A Note On Two Sample Tests

What we want to test

Given two populations,

Population 1 μ_1, σ_1^2

Population 2 μ_2, σ_2^2

Is $\mu_1 = \mu_2$?

Obviously, μ_1 and μ_2 are not known to us. Typically, σ_1^2 and σ_2^2 are not known to us as well.

What we have

Sample 1 drawn from population 1, and sample 2 drawn from population 2.

Sample 1 of size n_1

 \overline{x}, s_1^2

Sample 2 of size n_2

 \overline{y}, s_2^2

By comparing \overline{x} with \overline{y} , check if $\mu_1 = \mu_2$, say.

What we do

Use one of the two sample tests depicted in the following flow chart.

Notes

- * In practice, to check if $\sigma_1^2 = \sigma_2^2$, we use the F-test as outlined in Section 7.6.
- ** This is not covered in this course. We use a t-statistic with degree of freedom k estimated by the integer part of $\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 1} + \frac{(s_2^2/n_2)^2}{n_2 1}}$