Organizační úvod

Poznámka (Zápočet)

Za vypracování domácích úloh.

Poznámka (Zkouška)

Písemná, ale Covid?

Úvod

 MA je na rovném prostoru n Naším cílem je vybudovat analýzu na nerovném? prostoru, tzv. varietě.

Poznámka (literatura)

Skripta – Krump, Souček, Těšínský: MA ve varietách

Sborník příkladů – Kopáček: Příklady z matematiky pro fyziky III.

1 Opakování

'Odvozovali' (přes limity velikosti rozdělení jdoucí k nule) jsme si:

Křivkový integrál 1. druhu, křivkový integrál 2. druhu. Integrální věty (pol. 19. stol, moderní formulace Cardan (1945)): Věta o potenciálu, Greenova věta

Plošný integrál 1. druhu, plošný integrál 2. druhu. Integrální věty: Stokesova věta, Gauss-Ostrogradského věta

2 Stokesova věta v n , diferenciální formy v n

Věta) 2.1 (Moderní (= obecná) formulace Stokesovy věty = Cíl (Cartan

$$\int_{S} d\omega = \int_{\partial S} \omega$$

 $Kde\ S\ je\ bud\ 'singulární'\ -plocha\ v\ R^n\ (tato\ \check{c}\acute{a}st)\ nebo\ -varieta\ s\ okrajem\ (3.\ \check{c}\acute{a}st).$

2.1 Vnější algebra vektorového prostoru

Motivace: Jak násobit vektory z n ?

Poznámka

Násobení na ⁿ zachovává Eklidovskou normu (tzn. $||x \cdot y = ||x|| \cdot ||y||$) pouze v dimenzích 1, 2, 4, 8 (= , , kvaterniony, oktocosi).

Definice 2.1 (Algebra)

Algebra nad tělesem k (=) je vektorový prostor nad k s bilineárním zobrazením

Algebra je asociativní, jestliže co asi.

Algebra má jednotku, jestliže existuje co asi ;)

Definice 2.2

Nechť Λ je vektorový prostor nad

Poznámka (Vlastnosti vnější algebry)

 $\dim \Lambda*()=2^n$, protože každý vektor je určen bázovými vektory, kterých je jako podmnožin n prvkové množiny

TODO

$$e_I \wedge e_J = 0$$
, je-li $I \cap J \neq \emptyset$ = $sgn(permutace)e_{I \cup J}$, je-li $I \cap J = \emptyset$

Je-li $\omega \in \Lambda^k()$ a $\tau \in \Lambda^l()$, potom $\omega \wedge \tau = (-1)^{kl} \tau \wedge \omega \in \Lambda k + l()$.

 $D\mathring{u}kaz$

(Dokázat, že prohození je právě $k \cdot l,$ následně z linearity násobení)

Věta 2.2

Nechť je vektorový prostor s bází $e_1, \ldots e_n$. Nechť $v_1, v_2, \ldots v_k \in$, kde $1 \leq k \leq n$. Potom $v_i = \sum_{j=1}^n v_i^j e_j$ a označ $me = \left(v_i^j\right)_{j=1,\ldots,n;i=1,\ldots,k}$ je matice $n \times k$ jejich souřadnice (sloupec i je vektor i). Je-li J k-prvková podmnožina $\{1,\ldots,n\}$, označ $W_j := (v_i^j)_{j \in I; i=1,\ldots,k}$ (minor $k \times k$). Potom $v_1 \wedge v_2 \wedge \ldots k = \sum_{|J|=k} (\det(W_j)) e_J$.

 $D\mathring{u}kaz$

Posčítáním. A dokázáním, že to je definice determinantu.

Definice 2.3 (Skalární součin na $\Lambda * ()$)

Nechť je vektorový prostor se skalárním součinem (?, symetrický) $<\cdot,\cdot>$ a e_1,\ldots,e_n je ortonormální báze .

Definujeme skalární součin ve $\Lambda * ()$ jako:

{…}

TODO!

Úmluva

 n chápeme jako Euklidovský prostor se standardní bází $e_1, \dots e_n$ a TODO!

Například

Nechť R je rovnoběžnostěn v n určený vektory v_1, \ldots, v_k , kde $1 \le k \le n$. Potom k-dimenzionální objem R je roven:

$$\operatorname{vol}_k(R) = ||v_1 \wedge \ldots \wedge v_k||,$$

kde ||x|| je euklidovská norma.

