CHAPITRE 02

Nombre

Table des matières

Ι	Trigonométrie	2
II	Nombres complexes de module 1	5
III	Géométrie des nombres complexes	8
IV	Exponentielle complexe	14
\mathbf{V}	Fonctions de R dans C	16

Première partie

Trigonométrie

Définition: On définit, pour

$$\begin{split} \theta &\in \bigcup_{k \in \mathbb{Z}} \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[\\ &\iff \theta \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z} \right\} \end{split}$$

la
 <u>tangente</u> de θ par

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Définition: Pour $\theta \in \bigcup_{k \in \mathbb{Z}}]-k\pi, (k+1)\pi[$, on définit la <u>contangente</u> de θ par

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Proposition: Soient $(a, b) \in \mathbb{R}^2$.

- $1. \cos(-a) = \cos(a)$
- $2. \cos(a + 2\pi) = \cos(a)$
- $3. \cos(a+\pi) = -\cos(a)$
- $4. \cos(\pi a) = -\cos(a)$
- $5. \sin(-a) = -\sin(a)$
- $6. \sin(a+2\pi) = \sin(a)$
- $7. \sin(a+\pi) = -\sin(a)$
- $8. \sin(\pi a) = \sin(a)$

9.
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

10.
$$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$$

11. $\cos\left(\frac{\pi}{2} - a\right) = \sin(a)$
12. $\sin\left(\frac{\pi}{2} - a\right) = \cos(a)$

11.
$$\cos\left(\frac{\pi}{2} - a\right) = \sin(a)$$

12.
$$\sin\left(\frac{\pi}{2} - a\right) = \cos(a)$$

Proposition: Soient a et b deux réels tels que $a \not\equiv \frac{\pi}{2} \ [\pi]$ et $b \not\equiv \frac{\pi}{2} \ [\pi]$.

1. $\tan(a+\pi) = \tan(a)$ 2. $\tan(-a) = -\tan(a)$ 3. Si $a+b\not\equiv \frac{\pi}{2} \ [\pi]$, alors, $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$

1.
$$tan(a + \pi) = tan(a)$$

$$2. \tan(-a) = -\tan(a)$$

3. Si
$$a + b \not\equiv \frac{\pi}{2} \ [\pi]$$
, alors, $\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$

Proposition: Soit $a \in \mathbb{R}$.

1. Si
$$a \neq \frac{\pi}{2}$$
 [π], alors, $1 + \tan^2(a) = \frac{1}{\cos^2(a)}$

2. Si
$$a \not\equiv \pi \ [2\pi]$$

$$-\cos(a) = \frac{1 - \tan^2\left(\frac{a}{2}\right)}{1 + \tan\left(\frac{a}{2}\right)}$$

$$-\sin(a) = \frac{2\tan\left(\frac{a}{2}\right)}{1+\tan^2\left(\frac{a}{2}\right)}$$

Proposition: Soit
$$a \in \mathbb{R}$$
.

1. Si $a \neq \frac{\pi}{2}$ [π], alors, $1 + \tan^2(a) = \frac{1}{\cos^2(a)}$

2. Si $a \neq \pi$ [2π]
$$-\cos(a) = \frac{1 - \tan^2(\frac{a}{2})}{1 + \tan(\frac{a}{2})}$$

$$-\sin(a) = \frac{2\tan(\frac{a}{2})}{1 + \tan^2(\frac{a}{2})}$$

$$-\operatorname{Si} a \neq \frac{\pi}{2}$$
 [π], $\tan(a) = \frac{2\tan(\frac{a}{2})}{1 + \tan^2(\frac{a}{2})}$

Deuxième partie

Nombres complexes de module 1

Proposition: Soient $(a, b) \in \mathbb{R}^2$.

$$(\cos(a) + i\sin(a)) \times (\cos(b) + i\sin(b)) = \cos(a+b) + i\sin(a+b)$$

Définition: Pour $a \in \mathbb{R}$, on pose $e^{ia} = \cos(a) + i\sin(a)$ Ainsi, $\forall (a,b) \in \mathbb{R}^2, e^{ia} \times e^{ib} = e^{i(a+b)}$

Proposition: Soient a,b,c trois nombres complexes avec $a \neq 0$ et z_1,z_2 les racines de $P: z \mapsto az^2 + bz + c$ Alors, $z_1 \times z_2 = \frac{c}{a}$ et $z_1 + z_2 = -\frac{b}{a}$

Proposition: Soient $(a, b, c) \in \mathbb{C}^3$ et z_1, z_2, z_3 les solutions de

$$z^3 + az^2 + bz + c = 0$$

Alors,

$$\begin{cases} z_1 z_2 z_3 = -c \\ z_1 z_2 + z_2 z_3 + z_1 z_3 = b \\ z_1 + z_2 + z_3 = -a \end{cases}$$

