

SRM Institute of Science and Technology Ramapuram campus

Department of Mathematics 18MAB204T- Probability and Queueing Theory

Year/Sem: II/IV Branch: CSE, IT

Unit I - PROBABILITY AND RANDOM VARIABLES

1.	The amount of time, in hours, that a computer functions before breaking down is a random variable of thetype (a) Continuous (b) Discrete (c) Neither discrete norcontinuous (d) Continuous as well as discrete	Ans: (a)	(CLO-1, Remember)
2.	The rth moment of a random variable about mean is called (a) Moment generating function (b) arbitrary moment (d) neutral moment	Ans: (c)	(CLO-1, Apply)
3.	A random variable X has the following probability function:		
	x 0 1 2 3 4		(CLO-1,
	P(x) K 2k 5k 7k 9k	Ans: (a)	Apply)
	Then the value of $k =$		
4.	(a)1/24(b) 1/12 (c)1 (d) 24/21 The probability function of a random variable X is given by		
	$p(x) = \begin{cases} \frac{1}{4}, & for \ x = -2 \\ \frac{1}{4}, & for \ x = 0 \\ \frac{1}{2}, & for \ x = 10 \\ 0, & elsewhere \end{cases}$ Find P (X \le 0)	Ans: (c)	(CLO-1, Apply)
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
5.	The p.d.f. of X is defined as		
	$f(x) = \begin{cases} k, & \text{for } 0 < x \le 4 \\ 0, & \text{otherwise} \end{cases}$ then the value of k is	Ans: (a)	(CLO-1, Apply)
	(a) $1/4$ (b) $1/2$ (c) $3/4$ (d) $1/20$		

6.	Consider a random variable X with p.d.f		
	$f(x) = \begin{cases} 3x^2, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$ Find E (X) $(a)1/4(b) 1/2 (c)1/8 (d) 3/4$	Ans: (d)	(CLO-1, Apply)
7.	If X is a continuous R.V, then $\frac{d}{dx}F(x) = f(x)$ at all points here F(x) is (a) integrable (b) Constant (c) 1 (d) Differentiable	Ans: (d)	(CLO-1, Apply)
8.	The value of 'k' from the following table is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ans:(c)	(CLO-1, Apply)
9.	A commuter train arrives punctually at a station every 25 minutes. Each morning, a commuter leaves his house and casually walks to the train station. Let X denote the amount of time, in minutes, that commuter waits for the train from the time he reaches the train station. It is known that the probability density function of X is $f(x) = \begin{cases} \frac{1}{25}, & \text{for } 0 < x < 25 \\ 0, & \text{otherwise.} \end{cases}$ What is the expected value of the random variable X .	Ans: (b)	(CLO-1, Apply)
10.	The value of $P(1/2 < X < 2/3)$ from the $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ans: (c)	(CLO-1, Apply)
11.	The Relation between Variance and Standard deviation is (a) $var = S.D^2$ (b) $var = \sqrt{S.D}$ (c) $var - S.D = 0$ (d) $var = \sqrt{S.D}$	Ans: (a)	(CLO-1, Apply)
12.	The Relation between Covariance and Mean is (a) $cov(X,Y) = E(XY) - E(X)E(Y)$ (b) $cov(X,Y) = E(XY) + E(X)E(Y)$ (c) $cov(X,Y) = E(XY) - (E(X)E(Y))^2$ (d) $cov(X,Y) = E(XY)^2 - (E(X)E(Y))^2$	Ans: (a)	(CLO-1, Remember)

13.	The value of k if the pdf $f(x) = kx^2 e^{-x}$, $x \ge 0$ is (a) 0.5 (b) ∞ (c) 0 (d) 1	Ans: (a)	(CLO-1, Apply)
. 14	Given $E(X) = 5$ and $E(Y) = -2$, then $E(X - Y)$ is (a) 3 (b) 5 (c) 7 (d) -2	Ans:(c)	(CLO-1, Apply)
15.	A variable that can assume any possible value between two points is called (a) discrete random variable(b) continuous random variable (c) discrete sample space(d) random variable	Ans: (b)	(CLO-1, Remember)
16.	The generalized form of Tchebycheff's inequality is (a) $P[X - \mu \ge k\sigma] \le \frac{1}{k^2}$ (b) $P[X - \mu > k\sigma] = 1 - \frac{1}{k^2}$ (c) $P[X - \mu < k\sigma] = \frac{1}{k^2}$ (d) $P[X - \mu > k\sigma] = \frac{1}{k^2}$	Ans: (a)	(CLO-1, Remember)
17.	The conditions satisfied by the pmf is (a) $p(x) \ge 0 \& \sum p(x) = 1$ (b) $f(x) \ge 0 \& \int_{-\infty}^{\infty} f(x) dx = 1$ (c) $p(x) \le 0 \& \sum p(x) = 0$ (d) $f(x) \le 0 \& \int_{-\infty}^{\infty} f(x) dx = 1$	Ans: (a)	(CLO-1, Remember)
18.	If $Var(X) = 4$, then $Var(4X+5)$ is (a)89 (b) 69 (c) 64 (d) 9	Ans: (c)	(CLO-1, Remember)
19.	If X and Y are independent random variables with Var 2 and 3 respectively, thenVar(3X+4Y) is (a) 66 (b) 7 (c) 25 (d) 18	Ans: (a)	(CLO-1, Remember)
20.	If X and Y are independent random variables with Var 2 and var 3 respectively, then Var(2X - Y) is (a) 66 (b) 11 (c) 25 (d) 18	Ans: (b)	(CLO-1, Remember)
21.	If $E(X) = 3$, then $E(3X+4)$ is (a) 15 (b) 13 (c) 9 (d) 10	Ans: (b)	(CLO-1, Remember)
22.	If $E(X+3) = 6$, then $E(3X+4)$ is (a) 15 (b) 13 (c) 9 (d) 10	Ans: (b)	(CLO-1, Remember)

