Thursday, January 24, 2019

11:22 PM

CONNECTING TO THE WAN

WAN: Wide Area Networks: Connects LAN's: City/country/global region: Owned by SP: Business pays fee to use

- Diff tech used for WAN's than LAN's: Beyond geographic scope of LAN
- WAN provider examples: Carriers (phone/cable/satellite)
 - · Provide links to remote sites
 - LANs: Local/peripherals/devices: W/in single building/small area: Speed/cost-efficiency for data

WANs in OSI

WAN operations: Primarily L1/L2: Addressing/flow control/encapsulation **Access standards defined by # of authorities:**

- TIA:EIA: Telecomm Industry Association/Electronic Industries Alliance
- ISO: International Org Standardization
- IEEE: Institute of Electrical/EE's
- L1: Protocols to provide electrical/mechanical/operational/functional connections
- **L2:** Protocols define how data is encapsulated for transmission to remote location/mechanisms for transferring frames

Diff tech used:

- PPP: Point-to-Point Protocol
- Frame Relay
- ATM
- Some: Framing/subset of HDLC: High-Lvl Data Link Control mechanism

Most WAN links: Point-to-point: Addr field in L2 frame not usually used

Physical layer of WAN: Physical connections between company network/SP network

CPE Customer Premises Equipment

• Devices inside wiring closet: Located on enterprise edge connecting to carrier link

	Sub either owns/leases CPE from SP
DCE	 Data Communications Equipment: AKA: Data Circuit-Terminating Equipment Consists of devices that put data on local loop Primarily provides an int to connect subs to comm link on WAN cloud
DTE	Data Terminal Equipment
Demarcation Point	Point established in building that separates customer equip from SP's • Physically: Cabling junction box on customer site • Connects CPE wiring to local loop • Where responsibility changes from usr to SP
Local Loop	AKA: Last-mile: Actual copper/fiber that connects CPE to CO of SP
со	Central Office: Local SP facility/building that connects CPE to provider network
Toll network	Long-haul/all-digital/fiber-op comm lines/switches/routers/other inside WAN provider network

WAN Devices: Many types of devices specific to WAN envs:

	types of devices specific to WAIN citys.
Dialup modem	Legacy: Voiceband modem converts/modulates digital sigs produced by machine into voice frequencies • Can be transmitted over analog lines of phone network • Other side: Digital sig/demodulates
Access server	Legacy: Dialup modem/dial-in/dial-out comm: May mix analog/digital ints
Broadband modem	Digital modem w/DSL/cable: Similar to voiceband: Uses higher frequencies/transmission speeds
CSU/DSU	Channel Service Unit/Data Service Unit: Digital-leased lines require: Can be separate/int on rtr CSU: Term for digital sig: Ensures connection integrity through error correction/line monitoring DSU: Converts line frames into frames LAN can interpret/vice versa
WAN switch	Multiport internetworking device used in SP networks: Switch traffic (Frame Relay/ATM): L2
Router	Internetworking/WAN access int ports: Connects to SP: • Serial/Ethernet/WAN ints/external device (DSU/CSU/modem/analog/cable/DSL)
Core rtr/Multilayer switch	In middle/backbone of WAN: Must support multiple telecomm ints of highest speed in WAN core • Must be able to fwd packets at full speed on all those ints • Must also support r-protocols being used in core

WAN: Circuit or packet switched

Circuit Switching: Network establishes dedicated circuit/channel bet nodes/terminals before usrs may comm

- Dynamically establishes dedicated virtual connection for voice/data bet sender/receiver
- Before comm: Necessary to establish connection through network SP

2 types of circuit-switched tech:

- 1. PSTN: Public Switched Phone Network
- 2. ISDN: Integrated Services Digital Network

Packet Switching: Splits traffic into packets routed over shared network

- No circuit required to establish
- Many pairs of nodes comm over same chan

PSN: Packet-Switched Network: Determine links packets must be sent over: Via addr info in each **2 approaches to link determination:**

- 1. Connectionless systems: Full addressing info must be carried in each packet
 - o Switches must eval addr to determine where to send packet

Example: Internet

- 1. Connection-oriented systems: Network predetermines route for packet
 - Each packet only needs identifier
 - o Switch determines route by looking up identifier in tables/mem
 - Set of entries in tables ID's particular route/circuit through sys

