Подготовка к экзамену.

Семинары: Погорелова П.В.

1. В задаче используются данные (Mroz, 1975). Пуассоновская регрессия для моделирования количества детей в семье:

$$P(Nkids = k_i) = e^{\lambda_i} \frac{\lambda_i^{k_i}}{k_i!},$$

где $\lambda_i = exp(\beta_1 + \beta_2 AGE_i + \beta_3 AGE_i^2 + \beta_4 WE_i + \beta_5 INCOME_i),$

k – количество детей в семье,

AGE — возраст женщины (в годах),

AGE2 – квадрат возраста женщины,

WE – образование женщины (в годах),

INCOME – доход семьи в \$10000.

Ниже в таблице приведены результаты оценивания меотодом максимального правдоподобия.

Dependent Number of Iteration Log likel Number of Restricte	observations s completed ihood function parameters d log likelihoo	NKIDS 753 7 -1083.397 5 od -1279.522	+		
	Coefficient	Standard Error	b/St.Er. I	P[Z >z]	Mean of X
AGE AGE2 WE INCOME	-7.64180956 .49624655 00686403 03430021 .01193400	1.14268278 .05663388 .00069963 .01448182 .02569902	-6.688 8.762 -9.811 -2.369 .464	.0000 .0000 .0000 .0179 .6424	1874.54847 12.2868526 2.30805950
Matrix Cov.Mat. has 5 rows and 5 columns. 1 2 3 4 5					
2 063 3 .000 4 003	.00323 .7839480591 .37948611	.00078 13948059D-04 D-04 .4894781D-0 D-043460068D-0 2 .1216040D-05	.37948611 063460068 06 .0002	D-04 - BD-06 .1 21 -	.00012 .216040D-05

- (a) Оцените эффект увеличения возраста на 1 год на среднее (expected) количество детей.
- (b) Покажите, что выборочное среднее оценок $\hat{\lambda_i}$ равно выборочному среднему k_i .
- (c) Протестируйте на 5% уровне значимости гипотезу о совместной незначимости всех регрессоров $AGE, AGE^2, WE, INCOME$ при помощи теста отношения правдоподобия (LR-тест).
- (d) Укажите ограничения Пуассоновской регрессии. Какие модели Вы можете предложить для преодоления этих ограничений.

2. Рассмотрим следующую модель для панельных данных

$$y_{it} = \beta_0 + \beta_1 x_{it} + \alpha_i + u_{it}.$$

Обозначим
$$\bar{y_i} = \frac{1}{T} \sum_{t=1}^{T} y_{it}$$
, $\varepsilon_{it} = \alpha_i + u_{it}$.

Рассмотрим следующее преобразование модели

$$y_{it} - \lambda \bar{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \bar{x}_i) + (\varepsilon_{it} - \lambda \bar{\varepsilon}_i).$$

- (a) Какие модели получатся при $\lambda = 0$ и $\lambda = 1$?
- (b) Пусть $\alpha_i \sim i.i.d.(0, \sigma_{\alpha}^2)$, $u_{it} \sim i.i.d.(0, \sigma_u^2)$, $Cov(\alpha_i, u_{jt}) = 0$ для всех i и j. Определим $\lambda = 1 \left[\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_{\alpha}^2}\right]^{1/2}$. Покажите, что $\varepsilon_{it} \lambda \bar{\varepsilon}_i$ имеют нулевое математическое ожидание, постоянную дисперсию и серийно некоррелированы.
- 3. Рассмотрим модель с фиксированными эффектами:

$$y_{it} = \alpha_i + u_{it}.$$

Случайные ошибки u_{it} предполагаются независимыми по i и по t, но гетероскедастичными, то есть $V(u_{it}) = \sigma_i^2$. Панельные данные не являются сбалансированными, для каждой индустрии наблюдается разное число наблюдений T_i

- (a) Покажите, что OLS– и GLS–оценки для α_i совпадают.
- (b) Пусть $\sigma^2 = \sum_{i=1}^N T_i \frac{\sigma_i^2}{n}$, где $n = \sum_{i=1}^N T_i$. Покажите, что OLS-оценка для σ^2 является смещенной. Покажите так же, что смещение пропадет, если панельные данные будут сбалансированны, а ошибки u_{it} гомоскедастичны, т.е. $V(u_{it}) = \sigma^2$.