БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи УДК 517.911.5

КАЧАН Илья Вадимович

Свойства решений стохастических дифференциальных уравнений, управляемых многомерными дробными броуновскими движениями с различными показателями Харста

Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.01.02 «Дифференциальные уравнения, динамические системы и оптимальное управление»

Научный руководитель кандидат физико-математических наук, доцент, Васьковский М. М.

ОГЛАВЛЕНИЕ

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	4
ВВЕДЕНИЕ	5
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ	9
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ ПО ТЕМЕ ИССЛЕДОВАНИЯ	12
Выводы	21
ГЛАВА 2. ОБЩИЕ СВОЙСТВА РЕШЕНИЙ СТОХАСТИЧЕСКИХ	
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, УПРАВЛЯЕМЫХ ДРОБ-	
НЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ	22
2.1 Предварительные сведения	22
2.1.1 Теория меры	22
2.1.2 Теория случайных процессов	23
2.1.3 Потраекторный интеграл Янга	26
2.1.4 Потраекторный интеграл Губинелли	27
2.2 Существование решений и формула замены переменных	31
2.3 Непрерывная зависимость от начальных данных решений сто-	
хастических дифференциальных уравнений с дробными бро-	
уновскими движениями	38
2.3.1 Вспомогательные результаты	41
2.3.2 Теорема о непрерывной зависимости от начальных дан-	
ных	50
Выводы	55
ГЛАВА 3. АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ ФУНКЦИОНА-	
ЛОВ РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ	
УРАВНЕНИЙ, УПРАВЛЯЕМЫХ ДРОБНЫМИ БРОУНОВСКИМИ	
движениями	56
3.1 Асимптотические разложения в окрестности нуля	56
3.2 Математические ожидания повторных интегралов от дробных	
броуновских движений	64
3.3 Коммутативный случай	70
Выводы	73
ГЛАВА 4. МЕТОДЫ ИНТЕГРИРОВАНИЯ СТОХАСТИЧЕСКИХ	
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ДРОБНЫМИ БРОУНОВ-	
СКИМИ ДВИЖЕНИЯМИ СМЕШАННОГО ТИПА	74

4.1	Предв	варительные сведения	74	
	4.1.1	Прямой, обратный и симметрический стохастические		
		интегралы	74	
	4.1.2	Стохастические дифференциальные уравнения смешан-		
		ного типа	75	
4.2	Приведение к простейшим уравнениям			
4.3	Приведение к линейным неоднородным уравнениям 8			
4.4	Перех	ход к уравнению Стратоновича	84	
Вын	воды .		86	
ГЛАВА	5. У	СТОЙЧИВОСТЬ И ПРИТЯЖЕНИЕ РЕШЕНИЙ СТОХА-		
СТИЧ	ЕСКИ	Х ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ГИЛЬБЕР-		
ТОВЬ	ІХ ПРО	OCTPAHCTBAX	88	
5.1	Предв	варительные сведения	88	
	5.1.1	Теория полугрупп	88	
	5.1.2	Операторы Гильберта-Шмидта	90	
	5.1.3	Стохастический интеграл Ито в гильбертовом простран-		
		стве	91	
5.2	Стоха	стические дифференциальные уравнения в конечномер-		
	ных г	ильбертовых пространствах	94	
5.3	Стоха	стические дифференциально-функциональные уравнения		
	в про	извольных гильбертовых пространствах	101	
	5.3.1	Теорема о притяжении к нулю	109	
Вын	воды .		113	
ЗАКЛЮ	ЧЕНИ	E	115	
Осн	овные	научные результаты диссертации	115	
Реко	оменда	щии по практическому использованию результатов	116	
БИБЛИС	ЭΓРΑΦ	ИЧЕСКИЙ СПИСОК	117	
Спи	сок ис	пользованных источников	117	
Спи	ісок пу	бликаний соискателя	123	

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

$a \vee b$	большее из чисел a и b , т.е. $\max\{a,b\}$
$a \wedge b$	меньшее из чисел a и b , т.е. $\min\{a,b\}$
\mathbb{N}	множество натуральных чисел
\mathbb{R}	множество действительных чисел
\mathbb{R}^+	множество действительных положительных чисел
\mathbb{R}^d	евклидово пространство векторов $x = (x_1, x_2, \dots, x_d)$,
	$x_1, x_2, \dots, x_d \in \mathbb{R}$ со скалярным произведением
	$\langle x,y angle = x_1y_1 + x_2y_2 + \ldots + x_dy_d$ и нормой $ x = \sqrt{\langle x,x angle}$
$\mathbb{R}^{n \times m}$	пространство матриц $X=(x_{ij}),i=1,\ldots,n,j=1,\ldots,m$
	размера $n \times m$ с вещественными элементами $x_{ij} \in \mathbb{R}$
A^{\top}	транспонированная матрица
A^{\star}	сопреженный оператор
trA	след оператора
I,I_d	тождественный оператор и единичная матрица в $\mathbb{R}^{d imes d}$
\otimes	тензорное произведение в пространстве \mathbb{R}^d
$ \cdot _W$	евклидова норма в конечномерном пространстве W
$\ \cdot\ _X$	норма в пространстве бесконечномерном пространстве X
$\langle \cdot, \cdot angle_H$	скалярное произведение в пространстве H
$\mathcal{L}(U_1,U_2)$	пространство линейных ограниченных операторов,
	действующих из U_1 в U_2
$\mathfrak{L}_2(U_1,U_2)$	множество операторов Гильберта-Шмидта,
	действующих из U_1 в U_2
$C(U_1,U_2)$	пространство непрерывных функций $\varphi \colon U_1 \to U_2$ с нормой
	$\ \varphi\ _{\infty} = \max_{x \in U_1} \varphi(x) _{U_2}$
$C_b^k(U_1, U_2)$	пространство функций $\varphi\colon U_1\to U_2$ имеющих непрерывные и
	ограниченные производные до порядка k включительно
	с нормой $\ arphi\ _{C^k_b} = \sum_{j=0}^k \ D^j arphi\ _\infty$
1_A	функция-индикатор множества A
п.н.	почти наверное

ВВЕДЕНИЕ

При статистическом анализе финансовых временных рядов давно было подмечено, что многие из них обладают свойствами статистического самоподобия (автомодельности), проявляющимися в том, что их части устроены так же, как и целое. В 1951 г. британский математик Г. Харст [43], изучая годичные уровни водности Нила, исследовал их размах \mathcal{R}_n и среднеквадратичное отклонение S_n (n — количество наблюдений). Применняя методы \mathcal{R}/\mathcal{S} -анализа, им было установлено, что отношение $\mathcal{R}_n/\mathcal{S}_n$ эквивалентно cn^H , для некоторой константы c, где H — параметр, впоследствии получивший название показателя (или индекса) Харста. Позже, основываясь на работах Харста, Б. Мандельброт предложил как в рассматриваемой модели Харста, так и во многих других вероятностных моделях использовать дробное (фрактальное) броуновское движение, обладающее указанным свойством автомодельности. Свойством самоподобия обладают самые разнообразные системы с нелинейной динамикой, встречающиеся в природе, и именно оно играет центральную роль в теории фрактальной геометрии, разработанной Б. Мандельбротом [57]. В прикладной теории вероятностей дробное броуновское с показателем Харста H используется в качестве модели, дающей простой способ получения дробного (фрактального) шума. В свою очередь, дробный шум находит многочисленные применения в финансовой математике [20, гл. 3, §2].

Стохастические дифференциальные уравнения с дробными броуновскими движениями находят множество приложений, главным образом в физике и финансовой математике. М. Клепцына, А. Ле Бретон и М.-К. Рубо [49] использовали модели с дробными броуновскими движениями для описания сигнальных процессов в фильтрационных системах. П. Черидито [24] рассматривает модель Самуэльсона для движения цен на акции, используя дробные броуновские движения. М. Сале [75] исследует стохастические дифференциальные уравнения с дробными броуновскими движениями в контексте моделей облигаций и акций. Ряд других финансовых приложений также можно найти в монографии Ю.С. Мишуры [59, глава 5]. Отметим, что дробное броуновское движение с индексом Харста H=1/2, называемое стандартным, совпадает с винеровским процессом [56]. Стохастические дифференциальные уравнения со стандартным броуновским движением в гильбертовых пространствах могут быть применены для истолкования и обобщения многих классических

задач математической физики, фильтрации, нейрофизиологии, генетики популяций и уже упомянутой финансовой математики [29, введение], [19, гл. 1], Для уравнений со стандартным броуновским движением также развиты численные методы построения приближенных решений [9].

В общем смысле под стохастическим дифференциальным уравнением понимают выражение следующего вида

$$dX(t,\omega) = f(t,\omega, X(t,\omega))dt + g(t,\omega, X(t,\omega))dB(t,\omega),$$

в котором $B(t,\omega)$ — стандартное или дробное броуновское движение. Формализм приведенной записи заключается в том, что ввиду недифференцируемости траекторий процесса B(t), выражение dB(t) лишено смысла. Однако, не разрывая связи с классической теорией дифференциальных уравнений, опираясь на интегральный критерий, уравнение понимают в интегральном смысле:

$$X(t,\omega) = X(s,\omega) + \int_{s}^{t} f(\tau,\omega, X(\tau,\omega)) d\tau + \int_{s}^{t} g(\tau,\omega, X(\tau,\omega)) dB(\tau,\omega),$$

где интеграл по $d\tau$ является интегралом Бохнера при каждом фиксированном ω , а способ определения интеграла по dB зависит от свойств процесса B(t). Можно выделить три основных подхода к определению интергралов по дробному броуновскому движению: подход потраекторных интегралов (Янга [74,75], Губинелли [37]), подход стохастических интегралов (Ито [47], Стратоновича [19], θ - и μ -интегралы [11]) для стандартного броуновского движения и подход интегалов Вика-Ито-Скорохода [68], основанных на дифференцировании процесса B(t) в пространствах обобщенных функций специального вида.

Первый подход осуществляет построение детерминированной теории интегрирования, игнорирующей вероятностную структуру процесса $B(t,\omega)$. В данном случае наиболее естественно определять интеграл по $dB(t,\omega)$ как потраекторный предел интегральных сумм Римана-Стилтьеса при каждом фиксированном ω . Из работ Л. Янга [74] и М. Сале [75] следует, что такое определение корректно лишь в случае, когда показатель Харста H > 1/2.

Для того, чтобы охватить случай $H \leq 1/2$, обеспечив потраекторную сходимость интегральных сумм Римана-Стилтьеса, оказывается необходимым привлечение дополнительных слагаемых в указанные суммы. Такая идея приводит нас к подходу, впервые примененному Т. Лайонсом [55] и развившемуся в так называемую теорию грубых траекторий в 90-х гг. прошлого века. В

настоящее время теория грубых траекторий и ее приложения к дробному броуновскому движению является молодой и активно развививающейся областью математики. Различным ее аспектам, в частности, посвящены работы М. Губинелли [37,38], П. Фрица, Н. Виктуа [34], А. Ноенкирха [72], Ф. Бадуэна [23], М. Хайрера [33]. Стоит отдельно отметить М. Хайрера, который впервые применил теорию грубых траекторий к исследованию стохастических дифференциальных уравнений в частных производных и разработал так называемую теорию регулярных структур [40]. Данный результат получил высокую оценку математического сообщества и был удостоен Филдсовской премии в 2014 г.

Настоящая работа развививает указанную теорию в приложении к стохастическим дифференциальным уравнениям с дробными броуновскими движениями с различными показателями Харста, в частности, решая задачи, связанные с непрерывной зависимостью решений уравнений от начальных данных, получением асимптотических разложений функционалов от решений, а также уравнений Колмогорова для указанных фунционалов.

Теория стохастических дифференциальных уравнений со стандтным броуновским движением, в том числе и в бесконечномерных пространствах, является глубоко развитой, ее вопросам посвящены монографии И. И. Гихмана и А. В. Скорохода [5, 8], Р. Хасьминского [48], Б. Оксендаля [19], А. А. Левакова, М. М. Васковского [14, 15], Дж. Да Прато [29], Л. Гаварецкого и В. Мандрэкара [32].

Наряду с уравнениями, содержащими исключительно дробные броуновские движения $B^{(H)}(t)$, и уравениями, содержащими только стандартное броуновское движение W(t), активно развивается теория для уравнений смешанного типа, в которой сочетаются теория интегрирования Ито для процессов W(t) и теория потракторного интегрирования Янга для процессов $B^{(H)}(t)$, H>1/2. Впервые смешанные уравнения были рассмотрены К. Кубилиусом [51], и далее получили свое развитие в работах Д. Нуаларта и Ж. Гуэрры [39], Г. Шевченко и Ю. Мишуры [58,67] и др. Интерес к подобного рода уравнениям вызван их многочисленным приложениям в финансовой сфере, где их использование позволяет получить более гибкие модели, позволяющие учитывать долговременную память исследуемых процессов [24,59,68].

В настоящей работе уравнений смешанного типа получены методы точного интегрирования, основанные на приведении уравнений к простейшим уравнениям, линейным уравнениям, уравнению Стратоновича. Для уравнений со стандартным броуновским движением доказана теорема об устойчивости

по линейному приближению уравнений в конечномерных гильбертовых пространств и теорема о притяжении решений уравнений в бесконечномерных сепарабельных гильбертовых пространств к нулю.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Связь работы с научными программами (проектами), темами

Исследования проводились в рамках следующих госбюджетных тем:

— Асимптотические свойства решений обыкновенных и стохастических дифференциальных уравнений в бесконечномерных пространствах (2014 – 2016 гг., номер госрегистрации 20142883)

Цель и задачи исследования

Целью диссертации является доказательство теорем об устойчивости решений и получение асимптотических разложений для математических ожиданий функционалов от решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями.

Научная новизна

Полученные в диссертации результаты являются новыми в теории стохастических дифференциальных уравнений.

Построена теория стохастических дифференциальных уравнений с дробными броуновскими движениями, имеющими различные индексы Харста, большие 1/3. Для нелинейных уравнений, со сносом и дробным броуновскими движениями с различными индексами Харста, большими 1/3, получены следующие результаты:

- доказана формула замены переменных,
- доказана теорема о непрерывной зависимости в среднем от начальных условий и правых частей решений указанных уравнений,
- получены асимптотические разложения в окрестности нуля для математических ожиданий функционалов от решений указанных уравнений,
- получено обобщение обратного уравнения Колмогорова для математических ожиданий функционалов от решений указанных ураывнений в коммутативном случае.

В диссертации построены некоторые методы интегрирования уравнений смешанного типа, содержащих стандартное и дробное броуновское движение с индексом Харста, большим 1/2.

Получены новые результаты об устойчивости нелинейных стохастических уравнений в гильбертовых пространствах. Для неавтономных нелинейных уравнений с разрывными коэффициентами в конечномерных пространствах

доказана теорема об асимптотической устойчивости по вероятности слабого нулевого решения по линейному приближению. Для нелинейных стохастических дифференциальных уравнений в гильбертовых пространствах с коэффициентами, удовлетворяющими локальному условию Липшица, доказана теорема о притяжении слабых решений к нулю.

Положения, выносимые на защиту

Теорема о непрерывной зависимости от начальных данных решений стохастических дифференциальных уравнений, управляемых дробными броуновскими движениями с различными показателями Харста.

Формула замены переменных и асимптотические разложения в окрестности нуля для математических ожиданий функционалов от решений стохастических дифференциальных уравнений, управляемых дробными броуновскими движениями с различными показателями Харста.

Методы точного интегрирования стохастических дифференциальных уравнений с дробными броуновскими движениями смешанного типа.

Теорема об асимптотической устойчивости системы нелинейных стохастических дифференциальных уравнений Ито с разрывными коэффициентами по нестационарному линейному приближению. Достаточные условия притяжения к нулю слабых решений нелинейного стохастического дифференциального уравнения в гильбертовом пространстве с нелипшициевыми коэффициентами.

Личный вклад соискателя ученой степени

Результаты, включенные в диссертацию и выносимые на защиту, получены лично автором диссертации. Научному руководителю принадлежат постановка задачи, выбор методов исследования и обсуждение результатов.

Апробация диссертации и информация об использовании ее результатов

Результаты работы докладывались и обсуждались на 8-м международном научном семинаре (воркшопе) «Аналитические методы анализа и дифференциальных уравнений» (АМАДЕ–2015) (Минск, 2015), на шестых Богдановских чтениях по обыкновенным дифференциальным уравнениям (Минск, 2015), на XII Белорусской математической конференции (Минск, 2016), на XII международной научно-технической конференции «Аналитические и численные методы моделирования естественно-научных и социальных проблем»

(Пенза, Россия, 2017), на XVII, XVIII, XIX международных научных конференциях по дифференциальным уравнениям «Еругинские чтения–2017», «Еругинские чтения–2018», «Еругинские чтения–2019» (Минск, 2017; Гродно, 2018; Могилев 2019, соответственно), на международной научной конференции «Динамические системы: устойчивость, управление, оптимизация», посвященной 100-летию со дня рождения академика Е.А. Барбашина (Минск, 2018), на 74-й и 75-й научной конференции студентов и аспирантов БГУ (Минск, 2017, 2018). Результаты, включенные в диссертацию, отмечены дипломами 1-й категории Республиканского конкурса научных работ студентов высших учебных заведений Республики Беларусь (2017, 2018), а также третьей премией Специального фонда Президента Республики Беларусь по социальной поддержке одаренных учащихся и студентов (2019).

Опубликование результатов диссертации

По теме диссертационного исследования опубликовано в 15 научных работ, в том числе: 6 статей в научных журналах в соответствии с пунктом 18 Положения ВАК о присуждении ученых степеней и присвоении ученых званий в Республике Беларусь (общим объемом 6.9 авторских листов), среди которых 2 статьи в зарубежных журналах, входящих в наукометрические базы данных Scopus и Web of Science, 1 отчет о НИР, 2 статьи в сборниках трудов международных научных конференций, 5 тезисов докладов международных научных конференций.

Структура и объем диссертации

Диссертация состоит из перечня условных обозначений, введения, общей характеристики работы, основной части, включающей 5 глав, заключения и библиографического списка.

Объем диссертации — 125 страниц, библиографический список содержит 88 источников, включая собственные публикации автора, на 9 страницах.

ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ ПО ТЕМЕ ИССЛЕДОВАНИЯ

Впервые дробное броуновское движение $B^{(H)}(t)$ с показателем Харста $H \in (0,1)$ было введено Колмогоровым в статье [10] в 1940 г., где оно называлось спиралью Винера. Само же название «дробное броуновское движение» было предложено Б. Мандельбротом и Дж. Ван Нессом в статье [56] в 1968 г., в которой было дано явное определение процесса $B^{(H)}(t)$ через стохастические интегралы по винеровскому процессу W(t). Из указанного определения, в частности, следует, что введенный процесс $B^{(H)}(t)$ дробного броуновского движения является обобщением винеровского процесса W(t) (называемого в этой связи стандартным броуновским движением) и совпадает с ним в случае H=1/2. Процесс стандартного броуновского движения зачастую используется для моделирования так называемого белого шума. Идея добавления слагаемых, содержащих стандартное броуновское движение, в детерминированные дифференциальные уравнения и системы привела к моделям, более точно опысывающим поведение объектов реального мира, и послужила основой для развития теории стохастических дифференциальных уравнений.

Современная теория стохастических дифференциальных уравнений берет свое начало в конце 40-х — начале 50-х гг. прошлого века с работ И.И. Гихмана [6,7], в которых было введено понятие решения стохастического дифференциального уравнения. Примерно в то же время К. Ито в серии работ [46, 47] построил теорию стохастического интегрирования по стандартному броуновскому движению и доказал формулу замены переменных, носящую теперь его имя. Определение интеграла Ито $\int_s^t Y(\tau)dW(\tau)$ базируется на веорятностном свойстве согласованности с броуновской фильтрацией, что на интуитивном уровне означает следующее: к моменту времени t процесс Y(t) располагает лишь информацией о поведении процесса W(t) до момента времени t (и в частности, не может заглядывать в будущее). Ввиду неограниченности вариации винеровского процесса W(t) определение стохастического интеграла по W(t) как интеграла Римана-Стилтьеса невозможно. В свою очередь, способ выбора промежуточных точек в интегральных суммах приводит к различным определениям интеграла: выборе левых концов отрезков разбиения приводят к определению интеграла Ито, а выбор середин отрезков — к интегралу Стратоновича. В настоящий момент теория стохастических дифференциальных уравнений со стандартным броуновским движением хорошо развита, ей посвящено множество монографий как для уравнений в конечномерных пространствах [5, 8, 14, 19, 48], так и для уравнений в бесконечномерных гильбертовых пространствах [29, 32].

В то же время стохастические дифференциальные уравнения с дробными броуновскими движениями представляют собой отдельный сложный и менее изученный (в сравнении с уравнениями со стандартными броуновскими движениями) объект исследования. Как известно, дробное броуновское движение $B^{(H)}(t)$ является семимартингалом, если и только если его индекс Харста H=1/2. Поэтому в общем случае $H\neq 1/2$ классический стохастический анализ Ито не применим к уравнениям с дробными броуновскими движениями. Как правило, для уравнений с дробными броуновскими движениями используют потраекторный подход к определению интегралов. Ключевым свойством здесь выступает непрерывность по Гельдеру траекторий процесса $B^{(H)}(t)$ с любым показателем, строго меньшим H, а не вероятностные характеристики процесса, игравшие определяющую роль при построении интегралов по стандартному броуновскому движению. В случае H > 1/2 интеграл по дробному броуновскому движению $\int_s^t Y(\tau)dB(\tau)$ может быть определен как потраекторный предел интегральных сумм Римана-Стилтьеса. Л. Янг в фундаментальной работе [74] показал, что такое определение интеграла является корректным, если детерминированные функции Y(t) и B(t) имеют конечные p- и q-вариации соответственно, и $\frac{1}{p} + \frac{1}{q} > 1$. Возможность применения потраекторного интегрирования Л. Янга к интегралам по дробному броуновскому движению $B^{(H)}(t)$ впервые обосновывается в работе М. Сале [75]. В приложении к стохастическим дифференциальным уравнениям с дробными броуновскими движениями данный подход применим лишь в случае, когда показатель Харста H > 1/2. В случае H < 1/2 указанные интегральные суммы расходятся, и возникает необходимость в дополнительных соображениях, компенсирующих отсутствие нужной степени гладкости траекторий процесса $B^{(H)}(t)$.

В середине 90-х гг. прошлого века Т. Лайонс в фундаментальной работе [55] разработал теорию грубых траекторий (rough path). Путем включения членов тейлоровских разложений высоких порядков в интегральные суммы, Т. Лайонс построил теорию интегрирования по процессам, принимающим значения в специальных тензорных алгебрах, фактически компенсировав «грубость» их траекторий дополнительной информацией указанных членов. Эта дополнительная информация, в свою очередь, сконцентрирована в

повторных интегралах, которые требуют отдельного обоснования. В приложении к интегрированию по дробному броуновскому движению $B^{(H)}(t)$ корректное определение повторных интегралов было дано Л. Кутэн и Ж. Киан в 2002 г. [27]. Путем введения диадных аппроксимаций процесса $B^{(H)}(t)$, они сумели определить повторные интегралы как интегралы Римана-Стилтьеса (для указанных аппроксимаций) с последующим предельном переходе в тензорных алгебрах Лайонса, снабженных метрикой p-вариации, p < 4. Авторы доказали сходимость упомянутых интегральных сумм для повторных интегралов до 3-го порядка включительно для показателей Харста H > 1/4 и показали расходимость соответствующих интегральных сумм в случае $H \le 1/4$. В середине 2000-х гг. М. Губинелли [37] разработал альтернативный подход в теории грубых траекторий, который показывает, что для фиксированного процесса можно построить линейное пространство управляемых процессов, для которых теория интегрирования остается справедливой, при этом избегая перехода к тензорным алгебрам, возникающим в [55]. Для дробного броуновского движения $B^{(H)}(t)$ подход Губинелли позволяет построить теорию интегрирования в случае, когда показатель Харста H > 1/3, и может быть обобщен до случая H > 1/4 [41]. Теория грубых траекторий и ее приложения к стохастическим дифференциальным уравнениям с дробными броуновскими движениями продолжает развиваться в работах М. Губинелли [38], П. Фрица, Н. Виктуа [34], А. Ноенкирха [72], Ф. Бадуэна [23], М. Хайрера [33] и др.

В наиболее общем виде автономное стохастическое дифференциальное уравнение с дробными броуновскими движениями и сносом может быть записано в следующей форме:

$$dX_t = f(X_t)dB_t, \ t \in [0,T],$$
 (1.1)

где $f=(f_0,\ldots,f_d),\ f_i:\mathbb{R}^n\to\mathbb{R}^n,\ i=0\ldots,d,$ — достаточно гладкие функции с ограниченными производными, $B_t=(B_t^{(0)},\ldots,B_t^{(d)})^T,\ B_t^{(0)}=t,\ B_t^{(i)},$ $i=1,\ldots,d$ — независимые одномерные дробные броуновские движения с индексами Харста $H_i\in(1/3,1).$ Стоит отметить, что уравнение (1.1) охватывает важный частный случай, когда все индексы Харста H_i либо равны 1/2, либо равны некоторому H>1/2 (то есть в уравнение входят только стандартные броуновские движения W_t и дробные броуновские движения $B_t^{(H)}$ с одним и тем же индексом Харста H>1/2). В данном случае мы приходим к уравнению Стратоновича вида

$$dX_t = f_0(X_t)dt + g(X_t) \circ dW_t + \sigma(X_t)dB_t^{(H)},$$

в котором интеграл по dW_t понимается как симметрический интеграл [65], а интеграл по $dB_t^{(H)}$ — как интеграл Янга. В соответствии с [6–A], такое уравнение можно свести к уравнению смешанного типа

$$dX_t = \widetilde{f}_0(X_t)dt + g(X_t)dW_t + \sigma(X_t)dB_t^{(H)}$$

со сносом $\widetilde{f}_0(x) = f_0(x) + \frac{1}{2}g'(x)g(x)$, в котором интеграл по стандартному броуновскому движению W_t понимается как интеграл Ито, а интеграл по дробному броуновскому движению $B_t^{(H)}$ определяется как потраекторный интеграл Янга. Отметим, что уравнений смешанного типа охватывают стохастические дифференциальные уравнения Ито, а также уравнения, управляемые дробными броуновскими движениями со сносом, впервые рассмотренные в работе Д. Нуаларта и А. Раскану [60].

Общие свойства решений детерминированных уравнений (1.1), где в качестве B_t выступают детерминированные функции, непрерывные по Гельдеру с показателем $\alpha > 1/3$, были впервые исследованы в работе М. Губинелли. [37, предложение 8]. В этой работе вводится понятие производной и интеграла Губинелли, доказывается теорема существования решений, а также теорема о непрерывной зависимости решений от начальных данных. В монографии П. Фрица и М. Хайрера [33, гл. 4, 8] выводятся оценки для интегралов Губинелли и также приводится результат, связанный с интегральной непрерывностью решений детерминированных уравнений (1.1) от начальных данных [33, теорема 8.5]. В приложении к стохастическим дифференциальным уравнениям указанные результаты означают, что почти наверное имеет место потраекторная интегральная непрерывность решений уравнений вида (1.1) с дробным броуновским движением B_t , компоненты которого имеют один и тот же индекс Харста H > 1/3, в условиях существования указанных решений. В свою очередь, обобщение теоремы существования решений уравнений (1.1) на случай уравнений с дробными броуновскими движениями, вообще говоря, не столь тривиально, поскольку из существования решения $X(t,\omega)$ при каждом ω не следует его измеримость по ω . Обоснование измеримости решений было дано в работе А. Нойенкирха, И. Нурдэна [72], где доказана теорема существования решений уравнений (1.1) с коэффициентами f класса C_h^2 , дробными броуновскими движениями, имеющими один и тот же индекс Харста H > 1/3, и сносом, а также доказана формула замены переменных для указанных уравнений.

Глава 2 настоящей работы также посвящена общим свойствам решений уравнений (1.1). Ее основные результаты — формула замены переменных и теорема о непрерывной зависимости от начальных условий и правых частей решений уравнений (1.1) — обобщают результаты выше упомянутых работ на случай уравнений со сносом и дробным броуновским движением B_t , компоненты которого имеют различные индексы Харста $H_i > 1/3$, $i = 1, \ldots, d$. Полученные результаты опубликованы в работах [3–A, 5–A, 8–A, 9–A, 13–A].

Обозначим через X_t^x решение уравнения (1.1) с начальным условием $X_0=x\in\mathbb{R}^n$. Особый интерес представляет исследование при малых значениях времени t семейства операторов

$$(\mathbf{P}_t g)(x) = \mathbb{E}(g(X_t^x)), \tag{1.2}$$

соответствующих решениям уравнений (1.1) в предположении, что функция g является достаточно гладкой, и ее производные ограничены. Асимптотические разложения семейства операторов (1.2) при малых значений времени t могут быть применены для получения дифференциальных уравнений в частных производных колмогоровского типа для математических ожиданий от решений уравнения (1.1) в некоторых частных случаях (например, когда все индексы Харста $H_i = 1/2$ или когда дифференциальные потоки, соответствующие коэффициентам уравнения (1.1), коммутируют, см. раздел 3.3 третьей главы), а также для получения систем дифференциальных уравнений в частных производных для инвариантных мер [23], связанных с решениями уравнений (1.1).

Известны несколько работ, посвященных исследованию семейства операторов (1.2). Ф. Бадуэн и Л. Кутэн [23] вывели асимптотическую формулу для операторов \mathbf{P}_t , используя теорию грубых траекторий (rough paths) Т. Лайонса [55] в случае, когда $H_1 = \ldots = H_d > 1/3$ для уравнения (1.1) без сноса. А. Нойенкирх, И. Нурдэн [72] рассматривали уравнение (1.1) со сносом в случае $H_1 = \ldots = H_d > 1/3$ и получили асимптотическую формулу для операторов \mathbf{P}_t , используя теорию интегрирования по грубым траекториям М. Губиннелли [37], [33, глава 4]. В третьей главе настоящей работы результаты статей [23,72] обобщены на случай уравнения (1.1) со сносом и дробными броуновскими движениями, имеющими различные индексы Харста. В данной главе уравнение (1.1) рассматривается с точки зрения теории грубых траекторий [33,55] как уравнение Стратоновича. Решения таких уравнений есть равномерные пределы последовательности аппроксимаций Вонга-Закаи, т.е. уравнений вида (1.1), в которых процесс B_t заменяется

его кусочно-линейными аппроксимациями $B_m(t)$ [27]. Уравнения Стратоновича подчиняются обычным правилам замены переменных, а решение одномерного уравнения (1.1) может быть выражено формулой $X_t = \exp(B_t V_f)(X_0)$, где $\exp(tV_f)$ — полугруппа переноса, порожденная дифференциальным оператором V_f : $C^1(\mathbb{R},\mathbb{R}) \to C(\mathbb{R},\mathbb{R})$, действующим по правилу $V_f g = f g'$. Кроме того, в третьей главе исследован случай, когда дифференциальные потоки, соответствующие коэффициентам уравнения (1.1), коммутируют, в котором были получены дифференциальные уравнения в частных производных типа Колмогорова для функций $\varphi(x,t) = \mathbb{E}(g(X_t^x))$. Результаты третьей главы опубликованы в работах [4–A, 5–A, 14–A].

Четвертая глава настоящей работы посвящена разработке методов интегрирования стохастических дифференциальных уравнений с дробными броуновскими движениями смешанного типа. Объектом ее изучения является стохастическое дифференциальное уравнение смешанного типа

$$dx(t) = f(t,x(t))dt + g(t,x(t))dW(t) + \sigma(t,x(t))dB(t), \quad t \ge 0,$$
(1.3)

где $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d, g: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}, \sigma: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ — детерминированные функции.

Интерес к стохастическим дифференциальным уравнениям смешанного типа вызван тем, что наличие слагаемого с дробным броуновским движением позволяет строить более точные математические модели, учитывающие эффект долговременной памяти процессов, что особенно важно при моделировании экономических и финансовых процессов [24,68].

Д. Нуаларт и Дж. Гуэрра [39] доказали теорему существования и единственности для уравнений, содержащих винеровский процесс W_t и дробное броуновское движение B_t^H с индексом Харста H>1/2, сочетая при этом теории интегрирования Ито и Янга. Ю.С. Мишура и Г.М. Шевченко [58] обобщили теорему существования для таких уравнений на случай, когда от процессов W_t и B_t^H не требуется их независимость. Достаточно общие условия существования и единственности решений уравнений смешанного типа с запаздыванием получены в работе Г.М. Шевченко [67]. На основе оценок интегралов Янга по дробному броуновскому движению, выведенных в работе Д. Нуаларта и А. Раскану [60], в работе [13] получены условия, обеспечивающие интегральную непрерывность решений уравнений смешанного типа. Некоторые другие обобщения теорем существования, а также свойства стохастических дифференциальных уравнений и включений смешанного типа исследованы в

статьях К. Кубилиуса [51], А.А. Левакова и М.М. Васьковского [3, 13, 16–18], монографии Ю.С. Мишуры [59].

Исследованию устойчивости уравнений смешанного типа посвящены работы [3,36]. В работе [36] получены условия, почти наверное обеспечивающие локальную экспоненциальную устойчивость нулевого решения автономного уравнения (1.3) на конечном отрезке [0,T], не содержащего слагаемого с винеровким процессом W_t , с дробным броуновским движением B_t , компоненты которого имеют один и тот же индекс Харста H>1/2. В работе [3] получены условия, гарантирующие (α,p) -асимптотическую устойчивость по вероятности и (α,p) -притяжение решений уравнения (1.3), [3, теорема 1, 2]. Стоит отметить, что задача исследования асимптотических свойств решений стохастических дифференциальных уравнений, содержащих дробные броуновские движения, существенно усложняется по сравнению с задачей исследования аналогичных уравнений Ито, а ряд основополагающих методов, таких как второй метод Ляпунова исследования устойчивости, неприменим вовсе [3]. В связи с этим проблема нахождения решений уравнений (1.3) в явном виде представляется актуальной и важной.

В работах [4, 14, 15, 30, 35, 50] были получены некоторые методы точного интегрирования уравнений Ито. Целью четвертой главы является нахождение методов построения точных решений стохастических дифференциальных уравнений смешанного типа. В частности, приводятся необходимые и достаточные условия, обеспечивающие существование замен переменных, сводящих уравнение (1.3) к простейшим и линейным неоднородным уравнениям смешанного типа, и обобщающие результаты из [14, 35]. Используя подход к интегрированию непрерывных процессов с конечной квадратической вариацией, разработанный в [65], получается соотношение между решениями уравнений (1.3) и решениями соответствующих уравнений Стратоновича. Аналогичная связь хорошо известна для процессов Ито [14] и в ряде случаев помогает строить решения стохастических дифференциальных уравнений в явном виде. Результаты четвертой главы опубликованы в работах [6–A, 15–A].

Пятая глава данной работы посвящена вопросам устойчивости и притяжения решений стохастических дифференциальных уравнений со стандартным броуновским движением в гильбертовых пространствах. Для таких уравнений определяющую роль в исследовании устойчивости и притяжения решений по-прежнему играют классические методы теории обыкновенных дифференциальных уравнений: метод функционалов Ляпунова, метод интегральных

неравенств, исследование устойчивости нелинейных уравнений по линейному приближению и др., что позволяет получать более точные результаты по сравнению с уравнениями (1.1) более общего вида.

Теория устойчивости стохастических дифференциальных уравнений в конечномерных гильбертовых пространствах изучена наиболее полно. В монографии [48] рассматриваются уравнения относительно $X \in \mathbb{R}^d$ со стандартным d-мерным броуновским движением W(t) общего вида:

$$dX(t) = f(t, X(t))dt + g(t, X(t))dW(t), \quad t \ge 0$$
(1.4)

с постоянными начальными условиями $X(0,\omega)\equiv x\in\mathbb{R}^n$. В ней доказаны аналоги теорем Ляпунова об устойчивости решений уравнения (1.4) с коэффициентами, удовлетворяющими по фазовой переменной глобальному условию Липшица. В монографии [22] излагается метод исследования устойчивости решений автономной системы с запаздыванием $X_t=\{X(t+\tau)|-h\leq \tau\leq 0\}\in C([-h,0],\mathbb{R}^n)$:

$$dX(t) = f(X_t)dt + g(X_t)dW(t), \quad t \ge 0$$
(1.5)

с начальными условиями $X(0,\omega)=\xi(\omega)$ с помощью квадратичных функционалов Ляпунова. Отметим, что исследования в указанных монографиях проводятся с уравнениями (1.5), коэффициенты которых непрерывны. Для уравнений с разрывными коэффициентами существование решения в классическом смысле не гарантируется и для определения решений требуется привлечение дифференциальных включений [21]. Основная идея этой теории принадлежит А.Ф. Филиппову и состоит в том, что разрывные коэффициенты f(t,x), g(t,x) заменяются в каждой точке (t,x) на наименьшие выпуклые множества F(t,x), G(t,x), содержащие все предельные точки $f(t,x^*)$, $g(t,x^*)$ соответственно при $x^* \to x$. Исследованию устойчивости систем с разрывными коэффициентами посвящена статья [12]. В ней А.А. Леваков методом знакопостоянных функций Ляпунова доказал теоремы об устойчивости решений автономной системы

$$dX(t) = f(X(t))dt + g(X(t))dW(t), \quad t \ge 0$$
 (1.6)

без запаздывания с разрывными коэффициентами f,g. Тем не менее результаты работ [12,22,48] не применимы к исследованию устойчивости неавтономных систем с разрывными коэффициентами.

В настоящей работе с помощью метода знакопостоянных функций Ляпунова [12,48] доказана теорема теорема об устойчивости решений системы

$$dX(t) = (A(t)X(t) + f(t, X(t)))dt + g(t, X(t))dW(t), \quad t \ge 0$$
(1.7)

в предположении, что линеаризованная система

$$dX(t) = A(t)X(t)dt (1.8)$$

является равномерно экспоненциально устойчивой [1–A, 7–A, 10–A]. Под решением системы (1.7) понимается решение стохастического дифференциального включения, построенного по уравнению в смысле А.Ф. Филиппова, см. также [2].

Заключительная часть пятой главы данной работы посвящена вопросам притяжения к нулю решений стохастических дифференциальных уравнений в бесконечномерных сепарабельных гильбертовых пространствах. Объектом изучения в ней выступает уравнение вида

$$dX(t,\omega) = (AX(t,\omega) + f(t,X(t,\omega))dt + g(t,X(t,\omega))dW(t), \ t > 0, X \in H \ (1.9)$$

в сепарабельном гильбертовом пространстве H с начальным условием $X(0,\omega)=\xi(\omega)$, коэффициенты f и g которого удовлетворяют локальному условию Липшица и имеют линейный порядок роста, а линейный (вообще говоря, неограниченный) оператор $A\colon H\to H$ порождает C_0 -полугруппу $S(t),\ t\geq 0$ (см. [61]). Существуют несколько определений решений для уравнения (1.9) (см. [29, 31]). Как правило, рассматривают либо сильные решения $X(t,\omega)$ как процессы, удовлетворяющие интегральному уравнению

$$X(t,\omega) = \xi(\omega) + \int_0^t (AX(s,\omega) + f(s,X(s,\omega)))ds + \int_0^t g(s,X(s,\omega))dW(s), (1.10)$$

или же слабые решения $X(t,\omega)$ как процессы, удовлетворяющие интегральному уравнению

$$X(t,\omega) = S(0)\xi(\omega) + \int_0^t S(t-s)f(s,X(s,\omega))ds + \int_0^t S(t-s)g(s,X(s,\omega))dW(s).$$
(1.11)

К настоящему времени получены глубокие результаты о количественных и качественных свойствах решений стохастических дифференциальных уравнений в гильбертовых пространствах. Теоремы о существовании и асимптотических свойствах исходного уравнения с начальным условием доказаны в

работах [69], [7–А]. В работах К. Лю [53, 54] были получены почти наверное точные асимптотические оценки для решений исходного уравнения с начальным условием без запаздывания с коэффициентами, удовлетворяющими глобальному условию Липшица. В статье А. Ичикавы [44] получены оценки для математического ожидания функционала Ляпунова от решения исходной задачи в случае автономных коэффициентов f(s, X(s)) = f(X(s)), g(s,X(s)) = g(X(s)), удовлетворяющих глобальному условию Липшица. В статье Т. Танигучи [70] доказана экспоненциальная устойчивость p-го момента решения исходного уравнения $\mathbb{E} \|X(s,\omega)\|^p$, p>2, в предположении, что коэффициенты f,g удовлетворяют локальному по t и глобальному по X условию Липшица.

Настоящая работа призвана обобщить полученные результаты на случай коэффициентов уравнения (1.9), удовлетворяющих локальному условию Липшица. Для таких уравнений доказана теорема о притяжении слабых решений к нулю [2–A, 7–A, 12–A].

Выводы

Проведенный обзор литературных источников позволяет сделать заключение об актуальности и важности задач, рассматриваемых в диссертации, для теории стохастических дифференциальных уравнений с дробными броуновскими движениями. Задачи, рассматриваемые в диссертации, затрагивают следующие вопросы:

- 1) Исследование общих свойств и получение асимптотических разложений математических ожиданий функционалов от решений стохастических дифференциальных уравнений с дробными броуновскими движениями, имеющими различные показатели Харста.
- 2) Получение методов точного интегрирования стохастических дифференциальных уравнений смешанного типа.
- 3) Исследование устойчивости и притяжения решений стохастических дифференциальных уравнений со стандартными броуновскими движениями в гильбертовых пространствах.

Полученные результаты являются новыми в теории стохастических дифференциальных уравнений с дробными броуновскими движениями.

ГЛАВА 2

ОБЩИЕ СВОЙСТВА РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, УПРАВЛЯЕМЫХ ДРОБНЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ

2.1 Предварительные сведения

2.1.1 Теория меры

Пусть T — некоторое множество. Семейство подмножеств \mathcal{F} множества T называют σ -алгеброй, если для него выполнены следующие свойства: $\emptyset \in \mathcal{F}$; если $A \in \mathcal{F}$, то и $T \setminus A \in \mathcal{F}$; объединение не более чем счетного количества множеств $\cup A_n \in \mathcal{F}$, если $A_n \in \mathcal{F}$, $n \in \mathbb{N}$. Пару (T, \mathcal{F}) , где $\mathcal{F} - \sigma$ -алгебра подмножеств множества T, называют измеримым пространством.

Пусть (T,\mathcal{F}) — измеримое пространство. Функцию $\mu\colon \mathcal{F}\to \mathbb{R}^+$ называют мерой, если выполнены следующие свойства: $\mu(A)\geq 0$ для любого $A\in \mathcal{F}$; $\mu(\cup_n A_n)=\sum_n \mu(A_n)$ для любого не более чем счетного объединения попарно непересекающихся множеств $A_n\in \mathcal{F},\, A_n\cap A_m=\emptyset,\, n\neq m,\, n,m\in \mathbb{N}.$ Меру μ называют конечной, если $\mu(T)<\infty$. Меру μ называют вероятностной, если она конечна и $\mu(T)=1.$ Меру μ пространства (T,\mathcal{F}) называют полной, если для любого множества E меры $\mu(E)=0$ каждое его подмножество $A\subset E$ измеримо, то есть $A\in \mathcal{F}.$

Пусть далее T — метрическое пространство. Наименьшую σ -алгебру над открытыми множествами T называют борелевской σ -алгеброй пространства T и обозначают $\mathcal{B}(T)$. Пусть $(T_1, \mathcal{F}_1), (T_2, \mathcal{F}_2)$ — измеримые пространства. Отображение $f: T_1 \to T_2$ называют $(\mathcal{F}_1, \mathcal{F}_2)$ -измеримым, если для любого множества $M \in \mathcal{F}_2$ его прообраз $f^{-1}(M) \in \mathcal{F}_1$. Отображение $f: T_1 \to T_2$ называют измеримым по Борелю, если оно $(\mathcal{B}(T_1), \mathcal{B}(T_2))$ -измеримо.

Пусть (T,\mathcal{F}) — измеримое пространство с конечной полной мерой μ , X — банахово пространство. Функция $f\colon T\to X$ называется простой, если существуют $x_1,\ldots,x_n,\ldots\in X$ и $E_1,\ldots,E_n,\ldots\in\mathcal{F}$, такие, что $E_i\cap E_j=\emptyset,\,i\neq j,\, \bigcup_{i=1}^\infty E_i=T,\, f=\sum_{i=1}^\infty x_i\mathbf{1}_{E_i}$. Функция $f\colon T\to X$ называется μ -измеримой, если существует последовательность простых функций (f_n) , что $\lim_{n\to\infty}\|f_n(t)-\mathbf{1}_n\|_{L^\infty}$

 $f(t)\|=0$ для μ -почти всех $t\in T$. Если последовательность (f_n) μ -измеримых функций почти всюду сходится к f, то f также μ -измерима. μ -измеримая функция $f\colon T\to X$ называется интегрируемой по Бохнеру, если существует последовательность (f_n) простых функций такая, что $\lim_{n\to\infty}\int_T\|f_n-f\|d\mu=0$. В этом случае интеграл Бохнера $\int_E fd\mu$ определяется для каждого $E\in \mathcal{F}$ с помощью соотношения $\int_E fd\mu=\lim_{n\to\infty}\int_E f_nd\mu$, где $\int_E f_nd\mu$ — интеграл, определенный обычным образом: $\sum_{i=1}^\infty x_i\mu(E_i\cap E)$. μ -измеримая функция $f\colon T\to X$ интегрируема по Бохнеру тогда и только тогда, когда функция $\|f\|\colon T\to \mathbb{R}^+$ является $(\mathcal{F},\mathcal{B}(\mathbb{R}^+))$ -измеримой и $\int_T \|f\|d\mu<\infty$. Если $p\in [1,\infty)$, то символом $L_p(T,X)$ обозначаем множество классов интегрируемых по Бохнеру функций $f\colon T\to X$, таких, что $\|f\|_{L_p}=(\int_T \|f\|^p d\mu)^{1/p}<\infty$. В случае $X=\mathbb{R}^d$ определения интеграла и интегрируемых функций по Бохнеру совпадают с определениями интеграла и функций, интегрируемых по Лебегу.

