

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.		
10/061,415	02/01/2002	Davide Libenzi	NAIIP393/01.162.01	9282		
28875	7590	08/31/2007	EXAMINER			
Zilka-Kotab, PC P.O. BOX 721120 SAN JOSE, CA 95172-1120			HENNING, MATTHEW T			
ART UNIT		PAPER NUMBER				
2131						
MAIL DATE		DELIVERY MODE				
08/31/2007		PAPER				

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/061,415	LIBENZI ET AL.	
	Examiner	Art Unit	
	Matthew T. Henning	2131	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 12 July 2007.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-10, 13-25, 28-38, 40-47 and 49-55 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-10, 13-25, 28-38, 40-47 and 49-55 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 01 February 2002 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ | 6) <input type="checkbox"/> Other: _____ |

This action is in response to the communication filed on 7/12/2007.

DETAILED ACTION

Claims 1-10, 13-25, 28-38, 40-47, and 49-55 have been examined.

Continued Examination Under 37 CFR 1.114

5 A request for continued examination under 37 CFR 1.114 was filed in this application
6 after a decision by the Board of Patent Appeals and Interferences, but before the filing of a
7 Notice of Appeal to the Court of Appeals for the Federal Circuit or the commencement of a civil
8 action. Since this application is eligible for continued examination under 37 CFR 1.114 and the
9 fee set forth in 37 CFR 1.17(e) has been timely paid, the appeal has been withdrawn pursuant to
10 37 CFR 1.114 and prosecution in this application has been reopened pursuant to 37 CFR 1.114.

11 Applicant's submission filed on 7/12/2007 has been entered.

Specification

13 The disclosure is objected to because it contains an embedded hyperlink and/or other
14 form of browser-executable code. Applicant is required to delete the embedded hyperlink and/or
15 other form of browser-executable code. (See the specification Page 2 Line 1). See MPEP §
16 608.01.

Claim Rejections - 35 USC § 103

18

19 The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
20 obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2131

1
2 Claims 1-3, 5-10, 13-14, 16-18, 20-25, 28-29, 31 and 55 are rejected under 35 U.S.C.

3 103(a) as being unpatentable over Trcka et al. (US Patent Number 6,453,345) hereinafter
4 referred to as Trcka, and further in view of Stevens (TCP/IP Illustrated).

5 Regarding claims 1, 16, and 31, Trcka disclosed a system for providing passive
6 screening of transient messages in a distributed computing environment (See Trcka Abstract),
7 comprising: a network interface (See Trcka Fig. 1 Element 38) passively monitoring a transient
8 packet stream in a network boundary (See Trcka Col. 2 Lines 11-22) comprising receiving
9 incoming datagrams structured in compliance with a network protocol layer (See Trcka Col. 2
10 Lines 23-24); an antivirus scanner scanning contents of the packets for a presence of at least one
11 of a computer virus and malware to identify infected message contents (See Trcka Col. 3 Line 66
12 – Col. 4 Line 16); and a protocol specific module processing each packet based on the protocols
13 employed by the packet (See Trcka Col. 13 Lines 32-49), but Trcka failed to specifically disclose
14 a packet receiver reassembling one or more of the incoming datagrams into a segment structured
15 in compliance with a transport protocol layer; or that the protocol specific module processed the
16 reassembled datagrams based on the transport protocol layer employed by the reassembled
17 datagram. However, Trcka did disclose performing virus scanning on specific upper layer files
18 such as FTP, HTTP, SMTP, and others (See Trcka Col. 14 Lines 62-67).

19 It was well known that in the Internet Protocol there are multiple layers and that each

20 layer contains different modules, such as the TCP module and the UDP module of the transport
21 layer. It was also well known that in order to get to the data in the application layer packet, such
22 as the payload and the packet type, the transport layer module must process the transport layer
23 packet to reveal the application layer packet. This is evidenced by Stevens Pages 6-11.

Art Unit: 2131

1 It would have been obvious to the ordinary person skilled in the art at the time of
2 invention to employ what was well known in the art of networking and TCP/IP in order to gain
3 access to the data in the packets for scanning, by demultiplexing (reassembling) the incoming
4 Ethernet frames into IP packets, and then demultiplexing the IP packets into the proper transport
5 layer segments according to the proper protocols in order to extract the data from the packets.
6 This would have been obvious because the ordinary person skilled in the art would have been
7 motivated to use what was common and well known in the art.

8 Regarding claims 2 and 17, Trcka and Stevens disclosed an incoming queue staging each
9 incoming datagram intermediate to reassembly (See Trcka Col. 4 Line 8-10).

10 Regarding claims 3 and 18, Trcka and Stevens disclosed a network protocol-specific
11 decoder decoding the reassembled segment prior to scanning (See Stevens Page 11 and the
12 rejection of claim 1 above).

13 Regarding claims 5-6 and 20-21, Trcka and Stevens disclosed the antivirus scanner takes
14 an action if the reassembled segment is infected with at least one of a computer virus and
15 malware, wherein the action comprises at least one of logging an infection; generating a
16 warning; spoofing a valid datagram in place of the infected datagram; and acquiescing to the
17 infection (See Trcka Col. 13 Lines 1-15).

18 Regarding claims 7-10 and 22-25, Trcka and Stevens disclosed a protocol-specific queue
19 staging each reassembled segment with other reassembled segments sharing the same transport
20 protocol layer (See Trcka Col. 17 Line 56 – Col. 18 Line 14, Col. 19 Lines 55-59 and Col. 20
21 Lines 30-35), an information record storing information dependent on the same transport
22 protocol layer with the staged reassembled segment (See Trcka Col. 12 Lines 7-11 and Col. 20

Art Unit: 2131

1 Lines 34-35), a contents record storing the contents with the staged reassembled segment (See
2 Trcka Col. 18 Lines 15-52), and wherein the information comprises at least one of a source
3 address, source port number, destination address, destination port number, URL, file name, user
4 name, sender identification, recipient identification, and subject (See Trcka Col. 18 Lines 3-14).
5 Furthermore, in the demultiplexing taught by Stevens, it would be obvious for each "protocol
6 box" which is receiving data and acting on the, to have a queue for storing the data before and
7 during the processing of this protocol specific data. This would be obvious because the ordinary
8 person skilled in the art would have been motivated to not lose the data if a "protocol box" is
9 processing data slower than it is receiving the data.

10 Regarding claims 13-14, and 28-29, Trcka and Stevens disclosed an event correlator
11 analyzing the transient packet stream for events indicative of a network service attack (See Trcka
12 Abstract and Col. 13 Lines 5-15), and a data repository maintaining each event (See Trcka Col. 7
13 Lines 28-32).

14 Regarding claim 55, Trcka and Stevens disclosed that the incoming datagrams include IP
15 datagrams that are reassembled into TCP segments (See Trcka Col. 14 Lines 61-67).

16 Claims 4, 19, 32-38, 40-47, and 49-52 are rejected under 35 U.S.C. 103(a) as being
17 unpatentable over Trcka and Stevens as applied to claim 1 above, and further in view of Cheriton
18 (US Patent Number 7,054,930).

19 Trcka and Stevens disclose detecting and responding to network attacks (See Trcka Col.
20 11 Lines 14), but failed to specifically disclose detection or response to Denial of Service
21 attacks, or terminating the transient packet stream if the reassembled segment is not infected with
22 at least one of a computer virus and malware.

Art Unit: 2131

1 Cheriton teaches that in a network, denial of service attacks can result in significant loss
2 of time and money for many organizations (See Cheriton Col. 1 Lines 19-21), and further
3 teaches detection of denial of service attacks (See Cheriton Col. 3 Lines 29-45) and teaches
4 generation and refinement of filters for stopping the attack packets, and forwarding these filters
5 upstream (See Cheriton Col. 2 Lines 16-24 and Col. 3 Lines 29-45, and Claim 7).

6 It would have been obvious to the ordinary person skilled in the art at the time of
7 invention to employ the teachings of Cheriton in the network surveillance system of Trcka and
8 Stevens by detecting Denial of Service attacks, and upon detection of such, creating a filter to
9 prevent the flow of the Denial of Service packets, and forwarding the filter for use by an
10 upstream device. This would have been obvious because the ordinary person skilled in the art at
11 the time of invention would have been motivated to protect the network from Denial of Service
12 attacks.

13 Regarding claims 32, 41, and 50, Trcka and Stevens disclosed a system for passively
14 detecting computer viruses and malware and network attacks in a distributed computing
15 environment (See Trcka Abstract), comprising: a network interface receiving copies of
16 datagrams transiting a boundary of a network domain into an incoming packet queue (See Trcka
17 Col. 2 Lines 29-34, Col. 4 Lines 2-11, and Col. 7 Lines 28-32, and Col. 12 Lines 29-40), each
18 datagram being copied from a packet stream (See Trcka Col. 14 Lines 34-36); a packet receiver
19 reassembling one or more such datagrams from the incoming packet queue into network protocol
20 packets, each staged in a reassembled packet queue (See Stevens Pages 4-11 and the rejection of
21 claim 1 above); an antivirus scanner scanning each network protocol packet from the
22 reassembled packet queue to ascertain an infection of at least one of a computer virus and

Art Unit: 2131

1 malware (See Trcka Col. 3 Line 66 – Col. 4 Line 16) ; and an event correlator evaluating events
2 identified from the datagrams in the packet stream to detect network attack on the network
3 domain (See Trcka Abstract and Col. 13 Lines 5-15) ; wherein a protocol-specific module
4 processes each reassembled datagram, based on an upper protocol layer employed by the
5 reassembled datagram (See Stevens Page 11 and the rejection of claim 1 above), but Trcka and
6 Stevens failed to specifically disclose detection of Denial of Service type network attacks.

7 Cheriton teaches that in a network, denial of service attacks can result in significant loss
8 of time and money for many organizations (See Cheriton Col. 1 Lines 19-21), and further
9 teaches detection of denial of service attacks (See Cheriton Col. 3 Lines 29-45) and teaches
10 generation and refinement of filters for stopping the attack packets, and forwarding these filters
11 upstream (See Cheriton Col. 2 Lines 16-24 and Col. 3 Lines 29-45, and Claim 7).

12 It would have been obvious to the ordinary person skilled in the art at the time of
13 invention to employ the teachings of Cheriton in the network surveillance system of Trcka and
14 Stevens by detecting Denial of Service attacks, and upon detection of such, creating a filter to
15 prevent the flow of the Denial of Service packets, and forwarding the filter for use by an
16 upstream device. This would have been obvious because the ordinary person skilled in the art at
17 the time of invention would have been motivated to protect the network from Denial of Service
18 attacks.

19 Regarding claims 33 and 42, Trcka, Stevens and Cheriton disclosed a parser parsing each
20 reassembled datagram into network protocol-specific information and packet content (See
21 Stevens Page 11).

Art Unit: 2131

1 Regarding claims 34 and 43, Trcka, Stevens and Cheriton disclosed extracting the header
2 information from the packets (See the rejection of claim 33 above), but failed to disclose
3 specifically what information was contained in the headers. It was well known in the art at the
4 time of invention that the headers of HTTP messages contained a source address and port
5 number, a destination address and port number, and a URL, the headers of an FTP message
6 contained the filename and username, and the headers for the SMTP contained the sender
7 identifier, receiver identifier, and subject. As such, it would have been obvious to the ordinary
8 person skilled in the art at the time of invention to employ what was well known by extracting
9 the header information from the headers of the packets. This would have been obvious because
10 the ordinary person would have been motivated to extract what was known to be contained in the
11 header.

12 Regarding claims 35 and 44, Trcka, Stevens, and Cheriton disclosed a decoder decoding
13 the packet content prior to performing the operation of scanning (See Stevens Page 11 and the
14 rejection of claim 1 above).

15 Regarding claims 36 and 45, Trcka, Stevens, and Cheriton disclosed a log logging an
16 occurrence of at least one of the infection and the network attack (See Trcka Col. 17 Lines 38-
17 40).

18 Regarding claims 37, and 46, Trcka, Stevens, and Cheriton disclosed a warning module
19 generating a warning responsive to an occurrence of at least one of the infection and the network
20 attack (See Trcka Col. 13 Lines 1-15).

21 Regarding claims 38 and 47, Trcka, Stevens, and Cheriton disclosed a spoof module
22 sending a spoofed network protocol packet responsive to an occurrence of at least one of the

Art Unit: 2131

1 infection and network attack (See Cheriton col. 10 Line 41- Col. 11 Line 8 and Trcka Col. 17
2 Lines 37-39, wherein it would have been obvious to the ordinary person skilled in the art to send
3 the detected spoofed packet to the log).

4 Regarding claim 51, Trcka, Stevens, and Cheriton disclosed that the network protocol
5 packets employ at least one of F[TTP, FTP, SMTP, POP3, NNTP, and Gnutella network
6 protocols (See Trcka Col. 18 Paragraphs 1-2).

7 Regarding claim 52, Trcka, Stevens, and Cheriton disclosed that only datagrams
8 compliant with IP protocol are reassembled (See Trcka Entire reference wherein only IP
9 compliant protocols are disclosed).

10

11

12 Claims 15, and 30 are rejected under 35 U.S.C. 103(a) as being unpatentable over Trcka
13 and Stevens as applied to claims 1 and 16 above, and further in view of Hailpern et al. (US
14 Patent Number 6,275,937) hereinafter referred to as Hailpern.

15 Trcka and Stevens disclosed a system for scanning IP network packets for viruses (See
16 the rejection of claim 1 above), but failed to disclose that all the incoming messages were SMTP
17 compliant, and therefore TCP compliant.

18 Hailpern teaches that virus scanning should be set up for each network protocol proxy,
19 including E-mail, in order to scan for viruses (See Hailpern Col. 4 Lines 1-13).

20 It would have been obvious to the ordinary person skilled in the art to employ the
21 teachings of Hailpern in the virus scanning system of Trcka and Stevens by modifying mail
22 servers to contain the scanning system of Trcka and Stevens. This would have been obvious

1 because the ordinary person skilled in the art would have been motivated to enable the proxies to
2 be able to scan the types of communications they already process and therefore reduce network
3 traffic and delay. Further, SMTP mail servers were well known in the art at the time of
4 invention, and it would have been obvious to utilize the scanning system of Trcka and Stevens in
5 an SMTP mail server. This would have been obvious because the ordinary person skilled in the
6 art would have been motivated to protect SMTP mail servers from viruses.

7 Claims 40, 49, and 52 are rejected under 35 U.S.C. 103(a) as being unpatentable over
8 Trcka and Stevens and Cheriton as applied to claims 32 and 41 above, and further in view of
9 Hailpern et al. (US Patent Number 6,275,937) hereinafter referred to as Hailpern.

10 Trcka, Stevens, and Cheriton disclosed a system for scanning IP network packets for
11 viruses (See the rejection of claim 1 above), but failed to disclose that all the incoming messages
12 were SMTP compliant, and therefore TCP/IP compliant.

13 Hailpern teaches that virus scanning should be set up for each network protocol proxy,
14 including E-mail, in order to scan for viruses (See Hailpern Col. 4 Lines 1-13).

15 It would have been obvious to the ordinary person skilled in the art to employ the
16 teachings of Hailpern in the virus scanning system of Trcka, Stevens, and Cheriton by modifying
17 mail servers to contain the scanning system of Trcka, Stevens, and Cheriton. This would have
18 been obvious because the ordinary person skilled in the art would have been motivated to enable
19 the proxies to be able to scan the types of communications they already process and therefore
20 reduce network traffic and delay. Further, SMTP mail servers were well known in the art at the
21 time of invention, and it would have been obvious to utilize the scanning system of Trcka and
22 Stevens, and Cheriton in an SMTP mail server. This would have been obvious because the

Art Unit: 2131

1 ordinary person skilled in the art would have been motivated to protect SMTP mail servers from
2 viruses.

3 Claims 53-54 are rejected under 35 U.S.C. 103(a) as being unpatentable over Trcka,
4 Stevens, and Cheriton as applied to claim 32 above, and further in view of Epstein et al. (US
5 Patent Number 6,684,329) hereinafter referred to as Epstein.

6 Trcka, Stevens, and Cheriton disclosed scanning packets for viruses (See Trcka Col. 11
7 Lines 1-4), but failed to disclose sub-modules which each scan one of HTTP, FTP, SMTP, and
8 NNTP packets.

9 Epstein teaches that in a firewall which scans for viruses, proxy sub-modules should be
10 provided in the firewall for each of HTTP, FTP, SMTP, and NNTP protocol packets (See Epstein
11 Col. 1 Lines 27-53 and Col. 3 Lines 8-21).

12 It would have been obvious to the ordinary person skilled in the art at the time of
13 invention to employ the teachings of Epstein in the virus scanning of Trcka, Stevens, and
14 Cheriton by providing protocol specific proxy servers in the surveillance module to scan each of
15 HTTP, SMTP, FTP, and NNTP packets. This would have been obvious because the ordinary
16 person skilled in the art would have been motivated to provide the network administrator with
17 greater control over the traffic which traversed the network.

18

19

20 *Conclusion*

21 Claims 1-10, 13-25, 28-38, 40-47, and 49-55 have been rejected.

Art Unit: 2131

1 Any inquiry concerning this communication or earlier communications from the
2 examiner should be directed to Matthew T. Henning whose telephone number is (571) 272-3790.

3 The examiner can normally be reached on M-F 8-4.

4 If attempts to reach the examiner by telephone are unsuccessful, the examiner's
5 supervisor, Ayaz Sheikh can be reached on (571) 272-3795. The fax phone number for the
6 organization where this application or proceeding is assigned is 571-273-8300.

7 Information regarding the status of an application may be obtained from the Patent
8 Application Information Retrieval (PAIR) system. Status information for published applications
9 may be obtained from either Private PAIR or Public PAIR. Status information for unpublished
10 applications is available through Private PAIR only. For more information about the PAIR
11 system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR
12 system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

13

14 /Matthew Henning/
15 Assistant Examiner
16 Art Unit 2131
17 8/28/2007

AYAZ SHEIKH
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100

18