Greedy Algorithms

Tao Hou

Outline

- Introduction
- Problems
 - ► Fractional Knapsack
 - ► Interval Scheduling
 - ► Interval Partitioning
 - Scheduling to Minimize Lateness

- Algorithms for *optimization* problems typically go through a sequence of steps, with a set of choices at each step.
- A *greedy algorithm* is a very special type of algorithms for solving optimization problems in the sense that it always makes the choice that *looks best at the moment*.
- That is, it makes a *locally optimal choice* at each step hoping that this will lead to a *globally optimal solution*.

- Algorithms for *optimization* problems typically go through a sequence of steps, with a set of choices at each step.
- A *greedy algorithm* is a very special type of algorithms for solving optimization problems in the sense that it always makes the choice that *looks best at the moment*.
- That is, it makes a *locally optimal choice* at each step hoping that this will lead to a *globally optimal solution*.
- A related technique for solving optimization problem but in dark contrast is dynamic programming (the next topic of this course), in which we typically enumerate all local/incremental choices at each step and select the best.
- However, for some optimization problems, dynamic programming is overkill: greedy algorithm can provide a simpler, more efficient solution.

- Algorithms for *optimization* problems typically go through a sequence of steps, with a set of choices at each step.
- A *greedy algorithm* is a very special type of algorithms for solving optimization problems in the sense that it always makes the choice that *looks best at the moment*.
- That is, it makes a *locally optimal choice* at each step hoping that this will lead to a *globally optimal solution*.
- A related technique for solving optimization problem but in dark contrast is dynamic programming (the next topic of this course), in which we typically enumerate all local/incremental choices at each step and select the best.
- However, for some optimization problems, dynamic programming is overkill: greedy algorithm can provide a simpler, more efficient solution.
- Caution that a bunch of locally optimal choices usually **do not** lead to globally optimal choice: this is true **only for certain problems**, and this need **proofs**!

A further remark:

- In order for greedy algorithm to work, a problem typically should satisfy the optimal-substructure property, i.e., we should be able to easily combine optimal solutions to subproblems to produce the optimal solution to the original problem
 - ▶ We will address this in more detail in the dynamic-programming section.

A further remark:

- In order for greedy algorithm to work, a problem typically should satisfy the optimal-substructure property, i.e., we should be able to easily combine optimal solutions to subproblems to produce the optimal solution to the original problem
 - ▶ We will address this in more detail in the dynamic-programming section.

Characteristics of greedy algorithms:

- *Describing* a greedy algorithm is *easy*
- Coming up with an algorithm is tricky
 - wouldn't think that such simple strategy can actually work
 - don't actually know which (local) criterion to optimize on: a *design choice* you have to make
- Proving that the algorithm is correct is usually hard
 - requires deep understanding of the **structure of the problem**
 - ► We will delve into a lot of proofs in this topic!

First Simple Example

- Gift-selection problem
 - out of a set $X = \{x_1, x_2, \dots, x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice
 - how do you maximize the total value of your gifts?
- *Algorithm:* Sort the gifts by their values starting from the most valuable one, and choose the first *k* gifts
 - This is a greedy algorithm and it's easy to believe that it's correct
- The algorithms we shall study later are not so easy to see the correctness

Fractional Knapsack Problem

Problem: Given *n* items and a "knapsack" with a capacity *W* s.t.

- Each item *i* has w_i units of weight and a profit v_i (w_i , $v_i > 0$)
- For each item, you can take any fraction of weight for that item and gain corresponding profits
- E.g., for an item with a weight 5 and a profit 6, you can take 2.2 units of the item gaining a profit of $2.2 * \frac{6}{5}$, which occupies 2.2 units of weight in the knapsack
 - $ightharpoonup rac{6}{5}$ is the *unit profit* for the item

Goal: Find a way to put the fractions of the items into the knapsack (i.e., total fractional weights of items is less than capacity) so that you gain the most profit

Fractional Knapsack: Solution

Idea:

- Decreasingly sort the items by their *unit profits* (v_i/w_i)
- Go over each item i in the above order, and put as many item i as you can into the knapsack, until the knapsack is full

Fractional Knapsack: Solution

Idea:

- Decreasingly sort the items by their **unit profits** (v_i/w_i)
- Go over each item i in the above order, and put as many item i as you can into the knapsack, until the knapsack is full

```
FRACKNAPSACK (\{w_1, \ldots, w_n\}, \{v_1, \ldots, v_n\}, W)

1 sort and renumber the items s.t.

v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n

2 R = W /  'remaining' capacity

3 for i = 1, \ldots, n:

4 if R > w_i

5 put w_i units of item i into the knapsack

6 R = R - w_i

7 else

8 put R units of item i into the knapsack

9 break
```

Time complexity: $O(n \log n)$

Is the previous algorithm correct? And if it is, how to show that the generated solution is
optimal?

1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, \dots, p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let i be **first** index s.t. $p_i \neq q_i$

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let i be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution P, we take "as many as we can" for each item, therefore Q cannot take more unit of item i than P

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let i be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution P, we take "as many as we can" for each item, therefore Q cannot take more unit of item i than P
- 6. *Modify* solution Q as follows: take out $p_i q_i$ units of any items after i in Q, and 'replace' them with $p_i q_i$ units of item i.

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let i be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution P, we take "as many as we can" for each item, therefore Q cannot take more unit of item i than P
- 6. *Modify* solution Q as follows: take out $p_i q_i$ units of any items after i in Q, and 'replace' them with $p_i q_i$ units of item i.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let i be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution P, we take "as many as we can" for each item, therefore Q cannot take more unit of item i than P
- 6. **Modify** solution Q as follows: take out $p_i q_i$ units of any items after i in Q, and 'replace' them with $p_i q_i$ units of item i.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.
- 8. So this "new" solution Q is also an optimal solution, which we also name it as Q. But this time we have that $p_i = q_i$.

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let i be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution P, we take "as many as we can" for each item, therefore Q cannot take more unit of item i than P
- 6. **Modify** solution Q as follows: take out $p_i q_i$ units of any items after i in Q, and 'replace' them with $p_i q_i$ units of item i.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.
- 8. So this "new" solution Q is also an optimal solution, which we also name it as Q. But this time we have that $p_i = q_i$.
- 9. With this new optimal Q, if we find the first index s.t. $p_i \neq q_i$ as in Step 4, such a "first index" is going to increase

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the **greedy solution**, where p_i is the number of units of item i put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let *i* be **first** index s.t. $p_i \neq q_i$ 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for
- each item, therefore Q cannot take more unit of item i than P6. *Modify* solution Q as follows: take out $p_i q_i$ units of any items after i in Q, and 'replace'
- them with $p_i q_i$ units of item i.

 7. This produces another solution whose value is no smaller than the original Q, because we are swapping in items whose unit values are no smaller.
- 8. So this "new" solution Q is also an optimal solution, which we also name it as Q. But this time we have that $p_i = q_i$.
- 9. With this new optimal Q, if we find the first index s.t. $p_i \neq q_i$ as in Step 4, such a "first index" is going to increase
- 10. If we repeatedly perform Step 4-6, the first index such that P and Q differ will keep on increasing, until P = Q. So P is optimal

- A conference room is shared among different activities
 - $ightharpoonup S = \{1, 2, ..., n\}$ is the set of proposed activities
 - ightharpoonup activity *i* has a start time s_i and a finish time f_i
 - ▶ activities i and j are compatible if either $f_i \le s_j$ or $f_j \le s_i$ (i.e., their time intervals $[s_i, f_i)$ and $[s_i, f_i)$ do not overlap)

- A conference room is shared among different activities
 - $S = \{1, 2, ..., n\}$ is the set of proposed activities
 - ightharpoonup activity i has a start time s_i and a finish time f_i
 - ▶ activities i and j are compatible if either $f_i \le s_j$ or $f_j \le s_i$ (i.e., their time intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap)

Problem: find the largest subset of compatible activities

- A conference room is shared among different activities
 - $S = \{1, 2, ..., n\}$ is the set of proposed activities
 - ightharpoonup activity *i* has a start time s_i and a finish time f_i
 - ▶ activities i and j are compatible if either $f_i \le s_j$ or $f_j \le s_i$ (i.e., their time intervals $[s_i, f_i)$ and $[s_j, f_i)$ do not overlap)

Problem: find the largest subset of compatible activities

activity											
start	8	0	2	3	5	1	5	3	12	6	8
start finish	12	6	13	5	7	4	9	8	14	10	11

The previous problem can be also formalized as an *interval scheduling* problem

- Given a set of n intervals: $[s_1, f_1), [s_2, f_2), \dots, [s_n, f_n)$
- Find the largest subset of *dis-joint* intervals

The previous problem can be also formalized as an *interval scheduling* problem

- Given a set of *n* intervals: $[s_1, f_1), [s_2, f_2), ..., [s_n, f_n)$
- Find the largest subset of *dis-joint* intervals

So from now on, the terms "activities" and "intervals" will be used interchangeably

Interval Scheduling: Naive Solutions

- The most naive method is to *enumerate each subset* of the intervals and check the compatibility, which is in exponential time
- There also exists a *dynamic-programming* algorithm for the problem
- But we will look at a *greedy algorithm* which is much *simpler* and *faster*

Interval Scheduling: Greedy Solution

Idea:

- Order the intervals by their *finishing time*.
- Go over each interval in the order, select the interval if it is compatible with the ones already selected

Interval Scheduling: Greedy Solution

Idea:

- Order the intervals by their *finishing time*.
- Go over each interval in the order, select the interval if it is compatible with the ones already selected

```
GREEDVINTERVSCHED (\{s_1,\ldots,s_n\},\{f_1,\ldots,f_n\})

1 sort and renumber the intervals s.t.

f_1 \leq f_2 \leq \cdots \leq f_n

2 C = \emptyset // selected intervals

3 for i = 1,\ldots,n:

4 if interval i is compatible with intervals in C

5 C = C \cup \{i\}

6 return C
```


How do we efficiently implement the algorithm?

```
GREEDYINTERVSCHED(\{s_1,\ldots,s_n\},\{f_1,\ldots,f_n\})

1 sort and rename the intervals s.t.

f_1 \leq f_2 \leq \cdots \leq f_n

2 C = \emptyset // selected intervals

3 for i = 1,\ldots,n:

4 if interval i is compatible with intervals in C

5 C = C \cup \{i\}

6 return C
```

■ In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_i\}$.

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_i\}$.
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_j}, f_{a_j})$$

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_j\}$.
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \leq [s_{a_2}, f_{a_2}) \leq \cdots \leq [s_{a_j}, f_{a_j})$$

■ Since we ordered the intervals by finishing time, we have $f_i \ge f_{o_j}$

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_j\}$.
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \leq [s_{a_2}, f_{a_2}) \leq \cdots \leq [s_{a_j}, f_{a_j})$$

- Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_j}$
- Then interval i is compatible with all intervals in C if and only if it is compatible with the last interval a_j

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_j\}$.
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_j}, f_{a_j})$$

- Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_i}$
- Then interval i is compatible with all intervals in C if and only if it is compatible with the last interval a_j
- So we only need check whether $s_i \ge f_{a_j}$

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_i\}$.
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_j}, f_{a_j})$$

- Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_i}$
- Then interval i is compatible with all intervals in C if and only if it is compatible with the last interval a_j
- So we only need check whether $s_i \ge f_{a_i}$
- Therefore, in the algorithm, we will have a variable *F* keeping the finishing time of the last interval in *C*, and at each iteration we check whether the starting time of interval *i* is later than *F*

More detailed pseudocodes

```
GREEDYINTERVSCHED(\{s_1,\ldots,s_n\},\{f_1,\ldots,f_n\})

1 sort and rename the intervals s.t.

f_1 \leq f_2 \leq \cdots \leq f_n

2 C = \emptyset // selected intervals

3 F = -\infty // finishing time of the last interval in C

4 for i = 1,\ldots,n:

5 if s_i \geq F

6 C = C \cup \{i\}

7 F = f_i

8 return C
```

Time complexity: $O(n \log n)$

More detailed pseudocodes

```
GREEDYINTERVSCHED (\{s_1,\ldots,s_n\},\{f_1,\ldots,f_n\})

1 sort and rename the intervals s.t.

f_1 \leq f_2 \leq \cdots \leq f_n

2 C = \emptyset // selected intervals

3 F = -\infty // finishing time of the last interval in C

4 for i = 1,\ldots,n:

5 if s_i \geq F

6 C = C \cup \{i\}

7 F = f_i

8 return C
```

Time complexity: $O(n \log n)$

Question: Is the above greedy algorithm correct? How do we prove it always produce the optimal solution?

