2/5 Normal and Tangential Coordinates (n-t)

As we mentioned in Art. 2/1, one of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of the particle. These coordinates provide a very natural description for curvilinear motion and are frequently the most direct and convenient coordinates to use. The n- and t-coordinates are considered to move along the path with the particle, as seen in Fig. 2/9 where the particle advances from A to B to C. The positive direction for n at any position is always taken toward the center of curvature of the path. As seen from Fig. 2/9, the positive *n*-direction will shift from one side of the curve to the other side if the curvature changes direction.

Figure 2/9

Velocity and Acceleration

We now use the coordinates n and t to describe the velocity \mathbf{v} and acceleration a which were introduced in Art. 2/3 for the curvilinear motion of a particle. For this purpose, we introduce unit vectors \mathbf{e}_n in the *n*-direction and \mathbf{e}_t in the *t*-direction, as shown in Fig. 2/10a for the position of the particle at point A on its path. During a differential increment of time dt, the particle moves a differential distance ds along the curve from A to A'. With the radius of curvature of the path at this position designated by ρ , we see that $ds = \rho d\beta$, where β is in radians. It is unnecessary to consider the differential change in ρ between A and A' because a higher-order term would be introduced which disappears in the limit. Thus, the magnitude of the velocity can be written v = ds/dt = $\rho d\beta/dt$, and we can write the velocity as the vector

$$\mathbf{v} = v\mathbf{e}_t = \rho \dot{\boldsymbol{\beta}} \mathbf{e}_t$$
 (2/7)

The acceleration **a** of the particle was defined in Art. 2/3 as **a** = $d\mathbf{v}/dt$, and we observed from Fig. 2/5 that the acceleration is a vector which reflects both the change in magnitude and the change in direction of v. We now differentiate v in Eq. 2/7 by applying the ordinary rule for the differentiation of the product of a scalar and a vector* and get

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d(v\mathbf{e}_t)}{dt} = v\dot{\mathbf{e}}_t + \dot{v}\mathbf{e}_t$$
 (2/8)

where the unit vector \mathbf{e}_t now has a nonzero derivative because its direction changes.

To find $\dot{\mathbf{e}}_t$ we analyze the change in \mathbf{e}_t during a differential increment of motion as the particle moves from A to A' in Fig. 2/10a. The unit vector \mathbf{e}_t correspondingly changes to \mathbf{e}_t' , and the vector difference $d\mathbf{e}_t$ is shown in part b of the figure. The vector $d\mathbf{e}_t$ in the limit has a magnitude equal to the length of the arc $|\mathbf{e}_t|$ $d\beta = d\beta$ obtained by swinging the unit vector \mathbf{e}_t through the angle $d\beta$ expressed in radians.

Figure 2/10

^{*}See Art. C/7 of Appendix C.

The direction of $d\mathbf{e}_t$ is given by \mathbf{e}_n . Thus, we can write $d\mathbf{e}_t = \mathbf{e}_n d\beta$. Dividing by $d\beta$ gives

$$rac{d\mathbf{e}_t}{deta} = \mathbf{e}_n$$

Dividing by dt gives $d\mathbf{e}_t/dt = (d\beta/dt)\mathbf{e}_n$, which can be written

$$(2/9)$$

With the substitution of Eq. 2/9 and $\dot{\beta}$ from the relation $v=\rho\dot{\beta}$, Eq. 2/8 for the acceleration becomes

The paths of these two sailplanes strongly suggest the use of path coordinates such as a normal-tangential system.

$$\mathbf{a} = \frac{v^2}{\rho} \mathbf{e}_n + \dot{v} \mathbf{e}_t$$
 (2/10)

where

$$a_n = \frac{v^2}{\rho} = \rho \dot{\beta}^2 = v \dot{\beta}$$

$$a_t = \dot{v} = \ddot{s}$$

$$a = \sqrt{a_n^2 + a_t^2}$$

We stress that $a_t = \dot{v}$ is the time rate of change of the speed v. Finally, we note that $a_t = \dot{v} = d(\rho \dot{\beta})/dt = \rho \ddot{\beta} + \dot{\rho} \dot{\beta}$. This relation, however, finds little use because we seldom have reason to compute $\dot{\rho}$.

