# Herding Behaviors and Mutual Fund Returns

汇报人: 陈泽理

2023/11/28

### What is Herding?

- Herding is commonly defined as the similarities in trading of a group of market participants in Finance.
- Herding can be divided into three types:
  - caused by the similar information obtained(Herding like)
  - caused by incomplete information
  - caused by lack of skills
- The mainstream herding theory is mainly concentrated in two research areas:
  - Incomplete information(e.g. Banerjee, 1992)
  - Payment externalities(e.g. Scharfstein and Stein, 1992)

### Why Herding?

- Mutual funds and other institutional investors tend to herd in their decisions(e.g. Lakonishok et al., 1992; Grinblatt et al., 1995)
- There are roughly six explanations for mutual funds herding (Choi and Sias, 2009)
  - positive-feedback trading
  - underlying investors' flows,
  - fads,
  - reputation,
  - Investigation,
  - information cascades.

### The characteristics of herding

- Herding mainly includes two prominent characteristics:
  - the decision of the forerunner must be observed;
  - the decision-making behavior must occur in sequence



#### Previous measurement of herding

- LSV(Lakonishok, Andrei Shleifer, and Robert W. Vishny, 1992)
  - measures the average tendency of pension funds either to buy or to sell particular stocks at the same time

$$UHM_{i,t} = |p_{i,t} - \bar{p}_t| - E|p_{i,t} - \bar{p}_t|$$

- $p_{i,t}$  equals the proportion of funds trading in stock i during quarter t that are buyers
- FHM(Grinblatt et al., 1995)

$$\begin{aligned} \text{SHM}_{i,t} \\ &= I_{i,t} \times \text{UHM}_{i,t} - E[I_{i,t} \times \text{UHM}_{i,t}] \end{aligned} \qquad \begin{aligned} \text{FHM} &= \frac{1}{120} \sum_{t=1}^{40} \sum_{j=1}^{3} \sum_{j=1}^{N} \left( \tilde{w}_{j,3t} - \tilde{w}_{j,3t-3} \right) \text{SHM}_{j,3t-3+i} \,. \end{aligned}$$

 I = 1 if the fund trades "with the herd" in stock i during quarter t

### Previous measurement of herding

- Quality(Cohen et al., 2005)
  - uses a covariance between funds' portfolio weight changes.

$$ar{\delta}_n = \sum_{m=1}^M v_{m,n} lpha_m, \qquad \qquad v_{m,n} = rac{w_{m,n}}{\sum\limits_{m=1}^M w_{m,n}}.$$

Alpha denotes the reference measure of skill for manager.

$$\hat{\delta}^{**} = C\hat{\alpha}, \qquad \qquad \operatorname{Cov}(\hat{\delta}^{**}, \hat{\delta}^{**\prime}) = C\Omega C',$$

# Does Herding Behavior Reveal Skill? An Analysis of Mutual Fund Performance

HAO JIANG

MICHELA VERARDO

The Journal of Finance, 2018(5)

#### Background

- Herding caused by lack of skills, underexplored feature of models:
  - less skilled individuals may herd on the decisions of their predecessors,
  - those with superior ability may be more likely to deviate from past actions(exhibiting antiherding behavior).
- Mutual fund skills and returns.
  - Previous literature analyzes the returns and investment decisions of mutual fund managers to measure unobservable skill.(e.g. Kacperczyk and Seru (2007), Cremers and Petajisto (2009), Cohen, Polk, and Silli (2010))
  - How to measure skills?(return, holdings, fund manager, fund characteristics)

#### Motivation

 Ample evidence shows that mutual funds and other institutional investors tend to herd in their buying and selling decisions.

 Herding/ Antiherding can be reflected in mutual fund holdings, while holdings is a measure of mutual fund skills.

 whether investors can identify skilled and unskilled mutual fund managers by observing their tendency to herd?

#### **Research Questions**

- Whether differences in herding behavior across funds predict mutual fund performance?
- Whether skill drives the link between herding and future performance?
  - Whether antiherding funds consistently make better investment decisions than herding funds?
  - Is there time-series variation in the performance gap between herding and antiherding funds?
  - Is the performance gap between herding and antiherding funds persistent?
  - sequential information acquisition framework
- How do differences in skill lead to differences in herding behavior?
  - how skill interacts with career concerns to shape the response of mutual fund managers to reputational incentives.

#### Contributions

- Contribute to the literature on mutual fund performance.
  - the predictability of mutual fund performance uncovers herding behavior as a tool to capture mutual fund managers' skills.
- Contribute to the empirical literature on herding behavior.
  - create a dynamic measure of fund-level herding behavior
  - Previous studies estimate institutional herding using stocklevel measures with a focus on their impact on stock prices.
  - shed new light on the dynamics of herding behavior over a manager's career cycle.

#### Data

- Sample: actively managed U.S. equity funds having at least 10 stock holdings from 1990 to 2009, exclude index funds.
- eliminate balanced, bond, money market, sector, and international funds, as well as funds that do not primarily invest in U.S. common equity(Kacperczyk et al., 2008).
- eliminate observations prior to the reported fund inception date and funds whose net assets fall below \$5 million(incubation bias).
- **2,255** distinct mutual funds; **56,116 fund-quarters** left.

#### Data

- Monthly fund returns and other fund characteristics from the CRSP Mutual Fund database.
- Fund stock holdings from the Thomson Reuters Mutual Fund Holdings database.
- Institutional investors' 13F filings from Thomson Reuters Institutional Holdings database.
- Stock price and return from the CRSP.
- Monthly stock files and accounting information from Compustat.

#### Variables: Fund Herding Measure

 Estimated at the fund level and captures the dynamic link between the decisions of a fund and the decisions made by the crowd in the past.

$$Trade_{i,j,t} = \alpha_{j,t} + \beta_{j,t} \Delta IO_{i,t-1} + \gamma_{1j,t} Mom_{i,t-1} + \gamma_{2j,t} MC_{i,t-1} + \gamma_{3j,t} BM_{i,t-1} + \varepsilon_{i,j,t}.$$

$$Trade_{i,j,t} = (N_{i,j,t} - N_{i,j,t-1}) / N_{i,j,t-1}.$$

$$\Delta IO_{i,t-1} = N_{i,t-1} / N_{i,t-1}^{out} - N_{i,t-2} / N_{i,t-2}^{out}.$$

- Trade: the percentage change in the number of split-adjusted shares of stock i in the portfolio of mutual fund j during quarter t
- IO: the change in the aggregate institutional ownership of stock i during quarter t – 1.

### Variables: Fund Herding Measure

$$Trade_{i,j,t} = \alpha_{j,t} + \beta_{j,t} \Delta IO_{i,t-1} + \gamma_{1,j,t} Mom_{i,t-1} + \gamma_{2,j,t} MC_{i,t-1} + \gamma_{3,j,t} BM_{i,t-1} + \varepsilon_{i,j,t}.$$

- The slope forms the building block of our measure of fund herding.
- Novel: control for commonalities in investment styles and institutional preferences.
- Fund-level herding, FH, captures the average tendency of a fund to follow past institutional trades.

$$FH_{j,t} = rac{\sum\limits_{h=1}^{t}rac{1}{h}eta_{j,t-h+1}}{\sum\limits_{h=1}^{t}rac{1}{h}}.$$

|                  | Mean           | Std. Dev.       | $5^{ m th}$ Pctl | $25^{\mathrm{th}}$ Pctl | Median         | $75^{\mathrm{th}}$ Pctl | 95 <sup>th</sup> Pctl |
|------------------|----------------|-----------------|------------------|-------------------------|----------------|-------------------------|-----------------------|
| eta Fund Herding | $2.30 \\ 2.42$ | $18.73 \\ 7.12$ | -27.84 $-8.81$   | -7.83 $-1.51$           | $2.15 \\ 2.35$ | $12.62 \\ 6.39$         | 32.63<br>13.86        |

### Fund Herding and Future Performance

- Portfolio sort.
- Testing whether fund herding has predictive power for the cross section of mutual fund performance.
- Cross-sectional differences in fund herding can predict differences in mutual fund performance
- Fund herding is related to mutual fund skill.

| FH rank | 1      | 10    | D10 – D1 |
|---------|--------|-------|----------|
| FH      | -0.104 | 0.152 | 0.256    |

| Average          | 0.84          |                  | -0.19***                 |
|------------------|---------------|------------------|--------------------------|
| CADM             | , , , ,       |                  | (-3.37)                  |
| CAPM $\alpha$    | 0.07 $(1.07)$ | -0.14 $(-2.58)$  | $-0.21^{***}$ $(-3.71)$  |
| $FF \alpha$      |               | -0.15            | $-0.17^{***}$            |
|                  | ,             |                  | (-3.26)                  |
| Carhart $\alpha$ |               | -0.14            | -0.16***                 |
| PS α             |               | (-2.59)<br>-0.14 | $(-2.93) \\ -0.14^{***}$ |
|                  | , ,           |                  | (-2.67)                  |
| FS $\alpha$      | -0.02         |                  | -0.17***                 |
|                  | (-0.34)       | (-4.18)          | (-3.18)                  |

### Fund Herding and Future Performance

- Predictive Regressions
- Fund herding reliably predicts mutual fund performance.
- the fund characteristics relate to future fund performance in a way that is consistent with previous findings.

|                    | F         | our-Factor    | Net $\alpha$ ( $t$ + | 1)           | Fo        | ur-Factor (   | Gross $\alpha$ ( $t$ + | 1)            |  |
|--------------------|-----------|---------------|----------------------|--------------|-----------|---------------|------------------------|---------------|--|
| FH                 | -0.466*** | -0.438***     | -0.543***            | -0.439***    | -0.469*** | -0.437***     | -0.541***              | -0.438***     |  |
| L                  | (-5.16)   | (-4.83)       | (-4.36)              | (-4.84)      | (-5.18)   | (-4.82)       | (-4.35)                | (-4.82)       |  |
| Size               |           | $-0.007^{**}$ | $-0.011^{**}$        | $-0.006^{*}$ |           | $-0.008^{**}$ | $-0.012^{***}$         | $-0.007^{**}$ |  |
|                    |           | (-2.01)       | (-2.37)              | (-1.78)      |           | (-2.41)       | (-2.63)                | (-2.17)       |  |
| Age                |           | $0.015^*$     | 0.005                | $0.016^*$    |           | $0.016^*$     | 0.006                  | $0.016^*$     |  |
| AS                 |           | (/            | 0.177***             | (/           |           | (/            | 0.180***               | (/            |  |
|                    |           |               | (3.89)               |              |           |               | (3.97)                 |               |  |
| RPI                |           |               | 0.061                |              | 0.063     |               |                        |               |  |
|                    |           |               | (0.49)               |              | (0.51)    |               |                        |               |  |
| Similarity         |           |               | $0.087^{***}$        |              |           |               | $0.087^{***}$          |               |  |
|                    |           |               | (2.74)               |              |           |               | (2.74)                 |               |  |
| TE                 |           |               |                      | 1.577        |           |               |                        | $1.646^*$     |  |
|                    |           |               |                      | (1.60)       |           |               |                        | (1.68)        |  |
| $\mathrm{Adj.}R^2$ | 0.060     | 0.062         | 0.092                | 0.062        | 0.060     | 0.061         | 0.092                  | 0.061         |  |
| N                  | 167,854   | 160,067       | 81,759               | 159,588      | 167,854   | 160,067       | 81,759                 | 159,588       |  |

