Advanced Database- IS411

Introduced by

Dr. Ebtsam Adel

Lecturer of Information Systems, Information Systems department, Faculty of computers and information, Damanhour university

Materials

Topics

- ✓ Chapter 20 Introduction to Transaction Processing Concepts and Theory
- ✓ chapter 24 NOSQL Databases and Big Data Storage Systems
- ✓ chapter 25 Big Data Technologies Based on MapReduce and Hadoop
- ✓ chapter 27 Introduction to Information Retrieval and Web Search
- ✓ chapter 29 Overview of Data Warehousing and OLAP
- chapter 30 Database Security

CHAPTER 27

Introduction to Information Retrieval and Web Search

Information Retrieval (IR) Concepts

Information Retrieval

❖ Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).

27.1 Information Retrieval (IR) Concepts

- Information retrieval
 - Process of retrieving documents from a collection in response to a query (search request)
 - Deals mainly with <u>unstructured</u> data
 - Example: homebuying contract documents
- Unstructured information
 - Does not have a well-defined formal model
 - Based on an understanding of natural language
 - Stored in a wide variety of standard formats

- Information retrieval field predates database field
 - Academic programs in Library and Information Science
- RDBMS vendors providing new capabilities to support various data types
 - Extended RDBMSs or object-relational database management systems.
- User's information need expressed as free-form search request
 - Keyword search query

Characterizing an IR system

- Types of users
 - Expert
 - Layperson
- Types of data
 - Domain-specific
- Types of information needs
 - Navigational search: locations
 - Informational search: information- wiki
 - Transactional search: transactions

Types of Information Need. In the context of Web search, users' information needs may be defined as navigational, informational, or transactional. Navigational search refers to finding a particular piece of information (such as the Georgia Tech University Web site) that a user needs quickly. The purpose of **informational search** is to find current information about a topic (such as research activities in the college of computing at Georgia Tech—this is the classic IR system task). The goal of **transactional search** is to reach a site where further interaction happens resulting in some transactional event (such as joining a social network, shopping for products, making online reservations, accessing databases, and so on).

- Enterprise search systems
 - Limited to an intranet
- Desktop search engines
 - Searches an individual computer system
- Databases have fixed schemas
 - IR system has no fixed data model

Comparing Databases and IR Systems

Databases

- Structured data
- Schema driven
- Relational (or object, hierarchical, and network) model is predominant
- Structured query model
- Rich metadata operations
- Query returns data
- Results are based on exact matching (always correct)

IR Systems

- Unstructured data
- No fixed schema; various data models (e.g., vector space model)
- Free-form query models
- Rich data operations
- Search request returns list or pointers to documents
- Results are based on approximate matching and measures of effectiveness (may be imprecise and ranked)

Table 27.1 A comparison of databases and IR systems

Generic IR approaches

1. Statistical approach

2. Semantic approaches

Generic IR approaches

Statistical approach

- Documents analyzed and broken down into chunks of text.
- Each word or phrase is counted, weighted, and measured for relevance or importance
- Types of statistical approaches
 - Boolean
 - Vector space
 - 3. Probabilistic

Generic IR Pipeline (cont'd.)

Semantic approaches

- Use knowledge-based retrieval techniques.
- Rely on syntactic, lexical, sentential, discoursebased, and pragmatic levels of knowledge understanding.
- Also apply some form of statistical analysis

Legend: Dashed lines indicate next iteration

Figure 27.1 Generic IR framework

Figure 27.2 Simplified IR process pipeline

Retrieval Models

27.2 Retrieval Models

- Boolean model
 - One of earliest and simplest IR models
 - Documents represented as a set of terms
 - Queries formulated using AND, OR, and NOT
 - Retrieved documents are an exact match
 - No notion of ranking of documents
 - Easy to associate metadata information and write queries that match contents of documents.

27.2 Retrieval Models - Boolean model

		plays							
		Antony	Julius	The	Hamlet	Othello	Macbeth		
		and	Caesar	Tempest					
		Cleopatra		_					
words	Antony	$\overline{1}$	1	0	0	0	1		
	Brutus	1	1	0	1	0	0		
	Caesar	1	1	0	1	1	1		
	Calpurnia	0	1	0	0	0	0		
	Cleopatra	1	0	0	0	0	0		
	mercy	1	0	1	1	1	1		
	worser	1	0	1	1	1	0		

27.2 Retrieval Models - Boolean model

- □ a vector for each term.
- a) Brutus: 110100
- b) Caesar: 110111
- c) NOT Calpurnia: (complemented (1's complement) Calpurnia) 101111
- ☐ To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a bitwise AND:

 110100

110100 AND 110111 AND 101111 = 100100.

110111 101111

100100

27.2 Retrieval Models - Boolean model

	Antony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra		1				
Antony	Ĩ	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	
Result	1	0	0	1	0	0	

Antony and Cleopatra, and Hamlet

Vector space model

Retrieval Models (cont'd.)

