INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Engenharia Informática e de Computadores

Projecto e Seminário Relatório de Progresso

Rapid Application Development

Membros do Grupo					
26657	Ricardo Neto	31923	Nuno Sousa	32223	Paulo Pires
26657@alunos.isel.pt		3192.	3@alunos.isel.pt	32223	@alunos.isel.pt
Tlm. 91.420.02.53		TIm	n. 96.205.04.70	Tlm.	92.757.77.35

Orientador de Projecto			
Eng. Fernando Miguel Carvalho	mcarvalho@cc.isel.ipl.pt		

Índice

١.	PONTO	DE SITUAÇÃO	4
1	l.1. Activida	ades Desenvolvidas à Presente Data	4
	1.1.1. Definiç	ção do Dicionário de Dados	4
	1.1.1.1.	Modelo de Tipos	5
	1.1.1.1.1.	Tipos por Omissão	5
	1.1.1.1.2.	Tipos Custom	6
	1.1.1.2.	Environments	6
	1.1.1.2.1.	Data Environment	6
	1.1.1.2.2.	Mail Server Environment	7
1	L.2. Trabalh	os em Curso	8
	1.2.1. Definiç	ção do Dicionário de Dados	8
	1.2.1.1.	Entidade	8
	1.2.1.2.	Processo de Negócio	8
	1.2.1.3.	Permissões	8

Índice de Tabelas

Tabela 1 - Elementos Base	. 4
Tabela 2 - Especificação de Tipos por Omissão	. 5
Tabela 3 - Significado de atributos de tipos por natureza do tipo	. 5
Tabela 4 - Atributos relativos a um Data Environment do tipo 'SQL Server'	. 7
Tabela 5 - Atributos relativos a um MailServer Environment	. 7

1. Ponto de Situação

1.1. Actividades Desenvolvidas à Presente Data

1.1.1. Definição do Dicionário de Dados

O objectivo desta actividade é o de criar a estrutura responsável por conter a descrição de todos os constituíntes da solução.

O formato escolhido para codificar esta descrição é o XML, validado pelo respectivo XSD.

De toda a informação passível de ser utilizada, destacam-se os seguintes elementos:

Tipo	Descrição
Tipos	Gestão de tipos, tendo disponíveis por omissão os tipos primitivos básicos.
Environments	Definição de servidores de base de dados, aplicacionais, e-mail, ftp, LDAP,
Entidades	Criação de entidades passando pela definição de atributos e seus domínios à relação entre entidades e sua cardinalidade e persistência.
Processos	Definição de processos com determinação de entidades envolvidas e regras a aplicar.
Permissões	Criação de matriz de permissões baseada em RBAC com vista à sua aplicação aos processos definidos.

Tabela 1 - Elementos Base

1.1.1.1. Modelo de Tipos

1.1.1.1.1 Tipos por Omissão

Com o objectivo de ser disponibilizado um modelo de tipos por omissão com correspondência a tipos utilizados nas linguagens de programação (e.g. C#), bem como, em motores de bases de dados relacionais (e.g. SQL), optou-se por utilizar parte do modelo de tipos oferecido pela maioria destes últimos, no caso concreto do Microsoft SQL Server.

Tipo	Eq. C#	Eq. SQL	max_length	Precision	scale
guid	Guid	uniqueidentifier	16 bytes	0	0
datetime	datetime	datetime	8 bytes	23 digits	3
int	int	int	4 bytes	10 digits	0
long	long	bigint	8 bytes	19 digits	0
double	double	real	4 bytes	24 digits	0
float	float	float	8 bytes	53 digits	0
decimal	decimal	decimal	17 bytes	38 digits	38
boolean	boolean	bit	1 bytes	1 digits	0
string(n)	string	varchar	8000 chars	0	0
binary	byte[]	binary	8000 bytes	0	0
char	char	char	8000 chars	0	0

Tabela 2 - Especificação de Tipos por Omissão

Desta forma, uniformiza-se a caracterização de um tipo disponibilizado pela plataforma, definindo para cada um os parâmetros *max_length*, *precision*, e *scale*.

Dependendo da natureza do tipo (numérico, caracter, decimal), o valor de cada um dos parâmetros referidos assume significados diferentes:

Parâmetro	Significado
Precision	Número de dígitos num número
Length	Para tipos numéricos e binários representa o número de bytes ocupados. Para tipos caracter representa o número de caracteres
Scale	Número de dígitos à direita do ponto decimal

Tabela 3 - Significado de atributos de tipos por natureza do tipo

No que respeita à respresentação dos tipos disponibilizados pela plataforma, optou-se por criar um elemento que irá conter todos os tipos base a serem disponibilizados. Cada tipo tem assim os atributos acima referenciados com os valores mostrados.

1.1.1.1.2. Tipos Custom

Os tipos *custom* terão um nome único e terão que extender um tipo da plataforma. A redefinição dos atributos do seu tipo base é uma operação optativa.

No que respeita à sua representação no dicionário de dados, optou-se novamente por criar um elemento que será o contentor (customTypes) de elementos representativos de tipos *custom* (customType).

A utilização de um tipo *custom* permite que sejam aplicadas validações ao mesmo durante a execução da aplicação.

As validações possíveis foram pensadas na forma de elementos internos, neste caso *minValue* e *maxValue*. Desta forma, a inclusão de novos critérios de avaliação apenas fica sujeita à restrição deste novo critério ter que ser um elemento interno de *customType*.

Através do *schema* é garantida a unicidade do atributo *name* do elemento *customType*, bem como, a integridade referencial do atributo *type* do elemento *customType*

1.1.1.2. Environments

Esta divisão do dicionário de dados será a que irá guardar informações acerca de todas as entidades externas à solução, com as quais a mesma irá ter necessidade de interagir.

1.1.1.2.1. Data Environment

As fontes de dados, como parte integrante de qualquer solução, terão que ser referenciadas, não só para a obtenção/persistência de informação, mas também para permitir que o utilizador opte pela construção automática do seu modelo de dados.

Cada elemento presente nesta divisão deverá indicar qual o tipo de servidor de dados que representa (e.g. ...type="MySQL"...). Desta forma, a infra-estrutura poderá solicitar a construção de um objecto que saiba interpretar o elemento XML referente ao tipo especificado.

Após verificação das propriedades de uma ligação, determinou-se quais os atributos necessários à definição de uma origem de dados do tipo SQL Server.

Atributo	Observações	Obrigatório
Name	Nome único descritivo	Χ
Type	Constante ('SQLSERVER')	Χ
Server	Nome ou IP do servidor	X
Instance	Nome da instância	Χ
Catálogo	Nome da base de dados	Χ
Port	Porto no servidor	
Username	Nome de utilizador	Χ
Password	Password	Χ
ConnPool Min	Número mínimo de ligações à BD	·
ConnPool Max	Número máximo de ligações à BD	
Security	Informação relativa à segurança na ligação com o servidor (SSPI – utilizador de contexto)	
Timeout	Timeout associado à ligação	

Tabela 4 - Atributos relativos a um Data Environment do tipo 'SQL Server'

Através do *schema* é garantida a unicidade do atributo *name* do elemento *dataEnvironment*.

1.1.1.2.2. Mail Server Environment

A funcionalidade de envio de e-mails é algo que pode ser exigido na execução da aplicação (e.g. output de processo de negócio), como tal, permite-se que sejam configurados servidores de e-mail no sentido de permitir aos programadores a utilização do serviço sem haver preocupação a definição dos seus parâmetros.

Atributo	Observações	Obrigatório
Name	Nome único descritivo	Χ
Server	Nome do servidor SMTP	Χ
Port	Porto no servidor SMTP	X
Username	Nome de utilizador (e.g. mailbox)	X
Password	Password	X
Timeout	Timeout para ligação ao servidor	
Autenticação	Tipo de autenticação (basic, NTLM)	Χ
SSL/TLS	Flag indicadora de ligação segura	Х

Tabela 5 - Atributos relativos a um MailServer Environment

1.2. Trabalhos em Curso

1.2.1. Definição do Dicionário de Dados

No que respeita a esta tarefa estão ainda por definir os elementos *Entity, Permission* e *BusinessProcess*, todavia, apresenta-se uma definição sucinta dos mesmos.

1.2.1.1. Entidade

Um elemento *entity* é uma entidade pertencente ao dominio do problema (e.g. Cliente). Este elemento deverá conter informação acerca dos atributos da entidade e o tipo de persistência aplicada, bem como, *data environment* designado para o efeito.

No que respeita aos atributos de um *proxy*, deve ser indicado o nome do atributo e o tipo (referenciando obrigatoriamente um tipo do modelo de tipos).

Caso o atributo pertença a uma relação com outra entidade, esta relação terá também que ser definida indicando obrigatoriamente a cardinalidade e as entidades participantes na mesma.

1.2.1.2. Processo de Negócio

Um processo de negócio irá envolver a definição de quais os inputs do processo. Uma vez que, conforme indicado, a granularidade das permissões será ao nível do processo, este deverá indicar se são exigidas permissões ou não.

1.2.1.3. Permissões

O esquema de permissões a utilizar irá seguir os principios definidos no modelo RBAC (Role Based Access Control), sendo que, será necessário definir a origem da informação de user assignments e permission assignments.

A granularidade do esquema de permissões será ao nível do processo de negócio, fixando-se como objectivo a geração de código que represente uma exigência declarativa de permissões.