Реконструкция архитектуры и состава программного комплекса для моделирования формирования слоистой структуры функциональных покрытий в процессе их газотермического напыления

Студент группы 5.306М: Лаптев А. В.

Научный руководитель: Иордан В. В.

9 января 2024 г.

## Введение

В настоящее время существует два наиболее часто применяемых на практике способа для нанесения материала тонким слоем на поверхность — газотермическое напыление и холодное газодинамическое напыление. Каждый из этих методов имеет свои особенности.

Разработанный программный комплекс обладает возможностями для работы с газотермическим напылением для моделирования процессов формирования слоистой структуры функциональных покрытий. Однако, помимо этого, был обнаружен ряд архитектурных решений программного комплекса, которые не являются оптимальными и требуют реконструкции и доработки архитектуры.

## Цель и задачи работы

Целью работы является обзор комплекса и его недостатков для реконструкции архитектуры комплекса и создания программного комплекса для моделирования формирования слоистой структуры функциональных покрытий в процессе их холодного газодинамического напыления.

Для достижения поставленной цели необходимо решить ряд задач:

- 1. краткий обзор наиболее часто применяемых на практике способов для нанесения материала тонким слоем на поверхность;
- 2. обзор комплекса для выявления недостатков в его реализации;
- 3. определение дальнейших действий для реконструкции архитектуры программного комплекса для устранения выявленных недостатков.

Лаптев А. В. Барнаул 2024

### Методы нанесения материала тонким слоем на поверхность

#### Газотермическое напыление

# Холодное газодинамическое напыление





### Концепция реконструкции программного комплекса

Реконструкция разработанного программного комплекса продиктована необходимостью качественного улучшения набора характеристик имеющегося программного комплекса (производительность вычислений, оптимизация архитектуры и состава компонент-подсистем, расширение функциональных возможностей комплекса и т.д.), так как улучшенная версия существующего комплекса будет взята за основу для последующей разработки нового программного комплекса, предназначенного для моделирования формирования слоистой структуры функциональных покрытий в процессе их «холодного газодинамического напыления (ХГН)».

**9 января 2024 г.** Лаптев А. В. Барнаул 2024

### Недостатки разработанного программного комплекса

- 1. некорректная организационная структура комплекса;
- 2. потребность в реализации новой подсистемы: планировщик заданий;
- 3. потребность в подсистеме, которая объединяет все результаты экспериментов в единый архив;
- 4. необходимость выделить подсистему визуализации 2D и 3D в отдельное приложение;
- 5. необходимость расширения функционала подсистемы визуализации поверхности покрытия;
- 6. необходимость расширения функционала подсистемы «База данных»;
- 7. осуществить переход комплекса на платформу х64;
- 8. оптимизация алгоритма укладки сплэта;
- 9. необходимость доработки подсистемы моделирования покрытия;
- 10. необходимость доработки функции построения изображений в векторном формате;
- 11. доработка реализации моделирования многослойных покрытий;
- 12. проработка возможности использования СУБД для организации хранения данных во время работы;
- 13. переработка подсистемы «Покрытие».

### Функциональные подсистемы программного комплекса

Для последующей реконструкции необходимо разбить всю систему программного комплекса на блоки (подсистемы), что позволит решить самую большую проблему из выделенных, а именно – некорректную организацию структуры комплекса. Данный недостаток не позволяет автоматизировать работу комплекса и снижает его вычислительную эффективность.



### Заключение

В ходе работы были коротко рассмотрены методы газотермического и холодного газодинамического напыления, которые представляют собой основные технологии нанесения материала тонким слоем на поверхность.

Также, в рамках работы были рассмотрены архитектурные недостатки программного комплекса для моделирования формирования слоистой структуры функциональных покрытий в процессе их газотермического напыления. Это позволило выявить необходимость реконструкции и доработки архитектуры комплекса с целью повышения его эффективности и функциональности.

На основании проведенного анализа был сформулирован ряд задач для реконструкции и доработки архитектуры программного комплекса.