Neuronske mreže: Stroj s potpornim vektorima (SVM)

Prof. dr. sc. Sven Lončarić Doc. dr. sc. Marko Subašić

Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu

http://www.fer.hr/predmet/neumre_b

Pregled predavanja

- Problem kalsifikacije linearno separabilnih klasa
- Margina razdvajanja
- Vektori potpore
- Klasifikacija linearno neseparabilnih klasa
- Nelinearno preslikavanje u prostor značajki

Uvod

- Sličnost sa višeslojnim perceptronom i radijalnom mrežom
 - Feed forward mreža
 - Primjena u klasifikaciji i nelinearnoj regresiji
 - Inherentno dobra generalizacijska svojstva
- Razlike
 - Treniranje SVM-a se ne provodi iterativno s pojedinim uzorcima za treniranje
 - SVM minimizira broj uzoraka za treniranje unutar margine MLP minimizaira prosječnu kvadratnu pogrešku
- Generalni algoritam za treniranje feedforward neuronskih mreža
- Feedforward mreža s jednim nelinearnim skrivenim slojem

Cilj

- Klasifikacija uzoraka dviju klasa
- Pronalazak ravnine razdvajanja dviju klasa koja maksimizira margine razdvajanja
- Ravninu razdvajanja definirati pomoću "ključnih" uzoraka za treniranje – potpornih vektora

Razdvajanje linearno separabilnih klasa

- Jednostavan problem
- Kompleksnije probleme možda možemo svesti na ovaj jednostavniji...

Razdvajanje linearno separabilnih klasa

- Jednadžba hiperravnine
 - w vektor težina, x ulazni vektor, b pomak

Razdvajanje linearno separabilnih klasa

- Postoji više mogućih ravnina razdvajanja
- Koja je najbolja?

Margina razdvajanja

- Udaljenost od hiperravnine do najbližeg uzorka
 x_i bilo koje klase
- SVM-a traži optimalnu ravninu razdvajanja (\mathbf{w}_{\circ} i b_{\circ}) koja maksimizira marginu razdvajanja ρ

Vektori potpore

- Vektori potpore \mathbf{x}_i takvi da je $\mathbf{w}_o^T \mathbf{x}_i + b_o = \pm 1$
 - Najbliži ravnini razdvajanja
 - Najteže ih je klasificirati
 - Najbitniji za određivanje w_o i b_o

Ravnina razdvajanja

Ravnina razdvajanja

$$\mathbf{w}_{o}^{T}\mathbf{x}+b_{o}=0$$

Diskriminacijska funkcija

$$g(\mathbf{x}) = \mathbf{w}_o^T \mathbf{x} + b_o$$

 Ovisno o predznaku određuje pripadnost pojedinoj klasi ovisno o predznaku

Udaljenost od ravnine razdvajanja

- Pozicija uzorka x izražena preko projekcije x-a na ravninu razdvajanja x_ρ i udaljenosti r
- r određuje amplitudu vektora kojem smjer određuje \mathbf{w}_o okomica na ravninu projekcije (normala)

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}_o}{\|\mathbf{w}_o\|}$$

 Predznak od r ovisi o tome s koje strane ravnine razdvajanja se uzorak nalazi

Udaljenost od ravnine razdvajanja

 Izrazimo udaljenost pomoću diskriminacijske funkcije

$$g(\mathbf{x}) = \mathbf{w}_o^T \mathbf{x} + b_o = r \|\mathbf{w}_o\|$$
$$g(\mathbf{x}_p) = 0$$

$$r = \frac{g(\mathbf{x})}{\|\mathbf{w}_o\|}$$

Udaljenost ravnine razdvajanja od ishodišta

Udaljenost ravnine razdvajanja od ishodišta

$$\frac{b_o}{\left\|\mathbf{w}_o\right\|}$$

- Skaliranjem w_o i b_o ne mijenjamo ravninu razdvajanja
- Smjer vektora w_o ostaje nepromijenjen

Položaj ravnine razdvajanja

"Odabir" potpornih vektora

Odaberimo takve potporne vektore x^(s) da vrijedi

$$g(\mathbf{x}^{(s)}) = \mathbf{w}_o^T \mathbf{x}^{(s)} + b_o = \pm 1$$
 za $d = \pm 1$

