

Prof. Dr. Anne Driemel Frederik Brüning, Jan Eube Institut für Informatik

Abgabe: 30.11.2022 bis 10:00 Uhr

Übungsblatt 7

Aufgabe 7.1: B-Bäume konstruieren

(3+4 Punkte)

Gegeben ist ein leerer B-Suchbaum der Ordnung 2, wie er in der Vorlesung definiert wurde.

- (a) Fügen Sie nacheinander die Schlüssel A, L, G, O, E, I, N, S, T, R, Y, X in dieser Reihenfolge ein. Dokumentieren Sie die Konfiguration des Baumes vor und nach jedem Teilen eines Knotens.
- (b) Löschen Sie anschließend die Schlüssel L, O, N, E in dieser Reihenfolge. Zeichnen Sie jeden Zwischenschritt.

Aufgabe 7.2: Eigenschaften von B-Bäumen

(3+3 Punkte)

Betrachten Sie einen B-Baum der Ordnung $t \geq 2$ mit $n \geq 1$ Schlüsseln und Höhe h.

- (a) Zeigen Sie, dass die untere Schranke $h \ge \log_{2t}(n+1) 1$ gilt.
- (b) Nehmen Sie an, dass die Wurzel genau einen Schlüssel enthält und untersuchen Sie das maximale Verhältnis der Anzahl der Schlüssel in den zwei Teilbäumen (jeweils inklusive der Wurzel). Seien dazu n_r und n_l die Anzahl der Schlüssel im rechten bzw. linken Teilbaum der Wurzel. Bestimmen Sie das Maximum von $\frac{n_r+1}{n_l+1}$ in Abhängigkeit von h.

Aufgabe 7.3: Hashing mit verketteten Listen

(2+2 Punkte)

In eine initial leere Hashtabelle der Größe 7 werden nacheinander folgende Schlüssel eingefügt:

(a) Wenden Sie auf diese Eingabe die Divisionsmethode mit der folgenden Hashfunktion an:

$$h(k) = k \mod 7$$

(b) Wenden Sie auf diese Eingabe die Multiplikationsmethode mit der folgenden Hashfunktion an:

$$h(k) = |7(kA - |kA|)|$$
 mit $A = 0.62$

Für die Abgabe Ihrer Lösung genügt es, die resultierende Belegung der Hashtabelle anzugeben.

Aufgabe 7.4: Eigenschaften von Hash-Funktionen

(3 Punkte)

Seien $m \in \mathbb{N}$ die Größe einer gegebenen Hashtabelle und $n \in \mathbb{N}$ beliebig. Zeigen Sie, dass für jedes Universum \mathcal{U} mit $|\mathcal{U}| \ge (n-1)m+1$ und jede Hashfunktion $h: \mathcal{U} \to \{0, \dots, m-1\}$ eine Menge $S \subseteq \mathcal{U}$ mit |S| = n existiert, sodass alle Elemente von S auf denselben Eintrag der Hashtabelle abgebildet werden.