Teorema de Cantor		
El conjunto de funciones	totales IN-IN no	es numerable.
Demo Supongamos que podemos	numerar todas las	funciones totales
de $N \rightarrow N : F_0, F_1, F_2, \cdots$		
Ahora las listamos a tod los puntos:	las y ademais las	evaluamos en todos
$F_o(o)$ $F_o(1)$ $F_o(z)$		
F ₁ (0) F ₁ (1) F ₁ (2)		
$F_{z}(0)$ $F_{z}(1)$ $F_{z}(2)$		
$F_{k}(0)$ $F_{k}(1)$ $F_{k}(2)$	F _K (K)	
Sea g: IN → IN total g(x	<) = F _× (×) +1	
Es claro que g es total		ara cualquier x.
Como g es total, aparec totales. Sea e tal qu		n de las funciones
$F_e(x) = g(x) = F_x(x)$	+ 1	
e está fijo pero x es v	variable. Tomando	x=e:
$F_e(e) = F_e(e) + 1$	Absurdo	

Entonces las funciones totales IN + IN no son numerables. Es decir, hay más funciones totales que los números naturales. Como cada nell se corresponde con un programa, sabemos que hay tantas funciones computables como números naturales. Entonces hay funciones IN-IN totales que no son computables.