МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Методы оптимизации»

Тема: Симплексный метод

Студент гр. 1384	 Усачева Д. В.
Студент гр. 1384	 Бобков В.Д.
Студент гр. 1384	 Пчелинцева К.Р.
Преподаватель	 Балтрашевич В.Э

Санкт-Петербург

Цель работы.

Исследовать симплексный метод решения задачи линейного программирования (ЗЛП).

Основные теоретические положения.

Симплексный метод решения задачи линейного программирования состоит из двух этапов:

- 1) поиск крайней точки допустимого множества,
- 2) поиск оптимальной точки путем направленного перебора крайних точек.

Крайняя точка не существует, если в таблице существует строка все элементы которой неположительны, а последний элемент - отрицательный.

Крайняя точка найдена, если все элементы вектора-столбца В больше нуля. Чтобы найти крайнюю точку, надо:

- 1) выбрать строку i, в которой b[i] < 0;
- 2) выбрать столбец s, в котором a[i,s] >= 0;
- 3) в столбце s задать номер строки r разрешающего элемента так, чтобы отрицательное отношение b[r]/a[r,s] было максимальным .
- 4) поменять местами имена координат в таблице из строки г и столбца s;
- 5) рассматривая элемент a[r,s] как разрешающий, необходимо преобразовать таблицу по формулам : ARS:= a[r,s]; z1[r,s]:= 1/ARS; z1[r,j]:= -z[r,j]/ARS , j>s; z1[i,s]:= z[i,s]/ARS , i>r; z1[i,j]:= (z[i,j]*ARS z[i,s]*z[r,j])/ARS , i>r,j<s; z:=z1, где под z и z1 понимается соответственно первоначальное и преобразованное значение таблицы (кроме левого столбца и верхней строки).

$$a'_{ij} = \frac{a_{ij} a_{rs} - a_{is} a_{rj}}{a_{rs}}, i \neq r, j \neq s; b'_{i} = \frac{b_{i} a_{rs} - b_{r} a_{is}}{a_{rs}}, i \neq r$$

Оптимальная точка найдена , если все элементы вектор-строки C>=0 (при этом все элементы вектор-столбца B>=0).

Оптимальная точка не существует , если в таблице есть столбец j, в котором c[j] < 0 , а все a[i,j] > 0 при любом i .

Чтобы найти оптимальную точку, надо:

- 1) выбрать столбец s , b котором c[s] < 0;
- 2) в столбце s задать номер строки r разрешающего элемента так , чтобы отрицательное отношение b[r]/a[r,s] было максимальным ;
- 3) поменять местами имена координат в таблице из строки r и столбца s;
- 4) рассматривая элемент a[r,s] как разрешающий , необходимо преобразовать таблицу по формулам (см.выше). Координаты оптимальной точки определяются следующим образом :
- 1) если x[j] находится на i-м месте левого столбца , то его значение равно b[i];
- 2) если x[i] находится на j-м месте верхней строки , то его значение равно 0 .

Задание.

Рассматривается следующая задача линейного программирования.

Найти минимум линейной функции f(x1,x2): f = c[1]*x[1] + c[2]*x[2], где c[i] - постоянные коэффициенты, на множестве , заданном набором линейных ограничений : a[1,1]*x[1] + a[1,2]*x[2] >= b[1] ... a[4,1]*x[1] + a[4,2]*x[n] >= b[4] x[i] >= 0 (1-ый квадрант) где a[i,j], b[i] - постоянные коэффициенты . В матричной форме ограничения записываются следующим образом: AX >= B , X >= 0 . Целевая функция может быть представлена в виде скалярного произведения : f = (C, X).

Выполнение работы.

	x 1	x2	-b
y1	2	-1	1
y2	1	-2	5
у3	-1	-1	7
y4	-1	1	3
С	0	-1	0

Графический способ решения

Представим в виде системы уравнений:

$$\begin{cases} y_1 = 2x_1 - x_2 + 1 >= 0 \\ y_2 = x_1 - 2x_2 + 5 >= 0 \\ y_3 = -x_1 - x_2 + 7 >= 0 \\ y_4 = -x_1 + x_2 + 3 >= 0 \\ f(x) = -x_2 \end{cases}$$

Найти minf на множестве $X \ge 0$

Покажем графическое отображение системы.

Для это дополнительно найдём градиент

$$\nabla f(x) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

Ограничения

Найдём минимум функции графически. Если будем двигаться в направлении антиградиента, то с учётом ограничений попадём в точку (3, 4).

Первая программа.

	M	(атрично	е предст
	×1	x2	- B
y1	2	-1	1
y2	1	-2	5
у3	-1	-1	7
y 4	-1	1	3
С	0	-1	0

Изначально таблица выглядит следующим образом

Крайняя точка существует, так как нет строки, в которой все элементы неположительные, а последний отрицательный.

🅉 Диалог		_		×
Диалог				
Подсказка 🗆 Сам	Сдаюсь	He	знаю	0k
Вопрос:				
допустимая крайняя точі найдена (?)	ка			
АТРИБУТ:	край	няя		
ЮЗМОЖНЫЕ 3	НАЧЕН	И۶		
да		-]	

На данный момент находимся в крайней точке, так как все элементы столбца -В положительные.

На данный момент это не оптимальная точка, так как не все элементы строки С положительные, но такая точка существует, так как не все элементы столбца с отрицательным С положительные.

🏄 Диалог		_		×
Диалог				
Подсказка 🗆 Сам	Сдаюсь	He	знаю	0k
Вопрос:				
номер возможного стол	ıбца s			
для разрешающего эле	мента=			
АТРИБУТ:	sź	2		
ЮЗМОЖНЫЕ З	HAYEF	И۶		
2		~		

Нужно выбрать второй столбец, так как С в этом столбце отрицательное.

