Efficient Infrequent Itemset Mining Using Depth-First and Top-Down Lattice Traversal

- Using NiiMiner(Negative Infrequent Itemset tree miner) Algorithm
- Preliminaries

Fig. 1. Example transaction database (a) and the corresponding neg-rep transaction database (b). (c) gives an simple powerset lattice with four distinct items.

How does the algorithm work?

Fig. 2. Examples of (a) negative itemset tree and its corresponding de-tree by excluding (b) $\neg C$ and (c) $\neg C$, $\neg D$. (c) is also a de-tree of (b).

Experimental Evaluation

- NiiMiner algorithm is compared to the Rarity algorithm to check the performance
- NIIMiner is significantly faster than Rarity under most of the settings
- It does not work well with the sparse data and also under large minimum support value and small maximum itemset size settings.

Mining Rare Patterns by Using Automated Threshold Support

- This study emphasizes an approach to obtain the infrequent itemsets involving rare items by setting the support thresholds automatically by using logical itemset mining
- Proposed method combines Apriori and MS-Apriori to mine logically
- MRCP tree scans the data once which reduces the space as well as the time complexity of the system
- Experiment Evaluation: Most important benefit of this system is that it will decide the value of the threshold on its own and also it covers the drawbacks of Fp- Growth algorithm, sliding window, sequential algorithm

Rare Association Rules Mining of Diabetic Complications Based on Improved Rarity Algorithm

- Based on the Rarity algorithm, this paper presents an improved top-down approach to efficiently mine all rare itemsets and their association rules, which uses the graph structure to indicate all combinations of existing items in the database
- Experiment Evaluation: Comparing with Arima, the method in this paper has a significant improvement in the space and time complexity. And comparing with Rarity, this method saves much memory, and solves the biggest memory problem of Rarity algorithm