• Tada je njihova udaljenost od ravnine razdvajanja $r = \frac{\mathbf{g}(\mathbf{x}^{(s)})}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|}$

• Širina margine ρ tada postaje

$$\rho = 2r = \frac{2}{\|\mathbf{w}_o\|}$$

Maksimiziranje margine razdvajanja

 Maksimiziranje širine margine je ekvivalentno minimiziranju euklidske norme w_o

$$\rho = 2r = \frac{2}{\|\mathbf{w}_o\|}$$

 Rezultat je optimalna ravnina razdvajanja koja ima maksimalnu marginu razdvajanja

Uvjet za sve uzorke za treniranje

$$d_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1$$

Cilj je pronalazak minimuma funkcije (norme vektora težina)

$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

• Rješenje pomoću metode Lagrangeovih multiplikatora (α_i)

$$J(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{N} \alpha_i [d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1]$$

$$\alpha_i \ge 0$$

$$\min_{\mathbf{w},b} \max_{\alpha_i} J(\mathbf{w},b,\alpha)$$

Rješenje je u sedlu

Parcijalne derivacije po w i b izjednačiti s nulom

$$J(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} [d_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1]$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{0} \qquad \frac{\partial J(\mathbf{w}, b, \alpha)}{b} = 0$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i} \qquad \sum_{i=1}^{N} \alpha_{i} d_{i} = 0$$

• Određivanje Lagrangeovih multiplikatora (α_i)

$$\min_{\mathbf{w},b} \max_{\alpha_{i}} J(\mathbf{w},b,\alpha) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} [d_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1]$$

$$\max_{\alpha_{i}} J(\mathbf{w},b,\alpha) = -\sum_{i=1}^{N} \alpha_{i} [d_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1]$$

$$\alpha_{i} \geq 0 \qquad \qquad d_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 \geq 0$$

- Maksimum je kada su svi pribrojnici jednaki nuli
 - $lpha_{\scriptscriptstyle i}$ će biti različiti od nule samo kada vrijedi

$$d_i(\mathbf{w}^T\mathbf{x}_i+b)-1=0$$

Jednadžba opisuje potporne vektore

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$$

• Lagrangeovi multiplikatori α_i koji su različiti od nule automatski odabiru potporne vektore

 Za određivanje Lagrangeovih multiplikatora koristi se dualni problem

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
$$\alpha_i \ge 0$$

$$\mathbf{w}_o = \sum_{i=1}^N \alpha_{o,i} d_i \mathbf{x}_i \qquad b_o = 1 - \mathbf{w}_i^T \mathbf{x}^{(s)}, \quad d^{(s)} = 1$$

Razdvajanje linearno neseparabilnih klasa

 Konačni postupak je praktički identičan kao u slučaju linearno separabilnih klasa

Razdvajanje linearno neseparabilnih klasa

$$d_i(\mathbf{w}^T\mathbf{x_i}+b) \ge 1-\xi$$

Cilj je smanjiti prosječnu grešku klasifikacije

$$\Phi(\xi) = \sum_{i=1}^{N} I(\xi_i - 1)$$

$$I(\xi) = \begin{cases} 0 & ako \, \xi \leq 0 \\ 1 & ako \, \xi > 0 \end{cases}$$

Optimizacija

Pojednostavimo problem aproksimacijom

$$\Phi(\xi) = \sum_{i=1}^{N} \xi_i$$

 I proširimo ga sa minimizacijom euklidske norme od w

$$\Phi(\boldsymbol{\xi}, \mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{N} \boldsymbol{\xi}_i$$

Optimizacija

Rješenje se opet traži kroz dualni problem

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

$$\sum_{i=1}^{N} \alpha_{i} d_{i} = 0$$

$$0 \le \alpha_{i} \le C$$

$$\mathbf{w}_{o} = \sum_{i=1}^{N} \alpha_{o,i} d_{i} \mathbf{x}_{i}$$

$$b_{o} = \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} d_{i} (1 - \mathbf{w}_{i}^{T} \mathbf{x}_{i}^{(s)})$$

