UNIVERSITÉ ABDELMALEK ESSAÁDI École Normale Supérieure Tétouan

TD:1 Algèbre

LE-Math

Semestre 2 2022-2023

Exercice 1. Soient E_1, \dots, E_n , des \mathbb{K} -espaces vectoriels. Montrer que $\left(\prod_{i=1}^n E_i, +, ...\right)$ est un \mathbb{K} -espace vectoriel.

Exercice 2.

- 1. Soient $u_1=(2,3,\pm 1),\ u_2=(1,-1,-2),\ v_1=(3,7,0)$ et $v_2=(5,0,-7)$ quatre vecteurs de \mathbb{R}^3 . Montrer que $Vect(u_1,u_2)=Vect(v_1,v_2)$.
- 2. Montrer que $F = \{(x, y, x + y, 2x + y) \in \mathbb{R}^4 : x \in \mathbb{R}, y \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^4 .
- 3. Montrer que $H=\{(x,y,z)\in\mathbb{R}^3: -x-y-z=0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 4. Montrer que $G = \{(x, y, z) \in \mathbb{R}^3 : x y 2z = 0\}$ est un s.e. v. de \mathbb{R}^3 . En trouver une famille génératrice.

Exercice 3.

- 1. Soient les deux s.e. v. $E=\{(x,y,z)\in\mathbb{R}^3:2x-y+3z=0\}$ et $F=\{(x,y,z)\in\mathbb{R}^3:y=z\}$
 - (a) Donner une famille génératrice de E et une famille génératrice de F.
 - (b) Vérifier que $E \cap F$ est un sous-espaces vectoriel et trouver une famille génératrice.
- 2. Soit $E=\{(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n:a_1x_1+a_2x_2+\cdots+a_nx_n=0\}$ Montrer que E est un sous-espace vectoriel de \mathbb{R}^n et trouver une famille génératrice de E.

Exercise 4. Soient $u_1 = (1, -1, 2)$, $u_2 = (1, 1, -1)$ et $u_3 = (-1, -5, 7)$. Soient $E = Vect(u_1, u_2, u_3)$ et $F = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$

- 1. Donner une base de E.
- Montrer que F est un sous-espace vectoriel de ℝ³.
- \bullet 3. Donner une base de F et une base de $E \cap F$.

Exercise 5. On considere le \mathbb{R} -espace vectoriel des polynôme $E_5=(P\in\mathbb{R}[X]/deg(P\le 5))$ et soit $F=\{P\in E_5/P(1)=P(-1)=0\}$. On pose $P_o=X^2-1$

- 1. Montrer que F est un sous-espace vectoriel de E_5 .
- 2. Montrer que les polynômes : P_o , $X.P_o$, $X^2.P_o$ et $X^3.P_o$ sont linéairement indépendants.
- 3. Montrer que $F = \langle P_o, X.P_o, X^2.P_o, X^3.P_o \rangle$, en déduire la dimension de F.

Exercice 6. On pose: $p_1(x) = x^2 + 2x + 1$, $p_2(x) = 2x^2 + 5x + 4$ et $p_3(x) = x^2 + 3x + 6$.

- 1. Montrer que $\{p_1, p_2, p_3\}$ constituent une base de l'espace $\mathbb{R}_2[X]$.
- 2. Exprimer le polynôme $q(x) = 3x^2 + 5x 5$ dans la base $\{p_1, p_2, p_3\}$.
- 3. Monter que $F = \{P \in \mathbb{R}_3[X]/P(0) = 0 \text{ et } \int_0^1 P(t)dt = 0\}$ est un s.e.v. de $\mathbb{R}_3[X]$, et en donner une famille génératrice.

Exercise 7. Soient $E = \{(x, y, z) \in \mathbb{R}^3 : x + y - 2z = 0 \text{ et } 2x - y - z = 0\}$ et $F = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}$ deux sous-ensembles de \mathbb{R}^3 .

On admettra que F est un sous-espace vectoriel de \mathbb{R}^3 . Soient a = (1, 1, 1), b = (1, 0, 1) et c = (0, 1, 1).

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une famille génératrice de *E* et montrer que cette famille est une base.
- 3. Montrer que $\{b,c\}$ est une base de F.
- 4. Montrer que $\{a, b, c\}$ est une famille libre de \mathbb{R}^3 .
- 5. A-t-on $E \oplus F = \mathbb{R}^3$.
- 6. Soit $u = (x, y, z) \in \mathbb{R}^3$, exprimer u dans la base $\{a, b, c\}$.

