Plans pour surfaces de réponses

François Husson

UP de mathématiques appliquées Agrocampus Ouest

Modèle de régression linéaire simple

Définition du modèle :

$$\begin{cases} \forall i = 1, ..., n & Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \\ \forall i = 1, ..., n & \varepsilon_i \text{ i.i.d. }, & \mathbb{E}(\varepsilon_i) = 0, & \mathbb{V}(\varepsilon_i) = \sigma^2 \\ \forall i \neq k & cov(\varepsilon_i, \varepsilon_k) = 0 \end{cases}$$

Estimation de β_0 et β_1 par moindres carrés :

$$\underset{(\hat{\beta}_0, \hat{\beta}_1)}{\operatorname{arg min}} \sum_{i=1}^n \left(Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \right)^2$$

Dériver pour obtenir $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$ et $\hat{\beta}_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}$

$$\mathbb{V}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2} = \frac{\sigma^2}{(n-1)\mathbb{V}(x)}$$

 \Rightarrow variance faible si n grand et si les x sont très dispersés

Modèle de régression linéaire multiple

Sous forme indicée :

$$\begin{cases} \forall i = 1, ..., n & Y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip} + \varepsilon_i \\ \forall i = 1, ..., n & \varepsilon_i \text{ i.i.d. }, & \mathbb{E}(\varepsilon_i) = 0, & \mathbb{V}(\varepsilon_i) = \sigma^2 \\ \forall i \neq k & cov(\varepsilon_i, \varepsilon_k) = 0 \end{cases}$$

Matriciellement:

$$Y = X\beta + E$$
 avec $\mathbb{E}(E) = 0$, $\mathbb{V}(E) = \sigma^2 Id$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_i \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1j} & \cdots & x_{1p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{i1} & & x_{ij} & & x_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_j \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_i \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Critère des moindres carrés

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2$$

$$= (X'X)^{-1}X'Y \quad \text{si } X'X \text{ est inversible}$$

Propriétés

Introduction

0000

$$\mathbb{E}(\hat{\beta}) = \beta$$

$$\mathbb{V}(\hat{\beta}) = (X'X)^{-1}\sigma^2$$

Prédiction

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i1} + \ldots + \hat{\beta}_{j}x_{ij} + \ldots + \hat{\beta}_{p}x_{ip} \\
\mathbb{V}(Y_{x_{o}}) = \sigma^{2} \left(1 + x'_{0}(X'X)^{-1}x_{0}\right)$$

Démarche en plan d'expériences

Facteurs:

- x_1 : température de cuisson (120° à 140°)
- x_2 : durée de cuisson (40 à 60 minutes)

Variable d'intérêt Y : moelleux de pain de mie

- Quels sont les effets des facteurs x_1 et x_2 ? Quel est le rôle des variables dans la variation de la réponse?
- Optimalité : y a-t-il des paramètres qui optimise la variable Y ?
 ⇒ on veut une réponse avec le minimum d'incertitude

Modèle pour des surfaces de réponse

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{11} x_{i1}^2 + \beta_{22} x_{i2}^2 + \beta_{12} x_{i1} x_{i2} + \varepsilon_i$$
 effets linéaires effets quadratiques interaction

Effets quadratiques : très souvent présents en pratique

Interaction entre 2 variables quanti : l'effet d'une variable x_1 sur Y dépend d'une autre variable x2

Surfaces de réponses pour deux facteurs x_1 et x_2

Construction d'un plan continu

Problème: optimiser une recette de galette pour minimiser le nombre de galettes qui se déchirent (Y). 2 facteurs quantitatifs, la quantité de farine (entre 45 % et 55 %) et la température de cuisson (entre 180 et 220 degrés), étudiés selon un plan en 10 essais

Modifier les valeurs de F_1 et F_2 pour que la prévision de Y en tout point soit la plus précise possible

https://husson.github.io/img/plan_CC.xlsx

Qualité d'un plan

$$\mathbb{V}(\hat{\beta}) = (X'X)^{-1}\sigma^2$$

⇒ qualité du plan connue avant de faire les expériences

- \bullet essais au bord du domaine : maximiser la dispersion des x
- essais au centre : tester la linéarité
- orthogonalité entre facteurs : si 2 facteurs, $\mathbb{V}(\hat{\beta}_1) = \frac{\sigma^2}{n \times (1-r_{12})\mathbb{V}(x_1)}$

