CORRIGÉ DM N°2 (CENTRALE MP, 1989)

Première partie : Généralités

I.1 a) Soit une suite (u_n) de S, constante égale à $a \in \mathbb{R}$.

Alors
$$a = \frac{a^2 + a^2}{2} = a^2$$
, d'où $a \in \{0, 1\}$.

La réciproque est immédiate.

Les suites constantes de S sont donc 0 et 1.

b) Soit (u_n) une suite de S.

Si on suppose qu'elle converge vers $\ell \in \mathbb{R}$, par passage à la limite dans la relation (\mathcal{R}) , on obtient $\ell^2 = \ell$, d'où $\ell \in \{0,1\}$.

De plus, par récurrence immédiate on a $\forall n \in \mathbb{N}, u_n \ge 0$, donc la seule limite infinie possible est $+\infty$.

Conclusion : les limites possibles d'une suite de S sont : 0, 1 et $+\infty$.

c) Soit (u_n) une suite de S. On suppose qu'il existe $n \in \mathbb{N}$ tel que $u_n = u_{n+1} = u_{n+2} = a \in \mathbb{R}$. Alors $a = a^2$, et par récurrence immédiate, $\forall p \in \mathbb{N}, p \geqslant n \Longrightarrow u_p = a$.

De plus, $u_{n+1}=\frac{u_{n-1}^2+u_n^2}{2}=a$, d'où $u_{n-1}^2=a^2$, et comme $u_{n-1}\geqslant 0$ et $a\geqslant 0$, on a $u_{n-1}=a$. Par récurrence descendante, on obtiendra ainsi $u_0=u_1=\cdots=u_n=a$.

Conclusion : la suite (u_n) est constante.

- d) Soit (u_n) une suite de S. On suppose qu'il existe $n \in \mathbb{N}$ tel que $u_n = u_{n+1} = 1$. Alors $u_{n+2} = \frac{1^2 + 1^2}{2} = 1$, et donc (u_n) a trois termes consécutifs égaux. D'après la question précédente, (u_n) est donc constante.
- e) Soit (u_n) une suite de S. On suppose qu'il existe $n \in \mathbb{N} \setminus \{0,1\}$ tel que $u_n = 0$.

Alors
$$\frac{u_{n-1}^2 + u_{n-2}^2}{2} = 0$$
, d'où $u_{n-1} = u_{n-2} = 0$.

La suite a donc trois termes consécutifs égaux, elle est donc constante (égale à 0).

I.2. a) Soit $n \in \mathbb{N}$, $n \ge 2$. Alors

$$u_{n+1} - u_n = \frac{u_n^2 + u_{n-1}^2}{2} - \frac{u_{n-1}^2 + u_{n-2}^2}{2} = \frac{u_n^2 - u_{n-2}^2}{2} = \frac{(u_n - u_{n-2})(u_n + u_{n-2})}{2}$$

On a déjà vu que les termes de la suite sont tous positifs, donc $u_n + u_{n-2} \ge 0$. Mais cela ne suffit pas pour conclure tout de suite!

En effet, si $u_n + u_{n-2}$ était nul, on ne pourrait rien dire a priori; mais ce cas est en fait exclu, car il impliquerait $u_n = u_{n-2} = 0$, et la suite serait nulle d'après I.1.e, donc constante, ce qui est exclu ici.

Ainsi, on a $u_n + u_{n-2} > 0$ ce qui permet de conclure : Le signe de $u_{n+1} - u_n$ est celui de $u_n - u_{n-2}$.

