Def: X1, -, Xn i'd with mean O, variance 52 If 6= x => ô is unbiased.

SE[0]= (var[+ (x, + - + x,)]

= | Inz E Ver [Xi] $= \int_{\mathbb{R}^2} \frac{1}{n^2} n \delta^2 = \int_{\mathbb{R}^2}$

X1, -, Xn i'd Bern (0).

SE[0].

 $R(\hat{\theta}, \theta) = \frac{O(1-\theta)}{n} = MSE$

Goal #3 of Inference: theory testing (hypothesis testing) You have some well-specified nothematical theory about the DGP. For example, in the iphone survey, "I think the proportion of iphone users in the population is NOT 52.4%. I want to prove my theory to the world (using my sample) Note: It is absolutely impossible to prove or disprove my thery. because you cannot see the whole population (or go Tuside of the DGP). We must use inference which is always a guess. Two ways to go about "proving" my theory:

1) I assume I'm right and wast for other people to show

me data that contradicts my theory. 2) I again I'm vorg, then I adduce (bring) evidence (i.e. data)
to the contrary until people are convinced my theory
is right. #2 is more Tweelestually honest and more tikely to convince. A hypothesis is a mathematical statement about the DGP e.g. 0=0.9, 0=0.9, 0 is not equal to 0.9 or 0 < 0.9 or 0 is in the set [0.89, 0.91], etc.

	The "alternative hypothesis" (Ha) is the theory you want to prove. The "null hypothesis" (Ho) is the opposite you assume in # 2 for the purpose of contradicting it. Usual cases:
	you want to prove.
-	The "null hypothesis" (Ho) is the opposite you
	assume in # 2 for the purpose of contradicting it
_	Usual cases:
-	Ho: 0 500, Ha: 0700 Right-tailed Test.
	Ho: 0700, Ha: 0<00. Left-tasked Test.
	Ho: 0=00, Ha: 0+00 Two-tailed Test.
	How to perform this test?
	- There are many options ever for the same DGP.
	- The protocal spes as follows
	- There are many options even for the same DGP. - The protocol goes as follows 1) You think of a "test statistic" that could measure the departure away from Ho.
	the departure away from Ho.
	2) Devive the statistical estimator's distribution under Ho. 3) Lavee the dopature.
	3) Gauge the departure.
_	
	We begin with DGP: ;id Bern(0) and the "binomial go exact test" Ho: 0=0524 Ha: 0 = 0.524
	exact test "
_	Ho: 0=0524 Ha: 0 = 0,524
0	My test statistic is $\hat{\partial} = \overline{X}$, $\hat{\partial}$ is a realization from $\hat{\mathcal{O}}$.
2	6/Ho~? n=20.
-	0= X1+ + X20 => 200/H0= X1+ -1+ X20
	20. = X, + + X20.
	θ= X1+ + X20. => 20θ Ho= X,++ X20. ~ Binon (20, θo=0.524)

.

/

	If you would like to prove you theory, you have to accept a positive probability of a Type I error.
	accept a positive probability of a Type I error.
	If I fall to reject the last the is have that
	different evor, a "Type I error". Failure to
	If I fail to reject to when the is true that's a different error, a "Type I error". Failure to prove your theory.
	The smaller the alpha, the larger the P(Type I error).
	Decision
Ti	rush. Réfain to Reject the
,	Ho V Type I evror / Type I evror
æ	As of now, we cannot calculate the f (Type Terror).
·	
	Sec.