n°6 - Nombres complexes (Corrigé)

Notes de Cours

I Le corps des complexes

Formes algébrique (cartesienne) : Tout complexe $z \in \mathbb{C}$ peut s'écrire de manière unique z = a + ib avec $a, b \in \mathbb{R}$. On note

$$Re(z) = a$$
 $Im(z) = b$

Unicité de l'écriture : Soient $a, a', b, b' \in \mathbb{R}$. Si a + ib = a' + ib', alors a = a' et b = b'.

Opérations sur les complexes (en forme algébrique) Soit $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \in \mathbb{C}$ avec $z_2 \neq 0$.

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
 $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$

$$z_1 \times z_2 = (x_1 x_2 - y_1 y_2) + i (x_2 y_1 + x_1 y_2) \qquad \frac{z_1}{z_2} = \frac{z_1}{z_2} \frac{x_2 - i y_2}{x_2 - i y_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}$$

Plan complexe : A tout nombre complexe $z=x+iy\in\mathbb{C}$ on associe le point du plan de coordonnées (x,y). Et réciproquement, à tout point du plan de coordonnées $(x,y)\in\mathbb{R}^2$, on associe le nombre complexe $z=x+iy\in\mathbb{C}$. On dit que le point a pour **affixe** z.

Conjugué, module : Si $z = x + iy \in \mathbb{C}$, on définit

$$\overline{z} = x - iy$$
 $|z| = \sqrt{z \times \overline{z}} = \sqrt{x^2 + y^2}$

Interprétation géométrique du module : Pour $z_1, z_2 \in \mathbb{C}$, la quantité $|z_1 - z_2|$ représente la distance dans le plan complexe entre les points d'affixes z_1 et z_2 . En particulier, |z| est la distance du point d'affixe z à l'origine.

Propriétés de la conjugaison : Pour tout $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$$

$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2} \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Propriétés du module : Pour tout $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$

$$|z_1 \times z_2| = |z_1| \times |z_2|$$
 $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

et l'inégalité triangulaire :

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Exponentielle complexe : Pour tout $\theta \in \mathbb{R}$,

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

en particulier on a

$$e^{i\pi} = -1$$
 $e^{i\pi/2} = i$ $e^{i\pi/4} = \frac{1+i}{\sqrt{2}}$ $e^{i\pi/3} = \frac{1+i\sqrt{3}}{2}$ $e^{i2\pi} = 1$

Propriétés de l'exponentielle : Pour tous $\theta_1, \theta_2 \in \mathbb{R}$ et $n \in \mathbb{Z}$, on a

$$e^{i\theta_1} \times e^{i\theta_2} = e^{i(\theta_1 + \theta_2)} \qquad \qquad \frac{e^{i\theta_1}}{e^{i\theta_2}} = e^{i(\theta_1 - \theta_2)} \qquad \qquad \left(e^{i\theta_1}\right)^n = e^{in\theta_1}$$

$$\overline{e^{i\theta_1}} = \frac{1}{e^{i\theta_1}} = e^{-i\theta_1} \qquad \qquad \left|e^{i\theta_1}\right| = 1$$

et

$$e^{i\theta_1} = e^{\theta_2} \iff \exists k \in \mathbb{Z}, \, \theta_1 - \theta_2 = 2k\pi$$

Forme exponentielle: Tout nombre complexe $z \in \mathbb{C}$ non nul peut s'écrire sous la forme $z = \rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$. Le réel positif ρ est appelé le **module** de z. Le réel θ est appelé **argument** de z. Plusieurs choix d'arguments sont possibles, on peut le choisir de manière unique dans $[0, 2\pi[$, tous les autres choix sont décalés d'un multiple de 2π .

Interpretation géométrique de l'argument : L'argument de z est l'angle orienté formé entre le vecteur d'affixe z et l'axe réel. Plus généralement, si les points A, B, C ont pour affixes respectives z_A , z_B , z_C , alors le complexe $\frac{z_B-z_A}{z_C-z_A}$ a pour argument l'angle orienté \widehat{BAC} .

Si x > 0, alors le complexe x + iy a pour argument $\left(\frac{x}{y}\right)$.

