KJ'S Educational Institutes

TRINITY ACADEMY OF ENGINEEIRNG, PUNE

(Accredited with 'A' grade by NAAC)

Department of MCA

LABORATORY MANUAL

Machine Learning Laboratory

(Subject Code: 410904B)

For the Academic Year 2022 - 2023

SYMCA-Semester I

Teaching Scheme: PR: 04Hours/Week

Credit 02

Examination Scheme:

TW:25Marks PR: 50 Marks

PROGRA	AM OUTCOMES
PO No.	Program Outcome Description
PO 1	Apply knowledge of mathematics, computer science, computing specializations appropriate for real world applications.
PO 2	Identify, formulate, analyze and solve <i>complex</i> computing problems using relevant domain disciplines.
PO 3	Design and evaluate solutions for <i>complex</i> computing problems that meet specified needs with appropriate considerations for real world problems.
PO 4	Find solutions of complex computing problems using design of experiments, analysis and interpretation of data.
PO 5	Apply appropriate techniques and modern computing tools for development of complex computing activities.
PO 6	Apply professional ethics, cyber regulations and norms of professional computing practices.
PO 7	Recognize the need to have ability to engage in independent and life-long learning in the broadest context of technological change.
PO 8	Demonstrate knowledge and understanding of the computing and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 9	Communicate effectively with the computing community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 10	Assess societal, environmental, health, safety, legal and cultural issues within local and global contexts, and the consequent responsibilities relevant to the professional computing practices.
PO 11	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary environments.
PO 12	Identify a timely opportunity and use innovation, to pursue opportunity, as a successful Entrepreneur /professional.

OBJECTIVE:

- To introduce machine learning techniques.
- Understanding Human learning aspects.
- Understanding primitives and methods in learning process by computer.
- Understanding nature of problems solved with Machine Learning.
- To become aware of various logic based and algebraic models in machine learning.
- To learn state-of-art dimensionality trends in machine learning.

Course	Course Outcomes					
CO 1	Model the learning primitives.					
CO 2	Build the learning model.					
CO 3	Tackle real world problems in the domain of Data Mining and Big Data Analytics, Information retrieval, Computer vision, Linguistics and Bioinformatics.					
CO 4	Devise/develop machine learning model for real time applications.					
CO 5	Evaluate a given problem and apply appropriate machine learning technique to gain knowledge from the problem.					
CO 6	Develop skills of using recent machine learning techniques and solve practical problems.					

Guidelines for Student Journal:

- The laboratory assignments are to be submitted by student in the form of journal.
- Journal consists of prologue, Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, Theory-Concept in brief conclusion/analysis.
- Program codes with sample output of all Performed assignments are to be submitted as
 softcopy. As a conscious effort and little contribution towards Green IT and environment
 awareness, attaching printed papers as part of write-ups and program listing to journal may
 be avoided. Use of DVD containing students' programs maintained by lab In-charge is
 highly encouraged. For reference one or two journals may be maintained with program
 prints at Laboratory.

Sample Programs:

Practical No:01

Aim: On the fruit dataset, compare the performance of Logistic Regression, SVM, KNN on the basis of their accuracy.

```
Code:
import numpy as np import pandas as pd
import matplotlib.pyplot as plt from sklearn.metrics import classification_report from
sklearn.model_selection import train_test_split from sklearn.preprocessing
import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree
import DecisionTreeClassifier from sklearn.neighbors
import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.svm
import SVC import os os.chdir("C:\\Users\PramodJ\Desktop\Python")
fruits = pd.read_table('fruit.txt')
print(fruits.head()) print(fruits.tail())
print (fruits.describe()) feature_names=['mass','width','height','color_score']
X = fruits[feature_names] Y = fruits['fruit_label'] X_train,
X_test,y_train,y_test=train_test_split(X,Y,random_state=0)
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train) X_test= scaler.transform(X_test)
knn = KNeighborsClassifier() knn.fit(X_train, y_train)
print('Accuracy of K-NN classifier on training set:{:.2f}'.format(knn.score(X_train,y_train)))
print('Accuracy of K-NN classifier on test set:{:.2f}'.format(knn.score(X_test,y_test)))
svm = SVC() svm.fit(X_train,y_train)
print('Accuracy of SVM classifier on training set:{:.2f}'.format(svm.score(X_train,y_train)))
print('Accuracy of SVM classifier on test set:{:.2f}'.format(svm.score(X test,y test)))
# Logistic Regression
from sklearn.linear_model import LogisticRegression model = LogisticRegression()
model.fit(X_train, y_train) predictions = model.predict(X_test)
print('Accuracy of Logistic Regression on training set: {:.2f}'.format(model.score(X_train, y_train)))
print('Accuracy of Logistic Regressionr on test set: {:.2f}'.format(model.score(X_test, y_test)))
```

classification_report(y_test, predictions)

Output:

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2		mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
	fruit label	fruit name	fruit_subtype	mass	width	height	color score
54	_ 4	lemon	unknown		6.1	8.5	0.71
55	4	lemon	unknown	116	6.3	7.7	0.72
56	4	lemon	unknown	116	5.9	8.1	0.73
57	4	lemon	unknown	152	6.5	8.5	0.72
58	4	lemon	unknown	118	6.1	8.1	0.70
	fruit_	label	mass	width	n	height	color_score
cou	THE PARTY OF THE P			000000		000000	59.000000
mea				105089		693220	0.762881
std				816938		361017	0.076857
min				80000		000000	0.550000
25%				600000		200000	0.720000
50%	3.0	00000 158	3.000000 7.	200000	7.	600000	0.750000
75%	4.0	00000 177	7.000000 7.	500000	8.	200000	0.810000
max	4.0	00000 362	2.000000 9.	600000	0 10.	500000	0.930000

K-NN classifier:

Accuracy of K-NN classifier on training set:0.95

Accuracy of K-NN classifier on test set:1.00

SVM classifier:

Accuracy of SVM classifier on trainning set:0.91
Accuracy of SVM classifier on test set:0.80

Logistic Regression:

Accuracy of Logistic Regression on training set: 0.75
Accuracy of Logistic Regressionr on test set: 0.47

precision recall f1-score support\n\n 1 0.36 1.00 0.53 4\n 2 0.00 0.00 1\n 3 1.00 0.12 0.22 8\n 0.00 0.67 1.00 15\n macro avg 0.51 0.53 0.39 0.80 2\n\n accuracy 0.47 15 0.72 0.47 0.37 15\n' \nweighted avg

Aim: On the iris dataset, perform KNN algorithm and discuss result

```
Code:
import pandas as pd
from sklearn.datasets import load_iris iris=load_iris()
iris.feature_names iris.target_names
df= pd.DataFrame(iris.data,columns=iris.feature_names) df.head()
df['target']=iris.target df.head() df[df.target==1].head() df.shape
df['flower_name'] =df.target.apply(lambda x: iris.target_names[x]) df.head()
df0 =df[:50] df1=df[50:100]
df2=df[100:]
from sklearn.model_selection import train_test_split x=df.drop(['target','flower_name'],axis='columns')
y=df.target
x_train,x_test,y_train,y_test =train_test_split(x,y,test_size=0.2,random_state=1) len(x_train)
from sklearn.neighbors import KNeighborsClassifier # create knn classifier knn
=KNeighborsClassifier(n_neighbors=10)
knn.fit(x_train, y_train) knn.score(x_test,y_test)
from sklearn.metrics import confusion_matrix y_pred=knn.predict(x_test)
cm = confusion_matrix(y_test,y_pred) cm
```

%matplotlib inline

import matplotlib.pyplot as plt import seaborn as sn plt.figure(figsize=(7,5)) sn.heatmap(cm, annot=True) plt.xlabel('predicted') plt.ylabel('True')

from sklearn.metrics import classification_report print(classification_report(y_test,y_pred)

Output: feature names:

Target names:

```
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
['sepal length (cm)',
   'sepal width (cm)',
   'petal length (cm)',
   'petal width (cm)']</pre>
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

len(x_train):

120

len(x_test):

30

Knn score:

0.96666666666666

Confusion matrix:

Heatmap:

Classification report:

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	11
	1	1.00	0.92	0.96	13
	2	0.86	1.00	0.92	6
accur	racy			0.97	30
macro	avg	0.95	0.97	0.96	30
weighted	avg	0.97	0.97	0.97	30

Aim: Implement apriori algorithm on Online retail dataset and discuss results.

Code:

import pandas as pd import numpy as np import seaborn as sns import matplotlib as mlp import matplotlib.pyplot as plt

from mlxtend.frequent_patterns import apriori

from mlxtend.frequent_patterns import association_rules import os

 $os.getcwd() \ os.chdir(''C:\Wers\PramodJ\Desktop '') \ transaction_df=pd.read_csv('OnlineRetail.csv') \\ transaction_df.head()$

 $transaction_df = transaction_df[transaction_df.Country == 'France'] \ transaction_filtered = transaction_df[transaction_df] \ transaction_df = transaction_df[transaction_df] \ transaction_df[trans$

transaction_df[['InvoiceNo','Description','Quantity']].copy() transaction_filtered

transaction_filtered = transaction_filtered[transaction_filtered.Quantity > 0]

 $transaction_filtered.sort_values (by = 'Quantity', ascending = True) \ transaction_filtered ['Quantity'] = transaction_filtered ['Quanti$

[1]*len(transaction_filtered)

[2]*5

invoice = list(transaction_filtered.InvoiceNo)

 $index_no = [invoice[index] \ for \ index \ in \ np.arange(len(invoice)) \ if \ not \ invoice[index]. is numeric()]$

 $transaction_filtered[transaction_filtered['InvoiceNo'].isin(index_no)]$

 $temp_df = transaction_filtered[transaction_filtered.Description != transaction_filtered.Description]$

temp_df

for invoice in list(temp_df.InvoiceNo):

if len(transaction_filtered[transaction_filtered.Invoice == invoice]) > 1: print((str)(invoice))

