

Algorithmen I Tutorium 32

Eine Lehrveranstaltung im SS 2017 (mit Folien von Christopher Hommel)

Daniel Jungkind (ufesa@kit.edu) | 09. Juni 2017

Quicksort

Eine erquickende Neuerung

- Erinnerung: Array sortierbar durch Einteilung in sortierten und unsortierten Bereich
- ⇒ Idee: "Semi-Sortierung"

Wähle beliebiges Pivotelement p (in O(1)) und teile auf (in O(n)):

Diese Teile dann rekursiv weitersortieren.

Quicksort – Beispiel

Sortiere A = (5, 3, 8, 4, 2, 6, 1): array[1..n] of \mathbb{N} mit Quicksort. Wähle als Pivot $p(A) := A[\lceil \frac{n}{2} \rceil]$. Zeichne dazu den Rekursionsbaum.

- Wie effizient und platzsparend aufteilen?
 - \Rightarrow **partition**! O(1) Platz und O(n) Zeit (Siehe nächste Folien...)
- Laufzeit: Master-Theorem nicht anwendbar, da Größe der rekursiven Aufrufe nicht in Voraus bekannt
- Worst-Case $\Theta(n^2)$ möglich
- Vorlesung sagt: **Erwartete** Laufzeit in $\Theta(n \log n)$

Beispiel

Partitioniere $A: \operatorname{array}[0..n-1]$ mit Pivotwahl $p(A) := A[\left\lfloor \frac{n}{3} \right\rfloor]$ (mit n := |A|)

Hier klicken, um das Beispiel zu überspringen.

Beispiel

Beispiel

						р
1	8	0	တ	1	7	6

Beispiel

Beispiel

Beispiel

Beispiel

$$| \leq p | > p |$$
 p 1 7 6

Beispiel

Beispiel

$$| \leq p | > p |$$
 p | p | 1 | 7 | 6

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

$$| \leqslant p | > p | p$$
 $| 1 | 0 | 1 | 9 | 8 | 7 | 6$

Beispiel

$$| \le p | > p | p |$$
 $| 1 | 0 | 1 | 9 | 8 | 7 | 6 |$

Beispiel

Schema aus der Vorlesung

Beispiel: Partitionierung, k = 1

p, \bar{i} , \underline{j}

3	6	8	1	0	7	2	4	5	9
9	6	8	1	0	7	2	4	5	3
9	<u>6</u>	8	1	0	7	2	4	5	3
9	6	8	1	0	7	2	4	5	3
9	6	8	1	0	7	2	4	5	3
1	6	8	9	0	7	2	4	5	3
1	0	8	9	6	<u>7</u>	2	4	5	3
1	0	8	9	6	7	2	4	5	3
1	0	2	9	6	7	8	<u>4</u>	5	3
1	0	2	9	6	7	8	4	<u>5</u>	3
1	0	2	9	6	7	8	4	5	3
1	0	2	3	6	7	8	4	5	9

Laufzeit, wenn alle Zahlen gleich sind?

$$\Rightarrow \Theta(n^2)$$

Quicksort (mit partition) ist stabil. Falsch "Durcheinandermischen" bei partition macht's kaputt.

Quicksort ist in-place. **Je nachdem! Rekursionsaufrufe** benötigen $\Theta(\log n)$ (vernachlässigbar) viel Platz (\Rightarrow Stack-Overhead). Abgesehen davon **kein** weiterer Verwaltungsaufwand.

Quicksort (besseres partition)

Aller guten Dinge sind drei!

- Worst-Case von eben: schlecht ②
- ⇒ Besser: **Drei-Wege-Partitionierung!**
 - Führe einen zusätzlichen Bereich = p ein:

$$< p$$
 = p $> p$

Beispiel

Partitioniere A: array[0..n-1] mit Pivotwahl $p(A) := A[\lfloor \frac{n}{3} \rfloor]$ (mit n := |A|)

Hier klicken, um das Beispiel zu überspringen.

Beispiel

Partitioniere A: array[0..n-1] mit Pivotwahl $p(A) := A[\lfloor \frac{n}{3} \rfloor]$ (mit n := |A|)

3 7 0 5 1 5 5 7 1

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Beispiel

Laufzeit, wenn alle Elemente gleich sind? $\Rightarrow \Theta(n)$

Quicksort

Auf Listen

- Wie müsste man vorgehen, um Quicksort auf einfach verketteten Listen anzuwenden (ohne die Liste in ein Array umzuwandeln)?
 - \Rightarrow Wähle als Pivot p := head.next.
 - **partition**: Laufe durch die Liste und teile Elemente auf zwei Listen ℓ_{\leq} und $\ell_{>}$ auf.
 - Sortiere rekursiv ℓ_{\leq} und $\ell_{>}$ und verbinde sie anschließend.
- Wie leicht lässt sich hierbei ein Worst-Case erreichen? Womit könnte man das vermeiden?
 - ⇒ Wegen eingeschränkter Pivot-Wahl:
 - Schon fast sortiert → Worst-Case
 - ⇒ Viele gleiche Elemente → Drei-Wege-Partition!
 - ⇒ Generell: Auf verketteten Listen lieber **Mergesort**.

