ÚSPORNÉ DÁTOVÉ ŠTRUKTÚRY

©kuko

3.5.2018

1 Úsporné dátové štruktúry

- budeme sa venovať DŠ, ktoré zaberajú málo miesta v pamäti
- presnejšie, nech OPT je minimálny počet bitov potrebný na reprezentáciu štruktúry
- hovoríme, že DŠ je
 - kompaktná, ak zaberá O(OPT) bitov
 - úsporná, ak zaberá OPT + o(OPT) bitov
 - $-implicitn\acute{a}$, ak zaberá OPT + O(1) bitov
- napríklad
 - na n-bitový reťazec treba OPT = n bitov;
 - na k-prvkovú podmnožinu z n treba OPT = $\lg \binom{n}{k}$ bitov;
 - n-vrcholových binárnych stromov je $C_n = \frac{1}{n+1} \binom{2n}{n} \sim 4^n / n^{3/2} \sqrt{\pi}$, takže na binárny strom treba lg $C_n = 2n \Theta(\lg n)$ bitov

2 Rank&Select

- problém: daný reťazec S dĺžky n, chceme podporovať operácie:
 - $-\operatorname{rank}_{c}(S,i) = \operatorname{počet} \operatorname{znakov} c \operatorname{od} \operatorname{začiatku} \operatorname{po} i$ -tu pozíciu
 - select $_c(S, i)$ = pozícia *i*-teho znaku $c \vee S$
- zjavne $\operatorname{rank}_c(S,\operatorname{select}_c(S,i))=i$ a $\operatorname{select}_c(S,\operatorname{rank}_c(S,i))\leq i$ je posledná pozícia znaku c na pozícii $\leq i$ (rovnosť nastáva, ak $S_i=c$)
- ullet uvažujme najskôr binárnu abecedu; nech m je počet jednotiek
- $\operatorname{rank}_0(S, i) = i \operatorname{rank}_1(S, i)$, takže stačí podporovať jednu operáciu
- jednoduché riešenia:
 - utriedené pole $m \lg n$ bitov, $O(\lg m)$ čas
 - predpočítaný rank $n \lg n$ bitov, O(1) čas
 - predpočítaný rank pre blok dĺžky $t n + (n/t) \lg n$ bitov, čas O(t); pre $t = \Omega(\lg n)$ dostávame kompaktnú, pre $t = \omega(\lg n)$ úspornú DŠ, ale čas je $\Omega(\lg n)$

3 Úsporný Rank

- $\bullet\,$ úsporné riešenie v čase O(1) (pre binárnu abecedu) dostaneme na 3 kroky:
- rozdelíme bitvektor na superbloky dĺžky $t_1 = \lg^2 n$ a predpočítame rank pre každý superblok $-O(n/\lg n) = o(n)$ bitov
- \bullet každý superblok rozdelíme na bloky dĺžky $t_2=\frac{1}{2}\lg n$ a predpočítame rank každého bloku v rámci superbloku
- blokov je $O(n/\lg n)$, ale keďže každý rank je od začiatku superbloku, t.j. má hodnotu najviac $\lg n$, stačí na reprezentáciu $O(\lg\lg n)$ bitov spolu $O(n\lg\lg n/\lg n)=o(n)$
- nakoniec \forall bitvektor dĺžky $\frac{1}{2} \lg n$ (tých je len $2^{\frac{1}{2} \lg n} = \sqrt{n}$) a \forall pozíciu predpočítame jednu "globálnu" tabuľku s výsledkami tá má veľkosť $O(\underbrace{\sqrt{n}}_{\text{#bitvektorov}} \underbrace{\lg \lg n}_{\text{#pozícií}}) = o(n)$
- $\operatorname{rank}_1(S,i)$ dostaneme tak, že spočítame rank pre superblok + rank pre blok + rank z tabuľky (O(1))
- \bullet pamäť je n bitov na bitvektor + o(n) navyše
- v praxi toto riešenie nie je najrýchlejšie, pretože v najhoršom prípade máme 3 cache missy

- namiesto tabuľky spočítame rank v rámci bloku pomocou inštrukcie popcnt, ktorú majú všetky moderné procesory
- dobrý kompromis medzi časom a pamäťou je 1-úrovňové riešenie (bez superblokov):
 - rozdelíme bitvektor na bloky po $7 \cdot 64 = 448$ bitov
 - medzi tieto bloky pridáme predpočítané ranky jeden 64-bitový int
 - celkovo teda rank+1blok zaberie 64B, čo je 1 cache line (max 1 cache miss)
 - toto riešenie zaberá 14% pamäte navyše oproti samotnému bitvektoru

