第四讲

第7章

多进制数字调制就是利用多进制数字基带信 号去控制载波的参数,使载波的参数随着基带信 号的变化而变化。

多进制数字调制有三种基本方式:

多进制数字振幅调制(MASK)

多进制数字频率调制(MFSK)

多进制数字相位调制(MPSK、MDPSK)

7.4多进制数字调制系统

由信息传输速率 R_b 、码元传输速率 R_B 和进制数M之间的关系

$$R_B = \frac{R_b}{\log_2 M}$$

可知,在信息传输速率不变的情况下,通过增加进制数M,可以降低码元传输速率,从而减小信号带宽, 节约频带资源,提高系统频带利用率。

MASK是利用M进制数字基带信号去控制载波的幅度,使载波的幅度随着基带信号的变化而变化。由于M进制数字基带信号有M种不同的取值,则MASK信号有M种不同的幅度。

以四进制为例(4ASK或QASK):

传"0"信号(或00)时,发0电平;

传"1"信号(或10)时,发幅度为1的载波;

传"2"信号(或11)时,发幅度为2的载波;

传"3"信号(或01)时,发幅度为3的载波。

1、MASK信号的时间波形

2、MASK信号的时域表达式

$$e_{MASK}(t) = \left[\sum_{n} a_n g(t - nT_s)\right] \cos \omega_c t$$

$$g(t) = \begin{cases} 1, & 0 \le t \le T_{\mathcal{S}} \\ 0, & \sharp \Xi \end{cases}$$

$$A_1$$
 概率为 P_1 概率为 P_2 A_2 概率为 P_3 , $\sum_{i=1}^M P_i = 1$ \vdots A_M 概率为 P_M

3、MASK信号的频谱

M进制的MASK信号可以看作由时间上互不相容的、相同载频、不同振幅的M个2ASK信号叠加而成,即

$$e_{MASK}(t) = \sum_{i=1}^{M} e_i(t)$$

因此 $e_{MASK}(t)$ 的功率谱密度是这M个2ASK信号的功率谱密度之和。

3、MASK信号的频谱

M进制的MASK信号的带宽为:

$$B_{MASK} = 2R_{BM} = 2\frac{1}{T_s} = 2f_s$$

其中 $R_{BM}=1/T_s$ 是多进制码元速率。

4. MASK系统的抗噪声性能

抑制载波MASK信号相干解调时的误码率为:

$$P_e = \left(\frac{M-1}{M}\right) erfc \left(\sqrt{\frac{3r}{M^2 - 1}}\right)$$

r为接收机输入端的信噪比。

- ◆抑制载波2ASK信号为2PSK信号
- ◆抑制载波MASK信号为ASK与PSK结合的调制信号

由此图可以看出,为了得到相同的误码率 P_e ,所需的信噪比随M增加而增大。

多电平调制尽管提高了频带利用率,但抗噪声性能却下降了,尤其抗衰落的能力不强,因而它一般只适宜在恒参信道中采用。

MFSK是利用M进制数字基带信号去控制载波的频率,使载波的频率随着数字基带信号的变化而变化。由于M进制数字基带信号有M种不同的取值,则MFSK信号有M种不同的频率。

在一个码元周期之内,MFSK信号可以写成:

$$e_{MFSK}(t) = A\cos(\omega_i t + \theta_0)$$

$$i = 1, 2, \dots, M, 0 \le t \le T_s$$

以4FSK为例:

传 "0"信号(或00)时,发送频率为 f_1 的载波;传 "1"信号(或10)时,发送频率为 f_2 的载波;传 "2"信号(或11)时,发送频率为 f_3 的载波;传 "3"信号(或01)时,发送频率为 f_4 的载波。

· 4FSK信号波形举例

f_1	f_2	f_3	f_4		
00	01	10	11		

(b) 4FSK信号的取值

MFSK信号可以看作由M个振幅相同、载频不同、时间上互不相容的2ASK信号叠加的结果。

MFSK信号的功率谱:

设MFSK信号码元的宽度为 T_s ,即传输速率 $R_{BM}=1/T_s$ (Baud),则MFSK信号的带宽为:

$$B_{MFSK} = f_m - f_1 + 2R_{BM}$$

 f_m 、 f_1 为最高、最低选用频率。

MFSK信号非相干解调时的误码率:

$$P_e \approx \left(\frac{M-1}{2}\right) e^{-\frac{r}{2}}$$
 r为信噪比

相干解调时的误码率:

$$P_e \approx \left(\frac{M-1}{2}\right) erfc\left(\sqrt{\frac{r}{2}}\right)$$

信噪比r越大,则误码率越小; 在信噪比一定的情况下,M越大, 则误码率也越大。

7.4.3 多进制数字相位调制系统

1. 多进制数字相位调制 (MPSX) 信号的表示形式

多进制数字相位调制(MPSK)又称多相调制, 它是利用多进制数字基带信号去控制载波的相位,使载波的相位随着多进制数字基带信号的 变化而变化。

1. 多进制数字相位调制 (MPSX) 信号的表示形式

• 基本原理

一个MPSK信号码元可以表示为

$$s_k(t) = A\cos(\omega_0 t + \theta_k)$$
 $k = 1, 2, \dots, M$

式中,A 一常数,

 θ_k 一一组间隔均匀的受调制相位

它可以写为

$$\theta_k = \frac{2\pi}{M}(k-1), \qquad k = 1, 2, \cdots M$$

通常M取2的某次幂:

$$M=2^{\rm n}$$
, $n=$ 正整数

在下图中示出当n=3时, θ_k 取值的一例。

$$\theta_k = \frac{2\pi}{M}(k-1), \qquad k = 1, 2, \dots M$$

图7-34 8PSK信号相位

可以将MPSK信号码元表示式展开写成

$$s_k(t) = \cos(\omega_0 t + \theta_k)$$

$$= a_k \cos \omega_0 t - b_k \sin \omega_0 t$$
式中 $a_k = \cos \theta_k$ $b_k = \sin \theta_k$

上式表明,MPSK信号码元 $s_k(t)$ 可以看作是由正弦和余弦两个正交分量合成的信号,并且 $a_k^2 + b_k^2 = 1$ 。因此,其带宽和MASK信号的带宽相同。

多进制数字调相信号(MPSK)可以看成对两个正交载波进行多电平调制所得信号(MASK)之和。所以,多相调制信号的带宽与调制码元宽度相同的MASK信号的带宽是相等的。

· 格雷(Gray)码

- 4PSK信号每个码元含有2 比特的信息,现用ab代表这两个比特。
- 两个比特有4种组合,即00、01、10和11。它们和相位θ_k 之间的关系通常都按格雷码的规律安排,如下表所示。 QPSK信号的编码

a	b	θ_k
0	0	90°
0	1	0°
1	1	270°
1	0	180°

- QPSK信号矢量图

a	b	θ_k
0	0	90°
0	1	0°
1	1	270°
1	0	180°

图7-35 QPSK信号的矢量图

格雷码的好处在于相邻相位所代表的两个比特只有一位不同。由于因相位误差造成错判至相邻相位上的概率最大,故这样编码使之仅造成一个比特误码的概率最大。

多位格雷码的编码方法:格雷码又称反射码

表7.4.2 格雷码编码规则

序号	格雷码	二进码
0	0 0 0 0	0000
1	0001	0001
2	0 0 1 1	0010
3	0.0 1 0	0011
4 5	0 1 1 0	0100
5	0 1 1 1	0101
6	0 1 0 1	0110
7	0 1 0 0	0111
8	1 1 0 0	1000
9	1 1 0 1	1001
10	1 1 1 1	1010
11	1 1 1 0	1011
12	1 0 1 0	1100
13	1 0 1 1	1101
14	1 0 0 1	1110
15	1000	1111

3.4PSX信号的产生与解调

四进制绝对移相键控利用载波的四种不同相位来表示数字信息。 由于每一种载波相位代表两个比特信息,因此每个四进制 码元可以用两个二进制码元的组合来表示。两个二进制码 元中的前一比特用a表示,后一比特用b表示,则双比特 ab 与载波相位的关系如表所示。

双比华	寺码元	载波相位(φ_n)		
a	b	A方式	B方式	
0 1	0 0	$0^{o} \\ 90^{o} \\ 180^{o}$	225 ° 315 ° 45°	
0	1	270°	135°	

7.4.3 多进制数字相位调制系统(MPSK)

四进制数字相位调制信号矢量图

相位选择法产生4PSK信号,其原理图如图所示。

图中,四相载波产生器输出4PSK信号所需的四种不同相位的载波。输入二进制数据流经串/并变换器输出双比特码元,逻辑选相电路根据输入的双比特码元,每个时间间隔^T。选择其中一种相位的载波作为输出,然后经带通滤波器滤除高频分量。

正交调制器原理图如图所示,它可以看成由两个载波正交的 2PSK调制器构成。

4PSK信号的解调可以采用与2PSK信号类似的解调方法进行解调,解调原理图如图所示。

图7-41 QPSK信号解调原理方框图

相干解调原理:

$$A\cos(\omega_c t + \varphi_n)\cos\omega_c t = \frac{A}{2}\cos\varphi_n + \frac{A}{2}\cos(2\omega_c t + \varphi_n)$$
$$A\cos(\omega_c t + \varphi_n)[-\sin\omega_c t] = \frac{A}{2}\sin\varphi_n - \frac{A}{2}\sin(2\omega_c t + \varphi_n)$$

判决原则:

输入相位	$\cos \varphi_n$	$\sin \varphi_n$	判决器输出
$\boldsymbol{\varphi}_n$	的极性	的极性	A B
$\pi/4$	+	+	1 1
3 π/4	-	+	0 1
5 π/4	-	-	0 0
7 π/4	+	-	1 0

7.4.3 多进制数字相位调制系统(MPSK)

在2PSK信号相干解调过程中会产生 180°相位模糊。同样,对4PSK信号相干 解调也会产生相位模糊问题,并且四个相 位模糊。因此,在实际中更实用的是四相 相对移相调制,即4DPSK方式。

4.4DPSX信号的产生与解调

4DPSK信号是利用前后码元之间的相对相位变化来表示数字信息。若以前一双比特码元相位作为参考,Δφ,为当前双比特码元与前一双比特码元初相差,则信息编码与载波相位变化关系如下表所示

		$arDelta heta_k$				
а	b	A方式	B方式			
0	0	90°	135°			
0	1	0°	45°			
1	1	270°	315°			
1	0	180°	225°			

4DPSK信号产生原理图如图所示。

图中,串/并变换器将输入的二进制序列分为速率减半的两个并行序列 a 和 b ,再通过差分编码器将其编为四进制差分码,然后用绝对调相的调制方式实现4DPSK信号。

4DPSK信号的解调可以采用相干解调加码反变换器方式(极性比较法),也可以采用差分相干解调方式(相位比较法)。 4DPSK信号相干解调加码反变换器方式原理图如图所示。

4DPSK信号差分相干解调方式原理图如图所示。

4.4PSX及4DPSX系统的误码率性能

对4PSK信号,采用相干解调器,系统总的误码率 P_e 为

$$P_e \approx erfc \left(\sqrt{r} \sin \frac{\pi}{4} \right)$$

4DPSK方式的误码率为

$$P_e \approx erfc \left(\sqrt{2r} \sin \frac{\pi}{8} \right)$$

式中下为信噪比。

7、(6 分)发送的二进制信息为 01001011,并假设在一个码元周期内只出现一个载波。按照下列编码规则,结合参考载波,画出 QPSK 和 QDPSK 信号波形。↩

			参考载	波	0	1	0	0	1	0	1	1	
a	ь	$\theta_k/\Delta\theta_k$	\wedge										0.000
0	1	0	$\overline{}$	<i>/</i>						-			QPSK
0	0	π /2	\wedge	! ! !									
1	0	π		J.						+			QDPSK
1	1	3π/2								!			

7、(6分)发送的二进制信息为 11000110,并假设在一个码元周期内只出现一个载波。按照下列编码规则,结合参考载波,画出 QPSK 和 QDPSK 信号波形。▶

a	b	$\theta_k/\Delta\theta_k$
0	1	π/4
0	0	3π/4
1	0	5π/4
1	1	7.π/4

- 2. (10 分)设载频为 1800Hz,码元速率为 1800B,发送数字信息为 011010。→
- (1)若相位偏移 $\Delta \varphi$ = 0° 代表"0", $\Delta \varphi$ = 180° 代表"1",试在下图中画出这时的 2DPSK 信号波形;↔
- (2)若 $\Delta arphi$ =270 $^{\circ}$ 代表 "0", $\Delta arphi$ =90 $^{\circ}$ 代表 "1",2 \mathbf{DPSK} 信号波形又如何,试画出。↩

