Контролируемая генерация графов при помощи VAE

Бишук Антон Юрьевич

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель к.ф.-м.н. Зухба А.В.

Москва 2023 г

Задача генерации графов с фиксированными статистиками

Цель

Генерировать графы с заданными статистиками.

Задача

Предложить метод генерации графа, который позволит задавать ряд стандартных числовых характеристик графа на этапе генерации, а также теоретически обосновать работу такого метода.

Статистики графа

Простые признаки

Простые признаки (или же простые статистики) в предложенном методе - это числовые характеристики используемые в теории графов, которые могут быть вычислены не более, чем за квадратичное время.

Смешанные признаки

Смешанными признаками назовем любой способ численно описать граф.

Сложные признаки

Сложными статистиками назовем вектор \vec{d} , такой что каждая компонента вектора \vec{d} независима от компонент вектора простых статистик \vec{s} и при этом вектор смешанных статистик \vec{m} выражается через \vec{d} и \vec{s} линейно.

Простые статистики

- Размерные показатели [O(1)]:
 - Число ребер
 - Число вершин
- Вершины специального вида [O(V)]:
 - Изолированные вершины вершины без единого ребра
 - Висячие вершины вершины с одним ребром
 - Промежуточные вершины вершины с двумя ребрами
 - Вершины, связанные с каждой вершиной графа
- Статистики на степенях вершин [O(V)]:
 - Максимальная степень вершины
 - Средняя степень вершины
 - Медианная степень вершины
 - Модальная степень вершины
 - Стандартное отклонение степеней вершин в графе
- Гистограмма степеней вершин графа [O(V)] (здесь μ средняя степень вершин в графе, σ среднеквадратичное отклонение степеней вершин в графе): Доля вершин со степенью на интервалах: $(\mu \sigma, \mu)$, $(\mu, \mu + \sigma)$, $(\mu 2\sigma, \mu \sigma)$, $(\mu + \sigma, \mu + 2\sigma)$, $(\mu 3\sigma, \mu 2\sigma)$, $(\mu + 2\sigma, \mu + 3\sigma)$
- ullet Коэффициент кластеризации $[O(V^2)]$ [1]

Построения распределения графа

Дан граф G и соответствующая ему матрица смежности A.

Необходимо получить распределение этого графа

Для этого n раз удалим либо добавим случайное число ребер в граф, получив тем самым набор из n графов, близких к исходному.

Скрытое представление графа, полученное при помощи GCN

Представление графа на основе простых статистик

По итогу операции получения распределения графа

Было получено n графов, близких к исходному и для каждого из них:

- Вектор представления графа, полученный при помощи графовых сверток[2];
- Вектор представления графа, полученных на основе простых статистик.

Постановка задачи

Реконструкция

Дано:

Граф G с матрицей смежности $A \in \mathcal{R}^{n \times n}$, где $A_{ij} = 1$, если ребро (i,j) существует в графе, и 0 в противном случае. Матрица признаков вершин $V_f \in \mathcal{R}^{n \times k}$, а также набор скрытых ребер $E = \{(i,j)\}$.

Задача:

Построить модель, предсказывающую наличие ребра в графе на основе признаков вершин и существующих ребер.

Генерация графов

Дано:

Множество $\{A_i\}_{i=0}^N \in \mathcal{R}^{n \times n}$ матриц смежности графов G_i из неизвестного распределения $\pi(G)$, построенного на основе графа G.

Задача:

Получить распределение $\pi(G)$ для того, чтобы оценить $\pi(\hat{G})$ для нового графа \hat{G} , а также для генерации новых графов из распределения $\pi(G)$.

Предложенный метод: ControlVAE

Здесь:

- G и \hat{G} оригинальный и сгенерированный графы соответственно (A, \hat{A}) их матрицы смежности);
- МF матрица смешанных статистик графа;
- EF вектор простых статистик;
- hEF скрытое представление вектора простых статистик;
- DF матрица сложных статистик;
- ullet ε случайная величина $\in \mathcal{N}(0,1)$;
- Z матрица из распределения $N(\mu, \sigma)$, полученная при помощи трюка репараметризации[3].

