8.68314021, 7.0 6.34669867, 7.1 7.70369959, 1.9 2.64613349, 2.0 5.52780882, 7.8 5.96016535, 1.5 Step2: Data Preparation Gaussian noise (mean 0, statest (size=100) np.random.seed(44) noise_list = np.randomnoise_list array([-7.50614717e-02 -1.46814368e-01 -5.23221964e-03	·	.07824543, .63407633, .16429597, .49486006, .69285324, .67074629])	ssian is nothing but normal distribution, t	herefore using numpy.random.normal gives 1
1.06061026e-01 -1.19050362e-01 -4.82981016e-02 -3.91128155e-02 5.20409870e-02 -5.14112178e-02 -7.03201512e-02 4.18510984e-02 2.00862219e-01 4.88232904e-03 1.11297983e-01 1.59468337e-01 4.63207552e-02 1.30817950e-01 -9.43310039e-02 -1.05172261e-01 3.90553333e-02 -1.89692831e-01 -5.33551498e-02 -2.25764275e-01 5.98645681e-02	1.17152178e-02, 8.25664851e-02, 2.19871821e-02, -2.12919130e-02, 1.20176208e-01, -7.05803033e-02, 3.49290932e-02, 8.25222389e-02, 4.26203507e-02, -3.07368882e-01, -3.95159070e-02, -1.73739268e-01, -2.35333837e-02, 4.32107174e-02, 1.37177091e-01, 1.05859789e-01, 9.03295203e-03, -4.80256813e-02, -1.93150462e-03, -8.07598399e-05, 1.86129868e-03, -1.81909398e-01, 7.75837713e-02, -2.80170397e-02, 5.61686243e-02, -6.92792641e-02, -6.61151557e-02, -1.01089971e-01, -8.10444201e-02, -5.71974963e-03, -3.35974342e-02, -5.51716492e-03, 1.02717436e-01, 6.94197136e-04	, -1.20981355e-01, , -1.41149914e-01, , 2.51813547e-03, , 5.91188382e-02, , 1.95640026e-02, , -7.95399184e-02, , -1.86395314e-01, , 8.70291930e-02, , 1.44533756e-01, , 3.00662736e-02, , -6.38530234e-02, , -1.98476822e-02, , -6.17079638e-02, , -7.23937713e-02, , 1.70175958e-01, , -1.4588071e-01, , 3.17631167e-03, , 1.23101785e-01, , 1.21863875e-01, , 2.81184498e-02, , -1.75330973e-01])		
9328729944, 2.05585511 2.1784196792666766, 2.84543, 2.1000799943457 1407823468643308, 2.31 10429, 1.8330998616056 3033790588122, 0.68836 9, 1.4856949754590107, 5693203085, 0.21099533 02, 1.8347806555465018 866044175345307, 0.694 144785, 1.300882230763 Step3: KNN Regression Now use K-NN regression to case1,2,3: the K neighbors c case4,5,6: each of the K neighbors c case7: all the N points contril While I recommend that you including the ones where K-N seaborn. There will be no pe	783081, 2.170071907656952, 1.61308 783081, 2.170071907656952, 1.61308 7802087932282761, 0.952115946807709 784, 0.8525120300326454, 1.7636771 783552090726425, 2.0582145136622363 785, 2.181952074502669, 1.976875252 787136552653, 0.877649159233948, 2.1 78701639760418238, 1.43716323485 7846746474, 2.1333661993169573, 1.8 787016393621, 2.2840863240893503, 2.144747231535682, 1.88673388229 78420810393621, 2.2840863240893503, 2.441, 1.8132166744280538, 0.477256 79 Modeling 79 obtain y^ values (= estimates of y) at x-value on tribute equally (separately for K = 1, 3, 5) 79 obtain y^ values (= estimates of y) at x-value on tribute equally (separately for K = 1, 3, 5) 79 obtain y^ values (= estimates of y) at x-value on tribute equally (separately for K = 1, 3, 5) 79 obtain y^ values (= estimates of y) at x-value on tribute equally (separately for K = 1, 3, 5) 79 obtain y^ values (= estimates of y) at x-value on tribute equally (separately for K = 1, 3, 5)	70157888915, 1.460403471074548, 0, 1.7877458756014388, 0.833946321 969070741, 0.9081912571538369, 0. 