<u>Dashboard</u> / My courses / <u>Numerical Analysis (CEN), 23s</u> / <u>May 1 - May 7 (Week 11)</u> / <u>HW #5 (due May 12, 18:00)</u>

Question 4

Partially correct

(Regula Falsi Method as an FPI Technique). All numerical answers should be rounded to 6-digit floating-point numbers.

Marked out of 21

Consider the problem of approximating the unique root p of the function

$$f(x) = x^2 - 0.17\sqrt{x} - 1.22$$

in $\left[a,b\right]=\left[1,2\right]$ with the Regula Falsi method as an FPI technique.

- (i) (a) Verify that f''(x) > 0 on [a, b] = [1, 2].
- (b) Evaluate $\sigma = f(a)f''(a)$,

$$\sigma \doteq$$
 -0.796575 \checkmark .

(c) Based on (b), find and simplify the iteration function given either by

$$g(x)=rac{bf(x)-xf(b)}{f(x)-f(b)}\quad ext{[if $\sigma<0$], or by } g(x)=rac{af(x)-xf(a)}{f(x)-f(a)}\quad ext{[if $\sigma>0$]}.$$

Set then $p_0=a$ in the first case, or $p_0=b$ in the second case.

(ii) Use the Fixed-Point Iteration with the iteration function g(x) and the initial approximation p_0 , you have determined in (i), to obtain an approximation p_N of p satisfying

$$ext{RE}(ilde{p}_Npprox ilde{p}_{N-1})<10^{-5}.$$

Show your work by filling in the following standard output table (enter asterisks in unnecessary fields):

n	p_{n-1}		p_n		$ ext{RE}(ilde{p}_n pprox ilde{p}_{n-1})$	
1	1	~	1.13312	~	0.117481	~
2	1.13312	~	1.1713	~	0.0325963	~
3	1.1713	~	1.18162	~	0.00873377	×
4	1.18162	~	1.18437	~	0.00232191	×
5	1.18437	~	1.1851	~	0.000615982	~
6	1.1851	~	1.18529	~	0.000160298	~
7	1.18529	~	1.18535	~	5.0618e-05	~
8	1.18535	~	1.18536	~	8.43626e-06	~
9	*	~	*	~	*	~
10	*	~	*	~	*	~

Accordingly,

$$p_N \doteq$$
 1.18536

Check

Previous Activity

Jump to...

Next Activity