Curso: Engenharia de Computação

Sistemas de Comunicações Móveis

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Modulação

Modulação

- Gera um sinal para o módulo de RF, em que um dos parâmetros, como frequência, amplitude e/ou fase, de um sinal chamado de portadora é alterado em função do sinal da saída do codificador da fonte, chamado de sinal modulante.
- O sinal modulado transporta a informação, que é colocada na parte apropriada do espectro, com propriedades espectrais adequadas para ser encaminhada pelo canal de comunicações.
- Propicia: (i) transmissão mais eficiente; (ii) superação das limitações de hardware; (iii) redução de ruído e interferência; (iv) definição da frequência de transmissão; (v) multiplexação de sinais

Modulação analógica

4

Transmissor digital

Transmissor

Vantagens da modulação digital

- Suporta maiores taxas de dados
- Possibilita poderosas técnicas de correção de erros
- Maior resiliência às imperfeições do canal
- Possibilita estratégias de múltiplo acesso ao canal mais eficientes
- Menor susceptibilidade ao ruído e desvanecimento

- 1. Codifica uma sequência de bits de comprimento finito em um conjunto de símbolos
- 2. Mapeia símbolos em formas de onda para transmissão por um dado canal
- 3. O receptor minimiza a probabilidade de erro decodificando o sinal como um do conjunto de possíveis sinais transmitidos

Seja uma sequência de bits a transmitir

{011010001000001 ... 111}

Codificados em uma sequência

$$\{s_3, s_2, s_1, s_0, s_1, \dots, s_7\}$$

formada por símbolos

Mapeia em formas de onda

$$s_3(t) = Asen(2\pi f_c t + \frac{3\pi}{4})$$

$$s_2(t) = Asen(2\pi f_c t + \frac{\pi}{2})$$

$$s_1(t) = Asen(2\pi f_c t + \frac{\pi}{4})$$

$$s_0(t) = Asen(2\pi f_c t)$$

$$s_1(t) = Asen(2\pi f_c t + \frac{\pi}{4})$$

que implica recebimento de formas de onda afetadas pelo canal em **amplitude** e **fase**.

Quais são os símbolos da mensagem? Decidir pela menor probabilidade de erro.

Modulação-Demodulação

- Na modulação digital, para cada mensagem m_i (sequência de bits de comprimento finito), o transmissor envia uma sequência de símbolos mapeados na forma de onda do sinal s_i
- Para cada forma de onda do sinal transmitido o receptor deve determinar a melhor estimativa de s_i , logo de m_i , dado que o sinal recebido foi x(t).

Modulação-Demodulação

- As mensagens pertencem a um conjunto $M = \{m_1, m_2, \dots, m_M\}$ e cada mensagem possui uma probabilidade de ser transmitida p_i
- Matematicamente, o receptor deve minimizar a probabilidade de erro, dada por

$$P_e = \sum_{i=1}^{M} p_i.P(\widehat{m} \neq m_i|m_i enviado)$$

, onde \hat{m} é a mensagem selecionada, m_i é a mensagem enviada e p_i sua probabilidade no conjunto de mensagens.

 O problema do receptor é identificar a solução ótima do problema de minimização do erro.

Modulação-Demodulação

• Admitindo que os símbolos recebidos definem um vetor \mathbf{x} , pode-se escolher a mensagem $\hat{\mathbf{m}}$ cujos símbolos $\hat{m_i}$ estão mais próximos do sinal recebido.

Esquemas de modulação digital

- Modulação por amplitude de pulsos (PAM, do inglês Pulse Amplitude Modulation)
- Modulação com Chaveamento por Deslocamento de Fase (PSK, do inglês Phase Shift-Keying)
- Modulação em Quadratura (QAM, do inglês Quadrature Amplitude Modulation)

PAM

- Na modulação PAM, para k bits por intervalo de sinalização Ts são definidos M símbolos, tal que $2^k = M$.
- A forma de onda tem amplitude da portadora definida por

$$s(t) = A_m. a(m_i). sen(2\pi f_c t)$$
 tal que $a(m_i) = N_j, j = 1, ..., M$

4-PAM

Na modulação 4-PAM, para 2 bits por intervalo de sinalização Ts são definidos 4 símbolos:
00 - s₀; 01 - s₁; 10 - s₂; 11 - s₃

PSK

- Na modulação PSK, M símbolos são definidos para k bits por intervalo de sinalização Ts, tal que $2^k = M$.
- A forma de onda tem a fase da portadora definida por

$$s(t) = A_m.sen[2\pi f_c t + \emptyset(m_i)]$$
 tal que $\emptyset(m_i) = \emptyset_j, j = 0, \frac{2\pi}{M}, \dots, \frac{2\pi(M-1)}{M}$

2-PSK

 Na modulação 2-PSK, 2 símbolos são definidos para 1 bit por intervalo de sinalização Ts:

$$0 - s_0 ; 1 - s_1$$

QAM

- No esquema de modulação QAM, os bits são utilizados para modular a fase e a amplitude. Ou seja, o esquema M-QAM tem dois graus de liberdade.
- Para k bits por intervalo de sinalização Ts são definidos M símbolos, tal que 2^k = M. A forma de onda tem a amplitude e a fase da portadora definida por

$$s(t) = A_m. a(m_i). sen(2\pi f_c t + \emptyset(m_i))$$
tal que $[a(m_i), \emptyset(m_i)] = N_j, j = 1, ..., M$

8-QAM

• Na modulação 8-QAM, 8 símbolos são definidos para 3 bits por intervalo de sinalização Ts: 000 - s_0 ; $001 - s_1$; ...

Diagramas de constelação

- Possibilita a representação genérica da forma de onda de um esquema de modulação digital.
- Apresenta em um plano as variações de amplitude e fase de cada símbolo do esquema de modulação.

Diagramas de constelação

8-QPSK

16-QAM

Referências

[1] Alencar, Marcelo S.; Telefonia Celular Digital; Capítulo 4; érica Saraiva;

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