1.1734941689821088, 1.690658334 8520055, 2.0279114409548966, 2.32 2403140567152353, 1.2667118761409 6286, 1.7905173511502743, 0.66558 849444794061032, 0.19768364264378 76205, 2.0807560131159857, 0.6020 0.30856714014850106, 1.670215685 4923791019, 1.9523937423825743, 1 ues of 1, 3, 5, 7 and 9 for each of the follow opportional to the distance from the point (se-12d2, where d represents distance.	7642227814305482, 0.990392329054 808006, 1.613489450463088, 2.040 733938889676337, 0.7198495615111 614377, 0.3457868298738342, 1.93 64102834986, 2.3908444937207247, 24, 2.316751606228279, 0.9055653 6057176135, 1.9200024549706929, 2, 1.386032966788778, 1.73543680 74535953942, 1.8100456613238056, 525408, 1.5542191213416028, 2.18 9157617602192614, 1.862082937970 ring three schemes:	.6996895628426043, 1.5524101547185676297, 2.2996438236784384, 2.356316129349296851977, 1.153488139825443, 2.496, 1.091058367837915, 1.711116230511410888445042, 0.3285925781911909, 0.7549258474969294, 1.736759295690798519284, 0.7843798298150364, 1.28581.2423209551590002, 2.1577926735199392918222, 2.0181107402760983, 1.85872.1780143163225527, -0.037576244993651459697269, 1.1918616494581813, 2.8772]
<pre>X_numpy = np.asarray() y_numpy = np.asarray() X_test = [1,3,5,7,9] # case1:the K neighbor uniform_k_1_nn_reg_mod uniform_k_1_nn_reg_mod KNeighborsRegressor(n_ # case2:the K neighbor uniform_k_3_nn_reg_mod</pre>	# Should we do np.delete? change the standard second secon	his if required neighbors=1, weights='uniform')		
uniform_k_50_nn_reg_mc KNeighborsRegressor(n_ # case4: each of the I distance_k_1_nn_reg_mc distance_k_1_nn_reg_mc KNeighborsRegressor(n_ # case5: each of the I distance_k_3_nn_reg_mc distance_k_3_nn_reg_mc KNeighborsRegressor(n_	odel_class = KNeighborsRegressor(n_odel_class.fit(X_numpy,y_numpy) neighbors=50) (neighbors has an influence that indel_class = KNeighborsRegressor(n_odel_class.fit(X_numpy,y_numpy) neighbors=1, weights='distance') (neighbors has an influence that indel_class = KNeighborsRegressor(n_odel_class = KNeighborsRegressor(n_odel_class.fit(X_numpy,y_numpy) neighbors=3, weights='distance')	is inversely proportional to the aneighbors=1, weights='distance') is inversely proportional to the aneighbors=3, weights='distance')	istance from the point	
<pre>distance_k_50_nn_reg_r distance_k_50_nn_reg_r KNeighborsRegressor(n_ # case7: all the N pos def custom_function(ar """</pre>	:1	n_neighbors=50, weights=' <mark>distance</mark>)	
k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c k_all_N_nn_reg_model_c we Step4 and Step5: Obtain Next three cells are helper fu def get_and_print_pred # Print the numer: y_hat_output = [model	ights= <function (x,="" are="" at="" cal="" control="" control<="" custom_function="" dictions(model_class_object,="" each="" for="" nctions="" odel_class_object.predict([[xi]])="" of="" pairs="" predictions="" reused="" set="" td="" test="" that="" the="" values="" x_test="" y^)=""><td>0x7fd8a0307ee0>) n of the above seven cases and Plotty t_values): for xi in x_test_values]</td><td>the closest neighbor</td><td></td></function>	0x7fd8a0307ee0>) n of the above seven cases and Plotty t_values): for xi in x_test_values]	the closest neighbor	
