7.13:

7.18: The count starts out at 000, then input into T0 is a 1 so the count is 001. Then output of 1 goes to T1, while input of 1 goes into T0 so the count is then 010. Then the output of 1 goes to T2, while output of 0 goes to T1, while input of 1 goes to T0 so the count is 111. Then back to 000. Therefore, the counting sequence for the counter is 000, 001, 010, 111.

7.37:
$$t_{su} = 0.6 \text{ ns}, t_h = 0.4 \text{ ns}, 0.8 \text{ ns} \le t_{cQ} \le 1.0 \text{ ns}$$

$$T_{min} = t_{cQ} + 3(t_{AND}) + t_{XOR} + t_{MUX} + t_{su} = 1.0 + 3(1.2) + 1.2 + 7.0 + 0.6 = 13.4 \text{ns}$$

$$F_{max} = \frac{1}{T_{min}} = \frac{1}{13.4 \text{ns}} = 74.63 \text{ MHz}$$

7.38:
$$T_{min} = t_{cQ} + k(t_{REG}) + t_{MUX} + t_{su}$$

$$F_{max} = \frac{1}{T_{min}} = \frac{1}{t_{cQ} + k(t_{REG}) + t_{MUX} + t_{su}}$$

8.29:

Present	Next State		Output
State	$\mathbf{w} = 0$	w = 1	Z
S0	S0	S2	0
S 1	S0	S3	1
S2	S0	S3	0
S3	S0	S1	0

6.

" * *
J= W= 1xA xA3 = XA
J= W= +AB+ +AB=+A

First JK flip-flop:

Inp	uts	Current State	Next State
T 7	ъ		
X	В	A	A*
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Second JK flip-flop:

uts	Current	Next
	State	State
A	В	B*
0	0	0
0	1	0
1	0	0
1	1	0
0	0	0
0	1	0
1	0	1
1	1	1
	0 0 1 1 0	State A B 0 0 0 1 1 0 1 1 0 0 0 1

Output
Z
1
1
0
0
0
1
0
0

The circuit is a Moore machine because the output depends on the current state only.

7.

$$J_1 = \chi Q_2' \qquad K_1 = \chi$$

$$Q_1^{\dagger} = \chi Q_2' Q_1' + \chi Q_1$$

$$J_2 = XQ_1 \qquad | I_2 = X$$

$$Q_2^+ = XQ_1Q_2^1 + XQ_2$$

First JK flip-flop:

Inputs		Current State	Next State
X	Q2	Q1	Q1*
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Second JK flip-flop:

Inputs		Current State	Next State
X	Q1	Q2	Q2*
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Output
${f Z}$
0
0
0
0
1
0
0
0

This circuit is a Mealy machine because the output depends on the current state and input.