 $D\mathring{u}kaz$

TODO!

TODO TODO!

Definice 2.4 (Vektorový součin v ⁿ)

Nechť $v_1, \ldots, v_{n-1} \in {}^n$. Potom jejich vektorový součin $v_1 \times v_2 \times \cdots \times v_{n-1} \in {}^n$ je definován jako $*(v_1 \times \cdots \times v_{n-1}) = v_1 \wedge v_2 \wedge \ldots \wedge v_{n-1}$

Poznámka

Ve skriptech označeno $[v_1, \ldots, v_{n-1}].$

Poznámka (Platí)

$$v_1 \times \dots \times v_{n-1} = (-1)^{n-1} * (v_1 \wedge \dots \wedge v_{n-1})(zCv.2TODO)$$

$$\forall \omega \in ^n: \langle \omega, v_1 \times \cdots \times v_{n-1} \rangle = \det(\omega | v_1 | cdots | v_{n-1})$$

2.2 Rozložitelné k-vektory

Nechť je vektorový prostor. Nechť $\omega \in \Lambda^k()$. Položme

$$\ker \omega := \{ v \in |\omega \wedge v = 0 \} .$$

Platí 1. ker ω je podprostor

Definice 2.5 (Rozložitelné *k*-vektory)

 $\omega \in \Lambda^k()$ je rozložitelný, pokud existují $v_1, \ldots, v_k \in \text{takové}, \text{ že } \omega = v_1 \wedge \ldots \wedge v_k.$

Platí 2. $v_1 \wedge \ldots \wedge v_k \neq 0 \Leftrightarrow \text{vektory } v_1, \ldots, v_k \text{ jsou lineárně nezávislé.}$

Platí 3. Nechť $\omega = v_1 \wedge \ldots \wedge v_k \neq 0$. Potom

$$\ker \omega = LO(v_1, \ldots, v_k)$$

Definice 2.6

$$R_k() := \{ \omega \in \Lambda^k() | \omega \neq 0 \text{rozložitelný} \}$$

 $G_k() := \{L | Lk - \text{dimenzionální podprostor } \} \text{ (tzv. Grassmannian)}$

Platí 4. Zobrazení $\varphi: R_k() \to G_k(): \omega \to \ker \omega$ je na, ale není prosté. Skutečně máme $\ker \omega = \ker \omega' \Leftrightarrow \exists \alpha \in ?: \omega' = \alpha \omega.$

Například (Nerozložitelné k-vektory)

Platí 5. Pro $=^n$ jsou všechny 1-vektory, n-vektory i (n-1)-vektory rozložitelné.

Příklad

Rozložte $e_{123} + e_{124} + e_{234} \in \Lambda^3(^4)$, kde $e_{123} = e_{\{1,2,3\}}$.

Musíme tedy hledat v ⁴ a "výše".

Příklad

Najděte nerozložitelný 2-vektor $\omega \in \Lambda^2(^4)$

Poznámka (Projektivní prostor)

Mezi nejdůležitější Grassmanniany patří projektivní prostor:

Nechť je vektorový prostor. Polož $P(V) := \{1-\text{dimenzionální podprostor}\}.$

Tvrdíme $P() = G_1()$.

Věta 2.3 (Plückerovo vnoření)

$$G_k() \rightarrow ?P(^{(nnadk)})$$

, je- $li \dim = n$

2.3 Diferenciální formy

$$x \in \mathbb{R}^n = (x_1, \dots, x_n)$$

Označme $T * (\mathbb{R}^n)$ reálný vektorový prostor, jehož bázi tvoří symboly dx_1, \ldots, dx_n tj.

$$T * (\mathbb{R}^4) = \left\{ \sum_{i=1}^n \alpha_i \, dx_i | \alpha_i \in \mathbb{R} \right\}$$

Definice 2.7 (Diferenciální fomrma)

Diferenciální forma ω na otevřené množině $\Omega \subset \mathbb{R}^n$ je zobrazení $\omega : \Omega \to \Lambda * (T * (\mathbb{R}^n))$ třídy \mathcal{S}^{∞} (= je hladké).

