Grover

E. Jeandel

Université de Lorraine, France

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Problématique

Algorithmes avec oracle (boîte noire)

 $f: \{0,1\}^n \to \{0,1\}$ une fonction, donnée par un oracle U_f .

Rappels

- $U_f |x\rangle = (-1)^{f(x)} |x\rangle$
- $V_f |xy\rangle = |x\rangle |f(x) + y\rangle$

Complexité mesurée en nombre d'appels à l'oracle + temps de calcul.

Problématiques typiques

- Trouver x tel que f(x) = 1.
 - Algorithme de Grover
- Trouver p tel que $\forall x, f(x+p) = f(x)$
 - Algorithme de Shor (+ = Addition) ou de Simon (+ = xor)
- Trouver s tel que $\forall x, f(x) = x \cdot s$
 - Bernstein-Vazirani

Algorithme de Grover - Énoncé imprécis de l'algorithme

Soit $f: \{0,1\}^n \to \{0,1\}$ une fonction. On note $N = 2^n$.

L'algorithme de Grover (1996) trouve x tel que f(x) = 1 en temps $O(\sqrt{N})$.

Énoncé un peu plus précis de l'algorithme

Soit $f: \{0,1\}^n \to \{0,1\}$ une fonction. On note $N = 2^n$.

L'algorithme de Grover trouve x tel que f(x) = 1 en temps $O(\sqrt{N})$ et avec $O(\sqrt{N})$ appels à U_f .

Rappel: $U_f |x\rangle = (-1)^{f(x)} |x\rangle$

Comparaison classique-quantique

En classique:

- De façon déterministe, on doit tester toutes les possibilités. Le meilleur algo fait donc N requêtes à la fonction f.
- En probabiliste, si on teste les x dans un ordre aléatoire la complexité moyenne est N/2 (si une seule solution)

L'algorithme quantique est quadratiquement meilleur!

- Bennett-Bernstein-Brassard-Vazirani (1997): \sqrt{N} est optimal.
 - Le gain n'est QUE quadratique.

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- S Applications
 - Collisions
 - Minimum
 - Mise en abyme

Arnaques

Attention aux arnaques!

Soit *T* un tableau de taille *N*, Je cherche un 1 dans le tableau.

Est-ce que l'algorithme de Grover prend un temps $O(\sqrt{N})$?

Arnaques

Soit T un tableau de taille N, Je cherche un 1 dans le tableau. Est-ce que l'algorithme de Grover prend un temps $O(\sqrt{N})$?

Non

Il faut (a) calculer U_T (b) faire \sqrt{N} appels à U_T .

- Bien malin qui calcule U_T sans lire tout le tableau!
- En règle générale, si T est générique, U_T sera de profondeur
 O(log N) voire O(N) suivant l'architecture matérielle.

L'algorithme de Grover sera donc en $O(N\sqrt{N})$ sur un tableau quelconque !

(Aux termes logarithmiques près)

Intérêt

Grover est donc intéressant:

- Si l'oracle *U_f* nous est offert (on ne compte pas sa complexité)
 - QRAM ??
- Si f est facile à calculer (donc U_f est de petite taille)

Problèmes NP

- Soit ϕ une formule 3CNF, trouver S tel que $\phi[S] = 1$.
 - Grover en $\sqrt{2^n} = 2^{n/2} = 1.414^n$.
 - Meilleur algo classique en 1.308ⁿ.
- Trouver une 3-coloration d'un graphe
 - Grover en $\sqrt{3^n} = 1.732^n$ naivement
 - Meilleur algo classique en 1.329ⁿ
- Etant donné x, y, trouver K tel que DES(K, x) = y
 - Applications en crypto

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Monte Carlo

L'algorithme de Grover est un algo de Monte-Carlo: Il trouve une solution, si elle existe, avec probabilité $1 - \frac{1}{N}$.

- L'algorithme de Grover peut échouer, mais la probabilité est très faible
 - On peut toujours le répéter pour la diminuer
- Il faut en tenir compte dans certaines applications
 - Ex: On cherche pour tous les x, un y tel que f(x, y) = 1.
 - La complexité totale n'est pas $N\sqrt{N}$ mais $N\sqrt{N}\log N$.
 - Il faut répéter pour être certain de trouver.
 - En règle générale, des facteurs log *N* arrivent dans toutes les applications naives.
- Si la fonction est constante égale à 0, on ne peut pas le savoir.
 - Ne résout pas des problèmes de décision au sens NP.

Uniformité

L'algorithme de Grover renvoie chaque solution avec la même probabilité: on a donc une distribution uniforme sur toutes les solutions de f(x) = 1.

Important pour les applications, surtout quand il faut le répéter.

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Principe de l'algorithme de Grover

Etape 1

Produire une superposition de toutes les entrées au problème.

Si on mesure, tous les x sont équiprobables, ce n'est pas très utile.

Etape 2

Modifier l'état du système de façon à augmenter les amplitudes des x tels que f(x) = 1.

Si on mesure, on a plus de chance de mesurer un x tel que f(x) = 1

Etape 3

Mesurer

Profit.

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	I I
0100	0	
0101	0	
0110	1	I I
0111	0	l l
1000	0	1
1001	0	I I
1010	0	I I
1011	0	
1100	0	I I
1101	0	l l
1110	0	
1111	0	

Proba de succès: 0.0625 = 1/16

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	
0100	0	
0101	0	
0110	1	
0111	0	
1000	0	
1001	0	
1010	0	
1011	0	
1100	0	
1101	0	
1110	0	
1111	0	

Х	f(x)	amplitude (au carré)
0000	0	0
0001	0	0
0010	0	0
0011	0	0
0100	0	0
0101	0	0
0110	1	
0111	0	0
1000	0	0
1001	0	0
1010	0	O I
1011	0	0
1100	0	0
1101	0	0
1110	0	0
1111	0	0 1

Х	f(x)	amplitude (au carré)
0000	0	I I
0001	0	1
0010	0	1
0011	0	I I
0100	0	1
0101	0	1
0110	1	
0111	0	
1000	0	1
1001	0	1
1010	0	1
1011	0	1
1100	0	1
1101	0	1
1110	0	1
1111	0	1

Attention

Attention

La phase d'amplification applique un circuit quantique, elle ne peut PAS mesurer.

Attention

Principe de l'algorithme de Grover

Etape 1

Produire une superposition de toutes les entrées au problème.

Comment faire l'étape 1 ?

Etape 2

Modifier l'état du système de façon à augmenter les amplitudes des x tels que f(x) = 1.

Etape 3

Mesurer

Etape 1

Comment faire l'étape 1 ?

Partant de l'état $|000...0\rangle$, il suffit d'appliquer l'opérateur d'Hadamard H sur tous les qubits, pour obtenir:

$$\frac{1}{\sqrt{2^n}}\sum_{x}|x\rangle$$

Etape 1

Comment faire l'étape 1 ?

Principe de l'algorithme de Grover

Etape 1

Produire une superposition de toutes les entrées au problème.

Etape 2

Modifier l'état du système de façon à augmenter les amplitudes des x tels que f(x) = 1.

Comment faire l'étape 2 ?

Etape 3

Mesurer

Un petit théorème au passage

Theorem

Soit U une matrice unitaire (un circuit quantique). Alors il existe n tel que $U^n \simeq I$.

Si on applique le même circuit suffisament longtemps, on revient sur la configuration initiale

A un moment donné, les amplitudes vont redescendre!!

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	I I
0100	0	
0101	0	1
0110	1	I I
0111	0	l l
1000	0	ı
1001	0	I I
1010	0	I I
1011	0	
1100	0	
1101	0	l l
1110	0	
1111	0	

Proba de succès: 0.0625 = 1/16

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	
0100	0	
0101	0	
0110	1	
0111	0	
1000	0	
1001	0	
1010	0	
1011	0	
1100	0	
1101	0	
1110	0	
1111	0	

Х	f(x)	amplitude (au carré)
0000	0	0
0001	0	0
0010	0	0
0011	0	0
0100	0	0
0101	0	0
0110	1	
0111	0	0
1000	0	0
1001	0	0
1010	0	O I
1011	0	0
1100	0	0
1101	0	0
1110	0	0
1111	0	0 1

Х	f(x)	amplitude (au carré)
0000	0	I I
0001	0	I
0010	0	I I
0011	0	I I
0100	0	I
0101	0	I I
0110	1	
0111	0	I I
1000	0	I I
1001	0	1
1010	0	I I
1011	0	I
1100	0	I I
1101	0	I I
1110	0	I I
1111	0	I I

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	
0100	0	
0101	0	
0110	1	
0111	0	
1000	0	
1001	0	
1010	0	
1011	0	
1100	0	
1101	0	
1110	0	
1111	0	

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	I I
0100	0	
0101	0	
0110	1	
0111	0	
1000	0	
1001	0	
1010	0	
1011	0	
1100	0	
1101	0	
1110	0	
1111	0	

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	I I
0100	0	l l
0101	0	
0110	1	
0111	0	l l
1000	0	
1001	0	I I
1010	0	l l
1011	0	l l
1100	0	1
1101	0	I I
1110	0	l l
1111	0	

Х	f(x)	amplitude (au carré)
0000	0	
0001	0	
0010	0	
0011	0	I I
0100	0	
0101	0	
0110	1	
0111	0	
1000	0	
1001	0	
1010	0	I I
1011	0	
1100	0	
1101	0	l l
1110	0	
1111	0	I I

Conclusion

Quelque soit l'opérateur qu'on prend pour augmenter les amplitudes, il faudra surtout faire attention à l'appliquer le bon nombre de fois.

Quel peut être cet opérateur ?

Quel peut être cet opérateur ?

Le seul vecteur non trivial que nous connaissons c'est $|s\rangle=rac{1}{\sqrt{2^n}}\sum_{x}|x
angle$

• La seule chose qu'on peut faire, c'est une rotation autour de $|s\rangle$, ou une réflection

Matrice de Householder

Soit $|v\rangle$ un vecteur, la matrice de Householder associée est

$$H_{v} = I - 2 \frac{|v\rangle \langle v|}{\langle v|v\rangle} = I - 2 \frac{|v\rangle |v\rangle^{\star}}{\|v\|^{2}}$$

Il s'agit de la matrice de reflection par rapport à l'hyperplan orthogonal à v.

A quoi ça sert ?

Contexte

Supposons avoir accès à :

$$U_f |x\rangle = (-1)^{f(x)} |x\rangle$$

• H_s , reflection orthogonale à $|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle$

Que peut-on faire avec ?

Notons $|\omega\rangle$ la superposition des solutions (ce qu'on cherche!) et s' la superposition des non solutions:

$$|\omega\rangle = \frac{1}{\sqrt{K}} \sum_{x|f(x)=1} |x\rangle$$

 $|s'\rangle = \frac{1}{\sqrt{N-K}} \sum_{x|f(x)\neq 1} |x\rangle$

où *K* est le nombre de solutions. Ces deux vecteurs sont orthogonaux.

Notations

- La superposition initiale $|s\rangle$ est dans l'espace engendré par $|\omega\rangle$ et $|s'\rangle$
- Plus exactement:

$$|s\rangle = \sqrt{\frac{K}{N}} |\omega\rangle + \sqrt{\frac{N-K}{N}} |s'\rangle$$

Géométrie

Dans l'espace engendré par $|\omega\rangle$ et $|s'\rangle$, $-H_s$ est une réflexion d'axe $|s\rangle$

Géométrie

Dans l'espace engendré par $|\omega\rangle$ et $|s'\rangle$, U_f est une réflexion d'axe $|s'\rangle$

Autrement dit $U_f = H_{s'}$

$$\left\{ \begin{array}{lcl} U_f \left| \omega \right\rangle & = & - \left| \omega \right\rangle \\ U_f \left| s' \right\rangle & = & \left| s' \right\rangle \end{array} \right.$$

Dans l'espace $|\omega\rangle$, $|s'\rangle$:

On part de $|s\rangle$, on cherche à obtenir $|\omega\rangle$

- On sait faire une réflexion d'axe à $|s\rangle$
- On sait faire une réflexion d'axe $|s'\rangle$

Que peut-on en faire ?

