Roll	No.:	 	 	

Maximum Marks: 50

(4)

National Institute of Technology Delhi

Name of the Examination: End Sem Examination (Dec. 2023)

Branch: (M.Tech. CSE(Analytics) and M.Tech. (CSE), Ph.D. (for all branches) Title of the Course: Computational Mathematics

Time: 3 Hours

may be assumed.

Note:1. Attempt all questions. 2. Read all questions carefully 3. Missing parameters or values

Semester: I Course Code: CSLM 501

4. Z and T table can be collected from the

invigilators on sharing basis.

Q.No.	1	2	3	4	5	6
C.O.	CO1	CO2	CO2	CO3	CO3	CO4
P.O.	1	2	2	3	3	4
B.L.	1	3	2	2	3	3

- 1. (a) If X and Y are independent, then prove that Cov(X,Y) = 0. (3)
 - (b) Proof the Chebyshev's inequality. (5)Suppose that it is known that the number of items produced in a factory during a week is a random variable with mean 50. What can be said about the probability that this week's production will exceed 75? If the variance of a week's production is known to equal 25, then what can be said about the probability that this week's production will be between 40 and 60?
 - (c) Calculate the variance of Geometric Random Variable. (3)
- 2. (a) How large the random sample need be to meet certain specifications concerning type II (3)errors. Generate the expression. For instance, suppose that we desire to determine the sample size n necessary to ensure that the probability of accepting $H_0: \mu = \mu_0$ when the true mean is actually μ_1 is approximately β .
 - (b) If $X_1, X_2, ..., X_n$ is a sample from a normal population whose mean μ is unknwn but (3)whose variance σ^2 is known, show that $(-\infty, \bar{X} + z_{\alpha}\sigma/\sqrt{n})$ is a $100(1-\alpha)$ percent lower confidence interval for μ .
- 3. (a) Suppose that when a signal having value μ is transmitted from location A the value received at location B is normally distributed with mean μ and variance 4. That is, if μ is sent, then the value received is $\mu + N$ where N, representing noise, is normal with mean 0 and variance 4. To reduce error, suppose the same value is sent 9 times. If the successive values received are 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, let us construct a 95 percent confidence interval for μ .
 - (b) An astronomer wants to measure the distance from her observatory to a distant star. (3)However, due to atmospheric disturbances, any measurement will not yield the exact distance d. As a result, the astronomer has decided to make a series of measurements

and then use their average value as an estimate of the actual distance. If the astronomer believes that the values of the successive measurements are independent random variables with a mean of d light years and a standard deviation of 2 light years, how many measurements need she make to be at least 95 percent certain that her estimate is accurate to within ± 0.5 light years?

(4)

(4)

(2)

- 4. (a) Civil engineers believe that W, the amount of weight (in units of 1,000 pounds) that a certain span of a bridge can withstand without structural damage resulting, is normally distributed with mean 400 and standard deviation 40. Suppose that the weight (again, in units of 1,000 pounds) of a car is a random variable with mean 3 and standard deviation .3. How many cars would have to be on the bridge span for the probability of structural damage to exceed 0.1?
 - (b) Prove that, "with 95 percent confidence" we assert that the true mean lies within $1.96\sigma/\sqrt{n}$ of the observed sample mean. The interval $(\bar{x}-1.96\frac{\sigma}{\sqrt{n}},\bar{x}+1.96\frac{\sigma}{\sqrt{n}})$ is called a 95 percent confidence interval estimate of μ .
- 5. (a) Suppose that when a signal having value μ is transmitted from location A the value received at location B is normally distributed with mean μ and variance 4. That is, if μ is sent, then the value received is $\mu + N$ where N, representing noise, is normal with mean 0 and variance 4. To reduce error, suppose the same value is sent 9 times. If the successive values received are 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, let us construct a 95 percent confidence interval for μ .
 - (b) Use the data of above Problem (5 a) to obtain a 99 percent confidence interval estimate of μ , along with 99 percent one-sided upper and lower intervals. (4)
 - (c) Let us again again consider above Problem (5 a) but let us now suppose that when the value μ is transmitted at location A then the value received at location B is normal with mean μ and variance σ^2 but with σ^2 being unknown. If 9 successive values are, as in above Example, 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, compute a 95 percent confidence interval for μ .
- 6. (a) A public health official claims that the mean home water use is 350 gallons a day. To verify this claim, a study of 20 randomly selected homes was instigated with the result that the average daily water uses of these 20 homes were as follows:

 340 344 362 375
 - 340 344 362 375 356 386 354 364
 - 332 402 340 355
 - 362 322 372 324
 - 318 360 338 370
 - (b) Do the data contradict the official's claim? Explain Type I and Type II error

National Institute of Technology, Delhi Name of the Examination: End-Semester Examination (Autumn Semester 2023)

Branch: CSE(Ph.D/M.Tech)

Title of the Course: Motion analytics

Time: 3 hours

Semester: I

Course Code: CSBM 616

Maximum Marks: 50

Q.no	Question	Marks	СО	BL	РО
	Section 1: Each question carries 1 mark				
1	Discuss the Gait Parameters included in Human Gait Analysis. Explain how the variations of these parameters occur in contrast with joint anatomy and the biomechanics of movements.	5	1,3	i	1
2.	Compare the Artificial Neuron with biological neuron. Consider a neuron from the backpropagation neural network as following.	10	1	2	1
	output his NET OUTO, $E_{01} = \frac{1}{2} (target - out_{01})^2$ $E_{12} = \frac{1}{2} (target - out_{01})^2$ $E_{13} = E_{01}$				
	let h_1 = 0.593 h_2 = 0.597, b_2 =0.6, W_5 =0.4, W_6 =0.45 and Target O_1 =0.01. Derive and find the partial derivative of E_{Total} with respect to W_5 i.e ($\frac{\partial E_{Total}}{\partial w_5}$) for the above figure .				
3.	 a) What is an Electrogoniometer and a Potentiometer. b) Explain how integrating signals from multiple modalities, such as vision-based and sensor-based signals, could result in better accuracy and reliability of automated gait analysis systems. c) How can signal processing techniques fuse this information from different modalities? 	10	2,3	2	1,2
4.	Explain the limitations and challenges associated with marker-less motion capture methods in the context of human gait analysis.	10	2	3	2

5.	Suppose, as a computer scientist, you have been assigned to distinguish between four	10	1	4	1
	walking disability.				
	Limping Gait: Characterized by an uneven and irregular walking pattern, often associated with pain or discomfort in one leg.				* y
	Toe-Walking Gait: Involves walking on the toes rather than the entire foot, typically seen in neurological conditions or muscle imbalances.				
	Wide-Based Gait: Exhibits an abnormally wide stance during walking, which may indicate balance or coordination issues.			٠	
	Shuffling Gait: Involves short steps with minimal foot lift, often associated with Parkinson's disease.				
	You have been given pressure data from pressure plates of individual walks over a 3m platform. Your task is to develop a machine learning model to classify individuals into four distinct gait abnormalities. What will be your approach.				
6.	Explain the role of advanced signal processing tools in improving the accuracy and depth of motion insights. Discuss the following tools with an example: a. wavelet transforms	5	2	3,5	1
	b. time-frequency analysis				
	c. machine learning-based signal processing				

•

Roll No.:	

Name of the Examination: M. Tech & PhD

Branch

: CSE

Semester

:1

Title of the Course

:Machine Learning

Course Code : CSLM (611)

Time: 3 Hours

Maximum Marks: 50

Note: Please attempt all

questions

Marks	Q. (1)	Q. (2)	Q. (3)	Q. (4)	Q. (5)	Q. (6)	Q. (7)
CO	CO3	CO3	CO4	CO4	CO4	CO4	CO4
BL	L2	L3	L3	L3	L4	L4	L4

1. Explain the concept of SVM and its use in both classification and regression problems. Describe the kernel trick and its significance in SVM.

