

Language Modeling

CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/fa2025/

The

The cat

The cat sat

The cat sat on

The cat sat on ___?___

The cat sat on ___?___

The cat sat on ___?__

The cat sat on ___?___

P(mat | The cat sat on the)

next word

context or prefix

Probability of Upcoming Word

$$P(X_t | X_1, ..., X_{t-1})$$
next word context or prefix

LMs as a Marginal Distribution

Directly we train models on "marginals":

Prob

"The cat sat on the [MASK]"

Language Model

bed desk chair

LMs as Implicit Joint Distribution over Language

- While language modeling involves learning the marginals, we are implicitly learning the full/joint distribution of language.
 - Remember the chain rule:

$$P(X_1, ..., X_t) = P(X_1) \prod_{i=1}^t P(X_i | X_1, X_2, ..., X_i)$$

How Good are Language Models?

Large Language Models

 A language model can predict the next word based on the given context.

Evaluating Language Models

Setup:

- Train it on a suitable training documents.
- Evaluate their predictions on different, unseen documents.
- An evaluation metric tells us how well our model does on the test set.

Training Data

Counts / parameters from

Counts / parameters from here

Held-Out Data

Hyperparameters from here

Test Data

Evaluate here

Quiz: Building Intuition

- Sample a sentence $(w_1, w_2, ..., w_n) = (cat, sat, on, the, mat)$ from our natural data.
- We can show the probability that our language model assigns to this sentence with:

$$\mathbf{P}(w_1, w_2, \dots, w_n)$$

- A strong language model would assign a ___ probability to this sentence. (high or low?)
- A weak language model would assign a ___ probability to this sentence. (high or low?)

Next, we will define "perplexity", a metric that quantifies LM's uncertainty with respect to a corpus of natural sentences.

Evaluation Metric for Language Modeling: Perplexity

- Sample a sentence $(w_1, w_2, ..., w_n)$ from our natural data.
- Perplexity is the inverse probability of the test set, normalized by the number of words:

$$ppl(w_1, ..., w_n) = \mathbf{P}(w_1, w_2, ..., w_n)^{-\frac{1}{n}}$$

The negative power (.) inverses the score. So, a small probability become a larger score – working with small numbers is tedious. $\frac{1}{n}$ normalizes the probability as a function of length so that longer sequences are not assigned lower scores.

- A measure of predictive quality of a language model.
- A LM with lower perplexity is better because it assigns a higher probability to the unseen test corpus.

Evaluation Metric for Language Modeling: Perplexity

- Sample a sentence $(w_1, w_2, ..., w_n)$ from our natural data.
- **Perplexity** is the inverse probability of the test set, normalized by the number of words:

$$ppl(w_1, ..., w_n) = \mathbf{P}(w_1, w_2, ..., w_n)^{-\frac{1}{n}}$$

But wait, we usually have conditionals not the joint distribution!

Evaluation Metric for Language Modeling: Perplexity

- Sample a sentence $(w_1, w_2, ..., w_n)$ from our natural data.
- **Perplexity** is the inverse probability of the test set, normalized by the number of words:

$$ppl(w_1, ..., w_n) = \mathbf{P}(w_1, w_2, ..., w_n)^{-\frac{1}{n}}$$

$$= \sqrt[n]{\frac{1}{\mathbf{P}(w_1, w_2, ..., w_n)}} = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{\mathbf{P}(w_i | w_{< i})}} \quad \text{chain rule}$$

$$= 2^H, \text{ where}$$

$$H = -\frac{1}{n} \sum_{i=1}^{n} \log_2 \mathbf{P}(w_i | w_1, \dots, w_{i-1})$$

Putting Things Together: Perplexity Definition

• For a given a sampled sentence $(w_1, w_2, ..., w_n)$ from our natural data:

$$ppl(w_1, ..., w_n) = 2^H$$
, where $H = -\frac{1}{n} \sum_{i=1}^n \log_2 \mathbf{P}(w_i | w_1, ..., w_{i-1})$

- Notice that this consists of probability assigned to all the partial sentences (i.e., next word probabilities).
- In practice, we prefer to use log-probabilities (also known as "logits") since probabilities are too small and hard to understand (e.g., 10^-18 vs -18).

Intuition-building Quizzes (1)

- **Quiz:** let's we evaluate a confused (!!) model of language, i.e., our model has no idea what word should follow each context—it always chooses a uniformly random word. What is the perplexity of this model?
- Answer: |V| (size of the vocabulary) why?

Intuition-building Quizzes (1)

- **Quiz:** let's we evaluate a confused (!!) model of language, i.e., our model has no idea what word should follow each context—it always chooses a uniformly random word. What is the perplexity of this model?
- Sample a sentence from corpus: X="The cat is on the mat."

$$\forall w \in V : \mathbf{P}(w|w_{1:i-1}) = \frac{1}{|V|} \Rightarrow \mathrm{ppl}(D) = 2^{-\frac{1}{n}n\log_2\frac{1}{|V|}} = |V|$$

Intuition-building Quizzes (2)

• **Quiz:** let's suppose we have a sentence $w_1, ..., w_n$ and it's fixed. Our language is model is mildly confused because it narrows down the plausible continuations to 5 words, but it is confused among them. So it it assigns probability 1/5 to the correct next word. What is perplexity of our model?

Our LM has narrowed down the right continuation to one of these five words.

Intuition: the model is indecisive among 5 choices.

Intuition-building Quizzes (3)

• Quiz: let's we evaluate an exact (!!) model of language, i.e., our model always knows what exact word should follow a given context. What is the perplexity of this model?

A partial sentence:
X=The cat is on the
$$_??_$$

LM

 $P(\text{mat}|X)=1$
 $P(\text{physics}|X)=0$
 $P(\text{tesla}|X)=0$

...

$$\forall w \in V: \mathbf{P}(w_i | w_{1:i-1}) = 1 \implies \text{ppl}(D) = 2^{-\frac{1}{n}n \log_2 1} = 1$$

Intuition: the model is indecisive among 1 (the right!) choice!

Perplexity: Summary

$$ppl(w_1, ..., w_n) = 2^H$$
, where $H = -\frac{1}{n} \sum_{i=1}^n \log_2 \mathbf{P}(w_i | w_1, ..., w_{i-1})$

- Perplexity is a measure of model's uncertainty about next word (aka "average branching factor").
 - The larger the number of vocabulary, the more options there to choose from.
 - (the choice of atomic units of language impacts PPL more on this later)
- Perplexity ranges between 1 and |V|.
- We prefer LMs with lower perplexity.

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

An Example Next-Token Probabilities

"The state of medical health records, and what deep learning can do to help"

Summary

- Language Models (LM): distributions over language
- Measuring LM quality: use perplexity on held-out data.
- Count-based LMs have limitations.
 - Challenge with large N's: sparsity problem many zero counts/probs.
 - Challenge with small N's: lack of long-range dependencies.
- Next: Rethinking language modeling as a statistical learning problem.

