Programme de colle - Semaine n°24

- Groupe A: Ilyes BENFERHAT, Hamza BOURAS, Julien DENEUBOURG, Célian FORET, Maxime LE BLAN, Pierre LESAGE, Vishwaraj SHABADI, Julien STEVENART, Mohamed Jibril TROUGOUTY, Félix VANDEN-BROUCKE.
- Groupe B: Lucas AGBOTON, Vladislas BANCOD, Pierre CATHELAIN, Matthieu CHARETTE, Célien CHAZAL, Jarode COQUEL, Félix CORDONNIER-PORTIER, Maxime DANIEL, Baptiste DAULE SIGAUT, Raphaël DEPUYDT, Ethan DUMONT, Houdayfa EL HAJJIOUI, Gabriel HARENDARZ, Victor KRAWCZIK, Thibaut LAMARQUE, Juliette LECOUTRE, Mohamed-Yassine LOKMANE, Alexandre MARTINSSE, Clément MONCHIET, Mathieu POULAIN, Clarissa VALLAEYS.
- Groupe C: Ilan AKADJI, Orane BERTOUT, Nathan BISKUPSKI, Pierre BODET, Marc BURGHGRAEVE, Noelien DUTILLEUL, Douae EL FANI, Julien GERY, Paul LEONARD, Noam THIBAUT-GESNEL, Clément TURPIN.

Chapitre 26 - Probabilités sur un univers fini

• cf. semaines 22 et 23.

Chapitre 27 - Variables aléatoires sur un univers fini

• cf. semaine 23.

Chapitre 28 - Espaces vectoriels

- Définition d'une loi externe de \mathbb{K} sur un ensemble E. Notation avec un point ou une absence de symbole. Exemples.
- Structure d'espace vectoriel. Vecteur nul, notation 0_E ou 0 s'il n'y a aucune ambiguité. Espaces vectoriels de référence : \mathbb{K}^n , $\mathcal{M}_{n,p}(\mathbb{K})$, $\mathbb{K}[X]$, \mathbb{K}^K , \mathbb{K}^N où D est une partie de \mathbb{R} , \mathbb{K}^N , et plus généralement, si E est un espace vectoriel et X un ensemble quelconque, E^X est un espace vectoriel. Espace vectoriel produit.
- Propriétés : tout élément est régulier, $\alpha.x = 0$ si et seulement si $\alpha = 0$ ou x = 0. Nécessité des conditions $(C_1), (C_2), (C_3), (C_4)$.
- Définition d'un sous-espace vectoriel. Condition NÉCESSAIRE importante : un sous-espace vectoriel contient le vecteur nul, contraposée. Caractérisation pratique (deux versions).
- Exemples de sev : espace nul, droites et plans vectoriels. Représentation géométrique.
- Exemple dans \mathbb{K}^n : droite d'équation 5y 3x = 0 (dans \mathbb{K}^2), plan d'équation 5x + 3y 10z = 0 (dans \mathbb{K}^3). Plus généralement, l'ensemble des solutions d'un système homogène à p équations est un sev de \mathbb{K}^p . Sev de \mathbb{K}^2 , de \mathbb{K}^3 (résultat admis provisoirement).
- Si $n \in \mathbb{N}$, $\mathbb{K}_n[X]$ est un sev de $\mathbb{K}[X]$. Autres exemples : $\{P \in \mathbb{K}[X] \mid P'(2) = P(1)\}$ et, si $Q \in \mathbb{K}[X]$, $\{QP \mid P \in \mathbb{K}[X]\}$ est un sev de $\mathbb{K}[X]$.
- Espaces vectoriels de fonctions : $\mathscr{C}(D,\mathbb{R}), D(D,\mathbb{R}), \mathscr{C}^1(D,\mathbb{R})$ (D étant une partie de \mathbb{R}). L'ensemble des fonctions décroissantes n'est pas un espace vectoriel, l'ensemble des fonctions 2π -périodique en est un, l'ensemble des fonctions périodiques n'en est pas un.
- Espaces vectoriels de suites : l'ensemble des suites convergentes est un espace vectoriel, ainsi que l'ensemble des suites arithmétiques.
- Sous-espaces vectoriels de matrices : $D_n(\mathbb{K}), T_n^+(\mathbb{K}), T_n^-(\mathbb{K}), S_n(\mathbb{K}), A_n(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathscr{M}_n(\mathbb{K})$.
- Combinaison linéaire : cas d'un nombre fini de vecteurs, cas général (famille presque nulle) : une combinaison linéaire est par définition une somme finie. Exemples.
- Espace vectoriel engendré par une partie A, notation $\operatorname{Vect}(A)$. Écrire avec des quantificateurs, cas particulier où A est un ensemble fini $\{x_1; \ldots; x_n\}$. Exemples. Comment décrire un Vect dans \mathbb{K}^n à l'aide d'équations et, réciproquement, comment décrire un sev de \mathbb{K}^n donné sous forme d'équation, sous forme d'un Vect.
- Exemples de sev : espace nul, droites et plans vectoriels. Représentation géométrique.
- Exemple dans \mathbb{K}^n : droite d'équation 5y 3x = 0 (dans \mathbb{K}^2), plan d'équation 5x + 3y 10z = 0 (dans \mathbb{K}^3). Plus généralement, l'ensemble des solutions d'un système homogène à p équations est un sev de \mathbb{K}^p . Sev de \mathbb{K}^2 , de \mathbb{K}^3 (résultat admis provisoirement).
- Si $n \in \mathbb{N}$, $\mathbb{K}_n[X]$ est un sev de $\mathbb{K}[X]$. Autres exemples : $\{P \in \mathbb{K}[X] \mid P'(2) = P(1)\}$ et, si $Q \in \mathbb{K}[X]$, $\{QP \mid P \in \mathbb{K}[X]\}$ est un sev de $\mathbb{K}[X]$.