- b) On suppose qu'il existe $N \in \mathbb{N}^*$ tel que $u_{N+1} \ge u_{N-1}$ et $u_{N+1} \ge u_N$. L'une de ces deux inégalités est nécessairement stricte d'après I.1.c, sinon la suite serait constante ce qui est exclu.
 - Si $u_{N+1} = u_{N-1}$, alors $u_{N+2} = \frac{1}{2}(u_{N+1}^2 + u_N^2) = \frac{1}{2}(u_{N-1}^2 + u_N^2) = u_{N+1}$, et $u_{N+3} u_{N+2}$ est du signe de $u_{N+2} u_N = u_{N+1} u_N > 0$. On obtient donc $u_{N+3} > u_{N+2}$ et $u_{N+3} > u_{N+1}$.
 - Si $u_{N+1} = u_N$, alors $u_{N+2} u_{N+1}$ est du signe de $u_{N+1} u_{N-1} > 0$, donc $u_{N+2} > u_{N+1}$ et $u_{N+2} > u_N$. Quitte à remplacer N par N + 1 ou N + 2, on peut donc supposer $u_{N+1} > u_{N-1}$ et $u_{N+1} > u_N$.

Soit alors $\mathcal{P}(n)$ la propriété pour $n \in \mathbb{N}$, $n \ge N+2$: « $u_{n+1} > u_n$ et $u_{n+1} > u_{n-1}$ ».

• $\mathcal{P}(N+2)$ est vraie par hypothèse.

• Supposons $\mathscr{P}(n)$ vraie pour $n \in \mathbb{N}^*$ fixé, $n \ge N+2$. Comme $u_{n+2}-u_{n+1}$ a le signe de $u_{n+1}-u_{n-1}$, d'après $\mathscr{P}(n)$, $u_{n+2}>u_{n+1}$, et toujours d'après $\mathscr{P}(n)$, $u_{n+1}>u_n$ donc $u_{n+2}>u_n$. $\mathscr{P}(n+1)$ est donc vraie.

On a donc $\forall n \in \mathbb{N}, n \ge N+2 \Longrightarrow u_{n+1} > u_n$, on peut conclure :

la suite est donc strictement croissante à partir du rang N+2 (au moins).

• On a ici $u_0 = \sqrt{2} \approx 1, 4, u_1 = 0, u_2 = 1, u_3 = \frac{1}{2} = 0, 5, u_4 = \frac{5}{8} \approx 0, 6, u_5 = \frac{41}{128} \approx 0, 3$

On a donc $u_5 < u_3$ et $u_5 < u_4$, la suite est donc décroissante à partir du rang 5. Étant minorée par 0, elle converge, vers une limite inférieure à $u_5 < 1$, et donc d'après I.1.b elle converge vers 0.

- On a ici $u_0=2$, $u_1=0$, $u_2=2$ donc $u_2\geqslant u_0$ et $u_2\geqslant u_1$, la suite est donc croissante à partir du rang 2. Comme elle ne pourrait converger que vers une limite supérieure à $u_2>1$, elle ne peut converger, et donc elle diverge vers $+\infty$.
- I.8) Remarquons qu'on ne peut pas avoir $u_0 = u_1$, car alors on aurait $(u_2 \ge u_0 \text{ et } u_2 \ge u_1)$ ou $(u_2 \le u_0 \text{ et } u_2 \le u_1)$, donc la suite serait strictement croissante (ou décroissante) à partir du rang 4, ce qui est exclu par hypothèse.

Supposons $u_0 < u_1$

Alors on ne peut pas avoir $u_2 \le u_0$ ni $u_1 \le u_2$ sinon la suite serait strictement monotone à partir du rang 3, ce qui est exclu, donc $u_0 < u_2 < u_1$.

Puisque $u_3 - u_2$ a le signe de $u_2 - u_0$, on a $u_3 > u_2$. Si on avait $u_3 \ge u_1$, la suite serait strictement croissante à partir du rang 2 et cela est exclu. On a donc $u_3 \in]u_2,u_1[$.

Soit $\mathcal{P}(n)$ la propriété pour $n \in \mathbb{N}$: « $u_{2n} < u_{2n+2} < u_{2n+3} < u_{2n+1}$ ».

- $\mathcal{P}(0)$ est vraie d'après ce qui précède.
- Supposons $\mathcal{P}(n)$ vraie pour $n \in \mathbb{N}$ fixé.

