Test of Fit for Two Populations

jdt

1/2/2021

Contents

Theory	
Goodness-of-Fit Tests	
QQ and PP Plots	
Tests Based on the Empirical Distribution Function (EDF)	
Simple Linear Rank Tests for Two-Sample Data	
Wilcoxon and Mann-Whitney Test	
Simulated Data	
R	
Normal simulated data	
Lognormal simulated data	
SAS	
Code	
Output for Certification Data	
Output for SAS Simulated data	3

Theory

Goodness-of-Fit Tests

In this section the test of hypothesis concerns the CDF for the random variable X rather than its parameters; (location and scale). The test can be stated as

$$H_0: F_X(x) = F_{X_0}(x)$$

when $F_{X_0}(x)$ is completely specified.¹

SAS provides the following goodness of fit tests:

- Shapiro-Wilk test
- · Kolmogorov-Smirnov test
- · Anderson-Darling test
- · Cramer-von Mises test

The Kolmogorov-Smirnov test D statistic, the Anderson-Darling statistic, and the Cramer-von Mises statistic are based on the empirical distribution function (EDF).

¹When you specify the NORMAL option in the PROC UNIVARIATE statement or you request a fitted parametric distribution in the HISTOGRAM statement, the procedure computes goodness-of-fit tests for the null hypothesis that the values of the analysis variable are a random sample from the specified theoretical distribution.

If you want to test the normality assumptions for analysis of variance methods, beware of using a statistical test for normality alone. A test's ability to reject the null hypothesis (known as the power of the test) increases with the sample size. As the sample size becomes larger, increasingly smaller departures from normality can be detected. Because small deviations from normality do not severely affect the validity of analysis of variance tests, it is important to examine other statistics and plots to make a final assessment of normality. The skewness and kurtosis measures and the plots that are provided by the PLOTS option, the HISTOGRAM statement, the PROBPLOT statement, and the QQPLOT statement can be very helpful. For small sample sizes, power is low for detecting larger departures from normality that may be important. To increase the test's ability to detect such deviations, you may want to declare significance at higher levels, such as 0.15 or 0.20, rather than the often-used 0.05 level. Again, consulting plots and additional statistics can help you assess the severity of the deviations from normality.

QQ and **PP** Plots

Probability plots can be used to assess normality of data, especially normality of the residuals in linear regression. Let $z_{(1)} \leq z_{(2)} \leq \ldots \leq z_{(n)}$ represent the ordered values of n independent and identically distributed N(0,1) random variables. It can be shown that the expected value of $z_{(i)}$ is

$$E(z_{(i)}) \approx \gamma_i = \Phi^{-1}[(i-3/8)/(n+1/4)]$$

where Φ is the cdf for the standard normal given by

$$\Phi(x) = (2\pi)^{-1/2} \int_{-\infty}^{x} e^{-1/2t^2} dt.$$

The QQ plot consists of plotting of the ordered data (standardized residuals), $z_{(i)}$ versus γ_i , i.e. $(z_{(i)}, \gamma_i)$. If the data are normal then the resulting scatterplot should fall on the diagonal degree line $(z_{(i)} = \gamma_i)$. The PP plot is obtained when plotting of the ordered pairs $(\Phi(z_{(i)}), [i/n])$.

Shapiro-Wilk Statistic

The Shapiro-Wilk statistic, W (also denoted as W_n to emphasize its dependence on the sample size n) is the ratio of the best estimator of the variance (based on the square of a linear combination of the order statistics) to the usual corrected sum of squares estimator of the variance (Shapiro and Wilk, 1965). The statistic W is always greater than zero and less than or equal to one (0 < W < 1). When the data are normally distributed, one would expect the ratio of these two estimators for the variance to be close to one, in which case, small values of W lead to the rejection of the null hypothesis of normality. The distribution of W is highly skewed. Seemingly large values of W (such as 0.90) may be considered small and lead you to reject the null hypothesis. The method for computing the p-value (the probability of obtaining a W statistic less than or equal to the observed value) depends on n. For n=3, the probability distribution of W is known and is used to determine the p-value. For n > 4, a normalizing transformation is computed:

$$Z_n = \begin{cases} (-\log(\gamma - \log(1 - W_n)) - \mu)/\sigma & \text{if } 4 \le n \le 11\\ (\log(1 - W_n) - \mu)/\sigma & \text{if } n \ge 12 \end{cases}$$

The values of σ , γ , and μ are functions of n obtained from simulation results. Large values of Z_n indicate departure from normality, and because the statistic Z_n has an approximately standard normal distribution, this distribution is used to determine the *p*-values for n > 4.²

EDF Goodness-of-Fit Tests

The EDF tests offer advantages over traditional chi-square goodness-of-fit test, including improved power and invariance with respect to the histogram midpoints. For a thorough discussion, refer to D'Agostino and Stephens (1986).

²The Shapiro-Wilks procedure is based upon "moment-type" estimators and would not be as powerful as the procedures that are based upon the estimated CDF for X. It should probably not be used without considering the other procedures.

The **Empirical Distribution Function (EDF)** is defined for a set of n independent observations X_1, \ldots, X_n with a common distribution function F(x). Denote the observations ordered from smallest to largest as $X_{(1)}, \ldots, X_{(n)}$. The EDF, $F_n(x)$, is,

$$F_n(x) = 0, \quad x < X_{(1)}$$

$$F_n(x) = \frac{i}{n}, \quad X_{(i)} \le x < X_{(i+1)} \quad i = 1, \dots, n-1 .$$

$$F_n(x) = 1, \quad X_{(n)} \le x$$

Note: $F_n(x)$ is a step function that takes a step of height $\frac{1}{n}$ at each observation. This function estimates the distribution function F(x). At any value x, $F_n(x)$ is the proportion of observations less than or equal to x, while F(x) is the probability of an observation less than or equal to x. EDF statistics measure the discrepancy between $F_n(x)$ and F(x).

