

Date	Topic	Contents	
Jan 23	System Dynamics and Simulation Games (SLG)	 From a macro perspective, introduction to system dynamics as an approach for modeling complex systems. Introduction to the core mechanisms behind classical SLGs that utilize system dynamics concepts, such as SimCity. 	
	Workshop	 Sketch out the system's dynamic loops and diagrams of your game. Share your game design with the class, play others' board games, make suggestions, and refine your design. Develop and build your game at home (physical or digital) 	

System Dynamics

Dynamic System

Discrete Event

Agent Based

The family of simulation modelling (Borshchev & Filippov, 2004)

→ Mainly continuous

High Abstraction Less Details Macro Level Strategic Level

Middle Abstraction Medium Details Meso Level Tactical Level

> Low Abstraction More Details Micro Level Operation! Level

Mainly discrete ◆

System Dynamics – a Heritage

System Dynamics was born at MIT Sloan in the 1950s and developed by Prof. Emeritus Jay W. Forrester. System Dynamics helps us understand, design, and manage change. Using data and technology, System Dynamics models the relationships between all the parts of a system and how those relationships influence the behavior of the system over time.

Think in the System Level

Construction of System Dynamic Model

Basic Elements: Parameters

Population Deaths

Fractional Birth Rate

Births

Fractional Death Rate

Structure and Behavior: Reinforcing Loops

- Loops with all positive (or an even number of negative) links are reinforcing feedback loops.
- Reinforcing loops create exponential growth or decline.

Balancing Loops

Balancing loops move a system towards a goal. They give a system stability.

Basic Elements: Parameters

Population Deaths

Fractional Birth Rate

Births

Fractional Death Rate

Basic Elements: Parameters and Relationships

Basic Elements: Stock, Flow, Loops and Relationships

Basic Elements: Stock and Flow

Basic Elements: Bring them together 1.0

Basic Elements: Delay

Basic Elements: Delay

Classic Models

Supply and Demand

Classic Models

Bass Diffusion Model

Model Demo

COVID-19 Example

Total COVID-19 cases reported to WHO (weekly)

World, January 2020 - present

Total COVID-19 deaths reported to WHO (weekly)

World, January 2020 - present

Italy_Covid_Cases

Inject your other analysis to the model

Role of forecasting

Agent Based Modelling vs System Dynamics Modelling

Principle	System Dynamics	Agent-Based Modeling
Building block	Feedback loop connecting behavioral variables	Individual agents connected by feedback loop
Object of interest	Structure of the system	Agents' rules
Research approach	Deductive: infer from structure to behavior	Inductive: infer from individual agents' behavior to system behavior
Development of object of interest over time	Structure is fixed	Agents' rules can be adaptive
Handling of time	Continuous simulation	Discrete or continuous simulation

Board Game using System Dynamics

https://www.qeios.com/read/U5Q11B

Board Game using System Dynamics

Board Game using System Dynamics

Figure 5. Exemplary results from the game variant "The Basic Game." (a) The proportion of land covered by forest (i.e., the number of trees on the board) and (b) the number of loggers as a function of game rounds.

Larger Games!

https://playclassic.games/games/city-building-dos-gamesonline/play-simcity-classic-online/play/