ICPC Template Manual

University of Jinan

Awesome

Contents

0			1
1	Mat		2
	1.1	数	2
		1.1 质因数分解	2
		1.2 Miller Rabin 素数测试	2
		1.3 区间筛	2
		1.4 杜教筛	3
	1.2	7拉函数	3
		2.1 函数	3
		2.2 埃式筛	4
		2.3 线性筛	4
	1.3	法	4
		3.1 埃式筛	4
		3.2 欧拉筛	5
		3.3 筛法求四类积性函数	6
		$3.4 \text{Min}_2 5 sieve \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
		3.5 线性筛约数和	9
	1.4	· · · · · · · · · · · · · · · · · · ·	9
		4.1 exgcd	9
		4.2 ax+by=c	9
		·	10
		· , · · · · · ·	11
			11
			12
	1.5	2 2 4 4 4	13
	1.0		13
			13
			14
			15
		• •	16
			17
		·	18
	1.6		18
	1.0	•	18
		·	18
	1.7		19
	1.8		19 19
	1.0		19 19
			20
	1.0	<u>i</u>	
	1.9		20 25
			25
			26
		2 7 V V V V V V V V V V V V V V V V V V	26
	1.10		28
		• •	28
		• •	29
		•	30
	1.11		31
	1.12	· ¬¬¬¬	32

2		_	cessing	35
	2.1	哈希		35
		2.1.1	一般哈希	35
		2.1.2	字符串哈希	35
		2.1.3	字符串哈希 (区间)	35
		2.1.4	ELF HASH	35
	2.2			36
	2.3		P	36
	2.4		ner	37
	2.5		劲机	37
	2.6	/ - //-//	组 (SA)	38
	2.7		动机 (SAM)	39
	2.8	回文自	动机 (树)	40
3	Dat	a Stru	cture	42
	3.1	并查集		42
		3.1.1	并查集 (启发式合并)	42
		3.1.2	带权并查集	42
		3.1.3	种类并查集	42
		3.1.4	可持续化并查集	43
				44
		3.1.5	可撤销并查集	
		3.1.6	跳点	45
		3.1.7	习题 1	45
		3.1.8	习题 2	45
	3.2	单调栈		46
	3.3	单调队	列	46
	3.4	对顶堆		47
		3.4.1	维护第 k 小 (大)	47
		3.4.2	#护中位数	48
	3.5	ST 表		48
	0.0		一维 RMQ	48
		3.5.2	二维 RMQ	49
	0.0		• • •	
	3.6	线性基	***************************************	49
		3.6.1	线性基	49
		3.6.2	实数线性基	51
		3.6.3	前缀线性基 (区间线性基)	51
		3.6.4	线段树合并线性基 (区间线性基)	52
		3.6.5	最大 xor 和路径	54
	3.7	舞蹈链		54
	3.8	线段树		56
	0.0	3.8.1	区间乘加区间和	56
		3.8.2	zkw 线段树	57
				58
		3.8.3		
		3.8.4	线段树合并 (空间优化)	59
		3.8.5	线段树分裂	60
		3.8.6	线段树分裂例题 1	60
		3.8.7	线段树分裂例题 2	62
		3.8.8	吉老师线段树	63
		3.8.9	吉老师线段树 (例题)	64
		3.8.10	李超线段树	66
		3.8.11	扫描线-面积并	67
			扫描线-周长并	68
	3.9	树状数		70
	5.9			
		3.9.1	单点更新区间查询	70
		3.9.2	区间更新单点查询	70
		3.9.3	区间更新区间查询	70
		3.9.4	逆序对	71
		3.9.5	线性复杂度建树	72
		3.9.6	维护后缀信息	72

	3.9.7 权值树状数组【可求全局第 k 小】	72
3.10	· 主席树	
	3.10.1 求区间内不同数的个数	
	3.10.2 区间修改懒标记	
	3.10.3 经典例题 middle	
3 11	平衡树	
0.11	3.11.1 Splay	
	3.11.2 Treap	
	3.11.3 FHQ Treap	
	3.11.4 FHQ Treap 区间翻转	
	• • • • • • • • • • • • • • • • • • • •	
	3.11.5 FHQ Treap 可持续化	
	3.11.6 FHQ Treap 可持续化区间翻转	
	3.11.7 01Trie	
	3.11.8 Splay 最大子序列和	
3.12	· 动态树	
	3.12.1 求 MST	
	3.12.2 求 LCA	
	3.12.3 维护子树信息	96
	3.12.4 求重心	97
	3.12.5 求直径	99
	3.12.6 LCT+ 随机化(对子集 hash)	100
	3.12.7 LCT+ 主席树维护区间联通块个数	102
	3.12.8 路径乘, 路径加	103
	3.12.9 维护双联通分量	
3.13	笛卡尔树	
	- 左偏树 (可并堆)	
	Trie 树	
0.10	3.15.1 01Trie 平衡树	
	3.15.2 可持续化 Trie 树	
3 16	虚树	
	· 阿朵莉树	
	树套树	
3.10	3.18.1 线段树套线段树【单点修改 + 矩形最值】	
	3.18.2 线段树套平衡树【区间限制 + 平衡树操作】	
	3.18.3 权值线段树套线段树【带修区间桶内第 k 大】	
	3.18.4 树状数组套树状数组【矩形加 + 矩形和】	
	3.18.5 树状数组套树状数组【特殊题, 矩形改 + 矩形最值】	
	3.18.6 树状数组套主席树【带修区间第 k 小】	
	3.18.7 树状数组套主席树【动态逆序对个数】	
	3.18.8 树状数组套主席树树【带修链上第 k 大】	
3.19	树链剖分	
	3.19.1 点权	
	3.19.2 边权	
3.20	最近公共祖先 (LCA)	127
	3.20.1 倍增版	127
	3.20.2 树剖版	128
	3.20.3 Tarjan 版 (离线)	128
	3.20.4 LCT 版	
3.21	树上 k 级祖先	
	· 树同构	
	树的重心	
J. _ J	3.23.1 重心	
	3.23.2 带权重心	
3 24	K-D Tree	
0.44	3.24.1 二维最近距离	
3 25	3.24.1 <u>一</u>	
IJ.∠IJ	'ツ「ユニ/「「久ニヘト 「 口 「 ' ロ 「 ' し ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	TOO

4	Gra	ph Th	v	36
	4.1	最短路	$1, \dots, 1, \dots, 1$	36
		4.1.1	Dijkstra	36
		4.1.2	Bellman-Ford	37
		4.1.3	Floyd	
		4.1.4	SPFA 判负环	
		4.1.5	SPFA	
		-	SPFA(SLF 优化)	
		4.1.6		
		4.1.7	1 WIND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40
		4.1.8	MATINIOCA	41
		4.1.9		42
		4.1.10	k 短路	42
	4.2	生成树		44
		4.2.1	Kruskal 最小生成树	44
		4.2.2	Prim 最小生成树	44
		4.2.3	Zhu Liu 最小树形图	45
		4.2.4		47
		4.2.5	Kruskal 重构树	49
		4.2.6	最小直径生成树	
		4.2.7	最小异或生成树	
	4.3			.52
	4.4		·.	.53
			•	
	4.5	欧拉路		.53
		4.5.1	70-24	54
	4.6	差分约		54
	4.7	连通性		
		4.7.1	THAT I	.55
		4.7.2	HAMI	.55
		4.7.3	割边 (桥)	56
		4.7.4	圆方树	
		4.7.5	无向图全局最小割	.57
		4.7.6	最小斯坦纳树	58
		4.7.7	最小割树	59
	4.8	2-SAT		
	4.9	二分图	匹配	62
		4.9.1	匈牙利算法	-
		4.9.2	Hopcroft-Carp	
		4.9.3	Hungry(Multiple)	
		4.9.4	KM 算法	
	4.10		31 100	.66
	4.10	网络流		
				67
				.68
				69
			37/4 VIII	70
		4.10.5	上下界网络流建图方法	71
		4.10.6	无源汇上下界可行流	72
			11 00110-12 1 31 202 1/10	73
		4.10.8	有源汇上下界最小流 1	73
		4.10.9	无源汇上下界最小费用可行流1	74
5	Con	nputat	ional Geometry 17	7 6
	5.1	Basic	Function	76
	5.2	Positio	n	76
		5.2.1		76
		5.2.2		76
		5.2.3		77
		5.2.4		77
		5.2.5		77
		5.2.6	Point-Segment	
		5.4.0	1 0 m v v 6 m c m v · · · · · · · · · · · · · · · · · ·	

		5.2.7 Point on Segment	7
	5.3	Polygon	8
		5.3.1 Area	8
		5.3.2 Point in Convex	'8
		5.3.3 Point in Polygon	-
		5.3.4 Judge Convex	_
	F 1	9	-
	5.4	Integer Points	
		5.4.1 On Segment	-
		5.4.2 On Polygon Edge	-
		5.4.3 Inside Polygon	9
	5.5	Circle	9
		5.5.1 Circumcenter	9
	5.6	RuJia Liu's	0
		5.6.1 Point	0
		5.6.2 Circle	-
		5.6.3 Polygon	
	E 7	Convex _H ull	
	5.7		-
		5.7.1 Convex _H ull	-
		5.7.2 $\operatorname{Half}_{Plane_Insertion}$	-
		5.7.3 旋转卡壳	
	5.8	ScanLine	1
		5.8.1 ScanLine	1
6	Dyr	namic Programming 19	
	6.1	序列	3
		6.1.1 最大子序列和	3
		6.1.2 LIS	3
		6.1.3 LCS	13
	6.2	数位 DP	_
	0.2	6.2.1 example	
	6.2	*	
	6.3		-
	6.4	树形 DP	-
		6.4.1 换根 DP	-
		6.4.2 环形 DP	6
		6.4.3 基环树 DP	6
	6.5	决策单调性优化	6
		6.5.1 Slope optimization	7
	6.6	多重背包优化	8
7	Offl	ine Algorithm 19	9
	7.1	莫队	9
		7.1.1 普通莫队	9
		7.1.2 树上莫队-路径	-
		7.1.3 树上莫队-子树	-
		17 19 200	
		7.1.5 回滚莫队	-
		7.1.6 bitset 上莫队	
		7.1.7 二次离线莫队 1	8
		7.1.8 二次离线莫队 2	1
	7.2	CDQ 分治	3
		7.2.1 动态逆序对	3
		7.2.2 三维 CDQ 优化 DP	4
		7.2.3 四维 CDQ 优化 DP	
	7.3	材分治	-
	1.0		
		7.3.1 点分治模版	
		7.3.2 点分治例题	-
	7.4	整体二分	-
		7.4.1 带修区间第 k 小	_
		7.4.9 年形区域等 と 小 29	1

8	Oth	ers		223
	8.1	模拟退火		223
		8.1.1 考	曼马点	223
	8.2	矩阵 .		224
		8.2.1 知	巨阵快速幂	224
		8.2.2	5斯消元	224
		8.2.3 g	auss	225
	8.3	技巧		225
		8.3.1 角	军决爆栈问题	225
		8.3.2	= 常 	225
		8.3.3 S	trok-Sscanf	226
		8.3.4 🔻	†拍	226
		8.3.5 核	付生成器	227
		8.3.6 d	ouble 4 舍 5 入	227
	8.4	大数		227
		8.4.1 H	ligh-precision	227
		8.4.2 H	L÷L	228
		8.4.3 H	I÷H	228
	8.5	Misc		229
		8.5.1 S	tandard Template Library	229
		8.5.2 P	Policy-Based Data Structures	229
		8.5.3 S	ubset Enumeration	230
		8.5.4 D	Oate Magic	230
		8.5.5 进	性制转换	231
		8.5.6	【间加等差数列求和	231
	8.6	配置 .		234
		8.6.1 v	im	234
		8.6.2 精	青简配置	235

1 Math

1.1 素数

```
1.1.1 质因数分解
   vector<pair<ll, int>> getFactors(ll x) {
       vector<pair<ll, int>> fact;
2
       for (int i = 0; prime[i] <= x / prime[i]; i++) {</pre>
3
           if (x % prime[i] == 0) {
4
                fact.emplace_back(prime[i], 0);
5
               while (x % prime[i] == 0) fact.back().second++, x /= prime[i];
6
7
           }
8
9
       if (x != 1) fact.emplace_back(x, 1);
       return fact;
10
11 }
   1.1.2 Miller Rabin 素数测试
   O(s \log n) 内判定 2^{63} 内的数是不是素数, s 为测定次数
   bool Miller_Rabin(ll n, int s) { // s : 判定次数, 一般 8 ~ 10 次就够
1
       if (n == 2) return 1;
2
       if (n < 2 || !(n & 1)) return 0;
3
       int t = 0;
4
       ll x, y, u = n - 1;
5
       while ((u \& 1) == 0) t++, u >>= 1;
6
       for (int i = 0; i < s; i++) {
           ll\ a = rand() \% (n - 1) + 1;
```


1.1.3 区间筛

return 1;

 $\frac{16}{17}$

18 }

```
对区间 [a,b) 内的整数执行筛法。
   函数返回区间内素数个数
   is_prime[i-a]=true 表示 i 是素数
   1 < a < b \le 10^{12}, b - a \le 10^6
1 const int N = "Edit";
2 bool is_prime_small[N], is_prime[N];
3 ll prime[N];
   int segment_sieve(ll a, ll b) {
4
       int tot = 0;
5
       for (ll i = 0; i * i < b; ++i) is_prime_small[i] = true;</pre>
6
       for (ll i = 0; i < b - a; ++i) is_prime[i] = true;</pre>
7
       for (ll i = 2; i * i < b; ++i)
8
9
            if (is_prime_small[i]) {
                for (ll j = 2 * i; j * j < b; j += i)
10
```

```
is_prime_small[j] = false;
11
               for (ll j = max(2LL, (a + i - 1) / i) * i; j < b; j += i)
12
                   is_prime[j - a] = false;
13
14
       for (ll i = 0; i < b - a; ++i)
15
           if (is_prime[i]) prime[tot++] = i + a;
16
17
       return tot;
18 }
   1.1.4 杜教筛
1 #define N 6000000 //杜教筛求解phi和mu前缀和
2 ll phi[N], p[N];
3 int mu[N], vis[N], tot;
4 unordered_map<int, int> sum_mu;
   unordered_map<int, ll> sum_phi;
6
   inline void init() {
7
       mu[1] = phi[1] = 1;
       for (int i = 2; i < N; ++i) {
8
           if(!vis[i]) { p[++tot] = i; mu[i] = -1; phi[i] = i - 1;}
9
           for (int j = 1; j \leftarrow tot && i * p[j] < N; ++j) {
10
               vis[i * p[j]] = 1;
11
               if (i % p[j] == 0) { phi[i * p[j]] = phi[i] * p[j]; break;}
12
               else { mu[i * p[j]] = -mu[i]; phi[i * p[j]] = phi[i] * phi[p[j]];}
13
           }
14
15
       for (int i = 1; i < N; ++i) { //预处理线性时间可处理的前缀和
16
           mu[i] += mu[i - 1]; phi[i] += phi[i - 1];
17
18
       }
19
20
   inline int get_smu(ll x) {
       if (x < N) return mu[x];</pre>
21
       if (sum_mu[x]) return sum_mu[x];
22
23
       int ans = 1;
       24
           \dot{r} = x / (x / 1);
25
           ans -= (r - l + 1) * get_smu(x / l);
26
27
       return sum_mu[x] = ans;
28
29
   inline ll get_sphi(ll x) {
30
31
       if (x < N) return phi[x];
32
       if (sum_phi[x]) return sum_phi[x];
       ll \ ans = 1ll * x * (x + 1ll) / 2ll;
33
       for (ll l = 2, r; l <= x; l = r + 1) {
    r = x / (x / l);
34
35
           ans -= 111 * (r - l + 1) * get_sphi(x / l);
36
37
       return sum_phi[x] = ans;
38
39 }
   1.2 欧拉函数
   1.2.1 函数
   ll euler(ll n) { // 小于等于 n 和 n 互质的数的个数
       ll rt = n;
3
       for (int i = 2; i * i <= n; i++)
```

```
if (n \% i == 0) {
4
                rt -= rt / i;
5
                while (n % i == 0) n /= i;
6
7
        if (n > 1) rt -= rt / n;
8
        return rt;
9
10 }
   1.2.2 埃式筛
1 const int N = "Edit";
   int phi[N] = {0, 1};
   void caleuler() {
3
        for (int i = 2; i < N; i++)
4
            if (!phi[i])
5
                for (int j = i * i; j < N; j += i) { // i * i 优化
6
                     if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
7
8
                }
9
10 }
   1.2.3 线性筛
   inline void init() {
1
        mu[1] = phi[1] = 1;
2
        for (int i = 2; i < N; ++i) {
3
            if(!vis[i]) {
4
                p[++tot] = i;
5
6
                mu[i] = -1;
                phi[i] = i - 1;
7
8
            for (int j = 1; j \le tot && i * p[j] < N; ++j) {
9
                vis[i * p[j]] = 1;
10
                if (i % p[j] == 0) {
11
                     phi[i * p[j]] = phi[i] * p[j];
12
                     break;
13
                } else {
14
                    mu[i * p[j]] = -mu[i];
phi[i * p[j]] = phi[i] * phi[p[j]];
15
16
17
                }
            }
18
19
20
        for (int i = 1; i < N; ++i) { //预处理线性时间可处理的前缀和
            mu[i] += mu[i - 1];
21
                                        //其余的留给后面处理
22
            phi[i] += phi[i - 1];
        }
23
24 }
```

1.3 筛法

1.3.1 埃式筛

 $O(n \log \log n)$ 筛出 N 内所有素数 nprime[i] = 0/1 0 为素数 1 为非素数

```
1 const int N = "Edit";
   bool nprime[N] = \{1, 1\};
                               // 0 && 1 为非素数
3
   void GetPrime() {
       for (int i = 2; i < N; ++i)
           if (!nprime[i] && i <= N / i) // 筛到√n为止
5
6
                for (int j = i * i; j < N; j += i) nprime[j] = 1;
7 }
   1.3.2 欧拉筛
   O(n) 得到欧拉函数 npri[]、素数表 pri[]、素数个数 cnt
1 const int N = "Edit";
2 bool vis[N];
3 int cnt, npri[N], pri[N];
   void CalPhi() {
5
       npri[1] = 1;
       for (int i = 2; i < N; ++i) {
6
7
           if (!vis[i]) {
               pri[++cnt] = i;
8
               npri[i] = i - 1;
9
10
            for (int j = 1; j < cnt && i * pri[j] <= N; ++j) {
11
               if (i * pri[j] > N) break;
12
               vis[i * pri[j]] = 1;
13
               if (i % pri[j] == 0) {
14
                    npri[i * pri[j]] = npri[i] * pri[j];
15
16
                    break;
               }
17
               else
18
19
                    npri[i * pri[j]] = npri[i] * (pri[j] - 1);
20
           }
       }
21
   }
22
   d(n) 函数
1 const int N = "Edit";
2 int pri[N], cnt;
3 int d[N], e[N]; //d正除数个数, e最小质因子个数
4 bool check[N];
   void CalD() {
5
6
       d[1] = 1;
       for (int i = 2; i < N; i++) {
7
           if (!check[i]) {
8
               pri[cnt++] = i;
9
               e[i] = 1, d[i] = 2;
10
11
           for (int j = 0; j < cnt; j++) {
12
               if (i * pri[j] >= N) break;
13
               check[i * pri[j]] = true;
14
               if (i % pri[j] == 0) {
15
                    e[i * pri[j]] = e[i] + 1;
16
                    d[i * pri[j]] = d[i] / e[i] * (e[i] + 1);
17
18
                   break;
19
               else {
20
                    e[i * pri[j]] = 1;
21
```

```
d[i * pri[j]] = 2 * d[i];
22
23
                }
           }
24
       }
25
26 }
   \sigma\lambda(n) 函数, \lambda=1
1 const int N = "Edit";
   int pri[N], cnt;
   int sig[N], e[N]; //sig正除数, e不含能整除i的最小质因子的正除数和
   bool check[N];
4
   void CalSig() {
5
       sig[1] = 1;
6
       for (int i = 2; i < N; i++) {
7
            if (!check[i]) {
8
9
                pri[cnt++] = i;
10
                e[i] = 1, sig[i] = i + 1;
11
            for (int j = 0; j < cnt; j++) {
12
                if (i * pri[j] >= N) break;
13
                check[i * pri[j]] = true;
14
                if (i % pri[j] == 0) {
15
                    sig[i * pri[j]] = sig[i] * pri[j] + e[i];
16
17
                    e[i * pri[j]] = e[i];
                    break;
18
19
                }
                else {
20
                    sig[i * pri[j]] = sig[i] * (pri[j] + 1);
21
                    e[i * pri[j]] = sig[i];
22
                }
23
24
           }
       }
25
   }
26
27
   int np[N], pri[N], n, cnt;
28
29
   void Calpri() {
       np[1] = 1;
30
        for (int i = 2; i <= n; ++i) {
31
            if (!np[i]) pri[++cnt] = i;
32
            for (int j = 1; j <= cnt && i * pri[j] <= n; ++j) {</pre>
33
                np[i * pri[j]] = 1;
34
                if (!(i % pri[j])) break;
35
            }
36
37
       }
38 }
   1.3.3 筛法求四类积性函数
1 #include <bits/stdc++.h>
2 using namespace std;
4 typedef long long ll;
5 #define N 100000
6
  bool vis[N];
7
   int p[N], mu[N], tot;
8
9 ll phi[N];
10 int num[N], d[N];
```

```
11 ll sig[N], g[N];
12
   inline void seive() {
13
        mu[1] = phi[1] = sig[1] = g[1] = d[1] = 1;
14
        for (int i = 2; i < N; ++i) {
15
            if (!vis[i]) {
16
                 p[++tot] = i;
17
                 mu[i] = -1;
18
                 phi[i] = i - 1;
19
                 num[i] = 1, d[i] = 2;
20
21
                 g[i] = sig[i] = i + 1;
22
            for (int j = 1; j \le tot && i * p[j] < N; ++j) {
23
                 vis[i * p[j]] = 1;
24
                 if (i % p[j] == 0) {
25
                     phi[i * p[j]] = phi[i] * p[j];

num[i * p[j]] = num[i] + 1;

d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
26
27
28
                     g[i * p[j]] = g[i] * p[j] + 1;
29
                     sig[i * p[j]] = sig[i] / g[i] * g[i * p[j]];
30
31
                     break;
32
                 mu[i * p[j]] = - mu[i];
33
                 phi[i * p[j]] = phi[i] * phi[p[j]];
34
                 num[i * p[j]] = 1;
35
                 d[i * p[j]] = d[i] * 2;
36
                 g[i * p[j]] = g[i] * (1 + p[j]);
37
                 sig[i * p[j]] = sig[i] * sig[p[j]];
38
            }
39
        }
40
41
   }
   int main() {
42
43
        seive();
        for (int i = 1; i < 20; ++i) {
44
            cout << i << " : " << mu[i] << ' ' << phi[i] << ' ' << d[i] << ' ' << sig[i] <<
45
         endl;
46
        }
47
        return 0;
48 }
   1.3.4 Min_25sieve
1 //sieve sum phi && sum mu
2 #include <bits/stdc++.h>
3 #define LL long long
4 #define N (1000005)
5 using namespace std;
6 int T,n,pri,t,unit;
7 int prime[N],q[N],id1[N],id2[N];
8 LL g[N],h[N],sum[N];
9 bool nprime[N];
   template <typename T> void read(T&t) {
10
        t=0;
11
        bool fl=true;
12
        char p=getchar();
13
        while (!isdigit(p)) {
14
            if (p=='-') fl=false;
15
            p=getchar();
16
```

```
}
17
        do {
18
             (t*=10)+=p-48;p=getchar();
19
        }while (isdigit(p));
20
        if (!fl) t=-t;
21
22
   inline void init(){
23
24
        pri=t=0;
25
        unit=sqrt(n);
        for (int i=2;i<=unit;i++){</pre>
26
27
             if (!nprime[i]) prime[++pri]=i,sum[pri]=sum[pri-1]+i;
28
             for (int j=1;j<=pri&&i*prime[j]<=unit;j++){</pre>
                 nprime[i*prime[j]]=1;
29
30
                 if (i%prime[j]==0) break;
             }
31
32
        for (int i=1;i<=n;){</pre>
33
34
             int v=n/i,R=n/v;
35
             q[++t]=v;
36
             if (v<=unit) id1[v]=t;</pre>
             else id2[R]=t;
37
             g[t]=111*v*(v+1)/2-1;
38
39
            h[t]=v-1;
40
             i=R+1;
41
        }
   }
42
   inline int id(int x){
43
        return (x<=unit)?id1[x]:id2[n/x];</pre>
44
45
   LL S(int n,int m){
46
        if (n<=1||prime[m]>n) return 0;
47
        LL ret=g[id(n)]-sum[m-1]+m-1;
48
        for (int k=m;prime[k]*prime[k]<=n&&k<=pri;k++){</pre>
49
             for (int v=prime[k],p1=prime[k]-1;1ll*v*prime[k]<=n;v=v*prime[k],p1=p1*prime[k</pre>
50
        ])
51
             ret+=(S(n/v,k+1)+prime[k])*p1;
52
        }
53
        return ret;
   }
54
   LL D(int n,int m){
55
56
        if (n<=1||prime[m]>n) return 0;
        LL ret=h[id(n)]+(m-1);
57
        for (int k=m;prime[k]*prime[k]<=n&&k<=pri;k++){</pre>
58
59
             ret-=D(n/prime[k],k+1);
60
61
        return ret;
62
   }
63
   signed main(){
        read(T);
64
65
        while (T--){
66
             read(n);
67
             init();
             for (int i=1;i<=pri;i++){</pre>
68
                 int v=prime[i]*prime[i];
69
                 for (int j=1;j<=t&v<=q[j];j++){</pre>
70
                      int k=id(q[j]/prime[i]);
71
72
                      g[j]-=1ll*prime[i]*(g[k]-sum[i-1]);
73
                      h[j] -= h[k] - i + 1;
                 }
74
```

```
75
           for (int i=1;i<=t;i++) g[i]-=h[i],h[i]=-h[i];</pre>
76
           printf("%lld %lld\n",S(n,1)+1,D(n,1)+1);
77
78
79
       return 0;
80 }
   1.3.5 线性筛约数和
1 #include <iostream>
2
3
  using namespace std;
   int q[100999], f[100000], p[100000], tot, n = 100000, v[100000];
5
   void pre() {
6
       g[1] = f[1] = 1;
7
8
       for (int i = 2; i \le n; ++i) {
9
           if (!v[i]) \ v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
10
           for (int j = 1; j \le tot && i \le n / p[j]; ++j) {
               v[p[j] * i] = 1;
11
               if (i \% p[j] == 0) {
12
                    g[i * p[j]] = g[i] * p[j] + 1;
13
                    f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
14
                    break;
15
16
               } else {
                    f[i * p[j]] = f[i] * f[p[j]];
17
                    g[i * p[j]] = 1 + p[j];
18
19
               }
20
           }
21
22
       //for (int i = 1; i \le n; ++i) f[i] = (f[i - 1] + f[i]);
23
   int main(int argc, char *argv[]) {
24
       pre();
25
26
       cout << f[69073];
27
   }
   1.4 基本数论
   1.4.1 exgcd
   // 仅需满足 gcd(a, p) = 1, p 可不为质数
   ll exgcd(ll a, ll b, ll &x, ll &y) {
3
       if (!b) { x = 1, y = 0; return a; }
4
       ll d = exgcd(b, a \% b, y, x);
       y -= a / b * x;
5
       return d;
6
7 }
   1.4.2 ax+by=c
   引用返回通解: X = x + k * dx, Y = y - k * dy
   引用返回的 x 是最小非负整数解, 方程无解函数返回 0
1 #define Mod(a, b) (((a) % (b) + (b)) % (b))
   bool solve(ll a, ll b, ll c, ll& x, ll& y, ll& dx, ll& dy) {
       if (a == 0 \&\& b == 0) return 0;
```

```
11 x0, y0;
4
       ll d = exgcd(a, b, x0, y0);
5
       if (c % d != 0) return 0;
6
       dx = b / d, dy = a / d;

x = Mod(x0 * c / d, dx);
7
8
       y = (c - a * x) / b;
9
10
       // y = Mod(y0 * c / d, dy); x = (c - b * y) / a;
       return 1;
11
12 }
   1.4.3 乘法逆元
   利用 exgcd 求 a 在模 p 下的逆元,需要保证 gcd(a,p) == 1.
1 ll inv(ll a, ll m) {
2
       11 x, y;
3
       ll d = exgcd(a, p, x, y);
4
       return d == 1 ? (x + p) % p : -1;
5 }
   a < p 且 p 为素数时,有以下两种求法
   费马小定理
1 ll inv(ll a, ll p) { return qpow(a, p - 2, p); }
   线性筛
1 // 线性递推求解乘法逆元 条件: p 是奇质数
   inline void inv_(int n, ll p) {
       inv[1] = 1;
3
       for (int i = 2; i <= n; ++i) {
4
           inv[i] = (p - p / i) * inv[p % i] % p;
5
6
7
  }
  // 线性递推求阶乘逆元
   void finv_(int n, ll p) {
       fac[1] = 1;
10
       for (int i = 2; i <= n; ++i) {
11
           fac[i] = fac[i - 1] * i % p;
12
13
       // 费马小定理
14
       finv[n] = qpow(fac[n], p - 2, p);
15
       for (int i = n - 1; i; --i) {
16
           finv[i] = finv[i + 1] * (i + 1) % p;
17
       }
18
19 }
  // 用线性逆元解阶乘逆元
   void get_inv(int n, ll p) {
       // inv[0] = inv[1] = finv[1] = fac[1] = 1;
22
       inv[0] = inv[1] = finv[1] = 1;
23
       for (int i = 2; i <= n; ++i) {
24
           // fac[i] = fac[i - 1] * i % p; // 将 3 个一起求出来就可以用下面的组合数函数了
25
           inv[i] = (p - p / i) * inv[p % i] % p;
26
           finv[i] = finv[i - 1] * inv[i] % p;
27
       }
28
29 }
30 // 求组合数 C(a,b) 在 mod p 意义下的值
31 ll C(ll a, ll b, ll p) {
       return fac[b] * finv[a] % p * finv[b - a] % p;
32
33 }
```

1.4.4 Discrete Logarithm

```
求解 a^x \equiv b \pmod{p}, p 可以不是质数
   ll exbsgs(ll a, ll b, ll p) {
2
       if (b == 1LL) return 0;
       ll t, d = 1, k = 0;
3
4
       while ((t = gcd(a, p)) != 1) {
            if (b % t) return -1;
5
6
            ++k, b /= t, p /= t, d = d * (a / t) % p;
7
            if (b == d) return k;
8
       }
9
       map<ll, ll> dic;
10
       ll m = ceil(sqrt(p));
11
       ll a_m = Pow(a, m, p), mul = b;
12
       for (ll j = 1; j \le m; ++j) mul = mul * a % p, dic[mul] = j;
       for (ll i = 1; i <= m; ++i) {
13
           d = d * a_m % p;
14
15
            if (dic[d]) return i * m - dic[d] + k;
16
17
       return -1;
18
   1.4.5 BSGS
1 #include <bits/stdc++.h>
  using namespace std;
3 typedef long long ll;
4
  ll a,b,p;
   ll power(ll a, ll b, ll c) {//快速幂
5
6
       if(b==0) return 1%c;
7
       ll\ ans=1,t=a;
       while(b>0) {
8
9
            if(b\%2==1) ans=ans*t%c;
10
           b/=2; t=t*t%c;
11
       return ans;
12
13
14
   ll bsgs(ll a,ll b,ll p) {//bsgs
15
       map<ll,ll> hash; hash.clear();//建立一个Hash表
16
       b%=p;
17
       ll t=sqrt(p)+1;
       for(ll\ i=0;i< t;++i)\ hash[(ll)b*power(a,i,p)%p]=i;//将每个j对应的值插入Hash表
18
19
       a=power(a,t,p);
       if(!a) return b==0?1:-1;//特判
20
21
       for(ll i=1;i<=t;++i) {//在Hash表中查找是否有i对应的j值
            ll val=power(a,i,p);
22
23
            int j=hash.find(val)==hash.end()?-1:hash[val];
24
            if(j>=0\&\&i*t-j>=0) return i*t-j;
25
       return -1;//无解返回-1
26
27
   }
   signed main() {
28
29
       scanf("%lld%lld",&p,&a,&b);
30
       ll\ ans=bsgs(a,b,p);
       if(ans==-1) printf("no solution\n");
31
       else printf("%lld\n",ans);
32
33
       return 0;
34 }
```

1.4.6 二次剩余

```
1 #include <bits/stdc++.h>
   using namespace std;
4 typedef long long ll;
   ll n, p, w;
5
6
7 struct num { ll x, y; };
8
9 inline num mul(num a, num b) {
10
        num ans = \{0, 0\};
        ans.x = ((a.x * b.x \% p + a.y * b.y \% p * w \% p) + p) \% p;
11
12
        ans.y = ((a.x * b.y % p + a.y * b.x % p) % p + p) % p;
13
        return ans;
   }
14
15
   inline ll apow_real(ll a, ll b) {
16
17
        ll\ ans = 1;
        while (b) {
18
            if (b & 1) (ans *= a) %= p;
19
20
            b >>= 1, (a *= a) %= p;
21
        }
22
        return ans;
   }
23
24
25
   inline ll qpow_imag(num a, ll b) {
26
        num ans = \{1, 0\};
27
        while (b) {
28
            if (b \& 1) ans = mul(ans, a);
29
            b >>= 1, a = mul(a, a);
30
31
        return ans.x;
32
   }
33
   inline ll cipolla(ll n, ll p) {
34
35
        n \% = p;
        if (qpow_real(n, (p-1) >> 1) == p - 1) return -1;
36
37
        11 a;
38
        while (1) {
39
            a = rand() \% p;
            W = ((a * a % p - n) % p + p) % p;
40
            if (qpow_real(w, (p-1) >> 1) == p - 1) break;
41
42
        num t = \{a, 1\};
43
44
        return qpow_imag(t, (p + 1) >> 1);
   }
45
46
47
   int main() {
48
        int t; cin >> t;
49
        while (t--) {
            cin >> n >> p;
50
            if (n==0) {
51
52
                cout << 0 << endl;</pre>
53
                continue;
54
            ll x0 = cipolla(n, p);
55
            if (x0 == -1) cout << "Hola!" << endl;
57
            else {
```

```
58
                11 x1 = (p - x0 + p) \% p;
                if (x0 != x1) cout << min(x0, x1) << ' ' << max(x0, x1) << endl;
59
                else cout << x0 << endl;</pre>
60
61
            }
62
63
       return 0;
64 }
   1.5 Combinatorics
   1.5.1 Combination
   0 \le m \le n \le 1000
1 const int maxn = 1010;
  11 C[maxn][maxn];
   void CalComb() {
3
       C[0][0] = 1;
5
       for (int i = 1; i < maxn; i++) {
6
            C[i][0] = 1;
            for (int j = 1; j \le i; j++) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
7
       }
8
   }
9
   0 \le m \le n \le 10^5, 模 p 为素数
   const int maxn = 100010;
   11 f[maxn];
2
   ll inv[maxn]; // 阶乘的逆元
3
   void CalFact() {
        f[0] = 1;
5
        for (int i = 1; i < maxn; i++) f[i] = (f[i - 1] * i) % p;
6
       inv[maxn - 1] = Pow(f[maxn - 1], p - 2, p);
7
       for (int i = maxn - 2; \sim i; i--) inv[i] = inv[i + 1] * (i + 1) % p;
8
   Il C(int n, int m) { return f[n] * inv[m] % p * inv[n - m] % p; }
   1.5.2 Lucas
   1 \le n, m \le 10000000000, 1  是素数
1 const int maxp = 100010;
  11 f[maxn];
2
   ll inv[maxn]; // 阶乘的逆元
3
   void CalFact() {
5
       f[0] = 1;
        for (int i = 1; i < maxn; i++) f[i] = (f[i - 1] * i) % p;
6
       inv[maxn - 1] = Pow(f[maxn - 1], p - 2, p);
7
       for (int i = maxn - 2; \sim i; i--) inv[i] = inv[i + 1] * (i + 1) % p;
8
9
   ll Lucas(ll n, ll m, ll p) {
10
       ll ret = 1;
11
       while (n && m) {
12
            11 a = n \% p, b = m \% p;
13
            if (a < b) return 0;
14
            ret = ret * f[a] \% p * inv[b] \% p * inv[a - b] \% p;
15
16
            n /= p, m /= p;
17
18
       return ret;
19 }
```

1.5.3 exLucas

```
#include<bits/stdc++.h>
1
2
3
   using namespace std;
   typedef long long 11;
4
5
   ll exgcd(ll a,ll b,ll &x,ll &y) {
6
7
        if(!b) {
8
            x=1;
9
            y=0;
10
            return a;
11
12
        ll res=exgcd(b,a%b,x,y),t;
13
        t=x;
14
        x=y;
        y=t-a/b*y;
15
16
        return res;
   }
17
18
19 ll p;
20
21
   inline ll power(ll a,ll b,ll mod) {
22
        11 sm;
23
        for(sm=1; b; b>>=1,a=a*a%mod)if(b&1) sm=sm*a%mod;
24
        return sm;
25
   }
26
27
   ll fac(ll n,ll pi,ll pk) {
28
        if(!n)return 1;
        ll res=1;
29
30
        for(ll i=2; i<=pk; ++i)</pre>
31
             if(i%pi)(res*=i)%=pk;
32
        res=power(res,n/pk,pk);
33
        for(ll i=2; i<=n%pk; ++i)</pre>
             if(i%pi)(res*=i)%=pk;
34
35
        return res*fac(n/pi,pi,pk)%pk;
36
  }
37
38
   inline ll inv(ll n,ll mod) {
39
        11 x,y;
        exgcd(n,mod,x,y);
40
41
        return (x+=mod)>mod?x-mod:x;
   }
42
43
   inline ll CRT(ll b,ll mod) {
44
        return b*inv(p/mod,mod)%p*(p/mod)%p;
45
   }
46
47
48 const int MAXN=11;
   static ll n,m;
   static ll w[MAXN];
51
52
   inline ll C(ll n,ll m,ll pi,ll pk) {
        ll up=fac(n,pi,pk),d1=fac(m,pi,pk),d2=fac(n-m,pi,pk);
53
        11 k=0;
54
        for(ll i=n; i; i/=pi)k+=i/pi;
for(ll i=m; i; i/=pi)k-=i/pi;
55
56
57
        for(ll i=n-m; i; i/=pi)k-=i/pi;
```

```
return up*inv(d1,pk)%pk*inv(d2,pk)%pk*power(pi,k,pk)%pk;
58
   }
59
60
   inline ll exlucus(ll n,ll m) {
61
        ll res=0,tmp=p,pk;
62
        static int lim=sqrt(p)+5;
63
        for(int i=2; i<=lim; ++i)if(tmp%i==0) {</pre>
64
                 pk=1;
65
                 while(tmp%i==0)pk*=i,tmp/=i;
66
                 (res+=CRT(C(n,m,i,pk),pk))%=p;
67
68
69
        if(tmp>1)(res+=CRT(C(n,m,tmp,tmp),tmp))%=p;
70
        return res;
   }
71
72
   int main() {
73
        scanf("%lld%lld%d",&n,&m,&p);
printf("%d\n",exlucus(n,m));
74
75
        return 0;
76
77
   }
    1.5.4 exLucas.cpp.
   #include<bits/stdc++.h>
 2
3
   using namespace std;
4
   typedef long long ll;
5
6
   ll exgcd(ll a, ll b, ll &x, ll &y) {
        if(!b){x=1;y=0;return a;}
7
8
        11 res=exgcd(b,a%b,x,y),t;
        t=x; x=y; y=t-a/b*y;
9
10
        return res;
11
   }
12
13 ll p;
15
   inline ll power(ll a,ll b,ll mod) {
16
        11 sm;
17
        for(sm=1;b;b>>=1,a=a*a%mod)if(b&1) sm=sm*a%mod;
18
        return sm;
   }
19
20
   ll fac(ll n,ll pi,ll pk) {
21
22
        if(!n)return 1;
23
        ll res=1;
        for(ll i=2;i<=pk;++i)</pre>
24
             if(i%pi)(res*=i)%=pk;
25
        res=power(res,n/pk,pk);
26
        for(ll i=2;i<=n%pk;++i)</pre>
27
             if(i%pi)(res*=i)%=pk;
28
29
        return res*fac(n/pi,pi,pk)%pk;
30
   }
31
   inline ll inv(ll n,ll mod)
32
33
   {
34
        11 x,y;
35
        exgcd(n,mod,x,y);
```

```
return (x+=mod)>mod?x-mod:x;
36
   }
37
38
   inline ll CRT(ll b,ll mod){return b*inv(p/mod,mod)%p*(p/mod)%p;}
39
40
   const int MAXN=11;
41
   static ll n,m;
42
   static ll w[MAXN];
43
44
   inline ll C(ll n,ll m,ll pi,ll pk) {
45
46
        ll up=fac(n,pi,pk),d1=fac(m,pi,pk),d2=fac(n-m,pi,pk);
47
        11 k=0;
        for(ll i=n;i;i/=pi)k+=i/pi;
48
        for(ll i=m;i;i/=pi)k-=i/pi;
49
        for(ll i=n-m;i;i/=pi)k-=i/pi;
50
        return up*inv(d1,pk)%pk*inv(d2,pk)%pk*power(pi,k,pk)%pk;
51
   }
52
53
   inline ll exlucus(ll n,ll m) {
54
        11 res=0,tmp=p,pk;
55
        static int lim=sqrt(p)+5;
56
        for(int i=2;i<=lim;++i)if(tmp%i==0) {</pre>
57
            pk=1;while(tmp%i==0)pk*=i,tmp/=i;
58
59
            (res+=CRT(C(n,m,i,pk),pk))%=p;
60
        if(tmp>1)(res+=CRT(C(n,m,tmp,tmp),tmp))%=p;
61
        return res;
62
   }
63
64
   int main() {
65
        scanf("%lld%lld%d",&n,&m,&p);
66
67
        printf("%d\n",exlucus(n,m));
        return 0;
68
   }
69
   1.5.5 Big Combination
   0 < n < 10^9, 0 < m < 10^4, 1 < k < 10^9 + 7
   vector<int> v; int dp[110];
   11 Cal(int 1, int r, int k, int dis) {
2
        ll res = 1;
3
        for (int i = l; i <= r; i++) {
4
            int t = i;
5
6
            for (int j = 0; j < v.size(); j++) {
                int y = v[j];
7
                while (t % y == 0) dp[j] += dis, t /= y;
8
9
            }
            res = res * (11)t % k;
10
11
        }
12
        return res;
13
   11 Comb(int n, int m, int k) {
14
        memset(dp, 0, sizeof(dp));
15
       v.clear();
16
17
        int tmp = k;
        for (int i = 2; i * i <= tmp; i++)</pre>
18
            if (tmp % i == 0) {
19
```

```
20
                int num = 0;
                while (tmp % i == 0) tmp /= i, num++;
21
                v.push_back(i);
22
23
        if (tmp != 1) v.push_back(tmp);
24
        ll ans = Cal(n - m + 1, n, k, 1);
25
        for (int j = 0; j < v.size(); j++) ans = ans * Pow(v[j], dp[j], k) % k;
26
27
        ans = ans * inv(Cal(2, m, k, -1), k) \% k;
28
        return ans;
29
  }
   1.5.6 Polya
   推论: 一共 n 个置换, 第 i 个置换的循环节个数为 gcd(i,n)
   N*N 的正方形格子,c^{n^2}+2c^{\frac{n^2+3}{4}}+c^{\frac{n^2+1}{2}}+2c^{\frac{n+1}{2}}+2c^{\frac{n(n+1)}{2}} 正六面体,\frac{m^8+17m^4+6m^2}{24} 正四面体,\frac{m^4+11m^2}{12}
   长度为 n 的项链串用 c 种颜色染 \sum_{d|n} \frac{\varphi(n/d)c^d}{n}
   ll solve(int c, int n) {
1
        if (n == 0) return 0;
2
3
        11 \text{ ans} = 0;
        for (int i = 1; i \le n; i++) ans += Pow(c, __gcd(i, n));
4
        if (n \& 1) ans += n * Pow(c, n + 1 >> 1);
5
        else ans += n / 2 * (1 + c) * Pow(c, n >> 1);
6
7
        return ans / n / 2;
8
   }
   每种颜色至少涂多少个, 求方案数
   ll polya(int a) { //a为循环节长度
        11 dp[65][65] = {0}; //前者为颜色,后者为未填充格子个数
2
3
        int tot = 60 / a, limit = 0;
        dp[0][tot] = 1;
4
        for (int i = 1; i <= n; i++) {
5
            int tmp = (c[i] + a - 1) / a;
6
7
            int up2 = tot - limit;
                                              //最多空tot-(limit + tmp)
8
            int up1 = up2 - tmp;
9
            for (int j = 0; j <= up1; j++) { //最少空0个, 即填满
10
                for (int k = tmp; j + k \leftarrow up2; k++) //至少选tmp个,最多选tot - limit -j
                     (dp[i][j] += dp[i - 1][j + k] * C[j + k][k]) %= p;
11
12
13
            limit += tmp;
14
15
        return dp[n][0];
16
   每种颜色要有多少个, 求恰好满足的方案数
   bool check(int b) { //a[i]是每种颜色有多少个, b是循环节长度
1
2
        for (int i = 0; i < n; i++)
            if (a[i] % b) return false;
3
        return true;
4
5
   ll solve(int tot, int b) { //tot是总数, b是循环节长度
6
        if (!check(b)) return 0;
7
        ll res = 1, cnt = tot / b; //cnt循环节个数
8
        for (int i = 0; i < 6; i++) {
9
            res *= C[cnt][a[i] / b];
10
```

```
cnt -= a[i] / b;
11
12
13
       return res;
14 }
   1.5.7 other
   11 C(int a, int b) { // 无素数取模, 求具体值的情况
1
2
       b = min(b, a - b);
       ll\ ans = 1;
3
       for (int i = a, j = 1; j \le b; ++j) {
4
            ans = ans *i / j;
5
 6
            if (ans > up) { // 题目条件限制最大值, 避免爆 long long
7
                return -1;
8
            }
9
       }
10
       return ans;
   }
11
   1.6 Modulo Linear Equation
   1.6.1 Chinese Remainder Theory
   X \equiv r_i \pmod{m_i}; 要求 m_i 两两互质
   引用返回通解 X = re + k * mo
   void crt(ll r[], ll m[], ll n, ll &re, ll &mo) {
1
2
       mo = 1, re = 0;
3
       for (int i = 0; i < n; i++) mo *= m[i];</pre>
       for (int i = 0; i < n; i++) {
4
            ll x, y, tm = mo / m[i];
 5
            ll d = exgcd(tm, m[i], x, y);
 6
 7
            re = (re + tm * x * r[i]) % mo;
8
9
       re = (re + mo) \% mo;
   }
10
   1.6.2 ExCRT
   X \equiv r_i \pmod{m_i}; m_i 可以不两两互质
   引用返回通解 X = re + k * mo; 函数返回是否有解
   bool excrt(ll r[], ll m[], ll n, ll &re, ll &mo) {
1
2
       11 x, y;
3
       mo = m[0], re = r[0];
4
       for (int i = 1; i < n; i++) {
            ll d = exgcd(mo, m[i], x, y);
5
            if ((r[i] - re) % d != 0) return 0;
6
            x = (r[i] - re) / d * x % (m[i] / d);
7
            re += x * mo;
8
            mo = mo / d * m[i];
9
            re %= mo;
10
11
       re = (re + mo) \% mo;
12
       return 1;
13
14 }
```

1.7 快速

```
inline ll Mul(ll a, ll b, ll m) {
        if (m <= 1000000000) return a * b % m;</pre>
        else if (m <= 1000000000000011)</pre>
3
            return (((a * (b >> 20) % m) << 20) + (a * (b & ((1 << 20) - 1)))) % m;
4
5
            ll d = (ll)floor(a * (long double)b / m + 0.5);
6
            11 \text{ ret} = (a * b - d * m) \% m;
7
            if (ret < 0) ret += m;</pre>
8
9
            return ret;
        }
10
11
   ll smul(ll a, ll b, ll p) { // 龟速乘
12
        a %= p;
13
14
        11 \text{ ans} = 0;
15
        while (b) {
16
            if (b \& 1) ans = (ans + a) \% p;
            a = a * 2 % p, b >>= 1;
17
18
19
        return ans;
20 }
   // 0(1),数值过大时容易因为精度引起误差
   ll qmul(ll a, ll b, ll p) { // 快速乘
        a %= p, b %= p;
23
        ll c = (long double)a * b / p;
24
        ll ans = a * b - c * p;
25
26
        if (ans < 0) return ans + p;
27
        if (ans >= p) return ans - p;
28
        return ans;
29
   }
   ll qpow(ll a, ll b, ll p) {
30
31
        a %= p;
32
        ll ans = 1;
33
        while (b) {
            if (b & 1) ans = smul(ans, a, p);
34
                                                  // p > 1e9 || a > 1e9
                       // ans = (ans * a) % p;
35
            a = smul(a, a, p); // p > 1e9 | | a > 1e9
36
            // a = a * a % p;
37
38
            b >>= 1;
39
40
        return ans;
41
  }
```

1.8 Mobius Inversion

1.8.1 Mobius

```
\begin{split} F(n) &= \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) \\ F(n) &= \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d) \\ 1 & \text{const int maxn} = \text{"Edit"}; \\ 2 & \text{int prime[maxn], tot, mu[maxn];} \\ 3 & \text{bool check[maxn];} \\ 4 & \text{void CalMu() } \{ \\ 5 & \text{mu[1]} = 1; \\ 6 & \text{for (int i = 2; i < maxn; i++) } \{ \\ 7 & \text{if (!check[i]) prime[tot++] = i, mu[i] = -1;} \end{split}
```

```
8
            for (int j = 0; j < tot; j++) {
                if (i * prime[j] >= maxn) break;
9
                check[i * prime[j]] = true;
10
11
                if (i % prime[j] == 0) {
                     mu[i * prime[j]] = 0;
12
13
                    break;
14
                else mu[i * prime[j]] = -mu[i];
15
            }
16
17
        }
18 }
   1.8.2 Examples
   有 n 个数 (n \le 100000, 1 \le a_i \le 10^6),问这 n 个数中互质的数的对数
1 const int maxn = "Edit";
   int b[maxn];
   ll solve(int n){
3
        11 \text{ ans} = 0;
4
        for (int i = 0, x; i < n; i++) scanf("%d", &x), b[x]++;
5
        for (int i = 1; i < maxn; i++) {
6
7
            int cnt = 0;
            for (int j = i; j < maxn; j += i) cnt += b[j];
ans += 1LL * mu[i] * cnt * cnt;</pre>
8
9
10
        return (ans - b[1]) / 2;
11
12 }
   gcd(x,y) = 1 的对数, x \le n, y \le m
   ll solve(int n, int m){
1
        if (n > m) swap(n, m);
2
        11 \text{ ans} = 0;
3
        for (int i = 1; i <= n; i++) ans += (ll)mu[i] * (n / i) * (m / i);
4
5
6
        数论分块写法(Sum为莫比乌斯函数的前缀和)
        for (int i = 1; i <= n; i = pos + 1)
7
8
            pos = min(n / (n / i), m / (m / i));
9
            ans += 1LL * (sum[pos] - sum[i - 1]) * (n / i) * (m / i);
10
11
        */
12
        return ans;
13
14 }
   1.9 Fast Transformation
1 //#pragma GCC optimize(2)
2 #include <bits/stdc++.h>
3 using namespace std;
4 typedef long long ll;
5
6 const int N = 3000007;
   const int p = 998244353, gg = 3, ig = 332738118, img = 86583718;
7
8
   const int mod = 998244353;
10 template <typename T>void read(T &x) {
```

```
11
        x = 0;
        register int f = 1;
12
        register char ch = getchar();
13
        while(ch < '0' || ch > '9') {if(ch == '-')f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();}</pre>
14
15
16
        x *= f;
   }
17
18
   int qpow(int a, int b) {
19
20
        int res = 1;
21
        while(b) {
22
            if(b & 1) res = 1ll * res * a % mod;
            a = 111 * a * a % mod;
23
            b >>= 1;
24
25
        return res;
26
   }
27
28
   namespace Poly {
29
        #define mul(x, y) (111 * x * y >= mod ? 111 * x * y % mod : 111 * x * y)
30
        #define minus(x, y) (111 * x - y < 0 ? 111 * x - y + mod : 111 * x - y)
31
        #define plus(x, y) (111 * x + y >= mod ? 111 * x + y - mod : 111 * x + y)
32
        #define ck(x) (x >= mod ? x - mod : x)//取模运算太慢了
33
34
35
        typedef vector<int> poly;
        const int G = 5;
36
        const int inv_G = qpow(G, mod - 2);
37
        int RR[N], deer[2][19][N], inv[N];
38
39
        void init(const int t) {//预处理出来NTT里需要的w和wn, 砍掉了一个log的时间
40
             for(int p = 1; p <= t; ++ p) {
41
                 int buf1 = qpow(G, (mod - 1) / (1 << p));</pre>
42
                 int buf0 = qpow(inv_G, (mod - 1) / (1 << p));</pre>
43
                 deer[0][p][0] = deer[1][p][0] = 1;
44
                 for(int i = 1; i < (1 << p); ++ i) {
45
                     deer[0][p][i] = 1ll * deer[0][p][i - 1] * buf0 % mod;//逆
46
                     deer[1][p][i] = 1ll * deer[1][p][i - 1] * buf1 % mod;
47
48
                 }
49
            }
            inv[1] = 1;
50
            for(int i = 2; i \leftarrow (1 \leftarrow t); ++ i)
51
                 inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod;
52
53
54
        int NTT_init(int n) {//快速数论变换预处理
55
            int limit = 1, L = 0;
56
            while(limit < n) limit <<= 1, L ++ ;</pre>
57
             for(int i = 0; i < limit; ++ i)</pre>
58
                 RR[i] = (RR[i >> 1] >> 1) | ((i \& 1) << (L - 1));
59
60
            return limit;
61
        }
62
63
        void NTT(poly &A, int type, int limit) {//快速数论变换
            A.resize(limit);
64
            for(int i = 0; i < limit; ++ i)</pre>
65
                 if(i < RR[i])</pre>
66
                     swap(A[i], A[RR[i]]);
67
            for(int mid = 2, j = 1; mid <= limit; mid <<= 1, ++ j) {</pre>
68
                 int len = mid >> 1;
69
```

```
for(int pos = 0; pos < limit; pos += mid) {</pre>
70
                     int *wn = deer[type][j];
71
                     for(int i = pos; i < pos + len; ++ i, ++ wn) {</pre>
72
                         int tmp = 111 * (*wn) * A[i + len] % mod;
73
74
                          A[i + len] = ck(A[i] - tmp + mod);
                         A[i] = ck(A[i] + tmp);
75
76
                     }
                 }
77
78
             }
             if(type == 0) {
79
80
                 for(int i = 0; i < limit; ++ i)</pre>
81
                     A[i] = 111 * A[i] * inv[limit] % mod;
             }
82
        }
83
84
        poly poly_mul(poly A, poly B) {//多项式乘法
85
             int deg = A.size() + B.size() - 1;
86
87
             int limit = NTT_init(deg);
             poly C(limit);
88
             NTT(A, 1, limit);
89
             NTT(B, 1, limit);
90
             for(int i = 0; i < limit; ++ i)</pre>
91
                 C[i] = 111 * A[i] * B[i] % mod;
92
93
             NTT(C, 0, limit);
94
             C.resize(deg);
95
             return C;
        }
96
97
        poly poly_inv(poly &f, int deg) {//多项式求逆
98
99
             if(deg == 1) return poly(1, qpow(f[0], mod - 2));
100
             poly A(f.begin(), f.begin() + deg);
101
102
             poly B = poly_inv(f, (deg + 1) >> 1);
             int limit = NTT_init(deg << 1);</pre>
103
             NTT(A, 1, limit), NTT(B, 1, limit);
104
             for(int i = 0; i < limit; ++ i)</pre>
105
106
                 A[i] = B[i] * (2 - 1]! * A[i] * B[i] % mod + mod) % mod;
107
             NTT(A, 0, limit);
108
             A.resize(deg);
109
             return A;
        }
110
111
        poly poly_dev(poly f) {//多项式求导
112
113
             int n = f.size();
             for(int i = 1; i < n; ++ i) f[i - 1] = 1ll * f[i] * i % mod;
114
             return f.resize(n - 1), f;//f[0] = 0, 这里直接扔了,从1开始
115
116
117
        poly poly_idev(poly f) {//多项式求积分
118
119
             int n = f.size();
120
             for(int i = n - 1; i ; -- i) f[i] = 1ll * f[i - 1] * inv[i] % mod;
121
             return f[0] = 0, f;
122
        }
123
        poly poly_ln(poly f, int deg) {//多项式求对数
124
             poly A = poly_idev(poly_mul(poly_dev(f), poly_inv(f, deg)));
125
126
             return A.resize(deg), A;
        }
127
128
```

```
poly poly_exp(poly &f, int deg) {//多项式求指数
129
             if(deg == 1) return poly(1, 1);
130
131
             poly B = poly_exp(f, (deg + 1) >> 1);
132
             B.resize(deg);
133
             poly lnB = poly_ln(B, deg);
134
             for(int i = 0; i < deg; ++ i)</pre>
135
                 lnB[i] = ck(f[i] - lnB[i] + mod);
136
137
             int limit = NTT_init(deg << 1);//n -> n^2
138
             NTT(B, 1, limit), NTT(lnB, 1, limit);
139
140
             for(int i = 0; i < limit; ++ i)</pre>
                 B[i] = 111 * B[i] * (1 + lnB[i]) % mod;
141
             NTT(B, 0, limit);
142
143
             B.resize(deg);
             return B;
144
         }
145
146
         poly poly_sqrt(poly &f, int deg) {//多项式开方
147
             if(deg == 1) return poly(1, 1);
148
             poly A(f.begin(), f.begin() + deg);
149
             poly B = poly_sqrt(f, (deg + 1) >> 1);
150
             poly IB = poly_inv(B, deg);
151
             int limit = NTT_init(deg << 1);</pre>
152
153
             NTT(A, 1, limit), NTT(IB, 1, limit);
             for(int i = 0; i < limit; ++ i)</pre>
154
                 A[i] = 1ll * A[i] * IB[i] % mod;
155
             NTT(A, 0, limit);
156
             for(int i =0; i < deg; ++ i)</pre>
157
                 A[i] = 111 * (A[i] + B[i]) * inv[2] % mod;
158
159
             A.resize(deg);
             return A;
160
         }
161
162
         poly poly_pow(poly f, int k) {//多项式快速幂
163
             f = poly_ln(f, f.size());
164
165
             for(auto &x : f) x = 111 * x * k % mod;
166
             return poly_exp(f, f.size());
         }
167
168
169
         poly poly_cos(poly f, int deg) {//多项式三角函数 (cos)
             poly A(f.begin(), f.begin() + deg);
170
             poly B(deg), C(deg);
171
             for(int i = 0; i < deg; ++ i)
    A[i] = 111 * A[i] * img % mod;</pre>
172
173
174
             B = poly_exp(A, deg);
175
             C = poly_inv(B, deg);
176
             int inv2 = qpow(2, mod - 2);
177
178
             for(int i = 0; i < deq; ++ i)
179
                 A[i] = 111 * (111 * B[i] + C[i]) % mod * inv2 % mod;
180
             return A;
181
182
         poly poly_sin(poly f, int deg) {//多项式三角函数 (sin)
183
             poly A(f.begin(), f.begin() + deg);
184
185
             poly B(deg), C(deg);
186
             for(int i = 0; i < deg; ++ i)
                 A[i] = 111 * A[i] * img % mod;
187
```

```
188
             B = poly_exp(A, deg);
189
             C = poly_inv(B, deg);
190
             int inv2i = qpow(img << 1, mod - 2);</pre>
191
192
             for(int i = 0; i < deg; ++ i)
                 A[i] = 111 * (111 * B[i] - C[i] + mod) % mod * inv2i % mod;
193
194
             return A;
        }
195
196
        poly poly_arcsin(poly f, int deg) {
197
198
            poly A(f.size()), B(f.size()), C(f.size());
             A = poly_dev(f);
199
             B = poly_mul(f, f);
200
             for(int i = 0; i < deg; ++ i)</pre>
201
                 B[i] = minus(mod, B[i]);
202
             B[0] = plus(B[0], 1);
203
            C = poly_sqrt(B, deg);
204
             C = poly_inv(C, deg);
205
            C = poly_mul(A, C);
206
207
             C = poly_idev(C);
             return C;
208
        }
209
210
211
        poly poly_arctan(poly f, int deg) {
212
            poly A(f.size()), B(f.size());
             A = poly_dev(f);
213
             B = poly_mul(f, f);
214
             B[0] = plus(B[0], 1);
215
            C = poly_inv(B, deg);
216
             C = poly_mul(A, C);
217
             C = poly_idev(C);
218
219
             return C;
220
        }
221 }
222
223 using Poly::poly;
    using Poly::poly_arcsin;
225 using Poly::poly_arctan;
226
227
   int n, m, x, k, type;
228
    poly f, g;
    char s[N];
229
230
231
    int main() {
232
        Poly::init(18);//2^21 = 2,097,152,根据题目数据多项式项数的大小自由调整,注意大小需要跟deer数
        组同步(21+1=22)
233
234
        read(n), read(type);
235
236
        for(int i = 0; i < n; ++ i) read(x), f.push_back(x);
237
238
        if(type == 0) g = poly_arcsin(f, n);
        else g = poly_arctan(f, n);
239
240
        for(int i = 0; i < n; ++i) printf("%d ", g[i]);</pre>
241
        return 0;
242
243 }
```

1.9.1 FFT

```
1 const double PI = acos(-1.0);
2
   //复数结构体
3
   struct Complex {
        double x, y; //实部和虚部 x+yi
5
        Complex(double _x = 0.0, double _y = 0.0) { x = _x, y = _y; }
        Complex operator-(const Complex& b) const { return Complex(x - b.x, y - b.y); }
6
        Complex operator+(const Complex& b) const { return Complex(x + b.x, y + b.y); }
7
        Complex operator*(const Complex& b) const { return Complex(x * b.x - y * b.y, x * b
8
        .y + y * b.x); }
   };
9
   void change(Complex y[], int len) {
10
        for (int i = 1, j = len / 2; i < len - 1; i++) {
11
            if (i < j) swap(y[i], y[j]);</pre>
12
            int k = len / 2;
13
            while (j >= k) j -= k, k /= 2;
14
15
            if (j < k) j += k;
        }
16
17 }
18 /*
   * len必须为2^k形式,
19
20 * on==1时是DFT, on==-1时是IDFT
   */
21
   void fft(Complex y[], int len, int on) {
22
        change(y, len);
23
        for (int h = 2; h <= len; h <<= 1) {
    Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
24
25
            for (int j = 0; j < len; <math>j += h) {
26
                Complex w(1, 0);
27
                for (int k = j; k < j + h / 2; k++) {
28
29
                     Complex u = y[k];
                     Complex t = w * y[k + h / 2];
30
                    y[k] = u + t, y[k + h / 2] = u - t;
31
                     W = W * Wn;
32
                }
33
            }
34
35
        if (on == -1) for (int i = 0; i < len; i++) y[i].x /= len;
36
37
   }
   1.9.2 NTT
   模数 P 为费马素数, G 为 P 的原根。G^{\frac{P-1}{n}} 具有和 w_n = e^{\frac{2i\pi}{n}} 相似的性质。具体的 P 和 G 可参考 1.11
1 const int mod = 119 << 23 | 1;</pre>
2 const int G = 3;
3 int wn[20];
   void getwn() { // 千万不要忘记
        for (int i = 0; i < 20; i++) wn[i] = Pow(G, (mod - 1) / (1 << i), mod);
5
6
   void change(int y[], int len) {
7
        for (int i = 1, j = len / 2; i < len - 1; i++) {
8
            if (i < j) swap(y[i], y[j]);</pre>
9
            int k = len / 2;
10
            while (j >= k) j -= k, k /= 2;
11
12
            if (j < k) j += k;
        }
13
```

```
}
14
   void ntt(int y[], int len, int on) {
15
16
        change(y, len);
        for (int h = 2, id = 1; h <= len; h <<= 1, id++) {
17
            for (int j = 0; j < len; <math>j += h) {
18
                int w = 1;
19
                for (int k = j; k < j + h / 2; k++) {
20
                     int u = y[k] \% mod;
21
                     int t = 1LL * w * (y[k + h / 2] % mod) % mod;
22
                    y[k] = (u + t) \% \mod, y[k + h / 2] = ((u - t) \% \mod + \mod) \% \mod;
23
                    w = 1LL * w * wn[id] % mod;
24
25
                }
            }
26
        }
27
        if (on == -1) {
28
            // 原本的除法要用逆元
29
            int inv = Pow(len, mod - 2, mod);
30
            for (int i = 1; i < len / 2; i++) swap(y[i], y[len - i]);
31
            for (int i = 0; i < len; i++) y[i] = 1LL * y[i] * inv % mod;
32
        }
33
  }
34
   1.9.3 FWT
   void fwt(int f[], int m) {
1
2
        int n = __builtin_ctz(m);
3
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j)
4
5
                if (j & (1 << i)) {
                    int l = f[j \land (1 << i)], r = f[j];
6
                     f[j \land (1 \lessdot i)] = l + r, f[j] = l - r;
7
                    // or: f[i] += f[i \land (1 << i)];
8
                    // and: f[j \land (1 << i)] += f[j];
9
                }
10
11
   void ifwt(int f[], int m) {
12
        int n = __builtin_ctz(m);
13
       for (int i = 0; i < n; ++i)
14
15
            for (int j = 0; j < m; ++j)
                if (j & (1 << i)) {
16
                     int l = f[j \land (1 << i)], r = f[j];
17
                     f[j \land (1 \lt \lt i)] = (l + r) / 2, f[j] = (l - r) / 2;
18
19
                    // 如果有取模需要使用逆元
                    // or: f[j] -= f[j \land (1 << i)];
20
                    // and: f[i \land (1 \lt\lt i)] = f[i];
21
                }
22
   }
23
   1.9.4 多项式对数指数函数
1 #include<bits/stdc++.h>
2 #define maxn 100010
3 #define N (262144 | 3)
4
5 const int mod=998244353;
6 const int G = 3;
   int n,m;
8 int inv[N],a[N],b[N];
```

```
9 int num[N], maxv;
10
    inline void init() {
11
        inv[1] = 1;
12
        for (int i = 2; i < N; ++i) {
13
            inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
14
15
   }
16
17
   namespace Poly{
18
        inline int qpow(int a, int b) {
19
            int ans = 1;
20
            while (b) {
21
                 if (b & 1) ans = 1ll * a * ans % mod;
22
23
                 b >>= 1;
                 a = 111 * a * a % mod;
24
25
            return ans;
26
27
        inline int Inv(int x){return qpow(x, mod - 2);}
28
29
        int lim, ilim, L, wn[N], R[N];
        inline void init(int n) {
30
            \lim = 1, L = 0; while (\lim < n) \lim <<= 1, L++; \lim = \inf[\lim];
31
            for (int i = 0; i < \lim; i++) R[i] = R[i >> 1] >> 1 | (i & 1) << (L - 1);
32
33
            int t = qpow(G, (mod - 1) / lim);
            wn\lceil 0 \rceil = 1; for (int i = 1; i <= lim; i++) wn\lceil i \rceil = 1ll * wn\lceil i - 1 \rceil * t % mod;
34
35
        inline void add(int &a, int b) {if ((a += b) >= mod) a -= mod;}
36
        inline void NTT(int *A, int type = 1) {
37
             for (int i = 0; i < lim; i++) if (i < R[i]) std::swap(A[i], A[R[i]]);
38
            for (int mid = 1; mid < lim; mid <<= 1) {</pre>
39
                 int t = lim / mid >> 1;
40
                 for (int i = 0; i < lim; i += mid << 1) {</pre>
41
                     for (int j = 0; j < mid; j++) {
42
                          int W = type ? wn[t * j] : wn[lim - t * j];
43
                          int X = A[i + j], Y = \overline{1}\overline{1}1 * A[i + j + mid]^* W \% mod;
44
                          add(A[i + j], Y), add(A[i + j + mid] = X, mod - Y);
45
46
                     }
                 }
47
48
            if (!type) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;</pre>
49
50
        inline void DER(int *A, int *B, int n) {
51
            B[n - 1] = 0; for (int i = 1; i < n; i++) B[i - 1] = 111 * A[i] * i % mod;
52
53
        inline void INT(int *A, int *B, int n) {
54
            B[\emptyset] = \emptyset; for (int i = 1; i < n; i++) B[i] = 111 * A[i - 1] * inv[i] % mod;
55
56
        int C[N];
57
        inline void INV(int *A, int *B, int n) {
58
59
             if (n == 1) \{B[0] = Inv(A[0]); return ; \}
            INV(A, B, (n + 1) >> 1), init(n << 1);
60
             for (int i = 0; i < n; i++) C[i] = A[i];
61
            for (int i = n; i < lim; i++) C[i] = B[i] = 0;
62
            NTT(B), NTT(C);
63
            for (int i = 0; i < \lim; i++) B[i] = (2 + mod - 111 * B[i] * C[i] % mod) * B[i]
64
         % mod;
65
            NTT(B, 0);
66
            for (int i = n; i < lim; i++) B[i] = 0;
```

```
67
        int D[N];
68
         inline void LN(int *A, int *B, int n) {
69
             DER(A, D, n), INV(A, B, n);
70
             init(n << 1);
71
72
             NTT(B), NTT(D);
             for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod;
73
             NTT(D, 0), INT(D, B, n);
74
             for (int i = n; i < lim; i++) B[i] = 0;</pre>
75
76
        }
        int E[N], F[N];
77
78
        void EXP(int *A, int *B, int n) {
             if (n == 1) \{B[0] = 1; return;\}
79
             EXP(A, B, (n + 1) >> 1);
80
             for (int i = 0; i < n << 1; i++) E[i] = F[i] = 0;
81
             LN(B, E, n);
82
             for (int i = 0; i < n; i++) F[i] = A[i];
83
             NTT(B), NTT(E), NTT(F);
84
             for (int i = 0; i < lim; i++) B[i] = (1ll + mod - E[i] + F[i]) * B[i] % mod;
85
             NTT(B, 0);
86
             for (int i = n; i < lim; i++) B[i] = 0;
87
        }
88
    }
89
90
91
    int main() {
92
        init();
        scanf("%d%d", &n, &m); m++;
93
         for (int i = 0; i < n; ++i) {
94
             int u; scanf("%d", &u);
95
96
             num[u]++;
             maxv = std::max(maxv, u);
97
98
        for (int i = 1; i <= maxv; ++i) {</pre>
99
             if (num[i]) {
100
                 for (int j = 1; j * i <= m; ++j) {
101
                     a[j * i] = (a[j * i] + 1ll * inv[j] * num[i] % mod) % mod;
102
103
                 }
104
             }
105
106
        Poly::EXP(a, b, m);
107
        for (int i = 1; i < m; i++) printf("%d\n", b[i]);
        return 0;
108
109
    }
    1.10 Numerical Integration
```

