

DEPARTMENT OF EDUCATION

DEPARTEMENT VAN ONDERWYS

LEFAPHA LA THUTO

ISEBE LEZEMFUNDO

PROVINCIAL PREPARATORY EXAMINATION

GRADE 12

MATHEMATICS P1
SEPTEMBER 2021

MARKS: 150

TIME: 3 hours

This question paper consists of 10 pages and 1 information sheet.

Copyright reserved NORTHERN CAPE Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs et cetera that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of this question paper.
- 10. Write neatly and legibly.

1.1 Solve for x.

1.1.1
$$x^2 - x - 6 = 0$$
 (3)

1.1.2
$$x(x+6)+1=0$$
 (correct to TWO decimal places) (4)

1.1.3
$$6x - 2x^2 < 0$$
 (3)

1.1.4
$$\left(\sqrt{\sqrt{2}-x}\right)\left(\sqrt{\sqrt{2}+x}\right) = x$$
 (5)

1.2 Solve simultaneously for x and y:

$$x - y = 3$$
 and $x^2 - 3y^2 = 13$ (6)

1.3 If $x^2 = 7$ and x > 0, determine the value of x^5 without using a calculator. (3) [24]

QUESTION 2

- 2.1 The first four terms of a quadratic number pattern are 171; 282; 387; 486 ...
 - 2.1.1 Write down the second difference. (2)
 - 2.1.2 Determine the n^{th} term of this pattern in the form $T_n = an^2 + bn + c$. (4)
 - 2.1.3 Another pattern with general term, $P_n = -60n + 2754$, is given. Which term of this new pattern will be the same as that of the quadratic pattern 171; 282; 387; 486 ...? (4)
- 2.2 Consider the geometric series $\frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots$
 - 2.2.1 Calculate the sum of the first 16 terms. (3)
 - 2.2.2 Calculate the value of n such that $S_{\infty} T_n = \frac{1023}{4096}$. (5)

Consider: $\sum_{k=1}^{n} (6k+13)$

3.1 Show that
$$\sum_{k=1}^{n} (6k+13) = 3n^2 + 16n$$
. (3)

- 3.2 Hence, calculate the difference between the sum of the first 34 terms and the sum of the first 33 terms. (2)
- 3.3 The first difference of a quadratic number pattern is given by $T_k = 6k + 13$. If the fifth term of the quadratic number pattern is 120, determine the value of the third term. (3)

Sketched below are the graphs of $f(x) = -x^2 + 4x + 5$ and $g(x) = \frac{1}{x+p} + q$. B is the turning point of f. The asymptotes of g intersect at B and the point A(3; 10) lies on g. C and D are the x-intercepts of f.

- 4.1 Determine the coordinates of B. (3)
- 4.2 Hence, write down the values of p and q. (2)
- 4.3 Describe the nature of roots of the graph of t, if t(x) = -f(x) + 10. (2)
- 4.4 The graph of h, where h(x) = g(x+m) + n has asymptotes x = 4 and y = 3. Write down the value(s) of m and n.
- 4.5 The tangent, y = 8x + k, touches the graph of f at P. Calculate the coordinates of P. (4)
- 4.6 Determine the values of x for which:

$$4.6.1 \quad g(x) \ge 10 \tag{2}$$

4.6.2
$$f(x).g^{/}(x) > 0$$
 (4)

[19]

QUESTION 5

In the diagram below, the graph of $f(x) = b^x$ is drawn. A(3; 8) is a point on f.

- 5.1 Calculate the value of b. (2)
- 5.2 Determine the equation of f^{-1} , the inverse of f, in the form y = ... (2)
- Sketch the graph of f^{-1} . Clearly show the intercept(s) with the axes, as well as the coordinates of ONE other point. (3)
- 5.4 Determine for which values of x, will $f^{-1}(x) < 4$. (3)
- 5.5 Describe the transformation from f to $h(x) = \frac{1}{4} f(x)$. (3) [13]

- Bonolo deposits R4 100 quarterly in a retirement fund for 20 years. The fund earns interest at a rate of 6% p.a. compounded quarterly. The first deposit was made at the end of March of the first year and the last deposit at the end of December of the 20th year.
 - 6.1.1 Calculate the total value of the fund after 20 years? (3)
 - 6.1.2 After 20 years she decides not to withdraw the money but leave it in the fund for another 5 years without making any further payments. The interest rate increases to 6,2% p.a. compounded semi-annually. Calculate the total amount in the fund at the end of the 5-years. (2)
- A couple is planning to purchase their first home. The bank agrees to a loan of R660 000 at an interest rate of 11% p.a. compounded monthly. The loan is repayable over 15 years. The first payment is due at the end of the first month.
 - 6.2.1 Calculate the amount of the monthly instalments. (3)
 - 6.2.2 After the 84th payment, the couple decides to increase their monthly payments. Calculate the balance of the loan after the 84th payment. (3)
 - 6.2.3 From the 85th payment they increase the monthly payments to R10 000.

 Calculate the number of instalments sooner they will settle the loan.

 (4)

 [15]

QUESTION 7

- 7.1 Determine f'(x) from first principles if $f(x) = 4x^2 3$. (5)
- 7.2 Determine:

7.2.1
$$\frac{dy}{dx}$$
, if $y = (3x-4)(5x+2)$ (2)

$$7.2.2 \qquad \frac{d}{dx} \left(x\sqrt{x} - \frac{2}{x^2} \right) \tag{4}$$

In the diagram below, the graph of $h(x) = (x-1)^2(x+k) = x^3 - 5x^2 + 7x - 3$ is drawn. A and B are the *x*-intercepts and C the minimum turning point of *h*.

8.1 Calculate the coordinates of:

8.2 Determine the value(s) of x for which:

$$8.2.2 \quad h(-x) > 0 \tag{2}$$

8.3 Determine the value(s) of
$$p$$
 for which $h(x) + 4 = p$ has only one solution. (4) [16]

The figure below shows a solid brick in the shape of a rectangular prism. The length is 5x units. The width is x units and the height is h units. The total surface area of the brick is 720 cm^2 .

9.1 Show that the volume of the brick is given by
$$V = 300x - \frac{25}{6}x^3$$
 cubic cm. (5)

9.2 Calculate the maximum volume of the brick. (5) [10]

- 10.1 Events A and B are given such that $P(A \circ r B) = \frac{3}{5}$ and $P(A) = \frac{2}{5}$.

 Determine P(B) if:
 - 10.1.1 events A and B are mutually exclusive. (2)
 - 10.1.2 A and B are independent events. (3)
- 10.2 Events S and T are independent such that P(S) = P(T) = y and P(S or T) = 0.84.

 Determine the numerical value of y.

 [10]

A four digit code is created by using the numerals 0 to 6.

- How many four digit codes can be formed if the numerals can be repeated? (2)
- How many four digit codes can be formed if the code has to be greater than 2 000 but less than 3 000 AND the code must be an even number? A numeral must only be used once. [6]

 TOTAL: 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_n = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin\alpha .\cos\beta + \cos\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \sin\alpha .\cos\beta - \cos\alpha .\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\cos\beta + \cos\alpha .\cos\beta + \sin\alpha .\cos\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\cos\beta + \cos\alpha .\cos\beta +$$