Student Name /ID:	
Student Signature:	Date:

NETS3304/3604 Operating System Internals

Tutorial 4

1. What resources are used when a thread is created? How do they differ from those used when a process is created?

Answer:

Because a thread is smaller than a process, thread creation typically uses fewer resources than process creation. Creating a process requires allocating a process control block (PCB), a rather large data structure. The PCB includes a memory map, list of open files, and environment variables. Allocating and managing the memory map is typically the most time-consuming activity. Creating either a user or kernel thread involves allocating a small data structure to hold a register set, stack, and priority.

2. Provide two programming examples of multithreading giving improved performance over a single-threaded solution.

Answer:

- (1) A Web server that services each request in a separate thread. (2) A parallelized application such as matrix multiplication where different parts of the matrix may be worked on in parallel. (3) An interactive GUI program such as a debugger where a thread is used to monitor user input, another thread represents the running application, and a third thread monitors performance.
- 3. Provide two programming examples of multithreading that would not improve performance over a single-threaded solution.

Answer:

- (1) Many sequential programs are not good candidates to be threaded. An example of this is a program that calculates an individual tax return. (2) Another example is a "shell" program such as the C-shell or Korn shell. Such a program must closely monitor its own working space such as open files, environment variables, and current working directory.
- 4. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Arrival time	Burst time
P1	0	10
P2	2	1
P3	4	2
P4	6	1
P5	8	5

Tutor signature:	Date:	

Student Name /ID:	
Student Signature:	Date:
a Draw three Gantt charts illust	rating the execution of these processes using

- a. Draw three Gantt charts illustrating the execution of these processes using FCFS, non-preemptive SJF and SRTF scheduling.
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of the scheduling algorithms in part a?

Answer:

- a. The two Gantt charts are: (omitted)
- b. Turnaround time:

Process	FCFS	SJF	SRTF
P1	10	10	19
P2	9	9	1
P3	9	10	2
P4	8	6	1
P5	11	11	5

c. Waiting time (turnaround time minus burst time):

Process	FCFS	SJF	SRTF
P1	0	0	9
P2	8	8	0
P3	7	8	0
P4	7	5	0
P5	6	6	0

Tutor signature:	 Date:	