POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Mon Aug 14 02:26:30 2017

Program finished at Mon Aug 14 02:27:24 2017 [Runtime:0000:00:54]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3370073967

Start parameters:

Theta values were generated ERROR

M values were generated ERROR

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 *

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta 00 Uniform 0.000000 0.010 0.010 1500 0.50000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 1
Recorded steps [a] 5000
Increment (record every x step [b] 100

Number of concurrent chains (replicates) [c] 1

Visited (sampled) parameter values [a*b*c] 500000

Number of discard trees per chain (burn-in) 10000

Print options:

Data file:
Haplotyping is turned on:
Output file:
Posterior distribution raw histogram file:
infile
NO
byo

Raw data from the MCMC run: bayesallfile.gz
Print data: No

Print genealogies [only some for some data type]:

Data summary

Data file:

Datatype:

Sequence data

Number of loci:

100

Mutation	nmodel:		
Locus S	Sublocus	Mutationmodel	Mutationmodel parameters
1	1	Felsenstein 84	[Bf:0.26 0.25 0.25 0.25, t/t ratio=2.000]
2	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
3	1	Felsenstein 84	[Bf:0.25 0.25 0.24 0.26, t/t ratio=2.000]
4	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
5	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.24, t/t ratio=2.000]
6	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
7	1	Felsenstein 84	[Bf:0.25 0.26 0.24 0.25, t/t ratio=2.000]
8	1	Felsenstein 84	[Bf:0.25 0.24 0.26 0.25, t/t ratio=2.000]
9	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
10	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.25, t/t ratio=2.000]
11	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.25, t/t ratio=2.000]
12	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
13	1	Felsenstein 84	[Bf:0.26 0.24 0.25 0.25, t/t ratio=2.000]
14	1	Felsenstein 84	[Bf:0.24 0.25 0.25 0.25, t/t ratio=2.000]
15	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.25, t/t ratio=2.000]
16	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.25, t/t ratio=2.000]
17	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.26, t/t ratio=2.000]
18	1	Felsenstein 84	[Bf:0.26 0.24 0.26 0.24, t/t ratio=2.000]
19	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.26, t/t ratio=2.000]
20	1	Felsenstein 84	[Bf:0.26 0.25 0.24 0.25, t/t ratio=2.000]
21	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.25, t/t ratio=2.000]
22	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
23	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
24	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.26, t/t ratio=2.000]
25	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
26	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
27	1	Felsenstein 84	[Bf:0.25 0.25 0.24 0.26, t/t ratio=2.000]
28	1	Felsenstein 84	[Bf:0.24 0.26 0.25 0.25, t/t ratio=2.000]
29	1	Felsenstein 84	[Bf:0.26 0.25 0.25 0.25, t/t ratio=2.000]
30	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
31	1	Felsenstein 84	[Bf:0.25 0.24 0.26 0.24, t/t ratio=2.000]
32	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
33	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
34	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.26, t/t ratio=2.000]

0.5			[D(0 0 4 0 00 0 0 5 0 0 5 4 4 4 4 4 4 0 0 0 0
35	1	Felsenstein 84	[Bf: 0.24 0.26 0.25 0.25, t/t ratio=2.000]
36	1	Felsenstein 84	[Bf: 0.25 0.25 0.25 0.25, t/t ratio=2.000]
37	1	Felsenstein 84	[Bf: 0.25 0.25 0.25 0.25, t/t ratio=2.000]
38	1	Felsenstein 84	[Bf: 0.25 0.25 0.25 0.25, t/t ratio=2.000]
39	1	Felsenstein 84	[Bf: 0.24 0.26 0.25 0.25, t/t ratio=2.000]
40	1	Felsenstein 84	[Bf: 0.25 0.25 0.25 0.24, t/t ratio=2.000]
41	1	Felsenstein 84	[Bf: 0.25 0.24 0.25 0.26, t/t ratio=2.000]
42	1	Felsenstein 84	[Bf: 0.25 0.25 0.24 0.25, t/t ratio=2.000]
43	1	Felsenstein 84	[Bf: 0.25 0.25 0.25 0.25, t/t ratio=2.000]
44	1	Felsenstein 84	[Bf: 0.25 0.25 0.25 0.24, t/t ratio=2.000]
45	1	Felsenstein 84	[Bf: 0.26 0.24 0.25 0.25, t/t ratio=2.000]
46	1	Felsenstein 84	[Bf: 0.24 0.25 0.26 0.25, t/t ratio=2.000]
47	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.26, t/t ratio=2.000]
48	1	Felsenstein 84	[Bf:0.25 0.24 0.26 0.25, t/t ratio=2.000]
49	1	Felsenstein 84	[Bf: 0.25 0.25 0.26 0.25, t/t ratio=2.000]
50	1	Felsenstein 84	[Bf:0.25 0.25 0.26 0.25, t/t ratio=2.000]
51	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
52	1	Felsenstein 84	[Bf:0.26 0.25 0.24 0.25, t/t ratio=2.000]
53	1	Felsenstein 84	[Bf:0.25 0.24 0.26 0.25, t/t ratio=2.000]
54	1	Felsenstein 84	[Bf:0.26 0.25 0.25 0.25, t/t ratio=2.000]
55	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
56	1	Felsenstein 84	[Bf:0.26 0.25 0.25 0.25, t/t ratio=2.000]
57	1	Felsenstein 84	[Bf:0.24 0.25 0.25 0.25, t/t ratio=2.000]
58	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.24, t/t ratio=2.000]
59	1	Felsenstein 84	[Bf:0.25 0.25 0.26 0.25, t/t ratio=2.000]
60	1	Felsenstein 84	[Bf:0.24 0.25 0.25 0.26, t/t ratio=2.000]
61	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
62	1	Felsenstein 84	[Bf:0.26 0.26 0.24 0.24, t/t ratio=2.000]
63	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
64	1	Felsenstein 84	[Bf:0.25 0.25 0.24 0.25, t/t ratio=2.000]
65	1	Felsenstein 84	[Bf:0.26 0.25 0.24 0.25, t/t ratio=2.000]
66	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.26, t/t ratio=2.000]
67	1	Felsenstein 84	[Bf:0.25 0.24 0.26 0.25, t/t ratio=2.000]
68	1	Felsenstein 84	[Bf:0.25 0.25 0.24 0.26, t/t ratio=2.000]
69	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.24, t/t ratio=2.000]
70	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
71	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.26, t/t ratio=2.000]
72	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.24, t/t ratio=2.000]
73	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
74	1	Felsenstein 84	[Bf:0.25 0.26 0.25 0.25, t/t ratio=2.000]
75	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
76	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
77	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]
78	1	Felsenstein 84	[Bf:0.25 0.25 0.26 0.25, t/t ratio=2.000]
79	1	Felsenstein 84	[Bf:0.26 0.25 0.25 0.24, t/t ratio=2.000]

80	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
81	1	Felsenstein 84	[Bf:0.25 0.24 0.26 0.25, t/t ratio=2.000]	
82	1	Felsenstein 84	[Bf:0.24 0.25 0.25 0.25, t/t ratio=2.000]	
83	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
84	1	Felsenstein 84	[Bf:0.24 0.26 0.26 0.24, t/t ratio=2.000]	
85	1	Felsenstein 84	[Bf:0.24 0.25 0.26 0.25, t/t ratio=2.000]	
86	1	Felsenstein 84	[Bf:0.25 0.25 0.24 0.26, t/t ratio=2.000]	
87	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
88	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
89	1	Felsenstein 84	[Bf:0.24 0.25 0.25 0.25, t/t ratio=2.000]	
90	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.26, t/t ratio=2.000]	
91	1	Felsenstein 84	[Bf:0.24 0.26 0.25 0.25, t/t ratio=2.000]	
92	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
93	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.26, t/t ratio=2.000]	
94	1	Felsenstein 84	[Bf:0.25 0.24 0.25 0.26, t/t ratio=2.000]	
95	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
96	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.25, t/t ratio=2.000]	
97	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.24, t/t ratio=2.000]	
98	1	Felsenstein 84	[Bf:0.25 0.25 0.25 0.26, t/t ratio=2.000]	
99	1	Felsenstein 84	[Bf:0.26 0.25 0.25 0.24, t/t ratio=2.000]	
100	1	Felsenstein 84	[Bf:0.25 0.25 0.26 0.24, t/t ratio=2.000]	

