Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

8 de junho de 2021

Próximas Atividades

Introdução

- **2** Memórias Transacionais
- 3 Escalonadores
- 4 Arquiteturas
- **5** Objetivos
- 6 Próximas Atividades
- 7 Cronograma de Atividades

Escalonadores Arquiteturas

Memórias Transacionais **Objetivos** Próximas Atividades Cronograma de Atividades

Introdução

Introdução

Motivação

- Programação Paralela;
- Memórias Transacionais:
- Escalonadores de Transações; e
- Arquiteturas NUMA.

Objetivos

- Projetar um escalonador de STM modular que considera a arquitetura utilizada, intitulado LTMS;
- Prototipar o escalonador LTMS, utilizando a biblioteca de STM TinySTM; e
- Análisar de desempenho do LTMS comparado a TinySTM utilizando o conjunto de benchmarks STAMP.

Características

Introdução

- Fornece abstração de código;
- Reuso de código; e
- Ausência de deadlocks.

Transações

- Atomicidade;
- Consistência; e
- Isolamento.

Memórias Transacionais

Problemas

- Somente reinicia a transação conflitante;
- Não evita que conflitos futuros aconteçam; e
- Em ambientes de alta contenção, tende a perder desempenho.

Memórias Transacionais Escalonadores

Escalonadores

Escalonadores de Transações

- Buscam reduzir os números de conflitos;
- Utilizam diferentes Heurísticas de escalonamento; e
- Serializa as transações conflitantes.

Classificação das técnicas

- Baseado em Heurística:
 - Feedback:
 - Predição;
 - · Reativo: e
 - Heurística Mista.
- Baseado em Modelo:
 - Aprendizado de Máquina;
 - Modelo Analítico: e
 - Modelo Misto.

Memórias Transacionais Escalonadores Arquiteturas Objetivos Próximas Atividades Cronograma de Atividades

Escalonadores

Introdução

Trabalhos Relacionados

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Tabela: Algoritmos e técnicas de escalonamento

Escalonador	Técnica
ATS	Feedback
Probe	Feedback
F2C2	Feedback
Shrink	Predição
SCA	Predição
CAR-STM	Reativo
RelSTM	Reativo
LUTS	Heurística Mista
ProVIT	Heurística Mista
SAC-STM	Aprendizado de Máquina
CSR-STM	Modelo Analítico
MCATS	Modelo Analítico
AML	Modelo Misto

Defesa de Mestrado

Escalonadores

Trabalhos Relacionados

Tabela: Algoritmos que estamos trabalhando

Escalonador	Técnica
Probe	Feedback
F2C2	Feedback
Shrink	Predição
MCATS	Modelo Analítico

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Defesa de Mestrado 10

Escalonadores

Memórias Transacionais

Shrink

- Bloom filter: Utiliza os dados de leitura e escrita por thread:
 - Conjunto de leitura: Localidade temporal; e
 - Conjunto de escrita: Ocorre apenas nos aborts.
- Serialization affinity: Serializa uma thread de acordo com a contenção do sistema; e
- O escalonador é ativado com base no número de contenção existente.

UMA

Introdução

- Uniform Memory access;
- Possui um único barramento de acesso à memória; e
- Único custo de acesso à memória.

NUMA

- Non-uniform Memory access;
- Possui mais de um barramento de acesso à memória; e
- O custo de acesso à memória é diferente conforme o núcleo utilizado.

Memórias Transacionais Escalonadores Próximas Atividades

Objetivos

Objetivos

- Estudar o comportamento dos escalonadores na arquitetura NUMA;
- Inserir as novas regras de escalonamento para arquitetura NUMA.

Próximas Atividades

Metodologia

Ferramentas utilizadas

- · Shrink;
- TinySTM;
- · Hwloc; e
- STAMP.

O que foi feito

- Foi implementado um escalonador com filas de threads para cada núcleo;
- Foi feito um escalonador que migra threads;
- Foram estudados os algoritmos de escalonamentos atuais; e
- Foi desenvolvido um novo fluxo de execução para o Shrink.

15

Memórias Transacionais Escalonadores

Introdução

O que será feito

- Modificar a implementação de threads do Shrink para utilizar filas;
- Coletar informações da latência de acordo com o Bloom Filter; e
- Adicionar a migração de threads ao Shrink.

16

Modificações e nomenclatura

- Cada núcleo possuirá uma fila de threads que chamamos de Qn;
- O escalonador possuirá uma fila de threads inicial chamada de Pt; e
- Uma Thread (Tn) pode ter n transações que chamamos de Tr.

Memórias Transacionais Escalonadores Arquiteturas Objetivos Próximas Atividades

Metodologia

Introdução

Figura: Shrink

Cronograma de Atividades

Memórias Transacionais Escalonadores

Metodologia

Introdução

Figura: Modificações

Atividades a serem realizadas

- Modificar o escalonador Shrink;
- Executar os testes;
- Analisar resultados: e
- Escrever a Dissertação.

Cronograma

Memórias Transacionais

- Modificações no Shrink coletando informações sobre a arquitetura:
- Modificações no método de escalonamento do Shrink:
- 3 Validação do novo método de escalonamento:
- 4 Execução de testes em arquitetura NUMA e UMA:
- 6 Coleta de resultados obtidos por meio dos testes:
- 6 Escrita da dissertação; e
- Entrega e apresentação da dissertação.

Próximas Atividades

Cronograma

Tabela: Cronograma de atividades mensal para o restante do mestrado

Ano	2020					2021	
Mês	Ago	Set	Out	Nov	Dez	Jan	Fev
1							
2							
3							
4							
5							
6							
7							

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

8 de junho de 2021

23