Planche 1.

Exercice 1. On se place sur $\mathbb{C}[X]$. On considère la norme $N(P) = \max_k |a_k|$. Étudier la continuité et l'éventuelle norme subordonnée des applications $P \longmapsto P'$, $P \longmapsto \int_0^x P \in \mathbb{C}[X]$ et $P \longmapsto P(a)$ où $a \in \mathbb{C}$.

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $f(x) \to a$ en $-\infty$ et $f(x) \to b$ en $+\infty$. Montrer que f est uniformément continue.

Planche 2.

Exercice 1. On considère $E=C([0,1],\mathbb{R})$ et $\varphi(f)=\int_0^1 t(1-t)f(t)dt$. Étudier l'éventuelle continuité et la norme subordonnée de l'application précédente en prenant les normes $||f||_{\infty}=\sup_{[0,1]}|f|,\,||f||_2=\sqrt{\int_0^1 f(t)^2}$ et $||f||_1=\int_0^1 |f|$.

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue sur \mathbb{R} , $\forall x > 0$, $f(nx) \to 0$, montrer que $f \to 0$ en $+\infty$.

(Bonus : montrer que l'uniforme continuité est nécessaire pour ce théorème, c'est-à-dire trouver une fonction non uniformément continue qui vérifie $f(nx) \to 0$ pour tout x > 0 lorsque $n \to +\infty$ mais $f \not\to 0$ en $+\infty$)

Planche 3.

Exercice 1. On se place sur $\mathbb{R}[X]$, on note $||P|| = \sup_{[0,1]} |P|$ pour $P \in E$. Étudier l'éventuelle continuité et la norme subordonnée de l'application $P \longmapsto P(a)$ avec $a \in \mathbb{R}$ fixé. De même avec $P \longmapsto \int_a^b P$ et a < b dans \mathbb{R} .

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$. Montrer que f est continue ssi $\{(x, f(x)), x \in \mathbb{R}\}$ est fermée.