

FCC PART 15.247 TEST REPORT

For

FrSky Electronic Co., Ltd.

F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China

FCC ID: XYFA7SDP

Report Type:		Product Type:
Original Report		Digital telemetry radio system
Test Engineer:	Chris Wang	Chris. Wang
Report Number:	RKS170719004	-00A
Report Date:	2017-08-14	
Reviewed By:	Oscar Ye RF Leader	Gscar. Ye
Prepared By:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Related Submittal(s)/Grant(s) Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1310 &§2.1093 – RF EXPOSURE	10
MEASUREMENT RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Information	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	14
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	19
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	
1 CC 310.217(a) (1) 20 UD EMISSION DIED WID HILL	

25 25 25
28
28 28 28
30
30
30
33
33 33
36
36 36

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	FrSky Electronic Co., Ltd.	
Tested Model	A7	
Product Type	Digital telemetry radio system	
Dimension	191.0mm(L)×160.0 mm(W)×71.1 mm(H)	
Power Supply	DC 7.2V from battery or DC 15V charging by adapter	

Report No.: RKS170719004-00A

Adapter Information:

Model: YNQX18T150100UL Input: AC100-240 V 50/60Hz 1A

Output:15V, 1A

Objective

This test report is prepared on behalf of FrSky Electronic Co., Ltd. in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and DA 00-705 March 30, 2000.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 37

^{*}All measurement and test data in this report was gathered from production sample serial number: 20170719003 (Assigned by the BACL. The EUT supplied by the applicant was received on 2017-07-19)

Measurement Uncertainty

	Item	Uncertainty
AC Power Lin	es Conducted Emissions	3.19 dB
RF conduct	ed test with spectrum	0.9dB
RF Output P	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
Radiated emission	1GHz~6GHz	4.45dB
	6GHz~18GHz	5.23dB
Occupied Bandwidth		0.5kHz
Temperature		1.0℃
Humidity		6%

Report No.: RKS170719004-00A

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 37

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel list For GFSK Modulation:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2404.55	25	2440.55
2	2406.05		•••
	•••		•••
23	2437.55	46	2472.05
24	2439.05	47	2473.55

Report No.: RKS170719004-00A

EUT was tested with Channel 1, 24 and 47.

EUT Exercise Software

RF Test software: Channel_changer

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Shielding Type	Length (m)	From Port	То
/	/	/	/	/

FCC Part 15.247 Page 6 of 37

Block Diagram of Test Setup

For Radiated Emissions (Below 1GHz):

For Radiated Emissions (Above 1GHz):

FCC Part 15.247 Page 7 of 37

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i)§1.1307(b)(1) & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement Compliance	
§15.247(d)	Band Edges	Compliance

Report No.: RKS170719004-00A

FCC Part 15.247 Page 8 of 37

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration	Calibration		
Triumunuctui Ci	-	'		Date	Due Date		
	Radiated Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24		
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-24		
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08		
ETS	Horn Antenna	3115	6229	2016-01-11	2019-01-10		
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-11		
Narda	Pre-amplifier	AFS42- 00101800	2001270	2016-12-12	2017-12-11		
R&S	Auto test Software	EMC32	100361	/	/		
Haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-11		
Haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-11		
Haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-11		
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-11		
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-11		
	RF Conducted Test						
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2017-07-04	2018-07-03		
FrSky	RF Cable	/	/	2017-07-20	2018-07-19		
Conducted Emission Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24		
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-09		
Rohde & Schwarz	LISN	ENV216	3560655016	2016-11-25	2017-11-24		
Rohde & Schwarz	CE Test software	EMC 32	100357	/	/		
MICRO-COAX	Coaxial Cable	Cable-6	006	2016-09-08	2017-09-07		

Report No.: RKS170719004-00A

FCC Part 15.247 Page 9 of 37

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1310 &§2.1093 – RF EXPOSURE

Applicable Standard

According to §2.1093 and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RKS170719004-00A

According to KDB447498 D01 General RF Exposure Guidance v06:

For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

FCC Part 15.247 Page 10 of 37

Measurement Result

Frequency Range (MHz)		ed Output wer	Minimum Test Separation Distances
(IVIHZ)	(dBm)	(mW)	(mm)
2404.55-2473.55	17.50	56.23	27

Report No.: RKS170719004-00A

Note:

1. Minimum test separation distance is 27 mm, as following photo:

- 2. Turn up power 17 ± 0.5 dBm, which is declared by the manufacturer.
- **3**. This is a handheld device.

