Reverse mathematics in constructive set theory

Hajime Ishihara

School of Information Science Japan Advanced Institute of Science and Technology (JAIST) Nomi, Ishikawa 923-1292, Japan

Proof and Computation, Fischbachau, 26 September – 1 October, 2022

Overview

- Lecture 1
 - Reverse mathematics and set theory
 - Intuitionistic logic
- ► Lecture 2
 - Classical Zermelo-Fraenkel set theory ZF
 - Basic constructive set theory BCST
 - Elementary constructive set theory ECST
 - Constructive Zermelo-Fraenkel set theory CZF
- Lecture 3
 - Set-generated classes and NID principles
 - Equivalents of the nullary NID
 - ► Equivalents of the elementary NID
 - Equivalents of the finitary NID

Lecture 3

- Set-generated classes and NID principles
- ► Equivalents of the nullary NID
- ► Equivalents of the elementary NID
- ► Equivalents of the finitary NID

Set-generated classes and NID principles

Set-generated classes

Definition 1

Let S be a set, and let X be a subclass of Pow(S). Then X is set-generated if there exists a subset G, called a generating set, of X such that

$$\forall \alpha \in X \forall x \in \alpha \exists \beta \in G(x \in \beta \subseteq \alpha).$$

Remark 2

The power class Pow(S) of a set S is set-generated with a generating set

$$\{\{x\}\mid x\in\mathcal{S}\}.$$

Rules

Definition 3

Let S be a set. Then a rule on S is a pair (a, b) of subsets a and b of S. A rule is called

- nullary if a is empty;
- elementary if a is a singleton;
- finitary if a is finitely enumerable.

A subset α of S is closed under a rule (a, b) if

$$a \subseteq \alpha \rightarrow b \ \ \alpha.$$

For a set R of rules on S, we call a subset α of S R-closed if it is closed under all rules in R.

Remark 4

Note that if a rule is nullary or elementary, then it is finitary.

NID principles

Definition 5

Let NID denote the principles that

▶ for each set *S* and set *R* of rules on *S*, the class of *R*-closed subsets of *S* is set-generated.

The principles obtained by restricting R in NID to a set of nullary, elementary and finitary rules are denoted by NID_0 , NID_1 and $\mathrm{NID}_{<\omega}$, respectively.

Remark 6

Note that $\mathrm{NID}_{<\omega}$ implies NID_0 and NID_1 .

Equivalents of the nullary NID

Fullness

The class of total relations between A and B is denoted by mv(A, B):

$$r \in \operatorname{mv}(A, B) \Leftrightarrow r \subseteq A \times B \wedge \forall x \in A \exists y \in B (\langle x, y \rangle \in r);$$

Fullness:

$$\forall a \forall b \exists c (c \subseteq mv(a, b))$$
$$\land \forall r \in mv(a, b) \exists s \in c (s \subseteq r)).$$

NID_0 and Fullness

Theorem 7

The following are equivalent over ECST.

- 1. NID_0 .
- 2. Fullness.

Proposition 8

 NID_1 implies NID_0 .

NID_0 and Fullness

NID₀ and Fullness

Proof of Theorem 7.

(1) \Rightarrow (2): Suppose NID₀. For sets A and B, define a set R of nullary rules on $(A \times B) \cup \{R_{A \times B}\}$ by

$$R = \{(\emptyset, \{x\} \times B) \mid x \in A\} \cup \{(\emptyset, \{R_{A \times B}\})\}.$$

Then there exists a subset G of the class X of R-closed subsets of $(A \times B) \cup \{R_{A \times B}\}$ such that

$$\forall \alpha \in X \, \forall z \in \alpha \, \exists \beta \in G \, (z \in \beta \subseteq \alpha).$$

Let $C = \{\beta \cap (A \times B) \mid \beta \in G\}$. Then $C \subseteq \operatorname{mv}(A, B)$. For each $r \in \operatorname{mv}(A, B)$, since $r \cup \{R_{A \times B}\} \in X$, there exists $\beta \in G$ such that $R_{A \times B} \in \beta \subseteq r \cup \{R_{A \times B}\}$. Therefore

$$\beta \cap (A \times B) \subseteq (r \cup \{R_{A \times B}\}) \cap (A \times B) = r. \qquad \Box$$

Equivalents of the elementary NID

The principle $\mathrm{NID}_{\mathrm{bi}}$

Definition 9

Let S be a set. Then a subset α of S is biclosed under a rule (a,b) if

$$a \between \alpha \leftrightarrow b \between \alpha$$
.

