Artificial Neural Networks and Deep Learning - Notes - v0.2.0

260236

October 2025

Preface

Every theory section in these notes has been taken from two sources:

- Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press. [1]
- Course slides. [2]

About:

GitHub repository

These notes are an unofficial resource and shouldn't replace the course material or any other book on artificial neural networks and deep learning. It is not made for commercial purposes. I've made the following notes to help me improve my knowledge and maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher's material or a book on the topic. These notes can only be a helpful material.

Contents

1	Intr	roduction to Deep Learning	4
	1.1	Machine Learning Foundations	4
		1.1.1 Machine Learning Paradigms	7
		1.1.1.1 Supervised Learning	8
		1.1.1.2 Unsupervised Learning	11
		1.1.1.3 Reinforcement Learning	16
	1.2	Towards Deep Learning	19
	1.3	Modern Pattern Recognition (Pre-DL)	21
	1.4	What is Deep Learning after all?	23
	1.5	What's Behind Deep Learning?	28
	1.6	Summary	30
2	Fro	m Perceptrons to FNNs	31
	2.1	Historical Context	31
	2.2 The Perceptron		37
		2.2.1 Who Invented It?	37
		2.2.2 Mathematical Model & Logical Operations	39
		2.2.3 Hebbian Learning Rule	43
		2.2.4 Perceptron as Linear Classifier	47
		2.2.5 Boolean Operators & Linear Separability	50
In	dex		54

1 Introduction to Deep Learning

1.1 Machine Learning Foundations

Humans and animals learn from experience. Computers, too, can improve performance when exposed to more data or feedback. But how do we formally define "learning" in a way that's precise enough for a engineering course? Tom Mitchell¹, in 1997, proposed a now-classic definition:

Definition 1: Task, Experience, Performance

A computer program is said to learn from experience \mathbf{E} with respect to some class of tasks \mathbf{T} and a performance measure \mathbf{P} , if its performance at tasks in \mathbf{T} , as measured by \mathbf{P} , improves with experience \mathbf{E} .

- Task (T): what the program is supposed to do. For example, classification (spam vs not spam), regression (predict house prices) or game playing (chess).
- Experience (E): the data the algorithm is exposed to. For example, training set of labeled emails (spam vs ham), past games played by an agent, sensor data from a robot.
- Performance measure (P): the metric used to evaluate progress. For example, classification accuracy (F1 score), mean square error for regression, total reward in reinforcement learning.

A system "learns" if, after seeing more data or interacting more with the environment, its **measured performance improves**.

Example 1: Definition in Action

Some scenarios:

1. Email Spam Classifier

- T (task): Classify emails as spam.
- E (experience): Training dataset of emails labeled as spam.
- P (performance measure): Accuracy on unseen emails.

If accuracy improves as the classifier sees more labeled data, then computer program learning.

2. Self-Driving Car

- T: Driving from A to B safely.
- E: Millions of hours of driving footage + sensor readings.
- P: Fewer accidents per mile, shorter trip times.

If the car improves after more data, it has learned.

¹Tom Mitchell is a *pioneer of machine learning*, both as a scientist and as an educator. His 1997 textbook, and especially that concise definition, shaped how an entire generation of students and researches understand Machine Learning (ML).

3. Chess Playing Agent

- T: Win games.
- E: Past games played against itself or others.
- P: Win rate.

More games, better play, computer program learning.

This definition matters because is **broad and general** (covers supervised, unsupervised, and reinforcement learning), it stresses **measurable improvement** (no improvement, no learning), and highlights the **central role of data** (E) and evaluation (P).

? Why Mitchell's definition doesn't mentions "Machine Learning" explicitly

- 1. **It's meant to be general**. Mitchell wasn't defining what ML is as a field, but rather what it means for a program to learn. He avoided vague terms like "machine learning" or "artificial intelligence" and instead described the process:
 - A program improves at a **Task** (**T**);
 - Thanks to Experience (E);
 - As measured by **Performance** (P).
- 2. Machine Learning = building such programs. So instead of saying "Machine Learning is when...", he framed it as: "a computer program is said to learn if...". That's why his definition became the canonical operational definition of Machine Learning.
- 3. It links directly to practice. The definition is testable: we can check if a system improves with experience. This is much stronger than a philosophical definition like "machine learning is making computers intelligent".

Example 2: Analogy

Think of physics. Newton didn't define "physics". He defined *laws of motion* and *gravity*. From those definitions, physics as a discipline could build itself consistently.

Similarly, Mitchell didn't define "Machine Learning" as a whole discipline. He defined **what it means for a program to learn**. The field then said: "Machine Learning is the study of programs that satisfy this definition".

Mitchell's definition tells us ML is **not about hardcoding solutions**, but about **improving performance with data-driven experience**, measurable by a task-specific metric.

Why we start with Tom Mitchell's definition

- 1. Machine Learning is broad and fuzzy. People use "learning", "AI", "intelligence" loosely. By giving a formal, authoritative definition at the beginning, the course sets a *clear baseline*: what do we mean by *learning*? How do we recognize it in a program?
- 2. It frames the whole course. Everything we explain later, supervised learning, neural networks, deep learning, must fit inside this triplet (Task, Experience, Performance). For example:
 - Neural Network training? It's about improving P on T given more E
 - Reinforcement learning? Same template, different E and P.
- 3. It's rigorous but simple. Unlike philosophical definitions of intelligente, Mitchell's version is operational: it tells us how to test if learning is happening. It works as a scientific foundation, "if we can't measure performance improvement, we can't claim the program learned".
- 4. It avoids confusion later. If we started with supervised learning or deep learning right away, we'd lack the general umbrella. With this definition first, we can always check: "what is our T? what is our E? what is our P?".

■ Mathematical View

Formally, suppose we have:

- Dataset $D = \{(x_i, t_i)\}_{i=1}^N$ (inputs + targets).
- A model $f_{\theta}(x)$ with parameters θ .
- A loss function $L(f_{\theta}(x), t)$ that measures errors (P).

Learning means finding θ^* that minimizes the expected loss:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,t)\sim E} \left[L\left(f_{\theta}(x), t\right) \right]$$

This equation will be explained more thoroughly in the following sections.

1.1.1 Machine Learning Paradigms

When Tom Mitchell gave us the **triplet** (**T**, **E**, **P**), he provided a general definition of learning. But in practice, machine learning problems usually fall into a few **big paradigms**; categories defined by what kind of data (experience) we provide and what kind of task we want solved. These paradigms are like **different ways of framing the learning problem**:

- 1. **Supervised Learning**: we give the algorithm examples of input and desired output. The goal is learn to map new inputs to outputs.
- 2. **Unsupervised Learning**: we only give input data, no labels. The goal is discover hidden structures or representations.
- 3. **Reinforcement Learning**: we don't provide explicit labels. The system interacts with an environment, receives **rewards or penalties**, and learns a strategy (policy) to maximize reward over time.

These paradigms are important because are the **building blocks of the field**. Almost any ML problem can be described belonging to (or combining) these three. They differ mainly in the **nature of the data (E)** and the **type of feedback (P)** available. Understanding them helps in choosing the right algorithms and models for a problem.

Example 3: Analogy

Imagine teaching three kinds of students:

- Supervised Learning student: we show them math problems with answers, and they learn how to solve similar ones.
- Unsupervised Learning student: we give them a pile of problems *without answers*, and they try to find patterns (like grouping similar problems together).
- Reinforcement Learning student: we give them a puzzle game. They don't know the rules, but they learn through *trial and error* because we give them rewards when they succeed.

1.1.1.1 Supervised Learning

Supervised Learning is like learning with a teacher:

- The algorithm is given examples of inputs and their correct outputs (labels).
- The goal is to learn a **mapping function** that predicts the correct output for new, unseen inputs.

Formally:

• Training dataset:

$$D = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}\$$

Where x_i are inputs and t_i are targets.

- Model: $f_{\theta}(x) \approx t$.
- Learning: choose parameters θ that minimize a loss function measuring error.

In other words, **Supervised Learning** is a type of machine learning where the algorithm is trained on a labeled dataset, meaning each training example includes both the input data and the correct output. And the goal is to learn a function that maps inputs to outputs, in order to make predictions on new, unseen data.

? Types of Supervised Learning

In supervised learning we always have:

- Inputs x (features).
- Outputs t (labels/targets).
- A model $f_{\theta}(x)$ that learns a mapping from inputs to outputs.

The distinction between **classification** and **regression** depends on the **nature** of the output.

- Classification: Predict a discrete class label. The output space is a finite set of categories. For example:
 - Binary: $\{0,1\}$, e.g. spam vs not spam.
 - Multi-class: $\{1, \ldots, K\}$, e.g. digits 0-9.

From a mathematical point of view:

$$f_{\theta}(x): \mathcal{X} \to \{1, 2, \dots, K\}$$

Example 4: Cars vs Motorcycles

Use the classic triplet:

- Task (T): distinguish between two categories (binary classification).
- Experience (E): dataset of images labeled "car" or "motor-cycle".
- Performance (P): accuracy (percentage of correct predictions).

