ПЛН20

ΕΝΟΤΗΤΑ 2: ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ

Μάθημα 2.1: Προτασιακοί Τύποι

Δημήτρης Ψούνης

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Σκοπός του Μαθήματος

Β.Θεωρία

- 1. Προτασιακή Λογική
 - 1. Προτασιακή Γλώσσα
 - 2. Προτασιακοί Τύποι
 - 1. Προτεραιότητα Συνδέσμων
 - 2. Δενδροδιάγραμμα Τύπου
 - 3. Αποτίμηση Τύπου
- 2. Χαρακτηρισμός Τύπων
 - 1. Ταυτολογία
 - 2. Αντίφαση
 - 3. Ικανοποιήσιμος Τύπος
- 3. Κανονική Διαζευκτική Μορφή

Γ.Ασκήσεις

- 1. Ασκήσεις Κατανόησης
- 2. Ερωτήσεις
- 3. Εφαρμογές

Α. Σκοπός του Μαθήματος

Επίπεδο Α

- > Η προτασιακή γλώσσα
- > Προτασιακοί τύποι και χαρακτηρισμοί τους
- > Κανονική Διαζευκτική Μορφή Τύπου

Επίπεδο Β

> (-)

Επίπεδο Γ

> (-)

Β. Θεωρία Μαθηματική Λογική

- Η Μαθηματική Λογική είναι η προσπάθεια να μοντελοποιήθουν με μαθηματικά:
 - > Η ανθρώπινη γλώσσα, και το συντακτικό της.
 - Ο τρόπος με τον οποίο συνδυάζουμε επιχειρήματα προκειμένου να εξάγουμε συμπεράσματα.
- Προκειμένου να επιτευχθεί αυτός ο (δύσκολος) στόχος, κατασκευάζονται σε στάδια γλώσσες που μπορούν να μοντελοποιήσουν ολοένα και πιο περίπλοκες δομές της συμπερασματολογίας, αλλά και της περιγραφής του κόσμου:
 - Η Προτασιακή Γλώσσα (Γ₀-Γλώσσα Βαθμού 0) είναι απλή λογική που μοντελοποιεί προτάσεις που είναι Α(ληθείς) ή Ψ(ευδέις).
 - Η Γλώσσα της Κατηγορηματικής Λογικής (Γ₁-Γλώσσα Βαθμού 1) είναι προχωρημένη λογική που μπορεί να μοντελοποιήσει περίπλοκες προτάσεις των μαθηματικών.
 - ...και πολλές ακόμη που είναι εκτός ύλης....

1. Προτασιακή Λογική

1. Προτασιακή Γλώσσα

- Στην προτασιακή γλώσσα:
 - Σχετίζουμε προτάσεις που είναι Α(ληθείς) ή Ψ(ευδείς) με προτασιακές μεταβλητές (συμβολίζονται με μικρό λατινικό γράμμα π.χ. p,q,r)
 - Κατασκευάζουμε σύνθετες προτάσεις με χρήση των προτασιακών συνδέσμων:

```
    (ω) ΚΑΙ (…)
    (ω) Τ΄ (…)
    (ος συμβ. ν)
    (ν)
    (ν)
    (ν)
    (ν)
    (συνεπαγωγή συμβ. →)
    (συνεπαγωγή συμβ. →)
    (συνεπαγωγή συμβ. →)
```

ΠΑΡΑΔΕΙΓΜΑ:

Αν συμβολίσουμε με ρ την πρόταση «Βρίσκομαι στο μάθημα» και με q την πρόταση «Μου αρέσει το μάθημα» τότε οι προτάσεις:

«Αν βρίσκομαι στο μάθημα τότε μου αρέσει το μάθημα» συμβολίζεται στην προτασιακή λογική: $p \to q$ «Ή δεν βρίσκομαι στο μάθημα ή μου αρέσει το μάθημα» συμβολίζεται στην προτασιακή λογική: $\neg p \lor q$

1. Προτασιακή Λογική

2. Προτασιακοί Τύποι

Η Προτασιακή Γλώσσα (συμβολιζεται με Γ₀) αποτελείται από τα εξής στοιχεία:

- > Τις προτασιακές μεταβλητές (π.χ. p,q,r)
- Τον μονομέλή (ισοδύναμα μονοθέσιο) σύνδεσμο: ¬
- > Τους διμελείς (ισοδύναμα διθέσιους) συνδέσμους: Λ, V, →, ↔
- Παρενθέσεις που καθορίζουν προτεραίοτητα πράξεων: (,)

Ένας <u>Προτασιακός Τύπος</u>:

- 1. Είτε είναι μια προτασιακή μεταβλητή
- 2. Είτε είναι μια παράσταση της μορφής $(\neg \phi)$, $(\phi \lor \psi)$, $(\phi \land \psi)$, $(\phi \to \psi)$, $(\phi \leftrightarrow \psi)$ όπου φ,ψ είναι προτασιακοί τύποι.

Το σύνολο όλων των προτασιακών τύπων συμβολίζεται με T(Γ₀) και Το σύνολο των προτασιακών μεταβλητών συμβολίζεται με M(Γ₀)

1. Προτασιακή Λογική

- 2. Προτασιακοί Τύποι (1.Προτεραιότητα συνδέσμων)
- Καθορίζεται προτεραιότητα των λογικών τελεστών, ώστε να μην είναι αναγκαία η πλήρης παρενθετοποίηση των προτασιακών τύπων:

Η προτεραιότητα των λογικών συνδέσμων είναι:

- Μεγαλύτερη προτεραιότητα έχει το: ¬
- Αμέσως μετά με ίση προτεραίοτητα είναι τα : Λ, V
- Μικρότερη προτεραίοτητα έχουν οι σύνδεσμοι: →, ↔
- Παραδείγματα:
 - 1. Ο τύπος $\neg p \land q$ με βάση την προτεραιότητα των συνδέσμων παρενθετοποιείται: $((\neg p) \land q)$
 - 2. Ο τύπος $p \to q \lor r$ με βάση την προτεραιότητα των συνδέσμων παρενθετοποιείται: $(p \to (q \lor r))$
 - 3. Ο τύπος $p \land \neg q \leftrightarrow q \lor \neg r$ με βάση την προτεραιότητα των συνδέσμων παρενθετοποιείται ως εξής: $((p \land (\neg q)) \leftrightarrow (q \lor (\neg r)))$

1. Προτασιακή Λογική

- 2. Προτασιακοί Τύποι (2.Δενδροδιάγραμμα Τυπου)
- Η προτεραιότητα των λογικών συνδέσμων υποδεικνύεται και με το <u>δενδροδιάγραμμα του τύπου</u> που υποδεικνύει την προτεραιότητα των λόγικών πράξεων.

ΠΑΡΑΔΕΙΓΜΑ: Να κατασκευαστεί το δενδροδιάγραμμα του τύπου: $p \land \neg q \to (p \to r) \lor \neg q$

Πρακτικά στο δενδροδιάγραμμα σε κάθε μετάβαση «διώχνουμε» τον λογικό σύνδεσμο με την χαμηλότερη προτεραιότητα.

1. Προτασιακή Λογική

3. Αποτίμηση Τύπου

Αποτίμηση των μεταβλητών είναι να αναθέσουμε τιμές A (=αλήθεια) ή Ψ (=Ψέμα) στις προτασιακές μεταβλητές ενός τύπου. Είναι δηλαδή μια συνάρτηση α που δίνει τιμές στις προτασιακές μεταβλητές: $a:M(\Gamma_0) \to \{A, \Psi\}$

Η αποτίμηση ενός τύπου είναι η διαδικασία που εφαρμόζουμε προκειμένου να καταλήξουμε ότι ένας τύπος είναι Αληθής ή Ψευδής ανάλογα με την αποτίμηση των προτασιακών μεταβλητών.

Με μια αποτίμηση των μεταβλητών, μπορούμε να αποτιμήσουμε έναν προτασιακό τύπο, με βάση τον αληθοπίνακα των προτασιακών συνδέσμων:

ϕ	Ψ	$\neg \phi$	$\phi \lor \psi$	$\phi \wedge \psi$	$\phi \rightarrow \psi$	$\phi \leftrightarrow \psi$
A	A	Ψ	A	A	A	A
A	Ψ	Ψ	A	Ψ	Ψ	Ψ
Ψ	A	A	A	Ψ	A	Ψ
Ψ	Ψ	A	Ψ	Ψ	A	A

1. Προτασιακή Λογική

3. Αποτίμηση Τύπου

ϕ	Ψ	$\neg \phi$	$\phi \lor \psi$	$\phi \wedge \psi$	$\phi \rightarrow \psi$	$\phi \leftrightarrow \psi$
A	A	Ψ	A	A	A	A
A	Ψ	Ψ	A	Ψ	Ψ	Ψ
Ψ	A	A	A	Ψ	A	Ψ
Ψ	Ψ	A	Ψ	Ψ	A	A

- > Χρήσιμες παρατηρήσεις για τον αληθοπίνακα των συνδέσμων:
 - ightharpoonup όχει την αντίθετη τιμή από τον τύπο ϕ
 - $ightharpoonup O τύπος <math>\phi \lor \psi$ είναι Ψ μόνο όταν $\phi = \psi = \Psi$ είναι Α αν έστω ένα από τα ϕ, ψ είναι Α
 - $ightharpoonup O τύπος <math>\phi \land \psi$ είναι Α μόνο όταν $\phi = \psi = A$ είναι Ψ αν έστω ένα από τα ϕ, ψ είναι Ψ
 - $ightharpoonup O τύπος <math>\phi \to \psi$ είναι Ψ μόνο όταν $\phi = A, \psi = \Psi$ (δηλαδή $A \to \Psi = \Psi$) είναι Α σε κάθε άλλη περίπτωση και ισχύουν:

$$\Psi \rightarrow ... = A$$
 kal $... \rightarrow A = A$

 $ightharpoonup O τύπος <math>\phi \leftrightarrow \psi$ είναι Α όταν $\phi = \psi$ (έχουν την ίδια τιμή) είναι Ψ όταν $\phi \neq \psi$ (έχουν διαφορετική τιμή)

1. Προτασιακή Λογική

3. Αποτίμηση Τύπου

- Με χρήση του πίνακα αλήθειας των προτασιακών συνδέσμων μπορούμε να αποτιμήσουμε οποιονδήποτε προτασιακό τύπο, όταν έχουμε γνώση της αποτίμησης των προτασιακών μεταβλητών:
 - Χρήσιμη θα φανεί η προτεραιότητα των τελεστών έτσι ώστε να κάνουμε σωστά την σειρά των λογικών πράξεων:

ΠΑΡΑΔΕΙΓΜΑ 1: Να αποτιμηθεί ο τύπος: $p \land \neg q \to q \lor \neg r$ υπό την αποτίμηση των μεταβλητών: a(p) = A, $a(q) = \Psi$, $a(r) = \Psi$

$$(p \land \neg q) \rightarrow (q \lor \neg r) = (A \land \neg \Psi) \rightarrow (\Psi \lor \neg \Psi) = (A \land A) \rightarrow (\Psi \lor A) = A \rightarrow A = A$$

ΠΑΡΑΔΕΙΓΜΑ 2: Να αποτιμηθεί ο τύπος: $p \land \neg q \to q \lor \neg r$ υπό την αποτίμηση των μεταβλητών: $a(p) = \Psi, \quad a(q) = A, \quad a(r) = \Psi$ Λύση:

$$(p \land \neg q) \rightarrow (q \lor \neg r) = (\Psi \land \neg A) \rightarrow (A \lor \neg \Psi) = (\Psi \land \Psi) \rightarrow (A \lor A) = \Psi \rightarrow A = A$$

2. Χαρακτηρισμός Τύπων

- > Ένας προτασιακός τύπος θα χαρακτηρίζεται:
 - Ταυτολογία: Αν είναι Αληθής για κάθε αποτίμηση
 - Αντίφαση: Αν είναι Ψευδής για κάθε αποτίμηση
 - > Ικανοποιήσιμος: Αν υπάρχει αποτίμηση για την οποία είναι αληθής.

2. Χαρακτηρισμός Τύπων

1. Ταυτολογία

Ορισμός:

Ένας προτασιακός τύπος είναι ταυτολογία αν είναι αληθής για όλες τις αποτιμήσεις των μεταβλητών.

- > Για να εξακριβώσουμε ότι ένας τύπος είναι ταυτολογία, πρέπει:
 - Είτε να κατασκευάσουμε τον πίνακα αλήθειας.
 - Θα πρέπει ο τύπος να είναι σε κάθε γραμμή: Α(ληθής)
 - Είτε να ισχύει κάποια παρατήρηση για την δομή του τύπου

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ο τύπος $(p \land \neg p) \rightarrow q$ είναι ταυτολογία Α' τρόπος:

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

•	p	q	$(p \land \neg p) \rightarrow q$
	A	A	$(A \land \neg A) \to A = \Psi \to A = A$
	A	Ψ	$(A \land \neg A) \to \Psi = \Psi \to \Psi = A$
	Ψ	A	$(\Psi \land \neg \Psi) \to A = \Psi \to A = A$
	Ψ	Ψ	$(\Psi \land \neg \Psi) \rightarrow \Psi = \Psi \rightarrow \Psi = A$

Συνεπώς είναι ταυτολογία

Β' τρόπος: Παρατηρούμε ότι $(p \land \neg p)$ είναι πάντα Ψ, άρα ο τύπος είναι $\dot{\Psi} \to ...$ άρα είναι πάντα αληθής

2. Χαρακτηρισμός Τύπων

2. Αντίφαση

Ορισμός:

Ένας προτασιακός τύπος είναι αντίφαση αν είναι ψευδής για όλες τις αποτιμήσεις των μεταβλητών.

- Για να εξακριβώσουμε ότι ένας τύπος είναι αντίφαση, πρέπει:
 - Είτε να κατασκευάσουμε τον πίνακα αλήθειας.
 - Θα πρέπει ο τύπος να είναι σε κάθε γραμμή: Ψ(ευδής)
 - Είτε να ισχύει κάποια παρατήρηση για την δομή του τύπου

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ο τύπος $p \land \neg (q \rightarrow p)$ είναι αντίφαση

Α' τρόπος:

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

1	, -	
p	q	$p \land \neg (q \to p)$
A	A	$A \land \neg (A \rightarrow A) = A \land \neg A = \Psi$
A	Ψ	$A \land \neg (\Psi \to A) = A \land \neg A = \Psi$
Ψ	A	$\Psi \wedge \neg (A \to \Psi) = \Psi \wedge \neg \Psi = \Psi$
Ψ	Ψ	$\Psi \wedge \neg (\Psi \rightarrow \Psi) = \Psi \wedge \neg A = \Psi$

Συνεπώς είναι αντίφαση

Β' τρόπος:

Αν p=Ψ, τότε ο τύπος είναι $\Psi \wedge ... = \Psi$

Aν p=A, τότε ο τύπος είναι $A \land \neg (q \rightarrow A) = A \land \neg A = \Psi$. 'Αρα είναι αντίφαση.

2. Χαρακτηρισμός Τύπων

3. Ικανοποιήσιμος Τύπος

Ορισμός: Ένας προτασιακός τύπος είναι ικανοποιήσιμος αν είναι αληθής για τουλάχιστον μία αποτίμηση των προτασιακών μεταβλητών.

- > Για να εξακριβώσουμε ότι ένας τύπος είναι ικανοποιήσιμος, πρέπει:
 - Είτε να κατασκευάσουμε τον πίνακα αλήθειας.
 - Θα πρέπει ο τύπος να είναι σε τουλάχιστον μία γραμμή: Α(ληθής)
 - Είτε να ισχύει κάποια παρατήρηση για την δομή του τύπου

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ο τύπος p o (p o q) είναι ικανοποιήσιμος Λύση:

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

p	q	$p \to (p \to q)$
		$p \rightarrow (p \rightarrow q) = A \rightarrow (A \rightarrow A) = A \rightarrow A = A$
A	Ψ	$p \to (p \to q) = A \to (A \to \Psi) = A \to \Psi = \Psi$
Ψ	A	$p \to (p \to q) = \Psi \to (\Psi \to A) = \Psi \to A = A$
Ψ	Ψ	$p \to (p \to q) = \Psi \to (\Psi \to \Psi) = \Psi \to A = A$

Άρα είναι ένας ικανοποιήσιμος τύπος (γιατί π.χ. ικανοποιείται με την αποτίμηση p=A, q=A)

3. Κανονική Διαζευκτική Μορφή

Ορισμός:

Ένας τύπος είναι σε κανονική διαζευκτική μορφή (ΚΔΜ), αν είναι της μορφής:

$$\psi_1 \vee \psi_2 \vee ... \vee \psi_n$$

όπου κάθε ψ_i είναι της μορφής:

$$X_{i_1} \wedge X_{i_2} \wedge \ldots \wedge X_{i_m}$$

Και τα χ_{ii} είναι μεταβλητές ή αρνήσεις προτασιακών μεταβλητών

> Κάθε τύπος γράφεται σε κανονική διαζευκτική μορφή με την εξής διαδικασία:

Βήματα κατασκευής κανονικής διαζευκτικής μορφής

- 1. Κατασκευάζουμε τον πίνακα αλήθειας του τύπου.
- 2. Εκφράζουμε σαν σύζευξη (and) κάθε γραμμή που αληθεύει. Στην σύζευξη θέτουμε p αν $\alpha(p) = A$ και $\neg p$ αν $\alpha(p) = \Psi$.
- 3. Ο τύπος είναι η διάζευξη (or) όλων των συζεύξεων.

3. Κανονική Διαζευκτική Μορφή

Βήμα 1: Κατασκευή Αληθοπίνακα

ΠΑΡΑΔΕΙΓΜΑ: Να βρεθεί η Κ.Δ.Μ. του τύπου: $p
ightharpoonup \neg (q
ightharpoonup r)$

<u>Λύση</u>:

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

p	\overline{q}	r	$p \to \neg (q \to r)$
A	A	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow A) = A \rightarrow \Psi = \Psi$
A	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow \Psi) = A \rightarrow A = A$
A	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow A) = A \rightarrow \Psi = \Psi$
A	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow \Psi) = A \rightarrow \Psi = \Psi$
Ψ	A	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow A) = \Psi \rightarrow \Psi = A$
Ψ	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow \Psi) = \Psi \rightarrow A = A$
Ψ	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow A) = \Psi \rightarrow \Psi = A$
Ψ	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow \Psi) = \Psi \rightarrow \Psi = A$

Ο πίνακας αληθεύει στην 2η, την 5η, την 6η, την 7η και την 8η γραμμή.

3. Κανονική Διαζευκτική Μορφή

Βήματα 2-3: Εξαγωγή Κανονικής Διαζευκτικής Μορφής

(...συνέχεια...)

Γράφουμε κάθε γραμμή που αληθεύει ο τύπος σαν σύζευξη:

- H 2^η γραμμή: $p \wedge q \wedge \neg r$
- H 5^η γραμμή: $\neg p \land q \land r$
- H 6^η γραμμή: $\neg p \land q \land \neg r$
- H 7^{η} γραμμή: $\neg p \land \neg q \land r$
- H 8η γραμμή: $\neg p \land \neg q \land \neg r$

Συνεπώς η κανονική διαζευκτική μορφή του τύπου $p
ightarrow \neg (q
ightarrow r)$ είναι:

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$

Γ. Μεθοδολογία

1. Γνωστές Μορφές Τύπων

ΜΕΘΟΔΟΛΟΓΙΑ:

Κυρίως στα Σ/Λ ζητείται να βρίσκουμε γρήγορα αν ένας τύπος είναι ταυτολογία ή αντίφαση. Μερικές μορφές ταυτολογιών είναι πολύ συνηθισμένες στις ασκήσεις και καλό είναι να τις έχουμε κατά νου.

Ωστόσο ποτέ δεν ξεχνάμε ότι ο πιο ασφαλής τρόπος είναι να κάνουμε τον πίνακα αληθειας και να εξάγουμε από τον αληθοπίνακα ότι ο τύπος είναι ταυτολογία.

Γνωστες Ταυτολογίες είναι οι μορφές τύπων:

- 1) φν ¬φ όπου φ οποιοσδήποτε προτασιακός τύπος
- 2) $\varphi \rightarrow \psi$ όπου φ=Αντίφαση (Μορφή $\Psi \rightarrow \cdots$) ή ψ =Ταυτολογία (Μορφή ... \rightarrow A)
- 3) $\varphi \to \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος
- 4) $\varphi \leftrightarrow \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος
- 5) Όλες οι μορφές τύπων νόμων της προτασιακής λογικής (Μάθημα 2.3)
- 6) Όλες οι μορφές τύπων συντακτικών αντικατάσεων του προτασιακού λογισμού (Μάθημα 2.5)

