2102333: ระบบควบคุมเชิงเส้น 1 และปฏิบัติการ ห้องปฏิบัติการพื้นฐานระบบควบคุม ภาควิชาวิศวกรรมไฟฟ้า จุฬาลงกรณ์มหาวิทยาลัย

การทดลองที่ 6 การออกแบบตัวควบคุมด้วยวิธีผลตอบสนองเชิงความถึ่

หมายเลขกลุ่ม	ตอนเรียน	คะแนน	/20
1. ชื่อ	1. รหัสนิสิต		
2. ชื่อ	2. รหัสนิสิต		
3. ชื่อ	3. รหัสนิสิต		

วัตถุประสงค์

1. เพื่อศึกษาวิธีการออกแบบตัวควบคุม PD โดยใช้วิธีผลตอบสนองเชิงความถึ่

1 ตัวแปรที่เกี่ยวข้องกับการออกแบบ

ในการทดลองที่ผ่านมาเราอาศัยข้อมูลทางโดเมนเวลาในการออกแบบตัวควบคุม แต่สำหรับการทดลองนี้ เรา จะใช้ข้อมูลทางโดเมนความถี่ในการออกแบบตัวควบคุมแทน โดยข้อมูลในทางโดเมนเวลาและโดเมนความถี่ สามารถเปรียบเทียบกันได้ดังตารางที่ 1

ตารางที่ 1: การเปรียบเทียบพารามิเตอร์ที่สัมพันธ์กับดัชนีสมรรถนะ

ดัชนีสมรรถนะ	โดเมนเวลา	โดเมนความถึ่
ค่าพุ่งเกินสูงสุด	ζ	PM, GM
ความเร็วของผลตอบสนอง	ζ, ω_n	ω_{BW}

โดย

PM คือ Phase margin

GM คือ Gain margin

 ω_{BW} คือ Bandwidth

 ζ คือ Damping ratio

 ω_n คือ Natural frequency

2 ผลตอบสนองเชิงความถี่ของตัวควบคุมแบบ PD

ตัวควบคุมแบบ PD มีฟังก์ชันถ่ายโอน

$$C(s) = K_P(1 + T_D s)$$

มีลักษณะกราฟโบเดดังในรูปที่ 1 จะสังเกตได้ว่า K_D จะใช้ในการเปลี่ยนจุดหักมุม และ K_P จะใช้ในการ ปรับขนาดของแผนภาพโบเด

รูปที่ 1: แผนภาพโบเดของตัวควบคุมแบบ PD เมื่อ $K_P=1$ และ $T_D=2$

3 ตัวอย่างการออกแบบตัวควบคุมแบบ PD ด้วยวิธีผลตอบสนองเชิงความถี่

$$G(s) = \frac{16}{s(0.2s+1)}$$

ข้อกำหนดการออกแบบประกอบด้วย $PM=45^\circ$, BW=20 rad/s และ $K_v=64\ s^{-1}$ ข**้นตอนที่ 1** อาศัยค่า K_v สำหรับการเลือก K_P

$$K_v = \lim_{s \to 0} sC(s)G(s)$$

$$= \lim_{s \to 0} s(K_P(T_D s + 1))(\frac{16}{s(0.2s + 1)})$$

$$= 16K_P$$

เพราะฉะนั้น $K_P=rac{K_v}{16}=4$

ขั้นตอนที่ 2 หาค่า PM เมื่อกำหนดให้ $C(s)=K_P$ แล้วหามุมชดเชยเพื่อหาค่า T_D

• จากรูป 2 จะทราบค่า $PM=22.3^\circ$ ดังนั้นมุมชดเชยจึงมีค่าเท่ากับ $(45^\circ-22.3^\circ)+5^\circ=27.7^\circ$

รูปที่ 2: แผนภาพโบเดของระบบวงเปิด เมื่อ C(s)=1

• เลือกค่า T_D เพื่อให้ ω_{gc} มีค่าสอดคล้องกับเงื่อนไขของ BW

จากทั้งสองขั้นตอน เลือก $K_P=4$ และ $K_D=0.16$ ได้ผลตอบสนองเชิงความถี่ของ C(s)G(s) แสดงใน รูปที่ 3(a) 1 ผลตอบสนองของสัญญาณขาออกของระบบควบคุมต่อสัญญาณขั้นบันใด แสดงในรูปที่ 3(b)

