

Прикладная статистика и анализ данных

А/В тестирование

Апрель 2020

Краткое содержание

Краткое напоминание
Проверка гипотез
Напоминание основных тестов

Реалии А/В тестирования

Кейс 1

Кейс 2

Кейс 3

Кейс 4

Кейс 5

Самый практичный стат. тест

Напоминание: проверка гипотез

- 1. Основная и альтернативная гипотезы H_0, H_1
- 2. Статистика критерия T(X)
- 3. p-value p(x), где x реализация выборки
- 4. Уровень значимости $P_{H_0}(p(X) \geqslant \alpha) \geqslant \alpha$
- 5. Мощность $P_{H_1}(p(X) \geqslant \alpha) \longrightarrow \max$

Вопрос-ответ

Вопрос с собеседований и от менеджеров: как связаны pvalue и вероятность нулевой гипотезы?

Вопрос-ответ

Вопрос с собеседований и от менеджеров: как связаны pvalue и вероятность нулевой гипотезы?

Hint: представьте, что гипотеза случайна.

Вопрос-ответ

Вопрос с собеседований и от менеджеров: как связаны pvalue и вероятность нулевой гипотезы?

Hint: представьте, что гипотеза случайна.

Нестрого формулой Байеса:

$$\mathsf{P}(\mathsf{H}_0 \mid T \geqslant t) = \mathsf{P}(T \geqslant t \mid \mathsf{H}_0) \frac{\mathsf{P}(\mathsf{H}_0)}{\mathsf{P}(T \geqslant t)} \sim \mathit{pvalue} \cdot \mathsf{P}(\mathsf{H}_0)$$

pvalue нельзя интерпретировать как вероятность нулевой гипотезы! Надо об этом помнить и напоминать заказчикам при презентации результатов.

Основные тесты

Расскажите какие критерии вам известны?

Бернуллиевские выборки

1. Независимые выборки

$$X_1,...,X_n \sim Bern(p)$$
 и $Y_1,...,Y_m \sim Bern(q)$.
 $H_0\colon p=q$ vs. $H_1\colon p<\neq>q$
 $Z(X,Y)=rac{\widehat{p}_1-\widehat{p}_2}{\widehat{\sigma}},$ где $\widehat{\sigma}=\sqrt{rac{\widehat{p}_1(1-\widehat{p}_1)}{n}+rac{\widehat{p}_2(1-\widehat{p}_2)}{m}}.$

2. Связные выборки

$$X_1, ..., X_n \sim Bern(p)$$
 in $Y_1, ..., Y_n \sim Bern(q)$.
 $H_0: p = q$ vs. $H_1: p \{<, \neq, >\} q$

$$Z(X,Y) = \frac{\widehat{p} - \widehat{q}}{\sqrt{\frac{f+g}{n^2} + \frac{(f-g)^2}{n^3}}}$$

Независимые нормальные выборки

$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2), \ Y_1,...,Y_m \sim \mathcal{N}(a_2,\sigma_2^2).$$

 $H_0: a_1 = a_2 \ vs. \ H_1: a_1 < \neq > a_2$

$$Z(X,Y)=rac{\overline{X}-\overline{Y}}{\sqrt{\sigma_1^2/n+\sigma_2^2/m}}\stackrel{\mathsf{H_0}}{\sim}\mathcal{N}(0,1)$$

2.
$$\sigma_1=\sigma_2=\sigma$$
 неизвестны

$$T(X,Y)=rac{\overline{X}-\overline{Y}}{S_{tot}\sqrt{1/n+1/m}}\stackrel{\mathsf{H_0}}{\sim} T_{n+m-2}$$
 где $S_{tot}^2=rac{(n-1)S_X^2+(m-1)S_Y^2}{n+m-2}$

3.
$$\sigma_1 \neq \sigma_2$$
 и неизвестны

$$T(X,Y) = rac{\overline{X} - \overline{Y}}{\sqrt{S_X^2/n + S_Y^2/m}} \stackrel{\mathsf{прибл.}}{\sim} T_V$$
 $v = \left(rac{S_X^2}{n} + rac{S_Y^2}{m}
ight)^2 / \left(rac{S_X^4}{n^2(n-1)} + rac{S_Y^4}{m^2(m-1)}
ight)$

