Решеточные газы, решеточное уравнение Больцмана

Отчёт по первому этапу группового проекта

Команда №4: Абакумова Олеся Максимовна (НФИбд-02-22) Астраханцева Анастасия Александровна (НФИбд-01-22) Ганина Таисия Сергеевна (НФИбд-01-22) Ибатулина Дарья Эдуардовна (НФИбд-01-22)

Содержание

1	Введ	дение	4
	1.1	Цель проекта	4
	1.2	Задачи первого этапа проекта	4
	1.3	Объект и предмет исследования	4
	1.4	Постановка проблемы	5
	1.5	Научная значимость	6
	1.6	Общее описание	6
2	Осн	овная часть	7
	2.1	Решеточные газы (LGA)	7
		2.1.1 Общее описание	7
	2.2	Решеточное уравнение Больцмана (LBE)	12
		2.2.1 Общее описание	12
		$2.2.2$ Приложение. Явный вид функций f_k^{eq}	14
	2.3	Модели LGA со взаимодействием между частицами	15
		2.3.1 Общее описание	15
	2.4	Модель LBE с внешними силами и фазовыми переходами	16
		2.4.1 Действие внешних сил	16
		2.4.2 Фазовые переходы	17
3	Закл	тючительная часть	19
	3.1	Заключение	19
	3.2	Выводы	19
4	Спи	сок литературы	20

Список иллюстраций

2.1	Возможные направления скорости частиц в модели НРР (а) и воз-	
	можные столкновения, в которых скорости частиц изменяются (б)	8
2.2	Решетка и некоторые возможные столкновения частиц в модели	
	FHP-I(a), некоторые возможные столкновения с участием покоя-	
	щихся частиц в модели FHP-III(б)	10
2.3	Геометрия и примеры столкновений для квадратной решетки	11
2.4	Геометрия решетки и возможные векторы скорости	15

1 Введение

1.1 Цель проекта

Разработать и проанализировать модель на основе решеточного уравнения Больцмана для описания течений газа.

1.2 Задачи первого этапа проекта

- 1. **Формулировка научной проблемы**: определение ключевых аспектов проблемы и ее значимости.
- 2. **Теоретическое описание задачи**: формулировка теоретических основ модели.
- 3. **Описание модели**: разработка математической модели, отражающей основные физические процессы.

1.3 Объект и предмет исследования

- Объект: физические процессы в газах и жидкостях.
- **Предмет:** использование решеточных методов (LGA и LBE) для описания динамики частиц на дискретной сетке.

1.4 Постановка проблемы

Моделирование газовых потоков и жидкостей традиционными методами, такими как уравнения Навье-Стокса и методы конечных разностей, требует значительных вычислительных ресурсов и сложных алгоритмов. Методы решеточных газов (Lattice-Gas Automata, LGA) и решеточного уравнения Больцмана (Lattice Boltzmann Equation, LBE) предлагают альтернативу, позволяя упростить вычисления при сохранении физической достоверности. Эти методы широко используются в различных областях [1]:

- Гидродинамика: моделирование течений жидкостей и газов.
- Аэродинамика: изучение воздушных потоков и аэродинамических свойств объектов.
- Биофизика: моделирование биологических систем и процессов.
- Моделирование пористых материалов: изучение свойств и поведения пористых сред.
- **Анимация визуальных эффектов**: создание реалистичных симуляций жидкостей и газов в кино и играх.

Применение методов актуально для:

- 1. **Исследования сложных многокомпонентных течений**: моделирование взаимодействия нескольких жидкостей или газов.
- 2. **Течений с фазовыми переходами и химическими реакциями**: изучение процессов, связанных с изменением состояния вещества или химическими реакциями.
- 3. **Создания высокопроизводительных параллельных алгоритмов**: разработка эффективных вычислительных методов для крупномасштабных симуляций.

1.5 Научная значимость

- 1. **Моделирование сложных систем**: решеточные методы позволяют описывать взаимодействие частиц и фазовые переходы, что важно для понимания поведения реальных систем.
- 2. **Высокая скорость вычислений**: дискретная природа моделей упрощает распараллеливание и ускоряет вычисления.
- 3. **Простота реализации**: алгоритмы не требуют сложных вычислительных схем, что делает их доступными для широкого круга исследователей и инженеров [2].

1.6 Общее описание

В отчете рассматриваются методы моделирования гидродинамических процессов на основе решеточных моделей: Lattice-Gas Automata (LGA) и Lattice Boltzmann Equation (LBE). Эти методы позволяют упростить вычисления и моделировать сложные явления, такие как течения жидкостей и газов, теплопередача и фазовые переходы.

2 Основная часть

2.1 Решеточные газы (LGA)

2.1.1 Общее описание

Рассматривается квадратная решетка, в узлах которой находятся частицы единичной массы. Расстояние между узлами Δx и шаг по времени Δt принимаются за единицу длины и времени соответственно. В каждом узле может быть не более одной частицы с данным направлением скорости (принцип исключения).

2.1.1.1 Модель HPP (Hardy-Pomeau-Pazzis)

• Описание:

- Используется квадратная решетка.
- Частицы могут двигаться в одном из соседних узлов (вверх, вниз, вправо, влево).
- Соударения происходят с сохранением количества частиц и их полного импульса.
- Нетривиальными являются соударения "почти лоб в лоб", после которых скорости частиц поворачиваются на 90 градусов. В остальных случаях можно считать, что столкновения не произошло (частицы пролетели мимо друг друга).
 - * Пояснение: Столкновения "почти лоб в лоб" это когда частицы летят навстречу друг другу по одной линии, а после столкновения

Рис. 2.1: Возможные направления скорости частиц в модели HPP (a) и возможные столкновения, в которых скорости частиц изменяются (б)

• Кодирование состояний:

- Наличие частицы, имеющей скорость по каждому направлению, может быть закодировано одним битом (0 нет частицы, 1 есть).
- Так можно записать состояние каждого узла в четырех битах.
- Примеры операций:
 - * Добавление к состоянию S частицы с направлением скорости d_k : S or $d_k \to S$
 - * Проверка: есть ли в состоянии S частица с направлением скорости d_k : if $(S \text{ and } d_k) \neq 0$
- Здесь or двоичная побитовая операция "или", а and двоичная операция "и".
 - * Пояснение: Операции от и and используются для манипулирования битами, что позволяет эффективно кодировать и обрабатывать состояния частиц.
- Все операции сводятся к целочисленной арифметике, это означает высокую скорость расчетов и отсутствие ошибок округления. Кроме того, все вычисления локальные, поэтому их можно выполнять параллельно.

• Недостатки:

- Квадратная сетка с 4 возможными направлениями скорости частиц недостаточно симметрична [3].

2.1.1.2 Модель FHP-I

• Описание:

- Используется треугольная сетка с 6 возможными направлениями скорости частиц в узле.
- Обладает большей симметрией по сравнению с моделью НРР.

2.1.1.3 Модель FHP-III

• Описание:

- Включает в себя покоящиеся частицы.
- Геометрия решетки и возможные столкновения частиц для моделей FHP-I, FHP-III представлены на рис. 2.2.

Рис. 2.2: Решетка и некоторые возможные столкновения частиц в модели FHP- I(a), некоторые возможные столкновения с участием покоящихся частиц в модели FHP-III(б)

2.1.1.4 Квадратная решетка с движением по диагоналям

• Описание:

- Вводится возможность движения частиц по диагоналям (скорость $\sqrt{2}$).
- Вместе с покоящимися частицами получаем 9 направлений скорости.
- Так как модули скоростей различны, возможен нетривиальный закон сохранения энергии, и можно ввести температуру.

• Параметры:

- Число покоящихся частиц: n_0
- Число частиц с единичной скоростью: n_1
- Число частиц со скоростью $\sqrt{2}$: n_2

- Плотность: $ho = n_0 + n_1 + n_2$

– Полная энергия: $E=P+rac{ar{
ho}u^2}{2}=\sum_i n_i v_i^2/2=n_1/2+n_2$ (где P- давление)

– Температура: $T=\frac{P}{\rho}$

• Возможности:

- Моделирование течений с переменной температурой.
- Моделирование теплопередачи и выделения энергии.
- Легко задавать граничные условия любого вида (например, разворачивать скорости прилетевших частиц на угол 180 градусов на твердых границах) [1]. Несколько примеров столкновений, в том числе с выделением энергии, приведены на рис. 2.3.

Рис. 2.3: Геометрия и примеры столкновений для квадратной решетки

2.2 Решеточное уравнение Больцмана (LBE)

2.2.1 Общее описание

Метод LBE позволяет устранить статистический шум, возникающий из-за случайности в модели LGA. Эволюция системы описывается уравнением Больцмана:

$$f_k(x+c_k\Delta t,t+\Delta t)=f_k(x,t)+\Omega_k(x,t)$$
, где:

- f_k одночастичная функция распределения.
- c_k скорость частиц.
- Ω_k столкновительный член.
 - Пояснение: Это уравнение описывает, как меняется распределение частиц со временем и в пространстве. Левая часть описывает перенос частиц, а правая изменения из-за столкновений [4].

• Условие:

- Скорости частиц c_k должны удовлетворять условию $c_k \Delta t = e_k$, где e_k векторы, соединяющие узел с соседними. Обычно принимается $\Delta t = 1$.
 - * Пояснение: Это условие гарантирует, что частицы перемещаются из одного узла в другой за один временной шаг.

• Макроскопические параметры:

- Плотность: $ho = \sum_k f_k$
- Скорость: $\rho u = \sum_k f_k c_k$
 - * Пояснение: Эти формулы позволяют связать микроскопические параметры (функцию распределения) с макроскопическими (плотность и скорость).

• Столкновительный член:

- Описывает релаксацию системы к равновесному состоянию: $\Omega_k = rac{1}{ au}(f_k^{eq}-f_k)$, где f_k^{eq} равновесные функции распределения.
- Равновесные функции распределения зависят от плотности и скорости вещества в узле, чтобы выполнялись законы сохранения массы и импульса в столкновениях, то есть $\rho = \sum_k f_k^{eq}, \quad \rho u = \sum_k f_k^{eq} c_k$.
 - * Пояснение: Столкновительный член моделирует, как частицы стремятся к равновесному состоянию, а равновесные функции распределения определяют это состояние.

• Кинетическая температура:

- $\theta=\frac{kT}{m}$ (в энергетических единицах) задается уравнением $\rho\theta=\sum_k f_k^{eq}(c_k-u)^2/2.$
 - * Пояснение: Кинетическая температура характеризует среднюю кинетическую энергию частиц.
- Часто масса LBE частиц принимается за единицу, m=1.

• Преимущества:

- Хорошо описывает течения вязкой жидкости в пределе малых скоростей (число Маха $M=u/c_s\ll 1$).
 - * *Пояснение*: Число Маха отношение скорости потока к скорости звука.
- Время релаксации au определяет кинематическую вязкость $u=(au-1/2)c_s^2\Delta t.$
- На твердых границах можно просто разворачивать скорости прилетевших частиц, моделируя непроницаемые стенки без проскальзывания.
 - * Пояснение: Граничные условия задаются простым отражением скорости, что упрощает моделирование [2].

2.2.2 Приложение. Явный вид функций f_k^{eq}

Обычно равновесные функции распределения выбираются в максвелловском виле:

$$f_k^{eq} \sim \exp(-(c_k - u)^2/2\theta).$$

В изотермических моделях достаточно разложить экспоненту в ряд с точностью до членов порядка u^2 , используя приближенную формулу $e^x=1+x/1!+x^2/2!+\dots$ В результате получаем:

$$f_k^{eq} = w_k \rho \left(1 + \frac{c_k \cdot u}{\theta} + \frac{(c_k \cdot u)^2}{2\theta^2} - \frac{u^2}{2\theta} \right).$$

Коэффициенты $w_k \sim \exp(-c_k^2/2\theta)$ зависят только от модуля $|c_k|$.

• Примеры:

- Одномерная модель:

$$\begin{array}{ll} * \ c_0 = 0, & c_{-1} = -h/\Delta t, & c_1 = h/\Delta t \\ * \ \theta = \frac{1}{3}(h/\Delta t)^2, & w_0 = \frac{2}{3}, & w_{\pm 1} = \frac{1}{6} \\ * \ f_0^{eq} = \frac{2}{3}\rho(1-\frac{3}{2}\tilde{u}^2), & f_{\pm 1}^{eq} = \frac{1}{6}\rho(1\pm 3\tilde{u}+3\tilde{u}^2) \end{array}$$

* Здесь $\tilde{u}=u\Delta t/h$ — безразмерная скорость вещества.

Двумерная модель на квадратной сетке с 9 направлениями (рис.
 2.4):

$$* c_0 = (0,0)$$

$$* c_k = \frac{h}{\Delta t}(\cos(k\pi/2),\sin(k\pi/2)) \text{ для } k = 1 \dots 4$$

$$* c_k = \frac{\sqrt{2}h}{\Delta t}(\cos((k+1/2)\pi/2),\sin((k+1/2)\pi/2)) \text{ для } k = 5 \dots 8$$

$$* \theta = \frac{1}{3}(h/\Delta t)^2, \quad w_0 = \frac{4}{9}, \quad w_{1-4} = \frac{1}{9}, \quad w_{5-8} = \frac{1}{36}$$

$$* f_0^{eq} = w_0 \rho (1 - d\tilde{u}^2)$$

$$* f_1^{eq} = w_1 \rho (1 + a\tilde{u}_x + b\tilde{u}_x^2 - d\tilde{u}^2)$$

$$* \dots$$

$$* f_8^{eq} = w_8 \rho (1 + a(\tilde{u}_x - \tilde{u}_y) + b(\tilde{u}_x - \tilde{u}_y)^2 - d\tilde{u}^2)$$

$$* \text{ тде } a = \frac{(\Delta t/h)^2}{\theta} = 3, \quad b = \frac{(\Delta t/h)^4}{2\theta^2} = \frac{9}{2}, \quad d = \frac{(\Delta t/h)^2}{2\theta} = \frac{3}{2}$$

Далее для простоты будем опускать значок «~» у переменной u [1].

Рис. 2.4: Геометрия решетки и возможные векторы скорости

2.3 Модели LGA со взаимодействием между частицами

2.3.1 Общее описание

Приведенные выше модели описывают скорее газ, чем жидкость. В жидкости между частицами существуют силы взаимодействия, проявлением которых

являются поверхностное натяжение, а также фазовые переходы жидкость-газ.

• Несмешивающиеся решеточные газы

- Вводится отталкивание между частицами разного типа (например, "синими" и "красными").
- При достаточной силе отталкивания происходит разделение веществ.
- Это достигается перераспределением цвета частиц после столкновений так, чтобы красные частицы в основном направлялись в узлы с преобладанием красного цвета и наоборот.

• Модель LGA с переходом "жидкость-газ"

- Вводится притяжение между частицами, находящимися на некотором расстоянии.
- Импульсы частиц поворачиваются друг к другу, если это возможно, с учетом закона сохранения импульса согласно третьему закону Ньютона.
- При достаточно большой длине взаимодействия в некотором диапазоне плотностей возможно сосуществование плотной (жидкой) и разреженной (газообразной) фаз [3].

2.4 Модель LBE с внешними силами и фазовыми переходами

2.4.1 Действие внешних сил

- Моделирование сил, действующих на вещество.
 - Природа сил может быть самой разной (например, электрические силы, сила тяжести, силы межмолекулярного взаимодействия и т.д.).
 - Суммарная сила, действующая на вещество в узле, равна F.

- Действие силы в течение шага по времени Δt приводит к изменению скорости: $\Delta u = \frac{F\Delta t}{
 ho}$.
- Решеточное уравнение Больцмана принимает вид: $f_k(x+c_k\Delta t,t+\Delta t)=f_k(x,t)+\Omega_k(x,t)+\Delta f_k$. То есть, после действия оператора столкновений (в котором используется скорость u), необходимо учесть изменение функций распределения Δf_k под действием сил. Эта добавка равна разнице равновесных функций распределения при одной и той же плотности, но с разными скоростями: $\Delta f_k=f_k^{eq}(\rho,u+\Delta u)-f_k^{eq}(\rho,u)$.

• Порядок учета действия сил:

- 1. Вычислить промежуточные значения функций распределения: $f_k^*(x,t+\Delta t) = f_k(x,t) + \Delta f_k.$
- 2. Применить оператор столкновений: $f_k(x,t+\Delta t)=f_k^*(x,t+\Delta t)+(f_k^{eq}(u+\Delta u)-f_k^*(x,t+\Delta t))/ au.$

• Физическая скорость вещества:

$$-u^* = \frac{u + (u + \Delta u)}{2} = u + \frac{\Delta u}{2}.$$

- На каждом шаге по времени в каждом узле существуют два значения скорости до и после действия сил.
- * В случае действия сил физическая скорость вещества равна их среднему арифметическому.

2.4.2 Фазовые переходы

- Достаточно простой способ моделирования фазовых переходов жидкость пар.
- Между частицами, находящимися в соседних узлах, задается сила взаимодействия:

$$F(x) = \psi(\rho(x)) \sum_{k} G_k e_k \psi(\rho(x+e_k)).$$

- Значения коэффициентов $G_k>0$ соответствуют притяжению между соседними узлами, что необходимо для сосуществования жидкой фазы и паровой фазы. В обратном случае при $G_k<0$ отталкивание.
- G_k выбираются таким образом, чтобы сила была достаточно изотропной (чтобы, например, капли получались круглыми).
- При использовании модели LBE на квадратной сетке сила взаимодействия между узлами, расположенными по диагонали на расстоянии $\sqrt{2}$, должна быть в 4 раза меньше, чем между ближайшими соседями, то есть $G_{1-4}=G_0>0$, а $G_{5-8}=\frac{G_0}{4}$.
- «Эффективная плотность» $\psi(\rho)$ может выбираться достаточно произвольно.
- Введение такого взаимодействия приводит к уравнению состояния, которое связывает давление, плотность и температуру [3].

3 Заключительная часть

3.1 Заключение

Методы решеточных газов и решеточного уравнения Больцмана предоставляют мощный инструмент для моделирования сложных физических процессов, включая гидродинамику, теплопередачу и фазовые переходы. Их простота и возможность параллельных вычислений делают их перспективными для изучения широкого класса задач в физике и инженерии. Модели LGA позволяют упростить расчеты и учитывать сложные взаимодействия между частицами, а метод LBE позволяет устранить статистический шум и моделировать макроскопические параметры вещества.

3.2 Выводы

Во время выполнения первого этапа группового проекта мы сделали теоретическое описание решеточного уравнения Больцмана и определили задачи дальнейшего исследования.

4 Список литературы

- 1. Медведев Д.А. и др. Моделирование физических процессов и явлений на ПК: Учеб. пособие. // Новосибирск: Новосиб. гос. ун-т, 2010. 101 с.
- 2. Куперштох А. Л. Моделирование течений с границами раздела жидкость-пар методом решеточных уравнениях Больцмана // Вестник НГУ. Сер. Математика, механика и информатика. 2005. Т. 5, № 3. с. 29–42.
- 3. Chen S., Lee M., Zhao K. H., Doolen G. D. A lattice gas model with temperature // Physica D. 1989. V. 37. p. 42–59.
- 4. Чащин Г.С. Метод решёточных уравнений Больцмана: моделирование изотермических низкоскоростных течений // Препринты ИПМ им. М.В.Келдыша. 2021. № 99. 31 с..