The Conjugate Gradient Method

Tom Lyche

University of Oslo Norway

Plan for the day

- The method
- Algorithm
- Implementation of test problems
- Complexity
- Derivation of the method
- Convergence

The Conjugate gradient method

- Restricted to positive definite systems: Ax = b, $A \in \mathbb{R}^{n,n}$ positive definite.
- Generate $\{x_k\}$ by $x_{k+1} = x_k + \alpha_k p_k$,
- p_k is a vector, the search direction,
- α_k is a scalar determining the step length.
- In general we find the exact solution in at most n iterations.
- For many problems the error becomes small after a few iterations.
- Both a direct method and an iterative method.
- Rate of convergence depends on the square root of the condition number

The name of the game

- Conjugate means orthogonal; orthogonal gradients.
- But why gradients?
- Consider minimizing the quadratic function $Q: \mathbb{R}^n \to \mathbb{R}$ given by $Q(x) := \frac{1}{2}x^TAx x^Tb$.
- The minimum is obtained by setting the gradient equal to zero.
- $\nabla Q(x) = Ax b = 0$ linear system Ax = b
- ullet Find the solution by solving r=b-Ax=0.
- The sequence $\{x_k\}$ is such that $\{r_k\} := \{b Ax_k\}$ is orthogonal with respect to the usual inner product in \mathbb{R}^n .
- The search directions are also orthogonal, but with respect to a different inner product.

The algorithm

- ullet Start with some $oldsymbol{x}_0$. Set $oldsymbol{p}_0 = oldsymbol{r}_0 = oldsymbol{b} oldsymbol{A} oldsymbol{x}_0$.
- For $k = 0, 1, 2, \dots$
- $r_{k+1} = b Ax_{k+1} = r_k \alpha_k Ap_k$
- $p_{k+1} = r_{k+1} + \beta_k p_k, \quad \beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$

Example

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- Start with $x_0 = 0$.
- $p_0 = r_0 = b = [1, 0]^T$
- $m{p}_0 \quad lpha_0 = rac{m{r}_0^T m{r}_0}{m{p}_0^T m{A} m{p}_0} = rac{1}{2}, \ m{x}_1 = m{x}_0 + lpha_0 m{p}_0 = \left[egin{matrix} 0 \\ 0 \end{smallmatrix}
 ight] + rac{1}{2} \left[egin{matrix} 1 \\ 0 \end{smallmatrix}
 ight] = \left[egin{matrix} 1/2 \\ 0 \end{smallmatrix}
 ight]$
- $\boldsymbol{r}_1 = \boldsymbol{r}_0 \alpha_0 \boldsymbol{A} \boldsymbol{p}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$, $\boldsymbol{r}_1^T \boldsymbol{r}_0 = 0$
- $\beta_0 = \frac{\boldsymbol{r}_1^T \boldsymbol{r}_1}{\boldsymbol{r}_0^T \boldsymbol{r}_0} = \frac{1}{4}, \ \boldsymbol{p}_1 = \boldsymbol{r}_1 + \beta_0 \boldsymbol{p}_0 = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/4 \\ 1/2 \end{bmatrix},$
- $\boldsymbol{x}_1 = \frac{\boldsymbol{r}_1^T \boldsymbol{r}_1}{\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{p}_1} = \frac{2}{3},$ $\boldsymbol{x}_2 = \boldsymbol{x}_1 + \alpha_1 \boldsymbol{p}_1 = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1/4 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$
- $r_2 = 0$, exact solution.

Exact method and iterative method

- Orthogonality of the residuals implies that x_m is equal to the solution x of Ax = b for some $m \le n$.
- For if $x_k \neq x$ for all $k=0,1,\ldots,n-1$ then $r_k \neq 0$ for $k=0,1,\ldots,n-1$ is an orthogonal basis for \mathbb{R}^n . But then $r_n \in \mathbb{R}^n$ is orthogonal to all vectors in \mathbb{R}^n so $r_n=0$ and hence $x_n=x$.
- So the conjugate gradient method finds the exact solution in at most n iterations.
- The convergence analysis shows that $||x x_k||_A$ typically becomes small quite rapidly and we can stop the iteration with k much smaller that n.
- It is this rapid convergence which makes the method interesting and in practice an iterative method.

