CD-HIT vs. CD-HIT + graphpart

Katarzyna Sidorczuk & Michał

6/27/2022

General remarks

If we use graphpart we cannot predict Sec proteins.

Moreover, PlastoGram performance drops for Tat, stromal proteins (mostly plastid-encoded) and nuclear-encoded transmembrane proteins.

Sec and TAT issue is mostly related to the number of sequences in the independent data set. Additional graphpart reduction removes 2 out of 6 sequences for Sec (33%) and for Tat 6 out of 12 (50%). Similarly, for plastid-encoded stromal proteins we are losing 21 proteins out of 63 (33%).

The unexplained phenomenon is a huge loss of accuracy for nuclear-encoded transmembrane proteins, when graphpart removes only few proteins in the independent dataset, but suddenly PlastoGram staerts to confuse this proteins with nuclear-encoded stromal proteins.

Datasets

CD-HIT + graphpart

- 1. CD-HIT reduction using 0.9 threshold
- 2. Graph-part partitioning to create independent and train-test datasets. Parameters: 0.4 threshold, 0.15 ratio of validation dataset, no moving between clusters.
- 3. N_IM and N_OM are reduced/partitioned separately and then grouped together as envelope.

Dataset	Before filtering	After CD-HIT	After partitioning(traintest)	After partition- ing(independent)
N_E	118 (59 IM + 59 OM)	115 (59 IM + 56 OM)	96 (50 IM + 46 OM)	10 (6 IM + 4 OM)
N_{TM}	276	$222^{'}$	192	30
N_S	357	340	287	53
N_{TL_SEC}	49	43	37	4
N_TL_TAT	84	89	67	6
P_IM	187	128	106	11
P_TM	4456	1237	1073	156
P_S	1417	419	360	42

CD-HIT

- 1. CD-HIT reduction using 0.9 threshold
- 2. 15% holdout to create independent dataset
- 3. N_IM and N_OM are reduced/partitioned separately and then grouped together as envelope.

Data set	Before filtering	After filtering	Train-test	Independent
N_E	118 (59 OM + 59 IM)	115 (56 OM + 59 IM)	98 (48 OM + 50 IM)	17 (8 OM + 9 IM)
N_{TM}	276	222	189	33
N_S	357	340	289	51
N_{TL_SEC}	49	43	37	6
N_TL_TAT	84	79	67	12
P_IM	187	128	109	19
P_{TM}	4456	1237	1051	186
P_S	1417	419	356	63

Mean performance in 10-fold CV reapeated 5x

Both CD-HIT only and CD-HIT+graph part approaches lead to the same best architecture: Architecture_v71_0-1_No_filtering_RF.

Measure	CD-HIT	CD-HIT + graphpart
mean_kappa	0.8694610	0.8745206
$mean_AU1U$	0.7912053	0.7996173
$mean_N_E_sens$	0.4841053	0.3480000
$mean_N_TM_sens$	0.6532859	0.7102294
$mean_N_S_sens$	0.9154628	0.9358742
$mean_N_TL_SEC_sens$	0.6435714	0.7000000
$mean_N_TL_TAT_sens$	0.7074725	0.7136264
$mean_P_IM_sens$	0.9685714	0.9490043
$mean_P_TM_sens$	0.9971456	0.9979483
$mean_P_S_sens$	0.9398200	0.9444444
$sd_N_E_sens$	0.1137329	0.0845621
$sd_N_TM_sens$	0.0593983	0.0741940
$sd_N_S_sens$	0.0385892	0.0350118
$sd_N_TL_SEC_sens$	0.1670598	0.1504075
$sd_N_TL_TAT_sens$	0.1169723	0.0986722
$sd_P_{IM}_{sens}$	0.0399679	0.0487234
$sd_P_TM_sens$	0.0037315	0.0031084
$sd_P_S_sens$	0.0323924	0.0214219

Performance on the validation dataset

Measure	CD-HIT	CD-HIT + graphpart
kappa	0.8931102	0.5304225
AU1U	0.7896798	0.6989366
N_E accuracy	0.2352941	0.3000000
N_TM accuracy	0.7272727	0.23333333
N_S accuracy	0.9803922	0.7358491
N_TL_SEC accuracy	1.0000000	0.0000000
N_TL_TAT accuracy	0.8333333	0.3333333
P_IM accuracy	0.9473684	0.8181818
P_TM accuracy	1.0000000	0.9807692
P_S accuracy	0.9523810	0.0714286

CD-HIT approach

True \ Predicted	N_E	N_S	N_TL_SEC	N_TL_TAT	N_TM	P_IM	P_S	P_TM
N_E	4	11	0	0	1	0	0	1
N_S	1	50	0	0	0	0	0	0
N_{TL_SEC}	0	0	6	0	0	0	0	0
N_TL_TAT	0	1	0	10	1	0	0	0
N_{TM}	0	5	0	0	24	0	0	4
P_IM	0	0	0	0	0	18	0	1
P_S	0	1	0	0	0	0	60	2
P_{TM}	0	0	0	0	0	0	0	186

 $\operatorname{CD-HIT}$ + graphpart approach

True \ Predicted	N_E	N_S	N_TL_SEC	N_TL_TAT	N_TM	P_IM	P_S	P_TM
N_E	3	6	0	0	0	0	0	1
N_S	1	39	0	0	8	0	4	1
N_TL_SEC	0	2	0	1	1	0	0	0
N_TL_TAT	0	3	0	2	0	0	0	1
N_{TM}	1	15	2	0	7	0	0	5
P_{IM}	0	0	0	0	0	9	0	2
P_S	0	24	0	0	0	0	3	15

True \ Predicted	N_E	N_S	N_TL_SEC	N_TL_TAT	N_TM	P_IM	P_S	P_TM
P_TM	0	1	0	0	1	0	1	153