#### Variables – Free or Bound?

in expressions in functional programming, a free variable is a variable, which has not been bound

- ▶ through a *let binding*, or
- ▶ as a *formal parameter* of a function definition

for example:

| input                        | free        |
|------------------------------|-------------|
| x + 1                        | { x }       |
| let $(x = 5 + z)$ in $y + x$ | $\{y,z\}$   |
| let $(x = x + 1)$ in $y + x$ | $\{x,y\}$   |
| if y then $\times$ else z    | $\{x,y,z\}$ |
| <b>fun</b> (x y) -> x + z    | { z }       |
| f (f 1 x)                    | { f, x }    |

# Attribute Grammar for Free Variables in a (toy) Functional Language

The following grammar represents a fraction of expressions in a functional language.

| rule |        |               | production                                       | attribute system |
|------|--------|---------------|--------------------------------------------------|------------------|
| 1    | expr   | $\rightarrow$ | expr <u>+</u> expr                               |                  |
| 2    |        |               | <pre>let ( var = expr ) in expr</pre>            |                  |
| 3    |        |               | <u>if</u> expr <u>then</u> expr <u>else</u> expr |                  |
| 4    |        |               | const                                            |                  |
| 5    |        |               | <u>var</u>                                       |                  |
| 6    |        |               | <u>fun</u> ( varseq ) -> expr                    |                  |
| 7    |        |               | expr ( expseq )                                  |                  |
| 8    | varseq | $\rightarrow$ | var varseq                                       |                  |
| 9    |        |               | <u>var</u>                                       |                  |
| 10   | expseq | $\rightarrow$ | expr expseq                                      |                  |
| 11   |        |               | expr                                             |                  |

# Attribute Grammar for Free Variables in a (toy) Functional Language

The following grammar represents a fraction of expressions in a functional language.

| rule |        |               | production                                       | attribute system                                                     |
|------|--------|---------------|--------------------------------------------------|----------------------------------------------------------------------|
| 1    | expr   | $\rightarrow$ | expr <u>+</u> expr                               | $\mathit{free}[0] := \mathit{free}[1] \cup \mathit{free}[3]$         |
| 2    |        |               | <pre>let ( var = expr ) in expr</pre>            | $free[0] := (free[8] \setminus \{n[3]\}) \cup free[5]$               |
| 3    |        |               | <u>if</u> expr <u>then</u> expr <u>else</u> expr | $free[0] := free[2] \cup free[4] \cup free[6]$                       |
| 4    |        |               | const                                            | $free[0] := \{\}$                                                    |
| 5    |        |               | <u>var</u>                                       | $free[0] := \{n[1]\}$                                                |
| 6    |        |               | <u>fun (</u> varseq <u>)</u> <u>-&gt;</u> expr   | $free[0] := free[6] \setminus free[3]$                               |
| 7    |        |               | expr ( expseq )                                  | $\mathit{free}[0] \coloneqq \mathit{free}[1] \cup \mathit{free}[3]$  |
| 8    | varseq | $\rightarrow$ | <u>var</u> varseq                                | $\mathit{free}[0] \coloneqq \{\mathit{n}[1]\} \cup \mathit{free}[2]$ |
| 9    |        |               | <u>var</u>                                       | $free[0] := \{n[1]\}$                                                |
| 10   | expseq | $\rightarrow$ | expr expseq                                      | $\mathit{free}[0] := \mathit{free}[1] \cup \mathit{free}[2]$         |
| 11   |        |               | expr                                             | $\mathit{free}[0] := \mathit{free}[1]$                               |
|      |        |               |                                                  |                                                                      |

## Correctly Nested Expression Statements

A few specific properties of languages are usually not treated with syntactical rules, instead they are addressed via the semantical analysis.

(Artificial) Example:

#### Expressions may comprise

- binary operators
- value assignment
- ▶ (multi-dimensional) array access.

| input           | nesting |
|-----------------|---------|
| x = y+1         | valid   |
| x = y = z[3]+1  | valid   |
| $\times[1] = y$ | valid   |
| y+1=z           | invalid |
| 5 = z+1         | invalid |
| z++ = 42        | invalid |
|                 |         |

## Correctly Nested Expression Statements – Attribute Grammar

The following grammar represents the fraction of a language that treats expression statements.

| rule | production |               |                     | attribute system |
|------|------------|---------------|---------------------|------------------|
| 1    | S'         | $\rightarrow$ | $\{$ stmts $\}$     |                  |
| 2    | stmts      | $\rightarrow$ | expr <u>;</u> stmts |                  |
| 3    |            |               | $\varepsilon$       |                  |
| 4    | expr       | $\rightarrow$ | expr binop expr     |                  |
| 5    |            |               | expr = expr         |                  |
| 6    |            |               | expr [ elist ]      |                  |
| 7    |            |               | const               |                  |
| 8    |            |               | <u>var</u>          |                  |
| 9    | elist      | $\rightarrow$ | expr <u>,</u> elist |                  |
| 10   |            |               | expr                |                  |
| 12   |            |               |                     |                  |
| 11   |            |               |                     |                  |
|      |            |               |                     |                  |

## Correctly Nested Expression Statements – Attribute Grammar

The following grammar represents the fraction of a language that treats expression statements.

