Department of Computing

SE312: Software Construction

Class: BESE – 5 AB

Lab 6: Data Analysis with Hibenate

Date: April 12th, 2017

Time: Wednesday (10:00 - 13:00), Wednesday (14:00 - 17:00)

Instructor: Fahad Ahmed Satti

Lab 7: Data Analysis with Hibernate

Introduction

In this lab, you will be solving a real world problem, where by data collected with 3 novel graphical password authentication schemes (CHC and its variants, CO-CHC and Rogue CHC) will be used to build a simple data storage and analysis application in Java.

You will need to read the CSV file and build hibernate based data storage and analysis application.

Objectives

After performing this lab, students will be able to understand:

- Hibernate
- Data Analysis
- HQL and HCQL
- Parsing CSV files

Tools/Software Requirement

- Solutions should be made using Java and must use the ORM Hibernate.
- You can take help from internet but remember **no plagiarism**.

Description

Graphical password schemes are unconventional types of passwords in which a user's password is in the form of images or some points on an image. They are in use around us in the form of the picture password in Windows and the pattern recognition password in Android. A graphical password scheme named Convex Hull Click password is a potential graphical password under research.

The following three graphical password schemes were recently used for a usability study:

- 1) Convex Hull Click Graphical Password Scheme (CHC)
- 2) Centroid-Oriented Convex Hull Click Graphical Password Scheme (CO-CHC)
- 3) Rogue Convex Hull Click Graphical Password Scheme (Rogue CHC)

In this study, a user had to complete 5 successful logins of the scheme, called rounds. Each round is represented by a row in the CSV File. Each round consists of 5 challenges or rounds in which the password had to be entered correctly, with at most 2 wrong tries. On 3rd wrong try the user would not be authenticated in that particular round and the state would be set as False. For

successful authentication, in any round, the user had to get atleast 5 challenges correct. For example, if a user got a successful login with 2 wrong tries, he or she will have succeeded in 7 challenges. The data of the challenges of a single login is given in front of it. Please note that the column headers, in the CSV file, indicate the following.

- 1) SCHEME: The type of scheme, experimented with
- 2) Time taken per input: Time taken to complete a single login of the scheme
- 3) STATE: TRUE if a login was successful and FALSE if a login was unsuccessful
- 4) T-C[number]: Time taken for a challenge
- 5) STATE (For the challenges): True if a challenge was successful and FALSE if a challenge was not successful.

Lab Task

Your lab task will be comprised of the following 2 parts:

- 1. Create a DAO (Data Access Object) layer for interaction with the DB.
- 2. You must use parameterized insert HQL queries.
- 3. Data Storage
 - a. You will have to read the CSV file for the 3 password schemes and build a Hibernate based data storage application.
 - b. Ignore all entries against username with the word "test" (case insensitive) in it.
 - c. Ignore all entries, where "time taken per input" is 0.
- 4. You must make a separate package called BO (Business Objects), where you will create classes with the data analysis functionality, for each scheme.
- 5. Your unit tests will check the functions in the BO layer.
- 6. For DB interaction, your BO will call DAO which in turn will only use HCQL for retrieving data.
- 7. Data Analysis (for all 3 schemes)
 - a. Find all users, who have not participated in the current scheme.
 - b. Mean percentage of correctness for a round (5 correct logins to be considered) {EXAMPLE: For every distinct participant = (Total No. of rounds/Total No. of successful rounds)*100}
 - c. Standard Deviation of the percentage correctness of a password login
 - **d.** Mean percentage of correctness for challenges(within each round) {EXAMPLE: For a single participant's 1 correct login in a round = (5/Total No. of challenges)*100}
 - e. Standard Deviation of the percentage correctness of challenges

National University of Sciences and Technology (NUST) School of Electrical Engineering and Computer Science

- **f.** Mean time taken for a correct password input (Also, find its standard deviation and range)
- g. Mean time taken for every correct login of all the users (Mean time taken for the 1st successful login occurrence of all the users, mean time taken for the 2nd successful login occurrence of all the users and so on)
- h. Mean percentage error of every scheme {EXAMPLE: For a single user = (No. of false logins/No. of total logins)*100}
- 8. Using a Version Control System (VCS) to manage your solutions.
- 9. Do not change the CSV file.

Deliverables

- Each submission is individual with the following composition:
 - Source Code
 - Unit Tests
 - Documentation(Introduction, ERD, How to Run and Analysis+Results)
 - o Link to the public repo on GitHub
- Convert your submission files into a zip folder and name it as given below, finally upload the zip folder to LMS.
 - o Name Registration No. Section

Grade Criteria

This lab will be graded on the following rubric, with minimum marks 0 and maximum marks of 24:

National University of Sciences and Technology (NUST) School of Electrical Engineering and Computer Science

Criteria	0	1	2	3	4
R1	The system failed to	The system execution led to	The system was correctly	The system was correctly	The system was correctly
Completeness and	produce the right	inaccurate or incomplete	functional and most of	functional and all of the	functional and all of the
Accuracy	accurate results	results. It was not correctly	the features were	features were	features were implemented.
		functional or not all the	implemented	implemented	It was demonstrated how the
		features were implemented.			real world problem was
					solved
R2	Coding standards, best	Coding standards, best	Coding standards, best	Coding standards, best	Coding standards, best
Coding Standards	programming practices	programming practices are	programming practices	programming practices are	programming practices are
	are not followed.	not followed.	are rarely followed.	followed appropriately	followed extensively
	Students cannot				
	understand the code.				
R3	The system does not	,	It is demonstrated how	It is demonstrated how the	It is clearly and effectively
Ways of	fulfill the functional	demonstrated how the	the system fulfills some of	system fulfills most of its	demonstrated how the
Demonstration	requirements.	system fulfills its functional	its functional	functional requirements	system fulfills all of its
R4	Student is unaware of	requirements System's non-functional	requirements	Mantafala sustanda	functional requirements
Quality		requirements (as mentioned	Some of the system's non-functional	Most of the system's non- functional requirements	All of the system's non- functional requirements are
Quality	System's non- functional	in SRS) are not demonstrated	requirements are	are demonstrated	clearly demonstrated
	requirements	in sk3) are not demonstrated	demonstrated	are demonstrated	clearly demonstrated
R5	Most part of the	Working product is	Working product has	Working product has some	Working product has several
Originality	working product is	uninspired and	some potential for	creative /original	creative /original /inventive
Originality	copied.	straightforward work with	making a creative	/inventive element and a	/innovative elements and a
	oopica.	little to no creative potential.	contribution.	potential for making a	clear potential for making a
				creative contribution	creative contribution.
R6	Modern engineering		Computer-based tools		Modern computer-based
Modern Tool Usage	software were not		and technical software		tools and software were used
	used, where		were used, but more		extensively in the project.
	applicable, to solve		could have been used to		New software/language was
	complex engineering		solve the problem.		learned as needed
	problems.				