Označme $\mathcal{E}*(\Omega)$ vektorový prostor všech diferenciálních forem na Ω . Každé $a\in\mathcal{E}*(\Omega)$ laze jednoznačně psát jako

$$\omega(x) = \sum_{I} \omega_{I}(x) \, dx_{I}, \tag{1}$$

kde součet je přes všechny $I \subset \{1, \ldots, n\}, \ \omega_I \in \mathcal{S}^{\infty}(\Omega)$ a $dx_I = dx_{i_1} \vee \ldots \vee dx_{i_k}$ jsou-li prvky i_1, \ldots, i_k množiny I uspořádány postupně

Definice 2.8 (Stupeň diferenciální formy)

Dále $\omega \in \mathcal{E} * (\Omega)$ má stupeň k (tzv. k-forma), pokud $\omega : \Omega \to \Lambda^k(T * (\mathbb{R}^n))$ je hladké zobrazení. Označme $\mathcal{E}^k(\Lambda)$ vektorový prostor všech k-forem na Ω .

Poznámka

Každá $\omega \in \mathcal{E}^k(\Omega)$ má tvar (1), kde je součet přes všechny |I| = k.

Zřejmě
$$\mathcal{E} * (\Omega) = \bigoplus_{k=0}^n \mathcal{E}^k(\Omega)$$
 a $\mathcal{E}^0(\Omega) = \mathcal{S}^{\infty}(\Omega)$.

Definice 2.9 (Vnější násobení)

Na $\mathcal{E} * (\Omega)$ definujeme vnější násobení

$$(\omega \vee \tau)(x) := \omega(x) \vee \tau(x), x \in \Omega, \omega, \tau \in \mathcal{E} * (\Omega).$$

Definice 2.10 (Vnější (de Rhammův) diferenciál)

Nechť $\Omega \subset \mathbb{R}^n$ je otevřená. Potom definujeme zobrazení $d: \mathcal{E} * (\Omega) \to \mathcal{E}(\Omega)$ následovně: (i) Je-li $f \in \mathcal{E}^0(\Omega)$, potom

$$(df)(x) := \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) dx_i, x \in \Omega$$

(ii) Nechť $\omega \in \mathcal{E} * (\Omega)$ je tvaru (1). Potom

$$dw := \sum_{I} (d\omega_{I}) \vee dx_{I}$$

Například

$$\omega = e^{xy} dx + \cos(x+y) dy$$

$$d(e^{xy}) = e^{xy} y dx + e^{xy} x dy$$

$$(\cos(x+y)) = -\sin(x+y) dx - \sin(x+y) dy$$

$$d\omega = e^{xy} x dy \lor dx - \sin(x+y) dx \lor dy = -(xe^{xy} + \sin(x+y)) dx \lor dy$$

Poznámka

Nechť $\varphi_i: \mathbb{R}^n \to \mathbb{R}$ je *i*-tá souřadnice funkce, tzn. $\varphi_i(x) := x_i, x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Potom

$$d\varphi_i = \sum_{j=1}^n \frac{\partial \varphi_i}{\partial x_j} dx_j = dx_i.$$

Poznámka

V "rovném" prostoru \mathbb{R}^n :

- tečný prostor $T_x(\mathbb{R}^n) \simeq \mathbb{R}^n$.
- kotečný prostor $T_x*(\mathbb{R}^n):=(T_x(\mathbb{R}^n))*\simeq (\mathbb{R}^n)*$

Věta 2.4

Nechť $\Omega \subset \mathbb{R}^n$ je otevřená, $\omega, \tau \in \mathcal{E} * (\Omega)$ a $p = 0, \dots, n$. Potom platí

- $(i) \ d(\omega + \tau) = d\omega + d\tau \ a \ \forall \omega \in \mathcal{E}^p(\Omega) : d\omega \in \mathcal{E}^{p+1}(\Omega), \ kde \ \mathcal{E}^{n+1}(\Omega) := \emptyset.$
- (ii) Je-li $\omega \in \mathcal{E}^p(\Omega)$, potom $d(\omega \vee \tau) = d\omega \vee \tau + (-1)^p \omega \vee d\tau$.
- (iii) $d(d\omega) = 0$.

 $D\mathring{u}kaz$ (i) plyne z linearity \vee a definice.

