Assignment 6: GLMs (Linear Regressios, ANOVA, & t-tests)

Yikai Jing

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on generalized linear models.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Work through the steps, **creating code and output** that fulfill each instruction.
- 3. Be sure to **answer the questions** in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 5. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai. Add your last name into the file name (e.g., "Fay_A06_GLMs.Rmd") prior to submission.

The completed exercise is due on Monday, February 28 at 7:00 pm.

Set up your session

- Load the tidyverse, agricolae and 1. Set up your session. Check your working directory. Import the raw NTL-LTER raw data file for chemistry/physics other needed packages. (NTL-LTER_Lake_ChemistryPhysics_Raw.csv). Set date columns to date objects.
- 2. Build a ggplot theme and set it as your default theme.

```
getwd()
## [1] "/Users/me/Environmental_Data_Analytics_2022/Assignments"
library(tidyverse)
## -- Attaching packages -----
                                               ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                     v purrr
                              0.3.4
## v tibble 3.1.6
                              1.0.7
                     v dplyr
## v tidyr
           1.1.4
                     v stringr 1.4.0
## v readr
            2.1.1
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(agricolae)
library(lubridate)
```

```
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
```

Simple regression

Our first research question is: Does mean lake temperature recorded during July change with depth across all lakes?

- 3. State the null and alternative hypotheses for this question: > Answer: H0: mean lake temperature recorded during July DOES NOT change with depth across all lakes. Ha: mean lake temperature recorded during July DOES change with depth across all lakes.
- 4. Wrangle your NTL-LTER dataset with a pipe function so that the records meet the following criteria:
- Only dates in July.
- Only the columns: lakename, year4, daynum, depth, temperature_C
- Only complete cases (i.e., remove NAs)
- 5. Visualize the relationship among the two continuous variables with a scatter plot of temperature by depth. Add a smoothed line showing the linear model, and limit temperature values from 0 to 35 °C. Make this plot look pretty and easy to read.

```
#4
water.processed <-
  water %>%
  mutate(Month = month(sampledate)) %>%
  filter(Month == "7") %>%
  select(lakename, year4, daynum, depth, temperature_C) %>%
  drop_na(depth) %>%
  drop_na(temperature_C)
#5
graph1 <-
  ggplot(water.processed, aes(x = depth, y = temperature_C)) +
  geom point() +
  geom_smooth(method = lm) +
  ylim(0,35) +
  ggtitle("Graph 1: Scatterplot of Temperature vs depth") +
  vlab("Temperature (Celsius)") +
  xlab("Depth (meter)") +
  mytheme
print(graph1)
## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 24 rows containing missing values (geom_smooth).

Graph 1: Scatterplot of Temperature vs depth

6. Interpret the figure. What does it suggest with regards to the response of temperature to depth? Do the distribution of points suggest about anything about the linearity of this trend?

Answer: The detected temperature of the lake tend to be higher with a sjallow depth and tend to decrease as depth of the detection point increases. However, we cannot confirm that this is a linear relationship because the distribution of the scatter points are not very linear.

7. Perform a linear regression to test the relationship and display the results

```
#7
temp.regression <- lm(data =water.processed, temperature_C ~ depth)</pre>
summary(temp.regression)
##
  lm(formula = temperature_C ~ depth, data = water.processed)
##
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -9.5173 -3.0192 0.0633
                           2.9365 13.5834
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) 21.95597
                           0.06792
                                     323.3
                                              <2e-16
## depth
               -1.94621
                           0.01174
                                    -165.8
                                              <2e-16 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.835 on 9726 degrees of freedom
```

```
## Multiple R-squared: 0.7387, Adjusted R-squared: 0.7387 ## F-statistic: 2.75e+04 on 1 and 9726 DF, p-value: < 2.2e-16
```

8. Interpret your model results in words. Include how much of the variability in temperature is explained by changes in depth, the degrees of freedom on which this finding is based, and the statistical significance of the result. Also mention how much temperature is predicted to change for every 1m change in depth.

Answer:With an R-squared value of 0.7387, about 73.87% of the observed variance is explained by this model. With a degree of freedom of 9726 and p value less than 2.2e-16, we can successfully reject the null hypothesis and state that mean lake temperature recorded during July DOES change with depth across all lakes. For every 1m change in the depth, temperature would change for -1.94621 degree Celsius (for a negative relationship).

Multiple regression

Let's tackle a similar question from a different approach. Here, we want to explore what might the best set of predictors for lake temperature in July across the monitoring period at the North Temperate Lakes LTER.

- 9. Run an AIC to determine what set of explanatory variables (year4, daynum, depth) is best suited to predict temperature.
- 10. Run a multiple regression on the recommended set of variables.

