Demostración asistida por ordenador con Coq

José A. Alonso Jiménez

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 31 de julio de 2018 (versión del 3 de agosto de 2018)

Esta obra está bajo una licencia Reconocimiento-NoComercial-Compartirlgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Índice general

1 Programación funcional y métodos elementales de demostración en	Coq 7
2 Demostraciones por inducción sobre los números naturales en Coq	35
3 Datos estructurados en Coq	57

Introducción

En este libro se incluye unos apuntes de demostración asistida por ordenador con Coq para los cursos de

- Razonamiento automático del Máster Universitario en Lógica, computación e inteligencia artificial de la Universidad de Sevilla.
- Lógica matemática y fundamentos del Grado en Matemáticas de la Universidad de Sevilla.

Esencialmente los apuntes son una adaptación del libro Software foundations (Vol. 1: Logical foundations) de Benjamin Peirce y otros.

Una primera versión de estos apuntes se han usado este año en el Seminario de Lógica Computacional.

Tema 1

Programación funcional y métodos elementales de demostración en Coq

(*	T1: Programación funcional y métodos elementales de demostración en Coq
•	El contenido de la teoría es Datos y funciones 1. Tipos enumerados 2. Booleanos 3. Tipos de las funciones 4. Tipos compuestos 5. Módulos 6. Números naturales
2.	Métodos elementales de demostración 1. Demostraciones por simplificación 2. Demostraciones por reescritura 3. Demostraciones por análisis de casos *)
(*	======================================
(*	<pre>\$§ 1.1. Tipos enumerados ====================================</pre>

```
Ejemplo 1.1.1. Definir el tipo dia cuyos constructores sean los días
  de la semana.
  *)
Inductive dia: Type :=
 | lunes : dia
 ∣ martes : dia
 | miercoles : dia
 | jueves : dia
 | viernes : dia
 | sabado : dia
 | domingo : dia.
(* -----
  Ejemplo 1.1.2. Definir la función
    siguiente_laborable : dia -> dia
  tal que (siguiente laborable d) es el día laboral siguiente a d.
  *)
Definition siguiente laborable (d:dia) : dia:=
 match d with
 lunes => martes
 | martes => miercoles
 | miercoles => jueves
 | jueves => viernes
 | viernes => lunes
 | sabado => lunes
 | domingo => lunes
 end.
(* -----
  Ejemplo 1.1.3. Calcular el valor de las siguientes expresiones
    + siguiente_laborable jueves
    + siguiente_laborable viernes
    + siguiente laborable (siguiente laborable sabado)
  *)
Compute (siguiente laborable jueves).
(* ==> viernes : dia *)
```

```
Compute (siguiente laborable viernes).
(* ==> lunes : dia *)
Compute (siguiente_laborable (siguiente_laborable sabado)).
(* ==> martes : dia *)
(* -----
 Ejemplo 1.1.4. Demostrar que
   siguiente laborable (siguiente laborable sabado) = martes
 *)
Example siguiente laborable1:
 siguiente_laborable (siguiente_laborable sabado) = martes.
Proof.
 simpl. (* ⊢ martes = martes *)
 reflexivity. (* ⊢ *)
Qed.
§§ 1.2. Booleanos
 _____*)
(* -----
 Ejemplo 1.2.1. Definir el tipo bool (□) cuyos constructores son true
 v false.
  *)
Inductive bool : Type :=
 | true : bool
 | false : bool.
 Ejemplo 1.2.2. Definir la función
   negacion : bool -> bool
 tal que (negacion b) es la negacion de b.
  *)
Definition negacion (b:bool) : bool :=
 match b with
 | true => false
```

```
| false => true
 end.
(* -----
  Ejemplo 1.2.3. Definir la función
    conjuncion : bool -> bool -> bool
  tal que (conjuncion b1 b2) es la conjuncion de b1 y b2.
  *)
Definition conjuncion (b1:bool) (b2:bool) : bool :=
 match bl with
 | true => b2
 | false => false
 end.
(* -----
  Ejemplo 1.2.4. Definir la función
    disvuncion : bool -> bool -> bool
  tal que (disyuncion b1 b2) es la disyunción de b1 y b2.
  *)
Definition disyuncion (b1:bool) (b2:bool) : bool :=
 match b1 with
 | true => true
 | false => b2
 end.
(* -----
  Ejemplo 1.2.5. Demostrar las siguientes propiedades
    disvuncion true false = true.
    disyuncion false false = false.
    disyuncion false true = true.
    disyuncion true true = true.
  -----*)
Example disyuncion1: disyuncion true false = true.
Proof. simpl. reflexivity. Qed.
Example disyuncion2: disyuncion false false = false.
Proof. simpl. reflexivity. Qed.
```

```
Example disyuncion3: disyuncion false true = true.
Proof. simpl. reflexivity. Qed.
Example disyuncion4: disyuncion true true = true.
Proof. simpl. reflexivity. Qed.
(* -----
  Ejemplo 1.2.6. Definir los operadores (&&) y (||) como abreviaturas
  de las funciones conjuncion y disyuncion.
  *)
Notation "x && y" := (conjunction x y).
Notation "x | | y" := (disyuncion x y).
(* -----
  Ejemplo 1.2.7. Demostrar que
    false || false || true = true.
  -----*)
Example disyuncion5: false || false || true = true.
Proof. simpl. reflexivity. Qed.
(* -----
  Ejercicio 1.2.1. Definir la función
    nand : bool -> bool -> bool
  tal que (nanb \times y) se verifica si x e y no son verdaderos.
  Demostrar las siguientes propiedades de nand
    nand true false = true.
    nand false false = true.
    nand false true = true.
    nand true true = false.
  -----*)
Definition nand (b1:bool) (b2:bool) : bool :=
 negacion (b1 && b2).
Example nand1: nand true false = true.
Proof. simpl. reflexivity. Qed.
```

```
Example nand2: nand false false = true.
Proof. simpl. reflexivity. Qed.
Example nand3: nand false true = true.
Proof. simpl. reflexivity. Qed.
Example nand4: nand true true = false.
Proof. simpl. reflexivity. Qed.
(* -----
  Ejercicio 1.2.2. Definir la función
    conjuncion3 : bool -> bool -> bool
  tal que (conjuncion3 \times y \times z) se verifica si x, y y z son verdaderos.
  Demostrar las siguientes propiedades de conjuncion3
    conjuncion3 true true = true.
    conjuncion3 false true = false.
    conjuncion3 true false true = false.
    conjuncion3 true true false = false.
  _____ *)
Definition conjuncion3 (b1:bool) (b2:bool) (b3:bool) : bool :=
 b1 && b2 && b3.
Example conjuncion3a: conjuncion3 true true = true.
Proof. simpl. reflexivity. Qed.
Example conjuncion3b: conjuncion3 false true true = false.
Proof. simpl. reflexivity. Qed.
Example conjuncion3c: conjuncion3 true false true = false.
Proof. simpl. reflexivity. Qed.
Example conjuncion3d: conjuncion3 true true false = false.
Proof. simpl. reflexivity. Qed.
§§ 1.3. Tipos de las funciones
  _____*)
```

```
(* -----
 Ejemplo 1.3.1. Calcular el tipo de las siguientes expresiones
   + true
   + (negacion true)
   + negacion
    *)
Check true.
(* ===> true : bool *)
Check (negacion true).
(* ===> negacion true : bool *)
Check negacion.
(* ===> negacion : bool -> bool *)
§§ 1.4. Tipos compuestos
 -----*)
(* -----
 Ejemplo 1.4.1. Definir el tipo rva cuyos constructores son rojo, verde
 y azul.
 *)
Inductive rva : Type :=
 rojo : rva
 | verde : rva
 | azul : rva.
 Ejemplo 1.4.2. Definir el tipo color cuyos constructores son negro,
 blanco y primario, donde primario es una función de rva en color.
 *)
Inductive color : Type :=
 | negro : color
 | blanco : color
 | primario : rva -> color.
```

```
(* -----
 Ejemplo 1.4.3. Definir la función
   monocromático : color -> bool
 tal que (monocromático c) se verifica si c es monocromático.
 -----*)
Definition monocromático (c : color) : bool :=
 match c with
 | negro => true
 | blanco
       => true
 | primario p => false
 end.
(* -----
 Ejemplo 1.4.4. Definir la función
   esRojo : color -> bool
 tal que (esRojo c) se verifica si c es rojo.
 -----
Definition esRojo (c : color) : bool :=
 match c with
        => false
 negro
 | blanco => false
 | primario rojo => true
 primario _ => false
 end.
§§ 1.5. Módulos
(* -----
 Ejemplo 1.5.1. Iniciar el módulo Naturales.
 *)
Module Naturales.
§§ 1.6. Números naturales
```

```
*)
(* -----
 Ejemplo 1.6.1. Definir el tipo nat de los números naturales con los
 constructores 0 (para el 0) y S (para el siguiente).
 *)
Inductive nat : Type :=
 \mid 0 : nat
 | S : nat -> nat.
(* _____
 Ejemplo 1.6.2. Definir la función
  pred : nat -> nat
 tal que (pred n) es el predecesor de n.
 -----*)
Definition pred (n : nat) : nat :=
 match n with
 | 0 => 0
  | S n' => n'
 end.
(* -----
 Ejemplo 1.6.3. Finalizar el módulo Naturales.
 *)
End Naturales.
(* -----
 Ejemplo 1.6.4. Calcular el tipo y valor de la expresión
 (S (S (S (S 0)))).
 *)
Check (S (S (S (S 0)))).
(* ===> 4 : nat *)
                -----
 Ejemplo 1.6.5. Definir la función
  menosDos : nat -> nat
```

```
tal que (menosDos n) es n-2.
 -----*)
Definition menosDos (n : nat) : nat :=
 match n with
  | 0
       => 0
  | S 0 => 0
  \mid S (S n') \Rightarrow n'
 end.
(* -----
 Ejemplo 1.6.6. Evaluar la expresión (menosDos 4).
 *)
Compute (menosDos 4).
(* ===> 2 : nat *)
(* ______
 Ejemplo 1.6.7. Calcular et tipo de las funcionse S, pred y menosDos.
 *)
Check S.
(* ===> S : nat -> nat *)
Check pred.
(* ===> pred : nat -> nat *)
Check menosDos.
(* ===> menosDos : nat -> nat *)
(* -----
 Ejemplo 1.6.8. Definir la función
   esPar : nat -> bool
 tal que (esPar n) se verifica si n es par.
 *)
Fixpoint esPar (n:nat) : bool :=
 match n with
     => true
 | 0
 | S 0 => false
```

```
| S (S n') => esPar n'
 end.
(* -----
 Ejemplo 1.6.9. Definir la función
   esImpar : nat -> bool
 tal que (esImpar n) se verifica si n es impar.
 -----*)
Definition esImpar (n:nat) : bool :=
 negacion (esPar n).
(* -----
 Ejemplo 1.6.10. Demostrar que
   + esImpar 1 = true.
   + esImpar 4 = false.
 *)
Example esImpar1: esImpar 1 = true.
Proof. simpl. reflexivity. Qed.
Example esImpar2: esImpar 4 = false.
Proof. simpl. reflexivity. Qed.
(* -----
 Ejemplo 1.6.12. Iniciar el módulo Naturales2.
 *)
Module Naturales2.
(* -----
 Ejemplo 1.6.13. Definir la función
   suma : nat -> nat -> nat
 tal que (suma n m) es la suma de n y m. Por ejemplo,
   suma \ 3 \ 2 = 5
 Nota: Es equivalente a la predefinida plus
 *)
Fixpoint suma (n : nat) (m : nat) : nat :=
```

```
match n with
   \mid 0 => m
   | S n' => S (suma n' m)
 end.
Compute (suma 3 2).
(* ===> 5: nat *)
(* -----
  Ejemplo 1.6.14. Definir la función
    producto : nat -> nat -> nat
  tal que (producto n m) es el producto de n y m. Por ejemplo,
    producto 3 2 = 6
  Nota: Es equivalente a la predefinida mult.
Fixpoint producto (n m : nat) : nat :=
 match n with
  | 0 => 0
   | S n' => suma m (producto n' m)
 end.
Example producto1: (producto 2 3) = 6.
Proof. simpl. reflexivity. Qed.
(* ______
  Ejemplo 1.6.15. Definir la función
    resta : nat -> nat -> nat
  tal que (resta n m) es la diferencia de n y m. Por ejemplo,
    resta 3 2 = 1
  Nota: Es equivalente a la predefinida minus.
  *)
Fixpoint resta (n m:nat) : nat :=
 match (n, m) with
 | (0 , ) => 0
 | (S_{n}, 0) => n
 | (S n', S m') => resta n' m'
```

```
end.
(* -----
  Ejemplo 1.6.16. Cerrar el módulo Naturales2.
  *)
End Naturales2.
(* ______
  Ejemplo 1.6.17. Definir la función
   potencia: nat -> nat -> nat
  tal que (potencia x n) es la potencia n-ésima de x. Por ejemplo,
    potencia 2 3 = 8
 Nota: En lugar de producto, usar la predefinida mult.
Fixpoint potencia (x n : nat) : nat :=
 match n with
  | 0 => S 0
  | S m => mult x (potencia x m)
 end.
Compute (potencia 2 3).
(* ===> 8 : nat *)
(* -----
  Ejercicio 1.6.1. Definir la función
    factorial : nat -> nat1
  tal que (factorial n) es el factorial de n.
    factorial 3 = 6.
    factorial 5 = mult 10 12
  *)
Fixpoint factorial (n:nat) : nat :=
 match n with
 | 0 => 1
 | S n' => S n' * factorial n'
 end.
```

```
Example prop factorial1: factorial 3 = 6.
Proof. simpl. reflexivity. Qed.
Example prop factorial2: factorial 5 = mult 10 12.
Proof. simpl. reflexivity. Qed.
(* -----
  Ejemplo 1.6.18. Definir los operadores +, - y * como abreviaturas de
  las funciones plus, rminus y mult.
Notation "x + y" := (plus x y)
                  (at level 50, left associativity)
                  : nat scope.
Notation "x - y" := (minus x y)
                  (at level 50, left associativity)
                  : nat scope.
Notation "x * y" := (mult x y)
                  (at level 40, left associativity)
                  : nat scope.
(* -----
  Ejemplo 1.6.19. Definir la función
    iguales nat : nat -> nat -> bool
  tal que (iguales nat n m) se verifica si n y me son iguales.
  *)
Fixpoint iguales_nat (n m : nat) : bool :=
 match n with
 \mid 0 => match m with
       | 0 => true
       | S m' => false
       end
 | S n' => match m with
         | 0 => false
         | S m' => iguales nat n' m'
         end
 end.
(* -----
```

```
Ejemplo 1.6.20. Definir la función
    menor o iqual : nat -> nat -> bool
  tal que (menor o igual n m) se verifica si n es menor o igual que m.
