Plan

- 5 Visualisation courbes/surfaces isovaleur
 - Présentation
 - Courbes isovaleur
 - Données volumiques
 - Surfaces isovaleur

Cadre

Données volumiques :

- maillage/grille régulière de points P_i de l'espace
- valeurs scalaires F_i , F_i valeur au point P_i

34 / 67

Techniques

Techniques

Données IRM - vue des slices en 2D

Techniques

Données IRM - vue des slices en 2D

Techniques

Données IRM - vue des slices en 2D

Techniques

Données IRM - vue des slices en 2D

Techniques

Données IRM - vue des slices en 2D

Techniques

Données IRM - vue des slices en 2D

Techniques

Données IRM - vue des slices en 3D

Techniques

Données IRM - vue des slices en 3D

Techniques

Données IRM - vue des slices en 3D

Techniques

Données IRM - vue des slices en 3D

Techniques

B) extraire des surfaces isovaleur

Techniques

B) extraire des surfaces isovaleur

Données IRM - extraction d'isosurface

Slicing

Présentation

Cadre : Visualisation de données volumiques de type grille Données réparties suivant une grille régulière uniforme :

- points
$$P_{i,j,k} = (x_i = x_0 + i\Delta_x, y_j = y_0 + j\Delta_y, z_k = z_0 + k\Delta_z)$$

– valeurs associées $F_{i,j,k}$

avec
$$1 \le i \le M$$
, $1 \le j \le N$, $1 \le k \le P$

Slicing : tracé des données correspondant à des plans (coupes) particuliers

Fixer une des coordonnées (x, y ou z) en fixant une des 3 indices i, j ou k

Fixer une des coordonnées (x, y ou z) en fixant une des 3 indices i, j ou k

• i = i0 fixé \rightarrow données surfaciques $(P_{j,k}; F_{j,k})$

Fixer une des coordonnées (x, y ou z) en fixant une des 3 indices i, j ou k

- i = i0 fixé \rightarrow données surfaciques $(P_{j,k}; F_{j,k})$
- j = j0 fixé \rightarrow données surfaciques $(P_{i,k}; F_{i,k})$

Fixer une des coordonnées (x, y ou z) en fixant une des 3 indices i, j ou k

- i = i0 fixé \rightarrow données surfaciques $(P_{j,k}; F_{j,k})$
- j = j0 fixé \rightarrow données surfaciques $(P_{i,k}; F_{i,k})$
- k = k0 fixé \rightarrow données surfaciques $(P_{i,j}; F_{i,j})$

Fixer une des coordonnées (x, y ou z) en fixant une des 3 indices i, j ou k

- i = i0 fixé \rightarrow données surfaciques $(P_{j,k}; F_{j,k})$
- j = j0 fixé \rightarrow données surfaciques $(P_{i,k}; F_{i,k})$
- k = k0 fixé \rightarrow données surfaciques $(P_{i,j}; F_{i,j})$

Représenter ces données surfaciques

