Physics 132, Sections 54/55 and 60/61, Fall 2020 - Equation Sheet

Kinematics, Forces, Newton's 2nd Law of Motion, Work and Energy

$$v_x(t) = \frac{dx}{dt}$$
; $a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$; $K = \frac{1}{2}mv^2$; $U_{sp} = \frac{1}{2}kx^2$; $U_{grav} = mgh$; $E = K + U$

$$\vec{F}_{\text{net}} = \sum \vec{F} = m\vec{a}$$
; $\vec{F}_{\text{spring}} = -k\Delta \vec{s}$ (along x-axis, equilibrium at $x = 0$: $F_s = -kx$); $|\vec{F}_G| = mg$

$$W_{\vec{F}} = \int \vec{F} \cdot d\vec{s}$$
 ; if $\vec{F} = \text{const}$, then $W_{\vec{F}} = \vec{F} \cdot \Delta \vec{s}$; $W_{\text{net}} = \Delta K$

Simple Harmonic Motion

$$x(t) = A\cos(\omega t + \phi_0)$$
 ; $v(t) = -A\omega\sin(\omega t + \phi_0)$; $a(t) = -A\omega^2\cos(\omega t + \phi_0) = -\omega^2x(t)$

$$f=1/T \quad ; \quad \omega=2\pi f \quad ; \quad \omega=\sqrt{k/m} \quad ; \quad \omega=\sqrt{g/L} \quad ; \quad \omega=\sqrt{mgL/I} \quad ; \quad f_{\rm ext}=f_0$$

$$x(t) = Ae^{-bt/2m}\cos(\omega t + \phi_0)$$
 ; $\omega = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} = \sqrt{\omega_0^2 - \frac{b^2}{4m^2}}$

Traveling Waves; Intensity Level and Doppler Effect

$$k = 2\pi/\lambda \quad ; \quad v = \lambda f = \omega/k \quad ; \quad D\left(x,t\right) = A\sin\left(kx \mp \omega t + \phi_0\right) \quad ; \quad v = \sqrt{T_{string}/\mu} \quad \left(\mu = \text{mass/length}\right)$$

$$D(r,t) = A(r)\sin(kr - \omega t + \phi_0)$$
 ; $I = P/a$ $(P = \text{energy/time})$

$$\beta = (10 \text{ dB}) \log_{10} (I/I_0) \text{ with } I_0 = 1.0 \times 10^{-12} \text{ W/m}^2 \quad ; \quad f_o = f_s \left(1 \pm \frac{v_o}{v}\right) / \left(1 \mp \frac{v_s}{v}\right)$$

Superposition: Standing Waves and Interference

$$D(x,t) = 2A\sin(kx)\cos(\omega t)$$
 ; $\Delta\phi = \phi_2 - \phi_1 = 2\pi \Delta r/\lambda + \Delta\phi_0$; $\Delta r = r_2 - r_1$

$$\lambda_{m} = \frac{2L}{m} \quad , \quad f_{m} = m \frac{v}{2L} \quad \left(m = 1, 2, 3, \ldots\right) \quad ; \quad \lambda_{m} = \frac{4L}{m} \quad , \quad f_{m} = m \frac{v}{4L} \quad \left(m = 1, 3, 5, \ldots\right) \quad ; \quad f_{\text{beat}} = \left|f_{1} - f_{2}\right|$$

$$\Delta \phi = m \cdot 2\pi$$
 or $\Delta \phi = (m+1/2) \cdot 2\pi$ $(m=0,1,2,3,...)$; $A = |2a\cos(\Delta \phi/2)|$

Wave Optics: Interference and Diffraction

$$y = L \tan \theta$$
 ; $d \sin \theta_m = m\lambda$ or $d \sin \theta_m = (m+1/2)\lambda$ $(m = 0, 1, 2, ...)$; $\Delta y \approx \lambda L/d$

$$a\sin\theta_p = p\lambda \quad (p=1, 2, 3, ...)$$
 ; $w = 2\lambda L/a$; $D\sin\theta_1 = 1.22\lambda$

Ray Optics: Reflection and Refraction; Thin Lenses

$$n = c/v$$
 ; $\theta_i = \theta_r$; $n_1 \sin \theta_1 = n_2 \sin \theta_2$; $\sin \theta_c = n_{\text{low}}/n_{\text{high}}$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \qquad ; \qquad m = \frac{h'}{h} = -\frac{s'}{s} \qquad ; \qquad m = m_1 m_2 \qquad ; \qquad \frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Pressure and Fluids

$$p = F/A$$
 ; $p_{\text{liquid}} = \rho g d$; $p = p_0 + p_{\text{liquid}}$; $p_g = p - p_{\text{atm}}$

Density, Number of Moles and Molar Mass

$$\rho = \frac{M}{V}$$
; $n = \frac{N}{N_A} = \frac{\text{total mass}}{\text{molar mass}}$; $N = \frac{\text{total mass}}{\text{mass of one atom/molecule}}$

molar mass (in g/mol) = atomic/molecular mass (in u); atomic mass (in u) ≈ atomic mass number A

Ideal Gases; Temperature Scales

$$pV = nRT = Nk_BT$$
 ; $p_1V_1/T_1 = p_2V_2/T_2$

$$T_F = (9/5)T_C + 32$$
 ; $T_K = T_C + 273.15$; $nR = Nk_B$

Work, Heat and Thermal Energy; Adiabatic Processes; Heat Engines and Refrigerators

$$W_{\rm env\,on\,gas} = -\int_{V_i}^{V_f} p \; dV \quad ; \quad W_{\rm env\,on\,gas} = -nRT \ln \left(V_f \left/ V_i \right. \right) \quad ; \quad W_{\rm env\,on\,gas} = \frac{p_{\rm f} V_{\rm f} - p_{\rm i} V_{\rm i}}{\gamma - 1}$$

$$Q = Mc\Delta T = nC\Delta T$$
 ; $Q = \pm ML$; $\sum_{i} Q_{i} = 0$; $\Delta E_{\text{th}} = W_{\text{env on gas}} + Q$

$$E_{th} = nC_VT$$
 ; $C_P = C_V + R$; $\gamma = C_P/C_V$; $pV^{\gamma} = \text{constant}$; $TV^{\gamma-1} = \text{constant}$

$$E_{\rm th(gas)} \approx \left(3/2\right) nRT \ \ {\rm or} \ \left(5/2\right) nRT \ \ \Leftrightarrow \ \ C_{\rm V} \approx \left(3/2\right) R \ \ {\rm or} \ \left(5/2\right) R \ \ ; \ \ E_{\rm th(solid)} \approx 3nRT$$

$$\epsilon_{\text{avg}} = (1/2) m v_{\text{rms}}^2 = (3/2) k_B T$$
; $dS = \delta Q/T$

$$W_{\mathrm{out}} = Q_H - Q_C \quad ; \quad \eta = W_{\mathrm{out}}/Q_H \quad ; \quad \eta_{\mathrm{Carnot}} = 1 - T_C/T_H \quad ; \quad K = Q_C/W_{\mathrm{in}} \quad ; \quad K_{\mathrm{Carnot}} = T_C/\left(T_H - T_C\right)$$

Assorted constants

$$g = +9.8 \text{ m/s}^2$$
; $c = 3.00 \times 10^8 \text{ m/s}$; $v_{\text{sound}} = 343 \text{ m/s}$ (in dry air at 20 °C)

$$k_B = 1.381 \times 10^{-23} \text{ J/K}$$
 ; $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$; $R = k_B N_A = 8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$

Trigonometry, Math and Geometry

For any quantity:
$$\Delta C = C_f - C_i$$
 ; $\Delta C_{ab} = C_b - C_a$

$$\sin \theta = O/H$$
 ; $\cos \theta = A/H$; $\tan \theta = O/A$

$$H = \sqrt{O^2 + A^2}$$
 ; $\pi \text{ rad} = 180^\circ$

$$\sin(-\theta) = -\sin\theta$$
; $\cos(-\theta) = \cos\theta$; $\sin(90^{\circ} - \theta) = \cos\theta$; $\sin^{2}\theta + \cos^{2}\theta = 1$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
; $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

Small-angle approximation ($\theta \lesssim 10^\circ$ or $\theta \lesssim 0.2~{\rm rad}$): $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

$$ax^2 + bx + c = 0$$
 \Leftrightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$L_{\rm circumf.} = 2\pi r \quad ; \quad A_{\rm circle} = \pi r^2 \quad ; \quad A_{\rm sphere} = 4\pi r^2 \quad ; \quad V_{\rm cylinder} = A_{\rm circle} h = \pi r^2 h \quad ; \quad V_{\rm sphere} = \left(4/3\right)\pi r^3 + \left(4/3\right)\pi$$

Some conversion factors and SI prefixes

$$1 L = 1000 cm^3$$

$$1 \text{ m}^3 = 1000 \text{ L}$$

$$1 \text{ u} = 1.660 \times 10^{-27} \text{ kg}$$

$$1 lb = 0.45359237 kg$$

$$1 \text{ cal} = 4.186 \text{ J}$$

Name	Symbol	Multiplier
giga-	G	10 ⁹
mega-	M	10 ⁶
kilo-	k [lowercase]	$10^3 = 1000$
deci-	d	10 ⁻¹ = 0.1
centi-	С	$10^{-2} = 0.01$
milli-	m	$10^{-3} = 0.001$
micro-	μ	10 ⁻⁶
nano-	n	10 ⁻⁹
pico-	р	10 ⁻¹²