

7.4 Functional-Dependency Theory

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- We then develop algorithms to generate lossless decompositions into BCNF and 3NF
- We then develop algorithms to test if a decomposition is dependency-preserving

7.4.1 Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are *logically implied* by F.
 - e.g.

If $A \to B$ and $B \to C$, then we can infer that $A \to C$

- The set of all functional dependencies logically implied by F is the closure of F.
- We denote the *closure* of F by F^+ .

$F = \{A \rightarrow B, B \rightarrow C\};$ $f: A \rightarrow C$ is logically implied by F

	A	В	C
t1	1	4	2
t2	3	5	6
t3	4	4	2
t4	7	3	8
t5	9	1	0

Fig. 8.0.5

- e.g. Fig. 8.0.5
- **Def.** Given a set *F* of functional dependencies, the *closure* of *F*, denoted as F⁺
 - $F^+ = \{ f | f \text{ is logically implied by } F \}$
 - e.g. in Fig. 8.0.5, $\{A \to B, B \to C\}^+$ = $\{A \to B, B \to C, A \to C, ...\}$

Closure of a Set of Functional Dependencies

- We can find F⁺, the closure of F, by repeatedly applying **Armstrong's Axioms:**
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity自反律)
 - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation增广律)
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity传递律)
- These rules are
 - Sound (正确有效的) (generate only functional dependencies that actually hold), and
 - Complete (完备的) (generate all functional dependencies that hold).

Closure of Functional Dependencies (Cont.)

- Additional rules:
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union合并律)
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition分解律)
 - If $\alpha \to \beta$ holds and $\gamma \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (**pseudotransitivity**伪传递律)

The above rules can be inferred from Armstrong's axioms.

An Example of Functional Dependency

Question

Which rule about functional dependencies shown below is right

- A. if $\alpha \rightarrow \beta$ then $\beta \rightarrow \alpha$
- B if $A \rightarrow C$, BC $\rightarrow D$ then $AB \rightarrow D$
- \blacksquare C. if AB \rightarrow C then B \rightarrow C
- D if $\alpha \subseteq \beta$, then $\alpha \rightarrow \beta$

Answer: B

$$F = \{ A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I$$

- $B \to H$
- some members of F^+
 - $A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $AG \rightarrow I$
 - by augmenting $A \to C$ with G, to get $AG \to CG$ and then transitivity with $CG \to I$

Example (cont.)

■
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H\}$

- some members of F^+
 - $CG \rightarrow HI$
 - by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Procedure for Computing F⁺

■ To compute the closure of a set of functional dependencies F:

$$F + = F$$

repeat

for each functional dependency f in F^+ apply reflexivity and augmentation rules on f add the resulting functional dependencies to F^+ for each pair of functional dependencies f_1 and f_2 in F^+ if f_1 and f_2 can be combined using transitivity then add the resulting functional dependency to

 F^+ until F^+ does not change any further

NOTE: We shall see an alternative procedure for this task later

7.4.2 Closure of Attribute Sets

- **Def**. An attribute B is functionally determined by α if $\alpha \rightarrow B$
- **Def.** Given a set of attributes α , the *closure of* α *under* F, denoted by α^+ , is

 $\{\beta \mid \beta \text{ is } functionally \ determined \ by \ \alpha \ under \ F\}$

Closure of Attributes (cont.)

```
Input: \alpha, F
 Output: α +
 result := \alpha;
while (changes to result) do
      for each \beta \rightarrow \gamma in F do
        begin
                     \beta \subseteq result \ /* result = (\beta, ...)
             then result := result \cup \gamma
        end
```

Fig. 7.9 An *efficient* algorithm to compute α^+ under F

An Example

- R = (A, B, C, G, H, I)
 - $F = \{A \rightarrow B,$ $A \rightarrow C,$ $CG \rightarrow H, CG \rightarrow I$ $B \rightarrow H$
 - Computing (AG)⁺

```
1. result = AG /* or denoted as {A, G}
```

2.
$$result = ABCG$$
 /* $A \rightarrow C$, $A \rightarrow B$

$$3. result = ABCGH /* CG \rightarrow H$$

4.
$$result = ABCGHI$$
 /* $CG \rightarrow I$ /* or { A, B, C, G, H, I }

An Example (cont.)

- $(AG)^+$ = R, AG is a superkey of R
- Is *AG* a candidate key?
 - step1. is AG a super key?
 - does $AG \rightarrow R? == Is (AG)^+ = R$
 - yes
 - step2. is any subset of AG a superkey?
 - does $A \rightarrow R$? == is $(A)^+$ = R?, no
 - does $G \rightarrow R$? == is $(G)^+$ = R?, no
 - so, AG is a candidate key

Uses of Attribute Closure

■ Usage-I. Testing for superkey

To test whether α is a superkey of R under F, i.e. whether $\alpha \rightarrow R$, we check if

$$R = \alpha^+$$

Usage-II. Testing functional dependencies

To determine whether or not $\alpha \to \beta$ holds on R under F, we check if

$$\beta \subseteq \alpha^+$$

That is, we compute α^+ by using attribute closure, and then check if it contains β . Is a simple and cheap test, and very useful

• Usage-III. Computing closure F^+

for each $\gamma \subseteq \mathbb{R}$, compute $\gamma + = \{S\}$ under F;

for each $S \subseteq \gamma^+$, output $\gamma \to S$ as a functional dependency in F^+

Closure of Attributes (cont.)