1.10.1 Adaptive Simpson's Rule

```
\int_a^b f(x)dx \approx \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] |S(a,c)+S(c,b)-S(a,b)|/15<\epsilon

1 double F(double x) {}
2 double simpson(double a, double b)
3 { // 三点Simpson法 double c = a + (b - a) / 2; return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6; }
6 }
7 double asr(double a, double b, double eps, double A)
8 { //自适应Simpson公式 (递归过程) 。已知整个区间[a,b]上的三点Simpson值A
```

```
9
        double c = a + (b - a) / 2;
        double L = simpson(a, c), R = simpson(c, b); if (fabs(L + R - A) \le 15 * eps) return L + R + (L + R - A) / 15.0;
10
11
        return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
12
13
14 double asr(double a, double b, double eps) { return asr(a, b, eps, simpson(a, b)); }
   1.10.2 Berlekamp-Massey
1 const int maxn = 1 \ll 14;
2 ll res[maxn], base[maxn], _c[maxn], _md[maxn];
   vector<int> Md;
   void mul(ll* a, ll* b, int k) {
        for (int i = 0; i < k + k; i++) _c[i] = 0;
5
        for (int i = 0; i < k; i++)
6
            if (a[i]) for (int j = 0; j < k; j++)
7
                _{c[i + j]} = (_{c[i + j]} + a[i] * b[j]) % mod;
8
        for (int i = k + k - 1; i >= k; i--)
9
            if (_c[i]) for (int j = 0; j < Md.size(); j++)</pre>
10
                _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
11
        for (int i = 0; i < k; i++) a[i] = _c[i];
12
13
   }
   int solve(ll n, VI a, VI b) {
14
        ll ans = 0, pnt = 0;
15
        int k = a.size();
16
17
        assert(a.size() == b.size());
18
        for (int i = 0; i < k; i++) _md[k - 1 - i] = -a[i];
19
        _{md[k]} = 1;
        Md.clear();
20
        for (int i = 0; i < k; i++)
21
22
            if (\_md[i] != 0) Md.push\_back(i);
23
        for (int i = 0; i < k; i++) res[i] = base[i] = 0;
24
        res[0] = 1;
25
        while ((1LL << pnt) <= n) pnt++;</pre>
        for (int p = pnt; p >= 0; p--) {
26
            mul(res, res, k);
27
28
            if ((n >> p) & 1) {
29
                for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i];
30
                res[0] = 0;
31
                for (int j = 0; j < Md.size(); j++) res[Md[j]] = (res[Md[j]] - res[k] * _md
        [Md[j]]) % mod;
32
33
        for (int i = 0; i < k; i++) ans = (ans + res[i] * b[i]) % mod;
34
35
        if (ans < 0) ans += mod;
        return ans;
36
37
   VI BM(VI s) {
38
39
        VI C(1, 1), B(1, 1);
        int L = 0, m = 1, b = 1;
40
41
        for (int n = 0; n < s.size(); n++) {
42
            11 d = 0:
            for (int i = 0; i <= L; i++) d = (d + (ll)C[i] * s[n - i]) % mod;
43
            if (d == 0) ++m;
44
            else if (2 * L <= n) {
45
                VI T = C;
46
                11 c = mod - d * Pow(b, mod - 2) % mod;
47
                while (C.size() < B.size() + m) C.push_back(0);</pre>
48
```

```
for (int i = 0; i < B.size(); i++) C[i + m] = (C[i + m] + c * B[i]) % mod;
49
                L = n + 1 - L, B = T, b = d, m = 1;
50
            }
51
            else {
52
                ll c = mod - d * Pow(b, mod - 2) % mod;
53
                while (C.size() < B.size() + m) C.push_back(0);</pre>
54
                for (int i = 0; i < B.size(); i++) C[i + m] = (C[i + m] + c * B[i]) % mod;
55
56
                ++m;
            }
57
58
       }
       return C;
59
60
   }
   int gao(VI a, ll n) {
61
       VI c = BM(a);
62
       c.erase(c.begin());
63
       for (int i = 0; i < c.size(); i++) c[i] = (mod - c[i]) % mod;</pre>
64
        return solve(n, c, VI(a.begin(), a.begin() + c.size()));
65
66
   }
   1.10.3 Simplex
   输入矩阵 a 描述线性规划的标准形式。
   a 为 m+1 行 n+1 列, 其中行 0 \sim m-1 为不等式, 行 m 为目标函数 (最大化)。
   列 0 \sim n-1 为变量 0 \sim n-1 的系数, 列 n 为常数项。
   约束为 a_{i,0}x_0 + a_{i,1}x_1 + \dots \le a_{i,n},目标为 \max(a_{m,0}x_0 + a_{m,1}x_1 + \dots + a_{m,n-1}x_{n-1} - a_{m,n})
   注意: 变量均有非负约束 x[i] \ge 0
1 const int maxm = 500; // 约束数目上限
  const int maxn = 500; // 变量数目上限
3 const double INF = 1e100;
  const double eps = 1e-10;
4
   struct Simplex {
5
6
       int n;
                               // 变量个数
7
       int m;
                               // 约束个数
8
       double a[maxm][maxn]; // 输入矩阵
9
       int B[maxm], N[maxn]; // 算法辅助变量
10
       void pivot(int r, int c) {
            swap(N[c], B[r]);
11
12
            a[r][c] = 1 / a[r][c];
            for (int j = 0; j \le n; j++)
13
                if (j != c) a[r][j] *= a[r][c];
14
            for (int i = 0; i <= m; i++)
15
                if (i != r) {
16
                    for (int j = 0; j <= n; j++)
17
                        if (j != c) a[i][j] -= a[i][c] * a[r][j];
18
                    a[i][c] = -a[i][c] * a[r][c];
19
                }
20
21
       bool feasible() {
22
23
            for (;;) {
24
                int r, c;
25
                double p = INF;
26
                for (int i = 0; i < m; i++)
                    if (a[i][n] < p) p = a[r = i][n];
27
```

```
if (p > -eps) return true;
28
29
                p = 0;
                for (int i = 0; i < n; i++)
30
                    if (a[r][i] < p) p = a[r][c = i];
31
32
                if (p > -eps) return false;
                p = a[r][n] / a[r][c];
33
                for (int i = r + 1; i < m; i++)
34
                    if (a[i][c] > eps)
35
36
                        double v = a[i][n] / a[i][c];
37
38
                        if (v < p) r = i, p = v;
39
                pivot(r, c);
40
           }
41
42
       -// 解有界返回1,无解返回0,无界返回-1。b[i]为x[i]的值,ret为目标函数的值
43
       int simplex(int n, int m, double x[maxn], double& ret) {
44
            this->n = n, this->m = m;
45
            for (int i = 0; i < n; i++) N[i] = i;
46
            for (int i = 0; i < m; i++) B[i] = n + i;
47
            if (!feasible()) return 0;
48
            for (;;) {
49
50
                int r, c;
                double p = 0;
51
                for (int i = 0; i < n; i++)
52
                    if (a[m][i] > p) p = a[m][c = i];
53
                if (p < eps) {
54
                    for (int i = 0; i < n; i++)
55
                        if (N[i] < n) \times [N[i]] = 0;
56
                    for (int i = 0; i < m; i++)
57
                        if (B[i] < n) \times [B[i]] = a[i][n];
58
                    ret = -a[m][n];
59
60
                    return 1;
                }
61
                p = INF;
62
                for (int i = 0; i < m; i++)
63
                    if (a[i][c] > eps) {
64
65
                        double v = a[i][n] / a[i][c];
                        if (v < p) r = i, p = v;
66
67
                if (p == INF) return -1;
68
                pivot(r, c);
69
           }
70
71
       }
72
   };
          其他
   1.11
   约瑟夫问题
   n 个人围成一圈, 从第一个开始报数, 第 m 个将被杀掉
   int josephus(int n, int m) {
2
       int r = 0;
3
       for (int k = 1; k \le n; ++k) r = (r + m) \% k;
4
       return r + 1;
5 }
   n^n 最左边一位数
```

```
int leftmost(int n) {
    double m = n * log10((double)n);
    double g = m - (ll)m;
    return (int)pow(10.0, g);

    n! 位数

int count(ll n) {
    if (n == 1) return 1;
    return (int)ceil(0.5 * log10(2 * M_PI * n) + n * log10(n) - n * log10(M_E));
}
```

1.12 公式

- 1. 约数定理: 若 $n = \prod_{i=1}^{k} p_i^{a_i}$, 则
 - (a) 约数个数 $f(n) = \prod_{i=1}^{k} (a_i + 1)$
 - (b) 约数和 $g(n) = \prod_{i=1}^{k} (\sum_{j=0}^{a_i} p_i^j)$
- 2. 小于 n 且互素的数之和为 $n\varphi(n)/2$
- 3. 若 gcd(n, i) = 1, 则 $gcd(n, n i) = 1(1 \le i \le n)$
- 4. 错排公式: $D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^{k} n!}{k!} = \left[\frac{n!}{e} + 0.5\right]$
- 5. 威尔逊定理: $p \text{ is } prime \Rightarrow (p-1)! \equiv -1 \pmod{p}$
- 6. 欧拉定理: $gcd(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- 7. 欧拉定理推广: $\gcd(n,p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}$

8. 模的幂公式:
$$a^n \pmod{m} = \begin{cases} a^n \mod m & n < \varphi(m) \\ a^{n\%\varphi(m) + \varphi(m)} \mod m & n \ge \varphi(m) \end{cases}$$

- 9. 素数定理: 对于不大于 n 的素数个数 $\pi(n)$, $\lim_{n\to\infty}\pi(n)=\frac{n}{\ln n}$
- 10. 位数公式: 正整数 x 的位数 $N = \log_{10}(n) + 1$
- 11. 斯特灵公式 $n! \approx \sqrt{2\pi n} (\frac{n}{\epsilon})^n$
- 13. 设 a > b, gcd(a, b) = 1, 则 $gcd(a^m b^m, a^n b^n) = a^{gcd(m, n)} b^{gcd(m, n)}$

$$G=\gcd(C_n^1,C_n^2,...,C_n^{n-1})=\begin{cases} n, & n \text{ is prime}\\ 1, & n \text{ has multy prime factors}\\ p, & n \text{ has single prime factor }p \end{cases}$$

gcd(Fib(m), Fib(n)) = Fib(gcd(m, n))

- 14. 若 gcd(m, n) = 1, 则:
 - (a) 最大不能组合的数为 m*n-m-n
 - (b) 不能组合数个数 $N = \frac{(m-1)(n-1)}{2}$
- 15. $(n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1)$
- 16. 若 p 为素数,则 $(x+y+...+w)^p \equiv x^p + y^p + ... + w^p \pmod{p}$
- 17. 卡特兰数: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012 $h(0)=h(1)=1, h(n)=\frac{(4n-2)h(n-1)}{n+1}=\frac{C_{2n}^n}{n+1}=C_{2n}^n-C_{2n}^{n-1}$
- 18. 伯努利数: $B_n = -\frac{1}{n+1} \sum_{i=0}^{n-1} C_{n+1}^i B_i$

$$\sum_{i=1}^{n} i^{k} = \frac{1}{k+1} \sum_{i=1}^{k+1} C_{k+1}^{i} B_{k+1-i} (n+1)^{i}$$

19. 二项式反演:

$$f_n = \sum_{i=0}^n (-1)^i \binom{n}{i} g_i \Leftrightarrow g_n = \sum_{i=0}^n (-1)^i \binom{n}{i} f_i$$
$$f_n = \sum_{i=0}^n \binom{n}{i} g_i \Leftrightarrow g_n = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} f_i$$

20. FFT 常用素数

FFI 吊用系数			
$r 2^k + 1$	r	k	g
3	1	1	2
5	1	2	2
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3
11.03101011000202020			

$$g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} g(i)S(\lfloor \frac{n}{i} \rfloor)$$

其中 $S(n) = \sum_{i=1}^{n} f(i)$, 关键在于寻找 g

使得 (f*g)(i) 为我们方便求解的形式

$$\mu*1=\epsilon$$

$$\varphi*1=id$$

$$\mu*id=\phi$$

Pick therom : $A = i + \frac{b}{2} - 1$ i : 多边形内部格点数 b : 多边形边上格点数

String Processing

2.1 哈希

```
2.1.1 一般哈希
```

```
1 /* 1 x : 插入一个数 x
  * 2 x : 询问 x 是否在集合中出现过 */
3 const int p = 100003; // p < N
4 typedef unsigned long long ull;
5 int n, x, cnt, h[N], nx[N], e[N];
6 void init() { memset(h, 1, sizeof(h)); }
7 // 开放寻址法 (1e5 数据下比 unordered_map 快)
  // 如果 X 在哈希表中, 返回 X 的下标, 否则返回 X 应该插入的位置
  int get_pos(int x) { // 2
10
       int t = (x \% p + p) \% p;
       while (h[t] \& h[t] != x) if (++t == p) t = 0;
11
12
       return t;
13 }
14 void insert(int x) { h[find(x)] = x; }
int find(int x) { return h[find(x)] == x; }
   2.1.2 字符串哈希
1 // 查询 n 个字符串中共有多少个不同的字符串 // 也可用trie来做
  ull base = 13331; // 取 131 或 13331 不容易冲突
3
   ull Hash(char *s, ull ans = 0) {
       for (int i = 0; s[i]; ++i)
4
          ans = ans * base + (ull)s[i];
5
       return ans;
6
7
   }
8
  for (int i = 0; i < n; ++i) hs[i] = Hash(s[i]);
9 sort(hs, hs + n);
10 printf("%ld\n", unique(hs, hs + n) - hs);
   2.1.3 字符串哈希 (区间)
1 // 判断 [l1, r1], [l2, r2] 这两个区间所包含的字符串字串是否完全相同
2 const int base = 13331; // base 用 131 或 13331 不容易冲突
3 ull h[N], p[N];
   inline void Hash() {
       *p = 1;
5
       for (int i = 1; i \le n; ++i) {
6
          p[i] = p[i - 1] * base;
7
          h[i] = h[i - 1] * base + s[i];
8
       }
9
10
   inline ull get(int l, int r) { // 区间 [l, r] 的 Hash 值
11
       return h[r] - h[l - 1] * p[r - l + 1];
12
13 }
14 int check(int l1, int r1, int l2, int r2) { // 判断
       return get(l1, r1) == get(l2, r2);
```

2.1.4 ELF HASH

15

16 }

```
uint ELF_Hash(char *s) {
       uint x, hs = 1; // hs = 0 在树上哈希会出错, 故统一令 hs = 1
2
       while (*s) {
3
           hs = (hs << 4) + *s++;
4
           (x = hs & 0xf0000000) && (hs ^= (x >> 24), hs &= ~x); // 注意是 ~ x , 不是 - x
5
6
       return (hs & 0x7fffffff);
7
  }
8
   2.2 KMP
1 // 返回 y 在 x 中的出现次数
2 const int N = "Edit";
3 int kmp[N];
   void init(char x[], int m) {
4
       int j = 0;
5
6
       for (int i = 1; i < m; ++i) {
           while (j && x[i] != x[j]) j = kmp[j - 1];
7
8
           if (x[i] == x[j]) ++j;
           kmp[i] = j;
9
       }
10
11
   int KMP(char x[], int n, char y[], int m) {
12
13
       init(y, m);
       int j = 0, ans = 0;
14
       for (int i = 0; i < n; ++i) {
15
           while (j && x[i] != y[j]) j = kmp[j - 1];
16
           if(x[i] == y[j] \&\& ++j == m) {
17
               ++ans, j = kmp[j - 1];
18
           }
19
20
21
       return ans;
22 }
   2.3 ExKMP
1 //kmp[i]:x[i...m-1]与x[0...m-1]的最长公共前缀
2 //extend[i]:y[i...n-1]与x[0...m-1]的最长公共前缀
3 const int N = "Edit";
4 int kmp[N], extend[N];
   void pre_ekmp(char x[], int m) {
5
6
       kmp[0] = m;
7
       int j = 0;
8
       while (j + 1 < m \& x[j] == x[j + 1]) j++;
       kmp[1] = j;
9
       int k = 1;
10
       for (int i = 2; i < m; i++) {
11
           int p = kmp[k] + k - 1;
12
           int L = kmp[i - k];
13
           if (i + L 
14
           else {
15
               j = max(0, p - i + 1);
16
               while (i + j < m & x[i + j] == x[j]) j++;

kmp[i] = j, k = i;
17
18
           }
19
       }
20
21 }
```

```
void ekmp(char x[], int m, char y[], int n) {
23
       pre_ekmp(x, m, kmp);
24
       int j = 0;
       while (j < n \&\& j < m \&\& x[j] == y[j]) j++;
25
       extend[0] = j;
26
       int k = 0;
27
       for (int i = 1; i < n; i++) {
28
29
            int p = extend[k] + k - 1;
30
            int L = kmp[i - k];
31
            if (i + L  extend<math>[i] = L;
            else {
32
33
                j = max(0, p - i + 1);
                while (i + j < n \& j < m \& y[i + j] == x[j]) j++;
34
35
                extend[i] = j, k = i;
           }
36
       }
37
  }
38
   2.4 Manacher
   O(n) 求解最长回文子串
1 const int N = "Edit":
2 char s[N], str[N << 1];</pre>
3 int p[N << 1]; // p[i] : 以 i 为中心的最长回文半径
   void Manacher(char s[], int& n) {
       str[0] = '$', str[1] = '#';
5
       for (int i = 0; i < n; i++) str[(i << 1) + 2] = s[i], <math>str[(i << 1) + 3] = '\#';
6
       n = 2 * n + 2;
7
       str[n] = 0;
8
       int mx = 0, id;
9
       for (int i = 1; i < n; i++) {
10
           p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
11
           while (str[i - p[i]] == str[i + p[i]]) p[i]++;
12
13
            if (p[i] + i > mx) mx = p[i] + i, id = i;
       }
14
15
   int solve(char s[]) {
16
       int n = strlen(s);
17
       Manacher(s, n);
18
19
       return *max_elememt(p, p + n) - 1;
20 }
   2.5 AC 自动机
1 const int N = "Edit";
2
   struct Trie {
       int ch[N][26], f[N], val[N];
3
4
       int sz, rt;
       int New() { memset(ch[sz], -1, sizeof(ch[sz])), val[sz] = 0; return sz++; }
5
       void init() { sz = 0, rt = New(); }
6
7
       inline int idx(char c) { return c - 'A'; };
8
       void insert(const char* s) {
9
            int u = 0;
            for (int i = 0; s[i]; i++) {
10
11
                int c = idx(s[i]);
                if (ch[u][c] == -1) ch[u][c] = New();
12
```

```
u = ch[u][c];
13
14
           val[u]++;
15
16
17
        void build() {
            queue<int> q;
18
            f[rt] = rt;
19
            for (int c = 0; c < 26; c++) {
20
21
                if (~ch[rt][c])
22
                    f[ch[rt][c]] = rt, q.push(ch[rt][c]);
23
24
                    ch[rt][c] = rt;
25
           while (!q.empty()) {
26
27
                int u = q.front();
28
                q.pop();
                // val[u] |= val[f[u]];
29
30
                for (int c = 0; c < 26; c++) {
                    if (~ch[u][c])
31
                        f[ch[u][c]] = ch[f[u]][c], q.push(ch[u][c]);
32
                    else
33
                        ch[u][c] = ch[f[u]][c];
34
                }
35
36
           }
37
       //返回主串中有多少模式串
38
       int query(const char* s) {
39
            int u = rt;
40
            int res = 0;
41
            for (int i = 0; s[i]; i++) {
42
                int c = idx(s[i]);
43
                u = ch[u][c];
44
                int tmp = u;
45
                while (tmp != rt) {
46
                    res += val[tmp];
47
                    val[tmp] = 0;
48
49
                    tmp = f[tmp];
50
                }
            }
51
52
            return res;
       }
53
   };
54
        后缀数组 (SA)
1 //倍增算法构造后缀数组,复杂度0(nlogn)
   const int N = "Edit";
   struct Suffix_Array {
3
       char s[N];
4
       // rk[i] 表示后缀 i 的排名
5
6
       // sa[i] 表示将所有后缀排序后第 i 小的后缀的编号
       int sa[N], t[N], t2[N], c[N], rk[N], height[N];
7
8
       void build_sa(int m, int n) { //n为字符串的长度,字符集的值为0~m-1
9
           n++;
            int *x = t, *y = t2;
10
11
            //基数排序
            for (int i = 0; i < m; i++) c[i] = 0;
12
            for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
13
```

```
for (int i = 1; i < m; i++) c[i] += c[i - 1];</pre>
14
           for (int i = n - 1; \sim i; i--) sa[--c[x[i]]] = i;
15
           for (int k = 1; k <= n; k <<= 1) { //直接利用sa数组排序第二关键字
16
17
               int p = 0;
               for (int i = n - k; i < n; i++) y[p++] = i;
18
               for (int i = 0; i < n; i++)
19
                    if (sa[i] >= k) y[p++] = sa[i] - k;
20
21
               //基数排序第一关键字
               for (int i = 0; i < m; i++) c[i] = 0;
22
               for (int i = 0; i < n; i++) c[x[y[i]]]++;
23
               for (int i = 1; i < m; i++) c[i] += c[i - 1];
24
               for (int i = n - 1; \sim i; i--) sa[--c[x[y[i]]]] = y[i];
25
26
               //根据Sa和y数组计算新的x数组
               swap(x, y);
27
28
               p = 1;
               x[sa[0]] = 0;
29
               for (int i = 1; i < n; i++)
30
                   x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k]
        ? p - 1 : p++;
               if (p >= n) break; //以后即使继续倍增, sa也不会改变, 推出
32
33
                                   //下次基数排序的最大值
               m = p;
           }
34
35
           n--;
           int k = 0;
36
37
           for (int i = 0; i <= n; i++) rk[sa[i]] = i;
           for (int i = 0; i < n; i++) {
38
               if (k) k--;
39
               int j = sa[rk[i] - 1];
40
               while (s[i + k] == s[j + k]) k++;
41
               height[rk[i]] = k;
42
43
           }
       }
44
45
       int dp[N][30];
46
       void initrmq(int n) {
47
           for (int i = 1; i <= n; i++)
48
               dp[i][0] = height[i];
49
50
           for (int j = 1; (1 << j) <= n; j++)
               for (int i = 1; i + (1 << j) - 1 <= n; i++)
51
                    dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
52
53
       int rmq(int 1, int r) {
54
           int k = 31 - \_builtin\_clz(r - l + 1);
55
           return min(dp[l][k], dp[r - (1 << k) + 1][k]);
56
57
       int lcp(int a, int b) { // 求两个后缀的最长公共前缀
58
59
           a = rk[a], b = rk[b];
60
           if (a > b) swap(a, b);
           return rmq(a + 1, b);
61
62
       }
63 };
       后缀自动机 (SAM)
1 const int N = "Edit";
2
   struct SAM {
       int len[N << 1], link[N << 1], ch[N << 1][26];</pre>
3
       int num[N << 1]; //每个结点所代表的字符串的出现次数
```

```
int sz, rt, last;
5
        int newnode(int x = 0) {
6
7
            len[sz] = x;
            link[sz] = -1;
8
            memset(ch[sz], -1, sizeof(ch[sz]));
9
10
            return sz++;
11
        void init() { sz = last = 0, rt = newnode(); }
12
        void reset() { last = 0; }
13
        void extend(int c) {
14
            int np = newnode(len[last] + 1);
15
16
            int p;
            for (p = last; \sim p \& ch[p][c] == -1; p = link[p]) ch[p][c] = np;
17
            if (p == -1) link[np] = rt;
18
19
            else {
                int q = ch[p][c];
20
                if (len[p] + 1 == len[q]) link[np] = q;
21
                else {
22
                     int nq = newnode(len[p] + 1);
23
24
                     memcpy(ch[nq], ch[q], sizeof(ch[q]));
                     link[nq] = link[q], link[q] = link[np] = nq;
25
26
                     for (; \sim p \&\& ch[p][c] == q; p = link[p]) ch[p][c] = nq;
27
                }
28
29
            last = np;
30
        int topcnt[N], topsam[N << 1];</pre>
31
        void build(const char* s) { // 加入串后拓扑排序
32
            memset(topcnt, 0, sizeof(topcnt));
33
            for (int i = 0; i < sz; i++) topcnt[len[i]]++;
for (int i = 0; i < N - 1; i++) topcnt[i + 1] += topcnt[i];</pre>
34
35
            for (int i = 0; i < sz; i++) topsam[--topcnt[len[i]]] = i;
36
            int u = rt;
37
            for (int i = 0; s[i]; i++) num[u = ch[u][s[i] - 'a']] = 1;
38
            for (int i = sz - 1; ~i; i--) {
39
                int u = topsam[i];
40
41
                if (~link[u]) num[link[u]] += num[u];
42
            }
43
        }
  };
44
   2.8 回文自动机(树)
   const int N = "Edit";
   struct Palindromic_Tree {
        int ch[N][26], f[N], len[N], s[N];
3
        int cnt[N]; // 结点表示的本质不同的回文串的个数(调用count()后)
4
        int num[N]; // 结点表示的最长回文串的最右端点为回文串结尾的回文串个数
5
        int last, sz, n;
6
7
        int newnode(int x) {
            memset(ch[sz], 0, sizeof(ch[sz]));
8
            cnt[sz] = num[sz] = 0, len[sz] = x;
9
10
            return sz++;
11
        void init() {
12
13
            sz = 0;
            newnode(0), newnode(-1);
last = n = 0, s[0] = -1, f[0] = 1;
14
15
```

```
}
int get_fail(int u) {
    while (s[n - len[u] - 1] != s[n]) u = f[u];
16
17
18
19
20
        void add(int c) { // c-='a'
21
             s[++n] = c;
int u = get_fail(last);
22
23
             if (!ch[u][c]) {
24
                  int np = newnode(len[u] + 2);
25
                  f[np] = ch[get_fail(f[u])][c];
26
                  num[np] = num[f[np]] + 1;
27
                  ch[u][c] = np;
28
29
             }
             last = ch[u][c];
30
             cnt[last]++;
31
32
        void count() {
    for (int i = sz - 1; ~i; i--) cnt[f[i]] += cnt[i];
33
34
35
         }
36 };
```

Data Structure 3

2 3

5

6

7

9

10 11

12

13

14

15

16

1

3

4

5

6 7

8

11

12

13

14 15

16

17 } 18

```
3.1
        并查集
   3.1.1 并查集(启发式合并)
   int pre[N], rk[N];
   void init() {
       for (int i = 1; i \le n; ++i) pre[i] = i, rk[i] = 1;
4
   int find(int x) {
       return pre[x] == x ? x : pre[x] = find(pre[x]);
   }
   void merge(int x, int y) { // 启发式合并 (按秩合并)
       x = find(x), y = find(y);
       if (x == y) return;
       if (rk[y] < rk[x]) {
           pre[y] = x;
       } else {
           pre[x] = y;
           if (rk[x] == rk[y]) ++rk[y];
       }
  }
17
   3.1.2 带权并查集
   int find(int x) {
       if (x == pre[x]) return x;
       int fx = pre[x];
       pre[x] = find(pre[x]); // root
       val[x] += val[fx];
       // val[x] : x 到父节点的权值, val[fx] : 父节点到根的权值
       // x 的父亲从 fx 变为 pre[x] (根), 则新 val[x] = 旧 val[x] + val[fx]
       return pre[x]; // root
9
   }
   void join(int x, int y, int s) { // s 代表 x 到 y 的权值
10
       int fx = find(x), fy = find(y);
       if (fx != fy) {
           pre[fx] = fy;
           val[fx] = val[y] - val[x] + s;
```

// 更新 val[fx], 可通过向量关系(可画图得出)得到计算公式

// 公式不一定是上面这个, 可能还附带取模操作, 需视具体情况进行分析

3.1.3 种类并查集

}

```
int find(int x){
       if (pre[x] == x) return x;
       // x : 孙, fx : 子, pre[x] : 父(根)
3
       int fx = pre[x];
4
       pre[x] = find(pre[x]);
5
      w[x] = cal_1(w[x], w[fx]);
6
       /* w[x]: x 与父亲的"关系"(由题目决定)
7
       * 路径压缩后 x 的父亲从 fx 变为 pre[x]
8
       * 需通过 w[x] 和 w[fx] 计算新的 w[x]
9
       * 可将情况列出来, 然后找规律 */
10
       return pre[x];
11
```

```
12 }
   void join(int x, int y) {
       int fx = find(x), fy = find(y);
14
       if (fx != fy) {
15
           pre[fx] = fy;
16
17
           w[fx] = cal_2(w[x], w[y]);
           /* fx 的父亲变更为 fy
18
            * 需通过 w[x], w[y], x 与 y 的关系(join 操作隐含) 更新 w[fx]
19
            * 也可将情况列出来, 然后找规律 */
20
21
       }
22 }
   3.1.4 可持续化并查集
   /* 给定 n 个集合, 第 i 个集合内初始状态下只有一个数, 为 i
    * 有 m 次操作. 操作分为 3 种:
    * 1 a b : 合并 a, b 所在集合
      2 k : 回到第 k 次操作(执行三种操作中的任意一种都记为一次操作)之后的状态
    * 3~a~b: 询问 a, b 是否属于同一集合,如果是则输出 1 ,否则输出 0~*/
   // time: O(mlog2n) splae: O(mlogn) n: 结点数, m: 操作数
   #define M 200005
7
8 #define L(p) t[p].l
9 #define R(p) t[p].r
10 struct Node { int l, r, fa, dep; } t[M * 20]; // O(mlogn)
11 int rt[M];
12 int n, m, opt, x, y, fx, fy, cnt;
13
   void build(int &p, int l, int r) { // 初始化并查集
14
       p = ++cnt;
       if (l == r) { t[p].fa = l; return; }
15
       int mid = (l + r) \gg 1;
16
       build(L(p), 1, mid);
17
18
       build(R(p), mid + 1, r);
19 }
20 // 合并 x, fa 集合 (x 向 fa 合并)
21 void merge(int &now, int pre, int x, int fa, int l = 1, int r = n) {
22
       t[now = ++cnt] = t[pre];
23
       if (l == r) \{ t[now].fa = fa; return; \}
       int mid = (l + r) \gg 1;
24
25
       if (x <= mid) {
26
           merge(L(now), L(pre), x, fa, l, mid);
27
       } else {
28
           merge(R(now), R(pre), x, fa, mid + 1, r);
       }
29
30
   }
31
   void update(int p, int x, int l = 1, int r = n) { // dep[x] + 1
       if (l == r) { ++t[p].dep; return; }
32
       int mid = (l + r) >> 1;
33
34
       if (x \le mid) {
35
           update(L(p), x, l, mid);
36
       } else {
37
           update(R(p), x, mid + 1, r);
38
   }
39
40
   int query(int p, int x, int l = 1, int r = n) { // num(x)
41
       if (l == r) return p;
       int mid = (l + r) \gg 1;
42
       if (x <= mid) return query(L(p), x, l, mid);</pre>
43
       return query(R(p), x, mid + 1, r);
44
```

```
45 }
46
   int find(int tim, int x) { // 找根(无路径压缩), 返回结点编号
47
       int p = query(tim, x); // 线段树结点
48
       return t[p].fa ^ x ? find(tim, t[p].fa) : p;
49
   } // 对照: return pre[x] ^ x ? find(pre[x]) : x
50
51
   int main() {
52
       scanf("%d%d", &n, &m);
53
       build(*rt, 1, n); // 建立并查集
54
       for (int i = 1; i \le m; ++i) {
55
            scanf("%d%d", &opt, &x);
56
57
            switch (opt) {
                case 1:
58
                    scanf("%d", &y);
rt[i] = rt[i - 1];
59
60
                    fx = find(rt[i], x), fy = find(rt[i], y);
61
                    if (fx == fy) break;
62
                    if (t[fx].dep > t[fy].dep) swap(fx, fy);
63
                    merge(rt[i], rt[i - 1], t[fx].fa, t[fy].fa); // 启发式合并, fa[fx] = fy;
64
                    if (t[fx].dep == t[fy].dep) update(rt[i], t[fy].fa);
65
                    // dep 相同,则 dep = dep + 1
66
                    break;
67
68
                case 2: rt[i] = rt[x]; break;
69
                case 3:
                    scanf("%d", &y);
70
                    rt[i] = rt[i - 1];
71
                    puts(find(rt[i], x) ^ find(rt[i], y) ? "0" : "1");
72
73
                    break;
74
           }
75
76
       return 0;
77 }
   3.1.5 可撤销并查集
1 // 用按秩合并实现,不能路径压缩
2 #include <bits/stdc++.h>
3 using namespace std;
4
   class UFS {
       private:
5
            int *fa, *rk;
6
            stack<pair<int*, int> > stk;
7
       public:
8
            UFS() {}
9
            UFS(int n) {
10
                fa = new int [(const int) n + 1];
11
                rk = new int [(const int) n + 1];
12
                memset(rk, 0, sizeof rk);
13
                for (int i = 1; i \le n; ++i) fa[i] = i;
14
15
            inline int find(int x) {
16
                while (x \land fa[x]) x = fa[x];
17
18
                return x;
19
            inline int merge(int x, int y) {
20
21
                x = find(x), y = find(y);
22
                if (x == y) return 0;
```

```
if (rk[x] <= rk[y]) {</pre>
23
                  stk.push({fa + x, fa[x]});
24
                  fa[x] = y;
25
                  if(rk[x] == rk[y]) {
26
                      stk.push({rk + y, rk[y]});
27
28
                     ++rk[y];
                     return 2;
29
                  }
30
                  return 1;
31
32
              stk.push({fa + y, fa[y]});
33
              return fa[y] = x, 1;
34
35
          inline void undo() { // 撤销
36
              *stk.top().first = stk.top().second;
37
              stk.pop();
38
          }
39
40 } T;
   3.1.6 跳点
  // 例: 跳过值为 1 的数
1
   l = find(l);
2
3
   while (l \ll r) {
       a[l] = sqrt(a[l]);
4
       if (a[l] <= 1) { // 满足跳过条件
5
          pre[l] = l + 1; // 将他连向下一个数
6
7
8
       l = find(l + 1); // 跳到 l + 1 连向的数
9
  }
   3.1.7 习题 1
  // 共两个集合, 每次将两个人划分到不同的两个集合中, 如果两个人已在一个集合则结束
  int pre[N], foe[N];
3 // find, merge 为基本操作
4
   { // x, y 两人
       if (find(x) == find(y)) { // 两个人已在一个集合
5
          puts("END"), exit(0);
6
7
       if (!foe[x]) foe[x] = y; // x 与 y 不在一个集合
8
9
       if (!foe[y]) foe[y] = x; // 同理
10
       merge(foe[x], y); // x 的敌人与 y 在一个集合, 因为 x 与 y 不在一个集合
       merge(foe[y], x); // 同理
11
12 }
   3.1.8 习题 2
1
      一个长度为 n 的大数, 用 S1 S2 S3 · · · Sn 表示, 其中 Si 表示数的第 i 位, S1 是数的最高位.
2
      告诉你一些限制条件,每个条件 表示为四个数, l1, r1, l2, r2,
3
      即两个长度相同的区间, 表示子串 Sl1 Sl1+1 Sl1+2 · · · Sr1 与 Sl2 Sl2+1 Sl2+2 · · · · Sr2 完全
4
      相同。
5
      问满足以上所有条件的数有多少个.
    */
6
  // 并查集 + ST 表
7
8 int fa[N][20]; // f[i][j] 表示 [i, i + 2 ^ j - 1] 的所属联通块
```

```
9 inline int find(int x, int k) { return fa[x][k] == x ? x : fa[x][k] = find(fa[x][k], k)
   inline void merge(int x, int y, int k) {
10
       int fx = find(fa[x][k], k);
11
       int fy = find(fa[y][k], k);
12
       if (fx != fy) fa[fx][k] = fy;
13
   }
14
15
   int main() {
16
       n = rd(), m = rd(), mx = lg[n]; // lg[] 需预处理
17
       for (int i = 1; i <= n; ++i) {
18
19
           for (int j = 0; j \le mx; ++j) { // 0
              fa[i][j] = i; // 并查集初始化
20
21
22
       for (int i = 1; i <= m; ++i) {
23
           l1 = rd(), r1 = rd(), l2 = rd(), r2 = rd();
24
25
           int k = \lg[r1 - l1 + 1];
          merge(l1, l2, k); // 将两个区间都拆成两部分进行合并
26
27
          merge(r1 - (1 << k) + 1, r2 - (1 << k) + 1, k);
28
29
       for (int j = mx; j; --j) { // 从大区间往小区间合并
           for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
30
31
              int d = find(i, j);
32
              if (d != i) {
                  merge(i, d, j - 1); // 用大区间的联通块编号 d 合并小区间
33
                  merge(i + (1 << (j - 1)), d + (1 << (j - 1)), j - 1);
34
35
           }
36
37
       for (int i = 1; i <= n; ++i) {
38
39
           if (fa[i][0] == i) ++cnt; // 统计联通块个数
40
       }
       // 10 ^ (联通块个数 - 1) 即为答案
41
       printf("%lld\n", ans * qpow(10, cnt - 1) % P);
42
       return 0;
43
44 }
   3.2
        单调栈
1 // 求出数列中第 i 个元素之后第一个大于 a[i] 的元素下标
  int a[N], st[N], ans[N], t; // 数列, 栈, 结果
   for (int i = n; i; --i) { // 正向读数据, 反向处理
       while (cnt && a[i] >= a[st[t]]) --t; // 保证栈单调递增
4
       ans[i] = st[t];
5
       st[++t] = i;
6
   }
7
   3.3
        单调队列
1
    * 有一个长为 n 的序列 a, 以及一个大小为 k 的窗口.
2
    * 现在这个从左边开始向右滑动,每次滑动一个单位,
3
    * 求出每次滑动后窗口中的最大值和最小值.
4
    */
5
  #include <cstdio>
   #define N 1000006
```

```
int n, k, cnt1, cnt2; // n : 序列长度, k : 窗口大小
  int a[N], mx[N], mn[N];
   struct Deque { // 双端队列
10
       int front_, rear, a[N]; // front_ 在左, rear 在右
11
       Deque() { front_= 0, rear = -1; }
12
       void push(int x) { a[++rear] = x; } // 从尾部加
13
       void pop_front() { ++front_; }
14
       void pop_back() { --rear; }
15
       int front() { return a[front_]; }
16
       int back() { return a[rear]; }
int size() { return rear - front_ + 1; }
17
18
19
       bool empty() { return rear < front_; }</pre>
20
   } qx, qn;
   for (int i = 1; i <= n; ++i) { // 滑动窗口
21
       while (!qx.empty() &&
                                qx.front() <= i - k) qx.pop_front(); // 最早加入的下标在窗口外
22
                                 qn.front() <= i - k) qn.pop_front(); // 最晚加入的下标在窗口外
       while (!qn.empty() &&
23
       while (!qx.empty() && a[qx.back()] <= a[i] ) qx.pop_back(); // 单调递减while (!qn.empty() && a[qn.back()] >= a[i] ) qn.pop_back(); // 单调递增
24
25
       qx.push(i), qn.push(i); // 插入下标
26
27
       if (i >= k) {
            mx[++*mx] = a[qx.front()]; // 最大值
28
29
            mn[++*mn] = a[qn.front()]; // 最小值
       }
30
31 }
   3.4 对顶堆
   3.4.1 维护第 k 小 (大)
1 // 时间: O(logn)
  // 若求第 k 大,则使 qn.size() 为 k , qn.top()即为第k大
  // 若求第 k 小, 则使 qx.size() 为 k , qx.top()即为第k小
  // https://www.luogu.com.cn/problem/P1801
   struct Heap { // 大顶堆
5
6
       int siz, a[N];
       Heap() { siz = 0; memset(a, 0, sizeof(a)); }
7
       void push(int x) {
8
9
            a[++siz] = x;
            int p = siz, q = p \gg 1;
10
            while (q \& a[p] > a[q]) \{
11
12
                swap(a[p], a[q]);
13
                p = q, q >>= 1;
            }
14
15
        int top() { return a[1]; }
16
17
       void pop() {
            a[1] = a[siz--];
18
            int p = 1, l = 2, r = 3;
19
20
            while (l <= siz) {</pre>
21
                int q = 1;
                if (r \le siz \& a[r] > a[l]) q = r;
22
23
                if (a[p] > a[q]) return;
                swap(a[p], a[q]);
24
25
                p = q, l = p << 1, r = p << 1 ^ 1;
            }
26
27
       int size() { return siz; }
28
       bool empty() { return !siz; }
29
30 } qx, qn; // 大, 小根堆
```

```
int n, m, x, t1, t2, a[N];
   int main() {
32
       scanf("%d%d", &n, &m);
33
34
       for (int i = 1; i <= n; ++i)
           scanf("%d", &a[i]);
35
36
       for (int i = 1; i <= m; ++i) {
           scanf("%d", &x);
37
           while (t1 < x) qx.push(a[++t1]);
38
           ++t2;
39
40
           while (qx.size() > t2) {
               qn.push(-qx.top()), qx.pop();
41
42
           printf("%d\n", qx.top()); // 第 k 小
43
           // 假设这一次为求第 k1 小, 下一次为求第 k2 小
44
           // 若 k2 > k1 , 则需将 qn 中的 k2 - k1 个数放回 qx 中
45
           // 避免第 k2 小在 qn 中的情况
46
47
           // 因为下一次是求第 t2 + 1 小, 所以要预先往 qx 放回一个数
48
49
           // 避免第 t2 + 1 小在 qn 中的情况
           if (!qn.empty()) {
50
               qx.push(-qn.top()), qn.pop();
51
           }
52
       }
53
       return 0;
54
55 }
   3.4.2 维护中位数
1 // 动态求中位数
2 struct Queue {...}; // 大根堆
3 Queue qx, qn; // 大, 小根堆
4 // 小根堆在上(顶朝下), 大根堆在下(顶朝上), 形成漏斗状结构
  qx.push(x); // 先放一个
5
   for (int i = 2; i <= n; ++i) {
    scanf("%d", &x);</pre>
6
7
       if (x < qx.top()) qx.push(x); // 插入
8
9
       else qn.push(-x);
10
       if (qn.size() > qx.size() + 1) { // 调整
           qx.push(-qn.top()), qn.pop();
11
       }
12
       else if (qx.size() > qn.size() + 1) { // 调整
13
           qn.push(-qx.top()), qx.pop();
14
15
       if (i & 1) // 每当插入奇数个数字时求中位数
16
           ans[++*ans] = qx.size() > qn.size() ? qx.top() : -qn.top();
17
  }
18
   3.5 ST 表
   3.5.1 一维 RMQ
1 // 作用: 寻找区间最值
2 // 空间 O(nlogn)
3 int n, m;
4 int lg[N], d[N][20];
5 // N: 区间长度
6 // 2^16 = 65536 < N = 1e5
7 // 2^17 = 131072 > N = 1e5
```

```
// d[i][j] \Rightarrow i \sim (i + 2^j - 1)
   void init() { // O(nlogn) 预处理
9
       for (int j = 1; j \le 16; ++j) // j
10
            for (int i = 1; i + (1 << j) - 1 <= n; ++i) // i
11
                d[i][j] = max(d[i][j-1], d[i+(1 << (j-1))][j-1]);
12
13
   int query(int l, int r) { // 0(1) 查询 [l, r] 的最大值
14
       int k = lg[r - l + 1]; // 需要 O(n) 预处理 lg[]
15
       // int k = 31 - \_builtin\_clz(r - l + 1);
16
        // x = 1, y = r - 2^k + 1 \le y + 2^k - 1 = r
17
       return max(d[1][k], d[r - (1 << k) + 1][k]);
18
19
   3.5.2 二维 RMQ
   // 作用: 求子矩阵的最值问题
  int d[N][20][N][20];
   // d[i][j][k][l] : 代表i ~ i + 2 ^ k j ~ j + 2 ^ l 这个矩阵中的最大值 void init(int n, int m) { // O(n * m * logn * logm)
3
4
5
       for (int i = 0; (1 << i) <= n; i++)
            for (int j = 0; (1 << j) <= m; j++) {
6
                if (i == 0 && j == 0) continue;
7
                for (int row = 1; row + (1 << i) - 1 <= n; row++)
8
                    for (int col = 1; col + (1 << j) - 1 <= m; col++)
9
                        if (i) {
10
                             d[row][col][i][j] = max(d[row][col][i - 1][j],
11
                                     d[row + (1 << (i - 1))][col][i - 1][j]);
12
                        } else {
13
                             d[row][col][i][j] = max(d[row][col][i][j - 1]
14
15
                                     d[row][col + (1 << (j - 1))][i][j - 1]);
16
                        }
            }
17
18
   int query(int x1, int y1, int x2, int y2) \{ // 0(1) \}
19
        int kx = lg[x2 - x1 + 1];
20
       int ky = l\bar{g}[y2 - y1 + 1];
21
       // int kx = 31 - __builtin_clz(x2 - x1 + 1);
// int ky = 31 - __builtin_clz(y2 - y1 + 1);
22
23
       int m1 = d[x1][y1][kx][ky];
24
       int m2 = d[x2 - (1 << kx) + 1][y1][kx][ky];
25
       int m3 = d[x1][y2 - (1 << ky) + 1][kx][ky];
26
27
       int m4 = d[x2 - (1 << kx) + 1][y2 - (1 << ky) + 1][kx][ky];
28
       return max({m1, m2, m3, m4});
29
   }
   3.6 线性基
   3.6.1 线性基
   // 给定 n 个整数(数字可能重复), 求在这些数中选取任意个, 使得他们的异或和最大
   namespace Linear_Basis {
       const int mx = 50; // 数字 <= 2 ^ mx
3
       int n, tot; // n: 总数字个数, tot: 线性基中数字个数
4
       ll p[mx + 1], x, ans; // p[] : 线性基
5
       inline void insert(ll x) { // 常规写法, 往线性基插入一个数
6
            for (int i = 50; i >= 0; --i) if (x >> i) {
7
                if (!p[i]) return p[i] = x, ++tot, void();
8
                x ^= p[i]:
9
```

```
}
10
11
       inline void insert(ll x) { // 个人改进写法 ( 也许常数会小一些 )
12
           while (x) {
13
               int i = log2(x); // x 在 int 范围内才能将 log2(x) 替换为 31 - __builtin_clz(x)
14
               if (!p[i]) return p[i] = x, ++tot, void();
15
               x \sim p[i];
16
           }
17
       }
18
       // 判断一个数是否能被线性基中的元素异或得到出来
19
20
       // 如果能被表示出来,则满足的子序列个数为
21
       // 2 ^ (线性有关的数字个数 = 总数字个数(尝试插入的数字个数) - 线性无关的数字个数(线性基中数字个
       数))
22
       // = 2 \wedge (n - tot)
       inline int check(int x) {
23
           while (x) {
24
25
               int i = log2(x);
26
               if (!p[i]) return 0; // 不能表示
27
               x ^= p[i];
28
           }
29
           return 1; // 能表示
30
       // 在一个序列中, 取若干个数, 使得它们的异或和最大
31
32
       inline ll query_max() {
33
           11 \text{ ans} = 0;
           for (int i = mx; i >= 0; --i) {
34
               if ((ans ^p[i]) > ans) ans ^p[i];
35
36
37
           return ans;
38
       // 在一个序列中,取若干个数,使得它们的异或和最小
39
       inline ll query_min() {
40
           if (tot < n) return 0; // 原来的序列可以异或出 0
41
           for (int i = 0; i \leftarrow mx; ++i) if (p[i]) return p[i];
42
43
       inline void rebuild() { // kth 的预处理 (对 p[] 进行处理)
44
           all = (111 << tot) - 1; // 线性基所有不同异或和的数量
45
46
           for (int i = 1; i <= mx; ++i) {
               for (int j = 0; j < i; ++j) {
47
                   if (p[i] >> j & 1) p[i] ^= p[j];
48
49
           }
50
51
       // 一个序列中取任意个元素进行异或, 查询能异或出的所有数字中的第 k 小
52
       inline ll kth(ll k) { // 需要先调用一次 rebuild
53
           if (tot < n && !--k) return 0; // 能异或出 0, k = 1 直接输出 0, 否则去掉 0 这种情况
54
           if (k > all) return -1;
55
           11 \text{ ans} = 0;
56
           for (int i = 0; i \leftarrow mx; ++i) if (p[i]) {
57
               if (k \& 1) ans \uparrow = p[i];
58
59
               k >>= 1;
60
           }
           return ans;
61
62
       // 获取一个数在能异或出的所有数字中的排名
63
64
       inline ll query_rank(ll x) {
           ll k = 0, now = 1;
65
           for (int i = 0; i \le mx; ++i) if (p[i]) {
66
               if (x >> i \& 1) k += now;
67
```

```
68
               now <<= 1;
69
           if (tot == n) return k;
70
           return k * qpow(2, n - tot) + 1;
71
72
       }
73 }
   3.6.2 实数线性基
   /* n 件装备, 每件装备 m 个属性, 每件装备还有个价格.
   * 如果手里有的装备的每一项属性为它们分配系数(实数)后可以相加得到某件装备,
   * 则不必要买这件装备, 求能购买的最多装备数量及最多装备下的最小花费, */
3
4 #include <bits/stdc++.h>
5 using namespace std;
6 typedef long double LD;
7 \quad const LD eps = 1e-6;
   struct Node {
8
9
       int w; LD x[N];
       bool operator < (const Node &b) const { return w < b.w; }</pre>
10
11 } t[N];
12 int p[N];
  int n, m, cnt, sum;
   void insert(int i) {
       for (int j = 1; j <= m; ++j) {
    if (fabs(t[i].x[j]) > eps) {
15
16
17
               if (!p[j]) {
                   p[j] = i;
18
                   sum += t[i].w, ++cnt;
19
                   return;
20
21
               LD tmp = t[i].x[j] / t[p[j]].x[j];
22
23
               for (int k = j; k \le m; ++k)
                   t[i].x[k] -= t[p[j]].x[k] * tmp;
24
25
           }
       }
26
27
   int main() {
28
       scanf("%d%d", &n, &m);
29
       for (int i = 1; i \le n; ++i)
30
           for (int j = 1; j \le m; ++j)
31
               scanf("%LF", &t[i].x[j]); // 第 i 件装备的第 j 个属性
32
       for (int i = 1; i <= n; ++i)
33
           scanf("%d", &t[i].w); // 第 i 件装备的花费
34
35
       sort(t + 1, t + 1 + n);
36
       for (int i = 1; i <= n; ++i) insert(i);
       printf("%d %d\n", cnt, sum);
37
       return 0;
38
   }
39
   3.6.3 前缀线性基 (区间线性基)
1 // 前缀线性基 (在线算法) O(nlogn)
2 // 查询: 给定 l, r, 在 [l, r] 中选取任意个, 使得他们的异或和最大
3 #include <bits/stdc++.h>
4 using namespace std;
5 #define N 1000005
6 const int mx = 19;
7 int n, m, l, r;
```

```
struct P { // Prefix_Linear_Basis 前缀线性基
       int p[mx + 1], pos[mx + 1];
9
       inline void init() { memset(p, 0, sizeof(p)), memset(pos, 0, sizeof(pos)); }
10
       inline void insert(const P &a, int now, int x) {
11
12
           *this = a; // 别忘了
           for (int i = mx; i >= 0; --i) {
13
               if (x >> i) {
14
                   if (!p[i]) return p[i] = x, pos[i] = now, void();
15
                   if (pos[i] < now) swap(pos[i], now), swap(p[i], x);</pre>
16
17
                   x = p[i]; // 拿 pos 小的替换 pos 大的继续插入,确保线性基中 pos 值尽量大
               }
18
           }
19
20
       inline int query(int L) { // 查询该线性基中所有 ≥L 的最大值
21
           int ans = 0;
22
           for (int i = mx; i >= 0; --i) {
23
               if (p[i] \&\& pos[i] >= L) ans = max(ans, ans ^p[i]);
24
25
26
           return ans;
27
   } a[N];
28
29
  inline int rd();
   int main() {
31
       while (T--) {
32
           for (int i = 1; i <= n; ++i) a[i].init();</pre>
33
           n = rd();
           for (int i = 1; i \le n; ++i) {
34
               a[i].insert(a[i - 1], i, rd()); // 构建前缀线性基
35
           }
36
37
           m = rd();
           while (m--) {
38
               if (rd()) { // 往数列末尾添加一个数字
39
40
                   ++n, a[n].insert(a[n - 1], n, rd());
               } else {
41
42
                   l = rd(), r = rd();
                   printf("%d\n", a[r].query(l)); // 查询
43
44
               }
45
           }
46
       }
       return 0;
47
   }
48
   3.6.4 线段树合并线性基(区间线性基)
1 // 线段树维护线性基,暴力合并 O(n logn logn)
2 // 查询: 给定 l, r, 在 [l, r] 中选取任意个, 使得他们的异或和最大
3 #include <bits/stdc++.h>
4 using namespace std;
5
6 #define N 500005
7 #define L t[p].1
8 #define R t[p].r
9 #define ls(p) (p << 1)</pre>
10 #define rs(p) (p << 1 ^ 1)
#define tls(p) t[ls(p)]
12 #define trs(p) t[rs(p)]
13
14 const int mx = 19;
```

```
15
   struct Node { int l, r, p[mx + 1]; } t[N << 2];</pre>
16
17
18 int n, m, x, y;
19
  int a[N], tmp[mx + 1];
20
   // inline int log(long long x) { return 63 - __builtin_clzll(x); } // 64位
21
   inline int log(int x) { return 31 - __builtin_clz(x); } // 32位
23
   inline void insert(int *p, int x) {
24
25
        while (x) {
26
            int i = log(x);
            if (!p[i]) return p[i] = x, void();
27
28
            x \sim p[i];
29
        }
   }
30
31
   void build(int l, int r, int p) {
32
        L = 1, R = r;
33
        for (int i = 1; i <= r; ++i) insert(t[p].p, a[i]);</pre>
34
        if (l == r) return;
35
        int mid = (l + r) \gg 1;
36
        build(l, mid, ls(p)), build(mid + 1, r, rs(p));
37
38 }
39
   void update(int x, int k, int p = 1) { // 往桶 x 插入一个数
40
        insert(t[p].p, k); if (L == R) return;
41
        update(x, k, x \leftarrow tls(p).r ? ls(p) : rs(p));
42
   }
43
44
   void query(int x, int y, int p = 1) {
45
        if (x > R | I | y < L) return;
46
47
        if (x \le L \&\& y >= R) {
            for (int i = mx; i \ge 0; --i) insert(tmp, t[p].p[i]);
48
49
            return;
50
51
        query(x, y, ls(p)), query(x, y, rs(p));
52
   }
53
   inline int ask(int 1, int r) {
54
        memset(tmp, 0, sizeof(tmp));
55
        int ans = 0; query(1, r);
56
        for (int i = mx; i >= 0; --i) {
57
58
            if ((ans \land tmp[i]) > ans) ans \land= tmp[i];
59
60
        return ans;
61 }
62
63 inline int rd();
   int main() {
65
        n = rd();
66
        for (int i = 1; i \le n; ++i) a[i] = rd();
        build(1, n, 1);
67
        m = rd();
68
        while (m--) {
69
            x = rd(), y = rd();
printf("%d\n", ask(x, y));
70
71
72
73
        return 0;
```

```
74 }
```

```
3.6.5 最大 xor 和路径
```

```
// 求一条 1 到 n 的路径, 使得路径上经过的边的权值的 xor 和最大, 输出这个 最大 xor 和 (luogu P4145
  // 做法: 找出所有环, 扔进线性基, 随便找一条链, 以它作为初值求最大异或和就可以了
3 #include <bits/stdc++.h>
4 using namespace std;
5
  #define N 50004
6
   #define M 100005
7
8
9 typedef long long ll;
10
struct Edge { int to, nx; ll w; } e[M << 1];</pre>
12
13 ll z, ans;
14 ll p[65], w[N];
15 int h[N], vis[N];
16 int n, m, x, y, cnt;
17
   inline void add(int u, int v, ll w) { e[++cnt] = \{v, h[u], w\}, h[u] = cnt; \}
18
   inline void insert(ll x) {
19
       for (int i = 60; i >= 0; --i) if (x >> i) {
20
           if (!p[i]) return p[i] = x, void();
21
22
           x \sim p[i];
23
       }
24
   }
25
   void dfs(int u) {
26
27
       vis[u] = 1;
28
       for (int i = h[u]; i; i = e[i].nx) {
           int v = e[i].to;
29
           if (!vis[v]) w[v] = w[u] ^ e[i].w, dfs(v);
30
           else insert(w[u] ^ e[i].w ^ w[v]);
31
       }
32
   }
33
34
35
   int main() {
       scanf("%d%d", &n, &m);
36
37
       while (m--) {
           scanf("%d%d%lld", &x, &y, &z);
38
39
           add(x, y, z), add(y, x, z);
40
       dfs(1), ans = w[n];
41
       for (int i = 60; i >= 0; --i) {
42
           if ((ans ^p[i]) > ans) ans ^p[i];
43
44
       printf("%lld\n", ans);
45
       return 0;
46
47 }
```