Stroj s potpornim vektorima za klasifikaciju

- Ukoliko uzorci nisu linearno separabilni, bilo bi lijepo kada bi ih mogli takvima učiniti
- Tada bi lagano mogli primijeniti proučenu separaciju
- Prelaskom u višedimenzionalni prostor, raste vjerojatnost linearne separabilnosti (Coverov teorem)
- Osnovna ideja je
 - Nelinearno mapiranje ulaznog prostora u novi prostor značajki više dimenzionalnosti
 - Konstrukcija optimalne ravnine razdvajanja u novom prostoru značajki

Nelinearno preslikavanje

$$\boldsymbol{\varphi}(\mathbf{x}) = [\varphi_0(\mathbf{x}), \varphi_1(\mathbf{x}), ... \varphi_m(\mathbf{x})]$$

Linearna separacija u prostoru značajki

 Optimalna ravnina razdvajanja konstruira se u novom višedimenzionalnom prostoru značajki

$$\sum_{j=1}^{m} w_j \varphi_j(\mathbf{x}) + b = 0$$

- $\varphi_j(\mathbf{x})$ su m transformacijksih funkcija
- m je broj dimenzija u novom prostoru značajki

Linearna separacija u prostoru značajki

Uključivanje pomaka b u vektor težina w, kao prvog člana

$$\sum_{j=1}^{m} w_{j} \varphi_{j}(\mathbf{x}) = 0$$

$$\varphi_0(\mathbf{x}) = 1$$

$$w_0 = b_o$$

Ravnina razdvajanja

Ravnina razdvajanja

$$\mathbf{w}^{T}\mathbf{\phi}(\mathbf{x})=0$$

Traženi w sada možemo izraziti kao

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{\phi} (\mathbf{x}_{i})$$

Kombiniranjem gornje dvije jednadžbe dobijemo

$$\sum_{i=1}^{N} \alpha_i d_i \mathbf{\phi}^T(\mathbf{x}_i) \mathbf{\phi}(\mathbf{x}) = 0$$

Funkcija jezgre unutarnjeg produkta

 Unutarnji produkt dvaju vektora u novom prostoru značajki

$$\varphi^T(\mathbf{x}_i)\varphi(\mathbf{x})$$

Uvodimu novu funkciju jezgre K

$$K(\mathbf{x}_i,\mathbf{x}) = \boldsymbol{\varphi}^T(\mathbf{x}_i) \boldsymbol{\varphi}(\mathbf{x})$$

 Čime dobijemo novu jednadžbu ravnine razdvajanja

$$\sum_{i=1}^{N} \alpha_i d_i K(\mathbf{x}_i, \mathbf{x}) = 0$$

Mercerov teorem

- Neka je K(x,x') simetrična funkcija jezgre definirana na zatvorenim intervalima od x i x'
- Takva se jezgra može rastaviti na slijedeći niz:

$$K(\mathbf{x}_i, \mathbf{x}) = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

- Uvjeti za to predstavljaju uvjete uz koje je jezgra K ujedno i jezgra unutarnjeg produkta
 - Broj dimenzija prostora značajki teoretski je beskonačan

Optimizacija

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$$

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \le \alpha_i \le C$$

$$\mathbf{w_o} = \sum_{i=1}^{N} \alpha_{o,i} d_i \mathbf{\phi} (\mathbf{x}_i)$$

Primjeri funkcija jezgre unutarnjeg produkta

- Sloboda u izboru funkcija jezgre postoji no sve moraju zadovoljavati Mercerov teorem
- Tipični primjeri su:
 - Polinomna jezgra
 - Radijalna jezgra
 - Dvoslojni perceptron
- Dimenzionalnost prostora značajki ovisi o broju potpornih vektora

Polinomska jezgra

$$K(\mathbf{x}, \mathbf{x}_i) = (\mathbf{x}^T \mathbf{x}_i + 1)^p$$

- Parametar p se određuje apriori
- **x**_i su odabrani vektori potpore

Radijalna jezgra

$$K(\mathbf{x},\mathbf{x}_{i}) = e^{\left(-\frac{1}{2\sigma^{2}}\|\mathbf{x}-\mathbf{x}_{i}\|^{2}\right)}$$

- Parametar širine radijalne funkcije σ² određuje se a priori
- Broj radijalnih funkcija i njihovi centri određeni su izborom vektora potpore

Dvoslojni perceptron

$$K(\mathbf{x}, \mathbf{x}_i) = \operatorname{tnah}(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$$

• Mercerov teorem zadovoljen je samo za neke kombinacije parametara β_0 i β_1

Arhitektura SVM

XOR problem	
Ulaz x	Željeni izlaz <i>d_i</i>
(-1,-1)	- 1
(-1,+1)	+1
(+1,-1)	+1
(+1,+1)	-1

$$K(\mathbf{x}, \mathbf{x}_i) = (\mathbf{x}^T \mathbf{x}_i + 1)^2$$
$$\mathbf{x} = [x_1 \ x_2]^T$$

$$K(\mathbf{x}, \mathbf{x}_i) = 1 + x_1^2 x_{il}^2 + 2 x_1 x_2 x_{il} x_{i2} + x_2^2 x_{i2}^2 + 2 x_1 x_{il} + 2 x_2 x_{i2}$$

$$\phi(\mathbf{x}) = \left[1, x_1^2, \sqrt{2} x_1 x_2, x_2^2, \sqrt{2} x_1, \sqrt{2} x_2\right]$$

$$Q(\alpha) = \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{j} d_{i} d_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

 Optimizacija daje slijedeće vrijednosti Lagrangeovih koeficijenata

$$\mathbf{w}_{o} = \sum_{i=1}^{N} \alpha_{o,i} d_{i} \mathbf{\phi} (\mathbf{x}_{i}) = \begin{bmatrix} 0 \\ 0 \\ -1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}$$

$$0 = \mathbf{w}_{\mathbf{o}}^{\mathsf{T}} \mathbf{\phi} (\mathbf{x}) = [0, 0, -1/\sqrt{2}, 0, 0, 0] \begin{bmatrix} 1 \\ x_{1}^{2} \\ \sqrt{2} x_{1} x_{2} \\ x_{2}^{2} \\ \sqrt{2} x_{1} \\ \sqrt{2} x_{2} \end{bmatrix} = -x_{1} x_{2}$$

$$-x_{1}x_{2}=0$$

$$1.0 \times \frac{(-1,1)}{(1,-1)}$$

$$0 \times \frac{(1,1)}{(-1,-1)}$$
Ravnina razdvajanja (-1,-1)

Kako sve funkcionira

- 1. Pripremiti skup za treniranje
- 2.Odabrati funkciju jezgre unutarnjeg produkta *K* koja zadovoljava Mercerov teorem
- 3.Određivanje optimalnih α_i

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}), \quad \sum_{i=1}^{N} \alpha_{i} d_{i} = 0, \quad 0 \le \alpha_{i} \le C$$

(time su određeni i potporni vektori)

4. Klasifikacija prema jednadžbi diskriminacije

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i d_i K(\mathbf{x}_i, \mathbf{x})$$

SVM: Prednosti i nedostaci

Prednosti

- Pronalazak ekstrema funkcije cilja je zagarantirana
- Mogućnost efikasne implementacije optimizacije
- Separacija u višedimenzionalnom prostoru značajki bez da ga ikad posjetimo

Nedostaci

- Brzina izvođenja nema direktne kontrole broja potpornih vektora
- Nije moguće prilagođavati arhitekturu mreže prema apriori znanju o problemu
 - Rješenje: konstrukcija "umjetnih" uzoraka za treniranje prema apriori znanju
 - Rješenje: uvođenje dodatnih uvjeta u funkciju cilja

Teme predavanja

- Problem kalsifikacije linearno separabilnih klasa
- Margina razdvajanja
- Vektori potpore
- Klasifikacija linearno neseparabilnih klasa
- Nelinearno preslikavanje u prostor značajki

Zadaci

- 1.Pokažite da je margina razdvajanja jednaka $2/\|\mathbf{w}_o\|$ ako je za ravninu razdvajanja $\mathbf{w}_o^T \mathbf{x} + b_o = 0$ zadan dodatni uvjet $\min_{i=1,2,...,N} |\mathbf{w}_o^T \mathbf{x} + b_o| = 1$
- Kod polinomne jezgre u XOR primjeru, odredite minimalni pozitivni eksponent p za koji je moguće naći rješenje problema