CS 6601: Midterm study guide

Note: R&N = AI, A Modern Approach, by Russell & Norvig

- Adversarial search (R&N <u>Chapter 5</u>)
 - Observable games (e.g. isolation)
 - Minimax
 - Alpha-beta pruning
 - Performance improvement
 - Utility and evaluation functions
 - Sensitivity
 - Optimization tricks
 - Move-ordering
 - Symmetry
 - Iterative deepening
 - Multiplayer games
 - Probabilistic games
 - Partially observable games (e.g. poker)
- Search (R&N Chapter 3, <u>uninformed</u> and <u>informed</u>)
 - Uninformed
 - Breadth-first search
 - · Depth-first search
 - Depth-limited search
 - Iterative deepening depth-first search
 - Uniform-cost search
 - Informed
 - · Greedy search
 - A* search
 - Heuristics
 - Consistency/admissibility
 - Dominance
 - Derivation by relaxation

- Bidirectional
- Tridirectional
- Tree vs. graph search
- Completeness, space/time complexity, path optimality
- Agent design (R&N Chapter 2)
 - Rationality
 - PEAS
 - Performance
 - Environment
 - Observability
 - Deterministic/stochastic
 - Episodic/sequential
 - Static/dynamic
 - Discrete/continuous
 - Single/multi-agent
 - Actuators
 - Sensors
 - Uncertainty
 - Agent types
 - Reflex
 - Reflex with state
 - Goal-based
 - Utility-based
 - Learning
- Random algorithms (part of R&N Chapter 4)
 - Hill-climbing
 - Beam search
 - Iterative improvement
 - Simulated annealing
 - Genetic algorithms
 - Local vs. global maximum
 - Local stochastic search
- Constraint satisfaction problems (R&N Chapter 6)
 - Variables, domains, constraints

- Standard search
- Backtracking
- Heuristics
 - Minimum remaining values
 - Least constraining value
- Forward-checking
- Arc consistency
- Path consistency
- Problem re-structuring
- Probability (R&N Chapters 13 and 14a, 14b)
 - Independence/dependence
 - Discrete/continuous variables
 - Joint distribution
 - Central Limit Theorem
 - Conditional probabilities
 - Bayes' Rule
 - Chain Rule
 - Conditional independence
 - Bayesian networks
 - How to construct
 - Local independence
 - Inference
 - Exact (calculation)
 - Enumeration
 - Variable elimination
 - Inexact (sampling)
 - Rejection sampling
 - Stochastic simulation
 - MCMC simulation
 - Decision/utility theory
 - Expected value