## Pattern Formation

### Introduction

#### **Pattern Formation**

- : topic in mathematical biology that studies how structures and patterns in nature evolve over time
- Alan Turing : we could obtain patterns with relatively simple PDE called **reaction-diffusion equations**.
  - -> we can get animal coat patterning to form due to interactions between chemicals that are sensitive to spatial and temporal factors.





### Reactions



If s are reacting with zero -> # will increase or decrease

#### ex) Exponential growth (1D)

Let u = # bacteria, then

$$\frac{du}{dt} = \alpha u$$
 with  $\alpha > 0 \Rightarrow u(t) = u_0 e^{\alpha t}$ ,  $u_0 = u(0)$ 

In real life, bacteria will reproduce via cell division

$$0 \rightarrow 0 \quad (et \ u_0 = l, \ \alpha = l_0 2$$

$$0 \rightarrow u(t) = 2^t$$

Increase exponentially
But in real life,
there are external factors

#### Reactions

#### ex) Predator – Prey model (2D)

Let u = # prey, v = # predator



# **Differential Equations describing reactions** can produce interesting behavior and phenomena in nature

Populations of both species fluctuate but are cyclic

#### **Diffusion**

**Diffusion** describes how particles intermingle and move from areas of high concentration to low concentration

- Random walk on 1D (Brownian motion)



#### **Diffusion**

- Random walk on 1D (Brownian motion)



Diffusion equation can be derived from Brownian motion





Plankton cannot survive outside of this tube -> zero boundary conditions at both ends

K = reproduction rate, D = Diffusion constant **Reaction-Diffusion equations** 

Solution (Separation of variables and Fourier series)

$$C(z.\xi) = \frac{2}{n-1}B_n Gin(\frac{n\pi z}{L})e^{(k-6^2\pi^2)O(L^2)\xi},$$
infinite that upace a product a that time

Check the dominant behavior of c

- Sign of the argument
- 1. > 0, the population of plankton: "Growth"
- 2. < 0, "stable"

3. = 0, "decay"

as t -> inf

$$= k - \pi^2 \frac{D}{C} = 0 \quad \Rightarrow \quad L^2 = \pi^2 \frac{D}{K} \Rightarrow L = \pi \int_{K}^{D} = L_c$$
Critical length

- -> how the population depends on the length L
- 1. L > Lc, the population of plankton will "increase"
- 2. L < Lc, "die out"
- 3. L = Lc, "converge to a nontrivial steady state" (zero at the end, maximun in the middle)

$$\frac{\partial c}{\partial k} = D \frac{\partial^2 c}{\partial x^2} + kc$$

$$Lc = \pi \sqrt{\frac{6}{K}}$$

- 1. L > Lc, reactive term dominates
- 2. L < Lc, diffusive term dominates
- 3. L = Lc, diffusive and reactive forces balance

Importance of spatial domains on the behavior of reaction-diffusion equations



#### **Alan Turing**

- : Reaction-diffusion systems could lead to patterns via diffusion driven instabilities
- -> mimic a lot of patterns we observe in nature

## Activator-inhibitor systems ex) Lengyel-Epstein model

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + k_1 \left( v - \frac{uv}{(+v^2)} \right)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + k_2 - v - \frac{4uv}{(+v^2)}$$

c = (u, v) representing hypothetical chemical morphogens in the integument

- Two chemicals that react with each other

u : inhibitor -> increase the rate of degradation of the activator

v : activator -> promote the production of both

**1D** 





$$Dv = 0.01, K1 = 1$$

$$Dv = 0.06, K1 = 11$$

2D

We can vary the size of domain on two directions



$$Dv = 0.01, K1 = 1$$



$$Dv = 0.06, K1 = 11$$

#### Lengyel-Epstein model

-> Produce many of the commonly occurring pattern-types observed in animal skins

#### Why do tigers have stripes

- This model suggest that patterns come out of balancing out the reaction and diffusion chemicals with a spatial domain that they diffuse in
- -> Why aren't human spotted and striped?
- → More variables.. Experiments...

#### References

- [1] Solve Predator-Prey Equations, https://kr.mathworks.com/help/matlab/math/numerical-integration-of-differential-equations.html?lang=en
- [2] Othmer, Hans G., et al. "The intersection of theory and application in elucidating pattern formation in developmental biology." *Mathematical modelling of natural phenomena* 4.4 (2009): 3-82.
- [3] The Shape of Math The mathematics of patterns, https://www.youtube.com/playlist?list=PLILvrDLrWErxwurHeO0WnnV1ucCF1\_6bl