What is claimed is:

- 1. A deck of playing card comprising at least a first set of playing cards and a second set of playing cards, where:
 - (a) each set comprises 2M + 1 playing cards;
- (b) each playing card of each set comprises a playing face and a rear face;
- (c) each playing face of each playing card of the first set displays an integer within the range of –M to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the first set;
- (d) each playing face of each playing card of the second set displays an integer within the range of —M to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the second set; and
 - (e) M is an integer at least equal to 10.
 - 2. The deck of claim 1 where M equals 12.
 - 3. The deck of claim 1 where M equals 13.
- 4. The deck of claim 1 further comprising a third set of playing cards and a fourth set of playing cards, where:
- (e) each playing face of each playing card of the third set displays an integer within the range of -M to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the third set; and
- (d) each playing face of each playing card of the fourth set displays an integer within the range of —M to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the fourth set.

- 5. A dice game apparatus comprising at least a first numerical die having N₁ faces, where
 - (a) N₁ is an integer at least equal to 10; and
- (b) each face of the first numerical die bears a different first integer within the range of -1 to - N_1 .
 - 6. The dice game apparatus of claim 5 where N_1 equals 10.
 - 7. The dice game apparatus of claim 5 where N_1 equals 12.
- 8. The dice game apparatus of claim 5 further comprising at least one additional numerical die selected from the group consisting of a second numerical die having N_2 faces, a third numerical die having N_3 faces, and a fourth numerical die having N_4 faces, where
 - (c) N₂ is an integer at least equal to 10;
- (d) each face of the second numerical die bears a different second integer within the range of -1 to $-N_2$;
 - (e) N₃ is an integer at least equal to 10;
- (f) each face of the third numerical die bears a different third integer within the range of 1 to N_3 ;
 - (g) N₄ is an integer at least equal to 10; and
- (h) each face of the fourth numerical die bears a different fourth integer within the range of 1 to N_4 .
- 9. The dice game apparatus of claim 8 further comprising at least one operator die selected from the group consisting of a first operator die having O₁ faces and a second operator die having O₂ faces, where
 - (i) O₁ is an integer at least equal to 10;

- (j) X_1 faces of the first operator die bear a fifth indicia representing the mathematical operation of addition, with X_1 being an integer from 1 to $2/3O_1$;
- (k) Y₁ faces of the first operator die bear a sixth indicia representing the mathematical operation of subtraction, with Y₁ being an integer from 1 to 2/3O₁;
- (I) Z_1 faces of the first operator die bear a seventh indicia representing mathematical operations that a player can choose, with Z_1 being an integer from 0 to $2/3O_1$;
 - (m) $X_1 + Y_1 + Z_1 = O_1$;
 - (n) O₂ is an integer at least equal to 10;
- (o) X₂ faces of the second operator die bear an eighth indicia representing the mathematical operation of addition, with X₂ being an integer from 1 to 2/3O₂;
- (p) Y_2 faces of the second operator die bear a ninth indicia representing the mathematical operation of subtraction, with Y_2 being an integer from 1 to $2/3O_2$;
- (q) Z_2 faces of the second operator die bear a tenth indicia representing mathematical operations that a player can choose, with Z_2 being an integer from 0 to $2/3O_2$;
- (r) A_2 faces of the second operator die bear an eleventh indicia representing the mathematical operation of multiplication, with A_2 being an integer from 1 to $2/3O_2$; and
 - (s) $X_2 + Y_2 + Z_2 + A_2 = O_2$.
- 10. The dice game apparatus of claim 5 further comprising a second numerical die having N₂ faces, a third numerical die having N₃ faces, a fourth numerical die having N₄ faces, a first operator die having O₁ faces, and a second operator die having O₂ faces, where
 - (c) N₂ is an integer at least equal to 10;

- (d) each face of the second numerical die bears a different second integer within the range of -1 to $-N_2$;
 - (e) N₃ is an integer at least equal to 10;
- (f) each face of the third numerical die bears a different third integer within the range of 1 to N_3 ;
 - (g) N₄ is an integer at least equal to 10;
- (h) each face of the fourth numerical die bears a different fourth integer within the range of 1 to N_2 ;
 - (i) O₁ is an integer at least equal to 10;
- (j) X_1 faces of the first operator die bear a fifth indicia representing the mathematical operation of addition, with X_1 being an integer from 1 to $2/3O_1$;
- (k) Y₁ faces of the first operator die bear a sixth indicia representing the mathematical operation of subtraction, with Y₁ being an integer from 1 to 2/3O₁;
- (I) Z₁ faces of the first operator die bear a seventh indicia representing mathematical operations that a player can choose, with Z₁ being an integer from 0 to 2/3O₁;
 - (m) $X_1 + Y_1 + Z_1 = O_1$;
 - (n) O₂ is an integer at least equal to 10;
- (o) X_2 faces of the second operator die bear an eighth indicia representing the mathematical operation of addition, with X_2 being an integer from 1 to $2/3O_2$;
- (p) Y₂ faces of the second operator die bear a ninth indicia representing the mathematical operation of subtraction, with Y₂ being an integer from 1 to 2/3O₂;
- (q) Z_2 faces of the second operator die bear a tenth indicia representing mathematical operations that a player can choose, with Z_2 being an integer from 0 to $2/3O_2$;

(r) A_2 faces of the second operator die bear an eleventh indicia representing the mathematical operation of multiplication, with A_2 being an integer from 1 to $2/3O_2$; and

(s)
$$X_2 + Y_2 + Z_2 + A_2 = O_2$$
.

