Introduction to Spatial Data

Abhirup Datta

03.31.2017

Course Outline

- Introduction types of spatial data, goals of analysis
- Exploratory data analysis plotting, variograms
- Modeling Gaussian Processes (GP), spatial prediction (kriging)
- Estimation variogram fitting, spatial regression and GLM
- Bayesian modeling Metropolis Hastings, Gibbs sampler
- Large data computing challenges, efficient alternatives

More about the course

- Evaluation presenting a paper on large scale spatial analysis
- Materials available at
- Texts for reference:
 - (Main) Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014), Hierarchical Modeling and Analysis for Spatial Data, Boca Raton, FL: Chapman and Hall/CRC, 2nd ed (BCG)
 - Cressie, N. A. C. and Wikle, C. K. (2011), Statistics for spatio-temporal data, Hoboken, NJ: Wiley, Wiley Series in Probability and Statistics

• Any data with some geographical information

- Any data with some geographical information
- Example: US forest biomass data

(a) US forest biomass data

(b) NDVI (predictor)

- Any data with some geographical information
- Example: Slovenia stomach cancer data

(a) Standardized cancer incidence

(b) Socioeconomic score (predictor)

- Any data with some geographical information
- Common sources of spatial data: climatology, forestry, ecology, environmental health, disease epidemiology, real estate marketing etc
 - have many important predictors and response variables,
 - are often presented as maps,
- Other examples where the space need not be the space on earth:
 - Neuroimaging (data for each voxel in the brain)
 - Genetics (position along a chromosome)

Spatio-temporal Data

- Data from multiple timepoints at some or each of the locations
- Example: European air pollution data

(a) PM₁₀ levels in March, 2009

(b) PM₁₀ levels in June, 2009

• Three broad categories

- Point-referenced data
 - Each observation is associated with a location (point)
 - Data represents a sample from a continuous spatial domain
 - Also referred to a geocoded or geostatistical data

Figure: Locations of scallops abundance data

Abhirup Datta 6 / 2:

- Areal data
 - Each observation is associated with a region like state, county etc.
 - Usually a result of aggregating point level data
 - The spatial information is represented in terms of a graph depicting the relative orientation of the regions

Figure: SAT scores across the 48 contiguous states in the US

- Areal data
 - Each observation is associated with a region like state, county etc.
 - Usually a result of aggregating point level data
 - The spatial information is represented in terms of a graph depicting the relative orientation of the regions

Abhirup Datta

- Point pattern data
 - The locations are viewed as "random"
 - Need not have variables at locations, just the pattern of points
 - Interest in the pattern of occurrences of an event like disease incidence, species distribution, crimes etc.

Figure: Locations of robberies in Baltimore in February 2017

Figure: Areal and point-referenced data: Atlanta zip codes and 8-hour maximum ozone levels (ppm) at 10 sites, July 15, 1995

Point-referenced data

- Point-level modeling refers to modeling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).
- Data from a spatial process $\{Y(\mathbf{s}) : \mathbf{s} \in D\}$, D is a subset in Euclidean space.
- Example: Y(s) is a pollutant level at site s
- Conceptually: Pollutant level exists at all possible sites
- Practically: Data will be a partial realization of a spatial process observed at $\{s_1, ..., s_n\}$
- Statistical objectives: Inference about the process $Y(\mathbf{s})$; predict at new locations.
- Remarkable: Can learn about entire Y(s) surface. The key: Structured dependence

Plotting point referenced data

Figure: Western Experimental Forest (WEF) inventory data on diameter at breast height (DBH) of plants

What's so special about spatial?

- A typical setup: Data observed at n locations $\{s_1, \ldots, s_n\}$
- At each \mathbf{s}_i we observe the response $y(\mathbf{s}_i)$ and a $p \times 1$ vector of covariates $\mathbf{x}(\mathbf{s}_i)'$
- Linear regression model: $y(\mathbf{s}_i) = \mathbf{x}(\mathbf{s}_i)'\beta + \epsilon(\mathbf{s}_i)$
- $\epsilon(\mathbf{s}_i)$ are iid $N(0, \tau^2)$ errors
- Although the data is spatial, this is an ordinary linear regression model
- $y = (y(s_1)', y(s_2)', \dots, y(s_n)')'; X = (x(s_1), x(s_2), \dots, x(s_n))'$
- Inference: $\hat{\beta} = (X'X)^{-1}X'Y \sim N(\beta, \tau^2(X'X)^{-1})$
- Prediction at new location \mathbf{s}_0 : $\widehat{y(\mathbf{s}_0)} = \mathbf{x}(\mathbf{s}_0)'\hat{\beta}$
- Does this always suffice or we need any thing specialized method for such data?