23.	Var(6X+4) is		(CLO-1,
	(a) $6Var(X)$ (b) $36Var(X)$ (c) $Var(X)$ (d) 0	Ans: (b)	Remember)
24.	Var (aX+b) = $(a)aVar(X)+b (b) a2 Var(X) (c)aVar(X) (d)Var(X)$	Ans: (b)	(CLO-1, Remember)
25.	If c is a constant in a continuous probability distribution, then $p(x = c)$ is always equal to (a) zero(b) one(c) negative(d) does not exist	Ans: (a)	(CLO-1, Remember)
26.	If X is a discrete random variable with probability distribution $P(X=x)=kx$, $x=1,2,3,4$, Find $P(2 < x < 4)$. (a) $3/10$ (b) $1/15$ (c) $1/2$ (d) $1/30$	Ans: (a)	(CLO-1, Apply)
27.	The value of $F(-\infty)$ is (a) 0.5 (b)0.05 (c)0 (d) 1	Ans: (c)	(CLO-1, Remember)
28.	A set of numerical values assigned to a sample space is called (a) random sample(b) random variable (c) random numbers(d) random experiment	Ans: (b)	(CLO-1, Remember)
29.	If a random variable has the moment generating function $Mx(t)=2/(2-t)$, determine the mean of X. (a) $1/4$ (b) $1/3$ (c) $1/2$ (d) 2	Ans: (c)	(CLO-1, Apply)
30.	If the probability density function of X is given by $f(x) = 2(1-x)$, $0 < x < 1$, Find mean (a) $1/4$ (b) $1/3$ (c) $1/2$ (d) 2	Ans: (b)	(CLO-1, Apply)
31.	The distribution function $F(x)$ is equal to (a) $P(X = x)(b) P(X \le x)(c) P(X \ge x)(d) P(X \ge x)$	Ans: (b)	(CLO-1, Remember)

32. Let X be a random varification of X is 5? (a)10 (b) 20	Table and $Y = 2X + 1$. What is the variance of Y (c) 5 (d) 1	Ans:(b)	(CLO-1, Remember)
33. If the range of X is {0, (a) 3/4 (b)1/15	(c) 1/2 (d) 2	Ans: (d)	(CLO-1, Apply)
between	function p(x) is always non-negative and always 1) -1 and +1(d) $-\infty$ and $+\infty$	Ans: (b)	(CLO-1, Remember)
35. $E[X - E(X)]$ is equal to (a) $E(X)(b)V(X)(c) O(d)$		Ans: (c)	(CLO-1, Apply)
36. If X and Y are indeper equal toof the	ident random variables , then the MGF of their sum bir MGFs.	is Ans: (a)	(CLO-1, Remember)
(a) Product difference	(b)sum (c) Difference (d)symmetric		

Unit II-PROBABILITY DISTRIBUTIONS

1	A discrete R.V X has moment generating function $M_x(t) = (\frac{1}{4} + \frac{3}{4}e^t)^5$. Then E(X) and Var(X) is $a) \frac{15}{4}, \frac{15}{4}b) \frac{15}{4}, \frac{15}{16}$ $c) \frac{1}{4}, \frac{5}{4}$ $d) \frac{1}{4}, \frac{3}{4}$	Ans: (b)	(CLO-2, Apply)
2	Mean and Variance of Binomial Distribution is a)np, npq b)nq, n/q c) pq , p+q=1, d) p+q,p-q	Ans: (a)	(CLO-2, Remember)
3	If X and Y are independent Poisson variates with parameters λ_1 and λ_2 , then X+Y is also a Poisson variate with parameter	Ans: (a)	(CLO-2, Remember)
4	a) $\lambda_1 + \lambda_2$ b) $\lambda_1 - \lambda_2$ c) λ_1 / λ_2 d) $\lambda_1 \cdot \lambda_2$ If on an average, 9 ships out of 10 arrive safely to a port then the variance of the number of ships returning safely out of 150 ships is a) 135 b) 13.5 c) 1.35 d) 12	Ans: (b)	(CLO-2, Apply)
5	Let X be a random variable following Poisson distribution such that $P(X=2) = 9P(X=4) + 90P(X=6)$, then the mean of X is a)1 b) 2 c)0 d)5	Ans: (a)	(CLO-2, Remember)
6	If X is a random variable with geometric distribution, then $P[X > s+t / X > s] =$ a) $P[X > s]$ b) $P[X > t]$ c) $P[X < t]$ d) $P[X < s]$	Ans: (b)	(CLO-2, Remember)
7	If the probability of success on each trial is 1/3, then the expected number of trials required for the first success is	Ans: (b)	(CLO-2, Apply)
8	a) 2/3 b) 3 c) 2 d)1/3 8. A typist types 2 letters errorneously for every 100 letters. Then the probability that the tenth letter typed is the first letter with error is a) 0.0167 b) 2.335 c) .0001 d) 0.1	Ans: (a)	(CLO-2, Apply)
9	Four coins are tossed simultaneously the probability of getting 2 heads is a) 3/4 b)11/16 c)3/8 d)3	Ans: (c)	(CLO-2, Remember)
10	Poisson distribution is a limiting case of a)Binomial distribution b) uniform distribution c) Geometric distribution d) Normal distribution.	Ans: (a)	(CLO-2, Remember)

11	The mean and variance of poisson distribution is a) λ b) λ^2 c) λ^3 d) pq	Ans: (a)	(CLO-2, Apply)
12	If the moment generating function of the random variable is $e^{4(e^t-1)}$, Find $P(X = \mu + \sigma)$ where μ and σ^2 are the mean and variance of poisson $a)\frac{e^44^6}{6!} (b)\frac{e^{-4}4^6}{6!} c)\frac{e^{-6}6^4}{4!} \qquad d)\frac{e^66^4}{4!}$	Ans: (b)	(CLO-2, Apply)
13	Variance of Exponential distribution is $a)\frac{1}{\lambda}b\frac{1}{\lambda^2}\qquad c)\frac{1}{\sqrt{\lambda}}\qquad d)\lambda$	Ans: (b)	(CLO-2, Apply)
14	Which of the following cannot generate a Poisson distribution? (a) The number of telephone calls received in a ten-minute interval (b) The number of customers arriving at a petrol station (c) The number of bacteria found in a cubic feet of soil (d) The number of misprints per page	Ans: (b)	(CLO-2, Remember)
15	The mean of standard Normal distribution is a) Zero b) one c) infinity d) uniform	Ans: (a)	(CLO-2, Remember)
16	If X is uniformly distributed over $(-\alpha,\alpha)$, $\alpha < 0$, find α so that $P(X>1) = 1/3$ a)0 b) $1/2$ c)3 d) ∞	Ans: (c)	(CLO-2, Apply)
17	If for a poisson variate, $E(X^2) = 6$, what is $E(X)$ a)1 b)2 c) 6 d)3	Ans: (b)	(CLO-2, Remember)
18	If $X \sim N(9,81)$ the standard normal variate Z will be (a) $Z = [X - 81] / 9(b)$ $Z = [X - 9] / 81$ (c) $Z = [X - 9] / 9(d)$ $Z = [9 - X] / 9$	Ans: (c)	(CLO-2, Apply)
19	The mean of rectangular distribution is (a) np(b) 1/λ (c) (a+b)/2(d) λ	Ans: (c)	(CLO-2, Remember)
20	If X is a Poisson variate such that $P(X=0)=0.5$, then $var(X)$ is (a) e^2 (b)log2 (c) 0.5 (d)log4	Ans: (b)	(CLO-2, Remember)

21	If $f(x)=Ae^{-x/5}$, $x>0$, then the value of A is		(CLO-2,
	a)1/5 b) 2 c)1/6 d)1	Ans: (a)	Apply)
22	The mean and Standard deviation of a Binomial distribution are 2 and 5, what is the probability of success? a) 1/5 b)1 c)1/2 d)2	Ans: (a)	(CLO-2, Apply)
23	If the probability of success on each trial is 1/2. What is the expected number of trials required for the first success? (a)3 (b)2 (c) 4 (d)5	Ans: (b)	(CLO-2, Apply)
24	Normal distribution is the limiting form of distribution under suitable statistical conditions a)Exponential distribution b) Uniform distribution c) Normal distribution d) Binomial distribution	Ans: (d)	(CLO-2, Remember)
25	25. For a binomial distribution, if mean = 4 and variance = 3, the value of n is a)0 b)16 c)10 d)4	Ans: (b)	(CLO-2, Apply)
26	Which of the following distribution satisfies Memoryless Property? a) Binomial distribution b) Poisson distribution c) Geometric distribution d) Normal distribution.	Ans: (c)	(CLO-2, Remember)
27	If X is uniformly distributed with mean 1 and variance 4/3 then find P(X<0). a)1/4 b)1/16 c)1/10 d)4	Ans: (a)	(CLO-2, Apply)
28	The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$. What is the probability that the repair time exceeds 2hrs? a)0.2679 b)0.3679 c)0.4679 d)0.5679	Ans: (b)	(CLO-2, Apply)
29	If X is uniformly distributed in (-a,a),then its probability density function is (a) 1/2a (b) 1/a (c)2/a (d)3/a	Ans: (a)	(CLO-2, Apply)
30	In a binomial distribution, the probability of success is twice as that of failure. Then out of 4 trials, the probability of no success is (a) 16/81 (b) 1/16 (c) 2/27 (d) 1/81	Ans: (d)	(CLO-2, Apply)

31	The mean and variance of a binomial distribution are 4 & 4/3 respectively. Find $P(X \ge 1)$, if $n = 6$. (a) $721/729$ (b) $724/729$ (c) $727/729$ (d) $728/729$	Ans: (d)	(CLO-2, Apply)
32	An urn contains four balls of red, black, green and blue colours. There is an equal probability of getting any coloured ball. What is the expected value of getting a blue ball out of 30 experiments with replacement? a)1.5 b)30 (c)7.5 d)15	Ans: (c)	(CLO-2, Apply)
33	The MGF of standard normal distribution is a) $e^{\frac{t^2}{2}}$ b) $e^{\frac{-t^2}{2}}$ c) $te^{\frac{t^2}{2}}$ d) $2e^{\frac{t^2}{2}}$	Ans: (a)	(CLO-2, Apply)
34	If the mean and variance of binomial variate are 8 and 6 then the values of p, q and n are $ (a)q=1/4 \ , p=3/4, n=34 \ (b) \ q=1/2 \ , p=1/2, n=32 $ $ (c)q=3/4 \ , p=1/4, n=32 \ (d)q=1/3 \ , p=2/3, n=32 $	Ans: (c)	(CLO-2, Apply)
35	A manufacturer produces switches and experiences that 2 per cent switches are defective. The probability that in a box of 50 switches, there are zero defective is: (a) 2.5 e ⁻¹ (b) e ⁻¹ (c) 2 e ⁻¹ (d) 1-e	Ans: (b)	(CLO-2, Remember)
36	The parameters of the normal distribution $f(x) = \left(\frac{1}{\sqrt{72\pi}}\right) \frac{e^{-(x-10)^2}}{72}$ $\infty < x < \infty$ (a) $(10,6)(b)(10,36)(c)(6,10)$ (d) $(36,10)$	Ans: (b)	(CLO-2, Remember)

UNIT III - TESTING OF HYPOTHESES

1	If θ_0 is a population parameter and θ is the corresponding sample statistic		
	and if we set up the Nullhypotheses H_0 : $\theta = \theta_0$ then the right-tailed alternative hypotheses is (a) H_1 : $\theta = \theta_0$ (b) H_1 : $\theta > \theta_0$ (c) H_1 : $\theta < \theta_0$ (d) H_1 : $\theta \neq \theta_0$	Ans: (b)	(CLO-3, Remember)
2	The size of large sample is: (a)Exact (b) Less than 30 (c) Greater than 30 (d) Equal to 30	Ans: (c)	(CLO-3, Remember)
3	The statistic to test the significance difference between sample proportion and population proportion is $ (a) \frac{p-P}{\sqrt{\frac{p}{n}}} (b) \frac{p+P}{\sqrt{\frac{pQ}{n}}} (c) \frac{p-P}{\sqrt{\frac{PQ}{n}}} $	Ans: (c)	(CLO-3, Remember)
4	The statistic to test the significance difference between the sample mean and population mean is (a) $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ (b) $Z = \frac{\bar{X} + \mu}{\frac{\sigma}{\sqrt{n}}}$ (c) $Z = \frac{\bar{X}}{\frac{\sigma}{\sqrt{n}}}$ (d) $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{n}}$	Ans: (a)	(CLO-3, Remember)
5	If σ_1 and σ_2 are equal and not known then the test statistic is (a) $Z = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_1^2}{n_2} + \frac{s_2^2}{n_1}}}$ (b) $Z = \frac{\bar{X_1} + \bar{X_2}}{\sqrt{\frac{s_1^2}{n_2} + \frac{s_2^2}{n_1}}}$ (c) $Z = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_1^2}{n_2} - \frac{s_2^2}{n_1}}}$ (d) $Z = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	Ans: (a)	(CLO-3, Remember)
6	The sample is said to be small if (a) $n > 30$ (b) $n > 100$ (c) $n < 60$ (d) $n < 30$	Ans: (d)	(CLO-3, Remember)
7	The t – distribution is used to test the significance of the difference between (a)Mean of two small samples b) Variance of two small samples (c) Mean of two large samples (d) Variance of two large samples	Ans: (a)	(CLO-3, Remember)

8	If $n_1 = n_2 = n$, then the degrees of freedom to test mean of the two small samples is		(CLO-3,
	(a) $n_1 + n_2 - 2$ (b) $n_1 + n_2 + 2$ (c) $2n - 2$ (d) $2n + 2$	Ans: (c)	Remember)
9	The statistics to test the significance difference between means of two small samples is $(a) \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\left(\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} (b) \frac{\overline{x_1} + \overline{x_2}}{\sqrt{\left(\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} (c) \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\left(\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} - \frac{1}{n_2}\right)}} (d) \frac{\overline{x_1 x_2}}{\sqrt{\left(\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}\right)}}$	Ans: (a)	(CLO-3, Remember)
10	A is a subset of a population (a) sample (b) proportion (c) parameter (d) statistic	Ans: (a)	(CLO-3, Remember)
11	Area of the rejection region depends on (a) significant level (b) proportion (c) parameter (d) statistic	Ans: (a)	(CLO-3, Remember)
12	The hypothesis that an analyst is trying to prove is called the (a) Null hypothesis (b) alternative hypothesis (c) parameter (d) test statistic	Ans: (b)	(CLO-3, Remember)
13	Type I error is (a) accept H ₀ , when it is false (b) accept H ₀ , when it is true (c) reject H ₀ , when it is true (d) reject H ₀ , when it is false	Ans:(c)	(CLO-3, Remember)
14	The standard deviation of a sampling distribution is called as (a) Sampling error (b) Standard error (c) simple error (d) sample error	Ans:(b)	(CLO-3, Remember)
15	The degrees of freedom for testing a sample mean of a sample of size 'n' is (a) n (b) n-1 (c) n+1 (d) 2n	Ans:(b)	(CLO-3, Remember)
16	The size of small sample is (a)Minimum 30 (b) Less than 30 (c) Greater than 30 (d) Equal to 25	Ans: (b)	(CLO-3, Remember)
17	Type II error is (a) accept H ₀ , when it is false (b) accept H ₀ , when it is true (c) reject H ₀ , when it is true (d) reject H ₀ , when it is false	Ans:(a)	(CLO-3, Remember)

