Problem 1 (25 points)

Consider a silicon pn junction with a cross section area of $1x10^{-5}$ cm², a forward bias $V_a = 0.5V$, and the following parameters at T = 300K:

$$N_{d} = 10^{16} cm^{-3}, N_{a} = 10^{15} cm^{-3}, \tau_{p} = 10^{-7} s, \tau_{n} = 10^{-6} s$$

$$\mu_{p} = 400 \ cm^{2} / V.s, \ \mu_{n} = 1000 \ cm^{2} / V.s$$

$$n_{i} = 1.5 \times 10^{10} \ cm^{-2}, \ \varepsilon_{s} = 11.7 \times 8.854 \times 10^{-14} \ F / cm; \ \frac{kT}{e} = 0.025 V$$

Assume the critical field to be equal to $3x10^5$ V/cm.

- a) (5 points) Compare the hole density at x_n to the electron density at $-x_p$
- b) (5 points) Compare the hole current at x_n to the electron current at $-x_p$
- c) (5 points) Determine the breakdown voltage.
- d) (10 points) Calculate the total number of excess electrons in the p bulk region.

Problem 2 (25 points)

Consider an Si npn transistor with $N_E = 5 \times 10^{17}$ cm⁻³, $N_B = 5 \times 10^{15}$ cm⁻³, $N_C = 10^{15}$ cm⁻³. The metallurgical base width is 1 μ m and the base cross sectional area is $10 \ \mu\text{m}^2$. $n_i = 1.5 \times 10^{10} \ cm^{-2}$, $\frac{kT}{\rho} = 0.025V$

- a) (5 points) Draw the energy band diagram under equilibrium.
- b) (5 points) Sketch the electric field, charge density, and determine the potential between the emitter and collector.
- c) (7.5 points) For $V_{BE} = 0.7V$, $V_{CE} = 0.2V$, draw the excess minority carrier densities across the emitter, base, and collector regions.
- d) (7.5 points) Describe the steps for estimating the total number of excess electrons in the base.

Problem 3 (25 points)

Consider a MOS capacitor with p^+ polysilicon gate and p-type silicon substrate with $N_A = 10^{16}$ cm⁻³. $E_F = E_V$ in the polysilicon gate. Assume the following parameters:

$$t_{ox} = 200 \text{ A}, Q_{SS}' = 0, n_i = 1.5 \times 10^{10} \text{ cm}^{-2}, \varepsilon_o = 3.9 \times 8.854 \times 10^{-14} \text{ F/cm}$$

$$\varepsilon_s = 11.7 \times \varepsilon_o$$
, $\varepsilon_{ox} = 3.9 \times \varepsilon_o$

- a) (5 points) Calculate the metal-semiconductor work function difference.
- b) (5 points) Calculate the surface potential at the threshold inversion.
- c) (5 points) Calculate the depletion width (in µm) at the threshold inversion.
- d) (5 points) Calculate the flat band voltage.
- e) (5 points) Determine the threshold voltage.

Problem 4 (25 points)

Consider an n-channel MOSFET at T=300K with the following parameters:

n+ polysilicon gate,
$$t_{ox} = 200 \text{ A}, N_A = 10^{16} \text{ cm}^{-3}, Q_{SS}' = 2 \times 10^{11} \text{ cm}^{-2},$$

$$W = 1\mu m, L = 0.2 \mu m, \mu_{n} = 1000 \frac{cm^{2}}{V.s}, \varepsilon_{ox} = 3.9 \varepsilon_{o}, \varepsilon_{s} = 11.7 \varepsilon_{o},$$

$$\varepsilon_{_{0}} = (8.854)(10^{-14})\frac{F}{cm}$$

 $Q_{SS}^{'}$ is the number of electronic charges per unit area in the oxide

- a) (10 points) Determine the threshold voltage V_{TN} .
- b) (5 points) Is the transistor an enhancement or depletion mode? Explain.
- c) (5 points) Determine the drain current for $V_{GS} = 3V$ and $V_{DS} = 2V$.
- d) (5 points) What type of implant and dose are required such that $V_{TN} = 1V$