UECM1304 Tutorial 2: Logic and Arguments of QUANTIFIED STATEMENTS

2 hours

\mathbf{Pr}

Predicates and Quantifiers
1. Let P be a proposition and $Q(x,y)$ be a predicate. Are the following strings well-formed formula?
(a) ~
(b) $(\sim (P)) \land (P)$
(c) $\forall x ((P \to Q(x,y)) \lor (P))$
(d) $\sim \forall x Q(x, x^2) \equiv \exists x \sim Q(x, x^2) \dots$
(e) $x^2 + y^2 - 3z^2$
(f) $x^2 + y^2 - 3z^2 = 0$
2. Let a be a constant, f_i be functions and P_i be predicates. Determine the bound and free variables of the following formula.
(a) $(\forall x_2 P_1(x_1, x_2)) \to P_1(x_2, a)$
(b) $P_1(x_3) \rightarrow \sim \forall x_1 \forall x_2 P_2(x_1, x_2)$
(c) $\forall x_2(P_1(f_1(x_1, x_2), x_1) \to \forall x_1 P_2(x_3, f_2(x_1, x_2)))$
Equivalence Forms of the Universal and Existential statements
3. Show that the statements $\exists x P(x) \land \exists x Q(x)$ and $\exists x (P(x) \land Q(x))$ are not logically equivalent in general.
4. Determine whether the statements $\forall x P(x) \land \exists x Q(x)$ and $\forall x \exists y (P(x) \land Q(y))$ are logically equivalent.
5. Determine whether $\exists x (P(x) \lor Q(x))$ and $\exists x P(x) \lor \exists x Q(x)$ have the same truth value. Explain.
6. Determine the truth value of the following statements assuming we are interpreting these formulae over the real number domain.
(a) $\forall x(x > \frac{1}{x})$
(b) $\exists x (x \in \mathbb{Z} \to \frac{x-3}{x} \notin \mathbb{Z}).$
(c) $\exists m \exists n (m \in \mathbb{Z} \land n \in \mathbb{Z} \land m > 0 \land n > 0 \land mn \ge m+n). \dots$
(d) $\forall x \forall y (\sqrt{x+y} = \sqrt{x} + \sqrt{y}).$

7.	Determine the	e truth	value of	each	of th	nese	statements	s if	they	are	modelled	over	the	set	of
	integers.														

(a) $\forall n \exists m (n^2 < m)$		
(b) $\exists n \forall m (nm = m)$)	

(c)
$$\exists n \exists m (n^2 + m^2 = 6)$$

8. Let P(x,y) be a predicate and the domain of discourse be a nonempty set. Given that $\forall x \exists y P(x,y)$ is true, which of the following are not necessarily true?

- 9. What are the truth values of $\exists y \forall x (y \geq x)$ and $\forall x \exists y (y \geq x)$ if they are interpreted over the model with the domain of nonnegative integers?
- 10. Suppose the model M of the predicate P(x,y) has a universe of discourse $D = \{1,2,3\}$ and corresponding Boolean function (an equivalent way to describe a relation) P^M . Write the propositions $\exists y \sim P(1,y)$ and $\forall x P(x,2)$ using disjunctions and conjunctions.
- 11. Let odd(x) be the predicate "x is an odd positive integer." Determine the truth value of each of the following statements for the model M with domain of positive integers. If the statement is false, provide an explanation or suggest a counterexample.

(a)
$$\forall x \forall y (\text{odd}(x+y))$$
.

(b)
$$\exists x \forall y (\text{odd}(x+y)). \dots$$

(c)
$$\forall x \exists y (\text{odd}(x+y))$$
.

(d)
$$\exists x \exists y (xy + 1 = 0)$$
.

12. Consider the following models

$$M_1 = (\mathbb{N}, \{=\}, \{+^{\mathbb{N}}, \cdot^{\mathbb{N}}\}, 0^{\mathbb{N}}) \text{ where}$$

$$(=^{\mathbb{N}}) = \{(n, n) | n \in \mathbb{N}\},$$

$$+^{\mathbb{N}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (m, n) \mapsto m + n,$$

$$\cdot^{\mathbb{N}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (m, n) \mapsto m \cdot n.$$

$$M_2 = (\mathbb{Q}, \{=\}, \{+^{\mathbb{Q}}, \cdot^{\mathbb{Q}}\}, 0^{\mathbb{Q}})$$
 where
$$(=^{\mathbb{Q}}) = \{(n, n) | n \in \mathbb{Q}\},$$

$$+^{\mathbb{Q}} : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \quad (m, n) \mapsto m + n,$$

$$\cdot^{\mathbb{Q}} : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \quad (m, n) \mapsto m \cdot n.$$

Determine the truth value of

(a)
$$\forall x_1 \forall x_2 \exists x_3 (x_1 + x_2 = x_3)$$
 and

(b)
$$\forall x_1 \forall x_2 ((\exists x_3 (x_1 \cdot x_3 = x_2) \land \exists x_4 (x_2 \cdot x_4 = x_1) \rightarrow x_1 = x_2).$$