18	The standard error of sample proportion is		
	PO (1) PO (2) P (3) P	A == == (=)	(CLO-3,
	(a) $\sqrt{\frac{PQ}{n}}$ (b) $n\frac{PQ}{n}$ (c) $\frac{P}{Q}$ (d) $\frac{P}{n}$	Ans:(a)	Remember)
19	A is a numerical characteristic of a sample and a		
	is a numerical characteristic of apopulation.		(CLO-3,
	(a)Sample,population(b)Population, sample (c)Statistic,parameter(d)Parameter,statistic	Ans:(c)	Remember)
20	A failing student is passed by an examiner, it is an example f	4 (1)	(CLO-3,
	(a) Type I error (b) Type II error	Ans:(b)	Remember)
	(c) Unbiased decision (d) Difficult to tell		
21	A passing student is failed by an examiner, it is an example of	A (-)	(CLO-3,
	(a) Type I error (b) Type II error	Ans: (a)	Remember)
	(c) Best decision(d) Unbiased decision		
22	Area of the critical region depends on		(CLO-3,
	(a) Size of α (b) Size of β	Ans: (a)	Remember)
	(c) Test-statistic (d) Number of values		Remember)
23	Which hypothesis is called as research hypothesis?		(CLO-3,
	(a) Null hypothesis (b) Alternative hypothesis (c)Simplehypothesis(d) Composite hypothesis	Ans:(b)	Remember)
24	Student's t-distribution has (n-1) degrees of freedom when all the n		
	observations in the sampleare		(CLO-3,
	(a) Dependent (b) Independent	Ans:(b)	Remember)
	(c) Maximum (d) Minimumvalues		
25	The number of independent values in a set of values iscalled	Ans: (b)	(CLO-3,
	(a)Test-statistic (b) Degree of freedom	ANIS: (D)	Remember)
	(c) Level of significance(d)Levelofconfidencevalues		
26	A region corresponding to a statistic't' in the sample space S which lead to		
	the rejection of H ₀ is called region		(CLO-3,
	(a) critical (b) acceptance(c) centre (d) parametric	Ans:(a)	Remember)
27	Find the standard error of population proportion p for sampling with		
_,	replacement. The population proportion is 0.5 and size of sample is 4.	Ans:(b)	(CLO-3,
1			

28	Find the value of standard error \dot{X} in a sampling distribution without replacement. Given that the standard deviation of the population of 100 items is 25. (a)2.5(b)0.25(c)0.22(d) 7.5	Ans:(a)	(CLO-3, Apply)
29	The sampling error is defined as? (a) difference between population and parameter (b) difference between sample and parameter (c) difference between population and sample (d) difference between parameter and sample	Ans:(c)	(CLO-3, Remember)
30	A manufacturer of ball pens claims that a certain pen he manufactures has a mean writing life of 400 pages with a standard deviation of 20 pages. A purchasing agent selects a sample of 100 pens and puts them for test. The mean writing life for the sample was 390 pages. Find the test statistic. (a) 3 (b) 5 (c) 1 (d) 2	Ans:(b)	(CLO-3, Apply)
31	Confidence limits are used to estimate a of a population (a) parameter (b)statistic(c) mean(d) mode	Ans:(a)	(CLO-3, Remember)
32	Rejecting null hypothesis when calculated test statistic value istabulated value (a)less than (b)greater than (c) equal (d) unequal	Ans:(b)	(CLO-3, Remember)
33	The value of the test statistic which separates the critical region from the acceptance region is called thevalue (a) parameter (b)critical(c) mean (d) mode	Ans:(b)	(CLO-3, Remember)
34	The sample observations arein t-distribution. (a) dependent (b) equal (c) independent(d) infinite	Ans:(c)	(CLO-3, Remember)
35	A server channel monitored for an hour was found to have an estimated mean of 20 transactions transmitted per minute. The variance is known to be 4. Find the standard error. (a) 0.398 (b) 0.598 (c) 0.198 (d) 0.258	Ans:(d)	(CLO-3, Apply)
36	The probability curve of the 't' distribution is similar to thecurve (a) parametric (b)standard normal (c) markov(d) stochastic	Ans:(b)	(CLO-3, Remember)

Unit-IV-QUEUEING THEORY

1	The use of F-distribution is to test the (a) Mean of two small samples (b) Variance of two small samples (c) Mean of two large samples (d) Variance of two large samples	Ans: (b)	(CLO-4, Remember)
2	The value of test statistic F is (a) $F > 1$ (b) $F < 1$ (c) $F = 1$ (d) $F = 0$	Ans: (a)	(CLO-4, Remember)
3	Chi square distribution is used to (a) To test the mean of two small samples (b) To test the mean of two large samples (c) To test the goodness of fit (d) To test the variance of two populations	Ans:(c)	(CLO-4, Remember)
4	In Chi square test, the number of observations in the sample is $(a) \ge 50 \qquad (b) \le 50 \qquad (c) \ 10 \qquad (d) \ 100$	Ans: (a)	(CLO-4, Remember)
5	In Chi square test, the condition to choose n is (a) $4 \le n$ (b) $4 \le n \le 16$ (c) $n \ge 16$ (d) $n \le 4$	Ans: (b)	(CLO-4, Remember)
6	The statistic of chi square test is (a) $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$ (b) $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i^2}$ (c) $\chi^2 = \sum (O_i - E_i)$ (d) $\chi^2 = \sum \frac{(O_i - E_i)^2}{2}$	Ans: (a)	(CLO-4, Remember)
7	The number of degrees of freedom of Chi square test is (a) n-2 (b) n-3 (c)n-4 (d) n-1	Ans: (d)	(CLO-4, Remember)
8	The number of degrees of freedom of Chi square test in poisson distribution is (a) n-2 (b) n-3 (c)n-4 (d) n-1	Ans: (a)	(CLO-4, Remember)
9	The number of degrees of freedom of Chi square test in normaldistribution is (a) n-2 (b) n-3 (c)n-4 (d) n-1	Ans: (b)	(CLO-4, Remember)
10	Test used for independence of attributes (a) t-test (b) z-test (c)F-test (d) chi-square test	Ans: (d)	(CLO-4, Remember)

