

Experimento 04

Laboratório de Princípios de Comunicação

Autoria Pedro Henrique Dornelas Almeida **Matrícula** 18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

22 de março de 2021

Versão do GNU Radio Companigon: 3.8.1.0 (Python 3.8.5).

1 Introdução

2 Desenvolvimento

AR 01

Aqui o objetivo é verificar o funcionamento básico de um PLL, usando o esquemático montado como na figura abaixo. É importante saber os conceitos básicos de um PLL que tem como principal função sincronizar a fase e frequência de um oscilador local a um sinal externo. Pode ser muito importante para demodulação síncrona, demodulação de sinais FM e PM, recuperação de portadora, enfim, diversas aplicações.

Dentre as funções que iremos estudar faz parte o *Loop bandwith* que está ligado a taxa de variação de frequência no qual o PLL pode sincronizar. Para isso, a fase do sinal não pode variar muito rapidamente, caso isso aconteça, o PLL não é capaz de sincronizar.

Outro conceito importante é de frequência máxima e mínima em que o PLL é capaz de sincronizar. Esta é medida é normalizada pela frequência de amostragem e é vista em rad/s.

Figura 1: Área de trabalho

a) Verificação do funcionamento do VCO.

Aqui iremos utilizar do analisador de espectro para verificar quais serão as frequências máximas e mínimas vistas no VCO, para isso, basta desabilitar a visualização dos sinais vistos no PLL e anotar os valores de frequência máxima e mínima. As medições foram vistas como as figuras abaixo:

Figura 2: $A_m = 0, 5V$

Figura 3: $A_m = 1,0V$

Figura 4: $A_m = 2,0V$

Figura 5: $A_m = 5V$

Figura 6: $A_m = 10V$

Enfim, os valores de frequência puderam ser observados, bem como a variação respectiva no domínio do tempo, o que faz que o sinal ter um efeito sanfona por assim dizer, em que a frequência aumenta e diminui de acordo com o valor da amplitude da senóide que está gerando o sinal. Assim basicamente é o funcionamento do VCO, gerar um sinal que varia a frequência, modulado por uma tensão, o que pôde ser visto.

Para o preenchimento da tabela abaixo, além dos valores observados de frequência, também foi necessário utilizar a fórmula abaixo para obter k_{vco} :

$$f_{vco}(t) = f_c + k_{vco}V_e(t)$$

De modo que $f_c = 10kHz$, $V_e(t)$ é dado pela amplitude da senóide e $f_{vco}(t)$ é a frequência observada no analisador de espectro das figuras anteriores. Assim, é possível isolar e calcular k_{vco} , dito uma medida da sensibilidade da frequência do VCO com relação à entrada.

$ \begin{array}{ c c } \hline A_m \\ [V] \end{array} $	f_{max} [kHz]	f_{min} [kHz]	$D = f_{max} - f_{min}$ [kHz]	k_{vco} [Hz/V]
0,5	10,5	9,5	1	1000
1,0	11	9	2	1000
2,0	8	12	4	1000
5,0	5	15	10	1000
10,0	0	20	20	1000

Tabela 1: Medição experimental da constante k_{vco} .

Aqui é possível ver que o VCO está funcionando corretamente, pois esta constante realmente não se altera, o que realmente era esperado para acontecer, pois o que foi mudado no circuito durante o experimento foi só a frequência de VCO, por conta da tensão regulada por Am, assim, era de se esperar que a constante de sensibilidade fosse a mesma em todos os casos, o que confirma o funcionamento do VCO.

b) Verificação do funcionamento do PLL.

Primeiramente, devemos observar aqui sobre o funcionamento do PLL, faremos isso comparando as ondas geradas pelo PLL e pelo VCO, de forma a perceber em que momento para a variação de frequência, provocada pelo aumento da tensão, há uma alteração de fase e em qual momento não há alteração de fase.

Para isso, as figuras abaixo mostram o momento em que a amplitude, a tensão, passa a gerar uma diferença de fase. Perceba no osciloscópio que há uma diferença de fase entre os sinais a partir de 1V para Am(Fig. 8). E em 0,5V não há essa diferença de fase e os sinais de entrada e saída se sobrepõem para todo o intervalo de tempo(Fig. 10), que não ocorre quando Am=1V.

Figura 7: Sem diferença de fase

Figura 8: Com diferença de fase

Passamos então para o próximo passo que foi configurar o gerador de tensão para uma onda quadrada e diminuímos a frequência para ser mais fácil observar o instante em que a frequência do VCO irá se alterar. Abaixo, podemos ver as frequências presentes no sinal observando o analisador de espectro, foi possível observar as duas frequências com a opção "Max Hold".

Figura 9: Onda quadrada como geradora de frequência

A partir desse momento é possível reparar também na diferença de tempo das ondas geradas pelo VCO e pelo PLL, é possível observar aumentando as ondas no osciloscópio e ver a diferença de tempo existentes entre elas. Note que na figura abaixo com o recorte bem alto nas ondas reais, é possível medir o ΔT :

Figura 10: Diferença temporal entre ondas

Dessa maneira foi possível anotar os valores da tabela 2, somente alterando o A_m , então a tabela pode ser completada.