3.7 舞蹈链

```
    // 精确覆盖问题
    /* 给定一个 N行 M列的矩阵,矩阵中每个元素要么是 1,要么是 0
```

```
* 你需要在矩阵中挑选出若干行, 使得对于矩阵的每一列 j,
    * 在你挑选的这些行中,有且仅有一行的第 j 个元素为 1 */
4
   #define N 250505 // n * m + m <= N
int n, m, x, cnt; // n : 行, m : 列
int h[N], siz[N], ans[N], l[N], r[N], u[N], d[N], row[N], col[N];
   // h[]: 每行的头结点, siz[]: 每列的节点数, ans[]: 选了那些集合
9
   // l, r, u, d, row, col 每个点的左右上下指针, 所在行列
   void init(int m) { // 在第 0 行插入 (m + 1) 列
       for (int i = 0; i <= m; ++i) { // 0 到 m
11
            r[i] = i + 1;
12
13
            l[i] = i - 1;
14
            u[i] = d[i] = i;
       }
15
       cnt = m + 1;
16
        *l = m, r[m] = 0;
17
       memset(h, -1, sizeof(h));
18
       memset(siz, 0, sizeof(siz));
19
20
   }
   void link(int R, int C) { // 在 R 行 C 列插入点
21
22
       ++siz[C];
23
       u[cnt] = C, d[cnt] = d[C];
24
       u[d[C]] = cnt, d[C] = cnt;
25
       row[cnt] = R, col[cnt] = C;
26
       if (~h[R]) {
27
            r[cnt] = h[R], l[cnt] = l[h[R]];
28
            r[l[h[R]]] = cnt, l[h[R]] = cnt;
29
       } else { // 该行没点, 直接插入
           h[R] = l[cnt] = r[cnt] = cnt;
30
31
32
       ++cnt;
33
   }
   void remove(int C) { // 删除涉及 C 列的集合
34
       r[l[C]] = r[C], l[r[C]] = l[C];
35
       for (int i = d[C]; i != C; i = d[i])
36
37
            for (int j = r[i]; j != i; j = r[j]) {
                u[d[j]] = u[j], d[u[j]] = d[j];
38
39
                --siz[col[i]];
40
            }
41
   }
   void resume(int C) { // 恢复涉及 C 列的集合
42
       for (int i = u[C]; i != C; i = u[i]) {
43
            for (int j = l[i]; j != i; j = l[j]) {
44
                u[d[j]] = \overline{j}, d[u[j]] = \overline{j};
45
46
                ++siz[col[j]];
47
48
49
       r[l[C]] = C, l[r[C]] = C;
50
51
   bool dance(int dep) {
52
       if (!*r) {
53
            for (int i = 0; i < dep; ++i)
                printf("%d ", ans[i]);
54
55
            return 1;
       }
56
       int c = *r;
57
       for (int i = c; i; i = r[i]) {
58
59
            // 从元素最少的列开始处理
60
            if (siz[i] < siz[c]) c = i;
       }
61
```

```
remove(c); // 删除该列的行
62
        for (int i = d[c]; i != c; i = d[i]) {
63
            ans[dep] = row[i]; // 选择保留该行
64
65
            // 删除被选择行所包含列涉及的所有行
            for (int j = r[i]; j != i; j = r[j]) remove(col[j]);
66
            if (dance(dep + 1)) return 1;
67
            for (int j = l[i]; j != i; j = l[j]) resume(col[j]);
68
            // 恢复被选择行所包含列涉及的所有行
69
70
        }
71
        resume(c); // 恢复删除该列的行
72
        return 0;
73
   }
   int main() {
74
        n = rd(), m = rd(), init(m);
75
76
        for (int i = 1; i <= n; ++i)
            for (int j = 1; j <= m; ++j) {
77
                x = rd();
78
79
                if (x) link(i, j);
80
        if (!dance(0)) puts("No Solution!");
81
        return 0;
82
83 }
   3.8 线段树
   3.8.1 区间乘加区间和
   struct Node { int l, r; ll sum, add, mul; } t[N << 2];</pre>
   inline void pushup(int p) { t[p].sum = (tls(p).sum + trs(p).sum) % P; }
   void build(int l, int r, int p) {
       L = l, R = r, t[p].mul = 1; // 初始化为 1 if <math>(l == r) \{ t[p].sum = a[l] \% P; return; \}
5
6
        int mid = (l + r) >> 1;
7
        build(l, mid, ls(p));
8
        build(mid + 1, r, rs(p));
9
        pushup(p);
10 }
   void push(int p, ll mul, ll add) {
        t[p].sum = (t[p].sum * mul + add * (R - L + 1)) % P;
12
13
        t[p].add = (t[p].add * mul + add) % P;
14
        t[p].mul = (t[p].mul * mul) % P;
15
   }
16
   void pushdown(int p) {
        push(ls(p), t[p].mul, t[p].add);
push(rs(p), t[p].mul, t[p].add);
17
18
19
        t[p].mul = 1, t[p].add = 0;
20
   }
   void updMul(int p, int x, int y, int k) { // [x, y] mul k
21
22
        if (x > R | I | y < L) return;
        if (x \le L \&\& y >= R) {
23
            t[p].add = (t[p].add * k) % P;
24
            t[p].mul = (t[p].mul * k) % P;
25
            t[p].sum = (t[p].sum * k) % P;
26
27
            return;
28
29
        pushdown(p), updMul(ls(p), x, y, k), updMul(rs(p), x, y, k), pushup(p);
30
   void updAdd(int p, int x, int y, int k) { // [x, y] add k
        if (x > R | | y < L) return;
32
```

```
33
        if (x <= L \&\& y >= R) {
            t[p].add = (t[p].add + k) \% P;
34
            t[p].sum = (t[p].sum + k * (R - L + 1)) % P;
35
36
            return;
37
38
        pushdown(p), updAdd(ls(p), x, y, k), updAdd(rs(p), x, y, k), pushup(p);
39 }
   3.8.2 zkw 线段树
   ll sum[N << 2], mx[N << 2], mn[N << 2], add[N << 2];
   // 若有区间修改操作,则 Sum 不需要差分, mx 和 mn 需要差分
   void build(int n) { // 建树
        M = 1 \ll (32 - \_builtin\_clz(n)); // 1 \ll (log(n) + 1)
4
        for (int i = M + 1; i \le M + n; ++i)
5
            sum[i] = mx[i] = mn[i] = rd();
6
        for (int i = M - 1; i; --i) {
   int L = i << 1, R = L ^ 1;
7
8
            sum[i] = sum[L] + sum[R];
9
            mn[i] = min(mn[L], mn[R]);
10
            mx[i] = max(mx[L], mx[R]);
11
            mn[R] -= mn[i], mn[R] -= mn[i];
12
            mx[L] -= mx[i], mx[R] -= mx[i];
13
14
        }
15
   }
   // ls, rs: 左右两颗子树已覆盖的区间长度
   // len: 该层每个节点的子树大小(一个节点覆盖的区间长度)
17
   void update(int x, int y, int k) { // [x, y] add k
18
        ll A = 0, ls = 0, rs = 0, len = 1;
19
        for (x += M - 1, y += M + 1; x ^ y ^ 1; x >>= 1, y >>= 1, len <<= 1) {
20
            if (~x & 1) {
21
                add[x \land 1] += k;
22
23
                mx[x \land 1] += k;
24
                mn[x \land 1] += k;
                ls += len;
25
26
            if (y & 1) {
27
28
                add[y \wedge 1] += k;
                mx[y \land 1] += k;
29
30
                mn[y \land 1] += k;
                rs += len;
31
32
            sum[x >> 1] += k * ls; // 该节点表示的区间覆盖了 [x, y] 中 ls 个点
33
            sum[y >> 1] += k * rs; // 该节点表示的区间覆盖了 [x, y] 中 rs 个点
34
35
            A = \min(\min[x], \min[x \land 1]);
            mn[x] -= A, mn[x \land 1] -= A, mn[x >> 1] += A;
36
            A = \min(mn[y], mn[y \land 1]);
37
            mn[y] -= A, mn[y \land 1] -= A, mn[y >> 1] += A;
38
            A = \max(\max[x], \max[x \land 1]);
39
            mx[x] -= A, mx[x \land 1] -= A, mx[x >> 1] += A;
40
            A = \max(\max[y], \max[y \land 1]);
41
            mx[y] -= A, mx[y \land 1] -= A, mx[y >> 1] += A;
42
43
44
        for (ls += rs; x; x >>= 1) {
            sum[x >> 1] += k * ls;
45
            A = \min(\min[x], \min[x \land 1]);
46
            mn[x] -= A, mn[x \land 1] -= A, mn[x >> 1] += A;
47
            A = \max(\max[x], \max[x \land 1]);
48
```

```
mx[x] -= A, mx[x \land 1] -= A, mx[x >> 1] += A;
49
       }
50
51
   ll qsum(int x, int y) { // sum[x, y]
52
       ll ls = 0, rs = 0, len = 1, ans = 0;
53
       for (x += M - 1, y += M + 1; x \land y \land 1; x >>= 1, y >>= 1, len <<= 1) {
54
            if (~x & 1) {
55
                ans += sum[x ^1] + len * add[x ^1];
56
                ls += len;
57
58
            if (y & 1) {
59
60
                ans += sum[y ^1] + len * add[y ^1];
                rs += len;
61
62
            if (add[x >> 1])
63
                ans += add[x >> 1] * ls;
64
65
            if (add[y >> 1])
66
                ans += add[y >> 1] * rs;
67
       for (ls += rs, x >>= 1; x; x >>= 1)
68
            if (add[x])
69
70
                ans += add[x] * ls;
71
       return ans;
72
   }
73
   int qmin(int x, int y) { // min[x, y]
       11 L = 0, R = 0;
74
       if (x == y) // 单点查询
75
            for (x += M; x; x >>= 1) L += mn[x];
76
            return L;
77
78
       for (x = x + M - 1, y = y + M + 1; x ^ y ^ 1; x >>= 1, y >>= 1) {
79
            L += mn[x], R += mn[y];
80
            if (\sim x \& 1) L = min(L, mn[x \land 1]);
81
            if (y \& 1) R = min(R, mn[y \land 1]);
82
83
       L += mn[x], R += mn[y];
84
85
       ll ans = min(L, R);
86
       while (x) ans += mn[x >>= 1];
       return ans;
87
   }
88
   // qmax 即把 qmin 中的 max, mx 换成 min, mn
89
   int qmax(int x, int y) {...};
   3.8.3 线段树合并
1 // 开新节点的合并方式,不需要离线,一边询问一边用
   // 缺点: 空间开销巨大 时空: 0(nlogn)
   int merge(int a, int b, int l = 1, int r = n) {
       if (!a | | !b) return a | b;
4
       int p = ++cnt; // 新节点
5
       if (l == r) {
6
            t[p].sum = t[a].sum + t[b].sum;
7
            // merge meesege
8
9
            return;
10
       int mid = (l + r) >> 1;
11
       L(p) = merge(L(a), L(b), 1, mid);
12
       R(p) = merge(R(a), R(b), mid + 1, r);
13
```

```
14
       pushup(p);
15
       return p;
16
   // 不开新结点的合并方式,只适合离线下来,合并完成后立即询问 int merge(int a, int b, int l=1, int r=n) {
17
18
       if (!a | | !b) return a | b;
19
20
       // t[a].sum += t[b].sum;
21
       // 向 Sum 这种信息也可以直接在路径上加,这样就可以省去 l == r 了
22
       if (1 == r) {
           t[a].sum += t[b].sum;
23
24
           // merge meesege
25
           return a;
26
       }
27
       int mid = (l + r) \gg 1;
       L(a) = merge(L(a), L(b), 1, mid);
28
       R(a) = merge(R(a), R(b), mid + 1, r);
29
30
       pushup(a);
       return a;
31
32
33
   void dfs(int u, int pre) { // 树上差分的线段树合并操作
       for (auto &v : e[u])
34
           if (v != pre) {
35
               dfs(v, u);
36
37
                rt[u] = merge(rt[u], rt[v]);
38
       if (t[rt[u]].sum) ans [u] = t[rt[u]].pos;
39
40 }
   3.8.4 线段树合并(空间优化)
1 // 线段树合并 (空间优化为 O(N * 2))
   // 合并的时候进行垃圾回收, update 中用自定义 New() 创建新结点
  inline int New() { return rb ? rub[rb--] : ++cnt; }
  inline void Del(int p) { rub[++rb] = p, t[p].l = t[p].r = t[p].tot = 0; }
   void update(int &p, int x, int l = 1, int r = mxd) {
       if (!p) p = New(); //
6
7
       ++t[p].tot; // ... update messages ... //
8
       if (l == r) {
9
           // ... update messages ... //
10
           return;
11
       }
       int mid = (l + r) \gg 1;
12
       if (x \le mid) update(t[p].1, x, 1, mid);
13
       else update(t[p].r, x, mid + 1, r);
14
15
   int merge(int a, int b, int l = 1, int r = mxd) {
16
17
       if (!a | | !b) return a | b;
       t[a].tot += t[b].tot; // ... merge messages ... //
18
       if (l == r) {
19
           // ... merge messages ... //
20
21
           Del(b); // 回收
           return a;
22
23
       L(a) = merge(L(a), L(b), l, mid);
24
       R(a) = merge(R(a), R(b), mid + 1, r);
25
       Del(b); // 回收
26
27
       return a;
28 }
```

```
29 // 关键优化: 遍历儿子时先遍历 siz 大的儿子, 并且先 merge 再 update
  int tmp[N], tp;
   void dfs(int u) {
31
       int l = tp + 1; // + 1
32
       for (int i = h[u]; i; i = e[i].nx) // tmp 存儿子
33
           tmp[++tp] = e[i].to;
34
35
       int r = tp; //
       sort(tmp + l, tmp + 1 + r, [&] (int x, int y) { return siz[x] > siz[y]; }); // 接儿
36
       子 Siz 从大到小排序
37
       for (int i = l; i <= r; ++i) {
           dfs(tmp[i]);
38
39
           rt[u] = merge(rt[u], rt[tmp[i]]); // 先 merge (不开新节点版)
       }
40
       update(rt[u], dep[u]); // 再 update
41
       ans[...] = query(...); // ... 记录答案 ... //
42
43
   3.8.5 线段树分裂
1 inline int New() { return rb ? rub[rb--] : ++cnt; }
  inline void Del(int x) { t[x].l = t[x].r = t[x].tot = 0, rub[++rb] = x; }
  // 不开新节点的合并, 把 b 合并给 a
  int merge(int a, int b) {
       if (!a | | !b) return a | b;
5
       t[a].tot += t[b].tot;
6
       L(a) = merge(L(a), L(b));
7
8
       R(a) = merge(R(a), R(b));
9
       DEL(b);
       return a;
10
12 // 将权值线段树 a [x ~ y]小 分裂为 a [x ~ k]小 和 b [k + 1, y]小
13 void split(int a, int &b, ll k) {
       if (!a) return;
14
       b = NEW(); // 新节点
15
       ll tot = t[L(a)].tot;
16
       if (k > tot) split(R(a), R(b), k - tot);
17
       else {
18
           R(b) = R(a);
19
20
           R(a) = 0;
           if (k < tot) split(L(a), L(b), k);</pre>
21
22
23
       t[b].tot = t[a].tot - k;
       t[a].tot = k;
24
25
   }
   void SP(int x, int k1, int k2) { // 将树 x 中第 [k1 ~ k2] 小取出, 放入新树
       split(rt[x], rt[++cnt], k1);
27
       split(rt[cnt], tmp, k2);
28
       rt[x] = merge(rt[x], tmp);
29
30 }
   3.8.6 线段树分裂例题 1
1 // P2824: 对于一个 1 ~ n 的排列, 询问 m 次区间局部排序后某个位置的数 (在线)
  struct Node { // 权值线段树
       int l, r, tot; // tot 记录该区间数字个数
3
4 } t[N * 80]; // 每个询问有两次分裂操作, 故空间翻倍
   set<int> s;
6 int rt[N], op[N];
```

```
int n, m, opt, x, y, cnt;
   /* 设 set 内每相邻两个元素表示为 from, nx
    * set 存区间, set 内相邻每两个元素构成一个区间 [from, next), 初始 set 内为 1 ~ n + 1
    * rt[from]: [from, next) 这个区间的线段树根节点
10
    * op[from] : [from, next) 这个区间的线段树的操作(tag), Ø 表升序操作, 1 表降序操作 */
11
   void update(int &p, int x, int l = 0, int r = n) {
12
       p = ++cnt;
13
14
       ++t[p].tot;
       if (l == r) return;
15
       int mid = (l + r) >> 1;
16
       if (x \ll mid)
17
18
           update(L(p), x, l, mid);
19
       else
           update(R(p), x, mid + 1, r);
20
21 }
   ·// 因为这颗树被分裂到只剩一个权值了, 所以可以直接采用以下查询方式
22
   int query(int p, int l = 0, int r = n) {
23
       if (l == r) return l; // 返回权值
24
       int mid = (l + r) \gg 1;
25
26
       if (L(p)) return query(L(p), 1, mid);
27
       return query(R(p), mid + 1, r);
28
29
   int merge(int a, int b) {
       if (!a || !b)
31
           return a | b;
       t[a].tot += t[b].tot;
32
33
       L(a) = merge(L(a), L(b));
       R(a) = merge(R(a), R(b));
34
       return a;
35
36
   // k 表示分裂后旧树的区间元素个数
37
   void split(int a, int &b, int k, int opt) {
38
39
       if (t[a].tot == k) return;
       b = ++cnt;
40
       t[b].tot = t[a].tot - k; // 新树元素个数
41
       t[a].tot = k; // 旧树元素个数
42
       if (opt) { // 降序
43
44
           if (k <= t[R(a)].tot) { // 把小的数分到右边
               split(R(a), R(b), k, opt);
45
               L(b) = L(a), L(a) = 0;
46
           } else {
47
               split(L(a), L(b), k - t[R(a)].tot, opt); // k - t[L(a)].tot
48
49
50
       } else { // 升序
           if (k <= t[L(a)].tot) { // 把小的数分到左边
51
52
               split(L(a), L(b), k, opt);
               R(b) = R(a), R(a) = 0;
53
           } else {
54
               split(R(a), R(b), k - t[L(a)].tot, opt); // k - t[L(a)].tot
55
56
           }
57
       }
58
   }
59
   set<int>::iterator SP(int x) { // 将区间分裂为 [left, x), [x, right]
       auto p = s.lower\_bound(x); // \# *p >= x
60
       if (*p == x) return p // *p = x, 无需分裂
61
       --p; // 往左移动一位, 此时 *p < x op[x] = op[*p]; // copy
62
63
       split(rt[*p], rt[x], x - *p, op[x]); // x - *p : 分裂后旧树的元素个数
64
       return s.insert(x).first; // 位置 x 的 iterator
65
```

```
66 }
   int main() {
67
       n = rd(), m = rd();
68
       s.insert(n + 1); // 插入 n + 1 防止在 sp 函数中 lower_bound 返回 s.end()
69
70
       for (int i = 1; i <= n; ++i) {
           x = rd();
71
           update(rt[i], x);
72
           s.insert(i); // 初始化
73
74
       while (m--) {
75
76
           opt = rd(), x = rd(), y = rd();
           auto l = SP(x), r = SP(y + 1); // x, y + 1
77
           for (auto i = ++l; i != r; ++i) // 注意这里 i = ++l; i != r, 所以是对区间 (x, y] 内
78
       的元素合并
               rt[x] = merge(rt[x], rt[*i]);
79
           s.erase(l, r); // 删除 [l, r) 位置的元素
80
           op[x] = opt; // 记录 [x, y) 这个区间的操作
81
82
       SP(pos, SP(pos + 1);
83
       printf("%d\n", query(rt[x])); // 查询 pos 这个位置的数
84
       return 0;
85
86 }
   3.8.7 线段树分裂例题 2
1 // CF558E : 对一个只含小写字母的字符串进行 M 次区间局部排序,输出最终的字符串 (在线)
2 set<int> s;
3 char ss[N];
4 int n, m, x, y, k, tot;
5 int rt[N], cnt[26], opt[N];
6 struct Node { int l, r, tot; } t[N * 80]; // ... 表示与例题一操作相同
   void update(int &p, int x, int l = 0, int r = 25) { ... }
8 int merge(int a, int b) { ... }
9 void split(int a, int &b, int k, int op) {
10
11
       t[a].tot = k;
12
       if (!L(a) && !R(a)) return; // 如果有重复元素, 则需要额外加上这句
13
       if (op) ...
14
       else ...
15
   }
   set<int>::iterator sp(int x) { ... }
   void query(int p, int l = 0, int r = 25) { // 查询
17
18
       if (!p) return;
       if (l == r || !t[p].tot) {
19
20
           cnt[l] = t[p].tot; // cnt 记录每个字母出现的次数
21
           return;
22
       }
       int mid = (l + r) >> 1;
23
       query(L(p), 1, mid);
24
       query(R(p), mid + 1, r);
25
26
   }
   int main() {
27
       n = rd(), m = rd();
28
       scanf("%s", ss + 1);
29
       s.insert(n + 1);
30
       for (int i = 1; i <= n; ++i) {
    update(rt[i], ss[i] - 'a');</pre>
31
32
33
           s.insert(i);
```

```
34
       while (m--) { ... } // m 次排序
35
       for (auto &x:s) { // 输出结果串
36
           memset(cnt, 0, sizeof(cnt)); //
37
38
           query(rt[x]);
           if (opt[x]) { // 升序
39
               for (int i = 0; i \le 25; ++i)
40
                   for (int j = 1; j <= cnt[i]; ++j)
41
                       putchar(i + 'a');
42
           else // 降序
43
               for (int i = 25; i >= 0; --i)
44
45
                   for (int j = 1; j <= cnt[i]; ++j)</pre>
                       putchar(i + 'a');
46
47 }
   3.8.8 吉老师线段树
   /* 给出一个长度为 n 的数列 A, 同时定义一个辅助数组 B, B 开始与 A 完全相同
    * 1 l r k : [l \sim r] add k
3
      2 l r v : a[i] = min(a[i], v) i [ [l, r] // 区间最小值操作
    *3lr : ask sum a[l \sim r]
    * 4 l r : ask max a[l ~ r] // 区间最大值
    *5 l r : ask max b[l \sim r] // 历史最大值的区间最大值
6
7
    * 在每一次操作后, 都令所有的 b[i] = max(b[i], a[i]) // b[] : 历史最大值
    */
8
9
   struct Node {
10
       int ls, rs;
       // 最大值,次大值,历史最大值,最大值个数,和
11
       ll mx, se, hx, cnt, sum;
12
       11 amx, namx, ahx, nahx;
13
14
       // mx, 非 mx, 最大 hmx, 非最大 hmx 的懒标记
15
   } t[N << 2];
16
   void pushup(int p) {
17
       t[p].mx = max(tls(p).mx, trs(p).mx);
       t[p].hx = max(tls(p).hx, trs(p).hx);
18
       t[p].sum = tls(p).sum + trs(p).sum;
19
20
       if (tls(p).mx == trs(p).mx) {
21
           t[p].cnt = tls(p).cnt + trs(p).cnt;
22
           t[p].se = max(tls(p).se, trs(p).se);
23
       } else if (tls(p).mx > trs(p).mx) {
24
           t[p].cnt = tls(p).cnt;
           t[p].se = max(tls(p).se, trs(p).mx);
25
26
       } else {
           t[p].cnt = trs(p).cnt;
27
28
           t[p].se = max(trs(p).se, tls(p).mx);
29
30
   }
   void build(int 1, int r, int p) {
31
       L = 1, R = r;
32
33
       if (l == r) {
           t[p].mx = t[p].hx = t[p].sum = a[l];
34
           t[p].se = -INF; // 区间次大值初始化
35
36
           t[p].cnt = 1; // 区间最大值个数初始化
37
           return;
38
39
       int mid = (1 + r) >> 1;
       build(l, mid, ls(p)), build(mid + 1, r, rs(p)), pushup(p);
40
41 }
```

```
// 最大值, 最大历史最大值, 非最大值, 非最大历史最大值 要加的数
   void update(ll amx, ll ahx, ll namx, ll nahx, int p) {
       t[p].sum += amx * t[p].cnt + namx * (R - L + 1 - t[p].cnt);
44
       t[p].hx = max(t[p].hx, t[p].mx + ahx);
45
       t[p].ahx = max(t[p].ahx, t[p].amx + ahx);
46
       t[p].nahx = max(t[p].nahx, t[p].namx + nahx);
47
       // ahx 维护在标记下传前历史上加的最多的一次的加了多少
48
       // nahx 在下传给非最大值的儿子时变为该儿子的 ahx 标记
49
       // 后续 nahx 儿子可能变为历史最大值
50
       /* 先更新上面的式子,才能更新下面三个式子 */
       t[p].mx += amx, t[p].amx += amx, t[p].namx += namx;
52
53
       if (t[p].se != -INF) t[p].se += namx;
   }
54
   void pushdown(int p) {
55
       ll mx = max(tls(p).mx, trs(p).mx);
56
       // 分配懒标记给儿子
57
       if (tls(p).mx == mx) // 最大值在 ls(p), ls(p) 的 amx 和 ahx 为 amx 和 ahx
58
           update(t[p].amx, t[p].ahx, t[p].namx, t[p].nahx, ls(p));
59
       else // 最大值不在 ls(p), ls(p) 的 amx 和 ahx 为 namx 和 nahx
60
           update(t[p].namx, t[p].nahx, t[p].namx, t[p].nahx, ls(p));
61
       if (trs(p).mx == mx) // 同上
62
           update(t[p].amx, t[p].ahx, t[p].namx, t[p].nahx, rs(p));
63
       else // 同上
64
65
           update(t[p].namx, t[p].nahx, t[p].namx, t[p].nahx, rs(p));
66
       t[p].amx = t[p].namx = t[p].ahx = t[p].nahx = 0;
67
   }
   void update_add(int x, int y, int k, int p = 1) { // 区间加
68
       if (x > R | I | y < L) return;
69
       if (x \le L \&\& y \ge R) return update(k, k, k, k, p);
70
       pushdown(p), update\_add(x, y, k, ls(p)), update\_add(x, y, k, rs(p)), pushup(p);
71
72
   void update_min(int x, int y, int k, int p = 1) { // 区间最值操作
73
       if (x > R \mid | y < L \mid | k >= t[p].mx) return;
74
       if (x \le L \&\& y \ge R \&\& k > t[p].se) { // t[p].se < k < t[p].mx}
75
           // 把 min(t[p].mx, k) 操作转化成了 t[p].mx -= (t[p].mx - k)
76
           // 即加法操作 t[p].mx += (k - t[p].mx) => t[p].mx = k;
77
           // 故 update_add 和 update_min 操作共用懒标记 t[p].amx, t[p].namx
78
           // 显然 min(t[p].mx, k) 对 历史最大值(hx) 没有任何影响
79
           // 只有 update_add 操作才 有可能(add 正数时) 改变 历史最大值(hx)
80
           update(k - t[p].mx, k - t[p].mx, 0, 0, p);
81
82
           return;
83
       pushdown(p), update_min(x, y, k, ls(p)), update_min(x, y, k, rs(p)), pushup(p);
84
85
  // 三个 query (sum, mx, hx) , 与线段树一般 query 写法一致
  ll query_sum(int x, int y, int p = 1) \{...\}
  ll query_mx(int x, int y, int p = 1) \{...\}
  Il query_hx(int x, int y, int p = 1) \{...\}
   3.8.9 吉老师线段树 (例题)
  /* 0 l r
            : 查询区间最大值
    * A l r : 查询区间历史最大值
    * P l r x : 区间加
3
    * Clrx: 区间赋值
4
    */
5
6 const ll NINF = -1e16;
  struct Node { int 1, r; 11 mx, hx, amx, ahx, cmx, chx; } t[N << 2];
```

```
int n, m, x, y;
   inline void pushup(int p) {
9
        t[p].mx = max(tls(p).mx, trs(p).mx);
10
11
        t[p].hx = max(tls(p).hx, trs(p).hx);
12
   void build(int l, int r, int p) {
13
        t[p].cmx = t[p].chx = NINF;
14
        L = 1, R = r;
15
        if (l == r) \{ t[p].mx = t[p].hx = rd(); return; \}
16
        int mid = (l + r) >> 1;
17
        build(l, mid, ls(p));
18
19
        build(mid + 1, r, rs(p));
20
        pushup(p);
   }
21
   inline void pusha(int p, int m, int h) {
22
        t[p].hx = max(t[p].hx, t[p].mx + h);
23
24
        t[p].mx += m;
25
        if (t[p].cmx ^ NINF) {
            t[p].chx = max(t[p].chx, t[p].cmx + h);
26
27
            t[p].cmx += m;
        } else {
28
29
            t[p].ahx = max(t[p].ahx, t[p].amx + h);
30
            t[p].amx += m;
31
32
   inline void pushc(int p, int m, int h) {
33
        t[p].hx = max(t[p].hx, h);
34
        t[p].chx = max(t[p].chx, h);
35
        t[p].mx = t[p].cmx = m;
36
37
   inline void pushdown(int p) {
38
        if (t[p].amx) {
39
40
            pusha(ls(p), t[p].amx, t[p].ahx);
41
            pusha(rs(p), t[p].amx, t[p].ahx);
            t[p].amx = t[p].ahx = 0;
42
43
        if (t[p].cmx ^ NINF) {
44
45
            pushc(ls(p), t[p].cmx, t[p].chx);
46
            pushc(rs(p), t[p].cmx, t[p].chx);
            t[p].cmx = t[p].chx = NINF;
47
        }
48
49
   void add(int x, int y, int k, int p = 1) {
50
        if (x > R | I | y < L) return;
51
        if (x \le L \&\& y \ge R) return pusha(p, k, max(k, 0));
52
53
        pushdown(p);
        if (x \leftarrow tls(p).r) add(x, y, k, ls(p));
54
        if (y > tls(p).r) add(x, y, k, rs(p));
55
        pushup(p);
56
57
   }
58
   void chg(int x, int y, int k, int p = 1) {
59
        if (x > R | I | y < L) return;
60
        if (x \le L \&\& y \ge R) \{ pushc(p, k, k); return; \}
61
        pushdown(p);
        if (x \leftarrow tls(p).r) chg(x, y, k, ls(p));
62
        if (y > tls(p).r) chg(x, y, k, rs(p));
63
64
        pushup(p);
65
   ll qmx(int x, int y, int p = 1); // 区间最值
```

```
ll qhx(int x, int y, int p = 1); // 区间历史最值
   int main() {
68
       n = rd(), build(1, n, 1), m = rd();
69
       while (m--) {
    scanf("%s", s);
70
71
72
           x = rd(), y = rd();
           switch (*s) {
73
               case 'Q': printf("%lld\n", qmx(x, y)); break;
74
               case 'A': printf("%lld\n", qhx(x, y)); break;
75
              case 'P': add(x, y, rd()); break;
76
77
              case 'C': chg(x, y, rd());
78
           }
79
       }
       return 0;
80
81
   }
   3.8.10 李超线段树
1 // 可强制在线
2 // 插入 O(logn logn), 查询 O(logn)
3 // 两个操作 1: 插入线段, 2: 查询与 X = K 相交的线段的最大纵坐标
4
  /* 最优线段定义:
5
   * 1. 该线段的定义域<完整覆盖>了区间
6
7
    * 2. 该线段在<区间中点处><最优>
    */
8
9 typedef pair<db, int> pdi; // y 值, 线段编号
10 struct Line { db k, b; } p[N]; // 线段
11 int t[N << 2]; // SEG: 存区间最优线段的编号
12 int n, x1, y1, x2, y2, opt, cnt, lans;
  il db cal(int id, int x) { // 计算 y = kx + b
14
       return p[id].k * x + p[id].b;
15
16
  il void add(int x1, int y1, int x2, int y2) { // 通过两点坐标存线段
17
       ++cnt; // 线段编号
       if (x1 == x2) { // 斜率不存在
18
19
           p[cnt].k = 0;
           p[cnt].b = max(y1, y2);
20
21
       } else {
22
           p[cnt].k = (db)(y1 - y2) / (x1 - x2);
23
          p[cnt].b = y1 - p[cnt].k * x1;
       }
24
25
   // 插入线段,[x, y] 是线段在 x 轴上的左右端点; 如果是插入直线的话就只需要写全部插入的部分
26
27
   void update(int x, int y, int u, int l = 1, int r = MX, int rt = 1) { // O(logn logn)
       int mid = (l + r) \gg 1;
28
       if (x <= 1 \& y >= r) { // 线段在这个区间里, 全部插入
29
           int v = t[rt]; // 原来的最优线段编号
30
           db yu = cal(u, mid); // 新线段中点处 y 值
31
           db yv = cal(v, mid); // 旧线段中点处 y 值
32
           if (1 == r) {
33
               if (yu > yv) // 直接比较 y 轴
34
35
                   t[rt] = u;
              return;
36
37
           if (p[u].k > p[v].k) { // 当前斜率大于原最优线段斜率
38
               if (yu > yv) { // 比较中点处 y 值
39
                  t[rt] = u;
40
```

```
update(x, y, v, l, mid, ls(rt));
41
42
               } else {
                   update(x, y, u, mid + 1, r, rs(rt));
43
44
           } else if (p[u].k < p[v].k) { // 当前斜率小于原最优线段斜率
45
46
               if (yu > yv) {
                   t[rt] = u;
47
                   update(x, y, v, mid + 1, r, rs(rt));
48
               } else {
49
50
                   update(x, y, u, l, mid, ls(rt));
51
52
           } else if (p[u].b > p[v].b) // 斜率相等直接比较截距
53
                   t[rt] = u;
           return; //
54
55
       if (x <= mid) { // 部分插入
56
           update(x, y, u, l, mid, ls(rt));
57
58
       if (y > mid) { // 部分插入
59
60
           update(x, y, u, mid + 1, r, rs(rt));
       }
61
62
   il pdi pmax(pdi x, pdi y) {
63
       if (x.fi == y.fi) // y 值相同时优先选编号小的(本题)
64
           return x.se > y.se ? y : x;
65
       return x.fi < y.fi ? y : x;</pre>
66
   }
67
   // 将所有包含 X 区间的最优线段拿出来, 在这些线段中比较, 从而得出最优线段
68
   pdi query(int x, int l = 1, int r = MX, int rt = 1) { // O(logn)
70
       double ans = cal(t[rt], x);
71
       if(l == r)
72
           return pdi(ans, t[rt]);
73
       pdi ans;
74
       int mid = (l + r) >> 1;
       if (x \leftarrow mid) {
75
76
           return pmax(pdi(ans, t[rt]), query(x, l, mid, ls(rt)));
77
       }
78
       return pmx(pdi(ans, t[rt]), query(x, mid + 1, r, rs(rt)));
   }
79
   main {
80
81
       if (opt) { // 插入线段
           if (x1 > x2) swap(x1, x2), swap(y1, y2);
82
           add(x1, y1, x2, y2);
83
           update(x1, x2, cnt);
84
       } else { // 查询与 x = k 相交的线段的最大纵坐标
85
86
           lans = query(k).se;
87
       }
88 }
   3.8.11 扫描线-面积并
1 int v[N \ll 1]; ll ans;
2 int n, x1, y1, x2, y2;
3 struct Line { int l, r, h, d; } a[N << 1];</pre>
  struct Tree { ll len; int l, r, sum; } t[N << 4]; // 空间开到 3 会 RE
   void build(int l, int r, int p) {
       L = v[1], R = v[r];
       if (r - l < 2) return;
```

```
int mid = (l + r) \gg 1;
8
       build(l, mid, ls(p));
9
       build(mid, r, rs(p));
10
11
   inline void pushup(int p) {
12
       if (t[p].sum) t[p].len = R - L;
13
       else t[p].len = tls(p).len + trs(p).len;
14
15
   }
   void update(int x, int y, int k, int p = 1) {
16
17
       if (x \le L \&\& y \ge R) {
           t[p].sum += k;
18
19
           pushup(p);
20
           return;
       }
21
       // 下面这样写比较快
22
       if (x < tls(p).r) update(x, y, k, ls(p));
23
24
       if (y > tls(p).r) update(x, y, k, rs(p));
25
       pushup(p);
26
   }
27
   int main() {
28
       n = rd();
29
       for (int i = 1; i <= n; ++i) {
           x1 = rd(), y1 = rd(), x2 = rd(), y2 = rd();
30
31
           v[i] = x1, v[i + n] = x2;
32
           a[i] = (Line) \{x1, x2, y1, 1\};
           a[i + n] = (Line) \{x1, x2, y2, -1\};
33
       }
34
35
       n <<= 1; //
       sort(v + 1, v + 1 + n);
36
       sort(a + 1, a + 1 + n, [\&] (Line a, Line b) { return a.h < b.h; });
37
       build(1, n, 1);
38
       for (int i = 1; i < n; ++i) {
39
           update(a[i].1, a[i].r, a[i].d);
40
           ans += t[1].len * (a[i + 1].h - a[i].h);
41
42
       printf("%lld\n", ans);
43
       return 0;
44
45 }
   3.8.12 扫描线-周长并
   int val[N << 1];</pre>
   int n, x1, y1, x2, y2, pre, res;
3
4
   struct Line {
5
       int 1, r, h, f;
       bool operator < (const Line &b) const { return h ^ b.h ? h < b.h : f > b.f; }
6
7
       // 如果出现了两条高度相同的扫描线, 也就是两矩形相邻
8
       // 那么需要先扫底边再扫顶边, 否则就会多算这条边
       // 这个对面积并无影响但对周长并有影响
9
10 } line[N];
11
12 struct Seg {
13
       int l, r, sum, len, tot; // tot : 线段条数
14
       bool lc, rc; // 左右区间是否完全覆盖
15
   } t[N << 2];
17 void build(int l, int r, int p) {
```

```
L = val[l], R = val[r];
18
19
       if (r - l < 2) return;
       int mid = (l + r) \gg 1;
20
       build(l, mid, ls(p));
21
22
       build(mid, r, rs(p));
23
   }
24
   inline void pushup(int p) {
25
       int ls = ls(p), rs = rs(p);
26
27
       if (t[p].sum) {
28
           t[p].len = R - L;
           t[p].tot = t[p].lc = t[p].rc = 1;
29
30
       } else {
           t[p].len = t[ls].len + t[rs].len;
31
           t[p].tot = t[ls].tot + t[rs].tot;
32
           t[p].lc = t[ls].lc, t[p].rc = t[rs].rc;
33
           // 如果左儿子左端点被覆盖, 那么自己的左端点也肯定被覆盖; 右儿子同理
34
35
           if (t[ls].rc && t[rs].lc) --t[p].tot;
36
           // 如果左儿子右端点和右儿子左端点都被覆盖,
37
           // 那么中间就是连续的一段, 所以要 -= 1
       }
38
   }
39
40
   void update(int x, int y, int k, int p = 1) {
41
42
       if (x \le L \&\& y \ge R) {
           t[p].sum += k;
43
           pushup(p);
44
45
           return;
46
       if (x < t[ls(p)].r) update(x, y, k, ls(p));</pre>
47
48
       if (y > t[ls(p)].r) update(x, y, k, rs(p));
       pushup(p);
49
   }
50
51
   int main() {
52
53
       n = rd();
54
       for (int i = 1; i <= n; ++i) {
55
           x1 = rd(), y1 = rd(), x2 = rd(), y2 = rd();
           val[i] = x1, val[i + n] = x2;
56
           line[i] = (Line) \{x1, x2, y1, 1\};
57
           line[i + n] = (Line) \{x1, x2, y2, -1\};
58
       }
59
60
       n <<= 1;
       sort(val + 1, val + 1 + n);
61
       sort(line + 1, line + 1 + n);
62
       build(1, n, 1);
63
       for (int i = 1; i < n; ++i) {
64
           update(line[i].l, line[i].r, line[i].f);
65
           res += abs(pre - t[1].len); // 横边
66
67
           pre = t[1].len;
68
           res += 2 * t[1].tot * (line[i + 1].h - line[i].h); // 纵边
69
       }
70
       res += line[n].r - line[n].l;
71
       // 特判一下枚举不到的最后一条扫描线
       printf("%d\n", res);
72
73
       return 0;
74 }
```

3.9 树状数组

3.9.1 单点更新区间查询

```
int lowbit(int &x) { return x & -x; }
   void add(int i, int k) { // 点 i 加上 x
       for (; i \le n; i += i \& -i) c[i] += k;
3
4
   }
   int ask(int i) { // [l, r] 区间和 => ask(r) - ask(l - 1)
5
       int ans = 0;
6
        for (; i; i ^= i & -i) ans += c[i];
7
8
        return ans;
9
   }
   3.9.2 区间更新单点查询
1 void add(int i, int k) { for (; i <= n; i += i & -i) c[i] += k; }</pre>
   int ask(int i) { // 返回 c[1] ~ c[i] 的和(即得 a[i] 的值)
2
       int ans = 0;
3
       for (; i; i ^= i & -i) ans += c[i];
4
5
       return ans;
6
   }
   {
7
       for (int i = 1; i <= n; ++i) add(i, a[i] - a[i - 1]); // 差分数组更新
8
       if (t & 1) { // [x, y] 的数加上 k
9
            add(x, k); // a[x] - a[x - 1] 增加了 k
10
            add(y + 1, -k); // a[y + 1] - a[y] 减少了 k
11
       } else { // 查询 x 的值
12
           printf("%d\n", ask(x));
13
14
       }
15 }
   3.9.3 区间更新区间查询
   /*
1
2
    设
                  = a[n] - a[n - 1]
3
       d[n]
                  = (n-1) * d[n]
4
       sum(a[n]) = a[1] + a[2] + ... + a[n]
5
6
       sum(d[n]) = d[1] + d[2] + ... + d[n] = a[n]
       sum(sd[n]) = sd[1] + sd[2] + ... + sd[n]
7
    */ /*
8
    则 sum(a[n])
9
       = a[1] + a[2] + ... + a[n]
10
          sum(d[1]) + sum(d[2]) + ... + sum(d[n])
11
       = d[1] + (d[1] + d[2]) + ... + (d[1] + d[2] + ... + d[n])
12
       = n * d[1] + (n - 1) * d[2] + ... + d[n]
13
       = n * (d[1] + d[2] + ... + d[n]) -
14
           (0 * d[1] + 1 * d[2] + ... + (n - 1) * d[n])
15
       = n * sum(d[n]) - sum(sd[n])
16
17 */
18 // 综上, 需要维护 d[n], sd[n] 这两个数组
   // sum(a[n]) = n * sum(d[n]) - sum(sd[n]) \square
20 ll a[N], d[N], sd[N], pd[N], psd[N]; // 前缀和, 空间换时间
   void build() { // 0(n) 建树
21
       for (int i = 1; i <= n; ++i) {
    d[i] = pd[i] - pd[i - lowbit(i)];
    sd[i] = psd[i] - psd[i - lowbit(i)];</pre>
22
23
24
```

```
}
25
26
   void add(int i, int k) { // O(logn)
27
28
       int p = i - 1;
       for (; i <= n; i += i & -i) d[i] += k, sd[i] += k * p;
29
30
   11 ask(int i) {
31
32
       11 p = i, s1 = 0, s2 = 0;
       for (; i; i ^= i & -i) s1 += d[i], s2 += sd[i];
33
       return p * s1 - s2;
34
35
   }
36
   {
       for (int i = 1; i \le n; ++i) {
37
           ll q = a[i] - a[i - 1];
38
           pd[i] = pd[i - 1] + q; // d[i] 前缀和
39
           psd[i] = psd[i - 1] + q * (i - 1); // sd[i] 前缀和
40
           // add(i, a[i] - a[i - 1]);
41
42
43
       build();
       if (t & 1) { // [x, y] add k
44
           scanf("%d", &k);
45
           add(x, k), add(y + 1, -k);
46
       } else { // ask [x, y]
47
48
           printf("%lld\n", ask(y) - ask(x - 1));
49
       }
50 }
   3.9.4 逆序对
  // 权值树状数组 求逆序对
   ll c[N];
   ll n, x, y, ans;
3
4
   struct Node {
       11 val; int num;
5
       bool operator < (const Node &b) const { return val > b.val; }
6
   } t[N];
7
   void add(int i) {
9
       for (; i <= n; i += i & -i) ++c[i];
10
11
   ll ask(int i) {
12
       int ans = 0;
       for (; i; i ^= i & -i) ans += c[i];
13
14
       return ans;
   }
15
16
   int main() {
       scanf("%d", &n);
17
       for (int i = 1; i <= n; ++i) {
18
           scanf("%lld", &t[i].val);
19
           t[i].num = i;
20
21
       }
22
       sort(t + 1, t + 1 + n); // 结构体离散化
       for (int i = 1; i <= n; ++i) {
23
           add(t[i].num); // 晚加入的下标 t[i].num 指向的数字 t[i].val 小于早加入的
24
           x = ask(t[i].num - 1); // t[i].val 左边比 t[i].val 大的数字个数
25
           y = i - x - 1; // t[i].val 右边比 t[i].val 大的数字个数
26
27
           ans += x * y;
28
       printf("%lld ", ans); // V 的个数, 减增减的数对个数
29
```

```
30
       ans = 0;
       memset(c, 0, sizeof(c));
31
       for (int i = n; i >= 1; --i) {
32
           add(t[i].num); // 晚加入的下标 t[i].num 指向的数字 t[i].val 大于早加入的
33
34
           x = ask(t[i].num - 1); // t[i].val 左边比 t[i].val 小的数字个数
           y = n - i - x; // t[i].val 右边比 t[i].val 小的数字个数
35
           // y = (n - i + 1) - x - 1
36
           ans += x * y;
37
38
       printf("%lld\n", ans); // ^的个数, 增减增的数对个数
39
       return 0;
40
41
   3.9.5 线性复杂度建树
   void build1(){ // 方式一
2
       for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] + a[i]; // 前缀和
       for (int i = 1; i <= n; ++i) c[i] = pre[i] - pre[i - lowbit(i)];</pre>
3
   }
4
   void build2() { // 方式二, 推荐
5
       for (int i = 1; i <= n; ++i) {
6
           c[i] += a[i];
7
           int j = i + lowbit(i);
8
           if (j <= n) c[j] += c[i];</pre>
9
10
       }
11 }
   3.9.6 维护后缀信息
1 // 将 add 与 ask 的 for 循环遍历方式交换一下就行
  void add(int i, int k) { for (; i; i ^= i & -i) c[i] += k; }
  int ask(int i) {
       int ans = 0;
4
5
       for (; i \le n; i += i \& -i) ans += c[i];
6
       return ans;
   }
7
   3.9.7 权值树状数组【可求全局第 k 小】
1 int mx, mn; // 值域上下限
   void build() { // 建树
2
3
       for (int i = 1; i \le n; ++i) ++c[a[i]];
   }
4
5
   void presum() { // 前缀和
       for (int i = mn + 1; i <= mx; ++i) pre[i] = pre[i - 1] + a[i];
6
7
       // pre[i] 表示原数组中小于等于 i 的元素个数
8
  }
9 // 基本操作
  inline int lowbit(int x) { return x & -x; }
  inline int getsum(int i) { // 小于等于 i 的元素的数目
       int ans = 0;
12
13
       for (; i; i -= lowbit(i)) ans += c[i];
14
       return ans;
15
  inline void update(int i, int k) { // 将值为 i 的元素增加 k 个
       for (; i <= mx; i += lowbit(i)) c[i] += k;</pre>
17
18
  }
```

```
19 // 求全局第 k 小, 注意下标应从 1 开始
   int kth(int k) {
20
21
       int tot = 0, ans = 0;
22
       for (int i = log2(n); \sim i; --i) {
           ans ^= 1 \ll i;
23
                                 // 尝试扩展
           if (ans >= n | | tot + c[ans] >= k) ans ^= 1 << i; // 如果扩展失败
24
25
           else tot += c[ans]; // 扩展成功后 要更新之前求和的值
26
27
       return ans + 1;
28 }
   3.10
         主席树
   解决静态区间第 k 小问题, 视情况进行离散化空间: O(nlogn), 时间: O(nlogn)
   #define L(x) t[x].l
   #define R(x) t[x].r
2
3 int n, m, cnt;
4 int rt[N], a[N], b[N]; // rt[i]: (a[1] ~ a[i]) 权值线段树的根节点编号
5 // 1, r: 左, 右节点编号, tot: 该区间内数字个数
  struct Node { int l, r, tot; } t[N * 20]; // O(nlogn)
   void update(int &now, int pre, int x, int l = 1, int r = n) { // &now
       t[now = ++cnt] = t[pre], ++t[cnt].tot; // 可持续化核心句
8
9
       if (l == r) return;
10
       int mid = (l + r) \gg 1;
11
       if (x <= mid) update(L(now), L(pre), x, l, mid);</pre>
12
       else update(R(now), R(pre), x, mid + 1, r);
13 }
  // 另一种写法, 先在 update1 前 rt[now] = rt[pre]
   void update1(int &p, int x, int l = 1, int r = n) {
16
       t[++cnt] = t[p], ++t[p = cnt].tot;
       if (l == r) return;
17
18
       int mid = (l + r) >> 1;
19
       if (x <= mid) update(L(p), x, l, mid);</pre>
       else update(R(p), x, mid + 1, r);
20
21
   int query(int tl, int tr, int k, int l = 1, int r = n) {
       if (l == r) return l;
24
       // 差分思想 : 利用t[r] - t[l - 1] 得到区间 [l, r] 的权值线段树
       int tot = t[L(tr)].tot - t[L(tl)].tot; // 左子树区间内的数字个数
25
26
       int mid = (l + r) >> 1;
       if (k <= tot) return query(L(tl), L(tr), k, l, mid);</pre>
27
       return query(R(tl), R(tr), k - tot, mid + 1, r);
28
29
   int main() {
30
       n = rd(), m = rd();
31
32
       for (int i = 1; i \le n; ++i) a[i] = b[i] = rd();
       sort(b + 1, b + 1 + n);
33
       int len = unique(b + 1, b + 1 + n) - b - 1;
34
       for (int i = 1; i <= n; ++i) {
35
           int id = lower_bound(b + 1, b + 1 + len, a[i]) - b;
36
           // update(rt[i], rt[i - 1], id);
37
38
           rt[i] = rt[i - 1], update1(rt[i], id);
39
       }
       while (m--) {
40
           int l = rd(), r = rd(), k = rd();
printf("%d\n", b[query(rt[l - 1], rt[r], k)]);
41
42
       }
43
```

```
44
       return 0;
45 }
   3.10.1 求区间内不同数的个数
  // 在线算法
  #define N 200005
  struct Node { int l, r, tot; } t[N << 5];</pre>
  int rt[N], p[N], pre[N], cnt;
   void build(int &p, int l, int r) {
6
       t[p = ++cnt].tot = 0;
       if (l == r) return;
7
8
       int mid = (l + r) \gg 1;
9
       build(L(p), 1, mid);
10
       build(R(p), mid + 1, r);
   void update(int &p, int x, int k, int l = 1, int r = n) {
       t[++cnt] = t[p];
13
       t[p = cnt].tot += k;
14
       if (l == r) return;
15
       if (x \le mid) update(L(p), x, k, l, mid);
16
       else update(R(p), x, k, mid + 1, r);
17
18
   int query(int p, int x, int l = 1, int r = n) {
19
       if (l == r) return t[p].tot;
20
21
       int mid = (l + r) \gg 1;
22
       if (x \leftarrow mid) return query(L(p), x, 1, mid) + t[R(p)].tot;
       return query(R(p), x, mid + 1, r);
23
24 }
25 void init() {
       // build(*rt, 1, n);
27
       fill(pre, 0, (n + 1) << 2);
28
   }
   void UPDATE() {
29
       for (int i = 1; i <= n; ++i) {
30
31
           if (p[x = rd()]) pre[i] = p[x];
           p[x] = i;
32
33
34
       for (int i = 1; i \le n; ++i) {
           rt[i] = rt[i - 1], update(rt[i], i, 1);
35
           // 如果 a[i] 已出现过
36
           if (pre[i]) update(rt[i], pre[i], -1);
37
       }
38
39
   }
   void QUERY() {
40
       l = rd(), r = rd();
41
       printf("%d\n", query(rt[r], 1)); // 查询区间 [1, r] 内不同数的个数
42
   }
43
   {
44
       init(), UPDATE(), QUERY();
45
   }
46
   3.10.2 区间修改懒标记
1
      Clrd: 区间 [l,r] 中的数都加 d ,同时当前的时间戳加 1
2
      Q l r: 查询当前时间戳区间 [l, r] 中所有数的和
3
      H l r t: 查询时间戳 t 区间 [1, r] 的和
```

```
5
      B t: 将当前时间戳置为 t
6
   struct Node { int l, r; ll sum, tag; } t[N * 40]; // 懒标记 tag
7
8
   char s[2];
9 int a[N], rt[N];
10 int n, m, cnt, tim;
   inline void pushup(int p) { t[p].sum = t[L(p)].sum + t[R(p)].sum; }
   void build(int &p, int l, int r) {
12
13
       p = ++cnt;
       if (l == r) \{ t[p] = (Node) \{0, 0, a[l], 0\}; return; \}
14
15
       int mid = (l + r) \gg 1;
16
       build(L, l, mid);
       build(R, mid + 1, r);
17
       pushup(p);
18
19
   void update(int &p, int x, int y, ll k, int l = 1, int r = n) {
20
21
       t[++cnt] = t[p];
       t[p = cnt].sum += k * (min(y, r) - max(x, l) + 1); // 加区间交集
22
       if (x \le 1 \&\& y \ge r) \{
23
24
            t[p].tag += k; //
25
            return;
26
27
       int mid = (l + r) \gg 1;
28
       if (x \le mid) update(L(p), x, y, k, l, mid);
29
       if (y > mid) update(R(p), x, y, k, mid + 1, r);
30
   ll query(int p, int x, int y, ll tag = 0, int l = 1, int r = n) {
31
       if (x <= l && y >= r) return t[p].sum + tag * (r - l + 1);
32
       ll ans = 0; int mid = (l + r) \gg 1;
33
       if (x <= mid) ans = query(L(p), x, y, tag + t[p].tag, l, mid); // 带着懒标记查询
34
35
       if (y > mid) ans += query(R(p), x, y, tag + t[p].tag, mid + 1, r);
36
       return ans;
37
   int main() {
38
       n = rd(), m = rd();
39
       for (int i = 1; i \le n; ++i) a[i] = rd();
40
       build(*rt, 1, n); // build
41
42
       int l, r, d, t;
       while (m--) {
43
            scanf("%s", s);
44
            switch (*s) {
45
                case 'C':
46
                    l = rd(), r = rd(), d = rd();
47
                    ++tim, rt[tim] = rt[tim - 1];
48
                    update(rt[tim], 1, r, d);
49
                    break;
50
51
                case 'Q':
                    l = rd(), r = rd();
52
                    printf("%lld\n", query(rt[tim], l, r));
53
54
                    break;
55
                case 'H':
56
                    l = rd(), r = rd();
                    printf("%lld\n", query(rt[rd()], 1, r));
57
                    break;
58
                case 'B': tim = rd();
59
60
           }
61
62
       return 0;
63 }
```

3.10.3 经典例题 middle

```
1
2
       给你一个长度为 n 的序列 s
3
       回答 Q 个这样的询问: S 的左端点在 [a, b] 之间, 右端点在 [c, d] 之间的子区间中, 最大的中位数
    */
4
   /*
5
6
       二分一个答案 mid, 把所有 >= mid 的数值设成 1 , < mid 的值设为 -1
7
       查询区间内的和是否 >= 0 (本题偶数项的中位数取靠后的那个)
8
       是, 中位数应该更大, 否则, 中位数只能更小
9
       (要让中位数尽量大,所以应该取尽可能多的1)
   */
10
   struct Node { int l, r, sum, lmx, rmx; } t[N * 40];
11
12
13 vector<int> pos[N];
14 int a[N], b[N], rt[N];
15 int n, m, cnt, len, lans;
   inline void pushup(int p) {
17
       t[p].sum = tls(p).sum + trs(p).sum;
18
19
       t[p].lmx = max(tls(p).lmx, tls(p).sum + trs(p).lmx);
       t[p].rmx = max(trs(p).rmx, trs(p).sum + tls(p).rmx);
20
   }
21
22
   void build(int &p, int l, int r) { // 初始化全为 1
23
       p = ++cnt;
24
25
       if (l == r) {
26
           t[p] = (Node) \{0, 0, 1, 1, 1\}; // 1
27
           return;
28
       int mid = (l + r) \gg 1;
29
       build(L(p), 1, mid);
30
       build(R(p), mid + 1, r);
31
32
       pushup(p);
33 }
34
   void update(int &p, int x, int l = 1, int r = n) { // 把 x 位置设置为 -1
35
36
       t[++cnt] = t[p], p = cnt;
37
       if (l == r) {
38
           t[p] = (Node) \{0, 0, -1, -1, -1\}; // -1
39
           return;
40
       int mid = (l + r) \gg 1;
41
42
       if (x \le mid) \{
43
           update(L(p), x, l, mid);
44
       } else {
45
           update(R(p), x, mid + 1, r);
46
47
       pushup(p);
48
   }
49
   int qsum(int p, int x, int y, int l = 1, int r = n) { // p
50
       if (x > y) return 0;
51
       if (x \le 1 \&\& y \ge r) return t[p].sum;
52
53
       int ans = 0;
       int mid = (l + r) >> 1;
54
55
       if (x \le mid) ans = qsum(L(p), x, y, l, mid);
56
       if (y > mid) ans += qsum(R(p), x, y, mid + 1, r);
       return ans;
57
```

```
}
58
59
    Node qlmx(int p, int x, int y, int l = 1, int r = n) { // 最大前缀}
60
         if (x \le 1 \&\& y \ge r) return t[p];
61
         Node tt, tl, tr;
62
         int mid = (l + r) \gg 1;
63
         if (x \le mid) tt = qlmx(L(p), x, y, l, mid);
64
         if (y > mid) {
65
             if (x \ll mid) {
66
67
                 tl = tt;
                 tr = qlmx(R(p), x, y, mid + 1, r);
68
69
                 tt.sum = tl.sum + tr.sum;
70
                 tt.lmx = max(tl.lmx, tl.sum + tr.lmx);
71
             } else {
                 tt = qlmx(R(p), x, y, mid + 1, r);
72
73
74
         return tt;
75
    }
76
77
    Node qrmx(int p, int x, int y, int l = 1, int r = n) { // 最大后缀
78
         if (x \le 1 \&\& y \ge r) return t[p];
79
         Node tt, tl, tr;
80
81
         int mid = (l + r) \gg 1;
82
         if (x \le mid) tt = qrmx(L(p), x, y, l, mid);
83
         if (y > mid) {
             if (x \leftarrow mid) {
84
                 tl = tt;
85
                 tr = qrmx(R(p), x, y, mid + 1, r);
86
87
                 tt.sum = tl.sum + tr.sum;
88
                 tt.rmx = max(tr.rmx, tr.sum + tl.rmx);
89
             } else {
90
                 tt = qrmx(R(p), x, y, mid + 1, r);
91
92
         return tt;
93
    }
94
95
    int check(int mid) {
96
         int x = qrmx(rt[mid], A, B).rmx;
97
         int z = qlmx(rt[mid], C, D).lmx;
98
         int y = qsum(rt[mid], B + 1, C - 1);
99
100
         return x + y + z >= 0;
101
    }
102
103
    int main() {
104
         n = rd();
         for (int i = 1; i \le n; ++i) a[i] = b[i] = rd();
105
         sort(b + 1, b + 1 + n);
106
107
         len = unique(b + 1, b + 1 + n) - b - 1;
108
         for (int i = 1; i <= n; ++i) {
109
             a[i] = lower\_bound(b + 1, b + 1 + n, a[i]) - b;
110
             pos[a[i]].push_back(i);
111
         build(rt[1], 1, n); // 先全部建为 1
112
         for (int i = 2; i <= len; ++i) {
    rt[i] = rt[i - 1]; // rt[]: 权值, 主席树区间: 位置
113
114
115
             for (auto &x : pos[i - 1]) { // 把 rt[i] 中 < i 的位置 x 修改为 -1
116
                 update(rt[i], x);
```

```
}
117
        }
118
        m = rd();
119
        while (m--) {
120
            A = rd(), B = rd(), C = rd(), D = rd(); // 题目要求强制在线, 此处略去
121
            int l = 1, r = len, ans;
122
            while (l <= r) { // 对中位数进行二分
123
                int mid = (l + r) >> 1;
124
                if (check(mid)) { // 检查该中位数合法性
125
126
                     ans = mid;
                     l = mid + 1;
127
                } else {
128
129
                     r = mid - 1;
                }
130
131
            printf("%d\n", lans = b[ans]);
132
133
134
        return 0;
135
   }
```

3.11 平衡树

树套树可用常数较小的 Treap LCT 必须用 Splay (与普通的 Splay 写法上有区别) 可持续化只能用 FHQ Treap

3.11.1 Splay

```
1 #define ls(x) t[x].ch[0]
   #define rs(x) t[x].ch[1]
3 #define tls(x) t[ls(x)]
4 #define trs(x) t[rs(x)]
5 struct Splay {
6
       int ch[2];
7
       int fa, siz, tot;
       int mx, val, tag, rev;
8
  } t[N];
10 int n, m, rt, cnt, num, a[N];
   iv init() {
       t[0].siz = t[0].tot = t[0].tag = t[0].rev = 0;
12
13
       ls(0) = rs(0) = t[0].fa = t[0].val = 0;
       t[0].mx = -INF; //
14
15
   ii id(int x) \{ return x == rs(t[x].fa); \}
17
   ii New(int v, int fa) {
       int x = ++cnt;
18
19
       t[x].fa = fa;
20
       t[x].val = t[x].mx = v;
21
       t[x].siz = t[x].tot = 1;
       // ls(x) = rs(x) = t[x].tag = t[x].rev = 0;
22
23
       return x;
24
   }
25
   iv destroy(int x) { ls(x) = rs(x) = t[x].fa = t[x].siz = t[x].tot = t[x].val = 0; }
26
   iv pushup(int x) {
27
       t[x].siz = tls(x).siz + trs(x).siz + t[x].tot;
       t[x].mx = max(t[x].val, max(tls(x).mx, trs(x).mx)); // 注意初始化 t[0].mx = -INF
28
29
30 iv add(int x, int k) { t[x].mx += k, t[x].val += k, t[x].tag += k; }
```

```
iv rev(int x) { swap(ls(x), rs(x)), t[x].rev ^= 1; }
   iv pushdown(int x) {
33
        if (t[x].tag) {
            if (ls(x)) add(ls(x), t[x].tag);
34
            if (rs(x)) add(rs(x), t[x].tag);
35
            t[x].tag = 0;
36
37
        if (t[x].rev) {
38
            rev(ls(x));
39
40
            rev(rs(x));
            t[x].rev = 0;
41
        }
42
   }
43
   iv rotate(int x) {
44
        int f = t[x].fa, ff = t[f].fa;
45
        pushdown(x), pushdown(f); // pushdown
46
        int d = id(x), son = t[x].ch[d \land 1];
47
        if (ff) t[ff].ch[id(f)] = x;
48
        t[x].ch[d \land 1] = f, t[f].ch[d] = son;
49
        t[son].fa = f, t[f].fa = x, t[x].fa = ff;
50
        pushup(f) // pushup
51
52
   iv splay(int x, int to) {
53
54
        while (t[x].fa \wedge to) {
            int f = t[x].fa;
55
            if (t[f].fa ^ to) {
56
                rotate(id(f) \wedge id(x) ? x : f);
57
58
            rotate(x);
59
60
61
        pushup(x);
        if (!to) rt = x;
62
63 }
64
   // 直接用 a[] 数组建树
65
   int build(int 1, int r, int fa) {
66
67
        if (l > r) return 0;
68
        int mid = (l + r) >> 1;
        int x = ++cnt;
69
       t[x].fa = fa;
70
        t[x].val = t[x].mx = a[mid];
71
        ls(x) = build(l, mid - 1, x);
72
        rs(x) = build(mid + 1, r, x);
73
74
        pushup(x);
        return x;
75
76
   }
77
78 // 找到第 k 个数在树中的编号
79 ii find(int k) {
80
        int x = rt;
81
        while (1) {
82
            pushdown(x); //
            if (x \le tls(x).siz) x = ls(x);
83
            else if (x <= tls(x).siz + t[x].tot) break;</pre>
84
            else {
85
                k \rightarrow tls(x).siz + t[x].tot;
86
87
                x = rs(x);
88
            }
        }
89
```

```
if (x) splay(x, 0);
90
91
        return x;
92 }
93
94
    // 找到权值为 V 的数在树中的编号
    ii find1(int v) {
95
96
        int x = rt;
97
        while (x \&\& v != t[x].val) \{
98
            pushdown(x); //
            x = v < t[x].val ? ls(x) : rs(x);
99
100
101
        if (x) splay(x, 0);
102
        return x;
    }
103
104
   // 插入权值为 V 的数
105
    void insert(int v) {
106
107
        ++num;
        if (!rt) { rt = New(v, 0); return; }
108
109
        int x = rt;
        while (1) {
110
            pushdown(x); //
111
             ++t[x].siz;
112
113
             if (t[x].val == v) {
114
                 ++t[x].tot;
                 splay(x, 0);
115
                 return;
116
117
             int d = v \le t[x].val ? 0 : 1;
118
             if (!t[x].ch[d]) {
119
                 t[x].ch[d] = New(v, x);
120
121
                 splay(t[x].ch[d], 0);
122
                 return;
123
             }
124
            x = t[x].ch[d];
125
        }
126
    }
127
   // 删除权值为 V 的数
128
129
    iv del(int v) { // 几个 pushdown 操作自己脑补的, 暂时不知道是否完全正确
        int x = find1(v); // find(v) 附带了 splay 操作
130
        if (!x) return;
131
        --num;
132
133
        if (t[x].tot > 1) {
134
             --t[x].tot;
135
             --t[x].siz;
136
             return;
137
        pushdown(x); //
138
139
        if (!ls(x)) {
140
             rt = rs(x);
141
             t[rt].fa = 0;
142
        } else {
             int L = ls(x), R = rs(x);
143
            pushdown(L); //
144
145
            while (rs(L)) {
146
                 L = rs(L);
147
                 pushdown(L); //
            }
148
```

```
splay(L, 0);
149
             rs(0) = L, rs(L) = R;
150
             t[R].fa = L, t[L].fa = 0;
151
152
             pushup(L);
153
154
        destroy(x);
155 }
156
157
    // 获得权值为 V 的数的 <排名 + 1>
   ii get_rk(int v) {
159
        int x = rt, k = 0;
160
        while (x) {
             pushdown(x); //
161
             if (v == t[x].val) {
162
                 k \leftarrow tls(x).siz + 1;
163
                 break;
164
             }
165
             if (v < t[x].val) x = ls(x);
166
             else {
167
                 k \leftarrow tls(x).siz + t[x].tot;
168
                 x = rs(x);
169
             }
170
171
172
        if (x) splay(x, 0);
173
        return k;
174 }
175
    // 获得排名第 k 的数的权值
176
    ii kth(int k) { // 查询排名第 k 为 kth(k + 1)
177
        if (k > num) return -1;
178
        int x = rt;
179
180
        while (1) {
             pushdown(x); //
181
             if (k \le tls(x).siz) x = ls(x);
182
             else if (k <= tls(x).siz + t[x].tot) break;</pre>
183
             else {
184
185
                 k \rightarrow tls(x).siz + t[x].tot;
186
                 x = rs(x);
             }
187
188
189
        if (x) splay(x, 0); //
        return t[x].val;
190
191
    }
192
193 // 获取翻转的区间
194
    ii split(int l, int r) {
         l = find(l), r = find(r + 2);
195
        splay(l, 0), splay(r, l);
196
197
        return ls(rs(rt));
198 }
199
200
    main() {
        t[0].mx = a[1] = a[n + 2] = -INF; // t[0].mx 也需置为 -INF!
201
        rt = build(1, n + 2, 0); // 注意是 n + 2, 因为多了两个哨兵节点
202
        { // OPT
203
204
             int pos = split(l, r); // 获取翻转的区间
205
             switch (opt) {
206
                 case 1: add(pos, v); break; // 区间加
207
                 case 2: rev(pos); break; // 区间翻转
```

```
case 3: printf("%d\n", t[pos].mx); // 查区间最大值
208
209
            }
        }
210
211 }
    3.11.2 Treap
 1 int n, x, cnt, rt;
 2 struct Treap { int ch[2], val, dat, siz, tot; } t[N];
 3 iv pushup(int x) { t[x].siz = tls(x).siz + trs(x).siz + t[x].tot; }
   ii New(int v) {
        t[++cnt].val = v;
 5
 6
        t[cnt].dat = rand(); // 随机权值, 父大子小
        t[cnt].siz = t[cnt].tot = 1;
 7
        return cnt;
 8
    }
 9
    iv rotate(int &x, int d) {
 10
        int p = t[x].ch[d ^ 1];
11
12
        t[x].ch[d ^ 1] = t[p].ch[d];
13
        t[p].ch[d] = x, x = p;
        pushup(t[x].ch[d]);
14
        pushup(x);
15
    }
16
    void insert(int &x, int v) {
17
        if (!x) { x = New(v); return; }
18
19
        if (t[x].val == v) {
20
             ++t[x].tot;
             ++t[x].siz;
21
22
             return;
23
24
        int d = v < t[x].val ? 0 : 1;
25
        insert(t[x].ch[d], v);
26
        if (t[t[x].ch[d]].dat > t[x].dat) rotate(x, d ^ 1);
27
        pushup(x);
28
29
    void del(int &x, int v) {
30
        if (!x) return;
31
        if (t[x].val == v) {
32
             if (t[x].tot > 1) {
33
                 --t[x].tot;
                 --t[x].siz;
34
35
                 return;
36
             if (t[x].ch[0] || t[x].ch[1]) {
37
                 if (!t[x].ch[1] || t[t[x].ch[0]].dat > t[t[x].ch[1]].dat) {
38
39
                     rotate(x, 1);
                     del(t[x].ch[1], v);
40
41
                 } else {
                     rotate(x, 0);
42
                     del(t[x].ch[0], v);
43
44
                 pushup(x);
45
46
             else x = 0;
47
             return;
48
49
        int d = v < t[x].val ? 0 : 1;
        del(t[x].ch[d], v);
50
        pushup(x);
51
```

```
52 }
53
    // iv build() {
54
         // \text{ rt} = \text{New}(-INF);
55
56
         // t[rt].ch[1] = New(INF);
         // ++t[rt].siz;
57
    // }
58
59
    #define s t[t[x].ch[0]].siz
60
    // 求的是有多少个数小于 val, 排名最后需 +1 //
    ii get_rk(int x, int v) { // 获取排名 (get_rk(x, v) + 1)
63
         int rk = 0;
         while (x) {
64
             if (v == t[x].val) \{ rk += s; break; \}
65
             if (v < t[x].val) { // < }
66
                 x = t[x].ch[0];
67
68
             } else {
69
                 rk += s + t[x].tot;
                 x = t[x].ch[1];
70
71
             }
72
         }
73
         return rk;
    }
74
75
    ii get_val(int x, int rk) {
76
         // if (!rk) {
77
             // return -INF;
         // }
78
         while (x) {
79
             if (rk <= s)
80
                 x = t[x].ch[0];
81
             else if (rk \ll s + t[x].tot)
82
83
                 break;
84
             else {
85
                 rk -= s + t[x].tot;
86
                 x = t[x].ch[1];
             }
87
88
         }
89
         // if (!x) { // rk > 区间数字个数
             // return INF;
90
         // }
91
92
         return t[x].val;
    }
93
    #undef s
94
95
    ii get_pre(int x, int v) {
96
         int pre = -INF;
97
         while (x) {
98
             if (t[x].val < v) {
99
                 pre = t[x].val;
                 x = t[x].ch[1];
100
101
             } else {
102
                 x = t[x].ch[0];
103
             }
104
105
         return pre;
106
107
    ii get_nx(int x, int v) {
108
         int nx = INF;
109
         while (x) {
110
             if (t[x].val > v) {
```

```
nx = t[x].val;
111
112
                 x = t[x].ch[0];
             } else {
113
114
                 x = t[x].ch[1];
115
116
117
        return nx;
118 }
    3.11.3 FHQ Treap
    struct Node { int ls, rs, val, siz, dat; } t[N];
    void pushup(int x) { t[x].siz = tls(x).siz + trs(x).siz + 1; }
 3
    int New(int v) {
        t[++cnt].dat = rand(); // 与 Treap 一样有个 dat
 4
        t[cnt].val = v;
 5
        t[cnt].siz = 1;
 6
 7
        return cnt;
    }
 8
 9
    // 按权值 v 分裂, x : [mn ~ v], y : [v + 1, mx]
    void split(int p, int v, int &x, int &y) {
10
        if (!p) \{ x = y = 0; return; \}
11
        if (v >= t[p].val) { // 往右子树继续分裂
12
13
             x = p;
             split(rs(p), v, rs(p), y);
14
15
        } else {
16
17
             split(ls(p), v, x, ls(p));
18
19
        pushup(p);
20
21
    int merge(int x, int y) { //合并
22
        if (!x || !y) return x | y;
23
        if (t[x].dat < t[y].dat) {</pre>
24
             rs(x) = merge(rs(x), y);
25
             pushup(x);
26
             return x;
27
        } else {
28
             ls(y) = merge(x, ls(y));
29
             pushup(y);
30
             return y;
        }
31
32
    int x, y, z;
    void insert(int v) { // 插入数 v
        split(rt, v, x, y); // x : [mn \sim v], y : [v + 1, mx]
35
        rt = merge(merge(x, New(v)), y);
36
37
    void del(int v) { // 删除数 v
38
        split(rt, v, x, z); // x : [mn \sim v], z : [v + 1, mx]
39
        split(x, v - 1, x, y); // x : [mn \sim v - 1], y : [v]
40
        // 不要写成 split(rt, v - 1, x, y), split(y, v, y, z);
41
42
        y = merge(ls(y), rs(y));
43
        rt = merge(merge(x, y), z);
44
    }
    void get_rk(int v) { // 查询权值为 v 的数的排名
45
        split(rt, v - 1, x, y);
printf("%d\n", t[x].siz + 1);
46
47
```

```
48
       rt = merge(x, y);
49
   int get_val(int rk) { // 查询排名为 rk 的数的权值
50
51
       int x = rk;
52
       while (1) {
            if (rk == tls(x).siz + 1) return t[x].val;
53
            if (rk \ll tls(x).siz) x = ls(x);
54
            else {
55
                rk -= tls(x).siz + 1;
56
57
                x = rs(x);
            }
58
59
       }
60
   }
   int get_pre(int v) { // 数 v 的前驱
61
       split(rt, v - 1, x, y);
62
       printf("%d\n", get_val(x, t[x].siz)); // x 中排名最后
63
64
       rt = merge(x, y);
65
   }
   int get_nx(int v) { // 数 v 的后继
66
       split(rt, v, x, y);
67
       printf("%d\n", get_val(y, 1)); // y 中排名第 1
68
69
       rt = merge(x, y);
70 }
   3.11.4 FHQ Treap 区间翻转
   struct Node { int ls, rs, val, dat, siz, tag; } t[N];
   void pushup(int x) { t[x].siz = tls(x).siz + trs(x).siz + 1; }
3
   void pushdown(int x) {
       if (t[x].tag) {
4
5
            swap(ls(x), rs(x));
6
            tls(x).tag ^= 1;
7
            trs(x).tag ^= 1;
8
           t[x].tag = 0;
       }
9
   }
10
   int New(int v) {
12
       t[++cnt].dat = rand();
13
       t[cnt].val = v;
14
       t[cnt].siz = 1;
15
       return cnt;
16
   int build(int l, int r) {
17
       if (l > r) return 0;
18
19
       int mid = (l + r) >> 1;
       int x = New(mid - 1); // mid - 1
20
21
       ls(x) = build(l, mid - 1);
       rs(x) = build(mid + 1, r);
22
23
       pushup(x);
24
       return x;
25 }
   // x : [1 \sim k], y : [k + 1 \sim mx]
   void split(int p, int k, int &x, int &y) { // 按个数 k 分裂
27
28
       if (!p) \{ x = y = 0; return; \}
29
       pushdown(p);
30
       if (k <= tls(p).siz) {
31
           y = p;
32
            split(ls(p), k, x, ls(p));
```

```
} else {
33
                     // k - tls(p).siz - 1
34
           x = p;
           split(rs(p), k - tls(p).siz - 1, rs(p), y);
35
36
37
       pushup(p);
38
   int merge(int x, int y) {
39
       if (!x || !y) return x | y;
40
       pushdown(x), pushdown(y);
41
42
       if (t[x].dat < t[y].dat) {
           rs(x) = merge(rs(x), y);
43
44
           pushup(x);
45
           return x;
       } else {
46
           ls(y) = merge(x, ls(y));
47
48
           pushup(y);
49
           return y;
       }
50
51
   void rev(int l, int r) { // 翻转区间 [l, r]
52
       // 因为树中多了个权值 0, 故 split 的时候需加 1
53
       split(rt, r + 1, x, z); // r
54
       split(x, l, x, y); // l - 1
55
56
       t[y].tag ^= 1;
       rt = merge(merge(x, y), z);
57
   }
58
   void print(int x) { // 中序遍历
59
       pushdown(x); // 记得清空标记
60
       if (ls(x)) print(ls(x));
61
       if (t[x].val) printf("%d ", t[x].val);
62
63
       if (rs(x)) print(rs(x));
64 }
65
   {
       rt = build(1, n + 1); // 在数中插入了序列 [0, n]
66
       // 所需序列为 1 ~ n, 故额外插入了一个 0
67
  }
68
   3.11.5 FHQ Treap 可持续化
   struct Node { int ls, rs, val, siz, dat; } t[N << 6];</pre>
  int rt[N]; // 各版本的根节点
   int New(int v) {
3
       t[++cnt].dat = rand();
4
       t[cnt].val = v;
5
6
       t[cnt].siz = 1;
       return cnt;
7
   }
8
  void pushup(int x) { t[x].siz = tls(x).siz + trs(x).siz + 1; }
   void split(int p, int v, int &x, int &y) { // 按权值 v 分裂
       if (!p) \{ x = y = 0; return; \}
11
       // 可持续化平衡树和可持续化文艺平衡树需将 pushup() 写在 if-else 结构内
12
       // 而平衡树和文艺平衡树可直接在 if-else 后写一个 pushup(p)
13
       // 易错 : 将 t[p].val 打成 t[x].val
14
15
       if (v <= t[p].val) {</pre>
16
           y = ++cnt;
           t[y] = t[p];
17
18
           split(ls(y), v, x, ls(y));
           pushup(y);
19
```

```
} else {
20
21
            x = ++cnt;
            t[x] = t[p];
22
23
            split(rs(x), v, rs(x), y);
           pushup(x);
24
25
26
       // pushup(p); 错误, t[p] 已经是历史版本了, 新版本为 t[x] 或 t[y]
27
   }
28
   int merge(int x, int y) { // 合并
       if (!x | !y) return x + y;
29
30
       if (t[x].dat < t[y].dat) {</pre>
31
            rs(x) = merge(rs(x), y);
32
           pushup(x);
33
            return x;
       } else {
34
            ls(y) = merge(x, ls(y));
35
36
            pushup(y);
37
            return y;
       }
38
39
   }
   int get_val(int x, int rk) { // 求版本 x 下排名为 rk 的数对应的权值
40
       if (rk == tls(x).siz + 1) return t[x].val;
41
       if (rk <= tls(x).siz) return get_val(ls(x), rk);</pre>
42
43
       return get_val(rs(x), rk - tls(x).siz - 1);
44
   }
   {
45
       rt[i] = rt[p]; // 回到的版本 p
46
47
       switch (opt) {
                        // 插入数 V
            case 1:
48
49
                split(rt[i], v, x, y);
                rt[i] = merge(merge(x, New(v)), y);
50
51
            case 2:
                        // 删除数 v
                split(rt[i], v + 1, x, z);
52
53
                split(x, v, x, y);
                y = merge(ls(y), rs(y));
54
                rt[i] = merge(merge(x, y), z);
55
56
                        // 权值为 V 的数的排名
57
                split(rt[i], v, x, y);
                printf("%d\n", t[x].siz + 1); // 注意要 + 1
58
                rt[i] = merge(x, y);
59
            case 4:
                       // 排名为 rk 的数的权值
60
                printf("%d\n", get_val(rt[i], rk));
61
62
            case 5:
                        // 前驱
                split(rt[i], v, x, y);
63
                if (!x) printf("%d\n", -INF);
64
                else {
65
66
                    printf("%d\n", get_val(x, t[x].siz));
                    rt[i] = merge(x, y);
67
                }
68
69
            case 6:
                        // 后继
                split(rt[i], v + 1, x, y);
70
71
                if (!y) printf("%d\n", INF);
72
                else {
                    printf("%d\n", get_val(y, 1));
73
74
                    rt[i] = merge(x, y);
75
                }
76
       }
77 }
```

