Metoda Milne'a dla liniowych równań różniczkowych drugiego

Wartości początkowe y_1 , y_2 , y_3 należy obliczyć metodą

Rungego-Kutty rzędu 4-go (wzór Gilla).

rzędu.

Wprowadzenie

W zadaniu zastosowane zostały następujące metody:

- Metoda Rungego-Kutty rzędu 4-go (wzór Gilla) stosowana do obliczenia czterech początkowych punktów.
- Metoda Milne'a stosowana do obliczenia kolejnych punktów na podstawie poprzednich wartości.

Wzór Gilla - Wprowadzenie

Wzór Gilla jest specjalnym przypadkiem metody Rungego-Kutty rzędu 4-go, który służy do obliczenia początkowych punktów rozwiązania równań różniczkowych. Jest to metoda wykorzystująca cztery wartości funkcji w każdym kroku, zapewniająca dużą dokładność w numerycznym rozwiązywaniu równań różniczkowych.

Własności wzoru Gilla:

- Dokładność lokalna wzór Gilla jest dokładny lokalnie do 5 rzędu, co oznacza, że globalny błąd obliczeń jest proporcjonalny do h⁵, gdzie h to krok całkowania.
- Dokładność globalna wzór Gilla jest dokładny globalnie do 4 rzędu, co oznacza, że globalny błąd obliczeń jest proporcjonalny do h⁴, gdzie h to krok całkowania.
- ► **Stabilność** pozwala na uzyskanie stabilnych wyników nawet przy większych krokach *h*.

Wzór Gilla wykorzystywany jest do obliczenia czterech początkowych punktów, które następnie stanowią podstawę dla innych metod numerycznych, takich jak metoda Milne'a.

Wzór Gilla

Wzór Gilla dla równania różniczkowego 1-rzędu postaci:

$$y'=f(x,y),$$

ma postać:

$$y_{n+1} = y_n + \frac{1}{6} \left[k_1 + (2 - \sqrt{2})k_2 + (2 + \sqrt{2})k_3 + k_4 \right]$$

Gdzie:

- y_n to obecne przybliżenie,
- ▶ y_{n+1} to następne przybliżenie,
- ► *h* to krok,
- $ightharpoonup k_1, k_2, k_3, k_4$ to kroki pośrednie.

Wzór Gilla - Pośrednie wartości

Pośrednie wartości k_1, k_2, k_3, k_4 określane są następująco:

$$k_1 = h \cdot f(x_n, y_n)$$

$$k_2 = h \cdot f\left(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1\right)$$

$$k_3 = h \cdot f\left(x_n + \frac{1}{2}h, y_n + \frac{1}{2}(-1 + \sqrt{2})k_1 + (1 - \frac{1}{2}\sqrt{2})k_2\right)$$

$$k_4 = h \cdot f\left(x_n + h, y_n - \frac{1}{2}\sqrt{2}k_2 + \left(1 + \frac{1}{2}\sqrt{2}\right)k_3\right)$$

Wzór Gilla - Równanie różniczkowe drugiego rzędu

Rozważamy równanie różniczkowe drugiego rzędu:

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x),$$

gdzie $a_2(x) \neq 0$.

Aby użyć wzoru Gilla, sprowadzamy równanie drugiego rzędu do układu równań pierwszego rzędu:

$$\begin{cases} y' = z, \\ z' = f(x, y, z), \end{cases}$$

gdzie:

$$f(x,y,z) = \frac{1}{a_2(x)}(b(x) - a_1(x)z - a_0(x)y).$$

Następnie obliczamy rozwiązania obu równań za pomocą wzoru Gilla.

Wzór Gilla - Równanie różniczkowe drugiego rzędu

$$k_1^y = h \cdot z_n, \quad k_1^z = h \cdot f(x_n, y_n, z_n),$$

$$k_2^y = h \cdot \left(z_n + \frac{1}{2}k_1^z\right), \quad k_2^z = h \cdot f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1^y, z_n + \frac{h}{2}k_1^z\right),$$

$$k_3^y = h \cdot \left(z_n + \frac{1}{2}(-1 + \sqrt{2})k_1^z + \left(1 - \frac{1}{2}\sqrt{2}\right)k_2^z\right),$$

$$k_3^z = h \cdot f\left(x_n + \frac{h}{2},\right.$$

$$y_n + \frac{h}{2}(-1 + \sqrt{2})k_1^y + \left(1 - \frac{1}{2}\sqrt{2}\right)k_2^y,$$

$$z_n + \frac{h}{2}(-1 + \sqrt{2})k_1^z + \left(1 - \frac{1}{2}\sqrt{2}\right)k_2^z,$$

$$k_4^y = h \cdot \left(z_n - \frac{1}{2} \sqrt{2} k_2^z + \left(1 + \frac{1}{2} \sqrt{2} \right) k_3^z \right),$$

Wzór Gilla - Równanie różniczkowe drugiego rzędu

$$k_4^z = h \cdot f\left(x_n + h, y_n - \frac{1}{2}\sqrt{2}k_2^y + \left(1 + \frac{1}{2}\sqrt{2}\right)k_3^y, z_n - \frac{1}{2}\sqrt{2}k_2^z + \left(1 + \frac{1}{2}\sqrt{2}\right)k_3^z\right).$$

Na koniec obliczamy następne wartości y i z:

$$y_{n+1} = y_n + \frac{1}{6} \left(k_1^y + (2 - \sqrt{2}) k_2^y + (2 + \sqrt{2}) k_3^y + k_4^y \right),$$

$$z_{n+1} = z_n + \frac{1}{6} \left(k_1^z + (2 - \sqrt{2}) k_2^z + (2 + \sqrt{2}) k_3^z + k_4^z \right).$$

Metoda Milne'a - Wprowadzenie

Metoda Milne'a to metoda numeryczna używana do rozwiązywania układów równań różniczkowych zwyczajnych. Jest to metoda predyktor-poprawiacz, która iteracyjnie oblicza kolejne wartości funkcji, wykorzystując wcześniejsze punkty rozwiązania.

Główne etapy metody:

- ▶ Predyktor: Ekstrapolacja wartości rozwiązania w punkcie y_{n+1} na podstawie wcześniejszych punktów y_{n-3}, y_{n-2}, y_{n-1}, y_n.
- Poprawiacz: Korekta wartości na podstawie równania różniczkowego, uwzględniająca wartość przewidywaną oraz dodatkowe obliczenia. Możliwe jest iteracyjne stosowanie poprawiacza.

Metoda ta wymaga obliczenia 4 początkowych wartości, które mogą być uzyskane za pomocą metod takich jak metoda Rungego-Kutty.

Własności metody Milne'a

Metoda Milne'a jest jedną z metod numerycznych typu predyktor-poprawiacz wykorzystywanych do rozwiązywania równań różniczkowych drugiego rzędu.

Własności metody Milne'a:

- ▶ Dokładność lokalna metoda Milne'a jest dokładna lokalnie do rzędu 4, co oznacza, że błąd jednego kroku całkowania jest proporcjonalny do h⁴, gdzie h to krok całkowania.
- Dokładność globalna globalna dokładność metody Milne'a jest rzędu 3, co oznacza, że błąd całkowity jest proporcjonalny do h³
- Stabilność jest stosunkowo stabilna, szczególnie przy mniejszych krokach h, ale może wymagać szczególnej ostrożności w przypadku równań sztywnych.

Metoda Milne'a jest szczególnie przydatna w zadaniach, gdzie wymagana jest wysoka dokładność przy zachowaniu stosunkowo niskiego kosztu obliczeniowego.

Szczegóły metody Milne'a

Metoda Milne'a dla równania:

$$y'=f(x,y),$$

składa się z dwóch głównych elementów:

1. Predyktor: Służy do przewidywania wartości y_{n+1} na podstawie wcześniejszych czterech punktów.

$$y_{n+1} = y_{n-3} + 4h \cdot \frac{2f_{n-2} - f_{n-1} + 2f_n}{3},$$

2. Poprawiacz: Koryguje wartości y_{n+1} w oparciu o wartość funkcji różniczkowej.

$$y_{n+1} = y_{n-1} + \frac{h}{3} \cdot (f_{n+1} + 4f_n + f_{n-1}),$$

Gdzie: $f_n = f(x_n, y_n)$

Meroda Milne'a - Równanie różniczkowe drugiego rzędu

Rozważamy równanie różniczkowe drugiego rzędu:

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x),$$

gdzie $a_2(x) \neq 0$.

