Logika dla informatyków

Egzamin końcowy (pierwsza część)

6 lutego 2015

Zadanie 1 (2 punkty). Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej formuł, które są równoważne formule $p \Leftrightarrow (q \lor r)$. W pozostałe prostokąty wpisz słowo "NIE".

$$(p \wedge (q \vee r)) \vee (\neg p \wedge \neg q \wedge \neg r) \qquad \text{TAK} \qquad (\neg p \vee q \vee r) \wedge ((q \vee r) \Rightarrow p) \qquad \text{TAK}$$

$$(p \Leftrightarrow q) \vee (p \Leftrightarrow r) \qquad \text{NIE} \qquad (\neg p \vee q \vee r) \wedge (p \vee (\neg q \wedge \neg r)) \qquad \text{TAK}$$

Zadanie 2 (2 punkty). Wpisz słowo "TAK" w te pola poniższej tabelki, które odpowiadają zupełnym zbiorom spójników logicznych. W pozostałe pola wpisz słowo "NIE".

$\{\land,\lor,\lnot,\Leftrightarrow\}$	$\{\vee,\neg,\Leftrightarrow\}$	{^}	$\{\land, \lnot, \Rightarrow\}$	$\{\land,\lor,\Rightarrow\}$	$\{\land,\Rightarrow\}$	$\{\land,\lor,\Leftrightarrow\}$	$\{\land,\lor\}$
TAK	TAK	NIE	TAK	NIE	NIE	NIE	NIE

Zadanie 3 (2 punkty). Jeśli formuła $(p \Rightarrow (q \lor r)) \Rightarrow ((p \Rightarrow q) \lor (p \Rightarrow r))$ jest tautologią rachunku zdań to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz wartościowanie, dla którego ta formuła jest fałszywa.

TAK

Zadanie 4 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $Q_1x_1\dots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i\in\{\forall,\exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\forall n \left((\exists k \ kx = n \land \exists k \ ky = n) \Rightarrow z \leq n \right)$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$\forall n \forall k_1 \forall k_2 \ k_1 x = n \land k_2 x = n \Rightarrow z \le n$$

Wskazówka: ta formuła interpretowana w zbiorze liczb naturalnych mówi, że liczba z jest nie większa od najmniejszej wspólnej wielokrotności liczb x i y.

Zadanie 5 (2 punkty). Jeśli dla wszystkich zbiorów A, B, C zachodzi równość

$$((A \cup B) \setminus C) \cup (A \cap C) = (A \setminus B) \cup (B \setminus C) \cup ((A \cap C) \setminus B)$$

to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

 $A=B=C=\{1\}$

Zadanie 6 (2 punkty). Dla $n \in \mathbb{N}$ niech $A_n = \{n\}$. Jeśli zbiór $\bigcap_{m=17}^{42} \bigcup_{n=5}^{m+10} A_n$ ma największy element to w prostokąt poniżej wpisz największy element tego zbioru. W przeciwnym przypadku wpisz słowa "NIE MA".

27

Zadanie 7 (2 punkty). W prostokąt poniżej wpisz dowód tautologii $(\forall x \ \varphi(x) \land \psi(x)) \Rightarrow \forall x \ \varphi(x)$ w systemie naturalnej dedukcji.

Zadanie 8 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q, \neg q \lor \neg r, p \lor q, p \lor r, \neg p \lor \neg q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

Zadanie 9 (2 punkty). Rozważmy zbiory osób O, kin K i filmów F oraz relacje $Bywa\subseteq O\times K$, $Obejrzal\subseteq O\times F$ i $Wyświetla\subseteq K\times F$ informujące odpowiednio o tym jakie osoby bywają w jakich kinach, jakie osoby obejrzały jakie filmy oraz jakie kina wyświetlają jakie filmy. W prostokąt poniżej wpisz taką formułę φ , że $\{x\in O\mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób, które obejrzały wszystkie filmy wyświetlane w jakimś kinie, w którym bywają.

 $\exists k \; Bywa(x,k) \land \Big(orall f \;\; Wy\'swietla(k,f) \Rightarrow Obejrzal(x,f) \Big)$

Numer indeksu:

WZORCOWY

Zadanie 10 (4 punkty). Nie używając słów języka naturalnego (czyli używając jedynie formuł) uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód następującego twierdzenia: Dla dowolnych zbiorów A i B, jeśli $A \times B = B \times A$ to $A = \emptyset \lor B = \emptyset \lor A = B$.

Dowód. Dowód przeprowadzimy nie wprost. Załóżmy, że

 $A \times B = B \times A$

oraz że nieprawdą jest

 $A {=} \emptyset \vee B {=} \emptyset \vee A {=} B$

, czyli zachodzi

 $A \neq \emptyset \, \wedge \, B \neq \emptyset \, \wedge \, A \neq B$

Ponieważ $A \neq \emptyset,$ możemy wybrać element

 $a \in A$

. Podobnie, ponieważ $B \neq \emptyset$, możemy wybrać

element $b \in B$

. Wiemy, że $A \neq B$, a zatem istnieje element $x \in (A \setminus B)$ lub istnieje element

 $x \in (B \setminus A)$. Rozpatrzmy teraz dwa przypadki.

(i) Istnieje $x \in (A \setminus B)$. Wtedy $\langle x, b \rangle \in A \times B$ i $\langle x, b \rangle \notin B \times A$, co przeczy założeniu $A \times B = B \times A$.

