Homework 5

Ravi Kini

November 9, 2023

Exercise 1

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 5.12

If S is held constant in the thermodynamic identity for U:

$$dU = T dS - p dV = -p dV$$

$$\left(\frac{\partial U}{\partial V}\right)_S = -p$$
(1)

If V is held constant:

$$dU = T dS - p dV = T dS$$

$$\left(\frac{\partial U}{\partial S}\right)_{V} = T$$
(2)

Then:

$$\begin{split} \frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S} \right)_V &= \frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V} \right)_S \\ \left(\frac{\partial T}{\partial V} \right)_S &= - \left(\frac{\partial p}{\partial S} \right)_V \end{split} \tag{3}$$

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 5.23 (partial)

Part (a)

Deriving the thermodynamic identity for Φ :

$$\begin{split} \Phi &= U - TS - \mu N \\ \mathrm{d}\Phi &= \mathrm{d}U - \mathrm{d}(TS) - \mathrm{d}(\mu N) \\ &= \mathrm{d}U - T \, \mathrm{d}S - S \, \mathrm{d}T - \mu \, \mathrm{d}N - N \, \mathrm{d}\mu \\ &= (T \, \mathrm{d}S - p \, \mathrm{d}V + \mu \, \mathrm{d}N) - T \, \mathrm{d}S - S \, \mathrm{d}T - \mu \, \mathrm{d}N - N \, \mathrm{d}\mu \\ &= -p \, \mathrm{d}V - S \, \mathrm{d}T - N \, \mathrm{d}\mu \end{split} \tag{4}$$

If V and T are held constant in the thermodynamic identity for Φ :

$$d\Phi = -p \ dV - S \ dT - N \ d\mu = -N \ d\mu$$

$$\left(\frac{\partial \Phi}{\partial \mu}\right)_{V,T} = -N$$
(5)

If V and μ are held constant:

$$d\Phi = -p \ dV - S \ dT - N \ d\mu = -S \ dT$$

$$\left(\frac{\partial \Phi}{\partial \mu}\right)_{V,\mu} = -S$$
(6)

If T and μ are held constant:

$$d\Phi = -p \ dV - S \ dT - N \ d\mu = -p \ dV$$

$$\left(\frac{\partial \Phi}{\partial \mu}\right)_{T,\mu} = -p$$
(7)

Part (b)

For a system in thermal equilibrium, T, μ remain constant and equal for the system and the reservoir. Further assume that the volume V_r remains fixed for the reservoir. Let the entropy of the universe (system and reservoir) increase by some $dS_u = dS + dS_r$ where dS is the change in entropy of the system and

 $\mathrm{d}S_r$ the change in entropy of the reservoir. Then:

$$dU_r = T dS_r - P dV_r + \mu dN_r$$

$$dS_r = \frac{1}{T} dU_r - \frac{\mu}{T} dN_r$$

$$= -\frac{1}{T} dU + \frac{\mu}{T} dN$$

$$dS_u = dS - \frac{1}{T} dU + \frac{\mu}{T} dN$$

$$= -\frac{1}{T} (dU - T dS - \mu dN) = -\frac{1}{T} d\Phi$$
(8)

Since the entropy tends to increase spontaneously, $\mathrm{d}S_u$ is positive, and $\mathrm{d}\Phi$ is negative, indicating that the grand free energy Φ tends to decrease.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 6.5

Part (a)

The partition function of the particle Z is:

$$Z = e^{-\frac{-0.05 \text{ J}}{k_B T}} + e^{-\frac{0 \text{ J}}{k_B T}} + e^{-\frac{0.05 \text{ J}}{k_B T}}$$

$$= e^{-\frac{-0.05 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}} + e^{-\frac{0 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}$$

$$+ e^{-\frac{0.05 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}} \approx 8.063$$
(9)

Part (b)

The probabilities of the particle being in each of the states is:

$$P(E = -0.05 \text{ J}) = \frac{e^{-\frac{-0.05 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}}{Z} \approx 0.858$$

$$P(E = 0 \text{ J}) = \frac{e^{-\frac{0 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}}{Z} \approx 0.124$$

$$P(E = 0.05 \text{ J}) = \frac{e^{-\frac{0.05 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}}{Z} \approx 0.018$$

Part (c)