(ii) Vzhledem k
 (i) stačí dokázat pro $\omega = \omega_I dx_I$ a $\tau = \tau_J dx_J$, kde $I, J \subset \{1, \dots, n\}$, I je p-prvková a $I \cap J = \emptyset$.

Potom $d(\omega \vee \tau) = d(\omega_I \tau_J) \vee dx_I \vee dx_J$. Dále $d(\omega_I \tau_J) = \sum_{i=1}^n \frac{\partial(\omega_I \tau_J)}{\partial x_i} dx_i = \sum_{i=1}^n \left(\frac{\partial \omega_I}{\partial x_i} \tau_J + \omega_I \frac{\partial \tau_J}{\partial x_i} \partial x_i \right)$

Tedy $d(\omega \vee \tau) = \sum_{i=1}^n \frac{\partial \omega_I}{\partial x_i} \tau_J dx_i \vee dx_I \vee dx_J + \sum_{i=1}^n \omega_I \frac{\partial \tau_J}{\partial x_i} dx_i \vee dx_I \vee dx_J$, kde musím v druhém členu posunout " $d\tau$ ", k jeho dx_J

(iii) Pro $f \in \mathcal{E}^0(\Omega)$ si to roznásobím a popáruji prohozené bázové vektory.

Díky (i) stačí rozbrat pro $\omega = \omega_I \, dx_I$, kde $I \subset \{1, \ldots, n\}$. Potom $d(d\omega) = d(\omega_I \, dx_I)$, (dvojkou rozepíšu) a z první části a d1 = 0 je to rovno 0.

2.4 Přenášení diferenciálních forem pomocí zobrazení

 $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ a $u=(u_1,\ldots,u_k)\in\mathbb{R}^k$. V této části předpokládejme, že $\Omega\subset\mathbb{R}^n$ je otevřená, $U\subset\mathbb{R}^k$ je otevřená a $\varphi:U\to\Omega$ je hladké zobrazení.

Je tedy $x = \varphi(u), u \in U$ a $x_i = \varphi_i(u_1, \dots, u_k)$, kde φ_i je *i*-tá složka φ .

Definice 2.11

Za předpokladů výše definujeme zobrazení $\varphi * : \mathcal{E} * (\Omega) \to \mathcal{E} * (U)$ předpisem $\varphi * (\omega) := \sum_{I} (\omega_{I} \circ \varphi) \, d\varphi_{I}$, kde $\omega = \sum_{I} \omega_{I} \, dx_{I}$ je tvaru (1) a $d\varphi_{I} = d\varphi_{i_{1}} \vee \ldots \vee d\varphi_{i_{k}}$, jsou-li prvky i_{1}, \ldots, i_{k} uvnitř I uspořádány vzestupně.

Poznámka

V souladu s definicí plošného integrálu 2. druhu.

Věta 2.5

Nechť φ je jako výše a $\omega, \tau \in \mathcal{E} * (\Omega)$. Potom:

(i)
$$\varphi * (\omega + \tau) = \varphi * (\omega) + \varphi * (\tau)$$
,

(ii)
$$\varphi * (\omega \vee \tau) = \varphi * (\omega) \vee \varphi * (\tau)$$
,

(iii)
$$\varphi * (d\omega) = d(\varphi * (\omega)).$$

- $(iv) \ \textit{Je-li } V \subset \mathbb{R}^l \ \textit{otev} \check{\textit{r}} \textit{en\'{a}} \ \textit{a} \ \psi : V \rightarrow U \ \textit{je} \ \textit{hladk\'{a}}, \ \textit{potom} \ (\varphi \circ \psi) * (\omega) = (\psi * \circ \varphi *)(\omega).$
 - $v \text{ Je-li } k = n, \ \omega \in \mathcal{E}^n(\Omega) \text{ a } \omega = f \ dx_1 \lor \dots \lor dx_n, \text{ potom } \varphi * (\omega) = (f \circ \varphi) \det(\operatorname{Jac} \varphi) \ du_1 \lor \dots \lor du_n, \text{ kde } \operatorname{Jac} \varphi = \left(\frac{\partial \varphi_i}{\partial u_j}\right)_{i,j=1,\dots,n} \text{ je Jacobiho matice } x = \varphi(u).$

 $D\mathring{u}kaz$

Jednoduchý.

Definice 2.12 (Uzavřené a exaktní formy)

Formule $\omega \in \mathcal{E}^k(\Omega)$ se nazývá uzavřená, je-li $d\omega = 0$ a exaktní, existuje-li $\tau \in \mathcal{E}^{k-1}(\Omega)$ takové, že $d\tau = \omega$.

Poznámka (Platí)

Je-li ω exaktní, potom je uzavřená.

Lemma 2.6 (Poincarého lemma)

Nechť Ω je otevřená koule v \mathbb{R}^n . Potom pro k > 0 každé $\omega \in \mathcal{E}^k(\Omega)$, která je uzavřená, je i exaktní.

Poznámka

Platí i pro hvězdovité (znáte z analýzy) nebo jednoduše souvislé (dá se stáhnout do bodu) oblasti $\Omega \subset \mathbb{R}^n$

Poznámka (Poncarého lemma platí pouze pro dané oblasti)

Nechť $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$. Potom $\omega := \frac{x}{x^2+y^2} dy - \frac{y}{x^2+y^2} dx \in \mathcal{E}^1(\Omega)$ je uzavřená, ale není exaktní.

Definice 2.13 (De Rhanův komplex)

Nechť $\Omega \subset \mathbb{R}^n$ je otevřená, potom

$$\mathcal{E}^0(\Omega) \stackrel{d}{\to} \mathcal{E}^1(\Omega) \stackrel{d}{\to} \dots \stackrel{d}{\to} \mathcal{E}^n(\Omega)$$

je komplex (tzn. posloupnost vektorových prostorů a lineární zobrazení mezi nimi s vlastností, že každá složka dvou po sobě jdoucích zobrazení je triviální (zde, $d \circ d = 0$, splněno))

TODO!

2.5 Stokesova věta pro řetězce

Poznámka (Cíl)

$$\int_{C \text{ k-dim. řet. v } \mathbb{R}^n} d\omega = \int_{\partial C \text{ $(k-1)$-dim.}} \omega$$

Definice 2.14

Necht $E \in \mathbb{R}^k$ (je libovolná). Potom zobrazení $\varphi : E \to \mathbb{R}^k$ nazvěme hladké, pokud existuje otevřená $O \subset \mathbb{R}^k$ a $\Phi \to R \mathbb{k}$ hladké zobrazení takové, že $E \subset O$ a $\varphi = \Phi|_E$. Navíc Φ nazveme hladkým rozšířením φ . (\leftarrow Whitneyho rozšířovací věta.)

Definice 2.15

Nechť $I_k = [0, 1]^k \subset \mathbb{R}^k$. Potom k-dimenzionální singulární krychle v \mathbb{R}^n rozumíme hladké zobrazení $I_k \to \mathbb{R}^n$. Píšeme $\langle \varphi \rangle = \varphi(I_k)$.

Poznámka

 $\langle \varphi \rangle$ je 'hladká deformace' k-dimenzionální krychle, může být singulární, např. bod (je-li φ konet).

Definice 2.16

Nechť $\Omega \subset \mathbb{R}^n$ je otevřená.

(i) Necht $\omega \in {}^{n}(\Omega)$ a $\omega = f dx_1 \wedge \ldots \wedge dx_n$, kde $f \in {}^{\infty}(\Omega)$. Je-li $E \subset \Omega$, potom definujeme

$$\int_{E} \omega = \int_{E} f d\lambda^{n},$$

pokud int. vpravo existuje jako Lebesgue
ův vůči Lebesgue
ově míře λ^n na \mathbb{R}^n .

Pro n=0 definujeme $\int f=0$

(ii) Nechť $k=0,\ldots,n$ a $\omega\in\mathcal{E}^k(\Omega)$. Nechť φ je k-dimenzionální supul? krychle v Ω (tzn. $\langle\varphi\rangle\in\Omega$).

Položme $\int_\varphi\omega:=\int_{I_k}\Phi*(\omega),$ je-li $\Phi:O\to\Omega$ hladké rozšíření $\varphi.$

Poznámka

Definice (ii) je v pořádku, protože takové Φ vždy existuje (jinak $\varphi|_{\sigma_n\Phi_{-1}(\Omega)}$) a hodnota $\int_{\varphi}\omega$ nezávisí na hladkém rozšíření φ . Skutečně pro jiné takové hladké rozšíření Φ mějmé?, že

$$\Phi = \varphi = \psi \text{na} I_k^0$$

$$\Phi * (\omega) = \psi * (\omega) \operatorname{na} I_k^0$$

 $\Phi * (\omega) = \psi * (\omega)$ na I_k ze spojitosti funkcí Φ, ψ a jejich 1. parciálních derivací.

 $\acute{U}mluva$

Často budeme ztotožňovat φ s Φ .

Věta 2.7 (Integrál nezávisí na parametrizaci, jen na orientaci)

Nechť $\Omega \subset \mathbb{R}^n$ je otevřená a $\omega \in \mathcal{E}^k(\Omega)$. Nechť $I_k \subset O, O' \subset \mathbb{R}^n$ jsou otevřené a $\alpha : O' \to O$ (na) je hladký difomorfismus (tzn. α i α_{-1} jsou hladká zobrazení), $\alpha(I_k) = I_k$. Nechť $\varphi : O \to \Omega$ je hladké a $\varphi' := \varphi \circ \alpha$.

 $Potom \int_{\varphi'} \omega = \Theta \int_{\varphi} \omega, \ kde \ \Theta = +1, \ je\text{-li} \ J_{\alpha} := \det(\operatorname{Jac}(\alpha)) > 0naI_k, \ \Theta = -1, \ je\text{-li} \ J_{\alpha} := \det(\operatorname{Jac}(\alpha)) < 0naI_k.$

Důkaz

Víme, že $J_{\alpha} \neq 0$ na O'. Tedy J_{α} (spojité funkce) nemění na I_k znaménko. TODO!

TODO!

Věta 2.8 (Stokes)

 $Necht \Omega \subset \mathbb{R}^n$

 $D\mathring{u}kaz$

Nechť k = n a $C = I_n$. Potom $\omega \in \mathcal{E}^{n-1}(\Omega)$ má tvar $\omega = \sum_{i=1}^n \omega_i$, kde $\omega_i = (-1)^{i+1} f_i dx_1 \wedge \ldots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \ldots \wedge dx_n$ a $f_i \in \mathcal{C}^{\infty}(\Omega)$.

Potom $d\omega_i = \frac{\partial f_i}{\partial x_i} dx_1 \wedge \dots dx_n$ a

$$\int_{I_n} d\omega_i = \int_{[0,1]^n} \frac{\partial f_i}{\partial x_i} \, dx_1 \dots dx_n \overset{\text{Fubki (věta)} + \text{ newtonův vzorec v } x_i}{=}$$

$$= \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) dx_i = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_{i+1},x_{i+1},\ldots,x_n) dx_i = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) - f_i(x_1,\ldots,x_n) - f_i(x_1,\ldots,x_n) dx_i = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_n) - f_i(x_1,\ldots,x_n) - f_i(x_1,\ldots,x_n) dx_i = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_n) - f_i(x_1,\ldots,x_n) - f_i(x_1,\ldots,x_n) dx_i = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_n) dx_i = \int_{[0,1]^{n-1}} (f_i(x_1,\ldots,x_n) dx$$

$$(-1)^{i+1} \left(\int_{I_{(i,1)}^n} \omega_i - \int_{I_{(i,0)}^n} \omega_i \right) = \int_{\partial I_n} \omega_i,$$

protože $\int_{I_{j,\alpha}^n} \omega_i = 0$ pro $j \neq i$. Tedy $\int_{I_n} d\omega = \int_{\partial I_n} \omega$.

(2.) Nechť c = cosi. Potom cosi

 $P\check{r}iklad$ (Singulární homologie Ω)

Nechť $\Omega \subset \mathbb{R}^n$ je otevřená. Dokažte, že pro každý k-řetězec $c \in C_k(\Omega)$ je $\partial c \in C_{k-1}(\Omega)$ a $\partial(\partial c) = 0$.

 $D\mathring{u}kaz$

Nahlédneme, že každá část potenciální hranice se jednou "přičte" a jednou "odečte".

Věta 2.9 (De Rhamova (hluboká!))

