

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07122457 A → 33068 4

(43) Date of publication of application: 12.05.95 - 5/17/02

(51) Int. CI

H01G 4/12 H01G 4/30

(21) Application number: 05267469

(22) Date of filing: 26.10.93

(71) Applicant:

MURATA MFG CO LTD

(72) Inventor:

TANIGUCHI MASAAKI

(54) MANUFACTURE OF MULTILAYERED CERAMIC ELECTRONIC COMPONENT

(57) Abstract:

PURPOSE: To provide a manufacturing method of a multilayered ceramic electronic component wherein distortion, position deviation and disconnection of a circuit layer formed between the sheets of a laminate are prevented, by reducing the pressure in the course of a lamination process which is applied to the green sheets, in the process for stacking the green sheets.

CONSTITUTION: A laminate is formed by stacking a plurality of ceramic green sheets and interposing circuit layers between the ceramic green sheets. When a laminate 11 of ceramic green sheets having a specified thickness is obtained in the manufacturing method of a multilayered ceramic electronic component, a plurality of lamination block bodies 4 whose thickness is small as compared with the laminate of the ceramic green sheets having a specified thickness are previously prepared, and laminated in the lamination direction of the ceramic green sheets, thereby forming a laminate having a specified thickness.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3306814号 (P3306814)

(45)発行日 平成14年7月24日(2002.7.24)

(24) 登録日 平成14年5月17日(2002.5.17)

F I H O 1 G 4/12 4/30

364 311F

請求項の数1(全 4 頁)

(21)出願番号 特願平5-267469

(22)出願日 平成5年10月26日(1993.10.26)

(65)公開番号 特開平7-122457

(43)公開日 平成7年5月12日(1995.5.12) 審査請求日 平成10年6月29日(1998.6.29) 審判番号 不服2000-17398(P2000-17398/J1)

平成12年11月1日(2000.11.1)

(73)特許権者 000006231 株式会社村田製作所

京都府長岡京市天神二丁目26番10号

(72)発明者 谷口 政明

京都府長岡京市天神二丁目26番10号 株

式会社 村田製作所内

合議体

審判長 松本 邦夫 審判官 **浅**野 清 審判官 左村 義弘

(56)参考文献 特開 昭61-253811 (JP, A)

(54) 【発明の名称】 積層セラミック電子部品の製造方法

(57) 【特許請求の範囲】

審判請求日

【請求項1】 複数のセラミックグリーンシートを順次積層圧着することにより、セラミックグリーンシートの間に回路層が介在されている積層体を形成し、該積層体を焼成する積層セラミック電子部品の製造方法において、

複数枚の主表面に回路層が形成されたセラミックグリーンシートを支持体上に順次積層圧着することにより得られる回路層が介在された積層ブロック体を複数個、準備し、前記複数個の積層ブロック体を、セラミックグリーンシートの積層方向に積層圧着して、前記積層体とすることを特徴とする積層セラミック電子部品の製造方法。

【発明の詳細な説明】

[0001]

層セラミック電子部品の製造方法に関する。

[0002]

【従来の技術】積層セラミック電子部品としては、積層 セラミックコンデンサのほか、多層セラミック基板、積 層バリスタ、積層圧電素子等がある。

【0003】一般的に積層セラミックコンデンサを製造するに当たっては、例えば、チタン酸バリウムからなる誘電体セラミック粉末を有機バインダーと混合してスラリー状にし、これをドクターブレード法等によってグリーンシートとし、この上に内部電極となる金属粉末のペーストをスクリーン印刷法等によって印刷し、さらにこの上にグリーンシートを積み重ねて内部電極ペーストを印刷し、これを適宜回数繰り返して、圧着後、1300~1400℃の温度で焼成し、得られた焼結体の内部電

とが行われている。

[0004]

【発明が解決しようとする課題】このようにして製造される積層セラミックコンデンサにおいては、グリーンシートの積み重ねを内部電極ペーストの印刷とが交互に行われるため、例えばグリーンシートをN枚積み重ねる場合、一番最後のグリーンシートはN回の圧力を受ける。枚数が少なければ一番最初のグリーンシートにかかる圧力は問題とならないが、枚数が多くなれば、圧力を受ける回数も増加する。そのため、最初のグリーンシートに形成された電極パターンが、図3のように歪んだり、図4のように位置ずれを起こしたりする。このため、電極パターンが切断されたり、歪みや変形が生じたり、位置ずれが生じたりして、電気的特性の変化による不良が問題となっている。

【0005】図3のような電極パターンの変形や図4のような電極の位置ずれを考慮して、電極パターン間の距離スペース、つまりギャップマージンGを増やすことも行っているが、取得容量が小さくなることと、積層数をこれ以上増やすことが困難なため、小型で大容量の積層コンデンサを得るには限界がある。

【0006】この発明の目的は、グリーンシートを積み重ねる工程において、1枚のグリーンシートにかかる積み重ね層工程時の圧力を減少させて、積層体のシートの間に形成された回路層の歪み、位置ずれ、切断を防ぐ積層セラミック電子部品の製造方法を提供することである。

[0007]

【課題を解決するための手段】この発明は、複数のセラミックグリーンシートを順次積層圧着することにより、セラミックグリーンシートの間に回路層が介在されている積層体を形成し、該積層体を焼成する積層セラミック電子部品の製造方法において、複数枚の主表面に回路層が形成されたセラミックグリーンシートを支持体上に順次積層圧着することにより得られる回路層が介在された積層ブロック体を複数個、準備し、前記複数個の積層ブロック体を、セラミックグリーンシートの積層方向に積層圧着して、前記積層体とすることを特徴とする。

