Sistema Integrado de Alertas Meteorológicos de Portugal

ETL com Validação, Análise de Risco e Geração Automática de Relatórios

Integração de Sistemas de Informação

Trabalho Prático I

Tiago Ferreira Número: 27980

Licenciatura em Engenharia de Sistemas Informáticos

Ano Letivo 2025/2026

19 de outubro de 2025

Conteúdo

1	Enq	uadramento
	1.1	Identificação do Projeto
	1.2	Contexto Académico
	1.3	Repositório Git
2	Pro	blema 5
	2.1	Descrição Detalhada
	2.2	Motivação e Relevância
3	Esti	ratégia Utilizada 6
	3.1	Abordagem Global
	3.2	Operadores e Processos Envolvidos
	3.3	Processos ETL Desenvolvidos
	3.4	Ferramentas e Integrações
	3.5	Metodologia de Desenvolvimento
	3.6	Síntese da Estratégia
	3.7	Componentes Tecnologicos
4	Tra	nsformações Detalhadas 8
	4.1	T1 – Extração e Pré-Processamento (API IPMA)
		4.1.1 Objetivo
		4.1.2 Visão Geral
		4.1.3 Componentes e Funções
		4.1.4 Descrição das Etapas
		4.1.5 Resultado
	4.2	T2 – Validação e Normalização de Dados
		4.2.1 Objetivo
		4.2.2 Visão Geral
		4.2.3 Componentes e Funções
		4.2.4 Descrição das Etapas Principais
		4.2.5 Resultado
	4.3	T3 – Cálculo de Alertas e Relatórios
		4.3.1 Objetivo
		4.3.2 Visão Geral
		4.3.3 Componentes e Funções
		4.3.4 Descrição das Etapas Principais
		4.3.5 Resultados
5	Job	Principal – Orquestração do Processo ETL 17
	5.1	Objetivo
	5.2	Visão Geral
	5.3	Componentes e Funções
	5.4	Descrição das Etapas
		5.4.1 Logs na Base de Dados
	5.5	Resultado

6	Base de Dados	2 0
	6.1 Visão Geral	20
	6.2 Schema meteorologia	21
	6.3 Schema registos	22
	6.4 Integração com o Processo ETL	23
	6.5 Resumo	23
		24
8	Visualização e Monitorização de Dados no Node-RED	25
9	Conclusão 9.1 Trabalhos Futuros	28 28
10	Demonstração do Projeto	29
11	Referências Bibliográficas	30

Lista de Figuras

1	Fluxo geral da transformação T1 – Extração e Pré-Processamento	8
2	Fluxo geral da transformação T2 – Validação e Normalização de Dados $$	10
3	Fluxo geral da transformação T3 – Cálculo de Alertas e Relatórios	12
4	Excerto do ficheiro ALERTAS_URGENTES.xls	15
5	Ficheiro Alerta_Resumo_Cidades.xls	16
6	Fluxo geral do Job Principal – Orquestração das transformações T1, T2 e	
	T3	17
7	Configuração de logs	19
8	Ligação configurada no Pentaho ao PostgreSQL_MeteoDB	20
9	Estrutura geral do schema meteorologia	21
10	Tabela logs no schema registos	22
11	Diagrama Entidade-Relacionamento (ER) do sistema de base de dados	24
12	Interface de alertas meteorológicos no Node-RED	25
13	Visualização de previsões meteorológicas	26
14	Visualização de previsões meteorológicas	26
15	Distribuição de alertas por região e nível	27
16	Gráfico de temperaturas por cidade	27
17	QR Code para Demonstração	29

1 Enquadramento

1.1 Identificação do Projeto

Disciplina: Integração de Sistemas de Informação (ISI)

Curso: Licenciatura em Engenharia de Sistemas Informáticos

Ano Letivo: 2025/2026

Docente: Óscar Ribeiro

Aluno: Tiago Ferreira - Nº 27980

Data Entrega: 19 de outubro de 2025

1.2 Contexto Académico

Este trabalho prático insere-se no âmbito da Unidade Curricular de Integração de Sistemas de Informação e tem como objetivo principal a aplicação prática de ferramentas e processos de **ETL** (**Extract, Transform, Load**) para integração de sistemas ao nível dos dados. O projeto visa consolidar conhecimentos sobre processos de extração, transformação e carregamento de dados, bem como explorar tecnologias de integração de sistemas.

1.3 Repositório Git

Todo o código fonte, transformations Pentaho e documentação estão disponíveis no repositório:

https://github.com/tiagoferreira06/ISI_Fase1_AlertaMeteorologia

2 Problema

2.1 Descrição Detalhada

O projeto consiste no desenvolvimento de um Sistema Integrado de Alertas Meteorológicos que automatiza completamente o processo de:

- 1. **Extração** de dados meteorológicos em tempo real da API oficial do IPMA (Instituto Português do Mar e Atmosfera)
- 2. Validação rigorosa dos dados utilizando expressões regulares, verificação de duplicados e validação de intervalos numéricos
- 3. Transformação dos dados com cálculos de indicadores de risco.
- 4. Geração automática de relatórios por nível de alerta
- 5. **Persistência** estruturada em base de dados PostgreSQL
- 6. Log completo Logs guardados a cada execução.
- 7. Visualização interativa através de dashboard Node-RED

2.2 Motivação e Relevância

No contexto atual de alterações climáticas e eventos meteorológicos extremos cada vez mais frequentes, sistemas de alerta precoce são fundamentais para:

- Proteção Civil: Antecipar situações de risco e ativar planos de contingência
- Saúde Pública: Proteger populações vulneráveis (idosos, crianças) de ondas de calor/frio
- Agricultura: Planear atividades agrícolas e evitar perdas de colheitas
- Turismo: Informar operadores turísticos e visitantes
- Gestão Municipal: Apoiar decisões operacionais de câmaras municipais
- Infraestruturas: Prevenir danos em estradas, pontes e edifícios

3 Estratégia Utilizada

3.1 Abordagem Global

A estratégia adotada para o desenvolvimento deste projeto baseou-se numa arquitetura modular, organizada em processos de ETL (Extract, Transform, Load). Cada componente do sistema foi construído de forma independente no Pentaho Data Integration (PDI), garantindo clareza e capacidade de manutenção.

O processo completo é composto por três transformações principais (T1, T2 e T3) e um **Job Principal** que as orquestra. O objetivo foi assegurar uma execução sequencial e automatizada de todo o ciclo de tratamento de dados meteorológicos, desde a recolha até à geração de relatórios finais.

3.2 Operadores e Processos Envolvidos

Durante o desenvolvimento foram explorados diferentes operadores de transformação disponibilizados pelo PDI, distribuídos conforme o tipo de operação pretendida:

Tipo de Operação	Operadores Utilizados
Extração de Dados	REST Client, JSON Input, XML Input
Validação e Limpeza	Regex Evaluation, Filter Rows, JavaScript
Transformação e Cálculo	Modified JavaScript, Value Mapper, Calculator
Agregação e Consolidação	Group By, Sort Rows, Unique Rows
Integração e Armazenamento	Table Output (PostgreSQL)
Geração de Relatórios	Excel Output, CSV Output
Orquestração e Controlo	Job Executor, Check Files, Mail
Logs	Job Log Table

Tabela 1: Principais operadores utilizados no processo ETL e respetivas funções

3.3 Processos ETL Desenvolvidos

O sistema foi dividido em três transformações principais, cada uma com objetivos distintos:

- T1 Extração e Pré-Processamento: consulta a API do IPMA, extrai dados meteorológicos em formato JSON, converte-os para XML e calcula indicadores complementares (temperatura média, converte para Kelvin, etc.);
- T2 Validação e Normalização: aplica expressões regulares e verificações de integridade para garantir a qualidade dos registos antes da integração;
- T3 Análise e Cálculo de Alertas: interpreta os dados validados, aplica regras lógicas para definir níveis de alerta, calcula pontuações de risco e gera relatórios em Excel.

O **Job Principal** controla a execução das três transformações, verifica a existência dos ficheiros de saída e envia automaticamente os relatórios por email ao utilizador.

3.4 Ferramentas e Integrações

O projeto recorreu a um conjunto de tecnologias integradas para cobrir todas as fases do processo:

- Pentaho Data Integration (Kettle): principal ferramenta de ETL e orquestração de jobs;
- PostgreSQL + pgAdmin: base de dados relacional para armazenamento;
- IPMA REST API: fonte oficial de dados meteorológicos;
- Node-RED Dashboard: visualização interativa dos alertas e previsões;
- GitHub: Armazenamento do projeto.

3.5 Metodologia de Desenvolvimento

A construção do sistema seguiu uma abordagem **iterativa e incremental**, testando e validando cada transformação isoladamente antes da sua integração. Foram utilizados dados reais da API IPMA e testes simulados com dados de exceção (valores inválidos ou nulos) para garantir robustez.

3.6 Síntese da Estratégia

A estratégia global garantiu:

- Verificação automática de erros e notificações por email;
- Persistência e rastreabilidade total no PostgreSQL;
- Geração de relatórios automatizada;
- Integração com dashboard interativo para análise visual.

Assim, a abordagem adotada cumpre integralmente os requisitos definidos no enunciado: integração de APIs externas, utilização de expressões regulares, operações de normalização, geração de logs, manipulação de múltiplos formatos e automatização de jobs.

3.7 Componentes Tecnologicos

Componente	Tecnologia
Ferramenta ETL	Pentaho Data Integration (Kettle) 9.4 CE
Base de Dados	PostgreSQL com pgAdmin
Linguagens	SQL, JavaScript, Expressões Regulares
API Externa	IPMA REST API (Instituto Português do Mar e Atmosfera)
Formatos Dados	JSON, XML, CSV, Excel (XLS)
Dashboard	Node-RED + node-red-dashboard
Controlo Versões	Git + GitHub
Sistema Operativo	Windows 10/11

Tabela 2: Componente Tecnológica do Projeto

4 Transformações Detalhadas

4.1 T1 – Extração e Pré-Processamento (API IPMA)

4.1.1 Objetivo

A transformação **T1** tem como objetivo extrair previsões meteorológicas da API do IPMA, validar e enriquecer os dados com cálculos e classificações automáticas, e armazená-los em ficheiro XML. Esta etapa constitui a base de todo o processo ETL.

4.1.2 Visão Geral

Figura 1: Fluxo geral da transformação T1 – Extração e Pré-Processamento

4.1.3 Componentes e Funções

Componente	Função
Data Grid	Lista de cidades IPMA
Modified JavaScript	Gera URLs API
REST Client	Faz chamadas HTTP
Filter Rows	Verifica resposta 200
JSON Input	Extrai campos JSON
Modified JavaScript	Calcula e classifica
Value Mapper	Traduz códigos tempo
Add Constants	Adiciona variaveis
XML Output	Cria ficheiro XML

Tabela 3: Componentes da T1 e respetivas funções resumidas

4.1.4 Descrição das Etapas

- 1. Extração e Validação da API IPMA A transformação inicia-se com a criação da lista de cidades (Data Grid), cada uma com o seu código IPMA. O componente Modified JavaScript gera dinamicamente as URLs de consulta, e o REST Client executa as chamadas HTTP. O Filter Rows garante que apenas respostas com estado 200 (OK) prosseguem.
- 2. Interpretação e Normalização dos Dados O JSON Input extrai os campos principais: data, temperaturas, precipitação, vento etc.

São utilizados caminhos (*JSONPath expressions*) para aceder aos campos do objeto devolvido pela API do IPMA.

Por exemplo: .data[*].forecastDate

- 3. Enriquecimento e Classificações No segundo Modified JavaScript, são calculadas novas métricas como temperatura média, converter para Kelvin e classificações (Frio, Quente, etc.). O Value Mapper traduz códigos meteorológicos em descrições legíveis, e o Add Constants adiciona a fonte dos dados e tipo de previsão.
- **4. Armazenamento** Por fim, exporta resultados em ficheiro XML para uso em etapas seguintes.

4.1.5 Resultado

A T1 produz previsões meteorológicas limpas, normalizadas e enriquecidas com classificações automáticas, prontas para as fases de validação e análise subsequentes.

4.2 T2 – Validação e Normalização de Dados

4.2.1 Objetivo

A transformação **T2** tem como objetivo validar e normalizar os dados meteorológicos extraídos na T1, assegurando a consistência e qualidade dos registos antes da sua integração final. São aplicadas expressões regulares e correções automáticas sobre os valores importados.

