Práctica 2

Autores

- 100383530 Daniel Alcaide Nombela
- 100383497 Alejandro de la Cruz Alvarado

Entrega final

• Fichero practica2.png

Descripción de la imagen

En la imagen se ven:

- Un terreno
- · Una «ciudad»
- Un diamante flotante
- Objetos de la práctica anterior

Estructura del árbol de trabajo

Directorios:

- ciudad: procedimiento para la generación de la ciudad
- fields: mapas de alturas de la ciudad y el terreno
- previos: objetos anteriores incluidos en la escena
- render: escenas extra
- sierp: definición de la pirámide de Sierpinsky usada en el diamante
- terreno: procedimiento para la generación del terreno
- test: algunas pruebas con algoritmos de generación de estructuras

Ficheros:

- precalc.sh: script de generación de mapas de alturas (ver Generación de estructuras procedurales)
- genfield.py: script utilitario para convertir matrices de python en imágenes png, usado para generar los mapas de alturas

Renderizado de la imagen

La escena principal está definida en el fichero practica2.pov. Para su construcción se usaran los mapas de alturas definidos en el directorio fields:

- La ciudad utiliza el mapa fields/ciudad.png
- El terreno utiliza el mapa fields/terreno.png

El terreno utilizado es una versión replicada del generado originalmente, que está en fields/terreno_original.png. Para generar la escena basta con ejecutar el siguiente comando en la raíz del árbol de trabajo:

\$> povray practica2.pov

Descripción de estructuras procedurales

Las estructuras procedurales son objetos fractales generados por algoritmos vistos en clase. Sus implementaciones en POV-Ray están en los ficheros terreno/precalc.pov y ciduad/precalc.pov. Como salida, imprimen por la salida Debug una array de python que representa el campo de alturas.

• El **terreno**, de apariencia natural, es generado por el algoritmo «diamond-square», que es de tipo *midpoint-displacement*.

- El algoritmo que genera la **ciudad** es una variación del *midpoint displacement* en la que no se calculan las medias entre los puntos:
 - 1) Se divide un cuadrado inicial en 4 partes de igual superficie.
 - 2) Cada parte se eleva o hunde una cantidad aleatoria
 - 3) Se divide cada cuadrado en 4 partes de igual superficie
 - 4) Vuelta al paso 2

En cada iteración se disminuye la variación de la altura aplicada. Este algoritmo genera una estructura fractal con apariencia escalonada/cuadriculada.

Generación de estructuras procedurales

Para generar tanto la ciudad como el terreno se usa el script precalc.sh. Para generar el terreno en un entorno POSIX, ejecutar:

\$> sh precalch.sh terreno
o bien:

\$> ./precalch.sh terreno

Para generar la ciudad, basta con sustituir terreno por ciudad. Para funcionar, python ha de contar con la biblioteca Pillow instalada:

\$> pip install Pillow