Solucionario 20 Examen Parcial 20 Semestre 2022

Física 2.

a) Una varilla una carga uniforme de densidad 12.0 nC/m se dobla en forma de un

segmento circular radio
$$R$$
. Es colocada en el plano $x - y$. Calcular el potencial eléctrico (en V) en el origen de coordenadas. (considere el potencial cero en el infinito) :

b) Si en una región del espacio el campo eléctrico estaría dado por $E = \frac{2}{3}x^2$ (i) (N/C) donde x está metros, con V=0 en x=0, calcular la diferencia de potencial Vb - Va (en V) que existiría entre los puntos Xa = 3.00 m y Xb = 6.00 m

Problema 1. Temario 26

$$\lambda = 12 \, nC/m$$

$$A = 12 \, nC/$$

- a) Una varilla una carga uniforme de densidad 15.0 nC/m se dobla en forma de un segmento circular radio R. Es colocada en el plano x y. Calcular el potencial eléctrico (en V) en el origen de coordenadas. (considere el potencial cero en el infinito) :
- b) Si en una región del espacio el campo eléctrico estaría dado por $E = \frac{4}{5}x^2$ (j) (N/C) donde x está en metros, si V=0 en x=0, calcular la diferencia de potencial Vb Va (en

$$dV = \frac{k \, dq}{R} \quad \forall V = \frac{k \, \lambda \, R \, d\theta}{R} \quad \forall V = \int_{0}^{7/18} \frac{k \, \lambda \, d\theta}{R}$$

$$V = \frac{k \, \lambda \, R \, d\theta}{R} \quad \forall V = \frac{k \, \lambda \, * \, \frac{5}{18} \, \pi}{R}$$

$$V = \frac{4 \, k \, \lambda \, * \, \frac{5}{18} \, \pi}{R}$$

b)
$$E = \frac{4}{3}x^{2}(\hat{1})$$

 $V_{b} - V_{a} = \int_{5}^{2} \frac{4}{3}x^{2} dx = \frac{4}{9}x^{3}/2$

$$X_a = 2m$$

$$X_b = 5m$$

$$V_{o} = 9 \times 10^{9} (15 \times 10^{-9}) * \frac{5}{18} \pi$$

$$V_{o} = 37.5 \pi \approx 117.81 \text{ V}$$

Dos esferas conductoras, una de radio r_1 = 8.00 cm y otra de radio r_2 , contienen entre ambas una carga de 27 nC y están muy lejos una de la otra. Al conectar las esferas con un alambre conductor, el potencial que adquiere la esfera de radio r_2 es 2025 Voltios. El radio de la esfera R_2 (en cm) es:

Conservación de la carga
$$Q_{10} + Q_{20} = 27 \text{ nC}$$
 $R_1 = 8cm$
 $V_{1f} = 2025 = kQ_{1f}$
 $Q_{1f} + Q_{2f} = 27 \text{ nC}$
 $Q_{2f} = 9nC$
 $Q_{2f} = 9nC$

Dos esferas conductoras, una de radio r_1 = 8.00 cm y otra de radio r_2 , contienen entre ambas una carga de 40.0 nC y están muy lejos una de la otra. Al conectar las esferas con un alambre conductor, el potencial que adquiere la esfera de radio r_2 es 3600 Voltios. El radio de la esfera R_2 (en cm) es

Conservación de la carga
$$Q_{10} + Q_{20} = 40nC$$

$$Q_{1f} + Q_{2f} = 40nC$$

$$Q_{1f} + Q_{2f} = 40nC$$

$$Q_{2f} = 8nC$$

$$V_{1} = 3600 = \frac{kQ_{1}}{R_{1}}$$

$$Q_{1f} = \frac{3600 \times 0.08}{9 \times 10^{9}}$$

$$Q_{1f} = \frac{32nC}{3000}$$

$$Q_{1f} = 32nC$$

$$Q_{2f} = \frac{9 \times 10^{9} \times 8 \times 10^{9}}{3000} = 0.02m$$

a) Un voltaje V se aplica en los extremos de un conductor, cuya longitud es 5.00 m y tiene un campo eléctrico de 12.0 V/m en sus terminales. El conductor tiene una densidad de corriente de 1.85 x 10 3 A.m² y pasan 12.5 x 10 21 electrones durante 10 minutos. ¿Cuál es la resistencia, en Ω , del conductor?