UNIVERSITÉ ABDELMALEK ESSAÁDI École Normale Supérieure Tétouan

TD:1 Algebre

LE-Math

Semestre 2 2022-2023

Exercice 8. Soient $E = \mathbb{R}^2$; $E_1 = \{(x, y) \mid x = y\}$, $E_2 = \{(x, y) \mid x = -y\}$. Montrer que $E_1 \oplus E_2 = E$.

Exercice 9. On munit \mathbb{R}^3 de l'addition composante par composante définie par :

$$(x, y, z) + (u, v, w) = (x + u, y + v, z + w).$$

1. Dans \mathbb{R}^3 , on considère la multiplication externe à opérateurs dans \mathbb{R} définie par :

c.
$$(x, y, z) = (cx, 0, 0)$$
.

 \mathbb{R}^3 est-il un \mathbb{R} -espace vectoriel pour les deux lois définies ci-dessus?

2. On munit \mathbb{R}^3 de la multiplication externe à opérateurs dans \mathbb{R} définie par :

$$c. (x, y, z) = (cx, cy, cz).$$

- (a) Vérifier que \mathbb{R}^3 est un espace vectoriel pour l'addition composante par composante et cette dernière multiplication.
- (b) \mathbb{Q}^3 est-il un sous-espace vectoriel du \mathbb{R} -espace vectoriel \mathbb{R}^3 ?
- (c) Les ensembles $E=\{(x,y,z)\in\mathbb{R}^3 \text{ tel que } xz=0\}$ et $F=\{(x,y,z)\in\mathbb{R}^3 \text{ tel que } x+y=0\}$ sont-ils des sous-espaces vectoriels de \mathbb{R}^3 . Si oui, calculer leurs dimensions.

Exercice 10. Soit $\mathbb{R}^{\mathbb{R}}$ le \mathbb{R} -espace vectoriel des applications de \mathbb{R} vers \mathbb{R} muni des lois :

$$(f+g)(x) = f(x) + g(x), (rf)(x) = rf(x),$$

avec $f, g \in \mathbb{R}^{\mathbb{R}}$ et $r \in \mathbb{R}$.

- Montrer que F_p = (L'ensemble des applications paires de R^R) est un espace vectoriel sur R.
- 2. Montrer que $F_i = \{$ L'ensemble des applications impaires de $\mathbb{R}^{\mathbb{R}} \}$ est un sous-espace vectoriel supplémentaire de F_p dans $\mathbb{R}^{\mathbb{R}}$.

Exercice 11. Soit $E = \{ae^x + be^{-x} \text{ tel que } a, b \in \mathbb{R}\}\$ le sous ensemble du \mathbb{R} -espace vectoriel $\mathbb{R}^\mathbb{R}$ des applications de \mathbb{R} vers \mathbb{R} , où x est une indéterminée sur \mathbb{R}

- 1. Montrer que E est un \mathbb{R} -espace vectoriel.
- 2. On désigne par i et j les éléments de E définies par $i(x) = e^x$ et $j(x) = e^{-x}$. Montrer que (i, j) est une base de E.
- 3. On désigne par r et s les éléments de E définies par $r(x) = e^x + e^{-x}$ et $s(x) = e^x e^{-x}$. Montrer que $\{r, s\}$ est une base de E.
- 4. Calculer les coordonnées de i et j dans la base [r, s].
- 5. On considère f_k : $\begin{matrix} \mathbb{R} & \to & \mathbb{R} \\ x & \to & e^{r_k \cdot x} \end{matrix}$ où les r_k sont des réels.

Montrer que si les r_k sont tous distincts, alros $(f_1, f_2, \cdots f_n)$ est libre. (Raisonner par récurrence : écrire $\alpha_1 f_1(x) + \cdots + \alpha_n f_n(x) = 0$, puis diviser par $f_n(x)$ et dériver...).

Exercice 12. Soient $f,g\in\mathcal{L}(E,F)$ et $G=(e_i)_{1\le i\le m}$ une famille génératrice de E. Alors f=g si, et seulement si, $f(e_i)=g(e_i)$ pour tout $1\le i\le m$.