		Numer indeksu:
Wersja:	$oldsymbol{A}$	000000
		Logika
		Sprawdzian czas pis

Grupa ⁺ :		
8–10 s. 5	8–10 s.103	8-10 s. 104
8–10 s.105	8–10 s.140	12–14 zaaw
12–14 LPA	14–16 s.105	14–16 s.139

Logika dla informatyków

Sprawdzian nr 1, 21 listopada 2014 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Jeśli istnieją takie zbiory A, B, C, że $A \neq B$, $A \neq C$, $B \neq C$ oraz $A \cap (B \cup C) = B \cap (A \cup C)$, to w prostokąt poniżej wpisz dowolny przykład takich trzech zbiorów. W przeciwnym przypadku wpisz słowo "NIE".

$$A = \{1\}, B = \{2\}, C = \{3\}$$

Zadanie 2 (2 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $\neg(p \Leftrightarrow q)$

Zadanie 3 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor r, \ \neg q \lor p, \ s \lor q, \ \neg r \lor \neg p, \ \neg s \lor q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

$$\frac{\neg p \lor r \quad \neg r \lor \neg p}{\neg p} \qquad \frac{s \lor q \quad \neg s \lor q}{q} \quad \neg q \lor p}{\bot}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty).	W	prostokąt	poniżej	wpisz	$\operatorname{dow\'od}$	tautologii
-------------------------	---	-----------	---------	-------	--------------------------	------------

$$((p \Rightarrow r) \land (q \Rightarrow r)) \Rightarrow ((p \lor q) \Rightarrow r)$$

w systemie naturalnej dedukcji.
Zadanie 5 (2 punkty). Mówimy, że liczby m i n są $względnie pierwsze$, jeśli nie mają innych niż 1 wspólnych dzielników. Na przykład liczby 14 i 15 są względnie pierwsze, a 12 i 15 nie są względnie pierwsze, bo 3 jest wspólnym dzielnikiem 12 i 15. Używając tylko kwantyfikatorów, zmiennych, nawiasów, spójników \land , \lor , \Rightarrow , \Leftrightarrow i symboli $+$, $-$, \times , $=$, \neq wpisz prostokąt poniżej formułę, która, interpretowana w zbiorze liczb naturalnych, mówi że liczby m i n są względnie pierwsze.

Wersja:

Numer indeksu:

 $Grupa^1$:

		1
8–10 s. 5	8–10 s.103	8–10 s.104
8–10 s.105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14–16 s.139

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

1. Jeśli $\varphi \vee \psi$ jest spełnialna oraz ψ jest sprzeczna, to φ jest spełnialna.

000000

2. Jeśli $\varphi \vee \psi$ jest tautologią oraz ψ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F
		' _

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij przez indukcję, że każda formuła zbudowana wyłącznie ze zmiennej zdaniowej p i spójnika \oplus (oraz nawiasów) jest równoważna jednej z dwóch formuł: p lub \perp .

Zadanie 8 (5 punktów). Niech A, B i C będą dowolnymi zbiorami. Udowodnij, że $A \subseteq A \cup B$ i $B \subseteq A \cup B$. Udowodnij, że jeśli $A \subseteq C$ oraz $B \subseteq C$, to $A \cup B \subseteq C$. Innymi słowy suma zbiorów A i B jest najmniejszym (w sensie inkluzji) zbiorem zawierającym zbiory A i B.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:
Wersja:	$oldsymbol{\mathbf{C}}$	000000

(Grupa ¹ :		
	8–10 s. 5	8–10 s.103	8-10 s. 104
	8-10 s. 105	8–10 s.140	12–14 zaaw
	12–14 LPA	14-16 s. 105	14-16 s. 139

Logika dla informatyków

Sprawdzian nr 1, 21 listopada 2014 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $\neg(p\Rightarrow (q\wedge r))$

Zadanie 2 (2 punkty). Jeśli zbiór klauzul
$$\{s \lor q, \neg r \lor s, p \lor r, \neg q \lor \neg s, \neg p \lor r\}$$
 jest sprzeczny,

Zadanie 2 (2 punkty). Jeśli zbiór klauzul $\{s \lor q, \neg r \lor s, p \lor r, \neg q \lor \neg s, \neg p \lor r\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

$$\sigma(p) = \mathsf{T},\, \sigma(q) = \mathsf{F},\, \sigma(r) = \mathsf{T},\, \sigma(s) = \mathsf{T}$$

Zadanie 3 (2 punkty). Jeśli istnieją takie zbiory A, B, C, że $A \neq B$, $A \neq C$, $B \neq C$ oraz $A \cap (B \cup C) \neq B \cap (A \cup C)$, to w prostokąt poniżej wpisz dowolny przykład takich trzech zbiorów. W przeciwnym przypadku wpisz słowo "NIE".

$$A = \{1\}, B = \{2, 3\}, C = \{3\}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). W prostokąt poniżej wpisz dowód tautologii
$((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \land r))$
w systemie naturalnej dedukcji.
Zadanie 5 (2 punkty). Mówimy, że liczby m i n są $względnie pierwsze$, jeśli nie mają innych niż 1 wspólnych dzielników. Na przykład liczby 14 i 15 są względnie pierwsze, a 12 i 15 nie są względnie pierwsze, bo 3 jest wspólnym dzielnikiem 12 i 15. Używając tylko kwantyfikatorów, zmiennych, nawiasów, spójników \land , \lor , \Rightarrow , \Leftrightarrow i symboli $+$, $-$, \times , $=$, \neq wpisz prostokąt poniżej formułę, która, interpretowana w zbiorze liczb naturalnych, mówi że liczby m i n nie sq względnie pierwsze.

Wersja:	C
Ü	

Numer indeksu:	
000000	

Grupa ¹ :
0.10

8–10 s. 5	8–10 s.103	8–10 s.104
8-10 s. 105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14-16 s.139

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \Leftrightarrow \psi$ jest spełnialna oraz ψ jest sprzeczna, to φ jest sprzeczna.
- 2. Jeśli $\varphi \Leftrightarrow \psi$ jest tautologia oraz ψ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij przez indukcję, że dla każdej formuły zbudowanej wyłącznie ze zmiennych zdaniowych i spójnika \oplus (oraz nawiasów) istnieje równoważna jej formuła zbudowana wyłącznie ze zmiennych zdaniowych i spójników \Leftrightarrow , \neg (oraz nawiasów).

Zadanie 8 (5 punktów). Niech A, B i C będą dowolnymi zbiorami. Udowodnij, że $A \cap B \subseteq A$ i $A \cap B \subseteq B$. Udowodnij, że jeśli $C \subseteq A$ oraz $C \subseteq B$, to $C \subseteq A \cap B$. Innymi słowy przekrój zbiorów A i B jest największym (w sensie inkluzji) zbiorem zawartym w zbiorach A i B.

¹Proszę zakreślić właściwą grupę ćwiczeniową.