Si
$$r_{12} = 0 \Rightarrow \mathbb{V}(\hat{\beta}_1) = \mathbb{V}(\hat{\beta}_1)^{(regsimple)} \text{ sinon } \mathbb{V}(\hat{\beta}_1) \nearrow$$

Codage

Plan Composites Centrés

00000000

$$x_{new} = \frac{x - (x_{max} + x_{min})/2}{(x_{max} - x_{min})/2} \implies x_{new} \in [-1, 1]$$

- permet de s'affranchir des unités
- plans faciles à construire (tables de plan)
- interprétation facile des coefficients du modèle

$$Y = \beta_0 + \beta_1 x + \beta_{11} x^2 \begin{cases} Y_{(0)} = \beta_0 \\ Y_{(+1)} = \beta_0 + \beta_1 + \beta_{11} \\ Y_{(-1)} = \beta_0 - \beta_1 + \beta_{11} \end{cases}$$

- β_0 : valeur de Y au centre du domaine
- $\beta_1: Y_{(+1)} Y_{(-1)} = 2\beta_1 \Longrightarrow \beta_1 = \frac{Y_{(+1)} Y_{(-1)}}{2}$
- $\beta_{11}: Y_{(+1)} + Y_{(-1)} = 2\beta_0 + 2\beta_{11} \implies \beta_{11} = \frac{Y_{(+1)} + Y_{(-1)}}{2} \beta_0$

Interprétation des coefficients en régression quadratique

Plan Composites Centrés

00000000

Interpretation des coefficients en régression quadratique

Construction d'un plan composite centré à k facteurs

Plan Composites Centrés

000000000

- Plan factoriel complet ou fractionnaire $n_f = 2^{k-p}$
- Points en étoile avec $\alpha = \sqrt[4]{n_f} = n_f^{1/4}$
- Points au centre

Nb d'expériences : $2^{k-p} + 2k + n_0$

Exemple avec 2 facteurs

$$\begin{bmatrix}
1 & 1 \\
1 & -1 \\
-1 & 1 \\
-1 & -1
\end{bmatrix}$$

$$-1 & 0$$

$$-1 & 0$$

$$-1 & 0$$

$$-\sqrt{2} & 0$$

$$0 & \sqrt{2} & 0$$

$$0 & -\sqrt{2} & 0$$

$$0 & 0$$

$$\vdots & \vdots & \vdots$$

$$0 & 0$$

Plan composite centré avec le package rsm

```
> library(rsm)
> planccd <- ccd(2) # donne le plan standard
> planccd<-ccd(2, coding=list (x1~(Temp-130)/10, x2~(Duree-50)/10))</pre>
> planccd
   run.order std.order
                                       Tps Block
                            Temp
                      6 130.0000 50.00000
2
                      7 130.0000 50.00000
3
                      1 120.0000 40.00000
4
                      5 130,0000 50,00000
5
           5
                      4 140.0000 60.00000
6
           6
                      2 140.0000 40.00000
                      8 130.0000 50.00000
8
                      3 120.0000 60.00000
                      6 130.0000 50.00000
10
                      7 130.0000 50.00000
11
                      3 130.0000 35.85786
12
                      1 115.8579 50.00000
13
                      2 144.1421 50.00000
           6
                      8 130,0000 50,00000
14
15
                      5 130,0000 50,00000
16
                      4 130.0000 64.14214
```

Propriétés du plan composite centré

- Isovariance par rotation : (obtenue si $\alpha=n_f^{1/4}$) précision du plan dépend de la distance au centre, pas de la direction
- Précision uniforme : la précision est identique à la distance 1 dans tout le domaine (si bon nombre de points au centre)

• Corrélation des effets : tous les effets sont orthogonaux mais il y a une corrélation entre effets quadratiques en fonction de n_0

En pratique :

- répartir les points au centre parmi toutes les expériences
- s'adapter à la réalité terrain : faire toutes les expériences à 140° pour éviter de changer 15 fois la température du four

