Билеты по алгебре I семестр

Тамарин Вячеслав

10 января 2020 г.

Вопрос 1 Векторное пространство

Def 1. Пусть (V,+) — абелева группа, F — поле, и задана операция (умножение) $V \times F \to V$. Предположим, что $\forall u,v \in V$ и $\alpha,\beta \in F$ выполнены следующие свойства:

- 1. $v(\alpha\beta) (v\alpha)\beta$
- 2. $v(\alpha + \beta) = v\alpha + v\beta$
- 3. $(v+u)\alpha = v\alpha + v\beta$
- 4. $v \cdot 1 = v$

Тогда V называется векторным пространством над полем F.

Property.

- 1. $v \cdot 0 = 0 \cdot \alpha = 0$
- 2. $v \cdot (-1) = -v$
- 3. $v \cdot (-\alpha) = (-v)\alpha = -(v\alpha)$
- 4. $v \cdot \sum \alpha_i = \sum v \alpha_i$
- 5. $\sum v_i \cdot \alpha = \sum v_i \alpha$

Exs.

- 1. Множество векторов в \mathbb{R}^3
- 2.

$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \middle| a_{i} \in F \right\}.$$

$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} \cdot \alpha = \begin{pmatrix} a_{1}\alpha \\ \vdots \\ a_{n}\alpha \end{pmatrix}, \quad \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}.$$

- 3. X множество, $F^X = \{f \mid f : X \to F\}$ $f, g : X \to F$ (f + g)(x) = f(x) + g(x) $(f\alpha)(x) = f(x)\alpha$
- 4. F[t] многочлены от одной переменной t

Вопрос 2 Подпространство, линейная оболочка

Def 2. Подмножество $U \subseteq V$ называется подпространством, если оно само является векторным пространством относительно тех же операций, которые заданы в V.

Statement 1 (критерий подпространства). Подмножество $U \subseteq V$ является подпространством тогда и только тогда, когда $\forall u, v \in U, \ \alpha \in F : u + v, u\alpha \in U.$

Def 3. Пусть $u_1, \ldots, u_n \in V, \alpha_1, \ldots, \alpha_n \in F$. Сумма

$$\sum_{k=1}^{n} u_k \alpha_k$$

называется линейной комбинацией векторов u_1,\ldots,u_n с коэффициентами α_1,\ldots,α_n .

Линейная комбинация называется тривиальной, если все ее коэффициенты равны нулю.

<u>Note</u>. Пусть $S \subseteq V$, и задан набор чисел $\alpha_s \in F$, $s \in S$. Операция бесконечной суммы будет определена только в случае, когда почти все α_s равны нулю.

Def 4. Линейной оболочкой набора S называется подпространство, порожденное S, то есть наименьшее подпространство, содержащее S.

Designation. Линейная оболочка набора S обозначается $\langle S \rangle$.

Statement 2.
$$\langle S \rangle = \left\{ \sum_{k=1}^{n} u_k \alpha_k \middle| u_k \in S, \ \alpha_k \in F \right\}$$

Def 5. Если $\langle S \rangle = V$, то S называется системой образующих пространства V.

Def 6. Кортеж векторов $(u_1, \dots u_n)$ называется **линейно независимым**, если любая нетривиальная линейная комбинация этих векторов не равна нулю.

Множество $S \subseteq V$ называется линейно независимым, если любой кортеж, составленный из конечного числа различных векторов из S, является линейно независимым.

 ${f Def}\ {f 7.}\ {\sf Базис}-{\sf динейно}\ {\sf независимая}\ {\sf система}\ {\sf образующих}.$

Вопрос 3 Матрицы

і Конечные матрицы

Def 8. Двумерный массив $m \times n$ элементов поля F называется матрицей размера $m \times n$ над F.

Designation. Множество таких матриц обозначается $M_{m \times n}(F)$. Если m = n, пишут $M_n(f)$. Элемент матрицы A в позиции (i, j) записывается a_{ij} .

Property.

- Для двух матриц одинакового размера определена операция поэлементной суммы: $(A+B)_{ij} = a_{ij} + b_{ij}$.
- Также определено умножение матрицы на число: $(A\alpha)_{ij} = a_{ij}\alpha$.
- Произведением матрицы $A \in M_{m \times n}(F)$ на матрицу $B \in M_{n \times k}$ называется матрица $C = AB \in M_{m \times k}(F)$ элементы которой вычисляются по формуле

$$c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}.$$

Theorem 1. Множество $M_{m \times n}(F)$ с операциями сложения и умножения на число является векторным пространством над полем F.

Доказательство. Произведение матриц ассоциативно, дистрибутивно и перестановочно с умножением на число:

$$\begin{cases} (AB)C = A(BC) \\ A(B+C) = AB + BC \\ (B+C)A = BA + CA \\ (AB)\alpha = A(B\alpha) = (A\alpha)B \end{cases}$$

Все кроме первого свойства очевидны. Проверим ассоциативность:

$$((AB)C)_{il} = \sum_{k \in K} (AB)_{ik} c_{kl} = \sum_{k \in K} \left(\sum_{j \in J} a_{ij} b_{jk} \right) c_{kl} =$$

$$= \sum_{k \in K} \left(\sum_{j \in J} a_{ij} b_{jk} c_{kl} \right) =$$

$$= \sum_{j \in J} \left(\sum_{k \in K} a_{ij} b_{jk} c_{kl} \right) =$$

$$= \sum_{j \in J} a_{ij} \left(\sum_{k \in K} b_{jk} c_{kl} \right) = \sum_{j \in J} a_{ij} (BC)_{jl} = (A(BC))_{il}$$

 ${f Def 9.}\;{
m K}$ вадратная матрица E с 1 на главной диагонали и остальными нулями называется **единичной**.

Property. Умножение данной матрицы на единичную справа и слева не ее не изменяет.

