MapReduce and PageRank

Question 1:

Suppose our input data to a map-reduce operation consists of integer values (the keys are not important). The map function takes an integer i and produces the list of pairs (p, i) such that p is a prime divisor of i. For example, map (12) = [(2,12), (3,12)].

The reduce function is addition. That is, reduce $(p, [i_1, i_2, ..., i_k])$ is $(p, i_1+i_2+...+i_k)$.

Compute the output, if the input is the set of integers 15, 21, 24, 30, 49.

The output of map function is

map
$$(15) = [(3, 15), (5, 15)]$$

map
$$(21) = [(3, 21), (7, 21)]$$

map
$$(24) = [(2, 24), (3, 24)]$$

map
$$(30) = [(2, 30), (3, 30), (5, 30)]$$

map
$$(49) = [(7, 49)]$$

These are the respective prime divisors of inputs

The output of reduce function is

Question 2:

Consider three Web pages with the following links:

Suppose we compute PageRank with a β of 0.7, and we introduce the additional constraint that the sum of the Page Ranks of the three pages must be 3, to handle the problem that otherwise any multiple of a solution will also be a solution. Compute the page Ranks a, b, and c of the three pages A, B, and C, respectively.

Value of a, b, or c as we iterate are: a

All PageRank is multiplied by .7 before distribution, and .3 is then added to each new PageRank.

$$a = \beta(0) + (1 - \beta) \rightarrow .3$$

$$b = \beta \left(\frac{a}{2}\right) + (1 - \beta) \rightarrow .7\left(\frac{a}{2}\right) + .3$$

$$c = \beta \left(\frac{a}{2} + b + c\right) + (1 - \beta) \rightarrow .7\left(\frac{a}{2} + b + c\right) + .3$$

That immediately tells us a = .3. We can then use the second equation to discover $b = .7(.\frac{3}{2}) + .3 = .405$. Finally, the third equation simplifies to c = .7(.555 + c) + .3, or .3c = .6885. From this equation we get c = 2.295

To compute the subs of each two of the variables:

$$a + b = .705$$
, $a + c = 2.595$, and $b + c = 2.7$

Question 3:

Suppose we compute PageRank with β =0.85. Write the equations for the PageRanks a, b, and c of the three pages A, B, and C, respectively.

Formula:

$$a = \beta * c + (1 - \beta) \frac{1}{3}$$

$$b = \beta * \frac{a}{2} + (1 - \beta) \frac{1}{3}$$

$$c = \beta * (\frac{a}{2} + b) + (1 - \beta) \frac{1}{3}$$
Here $\beta = 0.85$

$$a = 0.85*c + (1 - 0.85) \frac{1}{3}, a = 0.85c + 0.05$$

$$b = 0.85*0.5*a + 0.05, b = 0.425a + 0.05$$

 $c = 0.85*[0.5*a + b] + 0.05, c = 0.425a + 0.85b + 0.05$

Question 4:

Assuming no "taxation," compute the page Ranks a, b, and c of the three pages A, B, and C, using iteration, starting with the "0th" iteration where all three pages have rank a = b = c = 1. Compute as far as the 5th iteration, and also determine what the page Ranks are in the limit.

$$a = c$$

$$b = \frac{a}{2}$$

$$c = \frac{a}{2} + b$$

At
$$0^{th}$$
 iteration: $a = 1$; $b = 1$; $c = 1$

At 1st iteration:
$$a = c = 1$$
; $b = \frac{1}{2}$; $c = \frac{1}{2} + 1 = \frac{3}{2}$

At 2nd iteration:
$$a = c = \frac{3}{2}$$
; $b = \frac{a}{2} = \frac{1}{2}$; $c = \frac{1}{2} + \frac{1}{2} = 1$

At 3rd iteration:
$$a = c = 1$$
; $b = \frac{a}{2} = \frac{\frac{3}{2}}{2} = \frac{3}{4}$; $c = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}$

At 4th iteration:
$$a = c = \frac{5}{4}$$
; $b = \frac{a}{2} = \frac{1}{2}$; $c = \frac{5}{4}$

At 5th iteration:
$$a = \frac{5}{4}$$
; $b = \frac{5}{8}$; $c = \frac{9}{8}$