Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Segundo semestre 2022

PRÁCTICO 7: MÍNIMOS CUADRADOS.

EJERCICIO 1. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{R})$.

- 1. Probar que $Im(A)^{\perp} = Ker(A^t)$; es decir, que si S es el subespacio de \mathbb{R}^m generado por las columnas de A, entonces $S^{\perp} = \{X \in \mathbb{R}^m : A^t X = \overrightarrow{0}\}.$
- 2. Dado $Y \in \mathbb{R}^m$ y S = Im(A), probar que $s = P_S(Y)$ si y sólo si $s = AX_o$ con $X_o \in \mathbb{R}^n$ y $(A^tA)X_o = A^tY$.
- 3. Dado $Y \in \mathbb{R}^m$, concluir que el vector que minimiza ||Y AX|| es la solución del sistema $(A^tA)X = A^tY$.

EJERCICIO 2. Sea AX = b un sistema de ecuaciones donde $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$ y $b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

- 1. Resolver AX = b.
- 2. Encontrar la "mejor solución" \overline{X} aplicando el método de mínimos cuadrados; es decir, hallar \overline{X} que minimice ||AX b||.
- 3. Sea $s = A\overline{X}$. Verificar que el vector "error" b-s es ortogonal a las columnas de A.

EJERCICIO 3. En un experimento se midió según el tiempo una cierta magnitud y, obteniéndose los siguientes valores

	t	y
	0	0
	1	1
	3	2
	4	5

- 1. Graficar y contra t.
- 2. Aplicando el método de mínimos cuadrados hallar la "mejor" recta que ajuste los datos anteriores ($y = \alpha t + \beta$). Graficar la solución.
- 3. Aplicando el método de mínimos cuadrados hallar la "mejor" **parábola** que ajuste los datos anteriores ($y = \alpha t^2 + \beta t + \gamma$). Graficar la solución.

EJERCICIO 4. En un experimento con 2 materiales radioactivos se mide la lectura y de un contador Geiger en varios tiempos t. Se puede suponer basándose en la experiencia anterior que los datos verifican el siguiente modelo

$$y = \alpha e^{-\lambda t} + \beta e^{-\mu t}$$

donde se conocen las vidas medias de ambos materiales: $\lambda=1$ y $\mu=\frac{1}{2}$, pero se ignoran las cantidades de cada uno de ellos: α y β .

Se efectúan una serie de resultados obteniéndose los siguientes valores:

t	y
0	8
1	4
3	1

Plantear las ecuaciones normales que optimizan α y β según el criterio de los mínimos cuadrados.

EJERCICIO 5. La tabla de valores que se muestra a continuación corresponde a medidas con error de una ley $y=f(t)=A\,\sin\left(\frac{\pi t}{4}\right)+B\,\cos\left(\frac{\pi t}{4}\right)$. Aplicando el método de mínimos cuadrados, calcular los parámetros A y B que mejor ajustan f(t) a los datos:

$$\begin{array}{c|cc}
t & y \\
0 & 0 \\
2 & 1 \\
4 & 2 \\
\end{array}$$

EJERCICIO 6. En un experimento se han recogido los siguientes pares de datos (x, y): (0, 1), (1, 1), (2, 0) que deberían satisfacer la ecuación

$$y = x^2 + \alpha x + \beta.$$

Hallar α y β que minimicen en el sentido de mínimos cuadrados el error cometido.