รูปที่ 3: รูปซ้าย แผนภาพโบเดของระบบวงเปิด เมื่อ C(s)=4+0.16s, รูปขวา ผลตอบสนองขั้นบันได เมื่อ C(s)=4+0.16s

 $^{^1}$ ผลตอบสนองเชิงความถี่ของวงปิดสำหรับ $PM_{\rm closed-loop}$ สามารถประมาณได้จาก $PM_{\rm opened-loop}$ และ BW สามารถประมาณได้จาก ω_{gc} ของผลตอบสนองวงเปิด

การทดลองที่ 6 การออกแบบตัวควบคุมด้วยวิธีผลตอบสนองเชิงความถึ

หมายเลขกลุ่ม	ตอนเรียน	คะแนน	/20
1. ชื่อ	1. รหัสนิสิต		
2. ชื่อ	2. รหัสนิสิต		
3. ชื่อ	3. รหัสนิสิต		

ขั้นตอนการทดลอง

- 1. ออกแบบค่า K_P และ K_D เพื่อควบคุมตำแหน่งของมอเตอร์ สำหรับแต่ละข้อ**ด้วยวิธีผลตอบสนอง** เช**ิงความถ**ึ่
- 2. แสดงผลตอบสนองด้วย simscape จากระบบที่เคยทำไว้ในไฟล์ก่อนหน้า โดยเชื่อต่อบล๊อคควบคุม ตำแหน่งวงปิดแบบ PID เพื่อควบคุมตำแหน่ง
- 3. ใช้ค่า K_P และ K_D ที่ได้จากการออกแบบเพื่อหาผลตอบสนอง บนแบบจำลอง Simscape และให้ ควบคุมตำแหน่งโดยเริ่มจาก 0 ไปยัง pi/2
- 4. แสดงผลการทดลองลงในกราฟของแต่ละข้อ โดยตั้งชื่อกราฟ ระบุชื่อแกนให้ถูกต้อง

ผลการทดลอง

1. เขียนฟังก์ชันถ่ายโอนของระบบควบคุมตำแหน่ง

- K = [rad/sV]
- ullet ฟังก์ชันถ่ายโอนของชุดทดลอง G(s)=
- 2. (8 คะแนน) ออกแบบตัวควบคุม PD ด้วยวิธีผลตอบสนองเชิงความถี่ โดยมีข้อกำหนดการออกแบบ ดังนี้

[s]

- (a) PM สำหรับระบบวงเปิดอย่างน้อย 45 deg
- (b) K_v สำหรับวงเปิดอย่างน้อย $50\ s^{-1}$
- (c) Bandwidth สำหรับระบบวงปิดอย่างน้อย 20 rad/s แนะนำให้ประมาณ Bandwidth ด้วย ω_{gc} (gain crossover frequency)

การออกแบบตัวควบคุมด้วยวิธีผลตอบสนองเชิงความถี่ ได้ตัวควบคุม

$$C(s) =$$

3. เปรียบเทียบแผนภาพโบเดระหว่าง G(s) และ C(s)G(s) โดยแผนภาพของทั้ง 3 ฟังก์ชันต้องอยู่ใน รูปเดียวกัน แนะนำใช้คำสั่ง margin ใน Matlab หลังจากนั้น คำนวณ steady state error เมื่อป้อน สัญญาณอ้างอิงเป็น unit ramp แนะนำจำลองผลตอบสนองด้วย Matlab แล้วเติมค่าสมรรถนะใน ตาราง 2

ตารางที่ 2: เปรียบเทียบผลตอบสนองเชิงความถี่ของระบบวงเปิด

ฟังก์ชันถ่ายโอน	PM (deg)	ω_{gc} (rad/s)	e_{ss} deg (ramp)
G(s)			
C(s)G(s)			

4. เปรียบเทียบผลตอบสนองต่อสัญญาณขั้นบันไดใน Simscape เมื่อใช้ตัวควบคุม C(s) ทั้งสองกราฟ จะต้องอยู่ในรูปเดียวกัน แล้วเติมค่าสมรรถนะในตาราง 3

ตารางที่ 3: เปรียบเทียบผลตอบสนองขั้นบันได

การควบคุม	M_p (%)	t_s (s)	t_r (s)
C(s)			

- 5. (2 คะแนน) พล๊อต**สัญญาณควบคุม** (Voltage Input) เมื่อใช้ตัวควบคุม C(s)
- 6. (2 คะแนน) จงวิเคราะห์และวิจารณ์ผลการทดลอง