Conclusions first try on meta learning

- Doing hyperparameter optimization using deep learning is not efficient/doesn't make a lot of sense
- Computational restraint should be set to create an adaptable multipurpose meta learning framework
- Abovementioned is a disadvantage of a segmentation dataset. An alternative could be classification instead of segmentation (healthy, sick, etc.)
 - Disadvantage is that there isn't a dataset of Decathlon quality available, and it would be difficult to define the same classes for each dataset.
 - Therefore it is still the best option to keep working with the Decathlon dataset

The goal of this project

I want to create a meta-learning method that can look at a small subset from a medical dataset (~10 images) and predicts which method will produce the best segmentation map.

How?

The proposed methods should contain pretrained networks to reduce the computational strain with respect to the work I did in December.

To give more insight in the method I will try to visualize the meta-features

The subset of each dataset should be taken randomly

Planning

What	Estimated end date	Done?
Create framework in Python to implement the new meta	21/12/18	Yes
learning method		
Select segmentation methods	10/01/19	
Select and visualize meta-features	18/01/19	