13. Determine whether each of the following statements is true or false over the model of integer sets.

(a) $\forall x \exists y \exists z (x = 7y + 5z) \dots$
(b) $\forall x \exists y \exists z (x = 31y + 41z) \dots$
(c) $\forall x \exists y \exists z (x = 4y + 6z) \dots$
Translating between Formal and Informal Language
14. Consider the predicates
$LT(x,y): x < y$ $EQ(x,y): x = y$ $EV(x): x$ is even $I(x): x$ is an integer $P(x): x > 0$ $R(x): x \in \mathbb{R}$.
(a) Write the statement using ONLY these predicates and any needed quantifiers.
i. Every integer is even
iii. If $x < y$, then x is not equal to y
iv. There is no largest number
v. If $y > x$ and $0 > z$, then $x \cdot z > y \cdot z$
(b) Write the statement $\exists x \in \mathcal{D}(x)$ in English without using variables and symbols
(b) Write the statement $\exists x \sim P(x)$ in English without using variables and symbols
15. Let $M(s)$ denote "s is a math major", $C(s)$ denote "s is a computer science studen and $E(s)$ denote "s is an engineering student". Rewrite the following statements by usin quantifiers, variables and predicates $M(s)$, $C(s)$ and $E(s)$.
(a) There is an engineering student who is a math major
(b) Every computer science student is an engineering student.
(c) No computer science students are engineering students
(d) Some computer science students are engineering students and some are not.
16. Let $H(x)$ denote the predicate " x is a human" and $T(x,y)$ denote the predicate " x trus y ". Rewrite the following formula into English sentence without quantifiers and variable
(a) $\forall x \exists y (H(x) \to (H(y) \land T(x,y)))$
(b) $\exists x \forall y (H(x) \land (H(y) \rightarrow \sim T(x,y))).$
(c) $\forall x \forall y (H(x) \to (H(y) \to \sim T(x,y)).$
Argument with Quantified Statements and Validity
17. Consider the following statement:
$\exists x (x \in \mathbb{R} \land x^2 = 2).$
Which of the following are equivalent ways of expressing this statement?
(a) The square of each real number is 2.

- (c) If x is a real number, then $x^2 = 2$
- 18. Let E(n) be the predicate "n is even" and consider the following statement:

$$\forall n (n \in \mathbb{Z} \to (E(n^2) \to E(n))).$$

Which of the following are equivalent ways of expressing this statement?

- (a) All integers have even squares and are even.
- (b) Given any integer whose square is even, that integer is itself even.
- (c) For all integers, there are some whose square is even.
- (d) Any integer with even square is even.
- 19. Give a negation for each statement below:
 - (a) For all integers x, if x is odd, then $x^2 1$ is even.
 - (b) There exists an integer x with $x \ge 2$ such that $x^2 4x + 7$ is prime.
 - (c) For all real numbers x and y, if x = y, then $x^2 = y^2$.
 - (d) There is no easy question in the exam.
 - (e) If the square of real number x is greater than or equal to 1 then x > 0.
- 20. For the following arguments, state which are valid and which are invalid. Justify your answers.
 - (a) All healthy people eat an apple a day. John is not a healthy person. Therefore John does not eat an apple a day.
 - (b) Every student who studies discrete mathematics is good at logic. John studies discrete mathematics. Therefore John is good at logic.
 - (c) No heavy object is cheap. XYZ is not a heavy object. Therefore XYZ is cheap.
- 21. Use ONLY the rules of inference to show that

$$\forall x (P(x) \to (Q(x) \land R(x))), \ \forall x (P(x) \land S(x)) \vdash \exists x (R(x) \land S(x))$$

- 22. Show that $\sim (\forall x (P(x) \to Q(x))) \Rightarrow \exists x (P(x) \land \sim Q(x)).$
- 23. Use rules of inference to show that

$$\exists x P(x) \to \forall x (P(x) \lor Q(x) \to R(x)), \ \exists x (P(x) \land Q(x)) \vdash \exists y R(y)$$

- 24. Show that $\forall x(Q(x) \to R(x)) \land (\exists x(Q(x) \land I(x)) \vdash \exists x(R(x) \land I(x)).$
- 25. Prove that the following argument is valid: "Every undergraduate is either an arts student or a science student. Some undergraduates are top students. James is not a science student, but he is a top student. Therefore if James is an undergraduate, he is an arts student."
- 26. Show that the following argument is valid.

$$\exists x (F(x) \land S(x)) \to (\forall y (M(y) \to W(y)))$$

$$\exists y (M(y) \land \sim W(y))$$

$$\therefore \forall x (F(x) \to \sim S(x))$$

27. What is wrong with the following proof?

$$\begin{array}{c|cccc} 1 & & \forall x \exists y (x > y) & \text{premise} \\ 2 & & \exists y (c > y) & \text{universal instantiation, } c \text{ arbitrary} \\ 3 & & (c > s) & \text{existential instantiation, } s \text{ specific} \\ 4 & & \forall x (x > s) & \text{universal generalisation} \\ 5 & & \exists y \forall x (x > y) & \text{existential generalisation} \\ \end{array}$$

28. Derive the following rule using laws of equivalence:

$$\sim (\forall x (x \in D \to (\forall y (y \in E \to P(x, y))) \equiv \exists x \exists y (x \in D \land (y \in E \land \sim P(x, y)))$$

- 29. Show that $\forall x[(C(x) \land \exists y(T(y) \land L(x,y))) \rightarrow \exists y(D(y) \land B(x,y))] \equiv \forall x \forall y \exists z[(C(x) \land T(y) \land L(x,y)) \rightarrow (D(z) \land B(x,z))]$
- 30. Write a negation for the following statement:

For all real numbers y > 0, there exists a real number z > 0 such that if a - z < x < a + z then L - y < f(x) < L + y.