Unidade III:

Fundamentos de Análise de Algoritmos

Exercício Resolvido (1):

Resolva as equações abaixo:

1. 2¹⁰ = 1024

2. lg(1024) = 10

= 4.087463 3. lg(17)

4. teto lg(17) = 5

5. piso lg(17) = 4

Exercício Resolvido (2):

Plote um gráfico com todas as funções abaixo:

:

:

:

:

a) $f(n) = n^3$

b) $f(n) = n^2$

c) f(n) = n*lg(n)

d) f(n) = n

e) f(n) = sqrt(n)

f) f(n) = Ig(n)

Resposta:

Exercício Resolvido (3):

Calcule o número de subtrações que o código abaixo realiza:

```
for (int i = 0; i < n; i++){
    if (i % 2 == 0){
        a--;
        b--;
    } else {
        c--;
    }
}
```

Resposta:

```
Melhor caso: f(n) = n (O(n), \Omega(n) e \Theta(n))
Pior caso: f(n) = 2n (O(2n), \Omega(2n) e \Theta(2n))
```

Exercício Resolvido (4):

Calcule o número de subtrações que o código abaixo realiza:

Resposta:

Haverá n-3 subtrações, logo Θ(n-3)

Exercício Resolvido (5):

Calcule o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Resposta:

Quando n for potência de 2 haverá lg(n) + 1 multiplicações.

Quando n não for potência de 2 haverá piso (lg(n)) + 1 multiplicações.

Exercício Resolvido (6):

Outra forma de compreender o código anterior é executando o mesmo:

```
class Log {
    public static void main (String[] args) {
        int[] n = {4,5,6,7,8,9,10,11,12,13,14,15,16,17,31,32,33,63,64,65};
        int cont;

        for(int k = 0; k < n.length; k++){
            System.out.print("\n[n = " + n[k] + "] => ");
            cont = 0;
            for(int i = n[k]; i > 0; i /= 2){
                 System.out.print(" " + i);
                 cont++;
            }
                 System.out.print(" (" + cont + " vezes)");
            }
            System.out.print("\n");
        }
}
```

Resposta:

Código pode ser encontrado na pasta exercicios_praticos

Exercício Resolvido (7 - 8):

Encontre o menor valor em um array de inteiros:

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

- 1. Qual é a operação relevante?
 - R. Comparação de arrays
- 2. Quantas vezes ela será executada?
 - R. Será executada n-1 vezes.
- 3. O nosso T(n) = n 1 é para qual dos três casos?
 - R. Para os três casos.
- 4, o nosso algoritmo é ótimo? Por que?
 - R. Sim, porque o melhor caso é igual ao pior e o caso médio.

Exercício:

Monte a função de complexidade (ou custo) do nosso churrasco:

- Carne: 400 gramas por pessoa (preço médio do kg R\$ 20,00 picanha, asinha, coraçãozinho ...)
 - Cerveja: 1,2 litros por pessoa (litro R\$ 3,80)
 - Refrigerante: 1 litro por pessoa (Garrafa 2 litros R\$ 3,50)

Resposta:

```
f(n) = 4/10 * 20 * n + 1.2 * 3.8 * n + 3.5/2 * n

f(n) = n(4/10 * 20 + 1.2 * 3.8 + 3.5/2)

f(n) = n * 14.31
```

Exercício Resolvido (9):

Responda:

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
      resp = true;
      i = n;
    }
}</pre>
```

- a) Qual é a operação relevante?
 - R. Comparação entre elementos do array
- b) Quantas vezes ela será executada?

```
R. Melhor caso - f(n) = 1
Pior caso - f(n) = n
Caso médio - f(n) = (n+1)/2
```

- c) O nosso algoritmo é o melhor?
 - **R.** Depende, caso saibamos que o array está ordenado, não, neste caso é possível fazer a pesquisa binaria.

Caso contrário, sim, pois devemos percorrer todos elementos até acharmos o elemento desejado.

Exercício Resolvido (10):

Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

Resposta:

O aluno deve escolher a primeira opção, pois ela tem o consumo de O(n), enquanto a segunda opção tem o custo de O(n*lg n) para a ordenação e O(lg n) para pesquisa binaria.

Exercício Resolvido (11):

Responda se as afirmações são verdadeiras ou falsas:

```
a) 3n^2 + 5n + 1 \notin O(n) = falsa
```

b) $3n^2 + 5n + 1 \neq O(n^2)$ = verdadeiro

c)
$$3n^2 + 5n + 1 \text{ é } O(n^3)$$
 = verdadeiro

d) $3n^2 + 5n + 1 \in \Omega(n)$ = verdadeiro

e) $3n^2 + 5n + 1 \in \Omega(n^2)$ = verdadeiro

f) $3n^2 + 5n + 1 \in \Omega(n^3)$ = falsa

g) $3n^2 + 5n + 1 \in \Theta(n)$ = falsa

h) $3n^2 + 5n + 1 \in \Theta(n^2)$ = verdadeiro

i) $3n^2 + 5n + 1 \in \Theta(n^3)$ = falsa

Exercício Resolvido (12):

Apresente a função e a complexidade para os números de comparações e movimentações de registros para o pior e melhor caso.

Resposta:

Função de complexidade:

	Comparações	Movimentações			
Melhor caso	f(n) = n-1	f(n) = 2			
Pior caso	f(n) = 1+2(n-2)	f(n) = 2+(n-2)			

Complexidade:

	Comparações	Movimentações				
Melhor caso	Θ(n)	Θ(1)				
Pior caso	Θ(n)	Θ(n)				

Exercício Resolvido (13):

Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso.

```
i = 0;
while (i < n) {
    i++;
    a--;
}
if (b > c) {
    i--;
} else {
    i--;
    a--;
}
```

Resposta:

Função de complexidade:

	Subtrações
Melhor caso	f(n) = n + 1
Pior caso	f(n) = n + 2

Complexidade:

	Subtrações
Melhor caso	Θ(n)
Pior caso	Θ(n)

Exercício Resolvido (14):

Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso.

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

Resposta:

Função de complexidade:

	Subtrações
Melhor caso	f(n) = n(2n + 1)
Pior caso	f(n) = n(2n + 1)

Complexidade:

	Subtrações
Melhor caso	Θ(n²)
Pior caso	Θ(n²)

Exercício Resolvido (15):

Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso.

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```

Resposta:

Função de complexidade:

	Subtrações			
Ambos	f(n) = n*lg(n) + n			

Complexidade:

	Subtrações
Ambos	Θ(n*lg(n))

Exercício Resolvido (16):

Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n		\		
1				
(3/2)n		\		
2n³			/	
2 ⁿ				
3n ²			$\overline{}$	
1000				
(3/2) ⁿ				

Exercício Resolvido (17):

Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado).

Resposta:

Exercício Resolvido (18):

Classifique as funções $f_1(n) = n.log_6(n)$, $f_2(n) = lg(n)$, $f_3(n) = log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

Resposta:

Exercício Resolvido (19):

Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de Θ . Essa correspondência acontece quando f(n) = $\Theta(g(n))$ (Khan Academy, adaptado)

f(n)	g(n)		
n + 30	n ⁴		
n ² + 2n - 10	3n - 1		
n³ . 3n	lg(2n)		
lg(n)	n² + 3n		

Resposta:

f(n)	g(n)
n+30	3n - 1
n ² + 2n - 10	n ² + 3n
n ³ *3n	n ⁴
lg(n)	lg(2n)

Exercício (1):

Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução.

Função de complexidade:

$$F(n) = n-1 => O(n)$$

Obs.

O código, Exer_01.java se encontra na pasta exercícios_praticos.

Exercício (2):

Considerando o problema de encontrar o maior e menor valores em um array de inteiros, veja os quatro códigos propostos e analisados no livro do Ziviani.

Exercício (3):

Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n*lg(n)))	O(n ²)	$O(n^3)$	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)	F	V	V	V	V	V	٧	V
f(n) = n * lg(n)	F	F	F	V	V	V	٧	V
f(n) = 5n + 1	F	F	V	V	V	V	٧	V
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	٧	٧
$f(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	٧	٧
$f(n) = n^5 - 99999n^4$	F	F	F	F	F	F	V	V

Exercício (4):

Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	$\Omega(n)$	$\Omega(n^*lg(n)))$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^5)$	$\Omega(n^{20})$
f(n) = Ig(n)	V	V	V	F	F	F	F	F
f(n) = n * lg(n)	V	V	V	F	F	F	F	F
f(n) = 5n + 1	V	V	V	F	F	F	F	F
$f(n) = 7n^5 - 3n^2$	V	V	V	V	V	V	V	F
$f(n) = 99n^3 - 1000n^2$	V	V	V	V	V	V	F	F
$f(n) = n^5 - 99999n^4$	V	V	V	V	V	V	V	F

Exercício (5):

Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	Θ(lg n)	Θ(n)	Θ(n*lg(n)))	Θ(n ²)	Θ(n ³)	Θ(n ⁵)	Θ(n ²⁰)
f(n) = Ig(n)	F	F	V	F	F	F	F	F
f(n) = n * lg(n)	F	F	V	F	F	F	F	F
f(n) = 5n + 1	F	F	V	F	F	F	F	F
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	٧	F
$f(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	F	F
$f(n) = n^5 - 99999n^4$	F	F	F	F	F	F	٧	F

Exercício (6):

Dado $f(n)=3n^2-5n-9$, $g(n)=n^*lg(n)$, $l(n)=n.lg^2(n)$ e $h(n)=99n^8$, qual é a ordem de complexidade das operações:

a)
$$f(n) + g(n) - h(n) = O(n^8)$$

b)
$$O(f(n) + O(g(n)) - O(h(n)) = O(n^8)$$

c)
$$f(n) \times g(n) = O(n^2 * n) = O(n^3)$$

d)
$$g(n) \times I(n) + h(n) = O(n * n) + O(n^8) = O(n^8)$$

e)
$$f(n) \times g(n) \times I(n)$$
 = $O(n^2 * n * n^8) = O(n^{11})$

f)
$$O(O(O(O(f(n)))))$$
 = $O(n^2)$

Exercício (7):

Dada a definição da notação O:

- Mostre um valor c e outro m tal que, para $n \ge m$, $|3n2+5n+1| \le c x$ |n2|, provando que $3n2+5n+1 \notin O(n2)$
- Mostre um valor c e outro m tal que, para $n \ge m$, $|3n2 + 5n + 1| \le c x$ |n3|, provando que $3n2 + 5n + 1 \notin O(n3)$
 - Prove que 3n2 + 5n +1 não é O(n)

Exercício (8):

Dada a definição da notação Ω:

- Mostre um valor c e outro m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n2 + 5n + 1 \in \Omega(n2)$
- Mostre um valor c e outro m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n2 + 5n + 1 \in \Omega(n)$
 - Prove que 3n2 + 5n + 1 não é $\Omega(n3)$

Exercício (9):

Dada a definição da notação Θ:

- Mostre um valor para c1, c2 e m tal que, para $n \ge m$, c1 x $|f(n)| \le |g(n)| \le 2x |f(n)|$, provando que 3n2 + 5n +1 é $\Theta(n2)$
 - Prove que 3n2 + 5n + 1 não é $\Theta(n)$
 - Prove que 3n2 + 5n +1 não é Θ(n3)

Exercício (10):

Faça um resumo sobre Teoria da Complexidade, Classes de Problemas P, NP e NP-Completo. Use LaTeX e siga o modelo de artigos da SBC (sem abstract, resumo e seções) com no máximo duas página.

Exercício (11):

Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
    if (telefone() == true && luz() == true){
        alarme(0);
    } else {
        alarme(1);
    }
    for (int i = 2; i < n; i++){
        if (sensor(i- 2) == true){
            alarme (i - 2);
        } else if (camera(i- 2) == true){
            alarme (i - 2 + n);
    }
}</pre>
```

