Trabalho 1 – Busy Police

22705 - Inteligência Artificial 2017/2 - Turma C Prof. Dr. Murilo Naldi

Motivação

Homenagem ao Atari Busy Police Game

Motivação

- Policial deve percorrer um supermercado atrás de um ladrão
- O projeto é composto de uma versão estática e simplificada do jogo
- Problema de busca que monta caminho entre policial e ladrão

Ambiente

Modelagem do ambiente: 5 X 10

A B C D E F G H I J

Agente

- Policial
 - Define a posição inicial do problema de busca
 - Qualquer posição do ambiente
 - Preferencialmente no primeiro andar (1)
- Ladrão
 - Define a posição final do problema de busca
 - Qualquer posição do ambiente
 - Preferencialmente no último andar (5)

 Movimentação é livre em um mesmo andar (horizontal)

 Movimentação entre andares só é possível se houver uma escada (vertical)

- No jogo, o carrinho faz com que o policial tenha de pular
- No trabalho, o policial só poderá passar por um carrinho se os dois quadrados adjacentes ao carrinho não possuírem nenhum objeto dentro

 Alguns exemplos a seguir não permitem a passagem do policial

Objetivo 1

- Implementar em Prolog o ambiente de forma adequada (em regras e fatos), considerando os objetos:
 - Policial e ladrão
 - Escadas
 - Carrinhos de compra
 - Deve se considerar que qualquer objeto pode estar em qualquer posição da tabela (programável)

Objetivo 2

- Dado um estado inicial (policial) e um estado final (ladrão), obter e imprimir um caminho acíclico entre os dois, de forma que:
 - O estado inicial seja escolhido pelo usuário
 - Ser capaz de rodar em qualquer cenário, incluindo cenários em que não há caminho até o ladrão

Objetivo 3 - Bônus Game

- Desenvolver uma funcionalidades extra relativa ao jogo que seja interessante, como por exemplo:
 - Elevador
 - Bolinha
 - Algo que o policial tenha que pegar antes
- Varia com a criatividade e desempenho técnico
- O resultado deve ser desafiador
- Preferencialmente único, ou seja, a marca do grupo!

Apresentação

- Grupos de até 3 pessoas
 - Identificadas no trabalho (risco de zerar!)
- Submissão no AVA até 26 de outubro às 14h
 - Apresentação + Artigo Formato SBC + código, os dois primeiros em pdf
- Nota Artigo NR = 0-10
- Nota Apresentação NA = 0-1
- Nota Trabalho NT = NR*NA

Apresentação do projeto

- Cada grupo deverá apresentar o seu projeto de maneira didática em 10-15 minutos no dia 26 de outubro.
- A apresentação deve explicar como os fatos e as regras foram gerados, bem como a lógica que faz com que o Prolog consiga chegar no objetivo
- Deve conter exemplo(s) de uso
- Todos os membros do grupo devem apresentar e ganharão notas individuais nessa etapa
- O tempo de apresentação deverá ser divido igualmente entre os membros
- Serão feitas perguntas durante a apresentação.

Não faça!

- Se quiser perder nota:
 - Demore para introduzir o problema em sua apresentação
 - Copie material sem permissão
 - Faça regras de sucessor para cada dupla de estados
 - Não use regras gerais
 - Não mostre que sua solução é capaz de resolver cenários interessantes

Bibliografia

NICOLETTI, M. C. A Cartilha Prolog. EDUFSCAR. 2005. ISBN 8576000113

Bratko – Prolog: Programming for Artificial Intelligence 2001

Material de apoio no PVAnet

 Prolog para download: http://www.swi-prolog.org/ (ou repositorio Ubuntu)