Непараметрические критерии

1. Критерий Смирнова

 $X_1,...,X_n$ и $Y_1,...,Y_m$ — выборки с функ. распр. F и G.

$$egin{aligned} \mathsf{H}_0\colon F = G \quad & \mathit{vs.} \quad \mathsf{H}_1\colon F
eq G \ & \mathsf{Статистика} \quad D_{nm} = \sup_{x \in \mathbb{R}} \left|\widehat{F}_n(x) - \widehat{G}_m(x) \right| \end{aligned}$$

2. Критерий Мана-Уитни

 $X_1,...,X_n$ и $Y_1,...,Y_m$ — выборки с функ. распр. F и G.

 $H_0: F = G$ vs. $H_1: F \geqslant G$

 S_j — ранг Y_j в вар. ряду по выборке $(X_1,..,X_n,Y_1,..,Y_m)$.

 $V = S_1 + ... + S_m$ — статистика критерия.

$$\frac{V - \mathsf{E}V}{\sqrt{\mathsf{D}V}} \xrightarrow{d_0} \mathcal{N}(0,1),$$

где E
$$V = \frac{m(n+m+1)}{2}, \;\; \mathsf{D} V = \frac{nm(n+m+1)}{12}$$
 при $\mathsf{H}_0.$

Пример АВ теста

Горные велосипеды. Распродажа 60%

В наличии более 1 000 моделей! bike.ru

Распродажа! Sale! Rebajas! Saldi!

Не пропустите! До 1 числа продаем горные велосипеды по смешным ценам! :) bike.ru

Офисные кресла

Скидка от 10 кресел -15%! Скидка в шоу-рум до 50%! Доставка – бесплатно!!!

Офисные кресла

Скидка от 10 кресел -15%! Скидка в шоу-рум до 50%! Доставка – Бесплатно!!!

Практические вопросы

Давайте разберём несколько практических моментов, с которыми каждый, кто проводит АБ тесты, рано или поздно сталкивается.

Разбиение на тестовые группы

Нужно разбить пользователей на две группы Как лучше это сделать? Как проверить, что полученное разбиение — хорошее?

Разбиение на тестовые группы

Нужно разбить пользователей на две группы Как лучше это сделать? Как проверить, что полученное разбиение — хорошее?

Для разбиения обычно используют хэш от id-шника пользователя конкатенированного со строкой общей для эксперимента (солью).

Как вы думаете, зачем соль?

Разбиение на тестовые группы

Првостепенная задача - проверить корректность разбиения. Что можно сделать:

- Сравнить статические фичи (пол, возраст и т.п.)
 распределены одинаково Критерии однородности и др
- Сравнить исторические фичи (конверсии за какой-то период, покупки и и.д.). Распределения врядли будут прям совпадать, но стоит проверить разные статистики (среднее, медианы, дисперсии)
- Провести АА-тест. Разбиение всё равно может оказаться плохим, поэтому стоит провести АА тест, в рамках которого убедиться, что в группах нет значимых различий между целевыми метриками.

Кстати, похожий процесс происходит, когда придумывают новую метрику. Ведь нужно убедиться, что она корректно красится (ещё одно сленговое слово) в АА тестах.

Сроки теста

Никто не будет запускать тест просто так. Нужно заранее оценить на какой срок нужно запускать тест. Как это сделать?

Сроки теста

Никто не будет запускать тест просто так.

Нужно заранее оценить на какой срок нужно запускать тест. Как это сделать? Часто встречаются следующие две стратегии:

- ▶ Из соображений мощности: нужно взять такое n, чтобы $\mathsf{P}_{H_1}(p(X) \leqslant \alpha) \geqslant \beta$
- ▶ Из соображений эффекта: нужно взять такое n, чтобы $p(X) \leqslant \alpha$ при условии, что есть эффект. Например, чтобы в Z-тесте $pvalue \leqslant 0.05$ при условии, что $\widehat{p}_2 \widehat{p}_1 > 0.01$

Как вы думаете, какая оценка даёт меньшие сроки?