4.2.2 Visão Geral

Figura 2: Fluxo geral da transformação T2 – Validação e Normalização de Dados

4.2.3 Componentes e Funções

Componente	Função
Get data from XML	Lê ficheiro XML de previsões
Regex Evaluation	Valida formato da data
Modified JavaScript	Aplica validações e normalizações
Filter Rows	Separa registos válidos e inválidos
Sort Rows	Ordena por data e cidade
Unique Rows	Remove duplicados
Table Output	Insere dados validados na BD
CSV Output	Exporta previsões validadas

Tabela 4: Componentes da T2 e respetivas funções resumidas

4.2.4 Descrição das Etapas Principais

- 1. Leitura de Dados XML A transformação inicia-se com o componente Get data from XML, que importa os dados previamente exportados pela T1. O ficheiro XML contém as previsões meteorológicas estruturadas por cidade e data:
- C:\Users\bntia\Desktop\Projeto_ISI\data\dados_ipma_previsoes.xml
- 2. Validação de Formato de Data (Regex Evaluation) Nesta etapa, o componente Regex Evaluation valida o campo data_previsao com a expressão regular:

```
d{4}-d{2}-d{2}
```

Esta expressão assegura que o formato da data está conforme o padrão YYYY-MM-DD. O resultado é armazenado no campo data_valida, com valores booleanos (verdadeiro/falso).

- 3. Validações e Normalizações (Modified JavaScript) O componente Modified JavaScript aplica várias verificações e transformações:
 - Nome da cidade: Remoção de acentos e conversão para maiúsculas;
 - Temperaturas: Verificação de intervalos plausíveis (-50°C a 60°C);
 - **Precipitação:** Limitação a 0–100%;
 - Direção do vento: Validação de siglas (N, S, E, W, NE, SW, etc.);
 - Estado geral: Geração de campo validação_status com valores "VALIDO" ou "INVALIDO".

Exemplo de código aplicado:

```
1 // Validar temperaturas (entre -50 e 60)
2 var temp_valida = (temp_min >= -50 && temp_min <= 60 &&
3 temp_max >= -50 && temp_max <= 60 && temp_min <=
temp_media && temp_media <= temp_max);</pre>
```

Listing 1: Validação da Temperatura

- 4. Filtragem e Ordenação O passo Filter Rows direciona apenas registos com validação_status = "VALIDO" para a sequência principal. Estes são depois ordenados por data e cidade (Sort Rows) e verificados para duplicados (Unique Rows).
- 5. Saída e Registo de Resultados Os registos válidos são:
 - Inseridos na base de dados através de Table Output;
 - Exportados para CSV (Previsoes Validadas CSV output);

4.2.5 Resultado

A T2 produz um conjunto de previsões meteorológicas validadas, corrigidas e normalizadas, prontas para integração na etapa T3. Os registos inválidos são descartados, garantindo integridade e consistência nos dados utilizados para cálculo de alertas.

4.3 T3 – Cálculo de Alertas e Relatórios

4.3.1 Objetivo

A transformação **T3** tem como objetivo integrar os dados meteorológicos validados (provenientes da T2), calcular níveis de alerta com base em regras estabelecidas e gerar relatórios detalhados e agregados por cidade e região. Esta etapa é responsável por transformar dados limpos em informação útil.

4.3.2 Visão Geral

Figura 3: Fluxo geral da transformação T3 – Cálculo de Alertas e Relatórios

4.3.3 Componentes e Funções

Componente	Função
CSV Input	Lê previsões validadas da T2
Modified JavaScript (Calcular Alertas)	Define níveis de alerta e mensagens
Filter Rows	Separa alertas críticos dos normais
Sort Rows	Ordena por nível de alerta
Excel Output	Gera relatórios detalhados (críticos/normais)
Group By	Calcula médias e totais por cidade
Modified JavaScript (Risco Cidade)	Classifica risco final da cidade
Sort Rows (Região)	Ordena por região geográfica
Excel Output	Exporta resumo de alertas por cidade
Table Output	Insere resultados na BD

Tabela 5: Componentes da T3 e respetivas funções resumidas

4.3.4 Descrição das Etapas Principais

- 1. Leitura e Preparação dos Dados A transformação inicia-se com o CSV Input, que lê o ficheiro Previsoes Validadas.csv gerado na T2. Os campos incluem cidade, data, temperaturas, precipitação e direção do vento. Estes dados servem de base para o cálculo de risco e geração de alertas.
- 2. Cálculo de Alertas (Modified JavaScript) O componente Modified JavaScript Value é responsável por aplicar as regras e definir os níveis de alerta, tipo de evento e mensagem descritiva. A lógica avalia as condições meteorológicas e atribui classificações com base em thresholds predefinidos.