<pre>#Also, plot the (x',y #(out of the 100 samp) # Reference: https://s def get_x_y_prime_for_ x_values = [] y_hat_values = [] x_prime_values = y_prime_values = for x, y_hat in print("Extract # n_neighbors</pre>	and (x,y^) points for each of the points) closest to x and y' is a scikit-learn.org/stable/modules/genceplot(model_class_obj, preds_x_y_hatel	the y-value of x' nerated/sklearn.neighbors.KNeighbo at): ", y_hat=", y_hat) neighbor	rsRegressor.html#sklearn.neighbo	rs.KNeighborsRegressor.kneighbors
closes_neighbord closes_neighbord closes_neighbord closest neighbord closest neighbo	or_distance = closes_neighbor_info or_index_in_X = closes_neighbor_info or_index_in_X = closes_neighbor_info oses_neighbor_index_in_X] loses_neighbor_index_	<pre>[0][0][0] fo[1][0][0] y_prime ponding y_prime is: (x_prime,y_pr: ime_values s_x_y_hat, title: str):</pre>	me)", (x_prime, y_prime))	
plt.figure(figsize plt.scatter(x_valu plt.scatter(x_prin plt.xlabel("X valu plt.ylabel("Y hat plt.title(title) plt.show() # case1: predictions uniform_K_1_prediction print("Done printing p	e=(15, 7), dpi=80) les, y_hat_values, marker="*", colone_values, y_prime_values, marker=""", colone_values, y_prime_values, marker=""", colone_values, marker="", c	or=['red','green', 'black', 'orang "^", color=['red','green', 'black ions(uniform_k_1_nn_reg_model_clas	e', 'blue']) , 'orange', 'blue']) s, X_test) _hat,	
Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr Extracting closest nei	ons ghtbor for x= 1 , y_hat= 0.2109953; ime and its corresponding y_prime ghtbor for x= 3 , y_hat= 0.9903923; ime and its corresponding y_prime ghtbor for x= 5 , y_hat= 1.7111162; ime and its corresponding y_prime ghtbor for x= 7 , y_hat= 2.0637493; ime and its corresponding y_prime ghtbor for x= 9 , y_hat= 2.2660083; ime and its corresponding y_prime	<pre>is: (x_prime, y_prime) (1.14272020 290546297 is: (x_prime, y_prime) (2.96108982 305585266 is: (x_prime, y_prime) (5.09670367 25684543 is: (x_prime, y_prime) (6.98365987 110429</pre>	118717, 0.9903923290546297) 505991, 1.7111162305585266) 862785, 2.063749325684543) 368918, 2.2660083110429)	
That values or Y Prime Values or Y Prime Values or Y Prime Values	2 3 4	5 6 K values or X Prime Values	7 8 9	
print("Done printing # will be used in the # case2 plot scatter_plot_closest_number 1, 0.1237009107058903 1, 0.111888812334178 1, 0.6869875140127155 1, 0.9358189752658455 1, 0.278424161343434 1, 0.000 printing prediction 1, 0.000 pr	graph neighbor(uniform_k_3_nn_reg_model_o	class, uniform_K_3_predictions_x_ylot for identifying closest neight 1070589033 is: (x_prime,y_prime) (1.14272020 812334178 is: (x_prime,y_prime) (2.96108982 140127155 is: (x_prime,y_prime) (5.09670367 752658455 is: (x_prime,y_prime) (6.98365987	_hat, or for each X_predict") 1613746, 0.21099533446746474) 118717, 0.9903923290546297) 505991, 1.7111162305585266)	
2.0 - 2.0 - 1.5 - 1.0 -	ime and its corresponding y_prime case - 2: Scatter plot for i	is: (x_prime,y_prime) (8.94350423 identifying closest neighbor for each X		
<pre>print("Done printing # will be used in the # case3 plot</pre>	ons_x_y_hat = get_and_print_predictors") graph neighbor(uniform_k_50_nn_reg_model_ title="Case - 3: Scatter pi		_y_hat,	
Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr Extracting closest nei Closest neightbor x_pr	ons ghtbor for x= 1 , y_hat= 1.0581262 ime and its corresponding y_prime ghtbor for x= 3 , y_hat= 1.0581262 ime and its corresponding y_prime ghtbor for x= 5 , y_hat= 1.5729968 ime and its corresponding y_prime ghtbor for x= 7 , y_hat= 1.9427135 ime and its corresponding y_prime ghtbor for x= 9 , y_hat= 2.0479479 ime and its corresponding y_prime	<pre>is: (x_prime, y_prime) (1.14272020 43213993 is: (x_prime, y_prime) (2.96108982 508327543 is: (x_prime, y_prime) (5.09670367 910041884 is: (x_prime, y_prime) (6.98365987 83008306</pre>	118717, 0.9903923290546297) 505991, 1.7111162305585266) 862785, 2.063749325684543) 368918, 2.2660083110429)	
# case4: predictions	2 3 4	* 5 6 X values or X Prime Values	7 8 9	
distance_K_1_prediction print("Done printing print("Done printing printing printing printing printing printing printing printing production printing prediction printing printin	graph neighbor(uniform_k_1_nn_reg_model_o	class, uniform_K_1_predictions_x_ylot for identifying closest neight 3446746474 is: (x_prime, y_prime) (1.14272020 290546297 is: (x_prime, y_prime) (2.96108982 305585266 is: (x_prime, y_prime) (5.09670367 25684543 is: (x_prime, y_prime) (6.98365987 110429	_hat, or for each X_predict") 1613746, 0.21099533446746474) 118717, 0.9903923290546297) 505991, 1.7111162305585266) 862785, 2.063749325684543)	
2.0 - 2.0 - 1.5 - 1.0 -		identifying closest neighbor for each X		
<pre>print("Done printing # will be used in the # case3 plot</pre>	ons_x_y_hat = get_and_print_predictors") graph neighbor(uniform_k_3_nn_reg_model_c title="Case - 5: Scatter pi		_hat,	
(9, 2.277162115629105) Done printing predicti Extracting closest nei Closest neightbor x_pr	ons ghtbor for x= 1 , y_hat= 0.1237009; ime and its corresponding y_prime ghtbor for x= 3 , y_hat= 1.0111888; ime and its corresponding y_prime ghtbor for x= 5 , y_hat= 1.6869875; ime and its corresponding y_prime ghtbor for x= 7 , y_hat= 1.9358189; ime and its corresponding y_prime ghtbor for x= 9 , y_hat= 2.2784241; ime and its corresponding y_prime	<pre>is: (x_prime, y_prime) (1.14272020 812334178 is: (x_prime, y_prime) (2.96108982 140127155 is: (x_prime, y_prime) (5.09670367 752658455 is: (x_prime, y_prime) (6.98365987 61343434</pre>	118717, 0.9903923290546297) 505991, 1.7111162305585266) 862785, 2.063749325684543) 368918, 2.2660083110429)	
# case6: predictions		5 6 X values or X Prime Values	7 8 9	
distance_K_50_predict: print("Done printing print("Done printing prediction printing prediction printing prediction printing prediction printing closest neiculosest neighbor x_propertical printing printing prediction printing	graph neighbor(uniform_k_50_nn_reg_model_	_class, uniform_K_50_predictions_x lot for identifying closest neight 43213993 is: (x_prime,y_prime) (1.14272020 43213993 is: (x_prime,y_prime) (2.96108982 508327543 is: (x_prime,y_prime) (5.09670367 910041884 is: (x_prime,y_prime) (6.98365987 83008306	_y_hat, or for each X_predict") 1613746, 0.21099533446746474) 118717, 0.9903923290546297) 505991, 1.7111162305585266) 862785, 2.063749325684543)	
2.0 -		is: (x_prime,y_prime) (8.94350423 identifying closest neighbor for each X_		
print("Done printing # will be used in the # case3 plot scatter_plot_closest_ (1, 0.5717947561427066	_y_hat = get_and_print_predictions predictions") graph neighbor(k_all_N_nn_reg_model_class title="Case - 7: Scatter pi			
(9, 2.167679427768915) Done printing predicti Extracting closest nei Closest neightbor x_pr	ons ghtbor for x= 1 , y_hat= 0.5717947; ime and its corresponding y_prime ghtbor for x= 3 , y_hat= 0.9983682; ime and its corresponding y_prime ghtbor for x= 5 , y_hat= 1.5836953; ime and its corresponding y_prime ghtbor for x= 7 , y_hat= 1.9287950; ime and its corresponding y_prime ghtbor for x= 9 , y_hat= 2.1676794; ime and its corresponding y_prime ghtbor for x= 9 , y_hat= 2.1676794; ime and its corresponding y_prime ghtbor for x= 9 , y_hat= 2.1676794;	<pre>is: (x_prime, y_prime) (1.14272020 421644131 is: (x_prime, y_prime) (2.96108982 032361607 is: (x_prime, y_prime) (5.09670367 179337896 is: (x_prime, y_prime) (6.98365987 27768915</pre>	118717, 0.9903923290546297) 505991, 1.7111162305585266) 862785, 2.063749325684543) 368918, 2.2660083110429)	
k_all_N_nn_reg_model_c		* 5 6 K values or X Prime Values	7 8 9	
array([[3.84800551e-02 3.82844261e-02 3.74836273e-02 3.58190316e-02 3.40177980e-02 2.75777191e-02 2.06431228e-02 1.51630601e-02 1.05679885e-02 5.04764705e-03 2.68596967e-03 5.96558964e-04 1.37028596e-04 6.88797111e-05 1.98356261e-05 3.43986741e-06 4.49845216e-07 4.67968339e-08 6.60196438e-09 2.04091817e-10 1.65816997e-11 3.30451897e-12	3.84636886e-02, 3.84603177e-02, 3.81907060e-02, 3.77840676e-02, 3.66544882e-02, 3.66140905e-02, 3.48564938e-02, 3.42413307e-02, 3.18563908e-02, 2.66603245e-02, 2.68827109e-02, 1.65937816e-02, 1.66354934e-02, 1.65937816e-02, 1.31697254e-02, 1.07135984e-02, 8.73332509e-03, 6.67435125e-03, 3.56266380e-03, 3.33319306e-03, 1.62329408e-03, 1.17471206e-03, 5.39782529e-04, 5.21612861e-04, 1.14714426e-04, 9.28918053e-05, 6.68958439e-05, 2.14259458e-05, 1.88060652e-06, 9.65107005e-07, 2.69264404e-07, 1.29264786e-07, 4.35570353e-08, 2.94986102e-08, 3.93695594e-09, 4.64417404e-10, 6.59694626e-11, 3.70691075e-11, 1.20214727e-11, 8.97779775e-12, 1.02325712e-12, 9.74076369e-13,	3.77575465e-02, 3.59792787e-02, 3.41789260e-02, 2.89867929e-02, 2.53029446e-02, 1.59311807e-02, 1.05806451e-02, 6.10684652e-03, 2.94074479e-03, 1.14080249e-03, 3.79628782e-04, 8.28049806e-05, 1.99224286e-05, 5.65859797e-06, 4.73377027e-07, 6.92558499e-08, 7.63626362e-09, 3.71922582e-10, 2.23648157e-11, 4.99972998e-12, 7.71165301e-13,		
7.66894291e-13 3.15905436e-13 1.45322409e-14 np.sum(k_all_N_nn_reg_ 1.0 Conclusion: As seen above, we	, 5.91875627e-13, 5.63500830e-13, 7.29953407e-14, 2.94584719e-14, 6.94648675e-15, 1.79253036e-15, model_class.get_weights) # all weights	3.22320516e-13, 2.69120766e-14, 1.51336274e-15]]) ights add up to 1 verified n various cases and obtained th	e scatterplots accordingly for	the closest neighbor in each case