For a set R of rules on S, we call a subset α of S R-biclosed if it is biclosed under all rules in R.

Definition 10

Let $\mathrm{NID}_{\mathrm{bi}}$ denote the principle that

▶ for each set *S* and set *R* of rules on *S*, the class of *R*-biclosed subsets of *S* is set-generated.

The principle $\mathrm{NID}_{\mathrm{bi}}$

Proposition 11

- 1. NID₁.
- 2. NID_{bi}.

The principle $\mathrm{NID}_{\mathrm{bi}}$

Proof of Proposition 11.

Suppose NID_1 , and let R be a set of rules on a set S. Define a set R' of elementary rules on S by

$$R' = \{(\{x\}, b) \mid (a, b) \in R \land x \in a\} \cup \{(\{y\}, a) \mid (a, b) \in R \land y \in b\}.$$

Then a subset $\alpha\subseteq S$ is R-biclosed if and only if it is R'-closed. Conversely, suppose $\mathrm{NID_{bi}}$, and let R be a set of elementary rules on a set S. Define a set R' of rules on S by

$$R' = \{(a \cup b, b) \mid (a, b) \in R\}.$$

Then a subset $\alpha \subseteq S$ is R-closed if and only if it is R'-biclosed.

Definition 12

An equaliser of a parallel pair $A \stackrel{r}{\underset{g}{\rightleftharpoons}} B$ in a category C is a pair of an object E and a morphism $E \stackrel{e}{\underset{g}{\rightleftharpoons}} A$ such that $f \circ e = g \circ e$, and it satisfies a universal property in the sense that for any morphism $C \stackrel{h}{\rightarrow} A$ with $f \circ h = g \circ h$, there exists a unique morphism $C \stackrel{k}{\rightarrow} E$ for which the following diagram commutes.

A equaliser without the uniqueness condition is called a weak equaliser.

Proposition 13

- 1. NID_{bi}.
- 2. Rel has weak equalisers.

Proof.

(1) \Rightarrow (2): Suppose NID_{bi}, and let $r_1, r_2 \subseteq X \times Y$ be a parallel pair of relations. Consider a subclass

$$\mathcal{E} = \{U \in \mathrm{Pow}(X) \mid r_1(U) = r_2(U)\}$$

of Pow(X), and define a set R of rules on X by

$$R = \{ (r_1^{-1}(\{y\}), r_2^{-1}(\{y\})) \mid y \in Y \}.$$

Then $\mathcal E$ is the class of R-biclosed subsets of X, and hence has a generating set E by $\mathrm{NID_{bi}}$. Define a relation $e\subseteq E\times X$ by

$$U e x \Leftrightarrow x \in U$$
.

Then e is a weak equaliser of r_1 and r_2 in Rel.

Proof.

(2) \Rightarrow (1): Suppose that Rel has weak equaliser, and let R be a set of rules on a set S. Consider a parallel pair $r_1, r_2 \subseteq S \times R$ of relations given by

$$x r_1(a, b) \Leftrightarrow x \in a,$$
 $x r_2(a, b) \Leftrightarrow x \in b,$

and let $e \subseteq E \times S$ be a weak equaliser of r_1 and r_2 in Rel. Then

$$G = \{e(\{c\}) \mid c \in E\}$$

is a generating set of the class of R-biclosed subsets of S.

The category of basic pairs

Definition 14

A basic pair is a triple (X, \Vdash, S) of sets X and S, and a relation \Vdash between X and S.

Notation 15

For a basic pair (X, \Vdash, S) , we write

$$\Diamond D = \Vdash (D)$$
 and $\operatorname{ext} U = \Vdash^{-1} (U)$

for $D \in Pow(X)$ and $U \in Pow(S)$.

The category of basic pairs

Definition 16

A relation pair between basic pairs $\mathcal{X}_1=(X_1,\Vdash_1,S_1)$ and $\mathcal{X}_2=(X_2,\Vdash_2,S_2)$ is a pair (r,s) of relations $r\subseteq X_1\times X_2$ and $s\subseteq S_1\times S_2$ such that

$$\Vdash_2 \circ r = s \circ \Vdash_1$$
,

that is, the following diagram commutes.

$$X_{1} \xrightarrow{\parallel_{1}} S_{1}$$

$$\downarrow r \qquad \qquad \downarrow s$$

$$X_{2} \xrightarrow{\parallel_{2}} S_{2}$$

The category of basic pairs

Definition 17

Two relation pairs (r_1, s_1) and (r_2, s_2) between basic pairs \mathcal{X}_1 and \mathcal{X}_2 are equivalent, denoted by $(r_1, s_1) \sim (r_2, s_2)$, if

$$\Vdash_2 \circ r_1 = \Vdash_2 \circ r_2$$
,

or equivalently $s_1 \circ \Vdash_1 = s_2 \circ \Vdash_1$.

