Pregunta 1 (2 puntos)(0,75+0,75+0,5)

Se definen las aplicaciones f y g mediante:

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
 $g: \mathbb{N} \longrightarrow \mathbb{N}$ $n \longmapsto f(n) = 2n$ $n \longmapsto g(n) = E(\frac{n}{2})$

- a) Determine razonadamente si f es inyectiva o sobreyectiva.
- b) Determine razonadamente si g es inyectiva o sobreyectiva.
- c) Determine $f \circ g$ y $g \circ f$.

Pregunta 2 (3 puntos)

En el conjunto de las partes finitas de \mathbb{N} , $\mathcal{P}_F(\mathbb{N}) = \{A \subset \mathbb{N} \mid A \text{ es un conjunto finito}\}$, se define la relación \mathbb{R} tal que dos subconjuntos finitos de \mathbb{N} están relacionados si coinciden las sumas de sus respectivos elementos, es decir: $\forall A, B \in \mathcal{P}_F(\mathbb{N})$

$$A \mathcal{R} B$$
 si y sólo si $\sum_{a \in A} a = \sum_{b \in B} b$

- a) Demuestre que \mathcal{R} es una relación de equivalencia en $\mathcal{P}_F(\mathbb{N})$.
- b) Determine la clase de $A_0 = \{0\}, A_1 = \{1\} \text{ y } B = \{1, 2, 3\}.$
- c) Justifique razonadamente que la clase de cualquier elemento A de $\mathcal{P}_F(\mathbb{N})$ es un conjunto finito.

Pregunta 3 (2 puntos) (1+0,5+0,5)

Consideremos en \mathbb{N}^* las propiedades P y Q definidas para todo $n \in \mathbb{N}^*$ mediante:

 $P_n: 4^n - 1$ es divisible por 3

 Q_n : $4^n + 1$ es divisible por 3

- a) Demuestre que $\forall n \in \mathbb{N}^*$ se tiene $P_n \Rightarrow P_{n+1}$ y $Q_n \Rightarrow Q_{n+1}$.
- b) Demuestre que P_n es verdadera para todo $n \in \mathbb{N}^*$.
- c) ¿Qué se puede deducir de Q_n ?

Pregunta 4 (3 puntos)

a) Demuestre que para todo $z \in \mathbb{C} \setminus \{-i\}$ se cumple que $\frac{z-i}{z+i} \neq 1$.

Sea $f: \mathbb{C} \setminus \{-i\} \longrightarrow \mathbb{C} \setminus \{1\}$ la aplicación definida mediante:

$$f(z) = \frac{z - i}{z + i}$$

- b) Demuestre que para todo $\omega \in \mathbb{C} \setminus \{1\}$ existe un único $z \in \mathbb{C} \setminus \{-i\}$ tal que $f(z) = \omega$.
- c) Resuelva en \mathbb{C} la ecuación $(z-i)^3 + 8(z+i)^3 = 0$.