CS & IT

ENGINERING

THEORY OF COMPUTATION

Regular Expression

Finite Automata

Lecture No. - 07

Recap of Previous Lecture

Topic Regular Expression

Topic Construction of Regular Expression

Topic DFA States

Topics to be Covered

Topic: Theory of Computation

(1)

Self Loop => Kleene closure op

$$q_0$$
 $ac*b$ q_2

#Q. Construct Regular Expression for the following Finite Automata.

 $\frac{2}{3}b^* + (0+b)^*$ $\frac{2}{3}b^* = \sum_{k=0}^{\infty} \frac{(0+b)^k}{2}$

(a+b)*

#Q. Construct Regular Expression for the following Finite Automata

#Q. Construct Regular Expression for the following Finite Automata

$$(a+b)$$
 $(ba+\epsilon)=(a+b)$

$$(a+b)^{*}+(a)^{*}=(a+b)^{*}$$
Super Sub

#Q. Construct Regular Expression for the following Finite Automata

Remove (Dead State)

9 jead state

Jab Job ba (ab+ba)

$$(a+b)^{*} = (a+b)^{*}$$

$$= (a+b)^{*}$$

$$= (a+b)^{*}$$

$$= (a+b)^{*}$$

[MCQ]

#Q. Which one of the following regular expressions is equivalent to the language accepted by the DFA given below?

[GATE-CS(shift-II-24) 1M]

[MCQ]

#Q. Let M be the 5-state NFA with € - transitions shown in the diagram below. Which one of the following regular expressions represents the language accepted by M?

[GATE-CS-shift-II-24 2M]

C
$$(00)^* + (1 + (00)^*)(11)^*\chi$$

Q

Which of the regular expressions given below represent the

[2014-Set1: 2 Mark]

- A Land II only
- B I and III only
- C II and III only
- D I, II, and III

Topic: Regular Expression to Finite Automata Construction

Regular expression	∈-NFA
1. φ	
2. ∈	<u>→</u>
3. a	<u>a</u>
4. r ₁ + r ₂	

THANK - YOU