ĐỀ KHỞI ĐỘNG 20

Câu 1: Đạo hàm của hàm số $y = 2^x$ là

A.
$$v' = x2^{x-1}$$
.

B.
$$y' = 2^x \ln 2$$
.

C.
$$y' = 2^x$$
.

D.
$$y' = \frac{2^x}{\ln 2}$$
.

Câu 2: Cho khối hộp chữ nhật có ba kích thước 2;6;7. Thể tích của khối hộp đã cho bằng

Câu 3: Cho cấp số nhân (u_n) với $u_1 = 3$ và công bội q = 4. Giá trị của u_2 bằng

C.
$$\frac{3}{4}$$
.

Câu 4: Cho hình nón có bán kính đáy r và độ dài đường sinh l. Diện tích xung quanh S_{xq} của hình nón đã cho được tính theo công thức nào dưới đây?

$$\mathbf{A.} \ S_{xq} = 2\pi r l.$$

A.
$$S_{xq} = 2\pi rl$$
. **B.** $S_{xq} = \frac{4}{3}\pi rl$.

$$\mathbf{C.} \ S_{xq} = \pi r l.$$

D.
$$S_{xq} = 4\pi rl$$
.

Câu 5: Với a là số thực dương tùy ý, $\log_5 a^2$ bằng

A.
$$2\log_5 a$$
.

B.
$$\frac{1}{2}\log_5 a$$
.

C.
$$2 + \log_5 a$$
.

D.
$$\frac{1}{2} + \log_5 a$$
.

Câu 6: Tiệm cận đứng của đồ thị hàm số $y = \frac{2x+4}{x-1}$ là đường thẳng

A.
$$x = -2$$
.

B.
$$x = 2$$
.

C.
$$x = 1$$
.

D.
$$x = -1$$
.

Câu 7: Tập nghiệm của bất phương trình $3^x > 27$ là

A.
$$(3;+\infty)$$

B.
$$\left(\frac{1}{3}; +\infty\right)$$
.

$$\mathbf{C}.[3;+\infty).$$

D.
$$(9; +\infty)$$
.

Câu 8: Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R} ?

A.
$$y = \left(\frac{1}{2}\right)^x$$
.

B.
$$y = 3^{-x}$$
. **C.** $y = e^x$.

C.
$$y = e^x$$
.

D.
$$y = \left(\frac{1}{\pi}\right)^x$$
.

Câu 9: Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình vẽ bên.

Số nghiệm thực của phương trình 2f(x)=1 là

D. 2.

Câu 10: Cho a, b là hai số thực dương tùy ý, $\log(ab^3)$ bằng

B.
$$3(\log a + \log b)$$
.

C.
$$\log a + 3\log b$$
.

D.
$$a + b^3$$
.

Câu 11: Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây?

A.
$$y = -x^4 + 3x^2 - 2$$
.

B.
$$y = -x^3 - 3x^2 - 2$$
.

C.
$$y = x^4 - 3x^2 - 2$$
.

D.
$$y = x^3 + 3x^2 - 2$$
.

Câu 12: Trong không gian Oxyz, cho hai điểm A(1;-3;1) và B(3;0;-2). Tính độ dài đoạn thẳng AB.

A.
$$\sqrt{22}$$
.

C.
$$\sqrt{26}$$
.

Câu 13: Biết $\int f(x) dx = e^x + 2x + C$ (với C là hằng số) trên khoảng $(-\infty; +\infty)$. Khi đó hàm số f(x) là hàm số nào dưới đây?

A.
$$f(x) = e^x + x^2$$
. **B.** $f(x) = e^x + 2$. **C.** $f(x) = e^x$. **D.** $f(x) = e^x + x$.

B.
$$f(x) = e^x + 2$$

C.
$$f(x) = e^x$$

D.
$$f(x) = e^x + x$$
.

Câu 14: Trong không gian Oxyz, mặt cầu $(S):(x-5)^2+(y-1)^2+(z+2)^2=9$ có đường kính bằng

Câu 15: Cho khối lăng trụ có thể tích bằng $6a^3$ và diện tích đáy bằng $3a^2$. Chiều cao của khối lăng trụ đã cho bằng

Câu 16: Họ tất cả các nguyên hàm của hàm số $f(x) = e^x + \sin x$ trên khoảng $(-\infty; +\infty)$ là

A.
$$xe^{x-1} + \cos x + C$$
.

A.
$$xe^{x-1} + \cos x + C$$
. **B.** $xe^{x-1} - \cos x + C$. **C.** $e^x + \cos x + C$. **D.** $e^x - \cos x + C$.

C.
$$e^x + \cos x + C$$

D.
$$e^x - \cos x + C$$

Câu 17: Cho hàm số y = f(x) liên tục trên đoạn [-1;3]. Nếu $\int_{-1}^{3} f(x) dx = 7$ và $\int_{-1}^{1} f(x) dx = 3$ thì

$$\int_{1}^{3} f(x) dx \text{ bằng}$$

Câu 18: Cho hàm số f(x) xác định trên \mathbb{R} và có đạo hàm $f'(x) = (2-x)(x+1)^2(x-1)^5$. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A.
$$(-1;2)$$
.

B.
$$(1; +\infty)$$
.

C.
$$(-\infty; 2)$$
. **D.** $(2; +\infty)$.

D.
$$(2;+\infty)$$

Câu 19: Cho hình nón có diện tích xung quanh là S, bán kính đường tròn đáy là r. Đường sinh của hình nón được tính theo công thức nào dưới đây?

$$\mathbf{A} \cdot \frac{S}{2\pi r}$$

$$\mathbf{B}.\frac{S}{\pi r}.$$

$$\mathbf{C} \cdot \frac{S}{r}$$
.

$$\mathbf{D} \cdot \frac{S}{r^2}$$
.

Câu 20: Nếu $\int_{1}^{3} [2f'(x)+1] dx = 8-2f(1)$ thì f(3) bằng

A.
$$\frac{7}{2}$$
.

D.
$$\frac{3}{2}$$

Câu 21: Cho cấp số cộng (u_n) thoả mãn $\begin{cases} u_{2023} = 5 \\ u_{2024} = 3 \end{cases}$. Công sai của cấp số cộng đã cho là

$$C_{2} - 2$$

Câu 22: Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho lần lượt có phương trình là

A.
$$x = 1$$
. $v = 2$

B.
$$x = 2$$
. $y = 1$.

A.
$$x = 1, y = 2.$$
 B. $x = 2, y = 1.$ **C.** $x = 2, y = 2.$ **D.** $x = 1, y = 1.$

D.
$$x = 1$$
, $y = 1$

Câu 23: Cho x là số thực dương tùy ý. Biểu thức rút gọn của $P = \sqrt{x \sqrt[3]{x^2 \sqrt{x}}}$ là

A.
$$x^{\frac{7}{4}}$$
.

B.
$$x^{\frac{11}{6}}$$
.

C.
$$x^{\frac{5}{6}}$$
.

D.
$$x^{\frac{11}{12}}$$

Câu 24: Trong không gian Oxyz, đường thẳng $d: \frac{x-1}{2} = \frac{y+2}{3} = \frac{z-5}{4}$ đi qua điểm nào sau đây?

- **A.** N(1;-2;5).
- **B.** P(2;3;4). **C.** Q(-1;2;-5).

Câu 25: Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $f(x) = x^3 + 3x^2 - 9x + 4$ trên đoạn [-3;4]. Giá trị của biểu thức M-m bằng

- **D.** 30.

Câu 26: Cho khối chóp tứ giác đều có cạnh đáy bằng 3a và chiều cao bằng 4a. Thể tích của khối chóp đã cho bằng

- **A.** $4a^{3}$.
- **B.** $12a^3$.
- **C.** $36a^3$.
- **D.** $3\sqrt{3}a^3$.

Câu 27: Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

- **A.** (-1;1).
- **B.** (-2;0).
- **C.** (-2;-1). **D.** (0;2).

Câu 28: Trong không gian Oxyz, cho đường thẳng (d): $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$. Mặt phẳng (P) vuông góc với đường thẳng (d) có một vecto pháp tuyến là

- **A.** $\overrightarrow{n_2} = (2;-1;2)$. **B.** $\overrightarrow{n_3} = (-1;-2;-3)$. **C.** $\overrightarrow{n_1} = (1;2;3)$. **D.** $\overrightarrow{n_4} = (2;1;2)$.

Câu 29: Điểm nào sau đây là điểm cực tiểu của đồ thị hàm số $y = x^3 - 3x + 1$?

- **A.** M(-1;1).
- **B.** Q(1;-1). **C.** N(-1;3).
- **D.** P(1;3).

Câu 30: Từ các chữ số 0, 1, 2, 3, 4, 5, 6 lập được tất cả bao nhiều số tự nhiên, mỗi số có hai chữ số khác nhau?

- **A.** 49.
- **B.** 42.
- C. 36.
- **D.** 30.

Câu 31: Trong không gian Oxyz, mặt cầu có tâm I(1;2;-1) và diện tích bằng 16π có phương trình là

- **A.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 2$. **B.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 4$.
- C. $(x+1)^2 + (y+2)^2 + (z-1)^2 = 2$. D. $(x+1)^2 + (y+2)^2 + (z-1)^2 = 4$.

Câu 32: Cho hai hàm số y = f(x), y = g(x) có đạo hàm liên tục trên đoạn [0;2], thỏa mãn

 $\int_{0}^{2} f'(x) dx = 5 \text{ và } g(2) - g(0) = 1. \text{ Giá trị của } \int_{0}^{2} \left[f'(x) + g'(x) \right] dx \text{ bằng}$

Câu 33: Tổng tất cả các nghiệm của phương trình $\log_2(x-1) - \log_2(2-3x+x^2) = 0$ là

Câu 34: Với cách đổi biến $u = \sqrt{4 + 5 \ln x}$ thì tích phân $\int_{1}^{c} \frac{\ln x}{x\sqrt{4 + 5 \ln x}} dx$ trở thành

- **A.** $\frac{2}{5}\int_{2}^{3}(u^{2}-4)du$. **B.** $\frac{2}{25}\int_{2}^{6}(u^{2}-4)du$. **C.** $\frac{2}{25}\int_{2}^{3}(u^{2}-4)du$. **D.** $\frac{2}{5}\int_{2}^{6}(u^{2}-4)du$.

Câu 35: Tính cosin góc giữa hai mặt phẳng chứa hai mặt bất kì của một tứ diện đều.

- **A.** $\frac{\sqrt{3}}{2}$.
- **B.** $\frac{2}{2}$.
- $C_{\cdot} \frac{1}{2}$.

Câu 38: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, SA = 2a. Tính khoảng cách giữa hai đường thẳng SA và BC.

A.
$$a$$
. **B.** $2a$. **C.** $\frac{\sqrt{15}a}{4}$. **D.** $\frac{\sqrt{15}a}{8}$.

Câu 39: Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn f(x) > -8, f(0) = 1 và

$$f'(x)\sqrt{x^2+9} = 2x\sqrt{f(x)+8}, \forall x \in \mathbb{R}$$
. Khi đó $f(5)$ có giá trị bằng

A. 13 **B.**
$$\sqrt{34}$$
 C. 26 **D.** $\frac{17}{2}$

Câu 40: Cho hàm số $y = \frac{1}{3}x^3 - (m+1)x^2 + (m^2 + 2m)x - 5$ với m là tham số. Có tất cả bao nhiều giá trị nguyên của m thuộc đoạn [-2024;2024] để hàm số đã cho đồng biến trên khoảng (1;5)?

Câu 41: Điều kiện của tham số m để phương trình $2.9^{x^2-x+m} - 5.6^{x^2-x+m} + 3.\left(\frac{1}{4}\right)^{x-x^2-m} = 0$ có 4 nghiệm phân biệt, trong đó có đúng 3 nghiệm dương là

A.
$$0 \le m < \frac{1}{4}$$
. **B.** $0 < m < \frac{5}{4}$. **C.** $m < 0$. **D.** $0 < m < \frac{1}{4}$.

Câu 42: Cho hàm số f(x) xác định trên \mathbb{R} và có đạo hàm $f'(x) = -x^3 + 6x^2 - 11x + 6$, $\forall x \in \mathbb{R}$. Hỏi có bao nhiều giá trị của tham số m (với $m \in [-1012; 2024]$; $m \in \mathbb{Z}$) để hàm số

$$g(x) = f(x^2 - 2|x - 1| - 2x + m)$$
 có đúng 9 điểm cực trị?

Câu 43: Cho hình chóp S.ABC có đáy ABC là tam giác đều, (SAB) vuông góc với đáy và tam giác SAB đều,

khoảng cách từ điểm A tới mặt phẳng (SCB) bằng $\frac{2a\sqrt{15}}{5}$. Thể tích của khối chóp S.ABC là

A.
$$\frac{a^3}{8}$$
 B. $\frac{3a^3}{8}$ **C.** $\frac{a^3}{3}$

Câu 44: Trong không gian Oxyz, cho điểm A(0;1;2), B(1;-1;3) và đường thẳng $d:\frac{x-2}{2}=\frac{y-1}{2}=\frac{z-1}{-3}$. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ A tới (P) gấp 2 lần khoảng cách từ B tới (P) đồng

thời A, B cùng phía so với (P). Mặt phẳng (P) đi qua điểm nào trong các điểm sau?

Câu 45: Cho hình chóp tứ giác đều S.ABCD có AB = a và diện tích tam giác SAB bằng a^2 . Gọi H, K lần lượt là trung điểm của SB, SD. Thể tích khối đa diện ABCKH bằng

A.
$$\frac{\sqrt{15}}{36}a^3$$
.

B.
$$\frac{\sqrt{15}}{4}a^3$$

C.
$$\frac{\sqrt{15}}{24}a^3$$

B.
$$\frac{\sqrt{15}}{4}a^3$$
. **C.** $\frac{\sqrt{15}}{24}a^3$. **D.** $\frac{\sqrt{15}}{12}a^3$.

Câu 46: Gọi S là tập các số nguyên dương a để bất phương trình $6^x + 2^{a+2} < 4.3^x + 2^{x+a}$ có ít nhất 1 và không quá 10 nghiệm nguyên. Tổng các phần tử của S bằng

Câu 47: Trong mặt phẳng Oxy, cho parabol $(P): y = x^2$ và một điểm $A(a; a^2)$ với a > 0 nằm trên (P). Gọi Δ là tiếp tuyến của (P) tại A, d là đường thẳng đi qua A và vuông góc với Δ . Biết diện tích của hình phẳng giới hạn bởi (P) và d (phần gạch sọc) đạt giá trị nhỏ nhất. Khi đó a thuộc khoảng nào sau đây?

$$\mathbf{A.}\left(1;\frac{3}{2}\right)$$

$$\mathbf{A.}\left(1;\frac{3}{2}\right) \qquad \qquad \mathbf{B.}\left(0;\frac{1}{4}\right)$$

$$\mathbf{C} \cdot \left(\frac{2}{3};1\right)$$

$$\mathbf{C}.\left(\frac{2}{3};1\right) \qquad \qquad \mathbf{D}.\left(\frac{1}{4};\frac{2}{3}\right)$$

Câu 48: Trong không gian Oxyz, cho đường thẳng $d: \frac{x+1}{1} = \frac{y+2}{2} = \frac{z-2}{-1}$ và mặt phẳng (P): x+y+2z-8=0.

Tam giác ABC có A(1;2;-2) và trọng tâm G nằm trên d. Khi các đỉnh B,C di động trên (P) sao cho khoảng cách từ A tới đường thẳng BC đạt giá trị lớn nhất, một vecto chỉ phương của đường thẳng BC là

A.
$$(16;-10;-3)$$
. **B.** $(3;-1;4)$.

B.
$$(3;-1;4)$$
.

$$C. (4;-2;-1).$$

D.
$$(1;2;0)$$
.

Câu 49: Có tất cả bao nhiều cặp số nguyên (x; y) thoả mãn bất phương trình

$$(x+2y)$$
. $\left[\log_2(x^2+y^2)-\log_2(x+2y)-2y+x\right] < 6x+y(12-5y)$?

Câu 50: Cho các hàm số $f(x) = x^2 - 4x + m$ và $g(x) = (x^2 + 1)(x^2 + 2)^{2023}$. Số các giá trị nguyên của tham số $m \in (-2023; 2023)$ để hàm số y = g(f(x)) có đồng biến trên khoảng $(3; +\infty)$ là

A. 2019

B. 2021

C.2022

D. 2020

-----HÊT-----

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.B	2.B	3.A	4.C	5.A	6.C	7.A	8.C	9.A	10.C
11.D	12.A	13.B	14.A	15.B	16.D	17.A	18.D	19.B	20.C
21.C	22.A	23.D	24.A	25.C	26.B	27.C	28.A	29.B	30.C
31.B	32.A	33.D	34.C	35.D	36.B	37.C	38.C	39.C	40.D
41.D	42.B	43.D	44.C	45.D	46.B	47.D	48.C	49.A	50.D