Sites per locus

Locus	Sites
1	10000
2	10000
3	10000
4	10000
5	10000
6	10000
7	10000
8	10000
9	10000
10	10000
11	10000
12	10000
13	10000
14	10000
15	10000
16	10000
17	10000
18	10000
19	10000
20	10000

21 10000	
22 10000	
23 10000	
24 10000	
25 10000	
26 10000	
27 10000	
28 10000	
29 10000	
30 10000	
31 10000	
32 10000	
33 10000	
34 10000	
35 10000	
36 10000	
37 10000	
38 10000	
39 10000	
40 10000	
41 10000	
42 10000	
43 10000	
44 10000	
45 10000	
46 10000	
47 10000	
48 10000	
49 10000	
50 10000	
51 10000	
52 10000	
53 10000	
54 10000	
55 10000	
56 10000	
57 10000	
58 10000	
59 10000	
60 10000	
61 10000	
62 10000	
63 10000	
64 10000	
65 10000	

66	10000				
67	10000				
68	10000				
69	10000				
70	10000				
71	10000				
72	10000				
73	10000				
74	10000				
75	10000				
76	10000				
77	10000				
78	10000				
79	10000				
80	10000				
81	10000				
82	10000				
83	10000				
84	10000				
85	10000				
86	10000				
87	10000				
88	10000				
89	10000				
90	10000				
91	10000				
92	10000				
93	10000				
94	10000				
95	10000				
96	10000				
97	10000				
98	10000				
99	10000				
100	10000				
	e variation and probab				
Locus S	Sublocus Region type	Rate of change	Probability	Patch size	
1	1 1	1.000	1.000	1.000	
2	1 1	1.000	1.000	1.000	
3	1 1	1.000	1.000	1.000	
4	1 1	1.000	1.000	1.000	
5	1 1	1.000	1.000	1.000	
6	1 1	1.000	1.000	1.000	
		1.000	1.000	1.000	

7 8	1	1				
	1	1	1.000 1.000	1.000 1.000	1.000 1.000	
9	1	1	1.000	1.000	1.000	
10	1	1	1.000	1.000	1.000	
11	1	1	1.000	1.000	1.000	
12	1	1	1.000	1.000	1.000	
13	1	1	1.000	1.000	1.000	
14	1	1	1.000	1.000	1.000	
15	1	1	1.000	1.000	1.000	
16	1	1	1.000	1.000	1.000	
17	1	1	1.000	1.000	1.000	
18	1	1	1.000	1.000	1.000	
19	1	1	1.000	1.000	1.000	
20	1	1	1.000	1.000	1.000	
21	1	1	1.000	1.000	1.000	
22	1	1	1.000	1.000	1.000	
23	1	1	1.000	1.000	1.000	
24	1	1	1.000	1.000	1.000	
25	1	1	1.000	1.000	1.000	
26	1	1	1.000	1.000	1.000	
27	1	1	1.000	1.000	1.000	
28	1	1	1.000	1.000	1.000	
29	1	1	1.000	1.000	1.000	
30	1	1	1.000	1.000	1.000	
31	1	1	1.000	1.000	1.000	
32	1	1	1.000	1.000	1.000	
33	1	1	1.000	1.000	1.000	
34	1	1	1.000	1.000	1.000	
35	1	1	1.000	1.000	1.000	
36	1	1	1.000	1.000	1.000	
37	1	1	1.000	1.000	1.000	
38	1	1	1.000	1.000	1.000	
39	1	1	1.000	1.000	1.000	
40	1	1	1.000	1.000	1.000	
41	1	1	1.000	1.000	1.000	
42	1	1	1.000	1.000	1.000	
43	1	1	1.000	1.000	1.000	
44	1	1	1.000	1.000	1.000	
45	1	1	1.000	1.000	1.000	
46	1	1	1.000	1.000	1.000	
47	1	1	1.000	1.000	1.000	
48	1	1	1.000	1.000	1.000	
49	1	1	1.000	1.000	1.000	
50	1	1	1.000	1.000	1.000	
51	1	1	1.000	1.000	1.000	

