Bacheliers en Sciences Mathématiques et Physiques, bloc 1 MATHF102: Séance 23

1. Soit $E := \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et $F := \{f_1, f_2, f_3\}$ la base de \mathbb{R}^3 donnée par $f_1 := (1, 0, 2), f_2 := (0, 2, 3)$ et $f_3 := (1, 0, 0)$. Donner les bases duales

2. Si V est l'espace vectoriel réel des fonctions continues sur l'intervalle [a,b] à valeurs dans \mathbb{R} et si f_0 est un élément de V, l'application $\alpha:V\to\mathbb{R}$ définie par

$$\alpha(f) := \int_a^b f_0(x)f(x)dx$$
 pour tout $f \in V$

est-elle une forme linéaire sur V? Même question pour l'application $\beta:V\to\mathbb{R}$ définie par

$$\beta(f) := f(x_0)$$
 pour tout $f \in V$,

où x_0 est un point donné de [a,b]. Dans le cas où la réponse serait affirmative pour l'une de ces applications, la forme linéaire qu'elle définit est-elle dégénérée (c'est-à-dire constante)?

3. Si f est une forme linéaire sur \mathbb{R}^3 telle que

$$f((1,-1,0)) = 1$$
, $f((-1,0,1)) = 2$ et $f((0,1,0)) = 0$,

que vaut f((x, y, z))?

 E^* et F^* de $(\mathbb{R}^3)^*$.

4. Étant données les formes linéaires f, g et h sur \mathbb{R}^3 définies pour tout $(x, y, z) \in \mathbb{R}^3$ par

$$f((x, y, z)) := x + 2y - z,$$

$$g((x, y, z)) := 2x - 8z, \text{ et}$$

$$h((x, y, z)) := 2x + 6y + z,$$

calculer (f+g)((x,y,z)), (3h)((x,y,z)) et (6f-g-2h)((x,y,z)). $\{f,g,h\}$ est-il une base de l'espace dual $(\mathbb{R}^3)^*$? De plus, donner les coordonnées de f,g et h dans les bases E^* et F^* de l'exercice 1.

- 5. Dans chacun des espaces vectoriels V à 3 dimensions décrits ci-dessous, on donne une base $E = \{e_1, e_2, e_3\}$ et on demande de déterminer la base duale $E^* = \{e_1^*, e_2^*, e_3^*\}$ (ce qui revient à calculer $e_1^*(v)$, $e_2^*(v)$ et $e_3^*(v)$ pour tout $v \in V$):
 - (a) $V = \mathbb{R}^3$ et $E = \{(1, 2, -4), (0, 1, 1), (1, 0, 1)\};$
 - (b) $V = \mathbb{R}^3$ et $E = \{(1,0,0), (1,1,0), (1,1,1)\};$
 - (c) $V = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}\$ et $E = \{1, (1 x), (1 x)^2\}.$