- **Def.** For functional dependencies F and G, if $F^+ = G^+$ then F and G are equivalent
- E.g. $F=\{A \rightarrow B, B \rightarrow C\}$ is equivalent to $G=\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

7.4.3 Canonical Cover

- checking all $\alpha \rightarrow \beta$ in F is time-consuming
 - F may have redundant dependencies that can be inferred from the others
- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - E.g. $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - E.g. on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to

$${A \rightarrow B, B \rightarrow C, A \rightarrow D}$$

• E.g. on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to

$$\{A \to B, B \to C, A \to D\}$$

Canonical Cover

- It is desirable to test a "minimal" set of functional dependencies equivalent to F
- Intuitively, a *canonical cover* (正则覆盖) of F, denoted as F_c , is
 - a "minimal" set of functional dependencies equivalent to F
 - without redundant functional dependencies or attributes
 - $F^+ = F_c^+$

F, F^+ , and $F_{\mathbf{C}}$

Extraneous Attributes

- **Def.** Consider a set F of functional dependency and $\alpha \to \beta$ in F,
 - attribute A is extraneous (无关的) in α, if
 - $A \in \alpha$, and
 - F implies/is equivalent to $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$

that is,
$$F^+ \supseteq (F - \{\alpha \to \beta\}) \cup \{(\alpha - A) \to \beta\}$$

- \blacksquare attribute A is extraneous in β , if
 - $A \in \beta$, and
 - the set of functional dependencies

$$(F - {\alpha \rightarrow \beta}) \cup {\alpha \rightarrow (\beta - A)}$$
 implies F that is, $((F - {\alpha \rightarrow \beta}) \cup {\alpha \rightarrow (\beta - A)})^+ \supseteq F$

Extraneous Attributes

- Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in $AB \to C$ because $\{A \to C, AB \to C\}$ logically implies $A \to C$ (I.e. the result of dropping B from $AB \to C$).
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in $AB \to CD$ since $AB \to C$ can be inferred even after deleting C

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F,
 - to test if attribute $A \in \alpha$ is extraneous $(\alpha A) \rightarrow \beta$ under F?
 - 1. compute $(\alpha A)^+$ using the dependencies in F
 - 2. check $\beta \in (\alpha A)^+$?

 if it does, then $(\alpha A) \rightarrow \beta$ holds, A is extraneous

Testing if an Attribute is Extraneous

- to test if attribute $A \in \beta$ is extraneous in β $\alpha \rightarrow A$ under F'
- 1. compute α^+ using only the dependencies in $F' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\},$
- 2. check $A \subseteq \alpha^+$? if it does, $\alpha \rightarrow A$ holds, A is extraneous

Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c , and
 - $\blacksquare F_c$ logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique, that is, there are no two dependencies $\alpha_1 \to \beta_1$, $\alpha_2 \to \beta_2$ in F_c , such that $\alpha_1 = \alpha_2$

Canonical Cover

To compute a canonical cover for *F*:

repeat

- 1. Use the union rule to replace any dependencies in F $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2
- 2. Find a functional dependency $\alpha \to \beta$ with an extraneous attribute either in α or in β

if an extraneous attribute is found, delete it from $\alpha \to \beta$

until Fc does not change

Canonical Cover (cont.)

Note: *Union* rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Note:

for a set F of functional dependencies, there may be several F_{c}

Example of Canonical Cover

Computing a Canonical Cover for

$$R = (A, B, C)$$

$$FI = \{ A \rightarrow BC,$$

$$B \rightarrow C,$$

$$A \rightarrow B,$$

$$AB \rightarrow C \}$$

■ applying the **Union** rule to combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$, F_c becomes

$$F = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$$

- A is extraneous in $AB \rightarrow C$, because
 - F logically implies $\{A \to BC, B \to C\} \cup \{B \to C\}$; or

Example of Canonical Cover (cont.)

- $\{AB-A\}^+ = \{B\}^+$ under F is $\{BC\}$, and contains C,
- F_c is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \rightarrow BC$, because
 - $\{A \to B, B \to C\}$ logically implies $\{A \to BC, B \to C\}$, or
 - (A) + under $\{A \rightarrow B, B \rightarrow C\}$ is $\{BC\}$, and contains C

•
$$F_c$$
 is: $A \to B$
 $B \to C$

7.4.4 Lossless-join Decomposition

For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \prod_{RI}(r) \bowtie \prod_{R2}(r)$$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$
- The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies

 $r_1 = \prod_{\mathbf{R} \mid 1} (r)$

/*无损连接分解中,R所对应的r被分成若干垂直片段 $\Pi_{Ri}(r)$,各垂直片段通过自然连接可恢复r中的数据,保证了数据的完整性/分解可恢复性

$$R(A_1, A_2, ..., A_i, ..., A_n), R = R_1 \cup R_2 \cup R_3$$

A_1	A_2		$A_{\rm i}$		A_{n-1}	$A_{\rm n}$			
*	*	*	*	*	*	*			
*	*	*	*	*	*	*			
*	*	*	*	*	*	*			
*	*	*	*	*	*	*			

r(R)

Fig. Decomposition of
$$R$$
 and $r(R)$

 $r_2 = \prod_{R_2}(r)$... $r_3 = \prod_{R_3}(r)$

Lossless Decomposition (cont.)