Conjugate Gradient Algorithm

[Conjugate Gradient Iteration] The positive definite linear system Ax=b is solved by the conjugate gradient method. x is a starting vector for the iteration. The iteration is stopped when $||r_k||_2/||r_0||_2 \le \text{tol or } k > \text{itmax. itm is the number of iterations used.}$

```
function [x, itm] = cg(A, b, x, tol, itmax) r=b-A*x; p=r; r+b=r'*r;
rho0=rho; for k=0:itmax
    if sqrt(rho/rho0) \le tol^2
        itm=k: return
    end
    t=A*p; a=rho/(p'*t);
    x=x+a*p; r=r-a*t;
    rhos=rho; rho=r'*r;
    p=r+(rho/rhos)*p;
end itm=itmax+1;
```

A family of test problems

We can test the methods on the Kronecker sum matrix

$$m{A} = m{C}_1 \otimes m{I} + m{I} \otimes m{C}_2 = egin{bmatrix} m{C}_1 & & & & & & \\ m{C}_1 & & & & & \\ & \ddots & & & & \\ & & m{C}_1 & & & \\ & & & m{C}_1 & & \\ & & & m{C}_1 & & \\ & & & m{b} m{I} & cm{I} & bm{I} \\ & & & bm{I} & cm{I} & bm{I} \\ & & & bm{I} & cm{I} & bm{I} \\ & & & bm{I} & cm{I} & \end{bmatrix},$$

where $C_1 = \operatorname{tridiag}_m(a, c, a)$ and $C_2 = \operatorname{tridiag}_m(b, c, b)$. Positive definite if c > 0 and $c \ge |a| + |b|$.

$$m = 3, n = 9$$

$$A = \begin{bmatrix}
2\mathbf{c} & a & 0 & b & 0 & 0 & 0 & 0 \\
a & 2\mathbf{c} & a & 0 & b & 0 & 0 & 0 & 0 \\
0 & a & 2\mathbf{c} & 0 & 0 & b & 0 & 0 & 0 \\
b & 0 & 0 & 2\mathbf{c} & a & 0 & b & 0 & 0 \\
0 & b & 0 & a & 2\mathbf{c} & a & 0 & b & 0 \\
0 & 0 & b & 0 & a & 2\mathbf{c} & a & 0 & b \\
\hline
0 & 0 & 0 & b & 0 & 0 & 2\mathbf{c} & a & 0 \\
0 & 0 & 0 & 0 & b & 0 & a & 2\mathbf{c} & a \\
0 & 0 & 0 & 0 & 0 & b & 0 & a & 2\mathbf{c} & a \\
0 & 0 & 0 & 0 & 0 & b & 0 & a & 2\mathbf{c}
\end{bmatrix}$$

- b = a = -1, c = 2: Poisson matrix
- b = a = 1/9, c = 5/18: Averaging matrix

Averaging problem

- $\lambda_{jk} = 2c + 2a\cos(j\pi h) + 2b\cos(k\pi h), \ j, k = 1, 2, \dots, m.$
- a = b = 1/9, c = 5/18
- $\lambda_{max} = \frac{5}{9} + \frac{4}{9}\cos(\pi h), \ \lambda_{min} = \frac{5}{9} \frac{4}{9}\cos(\pi h)$
- cond₂(\boldsymbol{A}) = $\frac{\lambda_{max}}{\lambda_{min}} = \frac{5+4\cos(\pi h)}{5-4\cos(\pi h)} \le 9$.

2D formulation for test problems

- $m V = extsf{vec}(m x)$. $m R = extsf{vec}(m r)$, $m P = extsf{vec}(m p)$
- $lacksquare Ax = b \Longleftrightarrow DV + VE = h^2F$
- $D = \mathsf{tridiag}(a, c, a) \in \mathbb{R}^{m,m}$, $E = \mathsf{tridiag}(b, c, b) \in \mathbb{R}^{m,m}$
- ullet $\operatorname{vec}(oldsymbol{A}oldsymbol{p}) = oldsymbol{D}oldsymbol{P} + oldsymbol{P}oldsymbol{E}$