Polynôme dans \mathbb{C} : Soit $P(x) = a_n x^n + a_{n-1} x^{n-1} \dots a_1 x + a_0$ à coefficients dans \mathbb{C} , alors l'équation P(z) = 0 admet des solutions dans \mathbb{C} et on peut factoriser P sous la forme

$$P(x) = (x - z_1)(x - z_2) \dots (x - z_n)$$

où les z_i sont les solutions (pas forcément toutes distinctes) de l'équation.

Exercices TT

II.A Forme algébrique

1. (SF 77, 78) (Aspect fondamental) Mettre chacun des nombres complexes suivants sous la forme algébrique (c'està-dire a + ib avec $a, b \in \mathbb{R}$):

$$z_1 = (1+2i) - 2(3-4i)$$

$$z_2 = (2+3i)(3-4i)$$

$$z_3 = -\frac{5}{3 - 4i}$$

$$z_4 = \left(\frac{1+i}{\sqrt{2}}\right)^2$$

$$z_5 = (2+i)^2 + (2-i)^2$$

$$z_6 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$

Solution:

$$z_1 = -5 + 10i$$

$$z_2 = 18 + i$$

$$z_3 = -\frac{3}{5} - \frac{4}{5}i$$

$$z_4 = i$$

$$z_5 = 6$$

$$z_6 = -3$$

2. (SF 77, 78) (Aspect fondamental) Mettre chacun des nombres complexes suivants sous la forme algébrique (c'està-dire a + ib avec $a, b \in \mathbb{R}$):

$$z_1 = -\frac{2}{1 - i\sqrt{3}}$$

$$z_1 = -\frac{2}{1 - i\sqrt{3}}$$
 $z_2 = \frac{1}{(1 + 2i)(3 - i)}$ $z_3 = \frac{1 + 3i}{1 - 3i}$

$$z_3 = \frac{1+3i}{1-3i}$$

$$z_4 = \left(\frac{1+2i}{1+i}\right)^2$$

$$z_5 = \left(\frac{-1 + i\sqrt{3}}{2}\right)^3$$

$$z_4 = \left(\frac{1+2i}{1+i}\right)^2$$
 $z_5 = \left(\frac{-1+i\sqrt{3}}{2}\right)^3$ $z_6 = \left(\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}}\right)^2$

Solution:

$$z_1 = -\frac{1}{2} - i \, \frac{\sqrt{3}}{2}$$

$$z_2 = \frac{1}{10} - i \, \frac{1}{10}$$

$$z_3 = -\frac{4}{5} + i\,\frac{3}{5}$$

$$z_4 = 2 + i\,\frac{3}{2}$$

$$z_5 = 1$$

$$z_6 = 2\sqrt{2} + i\,2\sqrt{2}$$

- 3. (SF 77, 78) Soit $z \in \mathbb{C}$.
 - (a) Montrer que z est réel si et seulement si $\overline{z} = z$.
 - (b) Montrer que z est imaginaire pur si et seulement si $\overline{z} = -z$.

Solution:

(a) On écrit z = x + iy. On a alors

$$\overline{z} = z \iff x + iy = x - iy$$
 $\iff 2iy = 0$
 $\iff y = 0$
 $\iff z \in \mathbb{R}$

(b) De même, en écrivant z = x + iy. On a

$$\overline{z} = -z \iff x + iy = -x + iy$$
 $\iff x = 0$
 $\iff z \in i\mathbb{R}$

4. (SF 77, 78) A quelle condition sur $z=x+iy\in\mathbb{C}$ le nombre z^2+z+1 est-il réel? A quoi correspond géométriquement l'ensemble des points d'affixe z tel que z^2+z+1 est réel? Indication : Mettre z^2+z+1 sous forme algébrique.

Solution : On calcule $z^2+z+1=(x^2-y^2+1)+i(2xy+y)$. Donc $z^2+z+1\in\mathbb{R}$ si et seulement si 0=2xy+y=(2x+1)y. Ce qui se produit si $2x+1=0\Leftrightarrow x=-\frac{1}{2}$ (ce qui décrit une droite verticale) ou y=0 (ce qui décrit une droite horizontale).

