Statistics-1

Week-1

- → Statistics
 - → Descriptive Statistics
 - → Inferential Statistics (Drawing conclusion from a sample -Probability)
- → Population & Sample
- → Unstructured data & Structured data
- → Cases (Observations) => Rows
- → Variables => Columns
- → Types of Data
 - → Categorical (Qualitative) data
 - → Numerical (Quantitative) data
 - → Cross-sectional & Time Series data
- → Scales of measurement
 - → Nominal Scale (Labels or names)
 - → Ordinal Scale (Ranked or Ordered)
 - → Interval Scale (Numerical values of fixed unit of difference)

→ Ratio Scale (True zero exists & Ratios possible)

Categorical data

Numerical data

- → Frequency distribution for Categorical
 - → Relative frequency
 - → Charts
 - → Pie chart
 - → Bar chart
 - → Pareto chart
 - → Area principle
 - → Misleading graphs

- → Violating area principle
- → Truncated graphs (baseline is not zero)
- → Indicating y-axis break
- → Round off errors
- → Measures of Central tendency
 - → Mode
 - → Longest bar in bar chart
 - → Widest slice in pie chart
 - → First category in Pareto chart
 - → Bimodal and multimodal data
 - → Median (Ordinal data)
 - \rightarrow If no. of cases are odd, then median is $(\frac{n+1}{2})$ value in the ordered list
 - \rightarrow If no. of cases are even, then median is the $(\frac{n}{2}) \& (\frac{n}{2} + 1)$ values in the ordered list

- → Organizing Numerical data
 - → Organizing Discrete data (count of something)
 - → Organizing Continuous data (measurement of something)
 - \rightarrow No. of classes (5 to 20)
 - → Lower class limit
 - → Upper class limit
 - → Class width (difference of two lower class limit)
 - → Class mark (midpoint value of a class)
 - → Class interval [a,b)
 - → Histogram
 - → Stem & Leaf diagram
 - → Measures of Central tendency
 - \rightarrow Mean (average) => \bar{x}
 - → Sample mean $(\bar{x}) = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$

- \rightarrow Population mean (μ) = $\frac{x_1 + x_2 + x_3 + \cdots + x_N}{N}$
- → Mean for grouped data (discrete single value data)

$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 + \dots - f_n x_n}{n}$$

→ Mean for grouped data (continuous data)

$$\bar{x} = \frac{f_1 m_1 + f_2 m_2 + f_3 m_3 + \cdots - f_n m_n}{n}$$
 , $m_1, m_2, m_3 - \cdots - m_n$ are

midpoints of the class

- \rightarrow Adding a constant ($\bar{y} = \bar{x} + c$)
- \rightarrow Multiplying a constant ($\bar{y} = \bar{x}c$)
- → Sample mean is sensitive to outliers
- → Median (Ordered list)
 - \rightarrow If no. of cases are odd, then median is $(\frac{n+1}{2})$ value in the ordered list
 - → If no. of cases are even, then median is the average of $\left(\frac{n}{2}\right) \& \left(\frac{n}{2} + 1\right)$ values in the ordered list
 - \rightarrow Adding a constant ($y_i = x_i + c$)
 - \rightarrow Multiplying a constant $(y_i = x_i c)$
 - → Sample median is **not** sensitive to outliers
- → Mode
 - \rightarrow Adding a constant $(y_i = x_i + c)$
 - \rightarrow Multiplying a constant $(y_i = x_i c)$
- → Measures of dispersion or variance or spread
 - → Range (max-min)
 - → Range is sensitive to outliers
 - → Variance
 - → Sample variance (S²) = $\frac{(x_1 \bar{x})^2 + (x_2 \bar{x})^2 + \dots + (x_n \bar{x})^2}{n-1}$
 - → Population variance (σ^2) = $\frac{(x_1 \mu)^2 + (x_2 \mu)^2 + \dots + (x_n \mu)^2}{N}$
 - → Adding a constant (new variance = old variance)
 - \rightarrow Multiplying a constant (new variance = c^2 x old variance)