Example: Frame Relay: DLCI's: Data-link Connection Identifiers

VC: Virtual Circuit: When circuit established temp while packet travels through it: Then breaks down again

Cost of packet switching is lower than that of circuit-switching

- Delays [latency]/variability of delay [jitter]: Greater in PSN's
- · Links shared: Packets must be entirely received at 1 switch before moving
- Despite latency/jitter: Modern tech allows good transport of voice/video comms

WAN Link Connection Options

Enterprise can get WAN access over:

Private WAN infrastructure	 SP's may offer dedicated: Point-to-point leased lines/circuit-switched links (PSTN/ISDN) Packet-switched links (Ethernet/WAN/ATM/Frame Relay)
Public WAN infrastructure	SP's may offer Internet using: DSL/Satellite • Sites over public WAN should be protected w/VPNs

SP Infrastructure

Long-range comms: Usually between ISPs/bet branch offices in large companies

- SONET: Synchronous Optical Networking: American-based ANSI standard
- SDH: Synchronous Digital Hierarchy (SDH): EU-based ETSI/ITU standard
 - Standards define how to transfer multiple data/voice/video traffic over fiber using lasers/LEDs
- DWDM: Dense Wavelength Division Multiplexing: Newer fiber media dev for long-range comms
 - Multiplies amt of BW single strand of fiber can support

DWDM: Dense Wavelength Division Multiplexing:

- Bidirectional comm over 1 strand of fiber: Multiplex 80+ diff data chans onto single fiber
- Each chan: 10Gb/s multiplexed sig
- Assigns incoming optical sigs to wavelengths of light (freq)
- Supports SONET/SDH/Amplifies wavelengths to boost sig str
- · Circuits used in submarine comm cable systems

Leased Lines: Since 1950s: Referred to as leased circuits/serial link/serial line/P2P link/T1/E1/T3/E3 lines

- · Leased line: Refers to the fact org pays mo fee to SP to use
- America: SP's use T-carrier sys to define digital transmission capability of serial copper media link
- EU: E-carrier sys

OC: Optical Carrier transmission rates used to define digital capacity of fiber network

T1: 1.544 Mb/s **E1:** 2.048 Mb/s **T3:** 43.7 Mb/s **E3:** 34.368 Mb/s

Advantages	Disadvantages
Simplicity	Cost
Quality	Limited Flexibility
Availability	L2 protocol usually HDLC/PPP

Dialup: May be required when no other WAN tech avail

- Traditional telephony: Copper cable (AKA local loop) to connect phone in sub loc to CO
- Sig on local loop: Continuously varying sig translation of sub voice into analog sig
- Local loops: Transport binary data using modem
- Modem modulates binary into analog sig at source/vice versa
- Less than 56 kb/s

Advantages	Disadvantages
Simplicity	Low data rates
Availability	Long connection time
Low cost	NO voice/video traffic

ISDN: Integrated Services Digital Network: Circuit-switching tech: Enables local loop of PSTN to carry digital sigs

- · Higher capacity connections
- Changes internal connections of PSTN from carrying analog sigs to TDM: Time-Division Multiplexed digital sigs
- TDM: Allows 2/more sigs (bit streams) to be transferred as subchannels in 1 comm chan
- Signals appear to transfer simultaneously: Physically: They take turns on chan

TA: Terminal Adapter: Device used to connect ISDN **BRI: Basic Rate Int** connection to a router **ISDN turns local loop into TDM digital connection:**

- · Enables local loop to carry digital sigs: Higher capacity
- 64 kb/s bearer chan (B): Voice/data
- Sig/delta chan (D): Call setup

2 Types of ISDN ints:

BRI: Basic Rate Interface: Intended for SOHO:

- 2 64 kb/s B chans/16 kb/s D chan
- D chan: Designed for control
- · Call setup time: Less than sec

PRI: Primary Rate Interface: Larger installs: America: Delivers:

- 23 B chans w/64 kb/s and 1 D chan w/64 kb/s: Total bit rate of up to 1.544 Mb/s
- Includes add overhead for synchronization
- EU/AUS: 30 B chans/1 D chan: Total bit rate of up to 2.048 Mb/s

