

## 优良估计量三个常用准则

<u>无偏性(没有</u>系统误差,消除随机误差,即 $E(\hat{\theta}) = \theta$ )和 <u>有效性(无偏性下,</u>控制随机误差大小,即 $D(\hat{\theta}_1)$ )都是<u>固定样本容量n</u>:

 $\overline{X}$ 和 $S^2$ 分别是 $\mu$ (总体均值)和 $\sigma^2$ (总体方差)的最小方差无偏估计。

$$\mu$$
已知, $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}$ 是 $\sigma^{2}$ 的无偏估计; $M_{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$ 不是 $\sigma^{2}$ 的无偏估计;

相合性是样本容量在变化,较大时(无无偏性的要求):

$$\lim_{n\to\infty} P\{|\hat{\theta}-\theta|<\varepsilon\}=1$$
 即 $\hat{\theta}\to\theta$  满足无偏性情况下,证明可借助*Chebyshev*不等式  $\overline{X}$  是 $\mu$ 的相合估计;  $S^2$  和 $M_2$  都是 $\sigma^2$ 的相合估计

 $\overline{X}$ 和 $S^2$ 分别是 $\mu$ 和 $\sigma^2$ 的最小方差无偏和相合估计.



### ₹ 相合性:不满足无偏性情况下,无法用Chebyshev不等式不等式

$$\lim_{n\to\infty} P\{\left|\hat{\theta}-\theta\right|\geq\varepsilon\}=0\quad\text{of }\hat{\theta}-\theta\to0$$

设 $\varphi$ 是(0,∞)上的严格正值增函数, $\varphi$ (u) =  $\varphi$ (-u),

$$E[\varphi(X)] < \infty$$
,则对每个 $u > 0$ :  $P\{|X| \ge u\} \le \frac{E[\varphi(X)]}{\varphi(u)}$ .

比如教材: 
$$P\{\left|M_2 - \sigma^2\right| \ge \varepsilon\} \le \frac{E[(M_2 - \sigma^2)^2]}{\varepsilon^2} = \frac{2n-1}{n^2 \varepsilon^2} \sigma^4 \stackrel{n \to \infty}{\to} 0$$

统计推断三个方面:

抽样分布(精确分布);

参数估计; (已知分布类型)

假设检验。

参数估计 点估计

区间估计

矩估计

极大似然估计

2页 教师: 彭江艳



则: $M_2 - \sigma^2 \xrightarrow{P} 0$ 

# 区间估计 (双侧)

$$P\{\hat{\theta}_{1}(X_{1},...,X_{n}) \le \theta \le \hat{\theta}_{2}(X_{1},...,X_{n})\} = 1-\alpha$$

则称随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 为 $\theta$ 的置信度为 $1-\alpha$ 的置信区间.

1-α又称置信系数或置信概率或置信水平

 $\alpha$ 又称显著性水平,通常取值为0.01, 0.05.

注: 反复抽多次, 每个样本值确定一个区间, 这些区间中要么包含 待估参数的真值,要么不包含待估参数的真值,按伯努利大数定律, 其中包含待估参数的真值占(1-α)%, 不包含待估参数真值仅占α%.

难点和重点: 由样本 $X_1,...,X_n$ 确定两个统计量:  $\hat{\theta}_2 = \hat{\theta}_2(X_1,...,X_n)$  $\widehat{\theta}_1 = \widehat{\theta}_1(X_1,...,X_n)$ 

Neyman 在置信度达到一定要求前提下,寻求精确度尽 原则: 可能高的区间估计,平均长度尽可能短.

3页区间估计的优点与缺点(与点估计比较)



## 置信区间的枢轴变量法(寻找置信区间的步骤):

- 1) 选取待估参数 $\theta$  的估计量; 原则:优良性准则; 常用:  $\overline{X} \to \mu$ ,
- $S^2 \rightarrow \sigma^2$ 2) 建立枢轴变量 构造关于待估参数  $\theta$  和样本的函数 $W(X_1, X_2, ..., X_n, \theta)$ , 其中W不含任何其他未知参数, W 称为枢轴变量(不是统计量).

