Segmentarea semantică pentru secvențe stereo

Student: Neculai Andrei

Profesor coordonator : conf. dr. ing. Simona Caraiman

Segmentarea semantică pentru secvențe stereo

- Soluție generică de segmantare semantică
- Bazată pe hărți de adâncime
- Clasificare real-time

Arhitectura aplicației

Două componente

Arhitectura aplicației

- Cinci module
 - Modulul de preprocesare
 - Modulul de fuziune temporală
 - Modulul de extregere a trăsăturilor
 - Modulul de antrenare/clasificare
 - Modulul de postprocesare

Modulul de preprocesare

- Segmentare în superpixeli (2D)
- Calculare nor de puncte (3D)

Segmentarea în superpixeli

Generare nor de puncte

Modulul de fuziune temporală

- Utilizăm componenta temporală a intrării
- Construim un nor de puncte global prin fuziunea informatiilor cadrului curent cu cele acumulate pana in prezent
- Folosim norul de puncte global pentru corectarea erorilor

Modulul de extragere a trăsăturilor

- Trăsături folosite
 - Normala la suprafață
 - Planaritatea locală
 - Planaritatea vecinilor
 - Distanța față de sol
 - Distanta față de planul YOZ
 - Culoarea

Vizualizare trăsături

Distanța față de sol

Modulul de antrenare/clasificare

- Folosim un clasificator Random Forest
- Antrenare
 - Antrenăm o padure de 80 de arbori
- Clasificare
 - Pentru fiecare superpixel rezultă un vector de probabilități de încadrare în fiecare clasă

Modulul de postprocesare

- Algoritm de optimizare Graph Cut
- Minimizarea energiei imaginii calculată ca suma a doi termeni
 - Termen local favorizează clasa rezultată in urma clasificării
 - Termen de netezire favorizează clasele superpixelilor vecini

Rezultate experimentale

- 2 seturi de date
 - KITTI sistem de camere montat pe o masină

 Set virtual – perspectiva unui pieton

Set de date KITTI

Set de date KITTI

Fără postprocesare – Acuratețe 57%

Set de date KITTI

Cu postprocesare – Acuratețe 74%(+17%)

Set de date virtual

Set de date virtual

Fără postprocesare Acuratețe 82%

Set de date virtual

Cu postprocesare Acuratețe 94%(+12%)

Concluzii

- Soluție generică de segmantare semantică
- Bazată pe hărți de adâncime
- Clasificare real-time

- Suficient de generică?
- Soluție generică de segmantare semantică
- Bazată pe hărți de adâncime
- Clasificare real-time

Soluție testată pentru domeniile:

- Conducerea autonomă
- Tehnologii asistive pentru persoane nevăzătoare

- Soluție generică de segmantare semantică
- Bazată pe hărți de adâncime
- Clasificare real-time

Suficient de corectă?

Acuratețe medie:

- Set real 76%
- Set virtual 93%

- Soluție generică de segmantare semantică
- Bazată pe hărți de adâncime
- Clasificare (real-time)

Suficient de rapidă?

Rata de clasificare – ~3 cadre pe secundă

Direcții de dezvoltare

- Imbunătățirea modulului de fuziune temporală
- Incorporarea fuziunii temporale in postprocesare
- Analiza trăsăturilor pentru determinarea gradului de discriminare pentru diverse clase si adăugarea de noi trăsături specifice
- Paralelizarea execuţiei unor module folosind placa grafică

Vă mulţumesc!