Kolmogorov D Statistic

The Kolmogorov-Smirnov statistic (D) is defined as

$$D = \sup_{x} |F_n(x) - F(x)|$$

The Kolmogorov-Smirnov statistic is computed as the maximum of D^+ and D^- , where D^+ is the largest vertical distance between the EDF and the distribution function when the EDF is greater than the distribution function, and D^- is the largest vertical distance when the EDF is less than the distribution function⁴.

$$D^{+} = \max_{i} \left(\frac{i}{n} - U_{(i)} \right)$$

$$D^{-} = \max_{i} \left(U_{(i)} - \frac{i-1}{n} \right)$$

$$D = \max(D^{+}, D^{-})$$

Quadratic EDF Statistics

The Anderson-Darling statistic and the Cramer-von Mises statistic are special cases of the general quadratic class of EDF statistics. This class of statistics is based on the squared difference $(F_n(x) - F(x))^2$. The general form of the quadratic class of EDF statistics is

$$Q = n \int_{-\infty}^{+\infty} (F_n(x) - F(x))^2 \psi(x) dF(x)$$
(1)

where $\psi(x)$ is a weight function defined on the squared difference $(F_n(x) - F(x))^2$.

Anderson-Darling Statistic

The Anderson-Darling statistic considers $\psi(x) = [F(x)(1 - F(x))]^{-1}$ in which case equation (1) is

$$A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} \left[(2i - 1) \log U_{(i)} + (2n + 1 - 2i) \log(1 - U_{(i)}) \right].$$

where $U_{(i)} = F_X(X_{(i)})$.

Cramer-von Mises Statistic

The Cramer-von Mises statistic considers $\psi(x)=1$ in which case equation (1) is

$$W^{2} = \sum_{i=1}^{n} \left(U_{(i)} - \frac{2i-1}{2n} \right)^{2} + \frac{1}{12n}.$$

³The computational formulas for the EDF statistics are based upon the probability integral transformation U = F(X). That is, if $X \sim F(X)$ then $U \sim U(0,1)$. In the test of fit problems, F(X) is the null (or specified) distribution function.

⁴PROC UNIVARIATE uses a modified Kolmogorov *D* statistic to test the data against a normal distribution with mean and variance equal to the sample mean and variance.

Tests Based on the Empirical Distribution Function (EDF)

This section describes three nonparametric tests that are based on the empirical distribution function⁵. The procedures are; the Kolmogorov-Smirnov and Cramer-von Mises tests, and also the Kuiper test for two-sample data.⁶ The null hypothesis is $H_0: F_X(\cdot) = F_Y(\cdot) = F(\cdot)$. The (EDF) of a sample $\{x_i\}, j = 1, 2, \ldots, n$ is defined as

$$\hat{F}(x) = \frac{1}{n} (\text{number of } x_j \le x) = \frac{1}{n} \sum_{j=1}^n I(x_j \le x)$$

where $I(\cdot)$ is an indicator function. Let \hat{F}_i denote the sample EDF for the i^{th} group. The EDF for the overall sample, pooled over groups, can also be expressed as

$$\hat{F}(x) = \frac{1}{n} \sum_{i} \left(n_i \hat{F}_i(x) \right)$$

where n_i is the number of observations in the i^{th} group, and n is the total number of observations.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov statistic measures the maximum deviation of the EDF within the groups from the pooled EDF. The Kolmogorov-Smirnov statistic is computed as,

$$KS = \max_{j} \sqrt{\frac{1}{n} \sum_{i} n_{i} (\hat{F}_{i}(x_{j}) - \hat{F}(x_{j}))^{2}}$$
 for $j = 1, 2, ..., n$

The asymptotic Kolmogorov-Smirnov statistic is computed as, $KS_a = KS \times \sqrt{n}$. If there are only two class levels, the two-sample Kolmogorov-Smirnov test statistic D is

$$D = \max_{j} \left| \hat{F}_{1}(x_{j}) - \hat{F}_{2}(x_{j}) \right|$$
 for $j = 1, 2, \dots, n$

The p-value for this test is the probability that D is greater than the observed value d under the null hypothesis of no difference between class levels (samples). The asymptotic p-value for D is approximated as,

$$\Pr(D > d) = 2 \sum_{i=1}^{\infty} (-1)^{(i-1)} e^{(-2i^2z^2)}$$

where

$$z = d\sqrt{n_1 n_2/n}$$

See Hodges (1957) for information about this approximation.

Cramer-von Mises Test

The Cramer-von Mises statistic is

$$CM = \frac{1}{n^2} \sum_{i} \left(n_i \sum_{j=1}^{p} t_j \left(\hat{F}_i(x_j) - \hat{F}(x_j) \right)^2 \right)$$

where t_j is the number of ties at the j^{th} distinct value and p is the number of distinct values. The asymptotic value is computed as

$$CM_a = CM \times n.$$

⁵[PROC NPAR1WAY - EDF option].

 $^{^6}$ For further information about the formulas and the interpretation of EDF statistics, see Hollander and Wolfe (1999) and Gibbons and Chakraborti (2010). For details about the k-sample analogs of the Kolmogorov-Smirnov and Cramer-von Mises statistics, see Kiefer (1959).

Kuiper Test

For data with two class levels, the Kuiper statistic is

$$K = \max_{j} \left(\hat{F}_1(x_j) - \hat{F}_2(x_j) \right) - \min_{j} \left(\hat{F}_1(x_j) - \hat{F}_2(x_j) \right) \quad \text{where} \quad j = 1, 2, \dots, n$$

The asymptotic value is

$$K_a = K\sqrt{n_1 n_2/n}$$

The p-value for the Kuiper test is the probability of observing a larger value of K_a under the null hypothesis of no difference between the two classes Owen (1962, p 441).

