ECE 3030 Spring 2025 HW 5 Hints

- 1. Use $g_{op} \cdot \tau$ for extra charges, S&B Fig. 3-17 for n_i , and $kT \cdot (T/300K)$ for kT at higher temperature, and Lecture 16, slide 3 for $F_n F_p$.
- 2. (a) Use S&B Fig. 3-23 for μ vs doping. Use electron drift velocity v_d versus electric field from S&B, Fig. 3-24. R vs ρ equation. (Lecture 10, slide 14).
 - (b) μ_n from S&B Appendix III for undoped Si.
- 3. Use $qn_i(\mu_n + \mu_p)$ with Eq. 3-26 for $n_i(T)$ to calculate how σ_i changes with T. Assume N_C , N_V , and E_G don't change with temperature. Then calculate the ratio of n_i at the two temperatures and use to obtain the higher temperature σ_i value.
- 4. Lecture 11, slide 8. Get μ from ρ .
- 5. Lecture 17. Slide 4&8. Note: parameter $a = 2(\mu m)^{-1} = 2 \times 10^4 \text{ (cm)}^{-1}$. Tilted bands have E_i with same tilt, but E_F flat, heading toward valence or conduction band, depending on whether donors or acceptors.
- 6. (a) Lecture 18. Find stored charge by integration.
 - (b) Use lifetime τ with stored charge.
 - (c) Equation 4-40 and $d(\delta p)/dx$.
- 7. From Hints or Appendix III, $\mu_n = 250 \text{ cm}^2/\text{V-S}$ and $\mu_p = 15 \text{ cm}^2/\text{V-S}$ for CdS. Solve for σ , ρ , and R to get length L and width W of photoconductor layout to obtain dark resistance. Assume $p_0 = 0$.