Lexical Analysis Programming Languages

Sujit Kumar Chakrabarti

IIITB

Finite State Automata

Example ATM:

Finite State Automata

Example

ATM:

- Alphabet Σ : {insert card, check balance, no, yes, withdraw, amount, take card }
- States, initial state
- Transitions

Finite State Automata

Example ATM:

Finite State Automata

Example

ATM:

- \blacksquare Alphabet $\Sigma \colon$ {insert card, check balance, no, yes, with draw, amount, take card }
- States, initial state
- Transitions

Finite State Automata

Example NUMBER:

Finite State Automata

Example NUMBER:

Finite State Automata as recogniser

A string can be considered accepted if:

- input pointer has reached the end of the string.
- machine is in an accepting state.

Finite State Automata as recogniser

A string can be considered accepted if:

- input pointer has reached the end of the string.
- machine is in an accepting state.

A string can be considered rejected if:

- input pointer has reached the end of the string and machine is not in an accepting state.
- a symbol occurs for which the machine can't make a transition.

Finite State Automata as recogniser

Example DECIMAL NUMBER:

Finite State Automata as recogniser

Example

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3$$

Finite State Automata as recogniser

Example

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$$

Finite State Automata as recogniser

Example

$$\operatorname{start} \longrightarrow \underbrace{0} \, \stackrel{N}{\longrightarrow} \, \underbrace{1} \, \underbrace{2} \, \stackrel{N}{\longrightarrow} \, \underbrace{3}$$

- 1 *NN.N*
- 2 *NN.NN*

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$$
$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3$$

Finite State Automata as recogniser

Example

start
$$\longrightarrow 0$$
 N 1 2 N 3

- 1 *NN.N*
- 2 *NN.NN*

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{} 2 \xrightarrow{N} 3 \checkmark$$
$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

Finite State Automata as recogniser

Example

DECIMAL NUMBER:

$$\operatorname{start} \longrightarrow \underbrace{0} \, \stackrel{N}{\longrightarrow} \, \underbrace{1} \, \underbrace{2} \, \stackrel{N}{\longrightarrow} \, \underbrace{3}$$

- 1 *NN.N*
- 2NN.NN
- 3NN.

 $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{i} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2$$

Finite State Automata as recogniser

Example

DECIMAL NUMBER:

$$\operatorname{start} \longrightarrow \underbrace{0}^{N} \underbrace{1}^{N} \underbrace{2}^{N} \underbrace{3}^{N}$$

- 1 *NN.N*
- 2 *NN.NN*
- 3 NN.

 $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$ $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$ $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \times$

Finite State Automata as recogniser

Example

$$\operatorname{start} \longrightarrow \underbrace{0} \quad \underbrace{N} \quad \underbrace{1} \quad \underbrace{2} \quad \underbrace{N} \quad \underbrace{3}$$

- 1 NN.N
- 2 *NN.NN*
- 3NN.
- 4 .*N*

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \times$$

Finite State Automata as recogniser

Example

$$\operatorname{start} \longrightarrow \underbrace{0} \quad \underbrace{N} \quad \underbrace{1} \quad \underbrace{2} \quad \underbrace{N} \quad \underbrace{3}$$

- 1 NN.N
- 2 *NN.NN*
- 3NN.
- 4 .*N*

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{} 2 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{} 2 \times$$

$$0 \xrightarrow{} \times$$

Finite State Automata as recogniser

Example

$$\mathbb{I}$$
 $NN.N$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \times$$

$$0 \xrightarrow{\cdot} \times$$

$$N\alpha$$

$$0 \xrightarrow{N} 1 \xrightarrow{\alpha}$$

Finite State Automata as recogniser

Example

- 1 NN.N
- 2NN.NN
- 3NN.
- 4 .*N*
- $N\alpha$

- $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$
 - $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$
 - $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \times$
 - $0 \xrightarrow{\cdot} \times$
 - $0 \xrightarrow{N} 1 \xrightarrow{\alpha} \times$

Finite State Automata as recogniser

Example

$$\operatorname{start} \longrightarrow \underbrace{0} \, \stackrel{N}{ } \, \underbrace{1} \, \underbrace{2} \, \stackrel{N}{ } \, \underbrace{3} \, \underbrace{3}$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \times$$

$$0 \xrightarrow{\cdot} \times$$

$$N\alpha$$

$$0 \xrightarrow{N} 1 \xrightarrow{\alpha} \times$$

$$\delta$$
 $N.N\alpha$

Finite State Automata as recogniser

Example

start
$$\longrightarrow 0$$
 N 1 2 N 3

I
$$NN.N$$
 $0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \checkmark$

$$2 NN.NN 0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{\cdot} 2 \xrightarrow{N} 3 \xrightarrow{N} 3 \checkmark$$

$$0 \xrightarrow{} 1 \xrightarrow{} 1 \xrightarrow{} 2 \xrightarrow{} 3 \xrightarrow{} 3 \checkmark$$

$$0 \xrightarrow{} 1 \xrightarrow{} 1 \xrightarrow{} 2 \times$$

5
$$N\alpha$$
 0 \xrightarrow{N} 1 $\xrightarrow{\alpha}$ \times 6 $N.N\alpha$ 0 \xrightarrow{N} 1 \xrightarrow{N} 1 \xrightarrow{N} 2 \xrightarrow{N} 3 $\xrightarrow{\alpha}$ \times

- \blacksquare Each token class T is represented using an FSA F.
- Acceptance of an input string i by F indicates that $i \in T$.
- Lexical analyser consumes i and returns T.

- \blacksquare Each token class T is represented using an FSA F.
- Acceptance of an input string i by F indicates that $i \in T$.
- Lexical analyser consumes i and returns T.

- \blacksquare Each token class T is represented using an FSA F.
- Acceptance of an input string i by F indicates that $i \in T$.
- Lexical analyser consumes i and returns T.

- \blacksquare Each token class T is represented using an FSA F.
- Acceptance of an input string i by F indicates that $i \in T$.
- Lexical analyser consumes i and returns T.

Next

- 1 DFA and NFA
- 2 Implementation of FSAs