Mapping in manycore

- N tasks → N cores
 - Communication
 - Performance/Execution time
 - Thermal
- N! (N factorial) cases
 - Impossible to explore all possible solutions
 - How to map these tasks?

NoC Design in Manycore

- Application behavior known
 - Case-1: T1 only communicates with T2
 - Case-2: T1 only communicates with T6
- Application-specific NoC design
 - Given L links, N cores
 - C(C(N,2),L) possible ways
 - How to place these links?

Design Space Exploration

- "Design Space Exploration (DSE) refers to systematic analysis and pruning of unwanted design points based on parameters of interest." -Wikipedia
- M possible designs, N valid designs
 - M >> N
- Single-objective or Multi-objective

Single-objective optimization

- Single-objective: Price
 - Objective = Price
 - Lowest price is the solution

Minima finding problem!

Multi-objective optimization

- Multi-objective: Price & Ram
 - Define custom objective function
 - Objective = Price Ram
 - Other functions commonly used
 - Weighted sum
 - Pareto-Hyper volume, etc

Finding the minima

- Exhaustive exploration
 - Guaranteed best solution
 - Computing is time consuming

Solving mathematically

- To find minima, we can use differentiate F:
 - At minima, $\frac{dF}{dx} = 0$
 - Hard to solve
- You may not know F, Solving $\frac{dF}{dx} = 0$ is non-trivial

Hill climbing algorithm

- Greedy algorithm
 - Move towards the most promising direction
 - Does not guarantee best solution
 - Tends to get stuck at local minima
- Gives us "good" solution in short time
 - Best solution ⊆ Good solution

Hill climbing with repeated restarts

- Try, try and try again
- Start from random locations
 - Will end at different minima
- Better chance to find global minima
 - Time consuming
 - Needs some Luck

Hill climbing in a graph way

Simulated Annealing algorithm

- Make some mistakes
- Willing to accept bad results at first
- Converges to greedy later
- Explore vs exploit
- Works better than greedy algorithm in practice

Simulated Annealing in a graph way

Other algorithms for optimization

How does an Evolutionary Algorithm (EA) work?

Food

Nest

Ant colony optimization

Task mapping using Hill climbing

Evaluating a mapping/design

- GPU objective: Maximize throughput
 - Throughput (load balancing)

•
$$\overline{U} = \frac{1}{L} \sum_{k=1}^{L} \left(\sum_{i=1}^{R} \sum_{j=1}^{R} f_{ij} \cdot p_{ijk} \right)$$
 (Average link utilization)

•
$$\sigma = \sqrt{\frac{1}{L}\sum_{k=1}^{L}(U_k - \overline{U})^2}$$
 (Std. Dev. of link utilization)

- CPU objective: Low latency
 - Latency

• Lat =
$$\frac{1}{C*M}\sum_{i=1}^{C}\sum_{j=1}^{M}(r\cdot h_{ij}+d_{ij})\cdot f_{ij}$$
 (Zero load latency)

- 3D-specific objective: Temperature
 - Max. on-chip temperature

•
$$T = \max_{n,k} \{ \sum_{i=1}^{k} (P_{n,i}(t) \sum_{j=1}^{i} R_j) + R_b \sum_{i=1}^{k} P_{n,i}(t) \} * T_H$$

Pareto dominance for MOO

Cost Functions

- Additive:
 - Y=01+02
- Weighted sum
 - Y=a1*O1 + a2*O2
- Multiplicative
 - Y=01*02
- Pareto Hyper Volume (PHV)
 - Area covered by non-dominated designs
- Weighted PHV
 - Weighted area covered by nondominated designs

NoC design using Hill climbing

Overall methodology

• Given:

- C CPUs, G GPUs, L LLCs and P planar links
- System configuration (X × Y)

Goal:

- Place CPU, GPU, LLCs and links
- Satisfy different objectives simultaneously
 - GPU throughput
 - CPU latency
 - Thermal, etc.

