Image Formation

Lenses

Lenses

Same projection as pinhole, but gather more light!

Focal length (f) determines the lens' bending power

Gaussian Lens (Thin Lens) Law

f: focal length

i: image distance

o: object distance

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

How to Find the Focal Length?

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$
 \Rightarrow If $o = \infty$, then $f = i$

Focal length: Distance at which incoming rays that are parallel to the optical axis converge.

Image Magnification

Magnification: m

$$m = rac{h_i}{h_o} = rac{i}{o}$$

Two Lens System

Magnification:
$$m = \frac{i_2}{o_2} \cdot \frac{i_1}{o_1}$$

Zooming: Move lenses to change magnification

Aperture of Lens

Light receiving area of lens, indicated by lens diameter.

Aperture can be reduced/increased to control image brightness

f-number (f-stop, f-ratio) of Lens

Convenient to represent aperture as a fraction of focal length

Aperture: D = f/N

f-Number: N = f/D

where N is called the f-Number of lens.

Ex: A 50mm focal length, f/1.8 lens implies:

N = 1.8 (D = 27.8mm) when aperture is fully open

Lens Defocus

Focusing

Defocused System

Move the lens

Image plane Object

Move the image plane

Move both lens and image plane

Depth of Field (DoF)

References

1. Columbia University https://fpcv.cs.columbia.edu