Q1-

Inetially, (20, 921.

	Value at 2	Value at 9	Run
1st time	221	J22	Action to the second
2nd-time	L23	j23	C = CIMIT
3rd time	£26	924	49 H 117
4th time	E210	y 235	1
5th time	£215	j26	1 1
6th time	C221	J-7	1
kth time	lzn 1	92K	1
	2	S- (MI M)	
	EZK(KH)zn	Con Participation	
	k2+k22n		-Jerose
	K ² In	R. MALLUMAN TAN	
KZSgot(m)			
Teme complexity -> O(sgot (n))			

Q2-

SPACE COMPLEXITY:
The space is proportional to the max depth of recursion tree.

```
T=0(2n)
          Space Complexity = O(N)
           T(n) = T(n-1)+T(n-2)+C
           T(n+) CT(n-2) 22T(n-2)
        T(n-2)= 2*(2T(n-2)+C
               z 22T(n-2)+C
         T(n-4) = 2*(4T(n-2)+3C) +2
                2 8T(n-3) +72
                2 2KT(n-K)+(2K-1)C
                * let, n-K20
                = 2K TCOH (2M-)C
                 2m1 +2 2-C
                  2 m (1+c)-C
      Merge Soot- nlogn
 1)- we can use those loops - O(n3)
         for Cent (20 3 Can; Ett)
           of becent gro jen get)
                  for Cent K=0 ; K Ln ; K++)
                      y 180me OU) expression.
2) - For time Complexity-deg(logn)
         for CE=2; elngez poude, c)
               1150me Oli) expression.
```

For time Complexity-nlogn we can use the following function: ont funcent n) for(ent (21 3 (12n ; 8++) for Cent gzi 3 fczn 3 gtt) 11 for some O(1) expression. T(n/2) = T(n/4) T(n)=2T(n/2)+Cn2 Usery-Master's method T(n)= at(n)+f(n) C2 log 2 21 +(0)>nc T(n)=0f(n) 0(n2) bos (21) 9=1,2,3,4,--n (Run for n) 608 (22 → 921,3,5 - - - (Run for n/2) 68 (23-> 3 =1,4,7, -- n(Rin for nys times) T(の)=n+2+3+4+ =の(十十十十十十十一) zn Mizzníjdz zn[logn]n T(n)=0(nlogn)

For frost eteration, 122 2nd eterotion, 822K 3rd Etercetion, Ezek)K 7th Heration, 62 (2K) E Loop ends at 2 Ke zn Apply log: log-n=log2 Kez Logn Applying log again: (log K9 = logn (2 log(logn) T(n) = O(log(logn))

b) 12 Vlogn L. llog2n=2logn zlogn 22n=4n=n clogn Lrily. Ln2 12(2") Ln=

9-962 log2n=logen L5n2nlog2n=2nlogen L8n22713