EE206A - Spring 2005

Lecture #6: FOUNDATIONS OF SENSOR NETWORK DESIGN

Aman Kansal

UCLA - NESL

kansal@ee.ucla.edu

http://nesl.ee.ucla.edu

Reading List for this Lecture

Most Relevant

- J. Cortés, S. Martinez, and F. Bullo. Analysis and design tools for distributed motion coordination. In American Control Conference, Portland, OR, June 2005. http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Cortes05_ACC.pdf
- Chapter 1 of [Mackay 2003]
 http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
 or, http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Mackay03 book.pdf
- Mark Paskin, Carlos Guestrin and Jim McFadden, A Robust Architecture for Distributed Inference in Sensor Networks, In the Fourth International Conference on Information Processing in Sensor Networks (IPSN'05), April 2005. http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Paskin05_IPSN.pdf

Optional

- David Mackay, Information Theory, Inference, and Learning Algorithms, 2003.
 http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
 or, http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Mackay03_book.pdf
- Huiyu Luo and Gregory Pottie, 2005, Routing Explicit Side Information for Data Compression in Wireless Sensor Networks, IEEE DCOSS. http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Luo05 DCOSS.pdf
- P. Gupta and P. R. Kumar, 2000, "The capacity of wireless networks," *IEEE Transactions on Information Theory*, vol. IT-46, no. 2, pp. 388-404, March 2000. http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Gupta00 ITIT.pdf
- Bhardwaj, M., A.P. Chandrakasan, 2002, "Bounding the Lifetime of Sensor Networks Via Optimal Role Assignments", *INFOCOM 2002*, pp. 1587-1596, New York, June 2002, http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Bhardwaj02 Infocom.pdf
- CONTD....

Reading List for this Lecture

Optional (contd.)

- J. Chen, X. Zhang, T. Berger and S. B. Wicker "The Sum-Rate Distortion Function and Optimal Rate Allocation for the Quadratic Gaussian CEO Problem" IEEE Journal on Selected Areas in Communications: Special Issue on Sensor Networks, Volume 22, No. 6, August 2004.
- A Kansal, A Ramamoorthy, M Srivastava, G Pottie, "On Sensor Network Lifetime and Data Distortion IEEE International Symposium on Information Theory, 2005. http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Kansal05_ISIT.pdf
- TM Cover and J Thomas, "Elements of Information Theory", John Wiley, 1991. http://www-isl.stanford.edu/~iat/eit2/index.shtml
- B. Grocholsky. "Information-Theoretic Control of Multiple Sensor Platforms." The University of Sydney, Ph.D Thesis, 2002. http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Grocholskv02 USvdnev.pdf
- Arvind Giridhar and P. R. Kumar, ``Computing and communicating functions over sensor networks." IEEE Journal on Selected Areas in Communications. pp. 755--764, vol. 23, no. 4, April 2005.
 - http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Giridhar05_JSAC.pdf
- Seapahn Meguerdichian et al., Exposure in wireless Ad-Hoc sensor networks, ACM Mobicom 2001.
 - http://nesl.ee.ucla.edu/courses/ee206a/2005s/papers/L06/Meguerdichian01 MobiCom.pdf

The basic design problem

The basic design problem

 Design a network to extract desired information about a given discrete/continuous phenomenon with high fidelity, low energy and low system cost

Questions:

- Where should the data be collected
- What data and how much data should be collected
- How should the information be communicated
- How should the information be processed
- How can network configuration be adapted in situ
- Single tool does not answer all questions

Multiple Tools for Specific Instances

- Problem broken down into smaller parts
 - Coverage and deployment: Geometric optimization
 - Data fusion: Information theory, estimation theory, Bayesian methods
 - Communication: network information theory, geometric methods, Bernoulli random graph properties
 - Energy performance: Network flow analysis, linear programming
 - Configuration adaptation with mobile nodes: adaptive sampling theory, information gain

Not a comprehensive list

Communication

Network Capacity and Node Density

[Gupta and Kumar 2000]

- A simple model for a wireless network:
 - Disk of area A
 - N nodes
 - Each node can transmit at W bps
- Transmission range: disk of radius r
 - r depends on transmit power
 - Interference range (1+d)r
- Communication is successful if
 - Receiver within r of transmitter
 - No other interfering transmission in (1+d)r' of receiver

How many simultaneous transmissions?