A_m	f_{max}	f_{min}	D_{+}	D_{-}	ΔT_{max}	ΔT_{min}	$\Delta \theta_{f_{max}}$	$\Delta heta_{f_{min}}$
			$= f_{max} - f_c$	$= f_{min} - f_c$			$=360f_{max}\Delta T_{max}$	$= 360 f_{min} \Delta T_{min}$
[V]	[kHz]	[kHz]	[kHz]	[kHz]	[ms]	[ms]	[graus]	[graus]
0,5	10,5	9,5	0,5	-0,5	0	0	0	0
1,0	11	9	1	-1	0,0011	0,0013	4,356	4,212
2,0	12	8	2	-2	0,0029	0,0084	12,528	24,192
3,0	13	7	3	-3	0,0045	0,0084	21,06	21,168
4,0	14	6	4	-4	0,0058	0,00137	29,232	2,9592
5,0	15	5	5	-5	0,0068	0,0213	36,72	38,34
6,0	16	4	6	-6	0,0081	0,0322	46,65	46,368
7,0	17	3	7	-7	0,0089	0,0509	54,46	54,972
8,0	18	2	8	-8	0,0097	0,0883	62,856	63,576
9,0	19	1	9	-9	0,0103	0,2001	70,452	72,036
9,5	19,5	0,5	9,5	-9,5	0,011	0,4226	77,22	76,068

Tabela 2: Levantamento de curva do atraso de fase do PLL.

AR 02

Aqui o objetivo é utilizar de um modulador e comparar o efeito de um sinal demodulado utilizando de um PLL e de um demodulador síncrono. O que tentamos implementar é uma variação na frequência da portadora provocada pelo VCO para simular os efeitos de um canal de comunicação que introduz esse tipo de ruído frequencial. A frequência de corte usada pelos filtros passa-baixas foi 1kHz, valor que contém a maior parte da banda essencial do sinal, de forma que ainda temos o sinal demodulado, sem muita distorção provocadas pelas frequências que não foram abarcadas nesse filtro.

Para a atividade a área de trabalho abaixo foi montada:

Figura 11: Área de trabalho

a) Efeito da constante DC adicionada à mensagem.

Aqui o objetivo é verificar o efeito da constante DC adicionada a mensagem. Faremos isso sem utilizar o ruído gaussiano, colocando sua amplitude em $0(\mathrm{An}{=}0\mathrm{V})$.

O primeiro gráfico gerado com a parte DC=0V, temos:

Figura 12: DC=0V

E o que temos a fazer é variar o nível DC até encontrar algo parecido com o sinal mensagem, então o nível encontrado para isso foi de DC=0.5V, obtendo o seguinte:

Figura 13: DC=0,5V

Aqui é possível fazer algumas observações, pode-se ver que a parte real observada pelo osciloscópio na parte da demoduladora síncrona ocorrem variações, provenientes da variação em frequência regulado pelo Am, e então, durante o último gráfico, a curva verde ficava alterando, se deformando, enquanto ao sinal demodulado proveniente do PLL fica muito semelhante ao sinal mensagem, provando assim que a usabilidade do PLL para canais de comunicação funciona muito bem para demodular o sinal, conservando muito bem a amplitude da portadora destacada, assim, pôde-se recuperar o sinal mensagem com certa efetividade.

b) Efeito do ruído.

Aqui o objetivo é verificar o efeito do ruído variando a amplitude do ruído(An), observando sempre no domínio do tempo e frequência para ver os efeitos do sinal modulado, a portadora recuperada pelo PLL e o sinal demodulado. Para compararmos, usaremos nos 3 sinais o An=0V e posteriormente o An=0.2V

Para isso, primeiro vamos observar o que acontece com a adição do ruído ao sinal modulado:

Figura 14: Sinal modulado(An=0V)

Figura 15: Sinal modulado(An=0,2V)

Agora, verificaremos o sinal proveniente da portadora, recuperada pelo PLL:

Figura 16: Sinal portadora recuperada pelo PLL(An=0V)

Figura 17: Sinal portadora recuperada pelo PLL(An=0,2V)

Passamos ao último sinal, o sinal demodulado, o sinal que não passa pelo PLL:

Figura 18: Sinal demodulado(An=0V)

Figura 19: Sinal demodulado(An=0,2V)

Para finalizar, a comparação que devemos nos perguntar é de qual sinal o ruído interfere mais, o demodulado ou a portadora recuperada pelo PLL, e a análise é de que o ruído tem o mesmo efeito nos dois sinais, pois estão passando por um passa-baixas de mesma frequência de corte, porém, o que está alterando mais observando os gráfico é somente a diferença de frequência observada, porém, os efeitos de ruído estão sendo os mesmos.

3 Conclusão

Com isso, concluímos o experimento com sucesso, explorando os conceitos de VCO, PLL, de forma a gerar um sinal que simule um canal de comunicação real, com variação de frequência, de fase, e assim sabendo identificar quando essas situações ocorrem. Com essas situações é possível utilizar técnicas como a utilização do PLL para demodular o sinal em um receptor, e recuperar o sinal devido, e então, mesmo com um ruído introduzido saber que a onda portadora ainda carrega o sinal, e passando pelo filtro passa-baixas é possível retirar grande parte do ruído e ter um sinal demodulado muito parecido com o sinal mensagem.