(5 Marks)

2. Explain in detail the machine learning process model.

(5 Marks)

3. Explain the FOIL algorithm in the context of decision trees. Compare and contrast it with the CART algorithm, highlighting their respective strengths and weaknesses.

(5 Marks)

4. Let us assume a regression algorithm generates a model y=0.54+0.66x for data pertaining to week sales data of a product. Here, x is the week and y is the product sales. Find the prediction for the 5th and 8th week.

(5 Marks)

- 5. If a dataset containing information about house prices with the following columns: 'area', 'bedrooms', 'bathrooms', 'price'. Perform EDA and answer the following:
 - Calculate the mean, median, and standard deviation for the 'price' column.
 - Visualize the relationship between 'area' and 'price' using a scatter plot.
 - Determine the correlation between 'bedrooms' and 'bathrooms'.

(6 Marks)

6. Consider the training dataset in given Table. Construct decision trees using ID3, C4.5, and CART.

S.NO	Assessment	Assignment	Project	Seminar	Result
1.	Good	Yes	Yes	Good	Pass
2.	Average	Yes	No	Poor	Fail
3.	Good	No	Yes	Good	Pass
4.	Poor	No	No	Poor	Fail

5.	Good	Yes	Yes	Good	Pass
6.	Average	No	Yes	Good	Pass
7.	Good	No	No	Fair	Pass
8.	Poor	Yes	Yes	Good	Fail
9.	Average	No	No	Poor	Fail
10.	Good	Yes	Yes	Fair	Pass

(7 Marks)

7. Assume that the neurons have a sigmoid activation function, perform a forward pass and backward pass on the network. Assume that the actual output of y is 0.5 and learning rate is 1. Perform another forward pass.

(7 Marks)

Roll No.:	

End Semester Examination (Autumn Semester 2023)

Branch

: CSA

Maximum Marks: 50

Semester

: 1st

Time

: 03 Hours

Title of the Course : Distributed Databases

Course Code

: CSBM 662

Note: Read all questions carefully. Draw diagrams wherever necessary.

Q. No	Questions	Marks	со	BL	PO
1. (a)	List various issues that need to be considered during query optimization.	3	2	L2, L3	1
(b)	What do the C and A in the CAP theorem stand for? Give an example of how designing for one of those properties can lead to difficulties in maintaining the other.	3	4	L2, L3	6
(c)	Elaborate on how vertical scalability differs than horizontal scalability. Give different database products/software adhering to these.	3	1	L1, L2	7
(d)	You are assigned the task of building a database to model employees and whom they work with in your company. The database must be able to answer queries such as how many employees does Employee A work with? And does Employee A work with anyone who works with Employee B? Explain which type of NoSQL database would naturally fit with these requirements.	3	4	L2, L3	4
2.	Consider the following database schema: emp(name,age,sal,dno) dept(dno, dname, floor, budget, mgr, ano) acnt(ano, type, balance, bno) bank(bno, bname, address) Consider the following queries: (a) select name, floor from emp, dept where emp.dno = dept.dno and sal>100K and floor= 1 or floor=2; Transform the query into normal form (conjunctive and disjunctive) (b)select name, floor from emp, dept where emp.dno = dept.dno and sal>100K Generate all possible query trees for the given query. (c) select name, floor, balance from emp, dept, acnt where emp.dno = dept.dno and dept.ano = acnt.ano Show all the possible join trees for the given query.	8	2	L2, L3	2
3.	Consider the figure below that shows four processes (P1, P2, P3, P4) with events a,b,c,and messages communicating between them.	08	3	L2, L5	3

	Assume that the initial logical clock values are all initialized to 0. (a) List the Lamport timestamps for each event shown in Figure below. Assume that each process maintains a logical clock a single integer value as a Lamport clock. Provide timestamps for each labeled event. P1 P2 P3 P4 (b) Is there a potential for a casual violation? Explain why. (c) Identify the Concurrent Events.													
4.	Conside CAD/C	EMP ENO E1 E2 E3 E4 E5 E6 E7 E8 PROJ PNO P1 P2 P3 P4	ENAME J. Doe M. Smith A Lee J. Miller B. Casey L. Chu R. Davis J. Jones PNAMI Instrumenta Database D CAD/CAM Maintenance e query project."	Elect. E Syst. An Mech. E Program Syst. An Elect. E Mech. E Syst. An evelop.	elation Eing nel. Eng. nmer nel. Eng. 150000 1350000 3100000 Name	ASG ENO E1 E2 E3 E3 E4 E5 E6 E7 E8 Month New New Parit	PNO P1 P1 P2 P3 P4 P2 P4 P3 P3 P3 P3 P3 P6 P7	RESP Manager Analyst Analyst Consultant Engineer Programmer Manager Manager Engineer Manager Engineer Manager Engineer Manager Engineer Manager PAY TITLE Elect. Eng. Syst. Anal. Mech. Eng. Programmer	DUR 12 24 6 10 48 18 24 48 36 40 SAL 40000 34000 27000 24000		10	2	L2, L3	5,10
	q1: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO = ASG.ENO AND ASG.PNO = PROJ.PNO AND PROJ.PNAME =" CAD/CAM" Apply INGRES Algorithm to the above query q1. (c) Explain how centralized INGRES algorithm is different from the distributed INGRES algorithm?									om the				
5.	(b) Exp 2PC	lain (). Iain I	Fwo-Phas Distributes	e Com d Thre	nmit p e-Phas	rotoc se Co	ol (2 ommi	d reliability PC) and di t protocol. of NoSQL	sadvant	ls? ages of	12	3	L4, L5	8,9

•

M Tech (CSE)

CSBM 505 Data Mining End Semester Examination, 2023

Duration: 03 Hours Max. Marks: 50 Date: 13 December, 2023

Note: Attempt all the questions.

	Questions			Marks	CO	BL	
I	a. A transaction data of a restauran	is given in the table be	low to show 6 order	s. 5	2	3	
	The orders are having 5 food items which are burger, pizza, ketchup, cold drink,						
	and french fries.						
	Order Id List of items	List of items					
	Orderl Burger, pizza,	ket chup		1			
	Order2 Burger, pizza						
		rink, French fries					
	Order4 French fries, 0						
	Order5 French fries, I			İ	!		
		rink, French fries					
	By using the above dataset bui	d a FP tree with supp	port 33%. Show th	ne			
	constructed tree at every step.	daking in anadanaking dak					
	Discuss the importance of cross-va	dation in evaluating data	a mining models.				
	b. By using the above dataset b	ild a ED tree with sur	mart 220/ Shaw th	ne 5	3	3,4	
	-	na a rr-nee wiin sup	pon 33 %. Snow n	16 3)	3,4	
	constructed tree at every step.	1 1 . 1		:			
	hot	logs <u>hotdogs</u>	\sum row				
	hamburgers 200	500	2500	,			
	<u>hamburgers</u> 100	1500	2500				
	$\sum_{\rm col}$ 300	2000	5000				
	The above contingency table summ	arizes supermarket trans	action data. where h	$_{ot}$			
	dogs refers to the transactions	•	, , , , , , , , , , , , , , , , , , ,				
	transactions that do not contain he						
	containing hamburgers, and hame	•					
	contain hamburgers.						
	i. Suppose that the associa	d					
	Given a minimum support threshold of 25 % and a minimum confidence threshold of 50 %, is this association rule strong?						
	ii. Based on the given data			ne			
	purchase of hamburger.	? If not, what kind of α	orrelation relationsh	ip			
	exists between the two?						
2	a Consider the training exampl	s shown in following	table for a binai	y 5	3	3	
	classification problem.						