Shifting the zero point and repeating the calculations:

$$Z = e^{-\frac{0 \text{ J}}{k_B T}} + e^{-\frac{0.05 \text{ J}}{k_B T}} + e^{-\frac{0.10 \text{ J}}{k_B T}}$$

$$= e^{-\frac{0 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}} + e^{-\frac{0.05 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}$$

$$+ e^{-\frac{0.10 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}} \approx 1.165$$

$$P(E = 0 \text{ J}) = \frac{e^{-\frac{0 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}}{Z} \approx 0.858$$

$$P(E = 0.05 \text{ J}) = \frac{e^{-\frac{0.05 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}}{Z} \approx 0.124$$

$$P(E = 0.10 \text{ J}) = \frac{e^{-\frac{0.10 \text{ J}}{8.617 \cdot 10^{-5} \text{ J/K} \cdot 300 \text{ J}}}}{Z} \approx 0.018$$

The partition function changes, but the probabilities remain the same, since the zero for measuring energy is arbitrary.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 6.11

The partition function of a lithium nucleus is:

$$Z = e^{-\frac{3}{2}\mu B \over k B^{T}} + e^{-\frac{1}{2}\mu B \over k B^{T}} + e^{-\frac{1}{2}\mu B \over k B^{T}} + e^{-\frac{3}{2}\mu B \over k B^{T}} + e^{-\frac{3}{2}\mu B \over k B^{T}}$$

$$= e^{-\frac{3}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}} + e^{-\frac{1}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}}$$

$$+ e^{-\frac{1}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}} + e^{-\frac{3}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}} \approx 4$$

$$(12)$$

The probability of the nucleus being in each of the spin orientations is then:

$$P\left(m = -\frac{3}{2}\right) = \frac{e^{-\frac{\frac{3}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}}}}}{Z} \approx 0.25$$

$$P\left(m = -\frac{1}{2}\right) = \frac{e^{-\frac{\frac{1}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}}}}}{Z} \approx 0.25$$

$$P\left(m = \frac{1}{2}\right) = \frac{e^{-\frac{\frac{n}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}}}}{Z} \approx 0.25$$

$$P\left(m = \frac{3}{2}\right) = \frac{e^{-\frac{\frac{n}{2} \cdot 1.03 \cdot 10^{-7} \text{ eV/T} \cdot 0.63 \text{ T}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 300 \text{ K}}}}}{Z} \approx 0.25$$

If both B and T change sign, $\frac{m\mu B}{k_BT}$ does not change sign, so the expression for the probability remains the same. Consequently, the particles obey the Boltzmann distribution for $T=-300{\rm K}$.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 6.14

For a single air molecule, with s_1 being the state where the molecule is at sea level and s_2 being the state where the molecule is at height z:

$$E(s_{1}) = E(s_{2}) + mgz$$

$$\frac{P(s = s_{1})}{P(s = s_{2})} = \frac{e^{-\frac{E(s_{1})}{k_{B}T}}}{e^{-\frac{E(s_{2})}{k_{B}T}}} = e^{-\frac{E(s_{1}) - E(s_{2})}{k_{B}T}} = e^{-\frac{mgz}{k_{B}T}}$$

$$P(s = s_{1}) = P(s = s_{2}) e^{-\frac{mgz}{k_{B}T}}$$

$$P(z) = P(0) e^{-\frac{mgz}{k_{B}T}}$$

$$\rho(z) = \rho(0) e^{-\frac{mgz}{k_{B}T}}$$

$$(14)$$

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 6.16

For a system in equilibrium with a reservoir at temperature T, where $\beta = \frac{1}{k_B T}$:

$$-\frac{\mathrm{d}}{\mathrm{d}\beta} \ln Z = -\frac{\frac{\mathrm{d}Z}{\mathrm{d}\beta}}{Z} = -\frac{\frac{\mathrm{d}}{\mathrm{d}\beta} \sum_{s} e^{-\beta E(s)}}{Z}$$

$$= -\frac{\sum_{s} \frac{\mathrm{d}}{\mathrm{d}\beta} e^{-\beta E(s)}}{Z}$$

$$= -\frac{\sum_{s} -E(s) e^{-\beta E(s)}}{Z} = \frac{\sum_{s} E(s) e^{-\beta E(s)}}{Z} = \overline{E}$$
(15)

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 6.20 (partial)

Part (a)

The partition function of a single harmonic oscillator Z is:

$$Z = \sum_{s} e^{-E(s)\beta}$$

$$= \sum_{n=0}^{\infty} e^{-nhf\beta}$$

$$= \sum_{n=0}^{\infty} (e^{-hf\beta})^{n}$$

$$= \frac{1}{1 - e^{-hf\beta}}$$
(16)

