Mercado Libre DataSec Technical Challenge

Instructions

- Create a separate file for each question.
- Commit all the solutions to a single public GitHub repository.
- Solve all the questions using python 3. Specify in the comments the exact version of python you used.

1. Minesweeper Number of Neighbouring Mines

Create a function that takes a list representation of a Minesweeper board, and returns another board where the value of each cell is the amount of its neighbouring mines.

Examples

The input may look like this:

```
[
    [0, 1, 0, 0],
    [0, 0, 1, 0],
    [0, 1, 0, 1],
    [1, 1, 0, 0]
]
```

The 0 represents an **empty space**. The 1 represents a **mine**.

You will have to replace each **mine** with a 9 and each **empty space** with the number of adjacent mines, the output will look like this:

```
[1, 9, 2, 1],
```

```
[2, 3, 9, 2],
[3, 9, 4, 9],
[9, 9, 3, 1]
]
```

Notes

- Since in the output the numbers 0-8 are used to determine the amount of adjacent mines, the number 9 will be used to identify the mines instead.
- You can use the wikipedia page explaining how Minesweeper works

2. REST API: Best TV Shows in Genre

Use the HTTP GET method to retrieve information about recent television shows. Query https://jsonmock.hackerrank.com/api/tvseries to find all the shows in a genre. The query result is paginated. To access additional pages, append ?page={num} to the URL where num is the page number.

The response is a JSON object with the following 5 fields:

```
"name": "Game of Thrones",
    "runtime_of_series": "(2011-2019)",
    "certificate": "A",
    "runtime_of_episodes": "57 min",
    "genre": "Action, Adventure, Drama",
    "imdb_rating": 9.3,
        "overview": "Nine noble families fight for control over the lands of Westeros,
while an ancient enemy returns after being dormant for millennia.",
    "no_of_votes": 1773458,
    "id": 1
```

In data, each tv series has the following schema:

- name: (String)
- runtime_of_series: years with a new season (String)
- certificate: rating (String)

- runtime_of_episodes: average length per episode in minutes (String).
- *genre*: genre (String)
- *imdb_rating*: average viewer rating (Number)
- overview: short description (String)
- no_of_votes: how many votes were cast at imdb (Number)
- *id*: unique id (Number)

Given a genre, find the series with the highest imdb_rating. If there is a tie, return the alphabetically lower name.

Function Description

Complete the function bestInGenre as follows:

bestInGenre has the following parameter(s):

string genre: the genre to search

Return

string: the highest-rated show in the genre, with the lowest name alphabetically if there is a tie

Sample Input

Action

Sample Output

Game of Thrones

Explanation

The 4 highest-rated shows in the 'Action' genre are shown:

- 'Game of Thrones', 9.3
- 'Avatar: The Last Airbender', 9.2
- 'Hagane no renkinjutsushi', 9.1

• 'Shingeki no kyojin', 8.9

3. SQL: Advertising System Failures Report

As part of HackerAd's advertising system analytics, a team needs a list of customers who have a maximum number of failure events (status = "failure") in their campaigns.

For all customers with more than 3 events with status = 'failure', report the customer name and their number of failures.

The result should be in the following format: customer, failures.

- customer is a candidate's full name, the first_name and last_name separated by a single space.
- The order of the output is not important.

Schema

There are 3 tables:

customers		
name	type	description
id	SMALLINT	Customer ID
first_nam e	VARCHAR(64	Customer first name
last_nam e	VARCHAR(64	Customer last name

campaigns

name	type	description
id	SMALLINT	Campaign ID
customer_i d	SMALLINT	Customer ID
name	VARCHAR(64	Campaign name

events		
name	type	description
dt	VARCHAR(19	Event timestamp
campaign_i d	SMALLINT	Campaign ID
status	VARCHAR(64	Event status

customers		
i d	first_nam e	last_nam e
1	Whitney	Ferrero

2	Dickie	Romera
---	--------	--------

Sample Data

Replicate the following data in a local MySQL instance

	campaigns		
i d	customer_i d	name	
1	1	Upton Group	
2	1	Roob, Hudson and Rippin	
3	1	McCullough, Rempel and Larson	
4	1	Lang and Sons	
5	2	Ruecker, Hand and Haley	

events		
dt	campaign_i d	status
2021-12-02 13:52:00	1	failure

2021-12-02 08:17:48	2	failure
2021-12-02 08:18:17	2	failure
2021-12-01 11:55:32	3	failure
2021-12-01 06:53:16	4	failure
2021-12-02 04:51:09	4	failure
2021-12-01 06:34:04	5	failure
2021-12-02 03:21:18	5	failure
2021-12-01 03:18:24	5	failure
2021-12-02 15:32:37	1	succes s
2021-12-01 04:23:20	1	succes s
2021-12-02 06:53:24	1	succes s

2021-12-02 08:01:02	2	succes s
2021-12-01 15:57:19	2	succes s
2021-12-02 16:14:34	3	succes s
2021-12-02 21:56:38	3	succes s
2021-12-01 05:54:43	4	succes s
2021-12-02 17:56:45	4	succes s
2021-12-02 11:56:50	4	succes s
2021-12-02 06:08:20	5	succes s

the expected output is:

customer	failures ▼
Whitney Ferrero	6