PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-333528

(43)Date of publication of application: 17.12.1996

(51)Int.Cl.

C09D 5/44 B05D 1/36 C08G 18/58 C08G 18/70 C08G 59/14

(21)Application number: 07-168235

(71)Applicant: NIPPON PAINT CO LTD

(22)Date of filing:

08.06.1995

(72)Inventor: YOSHIDA TATSUO

COMMANDA INTOC

SHIRAKAWA SHINSUKE MURAKAMI RYOICHI

(54) DOUBLE LAYERED MEMBRANE-FORMING CATIONIC ELECTRODEPOSITION COATING COMPOSITION

(57) Abstract:

PURPOSE: To obtain a cationic electrodeposition coating composition capable of separating into two layers so as to form a layer rich in an epoxy-based cationic resin excellent in corrosion resistance to the side of a metal substrate and another layer rich in an acryl-based cationic resin excellent in weather resistance to the surface side.

CONSTITUTION: This double layered membrane forming cationic electrodeposition coating composition is obtained by dispersing (a) an amine modified epoxy-based cationic resin, (b) a self cross-linking acryl-based cationic resin having 100-200 hydroxyl value obtained by adding a half blocked disocyanate to a cationic acrylic resin having a lower solubility parameter by at least 0.5 than that of the amine modified epoxy-based cationic resin, and (c) a blocked polyisocyanate curing agent into an aqueous medium containing a neutralizing agent.

(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平8-333528

(43)公胰日 平成8年(1996)12月17日

(51) Int.Cl.º		識別配号	庁内整理番号	FI						技術表示箇所
C 0 9 D	5/44	PRJ		C 0 9	D	5/44		PR	J	
B05D	1/36			B 0 5	D	1/36			A	
									\mathbb{B}	
C 0 8 G	18/58	NEK		C 0.8	G I	8/58		NE	K	
	18/70	NFD			1	8/70		NF	Ď	
	·		客查請求	未請求	請求項	何の数6	FD	(金)	9 頁)	最終買に続く
(21)出額番号		特願平7-168235		(71)出	···颜人	00023	3054	anangan tahun k	5, 6, 5, 7, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	
						日本の	イント	株式会	社	
(22)出顧日		平成7年(1995)6月	18日			大阪系	大阪市	北区大	淀北2	丁目1番2号
				(72)务	明者	吉田	龍生			
						大阪系	7寝屋川	市池田	中町19	番17号 日本ベ
						イント	株式会	批内		
				(72)务	刨者	白川	信介			
						大阪系	f寝屋川	市池田	中町19	番17号 日本ペ
						イント	、株式会	紅内		
				(72) 発	明著					
					,			由独田	中图[19	番17号 日本ペ
							、株式会			
				(74) f	、理人		赤网		(4)	1名)

(54) 【発明の名称】 複層陰膜形成カチオン電着塗料組成物

(57) 【要約】

【目的】 金属素地側に耐食性にすぐれたエポキシ系カ チオン樹脂に富む層が形成され、表面側に耐候性に富む アクリル系カチオン樹脂に富む層が形成されるように、 二層に分離するカチオン電着塗料組成物を提供する。

【権成】 (a) アミン変性エポキシ系カチオン樹脂、 (b) アミン変性エポキシ系カチオン樹脂より少なくと も0、5低い溶解度パラメーターを有するカチオン性ア クリル樹脂へパープブロックジイソシアネートを付加し て得られるヒドロキシル価100~200の自己架橋性 アクリル系カチオン樹脂、および(c)ブロックポリイ ソシアネート硬化剤を、中和剤を含む水性媒体に分散し てなるカチオン電着塗料組成物。

[特許請求の範囲]

【請求項1】(a)アミン変性エポキシ系カチオン樹 脂、

(b) 前記アミン変性エポキシ系カチオン樹脂より少な くとも0.5低い溶解性パラメーターを有するカチオン 性アクリル樹脂へハーフブロックジイソシアネート化合 物を付加してプロックイソシアネート基を導入したヒド ロキシル価100~200の自己架橋性アクリル系カチ オン樹脂、および

(c) ブロックボリイソシアネート硬化剤

を中和剤を含む水性媒体中に分散してなり、前記 (a) 成分と(b) 成分の固形分重量比が80:20~30: 70であることを特徴とするカチオン電着塗料組成物。

【請求項2】前記(b)成分は、オキシラン環含有アク リル樹脂へ(1)アミンによるオキシラン環の開環によ るアミノ基の導入、および(FI) ハーフブロックイソシ アネート化合物との付加反応によるブロックイソシアネ 一ト基の導入を任意の順序で行って得られる自己架橋性 アクリル系カチオン樹脂である讃求項1の組成物。

モノマーおよびヒドロキシル基含有アクリルモノマーを 含んでいるアクリル樹脂へハーフブロックイソシアネー ト化合物との反応によってブロックイソシアネート基を 付加して得られる自己架橋性アクリル系カチオン樹脂で ある請求項1の組成物。

