UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

CALCULO COMPLEJO

Listado Nº 1 MAT. 525212 - 521250

PROBLEMA 1. Determinar y trazar las gráficas de los lugares geométricos representados por los $z \in \mathbb{C}$ tales que:

(i)
$$|z| < 1$$
; (ii) $\text{Re}(z) \ge -3$; (iii) $\text{Re}(z^2) \le 1$; (iv) $-\pi < \text{Im}(z) \le \pi$;

$$(v) \frac{|z+i|}{|z-i|} = 4; \quad (vi) \ 0 < \frac{1}{z} < 1.$$

PROBLEMA 2. Hallar las partes real e imaginaria de: e^{-3x} ; e^{z^3} ; i^3 .

PROBLEMA 3. (Definición de Potencias Complejas) Para $z \in \mathbb{C}$ y $d \in \mathbb{C}$ arbitrarios (note que d es un número complejo), se define:

$$z^d = exp\{d \ln(z)\}\$$

Notar que z^d tiene infinitos valores. El valor particular $z^d = exp\{d \operatorname{Ln}(z)\}$ se llama **valor principal** de z^d . Observe que para $d = \frac{1}{n} \operatorname{con} n \in \mathbb{N}$, se recuperan las n raíces complejas de z visto en clases. Encuentre los valores principales de:

- (i) 2^{3+2i} ;
- $(ii) (1+i)^{2-i}$.

PROBLEMA 4. En el plano complejo considere la recta L que pasa por z_0 y tiene por vector director al vector $v \in \mathbb{C}$, es decir,

$$L = \{ z \in \mathbb{C} : z = z_0 + tv, \text{ para } t \in \mathbb{R} \}.$$

Muestre que $L=\{z\in\mathbb{C}:\ \mathrm{Im}(\frac{z-z_0}{v})=0\}.$ ¿ Qué representa el conjunto $\{z\in\mathbb{C}:\ \mathrm{Im}(\frac{z-z_0}{v})>0\}$?

 $\mathbf{PROBLEMA~5}$. Pruebeque la recta tangente al circulo es perpendicular a la recta que contiene el radio en el punto de contacto.

PROBLEMA 6.

(i) Hallar la forma polar de las siguientes expresiones: $(\frac{3+4i}{2-5i})^{-3}$; \sqrt{i} y $\sqrt{-i}$; \sqrt{z} y $\sqrt[n]{z}$.

- (ii) Hallar todas las soluciones de las siguientes ecuaciones y situar algunas de ellas en el plano complejo: $e^z = 3;$ $e^{z^2} = 1$
- (iii) Hallar todos los valores de z tales que: $e^{\overline{z}} = \overline{e^z}$; $e^{i\overline{z}} = \overline{e^{iz}}$.

PROBLEMA 7. Calcular el valor principal Ln(z) cuando z es igual a: i) 1+iiii) 2-2i iii) $(1+i)^i$ iv) $(1-i)^{1+i}$.

PROBLEMA 8. Demuestre que la función $f(z) = z^3$ es uniformemente continua.

PROBLEMA 9.

- (i) Hallar la derivada de las siguientes funciones:
 - i) $f(z) = asen^2(z) + tan(z)$ ii) $f(z) = \frac{1}{1-z}$ iii) $f(z) = z + \frac{1}{z}$.
- (ii) Cuál de las siguientes funciones es analítica? ¿Por qué? ¿Dónde?

 - i) f(z) = Im(z) ii) $f(z) = \frac{1}{1+z}$ iii) $f(z) = Re(z^2)$ iv) $f(z) = z + \bar{z}$

PROBLEMA 10.

- (i) Aplicando las ecuaciones de Cauchy-Riemann, hallar la función analítica más general f(z) = u(x, y) + iv(x, y) para la que
 - i) u = xy; ii) v = xy; iii) $u = e^x \cos y$.
- (ii) ¿Bajo qué condición $e^{2x}\cos\beta y$ es armónica?

PROBLEMA 11. Calcule los siguientes límites.

$$\mathrm{i)}\,\lim_{z\to 0}\frac{1-\cos\!z}{z^2};\quad \mathrm{ii)}\,\lim_{z\to 0}\frac{sen^2z}{z^2};\quad \mathrm{iii)}\,\lim_{z\to\frac{\pi}{2}}(\frac{\pi}{2}-z)^2.$$

PROBLEMA 12. Pruebe que:

- (i) $\cosh z = \cosh(x) \cos y + i \sinh(x) \sin y$.
- (ii) $(\cosh)'(z) = \sinh(z)$.
- (iii) $\tanh z$ es periódica, de período imaginario $2\pi i$.