Assiomi

Assiomi di kolmogorov:

1. Non negatività: P(A) > 0

2. Normalizzazione: $P(\Omega) = 1$

3. Additività: se ho 2 eventi disgiunti Ae $B\colon (P(A\cap B)=0).$ Allora $P(A\cup B)=P(A)+P(B)$

1.1 Teorema delle probabilità totali:

Ho n eventi disgiunti: $A_1, A_2, A_3...$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

Se $P(A \cap B) \neq 0$ allora $P(A \cup B) = P(A) + P(B)$ $P(A \cap B)$ (e varie combinazioni se ci sono più di 2 eventi analizzati)

1.2 Leggi di probabilità uniformi

Legge uniforme discreta

 $P(A) = \frac{\#\text{casi favorevoli ad}A}{\#\text{casi totali}} = \frac{|A|}{|\Omega|}$

Legge uniforme continua

 $P(A) = \frac{\operatorname{area}(A)}{\operatorname{area}(\Omega)} \ \forall A \subseteq \Omega$

2 Probabilità condizionate

probabilità condizionata: Definizione di $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Altra definizione di intersezione: $P(A \cap B) =$ $P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$

Regola moltiplicativa: $P(A \cap B \cap C) = P(A) \cdot P(B|A) \cdot P(C|A \cap B)$

2.1 Teorema delle probabilità totali

Se ho A_1, A_2, A_3 disgiunti che formano una partizione di Ω :

 $P(B) = P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_2) +$ $P(A_3) \cdot P(B|A_3)$

2.2 Regola di Bayes

$$P(A|B) = \frac{P(B|A) \cdot P(A))}{P(B)}$$

Indipendenza

Se $A \perp B$ allora P(B|A) = P(B), P(A|B) = P(A)Due eventi si dicono indipendenti se: $P(A \cap B) =$ $P(A) \cdot P(B)$

3 Calcolo combinatorio

3.1 Permutazioni

In quanti modi posso ordinare questi n elementi distinti?

casi tot = n(n-1)(n-2)... = n!

3.2 Combinazioni

Calcolare il numero di sottoinsiemi con k elementi, partendo da un insieme con n elementi distinti. $0 \le k \le n$

#sequenze ordinate di k elementi = $\frac{n!}{(n-k)!k!}$ $C_{n,k} = \binom{n}{k}$

Probabilità binomiale

Date n prove indipendenti, probabilità di successo della singola prova P(successo) = p, la prob. di avere k successi su n prove è: $p^k \cdot (1-p)^{n-k} \cdot \binom{n}{k}$

3.3 Coefficiente multinomiale (partizioni)

Ho uno spazio di probabilità uniforme ed eseguo n prove indipendenti (es. estrazioni con reinserimento), voglio calcolare quante sequenze con k_i estrazioni di tipo i ci sono.

#totale di scelte = $\frac{n!}{k_1!k_2!k_3!k_4!} = \binom{n}{k_1,k_2,k_3,k_4}$

4 Variabili aleatorie discrete

4.1 Variabile aleatoria geometrica

La v.a. geometrica risponde al problema: facendo esperimenti ripetuti, qual'è la probabilità di ottenere il primo successo alla k-esima prova.

$$X \sim \begin{cases} (1-p)^{k-1} & k=1,2,3,\dots \\ 0 & \text{altrimenti} \end{cases}$$

 $X \sim Geom(p)$ Dove p è la probabilità di successo nella singola prova.

Legge di perdita di memoria

posses in the state of the posses of the po

4.2 Variabile aleatoria binomiale

La v.a. binomiale risponde al problema: facendo esperimenti ripetuti qual'è la probabilità di ot-tenere esattamente k successi?.

$$X \sim \begin{cases} \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} & k = 1, 2, 3, \dots \\ 0 & \text{altrimenti} \end{cases}$$

 $X \sim Bin(n, p)$ Dove p è la probabilità di successo nella singola prova ed n è il numero di prove. $E[X] = np, \ Var[X] = np(1-p)$ $Var[X] < \frac{n}{4}$

4.3 Variabile aleatoria Bernoulliana

La v.a. bernoulliana è una distribuzione di probabilità su due soli valori: 0 e 1

$$X \sim \begin{cases} p & 1 \\ 1-p & 0 \\ 0 & \text{altrimenti} \end{cases}$$

 $X \sim Bern(p)$ Dove p è la probabilità di successo. E[X] = p, Var[X] = p(1-p)

4.4 Valore atteso

$$E[X] = \sum_{x \in \mathbb{R}} x \cdot p_x(x)$$

Moltiplico sommo il prodotto di ogni realizzazione con il suo peso ovvero la sua probabilità.