Page 1/3 2023/2024

MP2I Lycée Faidherbe

• Espaces vectoriels de fonctions : $\mathscr{C}(D,\mathbb{R}), D(D,\mathbb{R}), \mathscr{C}^1(D,\mathbb{R})$ (D étant une partie de \mathbb{R}). L'ensemble des fonctions décroissantes n'est pas un espace vectoriel, l'ensemble des fonctions 2π -périodique en est un, l'ensemble des fonctions périodiques n'en est pas un.

- Espaces vectoriels de suites : l'ensemble des suites convergentes est un espace vectoriel, ainsi que l'ensemble des suites arithmétiques.
- Sous-espaces vectoriels de matrices : $D_n(\mathbb{K}), T_n^+(\mathbb{K}), T_n^-(\mathbb{K}), S_n(\mathbb{K}), A_n(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathscr{M}_n(\mathbb{K})$.
- Combinaison linéaire : cas d'un nombre fini de vecteurs, cas général (famille presque nulle) : une combinaison linéaire est par définition une somme finie. Exemples.
- Espace vectoriel engendré par une partie A, notation $\operatorname{Vect}(A)$. Écrire avec des quantificateurs, cas particulier où A est un ensemble fini $\{x_1; \ldots; x_n\}$. Exemples. Comment décrire un Vect dans \mathbb{K}^n à l'aide d'équations et, réciproquement, comment décrire un sev de \mathbb{K}^n donné sous forme d'équation, sous forme d'un Vect.
- Vect(A) est un sev de E qui contient A. C'est même le plus petit sev de E (au sens de l'inclusion) qui contient A.
- Familles/parties génératrices. Exemples. Quand on rajoute un vecteur à une famille, l'espace engendré « grossit ». Corollaire : si on ajoute des vecteurs à une famille génératrice, elle reste génératrice.
- Combinaison linéaire triviale. Famille libre (cas d'un nombre fini de vecteurs) : définition, écriture avec des quantificateurs. Famille liée. Exemples dans \mathbb{K}^3 . CNS pour qu'une famille à un ou deux éléments soit libre. Attention, à partir de trois vecteurs, il n'y a rien d'autre que la définition.
- Famille libre (cas d'une famille quelconque). Une sous-famille d'une famille libre est libre, une sur-famille d'une famille lière est liée. Unicité des coordonnées sur une famille libre.
- Une famille est liée si et seulement si l'un des vecteurs est CL des autres. Si x_j est CL des $(x_i)_{j\neq i}$, alors $\text{Vect}(x_i)_{i\in I} = \text{Vect}(x_i)_{i\neq j}$. Si $y \notin \text{Vect}(L)$ et si L est libre alors $L \cup \{y\}$ est une famille libre.
- Famille échelonnée en degré (le premier polynôme est non nul et la suite des degrés est strictement croissante). Une famille échelonnée en degré est libre, réciproque fausse (exemple de $(X-a)^k(X-b)^{n-k}$ pour $a \neq b$ et $k \in [0; n]$).
- Exemples de familles libres dans des espaces de fonctions et de suites (attention à la rédaction). Exemple : sin, cos, exp est une famille libre ; les fonctions $x \mapsto e^{\lambda x}$, quand $\lambda \in \mathbb{R}$, sont libres ; les fonctions (définies sur [0;1]) $x \mapsto x^{\lambda}$, quand $\lambda \geq 0$, sont libres ; les suites (q^n) , quand q > 0, sont libres.
- Définition d'une base. Exemples des bases canoniques de \mathbb{K}^n , $\mathbb{K}_n[X]$, $\mathbb{K}[X]$, $\mathbb{M}_{n,p}(\mathbb{K})$, base de \mathbb{C} vu comme un \mathbb{R} ou comme un \mathbb{C} -espace vectoriel. Existence et unicité de la décomposition selon une base.

