KLT picker, a user guide

Amitay Eldar, Boris Landa, Yoel Shkolnisky December, 2019

1 Downloading the KLT picker

The current version of the KLT picker is available for users with MATLAB. In the near future we plan to release a Python version. Download and extract the package from

https://github.com/amitayeldar/KLTpicker

The extracted directory has the following structure

- KLTpicker_start Main script.
- userManual The documentation for the package.
- LICENSE The package license.
- README A short README file for the package.
- matlab/ The MATLAB source code. This contains all the functions needed to run the KLT picker.
- get10028 Script to download micrographs for the Example Section 3.
- example/ This directory will be used in Section 3 to demonstrate the use of the KLT picker on a real dataset from the EMPIAR repository [1].

2 Running the KLT picker

After downloading the package, start MATLAB in the package directory and run

KLTpicker_start

The following question will appear, one by one, on the Command Window

Enter full path of micrographs MRC file:

Type the path to the directory which contains the micrographs MRC file.

Enter full path of output directory:

Type the path where the particles coordinate files will be saved.

Enter the particle size in pixels:

Type the particle diameter size in pixels.

pick all particles?(Y/N)? [Y]

Type Y to pick all possible particles. If you type \mathbb{N} then the following question will appear

How many particles to pick:

Type the number of particles to pick per micrographs.

Pick noise images?(Y/N)? [N]

Type N if you don't want to pick noise images. If you type Y then the following question will appear

How many noise images to pick:

Type the number of noise images to pick per micrographs.

Do you want to use the GPU?(Y/N)?[Y]

Type Y to use the GPU and N to not use it.

The KLT picker will start and will display progress notifications. The outputs are the coordinate files (box and star) and a text file that summarize the picking process at the output directory.

3 Example

In this section we will demonstrate the use of the KLT picker on 5 micrographs of EMPIAR-10028 (Plasmodium Falciparum 80S ribosome) [2] from the EMPIAR repository [1]..

Start MATLAB in the package directory and run the following

get10028 # downloading 5 micrographs to ./example/micrographs
directory.

KLTpicker_start

```
Enter full path of micrographs MRC file:
./example/micrographs/
```

Enter full path of output directory: ./example/results

Output directory does not exist. Create?(Y/N)? [Y] Y

Enter the particle size in pixels: 300

pick all particles?(Y/N)? [Y] Y

Pick noise images?(Y/N)? [N] N

Do you want to use the GPU?(Y/N)?[Y]Y

When finished, the KLT picker will display the massage: Finished the picking successfully. In order to display the picking results in EMAN [3], open the terminal in the package directory and create a new directory named eman. Change directory to eman and enter the following code one by one.

```
e2rawdata.py ../example/micrographs/*.mrc --invert --edgenorm
--xraypixel --ctfest --apix=1.0 --voltage=200.0 --cs=2.0
--ac=10.0 --threads=4 --defocusmin=0.6 --defocusmax=4.0

e2import.py
../example/results/pickedParticlesParticleSize300/box/*.box
--import_boxes --box_type=boxes

e2boxer.py --allmicrographs --boxsize=300 --ptclsize=300
--apix=1.0 --no_ctf --gui --threads=4
```

In order to display the picking results of the **first** micrograph in RELION [4], open the terminal in the package directory and create a new directory named relion. Change directory to relion and enter the following code.

```
relion_display --i ./example/micrographs/001.mrc --coords ./example/results/pickedParticlesParticleSize300/star/001.star --scale 0.15 --particle_radius 150 --angpix 1 --lowpass 20 --pick
```

In order to display the picking results of the n'th micrograph change 001.mrc and 001.star in the code above to 00n.mrc and 00n.star.

3.1 Citation

If you use the KLT picker, please cite our paper "KLT picker: Particle picking using data-driven optimal templates", available at https://arxiv.org/abs/1912.06500.

References

- [1] Iudin, A., Korir, P., Salavert-Torres, J., Kleywegt, G., and Patwardhan, A. (2016). *EMPIAR: A public archive for raw electron microscopy image data*. Nature Methods, 13.
- [2] Wong, Wilson and Bai, Xiao-chen and Brown, Alan and Fernandez, Israel S and Hanssen, Eric and Condron, Melanie and Tan, Yan Hong and Baum, Jake and Scheres, Sjors H W. (2014). Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. Wong et al. eLife, 3,e03080.
- [3] G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees & S.J. Ludtke. (2007). *EMAN2: an extensible image processing suite for electron microscopy*. Journal of structural biology, 157, 38-46.
- [4] Scheres, Sjors HW. (2015). Semi-automated selection of cryo-EM particles in RELION 1.3. Journal of structural biology, 128, 114-122.