System Configuration X × Y

Problems with conventional optimization algorithms

- Searching blindly
- Many iterations before we reach optimal solution
- Does not scale with increasing design space

ML based DSE

- Use ML to guide the DSE
- More scalable
- One instance: Use ML to choose better starting points
 - MOO-STAGE [1]
 - Replace "Random restart" by "Guided Restart"

MOO-STAGE: ML-based DSE

- Replace "Random restart" with "Guided restart"
- ML model can guide us during exploration

Local search

```
Algorithm 1. Local Search: local(Obj, d_{start})
Input: Obj (Set of optimization objectives), d_{start} (Starting design)
Output: S_{local} (Non-dominated set of designs), S_{traj} (Trajectory set), d_{last} (Last design)
```

```
Initialize: S_{local} \leftarrow \{d_{start}\}, S_{trai} \leftarrow \{d_{start}\},
1:
           d_{curr} \leftarrow d_{start}
          While 1:
2:
3:
              d_{next} \leftarrow \arg\max_{d \in neigh(d_{curr})} PHV_{Obj}(S_{local} \cup \{d\})
              If PHV_{Obj}(S_{local} \cup \{d_{next}\}) > PHV_{Obj}(S_{local}):
4:
                     S_{local} \leftarrow S_{local} \cup \{d_{next}\}
5:
                    S_{local} \leftarrow \{d \in S_{local} | (\nexists k \in S_{local}) [k \prec d] \}
               Else:
6:
                     Return (S_{local}, S_{trai}, d_{last} \leftarrow d_{curr})
7:
               d_{curr} \leftarrow d_{next}
8:
               S_{trai} \leftarrow S_{trai} \cup \{d_{curr}\}
9:
```

- Local search step is same as normal greedy search
- Uses greedy search here

Training MOO-STAGE

- Hill-climbing based search generates the training data
- ML algorithm trains to approximate the search space
- Self-improving algorithm
 - More search → More training data → More accurate MI model

Overall algorithm

Algorithm 2. MOO-STAGE

```
Input: Obj (Set of optimization objectives), iter_{max} (Maximum iterations), D (Design space) Output: S_{alobal} (Non-dominated set of designs)
```

```
Initialize: S_{global} \leftarrow \emptyset, S_{train} \leftarrow \emptyset, d_{start} \leftarrow rand(D)
1:
        For i = 0 to iter_{max}:
             (S_{local}, S_{trai}, d_{last}) \leftarrow local(Obj, d_{start})
3:
             Maintain non-dominated global set:
4:
             S_{global} \leftarrow S_{global} \cup S_{local}
             S_{global} \leftarrow \{d \in S_{global} | (\nexists k \in S_{global})[k < d] \}
             If S_{alobal} \cap S_{local} = \emptyset: [If algorithm converged]
5:
6:
                      Return S_{alobal}
             Add training example for each design d \in S_{trai}:
7:
              S_{train} \leftarrow S_{train} \cup \{(d, PHV_{Obj}(S_{traj}))\}
              Train evaluation function: Eval \leftarrow train(S_{train})
8:
9:
             Greedy Search: d_{restart} \leftarrow greedy(Eval, d_{last})
10:
             If d_{last} = d_{restart}:
                      d_{start} \leftarrow rand(D)
11:
              Else
12:
13:
                      d_{start} \leftarrow d_{restart}
14:
        Return S_{global}
```

- Uses regression forest in overall optimization
- Implements guided restart

Decision tree algorithm (1)

- A tree made out of if-else
- Can be used for both classification and regression

Decision tree algorithm (2)

- Color classification problem
- Two linear lines make a non-linear boundary

Regression tree

Regression tree (2)

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female		98
20	73	Male		0
35	54	Female		100
5	12	Male		44
etc	etc	etc	etc	etc

Random Forest

- Random forest regressor
 - Forest = Many trees
 - Each 'tree' is similar to a 'if-else' tree
 - https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

MOO-STAGE: Recap

- Hill-climbing based search generates the training data
- ML algorithm trains to approximate the search space
- Self-improving algorithm
 - More search → More training data → More accurate MI model

