- $\bigcirc \frac{n(n+1)}{2}$
- $\bigcirc \ \frac{(n+5)(n-5)}{2}$
- $\bigcirc \frac{(n+5)(n-6)}{2}$
- $\bigcirc \frac{(n+5)(n+1)}{2}$

✓ Correct

Correct! One way to prove this is to remember how we came up with formula for the sum of all integers from 1 to n. We just need to write the sum forward and backward:

$$S = 5 + 6 + 7 + \cdots + n$$

$$S = n + (n-1) + (n-2) + \cdots + 5$$

Notice that the $5+n=6+(n-1)=7+(n-2)=\cdots=n+5$, and there are n-4 summands in the sum, so 2S=(n+5)(n-4), and \((S=\frac{(n+5)(n-4)}{2}\).

Another way is to prove this by induction. Indeed, for n=5 (induction base), the sum is 5, and $\frac{(n+5)(n-4)}{2}=\frac{10\cdot 1}{2}=5.$ If the sum of all integers from 5 to n is $\frac{(n+5)(n-4)}{2}$, then the sum of all integers $\frac{(n+5)(n-4)}{2}+(n+1)=\frac{n^2+n-20}{2}+(n+1)=\frac{n^2+n-20+2n+2}{2}=$ from 5 to n+1 is $=\frac{(n^2+2n+1)+(n+1)-20}{2}=\frac{(n+1)^2+(n+1)-20}{2}=\frac{(n+1+5)(n+1-4)}{2}$.

2. Find the formula for the sum of all odd numbers from 1 to 2n-1: $1+3+5+\cdots+(2n-3)+(2n-1)$.

 $\bigcirc (2n-1)(n)$

 $\bigcap n(n+1)$

 \bigcirc n^2

 $\bigcirc 3n-2$

Correct! If we use Gauss's method again, we will see that

 $1+(2n-1)=3+(2n-3)=5+(2n-5)=\cdots=2n$, and there are exactly n summands, so the sum is $\frac{2n\cdot n}{2}=n^2$.

$$\bigcap T(n) = ab^n$$

$$\bigcirc$$
 $T(n) = a + nb$

$$\bigcap T(n) = b + na$$

$$\bigcirc T(n) = a + (n-1)b$$

$$\bigcap T(n) = a + (n+1)b$$

Correct! Indeed, for n=0 (induction base), T(n)=T(0)=a=a+0b, and if T(n)=a+nb, then T(n+1)=T(n)+b=a+nb+b=a+(n+1)b (induction step). Thus, we can prove this formula by induction.

1/1 point

4. Function T(n) is defined by T(0) = a, $T(n+1) = b \cdot T(n)$. What is the correct formula for T(n)?

$$\bigcirc T(n) = b + na$$

$$\bigcap T(n) = a + bn$$

$$\bigcirc$$
 $T(n) = ab^n$

 $extcolor{orrect}$ Correct! Indeed, for n=0, $T(0)=a=ab^0$ (induction base), and if $T(n)=ab^n$, then $T(n+1)=b\cdot T(n)=b\cdot ab^n=ab^{n+1}$ (induction step). So, you can prove this formula by induction.

1/1 point

5. Recall the recursive formula for the minimum number of moves in the Hanoi Towers problem:

$$\bigcirc \ T(n) = rac{n(n+1)}{2}$$

$$\bigcirc \ T(n)=2n-1$$

$$\bigcap T(n) = n$$

Correct Correct! Indeed, for
$$n=1$$
 (induction base), $T(1)=1=2^1-1$. If $T(n)=2^n-1$, then $T(n+1)=2T(n)+1=2(2^n-1)+1=2^{n+1}-2+1=2^{n+1}-1$.

6. You have \$1 000 on day 1, and every day you earn 10% of what you already get, so that on day 2 you have \$1 000 + $10\% \cdot \$1 000 = \$1 100$, and on day 3 you have $\$1 100 + 10\% \cdot \$1 100 = \$1 210$. On which day you will have more than \$1 000 000 for the first time? Feel free to use the notebook about Bernoulli's inequality that we provided in this lesson.

- On day 74.
- On day 76.
- On day 10000.
- \bigcirc On day 56.

On day 73 you will have a little more than \$955 593, and on day 74 you will have a little more than \$1 051 153.

Claim: For any integer $n \geq 0$ and any positive integer $a, a^n = 1$.

Proof by Induction.

Induction base: n=0, so $a^n=a^0=1$.

Induction step: If the statement is true for all n up to m, then it is true for n=m+1.

$$a^{m+1} = \frac{a^m \cdot a^m}{a^{m-1}} \stackrel{!}{=} \frac{1 \cdot 1}{1} = 1$$

Where we marked by "!" the assumption of the induction that $a^m=1$ and $a^{m-1}=1$.

- \bigcirc The induction step is wrong: $\frac{1\cdot 1}{1} \neq 1$.
- \bigcirc The induction step must prove something for n+1 based just on the fact that something is true for n.
- \bigcirc The induction base is wrong: a^0 is not always equal to 1.
- lacktriangledown We are using the assumption of the induction for both m and m-1, so we must have proved induction base for at least two different values of n 0 and 1.
 - **⊘** Correct

Correct! The proof breaks on m=0 o m+1=1 , because $a^{m-1}=a^{-1}
eq 1$.

- $\bigcap T(n)=n$
- $\bigcap T(n)=2n$

formula for T(n)?

- $\bigcirc \ T(n)=2^n$
- igotimes T(n)=k , where k is the smallest non-negative integer such that $2^k>n$.
- Correct! You can prove this using complete induction.

Correct

Induction base: n=0.

If n=0, T(n)=0, and $2^0=1>0=n$.

Induction step: assume that for all n less than some integer m>0 the formula is correct.

If m=2l, then T(m)=T(2l)=T(l)+1, and l< m. Let T(l)=k. Then by the assumption of

induction, k is the smallest non-negative integer such that $2^k>l$. Then $2^{k+1}>2l=m$. Also,

8. Function T(n) is defined as T(0)=0, T(2n)=T(n)+1, T(2n+1)=T(n)+1. What is the correct

2/2 points

 $m=2l\geq 2^k$, because otherwise $2l<2^k$, and so $l<2^{k-1}$, but this contradicts the fact that

T(l)=k, because by assumption of induction T(l) if $l<2^{k-1}$, then $T(l)\leq k-1$. Thus T(m)=T(l)+1=k+1, and $2^k\leq m<2^{k+1}$, so the formula is also correct for m.

If m=2l+1, then T(m)=T(2l+1)=T(l)+1, and l< m. Let T(l)=k. Again, by the assumption of induction, k is the smallest non-negative integer such that $2^k>l$. Then $2^k\geq l+1$, and $2^{k+1}\geq 2(l+1)=2l+2>2l+1=m$. Also, $m=2l+1\geq 2^k$, because otherwise

 $T(l) \leq 2l+1 \leq 2^k$, and so $l \leq 2^{k-1}$. Thus T(m) = T(l)+1 = k+1 , and $2^k \leq m < 2^{k+1}$, so the formula is also correct for m .

- **0.99**
- \bigcirc 0.9
- \bigcirc 1
- \bigcirc 0.5

√ Correct

Correct!

First, let us generalize the problem: what is the sum of $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{(n-1)\cdot n}$?

To come up with the answer, note that $rac{1}{k\cdot(k+1)}=rac{1}{k}-rac{1}{k+1}.$ Then

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(n-1)\cdot n} = \\ = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n}.$$

All the summands in the middle cancel out, and the sum becomes $\frac{1}{1}-\frac{1}{n}=1-\frac{1}{n}$. For n=100, $1-\frac{1}{n}=1-\frac{1}{100}=1-0.01=0.99$.

We can also prove the formula

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(n-1)\cdot n} = 1 - \frac{1}{n}$$

by induction.

Induction base: n=2.

$$\tfrac{1}{1 \cdot 2} = \tfrac{1}{2} = 1 - \tfrac{1}{2}.$$

Induction step: n o n+1.

$$\begin{array}{l} \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(n-1)\cdot n} + \frac{1}{n\cdot (n+1)} \stackrel{!}{=} \\ \stackrel{!}{=} 1 - \frac{1}{n} + \frac{1}{n\cdot (n+1)} = 1 - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}. \end{array}$$

We used the assumption of the induction for n in the equality marked by "!".