  *)
Fixpoint menor o igual (n m : nat) : bool :=
 match n with
 | 0 => true
 | S n' => match m with
         | 0 => false
         | S m' => menor_o_igual n' m'
        end
 end.
(* -----
  Ejemplo 1.6.21. Demostrar las siguientes propiedades
    + menor o igual 2 2 = true.
    + menor o igual 2 4 = true.
    + menor o iqual 4 2 = false.
   Example menor o igual1: menor o igual 2 2 = true.
Proof. simpl. reflexivity. Qed.
Example menor o igual2: menor o igual 2 4 = true.
Proof. simpl. reflexivity. Qed.
Example menor_o_igual3: menor_o_igual 4 2 = false.
Proof. simpl. reflexivity. Qed.
(* -----
  Ejercicio 1.6.2. Definir la función
    menor nat : nat -> nat -> bool
  tal que (menor_nat n m) se verifica si n es menor que m.
  Demostrar las siguientes propiedades
    menor nat 2 2 = false.
    menor nat 2 \ 4 = true.
    menor_nat 4 2 = false.
  *)
```

```
Definition menor nat (n m : nat) : bool :=
 negacion (iguales_nat (m-n) 0).
Example menor_nat1: (menor_nat 2 2) = false.
Proof. simpl. reflexivity. Qed.
Example menor nat2: (menor nat 2 4) = true.
Proof. simpl. reflexivity. Qed.
Example menor nat3: (menor nat 4 2) = false.
Proof. simpl. reflexivity. Qed.
§ 2. Métodos elementales de demostración
  _____*)
§ 2.1. Demostraciones por simplificación
  *)
(* -----
 Ejemplo 2.1.1. Demostrar que el 0 es el elemento neutro por la
  izquierda de la suma de los números naturales.
  *)
(* 1º demostración *)
Theorem suma 0 n : forall n : nat, 0 + n = n.
Proof.
 intros n. (* n : nat
            0 + n = n *)
 simpl.
          (* n = n *)
 reflexivity.
0ed.
(* 2º demostración *)
Theorem suma 0 n': forall n : nat, 0 + n = n.
Proof.
 intros n. (* n : nat
```

```
_____
           0 + n = n *)
 reflexivity.
Qed.
(* -----
 Ejemplo 2.1.2. Demostrar que la suma de 1 y n es el siguiente de n.
Theorem suma_1l: forall n:nat, 1 + n = S n.
Proof.
 intros n. (* n : nat
            _____
            1 + n = S n *)
          (* S n = S n *)
 simpl.
 reflexivity.
0ed.
Theorem suma 1 l': forall n:nat, 1 + n = S n.
Proof.
 intros n.
 reflexivity.
Qed.
 Ejemplo 2.1.3. Demostrar que el producto de 0 por n es 0.
  *)
Theorem producto_0_l : forall n: nat, 0 * n = 0.
Proof.
 intros n.
         (* n : nat
           _____
           0 * n = 0 *)
         (* 0 = 0 *)
 simpl.
 reflexivity.
Qed.
§ 2.2. Demostraciones por reescritura
```

```
(* -----
 Ejemplo 2.2.1. Demostrar que si n = m, entonces n + n = m + m.
  *)
Theorem suma iguales : forall n m:nat,
 n = m \rightarrow
 n + n = m + m.
Proof.
 intros n m. (* n : nat
            m : nat
            _____
            n = m -> n + n = m + m *)
         (* n : nat
 intros H.
            m : nat
            H: n = m
            _____
            n + n = m + m *)
 rewrite H.
          (* m + m = m + m *)
 reflexivity.
Qed.
(* -----
 Ejercicio 2.2.1. Demostrar que si n = m y m = o, entonces
 n + m = m + o.
  *)
Theorem suma iguales ejercicio : forall n m o : nat,
 n = m -> m = o -> n + m = m + o.
Proof.
 intros n m o H1 H2. (* n : nat
                m : nat
                o : nat
                H1: n = m
                H2: m = 0
                _____
                n + m = m + o *)
 rewrite H1.
             (* m + m = m + o *)
             rewrite H2.
```

```
reflexivity.
Qed.
(* -----
 Ejemplo 2.2.2. Demostrar que (0 + n) * m = n * m.
 *)
Theorem producto 0 mas : forall n m : nat,
 (0 + n) * m = n * m.
Proof.
            (* n : nat
 intros n m.
              m : nat
              _____
              (0 + n) * m = n * m *)
 rewrite suma 0 n. (*n*m=n*m*)
 reflexivity.
Qed.
(* -----
 Ejercicio 2.2.2. Demostrar que si m = S n, entonces m * (1 + n) = m * m.
 *)
Theorem producto_S_1 : forall n m : nat,
 m = S n -> m * (1 + n) = m * m.
Proof.
 intros n m H. (* n : nat
          m : nat
          H: m = S n
          _____
          m * (1 + n) = m * m *)
 simpl.
         (* m * S n = m * m *)
         (* S n * S n = S n * S n *)
 rewrite H.
 reflexivity.
Qed.
§ 2.3. Demostraciones por análisis de casos
 *)
(* -----
```

```
Ejemplo 2.3.1. Demostrar que n + 1 es distinto de 0.
(* 1º intento *)
Theorem siguiente_distinto_cero_primer_intento : forall n : nat,
 iguales nat (n + 1) 0 = false.
Proof.
 intros n. (* n : nat
            _____
            iguales nat (n + 1) 0 = false *)
 simpl.
        (* n : nat
            _____
            iguales nat (n + 1) 0 = false *)
Abort.
(* 2º intento *)
Theorem siguiente_distinto_cero : forall n : nat,
 iguales_nat (n + 1) 0 = false.
Proof.
 intros n.
                   (* n : nat
                      iguales nat (n + 1) 0 = false *)
 destruct n as [| n'].
                   (*
                     _____
                      iguales_nat (0 + 1) 0 = false *)
   reflexivity.
                   (* n' : nat
                     ______
                      iguales_nat (S n' + 1) 0 = false *)
   reflexivity.
Qed.
(* _______
  Ejemplo 2.3.2. Demostrar que la negacion es involutiva; es decir, la
  negacion de la negacion de b es b.
  *)
Theorem negacion_involutiva : forall b : bool,
 negacion (negacion b) = b.
```

```
Proof.
 intros b.
             (*
               negacion (negacion b) = b *)
 destruct b.
                negacion (negacion true) = true *)
   reflexivity.
               _____
                negacion (negacion false) = false *)
   reflexivity.
Qed.
  Ejemplo 2.3.3. Demostrar que la conjuncion es conmutativa.
  *)
(* 1º demostración *)
Theorem conjuncion_commutativa : forall b c,
   conjuncion b c = conjuncion c b.
Proof.
 intros b c.
             (* b : bool
                c : bool
                 b \&\& c = c \&\& b *)
 destruct b.
              (* c : bool
                _____
                 true && c = c && true *)
   destruct c.
              true && true = true && true *)
    reflexivity.
                 _____
                 true && false = false && true *)
    reflexivity.
              (* c : bool
```

```
_____
                   false \&\& c = c \&\& false *)
   destruct c.
                (*
                   _____
                   false && true = true && false *)
     reflexivity.
                   false && false = false && false *)
     reflexivity.
0ed.
(* 2ª demostración *)
Theorem conjuncion_commutativa2 : forall b c,
   conjuncion b c = conjuncion c b.
Proof.
 intros b c.
 destruct b.
 { destruct c.
   { reflexivity. }
   { reflexivity. } }
 { destruct c.
   { reflexivity. }
   { reflexivity. } }
0ed.
(* -----
  Ejemplo 2.3.4. Demostrar que
    conjuncion (conjuncion b c) d = conjuncion (conjuncion b d) c.
  _____ *)
Theorem conjuncion intercambio : forall b c d,
   conjuncion (conjuncion b c) d = conjuncion (conjuncion b d) c.
Proof.
 intros b c d.
 destruct b.
 - destruct c.
   { destruct d.
     - reflexivity. (* (true && true) && true = (true && true) && true *)
```

```
- reflexivity. } (* (true && true) && false = (true && false) && true *)
   { destruct d.
                  (* (true && false) && true = (true && true) && false *)
     reflexivity.
     - reflexivity. } (* (true && false) && false = (true && false) && false *)
 - destruct c.
   { destruct d.
     - reflexivity. (* (false && true) && true = (false && true) && true *)
     - reflexivity. } (* (false && true) && false = (false && false) && true *)
   { destruct d.

    reflexivity.

                 (* (false && false) && true = (false && true) && false *)
     - reflexivity. } (* (false && false) && false = (false && false) && false *
Qed.
(* -----
  Ejemplo 2.3.5. Demostrar que n + 1 es distinto de 0.
Theorem siguiente_distinto_cero' : forall n : nat,
 iguales nat (n + 1) 0 = false.
Proof.
 intros [|n].
 - reflexivity. (* iguales nat (0 + 1) 0 = false *)
 - reflexivity. (* iguales nat (S n + 1) 0 = false *)
Qed.
(* ______
  Ejemplo 2.3.6. Demostrar que la conjuncion es conmutativa.
  -----*)
Theorem conjuncion_commutativa'' : forall b c,
   conjuncion b c = conjuncion c b.
Proof.
 intros [] [].
 - reflexivity. (* true && true = true && true *)
 - reflexivity. (* true && false = false && true *)
 - reflexivity. (* false && true = true && false *)
 - reflexivity. (* false && false = false && false *)
0ed.
(* -----
```

```
Ejercicio 2.2.3. Demostrar que si
    conjuncion b c = true, entonces c = true.
Theorem conjuncion_true_elim : forall b c : bool,
 conjuncion b c = true \rightarrow c = true.
Proof.
              (* b : bool
 intros b c.
                 c : bool
                  _____
                  b \&\& c = true \rightarrow c = true *)
 destruct c.
               (* b : bool
                  _____
                  b && true = true -> true = true *)
   reflexivity.
               (* b : bool
                  _____
                  b && false = true -> false = true *)
   destruct b.
               (*
                  _____
                  true && false = true -> false = true *)
               (*
    simpl.
                  _____
                  false = true -> false = true *)
               (* H : false = true
    intros H.
                  _____
                  false = true *)
               (* H : false = true
     rewrite H.
                  _____
                  true = true *)
    reflexivity.
               (*
                  _____
                  false && false = true -> false = true *)
               (*
    simpl.
                  _____
                  false = true -> false = true *)
              (* H : false = true
    intros H.
```

```
_____
                false = true *)
             (* H : false = true
    rewrite H.
                _____
                true = true *)
    reflexivity.
0ed.
(* -----
  Ejercicio 2.2.4. Demostrar que 0 es distinto de n + 1.
Theorem cero_distinto_mas_uno: forall n : nat,
 iguales nat 0 (n + 1) = false.
Proof.
 intros [| n'].
 - reflexivity. (* iguales nat 0 (0 + 1) = false *)
 - reflexivity. (* iguales nat 0 (S n' + 1) = false *)
Qed.
§ 3. Ejercicios complementarios
  _____*)
(* -----
  Ejercicio 3.1. Demostrar que
    forall (f : bool -> bool),
     (forall (x : bool), f(x = x) \rightarrow forall(b : bool), f(f(b) = b.
Theorem aplica_dos_veces_la_identidad : forall (f : bool -> bool),
 (forall (x : bool), f(x = x) \rightarrow forall(b : bool), f(f(b) = b.
Proof.
 intros f H b. (* f : bool -> bool
             H: forall x: bool, fx = x
             b : bool
             _____
              f(fb) = b*)
 rewrite H. (* f b = b *)
          (* b = b *)
 rewrite H.
```

```
reflexivity.
Qed.
(* -----
  Ejercicio 3.2. Demostrar que
     forall (b c : bool),
      (conjuncion \ b \ c = disyuncion \ b \ c) \rightarrow b = c.
Theorem conjuncion_igual_disyuncion: forall (b c : bool),
 (conjuncion b c = disyuncion b c) -> b = c.
Proof.
 intros [] c.
              (* c : bool
                _____
                 true && c = true \mid \mid c \rightarrow true = c *)
   simpl.
              (* c : bool
                _____
                 c = true \rightarrow true = c *)
   intros H.
              (* c : bool
                H: c = true
                _____
                 true = c *)
   rewrite H.
             (* c : bool
                H: c = true
                _____
                 true = true *)
   reflexivity.
              (* c : bool
                _____
                 false && c = false \mid \mid c \rightarrow false = c *)
   simpl.
              (* c : bool
                _____
                 false = c \rightarrow false = c *)
              (* c : bool
   intros H.
                H: false = c
                _____
                 false = c *)
   rewrite H. (* c : bool
                H: false = c
```

```
_____
                 c = c *)
   reflexivity.
0ed.
(* -----
  Ejercicio 3.3. En este ejercicio se considera la siguiente
  representación de los números naturales
     Inductive nat2 : Type :=
      | C : nat2
      | D : nat2 -> nat2
      | SD : nat2 -> nat2.
  donde C representa el cero, D el doble y SD el siguiente del doble.
  Definir la función
     nat2Anat : nat2 -> nat
  tal que (nat2Anat x) es el número natural representado por x.
  Demostrar que
    nat2Anat (SD (SD C)) = 3
    nat2Anat (D (SD (SD C))) = 6.
  *)
Inductive nat2 : Type :=
 | C : nat2
 | D : nat2 -> nat2
 | SD : nat2 -> nat2.
Fixpoint nat2Anat (x:nat2) : nat :=
 match x with
 | C => 0
 \mid D n \Rightarrow 2 * nat2Anat n
 | SD n => (2 * nat2Anat n) + 1
 end.
Example prop nat2Anat1: (nat2Anat (SD (SD C))) = 3.
Proof. reflexivity. Qed.
Example prop_nat2Anat2: (nat2Anat (D (SD (SD C)))) = 6.
Proof. reflexivity. Qed.
```

