CS 228 : Logic in Computer Science

S. Krishna

▶ Show that if $\models \psi$ (ψ is valid), then $\vdash \psi$ (we can prove ψ)

- ▶ Show that if $\models \psi$ (ψ is valid), then $\vdash \psi$ (we can prove ψ)
- ▶ Assume p_1, \ldots, p_n as the variables in ψ , and let $\models \psi$.

- ▶ Show that if $\models \psi$ (ψ is valid), then $\vdash \psi$ (we can prove ψ)
- ▶ Assume p_1, \ldots, p_n as the variables in ψ , and let $\models \psi$.
- Let $\hat{p_1}, \dots, \hat{p_n}$ be the assignment of p_1, \dots, p_n for any line l in the truth table

- ▶ Show that if $\models \psi$ (ψ is valid), then $\vdash \psi$ (we can prove ψ)
- ▶ Assume p_1, \ldots, p_n as the variables in ψ , and let $\models \psi$.
- Let $\hat{p_1}, \dots, \hat{p_n}$ be the assignment of p_1, \dots, p_n for any line l in the truth table
- ▶ Show that $\hat{p_1}, \ldots, \hat{p_n} \vdash \psi$

- ▶ Show that if $\models \psi$ (ψ is valid), then $\vdash \psi$ (we can prove ψ)
- ▶ Assume $p_1, ..., p_n$ as the variables in ψ , and let $\models \psi$.
- Let $\hat{p_1}, \dots, \hat{p_n}$ be the assignment of p_1, \dots, p_n for any line I in the truth table
- ▶ Show that $\hat{p_1}, \ldots, \hat{p_n} \vdash \psi$
- ▶ The above step gives 2^n proofs for ψ , starting from 2^n different premises

- ▶ Show that if $\models \psi$ (ψ is valid), then $\vdash \psi$ (we can prove ψ)
- ▶ Assume $p_1, ..., p_n$ as the variables in ψ , and let $\models \psi$.
- Let $\hat{p_1}, \ldots, \hat{p_n}$ be the assignment of p_1, \ldots, p_n for any line l in the truth table
- ▶ Show that $\hat{p_1}, \ldots, \hat{p_n} \vdash \psi$
- ▶ The above step gives 2^n proofs for ψ , starting from 2^n different premises
- \blacktriangleright Combine all these proofs, and give a proof for ψ starting with no premises

▶ To combine the proofs, use LEM. That is, use $p_1 \vee \neg p_1$.

- ▶ To combine the proofs, use LEM. That is, use $p_1 \vee \neg p_1$.
- ▶ You need to prove ψ individually from p_1 and from $\neg p_1$ (why?)

- ▶ To combine the proofs, use LEM. That is, use $p_1 \vee \neg p_1$.
- ▶ You need to prove ψ individually from p_1 and from $\neg p_1$ (why?)
- ▶ Within p_1 , use $p_2 \vee \neg p_2$. This opens up two proof obligations, one where you have p_1 , p_2 , and other where you have p_1 , $\neg p_2$.

- ▶ To combine the proofs, use LEM. That is, use $p_1 \vee \neg p_1$.
- ▶ You need to prove ψ individually from p_1 and from $\neg p_1$ (why?)
- ▶ Within p_1 , use $p_2 \vee \neg p_2$. This opens up two proof obligations, one where you have p_1 , p_2 , and other where you have p_1 , $\neg p_2$.
- ▶ The same can be done within $\neg p_1$, and in fact inside each p_i , $\neg p_i$.

- ▶ To combine the proofs, use LEM. That is, use $p_1 \vee \neg p_1$.
- ▶ You need to prove ψ individually from p_1 and from $\neg p_1$ (why?)
- ▶ Within p_1 , use $p_2 \vee \neg p_2$. This opens up two proof obligations, one where you have p_1 , p_2 , and other where you have p_1 , $\neg p_2$.
- ▶ The same can be done within $\neg p_1$, and in fact inside each p_i , $\neg p_i$.
- This gives rise to discharging 2ⁿ proofs for ψ, which is what you had.