Dans l'espace $|\omega\rangle$, $|s'\rangle$:

Si on fait d'abord une réflexion d'axe $|s'\rangle$, puis d'axe $|s\rangle$, on se rapproche de $|\omega\rangle$!

On part de $|s\rangle$, la superposition uniforme de tous les $|x\rangle$.

On applique U_f , qui effectue la symmétrie par rapport à $|s'\rangle$

On applique $-H_s$, qui effectue la symmétrie par rapport à $|s\rangle$

On obtient $|s_1\rangle$. $|s_1\rangle$ est plus proche de $|\omega\rangle$, donc si on mesure $|s_1\rangle$, on a augmenté la probabilité d'observer un x tel que f(x)=1.

On applique U_f sur $|s_1\rangle$, qui effectue la symmétrie par rapport à $|s'\rangle$

On applique $-H_s$, qui effectue la symmétrie par rapport à $|s\rangle$

On obtient $|s_2\rangle$.

On continue.

On continue.

On continue.

Dans l'espace des amplitudes (La colonne i est l'amplitude de $|x_i\rangle$)

On part de $|s\rangle$, la superposition uniforme de tous les $|x\rangle$.

Dans l'espace des amplitudes (La colonne i est l'amplitude de $|x_i\rangle$)

On applique U_f , qui inverse les x tels que f(x) = 1.

Dans l'espace des amplitudes (La colonne i est l'amplitude de $|x_i\rangle$)

On applique $-H_s$, qui effectue la symmétrie par rapport à $|s\rangle$

Dans l'espace des amplitudes (La colonne i est l'amplitude de $|x_i\rangle$)

On obtient $|s_1\rangle$. Si on mesure $|s_1\rangle$, on a augmenté la probabilité d'observer un x tel que f(x) = 1.

On fait la symmétrie par rapport à la moyenne

Dans l'espace des amplitudes (La colonne i est l'amplitude de $|x_i\rangle$)

Dans l'espace des amplitudes (La colonne i est l'amplitude de $|x_i\rangle$)

Principe de l'algorithme de Grover

Principe de l'algorithme de Grover

Etape 1

Produire une superposition de toutes les entrées au problème.

Etape 2

Modifier l'état du système de façon à augmenter les amplitudes des x tels que f(x) = 1.

Etape 3

Mesurer

Comment faire l'étape 3 ?

Principe de l'algorithme de Grover

Grover en entier

Algorithme de Grover

Il reste deux choses à expliquer:

- Comment construire H_s
- Comment choisir p.

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Construire H_s

Rappel:

- $|s\rangle$ est la superposition uniforme de tous les $|x\rangle$.
- H_s est la reflexion de plan orthogonal à $|s\rangle$

Dit autrement

- $H_s |s\rangle = -|s\rangle$
- $H_s |w\rangle = |w\rangle$ si w est orthogonal à s.

Construire H_s

Prenons un changement de base qui ramène $|s\rangle$ sur $|0\rangle$. Dans ce cas, la matrice devient:

$$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Avec

$$M = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Construire M

Appliquons le changement $0 \leftrightarrow 1$ sur tous les bits, c'est à dire la

matrice
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

La matrice devient:

$$N = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Cette dernière matrice peut s'écrire ainsi:

•
$$N|x_1x_2...x_{n-1}y\rangle = |y\rangle$$
 si l'un des $x_i \neq 1$

•
$$N|x_1x_2...x_{n-1}y\rangle = Z|y\rangle$$
 si tous les $x_i = 1$

Où
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

La matrice *N* est donc la matrice souvent appelée controle-controle-...-controle *Z*.

E. Jeandel, Grover 47/5

Grover en entier (bis)

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Choisir les paramètres

Il reste à trouver combien de fois on répète l'opérateur dans Grover.