Tema 2

Demostraciones por inducción sobre los números naturales en Coq

```
(* T2: Demostraciones por inducción sobre los números naturales en Coq *)
Require Export T1_PF_en_Coq.
(* El contenido de la teoría es
  1. Demostraciones por inducción.
  2. Demostraciones anidadas.
  3. Demostraciones formales vs demostraciones informales.
  4. Ejercicios complementarios *)
§ 1. Demostraciones por inducción
(* -----
  Ejemplo 1.1. Demostrar que
    forall n:nat, n = n + 0.
  *)
(* 1º intento: con métodos elementales *)
Theorem suma_n_0_a: forall n:nat, n = n + 0.
Proof.
 intros n. (* n : nat
          _____
```

```
n = n + 0 *)
 simpl. (* n : nat
           _____
            n = n + 0 *)
Abort.
(* 2º intento: con casos *)
Theorem suma n 0 b : forall n:nat,
 n = n + 0.
Proof.
 intros n.
                   (* n : nat
                     _____
                     n = n + 0 *)
 destruct n as [| n'].
                     _____
                     0 = 0 + 0 *)
   reflexivity.
                   (* n' : nat
                     _____
                     S n' = S n' + 0 *)
   simpl.
                   (* n' : nat
                     _____
                     S n' = S (n' + 0) *)
Abort.
(* 3ª intento: con inducción *)
Theorem suma n 0 : forall n:nat,
   n = n + 0.
Proof.
 intros n.
                       (* n : nat
                         _____
                          n = n + 0 *)
 induction n as [| n' IHn'].
                          _____
                          0 = 0 + 0 *)
   reflexivity.
                       (* n' : nat
                         IHn': n' = n' + 0
```

```
S n' = S n' + 0 *)
                   (* S n' = S (n' + 0) *)
  simpl.
                  (* S n' = S n' *)
  rewrite <- IHn'.
  reflexivity.
0ed.
(* -----
 Ejemplo 1.2. Demostrar que
   forall n, n - n = 0.
 *)
Theorem resta_n_n: forall n, n - n = 0.
Proof.
 intros n.
                   (* n : nat
                    _____
                    n - n = 0 *)
 induction n as [| n' IHn'].
                    _____
                    0 - 0 = 0 *)
  reflexivity.
                   (* n' : nat
                    IHn' : n' - n' = 0
                    _____
                    S n' - S n' = 0 *)
  simpl.
                   (* n' - n' = 0 *)
                  (* 0 = 0 *)
  rewrite -> IHn'.
  reflexivity.
Qed.
(* -----
 Ejercicio 1.1. Demostrar que
   forall n:nat, n * 0 = 0.
 *)
Theorem multiplica n 0: forall n:nat, n * 0 = 0.
Proof.
 intros n.
                   (* n : nat
```

```
n * 0 = 0 *)
 induction n as [| n' IHn'].
                           0 * 0 = 0 *)
   reflexivity.
                         (* n' : nat
                           IHn' : n' * 0 = 0
                           _____
                           S n' * 0 = 0 *)
   simpl.
                         (* n' * 0 = 0 *)
   rewrite IHn'.
                         (* 0 = 0 *)
   reflexivity.
Qed.
  Ejercicio 1.2. Demostrar que,
    forall n m : nat, S (n + m) = n + (S m).
Theorem suma_n_Sm: forall n m : nat, S (n + m) = n + (S m).
Proof.
 intros n m.
                        (* n, m : nat
                           _____
                           S (n + m) = n + S m *)
 induction n as [|n' IHn'].
 +
                        (* m : nat
                          _____
                          S (0 + m) = 0 + S m *)
                        (* m : nat
   simpl.
                          _____
                          S m = S m *)
   reflexivity.
                       (* S (S n' + m) = S n' + S m *)
   simpl.
                        (* S (S (n' + m)) = S (n' + S m) *)
                       (* S (n' + S m) = S (n' + S m) *)
   rewrite IHn'.
   reflexivity.
0ed.
(* -----
```

```
Ejercicio 1.3. Demostrar que
    forall n m : nat, n + m = m + n.
Theorem suma_conmutativa: forall n m : nat,
 n + m = m + n.
Proof.
 intros n m.
                       (* n, m : nat
                         _____
                         n + m = m + n *)
 induction n as [|n' IHn'].
                       (* m : nat
                         _____
                         O + m = m + O *)
                       (* m = m + 0 *)
   simpl.
                       (* m = m *)
   rewrite <- suma n 0.</pre>
   reflexivity.
                       (* n', m : nat
                         IHn' : n' + m = m + n'
                         _____
                         S n' + m = m + S n' *)
                      (* S (n' + m) = m + S n' *)
   simpl.
   rewrite IHn'.
                      (* S (m + n') = m + S n' *)
   rewrite <- suma n Sm. (* S (m + n') = S (m + n') *)
   reflexivity.
Qed.
(* -----
  Ejercicio 1.4. Demostrar que
    forall n \, m \, p : nat, \, n + (m + p) = (n + m) + p.
  *)
Theorem suma_asociativa: forall n m p : nat, n + (m + p) = (n + m) + p.
Proof.
 intros n m p.
                       (* n, m, p : nat
                         _____
                         n + (m + p) = (n + m) + p *)
 induction n as [|n' IHn'].
                       (* m, p : nat
                         _____
```

```
0 + (m + p) = (0 + m) + p *)
   reflexivity.
                          (* n', m, p : nat
                            IHn': n' + (m + p) = n' + m + p
                            _____
                            S n' + (m + p) = (S n' + m) + p *)
   simpl.
                          (* S (n' + (m + p)) = S ((n' + m) + p) *)
                          (* S ((n' + m) + p) = S ((n' + m) + p) *)
   rewrite IHn'.
   reflexivity.
Qed.
  Ejercicio 1.5. Se considera la siguiente función que dobla su argumento.
     Fixpoint doble (n:nat) :=
       match n with
       | 0 => 0
       \mid S \mid n' => S \mid (S \mid (doble \mid n'))
       end.
  Demostrar que
     forall n, doble n = n + n.
   -----*)
Fixpoint doble (n:nat) :=
 match n with
 | 0
       => 0
 | S n' => S (S (doble n'))
 end.
Lemma doble_suma : forall n, doble n = n + n.
Proof.
 intros n.
                          (* n : nat
                            _____
                            doble \ n = n + n *)
 induction n as [|n' IHn'].
                            _____
                            doble \ 0 = 0 + 0 *)
   reflexivity.
                          (* n' : nat
```

```
IHn': doble n' = n' + n'
                          _____
                          doble (S n') = S n' + S n' *)
                       (* S (S (doble n')) = S (n' + S n') *)
   simpl.
                       (* S (S (n' + n')) = S (n' + S n') *)
   rewrite IHn'.
                      (* S (n' + S n') = S (n' + S n') *)
   rewrite suma n Sm.
   reflexivity.
Qed.
(* -----
  Ejercicio 1.6. Demostrar que
    forall n : nat, esPar(S n) = negacion(esPar n).
  _____
Theorem esPar_S : forall n : nat,
 esPar(S n) = negacion(esPar n).
Proof.
 intros n.
                           (* n : nat
                             _____
                             esPar(S n) = negacion(esPar n) *)
 induction n as [|n' IHn'].
                           (*
                             ______
                             esPar 1 = negacion (esPar 0) *)
   simpl.
                             false = false *)
   reflexivity.
                           (* n' : nat
                             IHn' : esPar (S n') = negacion (esPar n')
                             _____
                             esPar(S(Sn')) =
                              negacion (esPar (S n')) *)
   rewrite IHn'.
                           (* esPar (S (S n')) =
                             negacion (negacion (esPar n')) *)
   rewrite negacion involutiva. (* esPar(S(S(n'))) = esPar(n'*)
   simpl.
                          (* esPar n' = esPar n' *)
   reflexivity.
Qed.
```

```
§ 2. Demostraciones anidadas
 (* -----
 Ejemplo 2.1. Demostrar que
   forall n \ m : nat, (0 + n) * m = n * m.
 *)
Theorem producto_0_suma': forall n m : nat, (0 + n) * m = n * m.
Proof.
 intros n m.
               (* n, m : nat
                 _____
                 (0 + n) * m = n * m *)
 assert (H: 0 + n = n).
               (* n, m : nat
                 _____
                 0 + n = n *)
  reflexivity.
               (* n, m : nat
                 H : 0 + n = n
                 _____
                 (0 + n) * m = n * m *)
  rewrite -> H.
               (* n * m = n * m *)
  reflexivity.
0ed.
(* -----
 Ejemplo 2.2. Demostrar que
   forall n m p q : nat, (n + m) + (p + q) = (m + n) + (p + q)
  _____ *)
(* 1º intento sin assert*)
Theorem suma_reordenada_1: forall n m p q : nat,
 (n + m) + (p + q) = (m + n) + (p + q).
Proof.
                   (* n, m, p, q : nat
 intros n m p q.
                     _____
                     (n + m) + (p + q) = (m + n) + (p + q) *)
 rewrite -> suma_conmutativa. (* n, m, p, q : nat
```

```
_____
                         p + q + (n + m) = m + n + (p + q) *
Abort.
(* 2º intento con assert *)
Theorem suma reordenada: forall n m p q : nat,
 (n + m) + (p + q) = (m + n) + (p + q).
Proof.
 intros n m p q.
                        (* n, m, p, q : nat
                          _____
                          (n + m) + (p + q) = (m + n) + (p + q) *)
 assert (H: n + m = m + n).
                        (* n, m, p, q : nat)
                          _____
                          n + m = m + n *)
   rewrite -> suma conmutativa. (* m + n = m + n *)
  reflexivity.
                        (* n, m, p, q : nat
                          H: n + m = m + n
                          _____
                          (n + m) + (p + q) = (m + n) + (p + q) *)
   rewrite -> H.
                        (* m + n + (p + q) = m + n + (p + q) *)
   reflexivity.
Qed.
§ 3. Demostraciones formales vs demostraciones informales
  _____*)
(* -----
  Ejercicio 3.1. Escribir la demostración informal (en lenguaje natural)
  correspondiente a la demostración formal de la asociatividad de la
  suma del ejercicio 1.4.
  *)
(* Demostración por inducción en n.
  - Caso base: Se supone que n es 0 y hay que demostrar que
     0 + (m + p) = (0 + m) + p.
   Esto es consecuencia inmediata de la definición de suma.
```

```
- Paso de indución: Suponemos la hipótesis de inducción
       n' + (m + p) = (n' + m) + p.
    Hay que demostrar que
        (S n') + (m + p) = ((S n') + m) + p.
    que, por la definición de suma, se reduce a
       S(n' + (m + p)) = S((n' + m) + p)
    que por la hipótesis de inducción se reduce a
       S((n' + m) + p) = S((n' + m) + p)
    que es una identidad. *)
  Ejercicio 3.2. Escribir la demostración informal (en lenguaje natural)
   correspondiente a la demostración formal de la asociatividad de la
   suma del ejercicio 1.3.
(* Demostración por inducción en n.
   - Caso base: Se supone que n es 0 y hay que demostrar que
       O + m = m + O
    que, por la definición de la suma, se reduce a
       m = m + 0
    que se verifica por el lema suma n 0.
   - Paso de indución: Suponemos la hipótesis de inducción
       n' + m = m + n'
    Hay que demostrar que
       S n' + m = m + S n'
    que, por la definición de suma, se reduce a
       S(n'+m)=m+Sn'
    que, por la hipótesis de inducción, se reduce a
       S(m + n') = m + S n'
    que, por el lema suma_n_Sm, se reduce a
       S(m + n') = S(m + n')
    que es una identidad. *)
  Ejercicio 3.3. Demostrar que
      forall n:nat, iguales nat n n = true.
```

```
*)
Theorem iguales_nat_refl: forall n : nat,
   iguales nat n = true.
Proof.
 intros n.
                       (* n : nat
                         _____
                         iguales nat n n = true *)
 induction n as [|n' IHn'].
                       (*
                         _____
                         iguales nat 0 0 = true *)
   reflexivity.
                       (* n' : nat
                         IHn': iquales nat n' n' = true
                         _____
                         iguales nat (S n') (S n') = true *)
                       (* iguales nat n' n' = true *)
   simpl.
   rewrite <- IHn'.
                       (* true = true *)
   reflexivity.
Qed.
(* -----
  Ejercicio 3.4. Escribir la demostración informal (en lenguaje natural)
  correspondiente la demostración del ejercicio anterior.
  *)
(* Demostración por inducción en n.
  - Caso base: Se supone que n es 0 y hay que demostrar que
      true = iguales_nat 0 0
   que se verifica por la definición de iguales nat.
  - Paso de indución: Suponemos la hipótesis de inducción
      true = iguales nat n' n'
   Hay que demostrar que
      true = iguales nat (S n') (S n')
   que, por la definición de iguales nat, se reduce a
      true = iguales nat n' n
   que, por la hipótesis de inducción, se reduce a
```

```
true = true
   que es una identidad. *)
(* ========
  § 4. Ejercicios complementarios
  _____*)
(* -----
  Ejercicio 4.1. Demostrar, usando assert pero no induct,
    forall n \, m \, p : nat, \, n + (m + p) = m + (n + p).
  -----*)
Theorem suma_permutada: forall n m p : nat,
 n + (m + p) = m + (n + p).
Proof.
 intros n m p.
                     (* n, m, p : nat
                       _____
                       n + (m + p) = m + (n + p) *
                     (* n, m, p : nat
 rewrite suma asociativa.
                       _____
                       (n + m) + p = m + (n + p) *)
 rewrite suma asociativa.
                     (* n, m, p : nat
                       _____
                       n + m + p = m + n + p *
 assert (H : n + m = m + n).
                     (* n, m, p : nat
                       _____
                       n + m = m + n *)
  rewrite suma conmutativa. (* m + n = m + n *)
  reflexivity.
                     (* n, m, p : nat
                       H : n + m = m + n
                       _____
                       (n + m) + p = (m + n) + p *)
  rewrite H.
                     (* (m + n) + p = (m + n) + p *)
  reflexivity.
Qed.
(* -----
  Ejercicio 4.2. Demostrar que la multiplicación es conmutativa.
```

```
*)
Lemma producto_n_1 : forall n: nat,
   n * 1 = n.
Proof.
 intro n.
                      (* n : nat
                        _____
                        n * 1 = n *)
 induction n as [|n' IHn'].
                      (*
                        _____
                        0 * 1 = 0 *)
   reflexivity.
                      (* n' : nat
                        IHn' : n' * 1 = n'
                        _____
                        S n' * 1 = S n' *)
                      (* S (n' * 1) = S n' *)
   simpl.
   rewrite IHn'.
                      (* S n' = S n' *)
   reflexivity.
Qed.
Theorem suma_n_1 : forall n : nat,
   n + 1 = S n.
Proof.
 intro n.
                      (* n : nat
                        _____
                        n + 1 = S n *)
 induction n as [|n' HIn'].
                      (*
                        _____
                        0 + 1 = 1 *)
   reflexivity.
                      (* n' : nat
                        HIn' : n' + 1 = S n'
                        _____
                        S n' + 1 = S (S n') *)
   simpl.
                      (* S (n' + 1) = S (S n') *)
                      (* S (S n') = S (S n') *)
   rewrite HIn'.
   reflexivity.
```