II.B Forme exponentielle

5. (SF 79) (Aspect fondamental) Calculer le module des nombres suivants :

$$z_1 = 3 - 4i z_2 = 2 + i z_3 = \frac{1}{2 + i}$$

$$z_4 = \frac{3-4i}{2+i}$$
 $z_5 = (2+i)^6$ $z_6 = \frac{2}{1+i\sqrt{3}}$

Solution:

$$|z_1| = 5$$
 $|z_2| = \sqrt{5}$ $|z_3| = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$

$$|z_4| = \frac{5}{\sqrt{5}} = \sqrt{5}$$
 $|z_5| = 125$ $|z_6| = 1$

6. (SF 79) (Aspect fondamental) Mettre sous forme algébrique les nombres suivants :

- (a) le nombre complexe de module 6 et d'argument $\frac{\pi}{3}$
- (b) le nombre complexe de module $\frac{1}{\sqrt{2}}$ et d'argument $\frac{\pi}{4}$
- (c) le nombre complexe de module 3 et d'argument 5π .
- (d) le nombre complexe de module π et d'argument $\frac{\pi}{2}$
- (e) le nombre complexe de module cos(2) et d'argument 1

Solution:

- (a) $6e^{i\pi/3} = 3 + 3\sqrt{3}i$
- (b) $\frac{1}{\sqrt{2}}e^{i\pi/4} = 1 + i$
- (c) $3e^{-5i\pi} = -3$
- (d) $\pi e^{i\pi/2} = i\pi$

- (e) $\cos(2)e^i = \cos(2)\cos(1) + i\cos(2)\sin(1)$
- 7. (SF 79) (Aspect fondamental) Mettre les nombres complexes suivants sous forme exponentielle (c'est-à-dire sous la forme $\rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$).

$$z_1 = 3 - 3i$$
 $z_2 = 1 - i\sqrt{3}$ $z_3 = \frac{3 - 3i}{1 - i\sqrt{3}}$ $z_4 = \frac{\sqrt{6} - i\sqrt{2}}{2}$ $z_5 = -5$ $z_6 = (1 - i)^{100}$

Solution:

$$z_1 = 3\sqrt{2}e^{-\pi/4} \qquad \qquad z_2 = 2e^{-i\pi/3} \qquad \qquad z_3 = \frac{3\sqrt{2}}{4}e^{i\pi/12}$$

$$z_4 = \sqrt{2}e^{i\pi/6} \qquad \qquad z_5 = 5e^{i\pi} \qquad \qquad z_6 = 2^{50}e^{i\pi}$$

8. (SF 31, 32, 33, 79) Mettre les nombres complexes suivants sous forme exponentielle (c'est-à-dire sous la forme $\rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$)

$$u = 1 + i$$
 $v = 3i + \sqrt{3}$ $w = -e^{\ln(3) + 5i}$ $z = \frac{-e^{\frac{2i\pi}{5}}}{1 + i}$

Solution:

$$u = \sqrt{2}e^{\frac{i\pi}{4}}$$
 $v = 2\sqrt{3}e^{\frac{i\pi}{3}}$ $w = 3e^{i(5-\pi)}$ $z = \frac{\sqrt{2}}{2}e^{\frac{23i\pi}{20}}$

II.C Le plan complexe

- 9. (SF 1189) (Aspect fondamental)
 - (a) Placer les points A, B, C d'affixes respectives 1-2i, 4+2i et 5-5i dans le plan.
 - (b) Calculer les 3 longueurs AB, BC et CA. En déduire que le triangle ABC est isocèle en A.

Solution:

$$AB = |(1-2i) - (4+2i)| = 5, \quad BC = |(4+2i) - (5-5i)| = \sqrt{50} = 5\sqrt{2}, \quad AC = |(1-2i) - (5-5i)| = 5,$$

- 10. (SF 1189) Soit M_0 le point d'affixe z = 5 + 2i.
 - (a) Placer M_0 dans le plan complexe.
 - (b) Placer sur le dessin, puis déterminer les affixes des points suivants :
 - i. M_1 : le symétrique de M_0 par rapport à 0
 - ii. M_2 : l'image de M_0 par la rotation de centre 0 et d'angle $\frac{\pi}{2}$.
 - iii. M_3 : le symétrique de M_0 par rapport à l'axe des abscisses
 - iv. M_4 : le symétrique de M_0 par rapport à l'axe des ordonnées
 - v. M_5 : le symétrique M_2 par rapport à l'axe des orddonnées
 - vi. M_6 : le point d'affixe $i\overline{z}$
 - vii. M_7 : le point d'affixe -iz
 - (c) L'octogone formé par ces 8 points est-il régulier?

