Math 239 Spring 2014 Assignment 5 Solutions

1. $\{5 \text{ marks}\}\ \text{Let } \{a_n\}\ \text{be the sequence which satisfies}$

$$a_n - 7a_{n-1} + 15a_{n-2} - 9a_{n-3} = 0$$

for $n \geq 3$ with initial conditions $a_0 = 7, a_1 = 10, a_2 = 13$. Determine an explicit formula for a_n .

Solution. The characteristic polynomial is

$$x^3 - 7x^2 + 15x - 9 = (x - 3)^2(x - 1).$$

The root 3 has multiplicity 2, and the root 1 has multiplicity 1. So

$$a_n = (A + Bn) \cdot 3^n + C \cdot 1^n$$

for some constants A, B, C. Plugging in the initial conditions, we get

$$7 = A + C$$

 $10 = 3A + 3B + C$
 $13 = 9A + 18B + C$

Solving this gives us A=3, B=-1, C=4. So an explicit formula for a_n is

$$a_n = (3-n) \cdot 3^n + 4.$$

2. $\{5 \text{ marks}\}\ \text{Let } \{b_n\}\ \text{be the sequence which satisfies}$

$$b_n - 7b_{n-1} + 15b_{n-2} - 9b_{n-3} = 16 \cdot (-3)^n$$

for $n \ge 3$ with initial conditions $b_0 = 10, b_1 = -13, b_2 = 14$. Determine an explicit formula for b_n . (Note: This recurrence is similar to the one in question 1.)

Solution. We suppose that $c_n = \alpha(-3)^n$ is a specific solution to the recurrence. Then

$$c_n - 7c_{n-1} + 15c_{n-2} - 9c_{n-3} = \alpha(-3)^n - 7\alpha(-3)^{n-1} + 15\alpha(-3)^{n-2} - 9\alpha(-3)^{n-3}$$
$$= \alpha(-3)^{n-3}((-3)^3 - 7(-3)^2 + 15(-3) - 9)$$
$$= -144\alpha(-3)^{n-3} = -16\alpha(-3)^{n-1}.$$

This equals $16 \cdot (-3)^n$, so $\alpha = 3$. A specific solution is then $c_n = 3 \cdot (-3)^n$.

The characteristic polynomial is the same as part (a), so

$$b_n = 3 \cdot (-3)^n + (A + Bn) \cdot 3^n + C \cdot 1^n$$

for some constants A, B, C. Plugging in the initial conditions, we get

$$10 = 3 + A + C$$

$$-13 = -9 + 3A + 3B + C$$

$$14 = 27 + 9A + 18B + C$$

Solving this gives us $A = -\frac{23}{2}$, B = 4, $C = \frac{37}{2}$. So an explicit formula for b_n is

$$b_n = 3 \cdot (-3)^n + (-\frac{23}{2} + 4n) \cdot 3^n + \frac{37}{2}.$$

3. Consider the sequence $\{a_n\}$ where for each integer $n \geq 0$,

$$a_n = \frac{(1+\sqrt{3})^n - (1-\sqrt{3})^n}{2\sqrt{3}}.$$

(a) {3 marks} Derive a simplified rational expression for $A(x) = \sum_{n\geq 0} a_n x^n$. Solution.

$$\sum_{n\geq 0} a_n x^n = \sum_{n\geq 0} \frac{(1+\sqrt{3})^n - (1-\sqrt{3})^n}{2\sqrt{3}} x^n$$

$$= \frac{1}{2\sqrt{3}} \left(\sum_{n\geq 0} (1+\sqrt{3})^n x^n - \sum_{n\geq 0} (1-\sqrt{3})^n x^n \right)$$

$$= \frac{1}{2\sqrt{3}} \left(\frac{1}{1-(1+\sqrt{3})x} - \frac{1}{1-(1-\sqrt{3})x} \right)$$

$$= \frac{(1-(1-\sqrt{3})x) - (1-(1+\sqrt{3}x)}{2\sqrt{3}(1-(1+\sqrt{3})x)(1-(1-\sqrt{3})x)}$$

$$= \frac{2\sqrt{3}x}{2\sqrt{3}(1-2x-2x^2)}$$

$$= \frac{x}{1-2x-2x^2}.$$

(b) {3 marks} Use part (a) to prove that a_n is an integer for all $n \ge 0$.

Solution. From the power series in part (a), we see that a_n satisfies the recurrence $a_n - 2a_{n-1} - 2a_{n-2} = 0$ for $n \ge 2$ with initial conditions $a_0 = 0$ and $a_1 = 1$. Using strong induction, we see that for each $n \ge 2$, $a_n = 2a_{n-1} + 2a_{n-2}$, which is a sum of two integers. So a_n is an integer for all $n \ge 0$.

