

AXIS O and Axis 1

03

Broadcasting

	3	3
1	3	3

&tomple O

6	7	
8	0	

ı	7	3	_	и	5
3	4	5	'	ľ	

+_	4	5	6	
	\ \ \	15)	S	

Example 03

Mean =
$$\frac{\hat{\Sigma}_{z} \times x'}{n}$$

variance =
$$\frac{\sum_{i=1}^{n} (x-x')^2}{1}$$

$$SD = \sqrt{\frac{\sum_{i=1}^{(x-x')^2}}{\lambda}}$$

For odd Median = x1, x2, x3, x4, x5

Median = x3

Median = x1, x2, x3, x4, x5, x6

Median = x3 + x4

05

= m * p

if Matrix A = m * nand Matrix B should be = n * p

Element Wise multiplication

$$\begin{bmatrix}
1 & \frac{1}{3} & \frac{1}{4} \times 5 & 6 \\
3 & 4 & 7 & 8
\end{bmatrix}$$

$$= \begin{bmatrix}
1 \times 5 & \frac{1}{4} \times 6 \\
3 \times 7 & 4 \times 8
\end{bmatrix}$$

$$= \begin{bmatrix}
5 & 8 \\
1 & 31
\end{bmatrix}$$