Shaded circles represent interference range

Add the two inequalities

$$\sum_{i=1}^{N/2} (1/4) \{ \pi(dr_i)^2 \} \le A$$

Rewrite:

$$\sum_{i=1}^{N/2} r_i^2 \le 16A / \pi d^2$$

Convexity:
$$\frac{1}{N/2} \left[\sum_{i=1}^{N/2} r_i \right]^2 \le \frac{1}{N/2} \sum_{i=1}^{N/2} r_i^2 \le 32A / \pi Nd^2$$
 r² is a convex function
$$r^2 = \frac{1}{N/2} \sum_{i=1}^{N/2} r_i^2 \le r^2 = \frac{1}{N/2} \sum_{$$

Convexity:

$$f(x_1)/2+f(x_2)/2 \ge f(x_1/2+x_2/2)$$

Transport Capacity

- Transport capacity per transmission is W*r_i (bit meters/second)
- Total network transport capacity:

$$\sum_{i=1}^{N/2} Wr_i \le W [8A / \pi N d^2]^{1/2}$$

- Per node transport capacity: $O(\sqrt{1/N})$
- It can be proved that this is achievable as well
 - Requires multi-hop operation

Design Implications

- Large network with arbitrary communication pattern is NOT scalable (per node capacity is diminishing)
 - Multi-hop operation can achieve the $O(\sqrt{1/N})$
- How to build a large network?
 - 1. Use multi-user decoding: interference is also information!
 - Active area of research

- Transmit only a relevant function of the data: in-network processing
- 3. Exploit correlation in data at multiple transmitters
- 4. Large systems use hierarchy: add infrastructure

In Network Processing

[Giridhar and Kumar 2005]

- Random multi-hop network, one fusion node
 - certain class of functions (mean, mode, std. deviation, max, k-th largest etc.) can be extracted at rate O{1/log(n)}
 - Exponentially more capacity than without in network processing: O(1/n)
- Network protocol design
 - Tessellate
 - Fuse locally
 - Compute along rooted tree of cells

Fig. Ack: PR Kumar

Routing: Exploit Data Correlation

[Luo and Pottie 2005]

- Each sensor generates measurement of data size R
- Due to correlation, extra information at additional sensor has data size r

Fig. Ack: Huiyu Luo

$$C_a = 5RD$$

$$C_b = RD + 4rD + 4Rd + 6rd$$

$$C_c = RD + 4rD + 4Rd$$

Data Fusion

Fusing multiple sensors helps

View of target in image

Fusing multiple sensors helps

Fusing multiple sensors helps

Resort to Information Theory

- Model the information content of each sensor
- Measure the combined information content of multiple sensors assuming best possible fusion methods used
 - Eg. Compute the distortion achieved for a given data size
- Can then determine if the improvement in distortion is worth the extra sensors

- Information depends on randomness
- Two balls: $P_{red} = 0.5$, $P_{blue} = 0.5$

Let message be: Red ball is chosen = 0, Blue ball is chosen = 1

Message has 1 bit of information

Let
Red ball is chosen = RED,
Blue ball is chosen = BLU
Still only 1 bit of information

- Four balls:
- $P_{red} = 0.25$, $P_{blue} = 0.25$, $P_{green} = 0.25$, $P_{yellow} = 0.25$

Let

Red = 00, Blue = 01, Green = 10, Yellow = 11

Which ball is chosen = 2 bits of information

- Four balls, but unequal probabilities:
- $P_{red} = 0.5$, $P_{blue} = 0.25$, $P_{green} = 0.125$, $P_{vellow} = 0.125$

Save bits on more likely cases:

$$Red = 0$$
, $Blue = 10$, $Green = 111$, $Yellow = 110$

Average number of bits to communicate: 0.5*1 + 0.25*2 + 0.125*3 + 0.125*3 = 1.75

(over many-many balls)

Which ball is chosen = 1.75 bits of information

- Number of bits measured by ENTROPY
- $H = -\sum p_i^* \log_2(p_i)$

Average number of bits to communicate: 0.5*1 + 0.25*2 + 0.125*3 + 0.125*3 = 1.75 (over many-many balls)

