CHAPTER ELEVEN

GLOBAL MATHEMATICS

- The figure shows an arc with angle θ at its centre.
- The length of an arc with angle θ at its centre = $\frac{\theta}{360}$ x $2\pi r$, where r = the radius.

(Q1) Find the length of an arc which has an angle of 60° at the centre, and a radius of 10cm.

Let the length of the arc = L, and $\theta = 60^{\circ}$.

Since $L = \frac{\theta}{360} \times 2\pi r => L = \frac{60}{360} \times 2 \times 3.14 \times 10 = 1.04 cm$.

(Q2)An arc AB subtends an angle of 60° at the centre of a circle of radius 14cm.

Find (i) the length of the arc AB.

ii) the length of the chord AB. (Take $\pi = 3.142$ or $\frac{22}{7}$).

Soln:

(i)

Length of arc AB = $\frac{\theta}{360}$ x $2\pi r = \frac{60}{360}$ x 2 x 3.14 x 14 = 15cm.

(II)

Considering Fig.(1), Sin $30^0 = \frac{AM}{14}$

 \Rightarrow AM = 14 x sin 30°, \Rightarrow AM = 14 x 0.5 = 7cm.

But AB = 2AM = 2(7) = 14cm.

Length of chord AB = AB = 14cm.

(Q3) An arc AB is of length 28.5cm, and the diameter of the circle is 42cm. Find θ the angle subtended at the centre of the circle.

Soln:

Length of arc = 28.5cm. Since diameter = 42cm => radius = 21cm.

Since length of arc AB = $\frac{\theta}{360}$ x $2\pi r$,

$$=>28.5 = \frac{\theta}{360} \times 2 \times \frac{22}{7} \times 21$$

$$=>28.5=\frac{132\theta}{360}$$

$$=>132\theta=28.5 \times 360,$$

$$=>132\theta=10260, =>\theta=\frac{10260}{132}, =>\theta=78^{\circ}$$

..

<u>•</u>

The Earth:

N/B:

- Longitude 180°W always meets longitude 180°E.
- When two longitudes have a similar direction, i.e either East or West, then their difference is used in calculation.
- For example longitude 10^{0}E and longitude 25^{0}E have a similar direction, which is East.
- Therefore their difference i.e $25 10 = 15^{\circ}$ must be used in calculation.
- When the two longitudes differ in direction, then their sum is used.
- For example, considering longitude 25^{0} W and longitude 15^{0} E, their sum i.e. $15 + 25 = 40^{0}$, must be used in calculation.

Small and great circles:

- A small circle is obtained when the line of longitude or the line of latitude does not through the centre of the earth.

- A great circle is obtained when the line of latitude or the line of longitude passes though the centre of the earth.
- All longitudes are great circles, since they all pass through the centre of the earth.
- The equator is the only latitude which passes through the centre of the earth.
- For this reason, it is the only latitude which is a great circle.
- It must be noted that every longitude passes through the north pole and the south pole.

N/B: N is the North pole with S being the south pole.

- The above indicates the relationship between Latitude $40^{\rm o}{\rm N}$ and latitude $70^{\rm o}{\rm S}$, with respect to the equator.
- (Q1) Find the radius of a circle of latitude 60° N, given that the radius of the earth is R, where R = 6400km.

.

Soln:

 $R = radius of the earth and ZP = radius of Lat. 60^{0}N.$

Consider \triangle PZO i.e.

$$\cos 60^{\circ} = \frac{P2}{6400} = PZ = 6400 \cos 60$$

 $= 6400 \times 0.5 = 320 \text{km}.$

The radius of latitude $60^{\circ}N = 320$ km.

N/B: To find the diameter of the circle of latitude 60° , first determine the radius and multiply it by 2.

Diametre = $2 \times 320 = 640 \text{km}$.

(Q2) Find the radius of latitude 50°S, if the radius of the earth is 6400km.

Soln:

YQ =the radius of latitude 50° S. R = 6400km.

Consider triangle OYQ i.e.

 $YQ = 6400 \cos 50^{\circ}$

 $=>YQ = 6400 \times 0.64 = 4114 \text{km}.$

N/B:

- From YQ = $6400 \text{ Cos } 50^{\circ}$, YQ = the radius of the latitude 50° S, 6400 = the radius of the earth and 50° = the latitude.
- We can therefore conclude that the radius of a latitude = R Cos L.
- For example, the radius of latitude 30° is given by $r = 6400 \text{ Cos } 30^{\circ}$.
- Also the radius of latitude 10^{0} is given by $r = 6400 \text{ Cos } 10^{0}$.
- (Q3) P(Latitude 40°N, longitude 10° E) and Q(Latitude 40°N, longitude 20°E), are two points on the earth's surface. Find
- the radius of their common latitude.
- the distance from P to Q along the common latitude.

- the distance from P to Q through the earth.[Take R = 6400km and π = $\frac{22}{7}$ or 3.142]

Soln:

- ZN = the radius of their common latitude.

Consider∆ ZON i.e.

 $ZN = R \cos 40^{\circ} = 6400 \cos 40^{\circ} = 4903 \text{km}.$

• For the distance from P to Q along their common latitude, we ,consider the points P and Q, as well as the circle or latitude on which P and Q lies i.e.

Let θ = <PZQ.

Since the two latitudes share a common direction, then $\theta = 20 - 10 = 10^{\circ}$.

The distance from P to Q along their common latitude= the length of the arc PQ.

$$PQ = \frac{\theta}{360} \times 2 \times \pi \times r => PQ = \frac{10}{360} \times 2 \times \frac{22}{7} \times 4903 = 856 \text{km}.$$

N/B: r which is the same as the radius of their common latitude has already been calculated to be 4903km.

N/B: PZ and ZQ are radii of their common latitude. Therefore PZ = 4903km and ZQ = 4903km. The distance from P to Q through the earth = PQ.

Consider figue (1) i.e

Sin
$$5^0 = \frac{PM}{4903} = > PM = 4903 \times Sin 5^0 = 4903 \times 0.09$$

N/B:

= 441 km.

- The shortest distance PQ (or the shortest distance from P to Q, is the same as the shortest distance PQ along the parallel of latitude.
- Also the distance from P to Q through the earth is the same as the shortest distance between P and Q.

(Q4)A (latitude 30°N, longitude 3°E) and B (latitude 30°N, longitude 33°E) are two points on the earth's surface. Assuming the earth to be a sphere of radius 6400km, find

- (i) the distance from A to B along the common latitude.
- (ii) the distance from A to B through the earth.

[Take $\pi = 3.142$].

N/B: $R = 6400 \text{km} \Rightarrow OP = 6400 \text{km}$.

Soln:

Consider \triangle ZOP i.e.

The required radius = ZP.

 $ZP = OP Cos 30^{\circ}$.

ZP = 6400 Cos 30.

 $ZP = 6400 \times 0.866 = 5540 \text{km}$.

Since the two longitudes have a common direction, then $\theta = 33 - 3 = 30^{\circ}$.

The distance from A to B along the common latitude = the length of arc AB

$$\frac{\theta}{360}$$
 x 2 x π x r = $\frac{30}{360}$ x 2 x 3.14 x 5540

= 2880km.

(ii)

N/B: The 15° was had by dividing the 30° by 2.

Considering figure (1), i.e.

Rotate to get

 $AM = r \sin 15^0$ where r = the common radius.

=> AM = 5540 x 0.26

= 1440.

Since AB = 2AM, then AB = 2(1440) = 2880km.

The required distance = AB = 2880km.

(Q5) P and Q are two points on the equator on longitude 15^{0} E and longitude 45^{0} E. R(latitude 40^{0} N, long 45^{0} E). A ship sails from P to Q and then from Q to R. Assuming the earth to be a sphere of radius 6400km, find

i) the total distance covered by the ship.

(ii) the time taken by the ship to travel from P to Q, if its speed is 15km/h.

[Take the radius of the earth = 6400km].

Soln:

If the ship sailed from P to Q, then it sailed from P to Q along the earth.

$$\theta = 45^{\circ} - 15^{\circ} = 30^{\circ}$$
.

Distance from P to Q along the earth = $\frac{\theta}{360}$ x 2π r

Since these points are located on the equator, then r which is the radius of their common latitude, will be the same as the radius of the earth i.e. 6400km.

Required distance =
$$\frac{30}{360}$$
 x 2 x 3.14 x 6400

= 3352km.

For the distance from Q to R, movement is from latitude O^0 or the equator to latitude 40° N.

$$\theta = 40^{\circ} - 0^{\circ} = 40^{\circ}$$

Distance from Q to R along the earth = $\frac{40}{360}$ x 2 x 3.14 x 6400

= 4480 km.