Pipeline (how supervised learning was traditionally done before deep learning):

- Feature Extraction (Hand-Crafted Features). Raw data (like an image, sound, or text) is often too complex to give directly to a simple model. Traditionally, humans designed rules or functions to extract features from raw data.
 - * Example (images): count edges, corners, textures, or wheel shapes.
 - * Example (text): word frequencies, presence of certain keywords.
 - * Example (audio): pitch, energy, Mel-frequency coefficients (MFCCs).

These features are **manually engineered** to capture the most important aspects of the problem. The output is a vector of numbers (feature vector) that represents each example. This step is about "what information to feed into the model".

In this example, hand-crafted features are:

- * Extract "number of circular shapes" (wheels);
- * Extract "dominant color";
- * Extract "edge orientation histograms".

The photo is now a vector like [2, 0.6, 0.8]

- Learning a Model (Classifier). Once we have feature vectors, we train a machine learning model that learns to map those features to outputs (labels or numbers). The model learns decision boundaries (for classification) or functions (for regression) that separate categories or fit numeric values. This is the actual learning step: the algorithm adjusts its parameters from the data.

In this example, the classifier could be a Support Vector Machine (SVM) model, which learns as follows: if "number of wheels ≈ 2 " then is a motorcycle; if "number of wheels ≈ 4 " then is a car.

• Regression: Predict a continuous value. The output space is the set of real numbers (\mathbb{R}). From a mathematical point of view:

$$f_{\theta}(x): \mathcal{X} \to \mathbb{R}$$

Example 5: Price Prediction

Use the classic triplet:

- Task (T): predict a continuous value instead of a discrete label.
- Experience (E): dataset of houses (features: size, location, rooms) with their selling prices.
- **Performance (P)**: Mean Squared Error (MSE), Mean Absolute Error (MAE), or \mathbb{R}^2 score.

Pipeline:

- Hand-crafted features: e.g., number of rooms, square meters, distance to city center.
- Learned regressor: a model that predicts a continuous output.

In simple terms, if our labels are:

- Categories, it's classification.
- Numbers, it's **regression**.

? Why Deep Learning Changed This

In deep learning, feature extraction and learning are not separated anymore. Neural networks learn features automatically from raw data (pixels, sound waves, text). So the pipeline becomes one end-to-end step: input raw data \rightarrow neural network \rightarrow prediction.

More resources about Supervised Learning can be found in the notes for the Applied Statistics course:

1.1.1.2 Unsupervised Learning

Unsupervised Learning is like learning without a teacher:

- We only provide the algorithm with **inputs** x_1, x_2, \ldots, x_N .
- There are **no labels/targets** telling the algorithm the "correct answer".
- The goal is to discover hidden structures or representations in the

Formally:

• Dataset:

$$D = \{x_1, x_2, \dots, x_N\}, \quad x_i \in \mathbb{R}^d$$

- ullet Task: find structure in D, e.g., groups, manifolds, lower-dimension embeddings.
- Performance measure: less obvious (since no labels). It can be internal measures (compact clusters, variance explained) or extrinsic measures (utility in downstream tasks).

The most intuitive unsupervised task: Clustering

In supervised learning, we had "car vs motorcycle", categories are known. In unsupervised, no labels are given. The simplest question becomes: "can we group the data into natural categories, even if we don't know their names?". That's exactly what clustering does. Clustering is the process of grouping data points into clusters such that:

- Points in the same cluster are **similar** to each other.
- Points in different clusters are dissimilar.

Clustering uses a **similarity measure**, such as Euclidean distance. The algorithm groups data into clusters that minimize within-cluster distance and maximize between-cluster distance. Some common algorithms include:

• **Hierarchical Clustering**. Build a tree of clusters by progressively merging or splitting. Exists two approach: Agglomerative Clustering (Bottom-Up) or Divisive Clustering (Top-Down).

Figure 1: Agglomerative Clustering (top plot), Dendogram (mid plot) and Dendogram with cut (bottom plot).

About Figure 1, page 12. In the Agglomerative Clustering result, each dot is a **data point** (here we generated 50 synthetic points). The algorithm grouped them into **3 clusters**. We can see points within each cluster are **close together** in space. Also, the clusters are **well separated**, this is why hierarchical clustering works well here. The Dendogram shows the **hierarchical merging process**:

- At the **bottom**, each point starts as its own cluster.
- Going **upwards**, clusters that are close together are merged.
- The **height of each merge** (y-axis = distance) indicates how far apart the clusters were when merged.
- At the **top**, all points are eventually merged into a single cluster.

In the last figure, we "cut" the dendogram horizontally at a certain height (distance threshold), and we obtain a chosen number of clusters (here, 3). Everything **below the line** remains as separate clusters. Everything **above the line** (higher merges) is ignored. In the Dendogram, cutting at ≈ 15 gives 3 vertical "branches" crossing the red line. Each branch corresponds to one cluster. These branches include all 3 groups of points.

• **K-Means**. Choose *k* clusters; assign points to the nearest cluster centroid; and update centroids until convergence.

At this point, no data points are assigned to clusters yet, or all are assumed to be uncolored/unclustered. The positions of the centroids will strongly influence how the algorithm proceeds.

The goal here is to start with some guesses. The next step will use these centroids to form the initial clusters.

- Iteration 1 - First Assignment and Update

Each data point is assigned to the closest centroid, forming the first version of the clusters. New centroids are computed by taking the average of the points in each cluster. We can already see structure forming in the data, as points begin grouping around centroids.

This step is the first real clustering, and centroids begin to move toward dense regions of data.

- Iteration 2 - Re-Assignment and Refinement

Clusters are recomputed based on updated centroids. Many points remain in the same clusters, but some may shift to a new cluster if a centroid has moved. Centroids continue moving closer to the center of their respective groups.

The algorithm is now refining the clusters and reducing the total distance from points to centroids.

- Iteration 3 - Further Convergence

At iteration 3, the K-Means algorithm reached convergence. The centroids no longer moved, and no points changed cluster. This means:

- * The algorithm has found a locally optimal solution.
- * Further iterations would not improve or change the clustering.
- * The final configuration is considered the result of the algorithm.

In practice, this is how K-Means stops: it checks whether the centroids remain unchanged, and if so, it terminates automatically.

More resources about Unsupervised Learning and Clustering can be found in the notes for the Applied Statistics course:

1.1.1.3 Reinforcement Learning

Reinforcement Learning (RL) is like *learning by trial and error*. An **agent** interacts with an **environment** by taking **actions** and receiving **rewards** or **punishments**. The goal of the agent is to learn a policy that maximizes the cumulative reward over time.

At each step, the agent:

- 1. Observes a state s_t from the environment.
- 2. Selects an action a_t based on its current policy $\pi(a_t | s_t)$.
- 3. Receives a reward r_t and a new state s_{t+1} .

The agent's goal is to learn a **policy** $\pi(a|s)$ that maximizes the expected cumulative reward. Unlike supervised learning, no teacher gives the right answer; the agent learns from the **consequences** of its actions.

? What is an Agent?

An agent is an *entity* that makes decisions and takes actions in an environment to achieve a specific goal. In reinforcement learning, the agent learns to optimize its behavior based on feedback from the environment.

With *entity*, we mean anything that can perceive its environment through sensors and act upon that environment through actuators.

Example 7: Robot Navigation

For example, consider a robot navigating a maze. The robot (agent) perceives its surroundings (state), decides to move left or right (action), and receives feedback (reward) based on whether it gets closer to the exit or hits a wall. The robot's goal is to learn a strategy (policy) that maximizes its chances of reaching the exit while avoiding obstacles.

In simple terms, the robot through cameras and sensors perceives the maze (environment), decides its next move (action), and learns from the outcomes (rewards) to improve its navigation strategy (policy).

In summary:

- **Agent**: The robot.
- Environment: The maze.
- State: The robot's current position in the maze.
- Action: Moving left, right, forward, or backward.
- **Reward**: Positive reward for reaching the exit, negative reward for hitting a wall.
- **Policy**: The strategy the robot uses to decide its next move based on its current state.

The agent's primary objective is to learn a policy that maximizes the cumulative reward it receives over time by interacting with the environment.

Formalization of Reinforcement Learning

Reinforcement learning problems are often modeled using Markov Decision Processes (MDPs). An MDP is defined by:

- Task (T): learn a policy $\pi(a|s)$ mapping states to actions. In other words, the task is to find the best action to take in each state to maximize cumulative reward.
- Experience (E): consists of sequences of states, actions, and rewards obtained by interacting with the environment.
- Performance Measure (P): expected return (sum of discounted rewards):

$$P = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

Where $\gamma \in [0,1]$ is the discount factor that determines the importance of future rewards.

Key Concepts in Reinforcement Learning

The goal of this section is to introduce the Reinforcement Learning paradigm and its key concepts. These concepts will be covered in more detail in later sections. However, here are some of those concepts:

- Exploration vs. Exploitation: The dilemma of choosing between exploring new actions to discover their effects (*exploration*) and exploiting known actions that yield high rewards (*exploitation*).
 - **?** Why a dilemma? Because if the agent only exploits known actions, it may miss out on potentially better actions. Conversely, if it only explores, it may not accumulate enough reward.
- Reward Signal: The feedback received from the environment after taking an action, used to evaluate the action's effectiveness. It could be sparse or dense:
 - Sparse Reward: Rewards are infrequent, making it challenging for the agent to learn. For example, in a game, the agent might only receive a reward upon winning or losing.
 - Dense Reward: Rewards are given frequently, providing more immediate feedback. For example, in a driving simulation, the agent might receive small rewards for staying on the road and penalties for going off-road.

