Process Mining: Data Science in Action

Learning Dependency Graphs

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

Heuristic mining: Two main phases

- Here we focus on learning dependency graphs (first phase).
- Inspired by heuristics miner (but many variations are possible).

Running example: C-net

Example event log with some outliers

outliers (not in model)

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

Problems of the Alpha algorithm with log

$$\langle a,d,e\rangle^{10},\langle a,d,d,e\rangle^2,\langle a,d,d,d,e\rangle^1]$$

Frequencies matter!

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times |\{1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}|$$

Counting direct succession

information loss when frequencies are ignored

	10	10	

 $L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, e \rangle^1, \langle a, e \rangle^{10}, \langle a, d, e \rangle^2, \langle a, d, d, e \rangle^1]$

$ >_L $	а	b	С	$\overset{\vee}{d}$	e
а	0	11	11	true	5
b	0	0	10	false	11
\mathcal{C}	0	10	0	false	11
d	0	0	0	true	13
e	0	0	0	false	0

Dependency measure Taking into account concurrency

$$|a>_{L} b| = \sum_{\sigma \in I} L(\sigma) \times |\{1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}|$$

direct succession

dependency measure

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Two values: <u>Direct succession and dependency</u>

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times |\{1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}|$$

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

- Both need to be above predefined thresholds!
- Otherwise, no causality!

Sequence pattern

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Included arc (assuming thresholds ≥1 and ≥0.5)

$|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

XOR-split pattern

$$a \Rightarrow_{L} b \mid = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Included arcs (assuming thresholds ≥1 and ≥0.5)

XOR-join pattern

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

$$|a>_{L}b| = 0$$
 $|b>_{L}a| = 0$
 $|a\Rightarrow_{L}b| = 0/1$ $|b\Rightarrow_{L}a| = 0/1$
 $|a>_{L}c| = 8$
 $|a\Rightarrow_{L}c| = 8/9$ $|b\Rightarrow_{L}c| = 2/3$
 $|c>_{L}a| = 0$ $|c>_{L}b| = 0$
 $|c\Rightarrow_{L}a| = -8/9$ $|c\Rightarrow_{L}b| = -2/3$

Included arcs (assuming thresholds ≥1 and ≥0.5)

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

AND-split pattern

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq a \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = a \end{cases}$$

illustrates why $>_L$ is not enough and \Rightarrow_L is needed

$$|a>_{L}b| = 5$$
 $|b>_{L}a| = 0$ $|a>_{L}b| = 5/6$ $|b>_{L}a| = -5/6$ $|b>_{L}c| = 5$ $|b>_{L}c| = 5$ $|b>_{L}c| = 5$ $|b>_{L}c| = 5$ $|b>_{L}c| = 0/11$ $|c>_{L}a| = 0$ $|c>_{L}b| = 5$ $|c>_{L}b| = 0/11$

Included arcs (assuming thresholds ≥1 and ≥0.5)

$|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

AND-join pattern

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

illustrates why $>_{L}$ is not enough and \Rightarrow_{L} is needed

Included arcs (assuming thresholds ≥1 and ≥0.5)

$$|a>_{L}b| = 5 \qquad |b>_{L}a| = 5$$

$$|a>_{L}b| = 0/11 \qquad |b>_{L}a| = 0/11$$

$$|a>_{L}c| = 5 \qquad |b>_{L}c| = 5$$

$$|a>_{L}c| = 5/6 \qquad |b>_{L}c| = 5/6$$

$$|c>_{L}a| = 0 \qquad |c>_{L}b| = 0$$

$$|c>_{R}a| = -5/6 \qquad |c>_{L}b| = 5/6$$

Loop pattern

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Loop pattern

$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

illustrates why self loops are handled differently (otherwise 0)

$$|c>_{L}a| = 0$$

$$|c\Rightarrow_{L}a| = -3/4$$

$$|c>_{L}b| = 0$$

$$|c\Rightarrow_{L}b| = -7/8$$

$$|c>_{L}c| = 0$$

$$|c\Rightarrow_{L}c| = 0/1$$

Included arcs (assuming thresholds ≥1 and ≥0.5)

Example revisited

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

$ >_L $	a	b	С	d	e
а	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Question: What are $|a\Rightarrow_L b|$ and $|d\Rightarrow_L d|$?

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

$ >_L $	a	b	С	d	e
а	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Compute the dependency measures $a \Rightarrow_L b$ and $d \Rightarrow_L d$

Dependency measures computed for all activity pairs

$ \Rightarrow_L $	а	b	С	d	e
а	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -0.92$	$\frac{10-10}{10+10+1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
d	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
e	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

Two example values: $|a\Rightarrow_L b|$ and $|d\Rightarrow_L d|$

Dependency graph using a lower threshold

(at least 2 direct successions and a dependency of at least 0.7)

$ \Rightarrow_L $	а	b	С	d	e
а			$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -0.92$	$\frac{10 - 10}{10 + 10 + 1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
	$\frac{0-13}{0+13+1} = -0.93$				$\frac{13-0}{13+0+1} = 0.93$
e	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

$ >_L $	а	b	С	d	e
a	0	11	11	13	5
b	0	0	10	0	11
С	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Dependency graph using a higher threshold

(at least 5 direct successions and a dependency of at least 0.9)

$ \Rightarrow_L $	а	b	С	d	e
а	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13 - 0}{13 + 0 + 1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\left \frac{0 - 11}{0 + 11 + 1} = -0.92 \right $	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
	$\left \frac{0 - 11}{0 + 11 + 1} = -0.92 \right $			$\frac{0-0}{0+0+1} = 0$	I
d	$\left \frac{0 - 13}{0 + 13 + 1} = -0.93 \right $	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
e	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

$ >_L $	а	b	c	d	e
а	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Computing the dependency graph

- 1. Set thresholds for the minimal number of direct successions and the dependency measure.
- 2. Count direct successions.
- 3. Compute dependency measures.
- 4. Draw dependency graph while including only arcs that meet both thresholds.

Practice doing this yourself on small example logs!

Disco

(different kind of dependency graphs, but idea of thresholds is similar)

Next step: Learn splits and joins

Part I: Preliminaries Part III: Beyond Process Discovery Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 1 Chapter 9 Process Modeling and Data Mining Introduction Conformance Mining Additional **Operational Support** Analysis Checking Perspectives Part II: From Event Logs to Process Models Part IV: Putting Process Mining to Work Chapter 10 Chapter 11 Chapter 4 Chapter 5 Chapter 6 Chapter 12 Process Discovery: An Getting the Data Advanced Process **Tool Support** Analyzing "Lasagna Analyzing "Spaghetti niques Introduction Processes" Processes" Discover Part V: Reflection Chapter 14 Chapter 13 Cartography and **Epilogue Navigation** Wil M. P. van der Aalst Process Mining

2 Springer