

Line Segment Properties Convex Hull

CHAPTER 33

Computational Geometry

- Is the branch of computer science that studies algorithms for solving geometric problems.
- · Has applications in many fields, including
 - computer graphics
 - · robotics,
 - VLSI design
 - computer aided design
 - statistics
- Deals with geometric objects such as points, line segments, polygons, etc.
- Some typical problems considered:
 - whether intersections occur in a set of lines.
 - finding vertices of a convex hull for points.
 - whether a line can be drawn separating two sets of points.
 - whether one point is visible from a second point, given some polygons that may block visibility.
 - optimal location of fire towers to view a region.
 - closest or most distant pair of points.
 - whether a point is inside or outside a polygon.

Advanced Algorithms, Feodor F. Dragan, Kent State University

Cross products

Line segments

• The convex combination of two distinct points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ is any point $p_3 = (x_3, y_3)$ such that for some real number α with $0 \le \alpha \le 1$,

$$(x_3, y_3) = \alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2).$$

- * $\overline{p_1p_2}$, the line segment joining p_1 and p_2 , is the set of all convex combinations of p_1 and p_2 .
- Intuition problem: Show that if (x,y) is a convex combination of (x_1, y_1) and (x_2, y_2) then $\alpha = \frac{y y_2}{x x_2} = \frac{y_1 y_2}{x_1 x_2}$

which is the standard equation of a line with slope α .

Cross products

- let p_1 and p_2 be points on the plane
- The cross product $p_1 \times p_2$ corresponds to the signed area in the parallelogram.

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \times p_1.$$

Cross products (cont.)

- If $p_1 \times p_2$ is positive, then \overrightarrow{op}_1 is clockwise from \overrightarrow{op}_2
- If $p_1 \times p_2 = 0$, then \overrightarrow{op}_1 and \overrightarrow{op}_2 are collinear.
- To determine if $\overrightarrow{p_0p_1}$ is clockwise from $\overrightarrow{p_0p_2}$, we translate p_0 to the origin and consider $p'_1 \times p'_2$ where $p'_1 = p_1 p_0$, $p'_2 = p_2 p_0$.

$$p'_1 \times p'_2 = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0).$$

- Consider now whether two consecutive line segments $\overrightarrow{p_0} \overrightarrow{p_1}$ and $\overrightarrow{p_1} \overrightarrow{p_2}$ turn *left* or *right* at p_1 .
 - Check whether $\overrightarrow{p_0p_2}$ is clockwise from $\overrightarrow{p_0p_1}$

 $(p_2 - p_0) \times (p_1 - p_0) < 0$ So, counterclockwise or *left turn*

 $(p_2 - p_0) \times (p_1 - p_0) > 0$ So, clockwise or **right** turn

Determining whether two line segments intersect

- To determine whether two line segments intersect, we check whether each segment straddles the line containing the other.
- A segment p1p2 straddles a line if point p1 lies on one side of the line and point p2 lies on the other side.
- A boundary case arises if p1 or p2 lies directly on the line.
- Two line segments intersect if and only if either (or both) of the following conditions holds:
- 1. Each segment straddles the line containing the other.
- 2. An endpoint of one segment lies on the other segment. (This condition comes from the boundary case.)