Aby zastosować metodę Milne'a, sprowadzamy równanie drugiego rzędu do układu równań pierwszego rzędu:

$$\begin{cases} y' = z, \\ z' = f(x, y, z), \end{cases}$$

gdzie:

$$f(x,y,z) = \frac{1}{a_2(x)}(b(x) - a_1(x)z - a_0(x)y).$$

Następnie obliczamy rozwiązania obu równań za pomocą metody Milne'a.

Predyktor Milne'a

Predyktor oblicza wstępne wartości y_{n+1} i z_{n+1} , na podstawie poprzednich 4 wartości y oraz z:

$$\begin{aligned} y_{n+1} &= y_{n-3} + 4h \cdot \frac{2z_{n-2} - z_{n-1} + 2z_n}{3}, \\ z_{n+1} &= z_{n-3} + 4h \cdot \frac{2f_{n-2} - f_{n-1} + 2f_n}{3}, \\ \text{gdzie: } f_n &= \frac{1}{a_2(x_n)} \big(b(x_n) - a_1(x_n) z_n - a_0(x_n) y_n \big). \end{aligned}$$

Predyktor służy do wyznaczenia przybliżonych wartości rozwiązania w kolejnym kroku x_{n+1} .

Poprawiacz Milne'a

Poprawiacz Milne'a koryguje wartości y_{n+1} i z_{n+1} :

$$y_{n+1} = y_{n-1} + \frac{h}{3} \cdot (z_n + 4z_{n+1} + z_{n-1}),$$

$$z_{n+1} = z_{n-1} + \frac{h}{3} \cdot (f_n + 4f_{n+1} + f_{n-1}).$$

Iteracja: Możliwe jest iteracyjne stosowanie korektora.

Opis Testu 1

Równanie:

$$y''-y=0$$

Przedział rozwiązania:

Warunki początkowe:

$$y(0) = 1, y'(0) = 0$$

Liczba kroków:

$$N = 1000$$

Dokładne rozwiązanie:

Wyniki Testu 1

Błędy:

- ▶ Błąd globalny: 6.43929×10^{-15}
- Błąd wzoru Gill'a (4 początkowe punkty): 0
- ▶ Błąd metody Milne'a (pozostałe punkty): 6.43929×10^{-15}

Wykres Rozwiązań:

Opis Testu 2

Równanie:

$$y'' + 1000y = 0$$

Przedział rozwiązania:

Warunki początkowe:

$$y(0) = 1, y'(0) = 0$$

Liczba kroków:

$$N = 1000$$

Dokładne rozwiązanie:

$$cos(\sqrt{1000} x)$$

Wyniki Testu 2

Błędy:

- ▶ Błąd globalny: 1.66204×10^{-7}
- ▶ Błąd wzoru Gill'a (4 początkowe punkty): 5.41236×10^{-11}
- ▶ Błąd metody Milne'a (pozostałe punkty): 1.66204×10^{-7}

Wykres Rozwiązań:

Opis Testu 3

Równanie:

$$y'' + cos(x)y' + sin(x)y = 1 - sin(x)$$

Przedział rozwiązania:

$$[0, 2\pi]$$

Warunki początkowe:

$$y(0) = 0, y'(0) = 1$$

Liczba kroków:

$$N = 1000$$

Dokładne rozwiązanie:

Wyniki Testu 3

Błędy:

- ▶ Błąd globalny: 7.24378×10^{-10}
- ▶ Błąd wzoru Gill'a (4 początkowe punkty): 2.62197×10^{-13}
- ▶ Błąd metody Milne'a (pozostałe punkty): 7.24378×10^{-10}

Wykres Rozwiązań:

Opis Testu 4

Równanie:

$$y'' + x^2y' + xy = \frac{2}{x^3}$$

Przedział rozwiązania:

[0.01, 1]

Warunki początkowe:

$$y(0) = 100, y'(0) = -10000$$

Liczba kroków:

$$N = 2000$$

Dokładne rozwiązanie:

Wyniki Testu 4

Błędy:

- ▶ Błąd globalny: 1.84477×10^{-2}
- ▶ Błąd wzoru Gill'a (4 początkowe punkty): 1.11679×10^{-5}
- ▶ Błąd metody Milne'a (pozostałe punkty): 1.84477×10^{-2}

Wykres Rozwiązań:

Opis Testu Numerycznego 1

Cel testu:

- Badanie złożoności metody Milne'a.
- Analiza dokładności rozwiązania i czasu obliczeń w zależności od liczby podprzedziałów - N.

Opis problemu:

- Równanie różniczkowe: y'' y = 0
- ▶ Przedział: [0,1]
- Warunki początkowe: y(0) = 1, y'(0) = 0
- Dokładne rozwiązanie: cosh(x)
- ightharpoonup Liczba podprzedziałów N zaczyna się od 3 i jest sukcesywnie podwajana, dopuki $N < 10^6$

Tabela wyników:

N	Błąd globalny	Błąd Gill'a	Czas wykonania (s)
3	8.10208e-05	8.10208e-05	1.91040e-02
6	5.16975e-06	1.18671e-06	1.06720e-03
12	8.82345e-08	1.82403e-08	1.51500e-04
24	6.14629e-09	2.83833e-10	1.52300e-04
48	7.86025e-10	4.43046e-12	2.00900e-04
96	6.26599e-11	6.90559e-14	2.88300e-04
192	4.35563e-12	1.11022e-15	4.55200e-04
384	2.85327e-13	0.00000e+00	8.87700e-04
768	1.64313e-14	2.22045e-16	1.56050e-03
1536	2.66454e-15	0.00000e+00	3.65430e-03
3072	3.99680e-15	2.22045e-16	6.65380e-03
6144	4.44089e-15	2.22045e-16	1.54394e-02
12288	1.48770e-14	0.00000e+00	2.34061e-02
24576	8.88178e-15	0.00000e+00	4.62414e-02
49152	3.50830e-14	2.22045e-16	9.19897e-02
98304	1.53211e-14	0.00000e+00	1.94011e-01
196608	6.61693e-14	0.00000e+00	3.59288e-01

Wykres zależności błędu od liczby podprzedziałów N:

Opis Testu Numerycznego 2

Cel testu:

- Badanie jak ilość iteracji korektora wpływa na dokładność metody oraz czas rozwiązania.
- Analiza dokładności rozwiązania i czasu obliczeń w zależności od interacji korektora - m.

Opis problemu:

- Równanie różniczkowe: y'' y = 0
- ► Przedział: [0, 1]
- ▶ Warunki początkowe: y(0) = 1, y'(0) = 0
- Dokładne rozwiązanie: cosh(x)
- Rozwiązujemy równanie dla 2 ilości podprzedziałów N=10 oraz N=500
- ightharpoonup Liczba kroków iteracji m zaczyna się od 2 i jest sukcesywnie podwajana, dopuki $m < 10^3$

Tabela wyników:

m	N = 10		<i>N</i> = 500	
""	Błąd	Czas wykonania (s)	Błąd	Czas wykonania (s)
1	2.8498e-07	3.09496e-02	1.0036e-13	1.26360e-03
2	2.5927e-07	2.81960e-03	1.0392e-13	1.98190e-03
4	2.5987e-07	3.89100e-04	1.0392e-13	2.99510e-03
8	2.5987e-07	4.26600e-04	1.0392e-13	4.75750e-03
16	2.5987e-07	7.96600e-04	1.0392e-13	8.46930e-03
32	2.5987e-07	5.70900e-04	1.0392e-13	1.63099e-02
64	2.5987e-07	7.31300e-04	1.0392e-13	3.16419e-02
128	2.5987e-07	1.43150e-03	1.0392e-13	6.09082e-02
256	2.5987e-07	2.53430e-03	1.0392e-13	1.18951e-01
512	2.5987e-07	6.25300e-03	1.0392e-13	2.40166e-01

Wykres zależności błędu od ilości iteracji korektora m:

Opis Testu Numerycznego 3

Cel testu:

- Badanie wpływu błędu w metodzie Gilla (błędu pierwszych 4 punktów) na wynik końcowy.
- Analiza zależności błędu rozwiązania od wartości przez jaką pomnożymy błąd pierwszych 4 punktów (err_mn).

