Algorithmen und Wahrscheinlichkeit Programming Exercises

Exercise 1 - Count the Divisors

You are given a set of k natural numbers and you want to know how many numbers between 1 and 10^{10} (both included) can't be divided by any of those k numbers.

Input The first line of the input contains the number $t \leq 30$ of test cases. Each of the t test cases is described as follows.

- It starts with a line that contains a single integer k, such that $1 \le k \le 10$.
- The following line contains k natural numbers $\mathbf{a}_0 \ldots \mathbf{a}_{k-1}$, separated by a space, such that $1 \leq a_i \leq 2^{31} 1$, for all $i \in \{0, \ldots, k-1\}$.

Output For each test case output one line containing one integer denoting how many numbers between 1 and 10^{10} are not divided by any of the a_i .

Points There are two groups of test sets, worth 100 points in total.

- 1. For the first group of test sets, worth 50 point, you may assume that all a_i 's are pairwise coprime.
- 2. For the second group of test sets, worth 50 point, there are no additional assumptions.

Sample Input

Sample Output

2 3 2 3 5 2 2 2 266666666 5000000000