- 11. The dice game apparatus of claim 10 where $N_1 = N_2 = N_3 = N_4 = O_1 = O_2 = 10$.
- 12. The dice game apparatus of claim 10 where $N_1 = N_2 = N_3 = N_4 = O_1 = O_2 = 12$.
 - 13. A method for playing dice comprising at least the steps of:
- (a) rolling at least two numerical dice with one of the numerical die being a first numerical die having N₁ faces and the other numerical die being selected from the group consisting of a second numerical die having N₂ faces, a third numerical die having N₃ faces, and a fourth numerical die having N₄ faces;
- (b) rolling an operator die selected from the group consisting of a first operator die having O₁ faces and a second operator die having O₂ faces; and
- (c) solving the mathematical problem posed by the uppermost indicia on the two numerical dice and the operator die, where
 - (i) N_1 is an integer at least equal to 10;
- (ii) each face of the first numerical die bears a different first integer within the range of -1 to -N₁;
 - (iii) N₂ is an integer at least equal to 10;
- (iv) each face of the second numerical die bears a different second integer within the range of -1 to $-N_2$;
 - (v) N_3 is an integer at least equal to 10;

- (vi) each face of the third numerical die bears a different third integer within the range of 1 to N_3 ;
 - (vii) N₄ is an integer at least equal to 10;
- (viii) each face of the fourth numerical die bears a different fourth integer within the range of 1 to N_4 ;
 - (ix) O₁ is an integer at least equal to 10;
- (x) X_1 faces of the first operator die bear a fifth indicia representing the mathematical operation of addition, with X_1 being an integer from 1 to $2/3O_1$;
- (xi) Y₁ faces of the first operator die bear a sixth indicia representing the mathematical operation of subtraction, with Y₁ being an integer from 1 to 2/3O₁:
- (xii) Z_1 faces of the first operator die bear a seventh indicia representing mathematical operations that a player can choose, with Z_1 being an integer from 0 to $2/3O_1$;
 - (xiii) $X_1 + Y_1 + Z_1 = O_1$;
 - (xiv) O₂ is an integer at least equal to 10;
- (xv) X_2 faces of the second operator die bear an eighth indicia representing the mathematical operation of addition, with X_2 being an integer from 1 to $2/3O_2$;
- (xvi) Y_2 faces of the second operator die bear a ninth indicia representing the mathematical operation of subtraction, with Y_2 being an integer from 1 to $2/3O_2$;
- (xvii) Z_2 faces of the second operator die bear a tenth indicia representing mathematical operations that a player can choose, with Z_2 being an integer from 0 to $2/3O_2$;
- (xviii) A_2 faces of the second operator die bear an eleventh indicia representing the mathematical operation of multiplication, with A_2 being an integer from 1 to $2/3O_2$; and

(xix)
$$X_2 + Y_2 + Z_2 + A_2 = O_2$$
.

- 14. The method of claim 13 where steps (a) through (b) are performed substantially simultaneously.
- 15. The method of claim 13 where steps (a) through (c) are performed a plurality of times.
 - 16. The method of claim 13 where steps (a) through (b) are performed substantially simultaneously and steps (a) through (c) are performed a plurality of times.
- 17. A deck of playing card comprising at least a first set of playing cards and a second set of playing cards, where:
 - (a) each set comprises M + 1 playing cards;
- (b) each playing card of each set comprises a playing face and a rear face;
- (c) each playing face of each playing card of the first set displays an integer within the range of 0 to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the first set;
- (d) each playing face of each playing card of the second set displays an integer within the range of 0 to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the second set; and
 - (e) M is an integer at least equal to 10.
- 18. The deck of claim 17 further comprising a third set of playing cards and a fourth set of playing cards, where:

- (f) each playing face of each playing card of the third set displays an integer within the range of 0 to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the third set; and
- (g) each playing face of each playing card of the fourth set displays an integer within the range of 0 to M which is different from all the other integers displayed on all the other playing faces of the playing cards of the fourth set.
 - 19. The deck of claim 18 where M equals 12.
- 20. The deck of claim 18 where each integer is displayed as a symbolic indicia of numerical value and as a pictorial indicia of numerical value.