Bayesian Parameter Inference of Markov population model.

Master Thesis

by

Nhat-Huy Phung

at

Modeling complex, self-organizing systems group

Department of computer and information science

1. Examiner: Jun-.Prof. Dr. Tatjana Petrov

2. Examiner: Prof. Dr. Stefan Leue

Konstanz, 2020

Contents

1	Intr	roduction	3
2	Pre	liminaries	4
	2.1	Transition system	4
		Discrete-Time Markov Chain	
	2.3	Probabilistic Model Checking	4
	2.4	Bayesian Inference	4
		2.4.1 Bayesian formula	4
		2.4.2 Posterior conjugation	4
	2.5	Metropolis-Hastings algorithm	4
	2.6	Selection of prior distribution	4

Abstract

• What: State the problem.

• Why: Applications?

• What: Structure of this thesis.

We study the parameter synthesis problem of parametric Discrete-Time Markov Chain. Markov Chain is a probabilistic model to formalize stochastic processes.

1 Introduction

- Brief introduction to Markov Chain
- Brief introduction to parameterization or Markov Chains
- Applications of parameter synthesis problem.

This thesis is structured as follow.

- Chapter 1 introduces the problem and its applications.
- Chapter 2 describes the most important definitions and theoretical background. In this chapter, we defines Discrete-Time Markov Chain formally. A brief introduction to Bayesian Inference is also included.
- Chapter 3 presents

2 Preliminaries

- transition system
- markov property
- discrete-time markov chain and parametric dtmc
- continuous-time markov chain
- bayesian inference
- metropolis-hastings algorithm
- 2.1 Transition system
- 2.2 Discrete-Time Markov Chain
- 2.3 Probabilistic Model Checking
- 2.4 Bayesian Inference
- 2.4.1 Bayesian formula
- 2.4.2 Posterior conjugation
- 2.5 Metropolis-Hastings algorithm
- 2.6 Selection of prior distribution

The selection of prior distribution has strong effect on the result [what result specifically?] of a Bayesian inference.