GRUPA: 424D

LUCRAREA DE LABORATOR NR. 2 ONLINE - SEMNALE CU PURTĂTOR ARMONIC, MODULATE ÎN AMPLITUDINE

A) Determinarea gradului de modulație (m1,m-1) folosind măsurători spectrale (in dom. frecventa0

AM ef ,	A0,ef [dB]	A1,ef [dB]	A-1,ef[dB]	A0, ef [V]	A1, ef [V]	A-1,ef [V]	m1	m-1
[V] [Vrms]								
0.3	-0.071	-32.094	-31.817	0.992	0.025	0.026	0.0504	0.0524
	(F=500kHz)	(F=505kHz)	(F=495kHz)				=5.04%	=5.24%
0.5	-0.071	-23.123	-23.029	0.992	0.070	0.071	0.1411	0.1431
							=14.11%	=14.31%
0.7	-0.07	-17.263	-17.208	0.992	0.137	0.138	0.2762	0.2782
							=27.62%	=27.82%
0.9	-0.07	-12.887	-12.852	0.992	0.227	0.228	0.4576	0.4596
							45.76%	=45.96%

AM ef , [V] = amplitudine semnal modulator efectiv

B) Determinarea gradului de modulație folosind măsurători în domeniul timp

AM [Vrms]	Amax [V]	Amin[V]	m	m[%]
0.3	1.486	1.328	0.0561	5.61%
0.5	1.614	1.214	0.1414	14.14%
0.7	1.806	1.012	0.2817	28.17%
0.9	2.062	0.766	0.4582	45,82%

C) Măsurători în domeniul timp (Screenshots)

Am = 0.3Vrms [TRIUNGHI]

GRUPA: 424D

Am = 0.5Vrms [TRIUNGHI]

Am = 0.7Vrms [TRIUNGHI]

GRUPA: 424D

Am = 0.3Vrms [DREPTUNGHI]

Am = 0.5Vrms [DREPTUNGHI]

Am = 0.7Vrms [DREPTUNGHI]

GRUPA: 424D

D) Semnal modulator dreptunghiular (Am = 1Vrms) - Atentie la setarea acestui parametru in SciLab!

 $F_0 = 500kHz => A_{0,ef} = 0.995V/A_{0,ef} = -0.044dB$

k	F-k [kHz]	A–k ef , [dB]	A–k ef , [V]	Fk [kHz]	Ak ef , [dB]	Ak ef , [V]
1	495	-15.098	0.178	505	-16.069	0.18
3	485	-24.635	0.059	515	-24.378	0.06
5	475	-29.162	0.035	525	-28.737	0.037
7	465	-32.176	0.025	535	-31.583	0.026
9	455	-34.459	0.019	545	-33.688	0.021
11	445	-36.298	0.015	555	-35.358	0.017
13	435	-37.853	0.013	565	-36.74	0.015
15	425	-39.199	0.011	575	-37.913	0.013
17	415	-40.397	0.01	585	-38.935	0.011
19	405	-41.472	0.008	595	-39.834	0.01

E) Semnal modulator triunghi (Am = 1Vrms) - Atentie la setarea acestui parametru in SciLab!

 $F_0 = 500kHz \Rightarrow A_{0,ef} = 1 V / A_{0,ef} = 0 dB$

k	F-k [kHz]	A–k ef , [dB]	A–k ef , [V]	Fk [kHz]	Ak ef , [dB]	Ak ef , [V]
1	495			505		
2	485			515		
3	475			525		
4	465			535		
5	455			545		

- F) Grafice pentru spectrul semnalului MA cu mesaj dreptunghiular si triunghiular (datele din tabelele de la punctele D și E)
- G) Pe baza datelor de la punctul A se intocmeste graficul m = f (Am). Se calculeaza panta acestui grafic, care este chiar K_A .

 $K_A = \dots$

H) Banda semnalelor cu mesaj dreptunghiular si triunghiular (datele din tabelele de la punctele D si E)

B_{MA mesaj dreptunghi} = ...

B_{MA mesaj triunghi} = ...

Student 1 - Nume și Prenume
Student 3 - HOMOL Diama

GAUJANGANU NICOLETA
Grupa Data/ora

Grupa Data/ora

LUCRAREA DE LABORATOR NR. 2. SEMNALE CU PURTATOR ARMONIC, MODULATE ÎN AMPLITUDINE

A) Determinarea gradului de modulație folosind măsurători spectrale

AM. of [V]	$A_{0,\sigma}([dBm])$	$A_{i,\sigma}$ [dBm]	$A_{-1,ef}$ [dBm]	A0. 0 [V]	A1,05 [V]	$A_{-1,ef}[V]$	m _t	m_1
0,3	-0,1	-30,7	-31,8	0,22104	0,00652	0,00574	5,89%	5,197
0,5	-0,3	-28,0	-24,4	0,21601	0,00890	0,00921	8,24%	8,527
0,7	-0,3	-25,6				0,01173		
0,9	-0,2	-24,4	-22,8	0,21851	0,01301	0,01619	11,9%	14,81

B) Determinarea gradului de modulație folosind măsurători în domeniul timp

A _M [V _{rms}]	2A _{max} [V]	2A _{min} [V]	m	m [%]
0,3				
0,5				
0,7				
0,9				

m= 2 Akef, KE (-1)

A_{M}	=0	,5 V	rms S	semi	nal t	riun	ghi	ular	

A_{M}	= 0,	5 V,	ms Se	emn	al di	rept	ung	hiul	ar

C) Se măsoară banda de frecvență ocupată de către semnalul MA, B_{MA} , folosind analizorul de spectru

 $B_{MA} =$

 $B_m =$

Observatie:

D) Se măsoară lărgimea de bandă a generatorului de semnale modulate în amplitudine

$F_{M}[kHz]$	5	10	20	30	40	50	(55)	58	
$F_{i}[kHz]$	505	500	500	530	540	550	555	558	
A_1 [dBm]	-16.47	-14,9	-15,8	-15,4	-14,4	16,9			
$F_{-1}[kHz]$	495	498)	49.5		460			442	
$A_{-1}[dBm]$	-16.47	-16,2			-14,2	-16,8	12		

BMA = 110 KHZ (555-455 = 110 KHZ)

E) Semnal modulator dreptunghiular

			pos			
E	B_{MA}		K	0	1211	~
E)	Dass	=	.)	0	KH	2(4)
-	IMA		V	-	MI	1

					The second second	u - 00
k	F_{-k} [kHz]	$A_{-k,ef}$ [dBm]	A_k,ef [V]	F_k [kHz]	$A_{k,ef}$ [dBm]	A _{k,ef}
1	495	-22,8	0,0162	505	-24,9	[V]
2	490	-41,4	0,0019	510	-44,5	0,0013
8.	485	-30,4	0400,0	515	-30,4	0,0067
4.	480	-42,8	41000	520	-48.4	0,0009
5	445	(36,9)	0,00354	525	-34.8	0,0029
	440	-41,6	0,0019	530	-41A	0,0013
	465	-40,6	0,0020	535	-45,2	90012
8.	460	-44,5	0,00094	540	-47	0,0010
9.	455	-35,6	0,00341	545	-42,2	0,0017
10	450	-51,6	0,0005	550	-58,4	0,00026
11.	445	-4019	0,0620	555	-47,5	0,00094
12.	440	-58.5	0,00027	560	-50	0,0007
13.	435	-46,9	10,00101	565	-45,3	0,0015
14.	430	-54,0	0,00045	540	-56,7	0,00032
15 1	425	-44	0,0010	5¥5	-52,3	0,00054

	k	$A_{k,p,ef}$	$\frac{A_{k,p,ef}}{A_{1,p,ef}}$	$\frac{A_{-k,ef}}{A_{-1,ef}}$	$\frac{A_{k,ef}}{A_{1,ef}}$	m_{-k}
	1					
	2					
30						
4						
4						
						1 7 79
i2						
14		-445				

H) Semnal modulator triunghiular

k	F_{-k} [kHz]	$A_{-k,ef}$ [dBm]	$A_{-k,ef}$ [V]	F_k [kHz]	$A_{k,ef}$ [dBm]	$A_{k,ef}$ [V]
1	495	-20,6	0,02086	505	-1419	0,02847
2	490	-44	0,00099	510	-48,1	0,00088
3.	485 (35,3	0,00384	515	34,9	10,00284
4.	480	-43,2	0,00154	520	-43,3	0,00152
5	445	-42,1	0,00145	525	-43,5	0,00149
6	440	-47,5	0,00094	530	40,4	0,00206
9.	485	-43,8	0,00072	535	-44,8	0,00128
10	460	-44	0,00141	540	-44,6	0,00091
11-	455	-42,5	0,00167	545	-45,7	0,00116

	$A_{k,p,ef}$	$\frac{A_{k,p,ef}}{A_{l,p,ef}}$	$\frac{A_{-k,ef}}{A_{-1,ef}}$	$\frac{A_{k,ef}}{A_{l,ef}}$	m_{-k}
1					
2					

I) Se construiește caracteristica modulatorului $m = f(A_m)$ pe foale milimetrică. $K_A =$

J) Se desenează pe foaie milimetrică

K) Puterea semnalului modulat

$A_m[V]$	P ₁ [mW]	P ₂ [mW]	X _{1ef} [V]	X _{2ef} [V]	P _{U1} [mW]	P _{U2} [mW]	$\frac{P_{U1}}{P_1}$	$\frac{P_{U2}}{P_2}$
0,3								
0,5								
0,7								
0,9				Marie Control of the				

L) Se desenează pe foaie milimetrică

M) Raportul puterilor pentru semnal modulator dreptunghiular

P ₁ [mW]	P ₂ [mW]	<i>X</i> _{1ef} [V]	X _{2ef} [V]	P_{U1} [mW]	<i>P</i> _{<i>U</i>2} [mW]	$\frac{P_{U1}}{P_1}$	$\frac{P_{U2}}{P_2}$

N) Raportul puterilor pentru semnal modulator triunghiular

-	P ₂ [mW]	<i>X</i> _{1ef} [V]	X _{2ef} [V]	<i>P</i> _{<i>U</i>1} [mW]	<i>P</i> _{<i>U</i>2} [mW]	$\frac{P_{U1}}{P_1}$	$\frac{P_{U2}}{P_2}$