07_Model Checking and Timed Automata

1. Introduction

2. Transition Systems

Conceptions

Transformation between Hybrid Automaton and Transition System

Bisimulation

Bisimulation Property

Bisimulation Algorithm

4. Analysis Example of Timed Automata

Summary

1. Introduction

Model Checking

Process of automatically analyzing properties of systems by exploring their state space

Note:

- Not possible for hybrid systems since number of states is infinite
- However, for some hybrid systems one can **find "equivalent" finite state system** by **partitioning state space** into finite number of sets such that any two states in set exhibit similar behavior

2. Transition Systems

Conceptions

Transition System

Transition system $T=(S,\delta,S_0,S_F)$ consists of

- ullet set of states S (finite or infinite)
- ullet transition relation $\delta:S o P(S)$
- ullet set of initial states $S_0\subseteq S$
- ullet set of final states $S_F\subseteq S$

Trajectory

 $\underline{ ext{Trajectory}}$ of transition system is (in)finite sequence of states $\left\{s_i
ight\}_{i=0}^N$ such that

- $s0 \in S_0$
- $s_{i+1} \in \delta\left(s_i
 ight)$ for all i

Example of finite state transition system

- States: $S = \{q_0, ..., q_6\};$
- Transition relation: $\delta(q_0) = \{q_0, q_1, q_2\}, \ \delta(q_1) = \{q_0, q_3, q_4\}, \ \delta(q_2) = \{q_0, q_5, q_6\}, \ \delta(q_3) = \delta(q_4) = \delta(q_5) = \delta(q_6) = \emptyset$
- Initial states: $S_0 = \{q_0\}$
- ullet Final states: $S_F = \{q_3, q_6\}$ (indicated by double circles) hs_check.4

Reachability

Transition system is <u>reachable</u> if there exists trajectory such that $s_i \in S_F$ for some i

Transformation between Hybrid Automaton and Transition System

- Hybrid automaton can be transformed into transition system by **abstracting away time**
 - we **do not care how long** it takes to get from *s* to *s*¹, we only care whether it is possible to get there eventually

Method

Consider hybrid automaton $H=(Q,X,\mathrm{Init},f,\mathrm{lnv},E,G,R)$ and "final" set of states $F\subseteq Q imes X$

- ullet S=Q imes X, i.e., s=(q,x)
- $S_0 = \text{Init}$
- $S_F = F$
- ullet Transition δ consists of two parts:
 - \circ discrete transition relation δ_e for each edge $e=(q,q')\in E$

$$\delta_e(\hat{q},\hat{x}) = egin{cases} \{q'\} imes R(e,\hat{x}) & ext{ if } \hat{q} = q ext{ and } \hat{x} \in G(e) \ arpropto & ext{ if } \hat{q}
eq q ext{ or } \hat{x}
otin G(e) \end{cases}$$

 \circ continuous transition relation δ_C

$$\delta_{C}(\hat{q},\hat{x}) = \{(\hat{q}',\hat{x}') \mid \hat{q}' = \hat{q} ext{ and } \exists t_{\mathrm{f}} \geqslant 0, x\left(t_{\mathrm{f}}
ight) = \hat{x}' \land \ orall t \in [0,t_{\mathrm{f}}], x(t) \in \mathrm{Inv}(\hat{q})\}$$

o Overall Transition Relation is then

$$\delta(s) = \delta_C(s) \cup igcup_{e \in E} \delta_e(s)$$

That is: transition from s to s' is possible if **either discrete transition** $e \in E$ of hybrid system brings s to s', or s can flow continuously to s' after some time

3. Bisimulation

- Turn infinite state system into finite state system by grouping together states that have "similar" behavior →
 partition
- Yields so-called quotient transition system
- for most partitions properties of quotient transition system do not allow to draw any useful conclusions about properties of original system
- special type of partition for which quotient system \hat{T} is "equivalent" to original transition system T: **bisimulation**

Bisimulation Property

Theorem

If partition $\{S_i\}_{i\in I}$ is bisimulation of transition system T and \hat{T} is quotient transition system, then S_F is **reachable** by T if **and only if** corresponding final state \hat{S}_F in \hat{T} is reachable by \hat{T}

Note:

- For finite state systems, use quotient system will have higher computational efficiency
- For infinite state system, we can sometimes bisimulation consisting of finite number of sets

Bisimulation Algorithm

- For timed automata we can always find finite bisimulation
- For infinite state systems: sometimes, algorithm may never terminate (reason: **not all infinite state transition systems have finite bisimulations**)
- ullet total number of states in the quotient transition system grows very quickly (exponentially) as **number of timers** n **increases**

4. Analysis Example of Timed Automata

4.1 Example of timed automaton

hs_check.14

hs_check.16

- Assume w.l.o.g. that all constants are non-negative integers
- Let C_i be largest constant with which x_i is compared in initial sets, guards, invariants and resets In example: $C_1 = 5$ and $C_2 = 3$
- If all we know about timed automaton is these bounds C_i , then x_i could be compared with any integer $M \in \{0, 1, ..., C_i\}$ in some guard, reset or initial condition set
- Hence, discrete transitions of timed automaton may be able to "distinguish" states with $x_i < M$ from states with $x_i = M$ and from states with $x_i > M$ (e.g., discrete transition may be possible from state with $x_i < M$ but not from state with $x_i > M$)

hs_check.17

Add sets to candidate bisimulation:

for
$$x_1: x_1 \in (0,1), x_1 \in (1,2), x_1 \in (2,3), x_1 \in (3,4), x_1 \in (4,5), x_1 \in (5,\infty)$$

 $x_1 = 0, x_1 = 1, x_1 = 2, x_1 = 3, x_1 = 4, x_1 = 5$
for $x_2: x_2 \in (0,1), x_2 \in (1,2), x_2 \in (2,3), x_2 \in (3,\infty)$
 $x_2 = 0, x_2 = 1, x_2 = 2, x_2 = 3$

Products of all sets:

$$\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 \in (0,1) \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 = 1 \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 \in (0,1) \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 = 1 \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 \in (1,2) \land x_2 \in (3,\infty) \},$$
 etc.

define all sets in \mathbb{R}^2 that discrete dynamics can distinguish

→ open squares, open horizontal and vertical line segments, integer points, and open, unbounded rectangles hs_check.18

Construction of region graph (cont.)

- Since $\dot{x}_1 = \dot{x}_2 = 1$, continuous states move diagonally up along 45° lines
- → by allowing time to flow timed automaton may distinguish points below diagonal of each square, points above diagonal, and points on the diagonal

• E.g., points above diagonal of square

$$\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 \in (0,1)\}$$

will leave square through line $\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 = 1\}$ Points below diagonal leave square through line

$$\{x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 \in (0,1)\}$$

Points on diagonal leave square through point (1,1)

hs_check.19

Construction of region graph (cont.)

- Split each open square in three: two open triangles and open diagonal line segment
- \rightarrow is enough to generate bisimulation:

tion of timed automaton

• Disadvantage: total number of regions in the region graph grows very quickly (exponentially) as n increases

Summary

- Verification of Hybrid System: **reachable problem** → hard problem
- Transition Systems: Hybrid Automata → Transition Systems
 - transition/edge transformation
- Bisimulation & Reachability
 - bisimulation → terminal state same reachability
 - o turn infinite state system into finite state system by grouping together states that have "similar" behavior
 - Timed automata → finite bisimulation