Tracks Dataset

The data set we will be using is <u>1 Million Spotify tracks</u>. The tracks dataset includes the following columns:

artist name	string	The artist's name	
track_name	string	The track name	
track_id	string	Spotify's unique track id	
popularity	int	Track popularity (0 to 100)	
year	int	Year released (2000 to 2023)	
genre	string	The genre of the track	
danceability	float	Track suitability for dancing (0.0 to 1.0)	
energy	float	The perceptual measure of intensity and activity (0.0 to 1.0)	
key	int	The key the record is in (-1 to -11)	
loudness	float	Overall loudness of track in decibels (-60 to 0 dB)	
mode	int	Modality of the track (Major '1'/ Minor '0')	
speechiness	float	Presence of spoken words in the track	
acousticness	float	Confidence measure from 0 to 1 of whether the track is acoustic	
instrumentalness	float	Whether track contains vocals (0.0 to 1.0)	
liveness	float	Presence of audience in the recording (0.0 to 1.0)	
valence	float	Musical positiveness (0.0 to 1.0)	
tempo	float	Tempo of track in beats per minutes (BPM)	
duration_ms	int	Duration of track in milliseconds	
time_signature	int	Estimated time signature (3 to 7)	

It's important to notice: the dataset must be further cleaned: Hot-Encoding for 'genre' column, StandardScaler for numeric columns, Bucketing for 'year' column.

Database ERD

Entities:

- Tracks
- Liked/Dislikes Tracks
- Metrics
- Account

Algorithm

- 1. Get the tracks the user has liked (=user_like_df).
- 2. Get the tracks the user has disliked (=user_dislike_df).
- 3. Get all tracks table (=all_tracks_df).
- 4. Sort **user_like_df**, **all_tracks_df** columns in alphabetical order so columns match each other.
- 5. Drop columns: *track_id*, *track_name*, *artist_name*.
- 6. Calculate weighted mean values [1] of user like df (=user like df mean).
- 7. Calculate *similarity_column* [3] = sklearn.cosine_similarity(**all_tracks_df**, **user_like_df_mean**).
- 8. Join similarity_column with all_tracks_df.
- 9. Sort all_tracks_df by descending similarity_column.
- 10. Filter all_tracks_df of tracks that appear in user_like_df & user_dislike_df.
- 11. Filter all tracks df where similarity column > THRESHOLD^[2].
- 12. Present tracks to user.

weighted mean values - we want to calculate the mean values from the user's entire history of 'likes', but in a weighted way so that the oldests tracks have less influence on the upcoming recommendations. The table below is an example of how we could calculate the weighted mean for all columns. The specifics (percentiles and weights) are to be determined during development.

Oldest tracks	mean of one column	weight
0%-20%	54	1
20%-40%	23	2
40%-60%	87	3
60%-80%	79	4
80%-100%	97	5
Newest tracks		
Regular mean	68.00	
Weighed mean	77.47	

^[2] THRESHOLD - Degree of similarity, to be decided later.

^[3] sklearn.cosine_similarity - The cosine measurement is commonly used to measure the distance between vectors. Below is the formula, and illustrated examples:

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

$$- \underset{\text{Cos}(\theta) \text{ close to } \theta}{\text{--} \cos(\theta) \text{ close to } 1}$$

$$- \underset{\text{Similar vectors}}{\text{--- Angle } \theta \text{ close to } \theta}$$

$$- \underset{\text{Cos}(\theta) \text{ close to } 1}{\text{---- Cos}(\theta) \text{ close to } 1}$$

$$- \underset{\text{Orthogonal vectors}}{\text{----- Angle } \theta \text{ close to } 180}$$

Modules

- User Registration Module Registers and logs the user into the system.
- Music Recommender Module Generates a recommendation track list for the user, and manages the liked & disliked tracks against the database.
- Metrics Module Manages the metrics system

Architecture

Web System Architecture:

Recommendation Architecture:

UML Graphs of use cases

User request to register

User request to login using (username, pass):

User uploads his favored playlist:

In the format of a CSV, containing a list of Spotify track IDs of his favored tracks.

User clicked the like button on a track from the list:

User clicked the like button on a track from the list:

User clicked the 'Refresh Recommendation list" button

Technologies

- Frontend JQuery (Javascript)
- Backend FastAPI (Python)
- Algorithm libraries: numpy, pandas, sklearn (Python)
- Database PostgreSQL