Istoric. Aplicații

- din cursul 1

Este posibil ca un om să facă o plimbare în care să treacă pe toate cele 7 poduri o singură dată?

http://think-like-a-git.net/sections/graph-theory/seven-bridges-of-konigsberg.html

Modelare:

- 1736 Leonhard Euler *Solutio problematis ad geometriam situs pertinentis*
- Ciclu eulerian traseu închis care trece o singură dată prin toate muchiile
- Graf eulerian

Interpretare

Se poate desena diagrama printr-o curbă continuă închisă fără a ridica creionul de pe hârtie și fără a desena o linie de două ori (în plus: să terminăm desenul în punctul în care l-am început)?

Tăierea unui material

Interpretare

De câte ori (minim) trebuie să ridicăm creionul de pe hârtie pentru a desena diagrama?

Grafuri de Bruijn

Fie G graf neorientat

Ciclu eulerian al lui G = ciclu C în G cu E(C)=E(G)

▶ G eulerian = conține un ciclu eulerian

Lanţ eulerian al lui G = lanţ simplu P în G cu E(P) = E(G)

Fie G graf neorientat

Ciclu eulerian al lui G = ciclu C în G cu
E(C) = E(G)

▶ G eulerian = conține un ciclu eulerian

Lanţ eulerian al lui G = lanţ simplu P în G cu E(P) = E(G)

Lemă

Fie G=(V,E) un graf neorientat, conex, cu toate vârfurile de grad par și $E\neq\emptyset$.

Atunci pentru orice $x \in V$ există un ciclu C în G cu

$$x \in V(C)$$

(ciclu care conține x, nu neapărat eulerian)

Teorema lui Euler

Fie G=(V, E) un (multi)graf neorientat, conex, cu $E\neq\emptyset$.

Atunci

G este eulerian ⇔ orice vârf din G are grad par

Determinarea unui ciclu eulerian într-un graf conex (sau un graf conex+ vârfuri izolate) cu toate vârfurile de grad par

bazat pe ideea demonstrației Teoremei lui Euler fuziune de cicluri (succesiv)

Pasul 0 – verificare condiții (conex+vf. izolate, grade pare)

- Pasul 0 verificare condiții (conex+vf. izolate, grade pare)
- Pasul 1:
 - ∘ alege v ∈ V arbitrar
 - construiește C un ciclu în G care începe cu v (cu algoritmul din Lema)

- Pasul 0 verificare condiții (conex+vf. izolate, grade pare)
- Pasul 1:
 - \circ alege $v \in V$ arbitrar
 - construiește C un ciclu în G care începe cu v (cu algoritmul din Lema)
- cât timp |E(C)| < |E(G)| execută</p>
 - selectează $v \in V(C)$ cu $d_{G^{-E}(C)}(v) > 0$ (în care sunt incidente muchii care nu aparțin lui C)

Pasul 0 – verificare condiții (conex+vf. izolate, grade pare)

Pasul 1:

- \circ alege $v \in V$ arbitrar
- o construiește C un ciclu în G care începe cu v (cu algoritmul din Lema)
- cât timp |E(C)| < |E(G)| execută
 - selectează $v \in V(C)$ cu $d_{G^{-E}(C)}(v) > 0$ (în care sunt incidente muchii care nu aparțin lui C)
 - o construiește C' un ciclu în G E(C) care începe cu v

Pasul 0 – verificare condiții (conex+vf. izolate, grade pare)

Pasul 1:

- \circ alege $v \in V$ arbitrar
- construiește C un ciclu în G care începe cu v (cu algoritmul din Lema)
- cât timp |E(C)| < |E(G)| execută
 - $^\circ$ selectează v \in V(C) cu $d_{\text{G-E}(C)}\left(v\right)$ > 0 (în care sunt incidente muchii care nu aparțin lui C)
 - o construiește C' un ciclu în G E(C) care începe cu v
 - · C = ciclul obținut prin fuziunea ciclurilor C și C' în v

Pasul 0 – verificare condiții (conex+vf. izolate, grade pare)

Pasul 1:

- \circ alege $v \in V$ arbitrar
- construiește C un ciclu în G care începe cu v (cu algoritmul din Lema)
- cât timp |E(C)| < |E(G)| execută
 - $^\circ$ selectează v \in V(C) cu $d_{_{G^{-E}(C)}}(v)$ > 0 (în care sunt incidente muchii care nu aparțin lui C)
 - o construiește C' un ciclu în G E(C) care începe cu v
 - · C = ciclul obținut prin fuziunea ciclurilor C și C' în v

scrie C

Pornim cu ciclul construit cu algortimul din Lema 1

$$C_1 = [1, 2, 3, 4, 2, 6, 5, 1]$$

 $C_2 = [1, 2, 3, 4, 2, 6, 5, 4, 7, 5, 1]$

 $C_2 = [1, 2, 3, 4, 2, 6, 5, 4, 7, 5, 1]$

 $C_3 = [1, 2, 3, 8, 9, 3, 4, 2, 6, 5, 4, 7, 5, 1]$

Complexitate – O(m)

- Posibilă implementare
 - Varianta 1 Liste dublu înlănțuite/stive
 - Muchiile folosite marcate (nu neapărat șterse)

Algoritmul lui Hierholzer

Varianta 2 – posibilă implementare recursivă

```
euler (nod v)
    cat timp d(v) > 0
        alege vw o muchie incidenta in v
        sterge muchia vw din G
        euler (w)
    C = C + v //adaugam v la ciclul C

Inițial
    C = Ø
    euler(1) //pornim construcția din varful 1
```

Algoritmul lui Hierholzer

Varianta 2 – posibilă implementare recursivă

```
euler (nod v)
    cat timp d(v) > 0
        alege vw o muchie incidenta in v
        sterge muchia vw din G
        euler (w)
    C = C + v //adaugam v la ciclul C
```

Observație - putem alege muchiile incidente în v, de exemplu, în ordinea dată de listele de adiacență

```
cat timp d(v) > 0
    alege vw o muchie incidenta in v
    sterge muchia vw din G
    euler (w)
pentru vw∈ E

sterge muchia vw din G
euler (w)
```

Algoritmul lui Hierholzer

Varianta 2 – posibilă implementare recursivă

```
euler (nod v)
    cat timp d(v) > 0
           alege vw o muchie incidenta in v
           sterge muchia vw din G
           euler (w)
    C = C + v //adaugam v la ciclul C
Inițial
   C = \emptyset
   euler(1) //pornim construcția din varful 1
```

http://www.infoarena.ro/problema/ciclueuler

Lanțuri euleriene

Teorema lui Euler

Fie G=(V, E) un graf neorientat, conex, cu $E\neq\emptyset$.

Atunci

G are un lanţ eulerian ⇔ G are cel mult două vârfuri de grad impar

Descompuneri euleriene în lanțuri

k-descompunere euleriană în lanţuri a unui graf G =

o mulțime de k lanțuri simple, muchie-disjuncte

$$\Delta = \{P_1, P_2, ..., P_k\}$$

ale căror muchii induc o k-partiție a lui E(G):

$$E(G) = E(P_1) \cup E(P_2) \cup ... \cup E(P_k)$$

Descompuneri euleriene în lanțuri

Interpretare

De câte ori (minim) trebuie să ridicăm creionul de pe hârtie pentru a desena diagrama?

Descompuneri euleriene în lanțuri

Teoremă - Descompunere euleriană

Fie G=(V, E) un graf orientat, conex (= graful neorientat asociat este conex), cu **exact 2k vârfuri de grad impar** (k>0). Atunci există o k-descompunere euleriană a lui G și k este cel mai mic cu această proprietate.

Grafuri orientate euleriene

Grafuri orientate euleriene

Teorema lui Euler

Fie G=(V, E) un graf orientat, conex (= graful neorientat asociat este conex), cu $E\neq\emptyset$.

Atunci

G este eulerian $\Leftrightarrow \forall v \in V \quad d_G^-(v) = d_G^+(v)$

Lanțuri euleriene

Teorema lui Euler

Fie G=(V, E) un (multi)graf neorientat, conex, cu $E\neq\emptyset$.

Atunci

G are un drum eulerian ⇔

$$(\forall \ \ \ \ \ d_G^-(v) = d_G^+(v) \)$$
 sau

(
$$\exists x \in V \text{ cu } d_G^-(x) = d_G^+(x) - 1$$
,

$$\exists y \in V \text{ cu } d_G^-(y) = d_G^+(y) + 1,$$

$$\forall v \in V - \{x, y\} \quad d_G^-(v) = d_G^+(v)$$

Problemă - joc domino

Piesă de domino - două fețe, numere 0..6

www.PrintsbleBoardGarnes.net

Problemă - joc domino

Şir de piese de domino – respectă regula de construcție: primul număr de pe piesa adăugată la șir = al doilea număr de pe ultima piesă din șir

Problemă - joc domino

Se poate forma un șir de piese de domino care să conțină toate piesele + să se termine cu același număr cu care a început (un șir circular)?

Problemă - joc domino

Exemplu – daca folosim doar piese cu numere 0..2 putem forma un ciclu

Problemă - joc domino

Graf asociat

Problemă - joc domino

Există ciclu de piese \Leftrightarrow există ciclu eulerian în (multi)graf

Problema lui POSTHUMUS

- f (n) = numărul minim de cifre de 0 și 1 care se pot dispune circular a.î. între cele f (n) secvențe de lungime n de cifre succesive apar toți cei 2ⁿ vectori de lungime n peste {0,1} (citite în același sens).
- ▶ Evident f (n) $\geq 2^n$.

- Multigraf
- $V(B_n) = \{0,1\}^n$ (mai general $\{0,1,...,p\}^n$) (sau cuvinte de lungime n peste un alfabet finit)
- $E(B_n)$ etichetate cu $\{0,1\}^{n+1}$ $(\{0,1,...,p\}^{n+1})$ • $b_1b_2...b_nb_{n+1}$ etichetează arcul de la • $b_1b_2...b_n$ la $b_2...b_nb_{n+1}$

▶ B_n este eulerian

$$d^+(v) = ?$$

$$d^{-}(v) = ?$$

▶ B_n este eulerian

$$d^+(v) = ?$$

$$d^{-}(v) = ?$$

orice b_{n+1} din alfabet

▶ B_n este eulerian

$$d^{+}(v) = ?$$

 $d^{-}(v) = ?$

Prima cifră din etichetele arcelor unui circuit eulerian
 în B_{n-1} - soluție pentru problema lui Posthumus

▶ B_n este eulerian

$$d^{+}(v) = ?$$

 $d^{-}(v) = ?$

Prima cifră din etichetele arcelor unui circuit eulerian
 în B_{n-1} – soluție pentru problema lui Posthumus

Observaţie

Circuit eulerian in $B_{n-1} \leftrightarrow$ circuit hamiltonian in B_n

Aplicație – genetică (Genome Assembly)