Waves

Longitudinal

Transverse

Wave Properties

Name	Symbol	Unit	Definition
Wavelength			
Frequency			
Period			
Amplitude			
Wave Number			

Now on to Light

The Speed of Light is given the symbol c.

 $C = 3.00 \times 10^8 \text{ m/sec} = 3.00 \times 10^{10} \text{ cm/sec} = 186,282 \text{ miles/sec} = 299,792.458 \text{ km/sec}$

How do we solve the mathematical problems involving light?

$$c = \lambda x v$$

Velocity(m/s)	Wavelength(m)	Frequency(Hz)
		5.80×10^{14}
	5.00 x 10 ⁻⁷	
		5.20x10 ¹⁴
	3.14	

What is the frequency of some red light that has a wavelength of 650 nm's?

What is the wavelength of tunes broadcast by the great 1970's station KMET-FM 94.7MHz?

Max Planck

The fist quantum hypothesis

 $h = 6.626 \times 10^{-34}$ Joule x seconds (not joules per second)

Velocity(m/s)	Wavelength(m)	Frequency(Hz)	Energy(J)
		5.80x10 ¹⁴	
	5.00 x 10 ⁻⁷		
			4.75x10 ⁻¹⁹

What is the energy of a photon of light whose frequency is $5.50 \times 10^{14} \, \text{Hz}$?

What is the energy of a mole of photons of red light whose wavelength is 700 nm's?

Photoelectric Effect

Noun:

Ejection of electrons from a substance by incident electromagnetic radiation, especially by visible light.

Ephoton = hv

700 nm
1.77 eV
550 nm
2.25 eV

Potassium - 2.0 eV needed to eject electron

Photoelectric effect

In 1885 a Swiss School Teacher named Johann Balmer showed us the spectrum of Hydrogen:

This could be explained by a formula involving integer numbers.

Another Swiss named Johannes Rydberg moved the formula forward to give us our current form:

The constant equal to 109,680 cm⁻¹, has many values in different units.

The number n_f can tell us how much energy is going to be associated with he light and where we are going to see the lines grouped together.

Name	$N_{ m f}$	N _i	Region of Electromagnetic Spectrum

1911 and the gospel of the planetary atom.

1913- Chance and the prepared mind. Serendipity

What are the circles?

Figure 7.7

A change between two discrete energy levels emits a photon of light.

What were the magic four words?

An electron jumps from the n=4 to the n=2 state what is the wavelength of the light emitted?

Quantum Mechanics becomes a teenager. A bullet in Sarajevo changes everything.

Light Quantum Mechanics The Nature of Matter A Prince has a crazy idea! Louis de Broglie	Page 6 of 16	Date
How do you get out of fighting a war?		
1924, a doctoral dissertation, and a Nol	bel Prize	
All matter is wavelike?		
The de Broglie Wavelength		

What is the de Broglie wavelength of an electron traveling at 90% of the speed of light? The mass of an electron is $9.11x10^{-31}kg$.

What is the de Broglie wavelength of a baseball whose mass is 5 oz (0.14 kg) traveling at 90

mph (40 m/s)?

Where is the electron likely to be found?

The Schrodinger Wave Equation

Werner Heisenberg and The Uncertainty Principle

Quantum Mechanics

When we solve the Schrodinger Equation we get lots of correct answers. What do they mean? They are descriptions of the orbitals.

Quantum Number	Symbol	Values	Physical Meaning

What does a 1S orbital look like? What about a 2S orbital?

What does a 2P Orbital look like? How is a 3P orbital different?

What does a 3d Orbital look like? How is a 4d orbital different?

How do you work with Quantum Numbers?

L=	0	1	2	3
Orbital				

How many orbitals are in the n=3 shell? What about n=2?

How many orbitals are in the n=3 and l=2 subshell?

How many orbitals can have the designation n=2, l=1, and ml=1?

How many electrons can have the following designations:

a.
$$n = 2$$

$$L = 1$$

$$m_{L} = +1$$

b.
$$n = 4$$

$$L = 3$$

$$m_1 = +3$$

$$m_L = +3$$
 $m_s = 1/2$

c.
$$n = 5$$

$$L = 3$$

$$m_I = +1$$

$$m_{L} = +1$$
 $m_{s} = -1/2$

d.
$$n = 4$$

$$L = 2$$

$$m_{\rm L} = +2$$

$$m_{L} = +2$$
 $m_{S} = 1/2$

e.
$$n = 5$$

Aufbau Principle

Frederick Hund

2	Page 11 of 16 _ 3S 3P	Date 4S 3d
₂ He 1S 2S 2P	3S 3P	4S 3d
₃ Li 1S 2S 2P	_ 3S 3P	4S 3d
₄ Be 1S 2S 2P	3S 3P	4S 3d
₅ B 1S2S2P	3S3P	4S 3d
₆ C 1S2S2P	3S3P	4S 3d
₇ N 1S 2S 2P	_3S 3P	4S 3d
₈ O 1S 2S 2P	_3S3P	4S 3d
₉ F 1S 2S 2P	_ 3S 3P	4S 3d
₁₀ Ne1S 2S 2P	3S 3P	4S 3d
₁₁ Na1S2S2P	3S 3P	4S 3d
₁₂ Mg1S2S2P	3S 3P	4S 3d
₁₃ Al 1S 2S 2P	3S 3P	4S 3d
₁₄ Si 1S 2S 2P	3S 3P	4S 3d
₁₅ P 1S 2S 2P	_ 3S 3P	4S 3d
₁₆ S 1S2S2P	_ 3S 3P	4S 3d
₁₇ Cl 1S 2S 2P	3S 3P	4S 3d
₁₈ Ar 1S 2S 2P	3S 3P	4S3d
₁₉ K 1S 2S 2P	3S 3P	4S 3d
₂₀ Ca1S2S2P	3S 3P	4S 3d
₂₁ Sc 1S 2S 2P	3S 3P	4S 3d
₂₂ Ti 1S 2S 2P	3S 3P	4S 3d
₂₃ V1S 2S 2P	3S 3P	4S 3d
₂₄ Cr1S 2S 2P	3S 3P	4S 3d
₂₅ Mn1S 2S 2P	3S 3P	4S 3d

Cr

 Cu/Cu^{2+}

Mo

Ag/Ag+

Au

Polyelectronic Models

Hydrogen versus Helium

Effective Nuclear Charge and Shielding

The Modern Periodic Table (Glenn Seaborg 1947)

Periodic Properties

Effective Nuclear Charge

Ionization Energy

Electron Affinity

Atomic Radii

Spectroscopy Lab

Spectroscopy

Why is a liquid colored?

Spectrophotometer

Spectrophotometer

What happens when light travels through a medium?

Beer's Law

Calibration of the meter.

What colors absorb what other colors?

All measured in nanometers

