MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2011)

Recitation 18 November 10, 2011

- 1. Let $N, X_1, X_2, ...$ be independent random variables, where N takes non-negative integer values, and $X_1, X_2, ...$ are Bernoulli with parameter p. Let $Y = X_1 + \cdots + X_N$ for positive values of N and let Y = 0 when N = 0.
 - (a) Show that if N is binomial with parameters m and q, then Y is binomial with parameters m and pq.
 - (b) Show that if N is Poisson with parameter λ , then Y is Poisson with parameter λp .
- 2. Let $Y = X_1 + \cdots + X_N$, where the random variables X_i are exponential with parameter λ , and N is geometric with parameter p. Assume that the random variables N, X_1, X_2, \ldots are independent. Show that Y is exponential with parameter λp . Hint: Interpret the various random variables in terms of a split Poisson process.
- 3. We are given the following statistics about the number of children in a typical family in a small village.

There are 100 families. 10 have no children; 40 have 1; 30 have 2; 10 have 3; 10 have 4.

- (a) If you pick a family at random, what is the expected number of children in that family?
- (b) If you pick a child at random (each child is equally likely), what is the expected number of children in that child's family (including the picked child)?
- (c) Generalize your approach from part (b) to the case where a fraction p_k of the families has k children, and provide a formula.
- 4. Problem 6.19, page 332 in the textbook.
 - (a) Let X_1 and X_2 be independent and exponentially distributed, with parameters λ_1 and λ_2 , respectively. Find the expected value of $\max\{X_1, X_2\}$.
 - (b) Let Y be exponentially distributed with parameter λ_1 . Let Z be Erlang of order 2 with parameter λ_2 . Assume that Y and Z are independent. Find the expected value of $\max\{Y, Z\}$.