- Vector space model
 - Weighting, ranking, and determining relevance are possible
 - Uses individual terms as dimensions
 - Each document represented by an n-dimensional vector of values.
 - Features
 - Subset of terms in a document set that are considered most relevant to an IR search for the document set.

Retrieval Models (cont'd.)-

Vector space model

Documents

as scoring ...

study this problem for election systems as varied

Vector-space representation

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

Retrieval Models (cont'd.)- Vector space model

- Vector space model
 - Different similarity assessment functions can be used.
- Term frequency-inverse document frequency (TF-IDF)
 - Statistical weight measure used to evaluate the importance of a document word in a collection of documents.

Vector space model - Term Frequency

How TF-IDF Works?

TF-IDF combines two components: Term Frequency (TF) and Inverse Document Frequency (IDF).

Term Frequency (TF): Measures how often a word appears in a document.

 A higher frequency suggests greater importance. If a term appears frequently in a document, it is likely relevant to the document's content.

Vector space model - Inverse Document Frequency

Limitations of TF Alone:

- •TF does not account for the global importance of a term across the entire **corpus**.
- •Common words like "the" or "and" may have high TF scores but are not meaningful in distinguishing "تمييز" documents.

Inverse Document Frequency (IDF): Reduces the weight of common words across multiple documents while increasing the weight of rare words. If a term appears in fewer documents, it is more likely to be meaningful and specific.

Vector space model

Term frequency-inverse document frequency (TF-IDF)

IDF computation. The following formulas can be used:

$$TF_{ij} = f_{ij} / \sum_{i=1 \text{ to } |V|} f_{ij}$$

$$IDF_i = \log(N/n_i)$$

In these formulas, the meaning of the symbols is:

- TF_{ij} is the normalized term frequency of term i in document D_j .
- f_{ij} is the number of occurrences of term i in document D_j .
- IDF_i is the inverse document frequency weight for term i.
- N is the number of documents in the collection.
- \blacksquare n_i is the number of documents in which term i occurs.

Probabilistic model

Retrieval Models (cont'd.)

- Probabilistic model
 - Involves ranking documents by their estimated probability of relevance with respect to the query and the document.
 - IR system must decide whether a document belongs to the relevant set or nonrelevant set for a query
 - Calculate probability that document belongs to the relevant set
 - BM25: a popular ranking algorithm

Retrieval Models - Semantic model

Semantic model

- Morphological analysis
 - Analyze roots and affixes to determine parts of speech of search words
- Syntactic analysis
 - Parse and analyze complete phrases in documents
- Semantic analysis
 - Resolve word ambiguities and z
- Uses techniques from artificial intelligence and expert systems.

Types of Queries in IR Systems

27.3 Types of Queries in IR Systems

- Keyword queries
 - Simplest and most commonly used
 - Keyword terms implicitly connected by logical AND
- Boolean queries
 - Allow use of AND, OR, NOT, and other operators
 - Exact matches returned
 - No ranking possible

Types of Queries in IR Systems (cont'd.)

- Phrase queries
 - Sequence of words that make up a phrase
 - Phrase enclosed in double quotes
 - Each retrieved document must contain at least one instance of the exact phrase
- Proximity queries
 - How close within a record multiple search terms are to each other
 - Phrase search is most commonly used proximity query

Types of Queries in IR Systems (cont'd.)

- Proximity queries (cont'd.)
 - Specify order of search terms
 - NEAR, ADJ (adjacent), or AFTER operators
 - Sequence of words with maximum allowed distance between them
 - Computationally expensive
 - Suitable for smaller document collections rather than the Web.

Types of Queries in IR Systems (cont'd.)

- Wildcard queries
 - Supports regular expressions and pattern-based matching
 - Example 'data*' would retrieve data, database, dataset, etc.
 - Not generally implemented by Web search engines.
- Natural language queries
 - Definitions of textual terms or common facts
 - Semantic models can support

Text Preprocessing

Legend: Dashed lines indicate next iteration

Figure 27.1 Generic IR framework

27.4 Text Preprocessing

- Stopword removal must be performed before indexing
- Stopwords
 - Words that are expected to occur in 80% or more of the documents of a collection
 - Examples: the, of, to, a, and, said, for, that
 - Do not contribute much to relevance
- Queries preprocessed for stopword removal before retrieval process
 - Many search engines do not remove stopwords

Text Preprocessing (cont'd.)

- Stemming
 - Trims suffix and prefix
 - Reduces the different forms of the word to a common stem
 - Martin Porter's stemming algorithm
- Utilizing a thesaurus
 - Important concepts and main words that describe each concept for a particular knowledge domain
 - Collection of synonyms
 - UMLS

Figure 27.3 A portion of the UMLS Semantic Network: "Biologic Function" Hierarchy *Source*: UMLS Reference Manual, National Library of **Medicine**

Text Preprocessing (cont'd.)

