Wave equations, evolution on graphs, and carcinogenesis

Chay Paterson

University of Manchester

October 15, 2025

Introduction

Driver mutations

Multi-stage models

P. Armitage and R. Doll¹²

¹P. Armitage and R. Doll, British Journal of Cancer 1954; 8: 1–12

²P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

Multi-stage models

A.G. Knudson¹²

Mutation and Retinoblastoma

Fig. 1. Semilogarithmic plot of fraction of cases of retino-blastoma not yet diagnosed (S) vs. age in months (t). The one-hit curve was calculated from $\log S = -t/30$, the two-hit curve from $\log S = -4 \times 10^{-4} \, t^2$.

¹AG. Knudson, PNAS 68.4 (1971): 820-823.

²F. Michor, Y. Iwasa and MA. Nowak, Nature Reviews Cancer 2004; 4: 107 205 doi:10.1038/prc1205

How do these studies work?

What are the relevant observables in this type of longitudinal study & data analysis?

Track a cohort that initially contains N patients in the study:

- Age-specific incidence I(a): rate at which new cases are recorded in the cohort with ages between a and a + da
- Survival function S(a): probability to survive to age a without being diagnosed.

$$I(a) = -N\frac{dS}{da} = -N S(a)\frac{d \ln S}{da}$$
 (1)

Diagnosis-free survival is the key variable

- ▶ The survival curve S(a) determines the incidence curve I(a)
- ➤ The model determines the survival curve: the probability not to end up at one of the end nodes of the graph. We want to know what model+parameters best agree with data from studies.
- ▶ To fit (or "train") the model to longitudinal data, we need to compute S(a)!

This is the central mathematical problem in cancer epidemiology. How do we compute S?

Multi-stage models as graphs

¹S. Moolgavkar and G. Luebeck, JNCI 1992; 84(8): 610-618

²C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

Armitage & Doll 1957

¹P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

Multi-stage clonal expansion models

2-3 rate limiting steps¹²³

Problem: how to compute S(t) for a given model?

Different methods: Fast:

- Armitage + Doll's approximation¹
- Moolgavkar + Venzon's quadrature²

Very slow:

► Gillespie algorithm + sampling ³

¹P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

(supp. material)

²S. Moolgavkar and G. Luebeck, JNCI 1992; 84(8): 610-618

³C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

Models on graphs

- Most methods for computing S(a) do not consider graphs with multiple end nodes
- To study specific genes and mechanisms of interest (SNVs, LOH, CNA, etc.), we need to evaluate S(a) for a model defined on a graph (right)
- 3. What methods do we actually have?

This gets us the incidence of specific karyotypes

Colorectal adenocarcinoma model

 Can use A-D type approximation, or stochastic simulations

but:

- Mean-field breaks down at old ages / large probabilities
- Stochastic simulations are extremely slow

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

Alternative approach: Kolmogorov forward equations

Define a more general generating function Ψ :

$$\Psi(t, \vec{q}) = \mathbb{E}\left[\prod_{j} q_{j}^{N_{j}}\right] = \sum_{\vec{N}} \prod_{j} q_{j}^{N_{j}} P(t, \vec{N})$$
 (2)

(the sum is taken over states $\vec{N} := (N_0, \dots)$) and derive Kolmogorov forward equations instead. Then we can numerically integrate these, and get survival curves $S_i(a)$ for different types of cancer i. E.G. tumours with clonal LOH, or no clonal LOH.

$$S_i = \Psi(t, q_i = 1, \dots, q_i = 0) \tag{3}$$

People knew about this approach for a long time (since 1970s) but it was never considered as useful as backward equations.

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

²DW Quinn, Risk Analysis 1989; 9(3): 407-13

general form of master equation is

$$\frac{dP(t,\vec{N})}{dt} = \sum_{\vec{N'}} \left(\omega(\vec{N'} \to \vec{N}) P(t,\vec{N'}) - \omega(\vec{N} \to \vec{N'}) P(t,\vec{N}) \right) \tag{4}$$

general form of master equation is

$$\frac{dP(t,\vec{N})}{dt} = \sum_{\vec{N'}} \left(\omega(\vec{N'} \to \vec{N}) P(t,\vec{N'}) - \omega(\vec{N} \to \vec{N'}) P(t,\vec{N}) \right)$$
(5)