Досрочная остановка теста

Вы распланировали АБ тест.

По вашим оценкам (вы использовали биномиальный тест) за 81 день отклонение изменяемой величины на 1 процент является значимым.

Вы ежедневно мониторили результаты теста и через 9 дней обнаружили отклонение в 5 процентов, что является значимым для теста длиной 9 дней.

Можно в этом случае досрочно завершить АБ тест?

Последовательный анализ

Как с этим жить: Нужно применять Статистический последовательный анализ (Sequential analysis). Он даёт, во-первых, корректные, а во-вторых, более мощные критерии (точнее более быстрые прокраски), пользуясь дополнительным знанием о потоковости данных.

Поиск разных эффектов

Допустим, что вы проверяете средний чек, среднее число товаров в чеке, среднее число аксессуаров в чеке.

Для каждой из этих величин вы составили свой критерий для проверки гипотезы о наличие эффекта.

Каков уровень значимости для такой одновременной проверки гипотез?

Множественная проверка гипотез

Поскольку величина чека, число товаров в нём и число аксессуаров в нём — зависимые величины, то нельзя в точности найти уровень значимости, но можно его оценить:

$$\alpha \leqslant \mathsf{P}_{\mathsf{H}_0}(p_1 \leqslant \alpha \text{ or } p_2 \leqslant \alpha \text{ or } p_3 \leqslant \alpha) \leqslant \sum_j \mathsf{P}_{\mathsf{H}_0}(p_j \leqslant \alpha) = 3\alpha$$

Множественная проверка гипотез

Ошибка первого рода вызвана не особенностью данных, а тем, что мы несколько раз её проверяем.

Как с этим жить: Нужно применять методы Множественной проверки гипотез. Самый простой способ — уменьшить α в число гипотез раз, но есть и более сложные подходы. Есть хорошая реализация в Python — statsmodels.sandbox.stats.multicomp.multipletests.

Какие подходы вы знаете?

Пример реального теста

- Вы сравниваете конверсию пользовательской сессии в приложении в клик по рекламному блоку.
- Тест длится около месяца.
- Вы для всех сессий имеет величину 0 или 1 сконвертировалась ли она в клик.
- Значимость оценивается с помощью Z-теста на выборках из вышеописанных величин

Оцените насколько хороша такая схема теста.

Пример реального теста

- Вы сравниваете конверсию пользовательской сессии в приложении в клик по рекламному блоку.
- Тест длится около месяца.
- Вы для всех сессий имеет величину 0 или 1 сконвертировалась ли она в клик.
- Значимость оценивается с помощью Z-теста на выборках из вышеописанных величин

Оцените насколько хороша такая схема теста.

Объекты выборки зависимы. Из-за этого вы обычно будете занижать pvalue!

На практике эта ситуация сплошь и рядом, поэтому давайте разберёмся как решить эту проблему.

Данные

Две "выборки" вида $\{(k_i, x_i)\}_{i=1}^n$, где k_i – ключ i-го события, x_i – произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Данные

Две "выборки" вида $\{(k_i, x_i)\}_{i=1}^n$, где k_i — ключ i-го события, x_i — произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Примеры

- 1. Конверсия сессии в поездку, ключ id пользователя
- 2. Стоимость заказа, ключ id пользователя
- 3. Конверсия предложения заказа в его принятие, ключ id водителя
- 4. Количество заказов в день, ключ id водителя

Данные

Две "выборки" вида $\{(k_i, x_i)\}_{i=1}^n$, где k_i – ключ i-го события, x_i – произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Метод обсчёта

Функция f, которая для произвольного набора $\{(k_j, x_j)\}_{j=1}^m$ находит значение статистики

Данные

Две "выборки" вида $\{(k_i, x_i)\}_{i=1}^n$, где k_i – ключ i-го события, x_i – произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Метод обсчёта