Simple Linear Rank Tests for Two-Sample Data

Statistics of the form

$$S = \sum_{j=1}^{n} a(R_j)$$

are called *simple linear rank statistics*, where R_j is the rank of observation j, $a(R_j)$ is the score based on the rank of observation j, and n is the total number of observations⁷.

To compute an asymptotic test for a linear rank sum statistic, use the standardized test statistic z, which has an asymptotic standard normal distribution under the null hypothesis as

$$z = \frac{(S - E_0(S))}{\sqrt{Var_0(S)}}$$

where $E_0(S)$ is the expected value of S under the null hypothesis, and $Var_0(S)$ is the variance under the null hypothesis. As shown in Randles and Wolfe (1979),

$$E_0(S) = \frac{n_1}{n} \sum_{j=1}^n a(R_j)$$

where n_1 is the number of observations in the first class level (sample), n_2 is the number of observations in the other class level, and

$$Var_0(S) = \frac{n_1 n_2}{n(n-1)} \sum_{j=1}^{n} (a(R_j) - \bar{a})^2$$

where \bar{a} is the average score,

$$\bar{a} = \frac{1}{n} \sum_{j=1}^{n} a(R_j)$$

Wilcoxon and Mann-Whitney Test

The Mann-Whitney and Wilcoxon test assumes that

- The data consists of a random sample of n_1 values, denoted $X_1, X_2, \ldots, X_{n_1}$ from $F_X(x)$ with $median(X) = \theta_X$, and a random sample of n_2 values, denoted $Y_1, Y_2, \ldots, Y_{n_2}$ from $F_Y(y)$ with $median(Y) = \theta_Y$.
- The random samples are at least ordinal.
- F_X and F_Y differ only with respect to the their median. That is, $\theta_X = \theta_Y + \delta$.

The null hypothesis is $H_0: \delta = 0$ versus $H_1: \delta \neq 0$ (the usual one-sided tests are possible). The procedure is

1. Combine the data for the two random samples and rank the combined data where $r_i = rank(Y_i)$.

⁷For two-sample data (where the observations are classified into two levels), PROC NPAR1WAY calculates simple linear rank statistics for the scores that you specify.

- 2. Compute the Wilcoxon statistics as, $W = \sum_{j=1}^{n_2} r_j$.
- 3. Reject H_0 if W is either too small $(\theta_Y < \theta_X)$ or too large $(\theta_Y > \theta_X)$.
- 4. The large sample distribution of $W^* = \frac{W E(W)}{\sqrt{Var(W)}} \sim N(0, 1)$, where

$$E(W) = \frac{n_2(N+1)}{2}$$

and

$$Var(W) = \frac{n_1 n_2 (N+1)}{12}$$

for
$$N = n_1 + n_2$$
.

The Mann-Whitney test statistics is

$$U = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \phi(X_i, Y_j)$$

where $\phi(x,y) = I_{x < y}$ the indicator function. The two statistics are similar in that

$$W = U + \frac{n_2(n_2 + 1)}{2}.$$

Note: $\Pr[X < Y] = E(I_{X < Y})$ in which case the statistic U can be used as a nonparametric estimate of $\Pr[X < Y]$.

Simulated Data

R

Normal simulated data

```
x = rnorm(75, mean=10, sd = 4)
y = rnorm(75, mean=14, sd = 4)
cert = data.frame(x,y)
#hist(x)
#hist(y)

with(cert, hist(x, main="", freq=FALSE))
with(cert, lines(density(x), main="X", lty=2, lwd=2))
xvals = with(cert, seq(from=min(x), to=max(x), length=100))
with(cert, lines(xvals, dnorm(xvals, mean(x), sd(x)), lwd=2))
```

⁸Since Pr[X < Y] = AUC, the Mann-Whitney statistics is a nonparametric estimate for the area under the ROC curve (AUC).


```
with(cert, hist(y, main="", freq=FALSE))
with(cert, lines(density(y), main="", lty=2, lwd=2))
xvals = with(cert, seq(from=min(y), to=max(y), length=100))
with(cert, lines(xvals, dnorm(xvals, mean(y), sd(y)), lwd=2))
```


Descriptive statistics

```
library("mosaic")
favstats(x)
```

```
\#\# min Q1 median Q3 max mean sd n missing \#\# -2.285134 7.41193 10.1152 11.66413 16.5094 9.321553 3.78183 75 0
```

```
mean(x, trim=.05)
## [1] 9.470389
quantile(x, seq(from=.025, to= .975, by=.1))
                   12.5%
                              22.5%
                                         32.5%
                                                    42.5%
## 0.6014589 4.5654297 7.0005118 8.3247608 9.1960820 10.4706844 11.0338863
       72.5%
                  82.5%
## 11.5762074 12.7045181 13.9266712
t.test(x, mu=12, conf.level=.9) #test for mu=12 and 90 percent ci
##
## One Sample t-test
##
## data: x
## t = -6.1335, df = 74, p-value = 3.859e-08
## alternative hypothesis: true mean is not equal to 12
## 90 percent confidence interval:
   8.594159 10.048948
##
## sample estimates:
\#\# mean of x
## 9.321553
favstats(y)
                  Q1 median
                                   Q3
                                           max
                                                    mean
                                                              sd n missing
## 5.654374 12.33702 14.7939 17.21898 26.34099 14.81781 3.997653 75
mean(y, trim=.05)
## [1] 14.74651
quantile(y, seq(from=.025, to= .975, by=.1))
        2.5%
                                               42.5%
                                                         52.5%
                12.5%
                          22.5%
                                    32.5%
                                                                   62.5%
## 7.831725 10.122533 11.686866 12.969433 13.756949 14.977590 15.763748 16.976849
      82.5%
                92.5%
## 18.659638 20.553840
t.test(y, mu=12, conf.level=.9) #test for mu=12 and 90 percent ci
##
## One Sample t-test
##
## data: y
## t = 6.1043, df = 74, p-value = 4.359e-08
## alternative hypothesis: true mean is not equal to 12
## 90 percent confidence interval:
## 14.04890 15.58671
## sample estimates:
\#\# mean of x
   14.81781
library("coin")
wilcox.test(x,y)
##
## Wilcoxon rank sum test with continuity correction
```

```
## data: x and y
## W = 881, p-value = 3.926e-13
\#\# alternative hypothesis: true location shift is not equal to 0
t.test(x,y)
##
## Welch Two Sample t-test
##
## data: x and y
## t = -8.6496, df = 147.55, p-value = 8.062e-15
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.751984 -4.240520
## sample estimates:
\#\# mean of x mean of y
## 9.321553 14.817806
ks.test(x,y)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
\#\# D = 0.54667, p-value = 1.229e-10
## alternative hypothesis: two-sided
Test of fit
library("nortest")
ad.test(x)
##
## Anderson-Darling normality test
##
## data: x
\#\# A = 0.8728, p-value = 0.02408
cvm.test(x)
##
## Cramer-von Mises normality test
##
## data: x
## W = 0.15273, p-value = 0.02127
lillie.test(x)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
## data: x
## D = 0.10459, p-value = 0.04115
pearson.test(x)
```

```
## Pearson chi-square normality test
##
## data: x
## P = 14.76, p-value = 0.09774
sf.test(x)
##
##
    Shapiro-Francia normality test
##
## data: x
## W = 0.96309, p-value = 0.02904
with(cert, hist(x, main="", freq=FALSE))
with(cert, lines(density(x), main="X", lty=2, lwd=2))
xvals = with(cert, seq(from=min(x), to=max(x), length=100))
with (cert, lines (xvals, dnorm (xvals, mean (x), sd(x)), lwd=2))
     0.08
Density
     0.04
```

5

Χ

10

15

qqnorm(x)

0

Normal Q-Q Plot

Lognormal simulated data

```
x = 2*rlnorm(75, mean=0, sd = 1) + 10
y = 2 \times rlnorm(75, mean=0, sd = 1) + 12
cert = data.frame(x,y)
#hist(x)
#hist(y)
```

data: x

```
Descriptive statistics
favstats(x)
                   Q1
                        median
                                     Q3
                                             max
                                                     mean
                                                                sd n missing
## 10.06103 11.23886 12.32273 14.67958 40.1339 13.68235 4.502776 75
mean(x, trim=.05)
## [1] 13.07115
quantile(x, seq(from=.025, to= .975, by=.1))
##
       2.5%
                        22.5%
                                  32.5%
                                           42.5%
                                                    52.5%
                                                             62.5%
               12.5%
                                                                       72.5%
## 10.38123 10.93878 11.17899 11.41408 11.88395 12.44388 13.48679 14.38446
     82.5%
               92.5%
## 15.02332 18.62166
t.test(x, mu=12, conf.level=.9) #test for mu=12 and 90 percent ci
##
   One Sample t-test
##
##
```

```
## t = 3.2357, df = 74, p-value = 0.001816
## alternative hypothesis: true mean is not equal to 12
## 90 percent confidence interval:
## 12.81629 14.54841
## sample estimates:
## mean of x
## 13.68235
favstats(y)
                  Q1
                      median
                                     Q3
                                                               sd n missing
                                            max
                                                    mean
   12.07774 13.23737 14.49034 17.35879 27.7801 15.68706 3.447846 75
mean(y, trim=.05)
## [1] 15.37771
quantile(y, seq(from=.025, to= .975, by=.1))
       2.5%
              12.5%
                        22.5%
                                 32.5%
                                          42.5%
                                                   52.5%
                                                             62.5%
## 12.41773 12.82579 13.17634 13.37436 13.95301 14.72350 15.44446 16.99944
      82.5%
##
               92.5%
## 18.09518 20.89182
t.test(y, mu=12, conf.level=.9) #test for mu=12 and 90 percent ci
##
## One Sample t-test
##
## data: y
## t = 9.2611, df = 74, p-value = 5.353e-14
## alternative hypothesis: true mean is not equal to 12
## 90 percent confidence interval:
## 15.02390 16.35022
## sample estimates:
## mean of x
## 15.68706
library("coin")
wilcox.test(x,y)
##
## Wilcoxon rank sum test with continuity correction
## data: x and y
## W = 1413, p-value = 1.453e-07
\#\# alternative hypothesis: true location shift is not equal to 0
t.test(x,y)
##
## Welch Two Sample t-test
##
## data: x and y
## t = -3.0613, df = 138.58, p-value = 0.002647
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.2995102 -0.7099112
## sample estimates:
```

```
## mean of x mean of y
## 13.68235 15.68706
ks.test(x,y)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.49333, p-value = 1.192e-08
## alternative hypothesis: two-sided
Test of fit
library("nortest")
ad.test(x)
##
## Anderson-Darling normality test
##
## data: x
\#\# A = 7.7079, p-value < 2.2e-16
cvm.test(x)
## Warning in cvm.test(x): p-value is smaller than 7.37e-10, cannot be computed
## more accurately
##
## Cramer-von Mises normality test
##
## data: x
## W = 1.3818, p-value = 7.37e-10
lillie.test(x)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
## data: x
## D = 0.22496, p-value = 3.972e-10
pearson.test(x)
##
## Pearson chi-square normality test
##
## data: x
## P = 105, p-value < 2.2e-16
sf.test(x)
##
##
   Shapiro-Francia normality test
##
## data: x
## W = 0.598, p-value = 3.341e-11
with(cert, hist(x, main="", freq=FALSE))
with(cert, lines(density(x), main="X", lty=2, lwd=2))
```

```
xvals = with(cert, seq(from=min(x), to=max(x), length=100))
with(cert, lines(xvals, dnorm(xvals, mean(x), sd(x)), lwd=2))
```


qqnorm(x)

Normal Q-Q Plot

ad.test(y)

##

Anderson-Darling normality test

```
##
## data: y
\#\# A = 3.9696, p-value = 5.589e-10
cvm.test(y)
##
## Cramer-von Mises normality test
##
## data: y
## W = 0.68043, p-value = 8.146e-08
lillie.test(y)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: y
## D = 0.16505, p-value = 2.797e-05
pearson.test(y)
##
## Pearson chi-square normality test
##
## data: y
## P = 61.16, p-value = 8.008e-10
sf.test(y)
##
## Shapiro-Francia normality test
##
## data: y
## W = 0.82961, p-value = 5.798e-07
with(cert, hist(y, main="", freq=FALSE))
with(cert, lines(density(y), main="Y", lty=2, lwd=2))
xvals = with(cert, seq(from=min(y), to=max(y), length=100))
with(cert, lines(xvals, dnorm(xvals, mean(y), sd(y)), lwd=2))
```


Normal Q-Q Plot

SAS

In this section, I have added the SAS code with similar output as to the R output using simulated data. I have used a real data set called the the certification data set for the SAS example. Originally, I have did not include any results for simulated data using SAS. I have added that the end. The cases considered in SAS differ from those considered in R.

Code

```
options center nodate pagesize=100 ls=70;
title 'Sample Certification Data';
data cert; set LDATA.certification;
english = (language = 'English');
run;
proc sort data=cert; by year; run;
ods graphics on;
title2 'Density for Written Exams for English vs non-English';
proc sgplot data=cert; where year = 2008;
density written /group=english;
run;
title2 'Descriptive Statistics';
proc univariate data=cert normal trim=.05 winsor=.05 mu0=75; where year = 2008;
var written;
run;
title2 'Nonparametric Test of Hypothesis';
proc npar1way data=cert wilcoxon edf ; where year = 2008;
var written;
run;
title2 'T Test';
proc ttest data=cert ; where year = 2008;
class english;
var written;
run;
title2 'Nonparametric Tests for 2 populations';
proc nparlway data=cert wilcoxon edf; where year = 2008;
class english;
var written;
run;
title2 'Fit for 2 populations';
proc univariate data=cert normal mu0=75; where year = 2008;
class english;
var written;
run;
quit;
```

The SAS code for the analysis of the simulated data would be as follows (no output is included).

```
title 'Simulated Normal Data';
%let n=50;
data cert;
  do group = 1 to 2;
     do i = 1 to &n;
       x = rand('normal', 0, 1);
      output;
      end;
  end;
run;
data cert; set cert;
   if group = 1 then x = 2*x + 10;
   else x = 2*x + 14;
run;
title2 'Density for Group 1 vs Group 2';
proc sgplot data=cert;
density x /group=group;
run;
title2 'Descriptive Statistics';
proc univariate data=cert normal trim=.05 winsor=.05 mu0=75;
var x;
run:
title2 'Nonparametric Test of Hypothesis';
proc npar1way data=cert wilcoxon edf ;
class group;
var x;
run;
title2 'T Test';
proc ttest data=cert ;
class group;
var x;
run;
title2 'Nonparametric Tests for 2 populations';
proc npar1way data=cert wilcoxon edf;
class group;
var x;
run;
title2 'Fit for 2 populations';
proc univariate data=cert normal mu0=75;
class group;
var x;
run;
title 'Simulated Exponential Data';
%let n=50;
data cert;
  do group = 1 to 2;
     do i = 1 to &n;
        x = rand('EXPONENTIAL', 1);
```

```
output;
      end;
  end:
run;
data cert; set cert;
   if group = 1 then x = 2*x + 5;
   else x = 5*x + 5;
run;
title2 'Density for Group 1 vs Group 2';
proc sgplot data=cert;
density x /group=group;
run;
title2 'Descriptive Statistics';
proc univariate data=cert normal trim=.05 winsor=.05 mu0=75;
var x;
run;
title2 'Nonparametric Test of Hypothesis';
proc nparlway data=cert wilcoxon edf ;
class group;
var x;
run;
title2 'T Test';
proc ttest data=cert ;
class group;
var x;
run;
title2 'Nonparametric Tests for 2 populations';
proc nparlway data=cert wilcoxon edf;
class group;
var x;
run;
title2 'Fit for 2 populations';
proc univariate data=cert normal mu0=75;
class group;
var x;
run;
```

Output for Certification Data

Sample Certification Data Descriptive Statistics The UNIVARIATE Procedure

Variable: WRITTEN (WRITTEN)

Moments						
N	392	Sum Weights	392			
Mean	85.2653061	Sum Observations	33424			
Std Deviation	8.49558456	Variance	72.1749569			
Skewness	-1.5546607	Kurtosis	3.36775798			
Uncorrected SS	2878128	Corrected SS	28220.4082			
Coeff Variation	9.96370616	Std Error Mean	0.42909182			

	Basic Statistical Measures					
Location		Variability				
Mean	85.26531	Std Deviation	8.49558			
Median	87.00000	Variance	72.17496			
Mode	90.00000	Range	53.00000			
		Interquartile Range	9.00000			

Tests for Location: Mu0=75						
Test	,	Statistic	p Val	lue		
Student's t	t	23.92333	Pr > t	<.0001		
Sign	M	155.5	Pr >= M	<.0001		
Signed Rank	S	32271	Pr >= S	<.0001		

Tests for Normality						
Test	Statistic		p Value			
Shapiro-Wilk	W	0.884435	Pr < W	< 0.0001		
Kolmogorov-Smirnov	D	0.140605	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	1.842764	Pr > W-Sq	< 0.0050		
Anderson-Darling	A-Sq	11.00673	Pr > A-Sq	<0.0050		

Trimmed Means								
% in Tail	# in Tail	Trimmed Mean	Std Error Trimmed Mean	95% CI DF $H_0: \mu_0 = 75$. Pr > ltl			Pr > t	
5.10	20	86.02273	0.392290	85.25119	86.79426	351	28.09845	<.0001

	Winsorized Means								
% in Tail	# in Tail	Winsorized Mean	Std Error Winsorized Mean	95% CI DF $H_0: \mu_0 = 75$. Pr			Pr > t		
5.10	20	85.66327	0.392347	84.89162	86.43491	351	27.17818	<.0001	

Quantiles (Definition 5)					
Level	Quantile				
100% Max	98				
99%	98				
95%	95				
90%	94				
75% Q3	91				
50% Median	87				
25% Q1	82				
10%	75				
5%	68				
1%	55				
0% Min	45				

Extreme Observations						
Low	Lowest		est			
Value	Obs	Value	Obs			
45	866	98	752			
48	943	98	784			
51	753	98	828			
55	817	98	831			
55	792	98	873			

Sample Certification Data T Test The TTEST Procedure

Variable: WRITTEN (WRITTEN)

english	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
0		213	84.7371	9.7693	0.6694	45.0000	98.0000
1		179	85.8939	6.6438	0.4966	59.0000	97.0000
Diff (1-2)	Pooled		-1.1568	8.4868	0.8605		
Diff (1-2)	Satterthwaite		-1.1568		0.8335		

english	Method	Mean	95% CL Mean		Std Dev	95% CI	L Std Dev
0		84.7371	83.4176	86.0566	9.7693	8.9213	10.7969
1		85.8939	84.9139	86.8738	6.6438	6.0195	7.4137
Diff (1-2)	Pooled	-1.1568	-2.8486	0.5351	8.4868	7.9308	9.1274
Diff (1-2)	Satterthwaite	-1.1568	-2.7956	0.4821			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	390	-1.34	0.1797
Satterthwaite	Unequal	374.47	-1.39	0.1660

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F 212 178 2.16 <.0001					

Sample Certification Data Nonparamtric Tests for 2 populations The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable WRITTEN Classified by Variable english						
english N Sum of Scores Expected Under H0 Std Dev Under H0 Mean Score						
0	213	41843.50	41854.50	1115.69634	196.448357	
1 179 35184.50 35173.50 1115.69634 196.561453						
Average scores were used for ties.						

Wilcoxon Two-Sample Test						
Statistic Z $Pr > Z$ $Pr > Z $ t Approximation						
Pr > Z Pr > Z						
35184.50 0.0094 0.4962 0.9925 0.4962 0.9925						
Z includes a continuity correction of 0.5.						

Kruskal-Wallis Test						
Chi-Square DF Pr > ChiSq						
0.0001 1 0.9921						

Sample Certification Data Fit for 2 populations

The UNIVARIATE Procedure

Variable: WRITTEN (WRITTEN)

english = 0

Moments						
N	213	Sum Weights	213			
Mean	84.7370892	Sum Observations	18049			
Std Deviation	9.76933907	Variance	95.4399858			
Skewness	-1.4951427	Kurtosis	2.62137594			
Uncorrected SS	1549653	Corrected SS	20233.277			
Coeff Variation	11.5290001	Std Error Mean	0.66938408			

	Basic Statistical Measures					
Location Variability						
Mean	84.73709	Std Deviation	9.76934			
Median	87.00000	87.00000 Variance 95.439				
Mode 90.00000 Range 53			53.00000			
Interquartile Range 10.0			10.00000			

Tests for Location: Mu0=75						
Test	Test Statistic p Value					
Student's t	t 14.54634		Pr > t	<.0001		
Sign	M 78		Pr >= M	<.0001		
Signed Rank	S	8743.5	Pr >= S	<.0001		

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.878002	Pr < W	< 0.0001		
Kolmogorov-Smirnov	D	0.149233	Pr > D	<0.0100		
Cramer-von Mises W-Sq 1.194293 Pr > W-Sq <0.0050				< 0.0050		
Anderson-Darling	A-Sq	7.011716	Pr > A-Sq	< 0.0050		

Quantiles (Definition 5)					
Level	Quantile				
100% Max	98				
99%	98				
95%	96				
90%	94				
75% Q3	91				

Quantiles (Definition 5)				
Level	Quantile			
50% Median	87			
25% Q1	81			
10%	71			
5%	63			
1%	51			
0% Min	45			

Extreme Observations					
Low	est	Highest			
Value	Obs	Value	Obs		
45	866	98	752		
48	943	98	784		
51	753	98	828		
55	817	98	831		
55	792	98	873		

Sample Certification Data Fit for 2 populations

The UNIVARIATE Procedure

Variable: WRITTEN (WRITTEN)

english = 1

Moments						
N	179	Sum Weights	179			
Mean	85.8938547	Sum Observations	15375			
Std Deviation	6.64382083	Variance	44.1403553			
Skewness	-1.178462	Kurtosis	1.92250441			
Uncorrected SS	1328475	Corrected SS	7856.98324			
Coeff Variation	7.73491987	Std Error Mean	0.49658248			

	Basic Statistical Measures					
Location Variability						
Mean	Std Deviation	6.64382				
Median	87.00000	Variance	44.14036			
Mode	86.00000	Range	38.00000			
	Interquartile Range 8.00000					

Tests for Location: Mu0=75							
Test	est Statistic p Value						
Student's t	t	21.93765	Pr > t	<.0001			
Sign	M 77.5		Pr >= M	<.0001			
Signed Rank	S	7458.5	Pr >= S	<.0001			

Tests for Normality							
Test	Statistic p Value						
Shapiro-Wilk	W	0.923474	Pr < W	< 0.0001			
Kolmogorov-Smirnov	D	0.116879	Pr > D	< 0.0100			
Cramer-von Mises	W-Sq	0.466086	Pr > W-Sq	< 0.0050			
Anderson-Darling	A-Sq	3.124944	Pr > A-Sq	< 0.0050			

Quantiles (De	Quantiles (Definition 5)					
Level	Quantile					
100% Max	97					
99%	96					
95%	94					
90%	93					
75% Q3	90					

Quantiles (Definition 5)				
Level	Quantile			
50% Median	87			
25% Q1	82			
10%	78			
5%	71			
1%	66			
0% Min	59			

Extreme Observations						
Low	est	Highest				
Value	Obs	Value	Obs			
59	988	96	992			
66	1091	96	1032			
66	1048	96	1058			
67	1056	96	1066			
67	1025	97	1053			

Output for SAS Simulated data

Simulated Normal Data Descriptive Statistics

The UNIVARIATE Procedure

Variable: x

	Moments							
N	100	Sum Weights	100					
Mean	11.4915596	Sum Observations	1149.15596					
Std Deviation	2.81544939	Variance	7.92675526					
Skewness	-0.1346856	Kurtosis	-0.5457219					
Uncorrected SS	13990.3429	Corrected SS	784.74877					
Coeff Variation	24.5001505	Std Error Mean	0.28154494					

	Basic Statistical Measures					
Loc	Location Variability					
Mean	an 11.49156 Std Deviation					
Median	11.81443	Variance	7.92676			
Mode		Range	13.41163			
		Interquartile Range	4.45710			

Tests for Location: Mu0=75							
Test Statistic p Value							
Student's t	t	-225.571	Pr > t	<.0001			
Sign	M	-50	Pr >= M	<.0001			
Signed Rank	S	-2525	Pr >= S	<.0001			

Tests for Normality							
Test	Statistic p Value						
Shapiro-Wilk	W	0.987944	Pr < W	0.5041			
Kolmogorov-Smirnov	D	0.05815	Pr > D	>0.1500			
Cramer-von Mises	W-Sq	0.075131	Pr > W-Sq	0.2411			
Anderson-Darling	A-Sq	0.453718	Pr > A-Sq	>0.2500			

	Trimmed Means							
% in Tail # in Tail Trimmed Mean SE Trimmed Mean 95% CI DF H0:Mu0=75.00						Pr > t		
5.00	5	11.50140	0.286118	10.93289	12.06991	89	-221.932	<.0001

Winsorized Means							
% in Tail # in Tail Winsor Mean SE 95% Cl DF H0: Mu0=75.00 Pr >							Pr > t
5.00	5	11.48208	0.286278	0.286278 10.91325 12.05091 89 -221.		-221.875	<.0001

Quantiles (Definition 5)				
Level	Quantile			
100% Max	18.18694			
99%	17.74974			
95%	15.59268			
90%	14.88071			
75% Q3	13.65445			
50% Median	11.81443			
25% Q1	9.19735			
10%	7.62784			
5%	7.01972			
1%	5.21826			
0% Min	4.77530			

Extreme Observations							
Lowest Highest							
Value	Obs	Value	Obs				
4.77530	13	15.7223	84				
5.66122	3	16.3695	62				
5.77145	33	16.5955	4				
6.74925	41	17.3125	53				
6.88607	43	18.1869	91				

Simulated Normal Data Nonparametric Test of Hypothesis

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable x			Wilcoxon Scores (Rank Sums) for Variable x Classified by Variable group			
group	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score	
1	50	1475.0	2525.0	145.057460	29.50	
2	50	3575.0	2525.0	145.057460	71.50	

Wilcoxon Two-Sample Test									
Statistic $Z Pr < Z Pr > Z t Approximation$									
	Pr < Z Pr > Z								
1475.000	1475.000 -7.2351 <.0001 <.0001 <.0001 <.0001								
Z includes a continuity correction of 0.5.									

Kruskal-Wallis Test						
Chi-Square DF Pr > ChiSq						
52.3960	1	<.0001				

Simulated Normal Data Nonparametric Test of Hypothesis

The NPAR1WAY Procedure

Kolmog	Kolmogorov-Smirnov Test for Variable x Classified by Variable group						
group N EDF at Maximum Deviation from Mean at Maximum							
1	50	0.860	2.616295				
2	50	0.120	-2.616295				
Total 100 0.490							
	Maximum Deviation Occurred at Observation 8						
	Value of x at Maximum = 11.631965						

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)						
KS 0.370000 D 0.740000						
KSa	3.700000	Pr > KSa	<.0001			

Cramer	Cramer-von Mises Test for Variable x Classified by Variable group						
group N Summed Deviation fr							
1	50		2.83750				
2	50		2.83750				

Cran	Cramer-von Mises Statistics (Asymptotic)						
CM	0.056750	CMa	5.675000				

Kuiper	Kuiper Test for Variable x Classified by Variable group						
group	N	from Mean					
1	50		0.740				
2	50		0.000				

	Kuiper Two-Sample Test (Asymptotic)						
K	K 0.740000 Ka 3.700000 Pr > Ka <.0001						

Simulated Normal Data T Test The TTEST Procedure

Variable: x

group	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
1		50	9.5104	2.2847	0.3231	4.7753	16.5955
2		50	13.4728	1.6688	0.2360	10.2461	18.1869
Diff (1-2)	Pooled		-3.9624	2.0006	0.4001		
Diff (1-2)	Satterthwaite		-3.9624		0.4001		

group	Method	Mean	95% CI	L Mean	Std Dev	95% CL	Std Dev
1		9.5104	8.8610	10.1597	2.2847	1.9085	2.8471
2		13.4728	12.9985	13.9470	1.6688	1.3940	2.0795
Diff (1-2)	Pooled	-3.9624	-4.7564	-3.1684	2.0006	1.7554	2.3259
Diff (1-2)	Satterthwaite	-3.9624	-4.7573	-3.1675			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-9.90	<.0001
Satterthwaite	Unequal	89.698	-9.90	<.0001

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	49	49	1.87	0.0300	

Simulated Normal Data Nonparametric Tests for 2 populations

The NPAR1WAY Procedure

Wil	сохо	n Scores (Rank S	Classified by Varial	ole group	
group	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
1	50	1475.0	2525.0	145.057460	29.50
2	50	3575.0	2525.0	145.057460	71.50

Wilcoxon Two-Sample Test					
Statistic $Z Pr < Z Pr > Z t Approximation$					
				Pr < Z	Pr > Z
1475.000	-7.2351	<.0001	<.0001	<.0001	<.0001
Z includes a continuity correction of 0.5.					

Kruskal-Wallis Test				
Chi-Square	DF	Pr > ChiSq		
52.3960	1	<.0001		

Simulated Normal Data Nonparametric Tests for 2 populations

The NPAR1WAY Procedure

Kolmogorov-Smirnov Test for Variable x Classified by Variable group						
group N EDF at Maximum Deviation from Mean at Maximum						
1	50	0.860	2.616295			
2	50	0.120	-2.616295			
Total	100	0.490				
	Maximum Deviation Occurred at Observation 8					
	Value of x at Maximum = 11.631965					

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)					
KS	0.370000	370000 D 0.740000			
KSa	3.700000	Pr > KSa	<.0001		

Cramer	Cramer-von Mises Test for Variable x Classified by Variable group				
group	N	Summed Deviation	from Mean		
1	50		2.83750		
2	50		2.83750		

Cramer-von Mises Statistics (Asymptotic)				
CM	0.056750	CMa	5.675000	

Kuiper	Kuiper Test for Variable x Classified by Variable group					
group	N	Deviation	from Mean			
1	50		0.740			
2	50		0.000			

Kuiper Two-Sample Test (Asymptotic)					
K	0.740000	Ka	3.700000	Pr > Ka	<.0001

Simulated Normal Data Fit for 2 populations

The UNIVARIATE Procedure

Variable: x group = 1

Moments					
N	50	Sum Weights	50		
Mean	9.51035836	Sum Observations	475.517918		
Std Deviation	2.28473136	Variance	5.21999739		
Skewness	0.57236853	Kurtosis	0.80353939		
Uncorrected SS	4778.12568	Corrected SS	255.779872		
Coeff Variation	24.0236096	Std Error Mean	0.32310981		

	Basic Statistical Measures				
Location Variability					
Mean	9.510358	Std Deviation	2.28473		
Median	9.197347	Variance	5.22000		
Mode		Range	11.82022		
		Interquartile Range	3.11885		

Tests for Location: Mu0=75				
Test	5	Statistic	p Val	ue
Student's t	t	-202.685	Pr > t	<.0001
Sign	M	-25	Pr >= M	<.0001
Signed Rank	S	-637.5	Pr >= S	<.0001

Tests for Normality				
Test	Statistic p Value		ue	
Shapiro-Wilk	W	0.978149	Pr < W	0.4768
Kolmogorov-Smirnov	D	0.074654	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.045459	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.297529	Pr > A-Sq	>0.2500

Quantiles (Definition 5)		
Level	Quantile	
100% Max	16.59552	
99%	16.59552	
95 % 41	13.69239	

Quantiles (Definition 5)		
Level	Quantile	
90%	12.39527	
75% Q3	11.06938	
50% Median	9.19735	
25% Q1	7.95052	
10%	7.01972	
5%	5.77145	
1%	4.77530	
0% Min	4.77530	

Extreme Observations				
Lowe	Lowest		est	
Value	Obs	Value	Obs	
4.77530	13	12.7270	49	
5.66122	3	12.7318	25	
5.77145	33	13.6924	5	
6.74925	41	13.8417	47	
6.88607	43	16.5955	4	

Simulated Normal Data Fit for 2 populations

The UNIVARIATE Procedure

Variable: x group = 2

Moments					
N	50	Sum Weights	50		
Mean	13.4727608	Sum Observations	673.63804		
Std Deviation	1.66875899	Variance	2.78475657		
Skewness	0.44144605	Kurtosis	0.36256628		
Uncorrected SS	9212.21725	Corrected SS	136.453072		
Coeff Variation	12.3861695	Std Error Mean	0.23599816		

	Basic Statistical Measures			
Location Variability				
Mean	13.47276	Std Deviation	1.66876	
Median	13.38415	Variance	2.78476	
Mode		Range	7.94083	
		Interquartile Range	2.33377	

Tests for Location: Mu0=75				
Test	5	Statistic	p Val	ue
Student's t	t	-260.711	Pr > t	<.0001
Sign	M	-25	Pr >= M	<.0001
Signed Rank	S	-637.5	Pr >= S	<.0001

Tests for Normality				
Test	Statistic p Value		ue	
Shapiro-Wilk	W	0.979908	Pr < W	0.5481
Kolmogorov-Smirnov	D	0.069628	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.033405	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.257146	Pr > A-Sq	>0.2500

Quantiles (Definition 5)		
Level	Quantile	
100% Max	18.1869	
99%	18.1869	
95% 43	16.3695	

Quantiles (Definition 5)		
Level	Quantile	
90%	15.2786	
75% Q3	14.5709	
50% Median	13.3842	
25% Q1	12.2372	
10%	11.3039	
5%	10.7851	
1%	10.2461	
0% Min	10.2461	

Extreme Observations			
Lowest		Highest	
Value	Obs	Value	Obs
10.2461	80	15.4630	83
10.6926	65	15.7223	84
10.7851	96	16.3695	62
11.0663	77	17.3125	53
11.2030	56	18.1869	91