Résumé de cours :

Semaine 18, du 31 janvier au 5 février.

Suites de vecteurs

1 Somme et produit de limites

Notation. On suppose que E est un espace vectoriel normé.

Les propriétés de ce paragraphe ne se généralisent pas aux espaces métriques.

Propriété. Soient (x_n) et (y_n) deux suites de E convergeant vers l et l'.

Alors la suite $(x_n + y_n)$ converge vers l + l'.

Propriété. Si $(x_n + y_n)$ converge, alors (x_n) et (y_n) ont la même nature.

Propriété. Soient $(\alpha_n) \in \mathbb{K}^{\mathbb{N}}$ et $(x_n) \in E^{\mathbb{N}}$.

Si l'une des suites est bornée et si l'autre tend vers 0, alors $\alpha_n x_n \xrightarrow[n \to +\infty]{} 0$.

Propriété. Soient (l_n) une suite de E qui converge vers $l \in E$ et (α_n) une suite de scalaires qui converge vers α . Alors la suite $(\alpha_n.l_n)$ converge vers $\alpha.l$.

Il faut savoir le démontrer.

Propriété. L'ensemble des suites convergentes de E noté $E_{cv}^{\mathbb{N}}$ est un sous-espace vectoriel de $l^{\infty}(E)$ et l'application (x_n) $\longmapsto \lim_{n \to +\infty} x_n$ est une application linéaire.

Propriété. Suites à valeurs dans un produit.

Soient $p \in \mathbb{N}^*$ et E_1, \ldots, E_p p espaces vectoriels normés, leurs normes étant notées N_1, \ldots, N_p . On note $E = E_1 \times \cdots \times E_p$ que l'on munit de l'une des trois normes classiques.

Soient $(x_n)_{n\in\mathbb{N}}=((x_{1,n},\ldots,x_{p,n}))_{n\in\mathbb{N}}$ une suite d'éléments de E et $l=(l_1,\ldots,l_p)\in E$.

Alors (x_n) converge vers l si et seulement si, pour tout $i \in \mathbb{N}_p$, $(x_{i,n})$ converge vers l_i .

Il faut savoir le démontrer.

Propriété. Suites à valeurs dans un espace de dimension finie.

On suppose que E est un \mathbb{K} -espace vectoriel de dimension finie dont $e = (e_1, \dots, e_q)$ est une base.

Soit (x_n) une suite de vecteurs de E. Pour tout $n \in \mathbb{N}$, on note $x_n = \sum_{i=1}^q x_{i,n} e_i$.

Alors, la suite (x_n) converge dans E si et seulement si, pour tout $i \in \mathbb{N}_q$, la suite $(x_{i,n})$ converge dans

$$\mathbb{K}$$
, et, dans ce cas, $\lim_{n \to +\infty} x_n = \sum_{i=1}^q (\lim_{n \to +\infty} x_{i,n}) e_i$.

2 Suites de complexes

2.1 Premières propriétés

Propriété. Soit $(x_n) \in \mathbb{C}^{*\mathbb{N}}$ telle que $x_n \underset{n \to +\infty}{\longrightarrow} \ell \in \mathbb{C} \setminus \{0\}$. Alors $\frac{1}{x_n} \underset{n \to +\infty}{\longrightarrow} \frac{1}{\ell}$. Il faut savoir le démontrer.

Propriété. Soit (z_n) une suite de complexes et $\ell \in \mathbb{C}$. Alors $z_n \underset{n \to +\infty}{\longrightarrow} \ell$ si et seulement si $\operatorname{Re}(z_n) \underset{n \to +\infty}{\longrightarrow} \operatorname{Re}(\ell)$ et $\operatorname{Im}(z_n) \underset{n \to +\infty}{\longrightarrow} \operatorname{Im}(\ell)$. Dans ce cas, on a donc $\lim_{n \to +\infty} z_n = \lim_{n \to +\infty} \operatorname{Re}(z_n) + i \lim_{n \to +\infty} \operatorname{Im}(z_n)$.