On ne peut pas avoir $u_{2n+4} \le u_{2n+2}$ ni $u_{2n+3} \le u_{2n+4}$ sinon la suite serait strictement monotone à partir d'un certain rang. On a donc $u_{2n+2} < u_{2n+4} < u_{2n+3}$.

On montre de la même façon que $u_{2n+4} < u_{2n+5} < u_{2n+3}$, et donc $\mathcal{P}(n+1)$ est vraie.

On obtient donc $(u_{2n})_{n\in\mathbb{N}}$ suite croissante et $(u_{2n+1})_{n\in\mathbb{N}}$ suite décroissante, et de plus $\forall n\in\mathbb{N},\ u_{2n}< u_{2n+1}$. La suite $(u_{2n})_{n\in\mathbb{N}}$ est donc croissante et majorée par u_1 , elle converge vers une limite ℓ .

De même, la suite $(u_{2n+1})_{n\in\mathbb{N}}$ est décroissante et minorée par u_0 , elle converge donc vers une limite ℓ' .

De plus, on a $u_0 < \ell \le \ell' < u_1$. En passant alors à la limite dans les deux égalités

$$u_{2n+1} = \frac{1}{2}(u_{2n}^2 + u_{2n-1}^2)$$
 et $u_{2n+2} = \frac{1}{2}(u_{2n+1}^2 + u_{2n}^2)$

on obtient

$$2\ell' = \ell^2 + \ell'^2$$
 et $2\ell = \ell'^2 + \ell^2$

d'où $\ell = \ell' \in \{0, 1\}$.

La valeur 0 est exclue puisque $\ell > u_0$, donc $\ell = \ell' = 1$ et finalement : La suite (u_n) converge vers 1.

Le cas $\underline{u_0 > u_1}$ se traiterait de façon similaire, on obtiendrait le même type de résultats, avec $(u_{2n})_{n \in \mathbb{N}}$ décroissante et $(u_{2n+1})_{n \in \mathbb{N}}$ croissante, convergeant toutes les deux vers 1.

I.4. Supposons (a) vrai

Si $u_N \ge 1$ et $u_{N+1} \ge 1$, une récurrence immédiate donne $u_n \ge 1$ pour tout $n \ge N$.

On n'est donc pas dans le cas étudié au I.3, et donc la suite est strictement monotone à partir d'un certain rang. Puisque $u_{n+2} \ge \frac{1+u_{n+1}^2}{2} \ge u_{n+1}$ pour $n \ge N$, elle est en fait strictement croissante donc (a) \Rightarrow (b).

Supposons (b) vrai.

Notons N le rang à partir duquel la suite est strictement croissante.

Si on avait $u_N < u_{N+1} \le 1$, alors $u_{N+2} = \frac{1}{2}(u_{N+1}^2 + u_N^2) < u_{N+1}^2 \le u_{N+1}$, ce qui contredit la croissance de $(u_n)_{n>N}$.

On a donc $u_{N+1} > 1$, et la suite étant croissante à partir du rang N ne peut être majorée (car sinon elle convergerait vers une limite $\ell \geqslant u_{N+1} > 1$), donc elle diverge vers $+\infty$, et $(b) \Rightarrow (c)$.

Supposons (c) vrai.

Par définition de la limite, $\exists n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Longrightarrow u_n > 1$. En particulier, $u_{n_0} \geqslant 1$ et $u_{n_0+1} \geqslant 1$, d'où $\boxed{(\mathbf{c}) \Rightarrow (\mathbf{a})}$.

Conclusion: (a), (b) et (c) sont équivalentes.

