6A Clustering algorithms for unsupervised classification.
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
df=pd.read_csv("/content/drive/MyDrive/KRAI/Mall_Customers_dataset.csv")
df.head()

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

X=df[['Annual Income (k\$)', 'Spending Score (1-100)']] X

₹	Annual Income (k\$)	Spending Score (1-100)
0	15	39
1	15	81
2	16	6
3	16	77
4	17	40
195	120	79
196	126	28
197	126	74
198	137	18
199	137	83

200 rows × 2 columns

plt.scatter(X['Annual Income (k\$)'],X['Spending Score (1-100)'])

<matplotlib.collections.PathCollection at 0x7d84d5a3d930>

from sklearn.cluster import KMeans
model= KMeans(n_clusters=5)
model.fit(X)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_ warnings.warn(

model.cluster_centers_

```
array([[88.2 , 17.11428571],
        [55.2962963 , 49.51851852],
        [25.72727273, 79.36363636],
        [86.53846154, 82.12820513],
        [26.30434783, 20.91304348]])
```

cluster_number=model.predict(X)

len(cluster_number)

200

```
c0=X[cluster_number==0]
c1=X[cluster_number==1]
c2=X[cluster_number==2]
c3=X[cluster_number==3]
c4=X[cluster_number==4]
```

```
plt.scatter(c0['Annual Income (k$)'],c0['Spending Score (1-100)'],c='red')
plt.scatter(c1['Annual Income (k$)'],c1['Spending Score (1-100)'],c='blue')
plt.scatter(c2['Annual Income (k$)'],c2['Spending Score (1-100)'],c='yellow')
plt.scatter(c3['Annual Income (k$)'],c3['Spending Score (1-100)'],c='cyan')
plt.scatter(c4['Annual Income (k$)'],c4['Spending Score (1-100)'],c='green')
plt.scatter(model.cluster_centers_[:,0],model.cluster_centers_[:,1],s=100,c='black',label='Centroids')
plt.xlabel('Annual Income(k$)')
plt.ylabel('Spending Scaore(1-100)')
plt.legend()
plt.show()
```


model.inertia

44448.4554479337

```
WCSS = []
for i in range(1, 11):
    model = KMeans(n_clusters=i, n_init=10)  # Explicitly set n_init to suppress warning
    model.fit(X)
    WCSS.append(model.inertia_)

plt.plot(range(1, 11), WCSS)
plt.title('WCSS vs. Number of Clusters')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```


WCSS

```
[269981.28,

181363.59595959593,

106348.37306211122,

73679.78903948836,

44448.4554479337,

37233.814510710006,

30273.394312070042,

25043.89004329005,

21838.86369282892,

19636.753964898147]
```

plt.plot(range(1,11),WCSS,marker='x')

[<matplotlib.lines.Line2D at 0x7d84c85ac370>]