| rule | production |               | duction             | attribute system                                                                                                  |  |  |
|------|------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | S'         | $\rightarrow$ | $\{$ stmts $\}$     | valid[0] := valid[2]                                                                                              |  |  |
| 2    | stmts      | $\rightarrow$ | expr <u>;</u> stmts | $\mathit{valid}[0] \coloneqq \mathit{valid}[1] \land \mathit{valid}[3]$                                           |  |  |
| 3    |            |               | arepsilon           | $\mathit{valid}[0] \coloneqq \mathtt{true}$                                                                       |  |  |
| 4    | expr       | $\rightarrow$ | expr binop expr     | $\mathit{lhs}[0] \coloneqq \mathtt{false}  \mathit{valid}[0] \coloneqq \mathit{valid}[1] \land \mathit{valid}[3]$ |  |  |
| 5    |            |               | expr <u>=</u> expr  | $\mathit{lhs}[0] := \mathtt{false} \ \ \mathit{valid}[0] := \mathit{lhs}[1] \land \mathit{valid}[3]$              |  |  |
| 6    |            |               | expr [ elist ]      | $	extit{lhs}[0] := 	exttt{true}  	extit{valid}[0] := 	exttt{valid}[1] \land 	exttt{valid}[3]$                     |  |  |
| 7    |            |               | const               | $\mathit{lhs}[0] := \mathtt{false} \ \ \mathit{valid}[0] := \mathtt{true}$                                        |  |  |
| 8    |            |               | var                 | $\mathit{lhs}[0] := \mathtt{true}  \mathit{valid}[0] := \mathtt{true}$                                            |  |  |
| 9    | elist      | $\rightarrow$ | expr <u>,</u> elist | $\mathit{valid}[0] \coloneqq \mathit{valid}[1] \land \mathit{valid}[3]$                                           |  |  |
| 10   |            |               | expr                | $\mathit{valid}[0] \coloneqq \mathit{valid}[1]$                                                                   |  |  |
| 12   | expr       | $\rightarrow$ | expr incop          | $\mathit{lhs}[0] \coloneqq \mathtt{false} \ \ \mathit{valid}[0] \coloneqq \mathit{lhs}[1]$                        |  |  |
| 11   | expr       | $\rightarrow$ | incop expr          | $\mathit{lhs}[0] \coloneqq \mathtt{false} \ \mathit{valid}[0] \coloneqq \mathit{lhs}[2]$                          |  |  |
|      |            |               |                     |                                                                                                                   |  |  |

## Cycles in Attribute Grammars

Consider the following Attribute Grammar G, with the start symbol R:

```
R \to T R : x[0] = w[1], x[2] = 2 \cdot x[0], z[1] = min(y[2], 1)

R \to R T : y[0] = min(y[1], 0), x[1] = y[2] + 1, x[2] = x[0]

R \to T : y[0] = y[1], x[1] = x[0]

T \to a : y[0] = x[0] + 2, w[0] = z[0]
```

Compute the overapproximation of the global dependencies  $\mathcal{R}^*$  of all non-terminals from G, according to the method from the strongly acyclicity test.

Please give reasons for/against:

- 1. Is G L-attributed?
- 2. Is *G* strongly acyclic?
- 3. Is G acyclic?

$$\begin{array}{lll} R \to T & R & : & \times [0] = \textbf{w}[1], & \times [2] = 2 \cdot \textbf{x}[0], & \textbf{z}[1] = min(\textbf{y}[2], 1) \\ R \to R & T & : & \textbf{y}[0] = min(\textbf{y}[1], 0), & \times [1] = \textbf{y}[2] + 1, & \textbf{x}[2] = \textbf{x}[0] \\ R \to T & : & \textbf{y}[0] = \textbf{y}[1], & \times [1] = \textbf{x}[0] \\ T \to \textbf{a} & : & \textbf{y}[0] = \textbf{x}[0] + 2, & \textbf{w}[0] = \textbf{z}[0] \end{array}$$



- 1. G is not L-attributed; in production  $R \to T$  R, we have  $\mathbf{y}[2] \to \mathbf{z}[1]$
- 2.  $\mathcal{R}^*(R)$  is cyclic with  $x \to x$
- 3. G is actually cyclic: We get a concrete cycle for R



| XTY |                  | a                                  |                                       |                                       |
|-----|------------------|------------------------------------|---------------------------------------|---------------------------------------|
|     | non-terminal     | 1st iteration                      | 2nd iteration                         | 3rd iteration                         |
|     | $\mathcal{R}(T)$ | $x \rightarrow y, z \rightarrow w$ | $x \rightarrow y$ , $z \rightarrow w$ | $x \rightarrow y$ , $z \rightarrow w$ |
|     | $\mathcal{R}(R)$ |                                    | $x \rightarrow y$                     | $x \rightarrow y$ , $x \rightarrow x$ |

#### Another one

#### Consider Attribute Grammar G:

| rule | e production |               |    | attribute system |               |               |               |               |               |
|------|--------------|---------------|----|------------------|---------------|---------------|---------------|---------------|---------------|
| 1    | 5            | $\rightarrow$ | AB | a[1] ::= a[0]    | b[2] ::= b[1] | c[1] ::= b[0] | a[2] ::= c[1] | b[0] ::= b[2] | c[0] ::= c[2] |
| 2    | 5            | $\rightarrow$ | BA | c[0] ::= b[2]    | b[1] ::= a[0] | c[2] ::= c[1] | c[1] ::= a[1] | b[2] ::= a[2] |               |
| 3    | A            | $\rightarrow$ | BA | b[0] ::= c[2]    | c[2] ::= a[1] | b[1] ::= a[0] |               |               |               |
| 4    | В            | $\rightarrow$ | BA | c[2] ::= b[0]    | c[0] ::= a[1] | b[1] ::= a[0] | a[0] ::= a[2] |               |               |
| 5    | A            | $\rightarrow$ | 5  | a[0] ::= c[0]    |               |               |               |               |               |
| 6    | В            | $\rightarrow$ | t  |                  |               |               |               |               |               |

- 1. Provide the local dependency graphs for , S, A, B
- 2. Compute the least solution of  $\mathbb{R}^*$  for all nonterminals , S, A, B
- 3. Is G strongly acyclic?



a b c

A a b c



a b c