11	The value of χ^2 for 2 x 2 contingency table is		
	(a) $\chi^2 = \frac{N(ad - bc)}{(a+b)(c+d)(a+c)(b+d)}$ (b) $\chi^2 = \frac{N(ad+bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ (c) $\chi^2 = \frac{N(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ (d) $\chi^2 = \frac{N(ad+bc)^2}{(a-b)(c+d)(a+c)(b+d)}$	Ans: (c)	(CLO-4, Remember)
12	In Queueingsystem,the number of arrivals per unit time always follows distribution. (a) poisson (b) exponential (c) Binomial d)Normal	Ans: (a)	(CLO-4, Remember)
13	In the model M/M/1, the first M represents a) server b) arrival c) no. of servers d)departure	Ans: (b)	(CLO-4, Remember)
14	In the model M/M/1, then 1 represents a)single server c) single arrival d) multiple arrival	Ans: (a)	(CLO-4, Remember)
15	The average waiting time of acustomer in the (M/M/1):(∞ /FIFO)system is a) $\frac{1}{\mu - \lambda}$ b) $\frac{\lambda}{\mu - \lambda}$ c) $\frac{\mu}{\mu - \lambda}$ d) $\frac{\mu}{\mu + \lambda}$	Ans: (a)	(CLO-4, Remember)
16	If the arrival and departure rates in a public telephone booth with a single phone are 1/12 and 1 /14 respectively, find the probability that the phone is busy. a) 1/3 b) 1/2 c) 1/5 d) 1/6	Ans: (a)	(CLO-4, Remember)
17	The number of arrivals per unit time has a poisson distribution with mean $ \frac{1}{a} \frac{1}{\lambda} \frac{b}{b} \lambda \qquad c) \mu \qquad d) \frac{1}{\mu} $	Ans: (b)	(CLO-4, Remember)
18	The average number of customers in the system in M/M/1 model is a) $\frac{1}{\mu - \lambda}$ b) $\frac{\lambda}{\mu - \lambda}$ c) $\frac{\mu}{\mu - \lambda}$ d) $\frac{\mu}{\mu + \lambda}$	Ans: (b)	(CLO-4, Remember)
19	The probability that the arrival enter the service without wait is a)1 + P(arrival has to wait) b)P(arrival has to wait) - 1 c)1 - P(arrival has to wait) d)zero	Ans: (c)	(CLO-4, Remember)
20	If the inter-arrival time and service time in a public telephone booth with a single-phone follow exponential distributions with means of 10 and 8 minutes respectively, Find the average number of callers in the booth at any time. a) 4 b)2 c) 5 d)6	Ans: (a)	(CLO-4, Apply)

21	The number of customer in the system are always a) mutually exclusive b) mutually exhaustive	Ans: (c)	(CLO-4, Remember)
22	c) mutually exclusive and exhaustive d) unique		
22	The relation between $E(N_s)$ and $E(N_q)$ is a) $E(N_s) = E(N_q) + \frac{\lambda}{\mu}$ b) $E(N_s) = E(N_q) - \frac{\lambda}{\mu}$ c) $E(N_s) = E(N_q) + \frac{1}{\mu}$ d) $E(N_s) = E(N_q) + \lambda \mu$	Ans: (a)	(CLO-4, Remember)
23	In which basis the service is provided in queueing theory (a)LCFO (b)LIFO (c) FCFS (d)FCLS	Ans: (c)	(CLO-4, Remember)
24	What stands for 'd' in the queue model (a/b/c :d/e) (a)queue discipline (b)system capacity (c)servicetime(d) number of servers	Ans:(b)	(CLO-4, Remember)
25	The traffic intensity is (a) λ / μ^2 (b) λ^2 / μ (c) λ / μ (d) $1 / \mu$	Ans:(c)	(CLO-4, Remember)
26	The arrivals in queuing system follows (a) poisson (b) exponential (c) Binomial d)Normal	Ans: (a)	(CLO-4, Remember)
27	Consider an M M 1 queuing system. If $\lambda=6$ and $\mu=8$, Find the probability of atleast 10 customers in the system. a) 0.0563 b)0.0989 c) 0.0878 d)0.0675	Ans:(a)	(CLO-4, Apply)
28	If λ =1/13 and μ =1/4 in (M/M/1)(∞ /FCFS) then the expected number of customers in the system is (a)0.3324 (b)0.4444 (c) 0.3434 (d) 0.7454	Ans: (b)	(CLO-4, Apply)
29	If λ =1/13 and μ =1/4 in (M/M/1)(∞ /FCFS) then the traffic intensity is (a)0.3077(b)0.3770 (c) 0.3434 (d) 0.7377	Ans:(a)	(CLO-4, Apply)
30	Prob. Of queue length being greater than on equal to n	Ans:(c)	(CLO-4,
	(a) $\frac{\lambda}{\mu}$ (b) $2 \frac{\lambda}{\mu}$ c) $\left(\frac{\lambda}{\mu}\right)^n$ (d) $\left(\frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n$		Apply)
31	Suppose that customers arrive at a Poisson rate of one per every 12 minutes and that the service time is exponential at a rate of one service per 8 minutes. What is the average number of customer in the system?	Ans:(d)	(CLO-4, Apply)

