2020 级数值分析第二次作业(非线性方程求根) 参考答案和评分标准

班级	i.	学号	姓名	

- 一 $(20 \, \%)$ 用二分法求方程 $f(x) = x^3 x 1 = 0$ 在区间[1.0, 1.5]内的一个实根,且 要求有3位有效数字。试完成:
- (1) 估计需要二分的次数; (8分)

解:容易知道方程在[1.0, 1.5]有且仅有一个实根。记此实根为 x^* ,根据二分法误差估 计公式有

$$|x_k - x^*| \le \frac{(b-a)}{2^{k+1}} = \frac{1}{2^{k+2}}$$

要使得近似解有3位有效数字,只需要有

$$\frac{1}{2^{k+2}} \le \frac{1}{2} \times 10^{-2}$$

从而可得 $k \ge 6$,即满足精度要求的二分次数为6次。

(2) 将计算过程中数据填入表 1.(中间过程填写到小数点后面 3 位)(12 分,每个 x_k 得 2 分,其它空不计分)

表 1 题 1 计算过程						
k	a_k	b_{k}	x_k			
0	1.0	1.5	1.25			
1	1.25	1.5	1.375			
2	1.25	1.375	1.316			
3	1.313	1.375	1.349			
4	1.313	1.344	1.328			
5	1.313	1.328	1.320			
6	1 320	1 328	1 324			

二. (10 分) 为了计算方程 $f(x) = 3x - \sin 2x - 12 = 0$ 的根,某同学将 f(x) = 0 改写 为 $x = 4 + \frac{1}{3}\sin 2x$, 并建立迭代公式 $x_{k+1} = 4 + \frac{1}{3}\sin 2x_k$ 。请问此迭代公式在 R 上是 否全局收敛的吗?说明理由。

证明: (1) 对任意的
$$x \in R$$
,有 $\varphi(x) = 4 + \frac{1}{3}\sin 2x \in \left[\frac{11}{3}, \frac{13}{3}\right] \subseteq R$;

(2) 对任意的
$$x \in R$$
, 有 $|\varphi'(x)| = \left|\frac{2}{3}\cos 2x\right| \le \frac{2}{3} < 1$;

从而可知, 迭代格式在R上全局收敛。

- 三. $(20 \, f)$ 设有方程 $f(x) = x^3 x 1 = 0$,试回答下列问题:
- (1) 确定方程 $f(x) = x^3 x 1 = 0$ 实根的数目; (4 分)

解:由 $f'(x) = 3x^2 - 1$ 可知函数 $f(x) = x^3 - x - 1$ 的单调递增区间是

$$\left(-\infty, -\frac{\sqrt{3}}{3}\right) \cup \left(\frac{\sqrt{3}}{3}, +\infty\right)$$
,单调递减区间是 $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ 。容易知道, $x = \pm \frac{\sqrt{3}}{3}$ 是函数

$$f(x) = x^3 - x - 1$$
的两个极值点。 再根据 $f\left(\frac{\sqrt{3}}{3}\right) = -\frac{2\sqrt{3}}{9} - 1 < f\left(-\frac{\sqrt{3}}{3}\right) = \frac{2\sqrt{3}}{9} - 1 < 0$,

从而可知函数 $f(x) = x^3 - x - 1$ 只在 $\left(\frac{\sqrt{3}}{3}, +\infty\right)$ 有一个实根。

(2) 迭代公式 $x_{k+1} = (1 + x_k)^{\frac{1}{3}}$ 在区间[1,2]上是否全局收敛; (10 分)

解: 由
$$f(x) = x^3 - x - 1 = 0$$
 可得 $x = (x+1)^{\frac{1}{3}}$,取 $\varphi(x) = (1+x)^{\frac{1}{3}}$,可得 $\varphi'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$ 。

取迭代格式为 $x_{k+1} = (1+x_k)^{\frac{1}{3}}$, k=0,1,2,.....