```
temp = transaction_filtered[transaction_filtered.Invoice ==
invoice].groupby(['Invoice']).agg({'Description':lambda x: list(x)})
if len(list(set(temp)))>0:
print(temp) transaction_filtered.dropna(axis=0, inplace=True) transaction_filtered
def return_one(x): return 1
table = pd.pivot_table(transaction_filtered, values='Quantity', index=['InvoiceNo'],
columns=['Description'], aggfunc=return_one, fill_value=0)
table
frequent_itemsets = apriori(table, min_support=0.01, use_colnames=True) frequent_itemsets
rules = association_rules(frequent_itemsets, metric=''lift'', min_threshold=1) rules
rules.sort_values(by=['support','confidence'], ascending=False)
```

Output : Apriori :

	support	itemsets
0	0.022959	(DOLLY GIRL BEAKER)
1	0.012755	(I LOVE LONDON MINI BACKPACK)
2	0.017857	(SET 2 TEA TOWELS I LOVE LONDON)
3	0.040816	(SPACEBOY BABY GIFT SET)
4	0.030612	(10 COLOUR SPACEBOY PEN)
	•••	***
39622	0.010204	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL
39623	0.010204	(ALARM CLOCK BAKELIKE GREEN, JUMBO BAG APPLES,
39624	0.010204	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL
39625	0.010204	(ALARM CLOCK BAKELIKE RED , JUMBO BAG APPLES,
39626	0.010204	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL

39627 rows × 2 columns

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(CHARLOTTE BAG DOLLY GIRL DESIGN)	(DOLLY GIRL BEAKER)	0.066327	0.022959	0.012755	0.192308	8.376068	0.011232	1.209670
1	(DOLLY GIRL BEAKER)	(CHARLOTTE BAG DOLLY GIRL DESIGN)	0.022959	0.066327	0.012755	0.555556	8.376068	0.011232	2.100765
2	(DOLLY GIRL CHILDRENS BOWL)	(DOLLY GIRL BEAKER)	0.045918	0.022959	0.017857	0.388889	16.938272	0.016803	1.598794
3	(DOLLY GIRL BEAKER)	(DOLLY GIRL CHILDRENS BOWL)	0.022959	0.045918	0.017857	0.777778	16.938272	0.016803	4.293367
4	(DOLLY GIRL BEAKER)	(DOLLY GIRL CHILDRENS CUP)	0.022959	0.040816	0.015306	0.666667	16.333333	0.014369	2.877551
		22	227	LOP	1000		10.0	222	225
1349507	(LUNCH BAG APPLE DESIGN)	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL	0.125000	0.010204	0.010204	0.081633	8.000000	0.008929	1.077778
1349508	(LUNCH BOX I LOVE LONDON)	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL	0.068878	0.010204	0.010204	0.148148	14.518519	0.009501	1.161934
1349509	(DOLLY GIRL CHILDRENS CUP)	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL	0.040816	0.010204	0.010204	0.250000	24.500000	0.009788	1.319728
1349510	(ALARM CLOCK BAKELIKE PINK)	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL	0.102041	0.010204	0.010204	0.100000	9.800000	0.009163	1.099773
1349511	(ROUND SNACK BOXES SET OF4 WOODLAND)	(ALARM CLOCK BAKELIKE GREEN, ALARM CLOCK BAKEL	0. <mark>1</mark> 58 <mark>16</mark> 3	0.010204	0.010204	0.064516	6.322581	0.008590	1.058058

Aim: Implement Naïve Bayes Classifier and K-Nearest Neighbor Classifier on Data set of your choice. Test and Compare for Accuracy and Precision.

Code:

KNN

import numpy as np import pandas as pd import matplotlib.pyplot as plt

from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC import os

 $os.chdir("C:\Users\PramodJ\Desktop\Python")\ fruits = pd.read_table('fruit.txt')\ print(fruits.head())\\ print(fruits.tail())$

 $print (fruits.describe()) feature_names=['mass','width','height','color_score'] \ X = fruits[feature_names] \\ Y = fruits['fruit_label']$

 $X_train, X_test, y_train, y_test=train_test_split(X, Y, random_state=0) \ scaler = MinMaxScaler()$

 $X_{train} = scaler.fit_{transform}(X_{train}) X_{test} = scaler.transform(X_{test})$

 $knn = KNeighborsClassifier() \ knn.fit(X_train, y_train) \ print('Accuracy of K-NN \ classifier \ on \ training \\ set: \{:.2f\}'.format(knn.score(X_train,y_train))) \ print('Accuracy \ of K-NN \ classifier \ on \ test \\ set: \{:.2f\}'.format(knn.score(X_test,y_test)))$

```
naïve bayes
import numpy as np
import matplotlib.pyplot as plt import pandas as pd
os.chdir("C:\\Users\\PramodJ\\Desktop\\Python") dataset = pd.read_csv('iris.csv')

X = dataset.iloc[:,:4].values y = dataset['variety'].values dataset.head(5)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) from sklearn.preprocessing import

StandardScaler
sc = StandardScaler()

X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
from sklearn.naive_bayes import GaussianNB classifier = GaussianNB()
classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) y_pred
from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import accuracy_score
print ("Accuracy: ", accuracy_score(y_test, y_pred)) cm
```

Output: KNN

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin		5.8	4.3	0.77
6	2				5.9	4.3	0.81
7	2				5.8	4.0	0.81
8	1	apple			7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
							_
	fruit_	Label	mass	widt	:h	height	color_score
cour	nt 59.00	30000 59	9.000000 59	.00000	90 59	.000000	59.000000
mear	2.54	42373 163	3.118644 7	.10508	35 7	.693220	0.762881
std	1.20	98948 5 <u>9</u>	5.018832 0	.81693	88 1	.361017	0.076857
min	1.00	00000 76	5.000000 5	.80000	90 4	.000000	0.550000
25%	1.00	90000 140	a.000000 6	.60000	90 7	.200000	0.720000
50%	3.00	00000 158	8.000000 7	.20000	90 7	.600000	0.750000
75%	4.00	00000 17	7.000000 7	.50000	8 06	.200000	0.810000
max	4.00	00000 362	2.000000 9	.60000	0 10	.500000	0.930000

Accuracy of K-NN classifier on training set:0.95

Accuracy of K-NN classifier on training set:1.00

naïve bayes:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

Accuracy: 0.9333333333333333

Confusion matrix:

Aim: Implement K-Means Clustering on the proper data set of your choice.

Code:

```
from sklearn.cluster import KMeans import pandas as pd import matplotlib.pyplot as plt from matplotlib import style style.use("ggplot") %matplotlib inline data = pd.DataFrame([[1, 2], [5, 8], [1.5, 1.8], [8, 8], [1, 0.6], [9, 11]], columns=['x','y']) print( data ) kmeans = KMeans(n_clusters=2).fit(data) centroids = kmeans.cluster_centers_labels = kmeans.labels_print(centroids) print(labels) Output :
```

Centroids:

```
[[1.16666667 1.46666667 1. ]
[7.33333333 9. 0. ]]
```

```
Х
             У
   1.0
          2.0
0
1
   5.0
          8.0
2
   1.5
          1.8
3
   8.0
          8.0
4
   1.0
          0.6
5
   9.0
         11.0
```

Labels

$[1\ 0\ 1\ 0\ 1\ 0]$

Aim : Design and implement SVM for classification with the proper data set of your choice. Comment on Design and Implementation for Linearly non separable Dataset.

Code:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_circles from mpl_toolkits.mplot3d import Axes3D

```
X, Y = make\_circles(n\_samples = 500, noise = 0.02)
```

```
\begin{split} & plt.scatter(X[:,0],X[:,1],c=Y,marker='.') \; plt.show() \\ & X1=X[:,0].reshape((-1,1)) \\ & X2=X[:,1].reshape((-1,1)) \; X3=(X1**2+X2**2) \\ & X=np.hstack((X,X3)) \end{split}
```

visualizing data in higher dimension fig = plt.figure()

```
axes = fig.add\_subplot(111, projection = '3d') \ axes.scatter(X1, X2, X1**2 + X2**2, c = Y, depth shade = True) \ plt.show()
```

from sklearn import svm

```
svc = svm.SVC(kernel = 'linear') svc.fit(X, Y)
w = svc.coef_
b = svc.intercept_
```

```
x1 = X[:, 0].reshape((-1, 1))
x2 = X[:, 1].reshape((-1, 1))
```

```
x1, x2 = np.meshgrid(x1, x2)
x3 = -(w[0][0]*x1 + w[0][1]*x2 + b) / w[0][2]
```

fig = plt.figure()

axes2 = fig.add_subplot(111, projection = '3d') axes2.scatter(X1, X2, X1**2 + X2**2, c = Y, depthshade =

True) axes1 = fig.gca(projection = '3d')

axes1.plot_surface(x1, x2, x3, alpha = 0.01) plt.show()

Output:

support vector classifier using a linear kernel


```
Aim: Implement a basic not gate using perceptron.
Code:
# importing Python library
import numpy as np
# define Unit Step Function
def unitStep(v):
       if v \ge 0:
              return 1
       else:
              return 0
# design Perceptron Model
def perceptronModel(x, w, b):
       v = np.dot(w, x) + b
       y = unitStep(v)
       return y
# NOT Logic Function
# w = -1, b = 0.5
def NOT_logicFunction(x):
       w = -1
       b = 0.5
       return perceptronModel(x, w, b)
# testing the Perceptron Model
test1 = np.array(1)
test2 = np.array(0)
print("NOT({}) = {}".format(1, NOT_logicFunction(test1)))
print("NOT({}) = {}".format(0, NOT\_logicFunction(test2)))
Output:
NOT(1) = 0
NOT(0) = 1
```

Content of Lab Experiments for Journal

S.No.	Title of Program
1	On the fruit dataset, compare the performance of Logistic Regression, SVM, KNN on the basis of their accuracy.
2	On the iris dataset, perform knn algorithm and discuss result.
3	Implement apriori algorithm on Online retail dataset and discuss results.
4	Implement Naïve Bayes Classifier and K-Nearest Neighbor Classifier on Data set of your choice. Test and Compare for Accuracy and Precision.
5	Implement K-Means Clustering on the proper data set of your choice.
6	Design and implement SVM for classification with the proper data set of your choice. Comment on Design and Implementation for Linearly non separable Dataset.
7	Implement a basic not gate using perceptron.