52	1	1	1.000	1.000	1.000	
53	1	1	1.000	1.000	1.000	
54	1	1	1.000	1.000	1.000	
55	1	1	1.000	1.000	1.000	
56	1	1	1.000	1.000	1.000	
57	1	1	1.000	1.000	1.000	
58	1	1	1.000	1.000	1.000	
59	1	1	1.000	1.000	1.000	
60	1	1	1.000	1.000	1.000	
61	1	1	1.000	1.000	1.000	
62	1	1	1.000	1.000	1.000	
63	1	1	1.000	1.000	1.000	
64	1	1	1.000	1.000	1.000	
65	1	1	1.000	1.000	1.000	
66	1	1	1.000	1.000	1.000	
67	1	1	1.000	1.000	1.000	
68	1	1	1.000	1.000	1.000	
69	1	1	1.000	1.000	1.000	
70	1	1	1.000	1.000	1.000	
71	1	1	1.000	1.000	1.000	
72	1	1	1.000	1.000	1.000	
73	1	1	1.000	1.000	1.000	
74	1	1	1.000	1.000	1.000	
75	1	1	1.000	1.000	1.000	
76	1	1	1.000	1.000	1.000	
77	1	1	1.000	1.000	1.000	
78	1	1	1.000	1.000	1.000	
79	1	1	1.000	1.000	1.000	
80	1	1	1.000	1.000	1.000	
81	1	1	1.000	1.000	1.000	
82	1	1	1.000	1.000	1.000	
83	1	1	1.000	1.000	1.000	
84	1	1	1.000	1.000	1.000	
85	1	1	1.000	1.000	1.000	
86	1	1	1.000	1.000	1.000	
87	1	1	1.000	1.000	1.000	
88	1	1	1.000	1.000	1.000	
89	1	1	1.000	1.000	1.000	
90	1	1	1.000	1.000	1.000	
91	1	1	1.000	1.000	1.000	
92	1	1	1.000	1.000	1.000	
93	1	1	1.000	1.000	1.000	
94	1	1	1.000	1.000	1.000	
95	1	1	1.000	1.000	1.000	
96	1	1	1.000	1.000	1.000	

97	1	1	1.000	1.000	1.000	
98	1	1	1.000	1.000	1.000	
99	1	1	1.000	1.000	1.000	
100	1	1	1.000	1.000	1.000	
Populatio		'	1.000	1.000	Locus	Gene copies
1 Romans					1	10
1 IXOIIIaiis	SHOITI_U				2	10
					3	10
					4	10
					5	10
					6	10
					7	10
					8	10
					9	10
					10	10
					11	10
					12	10
					13	10
					14	10
					15	10
					16	10
					17	10
					18	10
					19	10
					20	10
					21	10
					22	10
					23	10
					24	10
					25	10
					26	10
					27	10
					28	10
					29	10
					30	10
					31	10
					32	10
					33	10
					34	10
					35	10
					36	10
					37	10
					38	10
					39	10
					40	10
					⊤ U	10

4	
4:	2 10
4	3 10
4	
4	
4	
4	
4	
4	
5	
5	
5.	
5.	
5-	
5.	
50	
5	
5	
5	9 10
6	0 10
6	1 10
6	
6.	
6-	
6	
6	
6	
6	
6	
70	
7	
7:	
7:	
7.	
7:	
70	
7	
7:	
79	
8	
8	1 10
8:	2 10
8	3 10
8-	4 10
8	5 10
Migrate 5.0.0a; (http://popgen.sc.fsu.edu) [program run.on.02:26:30]	

	86	10	
	87	10	
	88	10	
	89	10	
	90	10	
	91	10	
	92	10	
	93	10	
	94	10	
	95	10	
	96	10	
	97	10	
	98	10	
	99	10	
	100	10	
Total of all populations	1	10	
	2	10	
	3	10	
	4	10	
	5	10	
	6	10	
	7	10	
	8	10	
	9	10	
	10	10	
	11	10	
	12	10	
	13	10	
	14	10	
	15	10	
	16	10	
	17	10	
	18	10	
	19	10	
	20	10	
	21	10	
	22	10	
	23	10	
	23 24	10	
	24 25		
		10 10	
	26 27	10 10	
	27	10	
	28	10	
	29	10	
	30	10	

