Nr. 353

Das Relaxionsverhalten eines RC-Kreises

Sara Krieg sara.krieg@udo.edu Marek Karzel marek.karzel@udo.edu

Durchführung: 18.12.2018 Abgabe: 08.01.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	orie	3
	1.1	Das Relaxionsverhalten	3
	1.2	Die Auf- und Entladung eines Kondensators	3
	1.3	Die Relaxionsphänomene bei periodischer Auslenkung	4
	1.4	Der RC-Kreis als Integrator	5
2	Dur	chführung	6
3	Aus	wertung	7
	3.1	Entladung eines Kondensators	7
	3.2	Frequenzabhängigkeit der Amplitude	9
	3.3	Frequenzabhängigkeit der Phasenverschiebung	11
	3.4	Der RC-Kreis als Integrator	11
4	Disk	kussion	14

1 Theorie

Ziel dieses Versuches ist die Untersuchung des Relaxionsverhaltens eines RC-Kreises, sowie demjenigen unter Anschluss von Gleich- oder Wechselstrom.

1.1 Das Relaxionsverhalten

Die Relaxion beschreibt die nicht-oszillatorische Rückkehr eines Systems in einen Grundzustand, aus dem es zuvor gebracht wurde. Diese Rückkehr zum Endzustand $A(\infty)$ ist dabei nur asymptotisch möglich. Außerdem ist die Änderungsgeschwindigkeit proportional zum Abstand der Größe A zu ihrem Endzustand $A(\infty)$.

$$\frac{\mathrm{d}A}{\mathrm{d}t} = c \left[A(t) - A(\infty) \right] \tag{1}$$

Durch Integration von (1) über t von 0 bis t ergibt sich

$$A(t) = A(\infty) + [A(0) - A(\infty)] \cdot e^{ct}.$$
(2)

Allerdings muss, damit A beschränkt ist, c < 0 in (2) gelten. Im Folgenden soll das Relaxionsverhalten für das Beispiel eines über einen Widerstand auf- und entladenden Kondensators nach Abbildung 1 betrachtet werden.

Abbildung 1: Aufladung (Stellung 2) und Entladung (Stellung 1) eines Kondensators über einen Widerstand [1]

1.2 Die Auf- und Entladung eines Kondensators

Liegt an dem Kondensator mit der Kapazität C eine Ladung Q vor, so liegt dort die Spannung

$$U_{\rm C} = \frac{Q}{C}$$

an. Mit dem Zusammenhang

$$I = -\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{U_{\mathrm{C}}}{R}$$

ergibt sich für die Ladung Q ähnlich zu (1) die zeitliche Differentialgleichung

$$\dot{Q}(t) = -\frac{1}{RC} \cdot Q(t) \ . \tag{3}$$

Mit der Randbedingung $Q(\infty) = 0$, dass der Kondensator sich nach einer unendlich langen Zeitspanne vollständig entladen hat, ergibt sich nach (2) die Lösung

$$Q(t) = Q(0) \cdot e^{\frac{-t}{RC}}. \tag{4}$$

Analog führt der Aufladevorgang mit den Randbedingungen Q(0)=0 und $Q(\infty)=CU_0$ zu der Lösung

$$Q(t) = CU_0 \cdot \left(1 - e^{\frac{-t}{RC}}\right) \ . \tag{5}$$

Der Ausdruck RC wird als Zeitkonstante bezeichnet und gibt an, wie schnell das System seinem Endzustand entgegenstrebt.

1.3 Die Relaxionsphänomene bei periodischer Auslenkung

Als Beispiel für Relaxionsphänomene wird das Verhalten eines RC-Kreises bei anliegender Sinusspannung nach Abbildung 2 betrachtet.

Abbildung 2: Schaltung zur Untersuchung von Relaxationsphänomenen bei periodischer Auslenkung [1]

An der Schaltung liegt die Spannung

$$U(t) = U_0 \cdot \cos(\omega t) \tag{6}$$

an. Ist die Kreisfrequenz $\omega << \frac{1}{RC}$ hinreichend klein, ist zu jedem Zeitpunkt $U_{\rm C} = U(t)$. Bei einer Erhöhung von ω tritt zwischen den Spannungen eine Phasenverschiebung φ auf und die Amplitude A nimmt wegen des Zurückbleibens des Auf- und Entladevorgangs des Kondensators hinter dem zeitlichen Verlauf von U(t) ab.

