BEST PRACTICES FOR DEMAND ESTIMATION WITH pyblp

CHRIS CONLON AND JEFF GORMAKER

NYU STERN AND NY FED

APRIL 5, 2019

AN ONGOING PROJECT...

What do we have so far?

- Available on PyPI: pip install pyblp
- Extensive documentation: https://pyblp.readthedocs.io/en/stable/
- Long list of features
- 100+ active users. (hopefully more).

TODAY'S TALK

Theory Part

- Slight re-writing of the usual BLP problem
- Focus on Simultaneous Supply+ Demand.
- Focus on optimal IV. (For intuition).

Numerics Part

- Fixed Point solutions: SQUAREM, Newton/LM.
- Integration Methods: Quadrature/Sparse Grids
- Optimization Methods: Less sensitive than anticipated.
- Over/Under-flow is deadly.

A FAMOUS EXAMPLE

```
blp problem = pyblp.Problem(
    product formulations=(
        pyblp.Formulation('1 + hpwt + air + mpd + space'),
                                                                                    # Linear demand
        pyblp.Formulation('1 + prices + hpwt + air + mpd + space'),
                                                                                    # Nonlinear demand
        pyblp.Formulation('1 + log(hpwt) + air + log(mpg) + log(space) + trend')
                                                                                    # Supply
    agent formulation=pyblp.Formulation('0 + I(1 / income)').
                                                                                    # Demographics
    product data=pandas.read csv(pvblp.data.BLP PRODUCTS LOCATION).
    agent data=pandas.read csv(pvblp.data.BLP AGENTS LOCATION)
print(blp problem)
Dimensions:
            K 1
                  K2
2217
     20
                                   11
                                          12
Formulations:
      Column Indices:
X1: Linear Characteristics
                                            hpwt
                                                      air
                                                              mnd
                                                                         space
X2: Nonlinear Characteristics
                                           prices
                                                              air
                                                     hpwt
                                                                          mpd
                                                                                   space
 X3: Cost Characteristics
                                          log(hpwt)
                                                      air
                                                            log(mpg)
                                                                       log(space)
                                                                                   trend
       d: Demographics
                               1/income
```

ANOTHER FAMOUS EXAMPLE

```
nevo problem = pvblp.Problem(
    product formulations=(
        pyblp.Formulation('0 + prices', absorb='C(product_ids)'),
                                                                                        # Linear demand
                                                                                        # Nonlinear demand
        pvblp.Formulation('1 + prices + sugar + mushv')
    agent formulation=pyblp.Formulation('o + income + income squared + age + child'), # Demographics
    product_data=pandas.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION),
    agent data=pandas.read csv(pvblp.data.NEVO AGENTS LOCATION)
print(nevo problem)
Dimensions:
            K 1
2256 94
Formulations:
      Column Indices:
 X1: Linear Characteristics
                               prices
X2: Nonlinear Characteristics
                                           prices
                                                       sugar
                                                              mushv
      d: Demographics
                               income
                                       income squared
                                                       age
                                                              child
```

TONS OF FEATURES

In one line you can:

- Estimate the model
- Compute Optimal instruments
- Caclulate elastictities, diversion ratios
- Calculate implied MC
- Solve for pricing equilibria
- Compute merger effects

More at: https://pyblp.readthedocs.io/en/stable/

THEORY PART

SOME SETUP

We can break up the parameter space into three parts:

- \blacksquare θ_1 : linear exogenous demand parameters,
- \blacksquare θ_2 : nonlinear endogenous parameters including price and random coefficients
- \blacksquare θ_3 : linear exogenous supply parameters.

THE BASIC SETUP

- (a) For each market t: solve $S_{it} = s_{it}(\delta_{t}, \theta_{2})$ for $\widehat{\delta}_{t}(\theta_{2})$.
- (b) For each market t: use $\widehat{\delta}_{t}(\theta_{2})$ to construct $\eta_{t}(\mathbf{q_{t}}, \mathbf{p_{t}}, \widehat{\delta}_{t}(\theta_{2}), \theta_{2})$
- (c) For each market t: Recover $\widehat{mc}_{it}(\widehat{\delta}_{t}(\theta_2), \theta_2) = p_{it} \eta_{it}(\widehat{\delta}_{t}(\theta_2), \theta_2)$
- (d) Stack up $\widehat{\delta}_t(\theta_2)$ and $\widehat{mc}_{it}(\widehat{\delta}_t(\theta_2), \theta_2)$ and use linear IV-GMM to recover $[\widehat{\theta}_1(\theta_2), \widehat{\theta}_3(\theta_2)]$ following the recipe in Appendix
- (e) Construct the residuals:

$$\begin{split} \widehat{\xi_{jt}}(\theta_2) &= \widehat{\delta_{jt}}(\theta_2) - x_{jt}\widehat{\beta}(\theta_2) + \alpha p_{jt} \\ \widehat{\omega}_{jt}(\theta_2) &= \widehat{mc}_{jt}(\theta_2) - [x_{jt} \, w_{jt}] \, \widehat{\gamma}(\theta_2) \end{split}$$

(f) Construct sample moments

$$g_n^{D}(\theta_2) = \frac{1}{N} \sum_{jt} Z_{jt}^{D'} \widehat{\xi}_{jt}(\theta_2)$$
$$g_n^{S}(\theta_2) = \frac{1}{N} \sum_{jt} Z_{jt}^{S'} \widehat{\omega}_{jt}(\theta_2)$$

(g) Construct GMM objective $Q_n(\theta_2) = \begin{bmatrix} g_n^d(\theta_2) \\ g_n^s(\theta_2) \end{bmatrix}^t W \begin{bmatrix} g_n^d(\theta_2) \\ g_n^s(\theta_2) \end{bmatrix}$

ADDITIONAL DETAILS

Some different definitions:

$$y_{jt}^{D} := \widehat{\delta}_{jt}(\theta_{2}) + \alpha p_{jt} = (x_{jt} \sigma_{jt})\beta + \xi_{t} =: x_{jt}^{D'}\beta + \xi_{jt}$$

$$y_{jt}^{S} := p_{jt} - \widehat{\eta}_{jt}(\theta_{2}) = (x_{jt} w_{jt})'\gamma + \omega_{t} =: x_{jt}^{S'}\gamma + \omega_{jt}$$
(1)

Stacking the system across observations yields:1

$$\begin{bmatrix} y_D \\ y_S \end{bmatrix} = \begin{bmatrix} X_D & O \\ O & X_S \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} + \begin{bmatrix} \xi \\ \omega \end{bmatrix}$$

$$2N \times (K_1 + K_3) (K_1 + K_3) \times 1 \quad 2N \times 1$$
(2)

Because we got rid of endogeneity (on LHS) we can now incorporate high dimensional FE!

ζ

¹Note: we cannot perform independent regressions unless we are willing to assume that $Cov(\xi_{jt}, \omega_{jt}) = 0$.

How to construct optimal instruments in form of Chamberlain (1987)

$$E\left[\frac{\partial \xi_{jt}}{\partial \theta} | X_t, w_{jt}\right] = \left[\beta, E\left[\frac{\partial \xi_{jt}}{\partial \alpha} | X_t, w_{jt}\right], E\left[\frac{\partial \xi_{jt}}{\partial \sigma} | X_t, w_{jt}\right]\right]$$

Some challenges:

- 1. p_{jt} depends on X_t, w_t, ξ_t in a highly nonlinear way (no explicit solution!).
- 2. $E\left[\frac{\partial \xi_{jt}}{\partial \sigma}|X_t, w_t\right] = E\left[\left[\frac{\partial \mathbf{s_t}}{\partial \delta_t}\right]^{-1}\left[\frac{\partial \mathbf{s_t}}{\partial \sigma}\right]|X_t, w_t\right]$ (not conditioned on endogenous p!) "Feasible" Recipe:
 - 1. Fix $\hat{\theta} = (\hat{\alpha}, \hat{\beta}, \hat{\sigma})$ and draw ξ_t from empirical density
 - 2. Solve fixed point equation for $\hat{p_{jt}}$
 - 3. Compute necessary Jacobian
 - 4. Average over all values of ξ_t . (Lazy approach: use only $\xi = 0$).

Chamberlain (1987) tells us the optimal instruments for this supply-demand system of $G\Omega^{-1}$ where for a given observation n,

$$G_n := \begin{bmatrix} \frac{\partial \xi}{\partial \beta} & \frac{\partial \omega}{\partial \beta} \\ \frac{\partial \xi}{\partial \alpha} & \frac{\partial \omega}{\partial \alpha} \\ \frac{\partial \xi}{\partial \gamma} & \frac{\partial \omega}{\partial \gamma} \\ \frac{\partial \xi}{\partial \gamma} & \frac{\partial \omega}{\partial \gamma} \end{bmatrix}_n = \begin{bmatrix} -x_j & 0 \\ -v_j & 0 \\ \xi_{\alpha} & \omega_{\alpha} \\ \xi_{\sigma} & \omega_{\sigma} \\ 0 & -x_j \\ 0 & -w_j \end{bmatrix}_n \qquad \Omega := \underbrace{\begin{bmatrix} \sigma_{\xi}^2 & \sigma_{\xi\omega} \\ \sigma_{\xi\omega} & \sigma_{\omega}^2 \end{bmatrix}}_{2 \times 2}$$

$$G_{n}\Omega^{-1} = \frac{1}{\sigma_{\xi}^{2}\sigma_{\omega}^{2} - (\sigma_{\xi\omega})^{2}} \times \begin{bmatrix} -\sigma_{\omega}^{2}X & \sigma_{\xi\omega}X \\ -\sigma_{\omega}^{2}V & \sigma_{\xi\omega}V \\ \sigma_{\omega}^{2}\xi_{\alpha} - \sigma_{\xi\omega}\omega_{\alpha} & \sigma_{\xi}^{2}\omega_{\alpha} - \sigma_{\xi\omega}\xi_{\alpha} \\ \sigma_{\omega}^{2}\xi_{\sigma} - \sigma_{\xi\omega}\omega_{\sigma} & \sigma_{\xi}^{2}\omega_{\sigma} - \sigma_{\xi\omega}\xi_{\sigma} \\ \sigma_{\xi\omega}X & -\sigma_{\xi}^{2}X \\ \sigma_{\xi\omega}W & -\sigma_{\xi}^{2}W \end{bmatrix}_{n}$$

Clearly rows 1 and 5 are co-linear.

$$(G_n\Omega^{-1})\circ\Theta = \frac{1}{\sigma_\xi^2\sigma_\omega^2 - (\sigma_{\xi\omega})^2} \times \begin{bmatrix} -W_\omega^2 X & O \\ -\sigma_\omega^2 V & \sigma_{\xi\omega} V \\ \sigma_\omega^2 \xi_\alpha - \sigma_{\xi\omega}\omega_\alpha & \sigma_\xi^2\omega_\alpha - \sigma_{\xi\omega}\xi_\alpha \\ \sigma_\omega^2 \xi_\sigma - \sigma_{\xi\omega}\omega_\sigma & \sigma_\xi^2\omega_\sigma - \sigma_{\xi\omega}\xi_\sigma \\ O & -\sigma_\xi^2 X \\ \sigma_{\xi\omega} W & -\sigma_\xi^2 W \end{bmatrix}_n$$

Now we can partition our instrument set by column into "demand" and "supply" instruments as

$$z_{nD} := (G_n \Omega^{-1} \circ \Theta)_{\cdot 1}$$
$$z_{nS} := (G_n \Omega^{-1} \circ \Theta)_{\cdot 2}$$

ASIDE: WHAT DOES SUPPLY TELL US ABOUT DEMAND?

Under optimal IV these are overidentifying restrictions

- \blacksquare Cross-equation restrictions for endogenous parameters K_2 of them
- **Exclusion Restrictions** from v_{jt} (demand shifters) and w_{jt} (cost shifters.) $K_1 + K_3 2K_x$.
- Overall: $K K_X$ overidentifying restrictions from supply.
- Can test: supply model, conduct, etc.

STABILITY

There are a few places where estimation usually goes wrong

- Problem is basically linear except for the contraction step.
- Computation of shares has both underflow/overflow possibilities
 - Shares → o (underflow)
 - Shares → 1 (overflow)
- Happens with either large values of σ or large draws of ν_i .
 - Bounding parameters helps a lot.
- Additional numerical problem with $\sum_i e^{\sigma_{ij}}$.
 - Summing large numbers of small numbers and one large number can lead to loss of precision.
 - ▶ the usual trick: $\frac{e^{\sigma_{ij}}}{\sum_{k} e^{\sigma_{ik}}} = \frac{e^{\sigma_{ij}-m}}{\sum_{k} e^{\sigma_{ik}-m}}$ where $m = \max_{k} \sigma_{ik}$ or $m = \min_{k} \sigma_{ik}$.
 - Python interpreter seems to be a bit better about avoiding loss of precision at runtime.

OPTIMIZATION: EXISTING LITERATURE

- Knittel Metaxoglou (2014): download Nevo (2000)'s code, download 50 solvers for MATLAB, and find about 60 different "local minima".
- Dube, Fox, Su (2012): show how to fix some bugs in the gradient, and show that MPEC approach appears to be more reliable in finding the "global minimum".
- Main takeaway is probably that choice of optimizer matters and we should use multiple starting values to make sure we have found the "global minimum".

OUR FINDINGS

- Nearly all optimizers work reasonably well (around 99%) of time.
 - Gradient within tolerance of zero (element by element)
 - ► Hessian is PSD (all eigenvalues non-negative).
- Almost no discernible difference in recovered parameters.
- Even Nelder-Mead(!) does surprisingly well
- Perhaps our problems are too easy?

KNITTEL METAXOGLOU (2014) VS. pyblp: AUTOS

KNITTEL METAXOGLOU (2014) VS. pyblp: RTE CEREAL

- 1000 simulated datasets
- T = 20 markets, and in each market, the number of firms is chosen randomly from $F_t \in \{F 2, F 1, F\} = \{3, 4, 5\}.$
- Each firm produces a number of products chosen randomly from $J_f \in \{2, 5, 10\}$.
- Sample sizes are generally between N = 200 and N = 600.
- Unobserved product characteristics, ξ and ω , are drawn from a mean-zero bivariate normal distribution with $Var(\xi) = Var(\omega) = 0.1$ and $Corr(\xi, \omega) = 0.5$.
- \blacksquare ν , consist of 1,000 draws from the standard normal distribution, and differ across markets.