Solution:

L'octogone n'est pas régulier, on vérifie par exemple que $4 = M_0 M_2 \neq M_0 M_5 = 3\sqrt{2}$.

11. (SF 1189, 77, 78, 79) Décrire géométriquement et dessiner dans le plan les ensembles suivants

$$E_1 = \{z \in \mathbb{C}, |z - 3 + 4i| = 5\}$$
 $E_2 = \{z \in \mathbb{C}, z + \overline{z} = 6\}$ $E_3 = \{z \in \mathbb{C}, |z - 1| = |z - i|\}$

Solution:

(a) On a $E_1 = \{z \in \mathbb{C}, |z-3+4i|=5\} = \{z \in \mathbb{C}, |z-(3-4i)|=5\}$. Le point z est dans l'ensemble E_1 si et seulement si sa distance au point 3-4i est 5. En d'autres termes, l'ensemble est le cercle de centre 3-4i et de rayon 5.

Alternativement, on pourrait également retrouver ce résultat en écrivant z = x + iy avec $x, y \in \mathbb{R}$, et en écrivant l'équation sur x et y qu'on obtient. En effet, on a $|z - 3 + 4i| = 5 \Leftrightarrow |z - 3 + 4i|^2 = 5^2$, ce qui donne

$$(x-3)^2 + (y+4)^2 = 5^2$$

Ce qui est l'équation cartésienne d'un cercle de centre (3, -4) et de rayon 5.

- (b) On a $E_2 = \{z \in \mathbb{C}, z + \overline{z} = 6\} = \{z \in \mathbb{C}, \text{Re}(z) = 3\} = \{z = x + iy \in \mathbb{C}, x = 3\}, \text{ donc l'ensemble correspond à la droite verticale d'abscisse 3.}$
- (c) Dire que |z-1| = |z-i| signifie que z est équidistant des points 1 et i. L'ensemble E_3 des points qui vérifient cette propriété est la médiatrice du segment formé par ces deux point 1 et i.

Là encore, on peut retrouver ce résultat à travers l'équation cartésienne. On écrit z=x+iy avec $x,y\in\mathbb{R}$. Comme $|z-1|=|z-i|\Leftrightarrow 0=|z-1|^2-|z-i|^2$, on a

$$0 = (x-1)^2 + y^2 - x^2 - (y-1)^2 = 2x - 2y$$

Donc on trouve l'équation cartésienne de la droite y = x.

12. (SF 1189, 79) Triangle équilatéraux

On se donne trois points distincts A, B, C dans le plan, d'affixes respectives z_A , z_B et z_C .

(a) Montrer que le triangle ABC est isocèle en A si et seulement si

$$\left| \frac{z_B - z_A}{z_C - z_A} \right| = 1$$

(b) Montrer que le triangle ABC est équilatéral si et seulement si

$$\frac{z_B - z_A}{z_C - z_A} = e^{\pm i\pi/3} = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}$$

(c) En déduire que les points d'affixes $z_A = 2 - i$, $z_B = 6 - 7i$ et $z_C = (4 + 3\sqrt{3}) + i(2\sqrt{3} - 4)$ forment un triangle équilatéral.

Solution:

(a) On a les équivalences :

Le triangle
$$ABC$$
 est isocèle en $A \iff AB = AC$

$$\iff \underbrace{|z_B - z_A|}_{=AB} = \underbrace{|z_C - z_A|}_{=AC}$$

$$\iff \frac{|z_B - z_A|}{|z_C - z_A|} = 1$$

$$\iff \frac{|z_B - z_A|}{|z_C - z_A|} = 1$$

(b) Si ABC est équilatéral, alors AB = AC donc

$$\left| \frac{z_B - z_A}{z_C - z_A} \right| = 1$$

par ailleurs, l'angle \widehat{BAC} vaut $\pm \frac{\pi}{3}$ donc un argument de $\frac{z_B-z_A}{z_C-z_A}$ est $\pm \frac{\pi}{3}$. Et donc on a

$$\frac{z_B - z_A}{z_C - z_A} = e^{\pm i\pi/3}$$

réciproquement si $\frac{z_B-z_A}{z_C-z_A}=e^{\pm i\pi/3}$, alors $AB=|z_B-z_A|=|z_C-z_A|=AC$ et l'angle \widehat{BAC} vaut $\pm \frac{\pi}{3}$. Donc le triangle ABC est équilatéral.

