Devoir en temps libre n°2

Exercice 1. E est un ensemble à dix éléments : $\{a; b; c; d; e; f; g; h; i; j\}$.

- 1. Dénombrer les parties de E à 5 éléments qui contiennent :
 - (a) $a ext{ et } b$;
 - (b) a mais pas b;
 - (c) b mais pas a;
 - (d) ni a ni b.
- 2. En déduire la relation : $\binom{10}{5} = \binom{8}{3} + 2\binom{8}{4} + \binom{8}{5}$.
- 3. Généraliser le résultat obtenu en prouvant, par un dénombrement, que pour $2 \le k \le n$,

$$\binom{n}{k} = \binom{n-2}{k-2} + 2\binom{n-2}{k-1} + \binom{n-2}{k}.$$

Exercice 2. Soit n et k deux entiers naturels tels que $n \ge k+1$. Démontrer l'égalité suivante :

$$(n-k) \times \binom{n}{k} = (k+1) \times \binom{n}{k+1}.$$

Devoir en temps libre n°2

Exercice 1. E est un ensemble à dix éléments : $\{a; b; c; d; e; f; g; h; i; j\}$.

- 1. Dénombrer les parties de E à 5 éléments qui contiennent :
 - (a) $a ext{ et } b$;
 - (b) a mais pas b;
 - (c) b mais pas a;
 - (d) ni a ni b.
- 2. En déduire la relation : $\binom{10}{5} = \binom{8}{3} + 2\binom{8}{4} + \binom{8}{5}$.
- 3. Généraliser le résultat obtenu en prouvant, par un dénombrement, que pour $2 \le k \le n$,

$$\binom{n}{k} = \binom{n-2}{k-2} + 2\binom{n-2}{k-1} + \binom{n-2}{k}.$$

Exercice 2. Soit n et k deux entiers naturels tels que $n \ge k+1$. Démontrer l'égalité suivante :

$$(n-k) \times \binom{n}{k} = (k+1) \times \binom{n}{k+1}.$$