Metrics Scores

1. Accuracy

Accuracy
$$AC = \frac{tp + tn}{tp + fp + tn + fn} \text{ où } t = \text{true } ; f = \text{false } ; p = \text{positive et } n = \text{negative}$$

À utiliser quand le problème est balanced, et quand toutes les classes ont la même importance.

2. F1/FBeta

$$F_{beta} = (1 + \beta^2) \frac{precision \times recall}{\beta^2 \times precision + recall} \qquad F_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

À utiliser dans les problèmes de classification binaire.

Augmenter le β permet d'apporter plus d'attention à la précision.

 $0 < \beta < 1$; donne plus d'importance au recall, là où $\beta > 1$; prévilégie la précision.

F 1 est donc l'équilibre entre la précision et le recall.

3. ROC AUC

ROC (Receiver Operating Characteristic curve) est une courbe qui mets en relation le TPR (True Positive Rate) et le FPR (False Positive Rate).

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

AUC (Area Under the Curve) est simplement l'intégrale de la courbe ROC.

Il peut être <u>prouver</u> que le score **ROC** AUC revient à calculer le rang de correlation entre la prédiction et l'objectif. Cela peut également être interprété comme montrer à quel point un modèle est bon à classer les prédictions.

À utiliser quand l'on veut principalement classer les prédicitions.

À ne pas utiliser quand le dataset est fortement imbalanced.

4. PRAUC

PR (Precision-Recall) est une courbe qui mets en relation la precision et le recall.

AUC a la même signification que dans ROC, à savoir l'intégrale de la courbe PR.

Ce metric peut être utile pour trouver à partir de quel recall la précision se met à vite baisser.