

NAT-MCH µTCA Telecom MCH Module Technical Reference Manual V 1.2 Hub Module SRIO HW Revision 1.3/1.4



# The NAT-MCH Hub Module SRIO has been designed by:

N.A.T. GmbH Kamillenweg 22 D-53757 Sankt Augustin

Phone: ++49/2241/3989-0 Fax: ++49/2241/3989-10

E-Mail: support@nateurope.com Internet: http://www.nateurope.com



### **Disclaimer**

The following documentation, compiled by N.A.T. GmbH (henceforth called N.A.T.), represents the current status of the product's development. The documentation is updated on a regular basis. Any changes which might ensue, including those necessitated by updated specifications, are considered in the latest version of this documentation. N.A.T. is under no obligation to notify any person, organization, or institution of such changes or to make these changes public in any other way.

We must caution you, that this publication could include technical inaccuracies or typographical errors.

N.A.T. offers no warranty, either expressed or implied, for the contents of this documentation or for the product described therein, including but not limited to the warranties of merchantability or the fitness of the product for any specific purpose.

In no event will N.A.T. be liable for any loss of data or for errors in data utilization or processing resulting from the use of this product or the documentation. In particular, N.A.T. will not be responsible for any direct or indirect damages (including lost profits, lost savings, delays or interruptions in the flow of business activities, including but not limited to, special, incidental, consequential, or other similar damages) arising out of the use of or inability to use this product or the associated documentation, even if N.A.T. or any authorized N.A.T. representative has been advised of the possibility of such damages.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations (patent laws, trade mark laws, etc.) and therefore free for general use. In no case does N.A.T. guarantee that the information given in this documentation is free of such third-party rights.

Neither this documentation nor any part thereof may be copied, translated, or reduced to any electronic medium or machine form without the prior written consent from N.A.T. GmbH.

This product (and the associated documentation) is governed by the N.A.T. General Conditions and Terms of Delivery and Payment.

## **Note:**

The release of the Hardware Manual is related to a certain HW board revision given in the document title. For HW revisions earlier than the one given in the document title please contact N.A.T. for the corresponding older Hardware Manual release.



# **Table of Contents**

| C  | CONVENTIONS                                  | 6              |
|----|----------------------------------------------|----------------|
| 1  | BOARD SPECIFICATION                          | 7              |
| 2  | 2 STATEMENT ON ENVIRONMENTAL PROTECTION      | 9              |
|    | 2.1 COMPLIANCE TO ROHS DIRECTIVE             | 9<br>9         |
| 3  |                                              |                |
|    | 3.1 SAFETY NOTE                              | 11<br>11<br>11 |
| 4  | 4 INTRODUCTION                               |                |
| 5  | 5 HUB MODULE SRIO BASICS                     | 13             |
| 6  | 6 HUB MODULE SRIO BLOCK DIAGRAM              | 14             |
| 7  | 7 BOARD FEATURES                             | 15             |
| 8  | B LOCATION OVERVIEW                          | 16             |
| 9  | FUNCTIONAL BLOCKS                            | 18             |
|    | 9.1 SRIO SWITCHES                            |                |
| 10 | 10 NAT-MCH HUB MODULE SRIO PROGRAMMING NOTES | 21             |
|    | 10.1 SPI INTERFACE                           | 21<br>21       |
|    | 10.3.2 PCB Revision Register                 | 22             |
|    | 10.3.4 Hub Module SRIO Type                  |                |
|    | 10.3.7 TSI1 Mode Select Register             |                |
| 11 | 11 CONNECTORS                                | 28             |
|    | 11.1 CONNECTOR OVERVIEW                      | 29<br>31       |



| 11.5 CONNECTOR CON4: INTERFACE TO UPLINK MODULE                   | 33 |
|-------------------------------------------------------------------|----|
| 11.6 CONNECTOR JP1: JTAG INTERFACE TO THE TSI578 CHIPS            | 35 |
| 12 KNOWN BUGS / RESTRICTIONS                                      | 36 |
| APPENDIX A: REFERENCE DOCUMENTATION                               | 37 |
| APPENDIX B: DOCUMENT'S HISTORY                                    | 38 |
|                                                                   |    |
|                                                                   |    |
|                                                                   |    |
| List of Figure 2                                                  |    |
| List of Figures                                                   |    |
|                                                                   |    |
| Figure 1: Connectors of the NAT-MCH Hub Module SRIO (top view)    |    |
| rigule 2. Connectors of the NAT-WCH Hub Module SKIO (bottom view) | 20 |
|                                                                   |    |
|                                                                   |    |
|                                                                   |    |
| List of Tables                                                    |    |
| List of Tables                                                    |    |
|                                                                   | _  |
| List of used Abbreviations                                        |    |
| NAT-MCH Hub Module SRIO Features                                  |    |
| NAT-MCH Hub Module SRIO Technical Features                        |    |
| 1 <sup>st</sup> Switch to Fabric Port Mapping.                    | 18 |
| 2 <sup>nd</sup> Switch to Fabric Port Mapping.                    |    |
| Board Identifier Register                                         |    |
| PCB_REV Register                                                  |    |
| FW_VERSION Register                                               |    |
| SRIO_TYPE Register                                                |    |
| SRIO_UPLINK_OPT Register                                          | 23 |
| SRIO_UPLINK_OPT - Register Bits                                   | 23 |
| MISC_CTL Register                                                 | 24 |
| MISC_CTL - Register Bits                                          | 24 |
| TSI1_MODESEL Register                                             |    |
| TSI1_MODESEL - Register Bits                                      |    |
| TSI2_MODESEL Register                                             |    |
| TSI2_MODESEL - Register Bits                                      |    |
| PLL_CTL Register                                                  |    |
| TSI2_MODESEL - Register Bits                                      |    |
| Hub Module SRIO backplane connector CON1                          |    |
| Hub Module x48 Extender backplane connector CON2                  |    |
| Connector to CLK-Module CON3                                      |    |



JTAG Connector JP1......35

## **Conventions**

If not otherwise specified, addresses and memory maps are written in hexadecimal notation, identified by 0x.

Table 1 gives a list of the abbreviations used in this document:

### **List of used Abbreviations**

| Abbreviation | Description                                      |
|--------------|--------------------------------------------------|
| AMC          | Advanced Mezzanine Card                          |
| b            | bit, binary                                      |
| В            | byte                                             |
| ColdFire     | MCF5470                                          |
| CPU          | Central Processing Unit                          |
| CU           | Cooling Unit                                     |
| DMA          | Direct Memory Access                             |
| E1           | 2.048 Mbit G.703 Interface                       |
| FLASH        | Programmable ROM                                 |
| FRU          | Field Replaceable Unit                           |
| J1           | 1,544 Mbit G.703 Interface (Japan)               |
| K            | kilo (factor 400 in hex, factor 1024 in decimal) |
| LIU          | Line Interface Unit                              |
| M            | mega (factor 10,0000 in hex, factor 1,048,576 in |
|              | decimal)                                         |
| MCH          | μTCA Carrier Hub                                 |
| MHz          | 1,000,000 Herz                                   |
| μTCA         | Micro Telecommunications Computing Architecture  |
| PCIe         | PCI Express                                      |
| PCI          | Peripheral Component Interconnect                |
| PM           | Power Manager                                    |
| RAM          | Random Access Memory                             |
| ROM          | Read Only Memory                                 |
| SDRAM        | Synchronous Dynamic RAM                          |
| SRIO         | Serial Rapid IO                                  |
| SSC          | Spread Spectrum Clock                            |
| T1           | 1,544 Mbit G.703 Interface (USA)                 |



# 1 Board Specification

### **NAT-MCH Hub Module SRIO Features**

Power Consumption 12V / 1.2A max. (only Hub Module SRIO x48)

Environmental Conditions

Temperature (operating):  $0^{\circ}$ C to  $+50^{\circ}$ C with forced cooling

Temperature (storage):  $-40^{\circ}$ C to  $+85^{\circ}$ C

Humidity: 10 % to 90 % rh noncondensing

Standards Compliance Rapid IO Interconnect Specification Rev. 1.3

PICMG μTCA.0 Rev. 1.0

PICMG AMC.0 Rev. 2.0

PICMG AMC.4 Rev. 1.0

PICMG SFP.0 Rev. 1.0 (System Fabric Plane Format)

IPMI Specification v2.0 Rev. 1.0

Product Safety The board complies with EN60950 and UL1950



### **NAT-MCH Hub Module SRIO Technical Features**

- configurable x1 or x4 SRIO interfaces to 12 AMC modules
- operation baud rate per data lane 1.25 Gbit/s, 2.5 Gbit/s or 3.125 Gbit/s
- Optional face plate uplinks or backplane update fabric
- Transport layer error management
- low latency packet transport
- configuration interface via on board microcontroller
- 3 onboard temperature sensors



## 2 Statement on Environmental Protection

## 2.1 Compliance to RoHS Directive

Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) predicts that all electrical and electronic equipment being put on the European market after June 30th, 2006 must contain lead, mercury, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) and cadmium in maximum concentration values of 0.1% respective 0.01% by weight in homogenous materials only.

As these hazardous substances are currently used with semiconductors, plastics (i.e. semiconductor packages, connectors) and soldering tin any hardware product is affected by the RoHS directive if it does not belong to one of the groups of products exempted from the RoHS directive.

Although many of hardware products of N.A.T. are exempted from the RoHS directive it is a declared policy of N.A.T. to provide all products fully compliant to the RoHS directive as soon as possible. For this purpose since January 31st, 2005 N.A.T. is requesting RoHS compliant deliveries from its suppliers. Special attention and care has been paid to the production cycle, so that wherever and whenever possible RoHS components are used with N.A.T. hardware products already.

# 2.2 Compliance to WEEE Directive

Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) predicts that every manufacturer of electrical and electronical equipment which is put on the European market has to contribute to the reuse, recycling and other forms of recovery of such waste so as to reduce disposal. Moreover this directive refers to the Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS).

Having its main focus on private persons and households using such electrical and electronic equipment the directive also affects business-to-business relationships. The directive is quite restrictive on how such waste of private persons and households has to be handled by the supplier/manufacturer, however, it allows a greater flexibility in business-to-business relationships. This pays tribute to the fact with industrial use electrical and electronical products are commonly integrated into larger and more complex environments or systems that cannot easily be split up again when it comes to their disposal at the end of their life cycles.



As N.A.T. products are solely sold to industrial customers, by special arrangement at time of purchase the customer agreed to take the responsibility for a WEEE compliant disposal of the used N.A.T. product. Moreover, all N.A.T. products are marked according to the directive with a crossed out bin to indicate that these products within the European Community must not be disposed with regular waste.

If you have any questions on the policy of N.A.T. regarding the Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) or the Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) please contact N.A.T. by phone or e-mail.

# 2.3 Compliance to CE Directive

Compliance to the CE directive is declared. A 'CE' sign can be found on the PCB.



## 3 Installation

## 3.1 Safety Note

To ensure proper functioning of the **NAT-MCH Hub Module SRIO** during its usual lifetime take refer to the safety note section of the **NAT-MCH BASIC-Module** Technical Reference Manual before handling the board.

## 3.2 Installation Prerequisites and Requirements

#### **IMPORTANT**

Before powering up check this section for installation prerequisites and requirements

### 3.2.1 Requirements

The installation requires a **NAT-MCH Basic-Module** and a **CLK Module** where the **Hub Module SRIO** can be mechanically fixed on to. The **Hub Module SRIO** must be completely connected and joint to the complete PCB stack (**Basic-Module** and **CLK Module**), before the **NAT-MCH** can be stacked into a MicroTCA backplane (as one device). For further requirements refer to the requirements section of the **NAT-MCH BASIC-Module** Technical Reference Manual.

### 3.2.2 Power supply

The power supply for the **NAT-MCH Hub Module SRIO** must meet the following specifications:

+12 V / 1.2 A max. (only **Hub Module SRIO x48**, in addition to other PCBs of the **NAT-MCH**).

#### 3.2.3 Automatic Power Up

Power ramping/monitoring and power up reset generation is done by the **NAT-MCH Basic-Module** 

In the following situations the **NAT-MCH Basic-Module** will automatically be reset and proceed with a normal power up.

• The voltage sensor generates a reset, when +12 V voltage level drops below 8V.



### 4 Introduction

The **NAT-MCH** consists of a **Basic-Module**, which can be expanded with additional PCBs. The **Basic-Module** satisfies the basic requirements of the MicroTCA Specification for a MicroTCA Carrier Hub. The main capabilities of the **Basic-Module** are:

- management of up to 12 AMCs, two cooling units (CUs) and one or more power modules (PMs)
- Gigabit Ethernet Hub Function for Fabric A (up to 12 AMCs) and for the Update Fabric A to a second (redundant) **NAT-MCH**

To meet also the optional requirements of the MicroTCA specification, a **CLK-Module** and different **HUB Modules** are available. With the **Clock-Module** the following functions can be enabled:

• generation and distribution of synchronized clock signals for up to 12 AMCs

Through the extension of the **NAT-MCH** with a **HUB Module**, hub functions for fabric D to G can be enabled. With the different versions the customers have the opportunity to choose a **HUB Module** that fits best to their applications. The versions differ in:

- max. number of supported AMCs (up to 6 / up to 12)
- supported protocols:
  - o PCI Express
  - o Serial Rapid IO
  - o 10Gigabit Ethernet

The features of the individual modules are described in more detail in the corresponding Technical Reference Manuals.

