

Raspberry Pi NTP Server with RTC

status active

Raspberry Pi NTP Server with RTC

Table of Contents

- About
- Getting Started
- Prerequisites
- Installation and Config
- Test
- Circuit
- Smartphone App
- Built Using
- Authors

This repo contains circuit, firmware and backend for Raspberry Pi NTP Server with RTC Project.

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

What things you need to install the software and how to install them.

- Raspberry Pi Model 3B, 3B+, 4B or CM4

Installation and Configuration

A step by step series that covers how to get the Firmware running.

Raspberry Pi Firmware Pre-Regs

- 1. Download and install the latest Raspberry Pi OS Desktop image to your SD card
- 2. Open the terminal and execute the following command sudo raspi-config
- 3. Then follow the following pictures to enable I2C bus on you raspberry pi

P1 Camera P2 SSH P3 VNC P4 SPI		Enable/Disable connection to the Enable/Disable remote command lin Enable/Disable graphical remote a Enable/Disable automatic loading
P5 I2C P6 Serial P7 1-Wire P8 Remote GPIO		Enable/Disable automatic loading Enable/Disable shell and kernel m Enable/Disable one-wire interface Enable/Disable remote access to G
<	Select>	<back></back>

2/7

• Then do the same for Serial(UART)

Configuring Raspberry Pi

DS3231 Configurations

- 1. Copy Firmware folder to the desktop of your Raspberry Pi, open the terminal of your Raspberry Pi and execute the following commands
- sudo apt-get update
- sudo apt-get upgrade
- sudo apt install python3-pip

- sudo apt-get -y remove fake-hwclock
- sudo update-rc.d -f fake-hwclock remove
- sudo systemctl disable fake-hwclock
- sudo nano /boot/config.txt
- At the end of the file add this line dtoverlay=i2c-rtc, ds3231
- Then press CTRL+O and CTRL+X to save and exit
- sudo nano /lib/udev/hwclock-set
- and put # sign before the following lines
- #if [-e /run/systemd/system]; then
- #exit 0
- #fi
- #/sbin/hwclock --rtc=\$dev --systz --badyear
- #/sbin/hwclock --rtc=\$dev --systz
- Then press CTRL+O and CTRL+X to save and exit
- sudo hwclock -r
- You might see that the date/time are invalid, connect your raspberry pi to the internet and run the following commands
- sudo hwclock -w
- sudo hwclock -r
- sudo reboot

Now your Raspberry Pi is using external RTC module for time.

NTP Server Configurations

Execute the following commands to set NTP

- sudo apt-get install ntp
- /etc/init.d/ntp stop
- /etc/init.d/ntp start
- Get the NTP server links of your country from pool.ntp.org
- sudo nano /etc/ntp.conf
- Replace the lines starting with server with the server links you got in the above step.
- Then press CTRL+O and CTRL+X to save and exit
- /etc/init.d/ntp restart
- sudo systemctl enable ntp.service
- sudo reboot

Now you can use your rasberry pi IP address in your ESP32 to get the time or you can also use raspberrypi.local instead of the IP address.

Testing

- 1. The Firmware can be tested on Raspberry Pi 3B, 3B+ or 4B with the following modifications
- 2. Connect the sensor as shown in the Circuit Diagram section below.

🗞 Circuit Diagram

• RPi 3,4 GPIOs Pinout

Circuit

Pins connections

RTC DS3231	Raspberry Pi
SCL	GPI02
SDA	GPIO3
VCC	5V
GND	GND

fritzing

Components Used

- 1. Any Raspberry Pi (https://www.amazon.com/CanaKit-Raspberry-Micro-Supply-Listed/dp/B01C6FFNY4/ref=sr_1_1?dchild=1&keywords=raspberry+pi+3&qid=1632029848&sr=8-1)
- 2. RTC DS3231(https://www.amazon.de/Echtzeit-Uhr-Modul-RTC-Sensor-Pr%C3%A4zision-AT24C32-Raspberry/dp/B07V68443F/ref=sr_1_5? __mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&keywords=ds3231&qid=1636619193&sr =8-5)
- 3. MCP3008
- 4. Logic Level Converter(https://www.amazon.com/SparkFun-Logic-Level-Converter-Bi-Directional/dp/B01N30ZCW9/ref=sr_1_6? crid=2NOGIA43AG9OS&dchild=1&keywords=logic+level+converter&qid=1632029917&sprefix=logic+level%2Caps%2C463&sr=8-6)

Built Using

Python3 - Raspberry Pi FW

Authors

@Nauman3S - Development and Deployment