 $\overline{\text{Máme tedy } C_0(\Omega) \xleftarrow{\partial} C_1(\Omega) \xleftarrow{\partial} \cdots \xleftarrow{\partial} C_n(\Omega)}.$

 $Ozna\check{c}me$

$$Z_k(\Omega) := \{c \in C_k(\Omega) | \partial c = 0\} tzv. k-cykly$$

Poznámka (Ze cvičení)

Nechť S je libovolná množina (i nekonečná). Potom volnou Abelovou grupou $\mathbb{Z}(S)$ generovanou S rozumíme grupu

$$\mathbb{Z}(S) := \{ f' : S \to \mathbb{Z} | f(s) \neq 0 \text{pro konečně mnoho } s \in S \}$$

s operací $(f + g)(s) := f(s) + g(s), s \in S$.

Zřejmě každá $f \in \mathbb{Z}(S)$ lze jednoznačně psát jako $f = \sum_{s \in S} n_s z_s$, kde $n_s \in \mathbb{Z}$, $n_s \neq 0$ pro konečně $s \in S$ a $z_s(t) := 1, t = s$ $z_s(t) := 0, t \neq s$. Píšeme často s místo z_s

Poznámka (Ze cvičení)

Necht S je libovolná množina. Položme $\mathbb{R}(S) := \{f : S \to \mathbb{R} | f(s) \neq 0 \text{pro konečně } s \in S\}$. Potom $\mathbb{R}(S)$ je vektorový prostor nad \mathbb{R} s operacemi (f+g)(s) := f(s) + g(s) a $(r \cdot f)(s) := r \cdot f(s), f, g \in \mathbb{R}(S), s \in S$ ar $\in \mathbb{R}$.

Dále $\mathbb{R}(S)$ má bázi $\{z_s|s\in S\}$, kde $z_s(t):=1, t=s; z_s(t);=0, t\neq s.$

3 Variety, Stokesova věta na varietách

3.1 Tenzory

Úmluva

Všechny vektorové prostory budou nad reálnými čísly a konečnědimenzionální.

Definice 3.1

Nechť V je vektorový prostor.

Jeho k-tou tenzorovou mocninou \mathbf{V}^k definujeme jako $\mathbf{V}^k := \mathcal{L}(\mathbf{V}*, \dots, \mathbf{V}*)$, kde položíme $\mathbf{V}^0 = \mathbb{R}$ a ztotožňujeme $\mathbf{V}^1 = \mathbf{V}***$ s \mathbf{V} .

Jeho tenzorovou algebru definujeme jako $T(\mathbf{V}):=\bigoplus_{k=0}^{\infty}\mathbf{V}^k$. Násobení \otimes na $T(\mathbf{V})$ definujeme následovně:

- a) Je-li $\alpha \in \mathbf{V}^k$ a $\beta \in \mathbf{V}^m$, TODO
- b) násobení \otimes rozšíříme na $T(\mathbf{V})$ bilineárně TODO

Tvrzení 3.1 (Vlastnosti $T(\mathbf{V})$)

Je to ∞ -dimenzionální, nekomutativní, asociativní algebra s jednotkou $1 \in \mathbf{V}^0 = \mathbb{R}$.

Nechť \mathbf{V} má bázi e_1, \ldots, e_n . Pottom \mathbf{V}^k má bázi $e_A := e_{a_1} \otimes \ldots \otimes e_{a_k}$, kde $A = (a_1, \ldots, a_k) \in \{1, 2, \ldots, n\}^k$. Speciálně dim $\mathbf{V}^k = (\dim \mathbf{V})^k = n^k$.

 $D\mathring{u}kaz$

Triviální.

Nechť $\varepsilon^1, \ldots, \varepsilon^n$ je duální báze **V***, tzn. $\varepsilon^i(e_j) = \delta^i_j = 1, i = j; = 0, i \neq j.$

Necht $\sum_{A} \alpha^{A} e_{A} = \mathbf{o} \text{ s } \alpha^{A} \in \mathbb{R}$. Potom $\mathbf{o} = \sum_{A} \alpha_{A}(\varepsilon^{b_{1}}, \dots, \varepsilon^{b_{k}}) = \alpha_{B}$ TODO.

Úmluva (Einsteinova sumační konvence)

V tenzorovém počtu vynecháváme symbol \sum pro každý index od 1 do n, který je "nahoře i dole". Ale příliš ji nebudeme používat.

Tvrzení 3.2 (Změna souřadnic tenzoru při změně báze)

Nechť e'_1, \ldots, e'_n je jiná báze \mathbf{V} a nechť $E = (E^a_b)$ je matice přechodu od e_1, \ldots, e_n k e'_1, \ldots, e'_n , tzn.

$$e_b' = E_b^a e_a.$$

 $D\mathring{u}kaz$

Dosadíme (1) a (2) do

$$\alpha'_{b_1,\dots,b_r}{}^{a_1,\dots,a_s} = \alpha(\varepsilon'^{a_1},\dots,\varepsilon'^{a_s},e'_{b_1},\dots,e'_{b_r})$$

Definice 3.2 (Symetrická a vnější algebra)

Nechť \mathbf{V} je vektorový prostor. Nechť S_k je grupa permutací $\{1,2,\ldots,k\}$.

Potom $\alpha \in \mathbf{V}^k$ je symetrický, resp. antisymetrický, pokud $\forall f^1, \ldots, f^k \in \mathbf{V} * \forall \pi \in S_k : \alpha(f^{\pi(1)}, \ldots, f^{\pi(k)}) = \alpha(f^1, \ldots, f^k)$ (resp. přenásobené sgn π). Označme Sym_k TODO.

Definice 3.3 (Symetrická algebra)

Symetrickou algebrou vektorového prostoru **V** rozumíme algebru (**V**) = $\bigoplus_{k=0}^{\infty} {}^k$ (**V**) s násobením definovaným následovně:

Je ... TODO

Definice 3.4 (Vnější algebra podruhé)

TODO

3.2 Topologické prostory

Viz Topologie: Definice topologie, topologie generovaná metrikou, uzavřená množina, okolí, vnitřek, uzávěr, hranice, topologický podprostor, Hausdorffův prostor (a to, že metrický prostor je Hausdorffův), indiskrétní τ_0 a diskrétní τ_1 topologie, τ_0 není pro více jak jednoprvkovou množinu hausdorffova, báze, spojité zobrazení, homeomorfismus, kompaktnost, souvislost, spojitost funkce v bodě, spojitý obraz kompaktního (resp. souvislý) prostoru je kompaktní (resp. souvislý)

3.3 Variety

Definice 3.5 (Varieta)

TODO jestliže

- 1. $\mathbb X$ je lokálně homeomorfní s $\mathbb R^n$, tzn. pro každé $x\in\mathbb X$ existuje otevřená $x\in U\subset\mathbb X$ a homeomorfismus φ množiny U na $\varphi(U)\subset\mathbb R^n$
- 2. X je Hausdorffův a
- 3. X má spočetnou bázi a TODO.

Například

Tvorba základních dvourozměrných variet: viz témátko Topologie v M&M.

Definice 3.6 (Mapa)

Nechť (\mathbb{X}, τ) je topologická varieta dimenze n. Potom mapou (lokálním souřadnicovým systémem) na (\mathbb{X}, τ) nazveme (U, φ) , kde $U \subset \mathbb{X}$ je otevřené a φ homeomorfizmus? TODO.

Nechť (V,ψ) je jiná mapa na X. Potom buď $U\cap V=\emptyset$, nebo $U\cap V\neq\emptyset$ a tzv. přechodové funkce $\psi\circ\varphi^{-1}$ TODO

Definice 3.7 (Atlas)

Systém map $A = \{\}$ TODO

TODO

Poznámka

Každý topologický prostor \mathbb{X} , který se dá pokrýt spočetně mnoha mapami, má spočetnou bázi otevřených množin.

Obecněji: Nechť $(\mathbb{X}, \mathcal{A})$ je varieta dimenze n. Je-li $Y \subset \mathbb{X}$ otevřená, potom

$$\mathcal{A}_Y := \{ (U \cap Y, \varphi|_{U \cap Y}) | (U, \varphi) \in \mathcal{A} \}$$

je atlas na Y a (Y, \mathcal{A}_Y) je varieta dimenze n.

Příklad

Rozmysli si, že 2rozměrné plochy v \mathbb{R}^3 zavedené a studované v přednášce z Geometrie v LS jsou příklady hladkých variet dimenze 2. (Ale s trochu jiným pojmem mapy.)