Γνωστές Αντιφάσεις είναι οι μορφές τύπων

- 1) φ Λ ¬φ όπου φ οποιοσδήποτε προτασιακός τύπος
- 2) $\varphi \rightarrow \psi$ όπου φ=Ταυτολογίακαι ψ=Αντίφαση (Μορφή $A \rightarrow \Psi$)
- 3) ¬φ όπου φ=Ταυτολογία
- 4) $\varphi \leftrightarrow \neg \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος

Γ. Μεθοδολογία

1. Γνωστές Μορφές Τύπων

Παραδείγματα:

Ελέγξτε αν οι παρακάτω τύποι είναι ταυτολογίες, αντιφάσεις ή ικανοποιήσιμοι(αλλά όχι ταυτολογίες)

- $\neg (p \lor \neg p)$
 - Ο τύπος $p \lor \neg p$ είναι ταυτολογία. Άρα ο τύπος ως άρνηση ταυτολογίας είναι αντίφαση.
- $\neg(p \leftrightarrow \neg p)$
 - Ο τύπος $p \leftrightarrow \neg p$ είναι αντίφαση. Άρα ο τύπος ως άρνηση αντίφασης είναι ταυτολογία.
- $\mathbf{q} \vee \neg p \rightarrow (p \vee \neg p)$
 - Ο τύπος $(p \lor \neg p)$ είναι ταυτολογία. Άρα ο τύπος έχει τη μορφή: ... \rightarrow Α άρα είναι ταυτολογία.
- $(q \lor \neg p) \rightarrow ((r \rightarrow q) \lor \neg (r \rightarrow q))$
 - Ο τύπος $(r \to q) \lor \neg (r \to q)$ είναι ταυτολογία. Άρα ο τύπος έχει τη μορφή: ... \to Α άρα είναι ταυτολογία.
- $(p \land \neg p) \rightarrow (q \land \neg r \rightarrow q)$
 - Ο τύπος $(p \land \neg p)$ είναι αντίφαση. Άρα ο τύπος έχει τη μορφή: $\Psi \to \cdots$ άρα είναι ταυτολογία.

Γ. Μεθοδολογία

1. Γνωστές Μορφές Τύπων

- ¬¬¬¬ $p \lor ¬¬¬p$ Διώχνοντας ανά δύο τις αρνήσεις προκύπτει ο
 - Διώχνοντας ανά δύο τις αρνήσεις προκύπτει ο τύπος $p \lor \neg p$ που είναι γνωστή ταυτολογία.
 - $\neg p \rightarrow (q \rightarrow \neg p)$ Ο τύπος είναι ταυτολογία ως συντακτική αντικατάσταση στο Αξιωματικό Σχήμα 1 (βλέπε Μάθημα 5) $\varphi \rightarrow (\psi \rightarrow \varphi)$ όπου $\varphi = \neg p$ και $\psi = q$
 - p ∧ q ↔ q ∧ p
 Ο τύπος είναι ταυτολογία ως εφαρμογή του νόμου αντιμεταθετικότητας της προτασιακής λογικής (βλέπε Μάθημα 3)
 - $((p \rightarrow q) \land \neg (p \rightarrow q)) \leftrightarrow ((p \rightarrow q) \lor \neg (p \rightarrow q))$ Ο τύπος $((p \rightarrow q) \land \neg (p \rightarrow q))$ είναι αντίφαση. Ο τύπος $((p \rightarrow q) \lor \neg (p \rightarrow q))$ είναι ταυτολογία. Άρα ο τύπος είναι: $A \leftrightarrow \Psi = \Psi$ άρα είναι αντίφαση.
 - $(\mathbf{q} \leftrightarrow \neg p) \rightarrow (\mathbf{q} \leftrightarrow \neg p)$ Ο τύπος είναι της μορφής: $\phi \rightarrow \phi$ άρα είναι ταυτολογία.
 - p ∨ q ∨ ¬p
 Ο τύπος είναι ταυτολογία διότι στα διαδοχικά or έχουμε την p και την άρνησή της.
 - $p \land q \land \neg p$ Ο τύπος είναι αντίφαση διότι στα διαδοχικά and έχουμε την p και την άρνησή της.

