COL703: Logic for Computer Science (Aug-Nov 2022)

Lectures 15 & 16 (Predicate Logic – Semantics, Normal Forms)

Kumar Madhukar

madhukar@cse.iitd.ac.in

October 6th and 10th, 2022

$$\forall x \forall y \ (P(x,y) \to \exists z \ (\neg(z=x) \land \neg(z=y) \land P(x,z) \land P(z,y)))$$

- suppose variables take values from real numbers
- P(x, y) represents x < y

$$\forall x \forall y \ (P(x,y) \to \exists z \ (\neg(z=x) \land \neg(z=y) \land P(x,z) \land P(z,y)))$$

- suppose variables take values from real numbers
- P(x, y) represents $x \le y$

$$\forall x \forall y \ (P(x,y) \to \exists z \ (\neg(z=x) \land \neg(z=y) \land P(x,z) \land P(z,y)))$$

- suppose variables take values from natural numbers
- P(x, y) represents x < y

Reference material:

https://www.cs.ox.ac.uk/people/james.worrell/lecture9-2015.pdf

σ -structure

Given a signature σ , a σ -structure (or assignment) \mathcal{A} consists of:

- a non-empty set U_A called the *universe* of the structure;
- for each k-ary predicate symbol P in σ , a k-ary relation $P_{\mathcal{A}} \subseteq \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{k}$;
- for each k-ary function symbol symbol f in σ , a k-ary function, $f_{\mathcal{A}}: \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{k} \to U_{\mathcal{A}};$
- for each constant symbol c, an element $c_{\mathcal{A}}$ of $U_{\mathcal{A}}$;
- for each variable x an element $x_{\mathcal{A}}$ of $U_{\mathcal{A}}$.

Evaluating terms

- For a constant symbol c we define $\mathcal{A}[\![c]\!] \stackrel{\text{def}}{=} c_{\mathcal{A}}$.
- For a variable x we define $\mathcal{A}[\![x]\!] \stackrel{\text{def}}{=} x_{\mathcal{A}}$.
- For a term $f(t_1, ..., t_k)$, where f is a k-ary function symbol and $t_1, ..., t_k$ are terms, we define $\mathcal{A}[\![f(t_1, ..., t_k)]\!] \stackrel{\text{def}}{=} f_{\mathcal{A}}(\mathcal{A}[\![t_1]\!], ..., \mathcal{A}[\![t_k]\!])$.

Satisfaction relation

- 1. $\mathcal{A} \models P(t_1, \dots, t_k)$ if and only if $(\mathcal{A}[t_1], \dots, \mathcal{A}[t_k]) \in P_{\mathcal{A}}$.
- 2. $\mathcal{A} \models (F \land G)$ if and only if $\mathcal{A} \models F$ and $\mathcal{A} \models G$.
- 3. $\mathcal{A} \models (F \lor G)$ if and only if $\mathcal{A} \models F$ or $\mathcal{A} \models G$.
- 4. $\mathcal{A} \models \neg F$ if and only if $\mathcal{A} \not\models F$.
- 5. $\mathcal{A} \models \exists x \, F$ if and only if there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \models F$.
- 6. $\mathcal{A} \models \forall x F$ if and only if $\mathcal{A}_{[x \mapsto a]} \models F$ for all $a \in U_{\mathcal{A}}$.

If we are working in first-order logic with equality then we additionally have

7. $\mathcal{A} \models t_1 = t_2$ if and only if $\mathcal{A}[t_1] = \mathcal{A}[t_2]$.

Some definitions

• quantifier-depth of a formula

```
atomic formulas have 0 qd; \operatorname{qd}(\neg \phi) = \operatorname{qd}(\phi); \operatorname{qd}(\phi \lor \psi) = \operatorname{qd}(\phi \land \psi) = \max(\operatorname{qd}(\phi), \operatorname{qd}(\psi)) \operatorname{qd}(\exists x \ \phi) = \operatorname{qd}(\forall x \ \phi) = 1 + \operatorname{qd}(\phi)
```

Some definitions

quantifier-depth of a formula

```
atomic formulas have 0 qd; qd(\neg \phi) = qd(\phi); qd(\phi \lor \psi) = qd(\phi \land \psi) = max(qd(\phi), qd(\psi)) qd(\exists x \ \phi) = qd(\forall x \ \phi) = 1 + qd(\phi)
```

ground terms – variable-free terms

Some definitions

quantifier-depth of a formula

```
atomic formulas have 0 qd; qd(\neg \phi) = qd(\phi); qd(\phi \lor \psi) = qd(\phi \land \psi) = max(qd(\phi), qd(\psi)) qd(\exists x \ \phi) = qd(\forall x \ \phi) = 1 + qd(\phi)
```

