Suites et séries de fonctions

Suites de fonctions

Solution 1

On montre aisément que $P\mapsto\sup_{t\in[0,1]}|P(t)|$ est une norme sur $\mathbb{R}_d[X]$. Il est alors clair que $(i)\implies(iii)$ (on a même l'équivalence).

Il est également évident que $(iii) \Longrightarrow (ii)$.

Reste à montrer que $(ii) \implies (i)$. Supposons donc que (P_n) converge simplement. Soient x_0, \dots, x_d des réels distincts dans [0,1]. Notons X_n le vecteur colonne de P_n dans la base canonique. Puisque (P_n) converge simplement sur [0,1], il existe des réels y_0, \dots, y_d tels que $P_n(x_k) \xrightarrow[n \to +\infty]{} y_k$. Notons $V = \left(x_i^j\right)_{1 \le i,j \le n}$ et Y le vecteur colonne formé des y_k . On a donc $VX_n \xrightarrow[n \to +\infty]{} Y$ pour la norme infinie sur \mathbb{R}^{d+1} . Or V est une matrice de Vandermonde inversible et la multiplication par V^{-1} étant continue, on en déduit que $X_n \xrightarrow[n \to +\infty]{} V^{-1}Y$. On montre

facilement que $P\mapsto \max_{0\leq k\leq d}|a_k|$ où $P=\sum_{k=0}^d a_kX^k$ est une norme sur $\mathbb{R}_d[X]$. Le fait que (X_n) converge dans \mathbb{R}^{d+1} signifie donc que (P_n) converge dans $\mathbb{R}_d[X]$ pour la norme précédente.

Remarque. Comme \mathbb{R}^{d+1} et $\mathbb{R}_d[X]$ sont isomorphes, la convergence de (X_n) entraîne automatiquement la convergence de (P_n) . Il n'est pas nécessaire de parler de normes.

Solution 2

Soient a_0, \ldots, a_p des éléments distincts de [a,b] et notons L_0, \ldots, L_p les polynômes de Lagrange associés ces p+1 points. Il existe donc des suites $(\lambda_{0,n}), \ldots (\lambda_{p,n})$ telle que pour tout $n \in \mathbb{N}$, $P_n = \sum_{k=0}^p \lambda_{k,n} L_k$. On a donc pour tout $n \in \mathbb{N}$ et pour tout $k \in [0,p]$, $P_n(a_k) = \lambda_{k,n}$. La convergence simple de (P_n) vers f montre que pour tout $k \in [0,p]$, $(\lambda_{k,n})$ converge vers $\lambda_k = f(a_k)$. On en déduit que (P_n) converge simplement vers $\sum_{k=0}^p \lambda_k L_k$, ce qui prouve que f est un polynôme de degré inférieur ou égal à f. Pour tout f0 en la par inégalité triangulaire :

$$|P_n(x) - f(x)| \le \sum_{k=0}^n |\lambda_{k,n} - \lambda_k| |L_k(x)|$$

Les polynômes de Lagrange L_k étant continus sur le segment [a, b], ils y sont bornés. Posons $M = \max_{0 \le k \le p} \|L_k\|_{\infty}$. On a donc

$$\|\mathbf{P}_n - f\|_{\infty} \le \mathbf{M} \sum_{k=0}^n |\lambda_{k,n} - \lambda_k|$$

Comme chacune des suites $(\lambda_{k,n})$ converge vers λ_k , la suite (P_n) converge uniformément vers f.

Solution 3

Posons $f_n = f^{(n)}$ pour tout $n \in \mathbb{N}$. La suite (f'_n) est une suite extraite de la suite (f_n) : elle converge donc uniformément vers φ . Mais puisque (f_n) converge uniformément et donc a fortiori simplement vers φ , le théorème de dérivabilité des suites de fonctions nous assure que φ est de classe \mathcal{C}^1 et que $\varphi' = \varphi$. On en déduit que φ est colinéaire à la fonction exponentielle.

Réciproquement, si $f = \lambda \exp$ avec $\lambda \in \mathbb{R}$, la suite $(f^{(n)})$ converge uniformément vers $\lambda \exp$ puisqu'elle est constante.

Solution 4

- 1. Soit $x \in \pi \mathbb{Z}$. Alors pour tout $n \in \mathbb{N}$, $f_n(x) = 0$. Soit maintenant $x \in \mathbb{R} \setminus \pi \mathbb{Z}$. Alors $|\cos x| < 1$ donc $\lim_{n \to +\infty} n \cos^n x = 0$ puis $\lim_{n \to +\infty} f_n(x) = 0$. Finalement la suite (f_n) converge simplement vers la fonction nulle.
- 2. Posons $x_n = \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors pour tout $n \in \mathbb{N}^*$, $x_n \in \left[0, \frac{\pi}{2}\right]$. D'une part, $n \sin(x_n) \xrightarrow[n \to +\infty]{} 1$. D'autre part, $\cos^n(x_n) = e^{n \ln(\cos(1/n))}$ et

$$\ln(\cos(1/n)) = \lim_{n \to +\infty} \ln(1 + o(1/n)) = \lim_{n \to +\infty} o(1/n)$$

de sorte que $\cos^n(x_n) \xrightarrow[n \to +\infty]{n \to +\infty} 1$. Finalement, $\lim_{n \to +\infty} f_n(x_n) = 1 \neq 0$ donc la suite (f_n) ne converge pas uniformément.

Soit maintenant $a \in \left[0, \frac{\pi}{2}\right]$. Alors pour tout $x \in \left[a, \frac{\pi}{2}\right]$,

$$|f_n(x)| \le n \cos^n(a) \sin(a)$$

donc

$$|f_n|_{\infty} \leq n \cos^n(a) \sin(a)$$

(c'est même une égalité) donc $\lim_{n\to+\infty}|f_n|=0$ puisque $0\leq\cos a<1$. Ainsi (f_n) converge uniformément vers la fonction nulle sur $\left|a,\frac{\pi}{2}\right|$.

3. Méthode n°1

Remarquons tout d'abord que f_n est positive et que

$$\int_0^{\frac{\pi}{2}} f_n(t) dt = -\frac{n}{n+1} \left[\cos^{n+1} t \right]_0^{\frac{\pi}{2}} = \frac{n}{n+1}$$

Soit $\varepsilon \in \mathbb{R}_+^*$. Comme g est continue en 0, il existe $\alpha \in \mathbb{R}_+^*$ tel que $|g(x) - g(0)| \le \frac{\varepsilon}{2}$ pour tout $x \in [0, \alpha]$. Ensuite,

$$\left| \int_{0}^{\frac{\pi}{2}} f_{n}(t)g(t) dt - \int_{0}^{\frac{\pi}{2}} f_{n}(t)g(0) dt \right| \leq \int_{0}^{\frac{\pi}{2}} f_{n}(t)|g(t) - g(0)| dt$$

$$\leq \int_{0}^{\alpha} f_{n}(t)|g(t) - g(0)| dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g(t) - g(0)| dt$$

$$\leq \int_{0}^{\alpha} f_{n}(t)\varepsilon dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g - g(0)|_{\infty} dt$$

$$\leq \int_{0}^{\frac{\pi}{2}} f_{n}(t)\varepsilon dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g - g(0)|_{\infty} dt$$

$$\leq \frac{n\varepsilon}{2(n+1)} + ||g - g(0)||_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t) dt$$

$$\leq \frac{\varepsilon}{2} + ||g - g(0)||_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t) dt$$

Comme (f_n) converge uniformément vers la fonction nulle sur le segment $\left[\alpha, \frac{\pi}{2}\right]$, $\lim_{n \to +\infty} \int_{\alpha}^{\frac{\pi}{2}} f_n(t) dt = 0$. Il existe donc $N \in \mathbb{N}$ tel que pour tout entier $n \ge N$, $\|g - g(0)\|_{\infty} \int_{\alpha^2}^{\frac{\pi}{2}} f_n(t) dt \le \varepsilon$. On en déduit que pour $n \ge N$,

$$\left| \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt - \int_0^{\frac{\pi}{2}} f_n(t) g(0) dt \right| \le \varepsilon$$

Ainsi

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt - \int_0^{\frac{\pi}{2}} f_n(t) g(0) dt = 0$$

Finalement,

$$\int_0^{\frac{\pi}{2}} f_n(t)g(0) dt = \frac{ng(0)}{n+1} \underset{n \to +\infty}{\longrightarrow} g(0)$$

donc

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt = g(0)$$

Méthode n°2

L'application $t \mapsto \cos^{n+1} t$ est bijective de $[0, \pi/2]$ sur [0, 1], strictement décroissante et de classe \mathcal{C}^1 donc, par changement de variable

$$\int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = \frac{n}{n+1} \int_0^1 f(\arccos(^{n+1}\sqrt{u})) du$$

La fonction $u \mapsto f(\arccos(^{n+}\sqrt{u}))$ converge simplement sur]0,1] vers la fonction constante égale à f(0) car f est continue en 0. De plus, g est bornée [0,1] (continue sur un segment) donc $u \mapsto g(\arccos(^{n+}\sqrt{u}))$ est dominée par une constante (clairement intégrable sur le segment [0,1]). On peut donc appliquer le théorème de convergence dominée de sorte que

$$\lim_{n \to +\infty} \int_0^1 g(^{n+1}\sqrt{u}) \, du = \int_0^1 g(0) \, du = g(0)$$

On en conclut immédiatement que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = g(0)$$

Solution 5

1. Posons $g_n = f - f_n$. Alors la suite (g_n) est positive, décroissante et converge simplement vers la fonction nulle. Puisque g_n est continue sur le segment [a,b], elle y admet un maximum M_n (positif) atteint en $\alpha_n \in [a,b]$. Puisque la suite (α_n) est à valeurs dans le segment [a,b], on peut en extraire une suite $(\alpha_{\varphi(n)})$ convergeant vers $\alpha \in [a,b]$ d'après le théorème de Bozano-Weierstrass. Soit $\varepsilon \in \mathbb{R}_+^*$. La suite $(g_n(\alpha))$ converge vers 0 donc il existe $N \in \mathbb{N}$ tel que $g_N(\alpha) \le \varepsilon$. Soit un entier $n \ge N$. Alors $g_n \le g_N$ et notamment $g_n(\alpha_n) \le g_N(\alpha_n)$. Ainsi

$$M_n = g_n(\alpha_n) = g_N(\alpha) + (g_n(\alpha_n) - g_N(\alpha_n)) + (g_N(\alpha_n) - g_N(\alpha)) \le \varepsilon + (g_N(\alpha_n) - g_N(\alpha))$$

Puisque $\varphi(n) \ge n \ge N$ on a également

$$M_{\varphi(n)} \le \varepsilon + (g_N(\alpha_{\varphi(n)}) - g_N(\alpha))$$

Puisque la suite $(\alpha_{\varphi(n)})$ converge vers α et que g_N est continue, il existe $N' \in \mathbb{N}$ tel que pour tout entier $n \geq N'$, $g_N(\alpha_{\varphi(n)}) - g_N(\alpha) \leq \varepsilon$. On en déduit que pour $n \geq \max\{N, N'\}$, $0 \leq M_{\varphi(n)} \leq 2\varepsilon$. Ceci signifie que la suite $(M_{\varphi(n)})$ converge vers 0.

