CORRECTION SÉANCE 6 (15 MARS)

Exercice 13.

1. Notons $G = \operatorname{Vect}(\varphi_{-1}, \varphi_0, \varphi_1)$, on veut montrer que cet espace est égal à F, il suffit pour cela de montrer que ${}^oG = \{0\}$. Soit donc $P \in E$ tel que P(-1) = P(0) = P(1) = 0, P est alors un polynôme de degré 2 admettant 3 racines distinctes : c'est forcément le polynôme nul : ${}^oG = \{0\}$ et $G = F^*$. Pour la base antéduale, P_{-1} est défini par les équations

$$P_{-1}(-1) = 1$$
, $P_{-1}(0) = 0$, $P_{-1}(1) = 0$

de même pour P_0 et P_1 , on trouve donc

$$P_{-1} = \frac{1}{2}X(X-1), \quad P_0 = 1 - X^2, \quad P_1 = \frac{1}{2}X(X+1)$$

2. On a

$$\phi(P_{-1}) = \frac{1}{3}, \quad \phi(P_0) = \frac{4}{3}, \quad \phi(P_1) = \frac{1}{3}$$

Donc $\phi = \frac{1}{3}\varphi_{-1} + \frac{4}{3}\varphi_0 + \frac{1}{3}\varphi_1$, ce qui est exactement la formule voulue.