Proposition: Soient a_1, a_2, \ldots, a_n des nombres complexes et z_1, z_2, \ldots, z_n les solutions de

$$z^n + a_{n-1}z^{n-1} + \dots + a_0 = 1$$

Alors,

 $\forall k \in [1, n], \sum_{1 \leqslant i_1 \leqslant i_2 \leqslant \dots \leqslant i_k \leqslant n} z_{i_1} \times z_{i_2} \times \dots \times z_{i_k} = (-1)^k a_{n-k}$

$$\sum_{k=1}^{n} z_k = -a_{n-1}$$

$$\sum_{k=1}^{n} z_k = -a_{n-1}$$

$$\prod_{k=1}^{n} z_k = (-1)^k a_0$$

Troisième partie

Géométrie des nombres complexes

Dans ce paragraphe, ${\mathscr P}$ dérisgne un plan euclidien muni d'un repère orthonormé $(O,\overrightarrow{\imath},\overrightarrow{\jmath})$

Définition: Soit $M \in \mathcal{P}$. On note (x, y) les coordonnées du point M par rapport au repère $(O, \vec{\imath}, \vec{\jmath})$ L'affixe de M est le nombre

$$z_M = x + iy \in \mathbb{C}$$

Soit $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$ (le plan des vecteurs) et (a,b) les coordonées de \overrightarrow{w} . $\underline{\text{L'affixe}}$ de \overrightarrow{w} est

$$z_{\overrightarrow{W}} = a + ib \in \mathbb{C}$$

Proposition: Soit $(A, B) \in \mathscr{P}^2$ et $(\overrightarrow{w_1}, \overrightarrow{w_2}) \in \overrightarrow{\mathscr{P}}^2$

1.
$$z_{\overrightarrow{AB}} = z_B - z_A$$

1.
$$z_{\overrightarrow{AB}} = z_B - z_A$$

2. $z_{\overrightarrow{w_1} + \overrightarrow{w_2}} = z_{\overrightarrow{w_1}} + z_{\overrightarrow{w_2}}$

Proposition: Soit $(\overrightarrow{w_1}, \overrightarrow{w_2}) \in \overrightarrow{\mathscr{P}}^2$ avec $\overrightarrow{w_1} \neq \overrightarrow{0}$ et $\overrightarrow{w_2} \neq \overrightarrow{0}$ Alors, $\begin{vmatrix} z_{\overrightarrow{w_1}} \\ z_{\overrightarrow{w_2}} \end{vmatrix} = \frac{\|\overrightarrow{w_1}\|}{\|\overrightarrow{w_2}\|}$ et $\arg \left(\frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \right) = \underbrace{(\overrightarrow{w_1}, \overrightarrow{w_2})}_{\text{l'angle entre } \overrightarrow{w_1} \text{ et } \overrightarrow{w_2}}$

Corollaire: Avec les hypothèses et notations précédentes,

- 1. $\overrightarrow{w_1}$ et $\overrightarrow{w_2}$ sont collinéaires $\iff \frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \in \mathbb{R}$ 2. $\overrightarrow{w_1}$ et $\overrightarrow{w_2}$ sont orthogonaux $\iff \frac{z_{\overrightarrow{w_1}}}{z_{\overrightarrow{w_2}}} \in i\mathbb{R}$

Définition: Soit $\vec{w} \in \overrightarrow{\mathscr{P}}$. La <u>translation</u> de vecteur \vec{w} est l'application

$$t_{\overrightarrow{w}}: \mathscr{P} \longrightarrow \mathscr{P}$$
$$M \longmapsto M'$$

où M' vérifie $\overrightarrow{MM'} = \overrightarrow{w}$

Proposition: Soit $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$ et $(M, M') \in \mathscr{P}^2$

$$M' = t_{\overrightarrow{w}}(M) \iff z_{M'} = z_M + z_{\overrightarrow{w}}$$

Proposition: Soient $\overrightarrow{w_1}, \overrightarrow{w_2} \in \overrightarrow{\mathscr{P}}$.

$$t_{\overrightarrow{w_2}} \circ t_{\overrightarrow{w_1}} = t_{\overrightarrow{w_1} + \overrightarrow{w_2}}$$

Définition: Soit $\Omega \in \mathscr{P}$ et $\theta \in \mathbb{R}$.

