UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 11

Spring 2023

1. Generating Erdős-Rényi Random Graphs

Let G_1 and G_2 be independent Erdős–Rényi random graphs on n vertices with probabilities p_1 and p_2 respectively. Let G be $G_1 \cup G_2$, that is, the graph generated by combining the edges in G_1 and G_2 .

- a. Is G an Erdős-Rényi random graph on n vertices with probability $p_1 + p_2$?
- b. Is G an Erdős–Rényi random graph?

Solution:

- a. No; an edge appears in G if it appears in G_1 or in G_2 , which occurs with probability $p_1 + p_2 p_1 p_2$ by inclusion-exclusion.
- b. Yes; each edge appears with probability $p = p_1 + p_2 p_1 p_2$ independently.

2. Degree of Vertex in Random Graph

Consider a random undirected graph on n vertices in which each of the $\binom{n}{2}$ possible edges is present with probability p, independent of all other edges.

- a. Fix a particular vertex of the graph, and let D be the random variable equal to its degree. Find the pmf and expected value of D.
- b. Suppose that p depends on n in a way such that np tends to a fixed constant λ as $n \to \infty$. For large n, how could we model the pmf of D without using n?

Solution:

- a. The degree of any vertex is the number of present edges among the n-1 possible adjacent edges, so $D \sim \text{Binomial}(n-1,p)$ and $\mathbb{E}(D) = (n-1)p$.
- b. By the Poisson limit theorem or the law of rare events, for large n, the distribution of D is approximately $Poisson(\lambda)$.

3. Maximum Likelihood Estimation for the Binary Symmetric Channel

You are testing a digital link that corresponds to a BSC with some error probability $\varepsilon \in [0, 0.5]$.

a. Suppose that you observe an input bit X and an output bit Y. Calculate the MLE of ε , which is the value of $\varepsilon \in [0, 0.5]$ maximizing the probability you observe the given data. Here, since the observation is (X, Y), we want to find

$$\varepsilon_{\text{MLE}} = \underset{\varepsilon \in [0,0.5]}{\operatorname{argmax}} \mathbb{P}_{\varepsilon}(X = x, Y = y).$$

b. You are now told that the inputs X_1, \ldots, X_n are i.i.d. Bernoulli(0.6) bits. Suppose that you observe n outputs Y_1, \ldots, Y_n . Calculate the MLE of ϵ .

Solution:

a. Let \mathbb{P}_{ε} denote the probability distribution of X and Y when the error probability of the BSC is ε . For $(x, y) \in \{0, 1\}^2$,

$$\varepsilon_{\text{MLE}} = \operatorname*{argmax}_{\varepsilon \in [0,0.5]} \mathbb{P}_{\varepsilon}(X = x, Y = y) = \operatorname*{argmax}_{\varepsilon \in [0,0.5]} \left(\varepsilon^{\mathbb{1}\{x \neq y\}} (1 - \varepsilon)^{\mathbb{1}\{x = y\}} \right).$$

If $x \neq y$, then $\varepsilon_{\text{MLE}} = 0.5$ maximizes the likelihood; otherwise, $\varepsilon_{\text{MLE}} = 0$.

b. Note that every use of the channel is independent. Given n outputs, ε_{MLE} maximizes

$$\mathbb{P}_{\varepsilon}(Y_1 = y_1, \dots, Y_n = y_n) = \prod_{i=1}^n \mathbb{P}_{\varepsilon}(Y_i = y_i)
= \prod_{i=1}^n \left[(0.6(1 - \varepsilon) + 0.4\varepsilon) \, \mathbb{1}_{y_i = 1} + (0.4(1 - \varepsilon) + 0.6\varepsilon) \, \mathbb{1}_{y_i = 0} \right]
= \prod_{i=1}^n (0.6 - 0.2\varepsilon)^{y_i} (0.4 + 0.2\varepsilon)^{1 - y_i}
= (0.6 - 0.2\varepsilon)^{\sum_{i=1}^n y_i} (0.4 + 0.2\varepsilon)^{n - \sum_{i=1}^n y_i}.$$

We find that the likelihood only depends on $t = \sum_{i=1}^{n} y_i$. We can then find the maximizer as $\varepsilon_{\text{MLE}} = 3 - \frac{5t}{n}$ from differentiating the log-likelihood:

$$\frac{-0.2t}{0.6-0.2\varepsilon}+\frac{0.2(n-t)}{0.4+0.2\varepsilon}=\frac{t(\varepsilon+2)+(n-t)(\varepsilon-3)}{(\varepsilon-3)(\varepsilon+2)}=0.$$

If ε_{MLE} falls outside of the interval [0, 0.5], then we clip it to 0 or 0.5, whichever endpoint is closer to the maximizer.