ControlVAE

Функция потерь метода ControlVAE

LOSS $_{CtrlVAE} = \mathsf{BCELoss}(A, \hat{A})$ (реконструкция графа) $+\mathsf{KL-div}(DF, \varepsilon) \text{ (нормальность скрытого представления)} \\ +\mathsf{MSELoss}(hEF, MF) \text{ (приближение смешанных простыми)}$

Существование разбиения на простые и сложные статистики

Гипотеза

Существует линейное отображение вектора смешанных статистик в вектор простых статистик.

Теорема (Бишук А.Ю. 2023): О разделении признаков графа

Пусть существует линейное отображение $A_{\hat{A}}$, переводящее вектор смешанных статистик \vec{m} в вектор простых статистик \vec{s} . Тогда существует невырожденное преобразование \hat{A} , которое отображает вектор \vec{m} в вектор $\hat{\vec{s}}$ таким образом, что подвектор из первых |s| компонент совпадает с вектором \vec{s} , а оставшиеся |m|-|s| компонент образуют вектор сложных статистик \vec{d} .

Построенное линейное преобразование смешанных статистик.

Идея доказательства теоремы о разделении признаков графа

Замечание

Независимость элементов вектора простых статистик мы можем гарантировать по построению.

Лемма 1

Пусть дан набор независимых, одинаково распределенных случайных величин $p_1, p_2, \dots p_n$. Случайная величина $\xi = a_1 p_1 + a_2 p_2 + \dots + a_n p_n$ статистически зависима от каждой из случайных величин p_i , коэффициент перед которой $a_i \neq 0$.

Лемма 2

Матрица $A_{\hat{A}}$ имеет максимально возможный ранг.

Построим ортогональное дополнение к $A_{\hat{A}}$. В силу Леммы 1 новая полученная часть \vec{d} вектора \vec{s} будет статистически независима от каждой компоненты \vec{s} . А силу теоремы о линейном преобразовании нормального вектора[4], она будет также нормальным вектором.

Таким образом, получившейся вектор \vec{d} будет вектором сложных статистик.

Результаты вычислительного эксперимента

Наборы данных, используемые в экспериментах:

- Cora[5] (2708 статей и 10556 ссылки между ними);
- Citeseer[6] (3327 статьи и 9228 ссылки между ними).

Метрики:

	Dataset	ROC-AUC	AP	MAE (GT statistics)
VAE	Cora	75.18 %	75.81%	0.066
Our method		76.68 %	75.18 %	0.046 (-30%)
VAE	Citeseer	82.09 %	79.94 %	0.072
Our method		76.28 %	76.44 %	0.060 (-17%)

Метод ContolVAE генерирует графы с, более близкими к заданным, простыми статистиками (на 30% точнее для графа Cora и на 17% для Citeseer). При это слабо качество реконструкции падает незначительно — на 0.63% для графа Cora и на 3.5% для графа Citeseer)

Выносится на защиту

- Предложен новый подход к генерации графов. ControlVAE позволяет генерировать графы с более точными статистиками, выбранными из теории графов;
- Приведено теоретическое обоснование предложенного метода. Выдвинута гипотеза и в рамках нее сформулирована теорема о существовании линейного преобразования, разделяющего простых и сложные статистики;
- Реализован алгоритм на основе GraphVAE[7]. Модифицирован классический метод генерации графов, позволяющий учитывать заданные статистики графов;
- Проведены исследования на известных датасетах (Cora и Citeseer).
 Продемонстрировано преимущество метода в задаче генерации графов с заданными статистиками.

Список литературы

- [1] Jari Saramäki и др. «Generalizations of the clustering coefficient to weighted complex networks». В: *Physical Review E* 75.2 (2007), с. 027105.
- [2] Thomas N Kipf μ Max Welling. «Semi-supervised classification with graph convolutional networks». B: arXiv preprint arXiv:1609.02907 (2016).
- [3] Diederik P Kingma u Max Welling. «Auto-encoding variational bayes». B: arXiv preprint arXiv:1312.6114 (2013).
- [4] Александр Алексеевич Боровков. Теория вероятностей. URSS, 2009.
- [5] Prithviraj Sen и др. «Collective classification in network data». В: Al magazine 29.3 (2008), с. 93—93.
- [6] Ryan Rossi и Nesreen Ahmed. «The Network Data Repository with Interactive Graph Analytics and Visualization». B: AAAI Conference on Artificial Intelligence. T. 29. New York, NY, USA, 2015, c. 4292—4293.
- [7] Thomas N Kipf и Max Welling. «Variational graph auto-encoders». В: arXiv preprint arXiv:1611.07308 (2016).