Economics 144 Economic Forecasting

Lecture 2
Modeling and Forecasting Trend
(Part I)

Dr. Randall R. Rojas

Today's Class

- Loss Function
- Modeling Trend
 - Linear
 - Quadratic
 - Log-linear
 - Exponential
- Model Selection
- R Demo

Loss Function 1 of 4

- Good forecasts lead to good decisions!
 - → Strong link between forecasts and decisions.

 Example: You started a firm and need to decide (now) how much inventory to hold going into the next sales period.

Strategy

Demand is high → build inventory

Demand is low → reduce inventory

Loss Function 2 of 4

Loss	Demand High	Demand Low
Build Inventory	0	\$10,000
Reduce Inventory	\$10,000	0

Symmetric Loss Structure: Both bad outcomes have the same loss.

Loss	Demand High	Demand Low
Build Inventory	0	\$10,000
Reduce Inventory	\$20,000	0

Asymmetric Loss Structure: Outcomes have different losses.

Loss Function 3 of 4

• For every decision-making problem, there is an associated loss structure; for each decision/outcome pair, there is an associated loss.

Loss
$$\begin{cases} 0 \rightarrow \text{Correct Decision} \\ >0 \rightarrow \text{Incorrect Decision} \end{cases}$$

We could also forecast the sales!

Loss	High Actual Sales	Low Actual Sales
High Forecasted Sales	0	\$10,000
Low Forecasted Sales	\$10,000	0

Forecasting with Symmetric Loss: Both bad forecasts have the same loss.

Loss Function 4 of 4

- Forecast Error (e): Difference between the realization (y) and the previously made forecast(\hat{y}) $\rightarrow e = y \hat{y}$
- Loss Function (L(e)): Loss associated with a forecast. Must satisfy: (1) L(0)=0,(2) L(e) is continuous, and (3) L(e) is increasing on each side of the origin.

Modeling Trend

- Trend: Is slow, long-run evolution in the variables that we want to model and forecast.
- Deterministic Trend: Trend evolves in a perfectly predictable way.
- To characterize a particular trend, we need a model. For example, in the case of linear regression, the model is: $y_t = \beta_0 + \beta_1 x_t$
- Often, given the broad range of time scales encountered in timeseries, it is convenient to adopt one common time variable (*time* dummy or time trend) such that: TIME* = (1, 2, ..., T) where TIME=1 is the first period of the sample, and so on.

^{*}The notation convention is $TIME_t = t$.

Modeling Trend (Linear)

1 of 4

Women's gains increase size of American workforce

Labor force participation rate of population age 16 and older, by gender

http://stateofworkingamerica.org/charts/labor-force-participation-rate-of-population-age-16-and-older-by-gender/

Note: Shaded areas denote recession.

Source: Bureau of Labor Statistics, Current Population Survey.

Model: $T_t = \beta_0 + \beta_1 TIME_t$

Modeling Trend (Linear) 2 of 4

Call:

TIME

 $Fem_Part_Rate = 30.46 + 0.051T$

(Intercept) 3.046e+01 1.107e-01

---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.256 on 514 degrees of freedom Multiple R-squared: 0.9739, Adjusted R-squared: 0.9739 F-statistic: 1.919e+04 on 1 and 514 DF, p-value: < 2.2e-16

 $R^2 = 0.97 \rightarrow \text{Excellent!}$

Do you see anything wrong?

Time: 1948-1990

Modeling Trend (Linear) 3 of 4

 $Male_Part_Rate = 86.75 - 0.024T$

Residual standard error: 0.793 on 514 degrees of freedom Multiple R-squared: 0.9528, Adjusted R-squared: 0.9527 F-statistic: 1.038e+04 on 1 and 514 DF, p-value: < 2.2e-16

 $R^2 = 0.95 \rightarrow \text{Excellent!}$

Do you see anything wrong?

Time: 1948-1990

Modeling Trend (Linear) 4 of 4

Model: $T_t = \beta_0 + \beta_1 TIME_t$

Modeling Trend (Quadratic)

Model: $T_t = \beta_0 + \beta_1 TIME_t + \beta_2 TIME^2$

Modeling Trend (Log-Linear)

Model: $log(T_t) = \beta_0 + \beta_1 TIME_t$

Modeling Trend (Exponential)

Model: $T_t = \beta_0 e^{\beta_1 TIME_t}$

Model Selection via AIC and BIC

Model	df	AIC	BIC
Linear	3	1229.0482	1241.7865
Quadratic	4	808.3932	825.3776
Log-Linear	3	-3361.0625	-3348.3242
Exponential	3	1160.3758	1173.1141

The smaller the AIC/BIC value, the better the model.

Both AIC and BIC select the quadratic fit as the preferred model.

Forecasting Trend 10f2

- Example (Point Forecast): Initially at T, and want to use a trend model to forecast the *h-step-ahead* value.
- Assume a linear trend: $y_t = \beta_0 + \beta_1 TIME_t + \varepsilon_t$

~ 0 (zero-mean random noise)

- At time T+h: $y_{T+h}=\beta_0+\beta_1TIME_{T+h}+\varepsilon_{T+h}$
- Point forecast: $y_{T+h}T = \beta_0 + \beta_1 TIM E_{T+h}$ Forecast is for t = T+h but based on t = T
- However, β_0 and β_I are unknown. Solution: replace them with their LS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.
- Point Forecast: $\hat{y}_{T+h,T} = \hat{\beta}_0 + \hat{\beta}_1 T I M E_{T+h}$

Forecasting Trend 2 of 2

- Example (Interval Forecast): Same idea as before. Assume the trend regression disturbance is normally distributed, then:
- Interval Forecast: $y_{T+h,T} \pm z^* \sigma$
- In practice, use: $\hat{y}_{T+h,T} \pm z^* \hat{\sigma}$
- Example (Density Forecast): Same idea, yet again!
- Density Forecast: $\mathcal{N}(y_{T+h,T},\sigma^2)$
- In practice, use: $\mathcal{N}(\hat{y}_{T+h,T},\hat{\sigma}^2)$

Forecasting Trend (Example)

