Final Project Submission

Please fill out:

- Student name:
- · Student pace: self paced / part time / full time
- Scheduled project review date/time:
- Instructor name:
- Blog post URL:

Background:

The real estate agency aims to provide accurate property valuations to homeowners looking to sell their homes and to buyers interested in purchasing properties. Property valuation is a critical aspect of real estate transactions as it directly impacts pricing decisions, marketing strategies, and negotiation outcomes.

Business Problem Statement:

The real estate agency faces challenges in accurately valuing properties, which can lead to overpricing or underpricing homes, affecting client satisfaction, time on market, and overall business performance

OBJECTIVES:

- 1.Determine the key factors such as square foot living, the number of bedrooms and bathrooms, the condition of the house and others that significantly influence the house prices.
- 2.Develop a model that can accurately predict house prices based on these factors.
- 3.To determine which seasons have the highest sales.
- 4.To provide valuable insights for real estate agents, property developers, and investors in the company's portfolio to make informed decisions regarding pricing, renovations, and marketing strategies

Hypothesis Testing

1. How do structural characteristics, location and others such as view and grading all work together to affect a house's market price, and how may these interactions be best modeled to produce highly accurate housing price predictions?

Ho: There is no statistically significant interaction effect between sqft_living and grading on the price of a house

H1: There is a statistically significant interaction effect between sqft_living and grading on the price of a house.

Data Understanding

```
In [1]:
```

```
#importing libraries
import pandas as pd
import csv
import json
import numpy as np
import matplotlib.pyplot as plt
```

```
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')  # To ignore all warnings in your script
from pandas.plotting import scatter_matrix
# 3D plotting
from mpl_toolkits.mplot3d import Axes3D
from scipy import stats
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
```

In [2]:

```
#lets load the data
m = r"C:\Users\Victor Keya\Documents\Flatiron\Phase2_project\dsc-phase-2-project-v2-3\dat
a\kc_house_data.csv"
df = pd.read_csv(m)
df
```

Out[2]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	•••	grade :
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN	NONE		7 Average
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE		7 Average
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE		6 Low Average
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE		7 Average
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE		8 Good
	•••	•••			•••		•••		•••			
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	NO	NONE		8 Good
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	NO	NONE		8 Good
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	NO	NONE		7 Average
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	NaN	NONE		8 Good
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	NO	NONE		7 Average

21597 rows × 21 columns

<u>| |</u>

Column Names and Descriptions for King County Data Set

- id Unique identifier for a house
- date Date house was sold
- price Sale price (prediction target)
- bedrooms Number of bedrooms
- bathrooms Number of bathrooms
- sqft living Square footage of living space in the home
- sqft lot Square footage of the lot
- floors Number of floors (levels) in house
- waterfront Whether the house is on a waterfront
 - Includes Duwamish, Elliott Bay, Puget Sound, Lake Union, Ship Canal, Lake Washington, Lake Sammamish, other lake, and river/slough waterfronts
- view Quality of view from house

- Includes views of Mt. Rainier, Olympics, Cascades, Territorial, Seattle Skyline, Puget Sound, Lake Washington, Lake Sammamish, small lake / river / creek, and other
- condition How good the overall condition of the house is. Related to maintenance of house.
 - See the King County Assessor Website for further explanation of each condition code
- grade Overall grade of the house. Related to the construction and design of the house.
 - See the <u>King County Assessor Website</u> for further explanation of each building grade code
- sqft above Square footage of house apart from basement
- sqft basement Square footage of the basement
- yr built Year when house was built
- yr renovated Year when house was renovated
- zipcode ZIP Code used by the United States Postal Service
- lat Latitude coordinate
- long Longitude coordinate
- sqft living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft lot15 The square footage of the land lots of the nearest 15 neighbors

Limitations

Data Timeliness: The dataset may not reflect the current market conditions or housing trends due to its age. Real estate markets can exhibit temporal dynamics that require up-to-date data for accurate predictions.

Local Market Dynamics: The dataset's focus on King County may limit the model's generalizability to other regions or markets with different characteristics.

Interpretability of Results: Some advanced modeling techniques (e.g., polynomial regression) may produce complex results that are difficult to interpret or explain to stakeholders

In [3]:

df.head()

Out[3]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_i
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN	NONE	 7 Average	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	 7 Average	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	 6 Low Average	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	 7 Average	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE	 8 Good	

5 rows × 21 columns

<u>|</u>

In [4]:

df.tail()

Out[4]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	!
215	92 263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	NO	NONE	 8 Good	
215	93 6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	NO	NONE	 8 Good	

```
price bedrooms bathrooms sqft_living sqft_lot floors waterfront
                                                                        2.0
       <del>1523300141</del>
                  6/23/2014
                          402101.0
                                                 0.75
                                                          1020
                                                                 <del>1350</del>
                                                                                 NO NONE
                                                                                              Average
                                                                                 NaN NONE ...
                 1/16/2015 400000.0
                                                                 2388
21595
       291310100
                                         3
                                                 2.50
                                                          1600
                                                                        2.0
                                                                                               8 Good
                                                                                                    7
21596 1523300157 10/15/2014 325000.0
                                                 0.75
                                                          1020
                                                                 1076
                                                                                      NONE
5 rows × 21 columns
In [5]:
df.sample()
Out[5]:
                           price bedrooms bathrooms sqft_living sqft_lot floors waterfront
             id
                   date
                                                                                    view
                                                                                            grade sqft_a
                                                                                               9
                                                                               NO NONE ...
9432 7215730580 9/2/2014 680000.0
                                               3.0
                                                       3150
                                                              6175
                                                                     2.0
                                                                                            Better
1 rows x 21 columns
In [6]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
     Column
                      Non-Null Count
                                         Dtype
 0
     id
                      21597 non-null
                                         int64
 1
     date
                      21597 non-null
                                         object
 2
     price
                      21597 non-null
                                        float64
 3
     bedrooms
                      21597 non-null
                                        int64
                                       float64
 4
     bathrooms
                      21597 non-null
 5
                                        int64
                      21597 non-null
     sqft living
 6
                      21597 non-null int64
     sqft lot
 7
     floors
                      21597 non-null
                                       float64
 8
     waterfront
                      19221 non-null object
 9
     view
                      21534 non-null object
 10
    condition
                      21597 non-null
                                        object
 11
     grade
                      21597 non-null
                                         object
                      21597 non-null
                                         int64
     sqft above
 12
     sqft_basement 21597 non-null
 13
                                         object
                      21597 non-null
                                         int64
 14
     yr built
     yr renovated
                      17755 non-null
 15
                                         float64
 16
     zipcode
                      21597 non-null
                                         int64
 17
     lat
                      21597 non-null
                                        float64
 18
     long
                      21597 non-null
                                        float64
 19
     sqft living15 21597 non-null
                      21597 non-null
     sqft lot15
dtypes: float64(6), int64(9), object(6)
memory usage: 3.5+ MB
Our dataset has 21597 rows and 21 columns. There are null values on the waterfront, yr_renovated columns.
```

view

id

date

Data types in the data set include floats, integers and objects

```
In [7]:
df.describe()
Out[7]:
                 id
                             price
                                      bedrooms
                                                   bathrooms
                                                                 sqft_living
                                                                                  sqft_lot
                                                                                                 floors
                                                                                                          sqft_above
```

count mean	2.139/00 0+ 04 id 4.580474e+09	2.139700e+04 price 5.402966e+05	21397.000000 bedrooms 3.373200	21397.000000 bathrooms 2.115826	21397.000000 sqft_living 2080.321850	2.139700e+04 sqft_lot 1.509941e+04	21397.000000 floors 1.494096	21597.000000 sqft_above 1788.596842	21;
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	0.539683	827.759761	
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.000000	370.000000	15
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	1.000000	1190.000000	19
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	1560.000000	19
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	2.000000	2210.000000	19
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	9410.000000	20
4					1				Þ

This gives a summary of the distribution of the numeric data. From the count, we can see which columns have numeric data. Outliers can also be detected using the maximum and minimum values.

DATA CLEANING

In [8]:

```
#lets make a copy of the dataset first
df1 = df.copy()
df1
```

Out[8]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN	NONE	 7 Average
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	 7 Average
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	 6 Low Average
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	 7 Average
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE	 8 Good
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	NO	NONE	 8 Good
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	NO	NONE	 8 Good
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	NO	NONE	 7 Average
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	NaN	NONE	 8 Good
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	NO	NONE	 7 Average

21597 rows × 21 columns

The id columns seems not to be important, drop. Capitalise the column headings. Change the date format to dd/mm/yy. Put comas on the prices. Look at the data types, make sure they are correct.

i) Handling Missing Values

In [9]:

#handling missing values.

```
df1.isnull().sum()
Out[9]:
id
                                                            0
date
                                                            0
                                                            0
price
                                                            0
bedrooms
bathrooms
                                                            0
                                                            0
sqft living
sqft lot
                                                            0
                                                            0
floors
                                                   2376
waterfront
view
                                                         63
condition
                                                           0
                                                            0
grade
sqft above
                                                            0
sqft basement
                                                            0
yr built
                                                            0
yr renovated
                                                   3842
zipcode
                                                            0
                                                            0
lat
long
                                                            0
                                                            0
sqft living15
                                                            0
sqft lot15
dtype: int64
In [10]:
 df1.isnull().mean()
Out[10]:
id
                                                   0.000000
                                                   0.000000
date
                                                   0.000000
price
                                                   0.000000
bedrooms
bathrooms
                                                   0.000000
sqft living
                                                   0.000000
sqft lot
                                                   0.000000
floors
                                                   0.000000
waterfront
                                                   0.110015
                                                   0.002917
view
condition
                                                   0.000000
                                                   0.000000
grade
                                                   0.000000
sqft above
sqft basement
                                                   0.000000
yr built
                                                   0.000000
yr renovated
                                                   0.177895
                                                   0.000000
zipcode
lat
                                                   0.000000
long
                                                   0.000000
                                                   0.000000
sqft living15
                                                   0.000000
sqft lot15
dtype: float64
In [11]:
 df1['sqft basement'].unique()
Out[11]:
array(['0.0', '400.0', '910.0', '1530.0', '?', '730.0', '1700.0', '300.0', '970.0', '760.0', '720.0', '700.0', '820.0', '780.0', '790.0', '330.0', '1620.0', '360.0', '588.0', '1510.0', '410.0', '990.0', '600.0', '560.0', '550.0', '1000.0', '1600.0', '500.0', '1040.0', '880.0', '1010.0', '240.0', '265.0', '290.0', '800.0', '540.0', '710.0', '840.0', '380.0', '770.0', '480.0', '570.0', '1490.0', '600.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '100.0', '1
                     '620.0', '1250.0', '1270.0', '120.0', '650.0', '180.0', '1130.0',
                     '450.0', '1640.0', '1460.0', '1020.0', '1030.0', '750.0', '640.0',
                     '1070.0', '490.0', '1310.0', '630.0', '2000.0', '390.0', '430.0',
                      '850.0', '210.0', '1430.0', '1950.0', '440.0', '220.0', '1160.0',
```

#Lets first identify if we have null values

```
'860.0', '580.0', '2060.0', '1820.0', '1180.0', '200.0', '1150.0',
  '1200.0', '680.0', '530.0', '1450.0', '1170.0', '1080.0', '960.0',
  '280.0', '870.0', '1100.0', '460.0', '1400.0', '660.0', '1220.0',
 '900.0', '420.0', '1580.0', '1380.0', '475.0', '690.0', '270.0',
 '350.0', '935.0', '1370.0', '980.0', '1470.0', '160.0', '950.0', '50.0', '740.0', '1780.0', '1900.0', '340.0', '470.0', '370.0',
 '140.0', '1760.0', '130.0', '1900.0', '340.0', '470.0', '370.0', '140.0', '1760.0', '130.0', '520.0', '890.0', '1110.0', '150.0', '1720.0', '810.0', '190.0', '1290.0', '670.0', '1800.0', '1120.0', '1810.0', '60.0', '1050.0', '940.0', '310.0', '930.0', '1390.0', '610.0', '1830.0', '1300.0', '510.0', '1330.0', '1590.0', '920.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0', '1320.0
 '1320.0', '1420.0', '1240.0', '1960.0', '1560.0', '2020.0',
 '1190.0', '2110.0', '1280.0', '250.0', '2390.0', '1230.0', '170.0', '830.0', '1260.0', '1410.0', '1340.0', '590.0', '1500.0', '1140.0', '260.0', '100.0', '320.0', '1480.0', '1060.0', '1284.0', '1670.0',
 '1350.0', '2570.0', '1090.0', '110.0', '2500.0', '90.0', '1940.0',
 '1550.0', '2350.0', '2490.0', '1481.0', '1360.0', '1135.0',
 '1520.0', '1850.0', '1660.0', '2130.0', '2600.0', '1690.0',
 '243.0', '1210.0', '1024.0', '1798.0', '1610.0', '1440.0',
 '1570.0', '1650.0', '704.0', '1910.0', '1630.0', '2360.0',
 '1852.0', '2090.0', '2400.0', '1790.0', '2150.0', '230.0', '70.0',
'1680.0', '2100.0', '3000.0', '1870.0', '1710.0', '2030.0', '875.0', '1540.0', '2850.0', '2170.0', '506.0', '906.0', '145.0', '2040.0', '784.0', '1750.0', '374.0', '518.0', '2720.0', '2730.0', '1840.0', '3480.0', '2160.0', '1920.0', '2330.0', '1860.0', '2050.0', '4820.0', '1913.0', '80.0', '2010.0', '3260.0', '2200.0', '415.0', '1730.0', '652.0', '2196.0', '1930.0', '515.0', '40.0', '2080.0', '2580.0', '1548.0', '1740.0', '235.0', '861.0', '1890.0', '2220.0', '792.0', '2070.0', '4130.0', '2250.0', '2240.0', '1990.0', '768.0', '2550.0', '435.0', '1008.0', '2300.0', '2610.0', '666.0', '3500.0', '172.0', '1816.0', '2190.0', '1245.0', '1525.0', '1880.0', '862.0', '946.0', '1281.0', '414.0', '2180.0', '276.0', '1248.0', '602.0', '516.0', '176.0', '225.0', '1275.0', '266.0', '283.0', '65.0', '2310.0', '10.0', '1770.0', '2120.0', '295.0', '207.0', '915.0', '556.0', '417.0', '143.0', '508.0', '2810.0', '200.0', '274.0', '248.0'], dtype=object)
 '1680.0', '2100.0', '3000.0', '1870.0', '1710.0', '2030.0',
 '20.0', '274.0', '248.0'], dtype=object)
```

In [12]:

```
#we have noticed that our data set has a ? on the column sqft_basement.lets convert into
a null value
df1.replace('?', pd.NA, inplace=True)
```

The null values appear on the waterfront, view and yr_renovated columns. The percentages are small with the highest percentage being 17%. The percentage in View was small, hence dropped. The column waterfront missing values was replaced with NONE. The column yr_renovated missing values was replaced with mode (0)

In [13]:

```
#Drop missing values in the column View
df1 = df1.dropna(subset=['view', 'sqft_basement'],axis=0)
df1
```

Out[13]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade :
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN	NONE	 7 Average
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	 7 Average
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	 6 Low Average
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	 7 Average
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE	 8 Good

21592	263000018	5/21/2014	3600000	bedroom3	bathro	sqft_liVing	sqft <u>l</u> fðt	floors	waterfrom	NUME	===	8 Grand	•
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	NO	NONE		8 Good	-
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	NO	NONE		7 Average	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	NaN	NONE		8 Good	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	NO	NONE		7 Average	

21082 rows × 21 columns

<u>(</u>

In [14]:

df1.isnull().sum()

Out[14]:

0 id 0 date 0 price bedrooms 0 bathrooms sqft_living 0 sqft lot 0 floors 0 2333 waterfront 0 view condition 0 grade 0 sqft_above 0 sqft_basement 0 0 yr built 3742 yr renovated zipcode 0 0 lat long 0 sqft living15 0 sqft lot15 0 dtype: int64

In [15]:

Replacing null values with NONE
df1['waterfront'].fillna('NONE', inplace=True)
df1.head()

Out[15]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_i
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NONE	NONE	 7 Average	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	 7 Average	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	 6 Low Average	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	 7 Average	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE	 8 Good	

5 rows × 21 columns

```
mode year = df1['yr renovated'].mode()[0]
In [18]:
#Replace the null values in yr renovated column with the most repeated year
df1.fillna(mode year,inplace=True)
df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21082 entries, 0 to 21596
Data columns (total 21 columns):
    Column
                   Non-Null Count Dtype
 #
                   -----
0
    id
                   21082 non-null int64
1
    date
                   21082 non-null object
2
                   21082 non-null float64
    price
                   21082 non-null int64
3
    bedrooms
 4
   bathrooms
                   21082 non-null float64
 5
    sqft living
                   21082 non-null int64
    sqft lot
                   21082 non-null int64
 6
                   21082 non-null float64
7
    floors
                   21082 non-null object
 8
    waterfront
                   21082 non-null object
 9
    view
                   21082 non-null object
10 condition
                   21082 non-null object 21082 non-null int64
11
    grade
12
    sqft above
13 sqft_basement 21082 non-null object
                   21082 non-null int64
14 yr built
15 yr_renovated
                   21082 non-null float64
                   21082 non-null int64
16 zipcode
17
                   21082 non-null float64
    lat
18
    long
                   21082 non-null float64
19
    sqft living15 21082 non-null int64
20 sqft lot15
                   21082 non-null int64
dtypes: float64(6), int64(9), object(6)
memory usage: 3.5+ MB
```

Our Dataset has 21 columns, 21534 rows and no missing values.

