Radiation Effects and COTS Parts in Smallsats

Who We Are and Why You Should Listen

- Jonny Dyer, Chief Engineer, Skybox Imaging
 - Commercial missions that are costconstrained, but must be reliable and long-lived to produce revenue
- Doug Sinclair, Owner, Sinclair Interplanetary
 - 19 LEO missions launched to date
 - Hardware launched in 2003 still working
 - Some educational failures too.

Rad Hard Approach

- Guaranteed high-dose performance
 - High radiation deep space missions
 - "Failure is not an option" crewed missions
- Old technology, custom fab process, low integration, part-level testing/screening
 - Expensive, long lead times, high part counts

Hermetic / Hybrid = \$\$\$

Many discretes on a deep space board SSC13-IV-3 August 13 2013

Juno's "Now that's some radiation" vault

Buy and Fly Approach

- Industrial and consumer products
- Very low cost, high performance
- Little knowledge of design details
- Suitable for educational missions, or very short duration flights
- If 90% of commercial ICs will tolerate an environment, and a device has 10 ICs, probability of mission success is only 35%.

SSTL STRaND-1 Satellite
Carries Nexus One Cell Phone
SSC13-IV-3 August 13 2013

RTD PC/104 Computer Stack

Careful COTS

Environment - Input

• Orbit parameters, target lifetime, solar cycle

• Radiation sources:

• Trapped particles (protons + electrons) – van Allen belts

Solar particles

Spacecraft Trajector

SSC13-IV-3 August 13 2013

Earth's Magnetic Field

Environment – Spectra and Shielding

- Model environment with SPENVIS
- Flux AND energy important Spectra
 - Average spectra useful, but flux not uniform temporally or geographically!
- Shielding attenuates some particles
 - Effectiveness: Electrons > Low energy protons > high energy protons
- Heavy ions low flux, big damage!

Global Flux at 600km and the South Atlantic Anomaly SSC13-IV-3 August 13 2013

Environment LET and TID

- Linear Energy Transfer (LET)
 - Rate at which a particle loses energy moving through matter (material dependent)
 - Higher LET -> higher probability of single event effect
 - LET \propto stopping power effectiveness of shielding
- Total Ionizing Dose (TID)
 - Measure of accumulated material damage due to ionizing radiation over time
 - For particles ~ LET x Fluence

Radiation effects and damage mechanisms

- Single Event Effects
 - "Event in time" associated with single particle strike
 - Effects range from annoying to catastrophic
 - Single Event...
 - Upset (SEU) bit flip in memory
 - Latch-up (SEL) Parasitic SCR "short"
 - Burn-out (SEB) Destructive transistor short
 - Functional Interrupt (SEFI) Digital reconfiguration (FPGA, registers, etc)
- Cumulative Effects
 - MOS transistor threshold voltage changes (TID)
 - Bipolar transistor gain drops (TID + Displacement Damage)
 - Optical lenses/fibers turn brown

SRAM SEU-sensitive regions

Displacement Damage

A Frenkel pair consists of a vacancy and an interstitial atom.

Design Best Practices

There are circuit design techniques that will increase survivability

- Choose lowest supply voltages and duty cycles
 - Low bias reduces SEL. Massive derating reduces SEB.
 - Zero bias eliminates single event effects, and reduces TID effect.
- Reduce number of different ICs
 - Few massively integrated parts more likely to succeed than many less complex parts
- •Plan for SEUs
 - Make sure no I/O pin reconfiguration can cause damage
 - Find COTS memories with built-in ECC
 - Implement software ECC where hardware ECC unavailable

Radiation test options

- Gamma source (Co-60, etc)
 - TID only, no SEE
 - Cheap (\$)
- Proton
 - TID and displacement damage
 - SEE up to LET ~ 25 MeV-cm²/mg from heavy ion generation
 - Need cyclotron / synchrotron to get high enough energies
 - More Expensive (\$\$)
- Heavy Ion
 - Primarily high energy SEE
 - Low energy source must decap parts
 - High energy source massive facility
 - Very expensive (\$\$\$)

Lawrence and his 60in Cyclotron ionizing air

Evaluating Test Success

- Test 2 boards, built from controlled flight-candidate lots
- Board #1 test to expected dose
- Board #2 test to 2x expected dose
- Anneal boards following dose
- If both boards survive, unconditional success
- If board #1 survives but board #2 fails in cumulative dose, marginal success
 - Either reduce design life by 50%, or add shielding (bulk or spot)
- If both boards fail, or any destructive SEE seen, test unsuccessful
 - Must revise design and re-test

Typical Failure Mechanisms

- TID and Displacement Damage
 - Drift in analog components voltage refs. usually first to go
 - Increased leakage, timing / propagation change, eventual failure in digital electronics
- Single Event Effects
 - Unacceptably high SEU (need ECC)
 - Destructive SEL (CMOS) or SEB (N-MOSFET)
 - Hardware reconfig SEFI FPGA's, complex CPU / MCU

Why we like our approach

- Modern high-performance tightly-integrated parts
 - Low mass, volume and power of final product
 - Overnight availability allows rapid design revision
 - Technology familiar to many non-space engineers
- Quantified radiation lifetime
 - Test at the board level with protons, most closely simulating the space environment
 - Satellite owners can make sensible business decisions
 - We all sleep better when hope is replaced by certainty