Taylor parameters results

cmplxcruncher v1.1rc12

Wed, 10 Aug 2022 15:17:20

$1\quad KO.tpm. MTT. filtered$

Metadata	V	β	\bar{R}^2	V_{st}	β_{st}
h_A01	0.171 ± 0.035	0.826 ± 0.033	0.656	1.9 ± 0.6	0.1 ± 0.4
h_A02	0.20 ± 0.04	0.879 ± 0.032	0.660	2.4 ± 0.6	0.7 ± 0.4
h_A03	0.193 ± 0.035	0.872 ± 0.029	0.658	2.2 ± 0.5	0.63 ± 0.33
h_A04	0.109 ± 0.033	0.70 ± 0.05	0.531	0.9 ± 0.5	-1.3 ± 0.5
h_A05	0.097 ± 0.019	0.732 ± 0.033	0.606	0.72 ± 0.30	-0.9 ± 0.4
h_A06	0.030 ± 0.007	0.689 ± 0.034	0.306	-0.32 ± 0.10	-1.4 ± 0.4
h_A07	0.15 ± 0.04	0.81 ± 0.04	0.571	1.6 ± 0.6	-0.0 ± 0.5
h_A08	0.24 ± 0.05	0.893 ± 0.032	0.666	3.0 ± 0.7	0.86 ± 0.35
h_A09	0.30 ± 0.06	0.912 ± 0.031	0.734	4.0 ± 0.9	1.07 ± 0.34
h_A10	0.032 ± 0.009	0.67 ± 0.04	0.327	-0.29 ± 0.14	-1.6 ± 0.5
E01	0.094 ± 0.023	0.78 ± 0.04	0.483	0.7 ± 0.4	-0.4 ± 0.4
E02	0.085 ± 0.017	0.701 ± 0.032	0.628	0.53 ± 0.27	-1.25 ± 0.35
E03	0.110 ± 0.023	0.813 ± 0.034	0.568	0.9 ± 0.4	-0.0 ± 0.4
E04	0.095 ± 0.030	0.82 ± 0.05	0.379	0.7 ± 0.5	0.1 ± 0.5
E05	0.082 ± 0.016	0.769 ± 0.031	0.539	0.48 ± 0.25	-0.51 ± 0.34
E06	0.025 ± 0.007	0.58 ± 0.04	0.263	-0.40 ± 0.10	-2.6 ± 0.4
E09	0.051 ± 0.012	0.585 ± 0.035	0.551	0.00 ± 0.18	-2.5 ± 0.4
E10	0.038 ± 0.011	0.66 ± 0.04	0.302	-0.21 ± 0.17	-1.7 ± 0.5
I01	0.16 ± 0.04	0.92 ± 0.04	0.419	1.6 ± 0.6	1.2 ± 0.5
I03	0.087 ± 0.016	0.772 ± 0.030	0.587	0.56 ± 0.26	-0.47 ± 0.33
I05	0.084 ± 0.024	0.81 ± 0.05	0.324	0.5 ± 0.4	0.0 ± 0.5
I06	0.084 ± 0.024	0.74 ± 0.04	0.447	0.5 ± 0.4	-0.8 ± 0.5
107	0.073 ± 0.020	0.74 ± 0.04	0.332	0.34 ± 0.32	-0.8 ± 0.5
<u>I09</u>	0.096 ± 0.019	0.757 ± 0.033	0.581	0.71 ± 0.30	-0.6 ± 0.4

Table 1: Taylor parameters for the dataset KO.tpm.MTT. filtered. The healthy population is described by $\bar{V}=0.05\pm0.06, \bar{\beta}=0.81\pm0.09.$