Paul Gustafson Texas A&M University - Math 641 Instructor - Fran Narcowich

Midterm

1 Use the Courant-Fischer mini-max theorem to show that $\lambda_2 < 0$ for the matrix

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 0 \end{pmatrix}$$

Proof. The characteristic polynomial for A is $f(x) := x^3 + 6 + 6 - 9x - 4x - x = x^3 - 14x + 12$. We have $\lim_{x \to -\infty} f(x) < 0$, f(0) > 0, f(1) < 0, and $\lim_{x \to \infty} f(x) > 0$. Thus $\lambda_2 < 0$.

2 Let A be an $n \times n$ complex matrix that satisfies $A^*A = AA^*$. Show that A is diagonalizable and that there is a unitary matrix U for which $U^*AU = \Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Proof. Step 1: A and A^* are simultaneously diagonalizable. Let $J \in M_n(\mathbb{C})$ be the Jordan Normal Form for A. I claim that J is diagonal. Suppose not. Then J contains an $m \times m$ Jordan block B for $1 < m \le n$. If λ is the generalized eigenvalue corresponding for B, then we have $[B, B^*]_{11} = (BB^*)_{11} - (B^*B)_{11} = (|\lambda|^2 + 1) - |\lambda|^2 \ne 0$. Hence $[J, J^*] \ne 0$, so $[A, A^*] \ne 0$, a contradiction. Thus, J is diagonal. The matrix $J^* = \overline{J}^T$ is clearly diagonal also.

Step 2: A is unitarily diagonalizable. The proof is by induction on n. The base case is trivial. For the inductive step, recall that A must have an eigenvector. Let v be an normalized eigenvector of A. Let $w \in v^{\perp}$. Then $\langle v, Aw \rangle = \langle A^*v, w \rangle = 0$ since v is an eigenvector of both A and A^* by Step 1. Hence v^{\perp} is an invariant subspace of A, and we can apply the inductive hypothesis to $A|_{v^{\perp}}$.

3 Let f be continuous on [0,1], with f(0)=f(1)=0 and let $s\in S^{1/n}(1,0)$ be the linear spline interpolant to f, with knots at $x_j=\frac{j}{n}$.

(a) Let
$$\lambda \in \mathbb{R}$$
. Show that $\left| \int_0^1 s(x) e^{i\lambda x} dx \right| \leq \frac{2n^2}{\lambda^2} \omega(f, 1/n)$.

Proof. We have

$$\begin{split} \left| \int_{0}^{1} s(x)e^{i\lambda x} dx \right| &= \left| \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} s(x)e^{i\lambda x} dx \right| \\ &= \left| \sum_{k=0}^{n-1} \left[\frac{1}{i\lambda} s(x)e^{i\lambda x} \right]_{x=k/n}^{(k+1)/n} - \frac{1}{i\lambda} \int_{k/n}^{(k+1)/n} s'(x)e^{i\lambda x} dx \right| \\ &= \left| \sum_{k=0}^{n-1} \frac{1}{i\lambda} \int_{k/n}^{(k+1)/n} s'(x)e^{i\lambda x} dx \right| \\ &= \left| -\frac{1}{\lambda^{2}} \sum_{k=0}^{n-1} \left[s'(x)e^{i\lambda x} \right]_{x=k/n}^{(k+1)/n} \right| \\ &\leq \frac{1}{\lambda^{2}} \sum_{k=0}^{n-1} \left| s' \left(\frac{k+1}{n} - \right) \right| + \left| s' \left(\frac{k}{n} + \right) \right| \\ &\leq \frac{1}{\lambda^{2}} \sum_{k=0}^{n-1} 2n\omega(f, 1/n) \\ &= \frac{2n^{2}}{\lambda^{2}} \omega(f, 1/n). \end{split}$$

(b) Use the previous part to show that $\left| \int_0^1 f(x) e^{i\lambda x} dx \right| \le \omega(f, 1/n) + \frac{2n^2}{\lambda^2} \omega(f, 1/n)$.