Determining whether two line segments intersect

The following procedures implement this idea. SEGMENTS-INTERSECT returns TRUE if segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$ intersect and FALSE if they do not. It calls the subroutines DIRECTION, which computes relative orientations using the cross-product method above, and ON-SEGMENT, which determines whether a point known to be colinear with a segment lies on that segment.

```
SEGMENTS-INTERSECT (p_1, p_2, p_3, p_4)
    d_1 = \text{DIRECTION}(p_3, p_4, p_1)
 2 d_2 = DIRECTION(p_3, p_4, p_2)
 3 d_3 = DIRECTION(p_1, p_2, p_3)
 4 d_4 = DIRECTION(p_1, p_2, p_4)
 5 if ((d_1 > 0 \text{ and } d_2 < 0) \text{ or } (d_1 < 0 \text{ and } d_2 > 0)) and
          ((d_3 > 0 \text{ and } d_4 < 0) \text{ or } (d_3 < 0 \text{ and } d_4 > 0))
 6
          return TRUE
     elseif d_1 == 0 and ON-SEGMENT (p_3, p_4, p_1)
 8
          return TRUE
     elseif d_2 == 0 and ON-SEGMENT (p_3, p_4, p_2)
10
          return TRUE
11
     elseif d_3 == 0 and ON-SEGMENT (p_1, p_2, p_3)
12
          return TRUE
     elseif d_4 == 0 and ON-SEGMENT (p_1, p_2, p_4)
13
14
          return TRUE
15
     else return FALSE
DIRECTION (p_i, p_i, p_k)
1 return (p_k - p_i) \times (p_i - p_i)
ON-SEGMENT(p_i, p_j, p_k)
    if \min(x_i, x_i) \le x_k \le \max(x_i, x_i) and \min(y_i, y_i) \le y_k \le \max(y_i, y_i)
         return TRUE
    else return FALSE
```

Determining whether two line segments intersect

Figure 33.3 Cases in the procedure SEGMENTS-INTERSECT. (a) The segments $\overline{p_1} \, \overline{p_2}$ and $\overline{p_3} \, \overline{p_4}$ straddle each other's lines. Because $\overline{p_3} \, \overline{p_4}$ straddles the line containing $\overline{p_1} \, \overline{p_2}$, the signs of the cross products $(p_3 - p_1) \times (p_2 - p_1)$ and $(p_4 - p_1) \times (p_2 - p_1)$ differ. Because $\overline{p_1} \, \overline{p_2}$ straddles the line containing $\overline{p_3} \, \overline{p_4}$, the signs of the cross products $(p_1 - p_3) \times (p_4 - p_3)$ and $(p_2 - p_3) \times (p_4 - p_3)$ differ. (b) Segment $\overline{p_3} \, \overline{p_4}$ straddles the line containing $\overline{p_1} \, \overline{p_2}$, but $\overline{p_1} \, \overline{p_2}$ does not straddle the line containing $\overline{p_3} \, \overline{p_4}$. The signs of the cross products $(p_1 - p_3) \times (p_4 - p_3)$ and $(p_2 - p_3) \times (p_4 - p_3)$ are the same. (c) Point p_3 is colinear with $\overline{p_1} \, \overline{p_2}$ and is between p_1 and p_2 . (d) Point p_3 is colinear with $\overline{p_1} \, \overline{p_2}$, but it is not between p_1 and p_2 . The segments do not intersect.

line segments intersection

Intersection of two line segments (cont.)

- Second stage: Decide whether each segment meets ("straddles") the line containing the other.
- A segment p_1p_2 straddles a line if p_1 lies on one side of the line and p_2 on the other side. (the segment straddles the line also if p_1 or p_2 lies on the line)
- Observation: Two segments intersect iff they pass the quick rejection test and each segment straddles the other.
- Testing straddle with cross products:
 - we show how to check if p_3p_4 straddles the line L determined by p_1 and p_2

If p_3p_4 does straddle the line containing p_1 and p_2 , then the following have different signs.

$$(p_3 - p_1) \times (p_2 - p_1)$$

 $(p_4 - p_1) \times (p_2 - p_1)$

Boundary cases where p_3p_4 straddles L

At least one cross product is zero. Both cases pass the quick rejection test.

Convex Hull

Convex Hull Algorithms

• Definitions and Properties: Given n points on the plane $Q = \{p_1, p_2, ..., p_n\}$.

