SIN 251 – Organização de Computadores (2023)

Aula 10 – O conjunto de instruções

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- O conjunto de instruções
- Representação de Instruções
- Representação de Instruções Quantidade de endereços
- EXEMPLO: Linguagem de Montagem (assembly)

O conjunto de instruções

- As instruções de máquina (do computador) determinam a operação que a CPU deve executar;
- A coleção desses instruções é conhecida como conjunto de instruções da CPU;
- Cada instrução deve conter todos os dados necessários para que a CPU possa executá-la.

Representação de Instruções

- Cada instrução contém:
 - Código de operação;
 - Referência a operando fonte;
 - Referência a operando destino;
 - Endereço da próxima instrução.
 - Implícito pelo Contador de Programas, exceto para instruções de desvio.
- Cada arquitetura possui uma organização especifica para as suas instruções.
 - EXEMPLO de uma instrução de 16 bits e duas referencias a operando.

Representação de Instruções

- Processamento de dados:
 - ADDAdição
 - SUBSubtração
 - MPYNultiplicação
 - DIVDivisão
 - **–** ...
- Movimentação de dados:
 - LOAD
 Carregar dados da memória (ou LDA)
 - STOR -> Armazenar dados na memória (ou STA)
 - **–** ...
- Desvio:
 - (necessário para as instruções de alto nível de desvio condicional (if) e loops (for, while).
 - J –> Jump (Salto incondicional)
 - **–** ...

Representação de Instruções – Quantidade de endereço

- Número de referencias à operandos
 - Operação de Soma (ADD):
 - Referencia a 1 operando:
 - ADD X
 - X: Operando de origem e destino
 - Soma o valor armazenado no registrador X ao valor atual do registrador ACUMULADOR.
 Armazena o resultado em X.
 - Referencia a 2 operandos:
 - ADD X, Y
 - X e Y: Operando de origem; X: Operandos de destino
 - Soma o valor ATUAL do registrador X com o valor armazenado no registrador Y. Armazena o resultado no registrador X
 - Referencia a 3 operandos:
 - ADD, X, Y, Z
 - X: Operando de destino; Y e Z: Operandos de origem.
 - Soma os valores armazenados nos registradores Y e Z e armazena o resultado em no registrador X.

Representação de Instruções – Quantidade de endereços

Instrução de alto-nível:

$$- Y = (A-B) / (C+D*E);$$

1 operando		2 operandos		3 operandos		
MPY E # A A A A A A A A A A A A A A A A A A	$AC \leftarrow D$ $AC \leftarrow AC * E$ $AC \leftarrow AC + C$ $Y \leftarrow AC$ $AC \leftarrow A$ $AC \leftarrow A$ $AC \leftarrow AC - B$ $AC \leftarrow AC / Y$ $Y \leftarrow AC$	MOVE Y, A SUB Y, B MOVE T, D MPY T, E ADD T, C DIV Y, T	#Y←A #Y←Y-B #T←D #T←T*E #T←T+C #Y←Y/T	SUB Y, A, B MPY T, D, E ADD T, T, C DIV Y, Y, T	#Y←A-B #T←D*E #T←T+C #Y←Y/T	

EXEMPLO: Linguagem de Montagem (assembly)

- Instrução em alto-nível: N = I + J + K;
 - Sendo I=2, J=3, K=4
 - As variáveis de alto-nível I, J, K e N fazem referencia às posições de memória:
 - 201, 202, 203 e 204, respectivamente.
 - O valor armazenado em cada uma das posições da memória:
 - Posição 201 = 2;
 - Posição 202 = 3
 - Posição 203 = 4
 - Posição 204 = 0
 - Como ocorre o processamento?
 - 1 Carrega o conteúdo da posição de endereço 201 em AC;
 - 2
 - 2 Adiciona o conteúdo da posição 202 a AC;
 - -2+3=5
 - 3 Adiciona o conteúdo da posição de memória 203 a AC;
 - -5+4=9
 - 4 Armazena o conteúdo de AC na posição de endereço 204.
 - N = 9

Memória						
0	????					
•••	•••					
201	2					
202	3					
203	4					
204	0					
•••	•••					
N-1	????					

EXEMPLO: Linguagem de Montagem (assembly)

Programa em Assembly		Programa Simbólico		Programa em Hexadecimal		Programa em binário			
Rotulo	Operação	Operando	Memória	Operação	Operando	Memória	Operador e Operando	Memória	Operador e Operando
FORM:	LDA	ı	101	LDA	201	101	2201	101	0010 0010 0000 0001
	ADD	J	102	ADD	202	102	1202	102	0001 0010 0000 0010
	ADD	K	103	ADD	203	103	1203	103	0001 0010 0000 0011
	STA	Ν	104	STA	204	104	3204	104	0011 0010 0000 0100
	•••	•••		•••	•••		•••		
1	DAT	2	201	DAT	2	201	0002	201	0000 0000 0000 0010
J	DAT	3	202	DAT	3	202	0003	202	0000 0000 0000 0011
K	DAT	4	203	DAT	4	203	0004	203	0000 0000 0000 0100
N	DAT	0	204	DAT	0	204	0000	204	0000 0000 0000 0000

Referências

- STALLINGS, W. **Arquitetura e Organização de Computadores**, 8. Ed., Pearson, 2010.
 - Seções 10.1 e 10.2
- STALLINGS, W. **Arquitetura e Organização de Computadores**, 5. Ed., Pearson, 2003.
 - Seções 9.1 e 9.2

FIM