Proof. We have

$$\begin{split} \left| \int_0^1 f(x) e^{i\lambda x} dx \right| &\leq \left| \int_0^1 f(x) - s(x) e^{i\lambda x} dx \right| + \left| \int_0^1 s(x) e^{i\lambda x} dx \right| \\ &\leq \int_0^1 |f(x) - s(x)| dx + \frac{2n^2}{\lambda^2} \omega(f, 1/n) \\ &\leq \int_0^1 \omega(f, 1/n) dx + \frac{2n^2}{\lambda^2} \omega(f, 1/n) \\ &\leq \omega(f, 1/n) + \frac{2n^2}{\lambda^2} \omega(f, 1/n) \end{split}$$

4 Let $\{\phi_n(x)\}_{n=0}^{\infty}$ be a set of polynomials orthogonal with respect to a weight function w(x) on a domain [a,b]. Assume that the degree of ϕ_n is n, and that the coeffiction of x^n in $\phi_n(x)$ is $k_n>0$. In addition, suppose that the continuous functions are dense in $L^2_w[a,b]=\{f:[a,b]\to\mathbb{C}:\int_a^b|f(x)|^2w(x)dx<\infty\}$.

(a) Show that ϕ_n is orthogonal to all polynomials of degree n-1 or less.

Proof. The set $\{\phi_k\}_{0 \le k < n}$ spans the polynomials of degree less than n-1.

(b) Show that $\{\phi_n\}_{n=0}^{\infty}$ is complete in $L_w^2[a,b]$.

Proof. Let $g \in L^2_w[a,b]$ be continuous. Let $\epsilon > 0$. By the Weierstrauss Approximation Theorem, pick a polynomial p such that $\|g-p\|_{C[a,b]} < \epsilon$. Then $\|g-p\|_{L^2_w[a,b]} = \int_a^b |g-p|^2 w dx \le \epsilon^2 \int_a^b w dx$. Since $\phi_0 \in L^2_w[a,b]$, this last integral is finite. Hence, the polynomials are dense in $L^2_w[a,b]$.

Now suppose $\{\phi_n\}_{n=0}^{\infty}$ is not complete. By a previous homework problem, there exists a normalized function $f \in L^2_w[a,b]$ with $\langle f,\phi_n\rangle=0$ for all n. Thus for any polynomial p, we have $\|f-p\|^2_{L^2_w[a,b]}=\|f\|^2_{L^2_w[a,b]}+\|p\|^2_{L^2_w[a,b]}\geq 1$. This contradicts the fact that the polynomials are dense in $L^2_w[a,b]$.

(c) Show that the polynomials satisfy the recurrence relation $\phi_{n+1}(x) = (A_n x + B_n)\phi_n(x) + C_n\phi_{n-1}(x)$. Find A_n in terms of the k_n 's.

Proof. We have $\phi_{n+1} = A_n x \phi_n + \sum_{j=0}^n a_j \phi_j$ for some unique A_n and $(a_j)_{j=1}^n$.

For $1 \le l \le n-2$, part (a) implies that

$$0 = \langle \phi_{n+1}, \phi_l \rangle$$

$$= \left\langle A_n x \phi_n + \sum_{j=0}^n a_j \phi_j, \phi_l \right\rangle$$

$$= \left\langle A_n x \phi_n, \phi_l \right\rangle + a_l \langle \phi_l, \phi_l \rangle$$

$$= A_n \langle \phi_n, x \phi_l \rangle + a_l \langle \phi_l, \phi_l \rangle$$

$$= a_l \langle \phi_l, \phi_l \rangle$$

Hence $a_l = 0$ for $1 \le l \le n-2$, so $\phi_{n+1} = A_n x \phi_n + B_n \phi_n + C_n \phi_{n-1}$. By comparing leading coefficients, $A_n = \frac{k_{n+1}}{k_n}$.

- **5** Suppose that $f(\theta)$ is a 2π -periodic function in $C^m(\mathbb{R})$, and that $f^{(m+1)}$ is piecewise continuous and 2π -periodic. Here m>0 is a fixed integer. Let c_k denote the k-th (complex) Fourier coefficient for f and let $c_k^{(j)}$ denote the k-th Fourier coefficient for $f^{(j)}$.
- (a) Show that $c_k^{(j)} = (ik)^j c_k$ for $1 \le j \le m+1$.

Proof. Integrating by parts j times, we have

$$\begin{split} c_k^{(j)} &= \frac{1}{2\pi} \int_0^{2\pi} f^{(j)}(x) e^{-ikx} dx \\ &= \frac{1}{2\pi} \left(\left[f^{(j-1)}(x) e^{2\pi kx} \right]_0^{2\pi} + (ik) \int_0^{2\pi} f(x) e^{2\pi kx} dx \right) \\ &= \frac{ik}{2\pi} \left(\int_0^{2\pi} f^{(j-1)}(x) e^{2\pi kx} dx \right) \\ &\vdots \\ &= \frac{(ik)^j}{2\pi} \left(\int_0^{2\pi} f(x) e^{2\pi kx} dx \right) \\ &= (ik)^j c_k \end{split}$$