Par ailleurs, puisque la suite (g_n) est décroissante, la suite (M_n) est également décroissante. Comme elle est minorée par 0, elle converge. On vient de voir que 0 est une valeur d'adhérence donc (M_n) converge vers 0. Puisque $0 \le f - f_n \le M_n$, (f_n) converge uniformément vers la fonction nulle.

2. On peut déjà affirmer que f est croissante en tant que limite simple d'une suite de fonctions croissantes. Soient $\varepsilon \in \mathbb{R}_+^*$ et un entier naturel non nul $p \geq \frac{f(b)-f(a)}{\varepsilon}$. D'après le théorème des valeurs intermédiaires et la croissance de f, il existe des entiers a_0,\ldots,a_p tels que $a=a_0\leq a_1\leq \cdots \leq a_p=b$ et $f(a_k)=f(a)+k\frac{f(b)-f(a)}{p}$. On a donc $f(a_{k+1})-f(a_k)=\frac{f(b)-f(a)}{p}\leq \varepsilon$. Comme f est limite simple de la suite (f_n) , pour tout $k\in [0,p]$, il existe $N_k\in \mathbb{N}$ tel que pour tout $n\geq N_k$, $|f_n(a_k)-f(a_k)|\leq \varepsilon$. Posons $N=\max\{N_0,\ldots,N_k\}$ et donnons-nous un entier $n\geq N$.

$$f_n(x) - f(x) \le f_n(a_{k+1}) - f(a_k) = f_n(a_{k+1}) - f(a_{k+1}) + f(a_{k+1}) - f(a_k) \le 2\varepsilon$$

et

$$f(x) - f_n(x) \le f(a_{k+1}) - f_n(a_k) = f(a_{k+1}) - f(a_k) + f(a_k) - f_n(a_k) \le 2\varepsilon$$

Finalement, $|f(x) - f_n(x)| \le 2\varepsilon$ pour tout $x \in [a, b]$ i.e. $||f - f_n||_{\infty} \le 2\varepsilon$. La suite (f_n) converge donc uniformément vers f.

Solution 6

Pour simplifier, posons $u_n = \left(1 - \frac{1}{n}\right)^n$. Il est classique de montrer que (u_n) converge vers e^{-1} . Montrons alors que

Soit $x \in [a, b]$. Il existe $k \in [0, p-1]$ tel que $x \in [a_k, a_{k+1}]$. Par croissance de f et f_N

$$\lim_{n \to +\infty} \int_{u_n}^{1} x^{\frac{1}{n}} f(x) \, dx = \int_{e^{-1}}^{1} f(x) \, dx$$

Soit $n \in \mathbb{N}^*$.

$$\left| \int_{u_n}^1 x^{\frac{1}{n}} f(x) \, dx - \int_{e^{-1}}^1 f(x) \, dx \right| \le \left| \int_{u_n}^1 x^{\frac{1}{n}} f(x) \, dx - \int_{e^{-1}}^1 x^{\frac{1}{n}} f(x) \, dx \right| + \left| \int_{e^{-1}}^1 x^{\frac{1}{n}} f(x) \, dx - \int_{e^{-1}}^1 f(x) \, dx \right|$$

$$\le \left| \int_{u_n}^{e^{-1}} x^{\frac{1}{n}} f(x) \, dx \right| + \int_{e^{-1}}^1 (1 - x^{\frac{1}{n}}) |f(x)| \, dx$$

$$\le |e^{-1} - u_n| ||f||_{\infty} + (1 - e^{-\frac{1}{n}}) \int_{e^{-1}}^1 |f(x)| \, dx$$

Il suffit alors de faire tendre n vers $+\infty$ pour obtenir le résultat escompté.

Solution 7

Remarquons déjà que $f([0,1]) = \left[0,\frac{1}{2}\right]$ et que les seuls points fixes de f sont 0 et $\frac{1}{2}$.

Etudions la convergence simple. Tout d'abord, $f_n(0) = 0$ pour tout $n \in \mathbb{N}$ et $f_n(1) = 0$ pour tout $n \in \mathbb{N}^*$.

Soit maintenant $x \in]0,1[$ et posons $u_n=f_n(x)$ pour $n \in \mathbb{N}$. Puisque $f([0,1])=\left[0,\frac{1}{2}\right],0 \le u_n \le \frac{1}{2}$ pour tout $n \in \mathbb{N}^*$. Ensuite, pour tout $n \in \mathbb{N}^*$,

$$u_{n+1} - u_n = u_n(1 - 2u_n) \ge 0$$

donc (u_n) est croissante à partir du rang 1. La suite (u_n) converge donc en vertu du théorème de convergence monotone. Comme $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$ et que f est continue sur [0,1], (u_n) converge vers un point fixe ℓ de f. Mais par croissance de (u_n) à partir du rang 1, $\ell \ge u_1 = 2x(1-x) > 0$ donc $\ell = \frac{1}{2}$.

En conclusion, la suite (f_n) converge simplement vers la fonction $g: x \in [0,1] \mapsto \begin{cases} 0 & \text{si } x \in \{0,1\} \\ \frac{1}{2} & \text{sinon} \end{cases}$.

On montre aisément par récurrence que les f_n sont continues sur [0,1] mais g n'est pas continue sur [0,1] donc la suite (f_n) ne converge pas uniformément sur [0,1].

Solution 8

Convergence simple.

Soit $x \in \mathbb{R}$. Si $x \in \pi\mathbb{Z}$, alors $f_n(x) = 0$ pour tout $n \in \mathbb{N}$ donc $\lim_{n \to +\infty} f_n(x) = 0$. Si $x \notin \pi\mathbb{Z}$, alors $|\cos x| < 1$ donc $\lim_{n \to +\infty} f_n(x) = 0$ par croissances comparées. La suite (f_n) converge donc simplement vers la fonction nulle sur \mathbb{R} .

Convergence uniforme. Pour tout $n \in \mathbb{N}^*$,

$$f_n\left(\frac{1}{n}\right) = n \exp\left(n \ln\left(\cos\frac{1}{n}\right)\right) \sin\left(\frac{1}{n}\right)$$

Or $\sin \frac{1}{n} \sim \frac{1}{n}$ et

$$\cos\frac{1}{n} = 1 - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

donc

$$\ln\left(n\cos\frac{1}{n}\right) \underset{n\to+\infty}{\sim} -\frac{1}{2n}$$

puis

$$\lim_{n \to +\infty} \exp\left(n \ln\left(\cos\frac{1}{n}\right)\right) = e^{-\frac{1}{2}}$$

On en déduit que

$$\lim_{n \to +\infty} f_n\left(\frac{1}{n}\right) = e^{-\frac{1}{2}} \neq 0$$

Donc (f_n) ne converge pas uniformément sur \mathbb{R} .

Solution 9

Convergence simple.

Soit $x \in \mathbb{R}$. Si $x \in \frac{\pi}{2} + \pi \mathbb{Z}$, alors $f_n(x) = 0$ pour tout $n \in \mathbb{N}$ donc $\lim_{n \to +\infty} f_n(x) = 0$. Si $x \notin \frac{\pi}{2} + \pi \mathbb{Z}$, alors $|\sin x| < 1$ donc $\lim_{n \to +\infty} f_n(x) = 0$. La suite (f_n) converge donc simplement vers la fonction nulle sur \mathbb{R} .

Convergence uniforme. Remarquons que les $|f_n|$ sont paires et π -périodiques. Ainsi $||f_n||_{\infty,\mathbb{R}} = ||f_n||_{\infty,\left[0,\frac{\pi}{2}\right]}$. On peut donc se contenter d'étudier la convergence uniforme sur $\left[0,\frac{\pi}{2}\right]$. f_n est clairement dérivable sur cet intervalle et

$$\forall x \in [0, \pi], \ f_n'(x) = \sin^{n-1}(x)(n\cos^2 x - \sin^2 x) = \sin^{n-1}(x)\left(n - (n+1)\sin^2 x\right)$$

Ainsi f_n atteint son maximum sur $\left[0, \frac{\pi}{2}\right]$ en $x_n = \arcsin\sqrt{\frac{n}{n+1}}$. De plus, f_n est positive sur $\left[0, \frac{\pi}{2}\right]$. On rappelle que $\cos(\arcsin x) = \sqrt{1-x^2}$ pour $x \in [-1,1]$. On en déduit que

$$||f_n||_{\infty} = f_n(x_n) = \sin^n x_n \cdot \frac{1}{\sqrt{1}n+1} \le \frac{1}{\sqrt{n+1}}$$

Par conséquent, $\lim_{n\to+\infty} \|f_n\|_{\infty} = 0$ et (f_n) converge uniformément vers la fonction nulle sur \mathbb{R} .

Solution 10

1. Soit $x \in [0, 1]$. On a bien $0 \le P_0(x) = 0 \le \sqrt{x}$. Supposons que $0 \le P_n(x) \le \sqrt{x}$ pour un certain $n \in \mathbb{N}$. Alors $x - P_n(x)^2 \ge 0$ donc $P_{n+1}(x) \ge P_n(x) \ge 0$ et

$$\sqrt{x} - P_{n+1}(x) = \left(\sqrt{x} - P_n(x)\right) \left(1 - \frac{1}{2}\left(\sqrt{x} + P_n(x)\right)\right) \ge 0$$

donc $P_{n+1}(x) \le \sqrt{x}$. On conclut par récurrence.

2. On reprend l'inégalité précédente

$$\forall n \in \mathbb{N}, \ 0 \le \sqrt{x} - P_{n+1}(x) = \left(\sqrt{x} - P_n(x)\right) \left(1 - \frac{1}{2}\left(\sqrt{x} + P_n(x)\right)\right) \le \left(\sqrt{x} - P_n(x)\right) \left(1 - \frac{\sqrt{x}}{2}\right)$$

On prouve alors aisément par récurrence que

$$0 \le \sqrt{x} - P_n(x) \le \left(\sqrt{x} - P_0(x)\right) \left(1 - \frac{\sqrt{x}}{2}\right)^n = \sqrt{x} \left(1 - \frac{\sqrt{x}}{2}\right)^n$$

3. On pose $g_n: t \mapsto t\left(1-\frac{t}{2}\right)^n$. L'étude de la fonction g_n montre qu'elle atteint son maximum en $\frac{2}{n+1}$. Ainsi

$$\forall x \in [0,1], \ 0 \le \sqrt{x} - P_n(x) \le g_n(\sqrt{x}) \le g_n\left(\frac{2}{n+1}\right) = \frac{2}{n+1}\left(1 - \frac{1}{n+1}\right)^n \le \frac{2}{n+1}$$

On en déduit que (P_n) converge uniformément sur [0,1] vers la fonction $x \mapsto \sqrt{x}$.

Solution 11

1. La fonction f_n est clairement positive et une étude de fonctions montre qu'elle admet un maximum en n. Ainsi

$$\forall x \in [0,1], \ \forall n \in \mathbb{N}, \ 0 \le f_n(x) \le f_n(n) = \frac{n^n e^{-n}}{n!}$$

On rappelle la formule de Stirling

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Ainsi

$$\lim_{n \to +\infty} \frac{n^n e^{-n}}{n!} = 0$$

donc (f_n) converge uniformément vers la fonction nulle.