		Instance	2 a1	a_2	a_3	Target Class]			
		1	T	$\frac{a_2}{T}$	1.0	+				
		$\frac{1}{2}$	T	T	6.0	+				
		3	T	F	5.0					
		4	F	F	$\frac{3.0}{4.0}$	+				
		5	F	T	7.0					
	-	6	F	T	3.0					
		7	F	F	8.0					
		8	T	F	7.0	_				
		9.	F	T	5.0	+				
	. ,	L		-]			
				this α	ollection	on of training ex	amples with respect			
		to the positive cl			: c	·	4. 41 4			
			ormau	on ga	ins of	a_1 and a_2 relati	ve to these training			
		examples?		:		14	!C			
1 1					s attri	bute, compute tr	ne information gain			
		for every possibl			hat	on a and al	manding to the			
]		wnat is the c classification err			uca wee	a_1 and a_2)	according to the			
						nd a) acd:	to the Cinii - Jane			
	v. '	what is the best	spin (t	et wee	a_i a	nd a_2) according	to the Gini index?			
2	h Consider	the points with x	and v	00.0**	linataa	in the table give	n helow	5	2	3
-	b Consider	THE POURS WITH A			maics		Ti below.	3	4	3
		1		X 2.0		<u>y</u>				
		1		2.0		2.0				
		2		2.5		3.0				
		3		4.0		5.0				
		4		6.0		8.0				
		5		4.5		6.0				
		6	- 1	5.5		6.0				
		7	4	4.5		5.5				
							points 1 and 4 as			
							dissimilarity among			
	points. Sho	wthe clustersan	d inten	media	te cen	ter coordinates for	ortwo iterations.			
3	a	1 2	3	4 5	6			5	2,3	4
		1 0						·		
		2 9 0				1				
		3 3 7	0			1				
	ļ	4 6 5	9	0		7				
		5 11 10	2	8 ()	7				
	ļ <u> </u>	6 5 3	1	4 2	2 0	1				
	_	<u> </u>		C'		_	D 1 0			
				Clus	tering	and generate th	ne Dendrogram for			
		the above given		•						
		Demonstrate the					1 .			
		Differentiate bet	ween s	ıngle	andco	mplete Linkage	clusters			
3	b .	TT 1 .		.1	cc ·	c		5	2	2
					tticien	icy of Apriori -	based mining using			
		Hash based Tech								ŀ
							oction? What is the			
\square		drawback of usin							-	
4			ept of	over f	itting	in the context of	machine learning	2	2	2
		models.	-							
						ata quality and	consistency issues	2	1	2
		during the integr	at ion p	roces	S.					