【請求項4】前記(a)成分および(b)成分の合計固 形分100重量部あたり、(c)成分を固形分として1 0ないし100重量部含んでいる請求項1ないし3のい ずれかの組成物。

【請求項5】被塗物上に請求項1ないし4のいずれかの 30 電着塗料組成物を塗装、焼付した後、その上に溶剤形塗 料、粉体塗料または水性塗料を塗装、焼付けることを特 微とする塗装方法。

【請求項6】被塗物に請求項1ないし4のいずれかの電 着塗料組成物を塗装した後、その上にウエットオンウエ ットで溶剤形塗料、粉体塗料または水性塗料を塗装し、 全体を同時に焼付けすることを特徴とする繁装方法。

【発明の詳細な説明】

【0001】本発明の背景

性にすぐれたカテオン電着塗料組成物に関する。

【0002】カチオン電着塗料に使用される基体樹脂と しては、アミン変性エボキシ樹脂、アミン変性アクリル 樹脂などが知られており、そのうちアミン変性エポキシ 樹脂は耐食性にすぐれ、アミン変性アクリル樹脂は耐候 性にすぐれているので、これらの性能が要求される用途 に応じて使い分けされる。単独で両方の性能にすぐれた 基体樹脂は知られていないので、耐食性および耐候性の 両方が要求される分野では、エポキシ系およびアクリル た。しかしながら当然のことながら、均一なプレンド系 の耐食性および耐候性は、それぞれエポキシ系カチオン 樹脂およびアクリル系カチオン樹脂を単独で使用した場

【0003】そこで電着塗装後焼付時に、金属素地側に 耐食性にすぐれたエポキシ系カチオン樹脂に富む層が形 成され、表面側に耐候性にすぐれたアクリル系カチオン 樹脂に富む層が形成されるように、二層に分離するブレ ンド組成物が提案されている。このようなエポキシ/ア 10 クリルブレンド系カチオン電着塗料組成物は、例えば以 下の先行文献に開示されている。

【0004】特開昭62-174277

特開昭63-51470

合に及ばない。

特關平2-33069

特開平2-160876

【0005】これら先行技術においてエポキシ系カチオ ン樹脂とブレンドされるアクリル系カチオン樹脂は、非 自己架橋性か、または非イオン性である。これらのブレ ンド系は、二層に分離した時エポキシ樹脂に富む層に相 【翻求項3】 前記(b) 成分は、アミノ基含有アクリル 20 対的に多く移行するブロックポリイソシアネートによっ て架橋、硬化するので、アクリル樹脂が自己架橋性でな ければアクリル樹脂に富む層の架橋密度が不満足になり 易い。そのため電着塗膜の上に溶剤型塗料を上塗りした 時、上塗り塗料に含まれる溶剤によって電着塗膜が侵さ れ、すぐれた外観を有する塗装仕上げが得られない。

> 【0006】非イオン性アクリル樹脂をブレンドした系 にあっては、アクリル樹脂自体が醸荷を持たないので満 足な耐候性が得られるのに十分な量をブレンドすること ができない。

【0007】一般にこれらエポキシノアクリルブレンド 系カチオン電着塗料は、主として電着塗料層の下塗り層 の上に直接上盤り層が施される2コート仕上げに使用さ れるので、上塗り層との密着性が肝要である。ところ が、ブレンドがそれぞれの成分に富む二層に分離する性 能と、分離したアクリル成分に富む表面層の上塗り層と の密着性は両立し難い。先行技術のエポキシ/アクリル ブレンド系はいずれもこの問題を解決していない。

【0008】本発明の開示

従って本発明の課題は、先行技術によるエポキシ/アク 本発明は、カチオン電着塗料組成物、特に耐食性と耐候 40 リルブレンド系カチオン電着塗料組成物の欠点を解消な いし軽減することである。

【0009】このため本発明は、

- (a) アミン変性エポキシ系カチオン樹脂、(b) 自己 架橋性アクリル系カチオン樹脂および
- (c) ブロックポリイソシアネート硬化剤

を中和剤を含む水性媒体中に分散してなるカチオン電着 塗料組成物を提供する。本発明によれば、前記自己架橋 性アクリル系カチオン樹脂は、カチオン性アクリル樹脂 ヘハーフブロックシイソシアネート化合物との付加反応 系のカチオン樹脂をブレンドして用いるほかはなかっ 50 によってブロックイソシアネート基を導入することによ

3

って得ることができる。

【0010】本発明によれば、(b)成分の出発樹脂で あるカチオン性アクリル樹脂は、前記(a)成分のエポ キシ系カチオン樹脂よりも少なくとも0、5、好ましく は0.5~2.0低い溶解性パラメーター(SP)値を 有する。これにより、(a)成分および(b)成分のブ レンド系がそれぞれの成分に富む二層に分離する性能が 高まる。