Entropy:

-[0.5*log(0.5) + 0.25*log(0.25) + 0.125*log(0.125) + 0.125*log(0.125)] = 1.75

Example: English alphabet

- Ignoring case, we have 27 characters
 - Naively: need 5 bits to represents a character
 - $2^4 = 16 < 27 < 2^5 = 32$
- Alternatively: measure the probabilities
 - calculate H ≈ 1.5 bits
- Efficient methods to automatically learn the probabilities and compress a file are available
 - Eg: Zip programs

Fig Ack: Mackay 2003

Conditional Entropy

What if only incomplete information is available?

Let
$$P_{red} = 0.25$$
, $P_{blue} = 0.25$, $P_{green} = 0.25$, $P_{yellow} = 0.25$

Given Box 1 is chosen:

$$P(red|B1) = 0.5, P(blue|B1) = 0.5,$$

 $P(green|B1) = 0, P(yellow|B1) = 0$

Now, which ball is chosen = 1 bit of information

Conditional Entropy

Suppose variable y has partial information about x

$$H(x|y=a) = -\sum p(x_i|y=a)*log_2(p(x_i|y=a))$$

Given Box 1 is chosen:

$$P(\text{red}|B1) = 0.5, P(\text{blue}|B1) = 0.5,$$

 $P(\text{green}|B1) = 0, P(\text{yellow}|B1) = 0$

$$H(color|box=b1) = 0.5*log(0.5) + 0.5*log(0.5) + 0*log(0) + 0*log(0) = 1$$

Conditional Entropy

- Entropy can also be defined for conditional probabilities
 - Take weighted average with probabilities of y

$$H(x|y) = -\Sigma_a p(y=a) H(x|y=a)$$

Given Box 1 is chosen:

$$P(box=B1) = 0.75, P(box=B2) = 0.25,$$

$$H(color|box) = 0.75*H(color|box=B1) + 0.25*$$

0.5* $H(color|box=B2)$
= 0.75*1 + 0.25*1 = 1

Conditional entropy = 1 bit of information

Example: Unreliable hard disks

- Conditional entropy helps model noise or channel error
- Given a hard disk with error probability = e

- Given e = 0.1
- Suppose: want more reliable HDD

Example: Unreliable hard disks

- Two Options:
 - Technology approach: Invent better storage, use more expensive components
 - Systems approach: build a reliable system around the unreliable HDD
- Simple Strategy: Store every bit 3 times - 000, 111
 - if one bit corrupted, can still fix it
 - Error probability: $3*e^{2}(1-e) + e^{3} = 0.028$

2 bits in error,

3 possible ways

all 3 bits in error

Example: Unreliable hard disks

- Not happy with 2.8% error
 - Want error probability: 10⁻¹⁵
 - Using simple strategy, need 60 disks
 - Not good for embedded design!

Alternative: use conditional entropy analysis

Example: Unreliable hard disks

- Recovered data has errors
 - Has partial information about original data
- Denote
 - Y = recovered data
 - X = original data

- HDD communicates:
 - Information in X information still left in X given Y
 - -H(X)-H(X|Y)
 - Suppose source was P_{red}=P_{blue}=0.5, so H(X)= 1 bit
 - From error model know: P(X|Y). Gives H(X|Y) = 0.47
 - HDD returns 0.53 bits for each bit stored
 - Two HDD's suffice! (can store 1.06 bits > 1 bit)

Example: Unreliable hard disks

- Recovered data has errors
 - Has partial information about original data
- Denote
 - Y = recovered data
 - X = original data

- HDD communicates:
 - Information in X information still left in X given Y
 - -H(X)-H(X|Y)

CAVEAT: This holds only when a very large amount of data is stored.

Simple repetition strategy does not work- better coding needed.

Mutual Information

- The quantity H(X) H(X|Y) is known as MUTUAL INFORMATION
- Written as I(X;Y) = H(X) H(X|Y)
 - Helpful for measuring "recovered information" in many problems
 - Eg. Capacity of a channel (such as a hard disk or a wireless channel)
 - Max I(X;Y)
 P(X)

Rate Distortion

- Suppose the HDD had zero error probability but we stored more data than its capacity
 - Can think of it as storing with loss due to error: again characterized using mutual information
 - Using lesser bits than information content in original data
 - Eg. JPEG, MP3
- Given a distortion constraint D, how much data, R, is required to be stored:
 - R(D) = min I(X;X')
 - X' is such that it satisfies the distortion constraint and minimizes the mutual information

Gaussian Phenomenon

- Rate distortion function has been calculated when X is a Gaussian random variable
 - X = Gaussian with mean = 0, std dev = σ
 - $R(D) = (1/2)*log(\sigma^2/D)$
 - for D $\leq \sigma^2$. If tolerable distortion more than phenomenon variance, no need to send any data

Proof: [Thomas and Cover]

Effect of Sensing Noise

- For given data rate, what's the distortion achievable?
 - R(D) measure with noise:
 - R(D) = $(1/2)*log [\sigma^4/(\sigma^2D + \sigma_N^2D \sigma^2\sigma_N^2)]$
 - When positive, else zero rate

Quantifying the Fusion Advantage

- Characterize the distortion achieved with given rate when multiple sensors used
 - Distortion advantage gives the benefit of additional sensors

Quantifying the Fusion Advantage

[Chen et al. 2004]

 The total rate generated at multiple sensors is related to the distortion in estimation as:

$$\sum_{i=1}^{L} R_i = \frac{1}{2} \log^+ \left\{ \frac{\sigma_X^2}{D} \left(\frac{D\sigma_X^2 L}{D\sigma_X^2 L - \sigma_X^2 \sigma_N^2 + D\sigma_N^2} \right)^L \right\}$$

– where L is the number of sensors, $\sigma_{\rm X}^{2}$ is the variance of X and $\sigma_{\rm N}^{2}$ is the noise variance

Design Implications

When all sensors have same noise, fixed D

This is for Gaussian noise and Gaussian phenomenon

- Using multiple sensors helps
 - Returns diminish beyond a small number of sensors

Another application of Mutual Information

[Grocholsky 2002]

- Mobile sensor: Having taken a measurement, where to take the next measurement?
- Among all possible motion steps, choose one which maximizes mutual information between phenomenon and measurement
 - Assume that density of phenomenon and noise model for sensor known
- Also extended to teams of mobile sensors

Coverage and Deployment

Worst-case Coverage

[Meguerdichian et al, 2001]

- Minimal exposure path
 - Likelihood of detection depends on distance from sensor and time in range

Sensing Model

Sensing model S at an arbitrary point p for a sensor s:

$$S(s,p) = \frac{\lambda}{[d(s,p)]^K}$$

where d(s,p): distance between the s and p constants λ and K are technology and environment dependent

Intensity Model

Effective sensing intensity at point p in field F:

Aggregate of all sensors

$$I_A(F,p) = \sum_{1}^{n} S(s_i,p)$$

(Can generalize for fusion based metrics)

Closest Sensor

$$s_{\min} = s_m \in S | d(s_m, p) \le d(s, p) \quad \forall s \in S$$
$$I_C(F, p) = S(s_{\min}, p)$$

(Can generalize for k closest sensors)

Slide adapted from Meguerdichian, Mobicom 2001]

Definition: Exposure

The **Exposure** for an object O in the sensor field during the interval $[t_1, t_2]$ along the path p(t) is:

$$E(p(t),t_1,t_2) \stackrel{\Delta}{=} \int_{t_1}^{t_2} I(F,p(t)) \left| \frac{dp(t)}{dt} \right| dt$$

Methods available to compute this for a given network (using grid approximations and graph search techniques)

Average Coverage

[Cortes et al, 2005]

- Quantify coverage with respect to phenomenon distribution in covered region
 - sensors close to phenomenon contribute more to coverage

 \circ = sensor

Shade represents phenomenon density

Average Coverage

- · Region to cover: Q
 - q is a point in region Q
- Set of sensors: p_i, i=1,...,n
- Coverage function: f, depends on distance from sensor
 - Coverage at point q due to sensor p_i is $f(|q-p_i|)$
- Average coverage then becomes
 - Considering best sensor for each point q in Q

$$\mathcal{H}(P) = \int_{Q} \max_{i \in \{1, \dots, n\}} f(\|q - p_i\|) \phi(q) dq$$
 Integrate over region covered Coverage at point q due to best sensor Weight by phenomenon density