枢轴变量W的要求: 1.为待估参数 $\theta$ 的连续、严格单调函数;

2. 枢轴变量W通常具有经典分布

(主要有: 正态、 $\chi^2$ 、T、F分布), 分布与 $\theta$  无关;  $U = \frac{\bar{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$  3. <u>尽量包含已经信息</u>,如<u>均值或者方差信息</u>.

例如:

$$U = \frac{\bar{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1)$$

3) 根据W的分布,查上侧分位数 $w_{1-a/2}$ 和 $w_{a/2}$ (Neyman原则),则

$$P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1-\alpha = P\{A(X_1,...,X_n) \le \theta \le B(X_1,...,X_n)\}$$

4) 改写不等式, 其中A、B是不含未知参数的统计量.

上面工作过程的关键是构造枢轴变量W,并以它为轴心,由

 $a \le W \le b$  旋转出所需不等式 $A \le \theta \le B$ .



1. 随机变量
$$X$$
的 $E(X)$ , $D(X)$ 存在,且 $D(X) > 0$ ,则 $X^* = \frac{X - E(X)}{\sqrt{D(X)}}$ 

样本:  $(X_1, X_2, \dots, X_n)$ 

$$E(X^*) = 0, D(X^*) = 1$$

(1)  $X_i$ 与总体X相同分布; (2)  $X_1, X_2, ..., X_n$ 相互独立.

如果矩存在的话: $E(X_i^k) = E(X^k)$ ,

$$E(X_i) = E(X), D(X_i) = D(X)$$

$$E[X_i - E(X_i)]^k = E[X - E(X)]^k$$

$$E(\overline{X}_n) = E(X) \qquad D(\overline{X}_n) = \frac{1}{n}D(X) \qquad \Leftarrow \overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$$

$$D\left(\overline{X}_n\right) = \frac{1}{n}D(X)$$

$$\Leftarrow \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

 $\overline{X}$ 和 $S^2$ 分别是 $\mu$ (总体均值)和 $\sigma^2$ (总体方差)的最小方差无偏估计。

$$\mu$$
已知, $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$ 是 $\sigma^2$ 的无偏估计; $M_2=\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2$ 不是 $\sigma^2$ 的无偏估计;

统计学中最常用的公式

$$(1)\sum_{i}(X_{i}-\overline{X})=0;$$

$$(1)\sum_{i=1}^{n}(X_{i}-\overline{X})=0;$$
  $(2)\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}=\sum_{i=1}^{n}X_{i}^{2}-n\overline{X}^{2}$ (计算多用右式)

## 复习: 抽样分布定理(正态总体的统计量分布)

定理6.2.4 设 $X_1, X_2, ..., X_n$ 是正态总体 $X \sim N(\mu, \sigma^2)$ 的样本,

 $X,S^2$ 分别是样本均值和样本方差,则

(1) 
$$\overline{X}$$
与 $S^2$ 相互独立;  $\Leftrightarrow \sum_{i=1}^n (\frac{X_i - \overline{X}}{\sigma})^2 \sim \chi^2(n-1);$   $(2) \frac{X - \mu}{\sigma/\sqrt{n}} \sim N(0,1);$ 

$$(3)\frac{n-1}{\sigma^{2}}S^{2} \sim \chi^{2}(n-1); \sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma}^{2} \sim \chi^{2}(n); (4)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$
定理6.2.5: 设正态总体 X 与 Y 相互独立,

$$(1)F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

(2) 
$$rac{1}{2} = \sigma_2^2 rac{1}{2}$$
,  $T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ 

思考: $\sigma_1^2 \neq \sigma_2^2$ 时的情况?提示:  $n_1 = n_2$ (成对抽取)





