Лабораторная работа № 3 ДО

Полупроводниковые диоды, характеристики и применение

Методические указания по выполнению лабораторной работы в среде DesignLab 8.0»

Часть 1. Исследование схемы однополупериодного выпрямителя

4.1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему однополупериодного выпрямителя (рис. 1).

Рис. 1. Схема однополупериодного выпрямителя

Для сборки схемы в библиотеке элементов выбрать:

- источник синусоидального напряжения (модель VSIN),
- идеальный диод (модель Dbreak),
- резистор (модель R),
- узел нулевого потенциала (EGND).

<u>Внимание:</u> Для упрощения процесса сборки можно воспользоваться прилагаемым файлом 1PP.sch, поместить его в рабочую папку, а затем из программы Schematics просто его открыть.

Схему необходимо сохранить в своей рабочей папке. Имя папки и файла не должно содержать кириллицы.

Установить параметры источника VSIN (см. рис. 2) и сопротивление R_1 в соответствии с заданием.

Рис.2. Параметры источника VSIN

4.2. Установив режим расчета схемы во временной области (рис. 3), получить осциллограммы входного и выходного напряжений (рис. 4).

Рис. 3. Параметры временного анализа

Рис. 4. Осциллограммы входного и выходного напряжения

С помощью преобразования Фурье для выходного напряжения определить среднее значение (постоянную составляющую $U_{{\scriptscriptstyle \mathrm{BMX}\, 0}}$) и амплитуду первой гармоники $U_{{\scriptscriptstyle \mathrm{BMX}\, 1}}$. Рассчитать коэффициент пульсаций.

– Для OrCad из графического редактора *Plot* по пути *View-Output File* открыть выходной файл и в нем найти результаты Фурье анализа.

Для DesignLab из Schematics по пути *Analysis – Exemine Output* открыть выходной файл и в нем найти результаты Фурье анализа.

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)

DC COMPONENT = 6.163790E+00

HARMONIC	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	1.000E+02	9.823E+00	1.000E+00	4.208E-03	0.000E+00
2	2.000E+02	4.203E+00	4.279E-01	-9.000E+01	-9.001E+01
3	3.000E+02	5.112E-02	5.204E-03	1.795E+02	1.795E+02

– По полученным данным рассчитать коэффициент пульсаций:

$$k_{\text{II}} = \frac{\Delta U_2}{U_2} \approx \frac{U_{\text{BMX}1}}{U_{\text{RMY}0}} = \frac{9,823}{6,164} \cdot 100\% = 159\%.$$

4.3. Подключить к выходу схемы конденсатор фильтра C_1 (рис. 5) и установить его емкость в соответствии с п. 3.3 подготовки к работе.

Рис. 5. Схема однополупериодного выпрямителя с фильтром

4.4. Повторить пункт 4.2 рабочего задания для схемы рис. 5. Получить осциллограммы входного и выходного напряжений (рис. 6).

Рис. 6. Осциллограммы входного и выходного напряжения для схемы рис. 5.

– Найти результаты Фурье анализа.

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)									
DC COMPONENT = 1.800634E+01									
HARMONIC NO	FREQUENCY (HZ)	FOURIER COMPONENT	NORMALIZED COMPONENT	PHASE (DEG)	NORMALIZED PHASE (DEG)				
1	1.000E+02	1.139E+00	1.000E+00	-6.816E+01	0.000E+00				

– По полученным данным рассчитать коэффициент пульсаций:

$$k_{\text{II}} = \frac{\Delta U_2}{U_2} \approx \frac{U_{\text{1BMX}}}{U_{\text{OBLIY}}} = \frac{1{,}139}{18{,}006} \cdot 100\% = 6{,}3\%.$$

Сравнить с п. 4.2. Результаты занести в таблицу 4.

Часть 2. Исследование вольтамперной характеристики стабилитрона

4.5. В операционной системе «Windows» под управлением программы «Schematics» собрать схему рис. 7.

Рис. 7. Схема для получения ВАХ стабилитрона

Для сборки схемы в библиотеке элементов выбрать:

- источник постоянного тока (модель IDC),
- идеальный диод (модель DbreakZ),
- узел нулевого потенциала (EGND).

<u>Внимание:</u> Для упрощения процесса сборки можно воспользоваться прилагаемым файлом *BAX_stab.sch*, поместить его в рабочую папку, а затем из программы Schematics просто его открыть.

Схему необходимо сохранить в рабочей папке. Имя папки и файла не должно содержать кириллицы.