b) Si en el conductor la velocidad de arrastre de los electrones es 10 - 4 m/s, cuál es la densidad de electrones libres en el metal (en 10 26 electrones/m3)

$$L = 5 m$$

$$J = 1.85 \times 10^{3} \text{ A·m}^{2}$$

$$V_{3} = 1 \times 10^{-4} \text{ m/s}$$

$$E = 12 \text{ V/m}$$

$$L = 5 \text{ m}$$

$$J = 1.85 \times 10^{3} \text{ A·m}^{2}$$

$$V_{d} = 1 \times 10^{-4} \text{ m/s}$$

$$D = \frac{1.85 \times 10^{3}}{10 \times 10^{-19}} = \frac{10 \text{ A}}{3}$$

$$N = \frac{1.85 \times 10^{3}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 1.6 \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4} \times 10^{-19}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{26} \text{ elect.}}{1 \times 10^{4} \times 10^{4}} = \frac{1.156 \times 10^{4}}{10^{4}} = \frac{$$

$$R = \Delta V = 18\Omega$$

$$\times 10^{26} \text{ elect.}$$

$$m^3$$

Problema 3.

a) Un voltaje ${\it V}$ se aplica en los extremos de un conductor, cuya longitud es 10.0 m y tiene un campo eléctrico de 15.0 V/m en sus terminales. El conductor tiene una densidad de corriente de 1.20 x 10 3 A.m 2 y pasan 12.5 x 10 21 electrones durante 15.0 minutos. ¿Cuál es la resistencia, en Ω , del conductor?

b) Si en el conductor la velocidad de arrastre de los electrones es 10 ^{- 4} m/s, cuál es la densidad de electrones libres en el metal (en 10 ²⁵ electrones/m³)

 $R = \Delta V = 67.5\Omega$

a)
$$\Delta V = EL = 15 * 10 = 150 V$$

$$I = \frac{12.5 \times 10^{21} \times 1.6 \times 10^{-19}}{15 \times 60} = \frac{20}{9} A$$

b)
$$J = n v_{d} q$$

$$n = \frac{1.2 \times 10^{3}}{1 \times 10^{-4} \times 1.6 \times 10^{-19}} = \frac{7.5 \times 10^{25}}{0.5 \times 10^{25}} = \frac{1000}{0.5}$$

V entre sus placas. a) La densidad de energía (en 10 - 3 J/m3) del capacitor es de:

valor de la constante k del material dieléctrico es

c) El tamaño de la carga libre (en nC) después de introducir el material dieléctrico en las placas del capacitor es:

$$C = 100\rho F$$
 a) $C = \frac{\varepsilon_0 A}{d}$ $d = \frac{\varepsilon_0 A}{C} = 1.603 \times 10^{-4} m$

$$\Delta V = 10 V$$

$$A = 19.2 \times 10^{-4}$$

$$U = \frac{1}{2} CV^{2}$$

$$0.5 (1010 \times 10^{-12})(18)^{2}$$

$$C = 104 pF \qquad a) \quad C = \frac{E_0 A}{d} \qquad d = \frac{E_0 A}{C} = 1.403 \times 10^{-4} m$$

$$A = 19.2 \times 10^{-4} \qquad u = \frac{1/2 \text{ CV}^2}{A d} = \frac{0.5 (104 \times 10^{-12})(18)^2}{19.2 \times 10^{-4} \times 1.403 \times 10^{-4}} = \frac{55.8 \text{ mJ}}{m^3}$$

b)
$$E_0 = \Delta V_0 = \frac{18}{1.003 \times 10^{-4}} = 112,289.5 \frac{N}{C}$$
 $E_f = \frac{E_0}{K} \rightarrow K = \frac{E_0}{E_C} = \frac{3.74}{1.003 \times 10^{-4}}$

$$Q_o = C_o V_o = 100 \times 10^{-12} \times 18 = 1.908 \text{ nC}$$

a) La densidad de energía (en 10 - 3 J/m3) del capacitor es de:

c) El tamaño de la carga libre (en nC) despues de introducir el material dielectrico en las