Exemplo de código:

```
var nivel_alerta = "";
var tipo_alerta = "";
3 var mensagem = "";
  var acao_recomendada = "";
6 // Alerta 1: Temperatura
7 \text{ if (temp\_media > 35)}  {
      nivel_alerta = "CRITICO";
      tipo_alerta = "Calor Extremo";
      mensagem = "Temperatura muito elevada: " + temp_media + " C ";
10
      acao_recomendada = "Risco de ondas de calor";
11
12 } else if (temp_media < 5) {</pre>
      nivel_alerta = "CRITICO";
      tipo_alerta = "Frio Extremo";
14
      mensagem = "Temperatura muito baixa: " + temp_media + " C ";
15
      acao_recomendada = "Ficar em ambientes quentes";
17 }
```

Listing 2: Cálculo dos níveis de alerta da temperatura no JavaScript

O resultado inclui campos como nivel_alerta, tipo_alerta, mensagem, acao_recomendada e score_risco, que serão utilizados nas etapas seguintes.

- 3. Filtragem e Relatórios Detalhados O Filter Rows separa os registos em dois fluxos:
 - Alertas Críticos Nível = "CRITICO" ou "ALTO" (ALERTAS_URGENTES.xls);
 - Alertas Normais Restantes níveis (ALERTAS_NORMAIS.xls).

Ambos os conjuntos são ordenados por nível de alerta e cidade, garantindo uma leitura clara e hierarquizada.

- 4. Agregação e Classificação por Cidade (Group By e JavaScript) O Group By agrega os resultados por cidade, calculando estatísticas:
 - Média, mínimo e máximo das temperaturas;
 - Média e máximo do score de risco;
 - Totais de alertas críticos, altos e médios;
 - Número de dias analisados;

O passo seguinte (Modified JavaScript – Risco Cidade) define o risco final da cidade com base nos totais e score médio:

```
if (total_alertas_criticos > 0) risco_cidade = "CRITICO";
else if (total_alertas_altos > 2) risco_cidade = "ALTO";
else if (score_medio >= 40) risco_cidade = "MEDIO";
else risco_cidade = "BAIXO";
```

Listing 3: Cálculo de risco por cidade

- 5. Exportação e Armazenamento São gerados múltiplos outputs:
 - ALERTAS_URGENTES.xls lista detalhada de eventos de alto risco;
 - ALERTAS_NORMAIS.xls previsões sem risco significativo;
 - Alerta_Resumo_Cidades.xls resumo por cidade e região;
 - Inserção dos resultados na base de dados (via Table Output).

4.3.5 Resultados

A T3 gera uma visão dos níveis de risco meteorológico, com classificações automáticas por cidade e região. Os relatórios produzidos permitem identificar rapidamente zonas críticas e tendências.

Para ilustrar os resultados obtidos pela transformação T3, apresentam-se de seguida excertos dos ficheiros gerados automaticamente pelo processo de cálculo de alertas.

Ficheiro ALERTAS_URGENTES.xls A Figura 4 mostra um excerto do ficheiro ALERTAS_URGENTES.xls

Figura 4: Excerto do ficheiro ALERTAS_URGENTES.xls

Ficheiro Alerta_Resumo_Cidades.xls A Figura 5 apresenta o relatório organizado por cidade, Alerta_Resumo_Cidades.xls, onde são agregadas as médias de temperatura, os totais de alertas e o risco global de cada cidade.

Figura 5: Ficheiro Alerta_Resumo_Cidades.xls

5 Job Principal – Orquestração do Processo ETL

5.1 Objetivo

O **Job Principal** tem como finalidade coordenar a execução das três transformações principais (T1, T2 e T3), garantindo a correta sequência de execução, tratamento de erros e notificação automática por email ao utilizador. Desta forma, todo o processo de extração, validação e análise de previsões meteorológicas é automatizado e monitorizado.

5.2 Visão Geral

Figura 6: Fluxo geral do Job Principal – Orquestração das transformações T1, T2 e T3

5.3 Componentes e Funções

Componente	Função
Start	Inicia a execução do job
Check Conexão BD	Verifica se a base de dados está acessível
Executar T1 – Extração API	Chama a transformação T1 (extração XML da API)
Executar T2 – Validações REGEX	Executa a T2 (validação e limpeza de dados)
Executar T3 – Análise Alertas	Executa a T3 (análise e geração de relatórios)
Verificar se Relatórios Existem	Confirma a criação dos ficheiros de saída
Mail	Envia email automático com os relatórios em anexo
Log – Sucesso	Regista a execução bem-sucedida do processo
Log - Erro	Envia alerta de erro
Success	Finaliza o processo com estado "completo"

Tabela 6: Componentes do Job Principal e respetivas funções resumidas

5.4 Descrição das Etapas

- 1. Check Conexão BD Antes de iniciar as transformações, o job utiliza o componente Check DB Connections para confirmar a disponibilidade da ligação à base de dados PostgreSQL:
 - Nome da conexão: PostgreSQL_MeteoDB

Se a ligação falhar, o processo é interrompido e um log de erro é registado.