- Revealing Skill through Investment Choices.
  - Differences in skill across funds should be reflected in different investment choices.
- Antiherding funds should consistently make better investment decisions.
- Test the future returns of the stocks held in the portfolios of funds characterized by different herding tendencies.
- Stock-level measure of fund herding:

$$S_{i,t}^{\mathit{FH}} = \sum_{j=1}^{J} w_{i,t}^{j} \left( -\frac{\mathit{rank}(\mathit{FH}_{t}^{j}) - \overline{\mathit{rank}(\mathit{FH}_{t}^{j})}}{10} \right).$$

- Stocks that represent large bets by antiherding funds outperform stocks that are mostly held by herding funds.
- The performance differential between herding and antiherding funds is MORE likely to be driven by investment decisions related to unobservable skill.

| $S^{\mathrm{FH}}$ | Low     | 2           | 3       | 4           | High         | High – Low   |
|-------------------|---------|-------------|---------|-------------|--------------|--------------|
| Average           | 0.93**  | 1.07***     | 0.92*** | 1.21***     | 1.42***      | 0.49***      |
| _                 | (2.48)  | (3.30)      | (2.80)  | (3.56)      | (3.95)       | (3.03)       |
| CAPM $\alpha$     | 0.08    | $0.29^{**}$ | 0.15    | $0.42^{**}$ | $0.62^{***}$ | $0.54^{***}$ |
|                   | (0.49)  | (2.09)      | (0.91)  | (2.52)      | (3.11)       | (3.36)       |
| FF $\alpha$       | -0.06   | 0.14        | -0.01   | 0.20        | $0.39^{**}$  | $0.45^{***}$ |
|                   | (-0.40) | (1.25)      | (-0.05) | (1.53)      | (2.36)       | (2.83)       |
| Carhart $\alpha$  | 0.11    | $0.24^{**}$ | 0.10    | $0.31^{**}$ | $0.49^{***}$ | $0.38^{**}$  |
|                   | (0.71)  | (2.19)      | (0.65)  | (2.38)      | (3.07)       | (2.36)       |
| PS $\alpha$       | -0.17   | 0.20        | -0.05   | 0.16        | 0.30         | $0.47^{**}$  |
|                   | (-0.98) | (1.43)      | (-0.32) | (1.11)      | (1.56)       | (2.43)       |

19

- Time-Varying Opportunities and the Value of Skill.
  - the performance gap should increase in times of greater investment.
- Using 3 variables: average idiosyncratic volatility (IV ), investor sentiment index (Sent),  $CrossVol_t = \sqrt{\sum_{i=1}^N w_{i,t-1}(R_{i,t} R_{m,t})^2}$ ,
- the performance gap is greater during and after periods of high investment opportunities.

|                                             | Dej                   | pendent Varia           | ıble: Four-Fac         | ctor Net α             |                          |                         |
|---------------------------------------------|-----------------------|-------------------------|------------------------|------------------------|--------------------------|-------------------------|
| Fund Herding                                | -0.529***<br>(-4.76)  | -0.535***<br>(-4.92)    | $-0.480^{***} (-4.67)$ | $-0.459^{***} (-4.41)$ | $-0.416^{***} (-4.70)$   | -0.419***<br>(-4.73)    |
| $\mathrm{FH} \times \mathrm{CrossVol}_t$    | $-0.322^{**} (-2.14)$ |                         |                        |                        |                          |                         |
| $\mathrm{FH} 	imes \mathrm{CrossVol}_{t-1}$ |                       | $-0.324^{**}$ $(-2.51)$ |                        |                        |                          |                         |
| $\mathrm{FH} 	imes \mathrm{IV}_t$           |                       |                         | $-0.165^* \ (-1.88)$   |                        |                          |                         |
| $\mathrm{FH} 	imes \mathrm{IV}_{t-1}$       |                       |                         |                        | -0.102 $(-1.10)$       |                          |                         |
| $\mathrm{FH} 	imes \mathrm{Sent}_t$         |                       |                         |                        |                        | $-0.358^{***}$ $(-2.64)$ |                         |
| $\mathrm{FH} 	imes \mathrm{Sent}_{t-1}$     |                       |                         |                        |                        | , , , , ,                | $-0.276^{**}$ $(-2.15)$ |