3 Quelques suites de complexes définies par récurrence

3.1 Suites arithmético-géométriques

Propriété. Soit $a, b \in \mathbb{C}$ avec $a \neq 1$. Si pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$, on calcule $c \in \mathbb{C}$ tel que c = ac + b. Alors $u_n - c$ est géométrique. Il faut savoir le démontrer.

3.2 Suites homographiques (hors programme)

Propriété. Soit $a, b, c, d \in \mathbb{C}$ avec $c \neq 0$. Si pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{au_n + b}{cu_n + d}$, on résout l'équation $\ell = \frac{a\ell + b}{c\ell + d}$.

Si cette équation possède deux solutions α et β distinctes, alors $v_n = \frac{u_n - \beta}{u_n - \alpha}$ est géométrique.

Sinon, cette équation possède une unique solution α et $v_n = \frac{1}{u_n - \alpha}$ est arithmétique.

3.3 Suites récurrentes linéaires d'ordre 2

Propriété. Soient $(a,b) \in \mathbb{K}^2 \setminus \{(0,0)\}$ et $(u_n) \in \mathbb{K}^{\mathbb{N}}$ telle que $u_{n+2} = au_{n+1} + bu_n$. $\chi(X) = X^2 - aX - b$ est le polynôme caractéristique de (u_n) . On note $\Delta = a^2 + 4b$.

- Si $\Delta \neq 0$, en notant λ_1 et λ_2 les deux racines de χ , $\exists (C_1, C_2) \in \mathbb{C}^2 \ \forall n \in \mathbb{N}, \ u_n = C_1 \lambda_1^n + C_2 \lambda_2^n$.
- Si de plus $\mathbb{K} = \mathbb{R}$ et $\Delta < 0$, en posant $\lambda_1 = \rho e^{i\theta}$,
 - $\exists (D_1, D_2) \in \mathbb{R}^2 \ \forall n \in \mathbb{N}, \ u_n = \rho^n (D_1 \cos(n\theta) + D_2 \sin(n\theta)).$
- Si $\Delta = 0$, en notant λ la racine double, $\exists (C_1, C_2) \in \mathbb{K}^2 \ \forall n \in \mathbb{N}, \ u_n = \lambda^n (C_1 + nC_2)$.

Il faut savoir le démontrer.

4 Suites de réels

4.1 Limites infinies

 $\begin{array}{lll} \textbf{D\'efinition.} & x_n \underset{n \to +\infty}{\longrightarrow} +\infty \Longleftrightarrow \forall M \geq 0, \;\; \exists N \in \mathbb{N}, \;\; \forall n \geq N, \;\; x_n \geq M. \\ x_n \underset{n \to +\infty}{\longrightarrow} -\infty \Longleftrightarrow \forall M \geq 0, \;\; \exists N \in \mathbb{N}, \;\; \forall n \geq N, \;\; x_n \leq -M. \end{array}$

Définition. Lorsqu'une suite de réels tend vers $+\infty$ ou $-\infty$, elle est toujours divergente : on dit qu'elle diverge vers $+\infty$ ou $-\infty$. On distingue ainsi trois catégories de suites réelles :

- Les suites convergentes. Ce sont celles qui convergent vers un réel.
- Les suites divergentes de première espèce. Ce sont celles qui divergent vers $+\infty$ ou $-\infty$.

— Toutes les autres suites. On dit qu'elles sont divergentes de seconde espèce.

Propriété. Si $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ est strictement croissante, pour tout $n \in \mathbb{N}$, $\varphi(n) \geq n$, donc $\varphi(n) \xrightarrow[n \to +\infty]{} +\infty$.

Définition. Si (x_n) est dans un espace métrique, $x_n \underset{n \to +\infty}{\longrightarrow} \infty \iff d(x_0, x_n) \underset{n \to +\infty}{\longrightarrow} +\infty$.

