What is HCI?

Human Computer Interaction

Goals

- What is HCI?
- What is usability?
- What are the Interaction Design processes, and how does they relate with Software Engineering processes?
- What is meant by User Centered Design?

Interconnected Concepts, and Evolution

Human-Computer Interaction... In Brief

- A multi-disciplinary field
- Concerned with the design, evaluation, and implementation of interactive computing systems for human use
 - and with the study of major phenomena surrounding them
- Involves two entities (the human and the computer)
 that determine each other behavior over time
 - framed in terms of humans' goals and related tasks/pursuits

HCI Is Multidisciplinary

- Psychology and cognitive science
 - User perceptual, cognitive and problem-solving skills
- Ergonomics
 - User's physical capabilities
- Sociology
 - Understanding the wider context of the interaction
- Computer Science and Computer Engineering
 - Building the necessary artifacts (HW, SW)
- Business
 - Satisfying market needs
- Graphic design
 - Produce an effective interface presentation
- Technical writing
 - o Documentation, manuals, on-screen content
- ...

HCI Is Multidisciplinary

- Psychology and cognitive science
 - User perceptual, cognitive and problem-solving skills
- Ergonomics
 - User's physical capabilities
- Sociology
 - Understanding the wider context of the interaction
- Computer Science and Computer Engineering
 - Building the necessary artifacts (HW, SW)
- Business
 - Satisfying market needs
- Graphic design
 - Produce an effective interface presentation
- Technical writing
 - o Documentation, manuals, on-screen content
- ...

To help us in applying expertise from many different fields:

- Design methods and processes
- Models
- Heuristics
- Best practices
- Conventions
- Experiments and user studies

The Goal of HCI

Ingredients

- The User(s)
- The Computer(s)
- The **Task**(s) to be accomplished

Goal

- The system must support the user's task, with a focus on its usability
 - Useful
 - Usable
 - Used

The Ingredients

The human

- Sensory systems
 - Visual
 - Auditory
 - Haptic
 - Spatial
- Acting systems
 - o Hands
 - Voice
 - o Head, Body, ...
- Cognitive processes
 - Perception
 - Memory

The computer

- Input peripherals
 - o Keyboard, mouse
 - o Trackpad, trackball
 - Touch surfaces or screens
 - Microphone
 - Sensors
 - Card readers
 - 0 ...
- Output peripherals
 - o Screen
 - Audio (voice, sounds)
 - Haptics
 - VR/AR headsets
 - 0 ...

History of HCI

Vannevar Bush As We May Think The Atlantic Monthly 1945

Memex

Vannevar Bush As We May Think The Atlantic Monthly 1945

A scientist of the future records experiments with a tiny camera fitted with universal-focus lens. The small square in the eyeglass at the left sights the object (LIFE 19(11), p. 112).

Alan Kay's Dynabook

Xerox PARC: Alto

Why we learn history of HCI?

A scientist of the future records experiments with a tiny camera fitted with universal-focus lens. The small square in the eyeglass at the left sights the object (LIFE 19(11), p. 112).

Xerox PARC: Alto

Modern MacOS desktop

Card, English and Burr: Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT

Modern mouse

Consolvo et al. Activity sensing

Modern fitness trackers

The multidisciplinary field of HCI

Group Formation

Models of Interaction

A general framework to understand how User and System interact

What Is "Interaction" (in HCI)?

Interaction is...

Concept	View of interaction	Key phenomena and con- structs	Good interaction	Example support for evaluation and design
Dialogue	a cyclic process of commu- nication acts and their inter- pretations	mappings between UI and in- tentions; feedback from the UI; turn taking	understandable; simple, natural; direct	methods/concepts for guessability, feedback, mapping; walkthroughs
Transmis- sion	a sender sending a message over a noisy channel	messages (bits); sender and receiver; noisy channels	maximum throughput of in- formation	metrics and models of user performance
Tool use	a human that uses tools to manipulate and act in the world	mediation by tools; directness of acting in the world; activity as a unit of analysis	useful and transparent tools; amplification of hu- man capabilities	compatibility in instrumental interaction; break down analysis
Optimal behavior	adapting behavior to goals, task, UI, and capabilities	rationality; constraints; preferences; utility; strategies	improves or reaches max- imum or satisfactory utility	models of choice, foraging, and adaptation
Embodi- ment	acting and being in situations of a material and social world	intentionality; context; coupling	provides resources for and supports fluent participa- tion in the world	studies in the wild; thick description
Experience	an ongoing stream of expec- tations, feelings, memories	non-utilitarian quality; expecta- tions; emotion	satisfies psychological needs; motivating	metrics of user experience; experience design methods
Control	interactive minimization of error against some reference	feedforward; feedback; reference; system; dynamics	rapid and stable conver- gence to target state	executable simulations of interactive control tasks

Taken from: Kasper Hornbæk & Antti Oulasvirta, What Is Interaction? In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems

What Is Interaction (in HCI)?

