Introduction to Machine Learning

Singular Value Decomposition

Mingchen Gao

November 9, 2022

Outline

Contents

1	Sing	gular Value Decompostion	1
	1.1	Economy Sized SVD	2
		Connection between Eigenvectors and Singular Vectors	
	1.3	PCA Using SVD	5
	1.4	Low Rank Approximations Using SVD	3
	1.5	The Matrix Approximation Lemma	4
	1.6	Equivalence Between PCA and SVD	4
	1.7	SVD Applications	ļ.

1 Singular Value Decomposition

• For any matrix \mathbf{X} $(N \times D)$

$$\underbrace{\mathbf{X}}_{N \times D} = \underbrace{\mathbf{U}}_{N \times N} \underbrace{\mathbf{S}}_{N \times D} \underbrace{\mathbf{V}}^{\top}$$

 \mathbf{U} is a $N \times N$ matrix and all columns of \mathbf{U} are orthonormal, i.e., $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_{N}$. \mathbf{V} is a $D \times D$ matrix whose rows and columns are orthonormal (i.e., $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}_{D}$ and $\mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_{D}$). \mathbf{S} is a $N \times D$ matrix containing the r = min(N, D)

singular values $\sigma_i \geq 0$ on the main diagonal and 0s in the rest of the matrix. The columns of **U** are the left singular vectors and the columns of **V** are the right singular vectors.

The lower panel above shows the truncated SVD approximation of rank L.

1.1 Economy Sized SVD

• Assume that N > D

$$\mathbf{X}_{N imes D} = \underbrace{ ilde{\mathbf{U}}}_{N imes L} \underbrace{ ilde{\mathbf{S}}}_{L imes L} \underbrace{ ilde{\mathbf{V}}}_{L imes D}^ op$$

1.2 Connection between Eigenvectors and Singular Vectors

• Let $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$

$$\begin{aligned} \mathbf{X}^{\top}\mathbf{X} &=& \mathbf{V}\mathbf{S}^{\top}\mathbf{U}^{\top}\mathbf{U}\mathbf{S}\mathbf{V}^{\top} \\ &=& \mathbf{V}(\mathbf{S}^{\top}\mathbf{S})\mathbf{V}^{\top} \\ &=& \mathbf{V}\mathbf{D}\mathbf{V}^{\top} \end{aligned}$$

- where $\mathbf{D} = \mathbf{S}^2$ is a diagonal matrix containing squares of singular values.
- Hence,

$$(\mathbf{X}^{\top}\mathbf{X})\mathbf{V} = \mathbf{V}\mathbf{D}$$

- Which means that the columns of V are the eigenvectors of X^TX and D contains the eigenvalues.
- Similarly one can show that the columns of \mathbf{U} are the eigenvectors of $\mathbf{X}\mathbf{X}^{\top}$ and \mathbf{D} contains the eigenvalues.

Remember that both U and V are orthonormal matrices.

1.3 PCA Using SVD

• Assuming that X is centered (zero mean) the principal components are equal to the right singular vectors of X.

1.4 Low Rank Approximations Using SVD

 \bullet Choose only first L singular values

$$\mathbf{X}_{N imes D} pprox \widetilde{\mathbf{U}}_{N imes L} \widetilde{\mathbf{S}}_{L imes L} \widetilde{\mathbf{V}}^{ op}$$

- Only need NL + LD + L values to represent $N \times D$ matrix
- Also known as $rank\ L$ approximation of the matrix **X** Because the rank of the approximate matrix will be L.

1.5 The Matrix Approximation Lemma

- Among all possible rank L approximations of a matrix \mathbf{X} , SVD gives the best approximation
 - In the sense of minimizing the Frobenius norm

$$\|\mathbf{X} - \mathbf{X}_L\|$$

• Also known as the Eckart Young Mirsky theorem

1.6 Equivalence Between PCA and SVD

- For data X (assuming it to be centered)
- ullet Principal components are the eigenvectors of $\mathbf{X}^{\top}\mathbf{X}$
- Or, principal components are the columns of V

$$\mathbf{W} = \mathbf{V}$$

Or

$$\hat{\mathbf{W}} = \hat{\mathbf{V}}$$

- $\hat{\mathbf{W}}$ are the first L principal components and $\hat{\mathbf{V}}$ are the first L right singular vectors.
- For PCA, data in latent space:

$$\begin{split} \mathbf{\hat{Z}} &= \mathbf{X}\mathbf{\hat{W}} \\ &= \mathbf{\hat{U}}\mathbf{\hat{S}}\mathbf{\hat{V}}^{\top}\mathbf{V} \\ &= \mathbf{\hat{U}}\mathbf{\hat{S}} \end{split}$$

• Optimal reconstruction for PCA:

$$\begin{array}{rcl} \mathbf{\hat{X}} & = & \mathbf{\hat{Z}}\mathbf{\hat{W}}^{\top} \\ & = & \mathbf{\hat{U}}\mathbf{\hat{S}}\mathbf{\hat{V}}^{\top} \end{array}$$

• Optimal reconstruction is same as truncated SVD approximation!!

Singular Value Decomposition - Recap

- What is the (column) rank of a matrix?
- Maximum number of linearly independent columns in the matrix.
- For $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$ (SVD):
 - What is the rank of $\hat{\mathbf{X}}^{(1)} = \mathbf{U}_{:1} \sigma_1 \mathbf{V}_{:1}^{\top}$?
 - The rank is 1 because each column of $\hat{\mathbf{X}}^{(1)}$ is a scaled version of the vector $U_{:1}$.
- How much storage is needed for a rank 1 matrix?
 - -O(N)

Importance of the Matrix Approximation Lemma

- There are many ways to "approximate" a matrix with a lower rank approximation
- Low rank approximation allows us to *store* the matrix using much less than $N \times D$ bits $(O(N \times L)$ bits only)
- SVD gives the best possible approximation

$$\|\mathbf{X} - \mathbf{\hat{X}}\|_2^2$$

1.7 SVD Applications

- A faster way to do PCA (truncated SVD, sparse SVD)
- \bullet Other applications as well:
 - Image compression
 - Recommender Systems
 - * There are better methods
 - Topic modeling (Latent Semantic Indexing)

References

Murphy Book Chapter 20.1 7.5

References