28 Напівнорми і топології

 ${
m Hexa}$ й X — топологічний векторний простір.

§28.1 Локальна опуклість, опуклі комбінація і оболонка

Означення 28.1. ТВП X називається **локально опуклим**, якщо для будь-якого околу нуля U існує опуклий окіл нуля V, що міститься в U.

Зауваження 28.1 — Інакше кажучи, топологічний векторний простір X є локально опуклим, якщо система околів нуля \mathfrak{R}_0 містить базу, що складається з опуклих множин.

Означення 28.2. Нехай $\{x_k\}_{k=1}^n$ — довільний скінчений набір елементів лінійного простору X. Елемент вигляду $x = \sum_{k=1}^n \lambda_k x_k$ називається опуклою комбінацією елементів x_k , якщо $\lambda_k > 0$, $\forall k = 1, \dots, n$ і $\sum_{k=1}^n \lambda_k = 1$.

Означення 28.3. Нехай A — довільна підмножина лінійного простору X. Множина усіх опуклих комбінацій елементів з A називається **опуклою оболонкою** множини A і позначається як conv A.

Означення 28.4. Нагадаємо, що підмножина $A \subset X$ називається **урівноваженою**, якщо для будь-якого скаляра λ із $|\lambda| \leq 1$ виконане включення $\lambda A \subset A$.

Теорема 28.1

Кожний опуклий окіл нуля U містить опуклий врівноважений відкритий окіл нуля V.

Доведення. За теорем. 25.2 у кожному відкритому околі нуля U міститься відкритий врівноважений окіл нуля V.

- 1. Покажемо, що $\operatorname{conv} V \subset U$. Опуклість цієї множини є очевидною (за означенням опуклої оболонки).
- 2. Покажемо, що conv $V \subset \mathfrak{R}_0$. $V \in \mathfrak{R}_0$, $V \subset \operatorname{conv} V \implies \operatorname{conv} V \in \mathfrak{R}_0$.
- 3. Покажемо, що conv V є врівноваженим околом. Нехай $|\lambda| \leq 1$. V врівноважений окіл нуля $\implies \lambda V \subset V \implies \lambda \operatorname{conv} V = \operatorname{conv}(\lambda V) \subset \operatorname{conv} V$
- 4. Покажемо, що conv V є відкритою множиною. $V \in \tau$, операції множення на скаляр і суми множин замкнені відносно відкритих множин $\Longrightarrow \sum_{k=1}^n \lambda_k V \in \tau$, де $n \in \mathbb{N}$, $\lambda_k > 0$ і $\sum_{k=1}^n \lambda_k = 1 \Longrightarrow \operatorname{conv} V = \bigcup_{n=1}^\infty \sum_{k=1}^n \lambda_k V \in \tau$.

§28.2 Напівнорми, одиничні кулі і функіонал Мінковського

Означення 28.5. Функція $p: X \to \mathbb{R}$ називається **напівнормою**, якщо

- 1. $p(x) \ge 0, \forall x \in X;$
- 2. $p(\lambda x) = |\lambda| p(x), \forall x \in X, \lambda \in \mathbb{R};$
- 3. $p(x+y) \le p(x) + p(y), \forall x, y \in X$.

Зауваження 28.2 — Напівнорма відрізняється від норми тим, що вона напівнорма маже дорівнювати нулю на деяких ненульових елементах $x \in X$.

Означення 28.6. Одиничною кулею напівнорми p називається множина $B_p = \{x \in X : p(x) < 1\}.$

Зауваження 28.3 — Множина B_p є опуклою врівноваженою множиною.

Означення 28.7. Функціоналом Мінковського опуклої поглинаючої множини в лінійному просторі X називається дійсна функція, задана на X формулою

$$\varphi_A(x) = \inf\{t > 0 : t^{-1}x \in A\}.$$

Зауваження 28.4 — Функціонал φ_A пов'язаний з множиною A такими співвідношеннями:

- 1. $x \in A \implies \varphi_A(x) \le 1$;
- $2. \ \varphi_A(x) < 1 \implies x \in A.$

Зауваження 28.5 — Якщо A — опукла поглинаюча множина в лінійному просторі X, то φ_A — опуклий функціонал, що набуває невід'ємні значення.

Теорема 28.2

Напівнорма p на топологічному векторному просторі X є неперервною тоді і лише тоді, коли B_p — окіл нуля.

Доведення. **Необхідність.** $B_p = p^{-1}(-1,1)$ — прообраз відкритої множини. Якщо p — неперервна функція, то прообраз відкритої множини є відкритим.

Достатність. Нехай B_p — окіл нуля. Доведено неперервність напівнорми. Для будь-якого $x \in X$ і будь-якого $\varepsilon > 0$ треба знайти такий окіл U точки x, що

$$p(U) \subset (p9x) - \varepsilon, p(x) + \varepsilon$$
.

Таким околом є $U = x + \varepsilon B_p$. Дійсно,

$$\forall y \in U \quad y = x + \varepsilon z, \quad p(z) < 1.$$

Отже, за нерівністю трикутника

$$p(x) - \varepsilon < p(y) < p(x) + \varepsilon$$
.

§28.3 Лінійно-опукла топологія породжена сім'єю напівнорм

Означення 28.8. Нехай G — сім'я напівнорм на лінійному просторі X. Позначимо через \mathfrak{D}_G систему усіх скінчених перетинів множин вигляду rB_p , де $p \in G$ і r > 0.

Лінійно-опуклою топологією, породженою сім'єю напівнорм G, називається топологія τ_G на X, у якій базою околів точки $x \in X$ є сім'я множин вигляду x + U, де $U \in \mathfrak{D}_G$.

Зауваження 28.6 — Тобто, \mathfrak{D}_G є базою околів нуля топології τ_G .

Означення 28.9. Сім'я напівнорм G називається **невиродженою**, якщо для будьякого $x \in X \setminus \{0\}$ існує $p \in G$ з $p(x) \neq 0$.

Теорема 28.3

Нехай $G-\mathrm{cim}$ 'я напівнорм на лінійному просторі X. Тоді мають місце такі твердження:

- 1. топологія τ_G , породжена сім'єю G, узгоджується з лінійною структурою і є локально опуклою;
- 2. топологія τ_G є віддільною тоді і лише тоді, коли сім'я напівнорм G є невиродженою;
- 3. топологічний векторний простір X є локально опуклим тоді і лише тоді, коли його топологія породжується деякою сім'єю напівнорм.

Теорема 28.4

Нехай X — топологічний векторний простір, а f — лінійний функціонал на X. Для неперервності функціонала f необхідно і достатньо, щоб існувала така неперервна напівнорма p на X, що $|f(x)| \leq p(x) \ \forall x \in X$.

Доведення. **Необхідність.** Нехай f — неперервний. Тоді шукана напівнорма задається формулою p(x) = |f(x)|.

Достатність. Нехай $|f(x)| \le p(x) \ \forall x \in X \ i \ p$ — неперервна напівнорма. Тоді функціонал f є обмеженим в околі нуля B_p .

Теорема 28.5 (теорема Хана-Банаха в локально опуклих просторах)

Нехай f — лінійний непепервний функціонал, заданий на підпросторі Y локально опуклого простору X. Тоді функціонал f можна продовжити на весь простір X зі збереженням його лінійності і неперервності.

§28.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 512–515).