- Other preprocessing steps
 - Digits
 - May or may not be removed during preprocessing
 - Hyphens and punctuation marks
 - Handled in different ways
 - Cases
 - Most search engines use case-insensitive search
- Information extraction tasks
 - Identifying noun phrases, facts, events, people, places, and relationships.

Inverted Indexing

27.5 Inverted Indexing

- Inverted index structure
- Vocabulary information
 - Set of distinct query terms in the document set
 - Document information: term frequency
 - Inverted index: Data structure that attaches distinct terms with a list of all documents that contain the term

Figure 27.2 Simplified IR process pipeline

Inverted Indexing (cont'd.)

- Construction of an inverted index
 - Break documents into vocabulary terms
 - Tokenizing, removing stopwords, stemming, and/or using a thesaurus
 - Collect document statistics
 - Store statistics in document lookup table
 - Invert the document-term stream into a termdocument stream
 - Add additional information such as term frequencies, term positions, and term weights

Document 1

This example shows an example of an inverted index.

Document 2

Inverted index is a data structure for associating terms to documents.

Document 3

Stock market index is used for capturing the sentiments of the financial market.

ID	Term	Document: position	
1.	example	1:2, 1:5	
2.	inverted	1:8, 2:1	
3.	index	1:9, 2:2, 3:3	
4.	market	3:2, 3:13	

Figure 27.4 Example of an inverted index

Inverted Indexing (cont'd.)

- Searching for relevant documents from an inverted index
 - Vocabulary search
 - Document information retrieval
 - Manipulation of retrieved information

Introduction to Lucene

- Lucene: open source indexing/search engine
 - Indexing is primary focus
- Document composed of set of fields
 - Chunks of untokenized text
 - Series of processed lexical units called token streams
 - Created by tokenization and filtering algorithms
- Highly-configurable search API
- Ease of indexing large, unstructured document collections

Evaluation Measures of Search Relevance

27.6 Evaluation Measures of Search Relevance

- Topical relevance
 - Measures result topic match to query topic
- User relevance
 - Describes 'goodness' of retrieved result with regard to user's information need
- Web information retrieval
 - No binary classification made for relevance or nonrelevance
 - Ranking of documents

Evaluation Measures of Search Relevance (cont'd.)

Recall

 Number of relevant documents retrieved by a search divided by the total number of actually relevant documents existing in the database

Precision

 Number of relevant documents retrieved by a search divided by total number of documents retrieved by that search

Retrieved Versus Relevant Search Results

- TP: true positive
- FP: false positive
- TN: true negative
- FN: false negative

Figure 27.5 Retrieved versus relevant search results

Information retrieval system evaluation

❖ The standard approach to information retrieval system evaluation revolves around the notion of *relevant* and non-relevant documents.

- Precision (P) is the fraction of retrieved documents that are relevant.
- Recall (R) is the fraction of relevant documents that are retrieved.

Precision and recall

□ Precision (P) is the fraction of retrieved documents that are relevant.

$$Precision = \frac{=\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant|retrieved)$$

□ Recall (R) is the fraction of relevant documents that are Retrieved.

Recall=
$$\frac{\#(\text{relevant items retrieved})}{\#(\text{relevant items})} = = P(\text{retrieved}|\text{relevant})$$

Positive=retrieved Negative=Not Retrieved

Precision and recall

THE TRUTH

	Relevant	Not Relevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

$$\mathsf{P} = \frac{TP}{(TP + FP)}$$

$$R = \frac{TP}{(TP + FN)}$$

Evaluation Measures of Search Relevance (cont'd.)

- Recall can be increased by presenting more results to the user
 - May decrease the precision

Doc. No.	Rank Position i	Relevant	Precision(i)	Recall(i)
10	1	Yes	1/1 = 100%	1/10 = 10%
2	2	Yes	2/2 = 100%	2/10 = 20%
3	3	Yes	3/3 = 100%	3/10 = 30%
5	4	No	3/4 = 75%	3/10 = 30%
17	5	No	3/5 = 60%	3/10 = 30%
34	6	No	3/6 = 50%	3/10 = 30%
215	7	Yes	4/7 = 57.1%	4/10 = 40%
33	8	Yes	5/8 = 62.5%	5/10 = 50%
45	9	No	5/9 = 55.5%	5/10 = 50%
16	10	Yes	6/10 = 60%	6/10 = 60%

Table 27.2 Precision and recall for ranked retrieval

Evaluation Measures of Search Relevance (cont'd.)

- Average precision
 - Computed based on the precision at each relevant document in the ranking
- Recall/precision curve
 - Based on the recall and precision values at each rank position
 - x-axis is recall and y-axis is precision
- F-score
 - Harmonic mean of the precision (p) and recall (r) values

