Toán rời rạc 1 – Đức Huy

Công thức Bài toán đếm

Nguyên lí đếm cơ bản

Nguyên lí cộng	Trong rổ bóng có m quả bóng xanh và n quả bóng đỏ khác nhau => m + n cách bốc bóng
Nguyên lí nhân	Trong rổ bóng có m quả bóng xanh và n quả bóng đỏ khác nhau => m.n cách bốc lần lượt một quả bóng xanh và một quả bóng đỏ

Hoán vị, tổ hợp, chỉnh hợp

Hoán vị	Tập hợp A có n phần tử có n! hoán vị
Chỉnh hợp	Số chỉnh hợp chập k của tập hợp A có n
	phần tử là $P(n,k) = \frac{n!}{(n-k)!}$
Tổ hợp	Số tổ hợp chập k của tập hợp A có n phần
	tử là $C(n,k) = \frac{n!}{(n-k)!k!}$
Chỉnh hợp lặp	Là chỉnh hợp cho phép các phần tử trong
	nó được lấy lặp lại
	Số các chỉnh hợp lặp chập k của n phần tử
	là n ^k
Tổ hợp lặp	Là tổ hợp cho phép các phần tử trong nó
	được lấy lặp lại
	Số các tổ hợp lặp chập k của n phần tử là
	$C_{n+k-1}^{k} = C(n+k-1,k)$
Hoán vị trong tập hợp có lặp	Số hoán vị lặp của n phần tử trong đó có
	n ₁ phần tử như nhau loại 1, n ₂ phần tử
	như nhau loại 2, là:
	n!
	$\boxed{ \overline{n_1! n_2! n_k!}}$

Toán rời rạc 1 – Đức Huy

Bài toán tìm số nghiệm nguyên không âm

Bài toán: cho phương trình $x_1 + x_2 + ... + x_n = k$, tìm số nghiệm nguyên không âm của phương trình (x_1 tới $x_n \ge 0$)

Bước 1: Nếu bài toán có ràng buộc $x_i \ge s \tilde{o}$ nguyên bất kì, ta phải đặt biến để đưa x_i về dạng chuẩn $x_i' \ge 0$

Bước 2: Tính toán số bộ nghiệm thỏa mãn bằng tổ hợp lặp với n = số các số hạng x và k = giá trị vế phải

Lưu ý: Nếu ràng buộc ở bước 1 có dạng $x_i \le s$ ố nguyên bất kì ta phải chia nhỏ bài toán thành các bài toán con và giải lần lượt.

Giải hệ thức truy hồi từ phương trình đặc trưng

Phương trình đặc trưng	Hệ thức truy hồi
	$X_n = C_1 X_{n-1} + C_2 X_{n-2} + + C_k X^{n-k}$
	Có phương trình đặc trưng là:
	$x^{k} - c_{1}x^{k-1} - c_{2}x^{k-2} - \dots - c_{k} = 0$
Nếu PTĐT có k nghiệm phân biệt r ₁ đến r _k	Nghiệm của hệ thức truy hồi:
	$X_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n + + \alpha_k \cdot r_k^n$
Nếu PTĐT có nghiệm kép $r_1 = r_2 = r$	Nghiệm của hệ thức truy hồi:
	$\mathbf{x}_{\mathbf{n}} = \alpha_{1} \cdot \mathbf{r}^{\mathbf{n}} + \alpha_{2} \cdot \mathbf{n} \cdot \mathbf{r}^{\mathbf{n}}$
Nếu PTĐT có nghiệm phức r∠±θ	Nghiệm của hệ thức truy hồi:
	$x_{n} = r^{n} \left(\alpha_{1} \cos n\theta + \alpha_{2} \sin n\theta \right)$