2. En posant $I_n = \int_0^{+\infty} f_n(t) dt$, une intégration par parties montre que $I_{n+1} = I_n$ donc $I_n = I_0 = 1$ pour tout $n \in \mathbb{N}$. Ainsi $\lim_{n \to +\infty} I_n = 1$. Evidemment, $\int_0^{+\infty} f(t) dt = 0$.

Remarque. On ne peut pas ici appliquer le théorème d'interversion limite/intégrale car la convergence uniforme n'a pas lieu sur un segment.

Solution 12

On a clairement $f_n(1) = 0$ et donc $\lim_{n \to +\infty} f_n(1) = 0$. Si $x \in [0, 1[$, la suite $(f_n(x))$ est géométrique de raison $x \in [0, 1[$ donc converge vers 0. Ainsi (f_n) converge simplement vers la fonction nulle sur [0, 1]. De plus, f_n est positive sur [0, 1] et atteint son maximum en $\frac{n}{n+1}$ (étude facile). Ainsi

$$||f_n||_{\infty} = f_n\left(\frac{n}{n+1}\right) = \frac{n^{\alpha}}{n+1}\left(\frac{n}{n+1}\right)^n$$

On montre facilement que $||f_n||_{\infty} \sim n^{\alpha-1}e^{-1}$. Ainsi (f_n) converge uniformément si et seulement si $\alpha < 1$.

Séries de fonctions

Solution 13

- **1.** Posons $f_n(x) = \frac{nx^{2n-1}}{1-x^{2n}}$ pour $n \ge 1$. Remarquons que les f_n sont définies sur $\mathbb{R} \setminus \{-1, 1\}$.
 - Si |x| > 1, $|f_n(x)| \ge \frac{n}{|x|}$. Ainsi $|f_n(x)| \xrightarrow[n \to +\infty]{} +\infty$ donc la série $\sum_{n \ge 1} f_n(x)$ diverge grossièrement.
 - Si |x| < 1, $|f_n(x)| \sim n|x|^{2n-1}$. Or la série $\sum_{n \ge 1} n|x|^{2n-1}$ converge d'après le critére de d'Alembert. La série $\sum_{n \ge 1} f_n(x)$ converge donc absolument.

La série $\sum_{n\geq 1}$ converge donc simplement sur D =] - 1,1[qui est le domaine de définition de f.

2. Pour tout $n \ge 1$, f_n est de classe \mathcal{C}^1 sur D et pour tout $x \in D$,

$$f_n'(x) = \frac{nx^{2n-2}(2n-1+x^{2n})}{(1-x^{2n})^2}$$

Soit $a \in]0,1[$. Pour $x \in]-a,a[$,

$$|f'_n(x)| \le \frac{2n^2a^{2n-2}}{1-a^{2n}} \underset{n \to +\infty}{\sim} 2n^2a^{2n-2}$$

Or la série $\sum_{n\geq 1} 2n^2a^{2n-2}$ converge d'après le critère de d'Alembert. On en déduit que $\sum_{n\geq 1} \frac{2n^2a^{2n-2}}{1-a^{2n}}$ converge puis que $\sum_{n\geq 1} f_n'$ converge normalement sur [-a,a]. Puis que $\sum_{n\geq 1} f_n$ converge simplement sur [-a,a], on en déduit que S est de classe \mathcal{C}^1 sur [-a,a]. Ceci étant valable pour tout $a\in]0,1[$, S est de classe \mathcal{C}^1 sur]-1,1[.

- 3. On a facilement $f'_n \ge 0$ sur D pour tout $n \ge 1$. De plus f'_n ne s'annule qu'en 0. On en déduit que $S' \ge 0$ sur D et ne s'annule qu'en 0. Ainsi S est strictement croissante sur D.
- **4.** Pour $n \ge 1$ et $x \in [0, 1[$, $f_n(x) \ge x^{2n-1}$. Or $\sum_{n \ge 1} x^{2n-1} = \frac{x}{1-x^2} \xrightarrow[x \to 1^-]{} +\infty$. Ainsi $\lim_{n \to 1^+} S = +\infty$. Toutes les f_n étant impaires, S est également impaire et on en déduit $\lim_{n \to 1^+} S = -\infty$.

Solution 14

1. On remarque tout d'abord que les f_n sont définies sur $]-1,+\infty[$. On calcule un développement limité de $f_{n+1}(x)-f_n(x)$:

$$f_{n+1}(x) - f_n(x) = \frac{1}{n+1+x} - 2\sqrt{n+1} + 2\sqrt{n}$$

$$= \frac{1}{n+1+x} - \frac{2}{\sqrt{n+1} + \sqrt{n}}$$

$$= \left(-\frac{1}{4} - \frac{x}{2}\right) \frac{1}{n^{\frac{3}{2}}} + o\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

Comme la série $\sum_{n\geq 1} \frac{1}{n^{\frac{3}{2}}}$ converge, on en déduit que $\sum_{n\geq 1} f_{n+1} - f_n$ converge simplement sur $]-1,+\infty[$.

2. La convergence simple de la série $\sum_{n\geq 1} f_{n+1} - f_n$ équivaut à la convergence simple de la suite (f_n) vers une fonction f. Notons f sa limite et posons $g_n = f_{n+1} - f_n$. g_n est dérivable sur $]-1,+\infty[$ et pour $x\in]-1,+\infty[$:

$$g'_n(x) = -\frac{1}{2(n+1+x)^{\frac{3}{2}}}$$

De plus, pour $x \in]-1, +\infty[$

$$|g_n'(x)| \le \frac{1}{2n^{\frac{3}{2}}}$$

ce qui prouve que $\sum_{n\geq 1}g'_n$ converge normalement. Comme $\sum_{n\geq 1}g_n$ converge simplement vers une fonction g, on en déduit que g est de classe \mathcal{C}^1 sur $]-1,+\infty[$. De plus, en utilisant un télescopage, $g=f-f_1$. Comme f_1 est elle-même de classe \mathcal{C}^1 sur $]-1,+\infty$, on en déduit que f est de classe \mathcal{C}^1 .

3. Comme $\sum_{n\geq 1} g_n$ converge normalement, cette série converge uniformément. Par conséquent, la suite (f_n) converge uniformément. Par conséquent :

$$\int_0^1 f(t) dt = \lim_{n \to +\infty} \int_0^1 f_n(t) dt$$

Or, par une intégration facile :

$$\int_0^1 f_n(t) dt = \left(2 \sum_{k=1}^n \sqrt{k+1} - \sqrt{k}\right) - 2\sqrt{n}$$
$$= 2\sqrt{n+1} - 2 - 2\sqrt{n} = \frac{2}{\sqrt{n+1} + \sqrt{n}} - 2$$

On en déduit que $\int_0^1 f(t) dt = -2$.

Solution 15

Posons $F_n = \sum_{k=1}^n f_k$ pour tout $n \in \mathbb{N}^*$. On montre classiquement que pour tout $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$,

$$F_n(x) = \frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}$$

Soit $x \in \mathbb{R}$. Si $x \in 2\pi\mathbb{Z}$, la convergence de la série $\sum_{n \geq 1} a_n f_n(x)$ est triviale. Supposons donc $x \notin 2\pi\mathbb{Z}$. Alors pour tout $n \in \mathbb{N}^*$,

$$|F_n(x)| \le \frac{1}{\left|\sin\frac{x}{2}\right|}$$

Par une transformation d'Abel, on trouve

$$\sum_{k=1}^{n} a_k f_k(x) = a_n F_n(x) - \sum_{k=1}^{n-1} (a_k - a_{k-1}) F_k(x)$$

Pour tout $n \in \mathbb{N}^*$

$$|a_n F_n(x)| \le \frac{a_n}{\left|\sin\frac{x}{2}\right|}$$

La suite $(a_n F_n(x))$ converge donc vers 0 puisque (a_n) converge vers 0. De plus, pour tout $n \in \mathbb{N}^*$,

$$|(a_n - a_{n-1})F_n(x)| \le \frac{a_n - a_{n-1}}{\left|\sin\frac{x}{2}\right|}$$

La série télescopique $\sum_{n\geq 1}a_n-a_{n-1}$ converge puisque (a_n) converge. La série $\sum_{n\geq 1}(a_n-a_{n-1})F_n(x)$ converge donc absolument. La suite de ses sommes partielles, à savoir la suite de terme général $\sum_{k=1}^{n-1} (a_k - a_{k-1}) F_k(x)$, converge donc. La transformation d'Abel montre donc que la suite de terme général $\sum_{k=1}^{n} a_k f_k(x)$ converge i.e. la série $\sum_{n\geq 1} a_n f_n(x)$ converge.

On en conclut la convergence simple de la série $\sum_{n\geq 1} a_n f_n$ converge simplement sur \mathbb{R} .

Solution 16

Supposons que la série $\sum_{n\in\mathbb{N}^*}a_nf_n$ converge uniformément sur \mathbb{R} . Alors la suite de terme général. $\sum_{k=n+1}^{2n}a_kf_k$ converge uniformément sur \mathbb{R} vers la fonction nulle. En particulier,

$$\lim_{n \to +\infty} \sum_{k=n+1}^{2n} a_k f_k \left(\frac{\pi}{2n} \right) = 0$$

Fixons $n \in \mathbb{N}^*$. Pour tout $k \in [n+1, 2n], \frac{k\pi}{2n} \in [0, \frac{\pi}{2}]$ et la fonction sin est concave sur cet intervalle donc

$$f_k\left(\frac{\pi}{2n}\right) = \sin\frac{k\pi}{2n} \ge \frac{2}{\pi} \cdot \frac{k\pi}{2n} = \frac{k}{n}$$

Par ailleurs, la suite (a_n) est positive donc

$$\sum_{k=n+1}^{2n} a_k f_k\left(\frac{\pi}{2n}\right) \ge \sum_{k=n+1}^{2n} \frac{k a_k}{n}$$

Par décroissance de la suite (a_n) ,

$$\sum_{k=n+1}^{2n} \frac{ka_k}{n} \ge \frac{(n+1)a_{n+1}}{2} \ge \frac{na_n}{2} \ge 0$$

Finalement,

$$0 \le na_n \le 2\sum_{k=n+1}^{2n} a_k f_k\left(\frac{\pi}{2n}\right)$$

donc la suite (na_n) converge vers 0 par encadrement.