Propriété. Composition des limites : Si (x_n) est dans un espace métrique et si $x_n \underset{n \to +\infty}{\longrightarrow} \ell$, avec ℓ éventuellement infinie, pour tout $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ telle que $\varphi(n) \underset{n \to +\infty}{\longrightarrow} +\infty, \, x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell.$

Il faut savoir le démontrer.

Propriété. Dans un espace métrique, $x_n \underset{n \to +\infty}{\longrightarrow} l$ si et seulement si $x_{2n} \underset{n \to +\infty}{\longrightarrow} l$ et $x_{2n+1} \underset{n \to +\infty}{\longrightarrow} l$. Il faut savoir le démontrer.

Propriété. Soit $p \in \mathbb{N}^*$. Si, pour tout $i \in \{0, \dots, p-1\}$, $x_{pn+i} \underset{n \to +\infty}{\longrightarrow} l$, alors $x_n \underset{n \to +\infty}{\longrightarrow} l$.

Remarque. C'est encore vrai dans le cas de limites infinies.

Propriété. Avec des suites de réels, en prenant $\varepsilon, \varepsilon' \in \{-1, 1\}$,

- $\begin{array}{l} -\text{ Si }x_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty \text{ et }y_n \underset{n \to +\infty}{\longrightarrow} y \in \mathbb{R}, \text{ alors } x_n + y_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty. \\ -\text{ Si }x_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty \text{ et }y_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty, \text{ alors } x_n + y_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty, \text{ mais } x_n y_n \text{ est une forme indéterminée} \end{array}$
- $\operatorname{Si} x_n \xrightarrow[n \to +\infty]{} \varepsilon \infty, \operatorname{alors} -x_n \xrightarrow[n \to +\infty]{} -\varepsilon \infty.$ $\operatorname{Si} x_n \xrightarrow[n \to +\infty]{} \varepsilon \infty \operatorname{et} \alpha > 0, \operatorname{alors} \alpha x_n \xrightarrow[n \to +\infty]{} \varepsilon \infty.$
- Si $x_n \xrightarrow[n \to +\infty]{} \varepsilon \infty$ et $y_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}_+$, alors $x_n y_n \xrightarrow[n \to +\infty]{} \varepsilon \infty$, sauf lorsque $\ell = 0$, qui est une forme indéterminée du type $0 \times \infty$.
- Si $x_n \xrightarrow[n \to +\infty]{} \varepsilon \infty$ et $y_n \xrightarrow[n \to +\infty]{} \varepsilon' \infty$, alors $x_n y_n \xrightarrow[n \to +\infty]{} \varepsilon \varepsilon' \infty$.
- Si $x_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty$ alors $\frac{1}{x_n} \underset{n \to +\infty}{\longrightarrow} 0$. Si $x_n \underset{n \to +\infty}{\longrightarrow} 0^+$ alors $\frac{1}{x_n} \underset{n \to +\infty}{\longrightarrow} +\infty$.

Remarque. Lorsque u_n est de la forme $u_n=a_n^{b_n}$, il est indispensable d'écrire $u_n=e^{b_n\ln a_n}$ pour étudier sa limite. Par exemple, $u_n=(1+\frac{1}{n})^n=e^{n\ln(1+\frac{1}{n})}\underset{n\to+\infty}{\longrightarrow} e$ car $\frac{\ln(1+x)}{x}\underset{x\to 0}{\longrightarrow} 1$.

4.2 limites et relation d'ordre

Principe des gendarmes : Soit $(p_n), (g_n), (g'_n)$ trois suites de **réels** et $\ell \in \mathbb{R}$ tels que, pour tout $n \in \mathbb{N}$, $g_n \leq g_n'$, $g_n \xrightarrow[n \to +\infty]{} \ell$ et $g_n' \xrightarrow[n \to +\infty]{} \ell$. Alors $p_n \xrightarrow[n \to +\infty]{} \ell$. Le principe des gendarmes s'adapte aux cas des limites infinies :

Lemme du tunnel : Soit (u_n) une suite de réels qui converge vers $\ell \in \mathbb{R}$. Soit $a, b \in \mathbb{R}$ tels que $a < \ell < b$. Alors il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $a < u_n < b$. Il faut savoir le démontrer.