Chapitres au programme

Chapitre 26 (cours et exercices), chapitre 27 (cours, exercices sur tout le chapitre sauf les couples de variables aléatoires), chapitre 28 (cours uniquement).

Questions de cours

Groupes A - B - C:

- 1. Formule de Bayes (sans démonstration).
- 2. Indépendance de deux événements, indépendance mutuelle de n événements. Que faut-il prouver pour prouver que trois événements A, B, C sont mutuellement indépendants?
- 3. Définition de l'espérance d'une variable aléatoire. Théorème de transfert (sans démonstration).
- 4. L'examinateur demande d'appliquer le théorème de transfert dans un cas explicite simple.
- 5. Variance d'une variable aléatoire, formule de König-Huygens (démonstration).
- 6. Définition d'une loi binomiale, espérance et variance (démonstration de l'espérance uniquement).
- 7. L'examinateur donne un exercice explicite simple faisant intervenir une loi binomiale. Nous avons vu en classe l'exemple suivant : on lance 10000 dés équilibrés, quelle est la probabilité d'obtenir 2024 fois le chiffre 6?
- 8. Définition de 2 variables aléatoires indépendantes, caractérisation à l'aide des singletons (sans démonstration).
- 9. Définition de la covariance. Variance d'une somme de deux, de n variables aléatoires (sans démonstration). Cas où les variables aléatoires sont deux à deux indépendantes (toujours sans démonstration).
- 10. Inégalité de Markov (sans démonstration).
- 11. Inégalité de Bienaymé-Tchebychev (sans démonstration).
- 12. Les deux caractérisations pratiques pour prouver qu'une partie est un sous-espace vectoriel de E (sans démonstration).
- 13. L'examinateur donne deux vecteurs de \mathbb{K}^3 et demande au candidat de décrire l'espace engendré à l'aide d'une équation.
- 14. L'examinateur donne une ou plusieurs équations dans \mathbb{K}^3 et demande au candidat d'écrire l'espace caractérisé par ces équations sous forme de Vect.
- 15. Écrire $\{P \in \mathbb{K}_3[X] \mid P(1) = 0\}$ sous forme de Vect.
- 16. Définition d'une famille génératrice. Écriture avec des quantificateurs (cas d'une famille quelconque, cas d'une famille finie).

Page 2/3 2023/2024

MP2I Lycée Faidherbe

17. Définition d'une famille libre (cas d'une famille finie, cas d'une famille quelconque). L'examinateur donne des vecteurs de \mathbb{K}^3 et demande s'ils sont libres ou non.

18. Définition d'une base. Donner les bases canoniques de \mathbb{K}^n , $\mathbb{K}_n[X]$, $\mathbb{K}[X]$, $\mathcal{M}_{n,p}(\mathbb{K})$ (sans démonstration).

Groupes B - C:

- 1. Inégalité de Markov (démonstration).
- 2. Inégalité de Bienaymé-Tchebychev (démonstration).
- 3. La famille de fonctions $(x \mapsto e^{\lambda x})_{\lambda \in \mathbb{R}}$ est libre (démonstration).

Groupe C:

- 1. Si X et Y suivent une loi uniforme sur [1; N] et sont indépendantes, donner la loi de $M = \max(X, Y)$ et $W = \min(X, Y)$.
- 2. La famille de fonctions $(x \mapsto \cos(\lambda x))_{\lambda \in \mathbb{R}_+}$ est libre (démonstration).

Prévisions pour la semaine prochaine

- Fin des espaces vectoriels.
- Début des applications linéaires.

Exercices à préparer

Exercices 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18, 19, 22, 26, 27, 28, 29, 30, 31, 32, 34 du chapitre 28.

Cahier de calcul

Rien cette semaine!

Page 3/3 2023/2024