• Delayed reward: The reward for an action may not be immediate, making it challenging to associate actions with their long-term consequences. For example, in a chess game, a move may not yield an immediate reward but could lead to a win several moves later. The agent must learn to evaluate actions based on their long-term impact rather than immediate outcomes. This requires the agent to consider future rewards when making decisions.

44 RL vs. Supervised Learning

Reinforcement learning differs from supervised learning in several key ways:

Aspect	Supervised Learning	Reinforcement Learning
Data	Fixed labeled dataset (in-out pairs)	No labels; agent generates data by acting
Feedback	Correct answer for each example	Rewards (possibly delayed, sparse)
Goal	Minimize error (classification/regression)	Maximize cumulative reward
Typical methods	Regression, SVM, Neural Nets	Q-learning, Policy Gradients, Actor-Critic

▲ Challenges of Reinforcement Learning

Reinforcement learning presents several challenges:

- Exploration: need to try enough actions to discover good strategies.
- **Delayed Feedback**: rewards may not be immediate, complicating reward assignment.
- Sample inefficiency: often requires millions of trials to learn effective policies.
- Stability: training can be unstable with neural nets.

Despite these challenges, RL has achieved remarkable success in various domains, including game playing, robotics, and autonomous systems.

In summary, reinforcement learning is a powerful paradigm for training agents to make decisions in complex environments by learning from the consequences of their actions. RL is distinct from supervised learning in its approach to data, feedback, and goals, making it suitable for a wide range of applications where direct supervision is not feasible.

1.2 Towards Deep Learning

This course, and this notes, focuses **mostly on Supervised Learning**, with some unsupervised learning concepts and techniques. *Why?*

- Supervised Learning is the most widely used paradigm in practice (e.g., image classification, speech recognition, etc.);
- Many deep learning application (image recognition, NLP, etc.) are supervised tasks;
- Unsupervised learning will be touched when needed (e.g., representation learning, generative models, etc.);

Deep Learning is not a new paradigm, it's a **new approach** with supervised/unsupervised learning.

? What about Deep Learning? Iris Flower Example

The Iris flower dataset is a classic dataset in machine learning, often used for classification tasks. It consists of 150 samples of iris flowers, each with four features: sepal length, sepal width, petal length, and petal width. The goal is to classify the flowers into three species: Iris setosa, Iris versicolor, and Iris virginica.

• Traditional Machine Learning Approach:

- Extract "good features" from the raw data (e.g., petal length and width);
- Train a classifier (e.g., decision tree) on these features;

• Deep Learning Approach:

 Learn both features and classifier simultaneously from the raw data;

For example:

- 1. If **features are simple** (e.g., petal length and sepal width), then the classification task is **easy**, and a simple model (e.g., decision tree) can achieve high accuracy;
- 2. If **features are complex** (e.g., raw pixel values of flower images), then the classification task is **hard**, and the traditional approach **struggles to extract meaningful features**;
- 3. If **impossible to know** which features matter, then handcrafted features are **not enough**, and we need a model that can **learn features** from the data itself (e.g., a deep neural network).
- 4. Deep Learning learns features **directly from raw data**, making it suitable for complex tasks where feature engineering is challenging or infeasible (hierarchical representations).

Feature Engineering vs. Learned Features

• Feature Engineering (Traditional ML):

- Feature Engineering is the process of using domain knowledge to extract features from raw data that make machine learning algorithms work. It needs human experts to design and select features that are relevant to the task.
- Problem: requires domain expertise, time-consuming, and may not capture all relevant information. It is often brittle and not transferable to new tasks or domains.

• Learned Features (Deep Learning):

- Learned Features are features that are automatically learned by the model from the raw data during training.
- Layers learn progressively:
 - * Lower layers learn simple patterns (e.g., edges, corners);
 - * Middle layers learn more complex patterns (e.g., eyes, wheels);
 - * Higher layers learn high-level concepts (e.g., faces, cars).
- Advantage: optimized for the task at hand, can capture complex patterns, and are transferable to new tasks or domains. It requires less manual effort and often generalizes better to unseen data.

1.3 Modern Pattern Recognition (Pre-DL)

Before the rise of deep learning, modern pattern recognition techniques were primarily based on traditional machine learning algorithms and statistical methods. These techniques focused on feature extraction, dimensionality reduction, and classification using various algorithms.

■ Speech Recognition (early 1990s-2011)

Speech recognition systems used a **multi-stage pipeline** approach, which included:

- Low-level features: extracted from the raw audio waveform, such as MFCCs (Mel-Frequency Cepstral Coefficients), a compact representation of the spectral properties of the audio signal.
- Mid-level features: built by grouping/encoding low-level features over short time windows, capturing temporal dynamics. For example Mixture of Gaussians (MoG) used to model acoustic units (phonemes).
- Classifier (high-level features): used to map mid-level features to words or phrases. Common classifiers included Hidden Markov Models (HMMs) combined with Gaussian Mixture Models (GMMs) to decode sequences of acoustic units into words.

This pipeline worked decently but was very **hand-crafted** and success depended heavily on the quality of feature engineering.

Object Recognition (2006-2012)

Computer vision systems followed a similar multi-stage pipeline approach:

- Low-level features: detect edges, corners, gradients using methods like SIFT (Scale-Invariant Feature Transform) or HOG (Histogram of Oriented Gradients).
- Mid-level features: combine low-level descriptors into higher-level "visual words". For example, clustering with k-means to create a codebook of visual words, and Sparse Coding to represent images as sparse combinations of these words.
- Classifier (high-level features): train SVMs (Support Vector Machines) or Random Forests to classify images based on mid-level features.

Again, this approach was heavily reliant on hand-crafted features and required significant domain expertise to design effective features. However, before 2012, these methods were the state-of-the-art in many computer vision tasks.

General Pipeline (Pre-DL Pattern Recognition)

The general pattern recognition pipeline before deep learning can be summarized as follows:

1. Low-level features: raw signal transformation (e.g., edges, frequencies).

- 2. **Mid-level features**: encode or cluster low-level descriptors (e.g., visual words, acoustic units).
- 3. Classifier (high-level features): learns categories from hand-designed representations.

A Limitations

- **Domain expertise required**: Designing MFCCs, SIFT, HOG, etc. required significant knowledge of the specific domain (speech, vision).
- task specific: features built for one task often did not generalize well to others (e.g., MFCCs don't work well for images).
- Brittleness: sensitive to noise, illumination, scaling, speaker accents, etc.
- Limited expressiveness: as dataset grew, hand-crafted pipelines saturated in accuracy.

Before deep learning, pattern recognition was a **multi-stage pipeline** heavily **reliant on hand-crafted features and domain expertise**. While effective for its time, it had significant limitations in scalability, generalization, and robustness that deep learning would later address.

1.4 What is Deep Learning after all?

After showing the historical context, what Machine Learning is, the three paradigms and how pre-DL pattern recognition worked, we can finally answer the question:

Now that we know what ML does, what makes Deep Learning different from classic ML?

We will take our time answering this question. First, we need to understand the meanings of "features" and "classifiers".

? What are "features"?

Features are numerical representations of the raw data that capture something meaningful for the task.

Type of Data	Raw data example	Example of features
Images	Pixels (RGB values)	Edges, corners, textures
Audio	Waveform (amplitude over time)	Pitch, frequency spectrum, MFCCs
Text	Words or sentences	Word counts, syntactic structure

In **classical ML**, these features were **manually designed** by humans; engineers decided *what* was important and *how to compute it*. For example:

Input image \rightarrow extract edges manually \rightarrow feed into SVM classifier

So we had:

$Handcrafted Features \rightarrow Learned Classifier$

Where "handcrafted" means "coded by humans". So, before Deep Learning, the **feature extraction** and the **classifier** were two separate stages in the pipeline, and humans designed the first stage. This approach worked, but only if the human correctly guessed what features matter for the task.

? What does "Learned Features" mean?

Deep Learning says: "<u>Stop</u> handcrafting features; let the machine learn them automatically, layer by layer, together with the final classifier".

In **Deep Learning**, the model itself learns how to transform raw data into useful internal representations. Each layer of a neural network acts as a **feature extractor** that learns automatically *what patterns matter*:

- First layers: detect edges, colors, or simple shapes.
- Intermediate layers: detect object parts (e.g., eyes, wheels, leaves).
- Deep layers: detect abstract categories (e.g., "face", "car", "flower").

So instead of telling the machine *what to look for*, we let it **discover patterns directly from data**. This is the "learned features" part.

? What does "Learned Classifier" mean?

After features are extracted (automatically or manually), the model still needs to **make a decision**: classify, predict, or generate.

- In traditional ML, this is the final **classifier** stage (e.g., SVM, logistic regression, random forest).
- In Deep Learning, the **last few layers** of the network act as that classifier, they map high-level learned features to output labels.