【0011】さらに本発明によれば、前記(b)成分の 樹脂は、100~200のヒドロキシル価を育する。こ 10 ルアミン、モノエタノールアミン、ジエタノールアミ れにより塗膜が(a)成分および(b)成分に富む二層 へ分離する性能と、分離した(b)成分に富む表面層の 上塗り塗料への密着性が両立可能となる。さらにこの樹 脂の比較的高いヒドロキシル価はブロックポリイソシア ネート硬化剤との架橋点を提供し、自己架橋性の付与と 組合せて(b)成分に常む表面層の架橋密度を向上させ るのに役立つ。

【0012】本発明の組成物は、(a)成分のエポキシ 系カチオン樹脂と、(b) 成分の自己架橋性アクリル系 カチオン樹脂を、隠形分重量比で、前者80~30対後 30 カチオン性アクリル樹脂は、分子内に複数のオキシラン 者20~70の割合で含んでいる。これは、(b) 成分 自体が電着に必要な電荷を持っておりかつ自己架橋性で あるため、耐候性を満足させる割合で(b)成分をブレ ンドすることが可能であることを意味し、かつその場合 上塗りによって外観が低下しない十分な硬化度が得られ \$0

【0013】好ましい実施態様の説明

(a) 成分

アミン変性エボキシ系カチオン樹脂はカチオン電着塗料 エポキシ基を有する樹脂のエポキシ環を1級アミン、2 級アミンまたは3級アミン酸塩との反応によって関環し て製造される。出発樹脂の典型例は、ビスフェノール A、ピスフェノールF、ビスフェノールS、フェノール ノボラック、クレゾールノボラック等の多環式フェノー ル化合物のエピクロルヒドリンとの反応生成物であるボ リフェノールポリグリシジルエーテル型エポキシ樹脂で ある。

【0014】出発樹脂はアミンによるエポキシ環の開環 ーテルボリオール、ピスフェノール類、2塩基性カルボ ン酸等を使用して鎖延長して用いることができる。また ジイソシアネート化合物と直接、またはそれをメタノー ル、エタノール等の低級アルコールでプロックして得ら れるピスウレタンとの反応によりオキサゾリドン環含有 エポキシ樹脂を生成させた後、アミン類と反応させても よい、本出願人の特別平5-306327参照。また出 発樹脂は、アミンとの反応の前に、分子量またはアミン 当量の調節、熱フロー性の改善等を目的として、一部の ェノール, エチレングリコールモノー2-エチルヘキシ

ルエーテル、プロビレングリコールモノー2ーエチルへ キシルエーテルのようなモノヒドロキシ化合物を付加し て用いることもできる。

【0015】次に鎖延長および/またはモノヒドロキシ 化合物で変性した樹脂を含む出発物質は、アミンとの反 応によってエポキシ環を開環し、アミノ基が導入され る。使用し得るアミンの例は、プチルアミン、オクチル アミン、ジエチルアミン、ジブチルアミン、メチルブチ ン、N-メチルエタノールアミン、トリエチルアミン酸 塩、N、N・ジメチルエタノールアミン酸塩などの1 級、2級または3級アミン酸塩である。アミノエチルエ タノールアミンメチルイソプチルケチミンのようなケチ ミンブロック1級アミノ基含有2級アミンもしばしば使 用される。これらのアミンは残っているエポキシ環の金 部を開環するようにエポキシ環に対して少なくとも当量 で反応させなければならない。

【0016】(b) 成分

環および複数のヒドロキシ基を含んでいるアクリル共産 合体とアミンとの開環付加反応によってつくることがで きる。このようなアクリル重合体は、(1)グリシジル (メタ) アグリレートと、(ii) ヒドロキシル基含有ア クリルモノマー、例えば2ーヒドロキシエチル (メタ) アクリレート、2ーヒドロキシプロピル(メタ)アクリ レート、ブラクセルFAおよびFMシリーズとして知ら れる2-ヒドロキシエチル (メタ) アクリレートとカブ ロラクトンとの付加反応生成物と、(iii) その他のア の分野では周知である。一般にこれらは分子内に複数の 30 クリル系および/または非アクリル系モノマーを共重合 することによって得られる。その他のアクリル系および 非アクリル系モノマーの例は、メチル(メタ)アクリレ ート、エチル(メタ)アクリレート、nープロビル(メ タ) アグリレート、イソプロビル (メタ) アグリレー ト、nーブチル(メタ)アクリレート、イソブチル(メ タ)アクリレート、tーブチル(メタ)アクリレート。 シクロペキシル(メタ)アクリレート、2-エチルペキ シル (メタ) アクリレート、ラウリル (メタ) アクリレ ート、スチレン、ビニルトルエン、ローメチルスチレ |反応の前に、2官能のポリエステルポリオール。ポリエ 40 ン、(メタ)アクリロニトリル、(メタ)アクリルアミ ド、酢酸ビニルなどである。

> 【0017】このオキシ環含有アクリル樹脂は、エポキ シ樹脂のオキシラン環をアミンで開環してカチオン性基 を導入して(a)成分を製造するのと全く同様に、その オキシラン環の全部を1級アミン、2級アミンまたは3 級アミン酸塩との反応によって開環し、カチオン性アク リル樹脂とすることができる。

【0018】他の方法として、アミノ基を有するアクリ ルモノマーを他のモノマーと共重合することによって直 エポキシ環に対して2-エチルヘキサノール、ノニルフ 50 接カチオン性アクリル樹脂をつくることができる。この

場合は、先にオキシラン薬含有アクリル樹脂の製造に用 いたグリシジル(メタ)アクリレートの代りにN、N-ジメチルアミノエチル(メタ)アクサレート、N, Nー ジーt-ブチルアミノエチル(メタ)アクリレートなど のアミノ基含有アクリルモノマーを使用し、これをヒド ロキシル基含有アクリルモノマーおよび他のアクリル系 および/または非アクリル系モノマーと共薫合すること によってカチオン性アクリル樹脂が直接得られる。

【0019】カチオン性アクリル樹脂は、薫合体の数平 均分子量が1,000~20,000、好ましくは2, 000~10.000の範囲内になるように常法によっ て前記モノマーを共重合することによって得られる。

[0020] カチオン性アクリル樹脂は、(a) 成分の SP値より少なくとも0、5、好ましくは0、5~2. 0低いSP値を持たなければならない。共重合体のSP 値は構成モノマーのホモポリマーのSP値と、モノマー 混合物中の各構成モノマーの重量分率を基にして計算に よって求めることができる。従って使用する(a)成分 のSP億を実測によって知れば、所望のSP値を有する カチオン性アクリル樹脂を設計することが可能である。 SP値は樹脂の極性を示す指標であり、例えば水、ヘキ サン滴定による濁度法を用いて測定することができる。 この樹脂は相対的に低いSP値を持つように設計する必 要があるので、共産合モノマーとしてホモポリマーのS P値が低いモノマー、例えばtープチル(メタ)アクリ レート、2-エチルヘキシル(メタ)アクリレート、ラ ウリル(メタ)アグリレート、ステアリル(メタ)アク リレートなどのアルキル基の炭素数が4以上のアルキル (メタ) アクリレートを使用し、樹脂のSP値を所望鞄 ためにはこの樹脂のSP値が(a)成分のSP値より少 なくとも0.5低くなくてはならない。しかしSP値の 差があまり大きいと上塗り密着性も低下するのでその差 は2.0をこえないことが好ましい。

【0021】かくして得られたカチオン性アクリル樹脂 はハーフプロックジイソシアネート化合物との付加反応 によってブロックイソシアネート基が導入される。ハー ブブロックジイソシアネートはジイソシアネート化合物 の一方のイソシアネート基を公知のブロック剤でブロッ クしたものである。ジイソシアネート化合物としてはト 40 本発明の盤料組成物は、(a)成分と(b)成分とを、 リレンジイソシアネート (TDI)、4,4'ージフェ ニルメタンジイソシアネート(MD 1)。キシリレンジ イソシアネート(XDI)などの芳香族ジイソシアネー ト、ヘキサメチレンジイソシアネート(HMD I)、イ ソホロンジイソシアネート(IPDI)、4,4'ーメ チレンピス(シクロヘキシルイソシアネート)、トリメ チルヘキサメチレンジイソシアネートなどの脂肪族およ び脂環族ジイソシアネートを使用し得る。

【0022】使用し得るプロック類はこの分野で良く知 られており、n-プタノール、2-エチルヘキサノー 50 酸、乳酸、スルファミン酸、アセチルグリシン等の無機

ル、エチレングリコールモノブチルエーデル、シクロヘ キサノール等の脂肪族アルコール:フェノール、ニトロ フェノール、クレゾールおよびノニルフェノール等のフ ェノール類(ジメチルケトオキシム、メチルエチルケト オキシム、メチルイソプチルケトオキシム等のオキシ ム;カプロラクタム等のラクタムがある。ハーフプロッ クジイソシアネートはカチオン性アクリル樹脂 1 分子あ たり少なくとも1分子付加させる。

【0023】 先に述べたオキシラン環含有アクリル機脂 10 から出発して(b)成分を製造する場合、カチオン性基 の導入とブロックイソシアネート基の導入は逆の順序、 すなわち先にブロックイソシアネート基を導入し、その 後カチオン性基の導入を行うこともできる。

【0024】(b) 成分はヒドロキシル価が100~2 00の範囲でなければならない。これはモノマー混合物 中のヒドロキシル基含有モノマーの重量分率から計算に よってあらかじめ設計することができる。ヒドロキシル 価がこの範囲に達しなければ上塗り密着性が不満足であ り、反対にこの範囲を上廻ると耐水性が不満足になる。

【0025】先に引用した先行技術によるエポキシ/ア クリル系カチオン樹脂プレンドを含むカチオン電着塗料 組成物では、カチオン性基を導入し、かつハーフプロッ クイソシアネートを付加したカチオン性アクリル樹脂を ブレンドしていない。本発明の(b)成分は自己架橋性 であるため二層に分離した後のアクリル樹脂表面層の硬 化が満足に行われ、またそれ自身電着に必要な電荷を持 っているので満足な耐候性が得られるような高割合でブ レンドすることが可能になる。

