Green Chemistry: Principles and Examples

E-mail: gkmehrotra@mnnit.ac.in

Sustainability:

Meeting the needs of the present generation without compromising the needs of future generationsis

is the goal

Green Chemistry:

Technologies that are energy efficient, minimise or preferably eliminate the formation of waste, avoid the use of toxic and/or hazardous solvents and reagents and, where possible, utilise renewable raw materials.

is the means

Primary Pollution Prevention not (End-of Pipe)Remediation

The 12 Principles

- Prevention
- Atom Economy & E Factor
- Less Hazardous Chemical Synthesis
- Designing Safer Chemicals
- Safer Solvents and Auxiliaries
- Design for Energy Efficiency
- Use of Renewable Feedbacks
- Reduce Derivatives
- Catalysis
- Design for Degradation,
- Real-time Analysis for Pollution Prevention
- Inherently Safer Chemistry for Accident Prevention

$$A + B + C \longrightarrow P + U$$

Reactants

Product + Unwanted Product

Atom Economy =
$$P \div A + B + C$$

E Factor =
$$U \div P$$

% Atom economy = 100 x rel. mol. mass of desired products / rel. mol. mass of *all* reactants

Routes to Synthesis of Maleic anhydride

Sheldon 1994: E-Factor

The environmental quotient : Total mass of waste / by mass of product

$$H_2C == CH_2 + Cl_2 + H_2O \longrightarrow ClCH_2CH_2OH + HCl$$

$$ClCH_2CH_2OH + Ca(OH)_2 \longrightarrow ClCH_2CH_2OH + CaCl_2 + 2H_2O$$

$$H_2C == CH_2 + Cl_2 + Ca(OH)_2 \longrightarrow ClCH_2CH_2OH + HCl$$

$$+ CaCl_2 + 2H_2O$$

Atom economy: 25%: E-factor:2.9 (127.6/44)

$$H_2C == CH_2 + 0.5 O_2$$
 Cat

Atom economy: 100%: E-factor:0

Supercritical CO₂

Supercritical CO2 as a Reaction Medium

- Tc 31.0 °C, pc 73.8 bar, dc 0.477 kg L-1
- Low viscosity (more like a gas than like a liquid);
 hence, fast mass transfer
- Cheap and abundantly available
- Easy to remove (N.B. no net production of CO₂)
- Non-toxic,non-inflammable,inert

ATOM ECONOMIC REACTIONS

Rearrangement

Claisen rearrangement of aromatic allyl ethers

Fries Rearrangement

Beckmann Rearrangement :

from cyclohexanone oxime to caprolactam; a key intermediate for nylon 6 (zeolite is preferable over 20% oleum)

Addition Reactions cat. cooet

Michael Addition: heterogeneous base catalyzed addition of beta keto esters to enones

Addition to carbonyl groups: enantioselective catalytic hydrogenation using chiral ligands

ATOM UN-ECONOMIC REACTION

Substitution Reactions

$$CH_3(CH_2)_4 CH_2OH + SOCl_2 \longrightarrow CH_3(CH_2)_4 CH_2Cl + SO_2 + HCl$$

Chlorination of Hexanol

Atom economy = $100 \times 120.5 / (102 + 119) = 54.5\%$

$$+ H_2SO_4 - H_2O - CO_3 + H_2O - Na_2SO_3 + H_2O - NaHSO_4$$

Benzene sulfonation route to Phenol

$$+ O_2$$
 $+ O_2$
 $+ O_2$
 $+ O_2$
 $+ O_2$
 $+ O_2$

Cumene route to Phenol

$$tBuO^{-}K^{+}$$
 CH_{3}
 $+ tBuOH + KBr$

E2 elimination of HBr from 2-bromo propane Atom economy = 42 /(112+122) = 17.9%

$$Ph_{3}P + BrCH_{2}CH_{3} \longrightarrow Ph_{3}P^{+} \longrightarrow CHCH_{3}$$

$$Ph_{3}P^{+} \longrightarrow CHCH_{3} + PhC = O \longrightarrow Ph_{3}P \longrightarrow Ph_{3}P$$

Wittig Reaction: Preparation of Alkenes under mild conditions generates TPPO as waste limiting its commercial use

Catalysis and Green Chemistry

Catalysts, by definition, are hetero- or homogeneous; within and across these two categories there are other classifications:

- Asymmetric Catalysts
- Biocatalysts
- Phase transfer Catalysts
- Photocatalysts
- Nanoparticles as Catalysts

Heterogeneous catalysts

Production of Cyclohexanol

Production of Nicotinic Acid

(ii)
$$\frac{\text{HNO}_3/\text{H}_2\text{SO}_4}{\text{Nicotinic Acid}}$$
 COOH Nicotinic Acid

(ii) Catalytic route is green route

Asymmetric Catalysts

L-Dopa

Commercial Synthesis of I- menthol

Synthesis of Adipic Acid: Traditional Route

adipic acid

2.2 million tons of adipic acid is consumed globally, mostly in the production of Nylon-6,6. In the traditional synthesis process large amount of N2O has been produced which is a green house gas and potential pollutant.

Synthesis of Adipic Acid

Green Route is known as Noyori Synthesis

Production of Polymer Polycarbonate (PC)

Uses: electrical and electronic equipments, auto parts and accessories, medical devices, optical media, safety helmets, sport goods, aircraft and missile components.

Traditional Baeyer Method used a reaction between Bisphenol -A and phosgene-a lethally poisonous gas

In green Asahi Process diphenyl carbonate and Bisphenol -A are taken in molten state without solvent: Komiya 2003

Melt

Solvent-Free

Asahi Process: for PC Production

- Phosgene free process
- Incorporation of CO2-byproduct carbon dioxide used as starting material
- No need for PC purification
- No diethylene glycol (DEG) formation
- Waste –free process

Monsanto's Herbicide or Weedicide-"RoundUp" or Glyphosate 1974

It is an organophosphorus compound specifically a phosphonate. Can also be classified as an amino acid

References:

- Mike Lancaster ,'Green Chemistry', Royal Society of Chemistry Publication, 2002.
- Paul T. Anastas and J.C.Warner, Green Chemistry Theory and Practice, Oxford University Press, Oxford 1998.
- J.A. Murphy, Free Radicals in Synthesis: Clean Reagents
 Affording Oxidative or Reductive Termination', Pure and
 Applied Chemistry, Special Topic Issue on Green Chemistry,
 2000, 72(7) 1327.
- A.S. Matlack, 'Introduction to Green Chemistry', Marcel Dekker, New York, 2001.
- H. Azoui, K. Baczko, S. Cassel and C. Larpent, Green Chemistry, 2008, 10, 1197-1203.