	(a)4 (b)5 (c) 3 (d) 2		
32	If the arrival and departure rates in a public telephone booth with a single phone are 1/12 and 1 /14 respectively, find the probability that the phone is busy. (a) 1/4 (b) 1/5 (c) 1/2 (d) 1/3	Ans:(d)	(CLO-4,Apply)
33	If the inter-arrival time and service time in a public telephone booth with a single-phone follow exponential distributions with means of 10 and 8 minutes respectively, Find the average number of callers in the booth at any time. (a) 4 (b)5 (c) 3 (d) 2	Ans:(a)	(CLO-4, Apply)
34	If the arrival and departure rates in a M/M/I queue are 1/2 per minute and 2/3 per minute respectively, find the average waiting time of a customer in the queue. (a)4 min (b)5 min (c) 3.5 min (d) 4.5 min	Ans:(d)	(CLO-4, Apply)
35	What is the probability that a customer has to wait more than 15 minutes to get his service completed in (M/M/I) : (∞ / FIFO) queue systme if λ = 6 per hour and μ = 10 per hour ? (a)0.3679(b)0.5989 (c) 0.4999 (d) 0.6379	Ans:(a)	(CLO-4, Apply)
36	A super market has a single cashier. During the peak hours, customers arrive at a rate of 20 customers per hour. The average no of customers that can be processed by the cashier is 24 per hour. Find the probability that the cashier is idle	Ans:(c)	(CLO-4, Apply)
37	(a)0.369 (b)0.567 (c) 0.167 (d) 0.6379 Customers arrive at a one-man barber shop according to a Poisson process with mean inter-arrival time of 12 minute, Customers spend an average of 10 min in the barber's chair. What is the expected number of customers in the barber shop and in the queue? (a)4 (b)5 (c) 3 (d) 2	Ans:(b)	(CLO-4, Apply)
38	The nature of the customer who leaves the queue because of lengthy queue is (a)Reneging (b)Balking (c) Jockeying (d) leaving	Ans:(b)	(CLO-3, Remember)
39	In a given (M/M/I): (k / FIFO) queue, $\lambda = 3$ per hour and $\mu = 4$ per hour and effective mean arrival rate is 2.88 per hour, then what is P_n ? (a)0.38 (b)0.48 (c) 0.18 (d) 0.28	Ans:(d)	(CLO-4, Apply)
40	If λ = 3, per hour, μ =4 per hour and maximum capacity k=7 in a (M/M/1): (k /FIFO) system, then the average number of customers in the system.	Ans:(b)	(CLO-4, Apply)

41		ompleted in a in a		wait more than 15 min FO), if $\lambda = 6$ per hour (d)0.169	(CLO-4, Apply)
42			, ,	FO) queue system, what our and $m = 12$ per ho	(CLO-4, Apply)
	(a) 1	(b) 2	(c) 5	(d)6	

UNIT V- MARKOV PROCESS

1	A discrete parametermarkov process is called a (a)Markov process (b) stationary process (c) random process (d) Markov chain	Ans: (d)	(CLO-5, Remember)
2	A square matrix, in which the sum of all the elements of each row is one is called a (a)unitary matrix (b) diagonal matrix (c) stochastic matrix (d) skew matrix	Ans: (c)	(CLO-5, Remember)
3	A stochastic matrix P is said to be regular if all the entries of P ^m are (a)negative (b) positive (c) semi positive (d) either positive or negative	Ans: (b)	(CLO-5, Remember)
4	If $\pi = (\pi_1, \pi_{2,}, \pi_n)$ is the steady state distribution of the chain whose tpm is the n^{th} order square matrix P, then (a) $\pi P = \pi(b) \pi \mu = \pi(c) \pi A = n$ (d) $\pi P = P$.	Ans: (a)	(CLO-5, Remember)
5	The conditional probability $P[X_n = a_j/X_{n-1} = a_i]$ is called (a) secondtpm(b)one-step transition probability (c) homogeneous (d) n-step tpm	Ans:(b)	(CLO-5, Remember)
6	If the one-step tpm does not depend on the step ie. $p_{ij}(n-1,n) = p_{ij}(m-1,m)$ the markov chain is called (a)stationary chain (b) discrete chain (c) homogeneous markov chain (d) regular markov chain	Ans: (c)	(CLO-5, Remember)
7	The conditional probability P[X _n = a _j /X ₀ =a _i] is called (a) secondtpm(b)one-step tpm (c) homogeneous (d) n-step transition probability	Ans:(d)	(CLO-5, Remember)
8	If P is the tpm of a homogeneous Markov chain , then the n-step tpm P ⁽ⁿ⁾ = P ⁿ is known as (a) probability theorem (b) Chapman-Kolmogorov Theorem (c) Markov theorem (d) Chapman theorem	Ans: (b)	(CLO-5, Remember)
9	State i of a Markov chain is said to be with period d _i if d _i >1 (a) periodic (b) not periodic (c) aperiodic (d) biperiodic	Ans: (a)	(CLO-5, Remember)
10	State i of a Markov chain is said to be with period d_i if $d_i = 1$ (a) periodic (b) not periodic (c) aperiodic (d) biperiodic	Ans: (c)	(CLO-5, Remember)

