#### Test 2 Level 4, December 2

**Problem 2.1.** Define  $a_0 = 2$  and  $a_{n+1} = a_n^2 + a_n - 1$ . Prove that  $a_n$  is coprime to 2n + 1.

**Problem 2.2.** Given is an acute triangle ABC with BC < CA < AB. Points K and L lie on segments AC and AB and satisfy AK = AL = BC. Perpendicular bisectors of segments CK and BL intersect line BC at points P and Q, respectively. Segments KP and LQ intersect at M. Prove that CK + KM = BL + LM.

**Problem 2.3.** In an  $n \times n$  table for  $n \geq 2$  at least  $\lceil n(\sqrt{n} + \frac{1}{2}) \rceil$  fields have been colored. Prove that there exist 4 colored fields whose centers form (the vertices of) a rectangle or a square.

**Problem 2.4.** Find all integer numbers a, b, c such that

$$x(x-a)(x-b)(x-c)+1$$

can be expressed as product of two polynomials (non constant) with integer coefficients.



# السؤال الأول

 $a_n=0$  معطى  $a_n=0$  و  $a_n=1$   $a_n=1$   $a_n=1$  . أثبت أن  $a_n=1$  معطى  $a_0=1$ 

## السؤال الثاني

معطى المثلث الحاد الزوايا AC,AB فيه ABC < CA < AB . النقطتان K,L النقطتان BC < CA < AB تواليًا يقطعان أن AK=AL=BC . العمودان المنصفان للقطعتين المستقيمتين CK,BL يقطعان المستقيم BC في النقطتين  $\cdot CK + KM = BL + LM$  تواليًا. القطعتان المستقيمتان KP, LQ تتقاطعان في M . أثبت أن P, Q

### السؤال الثالث

في حدول n imes n ، لكل n imes 2 تم تلوين n imes n خلية . أثبت أنه يوجد n imes n خلايا مراكزها تعتبر رؤوس مستطيل أو مربع.

السؤال الرابع أوجد كل الأعداد الصحيحة a,b,c التي تجعل من الممكن كتابة المقدار x(x-a)(x-b)(x-c)+1 كحاصل ضرب كثيرتي حدود (غير ثابتتين) ومعاملات كل منهما أعداد صحيحة.

> الزمن 4 ساعات ونصف كل سؤال 7 نقاط مع أطيب التمنيات بالتوفيق