Réciproquement, supposons que la suite (na_n) converge vers 0. Montrons d'abord la convergence simple. Il est clair que la série $\sum_{n\in\mathbb{N}^*}a_nf_n$ converge simplement en tout point de $2\pi\mathbb{Z}$. Donnons-nous maintenant un réel $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. On va alors utiliser une transformation d'Abel. On pose pour $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n f_k$.

$$\begin{split} \sum_{k=1}^{n} a_k f_k &= \sum_{k=1}^{n} a_k (\mathbf{S}_k - \mathbf{S}_{k-1}) \\ &= \sum_{k=1}^{n} a_k \mathbf{S}_k - \sum_{k=n-1}^{p-1} a_{k+1} \mathbf{S}_k \\ &= a_{n+1} \mathbf{S}_n + \sum_{k=1}^{n} (a_k - a_{k+1}) \mathbf{S}_k \end{split}$$

On calcule alors classiquement

$$S_n(x) = \frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}$$

On en déduit que $|S_n(x)| \le \frac{1}{|\sin(x/2)|}$. Ainsi

$$\lim_{n \to +\infty} a_{n+1} S_n(x) = 0$$

et, comme (a_n) est décroissante,

$$0 \le |(a_n - a_{n+1})S_n(x)| \le \frac{a_n - a_{n+1}}{|\sin(x/2)|}$$

La série $\sum_{n\in\mathbb{N}^*}a_n-a_{n+1}$ converge car (a_n) converge donc la série $\sum_{n\in\mathbb{N}^*}(a_n-a_{n+1})S_n(x)$ est absolument convergente donc convergente. La suite de terme général $\sum_{k=1}^n(a_k-a_{k+1})S_k(x)$ converge donc. D'après la transformation d'Abel précédemment écrite, la suite de terme général $\sum_{k=1}^{n} a_k f_k(x)$ converge également. Autrement dit, la série $\sum_{n \in \mathbb{N}} a_n f_n(x)$ converge. Finalement, la série de fonctions $\sum_{n \in \mathbb{N}^*} a_n f_n(x)$

converge simplement sur \mathbb{R} . On peut alors poser $R_n = \sum_{k=n+1}^{+\infty} a_k f_k$. A nouveau, par transformation d'Abel

$$\sum_{k=n+1}^{p} a_k f_k = \sum_{k=1}^{p} a_k f_k - \sum_{k=1}^{n} a_k f_k = a_{p+1} S_p - a_{n+1} S_n + \sum_{k=n+1}^{p} (a_k - a_{k+1}) S_k$$

puis, en faisant tendre p vers $+\infty$

$$R_n = \sum_{k=n+1}^{+\infty} (a_k - a_{k+1}) S_k - a_{n+1} S_n$$

car pour tout $x \in \mathbb{R}$, la suite $(S_p(x))_{p \in \mathbb{N}}$ est bornée et (a_p) converge vers 0.

On a déjà vu que

$$\forall x \in \mathbb{R} \setminus 2\pi \mathbb{Z}, \ |(a_k - a_{k+1})S_k(x)| \le \frac{a_k - a_{k+1}}{|\sin(x/2)|}$$

et la série télescopique $\sum a_n - a_{n+1}$ converge puisque la suite (a_n) converge vers 0. On a donc par inégalité triangulaire

$$\forall x \in \mathbb{R} \setminus 2\pi \mathbb{Z}, \ |R_n(x)| \le \frac{1}{|\sin(x/2)|} \sum_{k=n+1}^{+\infty} (a_k - a_{k+1}) + a_{n+1} |S_n(x)| \le \frac{2a_{n+1}}{|\sin(x/2)|}$$

Comme les f_n sont 2π -périodiques, on va supposer que $x \in]0,\pi]$. Par positivité et concavité de sin sur $[0,\pi/2]$,

$$|\sin(x/2)| = \sin(x/2) \ge \frac{x}{\pi}$$

Finalement.

$$\forall x \in]0,\pi], \ |\mathbf{R}_n(x)| \le \frac{2\pi a_{n+1}}{x}$$

Soit $\varepsilon \in \mathbb{R}_+^*$. Comme (na_n) converge vers 0, il existe $N \in \mathbb{N}$ tel que $na_n \le \varepsilon$ pour tout entier $n \ge N$. Fixons alors $x \in]0,\pi]$ et posons $p = |\pi/x|$. Soit un entier $n \ge N$.

• Si $n \ge \max\{p, N\}$, alors

$$|R_n(x)| \le \frac{2\pi a_{n+1}}{x} \le \frac{2\pi a_{p+1}}{x} \le \frac{2(p+1)a_{p+1}}{\le 2\epsilon}$$

• Sinon, $N \le n < p$. Dans ce cas,

$$\begin{split} |\mathbf{R}_n(x)| &= \left| \sum_{k=n+1}^p a_k \sin(kx) + \mathbf{R}_p(x) \right| \\ &\leq \sum_{k=n+1}^p a_k |\sin(kx)| + |\mathbf{R}_p(x)| \quad \text{par inégalité triangulaire} \\ &\leq \sum_{k=n+1}^p a_k kx + |\mathbf{R}_p(x)| \quad \text{car } |\sin(u)| \leq |u| \\ &\leq \sum_{k=n+1}^p ka_k x + 2\varepsilon \quad \text{d'après le cas précédent} \\ &\leq (p-n)x\varepsilon + 2\varepsilon \quad \text{car } ka_k \leq \varepsilon \text{ pour } k \geq \mathbf{N} \\ &\leq px\varepsilon + 2\varepsilon \leq (\pi+2)\varepsilon \quad \text{par définition de } p \end{split}$$

Dans tous les cas, $|R_n(x)| \le (\pi + 2)\varepsilon$ pour tout $x \in]0,\pi]$. Cette inégalité est encore vraie de manière évidente lorsque x = 0 et donc finalement vraie pour tout $x \in \mathbb{R}$ puisque R_n est 2π -périodique et impaire. Ceci montre que (R_n) converge uniformément vers la fonction nulle i.e. que $\sum a_n f_n$ converge uniformément.

Solution 17

1. Soit $x \in \mathbb{R}_+^*$. Alors $\frac{1}{\sinh(nx)} \sim 2e^{-nx}$ et $\sum e^{-nx}$ est une série à termes positifs convergente (série géométrique de raison $e^{-x} \in [0,1[)$. Ainsi la série $\sum \frac{1}{\sinh(nx)}$ converge. f est donc définie sur \mathbb{R}_+^* . Mais f est manifestement impaire donc f est définie sur \mathbb{R}_+^* .

On utilise ensuite une comparaison à une intégrale. Fixons $x \in \mathbb{R}_+^*$. La fonction $t \mapsto \frac{1}{\operatorname{sh}(xt)}$ est décroissante de sorte que pour tout $n \in \mathbb{N}^*$,

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)} \le f(x) \le \frac{1}{\mathrm{sh}\,x} + \int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)}$$

Une primitive de $\frac{1}{\sinh}$ étant $t \mapsto \ln(\tanh(x/2))$, on trouve

$$-\frac{1}{x}\ln\left(\operatorname{th}\left(\frac{x}{2}\right)\right) \le f(x) \le \frac{1}{\operatorname{sh} x} - \frac{1}{x}\ln\left(\operatorname{th}\left(\frac{x}{2}\right)\right)$$

On montre aisément que $\ln\left(\operatorname{th}\left(\frac{x}{2}\right)\right) \underset{x \to 0^+}{\sim} \ln x$ et on sait que $\frac{1}{\operatorname{sh} x} \underset{x \to 0^+}{\sim} \frac{1}{x}$. Comme $\frac{1}{x} \underset{x \to 0^+}{=} o\left(\frac{\ln x}{x}\right)$, on en déduit que

$$f(x) \underset{x \to 0^+}{\sim} -\frac{\ln x}{x}$$

Comme f est impaire, on peut affirmer que

$$f(x) \underset{x \to 0}{\sim} -\frac{\ln|x|}{x}$$

Remarque. On peut également remarquer que pour $x \in]0,1]$, par le changement de variable u = xt,

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)} = \frac{1}{x} \int_{x}^{+\infty} \frac{\mathrm{d}u}{\mathrm{sh}\,u} = \frac{1}{x} \int_{x}^{1} \frac{\mathrm{d}u}{\mathrm{sh}\,u} + \frac{1}{x} \int_{1}^{+\infty} \frac{\mathrm{d}u}{\mathrm{sh}\,u}$$

Mais $\frac{1}{\sinh u} \sim \frac{1}{u}$, $u \mapsto \frac{1}{u}$ est positive sur \mathbb{R}^*_+ et $\int_0^1 \frac{du}{u}$ diverge, donc

$$\int_{x}^{1} \frac{\mathrm{d}u}{\sinh u} \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{\mathrm{d}u}{u} = -\ln x$$

On en déduit donc que

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)} = \frac{-\ln x}{x} + \mathcal{O}\left(\frac{1}{x}\right)$$

et on peut alors à nouveau conclure que $f(x) \sim \frac{-\ln x}{x^{-0^+}}$

2. Soit $x \in \mathbb{R}_+^*$. Alors $\frac{1}{\sinh^2(nx)} \sim 4e^{-2nx}$ et $\sum e^{-2nx}$ est une série à termes positifs convergente (série géométrique de raison $e^{-2x} \in [0,1[)$). Ainsi la série $\sum \frac{1}{\sinh^2(nx)}$ converge. g est donc définie sur \mathbb{R}_+^* . Mais g est manifestement impaire donc g est définie sur \mathbb{R}_+^* . Posons ensuite $u_n(x) = \frac{x^2}{\sinh^2(nx)}$. Pour tout $n \in \mathbb{N}^*$, $\lim_0 u_n = \frac{1}{n^2}$. De plus, sh est convexe sur \mathbb{R}_+ donc sh $x \ge x$ pour tout $x \in \mathbb{R}_+$ et donc $\frac{x^2}{\sinh^2(nx)} \le \frac{1}{n^2}$ pour tout $x \in \mathbb{R}_+^*$ et même pour tout $x \in \mathbb{R}^*$ (parité). On en déduit que la série $\sum_{n \in \mathbb{N}^*} u_n$ converge normalement sur \mathbb{R}^* . On peut alors utiliser le théorème d'interversion limite/série

$$\lim_{x \to 0} \sum_{n=1}^{+\infty} u_n(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

ou encore $\lim_{x\to 0} x^2 g(x) = \pi^2/6$. Par conséquent,

$$g(x) \sim \frac{\pi^2}{6x^2}$$

Solution 18

1. On raisonne par récurrence. Tout d'abord, g_0 est bornée. Si on suppose g_n bornée pour un certain $n \in \mathbb{N}$, alors

$$\forall x \in [0,1], \ |g_{n+1}(x)| \leq \int_0^x |g_n(1-t)| \ \mathrm{d}t \leq \int_0^x \|g_n\|_\infty \ \mathrm{d}t = x \|g_n\|_\infty \leq \|g_n\|_\infty$$

Notamment, g_{n+1} est bornée. On a donc montré par récurrence que g_n est bornée pour tout $n \in \mathbb{N}$.

En fait, on a montré plus précisément que pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$, $|g_{n+1}(x)| \le x ||g_n||_{\infty}$. Ainsi pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}^*$,

$$|g_{n+1}(x)| \le \int_0^x |g_n(1-t)| \, \mathrm{d}t \le \int_0^x (1-t) \|g_{n-1}\|_{\infty} \, \mathrm{d}t \le \int_0^1 (1-t) \|g_{n-1}\|_{\infty} \, \mathrm{d}t = \frac{1}{2} \|g_{n-1}\|_{\infty}$$

Par conséquent, $||g_{n+1}||_{\infty} \le \frac{1}{2} ||g_{n-1}||_{\infty}$.

2. D'après la question précédente, pour tout $n \in \mathbb{N}^*$, $\|g_{n+1}\|_{\infty} \leq \frac{1}{2} \|g_{n-1}\|_{\infty}$. On en déduit que pour tout $n \in \mathbb{N}$, $\|g_{2n}\|_{\infty} \leq \frac{1}{2^n} \|g_0\|_{\infty}$ et $\|g_{2n+1}\|_{\infty} \leq \frac{1}{2^n} \|g_1\|_{\infty}$. On vérifie alors qu'en prenant $K = \max(\|g_0\|_{\infty}, \sqrt{2}\|g_1\|_{\infty})$, on a $\|g_n\|_{\infty} \leq \frac{K}{\sqrt{2^n}}$.

