Graphs of Rational Functions

Date_____ Period____

For each function, identify the points of discontinuity, holes, intercepts, horizontal asymptote, domain, limit behavior at all vertical asymptotes, and end behavior asymptote. Then sketch the graph.

1)
$$f(x) = \frac{1}{x-3} + 3$$

2)
$$f(x) = -\frac{3}{x-2} - 2$$

3)
$$f(x) = \frac{x^2 - 4}{x^2 - 9}$$

4)
$$f(x) = \frac{2x^2 - 12x + 16}{x^2 - x - 12}$$

$$5) \ f(x) = \frac{x^2 + 2x - 3}{-3x - 6}$$

6)
$$f(x) = \frac{x^2 - x - 6}{x^2 - 2x - 8}$$

Graphs of Rational Functions

For each function, identify the points of discontinuity, holes, intercepts, horizontal asymptote, domain, limit behavior at all vertical asymptotes, and end behavior asymptote. Then sketch the graph.

1)
$$f(x) = \frac{1}{x-3} + 3$$

2)
$$f(x) = -\frac{3}{x-2} - 2$$

3)
$$f(x) = \frac{x^2 - 4}{x^2 - 9}$$

4)
$$f(x) = \frac{2x^2 - 12x + 16}{x^2 - x - 12}$$

5)
$$f(x) = \frac{x^2 + 2x - 3}{-3x - 6}$$

6)
$$f(x) = \frac{x^2 - x - 6}{x^2 - 2x - 8}$$

Create your own worksheets like this one with Infinite Precalculus. Free trial available at KutaSoftware.com