La <u>rotation</u> de centre Ω et d'angle θ est l'application

$$\rho_{\Omega,\theta}: \mathscr{P} \longrightarrow \mathscr{P}$$
$$M \longmapsto M'$$

où M^\prime vérifie

$$\begin{cases} \|\overrightarrow{\Omega M}\| = \|\overrightarrow{\Omega M'}\| \\ (\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}) = \theta \end{cases}$$

Proposition: Soit $\Omega \in \mathscr{P}$ d'affixe ω , $\theta \in \mathbb{R}$ et $(M, M') \in \mathscr{P}^2$

(*):
$$M' = \rho_{\Omega,\theta}(M) \iff z_{M'} = \omega + e^{i\theta}(z_M - \omega)$$

REMARQUE (Cas particulier):

Si $\Omega = O$ alors

$$(*) \iff z_{M'} = e^{i\theta} z_M$$

Corollaire: Soit $\Omega \in \mathscr{P}$ d'affixe ω et $\theta \in \mathbb{R}$.

$$\rho_{\Omega,\theta} = t_{\overrightarrow{O\Omega}} \circ \rho_{O,\theta} \circ t_{\overrightarrow{\OmegaO}}$$
$$= t_{\overrightarrow{O\Omega}} \circ \rho_{O,\theta} \circ (t_{\overrightarrow{O\Omega}})^{-1}$$

Proposition: Soient $(\Omega_1, \Omega_2) \in \mathscr{P}^2$ et $(\theta_1, \theta_2) \in \mathbb{R}^2$

$$\rho_{\Omega_1,\theta_1} \circ \rho_{\Omega_1,\theta_2} = \rho_{\Omega_1,\theta_1+\theta_2} = \rho_{\Omega_1,\theta_2} \circ \rho_{\Omega_1,\theta_1}$$

$$\begin{aligned} & \text{Si} \begin{cases} \Omega_1 \neq \Omega_2 \\ \theta_1 + \theta_2 \not\equiv 0 \ [2\pi] \end{cases} & \text{alors } \rho_{\Omega_1,\theta_1} \circ \rho_{\Omega_2,\theta_2} \text{ est une rotation d'angle } \theta_1 + \theta_2 \\ & \text{Si} \begin{cases} \Omega_1 \neq \Omega_2 \\ \theta_1 + \theta_2 \equiv 0 \ [2\pi] \end{cases} & \text{alors } \rho_{\Omega_1,\theta_1} \circ \rho_{\Omega_2,\theta_2} \text{ est une translation} \end{aligned}$$

 $\begin{array}{ll} \textbf{Proposition:} & \text{Soit } \Omega \in \mathscr{P} \text{ d'affixe } \omega, \ \overrightarrow{w} \in \overrightarrow{\mathscr{P}} \text{ d'affixe } u. \text{ Soit } \theta \in \mathbb{R} \text{ avec} \\ \theta \not\equiv 0 & [2\pi]. \\ & -t_{\overrightarrow{W}} \circ \rho_{\Omega,\theta} \text{ est une rotation d'angle } \theta \\ & -\rho_{\Omega,\theta} \circ t_{\overrightarrow{W}} \text{ est aussi une rotation d'angle } \theta \\ \end{array}$

Définition: Soit $\Omega \in \mathscr{P}$ et $\lambda \in \mathbb{R}$.

L'<u>homothétie</u> de centre Ω et de rapport λ est l'application

$$h_{\Omega,\lambda}: \mathscr{P} \longrightarrow \mathscr{P}$$
 $M \longmapsto M'$

où M' vérifie $\overrightarrow{\Omega M'} = \lambda \overrightarrow{\Omega M}$

Proposition: Soit $\Omega \in \mathscr{P}$ d'affixe ω , $\lambda \in \mathbb{R}$. Soient $M \in \mathscr{P}$ d'affixe z et $M' \in \mathscr{P}$ d'affixe z'.

$$M' = h_{\Omega,\lambda}(M) \iff z' = \omega + \lambda(z - \omega)$$

Proposition: Soient $(\Omega_1, \Omega_2) \in \mathscr{P}^2$ et $(\lambda_1, \lambda_2) \in \mathscr{P}^2$

- 1. Si $\Omega_1=\Omega_2$ alors, $h_{\Omega_1,\lambda_1}\circ h_{\Omega_2,\lambda_2}=h_{\Omega_1,\lambda_1\lambda_2}$
- 2. Si $\Omega_1 \neq \Omega_2$ et $\lambda_1\lambda_2 \neq 1$, alors, $h_{\Omega_1,\lambda_1}\circ h_{\Omega_2,\lambda_2}$ est une homotéthie de rapport $\lambda_1\lambda_2$
- 3. Si $\Omega_1 \neq \Omega_2$ et $\lambda_1 \lambda_2 = 1$, alors, $h_{\Omega_1, \lambda_1} \circ h_{\Omega_2, \lambda_2}$ est une translation.

Proposition: Soit $\Omega \in \mathscr{P}$, $\lambda \in \mathbb{R} \setminus \{1\}$, $\overrightarrow{w} \in \overrightarrow{\mathscr{P}}$. Alors, $t_{\overrightarrow{w}} \circ h_{\Omega,\lambda}$ et $h_{\Omega,\lambda} \circ t_{\overrightarrow{w}}$ sont homothéties de rapport λ .