∆V = 13 V

$$C = 80 \times 10^{-12} F$$

$$A = 14.6 \times 10^{-4} m^2$$

$$\Delta V = 13V \qquad u = \frac{U}{Ad} = \frac{\sqrt{2}CV^2}{Ad} = \frac{0.5(80 \times 10^{-12})(13)^2}{14.6 \times 10^{-4} * 1.615 \times 10^{-4}}$$

$$b) Q_0 = Q_f = 1.0 \text{ and } C \qquad \Rightarrow E_f = \frac{E_0}{K} \Rightarrow K = \frac{E_0}{E_f} = \frac{2.68}{1.615 \times 10^{-4}}$$

$$E_0 = \frac{V_0}{d} = \frac{13}{1.615 \times 10^{-4}} = 80,495.4 \text{ N}$$

a)
$$C = \frac{\mathcal{E}_0 A}{d}$$
 $d = \frac{\mathcal{E}_0 A}{C} = \frac{8.85 \times 10^{-12} \times 14.6 \times 10^{-14}}{80 \times 10^{-12}} = 1.615 \times 10^{-14} M$

$$u = \frac{U}{Ad} = \frac{1/2 CV^2}{Ad} = \frac{0.5 (80 \times 10^{-12})(13)^2}{14.6 \times 10^{-14} \times 1.615 \times 10^{-14}} = \frac{28.7 \times 10^{-3} J}{m^3}$$

C) Q = Q0 = 1.04nC

Problema 4.

Temario 28

Qo = CV

En el circuito que se muestra $C_1 = 2.0 \mu F$, $C_2 = 3.0 \mu F$, $C_3 = 5.0 \mu F$, $C_4 = 4.0 \mu F$, $C_5 = 5.0 \mu F$, los capacitores inicialmente se encuentran descargados y luego se conecta a un voltaje de 25.0 V.

b) ¿Qué cantidad de energía almacena el conjunto de capacitores (en
$$\mu J$$
)?

$$\frac{\bigvee_{2345}}{\bigcap_{2345}} = 7.6464$$

$$Q_2 = V_2 C_2 = Q_{345} = 7.640$$

 $C_{345} = \left(\frac{1}{5 \times 10^{-6}} + \frac{1}{4 \times 10^{-6}} + \frac{1}{5 \times 10^{-6}}\right)^{-1}$ = 20 NF

C3, C4 4 C5 en serie

Problema 5.

En el circuito que se muestra C₁= 2.00 µF, C₂= 5.00 µF, C₃= 4.00 µF, C₄= 5.00 µF, C₅= 3.00 µF, los capacitores inicialmente se encuentran descargados y luego se conecta a un voltaje de 50.0 V.

C3, C4 y C2 en serie

$$C_{234} = \left(\frac{1}{5 \times 10^{-6}} + \frac{1}{4 \times 10^{-6}} + \frac{1}{5 \times 10^{-6}}\right) = \frac{20}{13} \mu F$$

$$Q_{eq} = Q_1 = Q_{2345}$$
 $Q_{eq} = 69.4 \mu C$

$$\begin{array}{c|c} C_{1} = 2\mu F \\ \hline E \\ \hline \end{array} \rightarrow C_{2345}$$

 $\rightarrow C_{2345} = C_{734} + C_5 = \frac{59}{13} \mu F$ C, en serie con C2345 Ceg = (- + 1) = 1.388 MF

Problema 5.

$$Q_5 = C_5 V_5 = 45.88 \mu C$$

$$U_{sisr} = \frac{1}{2} C_{eq} V^2 = 1.735 \text{ mJ}$$

En el circuito que se muestra tiene resistencias y dos fuentes de voltaje (fem) con los valores mostrados. Calcular: Problema 6. Temario 24 50 55 30.0V 16 00 20.0Ω "h" 10.0Ω 10.0Ω a) malla izq a) La corriente (en A) que proporciona al circuito la fem de 30.0 V +30 -51, -50 -201, +201, -101, =0 (8 puntos) $-35I_1 + 20I_2 = 20$ b) Calcular la diferencia de potencial (en V) entre los puntos "a" y "b" (Va - Vb) (7 puntos) malla derecha c) Calcular el costo (en Q) de utilizar la potencia que disipa la resistencia 16 Ω, si es usada diariamente por 24 horas en un -20I2 +20I, +50 -5I2 -8I,=0 mes de 30 días. Usar la tarifa de Q 1.50 / kWh.

$$I_{R=10\Omega} = V_{R=10\Omega} = I_{2}*8 = 14.304V$$

$$I_{R=10\Omega} = \frac{14.304}{16} = 0.894A$$

Potencia R=160 = 0.894 * 16 = 12.788 Watts Energia = Potencia * tiempo = 0.012788 * 24 * 30 Precio = 13.8 Quetzales