Testing

```
[Testing Conjugate Gradient ] m{A} = {\sf trid}(a,c,a,m) \otimes m{I}_m + m{I}_m \otimes
\operatorname{trid}(b,c,b,m) \in \mathbb{R}^{m^2,m^2}
function [V, it] = cgtest(m, a, b, c, tol, itmax)
h=1/(m+1); R=h*h*ones(m);
D=sparse(tridiagonal(a,c,a,m)); E=sparse(tridiagonal(b,c,b,m));
V=zeros(m,m); P=R; rho=sum(sum(R.*R)); rho0=rho;
for k=1:itmax
     if sqrt(rho/rho0)<= tol</pre>
          it=k; return
     end
    T=D*P+P*E; a=rho/sum(sum(P.*T)); V=V+a*P; R=R-a*T;
     rhos=rho; rho=sum(sum(R.*R)); P=R+(rho/rhos)*P;
end;
it = itmax + 1
```

The Averaging Problem

n	2 500	10 000	40 000	1 000 000	4 000 000
K	22	22	21	21	20

Table 1: The number of iterations K for the averaging problem on a $\sqrt{n} \times \sqrt{n}$ grid. $\mathbf{x}_0 = \mathbf{0} \ tol = 10^{-8}$

- Both the condition number and the required number of iterations are independent of the size of the problem
- The convergence is quite rapid.

Poisson Problem

- $\lambda_{jk} = 2c + 2a\cos(j\pi h) + 2b\cos(k\pi h), \ j, k = 1, 2, \dots, m.$
- a = b = -1, c = 2
- $\lambda_{max} = 4 + 4\cos(\pi h), \ \lambda_{min} = 4 4\cos(\pi h)$
- ullet cond $_2(oldsymbol{A})=rac{\lambda_{max}}{\lambda_{min}}=rac{1+\cos(\pi h)}{1-\cos(\pi h)}= ext{cond}_(oldsymbol{T})_2.$
- ullet cond₂ $(oldsymbol{A})=O(n)$.

The Poisson problem

n	2 500	10 000	40 000	160 000
K	140	294	587	1168
K/\sqrt{n}	1.86	1.87	1.86	1.85

- Using CG in the form of Algorithm 8 with $\epsilon = 10^{-8}$ and $x_0 = 0$ we list K, the required number of iterations and K/\sqrt{n} .
- The results show that K is much smaller than n and appears to be proportional to \sqrt{n}
- This is the same speed as for SOR and we don't have to estimate any acceleration parameter!
- $ightharpoonup \sqrt{n}$ is essentially the square root of the condition number of A.

Complexity

The work involved in each iteration is

- 1. one matrix times vector (t = Ap),
- 2. two inner products ($p^T t$ and $r^T r$),
- 3. three vector-plus-scalar-times-vector ($\mathbf{x} = \mathbf{x} + a\mathbf{p}$, $\mathbf{r} = \mathbf{r} a\mathbf{t}$ and $\mathbf{p} = \mathbf{r} + (rho/rhos)\mathbf{p}$),

The dominating part of the computation is statement 1. Note that for our test problems A only has O(5n) nonzero elements. Therefore, taking advantage of the sparseness of A we can compute t in O(n) flops. With such an implementation the total number of flops in one iteration is O(n).

More Complexity

- How many flops do we need to solve the test problems by the conjugate gradient method to within a given tolerance?
- Average problem. O(n) flops. Optimal for a problem with n unknowns.
- Same as SOR and better than the fast method based on FFT.
- **●** Discrete Poisson problem: $O(n^{3/2})$ flops.
- same as SOR and fast method.
- Cholesky Algorithm: $O(n^2)$ flops both for averaging and Poisson.

Analysis and Derivation of the Method

Theorem 3 (Orthogonal Projection). Let S be a subspace of a finite dimensional real or complex inner product space $(\mathcal{V}, \mathbb{F}, \langle \cdot, \cdot, \rangle)$. To each $x \in \mathcal{V}$ there is a unique vector $p \in S$ such that

$$\langle \boldsymbol{x} - \boldsymbol{p}, \boldsymbol{s} \rangle = 0, \quad \text{for all } \boldsymbol{s} \in \mathcal{S}.$$
 (1)

Best Approximation

Theorem 4 (Best Approximation). Let S be a subspace of a finite dimensional real or complex inner product space $(\mathcal{V}, \mathbb{F}, \langle \cdot, \cdot,) \rangle$. Let $x \in \mathcal{V}$, and $p \in S$. The following statements are equivalent

- 1. $\langle \boldsymbol{x}-\boldsymbol{p},\boldsymbol{s}\rangle=0$, for all $\boldsymbol{s}\in\boldsymbol{S}$.
- 2. $\|x-s\| > \|x-p\|$ for all $s \in \mathcal{S}$ with s
 eq p.