In [19]:

DROPPING IRRELEVANT VALUES

In [I0]:

Out[16]:

In [17]:

df1.shape

(21082, 21)

```
#dropping the ID column as it seems to be irrelevant
df1 = df1.drop(columns=['id'])
df1.head()
```

Out[19]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above
0	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NONE	NONE	Average	7 Average	1180
1	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Average	7 Average	2170
2	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	Average	6 Low Average	770
3	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	Very Good	7 Average	1050

```
4 2/18/2915 510900:9 bedroom3 bathroவி9 sqft_living sqft@வ flodis waterfrom NQME condition 8 இவர் sqft_at/600
```

DUPLICATED VALUES

```
In [20]:
```

```
df1.duplicated().any
Out[20]:
<bound method Series.any of 0</pre>
                                        False
         False
2
         False
3
         False
4
         False
          . . .
21592
        False
21593
         False
21594
         False
21595
         False
21596
         False
Length: 21082, dtype: bool>
```

We dont have any duplicated values

```
In [21]:
```

```
df1.shape
Out[21]:
(21082, 20)
```

CHANGING THE DATA TYPES

```
In [22]:
```

```
#The floors and yr_renovated data types need to be changed.
df1['floors'] = df1['floors'].astype(int)
#df['sqft_basement'] = df['sqft_basement'].astype(int)
df1['yr_renovated'] = df1['yr_renovated'].astype(int)
df1['sqft_basement'] = df1['sqft_basement'].astype(float)
```

In [23]:

```
dfl.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21082 entries, 0 to 21596
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	date	21082 non-null	object
1	price	21082 non-null	float64
2	bedrooms	21082 non-null	int64
3	bathrooms	21082 non-null	float64
4	sqft_living	21082 non-null	int64
5	sqft lot	21082 non-null	int64
6	floors	21082 non-null	int32
7	waterfront	21082 non-null	object
8	view	21082 non-null	object
9	condition	21082 non-null	object
10	grade	21082 non-null	object
11	sqft_above	21082 non-null	int64
12	sqft_basement	21082 non-null	float64
13	yr built	21082 non-null	int64
14	<pre>yr_renovated</pre>	21082 non-null	int32
15	zipcode	21082 non-null	int64
16	1 ~+	21002 202-2111	£1~~+61

```
ıαι
                    TTOOT HOH-HAT
 TΩ
                                    IIUal04
 17
                    21082 non-null
    long
                                    float64
 18
     sqft living15 21082 non-null
 19
     sqft lot15
                    21082 non-null
                                   int64
dtypes: float64(5), int32(2), int64(8), object(5)
memory usage: 3.2+ MB
```

OUTLIERS

In [24]:

```
numeric_columns = df1.select_dtypes(include=['float64', 'int64', 'int32'])

# Plot box plots for each numeric column
num_cols = len(numeric_columns.columns)
cols_per_row = 3
num_rows = (num_cols - 1) // cols_per_row + 1

plt.figure(figsize=(15, 5 * num_rows))
for i, col in enumerate(numeric_columns.columns):
    plt.subplot(num_rows, cols_per_row, i+1)
    plt.boxplot(numeric_columns[col])
    plt.title(col)
plt.tight_layout()
plt.show()
```


We have noted that we do not have outliers in the floors, yr_built, zipcode and latitude

SKEWNESS AND KURTOSIS

```
In [25]:
```

dfl.price.skew()

Out[25]:

3.9864235583473797

In [26]:

sns.distplot(df1['price'])

Out[26]:

<AxesSubplot:xlabel='price', ylabel='Density'>

A skewness of 4 indicates that the distibution of data in the price column is positively skewed. In regression

analysis, highly skewed target variables can violate assumptions of normality and homoscedasticity hence the need to remove outliers

```
In [27]:
```

```
import pandas as pd
from scipy import stats

for column in df1.columns:
    if df1[column].dtype in ['int64', 'float64'] and column not in ['lat', "id", "yr_ren
    ovated", "zipcode", 'long']:
        # Calculate skewness including NaN values
        column_skew = stats.skew(df1[column].dropna())
        column_kurtosis = stats.kurtosis(df1[column].dropna())

        print(f"{column}: Skewness = {column_skew}, Kurtosis = {column_kurtosis}")
```

```
price: Skewness = 3.9861399157364543, Kurtosis = 34.06048946333713
bedrooms: Skewness = 2.0676579682064817, Kurtosis = 51.30311750509116
bathrooms: Skewness = 0.5159339157923863, Kurtosis = 1.2700320775132043
sqft_living: Skewness = 1.4751290520336788, Kurtosis = 5.285155141668961
sqft_lot: Skewness = 13.109625412685952, Kurtosis = 289.6613994250277
sqft_above: Skewness = 1.4545738313845544, Kurtosis = 3.4493589341150575
sqft_basement: Skewness = 1.5736432185240308, Kurtosis = 2.6985933943644964
yr_built: Skewness = -0.4707948263068775, Kurtosis = -0.6502440458482863
sqft_living15: Skewness = 1.1098692917019588, Kurtosis = 1.604595686027447
sqft_lot15: Skewness = 9.592239187088412, Kurtosis = 154.46697770724586
```

If the kurtosis value is greater than 3 (positive kurtosis): The distribution has heavier tails and a sharper peak compared to a normal distribution. This suggests the presence of more outliers or extreme values in the dataset.

If the kurtosis value is less than 3 (negative kurtosis): The distribution has lighter tails and is flatter compared to a normal distribution. This suggests fewer outliers and a more dispersed distribution of data.

Kurtosis values closer to 3 indicate a distribution similar to the normal distribution in terms of tail behavior.

REMOVING OUTLIERS

Instead of dropping them, we consider replacing them with upper limit and lower limit values using z score method

Z SCORE METHOD

In [28]:

```
# Columns to check for outliers
columns_to_check = ['bathrooms', 'bedrooms', 'sqft_living', 'sqft_above', 'price', 'sqft
_lot', 'sqft_above', 'long', 'sqft_living15', 'sqft_lot15']

# Calculate z-scores for selected columns
z_scores = np.abs((df1[columns_to_check] - df1[columns_to_check].mean()) / df1[columns_to_check].std())

# Define threshold for outlier detection (e.g., z-score > 3)
threshold = 3

# Identify rows with outliers based on z-scores
outlier_mask = (z_scores > threshold).any(axis=1)

# Filter out rows containing outliers
data_filtered = df1[~outlier_mask]

# Display summary (optional)
print(f"Original DataFrame shape: {df1.shape}")
print(f"Filtered DataFrame shape (after removing outliers): {data_filtered.shape}")
```

```
# Optionally, you can assign the filtered DataFrame back to 'data' if needed
data = data_filtered
Original DataFrame shape: (21082, 20)
Filtered DataFrame shape (after removing outliers): (19685, 20)
In [29]:
#lets check if the data still has outliers.
numeric columns = data.select dtypes(include=['float64', 'int64', 'int32'])
# Plot box plots for each numeric column
num cols = len(numeric columns.columns)
cols per row = 3
num rows = (num cols - 1) // cols per row + 1
plt.figure(figsize=(15, 5 * num rows))
for i, col in enumerate(numeric_columns.columns):
    plt.subplot(num_rows, cols_per_row, i+1)
    plt.boxplot(numeric_columns[col])
    plt.title(col)
plt.tight_layout()
plt.show()
                 price
                                                  bedrooms
                                                                                   bathrooms
                                                    0
  1.6
                                                                      4.0
  1.4
                                                                      3.5
  1.2
                                                                      3.0
  1.0
  0.8
  0.6
                                                                      1.5
                                                                      1.0
  0.2
                                                                      0.5
  0.0
                                                                                      i
                sqft_living
                                                   sqft_lot
                                                                                     floors
 5000
                                  140000
                                                                     3.00
                                  120000
                                                                     2.75
 4000
                                  100000
```


FEATURE ENGINEERING

In [30]:

```
#Lets capitalise the column titles.
data.columns = [col.capitalize() for col in data.columns]
data.columns
```

Out[30]:

In [31]:

```
data.head()
```

Out[31]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	Grade	Sqft_abo
0	10/13/2014	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average	7 Average	118
1	12/9/2014	538000.0	3	2.25	2570	7242	2	NO	NONE	Average	7 Average	21
2	2/25/2015	180000.0	2	1.00	770	10000	1	NO	NONE	Average	6 Low Average	7
3	12/9/2014	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good	7 Average	10
4	2/18/2015	510000.0	3	2.00	1680	8080	1	NO	NONE	Average	8 Good	16
4												Þ

Mahaabiaa Gan laadiaa o kasiliaa shikaanaan and mamaisa kham in suu dakaaka

In [32]:

```
#Checking for leading & craffing whitespaces and removing them in our datasets
[col.strip() for col in data.columns]
Out[32]:
['Date',
 'Price',
 'Bedrooms',
 'Bathrooms',
 'Sqft living',
 'Sqft lot',
 'Floors',
 'Waterfront',
 'View',
 'Condition',
 'Grade',
 'Sqft above',
 'Sqft_basement',
 'Yr built',
 'Yr renovated',
 'Zipcode',
 'Lat',
 'Long',
 'Sqft living15',
 'Sqft lot15']
In [33]:
```

```
# Lets make sure the date column is in dd/mm/yy format
data['Date'] = pd.to_datetime(data['Date'])

# Format the date column to dd/mm/yy format
data['Date'] = data['Date'].dt.strftime('%d/%m/%y')
data.head()
```

Out[33]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	Grade	Sqft_above
0	13/10/14	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average	7 Average	1180
1	09/12/14	538000.0	3	2.25	2570	7242	2	NO	NONE	Average	7 Average	2170
2	25/02/15	180000.0	2	1.00	770	10000	1	NO	NONE	Average	6 Low Average	770
3	09/12/14	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good	7 Average	1050
4	18/02/15	510000.0	3	2.00	1680	8080	1	NO	NONE	Average	8 Good	1680
4							1					Þ

Now the date column is in date/month/year format.

Using the Date Column to come up with a new column called seasons

In [34]:

```
# Convert 'Date' column to datetime format
data['Date'] = pd.to_datetime(data['Date'])

# Extract month to determine the season
data['Month'] = data['Date'].dt.month

# Define a function to map month to season
def get_season(month):
    if month in [12, 1, 2]: # Winter: December, January, February
        return 'Winter'
    elif month in [3, 4, 5]: # Spring: March, April, May
```

```
return 'Spring'
elif month in [6, 7, 8]: # Summer: June, July, August
    return 'Summer'
else: # Fall: September, October, November
    return 'Fall'

# Apply the function to create the 'seasons' column
data['Seasons'] = data['Month'].apply(get_season)

# Drop the 'Month' column if not needed
data.drop('Month', axis=1, inplace=True)
```

In [35]:

data.head()

Out[35]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	 Sqft_above	Sqft_bas
0	2014- 10-13	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average	 1180	
1	2014- 09-12	538000.0	3	2.25	2570	7242	2	NO	NONE	Average	 2170	
2	2015- 02-25	180000.0	2	1.00	770	10000	1	NO	NONE	Average	 770	
3	2014- 09-12	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good	 1050	
4	2015- 02-18	510000.0	3	2.00	1680	8080	1	NO	NONE	Average	 1680	

5 rows × 21 columns

1

In [36]:

#LETS SPLIT THE COLUMN GRADE INTO TWO, COLUMN GRADING
data['Grading'] = data["Grade"].str.split().apply(lambda x: x[0])
data

Out[36]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	•••	Sqft_basement
0	2014- 10-13	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average		0.0
1	2014- 09-12	538000.0	3	2.25	2570	7242	2	NO	NONE	Average		400.0
2	2015- 02-25	180000.0	2	1.00	770	10000	1	NO	NONE	Average		0.0
3	2014- 09-12	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good		910.0
4	2015- 02-18	510000.0	3	2.00	1680	8080	1	NO	NONE	Average		0.0
21592	2014- 05-21	360000.0	3	2.50	1530	1131	3	NO	NONE	Average		0.0
21593	2015- 02-23	400000.0	4	2.50	2310	5813	2	NO	NONE	Average		0.0
21594	2014- 06-23	402101.0	2	0.75	1020	1350	2	NO	NONE	Average		0.0
21595	2015- 01-16	400000.0	3	2.50	1600	2388	2	NONE	NONE	Average		0.0
	2014-		_				_			_		

```
325000.0 2 0.75 1020 1076 2 NO NONE Average ... 0.0 Price Bedrooms Bathrooms Sqft_living Sqft_lot Floors Waterfront View Condition ... Sqft_basement
21596
         10at6
```

19685 rows × 22 columns

In [37]:

```
#lets change the data type of grading into an int
data['Grading'] = data['Grading'].astype(int)
data.info()
<class 'pandas.core.frame.DataFrame'>
```

```
Int64Index: 19685 entries, 0 to 21596
Data columns (total 22 columns):
```

#	Column	Non-Null Count	Dtype
0	Date	19685 non-null	datetime64[ns]
1	Price	19685 non-null	float64
2	Bedrooms	19685 non-null	int64
3	Bathrooms	19685 non-null	float64
4	Sqft_living	19685 non-null	int64
5	Sqft_lot	19685 non-null	int64
6	Floors	19685 non-null	int32
7	Waterfront	19685 non-null	object
8	View	19685 non-null	object
9	Condition	19685 non-null	object
10	Grade	19685 non-null	object
11	Sqft_above	19685 non-null	int64
12	Sqft_basement	19685 non-null	float64
13	Yr_built	19685 non-null	int64
14	Yr_renovated	19685 non-null	int32
15	Zipcode	19685 non-null	int64
16	Lat	19685 non-null	float64
17	Long	19685 non-null	float64
18	Sqft_living15	19685 non-null	int64
19	Sqft_lot15	19685 non-null	int64
20	Seasons	19685 non-null	object
21	Grading	19685 non-null	int32
dtyp	es: datetime64[ns](1), float64	(5), int32(3), int64(8), object(5)
momo:	rv 11sage 3 2+ 1	MR	

memory usage: 3.2+ MB

Average

ONE HOT ENCODING

In [38]:

```
#Setting up our feature and target variable
x = data.iloc[:, 2:] # Selecting features (all columns except the first)
y = data.iloc[:, 1] # Selecting the target variable (first column)
print(x)
print(y)
```

١

(У)							
Bedrooms	Bathrooms So	qft living	Sqft lot	Floors	Waterfront	View	,
3	1.00	1180	5650	1	NONE	NONE	
3	2.25	2570	7242	2	NO	NONE	
2	1.00	770	10000	1	NO	NONE	
4	3.00	1960	5000	1	NO	NONE	
3	2.00	1680	8080	1	NO	NONE	
	• • •						
3	2.50	1530	1131	3	NO	NONE	
4	2.50	2310	5813	2	NO	NONE	
2	0.75	1020	1350	2	NO	NONE	
3	2.50	1600	2388	2	NONE	NONE	
2	0.75	1020	1076	2	NO	NONE	
Condition	Grad	de Sqft ab	ove Sqft	basement	Yr built	\	
Average	7 Avera	ge 1	180	0.0	1955		
Average	7 Avera	ge 2	170	400.0	1951		
_	6 Low Averag	je	770	0.0	1933		
Very Good	7 Avera	je 1	050	910.0	1965		
	Bedrooms 3 3 2 4 3 3 4 2 3 2 Condition Average Average Average	Bedrooms Bathrooms So 3 1.00 3 2.25 2 1.00 4 3.00 3 2.00 3 2.50 4 2.50 2 0.75 3 2.50 2 0.75 Condition Average Average Average Average 6 Low Average 6 Low Average	Bedrooms Bathrooms Sqft_living	Bedrooms Bathrooms Sqft_living Sqft_lot 3 1.00 1180 5650 3 2.25 2570 7242 2 1.00 770 10000 4 3.00 1960 5000 3 2.00 1680 8080 3 2.50 1530 1131 4 2.50 2310 5813 2 0.75 1020 1350 3 2.50 1600 2388 2 0.75 1020 1076 Condition Grade Sqft_above Sqft_Average Average 7 Average 1180 Average 6 Low Average 770	Bedrooms Bathrooms Sqft_living Sqft_lot Floors 3 1.00 1180 5650 1 3 2.25 2570 7242 2 2 1.00 770 10000 1 4 3.00 1960 5000 1 3 2.00 1680 8080 1 3 2.50 1530 1131 3 4 2.50 2310 5813 2 2 0.75 1020 1350 2 3 2.50 1600 2388 2 2 0.75 1020 1076 2 Condition Average 7 Average 7 Average 7 Average 7 Average 2170 400.0 400.0 Average 6 Low Average 7 Tot 0.00	Bedrooms Bathrooms Sqft_living Sqft_lot Floors Waterfront 3 1.00 1180 5650 1 NONE 3 2.25 2570 7242 2 NO 2 1.00 770 10000 1 NO 4 3.00 1960 5000 1 NO 3 2.00 1680 8080 1 NO 3 2.50 1530 1131 3 NO 4 2.50 2310 5813 2 NO 2 0.75 1020 1350 2 NO 3 2.50 1600 2388 2 NONE 2 0.75 1020 1076 2 NO Condition Grade Sqft_above Sqft_basement Yr_built Average 7 Average 2170<	Bedrooms Bathrooms Sqft_living Sqft_lot Floors Waterfront View 3 1.00 1180 5650 1 NONE NONE 3 2.25 2570 7242 2 NO NONE 2 1.00 770 10000 1 NO NONE 4 3.00 1960 5000 1 NO NONE 3 2.00 1680 8080 1 NO NONE 3 2.50 1530 1131 3 NO NONE 4 2.50 2310 5813 2 NO NONE 2 0.75 1020 1350 2 NO NONE 3 2.50 1600 2388 2 NONE NONE 2 0.75 1020 1076 2 NO NONE Condition Grade Sqft_above Sqft_basement Yr_built \ Average

1680

0.0

1987

8 Good

