Corriger de l'exercice avec explications

Kamila AKPAKI

22 jan 2025

Exercice 1

Enoncé

On mesure le poids d'un bol de céréales supposé suivre une loi normale $X \sim \mathcal{N}(m, \sigma^2)$ avec m = 1 kg et $\sigma = 0.2$ kg.

Question 1

Un client achète n=4 mesures de céréales. On note \bar{X} la moyenne empirique et s l'écart-type empirique. Quelle affirmation est correcte?

- (a) \bar{X} donnera 1 kg et s donnera 0.2.
- \bullet (b) \bar{X} ne donnera pas 1 kg et s ne donnera pas 0.2.
- (c) \bar{X} peut donner 1 kg et s peut donner 0.2.
- (d) \bar{X} peut donner 1 kg, mais il est peu probable que s donne 0.2.

Réponse correcte : (d)

Question 2

25 clients achètent chacun n=4 mesures de céréales. On note $\bar{X}_{\rm global}$ la moyenne des moyennes des clients et s l'écart-type. Quelle affirmation est correcte ?

- (a) \bar{X}_{global} donnera 1 kg et s donnera 0.2.
- \bullet (b) $\bar{X}_{\rm global}$ ne donnera pas 1 kg et s ne donnera pas 0.2.

- (c) \bar{X}_{global} peut donner 1 kg mais s ne peut pas donner 0.2.
- (d) \bar{X}_{global} peut donner 1 kg, et il est fort probable que s donne 0.2.

Réponse correcte : (d)

Question 3

Probabilité que le poids moyen des 4 mesures dépasse 1.2 kg.

- (a) Il peut utiliser l'écart-type empirique s (non corrigé).
- (b) Il doit utiliser l'écart-type corrigé s.
- \bullet (c) Qu'il utilise s ou s, il aura les mêmes résultats.
- (d) Aucune des réponses précédentes.

Réponse correcte : (b)

Question 4

Nombre minimal de mesures pour que la moyenne empirique soit dans un rayon de $0.15~{\rm kg}$ avec 95% de confiance :

$$n = \left(\frac{1.96 \times 0.2}{0.15}\right)^2 = 54$$

Réponse correcte : (b)

Exercice 2

On suppose que le nombre de candidatures avant un recrutement suit une loi géométrique $X \sim \mathrm{Geom}(p).$

Question 1

Information de Fisher:

$$I(p) = \frac{1}{p(1-p)}$$

Réponse correcte : (c)

Question 2

Estimateur du maximum de vraisemblance :

$$\hat{p}_n = \frac{n}{\sum_{i=1}^n X_i}$$

Réponse correcte : (c)

Question 3

Statistique pivotale:

Réponse correcte : (a)

Question 4

Intervalle de confiance asymptotique de niveau $1 - \alpha$:

$$\left[\hat{p}_n - z_{1-\alpha/2} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + z_{1-\alpha/2} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}\right]$$

Réponse correcte : (a)