

Space X Falcon 9 First Stage Landing Prediction

Assignment: Machine Learning Prediction

Estimated time needed. **o0** minutes

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Several examples of an unsuccessful landing are shown here:

Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

Objectives

Perform exploratory Data Analysis and determine Training Labels

- create a column for the class
- · Standardize the data
- · Split into training data and test data

-Find best Hyperparameter for SVM, Classification Trees and Logistic Regression

· Find the method performs best using test data

Import Libraries and Define Auxiliary Functions

```
import piplite
await piplite.install(['numpy'])
await piplite.install(['pandas'])
await piplite.install(['seaborn'])
```

We will import the following libraries for the lab

```
# Pandas is a software library written for the Python programming language for data manipulation and analysis.

import pandas as pd

# NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays
import numpy as np

# Matplotlib is a plotting library for python and pyplot gives us a Matlab like plotting framework. We will use this in our plotter function to plot data.
import matplotlib.pyplot as plt
##seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics
import seaborn as sns
# Preprocessing allows us to standarsize our data
from sklearn import preprocessing
# Allows us to split our data into training and testing data
from sklearn.model_selection import train_test_split
```

```
# Allows us to test parameters of classification algorithms and find the best one
from sklearn.model_selection import GridSearchCV
! Logistic Regression classification algorithm
from sklearn.linear_model import LogisticRegression
# Support Vector Machine classification algorithm
from sklearn.swn import SVC
# Decision Tree classification algorithm
from sklearn.tree import DecisionTreeClassifier
# K Nearest Neighbors classification algorithm
from sklearn.neighbors import KNeighborsClassifier
```

This function is to plot the confusion matrix.

```
In [3]:
    def plot_confusion_matrix(y,y_predict):
        "this function plots the confusion matrix"
        from sklearn.metrics import confusion_matrix

        cm = confusion_matrix(y, y_predict)
        ax = plt.subplot()
        sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
        ax.set_xlabel('Predicted labels')
        ax.set_ylabel('True labels')
        ax.set_ylabel('True labels')
        ax.set_title('Confusion Matrix');
        ax.axaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_ticklabels(['did not land', 'landed'])
        plt.show()
```

Load the dataframe

Load the data

```
In [4]:
    from js import fetch
    import io

URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_2.csv"
    resp1 = await fetch(URL1)
    text1 = io.BytesIO((await resp1.arrayBuffer()).to_py())
    data = pd.read_csv(text1)
```

data.head()

):	FlightNumb	er Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
	0	1 2010-06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
	1	2 2012-05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
	2	3 2013-03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
	3	4 2013-09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
	4	5 2013-12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

```
In [6]: URL2 = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_3.csv'
    resp2 = await fetch(URL2)
    text2 = io.BytesIO((await resp2.arrayBuffer()).to_py())
    X = pd.read_csv(text2)
```

In [7]: X.head(100)

Out[7]:	FlightNumb	er PayloadMass	Flights	Block	ReusedCount	Orbit_ES-L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	Serial_B1058	Serial_B1059	Serial_B1060	Serial_B1062	GridFins_False	GridFins_True	Reused_False	Reused_True	Legs_False	Legs_True
	0	.0 6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
	1 2	.0 525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
	2	.0 677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
	3	.0 500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
	4	.0 3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
					•••															
	85 86	.0 15400.000000	2.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0
	86 87	.0 15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0
	87 88	.0 15400.000000	6.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0
	88 89	.0 15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0

	FlightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_ES-L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	Serial_B1058	Serial_B1059	Serial_B1060	Serial_B1062	GridFins_False	GridFins_True	Reused_False	Reused_True	Legs_False Le	gs_True
89	90.0	3681.000000	1.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0 .	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	1.0

90 rows × 83 columns

TASK 1

Create a NumPy array from the column Class in data, by applying the method to_numpy() then assign it to the variable Y, make sure the output is a Pandas series (only one bracket df['name of column']).

In [8]: Y=data['Class'].to_numpy()

TASK 2

Standardize the data in X then reassign it to the variable X using the transform provided below.

```
# students get this
from sklearn.preprocessing import StandardScaler
transform = preprocessing.StandardScaler()
X = StandardScaler().fit_transform(X)
```

We split the data into training and testing data using the function train_test_split . The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function GridSearchCV.

TASK 3

Use the function train_test_split to split the data X and Y into training and test data. Set the parameter test_size to 0.2 and random_state to 2. The training data and test data should be assigned to the following labels.