- Interaction...
 - is not the idea promoted and repeated in folk notions that a computer and a human are engaged
 - it concerns two entities humans and computers that determine each other's behavior over time
 - Their mutual determination can be of many types, including statistical, mechanical, and structural
- Users, with their goals and pursuits, are the ultimate metric of interaction

Assumptions

- The user wants to accomplish some goals, in a specific application domain
 - Each domain has a specific jargon, set of possible processes and goals, artifacts and building blocks, ...
- Tasks are operations to manipulate the concepts of a domain
 - The goal is attained by performing one or more tasks
- Interaction studies the relation between User and System
 - The system possesses a state and "speaks" a core language
 - The user possesses a state, that includes an understanding of the system's state, some intention to perform a task, and "speaks" the task language

Norman's Diagrams

GOAL **EXECUTION GULF OF EVALUATION** How do What I work this? happened? GULF OF Is this what What can I do? I wanted? WORLD

- 1. **Goal** (form the goal)
- 2. **Plan** (the action)

- 6. **Interpret** (the perception)
- 3. **Specify** (an action sequence) 7. **Compare** (the outcome with the goal)

5. **Perceive** (the state of the world)

4. **Perform** (the action sequence)

Abowd and Beale Model, with Explicit UI

Human Errors* in the gulf of execution

Slip

- You have formulated the right action, but fail to execute that action correctly
 - E.g., click the wrong icon, or double-click too slow, ...
- May be corrected by a better interface (spacing, layout, highlights, ...)

Mistake

- You don't know the system well and you may not formulate the right goal
 - E.g., click for Zoom, but it means Search
- The user's mental model of the system's state is not correct
- Requires more radical redesign, or additional training

* About Human Errors

- Human errors should never be considered as faults of the user
- Rather, «they are usually a result of bad design» (Norman)
- Humans tend to be imprecise, distracted, not-omniscient
 - System design should anticipate this human behavior
 - Minimize the chance of inappropriate actions (evaluation)
 - Maximize the possibility of discovering and repairing an inappropriate action (execution)
 - Enable users to understand the state of the system and build an appropriate model

Example (articulation): find the right switch

Example (presentation): Which are the allowed combinations?

Tools, Techniques and Environments

Frameworks: Major UI Styles

- Command line interface
- Menus
- Natural language
- Question/answer and query dialog
- Form-fills and spreadsheets
- Windows, Icons, Menus and Pointers (WIMP)
- Mobile
- Point and click
- Three-dimensional interfaces

Design Processes and Frameworks

Approaches for shaping the design process

User-Centered Design (UCD)

- Avoid the risk of software project failure
 - Estimated 50% are affected by bad developer<->user/client communication
- UCD takes the needs, wants, and limitations of the actual end users into account during each phase of the design process
 - User-centered design issues are discovered during the early stages
- Benefits: systems easier to learn, with faster performance, with less human errors, encourage users to discover advanced features, and avoids "building the wrong system"
- Issues: how to find users? How many? How motivated? How to speak their language? How to extract user needs, business needs, organizational implications?

Participatory Design

- One step further than UCD, users are directly involved in the collaborative design of the things and applications they use
- Engage a group of users
 - Discussions
 - Creating scenarios, sketches, dramatizations
 - Creating and testing lo-fi prototypes
 - Continuous meetings, flexible management
 - Highly reliant on the skills of the group moderators/leaders (keep involved, filter ideas, reward participation, work around resistances, ...)
 - More effective with more mature and prepared user populations (less with kids, elderly, disabled, ...)

Agile Interaction Design

- Borrows ideas from Agile development in software engineering
- Key: evolutionary development
 - System is built incrementally in rapid release cycles
 - Rapid prototyping techniques (for hardware, software and physical objects)
- Focus on low-cost many-iterations prototypes
- Requires fast usability inspection (extreme usability, XU)
- Makers' culture (only if it involves users!)

Design Thinking

"A human-centered approach to innovation that draws from the designer's toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success."

