

EM600 - Engineering Economics and Cost Analysis

Lecture 04: Understanding Rates of Return

References:

- Park, Chan S. <u>Contemporary Engineering</u>
 <u>Economics</u>. New Jersey: Pearson Prentice
 Hall, 2006 (Chapter 7)
- Lang, Hans J. and Merino, Donald M. <u>The Selection Process for Capital Projects.</u>
 New York: John Wiley & Sons, Inc. 2002 (Chapter 4)
- Ganguly, A. <u>Engineering Economics Using</u>
 Excel. New Jersey: SSE, 2008

After completing this module you should understand the following:

- Return on Investment (ROI)
- IRR: Internal Rate of Return
- Incremental IRR
- Mutually Exclusive Alternatives

- Key Definitions: (Lang & Merino)
 - Return on Total Investment: (ROI)

$$ROI = \frac{Average Net Income per Year}{Original Book Value or First Cost}$$

- Limitations:
 - Time value of money is not taken into account.
 - » Cash flows are not discounted.
 - » The contribution of earlier years is understated.
 - » The contribution of later years is overstated.
 - Noncash flow streams e.g depreciation, are involved in calculating the ROI.

- Key Definitions: (Chan S. Park)
 - Internal Rate of Return (IRR):
 - The internal rate of return is the interest rate charges on the unrecovered balance of the investment such that, when the project terminates, the unrecovered project balance will be zero.
 - The IRR equates the present worth, future worth and annual equivalence worth of the entire series of cash flows to zero.

$$\sum PW = 0;$$
 $\sum AE = 0;$ $\sum FW = 0$

• This internal rate of return is the return that a company would earn if it invested in itself rather than investing the money elsewhere.

Key Differences:

- Return on Investment:
 - Does not account for the time value of money.
 - Undiscounted figure of merit.
- Internal Rate of Return (IRR):
 - Accounts for the time value of money.
 - Discounted figure of merit.

Rate of Return Computational Methods:

- Direct solution method
 - Two-flow transaction project (an investment followed by a single payment).
 OR
 - Project with a service life of two years of return.
 - Set up PW or FW equation using cash flows given and set equation equal to zero.
- Trial-and-error method
 - Complicated cash flows.
 - Linear Interpolation.
- Computer solution method
 - Complicated cash flows.
 - Solve graphically.
 - Use Excel IRR function.

- Direct solution method:
 - Example 1: (Chan S. Park, example 7.3)
 - Consider two investment projects with the following cash flow transactions:

n	Project 1	Project 2
0	-\$2,000	-\$2,000
1	0	\$1,300
2	0	\$1,500
3	0	-
4	\$3,500	-

- Direct solution method:
 - Example 1: (Chan S. Park, example 7.3)
 - Project 1:
 - Present Worth (PW) Method:

$$PW(i^*) = \sum_{n=1}^{N} F(1+i^*)^{-N} + P = 0$$

$$PW(i^*) = \$3,500(1+i^*)^{-4} - \$2,000 = 0$$

$$\$2,000 = \$3,500(1+i^*)^{-4} \Rightarrow 0.5714 = \frac{1}{(1+i^*)^4} \Rightarrow (1+i^*)^4 = \frac{1}{0.5714} \Rightarrow (1+i^*)^4 = 1.75$$

$$i^* = (1.75)^{-1/4} - 1$$

$$i^* = 0.1502 = 15.02\%$$

- Future Worth (FW) Method:

$$FW(i^*) = \sum_{n=1}^{N} P(1+i^*)^N + F = 0$$

$$FW(i^*) = -\$2,000(1+i^*)^4 + \$3,500 = 0$$

$$\$3,500 = \$2,000(1+i^*)^4$$

$$1.75 = (1+i^*)^4$$

$$i^* = (1.75)^{\frac{1}{4}} - 1$$

$$i^* = 0.1502 = 15.02\%$$

Direct solution method:

- Example 1: (Chan S. Park, example 7.3)
 - Project 2:
 - Present Worth (PW) Method:

$$PW(i^*) = \sum_{n=1}^{N} F(1+i^*)^{-N} + P = 0$$

$$PW(i^*) = \$1,300(1+i^*)^{-1} + \$1,500(1+i^*)^{-2} - \$2,000 = 0$$
Transform into a quadratic equation where, $x = (1+i^*)^{-1}$

$$\Rightarrow PW(X) = \$1,500x^2 + \$1,300x - \$2,000 = 0$$

$$\Rightarrow PW(X) = \$1,500x^2 + \$1,300x - \$2,000 = 0$$

$$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1,300 \pm \sqrt{1,300^2 - 4(1,500)(2,000)}}{2(1,500)}$$

$$\Rightarrow x = 0.8 \text{ OR } x = -1.667$$

Solve for i* using the values for x

⇒
$$x = 0.8$$
 ∴ $i^* = \frac{1}{0.8} - 1 = 25\%$
⇒ $x = -1.667$ ∴ $i^* = \frac{1}{-1.667} - 1 = -160\%$. . . no economic significance

- Future Worth (FW) Method yields the same answer.

Trial-and-Error Method:

- Overview: Linear Interpolation
 - Definition:
 - Interpolation is a method of constructing new data points within the range of a discrete set of known data points.¹
 - Key Steps:
 - Estimate an IRR value for which PW > 0
 - Estimate an IRR value for which PW < 0
 - Interpolate to find where PW = 0

Trial-and-Error Method:

- Overview: Linear Interpolation
 - Linear interpolation equation:

$$y = y_1 + \frac{(x - x_1)(y_2 - y_1)}{(x_2 - x_1)}$$

where,

 $y_1 & y_2 = \text{estimated values for the IRR}$

 $x_1 \& x_2 =$ corresponding PW values for y_1 and y_2

$$y = actual IRR at PW = 0$$

x = PW associated with actual IRR = 0

Trial-and-Error Method:

- Overview: Linear Interpolation
 - Key points to remember:
 - The relationship is not truly linear, therefore the closer the PW values (calculated using the estimated IRR values) are to zero, the more accurate the answer will be.
 - » Multiple answers can therefore exist.
 - The MARR is not needed to calculate the IRR.
 - The IRR should lie between the two estimated values.
 - Reference Chapter 2 of Engineering Economics Using Excel (Ganguly) for further detail on Linear Interpolation.

- Trial-and-error method:
 - Example 2: (Chan S. Park, example 7.4)
 - You need to consider a new safety review project for the production plan of a new drug for your company:

n	Costs	Savings	Net Cash Flow
0	-\$13,000	\$0	-\$13,000
1	-\$2,300	\$6,000	\$3,700
2	-\$2,300	\$7,000	\$4,700
3	-\$2,300	\$9,000	\$6,700
4	-\$2,300	\$9,000	\$6,700
5	-\$2,300	\$9,000	\$6,700
6	-\$2,300	\$9,000	\$6,700

Calculate i* for this project.

Trial-and-error method:

- Example 2: (Chan S. Park, example 7.4)

$$PW = -P + \sum_{n=1}^{N} A_n (P/F, i, n) + F(P/F, i, N)$$

Guess 1: IRR = 30%

$$PW = -\$13,000 + \$3,700(P/F,30\%,1) + \$4,700(P/F,30\%,2) + \$6,700 \begin{vmatrix} (P/F,30\%,3) \\ +(P/F,30\%,4) \\ +(P/F,30\%,5) \\ +(P/F,30\%,6) \end{vmatrix}$$

$$PW = -\$13,000 + \$3,700(0.7692) + \$4,700(0.5917) + \$6,700 + (0.3501) + (0.2693) + (0.2072)$$

$$PW = $1,215$$

• Trial-and-error method:

- Example 2: (Chan S. Park, example 7.4)
 - $PW = -P + \sum_{n=1}^{N} A_n (P/F, i, N) + F(P/F, i, N)$ Guess 2: IRR = 35%

$$PW = -\$13,000 + \$3,700(P/F,35\%,1) + \$4,700(P/F,35\%,2) + \$6,700 \begin{vmatrix} (P/F,35\%,3) \\ +(P/F,35\%,4) \\ +(P/F,35\%,5) \\ +(P/F,35\%,6) \end{vmatrix}$$

$$PW = -\$13,000 + \$3,700(0.7407) + \$4,700(0.5487) + \$6,700 + (0.3011) + (0.2230) + (0.1652)$$

$$PW = -\$339$$

- Trial-and-error method:
 - Example 2: (Chan S. Park, example 7.4)
 - Use linear interpolation to find where PW = 0

$$y = y_1 + \frac{(x - x_1)(y_2 - y_1)}{(x_2 - x_1)}$$

$$(x, y) = (0, ?); \quad (x_1, y_1) = (\$1215, 30\%); \quad (x_2, y_2) = (-\$339, 35\%)$$

$$y = 30\% - \frac{(0 - 1215)(35\% - 30\%)}{(-339 - 1215)}$$

$$y = 33.91\%$$

Trial-and-error method:

- Example 2: (Chan S. Park, example 7.4)
 - Remember:
 - The closer the PW values are to 0, the more accurate the linear interpolation will be.
 - » The relationship is not truly linear.
 - For example,
 - » If guesses of 33% and 34% are used instead of 30% and 35%,
 - » PW values of \$249 and -\$51 and an IRR of 33.83% results.
 - Multiple solutions therefore exist.

- Computer solution method:
 - Example 3: (Chan S. Park, example 7.4)
 - Consider the investment project with the cash flow transactions as detailed in example 2.
 - Calculate i* for this project using the following methods:
 - Graphically
 - Excel IRR function

- Computer solution method:
 - Example 3: (Chan S. Park, example 7.4)
 - Graphical Solution

Computer solution method:

- Example 3: (Chan S. Park, example 7.4)
 - Graphical Solution: How to in Excel?
 - Arrange the data so that the x and y values are in adjacent columns.
 - Select the range of x and y values that has to be plotted.
 - Click on the Insert tab from the top of your Excel 2013 spreadsheet.
 - Select Scatter from the list of available charts (should be the last chart listed)
 - This will open up a window with various chart sub-types.
 Simply click the one you would like to use from this list.
 - Format the graph according to the requirements and convenience.
 - Reference Chapter 1 of Engineering Economics Using Excel (Ganguly) if using earlier versions of MS Excel

- Computer solution method:
 - Example 3: (Chan S. Park, example 7.4)
 - Excel IRR function

\langle	Α	В	С	D
1	n	Costs	Savings	Net Cash Flow
2	0	-\$13,000	\$0	-\$13,000
3	1	-\$2,300	\$6,000	\$3,700
4	2	-\$2,300	\$7,000	\$4,700
5	3	-\$2,300	\$9,000	\$6,700
6	4	-\$2,300	\$9,000	\$6,700
7	5	-\$2,300	\$9,000	\$6,700
8	6	-\$2,300	\$9,000	\$6,700
9	IRR			=IRR(D2:D8,)
10				
9	IRR			33.83%

- Excel Formula: IRR(values,guess)
 - » Values = cash flow (including initial investment and salvage value if any)
 - » Guess = an IRR value can be estimated. This can be left blank as in this example.
 - » Reference Chapter 2 of Engineering Economics Using Excel (Ganguly) for further detail.

– Introduction:

- Simple Investment:
 - An investment in which the initial cash flows are negative and only one sign change occurs in the remaining cash flow series.
- Simple Borrowing:
 - An investment in which the initial cash flows are positive and only one sign change occurs in the remaining cash flow series.
- Nonsimple Investment:
 - An investment in which one or more sign change occurs in the cash flow series.

- Introduction: (Chan S. Park, example 7.1)
 - Simple and Nonsimple Investments:

Period	Net Cash Flow			
n	Project A	Project B	Project C	
0	-\$1,000	-\$1,000	\$1,000	
1	-\$500	\$3,900	-\$450	
2	\$800	-\$5,030	-\$450	
3	\$1,500	\$2,145	-\$450	
4	\$2,000			

Present-Worth Profiles (Chan S. Park, Figure 7.1)

- Introduction: (Chan S. Park, example 7.1)
 - Simple and Nonsimple Investments:
 - Project A represents many common simple investments.
 - The NPW profile (curve) crosses the x-axis only once.

- Introduction: (Chan S. Park, example 7.1)
 - Simple and Nonsimple Investments:
 - Project B represents a nonsimple investment.
 - The NPW profile (curve) crosses the x-axis at multiple points.

- Introduction: (Chan S. Park, example 7.1)
 - Simple and Nonsimple Investments:
 - Project C represents a simple borrowing cashflow.
 - There is only 1 sign change, however, the first cashflow is positive.

– Introduction:

- Pure Investment:
 - An investment in which the firm never borrows money from the project.
 - Project balances (PB) are ≤ zero throughout the life of the investment with the first cashflow being negative.
 - Simple investments will always be pure investments.

Mixed investment:

- An investment in which the firm borrows money from the project during the investment period.
- PB > zero at some point during the life of the investment. Here the firms acts as a borrower, not an investor.

Decision Rules: Internal Rate of Return

Examples of Pure and Mixed investment projects (Chan S. Park, Figure 7.4)

Recall the following important definitions:

– MARR:

- Minimum Attractive Rate of Return
- The minimum interest rate that the firm wants to earn on its investment.

– IRR:

- Internal Rate of Return
- The actual interest rate that the firm earns on its investment.
- The IRR equates the present worth, future worth and annual equivalence worth of the entire series of cash flows to zero.

Decision rules* for pure investment projects:

- If IRR > MARR → ACCEPT
- If IRR = MARR → INDIFFERENT
- If IRR < MARR → REJECT

* Note:

Only applicable for single project evaluation.

Mutually exclusive investment projects need the incremental analysis approach.

- Example 4: (Chan S. Park, example 7.7)
 - For the following cash flows:
 - Calculate the IRR for the investment.
 - Should the investment be accepted or rejected? (MARR = 18%)

• Example 4: (Chan S. Park, example 7.7)

– Trial-and-error:

$$PW = -P + A(P/A,i,N) + F(P/F,i,N)$$

Guess 1: IRR = 55%

$$PW = -\$1,250,000 + \$731,500(P/A,55\%,15) + \$80,000(P/F,55\%,15)$$

PW = \$78,254

Guess 2: IRR = 60%

$$PW = -\$1,250,000 + \$731,500(P/A,60\%,15) + \$80,000(P/F,60\%,15)$$

PW = -\$31,821

Using linear interpolation as before:

$$y = i* = 58.55\%$$

- Excel IRR function:

•
$$i^* = 58.47\%$$

i* > MARR → ACCEPT

Mutually Exclusive Alternatives:

- Two situations:
 - Alternatives with the same economic service life.
 - Alternatives that have unequal service lives.
- Incremental IRR analysis is required because:
 - IRR is a relative (percentage) measure.
 - IRR ignores the scale of the investment
 - IRR cannot be analyzed in the same way as the 3 worths.

- What is Incremental IRR?
 - The internal rate of return is calculated based on the incremental investment.
 - The incremental investment is calculated based on choosing a large project over a smaller project.
- Incremental IRR considers increments of investment, therefore:
 - Cash Flow Difference = higher Investment Cost Project B
 - lower investment cost project A
 - This ranking is IMPORTANT
 - Investment cost = P

- Decision rules:
 - If IRR_{B-A} > MARR → select B
 - If IRR_{B-A} = MARR → select either project
 - If IRR_{B-A} < MARR → select A

- Initial investments are equal?
 - Set up the increment so that the first non zero flow is negative.

• e.g.

n	Α	В	A - B
0	-\$10,000	-\$10,000	\$0
1	\$650	\$6,740	-\$6,090
2	\$4,125	\$3,350	\$775
3	\$6,950	\$2,200	\$4,750
4	\$3,880	\$1,470	\$2,410
IRR	17%	19%	12.88%

- More than 2 mutually exclusive alternatives?
 - Compare in pairs by successive examination.
 - Consider 3 projects A, B, C
 - Verify IRR_A and IRR_B and IRR_C are each > MARR
 - » Any project whose IRR < MARR can be ruled out</p>
 - Compare each incremental pair:
 - » A and B
 - » A and C
 - » B and C
 - Find the best alternative.

- More than 2 mutually exclusive alternatives?
 - e.g. MARR = 15%, select best alternative

n	Α	В	С	A - B	C - A	C - B
0	(\$2,500)	(\$1,500)	(\$4,000)	(\$1,000)	(\$1,500)	(\$2,500)
1	\$2,000	\$1,300	\$2,500	\$700	\$500	\$1,200
2	\$1,500	\$1,000	\$2,500	\$500	\$1,000	\$1,500
3	\$1,300	\$1,000	\$1,500	\$300	\$200	\$500
IRR	45.69%	56.49%	31.63%	27.61%	7.16%	15.17%

Select alternative A.

Select A

Select A

Select C

- Mutually exclusive alternatives with equal revenues?
 - Comparison is on a cost only basis.
 - Calculate the IRR based on incremental cash flows.
 - Service projects is an example of this type of problem, e.g.
 - alternative manufacturing systems (batch / continuous, flexible / dedicated)
 - alternative equipment options
 - alternative power supply / heating / chilling options
 - . . . etc

- Example 5: (Chan S. Park, example 7.13)
 - Based on the following data and a MARR of 15% (N = 6), using IRR, which manufacturing option should be chosen?

Items	CMS Option	FMS Option
Annual O&M costs:		
Annual labor cost	\$1,169,600	\$707,200
Annual material cost	\$832,320	\$598,400
Annual overhead cost	\$3,150,000	\$1,950,000
Annual tooling cost	\$470,000	\$300,000
Annual inventory cost	\$141,000	\$31,500
Annual income taxes	\$1,650,000	\$1,917,000
Total annual costs	\$7,412,920	\$5,504,100
Investment	\$4,500,000	\$12,500,000
Net salvage value	\$500,000	\$1,000,000

- Example 5: (Chan S. Park, example 7.13)
 - Assumption:
 - Both manufacturing systems would yield the same level of revenues over the analysis period.
 - Comparison basis:
 - Cost only as the revenues are equal.
 - Approach:
 - Calculate IRR based on the incremental cash flows.
 - $-I_{FMS} > I_{CMS}$
 - Therefore the incremental cash flow is FMS CMS.

- Example 5: (Chan S. Park, example 7.13)

n	CMS Option	FMS Option	Incremental (FMS-CMS)
0	-\$4,500,000	-\$12,500,000	-\$8,000,000
1	-7,412,920	-5,504,100	1,908,820
2	-7,412,920	-5,504,100	1,908,820
3	-7,412,920	-5,504,100	1,908,820
4	-7,412,920	-5,504,100	1,908,820
5	-7,412,920	-5,504,100	1,908,820
6	-7,412,920	-5,504,100	1,908,820
Salvage	\$500,000	\$1,000,000	\$500,000

- Example 5: (Chan S. Park, example 7.13)

- Example 5: (Chan S. Park, example 7.13)
 - To calculate the incremental IRR, calculate i where PW = 0

Objective: Calculate *i*, where $PW_{FMS-CMS} = 0$

$$PW_{FMS-CMS} = -P + A(P/A,i,N) + S(P/A,i,N)$$

$$PW_{FMS-CMS} = -\$8,000,000 + \$1,908,820(P/A,i,6) + \$500,000(P/F,i,6)$$

Solving for i using trial - and - error yields, i = 12.43%

• Conclusion:

- IRR_{FMS-CMS} = 12.43%
- MARR = 15%
- IRR_{EMS-CMS} < MARR
- Therefore, select CMS