So, both parts, the *feature extractor* and the *decision function*, are **learned jointly** through backpropagation.

$$\text{Raw Data} \xrightarrow{\text{Feature Extractor}} \text{Representations} \xrightarrow{\text{Classifier}} \text{Predictions}$$

So DL uses a single model to learn both **features** and **classifier** together: Learned Features + Learned Classifier. The model not only learns *how to decide* but also *how to see the world*, both are learned from data.

? So, "What is Deep Learning after all?"

Deep Learning is **not just a new algorithm**, it's a new way of approaching representation learning. If we had to answer in one line: "Deep Learning is the automatic learning of hierarchical data representations and decision functions directly from raw data". That's why it's so powerful: it adapts to the data and the task, without relying on human intuition about features.

Deepening: Why Not Everything Is Deep Learning

Deep Learning is *powerful*, but it's not a silver bullet, it's not *free*. It's the best tool **when** we have: large amounts of diverse data, high compute, a task based on perception or pattern recognition. Otherwise, **traditional ML** or **statistical models** can be simpler, faster, and just as effective.

- Deep Learning needs a lot of data. Deep models have millions (sometimes billions) of parameters. They only generalize well when trained on massive labeled datasets (e.g., ImageNet: 14M images). If we have small data, like 300 samples from an industrial machine, a deep model will likely overfit and perform worse than simpler methods. In other words, Deep Learning shines when there is data abundance, but struggles in data scarcity.
- Deep Learning needs a lot of computation. Training is computationally heavy, requiring specialized hardware: GPUs, TPUs, clusters, or cloud computing. Classic ML (SVMs, Decision Trees, Random Forests) can run on a laptop. Deep nets require weeks of GPU training, hyperparameter tuning, and energy cost. So, if the

task doesn't justify the cost, simpler ML is more efficient.

- Deep models are black boxes. We can rarely explain why a deep network made a decision. For critical systems (healthcare, law, finance, safety) we need interpretability and traceability. Simpler models like linear regression or decision trees are transparent, easy to justify in front of regulators or domain experts. For example, a hospital won't risk a deep net saying "tumor" without being able to explain which features caused that prediction.
- Deep models are hard to train and tune. Choosing architecture (layers, neurons, learning rate, dropout, etc.) is an art. Training can diverge or get stuck (vanishing gradients, overfitting, exploding losses). We often need extensive experimentation and deep knowledge of optimization tricks. So, not every team or project can afford the expertise and trial cycles DL requires.
- Deep Learning doesn't always fit the problem. Some tasks simply:
 - 1. Have structured or tabular data (e.g., bank records, tabular logs). Here, traditional ML (XGBoost, Random Forests) often outperforms DL.
 - 2. Require **symbolic reasoning** or **logic**, not pattern recognition. Here, DL struggles to capture rules and relationships that classical AI or rule-based systems handle better.
 - 3. Need **causal inference**, not just correlations. DL finds patterns but doesn't understand cause-effect relationships, which are crucial in many scientific and policy domains. Let's think about a real-world example: predicting disease spread based on interventions (lockdowns, vaccinations) requires understanding causality, not just correlations in data (not just "if X happens, Y follows", but "if we do X, Y will change").
- Deep Learning needs good data. DL is extremely sensitive to: label noise (wrong annotations ruin learning); biases in the dataset (can reproduce or amplify them); distribution shifts (fails badly if test data differ from training). Traditional methods often handle noise and small variations more robustly. So, "Garbage in → garbage out" is even more true with DL.
- Deep Learning doesn't mean understanding. DL recognizes patterns, not meaning. It can detect a cat, but it doesn't know what a cat is. It can predict outcomes, but not always why they happen. That's why current research explores hybrid systems combining DL with: symbolic reasoning (neuro-symbolic AI), knowledge graphs, logic and interpretability layers.

Deepening: ChatGPT, LLaMA & Modern AI Models - What Are They?

ChatGPT, LLaMA, Gemini, Claude, etc. are all based on a specific kind of Deep Neural Network called a Transformer, introduced in 2017 by Vaswani et al. ("Attention is All You Need"). So, fundamentally:

ChatGPT, LLaMA, Gemini, etc. ∈ Deep Learning

They are not "beyond" DL, they are its current frontier.

- What kind of Deep Learning model? They belong to the family of Large Language Models (LLMs).
 - Architecture: Transformer (a type of deep neural network specialized for sequences and attention).
 - Learning paradigm: mainly self-supervised learning, a subform of unsupervised learning.
 - Objective: predict the next word (token) given the previous ones.

Mathematically:

$$P(w_t | w_1, w_2, \dots, w_{t-1})$$

"Given this context, what's the next most probable word?". That's the only thing it learns. Everything else (reasoning, style, facts) emerges from learning this next-token distribution on vast text corpora.

- Why are they still called "Deep Learning"? They perfectly fit the definition we discussed earlier: "Deep Learning is the learning data representation and decision functions directly from data".
 - They learn **representations** of words, sentences, and even concepts automatically.
 - They have layers upon layers (up to 100+ in GPT-4).
 - They don't rely on hand-crafted linguistic features (no human tells them grammar rules).
 - They learn everything directly from raw text data (syntax, semantics, even reasoning patterns).

So they exemplify:

Learned Features (embeddings) + Learned Classifier (next word predictor)

But at massive scale, with billions of parameters and trained on terabytes of text. This scale is what enables their surprising capabilities.

- What makes them different from earlier Deep Learning. Traditional DL (e.g., CNNs, RNNs) had strong task specialization: CNNs for vision, RNNs for sequences, LSTMs for time series. Instead, Transformers with LLMs changed the game because they are general-purpose learners:
 - They can handle language, code, images, audio, even multimodal data.
 - Their attention mechanism learns relationships between all parts of the input simultaneously.

They are sometimes called: "Foundation Models", because they can be *fine-tuned* for many downstream tasks (translation, summarization, question answering, etc.).

- **?** Why do they feel intelligent? When we train on *massive data* (trillions of words) and *huge models* (hundreds of billions of parameters), the model starts showing **emergent behaviors**:
 - Understanding context, humor, and nuance.
 - Performing reasoning and arithmetic.
 - Generating coherent, creative text.
 - Translating languages fluently.
 - Writing code snippets.

But still, it's pattern prediction. There is **no explicit symbolic reasoning** or understanding; it's just learned statistical structure at enormous scale. So we say: "They are **Deep Learning models**, trained on **massive dataset**, showing **emergent intelligence**".

1.5 What's Behind Deep Learning?

If the concept of neural networks exists since the 1950s, why did Deep Learning explode only after 2012? This is a natural question that comes after we've seen what Deep Learning is. To answer this question, we show two perspectives: the MIT view and The Economist view.

↑ The MIT view: Computational Power

According to MIT and many early researchers, Deep Learning became possible only when **computational resources** caught up with the theory. It means that the mathematics and algorithms (backpropagation, perceptrons, convolutional nets) existed for decades, but **training deep networks** requires enormous computation:

- Millions of matrix multiplications.
- Thousands of gradient updates per sample.
- Gigantic datasets.

Before 2010, this was impractical. Around 2011-2012, **GPUs** (Graphics Processing Units) changed everything:

- They made large-scale matrix computations thousands of times faster.
- Deep learning frameworks (Theano, TensorFlow, PyTorch) made GPU computing accessible.
- Hardware parallelism allowed training networks with **hundreds of layers** instead of 3-4.

So from the MIT perspective: Deep Learning rose because we finally had the computational power to train deep models.

The Economist view: Big Data

In 2012, *The Economist* (yes, the famous magazine) proposed a different, and equally valid, explanation: "Deep Learning exploded because the world finally generated **enough data** to feed it". It means that the Internet, social media, smartphones, sensors, and cloud storage created **massive labeled datasets**:

- ImageNet (over 14 million labeled images).
- YouTube (millions of labeled videos).
- Text from web, Wikipedia, books, perfect for LLM pretraining.

Deep neural networks thrive on data volume: they don't generalize well with few examples. The more data, the better they learn **hierarchical representations**. So from the Economist perspective: "Deep Learning rose because **we finally had Big Data**, the fuel it needs to work".

↑ The Real View: Both Matter

In reality, both perspectives are correct and complementary. Deep Learning's success is due to the **synergy of computational power and big data**:

- Before 2010, algorithms existed but computing was too slow and data too scarce. Then neural networks were limited to shallow architectures and small datasets.
- Around 2012, hardware (GPUs, TPUs, distributed training) made computation feasible. Simultaneously, the explosion of digital data provided the massive labeled datasets needed.

This combination triggered the **Deep Learning revolution**. The turning point was **ImageNet 2012**, where Krizhevsky, Sutskever, and Hinton demonstrated that a deep convolutional network (AlexNet) could drastically outperform traditional methods on image classification. This success was possible only because:

- They used two NVIDIA GPUs to train a deep network with millions of parameters.
- They trained on the large ImageNet dataset with 1.2M labeled images.

The result was an error rate of 15%, compared to 26% for the best traditional method. This landmark event showcased the **power of deep learning when both computational resources and big data are available**.

1.6 Summary

Everything we've seen, supervised, unsupervised, or reinforcement learning, ultimately depends on **how we represent data**. In traditional ML, features are *hand-crafted*. In Deep Learning, features are *learned automatically* through hierarchical representations. The revolution of Deep Learning wasn't new math, it was learning **what matters** in the data instead of coding it by hand.

Success of ML \Rightarrow Success of its feature representation

Deep networks just made the **representation learning** automatic and scalable.

Deep Learning = Learning Data Representation from Data

Deep Learning is not a specific architecture (like CNN, RNN, or Transformers) or algorithm. It's the **paradigm** where:

- 1. Input \rightarrow raw data (e.g., pixels, text, audio)
- 2. Model \rightarrow multiple non-linear layers learning internal representations.
- 3. Output \rightarrow desired prediction/task.
- 4. Learning \rightarrow end-to-end optimization of all layers together.

So instead of:

Human designs features \rightarrow Model learns mapping

We now have:

Model learns both features and mapping \rightarrow directly from data

This is the essence of Deep Learning: learning hierarchical representations directly from raw data.

\(\) "Which data?" - The key question of the course

This is the **transition line** to the rest of the course (notes). Now that we know what Deep Learning is, the next question is what data we use and how. Different data types define the upcoming sections:

Data Type	Upcoming Section
Tabular / numerical	Perceptrons & Feed-Forward NNs
Images	Convolutional Neural Networks (CNNs)
Sequential (text, time series)	Recurrent Neural Networks (RNNs) & Transformers
Unlabeled data	Autoencoders & Word Embeddings

So this question of "which data?" becomes the **roadmap** for the rest of the course (notes).

2 From Perceptrons to FNNs

2.1 Historical Context

When Artificial Intelligence first emerged as a field in the 1940s and 1950s, researchers were fascinated by the idea of creating machines that could *think*, *adapt*, and *learn* as the human brain does. At that time, traditional computers were already capable of executing precise, deterministic instructions with incredible speed. However, these **early machines lacked flexibility**: they could not interpret noisy or ambiguous input, nor could they modify their behavior from experience.

This limitation led scientists to look beyond the rigid Von Neumann architecture² and toward the **brain** as an alternative computational paradigm. The human brain, with its billions of interconnected neurons, represented a radically different kind of machine: **massively parallel**, **distributed**, **redundant**, and **fault-tolerant**. Each neuron is *simple*, yet together they form a system capable of extraordinary complexity and adaptability.

From this inspiration arose the idea of **neural networks**: mathematical models built from simple interconnected units that imitate, in a highly abstract way, the behavior of biological neurons. Interestingly, neural networks are not a recent invention of the deep learning era: they have existed since the birth of AI itself. In fact, the phrase "Deep Learning is not AI, nor Machine Learning" emphasizes that **deep learning is a later evolution within this larger historical continuum**. Neural networks have been a foundational approach to artificial intelligence from its inception, long before modern computational power and data made them successful.

In summary, the reason researchers in the 1940s and 1950s looked "beyond Von Neumann" was that they sought to create machines that could **learn from experience** and **adapt to new situations**, capabilities that traditional computers lacked:

- 1940s motivation: classic computers excelled at precise, fast arithmetic but researches wanted systems that could interact with noisy data, be parallel and fault-tolerant, and adapt.
- Brain as a computational model: the brain offers a radically different architecture that is massively parallel, distributed, redundant system. These properties are an appealing template for computation, which inspired artificial neurons and later full neural networks.

■ The inception of AI

In the years immediately following the Second World War, a new scientific dream began to take shape: the idea that intelligence could be recreated in a machine. Early pioneers such as Alan Turing, John von Neumann, Warren McCulloch, and Walter Pitts laid the foundations of what would soon

 $^{^2{\}rm The}$ sequential model where computation and memory are separated

be called *Artificial Intelligence*. Computers had just proven they could follow precise instructions and perform huge calculations at incredible speed, yet these machines were nothing more than rigid automata: they obeyed every command literally, unable to perceive, reason, or learn.

The emerging field of AI was born from the desire to bridge that gap, to make machines that could adapt, generalize from experience, and interact intelligently with the world. The 1940s and 1950s were therefore an era of conceptual excitement: could the brain's mechanisms be modeled mathematically and implemented in hardware or software? The earliest experiments sought to replicate the nervous system's structure, creating computational units that mimicked neurons and synapses. These units could, in principle, activate or remain silent depending on the inputs they received, a primitive form of reasoning.

At this stage, AI and neural networks were inseparable: **to build an intelligent machine meant to build an artificial brain**. Over the next decades, this vision would split into two main traditions. One emphasized *symbolic* reasoning (manipulating explicit rules and logic) while the other, the *connectionist* approach, pursued learning from examples through networks of simple computational nodes. The second line, though overshadowed for many years, would eventually resurface as what we now call **Deep Learning**.

From Von Neumann Machines to Brain-Inspired Models

In the 1940s, the **Von Neumann architecture** defined what we still call a *classical computer*: a machine with a central processor (CPU) that executes instructions stored in memory, step by step, following a deterministic sequence. This design is extremely powerful for arithmetic and logic, but it has key limitations when the goal is to emulate intelligence.

A Von Neumann computer is **serial**, **rigid**, and **exact**: it does exactly what it's told, line by line. Intelligence, however, requires something different, the ability to handle **noisy or incomplete data**, **recover from errors**, **adapt to change**, and **operate in parallel** on many signals at once. The human brain, in contrast, is a **massively parallel** and **distributed** system made of roughly 10^{11} neurons, each connected to thousands of others through 10^{14} to 10^{15} synapses.

This comparison motivated the idea of a **computational model inspired by the brain**. Instead of a single central processor, the brain uses huge numbers of simple processing units (neurons) working together. Each neuron performs a small, nonlinear operation, but their collective behavior gives rise to perception, reasoning, and learning.

Researchers realized that if intelligence in humans comes from these interactions, perhaps machines could become intelligent by simulating networks of artificial neurons, each following simple rules, but collectively capable of complex, adaptive computation.

In short:

- Von Neumann: deterministic, sequential, rigid.
- Brain-inspired: parallel, adaptive, fault-tolerant.

This shift marks the conceptual birth of **neural networks** as a new computational paradigm.

Neural Networks in the Early AI Era

The idea of taking the **human brain** as a model for computation stems from its extraordinary complexity and efficiency. A typical adult brain contains around **100 billion neurons** (10^{11}), and each neuron is connected to roughly **7'000** others, forming an estimated 10^{14} - 5×10^{14} synapses, even reaching 10^{15} in a three-year-old child.

Despite being slow compared to digital processors (neurons fire in milliseconds, not nanoseconds), the brain's power lies in its massive parallelism and redundancy. Each neuron is a simple processing element, but together they create a distributed, nonlinear, and fault-tolerant system capable of perception, reasoning, adaptation, and learning; functions that no single algorithmic machine of the 1940s could perform.

From a computational viewpoint, this means:

- Processing is distributed: no central control; intelligence arises from interactions.
- Information is encoded collectively: a concept survives even if some neurons fail.
- Parallelism ensures speed and robustness: thousands of operations occur simultaneously.
- Adaptivity: synaptic strengths (connections) change with experience, enabling learning.

These characteristics inspired the **first attempts to formalize "neurons" mathematically**, giving rise to the **perceptron** and to the field of *artificial neural networks*. The **perceptron** is, in essence, a simplified abstraction of how a biological neuron integrates inputs, applies a threshold, and produces an output. An idea that we'll explore in the following section.

What about the computation of biological versus artificial neurons?

♠ In a biological neuron, information is transmitted through electrochemical signals:

- The **dendrites** receive inputs from other neurons through *synapses*.
- Each input can be **excitatory** (it increases activation) or **inhibitory** (it decreases activation).
- The neuron integrates all these signals in the cell body (soma).
- When the total accumulated signal exceeds a **threshold**, the neuron **fires**, sending an output through its **axon** to other neurons.

Although this process is complex and involves various biochemical mechanisms, it can be summarized as:

collect inputs \rightarrow integrate \rightarrow compare with threshold \rightarrow fire

But how to model this computationally? In the **artificial version**, we simplify this biological process into a mathematical model:

$$h_j(x, w, b) = f\left(\sum_{i=1}^{I} w_i x_i - b\right) = f\left(w^T x\right)$$

Where:

- x_i are the input values (analogous to signals received by dendrites). They are like the neurotransmitter signals that a biological neuron receives from other neurons.
- w_i are the weights (analogous to synaptic strengths). They represent how strongly each input influences the neuron's activation.
- b is the bias (analogous to the threshold). It determines the level of input required for the neuron to activate.
- $f(\cdot)$ is the activation function (analogous to the firing mechanism). It decides whether the neuron fires based on the integrated input.

Each artificial neuron thus performs three main steps:

- 1. Weighted sum of its inputs (integration): $\sum_{i=1}^{I} w_i x_i$.
- 2. Subtracts the bias (thresholding): $\sum_{i=1}^{I} w_i x_i b.$
- 3. Applies the activation function (firing decision): $f\left(\sum_{i=1}^{I} w_i x_i b\right)$.

Definition 1: Artificial Neuron

An **Artificial Neuron** is a **mathematical model** inspired by the way a biological neuron works. It's the **basic computation unit** of a neural network.

