Pareto optima and equilibria when preferences are incompletely known (G. Carlier and R. Dana, 2013)

Marek Kapera 20 01 2020

Big picture of article contents

- Exchange economy, finite number of Agents
- Incomplete preferences
- Goal: efficient and equilibrium allocations satisfying how it intuitively look like, ie
 - Efficient allocations for the incomplete preferences coincide with the set of efficient allocations that result for some choice of utilities in the sets of each agent
 - Equilibria for the incomplete preferences coincide with the set of equilibria that result for some choice of utilities in the sets of each agent
- Very general mathematical formulation

Incomplete preferences modeling

In short, incomplete preferences are modelled by representing them in terms of multiple utility functions, instead of a single one.

- For each consumer $i \in I$ his preferences are given by class of utility functions U_i consisting of multiple utility functions $u_i \in U_i$
- Equivalently, instead of class of utility functions, we can think of utility correspondence (one mulit-valued function)
- Corresponding preference relation by the unanimity rule $X \succ_{\mathcal{U}_i} Y \iff \forall u_i \in \mathcal{U}_i : u_i(X) > u_i(Y)$
- Possible weaker criteria, omitted in presentation

Model setting

As a primitive, existence of two (possibly infinitly dimensional) real vector spaces E, F is assumed, along with mapping $(P, X) \in F \times E \to P \cdot X \in \mathbb{R}$.

- Mapping $\cdot (P, X)$ is separating duality mapping ie. it is bilinear and for $P \in F$ (resp. $X \in E$) if for all $X \in E$ we have $P \cdot X = 0$ then P = 0.
- Topology on F (resp. E): minimal locally convex and Hausdorff topology, such that for given $X \in E$ we have that $P \in F \to P \cdot X$ is continuous
- With such topology, F is a topological dual to E, ie. it can be thought of as a space of continuous linear functionals from E into \mathbb{R}
- We interpret E as a space of goods and F as a space of prices

Assumptions: 1

A1. For every $i \in I$ every $u_i \in \mathcal{U}_i$ is finite, concave, superdifferentiable and $\partial u_i(X)$ is compact in topology on F for every $X \in E$.

Note: For any concave function u defined on E its superdifferential at given $X \in E$ is

$$\partial u(X) = \{ P \in F : \forall Y \in E : u(Y) - u(X) \le P \cdot (Y - X) \}$$

and u is said to be superdifferentiable if for all $X \in E$ $\partial u(X) \neq \emptyset$.

4

Assumptions: 2

A2. For every $i \in I$ set \mathcal{U}_i is convex and there is topology on \mathcal{U}_i such that it is compact and mapping $u_i \in \mathcal{U}_i \to u_i(X)$ is for every X continuous in \mathcal{U}_i

Note: the second part of this axiom means, that \mathcal{U}_i admits compact parametrization.

Assumptions: 3

A3. There exist $\Phi \in E$ such that for all $i \in I$ every $u_i \in \mathcal{U}_i$ every $P \in \partial u_i(X_i)$ one has $\Phi \cdot P > 0$ and the set

$$V_i(X_i) = \left\{ \frac{P}{\Phi P} : P \in \partial \mathcal{U}_i(X_i) \right\}$$

is compact in topology on F.

Note: this assumption might be thought of, as that there is direction in which all utility functions in all classes increase

Example: case of finite dimensional E, F

All those assumptions and topological assumptions might look scary so we show how those work in usual case of $E = F = \mathbb{R}^d$ with \mathcal{U}_i being a convex set of concave functions.

- A1 is trivially satisfied,
- A2 is satisfied. First part trivially by definition of U_i and second part for topology of uniform convergence on compact subsets,
- A3 is satisfied if and only if there is a common vector $e \in \mathbb{R}^d$ such that all $u_i \in \mathcal{U}_i$ for all $i \in I$ are increasing in direction e.

No-trade principle and efficient allocations

Def Let X be aggregate endowment. Allocation $(X_i)_{i \in I}$ is efficient if there is no $(Y_i)_{i \in I}$ such that $Y_i \succ_{\mathcal{U}_i} X_i$.

Theorem 1. The following are equivalent

- 1. There exist no $(Y_i)_{i \in I}$ such that $\sum_i Y_i = 0$ and $X_i + Y_i \succ_{\mathcal{U}_i} X_i$ for all i,
- 2. $\bigcap_{i\in I} V_i(X_i) \neq \emptyset$,
- 3. there exist $P \in F$ such that for all $i \in I \ X_i + t_i Y_i \succ_{\mathcal{U}_i} X_i$ for some $t_i > 0$ implies $P \cdot Y_i > 0$,
- 4. Allocation $(X_i)_{i \in I}$ is efficient,
- 5. There exist $(u_i)_{i \in I}$ with $u_i \in \mathcal{U}_i$ such that $(X_i)_{i \in I}$ is efficient for economy with complete preferences represented by $(u_i)_{i \in I}$.

Equilibria and welfare theorems

Def Let W_i be initial endowment of consumer i. Allocation $X^* = (X_i^*)_{i \in I}$ and prices $P^* \in F$ is an equilibrium with transfer payments if for every i, $X_i \succ_{\mathcal{U}} X_i^*$ implies $P^*X_i > P^*X_i^*$. An allocation $(X_i^*)_{i \in I}$ and prices $P^* \in F$ is an equilibrium if for every i, $P^*X_i^* = P^*W_i$ and $X_i \succ_{\mathcal{U}_i} X_i^*$ implies $P^*X_i > P^*W_i$

Equilibria and welfare theorems

Theorem 2. The following are equivalent

- 1. (X^*, P^*) is an equilibrium with transfers
- 2. $\lambda P^* \in \bigcap_{i \in I} V_i(X_i^*)$ for some $\lambda > 0$
- 3. There exist $(u_i)_{i\in I}$ with $u_i\in \mathcal{U}_i$ such that X^* is equilibrium with transfers for economy with complete preferences represented by $(u_i)_{i\in I}$.

Theorem 3. The following are equivalent

- 1. (X^*, P^*) is an equilibrium
- 2. $\lambda P^* \in \bigcap_{i \in I} V_i(X_i^*)$ for some $\lambda > 0$ and for every $i, P^*X_i^* = P^*W_i$
- 3. There exist $(u_i)_{i\in I}$ with $u_i\in \mathcal{U}_i$ such that X^* is equilibrium with transfers for economy with complete preferences represented by $(u_i)_{i\in I}$.

Equilibria and welfare theorems

Theorem 4. Following assertions hold

- 1. Any equilibrium allocation is efficient
- 2. Any efficient allocation is equilibrium allocation with transfers