【0026】(c)成分

塗料分野においてプロックボリシアネート化合物は外部 架橋剤として広く使用されている。これらは先にハーフ プロックイソシアネート化合物に関して述べたジイソシ アネート化合物のみならず、それらのトリメチロールブ ロパン付加体および三量体のような3官能以上のボリイ ソシアネート化合物を先に述べた公知のブロック剤でブ ロックしたものである。ただしハーフプロックジイソシ アネートと異なり、すべてのイソシアネート基をプロッ クしなければならない。

[0027] 塗料組成物

固形分重量比で80:20ないし30:70の割合で含 むのが良い。この範囲において耐食性と耐候性の良好な バランスが達成される。塗料化は、(a)成分および (b) 成分を(c) 成分と共に別々に中和剤を含む水性 媒体中に分散もしくは乳化し、その後プレンドしても良 いし、または(a) 成分と、(b) 成分と、(c) 成分 とを同時に中和剤を含む水性媒体中に分散もしくは乳化 しても良い。

【0028】中和剤は塩酸、硝酸。リン酸、半酸、酢

酸または有機酸である。水性媒体は水が、水と有機溶剤 との混合物である。使用しうる溶剤の例としては炭化水 素類(例えば、キシレンまたはトルエン)、アルコール 類(例えば、メチルアルコール、カーブチルアルコー ル、イソプロピルアルコール、2~エチルヘキシルアル コール、エチレングリコール、プロピレングリコー ル)、エーテル類(例えば、エチレングリコールモノエ チルエーテル、エチレングリコールモノブチルエーテ ル、エチレングリコールモノヘキシルエーテル、ブロビ レングリコールモノエチルエーテル、3-メチル-3- 10 メトキシブタノール、ジエチレングリコールモノエチル エーテル、ジエチレングリコールモノブチルエーテ ル)、ケトン類(例えば、メチルイワブチルケトン、シ クロヘキサノン、イソホロン、アセチルアセトン)、エ ステル類(例えば、エチレングリコールモノエチルエー テルアセテート、エチレングリコールモノブチルエーテ ルアセテート)またはそれらの混合物が挙げられる。

【0029】プロックポリイソシアネート硬化剤の量 は、硬化時に樹脂中のヒドロキシル基の官能基と反応し て良好な硬化塗膜を与えるのに十分でなければならず、 一般に(a)成分と(b)成分の合計匿形分100重量 部あたり10~100

室盤部が使用される。中和剤の量 は樹脂中のアミノ基の少なくとも20%、好ましくは3 0~60%を中和するのに足りる量である。

【0030】 塗料は、ジブチルスズジラウレート、酢酸 スズのようなウレタン開裂触媒を含むことができる。そ の量はプロックボリイソシアネート硬化剤の0.1~5 重量%が通常である。

【0031】塗料はさらに、二酸化チタン、カーボンプ モリブデン酸アルミ等の防鏑顔料、カオリン、クレー、 タルク等の体質類料のほか、界面活性剤、酸化防止剤、 紫外線吸収剤などの慣用の塗料用添加剤を含むことがで きる。

【0032】電着は、塗料の不揮発分を15~25%程 度に調節し、被塗物を陰極とし、浴温15~35℃, 負 荷電圧100~400 Vの条件で乾燥膜厚10~50 μ m. 好ましくは20~40 umに鑑着し、その後100 ~200℃、好ましくは140~180℃にて10~3 0分間焼付けることによって行うことができる。その後 40 9部、および t ープチルパーオクトエート4、0部の混 電着塗膜の上に上塗りし、常法によって焼付けることに より、密着性および外観にすぐれた2コート仕上げが得 られる。この方法は2コート2ペーク塗装方法である が、焼付前の電着整膜上にウエットオンウエットで上塗 り塗料を塗装し、両者を同時に焼付けする2コート1ベ ーク塗装方法も可能である。

【0033】上塗り塗料としては通常の上塗り塗料を使 用でき、例えばアクリル樹脂、アルキッド樹脂またはポ リエステル樹脂とメラミン樹脂の組合せからなるアミノ プラスト硬化型塗料、酸-エポキシ硬化型塗料、一波型 50

ウレタン塗料およびシラノール硬化型塗料などが用いら れる。強料の形態は、溶剤形、水性形または粉体形のい ずれでもよい。また上塗り塗料を塗装する前に、必要に 応じて耐チッピング性能等を付与するための塗料を前も って塗装してもよい。

【0034】以下に製造例、実施例および比較例により 本発明を例証する。これらにおいて部および%は特記し ない限り重量基準による。

[0035] 製造例1

還流冷却器、攪拌機、滴下ロートを備えた5つロフラス コに、メチルイソブチルケトン187、2部およびヘキ サメチレンジイソシアネート168部を住込み、窒素券 囲気下50℃に加熱保持した。これへジプチルスズジラ ウレート0.5部を加え、メチルエチルケトオキシム1 13. 1部を満下ロートから約30分かけて満下し、滴 下終了後岡温度で約1時間反応させ、冷却し、NCO当 | 量402のハーフプロックジイソシアネート溶液を得 た。 圏形分60%

