

Winning Space Race with Data Science

Arnav Mankad February 23, 2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of Methodologies

- Data Collection
- Data Wrangling
- Exploratory Data Analysis (EDA)
- Interactive Visual Analysis
- Predictive Analysis via Machine Learning Classification

Summary of Results

- Data collected successfully
- Data Analyzed through various plots
- Map analytics through Folium
- Interactive Dashboard created using Plotly
- Predictive analysis results

Introduction

Project Background and Context

- SpaceX has advertised that Falcon rocket launches cost 62 million dollars
 - Other providers cost more (more than 165 million dollars) because their first stage is not reusable
- The cost of a launch is dependent on determining if the first stage will land

Project Goals

- This project involves predicting if the first stage of Falcon 9 will land successfully
 - This will ultimately determine the cost of the overall launch

Methodology

Executive Summary

- Data collection methodology:
 - Rocket launch data requested from SpaceX API
 - Web Scraping from Wikipedia
- Perform data wrangling
 - Counting launch numbers on each site, number and occurrence of each orbit, number of occurrence of mission outcome per orbit category
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Involves data pre-processing, spitting data into training and test sets, train different types of models and assess their accuracy, and find hyperparameters with GridSearchCV

Data Collection

- Datasets were collected in three distinct ways:
 - Publicly accessible API with launch data in JSON format was used
 - Data was scraped from a Wikipedia page containing launch data
 - Course provided additional data in CSV format

Data Collection – SpaceX API

- Data was made publicly available at the following API endpoint: https://api.spacexdata.com/
 - A copy of the API response was made available for the project
- Data was extracted from the API response, loaded into a Pandas dataframe, and analyzed further
- GitHub URL of SpaceX API calls notebook: https://github.com/arnavmankad24
 /DataScienceCapstone/blob/main/ Mankad_DataCollectionAPI.ipynb

Steps of API Data Processing

API Get Request

Nested Data Extraction and Date Format Conversion

Specific, Relevant Columns of Data Generated

Columns Combined to Create Dataframe

Isolate Falcon 9 Launches

Handle Missing Values

Data Collection – Web Scraping

- Data was scraped from the SpaceX Wikipedia webpage: https://en.wikipedia.org/wiki/SpaceX
- Data was extracted from the site, loaded into a Pandas dataframe, and analyzed further
- GitHub URL of SpaceX web scraping notebook: https://github.com/arnavmankad24 /DataScienceCapstone/blob/main/ Mankad_DataCollectionWebScrapin g.ipynb

Steps of Web Scraping

Web Scraping of Wikipedia Page

BeautifulSoup Object from Response Text Content

Table Selection

Extraction of Column Names from Launch Table

Parsing Launch Tables to Create Dataframe

Data Wrangling

- Data extracted from a provided CSV file
- Launch sites, orbit types, and mission outcomes specifically processed/reformatted
- Binary classification of landing outcomes (1 = success, 0 = failure)
- Pandas Dataframe created
- GitHub URL of SpaceX web scraping notebook: https://github.com/arnavmankad24
 /DataScienceCapstone/blob/main/ Mankad_DataWrangling.ipynb

Steps of Data Wrangling

Load CSV data

Find Launch Numbers per Site

Find Orbit Type Numbers

Find Mission Outcome Numbers

Dataframe from Mission Outcome Data

EDA with Data Visualization

Scatterplots:

- Effect of launch site and flight number on mission outcome
- Effect of launch site and payload mass on mission outcome
- Effect of orbit type and flight number on mission outcome
- Effect of orbit type and payload mass on mission outcome

Bar Charts:

Relationship between orbit type and mission outcome

Line Plots:

Mission outcomes year-by-year

GitHub URL (EDA with Data Visualization):

 https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad EDAwithVisualization.ipynb

EDA with SQL

SQL Queries (Not Exhaustive):