Example

- Suppose sensing quality declines with square of distance
 - This gives $f(x) = -x^2$
- Best sensor for a point q is thus the closest sensor to it
 - p_i responsible for points that are closer to p_i than any other sensor
 - Call such a region around p_i as the VORONOI cell of p_i

Voronoi cells

Example

- Average coverage for this f can be written as:
 - Integral over each Voronoi cell
 - Sum over all cells

$$\mathcal{H}_{C}(P) = -\sum_{i=1}^{n} \int_{V_{i}(P)} \|q - p_{i}\|^{2} \phi(q) dq$$

- Where V_i(P) is the Voronoi cell of p_i
- Negative sign indicates that coverage reduces if distance from sensors is large

Planning Deployment

- Choose sensor locations to maximize coverage:
 - Eg. 1: Minimize worst case coverage by maximizing the exposure on minimum exposure path

$$E(p(t),t_1,t_2) \stackrel{\Delta}{=} \int_{t_1}^{t_2} I(F,p(t)) \left| \frac{dp(t)}{dt} \right| dt$$

– Eg. 2: Maximize $\mathcal{H}(P)$

Adapting Deployment at Real Time

- Suppose nodes are mobile
- Need distributed algorithm that allows nodes to change their locations in order to maximize coverage
 - Algorithm should use only local information and not the global view of the network
- One method to compute optima: gradient descent

Gradient Descent

- Consider a function f of two variables- x, y
- Find the x,y where f(x,y) is minimal
 - start at a random x,y
 - Compute gradient at that (x,y): gives direction of maximum change. (steepest slope)
 - Change (x,y) in that direction
- May reach local minima

Distributed Method

Take the gradient of the average coverage

$$\mathcal{H}_{C}(P) = -\sum_{i=1}^{n} \int_{V_{i}(P)} \|q - p_{i}\|^{2} \phi(q) dq$$

Gradient turns out to be distributed over Voronoi cells!

$$\frac{\partial \mathcal{H}}{\partial p_i}(P) = 2 \int_{V_i(P)} (q - p_i) \phi(q) dq = 2 M_{V_i(P)}(CM_{V_i(P)} - p_i)$$

 where M is the mass of phenomenon density over the Voronoi cell of p_i and CM is the center of mass.

Distributed Method

- Distributed Motion algorithm: At each node p_i
 - Find Voronoi cell
 - Move towards center of mass
- Automatically optimizes total network coverage
 - No central coordination needed

Fig. Ack: F Bullo, April 15, 2005 talk at UCB

Energy Performance

Maximizing the lifetime

[Bhardwaj and Chandrakasan 2002]

Fig Ack. M Bhardwaj, INFOCOM 2002

Problem Formulation

- Given
 - Set of data sources and intended destinations
 - Fixed battery levels at each node
- Find the best routing strategy: maximum lifetime for supporting required data transfers
 - Nodes can change their power level and choose best multi-hop paths

Energy Models

Slide adapted from: M Bhardwaj, INFOCOM 2002

Example: a three node network

Ignore wasteful (loopy) routes, route choices are:

 $R_0: 1 \rightarrow B$

 R_1 : $1 \rightarrow 2 \rightarrow B$

 R_2 : $1 \rightarrow 3 \rightarrow B$

 R_3 : $1 \rightarrow 2 \rightarrow 3 \rightarrow B$

	Min-hop	Min-Energy		Optimal
	R ₀ : 0.25 R ₁ : 0 R ₂ : 0 R ₃ : 0	R_0 : 0 R_1 : 0 R_2 : 1.0 R_3 : 0	Other Choices	R ₀ : 0 R ₁ : 0.375 R ₂ : 0.375 R ₃ : 0.625
Lifetime	0.25	1.0		1.38

Slide adapted from: M Bhardwaj, INFOCOM 2002

How to find the optimal choice?