Frame Relay	 L2 NBMA: Non-broadcast Multiaccess WAN tech: Interconnects enterprise LANs Single router int can be used to connect to multiple sites using PVCs PVCs: Used to carry both voice/data traffic bet source/destination Support rates up to 4 Mb/s Edge router only reqs single int Frame Relay creates PVCs: Uniquely ID's by DLCI: Data-Link Connection Identifier PVCs/DLCIs: Ensure bidirectional comm from 1 DTE device to another
ATM	Asynchronous Transfer Mode: Capable of transferring voice/video/data: Public/private networks • Built on cell-based arch, not frame-based • ATM cells: Always 53 bytes • 5-byte ATM header: 48 byte payload • Less efficient than bigger frames/packets of Frame Relay • At least 5 bytes of overhead for each 48-byte payload When cell carrying segmented network layer packets: Overhead higher b/c • ATM switch must reassemble packets at destination • Needs almost 20% greater BW than Frame Relay to carry same vol of network layer data • Extremely scalable • Supports link speeds: T1/E1/OC-12 (622 Mb/s)/more • Both PVCs/SVCs

Ethernet WAN: Originally to be a LAN tech:

- 1000BASE-LX: Fiber lengths of 5 km
- 1000BASE-ZX: Up to 70 km cable lengths

Many names: MetroE: Metropolitan Ethernet/EoMPLS: Ethernet over MPLS/VPLS: Virtual Private LAN Service

Benefits: Reduced expenses/Easy integration/Productivity

MPLS: Multiprotocol Label Switching: High-performance WAN tech: Directs data from 1 rtr to next

Based on short path labels: Not IP network addr

Defining chars: Multiprotocol: Ability to carry any payload: IPv4/IPv6/Ethernet/ATM/DSL/Frame Relay

- Labels tell rtr what to do w/packet
- Labels ID paths bet distant rtrs rather than endpoints
- SP tech: Bits bet sites/Frame Relay/Ethernet WAN frames bet sites
- · Can deliver any type of packet bet sites
- · Can encapsulate packets of various network protocols
- Supports wide range of WAN tech: T-carrier/E-carrier links/Carrier Ethernet/ATM/Frame Relay/DSL

VSAT: Very Small Aperture Terminal: Creates private WAN using satellite comm: Small dish

- Rtr connects to dish pointed to SP satellite: Geosynchronous orbit in space
- Sigs must travel approx. 35,786 kilometers (22,236 miles) to satellite/back

DSL: Always-on connection tech: Uses existing twisted-pair phone lines to transport BW

- DSL modem: Converts eth0 sig from usr device to DSL sig: Transmitted to CO
- Multiple DSL sub lines multiplexed into single link using DSLAM: DSL Access Multiplexerat provider

DSLAMs: Incorporate TDM to aggregate many sub lines into a 1 medium: T3 (DS3)

Cable: Coaxial widely used in urban areas to distribute TV sigs: Greater BW than phone local loop

- Always-on connection
- Cable modem: Translates digital sigs into broadband frequencies used for transmitting TV

Cable headend: Local cable TV office

CMTS: Cable Modern Termination System: Sends/receives digital modern sigs on network

· All local subs share same BW

Wireless: Unlicensed radio spectrum/3G/4G:

Municipal Wi-Fi	High-speed access for free/substantially less: OR: City use: Police • Modem: Stronger radio/directional antenna than reg
WiMAX	Worldwide Interoperability for Microwave Access: 802.16

	 Similar to Wi-Fi/cell towers Higher speeds/greater distances/greater # of usrs Sub to ISP w/WiMAX tower w/in 30 miles Receiver/special encryption code to get access to base STA
Satellite	VSAT: 2-way (UL/DL) data comm: UL speed 1/10th of 500 kb/s DL
3G/4G	Radio waves comm through nearby mobile tower: 3rd/4th gen cell access
LTE	Long-Term Evolution: 4th gen tech

VPN: Encrypted connection bet private networks over public network (Internet)

- Instead of dedicated L2 connection: VPN uses virtual connections called tunnels
- Routed through Internet from private network to remote site/employee host

Benefits: Cost savings/Security/Scalability/Compatibility w/broadband **2 Types of VPN access:**

Site-to-site	Connect entire networks to each other: Each site equipped w/gateway
Remote-access	Individual hosts access company network securely over net: Host has VPN SW