→ Standard deviation

⇒ S =
$$\sqrt{Variance} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}}$$
 for sample
⇒ S = $\sqrt{Variance} = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2}{N}}$ for population

- → Adding a constant (new SD = old SD)
- → Multiplying a constant (new SD = c x old SD)
- → Percentile (ordered data)
 - → If 'np' not an integer, then percentile is the smallest integer greater than 'np' value in the ordered data
 - → If 'np' is an integer, then percentile is average of 'np' & 'np+1' values in the ordered data
 - → 50th percentile is the median
- → Quartiles
 - → Minimum
 - → 25th percentile is first quartile (Q₁)
 - → 50th percentile is second quartile (Q₂) or median
 - → 75th percentile is third quartile (Q₃)
 - → Maximum
- → Interquartile Range (IQR)

$$\rightarrow$$
 IQR = Q₃ - Q₁

- → Outliers
 - → Outliers < Q₁ 1.5*IQR
 - \rightarrow Outliers > Q₃ + 1.5*IQR
- → Boxplot

- → Association between categorical variables
 - → Contingency table
 - → Relative frequencies
 - → Row relative frequencies
 - → Column relative frequencies
 - → If row/column relative frequencies are same for all rows/columns, then two variables are not associated with each other
 - → If row/column relative frequencies are different for some rows/columns, then two variables are associated with each other
 - → Stacked bar chart
 - → 100% stacked bar chart
- → Association between numerical variables
 - → Scatter plot
 - → Describing association
 - → Direction (pattern trend up or down)
 - → Curvature (pattern is linear or curve)
 - → Variation (tightly clustered or variable)
 - → Outliers
 - → Measuring association
 - → Covariance

→ Sample covariance, cov(x,y) =
$$\frac{\sum\limits_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{n-1}$$

→ Population covariance,
$$cov(x,y) = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{N}$$

- → Correlation
 - → Correlation Coefficient, 'r' is given by

$$r = \frac{\frac{cov(x,y)}{S_x S_y}}{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- → 'r' is always lies in between -1 & +1
- → Association between Categorical & Numerical Variables
 - ightarrow Point Bi-serial correlation coefficient ($r_{
 hob}$) is given by

$$r_{pb} = \left(\frac{\overline{Y_0} - \overline{Y_1}}{S_x}\right) \sqrt{P_0 P_1}$$

- $\rightarrow \overline{Y_0}$ = Mean of that particular '0' coded values
- $\rightarrow \overline{Y_1}$ = Mean of that particular '1' coded values
- \rightarrow S_x = Standard deviation of numerical variable
- → P₀ = Probability of '0' coded among total categorical variables
- \rightarrow P_1 = Probability of '1' coded among total categorical variables
- $\rightarrow P_0 P_1 = \frac{n_0}{(n-1)} \frac{n_1}{n}$ for sample
- $\rightarrow P_0 P_1 = \frac{n_0}{N} \frac{n_1}{N}$ for population

- → Permutations & Combinations
 - → Addition rule of counting
 - → If an action A occur in n₁ different ways, another action B occur in n₂ different ways, then total no. of occurrence of actions A or B is n₁+n₂
 - → Multiplication rule of counting

- → If an action A occur in n₁ different ways, another action B occur in n₂ different ways, then total no. of occurrence of actions A and B is n₁×n₂
- → Permutations (ordered arrangement)
 - → Permutations when objects are distinct
 - → When repetition not allowed

$$n_{P_r} = \frac{n!}{(n-r)!}$$

$$\rightarrow n_{P_0} = 1$$

$$\rightarrow n_{P_n} = n!$$

→ When repetition is allowed

$$n^r = n \times n \times n \times \dots \times n$$

- → Permutations when objects are not distinct
 - \rightarrow For 'n' objects, when 'p' of them are one kind