Legge dello statistico inconsapevole Data v.a. Y = g(X), Yè una v.a.

E[Y] = E[g(x)]Nel caso lineare:

 $E[\alpha X + \beta] = \alpha E[X] + \beta$

Valore atteso condizionato

 $E[X|B] = \sum_{x \in \mathbb{R}} x \cdot p_{X|B}(x)$ Legge dell'aspettativa totale

Con $A_1, A_2, ..., A_n$ partizioni di Ω $E[X] = \sum_{i_1}^n P(A_1) \cdot E[X|A_i]$

4.5 Varianza

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

La varianza è il momento di ordine 2.

Proprietà varianza

 $Var[X] \ge 0 \quad \forall \text{ v.a. } X$ $Var[\alpha X + \beta] = \alpha^2 \cdot Var[X]$ Scarto quadratico medio

 $\sigma = \sqrt{Var[X]}$

5 V.a. discrete multiple

5.1 Legge di probabilità congiunta

Ho 2 v.a.
$$X$$
 e Y , $P(X = x \cap Y = y) = p_{X,Y}(x,y)$

Per trovare la legge marginale di X: $p_x(x) =$ $\sum_{y} p_{X,Y}(x,y)$

Legge di probabilità condizionata $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{\sum_{t} p_{X,Y}(t,y)} = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$

Regola moltiplicativa

 $p_{X,Y}(x,y) = p_{X|Y}(x|y) \cdot p_Y(y) = p_{Y|X}(y|x) \cdot$ $p_X(x)$

5.2 Variabili aleatorie indipendenti

Due v.a. X e Y sono dette indipendenti $(X \perp Y)$ $\iff p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$

5.3 Valore atteso per v.a. multiple

Statistica congiunta di X e Y.

Statistica congiunta di $X \in I$. $E[g(X,Y)] = \sum_x \sum_y g(x,y) \cdot p_{X,Y}(x,y)$ Caso lineare: $E[\alpha X + \beta Y + \gamma] = \alpha E[X] + \beta E[Y] + \gamma$ Se $X \perp Y$ allora $E[X \cdot Y] = E[X] \cdot E[Y]$

5.4 Varianza per v.a. multiple

Var[X + Y] = Var[X] + Var[Y] + 2(E[XY] -E[X]E[Y])Se $X \perp Y$ allora Var[X+Y] = Var[X] + Var[Y]

6 Variabili aleatorie continue

Valore atteso e varianza

 $E[X] = \int_{\mathbb{R}} x \cdot f_x(x) dx$ Legge dello statistico inconsapevole: E[g(X)] = $\int_{\mathbb{R}} g(x) \cdot f_x(x) dx$

 $Var[X] = E[X^2] - E[X]^2$

6.1 V.a. uniforme continua

 $X \sim \mathbb{U}[a, b]$

$$f_x(x) \sim \begin{cases} \frac{1}{b-a} & a \leq x \leq b \\ 0 & \text{altrimenti} \end{cases}$$

$$E[X] = \frac{a+b}{2}, \ Var[X] = \frac{(b-a)^2}{12}, \ \sigma_x = \frac{b-a}{\sqrt{12}}$$

Funzione cumulativa di probabilità

 $P(X \le x) = F_x(x) = \int_{-\infty}^x f_x(t)dt$ Proprietà

- $0 \le F_x(x) \le 1$
- F_x è una funzione non decrescente $\forall x \in \mathbb{R}$
- $\frac{d}{dx}F_x(x) = f_x(x), F_x$ è la funzione integrale di f_x

6.3 V.a. gaussiana

 $X \sim Norm[E[x], Var[X]] = Norm[\mu, \sigma^2]$ Cumulata della gaussiana $F_x(x) = P(X \le x) = \Phi(\frac{x-\mu}{\sigma})$

7 V.a. continue multiple

Densità di probabilità congiunta

 $P((X,Y) \in \bar{S}) = \iint_{(x,y)\in S} f_{X,Y}(x,y) dx dy$

 $f_{X,Y}$ è la densità di probabilità congiunta. **Valore atteso** $E[g(X,Y)] = \iint_{\mathbb{R}} g(x,y) \cdot f_{X,Y}(x,y) dx dy$ Con g funzione deterministica nota.

Legge di probabilità marginale

 $f_x(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy$ Densità marginale di X.