- I.5. Les démonstrations sont similaires à celles de la question précédente.
- I.6. Clairement, $(0,0) \in E_0$ et $(1,1) \in E_1$. On a vu de plus que $(2,0) \in E_{+\infty}$, donc E_0 , E_1 et $E_{+\infty}$ sont non vides. Soit $(x,y) \in Q$, (u_n) la suite de S correspondante.
 - Si elle est constante, (x, y) est dans E_0 ou E_1 d'après I.1.a.
 - Si elle est non constante et strictement décroissante à partir d'un certain rang, d'après I.5., elle converge vers 0, donc $(x, y) \in E_0$.
 - Si elle est non constante et strictement croissante à partir d'un certain rang, d'après I.4., elle diverge vers $+\infty$, donc $(x,y) \in E_{+\infty}$.
 - Si elle est non constante et non strictement monotone à partir d'un certain rang, d'après I.3. elle converge vers 1, donc $(x, y) \in E_1$.

On a énuméré tous les cas possibles donc : $E_0 \cup E_1 \cup E_{+\infty} = Q$.

Deuxième partie

II.1. Soient $(x, y) \in Q$ et $(x', y') \in Q$ tels que $x \le x'$ et $y \le y'$.

Alors $u_0(x,y) \le u_0(x',y')$ et $u_1(x,y) \le u_1(x',y')$, puis par récurrence immédiate $\forall n \in \mathbb{N}$, $u_n(x,y) \le u_n(x',y')$, d'où par passage à la limite : $\lambda(x,y) \le \lambda(x',y')$.

- II.2. a) Soit $\mathcal{P}(n)$ la propriété pour $n \in \mathbb{N}$: « $u_n(x,y) + \varepsilon \leq u_n(x',y')$ ».
 - $\mathcal{P}(N-1)$ et $\mathcal{P}(N)$ sont vraies par hypothèse.
 - Supposons $\mathcal{P}(n-1)$ et $\mathcal{P}(n)$ vraies pour $n \in \mathbb{N}$, $n \ge N$ fixé.

Alors
$$\begin{cases} u_{n-1}(x,y) + \varepsilon \leq u_{n-1}(x',y') \\ u_n(x,y) + \varepsilon \leq u_n(x',y') \end{cases}$$

donc
$$\frac{u_{n-1}(x,y)^2 + u_n(x,y)^2 + 2\varepsilon \left(u_{n-1}(x,y) + u_n(x,y)\right) + 2\varepsilon^2}{2} \leqslant u_{n+1}(x',y')$$

et donc $u_{n+1}(x,y) + \varepsilon (u_{n-1}(x,y) + u_n(x,y) + \varepsilon) \le u_{n+1}(x',y')$.

Or, d'après I.3., on a $u_{n-1}(x,y)\geqslant 1$ ou $u_n(x,y)\geqslant 1$, et donc $u_{n-1}(x,y)+u_n(x,y)+\varepsilon\geqslant 1$, d'où finalement $u_{n+1}(x,y)+\varepsilon\leqslant u_{n+1}(x',y')$.

Conclusion : $\forall n \in \mathbb{N}, n \ge N, u_n(x, y) + \varepsilon \ge u_n(x', y').$

b) • Si $x \le x'$, $y \le y'$ et $(x, y) \ne (x', y')$:

On a dans ce cas $\frac{x^2 + y^2}{2} < \frac{x'^2 + y'^2}{2}$, d'où $u_2(x, y) < u_2(x', y')$, et de même, $u_3(x, y) < u_3(x', y')$.

Il est donc possible de choisir $\varepsilon > 0$ tel que $u_2(x,y) + \varepsilon \le u_2(x',y')$ et $u_3(x,y) + \varepsilon \le u_3(x',y')$.

Alors d'après la question précédente, $\forall n \in \mathbb{N}$ tel que $n \ge 2$, $u_n(x,y) + \varepsilon < u_n(x',y')$, d'où par passage à la limite : $\lambda(x,y) + \varepsilon \le \lambda(x',y')$, or $\lambda(x,y) = 1$ par hypothèse, et donc $\lambda(x',y') = +\infty$.

• Si $x \ge x'$, $y \ge y'$ et $(x, y) \ne (x', y')$:

On a donc $\lambda(x, y) \ge \lambda(x', y')$.

Si on avait $\lambda(x', y') = 1$, on pourrait appliquer la première partie de la question en échangeant les rôles de (x, y) et de (x', y'), et on aurait $\lambda(x, y) = +\infty$, ce qui est exclu.