- Intersection of all convex sets containing Q
- Smallest convex set containing Q
- Intersection of all half-planes containing Q
- Union of all triangles formed by points of Q
- Smallest convex polygon containing Q
 - All vertices of hull are some points of Q

rubber band always

extreme point

not extreme point

unique

NOTE: convex-hull(Q) is the closed solid region, not just the boundary CH(Q)

Convex Hull

The Problem and Approaches

- **Problem:** Given n points on the plane $Q = \{p_1, p_2, ..., p_n\}$, find CH(Q).
- Approaches:
 - · Brute Force
 - Gift Wrapping
 - · QuickHull
 - · Graham Scan
 - Incremental
 - Divide and Conquer
 - By Delaunay Triangulation & Voronoi Diagram
- Brute-Force Approach

- Determine extreme edges:
 - for each pair of points $p,q \in Q$ do

 if all other points lie on one side

 of line passing thru p and qthen keep edge (p, q)
- Sort edges in counterclockwise order (we want output in counterclockwise)
- Running time: O(n³)
 - bad but not the worst yet

```
GRAHAM-SCAN(Q)
    let p_0 be the point in Q with the minimum y-coordinate,
         or the leftmost such point in case of a tie
 2 let \langle p_1, p_2, \ldots, p_m \rangle be the remaining points in Q,
         sorted by polar angle in counterclockwise order around p_0
         (if more than one point has the same angle, remove all but
         the one that is farthest from p_0)
    let S be an empty stack
    PUSH(p_0, S)
 5 PUSH(p_1, S)
   PUSH(p_2, S)
 7 for i = 3 to m
         while the angle formed by points NEXT-TO-TOP(S), TOP(S),
 8
                  and p_i makes a nonleft turn
              Pop(S)
         PUSH(p_i, S)
10
    return S
```


 p_{12}

 p_0

(l)

 p_0

(k)

Graham Scan Algorithm

- First a base point p₀ is selected. Normally this is the point with minimum ycoordinate (select leftmost in case of tie)
- Next all points are sorted w.r.t. the polar angle they make with a half-ray with left endpoint p₀ and parallel to x-axis. (!!! We do not need to compute those angles!!!)

- Remaining points are stored in counterclockwise order w.r.t. p₀
- Let $p_0, p_1, p_2, p_3, \dots, p_m \ (m \le n)$ be the sorted list of remaining points.
- Clearly, p₀ and p₁ are in CH(Q).
- Let S be a stack in which points that are potentially convex hull points will be stored.
- Initially $S = [p_0 | p_1 | p_2]$. Remaining steps of the algorithm follow for $i \leftarrow 3$ to m

do while (the angle formed by points NEXT_TO_TOP(S), TOP(S), and pi make a non-left turn) POP(S)

 $PUSH(S, p_i)$

return S

Example and Runtime Computation

Note straight line here.

p₄ is eliminated, as non-left turn.

$$CH(Q) = \{p_0, p_1, p_3, p_5, p_7, p_8\}$$

- Requires O(n) to find p₀
- Sorting based on polar angle takes O(n logn) time
- Removal of n-m points with duplicate angles takes O(n).
- For loop is executed m-2 times, hence O(n).
- Interior while statement is a "problem". It may iterate as many as O(n) time.
- Above observation can easily lead to an over-estimate of $O(n^2)$.
- Note that each pass through while statement, POP is executed.
- As in analysis of MULTIPOP, there is at most one POP operation for each PUSH operation (see amortized analysis)
- Since p_0 , p_1 , p_m are not popped, at most m-3 pop operations occur.
- Note, both pop and test for while take O(1) time and $m \le n$. Hence amortized cost for each iteration of while loop is O(1).
- Overall worst-case cost of for-loop is O(n)
- Worst-case running time of the algorithm is $O(n \log n) (= O(n \log n) + O(n))$.

Closest Pair of Points

Closest Pair of Points

Given n points on the plane, find closest pair of points.

The Euclidean distance between two points $p_1 = (x_1, y_1) \text{ and } p_2 = (x_2, y_2) \text{ is}$ $d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

An obvious but naïve approach is to compute the distance between any two points and take minimum. However, running time is $\binom{n}{2} = O(n^2)$.

- A high-level description of a much better algorithm (at least for large sets) is given below.
- Let Q be a set of n planar points.
- If |Q| < 4, then the distances between all pairs of points are computed and the closest pair is reported.
- If |Q|>3, then a "Divide & Conquer & Combine" procedure is followed.
- · Each recursive call receives as input
 - a set $P \subset Q$
 - arrays X and Y containing points P sorted by x and y coordinates, respectively