EXERCISES

- 1. An air line has a characteristic impedance of 70Ω and a phase constant of 3~rad/m at 100~MHz. Calculate the inductance per meter and the capacitance per meter of the line.
- 2. A transmission line operating at 500~MHz has $Z_o=80\Omega$, or $\alpha=0.04~Np/m$, $\beta=1.5~rad/m$. Find the line parameters R,L G, and G.
- 3. A distortionless line has $Z_o=60\Omega$, $\alpha=20~mNp/m$, u=0.6c, where c is the speed of light in a vacuum. Find R,L,G, and λ at 100~MHz.
- 4. A telephone line has $R=30~\Omega/km$, L=100~mH/km, G=0, and $C=20~\mu F/km$. At f=1~kHz, obtain:
 - a. The characteristic impedance of the line
 - b. The propagation constant
 - c. The phase velocity
- 5. A certain transmission line $2\,m$ long operating at $\omega=10^6\,rad/s$ has $\alpha=8\,dB/m$, $\beta=1\,rad/m$, and $Z_0=60+j40\Omega$. If the line is connected to a source of $10<0^\circ\,V$, $Z_l=40\,\Omega$ and terminated by a load of $20+j50\,\Omega$. Determine:
 - a. The input impedance
 - b. The sending-end current
 - c. The current at the middle of the line
- 6. The transmission line shown in Figure 1 is 40~m long and has $V_g=15<0^\circ V_{rms}$, $Z_0=30+j60\Omega$, and $V_L=5<-48^\circ V_{rms}$. If the line is matched to the load and $Z_g=0~\Omega$, calculate:
 - a. The input impedance Z_{in}
 - b. The sending-end current I_{in} and voltage V_{in}
 - c. The propagation constant γ

Figure 1

- 7. A lossless transmission line with $Z_o=50\Omega$ is 30~m long and operates at 2~MHz. The line is terminated with a load $Z_L=60+j40\Omega$. If u=0.6c on the line, find
 - a. The reflection coefficient Γ
 - b. The standing wave ratio s
 - c. The input impedance

Solve this problem with and without a Smith's chart.

- 8. A 70Ω lossless line has s=1.6 and $\theta_r=300^o$. If the line is 0.6λ long, obtain
 - a. Γ, Z_L, Z_{in}
 - b. The distance of the first minimum voltage from the load Solve this problem with and without a Smith's chart.
- 9. A load of $100 + i150\Omega$ is connected to a 75Ω lossless line. Find
 - a. Γ
 - b. *s*
 - c. The load admittance Y_L
 - d. Z_{in} at 0.4λ from the load.
 - e. The location of V_{max} and V_{min} with respect to the load if the line is 0.6λ long
 - f. Z_{in} at the generator

Solve this problem with and without a Smith's chart.

- 10. A lossless 60Ω line is terminated by a load of $60 + j60\Omega$.
 - a. Find Γ and s. If $Z_{in}=120-j60\Omega$, how far (in terms of wavelengths) is the load from the generator?
 - b. Calculate Z_{max} and $Z_{in,min}$. How far (in terms of λ) is the first maximum voltage from the load?

Solve this problem with and without a Smith's chart.