Remarque. On calcule aisément $\|g_0\|_{\infty} = \|g_1\|_{\infty} = 1$ de sorte que $K = \sqrt{2}$.

Comme la série $\sum \frac{1}{\sqrt{2^n}}$ est une série géométrique convergente, il en est de même de la série $\sum \|g_n\|_{\infty}$. Par conséquent, la série $\sum g_n$ converge normalement sur [0,1] et donc simplement. La fonction G est bien définie sur [0,1].

Tout d'abord, g_0 est dérivable de dérivée nulle. De plus, pour tout $n \in \mathbb{N}$, g_n est également dérivable d'après le théorème fondamental de l'analyse et $g'_n(x) = g_{n-1}(1-x)$. La série $\sum g'_n$ converge donc normalement et donc uniformément. On en déduit que G est dérivable et que

$$\forall x \in [0, 1], \ G'(x) = \sum_{n=0}^{+\infty} g'_n(x) = \sum_{n=1}^{+\infty} g_{n-1}(1-x) = \sum_{n=0}^{+\infty} g_n(1-x) = G(1-x)$$

Cette égalité montre à nouveau que G' est dérivable et que

$$\forall x \in [0, 1], G''(x) = -G'(1 - x) = -G(x)$$

3. Il existe donc $(\alpha, \beta) \in \mathbb{R}^2$ tel que $G = \alpha \cos + \beta \sin$. Mais pour tout $n \in \mathbb{N}^*$, $g_n(0) = 0$ donc $G(0) = g_0(0) = 1$. De plus, G'(1) = G(0) = 1. On en déduit que $\alpha = 1$ et $-\alpha \sin(1) + \beta \cos(1) = 1$ puis que $\beta = \frac{1+\sin(1)}{\cos(1)}$.

Solution 19

1. Supposons qu'il existe une telle suite. Notamment

$$\sum_{n=0}^{+\infty} a_n^2 = 2$$

On en déduit notamment que $a_n^2 \le 2$ pour tout $n \in \mathbb{N}$. Par ailleurs

$$\sum_{n=0}^{+\infty} a_n^4 = 4$$

de sorte que

$$\sum_{n=0}^{+\infty} 2a_n^2 - a_n^4 = 0$$

ou encore

$$\sum_{n=0}^{+\infty} a_n^2 (2 - a_n^2) = 0$$

Notre remarque initiale montre qu'il s'agit d'une somme de termes positifs. Par conséquent, $a_n = 0$ ou $a_n^2 = 2$ pour tout $n \in \mathbb{N}$. Mais puisque $\sum_{n=0}^{+\infty} a_n^2 = 2$, il existe un unique $p \in \mathbb{N}$ tel que $a_p^2 = 2$ et $a_n = 0$ pour tout entier naturel $n \neq p$. Mais alors

$$\sum_{n=0}^{+\infty} a_n^6 = a_p^6 = 2^3 = 8 \neq 6$$

On a donc montré par l'absurde qu'il n'existe pas de suite vérifiant la condition de l'énoncé.

2. Supposons qu'il existe une telle suite (a_n) . Alors

$$\forall k \in \mathbb{N}, \ \sum_{n=0}^{+\infty} k^2 a_n^k = 1$$

Puisque

$$\sum_{n=0}^{+\infty} a_n^2 = \frac{1}{4}$$

on a $a_n^2 \le \frac{1}{4}$ i.e. $|a_n| \le \frac{1}{2}$ pour tout $n \in \mathbb{N}$.

Posons $\varphi_n(k) = k^2 a_n^k$. Alors, pour tout $n \in \mathbb{N}$ et tout $k \ge 2$

$$|\varphi_n(k)| = k^2 |a_n|^{k-2} |a_n|^2 \le \frac{k^2}{2^{k-2}} a_n^2$$

La suite $(k^2/2^{k-2})_{k\in\mathbb{N}}$ converge vers 0 donc est bornée. On en déduit qu'il existe M tel que pour tout $n \in \mathbb{N}$ et tout $k \ge 2$

$$|\varphi_n(k)| \leq Ma_n^2$$

Comme la série $\sum_{a_n^2}$ converge, la série $\sum_{n\in\mathbb{N}} \varphi_n$ converge normalement sur \mathbb{N} . De plus, pour tout $n\in\mathbb{N}$, $\lim_{k\to+\infty} \varphi_n(k)=0$ par la majoration précédente. Par le théorème de la double limite,

$$\lim_{k \to +\infty} \sum_{n=0}^{+\infty} k^2 a_n^k = 0$$

ce qui contredit le fait que

$$\forall k \in \mathbb{N}, \ \sum_{n=0}^{+\infty} k^2 a_n^k = 1$$

Solution 20

1. Posons $f_n: t \mapsto \ln(1+e^{nt})$. Si $t \in \mathbb{R}_+$, alors la suite $(f_n(t))$ ne converge pas vers 0 donc la série $\sum f_n(t)$ diverge. Si $t \in \mathbb{R}_+^*$, alors $f_n(t) \sim e^{-nt}$ et la série $\sum e^{-nt}$ est une série géométrique à termes positifs convergente (de raison $e^{-t} \in]0,1[$). Par conséquent, la série $\sum f_n(t)$ converge.

Finalement, le domaine de définition de f est \mathbb{R}_+^* .

2. On sait que $0 \le \ln(1+u) \le u$ pour tout $u \in \mathbb{R}_+$. Ainsi, pour tout $t \in \mathbb{R}$,

$$0 < f_n(t) < e^{nt}$$

Fixons $a \in \mathbb{R}_{-}^{*}$. Alors pour tout $t \in]-\infty, a]$,

$$0 < f_n(t) < e^{nt} < e^{na}$$

et donc $||f_n||_{\infty} \le e^{na}$ où $||\cdot||_{\infty}$ désigne la norme uniforme sur $]-\infty,a]$. A nouveau, la série géométrique $\sum e^{na}$ converge donc la série $\sum f_n$ converge normalement sur $]-\infty,a]$. A fortiori, elle converge uniformément sur $]-\infty,a]$. Par ailleurs, f_n admet pour limite 0 en $-\infty$ si $n \in \mathbb{N}^*$ et $\ln 2$ si n = 0. Le théorème d'interversion limite/série permet alors d'affirmer que

$$\lim_{-\infty} f = \sum_{n=0}^{+\infty} \lim_{n\to\infty} f_n = \ln 2$$

3. En étudiant la fonction $u \mapsto \ln(1+u) - u + \frac{u^2}{2}$, on prouve que

$$\forall u \in \mathbb{R}_+, \ln(1+u) \ge u - \frac{u^2}{2}$$

Ainsi

$$\forall t \in \mathbb{R}_{-}^*, \ f_n(t) \ge e^{nt} - \frac{1}{2}e^{2nt}$$

Par conséquent,

$$\forall t \in \mathbb{R}_{-}^{*}, \ f(t) \ge \sum_{n=0}^{+\infty} e^{nt} - \frac{1}{2} \sum_{n=0}^{+\infty} e^{2nt} = \frac{1}{1 - e^{t}} - \frac{1}{2} \cdot \frac{1}{1 - e^{2t}} = \frac{1 + 2e^{t}}{2(1 - e^{2t})}$$

Puisque $\lim_{t\to 0^-} \frac{1+2e^t}{2(1-e^{2t})} = +\infty$, $\lim_{0^-} f = +\infty$.

Solution 21

1. Soit $t \in]0, 1[$. Puisque $-t^b \in]-1, 0[$, $\sum_{n=0}^{+\infty} (-t^b)^n = \frac{1}{1+t^b}$. On en déduit que

$$\frac{t^{a-1}}{1+t^n} = \sum_{n=0}^{+\infty} u_n(t)$$

avec $u_n(t) = (-1)^n t^{a-1+nb}$

2. Soit $n \in \mathbb{N}$. Puisque a - 1 + nb > -1, $|u_n|$ est intégrable sur]0, 1] et

$$\int_0^1 |u_n|(t) \, dt = \int_0^1 t^{a-1+nb} = \frac{1}{a+nb}$$

La série $\sum \frac{1}{a+nb}$ diverge. On ne peut donc pas apppliquer le théorème d'intégration terme à terme.

3. Soit $N \in \mathbb{N}$.

$$\begin{split} \int_0^1 \mathbf{S_N}(t) \; \mathrm{d}t &= \int_0^1 \sum_{n=0}^N (-1)^n t^{a-1+nb} \; \mathrm{d}t \\ &= \int_0^1 t^{a-1} \cdot \frac{1 - (-1)^{N+1} t^{(N+1)b}}{1 + t^b} \; \mathrm{d}t \qquad \text{(somme des termes d'une suite géométrique)} \\ &= \int_0^1 \frac{t^{a-1}}{1 + t^b} \; \mathrm{d}t - (-1)^{N+1} \int_0^1 \frac{t^{a-1+(N+1)b}}{1 + t^b} \; \mathrm{d}t \end{split}$$

Or

$$0 \le \int_0^1 \frac{t^{a-1+(N+1)b}}{1+t^b} dt \le \int_0^1 t^{a-1+(N+1)b} dt = \frac{1}{a+(N+1)b}$$

Ainsi, par théorème des gendarmes

$$\lim_{N \to +\infty} \int_0^1 \frac{t^{a-1+(N+1)b}}{1+t^b} dt = 0$$

de sorte que

$$\lim_{N \to +\infty} \int_0^1 S_N(t) dt = \int_0^1 \frac{t^{a-1}}{1+t^b} dt$$

4. On déduit de la question précédente que

$$\int_0^1 \frac{t^{a-1}}{1+t^b} \, \mathrm{d}t = \sum_{n=0}^{+\infty} \int_0^1 u_n(t) \, \mathrm{d}t = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$$

5. D'après la question précédente, en prenant a = 1 et b = 3

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^3}$$

On décompose $\frac{1}{1+X^3}$ en éléments simples. Il existe $(a,b,c) \in \mathbb{R}^3$ tel que

$$F = \frac{1}{1+X^3} = \frac{1}{X+1}X^2 - X + 1 = \frac{a}{X+1} + \frac{bX+c}{X^2 - X + 1}$$

On trouve $a = ((X + 1)F)(-1) = \frac{1}{3}$. De plus $\lim_{x \to +\infty} xF(x) = 0 = a + b$ donc $b = -\frac{1}{3}$. Enfin, F(0) = 1 = a + c donc $c = \frac{2}{3}$. On peut réécrire sous la forme

$$F(X) = \frac{1}{3} \cdot \frac{1}{X+1} - \frac{1}{3} \cdot \frac{X-2}{X^2 - X + 1} = \frac{1}{3} \cdot \frac{1}{X+1} - \frac{1}{6} \cdot \frac{2X-1}{X^2 - X + 1} + \frac{1}{2} \cdot \frac{1}{X^2 - X + 1}$$

