2019 (Biden/Trump Checks) Full States EV and EC of Two Checks

This is the example vignette for function: **snw_evuvw19_jaeemk_foc** from the **PrjOptiSNW Package.** 2019 integrated over VU and VW, given optimal savings choices, unemployment shocks and various expectations.

Given 2020 JAEEMK (age, endogenous savings, education, income shock, marital status, kids count), what is the expected value for the planner given 2020 JAEEMK and transition between 2019 to 2020 JAEEMK given some stimulus check assignment based on 2019 information? (Stimulus amount set by WELF_CHECKS). This is similar to snw_evuvw19_jaeemk, except the solution here, under snw_evuvw19_jaeemk_foc, relies on First Order Conditions, and are hence faster.

Despite the name, this function supports solving the 2019 looking into 2020 as well as the 2007 looking into 2008 problems. The idea is that the planner only has information from 2019 and from 2007, and must allocate using those information. Stimulus, however, is given in 2020 and in 2008. So the planner needs to consider expected values in consumption or welfare given the transition probabilities of states in 2007 to 2008 and in 2019 to 2020. The snw_evuvw19_jmky file then aggregates the full state-space results to just JMKY state-space, which is the extend of information available to the planner.

Test SNW_EVUVW19_JAEEMK Defaults for 2019

Call the function with defaults parameters.

```
clear all;
% Solution types
st biden or trump = 'bidenchk';
st_solu_type = 'bisec_vec';
% Solve the VFI Problem and get Value Function
mp_params = snw_mp_param('default_docdense');
% mp params = snw mp param('default dense');
mp_params('beta') = 0.95;
mp_params('st_biden_or_trump') = st_biden_or_trump;
% mp params = snw mp param('default dense');
mp_controls = snw_mp_control('default_test');
% set Unemployment Related Variables
mp_params('a2_covidyr') = mp_params('a2_covidyr_manna_heaven');
% mp_params('a2_covidyr') = mp_params('a2_covidyr_tax_fully_pay');
% Solve for Unemployment Values
mp_controls('bl_print_vfi') = false;
mp_controls('bl_print_vfi_verbose') = true;
mp_controls('bl_print_ds') = false;
mp_controls('bl_print_ds_verbose') = false;
mp_controls('bl_print_precompute') = false;
mp_controls('bl_print_precompute_verbose') = false;
mp controls('bl print a4chk') = false;
mp controls('bl print a4chk verbose') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp_controls('bl_print_evuvw20_jaeemk_verbose') = false;
```

% Solve the Model to get V working and unemployed [V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);

Completed SNW_VFI_MAIN_BISEC_VEC;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=519.5191

