PROGRAMA

- 1. INTRODUCCION
- 2. MODULO
- 3. MAQUINA
- 4. GRAMATICA
- 5. MAQUINA DE TURING

BIBLIOGRAFIA: Teoria de la computacion

PONDERACION

Examen 1, 2 40 %

Examenes Practicos 20%

Examen Final 40%

Conjuntos Finitos e Infinitos.

Cardinalidad de conjunto es numero de elementos. Ejemplo:

- $A c B \Rightarrow |A| < |B|$
- $A \subseteq B \Rightarrow |A| \le |B|$
- $|A| = 0 \Rightarrow A = \emptyset$

Equivalencia.

Dos conjuntos A y B son equivalentes si y solo si que existe una función <u>biyectiva</u> f: A→B. Ejemplo:

 $A = \{7, rojo, \{b\}\};$ $B = \{2, 4, 6\}$

¿A y B son equivalentes?

Solucion:

No es biyectiva

Dado 2 elementos diferentes su imagen debe ser distinto, entonces se llamará **INYECTIVA:** $X_1 \neq X_2 \Rightarrow f(X_1) \neq f(X_2)$

Cualquier elemento B tiene su <u>preimagen</u> A, entonces se llamará **SUBYECTIVA:** \forall y \in B, \exists x \in A tal que f(x) = y

Si no se cumple la <u>Subyectiva</u>, no se cumple la <u>Biyectiva</u>, ejemplo:

 $A = \{7, rojo, \{b\}\};$ $B = \{2, 4, 6, 8\}$

 \div A cada elemento de A no tiene su preimagen en B

¿El conjunto de los múltiplos de 17 y el Conjunto de los cuadrados perfectos son equivalentes? Ejemplo:

A: multiplo de 17 B: cuadrado perfecto

Solucion:

Conjunto Finito.

Sea I_n = {1, 2, 3, ..., n} ; n $\in N$

Un conjunto A es finito si es equivalente con I_n . Ejemplo: A = {7, rojo, {b}}; ¿A es finito? Respuesta. A es finito ya que es equivalente con I_n

Ejemplo: Conjunto de estudiantes presentes en la sala, ¿es finito?

Solucion:

Cardinalidad.

Si A y I_n son equivalentes entonces se dice que n es la cardinalidad de A y se denota por: |A| = n

Ejemplo: Cardinalidad de estudiantes presentes

Respuesta. |A| = 33 estudiantes

Conjunto Infinito.

Un conjunto es infinito si <u>no</u> es Finito

Ejemplo: R, N, Z //Numeros reales, naturales y enteros

Nota. Cuadrados perfectos y múltiplos de 17 son equivalentes. NO todos los conjuntos infinitos son equivalentes.

Conjunto Contablemente Infinito.

Un conjunto es contablemente infinito si es equivalente con N.

Conjunto Incontable.

Se dice que un conjunto es incontable si no es contable.

Conjunto Contable.

Se dice que un conjunto es contable si es finito o contablemente infinito.

Ejemplo: Sea $A = \{2, 4, 6, 8\}$; $B = \{Luis, Daniel, Maria\}$, Construir una función $f: A \rightarrow$, tal que f sea inyectiva.

Solucion:

Inyectiva. Dado 2 elementos del dominio sus Imágenes deben ser distintos.

f: A →B

f(2) = Luis

f(4) = Daniel

f(6) = Maria //no

f(8) = Maria //no

∴ No es inyectiva

Principio de las casillas.

Si A y B son conjuntos finitos no vacíos y |A| > |B| entonces no existe f: $A \rightarrow B$ tal que f sea inyectiva.

Ejemplo:
$$A = \{2,4\}$$
 $B = \{1,2,3\}$ 2 elementos \Rightarrow 3 elementos \therefore No es inyectiva

Conjunto Potencia.

Es el conjunto de los subconjuntos de A. ¿Dónde encontramos los conjuntos A? En el conjunto Potencia.

Ejemplo: $A = \{1, 2, 3\}$

a) 2^A

b) ¿Es 2^A finito?

Solucion:

∴ I₅ y 2^A son equivalentes

Resp. 2^A es finito.