On a donc forcément $\lambda(x', y') = 0$.

II.3. a) Notons X l'ensemble des $x \ge 0$ pour lesquels $\lambda(x,0) = 0$. On a $\lambda(0,0) = 0$, donc X est non vide. De plus, on a vu que $\lambda(2,0) = +\infty$, donc d'après II.1., $\forall x \ge 2$, $\lambda(x,0) = +\infty$, et donc X est majoré par 2.

d'où l'existence de $a = \sup X$.

- b) Soit $x \in [0, a[$. Alors par propriété de la borne supérieure, il existe $x' \in X$ tel que x' > x. On obtient donc $\lambda(x,0) \le \lambda(x',0) = 0$, et donc $\lambda(x,0) = 0$.
- c) On sait que, pour $x \ge 0$, s'il existe un rang $N \in \mathbb{N}$ tel que $u_N \ge 1$ et $u_{N-1} \ge 1$, avec u = u(x,0), alors $\lambda(x,0) \ge 1$ et s'il existe un rang $N \in \mathbb{N}$ tel que $u_N \le 1$ et $u_{N-1} \le 1$, alors $\lambda(x,0) = 0$.

On calcule donc $u_0(x,0)$, $u_1(x,0)$, ..., $u_n(x,0)$ jusqu'à ce qu'on soit dans un des deux cas décrits cidessus, ou jusqu'à ce qu'on ait fait (par exemple) 10000 itérations (cas ennuyeux...). Cela est réalisé par la procédure Appartient ci-dessous, qui teste si x appartient à l'ensemble x mentionné à la question II.3.a.

On procède ensuite par dichotomie pour trouver a, sachant qu'il est compris entre $\sqrt{2}$ et 2, jusqu'à ce que l'on ait réussi à l'encadrer dans un intervalle de longueur ϵ donné. Cela est réalisé par la procédure Calcula ci-dessous.

Voici le programme MAPLE:

```
Appartient := proc (x)
local u0, u1, u2, fini, n, result;
u0 := x; u1 := 0; n := 0;
fini := false; result := false;
while not fini and n < 10000 do
   u2 := 0.5*(u0^2+u1^2);
   u0 := u1; u1 := u2;
   if u0 \ge 1 and u1 \ge 1 then
      fini := true;
     result := false
   end if;
   if u0 \le 1 and u1 \le 1 then
     fini := true;
     result := true
   end if;
   n := n+1
end do;
return result
end proc;
Calcula := proc (eps)
local a0, a1, a;
a0 := evalf(sqrt(2));
a1 := 2;
while eps < abs(a1-a0) do
   a := (a0+a1)/2;
   if Appartient(a) then
      a0 := a
   else
      a1 := a
   end if
end do;
return a0
end proc;
Calcula(1e-5);
                           1.586921166
Digits := 50; Calcula(1e-45);
       1.5869279328386288144202613474710366118799939915798
```

- II.4. a) Soit $n \in \mathbb{N}$. Par récurrence immédiate, $x \mapsto u_n(x,0)$ est une fonction polynomiale, et donc est continue sur \mathbb{R} .
 - b) On suppose que $\lambda(a,0)=0$. Alors, il existe un entier $N\in\mathbb{N}$ tel que $u_N(a,0)<\frac{1}{2}$ et $u_{N-1}(a,0)<\frac{1}{2}$. Par continuité de $x\longmapsto u_N(x,0)$ et $x\longmapsto u_{N-1}(x,0)$, il existe donc $\varepsilon>0$ tel que $u_N(a+\varepsilon,0)<1$ et $u_{N-1}(a+\varepsilon,0)<1$, d'où d'après I.5. : $\lambda(a+\varepsilon,0)=0$.

Notons que ceci est impossible vu la définition de *a* .

