

A Simple Quirk Hunt Using HSCP Tools

Jim Pivarski

8 September, 2011

- ▶ A new SU(N)' gauge group added to the Standard Model with:
 - ▶ new fermons Q with $100 \lesssim m_Q \lesssim 1000 \text{ GeV}/c^2$: "quirks"
 - **>** strong interactions *below* the TeV scale, $\Lambda \ll m_Q$: "infracolor"
- Weird phenomenology: macro or mesoscopic strings (flux tubes)

 Quirk $L \sim \frac{m_Q}{\Lambda^2} \sim 10 \text{ m} \left(\frac{m_Q}{\text{TeV}}\right) \left(\frac{\Lambda}{100 \text{ eV}}\right)^{-2}$

Is this motivated by electroweak symmetry breaking/ the hierarchy problem/other theoretical problem?

- ▶ No: it is a possibility that is consistent with known data, and might be missed without a deliberate search
- ▶ Comparable to Z', which is an extra U(1)' that may or may not come from the breaking of a larger GUT group

Signatures

Infracolor string connecting quirks does not break, so quirks orbit each other through the detector

This analysis:

▶ Straight track from mesoscopic quirk string: 10 keV $\lesssim \Lambda \lesssim 1$ MeV, quirks with electric charge but no QCD color

Other quirk signatures, not pursued here:

- ▶ Tracks curving in r-z plane: $\Lambda \ll 10 \text{ keV}$
- ► Free end of a string orbiting a stopped quirk (spiral track)
- ► Hadronic fireball (many soft hadrons): quirks with QCD color
- ► same with a displaced vertex: $c\tau \sim \frac{m_Q}{\Lambda_{\rm QCD}} \frac{m_Q}{\Lambda^2} \sim 100 \ \mu {\rm m} \left(\frac{\Lambda}{\rm MeV}\right)^{-2} \left(\frac{m_Q}{\rm TeV}\right)^2$
- ▶ Prompt annihilation or decay to infracolor glueballs: $\Lambda \gg \text{MeV}$

Focus on the simplest signature

Jim Pivarski

4/10 CMS

electrically charged quirks, far enough apart to ionize atoms and make a track

close enough to not be resolved as two tracks or confuse the track-fitter

therefore, we observe one zero-curvature track

- ► Unlike *all* backgrounds, the signal peaks at curvature = 0
- If realistic distortions to curvature distribution can be quantified as nuisance parameters, search/limits can be performed with a fit (bump-hunt)

Since this object also has mass $\geq 2m_Q$, it will be slow $(eta \ll 1)$

- ightharpoonup Tracker dE/dx and muon time-of-flight will be useful cuts
- ▶ Mass varies event-by-event; it would not peak in HSCP mass plot

This technique was used by DØ (2.4 fb $^{-1}$, fall 2010)

- as a counting experiment, not bump-hunt
- lacktriangleright not triggered in muon system: associated with jet and otin T

http://prl.aps.org/abstract/PRL/v105/i21/e211803 (arXiv:1008.3547)

- ▶ 95% C.L. limits on quirk mass: 107, 119, 133 GeV/ c^2 for SU(2)', SU(3)', SU(5)', respectively (10 keV $< \Lambda < 1$ MeV)
- ▶ LHC ($E_{CM} = 10 \text{ TeV? } 7 \text{ TeV?}$) can reach much higher in quirk mass

- ▶ For $\beta > X$, quirk pair reaches the muon system within timing window: use highest- p_T unprescaled single-muon trigger available
 - ▶ 1.5 bunch timing windows = 40 ns, muon system is 15 ns away from the beamspot, so X = 0.4?
 - lacksquare I do not yet know the eta distribution for this model at the LHC
 - At the Tevatron, β distribution is "very wide and peaks at $\beta \sim 0.8$ (0.2) for $m_Q = 60$ (160) GeV/ c^2 " (DØ paper)
- ▶ For β < X, must trigger on the jet or photon that is produced with the quirk pair
 - ▶ I don't know jet/photon distributions for the LHC yet, either
 - ▶ DØ analysis required exactly one $p_T > 75~{\rm GeV}/c$ jet in $|\eta| < 1.6$ and $\not\!\!E_T > 50~{\rm GeV}$

The single-muon trigger case is a subset of HSCP data, but the "jet or photon" is not (unless our calculation of $\not\!\!E_T$ excludes the HSCP track and we can expect large $\not\!\!E_T$)

- ► I'm writing to Markus Luty about using the same simulation as DØ
 - \triangleright β distribution and associated jet or photon for trigger
 - \triangleright classical trajectory and Bethe-Bloch dE/dx for ionization
- ► However, Tim Nelson and Jim Black (SLAC/ATLAS) are developing a much more realistic simulation of quirk propagation through matter: http://online.kitp.ucsb.edu/online/lhc11/nelson/

We should use this MC when it becomes available

- Straight-track propagation is a special case in three important ways:
 - infracolor string is required to be short compared to track hits
 - ▶ infracolor string is required to be long compared to atoms
 - quirks assumed to have zero QCD color
- ► Three ways to generalize this analysis:
 - expand track reconstruction to allow for curvature in the r-z plane: this would allow for longer infracolor strings $(\Lambda < 10 \text{ keV})$ and may double as a monopole search
 - search for hadronic fireballs and displaced fireballs: this would allow for quirks with QCD color (outside of HSCP group)
 - displaced dileptons and diphotons would capture the microscopic string case (partly covered elsewhere)
- I only have resources to do the simple straight-track search
- ► There are many more opportunities for people looking for a project

- 1. Walk through Hscp2011Analysis twiki
- 2. Obtain a quirk MC and integrate it into CMS (follow HSCP stau/stop/gluino examples to see how to add slow particles with large dE/dx? does Geant do this for us?)
- 3. Produce the analysis plot (curvature histogram, where signal peaks at zero) and *roughly* optimize cuts with MC
- 4. If a lot of the signal is out-of-time with the muon trigger, identify a good jet or photon trigger and produce a second sample
- 5. Use previously-studied trigger efficiency results (muon trigger as a function of β and other triggers generically)
- 6. Calculate track-reconstruction efficiency as a function of infracolor string length (using Nelson and Black's realistic MC)
- 7. Study resolution of curvature = 0 peak from alignment and $Z \to \mu\mu$
- 8. Finalize cuts, fitting procedure, and limit/discovery procedure with MC and blinded data (blind in curvature and/or dE/dx)
- 9. Unblind and fit; write results as an independent Analysis Note and as a part of an upcoming HSCP paper

- Quirks are a possible extension of the Standard Model with bizarre (fun) phenomenology
- As far as I'm aware, there are no quirk analyses in CMS
 - searching for "quirks" in HyperNews and Indico only result in messages about computer problems
 - in several old talks, Albert de Roeck tried to raise interest
- ► The straight-track signature is *almost* a special case of the HSCP analysis; I think it should be presented as such
- There are many other quirky signatures to look for