The total distance travelled = 3352 + 4480 = 7832km

(II)Since distance = speed x time, then

$$Time = \frac{Distance}{Speed} = \frac{7832}{15}$$

= 515.3 mins = 8hrs 36mins.

N/B:

- The shortest distance between any two points along the surface of the earth, is always along a great circle through the two points.
- If the latitude is the equator, then the distance between any two points along it is the shortest distance.
- (Q6)P and Q are two points on the same parallel of latitude 50° N. P lies on longitude 10° W and Q lies on longitude 50° E. Taking the radius of the earth to be 6400km and π = 3.142, calculate
- (a)the circumference of the line of latitude 50°N to the nearest kilometer.
- (b) the shortest distance PQ measured along the line of latitude 50°N.
- (c) the latitude at which the circumference of the circle is equal to one quarter the length of the equator.

Soln:

Consider \triangle ZOM i.e.

$$ZM = r = R \cos 50^{\circ} => r = 6400 \cos 50$$
,

=> r = 4114km.

The radius of circle of latitude 50° = 4114km.

The circumference of circle of latitude $50^{\circ} = 2\pi r$

(b)

Since the two given latitudes have different directions, then their sum must be used, => θ = 10⁰ + 50⁰ = 60⁰.

The shortest distance from P to Q along latitude 50⁰

= 60/360 x 2 x 3.142 x 4114

= 4310 km.

(c)

Let θ = the angle of the latitude.

The length of the latitude = $2\pi RCos \theta$.

Also the length of the equator = $2\pi R$.

Since the length of the latitude = $2\pi RCos \theta$

$$=\frac{1}{4}$$
 (length of the equator),

=>
$$2\pi RCos \theta = \frac{1}{4} (2\pi R) => 2Cos = 0.5\pi R$$

$$=>2\pi R \cos \theta = \frac{1}{4} \times 2\pi R$$

$$=>2\cos\theta=0.5\pi R$$

$$\Rightarrow$$
 Cos $\theta = \frac{0.5\pi R}{2\pi R}$ s

$$\Rightarrow$$
 Cos θ = 0.25 \Rightarrow θ = 76 North or South.

- (Q7)A and B are two points on the earth's surface in the northern hemisphere. They both lie on the same circle of latitude of radius 4900km. A is $35^{\circ}E$ and B is $14^{\circ}W$. Assuming that the earth is a sphere of radius 6400km and $\pi = 3.14$, calculate
- a) (i) the latitude of A and B.
- (ii) the shortest distance between A and B along their parallel latitude.
- (b) C is a point on the earth's surface along a great circle, and the distance from B to C IS 11200km. Calculate the latitude of C.

(a)Let the radius of latitude on which A and B lie be r and let R be the radius of the earth.

Since $r = R \cos \theta$, then 4900 = 6400 Cos, where θ = the latitude on which A and B lie.

From 4900 = 6400 Cos *θ*

$$=> \cos \theta = \frac{4900}{6400}$$

$$\Rightarrow \theta = \cos^{-1} 0.77 = 40^{0}.$$

(II)

The shortest distance between A and B along their parallel latitude = Arc BA (or arc AB).

Arc BA =
$$\frac{\theta}{360}$$
 x $2\pi r$,

where r is the radius of the latitude on which A and B lie (i.e. r = 4900km).

Also the angle $\theta = 35^{\circ} + 14^{\circ} = 49^{\circ}$

Arc BA =
$$\frac{49}{360}$$
 x 2 x 3.142 x 4900

= 42000km.

N/B:

(b)-The distance BC is given as 11200km.

First, we must determine the distance BE, and make use of the fact that BE + EC = BC.

$$=> EC = 11200 - BE$$
.

From the diagram, B lies on latitude 40°E and E lies on the equator or latitude 0°E.

in this case, $\theta = 40 - 0 = 40^{\circ}$.

Since E lies on the equator, then arc BE= $\frac{\theta}{360}$ x 2π R, where R = the radius of the earth.

Arc BE =
$$\frac{40}{360}$$
 x 2 x 3.142 x 6400

= 4469 km.

Since BE + EC = 11200,

$$=> EC = 11200 - 4469$$
,

=> EC = 6731km.