A general arrangement of the different modules of a **NAT-MCH** is shown in *Figure 1*.

Figure 1: Arrangement of different NAT-MCH Modules



This Technical Reference Manual describes the **Hub Module SRIO**.



## 5 Hub Module SRIO Basics

The **Hub Module SRIO** is an expansion Module of the **NAT-MCH**. In addition to the **CLK Module** it can be mounted on the **NAT-MCH Basic-Module**. The **Hub Module SRIO** is in a 6 Slot ("**x24**") and in a 12 slot ("**x48**") option available. With the **Hub Module SRIO** the 3<sup>rd</sup> tongue of the **NAT-MCH** connector to the MicroTCA backplane is always installed. With the **x48** option, additional the 4<sup>th</sup> tongue is installed. The **NAT-MCH Hub Module SRIO** implements the following major features:

- support of SRIO x4 switching function for fabrics D to G of up to 6 AMCs (**Hub Module SRIO x24**)
- support of SRIO x4 switching function for fabrics D to G of up to 12 AMCs (**Hub Module SRIO x48**)
- support of up to two SRIO x4 face plate uplinks and/or a SRIO x4 fabric update to the second MCH (**Uplink Option**)

The **Hub Module SRIO** contains out of two Tundra TSI578 SRIO switches. The first SRIO switch connects to AMC 1-6. This switch is subsequent referred as  $1^{st}$  switch or  $1^{st}$  TSI578. The second SRIO switch connects to AMC 7-12. This switch is subsequent referred as  $2^{nd}$  switch or  $2^{nd}$  TSI578.



# 6 Hub Module SRIO Block Diagram

Only for x48 tongue 4 (Harting Plug) to AMC 1-6 fabric D to G x4 SRIO **NAT-MCH HUB-Module** x48 ext Connector between 3rd and 4th PCB Micro-I<sup>2</sup>C Temp.controller sensor 2<sup>nd</sup> Serial tongue 3 (Harting Plug) Rapid IO ŜPI/ I<sup>2</sup>C **SWITCH** ľC Temp.-Connector to Basic-PCB sensor Infiniband x4 SRIO X4 SRIO Connector two x4 SRIO available since HW version V1.4 I<sup>2</sup>C Temp.-1<sup>st</sup> Serial sensor Rapid IO to AMC 1-6 fabric D to G **SWITCH** I<sup>2</sup>C x4 SRIO **NAT-MCH HUB-Module SRIO** 

Figure 2: Block Diagram of the NAT-MCH Hub Module SRIO

- The HUB-PCB x48\_ext and the 2<sup>nd</sup> SRIO switch are only assembled in the x48 version.
- MUX1 and MUX2 with the optional faceplate Uplinks or Update Fabrics are first implemented in hardware version v1.4.
- refer to chapter 9.2 for a more detailed description of the MUX function

<sup>\*</sup> Only the Update Fabrics for fabric D and E are connected via the tongue 3 backplane connector. The Update Fabrics for fabric F and G are connected via the tongue 4 backplane connector. To simplify the diagram this is not shown.



### 7 BOARD FEATURES

#### • SRIO Switch

The board is equipped with two Tundra TSI578 Serial Rapid IO switches, which provide non-blocking high performance data switching functionality. Data integrity and health checks are performed by hardware. The TSI578 offers 12.5 Gbit/s bandwidth per port (x4) combined with a low latency packet transport. Additional a flexible port width (x1 or x4) and different operating baud rates (1.25Gbit/s, 2.5Gbit/s and 3.125Gbit/s) can be selected.

### • Microprocessor

To configure the two switches the board is equipped with an Atmel 8-bit microcontroller.

#### Interfaces

- The **NAT-MCH Hub Module SRIO** implements interfaces to connect fabrics D to G of up to 12 AMCs.
- As an additional option the **NAT-MCH Hub Module SRIO** supports up to two x4 SRIO uplinks on the face plate. Or it supports an Update Fabric to the second MCH and only one front plate uplinks. (*first available since HW v1.4*)

#### • Interface to other NAT-MCH PCBs

**Basic-Module**:

- The Microcontroller on the **Hub Module SRIO** can be updated by the CPU on the **Basic-Module** via a SPI interface. Normal communication between the Microprocessor and the CPU is done by IPMI messages via the I<sup>2</sup>C interface.



## 8 Location Overview

Figure 3 and Figure 4 are showing the position of important components of the **NAT-MCH Hub Module SRIO** hardware version v1.3.

Figure 3: Location diagram of the NAT-MCH Hub Module SRIO v1.3 (top-view)



Figure 4: Location diagram of the NAT-MCH Hub Module SRIO v1.3 (bottom-view)





Figure 5 and Figure 6 are showing the position of important components of the **NAT-MCH Hub Module SRIO** hardware version v1.4.

Figure 5: Location diagram of the NAT-MCH Hub Module SRIO v1.4 (top-view)



Figure 6: Location diagram of the NAT-MCH Hub Module SRIO v1.4 (bottom-view)





## 9 Functional Blocks

The **NAT-MCH Hub Module SRIO** is divided into a number of functional blocks, which are described in the following paragraphs.

### 9.1 SRIO Switches

Each of the twoTSI578 SRIO Switches supports 6 ports, each with 4 lanes (SRIO x4), in order to connect 6 AMCs. Two ports with 4 lanes are used to connect the two Switches. One of these two connections can optionally be used to connect to different Uplink options (refer to ...)

Both TSI578 can be configured by strapping pins, by loading an EEPROM, or by accessing the TSI register interface via I<sup>2</sup>C from the microcontroller.

A standard configuration is done by the microprocessor and resistors, by setting the strapping pins. The values of the strapping signals that are connected to the microcontroller can be controlled by programming a register in the microcontroller.

These standard settings can be changed by reading the EEPROM after a reset, or by changing the values of the TSI register interface with the help of the microcontroller (via I<sup>2</sup>C interface).

By default the EEPROM contains no information.

The first port of the switch is <u>not</u> connected to the first port of fabric D-G, and so on. To ease routing of the differential fabrics between the switches and the backplane connectors the following allocation has been selected:

1<sup>st</sup> Switch to Fabric Port Mapping

| # AMC Slot<br>Fabric D-G                      | #Port<br>1 <sup>st</sup> TSI578 |
|-----------------------------------------------|---------------------------------|
|                                               |                                 |
| AMC1                                          | 14                              |
| AMC2                                          | 6                               |
| AMC3                                          | 12                              |
| AMC4                                          | 4                               |
| AMC5                                          | 10                              |
| AMC6                                          | 2                               |
| connection to port # 0 of the 2 <sup>nd</sup> | 0                               |
| TSI578                                        |                                 |
| connection to port # 8 of the 2 <sup>nd</sup> | 8                               |
| TSI578 or to FP Uplink1 or to                 |                                 |
| Fabric Update, depending on                   |                                 |
| Uplink Option                                 |                                 |



2<sup>nd</sup> Switch to Fabric Port Mapping

| # AMC Slot<br>Fabric D-G                                                                           | #Port<br>2 <sup>nd</sup> TSI578 |
|----------------------------------------------------------------------------------------------------|---------------------------------|
| AMC7                                                                                               | 14                              |
| AMC8                                                                                               | 6                               |
| AMC9                                                                                               | 12                              |
| AMC10                                                                                              | 4                               |
| AMC11                                                                                              | 10                              |
| AMC12                                                                                              | 2                               |
| connection to port # 0 of the 1 <sup>st</sup><br>PEX8532                                           | 0                               |
| connection to port # 8 of the 1 <sup>st</sup> PEX8532 or to FP Uplink2, depending on Uplink Option | 8                               |

# 9.2 Uplink Option

With the uplink option it is possible to connect to the SRIO fabric via up to two face plate connectors or through a fabric update channel that connects to a second MCH.

The Uplink option can be configured in various modes of operation:

| Mode 0: | No uplink channels used, the preserved X4 link is  |
|---------|----------------------------------------------------|
|         | used as additional interconnect between the two    |
|         | SRIO chips (default setting).                      |
|         | This mode is compatible with previous releases of  |
|         | the SRIO hub module (V1.3 and V1.2).               |
| Mode 1: | Dual Uplink mode – one X4 link of each SRIO        |
|         | chip is routed to the faceplate connectors.        |
| Mode 2: | Mixed Uplink / Backplane Update function. One      |
|         | X4 link is routed to one face plate connector, the |
|         | other X4 link is routed to the fat pipe update     |
|         | channel in the backplane.                          |

The individual modes can configured within the MCH configuration settings (SRIO setting) and are realized by additional multiplexers. Figure 7 gives a detailed overview, how the uplink option is realized and how the multiplexers are connected.





Figure 7: Detailed Block Diagram of Uplink Option

### 9.3 Microcontroller

An 8-bit Atmel microcontroller resides on the **Hub Module SRIO**. The microcontroller can be updated by the CPU on the **Base-Module** via the SPI interface. Normal communication between the CPU and the microcontroller is done by IPMI messages over the I<sup>2</sup>C interface.

The strapping options and the reset signal of the switches can be controlled through programming registers in the microcontroller.

Furthermore each switch is connected to a separate I<sup>2</sup>C bus. Via these busses the microcontroller has access to the register interface of the switches.

Also three temperature sensors are connected to the I<sup>2</sup>C bus that connects the 1<sup>st</sup> Switch.

The microcontroller makes these sensors and the register interfaces of the switches accessible to the CPU on the **Base-Module** via IPMI.



# 10 NAT-MCH Hub Module SRIO Programming Notes

### 10.1 SPI Interface

The SPI interface on the **Hub Module SRIO** is only used for maintenance purposes, e.g. updating the microcontroller firmware.

### 10.2 I<sup>2</sup>C Interface

The I<sup>2</sup>C interface is the main communication interface between the microcontroller and the CPU of the Basic-Module. All communication is based on IPMI Messages.

## 10.3 Register

A register interface is implemented in the Atmel microcontroller. With the help of this interface different functions can be controlled and various identification values can be red.

### 10.3.1 Board Identifier Register

The Board Identifier Register contains the Board ID that identifies the board as **NAT-MCH Hub Module SRIO**.

### **Board Identifier Register**

|        | Board Identifier - Address 0x00 |          |   |   |   |   |   |   |  |  |  |  |
|--------|---------------------------------|----------|---|---|---|---|---|---|--|--|--|--|
|        | Default value 0xb8              |          |   |   |   |   |   |   |  |  |  |  |
| Bit    | 7                               | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
| Access | R                               | R        | R | R | R | R | R | R |  |  |  |  |
| Func   |                                 | BOARD_ID |   |   |   |   |   |   |  |  |  |  |



### 10.3.2 PCB Revision Register

The PCB Revision Register contains the revision code of the **NAT-MCH Hub Module SRIO**.

PCB\_REV Register

|        | PCB Revision - Address 0x01 |         |   |     |   |   |   |   |  |  |  |  |
|--------|-----------------------------|---------|---|-----|---|---|---|---|--|--|--|--|
|        | Default value 0xXX          |         |   |     |   |   |   |   |  |  |  |  |
| Bit    | 7                           | 6       | 5 | 4   | 3 | 2 | 1 | 0 |  |  |  |  |
| Access | R                           | R       | R | R R |   | R | R | R |  |  |  |  |
| Func   |                             | PCB_REV |   |     |   |   |   |   |  |  |  |  |

Bit 7 to 4 contains the major revision and bit 3 to 0 contains the minor revision. That means if the PCB revision is e.g. v1.3 the PCB Revision register contains the value 0x13.

#### 10.3.3 Firmware Version

The Firmware Version Register contains the revision of the firmware, which is running on the Atmel on the **NAT-MCH Hub Module SRIO**.

FW\_VERSION Register

|        | Firmware Version – Address 0x02 |            |   |   |   |   |   |   |  |  |  |  |
|--------|---------------------------------|------------|---|---|---|---|---|---|--|--|--|--|
|        | Default value 0xXX              |            |   |   |   |   |   |   |  |  |  |  |
| Bit    | 7                               | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
| Access | R                               | R          | R | R | R | R | R | R |  |  |  |  |
| Func   |                                 | Atmel_vers |   |   |   |   |   |   |  |  |  |  |

Bit 7 to 4 contains the major version and bit 3 to 0 contains the minor version. That means if the Firmware running on the Atmel is v1.3 the Firmware Version register contains the value 0x13.

## 10.3.4 Hub Module SRIO Type

The Hub Module SRIO Type Register contains the information if the **Hub Module SRIO** is a type x24 or x48.

SRIO\_TYPE Register

|                       | Hub Module SRIO Type - Address 0x03 |              |   |   |   |   |   |   |  |  |  |  |
|-----------------------|-------------------------------------|--------------|---|---|---|---|---|---|--|--|--|--|
| Default value 0x24/48 |                                     |              |   |   |   |   |   |   |  |  |  |  |
| Bit                   | 7                                   | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
| Access                | R                                   | R            | R | R | R | R | R | R |  |  |  |  |
| Func                  |                                     | SRIO_Mod_Typ |   |   |   |   |   |   |  |  |  |  |



## 10.3.5 SRIO Uplink Option

The SRIO Uplink Option Register controls which Uplink Option the **Hub Module SRIO** supports.

## SRIO\_UPLINK\_OPT Register

|        | SRIO Uplink Option - Address 0x04 |     |     |     |     |     |          |          |  |  |  |  |  |
|--------|-----------------------------------|-----|-----|-----|-----|-----|----------|----------|--|--|--|--|--|
|        | Default value 0x03                |     |     |     |     |     |          |          |  |  |  |  |  |
| Bit    | 7                                 | 6   | 5   | 4   | 3   | 2   | 1        | 0        |  |  |  |  |  |
| Access | R/W                               | R/W | R/W | R/W | R/W | R/W | R/W      | R/W      |  |  |  |  |  |
| Func   |                                   |     |     | -   |     |     | MUX2_SEL | MUX1_SEL |  |  |  |  |  |

## SRIO\_UPLINK\_OPT - Register Bits

| Bit  | Name     | Function                                                                                                                                            |  |          |          |                   |                   |             |                  |               |
|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|----------|----------|-------------------|-------------------|-------------|------------------|---------------|
| 0    | MUX1_SEL | This bit controls the switch position of the first Multiplexer. This bit controls together with the MUX1_SEL bit which Uplink Option is supported.  |  | MUX2_SEL | MUX1_SEL | Switch con port 0 | Switch con port 8 | Uplink1     | Uplink2          | Fabric update |
| 1    | MUX2_SEL | This bit controls the switch position of the second Multiplexer. This bit controls together with the MUX1_SEL bit which Uplink Option is supported. |  | 0 0 1 1  | 0 1 0 1  | ✓<br>✓<br>✓       | ×<br>×<br>×       | ×<br>×<br>× | ✓<br>×<br>✓<br>× | ×<br>×<br>×   |
| [72] | -]       | <b>no function</b> write as 0 and ignore when read                                                                                                  |  |          |          |                   |                   |             |                  |               |



# 10.3.6 Miscellaneous Control Register

The miscellaneous control Register the value of the various strapping and reset pins of the both TSI578.

MISC\_CTL Register

|        | Miscellaneous Control - Address 0x10 |     |                   |     |                       |                       |                   |                   |
|--------|--------------------------------------|-----|-------------------|-----|-----------------------|-----------------------|-------------------|-------------------|
|        | Default value 0xA3                   |     |                   |     |                       |                       |                   |                   |
| Bit    | 7                                    | 6   | 5                 | 4   | 3                     | 2                     | 1                 | 0                 |
| Access | R/W                                  | R/W | R/W               | R/W | R/W                   | R/W                   | R/W               | R/W               |
| Func   | Func TSI2_IO_SPEED[10]               |     | TSI1_IO_SPEED[10] |     | TCSI2_I2C_<br>DISABLE | TCSI1_I2C_<br>DISABLE | TSI2_HARD_<br>RST | TSI1_HARD_<br>RST |

### **MISC\_CTL - Register Bits**

| Bit  | Name                  | Function                                                                                  |
|------|-----------------------|-------------------------------------------------------------------------------------------|
| 0    | TSI1_HARD_<br>RST     | This bit controls the HARD_RST_b pin of the first TSI578                                  |
|      |                       | Writing a "0" into this bit resets the whole TSI578                                       |
| 1    | TSI2_HARD_<br>RST     | This bit controls the HARD_RST_b pin of the second TSI578                                 |
|      |                       | Writing a "0" into this bit resets the whole TSI578                                       |
| 2    | TSI1_I2C_<br>DISABLE  | This bit controls the I2C_DISABLE pin of the first TSI78                                  |
|      |                       | When this bit is set the TSI578 will not attempt register values from the I2C Bus.        |
| 3    | TSI2_I2C_<br>DISABLE  | This bit controls the I2C_DISABLE pin of the second TSI578                                |
|      |                       | Refer to "TSI1_I2C_DISABLE" for functional description.                                   |
| [54] | TSI1_IO_<br>SPEED[10] | These bits control the SP_IO_SPEED pins of the first TSI578                               |
|      |                       | These bits select the default serial port frequency of all ports of the dedicated TSI578. |
|      |                       | 00 = 1.25 Gbit/s                                                                          |
|      |                       | 01 = 2.5 Gbit/s<br>10 = 3.125 Gbit/s                                                      |
|      |                       | 11 = illegal                                                                              |
| [76] | TSI2_IO_<br>SPEED[10] | These bits control the SP_IO_SPEED pins of the first TSI578                               |
|      |                       | Refer to "TSI1_IO_SPEED" for functional description.                                      |



## 10.3.7 TSI1 Mode Select Register

The TSI1 Mode Select Register controls the MODESEL pins of the first TSI578.

TSI1\_MODESEL Register

|        | TSI1 Mode Select - Address 0x11 |                       |                       |                      |                      |                      |                      |                      |
|--------|---------------------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|        | Default value 0x00              |                       |                       |                      |                      |                      |                      |                      |
| Bit    | 7                               | 6                     | 5                     | 4                    | 3                    | 2                    | 1                    | 0                    |
| Access | R/W                             | R/W                   | R/W                   | R/W                  | R/W                  | R/W                  | R/W                  | R/W                  |
| Func   | TSI1_SP14_<br>MODESEL           | TSI1_SP12_<br>MODESEL | TSI1_SP10_<br>MODESEL | TSI1_SP8_<br>MODESEL | TSI1_SP6_<br>MODESEL | TSI1_SP4_<br>MODESEL | TSI1_SP2_<br>MODESEL | TSI1_SP0_<br>MODESEL |

TSI1\_MODESEL - Register Bits

| Bit | Name                 | Function                                                                                                              |
|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0   | TSI1_SP0<br>MODESEL  | This bit controls the SP0_MODESEL pin of the first TSI578                                                             |
|     |                      | This bit selects the serial port operating mode.                                                                      |
|     |                      | 0 = Port n operates in  x4  mode (port n + 1  is not available).<br>1 = Port n and n + 1  are operating in  x1  mode. |
| 1   | TSI1_SP2<br>MODESEL  | This bit controls the SP2_MODESEL pin of the first TSI578  Refer to "TSI1_SP0_MODESEL" for functional description.    |
| 2   | TSI1_SP4             | This bit controls the SP4_MODESEL pin of the first TSI578                                                             |
|     | MODESEL              | Refer to "TSI1_SP0_MODESEL" for functional description.                                                               |
| 3   | TSI1_SP6<br>MODESEL  | This bit controls the SP6_MODESEL pin of the first TSI578  Refer to "TSI1_SP0_MODESEL" for functional description.    |
| 4   | TSI1_SP8<br>MODESEL  | This bit controls the SP8_MODESEL pin of the first TSI578                                                             |
|     |                      | Refer to "TSI1_SP0_MODESEL" for functional description.                                                               |
| 5   | TSI1_SP10<br>MODESEL | This bit controls the SP10_MODESEL pin of the first TSI578                                                            |
|     | TGI1 GD12            | Refer to "TSI1_SP0_MODESEL" for functional description.                                                               |
| 6   | TSI1_SP12<br>MODESEL | This bit controls the SP12_MODESEL pin of the first TSI578 Refer to "TSI1_SP0_MODESEL" for functional description.    |
| 7   | TSI1_SP14<br>MODESEL | This bit controls the SP14_MODESEL pin of the first TSI578 Refer to "TSI1_SP0_MODESEL" for functional description.    |



## 10.3.8 TSI2 Mode Select Register

The TSI2 Mode Select Register controls the MODESEL pins of the second TSI578.