```
temp.AIC <- lm(data =water.processed, temperature_C ~ depth + year4 + daynum)
step(temp.AIC)
## Start: AIC=26065.53
## temperature_C ~ depth + year4 + daynum
##
##
            Df Sum of Sq
                             RSS
                                   AIC
## <none>
                          141687 26066
                     101 141788 26070
## - year4
             1
## - daynum
             1
                     1237 142924 26148
## - depth
                  404475 546161 39189
##
## Call:
## lm(formula = temperature_C ~ depth + year4 + daynum, data = water.processed)
##
## Coefficients:
##
   (Intercept)
                       depth
                                    year4
                                                 daynum
##
      -8.57556
                   -1.94644
                                  0.01134
                                                0.03978
#10
TPmodel <- lm(data = water.processed, temperature_C ~ depth + year4 + daynum)
summary(TPmodel)
##
## lm(formula = temperature_C ~ depth + year4 + daynum, data = water.processed)
##
## Residuals:
##
                                 3Q
       Min
                1Q
                    Median
                                        Max
## -9.6536 -3.0000 0.0902 2.9658 13.6123
##
## Coefficients:
```

```
##
               Estimate Std. Error t value Pr(>|t|)
                          8.630715
                                     -0.994 0.32044
## (Intercept) -8.575564
## depth
              -1.946437
                          0.011683 -166.611
                                             < 2e-16 ***
                                             0.00833 **
## year4
               0.011345
                          0.004299
                                      2.639
## daynum
               0.039780
                          0.004317
                                      9.215
                                             < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.817 on 9724 degrees of freedom
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7411
## F-statistic: 9283 on 3 and 9724 DF, p-value: < 2.2e-16
```

11. What is the final set of explanatory variables that the AIC method suggests we use to predict temperature in our multiple regression? How much of the observed variance does this model explain? Is this an improvement over the model using only depth as the explanatory variable?

Answer: The AIC resulTs suggest that none of the three explanatory variables would generate a better combination for the multi-linear regression. The final set of explanatory variables suggested by the AIC include depth, year4, and daynum. This model explains 74.12% of the observed variance, which is slightly (0.25%) higher than the model using only depth.

Analysis of Variance

12. Now we want to see whether the different lakes have, on average, different temperatures in the month of July. Run an ANOVA test to complete this analysis. (No need to test assumptions of normality or similar variances.) Create two sets of models: one expressed as an ANOVA models and another expressed as a linear model (as done in our lessons).

```
#12
# Format as aov
water.anova1 <- aov(data = water.processed, temperature_C ~ lakename)</pre>
summary(water.anova1)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
                            2705.2
## lakename
                  8 21642
                                        50 <2e-16 ***
## Residuals
               9719 525813
                              54.1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Format as lm
water.anova2 <- lm(data = water.processed, temperature_C ~ lakename)</pre>
summary(water.anova2)
##
## lm(formula = temperature_C ~ lakename, data = water.processed)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -10.769 -6.614 -2.679
                             7.684
                                    23.832
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             17.6664
                                         0.6501 27.174 < 2e-16 ***
                             -2.3145
                                         0.7699 -3.006 0.002653 **
## lakenameCrampton Lake
```

