LA-DM II előadás

2024.04.24.

Lászlóffy András

Részben rendezési relációk – Hasse diagram

 $a \le b$, ha a részhalmaza b-nek

- Legkisebb elem: {}
- Legnagyobb elem: {1,2,3}
- Részhalmaz pl.: {{2},{3}}
 - alsó korlát: {}
 - felső korlát: {2,3} és {1,2,3}
 - infimum: {} alsó korlátok közül legnagyobb
 - supremum: {2,3} felső korlátok közül legkisebb
 - a részhalmaz korlátos, mivel van alsó és felső korlátja

Példa Hasse diagram

- Legkisebb elem: h
- Legnagyobb elem: nincs 🕾
- minimális elem: h
- maximális elem: e, a, u
- Részhalmaz {n,g}
 - n-nél nagyobb vagy egyenlő: n,r,s,t,u,d,i,a
 - g-nél nagyobb vagy egyenlő: g,r,s,t,u,d,a
 - felső korlát: r, s, t, u, d, a (közös elemek)
 - alsó korlát: 0, h
 - infimum: O
 - supremum: r
- Részhalmaz {l,i}

- Részhalmaz {b,s}
 - infimum: h
 - supremum: nincs
- infimum: nincs (j és f nincs relációban)
- supremum: a

NEM HÁLÓ!

- Def.: olyan részben rendezett halmaz, melynek bármely véges részhalmazának van infimuma és supremuma
- Melyik háló az alábbiak közül? (Bekeretezettek)

- Def. 1.: Olyan részben rendezett halmaz, melynek bármely véges részhalmazának van infimuma és supremuma
- Def. 2.: Olyan kétműveletes algebrai struktúra, melyben

1.a. $A \cup B = B \cup A$	1.b. $A \cap B = B \cap A$
2. a. $(A \cup B) \cup C = A \cup (B \cup C)$	2.b. $(A \cap B) \cap C = A \cap (B \cap C)$
3. a. $A \cap (A \cup B) = A$	3.b. $A \cup (A \cap B) = A$
elnyelési tulajdonság	elnyelési tulajdonság

- Def. 2. → Def. 1.: a műveletek alapján meg kell adni a relációt, és be kell látni, hogy részben rendezett halmaz
- Def. 1. → Def. 2.: a reláció alapján meg kell adni a műveleteket, és belátni, hogy 1-3. tulajdonságok teljesülnek

- Def. 2. → Def. 1.: a műveletek alapján meg kell adni a relációt, és be kell látni, hogy rendezési reláció
 - $x \le y$ (x relációban áll y-nal) a.cs.a., ha $x = x \cap y$ (vagy ezzel ekvivalens, hogy $y = x \cup y$)
 - reflexív, $x \le x$, hiszen $x = x \cap (x \cup (x \cap x)) = x \cap x$
 - antiszimmetrikus, $x \le y$ és $y \le x$ egyszerre teljesül, azaz $x = x \cap y$ és $y = y \cap x$ csak úgy lehet, ha x = y
 - tranzitív, $x \le y$ és $y \le z$ esetében $x = x \cap y$ és $y = y \cap z$, azaz $x = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$

- Def. 1. → Def. 2.: a reláció alapján meg kell adni a műveleteket, és belátni, hogy 1-3. tulajdonságok teljesülnek
 - Def. 1. alapján bármely két elemnek van infimuma és supremuma, így legyen $U \coloneqq \sup(x, y)$ és $\cap \coloneqq \inf(x, y)$
 - 1a) szimmetrikus: $x \cup y = y \cup x$ triviális
 - 2a) asszociatív: $x \cup (y \cup z) = \sup(x, \sup(y, z)) = \sup(x, y, z) = \sup(\sup(x, y), z) = (x \cup y) \cup z$
 - 3c) elnyelés: $x \cap (x \cup y) = \inf(x, \sup(x, y)) = x$, könnyen bizonyítható, ha $x \le y$, mivel ekkor $\sup(x, y) = y$ és $\inf(x, y) = x$. Általában is igaz.
 - 1b) 3b) hasonlóan igazolható

RELÁCIÓK KOMPOZÍCIÓJA

 $R:\subseteq A \times B$ és $S:\subseteq B \times C$

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B, (a, b) \in R \land (b, c) \in S\}$$

PÉLDA KOMPOZÍCIÓRA (RELÁCIÓK "SZORZATA")

$$A = \{1,2,3,4\}, B = \{w,x,y,z\}, C = \{5,6,7\},$$

$$R_1 \subseteq A \times B = \{(1,x),(2,x),(3,y),(3,z)\}$$

$$R_2 \subseteq B \times C = \{(w,5),(x,6)\}$$

$$R_2 \circ R_1 = \{(1,6),(2,6)\}$$