【0036】製造例2

20 選流冷却器、攪拌機、滴下ロートおよび窒素導入管を備 えた5つロプラスコに、ヘキサメチンジイソシアネート 三量体 (コロネートEH) 199、1部とメチルイソブ チルケトン31.6部を住込み、窒素雰囲気下40℃に 加熱保持した。これへジプチルスズジラウレート0、2 部を加え、さらにメチルエチルケトオキシム87、0部 を摘下ロートより2時間かけて滴下し、滴下終了後1日 スペクトルによりイソシアネート基のピークが消失する まで70℃で反応させた。反応終了後メチルイソプチル ケトン38、1部およびプタノール1、6部を加え冷却 ラック、ベンガラ等の着色顔料、塩基性ケイ酸鉛、リン 30 し、固形分80%のブロックボリイソシアネート硬化剤 を得た。

【0037】製造例3

還流冷却器、攪拌機、滴下ロートおよび窒素導入管を錆 えた5つロフラスコに、メチルイソプチルケトン56. 3部を仕込み、窒素雰囲気下115℃に加熱保持する。 これへ、グリシジルメタクリレート16. 0部、2-ヒ ドロキシエチルメタクリレート4.2部、2-ヒドロキ シプロピルメタクリレート14、8部、nープチルメタ クリレート58.1部、tープチルメタクリレート6. 合物を滴下ロートから3時間かけて滴下した。滴下終了 後115℃に約1時間保持し、 tープチルバーオクトエ ート0.5部を滴下し、115℃で約30分保持し、固 形分65%の樹脂溶液を得た。数平均分子量(Mn)6 0.0.0

【0038】 冷却後これへNーメチルエタノールアミン 8、5部を加え、窒素雰囲気下120℃で2時間反応さ せ、固形分約67%のアミン付加アクリル機能溶液を得 to.

【0039】次にこの溶液を70℃へ冷却し、ジプチル

スズジラウレート0、1部を加え、製造例1のハーフブ ロックジイソシアネート溶液を固形分として10、3部 滴下ロートより約30分間かけて滴下し、1Rスペクト ルでイソシアネート基のピークが消失させるまで反応さ せた。

【0040】この溶液を60℃に保持し、製造例2のブ ロックボリシアネート硬化剤21、7部(固形分)を加 えて混合した後、窒素雰囲気下50℃で30分保持し、 酢酸2. 6部を加えて中和し、脱イオン水でゆっくり希 釈して間形分30%のアクリルエマルションAを得た。 ヒドロキシル価157mgKOH/g固形分、カチオン 性アクリル樹脂のSP値10.3

[0041] 製造例4

製造例3と同様にして、グリシジルメタクリレート1 0.0部、2-ヒドロキシプロピルメタクリレート1 8. 0部、ラウリルメタクリレート56. 8部およびス チレン15、2部を重合し、数平均分子量6000、固 形分65%の樹脂溶液を得た。

【0042】この樹脂を製造例3と同様に、N-メチル エタノールアミン5. 3部と反応させ、さらに製造例1 20 を得た。 のハーフブロックジイソシアネート固形分15、1部を 付加し、製造例2の硬化剤と混合し、酢酸で中和後脱イ オン水で希釈して隠形分30%のアクリルエマルション Bを得た。ヒドロキシル価107mgKOH/g間形 分、カチオン性アクリル樹脂のSP値9.2

【0043】製造例5

製造例3において製造例1のハーフブロックジイソシア ネートの付加量を固形分として30、2部に変更した以 外は製造例3と同様にして匿形分30%のアクリルエマ ルションCを得た。ヒドロキシル価121mgKOH/ 30 %のアクリルエマルションGを製造した。ヒドロキシル 夏園形分

【0044】製造例6

・愛流冷却器、機拌機および窒素導入管を備えた5つコフ ラスコにメチルイソブチルケトン50部を仕込み、窒素 雰囲気下115℃に加熱保持する。これへ2ーヒドロキ シエチルメタクリレート20、0部、2ーヒドロキシブ ロピルメタクリレート21.3部、2-エチルヘキシル メタクリレート19. 1部、N, Nージメチルアミノエ チルヌタグリレート15. (部,ラヴリルメダクリレー ト24、9部、およびtープチルバーオクトエート4。 0部の混合物を滴下ロートから3時間かけて滴下し、滴 下終了後115℃にて約1時間保持し、tープチルパー オクトエート0、5部を滴下し、115℃で約30分保 持し、闘形分65%の樹脂溶液を得た。数平均分子量6 000, SP億10.9

【0045】この樹脂を製造例3と同様に製造例1のハ ーフブロックジイソシアネート個形分10.3部と反応 させ、製造例2の硬化剤と混合し、酢酸で中和後脱イオ ン水で希釈し、園形分30%のアクリルエマルジョンD を得た。ヒドロキシル価140mgKOH/g固形分

10 【0046】製造例7(比較例用エマルション)