- В эту же папку переписать прилагаемый файл с моделями диодов.
- Окрасить диод, щелкнув на него левой кнопкой мыши (ЛКМ). Войти в диалог Edit Model... (редактировать модель...).

- В открывшемся окне войти в диалог Change Model Reference... (изменить ссылку на модель...).
- В новом окне заменить имя DbreakZ на нужное имя (согласно варианту) модели диода, например KS182.

– Войти в интерфейсный диалог *Analysis* – *Library and include files*... и с помощью команд *Brose*... и *Add Library* подключить библиотеку пользователя, включающую данную модель. Модели диодов хранятся в файле *Diodes.lib*, который надо заранее скопировать в рабочую папку.

- Подключить к выходу маркер 🎤 для измерения напряжения на диоде.
- Задать режим расчета передаточной функции DC Sweep... с параметрами, указанными на рис.8.

Рис. 8. Параметры DC Sweep...

4.6. Запустить программу расчета (клавиша **F11** или пиктограмма \square). В результате расчета откроется окно графического редактора *Probe* с BAX стабилитрона в виде $U_{_{\rm I}}(I_{_{\rm I}})$ (рис. 9). Этот график дает представление об общем виде характеристики, однако по нему невозможно определить параметры стабилитрона. Рекомендуется получить отдельно графики прямой и обратной ветви в подробном масштабе и уже по этим графикам определять параметры. Получить нужные графики можно, изменив пределы измерений по осям X и Y (рис. 9).

Рис. 9. ВАХ стабилитрона

4.7. Для прямой ветви стабилитрона определить в точке $I_{_{\rm I}}$ = 10 мА дифференциальное сопротивление $r_{_{\rm I}}$ и напряжение отсечки $U_{_{\rm II}}$ (см. рис. 10).

Рис. 10. Прямая ветвь ВАХ стабилитрона

4.8. Для обратной ветви стабилитрона определить (см. рис. 11) в рабочей точке $I_{_{\rm T}}$ = 10 мА дифференциальное сопротивление стабилитрона $r_{_{\rm CT}}$ и напряжение $U_{_{\rm CT}\,0}$.

Рис. 11. Обратная ветвь ВАХ стабилитрона

4.9. Нарисовать схемы замещения для прямой и обратной ветвей стабилитрона (рабочий ток $I_{\pi} = 10 \,\mathrm{mA}$) и выписать их параметры (таблица 5).

Часть 3. Исследование схемы двухстороннего ограничителя

4.10. В операционной системе «Windows» под управлением программы «Schematics» собрать схему двухстороннего ограничителя (рис.12).

Рис. 12. Схема двухстороннего ограничителя

- За основу этой схемы берется схема для снятия BAX стабилитрона (рис. 2). Источник тока IDC поменять на источник напряжения VSIN, с параметрами как в схеме однополупериодного выпрямителя. В схему добавить резистор R_1 как в схеме однополупериодного выпрямителя и второй стабилитрон Dbreak, аналогичный стабилитрону D_1 . Модель стабилитронов берется из файла Diodes.lib согласно варианту.
- 4.11. Получить передаточную характеристику ограничителя. По передаточной характеристике для выходного сигнала определить максимальные напряжения на участках стабилизации напряжения при $U_{_{\mathrm{BX}}}$ = 1,2 $U_{_{\mathrm{CT}}}$.
 - Ввести режим расчета передаточной функции *DC Sweep*... с параметрами, указанными на рис. 13.

Рис. 13. Параметры для расчета передаточной функции

 Запустить программу расчета и получить передаточную характеристику ограничителя (рис. 14).

Рис.14. Передаточная характеристика

- 4.12. Получить осциллограммы входного и выходного напряжения и тока в диодах.
 - Ввести режим временного анализа и получить осциллограммы одного периода входного $u_1(t)$ и выходного $u_2(t)$ напряжения (рис.15).
 - Создать окно для дополнительного графика тока (*Plot Add Plot to Window*). Построить (*Trace Add* или пиктограмма $\stackrel{\square}{\sqsubseteq}$) график тока $i_R(t)$, выбрав в левом столбце ток I(R1). График тока появится над графиками напряжений (рис.15).

Рис.15. Осциллограммы напряжений и тока

- На осциллограммах для одного периода отметить интервалы и режимы работы каждого из стабилитронов D_1 и D_2 : открыт, закрыт, пробой.
- Для каждого участка нарисовать схемы замещения диодной сборки D_1 - D_2 , считая стабилитроны идеальными (см. табл. 6 рабочего задания).