```
8 Good
                                       1530
                                                        0.0
                                                                 2009
21592
         Average
21593
         Average
                        8 Good
                                       2310
                                                        0.0
                                                                 2014
                      7 Average
21594
        Average
                                       1020
                                                        0.0
                                                                 2009
21595
         Average
                        8 Good
                                       1600
                                                        0.0
                                                                 2004
21596
        Average
                      7 Average
                                       1020
                                                        0.0
                                                                 2008
       Yr renovated Zipcode
                                 Lat
                                          Long Sqft living15 Sqft lot15
0
                       98178 47.5112 -122.257
                                                          1340
                                                                      5650
                  0
1
                       98125 47.7210 -122.319
                                                          1690
                                                                      7639
               1991
2
                       98028 47.7379 -122.233
                                                         2720
                                                                      8062
                  0
3
                       98136 47.5208 -122.393
                                                         1360
                  0
                                                                      5000
                       98074 47.6168 -122.045
4
                  0
                                                          1800
                                                                      7503
. . .
                         . . .
                                  . . .
                                                          . . .
                                                                       . . .
                . . .
                       98103
                              47.6993 -122.346
                                                          1530
21592
                 0
                                                                      1509
                       98146 47.5107 -122.362
21593
                  0
                                                          1830
                                                                      7200
                                                         1020
21594
                  0
                       98144 47.5944 -122.299
                                                                      2007
                       98027 47.5345 -122.069
                                                         1410
21595
                  0
                                                                      1287
21596
                  0
                       98144 47.5941 -122.299
                                                         1020
                                                                      1357
      Seasons Grading
0
        Fall
                     7
                     7
1
        Fall
2
       Winter
                     6
3
                     7
        Fall
4
       Winter
                     8
       . . .
21592 Spring
                    8
21593 Winter
                     8
21594 Summer
                     7
21595 Winter
                     8
                     7
21596
        Fall
[19685 rows x 20 columns]
0
        221900.0
1
         538000.0
2
         180000.0
3
         604000.0
         510000.0
4
21592
         360000.0
21593
        400000.0
21594
         402101.0
21595
         400000.0
21596
         325000.0
Name: Price, Length: 19685, dtype: float64
In [39]:
#converting the column into categorical columns
house cond = pd.get dummies(x['Condition'], drop first=True, dtype=int)
view 1 = pd.get dummies(x['View'], drop first=True, dtype=int)
water front = pd.get dummies(x['Waterfront'], drop first=True, dtype=int)
seasons1 = pd.get dummies(x['Seasons'], drop first=True, dtype=int)
```

In [40]:

```
#drop the condition, waterfront, View and Grade column
x = x.drop('Condition', axis=1)
x= x.drop('Waterfront', axis=1)
x = x.drop('View', axis=1)
x = x.drop('Grade', axis=1)
x = x.drop('Seasons', axis=1)
print(x)
```

	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Sqft_above	\
0	3	1.00	1180	5650	1	1180	
1	3	2.25	2570	7242	2	2170	
2	2	1.00	770	10000	1	770	
3	4	3.00	1960	5000	1	1050	
4	3	2.00	1680	8080	1	1680	
• • •	• • •	• • •	• • •		• • •	• • •	
21592	3	2.50	1530	1131	3	1530	

21502	4	2.50	2210	E012	2	2210	
21593		2.50	2310	5813	2	2310	
21594	2	0.75	1020	1350	2	1020	
21595	3	2.50	1600	2388	2	1600	
21596	2	0.75	1020	1076	2	1020	
				_, ,		_	,
•	Sqft_basement	_	_	_			\
0	0.0	1955	0			-122.257	
1	400.0	1951	1991	98125		-122.319	
2	0.0	1933	0			-122.233	
3	910.0	1965	0	98136	47.5208	-122.393	
4	0.0	1987	0	98074	47.6168	-122.045	
• • •	• • •	• • •	• • •	• • •	• • •	• • •	
21592	0.0	2009	0	98103	47.6993	-122.346	
21593	0.0	2014	0	98146	47.5107	-122.362	
21594	0.0	2009	0	98144	47.5944	-122.299	
21595	0.0	2004	0	98027	47.5345	-122.069	
21596	0.0	2008	0	98144	47.5941	-122.299	
	Sqft living15	Sqft lot15	Grading				
0	1340	_ 5650	7				
1	1690	7639	7				
2	2720	8062	6				
3	1360	5000					
4	1800	7503					
•••	•••	•••					
21592	1530	1509	8				
21593	1830	7200					
21594	1020	2007					
21595							
	1410	1287					
21596	1020	1357	7				

[19685 rows x 15 columns]

In [41]:

```
#concertinate our dummy variables to our data
x = pd.concat([data,house_cond, view_1, water_front],axis=1)
x
```

Out[41]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	 Fair	Good	Por
0	2014- 10-13	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average	 0	0	
1	2014- 09-12	538000.0	3	2.25	2570	7242	2	NO	NONE	Average	 0	0	
2	2015- 02-25	180000.0	2	1.00	770	10000	1	NO	NONE	Average	 0	0	
3	2014- 09-12	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good	 0	0	
4	2015- 02-18	510000.0	3	2.00	1680	8080	1	NO	NONE	Average	 0	0	
21592	2014- 05-21	360000.0	3	2.50	1530	1131	3	NO	NONE	Average	 0	0	
21593	2015- 02-23	400000.0	4	2.50	2310	5813	2	NO	NONE	Average	 0	0	
21594	2014- 06-23	402101.0	2	0.75	1020	1350	2	NO	NONE	Average	 0	0	
21595	2015- 01-16	400000.0	3	2.50	1600	2388	2	NONE	NONE	Average	 0	0	
21596	2014- 10-15	325000.0	2	0.75	1020	1076	2	NO	NONE	Average	 0	0	

19685 rows × 32 columns

In [42]:

Date

```
print(x.dtypes)
```

float64 Price int64 Bedrooms float64 Bathrooms int64 Sqft_living Sqft lot int64 Floors int32 Waterfront object View object Condition object Grade object Sqft_above int64 Sqft basement float64 Yr built int64 Yr renovated int32 Zipcode int64 Lat float64 Long float64 Sqft living15 int64 Sqft lot15 int64 object Seasons Grading int32 int32 Fair Good int32 Poor int32 Very Good int32 EXCELLENT int32 FAIR int32 GOOD int32 NONE int32 NONE int32 YES int32 dtype: object

datetime64[ns]

COLINEARITY AND MULTICOLINEARITY

CHECKING FOR COLLINEARITY BETWEEN THE DEPENDENT (PRICE) AND INDEPENDENT VARIABLES

In [43]:

```
data_corr = data.corr()['Price'].map(abs).sort_values(ascending=False)
data_corr
```

Out[43]:

Price	1.000000
Grading	0.640072
Sqft_living	0.631970
Sqft_living15	0.561656
Sqft_above	0.518802
Bathrooms	0.455976
Lat	0.407917
Bedrooms	0.298772
Sqft_basement	0.276792
Floors	0.231544
Yr_renovated	0.106911
Sqft_lot	0.097231
Sqft_lot15	0.092238
Long	0.034362
Yr built	0.028031
Zipcode	0.017773
Name: Price,	dtype: float64

```
sns.set(rc={'figure.figsize':(15, 15)})
#Use the .heatmap method to depict the relationship visually
sns.heatmap(data.corr(), annot=True, annot_kws={"size": 12})
plt.show()
```


Step 1: Visualize Relationships Between Features and Target For each feature in the subset, create a scatter plot that shows the feature on the x-axis and SalePrice on the y-axis to identify linear relationships. We will first split our columns into 3 subsets for better visualization.

```
In [45]:
```

```
#Visulaizing linear relationship between features and target variables
data_subset = data[['Sqft_living', 'Sqft_lot', 'Bedrooms', 'Bathrooms', 'Price']].copy()
data_subset
```

Out [45]:

0	1180 Sqft_living	5650 Sqft_lot	Bedrooms 3	1.00 Bathrooms	221900.0 Price
1	2570	7242	3	2.25	538000.0
2	770	10000	2	1.00	180000.0
3	1960	5000	4	3.00	604000.0
4	1680	8080	3	2.00	510000.0
21592	1530	1131	3	2.50	360000.0
21593	2310	5813	4	2.50	400000.0
21594	1020	1350	2	0.75	402101.0
21595	1600	2388	3	2.50	400000.0
21596	1020	1076	2	0.75	325000.0

19685 rows × 5 columns

In [46]:

```
#create scatter plots
fig, axes = plt.subplots(ncols=4, figsize=(15,5), sharey=True)
axes[0].set_ylabel("Price")

for i, col in enumerate(data_subset.drop("Price", axis=1).columns):
    ax=axes[i]
    ax.scatter(data_subset[col], data_subset["Price"], alpha=0.3)
    ax.set_xlabel(col)
```


All four features seem to have a linear relationship with Price

Sqft_living seems to have the most variance vs. Price Bedrooms and Bathrooms have very weak variance Vs Price

In [47]:

```
data_subset2 = data[['Sqft_above', 'Sqft_basement', 'Sqft_living15', 'Sqft_lot15','Price
']].copy()
data_subset2
```

Out[47]:

	Sqft_above	Sqft_basement	Sqft_living15	Sqft_lot15	Price
0	1180	0.0	1340	5650	221900.0
1	2170	400.0	1690	7639	538000.0
2	770	0.0	2720	8062	180000.0
3	1050	910.0	1360	5000	604000.0
4	4600	22	4000	7500	E40000 0

4	Sqft_above	Sqft_basement	Sqft_living15	/อบง Sqft_lot15	o 10000.0 Price
	•••	***	***	•••	•••
21592	1530	0.0	1530	1509	360000.0
21593	2310	0.0	1830	7200	400000.0
21594	1020	0.0	1020	2007	402101.0
21595	1600	0.0	1410	1287	400000.0
21596	1020	0.0	1020	1357	325000.0

19685 rows × 5 columns

In [48]:

```
# Your code here - import relevant library, create scatter plots
fig, axes = plt.subplots(ncols=4, figsize=(15,5), sharey=True)
axes[0].set_ylabel("Price")

for i, col in enumerate(data_subset2.drop("Price", axis=1).columns):
    ax=axes[i]
    ax.scatter(data_subset2[col], data_subset2["Price"], alpha=0.3)
    ax.set_xlabel(col)
```


All of these four features seem to have a linear relationship with Price

Sqft_living15 column seems to have the most variance vs. Price followed closely by Sqft_lot15

```
In [49]:
```

```
data_subset3 = data[['Lat', 'Floors', 'Zipcode', 'Yr_built', 'Price']].copy()
data_subset3,
```

Out[49]:

```
Lat Floors Zipcode Yr built
                                            Price
0
      47.5112
                   1
                        98178
                                   1955 221900.0
      47.7210
                        98125
                                   1951 538000.0
1
                   2
      47.7379
                   1
                                   1933 180000.0
2
                        98028
                   1
3
      47.5208
                        98136
                                   1965 604000.0
                  1
      47.6168
                                   1987
                                         510000.0
                        98074
                         . . .
                                    . . .
21592
      47.6993
                   3
                        98103
                                   2009 360000.0
      47.5107
                    2
                                   2014
                                         400000.0
21593
                        98146
21594
                    2
                                   2009
      47.5944
                        98144
                                         402101.0
21595
      47.5345
                    2
                        98027
                                   2004
                                        400000.0
21596
      47.5941
                    2
                        98144
                                   2008 325000.0
```

[19685 rows x 5 columns],)

In [50]:

Your code here - import relevant library, create scatter plots

```
fig, axes = plt.subplots(ncols=4, figsize=(15,5), sharey=True)
axes[0].set_ylabel("Price")

for i, col in enumerate(data_subset3.drop("Price", axis=1).columns):
    ax=axes[i]
    ax.scatter(data_subset3[col], data_subset3["Price"], alpha=0.3)
    ax.set_xlabel(col)
```


All of these four features seem to have a linear relationship with Price

Lat column seems to have the most variance vs. Price

CHECKING FOR MULTICOLLINEARITY

In [51]:

```
independent_vars = data[['Bathrooms', 'Bedrooms', 'Sqft_living','Grading', 'Sqft_above',
'Sqft living15', 'Lat', 'Floors', 'Yr renovated', 'Sqft lot', 'Sqft lot15', 'Long', 'Yr b
uilt', 'Zipcode']]
# Calculate correlation matrix
correlation matrix = independent vars.corr()
# Display correlation matrix
print(correlation matrix)
#2. Variance Inflation Factor (VIF)
#Calculate the Variance Inflation Factor (VIF) for each independent variable. VIF measure
s how much the variance of an estimated regression coefficient increases if your predicto
rs are correlated.
# Calculate VIF for each independent variable
vif data = pd.DataFrame()
vif data["Feature"] = independent vars.columns
vif data["VIF"] = [variance inflation factor(independent vars.values, i) for i in range(
len(independent_vars.columns))]
print(vif data)
```

	Bathrooms	Bedrooms	Sqft_living	Grading	Sqft_above	\
Bathrooms	1.000000	0.496519	0.712976	0.621718	0.630923	
Bedrooms	0.496519	1.000000	0.605821	0.341800	0.483000	
Sqft_living	0.712976	0.605821	1.000000	0.714065	0.843143	
Grading	0.621718	0.341800	0.714065	1.000000	0.708186	
Sqft_above	0.630923	0.483000	0.843143	0.708186	1.000000	
Sqft_living15	0.529788	0.395662	0.740939	0.673105	0.710484	
Lat	0.006097	-0.032532	0.038606	0.109614	-0.021854	
Floors	0.526388	0.137811	0.337780	0.470591	0.529241	
Yr_renovated	0.034426	0.006353	0.037267	0.002597	0.005483	
Sqft_lot	0.059252	0.102367	0.225068	0.135724	0.209207	
Sqft_lot15	0.063438	0.102743	0.228282	0.151002	0.217345	
Long	0.257063	0.170344	0.277599	0.221835	0.394315	
Yr_built	0.538480	0.168718	0.334372	0.466052	0.450352	
Zipcode	-0.205413	-0.163142	-0.197157	-0.177999	-0.267725	

```
Sqft_living15
                                        Floors Yr_renovated Sqft_lot
Bathrooms
                   0.529788 0.006097 0.526388
                                                   0.034426 0.059252
Bedrooms
                   0.395662 -0.032532 0.137811
                                                   0.006353 0.102367
Sqft living
                  0.740939 0.038606 0.337780
                                                   0.037267 0.225068
                                                   0.002597 0.135724
                  0.673105 0.109614 0.470591
Grading
Sqft_above
                  0.710484 -0.021854 0.529241
                                                   0.005483 0.209207
Sqft_living15
                  1.000000 0.038245 0.276098
                                                  -0.019999 0.268220
                  0.038245 1.000000 0.019597
Lat
                                                   0.027616 -0.062716
                  0.276098 0.019597 1.000000
Floors
                                                  -0.015763 -0.097265
Yr renovated
               -0.019999 0.027616 -0.015763
                                                   1.000000 0.013946
Sqft_lot
Sqft_lot15
                  0.268220 -0.062716 -0.097265
                                                   0.013946 1.000000
                  0.295851 -0.062436 -0.094464
                                                   0.012742 0.813587
                  0.381006 -0.130564 0.178326
Long
                                                  -0.070311 0.264670
Yr built
                  0.333088 -0.152746 0.590668
                                                  -0.194751 0.023701
Zipcode
                  -0.282029 0.271737 -0.096346
                                                   0.068337 -0.179550
              Sqft lot15
                             Long Yr built
                                              Zipcode
Bathrooms
               0.063438 0.257063 0.538480 -0.205413
Bedrooms
                0.102743 0.170344 0.168718 -0.163142
Sqft living
               0.228282 0.277599 0.334372 -0.197157
Grading
               0.151002 0.221835 0.466052 -0.177999
Sqft above
               0.217345 0.394315 0.450352 -0.267725
Sqft_living15
               0.295851 0.381006 0.333088 -0.282029
               -0.062436 -0.130564 -0.152746 0.271737
               -0.094464 0.178326 0.590668 -0.096346
Floors
Yr_renovated
               0.012742 -0.070311 -0.194751 0.068337
               0.813587 0.264670 0.023701 -0.179550
Sqft lot
                1.000000 0.294880 0.043846 -0.192665
Sqft lot15
                0.294880 1.000000 0.426155 -0.582936
Long
Yr built
                0.043846 0.426155 1.000000 -0.341316
               -0.192665 -0.582936 -0.341316 1.000000
Zipcode
                          VIF
         Feature
0
       Bathrooms 2.924803e+01
1
        Bedrooms 2.725006e+01
2
     Sqft living 5.241568e+01
3
         Grading 1.507519e+02
4
      Sqft above 3.644921e+01
5
   Sqft living15 3.011027e+01
6
             Lat 1.363032e+05
7
          Floors 1.760715e+01
8
    Yr renovated 1.119356e+00
9
        Sqft lot 5.194917e+00
      Sqft lot15 6.240169e+00
10
            Long 1.720040e+06
11
        Yr built 9.401162e+03
12
         Zipcode 2.020593e+06
13
```

High correlations(eg above 0.7 ot 0.8), between pairs of variables suggest potential multicollinearity

If the VIF is greater than 5 or 10, it indicates multicolinearity. Higher VIF values signify stronger correlation with other predictors.

FEATURE SELECTION

Its a method used to calculate pairwise correlations among features and remove one of each pair of highly correlated features.

```
In [52]:
```

```
# Calculate correlation matrix
correlation_matrix = data.corr().abs()

# Create a mask for selecting upper triangle of correlation matrix
upper_triangle_mask = correlation_matrix.where(np.triu(np.ones(correlation_matrix.shape),
k=1).astype(bool))

# Find features with correlation above threshold
highly_correlated_features = [column for column in upper_triangle_mask.columns if any(up)
```

```
per_triangle_mask[column] > 0.8)]
# Drop highly correlated features
selected_features = data.drop(highly_correlated_features, axis=1)
selected_features
```

Out[52]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	Grade	Sqft_base
0	2014- 10-13	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average	7 Average	
1	2014- 09-12	538000.0	3	2.25	2570	7242	2	NO	NONE	Average	7 Average	
2	2015- 02-25	180000.0	2	1.00	770	10000	1	NO	NONE	Average	6 Low Average	
3	2014- 09-12	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good	7 Average	
4	2015- 02-18	510000.0	3	2.00	1680	8080	1	NO	NONE	Average	8 Good	
•••												
21592	2014- 05-21	360000.0	3	2.50	1530	1131	3	NO	NONE	Average	8 Good	
21593	2015- 02-23	400000.0	4	2.50	2310	5813	2	NO	NONE	Average	8 Good	
21594	2014- 06-23	402101.0	2	0.75	1020	1350	2	NO	NONE	Average	7 Average	
21595	2015- 01-16	400000.0	3	2.50	1600	2388	2	NONE	NONE	Average	8 Good	
21596	2014- 10-15	325000.0	2	0.75	1020	1076	2	NO	NONE	Average	7 Average	
40005		. 00 aalum										

19685 rows × 20 columns

4

SPLITTING THE DATA INTO TRAINING AND TESTING SETS

In [53]:

```
from sklearn.model_selection import train_test_split
data2 = selected_features
# Set a random seed for reproducibility
np.random.seed(0)

# Split the DataFrame into training and testing datasets
data2_train, data2_test = train_test_split(data2, train_size=0.7, test_size=0.3, random_s
tate=500)

# Display the shapes of the resulting training and testing datasets
print("Shape of data_train:", data2_train.shape)
print("Shape of data_test:", data2_test.shape)
```

Shape of data_train: (13779, 20) Shape of data_test: (5906, 20)

In [54]:

data2_train.head()

Out[54]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	Grade S
20394	2014- 10-14	271115.0	2	1.50	830	1325	2	NO	NONE	Average	7 Average
40074	2014-	1610000 0	4	0 7E	4070	05007	•	NO	NONE	A	11

128 <i>1</i> 1	15 a26	Price	Bedrooms	Z.10 Bathrooms	4210 Sqft_living	∠ɔo∪≀ Sqft_lot	Floors	NO Waterfront	NONE View	Average Condition	Excellent	s
13963	2015- 03-04	800000.0	4	2.25	2120	9921	2	NO	NONE	Average	8 Good	
15214	2015- 03-20	715000.0	3	1.75	1650	7276	1	NO	EXCELLENT	Good	7 Average	
20944	2015- 04-15	580000.0	3	1.50	1320	1250	3	NO	NONE	Average	8 Good	
4												•

BASELINE MODEL

In [55]:

data2.head()

Out[55]:

	Date	Price	Bedrooms	Bathrooms	Sqft_living	Sqft_lot	Floors	Waterfront	View	Condition	Grade	Sqft_basement
0	2014- 10-13	221900.0	3	1.00	1180	5650	1	NONE	NONE	Average	7 Average	0.0
1	2014- 09-12	538000.0	3	2.25	2570	7242	2	NO	NONE	Average	7 Average	400.(
2	2015- 02-25	180000.0	2	1.00	770	10000	1	NO	NONE	Average	6 Low Average	0.0
3	2014- 09-12	604000.0	4	3.00	1960	5000	1	NO	NONE	Very Good	7 Average	910.(
4	2015- 02-18	510000.0	3	2.00	1680	8080	1	NO	NONE	Average	8 Good	0.0
4							18					Þ

In [56]:

```
Y = data['Price']
X = data['Grading']
plt.scatter(X,Y)
plt.xlabel("Grading")
plt.ylabel("Price")
plt.show;
```


In [57]:

```
X_baseline = data2_train['Grading'] # Predictor variable
y = np.log(data2_train["Price"]) # Log-transformed target variable

# Add a constant term to the predictor variable
X_baseline = sm.add_constant(X_baseline)

# Fit the Ordinary Least Squares (OLS) model
model = sm.OLS(y, X_baseline).fit()

# Display the summary of the fitted model
result = model.summary()
print(result)
```

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.418
Model:	OLS	Adj. R-squared:	0.418
Method:	Least Squares	F-statistic:	9907.
Date:	Tue, 09 Apr 2024	Prob (F-statistic):	0.00
Time:	22:31:33	Log-Likelihood:	-5610.7
No. Observations:	13779	AIC:	1.123e+04
Df Residuals:	13777	BIC:	1.124e+04
Df Model:	1		
Covariance Type:	nonrobust		

========	=========	-=======	========		========	========
	coef	std err	t	P> t	[0.025	0.975]
const Grading	10.7957 0.2923	0.022 0.003	481.624 99.533	0.000	10.752 0.287	10.840
Omnibus: Prob(Omnibu Skew: Kurtosis:	us):	0.		• •		2.032 9.597 0.00824 56.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

Our linear regression model is Price = 0.2923 * Grading + 10.7957.

With a significance level of 0.05, our linear regression model is significant with a p value F statistic of 0.0.

The model explains about 42% of Price as indicated by the R squared.

Both our intercept and our coefficient for Grading are statistically significant.

Our intercept is about 10.7957, meaning that a home with 0 Grading area would cost about 10.7957

Our coefficient for Grading is about 10.8, which means that for each additional Grading, we expect the price to increase about \$0.2923.

BASELINE MODEL VISUALIZATION

In [58]:

```
# Plotting actual vs. predicted values
sm.graphics.plot_fit(model, "Grading")
plt.title("Actual vs. Predicted Values")
plt.xlabel("Grading")
plt.ylabel("Log(Price)") # Assuming you are using log-transformed Price
plt.show()
```


This visualization provides insights into how well the model fits the training data and how the predicted values compare to the actual target values. Our model indicates a good fit between the predicted values and the actual values because the fitted line closely follows the diagonal (a 45-degree line from the bottom-left to the top-right of the plot).

```
# Define predictor (X) and target (y) variables
X = data2_train['Grading']
y = data2 train['Price']
# Add constant to predictor variable (for intercept)
X = sm.add constant(X)
# Fit the Ordinary Least Squares (OLS) model
model = sm.OLS(y, X).fit()
# Retrieve the model parameters (coefficients)
intercept, slope = model.params['const'], model.params['Grading']
# Create scatter plot of data points and regression line
fig, ax = plt.subplots()
data2 train.plot.scatter(x='Grading', y='Price', label="Data points", ax=ax)
# Plot the regression line using model parameters
ax.plot(X['Grading'], intercept + slope * X['Grading'], color='red', label="Regression 1
ine")
# Add labels, title, and legend
ax.set_xlabel("Grading")
ax.set_ylabel("Price")
ax.set title("Scatter Plot with Regression Line")
ax.legend()
# Show the plot
plt.show()
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.

In [60]:

#checking residual in model0
sm.graphics.plot_regress_exog(model, "Grading", fig=plt.figure(figsize=(12,8)))

Out[60]:

This function displays a set of diagnostic plots that help in assessing the model's assumptions and the relationship between the predictor variable and the target variable

```
In [61]:
```

```
import numpy as np
import statsmodels.api as sm

# Assuming you have predictor variable(s) in X_baseline and log-transformed target variab
le in y
# Add a constant term to the predictor variable
X_baseline = sm.add_constant(X_baseline)

# Fit the Ordinary Least Squares (OLS) model
model = sm.OLS(y, X_baseline).fit()

# Calculate the residuals
residuals = y - model.predict(X_baseline)

# Calculate the Root Mean Squared Error (RMSE)
mse = np.mean(residuals**2)
rmse = np.sqrt(mse)

print("Root Mean Squared Error (RMSE):", rmse)
```

Root Mean Squared Error (RMSE): 190283.19633348894

MULTI LINEAR REGRESSION

Adding more predictors to our baseline model can enhance its predictive power by capturing additional complexity and potential relationships within our data. This can lead to improved model accuracy and potentially reducing bias by considering more factors in the prediction process.

```
In [62]:
data2.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19685 entries, 0 to 21596
Data columns (total 20 columns):
 #
    Column
                   Non-Null Count Dtype
0
                   19685 non-null datetime64[ns]
    Date
1
    Price
                   19685 non-null
                                  float64
2
    Bedrooms
                   19685 non-null int64
3
    Bathrooms
                   19685 non-null float64
 4
    Sqft living
                   19685 non-null int64
5
    Sqft lot
                   19685 non-null int64
                   19685 non-null int32
 6
    Floors
7
                   19685 non-null object
    Waterfront
 8
    View
                   19685 non-null object
 9
                   19685 non-null object
    Condition
10
                   19685 non-null object
   Grade
11
    Sqft basement 19685 non-null float64
    Yr built
                   19685 non-null int64
12
    Yr renovated 19685 non-null int32
13
                                  int64
14
    Zipcode
                   19685 non-null
                                  float64
                   19685 non-null
15
    Lat
                                  float64
16
    Long
                   19685 non-null
17
    Sqft living15
                  19685 non-null
                                   int64
18
                   19685 non-null
    Seasons
                                   object
                   19685 non-null
                                  int32
19
    Grading
dtimage datatima6/[na]/1)
                         float64/51 int22/21
                                               in+61161
```

```
memory usage: 2.9+ MB
```

In [63]:

```
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

# Assuming you have multiple predictor variables in X_data

X_data = data2_train[['Grading', 'Yr_renovated', 'Sqft_livingl5','Bedrooms', 'Bathrooms'
, 'Sqft_living', 'Sqft_lot', 'Floors', 'Sqft_basement', 'Yr_renovated','Zipcode', 'Lat',
'Long']] # Add other predictor variables as needed
y = np.log(data2_train["Price"]) # Log-transformed target variable

# Add a constant term to the predictor variables
X_data = sm.add_constant(X_data)

# Fit the Ordinary Least Squares (OLS) model
model = sm.OLS(y, X_data).fit()

# Predict the y values
y_pred = model.predict(X_data)
print(model.summary())
```

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.687
Model:	OLS	Adj. R-squared:	0.687
Method:	Least Squares	F-statistic:	2516.
Date:	Tue, 09 Apr 2024	Prob (F-statistic):	0.00
Time:	22:31:45	Log-Likelihood:	-1344.6
No. Observations:	13779	AIC:	2715.
Df Residuals:	13766	BIC:	2813.
Df Model:	12		

Df Model: 12 Covariance Type: nonrobust

==========						
	coef	std err	t	P> t	[0.025	0.975]
const	-66.2959	4.484	-14.784	0.000	-75 . 086	-57.506
Grading	0.1349	0.004	37.743	0.000	0.128	0.142
Yr renovated	4.338e-05	3.26e-06	13.316	0.000	3.7e-05	4.98e-05
Sqft living15	0.0001	6.19e-06	19.835	0.000	0.000	0.000
Bedrooms	-0.0164	0.003	-4.767	0.000	-0.023	-0.010
Bathrooms	0.0156	0.005	2.856	0.004	0.005	0.026
Sqft living	0.0002	6.86e-06	26.297	0.000	0.000	0.000
Sqft lot	-2.195e-07	2.07e-07	-1.061	0.289	-6.25e-07	1.86e-07
Floors	-0.0125	0.006	-2.140	0.032	-0.024	-0.001
Sqft basement	4.501e-05	7.51e-06	5.991	0.000	3.03e-05	5.97e-05
Yr renovated	4.342e-05	3.26e-06	13.328	0.000	3.7e-05	4.98e-05
Zipcode	-0.0004	5.43e-05	-7.164	0.000	-0.000	-0.000
Lat	1.4871	0.017	85.171	0.000	1.453	1.521
Long	-0.3690	0.024	-15.674	0.000	-0.415	-0.323
Omnibus:		120.901	Durbin-Wa	atson:		2.019
Prob (Omnibus)	:	0.000	Jarque-Be	era (JB):		186.115
Skew:		0.067	Prob(JB)	:		3.85e-41

3.553 Cond. No.

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

1.77e+16

[2] The smallest eigenvalue is 4.27e-19. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The model explains 69% of the variance in price as indicated by R squared

Therefore the multiple linear regression is better than our baseline regression

Plot the actual vs. predicted values
plt.figure(figsize=(8, 6))
plt.scatter(y, y_pred)
plt.plot(y, y, color='red', linestyle='--') # Plotting the perfect fit line
plt.title('Actual vs. Predicted')
plt.xlabel('Actual Log-Price')
plt.ylabel('Predicted Log-Price')

In [65]:

plt.show()

```
from sklearn.metrics import mean_squared_error

# Compute Mean Squared Error (MSE)
mse = mean_squared_error(y, y_pred)

# Compute Root Mean Squared Error (RMSE)
rmse = np.sqrt(mse)

print("Root Mean Squared Error (RMSE):", rmse)
```

Root Mean Squared Error (RMSE): 0.266772625666969

POLYNOMIAL REGRESSION

The independent variable(s) and the dependent variable is modeled as an nth-degree polynomial. It extends linear regression by allowing the relationship between variables to be modeled as a curve rather than a straight line. In thic case we use it to determine whether its a better fit compared to the multiple linear regression

In [66]:

```
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler, PolynomialFeatures, MinM
axScaler

poly= PolynomialFeatures(degree=2, include_bias=False)
poly_features = poly.fit_transform(X_data)
X_train, X_test, y_train, y_test = train_test_split(poly_features, y, test_size=0.3, ran
dom_state=10)
# Let's fit our mode
poly_reg_model = LinearRegression()
```

```
poly_reg_model.fit(X_train, y_train)
# Let's train our model
poly_reg_y_predicted1 = poly_reg_model.predict(X_test)
from sklearn.metrics import mean_squared_error
poly_reg_rmse = np.sqrt(mean_squared_error(y_test, poly_reg_y_predicted1))
print("Polynomial RMSE: ",poly_reg_rmse)
r_squared = r2_score(y_test, poly_reg_y_predicted1)
print("R_squared: ", r_squared)
```

Polynomial RMSE: 0.23061511620028652 R squared: 0.7655407239791847

Given that polynomial regression accounts for roughly 76% of the volatility in house prices—a percentage somewhat greater than that explained by multiple linear regression—it is clear that polynomial regression is a superior model in this particular situation. Polynomial regression also has a less Root Squared Mean Error than Multiple Linear Regression Model. This suggests that the polynomial regression yielded superior results. The RMSE of the polynomial regression also suggests the same since it is also lower than the multiple linear regression model.

In [67]:

```
residuals = y_test - poly_reg_y_predicted1

# Plotting the residuals
plt.scatter(poly_reg_y_predicted1, residuals, color='blue')
plt.title('Residual Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.axhline(y=0, color='magenta', linestyle='-') # Adding a horizontal line at y=0
plt.show()
```


ANOVA ANALYSIS

Ho: There is no statistically significant interaction effect between sqft living and grading on the price of a house

H1: There is a statistically significant interaction effect between sqft living and grading on the price of a house.

```
In [68]:
```

```
data2.columns
Out[68]:
Index(['Date', 'Price', 'Bedrooms', 'Bathrooms', 'Sqft living', 'Sqft lot',
       'Floors', 'Waterfront', 'View', 'Condition', 'Grade', 'Sqft basement',
       'Yr built', 'Yr renovated', 'Zipcode', 'Lat', 'Long', 'Sqft living15',
       'Seasons', 'Grading'],
      dtype='object')
```

ANOVA Test: Price vs. Interaction of Sqft_living and Grading To what extent does the combined influence of grading and sqft_living affect the price of a house?

```
In [69]:
```

```
#Creating interaction term
# Statistical modeling
import statsmodels.api as sm
from statsmodels.formula.api import ols
data2['Sqft Grading'] = data2['Grading'] * data2['Sqft living']
formula = 'Price ~ Sqft living + Grading'
anova model = ols(formula, data=data2).fit()
anova table = sm.stats.anova lm(anova_model, typ=2)
print(anova table)
                               df
                   sum sq
                                             F PR (>F)
Sqft living 7.595825e+13
                               1.0 2327.57958
                                                   0.0
                               1.0 2711.82653
                                                   0.0
```

NaN

NaN

At 0.05 significance level, we reject the Null hypothesis and conclude that there is a statistically significant interaction effect between grading and Sqft_living of a house on Price.

Summary

Grading

Residual

We embarked on a iterative statistical modelling proccess where we started with a simple linear regression, multilinear regression modelling and finally Polynomial regression where we noted that for each regression, the model became better with each iteration.

1. The baseline model had an R Squared of 0.42

8.849776e+13

6.423025e+14 19682.0

- 2. The multilinear regression had an R squared of 0.69 and an RMSE of 0.27
- 3. The polynomial regression model had an Rsquared of 0.77 and an RMSE of 0.23

For the final polynomial regression RMSE value, our model is off by 0.23 dollars in a given prediction

We also conducted an Anova test to test the significance of how various sets of variables(including categorical variables) affected price, we concluded at at a significance level of 0.05, we reject the Null hypothesis and conclude that there is a statistically significant interaction effect between grading and Soft living of a house on Price.

Recommendation

The square footage of living space has a significant influence on house pricing as well. This information can be used by the Real Estate Agency to support higher listing prices for homes with larger square footage.

There are several benefits to using a polynomial regression model instead of a typical linear model when predicting property prices. By taking into consideration the non-linear effects of important features like square footage, location, and on-site facilities, this method enables us to capture intricate correlations and fluctuations in home pricing. The polynomial regression's high R-squared value indicates that the chosen features account for a significant amount of the variability in home prices, which translates into more accurate and consistent price projections. Using this cutting-edge modeling technique gives us, as real estate market participants, more decision-making power and improves pricing tactics, investment analyses, and market competitiveness overall.

In []: