## Numerieke Wiskunde

Joni Allaert Ward Schodts

2013 - 2014



Professor Dr. ir. Marc Van Barel

#### 1 Deel 1: Numerieke integratie

#### 1.1 Vast Deelinterval

(a) Benadering van de integralen  $\int_{-1}^{1} e^x dx$  en  $\int_{-5}^{5} \frac{1}{1+x^2}$ 





 $\int_{-1}^{1} e^x dx \text{ met de trapeziumbenadering in het blauw} \int_{-5}^{5} \frac{1}{1+x^2} \text{ met de trapeziumbenadering in het blauw}$ en met de simpsonbenadering in het rood.}

Om een duidelijk beeld te krijgen van de benaderingen, hebben we in het geval van de exponentiële functie een loglog-plot genomen en voor de andere functie een semilogy-plot. Het doel was om de lijnen zo veel mogelijk te linearisren. In het geval van de tweede functie was dit echter niet mogelijk.

#### (b) De waardes k in $O(h^k)$ voor de integratieregels

De fout die veroorzaakt wordt bij de trapeziumregel gedraagt zich als  $O(h^2)$ . De verklaring hiervoor is dat de integratiefout bij de trapeziumregel te schrijven is als

$$F_n = -\frac{(b-a)^3}{12n^2} f^{(2)}(\eta)$$

voor een  $\eta \in (a, b)$ . De fout gedraagt zich bijgevolg als  $O(n^{-2})$ . Wat hetzelfde is als  $O(h^2)$ , per definitie van h.

De fout veroorzaakt door de regel van Simpson gedraagt zich als  $O(h^4)$ . We kunnen immers de integratiefout bij de Simpsonregel schrijven als

$$F_n = -\frac{(b-a)^5}{180n^4} f^{(4)}(\eta)$$

voor een  $\eta \in (a, b)$ . De fout gedraagt zich dan als  $O(n^{-4})$ . Dit is, per definitie van h, hetzelfde als  $O(h^4)$ .





 $\int\limits_{-1}^{1}e^{x}dx \text{ het gedrag van de trapeziumbenadering} \int\limits_{-5}^{5}\frac{1}{1+x^{2}} \text{ het gedrag van de trapeziumbenadering}$  met een blauwe stippellijn en het gedrag van de met een blauwe stippellijn en het gedrag van de simpsonbenadering met een rode stippellijn.

#### 1.2 Adaptieve Routine

# (b) Het probleem bij $\int_{-1}^{1} sin(2\pi x)^2 dx$

We krijgen bij onze zelf gedefinieerde functies telkens waarden die nul benaderen i.p.v. de werkelijke waarde 1. Dit komt omdat we bij onze eerste recursiestap telkans gaan evalueren in een punt van de functie waar deze nul is. Zo evalueren we bij de trapeziummethode in de punten -1 en 1 voor  $I_1$  en in de punten -1, 0 en 1 voor  $I_2$ . Net zoals we op de figuur kunnen zien is de functie telkens in deze waar-



 $sin(2\pi x)^2 dx$  van -1 tot 1

den nul. Hierdoor is  $I_1 - I_2$  ook een benadering van nul. Deze waarde is dan kleiner dan de tolerantie waardoor er maar 1 recursiestap wordt uitgevoerd en deze waarde wordt dan ook teruggegeven. Hetzelfde gebeurt bij de simpsonmethode waarvoor bij  $I_1$  en  $I_2$  respectievelijk in -1, 0, 1 en -1, -0.5, 0, 0.5, 1 wordt geëvalueerd. Om dit probleem op te lossen gaat quad er voor zorgen dat er ongelijk deelintervallen zijn. Dat kan je zien in het volgende stuk code:

% Initialize with three unequal subintervals.
h = 0.13579\*(b-a);
x = [a a+h a+2\*h (a+b)/2 b-2\*h b-h b];

(c) Het probleem bij 
$$\int_{0}^{1} \frac{1}{\sqrt{(x)}} dx$$

Het probleem dat we hier krijgen is dat we de functie proberen te evalueren in punt waar hij niet gedefinieerd is. Namelijk het punt x = 0. Hierdoor kijgen we een waarde  $\infty$  voor zowel  $I_1$  als  $I_2$ . Omdat er recursief altijd opnieuw wordt geëvalueerd wordt in x = 0 dat

telkens de waarde  $\infty$  teruggeeft en bewerkingen hiermee ook  $\infty$  teruggeven blijven we maar opnieuw recursief uitvoeren. Want de voorwaarde om met de recursie te stoppen:

```
if abs(I1 - I2) < e
```

is nooit voldaan dan.

De methode quad lost dit probleem op met volgende code:

```
% Fudge endpoints to avoid infinities.
if ~isfinite(y(1))
    y(1) = f(a+eps(superiorfloat(a,b))*(b-a),varargin{:});
    fcnt = fcnt+1;
end
if ~isfinite(y(7))
    y(7) = f(b-eps(superiorfloat(a,b))*(b-a),varargin{:});
    fcnt = fcnt+1;
end
```

quad checkt dus of de eindpunten niet oneindig zijn en als dit zo is

#### (d) De uitvoeringstijd in functie van e



De uitvoeringstijden van trapezium, Simpson en quad in respectievelijke kleuren blauw, rood en geel

#### 2 Deel 2: Kleinste kwadraten benadering van een functie

#### 2.1 Veeltermbenadering in monomiaalbasis

#### (d) De fout ||f - g|| in functie van de graad



We hebben hier gekozen voor een semilogy-plot, omdat op deze figuur de lijnen het meest recht liepen.

#### (e) Benaderings- of abrekingsfout?

Het eerste, dalende deel is te wijten aan de benaderingsfouten. Dit stuk daalt, want als de graad stijgt kunnen we de functie steeds beter en beter benaderen. Vanaf een bepaald moment (hier bij een fout van  $10^{-6}$ ) nemen echter de afrondingsfouten de overhand en gaat de totale fout weer stijgen. Het stijgende tweede deel is dus te wijten aan afrondingsfouten.

#### (f) Convergentiesnelheid



De convergentiesnelheid gedraagt zich als  $O(8^{-n})$  met n de graad van g.

#### (h) Perturbaties op A en b



Perturbaties op A(rood), b(blauw)

De groene lijn geeft aan waar  $10^{-8}$ . We kunnen dus duidelijk zien dat op veelvoud na  $10^{-8}$  zijn. Met andere woorden ze zijn van grootorde  $10^{-8}$ .

#### (i) perturbatie op a



Perturbaties op a(geel) en tol vermenigvuldigd met het conditiegetal(groen) bijgevoegd

### 3 Tijdsbesteding

| Onderdeel            | Tijdsbesteding |
|----------------------|----------------|
| Doornemen opgave     | 1u             |
| Code deel 1          | 11u            |
| Code deel 2          | 9u             |
| Maken grafieken      | 3u             |
| Samenstellen verslag | 5u             |