Lineær algebra noter - Lineære ligningssystemer

Lukas Peter Jørgensen, 201206057, DA4

24. juni 2014

1 Disposition

- 1. Lineært ligningssystem
- 2. ERO'er
- 3. Rækkeækvivalens
- 4. REF/RREF
- 5. Mindste kvadraters løsning

2 Noter

2.1 Lineært ligningssystem

Et lineært ligningssystem er et system af m ligninger med n ubekendte, hvor disse kan skrives som:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Kan også skrives på matrix form som:

$$Ax = b \tag{1}$$

Løsningsmængden er $\forall x$ hvor systemet er konsistent. Hvis der ingen løsninger er, er løsningsmængden tom, hvilket betyder at systemet er inkonsistent. Hvis løsningsmængden indeholder en eller flere løsninger, er den konsistent.

Homogent: b = 0Triviel løsning: x = 0

2.2 ERO'er

Elementære rækkeoperationer, består af 3 forskellige operationer:

Ombytning At bytte om på to rækker.

Skalering Gange en række med en skalar $(a \neq 0)$.

Addition Lægge en række til en anden række.

Elementære rækkeoperationer ændrer ikke løsningsmængden.

2.3 Rækkeækvivalens

Rækkeækvivalens gælder når to ligningssystemer har samme løsningsmængde for samme sæt af variabler.

$$(A|b) \sim (H|c) \tag{2}$$

hvis der eksisterer en løsning x til ligningssystemet A vil x også være en løsning til H.

2.4 REF/RREF

En matrix er på REF når:

- 1. første ikke-nul element i hver række er 1.
- 2. Hver række har flere foranstillede nuller end den foregående.
- 3. Alle rækker der udelukkende indeholder nuller (nul-rækker) er nederst.

Pivoter er elementerne beskrevet i regel 1.

En matrix er på RREF når:

- 1. Matricen er på REF
- 2. Hver pivot er eneste ikke-nul element i sæjlen.

2.5 Theorem 1.2.1

Et $m \times n$ homogent system af lineære ligninger har en ikke-triviel løsning hvis n > m.

Et homogent system er altid konsistent da x=0 er en løsning. REF af matrixen har højst m ikke-nul rækker. Derfor højst m pivoter. Siden der er n søjler, og derved n variabler og n>m, så må der være en, eller flere, søjler mere end rækker og derfor vil der være n-m>0 frie variable. Hver af de frie variable kan have en arbitrær værdi, og for enhver værdi af de frie variable er der en løsning til systemet.

2.6 Mindste kvadraters løsning

Lave et best fit af et sæt af data der muligvis ikke kan findes en løsning til pga. små unøjagtigheder eller afvigelser.

Givet et $m \times n$ lineært ligningssystem Ax = b, m > n (Overdetermineret), så kan man ikke generelt forvente at der er et $x \in \mathbb{R}^n$ hvor Ax = b. Derfor hvis $b \in \mathbb{R}^m$, så for ethvert $x \in \mathbb{R}^n$ kan vi forme et residual:

$$r(x) = b - Ax$$

Distancen mellem b og Ax er givet ved:

$$||b - Ax|| = ||r(x)||$$

Vi ønsker da at finde en mindste kvadraters løsning \hat{x} hvor ||r(x)|| er mindst mulig. Hvis \hat{x} er en mindste kvadraters løsning og $p = A\hat{x}$ så er p den vektor i søjlerummet for A der er tættest på b.

Projektionen p af b på S er det nærmeste punkt til b i S. Altså:

$$||b - y|| > ||b - p|| \forall y \neq p \in S$$

Dog kun hvis $b - p \in S^{\perp}$

2.7 Theorem 5.3.1

Lad $S \subset \mathbb{R}^m$ og $x \in \mathbb{R}^m$. Da er projektionen $p = P_S(x)$ af x på S det nærmeste punkt til x i S. Altså:

$$||x - y|| > ||x - p||, \forall y \in S \setminus \{p\}$$

Vi ved at $\mathbb{R}^m = S \bigoplus S^{\perp}$ (den direkte sum) derfor kan enhver $x \in \mathbb{R}^m$ skrives unikt som summen:

$$x = p + z$$

hvor $p \in S$ og $z \in S^{\perp}$. $\forall y \in S \setminus \{p\}$ gælder der:

$$||x - y||^2 = ||x - p + p - y||^2$$

Siden $p-y\in S$ og $x-p\in S^\perp,$ så følger det af Pythagoras' lov der siger at:

Hvis $u, v \in \mathbb{R}^n$ er ortogonale så er $||u+v||^2 = ||u||^2 + ||v||^2$

$$||x - y||^2 = ||x - p||^2 + ||p - y||^2$$

Da $p \neq y$ så er $||p - y||^2 > 0$ så derved bliver

$$||x - y||^2 > ||x - p||^2$$