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

To show this, we prove the following proposition:

Proposition

After each step *i* of the greedy algorithm, the set *C* is always **contained** *in* an optimal solution.

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

To show this, we prove the following proposition:

Proposition

■ After each step *i* of the greedy algorithm, the set *C* is always *contained in* an optimal solution.

We prove this by mathematical induction

Mathematical induction:

• You want to show that a claim (containing i) is true for all integers $i = 0, 1, 2, \dots$

Mathematical induction:

- You want to show that a claim (containing i) is true for all integers $i = 0, 1, 2, \dots$
 - ► An example of the claim would be:

$$0+1+2+\cdots+i=i\cdot(i+1)/2$$

Mathematical induction:

- You want to show that a claim (containing *i*) is true for all integers i = 0, 1, 2, ...
 - An example of the claim would be:

$$0+1+2+\cdots+i=i\cdot(i+1)/2$$

 \blacksquare You first show: the claim is true for i=0 (**base case**)

Mathematical induction:

- \blacksquare You want to show that a claim (containing i) is true for all integers $i=0,1,2,\ldots$
 - ► An example of the claim would be:

$$0+1+2+\cdots+i=i\cdot(i+1)/2$$

- You first show: the claim is true for i = 0 (**base case**)
- You then show: assume the claim to be true for i-1, the claim is also true for i (inductive step)

Mathematical induction:

- \blacksquare You want to show that a claim (containing i) is true for all integers $i=0,1,2,\ldots$
 - An example of the claim would be:

$$0+1+2+\cdots+i=i\cdot(i+1)/2$$

- You first show: the claim is true for i = 0 (**base case**)
- You then show: assume the claim to be true for i-1, the claim is also true for i (inductive step)
- Then the claim becomes true for every i = 0, 1, 2, ...

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

To show this, we prove the following proposition:

Proposition

■ After each step *i* of the greedy algorithm, the set *C* is always *contained in* an optimal solution.

We prove this by mathematical induction

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

To show this, we prove the following proposition:

Proposition

■ After each step *i* of the greedy algorithm, the set *C* is always *contained in* an optimal solution.

We prove this by mathematical induction

■ Base case (i = 0): This is the very beginning of the algorithm where $C = \emptyset$; an empty set is certainly contained in an optimal solution

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

To show this, we prove the following proposition:

Proposition

■ After each step *i* of the greedy algorithm, the set *C* is always *contained in* an optimal solution.

We prove this by mathematical induction

- Base case (i = 0): This is the very beginning of the algorithm where $C = \emptyset$; an empty set is certainly contained in an optimal solution
- Inductive step: Assume that **after step** i-1 of the greedy algorithm, the set C is contained in an optimal solution.

We show that *after step i* of the algorithm, the set *C* is still contained in an optimal solution.

We first show that the set of selected intervals *C* is **contained** in an optimal solution.

To show this, we prove the following proposition:

Proposition

■ After each step *i* of the greedy algorithm, the set *C* is always *contained in* an optimal solution.

We prove this by mathematical induction

- Base case (i = 0): This is the very beginning of the algorithm where $C = \emptyset$; an empty set is certainly contained in an optimal solution
- Inductive step: Assume that **after step** i-1 of the greedy algorithm, the set C is contained in an optimal solution.
 - We show that *after step i* of the algorithm, the set *C* is still contained in an optimal solution.
 - Notice that in step i we are trying to add the interval i to C
 - ► However, it may happen happen that *C* is not changed in step *i*, and so the inductive claim is still true after step *i* in this case

We first show that the set of selected intervals *C* is *contained* in an optimal solution.

To show this, we prove the following proposition:

Proposition

solution.

■ After each step *i* of the greedy algorithm, the set *C* is always *contained in* an optimal solution.

We prove this by mathematical induction

- Base case (i = 0): This is the very beginning of the algorithm where $C = \emptyset$; an empty set is certainly contained in an optimal solution
- Inductive step: Assume that *after step i* − 1 of the greedy algorithm, the set *C* is contained in an optimal solution.

 We show that *after step i* of the algorithm, the set *C* is still contained in an optimal
 - ▶ Notice that in step *i* we are trying to add the interval *i* to *C*
 - ► However, it may happen happen that C is not changed in step i, and so the inductive claim is still true after step i in this case
 - ▶ The next slide will focus on the case that interval *i* is actually added to *C* in the step

■ Suppose before adding i to C, $C = \{a_1, a_2, \dots, a_j\}$

- Suppose before adding *i* to C, $C = \{a_1, a_2, \dots, a_i\}$
- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.

- Suppose before adding *i* to *C*, $C = \{a_1, a_2, ..., a_i\}$
- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_i, b_{i+1}, b_{i+2}, \dots, b_\ell\}$ be an optimal solution containing C

- Suppose before adding *i* to C, $C = \{a_1, a_2, ..., a_i\}$
- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_i, b_{i+1}, b_{i+2}, \dots, b_{\ell}\}$ be an optimal solution containing C
- Since intervals in O are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \dots \le [s_{a_i}, f_{a_i}) \le [s_{b_{i+1}}, f_{b_{i+1}}) \le [s_{b_{i+2}}, f_{b_{i+2}}) \le \dots \le [s_{b_\ell}, f_{b_\ell})$$

- Suppose before adding *i* to C, $C = \{a_1, a_2, ..., a_i\}$
- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in O are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \dots \le [s_{a_i}, f_{a_i}) \le [s_{b_{i+1}}, f_{b_{i+1}}) \le [s_{b_{i+2}}, f_{b_{i+2}}) \le \dots \le [s_{b_\ell}, f_{b_\ell})$$

■ Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,

- Suppose before adding i to C, $C = \{a_1, a_2, ..., a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_{\ell}\}$ be an optimal solution containing C
- Since intervals in O are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \dots \le [s_{a_i}, f_{a_i}) \le [s_{b_{i+1}}, f_{b_{i+1}}) \le [s_{b_{i+2}}, f_{b_{i+2}}) \le \dots \le [s_{b_\ell}, f_{b_\ell})$$

- Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,
- ▶ If $f_{b_{j+1}} < f_i$, then b_{j+1} would have been processed before i in the algorithm;

■ Suppose before adding *i* to *C*, $C = \{a_1, a_2, ..., a_j\}$

interval added to C after a_i .

- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in O are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_i}, f_{a_i}) \le [s_{b_{i+1}}, f_{b_{i+1}}) \le [s_{b_{i+2}}, f_{b_{i+2}}) \le \cdots \le [s_{b_\ell}, f_{b_\ell})$$

- Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,
 - If $f_{b_{j+1}} < f_i$, then b_{j+1} would have been processed before i in the algorithm;
 - When we process b_{j+1} , we would add b_{j+1} to $C = \{a_1, a_2, \dots, a_j\}$, contradicting that i is the

- Suppose before adding i to C, $C = \{a_1, a_2, ..., a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, \dots, a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, \dots, a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_i, b_{i+1}, b_{i+2}, \dots, b_{\ell}\}$ be an optimal solution containing C
- Since intervals in O are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \dots \le [s_{a_i}, f_{a_i}) \le [s_{b_{i+1}}, f_{b_{i+1}}) \le [s_{b_{i+2}}, f_{b_{i+2}}) \le \dots \le [s_{b_\ell}, f_{b_\ell})$$

- Since b_{i+1} is compatible with a_i , we must have $f_{b_{i+1}} \ge f_i$,
 - ▶ If $f_{b_{i+1}} < f_i$, then b_{j+1} would have been processed before i in the algorithm;
 - ▶ When we process b_{j+1} , we would add b_{j+1} to $C = \{a_1, a_2, ..., a_j\}$, contradicting that i is the interval added to C after a_j .
- Since $f_{b_{j+1}} \ge f_i$, we could safely replace b_{j+1} with i in O, producing another optimal solution containing $\{a_1, a_2, \ldots, a_j, i\}$