В качестве разрешающего элемента нужно выбрать элемент a[1][2] = -1, так как при делении на него соответствующего b[1] получается максимальный среди подобных случаев результат.

🐉 Диалог		_		\times
Диалог				
Подсказка 🗆 Сам	Сдаюсь	He	знаю	0k
Вопрос:				
задайте новое значени элемента ×[2,2]	е			
АТРИБУТ:	x22	2		
юзможные з	ВНАЧЕН	И۶		
2		_]	

Для того, чтоб получить значение a[2][2], нужно его поделить на разрешающий элемент без знака минус, так как у них совпадает столбец.

В таблице поменялись местами у1 и х2, и теперь таблица имеет вид:

Теперь следующий шаг. Крайняя точка существует, так как нет строки, в которой все элементы неположительные, а последний отрицательный.

🌠 Диалог		_		\times
Диалог				
Подсказка 🗆 Сам	Сдаюсь	He:	знаю	0k
Вопрос:				
допустимая крайняя точ существует (?)	ка не			
АТРИБУТ:	кр_не_	_суц	4	
ЮЗМОЖНЫЕ З	НАЧЕН	И۶		
нет		_		

На данный момент находимся в крайней точке, так как все элементы столбца -В положительные.

🌃 Диалог		_		×
Диалог				
Подсказка 🗆 Сам	Сдаюсь	He	знаю	0k
Вопрос:				
допустимая крайняя точ найдена (?)	ка			
АТРИБУТ:	край	няя		
юзможные з	НАЧЕН	И۶		
да		_]	

Про оптимальность точки вводимые результаты совпадают с результатами прошлого шага по тем же причинам. Перейдем к выбору разрешающего столбца.

Следует выбрать 1 столбец, так как c[1] < 0.

В качестве разрешающего элемента следует выбрать элемент a[2][1], так как при делении b[2] на данный элемент получается максимальный отрицательный элемент среди других.

Новое значение а[2][2] будет равным частному а[2][2] и а[1][2] со знаком минус, так как эти элементы находятся на одной строке.

Теперь данная таблица имеет следующий вид:

Теперь нужно возвращаться к предыдущим шагам: крайняя точка существует, мы находимся все так же в крайней точке.

Оптимальная точка существует, но мы сейчас в ней не находимся.

В качестве разрешающего столбца нужно взять второй столбец, так как c[2] <0.

В качестве номера строки разрешающего столбца берем 3 строку по причинам, описанным ранее.

🌃 Диалог		_		×
Диалог				
Подсказка 🗆 Сам	Сдаюсь	He	знаю	Ok
Вопрос:				
номер строки г для разрешающего элемент	a=			
АТРИБУТ:	r			
ЮЗМОЖНЫЕ 3	ВНАЧЕН	И۶		
3		-		

В качестве нового значения а[2][2] нужно взять частное а[2][2] и а[3][2] со знаком плюс, так как у них совпадают столбцы., теперь таблица имеет вид:

Как можно заметить, все элементы -В и С положительные, значит данная точка является крайней и оптимальной. В строке х1 в столбце -В значение 3, х2 — 4. Что совпадает с построенным графиком.

Вторая программа

Занесём начальные параметры

Крайняя точка существует, т.к. отсутствует строка, в которой последний элемент отрицательный, а остальные - неположительные. Уже находимся в крайней точке, т.к. все элементы столбца В положительны.

Рассмотрим ситуацию оптимальной точки. Мы не находимся в точки оптимума, потому что строка С имеет отрицательный элемент. Но такая точка существует, ведь в столбце с отрицательным С существуют отрицательные элементы матрица. Найдём оптимальную точку:

Выбираем второй столбец (c < 0). Выбираем разрешающий элемент выбранного столбца так, чтобы при делении на него соответствующей в отрицательное частное было максимальным. Тогда разрешающим элементом будет элемент (1, 2).

Меняем название координат.

	x1	<mark>y1</mark>	-b
x2	2	-1	1
y2	1	-2	5
у3	-1	-1	7
y4	-1	1	3
C	0	-1	0

Пересчитаем таблицу по формулам из теоретического положения. Новым значение $a_{22}\,$ является 2.

Повторяем алгоритм. Крайняя точка существует и найдена. Оптимальная точка существует, но не найдена. Разрешающим элементом выбираем .

Меняем местами название координат

	y2	y1	-b
x2	2	-1	1
<mark>x1</mark>	-3	2	3
у3	-3	1	6
y4	1	-1	4
C	0	1	-1

```
[||]=
                  3 =
        y2
                y1 | b[i]
χZ
       -0.67
                0.331
                         3.00
x1
       -0.33
                0.671
                         1.00
y3
        1.00
               -1.001
                         3.00
y4
       -0.33
               -0.331
                         5.00
c[j]|
        0.67
               -0.331
                        -3.00
```


Меняем местами название координат

	y2	<mark>y1</mark>	-b
x2	-0.67	-0.331	3
x 1	-0.33	0.671	1
<mark>y3</mark>	1	-1	3
y4	-0.33	331	5
C	0.67	-0.331	-3

По полученным данным делаем вывод, что крайняя точка существует и достигнута. Оптимальная точка точно также существует и достигнута.

Координаты оптимальной точки определяются следующим образом:

- 1) если x[j] находится на i-м месте левого столбца , то его значение равно b[i];
- 2) если x[i] находится на j-м месте верхней строки , то его значение равно 0.

Ответ: (3, 4)

Выводы.

В результате выполнения лабораторной работы был изучен симплексный метод решения задачи линейного программирования.