- Observed linear product characteristics are $X_1 = [1, x, p]$, with a single random coefficient $X_2 = x$
- Linear supply characteristics $X_3 = [1, x, w]$. Exogenous characteristics,
- \blacksquare (x, w), are drawn from the standard uniform distribution.
- Endogenous Bertrand-Nash prices and shares (\mathbf{p}, \mathbf{s}) are computed via iteration over the ζ -markup equation.
- Demand-side parameters are $(\beta_0, \beta_1, \alpha) = [-7, 6, -1]'$ and $\sigma_x = 3$.
- Other linear parameters were chosen to generate realistic outside shares that are generally between $s_{ot} = 0.8$ and $s_{ot} = 0.9$.
- Supply-side parameters are $(\gamma_0, \gamma_1, \gamma_2) = [2, 1, 1]'$.

Simple 1 random coefficient on *x*.

Complicated adds a random coefficient on price: $X_2 = (x, p)$, $\Sigma_{22} = 0.2$, and $\Sigma_{12} = \Sigma_{21} = 0$.

RCNL adds a nesting parameter: $\rho = 0.5$ and each of the J_f products produced by a firm is randomly assigned to one of H = 2 nesting groups.

21

BLP has simultaneous supply and demand, an an interaction between income and price.

Nevo has diagonal Σ and demographics Π .

BEST PRACTICES

BEST PRACTICES

- 1. **Speed Up Contraction**: SQUAREM (Reynaerts, Varodayan, Nash 2014), Newton-type Methods (Levenberg/Marquardt).
- 2. **Reduce Integration Error**: sparse-grids (Heiss and Winchel 2007)
- 3. **Solve Pricing Equilibria**: Modified ζ fixed point of Morrow and Skerlos (2010)
- 4. **Optimal Instruments**: Using supply and demand restrictions ("approximate" version)

#1: SOLVING THE CONTRACTION

BLP also propose a fixed-point approach to solve the $J_t \times J_t$ system of equations for shares. They show that the following is a contraction mapping $f(\delta) = \delta$:

$$f: \delta_{:t}^{h+1} \leftrightarrow \delta_{:t}^{h} + \ln \mathcal{S}_{:t} - \ln \mathbf{s}_{:t}(\delta_{:t}^{h}, \theta_{2})$$
(3)

- This kind of contraction mapping is linearly convergent where the rate of convergence is proportional to $\frac{L(\theta_2)}{1-L(\theta_2)}$ where $L(\theta_2)$ is the Lipschitz constant.
- Because (3) is a contraction, we know that $L(\theta_2) < 1$.
- DFS2012 show that for the BLP contraction the Lipschitz constant is defined as $L(\theta_2) = \max_{\delta \in \Delta} \left\| \mathbf{I}_{J_t} \frac{\partial \log \mathbf{s}_{\cdot t}}{\partial \delta_{\cdot t}} (\delta_{\cdot t}, \theta_2) \right\|_{\infty}$.

#1: Accelerating the Contraction (Newton's Method)

$$\delta_{\cdot t}^{h+1} \leftrightarrow \delta_{\cdot t}^{h} - \lambda J_{\mathbf{s}}^{-1}(\delta_{\cdot t}^{h}, \theta_{2}) \cdot \mathbf{S_{t}}(\delta_{\cdot t}^{h}, \theta_{2})$$

- Each Newton-Raphson iteration would require computation of:
 - ▶ J_t vector of marketshares $\mathbf{s_t}(\delta_t^h, \theta_2)$, the $J_t \times J_t$
 - ▶ Jacobian matrix $J_{\mathbf{s}}(\delta_{\cdot \mathbf{t}}^h, \theta_2) = \frac{\partial \mathbf{s}_{\cdot \mathbf{t}}}{\partial \delta_{\cdot \mathbf{t}}}(\delta_{\cdot \mathbf{t}}^h, \theta_2)$
 - as well as its inverse $J_{\mathbf{s}}^{-1}(\delta_{\cdot t}^{h})$.
- Inverse Jacobian can be costly when J_t is large (and requires integration).
- Try two routines Levenberg/Marquardt (good) and Powell's method (hybrj) less good.

#1: Accelerated Fixed Points

Most of these methods use information from mutliple iterations $(\delta^h, \delta^{h+1}, \delta^{h+2}, f(\delta^h), f(f(\delta^h)))$ to approximate J_s or J_s^{-1} :

$$\delta_{\cdot t}^{h+1} = \delta_{\cdot t}^{h} - 2\alpha^{h} r^{h} + (\alpha^{h})^{2} v^{h}, \quad \alpha^{h} = \frac{(v^{h})' r^{h}}{(v^{h})' v^{h}}$$

$$r^{h} = f(\delta_{\cdot t}^{h}) - \delta_{\cdot t}^{h}, \quad v^{h} = f(f(\delta_{\cdot t}^{h})) - 2f(\delta_{\cdot t}^{h}) + \delta_{\cdot t}^{h}$$

$$(4)$$

- This particular algorithm is known as SQUAREM used in biostats for EM algorithms.
- Applied to BLP by Reynaerts, Varadhan, Nash (2012).
- Iterations are more costly but much more accurate (almost a Newton step).
- Speedup is 2-12x.

#2: NUMERICAL INTEGRATION

$$\hat{f} = \sum_{i} w_{i} \cdot f(\nu_{i}) \cdot g(\nu_{i}|\theta)$$

- Most of literature does Monte Carlo Integration
- quadrature rules are exact to polynomial order of approximation
 - ▶ Gauss-Hermite works very well when $g(\nu_i) \propto \exp[-x^2]$.
- but scale poorly in high dimensions: curse of dimensionality
- Heiss and Winschel: suggest sparse grids quadrature rules which drop nodes in clever ways
- Skrainka (2011) and Skrainka and Judd (2012) suggest monomial rules.

#2: NUMERICAL INTEGRATION

						True	Valu	е		Media	Median Bias				Median Absolute Error			
Simulation	Supply	Integration	It	Seconds	α	$\sigma_{\rm X}$	σ_p	ρ	α	σ_{X}	σ_p	ρ	α	σ_{X}	σ_p	ρ		
Simple	Yes	Monte Carlo	100	5.9	-1	3			0.104	-0.659			0.226	0.660				
Simple	Yes	Monte Carlo	1,000	38.1	-1	3			0.027	-0.090			0.178	0.186				
Simple	Yes	Halton	1,000	36.4	-1	3			0.021	0.036			0.171	0.152				
Simple	Yes	Product Rule	9 ¹	4.3	-1	3			0.010	0.011			0.171	0.159				
Complex	Yes	Monte Carlo	100	11.2	-1	3	0.2		0.120	-0.686	-0.135		0.277	0.750	0.153			
Complex	Yes	Monte Carlo	1,000	52.5	-1	3	0.2		0.015	-0.123	-0.049		0.205	0.234	0.128			
Complex	Yes	Halton	1,000	52.6	-1	3	0.2		-0.034	-0.017	0.032		0.194	0.169	0.141			
Complex	Yes	Product Rule	9 ²	11.3	-1	3	0.2		-0.063	-0.041	0.044		0.185	0.179	0.136			
RCNL	Yes	Monte Carlo	100	30.8	-1	3		0.5	0.097	-0.614		0.037	0.129	0.615		0.046		
RCNL	Yes	Monte Carlo	1,000	154.2	-1	3		0.5	0.029	-0.099		0.005	0.109	0.186		0.020		
RCNL	Yes	Halton	1,000	160.7	-1	3		0.5	0.017	0.010		0.000	0.114	0.173		0.018		
RCNL	Yes	Product Rule	9 ¹	20.5	-1	3		0.5	0.008	-0.013		0.001	0.108	0.171		0.018		

#3: SOLVING PRICING EQUILIBRIA

Recall the multi-product Bertrand FOCs:

$$\begin{split} \arg\max_{p \in \mathcal{J}_f} \pi_f(\mathbf{p}) &= \sum_{j \in \mathcal{J}_f} (p_j - c_j) \cdot q_j(\mathbf{p}) \\ \to \mathsf{O} &= q_j(\mathbf{p}) + \sum_{k \in \mathcal{J}_f} (p_k - c_k) \frac{\partial q_k}{\partial p_j}(\mathbf{p}) \end{split}$$

It is helpful to define the matrix Ω with entries:

$$\Omega_{(j,k)}(\mathbf{p}) = \left\{ \begin{array}{ll} -\frac{\partial q_j}{\partial p_k}(\mathbf{p}) & \text{for } (j,k) \in \mathcal{J}_f \\ \text{O} & \text{for } (j,k) \notin \mathcal{J}_f \end{array} \right\}$$

We can re-write the FOC in matrix form:

$$q(\mathbf{p}) = \Omega(\mathbf{p}) \cdot (\mathbf{p} - \mathbf{mc})$$

#3: SOLVING PRICING EQUILIBRIA

■ Can we iterate on the price relation until we converge to a new equilibrium?

$$\mathbf{p} \leftarrow \widehat{\mathbf{mc}} - \Omega(\mathbf{p})^{-1}q(\mathbf{p})$$

- While tempting, this doesn't work. (It is **not** a contraction).
- There is a modification that is a contraction for logit type models.
- You can always get lucky(!)

#3: Solving Pricing Equilibria: Morrow and Skerlos (2011)

■ For the logit (and variants) we can factor $\frac{\partial q_j}{\partial p_k}$ into two parts.

$$\Omega_{jk}(\mathbf{p}) = \underbrace{\alpha \cdot I[j=k] \cdot s_j(\mathbf{p})}_{\Lambda(\mathbf{p})} - \underbrace{\alpha \cdot s_j(\mathbf{p}) s_k(\mathbf{p})}_{\Gamma(\mathbf{p})}$$

- $\Gamma(\mathbf{p})$ and $\Lambda(\mathbf{p})$ are $J \times J$ matrices and $\Lambda(\mathbf{p})$ is diagonal and (j, k) is nonzero in $\Gamma(\mathbf{p})$ only if (j, k) share an owner.
- After factoring we can rescale by $\Lambda^{-1}(\mathbf{p})$

$$(\mathbf{p} - \mathbf{mc}) \leftrightarrow \Lambda^{-1}(\mathbf{p}) \cdot \Gamma(\mathbf{p}) \cdot (\mathbf{p} - \mathbf{mc}) - \Lambda^{-1}(\mathbf{p}) \cdot s(\mathbf{p})$$

- This alternative fixed point is in fact a contraction.
- Moreover the rate of convergence is generally fast and stable (much more than Gauss-Seidel or Gauss-Jacobi).

DIFFERENTIATION INSTRUMENTS: GANDHI HOUDE (2016)

- Need instruments for the θ_2 random coefficient parameters.
- Instead of average of other characteristics $h(x) = \frac{1}{l-1} \sum_{k \neq j} x_k$, can transform as distance to x_i .

$$d_{jt}^k = x_k - x_j$$

And use this transformed to construct two kinds of IV (Squared distance, and count of local competitors)

$$DI\sigma_{1} = \sum_{j \in F} d_{jt}^{2}, \qquad \sum_{j \notin F} d_{jt}^{2}$$

$$DI\sigma_{2} = \sum_{j \in F} I[d_{jt} < c] \qquad \sum_{i \notin F} I[d_{jt} < c]$$

■ They choose c to correspond to one standard deviation of x across markets.

OPTIMAL INSTRUMENTS: REYNAERT VERBOVEN (2014)

Table 2: Bias and Efficiency with Imperfect Competition

		Single Equation GMM												
			g_{jt}^1			g_{jt}^2		g_{jt}^3						
	${\rm True}$	Bias	St Err	RMSE	Bias	St Err	RMSE	Bias	St Err	RMSE				
β^0	2	-0.127	0.899	0.907	-0.155	0.799	0.814	-0.070	0.514	0.519				
β^1	2	-0.068	0.899	0.901	0.089	0.766	0.770	-0.001	0.398	0.398				
α	-2	0.006	0.052	0.052	0.010	0.049	0.050	0.010	0.043	0.044				
σ^1	1	-0.162	0.634	0.654	-0.147	0.537	0.556	-0.016	0.229	0.229				
		Joint Equation GMM												
			g_{jt}^1			g_{jt}^2		g_{jt}^3						
	True	Bias	St Err	RMSE	Bias	St Err	RMSE	Bias	St Err	RMSE				
β^0	2	-0.095	0.714	0.720	-0.103	0.677	0.685	0.005	0.459	0.459				
β^1	2	0.089	0.669	0.675	0.098	0.621	0.628	-0.009	0.312	0.312				
α	-2	0.001	0.047	0.047	0.002	0.046	0.046	-0.001	0.043	0.043				
σ^1	1	-0.116	0.462	0.476	-0.110	0.418	0.432	0.003	0.133	0.133				

Bias, standard errors (St Err) and root mean squared errors (RMSE) are computed from 1000 Monte Carlo replications. Estimates are based on the MPEC algorithm and Sparse Grid integration. The instruments g_{jt}^* , g_{jt}^* , and g_{jt}^* are defined in section 2.4 and 2.5.

						True	Valu	е		Media	ın Bias		Median Absolute Error			
Simulation	Supply	Z_D	Z_{S}	Seconds	α	$\sigma_{\rm X}$	σ_p	ρ	α	$\sigma_{\rm X}$	σ_p	ρ	α	$\sigma_{\rm X}$	σ_p	ρ
Simple Simple Simple Simple Simple	No No No No	$ \begin{bmatrix} X_1, w \\ \text{[BLP}, w, X_1 \end{bmatrix} \\ \text{[Local}, w, X_1 \end{bmatrix} \\ \text{[Quadratic}, w, X_1 \end{bmatrix} \\ \text{[Optimal}, X_1 \end{bmatrix} $	X_3 X_3 X_3 X_3 [Optimal, X_3]	0.1 0.8 0.4 0.5 1.1	-1 -1 -1 -1	3 3 3 3			-0.854 0.111 0.079 0.090 0.157	-0.710 0.022 0.021 -0.026 -0.028			0.926 0.227 0.241 0.250 0.246	0.943 0.418 0.288 0.373 0.181		
Simple Simple Simple Simple Simple	Yes Yes Yes Yes	$ [X_1, w] \\ [BLP, w, X_1] \\ [Local, w, X_1] \\ [Quadratic, w, X_1] \\ [Optimal, X_1] $	X_3 X_3 X_3 X_3 [Optimal, X_3]	0.8 2.2 1.1 1.2 4.3	-1 -1 -1 -1	3 3 3 3			-0.216 0.111 0.077 0.090 0.010	-0.410 0.022 0.021 -0.026 0.011			0.337 0.226 0.240 0.251 0.171	0.814 0.418 0.287 0.373 0.159		
Complex Complex Complex Complex Complex	No No No No	$ [X_1, w] \\ [BLP, w, X_1] \\ [Local, w, X_1] \\ [Quadratic, w, X_1] \\ [Optimal, X_1] $	X_3 X_3 X_3 X_3 [Optimal, X_3]	0.2 2.8 1.3 1.2 3.8	-1 -1 -1 -1	3 3 3 3	0.2 0.2 0.2 0.2 0.2		-0.835 -0.014 0.010 0.104 -0.033	-0.657 -0.453 -0.185 0.032 -0.130	-0.027 -0.016 -0.109 -0.200 0.089		0.913 0.269 0.365 0.353 0.272	0.965 0.826 0.364 0.403 0.248	0.062 0.200 0.200 0.200 0.174	
Complex Complex Complex Complex Complex	Yes Yes Yes Yes	$[X_1, w]$ $[BLP, w, X_1]$ $[Local, w, X_1]$ $[Quadratic, w, X_1]$ $[Optimal, X_1]$	X_3 X_3 X_3 X_3 [Optimal, X_3]	1.1 7.5 3.9 3.5 11.3	-1 -1 -1 -1	3 3 3 3	0.2 0.2 0.2 0.2 0.2		-0.217 -0.030 -0.001 0.096 -0.063	-0.352 -0.487 -0.185 0.038 -0.041	-0.009 0.032 -0.060 -0.200 0.044		0.349 0.265 0.365 0.354 0.185	0.773 0.854 0.363 0.412 0.179	0.051 0.200 0.200 0.200 0.136	
RCNL RCNL RCNL RCNL RCNL	No No No No	$ [X_1, w] $ $[BLP, w, X_1] $ $[Local, w, X_1] $ $[Quadratic, w, X_1] $ $[Optimal, X_1] $	X_3 X_3 X_3 X_3 X_3 [Optimal, X_3]	0.4 5.6 3.0 3.2 7.6	-1 -1 -1 -1	3 3 3 3		0.5 0.5 0.5 0.5	-0.846 0.139 0.126 0.142 0.111	-0.576 -0.717 -0.106 -0.117 -0.012		0.099 0.028 0.009 0.011 -0.006	0.992 0.274 0.241 0.240 0.221	0.907 1.168 0.340 0.407 0.198		0.144 0.063 0.047 0.047 0.025
RCNL RCNL RCNL RCNL RCNL	Yes Yes Yes Yes Yes	$ \begin{bmatrix} X_1, w \\ [BLP, w, X_1] \\ [Local, w, X_1] \\ [Quadratic, w, X_1] \\ [Optimal, X_1] \end{bmatrix} $	$X_3 \\ X_3 \\ X_3 \\ X_3 \\ X_3 \\ [\text{Optimal}, X_3]$	1.9 11.3 6.0 6.5 20.5	-1 -1 -1 -1	3 3 3 3		0.5 0.5 0.5 0.5	-0.233 0.139 0.126 0.141 0.008	-0.279 -0.705 -0.104 -0.116 -0.013		0.026 0.028 0.009 0.011 0.001	0.321 0.272 0.240 0.240 0.108	0.749 1.168 0.339 0.407 0.171		0.119 0.063 0.047 0.047 0.018

BUT FORM OF OPTIMAL INSTRUMENTS DOESN'T MATTER

				True Value					Media		Median Absolute Error				
Simulation	Supply	Optimality	Seconds	α	$\sigma_{\rm X}$	σ_p	ρ	α	σ_{X}	σ_p	ρ	α	σ_{X}	σ_p	ρ
Simple	No	Approximate	1.1	-1	3			0.157	-0.028			0.246	0.181		
Simple	No	Asymptotic	4.2	-1	3			0.157	-0.024			0.246	0.181		
Simple	No	Empirical	4.2	-1	3			0.157	-0.020			0.245	0.180		
Simple	Yes	Approximate	4.3	-1	3			0.010	0.011			0.171	0.159		
Simple	Yes	Asymptotic	20.0	-1	3			0.029	0.014			0.180	0.154		
Simple	Yes	Empirical	20.1	-1	3			0.012	0.009			0.175	0.159		
Complex	No	Approximate	3.8	-1	3	0.2		-0.033	-0.130	0.089		0.272	0.248	0.174	
Complex	No	Asymptotic	7.8	-1	3	0.2		-0.025	-0.136	0.088		0.268	0.247	0.175	
Complex	No	Empirical	7.8	-1	3	0.2		-0.038	-0.133	0.089		0.266	0.255	0.177	
Complex	Yes	Approximate	11.3	-1	3	0.2		-0.063	-0.041	0.044		0.185	0.179	0.136	
Complex	Yes	Asymptotic	37.9	-1	3	0.2		-0.039	-0.041	0.015		0.229	0.224	0.131	
Complex	Yes	Empirical	37.4	-1	3	0.2		-0.045	-0.045	0.025		0.222	0.211	0.122	
RCNL	No	Approximate	7.6	-1	3		0.5	0.111	-0.012		-0.006	0.221	0.198		0.02
RCNL	No	Asymptotic	12.1	-1	3		0.5	0.108	-0.015		-0.006	0.222	0.195		0.02
RCNL	No	Empirical	12.1	-1	3		0.5	0.104	-0.010		-0.007	0.221	0.195		0.02
RCNL	Yes	Approximate	20.5	-1	3		0.5	0.008	-0.013		0.001	0.108	0.171		0.01
RCNL	Yes	Asymptotic	59.6	-1	3		0.5	0.012	-0.007		0.001	0.113	0.170		0.01
RCNL	Yes	Empirical	58.9	-1	3		0.5	0.014	-0.005		0.001	0.111	0.174		0.01