	31	10	
	32	10	
	33	10	
	34	10	
	35	10	
	36	10	
	37	10	
	38	10	
	39	10	
	40	10	
	41	10	
	42	10	
	43	10	
	44	10	
	45	10	
	46	10	
	47	10	
	48	10	
	49	10	
	50	10	
	51	10	
	52	10	
	53	10	
	54	10	
	55	10	
	56	10	
	57	10	
	58	10	
	59	10	
	60	10	
	61	10	
	62	10	
	63	10	
	64	10	
	65	10	
	66 67	10	
	67	10	
	68	10	
	69	10	
	70	10	
	71	10	
	72	10	
	73	10	
	74	10	
	75	10	
Migrate 5.0.0a: /http://nongen.sc.fsu.edu) [program run on 02:26:30]			

7	6	10
7	7	10
7	8	10
	9	10
	0	10
	1	10
	2	10
	3	10
	4	10
	5	10
	6	10
	7	10
	8	10
8	9	10
9	0	10
	1	10
	2	10
	3	10
	4	10
	5	10
	6	10
	7	10
	8	10
	9	10
10	0	10

Bayesian Analysis: Posterior distribution table

								_
Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00040	0.00333	0.00510	0.00687	0.01193	0.00557	0.00586
2	Θ_1	0.00173	0.00500	0.00697	0.00920	0.01527	0.00770	0.00811
3	Θ_1	0.00240	0.00580	0.00810	0.01087	0.01867	0.00930	0.00995
4	Θ_1	0.00227	0.00767	0.01030	0.01367	0.03413	0.01190	0.01283
5	Θ_1	0.00160	0.00473	0.00670	0.00900	0.01560	0.00757	0.00806
6	Θ_1	0.00560	0.00960	0.01103	0.01267	0.02060	0.01270	0.01367
7	Θ_1	0.00293	0.00533	0.00750	0.00993	0.01453	0.00843	0.00905
8	Θ_1	0.00300	0.00733	0.00823	0.00907	0.01720	0.00937	0.01010
9	Θ_1	0.00067	0.00353	0.00530	0.00720	0.01207	0.00583	0.00614
10	Θ_1	0.00347	0.00593	0.00730	0.00880	0.01273	0.00823	0.00885
11	Θ_1	0.00287	0.00633	0.00877	0.01167	0.01993	0.01003	0.01077
12	Θ_1	0.00480	0.00587	0.01077	0.01880	0.02213	0.01237	0.01342
13	Θ_1	0.00327	0.00547	0.00723	0.00920	0.01273	0.00810	0.00860
14	Θ_1	0.00307	0.00673	0.00910	0.01193	0.01993	0.01023	0.01089
15	Θ_1	0.00147	0.00453	0.00650	0.00873	0.01507	0.00730	0.00782
16	Θ_1	0.00167	0.00587	0.00650	0.00707	0.01380	0.00717	0.00759
17	Θ_1	0.00213	0.00533	0.00750	0.00993	0.01727	0.00850	0.00908
18	Θ_1	0.00367	0.00573	0.00790	0.01047	0.01407	0.00890	0.00951