3.11.6 FHQ Treap 可持续化区间翻转

```
struct Node {
1
       11 val, sum;
2
       int ls, rs, siz, dat, tag;
3
   } t[N << 6];
   ll a, b, lastans;
5
  int n, v, x, y, z, opt, cnt, rt[N];
   int New(ll v) {
7
       t[++cnt].dat = rand();
8
       t[cnt].val = t[cnt].sum = v;
9
10
       t[cnt].siz = 1;
       return cnt;
11
12
   }
13
   int cpy(int x) { t[++cnt] = t[x]; return cnt; } // 新版本复制版本 x
   void update(int x) {
14
       t[x].siz = tls(x).siz + trs(x).siz + 1;
15
       t[x].sum = tls(x).sum + trs(x).sum + t[x].val;
16
17
   void pushdown(int x) {
18
19
       if (t[x].tag) {
            t[x].tag = 0;
20
21
            // 可持续化文艺平衡树与可持续化平衡树相比
            // 不仅要在 split 时保存历史版本
22
23
            // 还需在翻转区间 pushdown() 时保存历史版本
            if (ls(x)) ls(x) = cpy(ls(x));
24
            if (rs(x)) rs(x) = cpy(rs(x));
25
26
            swap(ls(x), rs(x));
27
           tls(x).tag ^= 1;
28
           trs(x).tag ^= 1;
       }
29
30
   void split(int p, int k, int &x, int &y) {
31
32
       if (!p) \{ x = y = 0; return; \}
33
       pushdown(p);
34
       if (k <= tls(p).siz) {
           y = cpy(p);
35
36
            split(ls(y), k, x, ls(y));
37
            update(y);
38
       } else {
39
           x = cpy(p);
40
            split(rs(x), k - tls(x).siz - 1, rs(x), y);
41
            update(x);
       }
42
   }
43
44
   int merge(int x, int y) {
       if (!x | !y) return x + y;
45
       pushdown(x), pushdown(y);
46
47
       if (t[x].dat < t[y].dat) {
48
            rs(x) = merge(rs(x), y);
49
            update(x);
50
            return x;
       } else {
51
52
            ls(y) = merge(x, ls(y));
53
           update(y);
54
            return y;
       }
55
   }
56
57
   {
```

```
for (int i = 1; i <= n; ++i) {
58
           p = rd(), opt = rd();
a = rd() ^ lastans;
59
60
           rt[i] = rt[p];
61
           switch (opt) {
62
               case 1: // 在第 a 个数后插入 b
63
                    b = rd() \land lastans;
64
                    split(rt[i], a, x, y);
65
                    rt[i] = merge(merge(x, New(b)), y);
66
               case 2: // 删除第 a 个数
67
                    split(rt[i], a, x, z);
68
                    split(x, a - 1, x, y);
69
                    rt[i] = merge(x, z);
70
                    /* 因为是按照 k split 的, 所以 y 没有子树
71
                    * 而如果是按照 val 来 split, 且树中含重复权值的话
72
                    * y 就有可能有子树, 需将 rt[i] = merge(x, z) 替换为以下语句
73
74
                    \ rt[i] = merge(merge(x, y), z)
75
                    * 参见 FHQ Treap 可持续化的 del 操作 */
76
               case 3: // 翻转区间 [a, b]
77
                    b = rd() \land lastans;
78
                    split(rt[i], b, x, z);
79
                    split(x, a - 1, x, y);
80
81
                    t[y].tag ^= 1;
82
                    rt[i] = merge(merge(x, y), z);
               case 4: // 查询区间 [a, b] 所有数的和
83
                    b = rd() ^ lastans;
84
                   split(rt[i], b, x, z);
85
                    split(x, a - 1, x, y);
86
                    lastans = t[y].sum;
87
                    prdntf("%lld\n", lastans);
88
89
                    rt[i] = merge(merge(x, y), z);
90
           }
91
       }
92 }
   3.11.7 01Trie
   namespace Trie {
       int cnt;
2
       int w[N * 19], siz[N * 19], ch[N * 19][2];
3
       inline void init() { ch[0][0] = ch[0][1] = cnt = 0; }
4
       inline void insert(int x, int k) {
5
           int u = 0;
6
           for (int i = 18; i >= 0; --i) {
7
               int d = (x >> i) & 1;
8
               if (!ch[u][d]) {
9
10
                    ch[u][d] = ++cnt;
                    ch[cnt][0] = ch[cnt][1] = siz[cnt] = 0; // init
11
               }
12
               u = ch[u][d];
13
               siz[u] += k;
14
           }
15
16
           w[u] = x;
17
18
       inline int kth(int k) { // 返回排名为 k 的数
19
           int u = 0;
           for (int i = 18; i >= 0; --i) {
20
```

```
if (k <= siz[ch[u][0]]) {</pre>
21
                   u = ch[u][0];
22
23
               } else {
                   k -= siz[ch[u][0]];
24
25
                   u = ch[u][1];
26
27
           }
28
           return w[u];
29
       inline int get_rk(int x) { // 返回小于 x 的数字个数
30
           int u = 0, ans = 0;
31
32
           for (int i = 18; i >= 0; --i) {
               if ((x >> i) & 1) {
33
                   ans += siz[ch[u][0]];
34
35
                   u = ch[u][1];
36
               } else {
37
                   u = ch[u][0];
38
39
               if (!u) break; // 不存在 x
           }
40
           return ans;
41
42
       inline int pre(int x) { return kth(get_rk(x)); }
43
       inline int suf(int x) { return kth(get_rk(x + 1) + 1); }
44
45
   }
46
   using namespace Trie;
   int n, opt, x;
47
   int main() {
48
       scanf("%d", &n);
49
50
       while (n--) {
           scanf("%d%d", &opt, &x);
51
52
           switch (opt) {
               case 1: insert(x + mx, 1); break; // 整体加 mx, 避免负数
53
               case 2: insert(x + mx, -1); break; // 删数
54
               case 3: printf("%d\n", get_rk(x + mx) + 1); break;
case 4: printf("%d\n", kth(x) - mx); break;
55
56
               case 5: printf("%d\n", pre(x + mx) - mx); break;
57
58
               case 6: printf("%d\n", suf(x + mx) - mx);
59
           }
       }
60
       return 0;
61
   }
62
   3.11.8 Splay 最大子序列和
1
      1.插入: 在当前数列的第 posi 个数字后插入 tot 个数字: c1, c2 · · · ctot; 若在数列首插入,则
2
       posi 为 0
      2.删除: 从当前数列的第 posi 个数字开始连续删除 tot 个数字
3
4
      3.修改: 从当前数列的第 posi 个数字开始的连续 tot 个数字统一修改为 C
5
      4.翻转:取出从当前数列的第 posi 个数字开始的 tot 个数字,翻转后放入原来的位置
      5.求和: 计算从当前数列的第 posi 个数字开始的 tot 个数字的和并输出
6
7
      6. 求最大子列和: 求出当前数列中和最大的一段子列, 并输出最大和
    */
8
9
   struct Splay {
10
       int ch[2];
11
       int fa, val, tag, rev;
       int mx, lmx, rmx, sum, siz; } t[N];
12
```

```
13 char s[10];
   int a[N], num[N], rub[N];
   int n, m, p, len, x, v, rb, rt, cnt, _;
   ii id(int x) { return x == rs(t[x].fa); }
   ii New(int x, int v, int fa) {
17
       t[x].val = t[x].sum = t[x].mx = v;
18
19
       t[x].lmx = t[x].rmx = max(0, v); //
       t[x].tag = -INF;
20
21
       t[x].fa = fa;
22
       t[x].siz = 1;
23
       return x;
24
   }
   iv destroy(int &x) { // &
25
       t[x].val = t[x].sum = t[x].rev = t[x].lmx = t[x].rmx = 0;
26
       t[x].ch[0] = t[x].ch[1] = t[x].fa = t[x].siz = 0;
27
       t[x].mx = t[x].tag = -INF; //
28
29
       rub[++rb] = x;
30
       x = 0;
31
32
   iv pushup(int x) {
       t[x].siz = tls(x).siz + trs(x).siz + 1;
33
       t[x].sum = tls(x).sum + trs(x).sum + t[x].val;
34
       t[x].lmx = max(tls(x).lmx, tls(x).sum + t[x].val + trs(x).lmx);
35
36
       t[x].rmx = max(trs(x).rmx, trs(x).sum + t[x].val + tls(x).rmx);
37
       t[x].mx = max(tls(x).rmx + t[x].val + trs(x).lmx, max(tls(x).mx, trs(x).mx));
38
   }
   iv update_val(int x, int k) {
39
       t[x].val = t[x].tag = k;
40
       t[x].sum = t[x].siz * k;
41
       t[x].mx = k > 0 ? t[x].sum : k;
42
43
       t[x].lmx = t[x].rmx = max(0, t[x].sum);
44
   iv rev(int x) {
45
       swap(t[x].lmx, t[x].rmx);
46
47
       swap(ls(x), rs(x));
       t[x].rev ^= 1;
48
49
   }
50
   iv pushdown(int x) {
       if (t[x].tag != -INF) {
51
            if (ls(x)) update_val(ls(x), t[x].tag);
52
            if (rs(x)) update_val(rs(x), t[x].tag);
53
            t[x].tag = -INF;
54
55
        if (t[x].rev) {
56
            rev(ls(x)), rev(rs(x));
57
58
            t[x].rev = 0;
59
       }
60
   iv rotate(int x) {
61
       int f = t[x].fa, ff = t[f].fa;
63
       int d = id(x), son = t[x].ch[d \land 1];
64
       t[ff].ch[id(f)] = x, t[x].fa = ff;
       t[x].ch[d ^ 1] = f, t[f].fa = x;
65
       t[f].ch[d] = son, t[son].fa = f;
66
       pushup(f);
67
68
69
   iv splay(int x, int to) {
70
       while (t[x].fa != to) {
71
            int f = t[x].fa;
```

```
if (t[f].fa != to) {
72
                 rotate(id(f) \wedge id(x) ? x : f);
73
74
75
             rotate(x);
76
77
         pushup(x); //
         if (!to) rt = x;
78
79
    }
    int build(int 1, int r, int fa) {
80
         if (l > r) return 0;
81
82
         int mid = (l + r) >> 1;
83
         int x = num[mid];
         New(x, a[mid], fa);
84
         ls(x) = build(l, mid - 1, x);
85
         rs(x) = build(mid + 1, r, x);
86
         pushup(x);
87
88
         return x;
    }
89
    ii find(int k) {
90
91
         int x = rt;
92
         while (x) {
             pushdown(x);
93
             if (k == tls(x).siz + 1) break;
94
95
             if (k <= tls(x).siz) {</pre>
                 x = ls(x);
96
             } else {
97
                 k \rightarrow tls(x).siz + 1;
98
99
                 x = rs(x);
100
101
102
         return x;
103
   ii split(int l, int r) {
104
         l = find(l), r = find(r + 2);
105
         splay(l, 0), splay(r, l);
106
         return rs(rt);
107
108
    }
109
    iv del(int &x) { // &
110
         pushdown(x);
         if (ls(x)) del(ls(x));
111
112
         if (rs(x)) del(rs(x));
         destroy(x);
113
    }
114
115
    int main() {
         n = rd(), m = rd();
116
         t[0].mx = a[1] = a[n + 2] = -INF; // t[0].mx
117
118
         for (int i = 1; i \le n; ++i) a[i + 1] = rd();
         for (int i = 1; i \le n + 2; ++i) num[i] = i;
119
         rt = build(1, n + 2, 0); // rt = build()
120
121
         cnt = n + 2; //
122
         while (m--) {
             scanf("%s", s);
123
             switch (s[2]) {
124
                 case 'S': // INSERT
125
                      p = rd(), len = rd();
126
                      for (int i = 1; i <= len; ++i) {
127
                          a[i] = rd();
128
                          num[i] = rb ? rub[rb--] : ++cnt;
129
130
                      }
```

```
131
                    x = split(p + 1, p);
                     ls(x) = build(1, len, x);
132
                     pushup(x), pushup(rt);
133
                     break;
134
                 case 'L': // DELETE
135
                     p = rd(), len = rd();
136
                     x = split(p, p + len - 1);
137
                     del(ls(x)), pushup(x), pushup(rt);
138
                    break;
139
                case 'K': // MAKE-SOME
140
                     p = rd(), len = rd(), v = rd();
141
142
                     x = ls(split(p, p + len - 1));
                     update_val(x, v), pushup(rs(rt)), pushup(rt);
143
                    break;
144
                case 'V': // REVERSE
145
                     p = rd(), len = rd();
146
147
                     x = ls(split(p, p + len - 1));
                     if (t[x].tag == -INF) {
148
149
                         rev(x), pushup(rs(rt)), pushup(rt);
150
                    break;
151
                case 'T': // GET-SUM
152
                     p = rd(), len = rd();
153
                     x = ls(split(p, p + len - 1)); // ls
154
155
                     printf("%d\n", t[x].sum);
156
                     break;
                case 'X': // MAX-SUM
157
                     printf("%d\n", t[rt].mx);
158
159
                     break;
160
            }
161
        return 0;
162
163 }
    3.12 动态树
 1 // 操作均摊复杂度 O(log(n) ^ 2)
 2 #define N 300005
 3 #define ls(x) t[x].ch[0]
 4 #define rs(x) t[x].ch[1]
 5 struct Node { int ch[2], fa, tag, val, sum; } t[N];
    int id(int x) { return x == rs(t[x].fa); }
    inline int nroot(int x) { // 不是 splay 的根
 7
        return ls(t[x].fa) == x || rs(t[x].fa) == x;
 8
 9
    }
10 void pushup(int x) { // 维护信息
        t[x].sum = tls(x).sum ^ trs(x).sum ^ t[x].val;
11
12
        t[x] = t[ls(x)]. ^ t[rs(x)] ^ w[x];
13 }
    void rev(int x) { swap(ls(x), rs(x)), t[x].tag ^= 1; }
    void pushdown(int x) {
        if (t[x].tag) {
16
17
             if (ls(x)) rev(ls(x));
            if (rs(x)) rev(rs(x));
18
19
            t[x].tag = 0;
        }
20
21
22 void push(int x) {
```

```
if (nroot(x)) push(t[x].fa);
23
24
       pushdown(x);
   }
25
   void rotate(int x) {
26
       int f = t[x].fa, ff = t[f].fa;
27
       int d = id(x), son = t[x].ch[d \land 1];
28
       if (nroot(f)) t[ff].ch[id(f)] = x;
29
       t[x].ch[d ^ 1] = f, t[f].ch[d] = son;
30
       t[son].fa = f, t[f].fa = x, t[x].fa = ff;
31
32
       pushup(f);
33
   }
34
   void splay(int x) {
35
       push(x);
       while (nroot(x)) {
36
           int f = t[x].fa;
37
           if (nroot(f)) {
38
39
               rotate(id(x) \wedge id(f) ? x : f);
40
41
           rotate(x);
42
       pushup(x); // 这里一定要 pushup 一下!!!
43
       // 因为 rotate 的时候只 pushup 了 f, 没有 pushup x !
44
45
46
   void access(int x) { // 核心操作, 打通 LCT 的根到 x 的路径
47
       for (int y = 0; x; y = x, x = fa[x])
           splay(x), rs(x) = y, pushup(x);
48
   }
49
   void makeroot(int x) { // 使 x 为 LCT 的根
50
       access(x), splay(x), rev(x);
51
52
   int findroot(int x) {
54
55
       access(x), splay(x);
       while (ls(x)) {
56
           pushdown(x);
57
           x = ls(x);
58
59
       }
60
       splay(x);
61
       return x;
   }
62
   void split(int x, int y) {
63
       makeroot(x), access(y), splay(y);
64
65
   void link(int x, int y) { // 连接 x, y 两点
66
       makeroot(x);
67
68
       if (findroot(y) \land x) t[x].fa = y;
69
70
   void link1(int x, int y) { // 题目保证连边合法
71
       // makeroot(x), fa[x] = y;
72
       split(x, y), t[x].fa = y; // 维护子树信息时必须写成 split(x, y)
73
       // 因为要保证 t[y].siz 是 y 所在树的子树大小, 以此更新 t[x].si (x 的虚子树大小)
74
   }
75
   void cut(int x, int y) { // 断开 Edge(x, y)
       split(x, y);
76
       if (ls(y) == x \&\& !rs(x)) {
77
           ls(y) = t[x].fa = 0;
78
79
           pushup(y);
80
       }
81 }
```

```
void cut1(int x, int y) { // 题目保证断边合法
83
       split(x, y);
       ls(y) = t[x].fa = 0;
84
85
       pushup(y); // pushup
   }
86
   void modify(int x, int y) { // 把 x 点的权值改为 y
87
       splay(x), t[x].val = y;
88
       // access(x), splay(x), t[x].val = y; // 维护子树信息时要这样写
89
   }
90
91
   int query(int x, int y) { // 查询 [x, y] 的信息
92
       split(x, y);
93
       return t[y].sum;
94 }
   3.12.1 求 MST
   // 一道例题: https://www.luogu.com.cn/problem/P2387
   #define N 205005 // 0(n + m)
3
   struct LCT {
       int ch[2];
4
       int id, mx, fa, tag; // id : 最大点权所在点编号, mx : 最大点权
5
  } t[N]; // O(n + m)
6
  int w[N]; // O(n + m)
  int n, m, x, y, z, num, cnt, ans, _{-};
  ii id(int x) \{ return x == rs(t[x].fa); \}
10
  iv pushup(int x) {
11
       t[x].id = x, t[x].mx = w[x];
12
       if (t[x].mx < tls(x).mx) {
13
           t[x].mx = tls(x).mx;
           t[x].id = tls(x).id;
14
15
       if (t[x].mx < trs(x).mx) {</pre>
16
17
           t[x].mx = trs(x).mx;
18
           t[x].id = trs(x).id;
19
       }
20 }
21 iv rev(int x) { ... }
22 iv pushdown(int x) { ... }
23 ii nroot(int x) { ... }
24 iv rotate(int x) { ... }
25 void push(int x) { ... }
26 iv splay(int x) { ... }
27 iv access(int x) { ... }
28 iv makeroot(int x) { ... }
29 ii findroot(int x) { ... }
30 iv split(int x, int y) { ... }
31 iv link(int x, int y) { makeroot(x), t[x].fa = y; } // 只会在不联通的情况下连边
32 ii check(int x, int y) { // 判断是否不联通
       makeroot(x);
33
       return x ^ findroot(y);
34
35
   }
   int main() {
36
37
       cnt = n = rd(), m = rd(); // cnt = n
       while (m--) {
38
           x = rd(), y = rd(), z = rd();
39
           if (check(x, y)) { // 不连通就直接连边
40
               ans += z; // MST
41
               w[++cnt] = z; // 边权化为点权, 将 x -> y 的边权变为 cnt 的点权
42
```

```
link(x, cnt), link(cnt, y); // 连边 x -> cnt -> y
43
           } else { // 已联通
44
               split(x, y);
45
               if(z < t[y].mx) { // 如果当前边比 LCT 中的最大边小, 替换最大边
46
                   ans += z - t[y].mx; // 更新 MST
47
                   splay(num = t[y].id);
48
                  // 这里要预存一下 t[y].id, 因为 splay 后 t[y].id 可能会变化
49
                  tls(num).fa = trs(num).fa = 0;
50
                  W[++cnt] = z;
51
52
                  link(x, cnt), link(cnt, y);
               }
53
54
           }
55
       }
       printf("%d\n", ans);
56
       return 0;
57
58
   3.12.2 求 LCA
1 // 动态求 LCA, 可换根
2 int n, m, s, cnt, _;
3 int fa[N], tag[N], ch[N][2];
4 ii id(int x) { ... }
5 ii nroot(int x) { ... }
6 iv rotate(int x) \{ \dots \}
7 iv rev(int x) { ... }
8 iv pushdown(int x) { ... }
9 iv push(int x) { ... }
10 iv splay(int x) { ... }
11 iv access(int x) { ... }
12 iv makeroot(int x) { ... } // 设置根
13 iv link(int x, int y) { makeroot(x), fa[x] = y; } // 题目保证是一颗树
14 ii LCA(int u, int x) {
       access(u); // 先 access u
15
       int lca = 0;
16
       // 在 access x 的过程中记录
17
       for (int y = 0; x; lca = y = x, x = fa[x]) {
18
19
           splay(x), rs(x) = y;
20
21
       return lca;
22 }
23 /* LCA(x, y)
    * 如果先 access(x), 那么 x 和根在一个 Splay 中, LCA 显然也在这颗 Splay 中,
    * 那么再 access(y), 因为 LCA 和 x 在一颗 Splay 中, 所以 y 到 LCA 一定是一条虚边,
    * 故可在 access(y) 的时候每次记录跳过的虚边是跳到了谁那里,
    * 然后将最后一次跑虚边的点(父亲), 作为 LCA 输出.
27
    */
28
29
   int main() {
       n = rd(), m = rd(), s = rd();
30
       for (int i = 1; i < n; ++i) link(rd(), rd());</pre>
31
32
       makeroot(s); // 将根设置为 s
33
       while (m--) printf("%d\n", LCA(rd(), rd()));
34
       return 0;
   3.12.3 维护子树信息
1 // 维护子树大小和 (需通过维护虚树子树大小和)
2 // https://www.luogu.com.cn/problem/P4219
```

```
struct LCT {
       int ch[2];
4
       int fa, tag, siz, si; // siz : 子树大小和, si : 虚子树大小和
5
   } t[N];
6
   char s[2];
7
  int n, m, x, y, _, cnt;
9 ii id(int x) { ... }
10 ii nroot(int x) { ... }
11 iv pushup(int x) {
       t[x].siz = tls(x).siz + trs(x).siz + 1 + t[x].si; // 需要额外加上虚子树大小和
12
13 }
14 iv rotate(int x) { ... }
15 iv rev(int x) { ... }
16 iv pushdown(int x) { ... }
  void push(int x) { ... }
  iv splay(int x) { ... }
  iv access(int x) {
20
       for (int y = 0; x; y = x, x = t[x].fa) {
21
           splay(x);
22
           t[x].si += trs(x).siz - t[y].siz;
           // y 的虚子树和减去原右子树子树和, 加上新右子树子树和
23
24
           rs(x) = y;
25
           pushup(x);
26
       }
27
  iv makeroot(int x) { ... }
28
   iv link(int x, int y) {
       makeroot(x), makeroot(y);
30
31
       t[x].fa = y;
       t[y].si += t[x].siz; // y 的虚子树和增加了 x 的子树和
32
33
       pushup(y);
34
  iv split(int x, int y) { ... }
35
   int main() {
36
       n = rd(), m = rd();
37
       while (m--) {
38
39
           scanf("%s", s);
40
           x = rd(), y = rd();
           switch (*s) {
41
               case 'A': link(x, y); break;
42
               case 'Q':
43
                   split(x, y); // 因为 x 与 y 直接相连
44
                   // 则 split 后 x 仅有一条与 y 相连的实边, y 同理仅有 1 条
45
                  // 故 x 的虚子树和加上自己的个数 1 即得 x 的子树和, y 同理可得
46
                   printf("%lld\n", (t[x].si + 1ll) * (t[y].si + 1));
47
                   break;
48
49
           }
50
       return 0;
51
52 }
   3.12.4 求重心
1 // 给一颗以 1 为根的树, 输出以 i 为根的子树的重心 (1 <= i <= n)
2 struct Node { int ch[2], l, r, siz, si, tag, fa; } t[N << 1];</pre>
3 struct Edge { int to, nx; } e[N << 1];</pre>
4 int n, x, y, cnt;
5 int h[N], pre[N], dep[N], ans[N][2];
```

```
// pre[i] : 并查集, 记录以 i 为根的子树的重心, ans[i][2] : 记录节点两个重心
   inline void add(int u, int v) { e[++cnt] = (Edge) \{v, h[u]\}, h[u] = cnt; \}
   namespace LCT {
8
       ii id(int x) { ... }
9
       ii nroot(int x) { ... }
10
       iv pushup(int x) { t[x].siz = tls(x).siz + trs(x).siz + 1 + t[x].si; }
11
12
       iv rotate(int x) { ... }
       iv rev(int x) { ... }
13
       iv pushdown(int x) { ... }
14
       void push(int x) { ... }
15
       iv splay(int x) \{ \dots \}
16
17
       iv access(int x) {
           for (int y = 0; x; y = x, x = t[x].fa) {
18
               splay(x);
19
               t[x].si += trs(x).siz - t[y].siz; // 更新虚子树大小
20
21
               rs(x) = y;
22
               pushup(x);
           }
23
24
       iv makeroot(int x) { ... }
25
26
       iv split(int x, int y) { ... }
27
       iv link(int x, int y) {
           split(x, y);
28
29
           t[x].fa = y;
30
           t[y].si += t[x].siz; // 更新虚子树大小
31
           pushup(y);
32
       }
33
       int zx[3], ff; // 记录重心和重心个数
34
       ii getc(int x) {
35
           int odd = t[x].siz & 1, half = t[x].siz >> 1;
36
37
           int lsum = 0, rsum = 0, now = 0, L, R; // now 要初始化
38
           ff = 0;
           while (x) {
39
               pushdown(x); //
40
               L = t[ls(x)].siz + lsum, R = t[rs(x)].siz + rsum;
41
42
               if (L <= half && R <= half) { // 重心性质
43
                   if (odd) { // 大小为奇数,则只有一个重心
                       zx[++ff] = x;
44
                       now = x;
45
                       break;
46
                   } else { // 否则有两个重心
47
48
                       zx[++ff] = x;
49
                       now = dep[now] < dep[x] ? x : now;
                       // 要让并查集指向深度大的那个重心,才能保证后续合并找重心正确
50
                       if (ff == 2) break; // 找完两个重心
51
                   }
52
53
               if (L < R) {
54
                   lsum += t[ls(x)].siz + t[x].si + 1;
55
56
                   x = rs(x);
57
               } else {
                   rsum += t[rs(x)].siz + t[x].si + 1;
58
                   x = ls(x);
59
60
61
62
           splay(now);
63
           return now;
64
       }
```

```
65 }
    using namespace LCT;
66
    int find(int x) { return pre[x] == x ? x : pre[x] = find(pre[x]); } // 并查集
67
    void dfs(int u, int p) {
        int f = 0;
69
        dep[u] = dep[p] + 1;
70
        for (int i = h[u]; i; i = e[i].nx) {
71
            int v = e[i].to;
72
            if (v != p) {
73
74
                f = 1;
                dfs(v, u);
75
                link(u, v); // 合并两棵树
76
                int fu = find(u), fv = find(v); // 记录两颗旧树的重心
77
                split(fu, fv); // 新的重心在两个旧的重心的路径上
78
                int z = getc(fv); // 找到新树的重心
79
                pre[fu] = pre[fv] = pre[z] = z; // 并查集记录重心
80
            }
81
82
        if (f) { // 有子树
83
            ans[u][0] = zx[1];
84
            if (ff == 2) { // 有两个重心
85
                ans[u][1] = zx[2];
86
                if (ans[u][0] > ans[u][1]) {
87
88
                    swap(ans[u][0], ans[u][1]); // 题目要求按重心按递增序输出
89
                }
90
        } else ans[u][0] = u; // 无子树, 重心是自己
91
92
    int main() {
93
        scanf("%d", &n);
94
        for (int i = 1; i <= n; ++i) {
95
            t[i].siz = 1, pre[i] = i;
96
97
        for (int i = 1; i < n; ++i) {
98
            scanf("%d%d", &x, &y);
99
            add(x, y), add(y, x);
100
101
        }
102
        dfs(1, 0);
        for (int i = 1; i <= n; ++i) { // 输出每个 1 ~ n 节点的重心
103
            if (ans[i][1]) { // 有两个重心
104
                printf("%d %d\n", ans[i][0], ans[i][1]);
105
            } else { // 一个重心
106
                printf("%d\n", ans[i][0]);
107
108
109
        return 0;
110
111 }
    3.12.5 求直径
 1 // 动态维护树的直径
 2 struct DIA { int x, y, dis; } d[N]; // Diameter, 记录直径两个端点和直径的长度
 3 char s[2];
 4 int n, x, y, dis, cnt, _, pre[N];
 5
   namespace LCT {
        struct Node { int ch[2], fa, siz, tag; } t[N];
 6
        ii id(int x) { ... }
 7
        ii nroot(int x) { ... }
```

```
9
       iv pushup(int x) { ... }
       iv rev(int x) { ... }
10
       iv pushdown(int x) { ... }
11
12
       void push(int x) { ... }
       iv rotate(int x) { ... }
13
       iv splay(int x) { ... }
14
       iv access(int x) { ... }
15
       iv makeroot(int x) { ... }
16
       iv split(int x, int y) { ... }
17
18
       iv link(int x, int y) { ... }
  }
19
20
  using namespace LCT;
21
   int find(int x) { return pre[x] ? pre[x] = find(pre[x]) : x; }
   int query(int x, int y) { // 查询 x, y 之间的距离
23
       split(x, y);
       return t[y].siz - 1;
24
   }
25
   void update(int x, int y) { // 更新直径
26
       x = find(x), pre[y] = x;
27
       int a = d[x].x, b = d[x].y;
28
29
       dis = query(a, y);
       if (dis > d[x].dis) d[x] = (DIA) \{a, y, dis\};
30
       dis = query(b, y);
31
32
       if (dis > d[x].dis) d[x] = (DIA) \{b, y, dis\};
33
   }
   int main() {
34
       n = rd();
35
       while (n--) {
36
           scanf("%s", s);
37
38
           x = rd();
           if (*s == 'B') { // 新建一个节点, 如果 x != -1, 则新节点与 x 相连
39
40
               y = ++cnt;
               d[y] = (DIA) {y, y, 0}; // 初始化 y 的直径
41
               if (~x) { // 连接
42
                   link(x, y);
43
                   update(x, y);
44
45
               }
46
           } else { // 查询在 x 节点所在的连通块中, 距它最远的点的距离
47
               // 显然最远距离为 x 到直径两个端点之一
48
               y = find(x);
               printf("%d\n", max(query(x, d[y].x), query(x, d[y].y)));
49
           }
50
51
       return 0;
52
53
   }
   3.12.6 LCT+ 随机化 (对子集 hash)
1 struct Edge { int x, y, w; } e[M];
  int n, m, opt, x, y, u, v, S, cnt, _, w[N];
   namespace LCT {
       struct Node { int fa, sum, su, tag, ch[2]; } t[N]; // 维护子树异或和
4
       ii id(int x) { ... }
5
       ii nroot(int x) { ... }
6
       iv pushup(int x) { t[x].sum = tls(x).sum ^ trs(x).sum ^ w[x] ^ t[x].su; } //
7
       iv rev(int x) { ... }
8
       iv pushdown(int x) { ... }
9
       void push(int x) { ... }
10
```

```
iv rotate(int x) { ... }
11
       iv splay(int x) \{ \dots \}
12
       iv access(int x) {
13
14
           for (int y = 0; x; y = x, x = t[x].fa) {
               splay(x);
15
               t[x].su ^= trs(x).sum ^ t[y].sum; //
16
17
               rs(x) = y;
               pushup(x);
18
           }
19
20
       }
21
       iv makeroot(int x) { ... }
22
       ii findroot(int x) { ... }
       iv split(int x, int y) { ... }
23
       iv link(int x, int y) {
24
           split(x, y); // 维护子树信息要把 y 也转上去
25
           t[x].fa = y;
26
27
           t[y].su ^= t[x].sum; //
28
           pushup(y);
29
30
       iv cut(int x, int y) { ... }
31 }
32 using namespace LCT;
33 int seed = 19260817;
34 inline int rnd() { return seed = (seed * 7 + 13) ^ (seed / 13 - 7); } // 随机数
   int main() {
       rd(), n = rd(), m = rd();
36
       for (int i = 1; i < n; ++i) {
37
           link(rd(), rd()); // 初始图连边
38
39
       while (m--) {
40
           opt = rd(), x = rd();
41
           switch (opt) {
42
               case 1:
43
                   y = rd(), u = rd(), v = rd();
44
                   cut(x, y), link(u, v); // 断开边 x, y ; 连接边 u, v
45
46
                   break;
               case 2: // 标记一条路径 (x - y)
47
48
                   e[++cnt] = (Edge) {x, y = rd(), rnd()}; // 记录第 cnt 条边的两个端点及随机权
       值
                   S ^= e[cnt].w; // S 异或上随机权值
49
                   access(x), splay(x); // 先 access 和 splay , 再更新权值!
50
                   w[x] ^= e[cnt].w; // LCT 中端点也异或上这个随机权值
51
52
                   access(y), splay(y);
                   w[y] \sim e[cnt].w;
53
                   break;
54
               case 3: // 删除第 x 次标记路径的标记
55
                   u = e[x].x, v = e[x].y; // 该路径的两个端点
56
                   S ^= e[x].w; // 再次异或该路径端点的随机权值
57
                   access(u), splay(u); // 更新 LCT
58
                   w[u] ^= e[x].w; // 更新 LCT
59
60
                   access(v), splay(v);
61
                   w[v] \wedge = e[x].w;
62
                   break;
               case 4: // 查询所有标记的路径是否都经过边 (x - y)
63
                   split(x, y = rd());
64
65
                   * 查询时先将 y 选到顶部,这样若有标记路径经过边 (x - y),
66
                    * 则路径必有一个端点在子树 y 内, 所以每标记一条路径
67
68
                    * 就对该路径的两个端点随机一个较大的权值,
```

```
* 并将 S 异或上这个权值 (S 初始为 0),
69
                   * 这样如果查询时 X 子树内的权值异或和等于 S,
70
                   * 就表示所有标记路径都经过边 (x - y),
71
                   * 该法在随机权值为 1e9 级别下的错误率十分低
72
73
                  puts(t[x].sum ^ S ? "NO" : "YES");
74
                  break;
75
76
           }
77
78
       return 0;
79 }
   3.12.7 LCT+ 主席树维护区间联通块个数
1
    * 你有一个无向图 G(V, E), E 中每一个元素用一个二元组 (u, v) 表示.
2
    * 现在把 E 中的元素排成一个长度为 m 序列 A.
3
    * 然后给你 q 个询问二元组 (1, r),
    * 表示询问由序列 A 中 [l, r] 位置的边组成的图的联通块个数.
5
    */
6
   // N: 点数, M: 序列长度上界
7
  struct Edge { int x, y; } e[M];
9 int n, m, q, f, x, y, num, cnt, lans, _, rt[M];
10
   namespace LCT { // LCT 维护最早加入边的编号
11
12
       struct Node { int val, mn, fa, tag, ch[2]; } t[N + M];
13
       ii id(int x) { ... }
       ii nroot(int x) { ... }
14
       iv rev(int x) { ... }
15
       iv pushup(int x) { t[x].mn = min(t[x].val, min(tls(x).mn, trs(x).mn)); } // 维护最早
16
       加入的边的编号
       iv pushdown(int x) { ... }
17
18
       void push(int x) { ... }
19
       iv rotate(int x) { ... }
       iv splay(int x) { ... }
20
       iv access(int x) { .. }
21
22
       ii findroot(int x) { ... }
       iv makeroot(int x) { ... }
24
       iv split(int x, int y) { ... }
       ii check(int x, int y) { ... }
25
26
       iv link(int x, int y) { ... }
       iv cut(int x, int y) { ... } // 最后不要忘了 pushup(y)
27
28
29
   using namespace LCT;
30
   namespace Tree { // 主席树维护区间联通块减少个数
31
32
       struct Node { int 1, r, tot; } t[M * 40];
33
       void update(int &now, int x, int k, int l = 1, int r = m) {
34
           t[++cnt] = t[now];
           t[cnt].tot += k;
35
36
           now = cnt;
           if (l == r) return;
37
           int mid = (l + r) \gg 1;
38
           if (x \leftarrow mid) {
39
40
              update(t[now].l, x, k, l, mid);
41
           } else {
              update(t[now].r, x, k, mid + 1, r);
42
           }
43
```

```
44
       int query(int p, int x, int y, int l = 1, int r = m) {
45
           if (x \le 1 \&\& y \ge r) return t[p].tot;
46
           int ans = 0, mid = (l + r) >> 1;
47
           if (x \le mid) ans = query(t[p].1, x, y, 1, mid);
48
49
           if (y > mid) ans += query(t[p].r, x, y, mid + 1, r);
50
           return ans;
       }
51
   }
52
53
   int main() {
54
55
       n = rd(), m = rd(), q = rd(), f = rd();
       for (int i = 0; i \le n; ++i) { // 0 ~ n
56
          t[i].mn = t[i].val = INF; // init
57
58
       -// 注意: rt[i] 存储的是询问右端点为 i 的答案
59
       for (int i = 1; i \leftarrow m; ++i) { // 依次更新询问右端点为 i 的主席树
60
          x = rd(), y = rd();
61
           rt[i] = rt[i - 1]; // 可持续化操作
62
           if (x == y) continue; // 自环
63
           e[i] = (Edge) \{x, y\};
64
           t[i + n].val = t[i + n].mn = i;
65
           // 在边中间加入一个新点 i + n, 并令点权为边的编号 i (加入顺序)
66
          Tree::update(rt[i], i, 1); // 1 ~ i 联通块减少一个
67
68
          // 因为每次查询 rt[i] 的右端点都是 i
          // 所以相当于对所有右端点为 i 的查询结果都加了 1
69
           if (check(x, y)) { // 联通
70
71
              split(x, y);
              num = t[y].mn; // x - y 路径上最早加入的边
72
              cut(e[num].x, num + n), cut(num + n, e[num].y); // 间接断开边 e[num].x, e[num
73
      ].y
              Tree::update(rt[i], num, -1);
74
75
                 原来就是联通的. 因为之前在 rt[num] 已经对 num 这个位置加过 1 了,
76
                 所以显然 rt[i] 的 num 位置也是加了 1 的,
77
78
                 (以下为询问右端点为 i 时的情况)
79
                 所以询问左端点为 [1, num] 的区间加了 2, 左端点为 (num, i] 的区间加了 1
80
                 故现在需要在 num 这个位置减 1, 使得询问左端点为 [1, i] 的结果区间都是加 1
81
82
           link(x, i + n), link(i + n, y); // x -> i + n -> y
83
84
       while (q--) {
85
           x = rd(), y = rd();
86
           if (f) { // 强制在线参数
87
              x = (x + f * lans) % m + 1;
88
              y = (y + f * lans) % m + 1;
89
90
          if (x > y) sawp(x, y);
91
          // 注意查询 rt[y] 的 [x, y] 区间
93
          printf("%d\n", lans = n - Tree::query(rt[y], x, y)); // 转化为 n - 联通块减少个数
94
          // 不要忘了让 lans = 新结果
95
       return 0;
96
  }
97
   3.12.8 路径乘,路径加
1 char s[2];
```

```
int n, m, x, y, a, b, _;
3
   namespace LCT {
        struct Node {
4
5
            int ch[2];
            int fa, siz, rev;
6
7
            ll sum, add, mul, val;
8
        } t[N];
9
        ii id(int x) { ... }
10
        ii nroot(int x) { ... }
11
        iv pushup(int x) {
12
            t[x].siz = tls(x).siz + trs(x).siz + 1;
13
            t[x].sum = (tls(x).sum + trs(x).sum + t[x].val) % P;
14
        iv pushr(int x) {
15
            if (!x) return;
16
            swap(ls(x), rs(x));
17
18
            t[x].rev ^= 1;
19
        iv pushm(int x, ll mul) {
20
            if (!x) return;
21
            t[x].sum = t[x].sum * mul % P;
22
23
            t[x].mul = t[x].mul * mul % P;
24
            t[x].add = t[x].add * mul % P;
25
            t[x].val = t[x].val * mul % P;
26
        iv pusha(int x, ll add) {
27
28
            if (!x) return;
            t[x].sum = (t[x].sum + add * t[x].siz) % P;
29
            t[x].add = (t[x].add + add) \% P;
30
            t[x].val = (t[x].val + add) % P;
31
32
        iv pushdown(int x) {
33
            if (t[x].mul != 1) { // 先下放 mul 标记
34
                pushm(ls(x), t[x].mul);
35
36
                pushm(rs(x), t[x].mul);
                t[x].mul = 1;
37
38
            if (t[x].add) { // 再下放 add 标记
39
                pusha(ls(x), t[x].add);
40
                pusha(rs(x), t[x].add);
41
                t[x].add = 0;
42
43
            if (t[x].rev) {
44
45
                pushr(ls(x));
                pushr(rs(x));
46
47
                t[x].rev = 0;
            }
48
49
        iv push(int x) \{ \dots \}
50
        iv rotate(int x) { ... }
52
        iv splay(int x) { ... }
53
        iv access(int x) { ... }
54
        iv makeroot(int x) { ... }
        iv split(int x, int y) { ... }
55
        iv link(int x, int y) { ... }
iv cut(int x, int y) { ... }
56
57
58
59
   using namespace LCT;
  int main() {
```

```
61
       n = rd(), m = rd();
       for (int i = 1; i <= n; ++i) t[i].val = t[i].mul = 1; // 初始化点权(本题给定为 1) 和
62
       mul 标记
63
       for (int i = 1; i < n; ++i) link(rd(), rd()); // 连边
       while (m--) {
64
           scanf("%s%d%d", s, &x, &y);
65
           switch (*s) {
66
               case '+': // x, y 路径上点权都加 a
67
68
                   split(x, y);
                   pusha(y, a = rd());
69
70
                   break;
71
               case '-': // 删边 x, y, 加边 a, b
72
                   cut(x, y), link(a = rd(), b = rd());
73
                   break;
               case '*': // x, y 路径上点权都乘 a
74
                   scanf("%d", &a);
75
76
                   split(x, y);
77
                   pushm(y, a = rd());
                   break;
78
               case '/': // 询问 x, y 路径点权和
79
                   split(x, y);
80
                   printf("%lld\n", t[y].sum);
81
           }
82
83
84
       return 0;
85 }
   3.12.9 维护双联通分量
  int n, m, opt, fx, x, y, cnt;
  int pre[N], scc[N], w[N]; // w[] 为原始节点的点权
  // 两个并查集: pre[] 维护联通性, SCC[] 维护双联通分量
4 int find(int x) { return pre[x] ^ x ? pre[x] = find(pre[x]) : x; }
5 int find2(int x) { return scc[x] ^ x ? scc[x] = find2(scc[x]) : x; }
   namespace LCT {
6
       struct Node { int fa, rev, val, sum, ch[2]; } t[N << 1];</pre>
7
8
       ii id(int x) { ... }
9
       ii nroot(int x) { ... }
10
       iv pushup(int p) { t[p].sum = tls(p).sum + trs(p).sum + t[p].val; }
       iv pushr(int x) { ... }
11
       iv pushdown(int x) { ... }
12
       void push(int x) { ... }
13
       iv rotate(int x) { ... }
14
       iv splay(int x) \{ \dots \}
15
16
       iv access(int x) {
           for (int y = 0; x; y = x, x = t[x].fa = find2(t[x].fa)) { // 注意这里要更新 x 的父
17
       亲
18
               splay(x), rs(x) = y, pushup(x);
           }
19
20
       iv makeroot(int x) { ... }
21
22
       iv split(int x, int y) { ... }
23
       iv link(int x, int y) {
24
           makeroot(x), t[x].fa = y, pre[find(x)] = find(y); // 并查集维护联通性
       }
25
26
   }
27
   using namespace LCT;
   void dfs(int x, int tpf) { // 对一个双联通分量内的点进行缩点
```

```
if (!x) return;
29
       scc[find2(x)] = tpf; // 记录双联通分量
30
31
       dfs(ls(x), tpf);
32
       dfs(rs(x), tpf);
   }
33
   int main() {
34
35
       n = rd(), m = rd();
       for (int i = 1; i <= n; ++i) {
36
           t[i].val = w[i] = rd(); // init
37
           pre[i] = scc[i] = i; // init
38
39
40
       while (m--) {
           opt = rd(), x = rd(), y = rd();
41
           switch (opt) {
42
                case 1: // 连边 x - y
43
                    x = find2(x), y = find2(y);
44
                    if (x == y) break; // 双联通
45
                    if (find(x) ^ find(y)) { // 不联通
46
                    link(x, y);
} else { // 单联通
47
48
                        split(x, y);
49
                        t[y].val = t[y].sum; // 缩点后的点权
50
                        dfs(y, y); // 缩点
51
52
                        ls(y) = rs(y) = 0;
53
                    }
                    break;
54
                case 2: // 将点 x 的点权修改为 y
55
                    fx = find2(x);
56
                    access(fx), splay(fx);
57
                    t[fx].val += y - w[x];
58
59
                    w[x] = y, pushup(fx);
                    break;
60
                case 3: // 询问 x, y 间的最大点权和
61
                    x = find2(x), y = find2(y);
if (find(x) \land find(y)) \{ // x, y \land x \in A \}
62
63
                        puts("-1");
64
65
                    } else {
66
                        split(x, y);
                        printf("%d\n", t[y].sum);
67
68
                    }
69
           }
70
71
       return 0;
72
   }
   3.13
          笛卡尔树
       笛卡尔树性质:
       1. 每个节点的下标满足二叉搜索树的性质
3
       2. 每个节点的权值满足小根堆的性质
4
5 // 应用: 求元素的左右延伸区间; 确定分治的边界; ...
  int n, w[N], ls[N], rs[N], st[N];
   // w[]: 初始权值, ls[], rs[]: 笛卡尔树的左右儿子
7
   void build1() { // 标准构造笛卡尔树
8
       int top = 0, t = 0;
9
       for (int i = 1; i <= n; ++i) {
10
           t = top:
11
```

```
while (t && w[st[t]] > w[i]) --t;
12
13
           if (t) rs[st[t]] = i;
           if (t < top) ls[i] = st[t + 1];</pre>
14
15
           st[++t] = i, top = t;
16
17
   }
18 void build() { // 个人精简版, 只有当结点编号从 1 开始时才能这么用!
19
       int t = 0; // top
       for (int i = 1; i \le n; ++i) {
20
           while (t && w[st[t]] > w[i]) ls[i] = st[t--];
21
22
           rs[st[t]] = i, st[++t] = i;
23
       }
24
       rt = st[1];
25 }
   3.14 左偏树 (可并堆)
1
    * 一开始有 n 个小根堆, 每个堆包含且仅包含一个数. 接下来需要支持两种操作:
    * 1 \times y: 将第 \times 个数和第 y 个数所在的小根堆合并
3
    * (若第 x 或第 y 个数已经被删除或第 x 和第 y 个数在用一个堆内,则无视此操作)
    * 2 x : 输出第 x 个数所在的堆最小数, 并将这个最小数删除
    * (若有多个最小数,优先删除先输入的; 若第 \times 个数已经被删除, 则输出 -1 并无视删除操作)
6
    */
7
   struct Tree {
8
9
       int ls, rs, w, d, fa, del;
10
       // w : 权值, d => dist : 离自己最近的子树距离, fa => rt : 堆顶, del : 标记删除
11 } t[N];
12 int n, m, opt, x, y;
13 int find(int x) { // 找根, 也就是找堆顶
14
       return t[x].fa == x ? x : t[x].fa = find(t[x].fa);
15
16
   int merge(int x, int y) { // 合并两个堆
17
       if (!x || !y) return x | y;
18
       // 满足小根堆性质及题目约束
       if (t[x].w > t[y].w \mid | (t[x].w == t[y].w && x > y)) swap(x, y);
19
20
       rs(x) = merge(rs(x), y);
21
       if (trs(x).d > tls(x).d) swap(ls(x), rs(x)); // 左偏树性质
       tls(x).fa = trs(x).fa = x;
23
       t[x].d = trs(x).d + 1; // 左偏树性质
24
       return x;
25
   }
   inline void pop(int x) { // 删数
26
27
       t[x].del = 1; // 标记删除
28
       t[x].fa = tls(x).fa = trs(x).fa = merge(ls(x), rs(x));
   }
29
   int main() {
30
       scanf("%d%d", &n, &m);
31
       for (int i = 1; i <= n; ++i) { // 初始化堆
32
           scanf("%d", &t[i].w);
33
34
           t[i].fa = i;
35
36
       while (m--) {
           scanf("%d%d", &opt, &x);
37
38
           if (opt == 1) {
               scanf("%d", &y);
39
               if (t[x].del | l t[y].del) continue; // 至少一个被删
40
               x = find(x), y = find(y);
41
```

```
if (x != y) merge(x, y);
42
43
           } else {
               if (t[x].del) puts("-1");
44
               else printf("%d\n", t[find(x)].w), pop(find(x));
45
46
47
       return 0;
48
   }
49
50
51
  //
   3.15
         Trie 树
1 string ss;
   char s[55];
3 int cnt, vis[N], trie[N][26]; // N 大小为 <字符串个数> * <字符串长度>
   void insert(string s) { // string 的输入方式
       int p = 0;
5
       for (auto &c : s) {
6
           int x = c - a
7
           if (!trie[p][x]) trie[p][x] = ++cnt;
8
           p = trie[p][x];
9
10
11
       vis[p] = 1;
12
   }
   // 插入字符串
13
   void insert(char *s) { // char □ 的输入方式
14
       int p = 0;
15
       for (int i = 0; s[i]; ++i) {
16
           int x = s[i] - 'a';
17
           if (!trie[p][x]) trie[p][x] = ++cnt;
18
19
           p = trie[p][x];
20
       vis[p] = 1;
21
22
23
   int search(char *s) { // 搜索 trie 树是否有 s 这个串
       int p = 0, len = strlen(s);
24
       for (int i = 0; i < len; ++i) {
25
           int x = s[i] - 'a';
26
27
           if (!trie[p][x]) return 0;
28
           p = trie[p][x];
29
       return vis[p] ? vis[p]++ : vis[p];
30
       // vis = 0: 没有这个串, 1: 有这个串, 2: 有这个串但重复查询了
31
32 }
   3.15.1 01Trie 平衡树
   const int mx = 1e7; // 数的绝对值最大值
   namespace Trie {
       int w[N * 19], siz[N * 19], ch[N * 19][2], cnt;
3
       inline void init() { ch[0][0] = ch[0][1] = cnt = 0; }
4
       inline void insert(int x, int k) {
5
6
           int u = 0;
           for (int i = 18; i >= 0; --i) {
7
               int d = (x >> i) & 1;
8
9
               if (!ch[u][d]) {
```

```
ch[u][d] = ++cnt;
10
                       ch[cnt][0] = ch[cnt][1] = siz[cnt] = 0;
11
12
                  u = ch[u][d];
13
                  siz[u] += k;
14
15
             w[u] = x;
16
17
         inline int kth(int k) {
18
19
             int u = 0;
              for (int i = 18; i >= 0; --i) {
20
                  if (k <= siz[ch[u][0]]) {</pre>
21
                       u = ch[u][0];
22
23
                  } else {
                       k -= siz[ch[u][0]];
24
25
                       u = ch[u][1];
26
                  }
27
             }
28
             return w[u];
29
         inline int get_rk(int x) { // 返回小于 x 的数字个数
30
             int u = 0, ans = 0;
31
             for (int i = 18; i >= 0; --i) {
32
33
                  if ((x >> i) & 1) {
                       ans += siz[ch[u][0]];
34
35
                       u = ch[u][1];
                  } else {
36
37
                       u = ch[u][0];
38
                  if (!u) break; // x 不存在
39
40
41
             return ans;
42
         inline int pre(int x) { return kth(get_rk(x)); }
43
         inline int suf(int x) { return kth(get_rk(x + 1) + 1); }
44
   }
45
   using namespace Trie;
46
    int n, opt, x;
47
    int main() {
48
         scanf("%d", &n);
49
         while (n--) {
50
             scanf("%d%d", &opt, &x);
51
52
              switch (opt) {
                  case 1: insert(x + mx, 1); break; // 整体加 mx, 避免负数
53
                  case 2: insert(x + mx, -1); break; // 删除
54
                  case 3: printf("%d\n", get_rk(x + mx) + 1); break; // x 的排名 case 4: printf("%d\n", kth(x) - mx); break; // 排名为 x 的数 case 5: printf("%d\n", pre(x + mx) - mx); break; // 前驱 case 6: printf("%d\n", suf(x + mx) - mx); // 后继
55
56
57
58
59
             }
60
61
         return 0;
62 }
    3.15.2 可持续化 Trie 树
     * 给定一个非负整数序列 {a}, 初始长度为 n.
```

```
* 有 m 个操作, 有以下两种操作类型:
    * A X: 添加操作, 表示在序列末尾添加一个数 X, 序列的长度 n + 1.
    * Q l r x: 询问操作, 你需要找到一个位置 p, 满足 l \leq p \leq r,
    * 使得: a[p] [ a[p + 1] [ ... [ a[N] [ x 最大, 输出最大是多少.
    * */
   char c[2];
8
   int n, m, l, r, x, cnt;
int s[N], rt[N], t[N * 25][2], last[N * 25];
9
   void insert(int &now, int pre, int i, int k = 23) {
12
       now = ++cnt;
13
       if (k < 0) {
14
           last[now] = i; // 子树下标最大值
15
           return;
       }
16
       int d = s[i] >> k & 1;
17
       if (pre) t[now][d \land 1] = t[pre][d \land 1];
18
       insert(t[now][d], t[pre][d], i, k - 1);
19
20
       last[now] = max(last[t[now][0]], last[t[now][1]]); // 上传
21
22
   int query(int now, int x, int L) {
       for (int i = 23; i >= 0; --i) {
23
           int d = x >> i \& 1;
24
           if (last[t[now][d ^ 1]] >= L) // 查询最大下标 >= l - 1 的子树
25
26
               now = t[now][d \land 1];
27
           else now = t[now][d];
28
       return s[last[now]] ^ x;
29
30
   int main() {
31
       *last = -1; // 必加, 初始化未建节点最大下标为 -1
32
       n = rd(), m = rd();
33
       insert(*rt, 0, 0); //
34
35
       for (int i = 1; i <= n; ++i) {
36
           x = rd();
           s[i] = s[i - 1] ^ x;
37
           insert(rt[i], rt[i - 1], i);
38
39
40
       while (m--) {
           scanf("%s", c);
41
           if (*c == 'A') {
42
43
               ++n;
               x = rd();
44
               s[n] = s[n - 1] ^ x;
45
               insert(rt[n], rt[n - 1], n);
46
47
           } else {
               l = rd(), r = rd(), x = rd();
48
49
               printf("%d\n", query(rt[r - 1], s[n] ^ x, l - 1)); //
50
51
52
       return 0;
53 }
   3.16 虚树
1 // 1.建虚树 2.虚树上DP
2 int st[N], t; // 栈
3 inline void build(int s) { // 建立虚树
```

```
sort(a + 1, a + 1 + k, [&] (int x, int y) { return id[x] < id[y]; }); // 关键点按
4
       dfn 排序
       st[t = 1] = s, h1[s] = cnt1 = 0; // 加入 s, 并清空 s 的邻接表
5
6
       for (int i = 1; i <= k; ++i) {
           if (a[i] == s) continue; // s 不能重复加入
7
           int lca = LCA(st[t], a[i]);
8
           if (lca ^ st[t]) { // a[i] 与栈顶不在一条链上
9
               while (id[st[t - 1]] > id[lca]) add1(st[t - 1], st[t]), --t;
10
               if (id[lca] > id[st[t - 1]]) { // lca 还未入过栈, 连接并入栈
11
                   h1[lca] = 0, add1(lca, st[t]), st[t] = lca;
12
               } else {
13
14
                   add1(lca, st[t--]); // 相等, lca 已入过栈, 直接连接
15
           }
16
17
           h1[a[i]] = 0, st[++t] = a[i]; // a[i] 第一次加入, 需先清空 a[i] 的邻接表
18
       for (int i = 1; i < t; ++i) add1(st[i], st[i + 1]); // 将剩下在一条链上的点依次连接
19
20
   }
         柯朵莉树
   3.17
1 // 数据随机的情况下 O(nlog(log n))
  // 支持区间加,区间赋值,查询区间第 k 小与区间每个数字的 x 次方的和模 y 的值
3
   struct Node {
4
       11 l, r; mutable ll v; // mutable !!
5
6
       bool operator < (const Node &b) const { return l < b.l; }</pre>
7
   };
8
   set<Node> s; // 核心为 set
   auto split(int pos) { // ODT 核心操作 1, 按位置 pos 分裂
9
       auto it = s.lower_bound({pos, 0, 0});
10
       if (it != s.end() && it->l == pos) return it;
11
12
       --it; ll l = it->l, r = it->r, v = it->v;
       s.erase(it), s.insert({l, pos - 1, v});
13
       return s.insert({pos, r, v}).first; // .first
15 } // 返回结构体左端点为 pos 的迭代器
   void assign(ll l, ll r, ll v) { // ODT 核心操作 2, 区间赋值
17
       auto R = split(r + 1), L = split(l); // 注意 split 顺序
18
       s.erase(L, R), s.insert(\{l, r, v\});
19
   }
20
   void add(ll l, ll r, ll v) { // 区间加
21
       auto R = split(r + 1);
22
       for (auto it = split(l); it != R; ++it) it->v += v;
23
   ll kth(ll l, ll r, ll k) { // 区间第 k 大
24
       vector<pair<ll, ll> > v;
25
       auto R = split(r + 1);
26
27
       for (auto it = split(l); it != R; ++it) {
28
           v.push_back({it->v, it->r - it->l + 1});
29
30
       sort(v.begin(), v.end());
31
       for (auto &x : v) {
32
           k -= x.second;
33
           if (k <= 0) return x.first;</pre>
34
35
       return -1;
36
   ll psum(ll l, ll r, ll x, ll y) { // 区间每个数字的 x 次方的和模 y 的值
```

```
ll ans = 0; auto R = split(r + 1);
38
       for (auto it = split(l); it != R; ++it) {
39
           ans = (ans + qpow(it->v, x, y) * (it->r - it->l + 1)) % y;
40
41
42
       return ans;
43
   }
44
45 s.insert({i, i, w}); // 初始化 i 位置为 w ( 插入数据 )
   3.18 树套树
   3.18.1 线段树套线段树【单点修改 + 矩形最值】
1 // 空间 O(n ^ 2 * 32)
  /* c x y z : 将 (x, y) 改为 z
   * q x1 y1 x1 y2 : 找出矩阵 (x1, y1) ~ (x2, y2) 的 max 和 min */
3
   #include <bits/stdc++.h>
   using namespace std;
6
7 #define N 810
8 #define ls(x) (x << 1)
9 #define rs(x) (x << 1 ^ 1)
10
11 char s[2];
12 int n, q, mx1, mn1;
13 int a[N][N], mx[N << 2][N << 2], mn[N << 2][N << 2];
14
15
   inline void pushup(int x, int y) {
       mx[x][y] = max(mx[x][ls(y)], mx[x][rs(y)]);
16
       mn[x][y] = min(mn[x][ls(y)], mn[x][rs(y)]);
17
18
19
20
   void buildy(int l, int r, int px, int py, int ff) {
       if (l == r) {
21
22
           if (~ff) { // ff 用于建树
23
               mx[px][py] = mn[px][py] = a[ff][l];
24
               // mx[px][py] = INT_MIN, mn[px][py] = INT_MAX;
           } else {
25
               mx[px][py] = max(mx[ls(px)][py], mx[rs(px)][py]);
26
27
               mn[px][py] = min(mn[ls(px)][py], mn[rs(px)][py]);
28
           }
           return;
29
30
       int mid = (l + r) >> 1;
31
       buildy(l, mid, px, ls(py), ff);
32
33
       buildy(mid + 1, r, px, rs(py), ff);
       pushup(px, py);
34
   }
35
36
   void buildx(int 1, int r, int p) {
37
       if (l == r) {
38
           buildy(1, n, p, 1, 1);
39
           return;
40
       }
41
       int mid = (l + r) \gg 1;
42
       buildx(l, mid, ls(p));
43
       buildx(mid + 1, r, rs(p));
44
       buildy(1, n, p, 1, -1); // ff = -1
45
46 }
```

```
47
    void updatey(int l, int r, int px, int py, int x, int k, int ff) {
48
         if (l == r) {
49
             if (~ff) {
50
51
                 mx[px][py] = mn[px][py] = k;
52
             } else {
53
                 mx[px][py] = max(mx[ls(px)][py], mx[rs(px)][py]);
                 mn[px][py] = min(mn[ls(px)][py], mn[rs(px)][py]);
54
             }
55
56
             return;
         }
57
         int mid = (l + r) \gg 1;
58
59
         if (x \leftarrow mid) {
             updatey(l, mid, px, ls(py), x, k, ff);
60
61
         } else {
             updatey(mid + 1, r, px, rs(py), x, k, ff);
62
63
         pushup(px, py);
64
65
    }
66
    void updatex(int l, int r, int p, int x, int y, int k) {
67
         if (l == r) {
68
69
             updatey(1, n, p, 1, y, k, 0);
70
             return;
71
         int mid = (l + r) >> 1;
72
         if (x \leftarrow mid) {
73
             updatex(l, mid, ls(p), x, y, k);
74
75
         } else {
76
             updatex(mid + 1, r, rs(p), x, y, k);
77
78
         updatey(1, n, p, 1, y, k, -1);
    }
79
80
    void queryy(int 1, int r, int px, int py, int x, int y) {
81
         if (x <= 1 \&\& y >= r) {
82
83
             mx1 = max(mx1, mx[px][py]);
84
             mn1 = min(mn1, mn[px][py]);
85
             return;
         }
86
         int mid = (l + r) >> 1;
87
         if (x <= mid) queryy(l, mid, px, ls(py), x, y);</pre>
88
89
         if (y > mid) queryy(mid + 1, r, px, rs(py), x, y);
90
    }
91
    void queryx(int l, int r, int p, int x1, int y1, int x2, int y2) {
92
         if (x1 \le 1 \&\& x2 \ge r) {
93
94
             queryy(1, n, p, 1, y1, y2);
             return;
95
96
97
         int mid = (l + r) \gg 1;
98
         if (x1 \leftarrow mid) queryx(l, mid, ls(p), x1, y1, x2, y2);
99
         if (x2 > mid) queryx(mid + 1, r, rs(p), x1, y1, x2, y2);
100 }
101
    int main() {
102
         scanf("%d", &n);
103
104
         for (int i = 1; i <= n; ++i) {
105
             for (int j = 1; j <= n; ++j) {
```

```
106
                 scanf("%d", &a[i][j]);
             }
107
108
         buildx(1, n, 1); // 0(n ^ 2) 建树
109
         scanf("%d", &q);
110
111
         int x, y, z, x1, y1, x2, y2;
         while (q--) {
112
             scanf("%s", s);
if (*s == 'c') {
113
114
                  scanf("%d%d%d", &x, &y, &z);
115
                 updatex(1, n, 1, x, y, z); // O(nlognlogn)
116
117
             } else {
                 scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
118
                 mx1 = INT_MIN, mn1 = INT_MAX;
119
                 queryx(1, n, 1, x1, y1, x2, y2); // O(nlognlogn)
120
                 printf("%d %d\n", mx1, mn1);
121
             }
122
123
124
         return 0;
125 }
```

