Preparing Data

Representation

- Data usually has many features
- Feature type
 - Numerical (has order and distance relation)
 - Categorical/symbolic
 - Continuous (quantitative)
 - Interval scale (zero is places arbitrarily)
 - Ex: temperature
 - Ratio Scale (zero has absolut position)
 - Ex: height, weight

Representation

- Discrete (qualitative)
 - Nominal scale (order-less scale)
 - Ex: customer type
 - Ordinal scale (ordered, discrete graduation)
 - Ex: rank
 - Periodic variable (has order but no distance)
 - Ex: days of the week, month or year
 - Static Data (does not change with time)
 - Dynamic Data (change with time)

Raw Data for Mining

- Usually large in quantities
- Problems:
 - missing,
 - wrong (misrecorded)
- Needs transformation to be usable and useful for data mining application

Transformation

- Normalization
 - To a specific range such as [-1,1]
- Decimal Scaling
 - A typical scaling is [-1,1]
 - $-V'(i) = V(i) / 10^k$ for the smallest k such that |V'(i)| < 1
 - What is k if the largest value in the data set is 445 and the smallest value is -834?

Transformation

- Min-max normalization
 - $-V'(i) = (V(i) \min(V(i)) / (\max(V(i)) \min(V(i)))$
 - Supose the data is [25,67,150, 200]
 - Min(V(i)) = 25
 - Max(V(i)) = 200
 - $25 \rightarrow (25 25) / (200 25) = 0$
 - $200 \rightarrow (200 25) / (200 25) = 1$

Transformation

- Standard Deviation Normalization
 - -V'(i) = (V(i) mean(V)) / sd(V)
 - Supose the data is [1, 2, 3]
 - Mean (V) = 2
 - Sd(V) = 1
 - Transformed data \rightarrow [-1, 0, 1]

Data Smoothing

- Minor differences sometimes is not significant and will not degrade the performance and result of data mining
- $F = \{ 0.93, 1.01, 1.001, 3.02, 4.98 \}$
- $F_{\text{smoothed}} = \{1.0, 1.0, 1.0, 3.0, 5.0\}$

Differences and Ratios

- Performances are often measured in differences or ratio rather then the output value.
- Instead of stating v(t+1) as the result, we can show the performance as v(t+1) – v(t) or v(t +1)/vt(t)

Missing Data

- Replace with a single constant
- Replace using feature mean
- Replace using feature mean for the given class
- Replace using the possible combination of values
- X = {1, ?, 3, 4, 5}
 -? = 0
 -? = 3
 -? = 1, 2, 3, 4, 5 → X₁, X₂, X₃, X₄, X₅

Time-dependent Data

- $X = \{t(1), t(2), t(3),, t(n)\}$
- What is t(n+1)?
- Or sometimes at some time lag, j, t(n+j)
- $X = \{t(0),t(1),t(2),t(3),t(4),t(5),t(6),t(7),t(8),t(9),t(10)\}$

Time-dependent Data

Sample		Next Value				
	M1	M2	M3	M4	M5	
1	t(0)	t(1)	t(2)	t(3)	t(4)	t(5)
2	t(1)	t(2)	t(3)	t(4)	t(5)	t(6)
3	t(2)	t(3)	t(4)	t(5)	t(6)	t(7)
4	t(3)	t(4)	t(5)	t(6)	t(7)	t(8)
5	t(4)	t(5)	t(6)	t(7)	t(8)	t(9)
6	t(5)	t(6)	t(7)	t(8)	t(9)	t(10)

Sample		Next Value				
	M1	M2	M3	M4	M5	
1	t(0)	t(1)	t(2)	t(3)	t(4)	t(7)
2	t(1)	t(2)	t(3)	t(4)	t(5)	t(8)
3	t(2)	t(3)	t(4)	t(5)	t(6)	t(9)
4	t(3)	t(4)	t(5)	t(6)	t(7)	t(10)

Outlier Analysis

Age = {3, 56, 23, 39, 156, 52, 41, 22, 9, 28, 139, 31, 55, 20, -67, 37, 11, 55, 45, 37}

Mean = 39.9 SD = 45.65 Threshold = Mean + 2 * SD

Threshold = [-54.1, 131.2]