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i -	idx ——	ndim	n numel	rowN		olN	sum	mean 	std 	coefvar:
V_VFI	1		6	4.37e+07				-6.6619e+08			-1.4343
ap_VFI			6	4.37e+07			55e+05	1.3967e+09			1.1397
cons_VI	FI 5	3	6	4.37e+07	7 83	5.20	55e+05	2.3276e+08	5.3263	8.4413	1.5848
TABLE:			xxxxxxxxx		c.4	c.F.	C.	536406	-526407	2526400	~E2649
	c1 		c2	c3	c4	c5 		526496 	c526497	c526498	c526499
r1	-293.96	5 -2°	93.57	-291.09	-285.44	-276.	.41 -	-4.3584	-4.2643	-4.1713	-4.079
r2	-284.42		84.03		-275.97	-267.		-4.2519	-4.1612	-4.0717	-3.98
r3	-274.87		74.48		-266.62	-258.		-4.1429	-4.0559	-3.9698	-3.884
r4	-265.22		64.86		-257.53	-249.		-4.0309	-3.9475	-3.8649	-3.78
r5	-256.51		56.17		-249.3	-241.		-3.9252	-3.8452	-3.7659	-3.68
r79	-13.642		3.628		-13.298	-12.8			-0.21058	-0.20086	-0.191
r80	-12.283	3 -17	2.269	-12.176	-11.939	-11.5	37 -0	0.16979	-0.16182	-0.1543	-0.147
r81	-10.605	5 -10	0.591	-10.498	-10.261	-9.85	589 -0	0.11712	-0.11163	-0.10646	-0.101
r82	-8.3494		.3358		-8.0055	-7.60			-0.062242	-0.05936	-0.0566
r83	-5.0665	5 .	.0529	-4.9595	-4.7226	-4.32	.06 -0.	.020968 -	-0.019972	-0.019038	-0.0181
TABLE:			xxxxxxx								
	c1 c	c2	c 3	c4		c 5	c526496	6 c526497	7 c526498	c526499	c52650
_				2 2266					100.4		
r1	0 0		.00051498			021589	112.13			129.31	135.72
r2 r3	0 0		.00051498 .00020768			020245	112.17 112.2		123.43 123.45	129.34 129.37	135.76
r3 r4	0 0		.00020768 .00010346			018539 018307	112.2	117.73	123.45	130.03	135.78 136.44
r4 r5	0 0		.2907e-06			018307 018091	112.86	118.39	124.11	130.03	136.44
r79	0 0			0.00411 0	0 0.6	0 018091	81.091	85.364	89.335	93.258	97.348
r80	0 0			0	0	0	76.124		83.431	86.986	90.578
r81	0 0			0	0	0	67.945	79.747	73.673	76.991	81.091
r82	0 0			0	0	0	50.126	53.467		57.884	60.587
r83	0 0			0	0	0	0	0	0	0	00.307
TABLE:	cons_VF	1 xxxxx	xxxxxxxx	XXXXX							
	c1		c2	c3	c4		c5	c526496	c526497	c526498	c526499
r1	0.03671	17 0	.037251	0.040477	0.0444	486 (0.049324	12.265	12.55	12.844	13.145
r2	0.03671		.037251	0.040477	0.0453		0.050668	12.501	12.787	13.082	13.383
r3	0.03671		.037251	0.040784	0.0469		0.052374	12.755	13.042	13.337	13.638
r4	0.03814		.038678	0.042314	0.0484		0.054031	13	13.289	13.584	13.883
r5	0.03953		.040068	0.043802	0.0498		0.055635	13.236	13.525	13.821	14.116
r79	0.1973		0.19791	0.20163	0.211		0.23145	35.811	37.362	39.409	41.7
	0.1973		0.19791	0.20163	0.211		0.23145	40.752	42.953	45.286	47.946
r80					0.211		0.23145	48.909	52.039	55.022	57.919
	0.1973	₹7 €	9.19791	0.20163	0.21	1./ 0	0.23143	TU. 202			
r81 r82	0.1973 0.1973		0.19791 0.19791	0.20163 0.20163	0.211		0.23145	66.71	69.193	72.375	77.007

```
inc_VFI = mp_valpol_more_ss('inc_VFI');
spouse_inc_VFI = mp_valpol_more_ss('spouse_inc_VFI');
total_inc_VFI = inc_VFI + spouse_inc_VFI;
% Solve employment, same as 2020, except with possible change in tax
```

```
mp_params('xi') = 1;
mp_params('b') = 0;
[V_emp_2020,~,cons_emp_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; times

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

XXXXXXXX	(XXXXX	xxxxx	xxxxxx	xxxxxx	XXXXXX						
		i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
		_									
V_VFI	Γ	1	1	6	4.37e+	07 83	5.265e+05	-6.6619e	+08 -15.24	45 21.865	-1.4343
ap_VF	ΞI	2	2	6	4.37e+	07 83	5.265e+05	1.3967e	+09 31.96	36.426	1.1397
cons_	_VFI	3	3	6	4.37e+	07 83	5.265e+05	2.3276e	+08 5.326	8.4413	1.5848
xxx TABLE	:V VF	I xxx	xxxxxx	XXXXXXX	ίΧ						
	_ c	1	c2		с3	c4	c 5	c526496	c526497	c526498	c526499
r1	-29	3.96	-293	.57	-291.09	-285.44	-276.41	-4.3584	-4.2643	-4.1713	-4.0795
r2	-28	4.42	-284	.03	-281.55	-275.97	-267.24	-4.2519	-4.1612	-4.0717	-3.9832

-258.33

-241.96

-12.896

-11.537

-9.8589

-7.6035

-4.3206

-257.53 -249.74

-249.3

-13.298

-11.939

-10.261

-8.0055

-4.7226

-4.1429

-4.0309

-3.9252

-0.22092

-0.16979

-0.11712

-0.065333

-0.020968

-4.0559

-3.9475

-3.8452

-0.21058

-0.16182

-0.11163

-0.062242

-0.019972

-3.9698

-3.8649

-3.7659

-0.20086

-0.1543

-0.10646

-0.05936

-0.019038

-3.8847

-3.7833

-3.6873

-0.19173

-0.14722

-0.10157

-0.056635

-0.018161

-272.03 -266.62

-262.58

-254.04

-13.535

-12.176

-10.498

-8.2424

-4.9595

xxx TABLE:ap VFI xxxxxxxxxxxxxxxxxx

-256.51

-13.642

-12.283

-10.605

-8.3494

-5.0665

-274.87 -274.48

-265.22 -264.86

-256.17

-13.628

-12.269

-10.591

-8.3358

-5.0529

r3

r4

r5

r79

r80

r81

r82

r83

X IARLI	E:ap_vF	T XXXX	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
	c1	c2	c 3	c4	с5	c526496	c526497	c526498	c526499	c526500
