OBJEKTIF:

- 1. Mahasiswa Mampu Menentukan Jangkauan, Inter-Kuartil, dan Deviasi Kuartil.
- 2. Mahasiswa Mampu Menentukan Deviasi Rata-rata.
- 3. Mahasiswa Mampu Menentukan Variasi, Simpangan Baku, dan Koefisien Variasi.

PENDAHULUAN

Ukuran variabilitas sangat penting artinya bagi penggambaran serangkaian data, lebih-lebih jika seseorang ingin membandingkan dua atau lebih rangkaian data. Dalam usaha membandingkan beberapa rangkaian data, penggunaan ukuran pusat data saja tidak akan memberikan hasil yang baik, bahkan dapat memberikan hasil yang menyesatkan. Ada beberapa kemungkinan yang terjadi jika antara ukuran pusat data - misalnya rata-rata dan ukuran variabilitas data dihubungkan satu dengan lainnya.

- a. Beberapa rangkaian data memiliki rata-rata yang sama, namun memiliki variabilitas yang berbeda (gambar 5.1.a).
- b. Beberapa rangkaian data memiliki rata-rata yang berbeda, namun memiliki variabilitas yang sama (gambar 5.1.b).
- c. Beberapa rangkaian data memiliki rata-rata dan variabilitas yang berbeda (gambar 5.1.c).

d. Beberapa rangkaian data memiliki rata-rata dan variabilitas yang sama (gambar 5.1.d).

Pada gambar-gambar tersebut (Gambar 5.1), variabilitas ditunjukkan oleh keruncingan masing-masing poligon frekuensi. Semakin runcing sebuah poligon frekuensi, maka data yang digambarkan oleh poligon tersebut akan semakin kecil variabilitasnya dan semakin pipih poligon frekuensi data bersangkutan, maka variabilitas data tersebut semakin besar.

Gambar 5.1

Rangkaian Data Ditinjau dari Kondisi Rata-rata dan Variabilitas

5.1 JANGKAUAN, INTER-KUARTIL, DAN DEVIASI KUARTIL

5.1.1 JANGKAUAN

Jangkauan atau *range*, adalah beda antara angka data terbesar dan angka data terkecil yang dirumuskan :

Jangkauan = angka terbesar - angka terkecil

Contoh 1:

Berikut adalah data penjualan dari sampel tenaga penjual (*salesman*) CV Berlian Jaya yang melakukan penjualan di dua kota :

Tabel 5.1

Data Penjualan dari 6 Tenaga Penjual CV Berlian Jaya

Tenaga Penjual	Bandung	Cirebon
Emita	Rp. 90.000,00	Rp. 160.000,00
Biantoro	Rp. 110.000,00	Rp. 140.000,00
Ceceh	Rp. 220.000,00	Rp. 150.000,00
Bony	Rp. 140.000,00	Rp. 150.000,00
Endro	Rp. 160.000,00	Rp. 170.000,00
Fariza	Rp. 180.000,00	Rp. 130.000,00

Jangkauan nilai penjualan tenaga penjual CV Berlian Jaya di Bandung dan Cirebon adalah:

Bandung: Rp. 220.000,00 - Rp. 90.000,00 = Rp. 130.000,00

Cirebon: Rp. 170.000,00 - Rp. 130.000,00 = Rp. 40.000,00

Dilihat jangkauannya, nilai penjualan di kota Bandung memiliki variabilitas yang lebih tinggi dibanding dengan nilai penjualan di kota Cirebon.

5.1.2 INTER-KUARTIL

Ukuran ini dihitung dengan menentukan beda antara kuartil ketiga dan kuartil pertama yang dirumuskan :

Inter-kuartil =
$$Q_3 - Q_1$$

 Q_1 = kuartil pertama

 Q_3 = kuartil ketiga

Seperti halnya dengan cara jangkauan, maka penghitungan inter-kuartil tidak melibatkan seluruh data yang ada.

Contoh 2:

Lihat Contoh 1. Hitunglah inter-kuartilnya!

