

LNMIIT/B.Tech/C/IC/2019-20/ODD/MTH213/MT

The LNM Institute of Information Technology, Jaipur Department of Mathematics Mathematics III MTI1213 Mid Term

		Mid Term	3	
Duration (4) mins	,	September 26, 2010		Mar Marks 30
Name Cowl A NOTE: You should all next to the questice St Please make an incar sh following format.	part a new question n	Not No. 18UCS Your writing should be begin on a new page and as umber and page number on	the and next trucks	awarded are shown
	Page N	Account to the second s		
	any complex numb	1+2+22+ +24 = 1	$\frac{-z^{n+1}}{1-z}$	(0)
and then use i	t to derive Lagrange	e's trigonometric identity:		
	$1 + \cos \theta + \cos 2\theta$	$+ + \cos n\theta = \frac{1}{2} + \frac{\sin[(2\pi)^2]}{2\pi}$	$\frac{n+1)\theta/2}{\ln(\theta/2)}, \qquad 0 < 1$	$\theta < 2\pi$
(b) Let f: C → C	be an analytic fur	action such that $ f(z) \ge 1$	for all $z \in \mathbb{C}$. Show	that f is constant. [3]
2. (je) Show that the differentiable the	function $f(z) = \begin{cases} \\ \end{cases}$ here.	$ \frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} z \neq 0 $ on a domain D . Show the	atisfies the CR equa	ations at (0,0) but is not
	$\pm 1^2 = \cos^2 x \pm \sinh$	^{2}y . Conclude that the cos	ine function is unbo	
(b) Let $f(z) = \frac{1}{z^2}$.	Evaluate $\int_C f(z)dz$	dz where C is any simple c	closed contour in co	unterclockwise direction
not passing thr	ough o.	cle $ z = R (R > 2)$, taken	in the counterclock	
upperbound of		$\left \int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} dz \right $		
Here show the	at $\lim_{R\to\infty} \int_{C_R} \frac{2z^2}{z^4 + 5z^2}$	$\frac{-1}{z^2 + 4} dz = 0.$	\	(a)
Find all the portesidue of $f(z)$	saible Laurent seri at $z = 3$.	es expansion of /(z) = z	2-9 about 2 = 3 8	und using that seet the
Evaluate 22	where C is any C	simple closed contour in ea	uniters by a wine cure.	121
(k) Using contour	integral, syaluate	(** <u>(*</u>		in the second
No name or	*			