Propriété. Dans \mathbb{R} , si pour tout $n \in \mathbb{N}$, $a_n \leq b_n$, alors dans $\overline{\mathbb{R}}$, $\lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} b_n$.

Propriété. Soit X une partie non vide de \mathbb{R} . Il existe une suite de réels (x_n) telle que $x_n \underset{n \to +\infty}{\longrightarrow} \sup(X) \in \mathbb{R} \cup \{+\infty\} \text{ (resp : } x_n \underset{n \to +\infty}{\longrightarrow} \inf(X) \in \mathbb{R} \cup \{-\infty\}).$ Il faut savoir le démontrer.

4.3 Suites monotones

Théorème de la limite monotone : Soit (x_n) une suite croissante de réels.

Si (x_n) est majorée, alors cette suite est convergente. De plus $\lim_{n\to+\infty} x_n = \sup_{n\to+\infty} x_n$.

Si (x_n) n'est pas majorée, alors cette suite est divergente. De plus $\lim_{n \to +\infty} x_n = +\infty$.

Ainsi, dans tous les cas, on peut écrire que $x_n \underset{n \to +\infty}{\longrightarrow} \sup_{n \in \mathbb{N}} x_n \in \mathbb{R} \cup \{+\infty\}.$

Il faut savoir le démontrer.

Théorème. Soit (x_n) une suite décroissante de réels.

Si (x_n) est minorée, alors cette suite est convergente. De plus $\lim_{n\to+\infty}x_n=\inf_{n\in\mathbb{N}}x_n$.

Si (x_n) n'est pas minorée, alors cette suite est divergente. De plus $\lim_{n \to +\infty} x_n = -\infty$.

Ainsi, dans tous les cas, on peut écrire que $x_n \underset{n \to +\infty}{\longrightarrow} \inf_{n \in \mathbb{N}} x_n \in \mathbb{R} \cup \{-\infty\}.$

Propriété. Soit (x_n) une suite géométrique de réels de raison a, tel que $x_0 \neq 0$.

- Si |a| < 1, alors $x_n \xrightarrow[n \to +\infty]{} 0$.
- Si a = 1, x_n est constante.
- Si $a>1,\; x_n \underset{n \to +\infty}{\longrightarrow} \varepsilon \infty,$ où ε est le signe de x_0
- Si $a \leq -1$, (x_n) diverge.

4.4 Suites adjacentes

Définition. Deux suites (x_n) et (y_n) de réels sont adjacentes si et seulement si l'une est croissante, l'autre est décroissante et si $x_n - y_n \underset{n \to +\infty}{\longrightarrow} 0$.

Théorème. Si (x_n) et (y_n) sont adjacentes avec (x_n) est croissante, alors ces deux suites convergent vers une limite commune $\ell \in \mathbb{R}$. De plus, pour tout $(p,q) \in \mathbb{N}^2$, $x_p \leq \ell \leq y_q$. Il faut savoir le démontrer.

Théorème des segments emboîtés : Soit $(I_n)_{n\in\mathbb{N}}$ une suite de segments, décroissante au sens de l'inclusion, dont les longueurs tendent vers 0. Alors $\bigcap_{n\in\mathbb{N}} I_n$ est un singleton.

Il faut savoir le démontrer.

5 Valeurs d'adhérences

On se place dans un espace métrique quelconque.

Définition. Les suites extraites de (x_n) sont les $(x_{\varphi(n)})$, où $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ est strictement croissante.

Propriété. Si une suite (x_n) converge vers ℓ , toutes ses suites extraites convergent vers ℓ .

Remarque. Cette propriété se généralise au cas des limites infinies.

Propriété. Une suite extraite d'une suite extraite de (x_n) est une suite extraite de (x_n) . Il faut savoir le démontrer.

Définition. Les valeurs d'adhérence de (x_n) sont les limites des suites extraites convergentes de (x_n) .

Remarque. La limite d'une suite convergente est son unique valeur d'adhérence. Si une suite admet au moins deux valeurs d'adhérence distinctes, elle est divergente.

Propriété. (hors programme). Les propriétés suivantes sont équivalentes :

- i) a est une valeur d'adhérence de (x_n) .
- ii) $\forall \varepsilon \in \mathbb{R}_+^* \ \forall N \in \mathbb{N} \ \exists n \ge N \ d(x_n, a) < \varepsilon$.

iii) $\forall \varepsilon > 0 \ Card(\{n \in \mathbb{N}/x_n \in B_o(a, \varepsilon)\}) = +\infty.$

Il faut savoir le démontrer.

Lemme des pics : De toute suite de réels on peut extraire une suite monotone.

Il faut savoir le démontrer.

Théorème de Bolzano-Weierstrass :

Dans un K-espace vectoriel de dimension finie, toute suite bornée possède au moins une valeur d'adhérence.

Il faut savoir le démontrer pour les suites bornées de complexes.

6 Suites de Cauchy (hors programme)

On se place dans un espace métrique quelconque.

Définition. $[(x_n) \text{ est une suite de Cauchy}] \iff [\forall \varepsilon \in \mathbb{R}_+^* \exists N \in \mathbb{N} \ \forall p \geq N \ \forall q \geq N \ d(x_p, x_q) \leq \varepsilon].$

Propriété. Toute suite convergente est une suite de Cauchy.

Il faut savoir le démontrer.

Propriété. Toute suite de Cauchy de E est bornée.

Il faut savoir le démontrer.

Propriété. Si une suite de Cauchy possède une valeur d'adhérence alors elle est convergente.

Il faut savoir le démontrer.

Définition. E est un espace métrique complet si et seulement si toute suite de Cauchy de E est convergente.

Théorème. Si toute suite bornée de E possède au moins une valeur d'adhérence, alors E est complet.

Théorème. Tout \mathbb{K} -espace vectoriel de dimension finie est complet.

Séries de vecteurs

Notation. \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Définition. Un espace de Banach est un K-espace vectoriel normé complet.

Notation. On fixe dans ce chapitre un espace de Banach noté E.

7 Définition d'une série de vecteurs

Définition. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de vecteurs. On appelle série de terme général a_n , et on note $\sum a_n$, la suite de terme général $(a_n, \sum_{k=0}^n a_k)$. Ainsi, $\sum a_n$ est une suite d'éléments de E^2 .

Remarque. L'intérêt de cette définition un peu formelle est de distinguer les séries de vecteurs des suites de vecteurs.

Propriété. L'ensemble des séries de vecteurs, noté S(E) est un \mathbb{K} -espace vectoriel. De plus, $\sum a_n + \alpha \sum b_n = \sum (a_n + \alpha b_n)$, lorsque $\sum a_n$ et $\sum b_n$ sont dans S(E) et lorsque $\alpha \in \mathbb{K}$.

Notation. $\sum_{k=0}^{n} a_k$ est appelée la somme partielle (des n+1 premiers termes) de $\sum a_n$.

Propriété. Soit (A_n) une suite de vecteurs. Il existe une unique série $\sum a_n$ dont la suite des sommes partielles est (A_n) . Il s'agit de la série $\sum (A_n - A_{n-1})$, en convenant que $A_{-1} = 0$. Cette série est appelée la série télescopique associée à la suite (A_n) .

Il faut savoir le démontrer.

Définition. Soient $n_0 \in \mathbb{N}^*$ et $(a_n)_{n \geq n_0}$ une suite de vecteurs.

$$\sum_{n \ge n_0} a_n \text{ est la série } \sum b_n \text{ où } b_n = 0 \text{ si } n < n_0 \text{ et } b_n = a_n \text{ si } n \ge n_0.$$

On dit que $\sum_{n\geq n_0} a_n$ est une série tronquée à l'ordre n_0 .