Creating the training data

- Training Data: <Point in design space, BestCost that can be reached from this point>
 - { <x00,y0> <x01,y0> <x02,y0> <x03,y0> }

MOO-STAGE performance

- Trained model acts as a filter
- Prevents searching in bad locations of design space
 - Without ML, the algorithm would waste time exploring bad regions
 - Up to 10X faster than conventional algorithms

Summarizing the DSE problem

- Task mapping
 - Given: T tasks and N cores
 - Output: Map T tasks to N cores such that goal is reached
 - Goal: Lower execution time, Better communication, etc.
 - Design objectives: Low latency, High throughput, Low energy, etc.
- NoC design
 - Given: L links and N cores
 - Output: Place L links between pairs of cores to reach objective
 - Goal: Lower execution time, Better communication, etc.
 - Design objectives: Low latency, High throughput, Low energy, etc.

MOOS algorithm

ALGORITHM 2: MOOS Algorithm

```
Input: \mathcal{D} = design space; \mathcal{O} = set of optimization objectives; \mathcal{C} = physical constraints; MAX = maximum number of iterations
```

- 1: Initialize \mathcal{P}_{qlobal} with some initial design
- 2: Initialize the tree-based model \mathcal{M} over the space of λ values
- 3: **while** convergence or MAX iterations **do**
- 4: Select the best leaf node n^* from \mathcal{M} for expansion
- 5: Create three child nodes n_{left} , n_{center} , and n_{right} corresponding to equal partitions of the hyper-rectangle represented by node n^* along the longest dimension
- 6: Suppose λ_{left} and λ_{right} be the centers of hyper-rectangles represented by n_{left} and n_{right}
- 7: **for all** $\lambda \in \{\lambda_{left}, \lambda_{right}\}$ **do**
- 8: $d_{start} \leftarrow \text{Select-Start-Design}(O, \lambda, \mathcal{P}_{global})$
- 9: $\mathcal{P}_{local} \leftarrow \text{Local-Search}(O, d_{start}, C, MAX)$
- 10: $\mathcal{P}_{qlobal} \leftarrow \text{non-dominating designs from } \mathcal{P}_{qlobal} \cup \mathcal{P}_{local}$
- 11: $PHV_{qlobal} \leftarrow PHV(O, \mathcal{P}_{qlobal})$
- 12: Update tree-based model \mathcal{M} using the new evaluation data (λ, PHV_{qlobal})
- 13: end for
- 14: end while
- 15: **return** global Pareto set \mathcal{P}_{global}

MOOS flowchart

Newly explored designs to update the Pareto front

Fig. 4. Overview of MOOS algorithm.

Search hyperparameter space using trees

Fig. 5. Illustration of optimistic search via tree based model. Each cell corresponds to a partition of the space of λ parameters. After initial partition, the leaf cell with the best PHV denoted in green (higher PHV is better when minimizing all the k=2 objectives) is partitioned into W = 3 children cells for evaluation. This process is repeated till convergence.

MOOS local search

ALGORITHM 4: Local Search Procedure

Input: O = set of optimization objectives; $d_{start} = \text{starting design}$; C = physical constraints; $MAX = \max_{start} = \text{maximum iterations}$

```
1: \mathcal{P}_{local} \leftarrow \{d_{start}\}; and d_{curr} \leftarrow d_{start}
```

2: while convergence or MAX iterations do

```
3: d_{next} = \operatorname{argmax}_{d \in \mathcal{N}(d_{curr}) \cup \{d_{curr}\}} PHV(O, \mathcal{P}_{local} \cup \{d\})
```

4: **if**
$$PHV(O, \mathcal{P}_{local} \cup \{d_{next}\}) > PHV(O, \mathcal{P}_{local})$$
 then

5:
$$\mathcal{P}_{local} \leftarrow \text{non-dominating designs from } \mathcal{P}_{local} \cup \{d_{next}\}$$

- 6: **end if**
- 7: $d_{curr} \leftarrow d_{next}$
- 8: end while
- 9: **return** local Pareto set \mathcal{P}_{local}

MOOS vs MOO-STAGE

