CS-660 Data Mining

Project - Mice Protein Expression

B17096 Namrata Malkani B16065 Navneet Sharma

D19062 Geetanjali B17031 Aashima

Problem Statement

For a mice, **80 features** are measured (77 proteins/protein modifications + genotype + behavior + treatment). Given these features, **classify** it into one of the **8 classes**.

Dataset source: https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression

Clara Higuera Department of Software Engineering and Artificial Intelligence, Faculty of Informatics and the Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University Complutense, Madrid, Spain.

Katheleen J. Gardiner, creator and owner of the protein expression data, is currently with the Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado, School of Medicine, Aurora, Colorado, USA.

Krzysztof J. Cios is currently with the Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA, and IITiS Polish Academy of Sciences, Poland.

Data Description

The data set consists of the expression levels of 77 proteins/protein modifications that produced detectable signals in the nuclear fraction of cortex. There are 38 control mice and 34 trisomic mice (Down syndrome), for a total of 72 mice. In the experiments, 15 measurements were registered of each protein per sample/mouse. Therefore, for control mice, there are 38x15, or 570 measurements, and for trisomic mice, there are 34x15, or 510 measurements. The dataset contains a total of 1080. measurements per protein. Each measurement can be considered as an independent sample/mouse. The eight classes of mice are described based on features such as genotype, behavior and treatment. According to genotype, mice can be control or trisomic. According to behavior, some mice have been stimulated to learn (context-shock) and others have not (shock-context) and in order to assess the effect of the drug memantine in recovering the ability to learn in trisomic mice, some mice have been injected with the drug and others have not.

Instances	1080
Features	77 proteins (Numerical) 78 Genotype (control, trisomy) 79 Treatment (memantine, saline) 80 Behavior (context-shock, shock-context)
Classes	8 (c-CS-m, c-CS-m, c-SC-s, c-Sc-m, t-CS-s, t-CS-m, t-SC-s, t-SC-m)
Missing values	Yes
Associated Tasks	Classification Clustering

Data Handling

Data Split						
60 %	640					
10 %	120					
30 %	320					
	60 %					

Shuffle Training Samples

Model sees variety of samples even in a small batch

Data Split

Training Data	60 %	640
Validation Data	10 %	120
Testing Data	30 %	320

Class Imbalance

Take equal number of samples per class

80 samples / class

Handle Missing Values in all - Training, Validation and Testing Data

Missing Values

Weka Explorer --> Preprocess --> Filter --> weka --> filters --> unsupervised --> attribute --> **ReplaceMissingValues**

ReplaceMissingValues filter replaces missing values with median or mean of the respective attribute values.

Shuffle Training Samples

Model sees variety of samples even in a small batch

Equal weightage to each class

Classification Algorithms

Naive Bayes

- Machine learning algorithm based on Bayes theorem.
- Applications Classification, filtering spam, sentiment prediction etc.

Evaluation metrics

Confusion matrix.

- 1. Precision
- 2. Recall
- 3. F1-score
- 4. TP Rate
- 5. FP Rate
- 6. MCC

- 7. ROC Area
- 8. PRC Area

Evaluation on Training dataset

Evaluation on Train Dataset					
Correctly Classified Instances 585 i.e 91.4063 %					
Incorrectly Classified Instances	55 i.e 8.5938 %				
Mean absolute error	0.0213				
Root mean squared error	0.1379				
Total Number of Instances	640				

Evaluation on Test dataset

Evaluation on test dataset					
Correctly Classified Instances	158 i.e 49.375 %				
Incorrectly Classified Instances	162 i.e 50.625 %				
Mean absolute error	0.1291				
Root mean squared error	0.3522				
Total Number of Instances	320				
Testing time	0.11 seconds				

Confusion Matrix

				Confusi	on Matr	IX			
				Pr	edicted C	Class	88	20	
		c-CS-m	c-CS-s	c-SC-m	c-SC-s	t-CS-m	t-CS-s	t-SC-m	t-SC-s
	c-CS-m	26	3	0	0	22	4	0	0
	c-CS-s	12	7	0	0	11	10	0	0
Actual	c-SC-m	0	0	35	15	0	0	5	0
Class	c-SC-s	0	0	7	6	0	1	11	15
	t-CS-m	10	0	0	0	10	12	0	8
	t-CS-s	0	0	0	0	0	10	0	0
	t-SC-m	0	0	11	1	0	0	28	0
	t-SC-s	0	0	1	0	0	0	3	36
	= 13	y = 26+7+3 58 (no of s 9.375				ied) / 320	(Total nu	mber of sa	amples)