• Bandung

$$\frac{n+1}{4} = \frac{6+1}{4} = \frac{7}{4} = 1,75$$

Kuartil pertama (
$$Q_1$$
) = $90.000 + (110.000 - 90.000) 0,75$
= 105.000

$$\frac{3(n+1)}{4} = \frac{3(6+1)}{4} = \frac{21}{4} = 5,25$$

Kuartil ketiga (Q₃) =
$$180.000 + (220.000 - 180.000) 0,25$$

= 190.000

Inter-kuartil =
$$Q_3 - Q_1$$

= $190.000 - 105.000$
= 85.000

Cirebon

Kuartil pertama (Q₁) =
$$130.000 + (140.000 - 130.000) 0,75$$

= 137.500
Kuartil ketiga (Q₃) = $160.000 + (170.000 - 160.000) 0,25$
= 162.500

Inter-kuartil =
$$Q_3 - Q_1$$

= $162.500 - 137.500$
= 25.000

Kesimpulan yang dapat diambil sama seperti pada cara penentuan jangkauan, bahwa nilai penjualan di kota Bandung memiliki variabilitas yang lebih tinggi dibanding dengan variabilitas nilai penjualan di kota Cirebon.

5.1.3 DEVIASI KUARTIL

Deviasi kuartil mengukur variabilitas data dengan menentukan rata-rata hitung inter-kuartilnya. Deviasi kuartil dirumuskan sebagai berikut :

Deviasi Kuartil =
$$\frac{Q3 - Q1}{2}$$

Contoh 3:

Perhatikan Contoh 1. Hitunglah deviasi kuartilnya!

Bandung

deviasi kuartil =
$$\frac{190.000 - 105.000}{2} = 42.500$$

Cirebon

deviasi kuartil =
$$\frac{162.500 - 137.500}{2} = 12.500$$

Tidak berbeda dengan kedua cara sebelumnya, dengan deviasi kuartil, nilai penjualan kota Bandung menunjukkan variabilitas yang lebih tinggi daripada kota Cirebon.

5.2 DEVIASI RATA-RATA

5.2.1 DEVIASI RATA-RATA DARI DATA YANG BELUM DIKELOMPOKKAN

Berbeda dengan tiga cara sebelumnya, maka deviasi rata-rata melibatkan seluruh data observasi dalam perhitungannya. Di sini, variabilitas diukur dengan membandingkan data observasi secara individual dengan pusat datanya (biasanya rata-rata).

Perhitungan dilakukan dengan mencari **rata-rata beda absolut antara data observasi secara individual dengan pusat datanya** (sekali lagi biasanya dengan rata-ratanya). Hal ini dirumuskan :

Untuk Sampel

$$Deviasi\ Rata-rata=\frac{\sum \lvert X_i-\bar{x}\rvert}{n}$$

 x_i = Data ke-i dari variabel acak x

 $\bar{\mathbf{x}} = \mathbf{Rata}$ -rata sampel

n = Ukuran sampel

Untuk Populasi

$$Deviasi\ Rata - rata = \frac{\sum |X_i - \mu_x|}{N}$$

 x_i = Data ke-i dari variabel acak x

 μ_x = Rata-rata populasi

N = Ukuran populasi

Perhatikan bahwa hasil pengurangan data observasi dengan rata-ratanya berada dalam tanda dua garis tegak. Tanda ini menunjukkan bahwa hasil pengurangan tersebut berbentuk bilangan absolut (senantiasa dalam bilangan positif). Jika hasil pengurangan tersebut -19 misalnya, maka bilangan absolutnya adalah 19. Dengan sendirinya, sebelum menghitung deviasi rata-rata, harus dihitung terlebih dahulu rata-ratanya.

Contoh 4:

Lihat contoh 1. Hitunglah deviasi rata-rata data nilai penjualan di kedua kota tersebut!

Rata-rata nilai penjualan di kota Bandung:

$$90.000 + 110.000 + 220.000 + 140.000 + 160.000 + 180.000$$

6

Rata-rata $(\bar{x}) = 150.000$

Rata-rata nilai penjualan di kota Cirebon:

$$160.000 + 140.000 + 150.000 + 150.000 + 170.000 + 130.000$$

6

Rata-rata $(\bar{x}) = 150.000$

Perhitungan deviasi rata-rata selanjutnya adalah sebagai berikut:

Tabel 5.2 Perhitungan Deviasi Rata-rata Nilai Penjualan di Kota Bandung

X	X	l x _i - x̄ l
90.000	150.000	60.000
110.000	150.000	40.000
220.000	150.000	70.000
140.000	150.000	10.000
160.000	150.000	10.000
180.000	150.000	30.000
Jumlah		220.000

