reasoning steps of MDP formulation for RL

Thinking Process for Formulating an MDP from a New Problem

O. What is the for

When facing a new problem, we often don't know in advance what the agent, environment, or rewards are.

This guide will help you systematically think through the process of identifying the components of a **Markov Decision Process (MDP)** step by step.

1. Who is the decision-maker? (Agent)

? Ask: ~

Who or what makes decisions in this system?

- The agent is the entity that chooses actions.
- It has some control or freedom to decide what to do at each step.
- If nothing in the system makes active decisions, the problem may not be suitable for reinforcement learning.

Examples:

- The robot's controller in a navigation task.
- A trading algorithm adjusting portfolio weights.
- A recommendation system choosing which item to show a user.

2. What can the agent choose? (Action / Action Space)

? Ask: Y

What are the agent's options? What can it control or change?

- The action space defines all possible decisions the agent can make.
- Actions can be discrete (move left, right) or continuous (apply a certain torque).
- The action may be the decision variable x in your optimization formulation:

$$\mathbf{x}^* = rg \max_{\mathbf{x}} J(\cdot)$$

• Sometimes, the action space might not be intuitive such as pointers in task allocation problem (if you don't know, skip this sentence for now).

Examples:

- Move up, down, left, or right on a grid.
- Change the throttle, roll, or pitch of a drone.
- Allocate 40% of funds to stock A, 60% to stock B.

3. What changes as a result of the action? (Environment)

? Ask: V

When the agent takes an action, what part of the system reacts or changes?

- The **environment** is the world outside the agent that responds to the agent's actions (any other things other than the decision-maker's brain).
- It produces the next situation and feedback (reward)—in reality you need to design tho.

Examples:

- The drone's motion after a control input.
- The user's behavior after seeing a recommended video.
- The next market state after an investment decision.

4. How can we represent the changing situation? (State / State Space)

How can we describe the situation at any moment in a numerical way?

- The **state** is a compact mathematical representation (often a vector) of the current situation the agent is in.
- It should include enough information to predict what might happen next if an action is taken.
- It can be any mathematical form but typically they are either tensors, graphs, or a dictionary (i.e., key-value pairs).

Examples:

- For a mobile robot: position, velocity, and orientation.
- For a trading system: portfolio value, recent returns, and volatility.
- For a game: positions of all pieces on the board.

5. How does the world change from one state to another? (Transition Function)

If the agent takes an action, how does the next state depend on the current state and action?

- The **transition function** P(s'|s,a) describes how the system evolves.
- It can be deterministic (fixed rules) or stochastic (probabilistic outcomes).

- Even if we don't know it explicitly, reinforcement learning methods can still learn from experience, if you use deep neural networks (or any other approximation approaches).
- If you chose unconventional action/state space, it might be counter-intuitive such as pointers as the action space with task status as the state space. If you don't know of it, ignore it for now.

Examples:

- Physics equations determine how a robot's position changes.
- User behavior models determine the probability of clicking a video.
- A weather model determines how conditions change after each action.

6. How good or bad is the result? (Reward Function)

What immediate feedback should the agent receive after each action?

- The **reward function** R(s, a, s') defines the goal of the problem.
- It assigns numerical feedback based on how desirable the new state is.
- Designing a good reward often requires creativity and understanding of the task's true objective.

Examples:

- +100 for reaching the goal, -100 for crashing.
- +1 for a successful click, 0 otherwise.
- Profit increase minus transaction cost.

7. (Optional) How long does the decision process last? (Time Horizon and Discounting)

Is this a one-step or multi-step decision problem? What is a time step here? Should future rewards matter?

- If the task unfolds over multiple time steps, we define a time horizon and a discount factor \gamma.
- The discount factor controls how much future rewards influence the agent's decisions.
- \gamma \approx 0: Focus on immediate rewards—often not desired in most RL.
- \gamma \approx 1: Consider long-term outcomes.

Examples:

- A single advertisement choice → short horizon.
- Robot navigation to a far goal → long horizon.

8. (Optional) Can the agent fully observe the environment? (Observation / POMDP)

? Ask: ~

Does the agent see the whole state, or only partial information?

- If the agent cannot observe the full state, the problem becomes a **Partially Observable MDP (POMDP)**.
- Then, we define observations o_t and an observation function $O(o_t|s_t)$.
- If one observation can describe more than one state, then it's PO.

Examples:

- A drone's camera sees only part of the world and the other parts are required for the task.
- A stock trader sees only public market data, not hidden signals.

9. How does the agent decide what to do? (Policy)

Given the current state, how does the agent choose its next action? That thinking/reasoning is the policy.

Choosing the best action given the current state: does it align with your optimization problem?

- The **policy** $\pi(a|s)$ is the mapping from states to actions.
- It represents the agent's strategy.
- The goal of reinforcement learning is to find the optimal policy π^* that maximizes expected cumulative reward.

10. Final Check: Can all components form a consistent MDP?

? Ask: ~

Do all the defined elements fit together coherently?

- Before proceeding, verify that everything fits together: $\mathrm{MDP} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$
- Ask yourself:
 - Are the state and action definitions clear and measurable?
 - Does each action produce a meaningful state transition?
 - Does the reward truly reflect the task objective?
- If all answers are yes, the problem is well-formulated as an MDP.

Example Applications of the Thinking Process

Example 1: Autonomous Drone Landing

Step	Thinking	Definition
1	The decision- maker?	Drone control system (agent).
2	What can it choose?	Control inputs: throttle, roll, pitch, yaw.
3	What changes?	Drone's position, velocity, and attitude (environment).
4	How to represent it?	State = [x, y, z, vx, vy, vz, roll, pitch, yaw].
5	How does it evolve?	Physics + wind disturbance (stochastic transition).
6	What's good or bad?	Reward = -distance from landing pad; crash = -100.
7	Time horizon?	Multi-step, $\Delta t = 0.025 s$ discount factor $pprox 0.99$.
8	Partial observation?	Yes, sensors have noise.
9	Policy?	Neural network mapping states → control actions.

Example 2: Robot in a Grid World

Step	Thinking	Definition
1	Agent?	Robot navigating the grid.
2	Actions?	Move up/down/left/right.
3	Environment?	The grid and walls.
4	State representation?	(x, y) position.
5	Transitions?	Deterministic or 10% chance to slip.
6	Reward?	+10 at goal, -1 per step.
7	Horizon?	Finite (until goal reached). Δt : one movement
8	Observation?	Fully observable.
9	Policy?	Table or NN mapping position → move.

Example 3: Investment Portfolio Management

Step	Thinking	Definition
1	Agent?	Portfolio management algorithm.
2	Actions?	Asset allocation ratios.
3	Environment?	Financial market dynamics.
4	State?	Current prices, holdings, volatility.
5	Transition?	Price changes with uncertainty.
6	Reward?	Profit minus risk or transaction cost.
7	Horizon?	Long-term; discount factor near 1.

Step	Thinking	Definition
8	Partial observation?	Yes, market uncertainty.
9	Policy?	Strategy mapping market state → allocation.

Example 4: Energy-efficient Building Control

Step	Thinking	Definition
1	Agent?	HVAC controller.
2	Actions?	Heating/cooling power level.
3	Environment?	Building thermal dynamics.
4	State?	Indoor temp, outdoor temp, humidity.
5	Transition?	Thermodynamic equations with delay.
6	Reward?	Comfort score - energy cost.
7	Horizon?	Long-term operation.
8	Observation?	Sensors only (partial).
9	Policy?	Control rule adjusting power level.