- A 5-stage, non-linear and iterative, process
 - **1. Empathize** research users' needs
 - **2. Define** state the found needs
 - 3. Ideate challenge assumptions and ideate
 - **4. Prototype** create solutions
 - **5. Test** try the solutions out

— Tim Brown, IDEO's Executive Chair

Service Design

- Describe the contemporary shift from products (e.g., a car of a specific brand) to services, e.g., the car as a tool for an elderly customer that wants to take an Uber ride to visit a friend
- Focus on the complete experience, including business resources and processes
- Build upon five key principles, according to "This is Service Design Thinking":
 - **1. User-centered** focus on all users
 - **2. Co-creative** include all relevant stakeholders
 - 3. Sequencing break a complex service into separate processes
 - **4. Evidencing** envision service, not product, experiences
 - 5. Holistic design across networks of users and interactions

Human-centered Design Process

A process for designing interactive systems with a focus on usability

Usability (ISO standard definition)

- Usability: "extent to which a system, product or service can be used by specified <u>users</u> to achieve specified <u>goals</u> with <u>effectiveness</u>, <u>efficiency</u> and satisfaction in a specified <u>context of use</u>"
 - Note 1: The "specified" users, goals and context of use refer to the particular combination of users, goals and context of use for which usability is being considered
 - Note 2: The word "usability" is also used as a qualifier to refer to the design knowledge, competencies, activities and design attributes that contribute to usability, such as usability expertise, usability engineering, usability testing, etc.

Usability

- Usability: how well users can use the system's functionality
- Dimensions of usability:
 - Usefulness: does it do something people want?
 - o Learnability: is it easy to learn?
 - o Memorability: one learned, is it easy to remember?
 - Effectiveness: does it allow reaching the goal?
 - Efficiency: once learned, is it fast to use?
 - Visibility: is the state of the system visible?
 - o Errors: are errors few and recoverable?
 - Satisfaction: is it enjoyable to use?

Usability: Don't Make Me Think

Human-Centered Design Process

(simplified and generic)

Human-Centered Design Process – The Main Steps (1)

Needfinding – what is needed

- O What exactly is needed? How are people currently accomplishing the goal?
- User observation, interviews, ...

Analysis

- Formalize and structure the needs
- Create interaction scenarios, stories, tasks
- Compare current situation with expected new situation

Human-Centered Design Process – The Main Steps (2)

Design

- The main choices to shape the system
- Rules, guidelines, design principles
- Considering different types of users
- Modeling and describing interaction
- Visual layout
- Consider all inputs from cognitive models, communications theories, organization issues

Human-Centered Design Process – The Main Steps (3)

Iteration and prototyping

- Design must be supported by intermediate verification
- Evaluate the design in its partial forms:
 - Prototypes
 - Evaluation metrics
- Involving users

Implementation and deployment

- Hardware and software implementation
- Documentation

HCI in the Software Process

How to include Human-centered processes in Software Engineering

Software Engineering Processes

Where / how does HCI fit in?

Waterfall

Iterative waterfall

Agile (scrum)

Lean

Software Engineering Processes

Where / how does HCI fit in?

Always a step ahead!

Waterfall

Iterative waterfall

Agile (scrum)

Lean

Always a Step Ahead

- Before
 - Every design step
 - Every implementation step
 - Any product iteration (or sprint)
 - 0 ...
- You need a user-centered step
 - Evaluate usability
 - Experiment with users
 - Evaluate alternative flows
 - Evaluate alternative layouts
 - 0 ...

- User-centered steps are cheaper than development
 - User research about users' needs to decide what to design
 - Heuristic evaluations before testing with users
 - Evaluating prototypes instead of full-fledged products
- Anticipate critical decision points later in the project

Always a Step Ahead

- Usability, Safety, Performance, are part of Non-Functional Requirements
- User-centered steps are cheaper than development
 - User research about users' needs to decide what to design
 - Heuristic evaluations before testing with users
 - Evaluating prototypes instead of full-fledged products
- Anticipate critical decision points later in the project

Example

- Each step must be
 - Preceded with user evaluation of the design choices and formalized requirements
 - Followed with user evaluation of the result
- Must produce additional artifacts to allow this kind of iteration
 - Prototypes

References and Thanks

- Robert Miller, MIT Course "6.813/6.831: User Interface Design & Implementation"
 - Spring 2018 http://web.mit.edu/6.813/www/sp18/
 - O Spring 2011 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-831-user-interface-design-and-implementation-spring-2011/index.htm
- Dix et al: Human Computer Interaction
 - o Chapters 3, 5
- Norman: The Design of Everyday Things
 - Chapter 2
- Krug: Don't make me think
 - Introduction
- Shneiderman: Designing the User Interface
 - Chapter 4
- Thanks to Fulvio Corno, past teacher of the course, for his work on this slides