Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

Solutions: Validation

Now, we start trying to answer the **question**: how do we **check** whether we have a **good** clustering?

Well, first, we can check for a **poor fit** (or overfitting) using new, **held-out** testing data: do we get **low loss** on that testing data?

If we **don't**, then our clusters definitely aren't **representative** of the overall **dataset**: they don't **generalize** to new data.

Concept 1

If our clusters give large testing loss, then they aren't generalizing well, and are probably not representative of the overall distribution.

So, we already know our clusters don't fit the distribution.

Solutions: Consistency

But, just like for classification/regression **validation**, we don't only run our algorithm **one time**: we'll run it **many** times, with different training and testing sets.

We can't **just** use the loss, though: having **more** clusters could make our error lower, without making a better clustering, for example.

Another thought: we're trying to find some patterns **inherent** in the data. The idea is: if the pattern we're finding is **real**, we should find a similar pattern **each time**!

So, we look to see if our clusters are **consistent** when we generate them using different training data: <u>if they **aren't**</u>, then it's possible we're not finding the "**real**" patterns in the data.

Different training data from the same distribution, of course.

Concept 2

If our **clusters** accurately **reflect** the underlying classes of data, then we should expect some **consistency** of which clusters we **generate** by running k-means many times.

If our clusters aren't **consistent**, then we might doubt if any of them especially reflect the **distribution**, rather than **noise**.

If our clusters are **consistent**, then we're probably seeing something about the **real** dataset.

Solutions: Ground Truth

But, even if we're getting something **consistent**, that doesn't mean we're seeing the patterns that **matter**.

If it was based on random noise, then the odds of getting matching results would be really low! One way to **check** this is, if we have some idea of what the "**true**" clustering looks like for just a few data points, we can compare those results to ours.

We call this "real" clustering the "ground truth".

Definition 3

In machine learning, the ground truth is what we know about the "real world".

In general, we want our models to be able to **reproduce** this reality: it is the data that we tend to **trust** the most, if it is gathered correctly.

That way, we can use a very **small** amount of **supervision** to get an idea of whether our clustering is on the **right track**.