Blank Quiz

Your email address (ta1247@srmist.edu.in) will be recorded when you submit this form. Not you? Switch account

1.At OK, the	pure semiconductor	1 point
acts as a pe	rfect insulator, since	
the	_ bonds are strong	
and no free	electrons are	
available.		
O a. Coval	ent	
O b. lonic		
O C. Metal	lic	
O d. Sigma		

2.When T = 0K, the Fermi energy 1 point (EF) of intrinsic semiconductor is

equal to

2.When T = 0K, the Fermi energy (EF) of intrinsic semiconductor is equal to	1 point
O a. EV/2	
O b. EC/2	
O c. EV+EC/2	
O d. EV-EC/2	
3,The electrical conductivity of intrinsic semiconductor is equal to a. σ = neeμe + nheμh b. σ = neeμe/2 c. σ = nheμh/2 d. σ = nie(μe - μh)	1 point
4.The Fermi level of n-type semiconductor with increase in temperature.	1 point

6. In n-type semiconductor, the donor level is so close to the	1 point
bottom of the	
O a. Valence band	
O b. Conduction band	
O c. Bottom of valence band	
O d. Top of conduction band	
the atoms get ionized	1 point
bond and thus giving to holes in the valence bond for conduction	
O a. Donor	
O b. Divalent	
O c. Acceptor	
O d. Pentavalent	
8. The majority charge carriers in	1 point

p-type semiconductor is

The majority charge carriers in p-type semiconductor is	1 point
O a. Electrons	
O b. Both electrons and holes	
O c. Neutrons	
O d. Holes	
9. When T = 0K, the Fermi energy (EF) of p-type semiconductor is equal to	1 point
O a. EF/2	
O b. EV+Ea/2	
O c. Ea/2	
O d. EV/2	
10 is a process by	1
10 is a process by which electrons gain energy and	1 point

	is a process by ctrons gain energy and to the valence band to	1 point
	uction band, producing le carriers.	
O a. Car	rier recombination	
O b. Spo	ntaneous emission	
O c. Stin	nulated emission	
O d. Car	rier generation	
recombine transition, energy is	generation In electron and a hole in a band-to-band but the resulting given off to another	1 point
electron o		
O b. band	d to band	
O c. Impi	urity to band	
O d. Non	e of above	

cau	npact ionization process is sed by avalanche tiplication in semiconductor des under high	1 point
0	a. Forward	
0	b. Reverse	
0	c. Positive	
0	d. Negative	
and	he random motion of holes free electrons due to thermal ation is called	1 point
0	a. Diffusion	
0	b. Pressure	
	c. Ionisation	
0		

14. A p-type semiconductor	1 point
material is doped with	
impurities whereas an n-type	
semiconductor material is dope	d
with impurities.	
O a. Acceptor, Donor	
D. Acceptor, Acceptor	
C. Donor, Donor	
d. Donor, Acceptor	
G. Dolloi, Acceptor	
d. Donoi, Acceptor	
G. G. Donoi, Acceptor	
15. Which of the below-	1 point
	1 point
15. Which of the below-	
15. Which of the below- mentioned statements is false regarding a p-n junction diode	?
15. Which of the below- mentioned statements is false	?
15. Which of the below-mentioned statements is false regarding a p-n junction diode. O a. Diode are uncontrolled devi	? ces
15. Which of the below- mentioned statements is false regarding a p-n junction diode	? ces
15. Which of the below-mentioned statements is false regarding a p-n junction diode. O a. Diode are uncontrolled devi	ces
15. Which of the below-mentioned statements is false regarding a p-n junction diode and a Diode are uncontrolled deviced. b. Diodes are rectifying deviced.	ces

16.. When a physical contact 1 point between a physical contact 1 point of the poin

18. When a reverse bias is applied 1 point to a diode, it will
O a. Raise the potential barrier
O b. Lower the potential barrier
C. Increases the majority-carrier a current greatly
O d. None of these
19. For a PN junction diode, the 1 point current in reverse bias may be
O a. Few miliamperes
b. Few mili amperes to several amperes
O c. Few amperes
O d. Few micro amperes to nano amperes
20. As a PN junction is forward 1 point biased

20. As a PN junction is biased	forward 1 point
a. Holes as well as drift away from the	electrons tend to junction
O b. The depletion reg	ion decreases
C. The barrier tends	to breakdown
O d. None of the above	e
21. The rectifying met	al- 1 point
semiconductor junction called as	on is also
a. Ohmic Junction	
O b. Schottky Junction	
C. Conducting June	tion
O d. PN Junction	
22. When the work fur	nction of 1 point
the metal is smaller th	
n-type semiconducto	
 a. Non rectifying Ju 	nction

the metal is smaller than that of n-type semiconductor it forms	
a. Non rectifying Junction	
O b. Rectifying Junction	
O c. Conducting Junction	
O d. PN Junction	
23. Whenever, the work function	1 point
of metal is smaller than that of p	i ponit
type semiconductor it forms	
O a. Ohmic Junction	
O b. Schottky Junction	
O c. Conducting Junction	
O d. PN Junction	
24. Which of the following	1 poin
junction conducts on both	i polit

junction conducts on both forward bias and reverse bias O a. Non rectifying Junction O b. Schottky Junction	
a. Non rectifying Junction	
O b. Schottky Junction	
O c. Semiconductor-Insulator Junct	ion
O d. Metal-Insulator Junction	

