# **✓** Congratulations! You passed!

| <b>~</b>                     | 1/1 points                                                       |
|------------------------------|------------------------------------------------------------------|
| 1.<br>We use                 | e the continuous version of Bayes' theorem if:                   |
| 0                            | heta is continuous                                               |
| Correll $	heta$ if $	heta$ i | ect<br>s continuous, we use a probability density for the prior. |
|                              | Y is continuous                                                  |
|                              | $f(y\mid 	heta)$ is continuous                                   |
|                              | All of the above                                                 |
|                              | None of the above                                                |
|                              | 1/1                                                              |

2.

points

Consider the coin-flipping example from the lesson. Recall that the likelihood for this experiment was Bernoulli with unknown probability of heads, i.e.,  $f(y\mid\theta)=\theta^y(1-\theta)^{1-y}I_{\{0\leq\theta\leq1\}}\text{, and we started with a uniform prior on the interval }[0,1].$ 

After the first flip resulted in heads  $(Y_1=1)$ , the posterior for heta became  $f( heta\mid Y_1=1)=2 heta I_{\{0\leq heta\leq 1\}}.$ 

Now use this posterior as your prior for  $\theta$  before the next (second) flip. Which of the following represents the posterior PDF for  $\theta$  after the second flip also results in heads  $(Y_2=1)$ ?

$$\int f(\theta \mid Y_2 = 1) = rac{ heta \cdot 2 heta}{\int_0^1 heta \cdot 2 heta d heta} I_{\{0 \leq heta \leq 1\}}$$

#### Correct

This simplifies to the posterior PDF  $f(\theta \mid Y_2 = 1) = 3\theta^2 I_{\{0 \leq \theta \leq 1\}}$ .

Incidentally, if we assume that the two coin flips are independent, we would have arrived at the same posterior if we had again started with a uniform prior and performed a single update using  $Y_1=1$  and  $Y_2=1$ .

$$\int f( heta \mid Y_2=1) = rac{(1- heta)\cdot 2 heta}{\int_0^1 (1- heta)\cdot 2 heta d heta} I_{\{0\leq heta\leq 1\}}$$

$$\int f( heta \mid Y_2 = 1) = rac{ heta(1- heta)\cdot 2 heta}{\int_0^1 heta(1- heta)\cdot 2 heta d heta} I_{\{0\leq heta\leq 1\}}$$



1/1 points

3.

Consider again the coin-flipping example from the lesson. Recall that we used a Uniform(0,1) prior for  $\theta$ . Which of the following is a correct interpretation of  $P(0.3 < \theta < 0.9) = 0.6$ ?



(0.3, 0.9) is a 60% credible interval for  $\theta$  before observing any data.

#### Correct

The probability statement came from our prior, so the prior probability that  $\theta$  is in this interval is 0.6.

- (0.3, 0.9) is a 60% credible interval for heta after observing Y=1.
- (0.3, 0.9) is a 60% confidence interval for  $\theta$ .

|                   | The posterior probability that $	heta \in (0.3, 0.9)$ is 0.6.                                                                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>~</b>          | 1 / 1<br>points                                                                                                                                                                                                                                                          |
| PDF fo<br>followi | der again the coin-flipping example from the lesson. Recall that the posterior $r$ $	heta$ , after observing $Y=1$ , was $f(\theta\mid Y=1)=2\theta I_{\{0\leq \theta\leq 1\}}.$ Which of the $r$ is a correct interpretation of $r$ |
|                   | (0.3, 0.9) is a 72% credible interval for $	heta$ before observing any data.                                                                                                                                                                                             |
| 0                 | (0.3, 0.9) is a 72% credible interval for $	heta$ after observing $Y=1$ .                                                                                                                                                                                                |
|                   | probability statement came from the posterior, so the posterior pability that $	heta$ is in this interval is 0.72.                                                                                                                                                       |
|                   | (0.3, 0.9) is a 72% confidence interval for $	heta$ .                                                                                                                                                                                                                    |
|                   | The prior probability that $	heta \in (0.3, 0.9)$ is 0.72.                                                                                                                                                                                                               |
| <b>~</b>          | 1 / 1<br>points                                                                                                                                                                                                                                                          |
|                   | two quantiles are required to capture the middle 90% of a distribution (thus<br>ting a 90% equal-tailed interval)?                                                                                                                                                       |
|                   | 0 and .9                                                                                                                                                                                                                                                                 |
|                   | .025 and .975                                                                                                                                                                                                                                                            |
|                   | .10 and .90                                                                                                                                                                                                                                                              |
| 0                 | .05 and .95                                                                                                                                                                                                                                                              |
|                   | of the probability mass is contained between the .05 and .95 quantiles (or valently, the 5th and 95th percentiles). 5% of the probability lies on either                                                                                                                 |

side of this interval.



1/1 points

6.

Suppose you collect measurements to perform inference about a population mean  $\theta$ . Your posterior distribution after observing data is  $\theta \mid \mathbf{y} \sim N(0,1)$ .

Report the upper end of a 95% equal-tailed interval for  $\theta$ . Round your answer to two decimal places.

1.96

## **Correct Response**

The 95% equal-tailed interval for a standard normal distribution is (-1.96, 1.96).

Because the normal distribution is symmetric and unimodal (has only one peak), the equal-tailed interval is also the highest posterior density (HPD) interval.

In R:

```
1 qnorm(p=0.975, mean=0, sd=1)
```

In Excel:

where probability=0.975, mean=0, standard\_dev=1.



1/1 points

7.

What does "HPD interval" stand for?



Highest posterior density interval

Correct

Highest point distance interval
Highest precision density interval

Highest partial density interval

- 1/1 points
- 8. Each of the following graphs depicts a 50% credible interval from a posterior distribution. Which of the intervals represents the HPD interval?
  - $\bigcirc$  50% interval:  $heta \in (0.500, 1.000)$



 $\bigcirc$  50% interval:  $heta \in (0.400, 0.756)$ 



Lesson 5.3-5.4

8/8 points (100%)

Quiz, 8 questions

 $\bigcirc$  50% interval:  $heta \in (0.196, 0.567)$ 



 $\bigcirc$  50% interval:  $heta \in (0.326, 0.674)$ 



### Correct

This is the 50% credible interval with the highest posterior density values. It is the shortest possible interval containing 50% of the probability under this posterior distribution.