- Performance Persistence
  - if herding funds underperform due to bad luck, while antiherding funds are simply lucky
- Sort into 10 groups, L-S group's return.
- the performance gap related to herding is remarkably persistent.

|                  | K = 6         | K = 9         | K = 12        | K = 15        | K = 18       | K = 21       | K = 24       |
|------------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|
|                  |               |               | Net Re        | turn          |              |              |              |
| Average          | -0.15***      | -0.15***      | -0.15***      | -0.13**       | -0.13**      | $-0.12^{*}$  | -0.10*       |
|                  | (-2.83)       | (-3.04)       | (-2.62)       | (-2.14)       | (-1.98)      | (-1.88)      | (-1.71)      |
| CAPM $\alpha$    | $-0.17^{***}$ | $-0.17^{***}$ | $-0.17^{***}$ | $-0.15^{**}$  | $-0.15^{**}$ | $-0.13^{**}$ | $-0.11^{**}$ |
|                  | (-3.15)       | (-3.42)       | (-2.99)       | (-2.46)       | (-2.29)      | (-2.24)      | (-2.14)      |
| FF $\alpha$      | $-0.13^{***}$ | $-0.14^{***}$ | $-0.13^{***}$ | $-0.12^{***}$ | $-0.12^{**}$ | $-0.10^{**}$ | $-0.09^{**}$ |
|                  | (-3.07)       | (-3.59)       | (-3.21)       | (-2.60)       | (-2.53)      | (-2.56)      | (-2.50)      |
| Carhart $\alpha$ | $-0.11^{***}$ | $-0.12^{***}$ | $-0.11^{***}$ | $-0.09^{**}$  | $-0.09^{**}$ | -0.08**      | $-0.06^{**}$ |
|                  | (-2.67)       | (-3.41)       | (-3.00)       | (-2.38)       | (-2.35)      | (-2.43)      | (-2.36)      |
| $PS \alpha$      | $-0.10^{**}$  | -0.11***      | -0.10***      | -0.08**       | -0.08**      | $-0.06^{**}$ | $-0.05^{*}$  |
|                  | (-2.38)       | (-2.98)       | (-2.63)       | (-2.04)       | (-2.01)      | (-2.02)      | (-1.88)      |

- Anticipating the Actions of the Crowd
  - consider a gradual information acquisition framework
- investors who acquire information earlier than others are more likely to display antiherding behavior.
- antiherding funds can significantly predict aggregate institutional trades.

|                                |                      | Dependent Variable: $\Delta IO\left(t+1\right)$ |                       |                  |         | +1:t+                |                                                               |
|--------------------------------|----------------------|-------------------------------------------------|-----------------------|------------------|---------|----------------------|---------------------------------------------------------------|
| Trades of Antiherding<br>Funds | $1.120^{**} $ (2.07) | $1.297^{**}$ $(2.38)$                           | $1.140^{**}$ $(2.15)$ | $1.747^*$ (1.83) |         | $2.257^{*}$ $(2.54)$ | $\begin{array}{c} ^{**} & 2.420^{**} \\ (2.38) & \end{array}$ |
| Trades of Herding              | 0.17                 | 7 0.033                                         | 0.068                 |                  | -0.565  | -0.899               | -0.655                                                        |
| Funds                          | (0.39                | (0.07)                                          | (0.17)                |                  | (-0.71) | (-1.12)              | (-0.83)                                                       |
| Lagged $\Delta IO$             |                      |                                                 | -0.300***<br>(-11.95) |                  |         |                      | -0.289***<br>(-9.13)                                          |

- Building on Chevalier and Ellison (1999),
  - whether there is evidence of career concerns among the mutual fund,
  - whether herding might provide an incentive to attenuate such concerns.
- whether managers with stronger career concerns respond to these potential incentives to herd.
- the degree to which herding and antiherding choices reveal skill for managers experiencing different levels of career concerns.
- two measures of managerial experience:
  - general experience, defined as the number of years on the CRSP database;
  - fund-specific tenure, defined as the number of years during which a manager is employed in a given fund.

- less experienced managers face a higher probability of termination.
- managers have incentives to follow the crowd in order to decrease the probability of negative career outcomes.

|                   | Depende        | ent Variable: Termina | ation          |                |
|-------------------|----------------|-----------------------|----------------|----------------|
| Fund Herding      | -0.075**       | -0.080***             | $-0.074^{**}$  | $-0.079^{***}$ |
|                   | (-2.49)        | (-2.61)               | (-2.46)        | (-2.58)        |
|                   | [-0.0035]      | [-0.0037]             | [-0.0034]      | [-0.0037]      |
| Experience        | $-0.183^{***}$ | $-0.187^{***}$        |                |                |
|                   | (-5.51)        | (-5.57)               |                |                |
|                   | [-0.0081]      | [-0.0086]             |                |                |
| Tenure            |                |                       | $-0.144^{***}$ | $-0.145^{***}$ |
|                   |                |                       | (-4.41)        | (-4.41)        |
|                   |                |                       | [-0.0066]      | [-0.0067]      |
| TE                |                | $-0.054^*$            |                | $-0.052^*$     |
|                   |                | (-1.78)               |                | (-1.70)        |
|                   |                | [-0.0025]             |                | [-0.0024]      |
| $\mathrm{Adj}R^2$ | 0.129          | 0.128                 | 0.127          | 0.126          |
| N                 | 17,593         | 17,417                | 17,593         | 17,387         |