根据第(1)问,容易知道 $x^3-x-1=0$ 在区间[1,2]上有且仅有一个实根。

①对任意的
$$x \in [1,2]$$
, $f(\varphi(x)) = (1+x)^{\frac{1}{3}} \in \left[2^{\frac{1}{3}}, 3^{\frac{1}{3}}\right] \subseteq [1,2]$;

②对任意的
$$x \in [1,2]$$
, $\hat{\eta} |\varphi'(x)| = \left| \frac{1}{3} (1+x)^{-\frac{2}{3}} \right| \le \frac{1}{3} \times 2^{-\frac{2}{3}} < \frac{1}{2} < 1;$

从而可知迭代格式在区间[1,2]全局收敛。(注释:收敛区间也可以是其它区间)

(3) 在表 2 中填写相应的计算数据。(要求填写到小数点后 3 位)(6 分) 表 2 第三题表

162 /13 /2 /6				
k	x_k			
0	1.5(初值也可自选)			
1	1.357			
2	1.330			
3	1.326			

四. (15 分) 试构造一个能求 √7 的迭代公式,并讨论收敛性。

解: 令 $x = \sqrt[3]{7}$,可得 $x^3 - 7 = 0$ 。再令 $f(x) = x^3 - 7$ 。容易知道

- ① f(1)f(2) < 0;
- ② $f'(x) = 3x^2 > 0, x \in [1, 2]$;
- ③ $f''(x) = 6x > 0, x \in [1, 2]$.

取 $x_0=2$,可知 $f(x_0)f''(x_0)>0$ 。从而可知牛顿迭代法在区间 [1,2] 上全局收敛,且收敛于方程 $x^3-7=0$ 的唯一实根 $x^*=\sqrt[3]{7}$ 。取迭代格式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 7}{3x_k^2} = \frac{1}{3} \left(2x_k + \frac{7}{x_k^2} \right), x_0 = 2$$

五. (15 分) 由一个高为 10m 的圆柱构成的发射井的顶部是一个半球,体积之和是 400 m^3 。试确定发射井底部的半径,精确到小数点后 4 位。取 $\pi \approx 3.1416$ (要求用牛顿法,写出分析过程)

解: 设底部半径为r,则根据题意可得 $\frac{2}{3}\pi r^3 + 10\pi r^2 = 400 \Rightarrow \pi r^3 + 15\pi r^2 - 600 = 0$ 。

令 $f(r) = \pi r^3 + 15\pi r^2 - 600$.容易知道:

① f(3) < 0, f(4) > 0; ② $f'(r) = 3\pi r^2 + 30\pi r > 0, r \in [3,4]$, 即方程

 $\pi r^3 + 15\pi r^2 - 600 = 0$ 在[3, 4]上有唯一实根; ③ $f''(r) = 6\pi r + 30\pi > 0, r \in [3, 4]$. 取初值 $r_0 = 4$, 因为 $f(r_0)f''(r_0) > 0$, 所以牛顿迭代法在区间[3, 4]上收敛于方程 $\pi r^3 + 15\pi r^2 - 600 = 0$ 的唯一实根。取迭代格式为:

$$r_{k+1} = r_k - \frac{f(r_k)}{f'(r_k)} = r_k - \frac{\pi r_k^3 + 15\pi r_k^2 - 600}{3\pi r_k^2 + 30\pi r_k}, r_0 = 4$$

迭代过程如下: (写到小数点后 4,5位也可以)

$$|r_1 = 3.327295, |r_1 - r_0| = 0.672705 > 0.5 \times 10^{-4};$$

$$|r_2| = 3.237737$$
, $|r_2 - r_1| = 0.089558 > 0.5 \times 10^{-4}$;

$$|r_3| = 3.236184$$
, $|r_3 - r_2| = 0.001556 > 0.5 \times 10^{-4}$;

$$|r_4| = 3.236184$$
, $|r_4| - |r_3| = 0 < 0.5 \times 10^{-4}$

取 $r_4 \approx 3.2362 \approx r^*$, 即发射井的底部半径约为 3.2362m.

