The very very long poster title is placed here

Changhyun Kwon, First Name Last Name

University of South Florida, Department of Industrial and Management Systems Engineering

Hazardous Materials (hazmat)

Number of hazmat incidents in 2000-2009

	Mode	No. of Incidents	Percentage
	Air	13,232	7.89
	Highway	146,120	87.09
	Rail	7,987	4.76
	Water	446	0.27
	Total	167,785	100

How to Control Network Flows?

- Network Design Approach
 - Close/Open road segments
 - Increase capacity of road segments
- ► Toll System Approach
 - Charge tolls to vehicles traveling certain road segments

Block Title Here

- abcdefg
- abcdefg
- abcdefg
- abcdefg
- abcdefg

Risk Measure and Travel Delay

We consider a duration-population-frequency risk measure:

$$R_a(v_a, u_a) = s_a(v_a) \rho_a u_a$$

where ρ_a is the population exposure along the arc.

► The linear travel delay function is:

$$s_a(v_a) = t_a(1 + v_a/C_a)$$

Case Study for Albany, NY (46 nodes and 70 arcs)

Block Title Here

- abcdefg
- abcdefg
- abcdefg
- abcdefg
- abcdefg

Block Title Here

- abcdefg
- abcdefg
- abcdefg
- abcdefg
- abcdefg

Results

(w_1, w_2, w_3)	Risk	Delay (regular)	Delay (hazmat)	Toll (regular)	Toll (hazmat)
$(10^{-4}, 1, 1)$	-15.09%	3.95%	-0.27%	1.29×10^{9}	1.66×10^{3}
$(10^{-3}, 1, 1)$	-22.07%	4.68%	-1.39%	1.31×10^{9}	1.66×10^{3}
(1, 1, 1)	-24.70%	22.61%	-39.61%	5.29×10^{6}	0
$(10^2, 1, 1)$	-24.70%	25.99%	-39.52%	0	0
$(10^5, 1, 1)$	-24.70%	25.99%	-39.52%	0	0

Table: Results with various w_1 with given $w_2 = 1$ and $w_3 = 1$

(w_1, w_2, w_3)	Risk	Delay (regular)	Delay (hazmat)	Toll (regular)	Toll (hazmat)
(1, 1, 1)	-24.70%	22.61%	-39.61%	5.29×10^{6}	0
$(1, 10^5, 1)$	-5.23%	2.86%	4.89%	2.87×10^{8}	0
$(1, 10^8, 1)$	-4.41%	2.81%	5.58%	2.62×10^{8}	0
$(1,10^{12},1)$	-4.41%	2.81%	5.58%	2.62×10^{8}	0

Table: Results with various w_2 with given $w_1 = 1$ and $w_3 = 1$

(w_1, w_2, w_3)	Risk	Delay (regular)	Delay (hazmat)	Toll (regular)	Toll (hazmat)
$(10^{-4}, 1, 10^5)$	-22.52%	3.06%	-11.9%	3.30×10^{7}	0

Table: Results with $(w_1, w_2, w_3) = (10^{-4}, 1, 10^4)$

Block Title Here

- abcdefg
- abcdefg
- abcdefg
- abcdefg
- abcdefg

Block Title Here

- abcdefg
- abcdefg
- abcdefg
- abcdefg
- abcdefg

Block Title Here

- abcdefg
- abcdefg
- abcdefg
- abcdefg
- abcdefg