(b) For $k \neq 0$, show that the Fourier coefficient c_k satisfies the bound

$$|c_k| \le \frac{1}{2\pi |k|^{m+1}} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

Proof. Integrating by parts m+1 times, we have

$$|c_k| = \left| \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx \right|$$

$$= \left| \frac{1}{2\pi (ik)^{m+1}} \int_0^{2\pi} f^{(m+1)}(x) e^{-ikx} dx \right|$$

$$\leq \frac{1}{2\pi |k|^{m+1}} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

(c) Let $S_n(\theta) = \sum_{k=-n}^n c_k e^{ik\theta}$ be the *n*-th partial sum of the Fourier series for $f, n \ge 1$. Show that both of the following hold for f:

$$||f - S_n||_{L_2} \le C \frac{||f^{(m+1)}||_{L_1}}{n^{m+\frac{1}{2}}} \text{ and } ||f - S_n||_{C[0,2\pi]} \le C' \frac{||f^{(m+1)}||_{L_1}}{n^m}.$$

Proof. By Parseval's theorem, we have

$$||f - S_n||_{L_2} = \left(\sum_{k>n} |c_k|^2\right)^{-1/2}$$

$$\leq \left(\sum_{k>n} \frac{C}{|k|^{2m+2}} ||f^{(m+1)}||_{L_1[0,2\pi]}^2\right)^{-1/2}$$

$$= \left(\sum_{k>n} \frac{C}{|k|^{2m+2}}\right)^{-1/2} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

$$\leq \left(\int_{k>n} \frac{C_1}{|k|^{2m+2}} dk\right)^{-1/2} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

$$= \left(\frac{C_2}{n^{2m+1}}\right)^{-1/2} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

$$= \frac{C_3}{n^{m+1/2}} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

Using part (b), we have

$$||f - S_n||_{C[0,2\pi]} = \sup_{x \in [0,2\pi]} \left| \sum_{k > n} c_k(x) e^{ikx} \right|$$

$$\leq \sup_{x \in [0,2\pi]} \sum_{k > n} |c_k(x)|$$

$$\leq \sum_{k > n} \frac{1}{2\pi |k|^{m+1}} ||f^{(m+1)}||_{L_1[0,2\pi]}$$

$$\leq \left(\int_{k > n} \frac{C'}{|k|^{m+1}} dk \right) ||f^{(m+1)}||_{L_1[0,2\pi]}$$

$$= \frac{C''}{n^m} ||f^{(m+1)}||_{L_1[0,2\pi]}.$$

(d) Let f(x) be the 2π -periodic function that equals $x^2(2\pi - x)^2$ when $x \in [0, 2\pi]$. Verify that f satisfies the conditions above with m = 1. With the help of (a), calculate the Fourier coefficients for f. (Hint: look at f''.)

Proof. To see that f satisfies the conditions with m=1, we need to check that $f'(0+)=f'(2\pi-)$ and f'' is piecewise continuous (f'' is 2π -periodic since f is). The former follows from the fact that f has double roots at 0 and 2π . The latter is obvious.

For $x \in (0, 2\pi)$, we have

$$f(x) = x^4 - 4\pi x^3 + 4\pi^2 x^2$$
$$f'(x) = 4x^3 - 12\pi x^2 + 8\pi^2 x$$
$$f''(x) = 12x^2 - 24\pi x + 8\pi^2$$

From (a), the Fourier coefficient c_k for f is

$$\begin{split} c_k &= (ik)^{-2} c_k^{(j)} \\ &= -\frac{1}{2\pi k^2} \int_0^{2\pi} f''(x) e^{-ikx} dx \\ &= -\frac{1}{2\pi k^2} \int_0^{2\pi} (12x^2 - 24\pi x) e^{-ikx} dx \\ &= -\frac{1}{2\pi k^2} \left(\left[\frac{12x^2 - 24\pi x}{-ik} e^{-ikx} \right]_0^{2\pi} + \frac{1}{ik} \int_0^{2\pi} (24x - 24\pi) e^{-ikx} dx \right) \\ &= -\frac{1}{2\pi k^2} \left(\frac{24}{ik} \right) \int_0^{2\pi} x e^{-ikx} dx \\ &= \frac{24i}{2\pi k^3} \int_0^{2\pi} x e^{-ikx} dx \\ &= \frac{24i}{k^3} \left(\frac{i}{k} \right) \\ &= -\frac{24}{k^4}, \end{split}$$

where the penultimate equality uses the homework problem calculating the Fourier series of $g(x)=x, 0\leq x<2\pi$.