

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencias de la Computación Matías Fernández - matias.fernandez@uc.cl

IIC2213 - Lógica para ciencia de la computación

Ayudantía 6 - Viernes 28 de Abril del 2023

Problema 1. Demuestre o dé un contraejemplo para las siguientes afirmaciones

- a) Si $L_1, L_2 \in NP$ entonces $L_1 \cap L_2 \in NP$ y $L_1 \cup L_2 \in NP$
- b) Si L_1 y L_2 son NP-completos entonces $L_1 \cap L_2 \in \text{NP-completo}$
- c) Si L_1 y L_2 son NP-completos entonces $L_1 \cup L_2 \in \text{NP-completo}$

Solución:

a) Es verdadero. Si L_1 y L_2 están en NP entonces por definición (alternativa) tenemos que existen M_1 y M_2 máquinas de turing en Ptales que

$$w \in L_1 \Leftrightarrow \exists w_1 : M_1 \text{ acepta con input } (w, w_1)$$

 $w \in L_2 \Leftrightarrow \exists w_2 : M_2 \text{ acepta con input } (w, w_2)$

Construiremos una máquina que decide a $w \in L_1 \cap L_2$ dado un testigo w'.

M' := recibe de input w y w'. Parsea que w' sea el par (w_1, w_2) donde w_1 es el testigo para $w \in L_1$ y w_2 es el testigo para $w \in L_2$. Luego, simulamos M_1 con input (w, w_1) y M_2 con input (w, w_2) . Sólo si ambas máquinas aceptan aceptamos, si no rechazamos.

Si $w \in L_1 \cap L_2$ entonces la máquina va a aceptar con testigo $w' = (w_1, w_2)$ ya que M_1 acepta a (w, w_1) y M_2 acepta a (w, w_2) .

Si $w \notin L_1 \cap L_2$, entonces $w \notin L_1$ o $w \notin L_2$. Sin pérdida de generalidad $w \notin L_1$. Entonces para toda palabra w_1 , se tiene que M_1 no acepta a (w, w_1) . Luego M' rechaza.

Podemos hacer lo análogo para probar que $L_1 \cup L_2 \in NP$.

b) Contraejemplo: tomar dos lenguajes en NP-completo tales que $L_1 \cap L_2 = \emptyset$. Por ejemplo:

$$L_1 = \{1 \# w : w \in SAT\}$$

 $L_2 = \{0 \# w : w \in SAT\}$

Donde # es concatenar ej: 0#10111 = 010111.

Claramente L_1 y L_2 están en NP-completo pero su intersección es vacía, lo que no está en NP-completo.

c) Contraejemplo: tomar tomar dos lenguajes en NP-completo tales que $L_1 \cup L_2 = A^*$. Por ejemplo:

$$L_1 = \{1 \# w : w \in SAT\} \cup \{0 \# w : w \in \{0, 1\}^*\}$$

$$L_2 = \{0 \# w : w \in SAT\} \cup \{1 \# w : w \in \{0, 1\}^*\}$$

Los lenguajes L_1 y L_2 están en NP-completo. Pero la unión es todo $\{0,1\}^*$ lo cual no está en NP-completo.

Problema 2. Sean $L_1 \subseteq \{0,1\}^*$ y $L_2 \subseteq \{0,1\}^*$ dos lenguajes tales que L_1 es NP-completo y $L_2 \in P$.

- a) ¿Es $L_1 \cup L_2$ NP-completo?
- b) Si $L_1 \cap L_2 = \emptyset$, ¿Es $L_1 \cup L_2$ NP-completo?
- c) Si $L_1 \cap L_2 = \emptyset$ y NP \neq P, ¿Es $L_1 \cup L_2$ NP-completo?
- d) Si para todo L_1, L_2 se tiene que $L_1 \cup L_2$ NP-completo, ¿Es NP \neq P?

Solución:

- a) No necesariamente, podemos tomar cualquier lenguaje tal que $L_1 \subseteq L_2$. Así, $L_1 \cup L_2 = L_2 \in P$. Por ejemplo; L_1 el problema de K-Clique y L_2 el lenguaje de todas las codificaciones de grafos G y un entero k.
- b) Vamos a mostrar una reducción que hace que $L_1 \cup L_2$ esté en NP bajo la condición de que $L_2 \subsetneq \overline{L_1}$, o sea, que existe al menos un palabra en el complemento de L_1 pero no está en L_2 . La reducción de L_1 a $L_1 \cup L_2$ es la siguiente:

$$f(w) = \begin{cases} w_0 \text{ si } w \in L_2\\ w \text{ si no} \end{cases}$$

donde w_0 es una palabra arbitraria que no está en $L_1 \cup L_2$.

Por construcción $w \in L_1 \Leftrightarrow f(w) \in L_1 \cup L_2$. Por otro lado es claro que $L_1 \cup L_2$ está en NP. Así que $L_1 \cup L_2$ es NP-completo.

- c) Si $NP \neq P$ entonces se tiene que $\overline{L_1}$ no está en P, caso contrario si $\overline{L_1}$ entonces L_1 también está en P (contradicción). Como $\overline{L_1}$ no está en Ppero L_2 si está en P, debe haber al menos un elemento que esté en $\overline{L_1}$ pero no en L_2 , lo que cumple con la condición que impusimos en b) y por lo cual $L_1 \cup L_2$ debe ser NP-completo.
- d) Tomemos L un lenguaje NP-completo cualquiera, entonces notemos que si lo unimos con su complemento \overline{L} se tiene que $L \cup \overline{L} = A^*$ el cual no es NP-completo. Por lo cual necesariamente \overline{L} no pertenece a P. Pero sabemos que $L \in P \Leftrightarrow \overline{L}$. Por lo tanto $L \notin P$ y tenemos que NP $\neq P$.

Problema 3. Sea $U = \{(M, w, \#^t) \mid M \text{ MT no determinista tal que acepta a } w \text{ en } t \text{ pasos en al menos una ejecución}\}$. Pruebe que U es NP-completo.

Solución: Dado cualquier lenguaje en NP, tenemos que existe una máquina no determinista M_L tal que para todo $w \in L$, M_L acepta a w en al menos una ejecución en a lo más una cantidad de pasos $p_L(|w|)$, donde p_L es un polinómio que depende de la máquina. También M_L no acepta a todo $w \in L$. Entonces dado w creamos en tiempo polinomial $f(w) = (M_L, w, \#^{p_L(|x|)})$. Por el argumento anterior $w \in L \Leftrightarrow f(w) \in U$. Así U es NP-hard.

Para mostrar que U está en NP, creamos una máquina M_U tal que para un input $l = (M, w, \#^t)$ simula M con input w por t pasos. M_U va por todos las posibles ejecuciones de M y acepta a l si y sólo si M acepta a w en t pasos. Como simulamos hasta a lo más t pasos y el input de de a lo

menos largo t el tiempo de ejecución es de complejidad polinómica en función de t. Es claro que M_U acepta el lenguaje U, esto prueba que $U \in \text{NP}$. Finalmente, U es NP-completo.

Problema 4. Pruebe que el lenguaje HAMPATH es NP-completo.

 $HAMPATH = {cod(G) | G posee un camino hamiltoniano}$

Solución: La idea es hacer una reducción de 3SAT a HAMPATH... (pendiente)