On calcule successivement

$$\int_0^1 \frac{\mathrm{d}t}{t+1} = \left[\ln(1+t)\right]_0^1 = \ln(2)$$

$$\int_0^1 \frac{2t-1}{t^2-t+1} \, \mathrm{d}t = \left[\ln(t^2-t+1)\right]_0^1 = 0$$

$$\int_0^1 \frac{\mathrm{d}t}{t^2-t+1} = \int_0^1 \frac{\mathrm{d}t}{\left(t-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{2}{\sqrt{3}} \left[\arctan\left(\frac{2t-1}{\sqrt{3}}\right)\right]_0^1 = \frac{4}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{2\pi}{3\sqrt{3}}$$

On en déduit que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \frac{1}{3}\ln(2) + \frac{\pi}{3\sqrt{3}}$$

Solution 22

- **1.** Si $x \le 0$, la suite $(f_n(x))$ ne tend pas vers 0 donc $\sum f_n(x)$ diverge grossièrement. Si x > 0, on vérifie que $f_n(x) = o\left(\frac{1}{n^2}\right)$ donc $\sum f_n(x)$ diverge. On en déduit que le domaine de définition de f est \mathbb{R}_+^* .
- 2. Fixons $a \in \mathbb{R}_+^*$. Comme f_n est décroissante et positive, $||f_n||_{\infty,[a,+\infty[} = f_n(a)$. A nouveau, la série $\sum f_n(a)$ converge donc la série $\sum f_n$ converge normalement et, par suite, uniformément sur $[a,+\infty[$. Comme les f_n sont clairement continues sur $[a,+\infty[$, f est continue sur $[a,+\infty[$. Par caractère local de la continuité, f est continue sur \mathbb{R}_+^* .
- 3. On a montré que $\sum f_n$ convergeait uniformément sur $[1, +\infty[$ par exemple. Remarquons que $\lim_{n\to +\infty} f_n = \begin{cases} 1 & \text{si } n=0 \\ 0 & \text{sinon} \end{cases}$. On peut donc appliquer le théorème de la double limite

$$\lim_{+\infty} f = \sum_{n=0}^{+\infty} \lim_{+\infty} f_n = 1$$

Solution 23

1. Remarquons que pour tout $n \in \mathbb{N}$, f_{n+1} est de classe \mathcal{C}^1 et $f'_{n+1} = f_n$. On en déduit que pour tout $n \in \mathbb{N}$, f_n est de classe \mathcal{C}^n est que $f_n^{(k)} = f_{n-k}$. Remarquons également que pour tout $n \in \mathbb{N}$, $f_{n+1}(a) = 0$ i.e. pour tout $n \in \mathbb{N}^*$, $f_n(a) = 0$. Fixons $x \in [a, b]$ et appliquons l'inégalité de Taylor-Lagrange à f_n entre a et x.

$$\left| f_n(x) - \sum_{k=0}^{n-1} \frac{f_n^{(k)}(a)}{k!} (x - a)^k \right| \le \max_{[a,x]} |f_n^{(n)}| \frac{(x - a)^n}{n!}$$

Or pour tout $k \in [0, n-1]$,

$$f_n^{(k)}(a) = f_{n-k}(a) = 0$$

et $f_n^{(n)} = f$ donc

$$|f_n(x)| \le \max_{[a,x]} |f| \frac{(x-a)^n}{n!} \le ||f||_{\infty} \frac{(b-a)^n}{n!}$$

Par conséquent

$$||f_n||_{\infty} \le ||f||_{\infty} \frac{(b-a)^n}{n!}$$

Comme la série exponentielle $\sum \frac{(b-a)^n}{n!}$ converge, la série $\sum f_n$ converge normalement sur [a,b].

2. La série $\sum_{n\in\mathbb{N}^*} f_n$ converge simplement vers $\mathbf{F}-f$. De plus, pour tout $n\in\mathbb{N}^*$, f_n est de classe \mathcal{C}^1 et la série $\sum_{n\in\mathbb{N}^*} f'_n$, c'est-à-dire la série $\sum_{n\in\mathbb{N}^*} f_{n-1}$ converge normalement sur [a,b]. On en déduit que $\mathbf{F}-f_0$ est de classe \mathcal{C}^1 sur [a,b] et que

$$(F - f)' = \sum_{n=1}^{+\infty} f_n' = \sum_{n=1}^{+\infty} f_{n-1} = \sum_{n=0}^{+\infty} f_n = F$$

La fonction φ : $x \mapsto e^{-x}(F(x) - f(x))$ est donc de classe \mathcal{C}^1 sur [a, b] et

$$\varphi'(x) = -e^{-x}(F(x) - f(x)) + e^{-x}(F - f)'(x) = -e^{-x}(F(x) - f(x)) + e^{-x}F(x) = e^{-x}f(x)$$

Ainsi φ est une primitive de $x \mapsto e^{-x} f(x)$ sur [a, b]. Par ailleurs

$$\varphi(a) = e^{-a}(F(a) - f(a)) = 0$$

car $f_n(a) = 0$ pour tout $n \in \mathbb{N}^*$. Ainsi

$$\forall x \in [a, b], \ \varphi(x) = \int_{a}^{x} e^{-t} f(t) \ dt$$

ou encore

$$\forall x \in [a, b], \ F(x) = f(x) + e^x \int_a^x e^{-t} f(t) \ dt$$

Solution 24

1. Soit $x \in \mathbb{R}_+$. Via des développements limités usuels :

$$x \ln\left(1 + \frac{1}{n}\right) = \frac{x}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$
$$\ln\left(1 + \frac{x}{n}\right) = \frac{x}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

donc $u_n(x) = \mathcal{O}\left(\frac{1}{n^2}\right)$ donc $\sum u_n(x)$ converge. La série $\sum u_n$ converge simplement sur \mathbb{R}_+ .

2. Soit $n \in \mathbb{N}^*$. u_n est de classe \mathcal{C}^1 sur \mathbb{R}_+ et

$$\forall x \in \mathbb{R}_+, \ u'_n(x) = \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n+x}$$

On montre classiquement que

$$\frac{1}{n+1} \le \ln\left(1 + \frac{1}{n}\right) \le \frac{1}{n}$$

donc

$$\frac{1}{n+1}-\frac{1}{n+x}\leq u_n'(x)\leq \frac{1}{n}-\frac{1}{n+x}$$

ou encore

$$\frac{x-1}{(n+1)(n+x)} \le u_n'(x) \le \frac{x}{n(n+x)}$$

Ainsi

$$|u_n'(x)| \le \frac{x+1}{n^2}$$

Soit $a \in \mathbb{R}_+$.

$$\forall x \in [0, a], \ |u'_n(x)| \le \frac{a+1}{n^2}$$

La série $\sum u'_n$ converge donc normalement sur [0, a]. Ainsi g est de classe \mathcal{C}^1 sur [0, a] et, par suite, sur \mathbb{R}_+ .

3. On a clairement $u_n(1) = 0$ pour tout $n \in \mathbb{N}^*$. On en déduit immédiatement que f(1) = 0.

Les u'_n sont clairement croissante sur \mathbb{R}_+^* donc g' l'est également. Par ailleurs, $f'(x) = g'(x) - \frac{1}{x}$ pour tout $x \in \mathbb{R}_+^*$ donc f' est croissante sur \mathbb{R}_+^* comme somme de deux fonctions croissantes. On en déduit que f est convexe sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$.

$$g'(x+1) - g'(x) = \sum_{n=1}^{+\infty} u'_n(x+1) - \sum_{n=1}^{+\infty} u'_n(x) = \sum_{n=1}^{+\infty} u'_n(x+1) - u'_n(x) = \sum_{n=1}^{+\infty} \frac{1}{n+x} - \frac{1}{n+x+1}$$

Comme $\lim_{n\to+\infty}\frac{1}{n+x}=0$, $g'(x+1)-g'(x)=\frac{1}{x+1}$ par télescopage. Posons $\psi(x)=f(x+1)-f(x)-\ln(x)=g(x+1)-g(x)-\ln(x+1)$. Alors ψ est dérivable sur \mathbb{R}_+^* et

$$\psi'(x) = g'(x+1) - g'(x) - \frac{1}{x+1} = 0$$

Ainsi ψ est constante sur \mathbb{R}_+^* . Mais comme $\psi(x) = g(x+1) - g(x) - \ln(x+1)$ pour tout $x \in \mathbb{R}_+^*$, ψ est en fait prolongebale par continuité (et même prolongeable en une fonction de classe \mathcal{C}^1) sur \mathbb{R}_+ puisqu'on a vu que g était de classe \mathcal{C}^1 sur \mathbb{R}_+ . En notant encore ψ ce prolongement, $\psi(0) = g(1) - g(0) - \ln(0+1) = 0$. Par conséquent, ψ est constamment nulle sur \mathbb{R}_+ . On en déduit que $f(x+1) - f(x) = \ln(x)$ pour tout $x \in \mathbb{R}_+^*$.

4. Posons $f_n(x) = x \ln(n) + \ln(n!) - \sum_{k=0}^n \ln(x+k)$. Soit $x \in]0,1]$. Par convexité de la fonction de f,

$$\frac{f(n+x) - f(n)}{x} \le \frac{f(n+1) - f(n)}{(n+1) - n} = \ln(n)$$

ou encore

$$f(n+x) \le x \ln(n) + f(n)$$

Par ailleurs, par télescopage

$$f(n) = f(n) - f(1) = \sum_{k=1}^{n-1} f(k+1) - f(k) = \sum_{k=1}^{n-1} \ln(k) = -\ln(n) + \sum_{k=1}^{n} \ln(k) = -\ln(n) + \ln(n!)$$

et

$$f(n+x) - f(x) = \sum_{k=0}^{n-1} f(k+1+x) - f(k+x) = \sum_{k=0}^{n-1} \ln(x+k) = -\ln(x+n) + \sum_{k=0}^{n} \ln(x+k)$$

On en déduit que

$$f(x) - \ln(x+n) + \sum_{k=0}^{n} \ln(x+k) \le x \ln(n) - \ln(n) + \ln(n!)$$

ou encore

$$f(x) - \ln\left(\frac{x+n}{n}\right) \le f_n(x)$$

Toujours par convexité de f,

$$\ln(n-1) = \frac{f(n) - f(n-1)}{n - (n-1)} \le \frac{f(n+x) - f(n)}{x}$$

ou encore

$$x\ln(n-1) + f(n) \le f(n+x)$$

ce qui équivaut à

$$x\ln\left(1-\frac{1}{n}\right) + x\ln(n) + f(n) \le f(n+x)$$

En raisonnant comme précédemment, on obtient

$$f_n(x) \le f(x) - \ln\left(\frac{x+n}{n}\right) - x\ln\left(1 - \frac{1}{n}\right)$$

Finalement

$$f(x) - \ln\left(\frac{x+n}{n}\right) \le f_n(x) \le f(x) - \ln\left(\frac{x+n}{n}\right) - x\ln\left(1 - \frac{1}{n}\right)$$

