Data Management Part 1

Why do astronomers care about data management?

- Bigger project teams
- Bigger Datasets
- Data is valuable but time-consuming/costly to manage
- Data Science:
 - Prepping to run the model: "Gathering cleaning matching integrating restructuring transforming loading filtering combining merging verifying extracting" - Bill Howe
 - Running the model
 - Communicating results
- Goal: recognize what kind of data you have, decide what tools to use

Focus on Data Management Ideas

Google Trends for svn vs git

Today's topics

- SQL Databases in broader context
- Relational Algebra (operations on tables)
- Alternative implementations of Relational Algebra
- Indexes (and Spatial Indexes)

TOMORROW:

- Scaling out
- Parallel databases (including LSST's Qserv), NoSQL databases,
- Summary of options available and tradeoffs to consider

Databases in Context

Databases fit into a larger context of data management

How do we store data?

Physically?

Logically?

What would you do with a million images?

```
--decam
--gapon
--hsc
   --calib
   --raw
   --repo
      --CFHTLS_W1
      --COMET2014F3
      -- COSMOS
      --DARK
      --DEEPE01
      --DEEPE02
      --DEEPEO3
      --DEEPEO4
      --DEEPE05
      --DEEPE06
      --DEEPE07
      --DEEPE08
      --DEEPE09
      --DEEPE10
      --DEN A
      --DEN_C
      --DEN E
```

AlSayyac

What would you do with a million images?

```
--decam
--gapon
--hsc
   --calib
   --raw
   --repo
      --CFHTLS W1
      --COMET2014F3
      -- COSMOS
         |--2014-02-02
         |--2014-02-05
         --2014-03-26
         |--2014-03-27
         --2015-01-17
         |--2015-01-18
         --2015-01-19
         |--2015-01-20
      --DARK
      --DEEPE01
      --DEEPE02
      --DEEPEO3
      --DEEPEO4
      --DEEPE05
        -DEEPEO6
```

Time to count all images taken:

With HSC in the COSMOS field, on March 26th 2014:

\$ time ls
hsc/repo/COSMOS/201403-26/00815/HSC-Y |
wc -l

2912

real 0m0.039s user 0m0.029s sys 0m0.008s

```
--decam
--gapon
--hsc
   --calib
   --raw
   --repo
      --CFHTLS W1
      --COMET2014F3
      -- COSMOS
         --2014-02-02
         --2014-02-05
         --2014-03-26
            --00815
                --HSC-Y
                   --HSC-0000628-000.fit
                   --HSC-0000636-038.fit
                   --HSC-0000662-042.fit
                   --HSC-0000670-080.fit
                  -- (and 2912 more file
         --2014-03-27
         --2015-01-17
         --2015-01-18
         --2015-01-19
         --2015-01-20
```

Data Models are Unavoidable

All images taken with the HSC-Y band?

```
$ time ls
hsc/repo/*/*/*/HSC-
Y | wc -l
193171
```

```
Real 48m8.737s
user 0m5.824s
sys 1m2.072s
```

```
--decam
--gapon
--hsc
   --calib
   --raw
   --repo
      --CFHTLS_W1
      --COMET2014F3
      -- COSMOS
         --2014 \pm 0
              -00815
                --HSC-Y
                   --HSC-0000628-000.fit
                   --HSC-0000636-038.fit
                   --HSC-0000662-042.fit
                   --HSC-0000670-080.fit
                   -- (and 2912 more fil
         --2014-03-27
         --2015-01-17
         --2015-01-18
         --2015-01-19
          -2015-01-20
```

Table (or Relational) Structure

Id	tai0bs	expId	point	dataType	visit	date0bs	fra	
1	2014-02-02	 HSCA90585000	 763	 OBJECT	905850	2014-02-02	 HS(
2	2014-02-05	HSCA90794800	766	OBJECT	907948	2014-02-05	HS(
4	2014-02-03	HSCA90679200	764	OBJECT	906792	2014-02-03	HS(
5	2014-02-01	HSCA90554800	762	OBJECT	905548	2014-02-01	HS(
7	2014-02-04	HSCA90751400	765	OBJECT	907514	2014-02-04	HS(
9	2014-02-05	HSCA90806200	766	OBJECT	908062	2014-02-05	HS(
10	2014-02-03	HSCA90699800	764	OBJECT	906998	2014-02-03	HS(
11	2014-02-01	HSCA90560000	762	OBJECT	905600	2014-02-01	HS(
12	2014-02-05	HSCA90794000	766	OBJECT	907940	2014-02-05	HS(
13	2014-02-01	HSCA90565800	762	OBJECT	905658	2014-02-01	HS(
14	2014-02-01	HSCA90542000	762	OBJECT	905420	2014-02-01	HS(
15	2014-02-01	HSCA90563200	762	OBJECT	905632	2014-02-01	HS(
16	2014-02-03	HSCA90655200	764	OBJECT	906552	2014-02-03	HS(
17	2014-02-04	HSCA90761200	765	OBJECT	907612	2014-02-04	HS(
19	2014-02-03	HSCA90664400	764	OBJECT	906644	2014-02-03	HS(
20	2014-02-03	HSCA90702600	764	OBJECT	907026	2014-02-03	HS(
Etc								