While a real neuron collects electrical signals from thousands of connections (synapses) and "fires" if the total signal passes a threshold, an artificial neuron does the same thing, but with numbers.

Formally, it takes several inputs $(x_1, x_2, ..., x_I)$, multiplies each by a weight w_i , sums them, adds a bias b, and passes the result through an activation function $f(\cdot)$:

$$h_j(x, w, b) = f\left(\sum_{i=1}^{I} w_i x_i - b\right) = f\left(w^T x\right)$$
(1)

Where:

- Inputs (x_i) : the signals coming from other neurons or from data (e.g., pixel values).
- Weights (w_i) : how strong each input connection is (analogous to synaptic strength).
- **Bias** (b): shifts the activation threshold up or down.
- Activation function (f): decides whether the neuron "fires" (outputs a strong signal) or stays quiet.

In essence, the pipeline of an artificial neuron is:

Weighted sum \rightarrow Threshold/Bias \rightarrow Nonlinear activation \rightarrow Output

Definition 2: Bias

The **Bias** is an additional parameter in an artificial neuron that allows the activation function f to be shifted horizontally, providing the model with the ability to represent patterns that do not pass through the origin.

Mathematically, it appears as the constant term b in the neuron's activation equation (see page 35):

$$a = w^T x + b$$

The bias represents the **intrinsic tendency of a neuron to activate**, even in the absence of input. It acts like a tunable threshold that controls *when* the neuron fires.

Think of the bias as the neuron's **default tendency to fire**, it decides how easy or hard it is for the neuron to activate:

- A large positive bias → neuron tends to fire even with small input.
- A large negative bias \rightarrow neuron needs strong evidence (large input sum) to fire.

In other words, the bias *shifts the activation threshold* left or right along the input axis, allowing the neuron to learn more complex decision boundaries.

Imagine a simple rule: "if the weighted sum of our inputs is greater than 0, we output 1". Now suppose all our inputs are zero $(x_1 = x_2 = 0)$. If we want the neuron to still fire in that case, we need a **bias** to "push" it over the threshold. Bias gives the neuron a baseline activity, like saying: "even if there's not input, we are slightly inclined to fire".

So, an **artificial neuron** mimics the logical essence of a biological one: a small computing unit that combines multiple inputs into one output, depending on the learned connection strengths (weights) and a bias term. This is the foundation of the **perceptron**, the first neural network model, the topic of the next section.

2.2 The Perceptron

2.2.1 Who Invented It?

Once researchers realized that the brain could be viewed as a network of simple processing units, the next natural step was to formalize this idea into an actual **computational model**, what we now call a **neural network**.

Definition 3: Neural Network

A Neural Network is simply a collection of artificial neurons (page 35) connected by weighted links. Each neuron:

- Receives inputs,
- Computes a weighted sum,
- Applies an activation function,
- And produces an output that becomes the input for the next neuron.

Through these connections, the network forms a structure capable of **transforming input data into meaningful outputs**, a function approximator that *learns* by adjusting its weights.

The very first implementations appeared in the 1940s-1960s, with three major milestones:

- McCulloch & Pitts (1943). They proposed the Threshold Logic Unit (TLU), the first mathematical model of a neuron. Each unit:
 - Received multiple binary inputs,
 - Multiplied them by fixed weights,
 - Summed them up,
 - Compared the sum to a threshold,
 - Output 1 if the threshold was exceeded, 0 otherwise.

They proved that a network of such units could represent **any logical function**, meaning it could, in theory, "compute" anything if properly wired.

- Frank Rosenblatt (1957). He built the first trainable model, the Perceptron. Rosenblatt's perceptron could automatically learn the correct weights from examples using an update rule based on errors. His prototype was implemented in hardware:
 - The weights were stored as adjustable electrical components (potentiometers),
 - Electric motors updated them during learning. This was the first step from theoretical neuroscience to **machine learning**.

Bernard Widrow (1960). He developed the **ADALINE** (**Adaptive Linear Neuron**) and later the **MADALINE** (**Multiple ADALINE network**). Widrow's key idea was to express the threshold as a **bias term**, simplifying the equations and making it easier to train models using gradient-based optimization, a cornerstone of modern networks.

Together, these models represent the first generation of neural networks: simple, linear systems inspired by the brain but operating with mathematics and electricity. They laid the groundwork for the more complex architectures that would follow, leading to the deep learning revolution we see today.

2.2.2 Mathematical Model & Logical Operations

The Perceptron is the simplest neural network, a single neuron that transforms multiple input signals into one output through a weighted sum and a thresholding function.

Formally, given inputs:

$$x = [x_1, x_2, \dots, x_I]$$

And weights:

$$w = [w_1, w_2, \dots, w_I]$$

The perceptron computes the quantity:

$$a = \sum_{i=1}^{I} w_i x_i + b = w^T x + b \tag{2}$$

Where:

- x_i are the input features,
- w_i are the learnable connection weights,
- b is the bias (representing the firing threshold).

Then, this activation a passes through a step function (also called threshold or activation function) to produce the final output y:

$$y = \begin{cases} 1 & \text{if } a > 0 \\ 0 & \text{otherwise} \end{cases} \tag{3}$$

In some conventions, the output can also be -1 or +1 instead of 0 and 1, depending on how the data is encoded.

Sometimes, we include the bias directly as a weight w_0 associated with a fixed input $x_0 = 1$, rewriting the equations as:

$$y = f(w_0 x_0 + w_1 x_1 + \dots + w_I x_I) = f(w^T x)$$
(4)

This makes formulas simpler and more uniform for training algorithms (compact vector notation).

Interpretation of the Perceptron math

The perceptron divides the input space into two regions separated by a **decision** boundary (a hyperplane³). If the weighted sum of inputs exceeds the threshold, the neuron "fires" (outputs 1); otherwise, it stays silent (outputs 0). Thus,

³A hyperplane is a generalization of a line or a plane to any number of dimensions. It's the mathematical way to describe a *flat surface* that separates space into two parts. In 1D, a hyperplane is just a point that splits the line into two halves; in 2D, it's a line that divides the plane into two regions, one where the perceptron outputs 1 and the other where it outputs 0; in 3D, it's a plane that separates space into two halves. In higher dimensions, it remains a flat subspace that partitions the input space.

the perceptron acts as a **linear classifier**: it determines which side of the hyperplane the input vector lies on.

We can express the exact set of points where the neuron is undecided (the Decision Boundary Equation) by setting the activation a to zero:

$$w^T x + b = 0$$
 (decision boundary equation) (5)

♦ What it can actually do: Logical Operations

Now, if the perceptron is a computational unit, what kind of computations can it perform? To answer that, we need simple, well-defined functions to test it on. The most basic functions are the logical operations used in Boolean algebra. Logical operations (like AND, OR, NOT) are perfect because:

- They have **binary inputs** (0 or 1), exactly like neuron activations.
- They produce **binary outputs** (true or false), like the perceptron's step function.
- They let us see immediately whether the neuron can separate input cases correctly.

Logical operations are the **first experiments** that show the perceptron's power as a *linear classifier*.

When the perceptron can reproduce logic operations like AND or OR, it proves that:

- 1. A single neuron can implement decision-making.
- 2. The model is capable of **classification** (separating inputs into categories).
- 3. We can assign **geometric meaning** (a hyperplane dividing true/false examples).

Example 1: Logical OR (\vee)

$\overline{x_1}$	x_2	$y = x_1 \vee x_2$
0	0	0
0	1	1
1	0	1
1	1	1

We want the perceptron to output $\mathbf{1}$ if any input is 1. A possible set of parameters is:

$$w_1 = 1, \quad w_2 = 1, \quad b = -0.5$$

This gives us the activation function:

$$a = w_1 x_1 + w_2 x_2 + b = x_1 + x_2 - 0.5$$

Or equivalently:

$$y = \begin{cases} 1 & \text{if } x_1 + x_2 - 0.5 > 0 \\ 0 & \text{otherwise} \end{cases}$$

So each neuron computes:

$$y = f(w_1x_1 + w_2x_2 + b) = f(1 \cdot x_1 + 1 \cdot x_2 - 0.5)$$

Checking all input combinations:

- For (0,0): $a = 0 + 0 0.5 = -0.5 \Rightarrow y = 0$
- For (0,1): $a = 0 + 1 0.5 = 0.5 \Rightarrow y = 1$
- For (1,0): $a = 1 + 0 0.5 = 0.5 \Rightarrow y = 1$
- For (1,1): $a = 1 + 1 0.5 = 1.5 \Rightarrow y = 1$

Thus, the perceptron correctly implements the OR function.