 \rightarrow For 'n' objects, when ' ρ_1 ' is one kind, ' ρ_2 ' is second kind and so on

$$\frac{n!}{p_1!p_2!\dots p_k!}$$

- → Circular permutations
 - → When clockwise and anticlockwise are different

→ When clockwise and anticlockwise are same

$$\frac{(n-1)!}{2}$$

→ Combinations (no ordered arrangement)

$$n_{C_r} = \frac{n!}{(n-r)!r!}$$

$$n_{C_r}r! = n_{P_r}$$

 $n_{C_r} = (n-1)_{C_{r-1}} + (n-1)_{C_r}$

→ No. of ways of distributing 'n' identical things into 'r' different boxes (x₁+x₂+x₃+...+x_r = n)

$$(n+r-1)_{C_{r-1}}$$

- → Drawing lines in a circle
 - → If the line segment has no direction, then the lines can be drawn in a circle for 'n' points are

$$n_{C_2}$$

→ If the line segment has direction, then the lines can be drawn in a circle for 'n' points are

$$n_{P_2}$$

- → Random experiment
 - → Any process that produces an outcome
- \rightarrow Sample space (Ω or S)
 - → Collection of all possible outcomes
 - → Mutually exclusive or Disjoint Events
 - \rightarrow If ENF = Φ , then E and F are disjoint events
 - → Exhaustive
- → Events
 - → Subset of the sample space
- → Null event (Φ)
 - → Event without any outcomes
- → Properties of probability
 - → Equally likely outcomes

- → Three main interpretations of probability
 - → Classical (Apriori or theoretical)
 - → For 'n' equally likely outcomes of sample space 'S', and for 'm' outcomes of an event 'E', then P(E) = $\frac{m}{n}$
 - → Relative frequency (Aposteriori or empirical)
 - ightharpoonup If n(E) is the no. of times 'E' occurs in 'n' repetitions of experiment, then P(E) = $\lim_{n \to \infty} \frac{n(E)}{n}$
 - → Subjective
 - → Probability measures an individual's degree of belief in the event (best guess)
- → Probability Axioms
 - \rightarrow $0 \le P(E) \le 1$
 - \rightarrow P(S) = 1
 - \rightarrow For disjoint events, $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$
- → General properties of probability
 - → $P(E^{C}) = 1 P(E)$ $P(E) + P(E^{C}) = 1$ $P(E \cup E^{C}) = 1 = P(S)$
 - \rightarrow P(Φ) = 0
- → Addition rule of Probability
 - \rightarrow P(E₁UE₂) = P(E₁) + P(E₂) P(E₁∩E₂) for E₁ & E₂ are not disjoint
 - \rightarrow P(E₁UE₂) = P(E₁) + P(E₂) for E₁ & E₂ are disjoint

- → Joint probabilities
 - → Displayed in cells of contingency table
- → Marginal probabilities
 - → Displayed in margins of contingency table
- → Conditional probabilities

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

→ Multiplication rule

$$P(E \cap F) = P(F) \times P(E|F)$$

- → Independent events
 - → When P(E|F) = P(E), then E & F are said to be independent events

$$P(E \cap F) = P(E) \times P(F)$$

- → If E & F are independent, then E & F^C are also independent
- → If E & F are independent, then E^C & F are also independent
- \rightarrow If E & F are independent, then E^C & F^C are also independent
- → If any 3 events are independent if and only if

$$\rightarrow P(E \cap F \cap G) = P(E) \times P(F) \times P(G)$$

$$\rightarrow P(E \cap F) = P(E) \times P(F)$$

$$\rightarrow P(E \cap G) = P(E) \times P(G)$$

$$\rightarrow P(F \cap G) = P(F) \times P(G)$$

→ Law of total probability

$$P(E) = P(E \cap F) \cup P(E \cap F^{c})$$

$$P(E) = P(F)P(E|F) + P(F^{c})P(E|F^{c})$$

→ Baye's rule

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

$$P(E|F) = \frac{P(E) \cdot P(F|E)}{P(E) \cdot P(F|E) + P(E^c) \cdot P(F|E^c)}$$

- → Random variable
- → Types of random variable
 - → Discrete random variable
 - → Continuous random variable
- → Probability mass function (p.m.f)