- Names of unique launch sites
- 5 records where launch sites begin with 'CCA'
- Total payload mass carried by NASA-launched boosters
- Average payload mass carried by F9v1.1
- Listing booster names with ground pad success (mass between 4000 and 6000
- Number of successful and failed lands
- Ranking count of landing outcomes between 03-20-2017 and 03-20-2017

GitHub URL (EDA with SQL):

 https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad EDAwithSQL.ipynb

Build an Interactive Map with Folium

A Folium map was created, and the following map objects were added:

- Markers for launch sites and the NASA Johnson Space Center
- Circles were added for the launch sites
- Lines were added to show distance from CCAFS LC-40 to the coastline, CCAFS LC-40 to rail line, CCAFS LC-40 to perimeter road

GitHub URL (Folium Map)

 https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_Visual AnalyticsFolium.ipynb

Build a Dashboard with Plotly Dash

The dashboard created using Plotly Dash contains a dropdown input to select data from either one or all launch sites

Pie charts:

- For one launch site, pie chart displays distribution of successful and failed Falcon 9 first stage landings
- For all launch sites, pie chart displays distribution of successful Falcon 9 first stage landings for all sites

Scatterplot:

- The scatterplot displays Falcon 9 first stage landings based on payload mass, mission outcome, and booster version
- Input slider filters payload masses

GitHub URL (Plotly Dash Dashboard):

• https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_InteractiveDashboardPlotly.py

Predictive Analysis (Classification)

Machine Learning Flowchart:

- Pandas Dataframe created from cleaned data
- Data was split into training and test sets
- Four models (Logistic regression, SVM, Decision Tree, KNN) were trained on the training set
- Hyper-parameters were evaluated using GridSearchCV() to select best parameters
- The models were tested with the test set (using optimal hyper-parameters) and accuracy scores were determined

GitHub URL (Predictive Analysis):

 https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad _MachineLearningPrediction.ipynb

Results

- Insights drawn from exploratory data analysis
- Launch sites proximities analysis
- Dashboard built with Plotly Dash
- Predictive analysis with classification

Flight Number vs. Launch Site

- · Launch site plays an impact on success rate of landing
- Increasing flight number results in more successful first stage landings
- Note: failed landings are O (green), successful landings are 1 (orange)

Payload vs. Launch Site

- More successful, but also more failed, landing outcomes for CCAFS SLC 40
- Most failed landings for KSC LC 39A launch site group around small region of payload masses

Success Rate vs. Orbit Type

- ES-L1, SSO, HEO, and GEO orbits have no failed first stage landings
- SO orbits have no first stage landings

Flight Number vs. Orbit Type

• The higher the flight number, the more the success rate

Payload vs. Orbit Type

- There are more successes in cases of lower payload mass, but there are also many failures
- Difficult to determine the actual correlation between payload mass and orbit

Launch Success Yearly Trend

 Success rate has increased generally over the years

All Launch Site Names

SQL Query

%sql select DISTINCT LAUNCH_SITE from SPACEXTBL

Description

• There are four unique launch sites

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

SQL Query

%sql select * from SPACEXTBL where launch_site like 'CCA%' limit 5

Table

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

SQL Query

%sql select sum(payload_mass__kg_) as sum from SPACEXTBL where customer like 'NASA (CRS)'

Description:

Total payload mass = 45596 kg

Payload Mass:

sum

45596

Average Payload Mass by F9 v1.1

SQL Query

%sql select avg(payload_mass__kg_) as Average from SPACEXTBL where booster_version like 'F9 v1.1%'

Average Payload Mass:

Average

2534.666666666665

First Successful Ground Landing Date

SQL Query

%sql select min(date) as Date from SPACEXTBL where mission_outcome like 'Success'

First Successful Ground Landing Date:

Date

2010-06-04

Successful Drone Ship Landing with Payload between 4000 and 6000

SQL Query

```
%sql select booster_version from SPACEXTBL where (mission_outcome like 'Success') AND
(payload_mass__kg_ BETWEEN 4000 AND 6000) AND (landing_outcome like 'Success (drone ship)')
```