Example 2: Logical AND (\lambda)

$\overline{x_1}$	x_2	$y = x_1 \wedge x_2$
0	0	0
0	1	0
1	0	0
1	1	1

We want the perceptron to output ${\bf 1}$ only if both inputs are 1. A possible set of parameters is:

$$w_1 = 1, \quad w_2 = 1, \quad b = -1.5$$

This gives us the activation function:

$$a = w_1 x_1 + w_2 x_2 + b = x_1 + x_2 - 1.5$$

Or equivalently:

$$y = \begin{cases} 1 & \text{if } x_1 + x_2 - 1.5 > 0 \\ 0 & \text{otherwise} \end{cases}$$

So each neuron computes:

$$y = f(w_1x_1 + w_2x_2 + b) = f(1 \cdot x_1 + 1 \cdot x_2 - 1.5)$$

Checking all input combinations:

- For (0,0): $a = 0 + 0 1.5 = -1.5 \Rightarrow y = 0$
- For (0,1): $a = 0 + 1 1.5 = -0.5 \Rightarrow y = 0$
- For (1,0): $a = 1 + 0 1.5 = -0.5 \Rightarrow y = 0$

• For
$$(1,1)$$
: $a = 1 + 1 - 1.5 = 0.5 \Rightarrow y = 1$

Thus, the perceptron correctly implements the AND function. However, we can see that other weight/bias combinations could achieve the same result. For example:

$$w_1 = 1.5, \quad w_2 = 1.5, \quad b = -2.0$$

In both examples, the perceptron defines a line (in 2D) that separates input combinations giving output 1 from those giving output 0. For OR, the line lies closer to the origin, since only (0,0) should give 0; for AND, the line lies further away, since only (1,1) should give 1. So, by adjusting weights and bias, the perceptron can learn to classify inputs according to these logical rules. However, it's clear that manually setting weights and biases for complex tasks is impractical. This brings us to the next important topic: how can it learn those weights automatically instead of us setting them by hand?

2.2.3 Hebbian Learning Rule

Now that we understand what the Perceptron does and who invented it, let's explore **how it learns** from data. When the first artificial neurons were proposed, researchers wanted them not just to compute, but to **learn from experience**, as biological neurons do. The earliest and most influential idea for this was the **Hebbian Learning Rule**, introduced by psychologist **Donald Hebb** in 1949.

The biological intuition

Donald Hebb was a psychologist, not a mathematician. In 1949, he was trying to explain **how the brain learns from experience**, without having explicit "teachers" or formulas. He observed that, in biological brains, learning seems to happen **through association**. That's the origin of his famous sentence:

"Cells that fire together, wire together."

This means that if **two neurons** are **active at the same time** (one sending a signal and the other firing) then the **connection** (synapse) between them should **become stronger**. Over time, the brain reinforces useful associations automatically.

In other words, if neuron A consistently helps activate neuron B, the connection from A to B should be strengthened. This principle is thought to underlie learning and memory formation in the brain.

▼ The Artificial Version: Mathematical Formulation

Now, we translate this biological intuition into a mathematical rule that can be applied to the Perceptron. In artificial neurons, "firing" means *output* is active (e.g., output is 1). So if both input and output are active at the same time, that's equivalent to "they fired together". The Hebbian learning rule says:

- Increase the weight of connections that are active when the neuron fires.
- **Decrease** or leave unchanged the connections that are inactive or misaligned.

To translate this into a mathematical rule for a Perceptron, we **express the** weight update as follows:

$$\Delta w_i = \eta \cdot x_i \cdot t \tag{6}$$

- If $x_i > 0$ (input is active) and t > 0 (target output is active), both are active, then Δw_i is positive, so the weight w_i increases, the connection strengthens.
- If $x_i > 0$ (input is active) but $t \le 0$ (target output is inactive), mismatch, then Δw_i is zero or negative, so the weight w_i decreases or remains the same, the connection weakens.
- If $x_i \leq 0$ (input is inactive), regardless of t, then no update occurs since Δw_i is zero, the connection remains unchanged.

Where:

- η is the learning rate, a small positive constant that controls how much the weights are adjusted during each update. It ensures that learning is gradual and stable. To make an analogy, think of η as the **speed limit** on a road: it prevents the learning process from speeding ahead too quickly and potentially crashing (i.e., diverging).
- x_i is the i^{th} input value to the Perceptron.
- t is the **target output** (desired response) for the given input.
- Δw_i is the **change in weight** for the i^{th} input. This change is added to the current weight w_i to get the new weight.

The full update rule becomes:

$$w_i^{(k+1)} = w_i^{(k)} + \Delta w_i = w_i^{(k)} + \eta \cdot x_i \cdot t \tag{7}$$

This is the Weight Update Rule. It tells us how to modify each connection w_i after seeing one training example. Conceptually, at each learning step (each training example):

- 1. Take the current weights $w_i^{(k)}$.
- 2. Compute how much they should change $\Delta w_i = \eta \cdot x_i \cdot t$.
- 3. Add that change to get the new weights $w_i^{(k+1)}$.

X How it works

- 1. **Initialize** all weights w_i to small random values (or zeros).
- 2. **Set** the learning rate η to a small positive value (e.g., 0.01).
- 3. For each **training example** (x, t):
 - Compute the Perceptron's output y using the current weights:

$$y = f\left(w^T x\right)$$

- Compare with the target t.
 - **⊘** If y = t, the output y matches the target t, the neuron is already correct, so **no weight update** is **needed** since the association is already learned.
 - $\mathbf{\mathfrak{S}}$ If $\mathbf{y} \neq \mathbf{t}$, the output y does not match the target t, the neuron is incorrect, and we need to **update the weights** to strengthen the association. This is done using the Hebbian learning rule:

$$w_i^{(k+1)} = w_i^{(k)} + \eta \cdot x_i \cdot t$$

This can be explained in informal steps:

- * For each weight w_i , compute the change $\Delta w_i = \eta \cdot x_i \cdot t$
- * Update the weight: $w_i \leftarrow w_i + \Delta w_i$
- 4. Repeat until all examples are correctly classified or a stopping criterion is met (e.g., a maximum number of iterations).

Example 3: Hebbian Learning Rule

Let's say we're learning a simple OR function with two inputs x_1 and x_2 . The target outputs t for the four possible input combinations are:

- $x = [0, 0] \to t = 0$
- $x = [1, 0] \to t = 1$
- $x = [0, 1] \to t = 1$
- $x = [1, 1] \to t = 1$

We do not include a bias term in this example for simplicity. We'll use a step activation function:

$$f(z) = \begin{cases} 1 & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}$$

The algorithm proceeds as follows:

- 1. Initialize weights $w_1 = 0.0$, $w_2 = 0.0$ and learning rate $\eta = 0.1$.
- 2. First training example x = [0, 0], t = 0:
 - **\$\Phi_8** Compute output: $y = f(0.0 \cdot 0 + 0.0 \cdot 0) = f(0) = 0$
 - Output matches target, so no weight update needed.
- 3. Second training example x = [0, 1], t = 1:
 - **\$\Phi_6\$** Compute output: $y = f(0.0 \cdot 0 + 0.0 \cdot 1) = f(0) = 0$
 - ② Output does not match target, so we **update weights**:

$$\Delta w_1 = 0.1 \cdot 0 \cdot 1 = 0.0$$

$$\Delta w_2 = 0.1 \cdot 1 \cdot 1 = 0.1$$

$$w_1 \leftarrow 0.0 + 0.0 = 0.0$$

$$w_2 \leftarrow 0.0 + 0.1 = 0.1$$

- 4. Third training example x = [1, 0], t = 1:
 - **Compute output**: $y = f(0.0 \cdot 1 + 0.1 \cdot 0) = f(0) = 0$
 - Output does not match target, so we **update weights**:

$$\Delta w_1 = 0.1 \cdot 1 \cdot 1 = 0.1$$

$$\Delta w_2 = 0.1 \cdot 0 \cdot 1 = 0.0$$

$$w_1 \leftarrow 0.0 + 0.1 = 0.1$$

$$w_2 \leftarrow 0.1 + 0.0 = 0.1$$

- 5. Fourth training example x = [1, 1], t = 1:
 - **Compute output:** $y = f(0.1 \cdot 1 + 0.1 \cdot 1) = f(0.2) = 1$
 - Output matches target, so no weight update needed.

After one pass through the training data, the weights are $w_1 = 0.1$ and $w_2 = 0.1$. Repeating this process over multiple epochs will further refine the weights until the Perceptron correctly models the OR function.

? Should the bias be updated if the output doesn't match the target?

In the Hebbian learning rule, the bias term can also be updated similarly to the weights. The bias can be treated as a weight connected to an input that is always 1. Therefore, if the output does not match the target, the bias should also be updated to help correct the output. The update rule for the bias b would be:

$$\Delta b = \eta \cdot x_0 \cdot t = \eta \cdot 1 \cdot t = \eta \cdot t \qquad x_0 = 1 \tag{8}$$

So, if the **output** is **incorrect**, the bias would be adjusted by adding Δb to the current bias value:

$$b^{(k+1)} = b^{(k)} + \Delta b = b^{(k)} + \eta \cdot t \tag{9}$$

This adjustment helps shift the activation threshold of the Perceptron, making it more likely to produce the correct output in future iterations.