Let B^0 = the latitude on which C lies. Since E lies on latitude 0^0 , and both E and C have the same direction, then $\theta = B^0 - 0^0 = B^0$.

Since arc EC =
$$\frac{\theta}{360}$$
 x $2\Pi r$,

$$=>6731=\frac{\theta}{360}\times2\times3.14\times6400,$$

=> 6731 =
$$\frac{B^0}{360}$$
 x 2 x 3.14 x 6400, => 6731 = 112B => $B^0 = \frac{6731}{112}$

$$=> B^0 = 60^0$$
.

C lies on latitude 60°.

- (Q8) P(Latitude 60°N, longitude 20°W) and Q(Latitude 60°, longitude 36°E) are two points on the earth's surface. Assuming that the earth is a sphere of radius 6400km, calculate
- i) the time taken for an aircraft to fly from P to Q at an average speed of 540kmh $^{\text{-}1}$. Take π = 4.142
- (ii) the shortest distance through the earth.

Soln;

(i)Let r =the radius of latitude 60° N or the common radius.

Consider \triangle OXY i.e.

$$r = R \cos 60^{\circ} => r = 6400 \times 0.766$$

$$= 4900$$
, $=> r = 4900$ km.

N/B: Also, $r = R \cos \theta$, where $\theta = the latitude$.

$$\theta$$
 = 20⁰ + 36⁰ = 56⁰.

Distance from P to Q along their common latitude = length of arc PQ.

$$PQ = \frac{\theta}{360} \times 2\pi r$$

$$\Rightarrow$$
 PQ = $\frac{56}{360}$ x 2 x 3.14 x 4900,

Therefore distance travelled by aircraft = 4786km.

Speed of aircraft = 540km⁻h.

Time taken =
$$\frac{Distance}{Speed} = \frac{4786}{540}$$

= 9hrs.

(II)

The shortest distance = PQ = 2(PM), consider figure (1), i.e.

 $PM = 4900 \sin 28^{\circ}$

 $= 4900 \times 0.47$

= 2303 km.

The shortest distance = 2PM

= 2(2303) = 4606km.

(Q9)An aircraft took 2 hours to fly from town P (latitude 65° N, longitude 45° E) to another town T(latitude 65° N, longitude 15° E). The aircraft then changed its course and 9 hours after leaving T, arrived at a third town Q(latitude 0° , longitude 15° E). If the flight from P to T was along the line of latitude and that from T to Q along the meridian, calculate

- (a) the total length of the journey.
- (b) the average speed of the aircraft.[Take π = 3.142 and radius of earth = 6400km].

(a)

From $r = R \cos 65^{\circ} => r = 6400 \cos 65^{\circ}$

 $=> r = 6400 \times 0.4226 = 2705 \text{km}$, where r = the radius of their common latitude.

Distance travelled from P to T= length of arc TP.

$$\theta = 45 - 15 = 30^{\circ}$$

Length of arc TP =
$$\frac{\theta}{360}$$
 x $2\pi r = \frac{30}{360}$ x 2 x 3.142 x 2705

= 1417km.

∴ Distance travelled from P to T = 1417km.

The distance from T to Q = length of arc TQ. Since Q lies on the equator, then its latitude = 0°

$$\theta = 65^{\circ} - 0^{\circ} = 65^{\circ}$$
.

Length of arc TQ = $\frac{\theta}{360}$ x 2 π R, where R = the radius of the earth, (since Q lies on the equator).

Length of arc TQ = distance travelled from T to Q = $\frac{65}{360}$ x 2 x 3.142 x 6400 = 7262km.

The total length of journey = Distance travelled from P to T + distance travelled from T to Q = 1417 + 7262 = 8679km.

c) total distance travelled = 8679km

Total time taken = 2 + 9 = 11hrs.

Average speed =
$$\frac{total\ distance}{total\ time\ taken} \frac{8679}{11} = \frac{8679}{11} = 789 kmh^{-1}$$
.

- (Q10) An aeroplane flies from P(latitude 20°N, longitude 10°E) due east to Q(latitude, 20°N, longitude 60°E).
- i) If the journey takes $6\frac{1}{4}$ hours, calculate the average speed of the aeroplane.
- (ii) If the pilot then flies due north from Q to T, 400km away from Q, calculate the latitude of T. [Assume the earth to be a sphere of radius 6400km and take π = 3.142].

(i) The radius of the latitude on which PQ lies is given by $r = R \cos \theta \implies r = 6400 \cos 20^{\circ}$ => r = 6014 Km.

$$\theta = 60 - 10 = 50^{\circ}$$
.

Distance travelled from P to Q = length of arc PQ.

Length of arc PQ =
$$\frac{\theta}{360}$$
 x $2\pi r = \frac{50}{360}$ x $2 \times 3.14 \times 6014$ = 5249.

Distance travelled from P to Q = 5249km.

Time taken for this journey = $6\frac{1}{4}$ hrs.

Average speed =
$$\frac{Distance\ travelled}{Time\ Taken} = \frac{5249}{6\frac{1}{4}} = \frac{5249}{6.25} = 840 \text{kmh}^{-1}.$$

(ii) The distance travelled from Q to T = the length of arc QT.

Length of arc QT = $\frac{\theta}{360}$ x 2 π r, where R = the radius of the earth, (since in this case, movement was along a longitude).

Length of arc QT =
$$\frac{\theta}{360}$$
 x 2 x 3.142 x 6400

But since the distance travelled from Q to T = 400km, then length of arc QT = 400km, => $400 = \frac{\theta}{360} \times 2 \times 3.142 \times 6400$,

$$\Rightarrow 400 = 112\theta, \Rightarrow \theta = \frac{400}{112} = 3.6^{\circ}$$

The latitude of T = $20^{\circ} + \theta = 20 + 3.6^{\circ} = 23.6^{\circ}$.

N/B:

- When movement from one point to another is made along a longitude or a meridian, then R(i.e. radius of the earth) is the radius of the latitude concerned.
- From the diagram drawn, it will be noticed that the radius of the latitude on which T lies = $20^{\circ} + \theta$.
- (Q11) An aeroplane flies from point P(Lat. 60°N, Long 35° E) due west of P on the same latitude. If the distance PR along the parallel of latitude is 5000km,
- (a) find the longitude of R.
- (b) If the aeroplane flies due north from R for 8hours to point Q on latitude 30° north, find the speed of the plane correct to 2 significant figure.

N/B:

- Since the plane flew due west of P from P, before arriving at R, then P and R have different directions.
- While P is in the east, R is in the west. P(Lat. 60° N, long 30° E) and R(Lat 60° N, long 8° W)

Let B = the longitude on which R lies.

Soln:

- Since the longitude of P is 30° E and that of R is B° W, then in this case $\theta = 30 + B^{\circ}$

PR = 500 km. Since PR =
$$\frac{\theta}{360}$$
 x $2\pi r$, where r = R Cos 60°

$$PR = \frac{\theta}{360} \times 2\pi R \cos 60^{\circ}$$

$$=> PR = \frac{\theta}{360} \times 2 \times 3.142 \times 6400 \times 0.5,$$

$$=> PR = 56\theta$$
.

But since PR = 5000km and θ = 35 + B, then 5000 = 56(35 + B),

$$=> 56B = 5000 - 1960 = 3040,$$

$$=> B = \frac{3040}{56} = 55^{\circ}$$

R lies on longitude 55⁰

a) Since the plane flies north from the point R to point Q on latitude 30°N, then P and Q will have a common longitude of 55°.

R(Lat. 60^oN, long 55^oW) and Q(Lat. 30^oN, long. 55^oW).

 $\theta = 60^{\circ} - 30^{\circ} = 30^{\circ}$, since both R and Q are in the west.

The distance QR travelled by the plane = $\frac{\theta}{360}$ x 2π R,

$$\Rightarrow$$
 QR = $\frac{30}{360}$ x 2 x 3.142 x 6400,

Time taken to cover this distance = 8hrs.

Speed =
$$\frac{Distance\ travelled}{Time\ taken} = \frac{3351}{8}$$

= 420 km/h.

N/B:

- The shortest distance through the earth, is also referred to as the shortest distance.

Example:

The shortest distance = QA = 2QT (or 2TA).

Also the shortest distance QA along the parallel of latitude = the length of chord QA = $\frac{\theta}{360}$ x $2\pi r$

- Now consider A(Lat 30^oN, long 15^oE) and B(Lat 30^oN, long 45^oW).
- Since these two points share a common latitude of 30° N, then for the angle θ , we consider their longitudes which are long 15° E and long 45° W.
- Since they have different directions, then θ = 15° + 45° = 60°.
- Consider B(Lat 70°N, long 20°E) and C(Lat. 70°N, Long 70°E).
- These two points share common latitude of 70° N and as such for the angle θ , we consider only their longitudes i.e. long. 20° E and Long. 70° E => θ = 70° 20° = 50° , since they have a common direction.

