VI Méthode de conception de schémas relationnels

Démarche:

- 1 Recenser les attributs
- 2 Recenser les Dépendances Fonctionnelles
- 3 Rechercher la Couverture Minimale
- 4 Concevoir le MCD
- 5 Concevoir le Schémas relationnel de la base de données

179

VI.1 Recenser les attributs

- Pour recenser les attributs, il n'y a pas à priori de méthode
 - Essayer de recenser à partir des différents documents existants les informations utilisées
 - De nouvelles informations peuvent apparaître

VI.3 Recherche de la Couverture Minimale Rechercher la couverture minimale correspondante

Exemple (1)

Soit R = {N°commande, Date_Commande, N°client, adresse_livraison, raison_sociale, N°représentant, Nom_représentant, date_du_jour, quantité_commandée, référence_produit, désignation, quantité_en_stock, nb_cl (nombre de client visités par un représentant un jour donné)}

Contraintes:

- Dans une commande, plusieurs produits peuvent être commandés.
- Un client n'est visité que par un seul représentant.

183

Exemple (2)

DF1:

 N° commande \rightarrow date_commande

 N° commande $\rightarrow N^{\circ}$ client

N°commande → adresse livraison

 N° commande \rightarrow raison_sociale

 N° commande $\rightarrow N^{\circ}$ représentant

 N° client \rightarrow raison_sociale

N°client → adresse livraison

 $N^{\circ} client \rightarrow N^{\circ} repr\'esentant$

 N° représentant \rightarrow nom_représentant

référence → désignation

référence → quantité en stock

 N° client \rightarrow nom_représentant

 N° commande, référence \rightarrow quantité_commandée

 $Date_du_jour, N^{\circ}représentant \rightarrow nb_cl$

Exemple (3)

Couverture Minimale:

 N° commande \rightarrow date_commande

 N° commande $\rightarrow N^{\circ}$ client

 N° client \rightarrow raison_sociale

N°client \rightarrow adresse_livraison

 N° client $\rightarrow N^{\circ}$ représentant

 N° représentant \rightarrow nom_représentant

référence → désignation

 $référence \rightarrow quantité_en_stock$

N°commande,référence→quantité_commandée (DF2)

date_du_jour, N°représentant → nb_cl (DF3)

Rappel de la Démarche

<u>Démarche</u>:

- 1/ Recenser les attributs
- 2 Recenser les Dépendances Fonctionnelles
- 3 Rechercher la Couverture Minimale
- 4 Concevoir le MCD
- 5 Concevoir le Schémas relationnel de la base de données

187

VI.4 Conception du MCD (1)

A partir de la couverture minimale, on va construire le MCD.

<u>4/Etapes:</u>

- 1. Définition de l'ensemble des identifiants
- 2. Recherche des entités
- 3. Recherche des relations
- 4. Recherche des propriétés

VI.4 Conception du MCD (2)

Etape 1: Définition de l'ensemble des identifiants

L'ensemble des attributs sources des dépendances fonctionnelles, A, constitue l'ensemble des identifiants.

Exemple (suite):

A = {N°commande, N°client, N°représentant, référence, date_du_jour}

Remarque : si deux attributs apparaissent toujours ensemble dans des sources de dépendances fonctionnelles, ils constituent un seul élément.

189

VI.4 Conception du MCD (3)

Etape 2: Recherche des entités

A tout élément de A correspond une entité dont cet élément est identifiant (chaque nœud du graphe).

Exemple (suite):

 $A = \{N^{\circ} \text{ commande, } N^{\circ} \text{ client, } N^{\circ} \text{ représentant, } \text{ référence, } \text{ date_du_jour} \}$

Commande

Client

Représentant

Produit

Date

VI.4 Conception du MCD (4)

Etape 3: Recherche des relations

Cas1 : A toute source d'une DF constituée d'un moins deux éléments de A correspond une relation (clé à attributs multiples).

Les éléments de A identifient les entités intervenant dans la relation. La dimension de la relation est égale au nombre d'éléments pris dans A.

Exemple (suite): relations

Dimension: 2

- Visite Entités (collection) : date, représentant

Dimension: 2

191

VI.4 Conception du MCD (5)

Cas 2 : A tout élément de A, but d'une relation, correspond une relation de dimension 2 (clé étrangère).

Exemple (suite) : relations

-/Com_Cli (entités : commande, client)

- Cli_Rep (entités : client, représentant)

Cardinalités:

- Cas 1 : les cardinalités sont fonction du domaine d'étude
- Cas 2 : au moins une cardinalité est égale à 0,1 ou 1,1.

VI.4 Conception du MCD (6)

Etape 4: Recherche des propriétés

- A tout attribut n'appartenant pas à A correspond une propriété.
- Ces attributs sont obligatoirement but de DF, leur affectation est évidente.

Rappel de la Démarche

Démarche:

- 1/ Recenser les attributs
- 2 Recenser les Dépendances Fonctionnelles
- 3 Rechercher la Couverture Minimale
- 4 Concevoir le MCD
- 5 Concevoir le Schémas relationnel de la base de données

195

VI .5 Conception du schéma relationnel de la BD (1)

A partir du MCD, on va maintenant définir le schéma relationnel de la base de données.

Règles concernant les entités :

- Chaque entité se transforme en une table (ou relation)
- L'identifiant se transforme en clé primaire de la table
- Les propriétés de l'entité deviennent des attributs de la table

197

Règles concernant les relations (1):

Cas 1: Relation binaire et cardinalités de type (x,1) - (x,N)

- C'est le cas d'une relation de type "père-fils" (père x,N / fils x,1), dans ce cas :
 - l'identifiant de l'entité père devient une propriété de la table fils, cette propriété est appelée clé étrangère (ou clé externe)
 - les propriétés de la relation deviennent des propriétés de la table fils

Donc dans le cas général :

- Relation_A(<u>IdentA</u>, PropriétéA, #IdentB, Pro_rel)
- Relation_B(<u>IdentB</u>, PropriétéB)

Règles concernant les relations (2):

On obtient 2 tables:

Client (N°Client, Nom)

Commande(N°Cde, Date_Cde, #N°Client)

199

Règles concernant les relations (3):

Cas 2: Relation binaire et cardinalités de type (x,N) - (x,N)

La relation devient une table, l'identifiant de la relation devient la clé primaire de la table.

Donc, on obtient 3 tables:

- Relation_A(<u>IdentA</u>, PropriétéA)
- Relation_B(IdentB, PropriétéB)
- Relation_R(#<u>IdentA</u>, #<u>IdentB</u>, Pro_rel)