Предложение 2.1 (теорема о мажорируемой сходимости [42, с. 83]).

Пусть (T, \mathcal{F}) — измеримое пространство с конечной полной мерой μ , X — банахово пространство. Если последовательность функций $(f_n)_{n=1}^{\infty} \subset L_1(T,X)$ сходится почти всюду к функции f(t), и при этом существует интегрируемая по Лебегу функция $\varphi \colon T \to \mathbb{R}$ такая, что $||f_n(t)|| \leq \varphi(t)$ для всех $t \in T$ и n, то функция f интегрируема по Бохнеру, причем

$$\lim_{n \to \infty} \int_{\mathcal{T}} f_n(t) d\mu = \int_{\mathcal{T}} \lim_{n \to \infty} f_n(t) d\mu = \int_{\mathcal{T}} f(t) d\mu.$$

2.1.2 Теория случайных процессов

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, т.е. измеримое пространство (Ω, \mathcal{F}) с заданной на нем вероятностной мерой \mathbb{P} . Случайной величиной $\xi = \xi(\omega)$ называют любую функцию $\xi \colon \Omega \to \mathbb{R}^d$, являющуюся $(\mathcal{F}, \mathcal{B}(\mathbb{R}^d))$ -измеримой. Под случайным процессом $X(t, \omega) = X_t(\omega)$, $t \in \mathbb{R}$ понимают семейство заданных на Ω случайных величин $(X_t(\omega))_{t \in \mathbb{R}}$, зависящее от параметра $t \in \mathbb{R}$. Функцию $t \mapsto X(t, \omega)$ при фиксированном $\omega \in \Omega$ называют траекторией процесса $X(t, \omega)$.

Случайный процесс $X(t,\omega),\ t\geq \tau$ называют центрированным, если $\mathbb{E}\,X(t,\omega)=0$ для любого $t\geq \tau$. Случайный процесс $X(t,\omega),$

 $t \geq 0$, принимающий значения в \mathbb{R}^d , называют гауссовским, если для любых t_1, t_2, \ldots, t_n таких, что $0 \leq t_1 \leq t_2 \leq \ldots \leq t_n$, случайная величина $Z = (X(t_1, \omega), X(t_2, \omega), \ldots, X(t_n, \omega)) \in \mathbb{R}^{dn}$ имеет (многомерное) нормальное распределение. Это означает, что существует вектор $M \in \mathbb{R}^{dn}$ и неотрицательно определенная матрица $C \in \mathbb{R}^{dn \times dn}$ такие, что

$$\mathbb{E} e^{i\langle u, Z \rangle} = \exp\left(-\frac{1}{2}u^{\top}Cu + i\langle u, M \rangle\right)$$

для любого вектора $u \in \mathbb{R}^{dn}$.

Рассмотрим возрастающее семейство под- σ -алгебр $(\mathcal{F}_t),\ t\geq \tau$ из \mathcal{F} $(au\in\mathbb{R})$, т.е. такие σ -алгебры $\mathcal{F}_s\subset\mathcal{F}$, что $\mathcal{F}_s\subset\mathcal{F}_t$ для любых $t\geq s\geq au$. Семейство (\mathcal{F}_t) называют непрерывным справа, если $\mathcal{F}_t = \cap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$ для любого $t \geq \tau$. Непрерывное справа семейство σ -алгебр называют потоком σ -алгебр. Случайный процесс $X(t,\omega)$, заданный на $[\tau,+\infty)\times\Omega$ и принимающий значения в метрическом пространстве T, называют \mathcal{F}_t -согласованным, если для любого борелевского множества $B \in \mathcal{B}(T)$ и любого $t \geq \tau$ множество $\{\omega \in \mathcal{B}(T)\}$ $\in \Omega: X(t,\omega) \in B$ } принадлежит σ -алгебре \mathcal{F}_t . Заметим также, что для любого случайного процесса $X(t,\omega)$ существует поток σ -алгебр (\mathcal{F}^{X_t}) , с которым данный процесс согласован. Такой поток можно построить следующим образом: обозначим через σ_t наименьшую σ -алгебру, относительно которой измеримы все случайные величины $X(s,\omega), s \in [\tau,t]$, тогда $\mathcal{F}^{X_t} = \cap_{\varepsilon>0} \sigma_{t+\varepsilon}$. Далее для краткости будем опускать аргумент $\omega \in \Omega$ у случайных процессов. Пусть \mathcal{J} — наименьшая σ -алгебра на $[\tau, +\infty) \times \Omega$, относительно которой измеримы все непрерывные слева \mathcal{F}_t -согласованные случайные процессы. Случайный процесс $X(t,\omega)$, заданный на $[\tau,+\infty)\times\Omega$ и принимающий значения в метрическом пространстве T, называют предсказуемым, если для любого борелевского множества $B \in \mathcal{B}(T)$ множество $\{(t,\omega) \in \mathbb{R}^+ \times \Omega : X(t,\omega) \in B\}$ принадлежит σ -алгебре \mathcal{J} . Процесс X(t) называют \mathcal{F}_t -мартингалом, если он \mathcal{F}_t -согласован, $\mathbb{E}|X(t)| < +\infty$ для всех t и $\mathbb{E}(X(s)|\mathcal{F}_t) = X(t)$ для всех $s \geq t$.

Пусть K — сепарабельное гильбертово пространство. Зафиксируем некоторый ядерный симметрический положительно определенный оператор $Q \in \mathcal{L}(K)$, для которого существуют полный ортонормированный базис $\{e_k\} \subset K$ и последовательность положительных действительных чисел (λ_k) , таких, что $Qe_k = \lambda_k e_k, \ k \geq 1$, $\operatorname{tr} Q = \sum_k \lambda_k < \infty$. \mathcal{F}_t -согласованным Q-броуновским движением (винеровским процессом) со значениями в K называют непрерывный случайный процесс $W(t), \ t \geq 0$, принимающий значения в \mathbb{R}^d и удовле-

творяющий равенству

$$\mathbb{E}\left(e^{i\langle\xi,W(t)-W(s)\rangle_K}\middle|\mathcal{F}_s\right) = e^{-(t-s)\langle Q\xi,\xi\rangle_K/2} \quad \text{п.н.}$$

для любого $\xi \in K$ и любых $t \geq s \geq 0$. Если $W(t) - \mathcal{F}_t$ -согласованное Q-броуновское движение, то существует последовательность независимых одномерных \mathcal{F}_t -броуновских движений $W_k(t), k \geq 1$ таких, что $W(t) = \sum_k \sqrt{\lambda_k} W_k(t) e_k$, причем данный ряд сходится локально равномерно на \mathbb{R}^+ п.н. В случае $K = \mathbb{R}^d$ можно выбрать оператор $Q = I_d$, и в этом случае приходим к определению d-мерного \mathcal{F}_t -согласованного броуновского движения. Можно показать, что для одномерного броуновского движения справедливы следующие свойства $[4, \, \text{гл. } 1, \, \S 7]$, $[19, \, \text{раздел } 2.2]$:

- процесс W(t) имеет независимые приращения, т.е. для любых t_0,t_1,\ldots,t_n таких, что $t_0\leq t_1\leq\ldots\leq t_n$ случайные величины $W(t_0),W(t_1)-W(t_0),\ldots,W(t_n)-W(t_{n-1})$ независимы в совокупности;
- приращения W(t)-W(s) для любых $t>s\geq 0$ распределены по нормальному закону с нулевым средним и дисперсией (t-s);
- процесс W(t) имеет неограниченную вариацию на любом отрезке $[S,T]\subset \mathbb{R}^+,$ т.е.

$$\sup_{\mathcal{P}} \sum_{j=1}^{n} |W(t_j) - W(t_{j-1})| = +\infty, \quad \text{п.н.}$$

где супремум берется по всем разбиениям $\mathcal{P} = \{S \leq t_0 \leq t_1 \leq \ldots \leq t_n \leq T\};$

– процесс W(t) является (\mathcal{F}_t) -мартингалом.

Дробным броуновским движением с индексом Харста $H \in (0,1)$ называют центрированный непрерывный гауссовский процесс $B^{(H)}(t),\,t\geq 0$ с ковариационной функцией

$$\mathbb{E} B^{(H)}(t)B^{(H)}(s) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right).$$

Существование дробного броуновского движения следует из теоремы существования центрированного гауссовского процесса с заданной ковариационной функцией [63, гл. I, раздел 24].

Можно показать, что при H=1/2 дробное броуновское движение $B^{(1/2)}(t)$ является винеровским процессом. Иными словами, одномерный процесс W(t) является частным процессом из семейства $B^{(H)}(t)$ при

H=1/2. Кроме того, дробное броуновское движение обладает следующими свойствами [68, гл. 1]:

- процесс $B^{(H)}(t)$ имеет независимые приращения тогда и только тогда, когда H=1/2; при H>1/2 приращения положительно коррелированны (т.е. $\mathbb{E}(B^{(H)}(t_3)-B^{(H)}(t_2))(B^{(H)}(t_2)-B^{(H)}(t_1))>0$ для любых $t_3>t_2>t_1\geq 0$), а при H<1/2 отрицательно;
- почти все траектории процесса $B^{(H)}(t)$ непрерывны по Гельдеру с любым показателем, строго меньшим H, т.е. для любого $\varepsilon > 0$:

$$||B^{(H)}||_{H-\varepsilon} = \sup_{0 \le s < t} \frac{|B^{(H)}(t) - B^{(H)}(s)|}{|t - s|^{H-\varepsilon}} < +\infty$$

– почти все траектории процесса $B^{(H)}(t)$ не дифференцируемы ни в одной точке для любого $H\in(0,1)$ (в том числе траектории винеровского процесса не дифференцируемы).

Под d-мерным дробным броуновским движением будем понимать процесс $B(t) = (B_1(t), \dots, B_d(t))$, принимающий значения в \mathbb{R}^d , компоненты которого являются независимыми одномерными дробными броуновскими движениями.

2.1.3 Потраекторный интеграл Янга

Пусть B(t)-d-мерное дробное броуновское движение, все компоненты которого имеют индекс Харста H>1/2. Тогда почти все траектории процесса B(t) непрерывны по Гельдеру с любым показателем, меньшим H. Из результатов Янга [74] следует, что для любого процесса $\varphi(t,\omega)$, почти все траектории которого непрерывны по Гельдеру с показателем $\gamma>1-H$, можно определить интеграл по B(t) как потраекторный интеграл Римана-Стилтьеса (называемый в данном случае интегралом Янга), т.е. как предел с вероятностью 1 интегральных сумм

$$\int_{S}^{T} \varphi(t,\omega)dB(t,\omega) = \lim_{|\mathcal{P}| \to 0} \sum_{k=1}^{n} \varphi(\tau_{k},\omega)(B(t_{k},\omega) - B(t_{k-1},\omega)).$$

Здесь предел понимается не зависящим от последовательности разбиений $\mathcal{P} = \{S \leq t_0 \leq t_1 \leq \ldots \leq t_n \leq T\}$ и промежуточных точек $\tau_k \in [t_{k-1}, t_k]$, $|\mathcal{P}| = \max |t_k - t_{k-1}|, \ k = 1, \ldots, n$. В свою очередь, применительно к стохастическим дифференциальным уравнениям, показатель непрерывности по

Гельдеру траекторий процесса $\varphi(t,\omega)=\sigma(t,X(t,\omega))$ определяется показателем непрерывности траекторий решения $X(t,\omega)$ (совпадающим с показателем непрерывности траекторий процесса $B(t,\omega)$). Таким образом, с необходимостью возникает неравенство H>1-H, откуда H>1/2.

Обозначим через $V_p(f,[S,T]) = \left(\sup_{\mathcal{P}} \sum_{j=1}^n |f(t_j) - f(t_{j-1})|^p\right)^{1/p}, \ p > 0,$ p-вариацию функции f(t) на отрезке [S,T] (супремум берется по всем разбиениям $\mathcal{P} = \{S \leq t_0 \leq t_1 \leq \ldots \leq t_n \leq T\}$). Для интеграла Янга справедливо следующее фундаментальное свойство.

Предложение 2.2 (неравенство Лав-Янга, [74]). Пусть функции f(t), g(t) таковы, что $V_p(f,[S,T]), V_q(g,[S,T]) < +\infty$ для некоторых p,q>0 таких, что $\frac{1}{p}+\frac{1}{q}>1$. Если к тому же функции f и g не имеют общих точек разрыва, то интеграл Янга $\int_S^T f(t)dg(t)$ существует, и для него справедливо следующее неравенство:

$$\left| \int_{S}^{T} f(t)dg(t) - f(\tau)(g(T) - g(S)) \right| \le C_{p,q} V_{p}(f, [S,T]) V_{q}(g, [S,T])$$

для любого $\tau \in [S,T]$, где $C_{p,q} = \zeta(p^{-1}+q^{-1})$, где $\zeta(s) = \sum_{n\geq 1} \frac{1}{n^s} -$ дзетафункция Римана.

2.1.4 Потраекторный интеграл Губинелли

Пусть B(t)-d-мерное дробное броуновское движение, все компоненты которого имеют индекс Харста H<1/2. Вновь, поскольку траектории процесса B(t) имеют неограниченную вариацию, то интегральные суммы для интеграла Янга $\int_S^T \varphi(t,\omega)dB(t,\omega)$ п.н. не будут сходиться. Однако, оказывается, что в интегральные суммы можно ввести дополнительные слагаемые, позволяющие им сходиться почти наверное. Данный метод возник в теории грубых траекторий [33, 37, 55], позволяющем определить интегралы $\int_0^T Y_t dZ_t$ для функций Y_t , Z_t , непрерывных по Гельдеру (не обязательно случайных процессов, зависящих также от ω). Приведем некоторые основные положения данной теории в соответствии с подходом Губинелли [37], [33, гл. 4].

Будем обозначать через V, W конечномерные банаховы пространства над полем \mathbb{R} . Множество функций, непрерывных по Гельдеру с показателем $\alpha \in$

 $\in (0,1]$, будем обозначать следующим образом:

$$C^{\alpha}([0,T],W) = \left\{ Z \colon [0,T] \to W \mid \|Z\|_{\alpha} = \sup_{s,t \in [0,T]: s \neq t} \frac{|Z_t - Z_s|_W}{|t - s|^{\alpha}} < \infty \right\}.$$

В дальнейшем будут рассматриваться функции R(s,t), отображающие $(s,t) \in [0,T]^2$ непрерывно в W, которые удовлетворяют некоторому аналогу свойства α -непрерывности по Гельдеру [33, глава 1]. Более точно, через $C_2^{\alpha}([0,T]^2,W)$ будем обозначать множество функций двух переменных $R(s,t)=R_{s,t}$, для каждой из которых существует константа C такая, что $|R_{s,t}| \leq C|t-s|^{\alpha}$ для всех $(s,t) \in [0,T]^2$. Наименьшую такую константу для функции R будем обозначать следующим образом:

$$||R||_{\alpha} = \sup_{s,t \in [0,T]: s \neq t} \frac{|R_{s,t}|_W}{|t-s|^{\alpha}}.$$

Отметим также, что если $Z \in C^{\alpha}([0,T],W)$ — непрерывная по Гельдеру функция одной переменной, то ее приращения $(s,t) \mapsto Z_t - Z_s$ принадлежат множеству $C_2^{\alpha}([0,T]^2,W)$. Поэтому обозначение $Z_{s,t} = Z_t - Z_s$ будет также использоваться для приращений функции одной переменной Z, определенной на [0,T].

Пусть \mathcal{I} — подотрезок отрезка [0,T]. Введем следующие обозначения:

$$||Y||_{\alpha;\mathcal{I}} = \sup_{\substack{s,t \in \mathcal{I} \ s \neq t}} \frac{|Y_{s,t}|}{|t-s|^{\alpha}}, \quad ||Y||_{\alpha;\mathcal{I},\delta} = \sup_{\substack{s,t \in \mathcal{I} \ 0 < |t-s| \le \delta}} \frac{|Y_{s,t}|}{|t-s|^{\alpha}}$$

для функций $Y \in C^{\alpha}([0,T],U_1)$ или $Y \in C^{\alpha}_2([0,T]^2,U_2)$. Очевидно,

$$\|\cdot\|_{\alpha;\mathcal{I},\delta} \le \|\cdot\|_{\alpha;\mathcal{I}} \le \|\cdot\|_{\alpha;[0,T],|\mathcal{I}|} \le \|\cdot\|_{\alpha;[0,T]}$$

для любых $\mathcal{I} \subset [0,T]$, $\delta \in (0,|\mathcal{I}|]$, где $|\mathcal{I}|$ — длина отрезка \mathcal{I} .

Пусть далее $\alpha \in (1/3, 1/2]$.

Говорят, что для функции $Z\colon [0,T]\to W$ функция $\mathbb{Z}\colon [0,T]^2\to W\otimes W$ является процессом второго порядка над Z, если она удовлетворяет следующему тождеству Чена:

$$\mathbb{Z}_{s,t} - \mathbb{Z}_{s,u} - \mathbb{Z}_{u,t} = Z_{s,u} \otimes Z_{u,t}$$

для любой тройки $(s,u,t) \in [0,T]^3$.

Под множеством α -непрерывных по Гельдеру грубых траекторий над W (обозначаемым $\mathscr{C}^{\alpha}([0,T],W)$) понимают множество всех пар (Z,\mathbb{Z}) таких, что

функция $Z \in C^{\alpha}([0,T],W)$ и \mathbb{Z} является процессом второго порядка над Z, удовлетворяющим условию $\|\mathbb{Z}\|_{2\alpha} < \infty$.

Под множеством α -непрерывных по Гельдеру геометрических грубых траекторий над W (обозначаемым $\mathscr{C}^{\alpha}_g([0,T],W)$) понимают множество всех пар $(Z,\mathbb{Z})\in\mathscr{C}^{\alpha}([0,T],W)$, для которых имеет место следующее соотношение:

 $\operatorname{Sym}(\mathbb{Z}_{s,t}) = \frac{1}{2} \left(\mathbb{Z}_{s,t} + \mathbb{Z}_{s,t}^T \right) = \frac{1}{2} Z_{s,t} \otimes Z_{s,t}$

для любой пары $(s,t) \in [0,T]^2$.

Говорят, что функция $Y \in C^{\alpha}([0,T],\mathcal{L}(W,V))$ управляется функцией $Z \in C^{\alpha}([0,T],W)$, если существует $Y' \in C^{\alpha}\big([0,T],\mathcal{L}(W,\mathcal{L}(W,V))\big)$ (называемое производной Губинелли Y), такое, что остаток $R_{s,t}^Y = Y_{s,t} - Y_s'Z_{s,t}$ удовлетворяет неравенству $\|R^Y\|_{2\alpha} < +\infty$. Множество всех (Y,Y') таких, что Y управляется Z, будем обозначать $\mathcal{D}_Z^{2\alpha}([0,T],\mathcal{L}(W,V))$.

Замечание 2.1. Множество $\mathcal{D}_Z^{2\alpha}([0,T],\mathcal{L}(W,V))$ является банаховым пространством с нормой $\|(Y,Y')\|=|Y_0|+|Y_0'|+\|Y'\|_{\alpha}+\|R^Y\|_{2\alpha}$.

Замечание 2.2. В общем случае Y' определено неоднозначно, и мы будем называть производной Губинелли любое Y', удовлетворяющее сформулированному выше определению.

Замечание 2.3. Далее для обозначения производной Губинелли будем использовать символ ', а обычную производную будем записывать с помощью дифференциального оператора D.

Пусть $(Z,\mathbb{Z})\in\mathscr{C}^{\alpha}([0,T],W)$, а также $(Y,Y')\in\mathcal{D}_Z^{2\alpha}([0,T],\mathcal{L}(W,V))$. Потраекторным интегралом Губинелли Y по Z называют предел интегральных сумм

$$\int_{0}^{T} Y dZ = \lim_{|\mathcal{P}| \to 0} \sum_{t_{i}, t_{i+1} \in \mathcal{P}} (Y_{t_{i}} Z_{t_{i}, t_{i+1}} + Y'_{t_{i}} \mathbb{Z}_{t_{i}, t_{i+1}}), \tag{2.1}$$

где $|\mathcal{P}| = \max |t_{i+1} - t_i|$ — диаметр разбиения $\mathcal{P} = \{0 = t_0 < t_1 < \ldots < t_l = T\}$, а предел понимается не зависящим от последовательности разбиений \mathcal{P} . Если $Z \in C^{\beta}([0,T],W), Y \in C^{\gamma}([0,T],\mathcal{L}(W,V)), \beta + \gamma > 1$, то потраекторный интеграл Губинелли совпадает с потраекторным интегралом Янга, определяемым как предел интегральных сумм

$$\int_0^T Y dZ = \lim_{|\mathcal{P}| \to 0} \sum_{t_i, t_{i+1} \in \mathcal{P}} Y_{t_i} Z_{t_i, t_{i+1}}.$$

Замечание 2.4. Слагаемое $Y_{t_i}''\mathbb{Z}_{t_i,t_{i+1}}$ записано корректно в том смысле, что $\mathcal{L}(W,L(W,V))\cong\mathcal{L}(W\otimes W,V)$. Действительно, указанное произведение можно понимать как результат действия билинейной формы на тензорное произведение двух векторов. Более точно, если

$$\mathbb{Z} = z \otimes z = (z_j z_k), \quad Y' = (y'_{ijk}),$$

 $i = 1, 2, \dots, \dim V, \quad j, k = 1, 2, \dots, \dim W,$

TO

$$Y'\mathbb{Z} = \left(\sum_{j,k=1}^{\dim W} y'_{ijk} z_j z_k\right)_{i=1}^{\dim V}.$$

Посему потраекторный интеграл, определенный выше, принимает значения в пространстве V.

Далее будет существенно использоваться следующее предложение [33, теорема 4.10], [37, предложение 1].

Предложение 2.3. Пусть функция $Z \in \mathscr{C}^{\alpha}(\mathcal{I}, W)$ и $(Y,Y') \in \mathcal{D}^{2\alpha}_{Z}(\mathcal{I}, \mathcal{L}(W,V))$, $\mathcal{I} = [0,T]$. Тогда существует константа C > 0, зависящая лишь от α и $|\mathcal{I}| = T$, такая, что для любых $s,t \in \mathcal{I}$ выполняется неравенство

$$\left| \int_{s}^{t} Y_{r} dZ_{r} - Y_{s} Z_{s,t} - Y_{s}' \mathbb{Z}_{s,t} \right| \leq C \left(\|Z\|_{\alpha;\mathcal{I}} \|R^{Y}\|_{2\alpha;\mathcal{I}} + \|\mathbb{Z}\|_{2\alpha;\mathcal{I}} \|Y'\|_{\alpha;\mathcal{I}} \right) |t - s|^{3\alpha}.$$

Причем константа $C=C(\alpha,|\mathcal{I}|)$ может быть выбрана не зависящей от $|\mathcal{I}|=T$, если $T\in(0,1]$.

Замечание 2.5. В предложении 2.3 несущественен тот факт, что отрезок \mathcal{I} имеет вид [0,T]. Для произвольного отрезка $\mathcal{I}=[a,a+T]$ предложение также справедливо ввиду замены переменных $\bar{s}=s-a$, $\bar{t}=t-a$ ($s,t\in[a,a+T]$, $\bar{s},\bar{t}\in[0,T]$) и замен функций $\bar{Y}_{\bar{s}}=Y_{a+\bar{s}},\ \bar{Z}_{\bar{s}}=Z_{a+\bar{s}}$ (очевидно, указанные нормы и интегралы сохраняют свои значения).

Необходимость ограничения $\alpha > 1/3$ на интуитивном уровне можно пояснить следующим образом: в слагаемом вида $Y'\mathbb{Z}$ в интегральной сумме функция $Y' \in C^{\alpha}$, а $\mathbb{Z} \in C_2^{2\alpha}$. Из условия сходимости интегральных сумм потраекторного интеграла Янга можно заключить, что $\alpha + 2\alpha > 1$, т.е. $\alpha > 1/3$.

Вернемся к дробному броуновскому движению. При $H \in (1/3, 1/2)$ п.н. имеет место включение $B(t) \in C^{H^*}([0,T], \mathbb{R}^d)$ для любого $H^* < H, H^* > 1/3$.

Поэтому для любого процесса $\varphi(t,\omega)$ п.н. управляемого дробным броуновским движением B(t) можно определить потраекторный интеграл Губинелли как предел п.н. интегральных сумм

$$\int_0^T \varphi(t,\omega)dB(t,\omega) = \lim_{|\mathcal{P}| \to 0} \sum_{t_i, t_{i+1} \in \mathcal{P}} (\varphi(t_i,\omega)B_{t_i, t_{i+1}}(\omega) + \varphi'(t_i,\omega)\mathbb{B}_{t_i, t_{i+1}}(\omega))$$

при некотором выборе процесса второго порядка $\mathbb B$ над B. Далее будет приведено явное определение процесса второго порядка над B, удовлетворяющего указанным выше определениям.

2.2 Существование решений и формула замены переменных

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, на котором определены независимые одномерные дробные броуновские движения $B_t^{(1)}, \ldots, B_t^{(d)}$ с индексами Харста $H_1, \ldots, H_d \in (1/3,1)$. Введем обозначение $B_t = (B_t^{(0)}, \ldots, B_t^{(d)})^{\top}$ для (d+1)-мерного дробного броуновского движения, в котором $B_t^{(0)} = t$. Пусть также $H_0 = 1$. Пусть H_{\min} — значение наименьшего из индексов Харста $H_i, i = 0, \ldots, d$. Выберем и зафиксируем некоторое $H \in (1/3, 1/2]$ такое, что $H < H_{\min}$.

Объектом изучения данной главы станет следующее стохастическое дифференциальное уравнение:

$$dX_t = f(X_t)dB_t, \ t \in [0,T],$$
 (2.2)

в котором $f-(n\times (d+1))$ -матрица, столбцами которой являются векторы $f_i:\mathbb{R}^n\to\mathbb{R}^n,\ i=0\ldots,d,$. Через X^x_t будем обозначать решение уравнения (2.2) с начальным условием $X_0=x\in\mathbb{R}^n.$

Приведем конструктивное определение процесса второго порядка над дробным броуновским движением B.

Определение 2.1. Процессом второго порядка над дробным броуновским движением B будем называть процесс $\mathbb{B}\colon [0,T]^2\times\Omega\to\mathbb{R}^{(d+1)\times(d+1)},$ опре-

деленный следующими равенствами:

$$\begin{split} \mathbb{B}_{s,t} &= \left(\mathbb{B}_{s,t}^{(i,j)}\right)_{i,j=0}^{d}, \\ \mathbb{B}_{s,t}^{(i,j)} &\stackrel{L^{2}}{=} \lim_{|\mathcal{P}| \to 0} \int_{\mathcal{P}} B_{s,r}^{(i)} dB_{r}^{(j)}, \quad \int_{\mathcal{P}} B_{s,r}^{(i)} dB_{r}^{(j)} = \sum_{t_{k}, t_{k+1} \in \mathcal{P}} B_{s,t_{k}}^{(i)} B_{t_{k}, t_{k+1}}^{(j)}, \quad 1 \leq i < j \leq d, \\ \mathbb{B}_{s,t}^{(0,j)} &= \int_{s}^{t} B_{s,r}^{(j)} dr \stackrel{\text{\tiny I.H.}}{=} \lim_{|\mathcal{P}| \to 0} \sum_{t_{k}, t_{k+1} \in \mathcal{P}} B_{s,t_{k}}^{(j)}(t_{k+1} - t_{k}), \quad 1 \leq j \leq d, \\ \mathbb{B}_{s,t}^{(i,i)} &= \frac{1}{2} \left(B_{s,t}^{(i)}\right)^{2}, \quad 0 \leq i \leq d, \\ \mathbb{B}_{s,t}^{(i,j)} &= -\mathbb{B}_{s,t}^{(j,i)} + B_{s,t}^{(i)} B_{s,t}^{(j)}, \quad 0 \leq j < i \leq d \end{split}$$

для любой пары $(s,t) \in [0,T]^2$, где $\mathcal{P} = \{s = t_0 < t_1 < \ldots < t_l = t\}$ — произвольное разбиение отрезка [s,t], $|\mathcal{P}| = \max |t_{k+1} - t_k|$, а все пределы понимаются не зависящими от последовательности разбиений \mathcal{P} . Здесь обозначения $\stackrel{L^2}{=}$, $\stackrel{\text{п.н.}}{=}$ применяются для того, чтобы показать, что соответствующие пределы понимаются в смысле $L^2(\Omega, \mathcal{F}, \mathbb{P})$ и $\mathbb{P} = 1$ соответственно.

Замечание 2.6. Поясним корректность приведенного определения. Интегралы, определяющие $\mathbb{B}_{s,t}^{(0,j)}$, являются потраекторными интегралами Янга, соответствующие им интегральные суммы сходятся п.н., поскольку сумма показателей непрерывности по Гельдеру тождественной функции и $B_{s,\cdot}^{(j)}$ строго больше 1. Интегральные суммы в $\mathbb{B}_{s,t}^{(i,j)}$ имеют конечный предел в L_2 ввиду предложения 10.3 [33], поскольку обе ковариационные функции $R_{B^{(i)}}$, $R_{B^{(j)}}$ имеют конечную ρ -вариацию, $\rho = \frac{1}{2H} < 2$ (см. [52, с. 417, предл. 2.2]).

Предложение 2.4. Для любого фиксированного $H \in (1/3,1/2]$ такого, что $H < H_{\min} = \min_{i=0,\dots,d} H_i$ имеет место включение $(B,\mathbb{B}) \in \mathscr{C}_g^H([0,T],\mathbb{R}^{d+1})$ п.н., и более того, $\mathbb{E} \|\mathbb{B}\|_{2H}^q < \infty$ для любого $q \geq 1$.

Доказательство. Условие $\mathrm{Sym}(\mathbb{B}_{s,t})=\frac{1}{2}B_{s,t}\otimes B_{s,t}$ очевидно выполнено по определению \mathbb{B} , поэтому достаточно доказать, что $(B,\mathbb{B})\in\mathscr{C}^H([0,T],\mathbb{R}^{d+1}).$ Обозначим через $\widetilde{\mathbb{B}}_{s,t}=\left(\mathbb{B}_{s,t}^{(i,j)}\right)_{i,j=1}^d$ процесс второго порядка над дробным броуновским движением $\widetilde{B}_t=(B_t)_{i=1}^d$ с индексами Харста $H_i\in(1/3,1),$ $i=1,\ldots,d.$ Покажем, что пара (B,\mathbb{B}) удовлетворяет условиям теоремы 10.4 из [33]. Как было показано [33, раздел 10.3] и [71, раздел 2.3], справедливы

неравенства

$$||R_{B^{(i)}}||_{\frac{1}{2H_i}-\text{var};[s,t]^2} \le M_i|t-s|^{2H_i}, \quad H_i \in (1/3,1/2],$$

$$||R_{B^{(i)}}||_{1-\text{var};[s,t]^2} \le M_i|t-s|, \quad H_i \in (1/2,1)$$

для $i=1,\ldots,d$ с некоторыми константами M_i , где $\|R_{B^{(i)}}\|_{\rho-\mathrm{var};[s,t]^2}-\rho$ -вариация функции $R_{B^{(i)}}$ на прямоугольнике $[s,t]^2$ (см. определение в [33, раздел 10.2]). Следующее неравенство является простым следствием из определения ρ -вариации:

$$\|R_{B^{(i)}}\|_{\rho'-\mathrm{var};[s,t]^2} \leq \Big(\sup_{u,v,u',v'\in[s,t]} \left|\mathbb{E}(B_{u,v}^{(i)}B_{u',v'}^{(i)})\right|\Big)^{\frac{\rho'-\rho}{\rho'}} \Big(\|R_{B^{(i)}}\|_{\rho-\mathrm{var};[s,t]^2}\Big)^{\frac{\rho}{\rho'}}$$

для любого $\rho'>\rho$. Непосредственное вычисление показывает, что $\left|\mathbb{E}(B_{u,v}^{(i)}B_{u',v'}^{(i)})\right|\leq |t-s|^{2H_i}\leq T^{2H_i}$ для любых $u,v,u',v'\in[s,t]\subset[0,T]$. Полагая $H_*=\min\{\frac{1}{2},H_{min}\}$, из последних четырех неравенств можно вывести, что

$$||R_{B^{(i)}}||_{\frac{1}{2H_{*}}-\text{var};[s,t]^{2}} \leq M|t-s|^{2H_{*}}, \quad i=1,\ldots,d,$$

где $M=\max_{i=1,\dots,d}M_i^{H_*/H_i'}T^{2H_i'-2H_*},\,H_i'=\min\{H_i,\frac{1}{2}\}.$ Таким образом, пара $(\widetilde{B},\widetilde{\mathbb{B}})$ удовлетворяет условиям теоремы 10.4 [33] со значением параметра $\rho=\frac{1}{2H_*}\in [1,\frac{3}{2}).$

Применяя неравенство Лав-Янга (см. предложение 2.2) при $\tau=s$ к интегралам $\mathbb{B}^{(0,j)}_{s,t}$, $1\leq j\leq d$, можем заключить, что для любой пары $(s,t)\in [0,T]^2$ п.н. справедливо неравенство

$$\left| \mathbb{B}_{s,t}^{(0,j)} \right| = \left| \int_{s}^{t} B_{s,r}^{(j)} dr \right| \le C_{1,H} |t - s| \|B^{(j)}\|_{\frac{1}{H} - var;[s,t]} \le C_{0} \|B^{(j)}\|_{H} |t - s|^{2H},$$

в котором $C_0 = C_{1,H}T^{1-H}$ — константа (зависящая только от H,T), а также была использована зависимость между $\frac{1}{H}$ -вариацией и величиной $\|\cdot\|_H$ [34, с. 170]. Очевидно, $\left|\mathbb{B}_{s,t}^{(0,0)}\right| \leq \frac{1}{2}T^{2-2H}|t-s|^{2H}$. Также из теоремы 10.4 [33] следует, что $(\widetilde{B},\widetilde{\mathbb{B}}) \in \mathscr{C}_g^H([0,T],\mathbb{R}^d)$, что в свою очередь влечет $\left|\mathbb{B}_{s,t}^{(i,j)}\right| \leq \left|\widetilde{\mathbb{B}}_{s,t}\right| \leq \|\widetilde{\mathbb{B}}\|_{2H}|t-s|^{2H}$, $\|\widetilde{\mathbb{B}}\|_{2H} < \infty$ п.н. для всех $1 \leq i,j \leq d$. Таким образом, ввиду эквивалентности норм в $\mathbb{R}^{(d+1)\times(d+1)}$, можем заключить, что

$$|\mathbb{B}_{s,t}| \le C_d \sum_{i,j=0}^d \left| \mathbb{B}_{s,t}^{(i,j)} \right| \le C_d C_{T,H} \left(1 + \|\widetilde{\mathbb{B}}\|_{2H} + \sum_{j=1}^d \|B^{(j)}\|_H \right) |t-s|^{2H},$$

для любой пары $(s,t) \in [0,T]^2$ п.н. с некоторыми константами C_d и $C_{T,H}$, зависящими только от d и T,H соответственно. Полученное неравенство устанавливает тот факт, что $\|\mathbb{B}\|_{2H} < \infty$ п.н. и, следовательно, $(B,\mathbb{B}) \in \mathscr{C}_g^H([0,T],\mathbb{R}^{d+1})$ п.н. (нетрудно убедиться, что тождество Чена также выполняется для всех элементов на позициях (0,j), (j,0), $0 \le j \le d$ в матрицах \mathbb{B} , $B \otimes B$).

Применяя неравенство о среднем степенном и применяя оператор математического ожидания, из последнего неравенства можем заключить, что для любого $q \ge 1$ справедливо неравенство

$$\mathbb{E} \|\mathbb{B}\|_{2H}^{q} \leq C_{d,T,H,q} \left(1 + \mathbb{E} \|\widetilde{\mathbb{B}}\|_{2H}^{q} + \sum_{j=1}^{d} \mathbb{E} \|B^{(j)}\|_{H}^{q} \right),$$

в котором $C_{d,T,H,q}=(C_dC_{T,H})^q(d+2)^{1-\frac{1}{q}}$. Как известно из [33, теорема 4.10] и [60, Лемма 7.4], $\mathbb{E}\|\widetilde{\mathbb{B}}\|_{2H}^q<\infty$ и $\mathbb{E}\|B^{(j)}\|_H^q<\infty$ для всех $j=1,\ldots,d$. Последнее завершает доказательство.

Определение 2.2. Случайный процесс X_t такой, что $(X, X') \in \mathcal{D}^{2H}_B([0,T],\mathbb{R}^n)$ п.н., будем называть решением уравнения (2.2), если он п.н. удовлетворяет равенству

$$X_t = X_0 + \int_0^t f(X_s)dB_s, \quad t \in [0, T],$$
 (2.3)

где интеграл понимается как потраекторный интеграл Губинелли. Пусть $x \in \mathbb{R}^n$. Решение уравнения (2.2) с начальным условием $X_0 = x$ будем называть п.н. единственным, если для любого другого решения Y_t уравнения (2.2) с начальным условием $Y_0 = x$ выполняется равенство $\mathbb{P}(X_t = Y_t \ \forall t \in [0, T]) = 1$.

Следующая теорема дает достаточное условие существования и единственности решения уравнения (2.2).

Теорема 2.1. Если $f \in C_b^2(\mathbb{R}^n, \mathbb{R}^{n \times (d+1)})$, то для любого $x \in \mathbb{R}^n$ уравнение (2.2) имеет единственное решение c начальным условием $X_0 = x$, причем X' = f(X), $(f(X), (f(X))') \in \mathcal{D}_B^{2H}([0,T], \mathbb{R}^{n \times (d+1)})$ п.н. Более того, если $H_i > H^* \geq 1/2$ для всех $i = 0, \ldots, d$, то справедливо включение $X \in C^{H^*}([0,T], \mathbb{R}^n)$ п.н. и интеграл в определении решения уравнения (2.2) является потраекторным интегралом Янга.

Доказательство существования и единственности функции $X(t,\omega)$ следует из теоремы 3.13 в [72]. В свою очередь, измеримость процесса $X(t,\omega)$ следует из непрерывности отображения Ито-Лайонса, установленной в утверждении 2 тероремы 3.13 в работе [72], и сходимости диадных аппроксимаций $B_t(m)$ к дробному броуновскому движению B_t , доказанной в теореме 2 в работе [27].

Рассмотрим вопрос о том, какому стохастическому дифференциальному уравнению удовлетворяет функция $g(X_t)$ от решения X_t исходного стохастического дифференциального уравнения (2.2).

Теорема 2.2. Пусть $f \in C^3_b(\mathbb{R}^n, \mathbb{R}^{n \times (d+1)})$, $g \in C^3_b(\mathbb{R}^n, \mathbb{R})$. Тогда для любых $s, t \in [0,T]$ п.н. справедлива следующая формула замены переменных:

$$g(X_t) = g(X_s) + \int_s^t Dg(X_r) f(X_r) dB_r, \quad s, t \in [0, T],$$
 (2.4)

где X_t — решение уравнения (2.2) с начальным условием $X_0 = x$.

Доказательство. Зафиксируем произвольные $s,t \in [0,T], s \leq t$ и рассмотрим разбиение отрезка [s,t] точками $\mathcal{P}^{(N)} = \{s = t_0 < t_1 < \ldots < t_N = t\},$ $|\mathcal{P}^{(N)}| = \max_{i=0,\ldots,N-1} |t_{i+1} - t_i|$. Будем обозначать $X^{\otimes m} = \underbrace{X \otimes \ldots \otimes X}_m$. Все равен-

ства и неравенства ниже для случайных величин будем понимать выполненными почти наверное (п.н.). Используя формулу Тейлора, будем иметь:

$$g(X_t) - g(X_s) = \sum_{i=0}^{N-1} (g(X_{t_{i+1}}) - g(X_{t_i})) =$$

$$= \sum_{i=0}^{N-1} \left(Dg(X_{t_i}) X_{t_i, t_{i+1}} + \frac{1}{2} D^2 g(X_{t_i}) X_{t_i, t_{i+1}}^{\otimes 2} + \frac{1}{6} D^3 g(X_{t_i} + \theta_i X_{t_i, t_{i+1}}) X_{t_i, t_{i+1}}^{\otimes 3} \right),$$
(2.5)

для некоторых $\theta_i \in (0,1)$. Здесь слагаемые вида $D^k g X^{\otimes k}$ следует понимать в смысле, указанном в замечании 2.4:

$$D^k g X^{\otimes k} = \sum_{i_1, \dots, i_k=1}^n \frac{\partial^k g}{\partial X_{i_1} \dots \partial X_{i_k}} X_{i_1} \dots X_{i_k}$$

Оценим последнее слагаемое в сумме (2.5). Следующее неравенство будет использоваться в дальнейшем (напомним, что 3H > 1):

$$\sum_{i=0}^{N-1} |t_{i+1} - t_i|^{3H} \le \sum_{i=0}^{N-1} |\mathcal{P}^{(N)}|^{3H-1} (t_{i+1} - t_i) = |\mathcal{P}^{(N)}|^{3H-1} (t - s).$$

Поскольку $X \in C^H([0,T],\mathbb{R}^n)$ и 3H > 1, то

$$\left| \sum_{i=0}^{N-1} \frac{1}{6} D^3 g(X_{t_i} + \theta_i X_{t_i, t_{i+1}}) X_{t_i, t_{i+1}}^{\otimes 3} \right| \leq \frac{1}{6} \|D^3 g\|_{\infty} \|X\|_H^3 \sum_{i=0}^{N-1} |t_{i+1} - t_i|^{3H} =$$

$$= \frac{1}{6} \|D^3 g\|_{\infty} \|X\|_H^3 (t - s) \left| \mathcal{P}^{(N)} \right|^{3H-1} = O\left(\left| \mathcal{P}^{(N)} \right|^{3H-1} \right). \tag{2.6}$$

Из теоремы 4.10 [33] следует, что

$$X_{t_{i},t_{i+1}} = \int_{t_{i}}^{t_{i+1}} f(X_{r}) dB_{r} = f(X_{t_{i}}) B_{t_{i},t_{i+1}} + Df(X_{t_{i}}) f(X_{t_{i}}) \mathbb{B}_{t_{i},t_{i+1}} + O\left(|t_{i+1} - t_{i}|^{3H}\right),$$
(2.7)

причем константа в $O\left(|t_{i+1}-t_i|^{3H}\right)$ зависит только от f, B и X и не зависит от разбиения $\mathcal{P}^{(N)}$. Поскольку $|f(X_{t_i})B_{t_i,t_{i+1}}| \leq \|f\|_{\infty}\|B\|_{H} \times |t_{i+1}-t_i|^{H}$, $|Df(X_{t_i})f(X_{t_i})\mathbb{B}_{t_i,t_{i+1}}| \leq \|f\|_{C_b^2}^2\|\mathbb{B}\|_{2H}|t_{i+1}-t_i|^{2H}$, то умножая соотношение (2.7) тензорно на себя, получим

$$X_{t_{i},t_{i+1}}^{\otimes 2} = (f(X_{t_{i}})B_{t_{i},t_{i+1}})^{\otimes 2} + (Df(X_{t_{i}})f(X_{t_{i}})\mathbb{B}_{t_{i},t_{i+1}})^{\otimes 2} +$$

$$+f(X_{t_{i}})B_{t_{i},t_{i+1}} \otimes Df(X_{t_{i}})f(X_{t_{i}})\mathbb{B}_{t_{i},t_{i+1}} + Df(X_{t_{i}})f(X_{t_{i}})\mathbb{B}_{t_{i},t_{i+1}} \otimes f(X_{t_{i}})B_{t_{i},t_{i+1}} +$$

$$+O(|t_{i+1} - t_{i}|^{4H}) =$$

$$= (f(X_{t_{i}})B_{t_{i},t_{i+1}})^{\otimes 2} + O(|t_{i+1} - t_{i}|^{3H}). \tag{2.8}$$

Кроме того, легко видеть, что

$$\sum_{i=0}^{N-1} O\left(|t_{i+1} - t_i|^{3H}\right) \le O(1) \sum_{i=0}^{N-1} |t_{i+1} - t_i|^{3H} = O\left(\left|\mathcal{P}^{(N)}\right|^{3H-1}\right).$$

Подставляя (2.6) - (2.8) в (2.5), и замечая, что

$$D^{2}g(X_{t_{i}})(f(X_{t_{i}})B_{t_{i},t_{i+1}})^{\otimes 2} = (f(X_{t_{i}})B_{t_{i},t_{i+1}})^{\top} D^{2}g(X_{t_{i}}) (f(X_{t_{i}})B_{t_{i},t_{i+1}}) =$$

$$= (B_{t_{i},t_{i+1}})^{\top} (f(X_{t_{i}})^{\top}D^{2}g(X_{t_{i}})f(X_{t_{i}})) B_{t_{i},t_{i+1}} =$$

$$= (f(X_{t_{i}})^{\top}D^{2}g(X_{t_{i}})f(X_{t_{i}})) (B_{t_{i},t_{i+1}})^{\otimes 2}$$

получим:

$$g(X_{t}) - g(X_{s}) = \sum_{i=0}^{N-1} Dg(X_{t_{i}}) f(X_{t_{i}}) B_{t_{i},t_{i+1}} + \frac{1}{2} D^{2} g(X_{t_{i}}) (f(X_{t_{i}}) B_{t_{i},t_{i+1}})^{\otimes 2} + \frac{1}{2} D^{2} g(X_{t_{i}}) (f(X_{t_{i}}) B_{t_{i},t_{i+1}}) + \frac{1}{2} D^{2} g(X_{t_{i}}) D^{2$$

Поскольку пара (B,\mathbb{B}) принадлежит пространству геометрических грубых траекторий, то $\mathrm{Sym}(\mathbb{B}_{t_i,t_{i+1}})=\frac{1}{2}(B_{t_i,t_{i+1}})^{\otimes 2}$ и $\frac{1}{2}(B_{t_i,t_{i+1}})^{\otimes 2}-\mathbb{B}_{t_i,t_{i+1}}=$ = $-\mathrm{Anti}(\mathbb{B}_{t_i,t_{i+1}})$, где $\mathrm{Anti}(\mathbb{B})=\frac{1}{2}\left(\mathbb{B}-\mathbb{B}^{\top}\right)$ — антисимметричная часть \mathbb{B} . Заметим, что $f(X_{\cdot})^{\top}D^2g(X_{\cdot})f(X_{\cdot})$ симметрично, в то время как $\mathrm{Anti}(\mathbb{B})$ антисимметрично, поэтому $f(X_{t_i})^{\top}D^2g(X_{t_i})f(X_{t_i})\mathrm{Anti}(\mathbb{B}_{t_i,t_{i+1}})$ зануляется для каждого $i=0,\ldots,N-1$. Учитывая это и то, что $(Dg(X_{\cdot})\cdot f(X_{\cdot}))'=$ = $D(Dg\cdot f)(X_{\cdot})\cdot X'_{\cdot}=f(X_{\cdot})^{\top}D^2g(X_{\cdot})f(X_{\cdot})+Dg(X_{\cdot})Df(X_{\cdot})f(X_{\cdot})$, из равенства (2.9) получим

$$g(X_t) - g(X_s) = \sum_{i=0}^{2^{N}-1} \left(Dg(X_{t_i}) f(X_{t_i}) B_{t_i, t_{i+1}} + \left(Dg(X_{\cdot}) f(X_{\cdot}) \right)_{t_i}' \mathbb{B}_{t_i, t_{i+1}} \right) + O\left(\left| \mathcal{P}^{(N)} \right|^{3H-1} \right)$$

$$(2.10)$$

Переходя к пределу в (2.10) при $|\mathcal{P}^{(N)}| \to 0$, получим (2.4), что завершает доказательство формулы замены переменных.

2.3 Непрерывная зависимость от начальных данных решений стохастических дифференциальных уравнений с дробными броуновскими движениями

Наряду с уравнением (2.2) рассмотрим аналогичное уравнение с возмущенной правой частью

$$d\widetilde{X}_t = \widetilde{f}(\widetilde{X}_t)dB_t, \quad t \in [0,T], \tag{2.11}$$

в котором $\widetilde{f}-(n\times(d+1))$ -матрица, столбцами которой являются векторы $\widetilde{f_i}\colon\mathbb{R}^n\to\mathbb{R}^n,\,i=0,\dots,d.$

Определения решений уравнений (2.2), (2.11) и связанных с ними объектов были приведены ранее. Будем предполагать выполненными условия существования решений указанных уравнений с начальными условиями $X_0 = \xi$, $\widetilde{X}_0 = \widetilde{\xi}$, где ξ , $\widetilde{\xi}$ — случайные величины. В частности, для согласованности со случаем $\xi(\omega) \equiv x$, $\widetilde{\xi}(\omega) \equiv \widetilde{x}$ (см. теорему 2.1) будем предполагать, что $f,\widetilde{f}\in C_b^2(\mathbb{R}^n,\mathbb{R}^{n\times(d+1)})$. Причем функцию f будем считать фиксированной, а \widetilde{f} — изменяющейся в малой окрестности f в пространстве $C_b^2(\mathbb{R}^n,\mathbb{R}^{n\times(d+1)})$.

Будем использовать символ \mathcal{I} для обозначения отрезков вещественной прямой: $\mathcal{I}=[a,b]\subset\mathbb{R}$ длины $|\mathcal{I}|=b-a$. Для краткости будем опускать индекс [0,T] для норм, связанных с исходным отрезком интегрирования, полагая $\|\cdot\|_{\alpha}:=\|\cdot\|_{\alpha;[0,T]},\|\cdot\|_{\alpha,\delta}:=\|\cdot\|_{\alpha;[0,T],\delta}.$

Приведем ряд утверждений, которые будем использовать в дальнейшем для проведения оценок.

Предложение 2.5 [33, с. 65]. Пусть $Y \in C^{\alpha}([0,T],U)$, U — конечномерное банахово пространство, $\mathcal{I} \subset [0,T]$ — фиксированный отрезок. Если для некторых фиксированных $\delta \leq |\mathcal{I}|$ и M>0 выполнено неравенство $\|Y\|_{\alpha;\mathcal{I},\delta} \leq M$, то также справедливо и неравенство $\|Y\|_{\alpha;\mathcal{I}} \leq M$ ($1 \vee 2\delta^{-(1-\alpha)}|\mathcal{I}|^{1-\alpha}$).

Предложение 2.6. Пусть X_t — решение уравнения (2.2). Тогда для любого отрезка $\mathcal{I} \subset [0,T]$ длины $|\mathcal{I}| \leq 1$ п.н. справедливы неравенства

$$||X||_{H;\mathcal{I}} \le K \left(C_B ||f||_{C_b^2} \lor \left(C_B ||f||_{C_b^2} \right)^{1/H} \right),$$
 (2.12)

$$||R^X||_{2H;\mathcal{I}} \le \hat{K}\left(\left(C_B||f||_{C_b^2}\right)^2 \lor \left(C_B||f||_{C_b^2}\right)^{1+\frac{1}{H}}\right),$$
 (2.13)

где $C_B = C_B(\|B\|_H, \|\mathbb{B}\|_{2H}) = \|B\|_H + \sqrt{\|\mathbb{B}\|_{2H}}$, а константы K, \hat{K} зависят лишь от H.

Доказательство. Равенство (2.12) является простым следствием [33, предложение 8.3]. Докажем равенство (2.13). Используя предложение 2.3 для $s,t \in \mathcal{I}$, будем иметь:

$$|R_{s,t}^{X}| = |X_{s,t} - f(X_s)B_{s,t}| \le$$

$$\le \left| \int_{s}^{t} f(X_r)dB_r - f(X_s)B_{s,t} - Df(X_s)f(X_s)\mathbb{B}_{s,t} \right| + |Df(X_s)f(X_s)\mathbb{B}_{s,t}| \le$$

$$\le C\left(\|B\|_{H;\mathcal{I}} \|R^{f(X)}\|_{2H;\mathcal{I}} + \|\mathbb{B}_{s,t}\|_{2H;\mathcal{I}} \|f(X)'\|_{H;\mathcal{I}} \right) |t - s|^{3H} +$$

$$+ \|Df\|_{\infty} \|f\|_{\infty} \|\mathbb{B}\|_{2H;\mathcal{I}} |t - s|^{2H}. \tag{2.14}$$

Рассмотрим последнее неравенство для всех подотрезков ${\mathcal I}$ длины не больше δ . Тогда, как следствие

$$||R^{X}||_{2H;\delta} \leq ||Df||_{\infty} ||f||_{\infty} ||\mathbb{B}||_{2H;\mathcal{I}} + C(||B||_{H;\delta} ||R^{f(X)}||_{2H;\delta} + ||\mathbb{B}||_{2H;\delta} ||f(X)'||_{H;\delta}) \delta^{H}$$

Ниже символами c_i будем обозначать константы, зависящие быть может, только от H. Заметим, что $R^{f(X)}=f(X)_{s,t}-Df(X_s)X_s'B_{s,t}=f(X)_{s,t}-Df(X_s)X_{s,t}+Df(X_s)R_{s,t}^X=\frac{1}{2}D^2f(X_s+\theta X_{s,t})X_{s,t}^{\otimes 2}+Df(X_s)R_{s,t}^X$ для некоторого $\theta\in(0,1)$. Поэтому

$$||R^{f(X)}||_{2H;\delta} \le \frac{1}{2} ||D^2 f||_{\infty} ||X||_{H;\delta}^2 + ||Df||_{\infty} ||R^X||_{2H;\delta} \le$$

$$\le ||f||_{C_b^2} \Big(||X||_{H;\delta}^2 + ||R^X||_{2H;\delta} \Big).$$

Также поскольку f(X)' = Df(X)X' = Df(X)f(X), то, как легко видеть, $(Df(X)f(X))_{s,t} = D(Df\cdot f)(X_s + \theta_1X_{s,t})X_{s,t} = (D^2f\cdot f + Df\cdot Df)(X_s + \theta_1X_{s,t})X_{s,t}$, поэтому $\|f(X)'\|_{H;\delta} \leq \|f\|_{C^2_t}^2 \|X\|_{H;\delta}$. Значит,

$$||R^X||_{2H;\delta} \le c_1 ||f||_{C_b^2}^2 ||\mathbb{B}||_{2H;\delta} + c_1 ||f||_{C_b^2} ||B||_{H;\delta} \delta^H \Big(||X||_{H;\delta}^2 + ||R^X||_{2H;\delta} \Big) + c_1 ||f||_{C_b^2}^2 ||\mathbb{B}||_{H;\delta} \delta^H ||X||_{H;\delta},$$

где $c_1=1 \lor C$. Далее ограничимся достаточно малыми δ — такими, чтобы выполнялись неравенства

$$c_1 \|f\|_{C_b^2} \|B\|_H \delta^H \le \frac{1}{2}, \qquad c_1 \|f\|_{C_b^2} \|\mathbb{B}\|_{2H}^{1/2} \delta^H \le 1.$$
 (2.15)

При таком выборе будем иметь:

$$||R^X||_{2H;\delta} \le c_1 ||f||_{C_b^2}^2 ||\mathbb{B}||_{2H;\delta} + \frac{1}{2} \Big(||X||_{H;\delta}^2 + ||R^X||_{2H;\delta} \Big) + ||f||_{C_b^2} ||\mathbb{B}||_{2H}^{1/2} ||X||_{H;\delta}.$$
(2.16)

Отсюда с учетом неравенства $2\sqrt{ab} \le a + b$, выводим:

$$||R^{X}||_{2H;\delta} \le 2c_{1}||f||_{C_{b}^{2}}^{2}||\mathbb{B}||_{2H;\delta} + ||X||_{H;\delta}^{2} + 2||f||_{C_{b}^{2}}||\mathbb{B}||_{2H}^{1/2}||X||_{H;\delta} \le \le c_{3}||f||_{C_{b}^{2}}^{2}||\mathbb{B}||_{2H;\delta} + 2||X||_{H;\delta}^{2},$$
(2.17)

где $c_3=2c_2+1$ при достаточно малых $\delta \leq \left(2c_1C_B\|f\|_{C_b^2}\right)^{-1/H}$. Из [33, предложение 8.3] следует, что при тех же δ выполнено неравенство $\|X\|_{H;\delta} \leq \leq c_0\|f\|_{C_b^2}C_B$. Комбинируя последние два неравенства, получим:

$$||R^X||_{2H;\delta} \le ||f||_{C_b^2}^2 (c_3 + 2c_0^2) C_B^2 = c_4 (C_B ||f||_{C_b^2})^2,$$

где $c_4=c_3+2c_0^2$. Применяя предложение 2.5, с учетом $|\mathcal{I}|\leq 1$, будем иметь:

$$||R^X||_{2H;\mathcal{I}} \le c_4 \left(C_B ||f||_{C_b^2} \right)^2 \left(1 \vee 2\delta^{H-1} \right) \le c_5 \left(\left(C_B ||f||_{C_b^2} \right)^2 \vee \left(C_B ||f||_{C_b^2} \right)^{1+\frac{1}{H}} \right),$$

где $c_5=c_4(1\vee 2^{1/H}c_1^{(1-H)/H})$ зависит лишь от H. Предложение доказано.

Предложение 2.7. Пусть $t_j = (j \cdot \delta) \wedge T$, $\mathcal{I}_j = [t_j, t_{j+1}] \subset [0, T]$, $j = 0, 1, \dots$ Тогда справедливо неравенство $\|Y\|_{H;\delta} \leq 2^{1-H} \bigvee_{j=0}^{\lfloor T/\delta \rfloor} \|Y\|_{H;\mathcal{I}_j}$.

Доказательство. Зафиксируем произвольные $s,t \in [0,T]$ такие, что $0 < |t-s| < \delta, \ s < t.$ Если $s,t \in \mathcal{I}_j$ для некоторого j, то, очевидно, $|Y_{s,t}| \le \|Y\|_{H;\mathcal{I}_j}|t-s|^H \le |t-s|^H \bigvee_{j=0}^{\lfloor T/\delta \rfloor} \|Y\|_{H;\mathcal{I}_j}$. Иначе $s \in \mathcal{I}_{j-1}, \ t \in \mathcal{I}_j$. В таком случае

$$|Y_{s,t}| \leq |Y_{s,t_j}| + |Y_{t_j,t}| \leq ||Y||_{H;\mathcal{I}_{j-1}} |t_j - s|^H + ||Y||_{H;\mathcal{I}_j} |t - t_j|^H \leq$$

$$\leq (|t - t_j|^H + |t_j - s|^H) \bigvee_{j=0}^{\lfloor T/\delta \rfloor} ||Y||_{H;\mathcal{I}_j} \leq 2^{1-H} |t - s|^H \bigvee_{j=0}^{\lfloor T/\delta \rfloor} ||Y||_{H;\mathcal{I}_j},$$

где в последнем переходе было применено неравенство Иенсена для вогнутой функции $\phi(t)=t^H,\,t>0,\,H\in(0,1).$ Так как 1-H>0, то $2^{1-H}>1$ и в любом из рассмотренных случаев

$$|Y_{s,t}| \le 2^{1-H} |t-s|^H \bigvee_{j=0}^{\lfloor T/\delta \rfloor} ||Y||_{H;\mathcal{I}_j}$$

для $|t-s| \leq \delta$. Из последнего неравенства следует требуемое утверждение.

В технических выкладках будет полезно следующее элементарное предложение.

Предложение 2.8. Пусть $u, \widetilde{u} \in \mathbf{U}, \ v, \widetilde{v} \in \mathbf{V}, \ u, \widetilde{u} \in U \times V^{\otimes k}, \ v, \widetilde{v} \in V^{\otimes k}$ — тензоры, $\mathbf{U}, \mathbf{V}, U, V$ — нормированные векторные пространства над полем \mathbb{R} , $k \in \mathbb{N}$. Тогда справедливы неравенства

$$|uv - \widetilde{u}\widetilde{v}| \le |u| |v - \widetilde{v}| + |\widetilde{v}| |u - \widetilde{u}|,$$

$$|uv - \widetilde{u}\widetilde{v}| \le |u| |v - \widetilde{v}| + |\widetilde{v}| |u - \widetilde{u}|.$$

2.3.1 Вспомогательные результаты

В данном разделе мы получим ряд вспомогательных лемм, на которых будут опираться доказательства результатов, связанных с непрерывной зависимостью решений уравнений (2.2), (2.11). Все неравенства в дальнейшем понимаются выполненными почти наверное.

Лемма 2.1. Пусть X_t и \widetilde{X}_t — решения уравнений (2.2) и (2.11) соответственно с правыми частями f, \widetilde{f} из класса $C_b^3(\mathbb{R}^n,\mathbb{R}^{n\times(d+1)})$, причем функция \widetilde{f} такова, что $\|f-\widetilde{f}\|_{C_b^2}\leq 1$. Тогда для любого отрезка $\mathcal{I}=[u,v]\subset [0,T]$ длины $|\mathcal{I}|\leq 1$ и любых $s,t\in\mathcal{I}$ п.н. имеет место следующее неравенство:

$$\left| \int_{s}^{t} \left(f(\widetilde{X}_{\tau}) - \widetilde{f}(\widetilde{X}_{\tau}) \right) dB_{\tau} \right| \leq C_{f} \|f - \widetilde{f}\|_{C_{b}^{2}} |t - s|^{H},$$

где $C_f = C_f(H, \|f\|_{C^3_b}, \|B\|_H, \|\mathbb{B}\|_{2H}) - c$ лучайная величина.

Доказательство. Используя предложение 2.3, получим оценку

$$\left| \int_{s}^{t} \left(f(\widetilde{X}_{\tau}) - \widetilde{f}(\widetilde{X}_{\tau}) \right) dB_{\tau} \right| \leq \left| f(\widetilde{X}_{s}) - \widetilde{f}(\widetilde{X}_{s}) \right| |B_{s,t}| + \left| f(\widetilde{X}_{s})' - \widetilde{f}(\widetilde{X}_{s})' \right| |\mathbb{B}_{s,t}| + C \left(\|B\|_{H} \left\| R^{f(\widetilde{X}) - \widetilde{f}(\widetilde{X})} \right\|_{2H;\mathcal{I}} + \|\mathbb{B}\|_{2H} \|f(\widetilde{X})' - \widetilde{f}(\widetilde{X})'\|_{H;\mathcal{I}} \right) |t - s|^{3H}. \quad (2.18)$$

Следуя [33, лемма 7.3, теорема 8.4], имеют место следующие соотношения для производных Губинелли:

$$f(\widetilde{X}_{\cdot})' = Df(\widetilde{X}_{\cdot}) \cdot \widetilde{X}'_{\cdot} = Df(\widetilde{X}_{\cdot}) \cdot \widetilde{f}(\widetilde{X}_{\cdot}) = (Df \cdot \widetilde{f})(\widetilde{X}_{\cdot}), \tag{2.19}$$

$$\widetilde{f}(\widetilde{X}_{\cdot})' = D\widetilde{f}(\widetilde{X}_{\cdot}) \cdot \widetilde{X}'_{\cdot} = D\widetilde{f}(\widetilde{X}_{\cdot}) \cdot \widetilde{f}(\widetilde{X}_{\cdot}) = (D\widetilde{f} \cdot \widetilde{f})(\widetilde{X}_{\cdot}). \tag{2.20}$$

Из соотношений (2.19), (2.20) очевидным образом следуют оценки

$$\left| f(\widetilde{X}_{s}) - \widetilde{f}(\widetilde{X}_{s}) \right| |B_{s,t}| \leq \|f - \widetilde{f}\|_{C_{b}^{2}} \|B\|_{H} |t - s|^{H},$$

$$\left| f(\widetilde{X}_{s})' - \widetilde{f}(\widetilde{X}_{s})' \right| |\mathbb{B}_{s,t}| \leq \|f - \widetilde{f}\|_{C_{b}^{2}} \|\widetilde{f}\|_{C_{b}^{2}} \|\mathbb{B}\|_{2H} |t - s|^{H}$$

для любых $s,t\in\mathcal{I},\,|\mathcal{I}|\leq 1.$ Из неравенства треугольника следует, что $\|\widetilde{f}\|_{C_b^2}\leq \|f\|_{C_b^2}+1$ Таким образом,

$$\left| f(\widetilde{X}_s) - \widetilde{f}(\widetilde{X}_s) \right| |B_{s,t}| + \left| f(\widetilde{X}_s)' - \widetilde{f}(\widetilde{X}_s)' \right| |\mathbb{B}_{s,t}| \le c_0 ||f - \widetilde{f}||_{C_b^2} |t - s|^H, \quad (2.21)$$

где $c_0 = ||B||_H + (1 + ||f||_{C_b^3}) ||\mathbb{B}||_{2H}.$

Далее оценим $||f(\widetilde{X})' - \widetilde{f}(\widetilde{X})'||_{H;\mathcal{I}}$. Используя соотношения (2.19), (2.20) и формулу конечных приращений будем иметь:

$$\left| f(\widetilde{X}_{\cdot})'_{s,t} - \widetilde{f}(\widetilde{X}_{\cdot})'_{s,t} \right| = \left| \left(Df \cdot \widetilde{f} - D\widetilde{f} \cdot \widetilde{f} \right) (\widetilde{X}_{\cdot})_{s,t} \right| \le$$

$$\le \left| \left| D \left((Df - D\widetilde{f}) \cdot \widetilde{f} \right) \right|_{\infty} \|\widetilde{X}\|_{H;\mathcal{I}} |t - s|^{H}.$$

Поскольку $D \big((Df - D\widetilde{f}) \cdot \widetilde{f} \big) = (D^2f - D^2\widetilde{f}) \cdot \widetilde{f} + (Df - D\widetilde{f}) \cdot D\widetilde{f}$, то нетрудно видеть, что $\|D \big((Df - D\widetilde{f}) \cdot \widetilde{f} \big)\|_{\infty} \leq 2 \|\widetilde{f}\|_{C_b^2} \|f - \widetilde{f}\|_{C_b^2} \leq 2 (1 + \|f\|_{C_b^3}) \|f - \widetilde{f}\|_{C_b^2}$. Отсюда ввиду предложения 2.6 выводим неравенство

$$||f(\widetilde{X})' - \widetilde{f}(\widetilde{X})'||_{H;\mathcal{I}} \le c_{f'}||f - \widetilde{f}||_{C_b^2},$$
 (2.22)

где
$$c_{f'} = 2(1 + \|f\|_{C_b^3})K\left((1 + \|f\|_{C_b^3})C_B \vee \left((1 + \|f\|_{C_b^3})C_B\right)^{1/H}\right).$$

Осталось оценить $\left\|R^{f(\widetilde{X})-\widetilde{f}(\widetilde{X})}\right\|_{2H;\mathcal{I}}$. Учитывая соотношения (2.19), (2.20) и формулу конечных приращений, для некоторого $\widetilde{\theta}\in(0,1)$ будем иметь:

$$\begin{split} R_{s,t}^{f(\widetilde{X})-\widetilde{f}(\widetilde{X})} &= f(\widetilde{X}_{\cdot})_{s,t} - \widetilde{f}(\widetilde{X}_{\cdot})_{s,t} - Df(\widetilde{X}_{s})\widetilde{X}_{s}'B_{s,t} + D\widetilde{f}(\widetilde{X}_{s})\widetilde{X}_{s}'B_{s,t} = \\ &= \left(\left(f - \widetilde{f} \right)(\widetilde{X}_{\cdot})_{s,t} - D\left(f - \widetilde{f} \right)(\widetilde{X}_{s})\widetilde{X}_{s,t} \right) + \left(Df(\widetilde{X}_{s}) - D\widetilde{f}(\widetilde{X}_{s}) \right)R_{s,t}^{\widetilde{X}} = \\ &= \frac{1}{2}D^{2} \left(f - \widetilde{f} \right) \left(\widetilde{X}_{s,t}(\widetilde{\theta}) \right) \widetilde{X}_{s,t}^{\otimes 2} + \left(Df(\widetilde{X}_{s}) - D\widetilde{f}(\widetilde{X}_{s}) \right)R_{s,t}^{\widetilde{X}}. \end{split}$$

Из последнего равенства, равенства (2.36) и формулы конечных приращений следует, что для любых $s,t \in \mathcal{I}$ имеет место оценка

$$\left| R_{s,t}^{f(\widetilde{X}) - \widetilde{f}(\widetilde{X})} \right| \le \left(\frac{1}{2} \|\widetilde{X}\|_{H;\mathcal{I}}^2 + \|R^{\widetilde{X}}\|_{2H;\mathcal{I}} \right) \|f - \widetilde{f}\|_{C_b^2} |t - s|^{2H},$$

из которой с учетом предложения 2.6 устанавливаем неравенство

$$\left\| R_{s,t}^{f(\widetilde{X}) - \widetilde{f}(\widetilde{X})} \right\|_{2H:\mathcal{I}} \le c_R \|f - \widetilde{f}\|_{C_b^2} \tag{2.23}$$

где $c_R = \frac{1}{2}K^2\left(K_B^2 \vee K_B^{2/H}\right) + \hat{K}\left(K_B^2 \vee K_B^{1+\frac{1}{H}}\right)$, $K_B = (1 + \|f\|_{C_b^3})C_B$. Применяя неравенства (2.21) — (2.23) к правой части (2.18), получим:

$$\left| \int_{s}^{t} \left(f(\widetilde{X}_{\tau}) - \widetilde{f}(\widetilde{X}_{\tau}) \right) dB_{\tau} \right| \leq (c_{0} + Cc_{R} ||B||_{H} + Cc_{f'} ||\mathbb{B}||_{2H}) ||f - \widetilde{f}||_{C_{b}^{2}} |t - s|^{H},$$

что и требовалось. Лемма доказана.

Лемма 2.2. Пусть X_t и \widetilde{X}_t — решения уравнений (2.2) и (2.11) соответственно с правыми частями f, \widetilde{f} из класса $C_b^3(\mathbb{R}^n,\mathbb{R}^{n\times(d+1)})$, причем функция \widetilde{f} такова, что $\|f-\widetilde{f}\|_{C_b^2}\leq 1$. Тогда для любых функций $g,\widetilde{g}\in C_b^1$, любого отрезка $\mathcal{I}=[u,v]\subset [0,T]$ длины $|\mathcal{I}|\leq 1$ и любого $s\in\mathcal{I}$ п.н. справедливо неравенство

$$|g(X_s) - \widetilde{g}(\widetilde{X}_s)| \le ||g - \widetilde{g}||_{\infty} + C_{0;g}||f - \widetilde{f}||_{C_b^2} + C_{1;g}|X_u - \widetilde{X}_u| + C_{2;g} \left(||B||_H \left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H;\mathcal{I}} + ||\mathbb{B}||_{2H} ||f(X)' - f(\widetilde{X})'||_{H;\mathcal{I}} \right) |\mathcal{I}|^{3H},$$

где $C_{0;g}=C_{0;g}(H,\|g\|_{C_b^1},\|f\|_{C_b^3},\|B\|_H,\|\mathbb{B}\|_{2H})$, $C_{1;g}=C_{1;g}(H,\|g\|_{C_b^1},\|f\|_{C_b^3},\|B\|_H,\|\mathbb{B}\|_{2H})$ — случайные величины, $C_{2;g}=C_{2;g}(H,\|g\|_{C_b^1})$ — константа.

Доказательство. Из формулы конечных приращений следует, что имеет место неравенство

$$|g(X_{s}) - \widetilde{g}(\widetilde{X}_{s})| \leq |g(X_{s}) - g(\widetilde{X}_{s})| + |g(\widetilde{X}_{s}) - \widetilde{g}(\widetilde{X}_{s})| \leq \leq ||Dg||_{\infty} |X_{s} - \widetilde{X}_{s}| + ||g - \widetilde{g}||_{\infty} \leq \leq ||g - \widetilde{g}||_{\infty} + ||g||_{C_{b}^{1}} \left(|X_{u} - \widetilde{X}_{u}| + |X_{u,s} - \widetilde{X}_{u,s}| \right).$$
(2.24)

Поэтому осталось оценить $|X_{u,s}-\widetilde{X}_{u,s}|$. Для этого воспользуемся определением решения и предложением 2.3. Будем иметь:

$$|X_{u,s} - \widetilde{X}_{u,s}| = \left| \int_u^s \left(f(X_\tau) - \widetilde{f}(\widetilde{X}_\tau) \right) dB_\tau \right| \le M_1 + M_2,$$

где $M_1 = \left| \int_u^s \left(f(X_\tau) - f(\widetilde{X}_\tau) \right) dB_\tau \right|, M_2 = \left| \int_u^s \left(f(\widetilde{X}_\tau) - \widetilde{f}(\widetilde{X}_\tau) \right) dB_\tau \right|.$ Оценку для второго выражения дает лемма 2.1: $M_2 \le C_f \|f - \widetilde{f}\|_{C_b^2} |s - u|^H$.

Оценим M_1 . С учетом соотношений, аналогичных (2.19), (2.20), и предложения 2.3, получим:

$$M_{1} \leq \left| f(X_{u}) - f(\widetilde{X}_{u}) \right| |B_{u,s}| + \left| (Df \cdot f)(X_{u}) - (Df \cdot \widetilde{f})(\widetilde{X}_{u}) \right| |\mathbb{B}_{u,s}| +$$

$$+ C \left(\|B\|_{H;\mathcal{I}} \left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H;\mathcal{I}} + \|\mathbb{B}\|_{2H;\mathcal{I}} \|f(X)' - f(\widetilde{X})'\|_{H;\mathcal{I}} \right) |s - u|^{3H}.$$
(2.25)

Осталось заметить, что ввиду формулы конечных приращений, примененной к функциям f и $Df \cdot f$, для любого $s \in \mathcal{I}, |\mathcal{I}| \leq 1$ будем иметь:

$$\left| f(X_u) - f(\widetilde{X}_u) \right| |B_{u,s}| \le \|Df\|_{\infty} |X_u - \widetilde{X}_u| \cdot \|B\|_{H;\mathcal{I}} |s - u|^H \le
\le \|f\|_{C_b^3} \|B\|_H |X_u - \widetilde{X}_u|,$$
(2.26)

$$\left| Df(X_{u})f(X_{u}) - Df(\widetilde{X}_{u})\widetilde{f}(\widetilde{X}_{u}) \right| |\mathbb{B}_{u,s}| \leq
\leq \left(\|D(Df \cdot f)\|_{\infty} |X_{u} - \widetilde{X}_{u}| + \|Df\|_{\infty} \|f - \widetilde{f}\|_{\infty} \right) |\mathbb{B}_{u,s}| \leq
\leq \|f\|_{C_{s}^{1}}^{2} \|\mathbb{B}\|_{2H} |X_{u} - \widetilde{X}_{u}| + \|f\|_{C_{b}^{3}} \|f - \widetilde{f}\|_{C_{b}^{2}} \|\mathbb{B}\|_{2H}.$$
(2.27)

Окончательно, из соотношений (2.24) - (2.27) и леммы 2.1 выводим:

$$|g(X_s) - g(\widetilde{X}_s)| \le ||g - \widetilde{g}||_{\infty} + C_{0;g}||f - \widetilde{f}||_{C_b^2} + C_{1;g}|X_u - \widetilde{X}_u| + C_{2;g} \left(||B||_H \left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H;\mathcal{I}} + ||\mathbb{B}||_{2H} ||f(X)' - f(\widetilde{X})'||_{H;\mathcal{I}} \right) |\mathcal{I}|^{3H},$$

где $C_{0;g} = \|g\|_{C_b^1}(\|f\|_{C_b^3}\|\mathbb{B}\|_{2H} + C_f)$, $C_{1;g} = \|g\|_{C_b^1}\left(1 + \|f\|_{C_b^3}\|B\|_H + \|f\|_{C_b^3}^2\|\mathbb{B}\|_{2H}\right)$, $C_{2;g} = C\|g\|_{C_b^1}$. Последнее соотношение доказывает лемму.

Лемма 2.3. Пусть X_t и \widetilde{X}_t — решения уравнений (2.2) и (2.11) соответственно с правыми частями f, \widetilde{f} из класса $C_b^3(\mathbb{R}^n, \mathbb{R}^{n \times (d+1)})$, причем функция \widetilde{f} такова, что $\|f - \widetilde{f}\|_{C_b^2} \le 1$. Для любого отрезка $\mathcal{I} = [u,v] \subset [0,T]$ длины $|\mathcal{I}| \le 1$ п.н. имеет место следующее неравенство:

$$\|f(X)'-f(\widetilde{X})'\|_{H;\mathcal{I}} \leq C_1|X_u-\widetilde{X}_u|+C_2\|f-\widetilde{f}\|_{C_b^2}+C_3\|X-\widetilde{X}\|_{H;\mathcal{I}},$$
где $C_j=C_j(H,\|f\|_{C_b^3},\|B\|_H,\|\mathbb{B}\|_{2H})$, $j=1,2,3-$ случайные величины.

Доказательство. Введем обозначения: $Y_{s,t}(\theta) = Y_s + \theta Y_{s,t}, \ \theta \in (0,1),$ $s,t \in \mathcal{I}, \ \varphi = Df \cdot f$. С учетом соотношений, аналогичных (2.19), (2.20), следуя формуле конечных приращений, найдутся $\theta_1,\theta_2,\theta \in (0,1)$ такие, что

$$\left| \left(f(X_{\cdot})' - f(\widetilde{X}_{\cdot})' \right)_{s,t} \right| \leq$$

$$\leq \left| (Df \cdot f)(X_{\cdot})_{s,t} - (Df \cdot f)(\widetilde{X}_{\cdot})_{s,t} \right| + \left| (Df \cdot (f - \widetilde{f}))(\widetilde{X}_{\cdot})_{s,t} \right| =$$

$$= \left| D\varphi(X_{s,t}(\theta_{1}))X_{s,t} - D\varphi(\widetilde{X}_{s,t}(\theta_{2}))\widetilde{X}_{s,t} \right| + \left| D(Df \cdot (f - \widetilde{f}))(\widetilde{X}_{s,t}(\theta))\widetilde{X}_{s,t} \right| \leq$$

$$\leq \left| D\varphi(X_{s,t}(\theta_{1})) \right| \cdot \left| X_{s,t} - \widetilde{X}_{s,t} \right| + \left| \widetilde{X}_{s,t} \right| \cdot \left| D\varphi(X_{s,t}(\theta_{1})) - D\varphi(\widetilde{X}_{s,t}(\theta_{2})) \right| +$$

$$+ \left| \left| D^{2}f \cdot (f - \widetilde{f}) + Df \cdot (Df - D\widetilde{f}) \right| \right|_{\infty} |\widetilde{X}_{s,t}|.$$

$$(2.28)$$

Легко видеть, что $\left\|D^2f\cdot(f-\widetilde{f})+Df\cdot(Df-D\widetilde{f})\right\|_{\infty}\leq 2\|f\|_{C_b^3}\|f-\widetilde{f}\|_{C_b^2}.$ Оценим второе слагаемое (2.28). Из формулы конечных приращений следует:

$$\left| D\varphi(X_{s,t}(\theta_1)) - D\varphi(\widetilde{X}_{s,t}(\theta_2)) \right| \leq \|D^2\varphi\|_{\infty} \left(|X_s - \widetilde{X}_s| + |\theta_1 - \theta_2| \cdot |X_{s,t} - \widetilde{X}_{s,t}| \right) \leq \\
\leq \|f\|_{C_b^3}^2 \left(|X_u - \widetilde{X}_u| + \|X - \widetilde{X}\|_{H;\mathcal{I}} |u - s|^H + \|X - \widetilde{X}\|_{H;\mathcal{I}} |t - s|^H \right). \tag{2.29}$$

С учетом соотношений (2.28), (2.29), очевидных неравенств $|\widetilde{X}_{s,t}| \le \|\widetilde{X}\|_{H;\mathcal{I}}|t-s|^H$, $\|\widetilde{f}\|_{C_b^2} \le 1+\|f\|_{C_b^3}$ и предложения 2.6 для любых $s,t\in\mathcal{I}$ будем иметь:

$$\left| \left(f(X_{\cdot})' - f(\widetilde{X}_{\cdot})' \right)_{s,t} \right| \leq \left(C_{1} |X_{u} - \widetilde{X}_{u}| + C_{2} \|f - \widetilde{f}\|_{C_{b}^{2}} + C_{3} \|X - \widetilde{X}\|_{H;\mathcal{I}} \right) |t - s|^{H},$$
 где $C_{1} = \|f\|_{C_{b}^{3}}^{2} C_{\widetilde{X}}, \quad C_{2} = 2 \|f\|_{C_{b}^{3}} C_{\widetilde{X}}, \quad C_{3} = \left(1 + 2C_{\widetilde{X}} \right) \|f\|_{C_{b}^{3}}^{2}, \quad C_{\widetilde{X}} = K \left((1 + \|f\|_{C_{b}^{3}}) C_{B} \vee \left((1 + \|f\|_{C_{b}^{3}}) C_{B} \right)^{\frac{1}{H}} \right).$ Из последнего неравенства следует требуемое утверждение. Лемма доказана.

Лемма 2.4. Пусть X_t и \widetilde{X}_t — решения уравнений (2.2) и (2.11) соответственно с правыми частями f, \widetilde{f} из класса $C_b^3(\mathbb{R}^n,\mathbb{R}^{n\times(d+1)})$, причем функция \widetilde{f} такова, что $\|f-\widetilde{f}\|_{C_b^2}\leq 1$. Для любого отрезка $\mathcal{I}=[u,v]\subset [0,T]$ длины $|\mathcal{I}|\leq 1$ п.н. имеет место следующее неравенство:

$$\left\| R^{f(X)-f(\widetilde{X})} \right\|_{2H\cdot\mathcal{I}} \le C_4 |X_u - \widetilde{X}_u| + C_5 \|f - \widetilde{f}\|_{C_b^2} + C_6 \|X - \widetilde{X}\|_{H;\mathcal{I}},$$

где $C_j = C_j(H, \|f\|_{C^3_b}, \|B\|_H, \|\mathbb{B}\|_{2H})$, j = 4.5.6 -случайные величины.

Доказательство. По определению

$$R_{s,t}^{f(X)-f(\widetilde{X})} = \left(f(X_{\cdot}) - f(\widetilde{X}_{\cdot})\right)_{s,t} - Df(X_{s})X_{s}'B_{s,t} + Df(\widetilde{X}_{s})\widetilde{X}_{s}'B_{s,t} =$$

$$= \left(f(X_{\cdot}) - f(\widetilde{X}_{\cdot})\right)_{s,t} - Df(X_{s})X_{s,t} + Df(\widetilde{X}_{s})\widetilde{X}_{s,t} + Df(X_{s})R_{s,t}^{X} - Df(\widetilde{X}_{s})R_{s,t}^{\widetilde{X}}.$$
(2.30)

Рассмотрим функцию $g(x,\tilde{x})=f(x)-f(\tilde{x}).$ Она дифференцируема по обеим переменным до 3-го порядка включительно и ввиду формулы Тейлора для некоторого $\theta\in(0,1)$:

$$g(X_{t}, \widetilde{X}_{t}) = g(X_{s}, \widetilde{X}_{s}) + \left(X_{s,t} \frac{\partial g(\cdot)}{\partial x} + \widetilde{X}_{s,t} \frac{\partial g(\cdot)}{\partial \widetilde{x}}\right) \Big|_{(X_{s}, \widetilde{X}_{s})} + \frac{1}{2} \left(\frac{\partial^{2} g(\cdot)}{\partial x^{2}} X_{s,t}^{\otimes 2} + 2 \cdot \frac{\partial^{2} g(\cdot)}{\partial x \partial \widetilde{x}} (X_{s,t} \otimes \widetilde{X}_{s,t}) + \frac{\partial g^{2}(\cdot)}{\partial \widetilde{x}^{2}} \widetilde{X}_{s,t}^{\otimes 2}\right) \Big|_{(X_{s,t}(\theta), \widetilde{X}_{s,t}(\theta))}.$$
(2.31)

Вернемся к исходным обозначениям:

$$\frac{\partial^{i} g(x,\widetilde{x})}{\partial x^{i}} = D^{i} f(x), \quad \frac{\partial^{i} g(x,\widetilde{x})}{\partial \widetilde{x}^{i}} = -D^{i} f(\widetilde{x}), \quad i = 1,2; \quad \frac{\partial^{2} g(x,\widetilde{x})}{\partial x \partial \widetilde{x}} = 0. \quad (2.32)$$

Учитывая равенства (2.30) - (2.32), получим:

$$R_{s,t}^{f(X)-f(\widetilde{X})} = \frac{1}{2} \left(D^2 f(X_{s,t}(\theta)) X_{s,t}^{\otimes 2} - D^2 f(\widetilde{X}_{s,t}(\theta)) \widetilde{X}_{s,t}^{\otimes 2} \right) + \left(D f(X_s) R_{s,t}^X - D f(\widetilde{X}_s) R_{s,t}^{\widetilde{X}} \right).$$

$$(2.33)$$

Далее зафиксируем произвольные $s,t\in\mathcal{I}$ такие, что $|t-s|\leq \delta$ для некоторого $\delta\leq |\mathcal{I}|$ и получим оценку на $\left\|R^{f(X)-f(\tilde{X})}\right\|_{2H;\delta}$, оценивая слагаемые в равенстве (2.33). Выберем отрезок $\mathcal{I}_{\delta}\subset\mathcal{I}$ длины $|\mathcal{I}_{\delta}|\leq \delta$, содержащий точки $s,t\in\mathcal{I}_{\delta}$.

ШАГ 1. Оценим первое слагаемое в (2.33). Очевидно,

$$\left| D^2 f(X_{s,t}(\theta)) X_{s,t}^{\otimes 2} - D^2 f(\widetilde{X}_{s,t}(\theta)) \widetilde{X}_{s,t}^{\otimes 2} \right| \leq \left| D^2 f(X_{s,t}(\theta)) \right| \left| X_{s,t}^{\otimes 2} - \widetilde{X}_{s,t}^{\otimes 2} \right| + \left| \widetilde{X}_{s,t}^{\otimes 2} \right| \left| D^2 f(X_{s,t}(\theta)) - D^2 f(\widetilde{X}_{s,t}(\theta)) \right|.$$
(2.34)

Ввиду формулы конечных приращений и неравенства $|\mathcal{I}| \leq 1$:

$$\left| D^{2} f(X_{s,t}(\theta)) - D^{2} f(\widetilde{X}_{s,t}(\theta)) \right| \leq \|D^{3} f\|_{\infty} \left(|X_{s} - \widetilde{X}_{s}| + |\theta| |X_{s,t} - \widetilde{X}_{s,t}| \right) \leq
\leq \|f\|_{C_{b}^{3}} \left(|X_{u} - \widetilde{X}_{u}| + 2\|X - \widetilde{X}\|_{H;\mathcal{I}} \right).$$
(2.35)

Из определения евклидовой нормы нетрудно установить справедливость соотношений

$$\left|\widetilde{X}_{s,t}^{\otimes 2}\right| = |\widetilde{X}_{s,t}|^2 \le \|\widetilde{X}_{s,t}\|_{H;\mathcal{I}}^2 |t-s|^{2H},$$
 (2.36)

$$\left| X_{s,t}^{\otimes 2} - \widetilde{X}_{s,t}^{\otimes 2} \right| \le \sqrt{2 \left(\|X\|_{H;\mathcal{I}}^2 + \|\widetilde{X}\|_{H;\mathcal{I}}^2 \right)} \|X - \widetilde{X}\|_{H;\mathcal{I}} |t - s|^{2H}, \tag{2.37}$$

Учитывая равенства (2.34) - (2.37) и предложение 2.6, получаем окончательно оценку:

$$\left| D^{2} f(X_{s,t}(\theta)) X_{s,t}^{\otimes 2} - D^{2} f(\widetilde{X}_{s,t}(\theta)) \widetilde{X}_{s,t}^{\otimes 2} \right| \le \left(c_{1} |X_{u} - \widetilde{X}_{u}| + c_{2} ||X - \widetilde{X}||_{H;\mathcal{I}} \right) |t - s|^{2H},$$
(2.38)

где
$$c_1 = \|f\|_{C_b^3} C_{\widetilde{X}}^2$$
, $c_2 = 2c_1 + \|f\|_{C_b^3} \sqrt{2\left(C_X^2 + C_{\widetilde{X}}^2\right)}$, $C_{\widetilde{X}} = K\left(C_B(1 + \|f\|_{C_b^3}) \vee \left(C_B(1 + \|f\|_{C_b^3})\right)^{\frac{1}{H}}\right)$, $C_X = K\left(C_B\|f\|_{C_b^3} \vee \left(C_B\|f\|_{C_b^3}\right)^{\frac{1}{H}}\right)$.

ШАГ 2. Оценим второе слагаемое в (2.33). Очевидно,

$$\left| Df(X_s) R_{s,t}^X - Df(\widetilde{X}_s) R_{s,t}^{\widetilde{X}} \right| \le \left| Df(X_s) \right| \left| R_{s,t}^X - R_{s,t}^{\widetilde{X}} \right| + \left| R_{s,t}^{\widetilde{X}} \right| \left| Df(X_s) - Df(\widetilde{X}_s) \right|. \tag{2.39}$$

Ввиду формулы конечных приращений:

$$\left| Df(X_s) - Df(\widetilde{X}_s) \right| \le \|D^2 f\|_{\infty} \left| X_s - \widetilde{X}_s \right| \le \|f\|_{C_b^3} \left(|X_u - \widetilde{X}_u| + \|X - \widetilde{X}\|_{H;\mathcal{I}} \right). \tag{2.40}$$

Рассмотрим разность остатков:

$$\left| R_{s,t}^{X} - R_{s,t}^{\widetilde{X}} \right| = \left| X_{s,t} - \widetilde{X}_{s,t} - (X_s' - \widetilde{X}_s') B_{s,t} \right| =$$

$$= \left| \int_{s}^{t} \left(f(X_{\tau}) - \widetilde{f}(\widetilde{X}_{\tau}) \right) dB_{\tau} - \left(f(X_{s}) - \widetilde{f}(\widetilde{X}_{s}) \right) B_{s,t} \right| \leq M_{1} + M_{2}, \quad (2.41)$$

$$M_{1} = \left| \int_{s}^{t} \left(f(X_{\tau}) - f(\widetilde{X}_{\tau}) \right) dB_{\tau} - \left(f(X_{s}) - f(\widetilde{X}_{s}) \right) B_{s,t} \right|,$$

$$M_{2} = \left| \int_{s}^{t} \left(f(\widetilde{X}_{\tau}) - \widetilde{f}(\widetilde{X}_{\tau}) \right) dB_{\tau} - \left(f(\widetilde{X}_{s}) - \widetilde{f}(\widetilde{X}_{s}) \right) B_{s,t} \right|.$$

Оценим M_1 , применяя предложение 2.3:

$$M_{1} \leq \left| (Df \cdot f)(X_{s}) - (Df \cdot \widetilde{f})(\widetilde{X}_{s}) \right| |\mathbb{B}_{s,t}| +$$

$$+ C \left(\|B\|_{H} \left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H;\mathcal{I}_{\delta}} + \|\mathbb{B}\|_{2H} \|f(X)' - f(\widetilde{X})'\|_{H;\mathcal{I}_{\delta}} \right) \delta^{H} |t - s|^{2H},$$
(2.42)

где константа C зависит лишь от H. По аналогии с неравенством (2.27) можем записать

$$\left| (Df \cdot f)(X_s) - (Df \cdot \widetilde{f})(\widetilde{X}_s) \right| \leq \|D(Df \cdot f)\|_{\infty} |X_s - \widetilde{X}_s| + \|Df\|_{\infty} \|f - \widetilde{f}\|_{\infty} \leq
\leq \|f\|_{C_b^3}^2 \left(|X_u - \widetilde{X}_u| + \|X - \widetilde{X}\|_{H;\mathcal{I}} \right) + \|f\|_{C_b^3} \|f - \widetilde{f}\|_{C_b^2}.$$
(2.43)

Согласно лемме 2.3 найдутся случайные величины C_1, C_2, C_3 (зависящие только от H, $\|f\|_{C_b^3}$, $\|B\|_H$, $\|\mathbb{B}\|_{2H}$) такие, что

$$||f(X)' - f(\widetilde{X})'||_{H;\mathcal{I}} \le C_1|X_u - \widetilde{X}_u| + C_2||f - \widetilde{f}||_{C_b^2} + C_3||X - \widetilde{X}||_{H;\mathcal{I}}. \quad (2.44)$$

Учитывая, что $\|\cdot\|_{H;\mathcal{I}_{\delta}} \leq \|\cdot\|_{H;\mathcal{I}}, \|\cdot\|_{2H;\mathcal{I}_{\delta}} \leq \|\cdot\|_{2H;\mathcal{I},\delta}, \delta \leq 1$, подставляя (2.43), (2.44) в (2.42), получим оценку

$$M_{1} \leq \left(C_{M_{1},1} | X_{u} - \widetilde{X}_{u} | + C_{M_{1},2} | | X - \widetilde{X} | |_{H;\mathcal{I}} + C_{M_{1},3} | | f - \widetilde{f} | |_{C_{b}^{2}} + \right.$$
$$\left. + C ||B||_{H} \delta^{H} \left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H;\mathcal{I},\delta} \right) |t - s|^{2H}, \tag{2.45}$$

где $C_{M_1,1} = \|\mathbb{B}\|_{2H} (\|f\|_{C_b^3}^2 + CC_1)$, $C_{M_1,2} = \|\mathbb{B}\|_{2H} (\|f\|_{C_b^3}^2 + CC_3)$, $C_{M_1,3} = \|\mathbb{B}\|_{2H} (\|f\|_{C_b^3} + CC_2)$.