- In this case, θ = the difference in their longitudes. Consider now B(Lat. 30° N,Long. 45° W) and C(Lat 18° S, Long. 45° W).
- Since they have a common longitude of 45° W, then for angle θ we consider their latitudes which are latitude 30° N and latitude 18° S.
- Because they are of different directions, then $\theta = 30 + 18 = 48^{\circ}$.
- Lastly, consider A (Lat 10^oN, long 20^oW) and B(Lat 40^o N, long 20^oW).
- They share a common longitude of 20° W, and for the angle θ , we consider latitude 10° N and latitude 40° N.
- Because they have a common direction, then $\theta = 40 10 = 30^{\circ}$.
- In this case, θ = the difference in their latitudes.
- (Q12) If A (Lat. 30°N, Long 15°E), B(Lat. 30°N, Long 45°W) and C(Lat.18°S, Longitude 45°W) are three towns on the earth's surface. Calculate correct to 3 significant figures;
- i) the distance AB measured along the latitude.
- (ii) the distance BC measured along the meridian.
- lii) the time taken by an aircraft to cover the distance AB and BC.

Soln:

(i) Since $r = R \cos 30^{\circ} => r = 6400 \times 0.866$,

=> r = 55442km. Towns A and B share or have a common latitude of 30⁰N, we consider only their longitudes.

Since the longitudes of A and B have different directions, then $\theta = 45^{\circ} + 15^{\circ} = 60^{\circ}$

AB =
$$\frac{\theta}{360}$$
 x 2 π r = $\frac{60}{360}$ x 2 x 3.142 x 5542

= 5800 km.

(ii) Given B(Lat 30° N, long 45° W) and C(Lat 18° S, Long 45° W). B and C are on the same longitude of 45° W, and since movement from B to C is along a longitude, then the radius = R = 6400km. Also because towns B and C share a common longitude of 45° , we consider only their latitudes which are Lat. 30° N and lat. 18° S, and this => θ = 30° + 18° = 48° .

The distance BC along the meridian = $\frac{\theta}{360}$ x 2π R = $\frac{48}{360}$ x 2 x 3.142 x 6400

= 5365.32 = 5,360km to 3 s.f.

(iii) Time taken by aircraft =
$$\frac{total\ distance\ travelled\ (km)}{average\ speed\ (km/h)} = \frac{AB+BC}{average\ speed}$$

$$=\frac{5800+5360}{560}$$
 = 17.2 hrs (to 3. S.F.)

N/B:

- In the formula length of arc = $\frac{\theta}{360}$ x $2\pi r$, θ = the difference in the latitudes concerned.
- Apart from that, θ can also be equal to the difference in the longitudes concerned.

(Q13)An aeroplane files from P to Q in 1 hour at a speed of 120km/min, where P and Q are on the parallel of latitude 60° N. If the aeroplane flies along this parallel of latitude, calculate correct to three significant figures, the difference in the longitudes of P and Q. [Take $\pi = \frac{22}{7}$ and the radius of the earth = 6400km.].

Soln:

Let P lie on Long. θ_1 and Q lie on Long. θ_2 .

Since a difference in their longitudes is made mentioned of, then one longitude must be subtracted from the other, => the two longitudes share a common direction.

In this case, the difference in the longitudes = $\theta = \theta_2 - \theta_1$.

From $r = R \cos \theta => r = 6400 \cos 60^{\circ}$

 $=> r = 6400 \times 0.5 = 3200.$

The radius of their common latitude = 3200km.

Time taken by plane to fly from P to Q = 1hr (60 minutes).

Speed of plane = 120km/min.

If 1 min. = 120km

then 60 mins. =7200.

The total distance travelled by plane from P to Q = 7200km.

Since from the diagram, the distance travelled by plane = the length of arc

PQ, then 7200 =
$$\frac{\theta}{360}$$
x 2 x $\frac{22}{7}$ x 3200,

 $=>7200 = 56\theta => \theta = 129.$

The difference in the longitudes = 129° .

*