Systèmes de recommandation basés sur les modèles de classification

- Problème de recommandation vu comme un problème de classification
- Recommandation discrete
 - Deux classes (aime/n'aime pas)
 - Multi-classes (1/2/3/4/5)
- Recommandation continue
 - Régression

Systèmes de recommandation basés sur les modèles de classification : Naive Bayes

Rappel
$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)}$$

$$P(r_{uj} = v_s | \textit{Observed ratings in } I_u) = \frac{P(r_{uj} = v_s) \cdot P(\textit{Observed ratings in } I_u | r_{uj} = v_s)}{P(\textit{Observed ratings in } I_u)}$$

- \blacksquare I_u correspond aux ratings de l'utilisateur u
- On peut le simplifier par :

$$P(r_{uj} = v_s | Observed \ ratings \ in \ I_u) \propto P(r_{uj} = v_s) \cdot P(Observed \ ratings \ in \ I_u | r_{uj} = v_s)$$

Avec:

$$P(Observed\ ratings\ in\ I_u|r_{uj}=v_s)=\prod_{k\in I_u}P(r_{uk}|r_{uj}=v_s)$$

Estimation des ratings

$$\hat{r}_{uj} = \frac{\sum_{s=1}^{l} v_s \cdot P(r_{uj} = v_s | Observed \ ratings \ in \ I_u)}{\sum_{s=1}^{l} P(r_{uj} = v_s | Observed \ ratings \ in \ I_u)}$$

$$= \frac{\sum_{s=1}^{l} v_s \cdot P(r_{uj} = v_s) \cdot P(Observed \ ratings \ in \ I_u | r_{uj} = v_s)}{\sum_{s=1}^{l} P(r_{uj} = v_s) \cdot P(Observed \ ratings \ in \ I_u | r_{uj} = v_s)}$$

$$= \frac{\sum_{s=1}^{l} v_s \cdot P(r_{uj} = v_s) \cdot \prod_{k \in I_u} P(r_{uk} | r_{uj} = v_s)}{\sum_{s=1}^{l} P(r_{uj} = v_s) \cdot \prod_{k \in I_u} P(r_{uk} | r_{uj} = v_s)}$$

calcul

- $= q_s/\sum_{t=1}^l q_t$ estime la probabilité de $P(r_{uj}=v_s)$
- Où $q_1...q_l$ est le nombre d'utilisateur ayant donnés respectivement les rating $v_1...v_l$
- En réalité afin que l'on obtienne de meilleurs résultats, il faut lisser les probabilités grâce au laplacian

$$P(r_{uj} = v_s) = \frac{q_s + \alpha}{\sum_{t=1}^{l} q_t + l \cdot \alpha}$$

Permet d'avoir une probabilité de 1/l lorsqu'il n'y a pas de rating

Exemple

On veut prédire les valeurs pour l'utilisateur 3

Item-Id \Rightarrow	1	2	3	4	5	6
User-Id ↓						
1	1	-1	1	-1	1	-1
2	1	1	?	-1	-1	-1
3	?	1	1	-1	-1	?
4	-1	-1	-1	1	1	1
5	-1	?	-1	1	1	1

Exemple

 $/q_s/\sum_{t=1}^l q_t$

$\begin{array}{ c c }\hline \text{Item-Id} \Rightarrow \\ \hline \text{User-Id} \Downarrow \\ \hline \end{array}$. 1	2	3	4	5	6
1	1	-1	1	-1	1	-1
2	1	1	?	-1	-1	-1
3	?	1	1	-1	-1	?
4	-1	-1	-1	1	1	1
5	-1	?	-1	1	1	1

$$P(r_{31} = 1 | r_{32}, r_{33}, r_{34}, r_{35}) \propto P(r_{31} = 1) \cdot P(r_{32} = 1 | r_{31} = 1) \cdot P(r_{33} = 1 | r_{31} = 1) \cdot P(r_{34} = -1 | r_{31} = 1) \cdot P(r_{35} = -1 | r_{31} = 1)$$

Exercice

Prédisez les valeurs pour l'utilisateur 2 et l'utilisateur 5

Item-Id \Rightarrow	1	2	3	4	5	6
User-Id ↓						
1	1	-1	1	-1	1	-1
2	1	1	?	-1	-1	-1
3	?	1	1	-1	-1	?
4	-1	-1	-1	1	1	1
5	-1	?	-1	1	1	1