Nombre d'essais du PCC

Nombre de facteurs (k)	2	3	4	5	6
Plan factoriel complet ou fractionnaire	2^2	2^3	2^4	2^{5-1}	2^{6-1}
Nombre de points du plan factoriel : $n_f = 2^{k-p}$	4	8	16	16	32
Niveau codé des points axiaux : $\alpha = \sqrt[4]{n_f}$	1.414	1.682	2	2	2.378
Nombre de points axiaux : $n_{\alpha} = 2k$	4	6	8	10	12
Nombre de points au centre : n_0					
cas de l'orthogonalité	8	9	12	10	15
cas de la précision uniforme	5	6	7	6	9
Nombre total de points $(n_f + n_\alpha + n_0)$					
orthogonalité	16	23	36	36	59
précision uniforme	13	20	31	32	53

Vérification de la qualité du plan

La qualité d'un plan dépend des essais, du modèle et est mesurée par $(X'X)^{-1}$

```
> library(rsm)
> plan <- ccd(2)
> X <- model.matrix(x1+x2+I(x1^2)+I(x2^2)+I(x1*x2), data=plan)
> t(X)%*%X
            (Intercept) x1 x2 I(x1^2) I(x2^2) I(x1 * x2)
(Intercept)
                     16
x1
                            0
x2
I(x1^2)
                                    12
I(x2^2)
                                            12
I(x1 * x2)
                                             0
                                                        4
> solve(t(X)%*%X)
            (Intercept)
                                 x2 I(x1^2) I(x2^2) I(x1 * x2)
                           x1
(Intercept)
                 0.1250 0.000 0.000 -0.0625 -0.0625
                                                           0.00
                 0.0000 0.125 0.000
                                     0.0000
                                              0.0000
                                                           0.00
x1
x2
                 0.0000 0.000 0.125 0.0000 0.0000
                                                           0.00
I(x1^2)
                -0.0625 0.000 0.000 0.1250 0.0000
                                                           0.00
I(x2^2)
                -0.0625 0.000 0.000
                                     0.0000 0.1250
                                                           0.00
I(x1 * x2)
                 0.0000 0.000 0.000
                                     0.0000
                                              0.0000
                                                           0.25
```

Modèle de régression

Plan Composites Centrés

$$Y_{i} = \beta_{0} + \sum_{j=1}^{k} \beta_{j} x_{ij} + \sum_{j=1}^{k} \beta_{jj} x_{ij}^{2} + \sum_{j=1}^{k} \sum_{l=j+1}^{k} \beta_{jl} x_{ij} x_{il} + \varepsilon_{i}$$

Décomposition de la variabilité :

- effets linéaires seuls
- effets quadratiques seuls
- interactions seules
- résiduelle qui se décompose en 2 termes (car n_0 vraies répétitions, pts au centre):
 - erreur pure : variance des Y pour pts au centre $(n_0 1 \text{ ddl})$: estimation de la véritable répétabilité expérimentale
 - erreur d'ajustement : erreur résiduelle moins l'erreur pure $(ddl_{aiustement} = ddl_{résiduelle} - ddl_{erreur}$ pure)

Modèle de régression : tests

Plan Composites Centrés

Tests des effets linéaires, quadratique ou des interactions

 H_0 : pas d'effet d'une variable ou d'un groupe de variables

 H_1 : effet de la variable ou du groupe de variables

$$F_{var} = \frac{CM_{var}}{CM_{residuelle}}$$
 sous H_0 , $\mathcal{L}(F_{var}) = F_{ddl_{var}}^{ddl_{residuelle}}$

Test d'ajustement du modèle :

 H_0 : le modèle est bien ajusté

 H_1 : les écarts au modèle ne peuvent pas s'expliquer uniquement par la variabilité résiduelle

$$F_{ajust} = \frac{CM_{ajust}}{CM_{pure}}$$
 sous H_0 , $\mathcal{L}(F_{ajust}) = F_{ddl_{pure}}^{ddl_{ajust}}$

⇒ une erreur d'ajustement significative incite à changer de modèle (ajout d'effets quadratiques, etc.)