製造例3と同様にして、グリシジルメタクリレート1 0.0部、2-ヒドロキシエチルメタクリレート7.0 部、メチルメタクリレート36.5部およびnープチル アクリレート46.5部を重合し、数平均分子量600 0, 固形分65%の樹脂溶液を得た。

【0047】この樹脂へNーメチルエタノールアミン 5. 3部を付加し、製造例3と同様にハーフブロックジ イソシアネート固形分10、3部と反応させ、製造例2 10 の硬化剤と混合し、酢酸で中和後水で希釈し、固形分3 0%のアクリルエマルションBを得た。ヒドロキシル価 82mgKOH/g固形分,カチオン性アクリル樹脂の SP億10.4

【0048】製造例8(比較例用エマルション)

製造例3と同様にして、グリシジルメタアクリレート1 0.0部,2-ヒドロキシエチルアクリレート12.0 部、メチルアクリレート9、9部、メチルメタクリレー ト47. 2部およびエチルアクリレート20. 9部を重 合し、数平均分子最6000、間形分65%の樹脂溶液

【0049】この溶液ヘジプチルアミン9. 1部を付加 し、ハーフブロックジイソシアネートを付加することな く製造例3と同様にして製造例2の硬化剤と混合し、酢 酸で中和後水で希釈し、固形分30%のアクリルエマル ションFを得た。ヒドロキシル価86mg/KOH/g 週形分、カチオン性アクリル樹脂のSP値11、2

【0050】製造例9(比較例用エマルション)

製造例3において、ハーフブロックジイソシアネートを 付加しないことを除き製造例3と同様にして固形分30 価179mgKOH/g圆形分

【0051】製造例10

資流冷却器、機拌機、滴下ロートおよび窒素導入管を確 えた5つロフラスコに、ヘキサメチレンジイソシアネー ト840部、メチルイソプチルケトン609部、および ジブチルスズジラウレート0、9部を住込み、50℃へ 昇温し、これヘトリメチロールプロバン223. 5部を 内温が60℃をこえないように保って徐々に滴下した。 次いでメチルエチルケトオキシム435部を内温が70 40 ℃をこえないように保って適下した。滴下終了後1Rス ベクトルによりイソシアネート基のピークが消失するま で70℃に1時間保持し、プタノール32部を加え、冷 却し、プロックイソシアネート硬化剤を調製した。間形 分70%

【0052】別に、同様な反応容器に、エポキシ当量9 50のビスフェノール型エポキシ樹脂(東都化成(株) 製エビトートYD-014) 950部と、メチルイソブ チルケトン (MIBK) 237.5部を仕込み、100 ℃に加温して完全に溶解させた。これへジエチレントリ 50 アミンMIBKジケチミンの73%MIBK溶液73.

17

4部と、N-メチルエタノールアミン60. 1部を加 え、115℃で1時間反応させてカチオン性エポキシ樹 脂溶液を製造した。樹脂固形分80、5%、SP値1 1.4

【0053】このカチオン性エポキシ樹脂溶液832. 3部、上で得たブロックボリイソシアネート硬化剤溶液*

1) 四級化剤の調製

成分 重量部 圆形分量 2-エテルヘキサノールハーフブロック化 320.0 304 TDI (MIBK中) ジメチルエタノールアミン 87.2 87. 2 117.6 乳酸水溶液 88. 2 エチレングリコールモノブチルエーテル 39.2

い、室温で2-エチルヘキサノールハーフブロック化T D I をジメチルエタノールアミンに加えた。混合物は発 熟し、これを80℃で1時間攪拌した。次いて、乳酸を※

2) 顔料分散用ワニスの調製

【0055】上記組成に従って、適当な反応容器を用 ※仕込み、さらにブチルセロソルブを反応混合物を65℃ で約半時間攪拌し、四級化剤を得た。

*471、4部、n-ヘキシルセロソルブ65、0部を混

合し、氷酢酸18.5部で中和した後脱イオン水173

7.8部でゆっくり希釈し、滅圧下で有機溶剤を除去

し、関形分36、0%のエポキシエマルションを得た。

【0054】製造例11 (無料分散ペースト)

[0056]

成分	重量部	因形分量
工术28291	710.0	681, 2
ピスフェノールA	289.6	289.6
2-エチルヘキサノールハーフプロック化	406, 4	386.1
TDI (MIBK中)		
1) の四級化剤	496.3	421.9
脱イオン水	71.2	
エチレングリコールモノブチルエーテル	1584.1	

1 ピスフェノールA型エポキシ樹脂、エポキシ当量1 ★ブを加えた。次いで、85~95℃に冷却して均一化 93~203、シェル・ケミカル・カンバニー製 【0057】上記組成に従って、EPON829および ビスフェノールAを適当な反応容器に仕込み、窒素雰囲 30 得た。樹脂固形分50% 気下150~160℃へ加熱した。初期発熱反応が起こ った。反応混合物を150~160℃で約1時間反応さ せ、次いで、120℃へ冷却後、2-エチルヘキサノー ルハーフプロック化TDIを加えた。反応混合物を11 0~120℃に約1時間保ち、次いで、プチルセロソル★