■ Notice that the previous proposition only tells you that the set of intervals *C* returned by the greedy algorithm is *contained in* an optimal solution *O*

- Notice that the previous proposition only tells you that the set of intervals *C* returned by the greedy algorithm is *contained in* an optimal solution *O*
- But we need to show that C is the optimal solution O (C = O)

- Notice that the previous proposition only tells you that the set of intervals *C* returned by the greedy algorithm is *contained in* an optimal solution *O*
- But we need to show that C is the optimal solution O (C = O)
- Assume *O* has an addition interval b_{j+1} after $C = \{a_1, a_2, \dots, a_j\}$, then by the algorithm, b_{j+1} must be added to *C* when processing b_{j+1} , contradicting that b_{j+1} is not in *C*

Why designing greedy algorithms is not easy

Greedy Choices that **Do Not** Work:

- Chose the activity that starts first
- Chose the shortest activity
- Chose the activity that overlaps with the fewest number of activities

Counter examples for previous strategies

(Figure from Kleinberg & Tardos slides)

Interval Partitioning

Interval Partitioning

- We have n lectures; each lecture i starts at s_i and finishes at f_i (i.e., happens in $[s_i, f_i)$)
- Goal: find minimum number of classrooms to schedule all lectures so that lectures in the same room are compatible (disjoint)

Interval Partitioning

Interval Partitioning

- We have n lectures; each lecture i starts at s_i and finishes at f_i (i.e., happens in $[s_i, f_i)$)
- Goal: find minimum number of classrooms to schedule all lectures so that lectures in the same room are compatible (disjoint)
- This is called 'interval partitioning' because we are trying to partition the given set of intervals into a few subsets s.t. intervals in each subset are compatible
- From now on, 'intervals' and 'lectures' are used interchangeably

Example

This partitioning uses 4 classrooms to schedule 10 lectures:

(Figure from From Kleinberg & Tardos slides)

Example

This partitioning uses only 3 classrooms:

(Figure from From Kleinberg & Tardos slides)

Definition

The *depth* of a given set of lectures (intervals) is the maximum number of lectures held at the same time

Definition

The **depth** of a given set of lectures (intervals) is the maximum number of lectures held at the same time

Example: depth of the previous set of lectures is 3

(Figure from from Kleinberg & Tardos slides)

■ Why do we care about the *depth* of a set of lectures?

- Why do we care about the **depth** of a set of lectures?
- Observe that the number of classrooms needed *cannot be smaller* than the depth
 - If depth = d, this means that there are d lectures held at the same time
 - Each of the *d* lectures must be in a separate classroom

- Why do we care about the **depth** of a set of lectures?
- Observe that the number of classrooms needed *cannot be smaller* than the depth
 - If depth = d, this means that there are d lectures held at the same time
 - Each of the *d* lectures must be in a separate classroom
- So if we are able to schedule (partition) the lectures into *d* classrooms, this scheduling must be minimum (see the example above)

- Why do we care about the **depth** of a set of lectures?
- Observe that the number of classrooms needed *cannot be smaller* than the depth
 - If depth = d, this means that there are d lectures held at the same time
 - Each of the *d* lectures must be in a separate classroom
- So if we are able to schedule (partition) the lectures into *d* classrooms, this scheduling must be minimum (see the example above)
- We shall see a greedy algorithm which *always* schedules the lectures into *d* classrooms

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Go over each lecture in *increasing order of start time*:

- assign each lecture to any compatible classroom you already have
- if there is no compatible classroom, allocate a new one

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Go over each lecture in *increasing order of start time*:

- assign each lecture to any compatible classroom you already have
- if there is no compatible classroom, allocate a new one

```
GREEDYINTERVPARTITION(\{s_1, \ldots, s_n\}, \{f_1, \ldots, f_n\})

    sort and renumber the lectures s.t.

        S_1 < S_2 < \cdots < S_n
    C = 0 // number of classrooms allocated
    for i = 1, ..., n:
          if lecture i is compatible with lectures in a classroom k already allocated
               schedule lecture i in classroom k
 6
          else
               allocate a new classroom
               schedule lecture i in the new classroom
               C = C + 1
     return C
```

