

奎试

真写。

 $\int_{0.7}^{\infty} (-nx)^n$ 的收敛半径 R=(

 $A.\sum_{n=1}^{\infty}\frac{n}{n^2+1}$;

B. $\sum_{n=1}^{\infty} \frac{3n^2}{n^3+1}$;

 $C.\sum_{n=1}^{\infty}\frac{n!}{4^n};$

 $D.\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n.$

5. cos x 是微分方程()的特解. 5. C. y'' + y' = 0; B. y'' + 2y' + 2y = 0; C. y'' + y = 0; D. y'' - y' + y = 0.

6. 交换积分次序 $\int_0^2 dy \int_{y^2}^{2y} f(x,y) dx = ($ A. $\int_0^4 dx \int_{\sqrt{x}}^{\frac{x}{2}} f(x, y) dy$; B. $\int_0^2 dx \int_{\frac{x}{2}}^{\sqrt{x}} f(x, y) dy$; C. $\int_0^4 dx \int_{\frac{x}{2}}^{\sqrt{x}} f(x, y) dy$; D. $\int_0^2 dx \int_{x^2}^{2x} f(x, y) dy$.

).

第二题
得分分
二、填空题(3分×8): 1. 通过 x 轴且经过点 P(2,1,-1) 的平面方程为
1. 通过 x 轴且经过 篇
2. 函数 $z = \arcsin(x + y - 1)$ 的定义域为
$\int_{3.} \partial_t u = \left(\frac{y}{x}\right)^z, \mathcal{D}_z(1,1,1) = \underline{\qquad}$
$\int 3. $
· · · · · · · · · · · · · · · · · · ·
4. 微分方程 y'= y 通解为
. 设曲线L的周长为 c ,则 $c-\int_{L}(1-c)ds=$
,设曲线L的周长为C,从C。JL、
1. L的一段。 III O(r n)d.
设曲线 L 为 xoy 面内直线 $y = b$ 上的一段,则 $\int_L Q(x,y) dy =$.
$=x^{y}$,则 $dz=$

```
第三题 f(u,v) 可微,z=f\left(y\ln x,x^2\sin y\right),求 \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}. 解:
```

3. 计算∬
$$e^{x^2}$$
d σ , 其中D是由 $y=x$, $x=1$ 及 x 植所独设解:

4. 计算∬ $\sqrt{1+x^2+y^2}$ d σ , 其中D为 $x^2+y^2 \le 4$.

