THE EQUAL VARIABLE METHOD

VASILE CÎRTOAJE

Department of Automation and Computers

University of Ploieşti Bucureşti 39, Romania.

EMail: vcirtoaje@upg-ploiesti.ro

Received: 01 March, 2006

Accepted: 17 April, 2006

Communicated by: P.S. Bullen

2000 AMS Sub. Class.: 26D10, 26D20.

Key words: Symmetric inequalities, Power means, EV-Theorem.

Abstract: The Equal Variable Method (called also n-1 Equal Variable Method on the

Mathlinks Site - Inequalities Forum) can be used to prove some difficult symmetric inequalities involving either three power means or, more general, two power

means and an expression of form $f(x_1) + f(x_2) + \cdots + f(x_n)$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 1 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Statement of results	3
2	Proofs	8
3	Applications	16

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 2 of 41

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Statement of results

In order to state and prove the Equal Variable Theorem (EV-Theorem) we require the following lemma and proposition.

Lemma 1.1. Let a, b, c be fixed non-negative real numbers, not all equal and at most one of them equal to zero, and let $x \le y \le z$ be non-negative real numbers such that

$$x + y + z = a + b + c$$
, $x^p + y^p + z^p = a^p + b^p + c^p$,

where $p \in (-\infty, 0] \cup (1, \infty)$. For p = 0, the second equation is xyz = abc > 0. Then, there exist two non-negative real numbers x_1 and x_2 with $x_1 < x_2$ such that $x \in [x_1, x_2]$. Moreover,

- 1. if $x = x_1$ and $p \le 0$, then 0 < x < y = z;
- 2. *if* $x = x_1$ *and* p > 1, *then either* $0 = x < y \le z$ *or* 0 < x < y = z;
- 3. if $x \in (x_1, x_2)$, then x < y < z;
- 4. if $x = x_2$, then x = y < z.

Proposition 1.2. Let a, b, c be fixed non-negative real numbers, not all equal and at most one of them equal to zero, and let $0 \le x \le y \le z$ such that

$$x + y + z = a + b + c$$
, $x^p + y^p + z^p = a^p + b^p + c^p$,

where $p \in (-\infty, 0] \cup (1, \infty)$. For p = 0, the second equation is xyz = abc > 0. Let f(u) be a differentiable function on $(0, \infty)$, such that $g(x) = f'\left(x^{\frac{1}{p-1}}\right)$ is strictly convex on $(0, \infty)$, and let

$$F_3(x, y, z) = f(x) + f(y) + f(z).$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44

>>

Page 3 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

- 1. If $p \le 0$, then F_3 is maximal only for 0 < x = y < z, and is minimal only for 0 < x < y = z;
- 2. If p > 1 and either f(u) is continuous at u = 0 or $\lim_{u \to 0} f(u) = -\infty$, then F_3 is maximal only for 0 < x = y < z, and is minimal only for either x = 0 or 0 < x < y = z.

Theorem 1.3 (Equal Variable Theorem (EV-Theorem)). Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed non-negative real numbers, and let $0 \le x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

 $x_1^p + x_2^p + \dots + x_n^p = a_1^p + a_2^p + \dots + a_n^p,$

where p is a real number, $p \neq 1$. For p = 0, the second equation is $x_1x_2 \cdots x_n = a_1a_2 \cdots a_n > 0$. Let f(u) be a differentiable function on $(0, \infty)$ such that

$$g(x) = f'\left(x^{\frac{1}{p-1}}\right)$$

is strictly convex on $(0, \infty)$, and let

$$F_n(x_1, x_2, \dots, x_n) = f(x_1) + f(x_2) + \dots + f(x_n).$$

- 1. If $p \le 0$, then F_n is maximal for $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal for $0 < x_1 \le x_2 = x_3 = \cdots = x_n$;
- 2. If p > 0 and either f(u) is continuous at u = 0 or $\lim_{u \to 0} f(u) = -\infty$, then F_n is maximal for $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Remark 1. Let $0 < \alpha < \beta$. If the function f is differentiable on (α, β) and the function $g(x) = f'\left(x^{\frac{1}{p-1}}\right)$ is strictly convex on $(\alpha^{p-1}, \beta^{p-1})$ or $(\beta^{p-1}, \alpha^{p-1})$, then the EV-Theorem holds true for $x_1, x_2, \ldots, x_n \in (\alpha, \beta)$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 4 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

By Theorem 1.3, we easily obtain some particular results, which are very useful in applications.

Corollary 1.4. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed non-negative numbers, and let $0 < x_1 < x_2 < \cdots < x_n$ such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

 $x_1^2 + x_2^2 + \dots + x_n^2 = a_1^2 + a_2^2 + \dots + a_n^2.$

Let f be a differentiable function on $(0, \infty)$ such that g(x) = f'(x) is strictly convex on $(0, \infty)$. Moreover, either f(x) is continuous at x = 0 or $\lim_{x \to 0} f(x) = -\infty$. Then,

$$F_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal for $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Corollary 1.5. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed positive numbers, and let $0 < x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}.$$

Let f be a differentiable function on $(0, \infty)$ such that $g(x) = f'\left(\frac{1}{\sqrt{x}}\right)$ is strictly convex on $(0, \infty)$. Then,

$$F_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal for $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal for $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

Page 5 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Corollary 1.6. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed positive numbers, and let $0 < x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1 x_2 + \dots + x_n = a_1 a_1 + \dots + a_n.$$

Let f be a differentiable function on $(0, \infty)$ such that $g(x) = f'(\frac{1}{x})$ is strictly convex on $(0, \infty)$. Then,

$$F_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal for $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal for $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Corollary 1.7. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed non-negative numbers, and let $0 \le x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

 $x_1^p + x_2^p + \dots + x_n^p = a_1^p + a_2^p + \dots + a_n^p,$

where p is a real number, $p \neq 0$ and $p \neq 1$.

- (a) For p < 0, $P = x_1 x_2 \cdots x_n$ is minimal when $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is maximal when $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.
- (b) For p > 0, $P = x_1 x_2 \cdots x_n$ is maximal when $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Corollary 1.8. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed non-negative numbers, let $0 \le x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

 $x_1^p + x_2^p + \dots + x_n^p = a_1^p + a_2^p + \dots + a_n^p,$

and let $E = x_1^q + x_2^q + \dots + x_n^q$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 6 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Case 1.
$$p \le 0 \ (p = 0 \text{ yields } x_1 x_2 \cdots x_n = a_1 a_2 \cdots a_n > 0).$$

- (a) For $q \in (p, 0) \cup (1, \infty)$, E is maximal when $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal when $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.
- (b) For $q \in (-\infty, p) \cup (0, 1)$, E is minimal when $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is maximal when $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Case 2. 0 .

- (a) For $q \in (0, p) \cup (1, \infty)$, E is maximal when $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.
- (b) For $q \in (-\infty, 0) \cup (p, 1)$, E is minimal when $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is maximal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Case 3. p > 1.

- (a) For $q \in (0,1) \cup (p,\infty)$, E is maximal when $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.
- (b) For $q \in (-\infty, 0) \cup (1, p)$, E is minimal when $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is maximal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Proofs

Proof of Lemma 1.1. Let $a \le b \le c$. Note that in the excluded cases a = b = c and a = b = 0, there is a single triple (x, y, z) which verifies the conditions

$$x + y + z = a + b + c$$
 and $x^p + y^p + z^p = a^p + b^p + c^p$.

Consider now three cases: p = 0, p < 0 and p > 1.

A. Case p=0 (xyz=abc>0). Let $S=\frac{a+b+c}{3}$ and $P=\sqrt[3]{abc}$, where S>P>0 by AM-GM Inequality. We have

$$x + y + z = 3S, \quad xyz = P^3,$$

and from $0 < x \le y \le z$ and x < z, it follows that 0 < x < P. Now let

$$f = y + z - 2\sqrt{yz}.$$

It is clear that $f \ge 0$, with equality if and only if y = z. Writing f as a function of x,

$$f(x) = 3S - x - 2P\sqrt{\frac{P}{x}},$$

we have

$$f'(x) = \frac{P}{x}\sqrt{\frac{P}{x}} - 1 > 0,$$

and hence the function f(x) is strictly increasing. Since f(P) = 3(S - P) > 0, the equation f(x) = 0 has a unique positive root x_1 , $0 < x_1 < P$. From $f(x) \ge 0$, it follows that $x \ge x_1$.