■ Def. Lossy decomposition /*有损连接分解*/

$$r \neq \prod_{R_1}(r) \bowtie \prod_{R_2}(r) \bowtie ... \bowtie \prod_{R_n}(r)$$

■ also known as lossy-join (有损连接分解) decomposition

Lossy decompositions may result in information loss

Example

$$R = (A, B, C)$$

 $F = \{A \rightarrow B, B \rightarrow C\}$

Can be decomposed in two different ways

$$R_1 = (A, B), R_2 = (B, C)$$

Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\} \text{ and } B \to BC$$

Dependency preserving

$$R_1 = (A, B), R_2 = (A, C)$$

Lossless-join decomposition:

$$R_1 \cap R_2 = \{A\} \text{ and } A \to AB$$

Not dependency preserving (cannot check $B \to C$ without computing $R_1 \bowtie R_2$)

7.4.5 Dependency Preservation

- Let F_i be the set of dependencies F + that include only attributes in R_i .
 - A decomposition is **dependency preserving**, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
 - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Dependency Preserving (cont.)

■ **Def.** For a schema R, F holds on R, and the decomposition $\{R_1, R_2, ..., R_n\}$ of R,

the restriction of F to R_i , denoted as F_i is defined as

$$F_i = \{ \alpha \to \beta \mid \alpha \to \beta \in F^+ \text{ AND } \alpha\beta \subseteq R_i \}$$

- i.e. the set of dependencies in F^+ that include only attributes in R_i /*限制、投影
- e.g. example in the next slide

Dependency Preserving

- $R(A, B, C, D), F = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, B \rightarrow D\} \text{ on } R$
 - $F^+ = F \cup \{A \rightarrow C\}$
 - lossless decomposition:

$$R_1(A, B, C),$$
 $F_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\} \text{ on } R_1,$
 $R_2(B, D),$ $F_2 = \{B \rightarrow D\} \text{ on } R_2$

■ note: $A \rightarrow D$ is lost on R_1 and R_2

Testing for Dependency Preservation

• for $F = \{\alpha \rightarrow \beta\}$, apply the following procedure for each $\alpha \rightarrow \beta$ $result = \alpha$ while (changes to result) do /*利用只包含在 for each R_i in the decomposition

 $t = (result \cap R_i)^+ \cap R_i$ (with respect to F) 中间结果result去 $result = result \cup t$

各个子模式 R_i 中的 推导

- if *result* contains all attributes in β , then the functional dependency $\alpha \rightarrow \beta$ is preserved
- The decomposition is preserved, if and only if all $\alpha \rightarrow \beta$ in F are preserved.

Testing for Dependency Preservation

- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup ... \cup F_n)^+$

Example

■
$$R = (A, B, C)$$

 $F = \{A \rightarrow B$
 $B \rightarrow C\}$
Key = $\{A\}$

- R is not in BCNF
- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - $\blacksquare R_1$ and R_2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving

Example

Student(sno, dept, head),

$$F = \{sno \rightarrow dept, dept \rightarrow head\}, F^+ = F \cup \{sno \rightarrow head\} \cup \{...\}$$

Decomposition 1

$$R_1(sno, dept), F_1 = \{sno \rightarrow dept\}$$

 $R_2(sno, head), F_2 = \{sno \rightarrow head\}$

- *lossless*, because
 - $R_1 \cap R_1 = \{sno\}$, and is the key of R_1 and R_2
- non-dependency preservation, because
 - $(F_1 \cup F_2)^+ \neq F^+$, $dept \rightarrow head$ is lost,

Example of Dependency Preserving (cont.)

- for $dept \rightarrow head$ in \mathbf{F} ,
- (1) with respect to R_1 ,

$$\begin{aligned} \textit{result} &= (dept \cap R_1)^+ \cap R_1 = \{dept\}^+ \cap \{sno, dept\} \\ &= \{dept, head\} \cap \{sno, dept\} \\ &= \{dept\} \; ; \end{aligned}$$

(2) with respect to R_2 ,

result=
$$(dept \cap R_2)^+ \cap R_2$$

= $\phi^+ \cap \{sno, head\} = \phi$
dept→head is not preserved

Example of Dependency Preserving (cont.)

$$R_1(sno, dept), \quad F_1 = \{sno \rightarrow dept\}$$

 $R_2(dept, head), \quad F_2 = \{dept \rightarrow head\}$

- *lossless-join*, because
 - $R_1 \cap R_2 = \{dept\}$, and is the key of R_2
- dependency preservation, because

$$(F_1 \cup F_2)^+ = F^+$$