3.18.2 线段树套平衡树【区间限制 + 平衡树操作】

```
1 // 线段树套 Treap
2 // 空间: O(n logn)
3 // 时间: O(n logn logn)
  // 在普通平衡树的操作上加上了区间的限制
  namespace Treap { // 平衡树
5
       struct treap {
6
            int ch[2], val, dat, siz, tot;
7
       } t[N * 20]; // 空间 O(nlogn) int n, opt, x, cnt, rt;
8
9
10
       iv pushup(int x) {
11
            t[x].siz = tls(x).siz + trs(x).siz + t[x].tot;
12
       ii New(int v) {
13
14
            t[++cnt].val = v;
15
            t[cnt].dat = rand();
16
            t[cnt].siz = t[cnt].tot = 1;
17
            return cnt;
18
       iv rotate(int &x, int d) {
19
20
            // x 相当于 splay 中 rotate 的 f 节点
            int p = t[x].ch[d \land 1];
21
            t[x].ch[d ^ 1] = t[p].ch[d];
22
            t[p].ch[d] = x;
23
24
            x = p;
            pushup(t[x].ch[d]);
25
26
            pushup(x);
27
       void insert(int &x, int v) {
28
            if (!x) {
29
                x = New(v);
30
31
                return;
32
            if (t[x].val == v) {
33
34
                ++t[x].tot;
35
                ++t[x].siz;
```

```
36
                return;
37
            int d = v < t[x].val ? 0 : 1;
38
            insert(t[x].ch[d], v);
39
            if (t[t[x].ch[d]].dat > t[x].dat)
40
                rotate(x, d ^ 1); // 1 顺时针转, 0 逆时针转
41
42
            pushup(x);
43
        void remove(int &x, int v) {
44
            if (!x) return;
45
            if (t[x].val == v) {
46
47
                if (t[x].tot > 1) {
                    --t[x].tot;
48
                    --t[x].siz;
49
50
                    return;
51
                if (t[x].ch[0] || t[x].ch[1]) {
52
                    if (!t[x].ch[1] || t[t[x].ch[0]].dat > t[t[x].ch[1]].dat) {
53
                         rotate(x, 1);
54
                         remove(t[x].ch[1], v);
55
                    } else {
56
                        rotate(x, 0);
57
                        remove(t[x].ch[0], v);
58
59
60
                    pushup(x);
                } else x = 0;
61
                return;
62
63
            int d = v < t[x].val ? 0 : 1;
64
            remove(t[x].ch[d], v);
65
66
            pushup(x);
67
        // 求的是有多少个数小于 val, 排名最后需 +1
68
        ii get_rk(int x, int v) {
69
            int rk = 0;
70
            while (x) {
71
72
                if (v == t[x].val) {
73
                    rk += t[t[x].ch[0]].siz;
74
                    break;
75
                if (v < t[x].val) {
76
                    x = t[x].ch[0];
77
78
                } else {
79
                    rk += t[t[x].ch[0]].siz + t[x].tot;
80
                    x = t[x].ch[1];
81
                }
82
            }
            return rk;
83
84
85
        ii get_pre(int x, int v) { // 前驱
86
            int pre = -INF;
87
            while (x) {
                if (t[x].val < v) {
88
                    pre = t[x].val;
89
                    x = t[x].ch[1];
90
91
                } else {
92
                    x = t[x].ch[0];
93
            }
94
```

```
95
            return pre;
96
        ii get_nx(int x, int v) { // 后继
97
            int nx = INF;
98
99
            while (x) {
                if (t[x].val > v) {
100
                    nx = t[x].val;
101
102
                    x = t[x].ch[0];
103
                } else {
104
                    x = t[x].ch[1];
105
106
            }
107
            return nx;
108
        }
109
    }
110
    namespace SEG { // 外层线段树
111
        struct seg { int l, r, rt; } t[N << 2]; // rt : 内层平衡树对应的根节点
112
        void build(int 1, int r, int p) {
113
            t[p].l = l, t[p].r = r;
114
            // 对每个线段树上的节点建一颗对应区间的平衡树
115
            for (int i = l; i <= r; ++i) // 区间 [l, r]
116
                Treap::insert(t[p].rt, a[i]); // 共执行 nlogn 次 insert 操作
117
            if (l == r) return;
118
            int mid = (l + r) \gg 1;
119
            build(l, mid, ls(p));
120
            build(mid + 1, r, rs(p));
121
122
        // O(logn logn)
123
        // 求的是有多少个数小于 val, 排名最后需 +1
124
        int get_rk(int x, int y, int val, int p = 1) { // 求 [x, y] 权值 val 对应的排名
125
126
            if (x > t[p].r \mid \mid y < t[p].l) return 0;
            if (x \leftarrow t[p].l \& y \rightarrow t[p].r) return Treap::get_rk(t[p].rt, val);
127
            return get_rk(x, y, val, ls(p)) + get_rk(x, y, val, rs(p));
128
129
        // O(logn logn logn)
130
131
        int get_val(int x, int y, int k) { // 求 [x, y] 内排名 k 对应的权值
132
            int l = 0, r = 1e8; // 数据的范围 [0, 1e8]
            // 对每个二分值求它的排名
133
134
            while (l < r) {
                int mid = (l + r + 1) >> 1;
135
                // 向上取整往右逼近
136
                // 满足 get_rk() < k 的最大二分值即为所求
137
138
                if (get_rk(x, y, mid) < k)
                    l = mid;
139
140
                else
                    r = mid - 1;
141
142
            return r;
143
144
145
        // O(logn logn)
        // 单点修改操作: 就是先删除权值 a[x], 再添加权值 y
146
147
        void modify(int x, int y, int p = 1) {
            // 对覆盖到 X 的每颗平衡树都进行修改
148
            Treap::remove(t[p].rt, a[x]);
149
            Treap::insert(t[p].rt, y);
150
151
            if (t[p].l == t[p].r) return;
152
            int mid = (t[p].l + t[p].r) >> 1;
            if (x \le mid)
153
```

```
modify(x, y, ls(p));
154
                           else
155
                                    modify(x, y, rs(p));
156
157
                   // O(logn logn)
158
                   int get_pre(int x, int y, int v, int p = 1) { // 求前驱
159
                            if (x > t[p].r \mid | y < t[p].l) return -INF;
160
                           if (x \leftarrow t[p].l \& y \rightarrow t[p].r) return Treap::get_pre(t[p].rt, v);
161
                           return max(get_pre(x, y, v, ls(p)), get_pre(x, y, v, rs(p))); // 取 max
162
163
                  }
                  // O(logn logn)
164
165
                  int get_nx(int x, int y, int v, int p = 1) { // 求后继
                           if (x > t[p].r || y < t[p].l) return INF;</pre>
166
                           if (x \leftarrow t[p].l \& y \rightarrow t[p].r) return Treap::get_nx(t[p].rt, v);
167
                           return min(get_nx(x, y, v, ls(p)), get_nx(x, y, v, rs(p))); // <math>min(get_nx(x, y, v, ls(p)), get_nx(x, y, v, rs(p))); // min(get_nx(x, y, v, ls(p)), get_nx(x, y, v, rs(p))); // min(get_nx(x, y, rs(p))); //
168
                  }
169
170
         }
171 using namespace SEG;
172 {
                  build(1, n, 1);
173
                  case 1: printf("%d\n", get_rk(x, y, z) + 1); // 查询 z 在 [x, y] 中的排名
174
                   case 3: /// 单点修改
175
                                    modify(x, y);
176
177
                                    a[x] = y; // a[x] 也修改一下
178
                  // 其他操作只需直接输出函数即可
179 }
         3.18.3 权值线段树套线段树【带修区间桶内第 k 大】
   1 /* 维护 n 个可重整数集, 集合的编号从 1 到 n. 这些集合初始都是空集, 有 m 个操作:
       // 1 l r c: 表示将 c 加入到编号在 [l, r] 内的集合中
   3 // 2 l r c: 表示查询编号在 [l, r] 内的集合的并集中, 第 c 大的数是多少 */
   4 #include <bits/stdc++.h>
   5 using namespace std;
   6
   7 #define N 50004
   8 #define L(x) t[x].l
   9 #define R(x) t[x].r
 10
 11 typedef long long ll;
 12
 13 ll c[N];
         int n, m, len;
 14
        int a[N], opt[N], l[N], r[N];
 15
 16
        // 内层区间线段树 [1, n]
 17
         namespace SEG{
 18
                  struct seg {
 19
                           int 1, r, tg;
 20
 21
                           11 w;
                  } t[N * 404]; // 空间 O(n logn logn)
 22
                  int tot; // 节点编号
 23
                  void insert(int &now, int x, int y, int l = 1, int r = n) {
 24
 25
                            if (x > y) return;
                           if (!now) now = ++tot;
 26
                           t[now].w += min(y, r) - max(x, l) + 1; // [x, y] 与 [l, r] 的交集长度
 27
                           if (x <= 1 && y >= r) {
  28
```

++t[now].tg; // 标记永久化

29

```
30
                return;
31
            int mid = (l + r) >> 1;
32
            if (x <= mid) insert(L(now), x, y, l, mid);</pre>
33
34
            if (y > mid) insert(R(now), x, y, mid + 1, r);
35
        Il query(int &now, int x, int y, ll tg = 0, int l = 1, int r = n) {
36
            if (x > r \mid | y < l) return 0;
37
            if (x <= l && y >= r) return t[now].w + tg * (r - l + 1); // 标记永久化
38
39
            int mid = (1 + r) >> 1;
            return query(L(now), x, y, tg + t[now].tg, l, mid) + query(R(now), x, y, tg + t
40
       [now].tg, mid + 1, r);
41
   }
42
43
  // 外层权值线段树 [1, n]
44
   namespace SEG_V {
       struct seg { int l, r, rt; } t[N << 2];</pre>
46
47
       int rt, tot;
       void insert(int &now, int x, int y, int k, int l = 1, int r = len) { // \boxtimes int = len [x, y],
48
        权值 k
            if (!now) now = ++tot;
49
            SEG::insert(R(now)t, x, y); // 加入该权值 k 下的内层区间线段树
50
            if (l == r) return;
51
52
            int mid = (l + r) >> 1;
            if (k <= mid) insert(L(now), x, y, k, l, mid);</pre>
53
            else insert(R(now), x, y, k, mid + 1, r);
54
55
       int query(int &now, int x, int y, ll k, int l = 1, int r = len) { // 区间 [x, y], 第
56
            if (l == r) return l;
57
            if (!now) now = ++tot;
58
            int mid = (l + r) \gg 1;
59
            11 tot = SEG::query(t[R(now)].rt, x, y);
60
            if (k <= tot) return query(R(now), x, y, k, mid + 1, r);</pre>
61
            return query(L(now), x, y, k - tot, l, mid);
62
       }
63
64
   }
   using namespace SEG_V;
65
   int main() {
66
       n = rd(), m = rd();
67
       for (int i = 1; i <= m; ++i) {
68
            opt[i] = rd(), l[i] = rd();
69
            r[i] = rd(), c[i] = rd();
70
            if (opt[i] & 1) a[++len] = c[i];
71
72
73
       sort(a + 1, a + 1 + len);
       len = unique(a + 1, a + 1 + len) - a - 1; // 离散化
74
       for (int i = 1; i <= m; ++i) {
75
76
            if (opt[i] \& 1) c[i] = lower_bound(a + 1, a + 1 + len, c[i]) - a;
77
78
       for (int i = 1; i <= m; ++i)
            if (opt[i] & 1) insert(rt, l[i], r[i], c[i]);
79
80
            else printf("%d\n", a[query(rt, l[i], r[i], c[i])]);
        return 0;
81
82 }
```

3.18.4 树状数组套树状数组【矩形加 + 矩形和】

```
1 // 维护矩形加, 查询矩形和
  int n, m, x1, y1, x2, y2; // #define y1 yl namespace BIT { // 二维 BIT
       int t[N][N], ti[N][N], tj[N][N], tij[N][N];
4
       inline int lowbit(int x) { return x & -x; }
5
       inline void add(int x, int y, int k) { // O(lognlogn)
6
           int ki = k * x, kj = k * y, kij = ki * y;
7
            for (int i = x; i <= n; i += lowbit(i)) {</pre>
8
                for (int j = y; j <= m; j += lowbit(j)) {</pre>
9
10
                    t[i][j] += k, ti[i][j] += ki, tj[i][j] += kj, tij[i][j] += kij;
11
12
           }
13
       inline int ask(int x, int y) { // O(lognlogn)
14
           int s = 0, si = 0, sj = 0, sij = 0;
15
           for (int i = x; i; i -= lowbit(i)) {
16
               for (int j = y; j; j -= lowbit(j)) {
17
                    s += t[i][j], si += ti[i][j], sj += tj[i][j], sij += tij[i][j];
18
19
20
           }
           return s * (x * y + x + y + 1) - si * (y + 1) - sj * (x + 1) + sij;
21
22
       }
23 }
24 using namespace BIT;
   inline void update(int x1, int y1, int x2, int y2, int k) { // 矩阵加, 拆成单点修改
       add(x1, y1, k), add(x1, y2 + 1, -k), add(x2 + 1, y1, -k), add(x2 + 1, y2 + 1, k);
27
   }
28
   inline int query(int x1, int y1, int x2, int y2) { // 矩阵和, 拆成单点查询
       return ask(x2, y2) - ask(x1 - 1, y2) - ask(x2, y1 - 1) + ask(x1 - 1, y1 - 1);
29
30
   int main() {
31
       scanf("%d%d", &n, &m);
32
       while (~scanf("%s", s)) {
33
           x1 = rd(), y1 = rd(), x2 = rd(), y2 = rd();
if (*s == 'L') { // 矩形区域修改
34
35
               update(x1, y1, x2, y2, rd());
36
37
           } else { // 询问矩形区域和
38
               printf("%d\n", query(x1, y1, x2, y2));
39
40
       return 0;
41
   }
42
   3.18.5 树状数组套树状数组【特殊题, 矩形改 + 矩形最值】
1 // 例题: https://ac.nowcoder.com/acm/contest/35285/K
2 // 区间插入线段(x, y, z), 要求查询区间 (L, R) 内完整线段的 max - min
3 // 插入线段对矩形 (x, 1), (up, y) 产生贡献, 查询矩阵为 (1, y), (x, up)
4 #include <bits/stdc++.h>
5 using namespace std;
7 #define N 3003
8
9
  const int up = 3000; // 上界
10
11 int n, m;
   int mn[N][N], mx[N][N];
12
13
```

```
inline void add(int x, int y, int w) { // 矩形修改 (x, 1), (up, y)
       for (int i = x; i; i ^= i & -i) { // 视维护的矩形决定维护前/后缀
15
           for (int j = y; j <= up; j += j & -j) {
    mx[i][j] = max(mx[i][j], w);</pre>
16
17
18
               mn[i][j] = min(mn[i][j], w);
19
           }
20
       }
   }
21
22
   inline int ask(int x, int y) { // 矩形查询 (1, y), (x, up)
23
24
       int mx1 = 0, mn1 = INT_MAX; // 如果初始化 mx[][], 那么 mx1 = INT_MIN
25
       for (int i = x; i \le up; i += i \& -i) {
           for (int j = y; j; j = j & -j) {
26
               mx1 = max(mx1, mx[i][j]);
27
28
               mn1 = min(mn1, mn[i][j]);
           }
29
30
31
       return !mx1 ? 0 : mx1 - mn1;
32 }
33
   int main() {
34
       scanf("%d%d", &n, &m);
35
       memset(mn, 127, sizeof(mn));
36
37
       // memset(mx, 128, sizeof(mx)); // 视情况决定是否初始化 mx
38
       int opt, x, y, z;
       for (int i = 1; i <= n; ++i) {
39
           scanf("%d%d%d", &x, &y, &z);
40
41
           add(x, y, z);
42
       while (m--) {
43
           scanf("%d%d%d", &opt, &x, &y);
44
           if (opt & 1) {
45
               scanf("%d", &z);
46
               add(x, y, z);
47
           } else {
48
               printf("%d\n", ask(x, y));
49
50
           }
51
       return 0;
52
   }
53
   3.18.6 树状数组套主席树【带修区间第 k 小】
   动态区间第 k 小 (带修区间第 k 小, 修改操作采用先删后加的方式实现)
1 // 空间: O(n logn logn)
2 // 时间: O(n logn logn)
3 /* 查询排名时间复杂度优于 线段树套平衡树 (后者查询排名是 O(logn logn logn) 的)
   * 但空间复杂度会多一个 logn */
5 // 核心函数 add(), kth()
6 #define L(x) t[x].l
7 #define R(x) t[x].r
  struct Tree {
8
       int 1, r, w;
9
10 } t[N * 404]; // O(nlognlogn)
11 struct Q { // 离线询问
       int 1, r, k, opt, x, y;
13 } q[N];
```

```
14 int n, m, opt, x, len, cnt;
   int a[N], b[N << 1], rt[N], tl[22], tr[22];</pre>
  // b 对所有初始值和修改后的值离散化,空间: O(n * n)
17
   // tl, tr : 0(logn) 空间
   void update(int &now, int x, int k, int l = 1, int r = len) {
18
19
       if (!now) now = ++cnt;
20
       t[now].w += k; // 主席树的前缀和
21
       if (l == r) return;
22
       int mid = (l + r) \gg 1;
23
       if (x \ll mid)
           update(L(now), x, k, l, mid);
24
25
       else
           update(R(now), x, k, mid + 1, r);
26
27
   iv add(int i, int x, int k) { // k: 1, i 位置加数; x: -1, i 位置减数 x
28
       while (i \ll n) {
29
30
           update(rt[i], x, k); // 树状数组的区间前缀和
           i += lowbit(i);
31
32
       }
33 }
34 // 递归版
35 // 树状数组存的是区间前缀和,每个区间对应一颗主席树,主席树内维护权值前缀
36 // 故将区间 [1 ~ r] 的主席树的 ls - [1 ~ l - 1] 的主席树的 ls 即得 [l, r] 的主席树的 ls
   int query(int k, int l = 1, int r = len) {
38
       if (l == r) return l;
       int mid = (l + r) >> 1, tot = 0;
39
       for (int i = 1; i <= *tr; ++i) tot += t[L(tr[i])].w; // 区间 [1 ~ r] 的主席树
40
       for (int i = 1; i <= *tl; ++i) tot -= t[L(tl[i])].w; // 区间 [1 ~ l] 的主席树
41
       // 差分: 用 [1~r] 的左子树 - [1, l - 1] 的左子树
42
       if (k <= tot) { // 在左子树
43
           for (int i = 1; i <= *tl; ++i) tl[i] = L(tl[i]);
for (int i = 1; i <= *tr; ++i) tr[i] = L(tr[i]);</pre>
44
45
            return query(k, l, mid);
46
       } else { // 在右子树
47
           for (int i = 1; i <= *tl; ++i) tl[i] = R(tl[i]);</pre>
48
           for (int i = 1; i <= *tr; ++i) tr[i] = R(tr[i]);</pre>
49
            return query(k - tot, mid + 1, r); // k - tot
50
51
       }
52
   }
   int kth(int 1, int r, int k) {
53
       *tl = *tr = 0;
54
                     r ; i; i -= lowbit(i)) tr[++*tr] = rt[i]; // 把 [1 ~ r] 的根都存下
       for (int i =
55
       for (int i = l - 1; i; i -= lowbit(i)) tl[++*tl] = rt[i]; // 把 [1 ~ l - 1] 的根都存
56
       return query(k);
57
58 }
59 // 非递归版
60 int kth(int l, int r, int k) { // 非递归版, 时间上更优
       *tl = *tr = 0;
61
62
       for (int i = l - 1; i; i -= lowbit(i)) tl[++*tl] = rt[i];
63
       for (int i = r ; i; i -= lowbit(i)) tr[++*tr] = rt[i];
       l = 1, r = len;
64
65
       while (l < r) {
            int tot = 0, mid = (l + r) \gg 1;
66
           for (int i = 1; i <= *tl; ++i) tot -= t[L(tl[i])].w;</pre>
67
           for (int i = 1; i <= *tr; ++i) tot += t[L(tr[i])].w;
68
           if (k <= tot) {
69
70
                for (int i = 1; i <= *tl; ++i) tl[i] = L(tl[i]);</pre>
71
               for (int i = 1; i <= *tr; ++i) tr[i] = L(tr[i]);</pre>
```

```
72
                 r = mid;
73
             } else {
                 for (int i = 1; i <= *tl; ++i) tl[i] = R(tl[i]);</pre>
74
                 for (int i = 1; i <= *tr; ++i) tr[i] = R(tr[i]);</pre>
75
76
                 l = mid + 1;
77
                 k -= tot;
78
             }
79
        }
80
        return 1;
81
    }
    int main() {
82
83
        len = n = rd(), m = rd();
        for (int i = 1; i <= n; ++i) a[i] = b[i] = rd();</pre>
84
        for (int i = 1; i <= m; ++i) {
85
             scanf("%s", s);
86
             q[i].opt = *s == 'Q';
87
88
             if (q[i].opt) {
                 q[i].l = rd(), q[i].r = rd(), q[i].k = rd();
89
             } else {
90
91
                 q[i].x = rd();
                 q[i].y = b[++len] = rd();
92
             }
93
        }
94
95
        // 离线下来进行离散化
96
        sort(b + 1, b + 1 + len);
        len = unique(b + 1, b + 1 + len) - b - 1;
97
        for (int i = 1; i <= n; ++i)
98
             add(i, lower_bound(b + 1, b + 1 + len, a[i]) - b, 1); // 存入树中
99
        for (int i = 1; i \le m; ++i) {
100
             if (q[i].opt) { // 查询 [l, r] 中第 k 小的数
101
                 printf("%d\n", b[kth(q[i].l, q[i].r, q[i].k)]);
102
             } else { // 将 a[x] 修改为 y
103
                 x = lower\_bound(b + 1, b + 1 + len, a[q[i].x]) - b;
104
                 add(q[i].x, x, -1); // 删数 x
105
                 a[q[i].x] = q[i].y;
106
                 x = lower\_bound(b + 1, b + 1 + len, a[q[i].x]) - b;
107
108
                 add(q[i].x, x, 1); /// 加数 y
109
             }
110
        }
        return 0;
111
112
```

3.18.7 树状数组套主席树【动态逆序对个数】

```
1 // 时空: O(nlognlogn)
2 // 动态逆序对个数
3 // 每删一个数, 统计一次逆序对个数
4 #define L(x) t[x].l
5 #define R(x) t[x].r
6 struct Tree { int l, r, w; } t[N * 404]; // O(nlognlogn)
7 int a[N], rt[N], pos[N], tl[22], tr[22];
8 int n, m, x, cnt;
  ll ans;
9
10
   void update(int &now, int x, int k, int l = 1, int r = n) {
11
       if (!now) now = ++cnt;
12
       t[now].w += k;
13
       if (l == r) return;
       int mid = (l + r) \gg 1;
14
```

```
if (x \ll mid)
15
           update(L(now), x, k, l, mid);
16
       else
17
           update(R(now), x, k, mid + 1, r);
18
19
   }
   void add(int i, int x, int k) { // k: 1, i 位置加数; x: -1, i 位置减数 x
20
       while (i \ll n) {
21
22
           update(rt[i], x, k);
23
           i += lowbit(i);
       }
24
25
26
   11 query(int 1, int r, int x, int d) {
27
       *tl = *tr = 0;
       for (int i = l - 1; i; i -= lowbit(i)) tl[++*tl] = rt[i]; // 注意 l - 1
28
       29
       l = 1, r = n;
30
31
       11 \text{ sum} = 0;
       while (l < r) {
32
           int mid = (l + r) \gg 1;
33
           if (x \leftarrow mid) {
34
               if (!d) { // 查询比 x 大的数的个数,统计右区间答案
35
                   for (int i = 1; i <= *tl; ++i) sum -= t[R(tl[i])].w;</pre>
36
                   for (int i = 1; i <= *tr; ++i) sum += t[R(tr[i])].w;</pre>
37
38
39
               for (int i = 1; i <= *tl; ++i) tl[i] = L(tl[i]);</pre>
               for (int i = 1; i <= *tr; ++i) tr[i] = L(tr[i]);</pre>
40
               r = mid;
41
           } else {
42
               if (d) { // 查询比 x 小的数的个数, 统计左区间答案
43
                   for (int i = 1; i <= *tl; ++i) sum -= t[L(tl[i])].w;</pre>
44
                   for (int i = 1; i <= *tr; ++i) sum += t[L(tr[i])].w;</pre>
45
46
               for (int i = 1; i <= *tl; ++i) tl[i] = R(tl[i]);</pre>
47
               for (int i = 1; i <= *tr; ++i) tr[i] = R(tr[i]);</pre>
48
               l = mid + 1;
49
           }
50
51
       }
52
       return sum;
53
   }
54
       for (int i = 1; i <= n; ++i) {
55
           a[i] = rd();
56
           pos[a[i]] = i; // 权值为 a[i] 的数的位置
57
           ans += query(1, i - 1, a[i], 0);
58
           // 逆序对增加了 i 前面比 a[i] 大的数的个数
59
60
           add(i, a[i], 1); // i 这个位置对主席树的 a[i] 位置加 1
61
       while (--m) {
62
           x = rd(); // 删去权值为 x 的数
63
           ans -= query(1, pos[x] - 1, x, 0);
64
           ans -= query(pos[x] + 1, n, x, 1);
65
66
           // 每次删数逆序对减少了 pos[x] 前面比 x 大, pos[x] 后面比 x 小的数的个数
           printf("%lld\n", ans);
67
           add(pos[x], x, -1); // pos[x] 这个位置对主席树的 x 位置减 1
68
       }
69
70 }
```

3.18.8 树状数组套主席树树【带修链上第 k 大】

```
1 // BIT 套主席树(在线) 0(n logn logn) 或 树上带修莫队+值域分块(离线) 0(n^(5/3))
2 #define N 100005
3 const int mx = 1e8;
4 int n, m, k, x, y, cnt;
5 int h[N], a[N], rt[N], dfn[N];
6 int siz[N], fa[N], dep[N], son[N], top[N];
   int lowbit(int x) { return x & -x; }
8 struct Edge { int to, nx; } e[N << 1];</pre>
9 struct Node { int l, r, tot; } t[N * 404];
10 struct Tmp {
11
       int n, a[N];
12
       void init(int i) {
            n = 0;
13
            while (i) {
14
                a[++n] = rt[i];
15
                i -= lowbit(i);
16
            }
17
18
       int cal(int ans = 0) {
19
            for (int i = 1; i <= n; ++i) {
20
21
                ans += t[t[a[i]].l].tot; // 计算左子树 tot
22
23
            return ans;
24
25
       void ls() {
            for (int i = 1; i \le n; ++i) a[i] = t[a[i]].l;
26
27
28
       void rs() {
            for (int i = 1; i <= n; ++i) a[i] = t[a[i]].r;</pre>
29
30
   } tl, tr, ta, tf;
   void add(int u, int v) {
32
       static int cnt = 0;
33
34
       e[++cnt].to = v;
35
       e[cnt].nx = h[u];
36
       h[u] = cnt;
37
   }
38
   void dfs1(int u, int pre) {
       siz[u] = 1;
39
       fa[u] = pre;
40
41
       dfn[u] = ++cnt;
       dep[u] = dep[pre] + 1;
42
       for (int i = h[u]; i; i = e[i].nx) {
43
44
            int v = e[i].to;
            if (v != pre) {
45
46
                dfs1(v, u);
                siz[u] += siz[v];
47
                if (siz[son[u]] < siz[v]) {</pre>
48
49
                    son[u] = v;
50
                }
51
            }
52
       }
53
   }
   void dfs2(int u, int tpf) {
54
       top[u] = tpf;
55
       if (!son[u]) return;
56
57
       dfs2(son[u], tpf);
       for (int i = h[u]; i; i = e[i].nx) {
58
            int v = e[i].to;
59
```

```
if (v != fa[u] && v != son[u]) {
60
61
                 dfs2(v, v);
            }
62
        }
63
    }
64
    int LCA(int x, int y) {
65
        while (top[x] ^ top[y]) {
66
            dep[top[x]] < dep[top[y]] ? y = fa[top[y]] : x = fa[top[x]];
67
68
        return dep[x] > dep[y] ? y : x;
69
    }
70
    void update(int &now, int x, int k, int l = 1, int r = mx) {
71
72
        if (!now) now = ++cnt;
        t[now].tot += k;
73
        if (l == r) return;
74
        int mid = (l + r) \gg 1;
75
76
        if (x \le mid) {
            update(t[now].l, x, k, l, mid);
77
78
        } else {
79
            update(t[now].r, x, k, mid + 1, r);
80
    }
81
    void add(int i, int x, int k) {
83
        while (i \ll n) {
84
            update(rt[i], x, k);
85
            i += lowbit(i);
        }
86
87
    int query(int k) { // 查第 k 小
88
89
        int l = 1, r = mx;
        while (l < r) {
90
            int mid = (l + r) \gg 1;
91
            int tot = tl.cal() + tr.cal() - ta.cal() - tf.cal();
92
            if (k <= tot) { // 注意是 <=
93
94
                 tl.ls(), tr.ls(), ta.ls(), tf.ls();
                 r = mid;
95
96
            } else {
97
                 tl.rs(), tr.rs(), ta.rs(), tf.rs();
                 l = mid + 1;
98
                 k -= tot; //
99
            }
100
101
102
        return 1; //
103
    int main() {
104
        n = rd(), m = rd();
105
        for (int i = 1; i <= n; ++i) a[i] = rd();
106
        for (int i = 1; i < n; ++i) {
107
            x = rd(), y = rd();
108
            add(x, y), add(y, x);
109
110
111
        dfs1(1, 0), dfs2(1, 1);
112
        for (int i = 1; i <= n; ++i) { // 对 dfn 序进行可持续化
            add(dfn[i], a[i], 1); // 对 i 子树内的 a[i] 加 1
113
            add(dfn[i] + siz[i], a[i], -1); // i 子树外的 a[i] 不用加 1 , 要减去前面加的 1
114
115
        while (m--) {
116
117
            k = rd(), x = rd(), y = rd();
            if (k) { // 求 x - y 链上的第 k 大
118
```

```
int lca = LCA(x, y), flca = fa[lca];
119
                int len = dep[x] + dep[y] - dep[lca] - dep[flca];
120
                if (k > len) { puts("invalid request!"); continue; } // 不存在
121
                k = len - k + 1; // 转为求第 k 小
122
123
                tl.init(dfn[x]), tr.init(dfn[y]); // 把 rt[] 先提出来
                ta.init(dfn[lca]), tf.init(dfn[flca]);
124
                printf("%d\n", query(k));
125
            } else { // 修改 a[x] 为 y
126
                add(dfn[x], a[x], -1);
127
128
                add(dfn[x] + siz[x], a[x], 1);
129
                a[x] = y;
                add(dfn[x], a[x], 1);
130
131
                add(dfn[x] + siz[x], a[x], -1);
132
            }
133
134
        return 0;
135
   }
    3.19
           树链剖分
    3.19.1 点权
 1 struct Edge { int to, nx; } e[M << 1];</pre>
 2 int n, x, y, z, cnt, tot;
 3 int h[N], w[N], wt[N], t[N << 2], tag[N << 2];</pre>
 4 int dep[N], siz[N], top[N], son[N], fa[N], id[N];
    void dfs1(int u, int pre) {
        dep[u] = dep[pre] + 1, fa[u] = pre, siz[u] = 1;
 6
        for (int i = h[u]; i; i = e[i].nx) {
 7
 8
            int v = e[i].to;
            if (v != pre) {
 9
 10
                 dfs1(v, u);
11
                siz[u] += siz[v];
12
                if (siz[son[u]] < siz[v]) son[u] = v;</pre>
13
            }
14 }
    void dfs2(int u, int tpf) {
15
16
        top[u] = tpf, wt[id[u] = ++tot] = w[u];
        if (!son[u]) return;
17
        dfs2(son[u], tpf);
18
19
        for (int i = h[u]; i; i = e[i].nx) {
20
            int v = e[i].to;
            if (v != fa[u] \&\& v != son[u]) dfs2(v, v);
21
22
23
24
    void build(int l, int r, int p) {
        if (l == r) return t[p] = wt[l], void(); // 线段树部分以 wt[] 来建树
25
        /* */
26
27
    void updRange(int x, int y, int z, int q) { // 用 z 修改 x 到 y 路径上的权值
28
        while (top[x] != top[y]) {
29
30
            if (dep[top[x]] < dep[top[y]]) swap(x, y);</pre>
            update(1, n, 1, id[top[x]], id[x], z, q);
31
32
            x = fa[top[x]];
33
        if (dep[x] > dep[y]) swap(x, y);
34
35
        update(1, n, 1, id[x], id[y], z, q);
    int qRange(int x, int y) { // 求 x 到 y 路径上的权值
```

```
38
       int ans = 0;
       while (top[x] ^ top[y]) {
39
           if (dep[top[x]] < dep[top[y]]) swap(x, y);
40
41
           ans += query(1, n, 1, id[top[x]], id[x]);
42
           x = fa[top[x]];
43
       if (dep[x] > dep[y]) swap(x, y);
44
       ans += query(1, n, 1, id[x], id[y], z, q);
45
       return ans;
46
47
   }
   void updSon(int x, int z) { // 用 z 修改 x 子树
48
49
       update(1, n, 1, id[x], id[x] + siz[x] - 1, z);
50
   int qSon(int x, int y, int z) { // 求 x 子树的权值
51
       return query(1, n, 1, id[x], id[x] + siz[x] - 1]);
52
53
   3.19.2 边权
   struct Node {
       int to, nx, w; // 维护边权
3 } e[N << 1];
  int n, x, y, z, cnt, tot;
  int h[N], w[N], wt[N], t[N << 2], tag[N << 2];</pre>
   int dep[N], siz[N], top[N], son[N], fa[N], id[N];
   void dfs1(int u, int pre) {
       dep[u] = dep[pre] + 1, fa[u] = pre, siz[u] = 1;
8
       for (int i = h[u]; i; i = e[i].nx) {
9
10
            int v = e[i].to;
11
           if (v != pre) {
12
                dfs1(v, u);
                w[v] = e[i].w; // 边权作为儿子的点权
13
                siz[u] += siz[v];
14
                if (siz[son[u]] < siz[v]) son[u] = v;</pre>
15
16
           }
       }
17
18
   }
   void dfs2(int u, int tpf) { /* 与点权版一致 */ }
19
   void updRange(int x, int y, int z) {
       while (top[x] != top[y]) {
21
           if (dep[top[x]] < dep[top[y]]) swap(x, y);
update(1, n, 1, id[top[x]], id[x], z);</pre>
22
23
24
           x = fa[top[x]];
25
       if (x == y) return; // 边权版需增加该判断
26
27
       if (dep[x] > dep[y]) swap(x, y);
       update(1, n, 1, id[son[x]], id[y], z); // id[son[x]] 边权与点权区别
28
29
   }
   void updSon(int x, int z) { // 用 z 修改 x 子树
30
31
       update(1, n, 1, id[son[x]], id[x] + siz[x] - 1, z); // id[son[x]] 並权与点权区别
32
   // qRange 与 qSon 对 updRange 和 updSon 进行简单修改即可
          最近公共祖先 (LCA)
   3.20
   3.20.1 倍增版
```

127

```
1 vector<int> e[N];
   int fa[N][22], dep[N], lg[N];
   void build(int u, int pre) { // build(rt, 0)
       fa[u][0] = pre;
4
       dep[u] = dep[pre] + 1;
5
       for (int i = 1; i <= lg[dep[u]]; ++i)</pre>
6
           fa[u][i] = fa[fa[u][i - 1]][i - 1];
7
       for (auto &v : e[u]) if (v != pre) build(v, u);
8
9
   }
  int LCA(int x, int y) \{ // lca = LCA(x, y) \}
       if (dep[x] < dep[y]) swap(x, y);
11
12
       while (dep[x] > dep[y]) x = fa[x][lg[dep[x] - dep[y]]];
13
       if (x == y) return x;
       for (int i = lg[dep[x]]; i >= 0; --i) // i >= 0
14
           if (fa[x][i] != fa[y][i]) {
15
               x = fa[x][i], y = fa[y][i];
16
17
18
       return fa[x][0];
19 }
20 void init() { // lg[] 初始化
21
       *lg = -1;
       for (int i = 1; i \le n; ++i) lg[i] = lg[i >> 1] + 1;
22
23 }
   3.20.2 树剖版
1 // 先树剖预处理
void dfs1(int u, int pre);
3 void dfs2(int u, int tpf);
4 int LCA(int x, int y) {
       while (top[x] ^ top[y]) {
6
           dep[top[x]] < dep[top[y]] ? y = fa[top[y]] : x = fa[top[x]];
7
       return dep[x] > dep[y] ? dep[y] : dep[x];
8
   }
9
   3.20.3 Tarjan 版 (离线)
1 // 离线算法
2 struct { int u, v, lca; } q[N << 1]; // 离线询问
3 int vis[N], pre[N], h[N];
   vector<int> e[N]; // 边
   int find(int x) {
5
       return pre[x] == x ? x : pre[x] = find(pre[x]);
6
7
   }
   void merge(int x, int y) {
8
       x = find(x), y = find(y);
9
       if (x \wedge y) pre[x] = y;
10
11 }
12 void init() {
       fill(h, 0, (h + 1) \ll 2);
13
       for (int i = 1; i <= n; ++i) pre[i] = i;
14
   }
15
   void Tarjan(int u) {
16
17
       vis[u] = 1;
       for (auto &v : e[u]) if (!vis[v]) Tarjan(v), merge(u, v);
18
       for (int i = h[u]; i; i = q[i].nx) {
19
            int v = q[i].to;
20
```

```
if (vis[v]) q[i].lca = q[i ^ 1].lca = find(v); // 计算出每个询问的 LCA
21
       }
22
23 }
   3.20.4 LCT 版
1 // 详见 LCT 分类中的求 LCA
   3.21 树上k级祖先
1 // 求 x 的第 k 级祖先
2 // 重链剖分版 O(n) - O(logn)
3 // 先树链剖分预处理
   void dfs1(int u, int pre);
4
   void dfs2(int u, int tpf) {
       top[u] = tpf;
6
7
       id[u] = ++tot;
       pos[tot] = u; // 记录位置
8
9
       /*...*/
10
   }
   int ask(int x, int k) {
11
       while (k >= id[x] - id[top[x]] + 1 && fa[x]) {
12
           k = id[x] - id[top[x]] + 1;
13
           x = fa[top[x]];
14
15
16
       return pos[id[x] - k];
   }
17
18
  // 长链剖分版 O(nlogn) - O(1)
19
  // mxd : 当前节点的儿子最大深度, son : 长儿子
   // 随机数据下比重链剖分版慢 1 倍,好像非随机长链剖分也比重链剖分慢?
22
   void dfs1(int u, int pre) {
23
       mxd[u] = dep[u] = dep[pre] + 1;
24
       fa[u][0] = pre;
25
       for (int i = 1; i <= lg[dep[u]]; ++i)</pre>
           fa[u][i] = fa[fa[u][i - 1]][i - 1];
26
27
       for (auto &v : e[u]) {
28
           if (v != pre) {
29
               dfs1(v, u);
30
               if (mxd[u] < mxd[v]) {</pre>
                   mxd[u] = mxd[v];
31
32
                   son[u] = v;
33
               }
34
           }
       }
35
36
   void dfs2(int u, int tpf) {
37
38
       top[u] = tpf;
       if (u == tpf) { // 在每条链的顶点记录在它上面和下面的节点
39
40
           for (int i = 0, x = u; i \le mxd[u] - dep[u]; ++i)
               up[u].push_back(x), x = fa[x][0];
41
42
           for (int i = 0, x = u; i \le mxd[u] - dep[u]; ++i)
43
               down[u].push_back(x), x = son[x];
44
       if (!son[u]) return;
45
46
       dfs2(son[u], tpf);
       for (auto &v : e[u]) if (v != son[u] && v != fa[u][0]) dfs2(v, v);
47
```

```
}
48
   inline int ask(int x, int k) {
49
       if (!k) return x;
50
       x = fa[x][lg[k]], k -= 1 << lg[k]; // 先用倍增往上跳
51
52
       k \rightarrow dep[x] - dep[top[x]], x = top[x]; // 再跳到所在链顶端
53
       return k >= 0 ? up[x][k] : down[x][-k]; // 最后用链顶的信息确定位置
54 }
          树同构
   3.22
1 /* 对于两个树 T1 和 T2, 如果能够把树 T1 的所有点重新标号,
    * 使得树 T1 和树 T2 完全相同, 那么这两个树是同构的. 也就是说, 它们具有相同的形态.
   * 现在,给你 M 个无根树,请你把它们按同构关系分成若干个等价类. */
   int x; uint ans[N][N]; // ans[i][j] : i 树以 j 为根的 Hash 值
   uint ELF_Hash(int u, int pre) {
       uint st[N], hs = 1, t = 0;
6
       for (int i = h[u]; i; i = e[i].nx)
7
           if (e[i].to != pre)
8
9
               st[++t] = ELF_Hash(e[i].to, u);
10
       sort(st + 1, st + 1 + t); // 对子树 Hash 值排序
11
       for (int i = 1; i <= t; ++i) { // ELF Hash
12
           hs = (hs << 4) + st[i];
           (x = hs \& 0xf0000000) \&\& (hs ^= (x >> 24), hs \&= ~x);
13
14
15
       return (hs & 0x7ffffffff);
16
   }
17
   int main() {
       scanf("%d", &m);
18
19
       for (int i = 1; i <= m; ++i) {
           memset(h, 0, sizeof(h));
20
           scanf("%d", &n);
21
22
           cnt = 0;
           for (int j = 1; j <= n; ++j) {
    scanf("%d", &x);</pre>
23
24
25
               if (x) add(x, j), add(j, x);
26
           for (int j = 1; j <= n; ++j)
27
               ans[i][j] = ELF_Hash(j, 0);
28
           sort(ans[i] + 1, ans[i] + 1 + n); // 对各根的 Hash 值排序
29
           for (int j = 1; j \le i; ++j) {
30
               int k = 0;
31
               while (k++ \le n \& ans[i][k] == ans[j][k]);
32
               if (k > n) \{ printf("%d\n", j); break; \}
33
           }
34
35
       return 0;
36
37
  }
          树的重心
   3.23
   3.23.1 重心
   void dfs(int u, int pre) {
1
2
       size[u] = 1, mx[u] = 0;
       for (auto &v : e[u]) {
3
           if(v != pre) {
4
               dfs(v, u);
5
               size[u] += size[v];
6
```

```
mx[u] = max(mx[u], size[v]);
7
8
           mx[u] = max(mx[u], n - size[u]);
9
10
           if(mx[u] <= n / 2) rt[*rt] = u; // 可能有两个重心
11
           // 或者求任意一个重心可将以上 if 语句改为以下语句
12
13
           if (mx[u] < mx[rt]) rt = u; //</pre>
       }
14
   }
15
   3.23.2 带权重心
   // https://www.luogu.com.cn/problem/P1364
   int w[N], dp[N];
3
   void dfs(int u, int pre, int d) {
       dp[1] += d * w[u];
4
       for (auto &v : e[u]) {
5
           if (v != pre) dfs(v, u, d + 1);
6
7
           w[u] += w[v];
       }
8
   }
9
10
   void dfs1(int u, int pre) {
11
       ans = ans > dp[u] ? dp[u] : ans;
12
       for (auto &v : e[u])
13
           if (v != pre) {
14
15
               dp[v] = dp[u] + w[1] - (w[v] << 1);
16
               dfs1(v, u);
17
           }
18
  dfs(1, 0, 0), dfs1(1, 0);
   3.24 K-D Tree
1 // K-D Tree
2 // 空间: 0(n)
3 // 时间: 建树, 插入 O(nlogn), 单次查询 O(pow(n, (k - 1) / k))
4 // https://www.luogu.com.cn/problem/P4148
5 // 操作:插入一个点;查询矩阵权值和
6 // 强制在线, 空间限制
7 #define L t[o].1
8 #define R t[o].r
9 #define y1 yl
10 const double al = 0.75; // 平衡因子, 一般设定为 0.6 ~ 0.9
11 int rub[N]; // 回收栈
12 int n, K, rt, rb, cnt, lans, opt;
13
   struct Point {
       int x[2]; // 横纵坐标值
14
       11 w; // 权值, 变量顺序不能反
15
       bool operator < (const Point &b) const {</pre>
16
           return x[K] < b.x[K]; // 以第 K 维的坐标值来排序
17
18
   } p[N];
19
   struct Node {
20
       ll sum;
21
22
       Point p;
       int l, r, siz;
23
```

```
int mx[2], mn[2]; // 第 i 维区间的上下界
   } t[N];
  // 建立一个新节点
26
   inline int New() { return rb ? rub[rb--] : ++cnt; }
   // 更新子树最大/最小值, 子树大小, 权值和
   inline void pushup(int o) {
30
       for (int i = 0; i <= 1; ++i) {
           t[o].mn[i] = min(t[o].p.x[i], min(t[L].mn[i], t[R].mn[i]));
31
           t[o].mx[i] = max(t[o].p.x[i], max(t[L].mx[i], t[R].mx[i]));
32
33
       t[o].sum = t[L].sum + t[R].sum + t[o].p.w;
34
35
       t[o].siz = t[L].siz + t[R].siz + 1;
36
  }
   // 把树还原成序列
37
   void pia(int o, int lsum) {
38
       if (L) pia(L, lsum);
39
       p[t[L].siz + lsum + 1] = t[o].p; // 将节点存为序列
40
       rub[++rb] = o; // 回收节点编号
41
       if (R) pia(R, t[L].siz + lsum + 1);
42
43 }
44 // 通过序列建树
45 int rebuild(int l, int r, int k) { // O(nlogn)
       if (l > r) return 0;
46
47
       K = k; // 令 p T 按照第 K 维排序
       int mid = (l + r) \gg 1, o = New();
48
       nth_element(p + l, p + mid, p + r + 1); // 按中位数划分
49
       t[o].p = p[mid];
50
       L = rebuild(l, mid - 1, k ^ 1); // 按照不同维度交替建树
51
       R = rebuild(mid + 1, r, k \wedge 1);
52
53
       pushup(o);
       return o;
54
55
   }
56
   // 检查树是否平衡, 不平衡则重建
   inline void check(int &o, int k) {
57
       if (t[o].siz * al < t[L].siz || t[o].siz * al < t[R].siz) { // 判断平衡
58
           pia(o, 0); // 转化为序列
59
60
           o = rebuild(1, t[o].siz, k); // 重建这颗子树
61
       }
  }
62
   // 插入
63
   void insert(int &o, Point tmp, int k) {
64
       if (!o) { // 插入点
65
           o = New();
66
           L = R = 0;
67
           t[o].p = tmp;
68
69
           pushup(o);
70
           return;
71
72
       if (tmp.x[k] <= t[o].p.x[k]) // 按照坐标值插入
73
           insert(L, tmp, k \wedge 1);
74
75
           insert(R, tmp, k \wedge 1);
76
       pushup(o); // 先更新信息
       check(o, k); // 然后检查检查平衡
77
78
79 // x: 查询的范围, X: 当前节点覆盖的范围, X 要在 x 里面
  // 检查是否在查询矩形内
   inline int in(int x1, int y1, int x2, int y2, int X1, int Y1, int X2, int Y2) {
       return x1 <= X1 && y1 <= Y1 && x2 >= X2 && y2 >= Y2;
82
```

```
83 }
   // 检查是否在查询矩形外
    inline int out(int x1, int y1, int x2, int y2, int X1, int Y1, int X2, int Y2) {
        return x1 > X2 || y1 > Y2 || x2 < X1 || y2 < Y1;
86
87
   // 查询矩阵和
88
    ll query(int o, int x1, int y1, int x2, int y2) {
89
90
        if (!o) return 0;
        if (out(x1, y1, x2, y2, t[o].mn[0], t[o].mn[1], t[o].mx[0], t[o].mx[1])) return 0;
91
        if (in(x1, y1, x2, y2, t[o].mn[0], t[o].mn[1], t[o].mx[0], t[o].mx[1])) return t[o
92
        1.sum;
93
        11 \text{ ans} = 0;
        if (in(x1, y1, x2, y2, t[o].p.x[0], t[o].p.x[1], t[o].p.x[0], t[o].p.x[1]))
94
            ans = t[o].p.w; // 判断当前点是否在查询矩阵内
95
        return ans + query(L, x1, y1, x2, y2) + query(R, x1, y1, x2, y2);
96
97
98
        t[0].mn[0] = row_max, t[0].mn[1] = col_max;
99
        t[0].mx[0] = row_min, t[0].mx[1] = col_min;
100
        if (opt & 1) {
101
            insert(rt, (Point) {x, y, A}, 0);
102
        } else {
103
            // (x1, y1) 左下, (x2, y2) 右上
104
105
            lans = query(rt, x1, y1, x2, y2);
106
        }
107 }
    3.24.1 二维最近距离
 1 // 小常数 K-D Tree 写法
   // 空间回收 -> n, 不回收 -> n * 3 ~ n * 4
 3 const int INF = 2e9;
 4 const double al = 0.75;
 5 int rub[N], tmp[N];
 6 int n, m, opt, x, y, K, rb, rt, tot, cnt, ans, now;
   struct Point { int x[2]; } p[N];
    struct Node {
        int l, r, k, id, siz;
 9
10
        int mn[2], mx[2];
        Point p;
11
12
    } t[N];
    inline bool cmp(int i, int j) { return p[i].x[K] < p[j].x[K]; }</pre>
    inline int New() { return rb ? rub[rb--] : ++cnt; }
    inline void pushup(int o) {
        t[o].mn[0] = min(t[o].p.x[0], min(t[L].mn[0], t[R].mn[0]));
16
        t[o].mx[0] = max(t[o].p.x[0], max(t[L].mx[0], t[R].mx[0]));
17
        t[o].mn[1] = min(t[o].p.x[1], min(t[L].mn[1], t[R].mn[1]));
18
        t[o].mx[1] = max(t[o].p.x[1], max(t[L].mx[1], t[R].mx[1]));
19
        t[o].siz = t[L].siz + t[R].siz + 1;
20
21
    }
    void pia(int o) {
22
        if (L) pia(L);
23
24
        tmp[++tot] = t[o].id;
        rub[++rb] = o; //
25
        if (R) pia(R);
26
27
    int build(int l, int r, int k) {
28
29
        if (l > r) return 0;
```

```
K = k;
30
        int mid = (l + r) \gg 1, o = New();
31
        nth_element(tmp + l, tmp + mid, tmp + r + 1, cmp);
32
        t[o].p = p[tmp[mid]];
33
34
        t[o].id = tmp[mid];
        t[o].k = k;
35
36
        L = build(l, mid - 1, k ^ 1);
        R = build(mid + 1, r, k ^ 1);
37
38
        pushup(o);
        return o;
39
   }
40
41
   inline void check(int &o) {
        if (t[o].siz * al < max(t[L].siz, t[R].siz)) {</pre>
42
            tot = 0, pia(o);
43
            o = build(1, tot, 0);
44
        }
45
   }
46
   short seed = 2333; // 卡常
47
   inline short rnd() { return seed = (seed * 7 + 13) ^ (seed / 13 - 7); }
   void insert(int &o, int id) {
        if (!o) {
50
            o = New();
51
            L = R = 0;
52
53
            t[0].id = id;
54
            t[o].p = p[id];
            t[o].k = rnd() & 1;
55
            pushup(o);
56
            return;
57
58
        K = t[o].k;
59
        if (cmp(id, t[o].id)) insert(L, id);
60
        else insert(R, id);
61
62
        pushup(o), check(o);
   }
63
   int cal(int o, int id) {
64
        int ans = 0;
65
66
        ans += \max(0, p[id].x[0] - t[o].mx[0]) + \max(0, t[o].mn[0] - p[id].x[0]);
67
        ans += \max(0, p[id].x[1] - t[o].mx[1]) + \max(0, t[o].mn[1] - p[id].x[1]);
        return ans;
68
   }
69
   int query(int o, int id) {
70
        if (id ^ t[o].id)
71
            ans = min(ans, abs(t[o].p.x[0] - p[id].x[0]) + abs(t[o].p.x[1] - p[id].x[1]));
72
73
        int ld = L? cal(L, id) : INF;
        int rd = R ? cal(R, id) : INF;
74
75
        if (ld < rd) {
            if (ld < ans) query(L, id);</pre>
76
            if (rd < ans) query(R, id);</pre>
77
        } else {
78
79
            if (rd < ans) query(R, id);</pre>
80
            if (ld < ans) query(L, id);</pre>
81
82
        return ans;
83
   }
   int main() {
84
85
        n = rd(), m = rd();
86
        t[0].mn[0] = t[0].mn[1] = INF;
87
        for (int i = 1; i <= n; ++i) {
88
            tmp[i] = i;
```

```
p[i].x[0] = rd();
89
            p[i].x[1] = rd();
90
91
        rt = build(1, n, 0); // 直接建树
92
93
        now = n;
        while (m--) {
94
            opt = rd(), x = rd(), y = rd();
95
            p[++now] = (Point) \{x, y\};
96
            if (opt & 1) {
97
                insert(rt, now);
98
            } else {
99
100
                ans = INF;
101
                query(rt, now);
                printf("%d\n", ans);
102
            }
103
104
105
        return 0;
106
    3.25
           树上启发式合并 (DSU)
   // O(nlogn) * max(0(add), 0(del), 0(getans))
    int siz[N], son[N], st[N], ed[N], ans[N], rdfn[N], dfn;
    void dfs1(int u, int pre) {
        siz[u] = 1, st[u] = ++dfn, rdfn[dfn] = u;
 4
        for (int &v : e[u]) {
 5
 6
            if (v != pre) {
                dfs1(v, u);
 7
 8
                siz[u] += siz[v];
 9
                if (siz[v] > siz[son[u]]) son[u] = v;
10
            }
        }
11
        ed[u] = dfn;
12
13
    }
    void dfs2(int u, int pre, int keep) { // keep 控制是否保留修改
14
        // 计算轻儿子的答案
15
16
        for (int &v : e[u]) if (v != pre && v != son[u]) dfs2(v, u, 0);
        // 计算重儿子答案并保留计算过程中的修改(用于继承)
17
        if (son[u]) dfs2(son[u], u, 1);
18
        for (int &v : e[u]) {
19
            if (v != pre && v != son[u]) {
20
21
                // 子树结点的 dfs 序构成一段连续区间, 可以直接遍历
                for (int i = st[v]; i <= ed[v]; i++) add(rdfn[i]); // 修改
22
23
            }
24
        add(u); // 修改
25
        ans[u] = getAns(); // 记录答案
26
27
        // 轻儿子不保留修改, 回溯操作
28
        if (!keep) for (int i = st[u]; i <= ed[u]; i++) del(rdfn[i]); // 回溯
29 }
30
31
    {
        dfs1(1, 0), dfs2(1, 0, 0);
32
    }
33
```

4 Graph Theory

4.1 最短路

技巧

平面图转对偶图。平面图最小割 = 对偶图最短路。

分层图最短路。dis[],vis[] 改为多维数组记录当前状态下的 dis,vis,队列多存储下状态,即可进行转移。

状态压缩最短路。将状态用二进制存储下来,然后跑分层图最短路即可。

同余最短路。

4.1.1 Dijkstra

```
namespace Dij {
       typedef pair<int, int> p;
2
3
       struct Node {
4
            int to, nx, dis;
       } e[N << 1];
5
6
       int n, m, s, t, cnt;
       bool vis[N];
7
       int h[N], dis[N], pre[N]; // pre : 存路径
8
9
       void init(int n) { memset(h, 0, sizeof(h)), cnt = 0; }
       void add(int u, int v, int dis) { // 无向图需调用两次
10
            e[++cnt] = (Edge) \{v, h[u], dis\}, h[u] = cnt;
11
12
       }
13
       // 暴力 O(n * n)
14
       void dij(int s, int t) {
15
           memset(dis, 0x3f, sizeof(dis));
16
           memset(vis, 0, sizeof(vis));
17
            dis[s] = 0;
18
19
            for (int k = 1; k \le n; ++k) {
20
                int u = 0, mn = 0x3f3f3f3f;
                for (int i = 1; i <= n; ++i) {
21
22
                    if (!vis[i] && dis[i] < mn) {</pre>
23
                        mn = dis[i], u = i;
24
                    }
25
26
                vis[u] = 1;
                for (int i = h[u]; i; i = e[i].nx) {
27
                    int v = e[i].to;
28
                    if (dis[v] > dis[u] + e[i].dis) {
29
                        dis[v] = dis[u] + e[i].dis;
30
31
                }
32
           }
33
       }
34
35
       // 优先队列优化 O(mlogm)
36
       void dij(int s, int t) { // s, t : 起点,终点
37
            priority_queue<p, vector<p>, greater > que;
38
39
           memset(dis, 0x3f, sizeof(dis));
           memset(vis, 0, sizeof(vis));
40
            que.push(p(0, s));
41
            dis[s] = 0;
42
           while (!que.empty()) {
43
                int u = que.top().second;
44
```

```
que.pop();
45
                if (vis[u]) continue;
46
                vis[u] = 1;
47
                for (int i = h[u]; i; i = e[i].nx) {
48
                    int v = e[i].to;
49
                    if (dis[v] > dis[u] + e[i].dis) {
50
                        dis[v] = dis[u] + e[i].dis;
51
                        pre[v] = u; // 路径
52
                        if (!vis[v] && v != t) {
53
54
                            que.push(p(dis[v], v));
55
56
                    }
                }
57
           }
58
       }
59
60
       void build(int l, int r, int p) {
61
            L = 1, R = r;
62
63
            if (L == R) { t[p].d = 1; return; }
            int mid = (l + r) \gg 1;
64
           build(l, mid, ls(p));
65
           build(mid + 1, r, rs(p));
66
67
       inline int cmp(int x, int y) { return dis[x] < dis[y] ? x : y; }</pre>
68
69
       void update(int x, int p = 1) {
            if (L == R) return;
70
            update(x, x \leftarrow tls(p).r ? ls(p) : rs(p));
71
           t[p].d = cmp(tls(p).d, trs(p).d);
72
73
       // 线段树优化 O(mlogn)
74
       inline void dij(int s) {
75
            memset(dis, 0x3f, sizeof(dis));
76
            build(1, n, 1), dis[s] = 0;
77
            for (int u = s, k = 1; k \le n; ++k) {
78
                const int disu = dis[u];
79
                ans[u] = disu;
80
                dis[u] = INF, update(u);
81
82
                for (int i = h[u]; i; i = e[i].nx) {
                    int v = e[i].to;
83
                    if (dis[v] < INF && dis[v] > disu + e[i].dis) {
84
                        dis[v] = disu + e[i].dis, update(v);
85
86
87
88
                u = t[1].d;
           }
89
90
       }
  }
91
   4.1.2 Bellman-Ford
1 // 有边数限制的最短路
2 const int INF = 0x3f3f3f3f3f;
3 struct Edge { int u, v, dis; } e[M];
4 int n, m, k; // 节点数, 边数, 限制经过的边数
5 int dis[N], dis1[N];
  // s, t : 起点, 终点 , m : 边数 , k : 限定经过边数
   inline int Bellman_Ford(int s, int t, int m, int k) {
       memset(dis, 0x3f, sizeof(dis)), dis[s] = 0;
```

```
for (re i = 1; i <= k; ++i) { // 每循环一次, 松弛一次
9
            memcpy(dis1, dis, sizeof(dis)); // cpy
10
            for (re j = 1; j <= m; ++j) {
   int u = e[j].u, v = e[j].v;</pre>
11
12
                if (dis1[u] < INF && dis[v] > dis1[u] + e[j].dis) {
13
                    dis[v] = dis1[u] + e[j].dis;
14
15
            }
16
17
       if (dis[t] < INF) return dis[t]; // 最短路
18
19
       return -1;
20
   }
   4.1.3 Floyd
   void init(int n) {
1
       memset(dis, 0x3f, sizeof(dis));
2
3
       for (int i = 1; i <= n; ++i) dis[i][i] = 0;</pre>
4
   void add(int u, int v, int d) { dis[u][v] = d; } // 无向图需 add 两次
5
   void Floyd(int n) {
7
       for (int k = 1; k <= n; ++k)
            for (int i = 1; i <= n; ++i)
8
9
                if (i != k) // 节省时间
                for (int j = 1; j <= n; ++j)
10
                    if (dis[i][j] > dis[i][k] + dis[k][j])
11
                        dis[i][j] = dis[i][k] + dis[k][j];
12
13 }
   4.1.4 SPFA 判负环
   // 0(n * m)
1
   bool spfa(int s) {
       memset(dis, 0x3f, sizeof(dis));
3
4
       memset(num, 0, sizeof(num));
5
       memset(vis, 0, sizeof(vis));
       queue<int> que, dis[s] = 0;
6
7
       while (!que.empty()) {
            int u = que.front();
8
            que.pop(), vis[u] = 0;
9
            for (int i = h[u]; i; i = e[i].nx) {
10
11
                int v = e[i].to;
                if (dis[v] > dis[u] + e[i].dis) {
12
13
                    dis[v] = dis[u] + e[i].dis;
                    if (!vis[v]) {
14
                        num[v] = num[u] + 1; // 经过的节点数
15
                        if (num[v] > n) return true; // 有负环
16
17
                        vis[v] = 1, que.push(v);
18
                    }
19
                }
20
            }
21
22
        return false; // 无负环
23
  }
```

4.1.5 SPFA

```
1 // 0(n * m)
   // 有负权, 判断能否从 S 到 t
   3
4
       memset(vis, 0, sizeof(vis));
5
       memset(num, 0, sizeof(num));
6
7
       queue<int>que;
8
       que.push(s);
9
       dis[s] = 0;
       while (!que.empty()) {
10
           Ci u = que.front();
11
12
           que.pop(), vis[u] = 0;
           for (int i = h[u]; i; i = e[i].nx) {
13
               int v = e[i].to;
14
               if (dis[v] > dis[u] + e[i].dis) {
15
                   dis[v] = dis[u] + e[i].dis;
16
17
                   if (vis[v]) continue;
18
                   vis[v] = 1;
                   num[v] = num[u] + 1;
19
20
                   if (num[v] > n) continue; // 负环
21
                   if (v != t) que.push(v);
               }
22
23
           }
24
25
       return dis[t] == INF ? -1 : dis[t];
26 }
   4.1.6 SPFA(SLF 优化)
  // 判负环不可加SLF优化,可被卡成指数级别复杂度!!!
   void spfa(int s) {
       memset(dis, 0x3f, sizeof(dis));
3
       memset(vis, 0, sizeof(vis));
4
       deque<int> que; // 双端队列优化
5
6
       que.push_back(s);
       dis[s] = 0;
7
8
       while (!que.empty()) {
           int u = que.front();
9
           que.pop_front();
10
11
           vis[u] = 0;
           for (re i = h[u]; i; i = e[i].nx) {
12
               int v = e[i].to;
13
               if (dis[v] > dis[u] + e[i].dis) {
14
                   dis[v] = dis[u] + e[i].dis;
15
                   if (!vis[v]) {
16
                       vis[v] = 1;
17
18
                       if (!que.empty() && dis[v] < dis[que.front()]) {</pre>
19
                           que.push_front(v);
20
                       } else {
21
                           que.push_back(v);
22
                       }
23
                   }
               }
24
           }
25
26
       }
27 }
```

4.1.7 Johnson 全源最短路

```
1 // 时间复杂度 O(n * m * logm)
2 // 可求出每对结点之间的最短路
3 // 但时间复杂度可比 O(n ^ 3) 的 Floyd 优秀
  // 适用于无负环图, 可有负权
  /* 对于负权图的处理:
   * 1. SPFA 预处理负权
6
   * 2. 跑 n 遍堆优化 Dijkstra */
8 #define N maxn
9 #define M (maxn + maxm)
10 // 有向图邻接表需开 (maxn + maxm) 大小, 其中 maxn 用于超级源点连边
11 struct Edge { int to, nx, dis; } e[N + M]; // 注意 N + M
12 int n, m, cnt;
14 int h[N], vis[N], num[N];
   int spfa(int s) {
15
       memset(hh, 0x3f, sizeof(hh));
16
       hh[s] = 0, vis[s] = 1;
17
       queue<int> que;
18
19
       que.push(s);
       while (!que.empty()) {
20
           int u = que.front();
21
22
           que.pop(), vis[u] = 0;
           for (int i = h[u]; i; i = e[i].nx) {
23
               int v = e[i].to;
24
25
               if (hh[v] > hh[u] + e[i].dis) {
26
                   hh[v] = hh[u] + e[i].dis;
27
                   if (!vis[v]) {
28
                       vis[v] = 1;
                       num[v] = num[u] + 1;
29
30
                       if (num[v] > n) return 0; // 负环
31
                       que.push(v);
32
                   }
33
               }
34
           }
35
36
       return 1;
37 }
38
39
   void dij(int s) {
40
       priority_queue<p, vector<p>, greater > que;
       for (int i = 1; i <= n; ++i) dis[i] = INF;</pre>
41
       memset(vis, 0, sizeof(vis));
42
       que.push(p(0, s));
43
44
       dis[s] = 0;
       while (!que.empty()) {
45
           int u = que.top().second;
46
           que.pop();
47
           if (vis[u]) continue;
48
49
           vis[u] = 1;
           for (int i = h[u]; i; i = e[i].nx) {
50
               int v = e[i].to;
51
52
               if (dis[v] > dis[u] + e[i].dis) {
53
                   dis[v] = dis[u] + e[i].dis;
54
                   if (!vis[v]) que.push(p(dis[v], v));
55
               }
           }
56
       }
57
```

```
58 }
   int main() {
59
       n = rd(), m = rd();
60
       while (m--) {
61
            u = rd(), v = rd(), w = rd();
62
63
            add(u, v, w); // 有向图
64
       for (int i = 1; i <= n; ++i) add(0, i, 0); // 超级源点
65
       if (!spfa(0)) puts("-1"), exit(0); // 有负环
66
67
       for (int u = 1; u <= n; ++u)
            for (int i = h[u]; i; i = e[i].nx)
68
                e[i].dis += hh[u] - hh[e[i].to]; // 处理负权
69
       for (int i = 1; i <= n; ++i) {
70
            dij(i);
71
            for (int j = 1; j <= n; ++j)
72
                if (dis[j] == INF) ans[i][j] = -1; // 不可达
73
74
                else ans[i][j] = dis[j] + hh[j] - hh[i]; // 减回去得到真实距离
75
76
       return 0;
77
  }
   4.1.8 线段树优化建图
1 /* 要求连边
    * 1: u -> v
 3
    * 2: u -> [l, r]
    * 3: [1, r] -> v
 4
    */
5
   ll dis[N * 3]; // 原始节点 N + 线段树节点 N * 2
   int h[N * 3], vis[N * 3];
int n, m, s, opt, x, y, w, l, r, cnt;
8
   namespace Graph {
9
10
       struct Edge { int to, nx, dis; } e[N * 40];
11
       // build O(N * 4) + update O(N * 31), 空间开到 35 以上最保险
       inline void add(int u, int v, int d) {
12
            static int cnt = 0;
13
            e[++cnt] = (Edge) \{v, h[u], dis\}, h[u] = cnt;
15
16
       inline void dij() {} // 常规 dijkstra
17
   }
18
   using namespace Graph;
19
20
   namespace Seg {
       struct Node { int l, r, in, out; } t[N << 2];</pre>
21
22
       void build(int 1, int r, int p) {
23
            L = 1, R = r;
            if (l == r) { t[p].in = t[p].out = l; return; }
24
25
            int mid = (l + r) >> 1;
            build(l, mid, ls(p));
26
27
            build(mid + 1, r, rs(p));
28
            t[p].in = ++cnt;
            t[p].out = ++cnt;
29
30
            add(t[p].in, tls(p).in, 0);
31
            add(t[p].in, trs(p).in, 0);
32
            add(tls(p).out, t[p].out, 0);
            add(trs(p).out, t[p].out, 0);
33
34
       void updIn(int x, int y, int from, int dis, int p = 1) {
35
```

```
// update(2, 99999) 时,调用 31 次 add (上限)
36
            if (x \le L \&\& y \ge R) return add(from, t[p].in, dis);
37
            if (x \leftarrow tls(p).r) updIn(x, y, from, dis, ls(p));
38
39
            if (y > tls(p).r) updIn(x, y, from, dis, rs(p));
40
       void updOut(int x, int y, int from, int dis, int p = 1) {
41
            if (x \le L \&\& y \ge R) return add(t[p].out, from, dis);
42
            if (x \leftarrow tls(p).r) upd0ut(x, y, from, dis, ls(p));
43
            if (y > tls(p).r) updOut(x, y, from, dis, rs(p));
44
       }
45
   }
46
   using namespace Seg;
47
48
   int main() {
49
       cnt = n = rd(), m = rd(), s = rd();
50
       build(1, n, 1);
51
52
       while (m--) {
            opt = rd(), x = rd();
53
54
            switch (opt) {
                case 1: y = rd(), w = rd(); add(x, y, w); break; // x \rightarrow y
55
                case 2: l = rd(), r = rd(), w = rd(); updIn (l, r, x, w); break; // x \rightarrow [l]
56
       , r]
                case 3: l = rd(), r = rd(), w = rd(); upd0ut(l, r, x, w); break; // [l, r]
57
58
59
        /* dijkstra */
60
61 }
   4.1.9 无向图最小环
1 // 0(n ^ 3)
   int w[N][N]; // 原图的邻接矩阵
   inline int floyd(const int &n) {
     static int dis[N][N]; // 最短路矩阵 repn(i, 1, n) repn(j, 1, n) dis[i][j] = w[i][j]; // 初始化最短路矩阵
4
5
6
     int ans = INF;
     repn(k, 1, n) {
7
          rep(i, 1, k) rep(j, 1, i)
8
              ans = min(ans, dis[i][j] + w[i][k] + w[k][j]); // 更新答案
9
10
         repn(i, 1, n) repn(j, 1, n)
              dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]); // 正常的 floyd 更新最短路矩
11
12
     }
13
     return ans;
14
   4.1.10 k 短路
1 // 要求前 k 短路的长度和小于 m, 求 k 的值
2 // 可持续化可并堆优化
3 // \text{time: O(nlogm)} space: O((n + k)logm)
4 #include <bits/stdc++.h>
5 using namespace std;
6 const int N = 200010;
  int n, m, s, t, k, x, y, ww, cnt, fa[N];
   struct Edge {
       int cur, h[N], nxt[N], p[N], w[N];
```

```
10
       void add_edge(int x, int y, int z) {
            nxt[++cur] = h[x], h[x] = cur, p[cur] = y, w[cur] = z;
11
12
13
   } e1, e2;
   int dist[N];
14
   bool tf[N], vis[N], ontree[N];
15
   struct Node {
17
       int x, v;
       Node* operator = (Node a) { x = a.x, v = a.v; return this; }
18
19
       bool operator < (Node a) const { return v > a.v; }
  } a;
  priority_queue<Node> que;
   void dfs(int x) {
       vis[x] = 1;
23
       for (int j = e2.h[x]; j; j = e2.nxt[j])
24
            if (!vis[e2.p[j]] && dist[e2.p[j]] == dist[x] + e2.w[j])
25
26
                fa[e2.p[j]] = x, ontree[j] = 1, dfs(e2.p[j]);
27 }
   struct LeftistTree {
28
       int cnt, rt[N], lc[N * 20], rc[N * 20], dist[N * 20];
29
       Node v[N * 20];
30
       LeftistTree() { dist[0] = -1; }
31
       int newNode(Node w) { v[++cnt] = w; return cnt; }
32
       int merge(int x, int y) {
33
34
            if (!x | !y) return x + y;
            if (v[x] < v[y]) swap(x, y);
35
            int p = ++cnt;
36
            lc[p] = lc[x], v[p] = v[x];
37
            rc[p] = merge(rc[x], y);
38
            if (dist[lc[p]] < dist[rc[p]]) swap(lc[p], rc[p]);</pre>
39
40
            dist[p] = dist[rc[p]] + 1;
            return p;
41
42
       }
   } st;
43
   void dfs2(int x) {
44
45
       vis[x] = true;
       if (fa[x]) st.rt[x] = st.merge(st.rt[x], st.rt[fa[x]]);
46
        for (int j = e2.h[x]; j; j = e2.nxt[j])
47
            if (fa[e2.p[j]] == x \&\& !vis[e2.p[j]]) dfs2(e2.p[j]);
48
   }
49
   int main() {
50
       scanf("%d%d%d%d%d", &n, &m, &s, &t, &k);
51
52
        for (int i = 1; i <= m; i++)
            scanf("%d%d%d", &x, &y, &ww), e1.add_edge(x, y, ww), e2.add_edge(y, x, ww);
53
54
       que.push({t, 0});
       while (!que.empty()) {
55
            a = que.top(), que.pop();
56
            if (tf[a.x]) continue;
57
58
           tf[a.x] = 1, dist[a.x] = a.v;
            for (int j = e2.h[a.x]; j; j = e2.nxt[j]) que.push({e2.p[j], a.v + e2.w[j]});
59
60
61
        if (k == 1) {
            if (tf[s]) printf("%d\n", dist[s]);
62
            else printf("-1\n");
63
            return 0;
64
65
       dfs(t);
66
67
        for (int i = 1; i <= n; i++)
68
            if (tf[i]) for (int j = e1.h[i]; j; j = e1.nxt[j])
```

```
if (!ontree[j] && tf[e1.p[j]])
69
70
                    st.rt[i] = st.merge( st.rt[i],
                            st.newNode({e1.p[j], dist[e1.p[j]] + e1.w[j] - dist[i]}));
71
       for (int i = 1; i \le n; i++) vis[i] = 0;
72
73
       dfs2(t);
       if (st.rt[s]) que.push({st.rt[s], dist[s] + st.v[st.rt[s]].v});
74
75
       while (!que.empty()) {
           a = que.top(), que.pop(), ++cnt;
76
           if (cnt == k - 1) return !printf("%d\n", a.v);
77
           if (st.lc[a.x]) que.push({st.lc[a.x], a.v - st.v[a.x].v + st.v[st.lc[a.x]].v});
78
79
           if (st.rc[a.x]) que.push({st.rc[a.x], a.v - st.v[a.x].v + st.v[st.rc[a.x]].v});
80
           x = st.rt[st.v[a.x].x];
           if (x) que.push(\{x, a.v + st.v[x].v\});
81
82
       printf("-1\n");
83
       return 0;
84
85
   }
   4.2 生成树
   4.2.1 Kruskal 最小生成树
1 // O(mlogm)
2 struct Edge { int u, v, w; } e[M];
   int pre[N]; // 并查集
   void kruskal(){
       sort(e + 1, e + 1 + m, [\&] (Edge a, Edge b) { return w < b.w; });
5
       for (int i = 1; i \le m; ++i) {
6
            int fu = find(e[i].u), fv = find(e[i].v);
7
           if (fu == fv) continue;
8
9
           pre[fu] = fv, ans += e[i].w;
10
           if (++cnt == n - 1) break;
11
12
   if (cnt < n - 1) puts("No"); // 图不连通, 无最小生成树
   4.2.2 Prim 最小生成树
1 // prim 更适用于稠密图, 可适用于重边, 自环, 负边权
  // 暴力 O(n * n + m)
3
   inline int prim() {
       memset(dis, 0x3f, sizeof(dis));
4
       for (int i = h[1]; i; i = e[i].nx) { // 处理重边
5
           dis[e[i].to] = min(dis[e[i].to], e[i].dis);
6
7
       int u = 1, ans = 0;
8
       while (++tot < n) {</pre>
9
10
           int mn = INF; vis[u] = 1;
            for (int i = 1; i <= n; ++i) {
11
               if (!vis[i] && mn > dis[i]) {
12
13
                   mn = dis[i], u = i;
               }
14
15
16
           if (vis[u]) return -1; // 不连通
17
           ans += mn;
           for (int i = h[u]; i; i = e[i].nx) {
18
19
                int v = e[i].to;
               if (!vis[v] && dis[v] > e[i].dis) {
20
```

```
dis[v] = e[i].dis;
21
22
               }
           }
23
24
25
       return ans;
   }
26
27
28 // 堆优化 O(mlogn)
  int n, m, cnt, cnt1, ans;
  int h[N], dis[N], vis[N]; // 邻接表存图
   struct P {
32
       int dis, id;
       bool operator < (const P &b) const { return d > b.d; }
33
   };
34
35
   namespace Prim {
       inline void init() { memset(h, 0, sizeof(h)), cnt = 0; }
36
37
       inline void prim(int s) {
38
           priority_queue<P>que;
           memset(dis, 0x3f, sizeof(dis));
39
           memset(vis, 0, sizeof(vis));
40
           dis[s] = 0;
41
           que.push(p(0, s));
42
           while (!que.empty() && cnt1 < n) { //在确定为连通图的情况下可删 !que.empty()&&
43
               P p = que.top(); que.pop();
44
45
               int u = p.id;
               if (vis[u]) continue;
46
               vis[u] = 1;
47
               ans += p.dis, ++cnt1; // 若最终 cnt1 = n, 则答案为 ans, 否则图不连通
48
               for (int i = h[u]; i; i = e[i].nx) {
49
50
                   int v = e[i].to;
51
                   if (dis[v] > e[i].dis) {
                       dis[v] = e[i].dis;
52
53
                       if (!vis[v]) que.push((P) {dis[v], v});
                   }
54
55
               }
           }
56
57
       }
58
   }
   4.2.3 Zhu Liu 最小树形图
1 // 有向图最小生成树 ( 最小树形图 )
   const int maxn = "Edit";
3
   // 固定根的最小树型图,邻接矩阵写法,结点标号从 Ø 开始
   struct MDST { // 最小直径生成树
5
       int n;
6
       int w[maxn][maxn]; // 边权
```

```
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++) w[i][j] = INF;
```