- the impact of herding is large among low-experience managers,
   whereas it is insignificant for high-experience managers.
- herding behavior might constitute a rational response to reputational incentives that vary over a manager's career.

|                                         |                                     | ]                                | Dependent                           | Variable: Te                      | ermination                        |                                   |                                      |                                     |  |
|-----------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|--|
|                                         |                                     | Expe                             | erience                             |                                   | Tenure                            |                                   |                                      |                                     |  |
|                                         | L                                   | ow                               | H                                   | igh                               | Lo                                | )W                                | Hi                                   | igh                                 |  |
| FH                                      | -0.106***<br>(-2.92)<br>[-0.0062]   | -0.106**<br>(-2.89)<br>[-0.0061] | -0.028<br>(-0.56)<br>[-0.0011]      | -0.041<br>(-0.78)<br>[-0.0017]    | -0.105***<br>(-2.65)<br>[-0.0057] | -0.104***<br>(-2.61)<br>[-0.0056] | -0.049<br>(-1.03)<br>[-0.0022]       | -0.061<br>(-1.25)<br>[-0.0028]      |  |
| Experienc                               | ce -0.230**<br>(-2.08)<br>[-0.0133] | -0.239**<br>(-2.14)<br>[-0.0138] | $-0.122^{**}$ $(-2.07)$ $[-0.0049]$ | -0.119**<br>(-1.99)<br>[-0.0048]  |                                   |                                   |                                      |                                     |  |
| Tenure                                  |                                     |                                  |                                     |                                   | 0.130<br>(0.93)<br>[0.0071]       | 0.127<br>(0.90)<br>[0.0069]       | $-0.159^{***}$ $(-2.78)$ $[-0.0071]$ | $-0.147^{**}$ $(-2.54)$ $[-0.0067]$ |  |
| TE                                      |                                     | -0.006<br>(-0.15)<br>[-0.0004]   |                                     | -0.141***<br>(-2.94)<br>[-0.0058] |                                   | 0.000<br>(-0.01)<br>[0.0000]      |                                      | -0.109**<br>(-2.43)<br>[-0.0050]    |  |
| $\mathop{ m Adj} olimits_R^2 olimits_N$ | $0.125 \\ 8,583$                    | 0.124<br>8,543                   | $0.128 \\ 8,251$                    | 0.128<br>8,095                    | $0.132 \\ 7,927$                  | 0.132<br>7,897                    | 0.117<br>8,887                       | 0.117<br>8,719                      |  |

- less experienced managers are more likely to herd.
- models of reputational herding that predict stronger herding incentives for more career-concerned managers.

|                   |                         | Dependent               | t Variable: Fu      | and Herding |                         |               |  |
|-------------------|-------------------------|-------------------------|---------------------|-------------|-------------------------|---------------|--|
|                   |                         | Experience              |                     | Tenure      |                         |               |  |
| Experience        | $-0.144^{**} \ (-2.29)$ | $-0.160^{**} \ (-2.23)$ | -0.148**<br>(-2.21) |             |                         |               |  |
| Tenure            |                         |                         |                     | -0.158**    | $-0.135^*$              | -0.163**      |  |
|                   |                         |                         |                     | (-2.43)     | (-1.78)                 | (-2.22)       |  |
| AS                |                         | -0.411***               |                     |             | -0.405***               |               |  |
| RPI               |                         | $(-4.11)$ $0.546^{***}$ |                     |             | $(-3.72)$ $0.559^{***}$ |               |  |
| Similarity        |                         | (7.67) $-0.137$         |                     |             | (7.51) $-0.136$         |               |  |
| TE                |                         | (-1.42)                 | -0.199              |             | (-1.46)                 | -0.193        |  |
| $\mathrm{Adj}R^2$ | 0.009                   | 0.026                   | (-1.59) $0.013$     | 0.009       | 0.026                   | (-1.49) 0.013 |  |
| N                 | 22,389                  | 12,227                  | 22,325              | 22,343      | 12,227                  | 22,279        |  |

- differences in herding behavior predict large and significant differences in performance for funds with less experienced managers.
- differences in herding behavior reveal skill more strongly for inexperienced, career-concerned managers.

|                      |            |         | P       | anel A: | General Exp              | erience |         |         |         |              |
|----------------------|------------|---------|---------|---------|--------------------------|---------|---------|---------|---------|--------------|
|                      | Net Return |         |         |         | Four-Factor Net $\alpha$ |         |         |         |         |              |
| FH                   | Low        | 2       | 3       | High    | High – Low               | Low     | 2       | 3       | High    | High – Lov   |
| Experience           |            |         |         |         |                          |         |         |         |         |              |
| Low                  | 0.80       | 0.75    | 0.77    | 0.64    | $-0.16^{**}$             | 0.02    | -0.06   | -0.02   | -0.16   | $-0.18^{**}$ |
|                      | (2.46)     | (2.27)  | (2.35)  | (1.92)  | (-2.41)                  | (0.21)  | (-0.89) | (-0.23) | (-2.29) | (-2.60)      |
| $\operatorname{Med}$ | 0.79       | 0.73    | 0.71    | 0.65    | $-0.14^{**}$             | 0.00    | -0.07   | -0.05   | -0.11   | $-0.11^{*}$  |
|                      | (2.50)     | (2.28)  | (2.16)  | (1.96)  | (-2.27)                  | (-0.02) | (-1.02) | (-0.70) | (-1.31) | (-1.90)      |
| High                 | 0.78       | 0.73    | 0.68    | 0.66    | -0.12                    | -0.01   | -0.06   | -0.08   | -0.12   | -0.10        |
|                      | (2.53)     | (2.42)  | (2.12)  | (2.03)  | (-1.47)                  | (-0.15) | (-0.90) | (-1.00) | (-1.50) | (-1.37)      |
| High - Low           | -0.02      | -0.02   | -0.10   | 0.02    | 0.05                     | -0.03   | 0.00    | -0.06   | 0.05    | 0.08         |
|                      | (-0.36)    | (-0.32) | (-1.31) | (0.37)  | (0.53)                   | (-0.47) | (-0.02) | (-0.86) | (0.72)  | (0.83)       |