Функция f, которая для произвольного набора $\{(k_j, x_j)\}_{j=1}^m$ находит значение статистики

Задача

Ответить на вопрос стат. значимо ли $f(\{(k_i^{test}, x_i^{test})\}_{i=1}^{n_{test}})$ отличается от $f(\{(k_i^{control}, x_i^{control})\}_{i=1}^{n_{control}})$

Возможные решения

Задача

Ответить на вопрос стат. значимо ли $f(\{(k_i^{test}, x_i^{test})\}_{i=1}^{n_{test}})$ отличается от $f(\{(k_i^{control}, x_i^{control})\}_{i=1}^{n_{control}})$

Возможные решения

Задача

Ответить на вопрос стат. значимо ли $f(\{(k_i^{test}, x_i^{test})\}_{i=1}^{n_{test}})$ отличается от $f(\{(k_i^{control}, x_i^{control})\}_{i=1}^{n_{control}})$

Простой случай

Все ключи различные, f — среднее, медиана, гистограмма.

Тогда можно использовать обычные тесты для соответсвующей нулевой гипотезы

Описание

Случайно разобьём события на бакеты (от 1 до B) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив B чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Описание

Случайно разобьём события на бакеты (от 1 до B) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив B чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Основные вопросы

- 1. Почему в итоге получается выборка?
- 2. Почему применение теста корректно?
- 3. Почему мы не потеряем в мощности теста?

Описание

Случайно разобьём события на бакеты (от 1 до B) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив B чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Выборочность. Нестрого

Все зависимые события (события одного ключа) попадают в один бакет. То есть все события разных бакетов независимы.

Описание

Случайно разобьём события на бакеты (от 1 до B) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив B чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Корректность. Нестрого

Если эффекта нет и данных дотаточно много, то f(bucket) будет распределено одинаково в тесте и контроле. Кстати, поэтому требуется, чтобы размер теста и контроля совпадали (ttest-у без разницы, а вот mw страдает).

Описание

Случайно разобьём события на бакеты (от 1 до B) при помощи какой-то функции от ключа. Для каждого бакета применим функцию f, получив B чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Мощность. Нестрого

Если все ключи уникальны, то в результе бакетирования количество объектов выборки уменьшается в $\frac{n}{B}$ раз. Но дисперсия значений выборки тоже уменьшется в $\frac{n}{B}$ раз. Эти два эффекта компенсируют друг друга и дают надежду на мощность теста.

Бакетное сэмплирование на примере

Пусть $k_i = i$, $x_i \sim Bern(p)$, то есть x_i — независимые конверсии. Метод обсчёта — это среднее, а поверх бакетов применяется ttest.

B ttest-е статистика это
$$\frac{\overline{x}_{test} - \overline{x}_{control}}{\sqrt{\frac{\overline{s}^2_{test} + \frac{\overline{s}^2_{control}}{n_{control}}}}$$
.

 \overline{x} из-за бакетов не сильно изменится, так как размеры бакетов примерно одинаковые и среднее средних будет почти совпадать с исходным средним.

 $\overline{s^2}$ из-за усреднения бакетов уменьшится примерно в $\frac{n}{B}$ раз. Но и размер выборки будет не n, а B, то есть знаменатель тоже уменьшится в $\frac{n}{B}$ раз. Получается, что статистика изменится не сильно.

В сухом остатке

- 1. Бакетное сэмплирование позволяет быстро сравнивать почти произвольные метрики на выборках больших размеров.
- Но нужно быть аккуратным с размером групп и с метриками (не везде так хорошо как со средними).
 Требуется проводить АА тесты.
- 3. Если у вас небольшая выборка, то лучше использовать классические тесты
- 4. Практически все метрики, которые используются, можно представить в виде $\frac{\sum\limits_{i=1}^{n}a_{i}}{\sum\limits_{i=1}^{n}b_{i}}$ (средние, конверсии, пороги) и

поэтому бакетный тест можно эффективно реализовать на MapReduce