

Segmentace obrazu hranové

Segmentace obrazu

- Segmentace obrazu
 - Rozčlenění obrazu na části, které úzce souvisí s objekty nebo částmi reálného světa
 - Nepřekrývající se oblasti
 - Segmentace
 - Kompletní (plná korespondence)
 - Částečná (neúplná korespondence)
 - Segmentace probíhá na základě stejnorodosti (homogenity) nějaké vlastnosti, např. velikosti jasu
 - Složitější segmentace, např. podle textury

Segmentace obrazu

- Segmentace obrazu na základě detekce hran
 - Vychází z pozorování, že hranice jsou zvýrazněny aplikací gradientních operátorů místa prudkých změn intenzit jasů
 - Využívá se prahování
 - Výsledkem detekce hran je obraz, který ale není příliš použitelný
 - Proto následuje aplikace metod, které pospojují detekované hrany a vytvoří tak hranu (využívají ve větší či menší míře apriorní informace)
 - Marrova segmentace na základě inspirace biologickým viděním
 - Cannyho detektor hran

- Hrany představují velmi užitečnou informaci v obraze.
- Mohou být využity pro měření velikosti objektů v obraze, pro oddělení objektů od pozadí, pro rozpoznání a klasifikaci objektů apod.
- Neformálně může být hrana definována jako lokální nespojitost v hodnotách pixelů, která překračuje danou mez. Jinými slovy se jedná o rozdíl v hodnotách sousedních pixelů.

- Řada metod pro detekci hran je postavena na diferenci hodnot pixelů.
- Připomenutí definice derivace

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Jiné vyjádření derivace: $\lim_{h\to 0} \frac{f(x)-f(x-h)}{h}$, $\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{2h}$

• Pro diskrétní svět je hodnota jmenovatele h = 1, protože se jedná o vzdálenost dvou sousedních pixelů a místo o derivaci mluvíme o diferenci.

$$f(x+1) - f(x)$$
 $f(x) - f(x-1)$, $(f(x+1) - f(x-1))/2$

 Gradient – vektor parciálních derivací (diferencí) – míří ve směru největšího nárůstu hodnot

grad
$$f(x, y,...) = \nabla f(x, y,...) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},...\right)$$

• Pro funkci dvou proměnných f(x,y), tj. v našem případě obrázek platí

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \qquad \varphi = arctg\left(\frac{\partial f}{\partial x} \middle/ \frac{\partial f}{\partial y}\right)$$
velikost směr

• V diskrétním světě se derivace nahrazují diferencemi, a počítají se pomocí lineárních filtrů a masek, které jsou aproximacemi derivací.

- Filtry pro detekci hran (výpočet aproximace 1. derivace)
 - Vyjdeme z definice derivace, resp. diference ve tvaru f(x+1) f(x-1)
 - Potom můžeme realizovat horizontální a vertikální aproximaci derivace (diferenci) pomocí těchto masek lineárních filtrů:

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} -1 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$

- Tyto filtry najdou horizontální, resp. vertikální hrany, ale jsou poněkud "syrové".
- Proto je výhodné výsledek vyhladit lineárním filtrem s maskami:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• Oba dílčí filtry můžeme zkombinovat do jednoho filtru, který se nazývá **Prewittův filtr**:

$$P_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad P_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

vertikální hrany

horizontální hrany

• Pokud p_x a p_y jsou hodnoty (intenzity) pixelu získaného filtrací pomocí P_x , resp. P_y , potom velikost gradientu je dána vztahem

$$\sqrt{p_x^2 + p_y^2}$$

• Který je ale v praxi nahrazován jednodušším výpočtem a to $\max\{|p_x|,|p_y|\}$ nebo $|p_x|+|p_y|$

Příklad

původní obrázek

vertikální směr (P_x)

horizontální směr (P_y)

• Zkombinování dílčích filtrovaných snímků

šedotónový obrázek

prahovaný obrázek

Dalšími známými filtry jsou Robertsův filtr

$$\left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right] \qquad \left[\begin{array}{cccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

a Sobelův filtr (mírně dává důraz na středový pixel)

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

• Varianta Sobelova filtru pro detekci hran (derivaci) v šikmém směru

$$h = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

• Příkad Robertsova a Sobelova filtru

Robertsův filtr

Sobelův filtr

- Filtry pro detekci hran (výpočet aproximace 2. derivace)
 - Součet druhých derivací v obou směrech se nazývá Laplaceův operátor (Laplacian)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• který může být aproximován maskou lineárního filtru (diskrétní Laplaceův operátor)

$$h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{nebo} \quad h = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{nebo} \quad \begin{bmatrix} -2 & 1 & -2 \\ 1 & 4 & 1 \\ -2 & 1 & -2 \end{bmatrix} \quad \text{nebo}$$

0	0	_1	0	0
	4		4	
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

- Oproti operátorům pro aproximaci 1. derivace se jedná o izotropní operátor.
- Nevýhodou ale je, že je náchylný na šum.

• Hrana a její derivace

• Druhá derivace způsobuje duplikování hran.

Průchody nulou

- Vhodnějším způsobem, jak najít pozici hran pomocí Laplaceova operátoru je lokalizace míst, kde dochází k průchodu nulou (zero crossings) – v masce to jsou místa, kde dochází ke změně znaménka.
- Místa průchodu nulou jsou definována pozicí pixelů, které splňují jednu z následujících podmínek:
 - Mají zápornou hodnotu a sousedí aspoň s jedním pixelem, který má kladnou hodnotu (4-okolí).
 - Mají nulovou hodnotu a leží mezi pixelem se zápornou hodnotou a pixelem s kladnou hodnotou.

obrázek

50	50	50	50	50	50	50	50	50	50	
50	50	50	50	50	50	50	50	50	50	
50	50	200	200	200	200	200	200	50	50	
50	50	200	200	200	200	200	200	50	50	
50	50	200	200	200	200	200	200	50	50	
50	50	200	200	200	200	200	200	50	50	
50	50	50	50	200	200	200	200	50	50	
50	50	50	50	200	200	200	200	50	50	
50	50	50	50	50	50	50	50	50	50	
50	50	50	50	50	50	50	50	50	50	

-100	-50	-50	-50	-50	-50	-50	-50	-50	-100
-50	0	150	150	150	150	150	150	0	-50
-50	150	-300	-150	-150	-150	-150	-300	150	-50
-50	150	-150	0	0	0	0	-150	150	-50
-50	150	-150	0	0	0	0	-150	150	-50
-50	150	-300	-150	0	0	0	-150	150	-50
-50	0	150	0	-150	0	0	-150	150	-50
-50	0	0	150	-300	-150	-150	-300	150	-50
-50	0	0	0	150	150	150	150	0	-50
-100	-50	-50	-50	-50	-50	-50	-50	-50	-100

filtrovaný obrázek pomocí Laplaceova operátoru

- Kombinací aplikace Laplaceova operátoru a následnou identifikací hranových pixelů pomocí detekce míst průchodů nulou získáme hranový detektor.
- Příklad

• V obrázku je bohužel příliš mnoho hran díky různým drobným změnám v intenzitách.

- Aby nedocházelo k detekci přehnaného množství hran, je výhodné obrázek předem vyfiltrovat, např. pomocí Gaussova filtru – Marrova-Hildrethova metoda:
 - 1. Vyhlazení obrázku pomocí Gaussova filtru
 - 2. Následná filtrace pomocí Laplaceova filtru
 - 3. Identifikace míst průchodu nulou
- Kombinace prvních dvou kroků se nazývá **LoG filtr** ("Laplacian of Gaussian").
- Velmi dobře aproximuje biologickou filtraci obrazu.

Srovnání různých hranových filtrů

- Cannyho detektor John Canny, 1986
 - Tři kritéria/požadavky na detektor:
 - Nízká chybovost schopnost najít hrany a jen hrany
 - Lokalizace hran vzdálenost mezi hranami v obrázku a detekovanými hranami by měla být minimální
 - Jednoduchá odezva nalezeny by měly být hrany jednoduše reprezentované pixely, ne vícenásobné a široké hrany
 - Detekce hran v Cannyho detektoru probíhá v několika krocích.
 - Nejprve je obrázek vyhlazen pomocí Gaussova filtru (potlačení šumu, snížení rizika chybné detekce hran).
 - Následně je použita derivace Gaussova filtru pro nalezení primárních hran. Tento filtr je separovatelný, takže lze nezávisle najít sadu hran v jednom a druhém směru. Složením získáme obrázek primárních hran.

- Tyto kroky předzpracování obrázku lze shrnout takto:
 - 1. Vytvoříme jednodimenzionální Gaussův filtr g (vyhlazení).
 - 2. Vytvoříme jednodimenzionální derivovaný Gaussův filtr dg (detekce hran). $\left(-rac{x}{\sigma^2}
 ight)e^{-rac{x^2}{2\sigma^2}}$
 - 3. Spočítáme konvoluci g a dg a získáme filtr gdg (vyhlazení + detekce hran).
 - 4. Filtr gdg aplikujeme na původní obrázek x a získáme obrázek x_1 (vodorovný směr)
 - 5. Filtr gdg^T aplikujeme na původní obrázek x a získáme obrázek x_2 (svislý směr)
 - 6. Výsledný primární obrázek hran získáme jako $x_e = \sqrt{x_1^2 + x_2^2}$
- Dalším krokem je lokální potlačení nemaximálních hodnot v obrázku.
- Obyčejným prahováním bychom nedosáhli dobrých výsledků.
- Místo toho vyjdeme z toho, že ke každému pixelu můžeme přiřadit směr ("hranový gradient"), který odpovídá směru hrany, jehož je daný pixel součástí.
- Pixel potom musí mít větší velikost (intenzitu) než jeho lokální sousedé ve směru hrany.

Hranový gradient vypočítáme ze vztahu

$$xg = tan^{-1} \left(\frac{x2}{x1}\right)$$

- Vypočtený hranový gradient nemíří ke konkrétnímu pixelu, ale mezi pixely, takže je třeba zvážit míru jejich příspěvku pro výpočet hranového gradientu na základě sousedních pixelů.
- Výpočet lze provést pomocí lineární interpolace intenzit, ale výpočetně jednodušší je použít jiné postupy.

- Výpočet můžeme provést dvěma způsoby:
 - 1. Za sousední pixely gradientu bereme ty, mezi které míří gradient a z nich spočítáme vážený průměr. Např. na obrázku vlevo by se jednalo o dva modře zvýrazněné pixely vpravo nahoře.
 - 2. Za sousední pixely gradientu bereme jednak ten, co je blíže směru gradientu a ten, který leží přesně na opačnou stranu, viz obrázek vpravo. Pokud je hodnota středového pixelu větší než hodnota jeho dvou identifikovaných sousedů, pixel ponecháme (náš případ), jinak ho smažeme.

- Následně můžeme provést prahování, abychom získali finální hrany.
- Cannyho detektor nepoužívá jednoduché prahování, ale tzv. **prahování s hysterezí** (hysteresis thresholding), které používá dva prahy: dolní práh t_L a horní práh t_H
 - Pixel, jehož hodnota je větší než t_H je považován za pixel hrany
 - Pixel, jehož hodnota leží mezi t_L a t_H a který současně sousedí s jiným hranovým pixlem, je považován za pixel hrany.

- Rohy místa, kde se setkávají dvě hrany, které jsou orientovány různým směrem.
- Existuje řada detektorů rohů:
 - Moravcův detektor rohů
 - Harrisův-Stephensův detektor (a jeho různá vylepšení)
 - Förstnerův detektor rohů
 - Wangův-Bradyho detektor rohů
 - Trajkovicův-Hedleyho detektor rohů
 - Tomasiho-Kanadeův detektor rohů
 - Beaudetův detektor rohů
 - ...
- Nejznámější jsou Moravcův detektor a Harrisův-Stephensův detektor.

- Moravcův detektor hran
 - Jeden z nejstarších a nejjednodušších detektorů
 - Roh je identifikován jako pixel, jehož okolí se výrazně liší od ostatních lokálních okolí.
 - 1. Předpokládejme, že pracujeme se čtvercovým oknem (maskou), která má rozměry o lichém počtu pixelů.
 - 2. Okno svým středem umístíme na uvažovaný pixel p.
 - 3. Okno postupně posouváme o jeden pixel ve všech osmi směrech od pixelu p a prokaždý tento posun s=(i,j) vypočítáme rozptyl intenzity (intensity variation)

$$I_s = \sum (W(x, y) - W_s(x, y))^2$$

- 4. Následně vypočítáme minimum M ze všech hodnot I_s .
- 5. Celý postup opakujeme pro všechny pixely v obrázku. Okraje obrázku doplňujeme nulami.