Content-Based Models

- Non plus basé sur les avis des utilisateurs
- Basés sur le contenu des items
 - Parfois contenu trop important
 - Livres
 - Musiques
 - **■** Films
 - Parfois pas de contenu
 - objets

Utilisation des méta-données

Méta-données

- Ex Livre
 - Auteur
 - Mots du titre
 - Genre
 - **...**
- Ex Film
 - Genre
 - Titre du film
 - Acteurs
 - Réalisateurs

- Ex Musique
 - Instruments
 - Auteurs
 - Type
- Produit
 - Nom
 - Caractéristiques

Méta-données: encodage

- Idée : représenter l'ensemble des caractéristiques par un vecteur
 - Présence => 1
 - ► Absence => 0
- Vecteur très grand
 - Taille du vocabulaire
 - Très sparse (beaucoup de 0)
- Peu d'information stockée
 - Seul présence/absence

```
d1 d2 d3 ...
cinéma 0 1 0 ...
football 1 1 0 ...
rugby 0 0 1 ...
```

Calcul de similarité

- Lors de l'arrivée de nouveaux items
 - Calcul de la similarité par rapport à des items d'un utilisateur
 - Ceux qu'il a déjà acheté, vu ...
 - Ceux qu'il a noté positivement
- Utilisation d'une mesure de similarité
 - Cosinus
 - Distance de manathan

Exemple similarité: cosinus

$$Cosine(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \sqrt{\sum_{i=1}^{d} y_i^2}}$$

Exemple

$Genre \Rightarrow$	Comedy	Drama	Romance	Thriller	Action	Horror	Like or
Movie-Id ↓							Dislike
1	1	0	1	0	0	0	Dislike
2	1	1	1	0	1	0	Dislike
3	1	1	0	0	0	0	Dislike
4	0	0	0	1	1	0	Like
5	0	1	0	1	1	1	Like
6	0	0	0	0	1	1	Like
Test-1	0	0	0	1	0	1	?
Test-2	0	1	1	0	0	0	?

Exercice: Quel est le film à recommander?

$$Cosine(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \sqrt{\sum_{i=1}^{d} y_i^2}}$$

Naive bayes

Même principe de pour le collaborative filtering

$$P(c(\overline{X}) = 1 | x_1 \dots x_d) \propto P(c(\overline{X}) = 1) \cdot \prod_{i=1} P(x_i | c(\overline{X}) = 1)$$

$$P(c(\overline{X}) = -1|x_1...x_d) \propto P(c(\overline{X}) = -1) \cdot \prod_{i=1}^d P(x_i|c(\overline{X}) = -1)$$

Naive Bayes

Table 4.1: Illustration of the Bayes method for a content-based system

$Keyword \Rightarrow$	Drums	Guitar	Beat	Classical	Symphony	Orchestra	Like or
Song-Id ↓							Dislike
1	1	1	1	0	0	0	Dislike
2	1	1	0	0	0	1	Dislike
3	0	1	1	0	0	0	Dislike
4	0	0	0	1	1	1	Like
5	0	1	0	1	0	1	Like
6	0	0	0	1	• 1	0	Like
Test-1	0	0	0	1	0	0	?
Test-2	1	0	1	0	0	0	?

$$P(c(\overline{X}) = 1 | x_1 \dots x_d) \propto P(c(\overline{X}) = 1) \cdot \prod_{i=1}^d P(x_i | c(\overline{X}) = 1)$$

$$P(c(\overline{X}) = -1 | x_1 \dots x_d) \propto P(c(\overline{X}) = -1) \cdot \prod_{i=1}^d P(x_i | c(\overline{X}) = -1)$$

Evaluation

► Mesure l'écart des erreurs (MSE):

$$MSE = \frac{\sum_{(u,j)\in E} e_{uj}^2}{|E|}$$

Ou RMSE

$$RMSE = \sqrt{\frac{\sum_{(u,j) \in E} e_{uj}^2}{|E|}}$$

C'est la mesure la plus couramment utilisé

$$e_{uj} = \hat{r}_{uj} - r_{uj}$$

Evaluation

- Diversité
 - Ne donne pas toujours des recommandations très proches
- Sérendipidité
 - Notion de surprise. Doit être nouveau mais surprenant.
- Nouveauté
 - Qui n'a pas été vu avant par l'utilisateur