

Efficient energy use of local and remote data processing

Team Name:

MalaJunta

Team Members:

- Kupchenko Leonid
- Jerry Gozie
- Konstantin Chukreev
- Nikita Volkov
- Oleg Ziangirov

Perfect Storm

Lower Power device IoT

IOT

Network of physical devices, with electronics, software, sensors, and network connectivity which enable these objects to connect and exchange data.

Where can we find it?

It is everywhere

The Problem

Lower Consumption Optimization

Unbalance competition.

Jet engine example

The jet engine fitted with 5,000 sensors can generate up to 10 GB of data per second.

What we will do:

We will implement a simple NLA data processing algorithm and compare the efficiency of it when:

We process the data in the host

We process the data in the smart sensor

Algorithm

Matrix-by-matrix product is the **core** for almost all efficient algorithms in linear algebra. (NLA Lecture 3, Ivan Oseledets)

Methodology:

Nrf52-dk + Power Profiler Kit nRF6707

Results

Power Consumption

Local Processor Remote Processor

Conclusion & Future Steps

- By processing the data in a local way we can save from 1 to 1.5 years of battery life time.
- In base of the results we can select the most optimal way to process data according to the characteristics of the task and do it in an efficient way.
- As future steps, we are hoping to find a criteria of effective data processing allocation.

Sensor to use:

CC2650 Wireless MCU

Contains sensors for:

