ARITHMETIC

Chapter 4

5th SECONDARY

MAGNITUDES PROPORCIONALES II 2024

¿CÓMO PODRÍAMOS OBTENER LA RESPUESTA CORRECTA?

Datos históricos

Sabías que la regla de tres ya se usaba en el siglo VIII en occidente, un árabe notable es Al-Jwarizmi; pero es Al-Biruni (973-1050) quien dedica una obra completa sobre este procedimiento para resolver problemas.

Es por ello que en la India se conocía estos procedimientos, regla de tres simple, inversa y compuesta.

"Actualmente se analizan los ejercicios de este contexto mediante proporcionalidad"

1 REGLA DE TRES SIMPLE:

a DIRECTA

Se necesitan 3 bidones para depositar 36 litros de agua, ¿Cuántos bidones serán necesarios para depositar 144 litros de agua?

b INVERSA

Si 3 grifos llenan una piscina en 24 horas, ¿Cuánto se tardaría en llenar la piscina si hubiese 8 grifos funcionando al mismo ritmo?

 N° de grifos N° horas = k

$$3.24 = 8.x$$

$$X = 9 \text{ horas}$$

2 REGLA DE TRES COMPUESTA:

Cinco hornos industriales consumen 30 toneladas de carbón en 20 días; 3 hornos más consumirán en 25 días un cantidad de toneladas de carbón igual a :

En un fuerte hay 1500 hombres provistos de víveres para 6 meses. ¿Cuántos hombres habrá que despedir, para que los víveres duren dos meses más, dando a cada hombre la misma ración?

RESOLUTION

Hombres x meses = K

$$1500.6 = X.8$$

$$X = 1125$$

> Entonces se despiden a :

$$1500 - 1125 = 375$$

Rpta:

375 hombres

Un caballo amarrado con una cuerda de 8 metros de longitud emplea 32 días para comer la hierba que está a su alcance. ¿Cuántos días más podrá comer si es amarrado con una cuerda de 10 metros de longitud?

RESOLUTION

$$\pi \times (8)^2 = 64\pi$$
 32

$$\pi \times (10)^2 = 100\pi \times$$

$$\frac{2}{64\pi} = \frac{100\pi}{x}$$
 $X = 50 \text{ días}$

> Hallamos cuántos días más podrá comer :

$$50 - 32 = 18$$

Rpta:

18 días más

Fabricio es el triple de rápido que Sebastián y la mitad que Natalia. Si Fabricio hace una obra en 40 días, ¿en cuánto tiempo harán la obra los tres juntos?

RESOLUTION

Rapidez x N° de días = K

Sea la rapidez de :

Sebastián: R

Fabricio: 3R

Natalia: 6R

Total: 10R

Luego:

Fabricio

Total

Rpta:

12 días

Con 8 obreros se puede hacer una obra en 20 días. Con 10 obreros 4 veces más rápidos que los anteriores. ¿En cuántos días harán una obra 9 veces más difícil que la anterior?

RESOLUTION

N°Obreros . N°Días . Rapidez = K
Dificultad

Reemplazando:

$$\frac{8.20.\cancel{R}}{\cancel{5}} = \frac{\cancel{10}.\cancel{X}.\cancel{5}\cancel{R}}{\cancel{10}\cancel{5}}$$

Rpta: 32 días

Veinte obreros, en 14 días de 8 horas; han realizado un trabajo de 120 m de largo. ¿Cuántos días de 7 horas emplearán 24 obreros para hacer 90 m del mismo trabajo?

RESOLUTION

Reemplazando:

Rpta: 10 días

Se solicitó los servicios de la empresa constructora Graña y Montero para un proyecto de una obra de 15 m de ancho por 16 m de alto que se puede realizar con 9 obreros en 8 días trabajando 10 horas diarias. ¿En cuánto deberá variar el ancho de la obra para que 10 obreros, de 20% de rendimiento menos que los anteriores, hagan una obra que es el doble de dificultosa que la anterior y de 20 m de alto si se demoran 5 días trabajando 6 horas diarias?

RESOLUTION

Sea x el ancho de la nueva obra:

Ob . Días . h/d . Rend.
$$= k$$
 Área . Dif.

$$\frac{9.8.10.100\%R}{240.D} = \frac{10.5.6.80\%R}{20x.2D}$$

$$x = 2$$

El ancho varía (disminuye) en : = 15 - 2 = 13 m.

Se va a realizar una obra en la sede del Congreso de la República y se sabe que puede ser realizada por 10 mujeres en 18 días o por 6 hombres en 10 días. Si se quiere terminar la obra en 15 días. ¿Cuántas personas deben emplearse si debe haber la misma cantidad de hombres y mujeres, dada la paridad de género?

RESOLUTION

Eficiencia . N°Obreros . N°horas 😑 Cte.

Eficiencia mujeres:
$$\frac{1}{10.18}$$

Eficiencia hombres:
$$\frac{1}{6.10}$$

$$\frac{1}{10.18} \times 10 \times 18 = (\frac{1}{10.18} + \frac{1}{6.10}) \times y \times 15$$

$$\rightarrow 1 = \frac{1}{45} \times y \times 15$$

$$3 \text{ mujeres} = y$$

Rpta: