Pre-Lab for Lab 1

Xiaoyu Zhou, 1004081147

Part I

$$f = xs' + ys$$

1. Draw a 2-to-1 multiplexer design using the gates specified above.

CHIPS USED:

C1 - 74LS04

C2-74LS08

C3 - 74LS32

CONNCETED TO ALL CHIPS:

PIN#7 - Gnd

PIN#14 - Vcc

2. Write out the truth table for the design and show that to the TA as well as part of the prelab.

X	у	S	xs'+ys
---	---	---	--------

0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Part II

$$f = (a+b)' + cb'$$

1. Draw the function shown above using the gates specified in the lab preparation..

C1 - 74LS04

C2-74LS32

C3 - 74LS08

CONNCETED TO ALL CHIPS:

PIN#7 - Gnd

PIN#14 – Vcc

2. Write out the truth table for the design and show that to the TA as well as part of the prelab.

a	b	С	f = (a+b)' + cb'
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

- 3. Wire your design on the protoboard and demonstrate the functionality to the TA. Your results should match your truth table from the prelab.
- 4. Is there a cheaper implementation for your design, assuming you are still limited to using the same three chip types? If yes, explain by rewriting the

boolean function. For this question we consider a given implementation cheaper if it uses fewer gates or if it uses the same number of gates but fewer chips.

Yes, there exists a cheaper implementation.

$$f = (a + b)' + cb'$$

= $(a'b') + cb'$
= $b'(a' + c)$