- (0.1) Let x be a random variable from (12, F, P) to (R, B, Px). Show the following:
 - (a) 9f $A = x^{-1}(B)$, then $A^c = x^{-1}(B^c)$.
 - (b) If $A_n = \chi^{-1}(B_n)$ $\forall n=1,...$, then $\bigcup_{n=1}^{\infty} A_n = \chi^{-1}(\bigcup_{n=1}^{\infty} B_n)$.
 - © 9f $A_1 = x^{-1}(B_1)$ and $A_2 = x^{-1}(B_2)$ and $B_1 \cap B_2 = \emptyset$, then $A_1 \cap A_2 = \emptyset$.
 - D show that {A: FBEBs.t. x1(B)=A} is a o-field on so and is a subset of F.

Remark: {A: FBEB s.t. X'(B) = A} is called offield generated by X. Moreover, X can provide information only about this offield. This offield is denoted by X'(B).

- @ Show that Px is a prob measure of (R, B).
- [Q.2] Let $\Omega = \{1,2,3,4,5,6\}$ and $F = \mathcal{P}(\Omega)$. Let X be defined as follows:

$$x(\omega) = 0$$
 if $\omega = 1, 2, 3$
= ω 0. ω .

- (a) Verity it x is a valid random variable.
- (b) Find a set in F, but not in x1(83). (Use your intuition to find a set and then prove).
- (c) Find distribution $F_{x}(\cdot)$. How many points of discontinuity $F_{x}(\cdot)$ have?
- [0.3] show that a distribution in can have at most countable (finite/infine) number of discontinuities.
- [Q.4] Let A_1 and A_2 be two collection of subsets of SL.

 Also, let Σ_1 and Σ_2 denote the σ -fields generated by A_1 and A_2 respectively. If $A_1 \subseteq \Sigma_2$ and $A_2 \subseteq \Sigma_1$,

then $\Sigma_1 = \Sigma_2$.

Q.5 Use Q.4 to show that the smallest offield containing $\beta(x_1,x_2): x_1 < x_2, x_1, x_2 \in \mathbb{R}^q$ is the Borel offield.