Table (or Relational) Model Example

Source Table

sourceld int NOT NULL, ra float, dec float, mag float, exposureld, bigint, PRIMARY KEY (sourceld) exposure Table
exposureId bigint NOT NULL,
fwhm float,
fluxMag0 float,
filter float,
Mjd int,
path varchar(max),
PRIMARY KEY (exposureId)

Table (or Relational) Structure

SourceId	<pre>psfMag filter </pre>		fluxMag0		
1	21.1	2	5721049381928.0		
2	20.1	2	5721049381928.0		
4	19.3	2	5721049381928.0		
5	18.3	2	5721049381928.0		
7	19.6	2	5721049381928.0		
9	20.1	2	5721049381928.0		
10	20.1	2	5721049381928.0		

SELECT s.sourceId, s.psfMag, e.filter, e.fluxMag0 FROM Source s INNER JOIN Exposure e ON s.exposureId = e.exposureId

How many friends does Alice have?

Friendships

PersonId1 PersonId2 BeginDate Person

PersonId FirstName LastName SELECT a.Person2
FROM Friendships a
INNER JOIN Person p
ON p.personId = a.personId1
WHERE p.FirstName = 'Alice'

UNION ALL

SELECT a.Person1
FROM Friendships b
INNER JOIN Person p
ON p.personId = a.personId2
WHERE p.FirstName = 'Alice'

How many friends of friends does Alice have??

Friendships

PersonId1 PersonId2 BeginDate Person

PersonId FirstName LastName SELECT a.Person2
FROM Friendships a
INNER JOIN Person p
ON p.personId = a.personId1
WHERE p.FirstName = 'Alice'

UNION ALL

SELECT a.Person1
FROM Friendships b
INNER JOIN Person p
ON p.personId = a.personId2
WHERE p.FirstName = 'Alice'

Image credit: wikipedia

Data models are defined by

- Structures
 - Tree
 - Relational (Tables)
 - Graphs (nodes and edges)
 - Keys and values
- Constraints
 - Examples:
 - File can't be in two folders.
 - · All rows have same number of columnd
- Operations

SQL as Relational Algebra

Operations on table implemented by Relational Database Management Systems (RDMS)

Relational Algebra

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - *Projection* (п) Deletes unwanted columns from relation.
 - Cross-product (x) Allows us to combine two relations.
 - Inner join, left join, right join, outer join
 - Set-difference (-) Tuples in A, but not in B
 - Union (\cup) Tuples in A or B
- Additional operations:
 - Intersection, join, division, renaming
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Adapted from Database Management Systems, R. Ramakrishnan and J. Gehrke

Logical Join Types

Aggregate Operators and GROUP BY

- COUNT (*)
- COUNT ([DISTINCT] A)
- SUM (A)
- AVG (A)
- MAX (A)
- MIN (A)

SELECT plate, COUNT(id) FROM SpecObjAll GROUP BY plate

Alternative implementations of Relational Algebra

Interlude to talk about some tools

SQL Databases are not necessary to get Relational Algebra

Wes McKinney's personal story on birth of pandas: youtube.com/watch?v=kHdkFyGCxiY

You can SOMETIMES use pandas if the dataset doesn't fit into memory

Beware of over-engineering

"I SPEND A LOT OF TIME ON THIS TASK.
I SHOULD WRITE A PROGRAM AUTOMATING IT!"

TOPCAT is written specifically for astronomers by an astronomer

GUI tool for relational algebra on tables

- + fits table I/O
- + theta joins ON RA/DEC

Indexes (and Spatial Indexes)

What do we mean by scalability?

Scalability

Practically:

- Before: Works even if data doesn't fit in memory (out of core)
- Now: Can we utilize 1000's of cheap computers

• Algorithmically :

- For N data items:
 - Before: You can do no more than N^m operations
 - Now: You can do no more than N^m/k operations
 - Soon: You can do no more than N*log(N) operations (one pass - streaming)

Example: search for records where value = 41

N = 20How many comparisons must we make?

Example: search for records where value = 41

N = 20

How many comparisons must we make?

B+ Tree Index

Image credit: UW CSE

Relational databases excel at finding record sets within large datasets

What are good choices of columns for indexing?

Source Table

sourceld int NOT NULL, ra float, dec float, mag float, exposureld, bigint, PRIMARY KEY (sourceld) Exposure Table
exposureId bigint NOT NULL,
fwhm float,
fluxMag0 float,
filter float,
Mjd int,
path varchar(max),
PRIMARY KEY (exposureId)

CREATE INDEX idx_exposureId ON Source(exposureId);

In astronomical applications those seeks are often_spatial AlSayyad - DSFP Workshop: Data

But coordinates are usually stored as RA, DEC

What do we index on

Many databases ship with Geographic Information System (GIS) support or have plugins

Select a spherical model of the Earth

- Map:
 - R.A. --> Longitude
 - Dec. --> Latitude

OpenGIS®

See en.wikipedia.org/wiki/Spatial_database for a long list

Astronomers are fond of Hierarchical Triangular Mesh

Reduce 2 dimensions to 1 with space filling curve

Background Information for the challenge problem

