Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Computação

GRAFOS

Representações de Grafos

Nelson Cruz Sampaio Neto nelsonneto@ufpa.br

laps.ufpa.br/nelson

Representações

- Dentre os tipos mais adequadas para representar grafos em computador, destacam-se:
 - Matrizes; e
 - Listas.

 Tais representações servem tanto para grafos orientados quanto para grafos não orientados.

Alguns conceitos

- Grafos densos: possuem muitas ligações, ou seja, um grafo é denso quando |E| é proporcional a |V²|.
- Grafos esparsos: possuem poucas ligações, ou seja, um grafo é esparso quando |E| é proporcional a |V|.
- O complemento de um grafo esparso é um grafo denso.

Matriz de Adjacência

- Seja G = (V, E) um grafo com n vértices, a matriz de adjacência A de G é um arranjo bidimensional n x n, com as seguintes propriedades:
 - 1. A[i, j] = 1, se existe uma aresta do vértice *i* ao vértice *j* (ou incide em *j*, no caso de grafos orientados).
 - 2. A[i, j] = 0, caso contrário.
 - 3. Em casos de grafos ponderados ou valorados, o valor a ser inserido refere-se ao peso da aresta.

	Α	В	С	D
Α	0	1	1	0
В	1	0	1	0
С	1	1	0	1
D	0	0	1	0

Matriz pode não ser simétrica

	Α	В	С	D
Α	0	0	1	0
В	1	0	0	0
С	0	1	0	1
D	0	0	0	0

	Α	В	С	D
Α	0	2	4	0
В	2	0	3	0
С	4	3	0	5
D	0	0	5	0

	A	В	C	D
Α	0	0	4	0
В	2	0	0	0
С	0	3	0	5
D	0	0	0	0

Características

- Cálculo do grau do vértice:
 - Em grafos n\u00e3o orientados: quantidade de 1's na coluna ou linha correspondente ao v\u00e9rtice.
 - Em grafos orientados:
 - Grau de saída: soma do número de 1's da linha.
 - Grau de entrada: soma do número de 1's da coluna.
- Espaço de armazenamento: $O(|V|^2)$.
- Ideal para <u>grafos densos</u>, onde **|E|** é próximo de **|V|**², pois evita que a matriz contenha muitos zeros (espaço inútil).

Matriz de Incidência

- Seja G = (V, E) um grafo não orientado com n vértices e m arestas, a matriz de incidência é um arranjo bidimensional n x m, com as seguintes propriedades:
 - 1. A[i, j] = 1, se existe uma aresta j que incide no vértice i.
 - 2. A[i, j] = 0, caso contrário.
 - 3. Em casos de grafos ponderados ou valorados, o valor a ser inserido refere-se ao peso da aresta.

	A,B	A,C	A,D	В,С	C,D
Α	1	1	1	0	0
В	1	0	0	1	0
С	0	1	0	1	1
D	0	0	1	0	1

Matriz de Incidência

 Seja G = (V, E) um grafo <u>orientado</u> com n vértices e m arestas, a matriz de incidência é um arranjo bidimensional n x m, com as seguintes propriedades:

1. A[i, j] = +1, se existe uma aresta j "saindo" no vértice i.

2. A[i, j] = -1, se existe uma aresta **j** "chegando" no vértice **i**.

3. A[i, j] = 0, caso contrário.

	a	b	C	d	е
1	+1	0	0	+1	0
2	-1	+1	0	0	+1
3	0	0	-1	-1	-1
4	0	-1	+1	+1 0 -1 0	0

Características

- Cada aresta incide em dois vértices dois 1's em cada coluna.
- Grau do vértice: número de 1's na linha. Uma linha contendo apenas zeros significa um vértice isolado.
- Espaço para armazenamento: O (|V| |E|).
- A complexidade de espaço da matriz de incidência é, quase sempre, maior do que a da matriz de adjacência.

Lista de Adjacência

A representação do grafo G = (V, E) consiste de um arranjo de |V| listas,
uma para cada vértice v∈ V, contendo os vértices w adjacentes a v.

Características

- Espaço para armazenamento: O (|V| + |E|).
- Ideal para grafos esparsos, onde |E| é bem menor que |V|².
- Grau do vértice em grafos não orientados: número de elementos na lista do referido vértice.
- Grau do vértice em grafos orientados:
 - Grau de saída: quantidade de elementos na lista.
 - Grau de entrada: deve-se pesquisar em todos os vértices de V se existe alguma referência ao vértice em questão.
- <u>Desvantagem</u>: verificar a existência de uma ligação pode levar a um tempo proporcional ao número de vértices.

Trabalho

- Pesquisar bibliotecas que implementem representações de grafos.
- <u>Dica:</u> Projeto do Prof. Nivio Ziviani do Departamento de Ciência da Computação da Universidade Federal de Minas Gerais.

http://www.dcc.ufmg.br/algoritmos-java/implementacoes-07.php

Bibliografia:

ZIVIANI, N. Projeto de Algoritmos com Implementações em Java e C++. São Paulo, Thompson, 2007. Capítulo 7.