Оценим M_2 , также применяя предложение 2.3:

$$M_{2} \leq \left| (Df \cdot \widetilde{f})(\widetilde{X}_{s}) - (D\widetilde{f} \cdot \widetilde{f})(\widetilde{X}_{s}) \right| |\mathbb{B}_{s,t}| +$$

$$+ C \left(\|B\|_{H} \left\| R^{f(\widetilde{X}) - \widetilde{f}(\widetilde{X})} \right\|_{2H;\mathcal{I}_{\delta}} + \|\mathbb{B}\|_{2H} \|f(\widetilde{X})' - \widetilde{f}(\widetilde{X})'\|_{H;\mathcal{I}_{\delta}} \right) |t - s|^{2H}.$$

Используя неравенства (2.21) - (2.23), из последнего соотношения можно вывести неравенство

$$M_2 \le C_{M_2,3} ||f - \widetilde{f}||_{C_b^2} |t - s|^{2H},$$
 (2.46)

где $C_{M_2,3} = (1 + \|f\|_{C_h^3}) \|\mathbb{B}\|_{2H} + Cc_R \|B\|_H + Cc_{f'} \|\mathbb{B}\|_{2H}.$

Учитывая равенства (2.39), (2.40), (2.45), (2.46) и предложение 2.6, получаем окончательно оценку:

$$\left| Df(X_s)R_{s,t}^X - Df(\widetilde{X}_s)R_{s,t}^{\widetilde{X}} \right| \le \left(c_3|X_u - \widetilde{X}_u| + c_4||X - \widetilde{X}||_{H;\mathcal{I}} + c_5||f - \widetilde{f}||_{C_b^2} + c_6\delta^H \left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H;\mathcal{I},\delta} \right) |t - s|^{2H},$$
(2.47)

где $c_i = c_i(H, \|f\|_{C_b^3}, \|B\|_H, \|\mathbb{B}\|_{2H}) = c_{3,4}(C_{M_1,i-2}), i = 3,4, c_5 = c_{3,4}(C_{M_1,3} + C_{M_2,3}), c_6 = C\|B\|_H$, а в свою очередь, $c_{3,4}(y) = \|f\|_{C_b^3} \left(\hat{K}\left((C_B(1+\|f\|_{C_b^3}))^2 \vee (C_B(1+\|f\|_{C_b^3}))^{1+\frac{1}{H}}\right) + y\right)\right).$

Применяя оценки (2.38), (2.47) к равенству (2.33), получим, что для любых $s,t\in\mathcal{I}$ таких, что $|t-s|\leq\delta$, справедливо неравенство

$$\left| R_{s,t}^{f(X)-f(\widetilde{X})} \right| \leq \left(c_8 |X_u - \widetilde{X}_u| + c_7 ||X - \widetilde{X}||_{H;\mathcal{I}} + c_5 ||f - \widetilde{f}||_{C_b^2} + c_6 \delta^H \left\| R^{f(X)-f(\widetilde{X})} \right\|_{2H;\mathcal{I},\delta} \right) |t - s|^{2H},$$

где $c_8=\frac{1}{2}c_1+c_3,\,c_7=\frac{1}{2}c_2+c_4.$ Отсюда заключаем, что

$$\left\| R^{f(X)-f(\widetilde{X})} \right\|_{2H;\mathcal{I},\delta} \le c_8 |X_u - \widetilde{X}_u| + c_7 \|X - \widetilde{X}\|_{H;\mathcal{I}} + c_5 \|f - \widetilde{f}\|_{C_b^2} + c_6 \delta^H \left\| R^{f(X)-f(\widetilde{X})} \right\|_{2H;\mathcal{I},\delta}$$

для произвольного $\delta \in (0,|\mathcal{I}|]$. Теперь выберем и зафиксируем δ таким, чтобы

$$c_6 \delta^H = C \|B\|_H \delta^H \le \frac{1}{2} \iff \delta \le (2C \|B\|_H)^{-1/H},$$

т.е. положим $\delta := |\mathcal{I}| \wedge (2C\|B\|_H)^{-1/H}$. При таком выборе

$$\left\| R^{f(X) - f(\widetilde{X})} \right\|_{2H:\mathcal{I},\delta} \le 2c_8 |X_u - \widetilde{X}_u| + 2c_7 \|X - \widetilde{X}\|_{H;\mathcal{I}} + 2c_5 \|f - \widetilde{f}\|_{C_b^2}.$$

Из последнего равенства, предложения 2.5 и неравенства $|\mathcal{I}| \leq 1$ вытекает

$$\|R^{f(X)-f(\widetilde{X})}\|_{2H;\mathcal{I}} \le 2\left(1 \vee 2(2C\|B\|_{H})^{\frac{1-H}{H}}\right) \times \left(c_{8}|X_{u}-\widetilde{X}_{u}|+c_{7}\|X-\widetilde{X}\|_{H;\mathcal{I}}+c_{5}\|f-\widetilde{f}\|_{C_{b}^{2}}\right),$$

откуда и следует требуемое неравенство. Лемма доказана.

2.3.2 Теорема о непрерывной зависимости от начальных данных

Перейдем к основным результатам, касающимся непрерывной зависимости от начальных условий и правых частей решений уравнений (2.2), (2.11) на отрезке [0,T].

Пусть ξ , $\widetilde{\xi}$ — случайные величины, заданные на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ со значениями в \mathbb{R}^n . Следующая теорема устанавливает непрерывную зависимость решений.

Теорема 2.3. Пусть $f, \widetilde{f} \in C_b^3(\mathbb{R}^n, \mathbb{R}^{n \times (d+1)})$, причем функция \widetilde{f} такова, что $\|f - \widetilde{f}\|_{C_b^2} \le 1$. Обозначим через X_t , \widetilde{X}_t решения уравнений (2.2), (2.11) с начальными условиями $X_0 = \xi$, $\widetilde{X}_0 = \widetilde{\xi}$ соответственно. Тогда:

1) почти наверное справедлива следующая оценка

$$||X - \widetilde{X}||_H \le C \left(|\xi - \widetilde{\xi}| + ||f - \widetilde{f}||_{C_b^2} \right)$$
 (2.48)

для некоторой случайной величины $C = C(H, T, \|f\|_{C_b^3}, \|B\|_H, \|\mathbb{B}\|_{2H})$. Причем C может быть выбрана не зависящей от T, если $T \in (0,1]$;

2) имеет место следующее неравенство

$$\mathbb{E}\left(\ln\|X - \widetilde{X}\|_{H}\right) \le C + \ln\left(\mathbb{E}|\xi - \widetilde{\xi}| + \|f - \widetilde{f}\|_{C_{b}^{2}}\right),\tag{2.49}$$

где $C=C(H,H_1,\ldots,H_d,T,\|f\|_{C_b^3})\in\mathbb{R}$ — константа, вообще говоря, зависящая от $H,H_1,\ldots,H_d,T,\|f\|_{C_b^3}.$

Доказательство. Докажем первое утверждение теоремы. Зафиксируем произвольный отрезок $\mathcal{I}=[u,v]\subset [0,T]$ достаточно малой длины $|\mathcal{I}|\leq 1 \wedge T$ (точное значение длины $|\mathcal{I}|$ будет указано ниже) и получим оценку на $\|X-\widetilde{X}\|_{H;\mathcal{I}}$. Выберем произвольные $s,t\in\mathcal{I}$, очевидно справедливо неравенство

$$|X_{s,t} - \widetilde{X}_{s,t}| = \left| \int_s^t f(X_\tau) dB_\tau - \int_s^t \widetilde{f}(\widetilde{X}_\tau) dB_\tau \right| \le M_1 + M_2, \tag{2.50}$$

где
$$M_1 = \left| \int_s^t \left(f(X_\tau) - f(\widetilde{X}_\tau) \right) dB_\tau \right|, M_2 = \left| \int_s^t \left(f(\widetilde{X}_\tau) - \widetilde{f}(\widetilde{X}_\tau) \right) dB_\tau \right|.$$

Оценим M_1 . Из предложения 2.3 следует, что

$$M_{1} \leq \left| f(X_{s}) - f(\widetilde{X}_{s}) \right| \|B\|_{H} |t - s|^{H} + \left| (Df \cdot f)(X_{s}) - (Df \cdot \widetilde{f})(\widetilde{X}_{s}) \right| \|B\|_{2H} |t - s|^{2H} + \left| (B\|_{H} \|R^{f(X) - f(\widetilde{X})}\|_{2H;\mathcal{I}} + \|\mathbb{B}\|_{2H} \|f(X)' - f(\widetilde{X})'\|_{H;\mathcal{I}} \right) |t - s|^{3H}.$$

Введем обозначение: $c_{1,2}(K_1,K_2)=K_1\|B\|_H+K_2\|B\|_{2H}$. Применяя лемму 2.2 к функциям f и \widetilde{f} , $Df\cdot f$ и $Df\cdot \widetilde{f}$, учитывая, $|\mathcal{I}|\leq 1$, из последнего неравенства легко вывести:

$$\frac{|X_{s,t} - \widetilde{X}_{s,t}|}{|t - s|^H} \le c_0 ||f - \widetilde{f}||_{C_b^2} + c_1 |X_u - \widetilde{X}_u| +
+ \widetilde{C} \left(||B||_H ||R^{f(X) - f(\widetilde{X})}||_{2H;\mathcal{I}} + ||\mathbb{B}||_{2H} ||f(X)' - f(\widetilde{X})'||_{H;\mathcal{I}} \right) |\mathcal{I}|^{2H},$$

где $c_0 = c_{1,2}(1, \|f\|_{C_b^3})$, $c_1 = c_{1,2}(C_{1;f}, C_{1;Df \cdot f})$, $\widetilde{C} = c_{1,2}(C_{2;f}, C_{2;Df \cdot f}) + C$. Причем c_1, c_2 — случайные величины, зависящие только от H, $\|f\|_{C_b^3}$, $\|B\|_H$, $\|\mathbb{B}\|_{2H}$, но не зависящие от s,t, \mathcal{I} .

Далее, применяя леммы 2.3, 2.4 к правой части последнего неравенства, с учетом $|\mathcal{I}| \leq 1$ получим:

$$\frac{M_1}{|t-s|^H} \le c_2 ||f-\widetilde{f}||_{C_b^2} + c_3 |X_u - \widetilde{X}_u| + c_4 |\mathcal{I}|^H ||X - \widetilde{X}||_{H;\mathcal{I}},$$

где $c_2 = c_0 + \widetilde{C} \cdot c_{1,2}(C_5, C_3)$, $c_3 = c_1 + \widetilde{C} \cdot c_{1,2}(C_4, C_1)$, $c_4 = \widetilde{C} \cdot c_{1,2}(C_6, C_3)$. Причем c_3, c_4 — случайные величины, зависящие от $H, \|f\|_{C_b^3}, \|B\|_H, \|\mathbb{B}\|_{2H}$, но не зависящие от s,t, \mathcal{I} . Из леммы 2.1 следует, что $\frac{M_2}{|t-s|^H} \leq C_f \|f-\widetilde{f}\|_{C_b^2}$, а посему

$$\frac{|X_{s,t} - \widetilde{X}_{s,t}|}{|t - s|^H} \le c_3 |X_u - \widetilde{X}_u| + c_4 |\mathcal{I}|^H ||X - \widetilde{X}||_{H;\mathcal{I}} + c_5 ||f - \widetilde{f}||_{C_b^2},$$

где $c_5 = c_2 + C_f$. Последнее неравенство справедливо для любых $s,t \in \mathcal{I}, s \neq t,$ а значит,

$$||X - \widetilde{X}||_{H;\mathcal{I}} \le c_3 |X_u - \widetilde{X}_u| + c_5 ||f - \widetilde{f}||_{C_b^2} + c_4 |\mathcal{I}|^H ||X - \widetilde{X}||_{H;\mathcal{I}}$$

для произвольного $|\mathcal{I}| \in (0,1]$. Теперь выберем $|\mathcal{I}|$ таким, чтобы выполнялось соотношение

$$c_4|\mathcal{I}|^H \le \frac{1}{2} \iff |\mathcal{I}| \le (2c_4)^{-1/H} =: \delta_0,$$

Таким образом, для любого отрезка $\mathcal{I}=[u,v]\subset [0,T]$ длины $|\mathcal{I}|\leq 1\wedge T\wedge \delta_0$ справедливо неравенство

$$||X - \widetilde{X}||_{H;\mathcal{I}} \le c|X_u - \widetilde{X}_u| + c_f||f - \widetilde{f}||_{C_h^2},$$
 (2.51)

где $c=2c_3,\,c_f=2c_5.$ Если $1\wedge T\wedge \delta_0=T,$ то $\mathcal{I}=[0,T],$ и неравенство (2.51) доказывает требуемое. Поэтому пусть далее $T>1\wedge \delta_0=:\delta_1.$

Построим разбиение отрезка [0,T] точками $t_j:=(j\cdot\delta_1)\wedge T$, где $j=0,1,\dots$ Заметим, что $t_N=T$ при $N\geq \frac{T}{\delta_1}$, а также, что отрезки $\mathcal{I}_j=[t_j,t_{j+1}]$ имеют длины $|\mathcal{I}_j|\leq \delta_1,\, j=0,1,\dots$ Поэтому из неравенства (2.51) следуют оценки

$$||X - \widetilde{X}||_{H;\mathcal{I}_j} \le c|X_{t_j} - \widetilde{X}_{t_j}| + c_f||f - \widetilde{f}||_{C_b^2},$$

для $j < \frac{T}{\delta_1}$. Заметим, что

$$|X_{t_{j}} - \widetilde{X}_{t_{j}}| \leq |X_{t_{j-1}} - \widetilde{X}_{t_{j-1}}| + \delta_{1}^{H} ||X - \widetilde{X}||_{H;\mathcal{I}_{j-1}} \leq$$

$$\leq (1 + c\delta_{1}^{H})|X_{t_{j-1}} - \widetilde{X}_{t_{j-1}}| + c_{f}\delta_{1}^{H} ||f - \widetilde{f}||_{C_{b}^{2}}.$$

Из полученного рекуррентного соотношения очевидной индукцией выводим неравенство:

$$|X_{t_j} - \widetilde{X}_{t_j}| \le (1 + c\delta_1^H)^j |X_0 - \widetilde{X}_0| + c_f \delta_1^H ||f - \widetilde{f}||_{C_b^2} \sum_{k=0}^{j-1} (1 + c\delta_1^H)^k =$$

$$= (1 + c\delta_1^H)^j |\xi - \widetilde{\xi}| + \frac{c_f}{c} \left((1 + c\delta_1^H)^j - 1 \right) ||f - \widetilde{f}||_{C_b^2}$$

для $j < \frac{T}{\delta_1}$. Таким образом,

$$||X - \widetilde{X}||_{H;\mathcal{I}_j} \le (1 + c\delta_1^H)^{T/\delta_1} \left(c|\xi - \widetilde{\xi}| + c_f ||f - \widetilde{f}||_{C_b^2} \right)$$
 (2.52)

для любого $j=0,1,\ldots,\lfloor\frac{T}{\delta_1}\rfloor$.

Применяя предложение 2.7 с учетом неравенства (2.52) получим:

$$||X - \widetilde{X}||_{H;\delta_1} \le 2^{1-H} (1 + c\delta_1^H)^{T/\delta_1} \left(c|\xi - \widetilde{\xi}| + c_f ||f - \widetilde{f}||_{C_b^2} \right).$$

Рассмотрим выражение $(1+c\delta_1^H)^{T/\delta_1}$, $\delta_1=1\land\delta_0$. Если $\delta_1=1$, то оно принимает значение $(1+c)^T$. В противном случае $\delta_1=\delta_0$, $\delta_0=(2c_4)^{-1/H}<1$, $2c_4>1$ и

$$(1 + c\delta_0^H)^{\frac{T}{\delta_0}} = \left(1 + \frac{c}{2c_4}\right)^{(2c_4)^H T} \le \left(1 + \frac{c}{2c_4}\right)^{2c_4 T} = \left(\left(1 + \frac{c}{2c_4}\right)^{\frac{2c_4}{c}}\right)^{cT} \le e^{cT},$$

поскольку функция $\phi(x)=(1+\frac{1}{x})^x$, x>0 ограничена сверху числом e. Кроме того, $(1+c)^T=\phi(\frac{1}{c})^{cT}\leq e^{cT}$. Поэтому $(1+c\delta_1^H)^{T/\delta_1}\leq e^{cT}$ и

$$||X - \widetilde{X}||_{H;\delta_1} \le 2^{1-H} e^{cT} \left(c|\xi - \widetilde{\xi}| + c_f ||f - \widetilde{f}||_{C_b^2} \right).$$

Теперь из предложения 2.5 и последнего неравенства получем оценку требуемого вида:

$$||X - \widetilde{X}||_{H} \le 2^{2-H} e^{2c_{3}T} \left(1 \vee 2T^{1-H} \vee 2(2c_{4})^{\frac{1-H}{H}} T^{1-H} \right) (c_{3} \vee c_{5}) \times \left(|\xi - \widetilde{\xi}| + ||f - \widetilde{f}||_{C_{b}^{2}} \right).$$
(2.53)

Первое утверждение теоремы доказано.

Докажем второе утверждение теоремы. Рассмотрим зависимость случайных величин c_3, c_4, c_5 , фигурирующих в неравенстве (2.53), от $\|B\|_H$, $\|\mathbb{B}\|_{2H}$ при фиксированных T, H, $\|f\|_{C_b^3}$. Из доказательства первой части следует, что эта зависимость выражается в виде композиции конечного числа функций $\Sigma_{\alpha,\beta,\gamma}(u,v) = \alpha u + \beta v + \gamma$, $\Pi(u,v) = u \cdot v$, $\forall (u,v) = u \lor v$, $\psi_s(u) = u^s$ ($\alpha,\beta,\gamma \in \mathbb{R}$, $s \in \mathbb{R}^+$ — параметры) вещественных аргументов $u,v \in \mathbb{R}^+$.

Применим логарифм к обеим частям неравенства (2.53). Учитывая, что $x \lor y \le x + y$ для x,y > 0, будем иметь:

$$\ln \|X - \widetilde{X}\|_{H} \le \mu + 2c_{3}T + \ln(c_{3} + c_{5}) + \ln\left(1 + 2T^{1-H} + 2(2c_{4})^{\frac{1-H}{H}}T^{1-H}\right) + \ln\left(|\xi - \widetilde{\xi}| + \|f - \widetilde{f}\|_{C_{b}^{2}}\right),$$

где $\mu=(2-H)\ln 2$. Возьмем математическое ожидание от обеих частей последнего неравенства. Ввиду вогнутости логарифма и неравенства Иенсена справедливо неравенство $\mathbb{E}(\ln \eta) \leq \ln(\mathbb{E}\eta)$ для любой случайной величины η . С учетом этого, выводим неравенство

$$\mathbb{E}\left(\ln \|X - \widetilde{X}\|_{H}\right) \leq \mu + 2T\mathbb{E}c_{3} + \ln(\mathbb{E}c_{3} + \mathbb{E}c_{5}) + \left(1 + 2T^{1-H} + T^{1-H}2^{\frac{1}{H}}\mathbb{E}\left(c_{4}^{\frac{1-H}{H}}\right)\right) + \ln(\mathbb{E}|\xi - \widetilde{\xi}| + \|f - \widetilde{f}\|_{C_{b}^{2}}).$$

Таким образом, осталось доказать, что $\mathbb{E}c_3 < \infty$, $\mathbb{E}c_5 < \infty$, $\mathbb{E}\left(c_4^{\frac{1-H}{H}}\right) < \infty$. Однако, мы установим даже большее: для любого r > 0 конечны моменты $\mathbb{E}c_i^r = \mathbb{E}c_i^r(\|B\|_H, \|\mathbb{B}\|_{2H}), j = 3,4,5$.

Далее воспользуемся тем, что зависимость $c_j^r = c_j^r(\|B\|_H, \|\mathbb{B}\|_{2H}), j = 3,4,5$ от норм $\|B\|_H, \|\mathbb{B}\|_{2H}$ выражается в виде композиции конечного числа функций $\Sigma_{\alpha,\beta,\gamma}(u,v), \Pi(u,v), \vee (u,v), \psi_s(u)$. Но очевидно, что $\vee (u,v) = 0$

 $u \in u \vee v \leq u + v = \Sigma_{1,1,0}(u,v)$ для $u,v \in \mathbb{R}^+$. Также понятно, что для $u = u(\|B\|_H, \|\mathbb{B}\|_{2H}) \in \mathbb{R}^+, v = v(\|B\|_H, \|\mathbb{B}\|_{2H}) \in \mathbb{R}^+$ справедливы соотношения

$$\mathbb{E}\Sigma_{\alpha,\beta,\gamma}(u,v) = \alpha \mathbb{E}u + \beta \mathbb{E}v + \gamma,$$
$$\mathbb{E}(u \vee v) \leq \mathbb{E}u + \mathbb{E}v,$$
$$\mathbb{E}\Pi(u,v) \leq (\mathbb{E}u^2)^{1/2} (\mathbb{E}v^2)^{1/2}.$$

Значит, конечность указанных математических ожиданий от функций $\Sigma_{\alpha,\beta,\gamma}$, Π , \vee будет обеспечена конечностью моментов их аргументов. Осталось рассмотреть функцию $\psi_s(u)=u^s$.

Если $s \in (0,1]$, то из неравенства Иенсена следует оценка $\mathbb{E}\psi_s(u) \le \psi_s(\mathbb{E}u) = (\mathbb{E}u)^s$. Если же $s \in (1,\infty)$, то справедливы соотношения:

$$\mathbb{E}\psi_s(\Sigma_{\alpha,\beta,\gamma}(u,v)) = \mathbb{E}(\alpha u + \beta v + \gamma)^s \leq 3^{s-1}(\alpha^s \mathbb{E}u^s + \beta^s \mathbb{E}v^s + \gamma^s),$$

$$\mathbb{E}\psi_s(u \vee v) \leq \mathbb{E}(u+v)^s \leq 2^{s-1}(\mathbb{E}u^s + \mathbb{E}v^s),$$

$$\mathbb{E}\psi_s(uv) = \mathbb{E}u^s v^s \leq (\mathbb{E}u^{2s})^{1/2}(\mathbb{E}v^{2s})^{1/2}.$$

В то же время, как следует из [60, лемма 7.4], любой s-момент, $s \ge 1$ случайной величины $\|B\|_H$ (а значит и любой s-момент, s > 0 ввиду неравенства Иенсена) конечен, т.е. $\mathbb{E}\psi_s(\|B\|_H) = \mathbb{E}\|B\|_H^s < \infty$, s > 0. То же самое справедливо для случайной величины $\|\mathbb{B}\|_{2H}$ (см. предложение 2.4): $\mathbb{E}\psi_s(\|\mathbb{B}\|_{2H}) = \mathbb{E}\|\mathbb{B}\|_{2H}^s < \infty$, s > 0.

Из полученных соотношений следует, что композиция конечного числа указанных функций с нормами $\|B\|_H, \|\mathbb{B}\|_{2H}$ в качестве аргументов будет иметь конечное математическое ожидание и, в частности, $\mathbb{E}c_i^r(\|B\|_H, \|\mathbb{B}\|_{2H}) < \infty, j = 3,4,5$ для любого r > 0. Теорема доказана.

Замечание 2.7. Нетрудно видеть, что в приведенном доказательстве первого утверждения теоремы не использовались никакие другие свойства дробного броуновского движения $(B_t)_{t\in[0,T]}$, кроме свойства непрерывности траекторий по Гельдеру с показателем H. Это означает, что утверждение 1 приведенной теоремы справедливо для произвольных гельдеровских функций $B \in C^H([0,T], \mathbb{R}^{d+1})$.

Выводы

В данной главе диссертации рассмотрены общие свойства стохастических дифференциальных уравнений $dX_t = f(X_t)dB_t, \ t \in [0,T]$ с многомерным дробным броуновским движением $B_t = (B_t^{(0)}, B_t^{(1)}, \dots, B_t^{(d)})^{\top}$, компоненты $B_t^{(i)}$ которого имеют различные показатели Харста $H_i > 1/3, \ i \geq 1$, а также содержащих снос $dB_t^{(0)} = dt$.

Построено определение процесса второго порядка $\mathbb{B}_{s,t}$, фигурирующего в определении потракторного интеграла Губинелли, над указанным дробным броуновским движением B_t . Для процесса $\mathbb{B}_{s,t}$ доказана принадлежность п. н. пары (B,\mathbb{B}) пространству геометрических грубых траекторий и конечность моментов любого порядка $q \geq 1$ процесса $\|\mathbb{B}\|_H$. Введено определение решения рассматриваемого уравнения с использованием потраекторного интеграла Губинелли и указано условие существования и единственности решений — непрерывность и ограниченность производных функции f до второго порядка включительно.

Доказана формула замены переменных для функций g от решений рассматриваемых уравнений в предположении, что функции f и g имеют непрерывные и ограниченные производные до третьего порядка включительно.

Получена теорема о непрерывной зависимости решений рассматриваемых уравнений с начальными условиями $X_0=\xi$ от начальных данных f,ξ в предположении, что исходная и возмущенная правые части f,\widetilde{f} имеют непрерывные и ограниченные производные до третьего порядка включительно.

ГЛАВА 3

АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ ФУНКЦИОНАЛОВ РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, УПРАВЛЯЕМЫХ ДРОБНЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ

3.1 Асимптотические разложения в окрестности нуля

В данном разделе будем придерживаться следующих компактных записей:

$$\Delta^k[0,t] = \{(t_1, \dots, t_k) \in [0,1]^k : 0 \le t_1 < \dots < t_k \le t\}$$
(3.1)

$$\int_{\Delta^k[0,t]} dB^{(I_k)} = \int_0^t \int_0^{t_k} \dots \int_0^{t_2} dB_{t_1}^{(i_1)} \dots dB_{t_{k-1}}^{(i_{k-1})} dB_{t_k}^{(i_k)},$$

$$I_k = (i_1, \dots, i_k) \in \mathbb{N}_d^k := \{0, \dots, d\}^k,$$
 (3.2)

$$D_f^{(i)} = \sum_{i=1}^n f_{ji}(x) \frac{\partial}{\partial x_j}, i \in \{0, \dots, d\} \qquad D_f^{(I_k)} = D_f^{(i_1)} \dots D_f^{(i_k)}, \tag{3.3}$$

$$\mathbf{P}_t g(x) = \mathbb{E} g(X_t^x), \quad t \ge 0. \tag{3.4}$$

В дальнейшем для краткости будем опускать верхний индекс x и обозначать решение через X_t в доказательствах.

Теорема 3.1. Пусть $f \in C_b^{N+2}(\mathbb{R}^n, \mathbb{R}^{n \times (d+1)})$, $g \in C_b^{N+3}(\mathbb{R}^n, \mathbb{R})$, $N \in \mathbb{N}$. Тогда для любого фиксированного $H \in (1/3, 1/2]$ такого, что $H < H_{min} = \min_{i=0,...d} H_i$ справедливо следующее асимптотическое разложение:

$$\mathbf{P}_{t}g(x) = g(x) + \sum_{k=1}^{N} \sum_{I_{k} \in \{0,\dots,d\}^{k}} t^{|H_{I_{k}}|} \cdot (D_{f}^{(I_{k})}g)(x) \,\mathbb{E}\left(\int_{\Delta^{k}[0,1]} dB^{(I_{k})}\right) + O(t^{(N+1)H}),\tag{3.5}$$

при $t\to 0$, где $|H_{I_k}|=H_{i_1}+H_{i_2}+\ldots+H_{i_k}-$ сумма индексов Харста дробных броуновских движений $B^{(i_1)},B^{(i_2)},\ldots,B^{(i_k)}.$

Доказательство. С учетом обозначений (3.3) формулу замены переменных (2.4) можно записать в следующей развернутой форме:

$$g(X_t^x) = g(x) + \sum_{i=0}^d \int_0^t (D_f^{(i)}g)(X_r^x) dB_r^{(i)}$$
(3.6)

Применяя формулу (3.6) (N+1) раз, с учетом обозначений (3.1) — (3.3) получим:

$$g(X_t) = g(x) + \sum_{k=1}^{N} \sum_{I_k \in \mathbb{N}_d^k} (D_f^{(I_k)} g)(x) \int_{\Delta^k[0,t]} dB^{(I_k)} + \sum_{I_{N+1} \in \mathbb{N}_d^{N+1}} \int_0^t \int_0^{t_{N+1}} \dots \int_0^{t_2} (D_f^{(I_{N+1})} g)(X_{t_1}) dB_{t_1}^{(i_1)} \dots dB_{t_N}^{(i_N)} dB_{t_{N+1}}^{(i_{N+1})}.$$
(3.7)

Обозначим $\varphi_{I_{N+1}}(x)=(D_f^{(I_{N+1})}g)(x)$ и преобразуем последнее слагаемое в (3.7). Введем в рассмотрение процесс $\widehat{B}_u^{(c)}=(\widehat{B}_u^{(0;c)},\widehat{B}_u^{(1;c)},\ldots,\widehat{B}_u^{(d;c)})^{\top}$, зависящий от параметра c>0, i-я компонента которого определяется равенством $\widehat{B}_u^{(i;c)}=c^{H_i}B_{u/c}^{(i)}$, $u\in[0,T]$. По свойству самоподобия дробного броуновского движения процесс $\widehat{B}_u^{(i;c)}$ также является дробным броуновским движением с индексом Харста H_i для любого c>0, $i=\overline{1,d}$. Следовательно, при фиксированном $t\in[0,T]$:

$$\int_{0}^{t} \int_{0}^{t_{N+1}} \dots \int_{0}^{t_{2}} \varphi_{I_{N+1}}(X_{t_{1}}) dB_{t_{1}}^{(i_{1})} \dots dB_{t_{N}}^{(i_{N})} dB_{t_{N+1}}^{(i_{N+1})} =$$

$$= \int_{0}^{1} dB_{t \cdot t_{N+1}}^{(i_{N+1})} \int_{0}^{t_{N+1}} dB_{t \cdot t_{N}}^{(i_{N})} \dots \int_{0}^{t_{2}} \varphi_{I_{N+1}}(X_{t \cdot t_{1}}) dB_{t \cdot t_{1}}^{(i_{1})} =$$

$$\stackrel{\mathcal{L}}{=} \int_{0}^{1} d\widehat{B}_{t \cdot t_{N+1}}^{(i_{N+1};t)} \int_{0}^{t_{N+1}} d\widehat{B}_{t \cdot t_{N}}^{(i_{N};t)} \dots \int_{0}^{t_{2}} \varphi_{I_{N+1}}(\widehat{X}_{t \cdot t_{1}}^{(t)}) d\widehat{B}_{t \cdot t_{1}}^{(i_{1};t)} =$$

$$= t^{H_{i_{1}} + \dots + H_{i_{N+1}}} \int_{0}^{1} dB_{t_{N+1}}^{(i_{N+1})} \int_{0}^{t_{N+1}} dB_{t_{N}}^{(i_{N})} \dots \int_{0}^{t_{2}} \varphi_{I_{N+1}}(\widehat{X}_{t \cdot t_{1}}^{(t)}) dB_{t_{1}}^{(i_{1})}, \quad (3.8)$$

где знак $\stackrel{\mathcal{L}}{=}$ означает совпадение распределений, а $\widehat{X}_{ au}^{(t)}$ — решение уравнения:

$$d\widehat{X}_{\tau}^{(t)} = f(\widehat{X}_{\tau}^{(t)})d\widehat{B}_{\tau}^{(t)}, \quad \tau \in [0, T]$$

$$(3.9)$$

с начальным условием $\widehat{X}_0^{(t)}=x.$ По тем же соображениям

$$\int_{\Delta^k[0,t]} dB^{(I_k)} \stackrel{\mathcal{L}}{=} t^{|H_{I_k}|} \int_{\Delta^k[0,1]} dB^{(I_k)}, \tag{3.10}$$

а посему из (3.7) - (3.10) после взятия математического ожидания, получим:

$$\mathbf{P}_{t}g(x) = g(x) + \sum_{k=1}^{N} \sum_{I_{k} \in \mathbb{N}_{d}^{k}} t^{|H_{I_{k}}|} (D_{f}^{(I_{k})}g)(x) \mathbb{E}\left(\int_{\Delta^{k}[0,1]} dB^{(I_{k})}\right) + \mathcal{R}_{N+1}(t), (3.11)$$

$$\mathcal{R}_{N+1}(t) = \\
= \sum_{I_{N+1} \in \mathbb{N}_d^{N+1}} \left(t^{|H_{I_{N+1}}|} \mathbb{E} \int_0^1 \int_0^{t_{N+1}} \dots \int_0^{t_2} (D_f^{(I_{N+1})} g)(\widehat{X}_{t \cdot t_1}^{(t)}) dB_{t_1}^{(i_1)} \dots dB_{t_N}^{(i_N)} dB_{t_{N+1}}^{(i_{N+1})} \right).$$
(3.12)

Поскольку $|H_{I_{N+1}}| \geq (N+1)H$ для любого I_{N+1} , то при t < 1:

$$|\mathcal{R}_{N+1}(t)| \leq (d+1)^{N+1} t^{(N+1)H} \times$$

$$\times \max_{I_{N+1} \in \mathbb{N}_d^{N+1}} \mathbb{E} \left| \int_0^1 \int_0^{t_{N+1}} \dots \int_0^{t_2} (D_f^{(I_{N+1})} g)(\widehat{X}_{t \cdot t_1}^{(t)}) dB_{t_1}^{(i_1)} \dots dB_{t_N}^{(i_N)} dB_{t_{N+1}}^{(i_{N+1})} \right|.$$
 (3.13)

Поэтому, учитывая (3.11) - (3.13), для завершения доказательства формулы (3.5) осталось показать, что

$$\mathbb{E}\left|\int_{0}^{1} \int_{0}^{t_{N+1}} \dots \int_{0}^{t_{2}} (D_{f}^{(I_{N+1})}g)(\widehat{X}_{t\cdot t_{1}}^{(t)}) dB_{t_{1}}^{(i_{1})} \dots dB_{t_{N}}^{(i_{N})} dB_{t_{N+1}}^{(i_{N+1})}\right| < +\infty$$
 (3.14)

для любых $I_{N+1} = (i_1, \dots, i_{N+1}) \in \mathbb{N}_d^{N+1}$.

Рассмотрим повторные интегралы чуть более общего вида, нежели (3.14). Для произвольного фиксированного $c \in (0,1]$ будем оценивать повторные интегралы вида

$$\mathcal{I}_{t}^{(k)} = \int_{0}^{t} \int_{0}^{t_{k-1}} \dots \int_{0}^{t_{1}} \varphi(\widehat{X}_{cr}^{(c)}) dB_{r}^{(i_{1})} \dots dB_{t_{k-2}}^{(i_{k-2})} dB_{t_{k-1}}^{(i_{k-1})}, \quad t \in [0,1], \quad (3.15)$$

в которых $\varphi: \mathbb{R}^n \to \mathbb{R}$ — произвольная функция с непрерывными и ограниченными производными до второго порядка включительно. Для единообразия положим $\mathcal{I}_t^{(0)} = \varphi(\widehat{X}_{ct}^{(c)}).$

Лемма 3.1. Пусть φ имеет непрерывные и ограниченные производные до второго порядка включительно. Тогда справедливы неравенства $|\mathcal{I}_{s,t}^{(k)} - \mathcal{I}_s^{(k-1)} B_{s,t}^{(i)}| \leq M_k |t-s|^{2H}$ для любого $i = \overline{0,d}$ и $|\mathcal{I}_{s,t}^{(k)}| \leq \widetilde{M}_k |t-s|^H$, где M_k, \widetilde{M}_k — случайные величины (не зависящие от s,t).

Доказательство. Проведем индукцией по k.

Рассмотрим k=1. Докажем, что $(\varphi(\widehat{X}_{c}^{(c)}))'=c^{H_{i_1}}D\varphi(\widehat{X}_{c}^{(c)})(\widehat{X}^{(c)})'_c$. Введем обозначение $R_{u,v}^{\widehat{X}^{(c)};i_1}=\widehat{X}_{u,v}^{(c)}-(\widehat{X}^{(c)})'_u\widehat{B}_{u,v}^{(i_1;c)}$ для i_1 -й компоненты остатка $R^{\widehat{X}^{(c)}}$ по отношению к процессу $\widehat{X}^{(c)}$, управляемому процессом $\widehat{B}^{(i_1;c)}$.

Используя формулу Тейлора, будем иметь

$$R_{s,t}^{\varphi(\widehat{X}_{c\cdot}^{(c)});i_{1}} := \varphi(\widehat{X}_{ct}^{(c)}) - \varphi(\widehat{X}_{cs}^{(c)}) - c^{H_{i_{1}}}D\varphi(\widehat{X}_{cs}^{(c)})(\widehat{X}^{(c)})'_{cs}B_{s,t}^{(i_{1})} =$$

$$= \varphi(\widehat{X}_{ct}^{(c)}) - \varphi(\widehat{X}_{cs}^{(c)}) - D\varphi(\widehat{X}_{cs}^{(c)})(\widehat{X}^{(c)})'_{cs}\widehat{B}_{cs,ct}^{(i_{1};c)} =$$

$$= \varphi(\widehat{X}_{ct}^{(c)}) - \varphi(\widehat{X}_{cs}^{(c)}) - D\varphi(\widehat{X}_{cs}^{(c)})\widehat{X}_{cs,ct}^{(c)} + D\varphi(\widehat{X}_{cs}^{(c)})R_{cs,ct}^{\widehat{X}^{(c)};i_{1}} =$$

$$= \frac{1}{2}D^{2}\varphi(\widehat{X}_{cs}^{(c)} + \theta\widehat{X}_{cs,ct}^{(c)})\widehat{X}_{cs,ct}^{(c)} \otimes \widehat{X}_{cs,ct}^{(c)} + D\varphi(\widehat{X}_{cs}^{(c)})R_{cs,ct}^{\widehat{X}^{(c)};i_{1}}$$

$$= \frac{1}{2}D^{2}\varphi(\widehat{X}_{cs}^{(c)} + \theta\widehat{X}_{cs,ct}^{(c)})\widehat{X}_{cs,ct}^{(c)} \otimes \widehat{X}_{cs,ct}^{(c)} + D\varphi(\widehat{X}_{cs}^{(c)})R_{cs,ct}^{\widehat{X}^{(c)};i_{1}}$$

$$= (3.16)$$

для некоторого $\theta \in (0,1)$. Из теоремы существования 2.1 следует, что $\|R^{\widehat{X}^{(c);i_1}}\|_{2H} \leq \|R^{\widehat{X}^{(c)}}\|_{2H} < \infty$. Легко видеть, что

$$\left| R_{s,t}^{\varphi(\widehat{X}_{c}^{(c)});i_{1}} \right| \leq \frac{1}{2} \|D^{2}\varphi\|_{\infty} \|\widehat{X}^{(c)}\|_{H}^{2} |ct - cs|^{2H} + \|D\varphi\|_{\infty} \|R^{\widehat{X}^{(c)};i_{1}}\|_{2H} |ct - cs|^{2H} =$$

$$= c^{2H} \left(\frac{1}{2} \|D^{2}\varphi\|_{\infty} \|\widehat{X}^{(c)}\|_{H}^{2} + \|D\varphi\|_{\infty} \|R^{\widehat{X}^{(c)}}\|_{2H} \right) |t - s|^{2H}, \tag{3.17}$$

откуда следует, что $\|R_{s,t}^{\varphi(\widehat{X}_c^{(c)});i_1}\|_{2H} \leq \frac{1}{2}\|D^2\varphi\|_{\infty}\|\widehat{X}^{(c)}\|_H^2 + \|D\varphi\|_{\infty}\|R^{\widehat{X}^{(c)}}\|_{2H} < \infty$ (так как $c \leq 1$), что и требовалось.

Далее, поскольку $\varphi(\widehat{X}_{c\cdot}^{(c)})'=c^{H_{i_1}}D\varphi(\widehat{X}_{c\cdot}^{(c)})(\widehat{X}^{(c)})'_{c\cdot}=c^{H_{i_1}}D\varphi(\widehat{X}_{c\cdot}^{(c)})f(\widehat{X}_{c\cdot}^{(c)}),$ то

$$\left| \left(\varphi(\widehat{X}_{c}^{(c)})' \right)_{s,t} \right| = c^{H_{i_1}} \left| (D\varphi \cdot f)(\widehat{X}_{ct}^{(c)}) - (D\varphi \cdot f)(\widehat{X}_{cs}^{(c)}) \right| =
= c^{H_{i_1}} \left| D(D\varphi \cdot f)(\widehat{X}_{cs}^{(c)} + \theta \widehat{X}_{cs,ct}^{(c)}) \right| \cdot \left| \widehat{X}_{cs,ct}^{(c)} \right| =
= c^{H_{i_1}} \left| (D^2 \varphi \cdot f)(\widehat{X}_{cs}^{(c)} + \theta \widehat{X}_{cs,ct}^{(c)}) + (D\varphi \cdot Df)(\widehat{X}_{cs}^{(c)} + \theta \widehat{X}_{cs,ct}^{(c)}) \right| \cdot \left| \widehat{X}_{cs,ct}^{(c)} \right| \le
\le c^{H_{i_1}} \left(\|D^2 \varphi\|_{\infty} \|f\|_{\infty} + \|D\varphi\|_{\infty} \|Df\|_{\infty} \right) \|\widehat{X}^{(c)}\|_{H} |ct - cs|^{H} =
= c^{H_{i_1} + H} \left(\|D^2 \varphi\|_{\infty} \|f\|_{\infty} + \|D\varphi\|_{\infty} \|Df\|_{\infty} \right) \|\widehat{X}^{(c)}\|_{H} |t - s|^{H}.$$
(3.18)

Отсюда следует, что $\|\varphi(\widehat{X}_{c}^{(c)})'\|_{H} \leq (\|D^{2}\varphi\|_{\infty}\|f\|_{\infty} + \|D\varphi\|_{\infty}\|Df\|_{\infty}) \|\widehat{X}^{(c)}\|_{H} < \infty$. Таким образом, ввиду неравенства $||a|-|b||\leq |a-b|$ и предложения 2.3,

будем иметь:

$$\left| \int_{s}^{t} \varphi(\widehat{X}_{cr}^{(c)}) dB_{r}^{(i_{1})} - \varphi(\widehat{X}_{cs}^{(c)}) B_{s,t}^{(i_{1})} \right| \leq c^{H_{i_{1}}} \|D\varphi\|_{\infty} \|f\|_{\infty} \|\mathbb{B}^{(i_{1})}\|_{2H} |t - s|^{2H} + C \left(\|B^{(i_{1})}\|_{H} \|R^{\varphi(\widehat{X}_{c}^{(c)});i_{1}}\|_{2H} + \|\mathbb{B}^{(i_{1})}\|_{2H} \|\varphi(\widehat{X}_{c}^{(c)})'\|_{H} \right) |t - s|^{3H} \leq$$

$$\leq \|D\varphi\|_{\infty} \|f\|_{\infty} \|\mathbb{B}\|_{2H} |t - s|^{2H} +$$

$$+ C \left(\left(\frac{1}{2} \|D^{2}\varphi\|_{\infty} \|\widehat{X}^{(c)}\|_{H}^{2} + \|D\varphi\|_{\infty} \|R^{\widehat{X}^{(c)}}\|_{2H} \right) \|B\|_{H} +$$

$$+ \left(\|D^{2}\varphi\|_{\infty} \|f\|_{\infty} + \|D\varphi\|_{\infty} \|Df\|_{\infty} \right) \|\widehat{X}^{(c)}\|_{H} \|\mathbb{B}\|_{2H} \right) |t - s|^{2H} \leq$$

$$\leq M_{1} |t - s|^{2H}, \tag{3.19}$$

где $M_1 = \left(C(\|D^2\varphi\|_{\infty}\|f\|_{\infty} + \|D\varphi\|_{\infty}\|Df\|_{\infty})\|\widehat{X}^{(c)}\|_H + \|D\varphi\|_{\infty}\|f\|_{\infty}\right)\|\mathbb{B}\|_{2H} + C\left(\frac{1}{2}\|D^2\varphi\|_{\infty}\|\widehat{X}^{(c)}\|_H^2 + \|D\varphi\|_{\infty}\|R^{\widehat{X}^{(c)}}\|_{2H}\right)\|B\|_H.$

Итак, получили $|\mathcal{I}_{s,t}^{(1)}-\mathcal{I}_s^{(0)}B_{s,t}^{(i_1)}|\leq M_1|t-s|^{2H}$, как и утверждалось. Из доказанного следует, что

$$|\mathcal{I}_{s,t}^{(1)}| \leq |\mathcal{I}_{s}^{(0)}||B_{s,t}^{(i_{1})}| + M_{1}|t - s|^{2H} \leq$$

$$\leq |\varphi(\widehat{X}_{cs}^{(c)})||B^{(i_{1})}||_{H}|t - s|^{H} + M_{1}|t - s|^{H} \leq$$

$$\leq (\|\varphi\|_{\infty}\|B\|_{H} + M_{1})|t - s|^{H} =: \widetilde{M}_{1}|t - s|^{H}.$$
(3.20)

Легко видеть, что проведенные выше выкладки (3.16) — (3.20) не зависят от значения i_1 , т.е. справедливы и дают одни и те же оценки для любого $i_1 = \overline{0,d}$.

