GNN

A Gentle Introduction to Graph Neural Networks (2021) 35

Graph structured data

- V Vertex (or node) attributes e.g., node identity, number of neighbors
- **E** Edge (or link) attributes and directions e.g., edge identity, edge weight
- **U** Global (or master node) attributes e.g., number of nodes, longest path

Vertex (or node) embedding

Edge (or link) attributes and embedding

Global (or master node) embedding

Images as graphs

Click on an image pixel to toggle its value, and see how the graph representation changes.

Social networks as graphs

There are three general types of prediction tasks on graphs: graph-level, node-level, and edge-level.

Graph-level task

Input: graphs Output: labels for each graph, (e.g., "does the graph contain two rings?")

Node-level task

Edge-level task

Input: fully connected graph, unlabeled edges Output: labels for edges

The challenges of using graphs in machine learning

connectivity: adjacency matrix; sparse adjacency matrix → adjacency list permutation invariant: adjacency matrices that encode the same connectivity should produce the same result in a deep neural network

Two adjacency matrices representing the same graph.

Graph Neural Networks

A GNN is an optimizable transformation on all attributes of the graph (nodes, edges, global-context) that preserves graph symmetries (permutation invariances).

"graph-in, graph-out"

GNN Predictions by Pooling Information

To make predictions on nodes:

- If we have node information, apply a linear classifier for each node embedding.
- If we have edge information but no node information, we do this by pooling: gather each of the embeddings of the edges connected to the nodes and aggregate them.

Passing messages between parts of the graph

Learning edge representations

Adding global representations

Use the global representation of a graph (U) which is sometimes called a **master node** or context vector. It is connected to all other nodes and edges in the network, and can act as a bridge between them to pass information, building up a representation for the graph as a whole.

Other types of graphs (multigraphs, hypergraphs, hypernodes, hierarchical graphs)

Sampling Graphs and Batching in GNNs