Exploratory data analysis

Residual plots

• Linear regression: $y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + \epsilon(\mathbf{s}_i)$

Abhirup Datta

Residual plots

• Linear regression: $y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + \epsilon(\mathbf{s}_i)$

- Strong residual spatial pattern in datasets 2 and 3
- The covariate x(s) does not explain all spatial variation in y(s)

More EDA

 Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern?

Abhirup Datta

More EDA

 Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern?

First law of geography: "Everything is related to everything else, but near things are more related than distant things." – Waldo Tobler

Abhirup Datta

More EDA

 Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern?

First law of geography: "Everything is related to everything else, but near things are more related than distant things." – Waldo Tobler

- The residual surface seems continuous
- If a spatial surface $Y(\mathbf{s})$ is continuous then $(Y(\mathbf{s} + \mathbf{h}) Y(\mathbf{s}))^2 \to 0$ as $||\mathbf{h}|| \to 0$
- In general $(Y(\mathbf{s} + \mathbf{h}) Y(\mathbf{s}))^2$ increasing with $||\mathbf{h}||$ will imply a spatial correlation

Empirical variogram

• Plot $(Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2$ as function of $||\mathbf{s}_i - \mathbf{s}_j||$ for all i, j

Figure: Points cloud for data 1

Empirical variogram

• Binning: Grid up the t space into intervals $I_1=(0,t_1)$, $I_2=(t_1,t_2)$, and so forth, up to $I_K=(t_{K-1},t_K)$. Representing t values in each interval by its midpoint, we define:

$$N(t_k) = \{(\mathbf{s}_i, \mathbf{s}_j) : \|\mathbf{s}_i - \mathbf{s}_j\| \in I_k\}, k = 1, \dots, K.$$

Empirical Variogram:

$$\gamma(t_k) = \frac{1}{|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_i \in N(t_k)} (Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2$$

• Semivariogram = $0.5 \times Variogram$

Empirical variogram: Data 1

• Residuals display little spatial variation

Empirical variograms: Data 2 and 3

Variogram of the residuals points to spatial variation

EDA for WEF data

ullet Regression model: DBH \sim Species

EDA for WEF data

Surface plot and variogram of residuals point to spatial variation

• Linear regression with the co-ordinates added as regressors: $y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + s_{ix}\beta_2 + s_{iy}\beta_3 + \epsilon(\mathbf{s}_i)$

(a) Residuals for data 2 (b) Empirical variogram

 The linear model for the co-ordinates explains most of the spatial variation in dataset 2

Linear regression with the co-ordinates added as regressors:

$$y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + s_{ix}\beta_2 + s_{iy}\beta_3 + \epsilon(\mathbf{s}_i)$$

(a) Residuals for data 3 (b) Empirical variogram

• Dataset 3 still exhibits strong spatial correlation

- Linear model for the co-ordinates often does not suffice
- More general model: $y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + w(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$
- How to choose the function $w(\cdot)$?
- Since we want to predict at any location over the entire domain, this choice will amount to choosing a surface w(s)

How to do this?

- Linear model for the co-ordinates often does not suffice
- More general model: $y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + w(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$
- How to choose the function $w(\cdot)$?
- Since we want to predict at any location over the entire domain, this choice will amount to choosing a surface w(s)
- How to do this? Answer in next class

References

- BCG book chapters 1.1, 2.1.4, 2.5
- US forest biomass data: Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). Hierarchical nearestneighbor gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, 111(514):800-812.
- Slovenia stomach cancer data: Zadnik V, and Reich B. Analysis of the relationship between socioeconomic factors and stomach cancer incidence in Slovenia. (2016) Neoplasma, 53(2):103
- EU PM₁₀ data: Datta, A., Banerjee, S., Finley, A. O., Hamm, N. A., and Schaap, M. (2016). Non-separable dynamic nearest-neighbor Gaussian Process models for spatio-temporal data with an application to particulate matter analysis. Annals of Applied Statistics, 10(3):1286-1316.
- Scallops data: BCG book figure 1.11(b)
- US SAT score data: BCG book Fig 4.1
- Baltimore robbery map: http://maps.baltimorepolice.org/flexviewer/
- Atlanta ozone data: BCG book figure 1.3
- WEF data: *spBayes* package in *R*