(c) On calcule

$$\frac{z_B - z_A}{z_C - z_A} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\pi/3}$$

ce qui entraine que le triangle formé par ces 3 points est équilatéral.

13. (SF 77, 78, 79) Caractérisations des complexes de module 1

Soit $z=x+iy\in\mathbb{C}$ un nombre complexe non nul. Montrer l'équivalence des propositions suivantes :

(a)
$$x^2 + y^2 = 1$$

(b)
$$|z| = 1$$

(c) il existe
$$\theta \in \mathbb{R}$$
 tel que $z = e^{i\theta}$

(d)
$$\overline{z} = \frac{1}{z}$$

Solution : Pour montrer l'équivalence, il suffit de montrer successivement les implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow$ $(d) \Rightarrow (a)$.

$$(a) \Rightarrow (b)$$
: Si $x^2 + y^2 = 1$, alors $|z| = \sqrt{x^2 + y^2} = 1$.

$$(b)\Rightarrow(c): \text{Si } |z|=1$$
, alors en écrivant z sous forme géométrique, on obtient $z=e^{i\theta}$ avec $\theta\in\mathbb{R}$.

$$(b)\Rightarrow (c)$$
: Si $|z|=1$, alors en ecrivant z sous forme geometrique, on obtaint $z=e^-$ avec $\theta\in\mathbb{R}$.
 $(c)\Rightarrow (d)$: Supposons $z=e^{i\theta}$. On alors $\overline{z}=\cos(\theta)-i\sin(\theta)=e^{-i\theta}$. Et par ailleurs, $\frac{1}{z}=e^{-i\theta}$. Donc $\overline{z}=\frac{1}{z}$.
 $(d)\Rightarrow (a)$: Supposons $\overline{z}=\frac{1}{z}$. Alors $x^2+y^2=z\overline{z}=1$.

$$(d) \Rightarrow (a)$$
: Supposons $\overline{z} = \frac{1}{z}$. Alors $x^2 + y^2 = z\overline{z} = 1$.

14. Montrer que pour tout
$$z \neq 1$$
 de module 1, la quantité $u = \frac{z+1}{z-1}$ est imaginaire pure.

Solution: On propose plusieurs preuves.

— Si on écrit z = x + iy, on a

$$a = \frac{z+1}{z-1}$$

$$= \frac{x+1+iy}{x-1+iy}$$

$$= \frac{(x+1+iy)(x-1-iy)}{(x-1)^2+y^2}$$

$$= \frac{(x+1)(x-1)+y^2+i(y(x-1)-y(x+1))}{(x-1)^2+y^2}$$

$$= \frac{(x^2+y^2-1)+2iy}{(x-1)^2+y^2}$$

$$= i\frac{2y}{(x-1)^2+y^2} \in i\mathbb{R}$$

— Pour montrer que u est imaginaire pur, on peut montrer $\overline{u} = -u$.

$$\overline{u} = \frac{\overline{z+1}}{\overline{z-1}}$$

$$= \frac{\overline{z+1}}{\overline{z-1}}$$

$$= \frac{\overline{z+1}}{\overline{z-1}} \times \frac{z}{z}$$

$$= \frac{|z|^2 + z}{|z|^2 - z}$$

$$= \frac{1+z}{1-z}$$

$$= -u$$

— Comme |z|=1, on peut écrire $z=e^{i\theta}$ avec $\theta\in\mathbb{R}$.