#### Robustness test

$$\Delta IO_{i,t} = \gamma_{0t} + \gamma_{1t}Mom_{i,t} + \gamma_{2t}MC_{i,t} + \gamma_{3t}BM_{i,t} + \gamma_{4t}Turn_{i,t} + \gamma_{5t}IVol_{i,t}$$

$$+ \gamma_{6t}FRev_{i,t} + \gamma_{7t}Issue_{i,t} + \gamma_{8t}Spread_{i,t} + \gamma_{9t}Amihud_{i,t}$$

$$+ \sum_{k=1}^{9} \gamma_{9+k,t}IND_{i,t}^{k} + \varepsilon_{i,t},$$

$$Trade_{i,j,t} = \alpha_{j,t} + \beta_{j,t} \Delta IO_{i,t-1} + \gamma_{1j,t} Mom_{i,t-1} + \gamma_{2j,t} MC_{i,t-1} + \gamma_{3j,t} BM_{i,t-1} + \gamma_{4j,t} Trade_{i,j,t-1} + \varepsilon_{i,j,t}.$$

$$CS_{t+1} = \sum_{i=1}^{N} w_{i,t} \left( R_{i,t+1} - R_{i,t+1}^{b} \right),$$

# Do Investors Respond to Fund Herding?

 mutual fund investors do not respond aggressively to the information about future performance that is captured by our measure of fund herding.

|                   | Dependent Variable: Fund Flows |                |  |  |  |
|-------------------|--------------------------------|----------------|--|--|--|
| Fund Herding      | -0.033**                       | -0.019         |  |  |  |
| _                 | (-2.34)                        | (-1.58)        |  |  |  |
| Size              |                                | -0.003***      |  |  |  |
|                   |                                | (-5.85)        |  |  |  |
| Age               |                                | $-0.009^{***}$ |  |  |  |
|                   |                                | (-7.58)        |  |  |  |
| Expense           |                                | 0.131          |  |  |  |
|                   |                                | (0.60)         |  |  |  |
| Turnover          |                                | 0.002          |  |  |  |
|                   |                                | (0.99)         |  |  |  |
| Flow              |                                | $0.192^{***}$  |  |  |  |
|                   |                                | (11.13)        |  |  |  |
| Alpha             |                                | $5.758^{***}$  |  |  |  |
|                   |                                | (19.67)        |  |  |  |
| $\mathrm{Adj}R^2$ | 0.010                          | 0.084          |  |  |  |
| N                 | 55,595                         | 53,002         |  |  |  |

#### Conclusion

- herding behavior strongly and negatively predicts the cross section of mutual fund returns.
- the negative association between fund herding and future performance is related to managerial skill.
- the performance gap between herding and antiherding funds is especially strong among inexperienced managers,
- herding and antiherding choices might be used to signal skill by managers with stronger career concerns.

# Herd Behavior and Mutual Fund Performance

Andrew Koch
Management Science, 2015(8)

#### Motivation

 Prior literature has distinguished informational from noninformational drivers of herding by examining the relation between herd behavior and subsequent returns.

- Prior findings are mixed, and depend to some extent on methodology.
  - some studies measure contemporaneous correlations, whereas others focus on cross-autocorrelations
  - studies of similarity in trading are generally conducted at the stock-level,
     whereas similarity in holdings is often measured at the fund-level

#### **Research Questions**

- A new method of herding based on Euclidean geometry, measuring herding by correlated trading.
  - Persistence.
  - how the cross sectional distributions of these measures relate to subsequent fund performance
- the relation between correlated trading and correlated holdings.
  - leaders, contemporaneous traders, and followers
  - how these measures of similarity in trading relate to measures of similarity in holdings.
  - understanding the interaction between similarity in trading with similarity in holdings may be informative regarding the motives generating herd behavior

#### Contributions

- Contributes by developing simple, novel, fund-level measures of similarities in portfolio decisions.
  - use a novel framework based on Euclidean geometry to measure multiple aspects of portfolio decisions at the fund-level.
- Analyse the managers' portfolio changing for each Adjacent period.
  - This is a type of correlated trading behavior that has received little attention in prior literature.
- Contributes to the literature of fund skills
  - the extent to which a fund's trades predict the trades of the aggregate mutual fund industry can be informative regarding the skill of the fund manager.

