Kapazitäts-Messbrücke nach Wien

Gegeben: R_X, C_X, R_3, R_4

Gesucht: R_1, C_1

Eine realer Kondensator kann durch den Kapazitätswert ... F und einen ohmschen Parallelwiderstand ... Ohm beschrieben werden.

(gemeint sind C_X, R_X)

Er wird mit einer Wien-Brücke untersucht.

Die Festwiderstände der Brücke (gemeint sind R_3, R_4) haben beide den Wert ... Ohm

Auf welche Werte müssen die veränderlichen Parameter

der Brücke eingestellt werden, damit sie abgeglichen ist?

(gesucht sind also R_1 , C_1)

C X	0,001	Farad
R X	150	Ohm
R 3=R 4	1000	Ohm

angeben in k Ohm

$$R_X = \frac{R_1 \cdot R_4}{R_3}$$
 $C_X = \frac{R_3}{R_4} \cdot C_1$

$$R_3 = R_4 \Rightarrow \frac{R_4}{R_3} = 1$$

$$R_X = R_1 \quad C_X = C_1$$

Hinweis an die Studierenden:

Das Analoge müssen Sie auch für eine Induktivitäts-Messbrücke rechenen können!

to = fester Blind wide; stand:

Reale Impedanzen: Induktivität (als Ergänzung: Kapazität, siehe unten)

Gegeben: Q, R, f

Gesucht: tan(delta), delta, L

Eine reale Induktivität werde bei einer Frequenz f = ...

betrieben und zeigt dabei eine Güte Q = ...

Der Spulenwiderstand sei R = ...

- a. Berechnen Sie den Verlustfaktor.
- b. Zeichnen Sie das Zeigerdiagramm von U, I mit den korrekten Winkeln, wie groß ist phi?
- c. Berechnen Sie die Induktivität, ferner den Blind-und Scheinwiderstand. Wie lautet die komplexe Impedanz Z ? (Angabe in Koordinatenform und Polarschreibweise)

Q	. 10		
R	10	Ohm	ž,
f	1000	Hz	(angeben in kHz)

a.

$Q=1/\tan\delta$	$\Rightarrow \tan \delta = 1/Q$

Gute

Verlustfaktor:

Veriustiantor.	· ·	
tan(delta)	0,1	

b.

$$\delta = \arctan(1/Q)$$

Zwischenergebnis:

ZWIDONE I BOSTINOT		
delta (im Bogenmaß)	0,099668652	

dala.	l 5 7105931371 Grad
Idelta	1,71000001071 Olda

Wichtig: Der Phasenwinkel phi ist > 0, da eine Induktivität vorliegt.

phi	84,28940686	Grad
Zeigerdiagramm: siehe oben		

 $\tan \delta = R/\omega L = R/2\pi f L$

 $\Rightarrow L = R/2\pi f \tan \delta$

0,015915494 Henry

 $X_I = \omega \cdot L = 2\pi f L$

oder

 $\tan \delta = R/X_L \implies X_L = R/\tan \delta$

X<u>1</u> 100 Ohm

 $|Z=|Z|=\sqrt{R^2+X_L^2}$ Impeda

Z 100,4987562 Ohm

Angabe der komplexen Impedanz Z:

Z=R+iX , (kartesisch)

 $Z = Z \cdot \rho^{j\varphi}$ (Polar)

dabei einfach nur die Zahlenwerte für R, X_L, Z, phi einsetzen.

ERGÄNZUNG:

Führen Sie die gleiche Rechnung durch für eine Kapazität C mit dem Parallelwiderstand $R_P = \dots$, betrieben bei der Frequenz $f = \dots$

Q	10		,
R	0,001	Ohm	*
f	1,00E+06	Hz	(angeben in MHz)

a.

$$Q = 1/\tan \delta \implies \tan \delta = 1/Q$$

Verlustfaktor:

tan(delta)	0,1	

b.

$$\delta = \arctan(1/Q)$$

Zwischenergebnis:

0		
delta (im Bogenmaß)	0,099668652	

delta 5,710593137 Grad

$$\Rightarrow |\varphi| = 90^{\circ} - \delta$$

Wichtig: Der Phasenwinkel phi ist < 0, da eine Kapazität vorliegt.

phi	-84,2894069	Grad
Zeigerdiagramm: siehe Vorlesung		

C.

$$an\delta=1/R_P\omega C=1/R_P2\pi fC$$

$$\Rightarrow C = 1/R_P 2\pi f \tan \delta$$

	.001591549 Farad

$$X_C = \frac{1}{\omega C}$$

Blind widestand

odei

$$an {oldsymbol {\mathcal S}} = X_C \, / \, R_P \, \mid \, X_C = R_P an {oldsymbol {\mathcal S}}$$

$$Y = \frac{1}{Z} = \sqrt{\frac{1}{R^2} + \frac{1}{X_C^2}}$$
 $Z = 1/\sqrt{\frac{1}{R^2} + \frac{1}{X_C^2}}$

Z 9,95037E-05 Ohm

Angabe der komplexen Admittanz u Impedanz:

$$Y = \frac{1}{Z} = \frac{1}{R} + j \frac{1}{X_{\sigma}}$$

(Koordinaten)

$$Z = Z \cdot e^{j\varphi}$$

(Polar)

Wechselspannungs-Messbrücke

Gegeben: X_1, U_0, U_d, f später C_1 anstelle von X_1

Gesucht: X_2, C_2, später U_d

Eine Wechselspannungsbrücke werde im Ausschlagsverfahren betrieben. Der Effektivwert der sinusförmigen Eingangsspannung sei U_0 = ... V, die Frequenz sei f = ... Hz Es werden zwei veränderliche Blindwiderstände X_1, X_2 genutzt, deren Werte beliebig groß sein können. X_2 sei eine Kapazität.

a. Es sei X_1 = ... Ohm, die Brücke liefert U_d = ... Wie groß ist X_2, wie groß die zugehörige Kapazität C_2?