Moravcův detektor hran

50	50	50	50	50	50	50	50	50	50	5	0	0	0	0	0	0	0	0	5
50	50	50	50	50	50	50	50	50	50	0	0	0	0	0	0	0	0	0	0
50	50	50	50	50	50	50	50	50	50	0	0	0	0	0	0	0	0	0	0
50	50	50	50	50	50	50	50	50	50	0	0	0	10	10	0	0	0	0	20
50	50	50	50	150	150	150	150	150	150	0	0	0	10	20	0	0	0	0	20
50	50	50	50	150	150	150	150	150	150	0	0	0	0	0	0	0	0	0	0
50	50	50	50	150	150	150	150	150	150	0	0	0	0	0	0	0	0	0	0
50	50	50	50	150	150	150	150	150	150	0	0	0	0	0	0	0	0	0	0
50	50	50	50	150	150	150	150	150	150	0	0	0	0	0	0	0	0	0	0
50	50	50	50	150	150	150	150	150	150	5	0	0	20	20	0	0	0	0	45

• Nevýhodou Moravcova detektoru rohů je, že občas detekuje i hrany jako rohy a navíc nemusí detekovat různé natočené rohy – není isotropní.

- Harrisův-Stephensův detektor rohů
 - Též nazývaný jen Harrisův detektor
 - Založen na Taylorově rozvoji 1. řádu funkce dvou proměnných

$$f(x+h,y+k) \approx f(x,y) + h\frac{\partial f}{\partial x}(x,y) + k\frac{\partial f}{\partial y}(x,y)$$

- Derivace jsou počítány pomocí lineárních filtrů.
- Podobně jako Moravcův detektor rohů, i Harrisův detektor počítá "rozptyl" intenzit různě posunutých lokálních okolí

$$\sum_{(u,v)\in K} (I(u+s,v+t) - I(u,v))^2$$

• kde, (s,t) je uvažovaný posun a K je maska.

• Využijeme Taylorův rozvoj funkce uvedený výše a aplikujeme ho na výpočet "rozptylu (parciální derivace označíme $I_\chi=\frac{\partial I(u,v)}{\partial x}$ a $I_y=\frac{\partial I(u,v)}{\partial y}$)

$$\begin{split} &\sum_{(u,v)\in K} (I(u,v) + sI_x(u,v) + tI_y(u,v) - I(u,v))^2 \\ &= \sum_{(u,v)\in K} (sI_x(u,v) + tI_y(u,v))^2 \\ &= \sum_{(u,v)\in K} (s^2I_x^2 + 2stI_xI_y + t^2I_y^2) \\ &= \sum_{(u,v)\in K} \left[s \quad t \right] \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} \end{split}$$

• Harrisův detektor se zaměřuje na určení matice parciálních derivací:

$$H = egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix}$$

- Pro daný posun (s,t) je výraz $s^2I_x^2 + 2stI_xI_y + t^2I_y = c$ konstantní a rovnice představuje rovnici elipsy.
- Délky a směry poloos a, b elipsy jsou dány vlastními čísly λ_1 and λ_2 , resp. vlastními vektory \mathbf{v}_1 a \mathbf{v}_2 matice H.

$$H\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
 $a = (\lambda_1)^{-1/2}, b = (\lambda_2)^{-1/2}$ $a^2 = \frac{1}{\lambda_1}, b^2 = \frac{1}{\lambda_2}$

 Protože velikosti poloos nepřímo odpovídají velikostem vlastních čísel, je nejpomalejší (nejméně strmá) změna intenzit ve směru největších vlastních čísel a naopak.

- Na základě známých hodnot vlastních čísel rozlišujeme tři případy:
 - 1. Obě vlastní čísla jsou velká -> žádná významná změna v jakémkoliv směru (jednolitá oblast bez výraznějších změn)
 - 2. Jedno vlastní číslo je velké a druhé malé -> značí detekovanou **hranu** ve směru malého vlastního čísla (vektoru)
 - 3. Obě vlastní čísla jsou malá -> značí detekovaný roh
- Protože matice H, ze které se vypočítávají vlastní čísla, je diagonálně symetrická, dá se výpočet vlastních čísel zjednodušit.
- Mějme matici

