(i) Pr	inted Pages: 4 Roll No
(ii) Qu	sestions :9 Sub. Code: 0 9 4 8
	Exam. Code: 0 0 3 1
Bachelor of Computer Applications 5th Semester 1128	
DISCRETE MATHEMATICAL STRUCTURE	
Paper : BCA-16-502	
	to rever been offer stilling to technique sent on
	lowed: Three Hours] [Maximum Marks: 65
Note :-	- Attempt five questions in all, selecting at least one question
	from each unit. Question No. 1 is compulsory. All questions carry equal marks.
1. (i)	What is the number of subsets of a set having n elements?
	Write down all the proper subsets of the set {1, 2, 3}.
(ii)	Write the generating function of the sequence:
	$S_n = 2^n[3 + 2(-1)^n].$
(iii)	Does there exist a graph with 24 edges, 3 vertices of
	degree 4 and all other vertices of degree 3 ? If so, find
	the number of vertices.
(iv)	Find the number of regions defined by a connected planar
	graph with 4 nodes and 8 edges. 2
(v)	For the words $u = a^2bab^2$ and $v = bab^2$ find (a) uv,
	(b) u λ v. 2
(vi)	Show that $f(x) = 5.5x^2 + 7x$ is $O(x^2)$.
0948/EPY-12356 1 [Turn over	

UNIT-I

- 2. (i) State and prove De' Morgan's Laws for two sets.
 - (ii) In a survey of 60 people; it was found that 25 read Newsweek magazine, 26 read Times, 26 read Fortune, 9 read both Newsweek and Fortune, 11 read both Newsweek and Times, 8 read both Times and Fortune and 3 read all the three magazines. Find:
 - (a) The number of people who read at least one of the three magazines.
 - (b) The number of people who read Newsweek only, Times only and Fortune magazine only.
 - (c) The number of people who read exactly one magazine.

 6,7
- 3. (i) Define relation for sets A and B. If A = {a, b, c, d}, B = {p, q, r, s}. Then which of the following are relations from A to B?
 - (a) $R_1 = \{(a, q), (b, s), (c, d), (d, r)\}$
 - (b) $R_2 = \{(a, r), (c, p), (b, q)\}$. Justify your answer with explanation.
 - (ii) Is the function $f(x) = \frac{x}{x+1}$ invertible in its domain? If so, find $f^{-1}(x)$ and its domain and range. Also evaluate fo f^{-1} .

UNIT-II

4. (i) Solve the recurrence relation:

$$a_{k} - 2a_{k-1} + a_{k-2} = 1$$
, $a_{0} = 2$, $a_{1} = \frac{11}{2}$.

(ii) Write the sequence whose generating function is

$$\frac{3-5z}{1-2z-3z^2}$$
. 6,7

- 5. (i) For the recurrence relation $s_n 6s_{n-1} + 8s_{n-2} = 0$, $n \ge 2$ and $s_0 = 10$, $s_1 = 25$. Find generating function and also the sequence which satisfies it.
 - (ii) Solve:

$$s_n = 10s_{n-1} - 9s_{n-2}, s_0 = 3, s_1 = 11.$$
 8,5

6. (i) Consider the graph in figure. Justify the following statements:

- (a) Is it a complete graph?
- (b) Is the graph connected and regular?
- (c) Is it a planar graph? If true, find the number of regions using Euler's formula.
- (ii) For the given graph:

- (a) Find the adjacency matrix.
- (b) Find the incidence matrix.

7.6

0948/EPY-12356

3

[Turn over

7. (i) Find the shortest path between a and z in the graph shown in figure using Dijkstra's Algorithm.

(ii) A connected graph has 9 vertices having degrees 2, 2, 2, 3, 3, 3, 4, 4 and 5. How many edges are there? How many faces are there?

UNIT-IV

- 8. (i) Let $A = \{a, b\}$. Construct an automation M which will accept the language $L(M) = \{a^rb^s; r > 0, s > 0\}$.
 - (ii) Construct the state transition table of the finite state machine whose diagraph is given in figure. 7,6

9. (i) Determine whether the automation M in figure accepts the words (a) w = bbaba, (b) w = baab, (c) w = w.

(ii) Prove that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$.