- 1. Determine parametric equations of the line passing through P(5,0,-2) and parallel to the planes $\pi_1: x-4y+2z=0$ and 2x+3y-z+1=0.
- 2. Determine an equation of the plane containing P(2,0,3) and the line $\ell: x = -1 + t, y = t, z = -4 + 2t, t \in \mathbb{R}$.
- **3.** For the points A(2,1,-1) and B(-3,0,2), determine
 - a) an equation of the bundle of planes passing through A and B,
 - b) the plane π from the bundle, which is orthogonal to Oxy,
 - c) the plane ρ from the bundle, which is orthogonal to π .
- **4.** Determine the relative positions of the lines x = -3t, y = 2 + 3t, z = 1, $t \in \mathbb{R}$ and x = 1 + 5s, y = 1 + 13s, z = 1 + 10s, $s \in \mathbb{R}$.
- **5.** Let A(1,2,-7), B(2,2,-7) and C(3,4,-5) be vertices of a triangle. Determine the equation of the internal angle bisector of $\angle A$.
- **6.** Determine the angles between the plane $\pi_1: x \sqrt{2}y + z 1 = 0$ and the plane $\pi_2: x + \sqrt{2}y z + 3 = 0$.
- 7. Determine the parameter m for which the line x = -1 + 3t, y = 2 + mt, z = -3 2t doesn't intersect the plane x + 3y + 3z 2 = 0.
- **8.** Determine the values a and d for which the line $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}$ is contained in the plane ax + y 2z + d = 0.
- **9.** Determine the values a and c for which the line $3x-2y+z+3=0\cap 4x-3y+4z+1=0$ is perpendicular to the plane ax+8y+cz+2=0.
- **10.** Determine the orthogonal projection of the point A(2,11,-5) on the plane x+4y-3z+7=0.
- 11. Determine the orthogonal reflection of the point P(6, -5, 5) in the plane 2x 3y + z 4 = 0.
- **12.** Consider the point A(1,3,5) and the line $\ell : 2x + y + z 1 = 0 \cap 3x + y + 2z 3 = 0$.
 - a) Determine the orthogonal projection of A on ℓ .
 - b) Determine the orthogonal reflection of A in ℓ .
- **13.** Determine the planes which pass through P(0,2,0) and Q(-1,0,0) and which form an angle of 60° with the *z*-axis.
- **14.** Determine the orthogonal projection of the line ℓ : $2x y 1 = 0 \cap x + y z + 1 = 0$ on the plane π : x + 2y z = 0.
- **15.** Determine the coordinates of a point *A* on the line ℓ : $\frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{1}$ which is at distance $\sqrt{3}$ from the plane x + y + z + 3 = 0.
- **16.** The vertices of a tetrahedron are A(-1,-3,1), B(5,3,8), C(-1,-3,5) and D(2,1,-4). Determine the height of the tetrahedron relative to the face ABC.