	_									
r1	0	0	0.00051498	0.0066578	0.021589	112.13	117.67	123.4	129.31	135.72
r2	0	0	0.00051498	0.0057684	0.020245	112.17	117.71	123.43	129.34	135.76
r3	0	0	0.00020768	0.0041456	0.018539	112.2	117.73	123.45	129.37	135.78
r4	0	0	0.00010346	0.0041199	0.018307	112.86	118.39	124.11	130.03	136.44
r5	0	0	5.2907e-06	0.0041199	0.018091	113.53	119.07	124.79	130.71	137.12
r79	0	0	0	0	0	81.091	85.364	89.335	93.258	97.348
r80	0	0	0	0	0	76.124	79.747	83.431	86.986	90.578
r81	0	0	0	0	0	67.945	70.639	73.673	76.991	81.091
r82	0	0	0	0	0	50.126	53.467	56.302	57.884	60.587
r83	0	0	0	0	0	0	0	0	0	0

xxx TABLE:cons VFI xxxxxxxxxxxxxxxxx

	c1	c2	c 3	c4	с5	c526496	c526497	c526498	c526499
r1	0.036717	0.037251	0.040477	0.044486	0.049324	12.265	12.55	12.844	13.145
r2	0.036717	0.037251	0.040477	0.045375	0.050668	12.501	12.787	13.082	13.383
r3	0.036717	0.037251	0.040784	0.046998	0.052374	12.755	13.042	13.337	13.638
r4	0.038144	0.038678	0.042314	0.048449	0.054031	13	13.289	13.584	13.883
r5	0.039534	0.040068	0.043802	0.049839	0.055635	13.236	13.525	13.821	14.116
r79	0.19737	0.19791	0.20163	0.21175	0.23145	35.811	37.362	39.409	41.7
r80	0.19737	0.19791	0.20163	0.21175	0.23145	40.752	42.953	45.286	47.946
r81	0.19737	0.19791	0.20163	0.21175	0.23145	48.909	52.039	55.022	57.919
r82	0.19737	0.19791	0.20163	0.21175	0.23145	66.71	69.193	72.375	77.007
r83	0.19737	0.19791	0.20163	0.21175	0.23145	116.82	122.65	128.66	134.88

% Solve unemployment, different income than under ss due to income losses
mp_params('xi') = 0.50;
mp_params('b') = 0.50;

[V_unemp_2020,~,cons_unemp_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	_									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-6.7567e+6	98 -15.462	22.251	-1.4391
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.3783e+6	31.541	36.36	1.1528
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.3114e+6	5.2893	8.4402	1.5957
xxx TABLE:V_VF	I xxx	xxxxxx	xxxxxxx							
С	1	c2		c 3	c4	c 5	c526496	c526497	c526498	c526499

	c1	c2	с3	c4	с5	c526496	c526497	c526498	c526499
r1	-302.8	-302.11	-297.97	-290.4	-280.12	-4.3991	-4.3032	-4.2086	-4.1151
r2	-293.25	-292.57	-288.43	-280.86	-270.8	-4.2921	-4.1998	-4.1086	-4.0185
r3	-283.7	-283.02	-278.88	-271.34	-261.75	-4.1826	-4.094	-4.0063	-3.9196
r4	-273.72	-273.09	-269.23	-262.13	-253.1	-4.0721	-3.987	-3.9028	-3.8196
r5	-264.7	-264.11	-260.51	-253.79	-245.27	-3.9679	-3.8861	-3.8051	-3.725
r79	-13.642	-13.628	-13.535	-13.298	-12.896	-0.22191	-0.21148	-0.20167	-0.19245
r80	-12.283	-12.269	-12.176	-11.939	-11.537	-0.17053	-0.16249	-0.1549	-0.14776
r81	-10.605	-10.591	-10.498	-10.261	-9.8589	-0.11764	-0.11208	-0.10686	-0.10194
r82	-8.3494	-8.3358	-8.2424	-8.0055	-7.6035	-0.065608	-0.062497	-0.059592	-0.056839
r83	-5.0665	-5.0529	-4.9595	-4.7226	-4.3206	-0.021056	-0.020052	-0.019111	-0.018227

	c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499	c526500
	_									
r1	0	0	0	0.0011815	0.013905	109.98	115.52	121.26	127.18	133.29
r2	0	0	0	0.00090277	0.013905	109.95	115.49	121.22	127.14	133.26
r3	0	0	0	0.00051498	0.013905	109.9	115.45	121.18	127.1	133.21
r4	0	0	0	0.00051498	0.013905	110.34	115.88	121.61	127.53	133.65
r5	0	0	0	0.00048777	0.013905	110.79	116.33	122.06	127.98	134.1
r79	0	0	0	0	0	80.974	84.852	88.823	92.746	96.836
r80	0	0	0	0	0	75.619	79.241	82.926	86.481	90.439
r81	0	0	0	0	0	67.445	70.139	73.173	76.669	81.091
r82	0	0	0	0	0	50.126	53.467	55.806	57.389	60.587
r83	0	0	0	0	0	0	0	0	0	0

XXX TABLE	:cons_VFI xx	xxxxxxxxxxx	XXXX						
	c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.027723	0.028258	0.031999	0.040974	0.048028	11.989	12.265	12.55	12.844
r2	0.027723	0.028258	0.031999	0.041253	0.048028	12.223	12.501	12.787	13.082
r3	0.027723	0.028258	0.031999	0.041641	0.048028	12.476	12.755	13.042	13.337
r4	0.028805	0.029339	0.033081	0.042722	0.049108	12.72	13	13.289	13.584
r5	0.029859	0.030394	0.034135	0.043802	0.050161	12.955	13.236	13.525	13.821
r79	0.19737	0.19791	0.20163	0.21175	0.23145	35.417	37.362	39.409	41.7
r80	0.19737	0.19791	0.20163	0.21175	0.23145	40.752	42.953	45.286	47.946
r81	0.19737	0.19791	0.20163	0.21175	0.23145	48.909	52.039	55.022	57.741
r82	0.19737	0.19791	0.20163	0.21175	0.23145	66.215	68.697	72.375	77.007
r83	0.19737	0.19791	0.20163	0.21175	0.23145	116.33	122.15	128.17	134.39

[Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_emp_2020, mp_valpol_more_ss);

Completed SNW_DS_MAIN; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=1473.2344

% Get Matrixes

