Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет информационных технологий и программирования

Прикладная математика Лабораторная работа №3

Выполнили студенты группы № М32091

Фисенко Никита Данилович Рустамов Марк Самирович

Постановка задачи:

- Реализовать алгоритм градиентного спуска с постоянным шагом.
- Реализовать алгоритм спуска с дроблением шага, используя условие Армихо.
- Реализовать метод наискорейшего спуска.
- Реализовать метод сопряженных градиентов.
- Проанализировать траектории предложенных алгоритмов на примерах квадратичных функций.
- Исследовать сходимость градиентного спуска с постоянным шагом, а также сравнить полученные результаты для всех функций; сравнить эффективность методов, а также исследовать работу методов в зависимости от выбора начальной точки.
- Реализовать генератор случайных квадратичных функций и исследовать зависимость числа итераций, необходимых градиентному спуску для сходимости от размерности пространства и числа обусловленности оптимизируемой функции.

Цель работы:

Изучение градиентных методов, их реализация, анализ сходимости, а также сравнение эффективности и изображение на графиках.

Теория:

1. Метод градиентного спуска с постоянным шагом.

$$x^{[k+1]} = x^{[k]} - \lambda^{[k]} \nabla f(x^{[k]})$$

Метод градиентного спуска с постоянным шагом является одним из наиболее простых и эффективных методов оптимизации функций. Он используется для минимизации функций, имеющих множество локальных минимумов. Основная идея метода заключается в том, чтобы двигаться в направлении антиградиента функции с фиксированным шагом. Антиградиент функции — это вектор, направленный в сторону наиболее быстрого убывания функции. Шаг — это размер шага, который определяет, насколько далеко нужно переместиться в направлении антиградиента. При выборе значения шага нужно учитывать, что слишком большой шаг может привести к расходимости алгоритма, а слишком маленький - к слишком медленной сходимости.

2. Метод градиентного спуска с дроблением шага, с использованием условия Армихо.

В этом варианте градиентного метода величина шага на каждой итерации выбирается из условия выполнения неравенства (условие Армихо):

$$f(x^{[k+1]}) \le f(x^{[k]}) - \epsilon \lambda^{[k]} ||f'(x^{[k]})||^2$$

В данном алгоритме условие Армихо позволяет контролировать выбор шага на каждой итерации. Оно гарантирует, что новая точка будет достаточно близко к предыдущей точке и что изменение функции f(x) будет не менее значимым, чем ожидаемое. Это помогает избежать слишком малых или слишком больших шагов, которые могут замедлить сходимость алгоритма.

3. Метод наискорейшего спуска (на основе метода Брента).

Этот вариант градиентного метода основывается на выборе шага из следующего соображения. Из точки x(k) будем двигаться в направлении антиградиента до тех пор, пока не достигнем минимума функции f на этом направлении:

$$\lambda^{[k]} = \arg\min_{\lambda \in [0,\infty)} f(x^{[k]} - \lambda f'(x^{[k]}))$$

Другими словами, шаг выбирается так, чтобы следующая итерация была точкой минимума функции f. Метод наискорейшего спуска требует решения на каждом шаге задачи одномерной оптимизации. В нашей работе для её решения используется метод Брента.

4. Метод сопряженных градиентов.

Метод сопряжённых градиентов — итерационный метод для безусловной оптимизации в многомерном пространстве. Он основывается на использовании градиентов и ортогональности направлений спуска. Основная идея метода заключается в том, чтобы выбрать направления спуска таким образом, чтобы они были ортогональны друг другу. Это позволяет избежать зацикливания в локальных минимумах и быстрее достигать глобального минимума. Основным достоинством метода является то, что он решает квадратичную задачу оптимизации за конечное число шагов.

Реализация методов:

https://github.com/russianZAK/applied-mathematics/blob/main/Lab%203/lab3.ipynb

Траектории алгоритмов на примере квадратичных функций f, g, h;

Все описанные алгоритмы хорошо сходились на примере функций f, g, h.

Сходимость градиентного спуска с постоянным шагом:

Сходимость градиентного спуска с постоянным шагом зависит от выбора шага и свойств функции, которую мы оптимизируем. Если шаг выбран правильно, то градиентный спуск с постоянным шагом сходится к оптимальному решению. Однако, если шаг выбран слишком большим, то градиентный спуск может расходиться и не достигать оптимального решения. Если же шаг выбран слишком маленьким, то градиентный спуск будет сходиться очень медленно и может затянуться на несколько итераций. Для того чтобы гарантировать сходимость градиентного спуска с постоянным шагом, необходимо выбирать шаг таким образом, чтобы он был достаточно маленьким для обеспечения сходимости, но при этом не слишком маленьким, чтобы обеспечить быструю сходимость. В ходе работы данные выводы подтвердились.

Сравнение эффективности методов с точки зрения количества вычислений минимизируемой функции и её градиентов:

В ходе работы было установлено, что наиболее эффективным на всех 3 примерах квадратичных функций f, g, h с точки зрения количества вычислений минимизируемой функции и её градиентов стал метод сопряженных градиентов. Метод наискорейшего спуска на основе метода Брента работал практически одинаково с методом сопряженных градиентов на функциях f и g, однако стал заметно менее эффективным на функции h. Самым же наименее эффективным показал себя метод градиентного спуска с постоянным шагом.

Работа методов в зависимости от выбора начальной точки:

Выбор начальной точки может сильно влиять на эффективность методов. Если начальная точка выбрана неправильно, то метод может зациклиться в локальных минимумах или сходиться медленно. Однако ходе работы было установлено, что все описанные методы были достаточно устойчивыми в плане выбора начальной точки. Только для функции h метод наискорейшего спуска на основе метода Брента сходился плохо.

Зависимость числа итераций, необходимых градиентному спуску для сходимости в зависимости от размерности пространства и числа обусловленности оптимизируемой функции:

В ходе работы было установлено, что на малых (<50) размерностях пространства число итераций не превышает 200 вне зависимости от числа обусловленности минимизируемой функции. В остальных случаях при одинаковом числе обусловленности число итераций одинаковое вне

зависимости от размерности и увеличивается при увеличении числа обусловленности.

Выводы:

- Все описанные алгоритмы хорошо сходились на примере функций f, g, h.
- Сходимость градиентного спуска с постоянным шагом зависит от выбора шага и свойств функции, которую мы оптимизируем. Если шаг выбран правильно, то градиентный спуск с постоянным шагом сходится к оптимальному решению.
- Наиболее эффективным на всех 3 примерах квадратичных функций f, g, h c точки зрения количества вычислений минимизируемой функции и её градиентов стал метод сопряженных градиентов. Самым же наименее эффективным показал себя метод градиентного спуска с постоянным шагом.
- Выбор начальной точки может сильно влиять на эффективность методов. Однако все описанные методы были достаточно устойчивыми в плане выбора начальной точки.
- На малых (<50) размерностях пространства число итераций не превышает 200 вне зависимости от числа обусловленности минимизируемой функции. В остальных случаях при одинаковом числе обусловленности число итераций одинаковое вне зависимости от размерности и увеличивается при увеличении числа обусловленности.