- c) Démonstration similaire à la précédente, mais en utilisant ici le résultat de la question I.4. Là encore, le résultat obtenu contredit la définition de *a*.
- d) $\lambda(a,0)$ ne pouvant être ni 0, ni $+\infty$, on a donc $\lambda(a,0)=1$. De plus, d'après II.3.b, pour x>a, $\lambda(x,0)=+\infty$.
- e) Toujours d'après II.3.b, pour y > 0, $\lambda(a, y) = +\infty$.

Troisième partie : Étude de E_0 , E_1 , $E_{+\infty}$.

- non corrigée -

Quatrième partie : Étude de la rapidité de croissance

IV.1. On a, pour $n \ge 1$, $u_{n+1} = \frac{1}{2}(u_n^2 + u_{n-1}^2)$ donc $u_{n+1} \ge \frac{1}{2}u_n^2$

On a déjà calculé, pour $n \ge 2$: $u_{n+1} - u_n = \frac{1}{2}(u_n^2 - u_{n-2}^2)$, donc $u_{n+1} - u_n \le \frac{1}{2}u_n^2$.

Finalement $\forall n \geqslant 2$, $\frac{1}{2}u_n^2 \leqslant u_{n+1} \leqslant u_n + \frac{1}{2}u_n^2$.

IV.2. a) On a:

$$z_{n+1} - z_n = \frac{1}{2^{n+1}} \ln \left(\frac{u_{n+1}}{2} \right) - \frac{1}{2^n} \ln \left(\frac{u_n}{2} \right) = \frac{1}{2^{n+1}} \ln \left(\frac{2u_{n+1}}{u_n^2} \right)$$

D'après la question précédente, on a l'encadrement $1 \le \frac{2u_{n+1}}{u_n^2} \le 1 + \frac{2}{u_n}$, donc, par croissance de la fonction ln :

$$0 \le z_{n+1} - z_n \le \frac{1}{2^{n+1}} \ln \left(1 + \frac{2}{u_n} \right)$$

Puisque la suite (u_n) tend vers $+\infty$, on a $\lim_{n\to+\infty} \ln\left(1+\frac{2}{u_n}\right)=0$, donc $z_{n+1}-z_n=o\left(\frac{1}{2^n}\right)$. Une série géométrique de raison $\frac{1}{2}$ étant convergente, il résulte des théorèmes de comparaison des séries à termes positifs que la série de terme général $z_{n+1}-z_n$ converge. D'après un résultat du cours (lien entre suites et séries télescopiques), il en résulte que la suite (z_n) converge.

b) • Puisqu'on suppose ici $\lim_{n \to +\infty} u_n = +\infty$, les termes de la suite autres que les deux premiers ne peuvent s'annuler. La relation $u_{n+1} = \frac{1}{2}(u_n^2 + u_{n-1}^2)$ donne alors l'inégalité stricte $u_{n+1} > \frac{1}{2}u_n^2$ pour $n \geqslant 3$. Pour la même raison, l'autre inégalité de la question IV.1 est aussi une inégalité stricte pour $n \geqslant 4$. Les inégalités de la question précédente sont donc strictes pour $n \geqslant 4$ et on a alors

$$0 < z_{n+1} - z_n < \frac{1}{2^{n+1}} \ln \left(1 + \frac{2}{u_n} \right) \le \frac{1}{2^n u_n} = \frac{1}{2^{n+1} \nu_n} \quad (1)$$

en vertu de l'inégalité bien connue $ln(1+x) \le x$.

On sait aussi, d'après la question I.4 que la suite (u_n) est strictement croissante à partir d'un certain rang N. En sommant les inégalités précédentes on obtient, pour $n \ge N$:

$$0 < \sum_{k=n}^{+\infty} z_{k+1} - z_k < \sum_{k=n}^{+\infty} \frac{1}{2^{k+1} \nu_k}$$

d'où, puisque $\frac{1}{\nu_k} \leqslant \frac{1}{\nu_n}$ pour $k \geqslant n \geqslant N$:

$$0 < L - z_n < \frac{1}{\nu_n} \left(\sum_{k=n}^{+\infty} \frac{1}{2^{k+1}} \right) = \frac{1}{2^n \nu_n}$$

ce qui est bien l'inégalité cherchée.