REMARQUE (Cas particulier): Soit $M\in \mathscr{P}$ d'affixe $z,\,\lambda\in\mathbb{R}$ et $M'=h_{O,\lambda}(M)$ d'affixe z' On a $z'=\lambda z$

Définition: Soient $\Omega \in \mathcal{P}$, $(\theta, \lambda) \in \mathbb{R}^2$. La <u>similitude (directe)</u> de centre Ω , d'angle θ et de rapport λ est

$$S_{\Omega,\theta,\lambda} = h_{\Omega,\lambda} \circ \rho_{\Omega,\theta}$$

Avec les notations précédentes,

Proposition:

$$S_{\Omega,\theta,\lambda} = \rho_{\Omega,\theta} \circ h_{\Omega,\lambda}$$

Proposition: L'expression complexe de $S_{\Omega,\theta,\lambda}$ est

$$z' = \omega + \lambda e^{i\theta} (z - \omega)$$

13

Quatrième partie Exponentielle complexe

Définition: Pour $z \in \mathbb{C}$, on pose

$$\exp(z) = e^{\Re \mathfrak{e}(z)} \times (\cos(\Im \mathfrak{m}(z)) + i \sin(\Im \mathfrak{m}(z))$$

Ainsi, si z = a + ib avec $(a, b) \in \mathbb{R}^2$,

$$\exp(z) = \exp(a+ib) = e^a \times (\cos(b) + i(\sin(b))) = e^a e^{ib}$$

Proposition: Soient $z_1, z_2 \in \mathbb{C}$.

$$\exp(z_1 + z_2) = \exp(z_1) \times \exp(z_2)$$

Remarque (Notation):

On écrit e^z à la place de $\exp(z)$ pour $z \in \mathbb{C}$.

Proposition:

$$\forall z \in \mathbb{C}, \begin{cases} |e^z| = e^{\Re \mathfrak{e}(z)} \\ \arg(e^z) \equiv \Im \mathfrak{m}(z) \ [2\pi] \end{cases}$$

REMARQUE:

exp:
$$\mathbb{C} \to \mathbb{C}$$
 n'est pas bijective:
$$-\begin{cases} \exp(0) = \exp(2i\pi) = 1\\ 0 \neq 2i\pi \end{cases}$$

— 0 n'a pas d'antécédant

Il n'y a donc pas de logarithme complexe.

Cinquième partie Fonctions de $\mathbb R$ dans $\mathbb C$

V

Définition: Soit f définie sur $D\subset\mathbb{R}$ à valeurs dans \mathbb{C} $(\forall x\in D, f(x)\in\mathbb{C})$ On pose :

$$\mathfrak{Re}(f):D\longrightarrow\mathbb{R}$$

$$x\longmapsto\mathfrak{Re}(f(x))$$

et

$$\mathfrak{Im}(f):D\longrightarrow\mathbb{R}$$

$$x\longmapsto \mathfrak{Im}(f(x))$$

Définition: Soit $f: D \to \mathbb{C}$. On dit que

- f est continue si $\mathfrak{Re}(f)$ et $\mathfrak{Im}(f)$ sont continues
- f est $\underline{\text{d\'erivable}}$ si $\mathfrak{Re}(f)$ et $\mathfrak{Im}(f)$ sont dérivables.

Dans ce cas, la dérivée de f est

$$f':D\longrightarrow \mathbb{C}$$
$$x\longmapsto \mathfrak{Re}(f)'(x)+i\mathfrak{Im}(f)'(x)$$

Remarque:

On peut représenter f de la façon suivante.

$$f:[0,2\pi[\longrightarrow\mathbb{C}$$

$$t\longmapsto e^{(1+i)t}$$

Proposition: Soient u et v deux fonctions dérivables sur $D \subset \mathbb{R}$ à valeurs dans \mathbb{C}

1. u + v dérivable et (u + v)' = u' + v'

2. uv dérivable et (uv)' = u'v + v'u

3. Si
$$v \neq 0$$
, $\frac{u}{v}$ dérivable et $\left(\frac{u}{v}\right) = \frac{u'v - v'u}{v^2}$

Proposition: Soit $v:D\to\mathbb{R}$ et $u:\mathbb{R}\to\mathbb{C}$ deux fonctions dérivables (avec $D \subset \mathbb{R}$). Alors, $u \circ v$ est dérivable et

$$(u \circ v)' = (u' \circ v) \times v'$$

Proposition: Soit $u: D \to \mathbb{C}$ et $f: D \to \mathbb{C}$ Alors, f est dérivable sur D et $\forall x \in D, f'(x) = u'(x)e^{u(x)}$

$$\forall x \in D, f'(x) = u'(x)e^{u(x)}$$