```
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid',...
    'ar_z_ctr_amz'};
% cl_st_precompute_list = {'a', ...
%    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid',...
%    'ap_idx_lower_ss', 'ap_idx_higher_ss', 'ap_idx_lower_weight_ss'};
mp_controls('bl_print_precompute_verbose') = false;
[mp_precompute_res] = snw_hh_precompute(mp_params, mp_controls, cl_st_precompute_list, ap_ss, false)
```

Wage quintile cutoffs=0.4645 0.71528 1.0335 1.5632
Completed SNW_HH_PRECOMPUTE; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time cost=279.4135

Solve for 2019 Evuvw With 0 and 2 Checks

Solve for 0 and 2 checks, by finding the increase to asset state-space that is equivalent to the check increase, so that the problem can be solved without increasing the state-space.

```
% Call Function
welf_checks = 0;
[ev19_jaeemk_check0, ec19_jaeemk_check0, ev20_jaeemk_check0, ec20_jaeemk_check0] = snw_evuvw19_
welf_checks, st_solu_type, mp_params, mp_controls, ...
V_emp_2020, ap_ss, cons_emp_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

Completed SNW_A4CHK_WRK_BISEC_VEC;SNW_MP_PARAM=bidenchk;welf_checks=0;TR=0.0015999;SNW_MP_PARAM=default_docdense;SNW_Completed SNW_A4CHK_UNEMP_BISEC_VEC;welf_checks=0;TR=0.0015999;xi=0.5;b=0.5;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;timeEUEC=8.3561
Completed SNW_EVUVW19_JAEEMK;SNW_MP_PARAM=default_test;SNW_MP_CONTROL=default_test;SNW_MP_CONTROL=default_test;DNW_MP_CONTROL=d

_ _ _ _ _ _

	j	i idx	ndim	numel	1 rowN	l colN	SI	ım 	mean	std	coef
ec19	jaeemk 1	- 1 1	6	4.31736	e+07 82	5.265e+05	1 967	 3e+08	4.5568	5.3248	1.1
_		2 2	6	4.31/36		5.265e+05		59e+08	5.3225	8.4421	1.5
_		3 3	6	4.31736		5.265e+05			-15.049	21.201	-1.4
_		4 4	6	4.376		5.265e+05		33e+08	-15.293	21.999	-1.4
x TABLE	E:ec19_jaeen	nk xxxxx	(XXXXXXX	xxxx							
	c1	c2	<u> </u>	c3	c4	c 5	c526496	c526497	7 c526498	8 c526	199
4	0.036404	0.034		2 227020	2 041025	0.040057	12 017	12 200	12.500	12.0	
r1	0.036494			0.037029	0.041925	0.048857	12.017	12.289	12.569	12.8	
r2	0.036494	0.036		0.037029	0.041745	0.049665	12.261	12.534	12.815	13.1	
r3	0.037912	0.037		0.038127	0.041994	0.050655	12.495	12.77	13.052	13.3	
r4 r5	0.039293 0.040635	0.039 0.040		0.039401 0.04064	0.043382 0.044725	0.052052 0.053494	12.753 13.002	13.028 13.278	13.311 13.56	13.59 13.8	
r78	0.19737	0.19		0.19737	0.19737	0.19791	27.77	28.769	29.78	30.9	
r79	0.19737	0.19		0.19737	0.19737	0.19791	30.426	31.659	32.732	33.9	
r80	0.19737	0.19		0.19737	0.19737	0.19737	33.678	35.498	37.364	38.9	
r81	0.19737	0.19		0.19737	0.19737	0.19737	40.112	41.394	43.173	45.6	
r82	0.19737	0.19		0.19737	0.19737	0.19737	52.096	55.537	58.457	60.0	
x TABLE	E:ec20_jaeen	nk xxxxx	(XXXXXXX	xxxxx							
	c1	c2		с3	c4	c 5	c526496	c526497	7 c52649	8 c526	199
r1	0.033462	0.033		0.037408	0.043215	0.048855	12.242	12.527	12.819	13.	
r2	0.033462	0.033	3996 F	0.037408	0.043883	0.049712	12.478	12.763	13.057	13.3	58