• On a donc, toujours pour $n \ge N$: $2^n L - \frac{1}{\nu_n} < \ln \nu_n < 2^n L$ d'où $e^{2^n L} e^{-\frac{1}{\nu_n}} < \nu_n < e^{2^n L}$. En posant $M = e^L$ on arrive à

$$M^{2^n} e^{-\frac{1}{\nu_n}} < \nu_n < M^{2^n}$$

Puisque $\lim_{n\to+\infty} v_n = +\infty$, on en déduit $v_n \sim M^{2^n}$ et finalement : $u_n \sim 2M^{2^n}$.

• On a de plus

$$0 < M^{2^n} - \nu_n < M^{2^n} \left(1 - e^{-\frac{1}{\nu_n}} \right) < M^{2^n} \frac{1}{\nu_n} < e^{\frac{1}{\nu_n}}$$

donc la différence entre u_n et l'équivalent trouvé est comprise entre 0 et $2e^{\frac{1}{\nu_n}}$. Puisque $\lim_{n\to+\infty}e^{\frac{1}{\nu_n}}=1$, on peut donc écrire : $u_n=2M^{2^n}+O(1)$.

IV.3 • L'encadrement

$$L - \frac{1}{2^n V_n} < z_n < L$$

permet d'obtenir une valeur approchée de L à 10^{-6} près dès que $2^n v_n \ge 10^6$ soit $2^{n-1} u_n \ge 10^6$ Pour $u_0 = u_1 = 2$, on trouve $u_6 = 1\,501\,594$ et il suffit de s'arrêter là. On obtient L $\approx 0,211389$.

• Le nombre de chiffres dans l'écriture en base 10 d'un nombre entier n est égal à $E\left(\frac{\ln n}{\ln 10}\right) + 1$ (car si n possède N chiffres, on a $10^{N-1} \le n < 10^N$).

Pour n=20, u_{20} est de l'ordre de $M^{2^{20}}$, donc $\ln(u_{20})\approx 2^{20}L\approx 221657$ et u_{20} a approximativement 96000 chiffres.

Le calcul avec Maple (qui prend quand même 1mn) donne la valeur exacte : u_{20} possède 96265 chiffres. Le petit programme utilisé est le suivant :

```
u0 := 2; u1 := 2;
for k from 2 to 20 do
    u2 := (u0^2+u1^2)*(1/2);
    u0 := u1; u1 := u2;
    print(u1, trunc(ln(u1)/ln(10))+1)
end do:
```

IV.4. D'après I.5, la suite (u_n) est ici strictement décroissante à partir d'un certain rang N. On aura donc, pour $n \ge N+1$

$$u_{n+1} = \frac{1}{2}(u_n^2 + u_{n-1}^2) \le \frac{1}{2}(u_{n-1}^2 + u_{n-1}^2) = u_{n-1}^2$$

On aura donc $\ln u_{n+1} \leqslant 2 \ln u_{n-1}$ pour $n \geqslant N+1$, d'où $\ln u_n \leqslant 2^{\frac{n-N}{2}} \max(\ln u_N, \ln u_{N-1})$. Si on choisit N assez grand pour que $u_N < 1$ et $u_{N-1} < 1$, on aura donc l'existence d'une constante K < 0 telle que $\ln u_n \leqslant K.2^{n/2}$ pour n assez grand.

D'où, en posant $B = e^{-K}$, $u_n \le B^{-2^{n/2}}$ (avec B > 1), à partir d'un certain rang N'. On peut alors trouver une constante A telle que l'inégalité $u_n \le A.B^{-2^{n/2}}$ soit vérifiée pour tout n (en choisissant $A \ge 1$ pour que l'inégalité soit aussi vraie pour n variant de 0 à N', ce qui est possible puisqu'il n'y a qu'un nombre fini de valeurs).

