AMENDMENTS

In the Claims

1	1. (currently amended) A composition comprising a polymerizing agent including at least one			
2.	molecular and/or atomic tag covalently bonded to a site on the polymerizing agent, where a			
3	fluorescence detectable property of the tag undergoes a change before, during and/or after each of			
4	a sequence of monomer incorporations and where the changes in the fluorescent property generate			
5	data evidencing each monomer incorporation producing a monomer incorporation read out.			
1	2.(currently amended) The composition of claim 1, wherein the <u>fluorescence</u> detectable			
2	property has a first value when the polymerizing agent is in a first state and a second value when the			
3	polymerase polymerizing agent is in a second state, and where the polymerizing agent changes from			
4	the first state to the second state and back again during each monomer incorporation.			
1	3.(original) The composition of claim 2, wherein the polymerizing agent is a polymerase or			
2	reverse transcriptase.			
1	4.(original) The composition of claim 3, wherein the polymerase is selected from the group			
2	consisting of Taq DNA polymerase I, T7 DNA polymerase, Sequenase, and the Klenow fragment			
3	from E. coli DNA polymerase I.			
1	5.(original) The composition of claim 3, wherein the reverse transcriptase comprises HIV-1			
2	reverse transcriptase.			
1				
2	6.(currently amended) The composition of claim 3, wherein the polymerase comprises <i>Taq</i>			
3	DNA polymerase I having a tag attached at covalently bonded to an amino acid site of the Tag			
4	polymerase selected from the group consisting of 513-518, 643, 647, 649 and 653-661 and mixtures			
4	or combinations thereof of the <i>Taq</i> polymerase, where the tag comprises a fluorescent molecule.			
1	7.(currently amended) A composition comprising a polymerase or reverse transcriptors			
2	a polymorase of reverse transcriptase			
3	including at least one molecular and/or atomic tag covalently bonded to a site on the polymerase or			
4	reverse transcriptase, where a d fluorescence detectable property of the tag has a first value when			
•	the polymerase or reverse transcriptase is in a first state and a second value when the polymerase			

		is in a second state during monomer incorporation, and where the	
polymerizing agent polymerase or reverse transcriptase changes from the first state to the secon			
		g each of a sequence of monomer incorporations and where the changes	
		generate data evidencing each monomer incorporation producing a	
monomer inco	orporation rea	<u>ad out</u> .	
8.(original)	The compo	sition of claim 7, wherein the polymerase is selected from the group	
consisting of		lymerase I, T7 DNA polymerase, Sequenase, and the Klenow fragment	
from <i>E. coli</i> D			
9.(original)	The compos	sition of claim 7, wherein the reverse transcriptase comprises HIV-1	
reverse transci		, and an analysis of the state	
10.(currently	,	A composition comprising a polymerizing agent including a molecular	
and/or atomic	tag covalently	y bonded to a site on the polymerase <u>polymerizing agent</u> and a monomer	
including a mo	lecular and/c	or atomic tag, where at least one of the tags has a <u>fluorescence</u> detectable	
property that i	ı ndergoes a	c hange b efore, d uring a nd/or a fter each of a sequence of m onomer	
incorporations	due to an int	teraction between the polymerizing agent tag and the monomer tag and	
where the chan	iges in the det	tectable property generate data evidencing each monomer incorporation	
		ence read out.	
l1.(currently	amended)	The composition of claim 10, wherein the change in the fluorescence	
	•	rom a change in the conformation of the polymerase polymerizing agent	
rom a first co	nformational	l state to a second conformational state and back again during each	
nonomer incom		to a second comornational state and back again during each	
2.(currently a	amended)	The composition of the 10 to 10 to 10	
_	•	The composition of claim 10, wherein the <u>fluorescence</u> detectable	
roperty has a	mst detection	on propensity when the polymerase polymerizing agent is in the first	

1 13.(original) The composition of claim 12, wherein the polymerizing agent is a polymerase or

conformational state and a second detection propensity when the polymerase polymerizing agent

ROBERT W. STROZIER, P.L.L.C.

is in the a second conformational state.

1 2

 reverse transcriptase.

2

3

1

2

3

6

7

14.(original) The composition of claim 13, wherein the polymerase is selected from the group 1

 β or γ phosphate group of each dNTP.

polymerase is in the second conformational state.

- 2 consisting of Taq DNA polymerase I, T7 DNA polymerase, Sequenase, and the Klenow fragment 3from E. coli DNA polymerase I.
- 1 15.(original) The composition of claim 13, wherein the reverse transcriptase comprises HIV-1 2 reverse transcriptase.
- 1 16.(currently amended) The composition of claim 12, wherein the each of the monomers 2 comprises a deoxynucleotide triphosphate (dNTP) and the monomer tag is covalently bonded to the
 - 17.(currently amended) The composition of claim 10, wherein the tags comprises a fluorescent tags and the fluorescence detectable property comprises an intensity and/or frequency of emitted fluorescent light.
- 1 18.(currently amended) The composition of claim 16 17, wherein the fluorescent property is 2 FRET where either the monomer tag or the polymerase tag comprises a donor and the other tag 3 comprises an acceptor and where FRET occurs when the two tags are in close proximity the detectable property is substantially active when the polymerase is in the first conformational state 4 5 and substantially inactive when the polymerase is in the second conformational state or substantially

inactive when the polymerase is in the first conformational state and substantially active when the

- 8 19.(original) The composition of claim 14, wherein the polymerase comprises Taq DNA 9 polymerase I having a tag attached at a site selected from the group consisting of 513-518, 643, 647, 10 649 and 653-661 and mixtures or combinations thereof of the Taq polymerase, where the tag 11
- 1 20.(currently amended) A composition comprising a polymerase or reverse transcriptase 2 including a pair of tags covalently bonded to two different sites a site of the polymerase or reverse

comprises a fluorescent molecule.

transcriptase, where a fluorescence detectable property of at least one of the tags undergoes a change 3 4 before, during and/or after each of a sequence of monomer incorporations and where the changes 5 in the fluorescent property generate data evidencing each monomer incorporation producing a 6 monomer sequence read out. 1 21.(currently amended) The composition of claim 20, wherein the fluorescence detectable 2 property has a first value when the polymerase is in a first state and a second value when the 3 polymerase is in a second state, and where the polymerizing agent polymerase or reverse 4 transcriptase changes from the first state to the second state and back again during each monomer 5 incorporation. 1 22.(original) The composition of claim 21, wherein the polymerase is selected from the group 2 consisting of Taq DNA polymerase I, T7 DNA polymerase, Sequenase, and the Klenow fragment 3 from E. coli DNA polymerase I. 1 23.(original) The composition of claim 21, wherein the reverse transcriptase comprises HIV-1 2 reverse transcriptase. 1 24.(currently amended) The composition of claim 22, wherein the polymerase comprises Taq 2 DNA polymerase I having a has at least one tag attached at an amino acid site of the Tag DNA 3 polymerase I selected from the group consisting of 513-518, 643, 647, 649 and 653-661 and 4 mixtures or combinations thereof of the Taq polymerase, and where the tag comprises a fluorescent 5 molecule one tag is a donor fluorescent tag and the other tag is an acceptor fluorescent tag. 25.(withdrawn) 26.(withdrawn) 27.(withdrawn) 28.(withdrawn)

29.(withdrawn)
30.(withdrawn)
31.(withdrawn)
32.(withdrawn)

33.(withdrawn)

34.(withdrawn)

1

- 1 35.(new) A composition comprising a polymerizing agent including a fluorescent donor
- 2 molecular tag covalently bonded to a site on the polymerizing agent and a plurality of 3 deoxynucleotide triphosphate (dNTP), each dNTP including a fluorescent acceptor molecular tag
- 4 covalently bonded to a γ-phosphate of the dNTP, where the fluorescent donor tag and each acceptor
- 5 tag of an incorporating dNTP interact in the presence of an excitation light generating a FRET 6 response and where the FRET response produces a read out of each dNTP incorporation.
- 1 36.(new) The composition of claim 35, wherein each acceptor tag is different generating a 2 different FRET response and producing a dNTP sequence read out.
- 1 The composition of claim 35, wherein the polymerizing agent is a polymerase or 37.(new)
- 2 reverse transcriptase.
- 38.(new) The composition of claim 35, wherein the polymerase is selected from the group 2 consisting of Taq DNA polymerase I, T7 DNA polymerase, Sequenase, and the Klenow fragment 3 from E. coli DNA polymerase I.
- 1 The composition of claim 37, wherein the reverse transcriptase comprises HIV-1 39.(new) 2 reverse transcriptase.
- 1 The composition of claim 36, wherein the dNTPs comprise dATP, dTTP, dCTP and 40.(new) 2 dGTP.
- 1 The composition of claim 36, wherein the dNTPs comprise dATP, dUTP, dCTP and 41.(new) 2 dGTP.
- 3 The composition of claim 40, wherein the polymerase comprises Tag DNA 42.(new) 4 polymerase I having a tag attached at a site selected from the group consisting of 513-518, 643, 647,
- 5 649 and 653-661 and mixtures or combinations thereof of the Taq polymerase, where the tag

6 comprises a fluorescent molecule.

3

- 1 43.(new) The composition of claim 6, wherein the amino acid site of the *Taq* DNA polymerase
- I represents a cysteine amino acid substitution and the tag is covalently bonded to the SH moiety of the cysteine amino acid substitution.
- 1 44.(new) The composition of claim 19, wherein the amino acid site of the *Taq* DNA polymerase I represents a cysteine amino acid substitution and the tag is covalently bonded to the
- 1 45.(new) The composition of claim 24, wherein the amino acid site of the *Taq* DNA polymerase I represents a cysteine amino acid substitution and the tag is covalently bonded to the SH moiety of the cysteine amino acid substitution.
- 1 46.(**new**) The composition of claim 42, wherein the amino acid site of the *Taq* DNA polymerase I represents a cysteine amino acid substitution and the tag is covalently bonded to the
- 3 SH moiety of the cysteine amino acid substitution.

SH moiety of the cysteine amino acid substitution.