

Proactive Discovery and Mitigation of Security Vulnerabilities Leveraged by Software-Defined Networks

Master in Telecommunications and Computer Science

João Francisco Rosa Polónio

Supervisors:

José André Moura, Assistant Professor, Iscte-IUL

Rui Neto Marinheiro, Associate Professor, Iscte-IUL

Contents

- Context and Motivation
- Problem Statement
- Objectives
- Research Questions
- Literature Review
 - Detection
 - Mitigation Data Plane
 - Mitigation Control Plane
- Development
 - Design Principles
 - Component Diagram
 - Explored Technologies
 - Deployment Diagram
 - Workflow

- Tests
 - Experimental Setup
 - Results
 - Scan Duration
 - CPU, RAM and Bandwidth usage
 - Time Analysis
- Conclusions
- Future Work

Context and Motivation

- Increase in the number of devices on the network (not security robust).
- Damage caused by cyber attacks costs a lot of money.
- Organizations must reduce the attack surface.
- Traditional Networks lack centralized control.
- Networks are increasingly programmable and solutions must follow the same path

Context and Motivation

Problem Statement

There is lack of solutions that address proactive and automated detection, and mitigation of vulnerabilities in the networked system.

Objectives

Proactive and automated detection, and mitigation of security vulnerabilities, addressed within a network environment controlled by SDN.

- 1) Development of a comprehensive architecture that integrates various open-source security technologies.
- 2) Evaluating the impact of these strategies on network and device performance, ensuring that they are executed efficiently and in a timely manner.

Research Questions

RQ1 - How to automate device security vulnerabilities detection on networks?

RQ2 - What resources the automated vulnerability detection consumes and their impact on the system scalability?

RQ3 - How the usage of the SDN controller capabilities can enhance the network security?

RQ4 - How timely can be the automated deployment of mitigation strategies?

Literature Review

- Articles collected using Systematic Literature Review using Parsifal.
- Search for works relevant to SDN and Vulnerability Detection and Mitigation.
- Analyzed 5% of the works, about 52 papers.

Received 23 May 2024, accepted 10 July 2024, date of publication 16 July 2024, date of current version 24 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3429269

On the Road to Proactive Vulnerability Analysis and Mitigation Leveraged by Software Defined Networks: A Systematic Review

JOÃO POLÓNIO^{®1}, JOSÉ MOURA^{®1,2}, AND RUI NETO MARINHEIRO^{®1,2}

¹Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisbon, Portugal

Instituto Universitario de Lisboa (ISCTE-IUL), 1649-026 Lisbon, Por
 Instituto de Telecomunições (IT), 1049-001 Lisbon, Portugal

Corresponding author: José Moura (jose.moura@iscte-iul.pt)

This work was supported by FCT - Fundação para a Ciência e Tecnologia, I.P. by project reference UIDB/50008/2020, and DOI identifier https://doi.org/10.54499/UIDB/50008/2020; and in part by the Instituto de Telecomunicações, Lisbon, Portugal.

Digital Library	Imported Studies	Accepted	Percentage
IEEEXplore	763	46	6.02%
ACM Digital Library	216	6	2.78%

Literature Review: Detection

- Few works focused on Vulnerability Assessment.
- Need to incorporate active probing tools into SDN.
- Need to use standardized risk indicators -> difficulty in assessing the severity of threats.
- Total of 8 papers.

Detection Papers Comparison

Paper	Vulnerability Assessment	SDN Controller	Automation	Risk Indicator	Passive Scanning	Active Probing	Proximity Score
[42]	•	POX	•	Custom	0	•	16.7
[43]	•	ODL, ONOS	•	CVSS, Custom	0	•	15.0
[44]	•	ONOS	•	CVSS	0	•	16.7
[45]	•	ODL	•	Custom	•	0	16.7
[47]	0	N/A	•	0	•	0	6.7
[46]	0	ODL	•	0	•	0	10.0
[48]	0	N/A	•	0	•	•	10.0
[49]	0	N/A	•	Custom	•	0	10.0

Literature Review: Mitigation - Data Plane

- Methods designed to mitigate attacks but may be adapted.
- No use of risk indicators.
- Difficult to proactively detect security flaws.
- Total of **7** papers.

