开悟比赛-SIAT 嘎嘎上分队技术整理与分享

李璇 中科院深圳先进技术研究院数字所 马珂 中科院深圳先进技术研究院数字所 吴都 中科院深圳先进技术研究院数字所 程鹏杭 中科院深圳先进技术研究院数字所 指导老师:孟金涛

一、简介

在 2022 年 9 月-2023 年 4 月举办的腾讯第三届开悟 MOBA 多智能体强化学习大赛中,我们队伍(SIAT 嘎嘎上分队)在初赛中有幸获得了第 4 名的成绩。这得益于实验室老师与腾讯官方的大力支持,也得益于我们队伍本身的技术探索与积累。本文首先会简单叙述比赛的基本情况,随后从各关键模块出发,简要介绍本队伍在开悟比赛中的探索历程与心得体会。

二、参赛概况

我们队伍共有 4 名成员,均为中国科学院深圳先进技术研究院数字所高性能中心的硕士生,队伍中有热爱王者荣耀的同学,也有做强化学习方向的同学,出于对游戏 AI 的好奇和对提升自身实践能力的渴望,在中心孟老师的组织下,我们来自同一个中心四个课题组的四位同学组成了这支队伍。初赛阶段,每周花费 1-2 天时间,每两周一次小组会交流想法和比赛进展。

三、网络设计

网络结构我们沿用了官方提供的默认网络模型, 结构大致如下图:

图一 网络结构

与图中并不完全一样,或许是出于资源的考虑,这里并没有用到图像特征 f_i 。

该网络结构 work 的一些创新点在于:首先,在该网络中设计了目标注意力机制,以帮助 agent

在 MOBA 战斗中选择目标。其次,英雄利用 LSTM 学习技能组合,这对于立即造成致命伤害至关重要。第三,进行控制依赖关系的解耦以形成多标签近端策略优化(PPO)目标函数。第四,开发了一种基于游戏知识的修剪方法,称为"动作屏蔽"(action mask),以指导强化学习过程中的探索[1]。

四、奖励体系

观察录像,主观判断模型的不足之处,提高训练前中后期不同阶段对应项的系数。具体地,以表一中默认系数为基础,先调高经济、经验、血量等稠密项系数,让 agent 能学会快速发育,期望 agent 能够学会抢二级,但可能训练时间过短,没能达到这个预期。之后,再将稠密奖励项系数调低,将击杀和死亡的系数调高,让 agent 能够在发育的基础上提高 KDA,多杀人。

Reward	Weight	Type	Description
hp_point	2.0	dense	the rate of health point of hero
tower_hp_point	10.0	dense	the rate of health point of tower
money (gold)	0.006	dense	the total gold gained
ep_rate	0.75	dense	the rate of mana point
death	-1.0	sparse	being killed
kill	-0.6	sparse	killing an enemy hero
exp	0.006	dense	the experience gained

表一 奖励函数各项权重

根据游戏经验, 前期发育比较重要, 且因为英雄能力变化, 为获取同等 reward, 前期所需时间更多也更难, 后期 reward 会膨胀的太多, 所以给 reward 加上一个时间的折扣, 越往后折扣越大, reward 随时间衰减, 以提高前期 reward 的权重, 平衡游戏的前中后期 reward, 衰减周期为 10 分钟, 具体计算公式如下:(这部分的折扣与强化学习算法中的折扣因子的作用和意义不同)

 $reward_i = reward_i \times 0.6^{T/10mins}$

图二 奖励函数的时间衰减

五、特征与规则

连续的帧中的状态相似度比较高,可以跳过一定量的中间帧而不会丢失太多信息,同时可能可以帮助避免 move 动作抖动卡住。修改 actor 中的相关逻辑(没有验证对不对),使用预训练模型继续训练,但训练效果较差。根据我们对游戏的理解,尝试了不同的召唤师技能,其中马可波罗有尝试过眩晕,但没有对比出明显的优势,所以最终所有英雄都采用狂暴。

六、 模型迭代过程

整个模型的超参数量较多,实验资源也有限,在没有收敛前,很难有一个节省资源且确定的办法,抱着试试看的态度,根据我们对问题的认知进行超参的迭代调整,主要的调整有调高折扣因子,后续实验中调低起始学习率。调低起始学习率是想在局部最优解附近找到更优的解,到了比赛后期我们不希望 agent 跳出我们现在找的一个还不错的解,去寻找其他的局部最优解。调整折扣率会影响梯度下降(上升)寻优的面,因此模型性能先下降后回升,这里也只是一个尝试,我们也无法预估什么样的参数下的局部最优解的性能天花板会更高。

七、系统工程架构

即使 actor 和 learner 的数量之比是 32:1,但 gamecore 生成样本的速度较慢,远不如网络训练时的样本消耗速度快,导致整个训练过程中的样本消耗比较高,根据开发文档,通过调整 slow_time 参数将样本消耗比例在 8:1 左右,如果资源不受限,能够平衡这种速度差,1:1 能够得到更准确的策略梯度估计,不过 dual-clip ppo 算法本身也允许用于更新的样本与策略网络本身存在一定差异。训练数据是 AI server 通过自博弈生成,可视化面板中的 win-rate 又是默认与内置行为树对战的胜率,模型与模型之间又有着非线性的克制关系,为了更直观的感受我们模型的性能,我们修改了测试相关逻辑,将 common_ai 改为加载我们自己历史效果较好的 ckpt 来评估实施训练效果。

图三 实时模型与历史较好模型对战胜率

八、训练效果分析

最终模型的训练时长约在 150h(32 actor & 1 learner),各英雄能力水平存在一定差异,与最初测试的一样,英雄之间本就存在克制关系(鲁班>后羿、狄仁杰>公孙离>马可波罗),这个基本规律没有改变,也是符合想像的,1v1 对战中如果没有很好的操作,站桩射手比位移射手有优势的。通过对 reward 的调整,我们成功让英雄改掉了回城回血至 80%路过塔下吃血包的操作。模型的作战风格是大胆的,特别是公孙离的一些操作十分具有观赏性,能够利用好四段位移和格挡,令我们小队成员叹为观止。我们最终的模型惜败 baseline3(星耀)。

九、总结与展望

正如强化学习中探索与利用的平衡,我们在有限的资源内做了一些探索,未能取得性能提升,所以后期资源都用在训练上,以寻找更加靠近已知局部最优点的更优解。由于时间有限,没有成功找到能取得更好表现的奖励函数,时间和资源允许情况下,可在同样的断点上用同样的实验设置,对比不同 reward 参数的性能,以确定更好的探索方向。如果有机会,希望可以尝试加入图像特征、实现 KDA、发育、伤害、推进相关的多头价值函数的网络[2]。

参考文献

[1] Ye D, Liu Z, Sun M, et al. Mastering complex control in moba games with deep reinforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(04): 6672-6679.

[2] Ye D, Chen G, Zhang W, et al. Towards playing full moba games with deep reinforcement learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 621-632.