

1.

1.1.

Corresponde a:	Letra(s) do(s) cartão(ões)
Dízima finita	A, D
Dízima infinita periódica	B, C
Número racional	A, B, C, D
Número irracional	E, F
O menor dos números	F

1.2. Opção C.

São 11 números:
$$-9$$
, -8 , -7 , -6 , -5 , -4 , -3 , -2 , -1 , 0 e 1

1.3.
$$1,3 < 1,3(7) < 1,3 + 0,5 \Leftrightarrow 1,3 < 1,3(7) < 1,8$$

Um exemplo de um intervalo de números reais nas condições do enunciado é [1,3; 1,8].

1.4. Opção **A**.

$$\sqrt{0.64} + \sqrt{5} \approx 3,0360 \approx 3,04$$

2.
$$\left(\sqrt{5} - \sqrt{3}\right)\left(\sqrt{5} + \sqrt{3}\right) + \left(3\sqrt{2}\right)^2 + 2\sqrt{6} - \sqrt{6} - \sqrt{3} \times \sqrt{2}$$

$$= \left(\sqrt{5}\right)^2 - \left(\sqrt{3}\right)^2 + 18 + \sqrt{6} - \sqrt{6} =$$

$$= 5 - 3 + 18 =$$

$$= 20$$

3. Opção C.

Sendo a e b números reais positivos:

•
$$a < b \Leftrightarrow \frac{1}{a} > \frac{1}{b}$$

•
$$a < b \Leftrightarrow -a > -b \Leftrightarrow \frac{-a}{2} > \frac{-b}{2}$$

•
$$a < b \Leftrightarrow \sqrt{3} + a < \sqrt{3} + b \Leftrightarrow \sqrt{3} + a < b + \sqrt{3}$$

•
$$a < b \Leftrightarrow 7a < 7b$$

4.1. Opção **D**.

$$B \cap \mathbb{Z} =]-2, 1] \cap \mathbb{Z} = \{-1, 0, 1\}$$

4.2.

a)
$$A \cap C = \left[-\sqrt{2}, \sqrt{2} \right] \cap \left[-\infty, -1 \right] = \left[-\sqrt{2}, -1 \right]$$

b)
$$B \cup D =]-2, 1] \cup [0, 2] =]-2, 2]$$

c)
$$D \cap \mathbb{Z}^- = [0, 2] \cap \mathbb{Z}^- = \emptyset$$

d)
$$A \cup \mathbb{R}^+ = \left[-\sqrt{2}, \sqrt{2} \right] \cup \mathbb{R}^+ = \left[-\sqrt{2}, +\infty \right]$$

5.1.
$$1-2x \ge \frac{2(x-3)}{3} - x \Leftrightarrow 1-x \ge \frac{2(x-3)}{3} \Leftrightarrow 3-3x \ge 2x-6 \Leftrightarrow -5x \ge -9 \Leftrightarrow x \le \frac{9}{5}$$

O conjunto-solução é
$$\left]-\infty, \frac{9}{5}\right].$$

5.2.

- a) -2
- b) -3
- **6.** Seja *x* o número de calculadoras gráficas daquele modelo vendidas pelo Filipe num mês.

Então:

- 130 x representa o valor total, em euros, da venda das calculadoras gráficas daquele modelo naquele mês;
- 0,02×130x = 2,6x representa a quantia, em euros, que o Filipe receberá para além dos 900 € de salário.

Assim, a inequação que traduz a situação é $900 + 2,6x \ge 1200$.

$$900 + 2,6x \ge 1200 \iff 2,6x \ge 300 \iff x \ge \frac{300}{2,6}$$

Assim, o conjunto-solução da inequação é
$$\left[\frac{300}{2,6}, +\infty\right[$$
 .

Como $\frac{300}{2,6}$ ≈ 115,4 , então o Filipe terá de vender, no mínimo, 116 calculadoras para que o seu salário seja de, pelo menos, 1200 €.