

Artificial Neural Network Techniques

Dr. Mongkol Ekpanyapong

Gradient Descent

Weight function

$$\Delta w_i = -\alpha \frac{dE}{dw_i}$$

Weight update

$$w_{next-step} = w_{current} + \Delta w$$

Impact of large step size

Effects of Learning Rates

SGD weight update

$$W += -lr * dW$$

W is weight matrix
Ir is learning rate
dW is the gradient of W

NAME OF THE PROPERTY OF THE PR

Adagrad

- Previously, we performed an update for all parameters using the same learning rate
- Adagrad adapts the learning rate to the network parameters. Larger updates are performed on parameters that change infrequently. While small updates are done on parameters changes frequently
- Cache is the variable maintains the per-parameter sum of square gradient

```
cache += (dW ** 2)
W += -lr * dW / (np.sqrt(cache) + eps)
```


 Using exponential weighted moving average

```
cache = decay_rate * cache + (1 - decay_rate) * (dW ** 2)
W += -lr * dW / (np.sqrt(cache) + eps)
```


RMSprop

Set of Parameters 2

Set of Parameters 1

dw is small (has a small variation)
db is large (has a large variation)

$$s_{dw} = \beta s_{dw} + (1 - \beta) \frac{dw^2}{db^2}$$
 small $s_{db} = \beta s_{db} + (1 - \beta) \frac{dw^2}{db^2}$ large

$$w_{new} = w_{old} - \frac{\alpha}{\sqrt{s_{dw}} + \epsilon} dw$$

Dividing by a small number → gets larger

We want to **minimize** the oscillation in the vertical direction We want to **increase** the speed in the horizontal direction

Denote Set of Parameters 1 as **dw** Denote Set of Parameters 2 as **db**

 dw^2 and db^2 are element-wise squared

(small number)² → Becomes Smaller (large number)² → Becomes Larger

∈ is a very small number to prevent dividing by zero

$$b_{new} = b_{old} - \frac{\alpha}{\sqrt{s_{db}} + \epsilon} \ db$$

Dividing by a large number → gets smaller

Assume w is parameter 1 and b is parameter 2

Momentum

 β is set to 0.9 (robust)

We can use exponentially moving average to reduce the oscillations in the vertical direction and speed it up in the horizontal direction!

From

$$W = W - Ir * dW$$

Momentum weight:

$$V = \beta V + (1 - \beta) dW$$

$$W = W - Ir * v$$

Adam

- Adaptive Moment Estimation (Adam) is proposed by Kingman and Ba in 2014
- It is similar to RMSprop with momentum added

```
m = beta1 * m + (1 - beta1) * dW
v = beta2 * v + (1 - beta2) * (dW ** 2)
W += -lr * m / (np.sqrt(v) + eps)
```


SGD, Adam, and RMSprop

"The choice of which algorithm to use, at this point, seems to depend largely on the user's familiarity with the algorithm" –Goodfellow

-Adam and RMSprop provides faster training time

- SGD is well studied

Most used deep learning algorithm

- 1. Adam
- 2. SGD
- 3. RMSprop

Recommendation: try Adam, then SGD with momentum. Then, RMSprop

Training Cifar using Keras

from keras import layers
from keras import models
from keras.datasets import cifar10
from sklearn.preprocessing import LabelBinarizer

```
model = models.Sequential()
model.add(layers.Conv2D(64, (5, 5), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (5, 5), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(10, activation='softmax'))
model.summary()
```



```
print("[INFO] loading CIFAR-10 data...")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# initialize the label names for the CIFAR-10 dataset
labelNames = ["airplane", "automobile", "bird", "cat", "deer",
          "dog", "frog", "horse", "ship", "truck"]
model.compile(optimizer='Adam',
         loss='categorical_crossentropy',
         metrics=['accuracy'])
```


NAME OF THE PROPERTY OF THE PR

Homework:

 Please run CIFAR-10 with ADAM, RMSPROP and SGD and compare the performance. Try to get the best performance out of each optimization algorithm

Learning Rate Schedulers

Remember alpha parameter for Gradient Descent algorithm:

- If alpha is too high, we can have overshoot case
- If alpha is too low, it will take a long time to reach the optimal value

What's about if the rate can be modified adaptively?

Adaptive Learning Rate Schedule

- Finding a set of reasonably "good" weights early in the training process with a higher learning rate
- Tuning these weights later in the process to find more optimal weights using a smaller learning rate

Two Approaches for Learning Rate Scheduler

1. Learning rate schedules that decreases gradually based on the epoch number

Learning rate schedulers that drop based on specific epoch

Keras Implemenation

 Keras applies the following learning rate schedule to adjust the learning rate after every batch update

```
lr = init_lr * (1.0 / (1.0 + decay * iterations))
```


Epoch	Learning Rate (α)
0	0.01000
1	0.00836
2	0.00719
•••	•••
37	0.00121
38	0.00119
39	0.00116

Apart from SGD, there are other optimization methods:

- Reduce the amount of time (number of epochs) to obtain reasonable classification accuracy
- Make the network more "well-behaved" for a larger range of hyperparameters other than the learning rate
- Obtain higher accuracy

Spotting Underfitting and Overfitting

What are underfitting?

What are overfitting?

You need to be highly concerned with both underfitting and overfitting

Underfitting

 Underfitting occurs when your model cannot obtain sufficiently low loss on the training set

Overfitting

 Overfitting occurs when your model predicts the training data so well and fails to generalize to your validation data

Model B

- High Variance
- · Fits Noise

Low Variance

Training accuracy vs. Test accuracy

Regularization

Is a technique to generalize the model

 Is a technique used as an attempt to reduce overfitting

Regularization Techniques

L1 & L2 Regularization

Early Stopping

Data Augmentation

Drop Out

Batch Normalization

WSIAN WSAN

L1 & L2 Regularization

 The idea is to force parameters (weights and biases) to take small values

 This helps reduce a node with big weights, but having many nodes with small weights instead

Loss Function
$$+\lambda \sum_{j=1}^{p} |\beta_j|$$

• β are our weights and λ is a controlled parameter (the value is less than 1)

$$LossFunction + \lambda \sum_{j=1}^{P} \beta_j^2$$

• β are our weights and λ is a controlled parameter (the value is less than 1)

Differences between L1 and L

L2 penalizes large weights more

- λ is used to control the weight:
 - Small means we prefer to minimize the original lost function
 - Large means prefers small weights

Early Stopping

 At some points during training process, our validation loss may stop decreasing

At this point, we should not continue training

This method is called early stopping

How Early Stopping reduces overfitting

 Early stopping ensures that our model does not learn pattern of noise during training