1. Να αποτιμηθεί ο τύπος:

$$p \land \neg p \leftrightarrow (r \rightarrow \neg q)$$

Δεδομένης της αποτίμησης α(p)=A, α(q)=Ψ, α(r)=Ψ

2. Να αποτιμηθεί ο τύπος:

$$(\neg p \land q) \lor (\neg q \land r)$$

Δεδομένης της αποτίμησης α(p)=Ψ, α(q)=Ψ, α(r)=Ψ

Να κατασκευάσετε τον πίνακα αλήθειας των τύπων:

$$A) \qquad \phi_1 = (p \land q) \longleftrightarrow (p \lor q)$$

B)
$$\phi_2 = (p \to p) \to (q \to (p \to p))$$

$$\Gamma) \qquad \phi_3 = (p \land \neg r) \lor (r \to q)$$

Και με βάση τον πίνακα αλήθειας να εξετάσετε για κάθε τύπο, αν είναι ταυτολογία, αντίφαση ή ικανοποιήσιμος.

Να εξετάσετε αν ο ακόλουθος τύπος είναι ταυτολογία, αντίφαση ή ικανοποιήσιμος κατασκευάζοντας τον πίνακα αλήθείας του:

$$\phi_1 = p \rightarrow (q \rightarrow r)$$

Να βρείτε την κανονική διαζευκτική μορφή του τύπου:

$$\phi_1 = p \lor q \to p \land q$$

www.psounis.gr

Δ. Ασκήσεις Ερωτήσεις 1

Οι παρακάτω τύποι είναι ταυτολογίες.

$$1. \quad (p_1 \vee p_2) \to p_1$$

$$2. \quad p_1 \to (p_1 \lor p_2)$$

3.
$$p_1 \leftrightarrow (p_1 \lor (p_1 \land p_2))$$

4.
$$p_1 \rightarrow (p_1 \rightarrow p_2)$$

Δ. Ασκήσεις Ερωτήσεις 2

Στους παρακάτω τύπους τα p₁, p₂ είναι προτασιακές μεταβλητές

- 1. Ο τύπος $(p_1 \lor p_2) \to p_1$ είναι ταυτολογία
- 2. Ο τύπος $(p_1 \wedge p_2) \rightarrow p_1$ είναι ταυτολογία
- 3. Ο τύπος $(p_1 \wedge p_2) \rightarrow (p_1 \vee p_2)$ είναι ταυτολογία
- 4. Ο τύπος $p_2
 ightharpoonup (p_1
 ightharpoonup p_2)$ είναι ταυτολογία

Δ. Ασκήσεις Εφαρμογή 1

(Α) Ποιες από τις παρακάτω εκφράσεις είναι **τύποι** της ΠΛ:

- i) $(p \rightarrow \neg q) \rightarrow (p \neg q)$
- ii) $p \wedge q \rightarrow (p \rightarrow r) \vee \neg q$
- iii) $p \rightarrow (\neg q \rightarrow r \lor q)$
- iv) $p \lor (\neg q \leftrightarrow (p \lor q))$
- $v) \quad p \rightarrow q \rightarrow r$
- $vi) \quad p \lor q \to (\neg q \to r \land q)$
- (Β) Ποιές από τις εκφράσεις του ερωτήματος 1 που είναι τύποι, είναι της μορφής: i) $\varphi \to \psi$, ii) $\varphi \to (\psi \to \chi)$. Σε κάθε μια από τις περιπτώσεις, εξηγείστε ποιοι είναι οι αντίστοιχοι **υποτύποι** φ , χ , ψ .

Δ. Ασκήσεις Εφαρμογή 2

Βρείτε μία αποτίμηση που να ικανοποιεί την πρόταση

$$((p_3 \vee \neg p_3) \to p_1) \wedge ((p_1 \vee \neg p_1) \to p_2) \wedge (p_1 \wedge p_2 \wedge p_3 \to p_4)$$
$$\wedge (p_1 \wedge p_4 \to \neg p_2) \wedge (p_2 \wedge \neg p_4 \wedge \neg p_5 \wedge \neg p_6 \to p_3) \wedge (p_2 \wedge \neg p_3 \wedge p_6 \to \neg p_5)$$

Αιτιολογήστε την απάντησή σας.