RÉCURRENCE ET ENCADREMENT

Soit la suite (u_n) définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$: $u_{n+1} = \sqrt{u_n + 2}$.

1) On a $u_0 = 1$ et on calcule que $u_1 = \sqrt{3}$. On a donc $1 \le u_0 \le 2$ et $1 \le u_1 \le 2$.

Admettons que $1 \le u_n \le 2$. Alors $3 \le u_n + 2 \le 4$.

En remarquant que pour tout entier naturel a et b, si a > b alors $\sqrt{a} > \sqrt{b}$, on peut écrire : $\sqrt{3} \le \sqrt{u_n + 2} \le 2$, c'est à dire $\sqrt{3} \le u_{n+1} \le 2$. Comme $1 < \sqrt{3}$, on a finalement : $1 \le u_{n+1} \le 2$. Et par récurrence, on démontre ainsi que $1 \le u_n \le 2$ pour tout $n \in \mathbb{N}$.

2) On calcule u_n à 10^{-2} près pour n allant de 0 à 3 :

n	0	1	2	3
u_n	1	1,73	1,93	1,98

On observe que $u_1 > u_0$, $u_2 > u_1$ et $u_3 > u_2$ d'où l'on conjecture que (u_n) est croissante. Si tel est le cas on doit avoir $u_{n+1} > u_n$ pour tout $n \in \mathbb{N}$. Admettons que $u_{n+1} = \sqrt{u_n + 2} > u_n$. Alors : $\sqrt{u_n + 2} + 2 > u_n + 2 \Rightarrow \sqrt{\sqrt{u_n + 2} + 2} > \sqrt{u_n + 2}$, c'est à dire $u_{n+2} > u_{n+1}$.

Et par récurrence nous avons démontré que $u_{n+1} > u_n$ pour tout $n \in \mathbb{N}$, et donc que (u_n) est croissante.

3) (u_n) est croissante et $1 \le u_{n+1} \le 2$ pour tout $n \in \mathbb{N}$. Cela implique que (u_n) est convergente et tend vers une limite l telle que $1 \le l \le 2$.

Puisque $u_3 = 1,98$, on peut préciser l'encadrement de $l:1,98 < l \le 2$.

NB. En fait, si (u_n) tend vers une limite l, on peut considérer pour n très grand que $u_{n+1} \approx u_n \approx l$, et, pour trouver l, on peut écrire $l = \sqrt{l+2}$, ce qui donne l = 2.