UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA

Grupo 3

Caio César Araújo Guimarães

Lucas Pimenta Braga

Thales Eduardo Dias de Souza

Projeto Final – Etapa 1

Laboratório de Sistemas Digitais

Belo Horizonte 2025

1. Funcionamento do Sistema RTL

O sistema desenvolvido tem como objetivo controlar o fluxo de veículos e pedestres em uma interseção de quatro vias, utilizando uma Máquina de Estados Finitos (FSM) implementada em VHDL. A FSM alterna os sinais de trânsito entre as direções Norte-Sul (NS) e Leste-Oeste (EW), garantindo tempos mínimos de sinal verde, transições seguras com sinal amarelo, e atendimento a solicitações de pedestres e situações de emergência.

O ciclo de funcionamento considera um clock de 1 Hz, com um temporizador interno que incrementa a cada ciclo. Os estados do sistema são definidos de forma a garantir segurança, fluidez no tráfego e prioridade a eventos críticos, como acionamento de botão de pedestre ou sinal de emergência.

1.1 Estados Principais da FSM

A FSM possui cinco estados principais: dois para sinal verde (um para cada direção), dois para sinal amarelo, e um estado especial de emergência. Cada estado possui duração definida e pode ser estendido conforme a presença de veículos ou acionamento de eventos. A transição entre estados é controlada por condições temporais e sinais de entrada.

Estado	Descrição	Duração
NS_GREEN	Verde para NS, vermelho	\geq 10s (estende se
	para EW	ns_sensor)
NS_YELLOW	Amarelo para NS,	2s
_	vermelho para EW	
EW_GREEN	Verde para EW, vermelho	\geq 10s (estende se
	para NS	ew_sensor)
EW_YELLOW	Amarelo para EW,	2s
	vermelho para NS	
EMERGENCY	Todos os sinais em	enquanto emergency = '1'
	vermelho	

1.2 Fluxo de Transições (FSM)

As transições entre estados seguem regras bem definidas. Após o tempo mínimo de sinal verde, caso não haja veículos na via correspondente, o sistema avança para o sinal amarelo e, em seguida, para o vermelho. Se um botão de pedestre for acionado, o sinal vermelho pode ser estendido para permitir a travessia. Quando o sinal de emergência é ativado, todos os semáforos passam imediatamente para vermelho e permanecem assim até que a emergência cesse.

- Após 10s de sinal verde, se não houver veículo na via do sinal, muda para amarelo.
- Após 2s de amarelo, muda para vermelho.
- Se o pedestre pressionar o botão, o vermelho se mantém por até 30s para travessia.
- Emergência força todos os sinais para vermelho imediato e bloqueia transições.

1.3 Equações e Regras

O funcionamento do sistema é regido por um temporizador interno e condições lógicas simples. O tempo é incrementado a cada ciclo de clock e, ao atingir determinados limiares, as transições são realizadas conforme a lógica do estado atual e as entradas ativas. A FSM também verifica continuamente se há emergência, o que sobrepõe todas as outras condições.

- Temporizadores: *time* := *time* + 1 por ciclo de clock (1Hz).
- Estados mudam com base em:
 - \circ time >= limiar
 - \circ sensor = 0 (sem veículos)
 - \circ ped button = 1
 - o emergency = 1 (força estado EMERGENCY)

2. Especificação do Sistema RTL

O sistema implementado utiliza uma arquitetura baseada em máquina de estados finitos (FSM) para controlar os semáforos de uma interseção com duas direções principais: Norte-Sul (NS) e Leste-Oeste (EW). A FSM é sensível às entradas de sensores veiculares, botões de pedestres e um sinal de emergência. A lógica de controle opera em ciclos de 1 Hz, com transições de estado determinadas por condições temporais e sinais de entrada.

2.1 Entradas

As entradas do sistema consistem em sinais digitais de controle e monitoramento. O sinal de clock (clk) define o ritmo de operação, enquanto os sensores de presença detectam veículos em cada direção. Botões de pedestres permitem solicitação de travessia e uma entrada de emergência força a interrupção do ciclo normal dos semáforos. A tabela abaixo descreve cada uma dessas entradas:

Nome	Tipo	Tamanho	Descrição
clk	std logic	1 bit	Clock de 1Hz
reset	std_logic	1 bit	Reset síncrono

ns_sensor	std_logic	1 bit	Sensor de presença veicular (NS)
ew_sensor	std_logic	1 bit	Sensor de presença veicular (EW)
ns_ped_button	std_logic	1 bit	Botão de pedestre (NS)
ew_ped_button	std_logic	1 bit	Botão de pedestre (EW)
emergency	std_logic	1 bit	Entrada de emergência (síncrono)

2.2 Saídas

As saídas representam os estados dos semáforos em cada direção, codificados em 2 bits. Cada valor binário corresponde a uma cor do semáforo: 00 para vermelho, 01 para verde e 10 para amarelo. Essa codificação permite representar as transições de forma compacta e eficiente.

Nome	Tipo	Tamanho	Descrição
ns_light	std_logic_vector(1	2 bits	Semáforo NS:
	downto 0)		00=Red, 01=Green,
	,		10=Yellow
ew light	std logic vector(1	2 bits	Semáforo EW:
	downto 0)		00=Red, 01=Green,
	,		10=Yellow

Valor Binário	Significado	
00	Vermelho	
01	Verde	
10	Amarelo	

2.3 Registradores Internos

O controle do sistema depende de variáveis internas que armazenam o estado atual da FSM, o próximo estado previsto, e o tempo decorrido em cada estado. Essas variáveis são fundamentais para garantir a temporização correta das fases do semáforo e o tratamento de eventos como emergências e travessias de pedestres.

Nome	Tipo	Tamanho	Descrição
state	tipo enumerado	3 bits	Estado atual da
			FSM
next_state	tipo enumerado	3 bits	Próximo estado da
			FSM

timer	variável	integer range 0 to	Contador de tempo
		60	de estado atual

O projeto do controlador de semáforo foi desenvolvido com base em uma **FSM síncrona e determinística**, garantindo o controle seguro e eficiente do fluxo de veículos e pedestres em uma interseção de quatro vias. Sua modelagem em **nível RTL**, com temporização via clock de 1 Hz, assegura a viabilidade de implementação em hardware digital.