Application No.: 10/016,998

Office Action Dated: December 03, 2008

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently amended) A method for communicating data between a fiber optic data network and an electric power system, comprising:

communicating receiving a first optical data signal comprising the data with the via fiber optic data network;

converting between the first <u>optical</u> data signal and a second data signal; routing the data <u>to one of a plurality of communication devices located in one of a plurality of customer premises;</u>

communicating transmitting the second data signal comprising the data with a transformer bypass device for communication with over a low voltage power line of the electric power system; and

wherein the transformer bypass device is coupled to a medium voltage power line of the electric distribution power system and a low voltage power line of the electric power system and provides a path for data communications around a distribution transformer that converts the voltage of the medium voltage power line to low voltage; and

wherein said receiving, said converting, said routing, and said transmitting are performed by components co-located with the distribution transformer.

- 2. (Canceled)
- 3. (Previously presented) The method of claim 1, wherein the first data signal is compliant with the Synchronous Optical Network standard.

Application No.: 10/016,998

Office Action Dated: December 03, 2008

4. (Currently amended) The method of claim 1, wherein a radio frequency <u>carrier</u> signal is modulated by <u>with the data to provide</u> the second data signal.

- 5. (Canceled)
- 6. (Currently amended) The method of claim 1, wherein the first data signal is transmitted on further comprising:

receiving second data via a low voltage power line from a communications device at one of the plurality of customer premises; and

<u>transmitting the second data over</u> the fiber optic data network.

- 7. (Canceled)
- 8. (Canceled)
- 9. (Canceled)
- 10. (Canceled)
- 11. (Canceled)
- 12. (Canceled)
- 13. (Canceled)
- 14. (Original) The method of claim 1, further comprising converting the second data signal to a third data signal, wherein the third data signal is capable of being transmitted on a telecommunications network.

Application No.: 10/016,998

Office Action Dated: December 03, 2008

15. (Previously presented) The method of claim 14, wherein a power line interface device converts the second data signal to the third data signal.

- 16. (Original) The method of claim 14, wherein the telecommunications network is a customer premise telephone network.
- 17. (Original) The method of claim 14, wherein the telecommunications network is a customer premise coaxial cable network.
- 18. (Currently amended) The method of claim 1, wherein the second data signal is communicated received with a power line interface device located at a customer premises.
 - 19. (Canceled)
- 20. (Currently amended) A device for converting data between a fiber optic data network and an electric power system that includes a distribution transformer, comprising:
- a first interface port for communicating a first data signal with the fiber optic data network;
- a second interface port for communicating a second data signal with over a low-voltage power line of the electric power system;
- a third interface port configured to communicate data signals over a medium voltage power line of the electric power system;
 - a fiber optic transceiver in communication with the first interface port;
- a modem in communication with the fiber optic transceiver and the second interface port; and

Application No.: 10/016,998

Office Action Dated: December 03, 2008

a router in communication with the fiber optic transceiver and the modem <u>and</u> <u>configured to route data to one of a plurality of communication devices located in one of a plurality of customer premises; and</u>

wherein said first interface port, said second interface port, said third interface port, said fiber optic transceiver, said modem, and said router are co-located with a distribution transformer.

21. (Previously presented) The device of claim 20, wherein the fiber optic transceiver converts a fiber optic data signal received at the first interface port to an electrical data signal.

- 22. (Previously presented) The device of claim 21, wherein the modem receives the electrical data signal and modulates a carrier signal with the electrical data signal to form a first modulated data signal for communication to the electric power system.
- 23. (Previously presented) The device of claim 20, wherein the modem demodulates a modulated data signal received at the second interface port to produce a demodulated data signal for communication to the fiber optic transceiver.
- 24. (Previously presented) The device of claim 23, wherein the fiber optic transceiver converts the demodulated data signal to an optical signal for communication to the fiber optic data network.
 - 25. (Canceled)
 - 26. (Canceled)

DOCKET NO.: CRNT-0034-US Application No.: 10/016,998

Office Action Dated: December 03, 2008

27. (Previously presented) The device of claim 22, wherein the modem demodulates a second modulated data signal received at the second interface port to produce a demodulated data signal for communication to the fiber optic transceiver.

PATENT

- 28. (Previously presented) The device of claim 27, wherein the fiber optic transceiver converts said demodulated data signal to an optical signal for communication to the fiber optic data network.
- 29. (Currently amended) The device of claim 20, wherein the electric power system is a low-voltage network-located within power line extends to a customer premise.
 - 30. (Canceled)
 - 31. (Canceled)
 - 32. (Canceled)
- 33. (Previously presented) The device of claim 20, further comprising a conversion device to convert the second data signal to a third data signal, wherein the third data signal is capable of being transmitted on a telecommunications network.
- 34. (Original) The device of claim 33, wherein the telecommunications network is a customer premise telephone network.
- 35. (Original) The device of claim 33, wherein the telecommunications network is a customer premise coaxial cable network.

Application No.: 10/016,998

Office Action Dated: December 03, 2008

36. (Currently amended) A device for communicating data between a fiber optic data network that carries fiber optic data signals and an electric power system that carries electrical data signals <u>and includes a distribution transformer</u>, comprising:

a fiber optic transceiver in communication with the fiber optic data network;

a router in communication with the fiber optic transceiver and configured to route data to one of a plurality of telecommunication network devices located in one of a plurality of customer premises; and

a modem in communication with the router and <u>a low-voltage power line of</u> the electric power system; and

wherein said fiber optic transceiver, said modem, and said router are co-located with the distribution transformer.

- 37. (Currently amended) The communication network-device of claim 36, further comprising a power line interface device in communication with the electric power system and a telecommunication network device and located at one of the plurality of customer premises,
- 38. (Currently amended) The communication network device of claim 37, further comprising a premise data network in communication with the power line interface device.
- 39. (Currently amended) The communication network-device of claim 37, wherein the power line interface device is communicatively coupled to a telephone.
- 40. (Currently amended) The communication network device of claim 36, wherein the modem communicates with the electric power system through a transformer bypass device.

Application No.: 10/016,998

Office Action Dated: December 03, 2008

41. (Currently amended) The communication network device of claim 36, wherein the fiber optic transceiver communicates with the fiber optic data network using the Synchronous Optical Network standard.

42. (Canceled)

- 43. (Currently amended) The communication network device of claim 36, wherein the first modem is in communication with a network device.
- 44. (Currently amended) The communication network-device of claim 43, wherein the <u>telecommunication</u> network device includes at least one of the following: a telephone, a computer, a facsimile machine, a television, and a household appliance.
- 45. (Currently amended) The communication network-device of claim 36, wherein an electric transformer forms part further comprising an medium voltage power line interface configured to communicate of a medium voltage power line of the electric power system.
- 46. (Currently amended) The communication network- device of claim 45, further comprising wherein the medium voltage power line interface forms part of a power line bridge in communication with the electric power system and the modem, the and said power line bridge-providing forms a communication path for data to bypass the electric distribution transformer.
 - 47. (Canceled)
 - 48. (Canceled)

Application No.: 10/016,998

Office Action Dated: December 03, 2008

49. (Canceled)

50. (Currently amended) The communication network device of claim 36, wherein the clectric power system includes a low-voltage network located within power line extends to a customer premise.

51. (Currently amended) The communication network device of claim 50, wherein the router selects said low-voltage network <u>power line</u> from a plurality of low-voltage networks <u>power lines</u> for transmission of data signals.

52-61. (Canceled)