11	Every state can be reached from every other state, the Markov chain is said to be		(CLO-5,
	(a) homogeneous (b) reducible (c) irreducible (d) recurrent	Ans: (c)	Remember)
12	Anon null persistent and aperiodic state is called (a) markov (b) irreducible (c) recurrence (d) ergodic	Ans: (d)	(CLO-5, Remember)
13	A state i is said to be if the return to state i is certain. (a) persistent (b) non persistent (c) ergodic (d) periodic	Ans:(a)	(CLO-5, Remember)
14	A state i is said to be if the return to state i is uncertain. (a) persistent (b) non persistent (c) transient (d) periodic	Ans: (c)	(CLO-3, Remember)
15	A state i is said to be if the mean recurrence time \$\mu_{ii}\$ is finite. (a) persistent (b) non persistent (c) transient (d) non null persistent	Ans:(d)	(CLO-5, Remember)
16	A state i is said to be if the mean recurrence time $\mu_{ii} = \infty$. (a) persistent (b) non persistent (c) null persistent (d) non null persistent	Ans:(c)	(CLO-5, Remember)
17	If a markov chain is finite and irreducible, all its states are (a) persistent (b) null persistent (c) non null persistent (d) recurrent	Ans: (c)	(CLO-3, Remember)
18	A Markov chain is completely specified when(is/are) given. (a) initial probability distribution and tpm (b) tpm alone (c) absorbing state alone (d) probability distribution	Ans:(a)	(CLO-5, Remember)
19	If $\pi P = \pi$, where $P = \begin{pmatrix} 0 & 1 \\ 1/2 & 1/2 \end{pmatrix}$ then values of (π_1, π_2) is (a) $(1/3, 2/3)$ (b) $(1/2, 1/2)$ (c) $(2/3, 1/3)$ (d) $(0, 1)$	Ans:(a)	(CLO-5, Apply)
20	If the tpm of a markovchain is $P = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$ find $P[X_1 = 3/X_0 = 2]$. (a) 0.1 (b) 0.2 (c) 0.4 (d) 0.6	Ans:(b)	(CLO-5, Apply)
21	If the transition probability matrix of the Markov chain is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ then the period of the chain is	Ans:(c)	(CLO-5, Apply)
	(a) 4 (b) 1 (c) 2 (d)not periodic		
22	A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by trains but if he drives one day, then the next day he is just as likely to drive again he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if a '6' appeared. Find the probability that he takes a train on the second day.	Ans:(b)	(CLO-5, Apply)
	(a) 1/14 (b) 1/12 (c) 1/4 (d) 1/6		

23	A State i of a Markov chain is said to be an absorbing state if P _{ii} =		(CLO-5,
	(a) ∞ (b) 2 (c) 0 (d) 1	Ans:(d)	Remember)
24	The limiting probability $\lim_{n\to\infty} P^n =$ (a) 1 (b) P (c) ∞ (d) -1	Ans:(b)	(CLO-5, Remember)
25	If thereexists a stationary distribution, inchain, then it is unique. (a) persistent (b) transient (c) null persistent (d) Irreducible	Ans:(d)	(CLO-5, Remember)
26	In an absorbing Markov chain, a state which is not absorbing is (a) persistent (b) transient (c) null persistent (d) Irreducible	Ans:(b)	(CLO-3, Remember)
27	If the transition probability matrix of the Markov chain is $\begin{pmatrix} 0.75 & 0.25 \\ 0.5 & 0.5 \end{pmatrix}$ then the steady state distribution of the chain is (a)[1/2,1/2] (b) [2/3, 1/3] (c) [1/4, 3/4] (d)[2/5, 3/5]	Ans:(a)	(CLO-5, Apply)
28	Suppose that the probability of a dry day following a rainy day is 1/3 and that the probability of a rainy day following a dry day is 1/2. Given that May 1 is a dry day, find the probability that May 3 is also a dry day.	Ans:(c)	(CLO-5, Apply)
29	(a) $1/14$ (b) $1/12$ (c) $5/12$ (d) $1/6$ If the transition probability matrix of the Markov chain is $\begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}$, then the steady state distribution of the chain is (a) $[1/2, 1/2]$ (b) $[1/3, 2/3]$ (c) $[1/4, 3/4]$ (d) $[2/5, 3/5]$	Ans:(b)	(CLO-5, Apply)
30	A Student's study habit are as follows . If he studies one night he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night as well, then the TPM of the Markov Chain is (a) $\begin{pmatrix} 0.75 & 0.25 \\ 0.5 & 0.5 \end{pmatrix}$ (b) $\begin{pmatrix} 0.3 & 0.7 \\ 0.4 & 0.6 \end{pmatrix}$ (c) $\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$ (d) $\begin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{pmatrix}$	Ans:(b)	(CLO-5, Apply)

31	The tpm of a Markov chain $\{X_n\}$ with three states 1,2,3 is $P = \begin{pmatrix} 0.1 & 0.50 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$ & the intial distribution is $P^{(0)} = (0.7, 0.2 \ 0.1)$. Find $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 1)$ (a) 0.289 (b) 0.0336 (c) 0.269 (d)0.169	Ans:(b)	(CLO-5, Apply)
32	If the transition probability matrix of the Markov chain is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ then the nature of the chain is (a) aperiodic (b) reducible(c) irreducible (d)ergodic	Ans:(c)	(CLO-5, Remember)
33	Three boys A, B, C are throwing a ball each other .A always throws the ball to B and B always throws the ball to C, but C is just as likely to throw the ball to B as to A. This process is (a) Non markov (b) Markov (c) Binomial (d) Normal	Ans:(b)	(CLO-5, Apply)
34	If the transition probability matrix of the Markov chain is $\begin{pmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{pmatrix}$ then the invariant probability is (a)[1/2,1/2] (b) [2/3, 1/3] (c) [1/4, 3/4] (d)[2/5, 3/5]	Ans:(d)	(CLO-5, Apply)
35	If a homogenous Markov chain is regular, then every sequence of state probability distributions approaches a unique fixed probability distribution calleddistribution of Markov chain. (a) Variant (b) steady state (c) Binomial (d) Normal	Ans:(b)	(CLO-5, Remember)
36	a) Poisson (b) Standard normal (c) Binomial (d) Normal	Ans:(a)	(CLO-5, Remember)