$$u = \frac{z+1}{z-1}$$

$$= \frac{e^{i\theta}+1}{e^{i\theta}-1}$$

$$= \frac{e^{i\theta/2} \left(e^{i\theta/2} + e^{-i\theta/2}\right)}{e^{i\theta/2} \left(e^{i\theta/2} - e^{-i\theta/2}\right)}$$

$$= \frac{2\cos(\theta/2)}{2i\sin(\theta/2)}$$

$$= -i\frac{\cos(\theta/2)}{\sin(\theta/2)} \in i\mathbb{R}$$

— Une interprétation géométrique : Si A, B et M désignent les point d'affixe -1, 1 et z respectivement, alors la quantité $\frac{z+1}{z-1}$ a pour argument l'angle (algébrique) formé par les vecteurs \overrightarrow{AM} et \overrightarrow{BM} . On rappelle également une propriété du cercle : l'ensemble des points M tels que le produit scalaire \overrightarrow{AM} . \overrightarrow{BM} est nul est le cercle de diamètre [AB] (on peut par exemple le vérifier en écrivant l'équation cartésienne obtenue en écrivant que le produit scalaire est nul, et reconnaître l'équation du cercle).

Si |z| = 1, alors M est sur le cercle de diamètre [AB]. D'après la propriété du cercle, on a donc que les vecteurs \overrightarrow{AM} et \overrightarrow{BM} forment un angle droit, donc la quantité $\frac{z+1}{z-1}$ est imaginaire pure.

En fait, vu que l'ensemble des points M tels que le produit scalaire $\overrightarrow{AM}.\overrightarrow{BM}$ est nul est exactement le cercle de diamètre [AB], la quantité $\frac{z+1}{z-1}$ est imaginaire pure exactement quand |z|=1 et jamais ailleurs.

II.D Trigonométrie

15. (SF 77, 78, 79, 82) (Aspect fondamental)

(a) Soit $z \in \mathbb{C}$. Montrer que

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

(b) Soit $\theta \in \mathbb{R}$. Montrer que

$$\cos(\theta) = \operatorname{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\sin(\theta) = \operatorname{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

16. (SF 77, 78, 79, 82, 213) La technique du demi-angle : Soient $\theta_1, \theta_2 \in \mathbb{R}$. Quel est le module et l'argument de $e^{i\theta_1} + e^{i\theta_2}$?

Indication: On pourra factoriser par $e^{i\frac{\theta_1+\theta_2}{2}}$ et discuter selon le signe de $\cos\left(\frac{\theta_1-\theta_2}{2}\right)$.

Solution : On a

$$e^{i\theta_1} + e^{i\theta_2} = e^{i\frac{\theta_1 + \theta_2}{2}} \left(e^{i\frac{\theta_1 - \theta_2}{2}} + e^{-i\frac{\theta_2 - \theta_1}{2}} \right)$$
$$= 2\cos\left(\frac{\theta_1 - \theta_2}{2}\right) e^{i\frac{\theta_1 + \theta_2}{2}}$$

On distingue deux cas selon le signe du cosinus.

— Si $\cos\left(\frac{\theta_1-\theta_2}{2}\right) \ge 0$, alors

$$e^{i\theta_1} + e^{i\theta_2} = \underbrace{\left[2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)\right]}_{>0} e^{i\frac{\theta_1 + \theta_2}{2}}$$

On conclut donc que

$$\left|e^{i\theta_1} + e^{i\theta_2}\right| = 2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)$$

et

$$\arg\left(e^{i\theta_1} + e^{i\theta_2}\right) = \frac{\theta_1 + \theta_2}{2}$$

— Si $\cos\left(\frac{\theta_1-\theta_2}{2}\right) \ge 0$, alors

$$e^{i\theta_1} + e^{i\theta_2} = -\left[-2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)\right]e^{i\frac{\theta_1 + \theta_2}{2}} = \underbrace{\left[-2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)\right]}_{>0}e^{i\left(\frac{\theta_1 + \theta_2}{2} + \pi\right)}$$

On conclut donc que

$$\left|e^{i\theta_1} + e^{i\theta_2}\right| = -2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)$$

et

$$\arg\left(e^{i\theta_1} + e^{i\theta_2}\right) = \frac{\theta_1 + \theta_2}{2} + \pi$$

 $17. \ \ {\rm (SF~77,~82,~83,~1256,~1257)} \ \textbf{D\'{e}montrer les formules de trigonom\'{e}trie avec les complexes:}$

Soit $\theta \in \mathbb{R}$ un réel. On note $z = e^{i\theta} \in \mathbb{C}$.

