NORTHWESTERN UNIVERSITY

Quantitative Analysis of Cell Fate Decisions

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Chemical and Biological Engineering

Ву

Sebastian Michal Bernasek

EVANSTON, ILLINOIS

June 2019

© Copyright by Sebastian Michal Bernasek 2019

All Rights Reserved

ABSTRACT

Quantitative Analysis of Cell Fate Decisions

Sebastian Michal Bernasek

Organismal development depends upon countless cell decisions to adopt particular fates at the appropriate time and place. These decisions are executed by systems of biochemical reactions called regulatory networks. Elucidating the general principles underlying the structure and function of these networks is vital to understanding all developmental processes, as well as the diseases that arise when they fail.

Prior studies of regulatory networks, and the decisions they implement, have heavily relied upon qualitative analysis of experimental data. It has since become clear that quantitative strategies are needed to unravel the complexities of systems-level behavior. The research enclosed in this dissertation therefore combines chemical engineering, computer science, statistics, and experimental data to quantitatively explore how regulatory networks reliably coordinate cell fate decisions.

The findings are consolidated into three distinct chapters. The first two are anchored to a common model system of the *Drosophila* larval eye. They deploy an assortment of novel computational tools, mathematical models, and statistical methods to derive meaningful insight from experimental measurements of the processes that govern cell fate decisions during retinal patterning. The final chapter introduces a mathematical modeling framework

to lead the development of an exciting new hypothesis; auxiliary negative regulators enable development to proceed more quickly by mitigating erroneous cell fate decisions when cells are rapidly metabolizing.

Beyond their insights into the mechanics of cell fate decisions, these efforts have spawned several computational tools that may prove valuable to the broader community. All of these resources have been made freely available (see Appendix 5.4), with the hope that their continued development will contribute toward a more quantitative future for developmental biology.

Table of Contents

ABSTRACT	3
Acknowledgements	5
Table of Contents	
List of Figures	9
List of Tables	12
Chapter 1. Introduction	13
1.1. Molecular origins of cell fate decisions	14
1.2. The power of quantitative analysis	17
1.3. Mathematical modeling of cell fate decisions	20
1.4. Roles for negative feedback in GRNs	22
1.5. Evolutionary drivers of robust cell fate decisions	24
Chapter 2. Automated analysis of mosaic eye imaginal discs in <i>Drosophila</i>	26
2.1. Background on quantitative mosaic analysis	26
2.2. Experimental data	31
2.3. Image segmentation and quantification of nuclear fluorescence levels	32
2.4. Bleedthrough correction	33
2.5. Automated annotation of clones	36
2.6. Manual assessment of annotation performance	47
2.7. Generation of synthetic microscopy data	49

		7
2.8.	Synthetic benchmarking of annotation performance	51
2.9.	Potential applications and continued development	54
Chapte	er 3. Ratiometric control of a transit to differentiation	57
3.1.	Background on the coordination of cell fate decisions	57
3.2.	PntGFP expression dynamics in the developing eye	62
3.3.	The Pnt-to-Yan ratio varies between cells in different states	62
3.4.	Cooperative DNA-binding sensitizes promoters to changes in Pnt-to-Yan ratio	70
3.5.	Regulation stabilizes the ratio against varying Pnt and Yan concentrations	75
3.6.	Notch signaling lowers the Pnt-to-Yan ratio in progenitor cells	79
3.7.	Ras signaling elevates the Pnt-to-Yan ratio in progenitor cells	82
3.8.	Ratiometric control as a model for cell fate commitment	85
Chapte	er 4. Layered repression synchronizes development with cellular metabolism	90
4.1.	Background on the environmental dependence of developmental tempo	90
4.2.	Repressors are less impactful when metabolism is reduced	93
4.3.	MicroRNAs are dispensable when metabolism is reduced	96
4.4.	Modeling the emergence of developmental errors in variable environments	97
4.5.	Protein expression dynamics after partial repressor loss	105
4.6.	Effect of full repression loss	109
4.7.	Limiting protein synthesis reduces the need for repressors	110
4.8.	Implications for the evolution of GRNs	113
4.9.	Robustness of modeling results	115
Chapte	er 5. Conclusions	124
5.1.	Implications for developmental and systems biology	124
5.2.	Avenues for further exploration	128

		8
5.3.	Perspectives for quantitative biology	136
5.4.	Software to support quantitative biologists	140
Referen	ces	143
Append	lix A. Supporting information for Chapter 3	168
A.1.	Genetics	168
A.2.	Immunohistochemistry	169
A.3.	Quantification of expression levels	171
A.4.	Conversion of distance to time	17
A.5.	Computation of moving averages and confidence intervals	172
A.6.	Alignment of expression data	173
A.7.	Analysis of yan clones	174
A.8.	Parameterization of equilibrium binding model	175
A.9.	Visualization of relative Pnt and Yan expression in <i>Notch</i> mutant discs	175
A.10	Analysis of periodic spatial patterns in <i>Notch</i> mutant discs	176
Append	lix B. Supporting information for Chapter 4	178
B.1.	Model system	178
B.2.	Genetics	178
В.3.	Analysis of mutant phenotypes	183
B.4.	Quantification of sfGFP-Sens in the wing disc	183
B.5.	Quantification of Yan-YFP dynamics in the eye	185
B.6.	Simulation procedure	188
B.7.	Dependence of model parameters on metabolic conditions	189
Append	lix C. Reproduction data and code	192