→ $P(x_i) = P(X=x_i)$ for i=1,2,3,4....n

×	X ₁	x_2	x ₃		•••	× _n
P(X=x _i)	P(x ₁)	P(x ₂)	P(x ₃)	•••	•••	P(x _n)

- → Properties of p.m.f
 - → $P(x_i) \ge 0$ for i = 1,2,3,... n
 - \rightarrow P(x) = 0 for all other values of x

$$\rightarrow \sum_{i=1}^{n} P(x_i) = 1$$

- → Graph of p.m.f
 - → Positive or Right skewed distribution
 - → Negative or Left skewed distribution
 - → Symmetric distribution
 - → Uniform distribution
- → Cumulative distribution function (c.d.f)

$$\rightarrow$$
 F(a) = P(X \leq a)

ncy	Mode	ļ	Mode	
Frequency				
	Positive Skew	Median	Negative Skew	Time

Symmetric Distribution

X	1	2	3	4
$P(X=x_i)$	1/4	1/2	1/8	1/8

→ Expectation of a Random variable

$$E(X)$$
 or $\mu = \sum_{i=1}^{\infty} x_i P(X = x_i)$

- → E(X) is considered as the "long run average"
- → Properties

$$\rightarrow E(aX + b) = aE(X) + b$$

$$\rightarrow E(X + Y) = E(X) + E(Y)$$

→ Variance of a Random variable

$$V(X) = E(X - \mu)^2$$

$$V(X) = E(X^2) - E(X)^2$$

→ Properties

$$\rightarrow V(aX + b) = a^2V(X)$$

$$\rightarrow V(X+Y) = V(X) + V(Y)$$
 (only if X & Y are independent)

→ Standard deviation of Random variable

$$SD(X) = \sqrt{V(X)}$$

→ Properties

$$\rightarrow SD(aX + b) = aSD(X)$$

- → Bernoulli Random Variable
 - → P.m.f of Bernoulli is given by

X	1	0
P(X=x _i)	ρ	1-ρ

→
$$E(X) = (1 \times p) + (0 \times (1 - p)) = p$$

$$\rightarrow V(X) = p(1-p)$$

- → Discrete Uniform Random variable
 - → P.m.f of Discrete Uniform is given by

X	1	2	3	 n
P(X=x _i)	1/n	1/n	1/n	 1/n

$$\rightarrow E(X) = \frac{n+1}{2}$$

$$\rightarrow E(X^2) = \frac{(n+1)(2n+1)}{6}$$

→
$$V(X) = \frac{n^2-1}{12}$$

→ Hypergeometric Random Variable

$$P(X = x_i) = \frac{(m_{C_i}) \times (N-m)_{C_{n-i}}}{N_{C_n}}$$
 for i=0,1,2,....n

$$\rightarrow E(X) = \frac{nm}{N}$$

$$\rightarrow V(X) = \frac{nm}{N} \left[\frac{(n-1)(m-1)}{(N-1)} + 1 - \frac{nm}{N} \right]$$

- → Binomial Random Variable
 - → Independent and identically distributed bernoulli trials (iid)
 - → For 'n' independent Bernoulli trials, each trial probabilities will be either 'p' for 'success' or '1-p' for 'failure'. If 'X' is a Random variable with no. of successes that occur in 'n' trials, then 'X' is said to be a Binomial Random variable.
 - → P.m.f of Binomial distribution is given by

$$P(X = i) = n_{C_i} \times p^i \times (1 - p)^{(n-i)}$$

- → Graph of p.m.f
 - \rightarrow If ρ <0.5, then Binomial is **Right Skewed** for small 'n'
 - \rightarrow If ρ =0.5, then Binomial is Symmetric for small 'n'
 - \rightarrow If ρ >0.5, then Binomial is Left Skewed for small 'n'
 - → For large 'n', the Binomial distribution tends to Symmetric

$$\rightarrow E(X) = np$$

$$\rightarrow V(X) = np(1-p)$$