Рассмотрим теперь k=2. Используя доказанное выше, предложение 2.3 и рекуррентное соотношение $\mathcal{I}_t^{(k)}=\int_0^t \mathcal{I}_r^{(k-1)}dB_r^{(i_k)}$, получим:

$$\left| \mathcal{I}_{s,t}^{(2)} - \mathcal{I}_{s}^{(1)} B_{s,t}^{(i_{2})} \right| \leq \left| (\mathcal{I}^{(1)})_{s}' \mathbb{B}_{s,t}^{(i_{2})} \right| +
+ C \left(\| B^{(i_{2})} \|_{H} \cdot \| (\mathcal{I}^{(1)})_{s,t} - (\mathcal{I}^{(1)})_{s}' B_{s,t}^{(i_{2})} \|_{2H} + \| \mathbb{B}^{(i_{2})} \|_{2H} \cdot \| (\mathcal{I}^{(1)})' \|_{H} \right) |t - s|^{3H} =
= |\mathcal{I}_{s}^{(0)} \mathbb{B}_{s,t}^{(i_{2})}| + C \left(\| B^{(i_{2})} \|_{H} \| \mathcal{I}_{s,t}^{(1)} - \mathcal{I}_{s}^{(0)} B_{s,t}^{(i_{2})} \|_{2H} + \| \mathbb{B}^{(i_{2})} \|_{2H} \| \mathcal{I}^{(0)} \|_{H} \right) |t - s|^{3H} \leq
\leq \| \varphi \|_{\infty} \| \mathbb{B} \|_{2H} |t - s|^{2H} + C \left(M_{1} \| B \|_{H} + \| \mathbb{B} \|_{2H} c^{H_{i_{1}}} \| D \varphi \|_{\infty} \| \widehat{X}^{(c)} \|_{H} \right) |t - s|^{2H} \leq
\leq M_{2} |t - s|^{2H}.$$
(3.21)

Здесь $M_2 = (\|\varphi\|_{\infty} + C\|D\varphi\|_{\infty}\|\widehat{X}^{(c)}\|_H)\|\mathbb{B}\|_{2H} + CM_1\|B\|_H$, а оценка на $\|\mathcal{I}^{(0)}\|_H$ была получена с помощью формулы конечных приращений:

$$\mathcal{I}_{s,t}^{(0)} = \varphi(\widehat{X}_{ct}^{(c)}) - \varphi(\widehat{X}_{cs}^{(c)}) = D\varphi(\widehat{X}_{cs}^{(c)} + \theta(\widehat{X}_{ct}^{(c)} - \widehat{X}_{cs}^{(c)}))(\widehat{X}_{ct}^{(c)} - \widehat{X}_{cs}^{(c)}).$$
(3.22)

Так, мы получили $|\mathcal{I}_{s,t}^{(2)}-\mathcal{I}_s^{(1)}B_{s,t}^{(i_2)}|\leq M_2|t-s|^{2H}$. Как и в случае k=1, отсюда выводим, что $|\mathcal{I}_{s,t}^{(2)}|\leq (\widetilde{M}_1\|B\|_H+M_2)|t-s|^H=\widetilde{M}_2|t-s|^H$, поскольку

$$|\mathcal{I}_{s,t}^{(2)} - \mathcal{I}_{s}^{(1)} B_{s,t}^{(i_2)}| \ge |\mathcal{I}_{s,t}^{(2)}| - |\mathcal{I}_{s}^{(1)}| \cdot |B_{s,t}| \ge$$

$$\ge |\mathcal{I}_{s,t}^{(2)}| - ||\mathcal{I}^{(1)}||_{\infty} ||B||_{H} |t - s|^{H} \ge |\mathcal{I}_{s,t}^{(2)}| - ||\mathcal{I}^{(1)}||_{H} ||B||_{H} |t - s|^{H}.$$
 (3.23)

Легко видеть, что проведенные выше выкладки (3.21) - (3.23) не зависят от значения i_2 , т.е. справедливы и дают одни и те же оценки для любого $i_2 = \overline{0,d}$.

Переход доказывается аналогичным образом. Предположим, что утверждение выполнено для всех натуральных чисел, меньших k, и докажем его для k+1. По предположению индукции из предложения 2.3 будет следовать

$$|\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_{s}^{(k)} B_{s,t}^{(i_{k+1})} - \mathcal{I}_{s}^{(k-1)} \mathbb{B}_{s,t}^{(i_{k+1})}| \leq$$

$$\leq C \Big(\|B^{(i_{k+1})}\|_{H} \cdot \|\mathcal{I}_{s,t}^{(k)} - \mathcal{I}_{s}^{(k-1)} B_{s,t}^{(i_{k+1})}\|_{2H} + \|\mathbb{B}^{(i_{k+1})}\|_{2H} \cdot \|\mathcal{I}^{(k-1)}\|_{H} \Big) |t - s|^{3H} \leq$$

$$\leq C \Big(M_{k} \|B\|_{H} + \widetilde{M}_{k-1} \|\mathbb{B}\|_{2H} \Big) |t - s|^{2H}.$$
(3.24)

В то же время,

$$|\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_{s}^{(k)} B_{s,t}^{(i_{k+1})} - \mathcal{I}_{s}^{(k-1)} \mathbb{B}_{s,t}^{(i_{k+1})}| \ge |\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_{s}^{(k)} B_{s,t}^{(i_{k+1})}| - |\mathcal{I}_{s}^{(k-1)}| \cdot |\mathbb{B}_{s,t}^{(i_{k+1})}| \ge |\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_{s}^{(k)} B_{s,t}^{(i_{k+1})}| - |\mathcal{I}_{s}^{(k-1)}| \|_{\infty} \|\mathbb{B}^{(i_{k+1})}\|_{2H} |t - s|^{2H} \ge |\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_{s}^{(k)} B_{s,t}^{(i_{k+1})}| - \widetilde{M}_{k-1} \|\mathbb{B}\|_{2H} |t - s|^{2H}.$$

$$(3.25)$$

Таким образом,

$$|\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_s^{(k)} B_{s,t}^{(i_{k+1})}| \le M_{k+1} |t - s|^{2H}, \tag{3.26}$$

где $M_{k+1} = (C+1)\|\mathbb{B}\|_{2H}\widetilde{M}_{k-1} + C\|B\|_H M_k$. Осталось заметить, что

$$M_{k+1}|t-s|^{H} \ge M_{k+1}|t-s|^{2H} \ge |\mathcal{I}_{s,t}^{(k+1)} - \mathcal{I}_{s}^{(k)}B_{s,t}^{(i_{k+1})}| \ge$$

$$\ge |\mathcal{I}_{s,t}^{(k+1)}| - |\mathcal{I}_{s}^{(k)}| \cdot |B_{s,t}^{(i_{k+1})}| \ge |\mathcal{I}_{s,t}^{(k+1)}| - ||\mathcal{I}^{(k)}||_{\infty} ||B^{(i_{k+1})}||_{H}|t-s|^{H} \ge$$

$$\ge |\mathcal{I}_{s,t}^{(k+1)}| - \widetilde{M}_{k} ||B||_{H}|t-s|^{H}.$$
(3.27)

Отсюда

$$|\mathcal{I}_{s,t}^{(k+1)}| \le (M_{k+1} + \widetilde{M}_k ||B||_H)|t - s|^H =: \widetilde{M}_{k+1}|t - s|^H,$$
 (3.28)

что и требовалось. Причем, как легко видеть, что проведенные выше выкладки (3.24)-(3.28) не зависят от значения i_{k+1} , т.е. справедливы и дают одни и те же оценки для любого $i_{k+1}=\overline{0,d}$. Лемма доказана.

Из леммы следует, что

$$(\mathcal{I}^{(k)})' = \mathcal{I}^{(k-1)}, \ R_{s,t}^{\mathcal{I}^{(k)}} = (\mathcal{I}^{(k)})_{s,t} - (\mathcal{I}^{(k)})_s' B_{s,t}^{(i)} = \mathcal{I}_{s,t}^{(k)} - \mathcal{I}_s^{(k-1)} B_{s,t}^{(i)},$$
$$\|R_{s,t}^{\mathcal{I}^{(k)}}\|_{2H} \le M_k, \ \|\mathcal{I}^{(k)}\|_H \le \widetilde{M}_k,$$

а также $\|\mathcal{I}^{(k)}\|_{\infty} \leq \widetilde{M}_k$, поскольку $\max_{t \in [0,1]} |\mathcal{I}_t^{(k)}| = \max_{t \in [0,1]} |\mathcal{I}_{0,t}^{(k)}|$.

Полученные рекуррентные соотношения

$$M_{k+1} = (C+1)\|\mathbb{B}\|_{2H}\widetilde{M}_{k-1} + C\|B\|_{H}M_{k}, \quad \widetilde{M}_{k+1} = M_{k+1} + \widetilde{M}_{k}\|B\|_{H} \quad (3.29)$$

с начальными условиями

$$M_{1} = \left(C(\|D^{2}\varphi\|_{\infty} \|f\|_{\infty} + \|D\varphi\|_{\infty} \|Df\|_{\infty}) \|\hat{X}^{(c)}\|_{H} + \|D\varphi\|_{\infty} \|f\|_{\infty} \right) \|\mathbb{B}\|_{2H} + C \left(\frac{1}{2} \|D^{2}\varphi\|_{\infty} \|\hat{X}^{(c)}\|_{H}^{2} + \|D\varphi\|_{\infty} \|R^{\hat{X}^{(c)}}\|_{2H} \right) \|B\|_{H},$$
(3.30)

$$\widetilde{M}_1 = \|\varphi\|_{\infty} \|B\|_H + M_1,$$
 (3.31)

$$M_2 = (\|\varphi\|_{\infty} + C\|D\varphi\|_{\infty}\|\widehat{X}^{(c)}\|_H)\|\mathbb{B}\|_{2H} + CM_1\|B\|_H, \tag{3.32}$$

$$\widetilde{M}_2 = \widetilde{M}_1 \|B\|_H + M_2 \tag{3.33}$$

позволяют последовательно вычислить константы M_k, \widetilde{M}_k . Очевидная индукция по k показывает, что $M_k = M_k(\|B\|_H, \|\mathbb{B}\|_{2H}, \|\widehat{X}^{(c)}\|_H, \|R^{\widehat{X}^{(c)}}\|_{2H})$, $\widetilde{M}_k = \widetilde{M}_k(\|B\|_H, \|\mathbb{B}\|_{2H}, \|\widehat{X}^{(c)}\|_H, \|R^{\widehat{X}^{(c)}}\|_{2H})$ являются многочленами с постоянными положительными коэффициентами, причем $\|B\|_H$ и $\|\mathbb{B}\|_{2H}$ входят в одночлены в степени не выше $k, \|\widehat{X}^{(c)}\|_H$ — максимальный коэффициент многочлена $\widetilde{M}_k(\|B\|_H, \|\mathbb{B}\|_{2H}, \|\widehat{X}^{(c)}\|_H, \|R^{\widehat{X}^{(c)}}\|_{2H})$ и пусть

$$\mathbb{E}\Big(\|B\|_{H}^{i_{1}}\|\mathbb{B}\|_{2H}^{i_{2}}\|\widehat{X}^{(c)}\|_{H}^{j_{1}}\|R^{\widehat{X}^{(c)}}\|_{2H}^{j_{2}}\Big) = \max_{\substack{i,i'=0,k,\\j=0,1,2,\\j'=0,1}} \mathbb{E}\Big(\|B\|_{H}^{i}\|\mathbb{B}\|_{2H}^{i'}\|\widehat{X}^{(c)}\|_{H}^{j}\|R^{\widehat{X}^{(c)}}\|_{2H}^{j'}\Big).$$
(3.34)

Тогда взяв супремум и математическое ожидание от обеих частей неравенства $|\mathcal{I}_{s,t}^{(k)}| \leq \widetilde{M}_k |t-s|^H$, получим:

$$\sup_{0 \le s < t \le 1} \mathbb{E} |\mathcal{I}_{s,t}^{(k)}| \le \mathbb{E} \widetilde{M}_k \le 2k^2 \cdot \widetilde{\gamma}_k \cdot \mathbb{E} \Big(\|B\|_H^{i_1} \|\mathbb{B}\|_{2H}^{i_2} \|\widehat{X}^{(c)}\|_H^{j_1} \|R^{\widehat{X}^{(c)}}\|_{2H}^{j_2} \Big). \tag{3.35}$$

Согласно неравенству Коши-Буняковского

$$\mathbb{E}\left(\|B\|_{H}^{i_{1}}\|\mathbb{B}\|_{2H}^{i_{2}}\|\widehat{X}^{(c)}\|_{H}^{j_{1}}\|R^{\widehat{X}^{(c)}}\|_{2H}^{j_{2}}\right) \leq
\leq \left(\mathbb{E}\left(\|B\|_{H}^{2i_{1}}\|\mathbb{B}\|_{2H}^{2i_{2}}\right) \cdot \mathbb{E}\left(\|\widehat{X}^{(c)}\|_{H}^{2j_{1}}\|R^{\widehat{X}^{(c)}}\|_{2H}^{2j_{2}}\right)\right)^{1/2} \leq
\leq \left(\mathbb{E}\|B\|_{H}^{4i_{1}} \cdot \mathbb{E}\|\mathbb{B}\|_{2H}^{4i_{2}} \cdot \mathbb{E}\|\widehat{X}^{(c)}\|_{H}^{4j_{1}} \cdot \mathbb{E}\|R^{\widehat{X}^{(c)}}\|_{2H}^{4j_{2}}\right)^{1/4}.$$
(3.36)

Таким образом,

$$\mathbb{E} \sup_{0 \le s < t \le 1} \left| \int_{s}^{t} \int_{0}^{t_{k-1}} \dots \int_{0}^{t_{1}} \varphi(\widehat{X}_{cr}^{(c)}) dB_{r}^{(i_{1})} \dots dB_{t_{k-2}}^{(i_{k-2})} dB_{t_{k-1}}^{(i_{k-1})} \right| \le
\le 2k^{2} \cdot \widetilde{\gamma}_{k} \cdot \left(\mathbb{E} \|B\|_{H}^{4i_{1}} \cdot \mathbb{E} \|\mathbb{B}\|_{2H}^{4i_{2}} \cdot \mathbb{E} \|\widehat{X}^{(c)}\|_{H}^{4j_{1}} \cdot \mathbb{E} \|R^{\widehat{X}^{(c)}}\|_{2H}^{4j_{2}} \right)^{1/4}.$$
(3.37)

Согласно [60, лемма 7.4] любой момент порядка $p \geq 1$ случайной величины $\|B\|_H$ конечен; в частности, $\mathbb{E} \|B\|_H^{4i_1} < \infty$. То же верно и для случайной величины $\|\mathbb{B}\|_{2H}$ ввиду предложения 2.4, т.е., в частности, $\mathbb{E} \|\mathbb{B}\|_{2H}^{4i_2} < \infty$. Из предложения 2.6 следует, что существуют универсальные константы c_1 , c_2 такие, что

$$\|\widehat{X}^{(c)}\|_{H} \le c_{1} \left(\|\widehat{B}^{(c)}\|_{H} + \|\widehat{\mathbb{B}}^{(c)}\|_{2H}^{1/2} + \|\widehat{B}^{(c)}\|_{H}^{1/H} + \|\widehat{\mathbb{B}}^{(c)}\|_{2H}^{1/(2H)} \right), \tag{3.38}$$

$$\|R^{\widehat{X}^{(c)}}\|_{2H} \le c_2 \left(\|\widehat{B}^{(c)}\|_H^2 + \|\widehat{\mathbb{B}}^{(c)}\|_{2H} + \|\widehat{B}^{(c)}\|_H^{1+\frac{1}{H}} + \|\widehat{\mathbb{B}}^{(c)}\|_{2H}^{\frac{1}{2}+\frac{1}{2H}} \right). \tag{3.39}$$

Из неравенства Гельдера следует, что конечны любые моменты $\|B\|_H$, $\|\mathbb{B}\|_{2H}$ порядка $q \in (0,1)$: $\mathbb{E} \|B^{(c)}\|_H^q \leq \left(\mathbb{E} \|B^{(c)}\|_H\right)^q \left(\mathbb{E} \, 1^{1/(1-q)}\right)^{1-q} < \infty$ (и аналогично $\mathbb{E} \, \|\mathbb{B}^{(c)}\|_{2H}^q < \infty$). Поэтому из оценок (3.38) и (3.39) и неравенств о средних следует конечность моментов

$$\mathbb{E} \|X^{(c)}\|_{H}^{4j_1} < \infty, \qquad \mathbb{E} \|R^{X^{(c)}}\|_{2H}^{4j_2} < \infty. \tag{3.40}$$

Это, в свою очередь, завершает доказательство того, что правая часть (3.37) конечна. Теорема 3.1 доказана.

Замечание 3.1. Рассмотрим случай, когда все показатели Харста H_i , $i=1,\ldots,d$, равны 1/2. В этом случае уравнение (2.2) можно рассматривать как уравнение Стратоновича. Учитывая связь уравнений Ито и Стратоновича [14, предложение 2.4], данное уравнение можно свести к уравнению Ито

$$dX_t = \tilde{f}_0(X_t)dt + \hat{f}(X_t)dW_t, \tag{3.41}$$

где \hat{f} — матрица, составленная из вектор-столбцов $f_1,\dots,f_d,\,W_t$ — d-мерное броуновское движение,

$$\tilde{f}_0(X) = f_0(X) - \operatorname{col}(\rho_1(X), \dots, \rho_n(X)),$$

$$\rho_j(X) = \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \frac{\partial \hat{f}_{ji}(X)}{\partial x_k} \hat{f}_{ki}(X), \quad j = 1, \dots, d,$$

где $col(a_1, ..., a_n)$ — вектор-столбец из компонент $a_1, ..., a_n$. Так как решение уравнения (3.41) обладает марковским свойством [19, теорема 7.1.2], то, полагая N=2 в соотношении (3.5), получим, что функция $u(x,t)=\mathbf{P}_t g(x)$ удовлетворяет обратному уравнению Колмогорова

$$\frac{\partial u}{\partial t} = \mathcal{A}u$$

с дифференциальным оператором

$$\mathcal{A} = \sum_{j=1}^{n} \tilde{f}_{0j}(\cdot) \frac{\partial}{\partial x_j} + \frac{1}{2} \sum_{k=1}^{d} \left(\sum_{j=1}^{n} f_{kj}(\cdot) \frac{\partial}{\partial x_j} \right)^2.$$

Отметим, что даже для простейшего одномерного уравнения $dX_t = dB_t^{\alpha}$ при $\alpha \in (1/3,1/2) \cup (1/2,1)$ решение $X_t = B_t^{\alpha}$ не является семимартингалом, и следовательно, не обладает марковским свойством, которое является ключевым при выводе уравнений Колмогорова [19, теорема 8.1.1].

3.2 Математические ожидания повторных интегралов от дробных броуновских движений

В данном разделе мы вычислим математические ожидания повторных интегралов возникающих их разложений для $\mathbf{P}_t g(x)$ в теореме 3.1, предполагая, что $H_i \geq H^* > 1/2$ для всех $i=0,\ldots,d$.

Теорема 3.2. Пусть $I_m = (i_1, \ldots, i_m) \in \{1, \ldots, d\}^m$, $m \in \mathbb{N}$. 1. Если m = 2k - 1, $k \in \mathbb{N}$, то

$$\mathbb{E}\left(\int_{\Delta^{2k-1}[0,1]} dB^{(I_{2k-1})}\right) = 0.$$

2. Если $m=2k, k \in \mathbb{N}$, то справедливо равенство

$$\mathbb{E}\left(\int_{\Delta^{2k}[0,1]} dB^{(I_{2k})}\right) =$$

$$= \frac{1}{k! 2^{2k}} \sum_{\sigma \in S_{2k}} \left(\prod_{l=1}^{k} (H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}} - 1)(H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}}) \times \right)$$

$$\times \int_{\Delta^{2k}[0,1]} \prod_{l=1}^{k} \delta_{i_{\sigma(2l)}, i_{\sigma(2l-1)}} |t_{\sigma(2l)} - t_{\sigma(2l-1)}|^{H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}} - 2} dt_1 \dots dt_{2k} \right),$$

где $\delta-$ символ Кронекера, $S_{2k}-$ группа подстановок.

Доказать, используя свойство симметрии распределения дробного броуновского движения: если $B^{(i)}$ — дробное броуновское движение с индексом Харста H_i , то $-B^{(i)}$ — также дробное броуновское движение с тем же индексом Харста. Таким образом, получим

$$\mathbb{E}\left(\int_{\Delta^{2k-1}[0,1]} dB^{(I_{2k-1})}\right) = \mathbb{E}\left(\int_{\Delta^{2k-1}[0,1]} d\left(-B^{(I_{2k-1})}\right)\right) = \\
= (-1)^{2k-1} \mathbb{E}\left(\int_{\Delta^{2k-1}[0,1]} dB^{(I_{2k-1})}\right) = -\mathbb{E}\left(\int_{\Delta^{2k-1}[0,1]} dB^{(I_{2k-1})}\right),$$

что доказывает первое утверждение теоремы.

Докажем вторую часть теоремы. Обозначим через $B^{(N)}$, $N \in \mathbb{N}$, последовательность приближений к B на диадных разбиениях $\mathcal{P}_{dyad}^{(N)} = \left\{t_k^{(N)} = \frac{k}{2^N}, \, k = \overline{0,2^N}\right\}$ отрезка [0,1], определяемых следующей формулой:

$$B_t^{(N)} = B_{t_{k-1}^{(N)}} + 2^N \left(t - t_{k-1}^{(N)} \right) \left(B_{t_k^{(N)}} - B_{t_{k-1}^{(N)}} \right), \ t \in \left[t_{k-1}^{(N)}, t_k^{(N)} \right), \ k = 1, \dots, N.$$

По теореме о мажорируемой сходимости (предложение 2.1) ввиду [27, следствие 20], получим:

$$\mathbb{E}\left(\int_{\Delta^{2k}[0,1]} dB^{(I_{2k})}\right) = \lim_{N \to \infty} \mathbb{E}\left(\int_{\Delta^{2k}[0,1]} (dB^{(N)})^{(I_{2k})}\right).$$

Поскольку функции $B^{(N)}$ абсолютно непрерывны п.н., то справедливы соотношения

$$\int_{\Delta^{2k}[0,1]} (dB^{(N)})^{(I_{2k})} =$$

$$= \int_{0}^{1} \int_{0}^{t_{2k}} \dots \int_{0}^{t_{2}} d(B_{t_{1}}^{(N)})^{(i_{1})} \dots d(B_{t_{2k-1}}^{(N)})^{(i_{2k-1})} d(B_{t_{2k}}^{(N)})^{(i_{2k})} =$$

$$= \int_{0}^{1} \int_{0}^{t_{2k}} \dots \int_{0}^{t_{2}} \frac{d(B_{t_{1}}^{(N)})^{(i_{1})}}{dt_{1}} dt_{1} \dots \frac{d(B_{t_{2k-1}}^{(N)})^{(i_{2k-1})}}{dt_{2k-1}} dt_{2k-1} \frac{d(B_{t_{2k}}^{(N)})^{(i_{2k})}}{dt_{2k}} dt_{2k} =$$

$$= \int_{\Delta^{2k}[0,1]} \frac{d(B_{t_{1}}^{(N)})^{(i_{1})}}{dt_{1}} \dots \frac{d(B_{t_{2k}}^{(N)})^{(i_{2k})}}{dt_{2k}} dt_{1} \dots dt_{2k}. \tag{3.42}$$

Нам потребуется следующее утверждение, которое может быть доказано непосредственно путем разложения в ряд производящей функции моментов гауссовского случайного вектора.

Лемма 3.2 [23]. Для центрированного гауссовского вектора $G = (G_1, \ldots, G_{2k})$ справедливо равенство

$$\mathbb{E}(G_1 \dots G_{2k}) = \frac{1}{k!2^k} \sum_{\sigma \in S_{2k}} \prod_{l=1}^k \mathbb{E}(G_{\sigma(2l)} G_{\sigma(2l-1)}).$$

Применяя лемму 3.2 к равенству (3.42), получим:

$$\mathbb{E}\left(\int_{\Delta^{2k}[0,1]} (dB^{(N)})^{(I_{2k})}\right) = \\
= \int_{\Delta^{2k}[0,1]} \mathbb{E}\left(\frac{d\left(B_{t_1}^{(N)}\right)^{(i_1)}}{dt_1} \dots \frac{d\left(B_{t_{2k}}^{(N)}\right)^{(i_{2k})}}{dt_{2k}}\right) dt_1 \dots dt_{2k} = \\
= \frac{1}{k! 2^k} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \prod_{l=1}^k \mathbb{E}\left(\frac{d\left(B_{t_{\sigma(2l)}}^{(N)}\right)^{(i_{\sigma(2l)})}}{dt_{\sigma(2l)}} \cdot \frac{d\left(B_{t_{\sigma(2l-1)}}^{(N)}\right)^{(i_{\sigma(2l-1)})}}{dt_{\sigma(2l-1)}}\right) dt_1 \dots dt_{2k}. \tag{3.43}$$

Рассмотрим отдельно каждый множитель в соотношении (3.43). Пусть $t_{\sigma(2l)} \in [t_u^{(N)}, t_{u+1}^{(N)})$ и $t_{\sigma(2l-1)} \in [t_v^{(N)}, t_{v+1}^{(N)})$ для некоторых $u,v \in \{0,1,\dots,2^N-1\}$ (для упрощения обозначений будем иногда опускать верхний индекс (N)). Используя представление $B^{(N)}$, можем записать:

$$\mathbb{E}\left(\frac{d\left(B_{t_{\sigma(2l)}}^{(N)}\right)^{(i_{\sigma(2l)})}}{dt_{\sigma(2l)}} \cdot \frac{d\left(B_{t_{\sigma(2l-1)}}^{(N)}\right)^{(i_{\sigma(2l-1)})}}{dt_{\sigma(2l-1)}}\right) = 2^{2N} \,\mathbb{E}\left(B_{t_{u+1}}^{(i_{\sigma(2l)})} - B_{t_{u}}^{(i_{\sigma(2l)})}\right) \left(B_{t_{v+1}}^{(i_{\sigma(2l-1)})} - B_{t_{v}}^{(i_{\sigma(2l-1)})}\right).$$

Используя неравенство Коши-Буняковского, однородность приращений дробного Броуновского движения, получим неравенство

$$\left| \mathbb{E} \left(B_{t_{u+1}}^{(i_{\sigma(2l)})} - B_{t_u}^{(i_{\sigma(2l)})} \right) \left(B_{t_{v+1}}^{(i_{\sigma(2l-1)})} - B_{t_v}^{(i_{\sigma(2l-1)})} \right) \right| \leq
\leq \sqrt{\left| t_{u+1} - t_u \right|^{2H_{i_{\sigma(2l)}}} \left| t_{v+1} - t_v \right|^{2H_{i_{\sigma(2l-1)}}}} \leq 2^{-2NH^*}.$$
(3.44)

Если |u-v| > 1, то легко вывести следующее равенство:

$$\mathbb{E}\left(B_{t_{u+1}}^{(i_{\sigma(2l)})} - B_{t_{u}}^{(i_{\sigma(2l)})}\right) \left(B_{t_{v+1}}^{(i_{\sigma(2l-1)})} - B_{t_{v}}^{(i_{\sigma(2l-1)})}\right) =
= \frac{1}{2} \delta_{i_{\sigma(2l)}, i_{\sigma(2l-1)}} (H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}} - 1) (H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}}) \times
\times \iint_{[t_{u}^{(N)}, t_{u+1}^{(N)}) \times [t_{v}^{(N)}, t_{v+1}^{(N)})} |x - y|^{H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}} - 2} dx dy.$$
(3.45)

Введем следующее обозначение:

$$R_{u,v}^{(N)} = [t_u^{(N)}, t_{u+1}^{(N)}) \times [t_v^{(N)}, t_{v+1}^{(N)}),$$

$$f_{u,v}^{(l)}(t) = \mathbf{1}_{R_{u,v}^{(N)}}(t_{\sigma(2l)}, t_{\sigma(2l-1)}) \mathbb{E}\Big(B_{t_{u+1}}^{(i_{\sigma(2l)})} - B_{t_u}^{(i_{\sigma(2l)})}\Big) \Big(B_{t_{v+1}}^{(i_{\sigma(2l-1)})} - B_{t_v}^{(i_{\sigma(2l-1)})}\Big).$$

Используя соотношение (3.43), получим:

$$\mathbb{E}\left(\int_{\Delta^{2k}[0,1]} (dB^{(N)})^{(I_{2k})}\right) =$$

$$= \frac{2^{2Nk}}{k!2^k} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \prod_{l=1}^k \sum_{u,v=0}^{2^{N-1}} \mathbf{1}_{R_{u,v}^{(N)}} (t_{\sigma(2l)}, t_{\sigma(2l-1)}) \times$$

$$\times \mathbb{E}\left(B_{t_{u+1}}^{(i_{\sigma(2l)})} - B_{t_u}^{(i_{\sigma(2l)})}\right) \left(B_{t_{v+1}}^{(i_{\sigma(2l-1)})} - B_{t_v}^{(i_{\sigma(2l-1)})}\right) dt_1 \dots dt_{2k} =$$

$$= \frac{2^{2Nk}}{k!2^k} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \prod_{l=1}^k \sum_{\substack{u,v=0\\|u-v|>1}}^{2^{N-1}} f_{u,v}^{(l)}(t) + \sum_{\substack{u,v=0\\|u-v|\leq 1}}^{2^{N-1}} f_{u,v}^{(l)}(t) \right) dt_1 \dots dt_{2k} =$$

$$= \frac{2^{2Nk}}{k!2^k} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \prod_{l=1}^k \sum_{\substack{u,v=0\\|u-v|>1}}^{2^{N-1}} f_{u,v}^{(l)}(t) dt_1 \dots dt_{2k} +$$

$$+ \frac{2^{2Nk}}{k!2^k} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \sum_{\alpha=0}^{k-1} \sum_{\pi \in S_k} \left(\prod_{l=1}^{\alpha} \sum_{\substack{u,v=0\\|u-v|>1}}^{2^{N-1}} f_{u,v}^{(n)}(t) \right) \times$$

$$\times \left(\prod_{l=\alpha+1}^{k} \sum_{\substack{u,v=0\\|u-v|\leq 1}}^{2^{N}-1} f_{u,v}^{(\pi(l))}(t) \right) dt_1 \dots dt_{2k} := I_1^{(N)} + I_2^{(N)}.$$

Сейчас утверждение теоремы является прямым следствием следующей леммы.

Лемма 3.3. В предыдущих обозначениях пусть

$$I_{1}^{(N)} = \frac{2^{2Nk}}{k!2^{k}} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \prod_{l=1}^{k} \sum_{\substack{u,v=0\\|u-v|>1}}^{2^{N-1}} f_{u,v}^{(l)}(t) dt_{1} \dots dt_{2k},$$

$$I_{2}^{(N)} = \frac{2^{2Nk}}{k!2^{k}} \sum_{\sigma \in S_{2k}} \int_{\Delta^{2k}[0,1]} \sum_{\alpha=0}^{k-1} \sum_{\pi \in S_{k}} \left(\prod_{l=1}^{\alpha} \sum_{\substack{u,v=0\\|u-v|>1}}^{2^{N-1}} f_{u,v}^{(\pi(l))}(t) \right) \times \left(\prod_{l=\alpha+1}^{k} \sum_{\substack{u,v=0\\|u-v|\leq 1}}^{2^{N-1}} f_{u,v}^{(\pi(l))}(t) \right) dt_{1} \dots dt_{2k}.$$

Тогда $\lim_{N\to\infty}I_2^{(N)}=0$ и

$$\lim_{N \to \infty} I_1^{(N)} = \frac{1}{k! 2^{2k}} \sum_{\sigma \in S_{2k}} \left(\prod_{l=1}^k (H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}} - 1) (H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}}) \right) \times \int_{\Delta^{2k}[0,1]} \prod_{l=1}^k \delta_{i_{\sigma(2l)}, i_{\sigma(2l-1)}} |t_{\sigma(2l)} - t_{\sigma(2l-1)}|^{H_{i_{\sigma(2l)}} + H_{i_{\sigma(2l-1)}} - 2} dt_1 \dots dt_{2k}.$$

Доказательство данной леммы опирается на теорему о среднем и неравенство Гелдьера, оно приведено в статье [5–A]. Теорема доказана.

Замечание 3.2. Рассмотрим математические ожидания повторных интегралов следующего вида

$$J(I^{(m)},t) := \mathbb{E}\left(\int_{\Delta^m[0,t]} dB^{(I_m)}\right)$$

для произвольных индексов $I_m = (i_1, \ldots, i_m) \in \mathbb{N}_d^m$. Без ограничения общности будем считать, что $i_1, \ldots, i_k > 0$, а $i_j = 0$ для всех j > k. Тогда следующее равенство может быть получено изменением порядка интегрирования:

$$J(I^{(m)}, t) = \int_0^t J(\widetilde{I^{(k)}}, \tau) \frac{(t - \tau)^{m - k - 1}}{(m - k - 1)!} d\tau,$$

где $\widetilde{I^{(k)}}=(i_1,\ldots,i_k)$ и $J(\widetilde{I^{(k)}},\tau)$ могут быть вычислены, используя равенство (3.10) и теорему 3.2.

Пример 3.1. Рассмотрим следующее одномерное уравнение:

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t^H,$$

в котором B_t^H — одномерное дробное броуновское движение с индексом Харста $H \in (1/2,1), \ b, \sigma \colon \mathbb{R} \to \mathbb{R}$ — функции класса C_b^4 . Обозначим $f(x) = (b(x), \sigma(x)), \ B_t = (t, B_t^H)$. Пусть также задано начальное условие $X_0 = x$. Выпишем несколько первых членов асимптотических разложений (3.5) (ограничимся N=2) для решений данного уравнения.

Используя теорему 3.2 и замечание 3.2 можем вычислить повторные интегралы:

$$\mathbb{E}\left(\int_{\Delta^{1}[0,1]}dB^{(0)}\right) = \int_{0}^{1}dt = 1, \quad \mathbb{E}\left(\int_{\Delta^{1}[0,1]}dB^{(1)}\right) = \mathbb{E}\left(\int_{0}^{1}dB_{t}^{H}\right) = 0,$$

$$\mathbb{E}\left(\int_{\Delta^{2}[0,1]}dB^{(0,0)}\right) = \int_{0}^{1}dt_{2}\int_{0}^{t_{2}}dt_{1} = \int_{0}^{1}t_{2}dt_{2} = \frac{1}{2},$$

$$\mathbb{E}\left(\int_{\Delta^{2}[0,1]}dB^{(0,1)}\right) = \mathbb{E}\left(\int_{\Delta^{2}[0,1]}dB^{(1,0)}\right) = \int_{0}^{1}\mathbb{E}\left(\int_{0}^{t_{2}}dB_{t_{1}}^{H}\right)dt_{2} = 0,$$

$$\mathbb{E}\left(\int_{\Delta^{2}[0,1]}dB^{(1,1)}\right) = \mathbb{E}\left(\int_{0}^{1}dB_{t_{2}}^{H}\int_{0}^{t_{2}}dB_{t_{1}}^{H}\right) = \frac{1}{1!2^{2}}\cdot2\cdot2H(2H-1)\times$$

$$\times\int_{\Delta^{2}[0,1]}|t_{2}-t_{1}|^{2H-2}dt_{1}dt_{2} = H(2H-1)\int_{0}^{1}dt_{2}\int_{0}^{t_{2}}(t_{2}-t_{1})^{2H-2}dt_{1} =$$

$$= H\int_{0}^{1}t_{2}^{2H-1}dt_{2} = \frac{1}{2}.$$

Для данного уравнения имеем операторы $D_f^{(0)}=b(x)\,rac{\partial}{\partial x}$ и $D_f^{(1)}=\sigma(x)\,rac{\partial}{\partial x}.$ Нетрудно вычислить, что

$$D_f^{(0,0)} = b(x)Db(x)\frac{\partial}{\partial x} + b^2(x)\frac{\partial^2}{\partial x^2}, \quad D_f^{(1,1)} = \sigma(x)D\sigma(x)\frac{\partial}{\partial x} + \sigma^2(x)\frac{\partial^2}{\partial x^2}.$$

Таким образом, согласно теореме 3.1, для $\mathbf{P}_t g(x)$, $g \in C_b^5(\mathbb{R}, \mathbb{R})$ справедливо асимптотическое разложение следующего вида:

$$\mathbf{P}_{t}g(x) = g(x) + t b(x)Dg(x) + \frac{1}{2}t^{2} \left(b(x)Db(x)Dg(x) + b^{2}(x)D^{2}g(x)\right) + \frac{1}{2}t^{2H} \left(\sigma(x)D\sigma(x)Dg(x) + \sigma^{2}(x)D^{2}g(x)\right) + O\left(t^{3H}\right).$$

3.3 Коммутативный случай

В данном разделе будем предполагать, что компоненты $f_i \colon \mathbb{R}^n \to \mathbb{R}^n$ правой части уравнения (2.2) являются векторными полями из класса $C_b^{d+2}(\mathbb{R}^n,\mathbb{R}^n)$ такими, что справедливо равенство $D_f^{(i)}\circ D_f^{(j)}=D_f^{(j)}\circ D_f^{(i)}$, для любых $0\leq i,j\leq d$.

Для каждого $i=\overline{0,d}$ обозначим через $(e^{tD_f^{(i)}})_{t\in\mathbb{R}}\subset\mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$ семейство операторов, определяемое соотношением $e^{tD_f^{(i)}}(x)=X_t^x$ для любых $t\in\mathbb{R},\,x\in\mathbb{R}^n$, в котором X_t^x — решение обыкновенного дифференциального уравнения

$$\frac{dX_t}{dt} = f_i(X_t)$$

с начальным условием $X_0 = x$.

Предложение 3.1. Для решения X_t^x уравнения (2.2) с начальным условием $X_0 = x$ п. н. справедлива следующая формула:

$$X_t^x = F(x, B_t), \quad t \in [0, T], \ x \in \mathbb{R}^n$$

в которой $F(x,y) = e^{y_0 D_f^{(0)}} \circ \dots \circ e^{y_d D_f^{(d)}}$, $(x,y) \in \mathbb{R}^n \times \mathbb{R}^{d+1}$.

Доказательство. Поскольку операторы $D_f^{(i)}$ коммутируют, то операторы $(e^{tD_f^{(i)}})_{t\geq 0}$ также коммутируют. Для пары $(x,y)\in\mathbb{R}^n\times\mathbb{R}^{d+1}$ обозначим

$$F(x,y) = \left(e^{y_0 D_f^{(0)}} \circ \dots \circ e^{y_d D_f^{(d)}}\right)(x).$$

Применяя формулу замены переменных, легко видеть, что процесс $\left(e^{B_t^{(d)}D_f^{(d)}}x\right)_{t\geq 0}$ является решением уравнения $dX_t=f_d(X_t)dB_t^{(d)}$. Применяя формулу замены переменных еще раз и учитывая коммутативность операторов $D_f^{(d)}$, $D_f^{(d-1)}$, получим:

$$d\left(e^{B_t^{(d-1)}D_f^{(d)-1}}(e^{B_t^{(d)}D_f^{(d)}}x)\right) = f_{d-1}\left(e^{B_t^{(d-1)}D_f^{(d-1)}}(e^{B_t^{(d)}D_f^{(d)}}x)\right)dB_t^{(d-1)} + f_d\left(e^{B_t^{(d-1)}D_f^{(d-1)}}(e^{B_t^{(d)}D_f^{(d)}}x)\right)dB_t^{(d)}.$$

И так далее. Путем последовательного применения формулы замены переменных, заключаем, что процесс $(F(x, B_t))_{t>0}$ удовлетворяет уравнению (2.2)

с начальным условием $X_0=x$. Таким образом, согласно теореме 2.1, можем сделать вывод, что

$$X_t^x = F(x, B_t), \quad t \in [0, T],$$

п.н. Предложение доказано.

Теорема 3.3. Для любой функции $g \in C^{d+3}_b(\mathbb{R}^n,\mathbb{R})$ справедливо равенство

$$\mathbb{E}(g(X_t^x)) = \left(\exp\left(tD_f^{(0)} + \frac{1}{2}\sum_{i=1}^d t^{2H_i}(D_f^{(i)})^2\right)g\right)(x).$$

Другими словами, функция

$$\varphi(t,x) = \mathbb{E}\left(g(X_t^x)\right),\,$$

удовлетворяет дифференциальному уравнению в частных производных

$$\frac{\partial \varphi}{\partial t} = D_f^{(0)} \varphi + \sum_{i=1}^d H_i t^{2H_i - 1} (D_f^{(i)})^2 \varphi, \tag{3.46}$$

с начальным условием

$$\varphi(0, x) = g(x).$$

Доказательство. Применяя формулу Ито для дробного броуновского движения из [25], получим для i>0:

$$\mathbb{E}\left(g(e^{B_t^{(i)}D_f^{(i)}}(x))\right) = g(x) + H_i \int_0^t s^{2H_i - 1} \mathbb{E}\left((D_f^{(i)})^2 g(e^{B_s^{(i)}D_f^{(i)}}(x))\right) ds.$$

Если i=0, то для $B_t^{(0)}=t$ будем иметь следующее равенство

$$g(e^{B_t^{(0)}D_f^{(0)}}(x)) = g(x) + \int_0^t D_f^{(0)}g(e^{B_s^{(0)}D_f^{(0)}}(x))ds.$$

Последние два равенства означают, что функции $u_i(t,x) = \mathbb{E}\left(g(e^{B_t^{(i)}D_f^{(i)}}(x))\right)$ являются решениями следующих уравнений:

$$\frac{\partial u_i}{\partial t} = H_i t^{2H_i - 1} (D_f^{(i)})^2 u_i, \quad i > 0,$$
$$\frac{\partial u_0}{\partial t} = D_f^{(0)} u_0,$$

следовательно,

$$\mathbb{E}\left(g(e^{B_t^{(i)}D_f^{(i)}}(x))\right) = \left(\exp\left(\frac{1}{2}t^{2H_i}(D_f^{(i)})^2\right)g\right)(x), \quad i > 0,$$
$$g(e^{B_t^{(0)}D_f^{(0)}}(x)) = \left(\exp\left(tD_f^{(0)}\right)g\right)(x).$$

Согласно предложению 3.1, п.н. верно равенство

$$X_t^x = (e^{B_t^{(0)}D_f^{(0)}} \circ \dots \circ e^{B_t^{(d)}D_f^{(d)}})(x).$$

Используя коммутативность операторов $D_f^{(i)}$ и $D_f^{(j)}$, можем записать, что

$$\mathbb{E}(g(X_t^x)) = \left(\exp\left(tD_f^{(0)} + \frac{1}{2}\sum_{i=1}^d t^{2H_i}(D_f^{(i)})^2\right)g\right)(x),$$

что, в свою очередь, доказывает теорему.

Замечание 3.3. Если компоненты правой части $f_i \in C_b^{d+2}(\mathbb{R}^n,\mathbb{R}^n)$ автономны, а операторы $D_f^{(i)}$ и $D_j^{(j)}$ коммутируют, то функция $\mathbb{E}(g(X_t^x))$ удовлетворяет уравнению (3.46), которое является обобщением обратного уравнения Колмогорова [19, теорема 8.1.1] на случай дробного броуновского движения с различными индексами Харста, вообще говоря отличными от 1/2.

Пример 3.2. Рассмотрим следующее одномерное стохастическое дифференциальное уравнение:

$$dX_t = \sin X_t dt + 2H^{-1} \sin X_t dB_t^H,$$

в котором B_t^H — одномерное дробное броуновское движение с индексом Харста $H\in (1/3,1).$ Пусть также задано начальное условие $X_0=x\in \mathbb{R}.$

Для данного уравнения имеем операторы $D_f^{(0)}=\sin x\,\frac{\partial}{\partial x}$ и $D_f^{(1)}=2H^{-1}\sin x\,\frac{\partial}{\partial x}$. Нетрудно видеть, что указанное уравнение удовлетворяет коммутативному случаю, поскольку

$$D_f^{(0)} \circ D_f^{(1)} = 2H^{-1} \sin x \cos x \, \frac{\partial}{\partial x} + 2H^{-1} \sin^2 x \, \frac{\partial^2}{\partial x^2} = D_f^{(1)} \circ D_f^{(0)}.$$

Непосредственные вычисления показывают, что $(D_f^{(1)})^2 = H^{-1}\sin 2x \frac{\partial}{\partial x} + 4H^{-2}\sin^2x \frac{\partial^2}{\partial x^2}$. Поэтому, согласно теореме 3.3, функция $\varphi(t,x) = \mathbb{E}\,g(X_t^x)$ будет являться решением уравнения в частных производных

$$\frac{\partial \varphi}{\partial t} = \left(\sin x + t^{2H-1}\sin 2x\right) \frac{\partial \varphi}{\partial x} + \frac{4t^{2H-1}}{H}\sin^2 x \frac{\partial^2 \varphi}{\partial x^2}$$

с начальным условием $\varphi(0,x) = g(x)$.

Выводы

В данной главе диссертации исследовано асимптотическое поведение функционалов от решений стохастических дифференциальных уравнений $dX_t = f(X_t)dB_t, t \in [0,T]$ с многомерным дробным броуновским движением $B_t = (B_t^{(0)}, B_t^{(1)}, \dots, B_t^{(d)})^{\top}$, компоненты $B_t^{(i)}$ которого имеют различные показатели Харста $H_i > 1/3, i \geq 1$, а также содержащих снос $dB_t^{(0)} = dt$. В настоящей главе рассматриваются решения X_t^x данных уравнений с постоянными начальными условиями $X_0 = x, x \in \mathbb{R}^n$.

