Hand in 1

Christophe Marciot

15 septembre 2020

Exercise 6

Suppose we have a natural transformation $\tau: F \to G$. We want to associate to τ a functor $H_{\tau}: \mathcal{C} \times [1] \to \mathcal{D}$ in a meaningful way. In fact we want that this association to remind us of the notion of homotopy in regular homotopy theory.

We propose the following definition. For an object $(c, x) \in \mathrm{Ob}\,\mathcal{C} \times [1]$ and an arrow $(f, p) \in \mathrm{Ob}\,\mathcal{C} \times [1]((c, x), (c', x'))$ we set their image by H_{τ} :

$$H_{\tau}(c,x) = \begin{cases} F(c) & \text{if } x = 0, \\ G(c) & \text{if } x = 1 \end{cases}$$

and

$$H_{\tau}(f,p) = \begin{cases} F(f) & \text{if } p = 0 \le 0, \\ \tau_{c'} F(f) = G(f) \tau_c & \text{if } p = 0 \le 1, \\ G(f) & \text{if } p = 1 \le 1. \end{cases}$$

Note that the equality in the second line is due to the fact that τ is a natural transformation. First, we need to prove that H_{τ} is a functor. Let us consider the identity $\mathrm{Id}_{(c,x)}=(\mathrm{Id}_c,x\leq x)$. We want to prove that $H_{\tau}(\mathrm{Id}_{(c,x)})=\mathrm{Id}_{H_{\tau}(c,x)}$. We distinguish two cases:

- If x = 0: Then we get that $H_{\tau}(\mathrm{Id}_{(c,0)}) = H_{\tau}(Id_c, 0 \le 0) = F(\mathrm{Id}_c) = \mathrm{Id}_{F(c)} = \mathrm{Id}_{H_{\tau}(c,0)}$.
- If x = 1: Then we get that $H_{\tau}(\mathrm{Id}_{(c,1)}) = H_{\tau}(Id_c, 1 \le 1) = G(\mathrm{Id}_c) = \mathrm{Id}_{G(c)} = \mathrm{Id}_{H_{\tau}(c,1)}$.

Note that the third equalities are given by the fact that F and G are functors. Secondly, we need to prove that H_{τ} respects composition. Suppose we have $(c,x) \xrightarrow{(f,p)} (c',x') \xrightarrow{(f',p')} (c'',x'')$. We consider the following cases :

- If $p = p' = 0 \le 0$: We have $H_{\tau}((f', 0 \le 0)(f, 0 \le 0)) = H_{\tau}(f'f, 0 \le 0) = F(f'f) = F(f')F(f) = H_{\tau}(f', 0 \le 0)H_{\tau}(f, 0 \le 0)$.
- If $p = p' = 1 \le 0$: We have $H_{\tau}((f', 1 \le 1)(f, 1 \le 1)) = H_{\tau}(f'f, 1 \le 1) = F(f'f) = F(f')F(f) = H_{\tau}(f', 1 \le 1)H_{\tau}(f, 1 \le 1).$
- If $p = 0 \le 0$ and $p' = 0 \le 1$: We have $H_{\tau}((f', 0 \le 1)(f, 0 \le 0)) = H_{\tau}(f'f, 0 \le 1) = \tau_{c''}F(f'f) = (\tau_{c''}F(f'))F(f) = H_{\tau}(f', 0 \le 1)H_{\tau}(f, 0 \le 0).$
- If $p = 0 \le 1$ and $p' = 1 \le 1$: We have $H_{\tau}((f', 1 \le 1)(f, 0 \le 1)) = H_{\tau}(f'f, 0 \le 1) = G(f'f)\tau_c = G(f')(G(f)\tau_c) = H_{\tau}(f', 1 \le 1)H_{\tau}(f, 0 \le 1).$

(Note that the third and fourth cases are actually the same). This proves that H_{τ} is a functor. Now, thirdly, we need to prove that H_{τ} respects the wanted commutative property. We have that

$$\begin{cases} H_{\tau} \circ \operatorname{Id}_{\mathcal{C}} \times 0(c) = H_{\tau}(c, 0) = F(c), \\ H_{\tau} \circ \operatorname{Id}_{\mathcal{C}} \times 1(c) = H_{\tau}(c, 1) = G(c), \\ H_{\tau} \circ \operatorname{Id}_{\mathcal{C}} \times 0(f) = H_{\tau}(f, 0 \le 0) = F(f), \\ H_{\tau} \circ \operatorname{Id}_{\mathcal{C}} \times 1(f) = H_{\tau}(f, 1 \le 1) = G(f) \end{cases}$$

for each $c \in \text{Ob } \mathcal{C}$ and $f \in \text{Mor } \mathcal{C}$. So the commutativity criterion is respected.

Now, let $H \in \operatorname{Fun}_{F,G}(\mathcal{C} \times [1], \mathscr{D})$. We want to associate to H a natural transformation τ_H from F to G. The natural thing to do seems to set $(\tau_H)_c = H(\operatorname{Id}_c, 0 \le 1)$ for each $c \in \operatorname{Ob} \mathcal{C}$. We then need to show that this defines a natural transformation. Let $c, d \in \operatorname{Ob} \mathcal{C}$ and $f \in \mathcal{C}(c, d)$. We need to show that

$$F(c) \xrightarrow{(\tau_H)_c} G(c)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(d) \xrightarrow[(\tau_H)_d]{} G(d)$$

commutes. This said we have that

$$G(f)(\tau_H)_c = H(f, 1 \le 1)H(\mathrm{Id}_c, 0 \le 1) = H(f, 0 \le 1) = H(\mathrm{Id}_d, 0 \le 1)H(f, 0 \le 0) = (\tau_H)_d F(f)$$

and thus the diagram commutes and we have that τ_H is a natural transformation.

Lastly, we need to prove that these associations are inverses of each other, i.e. $H_{\tau_H} = H$ for each $H \in \operatorname{Fun}_{F,G}(\mathcal{C} \times [1], \mathcal{D})$ and $\tau_{H_{\tau}} = \tau$ for each $\tau \in \operatorname{Nat}(F,G)$. For $H \in \operatorname{Fun}_{F,G}(\mathcal{C} \times [1], \mathcal{D})$, (c,x), $(d,y) \in \operatorname{Ob} \mathcal{C} \times [1]$ and $(f,p) \in \operatorname{Ob} \mathcal{C} \times [1]((c,x),(d,y))$, we have that

$$H_{\tau_H}(c,x) = \begin{cases} F(c) = H(c,0) & \text{if } x = 0, \\ G(c) = H(c,1) & \text{if } x = 1. \end{cases}$$

$$H_{\tau_H}(f,p) = \begin{cases} F(f) = H(f,0 \le 0) & \text{if } p = 0 \le 0, \\ (\tau_H)_d F(f) = H(\operatorname{Id}_d, 0 \le 1) H(f,0 \le 0) = H(f,0 \le 1) & \text{if } p = 0 \le 1, \\ G(f) = H(f,1 \le 1) & \text{if } p = 1 \le 1... \end{cases}$$

We clearly see that H_{τ_H} is equal to H. Lastly, let $\tau \in \text{Nat}(F,G)$. Then

$$(\tau_{H_{\tau}})_c = H_{\tau}(\mathrm{Id}_c, 0 \le 1) = \tau_c$$

for each $c \in \text{Ob } \mathcal{C}$ and thus we get that $\tau_{H_{\tau}}$ is equal to τ . We can then conclude that those assignations are inverses to each other and define bijective maps between Nat(F, G) and $\text{Fun}_{F,G}(\mathcal{C} \times [1], \mathcal{D})$.