Etudiant: [M2 MIAGE SID] BERTRAND Guillaume

Rapport projet Big Data crimes à Chicago

M2 MIAGE SID

Accès aux sources	3
Accès aux résultats	3
Analyse des résultats	3
Q1	3
Q2	4
Q3	4
Q4	4
Q5	4
Performances	4
Temps de réponses (local - pseudo distribué)	4
Temps	4
Temps	5
Explication	5
Temps	5
Explication	5
Temps	5
Explication	5
Temps	5
Explication	5
Conclusion	6

Modalités de test :

- tout le dataset en mode pseudo-distribué - en local
- utilisation d' Apache **Spark**

Pourquoi tester tout le dataset en local?

- éviter le risque d'erreur sur le cluster en cas de situtations non prévues sur l'échantillon
- bien entendu on ne procède pas ainsi en situtation réelle

Accès aux sources

github:

https://github.com/fubrasp/projet-big-data

Accès aux résultats

http://www.bertrandguillaume.fr/q1.html

OU (cf. repository github)

en faisant

- 1. la commande **npm install**
- 2. en **lançant le programme Main en scala** (<u>penser a supprimer les dossier générés</u>)
- 3. puis **en générant les pages de résultats** en **allant dans le dossier representations**, en tapant la commande suivante: **php PageConstructor.php**
- 4. puis en ouvrant avec un serveur (open in browser depuis intellij par exemple) les pages générées

Analyse des résultats

Q₁

Question 1 - Donnez le classement décroissant des catégories de crimes

Projet M2SID 2018 - BERTRAND Guillaume

Les **vols** violents ou non sont la raison pricipale des crimes, suivi par notamment :

- les attouchements
- les dégradations
- les drogues

Q2

Question 2 - Donnez le nombre de crimes en fonction de 6 plages horaires

Projet M2SID 2018 - BERTRAND Guillaume

Les **crimes** ont lieu plutôt en **fin de matinée**, **après-midi** et **soirée**.

Question 3 - Donnez les 3 zones les plus dangereuses et les zones les moins dangereuses

Projet M2SID 2018 - BERTRAND Guillaume

Une zone aberrante est présente, nous n'en tiendrons pas compte.

Il est relativement difficile de tirer des conclusions.

Question 4 - Donnez la répartition géographique des crimes commis/élucidé

Représentation limitée à 1000 points.

Le noir symbolise l'incidence des crimes sur un point similaire.

On constate une **quantité de crime invrescemblable** dont de **nombreux non élucidé**, comme en France on peut se douter que les vols correspondent à la plupart des crimes non élucidés.

Sans surprise, il apparaît de nombreux crimes aux mêmes endroits:

- quartiers défavorisés
- zones touristiques

Et ce de manière récurrente parfois jusqu'à 112 fois au même endroit!

Q5

Question 5 - Donnez le top 3 des mois les plus concernés par les cas de crime

Projet M2SID 2018 - BERTRAND Guillaume

Il apparaît relativement difficile d'établir un mois avec plus de criminalité qu'un autre les différences entres les 3 premiers mois sont très minimes.

Performances

Temps de réponses (local - pseudo distribué)

Temps

Q1 - 15939 ms, 16s

Temps

Q2 - 58043 ms, 58s

Explication

Ce temps est améliorable avec un dispatch par tableau pour les plages horaires

Temps

Q3 - 148370 ms, 148s, 2min 28s

Explication

Le process des Kmeans est relativement lourd

de plus pour rappelle le process entierpour la question 3

- on détermine le cluster de chaque donnée
- on compte le nombre de données pour chaque cluster
- on part du postulat où une zone dangereuse l'est par le nombre de crimes (et non par la gravité : meurtres etc)
- on prend respectivement les 3 clusters les plus dangereux et les moins dangereux.
- on trace autour des centroids une zone de 2km

Temps

Q4 - 172699 ms, 173s, 2min 53s

Explication

- dataset entier a manipuler
- à grouper (on compte le nombre de crimes au même endroit, cela évite les doublons de points non visibles sur la carte et cela permet de quantifier réellement les crimes)

Temps

Q5 - 183038, 183s, 3min 3s

Explication

Pas de remarques supplémentaires à ajouter.

Conclusion

Ce projet m'a permis de me familiriser à la problématique d'optimisation d'algorithme et son impact dans le cadre de traitements "Big Data". La finalité de celui-ci en elle-même est particulièrement intéréssante.