

# A Volume-Limited Search for L/T Transition Brown Dwarfs with the Pan-STARRS 1 and WISE Surveys



William M. J. Best<sup>1</sup>, Michael C. Liu<sup>1</sup>, Eugene A. Magnier<sup>1</sup>, Kimberly M. Aller<sup>1</sup>, Niall R. Deacon<sup>2</sup>, Trent J. Dupuy<sup>3</sup>

1-University of Hawai'i, 2-MPIA, Heidelberg, 3-Smithsonian Astrophysical Observatory

- We have searched ~30,000 deg² in the Pan-STARRS 1 (PS1)  $3\pi$  and WISE All-Sky surveys for brown dwarfs in the L/T transition.
- Previous large-scale searches have been incomplete for L/T transition dwarfs because these objects are faint in optical bands, and have near-infrared colors that are difficult to distinguish from background stars.
- We have cross-matched the PS1 (optical) and WISE (mid-IR) catalogs to produce a unique multi-wavelength database.
- We have obtained near-IR SpeX spectra for 138 candidates and confirmed that 82 are new L/T transition dwarfs, 33 with 25 pc.
- These new discoveries will...
  - substantially improve the completeness of the 25 parsec L/T dwarf census;
  - refine the constraints on the local substellar mass function;
- help us to better understand and model the evolution of brown dwarf atmospheres through the L/T transition.

### Why L/T Dwarfs?

• Only ~20% of known brown dwarfs are in the L/T transition (spectral types  $\approx$  L6-T5).



- Previous all-sky searches based on 2MASS have found few L/T objects.
- Objects undergo drastic spectral changes across the L/T transition ( $\approx 1300-900$  K), which models find difficult to reproduce.
- Weather-related periodic variability has been observed in some L/T dwarfs.
- A larger, well-defined sample of L/T transition dwarfs will improve constraints on the substellar mass function, and provide more templates for brown dwarf atmospheric models.

# Volume-Limited at 25 pc

- We want to characterize the L/T transition population within 25 pc, the same volume as the PMSU M dwarf survey and the Gliese catalog.
- Empirically, we find that ultracool objects with W1 ≤ 2.833×(W1-W2) + 12.667 have photometric (W2) distances < 25 pc.



CMD of objects for which we obtained spectra (dark grey diamonds), highlighting those with photometric distances < 25 pc (red squares). Overplotted are ultracool dwarfs with parallaxes from Dupuy & Liu (2012), in light grey and pink.

#### **New Discoveries**











Results of spectroscopic observations. We have identified 82 L/T transition dwarfs so far, including 33 with photometric distances < 25 pc.

## Comparison to Previously Known Objects





<u>Left</u>: L/T transition dwarfs within 25 pc: previously known (black) and new discoveries (filled green). Distances are from parallax if available, else from W2 photometry. <u>Right</u>: All our L and T discoveries overplotted on a near-IR CMD of known ultracool dwarfs. **Our search is substantially increasing the L/T transition census.** 

## PS1 3π Survey

PS1 has mapped the entire sky north of Dec =  $-30^{\circ}$  several times to date in five *grizy* filters, including  $y_{P1}$  down to  $\sim 20.3$  mag (single epoch), equivalent to  $\sim 1$  mag deeper than SDSS. PS1  $3\pi$  is mapping the entire search area twelve times over 4 years (finishing in March 2014) in five filters, enabling internal proper motion and parallax measurements.

#### **Search Status**

Our survey is nearly complete, and we expect to finish the remaining observations later this month.

Will Best is a third year graduate student at the University of Hawai'i.

wbest@ifa.hawaii.edu

