Modeling Automata with Coalgebras

TOC 2019

ERIC BOND

Motivation & Background

- ▶ What?
 - A general mathematical framework for modeling state transition systems of various types
 - ▶ Deterministic, Nondeterministic, Probabilistic, Quantum, ...
- ► Hows
 - By representing these systems with variations of the same mathematical structure and building a framework around that structure.
- ▶ Mhhå
 - Observe old results in a new light with a stronger toolkit.
 - ▶ Is this a useful encoding of systems for proof assistants?

High Level Idea

- Components
 - States
 - Observation function
 - ▶ Transition function
- Understand properties of systems by mapping(comparing) them to other systems
- Features
 - Mathematical definition of behavioral equivalence
 - Local behavior to global behavior
 - Behavioral equivalence of states in a system
 - ▶ Behavioral equivalence of states in different systems
 - Yields a proof technique, Coindution (dual to structural induction)
 - Automata minimization

Coalgebras with "state space" X are maps out of X, of the form:

$$X \xrightarrow{\text{modify/observe}} X \cdots X$$

Definition 38 (homomorphism of dynamical systems).

A homomorphism $f:(S,\alpha)\to (T,\beta)$ of dynamical systems is a function $f:S\to T$ such that

$$\begin{array}{ccc}
S & \xrightarrow{f} & T \\
 \downarrow \alpha & \downarrow \beta \\
S & \xrightarrow{f} & T
\end{array}$$

that is, such that $\beta \circ f = f \circ \alpha$.

Equivalently, f is a homomorphism if and only if

$$\forall \ s \in S: \quad s \longrightarrow s' \quad \Longrightarrow \quad f(s) \longrightarrow f(s')$$

Thus a homomorphism between two dynamical systems is a function between the underlying sets of states that preserves transitions. In other words, homomorphisms are (transition) structure preserving functions. Using homomorphisms, one can for instance express the fact that *all* dynamical systems are equivalent, in the following sense. Consider the following dynamical system:

$$(\mathbf{1},id) \hspace{1cm} \mathbf{1} = \{*\} \hspace{1cm} id \colon \mathbf{1} \to \mathbf{1} \hspace{1cm} id(*) \ = \ *$$

There is the following trivial fact: there exists a unique homomorphism from any dynamical system (S, α) to (1, id):

$$S \xrightarrow{\exists ! f} 1 \qquad f(s) = * \qquad (s \in S)$$

$$X \xrightarrow{f} 1$$

$$(S, \langle o, tr \rangle) = s_0 | a \longrightarrow s_1 | a \longrightarrow s_2 | b \longrightarrow s_3 | a$$

Definition 54 (homomorphism of stream systems).

A homomorphism $f: (S, \langle o_S, \mathsf{tr}_S \rangle) \to (T, \langle o_T, \mathsf{tr}_T \rangle)$ of stream systems is a function $f: S \to T$ such that

$$S \xrightarrow{f} T$$

$$\langle o_{S}, \mathsf{tr}_{S} \rangle \downarrow \qquad \qquad \downarrow \langle o_{T}, \mathsf{tr}_{T} \rangle$$

$$A \times S \xrightarrow{1_{A} \times f} A \times T$$

that is, such that $o_T \circ f = o_S$ and $tr_T \circ f = f \circ tr_S$.

Homomorphisms are functions that preserve transitions and outputs:

$$s|a \longrightarrow t|b \implies f(s)|a \longrightarrow f(t)|b$$
 (7.1)

where we are using the following notation:

$$s|a \longrightarrow t|b \iff o_S(s) = a \text{ and } tr_S(s) = t \text{ and } o_S(t) = b$$

Definition 54 (homomorphism of stream systems).

A homomorphism $f: (S, \langle o_S, \mathsf{tr}_S \rangle) \to (T, \langle o_T, \mathsf{tr}_T \rangle)$ of stream systems is a function $f: S \to T$ such that

$$S \xrightarrow{f} T$$

$$\langle o_S, \mathsf{tr}_S \rangle \qquad \qquad \downarrow \langle o_T, \mathsf{tr}_T \rangle$$

$$A \times S \xrightarrow{1_A \times f} A \times T$$

that is, such that $o_T \circ f = o_S$ and $tr_T \circ f = f \circ tr_S$.