Sub-case $x = x_1$. Since $f(x) = f(x_1) = 0$ and f = 0 implies y = z, we have 0 < x < y = z.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44

>>

Page 8 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Sub-case $x > x_1$. We have f(x) > 0 and y < z. Consider now that y and z depend on x. From x + y(x) + z(x) = 3S and $x \cdot y(x) \cdot z(x) = P^3$, we get 1 + y' + z' = 0 and $\frac{1}{x} + \frac{y'}{x} + \frac{z'}{z} = 0$. Hence,

$$y'(x) = \frac{y(x-z)}{x(z-y)}, \quad z'(x) = \frac{z(y-x)}{x(z-y)}.$$

Since y'(x) < 0, the function y(x) is strictly decreasing. Since $y(x_1) > x_1$ (see subcase $x = x_1$), there exists $x_2 > x_1$ such that $y(x_2) = x_2$, y(x) > x for $x_1 < x < x_2$ and y(x) < x for $x > x_2$. Taking into account that $y \ge x$, it follows that $x_1 < x \le x_2$. On the other hand, we see that z'(x) > 0 for $x_1 < x < x_2$. Consequently, the function z(x) is strictly increasing, and hence $z(x) > z(x_1) = y(x_1) > y(x)$. Finally, we conclude that x < y < z for $x \in (x_1, x_2)$, and x = y < z for $x = x_2$.

B. Case p < 0. Denote $S = \frac{a+b+c}{3}$ and $R = \left(\frac{a^p+b^p+c^p}{3}\right)^{\frac{1}{p}}$. Taking into account that $x+y+z=3S, \quad x^p+y^p+z^p=3R^p,$

from $0 < x \le y \le z$ and x < z we get x < S and $3^{\frac{1}{p}}R < x < R$. Let

$$h = (y+z)\left(\frac{y^p + z^p}{2}\right)^{\frac{-1}{p}} - 2.$$

By the AM-GM Inequality, we have

$$h \ge 2\sqrt{yz} \frac{1}{\sqrt{yz}} - 2 = 0,$$

with equality if and only if y = z. Writing now h as a function of x,

$$h(x) = (3S - x) \left(\frac{3R^p - x^p}{2}\right)^{\frac{-1}{p}} - 2,$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 9 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

from

$$h'(x) = \frac{3R^p}{2} \left(\frac{3R^p - x^p}{2} \right)^{\frac{-1-p}{p}} \left[\left(\frac{S}{x} \right) \left(\frac{R}{x} \right)^{-p} - 1 \right] > 0$$

it follows that h(x) is strictly increasing. Since $h(x) \ge 0$ and $h\left(3^{\frac{1}{p}}R\right) = -2$, the equation h(x) = 0 has a unique root x_1 and $x \ge x_1 > 3^{\frac{1}{p}}R$.

Sub-case $x = x_1$. Since $f(x) = f(x_1) = 0$, and f = 0 implies y = z, we have 0 < x < y = z.

Sub-case $x > x_1$. We have h(x) > 0 and y < z. Consider now that y and z depend on x. From x+y(x)+z(x)=3S and $x^p+y(x)^p+z(x)^p=3R^p$, we get 1+y'+z'=0 and $x^{p-1}+y^{p-1}y'+z^{p-1}z'=0$, and hence

$$y'(x) = \frac{x^{p-1} - z^{p-1}}{z^{p-1} - y^{p-1}}, \quad z'(x) = \frac{x^{p-1} - y^{p-1}}{y^{p-1} - z^{p-1}}.$$

Since y'(x) > 0, the function y(x) is strictly decreasing. Since $y(x_1) > x_1$ (see subcase $x = x_1$), there exists $x_2 > x_1$ such that $y(x_2) = x_2$, y(x) > x for $x_1 < x < x_2$, and y(x) < x for $x > x_2$. The condition $y \ge x$ yields $x_1 < x \le x_2$. We see now that z'(x) > 0 for $x_1 < x < x_2$. Consequently, the function z(x) is strictly increasing, and hence $z(x) > z(x_1) = y(x_1) > y(x)$. Finally, we have x < y < z for $x \in (x_1, x_2)$ and x = y < z for $x = x_2$.

C. Case
$$p > 1$$
. Denoting $S = \frac{a+b+c}{3}$ and $R = \left(\frac{a^p+b^p+c^p}{3}\right)^{\frac{1}{p}}$ yields

By Jensen's inequality applied to the convex function $g(u) = u^p$, we have R > S,

x + y + z = 3S, $x^p + y^p + z^p = 3R^p$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

and hence x < S < R. Let

$$h = \frac{2}{y+z} \left(\frac{y^p + z^p}{2}\right)^{\frac{1}{p}} - 1.$$

By Jensen's Inequality, we get $h \ge 0$, with equality if only if y = z. From

$$h(x) = \frac{2}{3S - x} \left(\frac{3R^p - x^p}{2} \right)^{\frac{1}{p}} - 1$$

and

$$h'(x) = \frac{3}{(3S-x)^2} \left(\frac{3R^p - x^p}{2}\right)^{\frac{1-p}{p}} (R^p - Sx^{p-1}) > 0,$$

it follows that the function h(x) is strictly increasing, and $h(x) \ge 0$ implies $x \ge x_1$. In the case $h(0) \ge 0$ we have $x_1 = 0$, and in the case h(0) < 0 we have $x_1 > 0$ and $h(x_1) = 0$.

Sub-case $x = x_1$. If $h(0) \ge 0$, then $0 = x_1 < y(x_1) \le z(x_1)$. If h(0) < 0, then $h(x_1) = 0$, and since h = 0 implies y = z, we have $0 < x_1 < y(x_1) = z(x_1)$.

Sub-case $x > x_1$. Since h(x) is strictly increasing, for $x > x_1$ we have $h(x) > h(x_1) \ge 0$, hence h(x) > 0 and y < z. From x + y(x) + z(x) = 3S and $x^p + y^p(x) + z^p(x) = 3R^p$, we get

$$y'(x) = \frac{x^{p-1} - z^{p-1}}{z^{p-1} - y^{p-1}}, \quad z'(x) = \frac{y^{p-1} - x^{p-1}}{z^{p-1} - y^{p-1}}.$$

Since y'(x) < 0, the function y(x) is strictly decreasing. Taking account of $y(x_1) > x_1$ (see sub-case $x = x_1$), there exists $x_2 > x_1$ such that $y(x_2) = x_2$, y(x) > x for $x_1 < x < x_2$, and y(x) < x for $x > x_2$. The condition $y \ge x$ implies $x_1 < x \le x_2$. We see now that z'(x) > 0 for $x_1 < x < x_2$. Consequently, the function z(x) is

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>>

Page 11 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

strictly increasing, and hence $z(x) > z(x_1) \ge y(x_1) > y(x)$. Finally, we conclude that x < y < z for $x \in (x_1, x_2)$, and x = y < z for $x = x_2$.

Proof of Proposition 1.2. Consider the function

$$F(x) = f(x) + f(y(x)) + f(z(x))$$

defined on $x \in [x_1, x_2]$. We claim that F(x) is minimal for $x = x_1$ and is maximal for $x = x_2$. If this assertion is true, then by Lemma 1.1 it follows that:

- (a) F(x) is minimal for 0 < x = y < z in the case $p \le 0$, or for either x = 0 or 0 < x < y = z in the case p > 1;
- (b) F(x) is maximal for 0 < x = y < z.

In order to prove the claim, assume that $x \in (x_1, x_2)$. By Lemma 1.1, we have 0 < x < y < z. From

$$x + y(x) + z(x) = a + b + c$$
 and $x^p + y^p(x) + z^p(x) = a^p + b^p + c^p$,

we get

$$y' + z' = -1$$
, $y^{p-1}y' + z^{p-1}z' = -x^{p-1}$,

whence

$$y' = \frac{x^{p-1} - z^{p-1}}{z^{p-1} - y^{p-1}}, \quad z' = \frac{x^{p-1} - y^{p-1}}{y^{p-1} - z^{p-1}}.$$

It is easy to check that this result is also valid for p = 0. We have

$$F'(x) = f'(x) + y'f'(y) + z'f'(z)$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 12 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

and

$$\begin{split} \frac{F'(x)}{(x^{p-1}-y^{p-1})(x^{p-1}-z^{p-1})} \\ &= \frac{g(x^{p-1})}{(x^{p-1}-y^{p-1})(x^{p-1}-z^{p-1})} + \frac{g(y^{p-1})}{(y^{p-1}-z^{p-1})(y^{p-1}-x^{p-1})} \\ &\quad + \frac{g(z^{p-1})}{(z^{p-1}-x^{p-1})(z^{p-1}-y^{p-1})}. \end{split}$$

Since g is strictly convex, the right hand side is positive. On the other hand,

$$(x^{p-1} - y^{p-1})(x^{p-1} - z^{p-1}) > 0.$$

These results imply F'(x) > 0. Consequently, the function F(x) is strictly increasing for $x \in (x_1, x_2)$. Excepting the trivial case when p > 1, $x_1 = 0$ and $\lim_{u \to 0} f(u) = -\infty$, the function F(x) is continuous on $[x_1, x_2]$, and hence is minimal only for $x = x_1$, and is maximal only for $x = x_2$.

Proof of Theorem 1.3. We will consider two cases.

Case $p \in (-\infty,0] \cup (1,\infty)$. Excepting the trivial case when p>1, $x_1=0$ and $\lim_{u\to 0} f(u)=-\infty$, the function $F_n(x_1,x_2,\ldots,x_n)$ attains its minimum and maximum values, and the conclusion follows from Proposition 1.2 above, via contradiction. For example, let us consider the case $p\leq 0$. In order to prove that F_n is maximal for $0< x_1=x_2=\cdots=x_{n-1}\leq x_n$, we assume, for the sake of contradiction, that F_n attains its maximum at (b_1,b_2,\ldots,b_n) with $b_1\leq b_2\leq\cdots\leq b_n$ and $b_1< b_{n-1}$. Let x_1,x_{n-1},x_n be positive numbers such that $x_1+x_{n-1}+x_n=b_1+b_{n-1}+b_n$ and $x_1^p+x_{n-1}^p+x_n^p=b_1^p+b_{n-1}^p+b_n^p$. According to Proposition 1.2, the expression

$$F_3(x_1, x_{n-1}, x_n) = f(x_1) + f(x_{n-1}) + f(x_n)$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

→

Page 13 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

is maximal only for $x_1 = x_{n-1} < x_n$, which contradicts the assumption that F_n attains its maximum at (b_1, b_2, \ldots, b_n) with $b_1 < b_{n-1}$.

Case $p \in (0,1)$. This case reduces to the case p>1, replacing each of the a_i by $a_i^{\frac{1}{p}}$, each of the x_i by $x_i^{\frac{1}{p}}$, and then p by $\frac{1}{p}$. Thus, we obtain the sufficient condition that $h(x)=xf'\left(x^{\frac{1}{1-p}}\right)$ to be strictly convex on $(0,\infty)$. We claim that this condition is equivalent to the condition that $g(x)=f'\left(x^{\frac{1}{p-1}}\right)$ to be strictly convex on $(0,\infty)$. Actually, for our proof, it suffices to show that if g(x) is strictly convex on $(0,\infty)$, then h(x) is strictly convex on $(0,\infty)$. To show this, we see that $g\left(\frac{1}{x}\right)=\frac{1}{x}h(x)$. Since g(x) is strictly convex on $(0,\infty)$, by Jensen's inequality we have

$$ug\left(\frac{1}{x}\right) + vg\left(\frac{1}{y}\right) > (u+v)g\left(\frac{\frac{u}{x} + \frac{v}{y}}{u+v}\right)$$

for any x, y, u, v > 0 with $x \neq y$. This inequality is equivalent to

$$\frac{u}{x}h(x) + \frac{v}{y}h(y) > \left(\frac{u}{x} + \frac{v}{y}\right)h\left(\frac{u+v}{\frac{u}{x} + \frac{v}{y}}\right).$$

Substituting u = tx and v = (1 - t)y, where $t \in (0, 1)$, reduces the inequality to

$$th(x) + (1-t)h(y) > h(tx + (1-t)y),$$

which shows us that h(x) is strictly convex on $(0, \infty)$.

Proof of Corollary 1.7. We will apply Theorem 1.3 to the function $f(u) = p \ln u$. We see that $\lim_{u \to 0} f(u) = -\infty$ for p > 0, and

$$f'(u) = \frac{p}{u}, \quad g(x) = f'\left(x^{\frac{1}{p-1}}\right) = px^{\frac{1}{1-p}}, \quad g''(x) = \frac{p^2}{(1-p)^2}x^{\frac{2p-1}{1-p}}.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 14 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Since g''(x) > 0 for x > 0, the function g(x) is strictly convex on $(0, \infty)$, and the conclusion follows by Theorem 1.3.

Proof of Corollary 1.8. We will apply Theorem 1.3 to the function

$$f(u) = q(q-1)(q-p)u^q.$$

For p>0, it is easy to check that either f(u) is continuous at u=0 (in the case q>0) or $\lim_{u\to 0} f(u)=-\infty$ (in the case q<0). We have

$$f'(u) = q^{2}(q-1)(q-p)u^{q-1}$$

and

$$g(x) = f'\left(x^{\frac{1}{p-1}}\right) = q^2(q-1)(q-p)x^{\frac{q-1}{p-1}},$$
$$g''(x) = \frac{q^2(q-1)^2(q-p)^2}{(p-1)^2}x^{\frac{2p-1}{1-p}}.$$

Since g''(x) > 0 for x > 0, the function g(x) is strictly convex on $(0, \infty)$, and the conclusion follows by Theorem 1.3.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 15 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Applications

Proposition 3.1. Let x, y, z be non-negative real numbers such that x + y + z = 2. If $r_0 \le r \le 3$, where $r_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1.71$, then

$$x^{r}(y+z) + y^{r}(z+x) + z^{r}(x+y) \le 2.$$

Proof. Rewrite the inequality in the homogeneous form

$$x^{r+1} + y^{r+1} + z^{r+1} + 2\left(\frac{x+y+z}{2}\right)^{r+1} \ge (x+y+z)(x^r+y^r+z^r),$$

and apply Corollary 1.8 (case p = r and q = r + 1):

If $0 \le x \le y \le z$ such that

$$x + y + z = \text{constant}$$
 and $x^r + y^r + z^r = \text{constant}$,

then the sum $x^{r+1} + y^{r+1} + z^{r+1}$ is minimal when either x = 0 or $0 < x \le y = z$. Case x = 0. The initial inequality becomes

$$yz(y^{r-1} + z^{r-1}) \le 2,$$

where y + z = 2. Since $0 < r - 1 \le 2$, by the Power Mean inequality we have

$$\frac{y^{r-1} + z^{r-1}}{2} \le \left(\frac{y^2 + z^2}{2}\right)^{\frac{r-1}{2}}.$$

Thus, it suffices to show that

$$yz\left(\frac{y^2+z^2}{2}\right)^{\frac{r-1}{2}} \le 1.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

Page 16 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Taking account of

$$\frac{y^2+z^2}{2} = \frac{2(y^2+z^2)}{(y+z)^2} \ge 1$$
 and $\frac{r-1}{2} \le 1$,

we have

$$1 - yz \left(\frac{y^2 + z^2}{2}\right)^{\frac{r-1}{2}} \ge 1 - yz \left(\frac{y^2 + z^2}{2}\right)$$

$$= \frac{(y+z)^4}{16} - \frac{yz(y^2 + z^2)}{2}$$

$$= \frac{(y-z)^4}{16} \ge 0.$$

Case $0 < x \le y = z$. In the homogeneous inequality we may leave aside the constraint x + y + z = 2, and consider y = z = 1, $0 < x \le 1$. The inequality reduces to

$$\left(1 + \frac{x}{2}\right)^{r+1} - x^r - x - 1 \ge 0.$$

Since $\left(1+\frac{x}{2}\right)^{r+1}$ is increasing and x^r is decreasing in respect to r, it suffices to consider $r=r_0$. Let

$$f(x) = \left(1 + \frac{x}{2}\right)^{r_0 + 1} - x^{r_0} - x - 1.$$

We have

$$f'(x) = \frac{r_0 + 1}{2} \left(1 + \frac{x}{2} \right)^{r_0} - r_0 x^{r_0 - 1} - 1,$$
$$\frac{1}{r_0} f''(x) = \frac{r_0 + 1}{4} \left(1 + \frac{x}{2} \right)^{r_0} - \frac{r_0 - 1}{x^{2 - r_0}}.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

Page 17 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Since f''(x) is strictly increasing on (0,1], $f''(0_+) = -\infty$ and

$$\frac{1}{r_0}f''(1) = \frac{r_0 + 1}{4} \left(\frac{3}{2}\right)^{r_0} - r_0 + 1$$
$$= \frac{r_0 + 1}{2} - r_0 + 1 = \frac{3 - r_0}{2} > 0,$$

there exists $x_1 \in (0,1)$ such that $f''(x_1) = 0$, f''(x) < 0 for $x \in (0,x_1)$, and f''(x) > 0 for $x \in (x_1,1]$. Therefore, the function f'(x) is strictly decreasing for $x \in [0,x_1]$, and strictly increasing for $x \in [x_1,1]$. Since

$$f'(0) = \frac{r_0 - 1}{2} > 0$$
 and $f'(1) = \frac{r_0 + 1}{2} \left[\left(\frac{3}{2} \right)^{r_0} - 2 \right] = 0,$

there exists $x_2 \in (0, x_1)$ such that $f'(x_2) = 0$, f'(x) > 0 for $x \in [0, x_2)$, and f'(x) < 0 for $x \in (x_2, 1)$. Thus, the function f(x) is strictly increasing for $x \in [0, x_2]$, and strictly decreasing for $x \in [x_2, 1]$. Since f(0) = f(1) = 0, it follows that $f(x) \ge 0$ for $0 < x \le 1$, establishing the desired result.

For $x \le y \le z$, equality occurs when x = 0 and y = z = 1. Moreover, for $r = r_0$, equality holds again when x = y = z = 1.

Proposition 3.2 ([12]). Let x, y, z be non-negative real numbers such that xy + yz + zx = 3. If $1 < r \le 2$, then

$$x^{r}(y+z) + y^{r}(z+x) + z^{r}(x+y) \ge 6.$$

Proof. Rewrite the inequality in the homogeneous form

$$x^{r}(y+z) + y^{r}(z+x) + z^{r}(x+y) \ge 6\left(\frac{xy+yz+zx}{3}\right)^{\frac{r+1}{2}}$$
.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

For convenience, we may leave aside the constraint xy + yz + zx = 3. Using now the constraint x + y + z = 1, the inequality becomes

$$x^{r}(1-x) + y^{r}(1-y) + z^{r}(1-z) \ge 6\left(\frac{1-x^{2}-y^{2}-z^{2}}{6}\right)^{\frac{r+1}{2}}.$$

To prove it, we will apply Corollary 1.4 to the function $f(u) = -u^r(1-u)$ for 0 < u < 1. We have $f'(u) = -ru^{r-1} + (r+1)u^r$ and

$$g(x) = f'(x) = -rx^{r-1} + (r+1)x^r$$
, $g''(x) = r(r-1)x^{r-3}[(r+1)x + 2 - r]$.

Since g''(x) > 0 for x > 0, g(x) is strictly convex on $[0, \infty)$. According to Corollary 1.4, if $0 \le x \le y \le z$ such that x + y + z = 1 and $x^2 + y^2 + z^2 = \text{constant}$, then the sum f(x) + f(y) + f(z) is maximal for $0 \le x = y \le z$.

Thus, we have only to prove the original inequality in the case $x=y \le z$. This means, to prove that $0 < x \le 1 \le y$ and $x^2 + 2xz = 3$ implies

$$x^r(x+z) + xz^r \ge 3.$$

Let
$$f(x) = x^r(x+z) + xz^r - 3$$
, with $z = \frac{3-x^2}{2x}$.

Differentiating the equation $x^2 + 2xz = 3$ yields $z' = \frac{-(x+z)}{x}$. Then,

$$f'(x) = (r+1)x^r + rx^{r-1}z + z^r + (x^r + rxz^{r-1})z'$$
$$= (x^{r-1} - z^{r-1})[rx + (r-1)z] \le 0.$$

The function f(x) is strictly decreasing on [0,1], and hence $f(x) \ge f(1) = 0$ for $0 < x \le 1$. Equality occurs if and only if x = y = z = 1.

Proposition 3.3 ([5]). If x_1, x_2, \ldots, x_n are positive real numbers such that

$$x_1 + x_2 + \dots + x_n = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n},$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 19 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

then

$$\frac{1}{1+(n-1)x_1} + \frac{1}{1+(n-1)x_2} + \dots + \frac{1}{1+(n-1)x_n} \ge 1.$$

Proof. We have to consider two cases.

Case n=2. The inequality is verified as equality.

Case $n \ge 3$. Assume that $0 < x_1 \le x_2 \le \cdots \le x_n$, and then apply Corollary 1.5 to the function $f(u) = \frac{1}{1+(n-1)u}$ for u > 0. We have $f'(u) = \frac{-(n-1)}{[1+(n-1)u]^2}$ and

$$g(x) = f'\left(\frac{1}{\sqrt{x}}\right) = \frac{-(n-1)x}{(\sqrt{x}+n-1)^2},$$
$$g''(x) = \frac{3(n-1)^2}{2\sqrt{x}(\sqrt{x}+n-1)^4}.$$

Since g''(x) > 0, g(x) is strictly convex on $(0, \infty)$. According to Corollary 1.5, if $0 < x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = \text{constant}$$
 and
$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = \text{constant},$$

then the sum $f(x_1) + f(x_2) + \cdots + f(x_n)$ is minimal when $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Thus, we have to prove the inequality

$$\frac{1}{1 + (n-1)x} + \frac{n-1}{1 + (n-1)y} \ge 1,$$

under the constraints $0 < x \le 1 \le y$ and

$$x + (n-1)y = \frac{1}{x} + \frac{n-1}{y}$$
.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

◀

Page 20 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

The last constraint is equivalent to

$$(n-1)(y-1) = \frac{y(1-x^2)}{x(1+y)}.$$

Since

$$\frac{1}{1+(n-1)x} + \frac{n-1}{1+(n-1)y} - 1$$

$$= \frac{1}{1+(n-1)x} - \frac{1}{n} + \frac{n-1}{1+(n-1)y} - \frac{n-1}{n}$$

$$= \frac{(n-1)(1-x)}{n[1+(n-1)x]} - \frac{(n-1)^2(y-1)}{n[1+(n-1)y]}$$

$$= \frac{(n-1)(1-x)}{n[1+(n-1)x]} - \frac{(n-1)y(1-x^2)}{nx(1+y)[1+(n-1)y]},$$

we must show that

$$x(1+y)[1+(n-1)y] \ge y(1+x)[1+(n-1)x],$$

which reduces to

$$(y-x)[(n-1)xy-1] \ge 0.$$

Since $y - x \ge 0$, we have still to prove that

$$(n-1)xy > 1$$
.

Indeed, from $x + (n-1)y = \frac{1}{x} + \frac{n-1}{y}$ we get $xy = \frac{y + (n-1)x}{x + (n-1)y}$, and hence

$$(n-1)xy - 1 = \frac{n(n-2)x}{x + (n-1)y} > 0.$$

For $n \geq 3$, one has equality if and only if $x_1 = x_2 = \cdots = x_n = 1$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

← →

Page 21 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proposition 3.4 ([10]). Let a_1, a_2, \ldots, a_n be positive real numbers such that $a_1 a_2 \cdots a_n = 1$. If m is a positive integer satisfying $m \ge n - 1$, then

$$a_1^m + a_2^m + \dots + a_n^m + (m-1)n \ge m\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

Proof. For n=2 (hence $m \ge 1$), the inequality reduces to

$$a_1^m + a_2^m + 2m - 2 \ge m(a_1 + a_2).$$

We can prove it by summing the inequalities $a_1^m \ge 1 + m(a_1 - 1)$ and $a_2^m \ge 1 + m(a_2 - 1)$, which are straightforward consequences of Bernoulli's inequality. For $n \ge 3$, replacing a_1, a_2, \ldots, a_n by $\frac{1}{x_1}, \frac{1}{x_2}, \ldots, \frac{1}{x_n}$, respectively, we have to show that

$$\frac{1}{x_1^m} + \frac{1}{x_2^m} + \dots + \frac{1}{x_n^m} + (m-1)n \ge m(x_1 + x_2 + \dots + x_n)$$

for $x_1x_2\cdots x_n=1$. Assume $0< x_1\le x_2\le \cdots \le x_n$ and apply Corollary 1.8 (case p=0 and q=-m):

If $0 < x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = \text{constant}$$
 and $x_1 x_2 \dots x_n = 1$,

then the sum $\frac{1}{x_1^m} + \frac{1}{x_2^m} + \cdots + \frac{1}{x_n^m}$ is minimal when $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$. Thus, it suffices to prove the inequality for $x_1 = x_2 = \cdots = x_{n-1} = x \le 1$,

 $x_n = y$ and $x^{n-1}y = 1$, when it reduces to:

$$\frac{n-1}{x^m} + \frac{1}{y^m} + (m-1)n \ge m(n-1)x + my.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 22 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

By the AM-GM inequality, we have

$$\frac{n-1}{x^m} + (m-n+1) \ge \frac{m}{x^{n-1}} = my.$$

Then, we have still to show that

$$\frac{1}{y^m} - 1 \ge m(n-1)(x-1).$$

This inequality is equivalent to

$$x^{mn-m} - 1 - m(n-1)(x-1) \ge 0$$

and

$$(x-1)[(x^{mn-m-1}-1)+(x^{mn-m-2}-1)+\cdots+(x-1)] \ge 0.$$

The last inequality is clearly true. For n=2 and m=1, the inequality becomes equality. Otherwise, equality occurs if and only if $a_1=a_2=\cdots=a_n=1$.