区间估计(双侧) 
$$X \sim N(\mu, \sigma^2)$$
  $P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1-\alpha$ 

| 被估<br>参数   | 条件             | 枢轴变量                                                                               | 原则:选取最简单的优良估计量                                                                   | 优良估计量 原则:无偏、 |  |
|------------|----------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|--|
| $\mu$      | 已知 $\sigma^2$  | $oldsymbol{U} = rac{\overline{X} - \sigma}{\sigma/\sqrt{\sqrt{\gamma}}}$          | 有效、相合<br><del>X</del>                                                            |              |  |
| μ          | 未知 $\sigma^2$  | $T = \frac{\overline{X} - \overline{S}}{S/\sqrt{S}}$                               | $ar{m{X}}$                                                                       |              |  |
| $\sigma^2$ | 已知<br><i>µ</i> | $\frac{n}{\sigma^2} \cdot \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 =$                | $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$                                           |              |  |
| $\sigma^2$ | 未知<br>μ        | $\frac{(n-1)}{\sigma^2} \cdot S^2 = \sum_{i=1}^n \left( \frac{1}{2} \right)^{n-1}$ | $S^{2}$ $= \frac{1}{n-1} \sum_{i=1}^{n} \left( X_{i} - \overline{X} \right)^{2}$ |              |  |



- 一、单个正态总体:  $X\sim N(\mu,\sigma^2)$
- 1.  $\mu$  的估计 1) 已知 $\sigma = \sigma_0$

$$U = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1)$$

$$P\{-u_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \leq u_{\alpha/2}\} = 1 - \alpha \implies [\overline{X} - \frac{\sigma_0}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\alpha/2}]$$

2) 
$$\sigma^2$$
未知:
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$\left| P\{-t_{\alpha/2}(n-1) \leq \frac{\overline{X} - \mu}{S/\sqrt{n}} \leq t_{\alpha/2}(n-1)\} = 1 - \alpha \right|$$

$$\left[\overline{X} - t_{\alpha/2}(n-1) \bullet \frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2}(n-1) \bullet \frac{S}{\sqrt{n}}\right]$$









一、单个正态总体:  $X\sim N(\mu,\sigma^2)$ 

2. 
$$\sigma^2$$
 的估计 1)  $\mu$  已知:  $\chi^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{n}{\sigma^2} \cdot \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$ 

$$P\{\chi_{1-\alpha/2}^{2}(n) \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \leq \chi_{\alpha/2}^{2}(n)\} = 1 - \alpha$$

$$\begin{bmatrix} \frac{\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi^{2}_{\alpha/2}(n)}, \frac{\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi^{2}_{1-\alpha/2}(n)} \end{bmatrix}$$

2) 
$$\mu$$
未知:
$$\chi^2 = \frac{n-1}{\sigma^2} S^2 \Leftrightarrow \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1);$$

$$P\{\chi_{1-\alpha/2}^{2}(n-1) \leq \frac{n-1}{\sigma^{2}}S^{2} \leq \chi_{\alpha/2}^{2}(n-1)\} = 1-\alpha$$

$$[(n-1)S^2/\chi^2_{\alpha/2}(n-1),(n-1)S^2/\chi^2_{1-\alpha/2}(n-1)]$$





区间估计(双侧) 
$$X \sim N(\mu, \sigma^2)$$
  $P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1-\alpha$ 

| 被估参数       | 条件                | 枢轴变量                                                                                                                                                                                                                                       | 置信区间                                                                                      |
|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| μ          | 已<br>知 $\sigma^2$ | $U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ $[\overline{X} - \frac{\sigma_0}{\sqrt{n}} u]$                                                                                                                              | $[\sigma_{\alpha/2}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\alpha/2}]$              |
| μ          | 未<br>知σ²          | $T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$ $[\overline{X} - t_{\alpha/2}(n-1) \bullet \frac{S}{\sqrt{n}}]$                                                                                                                  | $[\cdot,\overline{X}+t_{\alpha/2}(n-1)\bullet\frac{S}{\sqrt{n}}]$                         |
| $\sigma^2$ | 已<br>知 $\mu$      | $\frac{n}{\sigma^2} \cdot \frac{1}{n} \sum_{i=1}^n \left( X_i - \mu \right)^2 = \sum_{i=1}^n \left( \frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)  \left[ \frac{\sum_{i=1}^n \left( X_i - \mu \right)^2}{\chi^2_{\alpha/2}} \right]^2$ | $\frac{\mu^{2}}{\mu^{2}}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi^{2}_{1-\alpha/2}(n)}$ |
| $\sigma^2$ | 未<br>知 <i>µ</i>   | $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1) \left[ (n-1)S^2 / \chi^2_{\alpha/2} \right]^{(n-1)}$                                                                           | $(n-1), (n-1)S^2/\chi^2_{1-\alpha/2}$                                                     |