- ground terms variable-free terms
- a closed formula or a sentence formula with no free variables

e.g.
$$\forall x \forall y \forall z \ (R(x,y) \land R(y,z) \rightarrow R(x,z))$$
 is closed $\forall x \ (x < (y+1))$ is not closed

- undirected graph as a σ -structure (σ containing one binary relation E), with the interpretation of E as the edge relation
- ullet σ with one binary relation <, interpreted in the usual way over integers, rationals, reals

More definitions

- a first-order formula F over σ is satisfiable if there is a σ -structure \mathcal{A} such that $\mathcal{A} \models F$
- if F is not satisfiable, it is called unsatisfiable
- F is called valid if (and only if) $\neg F$ is unsatisfiable
- for a set of formulas S, we say $S \models F$ to mean that every σ -structure A that satisfies S also satisfies F

Exercise

Consider a signature σ with a constant symbol 0, a unary function symbol s, and a unary predicate symbol P.

Is $P(0) \land \forall x \ (P(x) \to P(s(x))) \land \exists x \ \neg P(x)$ satisfiable?

Relevance Lemma

Suppose \mathcal{A} and \mathcal{A}' are σ -assignments with the same universe, and identical interpretation of the predicate, function, and constant symbols in σ .

If ${\mathcal A}$ and ${\mathcal A}'$ give the same interpretation to each variable occurring free in some σ -formula F,

then $A \models F$ iff $A' \models F$.

Proof: reading exercise (page 5 of
https://www.cs.ox.ac.uk/people/james.worrell/lecture9-2015.pdf)

Special case

If F is a closed formula (or a sentence), and \mathcal{A} and \mathcal{A}' are assignments that only differ in interpretation of variables,

then $A \models F$ iff $A' \models F$.

Logical equivalence

First-order formulas F and G are logically equivalent, denoted $F \equiv G$, if for all σ -assignments A, we have $A \models F$ iff $A \models G$.

$$\neg \forall x \ F \ \equiv \ \exists x \neg F$$

$$\neg \forall x \ F \ \equiv \ \exists x \neg F$$

$$\neg \exists x \ F \ \equiv \ \forall x \neg F$$

$$\neg \forall x \ F \ \equiv \ \exists x \neg F$$

$$\neg \exists x \ F \equiv \forall x \neg F$$

$$(\forall x \ F \land G) \equiv \forall x \ (F \land G)$$
 (if x does not occur free in G)

Prenex Normal Form

A predicate logic formula is in prenex normal form if it written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix.

$$Q_1y_1Q_2y_2\ldots Q_ny_n F$$

where $Q_i \in \{ \forall, \exists \}$, $n \geq 0$, and F contains no quantifiers.

Every formula is equivalent to a formula in prenex normal form.

$$\neg(\exists x\ P(x,y) \lor \forall z\ Q(z)) \land \exists w\ Q(w)$$

Translation Lemma

If t is a term and F is a formula such that no variable in t occurs bound in F,

then $A \models F[t/x]$ iff $A_{[x \mapsto A(t)]} \models F$.

Renaming bound variables

Let F denote the formula Qx G where Q is a quantifier. Let y be a variable that does not occur in G.

Then $F \equiv Qy (G[y/x])$.

Rectified formulas

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula refer to different variables.

You can rectify a formula by renaming bound variables.

Example:
$$\forall x \exists y \ P(x, f(y)) \land \forall y \ (Q(x, y) \lor R(x))$$

Every formula is equivalent to a rectified formula in prenex form.

Skolem Form

We say that a rectified prenex formula is in Skolem form if it does not contain any occurrence of the existential quantifier.

A rectified prenex formula can be transformed to an equisatisfiable formula in Skolem form by using extra function symbols.

 $\forall x \; \exists y \; P(x,y) \; \text{and} \; \forall x \; P(x,f(x)) \; \text{are equisatisfiable}.$

Skolem Form

Let $F = \forall y_1 \ \forall y_2 \ \dots \ \forall y_n \ \exists z \ G$ be a rectified formula. Given a function symbol f of arity n that does not appear in F, write

$$F' = \forall y_1 \ \forall y_2 \ \dots \ \forall y_n \ G[f(y_1, y_2, \dots, y_n)/z].$$

Then F and F' are equisatisfiable.

$$\forall x \; \exists y \; \forall z \; \exists w \; (\neg P(a, w) \vee Q(f(x), y))$$

Next week

- Herbrand theorem, Ground resolution
- Undecidability result

Thank you!