Матрица E_n является нейтральным элементом в $M_n(F)$.

Обобщение конечных матриц

Пусть даны множества X_{ij}, Y_{jh} , коммутативные моноиды $(Z_{ih}, +)$, где $i=1, \ldots m, \ j=1, \ldots n, \ h=1, \ldots k,$ и функции «умножения» $X_{ij} \times Y_{jh} \to Z_{ih}, \ (x,y) \mapsto xy$. Обозначим через X,Y,Z наборы множеств $X_{ij}, Y_{jh}, Z_{ih},$ соответственно, через M(X) — множество матриц A с элементами $a_{ij} \in X_{ij},$ и аналогично M(Y), M(Z). Тогда можно определить произведение матриц $A \in M(X)$ и $B \in M(Y)$ как матрицу $C = AB \in M(Z)$, где $c_{ih} = \sum_{j=1}^n a_{ij}b_{jh}$.

Если все X_{ij}, Y_{jh} будут коммутативными моноидами, а функция умножения дистрибутивной, умножение матриц тоже будет дистрибутивным и ассоциативным.

іі Произвольные матрицы

Пусть I, J — произвольные множества (возможно бесконечные), элементами которых мы будем индексировать строки и столбцы матриц. Пусть $\forall i \in I \land j \in J$ задано множество X_{ij} , и обозначим набор всех таких множеств через X. Тогда матрицей размера $I \times J$ над X называется функция $A: I \times J \to \bigcup X_{ij}$ $(i,j) \mapsto a_{ij}$, такая что $a_{ij} \in X_{ij}$.

Designation. Множество матриц размера $I \times J$ над X обозначается $M_{I \times J}(X)$. Если $I = \{1\}$, то матрица размера $I \times J$ будут назваться столбцами длины J, а если $J = \{1\}$, то столбцами высоты I. Множества строк обозначим данной длины ${}^J\!X$, множество столбцов — X^J .

Будем считать, что все X_{ij} — абелевы группы в аддитивной записи. Тогда сумма двух матриц одного размера определяется поэлементно: $(A+B)_{ij}=a_{ij}+b_{ij}$. Если все X_{ij} — векторные пространства над полем F, также можно определить умножение на число: $(A\alpha)_{ij}=a_{ij}\alpha$.

Умножение матриц

Пусть все операции умножения $X_{ij} \times Y_{jh} \to Z_{ih}$ дистрибутивны (для $a \cdot 0 = 0$), и в каждом столбце матрицы Y почти все элементы равны 0.

Designation. Обозначим $M_{J\times H}^{c.f.}(Y)\subset M_{J\times H}(Y)$, состоящее из всех матриц B, у которых для любого фиксированного $h\in H$ почти все элементы b_{jh} равны 0.

Def 10. Пусть $\forall i \in I, j \in J, h \in H$ заданы операции умножения $X_{ij} \times Y_{jh} \to Z_{ih}$, причем $\forall x, x' \in X_{ij}$ и $\forall y, y' \in Y_{jh}$ выполнены равенства

$$(x+x')y = xy + x'y \wedge x(y+y') = xy + xy'.$$

Произведение матриц $A \in M_{i \times J}(X)$ и $B \in <_{J \times H}^{c.f.}(Y)$ как матрицу $AB \in M_{I \times H}(Z)$ с элементами

$$(AB)_{ih} = \sum_{j \in J} a_{ij} b_{jh}.$$

При этом суммы определены, так как почти все слагаемые равны нулю.

 \underline{Note} . Аналогично определяется умножение матриц $A \in M^{r.f.}_{I \times J}(X)$ и $B \in M_{J \times H}(Y)$.

Lemma 1. Обычные свойства умножения матриц 1 выполнены, если определены все входящие в формулы операции.

Если $\forall i, j, h \in I$ заданы дистрибутивные операции умножения $X_{ij} \times X_{jh} \to X_{ih}$, то множество $M^{c.f.}_{I \times I}(X)$ является кольцом с единицей.

Designation. Если X_{ij} одно и то же поле F для всех i,j, будем писать $M_{i\times J}(F)$ вместо $M_{I\times J}(X)$. Если I=J, то будем писать $M_I(F)$ вместо $M_{I\times I}(F)$. Если $I=\{1,\ldots m\}, J=\{1,\ldots n\}$, то можем писать $M_{m\times n}(F)$.

Другие характеристики матриц

Def 11. Множество обратимых элементов кольца $M_n(F)$ называется полной линейной группой степени n над F и обозначается $\mathrm{GL}_n(F)$.

Designation. Для множества $M^{c.f.}_{I\times\{1\}}(F)$ введем специальное обозначение F^I_{fin} и будем называть его множеством финитных столбцов высоты I над F. Другим словами, F^I_{fin} — множество финитных (у которых почти все значения равны 0) функций из I в F. Аналогично, ${}^J\!F_{fin} = M^{r.f.}_{\{1\}\times J}(F)$.

Def 12. Пусть $A \in M_{I \times J}(F)$. Матрица $A^T \in M_{J \times I}(F)$ с элементами $(A^T)_{ij} = a_{ji}$ называется транспонированной к A.

Statement 3. $(AB)^T = B^T A^T$

<u>Note</u>. Для обозначения столбца часто используется строка $(a_1, \ldots a_n)^T$.

Вопрос 4 Эквивалентные определения базиса

Theorem 2 (Эквивалентные определения базиса). Следующие условия на подмножество v векторного пространства V эквивалентны:

- (1) v линейно независимая система образующих
- (2) v максимальная линейно независимая система
- $(3) \ v$ минимальная система образующих
- (4) любой элемент $x \in V$ представляется в виде линейной комбинации набора v, причем единственным образом

Доказательство.