#### Data

- Sample: 1989-2009, all funds having at least 10 stocks that are not identified as index funds per the index fund flag variable from CRSP.
- exclude funds that do not report holdings in March, June,
   September, or December.
- quarterly mutual fund holdings data from Thomson Reuters
  - match with stock and mutual fund data from CRSP using MFLinks.
- fund characteristic, fund returns are obtained from CRSP.
- 2,694 funds left.

# Methodology

- Each portfolio can be thought of as having a location in stockspace that is determined by its weights on stocks.
- A 3-security example of one fund and its peer portfolio.
  - The angle,  $\theta$ , between the vector representing the change in the location of the fund and the vector representing the change in the location of peers, is the measure of similarity in trades



### Methodology

- The vector of portfolio weights for fund f at quarter t is denoted
   wf,t
- the peer portfolio has portfolio weights denoted by the vector
   hf,t where each element equals the average portfolio weight
   among funds with non-zero weights (excluding fund f).
- Wf,t changes:  $\Delta w_{f,t,i} = w_{f,t,i} w_{f,t-1,i} * \frac{Ret_{t,i}}{\sum_i w_{f,t-1,i} * Ret_{i,t}}$
- leaders, contemporaneous traders, and followers

$$contemporaneous_{f,t} = \cos(\theta) = \frac{\Delta \mathbf{w}_{f,t} \bullet \Delta \mathbf{h}_{f,t}}{||\Delta \mathbf{w}_{f,t}|| \ ||\Delta \mathbf{h}_{f,t}||}.$$

$$|| leading_{f,t} = \frac{\Delta \mathbf{w}_{f,t} \bullet \Delta \mathbf{h}_{f,t+1}}{||\Delta \mathbf{w}_{f,t}|| \ ||\Delta \mathbf{h}_{f,t+1}||}, \quad following_{f,t} = \frac{\Delta \mathbf{w}_{f,t} \bullet \Delta \mathbf{h}_{f,t-1}}{||\Delta \mathbf{w}_{f,t}|| \ ||\Delta \mathbf{h}_{f,t-1}||}.$$

# the similarity in holdings

- The similarity in holdings levels is reflected in the distance between the location of the fund and the location of peers.
- The shorter the distance, the higher is the similarity portfolio weights.  $distance_{f,t} = ||\mathbf{w}_{f,t} \mathbf{h}_{f,t}||.$
- the extent to which the manager's portfolio changes cause the holdings to become more similar to peers.

$$convergence_{f,t} = 1 - \frac{||\mathbf{w}_{f,t} - \mathbf{h}_{f,t}||}{||\mathbf{w}'_{f,t} - \mathbf{h}_{f,t}||}.$$



# The performance of leading, contemporaneous, and following funds

- There is no evidence of an association between following behavior and fund performance.
- The performance of leading is strong.

|                            | raw     |          |          |          |          |
|----------------------------|---------|----------|----------|----------|----------|
| Panel A: $leading_{t-3,t}$ | return  | CAPM     | Carhart  | CPZ      | CS       |
| Quintile 1 (lowest)        | 0.22    | -0.16*** | -0.16*** | -0.20*** | -0.34*** |
|                            | (0.74)  | (-3.18)  | (-3.39)  | (-4.80)  | (-7.90)  |
| Quintile 5 (highest)       | 0.41    | 0.02     | -0.02    | -0.02    | -0.23*** |
|                            | (1.33)  | (0.28)   | (-0.40)  | (-0.39)  | (-4.49)  |
| Quintile 5 - Quintile 1    | 0.18*** | 0.18***  | 0.14***  | 0.19***  | 0.11***  |
|                            | (2.98)  | (2.96)   | (2.58)   | (3.45)   | (2.90)   |

| Panel B: contemp-       | raw            |                    |                    |                     |                     |
|-------------------------|----------------|--------------------|--------------------|---------------------|---------------------|
| $oraneous_{t-3,t}$      | return         | CAPM               | Carhart            | CPZ                 | CS                  |
| Quintile 1 (lowest)     | 0.38           | 0.00               | -0.04              | -0.02               | -0.26***            |
| , ,                     | (1.25)         | (-0.06)            | (-0.77)            | (-0.49)             | (-5.37)             |
| Quintile 5 (highest)    | 0.27<br>(0.85) | -0.13*´<br>(-1.76) | -0.15**<br>(-2.31) | -0.14***<br>(-2.38) | -0.34***<br>(-5.49) |
| Quintile 5 - Quintile 1 | -0.11          | -0.12*             | -0.11*             | -0.12*              | -0.08               |
|                         | (-1.51)        | (-1.66)            | (-1.74)            | (-1.77)             | (-1.33)             |

| Panel C: $following_{t-3,t}$ | return  | CAPM    | Carhart | CPZ     | $^{\mathrm{CS}}$ |
|------------------------------|---------|---------|---------|---------|------------------|
| Quintile 1 (lowest)          | 0.34    | -0.04   | -0.06   | -0.06   | -0.28***         |
|                              | (1.11)  | (-0.64) | (-1.33) | (-1.58) | (-6.10)          |
| Quintile 5 (highest)         | 0.33    | -0.05   | -0.09   | -0.08   | -0.27***         |
|                              | (1.07)  | (-0.68) | (-1.43) | (-1.59) | (-4.63)          |
| Quintile 5 - Quintile 1      | -0.01   | -0.01   | -0.03   | -0.02   | 0.01             |
|                              | (-0.10) | (-0.21) | (-0.57) | (-0.38) | (0.11)           |