Mitigation Papers Comparison – Data Plane

Paper	Technique	SDN Controller	Automation	Elasticity	Risk Indicator	Latency	Throughput	Proximity Score
[50]	CNN, FW	N/A	•	•	0	•	•	14.3
[51]	MTD	N/A	0	•	0	•	0	7.1
[52]	MTD	N/A	0	•	0		0	8.6
[53]	PK	N/A	•	•	0		0	8.6
[54]	PK	N/A	•	0	0	0	0	5.71
[55]	FW, PK	N/A	0	0	0	0	0	2.9
[56]	FW	POX	•	•	0	•	0	12.9

Literature Review: Mitigation - Control Plane

- Not enough use of risk indicators.
- Lacking complete solutions that demonstrate measurable effects on network performance.
- Total of 42 papers.
- Few works on proactive measures.
- Even those don't have fully automated measures

New approaches needed

Architecture Design

Building Blocks

- Limited number of studies focusing on both vulnerability detection and mitigation.
- Absence of deploying a SOAR in SDN to coordinate the various tools.

- ✓ Proactivity
- **✓** Interoperability
- √ Adaptability

Architecture Design

Component Diagram

Explored Technologies

Workflow

Workflow

Workflow

Experimental Setup

RQ1 - How to automate detection?

RQ2 - Detection scalable?

Scan Duration, CPU, RAM, Bandwidth

Laboratory Environment

RQ3 – SDN controller enhance security?

RQ4 – Timely deployment?

Duration of each stage
Time to complete

Virtual Environment

Scan Duration

Scan Duration

RQ1 - How to automate detection?
RQ2 - Detection scalable?
RQ3 - SDN controller enhance security?
RQ4 - Timely deployment?

- From 1 to 8 hosts there is only a small increase of 4 minutes.
- For 16 hosts the increase is more noticible.
- For 32 hosts the scan duration reaches 49 minutes!

What can explain this?

CPU

- For 4 hosts the CPU only saturates one single time.
- For 16 hosts the system is saturated much more time.
- This explains the increase in the Scan Duration.

RQ1 - How to automate detection?

RQ2 - Detection scalable?

 RQ_3 – SDN controller enhance security?

RO4 – Timely deployment?

CPU

CPU Saturation

Difficult to promptly serve all hosts

Scan Duration Increases

RAM

RAM

- RQ1 How to automate detection?
- RQ2 Detection scalable?
- RQ_3 SDN controller enhance security?
- RO4 Timely deployment?

- No noticible increase.
- No saturation.
- No outliers.

RQ1 - How to automate detection?

 RQ_3 – SDN controller enhance security?

RO2 - Detection scalable?

RO4 – Timely deployment?

Results

Bandwidth

- LAN capacity is 100 Mbps.
- The scanning process does not reach near that value.

2 Mbps << 100 Mbps

Bandwidth doesn't disrupt the system

Bandwidth

Time Analysis

RQ1 - How to automate detection?

RQ2 - Detection scalable?

RQ3 – SDN controller enhance security?

RQ4 – Timely deployment?

Device Discovery = 1,5 sec

Prepare Vulnerability Scan = 0,98 sec

Executing Vulnerability Scan = 18 min

Request and Parsing Report = 0,019 sec

Isolating the device = 0,000075 sec

Expected doing the complexity

Fast to secure the device

Conclusions

RQ1 - The system **automates vulnerability detection** using Nmap for **device discovery** and GVM to **scan for vulnerabilities**. The SOAR Platform **orchestrates** these tools, automating workflows.

RQ2 - The vulnerability scanner shows acceptable RAM and bandwidth usage, but consumes significant CPU resources when scanning multiple devices simultaneously.

RQ3 - The SDN controller improves network security by enabling **isolation** of vulnerable devices by **changing VLANs**.

RQ4 - The entire process is **fast**, with the vulnerability scanning being the **longest delay**. The VLAN change occurs almost **instantly** in the SDN Controller.

Proactive and Automated System

Future Work

Applying more mitigation measures:

- DPI and/or MTD as a complementary measure to VLAN isolation for devices with low-risk vulnerabilities.
- Analyze the CVSS vector to apply more appropriate mitigation measures.

Node Classification and Scanning:

- SDN controller can be enhanced to classify nodes based on the context of the network topology, based on their proximity to critical assets.
 - Use the information gathered about the device's location on the network and the number of connections it has and adjust the aggressiveness and periodicity of the scans accordingly.
 - Prioritize scanning on devices that perform critical functions on the network.
- Perform less aggressive scans during periods of high activity, and reserve more aggressive scans for periods of lower activity.