FOUNDATIONS OF ALGORITHMS - CSE 551 - ASSIGNMENT 1

1.

(i) $n! \in O(n^n)$ - *True*

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

In this case: f(n) = n! And $g(n) = n^n$

From the above definition,

 $0 \le f(n) \le cg(n)$ for all $n \ge k$ $0 \le n! \le cn^n$ for all $n \ge k$

Considering k=1 and n=1 gives us c>=1

Considering c=1:

 $0 <= n! <= n^n$

Since n! Is greater than 0 for all n>=0, the left inequality is satisfied automatically.

n! <=nⁿ nx(n-1)!<=nxnⁿ⁻¹ (n-1)!<=nⁿ⁻¹

For n=2 : 1<=2 (True) For n=3 : 2<==9 (True)

For n=7: 720<=117649 (True)

Hence, for any value of n, the above conditions hold true and therefore n! ϵ O(nⁿ) is true.

(ii)
$$2n^22^n + nlogn \in \Theta(n^22^n) - True$$

For a given function g(n), $\Theta(g(n))$ is given by:

 $\Theta(g(n)) = \{ f(n) : \text{there exists positive constants } c_1, c_2 \text{ and } k \text{ such that } 0 \le c_1g(n) \le f(n) \le c_2g(n) \text{ for all } n \ge k \}$

In this case, $f(n)=2n^22^n + n\log n$ and $g(n)=n^22^n$ From the above definition.

> $c_1 n^2 2^n \le 2n^2 2^n + n \log n \le c_2 n^2 2^n$ for all $n \ge k$ $c_1 \le 2 + (\log n / n 2^n) \le c_2$

Considering k=1 and n=1 gives us $c_1 \le 2$ Considering k=2 and n=2 gives us $c_2 \ge 2.0375$ Considering c_1 =2 and c_2 =2.0375:

 $2 \le 2 + (\log n/n2^n) \le 2.0375$ $0 \le \log n/n2^n \le 0.0375$

For n=1: 0<=0<=0.0375 (True) For n=2: 0<=0.0375<=0.0375 (True) For n=3: 0<=0.01988<=0.0375 (True) For n=4: 0<=0.0094<=0.0375 (True)

As seen above, the inequality holds for all the values of n (As n tends to infinity, logn/n2ⁿ tends to 0) and hence, $2n^22^n + n\log n \in \Theta(n^22^n)$ is true.

(iii) $10n^2+9 = O(n) - False$

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

In this case, $f(n)=10n^2+9$ and g(n)=n

From the above definition,

 $0 <= 10n^2 + 9 <= cn for all n >= k$

Considering k=1 and n=1 gives us c>=19

Considering c=19:

$$0 <= 10n^2 + 9 <= 19n$$

Since n^2 is greater than or equal to 0, $10n^2+9$ is always greater than 0 and that makes the left inequality to be true.

10n²+9<=19n 10n²-19n+9<=0

10n²-10n-9n+9<=0 10n(n-1)+9(n-1)<=0 (10n-9)(n-1)<=0 0.9<=n<=1

So, whenever n lies between 0.9 and 1, the condition holds true and for any other value of n, the condition does not work. Hence, $10n^2+9 = O(n)$ is false.

(iv)
$$n^2 \log n = \Theta(n^2) - False$$

For a given function g(n), $\Theta(g(n))$ is given by:

 $\Theta(g(n)) = \{ f(n) : \text{there exists positive constants } c_1, c_2 \text{ and } k \text{ such that } 0 \le c_1g(n) \le f(n) \le c_2g(n) \text{ for all } n \ge k \}$

In this case, $f(n)=n^2\log n$ and $g(n)=n^2$

From the above definition,

$$c_1 n^2 \le n^2 \log n \le c_2 n^2$$
 for all $n \ge k$
 $c_1 \le \log n \le c_2$

Considering k=1 and n=1 gives us $c_1 \le 0$ Considering k=10 and n=10 gives us $c_2 \ge 1$

Considering $c_1=0$ and $c_2=1$:

0<=logn<=1

For n=1: 0<=0<=1 (True) For n=10: 0<=1<=1 (True) For n=100: 0<=2<=1 (False) For n=1000: 0<=3<=1 (False)

As seen above, the inequality does not work for larger values of n and hence, $n^2 \log n = \Theta(n^2)$ is false.