- ▶ To combine the proofs, use LEM. That is, use $p_1 \vee \neg p_1$.
- ▶ You need to prove ψ individually from p_1 and from $\neg p_1$ (why?)
- ▶ Within p_1 , use $p_2 \vee \neg p_2$. This opens up two proof obligations, one where you have p_1 , p_2 , and other where you have p_1 , $\neg p_2$.
- ▶ The same can be done within $\neg p_1$, and in fact inside each p_i , $\neg p_i$.
- This gives rise to discharging 2ⁿ proofs for ψ, which is what you had.
- ▶ This gives a proof of ψ with no premises.

▶ A literal is a propositional variable p or its negation $\neg p$. These are referred to as positive and negative literals respectively.

- ▶ A literal is a propositional variable p or its negation $\neg p$. These are referred to as positive and negative literals respectively.
- A formula F is in CNF if it is a conjunction of a disjunction of literals.

$$F = \bigwedge_{i=1}^{n} C_i$$
, where $C_i = \bigvee_{j=1}^{m} L_{i,j}$

each C_i is a clause and each $L_{i,j}$ is a literal.

$$(x_1 \vee \neg x_2) \wedge (x_3 \vee x_4 \vee x_5) \wedge (\neg x_1 \vee \neg x_2)$$

- ▶ A literal is a propositional variable p or its negation $\neg p$. These are referred to as positive and negative literals respectively.
- A formula F is in CNF if it is a conjunction of a disjunction of literals.

$$F = \bigwedge_{i=1}^{n} C_i$$
, where $C_i = \bigvee_{j=1}^{m} L_{i,j}$

each C_i is a clause and each $L_{i,i}$ is a literal.

$$(x_1 \vee \neg x_2) \wedge (x_3 \vee x_4 \vee x_5) \wedge (\neg x_1 \vee \neg x_2)$$

A formula F is in DNF if it is a disjunction of a conjunction of literals.

$$F = \bigvee_{i=1}^{n} \bigwedge_{j=1}^{m} L_{i,j}$$

each $L_{i,j}$ is a literal.

$$(x_1 \wedge \neg x_2) \vee (x_3 \wedge x_4 \wedge x_5) \vee (\neg x_1 \wedge \neg x_2)$$

In the following, equivalent stands for semantically equivalent

Let F be a formula in CNF and let G be a formula in DNF. Then $\neg F$ is equivalent to a formula in DNF and $\neg G$ is equivalent to a formula in CNF.

In the following, equivalent stands for semantically equivalent

Let F be a formula in CNF and let G be a formula in DNF. Then $\neg F$ is equivalent to a formula in DNF and $\neg G$ is equivalent to a formula in CNF.

Every formula F is equivalent to some formula F_1 in CNF and some formula F_2 in DNF.

CNF Algorithm

Given a formula F, $(x \rightarrow [\neg(y \lor z) \land \neg(y \rightarrow x)])$

▶ Replace all subformulae of the form $F \to G$ with $\neg F \lor G$, and all subformulae of the form $F \leftrightarrow G$ with $(\neg F \lor G) \land (\neg G \lor F)$. When there are no more occurrences of \rightarrow , \leftrightarrow , proceed to the next step.

CNF Algorithm

Given a formula F, $(x \rightarrow [\neg(y \lor z) \land \neg(y \rightarrow x)])$

- ▶ Replace all subformulae of the form $F \to G$ with $\neg F \lor G$, and all subformulae of the form $F \leftrightarrow G$ with $(\neg F \lor G) \land (\neg G \lor F)$. When there are no more occurrences of \rightarrow , \leftrightarrow , proceed to the next step.
- Get rid of all double negations, and replace all subformulae
 - ▶ \neg ($G \land H$) with $\neg G \lor \neg H$
 - $\neg (G \lor H)$ with $\neg G \land \neg H$

When there are no more such subformulae, proceed to the next step.

CNF Algorithm

Given a formula F, $(x \rightarrow [\neg(y \lor z) \land \neg(y \rightarrow x)])$

- ▶ Replace all subformulae of the form $F \to G$ with $\neg F \lor G$, and all subformulae of the form $F \leftrightarrow G$ with $(\neg F \lor G) \land (\neg G \lor F)$. When there are no more occurrences of \rightarrow , \leftrightarrow , proceed to the next step.
- ▶ Get rid of all double negations, and replace all subformulae
 - ▶ \neg ($G \land H$) with $\neg G \lor \neg H$
 - $\neg (G \lor H)$ with $\neg G \land \neg H$

When there are no more such subformulae, proceed to the next step.

