Se te proporcionan dos archivos .mat que contienen señales de EMG (medio.mat y tres.mat), las cuales fueron tomadas a **6250 Hz** bajo las siguientes condiciones:

MEDIO.MAT: registros bipolares de electromiografía (bíceps y tríceps del brazo derecho) tomado durante el movimiento de **flexión**. Dicho movimiento se repitió 5 veces por el participante mientras cargaba un peso de **medio kilo**.

TRES.MAT: registros bipolares de electromiografía (bíceps y tríceps del lado derecho) tomado durante el movimiento de **flexión.** Dicho movimiento se repitió 5 veces por el participante mientras cargaba un peso de **tres kilos.**

Para los dos casos, el electrodo de tierra se colocó en la muñeca derecha.

- 1) GRAFICA EN UNA FIGURA (VALOR 0.5)
 - a. PARTE SUPERIOR: EMG del tríceps con medio kilo de carga VS tiempo (Recuerda poner título a la gráfica, nombre de variable y unidades en cada eje)
 - b. PARTE INFERIOR: EMG del bíceps con medio kilo de carga VS tiempo (Recuerda poner título a la gráfica, nombre de variable y unidades en cada eje)
- 2) GRAFICA EN UNA FIGURA (VALOR 0.5)
 - a. PARTE SUPERIOR: EMG del tríceps con tres kilos de carga VS tiempo (Recuerda poner título a la gráfica, nombre de variable y unidades en cada eje)
 - b. PARTE INFERIOR: EMG del bíceps con tres kilos de carga VS tiempo (Recuerda poner título a la gráfica, nombre de variable y unidades en cada eje)
- 3) De manera manual se segmentaron los periodos de EMG *burst*, siendo los siguientes para cada registro: (VALOR 1.0)

	EMG_ME	DIO_KILO	EMG_TRES_KILOS				
	# muestra de	# de muestra	# muestra de	# de muestra final			
	inicio	final	inicio				
1	3600	12100	3000	18000			
2	17000	25500	21700	36700			
3	28500	37000	38400	53400			
4	40500	49000	56800	71800			
5	52200	60700	77500	92500			

EMG_MEDIO_KILO GRAFICA EN UNA SOLA FIGURA (5 columnas, 2 filas) cada uno de los segmentos de la señal. En la primera fila los correspondientes al bíceps y en la segunda fila los correspondientes al tríceps. (Recuerda poner nombres de variables y unidades en cada eje. El eje x debe corresponder al tiempo).

EMG_TRES_KILOS GRAFICA EN UNA SOLA FIGURA (5 columnas, 2 filas) cada uno de los segmentos de la señal. En la primera fila los correspondientes al bíceps y en la segunda fila

los correspondientes al tríceps. (Recuerda poner nombres de variables y unidades en cada eje. El eje x debe corresponder al tiempo).

- 4) Para cada uno de tus segmentos, calcula: (VALOR 4.0)
 - a. El valor RMS; debes programar la fórmula. El comando rms de Matlab puedes utilizarlo únicamente para verificar tus resultados.

$$V_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v^2 i}$$

- b. El área bajo la curva de la envolvente de tu señal rectificada. Revisa los comandos abs y envelope.
- c. El número de cruces por cero. Debes generar el código para cuantificarlos.

Reporta tus resultados en la siguiente tabla. Revisa los comandos mean, median y sort. (Recuerda reportar las unidades de medida cuando así corresponda).

Repetición	RMS BÍCEPS		RMS TRÍCEPS		AUC BÍCEPS		AUC TRÍCEPS		CRUCES POR CERO BÍCEPS		CRUCES POR CERO TRÍCEPS	
	1/2 KG	3 KG	1/2 KG	3 KG	1/2 KG	3 KG	1/2 KG	3 KG	1/2 KG	3 KG	1/2 KG	3 KG
1												
2												
3												
4												
5												

VALOR						
PROMEDIO						
MEDIANA						

5) Promedia los 5 segmentos del EMG registrado de la flexión del bíceps, GRAFICA el espectro de potencia. (Recuerda poner título a la gráfica, nombre de variable y unidades en cada eje). En cada gráfica coloca una línea vertical en la frecuencia media y la frecuencia mediana, como se muestra en la siguiente figura. Reporta también, la potencia total de todo el espectro. (VALOR 4.0)

Fig. 57: EMG standard frequency parameters based on FFT calculations