PS 8

Christin Bivens

March 2018

True beta: 1.5, -1, -.25, .75, 3.5, -2, .5, 1, 1.25, 2

Part 5 1

0.77480798

0.49631902

0.51529149

0.60010953

0.70913307

0.96689101

0.31334104

0.03613044

0.62443712

0.85853552

These numbers are within the range of true beta, but are very centered within 0 to 1, and therefore are not a good reflection.

2 Part 6

- [1] "The minimum of f(beta,Y,X) is 0.774807975493321"
 - [2] "The minimum of f(beta,Y,X) is 0.496318913121644"
 - [3] "The minimum of f(beta,Y,X) is 0.515291455510075"
 - [4] "The minimum of f(beta, Y, X) is 0.600109530781268"
 - [5] "The minimum of f(beta, Y, X) is 0.709133235430076"
 - [6] "The minimum of f(beta,Y,X) is 0.966890850499107"
 - [7] "The minimum of f(beta,Y,X) is 0.313341072858513"
 - [8] "The minimum of f(beta,Y,X) is 0.0361304989593428"
 - [9] "The minimum of f(beta, Y, X) is 0.624437148940285"
 - [10] "The minimum of f(beta,Y,X) is 0.858535580804735"

Here, the returns are identical to part 5, and therefore also are not a good reflection of beta.

3 Part 7

Optimal value of objective function: -6.54296875

Optimal value of controls: 2.25

Here with the optimization, I had trouble with my code a little bit for the BLFGS.

4 Part 8

 $0.03613,\ 0.62444,\ 0.85854$

5 Part 9

These numbers are in line with parts 5 and 6. They do not reflect are true beta vector, but they do land within the vector (very close to the mean). This gives me the notion that OLS for a simple linear regression plays it safe and keeps answers within one deviation of the mean.

Table 1:

	$Dependent\ variable:$	
	Y	
X1	0.775***	
	(0.002)	
X2	0.496***	
	(0.003)	
X3	0.515***	
	(0.003)	
X4	0.600***	
	(0.003)	
X5	0.709***	
	(0.003)	
X6	0.967***	
	(0.003)	
X7	0.313***	
	(0.003)	
X8	0.036***	
	(0.003)	
X9	0.624***	
	(0.003)	
X10	0.859***	
	(0.003)	
Observations	100,000	
\mathbb{R}^2	0.856	
Adjusted \mathbb{R}^2	0.856	
Residual Std. Error	0.500 (df = 99990)	
F Statistic	$59,605.040^{***} \text{ (df} = 10; 99990)$	
Note:	*n<0.1: **n<0.05: ***n<0.01	

Note:

*p<0.1; **p<0.05; ***p<0.01