▶ Distribute ∨ wherever possible.

The resultant formula F_1 is in CNF and is provably equivalent to F.

$$[(\neg x \vee \neg y) \wedge (\neg x \vee \neg z)] \wedge [(\neg x \vee y) \wedge (\neg x \vee \neg x)]$$

► A Horn Formula is a particularly nice kind of CNF formula, which can be guickly checked for satisfiability.

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- ► How hard is checking satisfiability, in general?

► A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.

- ▶ A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.
- ▶ $p \land (\neg p \lor \neg q \lor r) \land (\neg a \lor \neg b)$ is Horn, but $a \lor b$ is not Horn.

- ▶ A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.
- ▶ $p \land (\neg p \lor \neg q \lor r) \land (\neg a \lor \neg b)$ is Horn, but $a \lor b$ is not Horn.
- ▶ A basic Horn formula is one which has no ∧. Every Horn formula is a conjunction of basic Horn formulae.

► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.
- ▶ Basic Horn with no positive literals are written as $p \land q \land \cdots \land r \rightarrow \bot$.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.
- ▶ Basic Horn with no positive literals are written as $p \land q \land \cdots \land r \rightarrow \bot$.
- ▶ Thus, a Horn formula is written as a conjunction of implications.

The Horn Algorithm

Given a Horn formula H,

▶ Mark all occurrences of p, whenever $\top \rightarrow p$ is a subformula.

The Horn Algorithm

Given a Horn formula H,

- ▶ Mark all occurrences of p, whenever $\top \rightarrow p$ is a subformula.
- ▶ If there is a subformula of the form $(p_1 \land \cdots \land p_m) \rightarrow q$, where each p_i is marked, and q is not marked, mark q. Repeat this until there are no subformulae of this form and proceed to the next step.

The Horn Algorithm

Given a Horn formula H,

- ▶ Mark all occurrences of p, whenever $\top \rightarrow p$ is a subformula.
- ▶ If there is a subformula of the form $(p_1 \land \cdots \land p_m) \rightarrow q$, where each p_i is marked, and q is not marked, mark q. Repeat this until there are no subformulae of this form and proceed to the next step.
- ▶ Consider subformulae of the form $(p_1 \land \cdots \land p_m) \rightarrow \bot$. If there is one such subformula with all p_i marked, then say Unsat, otherwise say Sat.

An Example

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

An Example

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

 $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

S. Krishna IIT Bombay

An Example

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

An Example

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

An Example

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

The Horn algorithm concludes Sat iff *H* is satisfiable.

The Horn algorithm concludes Sat iff *H* is satisfiable.

▶ Let $S = \{C_1, ..., C_n\}$ be the set of propositions occurring in H. At the end of the algorithm, some of these are marked.

The Horn algorithm concludes Sat iff *H* is satisfiable.

- Let $S = \{C_1, \dots, C_n\}$ be the set of propositions occurring in H. At the end of the algorithm, some of these are marked.
- Assume H is satisfiable. Then there is an assignment α of $\mathcal S$ such that $\alpha \models H$. For each basic Horn formula B of H, $\alpha(B) = 1$. Also, $\alpha(\bot) = 0$ and $\alpha(\top) = 1$.

The Horn algorithm concludes Sat iff *H* is satisfiable.

- ▶ Let $S = \{C_1, ..., C_n\}$ be the set of propositions occurring in H. At the end of the algorithm, some of these are marked.
- ▶ Assume H is satisfiable. Then there is an assignment α of S such that $\alpha \models H$. For each basic Horn formula B of H, $\alpha(B) = 1$. Also, $\alpha(\bot) = 0$ and $\alpha(\top) = 1$.
- ▶ If *B* has the form $\top \to C_i$, then $\alpha(C_i) = 1$. If *B* has the form $(C_1 \land \cdots \land C_n) \to D$, where each $\alpha(C_i) = 1$, then $\alpha(D) = 1$. Hence, $\alpha(C_i)$ agrees with the marking of the algo.

