

Double ML using Orthogonalization

$$Y-\hat{M}_y(X)= aust(T-\hat{M}_t(X))$$

where $\hat{M}_{v}(X)$ and $\hat{M}_{t}(X)$ are ML estimators

1. estimate Y on the features X using an ML regression model M_y 2. estimate the treatment variable T on the features X using an ML regression model M_t

3. obtain the residuals $ilde{Y} = Y - M_y(X)$ and $ilde{T} = T - M_t(X)$

4. regress the outcome residuals on the treatment residuals $ilde{Y} = \alpha + au ilde{T}$

where au is the causal parameter and M_t is the debias model such that \tilde{T} is a version of the treatment where all the confounding bias from X has been removed by the model. In other words, \tilde{T} is orthogonal to X

Output

$$ilde{Y} = lpha + au ilde{T}$$

- 1. Once we get an output for α and τ , input $T(X_{before})$ and $T(X_{after})$ to determine what the Y_{before} and Y_{after} will be
 - 2. That output will be the delta between Y_{before} and Y_{after}