> 成分 顔料分散用ワニス 脱イオン水 カーボンブラック カオリン ケイ酸鉛 二酸化チタン

【0060】実施例1~6および比較例1~3

製造例3~9のアクリルエマルションA~Gと、製造例 10のエポキシエマルションとを、表1に示す割合で混 合し、脱イオン水を加え、脚形分約20%のカチオン電 着塗料を得た。各塗料をリン酸亜鉛処理した冷延鋼板に

し、さらに1)の四級化剤を加えた。酸価が1になるま で混合物を85~95℃に保持し、顔料分散用ワニスを

[0058] 3) 顔料分散ペースト

以下の成分混合物をサンドグラインドミルで分散し、粒 度10 μ以下になるまで粉砕して顔料分散ペーストを得 120

[0059]

重量部

30.0(圆形分15.0)

75.4

1.8

20.0

6. 0

72.2

乾燥膜厚約20μmになるように200ボルトで3分間 電着し、水洗後180℃で20分間焼付けし、硬化塗膜 の性能を評価し、表2に示す結果を得た。

[0061]

[表1]

14

衰!

縣 3分	実 施 粥						比 較 例			
(重要部)	1	2	3	4	\$	€	ì	2	3	
	Å	В	¢	A	А	D	E	F	G	
アクリルエマルション	1308.3	1308.3	1308.3	785.3	1701.7	1308.3	261. 7	1308.3	1308.3	
エポキシエマルション	1090.3	1090.3	1090, 3	1527.2	763, 8	1090.3	1963, 6	1090.3	1090.3	
顔料分数ペースト	205.4	205. 4	205.4	205.4	205.4	205.4	205.4	205.4	265.4	
脱イオン水	1896.0	1896. 4	1896, 4	1982, 1	1829.3	1896.0	2069.3	1896.0	1896. 0	

[0062]

* * 【表2】

菱 2

		実施例 1	実施例?	実施例3	美施例 4	実施例 5	美施例 8	比较例 1	进政例 2	出致到3
	Ac/Bp "	50/50	50/50	50/50	20/70	65/35	50/50	10/90	59/50	50/50
特	Ac/Ep 2	56/44	56/44	56/44	35/65	70/30	56/44	12/88	56/44	58/44
Ħ	SP差	1.1	2.2	1.1	1, 1	LI	0.5	٤0	9. 2	L-I
131	OHV	157	107	121	157	157	140	82	88	179
	硬化反応基 ²⁰	1.3	2, 0	4.0	1.3	LB	1.3	1,3	0	0
Ť	SWM405H °	80%	85%	80%	50%	90%	70%	10%	20%	7596
	SDT "	1. 5ma	L. Sons	L. Sono	1. 0mm	2.0ms	E, Sanar	1. Stess	3. Oma	1.5ma
ストが	上塗ゴバン目密着 **	100/100	100/100	100/100	100/100	100/100	100/100	0/100	50/100	100/100
結果	MIBKラビング ひ	0	0	0	Ö	0	0	0	×	×
	NSIC ^m	38	40	43	50	35	45	52	20	10

【0063】1)硬化剤を含む各エマルション中の樹脂 30 バー)を乾燥膜厚25~30μmにスプレー塗装し、1 周形分重量比

- 2) 硬化剤を除いた各エマルション中の樹脂園形分重量
- 3) カチオン性アクリル樹脂1分子あたりのハーフプロ ックイソシアネート基の付加数
- 4) 塗板をサンシャインウエザオメーターへ取付け、4 00時間照射後60°グロスを測定し、初期60°グロ スの保持率を求めた。
- 5)塗板でナイフで素地に達するクロスカットを入れ、 水、55℃)を240時間行い、粘着テープによって方 ット部両側から剥離した剥離部の最大幅。
- 6) 膜厚約20μmの硬化電着塗膜上にアルキッド系上 塗り塗料(日本ペイント株式会社製オルガセレクトシル

- 40℃×20分焼付けして得られる塗膜に1mm×1m mのゴバン目100個を作り、その表面に粘着デープを 粘着し、急激に剥離した後の塗面に残ったゴバン目の数 を記録した。
- 7) メチルイソプチルケトンをしみ込ませたガーゼで塗 膜を10往復こすり、乾燥後外親を評価した。
- 〇:変化なし ×:白ボケ著しい
- 8) 膜摩約20 μmの硬化電着塗膜上にメタリックペー ス塗料(日本ペイント株式会社製06シルバー)および JIS K5400に準じて塩水噴霧試験(5%食塩 40 クリヤ塗料を塗装し、焼付けた後、携帯式写像解明度測 定器(スガ試験機械株式会社製HA-NSIC)により 写像鮮明度を測定した。鉄と鋼Vol. 77, No. 7, 1075~1086 (1991) 参照。

フロントページの続き

 (51) Int. Cl. **
 識別記号 庁内整理番号
 F 1
 技術表示簡所

 C 0 8 G 59/14
 NHC
 C 0 8 G 59/14
 NHC