g++ -o title

title.cpp -lm

gcc -o title title.c

一. 题目概况 中文题目名称

对于 C++语言

对于C语言

g++ -o tree

tree.cpp -lm

gcc -o tree tree.c

g++ -o bus

bus.cpp -lm

gcc -o bus

普及组

CCF 全国信息学奥林匹克联赛(NOIP2018)复赛

(请选手务必仔细阅读本页内容)

中文题目名称	标题统计	龙虎斗	摆渡车	对称二叉树		
英文题目与子目录名	title	fight	bus	tree		
可执行文件名	title	fight	bus	tree		
输入文件名	title.in	fight.in	bus.in	tree.in		
输出文件名	title.out	fight.out	bus.out	tree.out		
每个测试点时限	1秒	1 秒	2秒	1秒		
测试点数目	20	25	20	25		
每个测试点分值	5	4	5	4		
附加样例文件	有	有	有	有		
结果比较方式	全文比较(过滤行末空格及文末回车)					
题目类型	传统	传统	传统	传统		
运行内存上限	256M	256M	256M	256M		
二. 提交源程序		230112	230112	230112		
对于 C++语言	title.cpp	fight.cpp	bus.cpp	tree.cpp		
对于C语言	title.c	fight.c	bus.c	tree.c		
对于 pascal 语言	title.pas	fight.pas	bus.pas	tree.pas		

每个测试点时限	1 秒	1 秒	2 秒	1秒		
测试点数目	20	25	20	25		
每个测试点分值	5	4	5	4		
附加样例文件	有	有	有	有		
结果比较方式	全文比较(过滤行末空格及文末回车)					
题目类型	传统	传统	传统	传统		
MAHALE	100	1.00	-40			
运行内存上限	256M	256M	256M	256M		
	256M		256M bus.cpp	256M tree.cpp		
运行内存上限 二. 提交源程序:	256M 文件名	256M	15	P		

-lm -lm bus.c -lm -lm 对于 pascal 语言 fpc title.pas fpc fight.pas fpc bus.pas fpc tree.pas 注意事项: 1、文件名(程序名和输入输出文件名)必须使用英文小写。 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。 3、全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。

g++ -o fight

fight.cpp -lm

gcc -o fight fight.c

4、只提供 Linux 格式附加样例文件。 5、特别提醒: 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。 普及组 全国信息学奥林匹克联赛 (NOIP2018) 复赛

1. 标题统计 (title.cpp/c/pas) 【问题描述】

注意:标题中可能包含大、小写英文字母、数字字符、空格和换行符。统计标题字

输入文件名为 title.in。 输入文件只有一行, 一个字符串 s。 【输出格式】 输出文件名为 title.out。 输出文件只有一行,包含一个整数,即作文标题的字符数(不含空格和换行符)。

凯凯刚写了一篇美妙的作文,请问这篇作文的标题中有多少个字符?

234 见选手目录下的 title/title1 in 和 title/title1 ans。

【输入输出样例 2】 title.in title.out Ca 45 见选手目录下的 title/title2 in 和 title/title2 ans。 【输入输出样例 2 说明】

对于 80% 的数据, $1 \le |s| \le 5$,输入只可能包含大、小写英文字母、数字字符及 行末换行符。 对于 100% 的数据, $1 \le |s| \le 5$,输入可能包含大、小写英文字母、数字字符、空 格和行末换行符。

(fight.cpp/c/pas)

规定 [s] 表示字符串 s 的长度(即字符串中的字符和空格数)。

n-1 厘米的线段。i 号兵营里有 c_i 位工兵。 下面图 1 为 n=6 的示例: 图 1. n = 6的示例 轩轩在左侧, 代表"龙"; 凯凯在右侧, 代表"虎"。 他们以 m 号兵营作为分界,

游戏过程中,某一刻天降神兵,共有 s_1 位工兵突然出现在了 p_1 号兵营。作为轩

注意: 你手中的工兵落在哪个兵营, 就和该兵营中其他工兵有相同的势力归属(如

轩和凯凯的朋友, 你知道如果龙虎双方气势差距太悬殊, 轩轩和凯凯就不愿意继续玩下 去了。为了让游戏继续,你需要选择一个兵营 p_2 ,并将你手里的 s_2 位工兵全部派往

