Simulation of Biomolecules

Basic Simulation Analysis

2024 CCP5 Summer School

Dr Matteo Degiacomi

Durham University

matteo.t.degiacomi@durham.ac.uk

Dr Antonia Mey
University of Edinburgh

antonia.mey@ed.ac.uk

Volume and pressure equilibration

Steps until production:

Production ensemble

Sampling the conformational space

Probability of sampling a conformation is inversely proportional to its energy: $p_i \propto e^{-ct/kT}$

Timescales in biology

Different regions, different timescales:

- Side chains faster than backbone
- Loops faster than helices and sheets
- backbone faster than side chains
- Protein surface faster than core

Root Mean Square Deviation (RMSD)

Given a system with N atoms, and a reference arrangement x_0 :

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=0}^{N} (X_i - x_0)^2}$$

In MD, x_0 is often the first conformation in the simulation.

HIV-1 capsomer simulation from: Degiacomi & Dal Peraro, Structure, 2013

Convergence?

Refrain from using RMSD as a single indicator of simulation convergence.

HIV-1 capsomer simulation from: Degiacomi & Dal Peraro, Structure, 2013

RMSD is alignment- and selection-dependent

Pairwise RMSD

 Two structures with same RMSD from a reference are not forcefully similar to each other.

 Pairwise RMSD helps seeing if protein re-visits conformations throughout the simulation.

Root Mean Square Fluctuation (RMSF)

The RMSF σ_i of atom i calculates how much it fluctuates around its mean position $\langle X_i \rangle$.

$$\sigma_i = \sqrt{\langle (X_i - \langle X_i \rangle)^2 \rangle}$$

Typically done on C_{α} atoms. Result depends on alignment!

end-to-end distance and Radius of Gyration (Rg)

$$d(p,q) = ||p - q||$$

$$R_g = \sqrt{\frac{1}{N} |r_k - r_{mean}|^2}$$

Internal properties do not depend on alignment

Some quantities are not directly measurable

Submit MD conformers to external software simulating experimental data, e.g.:

Chemical cross-linking

DynamXL, Xwalk, ...

SAXS

CRYSOL, FoXS, ...

Collision cross-section

IMPACT, MobCal, CollisionCode, ...

Warning: time averaging may hide processes

Thought experiment: typically hydrogen bond is considered established if donor-acceptor distance <2.5 Å, and donor-acceptor-hydrogen angle <20°.

Reporting % time a bond is established in simulation can be misleading!

Large ecosystem of software and packages for data analysis

and Machine Learning

And many more...

The Universe contains everything about a MD system

- Static information: atoms and their connectivities
- *Dynamic information*: The trajectory

Data accessible via a hierarchy of containers

Thursday 03 September 2024, 9:30am – 5pm: **Intermediate and Advanced MDAnalysis**This workshop will build on basic MDAnalysis skills to learn about building more complex analysis scripts. Please feel free to bring your own systems and problems to get help from the experts.