Indipendenza tra due v.a. continue

X e Y sono dette indipendenti $\iff f_{X,Y}(x,y) =$

 $f_X(x) \cdot f_Y(y) \quad \forall (x,y) \in \mathbb{R}^2$ Densità di probabilità condizionata $f_{Y|X}(y|x) = \frac{f_{X|Y}(x,y)}{f_X(x)} = \frac{f_{X,Y}(x,y)}{\int_{\mathbb{R}} f_{X,Y}(x,t)dt}$

8 Regola di bayes e funzioni di v.a.

Regola di bayes nel continuo

 $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) \cdot f_X(x)}{f_Y(y)}$ Per le v.a. discrete basta cambiare la funzione continua con la probabilità.

8.1 Calcolo della funzione di una v.a. continua

Ho X v.a. con legge nota f_x e Y = g(X) con g

deterministica e nota, voglio trovare f_y . Approccio tramite la cumulata

Calcolo la cumulata di Y.

 $F_Y(y) = P(Y \le y)$ 2. Calcolo f_Y $f_Y(y) = \frac{d}{dy} F_Y(y)$

Trasformazioni lineari di v.a.

Xè una v.a. con legge f_X nota e Y = aX + b con costanti note.

 $f_Y(y) = f_x(\frac{y-b}{a} \cdot \frac{1}{|a|})$, se a = 0 allora Y = b

Trasformazione monotona di v.a.

Y = g(X) con g deterministica nota e stretta-

$$f_Y(y) = \frac{f_X(x)}{\left|\frac{dg}{dg}(x)\right|} = \frac{f_X(g^{-1}(y))}{\left|\frac{dg}{dg}(g^{-1}(y))\right|}$$

mente monotona. $f_Y(y) = \frac{f_X(x)}{|\frac{dg}{dx}(x)|} = \frac{f_X(g^{-1}(y))}{|\frac{dg}{dx}(g^{-1}(y))|}$ Con y = g(x) e $x = g^{-1}(y)$ Nota: se g non è strettamente monotona (ad es. $g(x) = x^2$) la $f_Y(y)$ sarà: "formula diretta con g decrescente" + "formula diretta con g crescente".

Statistiche congiunte

Legge della somma di v.a. Date X e Y due v.a. discrete e $X \perp Y$ e W = X + Y $P_W(w) = P(W = w) = P(X + Y = w) = \sum_x p_X(x) \cdot p_Y(w - x), \qquad y = w - x$ La legge della somma di due v.a. indipendenti è la convoluzione delle leggi di probabilità.

Calcolo della somma di convoluzione con il metodo grafico

- Sovrapporre graficamente le 2 leggi di prob

- "Ribaltare" una delle 2 leggi (ad es. P_Y) - Traslare di w posizioni la legge che ho ribaltato (traslazione a destra se w > 0)

- Moltiplicare le prob. e sommare

Caso v.a. continue W = X + Y, $X \perp Y$, $X \in Y$ sono v.a. continue.

fraction for $f_W(w) = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(w-x) dx$ Integrale di convoluzione

Integrale di convoluzione Somma di due gaussiane indipendenti
$$W = X + Y$$
, $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, $X \perp Y$

$$X \perp Y$$
 La forma di W è sempre gaussiana.

$$E[W] = E[X+Y] = E[X] + E[Y] = \mu_x + \mu_y$$

$$Var[W] = Var[X+Y] = Var[X] + Var[Y] = \sigma_x^2 + \sigma_y^2$$

$$\begin{split} f_W(w) &= \frac{1}{\sqrt{2\pi(\sigma_x^2 + \sigma_y^2)}} \cdot e^{\frac{w^2}{2(\sigma_x^2 + \sigma_y^2)}} \\ \text{(questa se } \mu = 0) \end{split}$$

9.1 Covarianza

$$Cov[X,Y] = E[XY] - E[X]E[Y]$$

Note:

- Cov[X, X] = Var[X]- Se E[X] = 0o E[Y] = 0 allora Cov[X, Y] =

- Se E[X] = 00 E[T], E[XY]- Se $X \perp Y$ allora Cov[X, Y] = 0- Se $Cov[X, Y] = 0 \Rightarrow X \perp Y$ Coefficiente di correlazione lineare

Versione adimensionale della covarianza. $\rho[X, Y] = \frac{Cov[X, Y]}{\sigma_x \sigma_y} = E[\frac{(X - E[X])}{\sigma_x} \cdot \frac{(Y - E[Y])}{\sigma_y}]$

In particular se $|\rho[X,Y]| \le 1$ In particular se $|\rho[X,Y]| = 1$ allora Y = aX + b- $X \perp Y \implies \rho[X,Y] = 0$

10 Valore atteso e varianza con-

Legge delle aspettazioni iterate

E[Y] = E[E[Y|X]]

dizionati

Legge della variazione totale Var[x] = E[Var[X|Y]] + Var[E[X|Y]]

Successioni variabili aleatorie