Basics of Parameterized Complexity

Serge Gaspers

Contents

_	ntroduction	1
	.1 Vertex Cover	
	.2 Coloring	
	.3 Clique	
	.4 Δ -Clique	3
2	Basic Definitions	4
3	urther Reading	4

1 Introduction

1.1 Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

VERTEX COVER
Input: A graph G = (V, E) and an integer kParameter: kQuestion: Does G have a vertex cover of size k?

Algorithms for Vertex Cover

• brute-force: $O^*(2^n)$ • brute-force: $O^*(n^k)$

• vc1: $O^*(2^k)$

• vc2: $O^*(1.4656^k)$

• (Chen, Kanj, and Xia, 2010): $O(1.2738^k + k \cdot n)$ (fastest known)

Running times in practice

n = 1000 vertices, k = 20 parameter

	Running Time	
Theoretical	Nb of Instructions	Real
2^n	$1.07 \cdot 10^{301}$	$4.941 \cdot 10^{282} \text{ years}$
n^k	10^{60}	$4.611 \cdot 10^{41} \text{ years}$
$2^k \cdot n$	$1.05 \cdot 10^{9}$	15.26 milliseconds
$1.4656^k \cdot n$	$2.10 \cdot 10^{6}$	0.31 milliseconds
$1.2738^k + k \cdot n$	$2.02\cdot 10^4$	0.0003 milliseconds

Notes:

- We assume that 2^{36} instructions are carried out per second.
- The Big Bang happened roughly $13.5 \cdot 10^9$ years ago.

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem–parameter combinations are there algorithms with running times of the form

$$f(k) \cdot n^{O(1)}$$

where the f is a computable function independent of the input size n?

(2) How small can we make the f(k)?

Examples of Parameters

A Parameterized Problem

Input: an instance of the problem

Parameter: a parameter

Question: a YES-No question about the instance and the parameter

- A parameter can be
 - solution size
 - input size (trivial parameterization)
 - related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
 - combinations of parameters
 - etc.

1.2 Coloring

A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k

Parameter: k

Question: Does G have a k-coloring?

Brute-force: $O^*(k^n)$, where n = |V(G)|. (Björklund, Husfeldt, and Koivisto, 2009): $O^*(2^n)$ by inclusion-exclusion (fastest known)

2

Coloring is probably not FPT

- Known: Coloring is NP-complete when k=3
- Suppose there was a $O^*(f(k))$ -time algorithm for COLORING
 - Then, 3-Coloring can be solved in $O^*(f(3)) \subseteq O^*(1)$ time
 - Therefore, P = NP
- Therefore, Coloring is not FPT unless P = NP

1.3 Clique

A clique in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

CLIQUE

Input: Graph G = (V, E), integer k

Parameter: k

Question: Does G have a clique of size k?

Is CLIQUE NP-complete when k is a fixed constant? Is it FPT?

Algorithm for Clique

- For each subset $S \subseteq V$ of size k, check whether all vertices of S are adjacent
- Running time: $O^*\left(\binom{n}{k}\right) \subseteq O^*(n^k)$
- When $k \in O(1)$, this is polynomial
- But: we do not currently know an FPT algorithm for CLIQUE
- Since CLIQUE is W[1]-hard, we believe it is not FPT. (See lecture on W-hardness.)

1.4 Δ -Clique

A different parameter for Clique

 Δ -Clique

Input: Graph G = (V, E), integer k

Parameter: $\Delta(G)$, i.e., the maximum degree of G Question: Does G have a clique of size k?

Is Δ -Clique FPT?

```
Algorithm for \Delta-Clique
   Input: A graph G and an integer k.
   Output: YES if G has a clique of size k, and No otherwise.
   if k = 0 then
    ∟ return Yes
   else if k > \Delta(G) + 1 then
    ∟ return No
   else
      /* A clique of size k contains at least one vertex v.
          For each v \in V, we check whether G has a k-clique S containing v (note that
          S \subseteq N_G[v] in this case).
                                                                                                             */
      for
each v \in V do
          foreach S \subseteq N_G[v] with |S| = k do
             if S is a clique in G then
              ∟ return Yes
    _ return No
   Running time: O^*((\Delta+1)^k) \subseteq O^*((\Delta+1)^{\Delta}). (FPT for parameter \Delta)
```

2 Basic Definitions

Main Parameterized Complexity Classes

n: instance sizek: parameter

P: class of problems that can be solved in $n^{O(1)}$ time

FPT: class of parameterized problems that can be solved in $f(k) \cdot n^{O(1)}$ time

XP: class of parameterized problems that can be solved in $f(k) \cdot n^{g(k)}$ time ("polynomial when k is a constant")

$$P\subseteq FPT\subseteq W[1]\subseteq W[2]\cdots\subseteq W[P]\subseteq XP$$

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in $2^{o(n)}$ time, where n is the number of variables.

Note: We assume that f is *computable* and *non-decreasing*.

3 Further Reading

- Chapter 1, Introduction in (Cygan et al., 2015)
- Chapter 2, The Basic Definitions in (Downey and Fellows, 2013)
- Chapter I, Foundations in (Niedermeier, 2006)
- Preface in (Flum and Grohe, 2006)

References

Andreas Björklund, Thore Husfeldt, and Mikko Koivisto (2009). "Set Partitioning via Inclusion-Exclusion". In: SIAM Journal on Computing 39.2, pp. 546–563.

Jianer Chen, Iyad A. Kanj, and Ge Xia (2010). "Improved upper bounds for vertex cover". In: *Theoretical Computer Science* 411.40-42, pp. 3736–3756. DOI: 10.1016/j.tcs.2010.06.026.

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh (2015). *Parameterized Algorithms*. Springer. DOI: 10.1007/978-3-319-21275-3. Rodney G. Downey and Michael R. Fellows (2013). *Fundamentals of Parameterized Complexity*. Springer. DOI: 10.1007/978-1-4471-5559-1.

Jörg Flum and Martin Grohe (2006). Parameterized Complexity Theory. Springer. DOI: 10.1007/3-540-29953-X. Rolf Niedermeier (2006). Invitation to Fixed Parameter Algorithms. Oxford University Press. DOI: 10.1093/ACPROF: 0S0/9780198566076.001.0001.