Day 14 Assignment By VARUN SAI KUMAR CHEGONI

NB Healthcare and Technology

Date: 10 Feb 2022

Topics

C# Sealed Class

C# Properties

C# Break and Continue

Content

S.No	Content	Page No.
1.	Research and write what is the use of sealed class. WACP to illustrate sealed	3
	class.	
2.	Research and write what is the difference between normal properties and auto- implemented properties.	4
	WACP to illustrate normal properties.	
	WACP to illustrate auto-implemented properties	
3.	WACP to check if the number is prime or not using logic discussed in the class. HINT: use break.	5
4.	print numbers from 1 to 30 and skip the numbers divisible by 3. HINT: use continue.	6
5.	Find the first number after 1000 which is divisible by 97. HINT: use for loop and break	7

1. Research and write what is the use of sealed class. WACP to illustrate sealed class.

Answer:

- Sealed class is used to stop a class to be inherited. You cannot derive or extend any class from it.
- Sealed method is implemented so that no other class can overthrow it and implement its own method.
- The main purpose of the sealed class is to withdraw the inheritance attribute from the user so that they can't attain a class from a sealed class. Sealed classes are used best when you have a class with static members.

Code:

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace SealedClassCode
                                ******
        * Author : Varun Sai Kumar Chegoni.
        * Purpose : sealed class illustration program
    sealed class SealedClass
        // Calling Function
        public int Add(int a, int b)
           return a + b;
    internal class Program
        static void Main(string[] args)
            // Creating an object of Sealed Class
            SealedClass slc = new SealedClass();
            // Performing Addition operation
            int total = slc.Add(6, 4);
            Console.WriteLine("Total = " + total.ToString());
           Console.ReadLine();
       }
   }
}
```

Output:

```
■ D:\NB_Training\Training_Assignments\DotNET_Assignments\Day14(10 Feb)\SealedClassCode\Se
Total = 10
```

2. Research and write what is the difference between normal properties and auto-implemented properties.

WACP to illustrate normal properties.

WACP to illustrate auto-implemented properties.

Answer:

Normal Properties	Auto-Implemented Properties	
1. Normal properties refers to the private	1. Auto implemented properties will not	
variables	refer to any private variables.	
2. In normal properties we can either take	2. In auto implemented properties we must	
get or set or both get and set as well.	take either get or both set and get.	

Code to illustrate auto-implemented properties:

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AutoImplementedProperty
    class Student
        // Auto-implimented Properties
        public int ID { get; set; }
        public string Name { get; set; }
        public string Email { get; set; }
    internal class Program
        static void Main(string[] args)
            Student student = new Student();
            // Setting properties
                          = 124;
            student.ID
            student.Name = "Varun";
            student.Email = "Varun@example.com";
            // Getting properties
            Console.WriteLine(student.ID);
            Console.WriteLine(student.Name)
            Console.WriteLine(student.Email);
            Console.ReadLine();
        }
    }
}
```

Output:

□ D:\NB_Training\Training_Assignments\DotNET_Assignments\Day14(10 Feb)\AutoImplementedP 124 Varun Varun@example.com 3. WACP to check if the number is prime or not using logic discussed in the class.

```
HINT : use break;
Code:
```

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace PrimeorNot
   * Author : Varun Sai Kumar Chegoni.
      * Purpose : number is prime or not using logic discussed in the class use
break;
     internal class Program
   {
      static void Main(string[] args)
         int i, n = 63;
         for (i=2; i<n; i++)</pre>
            if (n % i == 0)
               break;
         if (i==n)
            Console.WriteLine("63 is a Prime Number");
            Console.WriteLine("63 is not Prime Number");
         Console.ReadLine();
      }
   }
}
```

Output:

```
D:\NB_Training\Training_Assignments\DotNET_Assignments\Day14(10 Feb)\PrimeorNot\PrimeorNot\bin\Debug
```

4. print numbers from 1 to 30 and skip the numbers divisible by 3 HINT: use continue;

```
Code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Print1to30without3X
   * Author : Varun Sai Kumar Chegoni.
      * Purpose : print numbers from 1 to 30 and skip the numbers divisible by 3
use continue;
                  **************************************
   internal class Program
      static void Main(string[] args)
          int n;
          for (int i = 1; i<=30; i++)</pre>
             if (i % 3 == 0)
                 continue;
             Console.WriteLine(i);
          Console.ReadLine();
      }
   }
}
```

Output:

5. Find the first number after 1000 which is divisible by 97. HINT: use for loop and break

```
Code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace _1NumGT1000DivBy97
   * Author : Varun Sai Kumar Chegoni.
      * Purpose : first number after 1000 which is divisible by 97
   internal class Program
       static void Main(string[] args)
          int n = 97;
for (int i = 1000; i<=1097; i++)</pre>
              if (i%n==0)
                 Console.WriteLine(i);
                 break;
          Console.ReadLine();
      }
   }
}
```

Output:

■ D:\NB_Training\Training_Assignments\DotNET_Assignments\Day14(10 Feb)\1NumGT1000DivBy97\1Nur 1067 ■