19	Θ_1	0.00207	0.00540	0.00757	0.01000	0.01727	0.00843	0.00904
20	Θ_1	0.00253	0.00580	0.00803	0.01073	0.01873	0.00923	0.00989
21	Θ_1	0.00300	0.00660	0.00897	0.01193	0.02080	0.01030	0.01109
22	Θ_1	0.00280	0.00627	0.00857	0.01127	0.01947	0.00963	0.01033
23	Θ_1	0.00140	0.00460	0.00663	0.00887	0.01533	0.00743	0.00792
24	Θ_1	0.00453	0.00727	0.01043	0.01480	0.02107	0.01190	0.01285
25	Θ_1	0.00087	0.00387	0.00570	0.00760	0.01253	0.00623	0.00653
26	Θ_1	0.00033	0.00307	0.00470	0.00647	0.01060	0.00517	0.00537
27	Θ_1	0.00487	0.00833	0.00930	0.01020	0.01607	0.01057	0.01141
28	Θ_1	0.00380	0.00493	0.00937	0.01647	0.01980	0.01077	0.01159
29	Θ_1	0.00493	0.01027	0.01357	0.01767	0.03627	0.01557	0.01681
30	Θ_1	0.00467	0.00953	0.01190	0.01473	0.02833	0.01377	0.01489
31	Θ_1	0.00207	0.00520	0.00737	0.00967	0.01653	0.00817	0.00873
32	Θ_1	0.00473	0.00893	0.01170	0.01573	0.02747	0.01370	0.01487
33	Θ_1	0.00087	0.00380	0.00563	0.00753	0.01253	0.00623	0.00652
34	Θ_1	0.00160	0.00480	0.00683	0.00907	0.01553	0.00763	0.00811
35	Θ_1	0.00327	0.00533	0.00750	0.00993	0.01347	0.00843	0.00900
36	Θ_1	0.00347	0.00347	0.00770	0.01400	0.01400	0.00870	0.00933
37	Θ_1	0.00373	0.00660	0.00830	0.01020	0.01533	0.00937	0.01009
38	Θ_1	0.00000	0.00247	0.00397	0.00560	0.00900	0.00437	0.00452
39	Θ_1	0.00453	0.00780	0.00897	0.01027	0.01620	0.01037	0.01110
40	Θ_1	0.00100	0.00400	0.00583	0.00787	0.01313	0.00643	0.00680
41	Θ_1	0.00160	0.00480	0.00683	0.00913	0.01553	0.00763	0.00813

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
42	Θ_1	0.00073	0.00367	0.00543	0.00740	0.01233	0.00603	0.00633
43	Θ_1	0.00560	0.00840	0.01117	0.01453	0.02060	0.01270	0.01380
44	Θ_1	0.00420	0.00487	0.00890	0.01507	0.01653	0.01010	0.01079
45	Θ_1	0.00213	0.00533	0.00750	0.01007	0.01753	0.00850	0.00911
46	Θ_1	0.00387	0.00753	0.00870	0.00993	0.01667	0.00997	0.01073
47	Θ_1	0.00000	0.00200	0.00350	0.00493	0.00793	0.00383	0.00389
48	Θ_1	0.00167	0.00420	0.00497	0.00573	0.00887	0.00550	0.00571
49	Θ_1	0.00667	0.01120	0.01470	0.01913	0.03347	0.01690	0.01840
50	Θ_1	0.00113	0.00413	0.00597	0.00807	0.01360	0.00670	0.00704
51	Θ_1	0.00167	0.00413	0.00503	0.00593	0.00907	0.00557	0.00584
52	Θ_1	0.00420	0.00793	0.00910	0.01027	0.01753	0.01050	0.01134
53	Θ_1	0.00320	0.00613	0.00843	0.01120	0.01747	0.00957	0.01029
54	Θ_1	0.00107	0.00407	0.00590	0.00793	0.01340	0.00657	0.00694
55	Θ_1	0.00173	0.00487	0.00690	0.00920	0.01560	0.00770	0.00821
56	Θ_1	0.00767	0.01327	0.01530	0.01780	0.03073	0.01777	0.01934
57	Θ_1	0.00200	0.00533	0.00743	0.00993	0.01700	0.00837	0.00895
58	Θ_1	0.00300	0.00600	0.00690	0.00773	0.01233	0.00777	0.00824
59	Θ_1	0.00300	0.00647	0.00883	0.01173	0.02047	0.01010	0.01095
60	Θ_1	0.00253	0.00600	0.00830	0.01093	0.01907	0.00937	0.01010
61	Θ_1	0.00327	0.00693	0.00943	0.01253	0.02187	0.01083	0.01172