Qed. Theorem producto_n_Sm: forall n m : nat, n * (m + 1) = n * m + n.Proof. intros n m. (* n, m : nat _____ n * (m + 1) = n * m + n *)induction n as [|n' IHn']. (* m : nat _____ 0 * (m + 1) = 0 * m + 0 *)reflexivity. (* n', m : nat IHn': n'*(m+1) = n'*m+n'_____ S n' * (m + 1) = S n' * m + S n' *)(* (m + 1) + n' * (m + 1) =simpl. (m + n' * m) + S n' *)rewrite IHn'. (* (m + 1) + (n' * m + n') =(m + n' * m) + S n' *)(* n' * m + ((m + 1) + n') =rewrite suma permutada. (m + n' * m) + S n' *)rewrite \leftarrow suma asociativa. (*n'*m+(m+(1+n'))=(m + n' * m) + S n' *)(* n' * m + (m + (n' + 1)) =rewrite <- suma_n_1.</pre> (m + n' * m) + S n' *)(* n' * m + (m + S n') = (m + n' * m) + S n' *)rewrite suma n 1. (* m + (n' * m + S n') = (m + n' * m) + S n' *)rewrite suma permutada. (* m + (n' * m + S n') = (m + n' * m) + S n' *)rewrite suma asociativa. reflexivity. Qed. Theorem producto_conmutativa: forall m n : nat, m * n = n * m. Proof. intros n m. (* n, m : nat

n * m = m * n *)

induction n as [|n' HIn'].

```
(* m : nat
                          _____
                          O * m = m * O *)
   rewrite multiplica n 0.
                        (* 0 * m = 0 *)
   reflexivity.
                        (* n', m : nat
                          HIn' : n' * m = m * n'
                          _____
                          S n' * m = m * S n' *)
                        (* m + n' * m = m * S n' *)
   simpl.
   rewrite HIn'.
                       (* m + m * n' = m * S n' *)
   rewrite <- suma n 1. (* m + m * n' = m * (n' + 1) *)
   rewrite producto_n_Sm. (* m + m * n' = m * n' + m *)
   rewrite suma conmutativa. (*m*n'+m=m*n'+m*)
  reflexivity.
Qed.
(* -----
  Ejercicio 4.3. Demostrar que
    forall n : nat, true = menor o igual <math>n n.
  -----*)
Theorem menor o igual refl: forall n : nat,
   true = menor o igual n n.
Proof.
                        (* n : nat
 intro n.
                          _____
                          true = menor o igual n n *)
 induction n as [| n' HIn'].
                        (*
                          _____
                          true = menor o igual 0 0 *)
   reflexivity.
                        (* n' : nat
                          HIn': true = menor o igual n' n'
                          _____
                          true = menor o_igual (S n') (S n') *)
                        (* true = menor_o_igual n' n' *)
   simpl.
                        (* menor_o_igual n' n' = menor_o_igual n' n' *)
   rewrite HIn'.
```

```
reflexivity.
Qed.
(* -----
  Ejercicio 4.4. Demostrar que
    forall n: nat, iguales nat 0 (S n) = false.
Theorem cero_distinto_S: forall n : nat,
 iguales_nat 0 (S n) = false.
Proof.
 intros n. (* n : nat
             _____
             iguales nat 0 (S n) = false *)
           (* false = false *)
 simpl.
 reflexivity.
Qed.
  Ejercicio 4.5. Demostrar que
    forall b : bool, conjuncion b false = false.
  -----*)
Theorem conjuncion false r : forall b : bool,
 conjuncion b false = false.
Proof.
 intros b. (* b : bool
               _____
               b && false = false *)
 destruct b.
             (*
               _____
               true && false = false *)
             (* false = false *)
   simpl.
   reflexivity.
             (*
               _____
               false && false = false *)
   simpl.
             (* false = false *)
   reflexivity.
```

```
Qed.
(* -----
  Ejercicio 4.6. Demostrar que
    forall n m p : nat, menor_o_igual n m = true ->
                    menor o igual (p + n) (p + m) = true.
Theorem menor o igual suma: forall n m p : nat,
 menor_o_igual n m = true -> menor_o_igual (p + n) (p + m) = true.
Proof.
                       (* n, m, p : nat
 intros n m p H.
                         H : menor_o_igual n m = true
                         _____
                         menor o igual (p + n) (p + m) = true *)
 induction p as [|p' HIp'].
                       (* n, m : nat
                         H: menor o igual n m = true
                         _____
                         menor o igual (0 + n) (0 + m) = true *)
   simpl.
                       (* menor_o_igual n m = true *)
   rewrite H.
                       (* true = true *)
   reflexivity.
                       (* n, m, p' : nat
                         H : menor o igual n m = true
                         HIp': menor_o_igual(p' + n)(p' + m) = true
                         _____
                         menor o igual (S p' + n) (S p' + m) = true *)
   simpl.
                       (* menor_o_igual (p' + n) (p' + m) = true *)
                       (* true = true *)
   rewrite HIp'.
   reflexivity.
Qed.
(* -----
  Ejercicio 4.7. Demostrar que
    forall n: nat, iguales nat (S n) 0 = false.
  -----*)
Theorem S_distinto_0 : forall n:nat,
 iguales_nat (S n) 0 = false.
```

```
Proof.
 intro n. (* n : nat
             _____
             iguales nat (S n) 0 = false *)
          (* false = false *)
 simpl.
 reflexivity.
Qed.
(* -----
  Ejercicio 4.8. Demostrar que
    forall n:nat, 1 * n = n.
  -----*)
Theorem producto_1_n: forall n: nat, 1 * n = n.
Proof.
 intro n.
              (* n : nat
                _____
                1 * n = n *)
 simpl.
              (* n + 0 = n *)
 rewrite suma n 0. (* n + 0 = n + 0 *)
 reflexivity.
Qed.
(* -----
  Ejercicio 4.9. Demostrar que
     forall b c : bool, disyuncion (conjuncion b c)
                     (disyuncion (negacion b)
                              (negacion c))
                  = true.
              *)
Theorem alternativas: forall b c : bool,
  disyuncion
    (conjuncion b c)
    (disyuncion (negacion b)
             (negacion c))
  = true.
Proof.
 intros [] [].
 - reflexivity. (* (true && true) || (negacion true || negacion true) = true *)
```

```
- reflexivity. (* (true && false) || (negacion true || negacion false) = true *
 - reflexivity. (* (false && true) || (negacion false || negacion true) = true *
 - reflexivity. (* (false && false) || (negacion false || negacion false)=true *
0ed.
(* -----
  Ejercicio 4.10. Demostrar que
    forall n m p : nat, (n + m) * p = (n * p) + (m * p).
  -----
Theorem producto_suma_distributiva_d: forall n m p : nat,
 (n + m) * p = (n * p) + (m * p).
Proof.
 intros n m p.
                       (* n, m, p : nat
                          _____
                          (n + m) * p = n * p + m * p *)
 induction n as [|n' HIn'].
                       (* m, p : nat
                          _____
                          (0 + m) * p = 0 * p + m * p *)
   reflexivity.
                       (* n', m, p : nat
                         HIn' : (n' + m) * p = n' * p + m * p
                         _____
                         (S n' + m) * p = S n' * p + m * p *)
   simpl.
                       (*p + (n' + m) * p = (p + n' * p) + m * p *)
                       (*p + (n'*p + m*p) = (p + n')*p + m*p*)
   rewrite HIn'.
   rewrite suma asociativa. (*(p+n'*p)+m*p=(p+n'*p)+m*p*)
   reflexivity.
Qed.
  Ejercicio 4.11. Demostrar que
    forall n m p : nat, n * (m * p) = (n * m) * p.
  -----*)
Theorem producto asociativa: forall n m p : nat,
 n * (m * p) = (n * m) * p.
Proof.
 intros n m p. (*n, m, p : nat)
```

```
_____
                    n * (m * p) = (n * m) * p *)
 induction n as [|n' HIn'].
                 (* m, p : nat
                    _____
                    0 * (m * p) = (0 * m) * p *)
                 (* 0 = 0 *)
   simpl.
   reflexivity.
                 (* n', m, p : nat
                    HIn': n'*(m*p) = (n'*m)*p
                    _____
                    S n' * (m * p) = (S n' * m) * p *)
                 (* m * p + n' * (m * p) = (m + n' * m) * p *)
   simpl.
   rewrite HIn'.
                 (*m*p+(n'*m)*p=(m+n'*m)*p*)
   rewrite producto suma distributiva d.
                 (*m*p+(n'*m)*p=m*p+(n'*m)*p*)
   reflexivity.
Qed.
(* -----
  Ejercicio 11. La táctica replace permite especificar el subtérmino
  que se desea reescribir y su sustituto:
     replace t with u
  sustituye todas las copias de la expresión t en el objetivo por la
  expresión u y añade la ecuación (t = u) como un nuevo subojetivo.
  El uso de la táctica replace es especialmente útil cuando la táctica
  rewrite actúa sobre una parte del objetivo que no es la que se desea.
  Demostrar, usando la táctica replace y sin usar
  [assert (n + m = m + n)], que
     forall n \, m \, p : nat, \, n + (m + p) = m + (n + p).
Theorem suma_permutada' : forall n m p : nat,
 n + (m + p) = m + (n + p).
Proof.
 intros n m p.
                            (* n, m, p : nat
                              _____
                              n + (m + p) = m + (n + p) *)
```

```
(* (n + m) + p = m + (n + p) *)
 rewrite suma_asociativa.
                     (* (n + m) + p = (m + n) + p *)
 rewrite suma asociativa.
 replace (n + m) with (m + n).
                      (* n, m, p : nat
                        _____
                        (m + n) + p = (m + n) + p *)
  reflexivity.
                      (* n, m, p : nat
                        _____
                        m + n = n + m *)
  rewrite suma_conmutativa. (* n + m = n + m *)
  reflexivity.
Qed.
§ Bibliografía
  *)
+ "Demostraciones por inducción" de Peirce et als. http://bit.ly/2NRSWTF
*)
```

Tema 3

Datos estructurados en Coq

```
(* T3: Datos estructurados en Coq *)
Require Export T2 Induccion.
(* El contenido de la teoría es
  1. Pares de números
  2. Listas de números
     1. El tipo de la lista de números.
     2. La función repite (repeat)
     3. La función longitud (length)
     4. La función conc (app)
     5. Las funciones primero (hd) y resto (tl)
     6. Ejercicios sobre listas de números
     7. Multiconjuntos como listas
  3. Razonamiento sobre listas
     1. Demostraciones por simplificación
     2. Demostraciones por casos
     3. Demostraciones por inducción
     4. Ejercicios
  4. Opcionales
  5. Diccionarios (o funciones parciales)
  6. Bibliografía
*)
  § 1. Pares de números
  _____*)
```

```
(* -----
 Nota. Se iniciar el módulo ListaNat.
 *)
Module ListaNat.
 Ejemplo 1.1. Definir el tipo ProdNat para los pares de números
 naturales con el constructor
   par : nat -> nat -> ProdNat.
 *)
Inductive ProdNat : Type :=
 par : nat -> nat -> ProdNat.
(* -----
 Ejemplo 1.2. Calcular el tipo de la expresión (par 3 5)
 *)
Check (par 3 5).
(* ===> par 3 5 : ProdNat *)
(* -----
 Ejemplo 1.3. Definir la función
   fst : ProdNat -> nat
 tal que (fst p) es la primera componente de p.
 -----*)
Definition fst (p : ProdNat) : nat :=
 match p with
 \mid par x y => x
 end.
(* -----
 Ejemplo 1.4. Evaluar la expresión
   fst (par 3 5)
 -----*)
Compute (fst (par 3 5)).
(* ===> 3 : nat *)
```

```
(* -----
 Ejemplo 1.5. Definir la función
   snd : ProdNat -> nat
 tal que (snd p) es la segunda componente de p.
 *)
Definition snd (p : ProdNat) : nat :=
 match p with
 | par x y => y
 end.
 Ejemplo 1.6. Definir la notación (x,y) como una abreviaura de
 (par \times y).
 *)
Notation "(x, y)" := (par x y).
(* -----
 Ejemplo 1.7. Evaluar la expresión
  fst (3,5)
 *)
Compute (fst (3,5)).
(* ===> 3 : nat *)
(* -----
 Ejemplo 1.8. Redefinir la función fst usando la abreviatura de pares.
 *)
Definition fst' (p : ProdNat) : nat :=
 match p with
 | (x,y) => x
 end.
(* -----
 Ejemplo 1.9. Redefinir la función snd usando la abreviatura de pares.
 -----*)
```

```
Definition snd' (p : ProdNat) : nat :=
 match p with
 | (x,y) => y
 end.
(* -----
 Ejemplo 1.10. Definir la función
   intercambia : ProdNat -> ProdNat
  tal que (intercambia p) es el par obtenido intercambiando las
  componentes de p.
  *)
Definition intercambia (p : ProdNat) : ProdNat :=
 match p with
 | (x,y) => (y,x)
 end.
(* ______
 Ejemplo 1.11. Demostrar que para todos los naturales
   (n,m) = (fst (n,m), snd (n,m)).
  *)
Theorem par_componentes1 : forall (n m : nat),
 (n,m) = (fst (n,m), snd (n,m)).
Proof.
 reflexivity.
Qed.
(* -----
 Ejemplo 1.12. Demostrar que para todo par de naturales
   p = (fst p, snd p).
  *)
(* 1º intento *)
Theorem par componentes2 : forall (p : ProdNat),
 p = (fst p, snd p).
Proof.
 simpl. (*
       _____
        forall p : ProdNat, p = (fst p, snd p) *)
```

```
Abort.
(* 2º intento *)
Theorem par_componentes : forall (p : ProdNat),
 p = (fst p, snd p).
Proof.
 intros p.
                (* p : ProdNat
                  _____
                  p = (fst p, snd p) *)
 destruct p as [n m]. (* n, m : nat
                  _____
                  (n, m) = (fst (n, m), snd (n, m)) *)
                (* (n, m) = (n, m) *)
 simpl.
 reflexivity.
Qed.
(* -----
  Ejercicio 1.1. Demostrar que para todo par de naturales p,
    (snd p, fst p) = intercambia p.
  *)
Theorem ejercicio 1 1: forall p : ProdNat,
 (snd p, fst p) = intercambia p.
Proof.
                (* p : ProdNat
 intro p.
                  _____
                  (snd p, fst p) = intercambia p *)
 destruct p as [n m]. (* n, m : nat
                  _____
                  (snd\ (n,\ m),\ fst\ (n,\ m)) = intercambia\ (n,\ m) *)
 simpl.
                (* (m, n) = (m, n) *)
 reflexivity.
0ed.
(* -----
  Ejercicio 1.2. Demostrar que para todo par de naturales p,
    fst (intercambia p) = snd p.
  *)
Theorem ejercicio_1_2: forall p : ProdNat,
```

```
fst (intercambia p) = snd p.
Proof.
            (* p : ProdNat
 intro p.
              _____
              fst (intercambia p) = snd p *)
 destruct p as [n m]. (* n, m : nat
              _____
              fst (intercambia (n, m)) = snd (n, m) *)
             (* m = m *)
 simpl.
 reflexivity.
0ed.
§ 2. Listas de números
 _____*)
(* _____
 §§ 2.1. El tipo de la lista de números.
 _____*)
(* -----
 Ejemplo 2.1.1. Definir el tipo ListaNat de la lista de los números
 naturales y cuyo constructores son
 + nil (la lista vacía) y
 + cons (tal que (cons x ys) es la lista obtenida añadiéndole x a ys.
 *)
Inductive ListaNat : Type :=
 | nil : ListaNat
 cons : nat -> ListaNat -> ListaNat.
(* -----
 Ejemplo 2.1.2. Definir la constante
   ejLista : ListaNat
 que es la lista cuyos elementos son 1, 2 y 3.
 *)
Definition ejLista := cons 1 (cons 2 (cons 3 nil)).
(* ______
```

```
Ejemplo 2.1.3. Definir la notación (x :: ys) como una abreviatura de
 (cons x ys).
 *)
Notation "x :: l" := (cons x l)
             (at level 60, right associativity).
(* -----
 Ejemplo 2.1.4. Definir la notación de las listas finitas escribiendo
 sus elementos entre corchetes y separados por puntos y comas.
 *)
Notation "[ ]" := nil.
Notation "[x; ...; y]" := (cons x ... (cons y nil) ...).
(* -----
 Ejemplo 2.1.5. Definir la lista cuyos elementos son 1, 2 y 3 mediante
 sistintas represerntaciones.
  -----*)
Definition ejListal := 1 :: (2 :: (3 :: nil)).
Definition ejLista2 := 1 :: 2 :: 3 :: nil.
Definition ejLista3 := [1;2;3].
§§ 2.2. La función repite (repeat)
 (* -----
 Ejemplo 2.2.1. Definir la función
   repite : nat -> nat -> ListaNat
 tal que (repite n k) es la lista formada por k veces el número n. Por
 ejemplo,
   repite 5 \ 3 = [5; 5; 5]
 Nota: La función repite es quivalente a la predefinida repeat.
 *)
Fixpoint repite (n k : nat) : ListaNat :=
 match k with
```

```
| 0 => nil
 \mid S k' \Rightarrow n :: (repite n k')
 end.
Compute (repite 5 3).
(* ===> [5; 5; 5] : ListaNat*)
§§ 2.3. La función longitud (length)
  (* -----
  Ejemplo 2.3.1. Definir la función
    longitud : ListaNat -> nat
  tal que (longitud xs) es el número de elementos de xs. Por ejemplo,
    longitud [4;2;6] = 3
 Nota: La función longitud es equivalente a la predefinida length
Fixpoint longitud (l:ListaNat) : nat :=
 match l with
 | nil => 0
 | h :: t => S (longitud t)
 end.
Compute (longitud [4;2;6]).
(* ===> 3 : nat *)
§§ 2.4. La función conc (app)
  _____*)
(* -----
  Ejemplo 2.4.1. Definir la función
    conc : ListaNat -> ListaNat -> ListaNat
  tal que (conc xs ys) es la concatenación de xs e ys. Por ejemplo,
    conc [1;3] [4;2;3;5] = [1; 3; 4; 2; 3; 5]
 Nota:La función conc es equivalente a la predefinida app.
```

```
*)
Fixpoint conc (xs ys : ListaNat) : ListaNat :=
 match xs with
 | nil => ys
 | x :: zs => x :: (conc zs ys)
 end.
Compute (conc [1;3] [4;2;3;5]).
(* ===> [1; 3; 4; 2; 3; 5] : ListaNat *)
(* -----
 Ejemplo 2.4.2. Definir la notación (xs ++ ys) como una abreviaura de
 (conc xs ys).
 *)
Notation "x ++ y" := (conc x y)
            (right associativity, at level 60).
(* -----
 Ejemplo 2.4.3. Demostrar que
   [1;2;3] ++ [4;5] = [1;2;3;4;5].
   nil ++ [4;5] = [4;5].
   [1;2;3] ++ nil = [1;2;3].
 *)
Example test conc1: [1;2;3] ++ [4;5] = [1;2;3;4;5].
Proof. reflexivity. Qed.
Example test conc2: nil ++ [4;5] = [4;5].
Proof. reflexivity. Qed.
Example test conc3: [1;2;3] ++ nil = [1;2;3].
Proof. reflexivity. Qed.
§§ 2.5. Las funciones primero (hd) y resto (tl)
 *)
(* ______
```

```
Ejemplo 2.5.1. Definir la función
    primero : nat -> ListaNat -> ListaNat
  tal que (primero d xs) es el primer elemento de xs o d, si xs es la lista
  vacía. Por ejemplo,
    primero 7 [3;2;5] = 3
    primero 7 [] = 7
  Nota. La función primero es equivalente a la predefinida hd
  -----*)
Definition primero (d : nat) (xs : ListaNat) : nat :=
 match xs with
 | nil => d
 | y :: ys => y
 end.
Compute (primero 7 [3;2;5]).
(* ===> 3 : nat *)
Compute (primero 7 []).
(* ===> 7 : nat *)
(* -----
  Ejemplo 2.5.2. Demostrar que
     primero \ 0 \ [1;2;3] = 1.
     resto [1;2;3] = [2;3].
  -----*)
Example prop primerol: primero 0 [1;2;3] = 1.
Proof. reflexivity. Qed.
Example prop_primero2: primero \theta [] = \theta.
Proof. reflexivity. Qed.
(* -----
  Ejemplo 2.5.3. Definir la función
    resto : ListaNat -> ListaNat
  tal que (resto xs) es el resto de xs. Por ejemplo.
    resto [3;2;5] = [2;5]
    resto [] = []
```

```
Nota. La función resto es equivalente la predefinida tl.
  -----*)
Definition resto (xs:ListaNat) : ListaNat :=
 match xs with
 | nil => nil
 | y :: ys => ys
 end.
Compute (resto [3;2;5]).
(* ===> [2; 5] : ListaNat *)
Compute (resto []).
(* ===> [ ] : ListaNat *)
(* -----
 Ejemplo 2.5.4. Demostrar que
    resto [1;2;3] = [2;3].
  -----*)
Example prop resto: resto [1;2;3] = [2;3].
Proof. reflexivity. Qed.
§§ 2.6. Ejercicios sobre listas de números
  _____*)
(* -----
 Eiercicio 2.6.1. Definir la función
   noCeros : ListaNat -> ListaNat
  tal que (noCeros xs) es la lista de los elementos de xs distintos de
  cero. Por ejemplo,
   noCeros [0;1;0;2;3;0;0] = [1;2;3].
  -----*)
Fixpoint noCeros (xs:ListaNat) : ListaNat :=
 match xs with
 | nil => nil
 | a::bs => match a with
       | 0 => noCeros bs
       | => a :: noCeros bs
```

```
end
end.
Compute (noCeros [0;1;0;2;3;0;0]).
(* ===> [1; 2; 3] : ListaNat *)
  Ejercicio 2.6.2. Definir la función
     impares : ListaNat -> ListaNat
  tal que (impares xs) es la lista de los elementos impares de
  xs. Por ejemplo,
     impares [0;1;0;2;3;0;0] = [1;3].
Fixpoint impares (xs:ListaNat) : ListaNat :=
 match xs with
  | nil => nil
  | y::ys => if esImpar y
            then y :: impares ys
            else impares ys
 end.
Compute (impares [0;1;0;2;3;0;0]).
(* ===> [1; 3] : ListaNat *)
(* -----
  Ejercicio 2.6.3. Definir la función
     nImpares : ListaNat -> nat
  tal que (nImpares xs) es el número de elementos impares de xs. Por
  ejemplo,
     nImpares [1;0;3;1;4;5] = 4.
     nImpares [0;2;4]
     nImpares nil
                          = 0.
Definition nImpares (xs:ListaNat) : nat :=
 longitud (impares xs).
Example prop_nImpares1: nImpares [1;0;3;1;4;5] = 4.
Proof. reflexivity. Qed.
```

```
Example prop nImpares2: nImpares [0;2;4] = 0.
Proof. reflexivity. Qed.
Example prop nImpares3: nImpares nil = 0.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.6.4. Definir la función
     intercaladas : ListaNat -> ListaNat -> ListaNat
   tal que (intercaladas xs ys) es la lista obtenida intercalando los
   elementos de xs e ys. Por ejemplo,
     intercaladas [1;2;3] [4;5;6] = [1;4;2;5;3;6].
     intercaladas [1] [4;5;6] = [1;4;5;6]. \\ intercaladas [1;2;3] [4] = [1;4;2;3]. \\ intercaladas [] [20;30] = [20;30].
Fixpoint intercaladas (xs ys : ListaNat) : ListaNat :=
 match xs with
  | nil => ys
  | x::xs' => match ys with
             | nil => xs
             | y::ys' => x::y::intercaladas xs' ys'
             end
 end.
Example prop intercaladas1: intercaladas [1;2;3] [4;5;6] = [1;4;2;5;3;6].
Proof. reflexivity. Qed.
Example prop_intercaladas2: intercaladas [1] [4;5;6] = [1;4;5;6].
Proof. reflexivity. Qed.
Example prop_intercaladas3: intercaladas [1;2;3] [4] = [1;4;2;3].
Proof. reflexivity. Qed.
Example prop intercaladas4: intercaladas [] [20;30] = [20;30].
Proof. reflexivity. Qed.
(* -----
```

```
§§ 2.7. Multiconjuntos como listas
  _____*)
  Ejemplo 2.7.1. Un multiconjunto es una colección de elementos donde
  no importa el orden de los elementos, pero sí el número de
  ocurrencias de cada elemento.
  Definir el tipo multiconjunto de los multiconjuntos de números
  naturales.
  -----*)
Definition multiconjunto := ListaNat.
(* ______
  Ejercicio 2.7.2. Definir la función
    nOcurrencias : nat -> multiconjunto -> nat
  tal que (n0currencias x ys) es el número de veces que aparece el
  elemento x en el multiconjunto ys. Por ejemplo,
    n0currencias 1 [1;2;3;1;4;1] = 3.
    n0currencias 6 [1;2;3;1;4;1] = 0.
  -----*)
Fixpoint nOcurrencias (x:nat) (ys:multiconjunto) : nat :=
 match ys with
 | nil => 0
 | y::ys' => if iguales nat y x
           then 1 + n0currencias x ys'
           else n0currencias x ys'
 end.
Example prop n0currencias1: n0currencias 1 [1;2;3;1;4;1] = 3.
Proof. reflexivity. Qed.
Example prop n0currencias2: n0currencias 6 [1;2;3;1;4;1] = 0.
Proof. reflexivity. Qed.
  Ejercicio 2.7.3. Definir la función
    suma : multiconjunto -> multiconjunto -> multiconjunto
```

```
tal que (suma xs ys) es la suma de los multiconjuntos xs e ys. Por
  ejemplo,
                                       = [1; 2; 3; 1; 4; 1]
     suma [1;2;3] [1;4;1]
     n0currencias 1 (suma [1;2;3] [1;4;1]) = 3.
Definition suma : multiconjunto -> multiconjunto -> multiconjunto :=
 conc.
Example prop sum: n0currencias 1 (suma [1;2;3] [1;4;1]) = 3.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.7.4. Definir la función
     agrega : nat -> multiconjunto -> multiconjunto
  tal que (agrega x ys) es el multiconjunto obtenido añadiendo el
  elemento x al multiconjunto ys. Por ejemplo,
     n0currencias 1 (agrega 1 [1;4;1]) = 3.
     n0currencias 5 (agrega 1 [1;4;1]) = 0.
Definition agrega (x:nat) (ys:multiconjunto) : multiconjunto :=
 x :: ys.
Example prop agregal: n0currencias 1 (agrega 1 [1;4;1]) = 3.
Proof. reflexivity. Qed.
Example prop agrega2: n0currencias 5 (agrega 1 [1;4;1]) = 0.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.7.5. Definir la función
     pertenece : nat -> multiconjunto -> bool
  tal que (pertenece x ys) se verfica si x pertenece al multiconjunto
  vs. Por eiemplo,
     pertenece 1 [1;4;1] = true.
     pertenece 2 [1;4;1] = false.
Definition pertenece (x:nat) (ys:multiconjunto) : bool :=
```

```
negacion \ (iguales\_nat \ 0 \ (n0currencias \ x \ ys)) \, .
Example prop pertenece1: pertenece 1 [1;4;1] = true.
Proof. reflexivity. Qed.
Example prop pertenece2: pertenece 2[1;4;1] = false.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.7.6. Definir la función
     eliminaUna : nat -> multiconjunto -> multiconjunto
  tal que (eliminaUna x ys) es el multiconjunto obtenido eliminando una
  ocurrencia de x en el multiconjunto ys. Por ejemplo,
     n0currencias 5 (eliminaUna 5 [2;1;5;4;1]) = 0.
     n0currencias\ 4\ (eliminaUna\ 5\ [2;1;4;5;1;4])\ =\ 2.
     n0currencias 5 (eliminaUna 5 [2;1;5;4;5;1;4]) = 1.
Fixpoint eliminaUna (x:nat) (ys:multiconjunto) : multiconjunto :=
 match ys with
  | nil => nil
  | y :: ys' \Rightarrow if iguales nat y x
             then vs'
              else y :: eliminaUna x ys'
 end.
Example prop eliminaUna1: nOcurrencias 5 (eliminaUna 5 [2;1;5;4;1]) = 0.
Proof. reflexivity. Qed.
Example prop eliminaUna2: n0currencias 5 (eliminaUna 5 [2;1;4;1]) = 0.
Proof. reflexivity. Qed.
Example prop eliminaUna3: n0currencias 4 (eliminaUna 5 [2;1;4;5;1;4]) = 2.
Proof. reflexivity. Qed.
Example prop eliminaUna4: n0currencias 5 (eliminaUna 5 [2;1;5;4;5;1;4]) = 1.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.7.7. Definir la función
```

```
eliminaTodas : nat -> multiconjunto -> multiconjunto
   tal que (eliminaTodas x ys) es el multiconjunto obtenido eliminando
   todas las ocurrencias de x en el multiconjunto ys. Por ejemplo,
     nOcurrencias 5 (eliminaTodas 5 [2;1;5;4;1])
     nOcurrencias 5 (eliminaTodas 5 [2;1;4;1])
                                                        = 0.
     nOcurrencias 4 (eliminaTodas 5 [2;1;4;5;1;4])
     n0currencias 5 (eliminaTodas 5 [2;1;5;4;5;1;4;5;1;4]) = 0.
Fixpoint eliminaTodas (x:nat) (ys:multiconjunto) : multiconjunto :=
 match ys with
  | nil => nil
  | y :: ys' => if iguales_nat y x
              then eliminaTodas x ys'
              else y :: eliminaTodas x ys'
  end.
Example prop_eliminaTodas1: n0currencias 5 (eliminaTodas 5 [2;1;5;4;1]) = 0.
Proof. reflexivity. Qed.
Example prop_eliminaTodas2: n0currencias 5 (eliminaTodas 5 [2;1;4;1]) = 0.
Proof. reflexivity. Qed.
Example prop eliminaTodas3: n0currencias 4 (eliminaTodas 5 [2;1;4;5;1;4]) = 2.
Proof. reflexivity. Qed.
Example prop eliminaTodas4: n0currencias 5 (eliminaTodas 5 [1;5;4;5;4;5;1]) = 0.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.7.8. Definir la función
     submulticonjunto : multiconjunto -> multiconjunto -> bool
   tal que (submulticonjunto xs ys) se verifica si xs es un
   submulticonjunto de ys. Por ejemplo,
     submulticonjunto [1;2] [2;1;4;1] = true.
     submulticonjunto [1;2;2] [2;1;4;1] = false.
Fixpoint submulticonjunto (xs:multiconjunto) (ys:multiconjunto) : bool :=
 match xs with
```

```
| nil => true
 | x::xs' => pertenece x ys && submulticonjunto xs' (eliminaUna x ys)
 end.
Example prop_submulticonjunto1: submulticonjunto [1;2] [2;1;4;1] = true.
Proof. reflexivity. Qed.
Example prop submulticonjunto2: submulticonjunto [1;2;2] [2;1;4;1] = false.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 2.7.9. Escribir una propiedad sobre multiconjuntos con las
  funciones n0currencias y agrega y demostrarla.
  *)
Theorem nOcurrencias_conc: forall xs ys : multiconjunto, forall n:nat,
 n0currencias n (conc xs ys) = n0currencias n xs + n0currencias n ys.
Proof.
 intros xs ys n.
                           (* xs, ys : multiconjunto
                              n : nat
                              _____
                              n0currencias n (xs ++ ys) =
                              n0currencias n xs + n0currencias n ys *)
 induction xs as [|x xs' HI].
                           (* ys : multiconjunto
                              n : nat
                              ______
                              n0currencias n ([] ++ ys) =
                              n0currencias n [ ] + n0currencias n ys *)
                           (* n0currencias n ys = n0currencias n ys *)
   simpl.
   reflexivity.
                           (* x : nat
                              xs' : ListaNat
                             ys : multiconjunto
                              n : nat
                             HI: n0currencias n (xs' ++ ys) =
                                  nOcurrencias n xs' + nOcurrencias n ys
                              _____
                              n0currencias\ n\ ((x :: xs') ++ ys) =
                              n0currencias n (x :: xs') +
```

```
n0currencias n ys *)
                        (* (if iguales nat x n
   simpl.
                           then S (n0currencias n (xs' ++ ys))
                           else n0currencias n (xs' ++ ys)) =
                          (if iguales nat x n
                           then S (nOcurrencias n xs')
                           else n0currencias n xs') +
                          n0currencias n ys *)
   destruct (iguales_nat x n).
                        (* S (nOcurrencias n (xs' ++ ys)) =
                          S (n0currencias n xs') +
                          n0currencias n ys *)
                        (* S (nOcurrencias n (xs' ++ ys)) =
    simpl.
                          S (n0currencias n xs' +
                            n0currencias n ys) *)
                        (* S (nOcurrencias n xs' + nOcurrencias n ys) =
    rewrite HI.
                          S (nOcurrencias n xs' + nOcurrencias n ys) *)
    reflexivity.
                        (* n0currencias n (xs' ++ ys) =
                          n0currencias n xs' + n0currencias n ys *)
                        (* n0currencias n xs' + n0currencias n ys =
    rewrite HI.
                          n0currencias n xs' + n0currencias n ys *)
    reflexivity.
Qed.
  § 3. Razonamiento sobre listas
  ______*)
§§ 3.1. Demostraciones por simplificación
  _____*)
(* ______
  Ejemplo 3.1.1. Demostrar que, para toda lista de naturales xs,
    [] ++ xs = xs
  *)
Theorem nil_conc : forall xs:ListaNat,
 [] ++ xs = xs.
```

```
Proof.
 reflexivity.
0ed.
§§ 3.2. Demostraciones por casos
 _____*)
(* -----
 Ejemplo 3.2.1. Demostrar que, para toda lista de naturales xs,
   pred (longitud xs) = longitud (resto xs)
  -----*)
Theorem resto_longitud_pred : forall xs:ListaNat,
 pred (longitud xs) = longitud (resto xs).
Proof.
                (* xs : ListaNat
 intros xs.
                  _____
                  Nat.pred (longitud xs) = longitud (resto xs) *)
 destruct xs as [|x xs'].
                (*
                  _____
                  Nat.pred (longitud []) = longitud (resto []) *)
  reflexivity.
                (*x:nat)
                  xs' : ListaNat
                  _____
                  Nat.pred (longitud (x :: xs')) =
                   longitud (resto (x :: xs')) *)
  reflexivity.
0ed.
§§ 3.3. Demostraciones por inducción
 (* -----
 Ejemplo 3.3.1. Demostrar que la concatenación de listas de naturales
 es asociativa; es decir,
   (xs ++ ys) ++ zs = xs ++ (ys ++ zs).
```

```
*)
Theorem conc asociativa: forall xs ys zs : ListaNat,
 (xs ++ ys) ++ zs = xs ++ (ys ++ zs).
Proof.
 intros xs ys zs.
                        (* xs, ys, zs : ListaNat
                          _____
                          (xs ++ ys) ++ zs = xs ++ (ys ++ zs) *)
 induction xs as [|x xs' HI].
                        (* ys, zs : ListaNat
                          _____
                          ([] ++ ys) ++ zs = [] ++ (ys ++ zs) *)
   reflexivity.
                        (* x : nat
                          xs', ys, zs : ListaNat
                          HI : (xs' ++ ys) ++ zs = xs' ++ (ys ++ zs)
                          _____
                          ((x :: xs') ++ ys) ++ zs =
                           (x :: xs') ++ (ys ++ zs) *)
                        (* (x :: (xs' ++ ys)) ++ zs =
   simpl.
                          x :: (xs' ++ (ys ++ zs)) *)
   rewrite -> HI.
                       (* x :: (xs' ++ (ys ++ zs)) =
                          x :: (xs' ++ (ys ++ zs)) *)
   reflexivity.
0ed.
(* -----
  Ejemplo 3.3.2. Definir la función
    inversa : ListaNat -> ListaNat
  tal que (inversa xs) es la inversa de xs. Por ejemplo,
    inversa [1;2;3] = [3;2;1].
    inversa nil = nil.
  Nota. La función inversa es equivalente a la predefinida rev.
  *)
Fixpoint inversa (xs:ListaNat) : ListaNat :=
 match xs with
 | nil => nil
 | x::xs' => inversa xs' ++ [x]
```

```
end.
Example prop_inversal: inversa [1;2;3] = [3;2;1].
Proof. reflexivity. Qed.
Example prop_inversa2: inversa nil = nil.
Proof. reflexivity. Qed.
(* -----
  Ejemplo 3.3.3. Demostrar que
     longitud (inversa xs) = longitud xs
  *)
(* 1º intento *)
Theorem longitud inversal: forall xs:ListaNat,
 longitud (inversa xs) = longitud xs.
Proof.
 intros xs.
 induction xs as [|x xs' HI].
                             longitud (inversa [ ]) = longitud [ ] *)
   reflexivity.
                           (*x:nat)
                             xs' : ListaNat
                             HI : longitud (inversa xs') = longitud xs'
                             _____
                             longitud (inversa (x :: xs')) =
                              longitud (x :: xs') *)
                           (* longitud (inversa xs' ++ [x]) =
   simpl.
                              S (longitud xs')*)
   rewrite <- HI.
                          (* longitud (inversa xs' ++ [x]) =
                              S (longitud (inversa xs')) *)
Abort.
(* Nota: Para simplificar la última expresión se necesita el siguiente lema. *)
Lemma longitud conc : forall xs ys : ListaNat,
 longitud (xs ++ ys) = longitud xs + longitud ys.
Proof.
```

```
(* xs, ys : ListaNat
 intros xs ys.
                               _____
                               longitud (xs ++ ys) =
                                longitud xs + longitud ys *)
 induction xs as [| x xs' HI].
                            (* ys : ListaNat
                               longitud ([]] ++ ys) =
                                longitud [ ] + longitud ys *)
   reflexivity.
                            (*x:nat)
                               xs', ys : ListaNat
                               HI : longitud (xs' ++ ys) =
                                    longitud xs' + longitud ys
                               _____
                               longitud ((x :: xs') ++ ys) =
                               longitud (x :: xs') + longitud ys *)
   simpl.
                            (* S (longitud (xs' ++ ys)) =
                               S (longitud xs' + longitud ys) *)
   rewrite -> HI.
                            (* S (longitud xs' + longitud ys) =
                               S (longitud xs' + longitud ys) *)
   reflexivity.
0ed.
(* 2º intento *)
Theorem longitud_inversa : forall xs:ListaNat,
 longitud (inversa xs) = longitud xs.
Proof.
 intros xs.
                            (* xs : ListaNat
                                   _____
                               longitud (inversa xs) = longitud xs *)
 induction xs as [| x xs' HI].
                            (*
                               _____
                               longitud (inversa [ ]) = longitud [ ] *)
   reflexivity.
                            (* x : nat
                              xs' : ListaNat
                               HI : longitud (inversa xs') = longitud xs'
