COE 202 notes - Airbus5717

Airbus5717

Contents

IMPORTANT NOTICE:

- THE LATEST PDF VERSION IS AVAILABLE click here
- Mobile screens may not display the web page properly due to alignment issues
- These notes are not enough for high grade (u need to practice and read the slides)
- These notes are according to Dr. Al-Suwaiyan's order of sections
- source of the notes are on https://github.com/airbus5717/
- This document is generated by orgmode with the emacs text editor

Videos

Dr. M. Mudawar

• YouTube playlist: click here

Dr. Aiman El-Maleh

• Microsoft stream videos: click here

Dr. Ali Al-Suwaiyan

• YouTube playlist: click here

UNIT (For Suwaiyan)	YT video lecture	
1. Numbering systems	1-5	
2. Boolean algebra	6-8	
3. Std and canonical forms	9-10	
4. $Verilog(1/3)$	11, 11.5	
5. K-Map simplification	12-15(till min 24)	
6. Other gate types	(contine)15-17	
7. Combination Logic Design Procedure	18 (till min 24)	
8. Arithmetic Circuits	(continue) 18-23	
9. Functional blocks	24-28	
10. $Verilog(2/3)$	29.1, 29.2, homework 1-2	
11. Analysis & Design of Sequential Circuits	30-34	
12. Registers and counters	35-38(till min 20)	
13. $Verilog(3/3)$	(contine)38-39	
14. review	40	

Data Representation

Suwaiyan slides

 \bullet click here

Introduction

- ullet computers represent data in binary numbers (1 and 0)
- all data must be represented in binary format
- data could be numbers, alphanumeric characters, images, sounds and many more.
- in general they are (numbers and characters)

Numbering Systems

- Numbering systems are characterized by their base number (also called radix or r for short)
- a number with base n will have digits from 0 to (n-1)
- for example base 2 includes : 0 and 1
- the widely used numbering systems are:

Numbering system	Base	digits set
Binary	2	0, 1
Octal	8	$0, \ldots, 7$
Decimal	10	$0, 1, \ldots, 9$
Hexadecimal	16	$0, \ldots 9, A, \ldots F$

Weighted Number Systems

- a number D consists of n digits with each digit having a particular position.
- Every Digit has a fixed weight

$$\mathbf{D} = \mathbf{d}_{n-1} \mathbf{w}_{n-1} + \mathbf{d}_{n-2} \mathbf{w}_{n-2} + \ldots + \mathbf{d}_{2} \mathbf{w}_{2} + \mathbf{d}_{1} \mathbf{w}_{1} + \mathbf{d}_{0} \mathbf{w}_{0}$$

(from el-maleh slides)

• for example in base 10: 10 = 1 * 10 + 0 * 10

The Radix (Base)

the allowed set of digits are from 0 to r-1 for example in base 8: 0...7

• revise the (El-Maleh's) slides (7-12)

Digit weight

example a number in base 8: 34556

• the most significant digit (MSD) is: 3

• the least significant digit (LSD) is: 6

Binary System

- the r=2
- \bullet each digit is either 1 or 0
- each bit represents a power of 2

$2^{\rm n}$	Decimal value
2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	16
2^{5}	32
2^{6}	64
2^{7}	128
2^{8}	256
2^{9}	512
2^{10}	1024

- \bullet example of conversion from binary to decimal binary number (101) = 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 5 in decimal
- see a YouTube video on conversion from decimal to binary click here
- another one on from binary to decimal click here

Octal System

- $\bullet r = 8$
- Octal digits = $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- conversion videos click here for octal 2 decimal and click here for decimal 2 octal

Hexadecimal System

- r = 16
- Digits are 0..9 then A, B, C, D, E, F
- F is equavilant to 15 in decimal
- conversion videos click here for deci 2 hex and click here for hex 2 deci also click here for hex 2 binary and click here for binary 2 hex.

Integers in (Binary, Octal, Decimal and Hexadecimal)

Binary(2)	Octal(8)	Decimal(10)	Hexadecimal(16)
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	\mathbf{C}
1101	15	13	D
1110	16	14	${ m E}$
1111	17	15	F

Binary coded decimal

- every number is represented as 4 bits
- there are different ways to represent it
 - BCD8421 way is like for 1: 0001 and so forth
 - XS-3 is like BCD8421 but add 3 to BCD8421

- example 103
 - BCD8421: 0001 0000 0011
 - XS-3: 0100 0011 0110

ASCII Chars

- each number/char/symbol is represented with a number from 0 to 127
- extended ascii has to 256 numbers
- ascii table link

Error detection by parity bit

- Sender tries to send data to reciever which is encodeded in binary
- Data could get corrupted during transmission
- so basically we construct a basic error checker that would help reduce errors (but not always the case)

Parity Bit

- We choose an even or odd parity bit
- Even parity: number of 1s is even
 - add zero to keep the 1s even
- Odd parity: number of 1s is odd
 - add zero to keep the 1s odd

check slides for example

TODO Binary Logic and Gates

Suwaiyan slides

• click here

TODO Standard & Canonical Forms

Suwaiyan slides

• click here

 ${\sf TODO\ Other\ Gate\ types}$