r3	0.033462	0.033996	0.037604	0.045059	0.05080	01 12.731	13.018	13.313	13.613 1
r3 r4	0.033462 0.034763	0.035298	0.037604				13.018	13.313	13.858
r4 r5	0.034763	0.035298	0.038972				13.265	13.796	13.858 1
r79		0.19791	0.20163				37.362	39.409	41.7
r80		0.19791	0.20163				42.953	45.286	41.7 2
r86 r81		0.19791	0.20163				42.953 52.039	45.286 55.022	47.946 S
r81 r82		0.19791							
			0.20163				69.193	72.375	77.007
r83	3 0.19737	0.19791	0.20163	0.21175	0.2314	45 116.82	122.65	128.66	134.88 1
XXX TAE	BLE:ev19_jaeemk								
	c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499
r1	-284.04	-284.04	-283.59	-279.25	-271.39	-4.3825	-4.288	-4.1947	-4.1025
r2	-273.99	-273.99			-262.27	-4.2743	-4.1834	-4.0935	-4.0047
r3	-263.81	-263.81	-263.65	-260.8	-253.57	-4.1639	-4.0766	-3.9902	-3.9047
r4	-254.62	-254.62			-245.12	-4.05	-3.9664	-3.8835	-3.8015
r5	-246.32	-246.32	-246.31	-243.7	-237.45	-3.9424	-3.8621	-3.7826	-3.7036
r78	3 -13.649	-13.649	-13.649	-13.649	-13.635	-0.27318	-0.26108	-0.24974	-0.23894
r79		-12.29	-12.29	-12.29	-12.29	-0.21858	-0.20783	-0.19878	-0.19059
r80	-10.611	-10.611	-10.611		-10.611	-0.16128	-0.15409	-0.14735	-0.14136
r81		-8.3555			-8.3555	-0.10114	-0.097402	-0.093444	-0.089432
r82	2 -5.0715	-5.0715	-5.0715	-5.0715	-5.0715	-0.044205	-0.041465	-0.039418	-0.038353
TAE	CLE COURSE TRACE	IVVVVV							
XXX IMD	BLE:ev20_jaeemk c1	c2	c3	c4	c5	c526496	c526497	c526498	c526499
	CI	CZ	C3	C4	C5	C526436	C520457	C520430	C520433
r1	-297.16	-296.66	-293.58	-287.23	-277.75	-4.3618	-4.2675	-4.1744	-4.0824
r2	-287.62	-287.12	-284.04		-268.53	-4.2552	-4.1645	-4.0747	-3.9861
r3	-278.06	-277.57	-274.51		-259.57	-4.1462	-4.059	-3.9728	-3.8876
r4	-268.3	-267.84	-264.99		-250.96	-4.0343	-3.9508	-3.8681	-3.7863
r5	-259.47	-259.05			-243.16	-3.9288	-3.8486	-3.7691	-3.6904
r79	9 -13.642	-13.628	-13.535	-13.298	-12.896	-0.22092	-0.21058	-0.20086	-0.19173
r80		-12.269			-11.537	-0.16979	-0.16182	-0.1543	-0.14722
r81		-10.591			-9.8589	-0.11712	-0.11163	-0.10646	-0.10157
r82		-8.3358	-8.2424			-0.065333	-0.062242	-0.05936	-0.056635
r83	-5.0665	-5.0529	-4.9595	-4.7226	-4.3206	-0.020968	-0.019972	-0.019038	-0.018161

% Call Function

 $welf_checks = 2;$

[ev19_jaeemk_check2, ec19_jaeemk_check2, ev20_jaeemk_check2, ec20_jaeemk_check2] = snw_evuvw19_
welf_checks, st_solu_type, mp_params, mp_controls, ...
V_emp_2020, ap_ss, cons_emp_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);

