QLoRA

LLM fine-tuning made accessible

The Problem

LLMs are (computationally) expensive

10B Parameter Model

The Problem

LLMs are (computationally) expensive

What is Quantization?

Quantization = splitting range into buckets

What is Quantization?

Quantization = splitting range into buckets

Ingredient 1: 4-bit NormalFloat

A better way to bucket numbers

4-bit e.g. 0101

$$\implies 2^4 = 16$$
 unique combinations

⇒ 16 buckets for quantizations

Ingredient 1: 4-bit NormalFloat

16 buckets for quantizations

Model Parameter Distribution

Ingredient 2: Double Quantization

Quantizing the Quantization Constants

$$x^{Int8} = round \left(\frac{127}{absmax(x^{FP32})} x^{FP32} \right)$$

$$= round \left(c^{FP32} . x^{FP32} \right)$$
Takes up precious memory

Ingredient 3: Paged Optimizer

Looping in your CPU

Ingredient 3: Paged Optimizer

Looping in your CPU

Ingredient 4: LoRA

Fine-tunes model by adding small set of trainable parameters

Full Fine-tuning: $h(x) = W_0 x$

Ingredient 4: LoRA

Fine-tunes model by adding small set of trainable parameters

Full Fine-tuning: $h(x) = W_0 x$

LoRA: $h(x) = W_0x + \Delta Wx = W_0x + BAx$

1

Ingredient 4: LoRA

Fine-tunes model by adding small set of trainable parameters

Full Fine-tuning: $h(x) = W_0 x$

LoRA: $h(x) = W_0x + \Delta Wx = W_0x + BAx$ W_0 + B A =Frozen

Increasing Precision by Increasing Rank

Rank = 2

Number of Trainable Parameters

Rank	7B	13B	70B	180B
1	167k	228k	529k	849k
2	334k	456k	1M	2M
8	1M	2M	4M	7M
16	3M	4M	8M	14M
512	86M	117M	270M	434M
1,024	171M	233M	542M	869M
8,192	1.4B	1.8B	4.3B	7.0B

In reality, LLMs are made up of multiple layers of differing sizes. This is a generalization as if the model were a single layer.

Bringing it all together

