

Fia.1

Residual Form M ethod to compute $ ho_q$ and $ ho_u$	Direct Form $m{M}$ ethod to compute \dot{q} and \dot{u}
1. Compute the First Kinematics $C_{\alpha} _{\mathcal{C}}$, and the kinematic residual $\rho_q(k)$ 2. Generate $\hat{T}(k)$, the spatial load balance for each body 3. Compute dynamic residual $\rho_u(k)$	 Compute q using joint specific routines Perform First Kinematics Calc. with u = 0 Generate residuals ρ_u and negate ρ_u = -ρ_u Perform Second Kinematics Calc. Compute u using Forward Dynamics

Fig. 3

F55. 4 C

Analytic Jacobian Method ;

1. Compute the analytic Jacobians of the kinematics routines:

$$J_{qq} = \frac{\partial \left(Wu\right)}{\partial q}$$
 and $J_{qu} = W$

- 2. Compute $z \triangleq -M^{-1}
 ho_u(q,u,0)$ using the Direct Method
- 3. Compute the analytic Jacobians of the dynamics Residual routine:

$$rac{\partial}{\partial q}
ho_u(q,u,z)$$
 and $rac{\partial}{\partial u}
ho_u(q,u,z)$.

4. Backsolve for the analytic Jacobian of the dynamics routine using results for z from the Second Kinematics step:

$$J_{uq} = \frac{\partial \dot{u}}{\partial q} = -M^{-1} \frac{\partial \rho_u(q, u, z)}{\partial q}$$
 and
$$J_{uu} = \frac{\partial \dot{u}}{\partial u} = -M^{-1} \frac{\partial \rho_u(q, u, z)}{\partial u}$$

