Quiz 8

The following information may or may not be of use:

Lorentz Force Law: $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

Electrical Power: $P = I\Delta V$

In a region of space there is a uniform magnetic field with magnitude $|\vec{B}| = 5$ T pointing out of the page. A neutral metal bar of length L=0.2 m slides horizontally with speed $|\vec{v}|=500$ m across two fixed conducting rails with negligible friction but good electrical contact. The two metal rails are connected by a resistor with resistance $R = 220 \Omega$.

- 1. What direction is current flowing through the resistor? Indicate by drawing an arrow on the diagram.
- 2. At this instant, what is the power dissipated in the resistor?

$$\mathcal{E} = \mathcal{B} \cup V$$

$$P = \mathcal{I} \mathcal{E} = \frac{\mathcal{E}^2}{R}$$

$$R = 220.2$$

$$R = 220.2$$

$$E = (5.7)(0.2m)(500 \frac{m}{s}) = 500 V$$
The speed of the metal bar will ____ with time.
$$P = (500 V)^2 - 1136 W$$
(a) Increase

- 3. The speed of the metal bar will _____ with time.

- (b) Remain constant
- Decrease