Completed SNW_A4CHK_WRK_BISEC_VEC;SNW_MP_PARAM=bidenchk;welf_checks=2;TR=0.0015999;SNW_MP_PARAM=default_docdense;SNW_Completed SNW_A4CHK_UNEMP_BISEC_VEC;welf_checks=2;TR=0.0015999;xi=0.5;b=0.5;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;timeEUEC=7.9626
Completed SNW_EVUVW19_JAEEMK_FOC;st_biden_or_trump=bidenchk;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_docdense;SNW_MP_CONTROL=default_test;timeEUEC=7.9626

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

	1	ıax	naim	numel	rowN	COTN	sum	mean	sta	coetva
	-									
ec19_jaeemk	1	1	6	4.3173e+07	82	5.265e+05	1.9675e+08	4.5574	5.3248	1.168
ec20_jaeemk	2	2	6	4.37e+07	83	5.265e+05	2.3261e+08	5.323	8.4422	1.58
ev19_jaeemk	3	3	6	4.3173e+07	82	5.265e+05	-6.4916e+08	-15.036	21.153	-1.40
ev20_jaeemk	4	4	6	4.37e+07	83	5.265e+05	-6.6772e+08	-15.28	21.948	-1.436

xxx TABLE:ec19_jaeemk xxxxxxxxxxxxxxxxxx

c1 c2 c3 c4 c5 c526496 c526497 c526498 c526499

r1	0.039371	0.039371	0.03984	0.043617			12.289	12.569	12.858
r2	0.039522	0.039522	0.040022	0.043796			12.534	12.815	13.104
r3	0.040961	0.040961	0.041164	0.044279			12.77	13.052	13.342
r4	0.042361	0.042361	0.042463	0.045683			13.028	13.311	13.599
r5	0.043704	0.043704	0.043709	0.04707	0.05444	1 13.002	13.278	13.561	13.846
r78	0.20057	0.20057	0.20057	0.20057	0.2011	1 27.771	28.77	29.781	30.962
r79	0.20057	0.20057	0.20057	0.20057	0.2005	7 30.427	31.66	32.733	33.955
r80	0.20057	0.20057	0.20057	0.20057	0.2005	7 33.68	35.5	37.365	38.953
r81	0.20057	0.20057	0.20057	0.20057	0.2005		41.396	43.176	45.607
r82	0.20057	0.20057	0.20057	0.20057			55.54	58.46	60.09
xxx TABLE	:ec20_jaeemk	xxxxxxxxx	xxxxxxx						
	c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.036428	0.036915	0.039238	0.044128			12.527	12.82	13.12
r2	0.036428	0.036915	0.039449	0.044827			12.763	13.057	13.358
r3	0.036567	0.037083	0.039954	0.045988	0.05156		13.018	13.313	13.613
r4	0.037916	0.038441	0.041306	0.047327	0.05304	1 12.977	13.265	13.56	13.858
r5	0.03923	0.039763	0.04262	0.048625	0.05447	2 13.213	13.502	13.797	14.092
r79	0.20057	0.20111	0.20483	0.21495	0.2332	8 35.812	37.363	39.41	41.702
r80	0.20057	0.20111	0.20483	0.21495	0.2332	8 40.753	42.954	45.288	47.948
r81	0.20057	0.20111	0.20483	0.21495	0.2332	8 48.911	52.041	55.024	57.92
r82	0.20057	0.20111	0.20483	0.21495	0.2335	2 66.711	69.194	72.378	77.009
r83	0.20057	0.20111	0.20483	0.21495			122.65	128.67	134.88
VVV TABLE	:ev19_jaeemk								
XXX TABLL	ev19_jaeeiiik c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499
							C320497		C326499
n1	-281.59	-281.59	-281.18	-277.52	-270.11	-4.3824	-4.288	-4.1946	-4.1024
r1 r2	-271.55	-201.55	-201.16	-268.06	-261.04	-4.2742	-4.1833	-4.1946	-4.1024
r3	-261.56	-261.56	-261.41	-259.11	-252.39	-4.1639	-4.0766	-3.9902	-3.9047
r4	-252.52	-252.52	-252.45	-250.24	-244	-4.0499	-3.9663	-3.8835	-3.8014
r5	-244.35	-244.35	-244.35	-242.21	-236.39	-3.9423	-3.8621	-3.7825	-3.7036
r78	-13.568	-13.568	-13.568	-13.568	-13.555	-0.27317	-0.26107	-0.24974	-0.23893
r79	-12.209	-12.209	-12.209	-12.209	-12.209	-0.21857	-0.20783	-0.19877	-0.19059
r80	-10.531	-10.531	-10.531	-10.531	-10.531	-0.16127	-0.15408	-0.14735	-0.14135
r81	-8.2749	-8.2749	-8.2749	-8.2749	-8.2749	-0.10114	-0.097398	-0.09344	-0.089428
r82	-4.991	-4.991	-4.991	-4.991	-4.991	-0.044202	-0.041463	-0.039416	-0.038351
xxx TABLE	:ev20_jaeemk	xxxxxxxxx	xxxxxxx						
	c1	c2	с3	c4	c5	c526496	c526497	c526498	c526499
r1	-294.47	-294.03	-291.58	-285.7	-276.56	-4.3618	-4.2675	-4.1743	-4.0824
r2	-284.93	-284.49	-282.06	-276.25	-267.39	-4.2552	-4.1644	-4.0747	-3.9861
r3	-275.39	-274.95	-272.56	-266.91	-258.48	-4.1462	-4.059	-3.9728	-3.8875
r4	-265.81	-265.4	-263.16	-257.86	-249.93	-4.0343	-3.9507	-3.8681	-3.7862
r5	-257.15	-256.77	-254.66	-249.67	-242.18	-3.9287	-3.8486	-3.7691	-3.6904
r79	-13.561	-13.548	-13.46	-13.233	-12.841	-0.22091	-0.21058	-0.20085	-0.19173
r80	-12.203	-12.189	-12.101	-11.874	-11.482	-0.16978	-0.16181	-0.1543	-0.14722
r81	-10.524	-10.511	-10.423	-10.196	-9.8048	-0.11712	-0.11163	-0.10645	-0.10157
r82	-8.2689	-8.2556	-8.1674	-7.9402	-7.5499	-0.065331	-0.062241	-0.059358	-0.056634
r83	-4.9861	-4.9727	-4.8846	-4.6573	-4.2682	-0.020967	-0.019972	-0.019038	-0.01816