Úsporný Select 4

- podobná metóda ako pri ranku, hoci riešenie je trochu zložitejšie
- predpočítame select(S, i) pre všetky násobky $t_1 = \lg n \lg \lg n \pmod{O(n/\lg \lg n)}$
- to nám rozdelí bitvektor na superbloky rôznych veľkostí
- \bullet nech r je veľkosť jedného superbloku; rozlišujeme 2 možnosti:
 - pre veľké a riedke superbloky $(r \ge t_1^2)$ zapíšeme priamo pozície jednotiek
 - môžeme si to dovoliť, pretože takýchto veľkých a riedkych superblokov je málo a majú málo $(\underbrace{n/t_1^2}_{1} \cdot \underbrace{t_1}_{\text{#jednotiek}} \cdot \underbrace{\lg n}_{\text{zápis1pozície}}) = O(n/\lg\lg n) \text{ bitov}$ jednotiek: pamäť bude O(

- ostáva nám vyriešiť malé superbloky $(r < t_1^2)$
- použijeme ten istý prístup s $t_2 = (\lg \lg n)^2$:
- ullet predpočítame select pre násobky t_2 v rámci malého superbloku, t.j. každá pozícia zaberá len $\lg \lg n$ bitov, spolu $O(n/t_2 \cdot \lg \lg n) = O(n/\lg \lg n)$
- \bullet pre veľké a riedke bloky $(r' \geq t_2^2)$ uložíme priamo pozície všetkých jednotiek; jedna pozícia zaberá $\lg t_1^2 = O(\lg \lg n)$ bitov – spolu $O(n/t_2^2 \cdot t_2 \cdot \lg \lg n) = O(n/\lg \lg n)$
- blokov veľkosti $\langle t_2^2 = (\lg \lg n)^4$ je veľmi málo, takže stačí globálna tabuľka s predpočítanými hodnotami select ∀ bitvektor ∀ pozíciu
- \bullet nie je známy vzťah medzi select $_0$ a select $_1$ ako pre rank
- v praxi je najjednoduchšie (a často postačujúce) použiť binárne vyhľadávanie cez rank

Komprimovaný bitvektor a RRR 5

- entropia $H(S) = \sum_a \frac{n_a}{n} \lg \frac{n}{n_a}$ riešenie je rovnaké ako pri úspornom ranku, bitvektor rozdelíme na bloky a superbloky
- jediný rozdiel je, že každý blok skomprimujeme:
- namiesto celého bitvektoru dĺžky t_2 uložíme dvojicu (c, o), kde
 - c je #jednotkových bitov a
 - -o je offset poradie bitvektoru, ak by sme všetkých $\binom{t_2}{c}$ bitvektorov s c jednotkami zotriedili lexikograficky
- \bullet dvojica (c, o) je index do predpočítanej globálnej tabuľky rankov
- c zaberá $\lg t_2$ bitov, $o \lg {t_2 \choose c}$ bitov

- nech c_i je počet jednotiek v i-tom bloku, $n_1 = \sum c_i$ potom offsety zaberajú $\sum_i \lceil \lg \binom{t_2}{c_i} \rceil \le o(n) + \sum_i \lg \binom{t_2}{c_i} = o(n) + \lg \prod_i \binom{t_2}{c_i} \le o(n) + \lg \binom{n}{n_1}$ $\lg \binom{n}{n_1} = \lg n! \lg n_1! \lg n_0! = n \lg n n n_1 \lg n_1 + n_1 n_0 \lg n_0 + n_0 + O(\lg n)$ $= n_1 \lg \frac{n}{n_1} + n_0 \lg \frac{n}{n_0} + O(\log n) = nH(S) + O(\log n)$
- keďže komprimované bloky nemajú rovnakú dĺžku, potrebujeme ešte pole pointrov kde začína i-ty superblok a kde začína j-tyblok (v rámci superbloku) – toto zaberá o(n) pamäte
- pre každé $c \in \{0, \dots, t_2\}$ tiež predpočítame hodnotu $\lceil \lg \binom{t_2}{c} \rceil$, čo je dĺžka zápisu offsetu
- v praxi je opäť výhodné namiesto 2-och úrovní (bloky a superbloky) zvoliť len jednu úroveň (kvôli cache missom) a namiesto tabuľky, kde sú predpočítané ranky pre každú pozíciu mať tabuľku s pôvodnými bitvektormi a výsledok zrátať pomocou popcnt

6 Malá abeceda

- ako rozšíriť riešenie pre binárnu abecedou na malú abecedu, napr. $DNA=\{A,C,G,T\}$?
- jedna možnosť je vyrobiť jeden bitvektor pre každý symbol zvlášť takéto riešenie nie je úsporné, keďže potrebujeme 4 bity namiesto 2bitov/symbol
- lepšie riešenie je rozšíriť naše praktické riešenie: text rozdelíme na bloky, na začiatok každého bloku zapíšeme rank bloku pre každé písmeno, zvyšné pozície dopočítame pomocou bitových operácií (xor, shift, and a popcnt)