Notation 18

We write BP for the category of basic pairs and relation pairs.

Equalisers in BP

Proposition 19

- 1. Rel has weak equalisers.
- 2. BP has equalisers.

Equalisers in BP

Remark 20

- ▶ The categories Rel and BP are self dual, that is, Rel \simeq Rel $^{\mathrm{op}}$ and BP \simeq BP $^{\mathrm{op}}$;
- ▶ Rel has weak equaliser if and only if Rel has weak coequaliser, and BP has equaliser if and only if BP has coequaliser;
- in ECST, Rel has small products and hence has small coproducts, and BP has small products and coproducts;
- the following are equivalent over ECST.
 - 1. BP has (co)equalisers.
 - 2. BP is (co)complete.

The elementary NID

Theorem 21

- 1. NID₁.
- 2. NID_{bi}.
- 3. Rel has weak (co)equalisers.
- 4. BP has (co)equalisers.
- 5. BP is complete and cocomplete.

The elementary NID

Equivalents of the finitary NID

Models of geometric theories

Definition 22

Given a set S, a geometric theory (GT) over S is a set T of formulae of the form

$$\wedge \sigma \to \bigvee_{i \in I} \wedge \tau_i,$$

where I is a set, and σ and τ_i are finitely enumerable subsets of S.

Definition 23

A model of T is a subset α of S such that

$$\sigma \subseteq \alpha \to \exists i \in I(\tau_i \subseteq \alpha)$$

for all formula $\wedge \sigma \to \bigvee_{i \in I} \wedge \tau_i$ in T.

Models of geometric theories

Definition 24

Let $\mathrm{NID}_{\leq 2}$ be the principle obtained from NID by restricting the set R to those rules (a,b) where a is a surjective image of $n\leq 2$.

Proposition 25

- 1. $NID_{\leq 2}$.
- 2. NID $<\omega$.
- 3. The class of models of a GT is set-generated.

n-ary NID

Definition 26

A rule (a, b) on a set S is called *n*-ary if there exists a surjection $n \to a$.

Remark 27

Note that if a rule is n + 1-ary, then it is n + 2-ary.

Definition 28

The principle obtained by restricting R in NID to a set of n-ary rules is denoted by NID_n .

n-ary NID

Lemma 29

The following are equivalent over ECST.

- 1. $NID_{\leq 2}$.
- 2. NID₂.

Proposition 30

- 1. $NID_{<\omega}$.
- 2. NID_n $(n \ge 2)$.

n-ary NID

Definition 31

A formal topology (FT) (S, \leq, \lhd) is a preordered set (S, \leq) equipped with a subclass $\lhd \subseteq S \times \operatorname{Pow}(S)$ such that

- 1. $a \in U \Rightarrow a \triangleleft U$,
- 2. $a \triangleleft U$ and $\forall c \in U(c \triangleleft V) \Rightarrow a \triangleleft V$,
- 3. $a \triangleleft U$ and $a \triangleleft V \Rightarrow a \triangleleft U \downarrow V$,
- 4. $a \leq b \Rightarrow a \triangleleft \{b\}$.

Definition 32

A formal topology (S, \leq, \lhd) is inductively generated (i.g.) by an axiom-set (I, C) if \lhd is the smallest among the relation \lhd' such that

- 1. $a < b \triangleleft' U \Rightarrow a \triangleleft' U$.
- 2. $a \triangleleft' C(a, i)$ for all $i \in I(a)$,

and which makes (S, \leq, \lhd') a formal topology.

Definition 33

A formal point (f.p.) of a formal topology (S, \leq, \lhd) is a subset $\alpha \subseteq S$ such that

- 1. α is inhabited,
- 2. $a, b \in \alpha \Rightarrow (a \downarrow b) \Diamond \alpha$
- 3. $a \in \alpha$ and $a \triangleleft U \Rightarrow U \lozenge \alpha$.

Remark 34

If (S, \leq, \lhd) is inductively generated by an axiom-set (I, C), then the condition 3 is equivalent to

- 1. $a \leq b$ and $a \in \alpha \Rightarrow b \in \alpha$,

Finite Powers Axiom (FPA):

$$\forall a \forall n \in \omega \, \exists b (b = a^n).$$

Proposition 35

- 1. $NID_{<\omega}$.
- 2. The class of f.p. of an i.g. FT is set-generated + FPA.

The category of concrete spaces

Notation 36

Let (S, \leq) be a preordered set, and let D and E be subsets of S. Then

- $\blacktriangleright \downarrow D = \{a \in S \mid \exists b \in D(a \leq b)\};$
- \triangleright $D \downarrow E = \downarrow D \cap \downarrow E$;
- $ightharpoonup \downarrow a = \downarrow \{a\} \text{ and } a \downarrow b = \{a\} \downarrow \{b\}.$

Remark 37

Given a basic pair (X, \Vdash, S) , we can define a preorder \leq on S by

$$a \le b \Leftrightarrow \operatorname{ext} a \subseteq \operatorname{ext} b$$
.

The category of concrete spaces

Definition 38

A concrete space is a basic pair (X, \Vdash, S) which satisfies

- 1. $\operatorname{ext} a \cap \operatorname{ext} b = \operatorname{ext}(a \downarrow b)$,
- 2. X = ext S

Definition 39

A relation pair (r,s) between basic pairs \mathcal{X}_1 and \mathcal{X}_2 is said to be convergent if

- 1. $\exp_1(s^{-1}a \downarrow s^{-1}b) = r^{-1} \exp_2(a \downarrow b),$
- 2. $\operatorname{ext}_1 S_1 = r^{-1} \operatorname{ext}_2 S_2$

for all a and b in S_2 .

Notation 40

We write CSpa for the category of concrete spaces and convergent relation pairs.

Equalisers in CSpa

Proposition 41

- 1. $NID_{<\omega}$.
- 2. CSpa has equalisers + FPA.

Equalisers in CSpa

Remark 42

- ► CSpa has small products using $NID_{<\omega}$;
- if CSpa has equalisers, then CSpa is complete;
- coequalisers in CSpa can be constructed exactly as in BP;
- ▶ CSpa is cocomplete under NID_1 , and hence under $NID_{<\omega}$;
- ▶ the following are equivalent over ECST + FPA.
 - 1. CSpa has equalisers.
 - 2. CSpa is complete and cocomplete.

The finitary NID

Theorem 43

- 1. NID $<\omega$.
- 2. NID_n $(n \ge 2)$.
- 3. The class of models of a GT is set-generated.
- 4. The class of f.p. of an i.g. FT is set-generated + FPA.
- 5. CSpa has equalisers + FPA.
- 6. CSpa is complete and cocomplete + FPA.

The finitary NID

The class of models of a GT is set-generated The class of f.p. of an i.g. FT is set-generated + FPA CSpa has equalisers + FPA CSpa is complete and cocomplete + FPA

Rel has weak (co)equalisers BP has (co)equalisers BP is complete and cocomplete

Fullness

References

- ▶ Peter Aczel, *Aspects of general topology in constructive set theory*, Ann. Pure Appl. Logic **137** (2006), 3–29.
- Peter Aczel, Hajime Ishihara, Takako Nemoto and Yasushi Sangu, Generalized geometric theories and set-generated classes, Math. Structures Comput. Sci. 25 (2015), 1466–1483.
- Ayana Hirata, Hajime Ishihara, Tatsuji Kawai and Takako Nemoto, Equivalents of the finitary non-deterministic inductive definitions, Ann. Pure Appl. Logic 170 (2019), 1256–1272.
- ► Hajime Ishihara and Erik Palmgren, *Quotient topologies in constructive set theory and type theory*, Ann. Pure Appl. Logic **141** (2006), 257–265.

References

- ▶ Hajime Ishihara and Tatsuji Kawai, *Completeness and cocompleteness of the categories of basic pairs and concrete spaces*, Math. Structures Comput. Sci. **25** (2015), 1626–1648.
- ▶ Hajime Ishihara and Takako Nemoto, *Non-deterministic inductive definitions and fullness*, Concepts of proof in mathematics, philosophy, and computer science, 163–170, Ontos Math. Log., 6, De Gruyter, Berlin, 2016.
- Giovanni Sambin, Some points in formal topology, Topology in computer science (Schloß Dagstuhl, 2000), Theoret. Comput. Sci. 305 (2003), 347–408.
- ▶ Benno van den Berg, *Non-deterministic inductive definitions*, Arch. Math. Logic **52** (2013), 113–135.