Geometric Interpretation

Full understanding of Eq. 2/10 comes only when we clearly see the geometry of the physical changes it describes. Figure 2/10c shows the velocity vector \mathbf{v} when the particle is at A and \mathbf{v}' when it is at A'. The vector change in the velocity is $d\mathbf{v}$, which establishes the direction of the acceleration \mathbf{a} . The n-component of $d\mathbf{v}$ is labeled $d\mathbf{v}_n$, and in the limit its magnitude equals the length of the arc generated by swinging the vector \mathbf{v} as a radius through the angle $d\beta$. Thus, $|d\mathbf{v}_n| = v \ d\beta$ and the n-component of acceleration is $a_n = |d\mathbf{v}_n|/dt = v(d\beta/dt) = v\dot{\beta}$ as before. The t-component of $d\mathbf{v}$ is labeled $d\mathbf{v}_t$, and its magnitude is simply the change dv in the magnitude or length of the velocity vector. Therefore, the t-component of acceleration is $a_t = dv/dt = \dot{v} = \ddot{s}$ as before. The acceleration vectors resulting from the corresponding vector changes in velocity are shown in Fig. 2/10c.

It is especially important to observe that the normal component of acceleration a_n is always directed toward the center of curvature C. The tangential component of acceleration, on the other hand, will be in the positive t-direction of motion if the speed v is increasing and in the negative t-direction if the speed is decreasing. In Fig. 2/11 are shown schematic representations of the variation in the acceleration vector for a particle moving from A to B with (a) increasing speed and (b) decreasing speed. At an inflection point on the curve, the normal acceleration v^2/ρ goes to zero because ρ becomes infinite.

Acceleration vectors for particle moving from A to B

Figure 2/11

Circular Motion

Circular motion is an important special case of plane curvilinear motion where the radius of curvature ρ becomes the constant radius r of the circle and the angle β is replaced by the angle θ measured from any convenient radial reference to OP, Fig. 2/12. The velocity and the acceleration components for the circular motion of the particle P become

We find repeated use for Eqs. 2/10 and 2/11 in dynamics, so these relations and the principles behind them should be mastered.

An example of uniform circular motion is this car moving with constant speed around a wet skidpad (a circular roadway with a diameter of about 200 feet).

Figure 2/12

Sample Problem 2/7

To anticipate the dip and hump in the road, the driver of a car applies her brakes to produce a uniform deceleration. Her speed is 100 km/h at the bottom A of the dip and 50 km/h at the top C of the hump, which is 120 m along the road from A. If the passengers experience a total acceleration of 3 m/s² at A and if the radius of curvature of the hump at C is 150 m, calculate (a) the radius of curvature ρ at A, (b) the acceleration at the inflection point B, and (c) the total acceleration at C.

Solution. The dimensions of the car are small compared with those of the path, so we will treat the car as a particle. The velocities are

$$v_A = \left(100 \, \frac{\text{km}}{\text{h}}\right) \left(\frac{1 \, \text{h}}{3600 \, \text{s}}\right) \left(1000 \, \frac{\text{m}}{\text{km}}\right) = 27.8 \, \text{m/s}$$

$$v_C = 50 \, \frac{1000}{3600} = 13.89 \, \text{m/s}$$

We find the constant deceleration along the path from

$$\left[\int v \, dv = \int a_t \, ds \right] \qquad \int_{v_A}^{v_C} v \, dv = a_t \int_0^s ds$$

$$a_t = \frac{1}{2s} \left(v_C^2 - v_A^2 \right) = \frac{(13.89)^2 - (27.8)^2}{2(120)} = -2.41 \text{ m/s}^2$$

(a) Condition at A. With the total acceleration given and a_t determined, we can easily compute a_n and hence ρ from

$$\left[\, a^2 = a_n{}^2 + a_t{}^2 \, \right] \qquad a_n{}^2 = 3^2 - (2.41)^2 = 3.19 \qquad a_n = 1.785 \; \text{m/s}^2$$

$$\left[\, a_n = v^2/\rho \, \right] \qquad \rho = v^2/a_n = (27.8)^2/1.785 = 432 \; \text{m} \qquad \qquad \textit{Ans}.$$

(b) Condition at B. Since the radius of curvature is infinite at the inflection point, $a_n = 0$ and

$$a = a_t = -2.41 \text{ m/s}^2$$
 Ans.