Result: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$]= $56.23/27* \sqrt{2.47355}$ = **3.3** <**7.5**. So no SAR test is needed.

FCC Part 15.247 Page 11 of 37

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RKS170719004-00A

Antenna Information

The EUT has a Dipole antenna arrangement, which the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 12 of 37

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RKS170719004-00A

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 37

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RKS170719004-00A

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	24.8 ℃		
Relative Humidity:	51 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Chris Wang on 2017-07-22.

EUT operation mode: Transmitting in Low channel (Worst case)

FCC Part 15.247 Page 14 of 37

AC 120V/60 Hz, Line

Report No.: RKS170719004-00A

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB \mu V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.650000		8.84	9.000	L1	10.0	37.16	46.00	Compliance
0.650000	18.41		9.000	L1	10.0	37.59	56.00	Compliance
0.760000		9.05	9.000	L1	9.9	36.95	46.00	Compliance
0.760000	16.29		9.000	L1	9.9	39.71	56.00	Compliance
1.340000		8.46	9.000	L1	9.9	37.54	46.00	Compliance
1.340000	12.69		9.000	L1	9.9	43.31	56.00	Compliance
7.350000		8.70	9.000	L1	10.0	41.30	50.00	Compliance
7.350000	16.66		9.000	L1	10.0	43.34	60.00	Compliance
10.410000		9.24	9.000	L1	10.1	40.76	50.00	Compliance
10.410000	16.60		9.000	L1	10.1	43.40	60.00	Compliance
12.660000		9.45	9.000	L1	10.0	40.55	50.00	Compliance
12.660000	18.87		9.000	L1	10.0	41.13	60.00	Compliance

FCC Part 15.247 Page 15 of 37

AC 120V/60 Hz, Neutral

Full Spectrum

Report No.: RKS170719004-00A

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.520000		10.86	9.000	N	10.1	35.14	46.00	Compliance
0.520000	33.10		9.000	N	10.1	22.90	56.00	Compliance
0.780000		9.22	9.000	N	10.0	36.78	46.00	Compliance
0.780000	21.41		9.000	N	10.0	34.59	56.00	Compliance
2.130000		8.28	9.000	N	9.9	37.72	46.00	Compliance
2.130000	16.94		9.000	N	9.9	39.06	56.00	Compliance
6.780000		9.70	9.000	N	9.9	40.30	50.00	Compliance
6.780000	19.29		9.000	N	9.9	40.71	60.00	Compliance
12.970000		9.44	9.000	N	10.0	40.56	50.00	Compliance
12.970000	24.58		9.000	N	10.0	35.42	60.00	Compliance
13.820000		9.89	9.000	N	10.0	40.11	50.00	Compliance
13.820000	22.73		9.000	N	10.0	37.27	60.00	Compliance

- Corr.=LISN VDF (Voltage Division Factor) + Cable Loss
 Corrected Amplitude = Reading + Corr.
 Margin = Limit -Corrected Amplitude

FCC Part 15.247 Page 16 of 37

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RKS170719004-00A

EUT Setup

Below 1 GHz:

FCC Part 15.247 Page 17 of 37

Above 1GHz:

Report No.: RKS170719004-00A

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP

Frequency Range	RBW	Video B/W	Detector
	1MHz	3 MHz	PK
1GHz – 25GHz	1MHz	10 Hz	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 18 of 37

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RKS170719004-00A

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Chris Wang on 2017-07-23.