// 访问标记, 仅用来判断无解

// 计算答案

// 所在圈编号

// 最大圈编号

// 最小入边的起点

// 最小入边的权值

int removed[maxn]; // 每个点是否被删除

7

8

9 10

11

12

13

14

15

16

17

int vis[maxn];

int cid[maxn];

int pre[maxn];

void init(int n) {

this->n = n;

int iw[maxn]; int max_cid;

int ans;

```
18
       void AddEdge(int u, int v, int cost) {
19
           w[u][v] = min(w[u][v], cost); // 重边取权最小的
20
21
       // 从S出发能到达多少个结点
22
       int dfs(int s) {
23
24
            vis[s] = 1;
25
            int ans = 1;
            for (int i = 0; i < n; i++)
26
                if (!vis[i] \&\& w[s][i] < INF) ans += dfs(i);
27
28
            return ans;
29
       }
       // 从u出发沿着pre指针找圈
30
       bool cycle(int u) {
31
32
           max_cid++;
            int v = u;
33
            while (cid[v] != max_cid) {
34
35
                cid[v] = max\_cid;
36
                v = pre[v];
37
            }
            return v == u;
38
39
       // 计算u的最小入弧,入弧起点不得在圈C中
40
       void update(int u) {
41
42
            iw[u] = INF;
            for (int i = 0; i < n; i++)
43
                if (!removed[i] && w[i][u] < iw[u]) {</pre>
44
                    iw[u] = w[i][u];
45
                    pre[u] = i;
46
47
48
       // 根结点为s,如果失败则返回false
49
       bool solve(int s) {
50
           memset(vis, 0, sizeof(vis));
51
            if (dfs(s) != n) return false;
52
           memset(removed, 0, sizeof(removed));
53
           memset(cid, 0, sizeof(cid));
54
55
            for (int u = 0; u < n; u++) update(u);
56
            pre[s] = s;
            iw[s] = 0; // 根结点特殊处理
57
            ans = max\_cid = 0;
58
            for (;;) {
59
                bool have_cycle = false;
60
                for (int u = 0; u < n; u++)
61
                    if (u != s && !removed[u] && cycle(u)) {
62
                        have_cycle = true;
63
                        // 以下代码缩圈,圈上除了u之外的结点均删除
64
                        int v = u;
65
                        do {
66
67
                            if (v != u) removed[v] = 1;
68
                            ans += iw[v];
69
                            // 对于圈外点i, 把边i->v改成i->u (并调整权值); v->i改为u->i
70
                            // 注意圈上可能还有一个v'使得i->v'或者v'->i存在,
                            // 因此只保留权值最小的i->u和u->i
71
                            for (int i = 0; i < n; i++)
    if (cid[i] != cid[u] && !removed[i]) {</pre>
72
73
                                     if (w[i][v] < INF)</pre>
74
                                         w[i][u] = min(w[i][u], w[i][v] - iw[v]);
75
76
                                     w[u][i] = min(w[u][i], w[v][i]);
```

```
if (pre[i] == v) pre[i] = u;
77
                                }
78
                            v = pre[v];
79
80
                        } while (v != u);
81
                        update(u);
82
                        break;
83
                if (!have_cycle) break;
84
85
            for (int i = 0; i < n; i++)
86
87
                if (!removed[i]) ans += iw[i];
88
            return true;
        }
89
    } T;
90
    int n, m, r, u, v, w;
91
    int main() {
92
        scanf("%d%d%d", &n, &m, &r);
93
        T.init(n);
94
        while (m--) {
95
            scanf("%d%d%d", &u, &v, &w);
96
            T.AddEdge(u - 1, v - 1, w); // 注意结点编号从 0 开始
97
98
        int w = T.solve(r - 1);
99
        if (w) printf("%d\n", T.ans);
100
101
        else puts("-1"); // 不存在
        return 0;
102
103 }
    4.2.4 严格次小生成树
 1 // 对每一条不在 mst 内的边(u, v, w), 替换 mst 内 (u, v) 之间的最大边,即可得到不严格次小生成树
   // 若最大边权值等于 W, 则替换严格次大边, 这样得到的就是严格次小生成树了
 3
 4 struct P { int x, y, w; } ee[M];
 5 struct Edge { int to, nx, w; } e[N << 1];</pre>
 7 int n, m, tot, cnt, d = INF; ll sum; // mx 最大值, sx 严格次大值
 8 int h[N], lg[N], pre[N], dep[N], vis[N], fa[N][22], mx[N][22], sx[N][22];
 9 int find(int x) { return pre[x] ? pre[x] = find(pre[x]) : x; }
10
11
    inline void add(int u, int v, int w) {
        e[++cnt] = (Edge) \{v, h[u], w\}, h[u] = cnt;
12
        e[++cnt] = (Edge) \{u, h[v], w\}, h[v] = cnt;
13
    }
14
15
    inline void kruskal() {
16
        sort(ee + 1, ee + 1 + m, [\&] (P a, P b) \{ return a.w < b.w; \});
17
        for (int i = 1; i <= m; ++i) {
18
            const P &e = ee[i];
19
            if (find(e.x) ^ find(e.y)) {
20
21
                pre[find(e.x)] = find(e.y);
                vis[i] = 1, sum += e.w;
22
                add(e.x, e.y, e.w);
23
24
                if (++tot == n - 1) break;
25
            }
26
        }
27 }
28
```

```
void dfs(int u, int pre) {
29
        for (int i = h[u]; i; i = e[i].nx) {
30
            int v = e[i].to;
31
32
            if (v == pre) continue;
33
            dep[v] = dep[u] + 1;
            mx[v][0] = e[i].w;
34
            fa[v][0] = u;
35
            for (int i = 1; i <= lg[dep[v]]; ++i) {</pre>
36
                int pv = fa[v][i - 1];
37
38
                int x = mx[v][i - 1], y = mx[pv][i - 1];
                fa[v][i] = fa[pv][i - 1];
39
40
                mx[v][i] = max(x, y);
                if(x^{-}y) {
41
                     if (x > y) {
42
                         sx[v][i] = max(y, sx[v][i - 1]);
43
44
                     } else {
45
                         sx[v][i] = max(x, sx[pv][i - 1]);
                     }
46
47
                } else {
                     sx[v][i] = max(sx[v][i - 1], sx[pv][i - 1]);
48
49
50
            dfs(v, u);
51
52
        }
53
   }
54
55
   int mx_, sx_;
   inline void cmp(int x) {
56
        if (x > mx_{-}) sx_{-} = mx_{-}, mx_{-} = x;
57
        else if (x > sx_ && x < mx_) sx_ = x;
58
59
   inline void upd(int a, int b) { cmp(mx[a][b]), cmp(sx[a][b]); }
60
   inline int check(int x, int y, int w) { // 找不与 w 相等的最大边
61
        mx_{-} = sx_{-} = -1;
62
63
        if (dep[x] < dep[y]) swap(x, y);
        while (dep[x] > dep[y]) {
64
            upd(x, \lg[dep[x] - dep[y]]);
65
66
            x = fa[x][lg[dep[x] - dep[y]]];
67
        if (x ^ y) {
68
            for (int i = \lg[dep[x]]; i >= 0; --i) {
69
                if (fa[x][i] ^ fa[y][i]) {
70
                    upd(x, i), upd(y, i);
71
72
                     x = fa[x][i], y = fa[y][i];
                }
73
74
75
            cmp(mx[x][0]), cmp(mx[y][0]);
76
        if (~mx_) {
77
78
            if (w ^ mx_) return w - mx_;
79
            if (~sx_) return w - sx_;
80
81
        return INF;
   }
82
83
   int main() {
84
        scanf("%d%d", &n, &m);
85
86
        for (int i = 1; i \le m; ++i) { // edge
            scanf("%d%d%d", &ee[i].x, &ee[i].y, &ee[i].w);
87
```

```
88
       *lg = -1;
89
       for (int i = 1; i \le n; ++i) { lg[i] = lg[i >> 1] + 1; }
90
       memset(sx, -1, sizeof(sx));
91
       kruskal(), dfs(1, 0);
92
93
       for (int i = 1; i <= m; ++i) {
           if (!vis[i]) d = min(d, check(ee[i].x, ee[i].y, ee[i].w));
94
95
       printf("%lld\n", sum + d);
96
97
       return 0;
98 }
   4.2.5 Kruskal 重构树
1 // kruskal 重构树用于解决瓶颈生成树问题
  // 经过权值 <= w 的边能到达的第 k 大点 => 在 Kruskal 重构树 dfs 序上建主席树即可
  #define N 20004 // 记得点要开两倍空间
  struct Input { int x, y, w; } ee[M];
5 struct Edge { int to, nx; } e[N]; // 2n - 2
6
7
  int n, m, q, x, y, z, tot, cnt;
  int h[N], w[N], fa[N], pre[N], dep[N], top[N], son[N], siz[N];
8
9
  inline void add(int u, int v) {
10
       e[++cnt] = (Edge) \{v, h[u]\}, h[u] = cnt;
11
12
13
14 int find(int x) {
15
       return pre[x] ? pre[x] = find(pre[x]) : x;
16
17
18 // 建立 kruskal 重构树 (新增 n - 1 个点和 2n - 2 条边)
   inline void kruskal() {
19
20
       sort(ee + 1, ee + 1 + m, [\&] (Input a, Input b) { return a.w > b.w; });
21
       tot = n; // 边权从大到小排,则根的点权最小,重构树点权从下到上单调不增
22
       for (int i = 1; i <= m; ++i) {
23
           x = find(ee[i].x), y = find(ee[i].y);
           if (x == y) continue;
24
25
           w[++tot] = ee[i].w; // x - y 的边权变为了 LCA(x, y) 的点权
26
           pre[x] = pre[y] = tot;
27
           add(tot, x), add(tot, y);
28
       for (int i = tot; i; --i) { // 倒序
29
           if (!dep[i]) dfs1(i, 0), dfs2(i, i); // 建树 (如果不用求 LCA, 那就不用树剖了)
30
31
32
  // x - y 路径上边权最小值的最大值等于 Kruskal 重构树的 w[LCA(x, y)]
34
   inline int query(int x, int k, ...) { // 对于某些题目的查询需要用树上倍增解决
35
       for (int y, i = \lg[dep[x]]; i >= 0; --i) {
36
37
           if ((y = fa[x][i]) \& w[fa[x][i]] <= k) x = y;
       }
38
   }
39
40
   int main() {
       scanf("%d%d", &n, &m);
41
       for (int i = 1; i <= m; ++i)
42
           scanf("%d%d%d", &ee[i].x, &ee[i].y, &ee[i].w);
43
       kruskal(); while (q--) // query
44
```

```
45
       return 0;
46 }
   4.2.6 最小直径生成树
1 #include <bits/stdc++.h>
2 using namespace std;
3 const int N = 502;
4 typedef long long ll;
5 typedef pair<int, int> pii;
6 #define repn(i, x, y) for (int i = x; i \leq y; ++i)
7 ll d[N][N], dd[N][N], rk[N][N], val[N];
8 const ll INF = 1e17;
9 int n, m;
10 bool cmp(int a, int b) { return val[a] < val[b]; }</pre>
11
   void floyd() {
       repn(k, 1, n) repn(i, 1, n) repn(j, 1, n)
12
13
            d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
14 }
15 struct node {
16
       ll u, \vee, w;
   a[N * (N - 1) / 2];
17
   inline void init() {
18
       repn(i, 1, 501) repn(j, 1, 501) d[i][j] = INF;
19
       repn(i, 1, 501) d[i][i] = 0;
20
21
   }
22
   inline void solve() {
23
       //求图的绝对中心
       floyd();
24
       repn(i, 1, n) {
25
26
            repn(j, 1, n) rk[i][j] = j, val[j] = d[i][j];
            sort(rk[i] + 1, rk[i] + 1 + n, cmp);
27
28
       11 P = 0, ans P = INF;
29
30
       //在点上
       repn(i, 1, n) if (d[i][rk[i][n]] * 2 < ansP) {
31
32
           ansP = d[i][rk[i][n]] * 2, P = i;
33
34
       //在边上
       int f1 = 0, f2 = 0;
35
       11 disu = INT_MIN, disv = INT_MIN, ansL = INF;
36
37
       repn(i, 1, m) {
            ll u = a[i].u, v = a[i].v, w = a[i].w;
38
            for (int p = n, i = n - 1; i >= 1; i--) {
39
40
                if (d[v][rk[u][i]] > d[v][rk[u][p]]) {
                    if (d[u][rk[u][i]] + d[v][rk[u][p]] + w < ansL) {</pre>
41
                        ansL = d[u][rk[u][i]] + d[v][rk[u][p]] + w;
42
43
                        f1 = u, f2 = v;
                        disu = (d[u][rk[u][i]] + d[v][rk[u][p]] + w) / 2 - d[u][rk[u][i]];
44
                        disv = w - disu;
45
                    }
46
                    p = i;
47
                }
48
            }
49
       }
50
       cout << min(ansP, ansL) / 2 << '\n';</pre>
51
52
       //最小路径生成树
       vector<pii> pp;
53
```

```
54
        init();
        if (ansP <= ansL) {</pre>
55
             repn(j, 1, n) repn(i, 1, m) {
56
                 ll u = a[i].u, v = a[i].v, w = a[i].w;
57
                 if (dd[P][u] + w == d[P][v] && dd[P][u] + w < dd[P][v]) {
58
                     dd[P][v] = dd[P][u] + w;
59
                     pp.push_back({u, v});
60
61
                 u = a[i].v, v = a[i].u, w = a[i].w;
62
                 if (dd[P][u] + w == d[P][v] && dd[P][u] + w < dd[P][v]) {
63
                     dd[P][v] = dd[P][u] + w;
64
65
                     pp.push_back({u, v});
                 }
66
            }
67
            for (auto [x, y] : pp) cout << x << ' ' << y << '\n';
68
        } else {
69
            d[n + 1][f1] = disu, d[f1][n + 1] = disu;
70
            d[n + 1][f2] = disv, d[f2][n + 1] = disv;
71
            a[m + 1].u = n + 1, a[m + 1].v = f1, a[m + 1].w = disu;
72
            a[m + 2].u = n + 1, a[m + 2].v = f2, a[m + 2].w = disv;
73
            n += 1, m += 2, floyd(), P = n;
74
75
            repn(j, 1, n) repn(i, 1, m) {
                 11 u = a[i].u, v = a[i].v, w = a[i].w;
76
77
                 if (dd[P][u] + w == d[P][v] && dd[P][u] + w < dd[P][v]) {
78
                     dd[P][v] = dd[P][u] + w;
79
                     pp.push_back({u, v});
80
                 u = a[i].v, v = a[i].u, w = a[i].w;
81
                 if (dd[P][u] + w == d[P][v] && dd[P][u] + w < dd[P][v]) {
82
                     dd[P][v] = dd[P][u] + w;
83
84
                     pp.push_back({u, v});
                 }
85
86
            }
            cout << f1 << ' ' << f2 << '\n';
87
            for (auto [x, y] : pp)
88
                 if (x != n && y != n) cout << x << ' ' << y << '\n';
89
        }
90
91
    }
    int main() {
92
        init();
93
        cin >> n >> m;
94
        repn(i, 1, m) {
95
96
            ll u, \vee, w;
97
            cin >> u >> v >> w;
            w *= 2, d[u][v] = w, d[v][u] = w;
98
            a[i].u = u, a[i].v = v, a[i].w = w;
99
100
        solve();
101
        return 0;
102
103 }
    4.2.7 最小异或生成树
 1 // 完全图, 边权为两点间 xor 值, 求 MST
 2 #include <bits/stdc++.h>
 3 #define ll long long
 4 using std::min;
 5 using std::max;
```

```
6 const int N=2e5+10;
   const int inf=0x3f3f3f3f;
   #define ls ch[now][0]
9 #define rs ch[now][1]
int L[N*40],R[N*40],ch[N*40][2],tot;
11 int n,a[N],root;
   void Insert(int &now,int x,int dep) {
12
        if(!now) now=++tot;
13
        L[now]=min(L[now],x),R[now]=max(R[now],x);
14
        if(dep<0) return;</pre>
15
16
        int bit=a[x]>>dep&1;
17
        Insert(ch[now][bit],x,dep-1);
   }
18
   int query(int now,int val,int dep) {
19
        if(dep<0) return 0;
20
        int bit=val>>dep&1;
21
        if(ch[now][bit]) return query(ch[now][bit], val, dep-1);
22
        else return query(ch[now][bit^1], val, dep-1)+(1<<dep);</pre>
23
24
   11 dfs(int now,int dep) {
25
        if(dep<0) return 0;</pre>
26
27
        if(R[ls]&&R[rs]) {
            int mi=inf;
28
29
            for(int i=L[ls];i<=R[ls];i++) mi=min(mi,query(rs,a[i],dep-1));</pre>
30
            return dfs(ls,dep-1)+dfs(rs,dep-1)+mi+(1<<dep);</pre>
31
        if(R[ls]) return dfs(ls,dep-1);
32
        if(R[rs]) return dfs(rs,dep-1);
33
        return 0;
34
35
   int main() {
36
        scanf("%d",&n);
37
        for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
38
        std::sort(a+1,a+1+n);
39
        memset(L,0x3f,sizeof(L));
40
        for(int i=1;i<=n;i++) Insert(root,i,30);</pre>
41
42
        printf("%lld\n",dfs(root,30));
43
        return 0;
44
   }
   4.3 树的直径
   // 树a 与 树b 合并, 新树c 直径为 dc = (da + 1) / 2 + (db + 1) / 2 + 1
   int s;
   void dfs1(int u, int pre) {
3
        for (int &v : e[u]) {
4
            if (v != pre) {
5
                d[v] = d[u] + e[i].dis;
6
                if (d[v] > d[s]) s = v;
7
                dfs1(v, u);
8
            }
9
        }
10
11
   inline int work() { // 只适用于正边权 0(n)
12
        dfs1(s = 1, 0), dfs1(s, d[s] = 0);
13
        return d[s]; // 直径
14
   }
15
16
```

```
void dfs2(int u, int pre) { // 适用于正 l 负边权 0(n)
17
       for (int &v : e[u]) {
18
            if (v != pre) {
19
               dfs2(v, u);
20
               ans = max(ans, f[u] + f[v] + e[i].dis); // 直径
21
22
               f[u] = max(f[u], f[v] + e[i].dis);
23
           }
       }
24
  }
25
```

4.4 拓扑排序

```
int q[N], l, r;
   inline void tuopu() { // 有向图
       for (int i = 1; i <= n; ++i) {
3
           if (!in[i]) q[++r] = i;
4
       }
5
       while (l < r) {
6
           int u = q[++1];
7
           for (auto &v : e[u]) {
8
               if (in[v]) {
9
                    // do sth
10
                    if (!--in[v]) q[++r] = v;
11
12
13
           }
       }
14
15
  // 无向图入队条件修改 !in[x] => (in[x] == 1)
```

4.5 欧拉路径

- 基本概念:
 - 欧拉图: 能够没有重复地一次遍历所有边的图。(必须是连通图)
 - 欧拉路: 上述遍历的路径就是欧拉路。
 - 欧拉回路: 若欧拉路是闭合的(一个圈,从起点开始遍历最终又回到起点),则为欧拉回路。
- 无向图 G 有欧拉路径的充要条件
 - G 是连通图
 - G 中奇顶点(连接边的数量为奇数)的数量等于 0 或 2.
- 无向图 G 有欧拉回路的充要条件
 - G 是连通图
 - G 中每个顶点都是偶顶点
- 有向图 G 有欧拉路径的充要条件
 - G 是连通图
 - u 的出度比入度大 1, v 的出度比入度小 1, 其他所有点出度和入度相同。(u 为起点, v 为终点)
- 有向图 G 有欧拉回路的充要条件
 - G 是连通图
 - G 中每个顶点的出度等于入度

4.5.1 欧拉路径

若有两个点的度数是奇数,则此时这两个点只能作为欧拉路径的起点和终点。

```
1
2
   int in[N], out[N], cur[N], st[M], top;
   inline void add(int u, int v) { // 邻接矩阵写法
3
       ++d[u], ++d[v], ++g[u][v], ++g[v][u]; // 无向图
4
       ++out[u], ++in[v], ++g[u][v]; // 有向图
5
6
   inline void add(int u, int v) { // 邻接表写法
7
       ++out[u], ++in[v], e[u].emplace_back(v); // 有向图
8
9
   }
   void dfs(int u) { // 邻接矩阵写法
10
       for (int i = 1; i \le n; ++i) {
11
           if (g[u][i]) {
12
13
               --g[u][i], --g[i][u]; // 无向图; 有向图只需删一条边
14
              dfs(i);
           }
15
16
       st[++top] = u; // 一定要先存下来
17
18
   void dfs(int u) { // 邻接表写法(有向图), 若要保证字典最小, 则需要对邻接表排序
20
       for (int i = cur[u]; i < e[u].size(); i = cur[u]) { // 邻接表
21
           cur[u] = i + 1, dfs(e[u][i]);
22
23
       st[++top] = u;
24
   }
   // 有多个自环,并且要保证路径边权字典序最小的情况
25
   // 先对输入边按边权排序, 然后再加边
26
   void dfs(int now, int u) {
27
       if (now == m) return;
28
29
       for (int num, i = 0; i < e[u].size(); ++i) {
30
           if (vis[num = e[u][i].num]) continue; // num: 边的编号
           vis[num] = 1, dfs(now + 1, e[u][i].to);
31
           st[++top] = num; // 一定要存好然后在 dfs 外倒序输出!!!
32
33
34
   dfs(0, start);
```

4.6 差分约束

建模技巧

```
最短路求最大解,最长路求最小解。
最短路 a <= b + c => add(b, a, c);
最长路 a >= b + c => add(b, a, c);
a = b => add(a, b, 0), add(b, a, 0);
a < b + w => \mathbf{a} <= \mathbf{b} + \mathbf{w} - \mathbf{1} => add(b, a, w - 1);
a > b + w => \mathbf{b} <= \mathbf{a} - \mathbf{w} - \mathbf{1} => add(a, b, -w - 1);
```

两种处理方式 1 一开始将所有点放入队列中而不是只放一个起点,这样每个点都被作为起点讨论过 2 建一个虚拟源点 0,从这个虚拟源点向其他所有点都连一条长度为 0 的边,以虚拟源点为起点放入队列建图后 SPFA 判负环,有负环代表无解,否则各点的 dis 值即为一组解。

4.7 连通性相关

```
4.7.1 缩点
```

```
1 // tarjan O(n + m)
2 int n, m, x, y, top, cnt, cnt1, tim;
3 int h[N], h1[N], w[N], f[N], in[N];
4 int st[N], vis[N], dfn[N], low[N], dis[N];
5 struct Edge { int from, to, nx; } e[M], e1[M];
6 inline void add(int u, int v) { e[++cnt] = (Edge) \{u, v, h[u]\}, h[u] = cnt; \}
   inline void add1(int u, int v) { e1[++cnt1] = (Edge) \{u, v, h1[u]\}, h1[u] = cnt1; \}
   inline void tarjan(int u) {
9
        dfn[u] = low[u] = ++tim;
10
        st[++top] = u, vis[u] = 1;
        for (int i = h[u]; i; i = e[i].nx) {
11
12
            int v = e[i].to;
            if (!dfn[v]) {
13
                 tarjan(v);
14
                 low[u] = min(low[u], low[v]);
15
            } else if (vis[v]) {
16
                 low[u] = min(low[u], dfn[v]);
17
18
19
        if (dfn[u] == low[u]) {
20
            int v = st[top--];
21
            while (v) {
22
                 f[v] = u, vis[v] = 0;
23
                 if (u == v) break;
24
25
                 w[u] += w[v];
                 v = st[top--];
26
27
            }
28
        }
29 }
30
   int main() {
31
32
        n = rd(), m = rd();
33
        for (int i = 1; i <= n; ++i) w[i] = rd();</pre>
        for (int i = 1; i <= m; ++i) x = rd(), y = rd(), add(x, y);
for (int i = 1; i <= n; ++i) if (!dfn[i]) tarjan(i);
for (int i = 1; i <= m; ++i) {</pre>
34
35
36
            int u = f[e[i].from], v = f[e[i].to];
37
38
            if (u ^ v) add1(u, v), ++in[v]; // 建缩点后的图
39
        return 0;
40
41 }
   4.7.2 割点
1 // tarjan 0(n + m)
2 int n, m, x, y, cnt, tim, tot;
3 int h[N], dfn[N], low[N], cut[N];
4 struct Edge { int to, nx; } e[M << 1];</pre>
5 inline void add(int u, int v) { e[++cnt] = (Edge) {v, h[u]}, h[u] = cnt; }
   void tarjan(int u, int rt) {
6
        dfn[u] = low[u] = ++tim;
7
        int child = 0;
8
        for (int i = h[u]; i; i = e[i].nx) {
9
            int v = e[i].to;
10
            if (!dfn[v]) {
11
```

```
tarjan(v, u);
12
               low[u] = min(low[u], low[v]);
13
               if (u == rt) ++child;
14
               else if (low[v] >= dfn[u]) cut[u] = 1; // 标记割点
15
16
           } else {
               low[u] = min(low[u], dfn[v]);
17
18
19
20
       if (u == rt && child >= 2) cut[u] = 1; // 标记割点
21
   }
   int main() {
23
       scanf("%d%d", &n, &m);
       while (m--) scanf("%d%d", &x, &y), add(x, y), add(y, x);
24
       for (int i = 1; i <= n; ++i) if (!dfn[i]) tarjan(i, i);</pre>
25
       for (int i = 1; i <= n; ++i) if (cut[i]) ++tot;</pre>
26
       printf("%d\n", tot); // 割点数量
27
       for (int i = 1; i <= n; ++i) if (cut[i]) printf("%d ", i); puts("");</pre>
28
29
       return 0;
30 }
   4.7.3 割边(桥)
   int low[N], dfn[N], fa[N], isbridge[N], tot;
   void tarjan(int u, int pre) {
     low[u] = dfn[u] = ++tim, fa[u] = pre;
3
4
     for (int i = h[u]; i; i = e[i].nx) {
5
         int v = e[i].to;
         if (!dfn[v]) {
6
7
              tarjan(v, u);
              low[u] = min(low[u], low[v]);
8
9
              if (low[v] > dfn[u]) {
                  isbridge[v] = true; // 标记割边(桥)
10
                  ++tot; // 桥的数量
11
              }
12
         } else if (dfn[v] < dfn[u] && v != pre) {
13
              low[u] = min(low[u], dfn[v]);
14
15
16
17
   }
   4.7.4 圆方树
1 // 解决点双问题
   struct Edge { int to, nx; } e[M];
3 int h[N], fa[N], st[N], dfn[N], low[N], vis[N]; // N = maxn << 1
4 int n, a, b, x, y, top, tim, cnt, num, tot, ans = 1e9;
   inline void add(int u, int v) { e[++cnt] = (Edge) {v, h[u]}, h[u] = cnt; }
   void tarjan(int u) {
6
       dfn[u] = low[u] = ++tim, st[++top] = u;
7
       for (int i = h[u]; i; i = e[i].nx) {
8
9
           int v = e[i].to;
           if (!dfn[v]) {
10
               tarjan(v);
11
12
               low[u] = min(low[u], low[v]);
               if (dfn[u] == low[v]) { // 构建圆方树
13
                    ++num; // 圆方树附加结点编号
14
                    for (int x = 0; x \wedge v; --top) {
15
                        x = st[top];
16
```

```
add(x, num), add(num, x);
17
18
                    add(u, num), add(num, u);
19
20
21
           } else low[u] = min(low[u], dfn[v]);
       }
22
23
   }
   void dfs(int u) {
24
25
       if (u == b) return;
       for (int i = h[u]; i; i = e[i].nx) {
26
27
            int v = e[i].to;
28
            if (vis[v]) continue;
            if ((u \le n \& v > n) | (u > n \& v \le n)) {
29
                fa[v] = u, vis[v] = 1, dfs(v);
30
31
       }
32
   }
33
34
   int main() {
       scanf("%d", &n), num = n;
35
36
       while (scanf("%d%d", &x, &y) && x) {
37
           add(x, y), add(y, x);
38
       // 求使得 a, b 两点不连通的编号最小的一个点
39
40
       scanf("%d%d", &a, &b);
41
       for (int i = 1; i <= n; ++i) {
            if (!dfn[i]) tarjan(i), --top; // --top
42
       }
43
       dfs(a);
44
       if (fa[fa[b]] == a || !vis[b]) puts("No solution"), exit(0);
45
46
       while (fa[b] ^ a) {
           b = fa[b];
47
            if (b \le n) ans = min(ans, b);
48
49
       printf("%d\n", ans);
50
       return 0;
51
52 }
   4.7.5 无向图全局最小割
1 // Stoer-Wagner 算法
2 #include <bits/stdc++.h>
3 using namespace std;
  const int N = 610, INF = 1e9;
   int n, m, x, y, z, s, t;
   int dis[N][N], w[N], dap[N], vis[N], ord[N];
   inline int proc(int x) {
7
       memset(vis, 0, (n + 1) << 3);
8
       memset(w, 0, (n + 1) \ll 3), *w = -1;
9
       for (int i = 1; i <= n - x + 1; i++) {
10
11
            int mx = 0;
            for (int j = 1; j <= n; j++) {
12
                if (!dap[j] \&\& !vis[j] \&\& w[j] > w[mx]) mx = j;
13
14
15
           vis[mx] = 1, ord[i] = mx;
            for (int j = 1; j \ll n; j++) {
16
                if (!dap[j] && !vis[j]) {
17
18
                    w[j] += dis[mx][j];
19
                }
```

```
}
20
21
       s = ord[n - x], t = ord[n - x + 1];
22
23
       return w[t];
24
   }
   inline int sw() {
25
26
       int ans = INF;
27
        for (int i = 1; i < n; i++) {
28
            ans = min(ans, proc(i));
29
            dap[t] = 1;
30
            for (int j = 1; j <= n; j++) {
31
                dis[s][j] += dis[t][j];
                dis[j][s] += dis[j][t];
32
33
            }
34
       return ans; // 如果图不连通, ans = 0
35
   }
36
37
   int main() {
       scanf("%d%d", &n, &m);
38
       for (int i = 1; i <= m; i++) {</pre>
39
            scanf("%d%d%d", &x, &y, &z);
40
            dis[x][y] += z, dis[y][x] += z;
41
42
43
       printf("%d\n", sw());
44
       return 0;
45 }
   4.7.6 最小斯坦纳树
1 // 花最小代价, 连通给定的 k 个关键点
2 #include <bits/stdc++.h>
3 using namespace std;
4 #define N 510
5 int n, m, k, x, y, z, eg, cnt;
6 int p[N], h[N], vis[N], dp[N][4200];
7
  struct Edge { int to, nx, dis; } e[N << 1];</pre>
8
   struct P {
       int dis, id;
9
10
       P(int d, int x) : dis(d), id(x) {}
11
       bool operator < (const P &b) const { return dis > b.dis; }
12
   };
   priority_queue<P> que;
13
   inline void add(int u, int v, int w) {
       e[++cnt] = (Edge) \{v, h[u], w\}, h[u] = cnt;
15
16
   }
   void dij(int s) {
17
       memset(vis, 0, sizeof(vis));
18
19
       while (!que.empty()) {
20
            int u = que.top().id;
21
            que.pop();
            if (vis[u]) continue;
22
           vis[u] = 1;
23
            for (int i = h[u]; i; i = e[i].nx) {
24
25
                int v = e[i].to;
                if (dp[v][s] > dp[u][s] + e[i].dis) {
26
27
                    dp[v][s] = dp[u][s] + e[i].dis;
28
                    que.push(P(dp[v][s], v));
29
                }
```

```
30
            }
        }
31
   }
32
   int main() {
33
        memset(dp, 0x3f, sizeof(dp));
34
        scanf("%d%d%d", &n, &m, &k);
35
36
        for (int i = 1; i <= m; ++i) {
            scanf("%d%d%d", &x, &y, &z);
37
            add(x, y, z), add(y, x, z);
38
39
        for (int i = 1; i \le k; ++i) {
40
41
            scanf("%d", &p[i]); // 关键点
            dp[p[i]][1 << (i - 1)] = 0;
42
43
        for (int s = 1; s < (1 << k); ++s) {
44
            for (int i = 1; i <= n; ++i) {
45
                for (int subs = s & (s - 1); subs; subs = s & (subs - 1)) {
    dp[i][s] = min(dp[i][s], dp[i][subs] + dp[i][s ^ subs]);
46
47
48
                if (dp[i][s] != 0x3f3f3f3f) que.push(P(dp[i][s], i));
49
            }
50
            dij(s);
51
52
53
        printf("%d\n", dp[p[1]][(1 << k) - 1]);
54
        return 0;
55 }
   4.7.7 最小割树
1 // 最小割树, q 次询问 u, V 之间的最小割
   #include <bits/stdc++.h>
3 using namespace std;
4 #define N 505
5 #define M 1505
6 #define LOGN 10
7 const int INF = 1e9;
8 int n, m, q;
9
   namespace Dinic {
10
        int h[N], cur[N], dep[N], cnt = 1;
11
        struct Edge { int to, nx, f; } e[M << 2]; //</pre>
12
        inline void add(int u, int v, int f) {
            e[++cnt] = (Edge) \{v, h[u], f\}, h[u] = cnt;
13
            e[++cnt] = (Edge) \{u, h[v], 0\}, h[v] = cnt;
14
15
16
        int q[N], l, r;
        inline int bfs(int s, int t) {
17
            memset(dep, 0, (n + 1) << 2);
18
19
            dep[s] = 1, cur[s] = h[s];
            l = 0, q[r = 1] = s;
20
            while (l < r) {
21
                 int u = a[++1];
22
                 for (int i = h[u]; i; i = e[i].nx) {
23
24
                     int v = e[i].to;
25
                     if (e[i].f && !dep[v]) {
                         dep[v] = dep[u] + 1;
26
                         cur[v] = h[v];
27
                         q[++r] = v;
28
                     }
29
```

```
30
                }
31
            return dep[t];
32
33
        int dfs(int u, int t, int flow = INT_MAX) {
34
            if (!flow || u == t) return flow;
35
            int f, add = 0;
36
            for (int &i = cur[u]; i; i = e[i].nx) {
37
                int v = e[i].to;
38
                if (dep[v] == dep[u] + 1 && (f = dfs(v, t, min(flow, e[i].f)))) {
39
                     e[i].f -= f, e[i \land 1].f += f;
40
                     flow -= f, add += f;
41
                     if (!flow) break;
42
                }
43
            }
44
            return add;
45
46
        inline void init() {
47
48
            for (int i = 2; i <= cnt; i += 2) {
                e[i].f += e[i ^ 1].f;
49
                e[i \land 1].f = 0;
50
            }
51
52
        inline int main(int s, int t) {
53
54
            init(); int ans = 0, f;
            while (bfs(s, t)) {
55
                while ((f = dfs(s, t))) ans += f;
56
57
58
            return ans;
59
        }
60
   }
61
   namespace Mincut_Tree {
62
        struct Edge { int to, nx, len; } e[N << 1];</pre>
63
64
        int h[N], cnt = 1;
        inline void add(int u, int v, int w) {
65
            e[++cnt] = (Edge) \{v, h[u], w\}, h[u] = cnt;
66
67
            e[++cnt] = (Edge) \{u, h[v], w\}, h[v] = cnt;
68
        int node[N], tmp1[N], tmp2[N];
69
        void build(int 1, int r) {
70
71
            if (l == r) return;
            int s = node[l], t = node[l + 1];
72
            int cut = Dinic::main(s, t);
73
            add(s, t, cut);
74
            int cnt1 = 0, cnt2 = 0;
75
            for (int i = 1; i <= r; ++i) {
76
                if (Dinic::dep[node[i]]) tmp1[++cnt1] = node[i];
77
78
                else tmp2[++cnt2] = node[i];
79
80
            for (int i = l; i <= l + cnt1 - 1; ++i) node[i] = tmp1[i - l + 1];</pre>
81
            for (int i = l + cnt1; i \le r; ++i) node[i] = tmp2[i - cnt1 - l + 1];
82
            build(l, l + cnt1 - 1);
            build(l + cnt1, r);
83
84
        int dep[N], anc[N][LOGN], mnl[N][LOGN], log2n;
85
86
        void dfs(int u, int pre) {
87
            dep[u] = dep[pre] + 1;
88
            for (int i = 1; i <= log2n; i++) {
```

```
anc[u][i] = anc[anc[u][i - 1]][i - 1];
89
                 mnl[u][i] = min(mnl[u][i - 1], mnl[anc[u][i - 1]][i - 1]);
90
91
             for (int i = h[u]; i; i = e[i].nx) {
92
93
                 int v = e[i].to;
                 if (v != pre) {
94
                     anc[v][0] = u;
95
                     mnl[v][0] = e[i].len;
96
97
                      dfs(v, u);
98
                 }
             }
99
100
         inline void work() {
101
             log2n = log2(n) + 1;
102
             for (int i = 1; i <= n; i++) node[i] = i;</pre>
103
             build(1, n), dfs(1, 0);
104
105
         inline int query(int x, int y) {
106
             int ans = INF;
107
             if (dep[x] < dep[y]) swap(x, y);
108
             for (int i = log2n; i >= 0; i--) {
109
                 if (dep[anc[x][i]] >= dep[y]) {
110
                      ans = min(ans, mnl[x][i]);
111
112
                      x = anc[x][i];
113
                 }
114
             if (x == y) return ans;
115
             for (int i = log2n; i >= 0; i--) {
116
                 if (anc[x][i] != anc[y][i]) {
117
                      ans = min(ans, mnl[x][i]);
118
119
                      ans = min(ans, mnl[y][i]);
                     x = anc[x][i], y = anc[y][i];
120
                 }
121
             }
122
             ans = min(ans, mnl[x][0]);
123
             ans = min(ans, mnl[y][0]);
124
125
             return ans;
126
         }
127
    }
128
129
    int main() {
         scanf("%d %d", &n, &m);
130
         for (int u, v, w, i = 1; i \le m; i++) {
131
             scanf("%d %d %d", &u, &v, &w);
132
             Dinic::add(u, v, w);
133
             Dinic::add(v, u, w);
134
135
         Mincut_Tree::work();
136
         scanf("%d", &q);
137
         for (int u, v, i = 1; i \le q; i++) {
138
139
             scanf("%d %d", &u, &v);
140
             int ans = Mincut_Tree::query(u, v);
141
             if (ans == INF) ans = -1;
             printf("%d\n", ans);
142
143
144
         return 0;
145 }
```

4.8 2-SAT

```
1 #define N 2000006 // maxn << 1
2 struct Edge { int to, nx; } e[N];
3 int n, m, i, a, j, b, cnt, top, scc, dfncnt;
4 int h[N], st[N], vis[N], dfn[N], low[N], col[N];
  inline void add(int u, int v) { e[++cnt] = (Edge) {v, h[u]}, h[u] = cnt; }
   void tarjan(int u) {
6
        st[++top] = u, vis[u] = 1;
7
        dfn[u] = low[u] = ++dfncnt;
8
9
        for (int i = h[u]; i; i = e[i].nx) {
            int v = e[i].to;
10
            if (!dfn[v]) {
11
                tarjan(v);
12
                low[u] = min(low[u], low[v]);
13
            } else if (vis[v]) {
14
                low[u] = min(low[u], dfn[v]);
15
16
17
        if (dfn[u] == low[u]) {
18
            int v = st[top--]; ++scc;
19
            while (1) {
20
                col[v] = scc, vis[v] = 0;
21
22
                if (u == v) break;
23
                v = st[top--];
24
            }
        }
25
26
   }
   int main() {
27
        scanf("%d%d", &n, &m);
28
29
        while (m--) \{ // (i = a) \ V (j = b) \}
            scanf("%d%d%d%d", &i, &a, &j, &b); // 建图
30
            add(i + n * (a & 1), j + n * (b ^ 1));
add(j + n * (b & 1), i + n * (a ^ 1));
31
32
                             // n << 1
33
        for (int i = 1; i <= (n << 1); ++i) if (!dfn[i]) tarjan(i);</pre>
34
        for (int i = 1; i <= n; ++i) {
35
            if (col[i] == col[i + n]) puts("IMPOSSIBLE"), exit(0); // 无解
36
37
        puts("POSSIBLE");
38
        for (int i = 1; i <= n; ++i) { // 选项转换 0 => i, 1 => i + n
39
            printf("%d", col[i] < col[i + n]); // 选 scc 编号较小的点所代表的选项
40
41
42
        return 0;
43 }
```

4.9 二分图匹配

- 1. 一个二分图中的最大匹配数等于这个图中的最小点覆盖数
- 2. 最小路径覆盖 =|G|-最大匹配数

在一个 $N \times N$ 的有向图中, 路径覆盖就是在图中找一些路经, 使之覆盖了图中的所有顶点, 且任何一个顶点有且只有一条路径与之关联;

(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.

由上面可以得出:

(a) 一个单独的顶点是一条路径;

(b) 如果存在一路径 p_1, p_2,p_k, 其中 p_1 为起点, p_k 为终点,那么在覆盖图中,顶点 p_1, p_2,p_k 不再与其它的顶点之间存在有向边.

最小路径覆盖就是找出最小的路径条数, 使之成为 G 的一个路径覆盖. 路径覆盖与二分图匹配的关系: 最小路径覆盖 =|G|-最大匹配数;

3. 二分图最大独立集 = 顶点数-二分图最大匹配 独立集: 图中任意两个顶点都不相连的顶点集合。

4.9.1 匈牙利算法

```
时间复杂度:O(VE).
   建图时连左部点到右部点的有向边
1 vector<int> e[N];
2 int vis[N], mch[N];
3 int n, m, k, x, y, t, ans;
  int dfs(int u) {
4
       for (auto &v: e[u]) {
5
           if (vis[v] ^ t) {
6
7
               vis[v] = t;
               if (!mch[v] | l dfs(mch[v])) return mch[v] = u, 1;
8
9
           }
10
       }
       return 0;
11
12
   inline int work() {
13
       int ans = 0;
14
       for (int i = 1; i <= n; ++i) {
15
           ++t; if (dfs(i)) ++ans;
16
17
       return ans;
18
  }
19
   4.9.2 Hopcroft-Carp
   二分图匹配复杂度 O(\sqrt{n} * E)
   uN 为左端的顶点数,使用前赋值 (点编号 0 开始)
1 const int maxn = "Edit";
2 vector<int> G[maxn];
3 int uN, dis;
4 int Mx[maxn], My[maxn];
   int dx[maxn], dy[maxn];
   bool used[maxn];
7
   inline void init(int n) {
       for (int i = 0; i < n; i++) G[i].clear();
8
9
inline void addedge(int u, int v) { G[u].push_back(v); }
   bool bfs() {
11
       queue<int> q;
12
13
       dis = INF;
       memset(dx, -1, sizeof(dx)), memset(dy, -1, sizeof(dy));
14
       for (int i = 0; i < uN; i++)
15
           if (Mx[i] == -1) q.push(i), dx[i] = 0;
16
       while (!q.empty()) {
17
18
           int u = q.front();
19
           q.pop();
20
           if (dx[u] > dis) break;
```

```
for (auto& v : G[u]) {
21
                if (dy[v] == -1) {
22
                     dy[v] = dx[u] + 1;
23
24
                    if (My[v] == -1) dis = dy[v];
                    else {
25
                         dx[My[v]] = dy[v] + 1;
26
27
                         q.push(My[v]);
                     }
28
29
                }
            }
30
        }
31
32
        return dis != INF;
   }
33
   bool dfs(int u) {
34
        for (auto& v : G[u]) {
35
            if (!used[v] \& dy[v] == dx[u] + 1) {
36
37
                used[v] = true;
                if (My[v] != -1 \&\& dy[v] == dis) continue;
38
                if (My[v] == -1 \mid I \mid dfs(My[v])) {
39
                    My[v] = u, Mx[u] = v;
40
                     return true;
41
                }
42
            }
43
44
45
        return false;
46
   }
   int MaxMatch() {
47
48
        int res = 0;
        memset(Mx, -1, sizeof(Mx)), memset(My, -1, sizeof(My));
49
        while (bfs()) {
50
            memset(used, false, sizeof(used));
51
            for (int i = 0; i < uN; i++)
52
53
                if (Mx[i] == -1 \&\& dfs(i)) res++;
54
        return res;
55
  }
56
   4.9.3 Hungry(Multiple)
   const int maxn = "Edit";
   const int maxm = "Edit";
   int uN, vN;
3
                       //u,v的数目,使用前面必须赋值
   int g[maxn][maxm]; //邻接矩阵
   int linker[maxm][maxn];
5
   bool used[maxm];
6
   int num[maxm]; //右边最大的匹配数
7
   bool dfs(int u)
8
9
   {
        for (int v = 0; v < vN; v++)
10
            if (g[u][v] && !used[v])
11
12
                used[v] = true;
13
                if (linker[v][0] < num[v])</pre>
14
15
                     linker[v][++linker[v][0]] = u;
16
17
                     return true;
18
                for (int i = 1; i <= num[0]; i++)
19
```

```
if (dfs(linker[v][i]))
20
21
                   {
                      linker[v][i] = u;
22
23
                      return true;
24
25
26
       return false;
27
   }
28 int hungary()
29
   {
30
       int res = 0;
31
       for (int i = 0; i < vN; i++) linker[i][0] = 0;</pre>
       for (int u = 0; u < uN; u++)
32
33
           memset(used, 0, sizeof(used));
34
           if (dfs(u)) res++;
35
36
37
       return res;
38 }
   4.9.4 KM 算法
1 // 二分图最大权完美匹配 KM 算法 O(n ^ 3)
2 #include <bits/stdc++.h>
3 using namespace std;
4
5
  #define N 505
6
  #define repn(i, x, y) for (int i = x; i \le y; ++i)
7
8 typedef long long ll;
9
  const ll INF = 1e14;
10
11 // vx□, vy□: 左,右部点遍历标记
12 // mx[], my[]: 左,右部点匹配编号
13 // lx□, ly□: 左,右部点顶标
14 // sl[]: 松弛量, w[][]: 边权
16 bool vx[N], vy[N]; // visx, visy
17 int n, m, x, y, l, r;
int q[N], mx[N], my[N], pre[N]; // matchx, matchy
20
21
   inline int check(int y) {
22
       vy[y] = 1;
23
       if (my[y]) {
24
           if (!vx[my[y]]) vx[q[++r] = my[y]] = 1;
25
           return 0;
26
       while (y) swap(y, mx[my[y] = pre[y]]);
27
       return 1;
28
   }
29
30
31
   inline void bfs(int s) {
       fill(sl, sl + 1 + n, INF);
32
       fill(vx, vx + 1 + n, 0);
33
       fill(vy, vy + 1 + n, 0);
34
       l = 0, q[r = 1] = s, vx[s] = 1;
35
36
       while (1) {
```

```
while (l < r) {
37
                int x = q[++1];
38
                repn(y, 1, n) {
39
                     ll d = lx[x] + ly[y] - w[x][y];
40
                     if (!vy[y] \&\& d <= sl[y]) {
41
42
                         sl[y] = d, pre[y] = x;
                         if (!d && check(y)) return;
43
                     }
44
                }
45
46
            ll dt = INF; // delta
47
48
            repn(i, 1, n) if (!vy[i] && sl[i]) dt = min(dt, sl[i]);
49
            repn(i, 1, n) {
                if (vx[i]) lx[i] -= dt;
50
                if (vy[i]) ly[i] += dt;
51
                else sl[i] -= dt;
52
53
            1 = r = 0;
54
            repn(i, 1, n) if (!vy[i] && !sl[i] && check(i)) return;
55
56
        }
   }
57
58
   inline void init() {
59
        fill(mx, mx + 1 + n, 0), fill(my, my + 1 + n, 0);
60
61
        fill(lx, lx + 1 + n, 0), fill(ly, ly + 1 + n, 0);
        repn(i, 1, n) repn(j, 1, n) w[i][j] = -INF;
62
63 }
64
   inline void work() {
65
        repn(i, 1, n) repn(j, 1, n) lx[i] = max(lx[i], w[i][j]);
66
67
        repn(i, 1, n) bfs(i);
   }
68
69
   inline void output() {
70
        11 \text{ ans} = 0;
71
        repn(i, 1, n) ans += lx[i] + ly[i];
72
73
        printf("%lld\n", ans); // 最大权
        repn(i, 1, n) printf("%d ", my[i]); puts("");
74
   }
75
76
   int main() {
77
        int T = 1;
78
79
        while (T--) {
80
            n = rd(), m = rd(), init();
            while (m--) x = rd(), y = rd(), w[x][y] = rd();
81
82
            work(), output();
83
        return 0;
84
  }
85
```

4.10 网络流

建模技巧

二分图带权最大独立集。给出一个二分图,每个结点上有一个正权值。要求选出一些点,使得这些点之间没有边相连,且权值和最大。

解: 在二分图的基础上添加源点 S 和汇点 T,然后从 S 向所有 X 集合中的点连一条边,所有 Y 集合中的点向 T 连一条边,容量均为该点的权值。X 结点与 Y 结点之间的边的容量均为无穷大。这样,对于图中的任意一个割,将割中的

边对应的结点删掉就是一个符合要求的解,权和为所有权减去割的容量。因此,只需要求出最小割,就能求出最大权和。

公平分配问题。把 m 个任务分配给 n 个处理器。其中每个任务有两个候选处理器,可以任选一个分配。要求所有处理器中,任务数最多的那个处理器所分配的任务数尽量少。不同任务的候选处理器集 $\{p_1, p_2\}$ 保证不同。

解: 本题有一个比较明显的二分图模型,即 X 结点是任务,Y 结点是处理器。二分答案 x,然后构图,首先从源点 S 出发向所有的任务结点引一条边,容量等于 1,然后从每个任务结点出发引两条边,分别到达它所能分配到的两个处理器结点,容量为 1,最后从每个处理器结点出发引一条边到汇点 T,容量为 x,表示选择该处理器的任务不能超过 x。这样网络中的每个单位流量都是从 S 流到一个任务结点,再到处理器结点,最后到汇点 T。只有当网络中的总流量等于m 时才意味着所有任务都选择了一个处理器。这样,我们通过 $O(\log m)$ 次最大流便算出了答案。

区间 k **覆盖问题**。数轴上有一些带权值的左闭右开区间。选出权和尽量大的一些区间,使得任意一个数最多被 k 个区间覆盖。

解: 本题可以用最小费用流解决,构图方法是把每个数作为一个结点,然后对于权值为 w 的区间 [u,v) 加边 $u \rightarrow v$,容量为 1,费用为 -w。再对所有相邻的点加边 $i \rightarrow i + 1$,容量为 k,费用为 0。最后,求最左点到最右点的最小费用最大流即可,其中每个流量对应一组互不相交的区间。如果数值范围太大,可以先进行离散化。

最大闭合子图。给定带权图 G(权值可正可负),求一个权和最大的点集,使得起点在该点集中的任意弧,终点也在该点集中。

解: 新增附加源 s 和附加汇 t, 从 s 向所有正权点引一条边,容量为权值;从所有负权点向汇点引一条边,容量为权值的相反数。求出最小割以后, $S-\{s\}$ 就是最大闭合子图。

最大密度子图。给出一个无向图,找一个点集,使得这些点之间的边数除以点数的值(称为子图的密度)最大。

解:如果两个端点都选了,就必然要选边,这就是一种推导。如果把每个点和每条边都看成新图中的结点,可以把问题转化为最大闭合子图。

4.10.1 EK

```
1 // EK O(n * m * m)
   struct Edge { int from, to, nx, w; } e[M << 1];</pre>
  int h[N], pr[N], flow[N];
  int n, m, s, t, x, y, cnt = 1; // 1
   int q[N], l, r;
   inline int bfs() {
6
7
        memset(flow, 0, sizeof(flow));
8
        l = r = 0, q[++r] = s;
9
        flow[s] = INT_MAX;
        while (l < r) {
10
            int u = q[++1];
11
            for (int i = h[u]; i; i = e[i].nx) {
12
13
                int v = e[i].to;
                if (!flow[v] && e[i].w > 0) {
14
15
                    flow[v] = min(flow[u], e[i].w);
                    pr[v] = i, q[++r] = v;
16
17
                }
18
            if (flow[t]) break;
19
20
        return flow[t];
21
22
   }
   inline ll ek() {
23
        int delta; ll ans = 0;
24
        while ((delta = bfs())) {
25
26
            ans += delta;
            for (int i = t; i ^ s; i = e[pr[i]].from) {
27
                e[pr[i]].w -= delta;
28
```

```
e[pr[i] ^ 1].w += delta;
29
           }
30
31
32
       return ans;
33 }
   4.10.2 Dinic
  // Dinic 0(n * n * m)
   typedef long long ll;
3
   namespace Dinic {
       int n, s, t, cnt; ll mxf;
4
5
       int h[N], cur[N], dep[N];
       struct Edge { int to, nx; ll f; } e[M];
6
       inline void add(int u, int v, ll f, bool o = 1) {
7
            e[++cnt] = (Edge) \{v, h[u], f\}, h[u] = cnt;
8
9
            if (o) e[++cnt] = (Edge) \{u, h[v], 0\}, h[v] = cnt;
       }
10
       int q[N], l, r;
11
       inline int bfs() {
12
           memset(dep, 0, (n + 1) << 2);
13
            dep[s] = 1, cur[s] = h[s];
14
            l = 0, q[r = 1] = s;
15
           while (l < r) {
16
17
                int u = q + 1;
18
                for (int i = h[u]; i; i = e[i].nx) {
                    int v = e[i].to;
19
                    if (e[i].f && !dep[v]) {
20
                        dep[v] = dep[u] + 1;
21
                        cur[v] = h[v];
22
                        a[++r] = v;
23
24
                    }
25
                }
            }
26
            return dep[t];
27
28
       il dfs(int u, ll flow = LONG_MAX) {
29
            if (!flow || u == t) return flow;
30
31
            ll f, add = 0;
            for (int &i = cur[u]; i; i = e[i].nx) {
32
33
                int v = e[i].to;
                if (dep[v] == dep[u] + 1 && (f = dfs(v, min(flow, e[i].f)))) {
34
                    e[i].f -= f, e[i \land 1].f += f;
35
                    flow -= f, add += f;
36
37
                    if (!flow) break;
                }
38
            }
39
            return add;
40
41
       inline void main() { while (bfs()) mxf += dfs(s); }
42
43
       inline void init(int _n, int _s, int _t) {
            n = _n, s = _s, t = _t, mxf = 0, cnt = 1;
44
           memset(h, 0, (n + 1) << 2);
45
46
       }
   }
47
48
49 // 一个小技巧, 跑完 Dinic 后 dep 不为 Ø 的点
50 // 表示最终与 S (源点) 连通, 在最小割中该点被划分到 S 那边
```

4.10.3 ISAP

```
// ISAP 0(n * n * m)
   typedef long long 11;
2
   namespace ISAP {
        const int N = 2e5 + 5;
4
        const int M = 1e6 + 6;
5
        int n, s, t, cnt; ll mxf;
6
        int h[N], cur[N], dep[N], gap[N];
7
        struct Edge { int to, nx; ll f; } e[M];
8
        inline void add(int u, int v, ll f, bool o = 1) {
9
            e[++cnt] = (Edge) \{v, h[u], f\}, h[u] = cnt;
10
            if (o) e[++cnt] = (Edge) \{u, h[v], 0\}, h[v] = cnt;
11
12
13
        int q[N], l, r;
        inline void bfs() {
14
            memset(dep, 0, (n + 1) \ll 2);
memset(gap, 0, (n + 1) \ll 2);
15
16
            gap[dep[t] = 1] = 1, l = 0, q[r = 1] = t;
17
            while (l < r) {
18
                int u = q[++1];
19
                for (int i = h[u]; i; i = e[i].nx) {
20
21
                     int v = e[i].to;
22
                     if (!dep[v]) {
                         dep[v] = dep[u] + 1;
23
                         ++gap[dep[v]];
24
25
                         q[++r] = v;
26
                     }
27
                }
            }
28
29
        11 dfs(int u, ll flow = LONG_MAX) {
30
31
            if (!flow || u == t) return flow;
32
            ll f, add = 0;
33
            for (int &i = cur[u]; i; i = e[i].nx) { // & cur
34
                int v = e[i].to;
                if (dep[v] == dep[u] - 1) {
35
36
                     if ((f = dfs(v, min(flow, e[i].f)))) {
37
                         e[i].f -= f, e[i \land 1].f += f;
38
                         flow -= f, add += f;
39
                     if (!flow) return add;
40
                }
41
42
            --gap[dep[u]] ? ++gap[++dep[u]] : dep[s] = n + 1;
43
44
            return add;
45
        inline void main() {
46
            bfs();
47
            while (dep[s] <= n) {</pre>
48
                memcpy(cur, h, (n + 1) << 2);
49
50
                mxf += dfs(s);
            }
51
52
53
        inline void init(int _n, int _s, int _t) {
            n = _n, s = _s, t = _t, mxf = 0, cnt = 1;
54
            memset(h, 0, (n + 1) << 2);
55
        }
56
57 }
```

```
int main() {
58
       int n = rd(), m = rd(), s = rd(), t = rd();
59
60
       ISAP::init(n, s, t);
       while (m--) {
61
62
            x = rd(), y = rd(), w = rd();
63
            ISAP::add(x, y, w);
64
       printf("%lld\n", ISAP::main());
65
       return 0;
66
67 }
   4.10.4 费用流
1 // 基于 SPFA & EK
  // MCMF 0(n * m * maxflow)
   typedef long long ll;
3
   namespace MCMF {
       const int N = 5e3 + 3;
5
       const int M = 1e5 + 5;
6
7
       int n, s, t, cnt; ll mxf, mnc;
       int h[N], pr[N], pre[N], vis[N]; ll dis[N], flow[N]; // ll
8
       struct Edge { int to, nx; ll f, dis; } e[M];
9
       inline void add(int u, int v, ll f, ll w, bool o = 1) {
10
            e[++cnt] = (Edge) \{v, h[u], f, w\}, h[u] = cnt;
11
            if (o) e[++cnt] = (Edge) \{u, h[v], 0, -w\}, h[v] = cnt;
12
13
       }
14
       inline int spfa() {
            memset(flow, 127, (n + 1) << 3);
15
16
            memset(dis, 63, (n + 1) << 3);
            memset(vis, 0, (n + 1) \ll 2);
17
            dis[s] = 0, pre[t] = -1;
18
            queue<int> que; que.push(s);
19
            while (!que.empty()) {
20
21
                int u = que.front(); que.pop(); vis[u] = 0;
                for (int i = h[u]; i; i = e[i].nx) {
22
                    int v = e[i].to;
23
24
                    if (e[i].f && dis[v] > dis[u] + e[i].dis) {
25
                        flow[v] = min(flow[u], e[i].f);
26
                        dis[v] = dis[u] + e[i].dis;
                        pre[v] = u, pr[v] = i;
27
                        if (!vis[v]) vis[v] = 1, que.push(v);
28
29
                    }
30
                }
31
32
            return ~pre[t];
33
       inline void main() {
34
            while (spfa()) {
35
                const ll f = flow[t];
36
                mxf += f, mnc += \bar{f} * dis[t];
37
                for (int u = t; u ^ s; u = pre[u]) {
38
                    e[pr[u]].f -= f, e[pr[u] ^ 1].f += f;
39
                }
40
            }
41
42
       inline void init(int _n, int _s, int _t) {
43
            n = _n, s = _s, t = _t, mnc = mxf = 0, cnt = 1;
44
            memset(h, 0, (n + 1) << 2);
45
```

```
}
46
47
   int main() {
48
        int n = rd(), m = rd(), s = rd(), t = rd();
49
50
        MCMF::init(n, s, t);
        while (m--) {
51
            int u = rd(), v = rd(), f = rd(), w = rd();
52
            MCMF::add(u, v, f, w);
53
54
        MCMF::main();
55
        printf("%d %1ld\n", MCMF::mxf, MCMF::mnc);
56
57
        return 0;
58 }
```

4.10.5 上下界网络流建图方法

上下界网络流建图方法

记号说明

- f(u,v) 表示 $u \to v$ 的实际流量
- b(u,v) 表示 $u \to v$ 的流量下界
- c(u,v) 表示 $u \to v$ 的流量上界

无源汇可行流

建图

- 新建附加源点 S 和 T
- 原图中的边 $u \to v$, 限制为 [b,c], 建边 $u \to v$, 容量为 c-b
- $i \exists d(i) = \sum b(u,i) \sum b(i,v)$
- 若 d(i) > 0, 建边 $S \rightarrow i$, 流量为 d(i)
- 若 d(i) < 0, 建边 $i \rightarrow T$, 流量为 -d(i)

求解

- 跑 $S \to T$ 的最大流,如果满流,则原图存在可行流。
- 此时,原图中每一条边的流量为新图中对应边的流量加上这条边的下界。

有源汇可行流

建图

- 在原图中建边 $t \to s$, 流量限制为 $[0, +\infty)$, 这样就改造成了无源汇的网络流图。
- 之后就可以像求解无源汇可行流一样建图了。

求解 同无源汇可行流

有源汇最大流

建图 同有源汇可行流

求解

- 先跑一遍 $S \to T$ 的最大流, 求出可行流
- 记此时 $\sum f(s,i) = sum_1$
- 将 $t \rightarrow s$ 这条边拆掉, 在新图上跑 $s \rightarrow t$ 的最大流
- 记此时 $\sum f(s,i) = sum_2$
- 最终答案即为 $sum_1 + sum_2$