```
## lakenameEast Long Lake
                            -7.3987
                                        0.6918 -10.695 < 2e-16 ***
## lakenameHummingbird Lake -6.8931
                                        0.9429
                                                -7.311 2.87e-13 ***
## lakenamePaul Lake
                            -3.8522
                                        0.6656
                                                -5.788 7.36e-09 ***
## lakenamePeter Lake
                            -4.3501
                                        0.6645
                                                -6.547 6.17e-11 ***
## lakenameTuesday Lake
                            -6.5972
                                        0.6769
                                                -9.746
                                                       < 2e-16 ***
## lakenameWard Lake
                                        0.9429
                                                -3.402 0.000672 ***
                            -3.2078
## lakenameWest Long Lake
                            -6.0878
                                        0.6895
                                                -8.829 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.355 on 9719 degrees of freedom
## Multiple R-squared: 0.03953,
                                   Adjusted R-squared: 0.03874
                  50 on 8 and 9719 DF, p-value: < 2.2e-16
## F-statistic:
```

13. Is there a significant difference in mean temperature among the lakes? Report your findings.

Answer: Yes. Based on the summary results of both of water.anoval model, we can conclude that there is a significant difference in mean temperature among the lakes with a significance value less than 0.001. The water.anoval model demonstrated similar findings with almost all lakes having different means at significance level of 0 except for Crampton Lake having a difference in mean temperature at significance level of 0.001. We received a R-squared value of 0.03953, meaning that approximately 4% of variation in the response is explained by the water.anoval model.

14. Create a graph that depicts temperature by depth, with a separate color for each lake. Add a geom_smooth (method = "lm", se = FALSE) for each lake. Make your points 50 % transparent. Adjust your y axis limits to go from 0 to 35 degrees. Clean up your graph to make it pretty.

```
#14.
graph2 <-
    ggplot(water.processed, aes(x = depth, y = temperature_C, color = lakename)) +
    geom_point(alpha =0.5) +
    geom_smooth(method = lm, se = FALSE) +
    ylim(0,35)+
    ggtitle("Graph 2: Scatterplot of Temperature vs depth by lake") +
    xlab("Depth (meter)") +
    ylab("Temperature (Celsius)") +
    mytheme
print(graph2)</pre>
```

```
## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 73 rows containing missing values (geom smooth).

Graph 2: Scatterplot of Temperature vs depth by lake

15. Use the Tukey's HSD test to determine which lakes have different means.

```
#15
TukeyHSD(water.anova1)
```

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = temperature_C ~ lakename, data = water.processed)
##
## $lakename
                                            diff
##
                                                         lwr
                                                                    upr
                                                                            p adj
                                      -2.3145195 -4.7031913 0.0741524 0.0661566
## Crampton Lake-Central Long Lake
## East Long Lake-Central Long Lake
                                      -7.3987410 -9.5449411 -5.2525408 0.0000000
## Hummingbird Lake-Central Long Lake -6.8931304 -9.8184178 -3.9678430 0.0000000
## Paul Lake-Central Long Lake
                                      -3.8521506 -5.9170942 -1.7872070 0.0000003
## Peter Lake-Central Long Lake
                                      -4.3501458 -6.4115874 -2.2887042 0.0000000
## Tuesday Lake-Central Long Lake
                                      -6.5971805 -8.6971605 -4.4972005 0.0000000
                                      -3.2077856 -6.1330730 -0.2824982 0.0193405
## Ward Lake-Central Long Lake
## West Long Lake-Central Long Lake
                                      -6.0877513 -8.2268550 -3.9486475 0.0000000
## East Long Lake-Crampton Lake
                                      -5.0842215 -6.5591700 -3.6092730 0.0000000
                                      -4.5786109 -7.0538088 -2.1034131 0.0000004
## Hummingbird Lake-Crampton Lake
## Paul Lake-Crampton Lake
                                      -1.5376312 -2.8916215 -0.1836408 0.0127491
## Peter Lake-Crampton Lake
                                      -2.0356263 -3.3842699 -0.6869828 0.0000999
## Tuesday Lake-Crampton Lake
                                      -4.2826611 -5.6895065 -2.8758157 0.0000000
## Ward Lake-Crampton Lake
                                      -0.8932661 -3.3684639 1.5819317 0.9714459
## West Long Lake-Crampton Lake
                                      -3.7732318 -5.2378351 -2.3086285 0.0000000
## Hummingbird Lake-East Long Lake
                                       0.5056106 -1.7364925 2.7477137 0.9988050
```