■ Let C be the number of classrooms schedule by the greedy algorithm

- Let C be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C-1 lectures in the existing C-1 classrooms which are incompatible with lecture i

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C-1 lectures in the existing C-1 classrooms which are incompatible with lecture i
- Since we process the lectures in the *order of starting time*, we have that the C-1 incompatible lectures must *start before* s_i

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C-1 lectures in the existing C-1 classrooms which are incompatible with lecture i
- Since we process the lectures in the *order of starting time*, we have that the C-1 incompatible lectures must *start before* s_i
- So these C-1 incompatible lectures must **end after** s_i

- Let C be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C-1 lectures in the existing C-1 classrooms which are incompatible with lecture i
- Since we process the lectures in the *order of starting time*, we have that the C-1 incompatible lectures must *start before* s_i
- So these C − 1 incompatible lectures must end after s_i
- So at time s_i the C-1 lectures and lecture i are being **held together**

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C − 1 lectures in the existing C − 1 classrooms which are incompatible with lecture i
- Since we process the lectures in the *order of starting time*, we have that the C-1 incompatible lectures must *start before* s_i
- So these C-1 incompatible lectures must **end after** s_i
- So at time s_i the C-1 lectures and lecture i are being **held together**
- The *depth* of all lectures is $\geq C$

Greedy Algorithm: Correctness

- Let C be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C-1 lectures in the existing C-1 classrooms which are incompatible with lecture i
- Since we process the lectures in the *order of starting time*, we have that the C-1 incompatible lectures must *start before* s_i
- So these C-1 incompatible lectures must **end after** s_i
- So at time s_i the C-1 lectures and lecture i are being **held together**
- The *depth* of all lectures is $\geq C$
- So there is **no scheduling** with number of classrooms < C

- In Line 4 of the greedy algorithm, we need to test whether lecture *i* is compatible a classroom *k* already allocated
- To implement this efficiently is not trivial: the most naive way is to go over each lecture in each classroom, which takes O(n) time in the worst case (so overall complexity is $O(n^2)$)
- The algorithm can be implemented in $O(n \log n)$ time by doing things smartly

Idea:

■ From the previous interval scheduling problem, we have that a lecture j is compatible with all lectures in a classroom i iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom i

Idea:

- From the previous interval scheduling problem, we have that a lecture j is compatible with all lectures in a classroom i iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom i
- So we keep the time F_i for each classroom in our algorithm, and when we examine a lecture j, we only need to see whether there exists a classroom i whose $F_i \le s_j$

Idea:

- From the previous interval scheduling problem, we have that a lecture j is compatible with all lectures in a classroom i iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom i
- So we keep the time F_i for each classroom in our algorithm, and when we examine a lecture j, we only need to see whether there exists a classroom i whose $F_i \le s_j$
- This is equivalent to doing the following: take the class ι whose F_{ι} is the **smallest** (earliest) among all classrooms, and check whether $F_{\iota} \leq s_{j}$

Idea:

- From the previous interval scheduling problem, we have that a lecture j is compatible with all lectures in a classroom i iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom i
- So we keep the time F_i for each classroom in our algorithm, and when we examine a lecture j, we only need to see whether there exists a classroom i whose $F_i \le s_i$
- This is equivalent to doing the following: take the class ι whose F_{ι} is the **smallest** (earliest) among all classrooms, and check whether $F_{\iota} \leq s_{j}$
- We use a *heap* to keep all F_i 's for the classrooms, and can retrieve the smallest finishing time F_t in $O(\log n)$ time for the O(n) classrooms

Scheduling to Minimizing Lateness

Minimizing Lateness Problem

- We have a bunch of jobs 1, 2, ..., n and a single machine which processes one job at a time
- Each job j requires t_j units of time to process and has a due time d_j
 - i.e., if j starts at time s, it finishes at time $f_j = s + t_j$
- Suppose job *j* finishes at f_j . Define *Lateness* of job *j* as: $l_j = \max\{0, f_j d_j\}$
- Goal: Find an order for executing the jobs to minimize maximum lateness $\max_{j=1,...,n}\{l_j\}$

Scheduling to Minimizing Lateness

(Figure from Kleinberg & Tardos slides)