- $1 \Longrightarrow 2$ Пусть v не максимальная линейно независимая система. Мы знаем, что v система образующих. Тогда любой элемент $a \in V$ представляется в виде линейной комбинации v, а значит любой набор, содержащий v, принадлежит линейной оболочке $\langle v \rangle$, следовательно, набор линейно зависимый.
- $2 \Longrightarrow 1$ Так как v максимальная линейно независимая система, любой элемент $a \in V$ выражается через элементы v. Следовательно, v система образующих.
- $\boxed{1\Longrightarrow 3}$ Пусть из v можно убрать некоторые элементы так, что полученный набор u будет минимальной системой образующих. Тогда любой элемент набора $v\smallsetminus u$ представим в виде линейной комбинации u. Следовательно, v линейно зависим.
- $3 \Longrightarrow 1$ Если v линейно зависим, то во всех линейных комбинациях набора v можно заменить один элемент на линейную комбинацию других. А тогда v не минимален.
- $1 \Longrightarrow 4$ Так как v система образующих $\langle v \rangle = V$. Теперь докажем, что представление единственно. Пусть $x = va = \sum_{y \in v} ya_y$, $a \in F^v_{fin}$. Предположим, что $\exists b \in F^v_{fin} : x = vb$. Тогда $0 = va vb \Longrightarrow 0 = v(a-b)$. Так как v линейно независим, можем сократить: 0 = a-b, значит представление единственно.
- $4 \Longrightarrow 1$ Так как любой элемент представим в виде линейной комбинации набора $v, \langle v \rangle = V$. Так как представление единственно, v линейно независим.

Вопрос 5 Существование базиса

Theorem 3 (О существовании базиса). Пусть $X, Y \subseteq V$, причем набор X линейно независим, а Y — система образующих. Тогда существует базис Z, содержащий X и содержащийся в Y.

Доказательство. Пусть \mathscr{A} — набор всех линейно независимых подмножеств Y, содержащих X. Этот набор не пуст, так как содержит X. Пусть \mathscr{L} — линейно упорядоченный поднабор в \mathscr{A} . Обозначим через S объединение всех множеств из \mathscr{L} . Так как $\forall C \in \mathscr{L}$ лежит между X и Y, S обладает этим свойством. Рассмотрим конечное подмножество $\{v_1, \ldots v_n\} \subseteq S$. По определению объединения множеств $\forall i=1,\ldots n \ \exists B_i \in \mathscr{L}$, содержащее v_i . Так как \mathscr{L} — лум, среди множеств $B_1,\ldots B_n$ найдется наибольшее B_k . Тогда $v_1,\ldots v_n \in B_k$. Так как B_k линейно независимо, то и $\{v_1,\ldots v_n\}$ линейно независимо. Следовательно, S линейно независимо, значит $S \in \mathscr{A}$. По лемме Цорна получаем, что \mathscr{A} содержит максимальных элемент. Пусть это Z — максимальное из линейно независимых подмножеств Y, содержащих X.

Пусть $y \in Y \setminus Z$. Так как Z линейно независимо, $Z \cup \{y\}$ линейно зависимо, то есть $\exists a \in F_{fin}^Z$, $a_y \in F$: $ya_y + Za = 0$, где $a_y \neq 0$. Следовательно, $y \in \langle Z \rangle$. Тогда $Y \subseteq \langle Z \rangle$. С другой стороны, $V = \langle Y \rangle$ — наименьшее подпространство, содержащее Y. Значит $V \subseteq \langle V \rangle$, то есть Z — система образующих, следовательно, и базис.

Вопрос 6 Лемма о замене

Theorem 4 (лемма о замене). Пусть $u = \{u_1, \dots u_n\}$ — линейно независимый набор из n векторов, v — система образующих пространства V. Тогда:

- 1. $\exists v_1, \dots v_n \in v : v \setminus \{v_1, \dots v_n\} \cup u = w cucmema$ образующих.
- 2. Причем, если u- базис, то w- базис.

Доказательство. Индукция по n.

База: n = 0. Утверждение для нуля верно.

Переход: $n-1 \to n$. По предположению индукции $\exists v_1, \dots v_{n_i} \in v$ такие, что $w' = v \setminus \{v_1, \dots v_{n-1}\} \cup \{u_1, \dots u_{n-1}\}$ является системой образующих. Причем, если v был линейно независимым, то w' базис.

 u_n выражается через линейную комбинацию набора w':

$$u_n = \sum_{i=1}^{n-1} u_i \alpha_i + \sum_{j=1}^m w_j \beta_j, \qquad \alpha_i, \beta_j \in F, w_j \in v \setminus \{v_1, \dots v_{n-1}\}.$$

Заметим, что кто-то из $\beta_j \neq 0$ (иначе u линейно зависим). Не умоляя общности, считаем, что $\beta_m \neq 0$. Пусть $v_n = w_m$. Тогда v_n выражается через линейную комбинацию набора $w = w' \setminus \{v_n\} \cup \{u_n\}$. Следовательно, $w' \subseteq \langle w \rangle$, значит w — система образующих.

Пусть набор v (а тогда и w') линейно независим. Рассмотрим $w'' = w' \setminus \{v_n\}$ и линейную комбинацию $w''a + u_n\alpha$ набора w, где $a \in F_{fin}^{w''}$.

$$0 = w''a + u_n\alpha = w''a + \sum_{i=1}^{n-1} u_i\alpha_i\alpha + \sum_{j=1}^m w_i\beta_j\alpha = w''b + v_n\beta_m\alpha, \qquad b \in F_{fin}^{w''}.$$

Если $\alpha \neq 0$, то $w''b + v_n\beta_m\alpha$ является нетривиальной линейной комбинацией набора $w'' \cup \{v_n\} = w''$, равной нулю. Значит, $\alpha = 0$, тогда w''a = 0. Так как $w'' \subseteq w'$, w'' линейно независим, следовательно, a = 0

Получаем, что w линейно независим.