```
## Paul Lake-East Long Lake
                                       3.5465903 2.6900206 4.4031601 0.0000000
                                       3.0485952 2.2005025
## Peter Lake-East Long Lake
                                                            3.8966879 0.0000000
## Tuesday Lake-East Long Lake
                                       0.8015604 -0.1363286 1.7394495 0.1657485
## Ward Lake-East Long Lake
                                       4.1909554 1.9488523
                                                            6.4330585 0.0000002
## West Long Lake-East Long Lake
                                       1.3109897 0.2885003
                                                             2.3334791 0.0022805
## Paul Lake-Hummingbird Lake
                                       3.0409798 0.8765299 5.2054296 0.0004495
## Peter Lake-Hummingbird Lake
                                       2.5429846 0.3818755
                                                            4.7040937 0.0080666
## Tuesday Lake-Hummingbird Lake
                                       0.2959499 -1.9019508
                                                             2.4938505 0.9999752
## Ward Lake-Hummingbird Lake
                                       3.6853448 0.6889874
                                                             6.6817022 0.0043297
## West Long Lake-Hummingbird Lake
                                      0.8053791 -1.4299320
                                                             3.0406903 0.9717297
## Peter Lake-Paul Lake
                                      -0.4979952 -1.1120620 0.1160717 0.2241586
## Tuesday Lake-Paul Lake
                                      -2.7450299 -3.4781416 -2.0119182 0.0000000
## Ward Lake-Paul Lake
                                      0.6443651 -1.5200848 2.8088149 0.9916978
                                     -2.2356007 -3.0742314 -1.3969699 0.0000000
## West Long Lake-Paul Lake
## Tuesday Lake-Peter Lake
                                     -2.2470347 -2.9702236 -1.5238458 0.0000000
## Ward Lake-Peter Lake
                                      1.1423602 -1.0187489 3.3034693 0.7827037
## West Long Lake-Peter Lake
                                     -1.7376055 -2.5675759 -0.9076350 0.0000000
## Ward Lake-Tuesday Lake
                                     3.3893950 1.1914943 5.5872956 0.0000609
## West Long Lake-Tuesday Lake
                                      0.5094292 -0.4121051 1.4309636 0.7374387
## West Long Lake-Ward Lake
                                      -2.8799657 -5.1152769 -0.6446546 0.0021080
water.groups <- HSD.test(water.anova1, "lakename", group = TRUE)</pre>
water.groups
## $statistics
                                 CV
##
    MSerror
              Df
                     Mean
##
     54.1016 9719 12.72087 57.82135
##
## $parameters
##
            name.t ntr StudentizedRange alpha
##
     Tukey lakename
                               4.387504 0.05
                     9
##
## $means
                                                             Q25
                                                                   Q50
                     temperature_C
                                        std
                                              r Min Max
## Central Long Lake
                         17.66641 4.196292 128 8.9 26.8 14.400 18.40 21.000
## Crampton Lake
                         15.35189 7.244773
                                            318 5.0 27.5 7.525 16.90 22.300
## East Long Lake
                          10.26767 6.766804
                                            968 4.2 34.1
                                                          4.975 6.50 15.925
## Hummingbird Lake
                         10.77328 7.017845 116 4.0 31.5
                                                          5.200 7.00 15.625
## Paul Lake
                         13.81426 7.296928 2660 4.7 27.7
                                                          6.500 12.40 21.400
## Peter Lake
                         13.31626 7.669758 2872 4.0 27.0 5.600 11.40 21.500
## Tuesday Lake
                         11.06923 7.698687 1524 0.3 27.7 4.400 6.80 19.400
## Ward Lake
                         14.45862 7.409079 116 5.7 27.6 7.200 12.55 23.200
                         11.57865 6.980789 1026 4.0 25.7 5.400 8.00 18.800
## West Long Lake
##
## $comparison
## NULL
##
## $groups
##
                     temperature_C groups
## Central Long Lake
                         17.66641
                                        a
## Crampton Lake
                         15.35189
                                       ab
## Ward Lake
                          14.45862
                                       bc
## Paul Lake
                         13.81426
                                        С
## Peter Lake
                         13.31626
                                        С
## West Long Lake
                         11.57865
                                        d
```

16. From the findings above, which lakes have the same mean temperature, statistically speaking, as Peter Lake? Does any lake have a mean temperature that is statistically distinct from all the other lakes?

Answer:Ward Lake, Peter Lake and Paul Lake have statistically same mean temperature. No lake has a mean temperature that is statistically distinct from all the other lakes.

17. If we were just looking at Peter Lake and Paul Lake. What's another test we might explore to see whether they have distinct mean temperatures?

Answer: We may conduct a Two Sample t test for Comparing Two Means of the Peter Lake and Paul lake solely.