Proposition 3.5 ([6]). Let x_1, x_2, \ldots, x_n be non-negative real numbers such that $x_1 + x_2 + \cdots + x_n = n$. If k is a positive integer satisfying $2 \le k \le n + 2$, and $r = \left(\frac{n}{n-1}\right)^{k-1} - 1$, then

$$x_1^k + x_2^k + \dots + x_n^k - n \ge nr(1 - x_1x_2 \cdots x_n).$$

Proof. If n=2, then the inequality reduces to $x_1^k+x_2^k-2 \ge (2^k-2)x_1x_2$. For k=2 and k=3, this inequality becomes equality, while for k=4 it reduces to $6x_1x_2(1-x_1x_2) \ge 0$, which is clearly true.

Consider now $n \geq 3$ and $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$. Towards proving the inequality, we will apply Corollary 1.7 (case p = k > 0): If $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

>>

44

+

Page 23 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

such that $x_1 + x_2 + \cdots + x_n = n$ and $x_1^k + x_2^k + \cdots + x_n^k = \text{constant}$, then the product $x_1 x_2 \cdots x_n$ is minimal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Case $x_1 = 0$. The inequality reduces to

$$x_2^k + \dots + x_n^k \ge \frac{n^k}{(n-1)^{k-1}},$$

with $x_2 + \cdots + x_n = n$, This inequality follows by applying Jensen's inequality to the convex function $f(u) = u^k$:

$$x_2^k + \dots + x_n^k \ge (n-1) \left(\frac{x_2 + \dots + x_n}{n-1} \right)^k$$
.

Case $0 < x_1 \le x_2 = x_3 = \cdots = x_n$. Denoting $x_1 = x$ and $x_2 = x_3 = \cdots = x_n = y$, we have to prove that for $0 < x \le 1 \le y$ and x + (n-1)y = n, the inequality holds:

$$x^{k} + (n-1)y^{k} + nrxy^{n-1} - n(r+1) \ge 0.$$

Write the inequality as $f(x) \ge 0$, where

$$f(x) = x^k + (n-1)y^k + nrxy^{n-1} - n(r+1), \text{ with } y = \frac{n-x}{n-1}.$$

We see that f(0) = f(1) = 0. Since $y' = \frac{-1}{n-1}$, we have

$$f'(x) = k(x^{k-1} - y^{k-1}) + nry^{n-2}(y - x)$$

$$= (y - x)[nry^{n-2} - k(y^{k-2} + y^{k-3}x + \dots + x^{k-2})]$$

$$= (y - x)y^{n-2}[nr - kg(x)],$$

where

$$g(x) = \frac{1}{y^{n-k}} + \frac{x}{y^{n-k+1}} + \dots + \frac{x^{k-2}}{y^{n-2}}.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 24 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Since the function $y(x) = \frac{n-x}{n-1}$ is strictly decreasing, the function g(x) is strictly increasing for $2 \le k \le n$. For k = n + 1, we have

$$g(x) = y + x + \frac{x^2}{y} + \dots + \frac{x^{n-1}}{y^{n-2}}$$
$$= \frac{(n-2)x + n}{n-1} + \frac{x^2}{y} + \dots + \frac{x^{n-1}}{y^{n-2}},$$

and for k = n + 2, we have

$$g(x) = y^{2} + yx + x^{2} + \frac{x^{3}}{y} + \dots + \frac{x^{n}}{y^{n-2}}$$

$$= \frac{(n^{2} - 3n + 3)x^{2} + n(n-3)x + n^{2}}{(n-1)^{2}} + \frac{x^{3}}{y} + \dots + \frac{x^{n}}{y^{n-2}}.$$

Therefore, the function g(x) is strictly increasing for $2 \le k \le n+2$, and the function

$$h(x) = nr - kg(x)$$

is strictly decreasing. Note that

$$f'(x) = (y - x)y^{n-2}h(x).$$

We assert that h(0) > 0 and h(1) < 0. If our claim is true, then there exists $x_1 \in (0,1)$ such that $h(x_1) = 0$, h(x) > 0 for $x \in [0,x_1)$, and h(x) < 0 for $x \in (x_1,1]$. Consequently, f(x) is strictly increasing for $x \in [0,x_1]$, and strictly decreasing for $x \in [x_1,1]$. Since f(0) = f(1) = 0, it follows that $f(x) \ge 0$ for $0 < x \le 1$, and the proof is completed.

In order to prove that h(0) > 0, we assume that $h(0) \le 0$. Then, h(x) < 0 for $x \in (0,1)$, f'(x) < 0 for $x \in (0,1)$, and f(x) is strictly decreasing for $x \in [0,1]$,

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 25 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

which contradicts f(0) = f(1). Also, if $h(1) \ge 0$, then h(x) > 0 for $x \in (0, 1)$, f'(x) > 0 for $x \in (0, 1)$, and f(x) is strictly increasing for $x \in [0, 1]$, which also contradicts f(0) = f(1).

For $n \ge 3$ and $x_1 \le x_2 \le \cdots \le x_n$, equality occurs when $x_1 = x_2 = \cdots = x_n = 1$, and also when $x_1 = 0$ and $x_2 = \cdots = x_n = \frac{n}{n-1}$.

Remark 2. For k = 2, k = 3 and k = 4, we get the following nice inequalities:

$$(n-1)(x_1^2 + x_2^2 + \dots + x_n^2) + nx_1x_2 \dots x_n \ge n^2,$$

$$(n-1)^2(x_1^3 + x_2^3 + \dots + x_n^3) + n(2n-1)x_1x_2 \dots x_n \ge n^3,$$

$$(n-1)^3(x_1^4 + x_2^4 + \dots + x_n^4) + n(3n^2 - 3n + 1)x_1x_2 \dots x_n \ge n^4.$$

Remark 3. The inequality for k = n was posted in 2004 on the Mathlinks Site - Inequalities Forum by Gabriel Dospinescu and Călin Popa.

Proposition 3.6 ([11]). Let x_1, x_2, \ldots, x_n be positive real numbers such that $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n} = n$. Then

$$x_1 + x_2 + \dots + x_n - n \le e_{n-1}(x_1 x_2 \dots x_n - 1),$$

where
$$e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1} < e$$
.

Proof. Replacing each of the x_i by $\frac{1}{a_i}$, the statement becomes as follows: If a_1, a_2, \ldots, a_n are positive numbers such that $a_1 + a_2 + \cdots + a_n = n$, then

$$a_1 a_2 \cdots a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} - n + e_{n-1} \right) \le e_{n-1}.$$

It is easy to check that the inequality holds for n=2. Consider now $n \geq 3$, assume that $0 < a_1 \leq a_2 \leq \cdots \leq a_n$ and apply Corollary 1.7 (case p=-1): If $0 < a_1 \leq a_2 \leq \cdots \leq a_n$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 26 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 $a_2 \le \cdots \le a_n$ such that $a_1 + a_2 + \cdots + a_n = n$ and $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = \text{constant}$, then the product $a_1 a_2 \cdots a_n$ is maximal when $0 < a_1 \le a_2 = a_3 = \cdots = a_n$.

Denoting $a_1 = x$ and $a_2 = a_3 = \cdots = a_n = y$, we have to prove that for $0 < x \le 1 \le y < \frac{n}{n-1}$ and x + (n-1)y = n, the inequality holds:

$$y^{n-1} + (n-1)xy^{n-2} - (n - e_{n-1})xy^{n-1} \le e_{n-1}.$$

Letting

$$f(x) = y^{n-1} + (n-1)xy^{n-2} - (n - e_{n-1})xy^{n-1} - e_{n-1}, \quad \text{with}$$
$$y = \frac{n-x}{n-1},$$

we must show that $f(x) \le 0$ for $0 < x \le 1$. We see that f(0) = f(1) = 0. Since $y' = \frac{-1}{n-1}$, we have

$$\frac{f'(x)}{y^{n-3}} = (y-x)[n-2 - (n-e_{n-1})y] = (y-x)h(x),$$

where

$$h(x) = n - 2 - (n - e_{n-1}) \frac{n - x}{n - 1}$$

is a linear increasing function.

