Instrumental Variables

Caleb Leedy

March 29, 2023

CL

Ordinary Least Squares

• In OLS, we consider the model,

$$Y = X\beta + \varepsilon \tag{1}$$

where $E[\varepsilon \mid X] = 0$ and $X \perp \varepsilon$.

• However, what if $Cov(X, \varepsilon) \neq 0$?

CL

- We say a variable X_k is **endogenous** if $Cov(X_k, \varepsilon) \neq 0$.
- A variable X_k is **exogenous** if $X_k \perp \varepsilon$.

Modifying Previous Assumptions

CL

 Last week we discussed the assumptions of the potential outcomes framework. One of them was: No Unmeasured Confounders (NUC),

$$Y(1), Y(0) \perp A \mid X$$
.

• If a variable X_k is endogenous, then the model does *not* satisfy the NUC condition.

Parametric Models

Consider the following linear model:¹

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

with $x_1, x_2 \perp \varepsilon$ but $x_3 \not\perp \varepsilon$

• To estimate β_3 we need an instrumental variable.

CL IV March 29, 2023 4/21

¹Example taken from (Wooldridge 2010).

Instrumental Variables

• A variable z_1 is an **instrumental variable** (IV) if it satisfies:

$$Cov(z_1, \varepsilon) = 0 (2)$$

$$Cov(z_1, x_3) \neq 0 \tag{3}$$

- This makes sense because we want it to be exogenous with respect to Equation 1, yet we need it to influence x_3 if we are going to measure β_3 .
- Note, that Equation 2 cannot be tested but Equation 3 can and should be tested.

Graphical Model

Graphical Model

Reduced Form Equations

• When we have an instrument z_1 , we can estimate:

$$\hat{x}_3 = \hat{\gamma}_0 + \hat{\gamma}_1 x_1 + \hat{\gamma}_2 x_2 + \hat{\theta} z_1$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 \hat{x}_3$$

- This framework is called two-stage least squares (2SLS).
- This can be generalized to have K exogenous x_i variables and L instruments z_j .

Identification

- Then the IV solves the identification problem.
- Let $z = (x_1, x_2, z_1)$.
- Equation 2 implies that $E[z'\varepsilon] = 0$.
- The normal equations for the IV estimator are:

$$E[z'x]\beta = E[z'y].$$

• This has a unique solution if E[z'x] has full rank, which happens if Equation 3 is satisfied.

Results for 2SLS

Under regularity conditions, 2SLS is

- consistent,
- · asymptotically normal, and
- · asymptotically efficient.

See (Wooldridge 2010), Chapter 5 for these proofs.

Problems with IVs

CL

- Bias
- · Weak instruments: In the linear model,

$$\operatorname{plim} \hat{\beta}_3 = \beta_3 + \frac{\operatorname{Cov}(z_1, \varepsilon)}{\operatorname{Cov}(z_1, x_3)}.$$

Causal Models with No Unconfoundedness

Suppose that we have the model,²

$$Y_i(a) = Y_i(0) + \tau a_i.$$

We can also express this as

$$Y_i = \alpha + A_i \tau + \varepsilon_i$$

We do not use the NUC. So

$$Y(1), Y(0) \perp A \mid X$$
.

Notice that OLS does not work because

$$\tau_{OLS} = \frac{\mathrm{Cov}(Y_i, A_i)}{\mathrm{Var}\,A_i} = \frac{\mathrm{Cov}(\tau A_i + \varepsilon, A_i)}{\mathrm{Var}\,A_i} = \tau + \frac{\mathrm{Cov}(\varepsilon, A_i)}{\mathrm{Var}\,A_i}$$

²The rest of the slides were based off of Stefan Wager's S361 Causal Inference Notes (Wager 2020).

Causal Models with IVs

We can add an instrument and have something similar to 2SLS,

$$Y_i = \alpha + A_i \tau + \varepsilon_i$$

$$A_i = Z_i \gamma + \eta_i \qquad \varepsilon_i \perp Z_i.$$

Then

$$Cov(Y_i, Z_i) = Cov(A_i\tau + \varepsilon_i, Z_i) = \tau Cov(A_i, Z_i).$$

Hence,

CL

$$\tau = \frac{\operatorname{Cov}(Y_i, Z_i)}{\operatorname{Cov}(A_i, Z_i)}.$$

Optimal Instruments

If Z is a d-dimensional vector then we have

$$\tau = \frac{\operatorname{Cov}(Y_i, w(Z_i))}{\operatorname{Cov}(A_i, w(Z_i))}$$

where $w: \mathbb{R}^d \to \mathbb{R}$.

CL

• The optimal choice of $w(\cdot)$ that minimizes the variance of τ , is

$$w^*(Z) \propto E[A \mid Z].$$

Estimation

CL

The previous slide suggests the following estimation strategy:

- 1. Estimate $\hat{w}(\cdot) = E[A \mid Z]$ nonparametrically, and then
- 2. Estimate the covariances using \hat{w} ,

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y_i, \hat{w}(Z_i))}{\hat{\text{Cov}}(A_i, \hat{w}(Z_i))}$$

However, this can fail from overfitting with weak instruments.

Cross Fitting

A better strategy is to use cross-fitting, and solve

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y_i, \hat{w}^{k(-i)}(Z_i))}{\hat{\text{Cov}}(A_i, \hat{w}^{k(-i)}(Z_i))}$$

where $\hat{w}^{k(-i)}$ is the estimation of \hat{w} on the k-th fold in which element i is missing.

Extension to Nonparametric Regression

Suppose we have the model:

$$Y_i = g(A_i) + \varepsilon_i, \quad Z_i \perp \varepsilon_i$$

• Then,

CL

$$E[Y_i \mid Z_i] = \int g(a)f(a \mid z)da.$$

• This can be estimated using basis splines (or other nonparametric techniques).

Local Average Treatment Effects

Consider the model:

$$Y_i = \alpha + \tau A_i + \varepsilon_i$$

$$A_i = \gamma Z_i + \eta_i \quad Z_i \perp \varepsilon_i.$$

• Then we can identify τ with

$$\tau = \frac{\text{Cov}(Y_i, Z_i)}{\text{Cov}(A_i, Z_i)}$$
$$= \frac{E[Y_i \mid Z_i = 1] - E[Y_i \mid Z_i = 0]}{E[A_i \mid Z_i = 1] - E[A_i \mid Z_i = 0]}$$

where the second equation holds because Z_i is binary.

Strata

$$A_i(1)=1 \qquad A_i(1)=0$$

$$A_i(0)=1 \quad \text{Always taker} \quad \text{Denier}$$

$$A_i(0)=0 \quad \text{Complier} \quad \text{Never taker}$$

Result

 Assuming that there exist some compliers, the local average treatment effect is

$$\tau_{LATE} = E[Y_i(1) - Y_i(0) \mid i \text{ is a complier}].$$

References I

Wager, Stefan (2020). Stats 361: Causal inference.

Wooldridge, Jeffrey M (2010). Econometric analysis of cross section and panel data. MIT press.