# The performance of leading, contemporaneous, and following funds

- leading behavior remains strongly statistically related to all four performance measures
- There is some evidence of significant underperformance of both contemporaneous and following funds, although this evidence is mixed.

|                                              | $^{(1)}_{\text{CAPM}_{t+2}}$ | (2) Carhart $_{t+2}$ | $(3)$ $CPZ_{t+2}$   | $(4)$ $CS_{t+2}$    | $^{(5)}_{\text{CAPM}_{t+1}}$ | (6) Carhart $_{t+1}$ | (7) CPZ <sub>t+1</sub> | $(8)$ $CS_{t+1}$ | $^{(9)}_{CAPM_{t+1}}$ | (10) Carhart $_{t+1}$ | $(11)$ $CPZ_{t+1}$   | $(12)$ $CS_{t+1}$ |
|----------------------------------------------|------------------------------|----------------------|---------------------|---------------------|------------------------------|----------------------|------------------------|------------------|-----------------------|-----------------------|----------------------|-------------------|
| $leading_{t-3,t} \\ contemporaneous_{t-3,t}$ | 0.0162***<br>(3.26)          | 0.0043***<br>(3.38)  | 0.0059***<br>(6.60) | 0.0620***<br>(6.99) | -0.0085***<br>(-3.27)        | -0.0016<br>(-0.70)   | -0.0027<br>(-1.25)     | -0.0182          |                       |                       |                      |                   |
| $following_{t-3,t}$                          |                              |                      |                     |                     | (-3.21)                      | (-0.70)              | (-1.25)                | (-0.58)          | 0.0063*<br>(1.70)     | -0.0057**<br>(-2.14)  | -0.0051**<br>(-2.61) | 0.0382 $(0.62)$   |

# Is leading distinct?

 leading behavior is distinct from fund-level measures of correlated trading in prior literature.

|                                 | (1)                 | (2)                 | (3)                 | (4)                 |
|---------------------------------|---------------------|---------------------|---------------------|---------------------|
|                                 | $CAPM_{t+2}$        | $Carhart_{t+2}$     | $CPZ_{t+2}$         | $CS_{t+2}$          |
| $leading_{t-3,t}$               | 0.0191***<br>(3.79) | 0.0065***<br>(4.19) | 0.0080***<br>(7.87) | 0.0710***<br>(8.62) |
| $FHM_{t-3,t}$                   | -0.0635             | -0.1410***          | -0.1649***          | -0.6060             |
|                                 | (-1.07)             | (-2.77)             | (-3.95)             | (-1.20)             |
| $\hat{\delta}_m^{**}{}_{t-3,t}$ | 0.0944***           | 0.0837**            | 0.1089***           | 0.5123***           |
|                                 | (3.69)              | (2.25)              | (3.77)              | (3.45)              |
|                                 |                     |                     |                     |                     |
|                                 | (1)                 | (2)                 | (3)                 | (4)                 |
|                                 | $CAPM_{t+1}$        | $Carhart_{t+1}$     | $CPZ_{t+1}$         | $CS_{t+1}$          |
| $distance_t$                    | 0.0261***<br>(5.05) | 0.0288***<br>(5.67) | 0.0306***<br>(5.42) | 0.2199***<br>(3.22) |
| $active share_t$                | 0.0114              | 0.0052***           | 0.0143***           | 0.0342*             |
|                                 | (1.40)              | (2.94)              | (6.23)              | (1.94)              |
| $ICI_t$                         | -0.0344*            | -0.0162**           | -0.0177***          | -0.0478             |
|                                 | (-1.75)             | (-2.42)             | (-3.86)             | (-0.51)             |
| $\hat{\delta}_{m,t}^*$          | -0.3415***          | -0.1091***          | -0.0567*            | -0.8061             |
|                                 | (-5.21)             | (-3.04)             | (-1.96)             | (-0.90)             |

# Similarity in trades and similarity in holdings levels

- contemporaneous and following managers are motivated by the incentive to maintain similar portfolio holdings levels.
- the evidence regarding leaders suggests these managers are informed, either directly about the future trades of peers, or about the signals on which peers ultimately rely.

|                 | (1) (2)             | (3)      | (4)                  | (5)     | (6)               |
|-----------------|---------------------|----------|----------------------|---------|-------------------|
|                 | $leading_{t+1,t+4}$ | contempo | $raneous_{t+1,t+4}$  | followi | $ng_{t+1,t+4}$    |
| $distance_t$    | -0.00<br>(-0.05)    |          | -0.17***<br>(-11.94) |         | -0.03*<br>(-1.75) |
| $convergence_t$ | -0.01<br>(-1.35)    |          | 0.09***<br>(10.56)   |         | 0.05***<br>(6.59) |

#### Conclusion

- Managers whose trades lead the aggregate trades of mutual funds perform well multiple periods in the future.
- Contemporaneous traders and followers do not outperform, and if anything, they exhibit poor performance.
- Contemporaneous and following managers are motivated by the incentive to maintain similar portfolio holdings levels.
- In contrast, the evidence regarding leaders suggests these managers are informed, either directly about the future trades of peers, or about the signals on which peers ultimately rely.