- 25. The expression for drift 1 point current density due to electrons is given by
- O a. J = pµeE
- O b. J = pµeV
- O c. J = nµeE
- O d. J = nµeV

26. The expression for diffusion 1 point current density due to electrons is given by

O a. J = -eDnE(dn/dx)	
O b. J = -ieDn(dn/dx)	
C. J = -eDnv(dn/dx)	
O d. J = -eDn(dn/dx)	
27. Which of the following	1 point
materials can be used to construct Photodiode?	
O a. Indium Chloride	
O b. Barium Chloride	
O c. Tin oxide	
O d. Arsenide Phosphide	

28. A light emitting diode is diode.	1 point
O a. Heavily doped	
O b. Lightly doped	
C. Intrinsic semiconductor	
O d. None of the above	
29. Photo diode acts as a	1 point
O a. Inductor	
O b. Capacitor	
O c. Sensor	
O d. Insulator	
30. Photo diode operates on	1 point
O a. Reverse Bias	
_ b. Forward Bias	

30. Photo diode operates on	1 point
O a. Reverse Bias	
O b. Forward Bias	
O c. Without any Bias	
O d. None of the above	
31. Which process of the	1 point
Electron-hole pair is responsible	
for emitting of light?	
O a. Generation	
O b. Ionisation	
O c. Recombination	
O d. Diffusion	
32. Which of the following	1 point
materials can be used to product infrared LED?	е
O a. Si	
O h Ge	

3325 photosthe critical angle if 1 point
the refractive index of the LED
material is 2.9.
O a. 19
O b. 20
O c. 16
O d. 17
34. What is full form of AMOLED? 1 point
a. Active matrix organic light emitting diode
b. Array matrix organic light emitting diode
C. Active motion organic light emitting diode
d. Array motion organic light emitting diode

35.The color of the light depends 1 point on the type of organic molecule in the

on the type of organic molecule in the	
O a. Cathode	
O b. Anode	
O c. Conducting Layer	
O d. Emissive Layer	
36 the wavelength of radiation given out by an LED with an energy of 3 eV, giventhat h = 6.626 × 10-34 m2kg/s and C= 3 × 108 m/s.	1 point
3 × 100 111/5.	
O a. 345.6 nm	
O a. 345.6 nm	

takes place between valence

37. In semiconductor transition takes place between valence band and conduction band is called as	1 point
a. Interband transition	
O b. Intraband transition	
O c. Impurity level transition	
d. Free carrier transition	
38 Photon flow per unit area per second	1 point

39. In semiconductors if the transition takes place between a

1 point

39. In semiconductors if the transition takes place between a donor (or) acceptor level to a band called as	1 point
a. Interband transition	
O b. Intraband transition	
O c. Intrinsic semiconductor	
O d. Impurity level transition	
40 Free carrier transition also called as	1 point
a. Interband transition	
O b. Intraband transition	
O c. Impurity level transition	
O d. Free carrier transition	
O Option 5	

41...... is the process in which 1 point the photons are absorbed by the 9:0

41 is the process in which 1 point the photons are absorbed by the semiconductor materials causes transition of electron from valence band to conduction band.
O a. Absorption
O b. Emission
C. Conducting Layer
O d. Emissive Layer
42is the process where 1 point electron hole pairs created and recombined radiatively.
electron hole pairs created and
electron hole pairs created and recombined radiatively.
electron hole pairs created and recombined radiatively. O a. Luminescence

43. The annihilation of positively 1 point charged holes and negatively charged impurity or free electrons are called as
O a. Recombination
O b. Generation
O c. Absorption
O d. Phosphorescence
O Option 5
44. Optical processes directly 1 point involveabsorption and emission
O a. Electron
O b. Proton
O c. Photon
O d. neutron

- O b. Fermi-Dirac
- O c. Maxwell-Boltzmann
- O d. Bose-Dirac

46.The Einstein coefficient for 1 point spontaneous and stimulated emission is

- O a.A 21 / B 21 = 8π kc / λ5
- O b. A 21 / B 21 = 8b hc / λ5
- O c.A 21 / B 21 = 8π rc / λ5
- O d. A 21 / B 21 = 8π hc / λ5

47. is the process of radiative recombination of

1 point

47 is the pro	
electron-hole pairs	-25 2500A1805
electron bombardme	2.00
O a. Luminescence	
O b. Cathodolumines	scence
O c. Photoluminesce	ence
O d. Electrolumineso	ence
semiconducting matestrongly depends on a Properties of m	the
O b. Wavelength	
O c. Amount of light	
O d. Amplitude	
49takes pla interaction with othe	ce without 1 point er photons,
and the direction an	d phase are

49takes place without interaction with other photons, and the direction and phase are random.	1 point
a. Spontaneous emission	
O b. Stimulated emission	
O c. Absorption	
O d. Amplification	
50 takes place when the excited electron interacts with another photon.	1 point
O c. Absorption	