Date: 17/01/2021

In addition to Part-I (General Handout for all courses appended to the timetable), this portion gives further specific details regarding the course.

Course Code : MF F485

Name of the Course : Sustainable Manufacturing Instructor-In-Charge : KULDIP SINGH SANGWAN

I. Scope and Objective of the Course

Growing awareness and concerns about climate change, energy security and natural resource scarcity led by the rapid expansion of economic activity in the last two decades have put government and business under immense pressure to optimize the natural resources, to increase use of renewable energy and recycled material and to reduce the environmental effects involved in the production and consumption of goods and services. The primary objective of this course is to provide environmental, economical and social perspective of manufacturing processes, systems and tooling including material, energy and toxicity analysis during the various phases of product life cycle. A multidisciplinary approach will be undertaken. Collection and analysis of real world data from industry will be encouraged.

II. Textbook

1. K S Sangwan, A K Digalwar and Monica Sharma, 2011, Sustainable Manufacturing, EPH, New Delhi (soft copy)

III. Reference Papers

- 1. V K Mittal, 2013, Development and Validation of Drivers for, Barriers to and Stakeholders of Green Manufacturing, Phd Thesis, 2013, BITS Pilani https://shodhganga.inflibnet.ac.in/handle/10603/25544?mode=full
- 2. KS Sangwan, Development of a multi criteria decision model for justification of green manufacturing systems, International Journal of Green Economics 5 (3), 285-305
- 3. KS Sangwan, Performance value analysis for justification of green manufacturing systems Journal of Advanced Manufacturing Systems 5 (1), 59-73
- 4. KS Sangwan, Evaluation of manufacturing systems based on environmental aspects using a multi–criteria decision model, International Journal of Industrial and Systems Engineering 14 (1), 40-57.
- Yovana M.B. Saavedra, Ana P.B. Barquet, Henrique Rozenfeld, Fernando A. Forcellinic, Aldo R. Ometto, Remanufacturing in Brazil: case studies on the automotive sector, Journal of Cleaner Production, 2013, 1-10
- 6. AM King, SC Burgress, W Ijomah and CA McMahon, Reducing waste: repair, recondition, remanufacture or recycle?, Sustainable Development, Vol 14, 2006, 257-267.
- 7. Christoph Herrmann; Marcus Mansour, Marc Mateika, Strategic and Operational Life Cycle Management Model, Methods and Activities, Proceedings of the 12th International CIRP Seminar on LCE 2005, Laboratoire 3S, Grenoble, France, April 3-5, 2005
- 8. KS Sangwan, AK Digalwar, V Bhakar, Life Cycle Assessment and Comparison of CRT, LCD and LED Monitors, Procedia CIRP, 2015, Vol 29, pp. 433-438.

- 9. Kuldip Singh Sangwan, Vikrant Bhakar, Shilpa Naik and Sylvi Nazareth Andrat, Life cycle assessment of incandescent, fluorescent, compact fluorescent and light emitting diode lamps in an Indian scenario, Procedia CIRP, Vol 15, 2014, pp 467-472.
- 10. S. G. Lee, S. W. Lye and M. K. Khoo, A Multi-Objective Methodology for Evaluating Product End-of-Life Options and Disassembly, Int J Adv Manuf Technol (2001) 18:148–156
- 11. Nicola Morelli, Developing new product service systems (PSS): methodologies and operational tools, Journal of Cleaner Production 14 (2006)
- 12. Anil Jindal, Multi-objective Design and Optimization of a Closed-loop Supply Chain Network, and Assessment of Collection Methods, Product Recovery Methods and Network Configurations, PhD Thesis, 2015, BITS Pilani.
- 13. Vikrant Bhakar, development of a sustainability assessment framework for manufacturing industry, PhD Thesis, 2018, BITS Pilani.

IV. Course Contents

			Number
Tania	Lagraina Objectives		
Topic	Learning Objectives	Learning Outcomes	of
			Lectures
1. Introduction		To understand the effect of	
	Overview, WEEE, triple bottom	manufacturing on sustainable	3
	concept of environment,	development in terms of	3
	economy and society	environmental, economic and social	
0.0		impacts.	
2. Sustainable		To find and analyze the drivers,	
manufacturing	Drivers for, barriers to, and	barriers and stakeholders.	
implementation	stakeholders of sustainable	To prioritize the drivers, barriers	6
factors	manufacturing	according to industry, government	
		and expert perspectives.	
2.6.4.1.44	For the section of the section of the	Classification of stakeholders.	
3. Sustainable	Eco-innovation, design for	To understand the importance of	
manufacturing	environment, design for	design for various sustainability	4
design	disposal, design for energy	elements.	4
	efficiency, design for material		
	efficiency, sustainable		
	materials, sustainable energy		
4. Life cycle	Strategic and operational	To understand the concept and	
management and	evaluation of technologies	importance of life cycle	
assessment	using life cycle concept, MET	management.	5
	analysis, environmental	To do life cycle assessment of	_
	impact assessment, various	products and processes based upon	
	impact assessment models,	end-point and mid-point categories.	
5. End of life (EOL)	End-of-life strategies and	To understand the 3R concepts from	
strategies	product definition, reverse	design and operational perspectives.	4
	logistics		

			Number
Торіс	Learning Objectives	Learning Outcomes	of
			Lectures
6. Sustainability	Baratian and	To develop critical factors, resource	
assessment	Readiness assessment and sustainability assessment	perspective and assessment models	3
framework	sustainability assessment		
7. Circular economy	objectives, design and	To develop a framework and critical	
and sustainable	framework of a circular	factors for design of a circular	2
manufacturing	economy	economy	
8. Sustainable	Integrated product policy,	To develop PSS business models	
business models	sustainable product service		2
	systems, green factories		
9. Sustainable	Integration of pre-	To develop integrated supply chain	
supply chains	manufacturing, manufacturing	mathematical models	2
	and post-manufacturing		
	activities for sustainability		
10. Industry 4.0 and	Role of industry 4.0 in	To understand the sustainable	
sustainable	sustainable manufacturing	manufacturing from Industry 4.0	2
manufacturing	Sustainable manaractaring	perspective	
11. Case studies	To practice life cycle	To develop life cycle assessment	4
	assessment on LCA softwares	models using case studies.	
12 Sustainability	Integrating sustainability at	To understand the role of	
Games	the strategy level using	sustainability viz-a-viz other business	5
	business game in teams	strategies	42
Total			

V. Evaluation Scheme and Schedule

EC No.	Component	Duration (minutes)	Weightage (%)	Date, time, venue	Nature
1	Mid Semester exam	90	25		ОВ
4	Project		40	Continuous evaluation	
5	Comprehensive exam	120	35		CB/OB

- VI. Chamber Consultation Hour: To be announced in the first class.
- VII. Notices concerning the course: All notices concerning the course will be displayed on the Nalanda.
- VIII. Make-up Policy: Make-up will be permitted only in genuine cases with prior permission.
- IX. Grading: If a student gets less than the 20% of the toper marks then he/she is liable to get an NC grade

Instructor-In-Charge MF F485

