Soft Computing Project

Correlational Neural Networks

Akshita Mittel CS13B1040

Project Guide: Debaditya Roy

Motivation

- * "Detecting complex video events based on audio and visual modalities is still a largely unresolved issue."
- * The paper: <u>Video Event Detection via Multi-modality Deep Learning</u> had used a single layer neural network (CNN) to represent video for event detection.
- * The main contribution from their end was enhancing the regularisation term, from the error function derived from RICA.
- * The main objective was to come up with an alternate architecture that could be applied to more general cases.
- * There were several such architectures, but the one that I chose for my project was Correlational Neural Network (CorrNet).

Correlational Neural Networks

- * Common Representation Learning (CRL), wherein different views of the data are embedded in a common subspace.
- * The applications described in the paper include:
 - * Reconstruction of images from one half
 - * Translations between languages such as Eng/French, Eng/German

Correlational Neural Network

$$\mathcal{J}_{\mathcal{Z}}(\theta) = \sum_{i=1}^{N} (L(\mathbf{z}_i, g(h(\mathbf{z}_i))) + L(\mathbf{z}_i, g(h(\mathbf{x}_i))) + L(\mathbf{z}_i, g(h(\mathbf{y}_i)))) - \lambda \operatorname{corr}(h(X), h(Y))$$

$$\operatorname{corr}(h(X), h(Y)) = \frac{\sum_{i=1}^{N} (h(\mathbf{x}_i) - \overline{h(X)})(h(\mathbf{y}_i) - \overline{h(Y)})}{\sqrt{\sum_{i=1}^{N} (h(\mathbf{x}_i) - \overline{h(X)})^2 \sum_{i=1}^{N} (h(\mathbf{y}_i) - \overline{h(Y)})^2}}$$

- * The fundamental equation behind correlational neural network has 4 main parts:
 - * The reconstruction error for each modality individually
 - * The reconstruction error with both the modalities together
 - * The advantage gained from the correlation between the two modalities

Objective

- * To expand the horizon of the network by including dataSets which aren't as simple as the MNIST dataSet.
- * For this objective we use the CIFAR10 image dataSet.
- * This has approximately 60,000 tiny 32x32 pixel images, with appropriate labels.
- * The main goal as the motivation suggests is to apply this to a multi modal domain, which is not restricted to just images.

Example CIFAR 10 images after basic preprocessing.

MNIST dataSet

* Accuracy:

- * The transfer learning for left-right and right-left are coming as 77.05% and 78.81%
- * The correlation is 42.57% for the MNIST data set.

* Architecture:

- * These results required only a 3 layer deep network.
- * The activation function is sigmoidal
- * Weights are determined using SGD.

Modules for CIFAR10

Modification to DataSet

- Extract the DataSet using Pickle.
- * Reshape the dataSet from a vector of size 3072 to 3 instances of the image 32*32 (Red, Blue, and Green).
- * Convert all the images to grey scale and divide them into left and right views.
- * Convert each half of the image into a vector form (each of size 512). This will be fed into our CorrNet.
- * Divide the images for Test, Train, and 2 Validation sets. Out of the 5 batches, the data is split as follows:
 - * Test:10000x512 (batch 1)
 - * Train: 20000x512 (batch 2, 3, & 4)
 - Validation 1: 8000x512 (batch 5)
 - Validation 2: 2000x512 (batch 5)

Basic Model

- * The basic model had 3 layers:
 - * The input layer: 1024 units, separated into 2 for each half of the image.
 - * The correlational layer: This middle layer had 500 units.
 - * The output layer was identical to the input layer.
- * The accuracy:
 - * The **transfer learning** for left-right and right-left are coming as 23.87% and 23.19%
 - * The **correlation** is 36.40%

A deeper approach

- * The model was created as shown
- * The correlational accuracy was around 23%
- * The transfer accuracy was around 11%
- * It can be seen from the diagram that the reconstruction is just some abstract features that were drawn from the images.
- * The reconstructed figures are not close to the original.
- * A more robust model is required.

Very deep auto encoders

- Alex Krizhevsky and Geoffrey E. Hinton
- * They used "very deep auto-encoders" to get a binary representation in the middle layer.
- * Image retrieval was efficient for various dataSets, using this binary representation.
- * An example of image retrieval for the CIFAR10 data set is shown on the left.
- * The main points in consideration are:
 - * They initialised the network using Deep belief networks.
 - * Mean Square root error was used
 - * The layers in the actual auto-encoder started from an arbitrary value associated with the image (336), the next layer was expanded to 1024 units.
 - * From there on each layer was reduced to half the size of the previous layer, till we reached 32.
 - * Instead of the innermost layer being 32, they used 28 neurons.

Application of Hinton's paper

- * The middle section of the CorrNet14 is constructed using the architecture described in Hinton's paper.
- * The current architecture is: 512*, 200*, 1024, 512, 256, 128, 64, 28.
- * Instead of using CNN's as a preprocessor, the model has used Relu as an activation function.

Current work

- * There were certain issue's while training the CorrNet, I am currently working on resolving these. The idea's that I am currently working on are as follows:
 - * Increasing the size of the DataSet, by simple techniques such as pivoting and so on.
 - * Using various Keras modules to train my network greedily layer by layer.

Extension of project

- * Expand the range of modalities:
 - Instead of restraining to image correlations, aim to correlate between different modalities using CorrNet
- * Possibility of employing dropout mechanism to enhance performance.

References

Video Event Detection via Multi-modality Deep Learning

- * I-Hong Jhuo¹and D.T. Lee¹²
 ¹Institute of Information Science, Academia Sinica, Taipei, Taiwan
 ²Dept. of Computer Science and Engineering, National Chung Hsing University, Taichung, Taiwan ihjhuo@gmail.com, dtlee@ieee.org
- Correlational Neural Networks

Sarath Chandar 1 , Mitesh M Khapra 2 , Hugo Larochelle 3 , Balaraman Ravindran 4

¹University of Montreal. <u>apsarathchandar@gmail.com</u>

²IBM Research India. mikhapra@in.ibm.com

 3 University of Sherbrooke. hugo.larochelle@usherbrooke.ca 4 Indian Institute of Technology Madras. $\underline{\text{ravi@cse.iitm.ac.in}}$

* Using Very Deep Autoencoders for Content-Based Image Retrieval

- * Alex Krizhevsky and Geoffrey E. Hinton
- * University of Toronto Department of Computer Science
- *6 King's College Road, Toronto, M5S 3H5 Canada

* The basic Code:

*Sarath Chandar, Mitesh M Khapra, Hugo Larochelle, Balaraman Ravindran. [Correlational Neural Networks](http://arxiv.org/abs/1504.07225)

Thank you!