If (v_1, \dots, v_k) is an orthogonal basis for S then

$$m{p} = \sum_{i=1}^k rac{\langle m{x}, m{v}_i
angle}{\langle m{v}_i, m{v}_i
angle} m{v}_i.$$
 (2)

Derivation of CG

- $m{ ilde{ ilde{P}}} \quad m{A}m{x} = m{b}, \, m{A} \in \mathbb{R}^{n,n} ext{ is pos. def., } m{x}, m{b} \in \mathbb{R}^n$
- ullet $(oldsymbol{x},oldsymbol{y}):=oldsymbol{x}^Toldsymbol{y},\quad oldsymbol{x},oldsymbol{y}\in\mathbb{R}^n$
- ullet $\langle oldsymbol{x}, oldsymbol{y}
 angle := oldsymbol{x}^T oldsymbol{A} oldsymbol{y} = (oldsymbol{x}, oldsymbol{A} oldsymbol{y}) = (oldsymbol{A} oldsymbol{x}, oldsymbol{y})$
- $\| oldsymbol{x} \|_{oldsymbol{A}} = \sqrt{oldsymbol{x}^T oldsymbol{A} oldsymbol{x}}$
- $\mathbb{W}_0 = \{\mathbf{0}\}, \mathbb{W}_1 = \operatorname{span}\{\boldsymbol{b}\}, \mathbb{W}_2 = \operatorname{span}\{\boldsymbol{b}, \boldsymbol{A}\boldsymbol{b}\},$ $\mathbb{W}_k = \operatorname{span}\{\boldsymbol{b}, \boldsymbol{A}\boldsymbol{b}, \boldsymbol{A}^2\boldsymbol{b}, \dots, \boldsymbol{A}^{k-1}\boldsymbol{b}\}$
- $\mathbb{W}_0 \subset \mathbb{W}_1 \subset \mathbb{W}_2 \subset \mathbb{W}_k \subset \cdots$
- $m{\omega} \quad \dim(\mathbb{W}_k) \leq k, \quad m{w} \in \mathbb{W}_k \Rightarrow m{A}m{w} \in \mathbb{W}_{k+1}$
- $m{x}_k \in \mathbb{W}_k$, $\langle m{x}_k m{x}, m{w}
 angle = 0$ for all $m{w} \in \mathbb{W}_k$
- $p_0 = r_0 := b$, $p_j = r_j \sum_{i=0}^{j-1} \frac{\langle r_j, p_i \rangle}{\langle p_i, p_i \rangle} p_i$, $j = 1, \dots, k$.

Convergence

Theorem 5. Suppose we apply the conjugate gradient method to a positive definite system Ax = b. Then the A-norms of the errors satisfy

$$\frac{||\boldsymbol{x}-\boldsymbol{x}_k||_{\boldsymbol{A}}}{||\boldsymbol{x}-\boldsymbol{x}_0||_{\boldsymbol{A}}} \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k, \quad \textit{for} \quad k \ge 0,$$

where $\kappa = cond_2(\mathbf{A}) = \lambda_{max}/\lambda_{min}$ is the 2-norm condition number of \mathbf{A} .

This theorem explains what we observed in the previous section. Namely that the number of iterations is linked to $\sqrt{\kappa}$, the square root of the condition number of A. Indeed, the following corollary gives an upper bound for the number of iterations in terms of $\sqrt{\kappa}$.

Corollary 6. If for some $\epsilon>0$ we have $k\geq \frac{1}{2}\ln(\frac{2}{\epsilon})\sqrt{\kappa}$ then $||\boldsymbol{x}-\boldsymbol{x}_k||_{\boldsymbol{A}}/||\boldsymbol{x}-\boldsymbol{x}_0||_{\boldsymbol{A}}\leq \epsilon.$