Aula 02 Fundamentos da Usinagem

Prof. Dr. Eng. Rodrigo Lima Stoeterau

Tópicos

- Relações que envolvem a qualidade de uma peça usinada
- Geometria da cunha de corte
- Solicitações na cunha de corte: mecânicas e térmicas
- Influências da Geometria da Ferramenta
- Cavacos:
 - → mecânismo de formação,
 - → tipos,
 - → relação entre propriedade dos materiais e formação do cavaco
 - → gume postiço

Relações que envolvem a qualidade de uma peça usinada

Relações que envolvem a qualidade de uma peça usinada

Relações que envolvem a qualidade de uma peça usinada

Cinemática Geral dos Processos de Usinagem

Os processos de usinagem necessitam de um movimento relativo entre peça e ferramenta.

Grandezas do processo de usinagem

Onde:

 χ_{Γ} - ângulo de direção do gume

ap - Profundidade de corte

f - Avanço

b - largura de usinagem

h - Espessura de usiangem

ap *f = seção de usinagem

b * h = seção de usinagem

Geometria da Cunha de Corte

Geometria da Cunha de Corte

→ Para cada par material de ferramenta / material de peça têm uma geometria de corte apropriada ou ótima

A geometria da ferramenta influência na:

- Formação do cavaco
- Saída do cavaco
- Forças de corte
- Desgaste da ferramenta
- Qualidade final do trabalho

Geometria da Cunha de Corte

Geometria da ferramenta de tornear

 α = ângulo de incidência

 β = ângulo de cunha

 γ = ângulo de saída

 ε = ângulo de quina

 χ = ângulo de direção

 λ = ângulo de inclinação

 r_{ε} = raio de quina

Planos da ferramenta de corte

Sistema ferramenta na mão

Planos da ferramenta de corte

Sistema ferramenta na máquina

Denominações para as ferramenta de furar

Denominações para as ferramenta de fresar

Tipos de quinas

Fatores considerados na escolha da geometria da ferramenta

- Material da ferramenta
- Material da peça
- Condições de corte
- Tipo de operação
- Geometria da peça

Influências da Geometria da Ferramenta

Solicitações na cunha de corte

Consequência dos esforços na de Ferramenta

Forças de usinagem

Força de usinagem= f(condições de corte (f, v_c , a_p), geometria da ferramenta (χ , γ , λ), desgaste da ferramenta)

Onde:

F_C = Força de corte

F_f = Força de avanço

F_p = Força de avanço

 F_c e F_f ~ 250 a 400 N/mm 2 - aços de construção mecânica

F_C e F_f ~1100 N/mm² - materiais de difícil usinabilidade

Subdivisão do trabalho efetivo na usinagem