Let us show that h(0) < 0 and h(1) > 0. If $h(0) \ge 0$, then h(x) > 0 for $x \in (0,1)$, hence f'(x) > 0 for $x \in (0,1)$, and f(x) is strictly increasing for $x \in [0,1]$, which contradicts f(0) = f(1). Also, $h(1) = e_{n-1} - 2 > 0$.

From h(0) < 0 and h(1) > 0, it follows that there exists $x_1 \in (0,1)$ such that $h(x_1) = 0$, h(x) < 0 for $x \in [0,x_1)$, and h(x) > 0 for $x \in (x_1,1]$. Consequently, f(x) is strictly decreasing for $x \in [0,x_1]$, and strictly increasing for $x \in [x_1,1]$. Since f(0) = f(1) = 0, it follows that $f(x) \le 0$ for $0 \le x \le 1$.

For $n \geq 3$, equality occurs when $x_1 = x_2 = \cdots = x_n = 1$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proposition 3.7 ([9]). If x_1, x_2, \ldots, x_n are positive real numbers, then

$$x_1^n + x_2^n + \dots + x_n^n + n(n-1)x_1x_2 \dots x_n$$

$$\geq x_1x_2 \dots x_n(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right).$$

Proof. For n=2, one has equality. Assume now that $n\geq 3,\, 0< x_1\leq x_2\leq \cdots \leq x_n$ and apply Corollary 1.8 (case p=0): If $0< x_1\leq x_2\leq \cdots \leq x_n$ such that

$$x_1 + x_2 + \dots + x_n = \text{constant}$$
 and $x_1 x_2 \cdots x_n = \text{constant}$,

then the sum $x_1^n + x_2^n + \cdots + x_n^n$ is minimal and the sum $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}$ is maximal when $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Thus, it suffices to prove the inequality for $0 < x_1 \le 1$ and $x_2 = x_3 = \cdots = x_n = 1$. The inequality becomes

$$x_1^n + (n-2)x_1 \ge (n-1)x_1^2$$

and is equivalent to

$$x_1(x_1-1)[(x_1^{n-2}-1)+(x_1^{n-3}-1)+\cdots+(x_1-1)] \ge 0,$$

which is clearly true. For $n \geq 3$, equality occurs if and only if $x_1 = x_2 = \cdots = x_n$.

Proposition 3.8 ([14]). If x_1, x_2, \ldots, x_n are non-negative real numbers, then

$$(n-1)(x_1^n + x_2^n + \dots + x_n^n) + nx_1x_2 \dots x_n$$

$$\geq (x_1 + x_2 + \dots + x_n)(x_1^{n-1} + x_2^{n-1} + \dots + x_n^{n-1}).$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 28 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Proof. For n=2, one has equality. For $n\geq 3$, assume that $0\leq x_1\leq x_2\leq \cdots \leq x_n$ and apply Corollary 1.8 (case p=n and q=n-1) and Corollary 1.7 (case p=n): If $0\leq x_1\leq x_2\leq \cdots \leq x_n$ such that

$$x_1 + x_2 + \dots + x_n = \text{constant}$$
 and $x_1^n + x_2^n + \dots + x_n^n = \text{constant}$,

then the sum $x_1^{n-1} + x_2^{n-1} + \cdots + x_n^{n-1}$ is maximal and the product $x_1 x_2 \cdots x_n$ is minimal when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

So, it suffices to consider the cases $x_1 = 0$ and $0 < x_1 \le x_2 = x_3 = \cdots = x_n$. Case $x_1 = 0$. The inequality reduces to

$$(n-1)(x_2^n + \dots + x_n^n) \ge (x_2 + \dots + x_n)(x_2^{n-1} + \dots + x_n^{n-1}),$$

which immediately follows by Chebyshev's inequality.

Case $0 < x_1 \le x_2 = x_3 = \cdots = x_n$. Setting $x_2 = x_3 = \cdots = x_n = 1$, the inequality reduces to:

$$(n-2)x_1^n + x_1 \ge (n-1)x_1^{n-1}.$$

Rewriting this inequality as

$$x_1(x_1-1)[x_1^{n-3}(x_1-1)+x_1^{n-4}(x_1^2-1)+\cdots+(x_1^{n-2}-1)] \ge 0,$$

we see that it is clearly true. For $n \ge 3$ and $x_1 \le x_2 \le \cdots \le x_n$ equality occurs when $x_1 = x_2 = \cdots = x_n$, and for $x_1 = 0$ and $x_2 = \cdots = x_n$.

Proposition 3.9 ([8]). If $x_1, x_2, ..., x_n$ are positive real numbers, then

$$(x_1 + x_2 + \dots + x_n - n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} - n \right) + x_1 x_2 \dots x_n + \frac{1}{x_1 x_2 \dots x_n} \ge 2.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 29 of 41

Go Back Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. For n = 2, the inequality reduces to

$$\frac{(1-x_1)^2(1-x_2)^2}{x_1x_2} \ge 0.$$

For $n \geq 3$, assume that $0 < x_1 \leq x_2 \leq \cdots \leq x_n$. Since the inequality preserves its form by replacing each number x_i with $\frac{1}{x_i}$, we may consider $x_1x_2\cdots x_n \geq 1$. So, by the AM-GM inequality we get

$$x_1 + x_2 + \dots + x_n - n \ge n \sqrt[n]{x_1 x_2 \cdots x_n} - n \ge 0,$$

and we may apply Corollary 1.8 (case p=0 and q=-1): If $0 \le x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \dots + x_n = \text{constant}$$
 and $x_1 x_2 \cdots x_n = \text{constant},$

then the sum $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}$ is minimal when $0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$. According to this statement, it suffices to consider $x_1 = x_2 = \cdots = x_{n-1} = x$ and $x_n = y$, when the inequality reduces to

$$((n-1)x + y - n)\left(\frac{n-1}{x} + \frac{1}{y} - n\right) + x^{n-1}y + \frac{1}{x^{n-1}y} \ge 2,$$

or

$$\left(x^{n-1} + \frac{n-1}{x} - n\right)y + \left[\frac{1}{x^{n-1}} + (n-1)x - n\right]\frac{1}{y} \ge \frac{n(n-1)(x-1)^2}{x}.$$

Since

$$x^{n-1} + \frac{n-1}{x} - n = \frac{x-1}{x} [(x^{n-1} - 1) + (x^{n-2} - 1) + \dots + (x-1)]$$
$$= \frac{(x-1)^2}{x} [x^{n-2} + 2x^{n-3} + \dots + (n-1)]$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 30 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and

$$\frac{1}{x^{n-1}} + (n-1)x - n = \frac{(x-1)^2}{x} \left[\frac{1}{x^{n-2}} + \frac{2}{x^{n-3}} + \dots + (n-1) \right],$$

it is enough to show that

$$[x^{n-2} + 2x^{n-3} + \dots + (n-1)]y + \left[\frac{1}{x^{n-2}} + \frac{2}{x^{n-3}} + \dots + (n-1)\right] \frac{1}{y} \ge n(n-1).$$

This inequality is equivalent to

$$\left(x^{n-2}y + \frac{1}{x^{n-2}y} - 2\right) + 2\left(x^{n-3}y + \frac{1}{x^{n-3}y} - 2\right) + \dots + (n-1)\left(y + \frac{1}{y} - 2\right) \ge 0,$$

or

$$\frac{(x^{n-2}y-1)^2}{x^{n-2}y} + \frac{2(x^{n-3}y-1)^2}{x^{n-3}y} + \dots + \frac{(n-1)(y-1)^2}{y} \ge 0,$$

which is clearly true. Equality occurs if and only if n-1 of the numbers x_i are equal to 1. \blacksquare

Proposition 3.10 ([15]). If $x_1, x_2, ..., x_n$ are non-negative real numbers such that $x_1 + x_2 + \cdots + x_n = n$, then

$$(x_1x_2\cdots x_n)^{\frac{1}{\sqrt{n-1}}}(x_1^2+x_2^2+\cdots+x_n^2)\leq n.$$

Proof. For n=2, the inequality reduces to $2(x_1x_2-1)^2 \ge 0$. For $n \ge 3$, assume that $0 \le x_1 \le x_2 \le \cdots \le x_n$ and apply Corollary 1.7 (case p=2): If $0 \le x_1 \le x_2 \le \cdots \le x_n$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 31 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 $x_2 \le \cdots \le x_n$ such that $x_1 + x_2 + \cdots + x_n = n$ and $x_1^2 + x_2^2 + \cdots + x_n^2 = \text{constant}$, then the product $x_1 x_2 \cdots x_n$ is maximal when $0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$.

Consequently, it suffices to show that the inequality holds for $x_1 = x_2 = \cdots = x_{n-1} = x$ and $x_n = y$, where $0 \le x \le 1 \le y$ and (n-1)x + y = n. Under the circumstances, the inequality reduces to

$$x^{\sqrt{n-1}}y^{\frac{1}{\sqrt{n-1}}}[(n-1)x^2 + y^2] \le n.$$

For x = 0, the inequality is trivial. For x > 0, it is equivalent to $f(x) \le 0$, where

$$f(x) = \sqrt{n-1} \ln x + \frac{1}{\sqrt{n-1}} \ln y + \ln[(n-1)x^2 + y^2] - \ln n,$$

with $y = n - (n-1)x$.

We have y' = -(n-1) and

$$\frac{f'(x)}{\sqrt{n-1}} = \frac{1}{x} - \frac{1}{y} + \frac{2\sqrt{n-1}(x-y)}{(n-1)x^2 + y^2} = \frac{(y-x)(\sqrt{n-1}x - y)^2}{xy[(n-1)x^2 + y^2]} \ge 0.$$

Therefore, the function f(x) is strictly increasing on (0,1] and hence $f(x) \le f(1) = 0$. Equality occurs if and only if $x_1 = x_2 = \cdots = x_n = 1$.

Remark 4. For n = 5, we get the following nice statement:

If a, b, c, d, e are positive real numbers such that $a^2 + b^2 + c^2 + d^2 + e^2 = 5$, then

$$abcde(a^4 + b^4 + c^4 + d^4 + e^4) \le 5.$$

Proposition 3.11 ([4]). Let x, y, z be non-negative real numbers such that xy + yz + zx = 3, and let

$$p \ge \frac{\ln 9 - \ln 4}{\ln 3} \approx 0.738.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Then,

$$x^p + y^p + z^p \ge 3.$$

Proof. Let $r = \frac{\ln 9 - \ln 4}{\ln 3}$. By the Power-Mean inequality, we have

$$\frac{x^p + y^p + z^p}{3} \ge \left(\frac{x^r + y^r + z^r}{3}\right)^{\frac{p}{r}}.$$

Thus, it suffices to show that

$$x^r + y^r + z^r \ge 3.$$

Let $x \le y \le z$. We consider two cases.

Case x=0. We have to show that $y^r+z^r\geq 3$ for yz=3. Indeed, by the AM-GM inequality, we get

$$y^r + z^r \ge 2(yz)^{r/2} = 2 \cdot 3^{r/2} = 3.$$

Case x>0. The inequality $x^r+y^r+z^r\geq 3$ is equivalent to the homogeneous inequality

$$x^{r} + y^{r} + z^{r} \ge 3\left(\frac{xyz}{3}\right)^{\frac{r}{2}} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^{\frac{r}{2}}.$$

Setting $x = a^{\frac{1}{r}}$, $y = b^{\frac{1}{r}}$, $z = c^{\frac{1}{r}}$ $(0 < a \le b \le c)$, the inequality becomes

$$a+b+c \ge 3\left(\frac{abc}{3}\right)^{\frac{1}{2}}\left(a^{\frac{-1}{r}}+b^{\frac{-1}{r}}+c^{\frac{-1}{r}}\right)^{\frac{r}{2}}.$$

Towards proving this inequality, we apply Corollary 1.8 (case $p=0, q=\frac{-1}{r}$): If $0 < a \le b \le c$ such that a+b+c= constant and abc= constant, then the sum $a^{\frac{-1}{r}}+b^{\frac{-1}{r}}+c^{\frac{-1}{r}}$ is maximal when 0 < a < b = c.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 33 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

So, it suffices to prove the inequality for $0 < a \le b = c$; that is, to prove the homogeneous inequality in x, y, z for $0 < x \le y = z$. Without loss of generality, we may leave aside the constraint xy + yz + zx = 3, and consider y = z = 1 and $0 < x \le 1$. The inequality reduces to

$$x^r + 2 \ge 3\left(\frac{2x+1}{3}\right)^{\frac{r}{2}}$$
.

Denoting

$$f(x) = \ln \frac{x^r + 2}{3} - \frac{r}{2} \ln \frac{2x + 1}{3},$$

we have to show that $f(x) \ge 0$ for $0 < x \le 1$. The derivative

$$f'(x) = \frac{rx^{r-1}}{x^r + 2} - \frac{r}{2x+1} = \frac{r(x - 2x^{1-r} + 1)}{x^{1-r}(x^r + 2)(2x+1)}$$

has the same sign as $g(x) = x - 2x^{1-r} + 1$. Since $g'(x) = 1 - \frac{2(1-r)}{x^r}$, we see that g'(x) < 0 for $x \in (0, x_1)$, and g'(x) > 0 for $x \in (x_1, 1]$, where $x_1 = (2 - 2r)^{1/r} \approx 0.416$. The function g(x) is strictly decreasing on $[0, x_1]$, and strictly increasing on $[x_1, 1]$. Since g(0) = 1 and g(1) = 0, there exists $x_2 \in (0, 1)$ such that $g(x_2) = 0$, g(x) > 0 for $x \in [0, x_2)$ and g(x) < 0 for $x \in (x_2, 1)$. Consequently, the function f(x) is strictly increasing on $[0, x_2]$ and strictly decreasing on $[x_2, 1]$. Since f(0) = f(1) = 0, we have $f(x) \geq 0$ for $0 < x \leq 1$, establishing the desired result.

Equality occurs for x=y=z=1. Additionally, for $p=\frac{\ln 9 - \ln 4}{\ln 3}$ and $x \leq y \leq z$, equality holds again for x=0 and $y=z=\sqrt{3}$.

Proposition 3.12 ([7]). Let x, y, z be non-negative real numbers such that x+y+z=3, and let $p \ge \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2} \approx 0.29$. Then,

$$x^p + y^p + z^p \ge xy + yz + zx.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Proof. For $p \ge 1$, by Jensen's inequality we have

$$x^{p} + y^{p} + z^{p} \ge 3\left(\frac{x+y+z}{3}\right)^{p}$$
$$= 3 = \frac{1}{3}(x+y+z)^{2} \ge xy + yz + zx.$$

Assume now p < 1. Let $r = \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2}$ and $x \le y \le z$. The inequality is equivalent to the homogeneous inequality

$$2(x^{p} + y^{p} + z^{p})\left(\frac{x+y+z}{3}\right)^{2-p} + x^{2} + y^{2} + z^{2} \ge (x+y+z)^{2}.$$

By Corollary 1.8 (case 0 and <math>q = 2), if $x \le y \le z$ such that x + y + z = constant and $x^p + y^p + z^p =$ constant, then the sum $x^2 + y^2 + z^2$ is minimal when either x = 0 or $0 < x \le y = z$.

Case x=0. Returning to our original inequality, we have to show that $y^p+z^p \ge yz$ for y+z=3. Indeed, by the AM-GM inequality, we get

$$y^{p} + z^{p} - yz \ge 2(yz)^{\frac{p}{2}} - yz$$

$$= (yz)^{\frac{p}{2}} [2 - (yz)^{\frac{2-p}{2}}]$$

$$\ge (yz)^{\frac{p}{2}} \left[2 - \left(\frac{y+z}{2}\right)^{2-p} \right]$$

$$= (yz)^{\frac{p}{2}} \left[2 - \left(\frac{3}{2}\right)^{2-p} \right]$$

$$\ge (yz)^{\frac{p}{2}} \left[2 - \left(\frac{3}{2}\right)^{2-r} \right] = 0.$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>

