AUTOMATED CLEANING PATH OPTIMIZATION ALGORITHM

AUTOMATED CLEANING PATH OPTIMIZAT

PROPRIETARY & CONFIDENTIAL

NaviFloor Robotics, Inc.

Document Version: 3.2

Last Updated: January 11, 2024

1. OVERVIEW AND SCOPE

1. This document describes the proprietary Automated Cleaning Path Optimi

- 1 - 2. The Algorithm encompasses the computational methods, methometical m
2. The Algorithm encompasses the computational methods, mathematical methods and the second methods are second methods.
A TERRITORIA GREGIEI CATIONIC
2. TECHNICAL SPECIFICATIONS
-
1. Core Components
-
Dynamic path planning engine utilizing modified A* algorithm
Real-time surface condition analysis module
Real-time surface condition analysis module
-
Multi-sensor fusion processing framework
-
Adaptive coverage pattern generator

- - 2 - Obstacle avoidance system with predictive modeling

2. Input Parameters

-

LiDAR point cloud data (minimum 16-channel)

-

Surface texture classification metrics

_

Real-time friction coefficient measurements

-

Environmental condition sensors data

-

Historical cleaning effectiveness data

3 -
3. Output Specifications
_
Optimized cleaning path vectors
-
Surface-specific speed and pressure adjustments
-
Coverage verification mapping
-
Performance metrics and efficiency calculations

1. Patent Status

3. INTELLECTUAL PROPERTY PROTECTION

- 4 U.S. Patent Application No. 17/234,567 (pending)
 PCT International Application PCT/US2023/012345
 European Patent Application EP23456789.0

2. Trade Secret Protection

The Algorithm includes proprietary methods and implementations that are maintained as trade secrets, including:

Surface classification neural network architecture

Terrain adaptation coefficients

- - 5 -

Path optimization weighting functions

_

Performance prediction models

4. IMPLEMENTATION REQUIREMENTS

-

1. Hardware Requirements

-

Minimum processor: ARM Cortex-A72 or equivalent

_

Required memory: 8GB RAM

-

Storage: 128GB SSD

- - 6 -

Sensor suite: NaviFloor Standard Configuration v2.0 or higher

_

2. Software Dependencies

_

NaviFloor Core Framework v4.5+

-

ROS2 Humble or newer

_

CUDA 11.0+ for GPU acceleration

-

Custom NaviFloor libraries (NFLib v3.2+)

5. SECURITY MEASURES

- - 7
1. Access Control

- Role-based access control (RBAC) implementation

- Multi-factor authentication for administrative access

- Encrypted storage of algorithm parameters

- Audit logging of all access and modifications

- 2. Data Protection

AES-256 encryption for stored parameters

- - 8 TLS 1.3 for data in transit
Secure boot verification

Tamper detection mechanisms

6. USAGE RESTRICTIONS

1. The Algorithm may only be used on authorized NaviFloor hardware platform

2. Any attempt to extract, copy, or transfer the Algorithm or its components

7. MAÎNTENANCE AND UPDATES

-		
1. Regular Updates		
-		
Quarterly parameter optimization		
-		
Monthly security patches		
-		
Bi-annual major version releases		
-		
2. Version Control		
-		
Git-based source control		

- 10 Automated build and test pipeline
 Change log maintenance

Release validation protocol

8. COMPLIANCE AND CERTIFICATION

1. The Algorithm has been certified compliant with:

ISO/IEC 27001:2013

IEC 61508 SIL 2

- 11-

CE marking requirements

_

UL 1740 Safety Standard

9. LEGAL NOTICES

_

1. Copyright © 2024 NaviFloor Robotics, Inc. All rights reserved.

-

 $2. \ CONFIDENTIALITY \ NOTICE: This \ document \ contains \ proprietary \ and$

10. DOCUMENT CONTROL

Document Owner: Dr. Elena Kovacs, Chief Research Officer

Last Review Date: January 11, 2024

Next Review Date: July 11, 2024

Document ID: ALGO-PATH-OPT-3.2-2024

APPROVED BY:

_

Dr. Sarah Chen

CEO, NaviFloor Robotics, Inc.

Date: January 11, 2024

_

Marcus Depth

CTO, NaviFloor Robotics, Inc.

Date: January 11, 2024