Deviasi rata-rata =
$$\frac{220.000}{6}$$
 = 36.666,67

Tabel 5.3 Perhitungan Deviasi Rata-rata Nilai Penjualan di Kota Cirebon

X	x	l x _i - x̄ l
160.000	150.000	10.000
140.000	150.000	10.000
150.000	150.000	0
150.000	150.000	0
170.000	150.000	20.000
130.000	150.000	20.000
Jumlah		60.000

Deviasi rata-rata =
$$\frac{60.000}{6}$$
 = 10.000

Kesimpulan yang dapat diambil bahwa variabilitas nilai penjualan di kota Bandung ternyata lebih tinggi dibanding dengan variabilitas nilai penjualan di kota Cirebon.

5.2.2 DEVIASI RATA-RATA DARI DATA YANG TELAH DIKELOMPOKKAN

Seperti halnya ketika menentukan ukuran pusat data dari data yang telah dikelompokkan, diperlukan penaksir data observasi (asli) dari kelas-kelas data yang terdapat dalam sebuah distribusi frekuensi, yaitu titik-titik tengah masing-masing kelas. Selanjutnya, deviasi rata-rata untuk data yang telah dikelompokkan dirumuskan sebagai berikut :

Untuk Sampel

$$Deviasi \ Rata - rata = \frac{\sum |X_i - \overline{x}| \ . \ f_i}{n}$$

 x_i = Titik tengah kelas ke-i \bar{x} = Rata-rata sampel

f_i: Frekuensi kelas ke-i n: Ukuran sampel

Untuk Populasi

$$Deviasi \; Rata - rata = \frac{\sum \lvert X_i - \mu_x \rvert \; . \; f_i}{N}$$

 x_i = Titik tengah kelas ke-i μ_x = Rata-rata populasi

f_i: Frekuensi kelas ke-i

N = Ukuran populasi

Contoh 5:

Berikut disajikan data saldo piutang dagang PT. Zamrud Katulistiwa yang diambil dari transaksi penjualan di kedua kantor cabang yang dimilikinya.

Tabel 5.4

Distribusi Saldo Piutang Dagang PT Zamrud Katulistiwa Cabang Kediri dan

Malang (dalam satuan Rp.l.000,00)

Saldo Piutang	Kediri	Malang
60 - < 70	4	6
70 - < 80	9	8
80 - < 90	16	12
90 - < 100	14	14
100 - < 110	9	11
110 - < 120	3	9
Jumlah	55	60

Selanjutnya, perhitungan masing-masing deviasi rata-ratanya adalah sebagai berikut:

Tabel 5.5
Perhitungan Rata-rata

Saldo Piutang	Kediri		Ma	llang
Xi	\mathbf{f}_{i}	x _i f _i	fi	x _i f _i
65	4	260	6	390
75	9	675	8	600
85	16	1.360	12	1.020
95	14	1.330	14	1.330
105	9	945	11	1.155
115	3	345	9	1.035
Jumlah	55	4.915	60	5.530

Rata-rata saldo piutang cabang Kediri =

$$\bar{x} = \frac{4.915}{55} = 89,36$$
 $\bar{x} = Rp. 89.360,00$

Rata-rata saldo piutang cabang Malang =

$$\bar{x} = \frac{5.530}{60} = 92,17$$
 $\bar{x} = 92.170,00$

Tabel 5.6
Perhitungan Deviasi Rata-rata Saldo Piutang
PT Zamrud Katulistiwa Cabang Kediri

Saldo Piutang (x _i)	fi	$\mathbf{I} \mathbf{x}_i - \bar{\mathbf{x}} \mathbf{I} \mathbf{f}_i$
65	4	97,44
75	9	129,24
85	16	69,76
95	14	78,96
105	9	140,76
115	3	76,92
Jumlah	55	593,08

deviasi rata — ratanya =
$$\frac{593,08}{55}$$
 = 10.783

Tabel 5.7

Perhitungan Deviasi Rata-rata Saldo Piutang

PT Zamrud Katulistiwa Cabang Malang

Saldo Piutang (x _i)	fi	$\mathbf{I} \mathbf{x}_{i} - \bar{\mathbf{x}} \mathbf{I} \mathbf{f}_{i}$
65	6	163,02
75	8	137,36
85	12	86,04
95	14	39,62
105	11	141,13
115	9	205,47
Jumlah	60	772,64

deviasi rata — ratanya =
$$\frac{772,64}{60} = 12.880$$

Dari hasil perhitungan tersebut, diketahui bahwa variabilitas data saldo piutang dagang PT Zamrud Katulistiwa cabang Malang lebih tinggi daripada cabang Kediri.

Hasil penghitungan variabilitas dengan menggunakan deviasi rata-rata ini tentu saja jauh lebih baik daripada menggunakan jangkauan, inter-kuartil, dan deviasi kuartil, karena perhitungan deviasi melibatkan seluruh data observasi. Akan tetapi, deviasi rata-rata masih memiliki kelemahan. Untuk memperoleh nilai-nilai beda data observasi dengan rata-ratanya yang positif, metode ini menganggap sama antara nilai-nilai negatif dan positif.

5.3 VARIASI, SIMPANGAN BAKU, KOEFISIEN VARIASI

5.3.1 VARIASI DARI DATA YANG BELUM DIKELOMPOKKAN

Pengertian variasi mirip dengan deviasi rata-rata. Hanya saja, untuk memperoleh hasil perhitungan dalam bilangan positif tidak lagi diwujudkan dalam bilangan absolut, namun dikuadratkan. Dengan kata lain bahwa: variasi adalah alat ukur variabilitas serangkaian data yang dihitung dengan mencari rata-rata selisih/beda kuadrat antara data observasi dengan pusat datanya (biasanya menggunakan rata-rata).

Variasi untuk data populasi disimbulkan dengan σ_{x}^{2} dan untuk data sampel disimbolkan dengan s^{2} . Untuk yang belum dikelompokkan, variasi dirumuskan sebagai berikut :

Untuk populasi

$$\sigma_{x}^{2} = \frac{\sum (x_{i} - \mu_{x})^{2}}{N}$$

 σ_x^2 = Variasi populasi

 X_i = Data ke-i dari variabel acak X

 μ_x = Rata-rata populasi

N = Ukuran populasi

Untuk sampel

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

 s^2 = Variasi sampel

 X_i = Data ke-i dari variabel acak X

 \bar{x} = Rata-rata sampel

n = Ukuran sampel

Kedua perumusan di atas dapat disederhanakan seperti berikut ini:

Untuk populasi

$$\sigma_{x}^{2} = \frac{N \cdot \sum x_{i}^{2} - (\sum x_{i})^{2}}{N^{2}}$$

 σ_x^2 = Variasi populasi

 X_i = Data ke-i dari variabel acak X

N = Ukuran populasi

Untuk sampel

$$s^{2} = \frac{n \cdot \sum x_{i}^{2} - (\sum x_{i})^{2}}{n \cdot (n-1)}$$

 s^2 = Variasi sampel

 X_i = Data ke-i dari variabel acak X

n = Ukuran sampel

Contoh 6:

Lihat contoh 1. Variasi nilai penjualan CV Berlian Jaya di kota Bandung dan Cirebon dapat dihitung seperti berikut ini:

Tabel 5.8

Penghitungan Variasi Nilai Penjualan CV Berlian Jaya di Kota Bandung

Penjualan (Xi)	Rata-rata (x̄)	$(\mathbf{X_i} - \bar{\mathbf{x}})$	$(\mathbf{X_i} - \bar{\mathbf{x}})^2$	X_{i}^{2}
90	150	-60	3600	8100
110	150	-40	1600	12.100
220	150	70	4900	48.400
150	150	0	0	22.500
160	150	10	100	25.600
180	150	30	900	32.400
900			11.100	149.100

Variasinya adalah (data di atas adalah data sampel):

$$s^2 = \frac{11.100}{6-1} = 2.220$$

$$s^2 = 2.220.000$$

atau dengan perumusan yang disederhanakan:

$$s^2 = \frac{6 \cdot (149.100) - 900^2}{6 \cdot (6-1)} = 2.820$$

$$s^2 = 2.820.000$$

Tabel 5.9
Penghitungan Variasi Nilai Penjualan CV Berlian Jaya di Kota Cirebon

Penjualan (X _i)	Rata-rata (x̄)	$(\mathbf{X_i} - \mathbf{\bar{x}})$	$(\mathbf{X_i} - \bar{\mathbf{x}})^2$	X_i^2
160	150	10	100	25.600
140	150	-10	100	19.600
150	150	0	0	22.500
150	150	0	0	22.500
170	150	20	400	28.900
130	150	-20	400	16.900
900			1000	136.000

Variasinya adalah (data di atas adalah data sampel):

$$s^2 = \frac{1000}{6-1} = 200$$

$$s^2 = 200.000$$

atau dengan perumusan yang disederhanakan:

$$s^2 = \frac{6 \cdot (136.000) - 900^2}{6 \cdot (6-1)} = 200$$

$$s^2 = 200.000$$

Dengan menggunakan perumusan yang telah disederhanakan, perhitungan rata-rata tidak lagi perlu dilakukan.

5.3.2 VARIASI DARI DATA YANG TELAH DIKELOMPOKKAN

Seperti halnya ketika menghitung deviasi rata-rata untuk data yang telah dikelompokkan, maka untuk menghitung variasi data yang telah dikelompokkan diperlukan pula penaksir-penaksir data observasi yang diwujudkan dalam titik tengah untuk masing-masing kelas sebuah distribusi frekuensi. Baik untuk populasi maupun sampel dirumuskan sebagai berikut :

Untuk populasi

$$\sigma_x^2 = \frac{\sum (x_i - \mu_x)^2 \cdot f_i}{N}$$

 σ_x^2 = Variasi populasi

 X_i = Data tengah kelas ke-i

 $\mu_x = Rata-rata populasi$

f_i = Frekuensi kelas ke-i

N = Ukuran populasi

Untuk sampel

$$s^2 = \frac{\sum (x_i - \bar{x})^2 \cdot f_i}{n - 1}$$

 s^2 = Variasi sampel

 X_i = Titik tengah kelas ke-i

 \bar{x} = Rata-rata sampel

f_i = Frekuensi kelas ke-i

n = Ukuran sampel

Contoh 7:

PT Widuri adalah sebuah perusahaan yang menghasilkan tegel, mempekerjakan 75 karyawan untuk bagian produksi. Gaji yang mereka terima per bulan untuk tahun 1993 adalah sebagai berikut:

Tabel 5.10

Distribusi Gaji per Bulan yang Diterima

Karyawan PT Widuri untuk Bagian Produksi Tahun 1993

Gaji	Jumlah Karyawan
80.000 - < 90.000	9
90.000 - < 100.000	11
100.000 - < 110.000	18
110.000 - < 120.000	20
120.000 - < 130.000	10
130.000 - < 140.000	7
Jumlah	75

Variasi gaji yang diterima dapat dihitung seperti berikut ini:

Rata-rata (rata-rata populasi: karena yang menjadi kajian adalah karyawan bagian produksi) gaji yang diterima:

Tabel 5.11

Perhitungan Rata-rata Gaji yang Diterima

Karyawan PT Widuri untuk Bagian Produksi Tahun 1993

Xi	$\mathbf{f_i}$	$\mathbf{x_i}$. $\mathbf{f_i}$
85.000	9	765.000
95.000	11	1.045.000
105.000	18	1.890.000
115.000	20	2.300.000
125.000	10	1.250.000
135.000	7	945.000
Jumlah		8.195.000

$$\mu_x = \frac{8.195.000}{75} = 109.266,67$$

Tabel 5.12

Perhitungan Variasi Gaji yang Diterima

Karyawan PT Widuri untuk Bagian Produksi Tahun 1993

Xi	fi	$(\mathbf{x}_{i} - \boldsymbol{\mu}_{x})^{2} \cdot \mathbf{f}_{i}$
85.000	9	5.299.841.456
95.000	11	2.238.916.601,78
105.000	18	327.680.512
115.000	20	657.421.457,78
125.000	10	2.475.376.728,89
135.000	7	4.635.429.910,22
Jumlah		15.634.666.666,7

$$\sigma_x^{\ 2} = \frac{_{15.634.666.666,7}}{_{75}} = 208.462.222,22$$

5.3.3 SIMPANGAN BAKU DARI DATA YANG BELUM DIKELOMPOKKAN

Dalam praktisnya, ukuran variabilitas yang sering digunakan adalah simpangan baku (atau deviasi standar) yang merupakan akar kuadrat dari variasi. Hal ini disebabkan bahwa variasi tidak dapat dinyatakan dalam satuan ukur apapun seperti rupiah, kilogram, ton, dan lain sebagainya. Sedangkan simpangan baku dapat dinyatakan dalam satu satuan ukur seperti di atas. Untuk data yang belum dikelompokkan, baik untuk populasi maupun sampel dapat dirumuskan sebagai berikut:

Untuk populasi

$$\sigma_x = \sqrt{\frac{\sum (x_i - \mu_x)^2}{N}}$$

 σ_x = Simpangan baku populasi

 X_i = Data ke-i dari variabel acak X

 μ_x = Rata-rata populasi

N = Ukuran populasi

Untuk sampel

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

s = Simpangan baku sampel

 X_i = Data ke-i dari variabel acak X

 $\bar{x} = Rata-rata sampel$

n = Ukuran sampel

Contoh 8:

Lihat contoh 6. Simpangan baku nilai penjualan di kota Bandung adalah sebagai berikut:

 $s^2 = 2.240.000$.

$$s = \sqrt{2.240.000}$$
, $s = Rp 1.496,66$

5.3.4 SIMPANGAN BAKU DARI DATA YANG TELAH DIKELOMPOKKAN

Adapun untuk data yang telah dikelompokkan, dengan mudah dapat dirumuskan seperti berikut:

Untuk populasi

$$\sigma_{x} = i \cdot \sqrt{\left[\frac{\sum U_{i}^{2} \cdot f_{i} - \frac{(\sum U_{i} \cdot f_{i})^{2}}{N}}{N}\right]}$$

 σ_x = Simpangan baku populasi

i = Interval kelas

U_i = Kode U pada kelas ke-i

f_i = Frekuensi kelas ke-i

N = Ukuran populasi

Ukuran sampel

$$s = i \cdot \sqrt{\left[\frac{\sum U_i^2 \cdot f_i - \frac{(\sum U_i \cdot f_i)^2}{N}}{n-1}\right]}$$

s = Variasi sampel

i = Interval kelas

U_i = Kode U pada kelas ke-i

f_i = Frekuensi kelas ke-i

n = Ukuran sampel

Contoh 9:

Lihat contoh 7. Simpangan bakunya dapat dihitung sebagai berikut:

$$\sigma_x^2 = 208.462.222,22$$

$$\sigma_x = \sqrt{208.462.222,22}$$

$$\sigma_x = Rp. 14.438,22$$

5.3.5 KOEFISIEN VARIASI

Koefisien variasi (*coefficient of variation*; CV) adalah nilai standar deviasi dibagi dengan rerata. Koefisien merupakan ukuran penyebaran data yang tak memiliki satuan, karena itu dapat digunakan untuk membandingkan penyebaran data 2 variabel yang memiliki satuan berbeda, misalnya tinggi dan berat badan.

Untuk populasi

$$CV = \frac{\sigma}{\mu}$$

 σ = Simpangan baku populasi

 $\mu = Rata$ -rata populasi

Untuk sampel

$$CV = \frac{s}{\bar{x}}$$

s = Simpangan baku sampel

 $\bar{x} = Rata$ -rata sampel

Contoh 10:

Lihat contoh 7.

Tabel 5.13

Distribusi Gaji per Bulan yang Diterima

Karyawan PT Widuri untuk Bagian Produksi Tahun 1993

Gaji	Jumlah Karyawan
80.000 - < 90.000	9
90.000 - < 100.000	11
100.000 - < 110.000	18
110.000 - < 120.000	20
120.000 - < 130.000	10
130.000 - < 140.000	7
Jumlah	75

Simpangan Baku = $\sigma_x = 14.438,22$ (Pada Contoh 9)

Rata-rata Populasi =
$$\mu_x = \frac{8.195.000}{75} = 109.266,67$$
 (Pada Contoh 7)

Koefisien Variasi =
$$\frac{14.438,22}{109.266,67}$$
 x100% = 13,21%

REFERENSI:

Kustituanto, Bambang dan Rudy Badrudin. 1994. *Statistika 1 (Deskriptif)*. Jakarta: Gunadarma.