

Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ciencias Físico Matemáticas "Mat. Luis Manuel Rivera Gutiérrez"

Solución numérica de las ecuaciones de Euler usando el método SPH

Presenta:

Armando Madrigal Lucatero Director de tesis:

Dr. José Antonio González Cervera

Septiembre, 2017

Indice

- Introducción
 - Motivación
 - Objetivos
- 2 La dinámica de fluidos y las ecuaciones de Euler
 - Introducción
 - Las Ecuaciones de Euler
 - Metodos Numéricos en Hidrodinámica
- El método SPH
 - Interpolación
 - Discretizacion de las ecuaciones de Euler
 - Implementación de SPH
- Aplicaciones
- Conclusiones

Motivación

Motivación

- Modelos teóricos.
- Experimentos (ensayos de laboratorio).

La dinámica de fluidos y las ecuaciones de Euler

 Dinámica de Fluidos Computacional (analisis numérico, validación de modelos, predicciones). Objetivos

Objetivos

- Estudiar técnicas numéricas aplicadas a la simulación de fluidos en particular el método de Hidrodinámica de Partículas Suavizadas SPH.
- Estudiar el modelo de las ecuaciones de Euler de la dinámica de fluidos.
- Implementación de un código SPH en el lenguaje de programación Fortran 90 aplicado a la solución de problemas de fluidos.

La dinámica de fluidos y las ecuaciones de Euler

Estudio de Fluidos

Para estudiar un fluido se suponen las siguientes hipótesis:

- Medio continuo
- Efectos relativistas despreciables

La dinámica de fluidos y las ecuaciones de Euler

- No hay efectos cuánticos
- Se cumplen las leyes de conservación de la masa, la energía y el momento.

Variables dinámicas y variables termodinámicas.

Las Ecuaciones de Euler

Las ecuaciones de Euler

•0

- Fluido Newtoniano (viscosidad constante, Navier-Stokes).
- Fluido Ideal (viscosidad despreciable).

La dinámica de fluidos y las ecuaciones de Euler

• Sistema de ecuaciones en derivadas parciales.

Las Ecuaciones de Euler

Las ecuaciones de Euler

0

Ecuación de Continuidad

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v}). \tag{1}$$

Ecuación de Momento

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{1}{\rho} \nabla P. \tag{2}$$

Ecuación de Energia

$$\frac{\partial u}{\partial t} = -\frac{P}{\rho} \nabla \cdot (\rho \mathbf{v}). \tag{3}$$

Metodos numéricos

Eulerianos

La descripción Euleriana consiste en observar el movimiento del fluido en puntos determinados del espacio y ver como evolucionan las variables en el tiempo en cada punto.

Lagrangianos

La descripción Lagrangiana consiste en seguir el movimiento de cada partícula fluida, de manera que podamos conocer sus propiedades en cada instante de tiempo.

El método de Hidrodinámica de Partículas Suavizadas (SPH)

- Surgió en la decada de 1970 como una técnica aplicada a la dinámica de gases en astrofísica.
- Describe un fluido como un sistema de partículas puntuales discretas.
- SPH es un método Lagrangiano.
- Permite simular fluidos en entornos complejos.

Interpolación en SPH

Para interpolar, SPH se basa en la siguiente identidad

$$A(\mathbf{r}) = \int A(\mathbf{r'})\delta(\mathbf{r} - \mathbf{r'})d\mathbf{V'}$$
 (4)

Se define el operador promedio como

$$< A(\mathbf{r}) > \approx \int A(\mathbf{r'}) W(\mathbf{r} - \mathbf{r'}, h) d\mathbf{V'} \approx \sum_{b=1}^{N} A(\mathbf{r'}) W(\mathbf{r} - \mathbf{r'}, h) \Delta \mathbf{V'}$$
(5)

Aplicaciones

Funciones de Kernel

La función Kernel debe cumplir las siguientes propiedades:

(i)
$$\int W(\mathbf{r} - \mathbf{r'}, h) d\mathbf{V'} = 1$$

(ii)
$$\lim_{h\to 0} W(\mathbf{r}-\mathbf{r'},h) = \delta(\mathbf{r}-\mathbf{r'})$$

La dinámica de fluidos y las ecuaciones de Euler

(iii)
$$W(\mathbf{r} - \mathbf{r'}, h) \in C_0^k(\mathbb{R}^d), k \geq 1$$

Una función que cumple con estas propiedades es la función Gaussiana.

