# Московский физико-технический институт Факультет общей и прикладной физики

Лабораторная работа № 123

(Общая физика: электричество и магнетизм)

# Резонанс токов в параллельном контуре

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2017 год

**Цель работы:** исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

**Оборудование:** генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

#### 1. Теоретическое введение и описание установки



Рис.2 Последовательная эквивалентная схема конденсатора с потерями.

Рис.1 Схема установки.

$$I=rac{E}{R_I}=rac{E_0cos(\omega t+arphi_0)}{R_I}=I_0cos(\omega t+arphi_0)$$
 — ток на генераторе  $R_S=rac{U_{RS}}{I}=rac{U_{RS}}{\omega CU_{CS}}=rac{1}{\omega C}tg\delta$ 

где  $R_S$  - эквивалентное последовательное сопротивление (ЭПС) Для используемых емкостей  $C_n$  выполнено  $tg\delta < 10^{-3}$ 

$$R_{\sum} = R + R_L + R_S$$

где  $R_{\sum}$  - суммарное активное сопротивление контура.

Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L, Z_C = R_S - i\frac{1}{\omega C}, Z = R_{\sum} + i(\omega L - d\frac{1}{\omega C})$$

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно предствить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \end{split}$$

где  $\omega_0=\frac{1}{\sqrt{LC}}$  - собственная частота,  $\rho=\sqrt{\frac{L}{C}}$  - реактивное сопротивление контура,  $Q=\frac{\rho}{-}R_{\sum}$  - добротность контура

Рассмотрим случай, когда  $|\Delta\omega|=|\omega-\omega_0|\ll\omega_0$ . Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}$$

Пренебрегая поправками порядка  $Q^{-2}$ , получим:

$$I_{c} = QI_{0}\frac{\omega}{\omega_{0}} \frac{e^{i\varphi_{c}}}{\sqrt{1 + (\tau\Delta\omega)^{2}}}, \varphi_{c} = \frac{\pi}{2} - \frac{R + R_{L}}{\rho} - arctg(\tau\Delta\omega)$$

$$I_{L} = QI_{0}\frac{\omega_{0}}{\omega} \frac{e^{i\varphi_{L}}}{\sqrt{1 + (\tau\Delta\omega)^{2}}}, \varphi_{L} = -\frac{\pi}{2} + \delta \arctan(\tau\Delta\omega)$$

$$U = Q\rho I_{0}\frac{\omega}{\omega_{0}} \frac{e^{i\varphi_{U}}}{\sqrt{1 + (\tau\Delta\omega)^{2}}}, \varphi_{U} = -\frac{\omega}{\omega_{0}} \frac{R + R_{L}}{\rho} + \delta - arctg(\tau\Delta\omega)$$

где  $au = rac{2L}{R_{\sum}} = rac{2Q}{\omega_0}$  - время затухания.

При резонансе, т.е. когда  $\Delta\omega=0$ :

$$I_c(\omega_0) = QI_0, \varphi_c(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho}$$

$$I_L(\omega_0) = QI_0, \varphi_L(\omega_0) = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\sum} I_0, \varphi_U \omega_0 = -\frac{R + R_L}{\rho} + \delta$$

$$\varphi'_c(\omega_0) = \varphi'_L(\omega_0) = \varphi'_U(\omega_0) = -\tau$$

## 2. Ход работы

Данные установки:  $R = 3{,}50$  Ом,  $R_1 = 1008$  Ом.

# 2.1 Измерения резонансных частот и напряжений, а также сопутствующих величин

Проведем для 7 разных конденсаторов емкости  $C_n$  измерения резонансных частот и напряжений на них, поддерживая напряжение на вольтметре 1 равным E = 0.2 В, а также вычислим дополнительные величины, следующие из наших измерений, по следующим формулам:

$$L = \frac{1}{C(2\pi f)^2}$$

$$\rho = \frac{1}{2\pi f C}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1$$

$$Q = \frac{UR_1}{E_0} 2\pi f C$$

$$R_{\sum} = \frac{E_0}{UR_1} \frac{1}{(2\pi f C)^2}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi f C)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$

Результаты занесём в таблицу:

Таблица 1: Результаты измерений при  $E=0,2~{
m Om}$ 

| $C_n$ , н $\Phi$ | $f_{0n}$ , к $\Gamma$ ц | $U_{0n}$ , B | E, B | $L$ , мк $\Gamma$ н | $\rho$ , Om | $Z_{\rm pes}$ , Om | Q    | $R_{\Sigma}$ , Om | $R_{Sm}$ , Om | $R_L$ , Om |
|------------------|-------------------------|--------------|------|---------------------|-------------|--------------------|------|-------------------|---------------|------------|
| 25.1             | 32.1                    | 1.18         | 0.2  | 980.4               | 197.6       | 5947.2             | 30.1 | 6.57              | 0.20          | 2.9        |
| 33.2             | 27.8                    | 0.91         | 0.2  | 988.2               | 172.5       | 4586.4             | 26.6 | 6.49              | 0.17          | 2.8        |
| 47.3             | 23.2                    | 0.67         | 0.2  | 996.0               | 145.1       | 3376.8             | 23.3 | 6.24              | 0.15          | 2.6        |
| 57.4             | 21.3                    | 0.57         | 0.2  | 973.7               | 130.2       | 2872.8             | 22.1 | 5.90              | 0.13          | 2.3        |
| 67.5             | 19.5                    | 0.48         | 0.2  | 987.9               | 121.0       | 2419.2             | 20.0 | 6.05              | 0.12          | 2.4        |
| 82.7             | 17.7                    | 0.40         | 0.2  | 978.7               | 108.8       | 2016.0             | 18.5 | 5.87              | 0.11          | 2.3        |
| 101.6            | 16.0                    | 0.34         | 0.2  | 974.9               | 98.0        | 1713.6             | 17.5 | 5.60              | 0.10          | 2.0        |
| Среднее значение |                         |              |      | 982,8               |             |                    |      |                   |               | 2,5        |
| Ср-и             | кв. погр. ср            | э. значен    | ия   | 2,67                |             |                    |      |                   |               | 0,10       |
| Слу              | чайная по               | грешност     | ГЬ   | 6,3                 |             |                    |      |                   |               | 0,2        |

Теперь проведем аналогичные вычисления при  $E=0.37~{\rm B}.$ 

Таблица 2: Результаты измерений при  $E=0.37~{
m Om}$ 

| $C_n$ , H $\Phi$ | $f_{0n}$ , к $\Gamma$ ц | $U_{0n}$ , B | E, B | $L$ , мк $\Gamma$ н | $\rho$ , Om | $Z_{\rm pes},{ m Om}$ | Q    | $R_{\Sigma}$ , Om | $R_{Sm}$ , Om | $R_L$ , Om |
|------------------|-------------------------|--------------|------|---------------------|-------------|-----------------------|------|-------------------|---------------|------------|
| 25.1             | 32.1                    | 2.18         | 0.37 | 980.4               | 197.6       | 5939.0                | 30.1 | 6.58              | 0.20          | 2.9        |
| 33.2             | 27.8                    | 1.62         | 0.37 | 988.2               | 172.5       | 4413.4                | 25.6 | 6.74              | 0.17          | 3.1        |
| 47.3             | 23.2                    | 1.23         | 0.37 | 996.0               | 145.1       | 3350.9                | 23.1 | 6.28              | 0.15          | 2.6        |
| 57.4             | 21.3                    | 1.04         | 0.37 | 973.7               | 130.2       | 2833.3                | 21.8 | 5.99              | 0.13          | 2.4        |
| 67.5             | 19.5                    | 0.88         | 0.37 | 987.9               | 121.0       | 2397.4                | 19.8 | 6.10              | 0.12          | 2.5        |
| 82.7             | 17.7                    | 0.74         | 0.37 | 978.7               | 108.8       | 2016.0                | 18.5 | 5.87              | 0.11          | 2.3        |
| 101.6            | 16.0                    | 0.62         | 0.37 | 974.9               | 98.0        | 1689.1                | 17.2 | 5.68              | 0.10          | 2.1        |
| Среднее значение |                         |              |      | 982,8               |             |                       |      |                   |               | 2,5        |
| Ср-к             | кв. погр. ср            | э. значен    | ия   | 2,67                |             |                       |      |                   |               | 0,11       |
| Слу              | чайная по               | грешнос      | ГЬ   | 6,3                 |             |                       |      |                   |               | 0,3        |

## 2.2 Измерение АЧХ

Теперь измерим амплитудно-частотную характеристику для конденсаторов  $C_2, C_5$ . При этом посчитаем также измеряемые величины по отношению к резонансным  $U_0, f_0$ . Результаты сведем в таблицу:

| 1 | 0.1 | 38  | 62  | 88  | 107  | 125  | 150  | 191  | 268 |
|---|-----|-----|-----|-----|------|------|------|------|-----|
| 2 | 0.3 | 27  | 41  | 57  | 69   | 83   | 100  | 124  | 334 |
| 3 | 0.6 | 8   | 10  | 13  | 17   | 18   | 23   | 32   | 432 |
| 4 | 0.9 | -9  | -15 | -20 | -28  | -28  | -34  | -42  | 517 |
| 5 | 1.2 | -22 | -34 | -49 | -60  | -68  | -81  | -104 | 582 |
| 6 | 1.5 | -30 | -48 | -67 | -82  | -94  | -114 | -144 | 629 |
| 7 | 1.8 | -36 | -56 | -89 | -96  | -112 | -135 | -169 | 658 |
| 8 | 2.1 | -40 | -62 | -88 | -106 | -123 | -146 | -184 | 674 |

Таблица 3: Результаты измерений АЧХ

По результатам построим графики АЧХ для обоих конденсаторов в осях U(f) и  $\frac{U}{U_0} \left( \frac{f}{f_0} \right)$ .



Рис. 1: График амплитудно-частотной характеристики в осях U(f)

Теперь найдем добротность по ширине резонансной кривой  $\delta\omega$  на 2 графике как

$$Q = \frac{1}{\delta\omega}$$



Рис. 2: График амплитудно-частотной характеристики в осях  $\frac{U}{U_0}\left(\frac{f}{f_0}\right)$ 

Где  $\delta\omega$  — расстояние между частотами при значении напряжения  $\frac{1}{\sqrt{2}}$ .

Получаем ответ:

$$Q_2 \approx 25.9$$
  $Q_5 \approx 19.7$ 

#### 2.3 Фазово-частотная характеристика

Для тех же кондесаторов определим фазово-частотную характеристику. Будем определять разность фаз между сигналами U(t), E(t) как  $\Delta \varphi = \frac{x}{x_0} \varphi$ , где  $x, x_0$  — расстояния от начала отсчёта до момента обращения графиков этих значений в нуль. Результаты занесем в таблицу:

По данным таблицы построим график  $\frac{\Delta \varphi}{\pi} \left( \frac{f}{f_0} \right)$ .

Аналогично определим добротность, подсчитав длину резонансной кривой как расстояние между частотами при разности фаз в  $\frac{3}{4}\pi$  и  $\frac{5}{4}\pi$ :

$$Q_2 \approx 20.4$$
  $Q_5 \approx 27.1$ 

# **2.4** График зависимости $R_L$ от $f_{0n}$

Теперь построим график зависимости  $R_L(f_{0n})$  и проведем прямую  $\langle R_L \rangle = 2.5$  Ом.

Таблица 4: Результаты измерений ФЧХ

| $C_2 = 33,2 \; \text{н}\Phi$ |                 |     |       |                       |  | $C_5 = 67,5 \; {\rm H}\Phi$ |                 |     |       |                       |  |
|------------------------------|-----------------|-----|-------|-----------------------|--|-----------------------------|-----------------|-----|-------|-----------------------|--|
| U, B                         | $\frac{f}{f_0}$ | x   | $x_0$ | $\Delta \varphi, \pi$ |  | U, B                        | $\frac{f}{f_0}$ | x   | $x_0$ | $\Delta \varphi, \pi$ |  |
| 0.29                         | 0.949           | 2.2 | 4.0   | 0.55                  |  | 0.29                        | 0.967           | 4.0 | 5.8   | 0.69                  |  |
| 0.76                         | 0.989           | 3.0 | 3.9   | 0.77                  |  | 0.42                        | 0.986           | 4.6 | 5.7   | 0.81                  |  |
| 0.90                         | 1.003           | 3.9 | 3.8   | 1.03                  |  | 0.35                        | 0.976           | 4.2 | 5.7   | 0.74                  |  |
| 0.64                         | 0.983           | 2.8 | 3.9   | 0.72                  |  | 0.23                        | 0.953           | 3.8 | 5.7   | 0.67                  |  |
| 0.26                         | 0.944           | 2.4 | 4.0   | 0.60                  |  | 0.18                        | 0.937           | 3.6 | 5.8   | 0.62                  |  |
| 0.38                         | 0.963           | 2.5 | 4.0   | 0.63                  |  | 0.47                        | 0.994           | 5.0 | 5.5   | 0.91                  |  |
| 0.77                         | 0.989           | 3.1 | 3.8   | 0.82                  |  | 0.48                        | 0.998           | 5.3 | 5.4   | 0.98                  |  |
| 0.50                         | 0.974           | 2.7 | 3.9   | 0.69                  |  | 0.38                        | 0.981           | 4.4 | 5.5   | 0.80                  |  |
| 0.82                         | 1.008           | 4.1 | 3.7   | 1.11                  |  | 0.44                        | 1.010           | 5.9 | 5.4   | 1.09                  |  |
| 0.28                         | 1.052           | 4.9 | 3.6   | 1.36                  |  | 0.26                        | 1.039           | 6.7 | 5.2   | 1.29                  |  |
| 0.56                         | 1.022           | 4.7 | 3.7   | 1.27                  |  | 0.15                        | 1.074           | 7.0 | 5.0   | 1.40                  |  |
| 0.83                         | 1.008           | 4.2 | 3.7   | 1.14                  |  | 0.24                        | 1.043           | 6.8 | 5.2   | 1.31                  |  |
| 0.46                         | 1.03            | 4.8 | 3.7   | 1.30                  |  | 0.42                        | 1.014           | 6.1 | 5.3   | 1.15                  |  |
| 0.60                         | 1.02            | 4.6 | 3.7   | 1.24                  |  | 0.46                        | 1.007           | 5.8 | 5.4   | 1.07                  |  |
| 0.74                         | 1.012           | 4.4 | 3.7   | 1.19                  |  | 0.37                        | 1.020           | 6.4 | 5.3   | 1.21                  |  |
|                              |                 |     |       |                       |  | 0.31                        | 1.029           | 6.6 | 5.20  | 1.27                  |  |

Видно, что  $R_L$  возрастает при увеличении частоты. Это может быть объяснено скин-эффектом.



Рис. 3: График фазово-частотной характеристики в осях  $\frac{\Delta \varphi}{\pi} \left( \frac{f}{f_0} \right)$ 



Рис. 4: График зависимости  $R_L(f_{0n})$ 

#### 2.5 Векторная диаграмма

Теперь построим векторную диаграмму для контура с наименьшей добротностью, т.е. для последнего —  $Q_7=17,5.$ 



Рис. 5: Векторная диаграмма

Посчитаем ток  $I=\frac{E}{R_1}=\frac{0.2}{1008}\approx 0.1$ мА. Его вектор равен сумме:  $\vec{I}=\vec{I_L}+\vec{I_C}$ , причем сам  $\vec{I}$  расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\varphi_C = \frac{\pi}{2} - \frac{R + R_l}{\rho}, \quad \varphi_L = -\frac{\pi}{2} + \delta$$

Здесь  $\delta \simeq 10^{-3}$  — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол  $\varphi_C' = \frac{R+R_l}{\rho} \approx 0,0562.$ 

Аналогичный угол у напряжения  $\vec{U}: \varphi_U = -\frac{R+R_l}{\rho}.$  T.e. оно незначительно отклоняется от оси абсцисс на отрицательный угол.

Изобразим это на рисунке.

#### 3. Вывод

В данной работе мы изучили резонанс токов в параллельном контуре. С помощью непосредственных измерений, графиков АЧХ и ФЧХ мы определили добротность контуров и получили, в пределах погрешности, хорошо совпадающие результаты.

Проделав измерения при двух разных напряжениях E, мы выяснили, что меняется только абсолютное значение резонансных амплитуд напряжения U (увеличивается при более высоком E).

В конце работы мы построили векторную диаграмму как наглядное представления «резонанса токов».