(c) Condition at C. The normal acceleration becomes

$$[a_n = v^2/\rho]$$
 $a_n = (13.89)^2/150 = 1.286 \text{ m/s}^2$

With unit vectors \mathbf{e}_n and \mathbf{e}_t in the *n*- and *t*-directions, the acceleration may be written

$$\mathbf{a} = 1.286\mathbf{e}_n - 2.41\mathbf{e}_t \,\mathrm{m/s^2}$$

where the magnitude of a is

$$[a = \sqrt{{a_n}^2 + {a_t}^2}]$$
 $a = \sqrt{(1.286)^2 + (-2.41)^2} = 2.73 \text{ m/s}^2$ Ans.

The acceleration vectors representing the conditions at each of the three points are shown for clarification.

Helpful Hint

① Actually, the radius of curvature to the road differs by about 1 m from that to the path followed by the center of mass of the passengers, but we have neglected this relatively small difference.

Sample Problem 2/8

A certain rocket maintains a horizontal attitude of its axis during the powered phase of its flight at high altitude. The thrust imparts a horizontal component of acceleration of 20 ft/sec2, and the downward acceleration component is the acceleration due to gravity at that altitude, which is g = 30 ft/sec². At the instant represented, the velocity of the mass center G of the rocket along the 15° direction of its trajectory is 12,000 mi/hr. For this position determine (a) the radius of curvature of the flight trajectory, (b) the rate at which the speed v is increasing, (c) the angular rate $\dot{\beta}$ of the radial line from G to the center of curvature C, and (d) the vector expression for the total acceleration **a** of the rocket.

Solution. We observe that the radius of curvature appears in the expression for the normal component of acceleration, so we use n- and t-coordinates to describe the motion of G. The n- and t-components of the total acceleration are 1 obtained by resolving the given horizontal and vertical accelerations into their *n*- and *t*-components and then combining. From the figure we get

$$a_n = 30 \cos 15^\circ - 20 \sin 15^\circ = 23.8 \text{ ft/sec}^2$$

 $a_t = 30 \sin 15^\circ + 20 \cos 15^\circ = 27.1 \text{ ft/sec}^2$

Helpful Hints

1 Alternatively, we could find the resultant acceleration and then resolve it into n- and t-components.

(a) We may now compute the radius of curvature from

2
$$[a_n = v^2/\rho]$$
 $\rho = \frac{v^2}{a_n} = \frac{\left[(12,000)(44/30) \right]^2}{23.8} = 13.01(10^6) \text{ ft}$ Ans.

2 To convert from mi/hr to ft/sec, multiply by $\frac{5280\,\text{ft/mi}}{3600\,\text{sec/hr}} = \frac{44\,\text{ft/sec}}{30\,\text{mi/hr}}\,\text{which}$ is easily remembered, as 30 mi/hr is the same as 44 ft/sec.

(b) The rate at which v is increasing is simply the t-component of acceleration.

$$[\dot{v} = a_t]$$
 $\dot{v} = 27.1 \text{ ft/sec}^2$ Ans.

(c) The angular rate β of line GC depends on v and ρ and is given by

$$[v = \rho \dot{\beta}]$$
 $\dot{\beta} = v/\rho = \frac{12,000(44/30)}{13.01(10^6)} = 13.53(10^{-4}) \text{ rad/sec}$ Ans.

(d) With unit vectors \mathbf{e}_n and \mathbf{e}_t for the n- and t-directions, respectively, the total acceleration becomes

$$\mathbf{a} = 23.8\mathbf{e}_n + 27.1\mathbf{e}_t \text{ ft/sec}^2$$
 Ans.

