Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity

Simon Dahan¹, Logan J. Z. Williams^{1,2}, Daniel Rueckert³, Emma C. Robinson^{1,2}

www.github.com/metrics-lab/ST-fMRI - Twitter: @DahanSimon - simon.dahan@kcl.ac.uk

BACKGROUND

- Functional connectivity (FC) is **subject-specific** and hierarchically organised both in **space and time**.
- However, developing analysis technique accounting for FC spatio-temporal dynamics remains challenging.
- Several deep learning methods combine spatial graph convolutions followed by temporal convolution, therefore only indirectly extracting spatio-temporal features.

AIM

Explicit modelling of spatio-temporal dynamics of FC by translating a state-of-the-art methods of skeleton-based action recognition, while accounting for inter-subject cortical heterogeneity.

Brain-MS-G3D

METHODS

- Modelling functional connectivity using dual-regressed
 (DR) ICA nodes at different dimensionalities, accounting for subject-specificity.
- Translating a graph convolution model for skeletonbased action recognition, MS-G3D.
- Applying the method on functional graph sequences for 1003 subjects from the HCP dataset, predicting sex and fluid intelligence.

RESULTS

Methods	Data	Sex (% acc)	Fluid Intelligence (corr)
ST-GCN STAGIN-SERO STAGIN-GARO	22 Group ROIs 400 ROIs 400 ROIs	83.7 88.20 87.01	0.144 N/A N/A
Brain-MS-G3D Brain-MS-G3D Brain-MS-G3D Brain-MS-G3D Brain-MS-G3D Brain-MS-G3D	22 Group ROIs ICA-15 ICA-25 ICA-50 ICA-100 ICA-200	84.7 81.5 86.1 90.9 93.9 94.4	0.269 0.286 0.313 0.325 0.317 0.324

- Consistently improving sex classification and fluid intelligence prediction results compared to methods applying spatial and temporal convolutions separately.
- Demonstrating improvement while using DR-ICA maps for sex classification, achieving +6.2% accuracy compared to state-of-the-art methods.

CONCLUSION & FUTURE WORK

- Explicitly encoding spatio-temporal dynamics
 via space-time convolution operations improves
 phenotyping prediction results.
- Accounting for subject cortical heterogeneity using DR-ICA nodes strengthen prediction.
- However, accounting for complete subjectspecificity would require learning from fMRI subject-specific full resolution cortical data.
- Developing interpretable models would be crucial to derive functional biomarkers.

REFERENCES

- Z.Liu et al (2020)
- S.Gadgil *et al* (2021)
- B.H. Kim *et al* (2021)

¹ Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London

² Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London

³ Biomedical Image Analysis Group, Department of Computing, Imperial College London

⁴ Klinikum rechts der Isar, Technical University of Munich