general form of master equation is

$$\frac{dP(t,\vec{N})}{dt} = \sum_{\vec{N'}} \left(\omega(\vec{N'} \to \vec{N}) P(t,\vec{N'}) - \omega(\vec{N} \to \vec{N'}) P(t,\vec{N}) \right)$$
(6)

general form of master equation is

$$\frac{dP(t,\vec{N})}{dt} = \sum_{\vec{N'}} \left(\omega(\vec{N'} \to \vec{N}) P(t,\vec{N'}) - \omega(\vec{N} \to \vec{N'}) P(t,\vec{N}) \right)$$
(7)

Summary:

- ► Disturbances *propagate*
- ► Equation linear: *superposition*

Both hallmarks of wave-like behaviour

Kolmogorov forward equations as wave equations

Briefly: the Kolmogorov forward equations in $P(N_0,...)$

$$\frac{dP(N_0, N_1, \dots)}{dt} = \sum_{\textit{vertices}} \alpha(N_j - 1)P(\dots, N_j - 1, \dots)$$
$$-\alpha N_j P(\dots, N_j, \dots)$$
$$+\beta \dots + \mu \dots + \delta \dots$$

get transformed...

Kolmogorov forward equations as wave equations

They transform with $P \rightarrow \Psi$:

$$\frac{\partial \Psi}{\partial t} = \sum_{\text{vertices}} \alpha (q_j - 1) q_j \frac{\partial \Psi}{\partial q_j} + \dots = \mathcal{H} \Psi$$
 (8)

where \mathcal{H} is a hyperbolic differential operator.

Because this is a hyperbolic wave equation, we can solve for future values of Ψ if we have initial values, by evolving them along characteristics.

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

Kolmogorov forward equations

Using the big generating function Ψ , find the corresponding wave equation:

$$\frac{d\Psi}{dt} = \mathcal{H}\Psi \tag{9}$$

This can be solved using the method of characteristics, so we can instead integrate

$$\frac{d\vec{\gamma}}{dt} = \vec{X} \tag{10}$$

numerically, using an appropriate time stepper.

The vector field \vec{X} and a characteristic $\vec{\gamma}$

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

Random sampling

Error analysis

To compare methods, ask under what conditions the errors are similar. Stochastic algorithms have

$$\epsilon \sim N^{-1/2} \tag{11}$$

and will thus need

$$N \sim \mathcal{O}(\epsilon^{-2})$$
 (12)

runs, so overall runtime $T \propto N$.

Method of characteristics

Error analysis

Why wasn't this method ever used? Wave equation+characteristic methods were studied before, but used Euler integration, which has error

$$\epsilon \sim \Delta t$$
 (13)

and required two passes, so it ran in

$$T \sim \Delta t^{-2} \sim \mathcal{O}(\epsilon^{-2})$$
 (14)

this is asymptotically just as bad as random sampling!

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

²DW Quinn, Risk Analysis 1989; 9(3): 407-13

Error analysis

But what happens if we only need one pass, and replace Euler integration with a Runge-Kutta scheme?

$$\epsilon \sim \Delta t^2$$
 (15)

and runs in

$$T \sim \Delta t^{-1} \sim \mathcal{O}(\epsilon^{-1/2})$$
 (16)

so new runtime $\sim \mathcal{O}$ (old runtime $^{1/4}$).

Amazing!

Monte Carlo: \approx 5000s Fast forward: < 4ms

Error analysis

How do they compare?

Efficiently computing $S_k(a)$ means we can evaluate likelihood functions directly, just sampling them....

Fast forward method: really detailed likelihood functions Parameter inference

Parameter inference

Detailed likelihood functions

Thank you!

What is my message?

- Maths is immediately applicable to RISK STRATIFICATION and SURVIVAL ANALYSIS!
- Age structure is v. important & informative, genes are discrete

What next?

Combine genomic and age data TOGETHER and run these analyses on real studies!

- schwannoma tumours in NF2
- oesophageal cancer in Barrett's cases
- penile adenocarcinoma
- autopsy study

Acknowledgements

funded this research

All my collaborators...

- Ivana Božić
- Gareth Evans
- Miaomiao Gao
- David Wedge
- Miriam Smith
- Marian Love
- Joshua Hellier