Вопрос 7 Количество элементов в базисе

Theorem 5 (количество элементов в базисе). Любые два базиса пространства V равномощны.

Доказательство. Пусть $v, u = \{u_1, \dots u_n\}$ — базисы пространства V. Не умоляя общности, считаем, что мощность множества v > n. Перенумеруем элементы базиса u так, что $u_1, \dots u_k \notin v$ и $u_{k+1}, \dots v_n \in v$.

Тогда по лемме о замене 4 существует подмножество $\{v_1, \ldots v_k\} \subseteq v : w = v \setminus \{v_1, \ldots v_k\} \cup \{u_1, \ldots u_k\}$ — базис. $u \subseteq w$ и |v| = |w|. Так как базис — максимальная линейно независимая система, то один базис не может строго содержаться в другом. Следовательно, w = u, откуда |v| = n.

 ${f Def~13.}$ Размерность пространства — мощность любого базиса этого пространства.

Пространство называется конечномерным, если в нем существует конечный базис.

Вопрос 8 Линейные отображения и их матрицы. Матрица композиции линейных отображений

і Линейные отображения

Def 14. Пусть V и U — векторные пространства, L — функция $V \to U$. L называется линейным отображением, если $\forall x, y \in V$, $\alpha \in F$:

$$L(x + y) = L(x) + L(y)$$

$$L(x\alpha) = L(x)\alpha$$

Биективное линейное отображение называется изоморфизмом. Линейное отображение из пространства в само себя называется линейным оператором. Отображение из пространства в основное поле часто называется функционалом.

Property. Пусть вектор $v = (v_1, \dots v_n)$ и отображение $L: V \to U$.

$$L(v) = (L(v_1), \dots L(v_n)) \in {}^nU.$$

Тогда

$$L(va) = L(v)a$$
, $r\partial e \ a \in F^n$.

<u>Note</u>. В случае бесконечного v можем переписать аналогично, обозначив $L(v) \in {}^nU: L(v)_x = L(x) \quad \forall x \in v:$

$$L(va) = L(v)a$$
, где $a \in F^v$.

Designation. Пусть v — базис V. Тогда $\forall x \in V \; \exists ! a \in F^v_{fin} : x = va$. Тогда $a = x_v$ — столбец координат x в базисе v.

Lemma 2. Пусть V — векторное пространство над полем F, а v — базис V. Отображение $\varphi_v: V \to F^v$, заданное равенством $\varphi_v(x) = x_v$, является изоморфизмом векторных пространств.

Доказательство. Рассмотрим $x, y \in V$.

$$\begin{cases} vx_v = x \\ vy_v = y \end{cases} \implies v(x_v + y_v) = x + y = v(x + y)_v \Longrightarrow \varphi_v(x + y) = \varphi_v(x) + \varphi_v(y).$$

$$v(x\alpha)_v = x\alpha = v(x_v\alpha) \Longrightarrow \varphi_v(x\alpha) = \varphi_v(x)\alpha.$$

Построим обратное отображение: $\theta_v: F^v \to V, \ \theta_v(a) = va$. Следовательно, φ_v — биективное линейное отображение.

Corollary 1 (классификация векторных пространств). Любое векторное пространство изоморфно пространству F^I для некоторого множества I, мощность которого равна размерности пространства. Два пространства изоморфны между собой тогда и только тогда, когда их размерности равны.

іі Матрицы линейных отображений

Statement 4. Пусть $L: U \to V$ — линейное отображение, $u = (u_1, \dots u_n)$ — базис $U, v = (v_1, \dots v_m)$ — базис V.

$$\exists ! A \in M_{m \times n}(F) : \forall x \in U \ L(x)_v = Ax_u.$$

Столбиы матрицы A вычисляются по формуле $a_{*k} = L(u_k)_v$.

Доказательство. По определению столбца координат $x = ux_u$.

$$\varphi_v \circ L(x) = \varphi_v \circ L(ux_v).$$

Тогда $L(x)_v = \varphi_v(L(x)) = \varphi_v(L(u))x_u$. Пусть $A = \varphi_v(L(u)) = (L(u_1)_v, \dots L(u_n)_v)$. Докажем единственность. Предположим, что Ax = Bx для любого столбца x. Тогда A = B.

Def 15. Матрица A из прошлого утверждения 4 называется матрицей отображения L в базисах u, v и обозначается через L^v_u .

Если U = V, u = v, говорят о матрице оператора L в базисе u и обозначают ее через L_u .

$$L(x)_v = L_u^v x_v$$
 или $L(x)_u = L_u x_u$ в случае $U = V \wedge u = v$.

Theorem 6. Матрица композиции линейных операторов является произведением матриц этих операторов.

Eсли U,V,W — конечномерные линейный пространства с базисами u,v,w, соответственно, $L:U\to V,\ M:V\to W$ — линейные отображения, то $(M\circ L)_u^w=M_v^wL_u^v.$

Если U = V = W и u = v = w, то $(M \circ L)_u = M_u L_u$.

Вопрос 9 Матрица перехода от одного базиса с другому. Замена координат и изменение матрицы оператора при замене базиса

і Матрица перехода

Theorem 7. Пусть v — базис n-мерного пространства V над полем F. Набор $u = (u_1, \dots u_n)$ является базисом тогда u только тогда, когда существует $A \in GL_n(F)$ такая, что u = vA.

Def 16. Если u,v — базисы, то A называется матрицей перехода от v к u и обозначается через $C_{v o u}$

При этом:

- (1) Столбец матрицы $C_{v\to u}$ с номером k равен столбцу координат вектора u_k в базисе v. $(C_{v\to u})_k = (u_k)_v$
- $(2) C_{v \to u}^{-1} = C_{u \to v}$
- (3) Если матрица двусторонне обратима, то она квадратная.

Доказательство.

 \Longrightarrow Положим $\forall k \in [1,n]: a_{*k} = (u_k)_v$. Тогда $va_{*k} = u_k \Longrightarrow u = vA$

 \Longrightarrow Если u=vA, $\langle u \rangle = \langle vA \rangle = V.$ При этом u минимален, так как иначе и v не минимален, значит u-базис.

1. По построению

2.
$$\begin{cases} u = vC_{v \to u} \\ v = uC_{u \to v} \end{cases} \implies uE = uC_{u \to v}C_{v \to u} \implies E = C_{u \to v}C_{v \to u}$$

3. Пусть $B \in M_{n \times m}(F)$ двусторонне обратима. $BB_1 = E_{n \times n} \wedge B_2 B = E_{m \times m}$. Тогда $B_2 = B_2 E_n = B_2 (BB_1) = (B_2 B) B_1 = E_m B_1 = B_1$. Значит $B_1 = B_2$. $B_1 B = C_{u \to v} C_{v \to u} = B_1 B \Longrightarrow B$ — квадратная.

 \underline{Note} . Если пространство V бесконечномерно, почти все элементы каждого столбца должны быть равны нулю.

<u>Note</u>. Если $V = F^n$, e — стандартный базис, то $C_{e \to u}$ — матрица, составленная из столбцов базиса u.

іі Преобразование координат при замене базиса

Theorem 8. Пусть u, v — базисы пространства V.

$$\forall x \in V : x_v = C_{v \to u} x_u.$$

Доказательство. Запишем определение столбца координат $x = ux_u = vx_v$. Про базисы мы знаем, что $v = uC_{u \to v}$. Тогда

$$ux_u = uC_{u\to v}x_v \Longrightarrow x_u = C_{u\to v}x_v.$$

ііі Преобразование матрицы оператора при замене базиса

<u>Note</u>. Матрица перехода $C_{u o v}$ совпадает с матрицей тождественного отображения 1_V в базисах u и v.

Lemma 3. Пусть $u = (u_1, \dots u_n)$ — базис пространства $U, v = (v_1, \dots v_n) \in V$ — набор векторов пространства V. Тогда существует единственное линейное отоббражение

$$L: U \to V: L(u) = v.$$

При этом

L инъективно тогда и только тогда, когда и линейно независим

L сюрьективно тогда и только тогда, когда и — система образующих

L- изоморфизм тогда и только тогда, когда и - базис

Доказательство. $\forall x \in U : x = ux_u$. Тогда $\forall L : L(x) = L(u)x_u$. Зададим L так: $L(x) = vx_u$. Оно линейно и единственно.

<u>Note</u>. Пусть u, v — базисы пространства V. Тогда матрица отображения L из леммы в базисе u совпадает с матрицей перехода $C_{u \to v}$.

Statement 5. Пусть u, u' -базисы пространства U, v, v' -базисы пространства U, v, v' -базисы пространства $V, L: V \to U -$ линейное отображение. Тогда

$$L_{u'}^{v'} = C_{v' \to v} L_u^v C_{u \to u'}.$$

Доказательство.

$$\begin{split} L(x)_{v} &= L_{u}^{v} x_{u} \\ C_{v' \to v} L(x)_{v} &= L(x)_{v'} = L_{u'}^{v'} x_{u'} = L_{u'}^{v'} C_{u' \to u} x_{u} \\ L(x)_{v} &= C_{v \to v'} L_{u'}^{v'} C_{u' \to u} x_{u} \\ L_{u}^{v} &= C_{v \to v'} L_{u'}^{v'} C_{u' \to u} \end{split}$$

Note. Если U = V и u = v, u' = v',

$$L_{u'} = C_{u' \to u} L_u C_{u \to u'}.$$

Вопрос 10 Внешняя и внутренняя пряма сумма пространств, естественный изоморфизм между ними

Designation. U, V — подпространства векторного пространства W над полем F.

Def 17. Сумма U + V — совокупность $\{x + y \mid x \in U, y \in V\}$.

Note. $U + V \subseteq W \wedge U \cap V \subseteq W$.

 ${f Def~18.}$ Пространство W называется внутренней прямой суммой подпространств U и V, если

$$\forall z \in W \ \exists ! x \in U, y \in V : z = x + y.$$

To ects $W = U + V \wedge V \cap U = \{0\}.$

Def 19. U, V — векторные пространства. Их внешней прямой суммой называется их декартово произведение с покомпонентыми операциями.

Designation. Обе прямые суммы обозначаются $U \oplus V$.

<u>Note</u>. Пространства U, V естественно вкладываются в из внешнюю прямую сумму: $\forall x \in U : x \mapsto (x, 0) \land \forall y \in V : y \mapsto (0, y)$. Если отождествить U и V с их образами, то внешняя сумма превращается в прямую сумму подпространств.

Statement 6. $U, C \leq W, U \oplus V - ux$ внешняя прямая сумма. Зададим $\varphi : U \oplus V \to W$ так $\varphi(x, y) = x + y$. $\varphi - u$ зоморфизм тогда u только тогда, когда W является внутренней суммой подпространств U u V.

Если $W=U\oplus V$, то объединение базисов U и V — базис W. Поэтому $\dim(U\oplus V)=\dim(U)+\dim(V)$.

Statement 7. $\forall U \leqslant W \ \exists V \leqslant W : W = U \oplus V$.

Доказательство. Выберем базис u подпространства U и дополним его до базиса пространства $W\colon u\cup v$. Тогда подойдет $V=\langle v\rangle$.

Theorem 9. Для пространств $U_1, \ldots U_n \leqslant V$ следующие условия эквивалентны:

- (1) $U_1 \oplus \ldots U_n \to V$, $(x_1, \ldots x_n) \mapsto x_1 + \ldots x_n u$ зоморфизм
- (2) $\forall x \in V \exists ! (x_1 \in U_1, \dots x_n \in U_n) : x = x_1 + \dots x_n$
- (3) $V = U_1 + \dots U_n \ u \ U_i \cap \left(\sum_{j \neq i} U_j\right) = \{0\} \qquad i \in [1, n]$
- (4) Объединение базисов подпространств $U_1, \ldots U_n$ базис V.

Вопрос 11 Ядро и образ линейного отображения. Слои линейного отображения

Def 20. Пусть $L: U \to V$ — линейное отображение. Тогда

Ядро отображения $L-\mathrm{Ker}\,L=L^{-1}(0)\coloneqq\{x\in U\mid L(x)=0\}$ Образ отображения $L-\mathrm{Im}\,L=\{L(x)\mid x\in U\}$

Statement 8. Пусть $L: U \to V$ — линейное отображение.

Def 21. $L:U\to V$ — линейное отображение. Слой отображения над точкой $y\in V$ — множество $\{x\in X\mid L(x)=y\}=L^{-1}(y)$

Statement 9. Все слои отображения L являются сдвигами ядра. $L(x) = y, \ x \in U$:

$$L^{-1}(y) = x + \text{Ker } L.$$

Вопрос 12 Теорема о размерности ядра и образа. Теорема о размерности прямой суммы

Theorem 10 (о размерности ядра и образа). $L:U\to V$ — линейное отображение. Тогда

 $\dim U = \dim \operatorname{Ker} L + \dim \operatorname{Im} L.$

Доказательство. $u = (u_1, \dots u_k)$ — базис $\ker L$, $v = (v_1, \dots v_m)$. Дополним базис ядра до базиса $U: u \cup v$ — базис U. Докажем, что $L(v) = (L(v_1), L(v_2), \dots L(v_m))$ — базис образа.

$$\forall x \in \text{Im } L \ \exists y \in U : L(y) = x.$$

Разложим $y=ua+vb, \qquad a\in F^k,\ b\in F^m$ Тогда

$$x = L(y) = L(u) \cdot a + L(v) \cdot b.$$

Так как $u \in \text{Ker}: L(u) = (L(u_1), \dots L(u_k)) = (0, \dots 0)$. Следовательно, L(v) — система образующих. Проверим, что L(v) линейно независим. Пусть

$$L(v) \cdot c = 0, \quad c \in F^m.$$

 $L(v)c = L(vc) = 0 \Rightarrow vc \in \text{Ker } L \Rightarrow vc = ud$ для некоторого $d \in F^k$.

Тогда vc-ud=0, но v и u — два базисных вектора. Следовательно, c=d=0 и L(v) — линейно независимый.

Theorem 11 (формула Грассмана о размерности суммы и пересечения). *Пусть* $U, V \leq W$.

$$\dim U \cap V + \dim U + V = \dim U + \dim V.$$

Доказательство. Зададим линейное отображение $L:U\oplus V\to W:L(u,v)=u+v$. Тогда ${\rm Im}\ L=U+V$.

$$(u, v) \in \text{Ker } L \iff u + v = 0 \iff u = -v \in U \cap V.$$

$$\operatorname{Ker} L = \{(u, -u) \mid u \in U \cap V\} \cong U \cap V.$$

По теореме о размерности ядра и образа

$$\dim U + \dim V = \dim(U \oplus V) = \dim \operatorname{Ker} L + \dim \operatorname{Im} L = \dim U \cap V + \dim U + V.$$

Вопрос 13 Факторпространство и его универсальное свойство

Designation. V — векторное пространство, $U \leq V$.

Def 22. x + U — аффинное подпространство или смежный класс V по U. $y \sim_U x \iff y - x \in U$ — эквивалентность.

Def 23. Множество смежных классов V по U с операциями

$$(x+U) + (y+U) = (x+y) + U$$
$$(x+u)\alpha = x\alpha + U$$

называется факторпространством V по U и обозначается V/U.

Проверка корректности определения. Докажем, что определение операций не зависит от выбора представителей классов.

• Сложение

$$x' + U = x + U \Longrightarrow x' + 0 \in x + U \Longrightarrow x' \in x + U.$$

 $y' + U = y + U \Longrightarrow y' + 0 \in y + U \Longrightarrow y' \in y + U.$

Тогда $\exists z \in U : x' = x + z$ и $\exists t \in U : y' = y + t$.

$$(x'+U) + (y'+U) := (x'+y') + U =$$

$$= (x+y) + \underbrace{(z+t)}_{\in U} + U \subseteq$$

$$\subseteq (x+y) + U$$

Аналогично доказываем включение в обратную сторону.

• Умножение

$$(x'+U)\alpha := x'\alpha + U =$$

$$= (x+z)\alpha + U = x\alpha + \underbrace{z\alpha}_{\in U} + U \subseteq$$

$$\subseteq x\alpha + U$$

Аналогично доказываем включение в обратную сторону.

Designation. $\pi_U: V \to V/U$ — естественная проекция: $\pi_U(x) = x + U$.

Note. π_U линейно и сюрьективно $\operatorname{Ker} \pi_U = U$.

По теореме о размерности ядра и образа $\dim V/U = \dim V - \dim U$.:

Statement 10. Пусть $U \subseteq V$. Для любого линейного отображения $L: V \to W$, $U \subseteq \operatorname{Ker} L$, существует единственное отображение $\tilde{L}: V/U \to W: L = L \circ \pi_U$. При этом сюрьективность \tilde{L} равносильна сюрьективности L, а инъективность $\tilde{L} -$ тому, что $\operatorname{Ker} L = U$. То есть такая диаграмма коммутативна:

Доказательство. Пусть $\tilde{L}(x+U)=L(x)$. Эта формула задает линейное отображение и равносильна $L=\tilde{\pi}_U$. Следовательно, \tilde{L} существует и единственно.

 π_U инъективно, следовательно, L сюрьективно $\iff \tilde{L}$ сюрьективно.

Отображение \tilde{L} инъективно \iff Ker $\tilde{L} = \{0_{V/U} + U\}$.

$$x + U \in \operatorname{Ker} \tilde{L} \iff \tilde{L}(x + U) = 0 \iff L(x) = 0 \iff x \in \operatorname{Ker} L.$$

Theorem 12 (о гомоморфизме). $L: V \to W$ — линейное отображение.

$$V/\mathrm{Ker}\ L\cong \mathrm{Im}\ L.$$

Доказательство. Возьмем $U = \operatorname{Ker} L$ и заменим W на $\operatorname{Im} L$. Далее применим утверждение 10.

Вопрос 14 Ранг набора элементов векторного пространства, ранг оператора, строчной и столбцовый ранг матрицы

Def 24.

Рангом набора векторов называется размерность линейной оболочки этого набора.

Рангом линейного оператора называется размерность образа этого оператора.

Столбцовым (строчным) рангом матрицы называется ранг набора ее столбцов (строк).

<u>Note</u>. Из любой системы образующих можно выбрать базис, следовательно, ранг набора векторов — наибольшее количество линейно независимых векторов из этого набора. Так как образы базисных векторов порождают образ оператора, то ранг оператора равен рангу набора базисных векторов, а он равен столбцовому рангу матрицы оператора (вне зависимости от выбора базиса).

Theorem 13. $\Pi ycmb \ A \in M_{m \times n}(F)$.

- (1) Набор столбцов матрицы A линейно независим тогда и только тогда, когда ее столбцовый ранг равен n.
- (2) Набор столбцов матрицы A порождает F^m тогда и только тогда, когда ее столбцовый ранг равен m.
- (3) Набор столбцов матрицы A является базисом в F^m тогда и только тогда, когда ее столбцовый ранг m=n. В этом случае A обратима.
- (4) Если все строки матрицы A линейно независимы, и все столбцы линейно независимы, то $m=n,\ a\ A$ обратима.

Доказательство. Пункты (1) и (2) очевидны. Из них следует, что столбцовый ранг равен m=n тогда и только тогда, когда набор столбцов — базис в F^m . В этом случае A — матрица перехода от стандартного базиса к базису из столбцов матрицы A, а значит A обратима.

Количество линейно независимых столбцов и строк не может быть больше размерности, следовательно, $n \leq m \wedge n \geqslant m \Longrightarrow n = m$.

Lemma 4. Умножение матрицы на обратимую (слева или справа) не меняет ее столбцовый и строчной ранги.

Доказательство. Умножение матрицы оператора слева на обратимую матрицу соответствует замене базиса в его области значений, а справа — в области определения. Так как столбцовый ранг оператора не зависит от выбора базиса, то столбцовый ранг не меняется при умножении.

Строчный ранг равен столбцовому рангу транспонированной к ней, а транспонированная к обратимой — обратима.

Вопрос 15 PDQ-разложение. Равенство строчного и столбцового рангов матрицы

Theorem 14 (PDQ-разложение). Пусть U, V- конечномерные пространства. Для любого линейного отображения $L: U \to V$ существуют базисы пространств U и V, в которых матрица отображения L имеет вид $\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$.

Любая матрица $A \in M_{m \times n}(F)$ представляется в виде A = PDQ, где $P \in GL_M(F)$, $Q \in GL_n(F)$, а D записывается в блочном виде $D = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$. При этом размер единичной матрицы равен строчному и столбцовому рангу A.

Доказательство.

Первое утверждение Выберем базис $(f_1, \ldots f_k)$ ядра оператора L и дополним его до базиса $u = (g_1, \ldots g_l, f_1, \ldots f_k)$ пространства U. Тогда векторы $L(g_1), \ldots L(g_l)$ линейно независимы и их можно дополнить до базиса v пространства V. Получаем нужную матрицу отображения L в базисах u, v.

Второе утверждение Пусть $L: F^n \to F^m$ — оператор умножения на матрицу A. Выберем базис u пространства F^n и v — пространства F^m так, чтобы $L^u_v = D$. Тогда

$$A = A_e^e = C_{e \to u} L_v^u C_{v \to e} = PQD,$$

где e- стандартный базис пространства столбцов.

Так как ранги при умножении обратимую матрицу не меняются, столбцовый и строчной ранги равны рангу единичной матрицы.

Lemma 5. Квадратная матрица обратима тогда и только тогда, когда е ранг равен ее размеру.

Theorem 15 (Кронокера-Капелли). Система Ax = b совместима тогда и только тогда, когда ранг матрицы A равен рангу расширенной матрицы (Ab).

Вопрос 16 Разложение Брюа

Def 25. Матрица A называется верхней (нижней) треугольной, если $a_{ij} = 0 \quad \forall i > j \ (i < j)$. Треугольная матрица с 1 на диагонали называется унитреугольной.

Designation.

 $B = B_n(F)$ — множество верхних треугольных матриц.

 $B^{-} = B_{p}^{-}(F)$ — множество нижних треугольных матриц.

 $U = U_n(F)$ — множество верхних унитреугольных матриц.

 $U^{-} = U_{n}^{-}(F)$ — множество нижних унитреугольных матриц.

 $W = W_n$ — множество матриц перестановок, то есть матрицы, отличающиеся от единичной перестановкой столбцов.

Lemma 6. Множества W, B, B^-, U, U^- являются подгруппами в $\mathrm{GL}_n(F)$.

Theorem 16 (разложение Брюа). $GL_n(F) = BWB$

Доказательство. Докажем, что $\forall a \in \operatorname{GL}_n(F) \exists b, c \in D, w \in W : a = bwc.$

По индукции по n докажем, что, домножая a слева и справа на верхнетреугольные матрицы, можно получить матрицу перестановку.

Пусть i — наибольший индекс, для которого $a_{i1} \neq 0$. Запишем a в виде

$$a=egin{pmatrix} x & * \ a_{i1} & z \ 0 & * \end{pmatrix},$$
 где $x=egin{pmatrix} a_{11} \ dots \ a_{i-11} \end{pmatrix},$ а $z-(a_{i2},\ldots a_i n).$

Домножая a слева на верхнетреугольныую матрицу, получим матрицу, у которой первый столбец совпадает с i-м столбцом единичной матрицы. После этого, домножая справа на подходящую верхнереугольныю матрицу можем сделать i-ю строку равной первой строке единичной матрицы:

$$\begin{pmatrix} E & -\frac{x}{a_{i1}} & 0 \\ 0 & \frac{1}{a_{i1}} & 0 \\ 0 & 0 & E \end{pmatrix} \begin{pmatrix} x & * \\ a_{i1} & z \\ 0 & * \end{pmatrix} \begin{pmatrix} 1 & -\frac{z}{a_{i1}} \\ 0 & E \end{pmatrix} = \begin{pmatrix} 0 & f \\ 1 & 0 \\ 0 & g \end{pmatrix} \quad \text{для некоторых матриц } f, g.$$

Заметим, что так как строки полученной матрицы линейно независимы, то и строки матрицы $\binom{f}{g}$ тоже линейно независимы. Поэтому последняя матрица обратима и к ней можно применить индукционное предположение. Следовательно, существуют матрицы $u,v\in B_{n-1}(F):u\binom{f}{g}v\in W_{n-1}$. Пусть

$$u = \begin{pmatrix} u^{(1)} & u^{(2)} \\ 0 & u^{(3)} \end{pmatrix}$$
, где $u^{(1)} \in B_{i-1}(F)$, $u^{(3)} \in B_{n-i}(F)$.

Тогда

$$\begin{pmatrix} u^{(1)} & u^{(2)} \\ 0 & u^{(3)} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \cdot v$$

является матрицей-перестановкой, следовательно,

$$\begin{pmatrix} u^{(1)} & 0 & u^{(2)} \\ 0 & 1 & 0 \\ 0 & 0 & u^{(3)} \end{pmatrix} \begin{pmatrix} 0 & f \\ 1 & 0 \\ 0 & g \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & v \end{pmatrix}$$

тоже матрица-перестановка.

Так как обратная к верхнетреугольной — верхнетругольная, получаем нужное утверждение.

Def 26. Множество BwB при фиксированном w называется клеткой Брюа.

Statement 11. Две различные клетки Брюа не пересекаются.

Вопрос 17 Разложение Гаусса

Def 27. Главная подматрица матрица A порядка k — подматрица, стоящая на пересечении первых k строк и первых k столбцов.

Lemma 7. Умножение матрицы на нижнюю унитреугольную слева и на верхнюю унитреугольную справа не меняет обратимости главных подматриц.

Доказательство. $a^{(k)}$ — главная подматрица $k \times k$ в a. Умножим на нижнюю унитреугольную матрицу слева:

$$\left(\begin{array}{cc} b & 0 \\ c & 1 \end{array}\right) \left(\begin{array}{cc} a^{(k)} & * \\ * & * \end{array}\right) = \left(\begin{array}{cc} ba^{(k)} & * \\ * & * \end{array}\right).$$

 Γ де $b \in U^-(F)$. Обратимость $a^{(k)}$ равносильна обратимости $ba^{(k)}$, так как b обратима. \square

Lemma 8. Все главные подматрицы обратимы тогда и только тогда, когда матрица раскладывается в произведение обратимых унитреугольных верхнетреугольной и нижнетреугольной.

База: n = 1 — очевидно

Переход:

$$a^{(n)} = \begin{pmatrix} a^{(n-1)} & * \\ * & a_{nn} \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 \\ -xa^{(n-1)} & 1 \end{pmatrix} \begin{pmatrix} a^{(n-1)} & * \\ x & a_{nn} \end{pmatrix} = \begin{pmatrix} a^{(n-1)} & * \\ 0 & * \end{pmatrix}.$$

Дальше применим предположение индукции к $a^{(n-1)}$. Она раскладывается в произведение верхне- и нижнетреугольной.

В обратную сторону следует из прошлой леммы. Действительно, у обратимой верхнетреугольной матрицы все главные подматрицы обратимы, а умножение слева на обратимые нижнетреугольные не меняет их обратимость. \Box

Lemma 9. $\forall a \in \mathrm{GL}_n(F) \; \exists w \in W : \mathit{все подматрицы в wa обратимы.}$

Доказательство. Индукция по k. Докажем, что существует перестановка $a \in \mathrm{GL}_n(F)$ такая, что главные подматрицы размера не более $k \times k$ обратимы.

База: k = 1

$$a_{*1} = 0 \Rightarrow \exists i : a_{ij} \neq 0.$$

Меняем *і*-ю строку с первой.

Переход: $k \to k+1$ Все столбцы обратимой матрицы линейно независимы, следовательно, ранг матрицы, составленной из первых k столбцов, равен k Тогда существует k линейно независимых строк этой матрицы. Переставим эти строки на первые k мест.

$$a = \left(\begin{array}{cc} a^{(k)} & * \\ * & * \end{array}\right).$$

У полученной матрицы $a^{(k)}$ главная подматрица порядка k обратима. По индукционному предположению все меньшие главные подматрицы в $a^{(k)}$ обратимы.

Theorem 17 (Разложение Гаусса). $GL_n(F) = WB^-B$

Доказательство. Рассмотрим $a \in GL_n(F)$. Построим перестановку w, чтобы все главные подматрицы были обратимы. Дальше домножим справа и слева на унитреугольные матрицы так, чтобы получить верхнетругольную матрицу: $wa \in B^-B$. Домножая на B, B^- , получим, что хотели.