107 F

b. Es wird anstelle von X_1 ein Kondensator der Kapazität C = ... eingebaut. We groß ist jetzt U_d?

c. Skizzieren Sie den zeitlichen Verlauf von u_0(t) und u_d(t) für die Fälle a, b

U_0	10	Volt
f	200	Hz
U d	3	V
X_1	100	Ohm

a.

$$\begin{split} & \underline{U}_d = \frac{\underline{U}_0}{2} \frac{X_2 - X_1}{X_2 + X_1} \quad \Rightarrow \underline{U}_d \cdot (X_2 + X_1) = \frac{\underline{U}_0}{2} \cdot (X_2 - X_1) \\ & \Rightarrow \underline{U}_d X_2 + \underline{U}_d X_1 = \frac{\underline{U}_0}{2} X_2 - \frac{\underline{U}_0}{2} X_1 \\ & \Rightarrow \underline{U}_d X_2 - \frac{\underline{U}_0}{2} X_2 = -\frac{\underline{U}_0}{2} X_1 - \underline{U}_d X_1 \\ & \Rightarrow X_2 \cdot (\underline{U}_d - \frac{\underline{U}_0}{2}) = -X_1 \cdot (\frac{\underline{U}_0}{2} + \underline{U}_d) \quad \Rightarrow X_2 \cdot = -X_1 \cdot \frac{\underline{U}_0}{2} + \underline{U}_d \end{split}$$

$$X_2 = \frac{1}{2\pi f C_2} \implies C_2 = \frac{1}{2\pi f X_2}$$

C_2 1,98944E-06 Farad

b.

C_1 1,00E-07 Farad

$$U_d = \frac{U_0}{2} \cdot \frac{C_1 - C_{12}}{C_1 + C_{12}}$$

U_d -4,52E+00 Volt

Anmerkung: Es geht hier auch wieder wenn man vorher C_1 in X_1 umrechnet.

$$\underline{U}_d = \frac{\underline{U}_0}{2} \frac{X_2 - X_1}{X_2 + X_1}$$

c.
Es gilt: Amplitude = Effektivwert * Wurzel(2)

Amplitude Eingangssignal u^_0	14,14213562	Volt
Fall a: Amplitude Diagonalspannung u^_d	4,242640687	Volt
Fall ab Amplitude Diagonalspannung u^_d	-6,39E+00	Volt

Für den Fall a:

Für den Fall b:

Wechselspannungs-Viertelbrücke + phasensel Gleichr.

Gegeben:

Gesucht:

Eine Wechselspannungs-Viertelbrücke werde mit der festen Induktivität L_1=L_0= ... und einer veränderlichen Induktivität L 2 betrieben, die nur kleine Abweichungen Delta_L vom Grundwert L_0 zeigt. Die Versorgungssoppung ist sinusförmig, Effektivwert·U_0 = ...

- a. Die Diagonalspannung betrage U_d = ... V, wie groß ist dann L_2?
- b. Skizzieren Sie den prinzipiellen Verlauf von u_0(t) und u_d(t)
- c. Das Signals u_d(t) werde von einem phasenselektivem Gleichrichter u. einem passend ausgelegten Tiefpass weiter verarbeitet (keine Verstärkung, d.h. V=1). Welcher Spannunswert wird dann ausgegeben?

a.

L_0	×	1,00E-01	Henry
U_0		. 5	Volt
U_d		-0,05	Volt

(angeben in mH)

(angeben in mV)

$$\underline{U}_d \approx \frac{\underline{U}_0}{4} \cdot \frac{\Delta L}{L_0} \implies \frac{4\underline{U}_d L_0}{\underline{U}_0} \approx \Delta L$$

Zwischenergebnis:

	
Delta_L	-4,0000E-03 Henry

$$L_2 = L_0 + \Delta L$$

L_2 9,60E-02 Henry

b.

C.

$$\overline{|u_d(t)|} = \pm U_d \cdot V / F |_{F = \frac{\pi}{2\sqrt{2}}}$$

Verstärkung V	1	
Formfaktor F	1,110720735	

Ausgabewert: Gleichrichtwert nach		
Phasenselektivem Gleichrichter	-0,04501582	

Wechselspannungs-Halbbrücke - induktiv

Gegeben: U_0, L_0

Gesucht: E

Eine Wechselspannungs-Halbbrücke wird mit einem induktivem Differentialaufnehmer betrieben. Die zu messende Größe ist delta_L. a. Es sei U_0=... und L_0=...

Berechnen Sie die Empfindlichkeit E der Messschaltung.

a.

U O	10	V
L 0	0,01	Henry

$$\underline{U}_d = \frac{\underline{U}_0}{2} \cdot \frac{\Delta L}{L_0}$$

$$\Rightarrow E = \frac{d\underline{U}_d}{d\Lambda I} = \frac{\underline{U}_0}{2I}$$

exart

Ableitury

500 /olt/Henry

14= kgm²

V = Axym

Jr N. A.S 152 hg.m