Quicksort

...nicht-rekursiv?

- Wie k\u00f6nnte eine iterative Implementierung von Quicksort aussehen?
 ⇒ Speichere "Rekursionsparameter" als Tupel (\u00bc, r) auf einem
 Stack, welcher mit einer "gro\u00dben Schleife" abgearbeitet wird (faked recursion)
- Was wären mögliche Vorteile/Nachteile?
 - Rekursive Aufrufe werden durch einen platzsparenderen Ersatz gespeichert
 - Implementierungsaufwand ⇒ Fehleranfälligkeit

Quicksort

... vs. InsertionSort

- Bei "ausreichend kleinen" Bereichen wird üblicherweise statt einem Rekursionsaufruf *InsertionSort* verwendet. Warum?
- ⇒ **‡** Quicksort gut auf **größeren** Arrays: Vertauschen einzelner Elemente **billiger** als ganze Bereiche verschieben
 - Quicksort bürokratisch ($O(n^2)$) auf **kleineren** Arrays: Zu viel Vertauschen + Rekursionsoverhead.
- ⇒ InsertionSort auf kleinen Arrays linear: "Kurze" Strecken zum Einsortieren.

Sortieralgorithmen - Showdown

Sortieralgorithmen – Showdown				
	Mergesort	Quicksort		
In-place?	Nur auf verketteten Listen*	Ja*		
Ablauf	Zuerst Rekursion, danach linearer Aufwand**	Zuerst linearer Aufwand, da- nach Rekursion		
Stabil?	Möglich	Mit Partition: Nein (nicht in-place: Möglich)		
Laufzeit	garantiert in $\Theta(n \log n)$	erwartet in $\Theta(n \log n)$ Worst-Case $\Theta(n^2)$		
Cache	unfreundlich	freundlich		
	Hat einen sprechenden	Heißt Quicksort, muss also		

gut sein

Namen

^{*} abgesehen vom Verwaltungsoverhead durch Rekursion

^{**} abgesehen von Listenzertrennung in linearer Zeit (zur Mitte muss gelaufen werden)

Alles im Eimer?

- *n* Elemente **beschränkter** Größe (also $\in \{a, ..., b\}$)
- Lege an buckets : array[a..b] of List of Element (k := |buckets|)
- Schmeiße jedes Element e in seinen Eimer: buckets[e].pushBack(e) (hinten anhängen)
- Am Ende: "Eimer" zusammenhängen
- \Rightarrow Array sortiert.
- **Laufzeit**: O(n+k)
- Aufpassen bei großen/unbeschränkten k!

Generisches Bucketsort

- Eimer nicht unbedingt Listen
- Eimer nicht unbedingt nur für eine Größe
 - ⇒ Intervalle möglich
 - ⇒ In diesem Fall: Buckets müssen am Ende noch sortiert werden! (Z. B. mit *InsertionSort*)
 - ⇒ Dafür empfehlenswert: Elemente **gleichverteilt** auf Buckets
- ⇒ Bucketsort ist **kein** Sortieralgorithmus für sich, sondern eine **Familie** von Sortieralgorithmen.

Aufgabe:

Sortiert folgende Liste mit Bucketsort:

 $\langle 36, 78, 50, 1, 92, 15, 43, 99, 64 \rangle$.

Verwendet dabei 5 Buckets in den Intervallen:

0 bis 19, 20 bis 39, 40 bis 59, 60 bis 79 und 80 bis 99.

Lösung:

0–19	20–39	40–59	60–79	80–99
$\langle 1, 15 \rangle$	⟨36⟩	⟨50, 43⟩	$\langle 78, 64 \rangle$	⟨92,99⟩

 $\Rightarrow \langle 1, 15, 36, 43, 50, 64, 78, 92, 99 \rangle$

"Nerd's Heaven"

Rumänische Volkstänze FTW!

- InsertionSort: https://www.youtube.com/watch?v=ROalU379l3U
- SelectionSort: https://www.youtube.com/watch?v=Ns4TPTC8whw
- Mergesort: https://www.youtube.com/watch?v=XaqR3G_NVoo
- Quicksort: https://www.youtube.com/watch?v=ywWBy6J5gz8