import pandas as pd

from google.colab import files uploaded = files.upload()

Choose Files No file chosen enable.

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

Saving 2025-VeloCitvX-Expanded-Fan-Engagement-Data.csv to 2025-VeloCitvX-Expanded-Fan-Engagement-Data (2).csv

filename = list(uploaded.keys())[0]

data= pd.read_csv(filename)

data.head()

-	→	4

∑ *		User ID	Fan Challenges Completed	Predictive Accuracy (%)	Virtual Merchandise Purchases	Sponsorship Interactions (Ad Clicks)	Time on Live 360 (mins)	Real-Time Chat Activity (Messages Sent)
	0	U001	5	80	3	10	120	20
	1	U002	8	60	1	8	100	35
	2	U003	3	90	0	6	90	5
	3	U004	7	70	2	15	140	40
	4	U005	2	50	5	3	60	8

data.info()

→ <class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	User ID	100 non-null	object
1	Fan Challenges Completed	100 non-null	int64
2	Predictive Accuracy (%)	100 non-null	int64
3	Virtual Merchandise Purchases	100 non-null	int64
4	Sponsorship Interactions (Ad Clicks)	100 non-null	int64
5	Time on Live 360 (mins)	100 non-null	int64
6	Real-Time Chat Activity (Messages Sent)	100 non-null	int64

dtypes: int64(6), object(1)

memory usage: 5.6+ KB

data.describe()

} ▼		Fan Challenges Completed	Predictive Accuracy (%)	Virtual Merchandise Purchases	Sponsorship Interactions (Ad Clicks)	Time on Live 360 (mins)	Real-Time Chat Activity (Messages Sent)
	count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
	mean	5.790000	74.990000	2.670000	8.680000	129.350000	25.050000
	std	2.825908	14.033506	2.064882	6.340315	38.634358	14.163101
	min	1.000000	50.000000	0.000000	0.000000	60.000000	0.000000
	25%	3.000000	62.000000	1.000000	2.000000	98.000000	11.000000
	50%	6.000000	77.000000	2.000000	8.000000	124.500000	25.500000
	75%	8.000000	86.500000	5.000000	15.000000	160.000000	35.000000
	max	10.000000	98.000000	6.000000	19.000000	199.000000	49.000000

data.isnull().sum()

dtype: int64

duplicates= data.duplicated()

duplicates

Observation: No missing value and No duplicate value.

data.dtypes

data_new

https://colab.research.google.com/drive/1ETF9lVr2un4MT3gCIIsSmW1OwD3Az_n#printMode=true

_	7	4
-	-	_

<i>:</i>	Fan Challenges Completed	Predictive Accuracy (%)	Virtual Merchandise Purchases	Sponsorship Interactions (Ad Clicks)	Time on Live 360 (mins)	Real—Time Chat Activity (Messages Sent)
0	5	80	3	10	120	20
1	8	60	1	8	100	35
2	3	90	0	6	90	5
3	7	70	2	15	140	40
4	2	50	5	3	60	8
95	8	86	6	14	98	22
96	3	82	3	1	159	24
97	1	91	1	9	92	34
98	8	93	0	1	160	40
99	3	73	3	16	82	29

100 rows × 6 columns

data_new.dtypes

Fan Challenges Completed int64
Predictive Accuracy (%) int64
Virtual Merchandise Purchases int64
Sponsorship Interactions (Ad Clicks) int64
Time on Live 360 (mins) int64

Real-Time Chat Activity (Messages Sent) int64

dtype: object

data_new.fillna(data_new.median(), inplace=True)

assert (data_new[columns_to_check] >= 0).all().all()

Observation: No negative values

from sklearn.preprocessing import MinMaxScaler

```
scaler = MinMaxScaler()
data_new[columns_to_check] = scaler.fit_transform(data_new[columns_to_check])
```

data_new

	•	-
-	7	Y
		_

<i>_</i>		Fan Challenges Completed	Predictive Accuracy (%)	Virtual Merchandise Purchases	Sponsorship Interactions (Ad Clicks)	Time on Live 360 (mins)	Real-Time Chat Activity (Messages Sent)
	0	0.444444	0.625000	0.500000	0.526316	0.431655	0.408163
	1	0.777778	0.208333	0.166667	0.421053	0.287770	0.714286
	2	0.222222	0.833333	0.000000	0.315789	0.215827	0.102041
	3	0.666667	0.416667	0.333333	0.789474	0.575540	0.816327
	4	0.111111	0.000000	0.833333	0.157895	0.000000	0.163265
	95	0.777778	0.750000	1.000000	0.736842	0.273381	0.448980
	96	0.222222	0.666667	0.500000	0.052632	0.712230	0.489796
	97	0.000000	0.854167	0.166667	0.473684	0.230216	0.693878
	98	0.777778	0.895833	0.000000	0.052632	0.719424	0.816327
	99	0.222222	0.479167	0.500000	0.842105	0.158273	0.591837

100 rows × 6 columns

data_new.head()

₹		Fan Challenges Completed	Predictive Accuracy (%)	Virtual Merchandise Purchases	Sponsorship Interactions (Ad Clicks)	Time on Live 360 (mins)	Real-Time Chat Activity (Messages Sent)
	0	0.44444	0.625000	0.500000	0.526316	0.431655	0.408163
	1	0.777778	0.208333	0.166667	0.421053	0.287770	0.714286
	2	0.222222	0.833333	0.000000	0.315789	0.215827	0.102041
	3	0.666667	0.416667	0.333333	0.789474	0.575540	0.816327
	4	0.111111	0.000000	0.833333	0.157895	0.000000	0.163265

```
def find_outliers_iqr(df):
   Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
   IQR = Q3 - Q1
   # Define outliers as values below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR
   outliers = (df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))
    return outliers
outliers = find_outliers_iqr(data[columns_to_check])
```

print(data[outliers.any(axis=1)])

