

SBoost: Boosting Data Filtering in Columnar Store

Hao Jiang, Aaron J. Elmore

Abstract

Lightweight encodings are widely used in columnar stores. They are fast and allow insitu queries [2]

- Bit-Packed Encoding [3]
- Delta Encoding [5]
- Run-Length Encoding
- Dictionary Encoding

We build SBoost, a columnar store based on Parquet [1] that uses innovative SIMD algorithms to speed up data filtering on encoded data by up to 100x.

Background

SBoost Architecture

Algorithms

Data Filter on Run-Length Encoded Data

Use bit-packed filter algorithm to generate a run-length bitmap

9 5 2 7 = 9 1 5 0 7

Algorithms

Data Filter on Dictionary Encoded Data

Use Order-Preserving Dictionary [4] to rewrite the query, then use bit-packed

Data Filter on Delta Encoded Data

Delta encoding stores delta between adjacent numbers. To decode, we need to compute the cumulative sum on a entry list.

SIMD hadd performs multiple add in parallel

Use **hadd** to compute cumulative sum

Experimental Result

Throughput on Bit-Packed /RLE/ Dictionary

Conclusion

- SBoost provides innovative SIMD algorithms on Lightweight Encodings
- Speed up Data Filtering on Columnar Stores
- Fully Compatible with existing Datasets
- Next Step: Explore more encoding schemes (on Double Data Type)

Reference

- 1. Apache Parquet. https://parquet.apache.org/
- 2. D. Abadi, SIGMOD'06, 671-682
- 3. T. Willhalm, VLDB' 09, 385-394
- 4. C. Binnig, SIGMOD'09, 283-296
- 5. D. Lemire, Soft Prat Expr. Jan 15, 1-29