The figure alongside shows two isothermal reversible lines for 1 kmol of a diatomic ideal gas ($C_p = 7R/2$). State 1 and two are defined as follows:

	State 1	State 2
P, atm	1	3
V, m ³	22.42	8.28
T,K	273.15	303.00

Traverse from state 1 to 2 by the following routes: (a)

22.42 273.15

Route I:

(i) Isothermal process state 1' followed by (II) a constant volume process, all reversible. (ii) An adiabatic process to state 3 followed by (ii) an isobaric process, all reversible.

Route II: Now return from state 2 to state 1 along a straight line in the P-V diagram. (b) Route III:

For each of the sub-processes calculate w, q, ΔE , ΔH , and $\int \frac{\delta q}{T}$, and complete the table. 10 marks What are your observations on the values in the shaded rows? 2 marks

Process		Final			q	w	ΔΕ	ΔΗ	Cf Sa
		P V m ³		T K	q kJ	kJ	kJ	ΔH kJ `	$\int_{i}^{f} \delta q_{rev}/T kJ/K$
Route I	(i)	2.704	8.289	273.15	-2259.0	-2259.0	0	0	-8-270
	(ii)	3	8.289	303.00	620.43	0	620.43	8 68 - 6	+2.156
	total				-163857	-2259.0	620.43	868.6	-6.114
Route II	(i)	3	10.229	3 73.88	0	-2093.6	2093.6	2931.0	0
	(ii)	3	8.289	303	- 2062.42	- 589.27	-1473.15	-2062-42	-6.117
	total				- 2062.42	- 2682.87	620.45	868.58	-6.117
Route III		1	22.42	273.15	2242.51	2862.94	-620.43	-868-61	6.12
Route I +III			2.		603.94	603.94	٥.	20	प्र०
Route II + III					180.09	180.07	۵۵	20	× 0

Comment on the shaded rows

1. q and w are different for Route I and Route I.

2. q and w are different for this two eyeles

3. ΔE , ΔH and $\int \frac{\delta q}{T} rev$ are identical for Route I and Route II (except round-offerer)

4. ΔE , ΔH and $\int \frac{\delta q}{T} rev$ are zero for the two cyclic porcesses.

5. $\int \frac{\delta q}{T} rev$ seems to be a state property.

Calculations:

Route I: (i) $q = W = 1 \times 8.314 \times 273.15 \times \log_{2.704} \frac{1}{2.704} = -2259.0$ } $\int_{50}^{2.704} \sin(\frac{1}{2.704}) = -2259.0$ } $\int_{50}^{2.704} \sin(\frac{1}{2.704}) = -2259.0$

Rowle II: (i) Since the second part is isobaric, the final pr. is 3 atm $P_1 V_1^{\gamma} = P_3 V_3^{\gamma}$; $V_3 = \left(\frac{P_1}{P_3}\right)^{\frac{1}{\gamma}}$, $V_3 = \left(\frac{1}{3}\right)^{\frac{1}{\gamma}}$, $22.42 = 10.229 \,\mathrm{m}^3$. $T_3 = 37388 \,\mathrm{k}$ 9 = 0; $\omega = \frac{P_1 V_1 - P_3 V_3}{Y-1} = 2093.6 \,\mathrm{kJ}$.

AE = 2093.6 RJ; AH = 2093.6 + APV = 2093.6 + 837.44 = 2931.0 Check AH = CpAT = 2931.04.

(ii) Isobaric compression to 8.289m & 303k.

AE= CrAT = = R (303-373.88)=- 1473.15 AH = CPAT = = R (303-373.88)=-2062.42=9p

W=9,-AE = -2062.42 + 1473.15 = -589.27 Verify W= P(AV)=3 × 1.013×105 (8.289 - 10.229)

Rowle III: AB = GVDT = -620.43; AH = 868.61

W= area render the curve = (P1+P2). AV = 2×1.012×105

= 2+1.012 +10 (22-42-8.289) = 2862.94

9, = AB+W = 2862.94 - 620.43 = 2242.51

2. A fuel gas at 298K [50:50 (by volume) mixture of methane and propane (C₃H₈)] is burnt in a burner with 10 % excess air at 298K (O₂:N₂=21:79, and 5 vol% moisture). Calculate the adiabatic flame temperature. Present your results as mass and heat balance tables. Complete the heat balance table after calculating the flame temperature and verify your results. **Take one kmol of fuel gas as the basis.**

(Only tables will be corrected. Without the completed tables, the answer may not be corrected). 8 marks

2.

input	kmoles	kg	Output	kmoles	kg
CH ₄	0.5	8.	0 CO2	2.000	88.00
C ₃ H ₈	0.5	22.10	H ₂ O	3.9649	71.37
02	3.850	123.20		14.483	405.52
N2	14.483	405.52	02	0.350	11.26
H2O	0.9649	17.37			
Total		576.09	Total		57609

Input	kJ	Output	kı
Sensible heats		Sensible heats	Latina Service
CH₄	o	co,: 2(61.07 - 30500)= 1227 - 61000	199817
C ₂ H ₈	o	H20: 3.9649 (47-47-22200) = 187.947-88021	313765
02	o	N2: 14.483(36.67 - 16500) = 527.187-238970	888 057
N2	o	0. 0.35 (36.27, -13500) = 12.67, -4725	22 212
H2O .	42		
Reaction heat $(-\Sigma \text{n.}\Delta H) = 0.5 (803000 + 2045000)$	1424000	Losses	, c
Total	1424000	Total	1423850

$$T_{5}\left(122+187.9+527.18+12.6\right)-\left(61000+88021+238970+4725\right)=1424000$$

$$T_{5}=\frac{1}{849.79}\left(1424000+392716\right)=\frac{2137.84}{1237.84}$$

3. Two ideal gases A and B, 0.5 moles each, and at 300K and 1 atm. pressure, are initially kept in two chambers, separated by an impermeable wall. The wall separating them is then removed and the gases are allowed to mix, till you get a homogeneous mixture. Devise a reversible process to separate the gases and restore them to the original state. After the separation process what is the net effect on the surrounding?

[Hint : Across a semi-permeable membrane permitting one of the gases to go through, the partial pressures of that gas are equal at equilibrium. 5 marks

-Mixthe 1 mole 50:50 mixture 25ith say n moles of a similar mixture.

No w, no qr.

- connect two fiston/ey/inder
systems as shown. One of them is separated from the chamber
with a semi-permeable membrane for angland

- Acops the membrane: 1 atm 298K on the mixture side 0.5 atm 298K on the pure on from side

- More the pistons: reversibly, and extract 0.5 md. oxygens at 0.5 atm & 298K

No q; W= D(ev) = O. (confirm)

- Similarly remove 0.5 mol 1 at 0.5 atm & 298K.

- you leave or moles of mixture that you have borrowed as you borrowed it.

AND: Of A &B separated, at 298K, but at 0.5 atm.

- Compress the two gases isothermally to latin. You have reached the original state.

W=-2x (0.5 to RTPu 1) =-RT lm 2 = 95ys -=-1717.3 J

Surroranding looses med energy = 1717.3 J