

#### Selected Topics in Computer Science – 1 P R O J E C T (C O V E R S H E E T)

Team Number: 17

#### **Team Information:**

|   | ID<br>[Ordered by ID] | Full Name<br>[In Arabic]       | Grade |
|---|-----------------------|--------------------------------|-------|
| 1 | 202000135             | اسماء عربي محمد عبدالمجيد      |       |
| 2 | 202000218             | بیشوی عصام فاروق               |       |
| 3 | 202000236             | چمان سمیر صلاح الدین محمد خطاب |       |
| 4 | 202000587             | عمر احمد عبدالرحيم محمد        |       |
| 5 | 202000685             | ماجد ممدوح محمد حلمي           |       |
| 6 | 202001050             | يارا محمد احمد عبداللطيف       |       |
| 7 |                       |                                |       |



# Table of Contents

| Logistic Regression on a numerical dataset | 3  |
|--------------------------------------------|----|
| a) General Information on dataset :        | 3  |
| B) Implementation details:                 | 4  |
| C) Results details:                        | 4  |
| ANN on images dataset                      | 7  |
| a) General Information on dataset :        | 7  |
| B) Implementation details:                 | 8  |
| C) Results details:                        | 8  |
| SVM on numerical dataset                   | 11 |
| a) General Information on dataset :        | 11 |
| B) Implementation details:                 | 12 |
| C) Results details:                        | 12 |
| SVM on images dataset                      | 15 |
| a) General Information on dataset :        | 15 |
| B) Implementation details:                 | 16 |
| C) Results details:                        | 16 |



## Logistic Regression on a numerical dataset

### a) General Information on dataset:

- 1) Name of dataset used :
  - Health care: Heart attack possibility.
- 2) Number of classes and their labels:
  - Number of classes: 13 columns, 302 rows.
  - Number of labels: 1 column (Target column), 302 rows.
  - In this case we have a binary classification.
- 3) The total number of samples in dataset:
  - 303 and after dropping the duplicated data it becomes 302.
- 4) Number of samples used in training, validation, and testing:

• Training: 180

• Validation: 61

• Testing: 61



Hyperparameters used in the model:

- Using the gradient function we reduce the cost function from (0.6931471805599453) to (0.3482652701775918).
- When we bulit a model to get the loss curve we had:
  - 1. No. epochs = 100
  - 2. Batch size = 64
  - 3. Optimizer: adam

#### C) Results details:

- 1) Accuracy:
  - 84.76821192052981%
- 2) Confusion Matrix:
  - [[21 8] [ 4 28]]



#### • Plot of confusion matrix











## ANN on images dataset

### a) General Information on dataset:

- 1) Name of dataset used:
  - Fruits 360
- 2) Number of classes and their labels:
  - Number of classes: 38 folder, 19,000.
  - Number of labels: 19,000.
  - In this case we have a binary classification.
- 3) The total number of samples in dataset and its size :
  - 25,356 samples
  - 100 x 100
- 4) Number of samples used in training, validation, and testing:

• Training: 19,000

• Testing: 6,356



- 1) Feature extraction phase :
  - We resized the training and testing images to be 45 x
  - To normalize the array that store the pixels to divided it over 255 to have data between 0's and 1's
- 2) Hyperparameters used in the model:
  - When we bulit a model we had:
    - 1. No. epochs = 10.
    - 2. Optimizer: adam.
    - 3. 2 hidden layer one has 128 neurons and the other has 64 neurons.
    - 4. Output layer with 60 neurons.

#### C) Results details:

#### 1) Accuracy:

Test loss: 32.20229%

Test Accuracy : 94.36752%



#### 2) Confusion Matrix:

```
• [[119 0 0 ... 0 0 0]

[ 0 148 0 ... 0 0 0]

[ 0 0 160 ... 0 0 0]

...

[ 0 0 8 ... 121 0 0]

[ 0 0 0 ... 0 111 0]

[ 0 0 0 ... 0 0 130]]
```

#### Plot of confusion matrix











#### SVM on numerical dataset

### a) General Information on dataset:

- 1) Name of dataset used:
  - Health care: Heart attack possibility.
- 2) Number of classes and their labels:
  - Number of classes: 13 columns, 303 rows.
  - Number of labels: 1 column (Target column), 303 rows.
  - In this case we have a binary classification.
- 3) The total number of samples in dataset:
  - 303 Samples.
- 4) Number of samples used in training, validation, and testing:

• Training: 241

• Testing: 61



Hyperparameters used in the model:

• When we bulit a model to get the loss curve we had:

1. No. epochs = 10

2. Optimizer: adam

3. Kernel: linear

#### C) Results details:

#### 1) Accuracy:

• 90.1639344262295 %

#### 2) Confusion Matrix:

• [[17 4] [ 2 38]]



#### • Plot of confusion matrix











## SVM on images dataset

### a) General Information on dataset:

- 1) Name of dataset used:
  - Fruits 360
- 2) Number of classes and their labels:
  - Number of classes: 38 folder, 19,000.
  - Number of labels: 19,000.
  - In this case we have a binary classification.
- 3) The total number of samples in dataset and its size:
  - 25,356 samples
  - 100 x 100
- 4) Number of samples used in training, validation, and testing:

• Training: 19,000

• Testing: 6,356



#### 1) Feature extraction phase:

- We resized the training and testing images to be 45 x
- To normalize the array that store the pixels to divided it over 255 to have data between 0's and 1's

#### Hyperparameters used in the model:

• When we bulit a model to get the loss curve we had:

4. No. epochs = 20

5. Optimizer: adam

6. Kernel: linear

#### C) Results details:

#### 1) Accuracy:

95.846644%

#### 2) Confusion Matrix:

```
• [[133 0 0 ... 0 0 0]

[ 0 148 0 ... 0 0 0]

[ 0 0 160 ... 0 0 0]

...

[ 0 0 4 ... 84 0 0]

[ 0 0 0 ... 0 109 0]

[ 0 0 0 ... 0 0 130]]
```



#### Plot of confusion matrix







