# LC07 - Dosages

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

#### 1. Principe de la méthode

#### Echelle de teintes :

| Tube à essai                             | 1  | 2 | 3 | 4 | 5 | 6  |
|------------------------------------------|----|---|---|---|---|----|
| Volume de solution<br>colorée S2 (en mL) | 0  | 2 | 4 | 6 | 8 | 10 |
| Volume d'eau<br>distillée (en mL)        | 10 | 8 | 6 | 4 | 2 | 0  |
| Concentration en colorant dans le tube   |    |   |   |   |   |    |

#### 2. Dosage par spectrophotométrie

| Technique utilisée                      | Spectrophotométrie                                                                 |  |
|-----------------------------------------|------------------------------------------------------------------------------------|--|
| Phénomène physique<br>mis en jeu        | Absorption de la lumière                                                           |  |
| Grandeur physique<br>mesurée            | Absorbance : A                                                                     |  |
| Caractéristique des<br>espèces étudiées | Espèces colorées<br>(molécules organiques)                                         |  |
| Loi adéquate                            | Loi de Beer-Lambert : $A_{\lambda} = \sum_{i=1}^{n} \epsilon_{(\lambda,i)} l[X_i]$ |  |

| Technique utilisée                      | Spectrophotométrie                                                                 | Conductimétrie |
|-----------------------------------------|------------------------------------------------------------------------------------|----------------|
| Phénomène physique<br>mis en jeu        | Absorption de la lumière                                                           |                |
| Grandeur physique<br>mesurée            | Absorbance : $A$                                                                   |                |
| Caractéristique des<br>espèces étudiées | Espèces colorées<br>(molécules organiques)                                         |                |
| Loi adéquate                            | Loi de Beer-Lambert : $A_{\lambda} = \sum_{i=1}^{n} \epsilon_{(\lambda,i)} l[X_i]$ |                |

| Technique utilisée                   | Spectrophotométrie                                                                 | Conductimétrie                   |
|--------------------------------------|------------------------------------------------------------------------------------|----------------------------------|
| Phénomène physique<br>mis en jeu     | Absorption de la lumière                                                           | Passage du courant<br>électrique |
| Grandeur physique<br>mesurée         | Absorbance $: A$                                                                   |                                  |
| Caractéristique des espèces étudiées | Espèces colorées<br>(molécules organiques)                                         |                                  |
| Loi adéquate                         | Loi de Beer-Lambert : $A_{\lambda} = \sum_{i=1}^{n} \epsilon_{(\lambda,i)} l[X_i]$ |                                  |

| Technique utilisée                      | Spectrophotométrie                                                                 | Conductimétrie                   |
|-----------------------------------------|------------------------------------------------------------------------------------|----------------------------------|
| Phénomène physique<br>mis en jeu        | Absorption de la lumière                                                           | Passage du courant<br>électrique |
| Grandeur physique<br>mesurée            | Absorbance $: A$                                                                   | Conductivité $\sigma$            |
| Caractéristique des<br>espèces étudiées | Espèces colorées<br>(molécules organiques)                                         |                                  |
| Loi adéquate                            | Loi de Beer-Lambert : $A_{\lambda} = \sum_{i=1}^{n} \epsilon_{(\lambda,i)} l[X_i]$ |                                  |

| Technique utilisée                   | Spectrophotométrie                                                                 | Conductimétrie                   |  |
|--------------------------------------|------------------------------------------------------------------------------------|----------------------------------|--|
| Phénomène physique<br>mis en jeu     | Absorption de la lumière                                                           | Passage du courant<br>électrique |  |
| Grandeur physique<br>mesurée         | Absorbance $: A$                                                                   | Conductivité $\sigma$            |  |
| Caractéristique des espèces étudiées | Espèces colorées<br>(molécules organiques)                                         | Espèces chargées<br>(ions)       |  |
| Loi adéquate                         | Loi de Beer-Lambert : $A_{\lambda} = \sum_{i=1}^{n} \epsilon_{(\lambda,i)} l[X_i]$ |                                  |  |

| Technique utilisée                   | Spectrophotométrie                                                                 | Conductimétrie                                               |  |
|--------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Phénomène physique<br>mis en jeu     | Absorption de la lumière                                                           | Passage du courant<br>électrique                             |  |
| Grandeur physique<br>mesurée         | Absorbance $: A$                                                                   | Conductivité $\sigma$                                        |  |
| Caractéristique des espèces étudiées | Espèces colorées<br>(molécules organiques)                                         | Espèces chargées<br>(ions)                                   |  |
| Loi adéquate                         | Loi de Beer-Lambert : $A_{\lambda} = \sum_{i=1}^{n} \epsilon_{(\lambda,i)} l[X_i]$ | Loi de Kohlrausch: $\sigma = \sum_{i=1}^{n} \lambda_i [X_i]$ |  |







### II. Dosage par titrage direct

#### 2. Titrage direct par pH-métrie



### II. Dosage par titrage direct

#### 3. Titrage direct par conductimétrie



### II. Dosage par titrage direct

#### 3. Titrage direct par conductimétrie

| Espèces en jeu o | dans le dosage                       | Na <sup>+</sup> | Cl <sup>-</sup>             | $Ag^+$                            | <b>NO</b> <sub>3</sub> | Conductivité                                                                                |
|------------------|--------------------------------------|-----------------|-----------------------------|-----------------------------------|------------------------|---------------------------------------------------------------------------------------------|
| Variation des    | Avant l'équivalence $(V_2 < V_{eq})$ | Spectateurs     | (réagissent avec $Ag^+$ )   | 0<br>(réagissent<br>avec $Cl^-$ ) | Spectateurs            | $\sigma = \lambda_{Na}^{+}[Na^{+}] + \lambda_{Cl}^{-}[Cl^{-}] + \lambda_{NO3}^{-}[NO3^{-}]$ |
| concentrations   | Après l'équivalence $(V_2 > V_{eq})$ | Spectateurs     | $0$ (consommés par $Ag^+$ ) | Spectateur                        | Spectateurs            | $\sigma = \lambda_{Na}^{+}[Na^{+}] + \lambda_{Ag}^{+}[Ag^{+}] + \lambda_{NO3}^{-}[NO3^{-}]$ |

### Conclusion

| Type de dosage         | Etalonnage                                                                                       | Titrage direct                                                                                                  |  |
|------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Suivi                  | Spectrométrique, condutimétrique                                                                 | pH-métrique, conductimétrique                                                                                   |  |
| Impact sur la solution | Non destructif                                                                                   | Destructif                                                                                                      |  |
| Avantages              | Une fois la droite tracée, chaque mesure est rapide à effectuer.                                 | Le titrage d'une solution unique est rapide et efficace : il n'y a qu'un seul point à connaître avec précision. |  |
| Inconvénients          | Droite détalonnage longue à mettre en place. Besoin de beaucoup de points connus avec précision. | La solution est détruite. Il faut refaire un titrage complet à chaque nouvelle solution à doser.                |  |