Part (b)

At temperature T, the average energy of a single harmonic oscillator \overline{E} is:

$$\overline{E} = -\frac{\mathrm{d}}{\mathrm{d}\beta} \ln Z$$

$$= -\frac{\mathrm{d}}{\mathrm{d}\beta} \ln \left(\frac{1}{1 - e^{-hf\beta}} \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}\beta} \ln \left(1 - e^{-hf\beta} \right)$$

$$= \frac{hfe^{-hf\beta}}{1 - e^{-hf\beta}}$$

$$= \frac{hf}{e^{hf\beta} - 1} = \frac{hf}{e^{\frac{hf}{k_BT}} - 1}$$
(17)

Part (c)

The total energy of a system with N oscillators U is then:

$$U = N\overline{E}$$

$$= \frac{Nhf}{e^{\frac{hf}{k_BT}} - 1}$$
(18)

Part (d)

The heat capacity of this system C is:

$$C = \frac{\partial U}{\partial T} = -Nhf \frac{-\frac{hf}{k_B T^2} e^{\frac{hf}{k_B T}}}{\left(e^{\frac{hf}{k_B T}} - 1\right)^2}$$

$$= \frac{Nh^2 f^2}{k_B T^2} \frac{e^{\frac{hf}{k_B T}}}{\left(e^{\frac{hf}{k_B T}} - 1\right)^2}$$
(19)

In the low-temperature limit:

$$\lim_{T \to 0} C = \lim_{T \to 0} \frac{Nh^2 f^2}{k_B T^2} \frac{e^{\frac{hf}{k_B T}}}{\left(e^{\frac{hf}{k_B T}} - 1\right)^2} = 0$$
 (20)

In the high-temperature limit:

$$\lim_{T \to \infty} C = \lim_{T \to \infty} \frac{Nh^2 f^2}{k_B T^2} \frac{e^{\frac{hf}{k_B T}}}{\left(e^{\frac{hf}{k_B T}} - 1\right)^2}$$

$$= \lim_{T \to \infty} \frac{Nh^2 f^2}{k_B T^2} \frac{1 + \frac{hf}{k_B T} + \dots}{\left(\frac{hf}{k_B T} + \frac{1}{2} \left(\frac{hf}{k_B T}\right)^2 + \dots\right)^2}$$

$$= \lim_{T \to \infty} \frac{Nh^2 f^2}{k_B T^2} \frac{1 + \dots}{\left(\frac{hf}{k_B T}\right)^2 + \dots}$$

$$= Nk_B$$
(21)

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 6.26

Approximating the rotational partition function Z_{rot} :

$$Z_{\text{rot}} = \sum_{i=0}^{\infty} (2j+1)e^{-\frac{j(j+1)\epsilon}{k_B T}} \approx 1 + 3e^{-\frac{2\epsilon}{k_B T}} = 1 + 3e^{-2\epsilon\beta}$$
 (22)

Using this approximation to find the average energy $\overline{E}_{\rm rot}$ and heat capacity C:

$$\overline{E}_{\text{rot}} = -\frac{\mathrm{d}}{\mathrm{d}\beta} \ln Z_{\text{rot}} \approx -\frac{\mathrm{d}}{\mathrm{d}\beta} \ln(1 + 3e^{-2\epsilon\beta}) = \frac{6\epsilon e^{-2\epsilon\beta}}{1 + 3e^{-2\epsilon\beta}}$$

$$\approx 6\epsilon e^{-2\epsilon\beta} = 6\epsilon e^{-\frac{2\epsilon}{k_B T}}$$

$$C = \frac{\partial \overline{E}}{\partial T} \approx \frac{\partial}{\partial T} 6\epsilon e^{-\frac{2\epsilon}{k_B T}}$$

$$\approx 6\epsilon \frac{2\epsilon}{k_B T^2} e^{-\frac{2\epsilon}{k_B T}} = \frac{12\epsilon^2}{k_B T^2} e^{-\frac{2\epsilon}{k_B T}}$$

$$\lim_{T \to 0} c = \lim_{T \to 0} \frac{12\epsilon^2}{k_B T^2} e^{-\frac{2\epsilon}{k_B T}} = 0$$
(23)

This result is consistent with the third law, as the heat capacity goes to 0 as the temperature goes to 0.