Получены асимптотические разложения тейлоровского типа для функционалов $\mathbf{P}_t g(x) = \mathbb{E} \, g(X_t^x)$ от решений указанных уравнений при малых значениях времени $t \geq 0$. Указанные разложения порядка $N \in \mathbb{N}$ имеют место, если функции f, g имеют непрерывные и ограниченные производные до порядков N+2 и N+3 соответственно (включительно). Также в случае, когда все индексы Харста удовлетворяют уловию $H_i \geq H^* > 1/2$, приведены явные формулы вычисления математических ожиданий повторных интегралов от дробных броуновских движений, фигурирующих в разложениях.

В случае, когда дифференциальные операторы $D_f^{(i)}$, $0 \le i \le d$ коммутируют, получены уравнения в частных производных колмогоровского типа для функций $\varphi(t,x) = \mathbb{E}\,g(X_t^x)$ в предположении, что функции f,g имеют непрерывные и ограниченные производные до порядков d+2 и d+3 соответственно (включительно).

Приведены примеры, иллюстрирующие применение указанных теорем.

ГЛАВА 4

МЕТОДЫ ИНТЕГРИРОВАНИЯ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ДРОБНЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ СМЕШАННОГО ТИПА

4.1 Предварительные сведения

4.1.1 Прямой, обратный и симметрический стохастические интегралы

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Говорят, что последовательность случайных процессов $(X_n(t))_{n\geq 0}$, сходится к случайному процессу X(t), $t\geq 0$, равномерно на компактах по вероятности (сокращенно иср, см. [62, с. 57]), если для любого $\varepsilon>0$ и $T\geq 0$ выполнено равенство

$$\lim_{n \to \infty} \mathbb{P} \left\{ \sup_{0 \le t \le T} |X_n(t) - X(t)| > \varepsilon \right\} = 0.$$

Следуя [64–66], для непрерывных процессов X(t), Y(t) с конечной квадратической вариацией определим квадратичную ковариацию:

$$[X,Y](t) \stackrel{ucp}{=} \lim_{\varepsilon \to +0} \frac{1}{\varepsilon} \int_0^t (Y(s+\varepsilon) - Y(s))(X(s+\varepsilon) - X(s))ds,$$

а также прямой, обратный и симметрический стохастические интегралы соответственно:

$$\int_0^t Y(s)d^-X(s) \stackrel{ucp}{=} \lim_{\varepsilon \to +0} \int_0^t Y(s) \frac{X(s+\varepsilon) - X(s)}{\varepsilon} ds,$$

$$\int_0^t Y(s)d^+X(s) \stackrel{ucp}{=} \lim_{\varepsilon \to +0} \int_0^t Y(s) \frac{X(s) - X((s-\varepsilon) \vee 0)}{\varepsilon} ds,$$

$$\int_0^t Y(s)d^\circ X(s) = \frac{1}{2} \int_0^t Y(s)d^-X(s) + \frac{1}{2} \int_0^t Y(s)d^+X(s),$$

где знак $\stackrel{ucp}{=}$ означает то, что соответствующие пределы понимаются в смысле равномерной на компактах сходимости по вероятности.

Существование квадратической ковариации [X,Y] равносильно существовнию одного из указанных интегралов (прямого или обратного), и более того справедлива следущая формула [66, с. 85–86]:

$$[X,Y](t) = \int_0^t Y(s)d^+X(s) - \int_0^t Y(s)d^-X(s).$$

Определение [X,Y] обобщает понятие квадратической ковариации $\langle X,Y\rangle$ для семимартингалов [4, гл. 2], а прямой и симметрический стохастические интегралы $\int\limits_0^t Y(s)d^-X(s), \int\limits_0^t Y(s)d^\circ X(s)$ являются расширением интегралов Ито и Стратоновича соответственно на класс непрерывных процессов с конечной квадратической вариацией [65, с. 5], [66, предложение 1.1].

4.1.2 Стохастические дифференциальные уравнения смешанного типа

Пусть на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ заданы d-мерное стандартное броуновское движение W(t) и d-мерное дробное броуновское движение B(t) с показателем Харста $H \in (1/2,1)$.

Рассмотрим стохастическое дифференциальное уравнение

$$dx(t) = f(t,x(t))dt + g(t,x(t))dW(t) + \sigma(t,x(t))dB(t), \quad t \ge 0,$$
(4.1)

где $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $\sigma: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ — детерминированные функции.

Определение 4.1. Под решением уравнения (4.1) понимаем процесс $x(t), t \in \mathbb{R}^+$, заданный на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, согласованный с потоком σ -алгебр \mathcal{F}_t , порожденным процессами W(t) и B(t), такой, что выполняются условия:

- 1) существует $\alpha > 1 H$ такое, что процесс x(t) имеет п.н. непрерывные по Гельдеру с показателем α траектории;
 - 2) для любого $t \in \mathbb{R}^+$ почти наверное выполняется равенство

$$x(t) = x(0) + \int_0^t f(s, x(s))ds + \int_0^t g(s, x(s))dW(s) + \int_0^t \sigma(s, x(s))dB(s),$$

где интеграл по процессу W(t) – стохастический интеграл Ито, а интеграл по процессу B(t) – потраекторный интеграл Янга [39].

Замечание 4.1. Иногда рассматривают решения, допускающие взрывы за конечное время. В этом случае решение x(t) определяется для $t < \tau$, где τ – так называемый момент взрыва (\mathcal{F}_t -момент остановки, такой что $\lim_{t\to \tau-0} \|x(t)\| = \infty$ при $\tau < \infty$), а непрерывность траекторий по Гельдеру предполагается до момента τ .

Пусть функция F(t,x) непрерывна вместе со своими производными $F'_t(t,x), F'_x(t,x), F''_{x^2}(t,x)$. Если функции f, g измеримы по Борелю, функция σ удовлетворяет (δ,ρ) -условию Гельдера по (t,x) при некоторых $\delta>1-H,$ $\rho>2-2H,$ а решение x(t) имеет непрерывные по Гельдеру порядка α траектории п.н. при $\alpha\rho>1$, то имеет место аналог формулы Ито [59, с. 184]:

$$F(t, x(t)) = F(0, x(0)) +$$

$$+ \int_{0}^{t} \left(F'_{t}(\tau, x(\tau)) + F'_{x}(\tau, x(\tau)) f(\tau, x(\tau)) + \right.$$

$$+ \frac{1}{2} tr(F''_{x^{2}}(\tau, x(\tau)) g(\tau, x(\tau)) g^{\top}(\tau, x(\tau))) \right) d\tau +$$

$$+ \int_{0}^{t} F'_{x}(\tau, x(\tau)) g(\tau, x(\tau)) dW(\tau) + \int_{0}^{t} F'_{x}(\tau, x(\tau)) \sigma(\tau, x(\tau)) dB(\tau).$$

$$(4.2)$$

В данной главе будем рассматривать одномерное уравнение (4.1), считая, что d=1. Также будем предполагать, что коэффициенты рассматриваемых уравнений являются достаточно гладкими функциями, обеспечивающими возможность достаточного числа дифференцирований и применений формулы замены переменных (4.2).

4.2 Приведение к простейшим уравнениям

Рассмотрим простейшее уравнение

$$dy(t) = u(t)dt + v(t)dW(t) + b(t)dB(t), \quad t \ge 0.$$
 (4.3)

Решение уравнения (4.3) выражается следующей формулой:

$$y(t) = y(0) + \int_0^t u(\tau)d\tau + \int_0^t v(\tau)dW(\tau) + \int_0^t b(\tau)dB(\tau), \quad t \ge 0.$$

Найдем класс уравнений (4.1), приводимых к (4.3) с помощью дважды непрерывно дифференцируемого и обратимого относительно x преобразования y = F(t,x) посредством формулы Ито (4.2) в предположении, что что функции f, g, σ обладают производными требуемых порядков для последующих вычислений. В соответствии с формулой Ито, должны быть справедливы соотношения:

$$u(t) = F'_t(t,x) + F'_x(t,x)f(t,x) + \frac{1}{2}F''_{x^2}(t,x)g^2(t,x), \tag{4.4}$$

$$v(t) = F'_x(t, x)g(t, x),$$
 (4.5)

$$b(t) = F'_x(t, x)\sigma(t, x). \tag{4.6}$$

Из соотношений (4.5), (4.6) следует, что $\frac{v(t)}{g(t,x)} = \frac{b(t)}{\sigma(t,x)}$, или $\frac{\sigma(t,x)}{g(t,x)} = \frac{b(t)}{v(t)} := q(t)$. Также из соотношения (4.5) очевидным образом можно выразить следующие производные функции F:

$$F'_x = \frac{v}{g}, \quad F''_{x^2} = -\frac{vg'_x}{g^2}, \quad F''_{tx} = \frac{v'g - vg'_t}{g^2}.$$
 (4.7)

Дифференцируя соотношение (4.4) по x и используя полученные формулы для $F'_x, F''_{x^2}, F''_{tx}$, получим:

$$F_{tx}'' + F_{x^2}''f + F_x'f_x' + \frac{1}{2}F_{x^3}'''g^2 + F_{x^2}''g_x'g = 0,$$

$$\frac{v'g - vg_t'}{g^2} - \frac{vg_x'f}{g^2} + \frac{vf_x'}{g} - \frac{vg_{x^2}''g^2 - 2vg(g_x')^2}{2g^2} - \frac{v(g_x')^2}{g} = 0,$$

$$\frac{v'}{v} = g\left(\frac{g_t'}{g^2} + \frac{g_x'f}{g^2} - \frac{f_x'}{g} + \frac{1}{2}g_{x^2}''\right) = g\left(\frac{g_t'}{g^2} + \left(\frac{f}{g}\right)_x' + \frac{1}{2}g_{x^2}''\right). \tag{4.8}$$

Левая часть последнего соотношения зависит лишь от t, поэтому на функции f, g, σ накладываются следующие ограничения:

$$g(t,x)\left(\frac{g'_t(t,x)}{g^2(t,x)} + \left(\frac{f(t,x)}{g(t,x)}\right)'_x + \frac{1}{2}g''_{x^2}(t,x)\right) = r(t),\tag{4.9}$$

$$\frac{\sigma(t,x)}{g(t,x)} = q(t) \tag{4.10}$$

для некоторых функций r(t), q(t).

Обратно, пусть заданные функции f,g,σ удовлетворяют условиям (4.9), (4.10). Тогда из соотношения (4.8) находим функцию $v(t) = \exp\left(\int_0^t r(\tau)d\tau\right)$ (как любое нетривиальное решение линейного однородного уравнения). Из

соотношения (4.7) найдем $F(t,x)=v(t)\int_0^x \frac{ds}{g(t,s)}$, причем ввиду того, что $v\neq 0$, $F'_x=\frac{v}{g}\neq 0$, т.е. функция F будет обратима по x. Зная функцию F, из соотношений (4.4), (4.6) однозначно определяем функции u(t) и b(t). Таким образом, справедлива следующая теорема.

Теорема 4.1. Уравнение (4.1) с функцией $g(t,x) \neq 0$ приводимо к уравнению (4.3) с помощью некоторого дважды непрерывно дифференцируемого и обратимого относительно x преобразования y = F(t,x) тогда и только тогда, когда найдутся функции q(t), r(t) такие, что оказываются выполненными соотношения (4.9), (4.10).

Предложение 4.1. Пусть заданы скалярные функции $\alpha(t)$, $\beta(t)$, $\gamma(t)$, при этом $\beta(t) \neq 0$. Тогда решение линейного однородного уравнения

$$dx(t) = \alpha(t)x(t)dt + \beta(t)x(t)dW(t) + \gamma(t)x(t)dB(t), \quad t \ge 0,$$
(4.11)

c начальным условием $x(0) = x_0 > 0$ выражается формулой

$$x(t) = x_0 \exp\left(\int_0^t \left(\alpha(\tau) - \frac{1}{2}\beta^2(\tau)\right) d\tau + \int_0^t \beta(\tau) dW(\tau) + \int_0^t \gamma(\tau) dB(\tau)\right)$$

Доказательство. Нетрудно проверить, что функции $f(t,x)=\alpha(t)x$, $g(t,x)=\beta(t)x$, $\sigma(t,x)=\gamma(t)x$ удовлетворяют условиям (4.9), (4.10), причем $\frac{v'(t)}{v(t)}=\frac{\beta'(t)}{\beta(t)}$, т.е. $\ln\left(\frac{v(t)}{\beta(t)}\right)'=0$. Можно выбрать функцию $v(t)=\beta(t)$. Тогда $F'_x=\frac{1}{x}$, и, в свою очередь, можно выбрать преобразование $F=\ln x$. Из соотношений (4.4), (4.5) находим, что $u(t)=\alpha(t)-\frac{1}{2}\beta(t)$, $b(t)=\gamma(t)$. Так как $y(t)=\ln x(t)$, то $x(t)=e^{y(t)}$ и следовательно, имеет место формула

$$x(t) = C \exp\left(\int_0^t \left(\alpha(\tau) - \frac{1}{2}\beta^2(\tau)\right) d\tau + \int_0^t \beta(\tau) dW(\tau) + \int_0^t \gamma(\tau) dB(\tau)\right),$$

где $C=e^{y(0)}$. Подставляя в формулу t=0, находим величину C=x(0), что и требовалось.

Замечание 4.2. Непосредственной подстановкой найденной формулы для решения в уравнение (4.11) можно убедиться, что данная формула сохраняет силу, в том числе, если опустить условия $\beta(t) \neq 0$ и $x_0 > 0$. Нетрудно видеть, что почти все траектории решения уравнения (4.11) непрерывны по Гельдеру с любым показателем $\kappa < 1/2$.

Предложение 4.2. Решение линейного неоднородного уравнения

$$dx(t) = (\alpha_1(t)x(t) + \alpha_2(t))dt + (\beta_1(t)x(t) + \beta_2(t))dW(t) + (\gamma_1(t)x(t) + \gamma_2(t))dB(t), \quad t \ge 0,$$

выражается по формуле

$$x(t) = x_0(t) \left(x(0) + \int_0^t \frac{\alpha_2(\tau) - \beta_1(\tau)\beta_2(\tau)}{x_0(\tau)} d\tau + \int_0^t \frac{\beta_2(\tau)}{x_0(\tau)} dW(\tau) + \int_0^t \frac{\gamma_2(\tau)}{x_0(\tau)} dB(\tau) \right),$$

в которой $x_0(t) = \exp\left(\int_0^t \left(\alpha_1(\tau) - \frac{1}{2}\beta_1^2(\tau)\right)d\tau + \int_0^t \beta_1(\tau)dW(\tau) + \int_0^t \gamma_1(\tau)dB(\tau)\right)$ есть решение соответствующего линейного однородного уравнения с начальным условием $x_0(0)=1$.

Доказательство. Положим $x(t)=x_0(t)y(t)$. Определим уравнение

$$dy(t) = u(t,y(t))dt + v(t,y(t))dW(t) + b(t,y(t))dB(t), \quad t \ge 0,$$

которому удовлетворяет процесс y(t). Применим формулу Ито к процессу $y=\frac{x}{x_0}=F(x,x_0)$, рассматривая пару $\bar{x}=(x,x_0)$ как решение двумерного уравнения

$$d\bar{x}(t) = \left(\bar{\alpha}_1(t)\bar{x}(t) + \bar{\alpha}_2(t)\right)dt + p(t,\bar{x}(t))d\bar{W}(t) + \left(\bar{\gamma}_1(t)\bar{x}(t) + \bar{\gamma}_2(t)\right)dB(t),$$

с начальным условием $\bar{x}(0) = (x(0), 1)^T$, где $\bar{\alpha}_1 = \text{diag}(\alpha_1, \alpha_1)$, $\bar{\gamma}_1 = \text{diag}(\gamma_1, \gamma_1)$, $\bar{\alpha}_2 = (\alpha_2, 0)^T$, $\bar{\gamma}_2 = (\gamma_2, 0)^T$, $p = \text{diag}(\beta_1 x + \beta_2, \beta_1 x_0)$, $\bar{W} = (W, W)^T$. Ввиду того, что справедливы соотношения

$$F'_t = 0, \quad F'_{\bar{x}} = \left(\frac{1}{x_0}, -\frac{x}{x_0^2}\right), \quad F''_{\bar{x}^2} = \left(\begin{array}{cc} 0 & -\frac{1}{x_0^2} \\ -\frac{1}{x_0^2} & \frac{2x}{x_0^3} \end{array}\right),$$

будем иметь:

$$dy = \left(\frac{\alpha_2}{x_0} - \frac{\beta_1 \beta_2}{x_0}\right) dt + \frac{\gamma_2}{x_0} dB + \frac{\beta_2}{x_0} dW.$$

Итак, получили простейшее уравнение для y(t), причем $y(0) = \frac{x(0)}{x_0(0)} = x(0)$. Таким, образом, решение исходного уравнения выражается формулой

$$x(t) = x_0(t)y(t) = x_0(t)\left(x(0) + \int_0^t \frac{\alpha_2(\tau) - \beta_1(\tau)\beta_2(\tau)}{x_0(\tau)}d\tau + \int_0^t \frac{\beta_2(\tau)}{x_0(\tau)}dW(\tau) + \int_0^t \frac{\gamma_2(\tau)}{x_0(\tau)}dB(\tau)\right),$$

что и требовалось.

Пример 4.1. Рассмотрим линейное однородное уравнение

$$dx(t) = -2t \cdot x(t)dt + t^{1-H}x(t)dB(t), \quad t \ge 0,$$

С учетом предложения 4.1 и замечания 4.2 его решение может быть выражено формулой

$$x(t) = x(0) \exp\left(-t^2 + \int_0^t \tau^{1-H} dB(\tau)\right).$$

Докажем, что нулевое решение рассматриваемого уравнения устойчиво по вероятности, то есть для любых $\varepsilon_1, \varepsilon_2 > 0$ найдется $\delta > 0$ такая, что для любого решения с начальным значением x(0) таким, что $|x(0)| < \delta$ п.н., выполнено неравенство $\mathbb{P}\{\sup_{t\geq 0}|x(t)|>\varepsilon_1\}<\varepsilon_2$.

Используя явную фомулу для решения, получим:

$$\mathbb{P}\{\sup_{t\geq 0}|x(t)|>\varepsilon_1\}=\mathbb{P}\left\{\sup_{t\geq 0}\left(-t^2+\int_0^t\tau^{1-H}dB(\tau)\right)>\ln\frac{\varepsilon_1}{|x(0)|}\right\}.$$

Применим неравенство Чебышева:

$$\mathbb{P}\left\{\sup_{t\geq 0}\left(-t^2 + \int_0^t \tau^{1-H}dB(\tau)\right) > \ln\frac{\varepsilon_1}{|x(0)|}\right\} \leq \frac{\mathbb{E}\sup_{t\geq 0}\left(-t^2 + \int_0^t \tau^{1-H}dB(\tau)\right)}{\ln\varepsilon_1 - \ln|x(0)|}$$

Оценим интеграл, используя неравенство Лав-Янга (см. предложение 2.2):

$$\int_0^t \tau^{1-H} dB(\tau) \le C \cdot V_1\left(\tau^{1-H}, [0, t]\right) \cdot V_{1/H}(B(\tau), [0, t]) \le C t^{1-H} \|B\|_H t^H = C t \|B\|_H.$$

Здесь $C = \zeta(1+1/H)$, ζ — дзета-функция Римана, а в последнем переходе использовалась монотонность функции τ^{1-H} и связь 1/H-вариации с величиной $\|\cdot\|_H$ [34, с. 170]. Таким образом,

$$\mathbb{P}\{\sup_{t>0}|x(t)| > \varepsilon_1\} \le \frac{\mathbb{E}\sup_{t\ge 0} t(C\|B\|_H - t)}{\ln \varepsilon_1 - \ln |x(0)|} \le \frac{\frac{1}{4}C^2 \mathbb{E}\|B\|_H^2}{\ln \varepsilon_1 - \ln |x(0)|}.$$

Потребовав, чтобы правая часть последнего неравенства была меньше ε_2 , получим значение δ :

$$|x(0)| < \varepsilon_1 \exp\left(-\frac{C^2 \mathbb{E} \|B\|_H^2}{4\varepsilon_2}\right) =: \delta.$$

4.3 Приведение к линейным неоднородным уравнениям

Ограничимся рассмотрением автономных уравнений

$$dx(t) = f(x(t))dt + g(x(t))dW(t) + \sigma(x(t))dB(t), \quad t \ge 0,$$
 (4.12)

а также поиском автономной замены y = F(x), приводящей указанное уравнение к линейному неоднородному уравнению

$$dy(t) = (\alpha_1 y(t) + \alpha_2)dt + (\beta_1 y(t) + \beta_2)dW(t) + (\gamma_1 y(t) + \gamma_2)dB(t), \quad t \ge 0$$
 (4.13)

с постоянными коэффициентами $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \in \mathbb{R}$. Согласно формуле Ито должны выполняться соотношения

$$\alpha_1 F(x) + \alpha_2 = F'(x)f(x) + \frac{1}{2}F''(x)g^2(x),$$
 (4.14)

$$\beta_1 F(x) + \beta_2 = F'(x)g(x), \tag{4.15}$$

$$\gamma_1 F(x) + \gamma_2 = F'(x)\sigma(x). \tag{4.16}$$

Решая линейные неоднородные по F уравнения (4.15), (4.16), находим функцию F:

$$F(x) = C_{\beta} \exp\left(\beta_1 \int_0^x \frac{ds}{g(s)}\right) - \frac{\beta_2}{\beta_1} = C_{\gamma} \exp\left(\gamma_1 \int_0^x \frac{ds}{\sigma(s)}\right) - \frac{\gamma_2}{\gamma_1}.$$

Подставляя в последнюю формулу значение x=0, легко найти константы $C_{\beta}=F(0)+\frac{\beta_2}{\beta_1}$ и $C_{\gamma}=F(0)+\frac{\gamma_2}{\gamma_1}$. Далее ограничимся случаем $\frac{\beta_2}{\beta_1}=\frac{\gamma_2}{\gamma_1}$. Тогда на выбор функций g, σ накладывается ограничение

$$\beta_1 \int_0^x \frac{ds}{g(s)} = \gamma_1 \int_0^x \frac{ds}{\sigma(s)},$$

дифференцируя которое, выводим соотношение

$$\frac{\sigma(x)}{g(x)} = \frac{\gamma_1}{\beta_1} = \text{const.}$$

Обозначим $G(x)=\int_0^x \frac{ds}{g(s)}$. Подставим выражение для функции $F(x)=C_\beta e^{\beta_1 G(x)}-\frac{\beta_2}{\beta_1}$ в формулу (4.14):

$$\alpha_{1}C_{\beta}e^{\beta_{1}G(x)} + \frac{\alpha_{2}\beta_{1} - \alpha_{1}\beta_{2}}{\beta_{1}} = C_{\beta}e^{\beta_{1}G(x)}\frac{\beta_{1}}{g}f + \left(C_{\beta}e^{\beta_{1}G(x)}\frac{\beta_{1}^{2}}{2g^{2}} - C_{\beta}e^{\beta_{1}G(x)}\frac{\beta_{1}g'}{2g^{2}}\right)g^{2},$$

$$e^{\beta_{1}G(x)}\left(\beta_{1}\left(\frac{f}{g} - \frac{g'}{2}\right) + \frac{\beta_{1}^{2}}{2} - \alpha_{1}\right) = \frac{\alpha_{2}\beta_{1} - \alpha_{1}\beta_{2}}{\beta_{1}C_{\beta}}$$
(4.17)

Обозначим $A(x) = \frac{f(x)}{g(x)} - \frac{g'(x)}{2}$ и продифференцируем последнее соотношение. Получим:

$$\beta_1 e^{\beta_1 G(x)} \left(A'(x) + \beta_1 \frac{A(x)}{g(x)} + \left(\frac{\beta_1^2}{2} - \alpha_1 \right) \frac{1}{g(x)} \right) = 0.$$
 (4.18)

Умножим последнее равенство на $\frac{g(x)}{\beta_1}e^{\beta_1 G(x)}$ и полученное равенство вновь продифференцируем. Будем иметь:

$$(g(x)A'(x))' + \beta_1 A'(x) = 0.$$

Если, к тому же, $A'(x) \neq 0$, то

$$\frac{(g(x)A'(x))'}{A'(x)} = -\beta_1 = \text{const.}$$

Таким образом, необходимо выполнение следующих условий:

$$A(x) = \frac{f(x)}{g(x)} - \frac{g'(x)}{2},\tag{4.19}$$

$$\frac{(g(x)A'(x))'}{A'(x)} = c_1, (4.20)$$

$$\frac{\sigma(x)}{g(x)} = c_2, (4.21)$$

для некоторых постоянных $c_1, c_2 \in \mathbb{R}$.

Обратно, пусть заданные функции $f(x),g(x),\sigma(x)$ удовлетворяют соотношениям (4.19), (4.20), (4.21). Тогда положим $\alpha_2=\beta_2=\gamma_2=0,\ \beta_1=-c_1,\ \gamma_1=c_2\beta_1$ и выберем преобразование $F(x)=e^{\beta_1 G(x)}$. Тогда легко проверить, что соотношения (4.15) и (4.16) выполнены. Осталось подобрать α_1,α_2 так чтобы

выполнялось соотношение (4.14). Поскольку $(g(x)A'(x))'+\beta_1A'(x)=0$, то величина $g(x)A'(x)+\beta_1A(x)=c_3$, $c_3\in\mathbb{R}$ — константа. Значит, $A'(x)+\beta_1\frac{A(x)}{g(x)}=\frac{c_3}{g(x)}$ и соотношение (4.18) диктует выбор константы $\alpha_1=\frac{\beta_1^2}{2}+c_3$. Теперь интергрируя соотношение (4.18), получим соотношение (4.17). Согласно (4.18) выражение в левой части (полностью определяемое заданными функциями f,g) будет константой. При указанном выборе эта константа совпадает с α_2 . Таким образом, справедлива следующая теорема.

Теорема 4.2. Уравнение (4.12) с функциями $g(x) \neq 0$, $A'(x) \neq 0$ приводимо к уравнению (4.13) тогда и только тогда, когда найдутся постоянные c_1, c_2 такие, что оказываются выполненными соотношения (4.19), (4.20), (4.21).

Предложение 4.3. Уравнение бернуллиевского типа

$$dx(t) = (\alpha x^{n}(t) + \beta x(t))dt + \gamma x(t)dW(t) + \delta x(t)dB(t)$$

приводится к линейному неоднородному уравнению.

Доказательство. В данном случае $G(x)=\int_1^x \frac{ds}{\gamma s}=\frac{1}{\gamma}\ln x,\ A(x)=\frac{\alpha}{\gamma}x^{n-1}+\frac{\beta}{\gamma}-\frac{\gamma}{2},\ A'(x)=\frac{\alpha(n-1)}{\gamma}x^{n-2}(t),\ (g(x)A'(x))'=\alpha(n-1)^2x^{n-2}(t),\ \frac{(g(x)A'(x))'}{A'(x)}=\gamma(n-1)=c_1.$ Выберем преобразование $F(x)=C_\beta e^{-c_1G(x)}=C_\beta x^{1-n}.$ Подставляя функцию F(x) в (4.15), найдем значение константы $C_\beta=\frac{1}{1-n}.$ Итак, $y=F(x)=\frac{1}{1-n}x^{1-n},\ x=((1-n)y)^{1/(1-n)}.$

Уже найдены значения $\beta_1=-c_1=\gamma(1-n),\,\gamma_1=\delta(1-n).$ Далее имеем:

$$c_{3} = \gamma x A'(x) + \beta_{1} A(x) = -\beta(n-1) + \frac{\gamma^{2}(n-1)}{2},$$

$$\alpha_{1} = (n-1)\left(-\beta + \frac{\gamma^{2}n}{2}\right),$$

$$\alpha_{2} = C_{\beta} e^{\beta_{1} G(x)} \left(\beta_{1} A(x) + \frac{\beta_{1}^{2}}{2} - \alpha_{1}\right) = \frac{1}{1-n} = -F(x)\gamma x A'(x) = \alpha.$$

Таким образом, исходное уравнение сводится к следующему линейному неоднородному уравнению:

$$dy(t) = \left(\alpha + (n-1)\left(-\beta + \frac{\gamma^2 n}{2}\right)y(t)\right)dt +$$
$$+\gamma(1-n)y(t)dW(t) + \delta(1-n)y(t)dB(t),$$

что и требовалось доказать.

4.4 Переход к уравнению Стратоновича

Наряду с уравнением (4.1) в пространстве \mathbb{R}^d рассмотрим соответствующее уравнение Стратоновича

$$dx(t) = (f(t,x(t)) - c(t,x(t)))dt + g(t,x(t)) \circ dW(t) + \sigma(t,x(t))dB(t), \quad t \ge 0,$$
(4.22)

в котором $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $\sigma: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $c: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$ и

$$c_i(t,x) = \frac{1}{2} \sum_{i,k=1}^d \frac{\partial g_{ij}(t,x)}{\partial x_k} g_{kj}(t,x), \quad i = 1,\dots,d.$$

Поскольку решения смешанных уравнений, вообще говоря, не являются семимартингалами, то понятие интеграла Стратоновича требует дополнительных разъяснений.

Отметим, что компоненты решений смешанных уравнений (4.1) имеют конечные квадратические вариации $[x_i](t)$ для любого $i=1,\ldots,d$. Действительно, процесс

$$\int_0^t f_i(s, x(s))ds, \ t \ge 0,$$

абсолютно непрерывен, а значит имеет конечную квадратическую вариацию. Процессы

$$\int_0^t \sigma_{ij}(s, x(s)) dB_j(s), \ t \ge 0,$$

для любого $j=1,\ldots,d$ имеют непрерывные по Гельдеру траектории порядка $\kappa>1/2,$ а значит имеют нулевую квадратическую вариацию. В свою очередь, квадратическая вариация $[I(g_{ij})](t)$ процессов

$$I(g_{ij})(t) = \int_0^t g_{ij}(s, x(s)) dW_j(s), \ t \ge 0,$$

конечна и совпадает с квадратической вариацией для семимартингалов $\langle I(g_{ij}) \rangle (t)$. Более того, нетрудно видеть, что

$$\left[\int_0^{\cdot} f_i(s,x(s))ds, \int_0^{\cdot} \sigma_{ij}(s,x(s))dB_j(s)\right](t) = 0,$$

$$\left[\int_0^{\cdot} f_i(s,x(s))ds, \int_0^{\cdot} g_{ij}(s,x(s))dW_j(s)\right](t) = 0,$$

$$\left[\int_0^{\cdot} \sigma_{ij}(s,x(s))dB_j(s), \int_0^{\cdot} g_{ij}(s,x(s))dW_j(s)\right](t) = 0,$$

поскольку суммы показателей непрерывности Гельдера соответсвтвующих процессов превосходят 1.

Рассмотрим некоторую функцию $F(t,x) = (F_{ij}(t,x))_{i,j=1}^d$, принимающующую значения в пространстве $\mathbb{R}^{d\times d}$ и имеющую непрерывные частные производные $\frac{\partial F_{ij}}{\partial t}$, $\frac{\partial F_{ij}}{\partial x}$, $\frac{\partial F_{ij}}{\partial x^2}$ для всех $i,j=1,\ldots,d$ (выбор функции F будет оговорен ниже). Зафиксируем произвольные индексы $i,j\in\{1,\ldots,d\}$. Заметим, что процесс $y_{ij}(t)=F_{ij}(t,x(t))$ является непрерывным и имеет конечную квадратическую вариацию. Ввиду формулы Ито (4.2) стохастические дифференциалы процессов $y_{ij}(t)$, $W_i(t)$ имеют вид

$$dy_{ij}(t) = \left(\frac{\partial F_{ij}(t,x(t))}{\partial t} + \frac{\partial F_{ij}(t,x(t))}{\partial x}f(t,x(t)) + \frac{1}{2}\operatorname{tr}\left(\frac{\partial^2 F_{ij}(t,x(t))}{\partial x^2}g(t,x(t))g^{\top}(t,x(t))\right)\right)dt + \frac{\partial F_{ij}(t,x(t))}{\partial x}g(t,x(t))dW(t) + \frac{\partial F_{ij}(t,x(t))}{\partial x}\sigma(t,x(t))dB(t),$$

$$dW_j(t) = 0 \cdot dt + 1 \cdot dW_j(t) + 0 \cdot dB_j(t),$$

Поскольку $[t,W_j(t)]=0,\ [W_j,B_l](t)=0,\ [W_j,W_l](t)=\delta_{jl}\cdot t$ для любого $l=1,\ldots,d$, где δ_{jl} — символ Кронекера, то ввиду предложения 2.3 [4] квадратическая ковариация процессов $y_{ij}(t)$ и $W_j(t)$ равна

$$[y_{ij}, W_j](t) = \left[\sum_{k,l=1}^d \int_0^t \frac{\partial F_{ij}(s, x(s))}{\partial x_k} g_{kl}(s, x(s)) dW_l(s), \int_0^t dW_j(s)\right] =$$

$$=\sum_{k,l=1}^d \int_0^t \frac{\partial F_{ij}(s,x(s))}{\partial x_k} g_{kl}(s,x(s)) d[W_l,W_j](s) = \sum_{k=1}^d \int_0^t \frac{\partial F_{ij}(s,x(s))}{\partial x_k} g_{kj}(s,x(s)) ds.$$

С другой стороны, в силу определения прямого и симметрического стохастических интегралов имеем

$$\int_0^t F_{ij}(s, x(s)) \circ dW_j(s) = \int_0^t F_{ij}(s, x(s)) dW_j(s) + \frac{1}{2} [F_{ij}(\cdot, x(\cdot)), W_j(\cdot)](t) =$$

$$= \int_0^t F_{ij}(s,x(s))dW_j(s) + \frac{1}{2} \int_0^t \sum_{k=1}^d \frac{\partial F_{ij}(s,x(s))}{\partial x_k} g_{kj}(s,x(s))ds$$

для любых $i, j = 1, 2, \dots$

Полагая F(t,x)=g(t,x) и суммируя по индексу $j=1,\ldots,d$, заключаем, что справедливо следующее равенство:

$$\int_0^t g(s, x(s)) \circ dW(s) = \int_0^t g(s, x(s)) dW(s) + \frac{1}{2} \int_0^t c(s, x(s)) ds.$$

Таким образом, процесс x(t) является решением уравнения (4.1) тогда и только тогда, когда процесс x(t) является решением уравнения Стратоновича (4.22).

Пример 4.2. Для уравнения

$$dx(t) = x^{3}(t)dt + x^{2}(t)dW(t) + x^{2}(t)dB(t), \ x(0) = x_{0},$$

соответствующее уравнение Стратоновича имеет вид

$$dx(t) = x^{2}(t) \circ dW(t) + x^{2}(t)dB(t).$$

Последнее уравнение имеет решение

$$x(t) = \frac{x_0}{1 - x_0(W(t) + B(t))},$$

которое является решением и исходного уравнения.

Выводы

В данной главе диссертации исследованы некоторые методы точного интегрирования стохастических диффенциальных уравнений смешанного типа $dx(t) = f(t,x(t))dt + g(t,x(t))dW(t) + \sigma(t,x(t))dB(t), t \geq 0$, в которых W(t) — стандартное броуновское движение, а B(t) — дробное броуновское движение с индексом Харста H > 1/2.

Получены условия приводимости рассматриваемых уравнений с помощью преобразования y = F(t,x) к простейшим уравнениям, а также линейным уравнениям относительно y(t). Доказаны явные формулы решений соответствующих линейных уравнений, а также приведен пример исследования

устойчивости по вероятности нулевого решения линейного однородного уравнения с использованием упомянутой явной формулы.

Построен метод перехода от рассматриваемых уравнений типа Ито к уравнениям типа Стратоновича и приведен пример, когда данный переход позволяет получить решение исходного уравнения в явном виде.

ГЛАВА 5

УСТОЙЧИВОСТЬ И ПРИТЯЖЕНИЕ РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ГИЛЬБЕРТОВЫХ ПРОСТРАНСТВАХ

5.1 Предварительные сведения

5.1.1 Теория полугрупп

Пусть X — банахово пространство. Через $\mathcal{L}(X)$ обозначим множество линейных ограниченных операторов, действующих из X в X. Однопараметрическое семейство операторов $(S(t))_{t\geq 0}\subset \mathcal{L}(X)$ называют полугруппой на X, если S(0)=I и S(t+s)=S(t)S(s) для любых $s,t\geq 0$. Полугруппу операторов $(S(t))_{t\geq 0}$ называют сильно непрерывной $(C_0$ -полугруппой), если $\|S(t)x-S(t_0)x\| \xrightarrow[t\to t_0]{} 0$ для любого $x\in X$. Для сильно непрерывной полугруппы $(S(t))_{t\geq 0}$ на X оператор A, определенный на множестве $\mathcal{D}(A)=\left\{x\in X:\exists\lim_{t\to +0}\frac{S(t)x-x}{t}\in X\right\}$ формулой $Ax=\lim_{t\to +0}\frac{S(t)x-x}{t},\,x\in \mathcal{D}(A)$, называют генератором полугруппы $(S(t))_{t\geq 0}$.

Предложение 5.1 [61, теорема 2.2]. Пусть $(S(t))_{t\geq 0}$ — сильно непрерывная полугруппа на банаховом пространстве X. Тогда существуют постоянные $M\geq 1$ и $\beta\in\mathbb{R}$ такие, что $\|S(t)\|_{\mathcal{L}(X)}\leq Me^{\beta t}$ для всех $t\geq 0$.

Теория полугрупп имеет тесные связи как с обыкновенный дифференциальными уравнениями, так и с дифференциальными уравнениями в частных производных.

Пример 5.1. Рассмотрим задачу Коши для системы линейных дифференциальных уравнений с постоянными коэффициентами порядка d. В векторном виде она примет вид

$$\frac{dx}{dt} = Ax + f(t), \quad t \in \mathbb{R}^+,$$
$$x(0) = \xi,$$

где $A \in \mathbb{R}^{n \times n}$, $f \colon \mathbb{R}^+ \to \mathbb{R}^d$, $\xi \in \mathbb{R}^d$. Решение данной задачи выражается формулой Коши:

$$x(t) = S(t)\xi + \int_0^t S(t)S^{-1}(s)f(s)ds,$$

где S(t) — базисная матрица системы, $S(0) = I_d$. Каноничесим выбором служит оператор $S(t) = e^{At}$. Нетрудно убедиться в том, что при таком выборе семейство операторов $(S(t))_{t\geq 0}$ является сильно непрерывной полугруппой в \mathbb{R}^d с генератором $A \in \mathcal{L}(\mathbb{R}^d)$.

Пример 5.2. Рассмотрим начально-краевую задачу для уравнения в частных производных параболического типа

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(t, x), \quad t \in \mathbb{R}^+, x \in (0, l), \tag{5.1}$$

$$u(0,x) = \varphi(x), \quad x \in [0,l], \tag{5.2}$$

$$u(t,0) = u(t,l) = 0, \quad t \in \mathbb{R}^+.$$
 (5.3)

где функции φ , f таковы, что $\varphi(0) = \varphi(l) = 0$, f(t,0) = f(t,l) = 0, $t \in \mathbb{R}^+$. Ее решение может быть выражено следующей формулой:

$$u(t,x) = \int_0^t G(t,x,\xi)\varphi(\xi)d\xi + \int_0^t \int_0^l G(t-\tau,x,\xi)f(\tau,\xi)d\xi d\tau, \tag{5.4}$$

$$G(t, x, y) = \frac{2}{l} \sum_{n=1}^{\infty} e^{-(\pi n/l)^2 t} \sin\left(\frac{\pi nx}{l}\right) \sin\left(\frac{\pi ny}{l}\right).$$
 (5.5)

Задача (5.1) - (5.3) может быть представлена в виде задачи Коши для обыкновенного дифференциального уравнения первого порядка в гильбертовом пространстве.

Обозначим через $L_p[a,b]$ пространство классов эквивалентности интегрируемых по Лебегу со степенью p функций $f\colon [a,b]\to \mathbb{R}$, а через $\mathcal{W}^{k,p}[a,b]$ — пространство Соболева классов эквивалентности функций $f\colon [a,b]\to \mathbb{R}$, имеющих обобщенные производные класса $L_p[a,b]$ до порядка k включительно, $k\in \mathbb{N}$. Пусть $H=\{z(\cdot)\in L_2[a,b]: z(0)=z(l)=0\}$ — гильбертово пространство, $X(t)=u(t,\cdot)\in H, \ F(t)=f(t,\cdot)\in H, \ \psi=\varphi(\cdot)\in H, \ A=a^2\frac{\partial^2}{\partial x^2}$ — оператор, действующий из H в H, с областью определения $\mathcal{D}(A)=\{z(\cdot)\in \mathcal{W}^{2,2}[a,b]: z(0)=z(l)=0\}$, всюду плотной в H. Зада-

ча (5.1) - (5.3) может быть интерпретирована следующим образом:

$$\frac{dX}{dt} = AX(t) + F(t), \quad t \in \mathbb{R}^+, \tag{5.6}$$

$$X(0) = \psi. (5.7)$$

Можно показать, что оператор A является генератором C_0 -полугруппы $(S(t))_{t\geq 0}$ в H, определяемой соотношением

$$S(t)z(\cdot) = \int_0^l G(t, \cdot, \xi)z(\xi)d\xi, \quad t > 0; \quad S(0) = I.$$

При этом равенство (5.4) перепишется в виде соотношения, определяющего слабое решение задачи (5.6), (5.7): $X(t) = S(t)\psi + \int_0^t S(t-s)F(s)ds$.

5.1.2 Операторы Гильберта-Шмидта

Зафиксируем некоторые банаховы пространства X, Y, а также некоторый полный ортонормированный базис $\{h_i\}$ в банаховом пространстве X. Оператором Гильберта-Шмидта называют оператор $B \in \mathcal{L}(X,Y)$ такой, что $\sum_i \|Bh_i\|_Y^2 < \infty$. В случае, когда X, Y являются сепарабельными гильбертовыми пространствами, множество операторов Гильберта-Шмидта $\mathfrak{L}_2(X,Y)$ также образует сепарабельное гильбертово пространство со скалярным произведением $\langle A, B \rangle_{\mathfrak{L}_2(X,Y)} = \sum_i \langle Ah_i, Bh_i \rangle_Y$. Будем считать далее, что X — сепарабельное гильбертово пространство. Если оператор $B \in \mathcal{L}(X)$ представим в виде $B = \sum_{i=1}^m A_i C_i$, где $A_1, \ldots, A_m, C_1, \ldots, C_m \in \mathfrak{L}_2(X,X)$, то такой оператор B называют ядерным. Множество всех ядерных операторов, действующих из X в X обозначают $L_1(X)$, оно является сепарабельным банаховым пространством с нормой $\|B\|_{L_1(X)} = \operatorname{tr} B := \sum_i \langle Bh_i, h_i \rangle_X$.

Пусть K и H — сепарабельные гильбертовы пространства и Q — симметрический неотрицательный с конечным следом оператор на K. Мы всегда будем предполагать, что все собственные значения λ_j оператора Q положительны. В противном случае вместо гильбертова пространства K можно рассматривать гильбертово пространство $\ker(Q)^{\perp}$ — ортогональное дополнение ядра оператора Q. Пусть f_k — ортонормированный базис пространства K, состоящий из собственных векторов. Введем в рассмотрение пространство

 $K_Q = Q^{1/2} K$ со скалярным произведением $\langle u,v \rangle_{K_Q} = \sum_{j=1}^{\infty} \frac{1}{\lambda_j} \langle u,f_j \rangle_K \langle v,f_j \rangle_K$, которое является сепарабельным гильбертовым пространством с ортонормированным базисом $\lambda_j^{1/2} f_j$.

Рассмотрим пространство $\mathfrak{L}_2(K_Q,H)$ операторов Гильберта–Шмидта из K_Q в H. Если e_j — ортонормированный базис в H, то норма Гильберта–Шмидта оператора $L \in \mathfrak{L}_2(K_Q,H)$ задается следующим образом:

$$||L||_{\mathfrak{L}_2(K_Q,H)} = \sum_{i,j=1}^{\infty} \langle L(\lambda_j^{1/2}) f_j, e_i \rangle_H^2 =$$

$$=\|LQ^{1/2}\|_{\mathfrak{L}_2(K,H)}^2=\mathrm{tr}((LQ^{1/2})(LQ^{1/2})^\star).$$

Скалярное произведение двух операторов $L, M \in \mathfrak{L}_2(K_Q, H)$ определяется следующим образом:

$$\langle L, M \rangle_{\mathfrak{L}_2(K_Q, H)} = \operatorname{tr}((LQ^{1/2})(MQ^{1/2})^{\star}).$$

5.1.3 Стохастический интеграл Ито в гильбертовом пространстве

Ниже будет дано определение стохастического интеграла Ито по винеровскому процессу W(t), принимающему значения в сепарабельном гильбертовом пространстве K, с ковариационным оператором Q.

Пусть $\mathcal{E}(\mathcal{L}(K,H))$ — класс (\mathcal{F}_t) -согласованных элементарных процессов вида

$$\Phi(t,\omega) = \Phi_0(\omega) \mathbf{1}_{\{0\}}(t) + \sum_{j=0}^{n-1} \Phi_j(\omega) \mathbf{1}_{(t_j,t_{j+1}]}(t),$$

где $0 = t_0 \leqslant t_1 \leqslant \ldots \leqslant t_n = a$ и $\Phi_j, j = 0,1,\ldots,n-1$, соответственно (\mathcal{F}_{t_j}) -измеримые $\mathfrak{L}_2(K_Q,H)$ -значные случайные величины такие, что $\Phi_j(\omega) \in \mathcal{L}(K,H), j = 0,1,\ldots,n-1$. Мы скажем, что элементарный процесс Φ ограничен, если он ограничен в $\mathfrak{L}_2(K_Q,H)$. Для ограниченного элементарного процесса $\Phi \in \mathcal{E}(\mathcal{L}(K,H))$ мы определим стохастический интеграл относительно Q-винеровского процесса следующим образом:

$$\int_{0}^{t} \Phi(s)dW(s) = \sum_{j=0}^{n-1} \Phi_{j}(W(t_{j+1} \wedge t) - W(t_{j} \wedge t))$$

для $t \in [0,T]$. Для ограниченных элементарных процессов $\Phi \in \mathcal{E}(\mathcal{L}(K,H))$ имеет место равенство

$$\mathbb{E}\left(\left\|\int_0^t \Phi(s)dW(s)\right\|_H^2\right) = \mathbb{E}\left(\int_0^t \|\Phi(s)\|_{\mathfrak{L}_2(K_Q,H)}^2 ds\right) < \infty. \tag{5.8}$$

для $t \in [0,T]$.

Пусть $\Lambda_2(K_Q,H)$ — подмножество пространства $\mathfrak{L}_2(K_Q,H)$, состоящее из $(\mathcal{B}([0,T])\times\mathcal{F},\mathcal{B}(\mathfrak{L}_2(K_Q,H)))$ -измеримых (\mathcal{F}_t) -согласованных процессов, удовлетворяющих условию $\mathbb{E}(\int_0^T\|\Phi(s))\|_{\mathfrak{L}_2(K_Q,H)}^2ds)<\infty$. Отметим, что $\Lambda_2(K_Q,H)$ с нормой $\|\Phi\|_{\Lambda_2(K_Q,H)}=\Big(\mathbb{E}(\int_0^T\|\Phi(s))\|_{\mathfrak{L}_2(K_Q,H)}^2ds\Big)^{1/2}$ является банаховым пространством. Множество ограниченных элементарных процессов плотно в $\Lambda_2(K_Q,H)$.

За стохастический интеграл от процесса $\Phi \in \Lambda_2(K_Q, H)$ относительно Q-винеровского процесса W(t) принимают единственное изометрическое линейное расширение отображения $\Phi(\cdot) \to \int_0^a \Phi(s) dW(s)$ (которое выше определено на множестве ограниченных элементарных процессов), на процессы из пространства $\Lambda_2(K_Q, H)$, и при этом образ каждого элементарного процесса $\Phi_0(\omega) \mathbf{1}_{\{0\}}(t) + \sum\limits_{j=0}^{n-1} \Phi_j(\omega) \mathbf{1}_{(t_j,t_{j+1}]}(t)$ есть $\sum\limits_{j=0}^{n-1} \Phi_j(W(t_{j+1} \wedge t) - W(t_j \wedge t))$.

Стохастический интеграл $\int_0^t \Phi(s) dW(s)$ определяют посредством равенства

$$\int_{0}^{t} \Phi(s)dW(s) = \int_{0}^{T} \Phi(s)\mathbf{1}_{[0,t]}(s)dW(s).$$
 (5.9)

Стохастический интеграл $\int_0^t \Phi(s) dW(s)$ является непрерывным квадратично интегрируемым мартингалом, удовлетворяющим условию (5.8).

Пусть теперь $\mathcal{P}(K_Q,H)$ — подмножество $(\mathcal{B}([0,T]) \times \mathcal{F}, \mathcal{B}(\mathfrak{L}_2(K_Q,H)))$ -измеримых (\mathcal{F}_t) -согласованных процессов из пространства $\mathfrak{L}_2(K_Q,H)$, удовлетворяющих условию $\mathbb{P}(\int_0^T \|\Phi(s))\|_{\mathfrak{L}_2(K_Q,H)}^2 ds < \infty) = 1$. Очевидно, $\Lambda_2(K_Q,H) \subset \mathcal{P}(K_Q,H)$. Для каждого процесса $\Phi \in \mathcal{P}(K_Q,H)$ существует последовательность Φ_n в $\Lambda_2(K_Q,H)$ такая, что

$$\mathbb{P}\left(\int_{0}^{T} \|\Phi_{n}(s,\omega)) - \Phi(t,\omega)\|_{\mathfrak{L}_{2}(K_{Q},H)}^{2} dt > 0\right) \underset{n \to +\infty}{\longrightarrow} 0,$$

и существует H-значная (\mathcal{F}_T) -измеримая случайная величина, обозначаемая $\int_0^T \Phi(t) dW(t)$, к которой последовательность $\int_0^T \Phi_n(t) dW(t)$ сходится по вероятности. Предел $\int_0^T \Phi(t) dW(t)$ не зависит от выбора последовательности Φ_n .

Случайную величину $\int_0^T \Phi(t) dW(t)$ называют стохастическим интегралом от процесса $\Phi \in \mathcal{P}(K_Q,H)$ по Q-винеровскому процессу. Для $t \in [0,T]$ интеграл $\int_0^t \Phi(t) dW(t)$ определяют посредством равенства (5.9).

Приведем некоторые свойства стохастического интеграла Ито [32, раздел 2.2.3], [19, гл. 3], [4, с. 56–60]:

- 1. Стохастический интеграл имеет непрерывную модификацию.
- 2. Стохастический интеграл имеет нулевое среднее: $\mathbb{E} \int_0^t \Phi(s) dW(s) = 0$.
- 3. Стохастический интеграл обладает свойством изометрии: $\mathbb{E} \left\| \int_0^t \Phi(s) dW(s) \right\|_H^2 = \mathbb{E} \int_0^t \|\Phi(s)\|_{\mathfrak{L}_2(K_Q,H)}^2 ds.$
- 4. Стохастический интеграл $\int_0^t \Phi(s)dW(s)$ является (\mathcal{F}_t) -мартингалом.

Предложение 5.2. (Формула Ито для гильбертовых пространств [32, теорема 2.9]). Пусть $\Phi \in \mathcal{P}(K_Q,H)$, $\Psi(t)$, $t \in [0,T]-(\mathcal{F}_t)$ -согласованный случайный процесс со значениями в H, интегрируемый по Бохнеру на отрезке [0,T] п.н. Пусть также $X(0) - \mathcal{F}_0$ -измеримая случайная величина со значениями в H, а процесс X(t) определяется равенством

$$X(t) = X(0) + \int_{0}^{t} \Psi(s)ds + \int_{0}^{t} \Phi(s)dW(s), \ t \in [0,T].$$

Предположим, что функция $F: [0,T] \times H \to \mathbb{R}$ вместе со своими частными производными F'_t, F'_x, F''_{xx} непрерывна и ограничена на каждом ограниченном подмножестве из $[0,T] \times H$. Для любого $t \in [0,T]$ п.н. справедливо равенство

$$\begin{split} F(t,&X(t)) = F(0,&X(0)) + \int\limits_0^t \bigg(F_t'(s,&X(s)) + \langle F_x'(s,&X(s)),\Psi(s)\rangle + \\ &+ \frac{1}{2} \mathrm{tr} \left(F_{xx}''(s,&X(s))(\Phi(s)Q^{1/2})(\Phi(s)Q^{1/2})^\star\right) \bigg) ds + \int\limits_0^t \langle F_x'(s,&X(s)),\Phi(s)dW(s)\rangle. \end{split}$$

Приведем также классическую формулу Ито для случайных процессов, принимающих значения в конечномерном гильбертовом пространстве $H = \mathbb{R}^d$.

Предложение 5.3 (фомула Ито, [4, теорема 5.1]). Пусть заданы измеримые \mathcal{F}_t -согласованные процессы $a\colon \mathbb{R}^+ \times \Omega \to \mathbb{R}^n$, $b\colon \mathbb{R}^+ \times \Omega \to \mathbb{R}^{n \times d}$ такие, что $\int_0^t |a(s,\omega)|^2 ds < +\infty$ и $\int_0^t |b(s,\omega)| ds < +\infty$ п.н. для любого $t \geq 0$,

 $X(0,\omega) - \mathcal{F}_0$ -измеримая случайная величина и $X(t,\omega) - n$ -мерный случайный процесс, определяемый равенством

$$X(t,\omega) = X(0,\omega) + \int_0^t a(s,\omega)ds + \int_0^t b(s,\omega)dB(s).$$

Пусть $F: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ — функция, непрерывная вместе со своими частными производными $\frac{\partial F}{\partial t}$, $\frac{\partial F}{\partial x_i}$, $\frac{\partial^2 F}{\partial x_i \partial x_j}$, $i,j=1,\ldots,n$. Тогда для процесса $X(t,\omega)$, определенного выше, n.н. справедливо равенство

$$F(t, X(t, \omega)) = F(0, X(0, \omega)) + \int_0^t \left(\frac{\partial F(\tau, X(\tau, \omega))}{\partial t} + \frac{\partial F(\tau, X(\tau, \omega))}{\partial x} a(\tau, \omega) + \frac{1}{2} \text{tr} \left(\frac{\partial^2 F(\tau, X(\tau, \omega))}{\partial x^2} b(\tau, \omega) b(\tau, \omega)^\top \right) \right) d\tau + \int_0^t \frac{\partial F(\tau, X(\tau, \omega))}{\partial x} b(\tau, \omega) dB(\tau, \omega).$$

Предложение 5.4 (Неравенство Буркхольдера [32, лемма 3.3]). Пусть $p>1,\ S(t)-C_0$ -полугруппа на H. Тогда для любого процесса $\Phi\in\Lambda_2(K_Q,H)$ такого, что $\mathbb{E}\left(\int_0^T\|\Phi(s)\|_{\mathfrak{L}_2(K_Q,H)}^{2p}ds\right)<+\infty$, существует непрерывная модификация процесса $\int_0^tS(t-s)\Phi(s)dW(s)$, и для любого $t\in[0,T]$ выполнятся неравенство

$$\mathbb{E}\left(\sup_{\tau\in[0,t]}\left\|\int_0^{\tau}S(\tau-s)\Phi(s)dW(s)\right\|_{\mathfrak{L}_2(K_Q,H)}^{2p}\right)\leq C_{p,T}\,\mathbb{E}\left(\int_0^t\|\Phi(s)\|_{\mathfrak{L}_2(K_Q,H)}^{2p}ds\right),$$

где $C_{p,T}$ — константа, зависящая лишь от p,T.

Пусть заданы следующие объекты: вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ с потоком σ -алгебр $(\mathcal{F}_t)_{t\geq 0}$, два сепарабельных гильбертовых пространства H и K; ядерный симметрический положительно определенный оператор Q на пространстве K; \mathcal{F}_t -согласованное Q-броуновское движение $W(t,\omega)$ со значениями в K и ковариационным оператором Q.

5.2 Стохастические дифференциальные уравнения в конечномерных гильбертовых пространствах

Данный раздел посвящен исследованию устойчивости в конечномерных пространствах $H=K=\mathbb{R}^d$. В этом случае $Q=I_d$ и W(t) — стандартное

броуновское движение со значениями в \mathbb{R}^d . Рассмотрим стохастическое дифференциальное уравнение

$$dx(t) = f(t, x(t))dt + g(t, x(t))dW(t),$$
 (5.10)

где $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ — измеримые по Борелю функции такие, что f(t,0) = 0 и g(t,0) = 0 при всех $t \in \mathbb{R}^d$ и выполнено условие линейного порядка роста по x, то есть существует постоянная C такая, что для любых $t \in \mathbb{R}^+$, $x \in \mathbb{R}^d$, выполняется неравенство $|f(t,x)| + |g(t,x)| \leq C(1+|x|)$.

Пусть $\sigma(t,x)=g(t,x)g(t,x)^{\top}$. Для каждого $(t,x)\in\mathbb{R}^{+}\times\mathbb{R}^{d}$ построим наименьшие выпуклые замкнутые множества $A(t,x),\ B(t,x),\$ содержащими соответственно матрицу $\sigma(t,x)$ и вектор f(t,x) и все предельные точки $\sigma(t,x')$ и f(t,x') при $x'\to x$.

Определение 5.1. Если:

- 1) существуют вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ с потоком \mathcal{F}_t и отображение $X \colon \Omega \to C(\mathbb{R}^+, \mathbb{R}^d)$ такие, что функция $(t, \omega) \to X(t, \omega) \in \mathbb{R}^d (\mathcal{B}(\mathbb{R}^+) \times \mathcal{F}, \mathcal{B}(\mathbb{R}^d)$ -измерима и \mathcal{F}_t -согласована;
 - 2) существует (\mathcal{F}_t) -броуновское движение $W(t),\,W(0)=0$ п. н.;
- 3) существуют измеримые (\mathcal{F}_t) -согласованные процессы $v\colon \mathbb{R}^+\times\Omega\to\mathbb{R}^d$ и $u\colon \mathbb{R}^+\times\Omega\to\mathbb{R}^{d\times d}$, удовлетворяющие для $(\mu\times\mathbb{P})$ -почти всех $(t,\omega)\in\mathbb{R}^+\times\Omega$ включениям

$$v(t) \in B(t, X(t, \omega)), \quad u(t)u^{\top}(t) \in A(t, X(t, \omega)),$$

и такие, что для любого $T \in \mathbb{R}^+$ выполняется неравенство $\int_0^T (|v(s)| + |u(s)|^2) ds < \infty$ п. н.;

4) с вероятностью 1 для всех $t \in \mathbb{R}^+$ выполняется равенство

$$X(t) = X(0) + \int_0^t v(\tau)d\tau + \int_0^t u(\tau)dW(\tau),$$

то набор $(X, \Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_t, W(t), v(t), u(t))$ (или короче X) называем β -слабым решением уравнения (5.10).

Заметим, что условия f(t,0)=0 и g(t,0)=0 обеспечивают существование нулевого решения уравнения (5.10). Из теоремы 2.3 книги [15] следует, что если функции f и g измеримы по Борелю и имеют линейный порядок

роста, то для любой вероятности ν на $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ с компактным носителем уравнение (5.10) имеет слабое решение $(\Omega,\mathcal{F},\mathbb{P},\mathcal{F}_t,W(t),x(t),v(t),u(t))$ с начальным распределением ν .

Определение 5.2. Будем говорить, что нулевое решение уравнения (5.10) устойчиво по вероятности, если для любых ε_1 , $\varepsilon_2>0$ существует $\delta>0$ такое, что для каждого слабого решения x(t) уравнения (5.10), удовлетворяющего условию $|x_0|\leq \delta$ п.н., выполняется неравенство (5.11):

$$\mathbb{P}\{\sup_{t\geq 0}|x(t)|>\varepsilon_1\}<\varepsilon_2. \tag{5.11}$$

Определение 5.3. Будем говорить, что нулевое решение уравнения (5.10) асимптотически устойчиво по вероятности, если нулевое решение уравнения (5.10) устойчиво по вероятности и для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для каждого слабого решения x(t) уравнения (5.10), удовлетворяющего условию $|x_0| \leq \delta$ п.н., выполняется неравенство (5.12):

$$\mathbb{P}\{\lim_{t\to\infty} x(t) = 0\} \ge 1 - \varepsilon. \tag{5.12}$$

Предположим, что определена функция $V: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^+$. Будем говорить, что функция V(t,x) удовлетворяет **условию** L, если она непрерывно дифференцируема по t, дважды непрерывно дифференцируема по x и существует $\delta>0$ такое, что для любого $t\in \mathbb{R}^+$ и любого $x\in \mathbb{R}^d$ такого, что $|x|\leq \delta$, выполнено неравенство $BV(t,x)\leq 0$, где

$$BV(t,x) = \frac{\partial V(t,x)}{\partial t} + \sup_{v \in F(t,x)} \left(\frac{\partial V(t,x)}{\partial x} v \right) + \frac{1}{2} \sup_{u \in G(t,x)} \operatorname{tr} \left(\frac{\partial^2 V(t,x)}{\partial x^2} u u^{\top} \right). \tag{5.13}$$

Следующие две теоремы¹, дающие достаточные условия устойчивости и асимптотической устойчивости по вероятности нулевого решения уравнения (5.10), доказаны в статье 1–А.

Теорема 5.1. Пусть функция V(t,x) удовлетворяет условию L, причем V(t,0)=0 при всех $t\in\mathbb{R}^+$, $V(t,x)\geq\alpha(|x|)>0$ при $0<|x|\leq\delta$ и всех $t\in\mathbb{R}^+$, где $\alpha:\mathbb{R}^+\to\mathbb{R}^+$ – некоторая функция, δ – число из условия L. Кроме того, предположим, что $\lim_{x\to 0}\sup_{t>0}V(t,x)=0$. Тогда нулевое решение уравнения (5.10) устойчиво по вероятности.

¹Авторство указанных теорем принадлежит Я.Б. Задворному. Кроме того некоторые обобщения названных теорем для автономных уравнений можно найти в [15, раздел 3.2]

Теорема 5.2. Пусть существуют число $\delta > 0$ и функция $V : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^+$, дифференцируемая по $t \in \mathbb{R}^+$, дважды дифференцируемая по x, удовлетворяющие условиям:

- 1) $BV(t,x) < \beta(\varepsilon) < 0$ при всех x таких, что $\varepsilon \leq |x| \leq \delta$, и при всех $t \in \mathbb{R}^+$, где $\beta : \mathbb{R}^+ \to \mathbb{R}^-$ некоторая функция;
 - 2) $\lim_{x\to 0} \sup_{t>0} V(t,x) = 0;$
 - 3) V(t,0) = 0 npu $\sec t \in \mathbb{R}^+$;
- 4) $V(t,x) \ge \alpha(|x|) > 0$ при всех x таких, что $|x| \le \delta$, и всех $t \in \mathbb{R}^+$, где $\alpha : \mathbb{R}^+ \to \mathbb{R}^+$ некоторая функция.

Тогда нулевое решение уравнения (5.10) асимптотически устойчиво по вероятности.

Исследуем устойчивость слабого нулевого решения стохастического дифференциального уравнения (5.10) с выделенной линейной частью вида

$$dX(t) = (A(t)X(t) + f(t, X(t)))dt + g(t, X(t))dW(t), \quad t \ge 0.$$
 (5.14)

Здесь $A \colon \mathbb{R}^+ \to \mathbb{R}^{d \times d}$ — кусочно непрерывная функция, $\sup_{t \ge 0} |A(t)| \le M$, а функции f и g удовлетворяют условиям для уравнения (5.10).

Наряду с уравнением (5.14) рассмотрим линейное однородное детерминированное уравнение

$$dX(t) = A(t)X(t)dt, \quad t \ge 0, \tag{5.15}$$

Через $X^{(s,x)}(t)$ будем обозначать (единственное) решение уравнения (5.15), удовлетворяющее равенству $X^{(s,x)}(s) = x$ (существование, единственность и непрерывность по t такого решения в указанных предположениях имеет место, см., например, [2]).

Определение 5.4. Будем говорить, что уравнение (5.15) имеет *равномерно экспоненциально устойчивое* нулевое решение, если существуют константы $\Lambda, \lambda > 0$, не зависящие от s, x, такие, что для любых $s \in \mathbb{R}^+, x \in \mathbb{R}^d$ и $t \geq s$ выполняется неравенство

$$|X^{(s,x)}(t)|^2 \le \Lambda |x|^2 e^{-\lambda(t-s)}.$$
 (5.16)

Для систем (5.14) и (5.15) определим операторы B и B_0 по формулам (5.17) и (5.18):

$$BV(s,x) = \frac{\partial V(s,x)}{\partial s} + \sup_{v \in F(t,x)} \left(\frac{\partial V(s,x)}{\partial x} (A(s)x + v) \right) + \frac{1}{2} \sup_{u \in G(t,x)} \operatorname{tr} \left(\frac{\partial^2 V(s,x)}{\partial x^2} u u^{\top} \right), \tag{5.17}$$

$$B_0V(s,x) = \frac{\partial V(s,x)}{\partial s} + \frac{\partial V(s,x)}{\partial x}A(s)x, \quad s \in \mathbb{R}^+, x \in \mathbb{R}^d, \varphi \in C_h.$$
 (5.18)

Теорема 5.3. Предположим, что функции f(t,x) и g(t,x) таковы, что при достаточно малом $\varepsilon>0$ найдется $\delta_{\varepsilon}>0$ такое, что выполняются неравенства (5.19)

$$|f(t,x)| \le \varepsilon |x|, \qquad |g(t,x)| \le \varepsilon |x|,$$
 (5.19)

для любых x, $|x| \leq \delta_{\varepsilon}$, $t \in \mathbb{R}^+$, а система (5.15) имеет равномерно экспоненциально устойчивое нулевое решение. Тогда система (5.14) имеет асимптотически устойчивое по вероятности нулевое решение.

Доказательство. Зададим функцию V(s,x) равенством (5.20):

$$V(s,x) = \int_{s}^{s+T} |X^{(s,x)}(t)|^2 dt,$$
 (5.20)

где T — положительный параметр, который будет определен ниже. В [48, следствие 5.3] показано, что функция V(s,x) определена, непрерывно дифференцируема по $s \in \mathbb{R}^+$ и дважды непрерывно дифференцируема по $x \in \mathbb{R}^d$, причем справедливо равенство $B_0V(s,x) = |X^{(s,x)}(s+T)|^2 - |x|^2$. Отсюда и из неравенства (5.16) следует, что можно подобрать достаточно большое $T_\lambda > s$ такое, что $|X^{(s,x)}(s+T)|^2 \leq \frac{1}{2}|x|^2$ при всех $T \geq T_\lambda$, и значит, $B_0V(s,x) \leq -\frac{1}{2}|x|^2$ при всех $T \geq T_\lambda$. Зафиксируем одно из таких T и покажем, что введенная функция V(s,x) удовлетворяет всем условиям теоремы 5.2.

Условие 3) следует из единственности решения: $X^{(s,0)}(t) \equiv 0$.

Покажем, что выполнено условие 2). Оценим сверху функцию V(s,x), используя неравенство (5.16):

$$0 \le V(s,x) \le \int_{s}^{s+T} \Lambda |x|^2 e^{-\lambda(t-s)} dt = \frac{1 - e^{-\lambda T}}{\lambda} \Lambda |x|^2 = k_1 |x|^2, \tag{5.21}$$

где $k_1=\frac{1-e^{-\lambda T}}{\lambda}\Lambda>0$. Взяв от обеих частей неравенства (5.21) супремум по s>0 и перейдя к пределу, получим $\lim_{x\to 0}\sup_{s>0}V(s,x)=0$, что и требовалось.

Покажем, что выполнено условие 4). Применив формулу Ито к процессу $|X^{(s,x)}(t)|^2$, получим (5.22):

$$|X^{(s,x)}(s+T)|^2 - |x|^2 = \int_{s}^{s+T} B_0(|X^{(s,x)}(t)|^2) dt.$$
 (5.22)

Оценим $B_0(|X^{(s,x)}(t)|^2)=2\left(X^{(s,x)}(t)\right)^\top A(t)X^{(s,x)}(t)$ с помощью неравенства Коши-Буняковского:

$$\left| 2(X^{(s,x)}(t))^{\mathsf{T}} A(t) X^{(s,x)}(t) \right| = 2 \left| \langle A(t) X^{(s,x)}(t), X^{(s,x)}(t) \rangle \right| \le 2M |X^{(s,x)}(t)|^2,$$

т.е. $\left|B_0(|X^{(s,x)}(t)|^2)\right| \leq 2M|X^{(s,x)}(t)|^2$. Вернемся теперь к формуле Ито:

$$-\frac{1}{2}|x|^2 \ge |X^{(s,x)}(s+T)|^2 - |x|^2 = \int_{s}^{s+T} B_0(|X^{(s,x)}(t)|^2) dt \ge -2M \cdot V(s,t).$$
(5.23)

Обозначая $k_3=\frac{1}{4M}>0$, из (5.23) получим: $V(s,t)\geq k_3|x|^2>0$ для $x\neq 0$, и следовательно, 4) выполнено.

Осталось показать, что выполнено условие 1). Оценим BV(s,x), используя элементарное неравенство $|{\rm tr} A| \leq \sqrt{d} |A|$ для $A \in \mathbb{R}^{d \times d}$:

$$BV(s,x) = BV_{0}(s,x) + \sup_{v \in F(t,x)} \left(\frac{\partial V(s,x)}{\partial x} v \right) + \frac{1}{2} \sup_{u \in G(t,x)} \operatorname{tr} \left(\frac{\partial^{2} V(s,x)}{\partial x^{2}} u u^{\top} \right) \leq$$

$$\leq -\frac{1}{2} |x|^{2} + \sup_{v \in F(t,x)} |v| \left| \frac{\partial V(s,x)}{\partial x} \right| + \frac{\sqrt{d}}{2} \sup_{u \in G(t,x)} \left| \frac{\partial^{2} V(s,x)}{\partial x^{2}} \right| |u|^{2} \leq$$

$$\leq -\frac{1}{2} |x|^{2} + \varepsilon |x| \left| \frac{\partial V(s,x)}{\partial x} \right| + \left| \frac{\partial^{2} V(s,x)}{\partial x^{2}} \right| \frac{\sqrt{d}}{2} \varepsilon^{2} |x|^{2}. \tag{5.24}$$

для любого наперед заданного $\varepsilon>0$ и соответствующей окрестности нуля $|x|\leq \delta_{\varepsilon}$. Итак, остается оценить $\left|\frac{\partial^2 V(s,x)}{\partial x^2}\right|$ и $\left|\frac{\partial V(s,x)}{\partial x}\right|$. Заметим, что $\frac{\partial}{\partial x}|X^{(s,x)}(t)|^2=2\frac{\partial X^{(s,x)}(t)}{\partial x}X^{(s,x)}(t)$. Существование $\frac{\partial X^{(s,x)}(t)}{\partial x}$ следует из [5, гл. VII, § 3]. Обозначим $\xi_x(t)=\frac{\partial X^{(s,x)}(t)}{\partial x}$. Тогда, как показано в [5, гл.

VII, § 3], функция $\xi_x(t)$ удовлетворяет матричному уравнению (5.25):

$$\xi_x(t) = \frac{\partial}{\partial x}(\xi_x(s)) + \int_s^t \frac{\partial}{\partial x}(A(u)x) \Big|_{x=\xi_x(u)} \xi_x(u) du = I_d + \int_s^t A(t)\xi_x(t) du \quad \text{или}$$

$$\xi_i(t) = e_i + \int_s^t A(t)\xi_i(t) du, \quad i = 1, \dots, d \quad (5.25)$$

где $\xi_i(t)=\frac{\partial X^{(s,x)}(t)}{\partial x_i},$ e_i — вектор, у которого i-я компонента равна 1, а остальные равны 0. К процессу $|\xi_i(t)|^2$ применим формулу Ито:

$$|\xi_i(t)|^2 = |e_i|^2 + \int_{s}^{t} B_0(|\xi_i(u)|^2) du \le 1 + \int_{s}^{t} 2M|\xi_i(u)|^2 du.$$
 (5.26)

Из (5.26), используя неравенство Гронуолла-Беллмана, получим неравенство $|\xi_i(t)|^2 = \left|\frac{\partial X^{(s,x)}(t)}{\partial x_i}\right|^2 \le e^{2M(t-s)}$. И значит, $\left|\frac{\partial X^{(s,x)}(t)}{\partial x}\right|^2 = \sum_{i=1}^d \left|\frac{\partial X^{(s,x)}(t)}{\partial x_i}\right|^2 \le d e^{2M(t-s)}$. Из (5.16) и последнего неравенства следует (5.27):

$$\left| \frac{\partial V(s,x)}{\partial x} \right| \le \left| \int_{s}^{s+T} \frac{\partial}{\partial x} |X^{(s,x)}(t)|^{2} dt \right| \le 2 \int_{s}^{s+T} \left| \frac{\partial X^{(s,x)}(t)}{\partial x} \right| \left| X^{(s,x)}(t) \right| dt \le$$

$$\le 2\sqrt{d\Lambda} |x| \int_{s}^{s+T} e^{\frac{2M-\lambda}{2}(t-s)} dt = \frac{4\sqrt{d\Lambda} \left(e^{\frac{2M-\lambda}{2}T} - 1 \right)}{2M-\lambda} |x| = K_{1}|x|. \tag{5.27}$$

Без ограничения общности можно считать, что $2M-\lambda>0$ и $K_1>0$. Для $\left|\frac{\partial^2 V(s,x)}{\partial x^2}\right|$ проводя те же рассуждения (но в роли уже выступает ξ_x), используя неравенство Гронулла-Беллмана, по-кажем, что $\left|\frac{\partial^2 X^{(s,x)}(t)}{\partial x_i \partial x_j}\right|^2=0$, и значит, $\left|\frac{\partial^2 X^{(s,x)}(t)}{\partial x^2}\right|^2=0$. Тогда легко видеть, что $\frac{\partial^2}{\partial x^2}|X^{(s,x)}(t)|^2=2\left(\frac{\partial X^{(s,x)}(t)}{\partial x}\right)^2$, и будем иметь оценку $\left| \frac{\partial^2}{\partial x^2} |X^{(s,x)}(t)|^2 \right| \le 2 \left| \frac{\partial X^{(s,x)}(t)}{\partial x} \right|^2 \le 2 d \, e^{2M(t-s)},$ из которой выводим (5.28):

$$\left| \frac{\partial^2 V(s,x)}{\partial x^2} \right| \le \left| \int_{s}^{s+T} \frac{\partial^2}{\partial x^2} |X^{(s,x)}(t)|^2 dt \right| \le 2d \int_{s}^{s+T} e^{2M(t-s)} dt = \frac{2d \left(e^{2MT} - 1 \right)}{2M} = K_2.$$
(5.28)

Из неравенств (5.24), (5.27), (5.28), следует оценка $BV(s,x) \le$ $\le \left(-\frac{1}{2} + \varepsilon K_1 + \frac{\sqrt{d}}{2}\varepsilon^2 K_2\right)|x|^2$. За счет выбора достаточно малого ε добыемся того, чтобы константа при $|x|^2$ была отрицательной. Тогда условие 1) будет выполнено. Теорема доказана.

Замечание 5.1. Некоторые достаточные условия равномерной экспоненциальной устойчивости системы (5.15) приведены в работе [45].

Пример 5.3. Приведем пример уравнения, имеющего асимптотически устойчивое по вероятности слабое нулевое решение на основании теоремы 5.3. Рассмотрим систему стохастических дифференциальных уравнений (5.29)

$$dx(t) = ((-20 - 0.1\sin t)x(t) + 0.1\cos t \ y(t) + \sin^2 x(t))dt,$$

$$dy(t) = (-0.1\cos t \ x(t) - (20 + 0.1\sin t)y(t))dt + \sin^2 y(t)\operatorname{sgn}(x(t))dw(t),$$
(5.29)

при $t \geq 0$ с начальными условиями $x(0) = x_0, y(0) = y_0,$ где $x_0, y_0 \in \mathbb{R},$ w(t) – одномерное броуновское движение. Нулевое решение линеаризованной системы

$$dx(t) = ((-20 - 0.1\sin t)x(t) + 0.1\cos t \ y(t))dt,$$

$$dy(t) = (-0.1\cos t \ x(t) - (20 + 0.1\sin t)y(t))dt,$$

является равномерно экспоненциально устойчивым [45], и следовательно, нулевое решение системы (5.29) асимптотически устойчиво по вероятности.

5.3 Стохастические дифференциально-функциональные уравнения в произвольных гильбертовых пространствах

Вернемся к общему случаю сепарабельных гильбертовых пространств H и K. Рассмотрим стохастическое эволюционное функциональное уравнение

$$dX(t,\omega) = AX(t,\omega)dt + f(t,X(t,\omega))dt + g(t,X(t,\omega))dW(t,\omega), \quad (t,\omega) \in \mathbb{R}^+ \times \Omega$$
(5.30)

относительно $X \in H$ с начальным условием

$$X(0,\omega) = \xi(\omega), \quad \omega \in \Omega, \tag{5.31}$$

где $f(t,X)\colon \mathbb{R}^+ \times H \to H, \ g(t,X)\colon \mathbb{R}^+ \times H \to \mathfrak{L}_2(K,H)$ — измеримые, непрерывные по X (при любом фиксированном $t\in \mathbb{R}^+$) функции, A — линейный оператор, определенный на всюду плотном в H множестве $\mathcal{D}(A)$ и порождающий C_0 -полугруппу S(t) на $H,\ \xi:\Omega\to \mathcal{D}(A)-\mathcal{F}_0$ -измеримая случайная величина, имеющая конечный момент $\mathbb{E}\,\|\xi\|^p<\infty$ порядка p>2. В дальнейшем для сокращения обозначений аргумент ω будем опускать. Все интегралы ниже записаны в предположении их существования и конечности.

Относительно функций f(t,X) и g(t,X) будем предполагать, что выполнены два условия:

1. Локальное условие Липшица. Для любого a>0 существует постоянная q_a такая, что для всех $t\in [0,a]$ и любых $\varphi,\psi\in H$, таких, что $\|\varphi\|\leq a, \|\psi\|\leq a$, выполняются неравенства

$$||f(t,\varphi) - f(t,\psi)|| \le q_a ||\varphi - \psi||, \quad ||g(t,\varphi) - g(t,\psi)|| \le q_a ||\varphi - \psi|| \quad (5.32)$$

2. Условие линейного порядка роста. Существует непрерывная функция $k \colon \mathbb{R}^+ \to \mathbb{R}^+$ такая, что для всех $t \in \mathbb{R}^+$ и любого $\eta \in H$ выполняются неравенства

$$||f(t,\eta)|| \le k(t)(1+||\eta||), \quad ||g(t,\eta)|| \le k(t)(1+||\eta||).$$
 (5.33)

Стоит отметить, что всякая функция, удовлетворяющая глобальному условию Липшица, удовлетворяет и локальному условию, и в свою очередь, всякая функция, удовлетворяющая локальному условию Липшица, непрерывна.

Определение 5.5. Случайный процесс $X(t), t \ge 0$ называют слабым решением уравнения (5.30) с начальным условием (5.31), если он удовлетворяет следующим условиям:

- 1. Процесс $X(t), t \ge 0$ является \mathcal{F}_t -согласованным.
- 2. Процесс $X(t), t \ge 0$ п.н. непрерывен по t.

3.
$$X(t) = S(t)\xi + \int_{0}^{t} S(t-s)f(s,X(s))ds + \int_{0}^{t} S(t-s)g(s,X(s))dW(s), t \in \mathbb{R}^{+}.$$

Определение 5.6. Случайный процесс $X(t), t \ge 0$ называют сильным решением уравнения (5.30) с начальным условием (5.31), если он удовлетворяет следующим условиям:

- 1. Процесс $X(t), t \ge 0$ является \mathcal{F}_t -согласованным.
- 2. Процесс $X(t), t \ge 0$ п.н. непрерывен по t.

3. $X \in \mathcal{D}(A)$ для почти всех $(t,\omega) \in \mathbb{R}^+ \times \Omega$.

4.
$$X(t) = \xi + \int_{0}^{t} AX(s) ds + \int_{0}^{t} f(s, X(s)) ds + \int_{0}^{t} g(s, X(s)) dW(s), \quad t \in \mathbb{R}^{+}.$$

Определение 5.7. Будем говорить, что (слабое или сильное) решение X(t) уравнения (5.30) с начальным условием (5.31) является единственным, если для любое другое решение Y(t) уравнения (5.30) с начальным условием (5.31) п.н. совпадает с X(t), т.е. $\mathbb{P}(X(t) = Y(t) \ \forall t \geq 0) = 1$.

Определение 5.8. Пусть положительная функция $\lambda(t)$ определена для достаточно больших t>0, скажем, $t\geq T>0$. Предположим, что

1. $\lim_{t \to \infty} \lambda(t) = \infty$.

где $l \in \rho_{\mathbb{R}}(A)$.

- 2. $\ln \lambda(t)$ равномерно непрерывна по $t \geq T$.
- 3. Существует константа $\tau \geq 0$ такая, что $\lim_{t\to\infty} \sup \frac{\ln \ln t}{\ln \lambda(t)} \leq \tau$.

Будем говорить, что слабое решение задачи (5.30), (5.31) притягивается к нулю со скоростью $\lambda(t)$, если найдется $\gamma>0$ такое, что выполняется неравенство (5.34)

$$\lim_{t \to \infty} \sup \frac{\ln \|X(t)\|}{\ln \lambda(t)} \le -\gamma \qquad \text{п.н.}$$
 (5.34)

Через $\rho(A)$ обозначим резольвентное множество оператора A, т.е. множество, состоящее из тех комплексных чисел l, для которых определен оператор $R(l,A)=(lI-A)^{-1}$ (резольвента оператора A). Обозначим также $R(l)=lR(l,A),\, \rho_{\mathbb{R}}(A)=\rho(A)\cap\mathbb{R}.$

Для задачи (5.30), (5.31) построим аппроксимирующую задачу Коши

$$dX^{(l)}(t,\omega) = AX^{(l)}(t,\omega) + R(l)f(t,X^{(l)}(t,\omega))dt + R(l)g(t,X^{(l)}(t,\omega))dW(t,\omega),$$

$$t \in \mathbb{R}^+,$$

$$X^{(l)}(0,\omega) = \xi(\omega),$$
(5.35)

Лемма 5.1. Для любого достаточно большого $l \in \rho_{\mathbb{R}}(A)$ задача Коши (5.35) имеет единственное сильное решение $X^{(l)}$ и более того, существует подпоследовательность $X^{(l_n)}$ такая, что $X^{(l_n)}(t) \to X(t)$ при $n \to \infty$ п.н. равномерно по $t \in [0,T]$, где X(t) — слабое решение задачи (5.30), (5.31), а T > 0 — произвольное число.

Доказательство. В [61, теорема 3.1], отталкиваясь от определения генератора C_0 -полугруппы и (как следствие, см. [61, следствие 2.5]) замкнутости

оператора A, было доказано интегральное представление резольвенты (5.36)

$$R(l,A)x = \int_0^{+\infty} e^{-lt} S(t)x \, dt, \quad x \in H,$$
 (5.36)

для всех $l \in \rho(A)$, для которых указанный интеграл существует и конечен. Воспользуемся оценкой операторов C_0 -полугруппы (см. предложение 5.1): $||S(t)|| \leq Me^{\beta t}$ для всех $t \geq 0$. Будем иметь оценку (5.37):

$$||R(l,A)|| = \sup_{\|x\|=1} ||R(l,A)x|| \le \int_0^{+\infty} e^{-lt} \sup_{\|x\|=1} ||S(t)x|| dt \le$$

$$\le M \int_0^{+\infty} e^{-(l-\beta)t} dt = \frac{M}{l-\beta}, \quad l > \beta$$
(5.37)

откуда следует, что $(\beta, +\infty] \subset \rho(A)$ и более того, $\|R(l)\| \leq \frac{M\,l}{l-\beta} \leq 2M$ для $l \geq 2\beta$. Далее будем рассматривать только $l \geq 2M$, говоря о них, как о «достаточно больших» l.

Докажем, что задача Коши (5.35) имеет единственное слабое решение при достаточно большом l. С этой целью заметим, что для любого r > 1 ввиду условий (5.32) и (5.33) получим оценки (5.38) – (5.41):

$$\mathbb{E} \|R(l)f(t,\varphi) - R(l)f(t,\psi)\|^r \le (2M)^r \mathbb{E} \|f(t,\varphi) - f(t,\psi)\|^r \le (2Mq_a)^r \mathbb{E} \|\varphi - \psi\|^r,$$
(5.38)

$$\mathbb{E} \|R(l)g(t,\varphi) - R(l)g(t,\psi)\|^r \le (2M)^r \,\mathbb{E} \|g(t,\varphi) - g(t,\psi)\|^r \le (2Mq_a)^r \,\mathbb{E} \|\varphi - \psi\|^r,$$
(5.39)

$$\mathbb{E} \|R(l)f(t,\eta)\|^{r} \leq (2M)^{r} \,\mathbb{E} \big(k(t)(1+\|\eta\|)\big)^{r} \leq$$

$$\leq (2M)^{r} \,\mathbb{E} \big((k(t))^{r}2^{r-1}(1+\|\eta\|^{r})\big) = \frac{(4Mk(t))^{r}}{2}(1+\mathbb{E} \|\eta\|^{r}), \qquad (5.40)$$

$$\mathbb{E} \|R(l)g(t,\eta)\|^{r} \leq (2M)^{r} \,\mathbb{E} \big(k(t)(1+\|\eta\|)\big)^{r} \leq$$

$$\leq (2M)^r \mathbb{E}((k(t))^r 2^{r-1} (1 + \|\eta\|^r)) = \frac{(4Mk(t))^r}{2} (1 + \mathbb{E}\|\eta\|^r), \tag{5.41}$$

где $\varphi,\psi,\eta\colon\Omega\to H$ — произвольные $\mathcal F$ -измеримые случайные величины с конечным p-м моментом, такие, что п.н. $\|\varphi\|\le a$ и $\|\zeta\|\le a$. Таким образом, задача Коши (5.35) удовлетворяет условиям [7–A, теорема 1.1] и следовательно имеет единственное слабое решение $X^{(l)}(t),t\ge 0$.

Докажем, что при наложенных ранее ограничениях найденное слабое решение $X^{(l)}(t), t \ge 0$ будет также являться и сильным решением задачи Коши (5.35). Для этого достаточно проверить условия из [44, предложение 2.3],

предварительно зафиксировав произвольный отрезок времени $t \in [0,T]$. Воспользуемся утверждением (c) из [61, теорема 2.4], показывающим, что операторы A и S(t) (а также $(l\ I-A)$ и S(t)) перестановочны. Для любых $r\in [0,t)$, $\varphi\in H,\,u\in K$ элементы (5.42), (5.43)

$$(lI-A)\left(S(t-r)R(l)f(r,\varphi)\right) = lS(t-r)f(r,\varphi) \in H, \tag{5.42}$$

$$(lI-A)\left(S(t-r)R(l)g(r,\varphi)u\right) = lS(t-r)g(r,\varphi)u \in H,$$
(5.43)

откуда следует, что $S(t-r)R(l)f(r,\varphi),\ S(t-r)R(l)g(r,\varphi)u\in \mathfrak{D}(l\,I-A)=\mathfrak{D}(A).$ Кроме того, $\xi\in \mathfrak{D}(A)$, т.е. условие (а) выполнено. Далее оценим интегралы (5.44) — (5.47) из условия (b):

$$\int_{0}^{T} \int_{0}^{t} ||AS(t-r)R(l)f(r,X^{(l)}(r))||drdt \leq
\leq \int_{0}^{T} \int_{0}^{t} ||(A-lI)S(t-r)l(lI-A)^{-1}f(r,X^{(l)}(r))||drdt +
+ \int_{0}^{T} \int_{0}^{t} ||lS(t-r)l(lI-A)^{-1}f(r,X^{(l)}(r))||drdt = I_{1} + I_{2},$$
(5.44)

$$I_{1} = \int_{0}^{T} \int_{0}^{t} \|(A - lI)S(t - r) l(lI - A)^{-1} f(r, X^{(l)}(r)) \| dr dt =$$

$$= \int_{0}^{T} \int_{0}^{t} \|S(t - r)(A - lI) l(lI - A)^{-1} f(r, X^{(l)}(r)) \| dr dt =$$

$$= l \int_{0}^{T} \int_{0}^{t} \|S(t - r) f(r, X^{(l)}(r)) \| dr dt.$$
(5.45)

Из перестановочности операторов $(l\ I-A)$ и S(t) следует перестановочность операторов R(l) и S(t), так как $(l\ I-A)S(t)=S(t)(l\ I-A)\Longrightarrow S(t)=$

$$=(l\,I-A)^{-1}S(t)(l\,I-A)\implies S(t)(l\,I-A)^{-1}=(l\,I-A)^{-1}S(t).$$
 Поэтому

$$I_{2} = \int_{0}^{T} \int_{0}^{t} \|lS(t-r)R(l)f(r,X^{(l)}(r))\|drdt \le$$

$$\le 2Ml \int_{0}^{T} \int_{0}^{t} \|S(t-r)f(r,X^{(l)}(r))\|drdt, \qquad (5.46)$$

$$\int_{0}^{T} \int_{0}^{t} \|AS(t-r)R(l)f(r,X^{(l)}(r))\|drdt \le$$

$$\le (2M+1)l \int_{0}^{T} \int_{0}^{t} \|S(t-r)\| \cdot \|f(r,X^{(l)}(r))\|drdt \le$$

$$\leq (2M+1)l \int_0^T \int_0^t \|S(t-r)\| \cdot \|f(r,X^{(l)}(r))\| dr dt \leq$$

$$= M(2M+1)l \int_0^T e^{\beta t} dt \int_0^t e^{-\beta r} k(r) (1+\|X^{(l)}(r)\|) dr = I_3.$$
 (5.47)

Поскольку $X^{(l)}(r)$ п.н непрерывен, то $M_T = \sup_{0 \le r \le T} \|X^{(l)}(r)\| < \infty$. А поскольку функция k(r) непрерывна на [0,T], то интеграл I_3 , очевидно, п.н. конечен, т.е. условие (b) выполнено. Условие (c) проверяется аналогично.

Таким образом, все условия [44, предложение 2.3] выполнены, а значит, задача Коши (5.35) имеет сильное решение. Это решение будет также и единственным ввиду того, что всякое сильное решение является слабым (см. [44, предложение 2.1]), а слабое решение (5.35) единственно.

Докажем теперь существование требуемой подпоследовательности $X^{(l_n)}$. Сперва покажем, что для любого $T \in \mathbb{R}^+$ существует постоянная C(T)>0 такая, для слабого решения задачи (5.30), (5.31) выполняется оценка сверху (5.48)

$$\mathbb{E}\left(\sup_{0 \le s \le T} \|X(s)\|^p\right) \le C(T). \tag{5.48}$$

Действительно, используя интегральное неравенство Гельдера, условие (5.33) и неравенство типа Буркхольдера (см. предложение 5.4), можно получить (см. [2–A]) оценку вида

$$\mathbb{E}\left(\sup_{0 \le s \le T} \|X(s)\|^p\right) \le C_1(T) + C_2(T) \int_0^T \mathbb{E}\left(\sup_{0 \le s \le T} \|X(s)\|^p\right) ds.$$
 (5.49)

Отсюда согласно неравенству Гронуолла получим неравенство (5.50):

$$\mathbb{E}\left(\sup_{0 \le s \le T} \|X(s)\|^p\right) \le C_1(T)e^{C_2(T)T} =: C(T),\tag{5.50}$$

как и утверждалось.

Поскольку $\|R(l)\| \leq 2M$ при достаточно больших l, то аналогично доказывается оценка для решения $X^{(l)}(t)$ задачи (5.35): существует постоянная K(T) такая, что $\mathbb{E}\left(\sup_{0\leq s\leq T}\|X^{(l)}(s)\|^p\right)\leq K(T)$. Обозначим $C_T=\max(C(T),K(T))$.

