Maximizing Forecast Value Add Through Machine Learning and Behavioral Economics

by Jeff Baker, CPF
Managing Director, Libra SCM LLC
November 6th, 2023

Background & Motivation Methodology & Results 03
Implications

Background & Motivation

What's the motivation for adjusting forecasts?

Sometimes we waste our time...

Improvement in accuracy by adjustment size group D1 & D2

Sometimes we destroy value...

Unhealthy forecasting symptoms

Excessive overrides

Stat forecast trust issue?

Looking busy issue?

Wasted time

-					
NI					
IN	0 1			u	

Adding bias

Hurting forecast accuracy

Impacting the supply chain (service, inventory, cost, etc.)

Company	# of Forecasts	% with Override	% with FVA
A	Hundred	>95%	~40%
В	Thousand	>95%	~60%
С	Tens of Thousands	<15%	~60%

Where is the disconnect?

- Logically speaking, we should not enter overrides which:
 - Destroy value
 - Waster forecasting resources

Methodology & Results

Methodology

Response Variable: Forecast Value Added

- 1. FVA measures the value added at each step of the forecasting process
 - Actual Demand
 - Statistical Forecast
 - Override Forecast
- 2. Classify overrides as value add or non value add to identify drivers of:
 - Wasted time
 - Value destruction
- 3. Introduce FVA_{crit} as a user-defined based threshold based on forecaster ROI requirement

	WMAPE	Value add vs. Naive	Value add vs. Stat
Naïve	48%		
Statistical	38%	10%	
Override	46%	2%	(8%)

Predictor 1: Statistical forecastability

- Forecastability defined as in-sample WMAPE
 - Model to over-fit the data, which serves as upper limit to accuracy
- High forecastability
 - Model explains well; difficult to improve
 - Really need info about unusual event; even if correct override, is it worth it?
- Low forecastability
 - Model doesn't explain very well; easier to improve upon if additional information available

Forecast Accuracy vs. in-sample WMAPE

Predictor 2: Override direction

- Does direction matter?
 - No
 - Yes
 - Consultant's answer
- Why?
 - Negative overrides typically add value
 - Positive overrides often don't
 - Best case vs. most likely case
 - Match Annual Operating Plan
 - Maximize customer service
- Each company has unique "fingerprint"

Predictor 3: Override size

- Size indicates the magnitude of new information
- Based on percentage
 - Both are identical
- Based on variability
 - One is "noise"
 - One is "signal"
- Suggests the need to develop a signal-to-noise ratio metric

15% Override

With confidence intervals

Predictor 3*: Dispersion-scaled overrides

- Use seasonal-trend decomposition of demand to extract residuals
- Calculate dispersion statistics on the residuals
 - Standard Deviation (sensitive)
 - Mean Absolute Deviation
 - Median Absolute Deviation (robust)
- Divide overrides by dispersion measures to create DSOs

Dispersion Scaled Override
$$_t$$
 = $\frac{(Override_t)}{\sigma_{residuals}}$

Dispersion Scaled Override $_t$ = $\frac{(Override_t)}{MAD_{residuals}}$

Dispersion Scaled Override $_t$ = $\frac{(Override_t)}{MdAD_{residuals}}$

Machine learning classification techniques

- Classification tree
 - Visual, explainable to management
 - Most important variables at the top of the tree
- Random forest
 - Ensemble technique, black box
 - Variable importance plot
- Boosted tree
 - Over-samples misclassified records; black box
- Logistic regression
 - Probability values for variables

Results

Technique	Accuracy		
Classification Tree	80 %		
Random Forest	82 %		
Boosted Tree	81 %		
Logistic Regression	82 %		

- Classification techniques may be used to predictive if an override will add value or not
- Methodology is robust enough to handle noisy data

Implications

Implications

- Can reduce or eliminate:
 - Small time-wasting overrides
 - Value destroying overrides
 - Bias
- "Work itself out of a job"
- What if every override added value?
 - Forecast accuracy increases will
 - Improve customer service
 - Decrease safety stock
 - Reduce SC expense

Can we Nudge our process?

Questions

- Is this **positive override** overly influenced budget goals, or sales best case optimism?
- Is this small override based on new information?
- Is this override of a **highly forecastable** product based on significant new information?
- Can you explain this change in an Exec Review?

Data

- Percent of forecasts overridden
- Percent positive vs. Percent negative
- Average override size (dispersion scaled signal-to-noise)
- Percent of forecast overrides which have added value

Summary

Machine Learning
teaches us that we can predict if a
particular override will create
value, based on direction,
forecastability, and DSO size

Behavior Economics
teaches us that if we inform users
on choices, we can nudge them
into eliminating time-wasting and
value-destroying overrides

Value Added Overrides will improve forecast accuracy, which positively impacts customer service, safety stock, and supply chain expense

Thank you!

Jeff Baker, CPF

Managing Director, Libra SCM jeffbaker@librascm.com +1 (630) 841-8328 www.linkedin.com/in/jeffreyabaker