(a) Exprimer \bar{z} sous forme exponentielle et algébrique. En déduire les formules

$$cos(-\theta) = cos(\theta)$$
 $sin(-\theta) = -sin(\theta)$

(b) Exprimer -z sous forme exponentielle et algébrique. En déduire les formules

$$cos(\theta + \pi) = -cos(\theta)$$
 $sin(\theta + \pi) = -sin(\theta)$

(c) Exprimer iz sous forme exponentielle et algébrique. En déduire les formules

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta) \qquad \sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$$

(d) Adapter la méthode pour montrer les formules

$$cos(\pi - \theta) = -cos(\theta)$$
 $sin(\pi - \theta) = sin(\theta)$

et

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$

Solution : Soit $\theta \in \mathbb{R}$ un réel et $z = e^{i\theta}$.

(a) On a

$$\overline{z} = \overline{e^{i\theta}} = e^{-i\theta} = \cos(-\theta) + i\sin(-\theta)$$

et

$$\overline{z} = \overline{\cos \theta + i \sin \theta} = \cos \theta - i \sin \theta$$

Donc en identifiant les parties réelles et imaginaires, on obtient

$$cos(-\theta) = cos(\theta)$$
 $sin(-\theta) = -sin(\theta)$

(b) On a

$$-z = -e^{i\theta} = e^{i(\theta + \pi)} = \cos(\theta + \pi) + i\sin(\theta + \pi)$$

et

$$-z = -(\cos\theta + i\sin\theta) = -\cos\theta - i\sin\theta$$

Donc en identifiant les parties réelles et imaginaires, on obtient

$$cos(\theta + \pi) = -cos(\theta)$$
 $sin(\theta + \pi) = -sin(\theta)$

(c) On a

$$iz = ie^{i\theta} = e^{i\left(\theta + \frac{\pi}{2}\right)} = \cos\left(\theta + \frac{\pi}{2}\right) + i\sin\left(\theta + \frac{\pi}{2}\right)$$

et

$$iz = i(\cos\theta + i\sin\theta) = -\sin\theta + i\cos\theta$$

Donc en identifiant les parties réelles et imaginaires, on obtient

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta) \qquad \sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$$

(d) De même, en considérant $-\overline{z}$, on a $-\overline{z} = e^{i(\pi-\theta)} = \cos(\pi-\theta) + i\sin(\pi-\theta)$ d'une part, et $-\overline{z} = -\cos\theta + i\sin\theta$ d'autre part. On en déduit les formules

$$cos(\pi - \theta) = -cos(\theta)$$
 $sin(\pi - \theta) = sin(\theta)$

Enfin en considérant $i\overline{z}$, on a $i\overline{z} = e^{i\left(\frac{\pi}{2}\right)-\theta} = \cos\left(\frac{\pi}{2}-\theta\right) + i\sin\left(\frac{\pi}{2}-\theta\right)$ d'une part, et $i\overline{z} = \sin\theta + i\cos\theta$ d'autre part. On a déduit les formules

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$

18. (SF 82, 83, 1256, 1257) En exprimant le produit $e^{ia} \times e^{ib}$ sous forme algébrique et exponentielle, retrouver les formules $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$, $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$

Solution : On a $e^{ia} \times e^{ib} = e^{i(a+b)} = \cos(a+b) + i\sin(a+b)$. Et par ailleurs $e^{ia} \times e^{ib} = (\cos(a) + i\sin(a))(\cos(b) + i\sin(b)) = (\cos(a)\cos(b) - \sin(a)\sin(b)) + i(\sin(a)\cos(b) + \cos(a)\sin(b))$ ce qui donne les formules en identifiants parties réelles et imaginaires.

19. (SF 82, 83, 1256, 1257) ¹ Soient $a,b \in \mathbb{R}$ des réels. Montrer qu'il existe $\theta_{a,b} \in [0,2\pi[$ tel que pour tout $x \in \mathbb{R}$ on ait

$$a\cos(x) + b\sin(x) = \sqrt{a^2 + b^2}\cos(x + \theta_{a,b})$$

Indication : On pourra considérer $(a-ib)e^{ix}$ et l'exprimer sous forme algébrique et géométrique.