$$W(\mathbf{r} - \mathbf{r'}, h) = \frac{\sigma}{h^d} \exp\left[-\frac{(\mathbf{r} - \mathbf{r'})^2}{h^2}\right]$$
 (6)

Funciones de Kernel

$$\omega(q) = \sigma \begin{cases} \frac{1}{4}(2-q)^3 - (1-q)^3, & 0 \le q < 1 \\ \frac{1}{4}(2-q)^3, & 1 \le q < 2 \\ 0, & q \ge 2 \end{cases}$$

$$\omega(q) = \sigma \begin{cases} (\frac{5}{2} - q)^4 - 5(\frac{3}{2} - q)^4 + 10(\frac{1}{2} - q)^4, & 0 \le q < \frac{1}{2} \\ (\frac{5}{2} - q)^4 - 5(\frac{3}{2} - q)^4, & \frac{1}{2} \le q < \frac{3}{2} \\ (\frac{5}{2} - q)^4, & \frac{3}{2} \le q < \frac{5}{2} \\ 0, & q \ge \frac{5}{2} \end{cases}$$

Funciones de Kernel

$$\omega(q) = \sigma \begin{cases} (3-q)^5 - 6(2-q)^5 + 15(1-q)^5, & 0 \le q < 1 \\ (3-q)^5 - 6(2-q)^5, & 1 \le q < 2 \\ (3-q)^5, & 2 \le q < 3 \\ 0, & q \ge 3 \end{cases}$$

$$q = \frac{|\boldsymbol{r} - \boldsymbol{r'}|}{h}$$

Funciones de Kernel

Armando Madrigal Lucatero

Interpolación

Cantidades de interpolación

La dinámica de fluidos y las ecuaciones de Euler

$$A(\mathbf{r}) = \int \frac{A(\mathbf{r'})}{\rho(\mathbf{r'})} W(\mathbf{r} - \mathbf{r'}, h) \rho(\mathbf{r'}) d\mathbf{V'} \approx \sum_{b=1}^{N} m_b \frac{A_b}{\rho_b} W(\mathbf{r} - \mathbf{r'}, h)$$
(7)

Interpolación de cantidades vectoriales

$$\nabla A(\mathbf{r}) \approx \sum_{b} m_{b} \frac{A_{b}}{\rho_{b}} \nabla W(\mathbf{r} - \mathbf{r'}, h)$$
 (8)

$$\nabla \cdot \mathbf{A}(\mathbf{r}) \approx \sum_{b} m_{b} \frac{\mathbf{A}_{b}}{\rho_{b}} \cdot \nabla W(\mathbf{r} - \mathbf{r}', h) \tag{9}$$

$$\nabla \times \mathbf{A}(\mathbf{r}) \approx -\sum_{b} m_{b} \frac{\mathbf{A}_{b}}{\rho_{b}} \times \nabla W(\mathbf{r} - \mathbf{r'}, h)$$
 (10)

$$\nabla^{j} A^{i}(\mathbf{r}) \approx \sum_{b} m_{b} \frac{A_{b}^{i}}{\rho_{b}} \nabla^{j} W(\mathbf{r} - \mathbf{r}^{\prime}, h)$$
 (11)

Calculando la densidad

$$\rho(\mathbf{r}) = \sum_{b=1}^{N} m_b W(\mathbf{r} - \mathbf{r_b}, h)$$
 (12)

Distancia de suavizado

El ajustar la distancia de suavizado nos permite resolver las regiones agrupadas o escasas de vecinos. Este parámetro esta relacionado con la densidad del número de vecinos

$$h(\mathbf{r}) \propto n(\mathbf{r})^{-\frac{1}{d}} \tag{13}$$

donde

$$n(\mathbf{r}) = \sum_{b=1}^{N} W(\mathbf{r} - \mathbf{r_b}, h). \tag{14}$$

Distancia de suavizado

Si consideramos que todas las partículas tienen masas iguales

$$\rho(\mathbf{r}_a) = \sum_{b=1}^{N} m_b W(\mathbf{r}_a - \mathbf{r}_b, h_a)$$
 (15)

$$h(\mathbf{r}_a) = \eta \left(\frac{m_a}{\rho_a}\right)^{\frac{1}{d}} \tag{16}$$

Estas ecuaciones se resuelven usando métodos de raices como Newton-Raphson.

