Verification of Maximum Power Transfer Theorem

6.1 Purpose/Objective:

The aim of this experiment is-

- > To be familiar with the Maximum Power Transfer theorem and also to verify it.
- > To know about its applicability.

6.2 Theory:

- Maximum power transfer theorem may be stated as follows:
 - A resistive load will receive maximum power from a network when the load resistance is equal to the Thevenin resistance of the network applied to the load. That is, when

$$R_L = R_{Th}$$

- > But, if the load resistance is lower or higher in value than the Thevenin resistance of the network, its dissipated power will be less than the maximum.
- Let us consider the Thevenin's equivalent circuit given below where R₂ is designated as the "load" resistor. We apply Maximum Power Transfer Theorem on this circuit:

Figure-1: Thevenin equivalent Circuit

6.3 Equipment/ Apparatus:

- a) One regulated variable Power Supply (0-30 V)
- b) Ammeter and voltmeter
- c) Circuit Experiment Board (Breadboard)
- d) Fixed and variable resistors
- e) Connecting wires
- f) Cutting tools etc.

6.4 Cautions:

- 1. All connections should be tight and correct.
- 2. Switch off the supply when not in use.
- 3. Reading should be taken carefully.

6.5 Circuit Diagram:

The following Thevenin's equivalent circuit is chosen to verify Maximum Power Transfer theorem.

Thevenin Equivalent Circuit

ASSISTANT PROFESSOR, IIT, JU

Figure-2: Thevenin's equivalent of a circuit with variable load resistor

Lab Worl	k: Expe	riment-5:	Verification	of Maximum	Power Tran	sfer Theore	m
******	*****	******	*******	******	*****	******	****

6.6 Procedure:

- 1. Set up the circuit on the breadboard, as shown in figure-2.
- 2. Now set the load resistor R_L to a minimum (i.e. $0~\Omega$). Find voltage V_1 and V_2 across R_{TH} and R_L . Take the ammeter reading I. Now calculate $P_{TH}=V_1xI$ and $P_L=V_2xI$. Also calculate $R_L=V_2/I$.
- 3. Repeat step 2 for different values of R_L (almost double of R_{TH}).
- 4. Draw a graph of P_L versus R_L .

6.7 Data Table:

Note down the value of V_{TH} and R_{TH} . Fill up the following table and discuss on the experimental results.

Reading No.	V ₁ (Volt)	V ₂ (Volt)	I (mA)	P _∟ (Watt	R _L (Ohm)	P ₁ (Watt)	$P_{TH}=P_1+P_L$ (Watt)
1.							
2.							
3.							
4.							
5.							

6.8 Result:

Maximum Power Transfer Theorem has been verified.

6.9 Drawing P_L Vs R_L Graph:

■ Using the data from the table above, we can plot a graph of load resistance, RL on the x-axis against power, PL on the y-axis for different values of load resistance.

									1
									1
									1
									1

■ The PL-RL graph of maximum power transfer theorem should look like this:

Figure-3: Graph of Power against Load Resistance

■ From the above graph we can see that the **Maximum Power Transfer** occurs in the load when the load resistance, R_L is equal in value to the Thevenin's equivalent resistance, R_{Th} , so then:

Lab Work: Experiment-5: Verification of Maximum Power Transfer Theorem ************************************