图 2. n = 6, m = 4的示例

普及组

普及组

【输入格式】 输入文件名为 fight.in。 输入文件的第一行包含一个正整数 n, 代表兵营的数量。 接下来的一行包含 n 个正整数,相邻两数之间以一个空格分隔,第 i 个正整数代 表编号为i的兵营中起始时的工兵数量 c_i 。 接下来的一行包含四个正整数,相邻两数间以一个空格分隔,分别代表 m, p_1, s_1, s_2 。 【输出格式】 输出文件名为 fight.out。 输出文件有一行,包含一个正整数,即 p_2 ,表示你选择的兵营编号。如果存在多 个编号同时满足最优, 取最小的编号。 【输入输出样例1】 fight.in fight.out 6 2 2 3 2 3 2 3 4 6 5 2

5 4 1 1 见选手目录下的 fight/fight2.in 和 fight/fight2.ans。 【输入输出样例 2 说明】 双方以 m=5 号兵营分界,有 $s_1=1$ 位工兵突然出现在 $p_1=4$ 号兵营。 龙方的气势为: $1 \times (5-1) + 1 \times (5-2) + 1 \times (5-3) + (1+1) \times (5-4) = 11$ 虎方的气势为: $16 \times (6-5) = 16$ 当你将手中的 $s_2 = 1$ 位工兵派往 $p_2 = 1$ 号兵营时, 龙方的气势变为: $11 + 1 \times (5 - 1) = 15$ 此时可以使双方气势的差距最小。 【输入输出样例3】 见选手目录下的 fight/fight3.in 和 fight/fight3.ans。 【数据规模与约定】 $1 < m < n, 1 \le p_1 \le n$. 对于 20% 的数据, n=3, m=2, $c_i=1$, $s_1,s_2\leq 100$ 。 另有 20% 的数据, $n \le 10$, $p_1 = m$, $c_i = 1$, $s_1, s_2 \le 100$ 。 对于 60% 的数据, $n \le 100$, $c_i = 1$, $s_1, s_2 \le 100$ 。 对于 80% 的数据, $n \leq 100$, c_i , s_1 , $s_2 \leq 100$ 。 对于 100% 的数据, $n \leq 10^5$, $c_i, s_1, s_2 \leq 10^9$ 。 全国信息学奥林匹克联赛(NOIP2018)复赛

【输出格式】 输出文件名为 bus.out。 输出一行,一个整数,表示所有同学等车时间之和的最小值(单位:分钟)。 【输入输出样例1】 bus.in bus.out 5 1 3 4 4 3 5 见选手目录下的 bus/bus1.in 和 bus/bus1.ans。

第一行包含两个正整数 n, m, 以一个空格分开, 分别代表等车人数和摆渡车往返

第二行包含 n 个正整数,相邻两数之间以一个空格分隔,第 i 个非负整数 t_i 代

同学 1 和同学 4 在第 3 分钟开始等车,等待 0 分钟,在第 3 分钟乘坐摆渡车

同学 2 和同学 3 在第 4 分钟开始等车,等待 0 分钟,在第 4 分钟乘坐摆渡车

同学 5 在第 5 分钟开始等车,等待 0 分钟,在第 5 分钟乘坐摆渡车出发。自此

【输入输出样例 2】 bus.out bus.in 5 5 11 13 1 5 5 见选手目录下的 bus/bus2.in 和 bus/bus2.ans。 第5页共9页 全国信息学奥林匹克联赛(NOIP2018)复赛 普及组 【输入输出样例 2 说明】

同学 3 在第 1 分钟开始等车,等待 0 分钟,在第 1 分钟乘坐摆渡车出发。摆渡

同学 4 和同学 5 在第 5 分钟开始等车,等待 1 分钟,在第 6 分钟乘坐摆渡车

第6页共9页

对称二叉树

3

3

树"指的是:节点T和它的全部后代节点构成的二叉树。

不存在左 / 右孩子,则以 -1 表示。两个数之间用一个空格隔开。

id = 3

1. 二义树;

