Annexure – E1 Kavach UHF Radio Modem Requirements

	Stock	NE	Miller	Printed :
Nagendra Singh	R. N. Singh	M. M. Srivastava	G. Pavan Kumar	Page 1 of 5
JE/(D)/S&T	ADE/Signal -V	Director Signal-IV	ED/Tele-II	

ISO 9001: 2015	Effective from 31.05.2022	RDSO/SPN/196/2020	Version 4.0 d3
Document Title : Sp	ecification of Kayach (The Indian Ra	ailway ATP)-UHF Radio MODEM	Requirements-Annexure-E1

1. Introduction

This document describes the UHF Radio modem requirements to be used for the purpose of Kavach System.

2. Radio Modem Requirements

Radio Unit shall be as per following specifications:

- 2.1 Shall be FCC or IC or CE certified shall possess RTS/CTS and/or DOX modes
- 2.2 Shall be capable of RF Data Transfer in "Bitwise" / streaming Mode
- 2.3 RF frequency range: 406-470MHz
- 2.4 RF Channel Bandwidth: 25kHz
- 2.5 Modes of operation Full Duplex
- 2.6 Modulation: 2FSK at 19200 bps with linear 8th order low pass filter (raised cosine alpha.1 approximation).
- 2.7 Deviation: 4.3 kHz +/- 0.1kHz. Occupied Bandwidth: 16.35 kHz +/- 0.15 kHz
- 2.8 Operating frequencies: Ranging from 406 MHz to 470 MHz
 - i. Transmission by Station / Interlocked LC Gate / IBS : fs1, fs2,
 - ii. Regular Transmission by Loco: fm1, fm2,
 - iii. Additional Transmission by Loco dedicatedly for emergency/access request: f0
- 2.9 It shall be possible to set other frequencies in the range specified above, if so required at later stage.
- 2.10 Emission : according to 16K0F2D
- 211 Transmitter freq. stability: 1 ppm
- 2.12 Transmitter Turn-on time (Tx. Freq. stable)/ Channel Switching time: not more than 15msec
- 2.13 Carrier Output Power: 1-10 w adjustable through software.
- 2.14 Receiver Adjacent Channel Rejection 70dB at 25kHz
- 2.15 Receiver Sensitivity: 35 micro-volts for 12 dB SINAD /
- 2.16 1 x 10 -6 BER at -100 dBm Level for 19.2kbps and 25kHz Bandwidth
- 2.17 Interfaces: RS232/RS 485

	Broth	v2	Man	Printed :
Nagendra Singh	R. N. Singh	M. M. Srivastava	G. Pavan Kumar	Page 2 of 5
JE/(D)/S&T	ADE/Signal -V	Director Signal-IV	ED/Tele-II	

- 2.18 RF Impedance: 50 ohm
- 2.19 Power Supply: 10V-30V DC
- 2.20 Set-up and Diagnostic features to be available through separate port RS232/RS485 and real time non-intrusive online diagnostics.

3. Functional Requirements

3.1 Modulation

- 3.1.1 The modulation used shall be 2FSK with 19,200 baud rate with linear 8th order low pass filter (raised cosine alpha 1 approximation).
- 3.1.2 Occupied bandwidth shall be 16.35kHz +/- 0.15kHz
- 3.1.3 The nominal deviation shall be 4.3kHz +/- 0.1kHz

3.2 Transmission

- 3.2.1 During bit stream over the air transmission, LSB shall be transmitted first.
- 3.2.2 Transmission shall start within 3ms +/- 1ms after data terminal equipment causes the signal on RTS line to be high.
- 3.2.3 RTS shall be raised before commencement of preamble transmission.
- 3.2.4 Radio modern shall transmit based on the DTR, RTS and RI signals according to the table shown below:

1	DTS RTS		Ring Indicator Status	Radio Modem		
	Low	*	Low	Won't transmit		
	High	Low	Low	Receiving or buffering Tx data		
	High	1	1	Transmit all buffered data and incoming data		
	High High		High	Send all data in Tx buffer and continue transmitting even when Tx buffer is empty		
	High	ļ	1	Continue transmitting remaining data in Tx buffer, then unkey		
	Ţ	High	1	Abort transmission, discard data in Tx buffer and unkey immediately		

24	Brook	ng	186h~	Printed :
Nagendra Singh	R. N. Singh	M. M. Srivastava	G. Payan Kumar	Page 3 of 5
JE/(D)/S&T	ADE/Signal -V	Director Signal-IV	ED/Tele-II	

* : Don't Care

↑: Transition from low to high

↓: Transition from high to low

3.3 Encoding

- 3.3.1 The radio modem shall commence transmission by prefixing preamble (12 bytes of 0x7E) to the data received from DTE.
- 3.3.2 The radio modem shall complete transmission by suffixing post amble (5 bytes of 0x7E) to the modified data.
- 3.3.3 The data to be sent shall be encoded as shown in following Pseudo code. Encoder state shall be updated throughout the transmission.

Input Bit = Input bit XOR 1

Encoder State = Encoder State XOR Input Bit

Output Bit = Encoder State

Examples:

Case		Consecutive Flag Characters	Two bytes of User Data (having all '0's)	Two bytes of User Data having all '1's with '0' stuffing
Input stream	bit	0111111001111110	0000000000000000	111110111111011111101
Output	bit	01111111011111110	01010101010101010	00000011111100000011

3.3.4 Radio modem shall insert additional '0' after five consecutive '1's of data during transmission. For example,

0x7C - 01111100 is sent OTA as 0111111000

0xF8 - 11111000 is sent OTA as 111110000

0x7E - 011111110 is sent OTA as 0111111010

0xFE - 111111110 is sent OTA as 111110110

3.4 Scrambling

The encoded data shall be scrambled before stuffing of '0' bit as shown in following Pseudo code. Scrambler state shall be updated throughout the transmission.

	Book	M	Moh-	Printed :
Nagendra Singh	R. N. Singh	M. M. Srivastava	G. Pawan Kumar	Page 4 of 5
JE/(D)/S&T	ADE/Signal -V	Director Signal-IV	ED/Tele-II	

Initialization

Scrambler_State= 0
When the bit is input:
Mask_Val = Scrambler_State AND 0x06
Feedback_Bit = 0
For (i = 0 to 6)
{ Feedback_Bit = Feedback_Bit XOR (Mask_Val AND 0x01)
Mask_Val = Mask_Val SHIFT RIGHT 1
i = i + 1 }
Output_Bit = Feedback_bit XOR Input_Bit
Scrambler_State = Scrambler_State SHIFT_RIGHT 1
Scrambler_State = Scrambler_State OR (Output_Bit SHIFT_LEFT 6)
Scrambler_State = Scrambler_State AND 0x7F

3.5 Receiving

- 3.5.1 The received data shall contain application data as well as preamble and post amble.
- 3.5.2 Reception of complete post amble (5 bytes of 0x7E) shall act as delimiter between two successive Receive" bursts.
- 3.5.3 At the end of transfer of received data from radio modem to DTE, the radio modem shall additionally append "0xA5 0xC9 0xA5 0xC9" after the data.
- 3.5.4 After the data transfer to DTE, the EIA 232F function shall be switched to high from low, shall remain high for 2 ms and shall be switched to low again.
- 3.5.5 Refer the below timing diagram, for data transfer between Kavach subsystem and radio modem.

	Soft	MS	80m	Printed :
Nagendra Singh	R. N. Singh	M. M. Srivastava	G. Paven Kumar	Page 5 of 5
JE/(D)/S&T	ADE/Signal -V	Director Signal-IV	ED/Tele-II	