Jashore University of Science and Technology Department of Physics

Bachelor of Science with Honours in Physics First semester of Third year

Course no.: PHY 3103 Course title: Quantum Mechanics I Assignment no.: 01 Date: May 02, 2022

Last date of submission: May 12, 2022

- 1. Let $\hat{\mathbf{L}}$ be a quantum-mechanical angular momentum operator. Evaluate $[[\hat{L}_x, \hat{L}_y], [\hat{L}_y, \hat{L}_z]]$. [3]
- **2.** Derive the expressions to write angular momentum operators \hat{L}_x , \hat{L}_y , \hat{L}_z and $\hat{\mathbf{L}}^2$ in spherical coordinates.
- **3.** If $\hat{L}_z Y_{lm} = \hbar m Y_{lm}$, where Y_{lm} is the spherical harmonics show that $m \in \mathbb{Z}$.
- **4.** For a hydrogen atom write down the Schrödinger equation in terms of the relative coordinate \mathbf{r} and center of mass coordinate \mathbf{R} . Hence find the wave functions that describe (a) the motion of center of mass as a particle of mass M and (b) the ground state of the hydrogen atom.