有源汇最小流

建图 同无源汇可行流

求解

- $\bar{x} S \to T$ 最大流
- 建边 $t \rightarrow s$, 容量为 $+\infty$
- 再跑一遍 $S \to T$ 的最大流, 答案即为 f(t,s)

有源汇的最大流和最小流也可以通过二分答案求得,

即二分 $t \to s$ 的下界 (最大流) 和上界 (最小流) 复杂度多了个 $O(\log n)$ 这里不再赘述。

蓝书上的做法

- 先用无源汇可行流建图的方法求出可行流,然后用传统 s-t 增广路算法即可得到最大流。把 t 看成源点,s 看成 汇点后求出的 t-s 最大流就是最小流。
- 注意: 原先每条弧 $u \to v$ 的反向弧容量为 0, 而在有容量下界的情形中, 反向弧的容量应该等于流量下界。

有源汇费用流

建图

- 新建附加源点 S 和 T
- 原图中的边 $u \to v$, 限制为 [b,c], 费用为 cost, 建边 $u \to v$, 容量为 c-b, 费用为 cost
- $\dagger \exists d(i) = \sum b(u,i) \sum b(i,v)$
- 若 d(i) > 0, 建边 $S \to i$, 流量为 d(i), **费用为** 0
- 若 d(i) < 0, 建边 $i \to T$, 流量为 -d(i), **费用为** 0
- 建边 $t \to s$, 流量为 $+\infty$, 费用为 0。

求解

- $\mathbb{B} S \to T$ 的最小费用最大流
- 答案为求出的费用加上原图中边的下界乘以边的费用

4.10.6 无源汇上下界可行流

```
1 // 上下界可行流
2 \quad const int M = 2e6 + 6;
3 typedef long long ll;
   namespace ISAP { }
   namespace no_ok_flow {
5
       const int N = 2e5 + 5;
6
       int n, S, T; ll d[N], s;
7
       inline void add(int x, int y, ll l, ll r) {
8
9
            ISAP::add(x, y, r - 1), d[y] += 1, d[x] -= 1;
10
       inline bool main() {
11
            for (int i = 1; i <= n; ++i) {
12
                if (d[i] > 0) ISAP::add(S, i, d[i]), s += d[i];
13
                else if (d[i] < 0) ISAP::add(i, T, -d[i]);
14
15
            ISAP::main():
16
            return ISAP::mxf == s;
17
18
       inline void init(int _n) {
19
           n = n, s = 0, S = n + 1, T = n + 2;
20
           memset(d, 0, (n + 1) \ll 3); // 3
21
           ISAP::init(n + 2, S, T);
22
```

```
}
23
24
   int n, m, l[M];
25
   int main() {
26
        scanf("%d%d", &n, &m), no_ok_flow::init(n);
27
        for (int i = 1, x, y, l, r; i <= m; ++i) {
    scanf("%d%d%d", &x, &y, &l, &r);</pre>
28
29
            no_ok_flow::add(x, y, l, r), ::l[i] = l;
30
31
        if (!no_ok_flow::main()) puts("NO"), exit(0);
32
        puts("YES"); // 可行
33
34
        for (int i = 1, j = 3; i \le m; ++i, j += 2) {
            printf("%lld\n", l[i] + ISAP::e[j].f); // 输出每条边流量
35
36
37
        return 0;
38
   4.10.7 有源汇上下界最大流
1 // 有源汇上下界最大流
2 typedef long long ll;
3 namespace ISAP { }
   namespace no_ok_flow { }
5
   namespace yes_max_flow {
        int n, S, T;
6
7
        inline bool main() {
            no_ok_flow::add(T, S, 0, LONG_MAX);
8
            if (!no_ok_flow::main()) return 0;
9
            ISAP::s = S, ISAP::t = T, ISAP::mxf = 0;
10
            return ISAP::main(), 1;
11
12
        inline void init(int _n, int _s, int _t) {
13
            n = _n, S = _s, T = _t;
14
            no_ok_flow::init(n);
15
        }
16
   }
17
18
   int n, m, s, t;
19
20
   int main() {
        scanf("%d%d%d%d", &n, &m, &s, &t);
21
        yes_max_flow::init(n, s, t);
22
        for (int i = 1, x, y, l, r; i <= m; ++i) {
    scanf("%d%d%d", &x, &y, &l, &r);</pre>
23
24
            no_ok_flow::add(x, y, l, r);
25
26
        if (!yes_max_flow::main()) puts("please go home to sleep"), exit(0);
27
        printf("%lld\n", ISAP::mxf);
28
        return 0;
29
30 }
   4.10.8 有源汇上下界最小流
1 // 有源汇上下界最小流
2 typedef long long ll;
3 namespace ISAP { }
4 namespace no_ok_flow { }
5
   namespace yes_min_flow {
6
        int n, S, T;
```

```
inline bool main() {
7
            no_ok_flow::main();
8
            no_ok_flow::add(T, S, 0, LONG_MAX);
9
            ISAP::main();
10
            return ISAP::mxf == no_ok_flow::s;
11
12
        inline void init(int _n, int _s, int _t) {
13
            n = _n, S = _s, T = _t;
14
            no_ok_flow::init(n);
15
        }
16
   }
17
   int n, m, s, t;
18
   int main() {
19
        scanf("%d%d%d%d", &n, &m, &s, &t);
20
        yes_min_flow::init(n, s, t);
21
       for (int i = 1, x, y, l, r; i <= m; ++i) {
    scanf("%d%d%d%d", &x, &y, &l, &r);</pre>
22
23
24
            no_ok_flow::add(x, y, l, r);
25
        if (!yes_min_flow::main()) puts("please go home to sleep"), exit(0);
26
        printf("%lld\n", ISAP::e[ISAP::cnt].f);
27
        return 0;
28
29 }
   4.10.9 无源汇上下界最小费用可行流
1 // 无源汇上下界最小费用可行流
  // 有源汇做法: addedge(t, s, 0, INF, 0) 转为无源汇模型
3 typedef long long ll;
   namespace MCMF { }
   namespace no_min_cost_flow {
6
        const int N = 310;
7
        int n, S, T; ll d[N], s, sum;
        inline void add(int x, int y, ll l, ll r, ll w) {
8
            MCMF::add(x, y, r - 1, w), d[y] += 1, d[x] -= 1, sum += 1 * w;
9
10
11
        inline bool main() {
12
            for (int i = 1; i <= n; ++i) {
13
                if (d[i] > 0) MCMF::add(S, i, d[i], 0), s += d[i];
                else if (d[i] < 0) MCMF::add(i, T, -d[i], 0);</pre>
14
15
            MCMF::main();
16
            return MCMF::mxf == s;
17
18
        // 最终答案还需要加上 Sum = 每条边的 (下界流量 * 费用)
19
        inline ll mnc() { return MCMF::mnc + sum; }
20
21
        inline void init(int _n) {
            n = n, s = 0, S = n + 1, T = n + 2;
22
            MCMF::init(n + 2, S, T);
23
            memset(d, 0, (n + 1) \ll 3);
24
        }
25
26
   }
   int n, m, s, t;
27
   int main() {
28
29
        using no_min_cost_flow::add;
        scanf("%d%d", &n, &m);
no_min_cost_flow::init(node_tot);
30
31
32
        // addedge
```

```
33 add(t, s, 0, INF, 0); // 有源汇转无源汇
34 no_min_cost_flow::main();
35 printf("%lld\n", no_min_cost_flow::mnc());
36 return 0;
37 }
```

5 Computational Geometry

5.1 Basic Function

```
#define zero(x) ((fabs(x) < eps ? 1 : 0))
   #define sqn(x) (fabs(x) < eps ? 0 : ((x) < 0 ? -1 : 1))
4 struct point
5
       double x, y;
6
       point(double a = 0, double b = 0) { x = a, y = b; }
7
       point operator-(const point& b) const { return point(x - b.x, y - b.y); }
8
       point operator+(const point& b) const { return point(x + b.x, y + b.y); }
9
       // 两点是否重合
10
       bool operator==(point& b) { return zero(x - b.x) && zero(y - b.y); }
11
       // 点积(以原点为基准)
12
       double operator*(const point& b) const { return x * b.x + y * b.y; }
13
       // 叉积(以原点为基准)
14
       double operator^(const point& b) const { return x * b.y - y * b.x; }
15
       // 绕P点逆时针旋转a弧度后的点
       point rotate(point b, double a)
17
18
           double dx, dy;
19
           (*this - b).split(dx, dy);
20
           double tx = dx * cos(a) - dy * sin(a);
21
           double ty = dx * sin(a) + dy * cos(a);
22
           return point(tx, ty) + b;
23
24
       // 点坐标分别赋值到a和b
25
26
       void split(double& a, double& b) { a = x, b = y; }
27
   };
  struct line
28
29
   {
       point s, e;
30
31
       line() {}
       line(point ss, point ee) { s = ss, e = ee; }
32
   };
33
   5.2 Position
   5.2.1 Point-Point
1 double dist(point a, point b) { return sqrt((a - b) * (a - b)); }
   5.2.2 Line-Line
1 // <0, *> 表示重合; <1, *> 表示平行; <2, P> 表示交点是P;
  pair<int, point> spoint(line l1, line l2)
2
3
       point res = l1.s;
4
       if (sgn((11.s - 11.e) \wedge (12.s - 12.e)) == 0)
5
           return {sgn((l1.s - l2.e) ^ (l2.s - l2.e)) != 0, res};
6
       double t = ((l1.s - l2.s) \land (l2.s - l2.e)) / ((l1.s - l1.e) \land (l2.s - l2.e));
7
       res.x += (l1.e.x - l1.s.x) * t;
8
       res.y += (l1.e.y - l1.s.y) * t;
9
       return {2, res};
10
11 }
```

5.2.3 Segment-Segment

```
1 bool segxseg(line l1, line l2)
2
   {
3
       return
4
           max(11.s.x, 11.e.x) >= min(12.s.x, 12.e.x) &&
5
           max(12.s.x, 12.e.x) >= min(11.s.x, 11.e.x) &&
           max(11.s.y, 11.e.y) >= min(12.s.y, 12.e.y) &&
6
           max(12.s.y, 12.e.y) >= min(11.s.y, 11.e.y) &&
7
           sgn((l2.s - l1.e) \land (l1.s - l1.e)) * sgn((l2.e-l1.e) \land (l1.s - l1.e)) <= 0 &&
8
           sgn((11.s - 12.e) \wedge (12.s - 12.e)) * sgn((11.e-12.e) \wedge (12.s - 12.e)) <= 0;
9
10 }
   5.2.4 Line-Segment
1 //11是直线,12是线段
2 bool segxline(line l1, line l2)
3
       return sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <=
4
       0;
5 }
   5.2.5 Point-Line
   double pointtoline(point p, line l)
2
       point res;
3
       double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l.s));
4
       res.x = 1.s.x + (1.e.x - 1.s.x) * t, res.y = 1.s.y + (1.e.y - 1.s.y) * t;
5
       return dist(p, res);
6
7
  }
   5.2.6 Point-Segment
   double pointtosegment(point p, line l)
2
3
       point res:
       double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l.s));
4
       if (t >= 0 && t <= 1)
5
           res.x = 1.s.x + (1.e.x - 1.s.x) * t, res.y = 1.s.y + (1.e.y - 1.s.y) * t;
6
7
       else
           res = dist(p, l.s) < dist(p, l.e) ? l.s : l.e;
8
9
       return dist(p, res);
10 }
   5.2.7 Point on Segment
   bool PointOnSeg(point p, line l)
1
2
3
       return
           sgn((1.s - p) \wedge (1.e-p)) == 0 \&\&
4
5
           sgn((p.x - l.s.x) * (p.x - l.e.x)) <= 0 &&
6
           sgn((p.y - l.s.y) * (p.y - l.e.y)) <= 0;
7 }
```

5.3 Polygon 5.3.1 Area 1 double area(point p[], int n) 2 { 3 double res = 0; for (int i = 0; i < n; i++) res $+= (p[i] \land p[(i + 1) \% n]) / 2;$ 4 return fabs(res); 5 6 } 5.3.2 Point in Convex 1 // 点形成一个凸包, 而且按逆时针排序(如果是顺时针把里面的<0改为>0) 2 // 点的编号: [0,n) 3 // -1: 点在凸多边形外 4 // 0 : 点在凸多边形边界上 5 // 1 : 点在凸多边形内 6 int PointInConvex(point a, point p∏, int n) 7 { for (int i = 0; i < n; i++) 8 if $(sgn((p[i] - a) \land (p[(i + 1) \% n] - a)) < 0)$ 9 10 return -1; else if (PointOnSeg(a, line(p[i], p[(i + 1) % n])))11 return 0; 12 13 return 1; 14 } 5.3.3 Point in Polygon 1 // 射线法,poly□的顶点数要大于等于3,点的编号0~n-1 2 // -1: 点在凸多边形外 3 // 0 : 点在凸多边形边界上 4 // 1 : 点在凸多边形内 int PointInPoly(point p, point poly[], int n) 5 { 6 7 int cnt; line ray, side; 8 cnt = 0;9 10 ray.s = p;ray.e.y = p.y; 11 12 for (int i = 0; i < n; i++) 13 14 side.s = poly[i], side.e = poly[(i + 1) % n]; 15 if (PointOnSeg(p, side)) return 0; 16 //如果平行轴则不考虑 17 if (sgn(side.s.y - side.e.y) == 0)18 19 continue; if (PointOnSeg(sid e.s, r ay)) 20 21cnt += (sgn(side.s.y - side.e.y) > 0); else if (PointOnSeg(side.e, ray)) 2223 cnt += (sgn(side.e.y - side.s.y) > 0); else if (segxseg(ray, side)) 2425 cnt++; 26 27 return cnt % 2 == 1 ? 1 : -1;

28 }

5.3.4 Judge Convex

```
1 //点可以是顺时针给出也可以是逆时针给出
  //点的编号1~n-1
3 bool isconvex(point poly[], int n)
4
       bool s[3];
5
       memset(s, 0, sizeof(s));
6
       for (int i = 0; i < n; i++)
7
8
           s[sgn((poly[(i + 1) % n] - poly[i]) ^ (poly[(i + 2) % n] - poly[i])) + 1] = 1;
9
10
           if (s[0] && s[2]) return 0;
11
       return 1;
12
13 }
   5.4 Integer Points
   5.4.1 On Segment
int OnSegment(line l) { return __gcd(fabs(l.s.x - l.e.x), fabs(l.s.y - l.e.y)) + 1; }
   5.4.2 On Polygon Edge
1 int OnEdge(point p[], int n)
2
   {
3
       int i, ret = 0;
       for (i = 0; i < n; i++)
4
           ret += \__gcd(fabs(p[i].x - p[(i + 1) % n].x), fabs(p[i].y - p[(i + 1) % n].y));
5
       return ret;
6
7 }
   5.4.3 Inside Polygon
1 int InSide(point p∏, int n)
2
       int i, area = 0;
3
       for (i = 0; i < n; i++)
4
           area += p[(i + 1) \% n].y * (p[i].x - p[(i + 2) \% n].x);
5
       return (fabs(area) - OnEdge(p, n)) / 2 + 1;
7 }
   5.5 Circle
   5.5.1 Circumcenter
   point waixin(point a, point b, point c)
1
2
       double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
3
       double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
4
5
       double d = a1 * b2 - a2 * b1;
       return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 - a2 * c1) / d);
6
7 }
```

5.6 RuJia Liu's

```
5.6.1 Point
1
   struct Point
2
   {
3
       double x, y;
       Point(double x = 0, double y = 0) : x(x), y(y) {}
4
  };
5
6
   typedef Point Vector;
7
8
9 //向量+向量=向量,点+向量=点
10 Vector operator+(Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
11 //点-点=向量
12 Vector operator-(Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); }
13 //向量*数=向量
   Vector operator*(Vector A, double p) { return Vector(A.x * p, A.y * p); }
   //向量/数=向量
15
16 Vector operator/(Vector A, double p) { return Vector(A.x / p, A.y / p); }
17
18 bool operator<(const Point& a, const Point& b)</pre>
19 {
       return a.x < b.x | | (a.x == b.x && a.y < b.y);
20
  }
21
22
23 const double eps = 1e-10;
24
  double dcmp(double x)
25
26
       if (fabs(x) < eps)
27
           return 0;
28
       else
29
           return x < 0 ? -1 : 1;
30 }
31
32 bool operator==(const Point& a, const Point& b)
33 {
34
       return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
35 }
36
37
      基本运算:
38
39
      点积
40
      叉积
41
      向量旋转
    */
42
   double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; }
43
   double Length(Vector A) { return sqrt(Dot(A, A)); }
   double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
45
46
   double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; }
47
   double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
48
49
  //rad是弧度
50
51
  Vector Rotate(Vector A, double rad)
52
       return Vector(A.x * cos(rad) - A.y * sin(rad);
53
                     A.x * sin(rad) + A.y * cos(rad));
54
55 }
```

```
56
57
    //调用前请确保A不是零向量
    Vector Normal(Vector A)
59 {
        double L = Length(A);
60
        return Vector(-A.y / L, A.x / L);
61
62 }
63
64
     * 点和直线:
65
     * 两直线交点
66
     * 点到直线的距离
67
     * 点到线段的距离
68
     * 点在直线上的投影
69
     * 线段相交判定
70
     * 点在线段上判定
71
72
73
74 //调用前保证两条直线P+tv和Q+tw有唯一交点。当且仅当Cross(v, w)非0
75 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
76 {
        Vector u = P - Q;
77
        double t = Cross(w, u) / Cross(v, w);
78
79
        return P + v * t;
80 }
81
   double DistanceToLine(Point P, Point A, Point B)
82
83
    {
        Vector v1 = B - A, v2 = P - A;
84
        return fabs(Cross(v1, v2)) / Length(v1); //如果不取绝对值, 得到的是有向距离
85
    }
86
87
    double DistanceToSegment(Point P, Point A, Point B)
88
89
        if (A == B) return Length(P - A);
90
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
91
        if (dcmp(Dot(v1, v2)) < 0) return Length(v2);</pre>
92
93
        if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
        return fabs(Cross(v1, v2)) / Length(v1);
94
    }
95
96
   Point GetLineProjection(Point P, Point A, Point B)
97
98
99
        Vector v = B - A;
        return A + v * (Dot(v, P - A) / Dot(v, v));
100
101
    }
102
103 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
104
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - b1),
105
106
               c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
107
        return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
108
    }
109
110 bool OnSegment(Point p, Point a1, Point a2)
111
112
        return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
113 }
```

5.6.2 Circle

```
1
   struct Line
2
3
       Point p;
                   //直线上任意一点
                   //方向向量。它的左边就是对应的半平面
       Vector v;
4
       double ang; //极角。即从x正半轴旋转到向量v所需要的角 (弧度)
5
6
       Line() {}
       Line(Point p, Vector v) : p(p), v(v) { ang = atan2(v.y, v.x); }
7
       bool operator<(const Line& L) const // 排序用的比较运算符
8
9
10
           return ang < L.ang;</pre>
11
       Point point(double t) { return p + v * t; }
12
   };
13
14
15
   struct Circle
16
   {
17
       Point c;
18
       double r;
       Circle(Point c, double r) : c(c), r(r) {}
19
       Point point(double a) { return c.x + cos(a) * r, c.y + sin(a) * r; }
20
   };
21
22
   int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>&
       sol)
24
   {
25
       double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
       double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
26
       double delta = f * f - 4 * e * g; //判别式
27
       if (dcmp(delta) < 0) return 0;</pre>
28
29
       if (dcmp(delta) == 0)
30
31
           t1 = t2 = -f / (2 * e);
32
           sol.push_back(L.point(t1));
           return 1;
33
34
       //相交
35
       t1 = (-f - sqrt(delta)) / (2 * e);
36
37
       t2 = (-f + sqrt(delta)) / (2 * e);
38
       sol.push_back(t1);
39
       sol.push_back(t2);
40
       return 2;
41
   }
42
43
   double angle(Vector v) { return atan2(v.y, v.x); }
44
   int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol)
45
   {
46
       double d = Length(C1.c - C2.c);
47
       if (dcmp(d) == 0)
48
49
           if (dcmp(C1.r - C2.r) == 0) return -1; //两圆重合
50
           return 0;
51
52
       if (dcmp(C1.r + C2.r - d) < 0) return 0;
53
                                                       //内含
54
       if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; //外离
55
       double \ a = angle(C2.c - C1.c); // 向量C1C2的极角
56
```

```
double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
57
        //C1C2到C1P1的角
58
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
59
60
61
        sol.push_back(p1);
        if (p1 == p2) return 1;
62
63
        sol.push_back(p2);
        return 2;
64
    }
65
66
    //过点p到圆C的切线, v[i]是第i条切线的向量, 返回切线条数
67
    int getTangents(Point p, Circle C, Vector* v)
69
70
        Vector u = C.c - p;
        double dist = Length(u);
71
        if (dist < C.r)</pre>
72
73
            return 0;
74
        else if (dcmp(dist - C.r) == 0)
75
        { //p在圆上,只有一条切线
76
            v[0] = Rotate(u, M_PI / 2);
77
            return 1;
        }
78
79
        else
80
        {
81
            double ang = asin(C.r / dist);
            v[0] = Rotate(u, -ang);
82
83
            v[1] = Rotate(u, +ang);
            return 2;
84
        }
85
    }
86
87
88 //两圆的公切线
89 //返回切线的条数。-1表示无穷条切线。
   //a[i]和b[i]分别是第i条切线在圆A和圆B上的切点
   int getTangents(Circle A, Circle B, Point* a, Point* b)
   {
92
93
        int cnt = 0;
94
        if (A.r < B.r)
95
        {
            swap(A, B);
96
            swap(a, b);
97
98
        int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
99
        int rdiff = A.r - B.r;
100
        int rsum = A.r + B.r;
101
        if (d2 < rdiff * rdiff) return 0; //肉含
102
103
        double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
        if (d2 == 0 && A.r == B.r) return -1; //无限多条切线
104
        if (d2 == rdiff * rdiff)
105
        { //内切, 一条切线
106
107
            a[cnt] = A.point(base);
108
            b[cnt] = B.point(base);
109
            cnt++;
            return 1;
110
111
112
        //有外共切线
113
        double ang = acos((A.r - B.r) / sqrt(d2));
114
        a[cnt] = A.point(base + ang);
115
        b[cnt] = B.point(base + ang);
```

```
116
        cnt++;
        a[cnt] = A.point(base + ang);
117
        b[cnt] = B.point(base - ang);
118
119
        cnt++;
120
        if (d2 == rsum * rsum)
121
            a[cnt] = A.point(base);
122
            b[cnt] = B.point(M_PI + base);
123
            cnt++;
124
125
        }
        else if (d2 > rsum * rsum)
126
127
            double ang = acos((A.r + B.r) / sqrt(d2));
128
            a[cnt] = A.point(base + ang);
129
            b[cnt] = B.point(M_PI + base + ang);
130
131
            cnt++;
            a[cnt] = A.point(base - ang);
132
133
            b[cnt] = B.point(M_PI + base - ang);
134
            cnt++;
135
        return cnt;
136
137 }
138
139 //三角形外接圆 (三点保证不共线)
140 Circle CircumscribedCircle(Point p1, Point p2, Point p3)
141
142
        double Bx = p2.x - p1.x, By = p2.y - p1.y;
        double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
143
        double D = 2 * (Bx * Cy - By * Cx);
144
        double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
145
        double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
146
        Point p = Point(cx, cy);
147
        return Circle(p, Length(p1 - p));
148
149 }
150
151 //三角形内切圆
152 Circle InscribedCircle(Point p1, Point p2, Point p3)
153 {
        double a = \text{Length}(p2 - p3);
154
155
        double b = Length(p3 - p1);
        double c = Length(p1 - p2);
156
        Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);
157
        return Circle(p, DistanceToLine(p, p1, p2));
158
159
   }
    5.6.3 Polygon
 1 typedef vector<Point> Polygon;
 2 //多边形的有向面积
 3
   double PolygonArea(Polygon po)
 4
        int n = po.size();
 5
 6
        double area = 0.0;
 7
        for (int i = 1; i < n - 1; i++)
            area += Cross(po[i] - po[0], po[i + 1] - po[0]);
 8
 9
        return area / 2;
   }
 10
11
```

```
12 //点在多边形内判定
  int isPointInPolygon(Point p, Polygon poly)
13
14
       int wn = 0; //绕数
15
       int n = poly.size();
16
       for (int i = 0; i < n; i++)
17
18
           if (OnSegment(p, poly[i], poly[(i + 1) % n])) return -1; //边界上
19
           int k = dcmp(Cross(poly[(i + 1) % n] - poly[i], p - poly[i]));
20
           int d1 = dcmp(poly[i].y - p.y);
21
           int d2 = dcmp(poly[(i + 1) % n].y - p.y);
22
23
           if (k > 0 \&\& d1 \le 0 \&\& d2 > 0) wn++;
           if (k < 0 \&\& d2 <= 0 \&\& d1 > 0) wn--;
24
25
       if (wn != 0) return 1; //内部
26
       return 0;
27
   }
28
29
30 //凸包(Andrew算法)
31 //如果不希望在凸包的边上有输入点,把两个 <= 改成 <
32 //如果不介意点集被修改,可以改成传递引用
33 Polygon ConvexHull(vector<Point> p)
34 {
35
       sort(p.begin(), p.end());
36
       p.erase(unique(p.begin(), p.end());
37
       int n = p.size(), m = 0;
       Polygon res(n + 1);
38
       for (int i = 0; i < n; i++)
39
40
           while (m > 1 \& Cross(res[m - 1] - res[m - 2], p[i] - res[m - 2]) <= 0) m--;
41
42
           res[m++] = p[i];
43
       int k = m;
44
       for (int i = n - 2; i >= 0; i--)
45
46
           while (m > k && Cross(res[m - 1] - res[m - 2], p[i] - res[m - 2]) <= 0) m--;</pre>
47
           res[m++] = p[i];
48
49
       }
50
       m -= n > 1;
       res.resize(m);
51
       return res;
52
   }
53
54
   vector<Point> HalfplaneIntersection(vector<Line>& L)
56
   {
57
       int n = L.size();
58
       sort(L.begin(), L.end()); // 按极角排序
59
60
       int first, last;
                          // 双端队列的第一个元素和最后一个元素的下标
61
62
       vector<Point> p(n); // p[i]为q[i]和q[i+1]的交点
63
       vector<Line> q(n); // 双端队列
64
       vector<Point> ans; // 结果
65
       q[first = last = 0] = L[0]; // 双端队列初始化为只有一个半平面L[0]
66
       for (int i = 1; i < n; i++)
67
68
69
           while (first < last && !OnLeft(L[i], p[last - 1])) last--;</pre>
           while (first < last && !OnLeft(L[i], p[first])) first++;</pre>
70
```

```
q[++last] = L[i];
71
            if (fabs(Cross(q[last].v, q[last - 1].v)) < eps)</pre>
72
            { // 两向量平行且同向,取内侧的一个
73
74
                last--;
                if (OnLeft(q[last], L[i].p)) q[last] = L[i];
75
76
            if (first < last) p[last - 1] = GetLineIntersection(q[last - 1], q[last]);</pre>
77
78
       while (first < last && !OnLeft(q[first], p[last - 1])) last--; // 删除无用平面
79
       if (last - first <= 1) return vector<Point>();
80
       p[last] = GetLineIntersection(q[last], q[first]);
                                                                        // 计算首尾两个半平面的
81
       交点
82
       return vector<Point>(q.begin() + first, q.begin() + last + 1);
83
84 }
   5.7 Convex<sub>H</sub>ull
   5.7.1 Convex_Hull
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 #define N 500000
5 const double PI = acos(-1.0);
  // #define PI 3.14159265357
6
7
8
   struct Point {
9
       double x, y;
10
       Point(double x = 0, double y = 0): x(x), y(y) {}
       Point operator + (const Point &rhs) const {
11
12
            return Point(x + rhs.x, y + rhs.y);
13
14
       Point operator - (const Point &rhs) const {
            return Point(x - rhs.x, y - rhs.y);
15
16
       double operator * (const Point &rhs) const {
17
            return x * rhs.x + y * rhs.y;
18
19
20
       double operator ^ (const Point &rhs) const {
21
            return x * rhs.y - y * rhs.x;
22
   }p[N], st[N];
23
24
   typedef Point Vector;
25
26
   Vector Rotate(Vector A, double rad) {
27
       return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
28
   }
29
30
   namespace Convex_Hull {
31
32
       int n, tp = 0;
       double cross(Point p1, Point p2, Point p0) {
33
34
            return (p1 - p0) ^ (p2 - p0);
35
       double dist(Point p1, Point p2) {
36
37
            return sqrt((p1 - p2) * (p1 - p2));
38
       bool cmp(Point p1, Point p2) {
39
```

```
double tmp = cross(p1, p2, p[1]);
40
            if (tmp > 0) return 1;
41
            else if (tmp == 0 \&\& dist(p1, p[1]) < dist(p2, p[1])) return 1;
42
43
            return 0;
44
       void insert(Point u) {
45
46
            p[n].x = u.x, p[n].y = u.y;
47
            if (p[n].y < p[1].y || (p[n].y == p[1].y && p[n].x < p[1].x)) {
48
49
                swap(p[1], p[n]);
50
51
       }
       void graham() {
52
            sort(p + 2, p + n + 1, cmp);
53
            st[1] = p[1]; tp = 1;
54
            // n++; p[n] = p[1];
55
            for (int i = 2; i <= n; ++i) {
56
                while (tp > 1 && cross(st[tp], p[i], st[tp - 1]) < 0) tp--;</pre>
57
                st[++tp] = p[i];
58
            st[tp + 1] = p[1];
59
60
       double area() {
61
            double ans = 0.0;
62
63
            for (int i = 2; i < tp; ++i) {
64
                ans += (st[i] - st[1]) \wedge (st[i + 1] - st[1]);
65
            return ans / 2;
66
       }
67
   }
68
69
   double torad(double deg) {
       return deg / 180 * PI;
71
   }
72
73
74 int n;
75 double x, y, theta, w, h;
76
77
   int main() {
       int t; scanf("%d", &t);
78
79
       while (t--) {
            scanf("%d", &n);
80
            double area = 0;
81
            Convex_Hull::n = Convex_Hull::tp = 0;
82
            for (int i = 0; i < n; ++i) {
83
                scanf("%lf%lf%lf%lf%lf", &x, &y, &w, &h, &theta);
84
                area += w * h;
85
                Point u = Point(x, y);
86
                double ang = -torad(theta);
87
                Convex_Hull::insert(u + Rotate(Vector(-w / 2, -h / 2), ang));
88
89
                Convex_Hull::insert(u + Rotate(Vector(w / 2, h / 2), ang));
90
                Convex_Hull::insert(u + Rotate(Vector(-w / 2, h / 2), ang));
                Convex_Hull::insert(u + Rotate(Vector(w / 2, -h / 2), ang));
91
92
            Convex_Hull::graham();
93
            printf("%.1lf %%\n", area * 100.0 / Convex_Hull::area());
94
95
96
       return 0;
97 }
```

5.7.2 $Half_Plane_Insertion$

```
1 #include <bits/stdc++.h>
2
   using namespace std;
3
4 const int N = 1000;
5 const double eps = 1e-10;
6
   struct Point {
7
8
        double x, y;
        Point(double x = 0, double y = 0): x(x), y(y) {}
9
        Point operator + (const Point &rhs) const {
10
            return Point(x + rhs.x, y + rhs.y);
11
12
13
        Point operator - (const Point &rhs) const {
            return Point(x - rhs.x, y - rhs.y);
14
15
        Point operator * (double p) const {
16
17
            return Point(x * p, y * p);
18
        double operator * (const Point &rhs) const {
19
20
            return x * rhs.x + y * rhs.y;
21
        double operator ^ (const Point &rhs) const {
22
23
            return x * rhs.y - y * rhs.x;
24
25
   }p[N], q[N];
  // p初始的点集
26
  // q生成的点集
27
28
29 typedef Point Vec;
30
31 struct Line {
32
        Point A;
        Vec B;
33
34
        double K;
        Line(Point A = Point(), Point B = Point()): A(A), B(B) {K = atan2(B.y, B.x);}
35
36
        bool operator < (const Line &rhs) const {</pre>
37
            return K < rhs.K;</pre>
38
39 }P[N], Q[N];
40 //初始边集
   //Q队列里边集
41
42
43
   inline Point get(Line A, Line B) {
        Vec C = A.A - B.A;
44
        double t = (B.B \land C) / (A.B \land B.B);
45
        return A.A + A.B * t;
46
   }
47
48
49
  int 1, r;
50
51
  int n, m, tot;
52
53
   inline void HalfPlaneInseration() {
54
        l = r = 1;
55
        Q[1] = P[1];
56
        for (int i = 2; i <= tot; ++i) {
            while (l < r \& (P[i].B \land (q[r - 1] - P[i].A)) \le eps) --r;
57
```

```
while (l < r \&\& (P[i].B \land (q[l] - P[i].A)) <= eps) ++l;
58
            Q[++r] = P[i];
59
            if (fabs(Q[r].B \land Q[r - 1].B) \leftarrow eps) {
60
61
                if ((Q[r].B \land (P[i].A - Q[r].A)) > eps) Q[r] = P[i];
62
63
            if (l < r) {
64
                q[r - 1] = get(Q[r - 1], Q[r]);
65
            }
66
67
        }
        while (l < r \&\& (Q[l].B \land (q[r - 1] - Q[l].A)) \le eps) --r;
68
        if (r - l <= 1) return;</pre>
69
70
        q[r] = get(Q[l], Q[r]);
   }
71
72
   inline void solve() {
73
74
        double area = 0.0;
        for (int i = l + 1; i < r; ++i) {
75
            area += (q[i] - q[l]) \wedge (q[i + 1] - q[l]);
76
77
        printf("%.3lf\n", area / 2);
78
   }
79
80
81
   int main() {
82
        scanf("%d", &n);
        for (int i = 1; i <= n; ++i) {
83
            scanf("%d", &m);
84
            for (int j = 1; j \le m; ++j) {
85
                scanf("%lf %lf", &p[j].x, &p[j].y);
86
87
            for (int j = 1; j <= m; ++j) {
88
                int to = j + 1;
89
90
                if (j == m) to = 1;
                P[++tot] = Line(p[j], p[to] - p[j]);
91
            }
92
        }
93
94
        sort(P + 1, P + tot + 1);
95
        HalfPlaneInseration();
96
        solve();
        return 0;
97
   }
98
   5.7.3 旋转卡壳
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 #define N 500000
5 #define ll long long
   #define PI 3.14159265358
7
   namespace Convex_Hull {
8
9
        struct Point {
10
            double x, y;
            Point(double x = 0, double y = 0): x(x), y(y) {}
11
            Point operator - (const Point &rhs) const {
12
13
                return Point(x - rhs.x, y - rhs.y);
14
            }
```

```
double operator * (const Point &rhs) const {
15
                return x * rhs.x + y * rhs.y;
16
17
            double operator ^ (const Point &rhs) const {
18
                return x * rhs.y - y * rhs.x;
19
20
        }p[N], st[N];
21
22
        int n, tp = 0;
23
        double cross(Point p1, Point p2, Point p0) {
24
            return (p1 - p0) ^ (p2 - p0);
25
26
        double dist(Point p1, Point p0) {
            return sqrt((p1 - p0) * (p1 - p0));
27
28
        ll dist2(Point p1, Point p2) {
29
            return (p1 - p2) * (p1 - p2);
30
31
        bool cmp(Point p1, Point p2) {
32
            double tmp = cross(p1, p2, p[1]);
33
            if (tmp > 0) return 1;
34
            if (tmp == 0 && dist(p1, p[1]) < dist(p2, p[1])) return 1;</pre>
35
            return 0;
36
37
        void insert(double x, double y) {
38
39
            n++;
            p[n].x = x, p[n].y = y;
40
            if (p[n].y < p[1].y \mid | (p[n].y == p[1].y && p[n].x < p[1].x)) {
41
                Point t = p[1]; p[1] = p[n]; p[n] = t;
42
            }
43
44
        void graham() {
45
            sort(p + 2, p + n + 1, cmp);
46
            st[1] = p[1]; st[2] = p[2];
47
            tp = 2;
48
            for (int i = 3; i <= n; ++i) {
49
                while (tp > 1 && cross(st[tp], p[i], st[tp - 1]) <= 0) tp--;</pre>
50
                st[++tp] = p[i];
51
52
53
            st[tp + 1] = p[1];
54
        double solve() {
55
            double ans = 0.0;
56
57
            for (int i = 2; i <= tp; ++i) {
                ans = ans + dist(st[i], st[i - 1]);
58
59
            return ans;
60
61
        ll get_diameter() {
62
            if (tp == 1) return 0;
63
            if (tp == 2) {
64
65
                 return dist2(st[1], st[2]);
66
67
            int j = 2;
            11 \text{ ans} = 0;
68
            for (int i = 1; i <= tp; ++i) {</pre>
69
70
                while (cross(st[i], st[i + 1], st[j]) <= cross(st[i], st[i + 1], st[j + 1])</pre>
        )
71
                     j = (j == tp ? 1 : j + 1);
                ans = max(ans, max(dist2(st[j], st[i]), dist2(st[j], st[i + 1])));
72
```

```
73
            return ans;
74
75
   }
76
77
78 int n, L;
   double a, b, r;
79
   double x, y, theta;
81
   int main() {
82
83
        scanf("%d", &n);
84
        for (int i = 0; i < n; ++i) {
            int u, v;
85
            scanf("%d%d", &u, &v);
86
            Convex_Hull::insert(u, v);
87
88
        Convex_Hull::graham();
89
        printf("%lld\n", Convex_Hull::get_diameter());
90
        return 0;
91
92 }
   5.8 ScanLine
   5.8.1 ScanLine
   #include <cstdio>
  #include <cmath>
3
   #include <algorithm>
4
5
   using namespace std;
7
   #define ls (rt << 1)</pre>
   #define rs (rt << 1 | 1)
8
9
10 typedef long long ll;
   const int N = 1e6;
11
12
13 int n;
14 ll u1, v1, u2, v2, X[N << 1], ans;
15
16
   struct Scanline {
       ll l, r, h;
17
        int f;
18
        Scanline(ll\ l=0, ll\ r=0, ll\ h=0, int\ f=0):
19
            l(l), r(r), h(h), f(f) {}
20
21
        bool operator < (const Scanline &rhs) const {</pre>
22
            return h < rhs.h;</pre>
23
   }Line[N << 1];
24
25
   struct node {
26
27
        int 1, r, sum;
        ll len;
28
29
   }tree[N << 2];</pre>
30
   inline void build(int rt, int l, int r) {
31
        tree[rt].l = l, tree[rt].r = r;
32
        if (l == r) return ;
33
        int mid = l + ((r - l) >> 1);
34
```

```
build(ls, l, mid);
35
        build(rs, mid + 1, r);
36
        return;
37
38 }
39
   inline void pushup(int rt) {
40
        int l = tree[rt].l, r = tree[rt].r;
41
        if (tree[rt].sum) {
42
            tree[rt].len = X[r + 1] - X[l];
43
        } else {
44
45
            tree[rt].len = tree[ls].len + tree[rs].len;
46
   }
47
48
   inline void update(int rt, int L, int R, int f) {
49
        int l = tree[rt].l, r = tree[rt].r;
50
        if (X[1] >= R \mid I \mid X[r + 1] <= L) return;
51
        if (L \le X[1] \&\& X[r + 1] \le R) {
52
            tree[rt].sum += f;
53
            pushup(rt);
54
            return ;
55
56
57
        update(ls, L, R, f);
58
        update(rs, L, R, f);
59
        pushup(rt);
   }
60
61
   int main() {
62
       scanf("%d", &n);
63
        for (int i = 1; i <= n; ++i) {
64
            scanf("%lld %lld %lld", &u1, &v1, &u2, &v2);
65
            Line[2 * i - 1] = Scanline(u1, u2, v1, 1);
66
            Line[2 * i] = Scanline(u1, u2, v2, -1);
67
            X[2 * i - 1] = u1, X[2 * i] = u2;
68
        }
69
        n <<= 1;
70
71
        sort(X + 1, X + n + 1);
72
        sort(Line + 1, Line + n + 1);
        int tot = unique(X + 1, X + n + 1) - X - 1;
73
74
        build(1, 1, tot - 1);
        for (int i = 1; i < n; ++i) {
75
76
            update(1, Line[i].1, Line[i].r, Line[i].f);
            ans += tree[1].len * (Line[i + 1].h - Line[i].h);
77
78
79
        printf("%lld\n", ans);
80
        return 0;
81 }
```

6 Dynamic Programming

6.1 序列

```
6.1.1 最大子序列和
```

```
// 传入序列a和长度n, 返回最大子序列和
  int MaxSeqSum(int a[], int n)
2
3
       int ans = 0, sum = 0;
4
5
       for (int i = 0; i < n; i++)
           sum += a[i], ans = max(sum, ans), sum = max(0, sum);
6
7
       return ans;
8
   }
   6.1.2 LIS
1 // 最长不上升子序列 LIS
2 // 序列下标从 1 开始, LIS()返回长度, 序列存在lis□中
3 const int N = "Edit";
  int len, a[N], b[N], dp[N];
   int Find(int p, int l, int r) {
5
6
       while (l <= r) {</pre>
           int mid = (l + r) >> 1;
7
           if (a[p] > b[mid]) l = mid + 1;
8
           else r = mid - 1;
9
10
       return dp[p] = 1;
11
12
   int LIS(int lis[], int n) {
13
       int len = 1;
14
       dp[1] = 1, b[1] = a[1];
15
       for (int i = 2; i \le n; i++) {
16
17
           if (a[i] > b[len])
18
               b[++len] = a[i], dp[i] = len;
19
           else
               b[Find(i, 1, len)] = a[i];
20
21
22
       for (int i = n, t = len; i && t; i--)
           if (dp[i] == t) lis[--t] = a[i];
23
24
       return len;
25 }
26
27 // 简单写法(下标从 Ø 开始, 只返回长度)
  int dp[N];
28
29
  int LIS(int a[], int n) {
30
       memset(dp, 0x3f, sizeof(dp));
31
       for (int i = 0; i < n; i++) *lower_bound(dp, dp + n, a[i]) = a[i];
       return lower_bound(dp, dp + n, INF) - dp;
32
33 }
   6.1.3 LCS
1 // 序列下标从1开始
   int LCS(int a[], int b[], int n, int m) {
2
3
       memset(dp, 0, sizeof(dp));
4
       for (int i = 1; i <= n; ++i) {
           for (int j = 1; j \le m; ++j) {
5
```

```
if (a[i] == b[j]) dp[i][j] = dp[i - 1][j - 1] + 1;
 6
 7
                                           else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                               }
 8
 9
10
                     return dp[n][m];
11 }
         6.2 数位 DP
        int a[20];
 1
         11 dp[20][state];
         ll dfs(int pos, /*state变量*/, bool lead /*前导零*/, bool limit /*数位上界变量*/) {
                     //递归边界, 既然是按位枚举, 最低位是0, 那么pos==-1说明这个数枚举完了
  4
                     if (pos == -1) return 1;
 5
 6
                     /*这里一般返回1,表示枚举的这个数是合法的,那么这里就需要在枚举时必须每一位都要满足题目条件,
                     也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。*/
 7
                     if (!limit && !lead && dp[pos][state] != -1) return dp[pos][state];
 8
                     /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应*/
 9
                     int up = limit ? a[pos] : 9; //根据limit判断枚举的上界up
10
                     11 \text{ ans} = 0;
11
                     for (int i = 0; i \leftarrow up; i \leftarrow u
12
                                if () ...
13
                                else if () ...
14
                                ans += dfs(pos - 1, /*状态转移*/, lead && i == 0, limit && i == a[pos])
15
16
                                //最后两个变量传参都是这样写的
17
                                /*当前数位枚举的数是i,然后根据题目的约束条件分类讨论
18
                                去计算不同情况下的个数,还有要根据State变量来保证i的合法性*/
                     }
19
                     //计算完, 记录状态
20
                     if (!limit && !lead) dp[pos][state] = ans;
21
                     /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,
22
                     当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
23
24
                     return ans;
25
26
         ll solve(ll x) {
27
                     int pos = 0;
28
                     do //把数位都分解出来
29
                               a[pos++] = x \% 10;
                     while (x \neq 10);
30
                     return dfs(pos - 1 /*从最高位开始枚举*/, /*一系列状态 */, true, true);
31
32
                     //刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0
33 }
         6.2.1 example
 1 // 洛谷P4124手机号码
  2 //48不同时出现,至少有个数连续出现三次
 3 #include <bits/stdc++.h>
  4 using namespace std;
 6 typedef long long ll;
       int num[12]; // the number has 11 digits
 8 ll dp[12][10][10][2][2][2][2];
        //current pos, digt, value of higher pos, [value cur < value number], [one number
                    appear at least 3 times], [4 exist], [8 exist];
10
11 inline ll f(int p, int a, int b, bool c, bool d, bool e4, bool e8) {
```

```
if (e4 && e8) return 0;
12
       if (p == 1) return d;
13
       if (~dp[p][a][b][c][d][e4][e8]) return dp[p][a][b][c][d][e4][e8];
14
       int mx = (c ? 9 : num[p - 1]);
15
       11 \text{ ans} = 0;
16
17
       for (int i = 0; i <= mx; ++i) {
           ans += f(p - 1, i, a, c | i (i < mx), d | i (i == a && i == b), e4 | i (i == 4),
18
       e8 | (i == 8));
19
       return dp[p][a][b][c][d][e4][e8] = ans;
20
   }
21
22
   inline ll calc(ll n) {
23
       if (n < 1e10) return 0;</pre>
24
       memset(dp, -1, sizeof(dp));
25
       int len = 0;
26
       while (n) num[++len] = n \% 10, n /= 10;
27
28
       11 \text{ ans} = 0;
29
       for (int i = 1; i <= num[len]; ++i) {</pre>
30
           ans += f(11, i, -1, i < num[len], 0, (i == 4), (i == 8));
31
       return ans;
32
33 }
34
   int main() {
35
       ll 1, r;
       scanf("%lld%lld", &l, &r);
36
       printf("%lld\n", calc(r) - calc(l - 1));
37
       return 0;
38
  }
39
   6.3 区间 DP
   for (int p = 1; p < n; ++p) { // 区间长度
2
       for (int i = 1, j = i + p; j < n2; j = ++i + p) { // \boxtimes i [i, j]
3
           dp[i][j] = INF;
4
           for (int k = i; k < j; ++k) { // 分割点 k, 分为 [i, k] , [k + 1, j]
5
               dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + /* 区间合并消耗 */ );
           }
6
       }
7
   }
8
   // 技巧: 断环为链, 复制原区间
   6.4 树形 DP
   6.4.1 换根 DP
1 // 先 dfs1 得到根的 dp 值,以其他结点为根的 dp 值通过 dfs2 转移
   void dfs1(int u, int pre) { /* dfs1 */ }
   void dfs2(int u, int pre) {
3
       for (int &v : e[u]) {
4
           if (v != pre) {
5
               6
7
               dfs2(v, u);
           }
8
       }
9
10
11 /* ... */ dfs1(1, 0); /* ... */ dfs2(1, 0); /* ... */
```

6.4.2 环形 DP

```
1 // 1: 固定 1 的状态, 由 1 的状态确定 1 的 DP 初始值
  // 2: 对 1 的每种状态跑一次 DP, 并统计在 1 对应状态下 n 能取的 DP 值
3
   {
       fill(dp, ..., ...), dp[1][0] = a0, dp[1][1] = b0, /* ... */; // init0
4
       DP(), ans 0 = max(dp[n][...], dp[n][...], /* ... */);
5
6
       fill(dp, ..., ...), dp[1][0] = a1, dp[1][1] = b1, /* ... */; // init1
7
       DP(), ans1 = max(dp[n][...], dp[n][...], /* ... */);
8
9
       ans = max(ans0, ans1, /* ... */, ansd); // 对 1 取每种状态的 DP 值取最值
10
11 }
   6.4.3 基环树 DP
1 // 1: 拓扑排序
  // 2: 对环上对点 dfs, 存为连续的序列
3 // 3: 以环上每个点为根,对不在环上的点 dfs,得到这个根各状态的 DP 值
4 // 4: 对存下的序列跑环形 DP
5 int n, x, y, tot, cnt, ans;
  int h[N], a[N], in[N], vis[N], f[N][2], dp[N][2];
   void dfs1(int u, int pre) {
8
       vis[u] = 1, a[++tot] = u; // 存为序列
9
       for (int i = h[u]; i; i = e[i].nx) {
10
           int v = e[i].to;
           if (v != pre && !vis[v] && in[v] == 2) { dfs1(v, u); return; }
11
       }
12
   }
13
   void dfs2(int u, int pre) {
14
       for (int i = h[u]; i; i = e[i].nx) {
15
           int v = e[i].to;
16
17
           if (v != pre && !vis[v]) {
18
               dfs2(v, u);
               /* 状态转移 */
19
20
               // f[u][1] += f[v][0];
21
               // f[u][0] += max(f[v][0], f[v][1]);
22
          }
23
       }
24
   }
25
       while (m--) /* addedge */
26
27
       tuopu();
28
       for (int i = 1; i <= n; ++i) {
29
           if (in[i] == 2) { dfs1(i, 0); break; } // 存为序列
30
31
       for (int i = 1; i <= n; ++i) { // 得到环上点的 DP 值
32
           if (vis[i]) dfs2(i, 0);
33
       /* 环形DP */
34
35 }
```

6.5 决策单调性优化

问题 设 $f(i) = \min(y[k] - s[i] \times x[k]), k \in [1, i-1]$, 现在要求出所有 $f(i), i \in [1, n]$ 考虑两个决策 j 和 k, 如果 j 比 k 优,则

$$y[j] - s[i] \times x[j] < y[k] - s[i] \times x[k]$$

化简得:

$$\frac{y_j - y_k}{x_i - x_k} < s_i$$

不等式左边是个斜率,我们把它设为 slope(j,k) 我们可以维护一个单调递增的队列,为什么呢?

因为如果 slope(q[i-1],q[i])> slope(q[i],q[i+1]),那么当前者成立时,后者必定成立。即 q[i] 决策优于 q[i-1] 决策时,q[i+1] 必然优于 q[i],因此 q[i] 就没有存在的必要了。所以我们要维护递增的队列。

那么每次的决策点 i, 都要满足

$$\begin{cases} \operatorname{slope}(q[i-1], q[i]) < s[i] \\ \operatorname{slope}(q[i], q[i+1]) \ge s[i] \end{cases}$$

一般情况去二分这个 i 即可。

如果 s[i] 是单调不降的,那么对于决策 j 和 k(j < k) 来说,如果决策 k 优于决策 j,那么对于 $i \in [k+1,n]$,都存在决策 k 优于决策 j,因此决策 j 就可以舍弃了。这样的话我们可以用单调队列进行优化,可以少个 \log 。

```
单调队列滑动窗口最大值
```

```
// k为滑动窗口的大小
1
  deque<int> q;
  for (int i = 0, j = 0; i + k \le d; i++)
3
4
5
       while (j < i + k)
6
           while (!q.empty() && a[q.back()] < a[j]) q.pop_back();</pre>
7
8
           q.push_back(j++);
9
       while (q.front() < i) q.pop_front();</pre>
10
       // a[q.front()]为当前滑动窗口的最大值
11
12
```

6.5.1 Slope Optimization

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 typedef long long ll;
5 const int N = 50005;
6
7
  int n, L;
   int q[N], h, t;
9
   ll sum[N], dp[N];
10
  inline ll a(int x) {return sum[x] + x;}
inline ll b(int x) {return sum[x] + x + L + 1;}
inline ll X(int x) {return b(x);}
  inline ll Y(int x) {return dp[x] + b(x) * b(x);} //根据题意自定义X和Y
  inline double slope(int i, int j) {return (Y(j) - Y(i)) / (X(j) - X(i));}
15
16
   int main() {
17
       scanf("%d%d", &n, &L);
18
19
        for (int i = 1; i <= n; ++i) {
            scanf("%lld", &sum[i]);
20
            sum[i] += sum[i - 1];
21
22
       }
23
       h = t = 1;
24
       for (int i = 1; i <= n; ++i) {
            while (h < t && slope(q[h], q[h + 1]) < 2 * a(i)) h++; // a[i] = sum[i] + i 单调
25
       增, 当前淘汰后不影响后续状态
```

```
dp[i] = dp[q[h]] + 1ll * (a(i) - b(q[h])) * (a(i) - b(q[h]));
26
           while (h < t && slope(q[t], q[t - 1]) > slope(q[t], i)) t--; // 在凸包内的点, 必然
27
       不会是最优解
28
           q[++t] = i;
29
       printf("%lld\n", dp[n]);
30
       return 0;
31
32 }
   6.6 多重背包优化
   { // 单调队列优化 O( n * V )
       scanf("%d%d", &n, &V);
2
       for (int i = 1; i <= n; ++i) {
3
           scanf("%d%d%d", &w, &v, &m); // 价值, 重量, 数量
4
           if (!v) { ans += m * w; continue; } // 重量为 0, 全选
5
           m = min(m, V / v);
6
           for (int d = 0; d < v; ++d) {
7
                l = 0, r = -1, k = (V - d) / v;
8
                for (int j = 0; j \le k; ++j) {
9
                    now = dp[j * v + d] - j * w;
10
                    while (l \ll r \&\& que[r] \ll now) --r;
11
                    num[++r] = j, que[r] = now;
12
                    while (\bar{l} \leftarrow r \&\& num[l] < j - m) ++l;
13
                    dp[j * v + d] = max(dp[j * v + d], que[l] + j * w);
14
                }
15
           }
16
17
       printf("%d\n", ans + dp[V]);
18
19
   { // 二进制优化 O( n * V * ∑logm )
20
       scanf("%d%d", &n, &V);
21
22
       for (int i = 1; i <= n; ++i) {
           scanf("%d%d%d", &w, &v, &m);
23
24
           if (!v) { ans += m * w; continue; }
            for (p = 1; m > p; p <<= 1) {
25
26
                m -= p, t[++cnt] = (Node) \{v * p, w * p\};
27
           t[++cnt] = (Node) \{v * m, w * m\};
28
29
       for (int i = 1; i <= cnt; ++i) {
30
           for (int j = V; j >= t[i].v; --j) {
31
32
                dp[j] = max(dp[j], dp[j - t[i].v] + t[i].w);
33
34
       printf("%d\n", ans + dp[V]);
35
36 }
```

7 Offline Algorithm

7.1 莫队

7.1.1 普通莫队

```
1 // 询问在区间 [1, r] 中大小在 [a, b] 中的数及数值的个数 (莫队+值域分块) P4396
2 // N, M, num [ [1, 1e5]
3
4 int n, m, l, r, x, y, B, mx;
  int a[N], d[N], id[N], cnt[N], sum1[N], sum2[N], ans1[N], ans2[N];
7
   struct Q {
8
       int 1, r, a, b, p;
9
       bool operator < (const Q &b) const {</pre>
           // return d[l] ^ d[b.l] ? l < b.l : d[l] & 1 ? r < b.r : r > b.r;
10
           return d[l] ^ d[b.l] ? l < b.l : d[l] & 1 ? r < b.r : r > b.r;
11
12
           // 奇偶化排序优化, 一般能快 30 %, 有被手造数据卡的可能性
13
   } q[N];
14
15
   inline void add(int x) {
16
       ++sum1[id[x]];
17
       if (++cnt[x] == 1) ++sum2[id[x]];
18
19
20
21
   inline void del(int x) {
22
       --sum1[id[x]];
23
       if (--cnt[x] == 0) --sum2[id[x]];
24
   }
25
26
   inline int get_ans1(int l, int r) { // 统计出现过的数的个数
27
       int sid = id[l], eid = id[r], ans = 0;
28
       if (sid == eid) {
29
           for (int i = 1; i <= r; ++i) ans += cnt[i];
30
           return ans;
31
32
       for (int i = 1; id[i] == sid; ++i) ans += cnt[i];
33
       for (int i = r; id[i] == eid; --i) ans += cnt[i];
34
       for (int i = sid + 1; i < eid; ++i) ans += sum1[i];
35
       return ans;
36
   }
37
   inline int get_ans2(int l, int r) { // 统计出现过的数值的个数
38
39
       int sid = id[1], eid = id[r], ans = 0;
       if (sid == eid) {
40
           for (int i = l; i <= r; ++i) ans += (bool)cnt[i];
41
           return ans;
42
43
       for (int i = 1; id[i] == sid; ++i) ans += (bool)cnt[i];
44
       for (int i = r; id[i] == eid; --i) ans += (bool)cnt[i];
45
       for (int i = sid + 1; i < eid; ++i) ans += sum2[i];
46
47
       return ans;
   }
48
49
50
   inline void Mo() {
51
       int l = 1, r = 0;
52
       sort(q + 1, q + 1 + m);
       for (int i = 1; i <= m; ++i) {
53
```

```
const int \&L = q[i].l, \&R = q[i].r;
54
           while (l > L) add(a[--l]);
55
           while (r < R) add(a[++r]);
56
           while (l < L) del(a[l++]);
57
           while (r > R) del(a[r--]);
58
59
            ans1[q[i].p] = get_ans1(q[i].a, q[i].b);
60
           ans2[q[i].p] = get_ans2(q[i].a, q[i].b);
       }
61
   }
62
63
   int main() {
64
65
       n = rd(), m = rd(), B = n / sqrt(m) + 1; // +1 避免块长为 0
       for (int i = 1; i \le n; ++i) {
66
           a[i] = rd(), d[i] = i / B; // 区间分块
67
           // mx = mx < a[i] ? a[i] : mx; // 不需要, 只对查询值域分块即可
68
69
       for (int i = 1; i <= m; ++i) {
70
            l = rd(), r = rd(), x = rd(), y = rd();
71
72
           q[i] = (Q) {l, r, x, y, i}; // 离线
           mx = mx < y ? y : mx;
73
74
       B = sqrt(mx);
75
       for (int i = 1; i \le mx; ++i) {
76
77
           id[i] = (i - 1) / B + 1; // 值域分块
78
       }
       Mo();
79
       for (int i = 1; i <= m; ++i) {
80
           printf("%d %d\n", ans1[i], ans2[i]);
81
82
83
       return 0;
84 }
   7.1.2 树上莫队-路径
   // 求路径上结点不同颜色数, 欧拉序
1
3 int n, m, l, r, B, rt, lca, res, _;
  int st[N], ed[N], fa[N], dep[N], siz[N], top[N], son[N];
  int a[N], h[N], id[N << 1], cnt[N], ans[N], vis[N], num[N << 1];</pre>
6
7
   struct In {
8
       int x, d;
9
       bool operator < (const In &b) const {</pre>
10
            return x < b.x;
11
12 } t[N];
13
14 struct Edge { int to, nx; } e[N << 1];</pre>
15
16
   struct Q {
       int l, r, d, lca;
17
       bool operator < (const Q &b) const {</pre>
18
            return id[l] ^ id[b.l] ? l < b.l : id[l] & 1 ? r < b.r : r > b.r;
19
20
  } q[N];
21
22
23 inline void add(int u, int v) {
       static int cnt = 0;
24
```

```
e[++cnt].to = v;
25
26
        e[cnt].nx = h[u];
27
        h[u] = cnt;
28 }
29
   inline void init() {
30
        static int cnt = 0;
31
32
        sort(t + 1, t + 1 + n);
33
        for (int i = 1; i <= n; ++i) {
            if (t[i].x ^ t[i - 1].x) ++cnt;
34
35
            a[t[i].d] = cnt;
36
        }
        for (int i = 1; i <= n << 1; ++i) {
37
            id[i] = (i - 1) / B + 1;
38
        }
39
   }
40
41
   void dfs1(int u, int pre) {
42
        static int cnt = 0;
43
        dep[u] = dep[pre] + 1;
44
        fa[u] = pre;
45
46
        siz[u] = 1;
        st[u] = ++cnt, num[cnt] = u; // 欧拉序
47
48
        for (int i = h[u]; i; i = e[i].nx) {
49
            int v = e[i].to;
            if (v != pre) {
50
                dfs1(v, u);
51
                siz[u] += siz[v];
52
                if (siz[son[u]] < siz[v]) {</pre>
53
54
                     son[u] = v;
55
                }
56
            }
57
        ed[u] = ++cnt, num[cnt] = u;; // 欧拉序
58
59
   }
60
61
   void dfs2(int u, int tpf) {
62
        top[u] = tpf;
        if (!son[u]) return;
63
        dfs2(son[u], tpf);
64
        for (int i = h[u]; i; i = e[i].nx) {
65
            int v = e[i].to;
66
            if (v != fa[u] && v != son[u]) {
67
68
                dfs2(v, v);
69
            }
70
        }
71
   }
72
73 inline int LCA(int x, int y) {
74
        while (top[x] ^ top[y]) {
75
            dep[top[x]] < dep[top[y]] ? y = fa[top[y]] : x = fa[top[x]];
76
77
        return dep[x] > dep[y] ? y : x;
78 }
79
   inline void add(int x) {
80
81
        if (++cnt[a[x]] == 1) ++res;
82
83
```

```
inline void del(int x) {
85
         if (--cnt[a[x]] == 0) --res;
    }
86
87
    inline void move(int x) { //
88
89
         vis[x] ? del(x) : add(x);
         vis[x] ^= 1;
90
    }
91
92
    inline void Mo() {
93
         int l = 1, r = 0;
94
95
         sort(q + 1, q + 1 + m);
         for (int i = 1; i <= m; ++i) {
96
             const int &L = q[i].l, &R = q[i].r;
97
             while (l > L) move(num[--l]);
98
             while (r < R) move(num[++r]);</pre>
99
             while (l < L) move(num[l++]);</pre>
100
             while (r > R) move(num[r--]);
101
             if (q[i].lca) move(q[i].lca); //
102
             ans[q[i].d] = res;
103
             if (q[i].lca) move(q[i].lca); //
104
105
         }
    }
106
107
108
    int main() {
         srand(19260817);
109
         n = rd(), m = rd();
110
         B = n / sqrt(m) + 1;
111
         rt = rand() % n + 1;
112
         for (int i = 1; i \le n; ++i) {
113
114
             t[i] = (In) {rd(), i}; // 存下颜色进行离散化
115
         init();
116
         for (int i = 1; i < n; ++i) {
117
             l = rd(), r = rd(); // 边
118
             add(l, r), add(r, l);
119
120
         }
121
         dfs1(rt, 0), dfs2(rt, rt);
         for (int i = 1; i <= m; ++i) {
122
             1 = rd(), r = rd();
123
124
             if (st[l] > st[r]) _ = l, l = r, r = _; //
             lca = LCA(l, r);
125
             if (lca ^ l && lca ^ r) {
126
127
                 q[i] = (Q) {ed[l], st[r], i, lca}; //
             } else {
128
129
                 q[i] = (Q) \{st[l], st[r], i\}; //
130
131
         Mo();
132
133
         for (int i = 1; i \le m; ++i) {
134
             printf("%d\n", ans[i]);
135
         }
136
         return 0;
137 }
```

7.1.3 树上莫队-子树

1 // 求子树内出现次数 >= y 的数有多少种, dfn 序

```
int n, m, x, y, B;
   int st[N], ed[N], cnt[N], tot[N];
   int a[N], w[N], h[N], id[N], ans[N];
6
7
   struct Q {
8
        int 1, r, k, d;
9
        bool operator < (const Q &b) const {</pre>
            return id[l] ^ id[b.l] ? l < b.l : id[l] & 1 ? r < b.r : r > b.r;
10
11
   } q[N];
12
13
14 struct Edge { int to, nx; } e[N << 1];</pre>
15
   inline void add(int u, int v) {
16
        static int cnt = 0;
17
        e[++cnt].to = v;
18
19
        e[cnt].nx = h[u];
20
        h[u] = cnt;
21 }
22
23
   void dfs(int u, int pre) {
24
        static int cnt = 0;
25
        st[u] = ++cnt, w[cnt] = a[u]; // dfn 序
26
        for (int i = h[u]; i; i = e[i].nx) {
            if (e[i].to != pre) {
27
28
                dfs(e[i].to, u);
29
30
        ed[u] = cnt; // dfn 序
31
   }
32
33
34
   inline void add(int x) { ++tot[++cnt[x]]; }
   inline void del(int x) { --tot[cnt[x]--]; }
35
36
   inline void Mo() {
37
38
        int l = 1, r = 0;
39
        sort(q + 1, q + 1 + m);
        for (int i = 1; i <= m; ++i) {
40
            const int &L = q[i].1, &R = q[i].r;
41
            while (l > L) add(w[--l]);
42
            while (r < R) add(w[++r]);
43
            while (l < L) del(w[l++]);</pre>
44
            while (r > R) del(w[r--]);
45
            ans[q[i].d] = tot[q[i].k];
46
47
        }
   }
48
49
   int main() {
50
        n = rd(), m = rd();
52
        B = n / sqrt(m) + 1;
        for (int i = 1; i <= n; ++i) {
53
54
            a[i] = rd();
            id[i] = i / B;
55
56
        for (int i = 1; i < n; ++i) {
57
58
            x = rd(), y = rd();
            add(x, y), add(y, x);
59
        }
60
```

```
dfs(1, 0);
61
        for (int i = 1; i <= m; ++i) {
62
63
           x = rd(), y = rd();
64
            q[i] = (Q) \{st[x], ed[x], y, i\};
65
66
       Mo();
       for (int i = 1; i <= m; ++i) {
67
           printf("%d\n", ans[i]);
68
69
70
       return 0;
71 }
   7.1.4 带修莫队
   // 数颜色个数, 修改颜色
2
   #define N 150005
3
   #define M 1000006
5
6
   char s[2];
   int a[N], id[N], cnt[M], ans[N];
7
   int n, m, B, x, y, t1, t2, res, _;
9
   struct Q { // 查询
10
       int l, r, i, t; // t : 上一次修改的编号
11
12
       bool operator < (const Q &b) const {</pre>
13
            return id[l] ^ id[b.l] ? l < b.l : id[r] ^ id[b.r] ? r < b.r : t < b.t;</pre>
14
15
   } q[N];
16
17
   struct C { int i, to; } c[N]; // 修改
18
19 inline void add(int x) { if (++cnt[x] == 1) ++res; }
20 inline void del(int x) { if (--cnt[x] == 0) --res; }
21
22
   inline void work(int t, int i) {
23
       if (q[i].l <= c[t].i && c[t].i <= q[i].r) { // 要修改的点在当前区间内
24
            del(a[c[t].i]), add(c[t].to);
25
26
       swap(a[c[t].i], c[t].to); // 妙呀!
27
   }
28
   inline void Mo() {
29
       int l = 1, r = 0, t = 0; // t 当前修改编号
30
31
       sort(q + 1, q + 1 + t1);
       for (int i = 1; i <= t1; ++i) {
32
            const int \&L = q[i].l, \&R = q[i].r;
33
            while (l > L) add(a[--l]);
34
           while (r < R) add(a[++r]);
35
           while (l < L) del(a[l++]);
36
37
           while (r > R) del(a[r--]);
           while (t < q[i].t) work(++t, i); // 修改
38
39
           while (t > q[i].t) work(t--, i); // 还原
40
           ans[q[i].i] = res;
41
       }
42
   }
43
44 int main() {
```

```
n = rd(), m = rd();
45
       B = pow(n, 2.0 / 3); // 注意块长
46
       for (int i = 1; i \le n; ++i) {
47
            a[i] = rd();
48
49
            id[i] = i / B;
50
       while (m--) {
51
            scanf("%s", s);
52
            x = rd(), y = rd();
53
            if (*s == 'Q') {
54
                ++t1, q[t1] = (Q) \{x, y, t1, t2\};
55
56
            } else {
                c[++t2] = (C) \{x, y\};
57
58
59
       Mo();
60
       for (int i = 1; i <= t1; ++i) {
61
           printf("%d\n", ans[i]);
62
63
       return 0;
64
65 }
   7.1.5 回滚莫队
1 // 维护相同的数的最远间隔距离
2 // 回滚莫队(不删除莫队)
3
4
  int n, m, x, y, B, up, tot, res;
   int a[N], L[N], R[N], st[N], ed[N], st_[N], ed_[N], ans[N];
7
   struct In {
       int i, x;
8
9
       bool operator < (const In &b) const { return x < b.x; }</pre>
10 } t[N];
11
12 struct Q {
       int 1, r, d, i;
14
       bool operator < (const Q &b) const { return d ^ b.d ? l < b.l : r < b.r; }</pre>
15 } q[N];
16
17
   inline void add(int i, int st[], int ed[]) { // 修改
18
       const int &x = a[i];
19
       if (st[x]) {
            st[x] = min(st[x], i);
20
21
            ed[x] = max(ed[x], i);
            res = max(res, ed[x] - st[x]);
22
23
       } else {
24
            st[x] = ed[x] = i;
25
26
   }
27
   inline void resume(int x) { // 清空
28
29
       st[x] = st_[x] = ed[x] = ed_[x] = 0;
30
31
32 inline void copy(int x) { // 备份
33
       st_[x] = st[x], ed_[x] = ed[x];
34 }
```

