Universidad Nacional de Río Negro Física III B - 2022

Unidad O3 – Segundo principio

Clase U03 C01 - 14/30

Cont Segundo Principio

Cátedra Asorey

• **Web** https://campusbimodal.unrn.edu.ar/course/view.php?id=24220

Contenidos: B5331 Física IIIB 2022 alias Termodinámica

Contenidos: B5331 Física IIIB 2022 alias Termodinámica

Unidad 1 Unidad 2 Unidad 3 **El Calor** Primer principio Segundo Principio Todo se transforma Nada es gratis Hace calor

Ciclo inverso → Máquina frigorifica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera: es una "bomba de calor" que extrae calor de una fuente fría para cederlo a otro a una temperatura mayor, impulsada por un motor externo, usualmente

Funcionamiento: refrigeración por compresión:

Líquido refrigerante: bajo punto de vaporización (típicamente -40°C)

- 1) Compresor: el gas se comprime (W_{NETO})
 en forma adiabática y, en principio,
 reversible. Alta Presión (AP)
- 2) Condensador: se licúa e intercambia calor con la fuente caliente (Aire, Q_{ENT}).
 Cambio de estado: calor latente, proceso isotérmico (AP)
- 3) Válvula de expansión: descompresión adiabática → enfriamiento del líquido a baja presión (BP)
- 4) Evaporador: el líquido frío absorbe calor de la fuente fría (heladera, Q_{ABS}) y se vaporiza: calor latente, proceso isotérmico (BP)
- Se reinicia el ciclo en el compresor

Ciclo Otto, combustión isócora

Física IIIB 7/34

Ciclo Diésel o ciclo de combustión isóbara

Máquina reversible e irreversible

Si la máquina térmica no es reversible, Q < Q

Física IIIB 10/34

¿Quemar combustible para enfriar?

Física IIIB 11/34

Ciclo de Rankine

- 1) bomba: compresión de agua líquida
- caldera: calentamiento y vaporización del agua líquida. Calentamiento isobárico del vapor
- 3) turbina: expansión adiabática del vapor hasta la presión inicial;
- 4) condensador: enfriamiento y condensación isobárica del vapor. Enfriamiento del agua líquida hasta la temperatura inicial

Física IIIB 12/34

Ciclo de Rankine

- El ciclo de Rankine es un ciclo "realista", en la actualidad es utilizado con mejoras
- Se trata de una mejora respecto a otros ciclos basados sólo en gas, al introducir un sistema bifásico (agua y vapor), para evitar comprimir el gas
 - Al comprimir agua líquida, se requiere mucho menos energía en la etapa de compresión.
- Tener en cuenta el calor latente de vaporización y condensación

Física IIIB 14/34

Turbina de vapor https://www.youtube.com/watch?v=AyAd-gLO9GE

Física IIIB 15/34

¿Por qué no puede ser 1?

Hemos dicho

$$\eta = 1 - \frac{Q_{ENT}}{Q_{ABS}} \le \eta_C = 1 - \frac{T_{Fria}}{T_{Caliente}}$$

- Para que el rendimiento sea 1 debería pasar que Q_{ENT}=0
- Esto implicaría una conversión total del calor entregado por la fuente caliente en trabajo ← Esto no es posible

Segundo principio de la termodinámica

- Enunciado de Kelvin-Planck (K-P)
 No es posible construir una máquina térmica que,
 operando en forma cíclica, produzca como único efecto
 la absorción de calor procedente de un foco y la
 realización de una cantidad equivalente de trabajo.
- Expresa un hecho empírico, y va por la negativa: nos dice lo que no es posible hacer
- El rendimiento de una máquina térmica siempre será menor que 1

Segundo principio de la termodinámica

- Enunciado de Clausius
 No es posible un proceso que tenga como único
 resultado la transferencia de calor de un cuerpo hacia
 otro más caliente.
- Al igual que K-P, también expresa un hecho empírico, y también va por la negativa

• Establece un sentido para el flujo espontáneo de calor de los focos calientes a los focos fríos y no al revés

Ambos enunciados son equivalentes:

Supongamos existe una máquina que no cumple K-P:

- Dado que, por el 1^{er} ppio, W₁=Q₁ → Q₃ = Q₁+Q₂.
- y puesto que la fuente caliente entrega Q₁ y recibe Q₃, hay una transferencia neta y espontánea Q₂ de T_F a T_C

Equivalencia

- Ambos enunciados son equivalentes:
- Tengo una máquina términa normal operando, y supongamos existe una máquina que no cumple Clausius:

- Por el 1^{er} ppio, W₁=Q₁-Q₂
- puesto que Q₂ vuelve a la fuente caliente, esta entrega una cantidad de calor (Q₁-Q₂) en forma de trabajo W₁.

Equivalencia

 Hemos visto que el no cumplimiento de un enunciado implica el no cumplimiento del otro enunciado → Ambos enunciados del 2º principio son equivalentes

Reversibilidad, otra vez

- Podemos transformar íntegramente el trabajo en calor (estufa), pero no íntegramente el calor en trabajo (K-P)
- Proceso reversible →
 - La transformación puede ocurrir en los dos sentidos de forma que el estado final del sistema y del entorno sea exactamente igual al incial (sin huellas); ó
 - Aquel cuyo sentido puede invertirse por un cambio en las condiciones de fondo
- Proceso irreversible → no hay camino inverso.
- Todos los procesos reales son irreversibles:

iisi hay ΔT, entonces hay irreversibilidad!!

Proceso irreversible

El proceso es irreversible porque el entorno cambió: realizó un trabajo sobre el sistema

Irreversibilidad

- Interna: procesos internos fuera de equilibrio → el sistema no está en un estado termodinámico definido
 - Mecánica: conversión de trabajo en calor (p. ej., viscosidad)
 - Térmica: transferencias de calor en el sistema
 - Químico-físicas: reacciones, mezclas, disoluciones, ...
 - •
- Externa: la interacción con el medio es irreversible
 - Mecánica: el rozamiento es irreversible (si no, viola K-P)
 - Térmica: transferencias de calor con el medio
 - •

Máquina reversible e irreversible

Máquina reversible e irreversible

Carnot y el segundo principio

- En la fuente caliente:
- En la fuente fría

• Sale:
$$Q_1$$
 lo que sale menos lo que entra
$$Q_2 = \frac{\eta_1}{\eta_c} Q_1$$
 $\Rightarrow \Delta Q_c = Q_1 - Q_2 = Q_1 \left(1 - \frac{\eta_1}{\eta_c}\right)$

• Sale:
$$Q_{2f} = Q_1 \frac{\eta_1}{\eta_c} (1 - \eta_c)$$
 lo que entra menos lo que sale • Entra: $Q_{1f} = Q_1 (1 - \eta_1)$ $\Rightarrow \Delta Q_f = Q_{1f} - Q_{2f} = Q_1 \left(1 - \frac{\eta_1}{\eta_c}\right)$

$$\rightarrow \Delta Q_f = \Delta Q_c \equiv \Delta Q$$

Balance de energía en cada fuente

Entendiendo AQ

Entendiendo AQ

Si AQ es negativo....

Una máquina térmica que no cumple el teorema de Carnot, es decir, si su rendimiento es mayor al de Carnot operando entre las mismas fuentes, $\eta_1 > \eta_C$, entonces esa máquina no

cumple el postulado de Clausius ¡Violación del 2do principio!

Dos máquinas de Carnot

Dos máquinas de Carnot

• En la fuente caliente:

• Sale:
$$Q_1$$

• Sale:
$$Q_1$$
• Entra: $Q_2 = \frac{\eta_c}{\eta_c} Q_1$
• $\Delta Q_c = Q_1 - Q_2 = 0$

En la fuente fría

• Sale:
$$Q_{2f} = Q_1 \frac{\eta_c}{\eta_c} (1 - \eta_c)$$

• Entra: $Q_{1f} = Q_1 (1 - \eta_c)$ $\Rightarrow \Delta Q_f = Q_{1f} - Q_{2f} = 0$

• Entra:
$$Q_{1f} = Q_1 (1 - \eta_c)$$

$$\rightarrow \Delta Q_f = Q_{1f} - Q_{2f} = 0$$

$$\rightarrow \Delta Q_f = -\Delta Q_c = \Delta Q = 0$$

no hay flujo neto de energía entre las fuentes

Conclusión, η es el rendimiento de una máquina térmica no reversible, entonces

• Si $\eta = \eta_c \rightarrow$ El motor combina funciona sin ningún efecto, pero la máquina térmica tiene disipación

Violación del Primer Principio

 Si η>η_c → Transferencia neta de calor de la fuente fría a la fuente caliente, sin trabajo externo

Violación del Segundo Principio

Entonces, sólo es posible: η<η_c:

Una máquina térmica sólo puede tener menor rendimiento que una máquina de Carnot funcionando entre las mismas temperaturas

Enunciados del segundo principio

- Clausius → No es posible un proceso que tenga como único resultado la transferencia de calor de un cuerpo hacia otro más caliente
- Kelvin-Planck → No es posible construir una máquina térmica que, operando en forma cíclica, produzca como único efecto la absorción de calor procedente de un foco y la realización de una cantidad equivalente de trabajo
- Carnot → El rendimiento de una máquina térmica no puede ser superior que el de una máquina reversible que opere entre los mismos focos. Será igual sí y sólo sí esa máquina es también reversible