$$M = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$$

Potom lze najít vlastní čísla řešením kvadratické rovnice

$$\lambda^2 - (x+z)\lambda + (xz - y^2) = 0$$

- V uvedené rovnici je x+y=stopa(M) a xz-y²=det(M).
- Protože výpočet odmocniny v uvedené kvadratické rovnici je výpočetně náročný, navrhli Harris a Stephens jednodušší přibližný výpočet, který počítá pouze stopu a determinant.
- Výsledná matice R (corner response) má rozměry původního obrázku a její hodnoty odpovídají míře detekovaných rohů (velké hodnoty odpovídají rohům)

$$R = \det(M) - k(\operatorname{Tr}(M))^2$$

 kde k je volitelný parametr citlivosti. Typicky se jeho hodnota pohybuje mezi 0,04 a 0,15.

- Výpočet detekce rohů lze shrnout do několika jednoduchých kroků
 - 1. Vypočítáme parciální derivace obrázku ve směrech x a y. Parciální derivace aproximujeme lokálními hranovými filtry, tj. detekujeme hrany ve vodorovném a svislém směru.
 - 2. Spočítáme prvky matice *H,* tj.

$$S = \sum I_x^2$$
, $T = \sum I_x I_y$, $U = \sum I_y^2$

3. Vypočítáme matici R (obrázek s detekovaný rohy; ty lze zvýraznit následným prahováním)

$$R = (SU - T^2) - k(S + U)^2$$

• Pro zvýšení robustnosti algoritmu lze v druhém kroku počítat místo prostého součtu intenzit v daném okně vážený součet daný Gaussovým filtrem, tj. spočítat konvoluce

$$S = (I_x^2) * G$$
, $T = (I_x I_y) * G$, $U = (I_y^2) * G$

• kde *G* je Gaussův filtr.

Původní obrázky

• Matice R (*Corner response*)

• Oprahování R > daný práh

• Lokální maxima (potlačení nemaximálních hodnot v lokálních okolích)

Detekce rohů – Harrisův detektor

Výsledná detekce rohů

- HT slouží pro detekci tvaru (hranice, kontury) objektu v obrázku.
- Je zapotřebí znát parametrický tvar rovnice, která popisuje konturu objektu nebo jeho části.
- Pomocí HT se nejčastěji detekují křivky jako jsou přímky, kružnice elipsy apod. – (klasická) HT.
- Pokud neexistuje analytický popis tvaru objektu, používá se zobecněná HT.

- Klasická HT je výpočetně méně náročná, než zobecněná HT.
- Klasická HT je, přes svoje omezení, co se týče požadavku na analytický parametrický popis kontury objektu, plně dostačující pro většinu aplikací.
- Slovo klasická se nepoužívá a mluví se jen o HT.
- Výhodou HT je, že je relativně odolná vůči porušení (chybějícím částem) kontury objektu a vůči šumu.

Princip HT

- Zvolíme vhodný tvar, kterým by šla popsat kontura objektu nebo její část např. přímka, kružnice apod.
- Vyjádříme tento zvolený tvar, kterým budeme popisovat konturu objektu, pomocí parametrické rovnice.
- Projdeme každý bod kontury objektu a najdeme všechny parametry rovnice tvaru tak, aby tvar popsaný touto rovnicí s těmito parametry procházel daným bodem.
- V prostoru parametrů, tzv. akumulátoru, kde jednotlivé osy reprezentují příslušné parametry, na místě určeném konkrétními hodnotami parametrů daného bodu zvýšíme hodnotu (např. o 1), přičemž na začátku obsahoval akumulátor samé 0.

Princip HT

- Poté, co jsme zpracovali všechny body kontury objektu a s jejich pomocí sestavili akumulátor (můžeme ho vizualizovat jako jasový obrázek) najdeme maxima v tomto akumulátoru.
- Body, které sledují předepsaný tvar (např. pro zvolený tvar přímky, body ležící v obrázku v přímce) se budou v prostoru parametrů akumulovat do stejného místa a tím budou jasnější (budou vytvářet maxima).
- Každému maximu v akumulátoru odpovídají konkrétní hodnoty parametrů rovnice tvaru kontury (nebo její části) a po jejich dosazení do rovnice tvaru získáme analytického popisu tvaru (části) kontury.

