TCP/ UDP Ou comment fonctionne Internet de nos jours?

Laurent Martins

Sommaire

Introduction

Introduction

Comment est venue l'idée de mettre en réseau des ordinateurs ?

Aux USA dans les années 60, deux grandes institutions s'intéressent à l'informatique : les **universités** et l'**armée**. Alors en pleine guerre froide, des sommes énormes sont investies dans le développement des ordinateurs.

Les ordinateurs sont très coûteux et très volumineux: Création de la technologie de **Temps partagé**.

- L'accès à un ordinateur se fait via des terminaux
- Chaque terminal possède sa fenêtre de commande et peut envoyer son travail dans une file d'attente, grâce à un système de paquet. On ne parle à ce moment pas encore de réseau.
- Chaque chercheur travaille sans empiéter sur le temps de ses collègues.
- L'idée de connecter plusieurs ordinateurs entre les universités se développe afin de partager son travail et ainsi éviter les doublons.

🖒 Internet est un ensemble de réseaux qui communiquent entre eux grâce au <u>modèle OSI</u>.

Les adresses IP

Qu'est-ce qu'une adresse IP?

Web Server

IPV4

L'IPV4 est codée sur <u>32 bits</u> répartis en <u>4 octets</u> de 8 bits.

L'IPV4 se compose d'une deuxième partie, le masque de sous-réseau. Cette deuxième adresse va permettre à un ordinateur de communiquer avec un ordinateur d'un même réseau.

255.255.255.0

- On compte 4.2 milliards d'adresses IPV4.
- Désormais elles ne sont plus attribuées, car il n'y en a plus de disponibles. Elles sont soit réservées par des institutions, soit déjà allouées.
- Lors de sa création dans les années 1970, il était inimaginable d'atteindre un tel nombre d'adresses IP.

Création de l'IPV6 par des ingénieurs de l'Internet Engineering Task Force

IPV6

- Composé de 128 bits
- 2¹²⁸ adresses différentes!
- 8 groupes de **16** bits (hextets)
- 4 symboles en hexadécimal

Structure
hexadécimale plus
facile à convertir par
la machine en binaire

IPV6 plus rapide

2001:0db8:0000:85a3:0000:0000:0000:8001

suppression des 0 non significatifs

2001:db8:0:85a3:0:0:0:8001

Simplification des groupes de 0

- 3 hextets de réseau
- 1 hextet de sous-réseau
- 4 hextets servant à la partie hôte

2001:db8:0:85a3::8001

Modèle OSI et modèle TCP

Modèle OSI: Open System Interconnection

Chaque couche va ajouter ses en-têtes à la donnée initiale lors de son envoi

Modèle TCP: Transmission Control Protocol

zestedesavoir.com | Les réseaux de zé-

TCP/ UDP

Les protocoles de la couche 3

Protocole TCP

Protocole orienté connexion

3 phases:

- établissement de la connexion
- le transfert des données
- la fin de la connexion

Protocole TCP

Etablissement de la connexion:

Three-way Handshake

Trois paquets échangés

- le SYN
- le SYN-ACK
- le ACK

Le client va être connecté au client et le client au serveur.

Fin de la connexion:

Quatre paquets échangés

- le FIN SEQ Client
- le ACK/ SEQ Client +1
- le FIN SEQ Serveur
- le ACK/ SEQ Serveur +1
- L'hôte et le client vont fermer chacun leurs sessions de leurs côtés.

Client

Serveur

Protocole orienté nonconnexion

Utiliser pour:

- Diffusion (Streaming, jeux en réseau, VOIP,...)
- Requête DNS

Protocole dit non fiable,

N'établit **pas de connexion** entre l'hôte et le client.

Ne peut pas garantir la bonne réception des paquets.

Ne va pas chercher à corriger les erreurs ni à renvoyer des paquets.

Longueur (16)

Utilise moins de ressources.

Pas de three-way handshake, pas de ACK et pas de handshaking en quatre temps.

Somme de contrôle (16)

Petite partie de contrôle (checksum).

TCP vs UDP

	ТСР	UDP
Fiabilité	Elevée	Faible
Vitesse	Faible	Elevée
Détection des erreurs	Oui	Non
Correction des erreurs	Oui	Non
Contrôle de la congestion	Oui	Non
Accusé de réception (ACK)	Oui	Uniquement la somme de contrôle

TCP

UDP

Points clés

- Internet n'est pas un réseau, mais un maillage de réseaux
- 7 Couches du modèle OSI contre 4 couches pour le modèle TCP
- Encapsulation desencapsulation des données
- TCP: fiable, mais lent UDP: rapide, mais peu fiable