Microscopy Journal club Nikita Vladimirov, AG Preibisch

RAPID: Real-time image-based autofocus for all wide-field optical microscopy systems

L. Silvestri, M. C. Müllenbroich, I. Costantini, A. P. Di Giovanna, L. Sacconi, and F. S. Pavone

Autofocusing in microscopy (and photography)

Common methods

Contrast-based

Triangulation-based

Phase detecton...

- ✓ Image-based
- X Slow
- X User must define contrast function

- X Based on reflective surface (SPIM)
- X Media R.I. should **not** match coverslip (for reflection)
- ✓ Fast
- ✓ Independent of the imaging

Contrast-based autofocus

http://graphics.stanford.edu/courses/cs178-10/applets/autofocusCD.html

Contrast-based AF in SPIM system (Royer et al, Nat. Biotech., 2016)

http://graphics.stanford.edu/courses/cs178-10/applets/autofocusPD.html

Phase-detection autofocus in microscopy (some other methods)

Parallax method: Sun et al, Nano Lett., 2009

- X Usable only in sparse samples (single-molecule conditions)
- ✓ Very accurate
- ✓ Allows sub-pixel localization
- X Slow

Dual-cam **Instantscope**: Guo et al, *Biomed Optics Express*, 2015

- X Usable only in high light conditions
- ✓ Very accurate
- ✓ Very fast
- X Requires 2 extra CCDs

Single-cam **Instanstscope** Liao et al, *Biomed Optics Express*, 2016

- X Uses pinholes: only in high light conditions
- ✓ Very accurate
- ✓ Very fast
- ✓ Requires 1 extra CCD

Silvestri et al, 2017 setup:

- ✓ Accurate
- ✓ Fast
- ✓ Works in low-light conditions

Cell culture

C.elegans tracking

SPIM, cleared mouse brain

SPIM, vasculature in mouse brain

SPIM, nuclear staining in mouse brain

Disadvantages?

- Unlikely to work in low-light conditions (single-molecule) using 10% of the collected light
- Not super-accurate, 0.7 of DOF

Method	Accuracy (DOF)	Range (DOF)	Demonstrated time stability	Min S/N	Min S/B	Fluorescence	Dense samples
Parallax ¹⁷	~ 0.01	~ 8	minutes	~ 120	~1300	Yes	No
Instantscope ¹⁸	~ 0.3	~ 300	N/A	N/A	N/A	No	Yes
Single-camera Instantscope ¹⁹	~ 0.11	~ 25	N/A	N/A	N/A	No	Yes
RAPID	~ 0.7	~ 70	> 12 hours	~ 4.5	~ 1.7	Yes	Yes

Other options?

AF requires *information* from the sample

AF photons can be separated from data photons in various ways:

- in **time**: spend some imaging time (contrast-based methods, Parallax)
- in photon budget: sacrifice some data photons (Parallax, RAPID)
- in **spectrum**: separate the AF wavelength
 - IR beam reflected from glass (triangulation, e.g. ASI Crisp)
 - IR image of the sample (McGorthy et al, 2013)
 - time of flight for a laser pulse (LG smartphones)

Hybrid systems: split time and photon budget (modern Canon, Sony high-end cameras)

Summary

The 'best' AF method depends on your application:

- Photon budget: how much light you can sacrifice?
- Speed: how fast you need to re-focus?
- Accuracy: what's your goal AF precision?
- Sample density: do you have points sources?
- Any reliable fiducials surfaces or beads?
- Can AF use a spare band of spectrum?