (4x + y)^2$.	[05
	(b)	By using convolution theorem. Find inverse Laplace transform of $\frac{1}{s^2(s+1)^2}$.	[05
	(c)	Solve the following partial differential equation.	[05
		(i) $q(1+p) = pz$ (ii) $p+q = e^x + e^y$	
		OR The state of th	
	(c)	Find fourier series to represent the function $f(x) = \pi^2 - x^2$ in the interval $-\pi \le x \le \pi$ and $f(x+2\pi) = f(x)$.	[05]
Q.:	2 (a)	Obtain Laplace transformation of following.	[05
		(i) $L\left[e^{-4t}\int\limits_0^t t\sin 3tdt\right]$.	
	(b)	Solve the differential equation $(D^3 - 4D)y = 2\cosh^2(2x)$.	[05
		<u>OR</u>	
Q.:	2 (a)	Solve the differential equation $(D^3 + 3D^2 + 2D)$ $y = x^2 + 4x + 8$ by using method of undetermined coefficients.	[05]
	(b)	Find the orthogonal trajectories of the family of semicubical parabolas $ay^2 = x^3$.	[05]
Q.:	3 (a)	Solve the partial differential equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 2\frac{\partial^2 z}{\partial y^2} = \sin(x + 3y)$	[05]
	(b)	Find the inverse Z -transform of $\frac{z^2}{(z-1)(z-\frac{1}{2})}$ for	[05]
[60]		(i) $ z > 1$ (ii) $ z < \frac{1}{2}$	
		OR STATE OF THE PROPERTY OF TH	
Q.:	3 (a)	Expand $f(x) = lx - x^2$, $0 \le x \le l$ in a half rang cosine series.	[05]
	(b)	Solve $\frac{dy}{dx} + y = \cos 2t$, where $y(0) = 1$ by using laplace transform.	[05]

Section:2

Q.4 (a) Find the following laplace inverse transform.

[05]

- (i) $L^{-1} \left[\frac{s-1}{s^2-6s+25} \right]$
- (b) Define linear differential equation and also Solve $\frac{dy}{dx} + \frac{4x}{1+x^2} y = \frac{1}{(x^2+1)^3}$. [05]
- (c) Find the fourier integral representation of the function $f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ [05] and hence evaluate following.
 - (i) $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda}$
 - (ii) $\int_{0}^{\infty} \frac{\sin \lambda}{\lambda}$

OR

(c) Solve $x(y^2+z)p - y(x^2+z)q = z(x^2-y^2)$ by Lagrange method.

[05]

Q.5 (a) Find the Z-transform of the following function

[05]

(i) $a^k \sin \alpha k$, $k \ge 0$

(b) Solve the differential equation $(D^3 + 3D^2 - 4D - 12)y = 12 xe^{-2x}$

[05]

OR

- Q.5 (a) Solve $u_{xx} + u_{yy} = 0$ which satisfies the boundary condition u(0, y) = u(a, y) = 0 for [05] $0 \le y \le b$ and u(x, b) = 0, u(x, 0) = f(x) for $0 \le x \le a$.
 - (b) Evaluate the following

05

- (i) $L[t^4U(t-2)]$
- (ii) $L^{-1} \left[\frac{e^{-3s}}{(s-2)^4} \right]$.
- Q.6 (a) Solve the differential equation $(D^2 + 1)$ y = cosec(x) by using method of variation of [05] parameters.
 - (b) Define fourier series of function and also find the fourier transform of $f(x) = e^{-4x^2}$ [05]

OR

Q.6 (a) Solve the differential equation $x^2 \frac{d^2y}{dx^2} + 6x \frac{dy}{dx} + 6y = x \log x$. [05]

(b) Define necessary condition for Exact differential equation and solve differential equation $(y^2e^{xy^2}+4x^3)dx+(2xye^{xy^2}-3y^2)dy=0$ [05]

来来来来来