Wiener-Hopf factorization for extremal Markovian sequences connected with the Kendall convolution

Mateusz Staniak

Mathematical Institute, University of Wrocław, Poland

Delft, June 26, 2017

Research sponsored by

- First order Kendall maximal autoregressive processes and their applications
- Barbara Jasiulis-Gołdyn, PhD

Generalized convolution of the Kendall type

Definition 1 (Kendall convolution)

Kendall random walk

Definition 2 (Rosiński et al.)

The Kendall random walk is a Markov process $\{X_n : n \in \mathbb{N}_0\}$ with $X_0 = 0$ and the transition probabilities

$$P_n(x, A) = P(X_{n+k} \in A | X_k = x) = \delta_x \, \triangle_\alpha \, \nu^{\triangle_\alpha n}$$

where measure $\nu \in \mathcal{P}_s$ is called the step distribution.

Kendall random walk representation

Theorem 1 (Jasiulis-Goldyn)

The Markov process $\{X_n : n \in \mathbb{N}_0\}$ with step distribution $Y_i \sim \nu$ has the following properties: $X_0 = 0$, $X_1 = Y_1$,

$$X_{n+1} = v(|X_n|, |Y_{n+1}|)u(X_n, Y_{n+1})\theta_n^{Q_n}$$
a.e.,

where θ_n is independent of $v(|X_n|, |Y_{n+1}|)u(X_n, Y_{n+1})$, $v(x, y) = x \vee y$, $u(x, y) = \frac{x \wedge y}{x \vee y}$,

$$u(x,y) = \begin{cases} sgn(x), & |x| \ge |y|, \\ sgn(y), & |x| < |y|, \end{cases}$$

and

$$\mathbb{P}(Q_n = k|X_n, Y_{n+1}) = \begin{cases} (z(|X_n|, |Y_{n+1}|))^{\alpha}, & k = 1, \\ 1 - (z(|X_n|, |Y_{n+1}|))^{\alpha}, & k = 0. \end{cases}$$

Williamson transform

Definition 3

Williamson transform Operation $u \to \widehat{\nu}$ given by

$$\widehat{\nu}(t) = \int_{\mathbb{R}} (1 - |xt|^{\alpha})_{+} \nu(dx), \quad \nu \in \mathcal{P}_{s},$$

where $a_+ = a$ if $a \ge 0$ and $a_+ = 0$ otherwise.

Theorem 2

Let $\nu_1, \nu_2 \in \mathcal{P}_s$ be probability measures with Williamson transforms $\widehat{\nu_1}, \widehat{\nu_2}$. Then

$$\int_{\mathbb{R}} (1-|xt|^{\alpha})_{+} \big(\nu_{1} \, \triangle_{\alpha} \, \nu_{2}\big)(dx) = \widehat{\nu_{1}}(t)\widehat{\nu_{2}}(t).$$

Inverse Williamson transform

Theorem 3 (Jasiulis-Goldyn, Misiewicz, 2017)

The correspondence between measure $\nu \in \mathcal{P}_s$ and its Williamson transform is 1-1. Moreover, denoting by F the cumulative distribution function of ν , $\nu(\{0\})=0$ and $G(t)=\hat{\nu}(\frac{1}{t})$, we have

$$F(t) = \begin{cases} \frac{1}{2\alpha} \left[\alpha(G(t) + 1) + tG'(t) \right] & \text{if } t > 0; \\ 1 - F(-t) & \text{if } t < 0. \end{cases}$$

except for the countable many $t \in \mathbb{R}$.

Definitions

•
$$\tau_a^+ = \inf\{i \ge 0 : X_i > a\}$$

•
$$\tau_a^- = \inf\{i \geq 0 : X_i < a\}$$

- Convention: $\min \emptyset = \infty$
- Notation: H(x) = 2F(x) 1 G(x)
- Notation: $\Psi(t) = (1 |t|^{\alpha})_+$

Useful lemmas

Lemma 4 (Jasiulis-Gołdyn, Misiewicz)

$$\delta_{x} \triangle_{\alpha} \delta_{y}(0, t) := \frac{1}{2} \left(1 - \left| \frac{xy}{t^{2}} \right|^{\alpha} \right) \mathbf{1}_{\{|x| < t, |y| < t\}} \\
= \frac{1}{2} \left[\Psi \left(\frac{x}{t} \right) + \Psi \left(\frac{y}{t} \right) - \Psi \left(\frac{x}{t} \right) \Psi \left(\frac{y}{t} \right) \right] \mathbf{1}_{\{|x| < t, |y| < t\}}$$

Lemma 5 (Jasiulis-Goldyn, Misiewicz)

$$\begin{aligned} \delta_{x} \, \triangle_{\alpha} \, \nu\left(0, t\right) &= P_{1}(x, [0, t)) \\ &= \left[\Psi\left(\frac{x}{t}\right) \left(F(t) - \frac{1}{2}\right) + \frac{1}{2}G(t) - \frac{1}{2}\Psi\left(\frac{x}{t}\right)G(t)\right] \mathbf{1}_{\{|x| < t\}} \\ &= \left[\Psi\left(\frac{x}{t}\right) H(t) + G(t)\right] \mathbf{1}_{\{|x| < t\}} \end{aligned}$$

Useful lemmas

Lemma 6 (Jasiulis-Goldyn, Staniak)

$$F_n(t) = \begin{cases} \frac{1}{2\alpha} \left[\alpha(G(t)^n + 1) + tnG(t)^{n-1}G'(t) \right] &, t > 0, \\ 1 - F_n(-t) &, t < 0. \end{cases}$$

Lemma 7 (Jasiulis-Gołdyn, Staniak)

$$\delta_{x} \triangle_{\alpha} \nu^{n}(0,t) = P_{n}(x,[0,t))$$

$$= \left[\Psi\left(\frac{x}{t}\right)\left(F_{n}(t) - \frac{1}{2}\right) + \frac{1}{2}G(t)^{n} - \frac{1}{2}\Psi\left(\frac{x}{t}\right)G(t)^{n}\right]\mathbf{1}_{\{|x| < t\}}$$

Results for a = 0

Theorem 8 ((Jasiulis-Goldyn, Misiewicz))

R. v. τ_0^+ (and, by symmetry of the Kendall random walk, also variable τ_0^-) has geometric distribution $P(\tau_0^+=k)=\frac{1}{2^k},\ k=1,2,\cdots$. Generating function for τ_0^+ is given by

$$\mathsf{E} s^{\tau_0^+} = \frac{\frac{s}{2}}{1 - \frac{s}{2}}, \quad 0 \leqslant s < 2.$$

More results

•
$$\Phi_n(t) := \mathbf{P} \{ X_1 \le 0, \dots X_{n-1} \le 0, 0 < X_n < t \} = \frac{1}{2^n} G(t)^{n-1} \Big[2n \Big(F(t) - \frac{1}{2} \Big) - (n-1)G(t) \Big]$$

Theorem 9 (Jasiulis-Goldyn, Misiewicz)

$$\mathbf{P}\left\{X_{\tau_0^+} < t\right\} = \sum_{k=1}^{\infty} \mathbf{P}\left\{X_{\tau_0^+} < t, \tau_0^+ = k\right\} = \sum_{k=1}^{\infty} \Phi_k(t) = \frac{1}{(2-G(t))^2} \left[4F(t) - 2 - G(t)^2\right]$$

Even more results

- Let $\{X_n \colon n \in \mathbb{N}_0\}$ be the Kendall random walk
- Let $N_{s/2}$ be geometric r.v. independent of (X_n) .
- Define geometric-Kendall r.v.: $Z_{s/2} = \sum_{k=1}^{\infty} X_k \mathbf{1}_{\{N_{s/2}=k\}}$
- Notice that $\mathbf{E}\Psi\left(X_k/t\right)=G(t)^k$ and $\mathbf{E}\Psi\left(Z_{s/2}/t\right)=rac{G(t)\left(1-rac{s}{2}\right)}{1-rac{s}{2}\,G(t)}$.

Theorem 10 (Jasiulis-Goldyn, Misiewicz)

Let $\{X_n : n \in \mathbb{N}_0\}$ be a random walk under the Kendall convolution with the unit step $X_1 \sim F$ such that $F(0) = \frac{1}{2}$. Then

$$\mathbf{E} s^{\tau_0^+} \Psi \left(u X_{\tau_0^+} \right) = \frac{\frac{s}{2}}{1 - \frac{s}{2}} \cdot \frac{\left(1 - \frac{s}{2} \right) G(1/u)}{1 - \frac{s}{2} G(1/u)} = \mathbf{E} s^{\tau_0^+} \mathbf{E} \Psi \left(u Z_{s/2} \right).$$

Distribution of the first ladder moment

Theorem 11 (Jasiulis-Goldyn, Staniak)

The distribution of τ_a^+ is given by

$$\begin{split} &\mathbb{P}(\tau_a^+ = k) \\ &= \left(\frac{1}{2}\right)^{k-1} \left[\frac{F(a)(2G(a) - 1)^2 + G(a)[2F(a) - 2 - G(a)^2]}{(2G(a) - 1)^2} \right] \\ &+ G(a)^{k-1} \frac{(k-1)(2G(a) - 1 - 2G(a)^2}{(2G(a) - 1)^2} \\ &+ G(a)^{k-1} \frac{(1 - G(a))(2F(a) - 1)(2G(a) - 1)^2}{(2G(a) - 1)^2} \end{split}$$

Proof

•
$$\mathbb{P}(\tau_a^+ = k) = \mathbb{P}(X_0 \le a, X_1 \le a, \dots, X_{k-1} \le a, X_k > a)$$

= $\int_{-\infty}^a \dots \int_{-\infty}^a \int_a^{-\infty} P_1(x_{k-1}, dx_k) P_1(x_{k-2}, dx_{k-1}) \dots P_1(0, dx_1)$

• Define $I_1 = \int_a^\infty P_1(x_{k-1}, dx_k) = \frac{1}{2} - \frac{1}{2} \left[\Psi(\frac{x_{k-1}}{a}) H(a) + G(a) \right] \mathbf{1}(|x_{k-1}| < a)$

Proof: recurrence equations

- Assume that I_j is of the form $I_j = A_j + \mathbf{1}(|x_{k-j}| < a) \left[\Psi\left(\frac{x_{k-j}}{a}\right) H(a) B_j + C_j G(a) \right]$
- $I_{j+1} = \int_{-\infty}^{a} I_j \left(\delta_{x_{k-j-1}} \triangle_{\alpha} \nu \right) (d_{x_{k-j}})$

$$\Phi \begin{cases}
A_{j+1} = \frac{1}{2}A_j, \\
B_{j+1} = \frac{1}{2}A_j + G(a)(B_j + C_j), \\
C_{j+1} = \frac{1}{2}A_j + C_jG(a)
\end{cases}$$

•
$$A_1 = \frac{1}{2}$$
, $B_1 = C_1 = -\frac{1}{2}$

Solutions

•

$$A_j = \left(\frac{1}{2}\right)^j$$

$$B_{j} = G(a)^{j-1}B_{1} + \sum_{m=2}^{j} G(a)^{j-m} \left(\frac{1}{2}\right)^{m} + \sum_{m=1}^{j-1} G(a)^{j-m} C_{m}$$
$$= \sum_{m=1}^{j} G(a)^{j-m} C_{m}$$

$$C_j = G(a)^{j-1}C_1 + \sum_{m=2}^j G(a)^{j-m} \left(\frac{1}{2}\right)^m = \sum_{m=1}^j G(a)^{j-m} \left(\frac{1}{2}\right)^m - G(a)^{j-1}$$

Closed form solutions

•
$$A_j = (\frac{1}{2})^j$$

•
$$B_j = G(a)^{j-1} \frac{(1-G(a)(2G(a)-1)-G(a)}{(2G(a)-1)^2} j + (\frac{1}{2})^j \frac{1}{(2G(a)-1)^2}$$

•
$$C_j = \frac{G(a)^{j-1}(1-G(a))-2^{-j}}{2G(a)-1} = G(a)^{j-1}\frac{1-G(a)}{2G(a)-1} + \left(\frac{1}{2}\right)^j \frac{-1}{2G(a)-1}$$

Corollary

[Jasiulis-Goldyn, Staniak]

Lemma 1

Generating function for τ_2^+ is given by

$$H(s) = \frac{\frac{s}{2}}{1 - \frac{s}{2}} \left[2F(a) + \frac{4G(a)^2(2F(a) - 1)}{(2G(a) - 1)^2} \right]$$

$$+ \frac{s}{(1 - sG(a))^2} \left[\frac{(2G(a) - 1 - 2G(a)^2)H}{(2G(a) - 1)^2} \right]$$

$$+ \frac{s}{1 - sG(a)} \left[\frac{(2F(a) - 1)(G(a) + 1) - G(a)(2G(a) - 1 - 2G(a)^2)}{(2G(a) - 1)^2} \right]$$

Mean of the first ladder moment

Lemma 2

Mean of the random variable τ_a^+ is given by

$$\mathbb{E}\tau_{a}^{+} = \frac{1}{4} \left[2F(a) + \frac{4G(a)^{2}(2F(a) - 1)}{(2G(a) - 1)^{2}} \right]$$

$$+ \frac{1 - G(a)^{2}}{(1 - G(a))^{4}} \left[\frac{(2G(a) - 1 - 2G(a)^{2})H}{(2G(a) - 1)^{2}} \right]$$

$$+ \frac{1}{(1 - G(a))^{2}} \left[\frac{(2F(a) - 1)(G(a) + 1) - G(a)(2G(a) - 1 - 2G(a)^{2})}{(2G(a) - 1)^{2}} \right]$$

In progress

- ullet $\mathbb{P}(X_{ au_{\pmb{a}}^+} < t, au_{\pmb{a}}^+ = k)$: complicated formula
- $\mathbb{E} s^{\tau_a^+} \Psi(uX_{t_a^+})$: the final goal

More

- Renewal theory for Kendall convolution
- Limit properties of Kendall random walks
- More analogies with classical theory
- Applications

Bibliography

- A. Lachal, A note on Spitzer identity for random walk, Statistics & Probability Letters, **78**(2), 97–108, 2008.
- **T. Nakajima**, Joint distribution of first hitting time and first hitting place for random walk, Kodai Math. J. **21**, 192–200, 1998.
- B.H. Jasiulis-Gołdyn, J.K. Misiewicz, Kendall random walk, Williamson transform and the corresponding Wiener-Hopf factorization, in press: Lith. Math. J., 2016, arXiv: http://arxiv.org/pdf/1501.05873.pdf.
- **B.H. Jasiulis-Goldyn, M. Staniak**, Spitzer identity for Kendall random walk, 2017, in preparation.
- M. Borowiecka-Olszewska, B.H. Jasiulis-Gołdyn, J.K. Misiewicz, J. Rosiński, Lévy processes and stochastic integrals in the sense of generalized convolutions, Bernoulli, 21(4), 2513–2551, 2015.