Solution: On note (a-ib) sous forme géométrique $a-ib=\rho e^{i\theta_{a,b}}$ avec $\rho>0$ et $\theta_{a,b}\in[0,2\pi[$. On a d'ailleurs $\rho=\sqrt{a^2+b^2}.$ On peut écrire alors

$$(a - ib)e^{ix} = \rho e^{i(x + \theta_{a,b})} = \rho \cos(x + \theta_{a,b}) + i\sin(x + \theta_{a,b})$$

On a par ailleurs

$$(a-ib)e^{ix} = (a-ib)(\cos x + i\sin x) = (a\cos x + b\sin x) + i(a\sin x - b\cos x)$$

Donc en identifiant les parties réelles, on trouve

$$a\cos x + b\sin x = \rho\cos(x + \theta_{a,b}) = \sqrt{a^2 + b^2}\cos(x + \theta_{a,b})$$

En bonus, si on identifie les parties imaginaires, on obtient une seconde identité (qui n'était pas demandée)

$$a\sin x - b\cos x = \rho\cos(x + \theta_{a,b}) = \sqrt{a^2 + b^2}\sin(x + \theta_{a,b})$$

Remarque II.1. La moralité de cette exercice, est qu'une somme de signaux sinusoïdaux est encore sinusoïdal.

II.E Equations polynomiales dans \mathbb{C}

20. (SF 1256) Racines carrées complexes: Caluler les racines carrées des nombres complexes suivants

$$z_1 = 7 + 24i$$
, $z_2 = -15 - 8i$, $z_3 = 5 - 12i$, $z_4 = i$

Indication : Si z = x + iy est un racine carrée de a + ib, calculer z^2 et identifier. On pourra aussi se servir de la relation $|z|^2 = |a + ib|$.

Solution:

$$\pm (4+3i), \qquad \pm (1-4i), \qquad \pm (3-2i), \qquad \pm \frac{1+i}{\sqrt{2}}$$

21. (SF 1256) Equations quadratiques dans C: Résoudre dans C les équations suivantes

$$z^{2} + z + 1 = 0$$
 $z^{2} = 7 + 24i$ $z^{2} - (5 + 6i)z + 1 - 13i = 0$

Indication : Calculer les racines complexes du discriminant Δ comme dans l'exercice précédent. Puis utiliser la "formule du delta" qui exprime les racines d'un polynôme en fonction de ses coefficients.

Solution:

$$\left\{-\frac{1}{2}+i\frac{\sqrt{3}}{2}, -\frac{1}{2}-i\frac{\sqrt{3}}{2}\right\} \qquad \left\{4+3i, -4-3i\right\} \qquad \left\{-1-i, 6+7i\right\}$$

22. (SF 1256) Racines cubique de l'unité

1. Exercice 7 - Math101

- (a) Montrer que $z^3 1 = (z 1)(z^2 + z + 1)$ pour tout $z \in \mathbb{C}$.
- (b) En déduire les solutions dans \mathbb{C} de l'équation $z^3=1$ (on donnera les solutions sous forme algébrique et exponentielle).

Solution:

- (a) On développe le membre de droite. On peut d'ailleurs signaler qu'il s'agit du cas n=3 de l'égalité plus générale $z^n-1=(z-1)(1+z+z^2+\ldots+z^{n-1})$ qui se démontre de la même manière.
- (b) On a

$$z^{3} = 1 \iff (z-1)(z^{2} + z + 1) = 0 \iff z = 1 \text{ ou } z^{2} + z + 1 = 0$$

Les solutions de l'équation quadratique $z^2+z+1=0$ sont $\frac{-1\pm\sqrt{3}}{2}=e^{\pm 2i\pi/3}$. On trouve donc trois solution à l'équation $z^3=1$ qui sont

$$z = 1$$
 ou $z = \frac{-1 + i\sqrt{3}}{2} = e^{2i\pi/3}$ ou $z = \frac{-1 - i\sqrt{3}}{2} = e^{-2i\pi/3}$