Effective Reinforcement Learning through Evolutionary Surrogate-Assisted Prescription

Olivier Francon, Santiago Gonzalez, Babak Hodjat, Elliot Meyerson, Risto Miikkulainen, Xin Qiu and Hormoz Shahrzad (2020)

Recap: Advanced Policy Gradient Methods

- Methods for direct policy optimization
- Goal: sample efficiency (getting more accurate gradient estimates without collecting more samples)
 - a. **For given policy:** reduce variance across samples (episodes)
 - Across different policies: limit policy updates to permit reuse of samples from previous policy; explore similar policies

Recap: Policy Optimization

- Intuition behind TRPO/PPO: explore similar policies through safe, gradual gradient-based updates
- Challenges:
 - Not suitable for deceptive, high-dimensional search spaces
 - Policies need to be evaluated through interactions with the environment
- **Alternative:** Evolutionary Surrogate-Assisted Prescription (ESP)
 - Policy optimization with population-based search (evolution) + surrogate optimization
 - Key ideas:
 - Big updates instead of small updates to escape local minima
 - Reward different policies to encourage exploration
 - Use surrogate to evaluate policies without direct interaction with environment

Population-Based Search

- Traditional AI: modeling using hill-climbing based approaches
 - Methods based on adjusting networks based on gradients computed based on examples of desired behavior such as deep learning (DL) and traditional reinforcement learning (RL)
 - Search around single point (potential solution)
- Creative AI (Machine Creativity): discover correct/good solutions
 - Search space is large, high-dimensional and deceptive - NOT amenable to hill-climbing
 - Incremental improvement does not work
- Solution: population-based search methods
 - Fundamental difference between gradient-based methods is extensive exploration
 - Search a set (population) of solutions

(a) Search Space Appropriate for Hill Climbing

(b) Search Space in a Creative Domain

Population-Based Search

- Exploration methods:
 - Parallel searches, with partial solutions shared across searches
 - Partial solutions act as building blocks that can be combined to find better solutions
 - Multiple objectives to search across multiple dimensions
 - Recombination of solutions across the population to optimize multiple variables at once
 - Novelty search
 - Reward solutions that are different from current solution (less rigid; more exploration)
- Population-based search methods include evolutionary computation

Evolutionary Computation

- Each solution (policy) represented as neural network (neuroevolution)
 - Objective: find solution with highest fitness value iteratively by applying evolutionary operations
 - Fitness function measures quality of solutions

Evolutionary Computation

Evolution process:

- Explore multiple areas of search space at once
- Use partial solutions across different searches
 - Different searches interact unlike PPO
- Generate next generation of solutions by combining parent solutions using evolutionary operations:
 - Explore and exploit by introducing variation to known solutions
 - **Tournament selection:** select best-performing policies to serve as parents
 - Crossover: combine building blocks from two parents
 - Mutation: create new building blocks

Evolutionary Surrogate-Assisted Prescription (ESP)

- Surrogate-assisted, population-based search
 - RL method for policy search following the actor-critic framework
 - Population-based search instead of gradient-based incremental improvement
- Train **Predictor (critic)** and **Prescriptor (actor)** at the same time
 - Predictor: approximates fitness function (any supervised neural network)
 - Prescriptor: decides what actions to perform at each time step given context/state (neural network or rule-set representation)
 - Prescriptor uses Predictor as surrogate model to evaluate fitness during the evolution process
 - Elite policies with high fitness scores are evaluated in the real world
 - Extendable to multi-objective settings: multiple prescriptors

Evolutionary Surrogate-Assisted Prescription (ESP)

- 1) Train critic **Predictor**
 - **Training objective:** minimize loss

$$P_d(C,A) = O'$$
 such that $\min\left(\sum_j L(O_j,O_j')\right)$ across all dimensions j of O $P_s(C) = A$ such that $\max\left(\sum_{i,j} O_j'(C_i,A_i)\right)$ over all possible contexts i

- 2) Train actor **Prescriptor** simultaneously
 - Training objective: maximize outcomes

$$P_s(C) = A$$
 such that $\max\left(\sum_{i,j} O_j'(C_i,A_i)\right)$ over all possible contexts i

- 3) Use Predictor as surrogate to evaluate and evolve Prescriptor until convergence
- 3) Apply best Prescriptors (elite policies) in real world and observe outcomes
- 4) Use obtained (Context, Actions, Outcomes) tuples as training data for Predictor

Performance Comparison on RL Benchmarks

- **Task: Cart-Pole** standard RL benchmark; single pole moves left/right and a reward is given for each time step the pole stays near vertical and the cart stays near the center of the track **Baselines:** Proximal Policy Optimization (PPO), Direct Evolution (DE), double Deep Q
- Networks (DQN)
 - Direct Evolution (DE): evolution without surrogate evolution process is ran directly against real function instead of Predictor

- ESP converges significantly faster
- Lower variance for ESP even after early stages
- ESP shows lower regret (reward difference between optimal and current policies)
 - More reliable

Performance Comparison on Function Approximation

- **Task:** function approximation (continuous)
- Baselines: Proximal Policy Optimization (PPO), Direct Evolution (DE)

- Neither PPO or DE converged near after 1000 episodes
- ESP converged almost exactly to the optimal within 125 episodes
- ESP shows lower regret

Conclusion

- Evolutionary-Surrogate Assisted Prescription (ESP): RL as surrogate-assisted population-based search
- Goal: sample efficiency, like TRPO/PPO
 - Different methods:
 - Population-based search big updates, not small updates
 - Novelty search high KL divergence rewarded instead of low KL divergence
- Ideal for domains where real-world evaluation is costly
- Faster convergence and lower variance and regret on benchmarks compared to PPO