Assume the algo says H is unsat. Then there is a subformula B of the form $(A_1 \wedge \cdots \wedge A_m) \to \bot$, where each A_i is marked. Hence, $\alpha(A_i) = 1$ for each A_i . Then $\alpha(B) = 0$, a contradiction to our assumption that $\alpha(B) = 1$ for each B.

- Assume the algo says H is unsat. Then there is a subformula B of the form $(A_1 \wedge \cdots \wedge A_m) \to \bot$, where each A_i is marked. Hence, $\alpha(A_i) = 1$ for each A_i . Then $\alpha(B) = 0$, a contradiction to our assumption that $\alpha(B) = 1$ for each B.
- ▶ Conversely, assume that the algo says Sat. Show that there exists a satisfying assignment α , using the markings made by the algo.

- Assume the algo says H is unsat. Then there is a subformula B of the form $(A_1 \wedge \cdots \wedge A_m) \to \bot$, where each A_i is marked. Hence, $\alpha(A_i) = 1$ for each A_i . Then $\alpha(B) = 0$, a contradiction to our assumption that $\alpha(B) = 1$ for each B.
- ► Conversely, assume that the algo says *Sat*. Show that there exists a satisfying assignment α , using the markings made by the algo. Let α be the assignment of \mathcal{S} defined by $\alpha(C_i) = 1$ iff C_i is marked. We claim that $\alpha \models H$.

- Assume the algo says H is unsat. Then there is a subformula B of the form $(A_1 \wedge \cdots \wedge A_m) \to \bot$, where each A_i is marked. Hence, $\alpha(A_i) = 1$ for each A_i . Then $\alpha(B) = 0$, a contradiction to our assumption that $\alpha(B) = 1$ for each B.
- ▶ Conversely, assume that the algo says Sat. Show that there exists a satisfying assignment α , using the markings made by the algo. Let α be the assignment of S defined by $\alpha(C_i) = 1$ iff C_i is marked. We claim that $\alpha \models H$.
- ▶ Show that $\alpha \models B$ for each basic Horn formula B of H.

▶ If *B* has the form $\top \to A$, then *A* is marked in step 1 of the algo, and so $\alpha(B) = 1$.

- ▶ If *B* has the form $\top \to A$, then *A* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $A_1 \wedge ... A_m \rightarrow G$, then *G* is either \bot or an atomic formula.

- ▶ If *B* has the form $\top \to A$, then *A* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $A_1 \wedge ... A_m \rightarrow G$, then *G* is either \bot or an atomic formula.
- ▶ If some A_i was not marked, then $\alpha(A_i) = 0$, and hence $\alpha(B) = 1$.

- ▶ If *B* has the form $\top \to A$, then *A* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $A_1 \wedge ... A_m \rightarrow G$, then *G* is either \bot or an atomic formula.
- ▶ If some A_i was not marked, then $\alpha(A_i) = 0$, and hence $\alpha(B) = 1$.
- ▶ Assume all the A_i 's were marked. Then $\alpha(A_i) = 1$ for all i. Since the algo said Sat, $G \neq \bot$. Then G is also marked (step 2 of algo). Hence, $\alpha(G) = 1$, and we have $\alpha(B) = 1$.

- ▶ If *B* has the form $\top \to A$, then *A* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $A_1 \wedge ... A_m \rightarrow G$, then *G* is either \bot or an atomic formula.
- ▶ If some A_i was not marked, then $\alpha(A_i) = 0$, and hence $\alpha(B) = 1$.
- ▶ Assume all the A_i 's were marked. Then $\alpha(A_i) = 1$ for all i. Since the algo said Sat, $G \neq \bot$. Then G is also marked (step 2 of algo). Hence, $\alpha(G) = 1$, and we have $\alpha(B) = 1$.
- ▶ Thus, the markings of the algorithm gives rise to a satisfying assignment α if the algorithm said Sat.

Complexity of Horn

- ▶ Given a Horn formula ψ with n propositions, how many times do you have to read ψ ?
- ▶ Step 1: Read once
- Step 2: Read atmost n times
- ▶ Step 3: Read once