 $A \times B = B \times A$

(ii) Istnieje

. Wtedy

 $\langle a,x\rangle\in A{\times}B$

 $\langle a, x \rangle \not\in B \times A$

, co przeczy założeniu

 $A \times B = B \times A$

 $x \in (B \setminus A)$

W obu przypadkach otrzymaliśmy sprzeczność, co kończy dowód twierdzenia.

Zadanie 11 (2 punkty). Niech $R = \{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x + y \leq 5\}$ i $S = \{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = 2y\}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid \varphi\}$ jest złożeniem SR relacji R i S.

 $\exists z \; x+z \; \leq 5 \wedge z = 2y$

Zadanie 12 (2 punkty). Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R} \times [0,1)$ daną wzorem $f(x) = \langle x, x - \lfloor x \rfloor \rangle$. Jeśli istnieje funkcja odwrotna do f to w prostokąt poniżej wpisz tę funkcję. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

f nie jest "na". Żadna liczba rzeczywista nie przechodzi na parę $\langle 7, \frac{17}{42} \rangle$

Zadanie 13 (2 punkty). Niech \mathcal{F} oznacza zbiór wszystkich funkcji z \mathbb{N} w \mathbb{N} , które *nie są* różnowartościowe. Jeśli zbiór \mathcal{F} ma moc nie większą niż \mathbb{N}_0 to w prostokąt poniżej wpisz dowolną funkcję różnowartościową $F: \mathcal{F} \to \mathbb{N}$. Jeśli zbiór \mathcal{F} ma moc co najmniej continuum, to w prostokąt poniżej wpisz dowolną funkcję różnowartościową $G: \{0,1\}^{\mathbb{N}} \to \mathcal{F}$. A jeśli żaden z tych przypadków nie zachodzi, wpisz słowo "NIE".

G(f) = f

Zadanie 14 (2 punkty). Rozważmy relację równoważności R na zbiorze liczb rzeczywistych zdefiniowaną wzorem $R(x,y) \stackrel{\text{df}}{\Longleftrightarrow} x^2 = y^2$. Jeśli istnieją dwie klasy abstrakcji tej relacji mające różną moc, to w prostokąt poniżej wpisz dowolne takie dwie klasy abstrakcji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego takie klasy abstrakcji nie istnieja.

$$[0]_R = \{0\}, \qquad [1]_R = \{1, -1\}$$

Zadanie 15 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\mathbb{N} \times \{0,1\}$	$\{1,2,3\} \times \{4,5\}$	$\mathbb{Q} \times \mathbb{N}$	$\mathcal{P}(\mathbb{N} \times \{0,1\})$	$\{2015\}^{\mathbb{R}}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{Q})^\mathbb{Q}$	$\{0,1\}^{\{2,3,4\}}$
\aleph_0	6	\aleph_0	¢	1	¢	¢	8

Zadanie 16 (2 punkty). W prostokącie poniżej narysuj diagram Hassego dla porządku $\langle \{n \in \mathbb{N} : 2 \leq n \land n \leq 10\}, | \rangle$.

to w prostokąt poniżej wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie istnieje.

$$f: \mathbb{Q} \cap (0,1] \to \{q \in \mathbb{Q} \mid q \ge 1\}, \qquad f(x) = \frac{1}{x}$$

Zadanie 18 (2 punkty). Jeśli istnieje taka relacja R, że $\langle \mathbb{Z}, R \rangle$ jest porządkiem regularnym, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym razie wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

$$R(x,y) \iff (x \ge 0 \land y \ge 0 \land x \le y) \lor (x \le 0 \land y \le 0 \land x \ge y)$$

Zadanie 19 (2 punkty). W tym zadaniu f i g są symbolami funkcyjnymi, a jest symbolem stałej, natomiast x, y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

$$f(x,g(y),a) \stackrel{?}{=} f(z,g(y),x)$$
 $[x/a,z/a]$ $f(x,g(x),z) \stackrel{?}{=} f(z,z,z)$ NIE
$$f(x,g(y),a) \stackrel{?}{=} f(z,z,z)$$
 NIE
$$f(x,g(y),z) \stackrel{?}{=} f(z,z,z)$$
 $[x/g(y),z/g(y)]$

Numer indeksu:	WZORCOWY

Oddane zadania:		

Logika dla informatyków

Egzamin końcowy (część druga)

6 lutego 2015

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów¹.

Zadanie 20. Niech $\mathbb{N}_+ = \{n \in \mathbb{N} \mid n \geq 1\}$. Rozważmy funkcję nwd : $\mathbb{N}_+ \times \mathbb{N}_+ \to \mathbb{N}_+$ zdefiniowaną wzorem

$$\operatorname{nwd}(x,y) = \left\{ \begin{array}{ll} x, & \text{je\'sli} & x = y \\ \operatorname{nwd}(x-y,y) & \text{je\'sli} & x > y \\ \operatorname{nwd}(x,y-x) & \text{wpp} \end{array} \right.$$

Udowodnij indukcyjnie, że dla wszystkich liczb naturalnych $x,y\geq 1$ obliczanie funkcji $\mathsf{nwd}(x,y)$ się nie zapętla.

Zadanie 21. Czy istnieją takie dwie różne relacje równoważności R i S na zbiorze liczb naturalnych, że SR jest relacją porządku? Uzasadnij odpowiedź (tzn. skonstruuj takie dwie relacje lub udowodnij, że nie istnieją).

Zadanie 22. Rozważmy funkcję $f: X \to X$ dla pewnego niepustego zbioru X. Udowodnij, że f jest "na" wtedy i tylko wtedy gdy istnieje dokładnie jedna taka funkcja $g: X \to X$, że gf = f.

¹ Algorytm oceniania jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.