+20I, -33I, = -50

En el circuito que se muestra tiene resistencias y dos fuentes de voltaje (fem) cor valores mostrados. Calcular: <u>"a"</u> 15.00Ω \$16.0Ω 10.0Q "h" 10.00

b) Calcular la diferencia de potencial (en V) entre los puntos "a" y "b" (Va - Vb)

C)
$$V_{R=8\Omega} = V_{R=16} = 28.608 \text{ V}$$

$$I_{R=16\Omega} = \frac{28.608}{16} - 1.788 A$$

Energía = Potencia * tiempo = 1.7882 * 16 * 24 * 30 = 36.829 kw.h Precio = Energía * Precio = Q64.45

Va-60 + Va-100 + Va = 0 $-4 + \frac{\sqrt{a}}{20} - 5 + \frac{\sqrt{a}}{13} = \emptyset$ 151 Va = 9 Vab = 46.494 $I_{1} = \frac{\sqrt{a-40}}{15} = -0.901 A^{2} \begin{cases} va en \\ dirección \\ contraria \\ a la indicada \end{cases}$

por lo que el voltaje en R=8 Ω es: $V_{R=8}\Omega = 8*I_3 = 28.408$

 5Ω

 $I_1 + I_2 + I_3 = \emptyset$

-100 3

5Ω.

100

Por nodos

Problema 6.

Problema 7. Temario 24

En el circuito de la figura, en t = 0 s, el switch o interruptor S se conecta en el punto A para iniciar el proceso de carga. Después de un tiempo suficientemente largo para suponer que el capacitor C está completamente cargado, el interruptor se conecta al punto B, iniciándose un proceso de descarga del capacitor C.

El valor de los elementos del circuito es:

$$R_1 = 10.0 \ k\Omega$$
, $R_2 = 5.00 \ k\Omega$, $C = 5.00 \ \mu F$ y $V_0 = 15.0 \ V$

cuando han transcurrido dos constantes de tiempo?

- a) Durante el proceso de carga, calcular el tiempo (en ms) para el cual el capacitor alcanza la mitad de su carga total.
- b) ¿Cuánta energía (en µJ) ha almacenado el capacitor en el proceso de carga, en un
- tiempo de 30 ms?
- c) Durante el proceso de descarga del capacitor, ¿qué valor tiene la corriente (en μ A)
- (7 puntos)

R, =10ka

Qmax = Vmax C = 15 x 5 x 10 = 75 MC

PCARGA = R.C = 0.055

Q(t) = CV, [1-e-t/RC]

= CV, [1-e-t/R,c]

v(t=30ms) = V, [1-e-30x10-3/0.05

= 6.7678 V

114.5 MJ

C = 5 m F

a)

15V

$$\gamma = (R_1 + R_2)C$$
 $T = 135.33 \mu A$
 $T = 0.075 S$

Problema 7. Temario 26

En el circuito de la figura, en t = 0 s, el switch o interruptor S se conecta en el punto A para iniciar el proceso de carga. Después de un tiempo suficientemente largo para suponer que el capacitor C está completamente cargado, el interruptor se conecta al punto B, iniciándose un proceso de descarga del capacitor C.

QMAX = CV, esta cargado completamente

El valor de los elementos del circuito es:

$$\mathbf{R_1} = 10.0 \ k\Omega$$
, $\mathbf{R_2} = 5.00 \ k\Omega$, $\mathbf{C} = 8.00 \ \mu F$ y $\mathbf{V_0} = 30.0 \ V$

a) Durante el proceso de carga, calcular el tiempo (en ms) para el cual el capacitor alcanza la mitad de su carga total.

b) ¿Cuánta energía (en μJ) ha almacenado el capacitor en el proceso de carga, en un tiempo de 30 ms?

(7 puntos)

c) Durante el proceso de descarga del capacitor, ¿qué valor tiene la corriente (en μA) cuando han transcurrido dos constantes de tiempo?

$$C = (R_1 + R_2)C = 0.12s$$

$$mA$$
 -2 $I = 0.002e = 270.7 \mu A$

30V

$$Q(t) = CV_0 [1 - e^{-t/R_1C}]$$
 $\frac{CV_0}{2} = CV_0 [1 - e^{-t/0.08}]$

$$t = 55.5ms$$

$$\frac{1}{6} = \sqrt{1 - e^{-\frac{30 \times 10}{0.08}}}$$

$$v_c^* = 9.38 \,\text{V}$$

$$U = \frac{1}{2} \, C \, v_c^2 = 352 \,\mu \,\text{J}$$

2° = 30[1-e - 30×10-3]