```
35
   inline void Mo() {
36
       sort(q + 1, q + 1 + m);
37
38
       int l = 1, r = 0, lst = 0;
39
       for (int i = 1; i <= m; ++i) {
            const int &ql = q[i].l, &qr = q[i].r; if (lst < q[i].d) { // 当前左端点块号小于询问左端点块号
40
41
                while (l <= R[q[i].d]) { // <=</pre>
42
                    if (l \ll r) resume(a[l]);
43
                    ++1;
44
                }
45
46
                while (r > L[q[i].d]) { // L[q[i].d]
47
                    if (l \ll r) resume(a[r]);
48
                    --r;
49
                lst = q[i].d, res = 0; //
50
            }
51
            // 右端点单调, 直接同步修改原数组, 并备份到临时数组
52
            while (r < qr) if (l <= ++r) add(r, st, ed), copy(a[r]);
53
            int tmp = res; // 备份左端点移动前的结果
54
            while (l > ql) if (--l <= r) add(l, st_, ed_); // 修改临时数组
55
            ans[q[i].i] = res; // 记录临时数组修改的结果
56
            const int l_= R[q[i].d] + 1;
57
            while (1 < 1_) { // 回滚, 恢复临时数组到原数组
58
59
                if (l <= r) copy(a[l]);</pre>
60
                ++1;
            }
61
62
            res = tmp; // 恢复到左端点移动前的结果
       }
63
64
   }
65
   inline void init() {
66
       sort(t + 1, t + 1 + n);
67
68
       for (int i = 1; i <= n; ++i) {
            if (t[i].x ^ t[i - 1].x) ++tot;
69
            a[t[i].i] = tot;
70
71
       }
72
       B = sqrt(n);
       up = (n - 1) / B + 1;
73
       for (int i = 1; i <= up; ++i) {
74
           L[i] = R[i - 1] + 1;
75
            R[i] = i * B;
76
77
78
       R[up] = n;
   }
79
80
81
   int main() {
82
       n = rd();
       for (int i = 1; i <= n; ++i) {
83
84
            t[i] = (In) \{i, rd()\};
85
86
       init(), m = rd();
87
       for (int i = 1; i <= m; ++i) {
            x = rd(), y = rd();
88
            q[i] = (Q) \{x, y, (x - 1) / B + 1, i\};
89
90
       Mo();
91
92
       for (int i = 1; i <= m; ++i) {
            printf("%d\n", ans[i]);
93
```

```
94
       return 0;
95
96 }
   7.1.6 bitset 上莫队
1
    * 给你一个序列 a, 长度为 n, 有 m 次操作,
2
3
    * 每次询问一个区间是否可以选出两个数它们的差 or 和 or 乘积 or 商(没有余数)为 w
    * 这四个操作分别为操作 1, 2, 3, 4 选出的这两个数可以是同一个位置的数
4
    */
6 #include <bits/stdc++.h>
7 using namespace std;
8 #define N 100005
9 const int mx = 1e5;
10 bitset<N> b1, b2;
int n, m, opt, x, y, w, B, t;
12 int a[N], id[N], cnt[N], ans[N];
13 struct Q {
14
       int opt, 1, r, x, i;
       bool operator < (const Q &b) const {</pre>
15
           return id[l] ^ id[b.l] ? l < b.l : id[l] & 1 ? r < b.r : r > b.r;
16
17
18 } q[N];
  inline void add(int x) { if (++cnt[x] == 1) b1[x] = b2[mx - x] = 1; }
20 inline void del(int x) { if (--cnt[x] == 0) b1[x] = b2[mx - x] = 0; }
21 inline int qsub(int x) { return (b1 & (b1 << x)).any(); }</pre>
  inline int qadd(int x) { return (b1 & (b2 >> (mx - x))).any(); }
  inline int qmul(int x) {
       if (!x) return b1[0];
24
       for (int i = 1; i * i <= x; ++i) {
25
26
           if (x \% i == 0 \&\& (b1[i] \&\& b1[x / i])) return 1;
27
       return 0;
28
29
30
  inline int qdiv(int x) \{ // x >= B
31
       if (!x) return b1[0] && (b1 >> 1).any();
32
       for (int i = 1; i * x <= mx; ++i) {
33
           if (b1[i] && b1[i * x]) return 1;
34
       return 0;
35
36
37
   inline void Mo() {
38
       int l = 1, r = 0;
39
       sort(q + 1, q + 1 + t);
       for (int i = 1; i <= t; ++i) {
40
           const int \&L = q[i].l, \&R = q[i].r;
41
           while (l > L) add(a[--l]);
42
           while (r < R) add(a[++r]);
43
           while (l < L) del(a[l++]);
44
45
           while (r > R) del(a[r--]);
           switch (q[i].opt) {
46
               case 1: ans[q[i].i] = qsub(q[i].x); break;
47
48
               case 2: ans[q[i].i] = qadd(q[i].x); break;
               case 3: ans[q[i].i] = qmul(q[i].x); break;
49
50
               case 4: ans[q[i].i] = qdiv(q[i].x); break;
51
           }
       }
52
```

```
53 }
54 struct Div { int i, l, r; };
   vector<Div> v[N];
   int pre[N], res[N];
   inline void solve() { // 处理 w < B 的部分的商操作
57
       for (int i = 1; i < B; ++i) {
58
59
           if (v[i].empty()) continue;
           memset(pre, 0, sizeof(pre));
60
           memset(res, 0, sizeof(res));
61
62
           int now = 0;
           for (int j = 1; j <= n; ++j) {
63
64
               pre[a[j]] = j;
               if (a[j] * i \le mx) now = max(now, pre[a[j] * i]);
65
               if (a[j] \% i == 0) now = max(now, pre[a[j] / i]);
66
67
               res[j] = now;
68
           for (auto &q : v[i]) {
69
70
               ans[q.i] = q.l \ll res[q.r];
           }
71
72
       }
   }
73
74 inline int rd();
   int main() {
76
       n = rd(), m = rd(), B = sqrt(n) + 1;
77
       for (int i = 1; i \le n; ++i) id[i] = (i - 1) / B + 1;
       for (int i = 1; i <= n; ++i) a[i] = rd();</pre>
78
       for (int i = 1; i <= m; ++i) {
79
           opt = rd(), x = rd(), y = rd(), w = rd();
80
           if (opt == 4 && w && w < B) { // 根号分治
81
82
               v[w].push_back((Div) {i, x, y});
83
           } else {
84
               q[++t] = (Q) \{opt, x, y, w, i\};
85
           }
86
       Mo(), solve();
87
       for (int i = 1; i \le m; ++i) {
88
89
           puts(ans[i] ? "yuno" : "yumi");
90
       return 0;
91
92 }
   7.1.7 二次离线莫队 1
  // 给你一个长为 n 的序列 a, m 次询问, 每次查询一个区间的逆序对数
   #include <bits/stdc++.h>
   using namespace std;
3
4
5 #define N 100005
  #define eb emplace_back
6
7
   typedef long long ll;
8
9
10 int n, m, x, y, B, up, tot;
12 int a[N], cnt[N], tag[N], id[N], L[N], R[N], num1[N], num2[N];
13
  struct In {
14
       int i, x;
15
```

```
bool operator < (const In &b) const { return x < b.x; }</pre>
16
17
   } in[N];
18
   struct Q {
19
20
        int 1, r, i;
        bool operator < (const Q &b) const {</pre>
21
22
            return id[l] ^ id[b.l] ? l < b.l : r < b.r;</pre>
23
   } q[N];
24
25
   vector<tuple<int, int, int, int> > v1[N], v2[N];
26
27
28
   inline int rd();
   namespace BIT {
29
        int c[N];
30
        inline int lowbit(int x) {
31
32
            return x & -x;
33
        inline void add(int i) {
34
            while (i <= tot) {</pre>
35
                 ++c[i];
36
                 i += lowbit(i);
37
38
39
40
        inline int ask(int i, int ans = 0) {
41
            while (i) {
                 ans += c[i];
42
                 i -= lowbit(i);
43
44
45
            return ans;
        }
46
47
   using namespace BIT;
48
49
   inline void init1() {
50
        sort(in + 1, in + 1 + n);
51
52
        if (!in[1].x) tot = 1;
53
        for (int i = 1; i <= n; ++i) { // 离散化
            if (in[i].x ^ in[i - 1].x) ++tot;
54
            a[in[i].i] = tot;
55
        }
56
        for (int i = 1; i <= n; ++i) {
57
            num1[i] = i - 1 - ask(a[i]);
58
59
            pre1[i] = pre1[i - 1] + num1[i];
            add(a[i]);
60
        }
61
        memset(c, 0, sizeof(c));
62
        for (int i = n; i; --i) {
63
            num2[i] = ask(a[i] - 1);
64
65
            pre2[i] = pre2[i + 1] + num2[i];
66
            add(a[i]);
67
        B = sqrt(n);
68
69
        for (int i = 1; i <= n; ++i) {
70
            id[i] = (i - 1) / B + 1;
71
72
   }
73
   inline void Mo1() {
```

```
75
        int l = 1, r = 0;
        sort(q + 1, q + 1 + m);
76
        for (int i = 1; i <= m; ++i) {
77
78
             const int &ql = q[i].l, &qr = q[i].r;
             if (r > qr) {
79
                 ans[q[i].i] -= pre1[r] - pre1[qr];
80
                 v1[l].eb(qr + 1, r, q[i].i, 1), r = qr; // 离线 m 次端点移动
81
82
             }
             if (r < qr) {
83
                 ans[q[i].i] += pre1[qr] - pre1[r];
84
                 v1[l].eb(r + 1, qr, q[i].i, -1), r = qr;
85
86
             if (l > ql) {
87
                 ans[q[i].i] += pre2[ql] - pre2[l];
88
                 v2[r].eb(ql, l - 1, q[i].i, -1), l = ql;
89
90
             if (l < ql) {
91
92
                 ans[q[i].i] -= pre2[l] - pre2[ql];
93
                 v2[r].eb(l, ql - 1, q[i].i, 1), l = ql;
             }
94
        }
95
    }
96
97
    inline void init2() { // 分块初始化
98
99
        B = sqrt(++tot); // 值域分块会查询到 x + 1 位置
        for (int i = 1; i <= tot; ++i) {</pre>
100
             id[i] = (i - 1) / B + 1;
101
102
        up = id[tot];
103
        for (int i = 1; i <= up; ++i) {
104
105
             L[i] = R[i - 1] + 1;
            R[i] = i * B;
106
107
        R[up] = tot;
108
109
    }
110
111
    inline void pushdown(int d) {
112
        if (tag[d]) {
             for (int i = L[d]; i \le R[d]; ++i) cnt[i] += tag[d];
113
             tag[d] = 0;
114
        }
115
116
117
118
    inline void ins1(int x) {
        pushdown(id[x]);
119
120
        for (int i = L[id[x]]; i <= x; ++i) ++cnt[i];</pre>
121
        for (int i = 1; i < id[x]; ++i) ++tag[i];
122 }
123
124 inline void ins2(int x) {
125
        pushdown(id[x]);
126
        for (int i = R[id[x]]; i >= x; --i) ++cnt[i];
127
        for (int i = up; i > id[x]; --i) ++tag[i];
128 }
129
   inline void Mo2() { // 分块 O(√n) - O(1), 总 O(n√n) - O(n√n)
130
        int 1, r, d, f;
131
        for (int i = 1; i \le n; ++i) { // O(n)
132
133
             for (auto &x : v1[i]) {
```

```
tie(l, r, d, f) = x;
134
                for (int j = l; j <= r; ++j) { // 总移动次数 0(n√n)
135
                    ans[d] += (ll)f * (tag[id[a[j] + 1]] + cnt[a[j] + 1]); // 0(1) 查询
136
137
138
            ins1(a[i]); // 分块 0(√n) 修改
139
140
        memset(cnt, 0, sizeof(cnt));
141
        memset(tag, 0, sizeof(tag));
142
        for (int i = n; i; --i) {
143
            for (auto &x : v2[i]) {
144
145
                tie(l, r, d, f) = x;
                for (int j = 1; j <= r; ++j) {
146
                    ans[d] += (ll)f * (tag[id[a[j] - 1]] + cnt[a[j] - 1]);
147
148
149
            ins2(a[i]);
150
        }
151
152
    }
153
    int main() {
154
        n = rd(), m = rd();
155
        for (int i = 1; i \le n; ++i) in[i] = (In) \{i, rd()\};
156
157
        for (int i = 1; i <= m; ++i) {
158
            x = rd(), y = rd();
            q[i] = (Q) \{x, y, i\};
159
160
        init1(), Mo1(); // 离线端点移动共 O(n√n) 次
161
        init2(), Mo2(); // 分块扫描线平衡复杂度
162
        163
164
165
        for (int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);</pre>
        return 0;
166
167 }
    7.1.8 二次离线莫队 2
   // 每次查询区间内 ai ^ aj 有 k 个 1 的二元组个数
   #include <bits/stdc++.h>
 3
    using namespace std;
 4
    #define N 100005
 5
 6
    #define eb emplace_back
 7
 8
    const int mx = 16384;
 9
10 typedef long long ll;
11
12 ll ans[N];
13 int n, m, k, x, y, d, B;
   int a[N], id[N], cnt[N], pre[N];
15
    struct Q {
16
        int l, r, i;
17
        ll ans;
18
        bool operator < (const Q &b) const {</pre>
19
            return id[l] ^ id[b.l] ? l < b.l : r < b.r;</pre>
20
21
        }
```

```
22 } q[N];
23
24 vector<int> b;
   vector<tuple<int, int, int> > v[N];
26
   inline int rd();
27
   int main() {
28
29
       n = rd(), m = rd(), k = rd();
       if (k > 14) { while (m--) puts("0"); exit(0); } // 特判
30
31
       for (int i = 1; i \le n; ++i) a[i] = rd();
32
       for (int i = 1; i <= m; ++i) {
33
            x = rd(), y = rd();
            q[i] = (Q) \{x, y, i\};
34
35
       for (int i = 0; i < mx; ++i) { // [0, mx) QwQ
36
            if (__builtin_popcount(i) == k) b.eb(i); // init
37
38
39
       B = sqrt(n);
       for (int i = 1; i \le n; ++i) id[i] = (i - 1) / B + 1;
40
       for (int i = 1; i <= n; ++i) {
41
            for (auto &x : b) ++cnt[a[i] ^ x];
42
            pre[i] = cnt[a[i + 1]]; // i + 1 位置对 [1, i] 的贡献
43
44
       int l = 1, r = 0;
45
46
       sort(q + 1, q + 1 + m);
       for (int i = 1; i \le m; ++i) {
47
            const int \&L = q[i].l, \&R = q[i].r;
48
            if (r > R) {
49
                v[l - 1].eb(R + 1, r, i); // 二次离线
50
                while (r > R) q[i].ans -= pre[r - 1], --r; // 计算不用离线部分的贡献
51
52
            if (r < R) {
53
                v[l - 1].eb(r + 1, R, -i);
54
                while (r < R) q[i].ans += pre[r], ++r;
55
56
            if (1 > L) {
57
                v[r].eb(L, l - 1, i);
58
59
                while (1 > L) q[i].ans -= pre[1 - 2], --1;
60
            if (1 < L) {
61
                v[r].eb(l, L - 1, -i);
62
                while (l < L) q[i].ans += pre[l - 1], ++l;
63
64
65
       memset(cnt, 0, sizeof(cnt));
66
       for (int i = 1; i <= m; ++i) {
67
            for (auto &x : b) ++cnt[a[i] ^ x];
68
            for (auto &x : v[i]) {
69
                tie(l, r, d) = x;
70
71
                if (d > 0) {
                    for (int tmp, j = l; j <= r; ++j) {</pre>
72
                        tmp = cnt[a[j]];
73
                        if (j <= i && !k) --tmp;</pre>
74
                        q[d].ans += tmp;
75
76
                } else {
77
                    for (int tmp, j = l; j \ll r; ++j) {
78
                        tmp = cnt[a[j]];
79
                        if (j <= i && !k) --tmp;</pre>
80
```

```
81
                        q[-d].ans -= tmp;
                    }
82
                }
83
            }
84
85
86
       for (int i = 1; i <= m; ++i) q[i].ans += q[i - 1].ans; // 前缀和
87
       for (int i = 1; i \le m; ++i) ans[q[i].i] = q[i].ans;
       for (int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);</pre>
88
89
       return 0;
90
  }
   7.2 CDQ 分治
   7.2.1 动态逆序对
1 // cdq O(n logn logn)
   #include <bits/stdc++.h>
3
   using namespace std;
   #define N 100005
5
6
   struct P { int pos, val, add, id; } a[N << 1];</pre>
7
8
9 int n, m;
10 int c[N], pos[N];
11 long long ans[N];
12
13
   inline void add(int i, int k) {
14
       for (; i \le n; i += i \& -i) c[i] += k;
15
   inline int ask(int i) {
16
17
       int ans = 0;
18
       for (; i; i -= i & -i) ans += c[i];
19
       return ans;
20 }
21
22
   inline bool cmp(const P &a, const P &b) { return a.pos ^ b.pos ? a.pos < b.pos : a.val
       > b.val; }
23
24
   void cdq(int 1, int r) {
25
       if (l == r) return;
       int mid = (l + r) \gg 1;
26
27
       cdq(l, mid), cdq(mid + 1, r);
28
       sort(a + 1, a + mid + 1, cmp);
29
       sort(a + mid + 1, a + r + 1, cmp);
30
       // tim[j] < tim[i] && pos[j] < pos[i] && val[j] > val[i]
       int j = l, i = mid + 1;
31
       while (i <= r) {</pre>
32
33
            while (j <= mid && a[j].pos <= a[i].pos) {</pre>
34
                add(a[j].val, a[j].add), ++j;
35
            ans[a[i].id] += a[i].add * (ask(n) - ask(a[i].val)), ++i;
36
37
38
       while (--j \ge 1) add(a[j].val, -a[j].add);
       // tim[j] < tim[i] && pos[j] > pos[i] && val[j] < val[i]
39
40
       j = mid, i = r;
       while (i > mid) {
41
            while (j \ge 1 \& a[j].pos \ge a[i].pos) {
42
                add(a[j].val, a[j].add), --j;
43
```

```
44
           ans[a[i].id] += a[i].add * ask(a[i].val - 1), --i;
45
46
       while (++j \le mid) add(a[j].val, -a[j].add);
47
   }
48
49
   inline int rd();
50
   int main() {
51
       n = rd(), m = rd();
52
53
       for (int x, i = 1; i <= n; ++i) {
           x = rd(), a[i] = \{pos[x] = i, x, 1, 0\};
54
55
       for (int x, i = 1; i < m; ++i) {
56
           x = rd(), a[i + n] = \{pos[x], x, -1, i\};
57
58
       // 1d 自然形成时间序, 无须 sort
59
60
       cdq(1, n + m - 1);
       for (int i = 0; i < m; ++i) {
61
           printf("%lld\n", ans[i] += ans[i - 1]);
62
63
       return 0;
64
65 }
   7.2.2 三维 CDQ 优化 DP
1 /* 给定一个长度为 n 的序列 a. 同时这个序列还可能发生变化,每一种变化 (x[i], y[i]) 对应着 a[x[i] 可
       能变成 y[i].
    * 不会同时发生两种变化。需要找出一个最长的子序列, 使得这个子序列在任意一种变化下都是不降的。
   * 只需要求出这个子序列的长度即可. */
4 #include <bits/stdc++.h>
   using namespace std;
5
6
7
   #define N 100005
8
  #define repn(i, x, y) for (int i = x; i \leftarrow y; ++i)
9
10 struct P { int w, mn, mx, id, ans; } a[N], tmp[N];
11
12 int c[N];
13 int n, m, x, y, mxv, ans;
14
15
   inline void add(int i, int x) {
       for (; i \le mxv; i += i \& -i) c[i] = max(c[i], x);
16
17
   inline void del(int i) {
18
19
       for (; i \le mxv; i += i \& -i) c[i] = 0;
20 }
   inline int ask(int i) {
21
22
       int ans = 0;
       for (; i; i -= i \& -i) ans = max(ans, c[i]);
23
24
       return ans;
25 }
26
27 // j \le i \& a[j].mx \le a[i].w \& a[j].w \le a[i].mn
28 inline bool cmp1(const P &a, const P &b) { return a.mx < b.mx; }</pre>
  inline bool cmp2(const P &a, const P &b) { return a.w < b.w; }</pre>
   void cdq(int l, int r) {
30
       if (l == r) return;
32
       int mid = (l + r) \gg 1;
```

```
cdq(l, mid);
33
        sort(a + l, a + mid + 1, cmp1); // sort_cmp1
34
        sort(a + mid + 1, a + r + 1, cmp2); // sort_cmp2
35
36
        int j = l, i = mid + 1;
37
        while (i <= r) {</pre>
            while (j \le mid \&\& a[j].mx \le a[i].w) \{
38
39
                add(a[j].w, a[j].ans), ++j;
40
            a[i].ans = max(a[i].ans, ask(a[i].mn) + 1), ++i;
41
42
        }
        while (--j \ge 1) del(a[j].w);
43
44
        repn(i, l, r) tmp[a[i].id] = a[i];
        repn(i, l, r) a[i] = tmp[i];
45
        cdq(mid + 1, r);
46
   }
47
48
   inline int rd();
49
   int main() {
50
51
        n = rd(), m = rd();
52
        repn(i, 1, n) x = rd(), a[i] = \{x, x, x, i, 1\};
        repn(i, 1, m) {
53
            x = rd(), y = rd();
54
            a[x].mn = min(a[x].mn, y);
55
            a[x].mx = max(a[x].mx, y);
56
57
        repn(i, 1, n) mxv = max(mxv, a[i].mx);
58
        cdq(1, n); // 1d 时间序
59
        repn(i, 1, n) ans = max(ans, a[i].ans);
printf("%d\n", ans);
60
61
        return 0;
62
63 }
   7.2.3 四维 CDQ 优化 DP
1 // dp1: 最大价值和, dp2: 满足条件的方案个数
2 #include <bits/stdc++.h>
3 using namespace std;
4
5
   #define N 80004
6
   #define repn(i, x, y) for (int i = x; i \leq y; ++i)
7
8
   typedef long long 11;
9
   const int P = 998244353;
10
11
   struct Node {
12
        ll mx; int cnt; // mx: longest path
13
        Node operator + (const ll &val) const {
14
            return {mx + val, cnt};
15
16
17
   };
   // x[j] \le x[i] \&\& y[j] \le y[i] \&\& z[j] \le z[i] \&\& w[j] \le w[i]
18
   struct Data {
19
20
        int x, y, z, w, id;
        ll val; Node dp; bool ok; // ok: 1d tag
21
22
   } a[N], tmp[N];
23
24 Node c[N];
```

```
25 int w[N], pos[N];
   int n, m, len, tot, cnt;
26
27
   inline Node merge(const Node &a, const Node &b) { // dp 转移
28
29
        if (a.mx \land b.mx) return a.mx < b.mx ? b : a;
30
        return {a.mx, (a.cnt + b.cnt) % P};
   }
31
32
   inline void add(int i, const Node &k) {
33
34
        for (; i <= len; i += i & -i) c[i] = merge(c[i], k);
35
36
   inline void del(int i) {
        for (; i <= len; i += i & -i) c[i] = \{0, 0\};
37
38
   inline Node ask(int i) {
39
        Node ans = \{0, 0\};
40
        for (; i; i \rightarrow i \& -i) ans = merge(ans, c[i]);
41
42
        return ans;
43 }
44
45 inline bool cmp1(const Data &a, const Data &b) \{ // x -> y -> z -> w \}
        return a.x \wedge b.x ? a.x < b.x : a.y \wedge b.y ? a.y < b.y : a.z \wedge b.z ? a.z < b.z : a.w
46
        < b.w;
47
   inline bool cmp2(const Data &a, const Data &b) { // y -> z -> w -> x
48
        return a.y ^ b.y ? a.y < b.y : a.z ^ b.z ? a.z < b.z : a.w ^ b.w ? a.w < b.w : a.x
49
        < b.x;
50
   inline bool cmp3(const Data &a, const Data &b) { // z -> w -> x -> y
        return a.z \land b.z ? a.z < b.z : a.w \land b.w ? a.w < b.w : a.x <math>\land b.w ? a.x < b.x : a.y
52
        < b.y;
   }
53
54
   void cdq2(int l, int r) {
55
        if (l == r) return;
56
        int mid = (l + r) \gg 1;
57
58
        cdq2(1, mid);
59
        sort(a + 1, a + mid + 1, cmp3);
        sort(a + mid + 1, a + r + 1, cmp3);
60
        int j = l, i = mid + 1;
61
62
        while (i <= r) {</pre>
            while (j \le mid \&\& a[j].z \le a[i].z) \{
63
                 if (a[j].ok) add(a[j].w, a[j].dp); ++j;
64
65
            if (!a[i].ok) a[i].dp = merge(a[i].dp, ask(a[i].w) + a[i].val); ++i;
66
67
68
        while (--j \ge 1) if (a[j].ok) del(a[j].w); // undo
        repn(i, l, r) tmp[pos[\overline{a}[\overline{i}].id]] = \overline{a}[\overline{i}];
69
        repn(i, l, r) a[i] = tmp[i]; // resume to sort_cmp2
70
71
        cdq2(mid + 1, r);
72
   }
73
74
   void cdq1(int l, int r) {
75
        if (l == r) return;
        int mid = (l + r) \gg 1;
76
77
        cdq1(l, mid);
78
        repn(i, l, mid) a[i].ok = 1; // 1d tag
79
        repn(i, mid + 1, r) a[i].ok = 0; // 1d tag
80
        sort(a + 1, a + r + 1, cmp2);
```

```
repn(i, l, r) pos[a[i].id] = i; // backup for sort_cmp2
81
82
         cdq2(l, r);
         repn(i, l, r) tmp[a[i].id] = a[i];
83
         repn(i, l, r) a[i] = tmp[i]; // resume to sort_cmp1
84
85
         cdq1(mid + 1, r);
86
    }
87
    inline int rd();
88
    int main() {
89
90
         n = rd(), m = rd();
91
         repn(i, 1, n) {
92
             a[i].x = rd(), a[i].y = rd(), a[i].z = rd();
             a[i].w = w[i] = rd(), a[i].val = rd();
93
         }
94
         sort(w + 1, w + 1 + n);
95
         len = unique(w + 1, w + 1 + n) - w - 1;
96
         repn(i, 1, n) a[i].w = lower_bound(w + 1, w + 1 + len, a[i].w) - w;
97
         sort(a + 1, a + 1 + n, cmp1); // 1d sort
98
         repn(i, 1, n) { // unique
99
             if (a[i].x ^ a[i + 1].x || a[i].y ^ a[i + 1].y || a[i].z ^ a[i + 1].z || a[i].w
100
          ^ a[i + 1].w) {
                  a[++cnt] = a[i];
101
             } else {
102
103
                  a[i + 1].val += a[i].val;
104
             }
105
         repn(i, 1, cnt) a[i].dp = \{a[i].val, 1\}, a[i].id = i; // backup for sort_cmp1
106
         cdq1(1, cnt);
107
         Node ans = \{0, 0\};
108
         repn(i, 1, cnt) ans = merge(ans, a[i].dp);
printf("%lld\n%d\n", ans.mx, ans.cnt);
109
110
         return 0;
111
112 }
    7.3 树分治
    7.3.1 点分治模版
 1 // 给定一棵有 n 个点的树, 询问树上距离为 k 的点对是否存在 time: O(nlogn)
 2 // https://www.luogu.com.cn/problem/P3806
 3 const int INF = 2e9;
 4 const int mxd = 1e7;
 5 struct Node { int to, nx, dis; } e[N << 1];</pre>
    bitset<mxd + 1> tf;
    int n, m, x, y, z, rt, cnt, tot;
int h[N], mx[N], vis[N], siz[N], ans[N], q[110];
void getr(int u, int pre) { // 获取重心, 重新计算 mx[], siz[]
 9
10
         mx[u] = 0, siz[u] = 1;
         for (int i = h[u]; i; i = e[i].nx) {
11
             int v = e[i].to;
12
             if (v != pre && !vis[v]) { // !vis[v]
13
14
                  getr(v, u);
                  siz[u] += siz[v];
15
                  mx[u] = max(mx[u], siz[v]);
16
             }
17
         }
18
19
         mx[u] = max(mx[u], tot - siz[u]);
         if (mx[u] < mx[rt]) rt = u; // 更新重心, 错误求法 mx[u] <= tot / 2
20
21 }
```

```
22 int tmp[N], d[N], t, ct;
23 // dis[i]: i 到 calc() 中 v 的距离
  // tmp[] : 线性存储所有 dis[i] (i 是 v 子树中的节点)
   void getd(int u, int pre, int dis) {
       if (dis > mxd) return; // 剪枝! k <= mxd, 故只存储 dis <= mxd 的路径!
26
       tmp[++t] = d[++ct] = dis;
27
28
       for (int i = h[u]; i; i = e[i].nx) {
           int v = e[i].to;
29
           if (v != pre && !vis[v]) { // !vis[v]
30
31
               getd(v, u, dis + e[i].dis);
32
33
       }
34 }
35 // tmp□ 存储以当前处理的儿子 V 为根的树的所有 dis□ 信息
  // d[] 存储 rt 为根的树的所有 dis[] 信息, 用于处理完该树后清空 tf[]
  // ct, t 作为 d, tmp 的数组长度
   void calc(int u) {
39
       ct = 0;
       for (int i = h[u]; i; i = e[i].nx) { // 处理 u 的每个子树
40
           int v = e[i].to;
41
           if (vis[v]) continue;
42
           t = 0, getd(v, u, e[i].dis); // 计算的是子树 v 中的节点到 u 的距离
43
           for (int k = 1; k <= t; ++k)
44
               for (int t = 1; t <= m; ++t)</pre>
45
46
                    // tmp[] 存了所有 u 子树节点到 u 的距离
                    // 如果 tmp[k] > q[t], 路径肯定不存在
47
                   // if (tmp[k] \leftarrow q[t])
48
                      ans[t] l = tf[q[t] - tmp[k]];
49
                      // 若 tmp[] 中一个数 + tf[] 中一个数 = k, 就说明路径存在
50
           for (int k = 1; k \leftarrow t; ++k) tf[tmp[k]] = 1; // 更新桶,表示存在长度为 tmp[k] 的路
51
       径
       }
52
53
       // 找完一颗 以 rt 为根的树后, 清空 tf[]
       // 不可以用 memset 暴力清空 tf, 会超时
54
       for (int i = 1; i <= ct; ++i) tf[d[i]] = 0;</pre>
55
56
   }
   void solve(int u) {
57
58
       vis[u] = tf[0] = 1; // vis[] : 避免重复计算, 注意要设置 tf[0] 为 1
59
       calc(u);
       for (int all = tot, i = h[u]; i; i = e[i].nx) {
60
           int v = e[i].to;
61
           if (vis[v]) continue;
62
           tot = siz[v] < siz[u] ? siz[v] : all - siz[u]; // 子树的节点数量
63
           getr(v, rt = 0), solve(rt); // 处理子树
64
       }
65
66
67
   int main() {
68
       n = rd(), m = rd();
       for (int i = 1; i < n; ++i) {
69
70
           x = rd(), y = rd(), z = rd();
71
           add(x, y, z), add(y, x, z);
72
73
       for (int i = 1; i \le m; ++i) q[i] = rd();
       tot = *mx = n; // 注意设置 *mx = n
74
       getr(1, rt = 0); // 获取重心
75
76
       solve(rt);
77
       for (int i = 1; i \le m; ++i) puts(ans[i] ? "AYE" : "NAY");
78
       return 0;
79 }
```

7.3.2 点分治例题

```
1 // 给定一棵 n 个节点的树, 每条边有 边权 , 求出树上两点距离 <= k 的点对数量。
  // 双指针维护, 运用容斥减去重复贡献.
3 // 也可使用 BIT 维护, 但有 k 大小限制, 不然 BIT 数组开不下
4 // ( 须在 qetd 时碰到 dis[v] > k 时剪枝, 不然 BIT 空间是 O(n * k) 的 )
5 // https://www.luogu.com.cn/problem/P4178
6 struct Node { int to, nx, dis; } e[N << 1];</pre>
7 int n, k, x, y, z, rt, cnt, tot, ans;
8 int h[N], vis[N], dis[N], d[N], mx[N], siz[N];
9 void add(int u, int v, int dis);
10 void getr(int u, int pre) {
       mx[u] = 0, siz[u] = 1;
11
12
       for (int i = h[u]; i; i = e[i].nx) {
13
           int v = e[i].to;
           if (v != pre && !vis[v]) {
14
15
               getr(v, u);
16
               siz[u] += siz[v];
17
               mx[u] = max(mx[u], siz[v]);
18
           }
19
       }
       mx[u] = max(mx[u], tot - siz[u]);
20
       if (mx[u] < mx[rt]) rt = u;</pre>
21
22
   void getd(int u, int pre, int dis) {
       if (dis > k) return; // 剪枝! 优化空间与时间
24
25
       d[++ct] = dis;
26
       for (int i = h[u]; i; i = e[i].nx) {
27
           int v = e[i].to;
28
           if (v != pre && !vis[v]) {
29
               getd(v, u, dis + e[i].dis);
30
           }
31
       }
32
33
   inline int geta(int l, int r) { // 双指针维护答案
34
       int res = 0;
       sort(d + 1, d + r + 1);
35
       while (l \ll r) d[l] + d[r] \ll k ? res += r - l++ : --r;
36
       return res;
37
38
   }
39
   inline void calc(int u) {
40
       for (int p, i = h[u]; i; i = e[i].nx) {
41
           int v = e[i].to;
42
           if (vis[v]) continue;
           p = t, getd(v, u, e[i].dis);
43
44
           ans -= geta(p + 1, t); // 减去重复贡献 ( 同一子树内两个结点的贡献 )
45
       d[++t] = 0, ans += geta(1, t), t = 0;
46
47
   }
   void solve(int u) {
48
49
       vis[u] = 1, calc(u);
       for (int all = tot, i = h[u]; i; i = e[i].nx) {
50
           int v = e[i].to;
51
           if (vis[v]) continue;
52
           tot = siz[v] < siz[u] ? siz[v] : all - siz[u];
53
54
           getr(v, rt = 0), solve(rt);
55
       }
56
   inline int rd();
```

```
int main() {
58
       n = rd();
59
       for (int i = 1; i < n; ++i) {
60
61
           x = rd(), y = rd(), z = rd();
62
           add(x, y, z), add(y, x, z);
63
       k = rd(), *mx = tot = n;
64
       getr(1, 0), solve(rt);
65
       printf("%d\n", ans);
66
67
       return 0;
  }
68
   7.4 整体二分
   7.4.1 带修区间第 k 小
1 // O(nlogn * O(BIT)) = O(n logn logn)
   #include <bits/stdc++.h>
3 using namespace std;
4
5 #define N 100005
  #define repn(i, x, y) for (int i = x; i \le y; ++i)
6
7
  struct P { int x, y, k; } t[N];
  struct Q { int x, y, k, id; } q[N * 3], q1[N * 3], q2[N * 3];
10
11 char s[2];
  int n, m, x, y, len, cnt, tot;
12
  int a[N], b[N << 1], c[N], ans[N];</pre>
  inline void add(int i, int k) { for (; i <= n; i += i & -i) c[i] += k;}
   inline int ask(int i) { int ans = 0; for (; i; i -= i & -i) ans += c[i]; return ans; }
16
17
18
   void solve(int l, int r, int ql, int qr) { // l, r: 值域, ql, qr: 询问
19
       if (ql > qr) return;
       if (l == r) { repn(i, ql, qr) if (q[i].id) ans[q[i].id] = l; return; }
20
       int mid = (l + r) >> 1, t1 = 0, t2 = 0;
21
22
       repn(i, ql, qr) {
           if (!q[i].id) {
23
               if (q[i].y <= mid) { // 修改部分按权值化分为 q1: [l, mid], q2: [mid + 1, r]
24
25
                   q1[++t1] = q[i], add(q[i].x, q[i].k);
               } else { // BIT 维护权值 <= mid 的部分的区间数量前缀和
26
                   q2[++t2] = q[i];
27
28
29
           } else {
30
               int x = ask(q[i].y) - ask(q[i].x - 1); // q[i] 询问区间内权值 <= mid 的数的数量
31
               if (q[i].k <= x) {
32
                   q1[++t1] = q[i];
33
               } else {
                   q[i].k -= x, q2[++t2] = q[i];
34
               }
35
           }
36
       }
37
38
       repn(i, 1, t1) if (!q1[i].id) add(q1[i].x, -q1[i].k); // 还原
       repn(i, 1, t1) q[i + ql - 1] = q1[i];
39
       repn(i, 1, t2) q[i + ql - 1 + t1] = q2[i];
40
       solve(l, mid, ql, ql + t1 - 1), solve(mid + 1, r, ql + t1, qr);
41
42
   }
43
```

```
inline int rd();
45
   int main() {
       len = n = rd(), m = rd();
46
47
       repn(i, 1, n) a[i] = b[i] = rd();
       repn(i, 1, m) {
48
           scanf("%s", s), x = rd(), y = rd();
if (*s == 'Q') {
49
50
               t[i] = \{x, y, rd()\};
51
           } else {
52
53
               t[i] = \{x, b[++len] = y\};
54
55
       }
56
       sort(b + 1, b + 1 + len);
       len = unique(b + 1, b + 1 + len) - b - 1;
57
       repn(i, 1, n) a[i] = lower_bound(b + 1, b + 1 + len, a[i]) - b;
58
       repn(i, 1, n) q[++cnt] = {i, a[i], 1}; // 原始数值按插入操作处理
59
       repn(i, 1, m) {
60
           if (t[i].k) { // 询问
61
               q[++cnt] = \{t[i].x, t[i].y, t[i].k, ++tot\};
62
           } else { // 将修改拆成先删除后插入
63
               int y = lower_bound(b + 1, b + 1 + len, t[i].y) - b;
64
               q[++cnt] = \{t[i].x, a[t[i].x], -1\};
65
66
               q[++cnt] = \{t[i].x, a[t[i].x] = y, 1\};
67
           }
68
69
       solve(0, len + 1, 1, cnt);
70
       repn(i, 1, tot) printf("%d\n", b[ans[i]]);
71
       return 0;
72 }
   7.4.2 矩形区域第 k 小
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 #define N 250004
5 #define repn(i, x, y) for (int i = x; i \le y; ++i)
6
7
   struct P { int x, y, k, add, id; } q[N << 1], q1[N << 1], q2[N << 1];
9
  int n, m, len, cnt;
10 int b[N], c[N], sum[N], ans[N];
11
   inline void add(int i, int k) { for (; i <= n; i += i & -i) c[i] += k; }
   inline int ask(int i) { int ans = 0; for (; i; i -= i & -i) ans += c[i]; return ans; }
inline bool cmp(const P &a, const P &b) { return a.x ^ b.x ? a.x < b.x : a.id < b.id; }</pre>
15
16 // O( n n logn logn ) n 为矩形边长
  void solve(int l, int r, int ql, int qr) { // l, r 为当前二分答案边界, ql, qr 为处在当前答案
       范围内的询问
18
       if (ql > qr) return;
       if (l == r) { repn(i, ql, qr) if (q[i].id) ans[q[i].id] = l; return; }
19
20
       int mid = (l + r) >> 1, t1 = 0, t2 = 0; // mid: 当前二分答案
21
       repn(i, ql, qr) {
           if (!q[i].id) {
22
23
                if (q[i].k \ll mid) add(q[i].y, 1); // add
24
               sum[q[i].id] += ask(q[i].y) * q[i].add;
25
```

```
}
26
27
       -// 统计完答案再划分询问, 保证询问按照 x 轴单调
28
29
       repn(i, ql, qr) {
30
           if (!q[i].id) {
               if (q[i].k \le mid) q1[++t1] = q[i], add(q[i].y, -1); // resume
31
               else q2[++t2] = q[i];
32
           } else {
33
               if (q[i].k \le sum[q[i].id]) q1[++t1] = q[i];
34
35
               else q[i].k -= sum[q[i].id], q2[++t2] = q[i];
           }
36
37
       }
       repn(i, ql, qr) if (q[i].id) sum[q[i].id] = 0; // resume
38
       repn(i, 1, t1) q[i + ql - 1] = q1[i]; // 划分到左区间的
39
       repn(i, 1, t2) q[i + ql - 1 + t1] = q2[i]; // 划分到右区间的
40
       solve(l, mid, ql, ql + t1 - 1), solve(mid + 1, r, ql + t1, qr);
41
   }
42
43
44 inline int rd();
   int main() {
45
       n = rd(), m = rd(), cnt = n * n;
46
47
       repn(i, 1, n) repn(j, 1, n) {
           ++len, q[len] = {i, j, b[len] = rd()};
48
49
50
       sort(b + 1, b + 1 + len);
       len = unique(b + 1, b + 1 + len) - b - 1;
51
52
       repn(i, 1, cnt) q[i].k = lower\_bound(b + 1, b + 1 + len, q[i].k) - b;
       repn(i, 1, m) {
53
           int x1 = rd(), y1 = rd(), x2 = rd(), y2 = rd(), k = rd();
54
           q[++cnt] = {x2, y2, k, 1, i}; // 拆解询问, 转化为 2 维数点问题
55
           if (x1 > 1) q[++cnt] = {x1 - 1, y2, k, -1, i};
56
           if (y1 > 1) q[++cnt] = \{x2, y1 - 1, k, -1, i\};
57
           if (x1 > 1 \&\& y1 > 1) q[++cnt] = \{x1 - 1, y1 - 1, k, 1, i\};
58
59
       sort(q + 1, q + 1 + cnt, cmp); // 接 x 轴排序
60
       solve(0, len + 1, 1, cnt);
61
62
       repn(i, 1, m) printf("%d\n", b[ans[i]]);
63
       return 0;
64 }
```

8 Others

8.1 模拟退火

8.1.1 费马点

```
1 #include <bits/stdc++.h>
2 #define rate 0.997
3 const int maxn = 105;
4 using namespace std;
6 typedef long long ll;
   struct node {
7
8
       int x, y;
9 }a[maxn];
10 int n;
   double ansx,ansy, anse;
   inline double energy(double x, double y) {
12
13
       double ans = 0;
       for(int i = 1; i <= n; ++i) {</pre>
14
15
            double dx = x - a[i].x;
            double dy = y - a[i].y;
16
            ans += sqrt(dx * dx + dy * dy);
17
       }
18
19
       return ans;
   }
20
21
   inline void SA(){
       double t = 3000;
22
23
       while(t > 1e-15) {
            double tx = ansx + (rand() * 2 - RAND_MAX) * t;
24
            double ty = ansy + (rand() * 2 - RAND_MAX) * t;
25
            double te = energy(tx, ty);
26
27
            double de = te - anse;
28
            if(de < 0) {
29
                ansx = tx, ansy = ty, anse = te;
            }else if(exp(-de / t) * RAND_MAX > rand()) {
30
                ansx = tx, ansy = ty;
31
32
33
            t *= rate;
34
       }
35
   inline void solve(){
36
       SA(); SA(); SA();
37
38
   int main() {
39
       int t; scanf("%d", &t);
40
       while (t--) {
41
            scanf("%d",&n);
42
            for(int i = 1; i <= n; ++i) {</pre>
43
                scanf("%d%d", &a[i].x, &a[i].y);
44
                ansx += a[i].x , ansy += a[i].y;
45
            }
46
            ansx /= n, ansy /= n;
47
            anse = energy(ansx, ansy);
48
            solve();
49
            printf("%lld\n", (ll)(round(anse)));
50
51
            if (t) puts("");
52
       return 0;
53
```

```
54 }
   8.2
         矩阵
   8.2.1 矩阵快速幂
   struct Matrix {
       11 a「N]「N]; // 矩阵大小
3
       Matrix() { memset(a, 0, sizeof(a)); }
       inline void build() { // 构造单位矩阵
4
            for (int i = 1; i <= n; ++i)
5
6
                a[i][i] = 1;
7
       }
8
   };
9
   Matrix operator * (const Matrix &x, const Matrix & y) {
10
       Matrix z;
11
12
       // k 放中间循环, 充分利用 cpu cache
       for (int i = 1; i <= n; ++i)
13
            // if (x.a[i][k]) // 对稀疏矩阵的优化
14
                for (int k = 1; k <= n; ++k)
15
16
                    for (int j = 1; j <= n; ++j)
                        z.a[i][j] = (z.a[i][j] + x.a[i][k] * y.a[k][j] % P) % P;
17
       return z;
18
   }
19
20
21
   Matrix Pow(Matrix a, ll b) {
22
       Matrix ans;
23
       ans.build();
24
       b %= P;
25
       while (b) {
26
            if (b \& 1) ans = ans * a;
           a = a * a; // 定义了 * , 没定义 *=
27
28
           b >>= 1;
29
30
       return ans;
31 }
   8.2.2 高斯消元
1
   void gauss()
2
   {
3
        int now = 1, to;
       double t;
4
5
       for (int i = 1; i <= n; i++, now++)
6
            /*for (to = now; !a[to][i] && to <= n; to++);
7
            //做除法时减小误差,可不写
8
            if (to != now)
9
10
                for (int j = 1; j \le n + 1; j++)
                    swap(a[to][j], a[now][j]);*/
11
            t = a[now][i];
12
            for (int j = 1; j \le n + 1; j++) a[now][j] /= t;
13
            for (int j = 1; j <= n; j++)
14
                if (j != now)
15
16
                {
17
                    t = a[i][i];
                    for (int k = 1; k \le n + 1; k++) a[j][k] -= t * a[now][k];
18
```

```
}
19
20
        }
   }
21
   8.2.3 gauss
1 #include <bits/stdc++.h>
2 const int maxn = 105;
3 using namespace std;
  double a[maxn][maxn];
5 int main(){
        int n; scanf("%d",&n);
6
7
        for(int i=1;i<=n;++i){</pre>
8
            for(int j=1;j<=n+1;++j){</pre>
9
                scanf("%lf",&a[i][j]);
10
11
        for(int j=1;j<=n;++j) { //列
12
13
            int mx = j;
14
            for(int i=j+1;i<=n;++i){</pre>
15
                if(fabs(a[i][j]) > fabs(a[mx][j])) mx = i;
16
            for(int i=1;i<=n+1;++i){</pre>
17
                swap(a[mx][i],a[j][i]);
18
19
20
            if(!a[j][j]){
21
                puts("No Solution\n");
                return 0;
22
23
            for(int i=1;i<=n;++i){ //行
24
25
                if(i==j) continue;
26
                double tmp = a[i][j] / a[j][j];
                for(int k=1;k<=n+1;++k){</pre>
27
28
                     a[i][k] -= tmp * a[j][k];
                }
29
            }
30
31
        for(int i=1;i<=n;++i){</pre>
32
            printf("%.2lf\n",a[i][n+1]/a[i][i]);
33
        }
34
   }
35
   8.3 技巧
   8.3.1 解决爆栈问题
1 // 解决爆栈问题
2 #pragma comment(linker, "/STACK:1024000000,1024000000")
   8.3.2 卡常
   int main() {
1
2
        ios_base::sync_with_stdio(false), cin.tie(0);
   }
3
   namespace IO { // 快读
4
        const int in = 1 << 22, out = 1 << 22;
5
        static char buf[in], *p1 = buf, *p2 = buf, duf[out], *q1 = duf, ch[20];
6
```

```
#define gcf() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, in, stdin), p1 == p2) ? EOF
        : *p1++)
       template <typename T> inline int rd(T &x) {
8
           x = 0; char c; int f = 0;
9
           while (!isdigit(c = gcf())) f |= c == '-';
10
           while (isdigit(c)) x = (x << 1) + (x << 3) + (c ^ 48), c = qcf();
11
12
           return f ? -x : x;
       }
13
       template <typename T, typename... Args>
14
       inline void rd(T& t, Args&... args) { rd(t), rd(args...); }
15
       template <typename T> inline void wr(T x) {
16
17
           int i = 0;
           (x < 0) \&\& (x = -x, *q1++ = '-');
18
           (x) || (*q1++ = '0');
19
           while (x) ch[i++] = x \% 10 + 48, x /= 10;
20
           while (i) *q1++ = ch[--i];
21
22
       inline void flush() { fwrite(duf, q1 - duf, 1, stdout); }
23
24 }
25 using IO::rd;
26 using IO::wr;
27 // 输出字符 *IO::q1++='要输出的字符';
28 // 程序结尾需要加上 IO::flush();
30 short seed = 2333;
31 inline short rnd() { // 自制随机数生成器
       return seed = (seed * 7 + 13) ^ (seed / 13 - 7);
32
33 }
   8.3.3 Strok-Sscanf
1 // 空格作为分隔输入,读取一行的整数
2 fgets(buf, BUFSIZE, stdin);
3 int v;
4 char *p = strtok(buf, " ");
   while (p) {
       sscanf(p, "%d", &v);
6
7
       p = strtok(NULL," ");
8 }
   8.3.4 对拍
   #include <cstdio>
   #include <cstdlib>
3
   int main() {
       int tmp = 0;
4
       for (int i = 1; i \le 1000; ++i) {
5
           system("./generate"); // 数据生成器
6
           system("./tt"); // 对拍程序
7
           system("./a"); // 我的程序
8
           if (i / 100 > tmp) {
9
               printf("-- %d --\n", i);
10
               tmp = i / 100;
11
12
           if (system("diff test.out std.out")) { // 对比结果
13
               printf("wrong in --> %d \n", i);
14
15
               break;
           }
16
```

```
17
       return 0;
18
  }
19
   8.3.5 树生成器
1 // 生成一颗树
   #include <bits/stdc++.h>
3 using namespace std;
4
5 const int N = 3e5;
6
7
   int main() {
       freopen("test.in", "w", stdout);
8
       srand(time(NULL));
9
       const int n = rand() % N + 1; // 节点数
10
       const int m = rand() % N + 1; // 询问数
11
       printf("%d %d\n", n, m);
for (int i = 1; i < n; ++i) { // 边
12
13
           printf("%d %d\n", rand() % i + 1, i + 1);
14
15
       for (int i = 1; i <= m; ++i) { // 询问(根据题目来码)
16
           printf("%d %d\n", rand() % n + 1, rand() % n + 1);
17
18
       return 0;
19
20 }
   8.3.6 double 4 舍 5 人
   double round1(double x) {
       const double sd = 100; // 2
2
       return int(x * sd + (x < 0 ? -0.5 : 0.5)) / sd;
3
4
   double round2(double x) { // 防爆整数范围版本
5
       const double sd = 100; // 2
6
       11 y = x; x -= y;
7
       return y + ll(x * sd + (x < 0 ? -0.5 : 0.5)) / sd;
8
9
   }
   8.4 大数
   8.4.1 High-precision
1 // 加法 乘法 小于号 输出
   struct bint {
2
3
       int 1;
       short int w[100];
4
       bint(int x = 0) {
5
            l = x == 0, memset(w, 0, sizeof(w));
6
7
           while (x) w[l++] = x \% 10, x \neq 10;
8
9
       bool operator<(const bint& x) const {</pre>
10
            if (l != x.l) return l < x.l;
            int i = 1 - 1;
11
           while (i >= 0 && w[i] == x.w[i]) i--;
12
            return (i >= 0 \& w[i] < x.w[i]);
13
       }
14
```

```
bint operator+(const bint& x) const {
15
            bint ans;
16
            ans.l = l > x.l ? l : x.l;
17
            for (int i = 0; i < ans.1; i++)
18
19
20
                ans.w[i] += w[i] + x.w[i];
                ans.w[i + 1] += ans.w[i] / 10;
21
22
                ans.w[i] = ans.w[i] % 10;
23
            if (ans.w[ans.l] != 0) ans.l++;
24
25
            return ans;
26
       bint operator*(const bint& x) const {
27
28
            bint res;
            int up, tmp;
29
            for (int i = 0; i < 1; i++)
30
31
32
                up = 0;
                for (int j = 0; j < x.1; j++)
33
34
                    tmp = w[i] * x.w[j] + res.w[i + j] + up;
35
                    res.w[i + j] = tmp % 10;
36
37
                    up = tmp / 10;
38
39
                if (up != 0) res.w[i + x.l] = up;
40
            res.l = l + x.l;
41
            while (res.w[res.l - 1] == 0 && res.l > 1) res.l--;
42
            return res;
43
44
       void print() {
45
            for (int i = l - 1; ~i; i--) printf("%d", w[i]);
46
47
            puts("");
       }
48
  };
49
   8.4.2 H÷L
1 char s[N];
  int a[N], c[N], b;
2
3
   {
       scanf("%s%d", s, &b); // 高精除低精
4
       int la = strlen(s);
5
       for (int i = 1; i \le la; ++i) a[i] = s[i - 1] ^ 48;
6
7
       int t = 0;
       for (int i = 1; i <= la; ++i) {
8
            t = (t << 1) + (t << 3) + a[i];
9
            c[i] = t / b, t \% = b;
10
       }
11
       int len = 1;
12
       while (!c[len]) ++len;
13
14
       for (int i = len; i <= la; ++i) printf("%d", c[i]); puts("");</pre>
15 }
   8.4.3 H÷H
1 char a[N], b[N], c[N];
2 void sub() {
```

```
int len = 0;
3
       while (a[len] == '0') ++len;
4
       for (int i = lb - 1; i >= len; --i) {
5
            a[i] -= b[i] ^ 48;
6
            if (a[i] < '0') --a[i - 1], a[i] += 10;
7
       }
8
9
   }
   int main() {
10
       scanf("%s%s", a, b);
11
       la = strlen(a), lb = strlen(b);
12
       if (la < lb | | (la == lb && strcmp(a, b) < 0)) {
13
14
           puts("0"), puts(a), exit(0);
15
       int len = 1;
16
17
       while (1) {
            while (strncmp(a, b, lb) >= 0) ++c[len], sub();
18
19
            if (la == lb) break;
           ++len;
20
            for (int i = lb; i; --i) b[i] = b[i - 1];
21
            *b = '0', ++lb;
22
23
       }
       int i = 1;
24
25
       // 输出商
26
       while (!c[i] && i < len) ++i;
27
       while (i <= len) printf("%d", c[i++]); puts("");</pre>
28
       // 输出余数
29
       i = 0;
       while (a[i] == '0' \&\& i < la - 1) ++i;
30
       puts(a + i);
31
32
       return 0;
33 }
   8.5 Misc
   8.5.1 Standard Template Library
   template <class InputIterator, class OutputIterator>
2
     OutputIterator copy (InputIterator first, InputIterator last, OutputIterator result);
3
   template <class InputIterator1, class InputIterator2,</pre>
4
              class OutputIterator, class Compare>
5
     OutputIterator merge (InputIterator1 first1, InputIterator1 last1,
6
                            InputIterator2 first2, InputIterator2 last2,
7
8
                            OutputIterator result, Compare comp);
9
   template <class InputIterator, class Function>
10
11
      Function for_each (InputIterator first, InputIterator last, Function fn);
12
   template <class InputIterator, class OutputIterator, class UnaryOperation>
13
     OutputIterator transform (InputIterator first1, InputIterator last1,
14
15
                                OutputIterator result, UnaryOperation op);
   template< class ForwardIterator, class T >
17
   void iota( ForwardIterator first, ForwardIterator last, T value );
   8.5.2 Policy-Based Data Structures
   红黑树
```

```
声明/头文件
1 #include <ext/pb_ds/tree_policy.hpp>
2 #include <ext/pb_ds/assoc_container.hpp>
3 using namespace __gnu_pbds;
4 typedef tree<pt, null_type, less<pt>, rb_tree_tag, tree_order_statistics_node_update>
       rbtree:
   使用方法
1 pt
                                     // 关键字类型
2 null_type
                                     // 无映射(低版本g++为null_mapped_type)
3 less<int>
                                     // 从小到大排序
4 rb_tree_tag
                                     // 红黑树 (splay_tree_tag)
5 tree_order_statistics_node_update // 结点更新
6 T.insert(val);
                                     // 插入
7 T.erase(iterator);
                                     // 删除
                                    // 查找有多少数比它小
8 T.order_of_key();
9 T.find_by_order(k);
                                    // 有k个数比它小的数是多少
                                    // b并入a 前提是两棵树的key的取值范围不相交
10 a.join(b);
11 a.split(v, b);
                                    // key小于等于v的元素属于a, 其余的属于b
12 T.lower_bound(x);
                                    // >=x的min的迭代器
13 T.upper_bound((x);
                                    // >x的min的迭代器
   8.5.3 Subset Enumeration
   枚举直子集
1 for (int s = (S - 1) \& S; s; s = (s - 1) \& S)
   枚举大小为 k 的子集
void subset(int k, int n) {
       int t = (1 << k) - 1;
2
       while (t < (1 << n)) {
3
           // do something
4
           int x = t \& -t, y = t + x;
5
6
           t = ((t \& \sim y) / x >> 1) | y;
       }
7
8
  }
   8.5.4 Date Magic
  string dayOfWeek[] = {"Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"};
   // converts Gregorian date to integer (Julian day number)
3
  int DateToInt(int m, int d, int y)
4
5
   {
       return 1461 * (y + 4800 + (m - 14) / 12) / 4
6
              + 367 * (m - 2 - (m - 14) / 12 * 12) / 12
7
              - 3 * ((y + 4900 + (m - 14) / 12) / 100) / 4
8
              + d - 32075;
9
10 }
11
12 // converts integer (Julian day number) to Gregorian date: month/day/year
13 void IntToDate(int jd, int& m, int& d, int& y)
14 {
       int x, n, i, j;
15
       x = id + 68569;
```

```
n = 4 * x / 146097;
17
       x = (146097 * n + 3) / 4;
18
       i = (4000 * (x + 1)) / 1461001;
19
       x = 1461 * i / 4 - 31;
20
21
       j = 80 * x / 2447;
       d = x - 2447 * j / 80;
22
23
       x = j / 11;
       m = j + 2 - 12 * x;
24
25
       y = 100 * (n - 49) + i + x;
26 }
27
28 // converts integer (Julian day number) to day of week
29 string IntToDay(int jd) { return dayOfWeek[jd % 7]; }
   8.5.5 进制转换
1 // 输入x, y, old, 然后调用trans(), 此时 a 即为转换后的字符串
2 char old[N], a[N]; // 转换前、后的字符串
3 int t[N], A[N]; // old, a 的数组
4 int x, y; // 转换前、后的进制
5 int idx(char c) { ... } // 将字符转为数字 6 char idc(int x) { ... } // 将数字转为字符
   void trans() {
7
       int len = strlen(old);
8
       for (int i = 0; i < len; ++i) {
9
10
           t[i] = idx(old[len - i - 1]);
11
12
       int k = 0;
13
       while (len) {
           for (int i = len - 1; i; --i) {
               t[i - 1] += t[i] % y * x;
15
               t[i] /= y;
16
17
           A[k++] = *t % y; // 此时最后一位模 y 就是进制转换后的倒数第 k + 1 位
18
19
           while (len && !t[len - 1]) --len;
20
21
       a[k] = 0;
22
23
       for (int i = 0; i < k; ++i) {
24
           a[i] = idc(A[k - i - 1]);
25
       }
26
   }
   int main() {
27
       scanf("%d%d%s", &x, &y, old);
28
29
       trans(), puts(a);
       return 0;
30
31 }
   8.5.6 区间加等差数列求和
1 // 静态维护
  /* 维护一个数组, 先进行 m 次操作, 然后查询每个位置的值
   * 每个操作给定四个参数 l, r, a, k 表示从 l 到 r 依次加上一个首项为 a, 公差为 k 的等差数列.
   * 方法: 维护 d2 数组,表示原数组的二阶差分
4
5
6
   void add(int 1, int r, int a, int k) {
7
       d2[1] += a;
       d2[1 + 1] += k - a;
8
```

```
d2[r + 1] = (r - l + 1) * k + a;
9
       d2[r + 2] = (1 - r) * k - a;
10
11
   void pre_sum() { // 做前缀和
12
       for (int i = 1; i \le n; ++i) d2[i] += d2[i - 1];
13
14
   int main() {
15
       scanf("%d %d", &n, &m);
16
       for (int i = 1; i <= m; ++i) {
17
           scanf("%d %d %d %d", &l, &r, &a, &k); // [l, r], an = a + k(n - 1)
18
           add(l, r, a, k);
19
20
       }
       pre_sum(), pre_sum();
21
       // d2[] => d1[] => a[] , 做两次前缀和还原数组
22
       for (int i = 1; i <= n; ++i) {
23
           printf("%d\n", d2[i]);
24
25
26
       return 0;
27 }
28
29 // 动态维护
30
31 // 1. 差分方法
32 /* 操作 l, r, k, d , 记 sum[i] 为差分数组 a[i] - a[i - 1]
    * 对于 l : sum[l] = sum[l] + k
    * 对于 (l, r]: sum[i] = sum[i] + d
    * 对于 r+1: sum[r+1] = sum[r+1] - (k+(r-1) * d)
    * 每次查询输出 a[x] + (sum[1] + ... + sum[x])
36
    */
37
   struct Node { int 1, r, sum, tag; } t[N << 2];</pre>
   int a[N], n, m, opt, l, r, k, d, x;
   inline void pushup(int p) { t[p].sum = tls(p).sum + trs(p).sum; }
   inline void add(int p, int k) {
41
       t[p].tag += k;
42
       t[p].sum += (R - L + 1) * k;
43
   }
44
   inline void pushdown(int p) {
45
46
       if (t[p].tag) {
           add(ls(p), t[p].tag);
47
           add(rs(p), t[p].tag);
48
           t[p].tag = 0;
49
       }
50
   }
51
   void build(int l, int r, int p) {
52
       L = 1, R = r;
53
       if (l == r) return;
54
       int mid = (l + r) >> 1;
55
       build(l, mid, ls(p));
56
       build(mid + 1, r, rs(p));
57
59
   void update(int x, int y, int k, int p = 1) {
60
       if (x \le L \&\& y \ge R) return add(p, k);
61
       pushdown(p);
62
       if (x \leftarrow tls(p).r) update(x, y, k, ls(p));
       if (y > tls(p).r) update(x, y, k, rs(p));
63
64
       pushup(p);
65
66
   int query(int x, int y, int p = 1) {
       if (x > R | I y < L) return 0;
67
```

```
68
        if (x \le L \&\& y \ge R) return t[p].sum;
69
        pushdown(p);
        return query(x, y, ls(p)) + query(x, y, rs(p));
70
71
72
    int main() {
73
        n = rd(), m = rd();
        for (int i = 1; i <= n; ++i) a[i] = rd();</pre>
74
75
        build(1, n, 1);
76
        while (m--) {
77
             opt = rd();
             if (opt & 1) {
78
79
                 l = rd(), r = rd(), k = rd(), d = rd();
80
                 update(1, 1, k);
                 if (l < r) update(l + 1, r, d);
81
                 if (r \land n) update(r + 1, r + 1, -(k + (r - l) * d));
82
83
             } else {
84
                 x = rd();
                 printf("%d\n", a[x] + query(1, x));
85
86
87
        return 0;
88
89 }
90
91 // 2. 非差分方法, 线段树(两个 tag)
    struct Node {
93
        int 1, r;
        ll k, d, sum; // k, d: 首项, 公差的 tag
94
95
    } t[N << 2];
    int n, m, opt, l, r, k, d;
    void build(int l, int r, int p) {
97
98
        L = 1, R = r;
        if (l == r) { t[p].sum = rd(); return; }
99
100
        int mid = (l + r) \gg 1;
        build(l, mid, ls(p));
101
        build(mid + 1, r, rs(p));
102
103
    inline void pushup(int p) { t[p].sum = tls(p).sum + trs(p).sum; }
105
    inline void add(int p, ll k, ll d) {
        int n = (R - L + 1);
106
107
        t[p].k += k, t[p].d += d;
        t[p].sum += n * k + n * (n - 1) / 2 * d;
108
109
    inline void pushdown(int p) {
110
        if (t[p].k || t[p].d) {
111
             add(ls(p), t[p].k, t[p].d);
112
             t[p].k += (tls(p).r - L + 1) * t[p].d;
113
             add(rs(p), t[p].k, t[p].d);
114
             t[p].k = t[p].d = 0;
115
116
117
    }
118
    void update(int x, int y, ll k, ll d, int p = 1) {
        if (x \le L \&\& y >= R) {
119
             k += (L - x) * d;
120
             add(p, k, d);
121
122
             return;
123
124
        pushdown(p);
125
        if (x \leftarrow tls(p).r) update(x, y, k, d, ls(p));
126
        if (y > tls(p).r) update(x, y, k, d, rs(p));
```

```
pushup(p);
127
128
    il query(int x, int p = 1) {
129
        if (L == R) return t[p].sum;
130
131
        pushdown(p);
        if (x <= tls(p).r) return query(x, ls(p));</pre>
132
133
        return query(x, rs(p));
134
    }
135 int main() {
        n = rd(), m = rd(), build(1, n, 1);
136
137
        while (m--) {
138
            if ((opt = rd()) \& 1) update(l = rd(), r = rd(), k = rd(), d = rd());
            else printf("%lld\n", query(rd()));
139
140
        }
141
        return 0;
    }
142
    8.6 配置
    8.6.1 vim
 1 sy on
 2 set et nu is sc ai hls cin udf
 3 set bs=2 sw=4 so=999 hi=10000 sts=4 mouse=a cb=unnamed
 4 set noeb vb t_vb=
 5 colo gruvbox
 6
   "colo evening
 7
 8 let mapleader = ","
 9 nnoremap <C-e> :enew<CR>:e
10 nnoremap <silent> <C-n> :bn<CR>
11 nnoremap <silent> <C-p> :bpre<CR>
12 nnoremap <leader>w :w<cr><esc>
13 nnoremap <leader>v mmggVG
14 nnoremap <leader>y mmggVG"+y`m
15 nnoremap <leader>r :call Run()<cr>
16 nnoremap <leader>tr :call Run_T()<cr>
17 nnoremap <silent><leader>l :!clear<CR><CR>
    "vnoremap <leader><leader> mm^o^<C-v>I// <ESC>`m
19
    "vnoremap <leader>d mm^o^<C-v>lld<ESC>`m
20
21 set noesckeys
22
    "map<c-y> mmggVG"+y`m
23
    "map<f5> :call Run()<cr>
24
    "vnoremap \d mm^o^<C-v>ld<ESC>`m
26
27
28 noremap <C-j> <C-W>j
29 noremap <C-k> <C-W>k
30 noremap <C-h> <C-W>h
   noremap <C-l> <C-W>l
31
32
33
    func! Run()
        exec "w"
34
        exec "!g++ -w \% -o \% < \&\& ./\% <"
35
36
    endfunc
37
   func! Run_T()
```

```
exec "w"
39
        exec "!g++ % -o %< && time ./%<"
40
   endfunc
41
42
43
   inoremap {<cr> {<cr>}<esc>0
   "inoremap ( ()<esc>i
44
   "inoremap { {}<esc>i
"inoremap [ []<esc>i
45
46
   "inoremap ) <c-r>=ClosePair(')')<cr>
47
   "inoremap } <c-r>=ClosePair('}')<cr>
   "inoremap ] <c-r>=ClosePair(']')<cr>
50
   "func ClosePair(char)
51
        if getline('.')[col('.') - 1] == a:char
    return "\<right>"
52
53
   "
         else
54
             return a:char
55
56
         endif
   "endfunc
   8.6.2 精简配置
1 sy on
   "set noeb vb t_vb=
{\tt 3} set et nu is sc ai hls cin udf
 4 set bs=2 sw=4 so=999 hi=10000 sts=4 mouse=a cb=unnamed
   "colo gruvbox
6 colo evening
7
   let mapleader = ","
8
9
   nnoremap <leader>y mmggVG"+y`m
   nnoremap <leader>r :call Run()<cr>
   vnoremap <leader>r :call Run()<cr>
11
12
   "map<c-y> mmggVG"+y`m
13
   "map<f5> :call Run()<cr>
14
   15
   "vnoremap \d mm^o^<C-v>ld<ESC>`m
16
17
  func! Run()
18
        exec "w"
19
        exec "!g++ -w % -o %< && ./%<"
20
21
   endfunc
22
  inoremap {<cr>> {<cr>>}<esc>0
```