Names of Boosters:

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

SQL Query

%sql SELECT mission_outcome, count(*) as Count FROM SPACEXTBL GROUP by mission_outcome ORDER BY mission_outcome

Total Success/Failure Number:

Mission_Outcome	Count
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Boosters Carried Maximum Payload

SQL Query

```
maximum = %sql select max(payload_mass__kg_) from SPACEXTBL
maxv = maximum[0][0]
%sql select booster_version from SPACEXTBL where payload_mass__kg_=(select max(payload_mass__kg_) from SPACEXTBL)
```

Boosters with Max Payload:

Booster_Version	F9 B5 B1049.5
F9 B5 B1048.4	F9 B5 B1060.2
F9 B5 B1049.4	F9 B5 B1058.3
F9 B5 B1051.3	F9 B5 B1051.6
F9 B5 B1056.4	F9 B5 B1060.3
F9 B5 B1048.5	F9 B5 B1049.7
F9 B5 B1051.4	

2015 Launch Records

SQL Query

```
%sql select substr(Date, 6, 2) as month, Landing_Outcome, Booster_Version, Launch_Site from SPACEXTBL\
where substr(Date, 1, 4) = '2015' and Landing_Outcome = 'Failure (drone ship)'
```

Failed Landing Outcomes in 2015:

month	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

SQL Query

```
%sql select Landing_Outcome, count(*) as count_outcomes \
from SPACEXTBL\
where Date between '2010-06-04' and '2017-03-20'\
group by Landing_Outcome\
order by count_outcomes Desc;
```

Ranked Landing Outcomes:

Landing_Outcome	count_outcomes
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Falcon 9 Launch Sites

California

 VAFB SLC-4E ~ Vandenberg Air Force Base Space Launch Complex 4E

Florida

- KSC LC-39A ~ Kennedy Space Center Launch Complex 39A
- CCAFS LC-40 ~ Cape Canaveral Air Force Station Launch Complex 40
- CCAFS SLC-40 ~ Cape Canaveral Air Force Station Space Launch Complex 40

Success and Failure Map Markers

- The markers display the outcomes (pass or fail) for Falcon 9 first stage landings
- The four pictures are the four launch sites

Launch Site to Proximities Distances

- The coastline is 0.92 km away from CCAFS LC-40
- The rail line is 1.33 km away from CCAFS LC-40
- The perimeter road is 0.19 km away from launch sites

Launch Success between All Sites

- The greatest share of successful launches occurred from KSC LC-39A
- The lowest share of successful launces occurred from CCAFS SLC-40

Success/Failure from CCAFS SLC-40

- CCAFS SLC-40 has the highest percentage of success of the four
- 42.9% of launches were successful

Payload vs. Outcome Scatter Plots

 Overall, the highest success rate came from 2000 to 5000 kg payload

Classification Accuracy

 All four methods have comparable accuracy (83.33%)

Confusion Matrix

- The confusion matrix on the right corresponds to knn
- Breakdown is as follows:
 - 12 true positives
 - 3 true negatives
 - 3 false positives
 - O false negatives

Conclusions

- First stage landing outcomes have continued to improve over time
- All classification models used to test have similar accuracy, though there is still room for improvement
 - Random forest, or another more powerful model could improve the accuracy

Appendix

GitHub Repository for Capstone Project:

- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_DataCollectionAPI.ipynb
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad DataCollectionWebScraping.ip https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad DataCollectionWebScraping.ip
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_DataWrangling.ipynb
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_EDAwithSQL.ipynb
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_EDAwithVisualization.ipynb
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_InteractiveDashboardPlotly.py
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_MachineLearningPrediction.ipy nb
- https://github.com/arnavmankad24/DataScienceCapstone/blob/main/Mankad_VisualAnalyticsFolium.ipynb