8 Convergence d'une série de vecteurs

Définition. $\sum a_n$ converge si et seulement si la suite des sommes partielles de $\sum a_n$ converge.

Dans ce cas, on note
$$\sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} \sum_{k=0}^{n} a_k.$$

Propriété. Pour tout $n_0 \in \mathbb{N}^*$, les séries $\sum a_n$ et $\sum_{n \geq n_0} a_n$ sont de même nature et en cas de

convergence,
$$\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{n_0-1} a_n + \sum_{n=n_0}^{+\infty} a_n$$
.

Corollaire. On ne change pas la nature de la série $\sum a_n$ si l'on modifie un nombre fini d'éléments de la suite (a_n) .

Définition. Si
$$\sum a_n$$
 converge, son n -ième reste de Cauchy est $R_n = \sum_{k=n+1}^{+\infty} a_k$. On a $R_n \xrightarrow[n \to +\infty]{} 0$.

Propriété. Soit (u_n) une suite de vecteurs. La série télescopique $\sum (u_{n+1} - u_n)$ converge si et seulement si la suite (u_n) converge et dans ce cas, $\sum_{n=0}^{+\infty} (u_{n+1} - u_n) = \lim_{n \to +\infty} u_n - u_0$.

Il faut savoir le démontrer.

Propriété. Si $\sum a_n$ et $\sum b_n$ convergent et si $\lambda \in \mathbb{K}$, alors $\sum (a_n + \lambda b_n)$ converge et

$$\sum_{n=0}^{+\infty} (a_n + \lambda b_n) = \sum_{n=0}^{+\infty} a_n + \lambda \sum_{n=0}^{+\infty} b_n.$$
 Ainsi, l'ensemble des séries convergentes de vecteurs est un sous-

espace vectoriel de
$$S(E)$$
, noté $S_{conv}(E)$ et l'application
$$\sum_{n=0}^{\infty} a_n \longmapsto \sum_{n=0}^{+\infty} a_n \text{ est linéaire.}$$

Il faut savoir le démontrer.

Propriété. La somme d'une série convergente et d'une série divergente est une série divergente.

Remarque. On en déduit que, si la somme de deux séries est convergente, ces deux séries ont même nature. Cependant, il est possible qu'elles divergent toutes les deux. Par exemple, $\sum a_n + \sum (-a_n)$ converge, même lorsque $\sum a_n$ diverge.

Propriété. Si une série converge, son terme général tend vers 0. La réciproque est fausse. Il faut savoir le démontrer.

Définition. Lorsque la suite a_n ne tend pas vers 0, on dit que la série $\sum a_n$ diverge grossièrement.

Propriété. La série géométrique
$$\sum a^n$$
 converge ssi $|a| < 1$ et dans ce cas $\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$.

Propriété. Séries à valeurs dans un produit.

Soient $p \in \mathbb{N}^*$ et E_1, \ldots, E_p p espaces vectoriels normés. On note $E = E_1 \times \cdots \times E_p$ que l'on munit de l'une des trois normes classiques.

Soient $(x_n)_{n\in\mathbb{N}} = ((x_{1,n},\ldots,x_{p,n}))_{n\in\mathbb{N}}$ une suite d'éléments de E. Alors la série $\sum x_n$ converge si et seulement si, pour tout $i\in\mathbb{N}_p$, $\sum x_{i,n}$ est convergente.

De plus, dans ce cas,
$$\sum_{n=0}^{+\infty} x_n = \left(\sum_{n=0}^{+\infty} x_{1,n}, \dots, \sum_{n=0}^{+\infty} x_{p,n}\right).$$

Propriété. Séries à valeurs dans un espace de dimension finie.

On suppose que E est un \mathbb{K} -espace vectoriel de dimension finie dont $e = (e_1, \dots, e_q)$ est une base.

Soit
$$(x_n)$$
 une suite de vecteurs de E . Pour tout $n \in \mathbb{N}$, on note $x_n = \sum_{i=1}^{q} x_{i,n} e_i$.

