Tutorial No. 5 for ECN-104

Question 1: A memory system has a total of 8 memory chip each with 12 address lines and 4 data lines. What will be the total size of the memory system?

Question 2: A combinational circuit is defined by the functions $F1 = \sum (3, 5, 7)$, $F1 = \sum (4, 5, 7)$. Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs.

Question 3: A combinational logic is defined by the functions $F1 = \sum m$ (3,4, 5, 7, 10, 14, 15) and $F1 = \sum (1, 5, 7, 11, 15)$. Implement the circuit using a PLA with 4 inputs, 6 product terms and 2 outputs.

Question 4: Design a combinational circuit using a ROM that accepts a 3- bit number and generates an output binary number equal to the square of the given input number.

Question 5: Design the following Boolean function using PAL

- a) W (A, B, C, D) = \sum (2, 12, 13)
- b) X (A, B, C, D) = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15)
- c) Y (A, B, C, D) = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)
- d) $Z(A, B, C, D) = \sum (1, 2, 8, 12, 13)$

Question 6: Implement the function $F1 = \sum (0, 1, 2, 5, 7)$ and $F2 = \sum (1, 2, 4, 6)$ using PROM.

Question 7: Implement a 2- bit multiplier using ROM.

Question 8: How many 128 x 8 RAM chips are needed to provide a memory capacity of 2048 bytes?

Question 9: A computer employs RAM chips of 256 x 8 and ROM chips of 1024 x 8. The computer system needs 2K bytes of RAM, 4K bytes of ROM. How many RAM and ROM chips are needed?

Question 10: A 32 – bit wide main memory unit with a capacity of 1 GB is built using 256M×4-bit DRAM chips. The number of rows of memory cells in the DRAM chip is 2¹⁴. The time taken to perform one refresh operation is 50 nanoseconds. The refresh period is 2 milliseconds. The percentage (rounded to the closest integer) of the time available for performing the memory read/write operations in the main memory unit is ______