- 2. Execução Sequencial das Transformações Após a validação da base de dados, o job executa as três transformações principais:
 - 1. Executar T1 Extração API: recolhe os dados da API meteorológica.
 - 2. Executar T2 Validações REGEX: limpa e valida os dados (datas, temperaturas, precipitação, vento).
 - 3. Executar T3 Análise Alertas: calcula níveis de alerta, risco e gera relatórios (.xls).

Cada etapa depende do sucesso da anterior, garantindo a integridade da cadeia de execução.

- 3. Verificação de Relatórios Após a T3, o job utiliza o componente Check if Files Exist para confirmar a geração dos ficheiros:
 - Alerta_Resumo_Cidades.xls
 - Alertas_NORMAIS.xls
 - Alertas_URGENTES.xls

Caso algum dos ficheiros não exista, a execução é desviada para o fluxo de erro.

- **4. Envio Automático de Email** O componente Mail envia automaticamente os relatórios ao utilizador. As configurações incluem:
 - Remetente: Sistema de Alertas Meteorológicos (alertas@meteorologicos.pt)
 - Destinatário: tiagonferr14@gmail.com
 - Servidor SMTP: smtp.gmail.com, Porta 587 (TLS)
 - Assunto: [ALERTA METEOROLÓGICO] Ficheiros
 - Mensagem: resumo automático indicando os ficheiros anexados:

Em anexo encontram-se os ficheiros relativos à previsão meteorológica de hoje e dos próximos 4 dias:

- ALERTAS_NORMAIS
- ALERTAS_URGENTES
- ALERTAS_RESUMO_CIDADES

5. Logs e Monitorização O job possui dois fluxos de monitorização:

- Log Sucesso: gera um registo indicando o término correto de todas as transformações e envio de email;
- Log Erro: gera um registo indicando erro de alguma etapa na execução do Job Principal.

5.4.1 Logs na Base de Dados

A execução do job é totalmente monitorizada através do registo de logs numa tabela específica da base de dados. As configurações encontram-se na aba Log, conforme ilustrado na Figura 7.

Figura 7: Configuração de logs

5.5 Resultado

O Job Principal garante a execução coordenada, segura e automatizada de todo o ETL do sistema de alertas meteorológicos. Através deste fluxo, assegura-se a:

- Disponibilidade dos dados na base de dados PostgreSQL;
- Geração e distribuição automática de relatórios;
- Monitorização de erros e notificações imediatas.

O resultado é um sistema robusto e totalmente automatizado, com alertas e relatórios diários enviados por email.

6 Base de Dados

6.1 Visão Geral

A base de dados utilizada no projeto é o **PostgreSQL**, configurado localmente no servidor localhost:5432 com o nome meteo_db. A ligação foi definida no Pentaho sob o nome PostgreSQL_MeteoDB, utilizando PostgreSQL como tipo de conexão, conforme ilustrado na Figura 8.

Figura 8: Ligação configurada no Pentaho ao PostgreSQL_MeteoDB

O modelo de dados foi projetado de forma simples e eficiente, dividido em dois **schemas**:

- meteorologia contém os dados processados (previsões, alertas e resumos);
- registos armazena os logs de execução.

6.2 Schema meteorologia

O schema meteorologia é o núcleo do sistema e contém três tabelas principais:

- previsoes_meteorologicas resultados da T2 com previsões limpas e validadas;
- alertas_meteorologicos dados finais da T3 com cálculos de risco e classificações;
- resumo_cidades estatísticas agregadas de temperatura e risco por cidade e região.

Figura 9: Estrutura geral do schema meteorologia

Cada tabela segue um formato coerente, com uma chave primária id, campos de identificação da cidade, valores meteorológicos, etc.

6.3 Schema registos

O schema registos contém a tabela logs, utilizada pelo Pentaho para monitorizar todas as execuções dos jobs. Esta tabela inclui informações como:

- jobname nome do job executado;
- status estado da execução (SUCCESS, ERROR, etc.);
- errors número de erros registados;
- startdate/enddate datas de início e fim;
- executing_user/server utilizador e servidor que efetuaram a execução.

Figura 10: Tabela logs no schema registos

6.4 Integração com o Processo ETL

As transformações interagem com a base de dados da seguinte forma:

- T2 insere registos em meteorologia.previsoes_meteorologicas;
- T3 grava resultados em meteorologia.alertas_meteorologicos e meteorologia.resumo_cidades;
- O Job Principal escreve logs de execução em registos.logs.

Esta estrutura assegura a integridade dos dados.

6.5 Resumo

A arquitetura da base de dados garante:

- Persistência e histórico completo de previsões e alertas;
- Separação entre dados operacionais e de logs;
- Facilidade de consulta e exportação para relatórios;

7 Diagrama Entidade-Relacionamento (ER)

A Figura 11 apresenta o diagrama entidade-relacionamento (ER) do sistema de base de dados desenvolvido no âmbito deste projeto. As tabelas estão organizadas por esquema (meteorologia e registos).

Figura 11: Diagrama Entidade-Relacionamento (ER) do sistema de base de dados.

8 Visualização e Monitorização de Dados no Node-RED

Por fim, foi desenvolvida uma interface de visualização no *Node-RED*, que permite consultar de forma interativa os dados meteorológicos processados e armazenados na base de dados.

O painel inclui tabelas com previsões, alertas e resumos por cidade (Figuras 12, 13 e 14), bem como gráficos de distribuição de alertas por região (Figura 15) e temperaturas médias por cidade (Figura 16). Estes elementos permitem ao utilizador acompanhar em tempo real a evolução das condições meteorológicas e o nível de risco associado.

Figura 12: Interface de alertas meteorológicos no Node-RED.

Figura 13: Visualização de previsões meteorológicas.

Figura 14: Visualização de previsões meteorológicas.

Figura 15: Distribuição de alertas por região e nível.

Figura 16: Gráfico de temperaturas por cidade.

A integração com o *Node-RED* reforça a utilidade prática do sistema, tornando os resultados acessíveis e facilmente interpretáveis para utilizadores.

9 Conclusão

O projeto desenvolvido permitiu compreender de forma prática todo o ciclo de vida de um sistema ETL, desde a extração de dados externos, passando pela validação e transformação, até à geração automática de relatórios e integração numa base de dados relacional. O uso do Pentaho Data Integration revelou-se uma ferramenta eficaz para a orquestração de processos e automação de fluxos de dados complexos. O sistema final implementado cumpre os objetivos definidos, garantindo:

- Integridade e rastreabilidade total dos dados meteorológicos;
- Automatização completa das operações de extração e análise;
- Emissão diária de alertas e relatórios via email.

9.1 Trabalhos Futuros

- 1. Alertas via SMS: Sistema de notificações push via SMS
- 2. API RESTful: Disponibilizar dados processados via API própria
- 3. Análise Geoespacial: Integração com mapas interativos
- 4. Histórico Alargado: Análise de tendências climáticas anuais
- 5. App: Aplicação móvel para consulta de alertas

10 Demonstração do Projeto

Por fim, foi elaborado um vídeo de demonstração. O mesmo encontra-se disponível através do $QR\ Code$ apresentado abaixo, permitindo visualizar o processo completo de extração, transformação e visualização dos dados desenvolvidos neste projeto.

Figura 17: QR Code para Demonstração.

11 Referências Bibliográficas

- 1. IPMA Instituto Português do Mar e Atmosfera. API de Dados Abertos. Disponível em: https://api.ipma.pt
- 2. Pentaho Documentation. *Pentaho Data Integration*. Disponível em: https://help.hitachivantara.com/Documentation/Pentaho
- 3. PostgreSQL Global Development Group. PostgreSQL 16 Documentation. Disponível em: https://www.postgresql.org/docs/16/
- 4. Node-RED. Node-RED Documentation. Disponível em: https://nodered.org/docs/
- 5. Regular Expressions Info. Regular Expression Tutorial. Disponível em: https://www.regular-expressions.info/
- 6. node-red-dashboard. node-red-dashboard 3.6.6. Disponível em: https://flows.nodered.org/node/node-red-dashboard
- 7. What is ETL? What is ETL (extract, transform, load)?. Disponível em: https://www.ibm.com/think/topics/etl