Tabelle: Analogie geradlinige Bewegung (Translation) und Drehbewegung (Rotation)

Translation		Rotation	
Größe	Einheit	Größe	Einheit
Weg s, ds	m	Winkel φ , $d\varphi$	rad (Radiant)
Geschwindigkeit $v = ds / dt$	m/s	Winkelgeschwindigkeit $\omega = d\varphi/dt$	rad/s = 1/s
Beschleunigung $a = dv / dt = d^2s / dt^2$	m/s ²	Winkelbeschleunigung $\alpha = d\omega/dt = d^2\varphi/dt^2$	$rad/s^2 = 1/s^2$
Masse (Trägheit) m	kg	(Massen-) Trägheitsmoment $\Theta = \Sigma m r^2$	kg m ²
Kraft $F = m \ a = dp / dt$	$N = kg m/s^2$	Drehmoment $M = \Theta \alpha = dL / dt$	$Nm = kg m^2 s^2$
Impuls $p = m v$	kg m/s	Drehimpuls $L = \Theta \omega$	$kg m^2/s = Nms$
Arbeit $dW = F x ds$	J = Nm	Arbeit $dW = M x d\varphi$	J = Nm
kinetische Energie $E_{kin} = (m/2) v^2$	Ј	Rotationsenergie $E_{rot} = (\Theta/2) \omega^2$	J
Leistung $P = dW/dt = F x v$	W = J/s	Leistung $P = dW/dt = M x \omega$	W = J/s
Kraftkonstante D = F / s	N/m	Winkelrichtmoment $D^* = M / \phi$	Nm
Spannarbeit $W = (D/2)s^2$	Nm = J	Spannarbeit $W = (D^*/2) \phi^2$	Nm = J