Computer modeling of physical phenomena

Lecture IX: Things in motion

Sheep vs droplets

A fundamental question

Can the collective motion of a large number of macroscopic objects (herd of sheep, swarm of insects, crowd of people, cars) be described in terms of simple interactions between these entities?

Physics of sheep?

Herds, swarms, flocks, schools...

Starlings

Reynolds model

- 1) Separation: Move to avoid crowding local flockmates.
- 2) Alignment: Match orientation and velocity of the neighbours.
- 3) Cohesion: Move towards the average position of the neighbours.

Applications

Pedestrian motion

Lane formation

The model

interaction with obstacles (repulsion)

attraction towards the target

interaction with other pedestrians (repulsion)

+ random fluctuation

Pedestrians navigate the obstacles (including other pedestrians) while trying to get to the target as fast as possible.

Lane formation

The motion self-organizes – the emerging mode of traffic is more effective than the random mode.

Panic

Panic

Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. *Nature*, 407(6803), 487.

Force chains

simillar to stuck salt shaker...

Human crystals

In a dense crowd, people mutually block themselves, the exit jams.

Again self-organization, this time harmful.

The door problem

Again self-organization – first one side, then the other. Leader paves the way for the others, who are following him.

Panic once again

The faster you go, the longer it takes

escape speed (m/s)

An obstacle helps

Same with sheep...

Some other hints

Some other hints (2)

treacherous corridor widenings:

columns in passages:

Some other hints (3)

double door:

Paths people take...

Use or block?

Treading dynamics

Helbing, D., Keltsch, J. and **Molnár**, P. (1997) Modeling the evolution of human **trail** systems. Nature 388,47–50.

Model

attraction towards well-trodden path

net force

attraction to the destination

+ random fluctuations

Additionally, by treading the path we are making it more attractive for the others.

Simulation

Application of the model to four destinations shows how the network evolves from the direct connections to a certain trade-off between the length of individual connectors and the total length of the trails.

Different shapes

ease of walking on untrodden grass

Can we use it?

Organic design: Michigan State University campus

Michigan state

Simulation (2)

Paths ants take...

Experiment

Argentine ants (Linepithema humile) on a circular arena over one hour

Leaving pheromones

Ants have reverse chemtrails – regular citizens spraying chemicals everywhere they go to control the government.

Ant trail optimization

- Ants are very good in dynamic finding of short paths through graphs.
- Ant colony optimization algorithms are used in such problems like protein folding or vehicle rooting.

• They have also been used to produce near-optimal solutions to the travelling salesman problem.

Travelling salesman problem

- The salesman must travel to all cities once before returning home.
- The distance between each city is given and is assumed to be the same in both directions.
- Objective minimize the total distance to be travelled.

Travelling salesman problem (2)

Travelling salesman problem (3)

Simplicity in complexity: simple rules under complex motion.