[0008]

【作用】この発明において、積み重ね工程時における1枚のグリーンシートが受ける圧力回数を減少(分散)させたことにより、グリーンシートの間に介在された回路層の歪みや位置ずれや切断が起こらなくなる。また、変形を補うためのギャップマージンを大きくとらなくてもよくなる。

[0009]

【実施例】以下、この発明の実施例として、積層セラミックコンデンサの製造方法について説明する。図1は、

得る方法を示している。図2は、セラミックグリーンシートを積み重ねて積層ブロック体を得る工程を示している。

【0010】最初に積層ブロック体を形成するまでの方法を説明する。図2において、(a)で示すように、たとえばチタン酸バリウム系セラミックスのような誘電体セラミック粉末及びバインダーを溶剤とともに混練し、セラミックスラリーを調整し、このセラミックスラリーを用い、ドクターブレード法等によりセラミックグリーンシート1を成形する。

【0011】次に、(b)で示すように、セラミックグリーンシート1の主表面に、回路層としての内部電極2を形成するため、銀、銀ーパラジウム、白金、ニッケル、あるいはそれらの合金などを含む導電性ペーストをスクリーン印刷法等で塗布する。これら導電性ペーストは、例えば50~200℃の温度で乾燥され、内部電極2となる導電層を有するセラミックグリーンシート3が準備される。

【0012】次に、(c)で示すように、台板8の上に支持体5があり、その上に、セラミックグリーンシート3を台板8に対向するように配置する。セラミックグリーンシート3の上方には、ヒーター7を内蔵した圧着ヘッド6が配置されている。圧着ヘッド6は上下方向に動作するものである。

【0013】次に、(d)に示すように、圧着ヘッド6が下方へ動作し、セラミックグリーンシート3が、支持体5の上に積み重ねられる。なお、(d)の工程において、セラミックグリーンシート3は、既に積み重ねらたセラミックグリーンシート3に対して、例えば、温度30~100℃、圧力50~250kg/cm²の条件で圧着する。圧着後(e)で示すように、圧着ヘッド6が上方に動作する。このように(c)、(d)、(e)を繰り返して、(f)に示す積層ブロック体4を得た。セラミックグリーンシート3の積層構造は、(f)の積層ブロック体4を90°右あるいは左へ転回した状態の図(g)に示すように、内部電極2が左右にずれて配置されている。

【0014】図1(a)は、図2の工程を経て得られた積層ブロック体4である。(b)で示すように、台板8の上に支持体5がある。その上に、内部電極2を形成していないセラミックグリーンシート1と積層ブロック体4aを圧着し、積層ブロック体4bが台板8に対向するように配置されている。そして、積層ブロック体4bの上方には、ヒーター7を内蔵した圧着ヘッド6が配置されている。圧着ヘッド6は上下方向に動作するものである。

【0015】次に、(c)に示すように、圧着ヘッド6が下方へ動作し、積層ブロック体4bが、支持体5の上の積層ブロック体4aに圧着される。なお、(c)の工

積層ブロック体 4 a に対して、例えば、温度 3 0 ~ 1 0 0 ℃、圧力 5 0 ~ 2 5 0 kg/cm²の条件で圧着される。圧着した後、(d)で示すように、圧着ヘッド 6 が上方に動作する。このように(b)、(c)、(d)を繰り返し、最上層に内部電極を形成していないセラミックグリーンシート 1 が圧着され、(e)に示すような積層体 1 1 を形成する。

【0016】この場合の圧着方法は、熱圧着でもよいし、必要箇所に接着剤を塗布して圧着するものでもよい。なお、図1の積層体11は、セラミックグリーンシート3を5層にした積層ブロック体4を4個積み重ねたものであるが、セラミックグリーンシート3の積層数や積層ブロック体4の積み重ね数は任意である。

【0017】積層体11を得る方法として、積層ブロック体4を上述のように1個1個圧着してもよいし、数個づつに分けて圧着してもよいし、全部を積み重ねたのち1回で圧着してもよい。

【 O O 1 8 】図 1 (e) で得られた積層体 1 1 を、適当な形状に切断し、焼成し、得られた焼結体の両端に内部電極と電気的に接続されるよう外部電極を設けることにより、積層セラミックコンデンサが得られる。

【0019】上記した実施例では、積層セラミックコンデンサの製造方法に関連して説明したが、その他、多層セラミック基板、積層バリスタ、積層圧電素子等の積層セラミック電子部品など、内部に回路層を有する積層セラミック電子部品全般にこの発明の製造方法を適用することができる。

[図3]

[0020]

【発明の効果】この発明において、積層時における1枚のグリーンシートが受ける圧力回数を減少させたことにより、回路層の歪みや位置ずれ、切断がなくなり、積層枚数の多い積層セラミック電子部品を得ることが容易になる。

【図面の簡単な説明】

【図1】この発明の一実施例による積層セラミックコン デンサの製造方法を示す図解的断面図である。

【図2】セラミックグリーンシートを積層する工程を示す図である。

【図3】内部電極の歪みが生じた状態を示す断面図である。

【図4】内部電極の位置ずれが生じた状態を示す断面図 である。

【符号の説明】

2 内部電極

3 内部電極2となる導電層を有するセラミックグリーンシート

4 積層ブロック体

5 支持体

6 圧着ヘッド

7 ヒーター

8 台板

11 積層体

【図4】

BEST AVAILABLE COPY