Differences between Checks in Expected Value and Expected Consumption

```
mn_V_U_gain_check = ev19_jaeemk_check2 - ev19_jaeemk_check0;
mn_MPC_U_gain_share_check = (ec19_jaeemk_check2 - ec19_jaeemk_check0)./(welf_checks*mp_params(
```

Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:99;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(metb_az_v = ff_summ_nd_array(st_title, mn_v_U_gain_check, true, ["mean"], 4, 1, cl_mp_datasetdesc
```

	mean_eta_6	mean_eta_5	mean_eta_4	mean_eta_3	mean_eta_2	mean_eta_1	savings	group
	0.3507	0.38933	0.43181	0.47698	0.52208	0.56295	0	1
	0.3507	0.38933	0.43181	0.47698	0.52208	0.56295	0.00051498	2
	0.34937	0.38768	0.42987	0.475	0.52054	0.56193	0.0041199	3
	0.30434	0.33426	0.36671	0.40085	0.4349	0.46781	0.013905	4
	0.25219	0.27416	0.29764	0.32201	0.34609	0.36797	0.032959	5
,	0.21256	0.22949	0.24731	0.26551	0.28324	0.29936	0.064373	6

% Consumption st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_dat

`	, , .						
savings	mean_eta_i	mean_eτa_z	mean_eta_3	mean_eta_4	mean_eta_5	mean_eтa_ь	mean_
	0 91275	0 91269	0 81262	0 81351	0 81220	0 91102	0.81
0.00051498	0.81275	0.81268	0.81262	0.81251	0.81229	0.81192	0.81
0.0041199	0.81254	0.81219	0.8118	0.8115	0.81123	0.81087	0.81
0.013905	0.74117	0.73709	0.73619	0.73592	0.736	0.73628	0.73
0.032959	0.65341	0.6534	0.65431	0.65624	0.65879	0.66152	0.66
0.064373	0.5566	0.55625	0.55661	0.55771	0.55943	0.56158	0.56
	0 0.00051498 0.0041199 0.013905 0.032959	savings mean_eta_1 0 0.81275 0.00051498 0.81275 0.0041199 0.81254 0.013905 0.74117 0.032959 0.65341	savings mean_eta_1 mean_eta_2 0 0.81275 0.81268 0.00051498 0.81275 0.81268 0.0041199 0.81254 0.81219 0.013905 0.74117 0.73709 0.032959 0.65341 0.6534	savings mean_eta_1 mean_eta_2 mean_eta_3 0 0.81275 0.81268 0.81262 0.00051498 0.81275 0.81268 0.81262 0.0041199 0.81254 0.81219 0.8118 0.013905 0.74117 0.73709 0.73619 0.032959 0.65341 0.6534 0.65431	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 0 0.81275 0.81268 0.81262 0.81251 0.00051498 0.81275 0.81268 0.81262 0.81251 0.0041199 0.81254 0.81219 0.8118 0.8115 0.013905 0.74117 0.73709 0.73619 0.73592 0.032959 0.65341 0.6534 0.65431 0.65624	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 0 0.81275 0.81268 0.81262 0.81251 0.81229 0.00051498 0.81275 0.81268 0.81262 0.81251 0.81229 0.0041199 0.81254 0.81219 0.8118 0.8115 0.81123 0.013905 0.74117 0.73709 0.73619 0.73592 0.736 0.032959 0.65341 0.6534 0.65431 0.65624 0.65879	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 mean_eta_6 0 0.81275 0.81268 0.81262 0.81251 0.81229 0.81192 0.00051498 0.81275 0.81268 0.81262 0.81251 0.81229 0.81192 0.0041199 0.81254 0.81219 0.8118 0.8115 0.81123 0.81087 0.013905 0.74117 0.73709 0.73619 0.73592 0.736 0.73628 0.032959 0.65341 0.6534 0.65431 0.65624 0.65879 0.66152

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 37vn

, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk = total_inc_VFI(19,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use = ev19_jaeemk_check2 - ev19_jaeemk_check0;
mn_C_W_gain_check_use = ec19_jaeemk_check2 - ec19_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it_age = 21; % +18
it marital = 1; % 1 = unmarried
it_kids = 1; % 1 = kids is zero
it_educ = 1; % 1 = lower education
% Select: NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
mn C W gain check jemk = mn_C_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ.
mn_V W gain check jemk = mn_V W gain check use(it_age, :, 1:mp_params('n_eta_H grid'), it_educ,
% Reshape, so shock is the first dim, a is the second
mt_total_inc_jemk = permute(mn_total_inc_jemk,[3,2,1]);
mt_C_W_gain_check_jemk = permute(mn_C_W_gain_check_jemk,[3,2,1]);
mt C W gain check jemk(mt C W gain check jemk<=1e-10) = 1e-10;</pre>
mt V W gain check jemk = permute(mn V W gain check jemk,[3,2,1]);
mt_V_W_gain_check_jemk(mt_V_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_V\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```

(MN_V_W_GAIN_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0 Color Represent different A Savings State, Circle-Group=Shock