- Si on se trompe dans sa valeur, les x tels que f(x) = 1 ne seront pas les plus probables!
- Dépend du nombre de solutions.
 - Soit on le connaît à l'avance, et on peut s'en servir
 - Soit il faut essayer de le deviner

Dans l'espace $|\omega\rangle$, $|s'\rangle$:

- On part de $|s\rangle$, on cherche à obtenir $|\omega\rangle$
- A chaque étape, on applique une réflexion d'axe $|s'\rangle$, puis d'axe $|s\rangle$, jusqu'à être proche de $|\omega\rangle$.
- On cherche combien de fois il faut appliquer les réflexions.

Soit θ l'angle entre s et s'. Applique une réflexion d'axe $|s'\rangle$, puis d'axe $|s\rangle$ revient à appliquer une *rotation* d'angle 2θ .

|s'
angle

Dans l'espace $|\omega\rangle$, $|s'\rangle$:

On cherche donc à résoudre l'équation $\theta + 2p\theta = \pi/2$.

Récapitulatif

- Soit θ l'angle entre les vecteurs $|s'\rangle$ et $|s\rangle$
- On a

$$\left| \boldsymbol{s} \right\rangle = \sqrt{\frac{K}{N}} \left| \omega \right\rangle + \sqrt{\frac{N-K}{N}} \left| \boldsymbol{s}' \right\rangle$$

Et donc $\theta = \arcsin \sqrt{\frac{K}{N}}$

• Si on fait p itérations de l'algorithme principal, on se retrouve en

$$\sin((1+2p)\theta)\ket{\omega} + \cos((1+2p)\theta)\ket{s'}$$

• La probabilité de lire un x tel que f(x) = 1 est donc

$$\sin^2((1+2p)\theta)$$

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- S Applications
 - Collisions
 - Minimum
 - Mise en abyme

Une solution

On cherche à maximiser

$$\sin^2\left((1+2p)\arcsin\sqrt{\frac{1}{N}}\right)$$

On veut donc

$$(1+2p)\arcsin\sqrt{\frac{1}{N}}=\pi/2$$

D'où

$$\rho = \frac{\pi}{4\arcsin\sqrt{\frac{1}{N}}} - 1/2$$

Pour N grand:

$$\rho = \frac{\pi\sqrt{N}}{4} - 1/2$$

Une seule solution

Theorem

S'il y a une seule solution, il faut répeter l'étape 2 de Grover

$$\frac{\pi}{4\arcsin\sqrt{\frac{1}{N}}} - \frac{1}{2} = O\left(\sqrt{N}\right)$$

Analyse de l'erreur

Soit q le nombre d'étapes optimal, c'est à dire tel que

$$(1 + 2q)\theta = \pi/2$$

Et p le nombre d'étapes réalisé en pratique (un entier)

$$p = q \pm 1/2$$

Donc

$$(1+2p)\theta = \pi/2 \pm \theta$$

La probabilité de trouver *x* est donc au minimum:

$$\sin^2(\pi/2 - \theta) = 1 - \sin^2 \theta = 1 - \frac{1}{N}$$

Une seule solution

Theorem

S'il y a une seule solution, il faut répeter l'étape 2 de Grover

$$\frac{\pi}{4\arcsin\sqrt{\frac{1}{N}}} - \frac{1}{2} = O\left(\sqrt{N}\right)$$

On obtient ainsi un x tel que f(x)=1 avec probabilité au moins $1-\frac{1}{N}$

K solutions

Theorem

S'il y a exactement K solutions, avec K << N, il faut répeter l'étape 2 de Grover

$$\frac{\pi}{4\arcsin\sqrt{\frac{K}{N}}} - \frac{1}{2} = O\left(\sqrt{\frac{N}{K}}\right)$$

On obtient ainsi un x tel que f(x) = 1 avec probabilité au moins $1 - \frac{K}{N}$.

Cas particulier

Dans le cas particulier K = N/4, on trouve

$$p = \frac{\pi}{4\arcsin\sqrt{\frac{1}{4}}} - 1/2 = \frac{pi}{4\pi/6} - 1/2 = 1$$

Il suffit donc de prendre p=1, d'appeler une fois Grover, et on aura le résultat $sans\ erreur$

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Nombre de solutions inconnues

Comment faire si le nombre de solutions est inconnu ?

- On peut se tromper un peu sur le nombre de solutions:
 - Si K est le vrai nombre de solutions, et qu'on l'estime à $L=K\pm\epsilon$ la probabilité d'erreur change très peu
 - En pratique, la connaître à un facteur 2 peut être suffisant
- Mais il faut quand même avoir une petite idée, ou savoir s'en sortir sans la connaître!

Méthode 1 - Borne sur le nombre de solutions

Si on suppose qu'il y a au moins L solutions mais pas plus de N/2, il suffit de tirer p aléatoirement entre 0 et $\sqrt{\frac{N}{L}}$.

(Vrai également si le nombre de solutions est inférieur à 3N/4 en faisant un peu plus attention aux détails.)

Preuve

Soit K le vrai nombre de solutions et $\theta = \arcsin \sqrt{\frac{K}{N}}$. Posons $M = \sqrt{\frac{N}{L}}$. Si on fait p exécutions de la boucle, la probabilité de succès est $\sin^2((2p+1)\theta)$

Donc en moyenne, si on tire p aléatoirement entre 0 et M-1 la proba de succès est

$$\frac{1}{M}\sum_{p=0}^{M-1}\sin^2((2p+1)\theta) = \frac{1}{M}\sum_{p=0}^{M-1}\frac{(1-\cos(2p+1)2\theta)}{2} = \frac{1}{2}-\frac{\sin(4M\theta)}{4M\sin(2\theta)}$$

Preuve

La proba de succès est

$$\frac{1}{2} - \frac{\sin(4M\theta)}{4M sin(2\theta)}$$

Si
$$\theta < \pi/4$$
 alors $\sin(2\theta) \ge \sin(\theta) \ge \sqrt{\frac{\kappa}{N}}$

Donc

$$Msin(2\theta) \ge M\sqrt{\frac{K}{N}} \ge \sqrt{\frac{N}{L}}\sqrt{\frac{K}{N}} \ge \sqrt{\frac{K}{L}} \ge 1$$

Dans ce cas

$$\frac{1}{2} - \frac{\sin(4M\theta)}{4M\sin(2\theta)} \ge \frac{1}{2} - \frac{1}{4} \ge \frac{1}{4}$$

Méthode 1 - Borne sur le nombre de solutions

Si on suppose qu'il y a au moins L solutions mais pas plus de N/2, il suffit de tirer p aléatoirement entre 0 et $\sqrt{\frac{N}{L}}$.

L'algorithme a une proba de réussite de 1/4, on peut ensuite l'itérer pour augmenter cette probabilité.

Méthode 2

- Défaut de la méthode précédente: si L est très différent de K, on a un algo de complexité $\sqrt{\frac{N}{L}}$ au lieu de $\sqrt{\frac{N}{K}}$
- Au lieu de supposer avoir une borne sur le nombre de solutions, on va essayer de deviner petit à petit le nombre de solutions.

Méthode 2

- Commencer à M=1
- Tirer p aléatoirement entre 0 et M 1 et exécuter Grover qui nous donne un x
- Si f(x) = 1 c'est gagné, sinon M = 1.65M.

Le temps moyen avant de trouver la solution est $O(\sqrt{\frac{N}{K}})$. Preuve dans Boyer-Brasser-Hoyer-Tapp 1996.

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Applications directes

Problèmes NP

- Soit ϕ une formule 3CNF, trouver S tel que $\phi[S] = 1$.
 - Grover en $\sqrt{2^n} = 2^{n/2} = 1.414^n$.
 - Meilleur algo classique en 1.308ⁿ.
- Trouver une 3-coloration d'un graphe
 - Grover en $\sqrt{3^n} = 1.732^n$ naivement
 - Meilleur algo classique en 1.329ⁿ
- Etant donné x, y, trouver K tel que DES(K, x) = y
 - Applications en crypto

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Collisions

Soit $f: \{0,1\}^n \to \{0,1\}^m$. On suppose que chaque élément a exactement $k \ge 2$ préimages. On cherche $x \ne y$ tel que f(x) = f(y).

Application typique: Cryptographie

Comment utiliser Grover ?

Collisions - Algo 1

On fixe x_0 et on cherche $x \neq x_0$ tel que $f(x) = f(x_0)$

• L'algorithme est donc en complexité $O\left(\sqrt{\frac{N}{k-1}}\right)$.

Collisions - Algo 2

Soit g(x, y) = 1 si f(x) = f(y) et $x \neq y$. On cherche x, y tels que g(x, y) = 1.

- Il y a N² couples (x, y) différents
- Pour chaque x, on a k-1 différents y qui sont solutions, donc N(k-1) solutions en tout
- L'algorithme est donc en complexité $O\left(\sqrt{\frac{N^2}{N(k-1)}}\right) = O\left(\sqrt{\frac{N}{k-1}}\right)$.

Collisions

Au fait, quelle est la complexité de l'algo classique ? (en nombre de requêtes)

Paradoxe des anniversaires

- Choisir $2\sqrt{N}$ valeurs de x parmi les N possibles
- Avec grande probabilité, parmi ces $2\sqrt{N}$ valeurs, il y a une collision
- On a donc fait seulement $2\sqrt{N}$ requêtes.

Le temps total est en $O(\sqrt{N} \log N)$ avec un algo de tri par exemple.

Collisions - Le bon algo

Brassard-Hoyer-Tapp

Soit $M = \sqrt[3]{N}$

- Choisir (n'importe comment) un ensemble S de taille M et vérifiez qu'il n'y a pas de collision dedans.
 - Complexité: M requêtes à f/U_f.
- S'il y a une collision, c'est gagné. Sinon, soit T l'ensemble des f(x) obtenus
- Construire la fonction g, définie sur $\{0,1\}^n \setminus S$, telle que g(y) = 1 si $f(y) \in T$.
- Utiliser Grover pour trouver un y tel que g(y) = 1.
 - On cherche une solution dans un espace de taille $N-M \simeq N$
 - Le nombre de solutions est au moins M
 - Complexité $\sqrt{\frac{N}{M}} = \sqrt[3]{N}$ requêtes à f.

Nombre total de requêtes: $2\sqrt[3]{N}$.

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Minimum

Soit $f: \{0,1\}^n \to \mathbb{N}$. On cherche le minimum de f

Comment utiliser Grover?

Quel oracle doit-on prendre?

Minimum

Soit g(x, y) = 1 si f(x) < f(y), 0 sinon. On utilise l'oracle U_g pour trouver le minimum.

Algo classique en O(n) (évident).

Quickselect

Un algo probabiliste pour trouver le minimum dans un tableau T de taille n:

- Si n = 1, renvoyer T[0]
- Sinon tirer aléatoirement une case i du tableau
- Soit T' les éléments de T inférieurs à T[i]. Appeler récursivement l'algo sur T'.

Complexité?

Note: se généralise (et devient utile) pour trouver le k-ème plus petit élément du tableau.

Quickselect

Analyse

Intuition:

- Si on tape au milieu du tableau à chaque étape, la taille du tableau diminue de moitié à chaque étape
- Complexité

$$n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots = 2n$$

La complexité de l'algo est en 2n.

Quickselect

Analyse

Réalité. Soit X_n le temps moyen sur un tableau de taille n

- Avec proba 1/2, la taille du tableau diminue d'au moins la moitié.
- D'où

$$X_n \leq n + \frac{1}{2}X_{n/2} + \frac{1}{2}X_n$$

D'où $X_n \le 4n$. La complexité de l'algo est donc inférieure à 4n.

Algo quantique

Durr/Hoyer

En supposant Grover infaillible:

- Soit $x \in \{0, 1\}^n$ tiré au hasard
- Trouver avec Grover s'il existe y tel que f(y) < f(x). Si non, on a gagné
- Si oui, poser x = y et recommencer

Complexité?