六. (5分) 用割线法计算第五题中的半径.(精度要求与第五题相同)解:分析如第五题,取迭代格式为:

$$r_{k+1} = r_k - \frac{f(r_k)}{\frac{f(r_k) - f(r_{k-1})}{r_k - r_{k-1}}}, \quad \sharp + r_0 = 3, r_1 = 4, f(r_k) = \pi r_k^3 + 15\pi r_k^2 - 600,$$

迭代过程如下: (初值不一定选 $r_0 = 3, r_i = 4$, 也可以是其它)

$$r_2 = 3.20412, r_3 = 3.23195, r_4 = 3.23621, r_5 = 3.23618$$

因为 $|r_5 - r_4| = |3.23618 - 3.23621| = 0.0003 < 0.00005$,所以取 $r_5 = 3.2362 \approx r^*$,即发射井的底部半径约为 3.2362m.

七. (选做) 设 x^* 是方程 f(x) = 0 的 $m(\geq 2)$ 重根,即 f(x)具有形式 $f(x) = (x - x^*)^m g(x)$.

证明:

- (1) 用牛顿迭代法时,迭代函数 $\varphi(x)$ 满足 $\varphi'(x^*)=1-\frac{1}{m}$.(此时,只能是线性收敛)
- (2) 若将迭代函数改进为 $\varphi(x) = x \frac{mf(x)}{f(x)}$,那么证明改进后的方法至少是平方收敛的.

(提示: (1) x^* 是f(x) = 0)的重根时, $\varphi'(x)$ 的表达式中可以约分).

(2) 只需证明 $\varphi'(x^*)=0$.)

证明:

(1) 在牛顿迭代法中,迭代函数 $\varphi(x) = x - \frac{f(x)}{f'(x)}$,那么容易得到

$$\varphi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

因为 $f(x) = (x - x^*)^m g(x)$,所以

$$f'(x) = m(x - x^*)^{m-1}g(x) + (x - x^*)^m g'(x)$$

$$f''(x) = m(m-1)(x - x^*)^{m-2}g(x) + m(x - x^*)^{m-1}g'(x) + m(x - x^*)^m g''(x)$$

将f(x), f'(x), f''(x)代入 $\varphi'(x)$ 中,可得(分子分母同时约去 $(x-x^*)^{2(m-1)}$)

$$\varphi'(x) = \frac{g(x)[m(m-1)g(x) + 2m(x - x^*)g'(x) + (x - x^*)^2g''(x)]}{[mg(x) + (x - x^*)g'(x)]^2}$$

因此,有

$$\varphi'(x^*) = \frac{g(x^*)[m(m-1)g(x^*)]}{[mg(x^*)]^2} = 1 - \frac{1}{m} \ (\because g(x^*) \neq 0)$$
(2) 若 $\varphi(x) = x - \frac{mf(x)}{f'(x)}$,那么显然有

$$\varphi'(x) = 1 - m \left[1 - \frac{f(x)f''(x)}{f'(x)f'(x)} \right]$$

从而,根据第(1)问中的证明,可得

$$\varphi'(x^*) = 1 - m \left[1 - \frac{f(x^*)f''(x^*)}{f'(x^*)f'(x^*)} \right] = 1 - m \left[1 - \left(1 - \frac{1}{m} \right) \right] = 0$$

八. (15 分)证明迭代公式 $x_{k+1} = \frac{x_k(x_k^2+3a)}{3x_k^2+a}$ 是计算 $\sqrt{a}(a>0)$ 的三阶方法. 证明:容易知道迭代函数为

$$\varphi(x) = \frac{x(x^2 + 3a)}{3x^2 + a}$$

因为 $\varphi(\sqrt{a}) = \sqrt{a}$,所以 $x^* = \sqrt{a}$ 是方程 $\varphi(x) = x$ 的不动点 容易求得

$$\varphi'(\sqrt{a}) = \varphi''(\sqrt{a}) = 0, \varphi'''(\sqrt{a}) = \frac{3}{2a} \neq 0$$

因此, 此迭代方法三阶收敛。