

# Universidad Tecnológica de la Mixteca

Clave DGP: 200089

### Maestría en Ciencia de Datos

### PROGRAMA DE ESTUDIOS

### NOMBRE DE LA ASIGNATURA

#### **Datos Masivos**

| SEMESTRE        | CLAVE DE LA ASIGNATURA | TOTAL DE HORAS                                   |
|-----------------|------------------------|--------------------------------------------------|
| Tercer semestre | 371032                 | 35 Mediación docente<br>65 Estudio independiente |

## OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Estudiar, analizar y comprender a profundidad las herramientas computacionales para el almacenamiento y procesamiento de bases de datos masivas, mediante el enfoque del cómputo distribuido.

### TEMAS Y SUBTEMAS

#### 1 Introducción a los datos masivos.

- 1.1 Definición y características (Volumen, Velocidad, Variedad, Valor y Veracidad).
- 1.2 Importancia y privacidad de los datos masivos.
- 1.3 Arquitectura: integración y flujo de datos.
- 1.4 Almacenamiento clave-valor
- 1.5 Arquitecturas

#### 2. Almacenamiento masivo.

- 2.1 Hadoop File System
- 2.2 Amazon S3
- 2.3 Parquet

# 3. Procesamiento distribuido

- 3.1 MapReduce
- 3.2 Hadoop
- 3.3 Yarn
- 3.4 Spark o Flink (Pyspark)
- 3.5 AWS Elastic MapReduce

#### 4. Aprendizaje máquina con datos masivos

- 4.1 Pytorch y Tensorflow en Sagemarker
- 4.2 API Rest de Yarn
- 4.3 AWS Cloud 9
- 4.4 Sagemarker R

### ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor en la que se presentan los conceptos poniendo énfasis en las herramientas de cómputo. Se realizarán algunos ejemplos al finalizar cada capítulo con el objetivo de que se refuerce la teoría vista en cada tema. Algunas herramientas son comerciales por lo que se recomienda auxiliarse de guías para su exposición.

### CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Exámenes parciales y final. Tareas Simulaciones en computadora. Proyectos. Esto tendrá una equivalencia del 100% en la calificación final del semestre

### BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

# Básica:

1. Nathan Marz y James Warren, Big Data: Principles and Best Practices of Scalable Real-Time Data Systems.

- 2. Ortega, J.M. (2023). Big data, machine learning y data science en python. Editorial. RA-MA, S.A. 669 pp
- 3. Rajaraman, A. and Ullman, J. D. (2011). Mining of massive datasets. Cambridge University Press.

### Consulta:

- 1. Learning Spark: Lightning-Fast Data Analytics" por Holden Karau, Andy Konwinski, Patrick Wendell y Matei Zaharia
- 2. Hadoop: The Definitive Guide" por Tom White

## PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Ciencias de la Computación, o áreas afines, con especialidad en Inteligencia artificial y/o Ciencia de datos.

### **AUTORIZÓ**

**Vo.Bo** M.T.C.A. ERIK GERMÁN RAMOS PÉREZ COORDINADOR DE LA UNIVERSIDAD VIRTUAL L.I. MARIO ALBERTO MORENO ROCHA VICE-RECTOR ACADÉMICO