- HT pro přímkovou konturu objektu
 - Předpokládejme, že máme obrázek, který obsahuje "hranaté" objekty, tj. jejich kontura je složena z přímkových úseků.
 - Vhodný analytickým popisem kontury bude tedy přímka. Rovnici přímky musíme vyjádřit v parametrické podobě. Tvar $y = k \cdot x + q$ (s parametry k, q) není vhodný, protože směrnice k jde k nekonečnu pro svislé přímky).
 - Vhodnou parametrickou rovnicí přímky je tvar

$$x \cdot \cos \varphi + y \cdot \sin \varphi = r$$

• kde r je délka normály k přímce procházejí daným bodem a φ je úhel této normály od osy x.

• Pro každý bod (x,y), který leží na přímce jsou parametry r a φ konstantní.

- Postupně procházíme všechny body (x_i, y_i) kontury objektu a hledáme parametry r a φ v uvedené rovnici.
- Protože hledáme dva parametry, ale máme jen jednu rovnici není úloha jednoznačná a dostáváme nekonečně mnoho řešení.
- V praxi probíhá hledání vhodných parametrů následovně:
 - Zvolíme jemnost dělení úhlu φ (velikost kroku) a postupně procházíme všechny úhly od 0 do 360° s daným krokem (velikost kroku bude ovlivňovat přesnost proložení kontury hledanou přímkou pozice, úhel) a
 - pro každý zvolený úhel dopočteme podle uvedené rovnice délku normály r.

- Pro každý bod tak získáme soubor úhlů φ a jim odpovídajících délek r dvojice (φ, r) .
- V parametrickém prostoru (akumulátoru) zvýšíme hodnotu (např. o 1) na místě daném příslušnou dvojící (φ , r).
- Každému bodu kontury objektu bude odpovídat v parametrickém prostoru (akumulátoru) jedna křivka (má sinusový charakter).
- Výsledný akumulátor lze vizualizovat jako jasový obrázek.
- Nalezením (pozic) maxim v akumulátoru najdeme příslušnou dvojici parametrů (φ , r), které po dosazení do výše uvedeného vztahu jednoznačně určí analytický popis kontury (její části)
- Pozn.: Kontura je v metodě HT popsána přímkou (nekonečnou čarou), přičemž hledáme popis kontury pomocí úseček. Proto je třeba následně aplikovat další algoritmy, které omezí přímku na hledanou úsečku.

- Pokud má kontura objektu jiný tvar, je zapotřebí použít jinou analytickou parametrickou rovnici, která lépe vystihuje její tvar.
- Např. pokud bychom měli v obrázku kruhové objekty, pak příslušná parametrická rovnice by měla tvar

$$(x-a)^2 + (y-b)^2 = r^2$$

- kde a, b jsou souřadnice středu kružnice a r je poloměr kružnice.
- V této rovnici jsou už **tři** parametry a tedy parametrický prostor (akumulátor) je třídimenzionální.
- Stoupá také doba potřebná pro výpočet.
- Klasická HT se hodí pro objekty, které lze snadno popsat jednoduchými parametrickými rovnicemi s málo parametry.
- Pro složitější kontury objektů se používá zobecněná HT.

- Příklad:
 - Mějme následující obrázek a najděme analytický popis jeho kontury.

Po aplikaci Cannyho detektoru dostaneme konturu objektu

• Po zpracování všech bodů kontury (nalezení souborů dvojic parametrů (φ , r) dostaneme výsledný akumulátor (zobrazený jako jasová bitmapa)

- Najdeme maxima (světlá místa) v akumulátoru. Každému maximu odpovídá jedna dvojice (φ , r), tedy jedna přímka.
- Promítnutí nalezených přímek do původního obrázku:

• HT je relativně odolná proti šumu i proti chybějícím částem kontury:

• Ukázka z Java apletu:

http://www-old.rob.cs.tu-bs.de/content/04-teaching/06-interactive/Hough.html

Literatura

- McAndrew A., Computational Introduction to Digital Image Processing, CRC Press, 2. vydání, 2016
- Sundararajan D., Digital Image Processing: A Signal Processing and Algorithmic Approach, Springer, 2017
- Birchfield S., Image Processing and Analysis, Cengage Learning, 2016
- Acharya T., Ray A. K., Image Processing: Principles and Applications, Wiley, 2005
- Burger W., Burge M. J., Principles of Digital Image Processing: Fundamental Techniques, Springer-Verlag, 2009