D'après le théorème des gendarmes,

$$\lim_{n \to +\infty} f_n(x) = f(x)$$

On procède par récurrence, et on note \mathcal{P}_p l'assertion

$$\forall x \in]p, p+1], \lim_{n \to +\infty} f_n(x) = f(x)$$

On vient de montrer que \mathcal{P}_0 est vraie. Supposons qu'il existe $p \in \mathbb{N}$ tel que \mathcal{P}_p est vraie. Donnons-nous alors $x \in]p, p+1]$ et remarquons que

$$f_n(x+1) - f_n(x) = \ln(x) - \ln\left(\frac{x+n+1}{n}\right)$$

Ainsi

$$\lim_{n \to +\infty} f_n(x+1) = f(x) + \ln(x) = f(x+1)$$

Ceci prouve que \mathcal{P}_{p+1} est vraie. Par récurrence, \mathcal{P}_p est vraie pour tout $p\in\mathbb{N}$ ou encore

$$\forall x \in \mathbb{R}_+^*, \lim_{n \to +\infty} f_n(x) = f(x)$$

Séries alternées

Solution 25

- 1. Fixons $x \in \mathbb{R}_+^*$. La suite $(e^{-\lambda_n x})_{n \in \mathbb{N}}$ est décroissante puisque x > 0. D'après le critère spécial des séries alternées, la série $\sum f_n(x)$ converge i.e. la série $\sum f_n$ converge simplement sur \mathbb{R}_+^* .
- 2. Supposons que la série $\sum f_n$ converge uniformémement sur \mathbb{R}_+^* . Alors la suite (f_n) convergerait uniformément vers la fonction nulle sur \mathbb{R}_+^* . Or pour tout $n \in \mathbb{N}$, $\frac{1}{\lambda_n} \in \mathbb{R}_+^*$ et la suite de terme général $f_n(1/\lambda_n) = (-1)^n e^{-1}$ ne converge pas vers 0. La série $\sum f_n$ ne converge donc pas uniformémement sur \mathbb{R}_+^* .
- 3. D'après le critère spécial des séries alternées

$$\forall t \in \mathbb{R}_+^*, |S(t)| \le e^{-\lambda_0 t}$$

Or $t \mapsto e^{-\lambda_0 t}$ est intégrable sur \mathbb{R}_+ donc S également.

Toujours d'après le critère des séries alternées,

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}_+^*, \left| \mathbf{S}(t) - \sum_{k=0}^n f_k(t) \, \mathrm{d}t \right| \le e^{-\lambda_{n+1}t}$$

donc

$$\forall n \in \mathbb{N}, \ \left| \int_0^{+\infty} \mathbf{S}(t) \ \mathrm{d}t - \sum_{k=0}^n \int_0^{+\infty} f_n(t) \ \mathrm{d}t \right| = \left| \int_0^{+\infty} \left(\mathbf{S}(t) - \sum_{k=0}^n f_k(t) \right) \mathrm{d}t \right| \leq \int_0^{+\infty} \left| \mathbf{S}(t) - \sum_{k=0}^n f_k(t) \right| \ \mathrm{d}t \leq \int_0^{+\infty} e^{-\lambda_{n+1}t} \ \mathrm{d}t$$

ou encore

$$\left| \int_0^{+\infty} \mathbf{S}(t) \, \mathrm{d}t - \sum_{k=0}^n \frac{(-1)^k}{\lambda_k} \right| \le \frac{1}{\lambda_{n+1}}$$

On obtient alors en passant à la limite

$$\int_0^+ S(t) dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{\lambda_n}$$

Solution 26

1. Soit $x \in \mathbb{R}_+^*$. La suite $\left(\frac{1}{x+n}\right)_{n \in \mathbb{N}}$ est décroissante de limite nulle de sorte que la série $\sum u_n(x)$ vérifie le critère spécial des séries alternées. La série $\sum u_n(x)$ converge donc et

$$\forall x \in [a, +\infty[, \forall n \in \mathbb{N}, \left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \le |u_{n+1}(x)| \le \frac{1}{n}$$

La suite des restes $\left(\sum_{k=n+1}^{+\infty} u_k\right)_{n\in\mathbb{N}}$ converge donc uniformément vers la fonction nulle sur \mathbb{R}_+^* i.e. la série $\sum u_n$ converge uniformément sur \mathbb{R}_+^* . Les u_n étant continues sur \mathbb{R}_+^* , f est continue sur \mathbb{R}_+^* .

2. Soit $x \in \mathbb{R}_+^*$.

$$f(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k} = \frac{1}{x} + \sum_{k=1}^{+\infty} \frac{(-1)^k}{x+k} = \frac{1}{x} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k+1}$$

via le changement d'indice $k \mapsto k - 1$.

3. Soit $x \in \mathbb{R}_+^*$. D'une part,

$$f(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k}$$

D'autre part,

$$f(x) = \frac{1}{x} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k+1}$$

En additionnant ces deux inégalités,

$$2f(x) = \frac{1}{x} + \sum_{k=0}^{+\infty} \left[\frac{(-1)^k}{x+k} - \frac{(-1)^k}{x+k+1} \right] = \frac{1}{x} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k+1)(x+k)}$$

4. Soit $x \in \mathbb{R}_+^*$. A nouveau, la série $\sum \frac{(-1)^n x}{(x+n+1)(x+n)}$ vérifie le critère spécial des séries alternées. Notamment,

$$\left| \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k+1)(x+k)} \right| \le \frac{1}{(x+1)x}$$

On en déduit d'après la question précédente que

$$2f(x) - \frac{1}{x} = \mathcal{O}\left(\frac{1}{x^2}\right)$$

A fortiori

$$2f(x) - \frac{1}{x} = o\left(\frac{1}{x}\right)$$

et donc

$$f(x) \sim \frac{1}{2x}$$

5. D'après la question 2,

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \frac{1}{x} - f(x+1)$$

Comme f est continue en 1,

$$f(x) = \frac{1}{x \to 0^+} \frac{1}{x} - f(1) + o(1)$$

A fortiori

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{x}$$

6. Soit $x \in \mathbb{R}_+^*$. Tout d'abord, l'intégrale $\int_0^1 \frac{t^{x-1}}{1+t} dt$ converge puisque $\frac{t^{x-1}}{1+t} \sim t^{x-1}$ et x-1>-1. Fixons $n \in \mathbb{N}$. Remarquons que

$$\forall t \in [0,1[, \ \frac{1}{1+t} = \frac{1-(-1)^{n+1}t^{n+1}}{1+t} + \frac{(-1)^{n+1}t^{n+1}}{1+t} = \left[\sum_{k=0}^{n} (-1)^k t^k\right] + \frac{(-1)^{n+1}t^{n+1}}{1+t}$$

Ainsi

$$\int_0^1 \frac{t^{x-1}}{1+t} dt = \left[\sum_{k=0}^n (-1)^k \int_0^1 t^{k+x-1} dt \right] + (-1)^{n+1} \int_0^1 \frac{t^{n+x}}{1+t} dt$$
$$= \left[\sum_{k=0}^n \frac{(-1)^k}{x+k} \right] + (-1)^{n+1} \int_0^1 \frac{t^{n+x}}{1+t} dt$$

Par ailleurs

$$\forall t \in [0, 1], \ 0 \le \frac{t^{n+x}}{1+t} \le t^{n+x}$$

donc

$$0 \le \int_0^1 \frac{t^{n+x}}{1+t} \, \mathrm{d}t \le \int_0^1 t^{n+x} \, \mathrm{d}t = \frac{1}{n+x+1}$$

Ainsi

$$\lim_{n \to +\infty} \int_0^1 \frac{t^{n+x}}{1+t} \, \mathrm{d}t \le \int_0^1 t^{n+x} \, \mathrm{d}t = 0$$

de sorte que

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{x+k} = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

i.e.

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

Solution 27

1. Si x > 0, la suite de terme général $1/n^x$ décroît vers 0. La série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n^x}$ converge donc en vertu du critère spécial des séries alternées. Si $x \le 0$, la suite de terme général $(-1)^{n-1}/n^x$ ne converge pas vers 0 donc la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n^x}$ diverge grossièrement. Le domaine de définition de S est donc \mathbb{R}^*_+ .

2. Soit $a \in]1, +\infty[$. Pour tout $x \in [a, +\infty[$,

$$\left|\frac{(-1)^{n-1}}{n^x}\right| \le \frac{1}{n^a}$$

Comme a > 1, la série $\sum \frac{1}{n^a}$ converge. La série de fonctions définissant S converge donc normalement et a fortiori uniformément sur $[a, +\infty[$. Enfin, pour tout $n \in \mathbb{N}^*$, $\lim_{x \to +\infty} \frac{(-1)^{n-1}}{n^x} = \delta_{n,1}$. D'après le théorème d'interversion limite/série, $\lim_{n \to +\infty} S = 1$.

Remarque. En utilisant la majoration d'un reste d'une série alternée, on peut même montrer que la série définissant S converge uniformément sur $[a, +\infty[$ pour tout $a \in \mathbb{R}_+^*$.

3. Soit $x \in D$. D'une part,

$$S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$$

et d'autre part,

$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^x} = 1 - \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(n+1)^x}$$

Par sommation de deux séries convergentes,

$$2S(x) - 1 = \sum_{n=1}^{+\infty} (-1)^{n-1} u_n(x)$$

4. Soit $x \in D$. Tout d'abord, $\lim_{n \to +\infty} u_n(x) = 0$. Par ailleurs, la fonction $f: t \mapsto t^x$ est convexe sur \mathbb{R}_+^* car elle est de classe \mathcal{C}^2 sur \mathbb{R}_+^* et, pour tout $t \in \mathbb{R}_+^*$, $f''(t) = \frac{x(x+1)}{t^{x+2}} \ge 0$. D'après l'inégalité des pentes, pour tout $n \in \mathbb{N}^*$,

$$\frac{f(n+1) - f(n)}{(n+1) - n} \le \frac{f(n+2) - f(n+1)}{(n+2) - (n+1)}$$

ou encore

$$f(n) - f(n+1) \ge f(n+1) - f(n+2)$$

ou enfin

$$u_n(x) \ge u_{n+1}(x)$$

La série $\sum_{n\in\mathbb{N}^*}(-1)^{n-1}u_n(x)$ vérifie donc le critère spécial des séries alternées. En particulier

$$\left| \sum_{n=1}^{+\infty} (-1)^{n-1} u_n(x) \right| \le |u_1(x)|$$

ou encore

$$|2S(x) - 1| \le 1 - \frac{1}{2^x}$$

On en déduit grâce au théorème des gendarmes que $\lim_{x\to 0^+} 2S(x) - 1 = 0$. i.e. $\lim_{0^+} S = \frac{1}{2}$.

Solution 28

1. Fixons $x \in \mathbb{R}_+^*$. La suite de terme général $\frac{1}{n+x}$ décroît vers 0 donc $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+x}$ converge. Ainsi S est bien définie sur \mathbb{R}_+^* . Posons $u_n : x \mapsto \frac{(-1)^n}{n+x}$. La série $\sum u_n$ converge simplement sur \mathbb{R}_+^* . De plus, les u_n sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivées $u_n' : x \mapsto \frac{(-1)^{n+1}}{(n+x)^2}$. La série $\sum_{n \in \mathbb{N}} \frac{(-1)^{n+1}}{(n+x)^2}$ vérifie à nouveau le critère des séries alternées. Cette série converge donc et on peut majorer la valeur absolue du reste :

$$\forall x \in \mathbb{R}_+^*, \ \forall n \in \mathbb{N}, \ \left| \sum_{k=n+1}^{+\infty} u_k'(x) \right| \le \frac{1}{(n+1+x)^2} \le \frac{1}{(n+1)^2}$$

Le reste converge donc uniformément vers la fonction nulle sur \mathbb{R}_+^* i.e. la série $\sum u'_n$ converge uniformément. Par conséquent, S est de classe \mathcal{C}^1 et

$$\forall x \in \mathbb{R}_+^*, \ S'(x) = \sum_{n=0}^{+\infty} u'_n(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+x)^2}$$

- 2. Toujours d'après le critère spécial des séries alternées, S'(x) est du signe du premier terme de la somme $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+x)^2}$, c'est-à-dire du signe de $-\frac{1}{x^2}$. Par conséquent, S' est négative sur \mathbb{R}_+^* de sorte que S est décroissante sur \mathbb{R}_+^* .
- **3.** Soit $x \in \mathbb{R}_+^*$. Par changement d'indice

$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n+x} = \frac{1}{x} + \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n+1+x} = \frac{1}{x} - \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x+1} = \frac{1}{x} - S(x+1)$$

Comme S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , elle est a fortiori continue en 1. Ainsi $x \mapsto \mathrm{S}(x+1)$ admet une limite finie en 0. Comme $\lim_{x \to 0^+} \frac{1}{x} = +\infty$, $\mathrm{S}(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$.

Solution 29

1. Posons $f_n: x \in \mathbb{R}_+^* \mapsto \frac{1}{1+nx}$. Fixons $x \in \mathbb{R}_+^*$. La série $\sum_{n \in \mathbb{N}} (-1)^n f_n(x)$ vérifie clairement (?) le critère spécial des séries alternées donc converge. S est donc bien définie sur \mathbb{R}_+^* . Notons $R_n = \sum_{k=n+1}^{+\infty} (-1)^k f_k$. Fixons $a \in \mathbb{R}_+^*$. Alors

$$\forall n \in \mathbb{N}, \ \forall x \in [a, +\infty[, \ |R_n(x)| \le f_{n+1}(x) \le f_{n+1}(a)$$

Or $\lim_{n\to+\infty} f_{n+1}(a) = 0$ donc (R_n) converge uniformément vers la fonction nulle sur $[a, +\infty[$ i.e. $\sum_{n\in\mathbb{N}} (-1)^n f_n$ converge uniformément vers S sur $[a, +\infty[$. Comme les f_n sont continues sur $[a, +\infty[$, S l'est également. D'après le caractère local de la continuité, S est continue sur \mathbb{R}_+^* .

2. On a montré que S convergeait uniformément sur $[1, +\infty]$ par exemple. De plus, pour tout $n \in \mathbb{N}$, $\lim_{n \to +\infty} (-1)^n f_n = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$. On peut donc appliquer le théorème de la double limite :

$$\lim_{+\infty} S = \sum_{n=0}^{+\infty} \lim_{+\infty} (-1)^n f_n = 1$$

3. Les f_n sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Fixons $x \in \mathbb{R}_+^*$ et montrons que la série $\sum (-1)^n f_n'(x)$ vérifie encore le critère des séries alternées. Tout d'abord,

$$f'_n(x) = -\frac{n}{(1+nx)^2} \sim -\frac{1}{nx^2}$$

donc $\lim_{n\to+\infty} f'_n(x) = 0$. Ensuite, après calcul,

$$f'_{n+1}(x) - f'_n(x) = \frac{n(n+1)x^2 - 1}{(1+nx)^2(1+(n+1)x)^2}$$

Puisque $\lim_{n\to+\infty} n(n+1)x^2 = +\infty$, il existe $N \in \mathbb{N}$ (dépendant de x!) tel que $N(N+1)x^2 \ge 1$. Alors pour tout $n \ge N$, $f'_{n+1}(x) - f'_n(x) \ge 0$: la suite $(f'_n(x))$ est donc croissante à partir du rang N. On peut finalement appliquer le critère des séries alternées de sorte que $\sum (-1)^n f'_n$ converge.

Soit à nouveau $a \in \mathbb{R}_+^*$. Choisissons N tel que $N(N+1)a^2 \ge 1$. Alors pour tout $n \ge N$ et tout $x \ge a$, $n(n+1)x \ge 1$ et la série $\sum_{n=1}^{\infty} (-1)^n f'_n(x)$ vérifie le critère spécial des séries alternées à partir du rang N. Notamment

$$\forall n \ge N, \ \forall x \in [a, +\infty[, \ \left| \sum_{k=n+1}^{+\infty} (-a)^k f_k'(x) \right| \le |f_{n+1}'(x)| = \frac{n+1}{(1+(n+1)x)^2} \le \frac{n+1}{(1+(n+1)a)^2}$$

Remarque. Il est essentiel de remarquer que cette fois-ci, N ne dépend plus de x mais seulement de a.

Comme $\lim_{n\to+\infty}\frac{n+1}{(1+(n+1)a)^2}=0$, la série $\sum (-1)^n f_n'$ converge donc uniformément sur $[a,+\infty[$. Comme $\sum f_n$ converge également simplement sur cet intervalle, S est de classe \mathcal{C}^1 sur $[a, +\infty[$ et par suite sur \mathbb{R}_+^*

Approximations

Solution 30

Remarquons déjà que, par linéarité de l'intégrale, $\int_a^b f(t)P(t) dt = 0$ pour toute fonction polyomiale P. Le théorème de Weierstrass permet d'affirmer qu'il existe une suite (P_n) de fonctions polynomiales convergeant uniformément vers f sur [a,b]. De plus.

$$\forall n \in \mathbb{N}, \ \int_{a}^{b} f(t)^{2} dt = \int_{a}^{b} f(t)(f(t) - P_{n}(t)) dt + \int_{a}^{b} f(t)P_{n}(t) dt = \int_{a}^{b} f(t)(f(t) - P_{n}(t)) dt$$

Comme f^2 est positive

$$\int_{a}^{b} f(t)^{2} dt = \left| \int_{a}^{b} f(t)^{2} dt \right| = \left| \int_{a}^{b} f(t)(f(t) - P_{n}(t)) dt \right| \leq \int_{a}^{b} |f(t)| \cdot |f(t) - P_{n}(t)| dt \leq \|f - P_{n}\|_{\infty} \int_{a}^{b} |f(t)| dt$$

Comme (P_n) converge uniformément vers f, $\lim_{n\to+\infty} \|f-P_n\|_{\infty} = 0$ puis $\int_a^b f(t)^2 dt = 0$. Or f^2 est continue et positive sur [a,b] donc elle y est nulle. f est donc également nulle sur [a, b].

Solution 31

On notera $\|\cdot\|$ une norme sur E (peu importe laquelle, elles sont toutes équivalentes puisque E est de dimension finie).

1. Il existe des réels a_0, \ldots, a_n tels que $a = a_0 < a_1 < \cdots < a_n = b$ et φ est constante sur chaque intervalle $]a_k, a_{k+1}[$. Notons c_k la valeur de φ sur $]a_k, a_{k+1}[$. Alors, pour $\lambda \in \mathbb{R}^*$,

$$\int_{a}^{b} e^{i\lambda t} \varphi(t) dt = \sum_{k=0}^{n-1} c_k \int_{a_k}^{a_{k+1}} e^{i\lambda t} dt = \sum_{k=0}^{n-1} \frac{c_k}{i\lambda} \left(e^{i\lambda a_{k+1}} - e^{i\lambda a_k} \right)$$

Puisque $x \mapsto e^{i\lambda x}$ est bornée, on en déduit sans peine que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} \varphi(t) \, dt = 0$$

2. Il existe une suite (φ_n) de fonctions en escalier convergeant uniformément vers f sur [a,b]. Posons $\Phi_n: \lambda \mapsto \int_a^b e^{i\lambda t} \varphi_n(t) dt$ et $F: \lambda \mapsto \int_a^b e^{i\lambda t} F(t) dt$. Pour tout $\lambda \in \mathbb{R}$,

$$|\mathrm{F}(\lambda) - \Phi_n(\lambda)| \le \int_a^b |e^{i\lambda t}| \cdot \|f(t) - \varphi_n(t)\| \ \mathrm{d}t \le (b-a)\|f - \varphi_n\|_\infty$$

et donc

$$\|\mathbf{F} - \Phi_n\|_{\infty} \le (b-a)\|f - \varphi_n\|_{\infty}$$

Remarque. La première norme uniforme est une norme uniforme sur \mathbb{R} tandis que la seconde est une norme uniforme sur [a,b].

Puisque (ϕ_n) converge uniformément vers f sur [a,b], l'inégalité précédente montre que (Φ_n) converge uniformément vers F sur \mathbb{R} . D'après le théorème de la double limite,

$$\lim_{\lambda \to +\infty} F(\lambda) = \lim_{n \to +\infty} \lim_{\lambda \to +\infty} \Phi_n(\lambda)$$

D'après la question précédente, $\lim_{\lambda \to +\infty} \Phi_n(\lambda) = 0$ pour tout $n \in \mathbb{N}$. Ainsi $\lim_{\lambda \to +\infty} F(\lambda) = 0$, ce qui répond à la question.

3. Fixons $\varepsilon > 0$. Puisque f est intégrable, les intégrales $\int_0^{+\infty} \|f(t)\| \, \mathrm{d}t$ et $\int_{-\infty}^0 \|f(t)\| \, \mathrm{d}t$ convergent. Ainsi $\lim_{b \to +\infty} \int_b^{+\infty} \|f(t)\| \, \mathrm{d}t = 0$ et $\lim_{a \to -\infty} \int_{-\infty}^a \|f(t)\| \, \mathrm{d}t = 0$. Il existe donc des réels a et b tels que a < b, $\int_b^{+\infty} \|f(t)\| \, \mathrm{d}t \le \frac{\varepsilon}{3}$ et $\int_{-\infty}^a \|f(t)\| \, \mathrm{d}t \le \frac{\varepsilon}{3}$. D'après la question précédente, $\lim_{k \to +\infty} \int_a^b e^{i\lambda t} f(t) \, \mathrm{d}t = 0$. Il existe donc $\lambda_0 \in \mathbb{R}$ tel que

$$\forall \lambda \geq \lambda_0, \left| \int_a^b e^{i\lambda t} f(t) dt \right| \leq \frac{\varepsilon}{3}$$

Soit donc $\lambda \geq \lambda_0$.

$$\begin{split} \left| \int_{-\infty}^{+\infty} e^{i\lambda t} f(t) \; \mathrm{d}t \right| &\leq \left| \int_{-\infty}^{a} e^{i\lambda t} f(t) \; \mathrm{d}t \right| + \left| \int_{a}^{b} e^{i\lambda t} f(t) \; \mathrm{d}t \right| + \left| \int_{b}^{+\infty} e^{i\lambda t} f(t) \; \mathrm{d}t \right| \\ &\leq \int_{-\infty}^{a} \|f(t)\| \; \mathrm{d}t + \frac{\varepsilon}{3} + \int_{a}^{+\infty} \|f(t)\| \; \mathrm{d}t \leq \varepsilon \end{split}$$

Ceci signifie que

$$\lim_{\lambda \to +\infty} \int_{-\infty}^{\infty} e^{i\lambda t} f(t) \, dt = 0$$