                               _____
```

```
longitud (inversa (x :: xs')) =
                           longitud (x :: xs') *)
                        (* longitud (inversa xs' ++ [x]) =
   simpl.
                          S (longitud xs') *)
                        (* longitud (inversa xs') + longitud [x] =
   rewrite longitud_conc.
                          S (longitud xs') *)
   rewrite HI.
                        (* longitud xs' + longitud [x] =
                          S (longitud xs') *)
                        (* longitud xs' + 1 = S (longitud xs') *)
   simpl.
                        (*1 + longitud xs' = S (longitud xs') *)
   rewrite suma conmutativa.
   reflexivity.
0ed.
§§ 3.4. Ejercicios
  ______*)
(* -----
  Ejercicio 3.4.1. Demostrar que la lista vacía es el elemento neutro
  por la derecha de la concatenación de listas.
  *)
Theorem conc_nil: forall xs:ListaNat,
 xs ++ [] = xs.
Proof.
 intros xs.
                        (* xs : ListaNat
                          _____
                          xs ++ [] = xs *)
 induction xs as [| x xs' HI].
                        (*
                          [ ] ++ [ ] = [ ] *)
   reflexivity.
                        (* x : nat
                          xs' : ListaNat
                          HI : xs' ++ [] = xs'
                          _____
                          (x :: xs') ++ [] = x :: xs' *)
   simpl.
                        (* x :: (xs' ++ [ ]) = x :: xs' *)
                        (* x :: xs' = x :: xs' *)
   rewrite HI.
```

```
reflexivity.
Qed.
  Ejercicio 3.4.2. Demostrar que inversa es un endomorfismo en
   (ListaNat,++); es decir,
     inversa (xs ++ ys) = inversa ys ++ inversa xs.
Theorem inversa_conc: forall xs ys : ListaNat,
  inversa (xs ++ ys) = inversa ys ++ inversa xs.
Proof.
  intros xs ys.
                              (* xs, ys : ListaNat
                                _____
                                inversa (xs ++ ys) =
                                inversa ys ++ inversa xs *)
 induction xs as [|x xs' HI].
                              (* ys : ListaNat
                                _____
                                inversa ([ ] ++ ys) =
                                inversa ys ++ inversa [ ] *)
   simpl.
                              (* inversa ys = inversa ys ++ [ ] *)
                             (* inversa ys = inversa ys *)
   rewrite conc nil.
   reflexivity.
                              (*x:nat)
                                xs', ys : ListaNat
                                HI : inversa (xs' ++ ys) =
                                     inversa ys ++ inversa xs'
                                _____
                                inversa ((x :: xs') ++ ys) =
                                inversa ys ++ inversa (x :: xs') *)
   simpl.
                              (* inversa (xs' ++ ys) ++ [x] =
                                inversa ys ++ (inversa xs' ++ [x]) *)
                              (* (inversa\ ys\ ++\ inversa\ xs')\ ++\ [x] =
   rewrite HI.
                                inversa ys ++ (inversa xs' ++ [x]) *)
   rewrite conc asociativa.
                             (* inversa ys ++ (inversa xs' ++ [x]) =
                                inversa ys ++ (inversa xs' ++ [x]) *)
   reflexivity.
Qed.
```

```
(* -----
  Ejercicio 3.4.3. Demostrar que inversa es involutiva; es decir,
    inversa (inversa xs) = xs.
  -----*)
Theorem inversa involutiva: forall xs:ListaNat,
 inversa (inversa xs) = xs.
Proof.
 induction xs as [|x xs' HI].
                          _____
                          inversa (inversa [ ]) = [ ] *)
   reflexivity.
                        (*x:nat)
                          xs' : ListaNat
                          HI : inversa (inversa xs') = xs'
                          _____
                          inversa (inversa (x :: xs')) = x :: xs'*)
                        (* inversa (inversa xs' ++ [x]) = x :: xs' *)
   simpl.
                        (* inversa [x] ++ inversa (inversa xs') =
   rewrite inversa conc.
                          x :: xs' *)
   simpl.
                        (* x :: inversa (inversa xs') = x :: xs' *)
                        (* x :: xs' = x :: xs' *)
   rewrite HI.
   reflexivity.
0ed.
(* -----
  Ejercicio 3.4.4. Demostrar que
    xs ++ (ys ++ (zs ++ vs)) = ((xs ++ ys) ++ zs) ++ vs.
  *)
Theorem conc asociativa4 : forall xs ys zs vs : ListaNat,
 xs ++ (ys ++ (zs ++ vs)) = ((xs ++ ys) ++ zs) ++ vs.
Proof.
 intros xs ys zs vs.
                    (* xs, ys, zs, vs : ListaNat
                       _____
                       xs ++ (ys ++ (zs ++ vs)) =
                       ((xs ++ ys) ++ zs) ++ vs *)
 rewrite conc_asociativa. (* xs ++ (ys ++ (zs ++ vs)) =
                       (xs ++ ys) ++ (zs ++ vs) *)
```

```
rewrite conc asociativa. (* xs ++ (ys ++ (zs ++ vs)) =
                         xs ++ (ys ++ (zs ++ vs)) *)
 reflexivity.
0ed.
(* -----
  Ejercicio 3.4.5. Demostrar que al concatenar dos listas no aparecen ni
  desaparecen ceros.
  *)
Lemma noCeros conc : forall xs ys : ListaNat,
 noCeros (xs ++ ys) = (noCeros xs) ++ (noCeros ys).
Proof.
 intros xs ys.
                          (* xs, ys : ListaNat
                            _____
                            noCeros (xs ++ ys) =
                            noCeros xs ++ noCeros ys *)
 induction xs as [|x xs' HI].
                          (* ys : ListaNat
                            _____
                            noCeros ([] ++ ys) =
                            noCeros [] ++ noCeros ys *)
   reflexivity.
                          (*x:nat)
                            xs', ys : ListaNat
                            HI : noCeros (xs' ++ ys) =
                                noCeros xs' ++ noCeros ys
                            _____
                            noCeros ((x :: xs') ++ ys) =
                            noCeros (x :: xs') ++ noCeros ys *)
   destruct x.
                          (* noCeros ((0 :: xs') ++ ys) =
                            noCeros (0 :: xs') ++ noCeros ys *)
                          (* noCeros (xs' ++ ys) =
     simpl.
                            noCeros xs' ++ noCeros vs *)
     rewrite HI.
                          (* noCeros xs' ++ noCeros ys =
                            noCeros xs' ++ noCeros ys *)
     reflexivity.
                          (* noCeros ((S x :: xs') ++ ys) =
                            noCeros (S x :: xs') ++ noCeros ys *)
```

```
simpl.
                         (* S x :: noCeros (xs' ++ ys) =
                            (S x :: noCeros xs') ++ noCeros ys *)
                         (* S x :: (noCeros xs' ++ noCeros ys) =
     rewrite HI.
                            (S x :: noCeros xs') ++ noCeros ys *)
     reflexivity.
0ed.
(* -----
  Ejercicio 3.4.6. Definir la función
     iguales lista : ListaNat -> ListaNat -> bool
  tal que (iguales_lista xs ys) se verifica si las listas xs e ys son
  iguales. Por ejemplo,
     iguales lista nil nil = true.
    iguales_lista [1;2;3] [1;2;3] = true.
    iguales lista [1;2;3] [1;2;4] = false.
Fixpoint iguales_lista (xs ys : ListaNat) : bool:=
 match xs, ys with
 | x::xs', y::ys' => iguales_nat x y && iguales_lista xs' ys'
              => false
end.
Example prop_iguales_lista1: (iguales_lista nil nil = true).
Proof. reflexivity. Qed.
Example prop iguales lista2: iguales lista [1;2;3] [1;2;3] = true.
Proof. reflexivity. Qed.
Example prop_iguales_lista3: iguales_lista [1;2;3] [1;2;4] = false.
Proof. reflexivity. Qed.
(* ______
  Ejercicio 3.4.7. Demostrar que la igualdad de listas cumple la
  propiedad reflexiva.
  *)
Theorem iguales_lista_refl : forall xs:ListaNat,
 iguales lista xs xs = true.
```

```
Proof.
  induction xs as [|x xs' HI].
                              (*
                                iguales lista [ ] [ ] = true *)
   reflexivity.
                              (*x:nat)
                                xs': ListaNat
                                HI : iguales_lista xs' xs' = true
                                 _____
                                iguales lista (x :: xs') (x :: xs') = true *)
   simpl.
                              (* iguales nat x x &&
                                iguales_lista xs' xs' = true *)
   rewrite HI.
                              (* iguales nat x x && true = true *)
   rewrite iguales nat refl. (* true && true = true *)
   reflexivity.
Qed.
  Ejercicio 3.4.8. Demostrar que al incluir un elemento en un
  multiconjunto, ese elemento aparece al menos una vez en el
   resultado.
Theorem nOcurrencias agrega: forall (x:nat) (xs:multiconjunto),
 menor_o_igual 1 (nOcurrencias x (agrega x xs)) = true.
Proof.
  intros x xs.
                           (*x:nat)
                              xs : multiconjunto
                              _____
                              menor_o_igual 1 (n0currencias x (agrega x xs)) =
                              true *)
  simpl.
                           (* match
                               (if iguales_nat x x then S (n0currencias x xs)
                                                  else n0currencias x xs)
                              with
                               | 0 => false
                               | S _ => true
                              end =
                              true *)
```

```
rewrite iguales nat refl. (* true = true *)
 reflexivity.
0ed.
(* -----
  Ejercicio 3.4.9. Demostrar que cada número natural es menor o igual
  que su siquiente.
  *)
Theorem menor_o_igual_n_Sn: forall n:nat,
 menor_o_igual n (S n) = true.
Proof.
 intros n.
                    (* n : nat
                      _____
                      menor o iqual n(S n) = true *)
 induction n as [|n' HI].
                    (*
                      _____
                      menor o iqual 0 1 = true *)
   reflexivity.
                    (* n' : nat
                      HI : menor o igual n' (S n') = true
                      _____
                      menor o igual (S n') (S (S n')) = true *)
                    (* menor_o_igual n' (S n') = true *)
   simpl.
                    (* true = true *)
   rewrite HI.
   reflexivity.
0ed.
(* -----
  Ejercicio 3.4.10. Demostrar que al borrar una ocurrencia de 0 de un
  multiconjunto el número de ocurrencias de 0 en el resultado es menor
  o igual que en el original.
  *)
Theorem remove decreases nOcurrencias: forall (xs : multiconjunto),
 menor_o_igual (n0currencias 0 (eliminaUna 0 xs)) (n0currencias 0 xs) = true.
Proof.
 induction xs as [|x xs' HI].
                         (*
```

```
_____
                                   menor o igual (nOcurrencias O (eliminaUna O
                                                 (n0currencias 0 [])
                                   = true *)
   reflexivity.
                                 (*x:nat)
                                   xs': ListaNat
                                   HI: menor_o_igual (nOcurrencias O (eliminaUn
                                                      (n0currencias 0 xs')
                                       = true
                                   _____
                                   menor o igual (nOcurrencias O (eliminaUna O
                                                  (n0currencias 0 (x :: xs'))
                                   = true *)
   destruct x.
                                 (* menor_o_igual (nOcurrencias O (eliminaUna O
                                                 (n0currencias 0 (0 :: xs'))
                                   = true *)
     simpl.
                                 (* menor o igual (n0currencias 0 xs')
                                                 (S (n0currencias 0 xs'))
                                   = true *)
     rewrite menor_o_igual_n_Sn. (* true = true *)
     reflexivity.
                                 (* menor o igual (n0currencias 0
                                                   (eliminaUna 0 (S x :: xs')))
                                                 (n0currencias 0 (S x :: xs'))
                                   = true *)
     simpl.
                                 (* menor_o_igual (n0currencias 0 (eliminaUna 0
                                                 (n0currencias 0 xs')
                                   = true *)
     rewrite HI.
                                (* true = true *)
     reflexivity.
0ed.
  Ejercicio 3.4.11. Escribir un teorema con las funciones nOcurrencias
  y suma de los multiconjuntos.
```

Theorem nOcurrencias_suma:

```
forall x : nat, forall xs ys : multiconjunto,
  n0currencias x (suma xs ys) = n0currencias x xs + n0currencias x ys.
Proof.
 intros x xs ys.
                                (*x:nat)
                                  xs, ys: multiconjunto
                                  _____
                                  n0currencias x (suma xs ys) =
                                  n0currencias x xs + n0currencias x ys *)
  induction xs as [|x' xs' HI].
                                (* x : nat
                                  ys : multiconjunto
                                  _____
                                  n0currencias x (suma [ ] ys) =
                                  n0currencias x [ ] + n0currencias x ys *)
   reflexivity.
                                (* x, x' : nat)
                                  xs': ListaNat
                                  ys : multiconjunto
                                  HI : nOcurrencias x (suma xs' ys) =
                                       nOcurrencias x xs' + nOcurrencias x ys
                                  _____
                                  n0currencias x (suma (x' :: xs') ys) =
                                  nOcurrencias x (x' :: xs') + nOcurrencias x y
   simpl.
                                (* (if iguales nat x' x
                                      then S (n0currencias x (suma xs' ys))
                                      else nOcurrencias x (suma xs' ys))
                                  (if iguales_nat x' x
                                      then S (n0currencias x xs')
                                      else n0currencias x xs') + n0currencias x
   destruct (iguales_nat x' x).
                                (* S (n0currencias x (suma xs' ys)) =
                                  S (n0currencias x xs') + n0currencias x ys *)
                                (* S (n0currencias x xs' + n0currencias x ys) =
     rewrite HI.
                                  S (nOcurrencias x xs') + nOcurrencias x ys *)
     reflexivity.
                                (* n0currencias x (suma xs' ys) =
                                  n0currencias x xs' + n0currencias x ys *)
     rewrite HI.
                                (* n0currencias x xs' + n0currencias x ys =
                                  n0currencias x xs' + n0currencias x ys *)
```

```
reflexivity.
0ed.
  Ejercicio 3.4.12. Demostrar que la función inversa es inyectiva; es
  decir,
    forall (xs ys : ListaNat), inversa xs = inversa ys -> xs = ys.
Theorem inversa_invectiva: forall (xs ys : ListaNat),
 inversa xs = inversa ys -> xs = ys.
Proof.
                        (* xs, ys : ListaNat
 intros xs ys H.
                          H : inversa xs = inversa ys
                          _____
                          xs = ys *)
 rewrite <- inversa involutiva. (* xs = inversa (inversa ys) *)
 rewrite <- H.
                       (* xs = inversa (inversa xs) *)
 rewrite inversa involutiva. (* xs = xs *)
 reflexivity.
Qed.
§ 4. Opcionales
  _____*)
(* -----
  Ejemplo 4.1. Definir el tipo OpcionalNat con los contructores
    Some : nat -> OpcionalNat
    None : OpcionalNat.
  Inductive OpcionalNat : Type :=
 | Some : nat -> OpcionalNat
 | None : OpcionalNat.
(* -----
  Ejemplo 4.2. Definir la función
    nthOpcional : ListaNat -> nat -> OpcionalNat
  tal que (nthOpcional xs n) es el n-ésimo elemento de la lista xs o None
```

```
si la lista tiene menos de n elementos. Por ejemplo,
     nthOpcional [4;5;6;7] 0 = Some 4.
     nthOpcional [4;5;6;7] 3 = Some 7.
     nthOpcional [4;5;6;7] 9 = None.
Fixpoint nthOpcional (xs:ListaNat) (n:nat) : OpcionalNat :=
 match xs with
  ∣ nil
            => None
  | x :: xs' => match iguales nat n 0 with
               | true => Some x
               | false => nthOpcional xs' (pred n)
               end
 end.
Example prop_nth0pcional1 : nth0pcional [4;5;6;7] 0 = Some 4.
Proof. reflexivity. Qed.
Example prop nthOpcional2 : nthOpcional [4;5;6;7] 3 = Some 7.
Proof. reflexivity. Qed.
Example prop nthOpcional3 : nthOpcional [4;5;6;7] 9 = None.
Proof. reflexivity. Qed.
(* Introduciendo condicionales nos gueda: *)
Fixpoint nthOpcional' (xs:ListaNat) (n:nat) : OpcionalNat :=
 match xs with
  | nil => None
  \mid x :: xs' \Rightarrow if iguales nat x 0
               then Some x
               else nthOpcional' xs' (pred n)
 end.
(* -----
  Ejemplo 4.3. Definir la función
     eliminaOpcionalNat -> OpcionalNat -> nat
   tal que (option elim d o) es el valor de o, si o tiene valor o es d
  en caso contrario. Por ejemplo,
     eliminaOpcionalNat 3 (Some 7) = 7
     eliminaOpcionalNat 3 None = 3
```

```
-----*)
Definition eliminaOpcionalNat (d : nat) (o : OpcionalNat) : nat :=
 match o with
 | Some n' => n'
 | None => d
 end.
Compute (eliminaOpcionalNat 3 (Some 7)).
(* ===> 7 : nat *)
Compute (eliminaOpcionalNat 3 None).
(* ===> 3 : nat *)
(* -----
  Ejercicio 4.1. Definir la función
    primeroOpcional : ListaNat -> OpcionalNat
  tal que (primeroOpcional xs) es el primer elemento de xs, si xs es no
  vacía; o es None, en caso contrario. Por ejemplo,
    primeroOpcional [] = None.
    primeroOpcional [1] = Some 1.
    primeroOpcional [5;6] = Some 5.
  *)
Definition primeroOpcional (xs : ListaNat) : OpcionalNat :=
 match xs with
 | nil => None
 | x::xs' => Some x
 end.
Example prop primeroOpcional1 : primeroOpcional [] = None.
Proof. reflexivity. Qed.
Example prop_primeroOpcional2 : primeroOpcional [1] = Some 1.
Proof. reflexivity. Qed.
Example prop primeroOpcional3 : primeroOpcional [5;6] = Some 5.
Proof. reflexivity. Qed.
(* -----
  Ejercicio 4.2. Demostrar que
```

```
primero\ d\ xs = eliminaOpcionalNat\ d\ (primeroOpcional\ xs).
Theorem primero_primeroOpcional: forall (xs:ListaNat) (d:nat),
 primero d xs = eliminaOpcionalNat d (primeroOpcional xs).
Proof.
 intros xs d.
                 (* xs : ListaNat
                   d : nat
                   _____
                   primero d xs = eliminaOpcionalNat d (primeroOpciona
 destruct xs as [|x xs'].
                  (* d : nat
                   _____
                   primero d [] = eliminaOpcionalNat d (primeroOpciona
  reflexivity.
                  (* x : nat
                   xs': ListaNat
                   d : nat
                   _____
                   primero d (x :: xs') =
                   eliminaOpcionalNat d (primeroOpcional (x :: xs')) *
  simpl.
                  (* x = x *)
  reflexivity.
Qed.
 Nota. Finalizar el módulo ListaNat.
  *)
End ListaNat.
§ 5. Diccionarios (o funciones parciales)
 *)
(* -----
 Ejemplo 5.1. Definir el tipo id (por identificador) con el
  constructor
   Id : nat -> id.
  *)
```

```
Inductive id : Type :=
 | Id : nat -> id.
(* -----
  Ejemplo 5.2. Definir la función
    iguales id : id -> id -> bool
  tal que (iguales id x1 x2) se verifica si tienen la misma clave. Por
  ejemplo,
    iguales id (Id 3) (Id 3) = true : bool
    iguales_id (Id 3) (Id 4) = false : bool
  *)
Definition iguales_id (x1 x2 : id) :=
 match x1, x2 with
 | Id n1, Id n2 => iguales nat n1 n2
 end.
Compute (iguales_id (Id 3) (Id 3)).
(* ===> true : bool *)
Compute (iguales id (Id 3) (Id 4)).
(* ===> false : bool *)
(* -----
  Ejercicio 5.1. Demostrar que iguales id es reflexiva.
  *)
Theorem iguales id refl : forall x:id, iguales id x x = true.
Proof.
                    (*x:id)
 intro x.
                      _____
                      iguales id x x = true *)
 destruct x.
                    (* iguales id (Id n) (Id n) = true *)
                    (* iguales nat n n = true *)
 simpl.
 rewrite iguales nat refl. (* true = true *)
 reflexivity.
Qed.
(* -----
  Ejemplo 5.3. Iniciar el módulo Diccionario que importa a ListaNat.
```

```
*)
Module Diccionario.
Export ListaNat.
(* -----
  Ejemplo 5.4. Definir el tipo diccionario con los contructores
    vacio : diccionario
    registro : id -> nat -> diccionario -> diccionario.
  *)
Inductive diccionario : Type :=
 | vacio : diccionario
 | registro : id -> nat -> diccionario -> diccionario.
(* -----
  Ejemplo 5.5. Definir los diccionarios cuyos elementos son
    + []
    + [(3,6)]
    + [(2,4), (3,6)]
  -----*)
Definition diccionario1 := vacio.
Definition diccionario2 := registro (Id 3) 6 diccionario1.
Definition diccionario3 := registro (Id 2) 4 diccionario2.
(* -----
  Eiemplo 5.6. Definir la función
    valor : id -> diccionario -> OpcionalNat
  tal que (valor i d) es el valor de la entrada de d con clave i, o
  None si d no tiene ninguna entrada con clave i. Por ejemplo,
    valor (Id 2) diccionario3 = Some 4
    valor (Id 2) diccionario2 = None
  _____ *)
Fixpoint valor (x : id) (d : diccionario) : OpcionalNat :=
 match d with
 | vacio
            => None
 | registro y v d' => if iguales_id x y
              then Some v
```

```
else valor x d'
 end.
Compute (valor (Id 2) diccionario3).
(* = Some 4 : OpcionalNat *)
Compute (valor (Id 2) diccionario2).
(* = None : OpcionalNat*)
(* -----
  Ejemplo 5.7. Definir la función
    actualiza : diccionario -> id -> nat -> diccionario
  tal que (actualiza d x v) es el diccionario obtenido a partir del d
  + si d tiene un elemento con clave x, le cambia su valor a v
  + en caso contrario, le añade el elemento v con clave x
  *)
Definition actualiza (d : diccionario)
                (x : id) (v : nat)
                : diccionario :=
 registro x v d.
(* -----
  Ejercicio 5.2. Demostrar que
    forall (d : diccionario) (x : id) (v: nat),
      valor x (actualiza d x v) = Some v.
  -----*)
Theorem valor_actualiza: forall (d : diccionario) (x : id) (v: nat),
   valor x (actualiza d x v) = Some v.
Proof.
 intros d x v.
                      (* d : diccionario
                        x : id
                        v : nat
                        _____
                        valor x (actualiza d x v) = Some v *)
 destruct x.
                      (* valor (Id n) (actualiza d (Id n) v) = Some v *)
                      (* (if iguales nat n n then Some v
 simpl.
                                        else valor (Id n) d)
                        = Some v *)
 rewrite iguales_nat_refl. (* Some v = Some v *)
```

```
reflexivity.
Qed.
               _____
  Ejercicio 5.3. Demostrar que
    forall (d : diccionario) (x y : id) (o: nat),
      iguales id x y = false -> valor x (actualiza d y o) = valor x d.
   -----*)
Theorem actualiza neq :
 forall (d : diccionario) (x y : id) (o: nat),
   iguales id x y = false \rightarrow valor x (actualiza d y o) = valor x d.
Proof.
 intros d x y o p. (* d : diccionario
                 x, y : id
                  o : nat
                  p : iguales id x y = false
                  _____
                  valor \times (actualiza \ d \ v \ o) = valor \times d *)
 simpl.
               (* (if iguales id x y then Some o
                                 else valor x d)
                  = valor \times d *)
 rewrite p.
               (* valor x d = valor x d *)
 reflexivity.
0ed.
(* -----
  Ejemplo 5.8. Finalizar el módulo Diccionario
End Diccionario.
  § Bibliografía
  *)
+ "Working with structured data" de Peirce et als.
  http://bit.ly/2LQABsv
*)
```