Для каждых a,T>0 и достаточно большого l определим множество (5.51):

$$\Omega_{l}^{a,T} = \left\{ \omega \in \Omega : \max \left(\sup_{0 \le s \le T} \|X(s)\|, \sup_{0 \le s \le T} \|X^{(l)}(s)\| \right) \le a \right\}$$
 (5.51)

и его характеристическую функцию $\zeta_l^{a,T}=1_{\Omega_l^{a,T}}(\omega).$ Заметим, что

$$X(t) - X^{(l)}(t) = \int_0^t S(t - s)(I - R(l))f(s, X(s))ds +$$

$$+ \int_0^t S(t - s)(I - R(l))g(s, X(s))dW(s) +$$

$$+ \int_0^t S(t - s)R(l) \left(f(s, X(s)) - f(s, X^{(l)}(s)) \right) ds +$$

$$+ \int_0^t S(t - s)R(l) \left(g(s, X(s)) - g(s, X^{(l)}(s)) \right) dW(s), \quad t \ge 0$$

$$(5.52)$$

Оценивая в равенстве (5.52) каждое слагаемое, используя неравенства Гельдера и Буркхольдера, условие линейного порядка роста и теорему о мажорируемой сходимости (предложение 2.1), можно показать (см. [2–A]), что существуют постоянные $\widetilde{C}(a,T)$ и $\varepsilon(l)>0$ такие, что

$$\mathbb{E} \sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^{p} \zeta_{l}^{a,T} \le \widetilde{C}(a,T) \int_{0}^{T} \mathbb{E} \sup_{0 \le r \le s} \|X(r) - X^{(l)}(r)\|^{p} \zeta_{l}^{a,T} ds + \varepsilon(l),$$
(5.53)

где $\varepsilon(l) \xrightarrow[l \to \infty]{} 0$. Применяя к (5.53) лемму Гронуолла, получим (5.54):

$$\mathbb{E} \sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p \zeta_l^{a,T} \le \varepsilon(l) e^{T\widetilde{C}(a,T)} \xrightarrow[l \to \infty]{} 0 \quad \forall (a,T) \in \mathbb{R}^+ \times \mathbb{R}^+ \quad (5.54)$$

Покажем, что отсюда следует сходимость по вероятности: $\sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p \xrightarrow[l \to \infty]{\mathbb{P}} 0$ для любого $T \in \mathbb{R}^+$. Неравенство Чебышева дает:

$$\mathbb{P}\left(\sup_{0 \le t \le T} \|X(t)\| > a\right) \le \frac{1}{a^p} \mathbb{E}\left(\sup_{0 \le t \le T} \|X(t)\|\right)^p = \frac{1}{a^p} \mathbb{E}\sup_{0 \le t \le T} \|X(t)\|^p \le \frac{C_T}{a^p},\tag{5.55}$$

$$\mathbb{P}\left(\sup_{0 \le t \le T} \|X^{(l)}(t)\| > a\right) \le \frac{C_T}{a^p}.\tag{5.56}$$

Из (5.55), (5.56) следует, для любого a>0 и достаточно больших l справедливо неравенство (5.57)

$$\mathbb{P}\left(\zeta_{l}^{a,T}=0\right) \leq \mathbb{P}\left(\sup_{0\leq t\leq T}\|X(t)\| > a\right) + \mathbb{P}\left(\sup_{0\leq t\leq T}\|X^{(l)}(t)\| > a\right) \leq \frac{2C_{T}}{a^{p}} \tag{5.57}$$

Возьмем произвольные $\varepsilon_1, \varepsilon_2 > 0$ и положим $a = \left(\frac{4C_T}{\varepsilon_2}\right)^{1/p}$. Поскольку $\mathbb{E}\sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p \zeta_l^{a,T} \xrightarrow[l \to \infty]{} 0$, то на основании неравенства Чебышева заключаем, что найдется l_{ε_2} такое, что для всех $l \ge l_{\varepsilon_2}$ выполняется неравенство $\mathbb{P}\left(\sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p \zeta_l^{a,T} > \varepsilon_1\right) \le \frac{\varepsilon_2}{2}$. Таким образом, для всех $l \ge l_{\varepsilon_2}$ справедливо, неравенство (5.8)

$$\mathbb{P}\left(\sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p > \varepsilon_1\right) \le
\le \mathbb{P}\left(\left(\sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p \zeta_l^{a,T} > \varepsilon_1\right) \bigcap \left(\zeta_l^{a,T} = 1\right)\right) + \mathbb{P}\left(\zeta_l^{a,T} = 0\right) \le \varepsilon_2,$$

что и означает сходимость $\sup_{0 \le t \le T} \|X(t) - X^{(l)}(t)\|^p \xrightarrow[l \to \infty]{\mathbb{P}} 0.$ А поскольку из всякой последовательности случайных величин, схо-

А поскольку из всякой последовательности случайных величин, сходящейся по вероятности, можно выделить подпоследовательность, сходящуюся п.н., то найдется подпоследовательность $X^{(l_n)}(t)$ такая, что $\sup_{0 \le t \le T} \|X(t) - X^{(l_n)}(t)\|^p \xrightarrow[l \to \infty]{\text{п.н.}} 0$, т.е. $X(t) \xrightarrow[l \to \infty]{\text{п.н.}} X^{(l_n)}(t)$ равномерно по $t \in [0,T]$. Это и есть требуемая подпоследовательность. Лемма доказана.

5.3.1 Теорема о притяжении к нулю

Введем операторы L, Q по формулам (5.58), (5.59): если положительный функционал $V(t,x) \in C^{1,2}(\mathbb{R}^+ \times H, \mathbb{R}^+)$, то

$$LV(t,x) = V'_t(t,x) + \langle V'_x(t,x), Ax + f(t,x) \rangle_H + \frac{1}{2} tr[V''_{xx}(t,x)(g(t,x)Q_w^{1/2})(g(t,x)Q_w^{1/2})^*], \quad (t,x) \in \mathbb{R}^+ \times \mathcal{D}(A),$$

$$QV(t,x) = tr[V''_{xx}(t,x) \otimes V''_{xx}(t,x)(g(t,x)Q_w^{1/2})(g(t,x)Q_w^{1/2})^*],$$

$$(t,x) \in \mathbb{R}^+ \times H.$$

$$(5.59)$$

Далее для краткости будем опускать индекс H у скалярного произведения $\langle \cdot, \cdot \rangle_H$ в пространстве H.

Теорема 5.4. Пусть задан функционал $V(t,x) \in C^{1,2}(\mathbb{R}^+ \times H, \mathbb{R}^+)$ и две неотрицательные непрерывные функции $\psi_1(t)$, $\psi_2(t)$. Предположим, что существуют положительные постоянные r > 0, $m \ge 0$, постоянные $\mu, \nu, \theta \in \mathbb{R}$ и невозрастающая положительная функция $\zeta(t)$ такие, что $\frac{m-(\max\{\nu,\mu+\tau\}+\theta)}{r}>0$ и выполнены следующие условия:

- 1. $||x||^r (\lambda(t))^m \leq V(t,x)$ для всех $(t,x) \in \mathbb{R}^+ \times H$.
- 2. $LV(t,x) + \zeta(t)QV(t,x) \leq \psi_1(t) + \psi_2(t)V(t,x)$ для всех $t \in \mathbb{R}^+$, $x \in \mathcal{D}(A)$.
- 3. $\lim_{t\to +\infty}\sup \frac{\ln\left(\int_0^t\psi_1(s)\,ds\right)}{\ln\lambda(t)}\leq \nu$, $\lim_{t\to +\infty}\sup \frac{\int_0^t\psi_2(s)\,ds}{\ln\lambda(t)}\leq \theta$, $\lim_{t\to +\infty}\inf \frac{\ln\zeta(t)}{\ln\lambda(t)}\geq -\mu$. Тогда слабое решение задачи (5.30), (5.31) притягивается к нулю со скоростью $\lambda(t)$.

Доказательство. Применим формулу Ито к функционалу V(t,x) и решению (сильному) $X^l(t)$ задачи (5.35). Будем иметь:

$$V(t, X^{(l)}(t)) = V(0,\xi) + I_1(t,l) + \int_0^t LV(s, X^{(l)}(s)) ds + I_2(t,l) + \int_0^t \langle V_x'(s, X(s)), g(s, X(s)) dW(s) \rangle,$$
(5.60)

где I_1 , I_2 , L_l определяются формулами (5.61) — (5.63):

$$I_{1}(t,l) = \int_{0}^{t} L_{l}V(s,X^{(l)}(s)) ds - \int_{0}^{t} LV(s,X^{(l)}(s)) ds, \qquad (5.61)$$

$$I_{2}(t,l) = \int_{0}^{t} \langle V'_{x}(s,X^{(l)}(s)), R(l)g(s,X^{(l)}(s))dW(s) \rangle -$$

$$- \int_{0}^{t} \langle V'_{x}(s,X(s)), g(s,X(s))dW(s) \rangle, \qquad (5.62)$$

$$L_{l}V(t,x) = V'_{t}(t,x) + \langle V'_{x}(t,x), Ax + R(l)f(t,x) \rangle +$$

$$+ \frac{1}{2} \text{tr} \big[V''_{xx}(t,x)(R(l)g(t,x)) \circ Q_{w} \circ (R(l)g(t,x))^{*} \big]. \qquad (5.63)$$

Из равномерной непрерывности функции $\ln \lambda(t)$ следует, что для любого $\varepsilon > 0$ существуют натуральные числа $N = N(\varepsilon)$ и $k_1 = k_1(\varepsilon)$ для всех $k \geq k_1(\varepsilon)$: $\left|\ln \lambda\left(\frac{k}{2^N}\right) - \ln \lambda(t)\right| \leq \varepsilon$, $t \in \left[\frac{k-1}{2^N}; \frac{k}{2^N}\right]$. С другой стороны, по экспоненциальному неравенству (5.64) для мартингалов [53, лемма 1.1]:

$$\mathbb{P}\left(\omega: \sup_{0 \le t \le w} \left(\int_{0}^{t} \langle V_x'(s, X(s)), g(s, X(s)) dW(s) \rangle - \int_{0}^{t} \frac{u}{2} QV(s, X(s)) ds \right) > v \right) \le e^{-uv}$$

$$(5.64)$$

для любых положительных постоянных u, v и w. Выбирая их по формуле (5.65)

$$u = 2\zeta\left(\frac{k}{2^N}\right), \quad v = \ln\frac{k-1}{2^N} / \zeta\left(\frac{k}{2^N}\right), \quad w = \frac{k}{2^N}, \quad k = 2, 3, \dots,$$
 (5.65)

и применяя затем лемму Бореля-Кантелли, получим что вне множества нулевой вероятностной меры $\widetilde{\Omega}$ ($\mathbb{P}(\widetilde{\Omega})=0$), т.е. для каждого $\omega\in\Omega\setminus\widetilde{\Omega}$ существует натуральное число $k_0(\varepsilon,\omega)$ такое, что

$$\int_0^t \langle V_x'(s, X(s)), g(s, X(s)) dW(s) \rangle \le \frac{\ln \frac{k-1}{2^N}}{\zeta\left(\frac{k}{2^N}\right)} + \zeta\left(\frac{k}{2^N}\right) \int_0^t QV(s, X(s)) ds$$
(5.66)

для всех $t \in \left[0, \frac{k}{2^N}\right]$, $k = k(\omega) \ge k_0(\varepsilon, \omega)$. Подставляя выражение (5.66) в (5.60) и используя 2-е условие теоремы, для всех $\omega \in \Omega \setminus \widetilde{\Omega}$, $\mathbb{P}(\widetilde{\Omega}) = 0$ будем иметь оценку (см. [2–A])

$$V(t, X^{(l)}) \le \frac{\ln \frac{k-1}{2^N}}{\zeta \left(\frac{k}{2^N}\right)} + V(0, \xi) + \int_0^t \left(\psi_1(s) + \psi_2(s)V(s, X^{(l)}(s))\right) ds + I_1(t, l) + I_2(t, l) + I_3(t, l),$$
(5.67)

для всех $t \in [0, \frac{k}{2^N}], k \ge \max\{k_0(\varepsilon, \omega), k_1(\varepsilon)\}$. Здесь I_3 определяется формулой (5.68)

$$I_3(t,l) = \zeta\left(\frac{k}{2^N}\right) \int_0^t \left(QV(s,X(s)) - QV(s,X^{(l)}(s))\right) ds.$$
 (5.68)

Следовательно, согласно лемме Гронуолла, п.н. выполнено неравенство

$$V(t, X^{(l)}(t)) \le \left(V(0, \xi) + \frac{\ln \frac{k-1}{2^N}}{\zeta(\frac{k}{2^N})} + \sup_{t \in [0, \frac{k}{2^N}]} \left(|I_1(t, l)| + |I_2(t, l)| + |I_3(t, l)| + \int_0^t \psi_1(s) \, ds \right) \cdot \exp\left(\int_0^t \psi_2(s) \, ds\right)$$

для всех $t \in \left[0, \frac{k}{2^N}\right], k \ge \max\{k_0(\varepsilon, \omega), k_1(\varepsilon)\}.$

Покажем теперь, что существует подпоследовательность $(l_n)_{n=1}^{\infty} \subset \mathbb{R}^+$ такая, что $I_1(t,l_n)$, $I_2(t,l_n)$ и $I_3(t,l_n) \xrightarrow[n \to \infty]{} 0$ п.н. равномерно по $t \in \left[0,\frac{k}{2^N}\right]$. Действительно, выберем подпоследовательность леммы 2.1: $X^{(l_n)}(t) \xrightarrow[n \to \infty]{} X(t)$ п.н. равномерно по $t \in \left[0, \frac{k}{2^N}\right]$. Говоря точнее, существуют подмножества $\Omega_k\subset\Omega$ с $\mathbb{P}(\Omega_k)=0$ такие, что для любого $\omega\in\Omega\setminus\Omega_k$: $X^{(l_n)}(t)\xrightarrow[n\to\infty]{}X(t)$ п.н. равномерно по $t\in \left[0,\frac{k}{2^N}\right]$. Следовательно, для всех $\omega\in\Omega\setminus\left(\cup_{k\geq 2}\Omega_k\bigcup\widetilde{\Omega}\right)$, будем иметь оценку (5.69):

$$\sup_{t \in [0, \frac{k}{2^{N}}]} |I_{1}(t, l)| \leq \int_{0}^{k/2^{N}} \left| L_{l_{n}} V(s, X^{(l_{n})}(s)) - L V(s, X^{(l_{n})}(s)) \right| ds \leq$$

$$\leq \int_{0}^{k/2^{N}} \left| \langle V'_{x}(s, X^{(l_{n})}(s)), (I - R(l_{n})) f(s, X^{(l_{n})}(s)) \rangle \right| ds +$$

$$+ \frac{1}{2} \int_{0}^{k/2^{N}} \left| \operatorname{tr} \left[V''_{xx}(s, X^{(l_{n})}(s)) \left\{ (R(l_{n}) g(s, X^{(l_{n})}(s)) \circ Q_{w} \circ (R(l_{n}) g(s, X^{(l_{n})}(s)))^{\star} - g(s, X^{(l_{n})}(s)) \circ Q_{w} \circ g(s, X^{(l_{n})}(s)) \right)^{\star} \right\} \right] ds \xrightarrow{n \to \infty} 0$$

$$(5.69)$$

для всех $k \geq \max\{k_0(\varepsilon,\omega), k_1(\varepsilon)\}$. Аналогично доказывается $\sup_{t \in \left[0, \frac{k}{2^N}\right]} |I_2(t,l)| \xrightarrow[n \to \infty]{} 0$ и $\sup_{t \in \left[0, \frac{k}{2^N}\right]} |I_3(t,l)| \xrightarrow[n \to \infty]{} 0$. Следовательно, устремляя $n \to \infty$, получим, что п.н. верно (5.70): доказывается, что

$$V(t, X(t)) \le \left(V(0, \xi) + \frac{\ln\frac{k}{2^N}}{\zeta\left(\frac{k}{2^N}\right)} + \frac{\ln\frac{k-1}{k}}{\zeta\left(\frac{k}{2^N}\right)} + \int_0^{k/2^N} \psi_1(s) \, ds\right) \exp\left(\int_0^t \psi_2(s) \, ds\right)$$
(5.70)

для всех $t \in \left[0, \frac{k}{2^N}\right], k \ge \max\{k_0(\varepsilon, \omega), k_1(\varepsilon)\}.$

Таким образом, используя 3-е условие теоремы и равномерную непрерывность $\ln \lambda(t)$, для заданного $\varepsilon>0$ найдется натуральное $k_2(\varepsilon,\omega)$ такое, что

для всех $t\in\left[\frac{k-1}{2^N},\frac{k}{2^N}\right],\,k\geq\max\{k_0(\varepsilon,\omega),k_1(\varepsilon),k_2(\varepsilon,\omega)\}.$ Из (5.71) следует

$$\lim_{t \to +\infty} \sup \frac{\ln V(t, X(t))}{\ln \lambda(t)} \le \max\{\nu + \varepsilon, \mu + \tau + 2\varepsilon\} + \theta + \varepsilon. \tag{5.72}$$

Устремляя в (5.72) $\varepsilon \to 0$, получим неравенство (5.73)

$$\lim_{t \to +\infty} \sup \frac{\ln V(t, X(t))}{\ln \lambda(t)} \le \max\{\nu, \mu + \tau\} + \theta. \tag{5.73}$$

Окончательно, используя 1-е условие теоремы, будем иметь (5.75):

$$\lim_{t \to +\infty} \sup \frac{\ln \|X(t)\|}{\ln \lambda(t)} \le \lim_{t \to +\infty} \sup \frac{1}{r} \frac{\ln (\lambda(t)^{-m} V(t, X(t)))}{\ln \lambda(t)} \le
\le -\frac{m - (\max\{\nu, \mu + \tau\} + \theta)}{r} \qquad \text{п.н.}$$
(5.74)

что и требовалось. Теорема доказана.

Пример 5.4. Рассмотрим следующую стохастическую дифференциальную систему (значение параметров $\alpha, m > 0$ будет уточнено ниже)

$$dX_{t}(x) = \left(\frac{d^{2}}{dx^{2}}X_{t}(x) + \alpha \sin\left(X_{t}(x) + e^{-\frac{mt}{2}}\cos X_{t}^{1}\right)\right)dt + \alpha e^{-\frac{mt}{2}}X_{t}(x)dW_{t},$$

$$dX_{t}^{1} = \left(\alpha X_{t}^{1}\sin X_{t}^{1} + \left(\int_{0}^{\pi}X_{t}(x)^{2}dx\right)^{1/2}\right)dt + \alpha e^{-\frac{mt}{2}}\left(\int_{0}^{\pi}X_{t}(x)^{2}dx\right)^{1/2}dW_{t},$$

$$t > 0, \ 0 < x < \pi$$

как уравнение относительно $\bar{X}_t = (X_t(\cdot), X_t^1)^\top$ в пространстве $H \times \mathbb{R}$ с начальным условием $\bar{X}_0 = (X_0(x), X_0^1)^\top = (x_0(x), x_0^1), \ x \in (0,\pi), \ K = \mathbb{R},$ $H = L_2[0,\pi]$ — гильбертово пространство классов эквивалентности квадратично интегрируемых по Лебегу функций $f \colon [0,\pi] \to \mathbb{R}$. В компактной форме это уравнение примет вид

$$d\bar{X}_{t} = (\bar{A}\bar{X}_{t} + f(t, \bar{X}_{t}))dt + g(t, \bar{X}_{t})dW_{t},$$

$$f(t, \bar{X}_{t}) = \alpha \left(\sin(X_{t}(x) + e^{-\frac{mt}{2}}\cos X_{t}^{1}), X_{t}^{1}\sin X_{t}^{1} + \|X_{t}(x)\|_{H}\right)^{\top},$$

$$g(t, \bar{X}_{t}) = \alpha e^{-\frac{mt}{2}} \left(X_{t}(x), \left(\int_{0}^{\pi} X_{t}(x)^{2} dx\right)^{1/2}\right)^{\top}, \ \bar{A} = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix},$$

$$A = \frac{d^{2}}{dx^{2}}, \quad \mathcal{D}(A) = \{u \in C_{2}[0, \pi] : u(0) = u(\pi) = 0\}$$

Уравнение (5.75), записанное в интегральной форме, примет вид

$$\bar{X}_{t} = \int_{0}^{\pi} G(t, x, s) \bar{X}_{0}(s) ds + \int_{0}^{t} \int_{0}^{\pi} G(t - \tau, x, s) f(s, x_{\tau}^{1}) ds d\tau + \int_{0}^{t} \int_{0}^{\pi} G(t - \tau, x, s) g(s, x_{\tau}^{1}) ds dW(\tau),$$

где функция G(t,x,y) определяется по формуле (5.5) при $l=\pi$. Соответственно, оператор $S(t): H \times \mathbb{R} \to H \times \mathbb{R}$ определяется формулой

$$S(t)\bar{u}(\cdot) = \left(\int_0^{\pi} G(t,\cdot,s)u(s)ds, u^1\right).$$

Положим $V(t,\bar{u})=V(t,u)=e^{mt}\|u\|^2, u\in H,\ \lambda(t)=e^t,\ \psi_1(t)\equiv\alpha\pi,$ $\psi_2(t)\equiv\theta,\ \tau=\mu=\nu=0.$ В статье [2–А] показано, что при таком выборе, достаточно малом α и достаточно большом m, условия теоремы 5.4 будут выполнены, т.е. имеет место притяжение решений к нулю. При этом функция g удовлетворяет глобальному условию Липшица, а функция f удовлетворяет локальному, но не удовлетворяет глобальному условию Липшица.

Выводы

В данной главе диссертации были рассмотрены вопросы устойчивости и притяжения к нулю решений стохастических дифференциальных уравнений

вида $dX(t)=(A(t)X(t)+f(t,X(t)))dt+g(t,X(t))dW(t),\ t\geq 0$ со стандартными броуновскими движениями W(t) в гильбертовых пространствах и получены следующие результаты.

Для рассматриваемых уравнений с разрывными коэффициентами f, g, имеющими линейный порядок роста, в конечномерном гильбертовом пространстве \mathbb{R}^d с помощью метода фунций Ляпунова доказана теорема об асимптотической устойчивости по вероятности по линейному приближению dX(t) = A(t)X(t)dt.

Для рассматриваемых уравнений с коэффициентами f, g, удовлетворяющими локальному условию Липшица и имеющими линейный порядок роста, в бесконечномерных сепарабельных гильбертовых пространствах H с помощью метода функционалов Ляпунова доказана теорема о притяжении решений к нулю.

Приведены примеры, иллюстрирующие применение указанных теорем.

ЗАКЛЮЧЕНИЕ

Основные научные результаты диссертации

Данная работа посвящена исследованию асимптотического поведения решений нелинейных стохастических дифференциальных уравнений со стандартным и дробным броуновским движениями в конечномерных, а также сепарабельных гильбертовых пространствах и получены следующие основные результаты:

- 1. Доказана теорема о непрерывной зависимости в среднем от начальных условий и правых частей решений стохастических дифференциальных уравнений с дробными броуновскими движениями с различными показателями Харста, большими 1/3, и сносом. Указанный результат был получен в работе [3–A] и изложен в главе 2.
- 2. Доказана теорема об асимптотических разложениях в окрестности нуля для математических ожиданий функционалов от решений стохастических дифференциальных уравнений с дробными броуновскими движениями с различными показателями Харста, большими 1/3, и сносом. Получено уравнение, обобщающее обратное уравнение Колмогорова для решений указанных уравнений в коммутативном случае. Приведенные результаты, а также другие связанные с ними результаты, изложенные в главе 3, были получены в работах [4–А], [5–А].
- 3. Получены методы точного интегрирования стохастических дифференциальных уравнений смешанного типа с дробным броуновским движениям с показателем Харста, большим 1/2, стандартным броуновским движением и сносом, основанные на приведении данных уравненияй к простейшим уравнениям, линейным неоднородным уравнениям или к уравнениям Стратоновича. Указанные результаты были получены в работе [6–A] и изложены в главе 4.
- 4. Доказана теорема об устойчивости по линейному приближению, дающая достаточное условие асимптотической устойчивости по вероятности слабого нулевого решения неавтономной системы стохастических дифференциальных уравнений с разрывными коэффициентами и стандартными броуновскими движениями, исходя из равномерной экспонен-

- циальной устойчивости слабого нулевого решения соответствующей однородной системы. Указанный результат был получен в работе [1–A] и изложен в главе 5.
- 5. Доказана теорема о притяжении к нулю слабых решений нелинейных стохастических дифференциально-функциональных уравнений со стандартным броуновским движением в гильбертовых пространствах с коэффициентами, удовлетворяющими локальному условию Липшица. Данный результат был получен в работе [2–A] и изложен в главе 5.

Рекомендации по практическому использованию результатов

Диссертация имеет теоретический характер. Ее результаты и методы могут быть использованы при проведении исследований по теории устойчивости стохастических дифференциальных уравнений в гильбертовых пространствах и общей теории стохастических дифференциальных уравнений с дробными броуновскими движениями в научных коллективах, занимающихся исследованием дифференциальных уравнений, в институтах математики НАН РБ, Белорусском Государственном университете, а также при чтении спецкурсов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Список использованных источников

- 1. *Васьковский, М.М.* Существование слабых решений стохастических дифференциальных уравнений с запаздыванием со стандартным и дробным броуновскими движениями / М.М. Васьковский // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2015. №. 1. С. 22–34.
- 2. *Васьковский, М.М.* Существование слабых решений стохастических эволюционных функциональных уравнений параболического типа с измеримыми локально ограниченными коэффициентами / М.М. Васьковский // Дифференциальные уравнения. 2012. Т. 48, № 8. С. 1080–1095.
- 3. Васьковский, М.М. Устойчивость и притяжение решений нелинейных сто-хастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / М.М. Васьковский // Дифференциальные уравнения. 2017. Т. 53, № 2. С. 160–173.
- 4. *Ватанабэ*, *С*. Стохастические дифференциальные уравнения и диффузионные процессы / С. Ватанабэ, Н. Икэда. М.: Наука, 1986. 448 с.
- 5. *Гихман, И.И.* Введение в теорию случайных процессов / И.И. Гихман, А.В. Скороход. М. : Наука, 1977. 568 с.
- 6. *Гихман, И.И.* К теории дифференциальных уравнений случайных процессов / И.И. Гихман // Укр. мат. журнал. 1951. Т. 3, № 3. С. 317–339.
- 7. *Гихман, И.И.* О некоторых дифференциальных уравнениях со случайными функциями / И.И. Гихман // Укр. мат. журнал. 1950. Т. 2, \mathbb{N} 4. С. 37–63.
- 8. *Гихман, И.И.* Стохастические дифференциальные уравнения / И.И. Гихман, А.В. Скороход. Киев: Наукова думка, 1968. 354 с.
- 9. *Егоров, А.Д.* Об аппроксимации функциональных интегралов по мерам, порожденным решениями стохастических уравнений по мартингалам / А.Д. Егоров // Доклады АН БССР. 1991. Т. 35, № 1. С. 32–35.
- 10. *Колмогоров, А.Н.* Спираль Винера и некоторые другие интересные кривые в гильбертовом пространстве / А.Н. Колмогоров // Доклады АН СССР. 1940. Т. 26, № 2. С. 115–118.
- 11. Лазакович, Н.В. Предельное поведение итовских конечных сумм с осреднением / Н.В. Лазакович, О.Л. Яблонский // Теория вероятностей и ее

- применения. 2005. Т. 50, Вып. 4. С. 711-732.
- 12. *Леваков*, *А.А.* Исследование устойчивости решений стохастических дифференциальных уравнений с помощью знакопостоянных функций Ляпунова / А.А. Леваков // Дифф. уравн. 2011. Т. 47, № 9. С. 1258–1267.
- 13. *Леваков*, *А.А.* Свойства решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / А.А. Леваков, М.М. Васьковский // Дифференциальные уравнения. 2016. Т. 52, \mathbb{N} 8. С. 1011–1019.
- 14. *Леваков*, A.A. Стохастические дифференциальные уравнения / A.A. Леваков. Минск : БГУ, 2009. 231 с.
- 15. *Леваков, А.А.* Стохастические дифференциальные уравнения и включения / А.А. Леваков, М.М. Васьковский. Минск : БГУ, 2019. 495 с.
- 16. *Леваков, А.А.* Существование решений стохастических дифференциальных включений со стандартным и дробным броуновскими движениями / А.А. Леваков, М.М. Васьковский // Дифференциальные уравнения. 2015. Т. 51, № 8. С. 997–1003.
- 17. *Леваков, А.А.* Существование слабых решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями и с разрывными коэффициентами / А.А. Леваков, М.М. Васьковский // Дифференциальные уравнения. 2014. Т. 50, № 2. С. 187–200.
- 18. *Леваков, А.А.* Существование слабых решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями, с разрывными коэффициентами и с частично вырожденным оператором диффузии / А.А. Леваков, М.М. Васьковский // Дифференциальные уравнения. 2014. Т. 50, № 8. С. 1060–1076.
- 19. *Оксендаль, Б.* Стохастические дифференциальные уравнения. Введение в теорию и приложения / Б. Оксендаль. М. : Мир, 000 «Издательство АСТ», 2003.-408 с.
- 20. Основы стохастической финансовой математики: в 2 т. / А.Н. Ширяев. М.: ФАЗИС, 1998. Т. 1: Факты. Модели. 512 с.
- 21. Φ илиппов, $A.\Phi$. Дифференциальные уравнения с разрывной правой частью / $A.\Phi$. Φ илиппов. M.: Наука, 1985. 223 с.
- 22. *Царьков*, $E.\Phi$. Случайные возмущения дифференциально-функциональных уравнений / $E.\Phi$. Царьков. Рига : Зинатне, 1989. 421 с.
- 23. *Baudoin, F.* Operators associated with a stochastic differential equation driven by fractional Brownian motions / F. Baudoin, L. Coutin // Stochastic Processes

- and their Applications 2007. Vol. 117, N_{2} 5. P. 550–574.
- 24. *Cheridito*, *P.* Regularizing fractional Brownian motion with a view towards stock price modeling: a dissertation ... doctor of mathematics / P. Cheridito. Zürich, 2001. 121 p.
- 25. *Cheridito*, *P.* Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter h in (0, 1/2) / P. Cheridito, D. Nualart // Annales de I Institut Henri Poincaré (B) Probability and Statistics. 2005. Vol. 41, № 6. P. 1049–1081.
- 26. Coppel, W.A. Dichotomies in Stability Theory / W.A. Coppel. Berlin; Heidelberg: Springer-Verlag, 1978. 102 p. (Lecture Notes in Mathematics; № 629).
- 27. *Coutin, L.* Stochastic analysis, rough path analysis and fractional Brownian motions / L. Coutin, Z. Qian // Probability Theory Related Fields. 2002. Vol. 122, № 1. P. 108–140.
- 28. *Da Prato*, *G*. A note on stochastic convolution / G. Da Prato, J. Zabczyk // Stochastic Analysis and Appl. 1992. Vol. 10, № 2. P. 143–153.
- 29. *Da Prato*, *G*. Stochastic equations in infinite dimensions / G. Da Prato, J. Zabczyk. Cambridge: Cambridge university press, 1992. 449 p.
- 30. *Doss, H.* Liens entre equations differentielles stochastiques et ordinaires / H. Doss // Ann. Inst. Henri Poincare. 1977. Vol. 13, № 2. P. 99–125.
- 31. *Filipovic*, *D*. Consistency problems for Heath-Jarrow-Morton interest rate models / D. Filipovic. Berlin; Heidelberg: Springer-Verlag, 2001. 138 p.
- 32. *Gawarecki*, *L*. Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations / L. Gawarecki, V. Mandrekar. Berlin; Heidelberg: Springer-Verlag, 2011. 291 p.
- 33. Friz, P. A Course on Rough Paths with an introduction to regularity structures / P. Friz, M. Hairer. Cham: Springer International Publishing AG, 2014. 262 p.
- 34. *Friz*, *P*. Multidimensional Stochastic Processes as Rough Paths: Theory and Applications / P. Friz, N. Victoir. Cambridge: Cambridge University Press, 2010. 670 p.
- 35. *Gard, T.C.* Introduction to stochastic differential equations / T.C. Gard. New York; Basel: Marcel Dekker Inc., 1988. 234 p.
- 36. *Garrido-Atienza*, *M.J.* Asymptotical stability of differential equations driven by Hölder-continuous paths / M.J. Garrido-Atienza, A. Neuenkirch, B. Schmalfuss // Journal of Dynamics and Differential Equations. 2017. —

- Vol. 30, № 1. P. 359–377.
- 37. *Gubinelli, M.* Controlling rough paths / M. Gubinelli // Journal of Functional Analysis. 2004. Vol. 216, № 1. P. 86–140.
- 38. *Gubinelli, M.* Ramification of rough paths / M. Gubinelli // Journal of Differential Equations. 2010. Vol. 248, № 4. P. 693–721.
- 39. *Guerra, J.* Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion / J. Guerra, D. Nualart // Stochastic Analysis and Applications. 2008. Vol. 26, № 5. P. 1053–1075.
- 40. *Hairer, M.* A theory of regularity structures / M. Hairer // Inventiones mathematicae. 2014. Vol. 198, № 2. P. 269–504.
- 41. *Harang, F.A.* On the theory of rough paths, fractional and multifractional Brownian motion with applications to finance: a dissertation ... master of mathematics / F. A. Harang. Oslo, 2015. 83 p.
- 42. *Hille, E.* Functional analysis and semi-groups / E. Hille, R. S. Phillips. Revised edition. Providence : American Mathematical Soc., 1957. Vol. 31 : Colloquium Publications American Mathematical Society. 808 p.
- 43. *Hurst, H.* Long-term storage capacity of reservoirs / H. Hurst // Trasactions of American Society of Civil Engineers. 1951. Vol. 116, № 1. P. 770–808.
- 44. *Ichikawa*, A. Stability of Semilinear Stochastic Evolution Equations / A. Ichikawa // Journal of Mathematical Analysis and Applications. 1982. Vol. 90, № 1. P. 12–44.
- 45. *Ilchmann, A.* Sufficient conditions for stability of linear time-varying systems / A. Ilchmann, D.H. Owens, D. Prätzel-Wolters // Systems & Control Letters. 1987. Vol. 9, № 2. P. 157–163.
- 46. *Ito, K.* On stochastic differential equations / K. Ito. Providence : American Mathematical Soc., $1951. N_2 4. 51 p$.
- 47. *Ito, K.* Stochastic integral / K. Ito // Proceedings of the Japan academy. Series A, mathematical sciences. 1944. Vol. 20, № 8. P. 519–524.
- 48. *Khasminskii*, *R*. Stochastic stability of differential equations / R. Khasminskii. Berlin; Heidelberg: Springer-Verlag, 2012. 342 p.
- 49. *Kleptsyna, M.L.* General approach to filtering with fractional Brownian noises application to linear systems / M. Kleptsyna, A. Le Breton, M.-C. Roubaud // Stochastics and Stochastic Reports. − 2000. − Vol. 71, № 1–2. − P. 119–140.
- 50. *Kouritzin, M.A.* On explicit solutions to stochastic differential equations / M. A. Kouritzin, Li Deli // Stochastic analysis and applications. 2000. Vol. 18, № 4. P. 571–580.

- 51. *Kubilius, K.* The existence and uniqueness of the solution of an integral equation driven by a p-semimartingale of special type / K. Kubilius // Stochastic Processes and their Appl. 2002. Vol. 98, № 2. P. 289–315.
- 52. Large deviations and asymptotic methods in finance / P. Friz [et al.]. Cham : Springer International Publishing AG, 2015. 590 p.
- 53. *Liu*, *K*. On stability for a class of semilinear stochastic evolution equations / K. Liu // Stochastic Processes and their Appl. 1997. Vol. 70, № 2. P. 219–241.
- 54. *Liu*, *K*. Stability of infinite dimensional stochastic differential equations with applications / K. Liu. New York: Chapman and Hall/CRC, 2005. 312 p.
- 55. *Lyons, T.* Differential equations driven by rough signals / T. Lyons // Revista Matemática Iberoamericana. 1998. Vol. 14, № 2. P. 215–310.
- 56. *Mandelbrot*, *B.B.* Fractional Brownian Motions, fractional noises and applications / B.B. Mandelbrot, J.W. van Ness // SIAM Review. 1968. Vol. 10, № 4. P. 422–437.
- 57. *Mandelbrot*, *B.B.* The fractal geometry of nature / B.B. Mandelbrot. San Francisco: W.H. Freeman 1982. 468 p.
- 58. *Mishura, Y.S.* Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index H > 1/2 / Y.S. Mishura, G.M. Shevchenko // Communications in Statistics Theory and Methods. 2011. Vol. 40, № 19–20. P. 3492–3508.
- 59. *Mishura, Y.S.* Stochastic calculus for fractional Brownian motion and related processes / Y.S. Mishura. Berlin; Heidelberg: Springer-Verlag, 2008. 398 p.
- 60. *Nualart, D.* Differential equations driven by fractial Brownian motion / D. Nualart, A. Răsçanu // Collectanea Mathematica. 2002. Vol. 53, № 1. P. 55–81.
- 61. *Pazy, A.* Semigroups of linear operators and applications to Partial Differential Equations / A. Pazy. New York: Springer-Verlag, 1983. 282 p.
- 62. *Protter*, *P.* Stochastic integration and differential equations / P. Protter. 2nd edition. Berlin; Heidelberg: Springer-Verlag, 2004. 415 p.
- 63. *Rogers, L.C.G.* Diffusions, Markov Processes, and Martingales: Volume 1, Foundations / L.C.G. Rogers, D. Williams. Cambridge : Cambridge University Press, 2000. 410 p.
- 64. Russo F. Ito formula for C^1 -functions of semimartingales / F. Russo, P.

- Vallois // Probab. Theory Relat. Fields. 1996. Vol. 104, № 1. P. 27–41.
- 65. *Russo F.* Stochastic calculus with respect to continuous finite quadratic variation processes / F. Russo, P. Vallois // Stochastics and Stochastic Reports. 2000. Vol. 70, № 1-2. P. 1–40.
- 66. Russo F. The generalized covariation process and Ito formula / F. Russo,
 P. Vallois // Stochastic Processes and their Applications. 1995. Vol. 59,
 № 1. P. 81–104.
- 67. *Shevchenko*, *G.M.* Mixed stochastic delay differential equations / G.M. Shevchenko // Theory of Probability and Mathematical Statistics. 2014. № 89. P. 181–195.
- 68. Stochastic Calculus for Fractional Brownian Motion and Applications / F. Biagini [et al.]. London: Springer-Verlag, 2008. 330 p.
- 69. *Taniguchi, T.* Almost sure exponential stability for stochastic partial functional differential equations / T. Taniguchi // Stochastic Analysis and Appl. 1998. Vol. 16, № 5. P. 965–975.
- 70. *Taniguchi, T.* Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces / T. Taniguchi, K. Liu, A. Truman // Journal of Differential Equations. 2002. Vol. 181, № 1. P. 72–91.
- 71. The Jain-Monrad criterion for rough paths and applications to random Fourier series and non-Markovian Hörmander theory / P. Friz [et al.] // The Annals of Probability. 2016. Vol. 44, № 1. P. 684–738.
- 72. Trees and asymptotic expansions for fractional stochastic differential equations / A. Neuenkirch [et al.] // Annales de I Institut Henri Poincaré (B) Probability and Statistics. 2009. Vol. 45, № 1. P. 157–174.
- 73. *Vyoral*, *M*. Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's / M. Vyoral. // Applications of Mathematics. -2005. Vol. 50, N_2 1. P. 63–81.
- 74. *Young, L.C.* An inequality of the Hölder type connected with Stieltjes integration / L.C. Young // Acta Math. 1936. Vol. 67, № 1. P. 251–282.
- 75. Zähle, M. Integration with respect to fractal functions and stochastic calculus. I / M. Zähle // Probability Theory and Related Fields. 1998. Vol. 111, № 3. P. 333–374.

Список публикаций соискателя

Статьи в научных журналах (зарубежных и из перечня ВАК)

- 1–А. *Васьковский, М.М.* Исследование устойчивости решений неавтономных стохастических дифференциальных уравнений с разрывными коэффициентами с помощью метода функций Ляпунова / М.М. Васьковский, Я.Б. Задворный, И.В. Качан // Вестн. Белорус. ун-та. Сер. 1 : физ., мат., информ. 2015. №3. С. 117–125.
- 2–А. *Васьковский, М.М.* Устойчивость решений стохастических дифференциально-функциональных уравнений в гильбертовых пространствах с локально липшициевыми коэффициентами / М.М. Васьковский, И.В. Качан // Дифференциальные уравнения. 2018. Т. 54, № 7. С. 866–880.
- 3–А. *Качан, И.В.* Непрерывная зависимость от начальных данных решений стохастических дифференциальных уравнений с дробными броуновскими движениями / И.В. Качан // Вес. Нац. акад. навук Беларусі. Сер фіз.-мат. навук. 2018. Т. 54, № 2. С. 193–209.
- 4–А. *Васьковский, М.М.* Асимптотические разложения решений стохастических дифференциальных уравнений с дробными броуновскими движениями / М.М. Васьковский, И.В. Качан // Доклады Нац. акад. наук Беларуси. 2018. Т. 62, № 4. С. 398–405.
- 5–A. *Vaskouski, M.* Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3 / M. Vaskouski, I. Kachan // Stochastic Analysis and Applications. 2018. Vol. 36, № 6. P. 909–931.
- 6–А. *Васьковский, М.М.* Методы интегрирования стохастических дифференциальных уравнений смешанного типа, управляемых дробными броуновскими движениями / Васьковский М.М., Качан И.В. // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2019. Т. 55, № 2. С. 135–151.

Отчеты о НИР

7–А. Асимптотические свойства решений обыкновенных и стохастических дифференциальных уравнений в бесконечномерных пространствах : отчет о НИР (заключительный) / БГУ ; руководитель М.М.Васьковский,

исполнители : Я.Б. Задворный, И.В. Качан. — Минск, 2016. — 122 с. — № ГР 20142883.

Статьи в сборниках трудов международных научных конференций

- 8–А. *Васьковский, М.М.* Аналог формулы Ито для стохастических дифференциальных уравнений с дробными броуновскими движениями, имеющими различные индексы Харста, большие 1/3 / М.М. Васьковский, И.В. Качан // Аналитические и численные методы моделирования естественно-научных и социальных проблем (ANM-2017): материалы междунар. науч.-техн. конф., Пенза, Россия, 4-6 декабря 2017 г. / Изд-во ПГУ; редкол.: И.В. Бойков [и др.]. Пенза 2017. С. 12–16.
- 9–А. *Качан, И.В.* Непрерывная зависимость от начальных условий решений стохастических дифференциальных уравнений с дробными броуновскими движениями / И.В. Качан, М.М. Васьковский // Динамические системы: устойчивость, управление, оптимизация : материалы Междунар. научн. конф., посвящ. 100-летию со дня рождения академ. Е.А. Барбашина, Минск, 24-29 сентября 2018 г. / Белорус. гос. ун-т; редкол. : Ф.М. Кириллова [и др.]. Минск, 2018. С. 117–118.

Тезисы докладов международных научных конференций

- 10–А. *Васьковский, М.М.* Теорема об устойчивости по линейному приближению решений стохастических дифференциальных уравнений с разрывными коэффициентами / М.М. Васьковский, И.В. Качан // Аналитические методы анализа и дифференциальных уравнений (АМАDE-2015): тез. докл. междунар. конф., Минск, 14-19 сентября 2015. / Ин-т мат. Нац. акад. наук Беларуси; редкол. : С.В. Рогозин [и др.]. Минск, 2015. С. 24.
- 11–А. *Качан, И.В.* Экспоненциальная устойчивость решений систем дифференциальных уравнений с разрывными коэффициентами / И.В. Качан // Шестые Богдановские чтения по обыкновенным дифференциальным уравнениям: тез. докл. междунар. конф., Минск, 7-10 декабря 2015 г.: в 2 ч. / Институт математики Нац. акад. наук Беларуси; редкол.: С.Г. Красовский [и др.]. Минск, 2015. Ч. 1. С. 34.
- 12–А. *Васьковский, М.М.* Устойчивость решений стохастических дифференциальных уравнений в гильбертовых пространствах / М.М. Васьковский, И.В. Качан // XII Белорусская математическая конференция: тез. докл.

- междунар. конф., Минск, 5-10 сентября 2016 г. : в 5 ч. / Ин-т мат. Нац. акад. наук Беларуси; редкол. : С.Г. Красовский [и др.]. Минск, 2016. Ч. 2.- С. 14-15.
- 13–А. *Качан, И.В.* Существование решений стохастических дифференциальных уравнений с дробными броуновскими движениями, имеющими различные показатели Харста, большие 1/3 / И.В. Качан // Еругинские чтения-2017: тез. докл. междунар. конф., Минск, 16-20 мая 2017 г.: в 2 ч. / Ин-т мат. Нац. акад. наук Беларуси; редкол.: В.В. Амелькин [и др.]. Минск, 2017. Ч. 2. С. 48–49.
- 14–А. *Васьковский, М.М.* Аналог уравнений Колмогорова для математических ожиданий решений стохастических дифференциальных уравнений с дробными броуновскими движениями / М.М. Васьковский, И.В. Качан // Еругинские чтения-2018 : тез. докл. междунар. конф., Гродно, 15-18 мая 2018 г. : в 2 ч. / Ин-т мат. Нац. акад. наук Беларуси; редкол. : А.К. Деменчук [и др.]. Минск, 2018. Ч. 2. С. 85–86.
- 15–А. *Васьковский, М.М.* Методы интегрирования стохастических дифференциальных уравнений с дробными броуновскими движениями смешанного типа / М.М. Васьковский, И.В. Качан // Еругинские чтения-2019 : тез. докл. междунар. конф., Могилев, 14-17 мая 2019 г.: в 2 ч. / Ин-т мат. Нац. акад. наук Беларуси; редкол. : А.К. Деменчук [и др.]. Минск, 2019. Ч. 2. С. 66–67.