62	Θ_1	0.00407	0.00707	0.00963	0.01273	0.01993	0.01103	0.01203
63	Θ_1	0.00227	0.00553	0.00777	0.01033	0.01773	0.00883	0.00944
64	Θ_1	0.00140	0.00447	0.00643	0.00867	0.01520	0.00723	0.00775
65	Θ_1	0.00220	0.00547	0.00763	0.01007	0.01727	0.00857	0.00916
66	Θ_1	0.00327	0.01007	0.01117	0.01233	0.03093	0.01283	0.01381
67	Θ_1	0.00433	0.00620	0.01130	0.01933	0.02560	0.01290	0.01404
68	Θ_1	0.00573	0.01107	0.01197	0.01280	0.02320	0.01370	0.01483
69	Θ_1	0.00267	0.00620	0.00850	0.01120	0.01953	0.00963	0.01036
70	Θ_1	0.00287	0.00640	0.00883	0.01167	0.02040	0.01003	0.01083
71	Θ_1	0.00727	0.01080	0.01297	0.01560	0.02287	0.01497	0.01633
72	Θ_1	0.00247	0.00600	0.00823	0.01093	0.01880	0.00930	0.00995
73	Θ_1	0.00353	0.00733	0.00997	0.01293	0.02247	0.01117	0.01201
74	Θ_1	0.00847	0.00847	0.01523	0.02720	0.02720	0.01750	0.01895
75	Θ_1	0.00333	0.00800	0.01070	0.01413	0.02787	0.01230	0.01323
76	Θ_1	0.00447	0.00853	0.01137	0.01507	0.02853	0.01330	0.01454
77	Θ_1	0.00473	0.00880	0.01157	0.01540	0.02727	0.01350	0.01467
78	Θ_1	0.00200	0.00527	0.00737	0.00980	0.01660	0.00830	0.00880
79	Θ_1	0.00413	0.00687	0.00930	0.01233	0.01820	0.01063	0.01141
80	Θ_1	0.00493	0.00647	0.00977	0.01433	0.01807	0.01123	0.01221
81	Θ_1	0.00180	0.00500	0.00703	0.00933	0.01580	0.00783	0.00832
82	Θ_1	0.00400	0.00793	0.01083	0.01413	0.02460	0.01230	0.01328
83	Θ_1	0.00293	0.00653	0.00890	0.01173	0.02027	0.01003	0.01078
84	Θ_1	0.00480	0.00660	0.00903	0.01193	0.01540	0.01030	0.01104

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
85	Θ_1	0.00173	0.00493	0.00697	0.00933	0.01600	0.00783	0.00835
86	Θ_1	0.00107	0.00393	0.00577	0.00780	0.01327	0.00643	0.00682
87	Θ_1	0.00593	0.01073	0.01203	0.01347	0.02267	0.01377	0.01487
88	Θ_1	0.00393	0.00767	0.01030	0.01353	0.02347	0.01183	0.01278
89	Θ_1	0.00113	0.00427	0.00617	0.00827	0.01413	0.00683	0.00727
90	Θ_1	0.00360	0.00360	0.00823	0.01513	0.01513	0.00923	0.00983
91	Θ_1	0.00307	0.00653	0.00883	0.01173	0.02040	0.01010	0.01090
92	Θ_1	0.00307	0.00307	0.00683	0.01200	0.01200	0.00770	0.00820
93	Θ_1	0.00227	0.00560	0.00783	0.01040	0.01780	0.00883	0.00945
94	Θ_1	0.00000	0.00200	0.00350	0.00500	0.00807	0.00390	0.00393
95	Θ_1	0.00207	0.00547	0.00763	0.01013	0.01773	0.00857	0.00920
96	Θ_1	0.00407	0.00607	0.01097	0.01860	0.02547	0.01250	0.01344
97	Θ_1	0.00660	0.00873	0.01463	0.02440	0.03273	0.01670	0.01825
98	Θ_1	0.00127	0.00433	0.00617	0.00827	0.01360	0.00683	0.00719
99	Θ_1	0.00160	0.00467	0.00677	0.00900	0.01560	0.00763	0.00811
100	Θ_1	0.00300	0.00553	0.00777	0.01027	0.01513	0.00870	0.00933
All	Θ_1	0.00580	0.00707	0.00803	0.00893	0.01020	0.00810	0.00802

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Bayesian Analysis: Posterior distribution over all loci

(1a) 100 hermodynamic integration: log(Prob(D)Model)): Good approximation with many temperatures 0.000 0.003 0.005 0.007 0.010 (1b) BTI: Bezier-approximates Thermodynamic integration: when using few temperatures USE THIS!

- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 0.000000]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1 Genealogies	11595529/24998768 1156122/25001232	0.46384 0.04624

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.04491	458115.50
Genealogies	0.78866	59306.88

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run