Mit einem Ansatz

$$U_{\rm C}(t) = A(\omega)\cos(\omega t + \varphi(\omega))$$

ergibt sich unter Zuhilfenahme des 2. Kirchhoffschen Gesetzes und des Zusammenhangs

$$I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} \tag{7}$$

die Gleichung

$$U(t) = U_{\rm R}(t) + U_{\rm C}(t)$$

$$U_0 \cos(\omega t) = -A(\omega) \,\omega R C \sin(\omega t + \varphi) A(\omega) \cos(\omega t + \varphi)$$
(8)

Daraus folgen für die Phasenverschiebung $\varphi(\omega)$ und die Amplitude $A(\omega)$ die Gleichungen

$$\varphi(\omega) = \arctan(-\omega RC),\tag{9}$$

$$A(\omega) = \frac{U_0}{\sqrt{1 + (\omega RC)^2}}. (10)$$

Es ist zu erkennen, dass für niedrige Frequenzen die Phase $\varphi(\omega) \to 0$ und die Amplitude $A(\omega) \to U_0$ gegen entsprechende Werte streben. Für größere Frequenzen gilt hingegen $\varphi(\omega) \to \frac{\pi}{2}$ und $A(\omega) \to 0$.

1.4 Der RC-Kreis als Integrator

Unter den Bedingungen

$$\omega >> \frac{1}{RC}$$
 $\implies |U_{\rm C}| << |U_{\rm R}| \text{ und } |U_{\rm C}| << |U|$

kann der RC-Kreis die anliegende zeitlich veränderliche Spannung U(t) integrieren. Aus den Gleichungen (8) und (7) ergibt sich die Gleichung

$$U(t) = RC \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} + U_{\mathrm{C}}(t) ,$$

die als

$$U(t) = RC \cdot \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t}$$

$$\iff U_{\mathrm{C}}(t) = \frac{1}{RC} \int_{0}^{t} U(t') \, \mathrm{d}t'$$

genähert werden kann. Dabei ist $U_{\rm C}(t)$ nur unter den oben genannten Bedingungen proportional zu $\int U(t) \; {\rm d}t.$

Abbildung 3: Schaltung zur Beobachtung des Auf- und Entladevorganges des Kondensators [1]

2 Durchführung

Im ersten Teil des Versuchs werden Auf- und Entladevorgang des Kondensators im RC-Kreis untersucht. Dazu wird ein Versuchsaufbau gemäß Abbildung 3 verwendet.

Durch die angelegte Rechteckspannung entlädt und lädt sich der Kondensator abwechselnd. Dadurch sind auf dem Oszilloskop beide Vorgänge zu sehen. Es werden 10 Messwertpaare von U_C und t eines Ent- oder Aufladevorganges aufgenommen.

Im zweitem Teil des Versuchs wird die Frequenzabhängigkeit der Ampflitude der Kondensatorspannung untersucht. Dazu wird eine Schaltung gemäß Abbildung 4 verwendet.

Abbildung 4: Schaltung zur Untersuchung der Frequenzabhängigkeit der Kondensatorspannungsamplitude [1]

Mit einem Millivoltmeter wird die Kondensatorspannungsamplitude in Abhängigkeit von der Frequenz im Bereich über drei Größenordnungen gemessen. Bei der Wahl des Frequenzbereiches ist darauf zu achten, dass U_0 in diesem von der Frequenz nahezu abhängig sein soll.

Im dritten Versuchsteil wird die Phasenverschiebung zwischen Generator - und Kondensatorspannung gemessen. Dazu wird eine Schaltung gemäß Abbildung 5 verwendet.

Dafür wird nun die Kondensatorspannung U_C auf den einen Eingang des Zweikanaloszilloskops gegeben und die Generatorspannung U auf den anderen. Nun wird der zeitliche Abstand der Maxima der beiden Schwingungen gemessen.

