Shape of input

Pattern.2: 14 x <u>896,000</u>

(256 samples x 5 word patterns x 700 batches)

ESN

Result

- Using ESN, the accuracy was around 25 %
- Maybe difficult? This study is for verifying whether the pre-speech EEG can predict speech

(At least, it may be hard with this current model)

- For improvement;
 - Epoch from -1 ~ 0 s to 0.5 ~ 0 s
 - we can set the <u>five-output layer</u> for each weight.
 - Noise-canceling of EEG by ICA
 - (Maybe frequency value?)
 - Another model for making sure (LSTM)
 - At RIT, we will collect data from native speakers. Shorten the recording time

Shape of input and output

1. $14x256x3500 \rightarrow 14$ channels x 256 samples x 3500 batches (700x5)

In total, 14x256x3500 (including train and test)

Phenome Category	20 Word Prompts 20	
F	Face, Fox, Fly, Free, Fun	20 x 5 = 100
В	Box, Bike, Body, Boom, Born	20 x 5 = 100
P	Pan, Pink, Push, Pool, Peace	20 x 5 = 100
M	Milk, Mix, Mind, Mood, Mood	20 x 5 = 100
S	Sing, Soul, Sea, Six, Son	20 x 5 = 100

 \rightarrow For one phenome, each subject spoke the phenome 20x5 =100 times

^{*}Each word was spoken 20 times

Output Weight Updates

Our ESN updates only the output weight.
esn.OO("regression", X, trainy);
% esn is updated by this statement with the target.

$$x_ = sigmoid();$$

$$x = update$$

$$X(:,idx) = x;$$