EUT operation mode: Transmitting(Scan with X-Axis, Y-Axis and Z-Axis position, the worst case was recorded)

FCC Part 15.247 Page 19 of 37

30MH -25 GHz:

_	R	eceiver		Rx An	tenna	Corrected	Corrected		C Part /205/209
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (cm)	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)	Limit (dB µ V/m)	Margin (dB)
			Low Char	nel (2404	.55 MHz	:)			
162.30	30.02	QP	225	212	V	-1.18	28.84	43.5	14.66
2404.55	117.56	PK	75	198	V	-6.18	111.38	/	/
2404.55	94.65	Ave	75	198	V	-6.18	88.47	/	/
2404.55	117.40	PK	334	249	Н	-6.18	111.22	/	/
2404.55	91.63	Ave	334	249	Н	-6.18	85.45	/	/
2390.00	51.73	PK	214	172	V	-6.22	45.51	74.00	28.49
2390.00	31.67	Ave	214	172	V	-6.22	25.45	54.00	28.55
2400.00	63.91	PK	91	153	V	-6.19	57.72	74.00	16.28
2400.00	41.32	Ave	91	153	V	-6.19	35.13	54.00	18.87
1302.60	57.07	PK	250	206	V	-10.64	46.43	74.00	27.57
1302.60	34.83	Ave	250	206	V	-10.64	24.19	54.00	29.81
4811.00	57.53	PK	180	228	Н	1.63	59.16	74.00	14.84
4811.00	44.49	Ave	180	228	Н	1.63	46.12	54.00	7.88
7216.50	59.77	PK	172	149	V	7.56	67.33	74.00	6.67
7216.50	41.68	Ave	172	149	V	7.56	49.24	54.00	4.76
			Middle Cha	annel (243	9.05 MH	(z)		•	
162.30	29.89	QP	261	146	V	-1.18	28.71	43.5	14.79
2439.05	117.69	PK	307	115	V	-6.10	111.59	/	/
2439.05	87.62	Ave	307	115	V	-6.10	81.52	/	/
2439.05	117.32	PK	173	136	Н	-6.10	111.22	/	/
2439.05	84.85	Ave	173	136	Н	-6.10	78.75	/	/
1302.60	56.88	PK	75	200	V	-10.64	46.24	74.00	27.76
1302.60	34.79	Ave	75	200	V	-10.64	24.15	54.00	29.85
3062.66	42.61	PK	118	153	Н	-3.08	39.53	74.00	34.47
3062.66	30.02	Ave	118	153	Н	-3.08	26.94	54.00	27.06
4878.00	58.78	PK	108	241	V	1.79	60.57	74.00	13.43
4878.00	46.53	Ave	108	241	V	1.79	48.32	54.00	5.68
6032.06	41.96	PK	224	114	Н	4.19	46.15	74.00	27.85
6032.06	27.54	Ave	224	114	Н	4.19	31.73	54.00	22.27
7317.00	57.86	PK	160	224	V	7.67	65.53	74.00	8.47
7317.00	40.69	Ave	160	224	V	7.67	48.36	54.00	5.64

Report No.: RKS170719004-00A

FCC Part 15.247 Page 20 of 37

_	R	eceiver		Rx An	tenna	Corrected	Corrected		C Part /205/209
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (cm)	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)	Limit (dB µ V/m)	Margin (dB)
			High Chai	nnel (2473	.55 MHz	<u>z)</u>			
162.30	30.09	QP	72	226	V	-1.18	28.91	43.5	14.59
2473.55	117.61	PK	159	206	V	-6.03	111.58	/	/
2473.55	87.40	Ave	159	206	V	-6.03	81.37	/	/
2473.55	117.53	PK	338	134	Н	-6.03	111.50	/	/
2473.55	84.73	Ave	338	134	Н	-6.03	78.70	/	/
2483.50	56.48	PK	170	198	V	-6.01	50.47	74.00	23.53
2483.50	41.42	Ave	170	198	V	-6.01	35.41	54.00	18.59
1302.60	56.22	PK	200	102	V	-10.64	45.58	74.00	28.42
1302.60	34.94	Ave	200	102	V	-10.64	24.30	54.00	29.70
4947.00	59.44	PK	202	174	V	1.94	61.38	74.00	12.62
4947.00	47.59	Ave	202	174	V	1.94	49.53	54.00	4.47
6032.06	42.07	PK	158	179	Н	4.19	46.26	74.00	27.74
6032.06	27.58	Ave	158	179	Н	4.19	31.77	54.00	22.23
7420.50	55.06	PK	179	173	V	7.77	62.83	74.00	11.17
7420.50	40.06	Ave	179	173	V	7.77	47.83	54.00	6.17

Note: The fundermental test is without Amplifier

FCC Part 15.247 Page 21 of 37

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Report No.: RKS170719004-00A

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	24.3 ℃		
Relative Humidity:	49%		
ATM Pressure:	101.2 kPa		

The testing was performed by Chris Wang on 2017-07-20.

EUT operation mode: Transmitting

Test Result: Compliance.

Modulation	Channel	Frequency (MHz)	Channel Separation (kHz)	Limit (kHz)	Result
	Low	2404.55	1497.40	103.20	Pass
	Adjacent	2406.05	1497.40	103.20	rass
GFSK	Middle	2439.05	1502.20	103.20	Daga
Grsk	Adjacent	2440.55	1502.20		Pass
	Adjacent 2472.05	1502.20	102.27	Daga	
	High	2473.55	1302.20	102.27	Pass

The limit =20dB Bandwidth*2/3

FCC Part 15.247 Page 22 of 37

Low Channel

Report No.: RKS170719004-00A

Date: 20 JUL 2017 15:45:47

Middle Channel

Date: 20 JUL.2017 15:47:05

FCC Part 15.247 Page 23 of 37

High Channel

Report No.: RKS170719004-00A

Date: 20 JUL.2017 15:48:29

FCC Part 15.247 Page 24 of 37

FCC $\S15.247(a)$ (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: RKS170719004-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24.1 ℃
Relative Humidity:	51%
ATM Pressure:	101.3 kPa

The testing was performed by Chris Wang on 2017-07-21.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 25 of 37

Modulation	Channel	Frequency (MHz)	20 dB Emission Bandwidth (kHz)
	Low	2404.55	154.80
GFSK	Middle	2439.05	154.80
	High	2473.55	153.40

Low Channel

Date: 21 JUL.2017 10:05:55

FCC Part 15.247 Page 26 of 37

Middle Channel

Report No.: RKS170719004-00A

Date: 21 JUL 2017 10:08:15

High Channel

Date: 21 JUL.2017 10:12:09

FCC Part 15.247 Page 27 of 37

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RKS170719004-00A

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	24.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Chris Wang on 2017-07-20.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 28 of 37

Modulation	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)	
GFSK	2404.55-2473.55	47	≥15	

Number of Hopping Channels

Date: 20 JUL.2017 15:35:17

FCC Part 15.247 Page 29 of 37

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RKS170719004-00A

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Test Data

Environmental Conditions

Temperature:	24.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Chris Wang on 2017-07-21.

EUT operation mode: Transmitting

Test Result: Compliance.

Modulation	Channel	Pulse Width (ms)	Pulse Number	Dwell Time (s)	Limit (s)	Result
	Middle	4.80	45	0.216	≤0.4	Pass
GFSK Observed			Note: Dwell time = Pulse time*N ime = 0.4s* hopping number= 0.4s*47=18.8s			

FCC Part 15.247 Page 30 of 37

Number of pusles

Report No.: RKS170719004-00A

Date: 21.JUL.2017 11:21:24

Zoom in

Date: 21 JUL 2017 11:24:33

FCC Part 15.247 Page 31 of 37

Single Pusle

Report No.: RKS170719004-00A

Date: 21 JUL 2017 11:30:29

FCC Part 15.247 Page 32 of 37

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: RKS170719004-00A

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24.1 ℃		
Relative Humidity:	51%		
ATM Pressure:	101.3 kPa		

The testing was performed by Chris Wang on 2017-07-21.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 33 of 37

Modulation Channel	Frequency	Output Power		Limit	
		(MHz)	(dBm)	(mW)	(mW)
	Low	2404.55	17.02	50.35	125
GFSK	Middle	2439.05	16.99	50.00	125
	High	2473.55	16.90	48.98	125

Low Channel

Date: 21 JUL.2017 10:23:49

FCC Part 15.247 Page 34 of 37

Middle Channel

Report No.: RKS170719004-00A

Date: 21 JUL 2017 10:22:09

High Channel

Date: 21 JUL.2017 10:22:59

FCC Part 15.247 Page 35 of 37

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RKS170719004-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24.1 ℃		
Relative Humidity:	51%		
ATM Pressure:	101.3 kPa		

The testing was performed by Chris Wang on 2017-07-21.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 36 of 37

Left Side

Report No.: RKS170719004-00A

Date: 21 JUL.2017 10:18:12

Right Side

Date: 21 JUL 2017 10:14:5

***** END OF REPORT *****

FCC Part 15.247 Page 37 of 37