Discretizacion de las ecuaciones de Euler

La ecuaciones de Euler discretas

Ecuación de continuidad

$$\frac{d\rho_a}{dt} = \frac{1}{\Omega_a} \sum_{b=1}^{N} m_b (\mathbf{v}_a - \mathbf{v}_b) \cdot \nabla_a W_{ab}(h_a)$$
 (17)

Ecuación de momento

$$\frac{d\mathbf{v}_a}{dt} = -\sum_{b=1}^{N} \left[\frac{P_a}{\Omega_a \rho_a^2} \nabla_a W_{ab}(h_a) + \frac{P_b}{\Omega_b \rho_b^2} \nabla_a W_{ab}(h_b) \right]$$
(18)

Ecuación de energía

$$\frac{du_a}{dt} = \frac{P_a}{\Omega_a \rho_a^2} \sum_b m_b (\mathbf{v}_a - \mathbf{v}_b) \cdot \nabla W_{ab}(h_a). \tag{19}$$

$$\rho_a = \sum_{b=1}^{N} m_b W_{ab}(h_a) \tag{20}$$

$$P_{\mathsf{a}} = (\gamma - 1)\rho_{\mathsf{a}} u_{\mathsf{a}} \tag{21}$$

$$\Omega_{a} = \left[1 - \frac{\partial h_{a}}{\partial \rho_{a}} \sum_{b=1}^{N} m_{b} \frac{\partial W_{ab}(h_{a})}{\partial h_{a}} \right]$$
(22)

$$h_{a} = \eta \left(\frac{m_{a}}{\rho_{a}}\right)^{\frac{1}{d}} \tag{23}$$

Sistema de EDO's

$$\begin{cases} \frac{d \boldsymbol{r}_a}{dt} = \boldsymbol{v}_a \\ \\ \frac{d \boldsymbol{v}_a}{dt} = -\sum_{b=1}^N m_b \left[\frac{P_a}{\Omega_a \rho_a^2} \nabla W_{ab}(h_a) + \frac{P_b}{\Omega_b \rho_b^2} \nabla W_{ab}(h_b) \right] \\ \\ \frac{d u_a}{dt} = \frac{P_a}{\Omega_a \rho_a^2} \sum_b m_b (\boldsymbol{v}_a - \boldsymbol{v}_b) \cdot \nabla W_{ab}(h_a) \end{cases}$$

(24)

La dimensión de este sitema de ecuaciones diferenciales ordinarias es (2d+1)N. Este sistema se resuelve numericamente usando un método de Runge-Kutta a cuarto orden.

Implementación de SPH

Implementación

Fluido en caja bidimensional

- Caja dada en el intervalo [0,1]x[0,1]
- Condiciones de frontera periódicas
- Movimiento equivale a moverse sobre la superficie de un toro en 3D

Condiciones iniciales $\mathbf{v}(0) = 0$, $\mathbf{u}(0) = 0.05$

Distancia de suavizado y densidad para una configuración de 100 partículas distribuidas uniformemente

Distancia de suavizado y densidad para una configuración de 256 partículas distribuidas uniformemente

Componentes de la velocidad para 100 partículas al tiempo t=30s

Componentes de la velocidad para 256 partículas al tiempo t=30s

Posición de las partículas al tiempo t=0s

Valores para la presión y la energía en diferentes instantes de tiempo.

Valores para las componentes de la velocidad en diferentes instantes de tiempo.

Valores para las componentes de la aceleración en diferentes instantes de tiempo.

Tubo de choque 2D

- El tubo esta dado en el rectangulo $[0,5] \times [0,1]$.
- Partículas comprimidas en la dirección x.
- Condiciones de frontera: se suponen partículas ficticias.

Posiciones de las partículas a diferentes instatantes de tiempo

Tubo de Choque 2D

Posiciones de las partículas a diferentes instantes de tiempo

Valores de la presión y la energía a diferentes instantes de tiempo

Valores de la velocidad a diferentes instantes de tiempo

Tubo de Choque2D

Valores de la aceleración a diferentes instantes de tiempo

Conclusiones

- SPH es una técnica eficiente en la simulación de fluidos.
- Los sistemas estudiados tienden a su estado de equilibrio.
- Requiere un gran costo computacional.

- Extender el estudio a sistemas que involucran campos magnéticos (Magnetohidrodinámica).
- Usar técnicas de cómputo paralelo para mejorar la eficiencia del algoritmo numérico.
- Implementación de buscadores eficientes de vecinos.
- Aplicaciones a problemas astrofísicos.

¡Gracias por su atención!