■ The algorithms will be in very simple forms, i.e., we only need to figure out an order of the jobs based on certain criteria

- The algorithms will be in very simple forms, i.e., we only need to figure out an order of the jobs based on certain criteria
- The problem is which criterion to use:
 - ightharpoonup [Shortest processing time first]: Execute jobs in **ascending order of processing time** t_j

	2	1		
counterexample	10	1	† _j	
	10	100	d _i	

► [Smallest slack]: Consider jobs in **ascending order of slack** $d_j - t_j$

	2	1		
counterexample	10	1	† _j	
	10	2	d _i	

(Figures from Kleinberg & Tardos slides)

■ The correct strategy is to simply execute the jobs by the *ascending order of the due time*

- The correct strategy is to simply execute the jobs by the *ascending order of the due time*
- On the previous example:

(Figure from Kleinberg & Tardos slides)

- The correct strategy is to simply execute the jobs by the *ascending order of the due time*
- On the previous example:

(Figure from Kleinberg & Tardos slides)

■ Why is this?

- Assume that jobs are numbered by their due time (i.e., $d_1 \le d_2 \le \cdots \le d_n$) and there is no gap between the execution of two jobs
 - If we have an optimal solution with gaps, then we can simply eliminate the gaps and get another optimal solution

- Assume that jobs are numbered by their due time (i.e., $d_1 \le d_2 \le \cdots \le d_n$) and there is no gap between the execution of two jobs
 - If we have an optimal solution with gaps, then we can simply eliminate the gaps and get another optimal solution

Definition

For an order of job execution, an *inversion* is a pair of jobs i and j such that i < j but j scheduled before i

(Figure from Kleinberg & Tardos slides)

Proposition

Swapping a consecutive inversion in an execution does not increase the maximum lateness

(Figure from Kleinberg & Tardos slides)

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let $l_1, ..., l_n$ be the lateness of jobs before the swap and $l'_1, ..., l'_n$ be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$

Proof:

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$

■ So the only job that can make the max lateness to increase is *j*

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$

- So the only job that can make the max lateness to increase is *j*
- Consider the case that job j is late after the swap (i.e., $f_i' > d_j$)
 - The case that j is not late is easier and is omitted

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let $l_1, ..., l_n$ be the lateness of jobs before the swap and $l'_1, ..., l'_n$ be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$

- So the only job that can make the max lateness to increase is *j*
- Consider the case that job j is late after the swap (i.e., $f_i' > d_j$)
 - ► The case that *j* is not late is easier and is omitted
- We have: $l'_{j} = f'_{j} d_{j} = f_{i} d_{j} \le f_{i} d_{i} \le l_{i}$

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$

- So the only job that can make the max lateness to increase is j
- Consider the case that job j is late after the swap (i.e., $f_i' > d_j$)
 - ► The case that *j* is not late is easier and is omitted
- We have: $l'_{j} = f'_{j} d_{j} = f_{i} d_{j} \le f_{i} d_{i} \le l_{i}$
- We have shown that for each element in $L' = \{l'_1, \ldots, l'_n\}$, there is an element in $L = \{l_1, \ldots, l_n\}$ greater than or equal to it

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$

- So the only job that can make the max lateness to increase is j
- Consider the case that job j is late after the swap (i.e., $f_i' > d_j$)
 - ▶ The case that *j* is not late is easier and is omitted
- We have: $l'_{j} = f'_{j} d_{j} = f_{i} d_{j} \le f_{i} d_{i} \le l_{i}$
- We have shown that for each element in $L' = \{l'_1, \ldots, l'_n\}$, there is an element in $L = \{l_1, \ldots, l_n\}$ greater than or equal to it
- So $\max L' \leq \max L$

Proposition

Executing the jobs by their ascending order of due time yields a solution which minimizes the maximum lateness

Proposition

Executing the jobs by their ascending order of due time yields a solution which minimizes the maximum lateness

- Let O be an optimal solution
- If O is not the greedy solution (i.e., job are not ordered by their numbers), we can always transform O into the greedy solution by swapping consecutive inverted jobs.
- Since the swap does not increase the max lateness, we still get an optimal solution after the swap
- This means that the greedy solution is an optimal solution