1/5/1 DIALOG(R) File 351: Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv. 008929601 WPI Acc No: 1992-056870/*199207* Related WPI Acc No: 1992-025485 XRAM Acc No: C92-025709 O-glycosylated alpha interferon - used for treatment of viral and tumour diseases Patent Assignee: BOEHRINGER INGELHEIM INT GMBH (BOEH) Inventor: ADOLF G; AHORN H J; HIMMLER A; KALSNER I; MAURER-FOGY I; AHORN H; MAURERFOGY I Number of Countries: 026 Number of Patents: 014 Patent Family: Applicat No Kind Date Week Date Patent No Kind 199207 19920123 WO 9201055 Α 199220 19910706 AU 9182082 19920204 AU 9182082 Α Α 19910706 WO 91EP1266 Α 19901112 199221 DE 4035877 19920514 DE 4035877 Α Α 199314 FI 9300058 WO 91EP1266 19910706 19930108 Α Α FI 9358 19930108 Α 199317 EP 91912306 19910706 EP 538300 A1 19930428 Α 19910706 WO 91EP1266 Α 19930108 WO 91EP1266 Α 19910706 199317 NO 9300059 Α 19930108 NO 9359 Α 199344 19930811 CS 923863 Α 19921223 CS 9203863 A2 EP 91912306 19910706 199415 Α EP 538300 19940413 В1 19910706 Α WO 91EP1266 19910706 199419 JP 6502987 19940407 JP 91511638 Α Α 19910706 WO 91EP1266 19940519 DE 501397 19910706 199421 DE 59101397 Α G EP 91912306 19910706 Α 19910706 WO 91EP1266 Α 199431 AU 650893 В 19940707 AU 9182082 Α 19910706 HU 65846 Т 19940728 WO 91EP1266 Α 19910706 199431 19910706 HU 9336 Α SK 923863 19921223 199436 SK 9203863 A3 19940810 Α 19910000 WO 91EP1266 Α 19910706 199508 EP 91912306 Α ES 2063515 Т3 19950101 Priority Applications (No Type Date): DE 4035877 A 19901112; DE 4021917 A 19900710 Cited Patents: 5.Jnl.Ref; DE 3306060; EP 158420; US 4289690; WO 8300693 Patent Details: Filing Notes Patent No Kind Lan Pq Main IPC WO 9201055 Α Designated States (National): AU CA CS FI HU JP KR NO PL SU US Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LU NL SE Based on patent WO 9201055 C12N-015/21 AU 9182082 Α DE 4035877 19 CO7K-015/26 Α Based on patent WO 9201055 EP 538300 C12N-015/21 A1 G Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LI LU NL SE Based on patent WO 9201055 B1 G 58 C12N-015/21

Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

Based on patent WO 9201055

23 C12N-015/21

JP 6502987

W

DE	59101397	G	C12N-015/21	Based on patent EP 538300 Based on patent WO 9201055
AU	650893	В	C07K-013/00	Previous Publ. patent AU 9182082 Based on patent WO 9201055
HU	65846	Т	C12N-015/21	Based on patent WO 9201055
ES	2063515	T 3	C12N-015/21	Based on patent EP 538300
FΙ	9300058	A	C12N-000/00	
NO	9300059	Α .	C12N-015/21	
CS	9203863	A2	C12N-015/21	
SK	9203863	A3	C12N-015/21	

Abstract (Basic): WO 9201055 A

Alpha-interferon (IFNalpha) which is O-glycosylated and has the biological and/or immunological properties of IFN alpha(2) is new. Specified are O-glycosylated IFNalpha-2a,-2b and -2c.

More specifically, the prod. is glycosylated at Thr-106, esp. by Gal-GalNAc (including its mono- or di-silylated derivs.) or Gal-(Gal-GlcNAc)-GalNAc.

USE - The glycosylated IFN's are used (partic. as a mixt. of at least 2 of the alpha-2a,-2b or -2c forms) for treatment of viral and tumour diseases.

Dwg.0/24

Title Terms: GLYCOSYLATED; ALPHA; INTERFERON; TREAT; VIRUS; TUMOUR; DISEASE

Derwent Class: B04; D16

International Patent Class (Main): C07K-013/00; C07K-015/26; C12N-015/21

International Patent Class (Additional): A61K-037/66; C12P-021/02;

C12P-021/08 File Segment: CPI

PCT

WELTORGANISATION FOR GEISTIGES EIGENTUM

Internationale anmeldung veröffentlicht nach dem vertrag über die Internationale zusammenarbeit auf dem gebiet des patentwesens (PCT)

(51) Internationale Patentklassifikation 5: C12N 15/21, C12P 21/02, 21/08 A61K 37/66

(11) Internationale Veröffentlichnngsnummer:

WO 92/01055

(43) Internationales

Veröffentlichungsdatum:

23. Januar 1992 (23.01.92)

(21) Internationales Aktenzeichen:

PCT/EP91/01266

A1

(22) Internationales Anmeldedatum:

6. Juli 1991 (06.07.91)

(30) Prioritätsdaten:

P 40 21 917.8 P 40 35 877.1

10. Juli 1990 (10.07.90) DE 12. November 1990 (12.11.90) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BOEH-RINGER INGELHEIM INTERNATIONAL GMBH [DE/DE]; Postfach 200, D-6507 Ingelheim am Rhein (DE).

(72) Erfinder; und

(75) Erfinder, and
(75) Erfinder, and
(75) Erfinder/Anmelder (nur für US): ADOLF, Günther [AT/AT]; Stiftgasse 15-17/10, A-1070 Wien (AT). HIMM-LER, Adolf [AT/AT]; Fürst Liechtensteinstr. 2/3, A-1236 Wien (AT). AHORN, Horst, Johann [AT/AT]; Eisenstädterstr. 3/1, A-2484 Weigelsdorf (AT). KALS-NER, Inge [AT/AT]; Geusaugasse 51/20, A-1030 Wien (AT). MAURER-FOGY, Ingrid [AT/AT]; Lindauergasse 35, A-1238 Wien (AT).

(74) Gemeinsamer Vertreter: BOEHRINGER INGELHEIM INTERNATIONAL GMBH; A Patente, Postfach 200, D-6507 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten: AT (europäisches Patent), AU, BE (europäisches Patent), CA, CH (europäisches Patent), CS, DE (europäisches Patent), DK (europäisches Patent), ES (europäisches Patent), FI, FR (europäisches Patent), GB (europäisches Patent), GR (europäisches Patent), HU, IT (europäisches Patent), JP, KR, LU (europäisches Patent), NL (europäisches Patent), NO, PL, +SE (europäisches Patent), SU, US.

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: O-GLYCOSYLATED IFN-ALPHA

(54) Bezelchnung: O-GLYCOSYLIERTES IFN-ALPHA

(57) Abstract

The objects of the invention are Oglycosylated IFN-alpha, a process for producing the same and the use of the O-glycosy-

(57) Zusammenfassung

Gegenstand der vorliegenden Erfindung ist O-glycosyliertes IFN-a, Verfahren zu dessen Herstellung sowie die Verwendung der O-glycosylierten Proteine als Arzneimittel.

lated proteins as medicinal drugs.

1 5 10 CYS-ASP-LEU-PRO-GLN-THR-HIS-SER-LEU-GLY-SER-ARG-ARG-TER-LEU-

glycosylated IFN-alpha, a process for prod. MET-LEU-LEU-ALA-GLN-MET-ARG-ARG-ILE-SER-LEU-PHE-SER-CYS-LEU-

35 40 Lys-asp-arg-arg-asp-phe-gly-phe-pro-glu-glu-phe-gly-asn-

50 55 60 GLN-PHE-GLN-LYS-ALA-GLU-THR-ILE-PRO-VAL-LEU-HIS-GLU-MET-ILE-

65 70 75
GLN-GLN-ILE-PHE-ASN-LEU-PHE-SER-THR-LYS-ASP-SER-SER-ALA-ALA-

80 85 90 TRP-ASP-GLU-THR-LEU-LEU-ASP-LYS-PHE-TYR-THR-GLU-LEU-TYR-GLN-

95 100 105 GLN-LEU-ASN-ASP-LEU-GLU-ALA-CYS-VAL-ILE-GLN-GLY-VAL-GLY-VAL-

110 115 120 THR-GLU-THR-PRO-LEU-MET-LYS-GLU-ASP-SER-ILE-LEU-ALA-VAL-ARG

· 125 130 135 LYS-TYR-PHE-GLN-ARG-ILE-THR-LEU-TYR-LEU-LYS-GLU-LYS-LYS-TYR-

140 145 150

SER-PRO-CYS-ALA-TRP-GLU-VAL-VAL-ARG-ALA-GLU-ILE-MET-ARG-SER-

155 160 165 PHE-SER-LEU-SER-THR-ASN-LEU-GLN-GLU-SER-LEU-ARG-SER-LYS-GLU

α2c

. + BENENNUNGEN VON "SU"

Es wird zur Zeit geprüft, in welchen Tellen der ehemaligen Sowjetunion die Benennung der Sowjetunion ihre Wirkung ausübt.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

	· · · · · · · · · · · · · · · · · · ·	•			
ΑŦ	Österreich	ES	Spanien	ML	Mali
AU	Australien	FI	Finaland	MN	Mongolei
88	Barbados -	FR	Frankreich	MR	Mauritanien -
BE	Belgien	CA	Gabon	MW	Malawi 📝
BF	Burkina Faso	C3	Vereinigtes Königreich	NL	Niederlande
BG	Bulgarien	CN	Guinca	NO	Norwegen
BJ	Benin	CR	Greekenland	PL	Polen
BR	Brasilion	KU	Ungara	RO	Rumānien
CA	Kanada	17	Italien	SD	Sudan
CF	Zentrale Afrikanische Republik	JP	Japan	se	Schweden
CG		KP	Demokratische Volksrepublik Korea	SN	Senegal
	Kango	KR	Republik Korca	SU	Soviet Union
CH	Schweiz		Lischtenstein	TD	Tschad
Cl	Côte d'Ivoire	LI		TC	Togo
CM	Kamerun	LK	Sri Lanka		Vereinigte Staaten von Amerika
CS	Tschechoslowakei	LU	Luxemburg	US	Actenuate araster ton America
DE	Deutschland	MC	Monaco		
DK	Dänemark	MC	Madayaskar		

O-glycosyliertes IFN-alpha

Gegenstand der vorliegenden Erfindung sind O-glycosylierte alpha Interferone, vorzugsweise ein Interferon alpha, im wesentlichen mit den biologischen und/oder immunologischen Eigenschaften eines IFN- $\alpha 2$, Verfahren zu dessen Herstellung sowie die Verwendung der O-glycosylierten Interferone als Arzneimittel.

Seit der Entdeckung der Interferone vor mehr als dreißig Jahren werden ihre biologischen Eigenschaften als Mediatoren der interzellulären Kommunikation intensiv untersucht. Ursprünglich wurde die Bezeichnung der verschiedenen Arten von der jeweiligen Zelle, in der sie entstanden sind, abgeleitet (z.B. Leukocyten-IFN, Fibroblasten-IFN). Mit zunehmender Kenntnis ihrer Struktur wurde eine neue Nomenklatur eingeführt. Man unterscheidet zur Zeit vier Arten von Interferonen (IFN-α, IFN-β, IFN-γ und IFN-ω), wobei IFN-α, IFN-β und IFN-ω zu den sogenannten "Klasse l Interferonen" zusammengefaßt werden, da sie ähnliche Strukturen und Eigenschaften aufweisen.

IFN-y wird von Lymphozyten, die durch Antigene oder mitogene Substanzen stimuliert werden, gebildet. Die Aminosäuresequenz, die keine Homologie zu den Klasse 1 Interferonen aufweist, enthält zwei potentielle N-Glycosylierungsstellen.

IFN- α , IFN-B und IFN- ω werden von verschiedenen Zellen als Reaktion auf Virusinfektion oder nach Induktion mit doppelsträngiger RNA synthetisiert.

Bei IFN- α handelt es sich eigentlich um eine ganze Gruppe von Proteinen. Bisher wurden mindestens 14 funktionelle Gene entdeckt, die für verschiedene IFN- α -Typen kodieren. Diese Proteine sind nahe verwandt und weisen zumeist etwa 80-90% Homologie in ihrer Aminosäuresequenz auf. Mit Ausnahme von IFN- α l4 ist in keiner der übrigen IFN- α - Aminosäuresequenzen eine N-Glycosylierungsstelle (ASN-X-SER/THR) vorhanden. N-Glycosylierung ist somit in allen Fällen (außer IFN- α l4) auszuschließen, jedoch wurde O-Glycosylierung von IFN- α diskutiert (Labdon et al., Arch. Biochem. Biophys. 232, 422-426 (1984))

Viele in der Natur vorkommende Proteine werden posttranslational modifiziert, wobei Glycosylierung eine der häufigsten Modifikationen ist. Glycoproteine kommen membrangebunden oder löslich sowohl in der intra- als auch extrazellulären Matrix vor. Über die Funktion der Glycosylierung gibt es unterschiedliche Auffassungen. Gesichert ist, daß Glycane die Proteine vor proteolytischem Abbau schützen können oder daß sie in vielen Fällen für Zell-Zell-Wechselwirkungen verantwortlich sind. Weiterhin beeinflussen sie die Proteinfaltung und tragen zur Stabilität der Konformation des Moleküls bei. Auch die Löslichkeit der Proteine unterliegt dem Einfluß der Kohlenhydratketten.

Man unterscheidet zwischen N- und O-glycosylierten
Proteinen. N-Glycane werden ausschließlich auf das ASN
des Triplets -ASN-X-SER/THR- übertragen, wobei X jede
beliebige Aminosäure mit Ausnahme von PRO oder GLU sein
kann. Diese Anforderung an die Struktur des Proteins
kann aber nur eine von mehreren sein, da nicht alle
potentiellen Glycosylierungsstellen mit einem
Kohlenhydrat besetzt sind. Für O-Glycane gibt es keine
genau definierten Strukturmerkmale. Es gibt allerdings
Hinweise darauf, daß O-Glycane bevorzugt in PRO-, SERund THR-reichen Regionen synthetisiert werden. Das läßt
vermuten, daß eher die sterische Zugänglichkeit der

Glycosylierungsstelle als eine bestimmte Aminosäuresequenz für die O-Glycosylierung bedeutend ist.

Einflüsse der Glycosylierung auf die Pharmakokinetik sowie auf die immunologischen Eigenschaften des Proteins können nicht ausgeschlossen werden. So wurde kürzlich darüber berichtet (Gibbon et al., Lancet, 335, 434-437 (1990), daß 4 von 16 Patienten, die mit rekombinantem humanem GM-CSF (granulocytemacrophage-colony stimulating factor), der in Hefe produziert worden war, behandelt worden waren, Antikörper gegen dieses Protein entwickelten. Man stellte fest, daß diese Antikörper mit Epitopen reagierten, die in endogenem GM-CSF durch O-Glycosylierung geschützt vorliegen, im rekombinanten Faktor jedoch frei zugänglich sind.

Im IFN- α 2 konnten bislang weder Kohlenhydratanteile nachgewiesen, noch konnte O-glycosyliertes IFN- α isoliert werden. Verschiedene Präparationen von natürlichem IFN- α und von rekombinantem IFN- α 2 sind als Medikamente gegen virale und Krebserkrankungen im Einsatz. Da dieses IFN- α 2 in E. coli produziert wird und daher nicht glycosyliert sein kann, scheint der Kohlenhydratanteil für die <u>in vivo</u> biologische Aktivität nicht bedeutend zu sein. In letzter Zeit mehren sich jedoch Berichte, daß Patienten, die längere Zeit mit rekombinantem, in E. coli produziertem IFN- α 2 behandelt wurden, Antikörper dagegen entwickelten (z.B. Figlin & Itri, Semin. Haematol. <u>25</u>. 9-15 (1988)).

Aufgabe der vorliegenden Erfindung war, ein neues $IFN-\alpha 2$ bereitzustellen.

Gelöst wurde diese Aufgabe durch die Insertion der für IFN- $\alpha 2$ kodierenden DNA Sequenz in einen speziellen Expressionsvektor, mit dem Zellen multizellulärer

Organismen transfiziert wurden. Nach Kultivierung dieser so modifizierten Zellen erhielt man überraschenderweise IFN-\alpha2-artige Proteine, die sich im Molekulargewicht eindeutig von dem bekannten rekombinanten IFN\alpha2 unterschieden.

Zur Herstellung der erfindungsgemäßen, neuen Interferone eignen sich Kulturen von Zellen multizellulärer Organismen, insbesondere Kulturen von Wirbeltierzellen oder von Insektenzellen. Als Beispiele von Wirbeltierzellinien sind VERO-Zellen, HeLa-Zellen, CHO-Zellen, WI38-Zellen, BHK-Zellen, COS-7-Zellen, MDCK-Zellen oder Maus-Myelomzellen zu nennen. Expressionsvektoren für diese Zellen enthalten wenn nötig eine Replikationsstelle, einen Promotor, falls erforderlich eine RNA-Splicing-Stelle, eine Polyadenylierungsstelle und transkriptionelle Terminations-Sequenzen. Die Kontrollfunktionen solcher Expressionsvektoren stammen üblicherweise aus viralem Material. Gebräuchliche Promotoren stammen aus Polyoma, Adenovirus 2, Simian Virus 40 (SV40), bevorzugt aus Cytomegalovirus (CMV).Die erforderliche Replikationsstelle kann entweder durch eine entsprechende Vektorkonstruktion vorgesehen werden, so beispielsweise die Replikationsstelle aus SV40, Polyoma, Adeno, VSV, oder PBV oder kann durch die chromosomalen Replikationsmechanismen der Wirtszelle vorgesehen werden. Bei Integration des Vektors in das Wirtszellenchromosom reicht die letztgenannte Maßnahme aus.

Erfindungsgemäß werden vorzugsweise Expressionsvektoren verwendet, die aus Teilen von Plasmiden neu konstruiert wurden. Diese erfindungsgemäßen Expressionsvektoren weisen eine Multiklonierstelle für die gerichtete Insertion heterologer DNA-Sequenzen auf und lassen sich

vorzugsweise in E. coli mittels Ampicillinresistenz mit hoher Kopienzahl vermehren. Um die Expression heterologer Gene in Säugetierzellen zu ermöglichen, enthalten die erfindungsgemäßen Expressionsplasmide vorzugsweise den Cytomegalovirus (CMV) Promotor/Enhancer (M. Boshart et al., Cell 41, (1985), 521-530). Um die autonome Replikation der erfindungsgemäßen Expressionsplasmide zu hohen Kopienzahlen und damit hohe Raten in transienter Expression in geeigneten Zellinien wie beispielsweise in COS-7 oder in der mit Adenovirus transformierten Zellinie 293 (ATCC CRL 1573), zu ermöglichen, wurde der SV40 Replikationsursprung verwendet. Zur Herstellung permanent transformierter Zellinien und zur nachfolgenden Amplifikation der Expressionskassette mittels Methotrexat dient ein modifiziertes Hamster Minigen (Promotor mit kodierendem Bereich und dem ersten Intron) für Dihydrofolatreduktase (DHFR) als Selektionsmarker. Um die Herstellung einzelsträngiger Plasmid-DNA nach Superinfektion der transformierten Bakterien mit einem Helferphagen, beispielsweise mit R408 oder M13KO7, zur erleichterten Sequenzierung und Mutagenese der Plasmid-DNA zu ermöglichen, enthielten vorzugsweise Ausgestaltungen der erfindungsgemäßen Plasmide die intergenische Region von M13. Wird in einer weiteren vorzugsweisen Ausgestaltung der T7 Promotor der Multiklonierstelle vorangestellt, wird dadurch die Herstellung von RNA Transkripten in vitro ermöglicht.

Erfindungsgemäß bevorzugt sind die Expressionsplasmide pAD-CMV13, pAD-CMV15 insbesondere pAD-CMV19. Ihre Herstellung ist in Beispiel 1 ausführlich beschrieben.

Zur Erzielung einer verbesserten Expression und zur Erleichterung einer gerichteten Klonierung der für IFN-α2 kodierenden cDNA wurde die für IFN-α2 kodierende cDNA mittels PCR in der 5'-nicht kodierenden Region erfindungsgemäß dahingehend modifiziert, daß die Sequenz dieser Region gegen die Sequenz der 5'-nicht kodierenden Region der humanen β-Globin mRNA (Lawn et al., Cell 21, (1980), 647-651) ausgetauscht wird. Gleichzeitig wurden an beiden Enden der cDNA Restriktionsenzymschnittstellen eingeführt, die eine gerichtete Klonierung erleichtern. Überraschenderweise bewirkt eine derartige Veränderung eine deutliche Erhöhung der Expression.

Die so modifizierte cDNA für IFN-a2 wurde in ein mit den entsprechenden Restriktionsenzymen geschnittenes erfindungsgemäßes Expressionsplasmid, vorzugsweise in das Plasmid pAD-CMV19 inseriert. Mit den so erhaltenen --Expressionsplasmiden für IFN-a2 wurden geeignete Säugetierzellen transfektiert, die daraufhin in einem geeigneten Kulturmedium kultiviert wurden. Der Kulturüberstand der Säugetierzellen wurde in an sich bekannter Weise unter schonenden Bedingungen gereinigt. Vorzugsweise verwendet man affinitätschromatographische Reinigungsverfahren mit Hilfe monoklonaler Antikörper gegen IFN-a2. Bevorzugte monoklonale Antikörper sind EBI-1 oder EBI-10 beziehungsweise deren Äquivalente. Die Herstellung dieser hochspezifischen Antikörper ist beschrieben (Adolf G.R. J. Gen. Virol. 68, 1669-1676 (1987); Adolf et al. J. Cell. Physiol. suppl. 2, 61-68 (1982)). Die zu verwendenden Methoden sind ebenfalls beschrieben (Secher und Burke, Nature 285, 446-450 (1980); Adolf et al., J. Biol. Chem. 265, 9290-9295 (1990); Adolf et al., Biochem. J. 276, 511-518 (1991)). Besonders vorteilhaft ist das Reinigungsverfahren gemäß EPA 0 203 382 zu verwenden, wobei auf das Aufbrechen der Zellen verzichtet werden kann. Zur Charakterisierung von rekombinantem, in Säugetierzellen

hergestelltem IFN-a2 wurde die Reverse Phase HPLC verwendet. Der N-Terminus und C-Terminus wurden analysiert. Zum Vergleich wurde jeweils rekombinantes, in E. coli hergestelltes IFN-α2c verwendet. Anhand SDS-Gelelektrophoretischer Untersuchungen war festzustellen, daß das in Säugetierzellen hergestellte rekombinante IFN-α2 ein höheres Molekulargewicht aufwies, als das in E. coli hergestellte IFN-α2. Nach Behandlung beider rekombinanter Interferone mit NaOH reduzierte sich das Molekulargewicht des in Säugetierzellen hergestellten, rekombinanten IFN-a2's auf das Molekulargewicht des in E. coli hergestellten IFN-α2's. In Säugetierzellen exprimiertes, rekombinantes IFN-α2 muß daher glycosyliert sein. Bei der Identifizierung der Glycopeptide mittels Peptide Mapping und Sequenzanalyse konnte festgestellt werden, daß das an Position 106 befindliche Threonin (THR-106) die Glycosylierung trägt. Bei einem Vergleich der Resultate mit denen, die beim natürlichen IFN-a2 aus virusstimulierten Leukocyten erhalten wurden (s. unten) zeigte es sich, daß sowohl die Glycosylierungsstelle als auch der Oligosaccharidanteil weitgehend identisch sind.