Alors, la série $\sum x_n$ converge dans E si et seulement si, pour tout $i \in \mathbb{N}_q$, la série $\sum x_{i,n}$ converge dans \mathbb{K} , et, dans ce cas, $\sum_{n=0}^{+\infty} x_n = \sum_{i=1}^{q} \left(\sum_{n=0}^{+\infty} x_{i,n}\right) e_i$.

Propriété. Soit $\sum a_n$ une serie de complexes. Elle converge si et seulement si les séries $\sum Re(a_n)$ et $\sum Im(a_n)$ convergent, et dans ce cas $\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} Re(a_n) + i \sum_{n=0}^{+\infty} Im(a_n)$.

9 Convergence absolue

Définition. $\sum a_n \in \mathcal{S}(E)$ vérifie le critère de Cauchy si et seulement si

$$\forall \varepsilon \in \mathbb{R}_+^* \ \exists N \in \mathbb{N} \ \forall n \ge N \ \forall p \in \mathbb{N} \ \| \sum_{k=1}^r a_{n+k} \| \le \varepsilon.$$

Propriété. $\sum a_n$ converge si et seulement si elle vérifie le critère de Cauchy.

Il faut savoir le démontrer

Définition. $\sum a_n$ est absolument convergente si et seulement si la série $\sum ||a_n||$ est convergente.

Propriété. Soit $\sum a_n \in \mathcal{S}(E)$. Si $\sum a_n$ est absolument convergente, alors elle converge

et
$$\|\sum_{n=0}^{+\infty} a_n\| \le \sum_{n=0}^{+\infty} \|a_n\|$$
 (Inégalité triangulaire). La réciproque est fausse.

Définition. $\sum a_n$ est semi-convergente ssi elle converge sans être absolument convergente.

10 Séries à termes positifs

10.1Théorèmes généraux

Théorème. Soit $\sum a_n \in \mathcal{S}(\mathbb{R}_+)$. Alors $\sum a_n$ converge si et seulement si la suite de ses sommes partielles est majorée, et dans ce cas, en posant pour tout $n \in \mathbb{N}$, $A_n = \sum_{k=0}^n a_k$, $\sum_{n=0}^{+\infty} a_n = \sup_{n \in \mathbb{N}} A_n$.

Il faut savoir le démontrer.

Remarque. Lorsque $\sum a_n \in \mathcal{S}(\mathbb{R}_+)$ diverge, on peut écrire que $\sum_{n=1}^{\infty} a_n = +\infty$.

Propriété. Soient $\sum a_n, \sum b_n \in \mathcal{S}(\mathbb{R}_+)$ telles que $\forall n \in \mathbb{N} \ a_n \leq b_n$.

Si
$$\sum b_n$$
 converge, alors $\sum a_n$ converge et $\sum_{n=0}^{+\infty} a_n \leq \sum_{n=0}^{+\infty} b_n$.

Si $\sum a_n$ est divergente, alors $\sum b_n$ diverge.

Il faut savoir le démontrer.

Remarque. Lorsque $\sum a_n$ une série de complexes absolument convergente, on peut montrer qu'elle est convergente de manière élémentaire, sans utiliser la notion hors programme de suite de Cauchy. Il faut savoir le démontrer.

Propriété. On note $l^1(\mathbb{K}) = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}} / \sum |u_n| \text{ converge } \}$ et pour tout $u = (u_n)_{n \in \mathbb{N}} \in l^2(\mathbb{K}),$ posons $||u||_1 = \sum_{n} |u_n|$. Alors $(l^1(\mathbb{K}), ||.||_1)$ est un \mathbb{K} -espace vectoriel normé.

Il faut savoir le démontrer.

Propriété. On note $l^2(\mathbb{K}) = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}} / \sum |u_n|^2 \text{ converge } \}$ et pour tout $u = (u_n)_{n \in \mathbb{N}} \in l^2(\mathbb{K}),$ posons $||u||_2 = \sqrt{\sum_{n \in \mathbb{N}} |u_n|^2}$. Alors $(l^2(\mathbb{K}), ||.||_2)$ est un \mathbb{K} -espace vectoriel normé.