		escribe the mu		model and I	s components	m the	2	1] 2
		ntext of data cu		ons. hierarchie	es, and measure	s in a	2	1	2
	mı	ultidimensional	model.						-
	v. Cc	nsider a set of		(C)			2	2	3
			action 1: {A, B,	,					
			action 2: {B, C, I action 3: {A, C, I						
			action 4: $\{A, D, I\}$]
			action 5: {B, C, I						
	Apply the H				haminimum s	upport			
	count of 2.					шрроп			
5	a Dataset:						5	3	4
	l l	[1025221	01						
		[1.0, 2.5, 3.2, 1] [3.0, 4.0, 5.0, 2]	•						
		[3.0, 4.0, 3.0, 2]							·
		[4.0, 3.0, 4.5, 2]							
		[3.2, 3.8, 4.0, 1]	4'					İ	
	1	[2.5, 3.0, 3.5, 1]	4.						•
		[4.0, 4.2, 4.8, 2]					1		
		13.8,4.0,4.2,2	.01,						
		[3.8, 4.0, 4.2, 2. [2.9, 3.2, 3.8, 1.	-						
		[3.8, 4.0, 4.2, 2.] [2.9, 3.2, 3.8, 1.] [4.5, 5.2, 5.5, 3.]	.5],						
]	[2.9, 3.2, 3.8, 1]	.5],						
] i. Pe	[2.9, 3.2, 3.8, 1.] [4.5, 5.2, 5.5, 3.] rform principal	.5], .0] component ana	lysis (PCA) on	a dataset and ic	lentify			
] i. Pe the	[2.9, 3.2, 3.8, 1.] [4.5, 5.2, 5.5, 3.] rform principal eprincipal comp	component ana			lentify			
	i. Pe the ii. Di	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal eprincipal comp scuss the varian	component ana conents.			lentify			
•	i. Pe the ii. Di	[2.9, 3.2, 3.8, 1.] [4.5, 5.2, 5.5, 3.] rform principal eprincipal comp	component ana conents.			lentify	5	3	4
•	i. Pe the ii. Di	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal exprincipal composeuss the variantesion tree forth	component ana conents.			lentify	5	3	4
•	i. Pe the ii. Di b Draw Regre	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal complex principal complex the variant ession tree forth	component ana conents. ice explained by ne following	each principal	component.		5	3	4
	i. Pe the ii. Di b Draw Regre	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal complex the variant ession tree forth Pre	component anaconents. ace explained by the following	each principal	Target Hours Player		5	3	4
	i. Pe the ii. Di b Draw Regre	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal complex principal complex the variant ession tree forth Pre Terms Hot	component anaponents. Ice explained by the following	each principal Windy False	Target Hours Player		5	3	4
	i. Pe the ii. Di b Draw Regre	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal composcuss the variant ession tree for the pre- Temp Hot Hot	component ana conents. ace explained by the following dictors Humadisy High	each principal Windy False True	Target Hours Player 26 30		5	3	4
	i. Per the ii. Dir b Draw Regree Outlook Rainy Rainy Overoast	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal composcuss the variant ession tree forth Pre Temp Hot Hot Hot	component ana conents. ace explained by the following dictors Humidity High High	each principal Windy False True False	Target Hours Player 26 38 48		5	3	4
	i. Pe the ii. Di b Draw Regre Outlook Rainy Rainy Overoast Sunny	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal complex principal complex scuss the variant ession tree forth Pre Terro Hot Hot Hot MRd	component anaponents. Ice explained by the following dictors Humierisy High High High	Windy False True False False False	Target Hours Player 26 30 48		5	3	4
	i. Pe the ii. Di: b Draw Regre Cuttook Rainy Rainy Overcast Sumny Sumny	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal composcuss the variant ession tree forth Pre Cool Cool	component anaponents. ace explained by the following dictors Humidity High High High Normal	Windy False False False	Target Hours Player 26 30 48 46		5	3	4
	i. Per the ii. Dir b Draw Regree Outlook Rainy Rainy Rainy Sunny Sunny	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal compositions the variant ession tree forth Pre Temp	component ana conents. ace explained by the following dictors Humidity High High High Normal	each principal Windy False True False False False True	Target Hours Player 26 38 48 46 52 23		5	3	
	i. Per the ii. Dir b Draw Regree Custock Rainy Rainy Overoast Sunny Sunny Overoast	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal complex principal complex the variant ession tree forth Pre Temp Hot Hot Hot Cool Cool Cool	component anaponents. Ice explained by ne following dictors Humidisy High High High High Normal Normal	Windy False True False False True True	Target Hours Player 26 30 48 46 62 23		5	3	4
	i. Pe the ii. Di b Draw Regre Outlook Rainy Rainy Overcast Sumny Sumny Covercast Rainy	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal composcuss the variant ession tree forth Pre Tears Hot Hot Hot Cool Cool Cool Cool	component anaponents. Ice explained by the following dictors Humidity High High High Normal Normal High	each principal Windy False True False False True True True False	Target Hours Player 26 30 48 46 62 23 43		5	3	4
	i. Per the ii. Dir b Draw Regree Curtook Rainy Rainy Cveroact Rainy Rainy Rainy Rainy Rainy Rainy Rainy Rainy	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal compositions the variant ession tree for the principal composition of the pri	component ana conents. Ice explained by the following dictors Humarisy High High High Normal Normal High High Normal	each principal Windy False True False False True True False False False False	Target Hours Player 26 30 48 46 62 23 43 36 38		5	3	4
	i. Per the ii. Dir b Draw Regree b Draw Regree b Draw Regree b Draw Regree b Draw Rafny Rafny Covernant Rafny Rafny Rafny Rafny Rafny Sumny	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal compositions the variant ession tree forth Pre Terro Hot Hot Hot Cool Cool Gool Mild Cool Mild Cool	component ana conents. Ice explained by the following dictors Humidity High High High Normal Normal High Normal High Normal Normal	each principal Windy False True False False True False	Target Hours Player 26 30 48 45 62 23 43 36 38 48		5	3	4
	i. Pe the ii. Dis b Draw Regre Outlook Rainy Rainy Overeast Surany Surany Covereast Rainy Rainy Rainy Rainy Rainy	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3.4] Inform principal composeuss the variant ession tree forth Pre	component anaponents. Ice explained by the following dictors High High High Normal Normal High Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	each principal Windy False True False False False False True True False False False False False False False	Target Hours Picye 26 30 48 46 62 23 43 35 38 48		5	3	,
	i. Pe the ii. Di: b Draw Regre Cultook Rainy Rainy Overeast Sumny Sumny Curroast Rainy Rainy Rainy Sumny Overeast	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3] rform principal composcuss the variant ession tree forth Pre Cont Cont Cont Cont Cont Cont Cont Cont Cont Mild Mi	component anaponents. Ice explained by the following dictors Little of the following dictors Litt	each principal Windy False True False False True True False False True True False False True True	Target Hours Player 26 30 48 46 62 23 43 35 38 48 48		5	3	
	i. Pe the ii. Dis b Draw Regre Outlook Rainy Rainy Overeast Surany Surany Covereast Rainy Rainy Rainy Rainy Rainy	[2.9, 3.2, 3.8, 1] [4.5, 5.2, 5.5, 3.4] Inform principal composeuss the variant ession tree forth Pre	component anaponents. Ice explained by the following dictors High High High Normal Normal High Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	each principal Windy False True False False False False True True False False False False False False False	Target Hours Picye 26 30 48 46 62 23 43 35 38 48		5	3	,

