Языковые модели в задачах предиктивного пользовательского ввода

Студент: Турумтаев Галим

Научный руководитель: Шаграев Алексей

Постановка Задачи:

Предсказание поискового запроса пользователя с помощью языковых моделей

Проблемы:

- Скорость ответа
- Русский язык
- Другой синтаксис
- Сложные метрики
- Свежесть

Метрики

Онлайн:

- Время набора запроса / кол-во символов
- Клики на подсказки

Оффлайн:

- MRR@k
- Recall@k

Что другие люди уже делали в этой области?

A Neural Language Model for Query Auto-Completion

Dae Hoon Park* Huawei Research America Santa Clara, CA, USA daehpark@gmail.com Rikio Chiba Yahoo Inc. Sunnyvale, CA, USA rchiba@yahoo-inc.com

$$L = \sum_{q \in Q} \sum_{j=1}^{|q|-1} \log p(t_{j+1}|t_1, ..., t_j)$$
 (4)

Table 2: MRR and PMRR evaluation results. The highest score for each metric is in bold face.

		MRR		PMRR			
Model	Seen	Unseen	All	Seen	Unseen	All	
MPC [1]	0.428	0.000	0.171	0.566	0.000	0.225	
Char. n-gram (n=7)	0.363	0.236	0.287	0.550	0.376	0.445	
Mitra10K+MPC+ λ MART [12]	0.427	0.179	0.278	0.586	0.297	0.412	
Mitra100K+MPC+ λ MART [12]	0.428	0.212	0.298	0.588	0.368	0.455	
Proposed models							
NQĹM(S)	0.381	0.287	0.325	0.557	0.460	0.499	
NQLM(S)+WE	0.406	0.286	0.334	0.582	0.445	0.500	
NQLM(L)+WE	0.419	0.303	0.349	0.589	0.465	0.514	
$\overline{NQLM(S)}+\overline{MPC}$	0.433	0.287	0.346	0.580	-0.460	0.508	
NQLM(S)+WE+MPC	0.434	0.286	0.345	0.580	0.445	0.499	
NQLM(L)+WE+MPC	0.434	0.303	0.355	0.580	0.465	0.511	
$\overline{NQLM}(\overline{S})+\overline{MPC}+\lambda\overline{MART}$	0.428	0.288	0.344	0.594	0.465	0.516	
$NQLM(S)+WE+MPC+\lambda MART$	0.428	0.288	0.344	0.590	0.454	0.508	
$NQLM(L)+WE+MPC+\lambda MART$	0.428	0.305	0.354	0.593	0.475	0.522	

Personalized Language Model for Query Auto-Completion

Aaron Jaech and Mari Ostendorf

University of Washington

{ajaech, ostendor}uw.edu

Size	Model	Seen	Unseen	All
	MPC	.292	.000	.203
	Unadapted	.292	.256	.267
(S)	ConcatCell	.296	.263	.273
	FactorCell	.300	.264	.275
	Unadapted	.324	.286	.297
(B)	ConcatCell	.330	.298	.308
	FactorCell	.335	.298	.309

Table 2: MRR reported for seen and unseen prefixes for small (S) and big (B) models.

Personalized neural language models for real-world query auto completion

Nicolas Fiorini

National Center for Biotechnology Information National Center for Biotechnology Information National Library of Medicine, NIH Bethesda, MD, USA

nicolas.fiorini@nih.gov

Zhiyong Lu

National Library of Medicine, NIH Bethesda, MD, USA

zhiyong.lu@nih.gov

Figure 1: Architecture of our proposed model.

Table 1: MRR results for all tested models on the AOL and biomedical datasets with their average prediction time in seconds.

		AOL dataset				Biomedical dataset				
Model		MRR			MRR			Time		
		Unseen	All	Time	Seen	Unseen	All			
MPC (Bar-Yossef and Kraus, 2011)	0.461	0.000	0.184	0.24	0.165	0.000	0.046	0.29		
NQLM(L)+WE+MPC+λMART (Park and Chiba, 2017)	0.430	0.306	0.356	1.33	0.159	0.152	0.154	2.35		
Our models in this paper										
NQAC	0.406	0.319	0.354	0.94	0.155	0.139	0.143	1.73		
$NQAC_U$	0.417	0.325	0.361	0.98	0.191	0.161	0.169	1.77		
$NQAC_{UT}$	0.424	0.326	0.365	0.95	0.101	0.195	0.157	1.81		
$NQAC_{UT}+D$	0.427	0.326	0.366	1.32	0.186	0.185	0.185	2.04		
$NQAC_{UT}+MPC$	0.461	0.326	0.380	0.68	0.165	0.195	0.187	1.20		
$NQAC_{UT}+MPC+\lambda MART$	0.459	0.330	0.382	1.09	0.154	0.179	0.172	2.01		

A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion

Alessandro Sordoni^{f‡}, Yoshua Bengio^f, Hossein Vahabi^g, Christina Lioma^h, Jakob G. Simonsen^h, Jian-Yun Nie^f

^fDIRO, Université de Montréal, Québec

^gYahoo Labs, Barcelona, Spain

^hDept. Computer Science, Copenhagen University, Denmark

‡sordonia@iro.umontreal.ca

Attention-based Hierarchical Neural Query Suggestion

Wanyu Chen

Science and Technology on Information Systems
Engineering Laboratory
National University of Defense Technology
Changsha, China
wanyuchen@nudt.edu.cn

Honghui Chen

Science and Technology on Information Systems
Engineering Laboratory
National University of Defense Technology
Changsha, China
caifei@nudt.edu.cn

Figure 2: Structure of the HNQS model.

Fei Cai*

Science and Technology on Information Systems
Engineering Laboratory
National University of Defense Technology
Changsha, China
caifei@nudt.edu.cn

Maarten de Rijke Informatics Institute University of Amsterdam Amsterdam, The Netherlands derijke@uva.nl

Figure 3: Structure of the AHNQS model.

План действий:

- Изучить литературу
- Взять / подготовить данные
- Попробовать разные задачи архитектуры
- Сравнить эти модели между собой
- Улучшать скорость / качество