TSI2\_MODESEL Register

|        | TSI2 Mode Select - Address 0x12 |                       |                       |                      |                      |                      |                      |                      |
|--------|---------------------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|        | Default value 0x00              |                       |                       |                      |                      |                      |                      |                      |
| Bit    | 7                               | 6                     | 5                     | 4                    | 3                    | 2                    | 1                    | 0                    |
| Access | R/W                             | R/W                   | R/W                   | R/W                  | R/W                  | R/W                  | R/W                  | R/W                  |
| Func   | TSI2_SP14_<br>MODESEL           | TSI2_SP12_<br>MODESEL | TSI2_SP10_<br>MODESEL | TSI2_SP8_<br>MODESEL | TSI2_SP6_<br>MODESEL | TSI2_SP4_<br>MODESEL | TSI2_SP2_<br>MODESEL | TSI2_SP0_<br>MODESEL |

TSI2\_MODESEL - Register Bits

| Bit | Name                 | Function                                                                                                              |
|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0   | TSI2_SP0<br>MODESEL  | This bit controls the SP0_MODESEL pin of the first TSI578                                                             |
|     |                      | This bit selects the serial port operating mode.                                                                      |
|     |                      | 0 = Port n operates in  x4  mode (port n + 1  is not available).<br>1 = Port n and n + 1  are operating in  x1  mode. |
| 1   | TSI2_SP2<br>MODESEL  | This bit controls the SP2_MODESEL pin of the first TSI578  Refer to "TSI2_SP0_MODESEL" for functional description.    |
| 2   | TSI2_SP4             | This bit controls the SP4_MODESEL pin of the first TSI578                                                             |
|     | MODESEL              | Refer to "TSI2_SP0_MODESEL" for functional description.                                                               |
| 3   | TSI2_SP6<br>MODESEL  | This bit controls the SP6_MODESEL pin of the first TSI578  Refer to "TSI2_SP0_MODESEL" for functional description.    |
| 4   | TSI2 SP8             | This bit controls the SP8_MODESEL pin of the first TSI578                                                             |
|     | MODESEL              | Refer to "TSI2_SP0_MODESEL" for functional description.                                                               |
| 5   | TSI2_SP10            | This bit controls the SP10_MODESEL pin of the first TSI578                                                            |
|     | MODESEL              | Refer to "TSI2_SP0_MODESEL" for functional description.                                                               |
| 6   | TSI2_SP12            | This bit controls the SP12_MODESEL pin of the first TSI578                                                            |
|     | MODESEL              | Refer to "TSI2_SP0_MODESEL" for functional description.                                                               |
| 7   | TSI2_SP14<br>MODESEL | This bit controls the SP14_MODESEL pin of the first TSI578                                                            |
|     | MODESEL              | Refer to "TSI2_SP0_MODESEL" for functional description.                                                               |



## 10.3.9 PLL Control Register

The PLL Control Register controls the PLL that generates the reference clock for both TSI578.

PLL\_CTL Register

|        | PLL Control - Address 0x13 |     |     |     |     |     |     |         |
|--------|----------------------------|-----|-----|-----|-----|-----|-----|---------|
|        | Default value 0x00         |     |     |     |     |     |     |         |
| Bit    | 7                          | 6   | 5   | 4   | 3   | 2   | 1   | 0       |
| Access | R/W                        | R/W | R/W | R/W | R/W | R/W | R/W | R/W     |
| Func   | -                          | -   | •   | -   | •   | -   | -   | PLL_RST |

TSI2\_MODESEL - Register Bits

| Bit  | Name    | Function                                    |
|------|---------|---------------------------------------------|
| 0    | PLL_RST | Setting this bit holds the PLL in reset.    |
| [71] | -       | no function write as 0 and ignore when read |



## 11 Connectors

### 11.1 Connector Overview

Figure 1: Connectors of the NAT-MCH Hub Module SRIO (top view)



Figure 2: Connectors of the NAT-MCH Hub Module SRIO (bottom view)



Please refer to the following tables to look up the pin assignment of the **NAT-MCH Hub Module SRIO**.



## 11.2 NAT-MCH Hub Module SRIO Connector CON1

**Hub Module SRIO backplane connector CON1** 

| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 1       | GND        | GND        | 170     |
| 2       | RSVD       | RSVD       | 169     |
| 3       | RSVD       | RSVD       | 168     |
| 4       | GND        | GND        | 167     |
| 5       | RSVD       | RSVD       | 166     |
| 6       | RSVD       | RSVD       | 165     |
| 7       | GND        | GND        | 164     |
| 8       | TxFUD+     | RxFUD+     | 163     |
| 9       | TxFUD-     | RxFUD-     | 162     |
| 10      | GND        | GND        | 161     |
| 11      | TxFUE+     | RxFUE+     | 160     |
| 12      | TxFUE-     | RxFUE-     | 159     |
| 13      | GND        | GND        | 158     |
| 14      | TxFD1+     | RxFD1+     | 157     |
| 15      | TxFD1-     | RxFD1-     | 156     |
| 16      | GND        | GND        | 155     |
| 17      | TxFE1+     | RxFE1+     | 154     |
| 18      | TxFE1-     | RxFE1-     | 153     |
| 19      | GND        | GND        | 152     |
| 20      | TxFF1+     | RxFF1+     | 151     |
| 21      | TxFF1-     | RxFF1-     | 150     |
| 22      | GND        | GND        | 149     |
| 23      | TxFG1+     | RxFG1+     | 148     |
| 24      | TxFG1-     | RxFG1-     | 147     |
| 25      | GND        | GND        | 146     |
| 26      | TxFD2+     | RxFD2+     | 145     |
| 27      | TxFD2-     | RxFD2-     | 144     |
| 28      | GND        | GND        | 143     |
| 29      | TxFE2+     | RxFE2+     | 142     |
| 30      | TxFE2-     | RxFE2-     | 141     |
| 31      | GND        | GND        | 140     |
| 32      | TxFF2+     | RxFF2+     | 139     |
| 33      | TxFF2-     | RxFF2-     | 138     |
| 34      | GND        | GND        | 137     |
| 35      | TxFG2+     | RxFG2+     | 136     |
| 36      | TxFG2-     | RxFG2-     | 135     |
| 37      | GND        | GND        | 134     |





| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 38      | TxFD3+     | RxFD3+     | 133     |
| 39      | TxFD3-     | RxFD3-     | 132     |
| 40      | GND        | GND        | 131     |
| 41      | TxFE3+     | RxFE3+     | 130     |
| 42      | TxFE3-     | RxFE3-     | 129     |
| 43      | GND        | GND        | 128     |
| 44      | TxFF3+     | RxFF3+     | 127     |
| 45      | TxFF3-     | RxFF3-     | 126     |
| 46      | GND        | GND        | 125     |
| 47      | TxFG3+     | RxFG3+     | 124     |
| 48      | TxFG3+     | RxFG3-     | 123     |
| 49      | GND        | GND        | 122     |
| 50      | TxFD4+     | RxFD4+     | 121     |
| 51      | TxFD4-     | RxFD4-     | 120     |
| 52      | GND        | GND        | 119     |
| 53      | TxFE4+     | RxFE4+     | 118     |
| 54      | TxFE4-     | RxFE4-     | 117     |
| 55      | GND        | GND        | 116     |
| 56      | TxFF4+     | RxFF4+     | 115     |
| 57      | TxFF4-     | RxFF4-     | 114     |
| 58      | GND        | GND        | 113     |
| 59      | TxFG4+     | RxFG4+     | 112     |
| 60      | TxFG4-     | RxFG4-     | 111     |
| 61      | GND        | GND        | 110     |
| 62      | TxFD5+     | RxFD5+     | 109     |
| 63      | TxFD5-     | RxFD5-     | 108     |
| 64      | GND        | GND        | 107     |
| 65      | TxFE5+     | RxFE5+     | 106     |
| 66      | TxFE5-     | RxFE5-     | 105     |
| 67      | GND        | GND        | 104     |
| 68      | TxFF5+     | RxFF5+     | 103     |
| 69      | TxFF5-     | RxFF5-     | 102     |
| 70      | GND        | GND        | 101     |
| 71      | TxFG5+     | RxFG5+     | 100     |
| 72      | TxFG5-     | RxFG5-     | 99      |
| 73      | GND        | GND        | 98      |
| 74      | TxFD6+     | RxFD6+     | 97      |
| 75      | TxFD6-     | RxFD6-     | 96      |
| 76      | GND        | GND        | 95      |
| 77      | TxFE6+     | RxFE6+     | 94      |
| 78      | TxFE6-     | RxFE6-     | 93      |



| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 79      | GND        | GND        | 92      |
| 80      | TxFF6+     | RxFF6+     | 91      |
| 81      | TxFF6+     | RxFF6-     | 90      |
| 82      | GND        | GND        | 89      |
| 83      | TxFG6+     | RxFG6+     | 88      |
| 84      | TxFG6-     | RxFG6-     | 87      |
| 85      | GND        | GND        | 86      |

## 11.3 NAT-MCH Hub Module x48 Extender Connector CON2

**Hub Module x48 Extender backplane connector CON2** 

| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 1       | GND        | GND        | 170     |
| 2       | RSVD       | RSVD       | 169     |
| 3       | RSVD       | RSVD       | 168     |
| 4       | GND        | GND        | 167     |
| 5       | RSVD       | RSVD       | 166     |
| 6       | RSVD       | RSVD       | 165     |
| 7       | GND        | GND        | 164     |
| 8       | TxFUF+     | RxFUD+     | 163     |
| 9       | TxFUF-     | RxFUD-     | 162     |
| 10      | GND        | GND        | 161     |
| 11      | TxFUG+     | RxFUE+     | 160     |
| 12      | TxFUG-     | RxFUE-     | 159     |
| 13      | GND        | GND        | 158     |
| 14      | TxFD7+     | RxFD7+     | 157     |
| 15      | TxFD7-     | RxFD7-     | 156     |
| 16      | GND        | GND        | 155     |
| 17      | TxFE7+     | RxFE7+     | 154     |
| 18      | TxFE7-     | RxFE7-     | 153     |
| 19      | GND        | GND        | 152     |
| 20      | TxFF7+     | RxFF7+     | 151     |
| 21      | TxFF7-     | RxFF7-     | 150     |
| 22      | GND        | GND        | 149     |
| 23      | TxFG7+     | RxFG7+     | 148     |
| 24      | TxFG7-     | RxFG7-     | 147     |
| 25      | GND        | GND        | 146     |
| 26      | TxFD8+     | RxFD8+     | 145     |
| 27      | TxFD8-     | RxFD8-     | 144     |
| 28      | GND        | GND        | 143     |
| 29      | TxFE8+     | RxFE8+     | 142     |
| 30      | TxFE8-     | RxFE8-     | 141     |
| 31      | GND        | GND        | 140     |





| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 32      | TxFF8+     | RxFF8+     | 139     |
| 33      | TxFF8-     | RxFF8-     | 138     |
| 34      | GND        | GND        | 137     |
| 35      | TxFG8+     | RxFG8+     | 136     |
| 36      | TxFG8-     | RxFG8-     | 135     |
| 37      | GND        | GND        | 134     |
| 38      | TxFD9+     | RxFD9+     | 133     |
| 39      | TxFD9-     | RxFD9-     | 132     |
| 40      | GND        | GND        | 131     |
| 41      | TxFE9+     | RxFE9+     | 130     |
| 42      | TxFE9-     | RxFE9-     | 129     |
| 43      | GND        | GND        | 128     |
| 44      | TxFF9+     | RxFF9+     | 127     |
| 45      | TxFF9-     | RxFF9-     | 126     |
| 46      | GND        | GND        | 125     |
| 47      | TxFG9+     | RxFG9+     | 124     |
| 48      | TxFG9+     | RxFG9-     | 123     |
| 49      | GND        | GND        | 122     |
| 50      | TxFD10+    | RxFD10+    | 121     |
| 51      | TxFD10-    | RxFD10-    | 120     |
| 52      | GND        | GND        | 119     |
| 53      | TxFE10+    | RxFE10+    | 118     |
| 54      | TxFE10-    | RxFE10-    | 117     |
| 55      | GND        | GND        | 116     |
| 56      | TxFF10+    | RxFF10+    | 115     |
| 57      | TxFF10-    | RxFF10-    | 114     |
| 58      | GND        | GND        | 113     |
| 59      | TxFG10+    | RxFG10+    | 112     |
| 60      | TxFG10-    | RxFG10-    | 111     |
| 61      | GND        | GND        | 110     |
| 62      | TxFD11+    | RxFD5+     | 109     |
| 63      | TxFD11-    | RxFD5-     | 108     |
| 64      | GND        | GND        | 107     |
| 65      | TxFE11+    | RxFE5+     | 106     |
| 66      | TxFE11-    | RxFE5-     | 105     |
| 67      | GND        | GND        | 104     |
| 68      | TxFF11+    | RxFF11+    | 103     |
| 69      | TxFF11-    | RxFF11-    | 102     |
| 70      | GND        | GND        | 101     |
| 71      | TxFG11+    | RxFG11+    | 100     |
| 72      | TxFG11-    | RxFG11-    | 99      |
| 73      | GND        | GND        | 98      |
| 74      | TxFD12+    | RxFD12+    | 97      |
| 75      | TxFD12-    | RxFD12-    | 96      |
| 76      | GND        | GND        | 95      |
| 77      | TxFE12+    | RxFE12+    | 94      |
| 78      | TxFE12-    | RxFE12-    | 93      |
| 79      | GND        | GND        | 92      |



| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 00      | T. FF12    | D. FE12    | 0.1     |
| 80      | TxFF12+    | RxFF12+    | 91      |
| 82      | GND        | GND        | 89      |
| 83      | TxFG12+    | RxFG12+    | 88      |
| 84      | TxFG12-    | RxFG12-    | 87      |
| 85      | GND        | GND        | 86      |