Name of the Examination: M.Tech First Year (AY 2023-2024) End Semester Examination

Branch

:CSE/CSA

Semester

: |

Title of the Course

:Advanced Data Structure and Algorithms

Course Code

:CSBM502

Time: 3 Hours

Maximum Marks: 50

Note: Attempt ANY TEN questions. (5 Marks each)

Que	Question	MARKS	CO	PO	BL
No					
1	Suppose we are comparing implementation of insertion sort and	5	1	2	3
;	merge sort on the same machine. For inputs of size n, insertion sort				
:	runs in 8n ² steps, while merge sort runs in 64 nlgn steps. For which				
	value of n does insertion sort beat merge sort?				
2	The recurrence $T(n)=7T(n/2)+n^2$ describes the running time of an	5	2	1	1
,	algorithm A. A competing algorithm A' has a running time of				
	$T'(n)=aT(n/4)+n^2$. What is the largest integer value of a such that A'				
	is asymptotically faster than A?				
3	What is Longest Common subsequence problem? Propose a	5	3	1	2
	recursive solution to this problem. Determine an LCS of				
	{1, 0, 0, 1, 0, 1, 0,1} and {0, 1, 0,1, 1, 0, 1, 1, 0}				
			ŀ		
4	A sequence of n operations is performed on a data structure. The	5	1	2	2
	ith operation costs I if I is an exact power of 2 and 1 otherwise. Use				
	aggregate analysis to determine the amortized cost per operation.				
5	Write recursive and non recursive version of disjoint set forest with	5	3	1	2
	union by rank and path compression algorithm. Analyse the				
	complexity of both the algorithms.				
6	State the maximum flow problem as a linear programming problem.	5	2	2	2
7	Give an example of a linear program for which the feasible region is	5	3	2	3
	not bounded, but the optimal objective value is finite.				
8	Formulate the simplex method. Analyze the complexity.	5	1	1	1

9	Explain the point value representation of a polynomial. Write algorithm for fast multiplication of polynomials.	5	1	3	1
10	Working modulo q=11, how many spurious hits does the Robin-Karp matcher encounter in the text T=3141592653589793 when looking for the pattern P=26?	5	2	2	2
11	Give an algorithm that finds an optimal vertex cover for a tree in linear time.	5	3	1	2
12	What do you understand by randomized algorithm? Give a randomized version of quicksort. Analyse the complexity.	5	3	1	1
13	What is NP-Completeness? Explain the difference between polynomial time and non polynomial time algoritms? Explain any one algorithm of each form.	5	3	3	3

