Moving Beyond Birthweight: Examining Developmental Origins of Disease Using Dynamic Postnatal Growth Indicators

Eva Tanner¹, Carl-Gustaf Bornehag^{1,2}, Chris Gennings¹

¹Icahn School of Medicine at Mount Sinai, NY, NY ²Karlstad University, Karlstad, Sweden

Conclusion

NOVEL NONLINEAR MODEL APPLICATION LINKS PARADOXICAL PFOA-INDUCED CHILD GROWTH PATTERNS

Background

- Most prenatal exposure and growth studies use cumulative outcome measures (e.g. weight, BMI)
- PFOA related to lower birthweight, but higher weight later on

Methods

 Modeled weight trajectory from birth to 5.5 years among 1334 children in the SELMA Study

$$\mu(t) = \frac{\alpha_1}{1 + e^{-\beta_1(t - \delta_1)}} + \frac{W - \alpha_1}{1 + e^{-\beta_2(t - \delta_2)}}$$

Double Logistic Model

- Assessed prenatal PFOA exposure in relation to growth
 - Infant PGV
 - Age at infant PGV (δ_1)
 - Infant growth spurt length (Δt₁)
 - Post-spurt weight plateau (α_1)

More Info

- Eva.Tanner@mssm.edu
- SELMASTUDIEN.SE

Results

Observed vs. Predicted Weight & Weight Velocity

Average Predicted Weight & Weight Velocity Trajectories for 10^{th%} vs. 90th% PFOA Levels

Discussion

- PFOA-induced low birthweight followed by delayed PGV (δ_1) , longer infant growth spurt (Δt_1) , higher post-spurt weight (α_1)
- Nonlinear model useful to identify shifting growth patterns
- Future studies can extract additional dynamic growth metrics