Homomorphisms are functions that preserve transitions and outputs:

$$s|a \longrightarrow t|b \implies f(s)|a \longrightarrow f(t)|b$$
 (7.1)

where we are using the following notation:

$$s|a \longrightarrow t|b \iff o_S(s) = a \text{ and } tr_S(s) = t \text{ and } o_S(t) = b$$

Theorem 78 (finality – streams). The stream system $(A^{\omega}, \langle i_{st}, d_{st} \rangle)$ is final: For every stream system $(S, \langle o_S, tr_S \rangle)$ there exists a unique homomorphism

$$S - - - \stackrel{\exists!}{=} \stackrel{\llbracket - \rrbracket}{=} - - + A^{\omega}$$

$$\forall \langle o_S, \operatorname{tr}_S \rangle \downarrow \qquad \qquad \qquad \langle i_{st}, d_{st} \rangle$$

$$A \times S - \stackrel{=}{=} - - \stackrel{=}{=} + A \times A^{\omega}$$

$$(S, \langle \mathsf{o}, \mathsf{tr} \rangle) = s_0 | a \longrightarrow s_1 | a \longrightarrow s_2 | b \longrightarrow s_3 | a$$
 then
$$\llbracket s_0 \rrbracket = aa(ba)^\omega \quad \llbracket s_1 \rrbracket = a(ba)^\omega \quad \llbracket s_2 \rrbracket = (ba)^\omega \quad \llbracket s_3 \rrbracket = (ab)^\omega$$
 where $(ab)^\omega = (a, b, a, b, a, b, \ldots)$ and $(ba)^\omega = (b, a, b, a, b, a, \ldots)$.

$$S^A \ = \ \{ \, f \mid f \colon A \to S \, \}$$

Let $A = \{a, b\}$. Here is an example of an automaton:

$$(S, \langle \mathsf{o}, \mathsf{tr} \rangle) = \overset{b}{\underset{b}{\bigcirc}} \overset{a}{\underset{b}{\bigcirc}} s_1 \xrightarrow{a} \overset{a}{\underset{b}{\bigcirc}} \overset{a,b}{\underset{b}{\bigcirc}}$$

Theorem 153 (finality – languages). For every automaton $(S, \langle o, tr \rangle)$ there exists a unique homomorphism $[-]: (S, \langle o, tr \rangle) \to (\mathcal{P}(A^*), \langle i_l, d_l \rangle)$:

Proof: We define

$$\llbracket - \rrbracket \colon S \to \mathcal{P}(A^*) \qquad \quad \llbracket s \rrbracket \ = \ l(s) \ = \ \{ w \in A^* \mid \ \mathsf{o}(s_w) = 1 \} \qquad \quad (s \in S, \ w \in A^*)$$

One easily verifies that $\llbracket - \rrbracket$ is the only function making the diagram above commute. \Box

The final homomorphism $[\![-]\!]$ assigns to every state s its global behaviour, consisting of the language l(s) of all words accepted by s.

Coalgebras with "state space" X are maps out of X, of the form:

$$X \xrightarrow{\text{modify/observe}} X \cdots X$$

Definition 1.2. A functor

$$F: \mathbf{C} \to \mathbf{D}$$

between categories C and D is a mapping of objects to objects and arrows to arrows, in such a way that:

- (a) $F(f: A \rightarrow B) = F(f): F(A) \rightarrow F(B)$,
- (b) F(g ∘ f) = F(g) ∘ F(f),
- (c) F(1_A) = 1_{F(A)}.

Coalg _F	F	name for $X \to FX/reference$
MC	D	Markov chains
DLTS	$(- + 1)^A$	deterministic automata
LTS	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$	non-deterministic automata, LTSs
React	$(\mathcal{D}+1)^A$	reactive systems [55,30]
Gen	$\mathcal{D}(A \times _) + 1$	generative systems [30]
Str	$\mathcal{D} + (A \times _) + 1$	stratified systems [30]
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$	alternating systems [33]
Var	$\mathcal{D}(A \times _) + \mathcal{P}(A \times _)$	Vardi systems [77]
SSeg	$\mathcal{P}(A \times \mathcal{D})$	simple Segala systems [67,66]
Seg	$\mathcal{P}\mathcal{D}(A \times _)$	Segala systems [67,66]
Bun	$\mathcal{D}\mathcal{P}(A \times _)$	bundle systems [22]
PZ	$\mathcal{P}\mathcal{D}\mathcal{P}(A \times _)$	Pnueli–Zuck systems [62]
MG	$\mathcal{P}\mathcal{D}\mathcal{P}(A \times _ + _)$	most general systems

Sources

- ▶ <u>Jacobs</u>, Bart. "Introduction to coalgebra." Towards mathematics of states and observations (2005).
- Rutten, Jan. "The Method of Coalgebra: exercises in coinduction." (2019).
- Sokolova, Ana. "Probabilistic systems coalgebraically: A survey." Theoretical Computer Science 412.38 (2011): 5095-5110.
- Jacobs, Bart. "Bayesian Networks as Coalgebras." (2014)