राष्ट्रीय प्रौद्योगिकी संस्थान दिल्ली

NATIONAL INSTITUTE OF TECHNOLOGY DELHI

(शिक्षामंत्रालय, भारत सरकार के अधीन एक स्वायत्त संस्थान)

(An autonomous Institute under the aegis of Ministry of Education (Shiksha Mantralaya), Govt. of India)
Plot No.FA7, Zone Pl. GT Kamal Road, Delhi-110036, INDIA

दूरभाष/Tele: +9111-33861000-1005, फैक्स/ Fax: +9111-27787503

वेबसाइट/Website: www.nitdelhi.ac.in

Autumn Semester AY 2023-24 Department of Computer Science and Engineering End Semester Examination December 15, 2023 (02:00 – 05:00 PM)

Degree	M. Tech.	Branch	CSE
Semester	I		
Subject Code & Name	CSLM 624 -	Social Network An	alysis
Time: 180 Minutes	Answer	All Questions	Maximum: 50 Marks

SI. No.	Question	Marks	KL	СО
1.a	What is the significance of <i>Local Clustering Coefficient</i> for a node in a social network. Explain with an example	2 (1+1)	L1	СОЗ
1.b	Apply your understanding of <i>Online Social Networks</i> ' basic functionalities to illustrate the scenario that comprises of <i>Asymmetric Relations</i> between different social actors. You may take example of any popular online social media platform to explain above-mentioned relationship.	3	L3	CO3
1.c	Suppose, in a particular geographic region, there's requirement to analyze the growth of a social community and it may be recorded based on temporal analysis. Analyze this scenario to put some light on <i>Temporal Network Analysis</i> .	5	L4	CO3
2.a	Explain the concept of <i>Triplets</i> in a Social Network. How do they help in exploring useful insights in a social network.	2	L2	CO4
2.b	Give your opinion about the utility of Average Path Length in Social Network Analysis. How is it related to Small Worl Property?	3 (1+2)	L5	CO4
2.c	Explain Milgram's <i>Small-World</i> experiment and demonstrate how is it relevant in the domain of Social Network Analysis.	5	L3	CO4
3.a	What are the <i>Disjoint Communities</i> in Social Networks? Explain the strictest approach to detect disjoint communities in a Social Network.	2 (1+1)	Ll	CO5
3.b	Identify the <i>Machine Learning Pipeline</i> required to analyze the social networks. Also, identify the criterion required for <i>Graph Representation</i>	3 (2+1)	L3	CO5
3.c	Examine the given network, as shown in the Fig. 1 to identify the Overlapping Communities, using Clique Percolation and determine the optimal value of k .	5 (3+2)	L4	CO5

				7
	V3 V6 V5 V5			
	Fig. 1: Network Graph for Q. No. 3.c			
4.a	Explain the significance of <i>Social Network</i> -based analysis in today's marketing strategies.	2	L2	COI
4.b	What are the <i>Social Actors</i> and <i>Dyadic</i> ? Explain with a well-framed example.	3 (1+1+1)	L2	CO1
4.c	Analyze the statement "Pseudo Graphs suit best in depicting a particular behavior" in the context of Social Network Analysis.	5	L4	CO1
5.a	Derive, a function for a <i>Signed Network</i> that may sense emotions of posts on an <i>Online Social Network</i> and explain its application scenario.	2 (1+1)	L3	CO2
5.b	Design and develop a conceptual application that utilizes <i>Graph Degrees</i> to explore useful insights in a Social Network. A detailed discussion along with an illustration is required.	3	L6	CO2
	Analyze the following statement in context of a Heterogenous Network:			
5.c	"Each node belongs to a particular type"	5	L4	CO2
	A proper explanation with illustration is required.			

*****Good Luck****