7 Väčšia abeceda – Wavelet stromy

- $\bullet\,$ rozdelíme abecedu na dve časti $\Sigma = \Sigma_0 \cup \Sigma_1$
- vytvoríme bitvektor $B: B[i] = j \iff S[i] \in \Sigma_j$
- $\bullet\,$ predspracujeme B pre rank
- vytvoríme reťazce S_0 a S_1 , kde S_j obsahuje písmená z S, ktoré sú v Σ_j ($|S_0| + |S_1| = |S|$)
- rekurzívne pokračujeme v delení abecedy a reťazcov, až kým nedostaneme abecedy veľkosti 1, kde je úloha triviálna
- takouto konštrukciou dostaneme binárny wavelet strom (WT), kde každý list reprezentuje jedno písmeno, resp. 1-písmenovú abecedu a každý vrchol reprezentuje abecedu Σ_v písmen pod ním, $\Sigma_v = \Sigma_{\text{left}(v)} \cup \Sigma_{\text{right}(v)}$; každý podstrom v kóduje refazec $S_v = S|\Sigma_v$
- iný pohľad na WT je, že každý znak $c \in \Sigma$ zakódujeme binárne; tento kód potom špecifikuje cestu z koreňa do c (0=vľavo, 1=vpravo)
- rank $_c(i)$: začneme z koreňa; nech $c \in \Sigma_j$; spočítame $i' = \operatorname{rank}_j(B, i)$ a rekurzívne zavoláme rank $_c(i')$ na ľavom/pravom synovi
- \bullet ak chceme podporovať aj select, predspracujeme bitvektory pre select; výpočet select $_c$ je inverzný ku rank $_c$:
- select_c(i): začneme v liste c; nech pre otca vrcholu platí $c \in \Sigma_j$; spočítame $i' = \text{select}_j(B, i)$, rekurzívne zavoláme select_c(i') na otcovi
- dokonca vieme zrekonštruovať písmeno S na i-tej pozícií, takže ak zostrojíme WT, samotný reťazec si už nemusíme pamätať
- S[i]: začneme v koreni; nech j = B[i], $i' = \operatorname{rank}_i(B, i)$; pokračujeme s hľadaním $S_i[i']$ v synovi
- ostáva rozhodnúť detaily:
 - ako budeme deliť abecedu v každom vrchole?
 - ako budeme reprezentovať celý strom?
 - ako budeme reprezentovať jednotlivé bitvektory?
- \bullet prirodzená možnosť je deliť Σ vždy na polovicu, čím dostávame perfektne vyvážený binárny strom
- jeho výška je l
g σ a na každej úrovni máme bitvektory s celkovou dĺžko
un prirodzená reprezentácia je jednoducho ich zreťaziť do 1 poľa
- pamäť $n \log \sigma + o(n \log \sigma)$, čas rank/select/access je $O(\log \sigma)$
- druhá možnosť je reprezentovať všetky bitvektory pomocou RRR takáto štruktúra zaberie $nH(S) + o(n\log \sigma)$:
 - nech n_0, n_1 je počet 0/1 v koreni a $n_{00}, n_{01}, n_{10}, n_{11}$ počet 0/1 v ľavom a pravom synovi
 - RRR v koreni zaberie $n_0 \lg(n/n_0) + n_1 \lg(n/n_1)$ bitov
 - synovia zaberú $n_{00} \lg(n_0/n_{00}) + n_{01} \lg(n_0/n_{01}) + n_{10} \lg(n_1/n_{10}) + n_{11} \lg(n_1/n_{11})$
 - keď to sčítame, dostaneme $n_{00} \lg(n/n_{00}) + n_{01} \lg(n/n_{01}) + n_{10} \lg(n/n_{10}) + n_{11} \lg(n/n_{11})$
 - keď takto budeme pokračovať, na konci dostaneme $\sum_c n_c \lg(n/n_c) = nH(S)$
- keďže bitvektory sú komprimované, nemajú rovnakú dĺžku a na reprezentáciu stromu potrebujeme pomocné dáta
 - jedna možnosť je mať explicitne vrcholy so smerníkmi na otca a synov
 - druhá možnosť je RRR štruktúry zreťaziť a zapísať si offset, kde začína každý vrchol

- \bullet ďalšia možnosť je, že abecedu nebudeme deliť vždy na polovicu, t.j. nebudeme mať pre Σ kód pevnej dĺžky, ale vezmeme napríklad Huffmanov kód
- \bullet vďaka tomu bude pamäť nH(S), ak keď jednotlivé bitvektory reprezentujeme priamo
- čas jednej operácie bude $O(\sigma)$ v najhoršom prípade, ale O(H(S)) $(H(S) \le \log \sigma))$ v priemernom prípade (ak k jednotlivým znakom pristupujeme s približne rovnakou frekvenciou ako sú zastúpené v stringu S)
- v praxi sa ukazuje, že je celkom výhodné použiť riešenie rank pre malú abecedu (veľkosti 4 alebo 8) a namiesto binárneho WT zostrojiť 4- alebo 8-árny WT
- \bullet tiež sa osvedčila veľmi jednoduchá kompresia namiesto priamej reprezentácie bitvektoru: rozdelíme na superbloky a bloky, (1blok 64bitov, 1superblok 32blokov) a vynecháme bloky, kde sú samé 0 / samé 1