Examen (11 janvier 2016)

Apportez un soin particulier à la rédaction : ceci sera pris en compte dans la note finale. Les exercices sont indépendants.

Dans tout le sujet, \mathbb{R} est muni de sa distance usuelle $d_{|\cdot|}$ et l'espace vectoriel \mathbb{R}^2 est muni de sa norme euclidienne $\|\cdot\|_2$. On rappelle que $d_{|\cdot|}(x,y) = |y-x|$, et $\|(h_1,h_2)\|_2 = \sqrt{h_1^2 + h_2^2}$.

QUESTION 1. — Répondre par vrai ou faux, et dans le seul cas où la réponse est «faux», donner une justification.

- (1) Soit (X,d) un espace métrique, et $\emptyset \neq A \subseteq X$. La fonction $X \to \mathbb{R} : x \mapsto \operatorname{dist}(x,A)$ est lipschitzienne.
- (2) L'intervalle] $-1,1[\subseteq\mathbb{R}$ et la boule unité ouver te U(0,1) de \mathbb{R}^2 sont homéomorphes.
- (3) L'intervalle $]-1,1[\subseteq \mathbb{R} \text{ et } \mathbb{R} \text{ sont homéomorphes.}]$
- (4) Les intervalles $]-1,1[\subseteq \mathbb{R} \text{ et } [-1,1]\subseteq \mathbb{R} \text{ sont hom\'eomorphes.}$
- (5) $(\mathbb{Q}, d_{|\cdot|})$ est complet.
- (6) $(\mathbb{R}, d_{|\cdot|})$ est compact.
- (7) Le boule unité ouverte U(0,1) de \mathbb{R}^2 est connexe.
- (8) Dans un espace métrique quel conque (X,d), la boule unité ouverte U(0,1) est connexe.

QUESTION 2. — On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = x^3 - 12xy + 8y^3.$$

- (1) Déterminer le gradient et la matrice hessienne de f en chaque $(x,y) \in \mathbb{R}^2$.
- (2) Déterminer les points critiques de f.
- (3) Déterminer la nature de ces points critiques (minimum local ou maximum local).

QUESTION 3. — On considère les deux sous-ensembles suivants de \mathbb{R}^3 représentés sur le dessin :

$$A = \mathbb{R}^3 \cap \{(x,y,z) : x^2 + z^2 = 1\}$$

et

$$B = \mathbb{R}^3 \cap \{(x, y, z) : y^2 + z^2 = 1\}.$$

- (1) Montrer que A et B sont deux sous-variétés différentielles de \mathbb{R}^3 , de dimension 2 de classe C^{∞} .
- (2) Montrer que $A \cap B$ privé de deux points appropriés est une sous-variété différentielle de \mathbb{R}^3 , de dimension 1 de classe C^{∞} .
- (3) Montrer que $A\cap B$ n'est pas une sous-variété différentielle de \mathbb{R}^3 de dimension 1.

QUESTION 4. — Soit $\lambda \in \mathbb{R}$ un paramètre réel. On souhaite résoudre le système d'équations

(*)
$$\begin{cases} x = \lambda \cos(x+y) \\ y = \lambda \sin(x+y) \end{cases}$$
 A cette fin, on considere l'application

$$F_{\lambda}: \mathbb{R}^2 \to \mathbb{R}^2: (x,y) \mapsto (\lambda \cos(x+y), \lambda \sin(x+y)).$$

- (1) Déterminer la matrice jacobienne de F_{λ} en chaque $(x, y) \in \mathbb{R}^2$.
- (2) Définir la norme ||L|| d'un opérateur linéaire $L: \mathbb{R}^2 \to \mathbb{R}^2$. En déduire une majoration de $||DF_{\lambda}(x,y)||$ quel que soit $(x,y) \in \mathbb{R}^2$ (on rappelle que \mathbb{R}^2 est muni de sa norme euclidienne).
- (3) Enoncer l'inégalité des accroissements finis appliquée à F_{λ} . En déduire que $\operatorname{Lip} F_{\lambda} \leq |\lambda| \sqrt{2}$ (Lip F_{λ} désigne la constante de Lipschitz de F_{λ}).
- (4) Enoncer le théorème du point fixe de Banach. Trouver des réels $a,b\in\mathbb{R}$ tels que pour chaque $\lambda \in]a,b[$ le système (*) ci-dessus admet une unique solution $(x(\lambda), y(\lambda)).$
- *(5) Le système (*) admet-il des solutions pour $\lambda = 1/\sqrt{2}$?