Columns: [User ID, Fan Challenges Completed, Predictive Accuracy (%), Virtual Merchandise Purchases, Sponsorship Interaction Index: []

correlation matrix to identify relationships

```
correlations = data_new.corr()
```

```
correlations[['Virtual Merchandise Purchases',
```

'Sponsorship Interactions (Ad Clicks)']].sort_values(by='Virtual Merchandise Purchases', ascending=False)

	Virtual Merchandise Purchases	Sponsorship Interactions (Ad Clicks)
Virtual Merchandise Purchases	1.000000	0.070550
Fan Challenges Completed	0.159378	-0.065239
Sponsorship Interactions (Ad Clicks)	0.070550	1.000000
Predictive Accuracy (%)	0.022194	0.056612
Time on Live 360 (mins)	-0.007527	-0.073929
Real-Time Chat Activity (Messages Sent)	-0.044676	0.191292

```
Preparing the data for Modeling
```

```
from sklearn.model_selection import train_test_split
data_new['Purchased'] = data_new['Virtual Merchandise Purchases'] > 0
X = data_new[['Fan Challenges Completed',
                  'Predictive Accuracy (%)',
                   'Sponsorship Interactions (Ad Clicks)',
                   'Time on Live 360 (mins)',
                   'Real-Time Chat Activity (Messages Sent)']]
y = data_new['Purchased']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Training a LogisticRegression Model
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
model = LogisticRegression()
model.fit(X_train, y_train)

    LogisticRegression ① ?

     LogisticRegression()
y_pred = model.predict(X_test)
```

print(classification_report(y_test, y_pred))

→ ▼		precision	recall	f1-score	support
	False True	0.00 0.90	0.00 1.00	0.00 0.95	2 18
	accuracy macro avg weighted avg	0.45 0.81	0.50 0.90	0.90 0.47 0.85	20 20 20

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning: Precision is ill-de _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning: Precision is ill-de _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning: Precision is ill-de _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

from sklearn.metrics import classification_report, confusion_matrix

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

```
Confusion Matrix:
    [[ 0 2]
        [ 0 18]]
```

Correlation Analysis

targets = ['Virtual Merchandise Purchases', 'Sponsorship Interactions (Ad Clicks)']

corr_activities_targets = data_new[activities + targets].corr()

print("Correlation between user activities and merchandise purchases/sponsorship interactions:")
print(corr_activities_targets[['Virtual Merchandise Purchases', 'Sponsorship Interactions (Ad Clicks)']].loc[activities])

Correlation between user activities and merchandise purchases/sponsorship interactions:

Virtual Merchandise Purchases \

Fan Challenges Completed 0.159378
Time on Live 360 (mins) -0.007527
Real-Time Chat Activity (Messages Sent) -0.044676

Fan Challenges Completed -0.065239
Time on Live 360 (mins) -0.073929
Real-Time Chat Activity (Messages Sent) Sponsorship Interactions (Ad Clicks)
-0.065239
-0.073929

import seaborn as sns

import matplotlib.pyplot as plt

User Activities and Purchases

sns.scatterplot(x='Time on Live 360 (mins)', y='Virtual Merchandise Purchases', data=data_new) plt.title('Time on Live 360 vs Virtual Merchandise Purchases') plt.show()

sns.scatterplot(x='Fan Challenges Completed', y='Virtual Merchandise Purchases', data=data_new)
plt.title('Fan Challenges Completed vs Virtual Merchandise Purchases')
plt.show()

sns.scatterplot(x='Real-Time Chat Activity (Messages Sent)', y='Virtual Merchandise Purchases', data=data_new)
plt.title('Real-Time Chat Activity vs Virtual Merchandise Purchases')
plt.show()

User Activities and Sponsorship Interactions

sns.scatterplot(x='Time on Live 360 (mins)', y='Sponsorship Interactions (Ad Clicks)', data=data_new)
plt.title('Time on Live 360 vs Sponsorship Interactions')
plt.show()

sns.scatterplot(x='Fan Challenges Completed', y='Sponsorship Interactions (Ad Clicks)', data=data_new)
plt.title('Fan Challenges Completed vs Sponsorship Interactions')
plt.show()

sns.scatterplot(x='Real-Time Chat Activity (Messages Sent)', y='Sponsorship Interactions (Ad Clicks)', data=data_new)
plt.title('Real-Time Chat Activity vs Sponsorship Interactions')
plt.show()

Apply K-Means Clustering

```
from sklearn.cluster import KMeans
X_clustering = data_new[['Fan Challenges Completed', 'Time on Live 360 (mins)',
                             'Real-Time Chat Activity (Messages Sent)', 'Virtual Merchandise Purchases',
                             'Sponsorship Interactions (Ad Clicks)']]
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_clustering_scaled = scaler.fit_transform(X_clustering)
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=42)
    kmeans.fit(X_clustering_scaled)
   wcss.append(kmeans.inertia_)
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), wcss, marker='o')
plt.title('Elbow Method to Determine Optimal Clusters')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS (Within Cluster Sum of Squares)')
plt.show()
```