零件长度的方差 例: 从自动机床加工的同类零件中任取16件 测得长度值为(单位: mm)

| 12.15 | 12.12 | 12.01 | 12.28 | 12.09 | 12.16 | 12.03 | 12.01 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 12.06 | 12.13 | 12.07 | 12.11 | 12.08 | 12.01 | 12.03 | 12.06 |

求方差的估计值和置信区间( $\alpha$ =0.05).

解: 设零件长度为X,可认为X 服从正态分布.

$$\overline{x} = \frac{1}{16} \sum_{i=1}^{16} x_i = 12.08, \quad \sum_{i=1}^{16} (x_i - \overline{x})^2 = 0.0761$$

$$s^{2} = \frac{1}{15} \sum_{i=1}^{16} (x_{i} - \overline{x})^{2} = 0.005$$

$$s^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right) = \frac{1}{15} \left( \sum_{i=1}^{16} x_{i}^{2} - 16\overline{x}^{2} \right)$$





求方差的置信区间:

由于 $\mu$ 未知, $S^2$ 是 $\sigma^2$ 的优良估计, 选取枢轴变量:

$$\chi^2 = \frac{n-1}{\sigma^2} S^2 \sim \chi^2 (n-1)$$

相应的置信区间为:

$$P\{\chi_{1-\alpha/2}^{2}(n-1) \leq \frac{n-1}{\sigma^{2}}S^{2} \leq \chi_{\alpha/2}^{2}(n-1)\} = 1-\alpha$$

$$\left[ (n-1) S^{2} / \chi_{\alpha/2}^{2}(n-1), (n-1) S^{2} / \chi_{1-\alpha/2}^{2}(n-1) \right]$$





$$[(n-1)S^2/\chi^2_{\alpha/2}(n-1),(n-1)S^2/\chi^2_{1-\alpha/2}(n-1)]$$

查火2分布表可得:

$$\chi^{2}_{\alpha/2}(n-1) = \chi^{2}_{0.025}(15) = 27.488$$

$$\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(15) = 6.262$$

$$\sigma^2$$
 的一个区间估计为:  $\left[\frac{0.0761}{27.488}, \frac{0.0761}{6.26}\right]$  即 [0.002768,0.012]

## 注:该区间不一定包含 $\sigma$ .

比较:  $\sigma^2$  的点估计值为  $s^2=0.005$ 

$$s^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right) = \frac{1}{15} \left( \sum_{i=1}^{16} x_{i}^{2} - 16\overline{x}^{2} \right)$$





## 脉搏次数的估计

例2、某人自测每分钟脉搏次数,测得如下数据(15项):

71,72,64,68,60,79,61,66,72,73,56,82,70,66,71

试以95%的置信度估计脉搏次数平均值及方差的置信区间

解:假定每分钟脉搏数X服从正态分布,则  $X\sim N(\mu,\sigma^2)$ 

(1) 需估计 $\mu$ , 而 $\sigma^2$  未知:  $\alpha = 0.05$ , n = 15,

取 
$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$
 有  $t_{0.025}(14) = \underline{2.145}$ ,

有 
$$t_{0.025}(14)=2.145$$
,

$$\begin{bmatrix} \overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) \end{bmatrix} \qquad \therefore \overline{x} \approx 68.73,$$

$$s^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right) \qquad \therefore s \approx 6.91$$

平均脉搏次数的一个置信区间为:[64.90,72.56].





脉搏次数的估计

例2、某人自测每分钟脉搏次数,测得如下数据(15项):

71,72,64,68,60,79,61,66,72,73,56,82,70,66,71

试以95%的置信度估计脉搏次数平均值及方差的置信区间

(2) 需估计 $\sigma^2$ ,而  $\mu$  未知

取 
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

有 
$$\chi^2_{0.025}(14) = 26.119$$
,  $\chi^2_{0.975}(14) = 5.629$ ,

$$[(n-1)S^2/\chi_{\alpha/2}^2(n-1),(n-1)S^2/\chi_{1-\alpha/2}^2(n-1)]$$

$$14 \times S^2 = 668.47$$

 $: \sigma$ 的一个置信区间为: [25.59, 118.76]





# 两个正态总体的情况

- 实际中存在这样的问题:
- 已知产品的某一指标服从正态分布,但由于原料、设备条件、操作人员不同,或工艺过程的改变等因素的影响,而引起总体均值、方差的改变。
- 我们要考察这些变化的大小,这就涉及两个正态总体均值差或方差比的估计问题。
- 设有两个正态总体  $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ ,样本均值和方差分别为  $\bar{X}, \bar{Y}, S_1^2, S_2^2$





- 二、两个正态总体:  $X\sim N(\mu_1,\sigma_1^2)$ ,  $Y\sim N(\mu_2,\sigma_2^2)$ 
  - 1.  $\mu_1$   $\mu_2$  的估计 总体均值差的置信区间的含义是:
  - •若 $\mu_1$   $\mu_2$  的置信下限大于零,则可认为  $\mu_1 > \mu_2$ ;

若 $\mu_1$ -  $\mu_2$  的置信上限小于零,则可认为  $\mu_1 < \mu_2$ .

2.  $\sigma_2^2/\sigma_1^2$ 的估计

### 总体方差的置信区间的含义是:

•若 $\sigma_2^2/\sigma_1^2$ 的置信下限大于1,则可认为  $\sigma_2^2>\sigma_1^2$ ;若 $\sigma_2^2/\sigma_1^2$ 的置信上限小于1,则可认为  $\sigma_2^2<\sigma_1^2$ .

## 复习: 抽样分布定理(正态总体的统计量分布)

定理6.2.4 设 $X_1, X_2, ..., X_n$ 是正态总体 $X \sim N(\mu, \sigma^2)$ 的样本,

 $X,S^2$ 分别是样本均值和样本方差,则

(1)
$$\overline{X}$$
与 $S^2$ 相互独立;  $\Leftrightarrow \sum_{i=1}^{n} (\frac{X_i - \overline{X}}{\sigma})^2 \sim \chi^2(n-1);$  (2) $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1);$ 

$$(3)\frac{n-1}{\sigma^{2}}S^{2} \sim \chi^{2}(n-1); \sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma}^{2} \sim \chi^{2}(n); (4)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$
定理6.2.5: 设正态总体 X 与 Y 相互独立,

$$(1)F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

(2) 
$$rac{1}{2} = \sigma_2^2 rac{1}{2}$$
,  $T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ 

思考: $\sigma_1^2 \neq \sigma_2^2$ 时的情况?提示:  $n_1 = n_2$ (成对抽取)





| 被估参数<br>                                                                   | 条件                                                      | 枢轴变量                                                                                                                                                                                                                                                                              | 优良估计量                                                                                                   |
|----------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\mu_1 - \mu_2$                                                            | 已知 $\sigma_1^2$ 与 $\sigma_2^2$                          | $U = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$                                                                                                                            | $\overline{X} - \overline{Y}$                                                                           |
| $\mu_1 - \mu_2$                                                            | 未知 $\sigma_1^2$ 和 $\sigma_2^2(\sigma_1^2 = \sigma_2^2)$ | $\frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_1 - \mu_2\right)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$                                                                                                                                              | $ar{X} - ar{Y}$                                                                                         |
| $egin{array}{c} oldsymbol{\sigma}_2^2 \ oldsymbol{\sigma}_1^2 \end{array}$ | 未知 $\mu_1$ 和 $\mu_2$                                    | $\frac{\left \frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{2}^{2}/\sigma_{2}^{2}}\right }{\frac{\sum_{i=1}^{n_{1}}\left(\frac{X_{i}-\overline{X}}{\sigma_{1}}\right)^{2}/n_{1}-1}{\sum_{j=1}^{n_{2}}\left(\frac{Y_{j}-\overline{Y}}{\sigma_{2}}\right)^{2}/n_{2}-1} \sim F(n_{1}-1,n_{2}-1)$ |                                                                                                         |
| $oldsymbol{\sigma_2^2}{oldsymbol{\sigma_1^2}}$ 19页数师                       | 已知 $\mu_1$ 和 $\mu_2$                                    | $\frac{\sum\limits_{i=1}^{n_1} \left(\frac{X_i - \mu_1}{\sigma_1}\right)^2 / n_1}{\sum\limits_{j=1}^{n_2} \left(\frac{Y_j - \mu_2}{\sigma_2}\right)^2 / n_2} \sim F(n_1, n_2)$                                                                                                    | $\frac{\frac{1}{n_2} \sum_{j=1}^{n_2} (Y_j - \mu_2)^2}{\frac{1}{n_1} \sum_{i=1}^{n_1} (X_i - \mu_1)^2}$ |



**1.**  $\mu_1 - \mu_2$ 的区间估计

1) 
$$\sigma_1^2$$
和 $\sigma_2^2$ 已知:  $\overline{X} \sim N(\mu_1, \frac{\sigma_1^2}{n_1}), \overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_2})$  (相互独立)   
线性函数 $Z = \overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$  
$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(\mathbf{0}, \mathbf{1})$$
  $\overline{X} - \overline{Y}$  为 $\mu_1 - \mu_2$  优良估计量

$$P\{-u_{\underline{\alpha}} \leq \frac{(\overline{X} - \overline{Y}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \leq u_{\underline{\alpha}}\} = 1 - \alpha$$

$$[\overline{X} - \overline{Y} - u_{\underline{\alpha}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \overline{X} - \overline{Y} + u_{\underline{\alpha}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}]$$

I I I I



- **1.**  $\mu_1 \mu_2$ 的区间估计
- 2)  $\sigma_1^2$  和  $\sigma_2^2$  未知,  $\sigma_1^2 = \sigma_2^2 = \sigma_2^2$

$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$

X - Y为 $\mu_1 - \mu_2$ 优良估计量

$$T = \frac{(X - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$\sharp \div , S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

$$P\{-t_{\frac{\alpha}{2}}(n_1+n_2-2) \le \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \le t_{\frac{\alpha}{2}}(n_1+n_2-2)\} = 1-\alpha$$

$$\left[\overline{X} - \overline{Y} - t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \overline{X} - \overline{Y} + t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$$









2.  $\frac{\sigma_2^2}{\sigma_1^2}$  的区间估计

或者
$$F = \frac{\frac{1}{n_1 - 1}}{\frac{1}{n_2 - 1}} \cdot \frac{\sum_{i=1}^{n_1} \left(\frac{X_i}{\sigma_1}\right)}{\sum_{j=1}^{n_2} \left(\frac{Y_j - \overline{Y}}{\sigma_2}\right)^2}$$

2. 
$$\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}$$
 的区间估计  
1)  $\mu_{1}$ 、 $\mu_{2}$ 未知 或者 $F = \frac{1}{\frac{n_{1}-1}{1}} \cdot \frac{\sum_{i=1}^{n_{1}} \left(\frac{X_{i}-\overline{X}}{\sigma_{1}}\right)^{2}}{\frac{1}{n_{2}-1}}$   $\frac{\left(\frac{n_{1}-1}{S_{1}^{2}}\right)^{2}}{\sum_{j=1}^{n_{2}} \left(\frac{Y_{j}-\overline{Y}}{\sigma_{2}}\right)^{2}}$   $F = \frac{\frac{(n_{1}-1)S_{1}^{2}}{\sigma_{1}^{2}}}{\frac{(n_{2}-1)S_{2}^{2}}{\sigma_{2}^{2}}} / (n_{2}-1)$   $\frac{\sigma_{2}^{2}}{\sigma_{2}^{2}} \cdot \frac{S_{1}^{2}}{S_{2}^{2}} \sim F(n_{1}-1,n_{2}-1)$   $\sigma_{2}^{2} \cdot S_{1}^{2}$ 

$$P\{F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1) \le \frac{\sigma_2^2}{\sigma_1^2} \cdot \frac{S_1^2}{S_2^2} \le F_{\frac{\alpha}{2}}(n_1-1,n_2-1)\} = 1-\alpha$$

$$\left[\begin{array}{c} S_{2}^{2} \\ \overline{S_{1}^{2}} \cdot F_{1-\frac{\alpha}{2}}(n_{1}-1,n_{2}-1), \frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{\frac{\alpha}{2}}(n_{1}-1,n_{2}-1) \end{array}\right]$$





- 2.  $\frac{\sigma_2^2}{\sigma_1^2}$  的区间估计
- 2) 已知μ 与μ2

$$\frac{n_1}{\sigma_1} \frac{1}{n_1} \sum_{i=1}^{n_1} \left( X_i - \mu_1 \right)^2 \sim \chi^2(n_1), \quad \frac{n_2}{\sigma_2} \frac{1}{n_2} \sum_{i=1}^{n_2} \left( Y_i - \mu_2 \right)^2 \sim \chi^2(n_2)$$

$$F = \frac{\frac{1}{n_1}}{\frac{1}{n_2}} \cdot \frac{\sum_{i=1}^{n_1} \left(\frac{X_i - \mu_1}{\sigma_1}\right)^2}{\sum_{j=1}^{n_2} \left(\frac{Y_j - \mu_2}{\sigma_2}\right)^2} \sim F(n_1, n_2)$$





## 两稻种产量的期望差的置信区间

例3: 甲、乙两种稻种分别种在<u>10块</u>试验田中,每块田中甲、 乙稻种各种一半. 假设两种稻种产量X、Y服从正态分布, 且方差相等.

10块田中的产量如下表 (单位:公斤),求两稻种产量的期望差  $\mu_1$ - $\mu_2$  的置信区间( $\alpha$ =0.05).

| 甲 | 140 | 137 | 136 | 140 | 145 | 148 | 140 | 135 | 144 | 141 |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 乙 | 135 | 118 | 115 | 140 | 128 | 131 | 130 | 115 | 121 | 125 |

解: 设
$$X \sim N(\mu_1, \sigma_1^2)$$
,  $T = Y \sim N(\mu_2, \sigma_2^2)$ ,  $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 

要估计 $\mu_1$ -  $\mu_2$ , 取枢轴变量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$



解: 设 $X \sim N(\mu_1, \sigma_1^2)$ ,  $Y \sim N(\mu_2, \sigma_2^2)$ ,  $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 

要估计μ1-μ2, 取枢轴变量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中,
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

由样本表可计算得:

$$\overline{x} = 140.6$$
  $s_1^2 = 16.933$   $n_1 = 10$ 

 $\overline{y} = 126.8$   $s_2^2 = 71.956$   $n_2 = 10$ 



从而,
$$S_w = \sqrt{\frac{9 \times 16.933 + 9 \times 71.956}{18}} = 6.667$$

查t 分布表得: t<sub>0.025</sub>(18)= 2.1009

可得两稻种产量期望差的置信度为95%的置信区间为:

$$\left[\overline{X} - \overline{Y} - t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \overline{X} - \overline{Y} - t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$$

可得两稻种产量期望差的一个区间估计为:

$$\left[140.6-126.8-2.1009\times6.667\sqrt{\frac{2}{10}},140.6-126.8-2.1009\times6.667\sqrt{\frac{2}{10}}\right]$$

即 [7.536, 20.064]





 $\partial X_1, X_2, \cdots, X_n$ 为来自<u>泊松分布总体</u>  $P(\lambda)$ 

的样本, 求参数 $\lambda$ 的置信度为 $1-\alpha$ 的置信区间.

解:由于泊松分布 $P(\lambda)$ 的数学期望和方差都是 $\lambda$ .

由中心极限定理, 当n足够大时

$$\left(\sum_{i=1}^{n} X_{i} - n\lambda\right) / \sqrt{n\lambda}$$
 近似地服从 $N(0,1)$ ,

所以有
$$P\left\{-u_{\frac{\alpha}{2}} \leq \frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{n\lambda}} \leq u_{\frac{\alpha}{2}}\right\} \approx 1 - \alpha$$
等价于  $P\{A \leq \lambda \leq B\} \approx 1 - \alpha$ 





其中, A和B是下列二次方程的两个根,

$$\left(\sum_{i=1}^n X_i - n\lambda\right)^2 = n\lambda u_{\alpha/2}^2$$

即

$$A = \overline{X} + \frac{1}{2n} u_{\frac{\alpha}{2}}^2 - u_{\frac{\alpha}{2}} \sqrt{\frac{\overline{X}}{n}} + \frac{1}{4n^2} u_{\frac{\alpha}{2}}^2,$$

$$B = \overline{X} + \frac{1}{2n} u_{\frac{\alpha}{2}}^2 + u_{\frac{\alpha}{2}} \sqrt{\frac{\overline{X}}{n}} + \frac{1}{4n^2} u_{\frac{\alpha}{2}}^2.$$

故得到 $\lambda$ 的置信区间为[A,B], 置信度近似地为 $1-\alpha$ .







## 三、大样本方法构造置信区间(非正态总体)

大样本方法就是本质上这是利用<u>近似分布代替</u> 精确分布以构造近似置信区间.

其主要思想是中心极限定理. 利用<u>极限分布确</u> 定枢轴变量的分布, 进而构造出置信区间.

称为大样本区间估计

在统计学中,一个统计方法如果依据的是有关变量的精确分布,不论样本容量多大都称为小样本方法 (n为固定的).

而一个统计方法如果是基于有关变量的极限分 $\pi(n\to\infty)$ ,则称这个方法是大样本方法.



# 四、单侧置信区间

前面讨论的区间估计问题,其置信区间都有两个有限的端点,这样的置信区间称为双侧置信区间.

在有些实际问题中,我们常常关心的是未知参数 至少有多大(例如设备、元件的使用寿命等), 或者是未知参数<u>至多是多少(</u>例如产品的不合格品率、 杂质含量等,

这就引出了只有一个有限端点的<u>单侧置信区</u>间概念.



定义:设 $X_1, X_2, \dots, X_n$ 是来自某个总体的样本,

总体分布包含未知参数 $\theta$ .  $\hat{\theta_1}(X_1,\cdots,X_n)$ 和 $\hat{\theta_2}(X_1,\cdots,X_n)$ 

是 $\theta$ 的统计量. 如果对 $\theta$ 的一切可能取值,有

$$P\{\widehat{\theta}_1(X_1, X_2, \dots, X_n) \leq \theta\} = 1 - \alpha$$

则称随机区间[ $\hat{\theta}_1$ , +∞]为参数 $\theta$ 的置信度为1- $\alpha$ 的单侧置信区间.  $\hat{\theta}_1$ 称为<u>单侧置信下限</u>.

$$P\{\widehat{\theta}_{2}(X_{1},X_{2},\cdots,X_{n})\geq\theta\}=1-\alpha$$

则称随机区间 $[-\infty, \hat{\theta}_2]$ 为参数 $\theta$ 的置信度为 $1-\alpha$ 的单侧置信区间.  $\hat{\theta}_2$ 称为<u>单侧置信上限</u>.





$$P\{\frac{n-1}{\sigma^2}S^2 > \underbrace{\chi^2_{1-\alpha}(n-1)}\} = 1 - \alpha \qquad \Rightarrow P\{\frac{n-1}{\chi^2_{1-\alpha}(n-1)}S^2 > \sigma^2\} = 1 - \alpha$$

$$\{\frac{1}{\sigma^2}S^2 > \frac{\chi^2_{1-\alpha}(n-1)}{2}\} = 1-\alpha \qquad \Rightarrow P\{\frac{1}{\chi^2_{1-\alpha}(n-1)}S^2 > \sigma^2\} = 1-\alpha$$

或

$$P\left\{\frac{n-1}{\sigma^2}S^2 < \chi_{\alpha}^2(n-1)\right\} = 1-\alpha \qquad \Rightarrow P\left\{\frac{n-1}{\chi_{\alpha}^2(n-1)}S^2 < \sigma^2\right\} = 1-\alpha$$