Analyse

- Soit $N = \{0, 1\}^n$
- Soit X_k le temps moyen s'il y a k éléments plus petits que l'élément courant (Au départ k = N).
- A k donné, Grover prend un temps $\sqrt{\frac{N}{k}}$.
- Avec proba 1/2, k est divisé par 2.
- D'où

$$X_k \leq \sqrt{\frac{N}{k}} + \frac{1}{2}X_k + \frac{1}{2}X_{k/2}$$

D'où

$$X_N \leq 2\sqrt{1} + 2\sqrt{2} + 2\sqrt{4} + \dots 2\sqrt{N}$$

$$X_N < 7\sqrt{N}$$

E. Jeandel, Grover 85/9

En pratique

L'algo de Grover n'est pas infaillible:

- il ne nous dira jamais "il n'y a pas de solution".
- il a une petite probabilité d'erreur

On doit fixer à l'avance le critère d'arrêt

- Dans l'algo infaillible, on effectue $7\sqrt{N}$ appels à l'oracle.
- Si on s'arrête après $14\sqrt{N}$ appels, d'après l'inégalité de Markov, on a une proba de succès d'au moins 1/2.
- Si on tient compte des erreurs dans Grover, il faut plutôt prendre $28\sqrt{N}$.

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Mise en abyme

On peut utiliser l'algorithme de Grover pour accélérer n'importe quel algo de recherche

Quantum Amplitude Amplification

Brassard-Hoyer-Mosca-Tapp

Theorem

Soit A un algo quantique sans mesure qui fait K requêtes et qui trouve (après mesure) avec proba p un élément x qui vérifie une certaine propriété.

Alors on peut le transformer en un algo quantique qui, après mesure, a une proba 1/2 de trouver x en $O(K\sqrt{1}p)$ requêtes.

Exemple

$$f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$

On cherche *x* tel que pour tout *y*, $f(x,y) = 1$

On note $N = \{0, 1\}^n$, donc l'algo naif est en $O(N^2)$.

Méthode 1

recherche-Grover de x tel que pour tout y, f(x, y) = 1.

- Soit *g* la fonction tel que g(x) = 1 si pour tout y, f(x, y) = 1.
- g(x) se calcule en O(N) appels à l'oracle.
- Donc trouver x tel que g(x) = 1 se fait en $O(N\sqrt{N})$ appels.

Méthode 2

Pour tout x, on fait Grover pour savoir si pour tout y, f(x, y) = 1.

- A x donné, soit g_x la fonction tel que $g_x(y) = 1 f(x, y)$
- $g_x(y)$ se calcule en O(1) appels à l'oracle.
- Pour tout x, on cherche un y tel que $g_x(y) = 1$. Si on n'en trouve pas, alors x est solution du problème
- $O(N\sqrt{N})$ appels

Méthode 3

Grover dans Grover:

- A x donné, considérons le problème de trouver s'il existe y tel que f(x,y)=0.
- En utilisant Grover, on a un algorithme quantique pour ce problème en \sqrt{N} requêtes et proba de succès quasi égale à 1.
- Considérons maintenant le problème de trouver un x tel que $\forall y, f(x, y) = 1$.
- On a un algo quantique avec \sqrt{N} requêtes et proba de succès 1/N pour ce problème : choisir x aléatoirement puis appliquer Grover.
- Donc en amplifiant cet algorithme, on a un algo avec $O(\sqrt{N} \times \sqrt{N}) = O(N)$ requêtes.

(en pratique $O(N \log N)$

Plan

- Problématique
 - Enoncé
 - Applications
 - Spécificités
- 2 Principe
- Interlude
- Choisir les paramètres
 - Une seule solution
 - Nombre de solution inconnues
- 6 Applications
 - Collisions
 - Minimum
 - Mise en abyme

Algorithme de Grover

Soit $f: \{0,1\}^n \to \{0,1\}$ une fonction. On note $N = 2^n$.

L'algorithme de Grover trouve x tel que f(x) = 1 en temps $O(\sqrt{N})$ et avec $O(\sqrt{N})$ appels à U_f .

Rappel:
$$U_f |x\rangle = (-1)^{f(x)} |x\rangle$$

- Beaucoup d'applications potentielles
- Faire attention au temps pour calculer U_f .