X_train, X_test, Y_train, Y_test

In [10]: X_train,X_test,Y_train,Y_test= train_test_split(X, Y, test_size=0.2, random_state=2)

we can see we only have 18 test samples.

In [11]: Y_test.shape

Out[11]: **(18,)**

TASK 4

Create a logistic regression object then create a GridSearchCV object logreg_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

'solver': ['lbfgs']})

We output the GridSearchCV object for logistic regression. We display the best parameters using the data attribute best_params_ and the accuracy on the validation data using the data attribute best_score_.

```
In [14]: print("tuned hpyerparameters: (best parameters) ",logreg_cv.best_params_) print("accuracy:",logreg_cv.best_score_)

tuned hpyerparameters: (best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'} accuracy: 0.8464285714285713
```

TASK 5

Calculate the accuracy on the test data using the method score :

```
In [15]: logreg_cv.score(X_test,Y_test)

Out [15]: 0.8333333333334

Lets look at the confusion matrix:
```

```
In [16]: yhat=logreg_cv.predict(X_test)
    plot_confusion_matrix(Y_test,yhat)
```


Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

TASK 6

Create a support vector machine object then create a GridSearchCV object svm_cv with cv - 10. Fit the object to find the best parameters from the dictionary parameters .

```
In [19]: print("tuned hyperparameters :(best parameters) ",svm_cv.best_params_)
print("accuracy :",svm_cv.best_score_)

tuned hyperparameters :(best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}
accuracy : 0.8482142857142856
```

TASK 7

Calculate the accuracy on the test data using the method score :

```
In [20]: svm_cv.score(X_test, Y_test)
```

We can plot the confusion matrix

```
In [21]: yhat=svm_cv.predict(X_test)
    plot_confusion_matrix(Y_test,yhat)
```


TASK 8

Create a decision tree classifier object then create a GridSearchCV object tree_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

```
'max_depth': [2*n for n in range(1,10)],
                'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 4],
                 'min_samples_split': [2, 5, 10]}
           tree = DecisionTreeClassifier()
           \label{eq:cv} \texttt{tree\_cv} = \texttt{GridSearchCV}(\texttt{tree}, \; \texttt{parameters}, \; \texttt{cv=10})
           tree_cv.fit(X_train, Y_train)
Out[23]: GridSearchCV(cv=10, estimator=DecisionTreeClassifier(),
                        param_grid={'criterion': ['gini', 'entropy'],
                                     'max_depth': [2, 4, 6, 8, 10, 12, 14, 16, 18],
                                     'max_features': ['auto', 'sqrt'],
                                     'min_samples_leaf': [1, 2, 4],
                                     'min_samples_split': [2, 5, 10],
                                     'splitter': ['best', 'random']})
           print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
           print("accuracy :",tree_cv.best_score_)
```

TASK 9

Calculate the accuracy of tree_cv on the test data using the method score :

```
In [24]: tree_cv.score(X_test, Y_test)
```

We can plot the confusion matrix

TASK 10

Create a k nearest neighbors object then create a GridSearchCV object knn_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

```
parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                        'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
                        'p': [1,2]}
          KNN = KNeighborsClassifier()
In [27]:
          knn_cv = GridSearchCV(KNN, parameters, cv=10)
          knn_cv.fit(X_train, Y_train)
Out[27]: GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
                      param_grid={'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
                                   'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                                  'p': [1, 2]})
In [28]:
          print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
          print("accuracy :",knn_cv.best_score_)
         tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
         accuracy: 0.8482142857142858
```

TASK 11

Calculate the accuracy of knn_cv on the test data using the method score :

```
In [29]: knn_cv.score(X_test, Y_test)
Out[29]: 0.833333333333334
```

We can plot the confusion matrix

In [30]:
 yhat = knn_cv.predict(X_test)
 plot_confusion_matrix(Y_test, yhat)

TASK 12

Find the method performs best:

```
In [36]: predictors = [knn_cv, svm_cv, logreg_cv, tree_cv]
best_predictor = ""
best_result = 0
for predictor in predictors:
    print(predictor.score(X_test, Y_test))

0.8333333333334
0.833333333334
0.8333333333334
0.8333333333334
```

Authors

Pratiksha Verma

Change Log

0.8333333333333333

Date (YYYY-MM-DD)	Version	Changed By	Change Description					
2022-11-09	1.0	Pratiksha Verma	Converted initial version to Junyterlite					

IBM Corporation 2022. All rights reserved.