```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

income(a,eps)

```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```

(MN_C_W_GAIN_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0 Color Represent different A Savings State, Circle-Group=Shock

Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
```

```
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb az v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc
```

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.030027	0.029309	0.027141	0.024832	0.022901	0.021272
2	2	0	0.04151	0.04055	0.037518	0.034247	0.031504	0.029182
3	3	0	0.048832	0.047813	0.043942	0.040179	0.037025	0.034356
4	4	0	0.055554	0.054443	0.050039	0.045784	0.042216	0.039197
5	5	0	0.0609	0.05977	0.054981	0.05038	0.046522	0.043258
6	1	1	0.0055093	0.0051081	0.0046334	0.0041967	0.0038272	0.0035138
7	2	1	0.0077846	0.0072287	0.0065562	0.0059314	0.0054057	0.004957
8	3	1	0.0094266	0.008771	0.0079723	0.0072201	0.0065859	0.00605
9	4	1	0.011763	0.010976	0.009988	0.0090498	0.0082597	0.0075823
10	5	1	0.014764	0.013879	0.012683	0.011539	0.010569	0.0097415

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(MN_MPC_U_	GAIN_CHEC	K(KM,J)), welf_	checks=2, TR=0.	0015999 xxxxx	xxxxxxxxxxxx	xxxxxx	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.08445	0.099691	0.10757	0.10468	0.10247	0.09965
2	2	0	0.096015	0.11123	0.12103	0.11789	0.11535	0.11281
3	3	0	0.10769	0.12614	0.13451	0.13081	0.12755	0.1248
4	4	0	0.11389	0.13321	0.14167	0.1377	0.13399	0.13108
5	5	0	0.1198	0.14051	0.14851	0.144	0.13992	0.13604
6	1	1	0.096558	0.10433	0.1066	0.10427	0.1019	0.099557
7	2	1	0.10023	0.10921	0.11152	0.10928	0.10824	0.10482
8	3	1	0.10587	0.11747	0.1188	0.11732	0.11596	0.11315
9	4	1	0.11202	0.12194	0.12444	0.1225	0.11996	0.11812
10	5	1	0.12325	0.13304	0.13672	0.13148	0.12849	0.12885

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

mean_age_18

Tabulate value and policies:

group

mean_age_20

mean age 21

mean_age_23

mean_age_22

mean_age_19

1	0	0	0.04847	0.04767	0.045314	0.042735	0.040445	0.0384
2	1	0	0.04626	0.045083	0.040135	0.035433	0.031622	0.028506
3	0	1	0.010726	0.010058	0.0092963	0.0085699	0.0079386	0.0073873
4	1	1	0.0089734	0.0083275	0.0074368	0.0066048	0.0059203	0.0053506

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=2, TR=0.0015999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx										
gr	oup	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23	
	1	0	0	0.092366	0.10262	0.1087	0.10789	0.10721	0.10648	
	2	1	0	0.11637	0.1417	0.15261	0.14614	0.1405	0.13527	
	3	0	1	0.098134	0.10328	0.1058	0.10505	0.10409	0.10299	
	4	1	1	0.11704	0.13112	0.13343	0.12889	0.12573	0.12281	

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


