Formelsammlung Logik, logische Gleichungen

	Konjunktion, UND, AND, $a \wedge b$, $a \cdot b$	Disjunktion, ODER, OR, $a \lor b$, $a + b$	XOR , $a \oplus b$
Kommutativgesetz	$a \wedge b = b \wedge a$	$a \lor b = b \lor a$	
Assoziativgesetz	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	$(a \lor b) \lor c = a \lor (b \lor c)$	
Idempotenzgesetz	$a \wedge a = a$	$a \vee a = a$	
Distributivgesetz	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$	$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$	
Neutralitätsgesetz	ralitätsgesetz $a \wedge 1 = a$ $a \vee 0 = a$		$a \oplus 0 = a$
Extremalgesetze	$a \wedge 0 = 0$	$a \lor 1 = 1$	
Doppelnegationsge setz (Involution)	$\neg(\neg a) = \overline{\overline{a}} = a$		
De Morgansche Gesetze	$\frac{\neg(a \land b) = \neg a \lor \neg b}{(a \land b) = \overline{a} \lor \overline{b}}$	$\frac{\neg(a \lor b) = \neg a \land \neg b}{(a \lor b) = \overline{a} \land \overline{b}}$	
Komplementär- gesetz	$a \land \neg a = 0$ $a \land \overline{a} = 0$	$a \vee \neg a = 1$ $a \vee \overline{a} = 1$	$a \oplus \neg a = 1$ $a \oplus \overline{a} = 1$
Dualitätsgesetze	$\neg 0 = 1$, $\overline{0} = 1$	$\neg 1=0$, $\overline{1}=0$	
Absorptionsgesetze	$a \vee (a \wedge b) = a$	$a \wedge (a \vee b) = a$	
			$a \oplus a = 0$ $a \oplus 1 = \overline{a}$

Negation NICHT NOT, $\neg a, \overline{a}$, ~ (Tilde)

Exklusiv-Oder XOR $a \oplus b$: Bes. Gl. $a \oplus a = 0$, $a \oplus \overline{a} = 1$, $a \oplus 0 = a$, $a \oplus 1 = \overline{a}$

Wahrheitstabellen

UND	0 1		ODER	
0	0	0	0	
1	0	1	1	

Oder für die Digitaltechnik besser:

a	b	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

0 1