- The search over multiple route choices can be stated as a linear program (LP)
 - Efficient tools exist for LP's

Objective:

$$\max \qquad t = \sum_{i=1}^{|F|} t_i$$

 t_i = time for which route r_i is used, |F| = number of choices

Constraints:

$$t_j \ge 0 : \qquad 1 \le j \le |F|$$

$$\sum_{i=1}^{|F|} p(i, r_j) t_j \le e_i : \qquad 1 \le i \le N$$

Solving the LP for large networks

- The number of route choices, |F|, is exponential in number of nodes, N
 - LP becomes too complex for large N
- Map to a network flow problem which can be solved in polynomial time
 - Allows finding the optimal route choices for a given network in polynomial time

Equivalence to Flow Problem

Route Choices: number of routes is exponential in N

Network Flow View: number of possible edges is polynomial in N

Slide adapted from: M Bhardwaj, INFOCOM 2002

Polynomial time LP

Objective:

 $\max t$

Constraints:

Non-negativity of flow:

$$f_{ij} \ge 0$$

Conservation of flow:

$$\sum_{\substack{s \in [1, N+1] \\ s \neq i}} f_{si} = \sum_{\substack{d \in [1, N+1] \\ d \neq i}} f_{id} : \quad i \in [2, N]$$

Total sensor flow:

$$\sum_{d \in [2,N+1]} f_{1d} - \sum_{s \in [2,N+1]} f_{s1} = 1$$

Energy constraints:

$$t\left(\sum_{\substack{d\in[1,N+1]\\d\neq i}} p_{tx}(i,d)f_{id} + \sum_{\substack{s\in[1,N+1]\\s\neq i}} p_{rx}f_{si} + \underbrace{p_{sense}}_{For\ node\ 1\ only}\right) \le e_i: \quad i\in[1,N]$$

Sensing Lifetime

[Kansal et al, 2005]

- If data sources not specified, but given
 - Phenomenon to be sensed
 - Distortion quality required
- Choose the relevant sensors and determine the routes for maximum lifetime

Choose closest sensor

- Small data size (since measurement quality is high)
- Large routing energy cost (possibly long route)

Choose sensor with smallest route

- Small routing energy cost
- Large data size (measurement quality is bad)

Collaborative sensing

Use multiple sensors and fuse

Lifetime-Distortion Relationship

- How to determine the best choice?
 - Combine lifetime maximization tools with data fusion analysis
- Find the possible choices of sensors for required distortion performance
 - Using data fusion analysis
- For each choice, find maximum achievable lifetime
 - using network flow LP
- Choose the sensors and routes which maximize lifetime

Sensor Selection

- All sensors within sensing range of the phenomenon are potential choices
 - How much data generated at each sensor: possible choices for given distortion are given by the rate allocation region of the Gaussian CEO result

$$\begin{split} \sum_{k \in A} R_k & \geq \sum_{k \in A} r_k + \frac{1}{2} \log_2 \frac{1}{D} - \frac{1}{2} \log_2 \left[\frac{1}{\sigma_X^2} + \sum_{k \in A^c} \frac{1 - 2^{-2r_k}}{\sigma_k^2} \right] \forall \text{ non-empty } A \subseteq \{1, ..., N\} \\ & \frac{1}{\sigma_X^2} + \sum_{k=1}^N \frac{1 - 2^{-2r_k}}{\sigma_k^2} \geq \frac{1}{D} \end{split}$$

Energy Constraints for Chosen Sensors

- Same as before, but written for the variable source sensor rates
 - Maximize t as before

$$f_{ij} \geq 0, \quad R_i \geq 0, \quad r_i \geq 0, \forall i, j \in \{1, ..., N\}$$

$$Flow \ Conservation:$$

$$\sum_{d \in [1, N+1], d \neq i} f_{id} - \sum_{s \in [1, N+1], s \neq i} f_{si} = R_i, \quad i \in \{1, ..., N\}$$

Energy Constraints:

$$t \left[\sum_{d \in [1,N+1], d \neq i} P_{tx}(i,d) f_{id} + \sum_{s \in [1,N+1], s \neq i} P_{rx}(s,i) f_{si} + P_{sense} R_i \right] \leq E_i, \quad i \in \{1,...,N\}$$

Conclusions

- Network design depends on multiple methods
 - Optimal methods sometimes yield distributed protocols
 - Provide insight into the performance of available distributed methods
- Saw some examples of analytical tools that may help network design
- Open problem: Convergence of separate solutions