1. let
$$x = 4 + 5$$
 in $(3 * x)$

$$\Rightarrow$$
 [4+5/x](3*x) let reduction

$$\Rightarrow$$
 (3 * (4+5)) substitution

$$\Rightarrow$$
 3 * 9 arithmetic

2.
$$(\x -> 3 * x) (4+5)$$

$$\Rightarrow$$
 [4+5/x](3*x) lambda reduction

$$\Rightarrow$$
 3 * (4+5) substitution

$$\Rightarrow$$
 3 * 9 arithmetic

3.
$$(((x -> ((y -> x + (3 * y))) 4) 1$$

$$\Rightarrow$$
 ([4/x](\y -> x + (3 * y))) 1 lambda reduction

$$\Rightarrow$$
 (\y -> (4 + (3 * y))) 1 substitution

$$\Rightarrow$$
 [1/x] (4 + (3 * y)) lambda reduction

$$\Rightarrow$$
 4 + (3 * 1) substitution

$$\Rightarrow$$
 4 + 3 multiplication

$$\Rightarrow$$
 7 arithmetic

4. let
$$x = 4$$
 in (let $y = 1$ in $(x + (3 * y))$)

$$\Rightarrow$$
 let x = 4 in ([1/y] x + (3 * y)) let reduction

$$\Rightarrow$$
 let x = 4 in (x + (3 * 1)) substitution

$$\Rightarrow$$
 [4/x] x + (3 * 1) let reduction

$$\Rightarrow$$
 4 + (3 * 1) substitution

$$\Rightarrow$$
 4 + 3 multiplication

$$\Rightarrow$$
 7 arithmetic

5. let
$$x = 4$$
 in (let $y = 1 + x$ in $(x + (3 * y))$)

$$\Rightarrow$$
 let x = 4 in ([1+x/y] (x + (3 * y))) let reduction

$$\Rightarrow$$
 let x = 4 in ((x + (3 * (1+x)))) substitution

$$\Rightarrow$$
 [4/x] (x + (3 * (1+x))) let reduction

$$\Rightarrow$$
 4 + (3 * (1+4)) substitution

$$\Rightarrow$$
 4 + (3 * 5) arithmetic

$$\Rightarrow$$
 4 + 15 multiplication

6.
$$(((x -> ((y -> x + (3 * x))) 4) 1$$

$$\Rightarrow$$
 ([4/x] -> (\y -> x +(3 * x))) 1 lambda reduction

$$\Rightarrow$$
 (\y -> 4 +(3 * 4)) 1 substitution

$$\Rightarrow$$
 [1/y] (4 + (3 * 4)) 1 lambda reduction

$$\Rightarrow$$
 4 + (3 * 4) substitution

$$\Rightarrow$$
 4 + 12 multiplication

 \Rightarrow 16 arithmetic

7.
$$(((x -> ((y -> y + (3 * y))) 4) 1$$

$$\Rightarrow$$
 ([4/x] -> (\y -> y +(3 * y))) 1 lambda reduction

$$\Rightarrow$$
 (\y -> y +(3 * y)) 1 substitution

$$\Rightarrow$$
 [1/y] (y + (3 * y)) 1 lambda reduction

$$\Rightarrow$$
 1 + (3 * 1) substitution

$$\Rightarrow$$
 1 + 3 multiplication

$$\Rightarrow$$
 4 arithmetic

8.
$$(\y -> y + ((\y -> 3 * y) 4)) 5$$

$$\Rightarrow$$
 (\y -> y + ([4/y] 3 * y)) 5 lambda reduction

$$\Rightarrow$$
 (\y -> y + (3 * 4)) 5 substitution

$$\Rightarrow$$
 [5/y] y + (3 * 4) lambda reduction

$$\Rightarrow$$
 5 + (3 * 4) substitution

$$\Rightarrow$$
 5 + 12 multiplication

$$\Rightarrow$$
 17 arithmetic

9.
$$(y \rightarrow ((y \rightarrow 3*y) 4) + y) 5$$

$$\Rightarrow$$
 (\y -> ([4/y] -> 3*y) + y) 5 lambda reduction

$$\Rightarrow$$
 (\y -> (3*4) + y) 5 substitution

$$\Rightarrow$$
 ([5/y] (3*4) + y) lambda reduction

$$\Rightarrow$$
 (3 * 4) + 5 substitution

$$\Rightarrow$$
 12 + 5 multiplication

$$\Rightarrow$$
 17 arithmetic

10.
$$(\x -> x * (\text{let } x = 3 * 2 \text{ in } (x+7)) + x) 4$$

$$\Rightarrow$$
 (\x -> x * ([3*2/x] x+7) + x) 4 let reduction

$$\Rightarrow$$
 (\x -> x * ((3*2)+7) + x) 4 substitution

$$\Rightarrow$$
 [4/x] (x * ((3*2)+7) + x) lambda reduction

$$\Rightarrow$$
 4 * ((3*2)+7) + 4 substitution

$$\Rightarrow$$
 4 * (6+7) + 4 multiplication

$$\Rightarrow$$
 4 * 13 + 4 arithmetic

$$\Rightarrow$$
 52 + 4 multiplication

$$\Rightarrow$$
 56 arithmetic

11. g ((let
$$x = 4$$
 in $(\y -> x + y))$ 2)