Resposta:

Função

	Melhor caso	Pior caso
а	a(n) = 1	a(n) = n - 1
Telefone()	t(n) = 1	t(n) = 1
Luz()	I(n) = 0	I(n) = 1
Sensor()	s(n) = n-2	s(n) = n-2
Câmera()	c(n) = 0	c(n) = n-2

Complexidade

	Melhor caso	Pior caso
а	Θ(1)	Θ(n)
Telefone()	Θ(1)	Θ(1)
Luz()	Θ(0)	Θ(1)
Sensor()	Θ(n-2)	Θ(n-2)
Câmera()	Θ(0)	Θ(n-2)

Exercício (12):

Apresente um código, defina duas operações relevantes e apresente a função e a complexidade para as operações escolhidas no pior e melhor caso.

Código:

```
static void quadrado(int a, int[] array){
    int temp;
    for(int i = 1; i < a; i++)
        for(int j = 0; j < a; j++){
        if(j == array[0]){
            temp = array[0];
            temp++;
            array[0] = temp;
        } // end if
    } // end quadrado()</pre>
```

Resposta:

Função:

Melhor e Pior caso:

COMP	f(n) = n(n-1)
MOV	f(n) = 2n

Complexidade:

Melhor e Pior caso:

```
O(n^2), \Theta(n^2), OMEGA(n^2)
```

Exercício (13):

No Exercício Resolvido (10), verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n * lg(n)) + \Theta(lg(n)) = \Theta(n * lg(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente

Resposta:

Caso seja desejado realizar **n** pesquisas, seria melhor fazer a ordenação dos elementos do array e depois realizar a **n** pesquisas.