In other words, we can think of the **bias** as a special weight w_0 that connects to a constant input $x_0 = 1$. This trick lets us treat the bias **exactly the same** as all the other weights in the update rule. Therefore, the neuron computes:

$$y = f(w_0 \cdot 1 + w_1 x_1 + w_2 x_2 + \dots)$$

And the update rule applies uniformly to every w_i , including w_0 (the bias):

$$w_i^{(k+1)} = w_i^{(k)} + \eta \cdot x_i \cdot t$$
 for $i = 0, 1, 2, ...$

Thus, at every iteration:

- The **normal weights** $(w_1, w_2, ...)$ adapt based on the input features and target output.
- The bias b (also considered a weight, like w_0) is updated to help the Perceptron better fit the data. It adapts based on the target output t alone, since its associated input is always 1 (i.e., $x_0 = 1$).

The bias learns to adjust the overall tendency of the neuron to fire. If the network often needs to output 1 (positive target), the bias weight increases, making it easier for the neuron to activate. Conversely, if the network often needs to output 0 (negative target), the bias weight decreases, making it harder for the neuron to activate. This dynamic adjustment of the bias is crucial for the Perceptron to learn effectively from data.

2.2.4 Perceptron as Linear Classifier

A classifier is a model that assigns input data points to one of several classes. In the case of the perceptron, it classifies input vectors into two classes based on a linear decision boundary.

A linear classifier is a type of classifier that makes its decisions based on a linear combination of the input features. In poor words, it makes a decision by checking on which side of a *line* (in 2D), *plane* (in 3D), or *hyperplane* (in higher dimensions) the input data point lies.

The perceptron computes:

$$a = w^T x + b$$

where w is the weight vector, x is the input vector, and b is the bias term, and decides:

$$y = \begin{cases} 1 & \text{if } a > 0 \\ 0 & \text{if } a \le 0 \end{cases} \tag{10}$$

So the **decision** happens depending on the *sign* of a: positive values lead to class 1, while zero or negative values lead to class 0.

The **Decision Boundary** is the exact set of points where the model is **undecided**, where it switches from one class to the other. That happens precisely when the condition changes sign from negative to positive. The "border" between those two cases is when the activation a equals **zero**. Formally, this occurs when:

$$w^T x + b = 0$$

That's where the perceptron's decision flips, and therefore it's the **boundary** line (or hyperplane). This boundary divides the input space into two halves:

- Points where $w^T x + b > 0$ are classified as class 1.
- Points where $w^T x + b < 0$ are classified as class 0.
- Points where $w^T x + b = 0$ lie exactly on the decision boundary.

Wait, why is zero special? In the above equation (10), the perceptron outputs 0 when a = 0. Why is it called the decision boundary? In theory, the boundary:

$$w^T x + b = 0$$

Is **not assigned to any class**, it's the **limit** between them. Exactly on the boundary (a=0), the model is indifferent, because **geometrically** that point is the **separator**, not really part of any region (see Figure 2, page 48, to visualize this concept). However, in practice, the \leq sign in the perceptron decision rule is just a **tie-breaking rule**, otherwise we wouldn't know what to output when a=0. But for geometry and theory, we're interested in **where the switch happens**, so we call the exact set of points the **decision boundary**.

Figure 2: A 2D example of a perceptron as a linear classifier. The line represents the decision boundary where $w^Tx + b = 0$. Points on one side of the line are classified as class 1 (green area, orange triangles, everything that satisfies $w^Tx + b > 0$), while points on the other side are classified as class 0 (blue, $w^Tx + b < 0$). The arrow indicates the **normal vector** \vec{w} , which is perpendicular to the decision boundary and points towards the class-1 side. The normal vector \vec{w} points in the direction where the perceptron output increases.

Concept	Meaning
\overline{w}	Defines the <i>direction</i> of the separating hyperplane.
b	Shifts the hyperplane from the origin.
$w^T x + b = 0$	Equation of the decision boundary (hyperplane).
$w^T x + b > 0$	Region classified as class 1.
$w^T x + b < 0$	Region classified as class 0.
$ec{w}$	Normal vector to the decision boundary, indicating the direction of increasing output.
Limitation	Can only classify linearly separable data.

Figure 3: Geometric interpretation of the bias in a perceptron. The solid black line shows the decision boundary $w^Tx+b=0$ for b=-1.2, while the dashed gray line represents the case b=0. The red dotted segment highlights the vertical shift of the intercept caused by the bias. The normal vector \vec{w} is perpendicular to the boundary and points toward the region where the neuron output is $1 (w^Tx+b>0)$.

If the bias is negative, why does the boundary shift upwards? Imagine w = [1, 1]. Then $w^T x + b = x_1 + x_2 + b$. Without bias (b = 0), the boundary is:

$$x_1 + x_2 = 0$$

Is the **line through the origin** at a 45-degree angle. Now, if we add b = -1.2, the boundary becomes:

$$x_1 + x_2 - 1.2 = 0 \implies x_1 + x_2 = 1.2$$

This line is **shifted upwards** because for any given x_1 , x_2 must be larger to satisfy the equation. Thus, a **negative bias** shifts the decision boundary **upwards**, while a **positive bias** would shift it **downwards**. In this case, for x_2 direction, the bias effectively **increases** the threshold that x_2 must reach to cross the boundary:

$$x_2 = -x_1 + 1.2$$

2.2.5 Boolean Operators & Linear Separability

Once we've seen that a perceptron can learn **logical functions** (like AND, OR), the next natural question is:

"Can it learn all possible logical operators?"

Short answer: **No**. And understanding why leads to the crucial idea of **linear separability**: the key limitation of the perceptron model.

Let's summarize the four fundamental binary logical functions (i.e., functions with two binary inputs and one binary output):

Operator	Output $= 1$ when	Linearly separable?
AND	both inputs are 1	✓ Yes
OR	at least one input is 1	✓ Yes
NAND	at least one input is 0	✓ Yes
NOR	both inputs are 0	✓ Yes
XOR	exactly one input is 1	× No
XNOR	both inputs are the same	× No

Note that the first four operators (AND, OR, NAND, NOR) are all **linearly separable**, while the last two (XOR, XNOR) are **not**. But what does "linearly separable" mean in this context?

■ The game changer: *Linear Separability*

Definition 4: Linearly Separable

A dataset is **Linearly Separable** if there **exists** a straight line (in 2D), plane (in 3D), or **hyperplane** (in higher dimensions) that **perfectly divides** the **two classes of data points**. That is, all points of one class lie on one side, and all points of the other class lies on the opposite side.

Formally, given a dataset with two classes, it is linearly separable if there exist weights w_1, w_2, \ldots, w_n and a bias b such that for every data point (x_1, x_2, \ldots, x_n) :

$$\begin{cases} w_1x_1 + w_2x_2 + \ldots + w_nx_n + b > 0 & \text{if the point belongs to Class 1} \\ w_1x_1 + w_2x_2 + \ldots + w_nx_n + b < 0 & \text{if the point belongs to Class 2} \end{cases}$$

If such weights and bias exist, the dataset is linearly separable. Otherwise, no single perceptron can solve it (i.e., classify it correctly).

▲ The XOR problem - The classic example of non-linear separability

Until now, we've seen that perceptrons can learn linearly separable functions like AND and OR. However, the linear separability limitation becomes evident when we consider some logical functions, such as XOR (exclusive OR). A little reminder of the XOR truth table:

$\overline{x_1}$	x_2	$XOR(x_1, x_2)$
0	0	0
0	1	1
1	0	1
1	1	0

The XOR function outputs 1 only when exactly one of its inputs is 1. If we plot the input-output pairs of the XOR function on a 2D plane, we get the following points:

Here, the points are arranged in an "X" pattern:

- Class 1 points are at (0, 1) and (1, 0) (opposite corners).
- Class 0 points are at (0, 0) and (1, 1) (remaining corners).

No single straight line can separate the Class 1 points from the Class 0 points. We'd need *two lines* forming a region (a non-linear boundary). Hence, the XOR function is **not linearly separable**, and a single-layer perceptron cannot learn it.

In summary, the perceptron can only create linear decision boundaries, so:

- ☑ It perfectly models linearly separable problems (like AND, OR, simple threshold rules).
- If fails for non-linearly separable problems (like XOR, parity, circle-vs-ring, etc.).

This realization in the 1960s led to what's often called the "AI winter," as researchers recognized the limitations of single-layer perceptrons. However, this challenge also paved the way for the development of multi-layer neural networks (and backpropagation), which can overcome these limitations by creating complex, non-linear decision boundaries, combining multiple perceptrons in layers.

References

- [1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.
- [2] Matteucci Matteo. Artificial neural networks and deep learning. Slides from the HPC-E master's degree course on Politecnico di Milano, 2025-2026.

Index

A	
ADALINE (Adaptive Linear Neuron) Artificial Neuron	38 35
B Bias	35
C Classification Clustering	8 11
D Decision Boundary Decision Boundary Equation	47 40
E Experience (E)	4
F Feature Engineering (Traditional ML)	20
H Hebbian Learning Rule	43
L Learned Features (Deep Learning) Linearly Separable	20 50
M MADALINE (Multiple ADALINE network)	38
N Neural Network	37
P Perceptron Performance measure (P)	37, 39 4
R Regression Reinforcement Learning (RL)	10 16
Supervised Learning	8
T Task (T) Task, Experience, Performance Threshold Logic Unit (TLU)	$\begin{array}{c} 4\\4\\37\end{array}$

	Index
U Unsupervised Learning	11
W Weight Update Rule in Hebbian Learning	44