Overheads: - Today's Outline

<u>Recap</u>: Reactions so far = ionic or radical (Nu^{-}/E^{+})

Pericyclic Reactions: different type of reaction

- Cyclic reorganization of electrons
- Electrons in π and/or σ bonds move in ring to make new π and/or σ bonds

e.g. Diels-Alder Reaction:

-notice how arrows resemble resonance in benzene:

4 kinds of pericyclic reactions:

1) Electrocyclic Reactions

- conjugated diene/triene etc cyclizes to make ring

- get ring joined by new σ bond

2) Cycloaddition Reactions

- two alkenes/dienes/trienes etc combine to form ring
- E.g. Diels-Alder

3) Sigmatropic Rearrangements

- bond "moves" within molecule
 - similar to electrocyclic but missing middle $\boldsymbol{\pi}$ bond

4) Group Transfer Reactions

- one atom or group gets transferred to other end

Common Features of Pericyclic Reactions:

- All concerted (e move in <u>one</u> step)
- All highly stereoselective (will see why)
- Can occur by heating (thermal) or light (photochemical)
- Can include other atoms (eg O instead of C)

**Not all possible pericyclic reactions actually occur

→ based on symmetry of orbitals

- In order for orbitals to overlap (ie make bond) they must have same sign (+/-)
- Depends on # of e pairs and Δ or hv

1) Electrocyclic Reactions

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Look at orbitals:

Which one happens depends on symmetry of orbitals:

p: $\begin{cases} \oplus \\ \ominus \end{cases}$ has + / - phase - always must overlap with same sign/colour

How do we know signs? Look at molecular orbitals

\rightarrow for an electrocyclic reaction it is the <u>HOMO</u> that reacts

→ Reaction is <u>stereospecific!</u>

Trans-trans \rightarrow trans

Trans-cis → cis

What about cis-cis? Gives trans (check it yourself!)

What if reaction is promoted by light instead of heat?

Summary:

$$\begin{array}{c|c} R & \Delta & \\ \hline \\ R & \\ \hline \\ R & \\ \end{array}$$

