CS1101 Discrete Structures 1

Chapter 02

Basic Structures: Functions

Function

Let *A* and *B* be nonempty sets. A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

Function

Assignment of grades in a discrete mathematics class.

The Function $f: A \rightarrow B$

The function f maps A to B.

The Function $f: A \rightarrow B$

Domain: A

Co-Domain: *B*

$$f(a) = b$$

b is the *image* of a
a is a *preimage* of b

The **range**, or image, of *f* is the *set of all images* of elements of *A*.

The function f maps A to B.

The Function $f: A \rightarrow B$

 $Domain = \{a, b, c, d, e\}$

Co-Domain = $\{1,2,3,4,5,6,7\}$

Range = $\{1,3,4,5,7\}$

Definition

Let f_1 and f_2 be functions from A to \mathbf{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbf{R} defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$

 $(f_1 f_2)(x) = f_1(x) f_2(x).$

Example

Let f_1 and f_2 be functions from **R** to **R** such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and $f_1 f_2$?

$$(f_1+f_2)(x)=f_1(x)+f_2(x)=x^2+(x-x^2)=x,$$

$$(f_1f_2)(x) = f_1(x)f_2(x) = x^2(x - x^2) = x^3 - x^4.$$

Definition

Let f be a function from A to B and let S be a subset of A.

The image of S under the function f is the subset of B that consists of the images of the elements of S.

We denote the image of S by f(S), so

$$f(S) = \{ t \mid \exists s \in S (t = f(s)) \}.$$

or shortly $\{ f(s) \mid s \in S \}.$

Example

Let $A = \{a, b, c, d, e\}$ and $B = \{1, 2, 3, 4\}$ with f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, and f(e) = 1.

$$S = \{b, c, d\} \subseteq A$$

The image of the subset $S = \{b, c, d\}$ is the set $f(S) = \{1, 4\}$

One-to-One function (injective)

A function f is said to be **one-to-one**, or **injective**, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

One-to-One function (injective)

NOT *One-to-One* function (Not injective)

$$f(a) = 1$$

$$f(b) = 1$$

$$f(c) = 7$$

$$f(d) = 4$$

$$f(e) = 5$$

onto function (surjective)

A function f from A to B is called **onto**, or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

onto function (surjective)

NOT *onto* function (Not surjective)

One-to-one correspondence (bijection)

The function f is a **one-to-one correspondence**, or a **bijection**, if it is both one-to-one and onto.

One-to-one correspondence (bijection)

|A| = |B|

NOT One-to-one correspondence (Not bijection)

NOT One-to-one correspondence (Not bijection)

NOT One-to-one correspondence (Not bijection)

Examples

Determine whether the function f(x) = x + 1 from the set of integers to the set of integers is one-to-one.

Examples (Answer)

Determine whether the function f(x) = x + 1 from the set of integers to the set of integers is one-to-one.

$$f(a) = a + 1$$
 and $f(b) = b + 1$

f(x) is one—to—one (if f(a) = f(b) and a equal b then).

$$a + 1 = b + 1$$

$$a = b$$

f(x) is one-to-one

Examples

Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

Examples (Answer)

Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

$$f(a) = a^2$$
 and $f(b) = b^2$
 $f(x)$ is one—to—one (if $f(a) = f(b)$ and a equal b then).
 $a^2 = b^2$
 $\pm a = \pm b$

a may be not equal b

f(x) is NOT one—to—one

Inverse Functions

Let f be a one-to-one correspondence from the set A to the set B. The **inverse** function of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Functions (15/21)

Inverse Functions

Functions (16/21)

Invertible

A one-to-one correspondence is called **invertible** because we can define an inverse of this function. A function is **not invertible** if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Functions (17/21)

Invertible – Example

Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Functions (17/21)

Invertible – Example

Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Answer:

The function f is invertible because it is a one-to-one correspondence.

The inverse function f^{-1} reverses the correspondence given by f, so

$$f^{-1}(1) = c$$
, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

Functions (18/21)

Composition of the Functions f and g

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(=)f g \in A$.

Functions (18/21)

Composition of the Functions f and g

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(=)f g \in A$.

Note that the composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Functions (19/21)

Composition Example 1

Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the composition of g and g?

Functions (19/21)

Composition Example 1

Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

Answer:

1) The composition of f and g (i.e., $(f \circ g)$)

$$(f \circ g)(a) = 2$$
, $(f \circ g)(b) = 1$, $(f \circ g)(c) = 3$

2) The composition of g and f (i.e., $(g \circ f)$) cannot be defined because the range of f is NOT a subset of the domain of g.

Functions (20/21)

Composition Example 2

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

Functions (20/21)

Composition Example 2

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

Answer:

1) The composition of f and g (i.e., $(f \circ g)$)

$$(f \circ g)(x) = f(g(x)) = 2(3x + 2) + 3 = 6x + 7$$

2) The composition of g and f (i.e., $(g \circ f)$)

$$(g \circ f)(x) = g(f(x)) = 3(2x + 3) + 2 = 6x + 11$$

Functions (21/21)

The Graphs of Functions

Let f be a function from A to B. The graph of the function f is the set of ordered pairs $\{(a,b) | a \in A \text{ and } b \in B\}$.

The graph of $f(x) = x^2$ from Z to Z.

Some Important Functions (1/4)

Floor function $y = \lfloor x \rfloor$

Some Important Functions (2/4)

Some Important Functions (3/4)

Useful Properties

Some Important Functions (4/4)

Examples

$$[0.5] =$$
 $[0.5] =$
 $[3] =$
 $[-0.5] =$
 $[-1.2] =$
 $[1.1] =$
 $[0.3 + 2] =$
 $[1.1 + [0.5]] =$

Some Important Functions (4/4)

Examples-Answer

$$[0.5] = 0$$

 $[0.5] = 1$
 $[3] = 3$
 $[-0.5] = -[0.5] = -1$
 $[-1.2] = -1$
 $[1.1] = 1$
 $[0.3 + 2] = 2$
 $[1.1 + [0.5]] = 3$