

UNIVERSITI TEKNOLOGI MALAYSIA

MIDTERM TEST

SEMESTER I 2015/2016

SUBJECT CODE : SCSJ3203

SUBJECT NAME : Theory of Computer Science

TIME : 2.15 PM. – 4.45 PM (2 1/2 Hours)

DATE : 26 October 2015 VENUE : N28, BK 1 - BK 5

INSTRUCTIONS TO THE STUDENTS:

This test book consists of 2 parts:

Part A: 10 Objective Questions 20 marks
Part B: 9 Structured Questions 80 marks

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED IN THIS QUESTION BOOKLET.

Name	
I/C No.	
Year/Course	
Section	
Lecturer's Name	

(This question booklet consists of 12 pages including this page.)

Answer sheet for Part A:

Write all your answers for Part A in the space below.

No.	Answer
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
TOTAL	

There are 10 questions in this section. For each question, state whether it is TRUE or FALSE and write your answer in the answer sheet provided in Page 2. Each question carries 2 marks.

- 1. If r_1 and r_2 are regular expressions, then r_1 - r_2 .
- 2. If L is any language over \sum , then $L^+ \subseteq L^*$.
- 3. Context free grammar is a subset of regular grammar and is obtained by placing restrictions on the form of the right-hand side of the rules.
- 4. The context-free grammar $S \rightarrow aS/bS/\lambda$ is equivalent to $(a+b)^*$.
- 5. The regular expression for the following finite automata is b*ab.

- 6. The language generated by the grammar $G=(\{S\}, \{a,b\}, \{S \rightarrow aSb / \lambda\}, S)$ is $\{a^n b^n / n \ge 0\}$.
- 7. String *aabbcc* can be obtained by the language $L = \{a^ib^ic^k \mid 0 \le i + k \le j\}$.
- 8. Consider the following context free grammar:

$$S \rightarrow aAbB$$

$$A \rightarrow aAb/\lambda$$

$$B \rightarrow c / cB$$

This grammar is a correct description of the language $\{a^ib^ic^k \mid i, j, k > 0, i = j\}$.

9. Given the machine, M. The language recognized by M is $\{w \in \{a, b\}^* \mid \text{every } a \text{ in } w \text{ is } followed by exactly two } b$?

10. A finite automata is **NOT** a good model of computer for regular expressions.

SECTION B: STRUCTURED QUESTIONS

(80 MARKS)

Part B consists of 9 structured questions. Answer all questions in the space provided. The marks for each part of the question is as indicated.

consisting of strip	ngs with an odd number of a's and an odd numbe	r of b 's. [6 Mark
		540.3.6
Given the TWO	regular expressions as shown below.	[10 Mark
	$r_1 = a^* + b^*$	
	$r_2 = ab^* + ba^* + b^*a + (a^*b)^*$	
Describe the lang	guages $m{r_1}$ and $m{r_2}$ using a simple English.	(4 r
Find a string corn	esponding to $oldsymbol{r_1}$ but not in $oldsymbol{r_2}$	(2 r
Find a string corr	esponding to both $oldsymbol{r_1}$ and $oldsymbol{r_2}$	(2 r

d.	Let say the r_1 is modified that contain the substring ab . Give a NEW regular expression for r_1	(2 m)
·.		Marks]
a.	All strings over {0,1} that contain the substring 00 or 11	(2 m)
b.	All strings over {0,1} that begin AND end with aa .	(2 m)
c.	All strings over {0,1} that except empty string	(2 m)
d.	All strings over {a,b} that a exists appears quadruple. This means, that every class contains 4 a's or 8 a's or 12 a's and so on.	ump of (2 m)

All strings over {a,b} that begin AND end with aa	(2 m
Let G be the grammar	[10 Mark
$S \rightarrow AB$	
$A \rightarrow aA \mid \lambda$ $B \rightarrow bB \mid bC$	
$C \rightarrow cC \mid \lambda$	
Give a regular expression for <i>L</i> (<i>G</i>)	(2 n
Construct leftmost derivations of the string <i>aaabbc</i>	(2 n
	(2 n
Construct leftmost derivations of the string <i>aaabbc</i>	

. <u>.</u>	or the deriv	vation	s from par	t (b) and (c) .	(4 m
(b)				(c)	
	n as showr	ı belo	w:	(c)	[10 Mark
Let M be a finite automator					[10 Mark
Let M be a finite automator	71, <i>92, 93,</i> 9	<i>[4], Σ</i>	= {a, b}, S	(c) $= q_0, F = \{q_3\}$	[10 Mark
Let M be a finite automator	η1, q2, q3, q	η4}, Σ a q ₁	$= \{a, b\}, S$ $\frac{b}{q_4}$		[10 Mark
Let M be a finite automator	<i>q1, q2, q3, q</i> δ q0 q1	η4}, Σ a q ₁ q ₂	$= \{a, b\}, S$ $\frac{b}{q_4}$ q_4		[10 Mark
Let M be a finite automator	71, q2, q3, q δ q0 q1 q2 q3	a q1 q2 q4 q3	= {a, b}, S b q4 q4 q3 q3		[10 Mark
Let M be a finite automator	<i>q₁, q₂, q₃, q</i> δ q ₀ q ₁ q ₂	η4}, Σ α q1 q2 q4	$= \{a, b\}, S$ $\frac{b}{q_4}$ q_4 q_3		[10 Mark

b. Give a regular expression for	the language accepted by <i>M</i> .	(2 m)
c. Trace the computations that p	process for strings <i>aaba</i> , <i>abab</i> and	1 <i>baab</i> (3 m)
aaba	abab	baab
d. Which of the strings in (c) are	e accepted by M?	(1 m)
Write grammar generating {x	$x^n y^{2n} : n \ge 0$	[4 Marks]
Given the state diagram finite	e automaton, <i>M</i>	[10 Marks]

Write a regul	lar grammar that genera	ites the language.	<i>L(M</i>).	(4 m)
		2 7 7	. , , , ,	(2)
race the con	mputation that process f	for strings <i>abab</i> a	and <i>aababb</i> .	(3 m)
	abab		aababb	
ive a deriva	ation tree in part (b).			(3 m)
l				

8. Given the pseudo-code in Table 1.

a.

[10 Marks]

Table 1. Pseudo-code

Write the state diagram of the automatic door	(4 m)

. Describe the state diagram in set notat	tion.			(3 m)
. Find the regular expression.				(3 m)
Let M be a finite automaton defined by	эу Q =	= { <i>q</i> 0, <i>q</i> 1, 0	q_2 }; $\Sigma = \{a, b\}$	$\{q_0 = q_0; F = \{q_0\}\}$
and transition function is:				[10 Marks
δ		<i>b</i>		
	q_1			
q_1	q_0	q 0 a0		
2-	7	40		
. Give a state diagram for M .				(2 m
Give a state diagram for <i>M</i> .				(2 m
. Give a state diagram for <i>M</i> .				(2 m

Trace	the computation that process	for strings ba, ab, abbb and baba.	(4 m
	ba	ab	
	abbb	baba	
Vhich			(1 m
Which	abbb of the strings in (b) are acce	baba epted by M ?	

Give a regular expression for the language accepted by <i>M</i> ?	(3 m)

- END OF QUESTIONS -