$$\Rightarrow$$
 g (([4/x](\y -> x + y) 2) let reduction

$$\Rightarrow$$
 g ((\y -> 4 + y) 2) substitution

$$\Rightarrow$$
 g ([2/y] 4 + y) lambda reduction

$$\Rightarrow$$
 g (4 + 2) substitution

$$\Rightarrow$$
 (\z -> z + 4) 6 arithmetic

$$\Rightarrow$$
 [6/z] (z + 4) lambda reduction

$$\Rightarrow$$
 6 + 4 arithmetic

12. let
$$x = 5$$
 in $(\z -> x * z)$

- \Rightarrow [5/x] (\z -> x * z) let reduction
- $\Rightarrow \z -> 5 * z$ substitution
- 13. $f((\fn -> fn Rock) (\x -> whatItBeats x))$
 - \Rightarrow f ((\x -> whatItBeats x) Rock) lambda reduction
 - \Rightarrow f ([Rock/x] whatItBeats x) lambda reduction
 - \Rightarrow f (whatItBeats Rock) substitution
 - \Rightarrow f ([Rock/s] whatItBeats) substitution
 - ⇒ [Scissors/s]f lambda reduction
 - ⇒ 99 case reduction
- 14. $((\f -> (\x -> f (f x)))$ whatItBeats) Paper
 - \Rightarrow ([whatItBeats/f](\x -> f (f x))) Paper lambda reduction
 - \Rightarrow ((\x -> whatItBeats (whatItBeats x))) Paper substitution
 - \Rightarrow [Paper/x](whatItBeats (whatItBeats x)) lambda reduction
 - ⇒ whatItBeats (whatItBeats Paper) substitution
 - ⇒ whatItBeast ([Paper/s] whatItBeats) lambda reduction
 - ⇒ whatItBeats Rock lambda reduction
 - ⇒ [Rock/s] (whatItBeast) case reduction

```
⇒ Scissors
```

- 15. whatItBeats (case Paper of {Rock -> Paper; Paper -> Rock; Scissors -> Scissors})
 - ⇒ whatItBeats Rock case reduction
 - \Rightarrow [Rock/s] whatItBeats
 - ⇒ Scissors
- 16. (case (Win Rock) of {Draw -> whatItBeats; Win z -> (\s -> Scissors)}) Paper
 - \Rightarrow ([Rock/z] (\s -> Scissors)) Paper case reduction
 - \Rightarrow (\s -> Scissors) Paper substitution
 - ⇒ [Paper/s] Scissors lambda reduction
 - ⇒ Scissors
- 17. case (Win (whatItBeats Rock)) of $\{Draw -> n; Win y -> (n + f y)\}$
 - \Rightarrow case (Win ([Rock/s] whatItBeats)) of {Draw -> 1; Win y -> (1 + f y)} lambda + case reduction
 - ⇒ case (Win Scissors) of {Draw -> 1; Win Scissors -> (1 + f Scissors)} substitution
 - ⇒ case (Win Scissors) of {Draw -> 1; Win Scissors -> (1 + [Scissors/s]f)} lambda reduction
 - \Rightarrow 1 + 99 case reduction
 - \Rightarrow 100 arithmetic
- 18. let y = 2 in (case (Win (whatItBeats Rock)) of {Draw -> n; Win y -> (n + fy)} + y)

$$\Rightarrow$$
 let y = 2 in (([whatItBeats Rock/y] (n + f y)) + y) case reduction

$$\Rightarrow$$
 let y = 2 in ((n + f whatItBeats Rock) + y) substitution

$$\Rightarrow$$
 [y/2] (n + f whatItBeats Rock) + y let reduction

$$\Rightarrow$$
 (n + f whatItBeats Rock) + 2 substitution

$$\Rightarrow$$
 (1 + f ([Rock/s] whatItBeats) + 2 lambda reduction

$$\Rightarrow$$
 (1 + f Scissors) + 2 case reduction

$$\Rightarrow$$
 (1 + ([Scissors/s] f)) + 2 lambda reduction

$$\Rightarrow$$
 (1 + 99) + 2 substitution

$$\Rightarrow$$
 102 arithmetic