等。

原树

所有节

点的左

右子树

交换后

【输出格式】

【输入输出样例1】

【输入输出样例 2】

2 2 5 5 5 5 4 4 2 3

tree.in

10

9 10

-1 -1

-1 -1

-1 -1

-1 -1

tree.in

1 3

2 -1

-1 -1

id = 7.4

最多。请输出这棵子树的节点数。

输出文件名为 tree.out。

全国信息学奥林匹克联赛(NOIP2018)复赛

非对称二叉树 (结构不对称)

 $id \approx 3$

普及组

普及组

1

id = 1

3

普及组

【输入格式】 输入文件名为 tree.in。 第一行一个正整数 n,表示给定的树的节点的数目,规定节点编号 $1\sim n$,其中节点 1 是树根。 第二行 n 个正整数,用一个空格分隔,第 i 个正整数 v_i 代表节点 i 的权值。

接下来 n 行, 每行两个正整数 l_i , r_i , 分别表示节点 i 的左右孩子的编号。如果

输出文件共一行,包含一个整数,表示给定的树的最大对称二叉子树的节点数。

第7页共9页

tree.out

tree.out

3

1

-1 2 3 4 5 6 -1 -17 8 见选手目录下的 tree/tree2.in 和 tree/tree2.ans。 【输入输出样例 2 说明】 第8页共9页

符数时,空格和换行符不计算在内。

【输入格式】

【输入输出样例1】 title.in title.out

【输入输出样例1说明】 标题中共有3个字符,这3个字符都是数字字符。

标题中共有5个字符,包括1个大写英文字母,1个小写英文字母和2个数字字符, 还有1个空格。由于空格不计入结果中,故标题的有效字符数为4个。 【数据规模与约定】

对于 40% 的数据, $1 \le |s| \le 5$,保证输入为数字字符及行末换行符。 2. 龙虎斗

【问题描述】 轩轩和凯凯正在玩一款叫《龙虎斗》的游戏,游戏的棋盘是一条线段,线段上有 n 个兵营(自左至右编号 1~n),相邻编号的兵营之间相隔 1 厘米,即棋盘为长度为

兵营 p_2 , 使得双方气势差距尽可能小。

果落在 m 号兵营,则不属于任何势力)。

靠左的工兵属于龙势力,靠右的工兵属于虎势力,而第 m 号兵营中的工兵很纠结,他 们不属于任何一方。 一个兵营的气势为:该兵营中的工兵数 × 该兵营到 m 号兵营的距离;参与游戏 一方的势力定义为:属于这一方所有兵营的气势之和。 下面图 2 为 n = 6, m = 4 的示例, 其中红色为龙方, 黄色为虎方:

第3页共9页 全国信息学奥林匹克联赛(NOIP2018)复赛

【输入输出样例1说明】

龙方的气势为:

虎方的气势为:

此时双方气势相等。

【输入输出样例2】

1 1 1 1 1 16

fight.in

【输入格式】

一趟的时间。

输入文件名为 bus.in。

表第 i 个同学到达车站的时刻。

【输入输出样例1说明】

车在第 6 分钟回到人大附中。

出发。摆渡车在第 11 分钟回到人大附中。

出发。摆渡车在第 4 分钟回到人大附中。

出发。摆渡车在第 5 分钟回到人大附中。

所有同学都被送到人民大学。总等待时间为 0。

见问题描述中的图 2。

见选手目录下的 fight/fight1.in 和 fight/fight1.ans。

双方以 m=4 号兵营分界,有 $s_1=5$ 位工兵突然出现在 $p_1=6$ 号兵营。

 $2 \times (4-1) + 3 \times (4-2) + 2 \times (4-3) = 14$

 $2 \times (5-4) + (3+5) \times (6-4) = 18$

 $14 + 2 \times (4 - 2) = 18$

fight.out

当你将手中的 $s_2 = 2$ 位工兵派往 $p_2 = 2$ 号兵营时, 龙方的气势变为:

3. 摆渡车 (bus.cpp/c/pas) 【问题描述】 有 n 名同学要乘坐摆渡车从人大附中前往人民大学, 第 i 位同学在第 t_i 分钟去 等车。只有一辆摆渡车在工作,但摆渡车容量可以视为无限大。摆渡车从人大附中出发、 把车上的同学送到人民大学、再回到人大附中(去接其他同学),这样往返一趟总共花 费 m 分钟(同学上下车时间忽略不计)。摆渡车要将所有同学都送到人民大学。 凯凯很好奇,如果他能任意安排摆渡车出发的时间,那么这些同学的等车时间之和 最小为多少呢? 注意:摆渡车回到人大附中后可以即刻出发。

同学 1 在第 11 分钟开始等车,等待 2 分钟;同学 2 在第 13 分钟开始等车, 等待 0 分钟。他/她们在第 13 分钟乘坐摆渡车出发。自此所有同学都被送到人民大学。 总等待时间为 4。可以证明, 没有总等待时间小于 4 的方案。 【输入输出样例3】 见选手目录下的 bus/bus3.in 和 bus/bus3.ans。 【数据规模与约定】 对于 10% 的数据, $n \le 10$, m = 1, $0 \le t_i \le 100$ 。 对于 30% 的数据, $n \le 20$, $m \le 2$, $0 \le t_i \le 100$ 。 对于 50% 的数据, $n \le 500$, $m \le 100$, $0 \le t_i \le 10^4$ 。

另有 20% 的数据, $n \le 500$, $m \le 10$, $0 \le t_i \le 4 \times 10^6$ 。

对于 100% 的数据, $n \le 500$, $m \le 100$, $0 \le t_i \le 4 \times 10^6$ 。

全国信息学奥林匹克联赛(NOIP2018)复赛 4. 对称二叉树 (tree.cpp/c/pas) 【问题描述】

一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树:

5

id = 7/5

下图中节点内的数字为权值,节点外的 id 表示节点编号。

2. 将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相

非对称二叉树

(权值不对称)

2

3

现在给出一棵二叉树,希望你找出它的一棵子树,该子树为对称二叉树,且节点数

注意: 只有树根的树也是对称二叉树。本题中约定, 以节点 T 为子树根的一棵"子

见选手目录下的 tree/tree1.in 和 tree/tree1.ans。 【输入输出样例1说明】

id = 2

最大的对称二叉子树为以节点 2 为树根的子树, 节点数为 1。

3

全国信息学奥林匹克联赛(NOIP2018)复赛 最大的对称二叉子树为以节点 7 为树根的子树, 节点数为 3。 【输入输出样例3】 见选手目录下的 tree/tree3.in 和 tree/tree3.ans。 【数据规模与约定】

共 25 个测试点。 $v_i \leq 1000$ o 测试点 $1\sim3$, $n\leq10$, 保证根结点的左子树的所有节点都没有右孩子, 根结点的右

层次: 节点的层次从根开始定义起, 根为第一层, 根的孩子为第二层。树中任一节 满二叉树: 设二叉树的深度为 h, 且二叉树有 2^h-1 个节点, 这就是满二叉树。

测试点 $21\sim25$, $n\leq10^6$ 。 树的深度: 树中节点的最大层次称为树的深度。

子树的所有节点都没有左孩子。 测试点 4~8, $n \leq 10$ 。 测试点 9~12, $n \le 10^5$, 保证输入是一棵"满二叉树"。 测试点 $13\sim16$, $n\leq10^5$, 保证输入是一棵"完全二叉树"。 测试点 17~20, $n \leq 10^5$, 保证输入的树的点权均为 1。 本题约定: 点的层次等于其父亲节点的层次加 1。

满二叉树(深度为3)

完全二义树:设二义树的深度为h,除第h层外,其它各层的结点数都达到最大 个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

完全二叉树 (深度为 3) 完全二叉树(深度为3) 第9页共9页