### 11.4 Connector CON3: Interface to CLK-Module

**Connector to CLK-Module CON3** 

| Pin No. | Signal    | Signal     | Pin No. |
|---------|-----------|------------|---------|
|         |           |            |         |
| 1       | +12V      | +12V       | 2       |
| 3       | +12V      | +12V       | 4       |
| 5       | SRIOCLK_P | +3.3V_MP   | 6       |
| 7       | SRIOCLK_N | SPICLK     | 8       |
| 9       | GND       | expansion3 | 10      |
| 11      | MOSI      | MISO       | 12      |
| 13      | GND       | /SPISEL_H  | 14      |
|         |           | UBPCB      |         |
| 15      | SCL       | N.C.       | 16      |
| 17      | SDA       | nRESET_H   | 18      |
|         |           | UB_PCB     |         |
| 19      | GND       | GND        | 20      |

This connector connects to the **CLK-Module**. On the **CLK-Module** the signals of this connector are routed to a connector that connects to the **Basic-Module**.

# 11.5 Connector CON4: Interface to Uplink Module

**Connector to Uplink Module CON4** 

| Pin No. | MCH-Signal | MCH-Signal | Pin No. |
|---------|------------|------------|---------|
| 1       | GND        | GND        | 2       |
| 3       | +1.2V      | +1.2V      | 4       |
| 5       | +1.2V      | +1.2V      | 6       |
| 7       | GND        | GND        | 8       |
| 9       | FP_CON5    | FP_CON1    | 10      |
| 11      | FP_CON6    | FP_CON2    | 12      |
| 13      | GND        | GND        | 14      |



| Pin No. | MCH-Signal    | MCH-Signal    | Pin No. |
|---------|---------------|---------------|---------|
|         |               |               |         |
| 15      | FP_CON 7      | FP_CON3       | 16      |
| 17      | FP_CON8       | FP_CON 4      | 18      |
| 19      | GND           | GND           | 20      |
| 21      | FP_CON9       | FP_CON11      | 22      |
| 23      | FP_CON10      | FP_CON12      | 24      |
| 25      | GND           | GND           | 26      |
| 27      | UP_LINK1_TD_N | UP_LINK1_RD_P | 28      |
| 29      | UP_LINK1_TD_P | UP_LINK1_RD_N | 30      |
| 31      | GND           | GND           | 32      |
| 33      | UP_LINK1_TC_N | UP_LINK1_RC_P | 34      |
| 35      | UP_LINK1_TC_P | UP_LINK1_RC_N | 36      |
| 37      | GND           | GND           | 38      |
| 39      | UP_LINK1_TB_N | UP_LINK1_RB_P | 40      |
| 41      | UP_LINK1_TB_P | UP_LINK1_RB_N | 42      |
| 43      | GND           | GND           | 44      |
| 45      | UP_LINK1_TA_N | UP_LINK1_RA_P | 46      |
| 47      | UP_LINK1_TA_P | UP_LINK1_RA_N | 48      |
| 49      | GND           | GND           | 50      |
| 51      | UP_LINK2_TD_N | UP_LINK2_RD_P | 52      |
| 53      | UP_LINK2_TD_P | UP_LINK2_RD_N | 54      |
| 55      | GND           | GND           | 56      |
| 57      | UP_LINK2_TC_N | UP_LINK2_RC_P | 58      |
| 59      | UP_LINK2_TC_P | UP_LINK2_RC_N | 60      |
| 61      | GND           | GND           | 62      |
| 63      | UP_LINK2_TB_N | UP_LINK2_RB_P | 64      |
| 65      | UP_LINK2_TB_P | UP_LINK2_RB_N | 66      |
| 67      | GND           | GND           | 68      |
| 69      | UP_LINK2_TA_N | UP_LINK2_RA_P | 70      |
| 71      | UP_LINK2_TA_P | UP_LINK2_RA_N | 72      |
| 73      | GND           | GND           | 74      |
| 75      | +3.3V         | +3.3V         | 76      |
| 77      | +3.3V         | +3.3V         | 78      |
| 79      | GND           | GND           | 80      |

<sup>\*</sup> This connector does not exist in hardware v1.3 or earlier versions.



# 11.6 Connector JP1: JTAG interface to the TSI578 Chips

JTAG Connector JP1

| Pin No. | Signal | Signal     | Pin No. |
|---------|--------|------------|---------|
| 1       | +3.3V  | GND        | 2       |
| 3       | TCK    | TMS        | 4       |
| 5       | TDI    | TDO        | 6       |
| 7       | BCE    | nTSI1_TRST | 8       |
| 9       | N.C.   | nTSI2_TRST | 10      |



# 12 Known Bugs / Restrictions



# **Appendix A: Reference Documentation**

- [1] Tundra, TSI578 Serial Rapid IO Switch, Hardware Manual, 80B80A\_MA002\_07, 09.2007
- [2] Tundra, TSI578 Serial Rapid IO Switch, User Manual, 80B80A\_MA001\_06, 09.2007



# **Appendix B: Document's History**

| Revision | Date       | Description                                     | Author |
|----------|------------|-------------------------------------------------|--------|
|          |            |                                                 |        |
| 1.0      | 13.03.2008 | initial revision                                | Ks     |
| 1.1      | 17.03.2008 | Changes for hardware revision v1.3              | Ks     |
|          |            | - Figure 2 and 3 (location diagram)             |        |
|          |            | - Tables showing switch to fabric port mapping  |        |
|          |            | - Figure 4 and 5 showing connectors             |        |
|          |            | - deleted known bugs                            |        |
| 1.2      | 22.01.2009 | Added description for hardware revision 1.4 and | Ks     |
|          |            | description of Uplink option                    |        |
|          |            |                                                 |        |
|          |            |                                                 |        |
|          |            |                                                 |        |
|          |            |                                                 |        |
|          |            |                                                 |        |