4. $\{4 \text{ marks}\}\$ Consider the sequence $\{a_n\}$ defined by $a_0 = -2$, $a_1 = 3$, and for $n \ge 2$,

$$a_n + 6a_{n-1} + 12a_{n-2} = 0.$$

The roots of the characteristic polynomial are complex. Convert them into polar form (with sines and cosines), and then derive an explicit formula for a_n that does not involve any imaginary parts. (Hint: $\sin(\theta) = -\sin(-\theta)$ and $\cos(\theta) = \cos(-\theta)$. Your final answer should look like ... (... $\cos \ldots + \ldots \sin \ldots$).)

Solution. The characteristic polynomial is $x^2 + 6x + 12$, which has roots $-3 \pm \sqrt{3}i$. In polar form, they are $2\sqrt{3}(\cos \pm \frac{5\pi}{6} + i\sin \pm \frac{5\pi}{6})$. Then a_n has the form

$$a_n = A \cdot (2\sqrt{3}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}))^n + B \cdot ((2\sqrt{3}(\cos\frac{-5\pi}{6} + i\sin\frac{-5\pi}{6}))^n.$$

Using de Moivre's Theorem and trigonometric properties, we see that

$$a_n = (2\sqrt{3})^n (A\cos\frac{5\pi}{6}n + Ai\sin\frac{5\pi}{6}n + B\cos\frac{-5\pi}{6}n + Bi\sin\frac{-5\pi}{6}n)$$

= $(2\sqrt{3})^n (A\cos\frac{5\pi}{6}n + Ai\sin\frac{5\pi}{6}n + B\cos\frac{5\pi}{6}n - Bi\sin\frac{5\pi}{6}n)$
= $(2\sqrt{3})^n ((A+B)\cos\frac{5\pi}{6}n + (A-B)i\sin\frac{5\pi}{6}n).$

Using initial conditions, we see that

$$a_0 = -2 = A + B$$

$$a_1 = 3 = 2\sqrt{3}((A+B)\cos\frac{5\pi}{6} + (A-B)i\sin\frac{5\pi}{6}$$

$$= 2\sqrt{3}(-2 \cdot \frac{-\sqrt{3}}{2} + (A-B)i\frac{1}{2})$$

$$= 6 + (A-B)i\sqrt{3}.$$

This gives us $A - B = \frac{-3}{\sqrt{3}i} = -\sqrt{3}i$. So an explicit formula for a_n is

$$a_n = (2\sqrt{3})^n (-2\cos\frac{5\pi}{6}n - \sqrt{3}\sin\frac{5\pi}{6}n).$$

5. For each $n \in \mathbb{N}$, let a_n be the total number of blocks among all 2^n binary strings of length n. For example, $a_1 = 2$, and $a_2 = 6$ (each of the strings 00, 11 has 1 block, and each of the strings 01, 10 has 2 blocks, for a total of 6 blocks).

(a) {2 marks} Let S_n be the set of all binary strings of length n. For $n \geq 2$, we split S_n into two sets A_n and B_n in the following way: let A_n be strings of length n where the last block has length 1; let B_n be strings of length n where the last block has length at least 2. We define two functions $f: A_n \to S_{n-1}$ and $g: B_n \to S_{n-1}$ where both functions take the input string and remove the last bit. Prove that these are bijections by determining the inverses for both functions.

Solution. For $f^{-1}: S_{n-1} \to A_n$, for each string $s \in S_{n-1}$, $f^{-1}(s)$ adds one bit at the end that is different from the last bit of s. For $g^{-1}: S_{n-1} \to B_n$, $g^{-1}(s)$ adds one bit at the end that is the same as the last bit of s

(b) $\{2 \text{ marks}\}\$ Use part (a) to derive the following recurrence for $n \geq 2$:

$$a_n = 2a_{n-1} + 2^{n-1}$$
.

Solution. For each $s \in A_n$, the corresponding string f(s) has one fewer block than s. So the sum over all the blocks over all strings in A_n is a_{n-1} plus the number of strings in A_n , which is 2^{n-1} . For each $s \in B_n$, the corresponding string g(s) has the same number of block as s. So the sum over all the blocks over all strings in B_n is a_{n-1} . In total, the number of blocks in S_n is $a_n = 2a_{n-1} + 2^{n-1}$.

(c) $\{3 \text{ marks}\}\$ Solve for an explicit formula for a_n .

Solution. The characteristic polynomial is x-2, so it has one root 2. The homogeneous part of the recurrence has the form $A \cdot 2^n$.

To find a specific solution to the nonhomogeneous recurrence, we cannot use $b_n = \alpha 2^n$, as 2 is a root of the characteristic polynomial. So we try $b_n = \alpha n 2^n$. Then

$$b_n - 2b_{n-1} = \alpha(n2^n - 2(n-1)2^{n-1}) = \alpha(n2^n(n-1)2^n) = \alpha 2^n.$$

So $\alpha = 1/2$. So a specific solution is then $b_n = n2^{n-1}$. For a_n , an explicit formula has the form

$$a_n = n2^{n-1} + A \cdot 2^n$$

Using $a_1 = 2$, we get A = 1/2. So an explicit formula is

$$a_n = (n+1)2^{n-1}.$$