Classification Results in Detail

	Detailed Accuracy by Class									
TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class		
0.473	0.083	0.542	0.473	0.505	0.412	0.857	0.614	c-CS-m		
0.175	0. 011	0.700	0.175	0.280	0.312	0.933	0.612	c-CS-s		
0.636	0.072	0.648	0.636	0.642	0.569	0.926	0.636	c-SC-m		
0. 150	0.057	0.273	0.150	0.194	0.121	0.491	0.211	c-SC-s		
0. 250	0. 118	0.233	0.250	0.241	0.128	0.800	0.251	t-CS-m		
1.000	0. 087	0.270	1.000	0.426	0.497	0.976	0.438	t-CS-s		
0. 700	0.068	0.596	0.700	0.644	0.591	0.923	0.488	t-SC-m		
0. 900	0. 082	0.610	0.900	0.727	0.697	0.960	0.888	t-SC-s		

weka.classifiers.functions.MultilayerPerceptron

Feedforward

Signals from layer L flow to only layers > L and not to layers <= L

Strictly Layered

Signals from layer L flow only to layer L+1

Fully Connected

All nodes in layer L are connected to all nodes in layer L+1

Hyperparameters

- 0 < Learning Rate < 1
- 0 < Momentum < 1
- Number of hidden layers
- Number of hidden nodes
- Number of epochs
- Batch size

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

ReLU

$$\max(0, x)$$

Backpropagation

Compute gradients of the loss function with respect to each weight using the chain rule of differentiation. Compute the gradient of one layer at a time, iterating it backward from the last layer.

Loss Function

It is a mathematical way of measuring how wrong our predictions are.

Default

weka.classifiers.functions.MultilayerPerceptron

# Hidden Layers	Hidden Nodes	lr	m	Training Accuracy	Evaluation Time
1	(52)	0.3	0.2	100 %	0.4 sec
1	(5)	0.3	0.2	100 %	0 sec
1	(1)	0.3	0.2	50 %	0 sec
2	(1,1)	0.3	0.2	50 %	0 sec
2	(1,5)	0.3	0.2	37.5 %	0 sec
1	(2)	0.3	0.2	100 %	0 sec

Input Nodes	Output Nodes	Epochs	Batch Size
80	8	500	100

weka.classifiers.functions.MultilayerPerceptron

A

# Hidden Layers	Hidden Nodes	lr	m	Training Accuracy	Evaluation Time
1	(5)	0.3	0.2	100 %	0 sec
1	(2)	0.3	0.2	100 %	0 sec

A B

# Hidden	Layers	Hidden Nodes	lr	m	Validation Accuracy	Evaluation Time
1		(5)	0.3	0.2	100 %	0 sec
1		(2)	0.3	0.2	100 %	0 sec

Input Nodes	Output Nodes	Epochs	Batch Size
80	8	500	100

we ka. classifiers. functions. Multilayer Perceptron

80 2 8

Hidden Layers	1
Hidden Nodes	(2)
Learning Rate	0.3
Momentum	0.2
Epochs	500
Batch size	100
Training Accuracy	100 % (0 sec)
Validation Accuracy	100 % (0 sec)
Testing Accuracy	100 % (0.01 sec)

K - Nearest Neighbours

Parameters

K in KNN

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $\frac{1}{d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|}$ L2 (Euclidean) distance $\frac{1}{d_2(I_1,I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}}$

Results with Testing Dataset

K ▷ Distance Function	K = 1	K = 2	K = 3	K = 5	K = 10
Euclidian	99.375 %	99.6875 %	99.0625 %	98.4375 %	97.5 %
Manhattan	76.875 %	77.1875 %	75.3125 %	73.75 %	73.125 %

Performance Discussion - Classification

Classification Algorithm	Test Accuracy	Evaluation Time
Naive Bayes	49.375 %	0.18 sec
K - Nearest Neighbours (K = 2)	99.6875 %	0.11 sec
Multilayer Perceptron	100 %	0 sec

Naive Bayes	49.375 %	0.18 sec
Multilayer Perceptron	100 %	0 sec

Why Naive Bayes performs poor?

Naive Bayes makes a very strong assumptions about the data i.e all attributes are mutually independent. Hence, a "naive" classifier.

If categorical variable has a category in test data set, which was not observed in training dataset, then the model will assign 0 probability and will be unable to make a prediction. This is often known as **zero frequency**. To solve this, a smoothing technique called **laplace estimation** is used.

Assumption of likelihood function can cause errors if the data varies significantly from the assumption.

Why Multilayer Perceptron performs excellent?

NN make **no assumption about the data**. They don't hand engineered features; they **learn** features.

They have the ability to learn and model non-linear complex relationships.

A NN with 2 hidden layers and sufficient hidden nodes has proved to a universal estimator.

Their ability to **generalise** allows them to inferunseen relationships in unseen data.

Clustering Algorithms

Clustering: Dividing data into natural groups or clusters

K-Means Clustering

- Specify k, desired number of clusters.
- Choose k points at random, as cluster centers
- Assign all instances to there closest clusters
- Calculate the centroid of instances in each cluster
- These centroid instances are the new clusters
- Continue untill cluster centers don't change.

Hierarchical Clustering

- Specify *k*, desired number of clusters.
- Each of the *r* patterns is a separate cluster.
- If k clusters are found, return from the process
- Find pairwise distance between the clusters, merge two closes ones into one. If more than one pair of clusters are closest, randomly choose two to merge. Go to previous step.

K-Means Clustering: Classes to clusters evaluation

	Clustered Instances	0	1	2	3	4	5	6	7	← Clusters	Cluster	Class
0	135 (13%)	0	0	12	138	0	0	0	0	c-CS-m	0	c-CS-m
1	135 (13%)	0	0	0	0	0	0	135	0	c-CS-s	1	c-CS-s
2	136 (13%)	0	0	0	0	0	0	0	150	c-SC-m	2	c-SC-m
3	149 (14%)	0	135	0	0	0	0	0	0	c-SC-s	3	c-SC-s
4	105 (10%)	0	0	124	11	0	0	0	0	t-CS-m	4	t-CS-m
5	135 (13%)	0	0	0	0	105	0	0	0	t-CS-s	5	t-CS-s
6	135 (13%)	135	0	0	0	0	0	0	0	t-SC-m	6	t-SC-m
7	150 (14%)	0	0	0	0	0	135	0	0	t-SC-s	7	t-SC-s

K-Means Clustering: Percentage Split (75%)

Hierarchical Clustering: Classes to clusters evaluation

	Clustered Instances	0	1	2	3	4	5	6	7	← Clusters	Cluster	Class
0	150(14%)	150	0	0	0	0	0	0	0	c-CS-m	0	c-CS-m
1	135 (13%)	0	135	0	0	0	0	0	0	c-CS-s	1	c-CS-s
2	150 (14%)	0	0	150	0	0	0	0	0	c-SC-m	2	c-SC-m
3	135 (13%)	0	0	0	135	0	0	0	0	c-SC-s	3	c-SC-s
4	135 (13%)	0	0	0	0	135	0	0	0	t-CS-m	4	t-CS-m
5	105 (10%)	0	0	0	0	0	105	0	0	t-CS-s	5	t-CS-s
6	135 (13%)	0	0	0	0	0	0	135	0	t-SC-m	6	t-SC-m
7	135 (13%)	0	0	0	0	0	0	0	135	t-SC-s	7	t-SC-s

Hierarchical Clustering: Percentage Split (75%)

Test Results (Classes to Clusters)

K-Means Clustering (Euclidean Distance, k=8)

Seed	-1	2	8	10	100	1000	
Accuracy	66.85%	79.35%	86.39%	97.87%	71.5%	56.20%	

Hierarchical Clustering (Chebyshev Distance, k=8)

Accuracy 100%

Performance Discussion

K-Means vs Hierarchical Clustering

Accuracy w.r.t Distance Metric (Classes to Clusters, k=8):

	Euclidean Distance	Chebyshev Distance	
K-Means	97.87%	56.12%	-
Hierarchical Clustering	73.33%	17.5%	100%

• Time Metric: K-Means is faster then Hierarchical clustering for large datasets modelling, because of the algorithmic time complexity. $O(n) < O(n^2)$

Performance Discussion

Classes to Clusters vs Percentage Split

- Classes to Clusters → Complete Dataset == Training Dataset
- The issue of Overfitting
- Pseudo high performance
- Better idea of overall accuracy

Thank You