Bits, Bytes, and Integers

Introduction to Computer Systems 2nd Lecture, Sep 16, 2021

Instructors

Class 1: Chen Xiangqun, Sun Guangyu, Liu Xianhua

Class 2: Guan Xuetao

Class 3: Lu Junlin

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Binary Representations

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Why Computers Use Binary?

Binary is the most practical system to use!

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Why 8 bit?

Hex Decimal Binary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	4	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

■ A | B = 1 when either A=1 or B=1

ı	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

~	
0	1
1	0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

<u>& 01010101</u> | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_j = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

- &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- $\sim 0x41 \rightarrow 0xBE$
 - $\sim 01000001_2 \rightarrow 101111110_2$
- $\sim 0x00 \rightarrow 0xFF$
 - $\sim 00000000_2 \rightarrow 111111111_2$
- $0x69 \& 0x55 \rightarrow 0x41$
 - $01101001_2 \& 01010101_2 \rightarrow 01000001_2$
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 011111101_2$

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&&**, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- $!0x41 \rightarrow 0x00$
- $!0x00 \rightarrow 0x01$
- $!!0x41 \rightarrow 0x01$
- $0x69 \&\& 0x55 \rightarrow 0x01$
- $0x69 \mid \mid 0x55 \rightarrow 0x01$
- p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)... one of the more common oopsies in C programming

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

	•		•			•
	In	HATI	ined	KΔ	hai	/IOr
_ \	ノロい	ucii	IIICU	DC	Πa	

Shift amount < 0 or ≥ word size</p>

Argument x	<mark>0</mark> 11 <u>000</u> 10
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	11 101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement: Simple Example

$$-16$$
 8 4 2 1
 $10 = 0$ 1 0 1 0 8+2 = 10

$$-16$$
 8 4 2 1
 $-10 = 1$ 0 1 1 0 $-16+4+2 = -10$

Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sum 15213 -15213

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary		
UMax	65535	FF FF	11111111 11111111		
TMax	32767	7F FF	01111111 11111111		
TMin	-32768	80 00	10000000 000000000		
-1	-1	FF FF	11111111 11111111		
0	0	00 00	0000000 00000000		

Values for Different Word Sizes

	W					
	8	16	32	64		
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615		
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807		
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808		

Observations

- - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed	
0	_
1	
2	
3	
4	
5	
6	
7	
-8	
-7	
-6	
-5	
-4	
-3	
-2	
-1	

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

Conversion Visualized

2's Comp. \rightarrow Unsigned **UMax Ordering Inversion** UMax - 1Negative → Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffixOU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

Sign Extension: Simple Example

Positive number

Negative number

Sign Extension Example

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Truncation: Simple Example

No sign change

$$-16$$
 8 4 2 1 -6 = 1 1 0 1 0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $-6 \mod 16 = 26U \mod 16 = 10U = -6$

Sign change

$$-16$$
 8 4 2 1 $10 = 0$ 1 0 1 0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1 -10 = 1 0 1 1 0

 $-10 \mod 16 = 22U \mod 16 = 6U = 6$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Unsigned Addition

Operands: w bits

u •••

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char		1110	1001	E 9	233
	+	1101	0101	+ D5	+ 213

Hex Decimanary

•	•	•
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Unsigned Addition

Operands: w bits

u

True Sum: w+1 bits

+ v •••

u + v

Discard Carry: w bits

 $UAdd_{w}(u, v)$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char		1110	1001	E 9	233
	+	1101	0101	+ D5	+ 213
	1	1011	1110	1BE	446
		1011	1110	BE	190

Hex Decimanary

<u> </u>		`
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Two's Complement Addition

Discard Carry: w bits $TAdd_w(u, v)$

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = egin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \ u+v & TMin_{w} \leq u+v \leq TMax_{w} \ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Standard Multiplication Function

Ignores high order w bits

■ Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

		1110	1001		E9		233
*		1101	0101	*	D5	*	213
1100	0001	1101	1101	С	1DD		49629
		1101	1101		DD		221

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

		1110	1001		E9		-23
*		1101	0101	*	D5	*	-43
0000	0011	1101	1101	C	3DD		989
		1101	1101		DD		-35

k

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Examples

(u << 5) - (u << 3) ==

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Important Lesson: Trust Your Compiler!

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	_	10/16
pointer	4	8	8

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian			0x100	0x101	0x102	0x103	
			01	23	45	67	
Little Endia	ın		0x100	0x101	0x102	0x103	
		-	67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Even get different results each time run program

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format.
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+l
 - man ascii for code table
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Integer C Puzzles

Initialization