Im letztem Versuchsteil soll gezeigt werden, dass ein RC-Kreis als Integrator genutzt werden kann. Dazu wird bei einer Frequenz mit $\omega \gg \frac{1}{RC}$ jeweils eine Rechteck-, Sinusund Dreiecksspannung auf das RC-Glied gegeben. Es werden sowohl Eingangs - als auch Ausgangsspannung auf dem Bildschirm des Zweikanaloszilloskops dargestellt und für jede der drei Spannungen ein Bild der Signale aufgenommen.

Abbildung 5: Schaltung zur Untersuchung der Phasenverschiebung zwischen U(t) und $U_C(t)$ [1]

3 Auswertung

3.1 Entladung eines Kondensators

Die aufgenommenen Wertepaare finden sich in Tabelle 1.

Tabelle 1: Messdaten zur Entladekurve

t/ms	U_C/V
0,00	100
$0,\!26$	82
$0,\!50$	70
0,76	58
1,00	46
$1,\!26$	38
1,50	30
2,00	20
3,00	6
4,10	0

Die Wertepaare werden in einem halblogarithmischen Diagramm dargestellt. Dazu wird eine lineare Regression mittels Python und matplotlib durchgeführt. Das entstandene Diagramm ist in Abbildung 6 zu finden.

Die lineare Ausgleichsrechnung der logarithmierten Daten mit $\ln{(U_C)} = ax + b$ ergibt folgende Regressionsparameter:

$$a = (-919,67 \pm 45,48) \frac{1}{s},$$

 $b = 4,71 \pm 0,07.$

Durch Vergleich mit der Formel (4) ergibt sich für die Zeitkonstante:

$$RC = -\frac{1}{a} = (1.09 \pm 0.05) \,\text{ms}.$$

Abbildung 6: Lineare Regression zur Bestimmung der Zeitkonstanten mithilfe der Entladekurve

3.2 Frequenzabhängigkeit der Amplitude

In diesem Versuchsteil wird die Frequenzabhängigkeit der Amplitude der Kondensatorspannung U_C untersucht. Hierzu wird diese für verschiedene Frequenzen f gemessen. Die Messwerte finden sich in Tabelle 2. Außerdem wird die Amplitude der Generatorspannung zu $U_0=51,6\,\mathrm{V}$ gemessen und so das Verhältnis $\frac{A}{U_0}$ für jeden Messwert bestimmt.

Tabelle 2: Messdaten zur Frequenzabhängigkeit der Amplitude

f/Hz	A/V	$\frac{A}{U_0}$
10	49,60	0.961
20	49,20	0.953
30	48,00	0.930
40	$46,\!40$	0.899
50	$45,\!20$	0.876
60	43,60	0.845
70	42,00	0.814
80	40,70	0.789
90	$39,\!20$	0.760
100	$37,\!20$	0.721
200	29,40	0.570
300	17,60	0.341
400	$13,\!40$	0.260
500	11,00	0.213
600	9,10	0.176
700	7,80	0.151
800	6,90	0.134
900	6,30	0.122
1000	5,60	0.109
2000	2,76	0.053
3000	1,84	0.036
4000	1,40	0.027
5000	$1,\!12$	0.022
6000	0,92	0.018
7000	0,80	0.016
8000	0,71	0.014
9000	0,62	0.012
10000	$0,\!56$	0.011

In Abbildung 7 werden die gemessenen mit der Erregerspannung normierten Amplituden gegen die Frequenz der Erregerspannung halblogarithmisch aufgetragen.

Mittels eines Fits der Form

 ${\bf Abbildung~7:~Normierte~Kondensatoramplituden}$

$$f = \frac{1}{\sqrt{1 + x^2 m^2}} + b,$$

werden die Messwerte gefittet. Die Parameter ergeben sich dabei zu

$$m = (-8.64 \pm 0.34) \cdot 10^{-3},$$

 $b = (-14.90 \pm 6.91) \cdot 10^{-3}.$

Somit ergibt sich nach Formel (10) die Zeitkonstante RC zu

$$RC = (8.64 \pm 0.34) \,\text{ms}.$$

3.3 Frequenzabhängigkeit der Phasenverschiebung

In diesem Versuchsteil wird die Frequenzabhängigkeit der Phasenverschiebung zwischen der Kondensator- und Generatorspannung untersucht. Über die Frequenz wird dabei die jeweilige Periodendauer nach $T=\frac{1}{f}$ bestimmt. Außerdem wird aus dem abgelesenem zeitlichen Abstand Δt zwischen den beiden Maxima und der Periodendauer die Phasenverschiebung gemäß

$$\phi = \frac{\Delta t}{T} 2\pi$$

bestimmt. Die Messdaten und die daraus bestimmten Größen sind in Tabelle 3 zu finden.

Diese Daten werden ebenfalls halblogarithmisch gegen die Erregerfrequenz aufgetragen. Das Resultat ist in Abbildung ?? zu sehen.

Es wird eine Funktion der Art

$$f = a\arctan(mx) + b$$
,

identisch (??), gefittet. Die Parameter ergeben sich zu

$$a = -0.72 \pm 0.03,$$

 $m = -0.0058 \pm 0.0009,$
 $b = 0.44 \pm 0.05.$

Die nicht-lineare Ausgleichsrechnung lässt somit auf den Wert

$$RC = (5.8 \pm 0.9) \,\mathrm{ms}$$

schließen. Mit letzterem kann ein Polarplot erstellt werden. Der Winkel ϕ beschreibt die Phasenverschiebung, der Radius hingegegen die normierte Amplitude der Kondensatorspannung. Es resultiert der Polarplot in Abbildung mit $RC = (5.8 \pm 0.9) \,\mathrm{ms}$.

Es wurden mehrere Probewerte eingezeichnet.

Tabelle 3: Messdaten zur Frequenzabhängigkeit der Phasenverschiebung

f/Hz	$T = \frac{1}{f} / \text{ms}$	$\Delta t / \mathrm{ms}$	$\phi / \operatorname{rad}$
10	100,00	12,000	0,75
20	50,00	4,200	0,53
30	33,33	2,600	0,49
40	$25,\!00$	1,900	0,48
50	20,00	1,800	$0,\!57$
60	$16,\!67$	1,700	0,64
70	$14,\!29$	1,640	0,72
80	$12,\!50$	1,440	0,72
90	$11,\!11$	1,400	0,79
100	10,00	1,280	0,80
200	5,00	0,780	0,98
300	$3,\!33$	0,640	1,21
400	$2,\!50$	$0,\!560$	1,41
500	2,00	$0,\!440$	1,38
600	$1,\!67$	$0,\!390$	$1,\!47$
700	1,43	0,340	1,50
800	$1,\!25$	$0,\!280$	1,41
900	$1,\!11$	$0,\!270$	1,53
1000	1,00	$0,\!240$	1,51
2000	$0,\!50$	$0,\!116$	1,46
3000	$0,\!33$	0,080	1,51
4000	$0,\!25$	0,060	1,51
5000	$0,\!20$	0,048	1,51
6000	$0,\!17$	0,041	$1,\!55$
7000	$0,\!14$	0,035	1,54
8000	0,13	0,031	1,56
9000	$0,\!11$	0,027	1,53
10000	0,10	0,024	1,51

Abbildung 8: Phasenverschiebungen

Abbildung 9: Polarplot

3.4 Der RC-Kreis als Integrator

In diesem Versuchsteil wird gezeigt, dass der RC-Kreis als Integrator arbeiten kann, wenn $\omega \gg \frac{1}{RC}$. Dazu wird dieser mit einer Rechteck-, Sinus- und Dreiecksspannung gespeist und sowohl die Ursprungssignale als auch die integrierten Signale auf dem Oszilloskop angezeigt. Um die geforderte Bedingung an ω zu gewährleisten, werden Frequenzen von etwa 5 kHz verwendet. Die Ursprungssignale und die integrierten Signale sind jeweils in den Abbildungen 8, 9 und 10 zu erkennen. Dabei ist die mit dem Cursor erfasste Funktion stets das integrierte Signal

Abbildung 10: Integration eines Sinussignals durch das RC-Glied

Abbildung 11: Integration eines Dreiecksignals durch das RC-Glied

 ${\bf Abbildung~12:}$ Integration eines Rechtecksignals durch das RC-Glied

4 Diskussion