ANDREEA STROIA
HALA ALBAHLOUL
HRITIKA KATHURIA



## SUPERVISED CLASSIFICATION METHODS





## Overview





Diabetes prediction

Heart attak prediction

MNIST



- Classical method of classification
- SVM
- Random forest





## Diabetes prediction

768 observations 9 variables

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction | Age | Outcome |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | 1       |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |









- Removing outliers
- Filling the missing values

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | ВМІ        | DiabetesPedigreeFunction | Age        | Outcome    |
|-------|-------------|------------|---------------|---------------|------------|------------|--------------------------|------------|------------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000               | 768.000000 | 768.000000 |
| mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  | 0.471876                 | 33.240885  | 0.348958   |
| std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   | 0.331329                 | 11.760232  | 0.476951   |
| min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   | 0.078000                 | 21.000000  | 0.000000   |
| 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  | 0.243750                 | 24.000000  | 0.000000   |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  | 0.372500                 | 29.000000  | 0.000000   |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                 | 41.000000  | 1.000000   |
| max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                 | 81.000000  | 1.000000   |

# Missing values





### Standardization ■

```
[-0.53498699, -0.27205017, -0.53415007, ..., -1.08499402, -0.48781118, -0.77557037], [-1.12751031, -0.40593694, -0.36341983, ..., -0.75115541, 0.97088533, -0.09493526], [ 1.53884464,  0.66515725,  1.85607334, ...,  0.03263958, 0.80982093,  1.01109679],
```





- 0.6

- 0.2

- 0.0



Predict if a person has diabetes or not

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.77      | 0.88   | 0.82     | 100     |
| 1            | 0.64      | 0.45   | 0.52     | 47      |
| accuracy     |           |        | 0.74     | 147     |
| macro avg    | 0.70      | 0.66   | 0.67     | 147     |
| weighted avg | 0.73      | 0.74   | 0.73     | 147     |





SVM

linear 0.787

poly 0.798

rbf 0.827

sigmoid 0.674

Accuracy scores for train



# Random forest

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.72      | 0.92   | 0.81     | 135     |
| 1            | 0.77      | 0.43   | 0.55     | 86      |
| accuracy     |           |        | 0.73     | 221     |
| macro avg    | 0.74      | 0.67   | 0.68     | 221     |
| weighted avg | 0.74      | 0.73   | 0.71     | 221     |



| Feature                      | Importance |  |  |  |
|------------------------------|------------|--|--|--|
| Pregnancies                  | 0.09       |  |  |  |
| Glucose                      | 0.23       |  |  |  |
| BloodPressure                | 0.09       |  |  |  |
| SkinThickness                | 0.06       |  |  |  |
| Insulin                      | 0.06       |  |  |  |
| BMI                          | 0.18       |  |  |  |
| DiabetesPedig<br>reeFunction | 0.11       |  |  |  |
| Age                          | 0.13       |  |  |  |



# Heart attak prediction

303 observations 14 variables

|   | age | sex | ср | trtbps | chol | fbs | restecg | thalachh | exng | oldpeak | slp | caa | thall | output |
|---|-----|-----|----|--------|------|-----|---------|----------|------|---------|-----|-----|-------|--------|
| 0 | 63  | 1   | 3  | 145    | 233  | 1   | 0       | 150      | 0    | 2.3     | 0   | 0   | 1     | 1      |
| 1 | 37  | 1   | 2  | 130    | 250  | 0   | 1       | 187      | 0    | 3.5     | 0   | 0   | 2     | 1      |
| 2 | 41  | 0   | 1  | 130    | 204  | 0   | 0       | 172      | 0    | 1.4     | 2   | 0   | 2     | 1      |
| 3 | 56  | 1   | 1  | 120    | 236  | 0   | 1       | 178      | 0    | 0.8     | 2   | 0   | 2     | 1      |
| 4 | 57  | 0   | 0  | 120    | 354  | 0   | 1       | 163      | 1    | 0.6     | 2   | 0   | 2     | 1      |
|   |     |     |    |        |      |     |         |          |      |         |     |     |       |        |





`cp` - Chest pain type

`trtbps` - Resting blood pressure (in mm Hg)

`chol` - Cholestoral in mg/dl

`fbs` - (fasting blood sugar > 120 mg/dl)

`restecg` - Resting electrocardiographic

`thalachh` - Maximum heart rate achieved

`oldpeak` - Previous peak

`slp` - Slope

`caa` - Number of major vessels

`thall` - Thalium Stress Test

`exng` - Exercise induced angina





- Trtbps and Chol are not likely to have correlation.
- Age and Thalachh might have weak correlation.
- Oldpeak is likely to be correlated.

| age      | 1.000  | -0.098 | -0.069 | 0.279  | 0.214  | 0.121  | -0.116  | -0.399   | 0.097  | 0.210   | -0.169 | 0.276  | 0.068  | -0.225 |
|----------|--------|--------|--------|--------|--------|--------|---------|----------|--------|---------|--------|--------|--------|--------|
| sex      | -0.098 | 1.000  | -0.049 | -0.057 | -0.198 | 0.045  | -0.058  | -0.044   | 0.142  | 0.096   | -0.031 | 0.118  | 0.210  | -0.281 |
| ср       | -0.069 | -0.049 | 1.000  | 0.048  | -0.077 | 0.094  | 0.044   | 0.296    | -0.394 | -0.149  | 0.120  | -0.181 | -0.162 | 0.434  |
| trtbps   | 0.279  | -0.057 | 0.048  | 1.000  | 0.123  | 0.178  | -0.114  | -0.047   | 0.068  | 0.193   | -0.121 | 0.101  | 0.062  | -0.145 |
| chol     | 0.214  | -0.198 | -0.077 | 0.123  | 1.000  | 0.013  | -0.151  | -0.010   | 0.067  | 0.054   | -0.004 | 0.071  | 0.099  | -0.085 |
| fbs      | 0.121  | 0.045  | 0.094  | 0.178  | 0.013  | 1.000  | -0.084  | -0.009   | 0.026  | 0.006   | -0.060 | 0.138  | -0.032 | -0.028 |
| restecg  | -0.116 | -0.058 | 0.044  | -0.114 | -0.151 | -0.084 | 1.000   | 0.044    | -0.071 | -0.059  | 0.093  | -0.072 | -0.012 | 0.137  |
| thalachh | -0.399 | -0.044 | 0.296  | -0.047 | -0.010 | -0.009 | 0.044   | 1.000    | -0.379 | -0.344  | 0.387  | -0.213 | -0.096 | 0.422  |
| exng     | 0.097  | 0.142  | -0.394 | 0.068  | 0.067  | 0.026  | -0.071  | -0.379   | 1.000  | 0.288   | -0.258 | 0.116  | 0.207  | -0.437 |
| oldpeak  | 0.210  | 0.096  | -0.149 | 0.193  | 0.054  | 0.006  | -0.059  | -0.344   | 0.288  | 1.000   | -0.578 | 0.223  | 0.210  | -0.431 |
| slp      | -0.169 | -0.031 | 0.120  | -0.121 | -0.004 | -0.060 | 0.093   | 0.387    | -0.258 | -0.578  | 1.000  | -0.080 | -0.105 | 0.346  |
| caa      | 0.276  | 0.118  | -0.181 | 0.101  | 0.071  | 0.138  | -0.072  | -0.213   | 0.116  | 0.223   | -0.080 | 1.000  | 0.152  | -0.392 |
| thall    | 0.068  | 0.210  | -0.162 | 0.062  | 0.099  | -0.032 | -0.012  | -0.096   | 0.207  | 0.210   | -0.105 | 0.152  | 1.000  | -0.344 |
| output   | -0.225 | -0.281 | 0.434  | -0.145 | -0.085 | -0.028 | 0.137   | 0.422    | -0.437 | -0.431  | 0.346  | -0.392 | -0.344 | 1.000  |
|          | age    | sex    | ср     | trtbps | chol   | fbs    | restecg | thalachh | exng   | oldpeak | slp    | caa    | thall  | output |

# SVM



|                                       | precision    | recall       | f1-score             | support        |  |
|---------------------------------------|--------------|--------------|----------------------|----------------|--|
| 0<br>1                                | 0.90<br>0.91 | 0.90<br>0.91 | 0.90<br>0.91         | 29<br>32       |  |
| accuracy<br>macro avg<br>weighted avg | 0.90<br>0.90 | 0.90<br>0.90 | 0.90<br>0.90<br>0.90 | 61<br>61<br>61 |  |



The best params are:

'C'(Regularization): 3

'gamma': 0.1



| The test accu                         | racy score of<br>precision |              | • • • • • • • • • • • • • • • • • • • • |                | 0.9344262295081968 |
|---------------------------------------|----------------------------|--------------|-----------------------------------------|----------------|--------------------|
|                                       |                            |              |                                         |                |                    |
| 0                                     | 0.90                       | 0.97         | 0.93                                    | 29             |                    |
| 1                                     | 0.97                       | 0.91         | 0.94                                    | 32             |                    |
| accuracy<br>macro avg<br>weighted avg | 0.93<br>0.94               | 0.94<br>0.93 | 0.93<br>0.93<br>0.93                    | 61<br>61<br>61 |                    |

### Logistic Regression

Accuracy: 0.96721

Precision: 1.0 Recall: 0.9375

F1: 0.96774



Accuracy: 0.90164

Precision: 0.90625

Recall: 0.90625

F1: 0.90625



Accuracy: 0.90164 Precision: 0.93333

Recall: 0.875

F1: 0.90323







Random Forest

Accuracy: 0.91803

Precision: 0.96552

Recall: 0.875

F1: 0.91803



Accuracy: 0.90164

Precision: 0.88235

Recall: 0.9375

F1: 0.90909



Accuracy: 0.95082

Precision: 0.96774

Recall: 0.9375

F1: 0.95238













The best ones were (AdaBoost, SVM and Logistic Regression)













visualization of the sample image at index 7777



- Reshaping and normalizing the image
- Using scaler transform for SVM

X\_train = X\_train/255
X\_test = X\_test/255







S V M

### RBF kernel

```
#svm w RBF kernel
rbf_svm = svm.SVC(kernel='rbf')
rbf_svm.fit(training_dataset_x, y_train)
SVC()
```



#the accuracy score of the model
accuracy\_score(y\_pred, y\_test)
0.9792



The true class is": 7 while we find 7

10 
15 
20 
25 
a case that the model correctly classified



a case that the model misclassified

















Metrics



Accuracy score -90.6

#### #training random Forest

rf=RandomForestClassifier(n\_estimators=100)
rf.fit(training\_dataset\_x,training\_dataset\_y)

RandomForestClassifier()



| Classific | Classification Report |           |        |          |         |  |  |  |
|-----------|-----------------------|-----------|--------|----------|---------|--|--|--|
|           |                       | precision | recall | f1-score | support |  |  |  |
|           | 0                     | 0.99      | 0.97   | 0.98     | 980     |  |  |  |
|           | 1                     | 1.00      | 0.98   | 0.99     | 1135    |  |  |  |
|           | 2                     | 0.99      | 0.89   | 0.94     | 1032    |  |  |  |
|           | 3                     | 1.00      | 0.87   | 0.93     | 1010    |  |  |  |
|           | 4                     | 0.99      | 0.89   | 0.94     | 982     |  |  |  |
|           | 5                     | 1.00      | 0.86   | 0.92     | 892     |  |  |  |
|           | 6                     | 1.00      | 0.93   | 0.96     | 958     |  |  |  |
|           | 7                     | 0.99      | 0.91   | 0.95     | 1028    |  |  |  |
|           | 8                     | 0.99      | 0.83   | 0.90     | 974     |  |  |  |
|           | 9                     | 0.99      | 0.89   | 0.93     | 1009    |  |  |  |
| micro     | avg                   | 0.99      | 0.90   | 0.95     | 10000   |  |  |  |
| macro     | avg                   | 0.99      | 0.90   | 0.94     | 10000   |  |  |  |
| weighted  | avg                   | 0.99      | 0.90   | 0.95     | 10000   |  |  |  |
| samples   | avg                   | 0.90      | 0.90   | 0.90     | 10000   |  |  |  |

## Sequential

Accuracy scores for train

history = model.fit(X\_train, y\_train, batch\_size = 64, epochs = 20, verbose = 1, validation\_split = 0.2)

| Model: "sequential" |              |         |  |  |  |  |  |  |  |
|---------------------|--------------|---------|--|--|--|--|--|--|--|
| Layer (type)        | Output Shape | Param # |  |  |  |  |  |  |  |
| flatten_1 (Flatten) | (None, 784)  | 0       |  |  |  |  |  |  |  |
| dense (Dense)       | (None, 128)  | 100480  |  |  |  |  |  |  |  |
| dense_1 (Dense)     | (None, 10)   | 1290    |  |  |  |  |  |  |  |



Total params: 101,770

Trainable params: 101,770 Non-trainable params: 0







```
- 2s 2ms/step – loss: 0.0056 – accuracy: 0.9984 – val_loss: 0.1368 – val_accuracy: 0.9746
- 2s 2ms/step – loss: 0.0064 – accuracy: 0.9977 – val_loss: 0.1201 – val_accuracy: 0.9784
```

### example metric

