

Mismatches in the input stage of an opamp will lead to an error in measuring the input *voltage* difference:

Modelling the opamp as an input stage followed by a high gain differential amplifier (an opamp!)

Virtual earth principle makes the two collector voltages equal

If $R_{CI} = R_{C2}$ then it follows that $I_{CI} = I_{C2}$

For identical transistors $I_{C1} = I_{C2}$ for ln(+) = ln(-)

The two transistors are different: $I_{S1} \neq I_{S2}$

$$I_{C1} = I_{S1} \cdot e^{qV_{BE1}/k_BT}$$
 Where $\frac{k_BT}{q} \gg 25mV$

$$I_{C2} = I_{S2} \cdot e^{qV_{BE2}/k_BT}$$

If we require that $I_{Cl} = I_{C2}$ then we must have $I_{S1} \cdot e^{V_{BE1}/25mV} = I_{S2} \cdot e^{V_{BE2}/25mV}$

In other words $V_{BE1} \neq V_{BE2}$

To multiply by a constant factor of $\frac{I_{S1}}{I_{S2}}$ we need to add a voltage into the exponential:

$$I_{S1} \cdot e^{V_{BE1} + \frac{\delta}{2}/25mV} = I_{S2} \cdot e^{V_{BE2} - \frac{\delta}{2}/25mV}$$

Then the feedback loop balances when there is a small difference δ between inputs

Since the scale of the curve is V_T and the transistor matching is good we expect the value of δ to be less than V_T : 25mV

Offset Voltage (1)

Looking at 110 bipolar opamps from RS:

29 Have offset voltage < 0.1mV

26 Have offset voltage < 0.2mV

6 Have offset voltage < 1mV

14 Have offset voltage < 5mV

29 Have offset voltage < 25mV

Only 6 have offset voltage > 25mV

Offset Voltage (2)

Feedback makes In(-) equal to In(+) + an Offset Voltage

Equivalent circuit

Offset voltage (3)

Note that V_{OS} can be in series with either input Choose whichever makes analysis easier Theoretically need to change sign of source but......

OP181/OP281/OP481—Typical

OP181 Spec:

"V_{OS}=1.5mV Max"

6-sigma specification

 $\sigma = 250 \mu V$

Offset results from inequivalence of input transistors:

Statistical, average is 0: Can have either sign.

Can be in series with either input unchanged, as the sign is undefined.

Offset voltage (5)

How to fix it Old days: "Offset Nulling"

Offset Voltage (6)

Better methods:

voltage

- Buy a better conventional opamp
- In a digitizing system measure offset and subtract in software

Chopper stabilization:

voltage

Z: A2 measures and

corrects it's own offset

Offset Voltage (7)

Chopper Stabilization:

Lowest V_{OS} (TLC2652 1µV max!)

Low I_B (CMOS amplifier)

Zero 1/f noise (will become clear later)

Compatible with single supply operation / low power

Full bandwidth linear amplification

Enormous DC gain (A1 + A2 gains!)

BUT

Switching noise at ≈ 10kHz

Multiple chopper amplifiers: Switching noise can beat at low frequencies (needs to be synchronized)

Saturation of A1 leads to a big voltage difference which A2 tries to correct: Insanely slow recovery from saturation / power-up

Use for special occasions only!

Example 1 Inverting Amplifier

Noninverting gain for V_{OS} error

Example 1 (again)

 V_{OS} is a source representing a lack of symmetry: It can be placed in Series with either input

1: Sign doesn't matter 2: Simpler calculation

3: Noninverting gain!

Example 2 Noninverting Amplifier

Same result by a more obvious method

Design example

Thermocouple Amplifier

Specification:

O/P = 10mV K⁻¹
Better than 1K accuracy
At 20K difference

Picture Courtesy Erik Johansson

Design Example (2)

$$150\mu V \cdot K^{-1} \to 10mV \cdot K^{-1}$$
 :: Gain = 67

Naïve Design:

(1% resistors)

Errors to consider

Offset voltage Bias Current Offset Current Gain Error

TI 071 CP Datasheet

25°C

Full range

65

200

TL071I

TL071BC

electrical characteristics, $V_{CC_{\pm}}$ = $_{\pm}15$ V (unless otherwise noted)

PARAMETER TEST SONS		TIONOT	TA‡		TL071C TL072C TL074C			TL071AC TL07 TL072AC TL07 TL074AC TL07						TL0711 TL0721 TL0741		UNIT	.			
					MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		╝		
V _{IO}	Input offset voltage	V _O = 0, R	$l_S = 50 \Omega$	25°C Full range		3	10 13		3	6 7.5		2	3 5		3	6 8	mV	Ш		
αVIO	Temperature coefficient of input offset voltage	V _O = 0, R	l _S = 50 Ω	Full range		18			18			18			18		μV/°C			
IO	leput offset current	V _O = 0		25°C Full range		5	100 10		5	100 2		5	100		5	100 2	pA nA	71		
l .	3	v 0		25°C		65	200		65	200		65	200		65	200	pА	╢		
lΒ	Input bias current§	$V_O = 0$		Full range			7			7			7			20	nA	٦I		
VICR	Common-mode input voltage range				±11	-12 to 15		±11	-12 to 15		±11	-12 to 15		±11	-12 to 15		٧	$\ $		
	Maximum peak	R _L = 10 kΩ			1	±13.5		±12	±13.5		±12	±13.5		±12	±13.5			٦I	LOW-NOIS	
V _{OM}	output voltage	R _L ≥ 10 kΩ		Full ra			4	±12						±12				Ш	<u> </u>	
	swing	R _L ≥ 2 kΩ		T dil Tal				±10						±10				IJ	O	
A _{VD}	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V}, R$	oldo t	25°C	TIGI		oti	50 • • • • • • • • • • • • • • • • • • •	200	± -	50	200	mo	50	200	wio	U'm\	Щ		
B ₁	Unity-gain bandwidth										Τ	.		TL071 TL072						
rį	Input resistance			PARA	PARAMETER					TEST CONDITIONST					T _A ‡		TL074C			
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_{O} = 0,$ R													上	MIN		/P	MAX	MIN
ksvr	Supply-voltage rejection ratio	$V_{CC} = \pm 9 \text{ V to } \pm$	Vio	lnr	out off	oot vo	ltogo	V	- O		Do -	. FO O		25°C				3	10	
	(ΔV _{CC±} /ΔV _{IO})	$V_O = 0$, R	VIO	IO Input offset voltage				Ive	$V_O = 0$, $R_S = 50 \Omega$				Fι	ıll ran	ge				13	
Icc	Supply current (each amplifier)	V _O = 0, N			Temperature			1,,					1_				1			
V _{O1} /V _{O2}	Crosstalk 2 attenuation	A _{VD} = 100	αVIO			efficient of input set voltage			$V_O = 0$,			$R_S = 50 \Omega$		Full range			18			
	acteristics are measured						\top				\top	25°C	\neg			5	100			
§ Input bia	‡ Full range is T _A = 0°C to 70°C for TL07_C,TL07_A § Input bias currents of a FET-input operational ample that maintain the junction temperature as close to t		I _{IO} Input offset current				V	V _O = 0					ıll ran	_				10		
trict mail	man are junetion temper	iataro ao oloog to t						$\overline{}$					$\overline{}$	0500	$\overline{}$			٥.	000	

Input bias current§

lΒ

TL071AC

Design example (3)

Offset Voltage error (Noninverting)

$$V_{OUT} = \frac{\mathsf{R2} + \mathsf{R1}}{\mathsf{R1}} (V_{IN} + V_{OS})$$

$$V_{OUT} = 69(V_{IN} + V_{OS}) = 69(V_{IN} + 10mV) = 69(V_{IN}) + 690mV$$

Error due to input offset voltage = 69K

Design Example (4)

Bias and offset current error: Assume all other sources zero

Design Example (5)

Currents flowing into inputs are equivalent to voltages in series with the inputs:

Is equivalent to

Design example (6)

So the current errors appear as input voltage errors

Error due to input current is equivalent to a voltage offset of

$$v_{ierr} = \left[\left(\frac{I_{OS}}{2} - I_b \right) (R_X + 1k\Omega) \right] - \left[-\left(\frac{I_{OS}}{2} + I_b \right) (R1//R2) \right]$$
(Note sign)

Design Example (7)

Source resistance $R_S = 1 \text{k}\Omega$ is approximately the same as $1 \text{k}\Omega / 69 \text{k}\Omega$, so no matching resistor; Rx = 0

$$v_{ierr} = \left(\frac{I_{OS}}{2} - I_b\right) (R_X + 1k\Omega) + \left(\frac{I_{OS}}{2} + I_b\right) (R1//R2)$$

Error RTO due to current error is

$$\begin{aligned} v_{iout} &= 69 \cdot \left(\left(\frac{I_{OS}}{2} - I_b \right) (1k\Omega) + \left(\frac{I_{OS}}{2} + I_b \right) (0.986k\Omega) \right) \\ &= 69 \cdot \left(\frac{I_{OS} \cdot 1.986k\Omega}{2} - I_b (1 - 0.986k\Omega) \right) \end{aligned}$$

Design Example (8)

Note that we don't know the sign of offset current, or the offset voltage, so we just take the total magnitude of the error:

$$v_{iout} = 69 \cdot (I_{OS} \cdot 0.993k\Omega + I_b \cdot 0.014k\Omega)$$

$$I_{B} = 200 pA$$
 : error at O/P = $2.8nV \cdot 69 = 194nV$

Error due to input bias current = 19.4μ K

Offset current error:

$$I_{OS} = 100 \, pA$$
. error at O/P = $99nV \cdot 69 = 6.8 \, \mu V \equiv 0.7 \, mK$

Corrected

Design Example (9)

Summary:

Offset voltage error = 69K

Bias Current error = 19.4μ K

Offset Current error = 0.7mK

Gain Error (systematic) = 0.68K

Gain error (random) = 0.4K

Worst error! Kill! Kill! kill!

Negligible

Negligible

Need to do a bit better

Maybe OK, maybe not...

Overall error should be no more than 1K

To be continued....

Design Example (10) Error Budgets

From naïve design, V_{OS} is most difficult problem, then gain.

Specification:

 $O/P = 10 \text{mV K}^{-1}$ Better than 1K accuracy Errors rationally

At 20K difference

Need some way to distribute

Define a budget for the errors

- V_{OS} is worst: Big Budget
- Gain is almost OK. => Moderate budget
- Current errors are negligible. =>Tiny Budget.

Design Example (11) Error Budgets (2)

(OK to use background information:) (Prices are indicative)

• 5% Resistor £0.008

• 1% Resistor £0.017

• 0.5% Resistor £0.154

• 0.1% Resistor £0.60

• 0.01% Resistor £10.20

The Budget:

• $V_{OS} = 0.5K$ Implies $V_{OS} \le 0.5K * 150 \mu V/K = 75 \mu V$

Gain 0.35K Implies 0.5% resistors

• $I_B, I_{OS} = 0.1 \text{K}$ Implies $I_{OS} * 0.993 \text{k}\Omega \le 0.1 \text{K} * 150 \mu\text{V/K} = 15 \mu\text{V}$ => $I_{OS} \le 15 \text{nA}$

Note— The budget is something you **choose**: There is no perfect answer. If necessary you can redistribute later on.

Cost of a resistor is proportional to 1 / tolerance

Design example (12) Error Budgets (3)

Hunt the Opamp!

Note: Choose one you can actually get: Farnell, RS...

Some technologies are intrinsically bad: ignore (e.g. current feedback)

Ignore things which may be a problem and don't help with the present problem (e.g. fast amps)

Start with cheap components

Limit to available power supply (± 15V in this case)

Eliminate on main spec first V_{OS} ≤ 75µV

Design Example (13) Error budgets (4)

Use design tools; e.g. TI, Analog, Linear or distributors: Digi-Key;

Product Index > Integrated Circuits (ICs) > Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

Product Index > Integrated Circuits (ICs) > Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

To get the most from Digi-Key's part search:

Only select from one box at a time, click the "Apply Filters" button, and repeat.

To select multiple values within a box, hold down 'Ctrl' while selecting values within the box.

Series	Manufacturer	Amplifier Type	Numb of Circui		Output Type	Slew Rate	Gain Bandwidth Product	-3db Bandwidth	Current Input Bia		oltage - ut Offset	Current Supply
*	Advanced Linear Devices Inc	-	n -		Buffered	0.0027 V/µs	-	*	*	∩ 50µ	ıV n	*
-	ams	Audio	1	Ш	CMOS	0.003 V/µs	1kHz	-	<u> </u>	60µ	ı۷	-
Apex Precision Power®	Analog Devices Inc	Auto-Zero	2	Ш	CMOS, Rail-to-Rail	0.004 V/µs	1.5kHz	250Hz	0.002pA	65µ	ıV n	0.33µA
APEX™ 20K	Apex Microtechnology	Buffer	3	Ш	Differential	0.0041 V/µs	2kHz	500Hz	0.003pA	70µ	ı۷	0.35µA
Beyond-the-Rails™	Avago Technologies US Inc.	Chopper (Zero-Drift)	4	Ш	Differential, Rail-to-Rail	0.0042 V/µs	2.5kHz	1kHz	0.005pA	74µ	ı۷	0.4µA
BI-FET II™	CEL	Current Feedback	5	Ш	Open Drain	0.0045 V/µs	2.7kHz	1.5kHz	0.01pA	75µ	ı۷	0.45µA
BI-FET™	Cirrus Logic Inc	Current Sense	6	Ш	Phase Reversal Free, Rail to Rail	0.005 V/µs	3kHz	2.5kHz	0.02pA	80µ	١V	0.475µA
C-Load™	Diodes Inc	Differential	8	U	Push-Pull	0.006 V/µs	3.5kHz	3.1kHz	0.03pA	85µ	ı۷	0.6µA
CLAMPIN™	Diodes Inc	General Purpose	10	~	Push-Pull, Rail-to-Rail	0.0077 V/µs	4kHz	5kHz	0.04pA	90µ	ı۷	680nA
Difet® •	Fairchild Optoelectronics Group	Instrumentation	· 12		Rail-to-Rail	0.01 V/us	5kHz 🔻	7.5kHz	0.05pA	₹ 95µ	ıV 🖡	0.7uA

In stock

Lead free

RoHS Compliant

Reset Apply Filters

Click RoHS icon next to part number for RoHS Compliant Substitutes.

To see real-time pricing, click either the Digi-Key part number or unit price link.

Page 1/1 230 (1 2 3 4 5 6 7 8 0 10 | Last Next)

Image	Digi-Key Part Number	Manufacturer Part Number	Description	Series	Manufacturer	Amplifier Type	Number of Circuits	Output	Slew Rate	Gain Bandwidth Product	-3db Bandwidth	Current - Input Bias		Current - Supply	- Output	Supply, Single/Dual	Operating Temperature	Mounting Type	Package / Case	Supplier Device Package	Packaging	Quantity Available		Unit Price
	▲ ▼	▲ ▼	~	~ ~	▲ ▼	▲ ▼	~ •	~ •		~	•	- -	— •	~ •	~ •	~ •	▲ ▼	_ _	▲ ▼	~ ~	▲ ▼	~ ~	▲ ▼	_
	296-17440-2-ND	RC4558IDR	IC OPAMP GP 3MHZ DUAL 8SOIC	-	Texas Instruments	General Purpose	2	-	1.7 V/μs	3MHz	-	150nA	500μV	2.5mA	-	10 V ~ 30 V,±5 V ~ 15 V		Surface Mount	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Tape & Reel (TR) Alternate Packaging	7,500 - Immediate 167,500 - <u>Factory</u> <u>Stock</u>		0.0620
	296-17440-1-ND	RC4558IDR	IC OPAMP GP 3MHZ DUAL 8SOIC	-	Texas Instruments	General Purpose	2		1.7 V/μs	3MHz	-	150nA	500μV	2.5mA	-	10 V ~ 30 V,±5 V ~ 15 V		Surface Mount	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Cut Tape (CT) Alternate Packaging	7,829 - Immediate 167,500 - <u>Factory</u> <u>Stock</u>	1	0.3400
The second	296-17440-6-ND	RC4558IDR	IC OPAMP GP 3MHZ DUAL	-	Texas Instruments	General Purpose	2		1.7 V/μs	3MHz	-	150nA	500μV	2.5mA	-	10 V ~ 30 V, ±5 V ~ 15 V		Surface Mount	8-SOIC (0.154", 3.90mm	8-SOIC	Digi- Reel® Alternate	7,829 - Immediate	1	Calcul

OP-07 seems to meet offset voltage spec, and is very cheap.

What about the offset current spec?

Budget: I_{OS} ≤ 15nA

Download the data sheet and check Ios and Vos

$$V_{OS} = 60 \mu V$$
 typical, 150 μV max V_{OS} spec $\leq 75 \mu V$ $I_{OS} = 0.8 nA$ (typical) $6nA$ max I_{OS} spec $\leq 15 nA$

So the OP-07 actually **doesn't** work.

Design Example (13) Error budgets (6)

Repeat for other opamps sorted in order of price

	ъ.			., ., .	TI A (1)	TI A ()	T A(1)	T A/	
Opamp	Price		Vos μV (typ)		Ib pA(typ)	Ib pA(max)	Ios pA(typ)	Ios pA(max)	Comments
OP07C		0.36	60	150	1800	7000	800		"Classic"
LT1013CP		0.778	60	300	15000	30000	200		
TLC277CP		0.88	200	500	0.6	40	0.1	7	CMOS dual
TLE2022IP		1.15	150	500	35000	70000	500	6000	dual
OP177GP		1.47	20	60	500	2800	300	2800	Standard
OPA277PA		1.53	20	50	500	2800	500	2800	Improved 177
TLE2021CP		1.57	120	600	25000	70000	200	3000	
TLE2141CP		1.61	225	1400	800000	2000000	8000	100000	
OP37GPZ		2.15	30	100	15000	80000	12000	75000	Min gain 5 OP:
TLC2201CP		2.19	100	500	1		0.5		CMOS
OP97FPZ		2.2	30	75	30	150	30	150	
LT1006CN8		2.52	30	80	10000	25000	150	900	
OP27GPZ		2.86	30	100	15000	80000	12000	75000	"Low noise"
LT1097CN8		2.91	10	50	40	250	40	250	
MAX492CPA		3.12	200	500	25000	60000	500	6000	Low power sin
MAX437CPA		3.18	5	15	10000	35000	7000	30000	"Low noise"
LT1057CN8		3.22	200	800	7	75	4	50	JFET
LT1050CN8		3.65	0.5	5	10	75	20	125	Chopper
OP213FPZ		3.84		150	240000	600000		50000	
TLC2652CP		4.32	0.6		4		2		Chopper ±5V

OP177 is the cheapest that works:

 V_{OS} =60µV max, I_{OS} =2.8nA max £1.47 each

Design Example (16) Error budgets (7)

Final design, 0.5% resistors

Costs:

•Naïve:

Amp: £0.60

Rs: £0.066

Total £0.67

•Designed:

Amp: £1.47

Rs: £0.50

Total £1.97

Cost x 3, accuracy x 70