Plan composite centré avec le package rsm

Plan pour 2 facteurs :

```
Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{11} x_{i1}^2 + \beta_{22} x_{i2}^2 + \beta_{12} x_{i1} x_{i2} + \varepsilon_i
> library(rsm)
> set.seed(1234)
> plan <- ccd(2, coding=list (x1~(Temp-130)/10, x2~(Duree-50)/10))
> Y < c(1, 5, 4, 7, 8, 8, 4, 5, 2, 5, 4, 5, 5, 9, 7, 5)
> CR.rsm <- rsm(Y~SO(x1,x2),data=plan) ## SO pour 2nd order
> summary(CR.rsm)
                                               ## FO(x1,x2)+TWI(x1,x2)+PQ(x1,x2)
```

Analysis of Variance Table Response: Y

```
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 49.792 24.8958 67.1341 1.6e-06
                                              ## effets linéaires
TWI(x1, x2) 1 9.000 9.0000 24.2694 0.0005991
                                              ## interaction
PQ(x1, x2) 2 6.500 3.2500 8.7640 0.0063261
                                              ## effets quadratiques
Residuals 10 3.708 0.3708
Lack of fit 3 1.833 0.6111 2.2815 0.1662512
                                              ## erreur d'ajustement
Pure error 7 1.875 0.2679
                                              ## erreur pure
```

Multiple R-squared: 0.9463, Adjusted R-squared: 0.9194 F-statistic: 35.21 on 5 and 10 DF, p-value: 4.911e-06

Plan composite centré avec le package rsm

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.62500
                    0.21530 21.4815 1.066e-09 ***
       2.23744 0.21530 10.3921 1.116e-06 ***
x1
x2
        1.10355 0.21530 5.1256 0.0004470 ***
x1:x2 -1.50000 0.30448 -4.9264 0.0005991 ***
x1^2
        0.50000 0.21530 2.3223 0.0426035 *
x2^2
          0.75000
                    0.21530 3.4835 0.0058867 **
```

Recherche de l'optimum :

$$\begin{cases} \frac{\partial Y}{\partial x_1} = 0 \\ \frac{\partial \hat{Y}}{\partial x_2} = 0 \end{cases} \begin{cases} 2.237 - 1.5x_2 + 2 \times 0.5 \times x_1 = 0 \\ 1.104 - 1.5x_1 + 2 \times 0.75 \times x_2 = 0 \end{cases}$$

$$x_2 = (2.237 + x_1)/1.5$$

1.104 - 1.5 x_1 + 1.5 × (2.237 + x_1)/1.5 = 0 \Rightarrow x_1 = 6.682 \Rightarrow x_2 = 5.946

Stationary point of response surface: ## optimum

x 1 6.681981 5.946278

x2

```
## vp ttes < 0 ==> point stationnaire = maximum
Eigenanalysis:
$values
                           ## vp ttes > 0 ==> point stationnaire = minimum
[1] 1.3853453 -0.1353453 ## vp >0 et <0 ==> point stationnaire = point 2sme/L24e
```

Représentation des surfaces de réponse

- > contour(CR.rsm,~x1+x2,image=TRUE)
- > persp(CR.rsm,~x1+x2,col=rainbow(50), contours="colors")

Pb de visualisation avec 3 variables ou plus : tracer le graphe pour 2 variables les autres étant fixées à leur valeur centrale ou à l'optimum

Construction séquentielle du plan

- 1 construire le plan factoriel et les points au centre
- 2 à partir des points au centre, l'erreur pure permet de savoir si le travail réalisé est bon
- 3 les points au centre permettent de savoir si les effets sont linéaires ou non; si non linéaires, ajouter les points en étoile
- 4 peut-on supposer que les effets quadratiques sont nuls?

Plan de Box-Benhken

Mode de construction :

- construire un plan complet pour chaque couple de 2 facteurs, les autres facteurs étant à la moyenne
- ajouter des points au centre

Avantages:

- 3 niveaux par variable (vs 5 pour PCC)
- travail séquentiel possible : permet de rajouter des facteurs (fixés au niveau moyen avant)
- > library(rsm)
- > Benhken <- bbd(3)

Exemple avec 3 facteurs