Page 35 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Case $0 < x \le y = z$. In the homogeneous inequality, we may leave aside the constraint x + y + z = 3, and consider y = z = 1 and $0 < x \le 1$. Thus, the inequality reduces to

$$(x^p+2)\left(\frac{x+2}{3}\right)^{2-p} \ge 2x+1.$$

To prove this inequality, we consider the function

$$f(x) = \ln(x^p + 2) + (2 - p) \ln \frac{x + 2}{3} - \ln(2x + 1).$$

We have to show that $f(x) \ge 0$ for $0 < x \le 1$ and $r \le p < 1$. We have

$$f'(x) = \frac{px^{p-1}}{x^p + 2} + \frac{2-p}{x+2} - \frac{2}{2x+1} = \frac{2g(x)}{x^{1-p}(x^p + 2)(2x+1)},$$

where

$$g(x) = x^{2} + (2p - 1)x + p + 2(1 - p)x^{2-p} - (p + 2)x^{1-p},$$

and

$$g'(x) = 2x + 2p - 1 + 2(1-p)(2-p)x^{1-p} - (p+2)(1-p)x^{-p},$$

$$g''(x) = 2 + 2(1-p)^2(2-p)x^{-p} + p(p+2)(1-p)x^{-p-1}.$$

Since g''(x) > 0, the first derivative g'(x) is strictly increasing on (0,1]. Taking into account that $g'(0+) = -\infty$ and $g'(1) = 3(1-p) + 3p^2 > 0$, there is $x_1 \in (0,1)$ such that $g'(x_1) = 0$, g'(x) < 0 for $x \in (0,x_1)$ and g'(x) > 0 for $x \in (x_1,1]$. Therefore, the function g(x) is strictly decreasing on $[0,x_1]$ and strictly increasing on $[x_1,1]$. Since g(0) = p > 0 and g(1) = 0, there is $x_2 \in (0,x_1)$ such that $g(x_2) = 0$, g(x) > 0 for $x \in [0,x_2)$ and g(x) < 0 for $x \in (x_2,1]$. We have also $f'(x_2) = 0$,

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44 >>>

Page 36 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

f'(x) > 0 for $x \in (0, x_2)$ and f'(x) < 0 for $x \in (x_2, 1]$. According to this result, the function f(x) is strictly increasing on $[0, x_2]$ and strictly decreasing on $[x_2, 1]$. Since

$$f(0) = \ln 2 + (2 - p) \ln \frac{2}{3} \ge \ln 2 + (2 - r) \ln \frac{2}{3} = 0$$

and f(1) = 0, we get $f(x) \ge \min\{f(0), f(1)\} = 0$.

Equality occurs for x=y=z=1. Additionally, for $p=\frac{\ln 9-\ln 8}{\ln 3-\ln 2}$ and $x\leq y\leq z$, equality holds again when x=0 and $y=z=\frac{3}{2}$.

Proposition 3.13 ([8]). If x_1, x_2, \ldots, x_n $(n \ge 4)$ are non-negative numbers such that $x_1 + x_2 + \cdots + x_n = n$, then

$$\frac{1}{n+1-x_2x_3\cdots x_n} + \frac{1}{n+1-x_3x_4\cdots x_1} + \cdots + \frac{1}{n+1-x_1x_2\cdots x_{n-1}} \le 1.$$

Proof. Let $x_1 \leq x_2 \leq \cdots \leq x_n$ and $e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1}$. By the AM-GM inequality, we have

$$x_2 \cdots x_n \le \left(\frac{x_2 + \cdots + x_n}{n-1}\right)^{n-1} \le \left(\frac{x_1 + x_2 + \cdots + x_n}{n-1}\right)^{n-1} = e_{n-1}.$$

Hence

$$n+1-x_2x_3\cdots x_n \ge n+1-e_{n-1} > 0$$
,

and all denominators of the inequality are positive.

Case $x_1 = 0$. It is easy to show that the inequality holds.

Case $x_1 > 0$. Suppose that $x_1 x_2 \cdots x_n = (n+1)r = \text{constant}, r > 0$. The inequality becomes

$$\frac{x_1}{x_1 - r} + \frac{x_2}{x_2 - r} + \dots + \frac{x_n}{x_n - r} \le n + 1,$$

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

or

$$\frac{1}{x_1 - r} + \frac{1}{x_2 - r} + \dots + \frac{1}{x_n - r} \le \frac{1}{r}.$$

By the AM-GM inequality, we have

$$(n+1)r = x_1x_2 \cdots x_n \le \left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)^n = 1,$$

hence $r \leq \frac{1}{n+1}$. From $x_n < x_1 + x_2 + \dots + x_n = n < n+1 \leq \frac{1}{r}$, we get $x_n < \frac{1}{r}$. Therefore, we have $r < x_i < \frac{1}{r}$ for all numbers x_i .

We will apply now Corollary 1.6 to the function $f(u) = \frac{-1}{u-r}$, u > r. We have $f'(u) = \frac{1}{(u-r)^2}$ and

$$g(x) = f'\left(\frac{1}{x}\right) = \frac{x^2}{(1-rx)^2}, \quad g''(x) = \frac{4rx+2}{(1-rx)^4}.$$

Since g''(x) > 0, g(x) is strictly convex on $\left(r, \frac{1}{r}\right)$. According to Corollary 1.6, if $0 \le x_1 \le x_2 \le \cdots \le x_n$ such that for $x_1 + x_2 + \cdots + x_n = \text{constant}$ and $x_1x_2\cdots x_n = \text{constant}$, then the sum $f(x_1) + f(x_2) + \cdots + f(x_n)$ is minimal when $x_1 \le x_2 = x_3 = \cdots = x_n$. Thus, to prove the original inequality, it suffices to consider the case $x_1 = x$ and $x_2 = x_3 = \cdots = x_n = y$, where $0 < x \le 1 \le y$ and x + (n-1)y = n. We leave ending the proof to the reader.

Remark 5. The inequality is a particular case of the following more general statement:

Let $n \ge 3$, $e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1}$, $k_n = \frac{(n-1)e_{n-1}}{n-e_{n-1}}$ and let a_1, a_2, \dots, a_n be nonnegative numbers such that $a_1 + a_2 + \dots + a_n = n$.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

Page 38 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

(a) If $k \geq k_n$, then

$$\frac{1}{k - a_2 a_2 \cdots a_n} + \frac{1}{k - a_3 a_4 \cdots a_1} + \dots + \frac{1}{k - a_1 a_2 \cdots a_{n-1}} \le \frac{n}{k - 1};$$

(b) If $e_{n-1} < k < k_n$, then

$$\frac{1}{k - a_2 a_3 \cdots a_n} + \frac{1}{k - a_3 a_4 \cdots a_1} + \dots + \frac{1}{k - a_1 a_2 \cdots a_{n-1}} \le \frac{n-1}{k} + \frac{1}{k - e_{n-1}}.$$

Finally, we mention that many other applications of the EV-Method are given in the book [2].

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

44

Page 39 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] V. CÎRTOAJE, A generalization of Jensen's inequality, *Gazeta Matematică A*, **2** (2005), 124–138.
- [2] V. CÎRTOAJE, *Algebraic Inequalities Old and New Methods*, GIL Publishing House, Romania, 2006.
- [3] V. CÎRTOAJE, Two generalizations of Popoviciu's Inequality, *Crux Math.*, **31**(5) (2005), 313–318.
- [4] V. CÎRTOAJE, Solution to problem 2724 by Walther Janous, *Crux Math.*, **30**(1) (2004), 44–46.
- [5] V. CÎRTOAJE, Problem 10528, A.M.M, **103**(5) (1996), 428.
- [6] V. CÎRTOAJE, *Mathlinks site*, http://www.mathlinks.ro/Forum/viewtopic.php?t=123604, Dec 10, 2006.
- [7] V. CÎRTOAJE, *Mathlinks site*, http://www.mathlinks.ro/Forum/viewtopic.php?t=56732, Oct 19, 2005.
- [8] V. CÎRTOAJE, *Mathlinks site*, http://www.mathlinks.ro/Forum/viewtopic.php?t=18627, Jan 29, 2005.
- [9] V. CÎRTOAJE, *Mathlinks site*, http://www.mathlinks.ro/Forum/viewtopic.php?t=14906, Aug 04, 2004.
- [10] V. CÎRTOAJE, *Mathlinks site*, http://www.mathlinks.ro/Forum/viewtopic.php?t=19076, Nov 2, 2004.
- [11] V. CÎRTOAJE, *Mathlinks site*, http://www.mathlinks.ro/Forum/viewtopic.php?t=21613, Feb 15, 2005.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

>>

Page 40 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

- [12] W. JANOUS AND V. CÎRTOAJE, Two solutions to problem 2664, *Crux Math.*, **29**(5) (2003), 321–323.
- [13] D.S. MITRINOVIC, J.E. PECARIC AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer, 1993.
- [14] J. SURANYI, Miklos Schweitzer Competition-Hungary. http://www.mathlinks.ro/Forum/viewtopic.php?t=14008, Jul 11, 2004.
- [15] http://www.mathlinks.ro/Forum/viewtopic.php?t=36346,
 May 10, 2005.
- [16] http://www.mathlinks.ro/Forum/viewtopic.php?p= 360537, Nov 2, 2005.

Equal Variable Method

Vasile Cîrtoaje

vol. 8, iss. 1, art. 15, 2007

Title Page

Contents

>>

Page 41 of 41

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756