Data Science Autoregessive models

Estimating linear temporal latent factors

Stéphane Marchand-Maillet

Department of Computer Science

Master en Sciences Informatiques - Autumn semester

Table of contents

Motivation

Temporal series

Trend, seasonality and residual

Prediction

Stationary process

Exponential smoothing

AR models

Order selection

Linear Predictive Coding (LPC)

What is the lecture about?

- * To understand temporal data modeling
- * To understand temporal data analysis
- * To understand the concept of auto-regression
- → linear temporal latent model
- * To present the basic of autoregressive models (AR(p))

Reading: [3] and [1] (chap 13)

Definition

* A temporal series is a sequence of observations depending on time

$$\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_t, \dots, \mathbf{y}_T$$
 $\mathbf{y}_t \in \Omega \subseteq \mathbb{R}^D$

- * In general, we assume a constant time interval
- * For statistical temporal data analysis, we study causality
- \Rightarrow y_t depends on the p preceding values y_{t-1}, \ldots, y_{t-p}
 - * Causality is the information we want to model (give/measures parameters)

Applications

- * Économetry (trend prediction, risk analysis...)
- * Social (demography, migrations ...)
- Physical measures (explanation of physical constants/values)
- \star Communication and information \to telecom, network, coding, speech, video ...

Examples

- * Temporal data analysis (mean, variance, correlation)
- ★ Frequency analysis (periodicity)
- * Combination time/frequency, time/scale
- → Non-stationary series

Temporal series

* Definition

$$\mathbf{y}_{t} = \mathbf{g}(t) + \mathbf{\varepsilon}_{t}, \quad t \in [T]$$

- * y_t scalar or vector
- \star g(t) structure of the series
- $\star \epsilon_t$ noise centered, uncorrelated (white noise)
- \Rightarrow ε_t random component of y_t

Components

* Long-term: the trend

* Periodic: the seasonality

* Random: the residual

Components

- \star Additive scheme $y_t = f_t + s_t + \varepsilon_t$
- * Multiplicative scheme $y_t = f_t \odot s_t \odot (1 + \varepsilon_t)$ (and variations)

Fig. 4 – Nombre mensuel de passagers internationaux aux États Unis de 1949 à 1960

Note: Multiplicative is equivalent to the additive scheme when considering the log of the series

Component estimation

A rigorous analysis requires the estimation of the trend, independent from seasonality and noise

Smoothing

By definition, \mathbf{s}_{t} and $\boldsymbol{\epsilon}_{t}$ are 0-mean:

$$\mathbb{E}\mathsf{S} = \mathbb{E}\mathsf{E} = \mathsf{0}$$

A moving average of \mathbf{u}_{+} preserves the trend only

Moving average $\Psi_{\mathfrak{p}}$

$$\Psi_{p}(y_{z}) = \bar{y}_{t} = \sum_{j=-p}^{p} a_{j} y_{t-j}$$

with $a_{-j} = a_j$ (symmetric filter) with $\sum_i a_i = 1$.

Note: This is equivalent to a convolution @

Correcting the seasonal variations

* Apply moving average to yt

$$\Psi_p(y_t) = \Psi_p(f_t) + \Psi_p(s_t) + \Psi_p(\varepsilon_t)$$

 \star if \mathbf{s}_{t} and $\mathbf{\varepsilon}_{\mathrm{t}}$ centered, $\Psi_{\mathrm{p}}(\mathbf{s}_{\mathrm{t}})$, $\Psi_{\mathrm{p}}(\mathbf{\varepsilon}_{\mathrm{t}}) \approx 0$

$$\hat{f}_t = \Psi_p(y_t)$$

 \Rightarrow To "erase" a seasonality with period p, apply moving average $\Psi_{\mathfrak{p}}$

Prediction

- \star Assume we know y_1, \ldots, y_T stationary
- \Rightarrow We wish to infer step t+p $\left(y_{t+p}\right)$ from steps until t $\left(y_{t}\right)\rightarrow\hat{y}_{t}(p)$
 - * k is the horizon
 - \star In general $\hat{y}_t(p) \neq y_{t+p}$ (prediction error)— we seek minimum error

No prediction is possible if there is no dependence/causality between values y_t , $t \in [T]$

For the rest of the lecture: D = 1 (scalar series):

- * Can be generalized per component
- * i.e we consider independent components
- \Rightarrow simplify notation ($y_t \in \mathbb{R}$)

Linear prediction

We assume that y_t depends linearly on the previous values

$$y_t = \sum_{k=1}^n \alpha_k y_{t-k}$$

$$y_t = \alpha^T y_{t-1}$$

with
$$\alpha = [\alpha_1, \dots \alpha_n]^\mathsf{T}$$
 and $y_{t-1} = [y_{t-1}, \dots, y_{t-n}]^\mathsf{T}$

 \Rightarrow Linear relationship \rightarrow correlation between values y_t

Stationary process

- * The series is seen as a stochastic process
 - \circ i.e y_{t} is a realization (draw/instance) of random variable Y_{t}
 - In general we know only one realization of $\{Y_t\}_{t \in [T]}$
- \Rightarrow impossible to use correlation between y_{t-1}, \dots, y_{t-p} , to predict y_t

Stationary hypothesis (constant mean):

Covariance $cov(y_t, y_{t-p}) = \gamma_p$ does not depend on t

$$\gamma_p = \mathsf{cov}(y_t, y_{t-p}) = \frac{1}{T-p} \sum_{t=p}^T (y_t - \mu)(y_{t-p} - \mu)$$

Prediction by Exponential smoothing

$$\hat{y}_{t}(p) = (1 - \tau) \sum_{j=0}^{p} \tau^{j} y_{t-1-j}$$

with $\tau \in [0, 1]$

- * Most basic method
- * The predicted value is the mean of past values
- ⋆ forget effect (exponential decay) making most recent values important

Exponential smoothing

Show:

$$\hat{y}_{t+1}(p) = (1-\tau)y_t + \tau \hat{y}_t(p-1)$$

or:

$$\hat{y}_{t+1}(p) = \hat{y}_{t}(p-1) + (1-\tau)(y_{t} - \hat{y}_{t}(p-1))$$

- $\star \ \tau \to 1$ prediction accounts for far past (smooth)
- * $\tau \to 0$ prediction only depends on immediate past (less smooth)

Exponential smoothing

Auto-regressive models (AR)

* order-p AR model: AR(p):

$$y_t = \sum_{j=1}^p a_j y_{t-j} + \varepsilon_t$$

- * Values at t linearly depends the on the p preceding values
- * ϵ_t is a white noise with variance σ_{ϵ}^2 ($\epsilon_t \sim \mathcal{N}(0, \sigma)$)

Parameter estimation

⋆ Mean-squared error regression:

$$\alpha^* = \underset{\alpha}{\mathsf{argmin}} \mathbb{E}[e_t^2] = \underset{\alpha}{\mathsf{argmin}} \sum_{t=0}^T \left(y_t - \sum_{j=1}^p \alpha_j y_{t-j} \right)^2$$

* Solution

$$\frac{\partial \mathbb{E}[e_t^2]}{\partial \alpha_i} = 0 \qquad j \in [\![p]\!]$$

Correlation and regression coefficient

★ We get for j:

$$\begin{split} \frac{\partial \mathbb{E}[e_t^2]}{\partial a_j} &= 2 \mathbb{E}_t \left[\left(y_t - \sum_{i=1}^p a_i y_{t-i} \right) y_{t-j} \right] \\ &= \gamma_j - \sum_{i=1}^p a_i \gamma_{i-j} = 0 \end{split}$$

* Recall $\gamma_i = cov(y_t, y_{t-j}) = \gamma_{-j}$ and y_t stationary

Yule-Walker Equations

Let $\rho_k = \frac{\gamma_k}{\gamma_0}$ be the correlation function \Rightarrow the minimization of mean squared error leads to

$$\rho_k = \sum_{i=1}^p \alpha_i \rho_{k-i} \qquad k > 0$$

$$\begin{cases} \rho_1 = a_1 \rho_0 + a_2 \rho_1 + a_3 \rho_2 + \dots + a_p \rho_{p-1} & k = 1 \\ \rho_2 = a_1 \rho_1 + a_2 \rho_0 + a_3 \rho_1 + \dots + a_p \rho_{p-2} & k = 2 \\ \vdots & \vdots & \vdots \\ \rho_p = a_1 \rho_{p-1} + a_2 \rho_{p-2} + a_3 \rho_{p-3} \dots + a_p \rho_0 & k = p \end{cases}$$

Auto correlation matrix

In matrix form, Yule-Walker equations are:

$$R_p \alpha = \rho$$

with $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_p]^\mathsf{T}$, $\boldsymbol{\rho} = [\rho_1, \dots, \rho_p]^\mathsf{T}$ and

$$\mathbf{R}_{p} = \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \rho_{3} & \dots & \rho_{p-1} \\ \rho_{1} & 1 & \rho_{1} & \rho_{2} & \dots & \rho_{p-2} \\ & \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{p-1} & \rho_{p-2} & \rho_{p-3} & \dots & \dots & 1 \end{pmatrix}$$

If R_p is invertible (positive definite)

$$a = R_n^{-1} \rho$$

CStéphane Marchand-Maillet

Example

\Rightarrow Choice of optimal order p?

Example

\Rightarrow Choice of optimal order p?

Order selection

The higher p the better, but :

- ★ Requires the estimation of p correlation coefficients → Confidence over a finite series?
- \Rightarrow Rule of thumb for length N: p < N/3
 - * Model parsimony : in applications, it is generally better to keep a simple model
- \Rightarrow Define parsimony (low p?)

Order selection

Whitening test (AR model)

$$\epsilon_t = y_t - \sum_{i=1}^{p} \alpha_i y_{t-i}$$
 white noise? (i.i.d $\sim \mathcal{N}(0, \sigma)$)

- ⇒ Tests: Durbin-Watson, Fisher,...
 - * Check whether values ϵ_t ($t \in [T]$) are significantly decorrelated

Final Prediction Error (FPE)

Definition of a global error, combining the variance of the prediction error σ_p and a variance over the imprecision of parameter estimation:

$$\mathsf{FPE}(p) = \sigma_p \ . \ \frac{\mathsf{T} + \mathsf{p} + 1}{\mathsf{T} - \mathsf{p} - 1}$$

decrease with $p \longleftrightarrow$ increase with p

Criteria for parsimony

Generally from Information Theory:

* Minimum Description Length (MDL)

$$\mathsf{MDL}(p) = \mathsf{N} \log(\sigma_p^2) + p \log(\mathsf{T})$$

* Akaike Information Criterion (AIC)

$$\mathsf{AIC}(p) = \mathsf{N} \log(\sigma_p^2) + 2(p+1)$$

⇒ MDL is a good criterion with low number of samples

Limitations

- * Stationarity is a strong assumption
- * Econometric data is rarely stationary (trend, multiplicative seasonality)
- → Trend removal, log model, ...
- → More complex models (ARMA, ARIMA, ARCH...) at the price of a more complex estimation
- * Example of stationary signal: speech (at least locally)

Speech analysis and compression using AR models

Hypothesis: local stationarity

Linear model for speech production

Air flow:

- * Excited by vocal chords
- Echo effect on vocal cavity (linear system)

Modeling

- \star Can show that coefficients H(z) are the parameters of the AR model
- * Characterize the parameters of speech production
- * Important for speech analysis and compression

Compression by Linear Predictive Coding (LPC)

Vocoder

 \Rightarrow used in GSM

Summary

- ★ As opposed to static data, temporal data includes causality
- * Temporal data present a unique sample
- * Correlation is found by considering stationarity
- ⇒ need to remove trend ans seasonality
 - \star AR(p) models are the base for temporal signal modeling
 - * They are linear (latent) models (coefficient are used for interpretation, generation, ...)
 - * Extension to Neural Nets for sequential data: e.g [2] (chap 15)

Example questions [mostly require formal – mathematical – answers]

- * What are trend, seasonality and how to remove them? What are the assumptions made?
- * What is stationarity? What does it imply and allow?
- * What is exponential smoothing (and exponential decay)?
- * Provide the base models for linear auto-regression
- ★ What is the horizon (and the lag)?

 It is strongly advised to develop the algebra contained in this chapter (inc relation to auto-correlation and convolution)

References I

- [1] Christopher M. Bishop. *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Springer-Verlag, Berlin, Heidelberg, 2006. (available online).
- [2] Kevin P. Murphy. Probabilistic Machine Learning: an Introduction. MIT Press, 2022. (available online).
- [3] Robert H. Shumway. *Time Series Analysis and its Applications, with R Examples.* Springer, 2017. (available online).

License

The text of this document and its illustrations are published under the Creative Commons BY-NC-SA 4.0 International License.