

МАТЕМАТИКА БЕЗ ГРАНИЦИ

8 КЛАС

ПОЛУФИНАЛ 2020

Задача 1. Кое е най-голямото цяло отрицателно число x, ако $|x| \ge \sqrt{11}$?

Задача 2. За колко едноцифрени числа x *числото* \sqrt{x} е рационално?

Задача 3. Пресметнете $\sqrt{(1-\sqrt{2})^2}:(1-\sqrt{2})+1$.

Задача 4. На коя степен трябва да повдигнем 16^{16} за да получим 64^{64} ?

Задача 5. Върху окръжност са отбелязани 8 точки. Колко е най-големият брой правоъгълни триъгълници с върхове дадените точки?

Задача 6. Преди 2 години A е бил на два пъти повече години от B, а преди три години B е бил три пъти по-млад от A. На колко години е A сега?

Задача 7. За кои цели числа n може да се твърди, че 6n + 1 се дели на 3n + 2?

Задача 8. Пресметнете остатъкът при делението на $3 + 3^2 + 3^3 + \dots + 3^{2019} + 3^{2020}$ на 13.

Задача 9. По колко начина можем да поставим 26 литра сок в общо 10 бутилки от по 1 литър, 3 литра и 5 литра като използваме и от трите вида бутилки?

Задача 10. Коя е най-малката стойност на израза

$$a^2 + 2a + 9b^2 + 30b + 2020$$
?

Задача 11. Ако N и M са естествени числа, такива че $N\sqrt{2}-\sqrt{8}+M=1$, пресметнете N+M.

Задача 12. (по мотиви на задача от Йохан Бутев живял през 16 век) Цената на 9 ябълки, намалена с цената на една круша, възлиза на 13 денара, а цената на 15 круши намалена с цената на една ябълка, възлиза на 6 денара. Колко трябва да заплатя за една ябълка и една круша?

Задача 13. Диагоналите на трапец по разделят на четири триъгълника, три от лицата на които са 4, 6 и 9 кв. см. Определете лицето на трапеца.

Задача 14. Колко е броят на реалните корените на уравнението $x^3 + |x| = 0$.

Задача 15. Изразът $y^2x - x^2y + x^2z - xz^2 + yz^2 - y^2z$ се разлага на произведение на три множителя от първа степен. Посочете един от тях.

Задача 16. Числата 187 и 219 дават един и същ остатък 11 при делението на числото x? Числото x е:

Задача 17. Четири деца A, B, C и D трябва да подредим в редица така, че A и B, както и C и D, да са винаги един до друг. По колко начина можем да направим това?

Задача 18. Нека $a = \sqrt{2} - 1$. Пресметнете сборът на реципрочното и на противоположното на числото a.

Задача 19. Ако всеки от ъглите на четириъгълник е средноаритметично на останалите три ъгъла, пресметнете най-големия ъгъл.

Задача 20. Многочленът $x^2 + 5x + 6$ се записва във вида $A.(x-2)^2 + B.(x-2) + C.$

Тогава стойността на A + B + C е: