Задача А. Простая сортировка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

В этой задаче вам нужно реализовать любую из пройденных сортировок, работающих за время $O(n \log n)$. Использовать встроенные в язык сортировки и структуры данных запрещается.

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания.

Формат входных данных

В первой строке содержится число n ($1 \le n \le 100\,000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, по модулю не превосходящих 10^9 .

Формат выходных данных

Выведите этот же массив в порядке неубывания.

стандартный ввод	стандартный вывод
10	1 1 2 2 3 3 4 6 7 8
1821473236	

Задача В. Сортировка подсчетом

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

А в этой задаче вам нужно реализовать сортировку подсчетом. Использовать другие сортировки запрещается.

Дан массив из n элементов, которые принимают целые значения от 0 до 100. Отсортируйте этот массив в порядке неубывания элементов.

Формат входных данных

В первой строке содержится число n ($1 \le n \le 200\,000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, от 0 до 100 каждое.

Формат выходных данных

Выведите отсортированный массив.

стандартный ввод	стандартный вывод
5	2 3 4 5 7
7 3 4 2 5	

Задача С. Количество инверсий

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i, j) таких, что i < j и $a_i > a_j$.

Формат входных данных

Первая строка входного файла содержит натуральное число n ($1 \le n \le 500\,000$) — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A ($0 \le a_i \le 10^6$).

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

стандартный ввод	стандартный вывод
4	0
1 2 4 5	
4	6
5 4 2 1	

Задача D. Хипуй!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

В этой задаче вам необходимо организовать структуру данных Неар для хранения целых чисел, над которой определены следующие операции:

- Insert(X) добавить в Heap число X;
- Extract достать из Heap наибольшее число (удалив его при этом).

Эту задачу нужно решить без использования встроенных структур данных для поиска максимального числа.

Формат входных данных

Во входном файле записано количество команд n ($1 \le n \le 100\,000$), потом последовательность из n команд, каждая в своей строке.

Каждая команда имеет такой формат: "0 <число>" или "1", что означает соответственно операции Insert(<число>) и Extract. Добавляемые числа находятся в интервале от 1 до 10^7 включительно.

Гарантируется, что при выполнении команды Extract в структуре находится по крайней мере один элемент.

Формат выходных данных

В выходной файл для каждой команды извлечения необходимо вывести число, полученное при выполнении команды Extract.

стандартный ввод	стандартный вывод
7	100
0 100	50
0 10	
1	
0 5	
0 30	
0 50	
1	

Задача Е. Быстрый поиск в массиве

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Дан массив из n целых чисел. Все числа от -10^9 до 10^9 .

Нужно уметь отвечать на запросы вида «Сколько чисел имеют значения от l до r»?

Формат входных данных

Число $n\ (1\leqslant n\leqslant 10^5)$. Далее n целых чисел.

Затем число запросов k $(1 \leqslant k \leqslant 10^5)$.

Далее k пар чисел $l, r (-10^9 \le l \le r \le 10^9)$ — собственно запросы.

Формат выходных данных

Выведите k чисел — ответы на запросы.

стандартный ввод	стандартный вывод
5	5 2 2 0
10 1 10 3 4	
4	
1 10	
2 9	
3 4	
2 2	

Задача F. Приближенный двоичный поиск

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны два массива. Первый массив отсортирован по неубыванию, второй массив содержит запросы — целые числа.

Для каждого запроса выведите число из первого массива наиболее близкое (то есть с минимальным модулем разности) к числу в этом запросе . Если таких несколько, выведите меньшее из них.

Формат входных данных

В первой строке входных данных содержатся числа n и k ($0 < n, k \le 10^5$). Во второй строке задаются n чисел первого массива, отсортированного по неубыванию, а в третьей строке — k чисел второго массива. Каждое число в обоих массивах по модулю не превосходит $2 \cdot 10^9$.

Формат выходных данных

Для каждого из k чисел выведите в отдельную строку число из первого массива, наиболее близкое к данному. Если таких несколько, выведите меньшее из них.

стандартный ввод	стандартный вывод
5 5	1
1 3 5 7 9	3
2 4 8 1 6	7
	1
	5

Задача G. Очень Легкая Задача

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Сегодня утром жюри решило добавить в вариант олимпиады еще одну, Очень Легкую Задачу. Ответственный секретарь Оргкомитета напечатал ее условие в одном экземпляре, и теперь ему нужно до начала олимпиады успеть сделать еще n копий. В его распоряжении имеются два ксерокса, один из которых копирует лист за x секунд, а другой — за y. (Разрешается использовать как один ксерокс, так и оба одновременно. Можно копировать не только с оригинала, но и с копии.) Помогите ему выяснить, какое минимальное время для этого потребуется.

Формат входных данных

На вход программы поступают три натуральных числа n, x и y, разделенные пробелом $(1 \le n \le 2 \cdot 10^8, 1 \le x, y \le 10).$

Формат выходных данных

Выведите одно число — минимальное время в секундах, необходимое для получения n копий.

стандартный ввод	стандартный вывод
4 1 1	3
5 1 2	4

Задача Н. Квадратный корень и квадратный квадрат

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Найдите такое число x, что $x^2 + \sqrt{x} = C$, с точностью не менее 6 знаков после точки.

Формат входных данных

В единственной строке содержится вещественное число $1.0 \leqslant C \leqslant 10^{10}$.

Формат выходных данных

Выведите одно число — искомый x.

стандартный ввод	стандартный вывод
2.000000000	1.0
18.000000000	4.0

Задача І. Поляна дров

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Маленький мальчик Ферма́ живет в деревне. Наступают холодные времена, поэтому бабушка попросила мальчика сходить в лес, чтобы собрать дров. В лесу около деревни, в которой живет Ферма, находится волшебная Поляна Дров, на которой всегда лежат дрова, и никогда не кончаются. Естественно, Ферма должен пойти именно туда.

Единственная проблема заключается в том, что идти до Поляны не очень близко, тем более что скорость передвижения по лесу намного меньше, чем скорость передвижения по полю, в котором находится деревня.

- Деревня находится в точке с координатами (0,1).
- Поляна находится в точке с координатами (1,0).
- Граница между лесом и полем горизонтальная прямая y=a, где a некоторое число $(0 \le a \le 1)$.
- ullet Скорость передвижения по полю составляет V_p , скорость передвижения по лесу V_f . Вдоль границы можно двигаться как по лесу, так и по полю.

Найдите точку, в которой мальчик Ферма должен войти в лес, чтобы дойти до Поляны Дров как можно быстрее.

Формат входных данных

В первой строке входного файла содержатся два положительных целых числа — V_p и V_f ($1 \leqslant V_p, V_f \leqslant 10^5$). Во второй строке содержится единственное вещественное число — координата по оси Oy границы между лесом и полем a ($0 \leqslant a \leqslant 1$)

Формат выходных данных

В единственной строке выходного файла выведите вещественное число с точностью не менее 4 знаков после запятой — координата по оси Ox точки, в которой мальчик Ферма должен войти в лес.

стандартный ввод	стандартный вывод
5 3	0.783310604
0.4	

Задача J. K-best

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

У Демьяны есть n драгоценностей. Каждая из драгоценностей имеет ценность v_i и вес w_i . С тех пор, как её мужа Джонни уволили в связи с последним финансовым кризисом, Демьяна решила продать несколько драгоценностей. Для себя она решила оставить лишь k лучших. Лучших в смысле максимизации достаточно специфического выражения: пусть она оставила для себя драгоценности номер i_1, i_2, \ldots, i_k , тогда максимальной должна быть величина

$$\frac{\sum\limits_{j=1}^{k}v_{i_{j}}}{\sum\limits_{i=1}^{k}w_{i_{j}}}$$

Помогите Демьяне выбрать k драгоценностей требуемым образом.

Формат входных данных

На первой строке n и k ($1 \le k \le n \le 100\,000$).

Следующие n строк содержат пары целых чисел v_i , w_i ($0 \le v_i \le 10^6$, $1 \le w_i \le 10^6$, сумма всех v_i не превосходит 10^7 , сумма всех w_i также не превосходит 10^7).

Формат выходных данных

Выведите k различных чисел от 1 до n — номера драгоценностей. Драгоценности нумеруются в том порядке, в котором перечислены во входных данных. Если есть несколько оптимальных ответов, выведите любой.

стандартный ввод	стандартный вывод
3 2	1
1 1	2
1 2	
1 3	

Задача К. Разделение массива

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив из n положительных целых чисел. Нужно разбить его на k отрезков так, чтобы максимальная сумма на отрезке была минимально возможной.

Формат входных данных

Первая строка содержит целые числа n и k $(1 \le k \le n \le 10^5)$. Вторая строка содержит элементы массива a_i $(1 \le a_i \le 10^9)$.

Формат выходных данных

Выведите одно число — минимально возможную максимальную сумму на отрезке.

стандартный ввод	стандартный вывод
10 4	12
1 3 2 4 10 8 4 2 5 3	

Задача L. Таблица умножения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Петя составил таблицу умножения размера $n \times n$. Ячейка в i-й строке и j-м столбце содержит значение $i \cdot j$. Петю заинтересовал вопрос: какое число в таблице является k-м по возрастанию? Помогите Пете ответить на этот вопрос.

Формат входных данных

Ввод содержит два целых числа n и k ($1 \le n \le 10^5$, $1 \le k \le n^2$).

Формат выходных данных

Выведите одно число — k-е число по возрастанию в таблице.

стандартный ввод	стандартный вывод
3 4	3
5 16	10

Задача М. К-я сумма

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Есть два массива a и b, каждый из которых состоит из n чисел. Для каждой пары чисел $(i,j):1\leqslant i,j\leqslant n$ выпишем сумму чисел a_i+b_j . Найдите в полученном множестве сумм k-ю по возрастанию.

Формат входных данных

Первая строка содержит целые числа n и k ($1 \le n \le 10^5$, $1 \le k \le n^2$). Вторая строка содержит элементы массива a, третья строка содержит элементы массива b. Все элементы массивов — целые положительные числа, не больше 10^9 .

Формат выходных данных

Выведите одно число — искомая k-я сумма.

стандартный вывод
9