DOES THE SUPPLY SIDE HELP?

- BLP95 "folk lore": not identified without it.
- \blacksquare Armstrong: you probably need strong cost shifters w_{jt}
- RV2016: under optimal instruments suggests it isn't important.
- Most researchers leave it out.
- Supply matters when cost shifters are weak!

						True	Valu	e		Media	n Bias	Median Absolute Error				
Simulation	γ_2	Corr(p, w)	Supply	Seconds	α	$\sigma_{\rm X}$	σ_p	ρ	α	σ_{X}	σ_p	ρ	α	$\sigma_{\rm X}$	σ_p	ρ
Simple Simple	0.0	0.001 0.001	No Yes	1.1 4.8	-1 -1	3			0.360 0.010	-0.081 0.006			0.423 0.211	0.204 0.165		
Simple Simple	0.1 0.1	0.052 0.052	No Yes	1.1 4.5	-1 -1	3			0.266 0.010	-0.050 0.006			0.350 0.206	0.190 0.162		
Simple Simple	0.2	0.102 0.102	No Yes	1.1 4.3	-1 -1	3			0.157 0.010	-0.028 0.011			0.246 0.171	0.181 0.159		
Simple Simple	0.4	0.199 0.199	No Yes	1.1 4.2	-1 -1	3			0.051 0.006	-0.001 0.017			0.126 0.111	0.170 0.146		
Simple Simple	0.8 0.8	0.376 0.376	No Yes	1.1 4.3	-1 -1	3			0.014	0.009			0.062 0.060	0.167 0.143		
Complex Complex	0.0	0.002 0.002	No Yes	3.8 12.1	-1 -1	3	0.2		0.107 -0.073	-0.197 -0.047	0.100 0.033		0.379 0.228	0.297 0.194	0.188 0.149	
Complex Complex	0.1 0.1	0.054 0.054	No Yes	3.7 11.5	-1 -1	3	0.2		0.065 -0.059	-0.160 -0.043	0.092 0.044		0.331 0.210	0.263 0.190	0.182 0.140	
Complex Complex	0.2	0.104 0.104	No Yes	3.8 11.3	-1 -1	3	0.2		-0.033 -0.063	-0.130 -0.041	0.089 0.044		0.272 0.185	0.248 0.179	0.174 0.136	
Complex Complex	0.4 0.4	0.204 0.204	No Yes	3.7 11.3	-1 -1	3	0.2		-0.076 -0.061	-0.097 -0.038	0.077 0.053		0.191 0.155	0.230 0.172	0.170 0.129	
Complex Complex	0.8 0.8	0.384 0.384	No Yes	3.7 12.5	-1 -1	3	0.2		-0.089 -0.057	-0.091 -0.038	0.067 0.048		0.157 0.129	0.221 0.163	0.167 0.125	
RCNL RCNL	0.0	0.001 0.001	No Yes	7.5 21.6	-1 -1	3		0.5 0.5	0.263 0.019	-0.037 -0.009		-0.013 0.002	0.355 0.123	0.204 0.179		0.028 0.019
RCNL RCNL	0.1	0.050 0.050	No Yes	7.6 20.3	-1 -1	3		0.5 0.5	0.203 0.008	-0.017 -0.010		-0.010 0.001	0.309 0.119	0.196 0.170		0.027 0.019
RCNL RCNL	0.2	0.097 0.097	No Yes	7.6 20.5	-1 -1	3		0.5 0.5	0.111	-0.012 -0.013		-0.006 0.001	0.221 0.108	0.198 0.171		0.025 0.018
RCNL RCNL	0.4	0.189 0.189	No Yes	7.8 19.8	-1 -1	3		0.5 0.5	0.041 0.008	-0.012 -0.006		-0.002 0.001	0.130 0.089	0.187 0.171		0.022 0.019
RCNL RCNL	0.8 0.8	0.358 0.358	No Yes	7.8 19.7	-1 -1	3		0.5 0.5	0.009 0.005	0.005 -0.017		-0.000 0.002	0.078 0.063	0.180 0.169		0.021 0.017