Il faut savoir le démontrer.

Définition. Soit (a_n) et (b_n) deux suites d'un \mathbb{K} -espace vectoriel normé E.

$$-a_n = O(b_n) \iff \exists C \in \mathbb{R}_+, \ \exists N \in \mathbb{N}, \ \forall n \ge N, \ \|a_n\| \le C\|b_n\|.$$

$$-a_n = o(b_n) \iff \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N, \ \|a_n\| \le \varepsilon \|b_n\|.$$

$$-a_n \sim b_n \iff a_n - b_n = o(b_n).$$

Remarque. Lorsque $E = \mathbb{C}$, si pour tout $n \in \mathbb{N}$, $b_n \neq 0$, alors $-a_n = O(b_n) \Longleftrightarrow \frac{a_n}{b_n}$ est bornée; $-a_n = o(b_n) \Longleftrightarrow \frac{a_n}{b_n} \underset{n \to +\infty}{\longrightarrow} 0$ et $-a_n \sim b_n \Longleftrightarrow \frac{a_n}{b_n} \underset{n \to +\infty}{\longrightarrow} 1$.

$$-a_n = O(b_n) \iff \frac{a_n}{b}$$
 est bornée;

$$-a_n = o(b_n) \iff \frac{a_n}{b_n} \xrightarrow{n \to +\infty} 0$$
 et

$$-a_n \sim b_n \iff \frac{a_n}{b_n} \xrightarrow[n \to +\infty]{} 1.$$

On montrera plus tard le théorème suivant, dont l'énoncé peut être utilisé dès maintenant.

On dit que la suite a_n est négligeable devant la suite b_n si et seulement si $a_n = o(b_n)$.

De même, on dit que la fonction f(x) est négligeable devant g(x) lorsque x est au voisinage de a si et seulement si f(x) = o(g(x)) au voisinage de a, c'est-à-dire, en supposant que l'on peut diviser, si et seulement si $\frac{f(x)}{g(x)} \xrightarrow{x \to a} 0$.

Théorème des croissances comparées : Soit $\alpha, \beta, \gamma \in \mathbb{R}_+^*$ et a > 1.

- 1. Les suites $\ln^{\alpha}(n)$, n^{β} , a^{n} et n! tendent vers $+\infty$ et chacune est négligeable devant les suivantes.
- 2. Au voisinage de $+\infty$, les fonctions $\ln^{\alpha} x$, x^{β} et $e^{\gamma x}$ tendent vers $+\infty$ et chacune est négligeable devant les suivantes.
- 3. Au voisinage de 0^+ , $|\ln x|^{\alpha} = o\left(\frac{1}{r^{\beta}}\right)$.
- 4. Au voisinage de $-\infty$, $e^{\gamma x} = o\left(\frac{1}{|x|^{\beta}}\right)$.

Propriété. Soit $\sum a_n$ une série de vecteurs et $\sum b_n$ une série de **réels positifs**.

On suppose que $||a_n|| = \mathbf{O}(b_n)$.

Si la série $\sum b_n$ converge, alors $\sum a_n$ est absolument convergente. Si la série $\sum \|a_n\|$ diverge, alors $\sum b_n$ est divergente.

Remarque. En pratique, on utilise souvent ce théorème lorsque $a_n = o(b_n)$.

Théorème. Soient $\sum a_n, \sum b_n \in \mathcal{S}(\mathbb{R}_+)$ telles que $a_n \sim b_n$. Alors les deux séries ont la même nature.

Théorème. Soit $\sum a_n, \sum b_n \in \mathcal{S}(\mathbb{R})$. On suppose que b_n est positif à partir d'un certain rang ou bien que b_n est négatif à partir d'un certain rang. Si $a_n \sim b_n$, alors $\sum a_n$ et $\sum b_n$ ont la même nature.

méthode : pour étudier la nature d'une série, on commence par rechercher un équivalent de son terme général.