(v)
$$n^3 2^n + 6n^2 3^n = O(n^3 2^n) - False$$

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{ there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

In this case, $f(n)=n^32^n + 6n^23^n$ and $g(n)=n^32^n$

From the above definition,

$$0 <= n^3 2^n + 6n^2 3^n <= cn^3 2^n$$
 for all $n >= k$

Considering k=1 and n=1 gives us c>=10

Considering c=10:

$$0 <= n^3 2^n + 6n^2 3^n <= 10n^3 2^n$$

Since $n^2, n^3, 2^n, 3^n$ are all greater than or equal to 0 for all $n \ge 0$, $n^3 2^n + 6n^2 3^n$ is always greater than 0 and that makes the left inequality to be true.

$$n^32^n + 6n^23^n <= 10n^32^n$$

 $9n^32^n >= 6n^23^n$
 $nx2^{n-1} >= 3^{n-1}$

For n=2 : 4>=3 (True) For n=5 : 80>=243 (False)

For n=10 : 5120>=19683 (False)

As seen above, the inequality does not work for larger values of n and hence, $n^32^n + 6n^23^n = O(n^32^n)$ is false.

2.

The computer performs 10^{10} operations per second. So, for one hour of computation, the number of operations that will be performed by the computer are $60 \times 60 \times 10^{10} = 36 \times 10^{12}$.

(i) Given algorithm's running time: n².

The largest input size n for which the above computer will be able to get the result in one hour:

$$n^2 = 36 \times 10^{12}$$

 $n = 6 \times 10^6$

Hence, the largest input size that can be computed in one hour = $n = 6 \times 10^6$

(ii) Given algorithm's running time: n3.

The largest input size n for which the above computer will be able to get the result in one hour:

$$n^3 = 36 \times 10^{12}$$

 $n = 3.3019 \times 10^4 = 33019$

Hence, the largest input size that can be computed in one hour = n = 33019

(iii) Given algorithm's running time: 50n².

The largest input size n for which the above computer will be able to get the result in one hour:

Hence, the largest input size that can be computed in one hour = n = 848528

(iv) Given algorithm's running time: 3ⁿ.

The largest input size n for which the above computer will be able to get the result in one hour:

$$3^{n} = 36 \times 10^{12}$$

 $n = log_{3}36 + 12 \times log_{3}10$
 $n = 3.2618 + 12 \times 2.0959 = 28.4126 \sim 28$

Hence, the largest input size that can be computed in one hour = n = 28

3.

Algorithm A_1 takes 10^{-3} x 2^n seconds for solving a problem instance of size n and Algorithm A_2 takes 10^{-2} x n^4 to solve the same on a particular machine.

(i) Number of seconds in one year = $365 \times 24 \times 60 \times 60 = 31536000$

The size of the largest problem instance A_2 will be able to solve in one year:

Hence, the largest problem instance A_2 will be able to solve in the given amount of time = n = 236

(ii) Number of seconds in one year = $365 \times 24 \times 60 \times 60 = 31536000$

The size of the largest problem instance A₂ will be able to solve in one year on a machine hundred times faster than the previous mentioned machine:

Hence, the largest problem instance A_2 will be able to solve in the given amount of time on a hundred times faster machine = n = **749**

(iii)

Assuming n = 19:

The time algorithm A_1 takes to solve an instance of size $19 = 10^{-3} \times 2^{19} = 524.288$ seconds The time algorithm A_2 takes to solve an instance of size $19 = 10^{-2} \times 19^4 = 1303.21$ seconds So, A_1 takes less time to solve an instance of size 19 when compared to A_2

Assuming n = 20:

The time algorithm A_1 takes to solve an instance of size $20 = 10^{-3} \times 2^{20} = 1048.576$ seconds The time algorithm A_2 takes to solve an instance of size $20 = 10^{-2} \times 20^4 = 1600$ seconds So, A_1 takes less time to solve an instance of size 20 when compared to A_2

Now, assuming n = 21:

The time algorithm A_1 takes to solve an instance of size $21 = 10^{-3} \times 2^{21} = 2097.152$ seconds The time algorithm A_2 takes to solve an instance of size $21 = 10^{-2} \times 21^4 = 1944.81$ seconds So, A_2 takes less time to solve an instance of size 21 when compared to A_1

Hence, the algorithm A_1 is faster than the algorithm A_2 when the size of the instance is less than or equal to 20 but when the size of the instance is greater than 20, the algorithm A_2 is faster than A_1 .

4.

The ascending order of the growth rate for the given functions: (ii) < (iii) < (ii) < (iv) < (v)

Proof:

$$f_1(n) = n^{4.5} = 3^{4.5}$$

$$f_2(n) = (3n)^{0.6}$$

$$f_3(n) = n^4 + 20$$

$$f_4(n) = 25^n$$

$$f_5(n) = 260^n$$

Considering the part (ii)<(iii):

$$(3n)^{0.6} \le n^4 + 20$$

$$(3n)^{0.6} \in O(n^4 + 20)$$

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{ there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

$$0 <= (3n)^{0.6} <= c.(n^4 + 20)$$
 for all $n > k$

Assuming k=1 and n=1 gives us $c \ge 0.092$

Considering c = 1:

$$0 <= (3n)^{0.6} <= n^4 + 20$$

The left inequality holds true for all n>0.

$$(3n)^{0.6} \le n^4 + 20$$

For n=2 : 2.93 <= 36 (True) For n=3 : 3.73 <= 101 (True)

Hence, for any value of n, the above condition stays true and hence $(3n)^{0.6} \le n^4 + 20$ is true.

Considering the part (iii)<(i):

$$n^4 + 20 \le n^{4.5}$$

$$n^4 + 20 \in O(n^{4.5})$$

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{ there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

$$0 <= n^4 + 20 <= c.n^{4.5}$$
 for all n>k

Assuming k=1 and n=1 gives us c >= 21

Considering c = 21:

$$0 <= n^4 + 20 <= 21n^{4.5}$$

The left inequality holds true for all n>0.

$$n^4 + 20 \le 21n^{4.5}$$

For n=2 : 36 <= 475.17 (True) For n=3 : 101 <= 2946.21 (True)

Hence, for any value of n, the above condition stays true and hence $n^4 + 20 \le n^{4.5}$ is true.

Considering the part (i)<(iv):

$$n^{4.5} \le 25^n$$

$$n^{4.5} \in O(25^n)$$

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{ there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

$$0 <= n^{4.5} <= c.25^n$$
 for all $n > k$

Assuming k=1 and n=1 gives us c >= 0.04

Considering c = 0.04:

The left inequality holds true for all n>0.

$$n^{4.5} <= 0.04 \times 25^{n}$$

For n=2 : 22.62 <= 25 (True)

For n=3: 140.29 <= 625 (True)

Hence, for any value of n, the above condition stays true and hence $n^{4.5} \le 25^n$ is true.

Considering the part (iv)<(v):

$$25^{n} \in O(260^{n})$$

For a given function g(n), O(g(n)) is given by:

 $O(g(n)) = \{ f(n) : \text{there exists positive constants c and k such that } 0 <= f(n) <= cg(n) \text{ for all } n >= k \}$

$$0 \le 25^{n} \le c.260^{n}$$
 for all $n > k$

Assuming k=1 and n=1 gives us $c \ge 0.096$ Considering c = 0.096:

$$0 \le 25^{\circ} \le 0.096 \times 260^{\circ}$$

The left inequality holds true for all n>0.

$$25^{\circ} <= 0.096 \times 260^{\circ}$$

For n=2: 625 <= 6489.6 (True)

For n=3 : 15625 <= 1687296 (True)

Hence, for any value of n, the above condition stays true and hence $n^{4.5} \le 25^n$ is true.

Therefore, inferring from the proof of the above four parts, the ascending order of the growth rate for the given functions is (ii) < (ii) < (iv) < (v)