Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E

-4000.000

-4200.000

-4000.000

-4000.000

-5000.000

Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 7.30e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE B) det finnes karbon i et skall rundt kjernen

STJERNE C) massen til stjerna er 0.7 solmasser og den fusjonerer hydrogen i kjernen

STJERNE D) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 1.020e+07 kg/m3̂ og temperatur 39 millioner K.

Kjernen i stjerne B har massetet
thet 7.593e+06 kg/m3 og temperatur 34 millioner K.

Kjernen i stjerne C har massetet
thet 7.400e+06 kg/m3̂ og temperatur 16 millioner K.

Kjernen i stjerne D har massetet
thet 8.555e+06 kg/m3̂ og temperatur 38 millioner K.

Kjernen i stjerne E har massetet
thet 1.492e+06 kg/m3̂ og temperatur 16 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

Påstand 2: denne stjerna er lengst vekk

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 4: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

Figur A tilsynelatende størrelseklasse 18.98

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L_Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.692e+05 kg/m3̂ og temperatur 19.90 millioner K.

Kjernen i stjerne B har massetet
thet 6.780e+04 kg/m3̂ og temperatur 35.88 millioner K.

Kjernen i stjerne C har massetet
thet 2.924e+05 kg/m $\hat{3}$ og temperatur 23.79

millioner K.

Kjernen i stjerne D har massetet
thet 3.400e+05 kg/m3̂ og temperatur 25.59 millioner K.

Kjernen i stjerne E har massetet
thet 4.780e+05 kg/m3̂ og temperatur 17.13 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

Observasjon er gjort 15.96 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.3253

0.3263

0.3273

0.3283

0.3293

0.3303

0.3313

0.3323

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_.png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.72 buesekunder i løpet av et millisekund.

45.76

40.68

35.59

30.51

25.42

20.34

15.25

10.17

5.08

0.00

0.00

5.08

10.17

15.25

20.34

25.42

30.51

35.59

40.68

45.76

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 95.40180 km/t.

Filen 3E.txt

Tog1 veier 58300.00000 kg og tog2 veier 23600.00000 kg.

Filen 4A.png

14.20 14.00 Tilsynelatende størrelsklasse m_V 13.80 13.60 13.40 13.20 13.00 12.80 12.60 2 10 12 ò 8 4 6

Observasjonstid (dager)

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 490 km/s.

Filen 4E.txt

Massen til gassklumpene er 5200000.00 kg.

Hastigheten til G1 i x-retning er 55200.00 km/s.

Hastigheten til G2 i x-retning er 60420.00 km/s.

Filen 4G.txt

Massen til stjerna er 57.30 solmasser og radien er 4.14 solradier.