Gelöst wurde die erfindungsgemäße Aufgabe aber auch durch ein Reinigungsverfahren, das keine Verfahrensschritte enthält, die evtl. vorhandene Substitutionen des IFN-a2 verändern oder eliminieren. Das erfindungsgemäße Reinigungsverfahren bediente sich hochspezifischer monoklonaler Antikörper, wobei während des gesamten Reinigungsverfahrens alkalische Bedingungen mit einem pH-Wert größer als 8,0 sorgsam vermieden wurden.

Natürliches humanes IFN-α2 wurde mit Hilfe eines hochspezifischen monoklonalen Antikörpers aus

Leukozyteninterferon isoliert. Zwei aufeinanderfolgende Reinigungsschritte über eine Immunoaffinitätssäule führten zu einer Reinheit des Proteins von >95%. Die Sequenzanalyse ergab die erwartete N-terminale Sequenz, wobei CYS als erste Aminosäure nur indirekt nachgewiesen wurde.

Von IFN-a2 sind bisher drei Varianten, die sich in den Aminosäuren an den Positionen 23 und 34 unterscheiden, bekannt: IFN- α 2a mit⁻²³LYS und ³⁴HIS (früher als Le IFA bezeichnet; Goeddel et al., Nature, 290, 20-26 (1981)), IFN- α 2b mit ²³ARG und ³⁴HIS (Streuli et al., Science, 209, 1343-1347 (1980)) und IFN-α2c mit 23 ARG und 34 ARG (früher als IFN- α 2 "Arg" bezeichnet; Dworkin-Rastl et al., J. Interferon Res.-2, 575-585 (1982); Bodo & Maurer-Fogy, The Biology of the Interferon System 1985 (Stewart II, W.E. & Schellehus H. Hrsg.) 59-64 (1986). Bei dem isolierten Interferon konnte an Position 23 nur ARG nachgewiesen werden, was das Vorhandensein von IFN-α2a ausschließt. Die Aminosaure an Position 34 war eindeutig Histidin, so daß es sich bei dem isolierten Interferon um IFN-α2b handelte. Ebenso sind jedoch auch die Varianten IFN- α 2a bzw. IFN- α 2c erhältlich je nachdem, welches Zellmaterial als Ausgangsmaterial verwendet wird. Es ist bekannt, daß in Namalwa-Zellen neben IFN- α 2b auch IFN-α2c zu finden ist. Bei dem als Vergleichssubstanz verwendeten rekombinanten Interferon aus E. coli handelte es sich um IFN-α2c.

RP-HPLC-Analysen des gereinigten natürlichen IFN- $\alpha 2$ zeigten, daß die Präparation zwei Peaks enthielt, die beide früher von der Säule eluierten als das rekombinante E. coli-IFN- $\alpha 2c$. Auch mittels SDS-PAGE konnte eine starke Heterogenität in der scheinbaren

molekularen Masse von natürlichem IFN-α2 nachgewiesen werden. Alle in natürlichem IFN-α2 nachgewiesenen Proteine hatten eine wesentlich höhere scheinbare molekulare Masse als rekombinantes IFN-α2c aus E. coli. Sämtliche bisher beschriebene IFN-α-Spezies - mit Ausnahme von IFN-α14 - weisen keine N-Glycosylierungsstelle (-ASN-X-THR/SER-) auf. Somit kann auch für IFN-α2 N-Glycosylierung ausgeschlossen werden. Für O-Glycane kennt man solche Strukturmerkmale nicht. Nicht auszuschließen ist daher, daß das vorliegende IFN-α2 O-glycosyliert ist.

Da O-Glycane schon unter schwach alkalischen Bedingungen vom Protein abgespalten werden können, wurden beide Peakfraktionen schwach alkalischen Bedingungen unterworfen. Diese Reaktion führte in beiden Fällen zu einer Reduktion der scheinbaren molekularen Masse auf die des rekombinanten IFN-c2c aus E. coli; ein deutlicher Hinweis auf O-Glycosylierung.

Versuche mit Neuraminidase und O-Glycanase ergaben für den einen Peak (Peak 2) (s. Fig. 14) ebenfalls eine Reduktion der scheinbaren molekularen Masse auf jene von E. coli-IFN-α2c und bestätigten damit die O-Glycosylierung. Die Ergebnisse dieses sequentiellen Abbaues des Glycans mit Neuraminidase und O-Glycanase zeigten, daß die Heterogenität des Peak 2 auf dem unterschiedlichen Gehalt von N-Acetylneuraminsäure (NeuAc = Sialinsäure) beruhte. Die drei Banden (Fig. 20, Spur 4) repräsentierten die di- bzw. monosialylierte (Mr 21.000 bzw. 20.000) und die nichtsialylierte (Mr 19.000) Form des natürlichen IFN-α2. Die leichteste Form des IFN-α2 konnte durch Reaktion mit O-Glycanase allein abgebaut werden. Da O-Glycanase nur das unsubstituierte Disaccharid

Gal(B1-3)GalNAc spaltet, ist die Reaktion als Beweis dafür anzusehen, daß neben den beiden sialylierten Formen auch eine Asialo-Variante des IFN- α 2 existiert.

Die scheinbare molekulare Masse von Peak 1 hingegen konnte mittels Enzymreaktionen nicht reduziert werden. Inkubation mit Neuraminidase führte nicht wie erwartet zu einer Reduktion der scheinbaren molekularen Masse. Das Disaccharid-Core mußte demnach anders als mit NeuAc substituiert sein und konnte daher nicht durch O-Glycanase abgespalten werden.

Durch Vergleich der Peptide Maps nach Trypsinspaltung von natürlichem und rekombinantem, in E. coli exprimiertem IFN- α 2 konnten die Glycopeptide aus den Peaks 1 und 2 identifiziert werden. Die Sequenzierung dieser Glycopeptide ergab 106 THR als Glycosylierungsstelle.

Hinweise auf die Struktur der Oligosaccharide des natürlichen IFN-α2 gaben neben den Enzymreaktionen auch massenspektrometrische Untersuchungen der Glycopeptide. Die Interpretation der Massenspektren zusammen mit den Ergebnissen der SDS-PAGE ergaben, daß natürliches IFN-a2 zumindest vier verschiedene Glycanstrukturen enthält: im Peak 2 das neutrale Disaccharid Gal(B1-3)GalNAc, dessen Struktur aufgrund der hohen Spezifität der O-Glycanase mit großer Sicherheit anzunehmen ist, außerdem die mono- und die disialylierte Variante; im Peak 1 ein neutrales Oligosaccharid, bestehend aus zwei Hexose- und zwei N-Acetylhexosamin-Einheiten. Als Struktur dieses Tetrasaccharides kann in Analogie zu bereits beschriebenen häufiger vorkommenden O-Glycanen vorgeschlagen werden: Gal-(Gal-GlcNAc-)GalNAc.

Durch die vorliegende Erfindung konnte überraschenderweise erstmals O-glycosyliertes IFN- α 2 in hochreiner Form bereitgestellt werden. Dieses Interferon ist an der Aminosäure Threonin an Position 106 (106 THR) O-glycosyliert. Die Oligosaccharide, die an dieser Position enthalten sein können, sind das neutrale Disaccharid Gal(B1-3)GalNAc, dessen mono- und disialylierte Varianten sowie ein neutrales Tetrasaccharid Gal-(Gal-GlcNAc-)GalNAc.

Dieses O-glycosylierte IFN- α 2 kann in an sich bekannter Weise, in Analogie zum rekombinanten in E. coli exprimierten IFN- α 2, formuliert und in allen, für IFN- α bekannten Indikationen zur Behandlung eingesetzt werden.

Die erfindungsgemäßen Proteine können für die Behandlung der viralen Infektionen und von malignen Erkrankungen in der Form von pharmazeutischen Präparaten verwendet werden, die eine wirksame Menge des IFN's gegebenenfalls zusammen mit einer signifikanten Menge eines anorganischen oder organischen, festen oder flüssigen, pharmazeutisch verwendbaren Trägerstoffes enthalten.

Bevorzugt sind pharmazeutische Präparate zur parenteralen, beispielsweise intramuskulären, subkutanen oder intravenösen Verabreichung am Menschen. Solche Präparate sind isotonische wässrige Lösungen oder Suspensionen, die die erfindungsgemäßen Proteine enthalten, gegebenenfalls zusammen mit einem Trägermaterial und, wenn erwünscht, Hilfsmittel, beispielsweise Stabilisatoren, Emulgiermittel, lösungsvermittelnde Stoffe, Salze für die Regulierung des pH und des osmotischen Druckes, Konserviermittel und/oder Netzmittel. Die pharmazeutischen Präparationen

können nach an sich bekannten Methoden hergestellt werden, beispielsweise in einem Verfahren, worin die erfindungsgemäßen Proteine und die pharmazeutisch verwendbaren Träger und Hilfsstoffe gemischt, gewünschtenfalls lyophilisiert und vor Verwendung gelöst werden.

Die Dosierung der pharmazeutischen Präparate hängt von der zu behandelnden Krankheit, dem Körpergewicht, Alter und individuellen Zustand des Patienten gemäss Einschätzung des behandelnden Arztes und der Applikationsweise ab.

Durch die vorliegende Erfindung wird daher erstmals ein O-glycosyliertes Interferon- α 2 enthaltendes Mittel bereitgestellt, das aufgrund der antiviralen und antineoplastischen Eigenschaften des IFN- α 2 u.a. zur Behandlung von viralen und tumoralen Erkrankungen geeignet ist.

Die nachfolgenden Beispiele sollen die Erfindung erläutern ohne sie einzuschränken.

Legenden zu den Figuren

Fig. 1: Konstruktion des Plasmides pCMV+SV40

Fig. 2: Konstruktion des Plasmides pAD-CMV10A

Fig. 3: Konstruktion des Plasmides pAD-CMV15

Fig. 4: Konstruktion der Plasmide pAD-CMV13 und pAD-CMV19

Fig. 6:	Hin	HindIII/XBaI-Insert des	
	Exp	ressionsplasmides	pAD19B-IFN

- Fig. 7: DNA-Sequenz des Plasmides pAD-CMV19
- Fig. 8: Konstruktion des Plasmides pCMV-SV40
- Fig. 9: Konstruktion des Plasmides pSV2gptDHFRMut2
- Fig. 10: Konstruktion der Plasmide pAD-CMVl und pAD-CMV2
- Fig. 11: DNA-Sequenz des Plasmides pAD-CMVl
- Fig. 12: Monoklonale Antikörper Affinitätschromatographie des humanen Leukozyten Interferons
- Fig. 13: ELISA für human IFN-α:

 (O) Referenzpräparation des rekombinanten human IFN-α2c; (O) Leukozyteninterferon (Ausgangsmaterial) (D) Durchfluß (D) eine Fraktion des Eluates A; (Δ) eine Fraktion des Eluates B
- Fig. 14: RP-HPLC des natürlichen IFN- α 2 (b) und E. coli IFN- α 2c (a)
- Fig. 15: Aminosäuresequenz des IFN-α2C
- Fig. 16: SDS-PAGE von natürlichem IFN-α2 vor und nach Reaktion mit Neuraminidase und O-Glycanase. (1) Peak 1, unbehandelt; (2) Peak 1, nach Reaktion mit Neuraminidase; (3) Peak 1, nach Reaktion mit Neuraminidase

und O-Glycanase; (4) Peak 2, unbehandelt; (5) Peak 2, nach Reaktion mit
Neuraminidase; (6) Peak 2, nach Reaktion
mit Neuraminidase und O-Glycanase; (7) E.
coli-IFN-c2c

- Fig. 17: SDS-PAGE von natürlichem IFN-α2 (Peak 2 aus Fig. 14b) vor (1) und nach (2) Reaktion mit O-Glycanase.
- Fig. 18: SDS-PAGE von natürlichem IFN-α2 (Peak 1 und 2) und E. coli-IFN-α2c nach Inkubation mit 0.1 M NaOH. (1) E. coli-IFN-α2; (3)

 Peak 1; (5) Peak 2; unbehandelte

 Vergleichsproben von Peak 1 (2) und von

 Peak 2 (4) wurden ebenfalls aufgetragen.
- Fig. 19: Vergleichendes Peptide Map von E.

 coli-IFN-α2c und natürlichem IFN-α2. (1)

 Peak 1 aus Fig. 14b; (2) Peak 2 aus Fig.

 14b; *, diese Peaks stammen von

 unglycosylierten Peptiden, deren

 Retentionszeit immer gleich war.
- Fig. 21: Reverse Phase HPLC (RP-HPLC) des
 CHO-IFN-α2c (a) und des E.coli-IFN-α2c
 (b)

- Fig. 22: Vergleichende Peptide Maps von Peak 1 (a) und Peak 2 (b) aus CHO-IFN-α2c und von E.coli-IFN-α2c (c)
- Fig. 23: SDS-Gelelektrophorese (SDS-PAGE) von CHO-IFN-a2c und E.coli-IFN-a2c. Spuren 1 und 8: Molekulargewichtsmarker (Skala in kD); Spuren 2-4: nichtreduzierende Bedingungen, Spuren 5-7: reduzierende Bedingungen;

Spuren 2 und 5: Peak 1 aus CHO-IFN- α 2c;

Spuren 3 und 6: Peak 2 aus CHO-IFN- α 2c;

Spuren 4 und 7: E.coli-IFN-a2c;

Oberes Gel: Alle IFN-Spuren mit je 4 µg;

Unteres Gel: Alle IFN-Spuren mit je 1 µg; Färbung: Coomassie Blue

Fig. 24: SDS-Gelelektrophorese (SDS-PAGE) von CHO-IFN-α2c und E.coli-IFN-α2c vor und nach Inkubation mit 0,1 M NaOH.

Spuren 1 und 8: Molekulargewichtsmarker (Skala in kD); Spuren 2, 4, 6: unbehandelte Proben, Spuren 3, 5, 7: mit 0,1 M NaOH inkubierte Proben;

Spuren 2, 3: E.coli-IFN-a2c,

Spur 4, 5: Peak 1 aus CHO-IFN-a2c,

Spur 6, 7: Peak 2 aus CHO-IFN-α2c;

Auf alle IFN-Spuren wurden je etwa 1,5 µg unter reduzierenden Bedingungen aufgetragen.

Färbung: Coomassie Blue

Beispiel 1

Konstruktion der Expressionsplasmide pAD-CMV13, pAD-CMV15 und pAD-CMV19

Aus Teilen von Expressionsplasmiden (pCDM8, Seed & Aruffo, Proc. Natl.Acad.Sci.USA 84 (1987) 8573-8577; B. Seed, Nature 329 (1987) 840-842); Invitrogen, Inc., San Diego, CA; pSV2gptDHFR20, EP-Al 0321842) und -dem Plasmid pBluescript KS- (Short et al., Nucleic Acids Res., 11 (1988) 5521-5540; Stratagene, La Jolla, CA)) wurden neue Plasmide konstruiert, die eine Multiklonierstelle für die gerichtete Insertion heterologer DNA-Sequenzen aufweisen und sich in E.coli mittels Ampicillinresistenz mit hoher Kopienzahl vermehren lassen. Die intergenische Region von M13 ermöglicht die Herstellung einzelsträngiger Plasmid-DNA nach Superinfektion der transformierten Bakterien mit einem Helferphagen (z.B. R408 oder M13K07), zur erleichterten Sequenzierung und Mutagenese der Plasmid-DNA. Der T7 Promotor, der der Multiklonierstelle vorangeht, ermöglicht in vitro die Herstellung von RNA Transkripten. In Säugetierzellen erfolgt die Expression heterologer Gene getrieben vom Cytomegalovirus (CMV) Promotor / Enhancer (M. Boshart et al., Cell 41 (1985) 521-530). Der SV40 Replikationsursprung ermöglicht in geeigneten Zellinien (z.B. SV40 transformierte Zellen wie COS-7, Adenovirus transformierte Zellinie 293 (ATCC CRL1573)) die

autonome Replikation des Expressionsplasmides zu hohen Kopienzahlen und damit hohe Raten in transienter Expression. Für die Herstellung permanent transformierter Zellinien und die nachfolgende Amplifikation der Expressionskassette mittels Methotrexat dient ein modifiziertes Hamster Minigen (Promotor mit kodierendem Bereich und dem ersten Intron) für Dihydrofolatreduktase (DHFR) als Selektionsmarker.

Herstellung der Vektor- und Promotoranteile durch Polymerase Kettenreaktion (polymerase chain reaction, PCR)

Das Plasmid pBluescript KS- wurde mit HindIII

linearisiert und 100 ng DNA in einem 100 µl PCR (Saiki et al., Science 239 (1988) 487-491) Ansatz eingesetzt (Reaktionsmedium: 50 mM KCl, 10 mM Tris-Cl pH 8,3, 1,5 mM MgCl₂, 0,01% (w/v) Gelatine, 0,2 mM jeder der vier Desoxynukleosidtriphosphate (dATP, dGTP, dCTP, dTTP), 2,5 units Taq Polymerase pro 100 µl). Als Primer wurden je 50 pmol der synthetischen Oligonukleotide EBI-1786 (5'-GGAATTCAGCCTGAA- TGGCGAATGGG-3') und EBI-2134 (5'-CACTGAACTCGAGCAGC-TGCGTTGCTGGCGTTTTTCC-3') eingesetzt. Nach 5 Minuten Denaturieren bei 94°C erfolgte die PCR über 10 Zyklen (Zyklusbedingungen: 40 sec bei 94°C, 45 sec bei 55°C, 5 Min bei 72°C, Perkin Elmer Cetus Thermal Cycler). Die Oligonukleotide flankieren die intergenische Region von M13 bzw. den Replikationsursprung (ori) mit dem dazwischenliegenden Gen für die B-Lactamase. Gleichzeitig wird am Ende des ori eine XhoI- und eine PvuII- und am anderen Ende eine EcoRI-Schnittstelle erzeugt. Das Reaktionsgemisch wurde durch Extraktion mit Phenol-Chloroform von Protein befreit und die DNA

mit Äthanol präzipitiert. Die erhaltene DNA wurde mit XhoI und EcoRI geschnitten und nach Elektrophorese in einem Agarosegel ein Fragment mit 2,3 kb isoliert.
50 ng mit SacII linearisiertes Plasmid pCDM8 wurde mit den Oligonukleotiden EBI-2133 (5'-GGTCACTGTCGACAT-TGATTATTGACTAG-3') und EBI-1734 (5'-GGAATTCCCT-AGGAATACAGCGG-3') unter identischen Bedingungen wie zuvor beschrieben durch PCR amplifiziert. Die Oligonukleotide binden am Beginn der CMV-Promotor / Enhancer Sequenz und erzeugen eine SalI Schnittstelle (EBI-2133), bzw. binden am Ende der SV40 poly-Adenylierungstelle und erzeugen eine EcoRI Schnittstelle (EBI-1734). Das PCR Produkt wurde mit SalI und EcoRI geschnitten und ein DNA Fragment von 1,8 kb aus einem Agarosegel isoliert.

Die beiden nachgeschnittenen PCR Produkte wurden mit T4 DNA-Ligase ligiert und E.coli HB101 transformiert. Ein Plasmid der gewünschten Struktur (siehe Fig.1) wurde pCMV+M13 benannt.

Der SV40 Replikationsursprung (SV40 ori) wurde aus dem Plasmid pSV2gptDHFR20 (EP-Al 0321842) isoliert. Dazu wurde dieses Plasmid mit HindIII und PvuII doppelt geschnitten und die DNA-Enden durch nachfolgende Behandlung mit dem großen Fragment der E.coli DNA Polymerase (Klenow Enzym) in Gegenwart der vier Desoxynukleotidtriphosphate stumpf gemacht. Ein entstandenes 0,36 kb DNA Fragment wurde aus einem Agarosegel isoliert und in mit EcoRI linearisiertem Plasmidvektor pCMV+M13 ligiert. Ein nach Transformation von E.coli HB101 erhaltenes Plasmid, das den SV40 ori in gleicher Orientierung wie ß-Lactamase Gen und CMV-Promotor enthielt, wurde pCMV+SV40 benannt (Fig.1).

Plasmid pCMV+SV40 wurde mit EcoRI und BamHI doppelt geschnitten und die DNA-Enden anschließend mit Klenow-Enzym stumpf gemacht. Die DNA wurde durch Extraktion mit Phenol-Chloroform und Äthanolfällung gereinigt. Ein Teil der DNA wurde mit T4 DNA Ligase zirkularisiert und ein nach Transformation von E.coli erhaltenes Plasmid pAD-CMV10 benannt (Fig.2). Der Rest der pCMV+SV40 DNA wurde durch Inkubation mit alkalischer Phosphatase dephosphoryliert und der 4,4 kb lange Vektor aus einem Agarosegel isoliert.

Plasmid pSV2gptDHFR-Mut2 (siehe Beispiel 4, Fig. 9), das ein modifiziertes Hamster Dihydrofolatreduktase (DHFR) Minigen enthält, aus dem durch gerichtete Mutagenese die Restriktionsenzymschnittstellen für EcoRI, PstI, BglII, BamHI und KpnI entfernt wurden, wurde mit EcoRI und PstI doppelt geschnitten und die DNA-Enden durch 20 Minuten Inkubation bei 11°C mit 5 units T4 DNA-Polymerase (Reaktionsmedium: 50 mM Tris-Cl pH 8,0, 5 mM MgCl2, 5 mM Dithiothreit, 0,1 mM jedes der vier Desoxynukleotidtriphosphate, 50 µg/ml Rinderserumalbumin) stumpf gemacht. Das 2,4 kb lange DNA-Fragment mit dem mutierten DHFR-Gen wurde aus einem Agarosegel isoliert und mit dem wie oben beschriebenen präparierten pCMV+SV40 ligiert. Ein nach Transformation von E.coli erhaltenes Plasmid, in dem das DHFR-Gen in derselben Orientierung wie der CMV-Promotor enthalten war, wurde pAD-CMV10A benannt (Fig.2).

Ausgehend vom Expressionsplasmid pAD-CMV1 (siehe Beispiel 4, Fig. 10), das zwischen Multiklonierstelle und poly-Adenylierungssignal eine Intronsequenz enthält, wurden mehrere Varianten hergestellt, die sich durch die Anzahl und Lage der Introns relativ zur Multiklonierstelle unterscheiden. In pAD-CMV13 (Fig. 4)

wurde das SV40 t Antigen Intron zwischen
Multiklonierstelle und poly-Adenylierungstelle
deletiert; pAD-CMV15 (Fig. 3) enthält ein synthetisches
Intron zwischen CMV Promotor und Multiklonierstelle und
das SV40 t Antigen Intron zwischen Multiklonierstelle
und poly-Adenylierungssignal; pAD-CMV19 (Fig. 4)
enthält nur ein Intron zwischen CMV Promotor und
Multiklonierstelle.

Ausgehend von 100 ng des mit HindIII linearisierten Plasmid pAD-CMVl wurde mit je 50 pMol der Oligonukleotide EBI-2625 (5'-CACTGATCTAGAGATATCTTGTTTATTGCAGCTTATAATGG-3') und EBI-1857 (5'-GGCAAGGGCAGCAGCCGG-3') in 100 µl PCR Ansatz (siehe oben) in 10 PCR Zyklen (40 sec 94°C, 45 sec 55°C, 90 sec 72°C) ein 1,26 kb langes DNA Fragment amplifiziert. EBI-2625 bindet kurz vor dem SV40 poly-Adenylierungssignal (Position 1280 in pAD-CMV1) und enthält zusätzliche Restriktionsschnittstellen für XbaI und EcoRV. EBI-1857 bindet am komplementären DNA Strang im ersten Intron des nachfolgenden DHFR Minigens (Position 2525 in pAD-CMV1). Das PCR Produkt wurde durch Extraktion mit Phenol und Chloroform von Protein befreit und die DNA mit Äthanol gefällt. Die DNA wurde mit Xbal und BglII doppelt geschnitten, ein 0,32 kb langes DNA Fragment aus einem Agarosegel isoliert und in mit den gleichen Enzymen doppelt geschnittenen Plasmidvektor (5.8 kb) pAD-CMV1 ligiert. Ein nach Transformation von E.coli HB101 erhaltenens Plasmid der gewünschten Beschaffenheit (siehe Fig.4) wurde

Die dem CMV Promotor folgende Spleiß-Donor Sequenz (M. Boshart et al., Cell 41 (1985) 521-530) wurde durch SOE-PCR (splicing by overlap extension; S.N. Ho et al., Gene 77 (1989) 51-59) mit der Spleiß-Acceptorstelle

pAD-CMV13 benannt.

des ersten Introns des humanen B-Globin Gens (Lawn et al., Cell 21 (1980) 647-651) gefolgt von der Multiklonierstelle von Plasmid pAD-CMVl verbunden. Dazu wurden 100 ng Plasmid pGJ7 (G. Jahn et al., J. Virology 49 (1984) 363-370) enthaltend die Promotor und Enhancer Sequenz von humanem Cytomegalovirus StammAD169 (Boshart et al., Cell 41 (1985) 521-530) mit je 50 pMol der Oligonukleotide EBI-2133 (siehe oben) und EBI-2586 (5'-GCAGAGAGTCAGTGCCTATCAGAAACCCAAGAG-TCTTCTCTATAGGCGGTACTTACCTGACTCTTG-3') in 100 µl PCR Reaktionsgemisch über 30 Zyklen amplifiziert (Zyklusbedingungen: 40 sec 94°C, 45 sec 45°C, 90 sec 72°C). Die letzten 24 Basen von EBI-2586 passen perfekt an die CMV-Sequenz (in antisense Orientierung) und die vorangehenden Basen entsprechen der B-Globin Intron Sequenz, wobei 18 Basen perfekt zur revers komplementären Sequenz von Oligonukleotid EBI-2585 passen und die überlappende DNA-Sequenz für die SOE-PCR bilden. Die PCR Produkte wurden in einem Agarosegel aufgetrennt und ein 0,8 kb DNA Fragment isoliert (Fig.3). 100 ng Plasmid pAD-CMVl wurden in gleicher Weise mit den Oligonukleotiden EBI-2585 (5'-GCACTGACTCTCTCTGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCT-GGTGCTTAACTGGCTTATCG-3') und EBI-2112 (5'-GTCCAATTATGTCACACC-3') durch PCR amplifiziert und ein 0,2 kb DNA Fragment aus einem Agarosegel isoliert. EBI-2585 enhält die letzten 45 Basen des ß-Globin Introns und die fünf darauf folgenden Basen, sowie 17 Basen am 3'-Ende, die perfekt an Position 611-627 der pAD-CMV1 Sequenz hybridisieren können. EBI-2112 bindet am komplementären DNA Strang an Position 743-760 an die pAD-CMV1 Sequenz. 1/10 des isolierten 0,8 kb DNA Fragments und 1/30 des 0,2 kb DNA Fragments wurden in einem neuen 100 µl PCR Ansatz (SOE-PCR) gemischt und mit je 50 pMol der Oligonukleotide EBI-2133 und EBI-2112 in 30 PCR Zyklen (40 sec 94°C, 45 sec 45°C, 2

Min 72°C) amplifizert. Die Reaktion wurde durch Extraktion mit Phenol und Chloroform gestoppt und die DNA mit Äthanol gefällt. Die 5'-Enden des PCR Produktes wurden mit T4 Polynukleotidkinase phosphoryliert (Reaktionsguffer: 70 mM Tris-Cl pH 7,6, 10 mM MgCl2, 5 mM Dithiothreit, 1 mM ATP) und anschließend mit XbaI geschnitten. Die DNA wurde in einem Agarosegel aufgetrennt und ein Fragment von 0,98 kb Länge isoliert. Plasmid pAD-CMV10 wurde mit PvuII und XbaI doppelt geschnitten und der Vektoranteil ohne CMV Promotor aus einem Agarosegel isoliert. Dieser Plasmidvektor wurde mit dem 0,97 kb DNA Fragment, enthaltend den CMV Promotor und Enhancer mit Intron und Multiklonierstelle, ligiert und E.coli HB101 transformiert. Von den erhaltenen Transformanten wurde Plasmid DNA hergestellt und das neue DNA Insert mit den Oligonukleötiden EBI-2112, EBI-2586 und EBI-1733 (5'-GGTCGACATTGATTATTGACTAG-3') nach der Didesoxy-Kettenabbruch Methode (F. Sanger et al., Proc. Natl. Acad, Sci.USA 74 (1977) 5463-5467) mit modifizierter T7 DNA Polymerase (S. Tabor and C.C. Richardson, Proc. Natl. Acad. Sci.USA 84 (4767-4771); Sequenase, United States Biochemical Corp.) sequenziert. Ein Plasmid mit der erwarteten Sequenz wurde pAD-CMV15 benannt (Fig.3).

pAD-CMV10A wurde mit SpeI und BglII doppelt geschnitten und der Vektoranteil ohne CMV Promotor aus einem Agarosegel isoliert. pAD-CMV15 wurde mit SpeI und HindIII doppelt geschnitten und ein 0.8 kb DNA Fragment enthaltend den CMV Promotor und das synthetische Intron, isoliert. pAD-CMV13 wurde mit HindIII und BglII doppelt geschnitten und ein 0.36 kb DNA Fragment isoliert, das die Multiklonierstelle, das SV40 early poly-Adenylierungsignal und einen Teil der Hamster-DHFR Promotorregion enthielt. Diese drei DNA Fragmente

wurden mit T4 DNA Ligase ligiert und E.coli HB101 transformiert. Von den erhaltenen Transformanten wurde Plasmid DNA hergestellt und durch Schneiden mit verschiedenen Restriktionsenzymen charakterisiert. Ein Plasmid der gewünschten Struktur wurde pAD-CMV19 benannt (Fig.4, Fig.5).

Beispiel 2

Herstellung einer modifizierten cDNA für huIFN-a2c

Die für humanes IFN-a2c kodierende cDNA des Klons 1F7 (E. Dworkin-Rastl et al., J.Interferon Res. 2 (1982) 575-585; E. Dworkin-Rastl et al., Gene 21 (1983) 237-248) wurde mittels PCR in der 5'-nicht kodierenden Region modifiziert, indem diese gegen die Sequenz der 5'-nicht kodierenden Region der humanen B-Globin mRNA (Lawn et al., Cell 21 (1980) 647-651) ausgetauscht wurde. Eine derartige Veränderung der 5'-nicht kodierenden Region bewirkt eine deutliche Erhöhung der Expression, möglicherweise durch eine effizientere Initiation der Translation. Gleichzeitig wurden an beiden Enden der cDNA Restriktionsenzymschnittstellen eingeführt, die eine nachfolgende gerichtete Klonierung der cDNA in Expressionsplasmide erleichterten.

100 ng mit EcoRI linearisiertes Plasmid 1F7 wurden mit je 50 pMol der Oligonukleotide EBI-2747
(5'-CTTCAGAAGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCT-CAAACAGACACCATGGCCTTGACCTTTGCTTTAC-3') und EBI-2744
(5'-GACTTCAGTCTAGAGAACCAGTTTTCATTCCTTACTTC-3') in
100 µl PCR Ansatz in 20 Zyklen (40 sec 94°C, 45 sec 55°C, 90 sec 72°C) amplifiziert. EBI-2747 enthält nach einer HindIII Schnittstelle die 5'-nicht kodierende Region der humanen ß-Globin mRNA gefolgt von den ersten 22 Basen der für das Signalpeptid von huIFN-c2C

kodierenden Sequenz (Startkodon ist unterstrichen). EBI-2744 bindet am komplementären Strang am Ende der für huIFN-a2c kodierenden Sequenz (Stopkodon ist unterstrichen) und enthält eine Schnittstelle für XbaI. Die Reaktion wurde durch Extraktion mit Phenol und Chloroform gestoppt und die DNA mit Athanol gefällt. Das PCR Produkt wurde mit HindIII und Xbal an den Enden nachgeschnitten und das 0.64 kb lange DNA Fragment aus einem Agarosegel isoliert (Fig.6, Fig.7). Plasmid pAD-CMV19 wurde ebenfalls mit HindIII und XbaI doppelt geschnitten und anschließend mit dem cDNA Fragment ligiert. Nach Transformation von E.coli HB101 erhaltene Kolonien wurden zur Präparation von Plasmid DNA gezüchtet. Eines der erhaltenen Plasmide wurde über den Verlauf des insertierten HindIII-Xbal Bereiches vollständig sequenziert. Mit Ausnahme eines einzigen Basenaustausches (CTG zu TTG) im 8. Kodon des Signalpeptides, der jedoch zu keiner Änderung der kodierten Aminosäure (Leu) führte, wurde die erwartete Sequenz erhalten. Das Expressionsplasmid für sekretiertes und O-glycosyliertes hulFN- $\alpha 2c$ wurde pAD19B-IFN benannt (Fig.6).

Beschreibung der Sequenzelemente von Plasmid pAD-CMV19 (Fig.5)

Basen

- 1 21 Bindungstelle von Oligonukleotid EBI-2133
- 1 590 Cytomegalovirus Enhancer und Promotor
- 722 740 Intronsequenz von Cytomegalovirus (Splice Donor)
- 741 805 Intronsequenz von humanem ß-Globin (Splice Acceptor)
- 836 853 T7 Promotor
- 862 922 Multiklonierstelle

923	-1055	Polyadenylierungsstellen von SV40
1056	-1953	Promotor und 5'-nicht kodierende Region
		von Hamster DHFR Gen
1954	-2039	DHFR Exon 1
2040	-2333	DHFR Intron 1
2151	-2168	Bindungstelle von EBI-1857
2344	-2821	DHFR Exons 2-6 kodierender Bereich
2822	-3474	DHFR 3'-nicht kodierende Region
3475	-3812	SV40 Replikationsursprung (SV40 ori)
3813	-6055	pBluescript Anteil
3813	-4291	M13 intergenische Region (M13 ori)
4423	-5283	B-Lactamase, kodierende Region
6038	-6062	Bindungstelle von EBI-2134

Beispiel 3

Transiente Expression von hulFN- $\alpha 2c$ in höheren eukaryotischen Zellen

Etwa 10⁶ Zellen (293, humane embryonale Nierenzellen transformiert mit einem Teil des Adenovirus AD5 Genoms; F.L. Graham et al., J.Gen. Virol., 36 (1977) 59-77; ATCC CRL1573) pro 80 mm Petrischale wurden 24 Stunden vor der Transfektion mit Medium (Dulbecco's MEM/Nutrient Mix F12 (1:1) mit 15 mM Hepes; Gibco) mit 10% hitzeinaktiviertem fötalem Kälberserum angesetzt und bei 37°C in 5% CO, Atmosphäre inkubiert. Die Zellen wurden 3 Stunden vor der Transfektion mit 10 ml frischem Medium versehen und bei 37°C inkubiert. 10 µg Plasmid DNA (gereinigt durch zweimalige CsCl Dichtegradientenzentrifugation) pAD19B-IFN gelöst in 0,5 ml 250 mM $CaCl_2$ wurden tropfenweise zu 0,5 ml 2xHBS (16,36 g/l NaCl, 11,9 g/l Hepes, 0,40 g/l Na₂HPO₄, pH 7,12) zugefügt. Das entstandene Präzipitat wurde zu einer Petrischale zugegeben und die Zellen weitere 4 Stunden bei 37°C inkubiert. Die Zellen wurden mit PBS gewaschen, 30 Sekunden mit 15% Glyzerin in lx HBS geschockt, nochmals mit PBS gewaschen und mit 10 ml frischem Medium mit 10% Kälberserum bei 37°C inkubiert. Nach 72 Stunden wurde der Zellüberstand geerntet und zum Nachweis des sekretierten IFN verwendet.

Beispiel 4:

Konstruktion der Expressionsplasmide pAD-CMVl und pAD-CMV2

Aus Teilen der Expressionsplasmide pCDM8 (Seed & Aruffo, Proc. Natl.Acad.Sci.USA 84 (1987) 8573-8577; Seed, Nature 329 (1987) 840-842; Invitrogen Inc., San Diego, CA), pSV2gptDHFR20 (EP-A1 0321 842) und dem Plasmid Bluescript SK+ (Short et al., Nucleic Acids Res., 11 5521-5540; Strategene, La Jolla, CA) wurde ein neues Plasmid konstruiert, das eine Multiklonierstelle für die gerichtete Insertion heterologer: DNA-Sequenzen aufweist und sich in E.coli mittels Ampicillinresistenz mit hoher Kopienzahl vermehren läßt. Die intergenische Region von M13 ermöglicht die Herstellung einzelsträngiger Plasmid-DNA mittels Superinfektion der transformierten Bakterien mit einem Helferphagen (z.B. R408 oder M13K07) zur erleichterten Sequenzierung und Mutagenese der Plasmid-DNA. Der T7 Promotor, der der Multiklonierstelle vorangeht, ermöglicht die Herstellung von RNA Transkripten in vitro. In Säugetierzellen erfolgt die Expression heterologer Gene getrieben vom Cytomegalovirus (CMV) Promotor/Enhancer (Boshart et al., Cell 41 (1985) 521-530). Der SV40 Replikationsurprung ermöglicht in geeigneten Zellinien (z.B. SV 40 transformierte Zellen wie COS-7, Adenovirus transformierte Zellinie 293 (ATCC CRL1573)) die autonome Replikation des Expressionsplasmides zu hohen

Kopienzahlen und damit hohe Raten in transienter Expression. Für die Herstellung permanent transformierter Zellinien und die nachfolgende Amplifikation der Expressionskassette mittels Methotrexat dient ein modifiziertes Hamster-Minigen (Promotor mit kodierendem Bereich und dem ersten Intron) für Dihydrofolatreduktase (DHFR) als Selektionsmarker.

a) Herstellung der Vektor- und Promotoranteile durch PCR

Das Plasmid Bluescript SK+ wurde mit HindIII linearisiert und 5 ng DNA in einem 100 µl PCR Ansatz eingesetzt (Reaktionspuffer: 50 mM KCl, 10 mM Tris-Cl pH=8,3, 1,5 mM MgCl2, 0,01% (w/v) Gelatine, 0,2 mM der vier Desoxynukleotidtriphosphate (dATP, dGTP, dCTP, dTTP), 2,5 Einheiten Tag Polymerase pro 100 µl). Als Primer wurden je 50 pmol der synthetischen Oligonukleotide EBI-1786 (5'-GGAATTCAGCCTGAA-TGGCGAATGGG-3'; bindet knapp außerhalb von Ml3 ori-Region in Bluescript Pos. 475, unabhängig von M13 ori-Orientierung) und EBI-1729 (5'-CCTCGAGCGTTGC-TGGCGTTTTTCC-3'; bindet an Bluescript an Pos. 1195 vor ori, entspricht dem Anfang der Bluescript-Sequenz in pCDM8, 6 Basen 5'ergeben XhoI) eingesetzt. Nach 5 Minuten Denaturieren bei 94°C erfolgte die PCR über 20 Zyklen (40 sec bei 94°C, 45 sec bei 55°C, 5 Min bei 72°C, Perkin Elmer Cetus Thermal Cycler). Die Oligonukleotide flankieren die intergenische Region von M13 bzw. den Replikationsursprung (ori) mit dem dazwischenliegenden Gen für die B-Lactamase. Gleichzeitig wird am Ende des Replikationsursprungs eine XhoI- und am anderen Ende eine EcoRI-Schnittstelle erzeugt. Das Reaktionsgemisch wurde durch Extraktion mit Phenol-Chloroform von Protein befreit und die DNA

mit Ethanol präzipitiert. Die erhaltene DNA wurde mit KhoI und EcoRI geschnitten und nach Elektrophorese in einem Agarosegel ein Fragment mit 2,3 kb isoliert.

5 ng mit SacII linearisiertes Plasmid pCDM8 wurden mit den Oligonukleotiden EBI-1733 (5'-GGTCGACATTGA-TTATTGACTAG-3'; bindet an CMV-Promotorregion (Pos. 1542) von pCDM8, entspricht Pos.1 in pAD-CMV, SalI-Stelle für Klonierung) und EBI-1734(5:-GGAATTCCCTAGGAATACAGCGG-3:; bindet an Polyoma origin von 3'SV40 polyA-Region in pCDM8 (Pos. 3590)) unter identischen Bedingungen wie für Bluescript SK+ beschrieben, durch PCR amplifiziert. Die Oligonukleotide binden am Beginn der CMV-Promotor/Enhancer-Sequenz und erzeugen eine Sall Schnittstelle (EBI-1733) bzw. binden am Ende der SV40 poly-Adenylierungstelle und erzeugen eine EcoRI Schnittstelle (EBI-1734). Das PCR-Produkt wurde mit SalI und EcoRI geschnitten und ein DNA Fragment von 1,8 kb aus einem Agarosegel isoliert.

Die beiden PCR Produkte wurden mit T4 DNA-Ligase ligiert, mit dem erhaltenen Ligationsprodukt E.coli HB101 transformiert und nach Standardmethoden Plasmid-DNA amplifiziert und präpariert. Das Plasmid der gewünschten Beschaffenheit (siehe Fig.8) wurde pCMV-M13 benannt.

Der SV40 Replikationsursprung (SV40 ori) wurde aus dem Plasmid pSV2gptDHFR20 (EP-Al 0321842) isoliert. Dazu wurde dieses Plasmid mit HindIII und PvuII doppelt geschnitten und die DNA-Enden durch nachfolgende Behandlung mit dem großen Fragment der E.coli DNA Polymerase (Klenow Enzym) in Gegenwart der vier Desoxynukleotidtriphosphate stumpf gemacht. Ein dabei erhaltenes 0,36 kb DNA Fragment wurde aus einem

Agarosegel isoliert und in mit EcoRI linearisiertem pCMV-M13 ligiert. Ein nach Transformation von E.coli HB101 erhaltenes Plasmid mit dem SV40 ori in gleicher Orientierung wie das B-Lactamase Gen und dem CMV-Promotor wurde pCMV-SV40 benannt. Die Konstruktion dieses Plasmids ist in Fig.8 dargestellt.

b) Mutagenese des DHFR-Gens

Zur Herstellung eines Expressionsplasmids mit einer vielseitigen Multiklonierstelle wurden aus dem DHFR Minigen durch gerichtete Mutagenese zwei und durch Deletion drei Restriktionsenzymschnittstellen entfernt. Dazu wurde aus dem Plasmid pSV2gptDHFR20 ein 1,7 kb BglII Fragment, das die gesamte kodierende Region des Hamster DHFR-Gens enthält, in die BglII Stelle des Plasmids pUC219 (IBI) kloniert und das Plasmid pUCDHFR erhalten. Mit pUCDHFR transformierte E.coli JM109 (Stratagene) Zellen wurden mit etwa 40-fachem Überschuß des Helferphagen R408 (Stratagene) infiziert und 16 Stunden bei 37°C in LB-Medium geschüttelt. Aus dem Bakterienüberstand wurde einzelsträngige Plasmid-DNA isoliert.

Die gerichtete Mutagenese erfolgte in zwei aufeinanderfolgenden Schritten, wobei das in vitro Mutagenese System RPN1523 (Amersham) verwendet wurde. Die am Beginn von Exon 2 befindliche EcoRI Stelle wurde durch Austausch einer Base von GAATTC zu GAGTTC zerstört. Dieser Basenaustausch führt zu keiner Änderung der kodierten Aminosäuresequenz und entspricht außerdem der Nukleotidsequenz im natürlichen murinen DHFR-Gen (McGrogan et al., J. Biol. Chem. 260 (1985) 2307-2314; Mitchell et al., Mol. Cell. Biol. 6 (1986) 425-440). Für die Mutagenese wurde ein Oligonukleotid (Antisense-Orientierung) der Sequenz 5'-GTACTTGA-

ACTCGTTCCTG-3' (EBI-1751) verwendet. Ein Plasmid mit der gewünschten Mutation wurde, wie oben beschrieben, als Einzelstrang-DNA präpariert und die im ersten Intron befindliche PstI Stelle durch Mutagenese mit dem Oligonukleotid EBI-1857 (Antisense Orientierung, 5'-GGCAAGGGCAGCAGCCGG-3') von CTGCAG in CTGCTG entfernt. Die Mutationen wurden durch Sequenzierung bestätigt und das erhaltende Plasmid pUCDHFR-Mut2 benannt. Aus dem Plasmid pUCDHFR-Mut2 wurde das 1,7 kb BglII Fragment isoliert und in mit BglII und BamHI doppelt geschnittenes Plasmid pSV2gptDHFR20 ligiert. Nach Transformation von E.coli, Amplifikation und DNA-Isolierung wurde ein Plasmid der gewünschten Beschaffenheit erhalten, das als pSV2gptDHFR-Mut2 bezeichnet wurde. Durch Schneiden mit BamHI wurde in der 3'-nicht-kodierenden Region des DHFR Gens ein auf die BglII Stelle folgendes 0,12 kb DNA-Fragment entfernt, das außerdem noch eine KpnI Schnittstelle enthält. Durch Verknüpfen der mit BglII und BamHI entstandenen überhängenden DNA-Enden wurden auch die Erkennungssequenzen für diese beiden Enzyme zerstört.

Das Plasmid pCMV-SV40 wurde mit EcoRI und BamHI doppelt geschnitten, die DNA-Enden nachfolgend mit Klenow-Enzym stumpf gemacht. Die DNA wurde durch Extraktion mit Phenol-Chloroform und Ethanolfällung gereinigt, anschließend durch Inkubation mit alkalischer Phosphatase dephosphoryliert und die 4,4 kb lange Vektor DNA aus einem Agarosegel isoliert.

Das Plasmid pSV2gptDHFR-Mut2 (Fig.9) wurde mit EcoRI und PstI doppelt geschnitten und die DNA-Enden durch 20 Minuten Inkubation bei 11°C mit 5 Einheiten T4 DNA-Polymerase (50 mM Tris-HCl pH=8,0, 5 mM MgCl₂, 5 mM Dithiothreit, 0,1 mM jedes der vier Desoxynukleotidtriphosphate, 50 µg/ml

Rinderserumalbumin) stumpf gemacht. Das 2,4 kb lange DNA-Fragment mit dem mutierten DHFR-Gen wurde aus einem Agarosegel isoliert und mit dem wie oben beschrieben präparierten pCMV-SV40 ligiert. Ein nach Transformation von E.coli erhaltenes Plasmid, das das DHFR-Gen in derselben Orientierung wie den CMV-Promotor enthielt, wurde pCMV-SV40DHFR benannt. Im letzten Schritt wurde das 0,4 kb "Stuffer"-Fragment nach dem CMV-Promotor,das noch aus dem Ausgangsplasmid pCDM8 stammte, gegen eine Multiklonierstelle ausgetauscht. Dazu wurde das Plasmid pCMV-SV40DHFR mit HindIII und XbaI doppelt geschnitten und der Vektoranteil aus einem Agarosegel isoliert. Die Multiklonierstelle, gebildet aus den beiden Oligonukleotiden EBI-1823 (5'-AGCTTCTGCAGGTCGA-CATCGATGGATCCGGTACCTCGAGCGGCCGCGAATTCT-3') und EBI-1829 (5'-CTAGAGAATTCGCGGCCGCTCGAGGTACCGGATCCATCGATG-TCGACCTGCAGA-3'), enthält inklusive der für die Klonierung in HindIII - XbaI kompatiblen Enden Restriktionsschnittstellen für die Enzyme PstI, SalI, Clai, BamHi, Kpni, Xhoi, Noti und EcoRi.

Je 1 µg der beiden Oligonukleotide wurden in 20 µl
Reaktionspuffer (70 mM Tris-Cl pH=7.6, 10 mM MgCl₂,
5 mM Dithiothreit, 0,1 mM ATP) mit 5 Einheiten T4
Polynukleotidkinase eine Stunde bei 37°C inkubiert, um
die 5'-Enden zu phosphorylieren. Die Reaktion wurde
durch 10 minütiges Erhitzen auf 70°C gestoppt und die
komplementären Oligonukleotide miteinander
hybridisiert, indem die Probe weitere 10 Minuten bei
56°C inkubiert und anschließend langsam auf
Raumtemperatur abgekühlt wurde. 4 µl der
hybridisierten Oligonukleotide (100 ng) wurden mit etwa
100 ng Plasmidvektor ligiert und E.coli HB101
transformiert. Ein Plasmid, das sich mit den Enzymen
der Multiklonierstelle (ausgenommen NotI) linearisieren
ließ, wurde pAD-CMVl benannt. Von vielen getesteten

Klonen konnte keiner identifiziert werden, dessen plasmid sich mit NotI schneiden ließ. Die Sequenzierung zeigte immer die Deletion von einigen Basen innerhalb der NotI Erkennungssequenz. In gleicher Weise wurde mit dem Oligonukleotidpaar EBI-1820 (5'-AGCTCTAGAGAATT-CGCGGCCGCTCGAGGTACCGGATCCATCGATGTCGACCTGCAGAAGCTTG-3') und EBI-1821 (5'-CTAGCAAGCTTCTGCAGGTCGACATCGATGGATCC GGTACCTCGAGCGGCCGCGAATTCTCTAG-3') das Expressionsplasmid pAD-CMV2 hergestellt, das die Restriktionsschnittstellen innerhalb der Multiklonierstelle in umgekehrter Reihenfolge enthält. Dabei wurde das Plasmid pAD-CMV2 erhalten, das sich mit sämtlichen Restriktionsenzymen, einschließlich NotI, linearisieren ließ.

Die Nukleotidsequenz des 6414 bp großen Plasmids pAD-CMV1 (Fig.10) ist in Fig.11 vollständig dargestellt.

Die Abschnitte auf dem Plasmid (angegeben in der Numerierung der Basen) entsprechen folgenden Sequenzen:

1-21	EBI-1733, Beginn CMV Enhancer - Promotor (aus CDM8)
Ž.	·
632-649	T7 Promotor
658-713	Multiklonierstelle (HindIII bis XbaI aus
	EBI-1823, EBI-1829)
714-1412	SV40 Intron und poly-Adenylierungsstelle
	(aus CDM8)
1413-2310	5'nicht kodierende Region und Promotor des
	Hamster DHFR Gens (aus pSV2gptDHFR20)
2311-2396	Hamster DHFR: Exon 1
2516	A zu T Mutation zerstört PstI Stelle in
	DHFR Intron 1
2701-3178	DHFR Exons 2-6 (kodierende Region)
2707	A zu G Mutation zerstört EcoRI Stelle

3272-3273	Deletion zwischen BglII und BamHI in DHFR
	3'nicht kodierender Region
3831	Ende DHFR Gen (aus pSV2gptDHFR20)
3832-4169	SV40 ori (aus pSV2gptDHFR20)
4170-4648	M13 ori (aus pBluescript SK+)
4780-5640	B-Lactamase (kodierende Region)
6395-6414	EBI-1729, Ende der pBluescript
	Vektorsequenz

Die Herstellung der Plasmide pAD-CMV1 und pAD-CMV2 ist in Fig.10 dargestellt.

Beispiel 5

Entwicklung von rekombinanten "Chinese hamster ovary (CHO)"-Zellinien, die glycosyliertes Human-Interferon-a2 produzieren

a) Transfektion von CHO-Zellen und Selektion stabil transfizierter Zellinien

Die parentalen Zellinien, CHO-DXBll und CHO-DG44 (Proc. Natl. Acad. Sci. USA 77, 4216-4220, 1980; Som. Cell. Molec. Genet. 12, 555-666, 1986) wurden in Roswell Park Memorial Institute (RPMI) Medium 1640 supplementiert mit 10% fötalem Rinderserum, Hypoxanthin (100 µM), Thymidin (16 µM), Natrium-Penicillin G (100 Einheiten/ml), und Streptomycin (50 Einheiten/ml) gezüchtet. Zwei Tage vor der Transfektion wurden die Zellen in 25 cm² - Flaschen angesetzt; zum Zeitpunkt der Transfektion waren die Zellen nahezu konfluent.

Das Transfektionsexperiment wurde wie folgt durchgeführt. 20 μ l einer Lösung von Plasmid pAD19B-IFN ($l\mu g/ml$) wurden mit 125 μ l 2 M CaCl₂ und 855 μ l sterilem deionisiertem Wasser verdünnt. Diese Lösung wurde tropfenweise zu 1 ml 2 x HSB

zugesetzt (1 x HSB enthält pro Liter Lösung: 8,18 g NaCl, 5,94 g HEPES, 0,2 g Na2HPO4; pH 7,1). Das Kulturmedium der CHO-Zellen wurde entfernt, und 0,25 ml der Suspension wurden zu jeder Flasche zugesetzt; die Kulturen wurden 4 Stunden bei 37°C inkubiert. Die Suspension wurde dann entfernt, die Zellen wurden mit Hilfe von Trypsin/EDTA-Lösung von der Oberfläche gelöst und in Selektionsmedium suspendiert (das Selektionsmedium bestand aus Minimum Essential Medium, alpha-Modifikation ohne Ribonucleotide and Deoxyribonucleotide, ergänzt mit 10% dialysiertem fötalem Rinderserum, Natrium-Penicillin G 100 Einheiten/ml, Streptomycin 50 Einheiten/ml, and Amphotericin B 2,5 µg/ml; 40 ml pro Flasche). Die Zellsuspension wurde dann in die Vertiefungen von zwei Zellkultur-Mikrotiterplatten transferiert (96 Vertiefungen pro Platte, 0,2 ml pro Vertiefung) und zwei Wochen bei 37°C inkubiert. Das angegebene Selektionsmedium wurde, allerdings ohne Amphotericin B, auch für alle weiteren Experimente verwendet.

Die Zellkulturen wurden visuell auf Zellwachstum überprüft. Kulturmedium aus Vertiefungen, die Zellwachstum zeigten, wurden auf IFN- $\alpha 2$ -Gehalt mit Hilfe eines Enzym-Immunoassays getestet, der zwei monoklonale Antikörper gegen IFN-α2 verwendet (Biochem. J. 276, 511-518, 1991). Dieser Test wurde mit neuen Kulturüberständen eine Woche später wiederholt. Zellen aus positiven Kulturen wurden mit Hilfe von Trypsin/EDTA-Lösung von der Oberfläche gelöst und jeweils in Kulturplatten mit 24 Vertiefungen transferiert. Kulturen, die gutes Zellwachstum zeigten, wurden dann wiederholt auf IFN-Produktion getestet. Die IFN-α2 - Konzentrationen in den Überständen lagen typischerweise im Bereich zwischen 2.000 und >10.000 Einheiten/ml (1 ng IFN-a2 - Protein entspricht 230 Einheiten).

b) Amplifikation des IFN-a2 Gens durch Methotrexat-Selektion

Transfizierte Klone von beiden Parental-Zellinien, CHO-DXB11 und CHO-DG44, die in mehreren Tests hohe IFN-Konzentrationen gezeigt hatten, wurden für die Amplifikation ausgewählt; zusätzlich wurden jeweils 3 -5 weitere Klone vereinigt. Diese Kulturen wurden nun in 25 cm² - Flaschen in Selektionsmedium (ohne Amphotericin B) gehalten, dem Methotrexat in Konzentrationen von 20 nM oder 50 nM zugesetzt wurde. Die Kulturen wurden wöchentlich einmal mit frischem Medium versehen. Überlebende Klone wurden nach etwa 2 -3 Wochen beobachtet. Sobald die Zellen etwa 50% der Kulturfläche bewachsen hatten, wurden die Überstände wieder auf ihren IFN-a2 Gehalt getestet. Die Zellen wurden dann abgelöst, verdünnt und in neue Flaschen transferiert. Die Methotrexat-Konzentration wurde nun um den Faktor von etwa 2 - 5 erhöht, z.B. von 20 nM auf 50 und 100 nM, oder von 50 nM auf 100 und 200 nM. Nach mehreren derartigen Selektionszyklen in Gegenwart steigender Mengen an Methotrexat, und Selektion resistenter Kulturen nach ihrer IFN-Produktion, konnten schließlich Zellinien erhalten werden, die resistent gegen Methotrexat-Konzentrationen bis zu 5.000 nM waren und relativ große Mengen an IFN-a2 sezernierten. Die folgende Tabelle I illustriert den Anstieg der Produktivität am Beispiel der Zellinie CHO-DXB11-IFN- α 2C-3/2D4.

Die nachfolgende Tabelle II zeigt die Ergebnisse mit der Zellinie CHO-DG44-IFN- $\alpha 2c$ -pool"S":

IFN-q2c in Kulturüberständen	(Einheiten/ml)		0 - 14.000	000*68 - 0	0 -125.000	0 -120.000	000.000	0 -300.000	000.006- 0	0 -350,000	000.096- 0
IFN	(Ei		6.000	12.000	29.000	96.000	110.000	140.000	350,000	200.000	210.000
Methotrexat-Konzentration	(MM)	1. 2.	0	20	50	100	200	200	1000	2000	5000

IFN-α2c in Kulturüberständen (Einheiten/ml)	- 83.000	-112.000	000.86 -	-220.000	-220.000	-570.000	-350.000	-320.000
IFN-α2 (Einhe	29.000	58.000	69.000	71.000	190.000	170.000	200.000	190.000
Methotrexat-Konzentration (nM)	20	50	100	200	500	1000	2000	5000

Aus Kulturüberständen rekombinanter CHO-Zellen konnte IFN-a2 mit Hilfe von Affinitätschromatographie an monoklonalen Antikörpern (z. B. den Antikörpern EBI-l oder EBI-lo) nach bereits bekannten Methoden gereinigt werden (z.B. Nature 285, 446-450, 1980; J. Biol. Chem. 265, 9290-9295, 1990; Biochem. J. 276, 511-518, 1991). Zur Reinigung der erfindungsgemäßen Proteine eignet sich in besonderer Weise das in der EPA 0 203 382 beschriebene Verfahren.

Beispiel 6

Charakterisierung von rekombinantem, glycosyliertem humanem IFN- α 2c aus "Chinese hamster ovary (CHO)"-Zellen.

a) Reverse Phase HPLC (RP-HPLC)

Affinitätsgereinigtes rekombinantes glycosyliertes IFN-α2c aus CHO-Zellen wurde mittels RP-HPLC mit rekombinantem IFN-a2c aus E.coli, das nicht glycosyliert ist, verglichen. Die genaue Analysenmethode ist in Adolf et al., J. Biol. Chem. 265, 9290-9295 (1990) beschrieben. Glycosyliertes CHO-IFN-a2c (oberer Teil von Fig.21) besteht aus zwei Hauptpeaks (Peaks 1 und 2) und zwei kleineren IFN-Peaks (Peaks 3 und 4). Unglycosyliertes E.coli-IFN-α2c dagegen (unterer Teil von Fig.21) zeigt einen Hauptpeak (korrekte Disulfidbrücken) und einen kleineren Nebenpeak, der von einer Form mit "scrambled" Disulfidbrücken stammt. Aus dem Vergleich der Retentionszeiten sieht man, daß die zwei Hauptpeaks des CHO-IFN-α2c etwas früher eluieren als der Hauptpeak des E.coli-IFN-a2c. Der Grund für diese verringerte Hydrophobizität ist die Anwesenheit von Oligosacchariden im CHO-IFN-a2c. Die zwei kleineren IFN-Peaks im CHO-IFN-α2c haben etwa die gleiche Retentionszeit wie der Hauptpeak des E.coli-IFN-a2c und stammen damit höchstwahrscheinlich von einem kleineren unglycosylierten Anteil des CHO-IFN-α2c.

b) N-terminale Sequenzierung

Die zwei Hauptpeaks des CHO-IFN-α2c wurden von der RP-HPLC isoliert und gemeinsam sequenziert. Die

Sequenzierbedingungen sind in Adolf et al., J. Biol. Chem. 265, 9290-9295 (1990) beschrieben. Die ersten 15 Aminosäuren konnten in Übereinstimmung mit der cDNA-Sequenz identifiziert werden. Es gab keine Hinweise auf eine Heterogenität am N-Terminus.

c) C-terminale Analyse

Der Hauptpeak des E.coli-IFN-α2c und die zwei Hauptpeaks des CHO-IFN-α2c wurden von der RP-HPLC isoliert und mit Trypsin gespalten. Die tryptischen Peptide würden wieder mittels RP-HPLC getrennt. Die experimentellen Bedingungen sind in Adolf et al., Biochem. J. 276, 511-518 (1991) beschrieben. Fig.22 zeigt einen Vergleich der erhaltenen Peptide Maps. Zwischen den Peptide Maps von Peak 1 und Peak 2 des CHO-IFN-α2c (oberer und mittlerer Teil) gab es nur einen einzigen Unterschied. Das tryptische Peptid 18 aus Peak 1 ist im Peak 2 (dort als Peptid 15) nahezu nicht vorhanden. Stattdessen wurde ein neues Peptid (Nummer 19) im Map von Peak 2 gefunden, das sowohl im Peak 1 als auch im E.coli-IFN-α2c (unterer Teil von Fig.22) überhaupt nicht vorkommt.

Die Peptide 12 (aus E.coli-IFN-a2c), 18 (aus Peak 1 des CHO-IFN-a2c), 15 und 19 (aus Peak 2 des CHO-IFN-a2c) wurden mit Plasmadesorptions-Massenspektrometrie (PD-MS) analysiert. Die experimentellen Details dafür sind in Adolf et al., Biochem. J. 276, 511-518 (1991) beschrieben. Für die ersten drei der genannten Proben wurde ein Molekulargewicht gefunden, das den Aminosäuren 150 bis 162 der IFN-a2c-Sequenz entspricht. Peptid 19 aus Peak 2 des CHO-IFN-a2c ergab dagegen ein geringeres Molekulargewicht, entsprechend den Aminosäuren 150 bis

161. Ein Teil des Peptids 19 wurde auch sequenziert, wobei sich eindeutig zeigte, daß dieses Peptid mit der Aminosäure 150 beginnt und mit LEU-161 endet. Aus diesen Ergebnissen kann geschlossen werden, daß der Peak 1 des CHO-IFN-α2c ein vollständiges IFN-Molekül enthält, während beim Peak 2 die 4 C-terminalen Aminosäuren (162-165) fehlen. Die Aminosäuren 163-165 können in einem Peptide Map nach Trypsinspaltung nicht positiv identifiziert werden, da das daraus resultierende Dipeptid (163/164) und die freie Aminosäure (165) im Totvolumen der RP-Säule eluieren. Der kleine Anteil von Peptid 15 (unverkürztes tryptisches Peptid mit den Aminosäuren 150-162), der auch im Peak 2 des CHO-IFN-α2c gefunden wurde, ist wohl auf einen kontaminierenden Anteil von Peak 1 zurückzuführen, da die Peaks 1 und 2 mittels RP-HPLC nicht vollständig getrennt werden können.

In weiteren Experimenten wurde festgestellt, daß die C-terminale Verkürzung des O-glycosylierten IFN- $\alpha 2$ aus CHO-Zellen verhindert werden kann, wenn für das Ablösen der Zellen von der Oberfläche der Kulturgefäße an Stelle der üblichen Trypsin/EDTA-Lösung eine trypsinfreie Lösung verwendet wird (z.B. EDTA Dinatriumsalz, 200 mg/L mit D(+)Glucose Monohydrat, 200 mg/L in phosphatgepufferter Natriumchloridlösung pH 7.4). IFN-α2, das aus derart kultivierten Zellkulturen nach den oben beschriebenen Verfahren gereinigt wurde, zeigte in der Reverse Phase - HPLC (analog zu Abbildung 21a) nur den Peak 1, der dem vollständigen Protein entspricht, aber nicht den Peak 2, der dem verkürzten Protein entspricht. Weiterhin konnte mit Hilfe der tryptischen Peptide Maps (analog zu Abbildung 22) gezeigt werden, daß das Peptid-Muster dieses ohne Verwendung von Trypsin hergestellten Proteins idencisch mit dem Muster der aus dem Peak 1 generierten Peptide (Abbildung 22a) ist.

SDS-Gelelektrophorese

Die Peaks 1 and 2 des CHO-IFN-c2c wurden von der RP-HPLC isoliert. Sie wurden einzeln und im Vergleich zu E.coli-IFN-c2c sowohl unter reduzierenden (nach Kochen mit Dithiothreitol) als auch unter nichtreduzierenden Bedingungen mittels SDS-Gelelektrophorese analysiert. Die experimentellen Details sind in Adolf et al., J. Biol. Chem., 265, 9290-9295 (1990) beschrieben. Die Ergebnisse sind in Fig. 23 gezeigt (Spuren 2-4 unter nichtreduzierenden Bedingungen, Spuren 5-7 unter reduzierenden Bedingungen; oberer Teil mit 4 µg IFN in jeder Spur, unterer Teil mit je l µg IFN). Speziell aus den Spuren 5-7 des unteren Teils ist ersichtlich, daß sowohl Peak l als auch Peak 2 des CHO-IFN-c2c ein höheres Molekulargewicht haben als das unglycosylierte E.coli-IFN-a2c. Wegen der nicht vollständigen Trennung der Peaks-1 und 2 bei der RP-HPLC ist eine gegenseitige Kontamination der Peaks 1 und 2 vorhanden. Aus demselben Grund ist auch der Peak 2 mit einer geringen Menge von unglycosyliertem CHO-IFN- α 2c, das aus Peak 3 (siehe Fig.21) stammt, kontaminiert, Unter Berücksichtigung dieser Kontaminationen scheinen die Hauptbanden der Peaks 1 und 2 des CHO-IFN-α2c homogen zu sein. Da sich die Peaks 1 ugd 2 bezüglich des C-Terminus unterscheiden (siehe oben), kann aus den Ergebnissen der SDS-Gelelektrophorese geschlossen werden, daß die Oligosaccharid-Anteile der Peaks 1 und 2 des CHO-IFN- α 2c identisch sind (siehe auch später in Kapitel f).

e) Deglykosylierung von CHO-IFN-α2c

Die Peaks 1 and 2 des CHO-IFN-a2c wurden von der RP-HPLC isoliert und in einem SpeedVac Konzentrator getrocknet. Diese Proben sowie E.coli-IFN-a2c wurden in 10 µl 0,l M NaOH 20 Stunden bei Raumtemperatur inkubiert. Die durch diese B-Elimination deglycosylierten Proben wurden im Vergleich zu unbehandelten Proben mittels SDS-Gelelektrophorese analysiert. Die Ergebnisse in Fig.24 zeigen, daß das Molekulargewicht der Peaks 1 und 2 des CHO-IFN-a2c nach Behandlung mit NaOH deutlich reduziert und identisch mit dem des NaOH-behandelten E.coli-IFN-a2c ist. Das diffuse Aussehen der Banden aller mit NaOH behandelten Proben ist auf Veränderungen in der Peptidkette unter den angewandten Reaktionsbedingungen zurückzuführen.

f) Identifizierung der Glykopeptide mittels Peptide Mapping

Der Vergleich der Peptide Maps nach Trypsinspaltung von E.coli-IFN-a2c (Fig.22, unterer Teil) und von Peak 1 (vollständiger C-Terminus) des CHO-IFN-a2c (Fig.22, oberer Teil) zeigt, daß jeweils zwei Peptide unterschiedliche Retentionszeiten aufweisen. Die Peptide 18 und 21 von E.coli-IFN-a2c, die die Aminosäuren 84-112 bzw. 71-112 enthalten, kommen im Peptide Map von Peak 1 des CHO-IFN-a2c nicht vor. Stattdessen gibt es dort zwei neue Peptide (Nummer 26 und 31), die das gleiche Verhältnis der Absorptionen bei 280 und 214 nm zeigen wie die Peptide 18 und 21 von E.coli-IFN-a2c. Man kann daraus folgern, daß die Peptide 26 und 31 die glycosylierten Versionen der Aminosäuresequenzen 84-112 bzw. 71-112 darstellen.

Daher eluieren sie auch deutlich früher von der RP-Säule als die analogen Peptide von E.coli-IFN-α2c. Für die beiden möglichen Längen der tryptischen Peptide (Aminosäuren 84-112 bzw. 71-112) gibt es jeweils einen Hauptpeak (Peptid 26 bzw. 31), woraus geschlossen werden kann, daß der Oligosaccharid-Anteil weitgehend homogen ist.

Aus dem Vergleich der Peptide Maps der Peaks 1 und 2 des CHO-IFN-a2c (oberer und mittlerer Teil von Fig.22) ist ersichtlich, daß die jeweiligen Glycopeptide (26 und 31 aus Peak 1 bzw. 24 und 30 aus Peak 2) identisch sind. Daraus folgt ebenfalls, daß die vier fehlenden Aminosäuren am C-Terminus von Peak 2 den einzigen Unterschied zwischen den Peaks 1 und 2 darstellen.

Alle die Aminosäuresequenzen 84-112 bzw. 71-112 betreffenden Hauptpeptide der drei IFN-Proben wurden von RP-HPLC isoliert und mit Staphylococcus Aureus V8 Protease an der C-terminalen Seite von Glutaminsäure weitergespalten. Die exakten Bedingungen sind in Adolf et al., Biochem. J. 276, 511-518 (1991) beschrieben. Die resultierenden Peptide Maps wurden verglichen, alle unterschiedlichen Peaks wurden isoliert und mittels N-terminaler Sequenzierung und/oder Massenspektrometrie weiter analysiert.

Eines der in den Peaks 1 und 2 des CHO-IFN-a2c, aber nicht in E.coli-IFN-a2c vorkommenden Staph.A.-Peptide enthielt die Aminosäuren 97-112 der IFN-a2c-Sequenz. Über die N-terminale Sequenzierung konnte in diesem Peptid THR-106 nicht identifiziert werden. Daraus kann geschlossen werden, daß THR-106 in diesem Peptid glycosyliert vorliegt. Bei der hier verwendeten Edman-Sequenzierung werden glycosylierte Aminosäuren

derivatisiert und abgespalten wie unglycosylierte Aminosäuren, sie können jedoch wegen ihrer erhöhten Hydrophilizität mit Butylchlorid nicht aus dem Reaktionsgefäß extrahiert werden. Daher kann man in diesem Abbauschritt keinerlei Aminosäure identifizieren, die Sequenz geht jedoch danach völlig ungestört weiter. Ein weiterer Hinweis darauf, daß das Oligosaccharid an THR-106 gebunden ist, ergab sich aus dem Resultat, daß die GLU-107/THR-108-Bindung durch die Staph.A.-Protease nur teilweise gespalten wurde. Offensichtlich ist die Zugänglichkeit dieser Peptidbindung durch die Anwesenheit des Oligosaccharids eingeschränkt. In dem analogen Peptid aus E.coli-IFN-α2c wird diese Peptidbindung nahezu vollständig gespalten.

Ein weiteres <u>Staph.A.</u>-Peptid, das nur in CHO-IFN-α2c vorkommt, wurde mittels Plasmadesorptions-Massenspektrometrie analysiert. Das erhaltene Molekulargewicht entsprach den Aminosäuren 97-112 inklusive einem Oligosaccharid, bestehend aus je einem Molekül N-Acetylgalactosamin und Galactose sowie zwei Molekülen N-Acetylneuraminsäure.

Aus diesem Resultaten ist ersichtlich, daß sowohl die Glycosylierungsstelle als auch der Oligosaccharidanteil des CHO-IFN- α 2c weitgehend identisch sind mit den in natürlichem IFN- α 2 aus virusstimulierten Leukocyten gefundenen Verhältnissen.

Isolierung des O-glycosylierten Interferons aus virusstimulierten Zellen:

Methoden

Interferon Bioassay: Die antivirale Aktivität der IFN Präparationen wurde in einem Assay, der den cytopathischen Effekt (CPE) von Enzephalomycarditis Virus (EMCV) mißt, in Mikrotiterplatten durchgeführt. Als Testzellen werden die A549 humanen Lungencarcinomzellen verwendet. Details dieses Assays sind beschrieben worden (z.B. Adolf, G.R., J.Gen. Virol. 68, 1669-1676 (1987)). Bei jedem Bioassay wurden alle Titrationen zweimal durchgeführt. Eine Laborstandard-Präparation an rekombinantem in E. coli produziertem humanem IFN-α2c wurde in jedem Assay mitgeführt: die Aktivität dieser Präparation wurde kürzlich durch Vergleich mit der internationalen Referenzpräparation für human IFN-a2, Gxa 01-901-535 ermittelt. Alle beobachteten IFN-Aktivitäten wurden korrigiert im Hinblick auf die definiert Wirksamkeit dieser Referenzpräparation.

Interferon ELISA: Ein ELISA wurde etabliert, der zwei neutralisierende murine IgG MAbs für IFN-a und eine IFN-a2c Laborreferenzpräparation (s. oben) als Standard verwendet. Die Herstellung der Antikörper und ihre Eigenschaften sind beschrieben (Adolf et al. J. Cell Physiol. suppl. 2, 61-68 (1982); Adolf G.R. J. Gen. Virol. 68, 1669-1676 (1987)). Der Antikörper EBI-1 wurde zur Beschichtung der Assay Platten verwendet; der Antikörper EBI-10, kovalent gekoppelt an Meerrettich Peroxidase, wurde mit der zu untersuchenden Probe zugegeben. O-Phenylendiamin und Natriumperborat wurden als Substrate für das Enzym verwendet; die Reaktion wurde durch Zugabe von Schwefelsäure unterbrochen und die Absorption des resultierenden Produktes gemessen (492 nm, Referenz 690 nm).

Reinigung des natürlichen human IFN-g2:

Eine Affinitätssäule wurde durch Kopplung von 12 mg des monoklonalen Antikörpers, beispielsweise des MAb EBI-10 (gereinigt aus dem Maus-Ascites durch Ammoniumsulfat Präzipitation und Protein G Affinitätschromatographie nach Standardmethoden) an 1g CNBr-aktivierter Sepharose 4B nach den Empfehlungen des Herstellers (Pharmacia) hergestellt. Das endgültige Bettvolumen der Säule betrug annähernd 3 ml. Teilweise gereinigtes human Leukozyteninterferon (Cantell et al. Methods Enzymol. 78, 29-38 (1981); Cantell et al. ibid. 499-505) bei dem der IFN-w Anteil entfernt worden war (Adolf et al. J. Biol. Chem. 265, 9290-9295 (1990)) und das etwa 2-3 x 10⁶ IU/ml mit einer totalen Protein Konzentration von 2 mg/ml enthielt, wurde mit einer Durchflußrate von 1 ml/Min auf die Säule aufgetragen (200 und 350 ml). Die Säule wurde dann mit 0,1 M Natriumphosphat Puffer pH 7,5 (Puffer A) gewaschen und mit einem Lineargradienten aus Puffer A und Puffer B (0,1 M Natriumcitrat pH 2,1) in einem FPLC-System (Pharmacia) bei einer Durchflußrate von 1 ml/Min eluiert. Die erhaltenen Fraktionen wurden auf IFN-Aktivität mit Hilfe des ELISA geprüft. Entsprechende Fraktionen beider Ansätze wurden gesammelt, mit 1 M NaOH neutralisiert und erneut auf dieselbe Säule aufgetragen, die mit Puffer A reäquilibriert worden war. Dasselbe Elutionsprogramm wurde verwendet. (Durchflußrate 0,25 ml/Min) Entsprechende Fraktionen wurden wieder gesammelt, neutralisiert und in Aliquots eingefroren.

SDS Gelelektrophorese, HPLC-Techniken und Aminosäureseguenzierungen: SDS Polyacrylamid Gelelektrophorese und Reverse Phase HPLC wurden

verwendet um das gereinigte IFN-c2 zu analysieren; sämtliche Methoden sind ausführlich beschrieben worden (Adolf et al., J. Biol. Chem. 265, 9290-9295 (1990)). Die Bestimmung der N-terminalen Sequenz wurde in einem automatischen Sequenator (Applied Biosystems, Modell 477A) durchgeführt; Aminosäurederivate wurden on-line durch RP-HPLC analysiert (Adolf et al., J. Biol. Chem. 265, 9290-9295 (1990)).

"Mapping" der proteolytischen Peptide:

Affinitätsgereinigtes IFN-α2 wurde weiterhin durch Reverse Phase HPLC gereinigt, denaturiert und entsalzt wie bei Adolf et al., J. Biol. Chem. 265, 9290-9295 (1990) beschrieben. Die Peakfraktionen wurden gesammelt und in einem SpeedVac Konzentrierer getrocknet. 29 µg (Peak 1) und 66 µg (Peak 2) Protein wurden in 0,1 ml l%iger Ammoniumbicarbonatlösung aufgelöst; 0,5 bzw. I μg Trypsin (Boehringer Mannheim) in 3 bzw. 6 μl 0,01 %iger Trifluoressigsäure wurden zugegeben und die Reaktionsmischung wurde bei 37°C inkubiert. Nach 6 h Inkubationszeit wurde dieselbe Menge Trypsin erneut zugegeben und für weitere 18 h inkubiert. Die Reaktionsmischung wurde vor der Analyse durch Zugabe von 10 µl 0,5 M Dithiothreitol und 100 µl 6 M Harnstoff 2 h bei Raumtemperatur reduziert. Reverse Phase HPLC wurde auf einer Delta Pak C18 Säule (Waters; 3,9 x 150 mm; Teilchengröße 5 µm; Porendurchmesser 100°A) bei 30°C unter Verwendung folgender Lösungsmittel durchgeführt: Lösungsmittel A: 0,1 % Trifluoressigsäure in Wasser; Lösungsmittel B: 0,1 % Trifluoressigsäure in Acetonitril. Das folgende Gradientenprogramm wurde verwendet (Durchflußrate 1 ml/Min): 0-55 Min: 0-55 % B (linearer Gradient); 55-70 Min: 50 % B. Detektiert wurden die Peptide durch ihre Absorption bei 214 und 280 nm. Die resultierenden

Muster wurden mit denen des rekombinanten aus E. coli stammenden IFN-α2c verglichen. Die Peptide des natürlichen IFN-a2, die sich in ihrem Elutionsverhalten anders verhielten als ihre rekombinanten Gegenstücke wurden gesammelt und N-terminal sequenziert oder wurden mit Staphylococcus aureus V8 Protease weiter abgebaut (Endopeptidase Glu-C, Boehringer Mannheim). 0,88 µg (Peak 1/I), 2,6 μg (Peak 2/Ia) und 1,5 μg (Peak 2/Ib) der Peptide wurden jeweils in 0,1 ml 25 mM Phosphatpuffer pH 7,8 gelöst. In Wasser gelöste Protease wurde zugegeben (17,5 ng, 52,5 ng bzw. 29 ng) und die Reaktionsmischung wurde bei 37°C inkubiert. Nach 6 h wurden dieselben Mengen Protease erneut zugegeben und 18 h inkubiert. Die Proben wurden daraufhin einer Reverse Phase HPLC Analyse unterzogen (s. oben). Entsprechende Fraktionen -wurden gesammelt und N-terminal sequenziert.

Declykosylierung des IFN-α2: Gereinigtes, denaturiertes und entsalztes IFN-α2 wurde mit Vibrio cholerae Neuraminidase (Boehringer Mannheim) (50 mU/ml, 18 h bei 37°C in 20 μl 50 mM Natriumacetat pH 5,5, 4 mM CaCl₂) und/oder Endo-α-N-acetyl-galactosaminidase -ist gleich O-Glycanase- (Boehringer Mannheim) (100 mM/ml, 18 h bei 37°C im selben Puffer) behandelt. Chemische Eliminierung wurde durch Inkubation in 0,1 M NaOH 20 h bei Raumtemperatur erreicht.

Plasmadesorptions-Massenspektrometrie:

Massenspektren der tryptischen Peptide wurden auf einem "BIO-ION 20 time-of-flight" Massenspektrometer (BIO-ION Nordic AB, Uppsala, Schweden) gemessen. Die Proben wurden in wäßriger Trifluoressigsäure (0,1 %) gelöst und auf Nitrozellulose-beschichtete Targets aufgebracht (BIO-ION). Die spektralen Akkumulationszeiten bewegten

sich zwischen 0,5 und 12 h, abhängig von der Ausbeute. Die Spektren wurden gemessen bei einer Beschleunigungsspannung von 17 kV.

Beispiel 7:

Reinigung des natürlichen human IFN-02

Humanes Leukozyten-Interferon, erhalten aus Sendai Virus induzierten humanen peripheren Leukozyten und teilweise gereinigt nach dem Reinigungsverfahren von Cantell et al. (Methods Enzymol 78, 29-38 und 78, 499-512 (1981)), wurde als Ausgangsmaterial für die Isolierung und Reinigung des IFN-a2 verwendet. Durch selektive Affinitätschromatographie mit Anti IFN-w monoklonalen Antikörper, beispielsweise OMG-4, OMG-5 oder OMG-7 war der Anteil an IFN-w entfernt worden (Adolf et al. Virology 175, 410-417 (1990); EPA 262 571). Die spezifische antivirale Aktivität betrug 1-2x106 IU/mg; IFN-a, mit einer spezifischen Aktivität von 2x10⁸ IU/mg war demnach nur mit etwa 1% des gesamten Proteinanteils vertreten. Zur Reinigung des IFN-α2 von kontaminierenden Fremdproteinen und gleichzeitig von anderen IFN-« Spezies wurden hoch selektive Anti IFN-a2 monoklonale Antikörper verwendet. Diese Antikörper besitzen in standardisierten Neutralisations-Bioassays hohe Spezifität für das IFN-a2 (Adolf G.R. J. Gen. Virol. 68, 1669-1676 (1987)).

Eine Immunoaffinitätssäule wurde hergestellt, indem ein solcher monoklonaler Antikörper, beispielsweise der EBI-10 hergestellt z.B. gemäß J. Gen. Virol: 68, 1669-1676 (1987) oder DE 33 06 060.6 an CNBr-aktivierte Sepharose 4B gekoppelt wurde. Der Antikörper war aus dem Maus-Ascites durch Ammoniumsulfat Präzipitation und

Protein G Affinitätschromatographie nach Standardverfahrensweisen gereinigt worden. Verwendet wurden beispielsweise 12 mg des monoklonalen Antikörpers EBI-10, die an 1g CNBr-aktivierter Sepharose 4B gekoppelt wurden, wobei die vom Hersteller empfohlenen Bedingungen eingehalten wurden (Pharmacia). Das endgültige Bettvolumen der Säule betrug etwa 3 ml.

Die Leukozyten-Interferon Präparation wurde auf die Säule aufgetragen; ungefähr 20% der antiviralen Aktivität wurden gebunden. Die Säule wurde mit einem linearen Puffergradienten aus 0,1 M Natriumphosphat, pH 7,5 und 0,1 M Natriumcitrat pH 2,1 eluiert. Zwei Proteinpeaks konnten im Eluat festgestellt werden (Fig. 12): Fraktion A und Fraktion B. Beide Fraktionen wurden auf ihren Gehalt an IFN-α analysiert, wobei ein "zwei-Seiten ELISA" verwendet wurde, bei dem sowohl EBI-10 als auch EBI-1 verwendet wurde. Beide Antikörper zeigen hohe Spezifität für IFN-α2 (Adolf et al. J. Cell Physicl.suppl. 2, 61-68 (1982)). Rekombinantes IFN-α2c wurde als Standard verwendet. Die Fraktion, die bei niedrigem pH eluiert worden war (Fig. 12, Peak "A"), ebenso wie die Probe ergaben Titrationskurven, die parallel zu der Titrationskurve des rekombinanten IFN- $\alpha 2c$ verliefen. Der Durchlauf und Fraktionen des 1. Peaks ("B") ergaben Kurven mit verschiedenen Steigungen; sie konnten daher nicht durch den ELISA quantifiziert werden (Fig. 13), sondern wurden im biologischen Assay überprüft (Tabelle III).

Der niedrige, zur Elution des Peak "A" erforderliche pH, ebenso wie die Ergebnisse des ELISA deuteten darauf hin, daß IFN- $\alpha 2$ ein Hauptbestandteil des Peak "A" war. Um sicherzustellen, daß sämtliches immunreaktives IFN- α durch den Antikörper gebunden worden war, wurde der Durchlauf erneut über die Säule gegeben und wie

oben beschrieben ein zweites Mal eluiert. Das eluierte Material ergab weniger als 10% der IFN-Aktivität, die beim ersten Durchlauf gebunden worden war.

Sowohl die Fraktionen "A" als auch "B" wurden getrennt gesammelt, neutralisiert und erneut einer chromatographischen Reinigung auf derselben Affinitätssäule unterzogen. In beiden Fällen wurde mehr als 95% der IFN-Aktivität gebunden; Elution erfolgte an derselben Gradientenposition wie im ersten Zyklus. Ausgangsprodukt, Durchlauf und die gesammelten Fraktionen beider Chromatographien wurden durch Coomassie Blau Färbungsassays auf ihren Proteingehalt und durch einen antiviralen Bioassay auf ihren IFN-Aktivitätsgehalt hin untersucht. Die Ergebnisse sind in Tabelle III zusammengefaßt:

Tabelle III

Reinigung des natürlichen IFN- $\alpha 2$

	Volumen	Protein	antiviral	antivirale Aktivität 6	Ausbeute
	ml	mg/m1	IU/ml	IU total	•%
P-IF ²	550	1,7	2,8	1540	100
1. Zyklus Durchfluß	550	1,7	2,2	1216	79
l. Zyklus Eluat A	18	80,0	9'6	172	11
1. Zyklus Eluat B	17	90'0	4,3	73	4,8
2. Zyklus Eluat A	83	0,1		96	6,2
2. Zyklus Sluat B	অ	0,1	13	52	3,5

 $^{\rm l}$ Mittelwert von 5 verschiedenen Bioassays $^{\rm l}$ teilweise gereinigtes humanes Leukocyten IFN nach Entfernung

des IFN-wl

Beispiel 8:

Identifizierung des Affinitäts-gereinigten Proteins als IFN-a2

Das Affinitäts-gereinigte IFN-a wurde zunächst durch Reverse Phase HPLC analysiert und gereinigt. Peak "A" zeigte zwei unvollständig aufgelöste Peaks "1" und "2" mit einem Massenverhältnis von etwa 1:2 (Fig. 14 unten); Peak "1" repräsentierte eine mehr hydrophile Proteinfraktion. Beide Peakfraktionen wurden gesammelt, rechromatographiert und einer N-terminalen Aminosäureanalyse unterzogen. Die nachfolgende Sequenz wurde aus beiden Fraktionen erhalten (die Cys-Reste in Klammern wurden nicht identifiziert, sondern auf der Basis der konservierten IFN-Sequenzen abgeleitet):

[¹CYS]-ASP-LEU-PRO-⁵GLN-THR-HIS-SER-LEU-¹⁰GLY-SER-

ARG-ARG-THR-15LEU-MET-LEU-LEU-ALA-20GLN-MET-ARG-

23_{ARG-ILE-}25_{SER-LEU-PHE-SER-[CYS]-}30_{LEU-}

Durch Vergleich mit publizierten Sequenzen wurden beide als IFN- $\alpha 2$ identifiziert.

In beiden Peakfraktionen "1" und "2" wurde die Aminosäure an Position 23 eindeutig als Arginin identifiziert; die als LeIFA bezeichnete Variante, die an Position 23 Lysin aufweist (Goeddel et al., Nature, 290, 20-26 (1981)), war demnach in der verwendeten Leukozytenpräparation in nachweisbaren Mengen nicht vorhanden. Die Aminosäure an Position 34 wurde als Histidin identifiziert; das isolierte IFN- α 2 war demnach die Variante IFN- α 2b.

Die spezifische antivirale Aktivität des natürlichen IFN-α2 bezogen auf die internationale Referenzpräparation für IFN-α2, Gxa01-901-535, basierend auf einer Bestimmung des Proteingehaltes der Probe durch dessen Absorption bei 214 nm (Adolf et al., Virology 175, 410-417 (1990), wurde zu 1,5x10⁸ IU/mg bestimmt (Mittelwert aus fünf unabhängigen Bioassays).

Bei einem Vergleich der Retentionszeiten des natürlichen IFN- α 2 auf der Reverse Phase HPLC mit der des rekombinanten E. coli IFN- α 2c wurde offensichtlich, daß das rekombinante Protein signifikant später eluiert wurde (Fig. 14). Die erhöhte Hydrophilizität des natürlichen Proteins ebenso wie dessen Heterogenität muß daher mit posttranslationalen Modifikationen zusammenhängen.

Reverse Phase HPLC des Elutionspeaks "B" ergab ein kompliziertes Muster von fünf unvollständig aufgelösten Peaks. Sequenzanalysen ergaben, daß sämtliche Peaks IFN- α Spezies darstellten, keiner jedoch IFN- α 2 repräsentierte.

Das durch HPLCgereinigte IFN-a2 wurde weiterhin durch SDS-PAGE nach Reduktion mit Dithiothreitol analysiert (Fig. 20). Unter den gewählten Bedingungen zeigte das rekombinante IFN-a2c von E. coli ein scheinbares Molekulargewicht von 17.500 D (Molekulargewicht ausgehend von der Aminosäuresequenz: 19.287 D).HPLC-Peakfraktion "1" gab ein einziges relativ breites Band (scheinbares Molekulargewicht 20.000 D) während Peakfraktion "2" in zwei Hauptkomponenten (20.000 bzw. 19.000 D) und in eine Nebenkomponente (21.000 D) aufgespalten wurde. Diese Molekulargewichtsunterschiede im Vergleich zum

rekombinanten Protein aus E. coli, die Größenheterogenität wie auch die erhöhte Hydrophilizität deuten darauf hin, daß das natürliche IFN-α2 glycosyliert ist. Da keine Erkennungsstelle für eine N-Glycosylierung in der IFN-α2 Struktur vorhanden ist, muß O-Glycosylierung vorliegen.

Beipiel 9:

Reaktion von natürlichem IFN-a2 mit Endo- und Exoglycosidasen

Die folgenden Versuche wurden jeweils mit beiden Peaks nach Trennung über RP-HPLC (Peaks 1 und 2 aus Fig. 14b) durchgeführt. Beide Proben wurden mit Neuraminidase und anschließend mit O-Glycanase inkubiert. Nach jeder Enzymreaktion wurde ein Aliquot mittels SDS-PAGE untersucht.

Wie in Fig. 16 zu sehen ist, reagierte Peak 1 weder mit Neuraminidase noch mit O-Glycanase. Die scheinbare molekulare Masse blieb mit 20.000 konstant. Die drei Banden des Peaks 2 hingegen reagierten sowohl mit Neuraminigase als auch anschließend mit O-Glycanase. Die Reaktion mit Neuraminidase bewirkte eine Reduktion der scheinbaren molekularen Masse der beiden schwereren Banden (Mt 21.000 und 20.000) auf 19.000. Spuren der Bande mitider scheinbaren molekularen Masse von 20.000 blieben jedoch zurück. Anschließende Inkubation des Proteins mit O-Glycanase führte zu einer weiteren Reduktion der scheinbaren molekularen Masse von 19.000 auf 17.500 (= scheinbare molekulare Masse von E. coli-IFN-c2c). Die Komponente mit Mr 19.000 wurde dabei vollständig abgebaut. Nach wie vor blieben geringe Mengen der Bande mit der scheinbaren molekularen Masse von 20.000 detektierbar. Da die

Trennung der beiden Peaks 1 und 2 aus Fig. 14b mittels RP-HPLC nicht vollständig war, ist der nicht spaltbare Anteil der Bande mit Mr 20.000 wahrscheinlich auf eine Verunreinigung des Peaks 2 mit Peak 1 zurückzuführen.

In einem weiteren Versuch wurde Peak 2 mit O-Glycanase inkubiert, ohne zuvor mit Neuraminidase behandelt worden zu sein (O-Glycanase spaltet das Disaccharid Gal(ß1-3)GalNAc nur dann vom Protein ab, wenn dieses durch keine weiteren Verbindungen substituiert ist). Das Reaktionsprodukt wurde wieder mittels SDS-PAGE aufgetrennt (Fig. 17). Man erkennt hier deutlich, daß nur die leichteste Komponente des Peaks 2 eine Reduktion ihrer molekularen Masse erfährt (Reduktion von Mr 19.000 auf Mr 17.500). Die scheinbaren molekularen Massen der beiden schwereren Komponenten (Mr 21.000 und 20.000) blieben unverändert.

Beispiel 10:

Reaktion von natürlichem IFN-a2 mit 0.1 M NaOH

Da O-Glycosylierungen schon unter milden alkalischen Bedingungen abbaubar sind, wurde versucht, die O-Glycanase-resistente Komponente (Peak 1 aus Fig. 14b) mittels Inkubation mit 0,1 M NaOH zu deglycosylieren. Die Reaktion erfolgte wie oben beschrieben. Gleichzeitig wurde als Kontrolle E. coli-IFN-α2c und Peak 2 unter denselben Bedingungen inkubiert. Die Reaktionsprodukte wurden mittels SDS-PAGE analysiert. Wie in Fig. 18 ersichtlich ist, wurden die molekularen Massen aller Komponenten von natürlichem IFN-α2 auf die scheinbare molekulare Masse von E. coli-IFN-α2 reduziert. Die Unschärfe der Proteinbanden ist auf die unter den geschilderten Bedingungen geringfügigen Zerstörungen des Proteins zurückzuführen. Auch die

Banden im höhermolekularen Bereich (Mr >30.000) traten als Folge der alkalischen Behandlung auf.

Beispiel 11:

Identifizierung der Glycopeptide mittels Peptide Mapping

Die beiden Peaks von natürlichem IFN-α2 (Fig. 14b) sowie E. coli-IFN-α2c wurden mit Trypsin gespalten, reduziert und über RP-HPLC aufgetrennt. In Fig. 19 sind Ausschnitte der Chromatogramme zu sehen. Zwei Peaks aus dem Peptide Map von E. coli-IFN-α2c fallen dabei wegen ihrer Hydrophobizität (und daher relativ späteren Elution) gegenüber den analogen Peaks aus dem natürlichen IFN-α2 auf: Peak I und Peak II (im Peptide Map des E. coli-IFN-α2c) wurden deutlich später eluiert als ihre korrespondierenden Peaks 1/I und 1/II vom Peak 1 aus Fig. 14b bzw. Peaks 2/Ia, 2/Ib, 2/IIa und 2/IIb vom Peak 2 aus Fig. 14b.

N-terminale Sequenzierung der erwähnten Peaks von natürlichem IFN-α2 sowie der beiden E. coli-Peaks ergab für die Peaks I, 1/I, 2/Ia, 2/Ib (aus Fig. 19) die Sequenz des Peptides von Aminosäure (AS) 84-112 und für die Peaks II, 1/II, 2/IIa, 2/IIb die Sequenz von AS 71-112 (Die Aminosäuresequenz von IFN-α2c ist in Fig. 15 dargestellt). Die unterschiedlichen Retentionszeiten mußten also auf eine Glycosylierung der Peptide aus natürlichem IFN-α2 zurückzuführen sein.

Beispiel 12:

Plasmadesorptions Massenspektrometrie der Glycopeptide von natürlichem IFN-a2

Die Peaks 1/II, 2/Ia, 2/IIa und 2/IIb wurden weiterhin

mit Hilfe von PD-MS charakterisiert. Die Ergebnisse der Messungen sind in Tabelle IV zusammengefaßt. Die Differenz der aus der Aminosäure-Sequenz errechneten molekularen Massen und den tatsächlich erhaltenen molekularen Massen der einzelnen Peptide lassen sich mit unterschiedlichen Glycanstrukturen erklären: Die molekulare Masse des Peptides 1/II, das von der O-Glycanase-resistenten Form des IFN-\(\alpha\)2 erhalten wurde, entspricht der molekularen Masse des Peptides (AS 71-112), das mit einem Tetrasaccharid, bestehend aus zwei N-Acetylhexosamineinheiten und zwei Hexoseeinheiten, substituiert ist. In Analogie zu bereits beschriebenen Strukturen solcher O-Glycane dürfte es sich hier um ein Oligosaccharid mit folgender Struktur handeln: Gall-3(Gall-4GlcNAcl-6)GalNAc-.

Peptid 2/Ia wies eine molekulare Masse von 3.975 amu auf, was mit der Substitution des Peptides mit dem Trisaccharid NeuAc-Gal-GalNAc erklärbar ist. Dieselbe Glycanstruktur läßt sich aus der molekularen Masse des Peptides 2/IIa (5.448 amu) ableiten. Für Peptid 2/IIb wurde ein Wert von 5.132 amu gemessen, was einer Glycosylierung mit dem Disaccharid Gal-GalNAc entspricht.

Prinzipiell wiesen alle analysierten Peaks eine um ca. 23 amu erhöhte molekulare Masse auf. Das ist durch Anlagerung von Na[†]-Ionen an das Peptid erklärbar. Diese Verunreinigungen hätten durch intensives Waschen der Targets vor der Messung vermieden werden können, wurden aber im speziellen Fall in Kauf genommen um Verluste der Glycopeptide gering zu halten. Aus den Ergebnissen des Glycosidase-Abbaues (s. oben) und den massenspektrometrischen Messungen können die in Tabelle IV angeführten Glycanstrukturen abgeleitet werden. Die kleinen Peaks, die im Bereich der Glycopeptide im Peptide Map zu sehen sind, können von weiteren Glycosylierungsvarianten stammen.

Tabelle IV

31ycan-	Маѕъе	752	r -l	euAc 678	euAc 678	387	
Vorgeschlagene Glycan- struktur	Struktur	-GalNAc-Gal	G1cNAc-Ga1	-GalNAc-Gal-NeuAc	-GalNAc-Gal-NeuAc	-GalNAc-Gal	1
\$-	• •	749		671	712	396	
re Masse nu) ² .	ber. Diff. (aus AS- Sequenz)	5.485 4.736		3.304	5.448 4.736	5.132 4.736	
Molekulare Masse (amu) ²	gem. be	5.485		3.975	5,448	5.132	
Peptid (Amino-	säure- nummer)	71-112		84-112	71-112	71-112	
Peak 1	·	1/11		2/Ia	2/IIa	2/11b	

Peaknummern entsprechend Fig. 19; (2) amu, atomare Masseneinheit; (3) Tabelle IV : Molekulare Massen einiger Glycopeptide von natürlichem IFN-a2 mit den entsprechenden vorgeschlagenen Glycanstrukturen. berechnete Masse inklusive eines Na⁺-Ions Beipiel 13:

Identifizierung der O-glycosylierten Aminosäure mittels Gasphasensequenzierung

Da die durch Spaltung mit Trypsin erhaltenen Glycopeptide zu lang waren, um ihre gesamte Sequenz zu bestimmen, wurden diese Peptide mittels Staphylococcus aureus Protease V8 weiter gespalten und über RP-HPLC aufgetrennt. Mit dem entsprechenden Peptiden aus E. coli-IFN-α2c wurde ebenso verfahren. Nach Vergleich der Peptide Maps wurden alle Peptide mit unterschiedlicher Retentionszeit isoliert und sequenziert. Alle Glykopeptide aus natürlichen IFN-α2 enthielten die Aminosäuren 97-112. Während im E. coli-IFN-α2c-Peptid ¹⁰⁶THR nachgewiesen werden konnte, war es in den Peptiden aus natürlichem IFN-α2 nicht nachweisbar. Damit konnte ¹⁰⁶THR als Glycosylierungsstelle identifiziert werden.

Patentansprüche

- 1. Interferon alpha, dadurch gekennzeichnet, daß es O-glycosyliert ist und im wesentlichen die biologischen und/oder immunologischen Eigenschaften eines IFN-α2 aufweist, vorzugsweise daß es das O-glycosylierte humane IFN-α2a, IFN-α2b oder IFN-α2c ist.
- Interferon alpha gemäß Anpruch 1, dadurch gekennzeichnet, daß das Threonin-106 (THR-106)
 O-glycosyliert ist.
- 3. Interferon alpha gemäß einem der Ansprüche 1 oder 2. dadurch gekennzeichnet, daß das Oligosaccarid bevorzugt das neutrale Disaccharid Gal-GalNAc, dessen mono- oder disialylierte Variante oder das neutrale Tetrasaccharid Gal-(Gal-GlcNAc-)GalNAc ist.
- 4. Verfahren zur Herstellung eines Interferon alpha gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - a) Leukozyten, vorzugsweise humane Leukozyten mit Virus induziert werden,
 - b) daß das induzierte Interferon alpha durch eine Kaskade schonender, proteinfällender/ proteinlösender Schritte gereinigt wird, wobei der pH den Wert 8,0 nicht überschreiten soll ("Cantell"-Verfahren),
 - c) daß die nach a) oder a) und b) erhaltene Interferonmischung an eine Immunoaffinitätssäule mit einem Anti-IFN-α2 monoklonalen Antikörper gebunden wird,

- daß das gebundene Protein durch geeignete
 Maßnahmen eluiert wird,
- e) daß das eluierte Protein gesammelt und gegebenenfalls mehrmals über eine Immunoaffinitätssäule gereinigt wird.
- 5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß als Anti-IFN-α2 monoklonaler Antikörper der EBI-10 oder dessen Analoga verwendet wird.
- 6. Verfahren zur Herstellung eines Interferon alpha gemäß Anspruch 4, dadurch gekennzeichnet, daß sich an die Stufe e) eine weitere chromatographische Reinigung anschließt.
- 7. Verfahren zur Herstellung eines Interferon alpha gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - a) in ein für die Transfektion von Zellen multizellulärer Organismen geeignetes Expressionsplasmid eine für IFN-α kodierende DNA eingefügt wird,
 - b) daß mit dem so erhaltenen Expressionsplasmid Zellen multizellulärer Organismen, vorzugsweise Wirbeltierzellen transfiziert werden,
 - c) daß die transfizierten Organismen in einem geeigneten Medium kultiviert werden,

- d) daß der Zellüberstand geerntet,
- e) daß das O-glycosylierte IFN-α isoliert und in an sich bekannter Weise gereinigt wird.
- 8. Verfahren gemäß Anpruch 7, dadurch gekennzeichnet, daß das unter a) eingesetzte Expressionsplasmid das pAD-CMV13, 15 oder 19 vorzugsweise das pAD-CMV19 ist, und daß die unter a) einzufügende DNA für ein Protein kodiert, das im wesentlichen die biologischen und/oder immunologischen Eigenschaften eines IFN-α2 aufweist, vorzugsweise für ein humanes IFN-α2a, IFN-α2b oder IFN-α2c, insbesondere für humanes IFN-α2c kodiert.
- Verfahren gemäß einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß das Expressionsplasmid pAD19B-IFN eingesetzt wird.
- 10. Verfahren gemäß einem der Ansprüche 7, 8 oder g. dadurch gekennzeichnet, daß als Zellen multizellulärer Organismen CHO-Zellen verwendet werden.
- 11. Expressionsplasmid zur Transfektion multizellulärer Organismen, dadurch gekennzeichnet, daß es pAD-CMV13, pAD-CMV15 oder pAD-CMV19 ist.
- 12. O-glycosyliertes Interferon alpha, herstellbar nach einem der Ansprüche 4 bis 10.
- 13. Interferon alpha gemäß einem der Ansprüche l bis 3 oder 12 zur Verwendung als Arzneimittel.

- 14. Mittel zur Behandlung viraler oder tumoraler Erkrankungen, ein Interferon alpha gemäß einem der Ansprüche 1 bis 3 oder 12 enthaltend.
- 15. Mittel gemäß Anspruch 14, dadurch gekennzeichnet, daß es aus einer Mischung aus mindestens zwei der O-glycosylierten Proteine IFN-α2a, IFN-α2b oder IFN-α2c besteht.

1/32

FIG.1 M13 ori ▼EBI-1786 EBI-1734 Amp M13 ori BamHi lacZ pCDM8 pBluescript KS-3.0 kb 4.5 kb splice EBI-2133 + An \\
Xbal Noti **CMV** EBI-2134 Pstl HindIII Xbal Xho! ori Xhol **BstXI PCR** PCR BstXI x EcoRI - Xho! x EcoRI - Sall **DNA Ligase** HindIII HindIII Xbal Pvull ori Xhol gp BstXI SV40 ori stuffer BstXI pCMV-M13 Xhol Pstl pSV2gptDHFR20 4.0 kb Notl Amp 7.1 kb splice Xbal + An BamHl M13 ori EcoRI DHFR x EcoRI x Hindlll - Pvull Klenow Klenow DNA Ligase Hindiii CMV Xbal (hoi pCMV-SV40 4.4 kb Noti Amp Xbal splice + An BamHi **SV40** M13 ori E∞RI ori

ERSATZBLATT

ERSATZBLATT

4/32

FIG.4

WO 92/01055 PCT/EP91/01266

6/32

FIG.6A

		, 10.0	•			
ACA	Cys TGC	Ser AGC	Cys TGC	Phe	Asn AAT	Lys Aaa
<u>AAGCTT</u> AC ATT TGC TTC TGA CAC AAC TGT GTT CAC TAG CAA CCT CAA ACA 9 18 27 36	Leu Ser CTC AGC 99	Leu Gly CTG GGT 153	Phe Ser TTC TCC 207	Asn Gln AAC CAG 261	Ile Phe ATC TTC 315	Leu Asp CTA GAC 369
CAA	Val GTG	ser AGC	Leu F CTT 1	G1y P GGC P	Gln CAG	Leu I
1C TAG 36	Leu Leu Crc CrG 90	Thr His S ACC CAC 1	Arg Ile Ser AGA ATC TCT 198	Glu Glu Phe GAG GAG TTT 252	Ile Gln ATC CAG 306	Glu Thr GAG ACC 360
TT C	a Let	Gln Thi CAA ACC	g Ile	.u G11 1G GA(Asp Glu GAT GA(
TGT C	'al Ala rg GCC	ro Gl	rrg Ar IGG AG		slu Met sag arg	irp As igg GZ L
AAC	Leu Leu Val TTA TTG GTG 81	Leu Pro (CTG CCT (Met Arg ATG AGG 189	Pro Gln CCC CAG 243	His Glu CAT GAG	Ala Ala Trp / GCT GCT TGG (
A CAC	Leu TTA	Asp Gat	Gln CAG	Phe TTT	Leu CTC	Ala GCT
rc rg 18	Phe Ala I TIT GCT 1	-1 1 Gly Cys GGC TGT 126	Leu Ala CTG GCA 180	Phe Gly TTT GGA 234	Pro Val CCT GTC 288	Ser Ser TCA TCT 342
IGC T	Thr Phe ACC TT	-1 Val Gly GrG GGC	Leu Lei CTC CT	Asp Pho	Ile Pr	Asp Se GAC TC
ATT 1 9				Arg As SGT G2 5		Lys Ar AAG G
TTAC	Ala Leu GCC TTG 63	Cys Ser TGC TCT 117	Leu Met TTG ATG 171	Arg Arg AGA CGT 225	Glu Thr GAA ACC 279	Thr Lys ACA AAG 333
AAGC	-23 Met ATG	Ser AGC	Thr	Asp GAC	Ala GCT	Ser
	GAC ACC 54	Lys Ser AAG TCA 108	Arg Arg AGG AGG 162	Leu Lys TTG AAG 216	Gln Lys CAA AAG 270	Leu Phe CTC TTC 324

HindIII/XbaI - Insert von pAD19B-IFN

7/32

FIG.6B

Gln CAG	val GTG	Pro	$\mathtt{Th}_{\mathcal{L}}$	
Ile ATA	Ala GCT	Ser AGC	Ser TCA 15	·
Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln	Val Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val	Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro	Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr	40
TAC CAG CAG CTG AAT GAC CTG GAA GCC TGT GTG ATA CAG	GTG ACA GAG ACT CCC CTG ATG AAG GAG GAC TCC ATT CTG GCT GTG	TTC CAA AGA ATC ACT CTC TAT CTG AAA GAG AAG AAA TAC AGC CCT	GTC AGA GCA GAA ATC ATG AGA TCT TTT TCT TTG TCA ACA	
396 413	441 450 457	495 531	558 585	
Cys TGT	Ile ATT	Lys Aaa	Ser TCT	Glu Ser Leu Arg Ser Lys Glu TER GAA AGT TTA AGA AGT AAG GAA TGA AAACTGGTTC <u>TCTAGA</u> 603 612 621 630 639
Ala	Ser	Lys	Phe	TCI
GCC	TCC	AAG	TTT	
14	58	22	76	
Glu GAA 4]	Asp GAC 4(Glu GAG 52	Ser TCT 57	2TGG1 630
Leu	Glu	Lys	Arg	AAA(
CTG	GAG	Aaa	Aga	
Asp	Lys	Leu	Met	TER
GAC	AAG	CTG	ATG	TGA
J5	59	L3	57	21
Asn	Met	Tyr	Ile	Glu
AAT	ATG	TAT	ATC	GAA
4(49	53	5(62
Leu CIG	Leu	Leu	Glu GAA	Lys AAG
Gln	Pro	Thr	Ala	Ser
CAG	CCC	ACT	GCA	AGT
96	50	04	58	12
Gln CAG	Thr ACT 4!	Ile ATC 5(Arg Aga 5!	Arg AGA 63
Tyr	G1u	arg	Val	Leu
TAC	GAG	aga	GTC	TTA
30	Thr	Gln	Glu Val V	Ser
	ACA	CAA	GAG GTT G	AGT
	41	95	549	03
Glu Le GAA CT 387	Val GTG		Glu GAG 5	Glu GAA 6(
Thr	G1y	Ty r	Trp	Gln
ACT	GGG	TAC	TGG	
Tyr	Gly Val Gly	Arg Lys Tyr	Cys Ala Trp	Asn Leu
TAC	GGG GTG GGG	AGG AAA TAC	TGT GCC TGG	AAC TTG
78	432	486	540	594
Phe Tyr Thr TTC TAC ACT	G1y GGG 4∶	Arg AGG	Cys TGT 5	Asn AAC 59

8/32 FIG.7A

						3
CAACGACCCC	CGCCCATTGA	CGTCAATAAT	GACGTATGTT	CCCATAGTAA	CGCCAATAGG	180
SACTTTCCAT	TGACGTCAAT	GGGTGGAGTA	TTTACGGTAA	ACTGCCCACT	TGGCAGTACA	240
<i>TCAAGTGTAT</i>	CATATGCCAA	GTACGCCCCC	TATTGACGTC	AATGACGGTA	AATGGCCCGC	300
CTGGCATTAT	GCCCAGTACA	TGACCTTATG	TGACCTTATG GGACTTTCCT	ACTIGGCAGI	ACATCTACGT	360
ATTAGTCATC	GCTATTACCA	TGGTGATGCG	TGGTGATGCG GTTTTGGCAG	TACATCAATG	GGCGTGGATA	420
GCGGTTTGAC	TCACGGGGAT	TICCAAGICI	CCACCCCATT	GACGICAATG	GGAGTTTGTT	480
TTGGCACCAA	AATCAACGGG	ACTITCCAAA AIGICGTAAC	ATGTCGTAAC	AACTCCGCCC	CATTGACGCA	540
AATGGGCGGT	AGGCGTGTAC	GGTGGGAGGT	CTATATAAGC	AGAGCTCGTT	TAGTGAACCG	009
TCAGATCGCC	TGGAGACGCC	ATCCACGCTG	TTTTGACCTC	CATAGAAGAC	ACCGGGACCG	099
ATCCAGCCTC	5550055050	AACGGTGCAT	TGGAACGCGG	ATTCCCCGTG	CCAAGAGTCA	.720
GGTAAGTACC	GCCTATAGAG	AAGACTCTTG	GGTTTCTGAT	AGGCACTGAC	TCTCTGCC	780
TATTGGTCTA	TTTTCCCACC	CTTAGGCTGC	TGGTGCTTAA	CIGGCTTAIC	GAAATTAATA	840
CGACTCACTA	TAGGGAGACC	CAAGCTTCTG	CAGGTCGACA	TCGATGGATC	CGGTACCTCG	900
AGCGCGAATT	CTCTAGAGAT	ATCTTGTTTA	TIGCAGCTIA	TAATGGTTAC	AAATAAAGCA	960
ATAGCATCAC	AAATTTCACA	AATAAAGCAT	TTTTTTCACT	GCATTCTAGT	TGTGGTTTGT	1020
CCAAACTCAT	CAATGTATCT	TATCATGTCT	GGATCAATTC	TGAAAAACTA	GCCTTAAAGA	1080
CAGACAGCTT	TGTTCTAGTC	AGCCAGGCAA	GCATATGTAA	ATAAAGTTCC	TCAGGGAACT	1140
GAGGTTAAAA	GATGTATCCT	GGACCTGCCA	GGACCTGCCA GACCTGGCCA	TTCACGTAAA	CAGAAGATIC	1200
CGCCTCAAGT	TCCGGTTAAC		AACAGGAGGC AACGAGATCT	CAAATCTATT	ACTTCTAATC	1260
GGGTAATTAA	AACCTTTCAA	CTAAAACACG	CTAAAACACG GACCCACGGA	TGTCACCCAC	TTTTCCTTCC	1320
CCGGCTCCGC	CCTTCTCAGT	ACTCCCCACC	ACTCCCCACC ATTAGGCTCG	CTACTCCACC	TCCACTTCCG	1380
GGCGCGACAC	CCACGTGCCC	TCTCCCACCC	TCTCCCACCC GACGCTAACC	CCGCCCTGC	CCGTCTGACC	1440

PAD-CMV19

9/32 FIG.7B

1500	1560	1620	1680	1740	1800	1860	1920	1980	2040	2100	2160	2220	2280	2340	2400	2460	2520	2580	2640	2700	2760	2820	2880	2940	3000
GCCGCAGCCA	CTGCTGGCTC	TCAGAACCGC	TGGTGCGAGG	CCCCCCCCT	GACCTCGTGG	CCTCCGATTC	GAAGCACAGC	CTGCATCGTC	AATGCTCAGG	GAGCACTTGG	CCGGCTGCTG	AGGCGCTCTA	GGGTAGCCGC	CTCTAACTTT	AAGGTAAACA	ATCGACCTTT	AAGGAGCTCA	AGTTAGCAGA	CCATGAATCA	GTGACACGTT	GGGTCCTTTC	AGAAAGGCTA	AATTATGCAT	GCAACTGTTG	ACAATTAGAA
ACCCCGGGCA	TCTACCTTCT	AAGAACCGGC	GACGCGGACT	GGCTGTACTA	GGCGGAGTCT	TGAGGCGTGG	AAACTTGGGG	GACCGCTGAA	TTCCCTGGCC	GAATCGGGTC	GGTAGGCCCG	CTTTGCCCAG	GGACTTGCAT	CGCAGTGTTT	TCCTCAGTGG	CCTGAGAAGA	GAACCACCAC	GAACAACCAG	TACAAGGAAG	GAATTTGAAA	GAGTACCCAG	GTCTATGAGA	TTCCTCCTAA	TGCATCCTGG	ATAATTCTAA
GACAGAAGAA	GGAGTCGTCC	GGAAGACTGG	ATGGCCGCTA	GGGAGCGCGC	GCCTGGTGGA	CTAGGCTTGT	ATTTCGCGCC	GTCATGGTTC	AACGGAGACC	GCGGTTCGCT	AGTCATGAGG	CTGTGCCAGC	ACCACCCCC	TCCCTGTTAA	GACCACCACC	GTTCTCCATT	AGAGCTCAAG	AAAACTTATT	CAGTTCCGTT	GATCATGCAG	ACTTCTCCCA	TAAATTTGAA	TTCTACTGCT	TTAGATCCTG	CAGCCCCTGT
CCCCGTTGAG	GGGGCGCTGA	TCAGGCTTCC	CGGCGGAAGA	CAAGCCCGCC	9229999599	AAATAGGATG	GGCGACTGCA	CGCTGCTGCT	CATCGGCAAG	GGAAACCGAG	ACTTAGGGAC	GATCCCCATG	ACTGGGCAGC	CGTGACAGGG	TCCAAAGAAT	GGAAAACCTG	TTCTCAGTAG	ACCATGCCTT	TAGTTGGAGG	TTGTGACAAG	AGAAATATAA	GCATCAAGTA	TGACTTCAAG	TGTGTTGGCT	AGTCATGCCC
CCTGGCCCCG	GTAGACGCTG	GCGGTGGATC	GGGGCTTGGG	TGCAGAAGAG	CGCCGGACTG	TCTGATGTTC	AGCAGCGCCG	CCTAGGTGAT	AGAATATGGG	ATTGGGTTAG	CGGGCCAACT	TGCCCGCGGT	AAGTCCGGTC	CCTGAGCACA	TTCAAGTACT	ATTATGGGCC	ATTAATATAG	AAAAGTCTGG	ATGGTTTGGA	CTCAGACTCT	ATTGATTTGG	GAGGAAAAAG	ACTTGCTGAT	CCATGGGACT	CACTCCCCAA
CCGCCCACCA	AGGCGGACGG	GGTGGGGGAC	TIGICICCGC	CATCGCAGGA	GGAGCGGCCA	AGGCGGGGCC	ACAAGTGGGA	GTACAGGCTG	GCCGTGTCCC	TACTGGCTGG	CGGAGACGCG	CCCTTGCCCA	GCTGGGAGCA	TGAGATGGAG	CAGGAACGAG	GAACCTGGTG	AAAGGACAGA	TTTTCTTGCC	TAAAGTGGAC	GCCAGGCCAT	CTTCCCAGAA	TGAAGTCCAG	ACAGAAAGAT	TTTTACAAGA	TACTCTAAGC

FIG.7C

3060	3120	3180	3240	3300	3360	3420	3480	3540	3600	3660	3720	3780	3840	3900	3960	4020	4080	4140	4200	4260	4320	4380	4440	4500	.4560
AAACACCATT	GCAGATGCAT	TGAGCTGATA	TGGGTTTTAA	CTGAATTATT	TAAATTGAGA	AGGTCTGGAA	AATTCTGTGG	AAGTATGCAA	CCCAGCAGGC	CCTAACTCCG	CTGACTAATT	TGAGGAGGCT	AATGGGAAAT	GCTCATTTT	CCGAGATAGG	ACTCCAACGT	CACCCTAATC	GAGCCCCCGA	GAAAGCGAAA	CACCACACCC	AAATGTGCGC	CATGAGACAA	TCAACATTTC	TCACCCAGAA	TTACATCGAA
ATACTTTAAG	TGGCTCCCCA	CCTGAGAGCA	AGGGCAGAAA	AAAGTAGAGA	AGAAAATGGG	GGATTATATA	GGGATACTAC	CAGCAGGCAG	CCCCAGGCTC	TAGTCCCGCC	CGCCCCATGG	CCAGAAGTAG	CTGAATGGCG	TGTTAAATCA	AAAGAATAGA	AAGAACGTGG	CGTGAACCAT	ACCCTAAAGG	AGGAAGGGAA	TGCGCGTAAC	CTTTTCGGGG	TGTATCCGCT	GTATGAGTAT	CTGTTTTGC	CACGAGTGGG
TATATTAAAT	CAGCCTCAAG	ACATAGAGCC	ATAAGTACAA	AAATTAGATC	TCACTCAGAC	AGCAGGTGGA	GAGATTCCAA	CCAGGCTCCC	TGTGGAAAGT	TCAGCAACCA	GCCCATTCTC	CTGAGCTATT	CTAATTCAGC	GTTAAATTTT	TTATAAATCA	TCCACTATTA	TGGCCCACTA	CTAAATCGGA	GTGGCGAGAA	GCGGTCACGC	TCAGGTGGCA	CATTCAAATA	AAAAGGAAGA	TTTGCCTTC	CAGTTGGGTG
CTAACCAGGT	CCCTCCCATG	GACCCCAAAG	AGCTAGATGA	ACTTTAAAGA	AGAGTTCTGT	TAGAGATGGG	CATCTTCAGT	TGGAAAGTCC	AGCAACCAGG	TCTCAATTAG	GCCCAGITCC	CGAGGCGCCT	TGCAAAAAAG	TAAAATTCGC	GCAAAATCCC	GGAACAAGAG	ATCAGGGCGA	CCGTAAAGCA	GCCGGCGAAC	GGCAAGTGTA	ACAGGGCGCG	TTTCTAAATA	ATAATATTGA	TTTTGCGGCA	TGCTGAAGAT
TTTCATTAGT	TICTCAATGC	GTGTACAAGA	TAGAGATAGG	TAGAACTCAG	GACTCTGAGC	TIGICCICCT	CICCGITICI	AGTTAGGGTG	TCAATTAGTC	AAAGCATGCA	CCCTAACTCC	ATGCAGAGGC	CCTAGGCTTT	AATATTTTGT	GCCGAAATCG	GTTCCAGTTT	AAAACCGTCT	GGTCGAGGTG	GACGGGGAAA	CTAGGGCGCT	ATGCCCCCCT	TTTGTTTATT	AAATGCTTCA	TTATTCCCTT	aagtaaaaga
TTATTTTCAT	TGCCATAAAG	AGGGTAGTGT	TGGGGGCTCA	CCAGCAGAGC	CTGCACATCA	GCTGGCTCCA	CATTTAACTT	AATGTGTGTC	AGCATGCATC	AGAAGTATGC	CCCATCCCGC	TTTTTTTT	TTTTTGGAGG	TGTAAACGTT	TAACCAATAG	GTTGAGTGTT	CAAAGGGCGA	AAGTTTTTGG	TTTAGAGCTT	GGAGCGGGCG	GCCGCGCTTA	GGAACCCCTA	TAACCCTGAT	CGTGTCGCCC	ACGCTGGTGA

11/32 FIG.7D

4740 4800 4920 4620 4680 4860 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5880 5760 5820 5940 0909 TTTCCAATG AATGGCAACA CGCCGGGCAA CTCACCAGIC TGCCATAACC GAAGGAGCTA GGAACCGGAG ACAATTAATA TCCGGCTGGC CATTGCAGCA TAAGCATIGG TCATTTTAA ACCAGCGGTG CTTCAAGAAC TAAGGCGCAG GAGTCAGGCA CCCTTAACGT TTCTTGAGAT CTTCAGCAGA TGCTGCCAGT GACCTACACC AGGGAGAAAG GGAGCTTCCA ACTTGAGCGT CAACGCAGCT CCGAAGAACG CCCGTATTGA TGGTTGAGTA TATGCAGTGC CTTCCCGGCA TAGGCCACCA TACCAGIGGC AGTTACCGGA CGCTTCCCGA AGCGCACGAG GCCACCTCTG TCGGAGGACC TTGATCGTTG TGCCTGTAGC CTCGCGGTAT ACACGACGGG TCAAAGGATC AACCACCGCT AGGTAACTGG TGGAGCGAAC AAAACGCCAG GCTCGGCCCT CCTCACTGAT ATTTAAAACT TGACCAAAAT GATCCTIGAG AGTTTTCGCC AGCCTATGGA GCGGTATTAT CTGACAACGA GTAACTCGCC CTTACTCTAG GAGATAGGTG CTTTAGATTG CAAACAAAA CTTTTTCCGA CAGAATGACT GTAAGAGAAT GACACCACGA CCACTTCTGC GAGCGTGGGT GIAGITAICT GATAATCTCA GTAGAAAGA TCAAGACGAT GGAACAGGAG GTCGGGTTTC TAGCCGTAGT CTAATCCTGT CAGCCCAGCT GAAAGCGCCA GATGCTCGTC AGGGGGGGGGG TGGCATGACA CAACTTACTT TGGCGAACTA CCTTCTAGIG CCTCCCTCTG GCTATGTGGC ACACTATTCT GGGGGATCAT CGACGAGCGT AGTTGCAGGA CTCCCGTATC CTCATATATA TGGAGCCGGT ACAGATCGCT GTCAGACCCC CIGCIGCTIG GCTACCAACT CGGGTTGGAC TTCGTGCACA TTATAGICCT TGAGCATTGA CGGCAGGGTC GATCCTTTTT ACAGCGGTAA GTCGCCGCAT AGGCGGATAA AACGAAATAG TTAAAGTTCT ATCTTACGGA ACACTGCGGC TGCACAACAT CCATACCAAA AACTATTAAC CTGATAAATC ACCAAGITIA TCTAGGTGAA TCCACTGAGC CGCCTACATA ACCTACAGCG CCTGGTATCT ATGGTAAGCC TGCGCGTAAT CGGATCAAGA CAAATACTGT CGTGTCTTAC GAACGGGGG ATCCGGTAAG CIGGAICICA ATGAGCACTT SAGCAACTCG ACAGAAAAGC ATGAGTGATA ACCECTITIT CTGAATGAAG ACGITGCGCA GACTGGATGG **IGGTTTATTG** CIGGGGCCAG ACTATGGATG **TAACTGTCAG ITTAAAAGGA** SAGTTTTCGT CCTTTTTTC GTTTGTTTGC SCGCAGATAC TCTGTAGCAC SGGGGAAACG CGATTTTGT GGCGATAAGT SAACTGAGAT SCGGACAGGT CGGTCGGGCT S_{2}

13/32 FIG.9

14/32 FIG.10

15/32 FIG.11A

)) 1	F : : F F F F F F F F F F					
1500	じんじゅうてんじじじ	AAGTTCCTCA	TATGTAAATA	CAGGCAAGCA	TCTAGTCAGC	ACAGCTTTGT
1440	TTAAAGACAG	GAAACTAGCC	TCAATTCTGA	CATGTCTGGA	TGTATCTTAT	AACTCATCAA
1380	GGTTTGTCCA	TTCTAGTTGT	TTTCACTGGA	AAAGCATTTT	TTTCACAAAT	GCATCACAAA
1320	TAAAGCAATA	TGGTTACAAA	CAGCTTATAA	TTGTTTATTG	TGTTGTTAAC	ATGCAATTGT
1260	CATAAAATGA	GAACCTGAAA	ACCTCCCCCT	AACCTCCCAC	TGCTTTAAAA	AGGTTTTACT
1200	ACATTTGTAG	CAGCCATACC	AGATCATAAT	CCTTGACTAG	ATGTATAGTG	AAAATATTTG
1140	AAATTATGGA	CTATACAAGA	AGCTGCACTG	CAAAGGAAAA	ATTTACACCA	TTGCTTTGCT
1080	GAACTCTTGC	TTTAGTAATA	TCATGCTGTG	GTTTTTGAG	GAATTGCTAA	CTTTCCTTCA
1020	ACCCCAAGGA	AAGGTAGAAG	AAAGAAGAGA	CTCCTCCAAA	CAACATTCTA	TGCTGACTCT
960	ATGAGGCTAC	TCTAGTGATG	AGAAATGCCA	TŢTGCTCAGA	GAAAACCTGT	CTTTAATGAG
900	GGTGGAATGC	TGGGAGCAGT	AACTGATGAA	CAACCTATGG	TTTAGALTC	TGTTTGTGTA
840	TGATTCTAAT	GTTAAACTAC	TGTATAATGT	AATTTTAAG	GTAAATATAA	AAGCTCTAAG
780	CAGAGATTTA	AAACTACCTA	ATAATTGGAC	GTGGTGTGAC	CCTTACTTCT	TGTGAAGGAA
720	AGAGGATCTT	CGAATTCTCT	ACCTCGAGCG	TGGATCCGGT	TCGACATCGA	CTTCTGCAGG
099	GAGACCCAAG	TCACTATAGG	TTAATACGAC	CTTATCGAAA	GCTTAACTGG	AGAACCCACT
009	GGCTAACTAG	AGAGCTCTCT	CTATATAAGC	GGTGGGAGGT	AGGCGTGTAC	AATGGGCGGT
540	CATTGACGCA	AACTCCGCCC	ATGTCGTAAC	ACTTTCCAAA	AATCAACGGG	TTGGCACCAA
480	GGAGTTTGTT	GACGTCAATG	CCACCCCATT	TTCCAAGTCT	TCACGGGGAT	GCGGTTTGAC
420	GGCGTGGATA	TACATCAATG	GTTTTGGCAG	TGGTGATGCG	GCTATTACCA	ATTAGTCATC
360	ACATCTACGT	ACTIGGCAGT	GGACTTTCCT	TGACCTTATG	GCCCAGTACA	CTGGCATTAT
300	AATGGCCCGC	AATGACGGTA	TATTGACGTC	GTACGCCCCC	CATATGCCAA	TCAAGTGTAT
240	TGGCAGTACA	ACTGCCCACT	TTTACGGTAA	GGGTGGAGTA	TGACGTCAAT	GACTTTCCAT
180	CGCCAATAGG	CCCATAGIAA	GACGTATGTT	CGTCAATAAT	CGCCCATTGA	CAACGACCCC
120	GCTGACCGCC	GGCCCGCCTG	TACGGTAAAT	TTACATAACT	GAGTTCCGCG	CCCATATATG
09	TAGTTCATAG	GTAATCAATT ACGGGGTCAT	GTAATCAATT	GTTATTAATA	TTATTGACTA	TCGACATTGA

PAD-CMV1 : 6414 1

16/32 FIG.11B

1560	1620	1680	1740	1800	1860	1920	1980	2040	2100	2160	2220	2280	2340	2400	2460	2520	2580	2640	2700	2760	2820	2880	2940	3000	3060
AAGATTCCGC	TCTAATCGGG	TCCTTCCCCG	ACTTCCGGGC	TCTGACCCCG	GCAGCCAAGG	CIGGCICGGI	GAACCGCTTG	TGCGAGGCAT	CGCGCCTGGA	CTCGTGGAGG	CCGATTCACA	GCACAGCGTA	CATCGTCGCC	GCTCAGGTAC	CACTTGGCGG	GCTGCTGCCC	CGCTCTAGCT	TAGCCGCTGA	TAACTTTCAG	GTAAACAGAA	GACCTTTAAA	GAGCTCATTT	TAGCAGATAA	TGAATCAGCC	ACACGTTCTT
ACGTAAACAG	ATCTATTACT	CACCCACTTT	CTCCACCTCC	CCCCTGCCCG	CCGGGCAGCC	ACCTICICIG	AACCGGCTCA	GCGGACTTGG	TGTACTACCC	GGAGTCTGAC	GGCGTGGCCT	CTTGGGGGAA	CGCTGAACTG	CCTGGCCAAT	TCGGGTCGAG	AGGCCCGCCG	TGCCCAGAGG	CTTGCATGGG	AGTGTTTCTC	TCAGTGGAAG	GAGAAGAATC	CCACCACAAG	CAACCAGAGT	AAGGAAGCCA	TTTGAAAGTG
CTGGCCATTC	GAGATCTCAA	CCACGGATGT	AGGCTCGCTA	GCTAACCCCG	AGAAGAAACC	GICGICCICI	AGACTGGAAG	GCCGCTAGAC	AGCGCGCGGC	TGGTGGAGGC	GGCTTGTTGA	TCGCGCCAAA	ATGGTTCGAC	GGAGACCTTC	GTTCGCTGAA	CATGAGGGGT	TGCCAGCCTT	ACCCCCCGGA	CTGTTAACGC	CACCACCTCC	CICCALICCI	GCTCAAGGAA	ACTTATTGAA	TTCCGTTTAC	CATGCAGGAA
CCTGCCAGAC	AGGAGGCAAC	AAACACGGAC	CCCCACCATT	CCCACCCGAC	CGTTGAGGAC	GCGCTGAGGA	GGCTTCCGGA	CGGAAGAATG	ອອອີດລອລລລອ	၁၁၅၅၁၁၅၅၅၅	TAGGATGCTA	GACTGCAATT	TGCTGCTGTC	CGGCAAGAAC	AACCGAGGCG	TAGGGACAGT	CCCCATGCTG	GGGCAGCACC	GACAGGGTCC	AAAGAATGAC	AAACCTGGTT	TCAGTAGAGA	ATGCCTTAAA	TTGGAGGCAG	TGACAAGGAT
GTATCCTGGA	GGTTAACAAC	CTTTCAACTA	TCTCAGTACT	CGIGCCCICI	ວວວອວວວວອອ	GACGCTGGGG	GTGGATCTCA	GCTTGGGCGG	AGAAGAGCAA	CGGACTGGGC	GATGTTCAAA	AGCGCCGGGC	AGGTGATCGC	ATATGGGCAT	GGGTTAGGGA	GCCAACTACT	CCGCGGTGAT	TCCGGTCACT	GAGCACACGT	AAGTACTTCC	ATGGGCCGGA	AATATAGTTC	AGTCTGGACC	GTTTGGATAG	AGACTCTTTG
GTTAAAAGAT	CTCAAGTTCC	TAATTAAAAC	GCTCCGCCCT	GCGACACCCA	CCCACCACCI	CGGACGGGTA	GGGGGACGCG	TCTCCGCGGG	CGCAGGATGC	GCGGCCACGC	CGGGGCCTCT	AGTGGGAAGC	CAGGCTGCCT	GIGICCCAGA	TGGCTGGATT	AGACGCGCGG	TTGCCCATGC	GGGAGCAAAG	GATGGAGCCT	GAACGAGTTC	CCTGGTGATT	GGACAGAATT	TCTTGCCAAA	AGTGGACATG	AGGCCATCTC

17/32 FIG. 11C

CCCAGAAATT	GATTTGGAGA	AATATAAACT	TCTCCCAGAG	TACCCAGGGG	TCCTTTCTGA	3120
AGTCCAGGAG	GAAAAAGGCA	TCAAGTATAA	ATTIGAAGIC	TATGAGAAGA	AAGGCTAACA	3180
GAAAGATACT	TGCTGATTGA	CITCAAGIIC	TACTGCTTTC	CTCCTAAAAT	TATGCATTT	3240
TACAAGACCA	TGGGACTTGT	GTTGGCTTTA	GATCCTGTGC	ATCCTGGGCA	ACTGTTGTAC	3300
TCTAAGCCAC	TCCCCAAAGT	CATGCCCCAG	CCCCTGTATA	ATTCTAAACA	ATTAGAATTA	3360
TTTTCATTTT	CATTAGTCTA	ACCAGGTTAT	ATTAAATATA	CTTTAAGAAA	CACCATTIGC	3420
CATAAAGTTC	TCAATGCCCC	TCCCATGCAG	CCTCAAGTGG	CTCCCCAGCA	GATGCATAGG	3480
GTAGTGTG	TACAAGAGAC	CCCAAAGACA	TAGAGCCCCT	GAGAGCATGA	GCTGATATGG	3540
GGGCTCATAG	AGATAGGAGC	TAGATGAATA	AGTACAAAGG	GCAGAAATGG	GTTTTAACCA	3600
GCAGAGCTAG	AACTCAGACT	TTAAAGAAAA	TTAGATCAAA	GTAGAGACTG	AATTATTCTG	3660
CACATCAGAC	TCTGAGCAGA	GTTCTGTTCA	CTCAGACAGA	AAATGGGTAA	ATTGAGAGCT	3720
GGCTCCATTG	TGCTCCTTAG	AGATGGGAGC	AGGTGGAGGA	TTATATAAGG	TCTGGAACAT	3780
TTAACTTCTC	CGTTTCTCAT	CTTCAGTGAG	ATTCCAAGGG	ATACTACAAT	TCTGTGGAAT	3840
GTGTGTCAGT	TAGGGTGTGG	AAAGTCCCCA	GGCTCCCCAG	CAGGCAGAAG	TATGCAAAGC	3900
ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	3960
AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCT	AACTCGGCCC	4020
ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTT	4080
TTTATTTATG	CAGAGGCCGA	GGCGCCTCTG	AGCTATTCCA	GAAGTAGTGA	GGAGGCTTTT	4140
TIGGAGGCCT	AGGCTTTTGC	AAAAAAGCTA	ATTCAGCCTG	AATGGCGAAT	GGGACGCGCC	4200
CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	CGCAGCGTGA	CCGCTACACT	4260
TGCCAGCGCC	CTAGCGCCCG	CICCITICGC	TTTCTTCCCT	TCCTTTCTCG	CCACGITCGC	4320
CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	GCTCCCTTTA	GGGTTCCGAT	TTAGTGCTTT	4380
ACGGCACCTC	GACCCCAAAA	ACTTGATTAG	GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	4440
TGATAGACGG	TTTTCGCCC	TTTGACGTTG	GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	4500
TTCCAAACTG	GAACAACACT	CAACCCTATC	TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	4560
TTGCCGATTT	CGGCCTATIG	GTTAAAAAAT	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	4620

18/32 FIG.11D

TTTAACAAAA	TATTAACGTT	TACAATTTCA	GGTGGCACTT	TTCGGGGAAA	TGTGCGCGGA	4680
ACCCCTATIT	GTTTATTTT	CTAAATACAT	TCAAATATGT	ATCCCCTCAT	GAGACAATAA	4740
CCCTGATAAA	TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA	TGAGTATTCA	ACATTTCCGT	4800
GTCGCCCTTA	TICCCITITI	TGCGGCATIT	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	4860
CTGGTGAAAG	TAAAAGATGC	TGAAGATCAG	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	4920
GATCTCAACA	GCGGTAAGAT	CCTTGAGAGT	TTTCGCCCCG	AAGAACGTTT	TCCAATGATG	4980
AGCACTTTTA	AAGTTCTGCT	ATGTGGCGCG	GIATTAICCC	GTATTGACGC	CGGGCAAGAG	5040
CAACTCGGTC	GCCGCATACA	CTATICICAG	AATGACTTGG	TTGAGTACTC	ACCAGTCACA	5100
GAAAAGCATC	TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	5160
AGTGATAACA	CTGCGGCCAA	CITACTICIG	ACAACGATCG	GAGGACCGAA	GGAGCTAACC	5220
GCTTTTTGC	ACAACATGGG	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	5280
AATGAAGCCA	TACCAAACGA	CGAGCGTGAC	ACCACGATGC	CTGTAGCAAT	GGCAACAACG	5340
TTGCGCAAAC	TATTAACTGG	CGAACTACTT	ACTCTAGCTT	CCCGGCAACA	ATTAATAGAC	5400
TGGATGGAGG	CGGATAAAGT	TGCAGGACCA	CTTCTGCGCT	CGGCCCTTCC	GGCTGGCTGG	5460
TTTATECTE	ATAAATCTGG	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT	TGCAGCACTG	5520
GCGCCAGATG	GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAG	TCAGGCAACT	5580
ATGGATGAAC	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	GCATTGGTAA	5640
CTGTCAGACC	AAGTTTACTC	ATATATACTT	TAGATTGATT	TAAAACTTCA	TTTTAATTT	5700
AAAAGGATCT	AGGTGAAGAT	CCTTTTTGAT	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	5760
TTTTCGTTCC		AGACCCCGTA	GAAAAGATCA	AAGGATCTTC	TIGAGAICCI	5820
TITICICC		CTGCTTGCAA	ACAAAAAAAC	CACCGCTACC	AGCGGTGGTT	5880
rerreccee	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG	5940
CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	0009
GTAGCACCGC	CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	0909
GATAAGTCGT	GTCTTACCGG	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	6120
TCGGGCTGAA	CGGGGGGTTC	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	6180

19/32 FIG.11E

CTGAGATACC	CTGAGATACC TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAGGCG	GCATTGAGAA	AGCGCCACGC	TTCCCGAAGG	GAGAAAGGCG	6240
GACAGGTATC	GACAGGTATC CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA	GCTTCCAGGG	6300
GGAAACGCCT	GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	6360
TTTTGTGAT	TITITICICAT GCICCICAGG GGGGGGGGGC CIAIGGAAAA AGGCCAGCAA CGCC	GGGCGGAGC	CTATGGAAAA	ACGCCAGCAA		

FIG.12

FIG.13

23/32 FIG.15

5 10 CYS-ASP-LEU-PRO-GLN-THR-HIS-SER-LEU-GLY-SER-ARG-ARG-THR-LEU-` 25 20 30 MET-LEU-LEU-ALA-GLN-MET-ARG-ARG-ILE-SER-LEU-PHE-SER-CYS-LEU-35 40 45 LYS-ASP-ARG-ARG-ASP-PHE-GLY-PHE-PRO-GLN-GLU-GLU-PHE-GLY-ASN-50 55 60 GLN-PHE-GLN-LYS-ALA-GLU-THR-ILE-PRO-VAL-LEU-HIS-GLU-MET-ILE-GLN-GLN-ILE-PHE-ASN-LEU-PHE-SER-THR-LYS-ASP-SER-SER-ALA-ALA-TRP-ASP-GLU-THR-LEU-LEU-ASP-LYS-PHE-TYR-THR-GLU-LEU-TYR-GLN-100 105 GLN-LEU-ASN-ASP-LEU-GLU-ALA-CYS-VAL-ILE-GLN-GLY-VAL-GLY-VAL-110 115 THR-GLU-THR-PRO-LEU-MET-LYS-GLU-ASP-SER-ILE-LEU-ALA-VAL-ARG LYS-TYR-PHE-GLN-ARG-ILE-THR-LEU-TYR-LEU-LYS-GLU-LYS-LYS-TYR-140 145 150 SER-PRO-CYS-ALA-TRP-GLU-VAL-VAL-ARG-ALA-GLU-ILE-MET-ARG-SER-155 160 165 PHE-SER-LEU-SER-THR-ASN-LEU-GLN-GLU-SER-LEU-ARG-SER-LYS-GLU

a2c

24/32 FIG. 16

--- 14

FIG.18

FIG.19

ERSATZBLATT

FIG. 20

WO 92/01055 PCT/EP91/01266

ERSATZBLATT

FIG. 23

FIG. 24

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 91/01266

I. CLASS	SIFICATION OF SUBJECT MATTER (II several class)	ficetion symbols apply, indicate all) 6	
	to International Patent Classification (IPC) or to both Nati		
Int	. cl. 5 cl2N15/21; cl2P21/02; cl2	2P21/08; A61K37/66	
II. FIELD	S SEARCHED		
	Minimum Documer	ntation Searched ?	
Classificati	on System	Classification Symbols	·
Int.	Cl. 5 C07K; Cl2N; Cl2P		
	Documentation Searched other to the Extent that such Documents	han Minimum Documentation are included in the Flaids Searched *	
III. OOCI	IMENTS CONSIDERED TO BE RELEVANT		
Category *		ropriste, of the relevant passages 18	Relevent to Claim No. 13
Y	US, A, 4 289 690 (HOFFMANN-L 15 September 1981	A ROCHE INC.,)	1-6,12-15
	see column 21, line 32 -	line 41; tables 3,5,7	
			<u>:</u> _
Y	JOURNAL OF INTERFERON RESEAR	CH	1-6,12-15
	vol. 9 SUP, No.2, 1989,		j
	page 184;		
	K. ZOON ET AL: "Chemical		
	human lymphoblastoid inte	erreron-alpha species."	·
	see abstract		1
3	ADOUTING OF PROTECTORS AND		!
A	ARCHIVES OF BIOCHEMISTRY AND	-	1-6,12-15
	vol. 232, No.1, July 1984	, NEW YORK	!
	pages 422 - 426;		i
i	JAMES E.LABDON ET AL: "So		
	leukocyte interferon are	gracosarsted.	:
	see the whole document		:
			:
			<u>:</u>
	•		·
			•
		-/ -	<u> </u>
			!
• Specia	i) cetegories of cited documents: 10	"T" leter document published after to	ne internetional filing date
	ument defining the general state of the art which is not	or oriority dais and not in confli- cited to understand the principle	ct with the application but
	sidered to be of particular relevance ier document but published on or efter the international	invention	
filin	g date	"X" document of perticular relevant cannot be considered novel or	cannot be considered to
whi	chia cited to establish the publication date of enother	involve an inventive step "Y" document of particular relevant	es the claimed invention
	tion or other special reason (as apecified) cument referring to an orel disclosure, usa, exhibition or	cannot be considered to involve.	an inventive aten when the
otn	er meene	cocument is combined with one ments, such combination being (opvious to a betsou skilled
"P" doc	nument published prior to the international filing data but of their the priority data claimed.	in the art. "A" document member of the same;	satant family
	IFICATION		
	Actuel Completion of the International Search	Date of Mailing of this International Se	erch Regart
23 (October 1991 (23.10.91)	25 November 1991 (25.)	11.91)
Internation	nal Searching Authority	Signatura of Authorized Officer	
Euro	ppean Patent Office		

III. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEE Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Category *	Citation of Document, with indications, where appropriate, or	<u> </u>
x	vol. 287,2 October 1980, LONDON GB pages 408-411; G.ALLEN ET AL: "A family of structural genes for human lymphoblastoid-leukocyte-type-inter- feron." see page 410, right-hand column; figure 2	1-6,12-15
x	WO, A, 8 300 693 (BERT, KURT, FRIMANN) 3 March 1983 see claims	1-6,12-15
x	DE, A,3306 060 (BOEHRINGER INGELHEIM INTERNATIONAL GMBH) 23 August 1984 cited in the application see examples 1,4,5	1-6
X	vol. 68, No. 6. June 1987, COLCHESTER.GB. pages 1669-1676; G.R.ADOLF: "Antigenic structure of human interferon wl-IFN alphall I-: comparison with other human interferons." cited in the application see the whole document	1-6,12-15
A	EP, A, 158 420 (SCHERING CORPORATION) 16 October 1985 see claims	1-6
P,X	THE BIOCHEMICAL JOURNAL. vol.276, No.2, 29 May 1991, COLCHESTER.GB. pages 511-518; G.R.ADOLF ET AL: "Natural interferon-alpha2 is O-glycosylated." see the whole document	1-15

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

ΕP 9101266 SA

This ancex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file an

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23/10/91

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A-4289690	15-09-81	AU-8- 561672 AU-A- 1586683 AU-8- 535936 AU-A- 5313679 8E-A- 880201 CA-A- 1129409 CH-A- 654843 CH-A- 653347 CH-A- 658459 0E-A, C 2947134 FR-A, 8 2442054 G8-A, 8 2037296 LU-A- 81918 NL-A- 7908516 SE-8- 454276 SE-A- 7909721 AT-8- 367769 JP-A- 58192896 JP-B- 63038330 JP-C- 1482912 JP-A- 55094320 JP-B- 62061040 JP-A- 63164897 US-A- 4503035	08-12-83 12-04-84 29-05-80 22-05-80 10-08-82 14-03-86 31-12-85 14-11-86 12-06-80 20-06-80
WO-A-8300693	03-03-83	AU-A- 8820782 EP-A- 0085693	08-03-83 17-08-83
0E-A-3306060	23-08-84	EP-A- 0119476 JP-A- 59224687	26-09-84 17-12-84
EP-A-158420	16-10-85	FR-A- 2560212 US-A- 4973556	30-08-85 27-11-90

laterationales Aktenzeichen

				(lessifikationssymbolen sin	i zile sazzgeben)é	
Nach der late	restionales Patenti			lassifikation and der IPC		
Int.K1	. 5	C12N15/21;	C12P21/02	; C12P21/08;	A61K37/68	j
IL RECHERC	HIERTE SACHGE	BIETE				
			Recharchierter Mil	destpriifstoff 7		
Klassifikstioe	issytem		KI.	ssifikationssymbole		······································
Int.K1	. 5	C07K ;	C12N ;	C12P		
		Racherchierte nicht zun un	Mindestpriifstoff geb ier ele recherchierten	örende Veröffentlichungen, Sachgebiete fallen ⁸	sowek diese	
III. EINSCHIL	AGIGE VEROFFE	NTLICHUNGEN 9			<u>.</u>	
Art.*			wit erforderlich unter	Angabe der maßgehlichen	Teile ¹²	Betz, Asspruch Nr. 13
Y	Septemb	er 1981.		HE INC.,) 15.		1-6, 12-15
Y	Bd. 9 S Seite 1 K.ZOON human 1	ET AL: 'Chemi	B9, cal charact interferon	erization of -alpha species	•	1-6, 12-15
A	Bd. 232 Seiten JAMES E leukocy	IVES OF BIOCHEMISTRY AND BIOPHYSICS 232, Nr. 1, Juli 1984, NEW YORK en 422 - 426; S E.LABOON ET AL: 'Some species of human ocyte interferon are glycosylated.' e das ganze Dokument				1-6, 12-15
"A" Veröf definis "E" sitere tions: "L" Veröf gweif; feetile nannt ander "O" Verö eine bezie "P" Veröf (uns.)	iert, aber nicht als i is Dokument, das je ien Anmeidosaum fentlichung, die gee ihaft erscheinen zu chungstatum einer ien Veröffentlichun en besonderen Grun ffentlichung, die sie Benatung, die Au ht ffentlichung, die vor	gegebenen Veröffentlich allgemeinen Stand der essonders bedeutsam anz doch erst am oder nach veröffentlicht worden ist ignet ist, einen Priorität lassen, oder durch die de auferen im Recherchenb pbelegt werden soll oder id angegeben ist (wie au- h auf eine minelliche Of- stellung oder andere Mi- dem internetionalen An aspruchten Prioritätsdan	Tochnik nseben ist iem interna- sanspruch as Verof- ericht ge- die aus einem spefuhrt) fenbarung, allnahm en meidoia-	To Spitere Veröffentlichumeidelatum oder dem ist und mit der Anneis verständnis der der Eroder der ihr ungrundel Werbindung von de Erfindung kann nickeit beruhend betrachtet werden der hernen agorie in Veröffentlichung von der meneren agorie in Verbindung wahr Veröffentlichung, die i	Priorizacian we fong sich kollider findung zngrundelle gesonder Theorie ze esonderer Bedeutun ht als neu oder auf dat werden besonderer Bedeutun ht als auf erfinderischen, wenn die Veröffenderen Veröffentliche beracht wird und die liegend ist	oreactical waves of the control of t
IV. BESCHE	INIGUNG					
Datum des Ab		oBER 1991		Absenderietum des inte	2 5.	
International	Recherchenbehörd EUROP	I LISCHES PATENTA	MT	LE CORNE		et es

	AGIGE VEROFFENTLICHUNGEN (Fortsetting von Blatt 2) Kenazeichnung der Verbfienlichung, soweit erforderlich nater Angabe der maßgebilchen Telle	Betr. Anspruch Nr.
Art °	Kentracining sir vermana.	
(NATURE. Bd. 287, 2. Oktober 198D, LONDON GB Seiten 408 - 411; G.ALLEN ET AL: 'A family of structural genes for human lymphoblastoid -leukocyte-type-	1-6, 12-15
	interferon. ? siehe Seite 410, rechte Spalte; Abbildung 2	
(WO,A,8 3DO 693 (8ERG,KURT,FRIMANN) 3. März 1983 siehe Ansprüche	1-6, 12-15
x	DE,A,3 306 DED (BOEHRINGER INGELHEIM INTERNATIONAL GM8H) 23. August 1984 in der Anmeldung erwähnt siehe Beispiele 1,4,5	1-6
X .	THE JOURNAL OF GENERAL VIROLOGY Bd. 68, Nr. 6, Juni 1987, COLCHESTER.GB. Seiten 1669 - 1676; G.R.ADOLF: 'Antigenic structure of human interferon wi -IFN alphall I- : comparison with other human interferons. ' in der Anmeldung erwähnt siehe das gazze Dokument	1-6, 12-15
A	EP,A,158 420 (SCHERING CDRPORATION) 16. Oktober 1985 siehe Ansprüche	1-6
Ρ,Χ	THE 810CHEMICAL JOURNAL Bd. 276, Nr. 2, 29. Mai 1991, COLCHESTER.GB. Seiten 511 - 51B; G.R.ADOLF ET AL: 'Natural interferon-alpha2 is D-glycosylated.' siehe das ganze Dokument	1-15
	7- **	
	3	

Formblatt PCT/ISA/210 (Zasatzbepas) (James 1945)

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

ΕP 9101266 SA 48946

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentalelumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben sienen zur Unterrichtung und erfolgen ohne Gewähr.

23/10/91

	ht Datum der Mitglied(er) der ment Veröffentlichung Patentfamilie		Datum der Veröffentlichung	
US-A-4289690	15-09-81	AU-B- AU-A- AU-A- AU-A- BE-A- CH-A- CH-A- CH-A- CH-A- CH-A- OE-A,8 BU-A- NL-A- SE-B- SE-B- JP-B- JP-B- JP-B- JP-A- JP-A- US-A- US-A-	561672 1586683 535936 5313679 880201 1129409 654843 653347 658459 2947134 2442054 2037296 81918 7908516 454276 7909721 367769 58192896 63038330 1482912 55094320 62061040 63164897 4503035	14-05-87 08-12-83 12-04-84 29-05-80 22-05-80 10-08-82 14-03-86 31-12-85 14-11-86 12-06-80 20-06-80 09-07-80 04-06-81 28-05-80 18-04-88 16-06-80 26-07-82 10-11-83 29-07-88 27-02-89 17-07-80 18-12-87 08-07-88 05-03-85
VO-A-8300693	03-03-83	AU-A- EP-A-	8820782 0085693	08-03-83 17-08-83
DE-A-3306060	23-08-84	EP-A- JP-A-	0119476 59224687	26-09-84 17-12-84
P-A-158420	16-10-85	FR-A- US-A-	2560212 4973556	30-08-85 27-11-90

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.