Opis problemu:

- Równanie różniczkowe: y'' y = 0
- ► Przedział: [0,1]
- Warunki początkowe: y(0) = 1, y'(0) = 0
- ightharpoonup Liczba podprzedziałów N=100
- Dokładne rozwiązanie: cosh(x)
- Mnożnik błędu metody Gilla err_mn, czyli wartość, przez którą mnożymy błąd zmienia się od 10⁻⁶ do 10⁸

Tabela wyników:

err _{mn}	Błąd globalny	Błąd Gill'a
$1.0 imes 10^{-6}$	5.62392e-11	0.00000e+00
1.0×10^{-5}	5.62390e-11	0.00000e+00
1.0×10^{-4}	5.62390e-11	0.00000e+00
$1.0 imes 10^{-3}$	5.62372e-11	0.00000e+00
1.0×10^{-2}	5.62133e-11	4.44089e-16
$1.0 imes 10^{-1}$	5.59843e-11	5.32907e-15
$1.0 imes 10^{0}$	5.36928e-11	5.41789e-14
$1.0 imes 10^1$	3.25302e-11	5.41789e-13
1.0×10^2	1.98526e-10	5.41789e-12
1.0×10^3	2.49142e-09	5.41789e-11
$1.0 imes 10^4$	2.54204e-08	5.41789e-10
$1.0 imes 10^5$	2.54710e-07	5.41789e-09
$1.0 imes 10^6$	2.54760e-06	5.41789e-08
$1.0 imes 10^7$	2.54765e-05	5.41789e-07
$1.0 imes 10^8$	2.54766e-04	5.41789e-06

Wykres zależności błędu od mnożnika błędu metody Gilla (err_mn):

Opis Testu Numerycznego 4

Cel testu:

- Analiza zachowania metody w przypadku funkcji z asymptotą.
- Badanie, jak zmienia się błąd dla początków przedziałów x₀ różnie bliskich asymptocie x₀.

Opis problemu:

- Nównanie różniczkowe: $y'' + x^2y' + xy = \frac{2}{x^3}$
- ▶ Przedział: [x₀, 1]
- Warunki początkowe: $y(0) = \frac{1}{x_0}$, $y'(0) = -\frac{1}{x_0^2}$
- Liczba podprzedziałów N = 100
- Dokładne rozwiązanie: 1/x
- Początek przedziału x_0 zmienia się od 0.01, dopuki $x_0 > 10^{-5}$

Tabela wyników:

<i>X</i> 0	Błąd globalny
0.010000	1.84477e-02
0.005000	7.29597e-01
0.002500	2.20751e+01
0.001250	6.50154e+02
0.000625	2.30659e+04
0.000313	6.82499e+05
0.000156	1.32858e+07
0.000078	1.77434e+08
0.000039	1.84980e+09
0.000020	1.68453e+10

Opis Testu Numerycznego 5

Cel testu:

- Badanie efektywności metody Milne'a w przypadku funkcji szybko oscylujących.
- Analiza zmiany błędu w zależności od wartości a₀, która determinuje częstotliwość oscylacji funkcji.

Opis problemu:

- Równanie różniczkowe: $y'' + a_0 y = 0$
- ► Przedział: [0, 1]
- Warunki początkowe: y(0) = 1, y'(0) = 0
- Liczba podprzedziałów N=1000
- ▶ Dokładne rozwiązanie: $cos(\sqrt{a0} x)$

Tabela wyników:

Błąd globalny
1.66204e-07
9.53799e-07
5.61524e-06
3.29325e-05
3.56498e-04
1.10754e+00
3.16330e+06
1.46519e+18
1.83565e+38
8.15238e+71

Opis Testu Numerycznego 6

Cel testu:

- Analiza wpływu zmiany współczynnika a₂ na dokładność rozwiązania w zadanym punkcie.
- Badanie, jak dokładność metody zmienia się w zależności od liczby podprzedziałów N.

Opis problemu:

- Nównanie różniczkowe: $((x 0.5)^2 + 10^{-10})y'' + 10^{-10}y = -(x 0.5)^2 \sin(x)$
- ▶ Przedział: [0,1]
- ▶ Warunki początkowe: y(0) = 0, y'(0) = 1
- Dokładne rozwiązanie: sin(x)
- \blacktriangleright Liczba podprzedziałów N zaczyna się od 3 i jest sukcesywnie podwajana, dopuki N $<10^6$

Tabela wyników:

Błąd globalny
9.42830e-05
8.17724e-06
2.16042e-07
1.26031e-08
7.53121e-10
4.58991e-11
2.83129e-12
1.76303e-13
1.08802e-14
1.44329e-15
1.33227e-15
2.10942e-15

