Digitaltechnik 1. Semester

Übung 6

Besprechung: 05.11.2020 Abgabe: 12.11.2020

Aufgabe 1:

Hazards

Untersuchen Sie folgende Schaltung bezüglich ihres Zeitverhaltens. Beachten Sie, dass jedes Gatter eine Verzögerungszeit t_p hat.

a) Vervollständigen Sie das folgende Zeitdiagramm. Was fällt Ihnen dabei auf?

b) Erstellen Sie die disjunktive Normalform.

(DV<u>F</u>) Λ (VV BVC)

c) Erstellen Sie das Karnaugh-Diagramm der disjunktiven Normalform. Was ist das Besondere?

d) Wie lässt sich das in a) erkannte Problem verhindern? Wie muss dann das Schaltbild verändert werden?

(ANCAB) V (DAA) V (CABAD)

Extra AND gate to eliminate hozard.

Aufgabe 2:

Charakteristische Gleichungen von Flipflops

a) SR-Flipflop: Zeichnen Sie das Schaltsymbol auf und geben Sie die charakteristische Gleichung an.

Platch

b) D-Flipflop:

Zeichnen Sie das Schaltsymbol auf und geben Sie die charakteristische Gleichung an.

Aufgabe 3: $\mathbb{Q}_{n} = \mathbb{D} \vee \mathbb{Q}_{n} \vee \mathbb{D}$

Latch/Flipflop

a) Erklären Sie den Unterschied zwischen einem "Latch" und einem "Flipflop". Verwenden Sie dabei die Begriffe "zustandsgesteuert" und "flankengesteuert".

b) Geben Sie die Schaltsymbole für das D-Latch und das D-Flipflop an.

c) Tragen Sie im untenstehenden Diagramm die Signalverläufe für den Latch- und den Flipflop-Ausgang ein. (Die Verzögerungszeiten sind zu vernachlässigen.)

A latch saves the state at any time whilst the clock is high.

A flipflop saves the momentary state as the clock signal rises / falls to prevent allowing voltage spikes through.

Aufgabe 4:

Timing des D-Flipflops

In dieser Aufgabe untersuchen Sie das Zeitverhalten des flankengesteuerten D-Flipflops.

Das D-Flipflop weist folgende Zeiten auf:

Setup time: 20 nsHold time: 15ns t_{hold} Propagation delay: $30 \mathrm{ns}$

- a) Auf welcher Flanke ist das Flip-Flop aktiv?b) Berechnen Sie die maximale Frequenz, mit welcher die Schaltung noch korrekt funktioniert.

Aufgabe 5: Latches

Das Latch in Abbildung 1 ist aus zwei NAND-Gattern aufgebaut. Es soll überprüft werden, ob es die gleiche Funktionalität vorweist wie das bereits in der Vorlesung besprochene NOR-Latch.

Beide NAND-Gatter weisen eine Verzögerungszeit $\rm tpHL/LH$ von 5
ns auf, Rise- und Fallzeiten sind zu vernachlässigen.

Abbildung 1: NAND-SR-Latch

a) Vervollständigen Sie das Zeitdiagramm für die Schaltung in Abbildung 1:

