

UE 3E104 : Réseaux électriques et gestion de l'énergie

Ecrit réparti n°2 : vendredi 11 janvier 2019

Durée: 2 h 00 - Sans document ni téléphone, avec calculatrice autorisée

Le sujet comporte 3 exercices indépendants

Exercice 1 : Injection de puissance sur le réseau

Figure 1 : Ligne de transport en continu

La Figure 1 schématise une ligne de transport en courant continu de longueur 10 km. La ligne, caractérisée par sa résistance $R_l=0.25~\Omega$, est alimentée par une source de tension $V_s=1000~V$ et alimente une charge purement résistive. On note P, la puissance active reçue par la charge et V la tension aux bornes de la charge.

- a. Exprimer I en fonction de V_s , V et R_I .
- b. Exprimer P en fonction de V_s , V et R_l .
- c. Calculer P_{max} la puissance maximale transmissible par la ligne.
- d. On définit $P_{95\%}$ comme étant la puissance telle que V vaut 95% de V_s . Exprimer $P_{95\%}$ en fonction de P_{max} , puis donner sa valeur numérique.
- e. Tracer la courbe tension-puissance P(V), avec P en abscisse et V en ordonnée.
- f. On suppose maintenant que la charge est un ensemble de panneaux photovolta \ddot{q} ques qui *fournissent* de la puissance au réseau. Compléter la courbe tension-puissance P(V) pour prendre en compte cette situation.
- g. On souhaite que la tension V soit toujours comprise entre 95% et 105% de V_s . Quelle est la puissance maximale que l'on peut injecter sur le réseau tout en respectant cette contrainte ?

Exercice 3: Gradateur

Figure 2 : Gradateur monophasé sur charge résistive

La Figure 2 représente le schéma d'un convertisseur alternatif-alternatif appelé gradateur. Le transfert de puissance depuis la source de tension jusqu'à la charge, purement résistive dans le cas présent, s'effectue au moyen de deux thyristors montés tête-bêche. Comme cela va être montré dans cet exercice, la commande de ces thyristors permet de contrôler la puissance transmise à la charge, mais au prix d'une dégradation du facteur de puissance.

La tension v, alternative sinusoïdale, a pour expression $v(\theta) = \sqrt{2}V \sin(\theta)$, avec $\theta = \omega t$. Le thyristor Th_1 est commandé avec un angle de retard à l'amorçage α par rapport à $\theta = 0$ et le thyristor Th_2 est commandé avec un angle de retard à l'amorçage α par rapport à $\theta = \pi$.

- a. Représenter les signaux de commande des thyristors en fonction de θ pour une valeur quelconque de α .
- b. Représenter les tensions v, v_s , v_{Th} ainsi que les courants i, i_{Th1} et v_{Th2} en fonction de θ pour une valeur quelconque de α comprise entre 0 et π .
- c. Que se passe-t-il pour $\alpha > \pi$? Est-il intéressant d'utiliser ces valeurs de α ?
- d. Montrer que la valeur efficace du courant i vaut : $I_{eff} = \frac{V}{R} \sqrt{1 \frac{\alpha}{\pi} + \frac{1}{2\pi}} \sin 2\alpha$. Préciser pour quelles valeurs de α cette expression est valide.
- e. Déterminer la puissance moyenne absorbée par la charge.
- f. Déterminer le facteur de puissance du dispositif. Commentaire(s)?

Exercice 3 : Hacheur abaisseur-élévateur de tension (buck-boost)

Figure 3 : Schéma d'un hacheur abaisseur-élévateur de tension

La Figure 3 donne le schéma de principe d'un hacheur abaisseur-élévateur de tension. Les interrupteurs K1 et K2 constituent une cellule de commutation dont la période de fonctionnement est T. K1 est fermé pendant l'intervalle $[0, \alpha T]$ et ouvert pendant l'intervalle $[\alpha T, T]$. On place en sortie un condensateur de capacité C assez grande pour que les variations temporelles de la tension de sortie v_s puissent être négligées. Le dispositif est alimenté par une source de tension v_e . On étudie le fonctionnement du convertisseur en régime permanent.

- a. La self du montage est caractérisée par son inductance *L* et sa résistance *R*. A quelle condition peut-on négliger *R* et modéliser la self par une inductance pure ? On supposera que cette condition est vérifiée dans tout l'exercice.
- b. Vérifier que les règles d'association source de tension / source de courant sont respectées tout au long du cycle de fonctionnement du convertisseur.
- c. Déterminer les valeurs de v_{K1} , v_{K2} et v_L sur les intervalles $[0, \alpha T[$ et $[\alpha T, T[$.
- d. Calculer $\langle v_L \rangle$ et montrer que le rapport de transformation vaut $\frac{v_s}{v_e} = -\frac{\alpha}{1-\alpha}$. Calculer la valeur de ce rapport de transformation pour $\alpha=0,25$; $\alpha=0,5$ et $\alpha=0,75$. Justifier alors l'appellation de ce hacheur. Interpréter le signe de $\frac{v_s}{v_e}$.
- e. On suppose que $v_e = 12 V$ et $v_s = -24 V$. Calculer α , puis tracer les chronogrammes des tensions v_{K1} , v_{K2} et v_L pour ces valeurs.
- f. On note i_0 la valeur du courant i_L à t=0. Etablir l'expression du courant i_L sur une période de fonctionnement. Quelle est la valeur maximale de i_L ?
- g. On suppose maintenant que la valeur de l'inductance L est assez grande pour pouvoir négliger les variations temporelles de i_L et faire l'approximation $i_L = i_0$. On donne par ailleurs la valeur numérique $i_0 = 30A$.

Tracer les chronogrammes des trois courants i_L , i_e et i_s .

- h. Calculer $\langle i_e \rangle$ et $\langle i_s \rangle$, puis le rapport de transformation $\frac{\langle i_s \rangle}{\langle i_e \rangle}$
- i. Calculer les valeurs moyennes des puissances d'entrée et de sortie. Sontelles égales ?
- j. On souhaite réaliser un hacheur bidirectionnel en courant. Tracer le lieu des points de fonctionnement "tension-courant" des interrupteurs K1 et K2. En déduire le(s) composant(s) qu'il faut choisir pour réaliser chaque interrupteur.

Représenter le schéma du hacheur avec les composants choisis.