Łoś Ultraproduct Theorem

Anthony Wilkie

May 2, 2022

Introduction

 Jerzy Łoś (1920-1998) was a Polish mathematician, economist, logician, and philosopher.

Łoś Ultraproduct Theorem

The ultraproduct of models is itself a model

 □ This has been applied (by Micheal Makkai and more recently Jacob Lurie) to recover the syntax of a theory by using categories with an "ultraproduct" structure.

Introduction

Łoś Ultraproduct Theorem

The ultraproduct of models is itself a model.

 □ This has been applied (by Micheal Makkai and more recently Jacob Lurie) to recover the syntax of a theory by using categories with an "ultraproduct" structure.

Introduction

Łoś Ultraproduct Theorem

The ultraproduct of models is itself a model.

 □ This has been applied (by Micheal Makkai and more recently Jacob Lurie) to recover the syntax of a theory by using categories with an "ultraproduct" structure.

Language and Terms

- ightharpoonup A (single sorted, first-order) language $\mathcal L$ is a set of symbols divided into three groups:
 - \triangleright Relation symbols R which has a specified arity n,
 - \triangleright Function symbols f which has a specified arity n,
 - *▷* Constant symbols *c*,

together with logical symbols (,), \land , \lor , \neg , \exists , \forall , \top , \bot , \Rightarrow , = and an infinite collection of variables x_1, x_2, \ldots

- \triangleright The *terms* over \mathcal{L} are defined inductively as follows:
 - \triangleright A variable x is a term.
 - \triangleright If t_1, \ldots, t_n are terms and f is a function symbol of \mathcal{L} of arity n, then $f(t_1, \ldots, t_n)$ is a term.
- ightharpoonup We write $t(\overline{x})$ to mean t is a term in which the variables $\overline{x}=x_1,\ldots,x_n$ appear in t.

Language and Terms

- ightharpoonup A (single sorted, first-order) language $\mathcal L$ is a set of symbols divided into three groups:
 - \triangleright Relation symbols R which has a specified arity n,
 - \triangleright Function symbols f which has a specified arity n,
 - *▷* Constant symbols *c*,

together with logical symbols (,), \land , \lor , \neg , \exists , \forall , \top , \bot , \Rightarrow , = and an infinite collection of variables x_1, x_2, \ldots

- \triangleright The *terms* over \mathcal{L} are defined inductively as follows:
 - \triangleright A variable \times is a term.
 - \triangleright If t_1, \ldots, t_n are terms and f is a function symbol of \mathcal{L} of arity n, then $f(t_1, \ldots, t_n)$ is a term.
- \triangleright We write $t(\overline{x})$ to mean t is a term in which the variables $\overline{x} = x_1, \dots, x_n$ appear in t.

- ▶ The formulae ϕ over \mathcal{L} with free variables $FV(\phi)$ are defined inductively as follows (Note: the free variables of a term $t(\overline{x})$ is $\overline{x} = x_1, \dots, x_n$):
 - ▶ If $t_1(\overline{x})$ and $t_2(\overline{x})$ are terms, then $t_1(\overline{x}) = t_2(\overline{x})$ is a formula with free variables $FV(t_1 = t_2) = \overline{x}$.
 - ▶ If $t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n)$ are terms and R is a relation symbol of arity n, then $R(t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n))$ is a formula with $FV(R) = \{\overline{x}_1, \ldots, \overline{x}_n\}.$
 - ▶ If $\phi(\overline{x})$ and $\psi(\overline{x})$ are formulae, then $(\phi \lor \psi)(\overline{x})$ is a formula with $FV(\phi \lor \psi) = FV(\phi) \cup FV(\psi)$.
 - ▶ If $\phi(\overline{x})$ is a formula, then so is $\neg \phi(\overline{x})$ with $FV(\neg \phi) = FV(\phi)$.
 - ▶ If $\psi(\overline{x}, y)$ is a formula and y is a variable, then $\exists y. \psi(\overline{x}, y)$ is a formula with with free variables $FV(\psi) \setminus \{y\}$.

- ▶ The formulae ϕ over \mathcal{L} with free variables $FV(\phi)$ are defined inductively as follows (Note: the free variables of a term $t(\overline{x})$ is $\overline{x} = x_1, \dots, x_n$):
 - ▶ If $t_1(\overline{x})$ and $t_2(\overline{x})$ are terms, then $t_1(\overline{x}) = t_2(\overline{x})$ is a formula with free variables $FV(t_1 = t_2) = \overline{x}$.
 - ▶ If $t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n)$ are terms and R is a relation symbol of arity n, then $R(t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n))$ is a formula with $FV(R) = \{\overline{x}_1, \ldots, \overline{x}_n\}.$
 - ▶ If $\phi(\overline{x})$ and $\psi(\overline{x})$ are formulae, then $(\phi \lor \psi)(\overline{x})$ is a formula with $FV(\phi \lor \psi) = FV(\phi) \cup FV(\psi)$.
 - ▶ If $\phi(\overline{x})$ is a formula, then so is $\neg \phi(\overline{x})$ with $FV(\neg \phi) = FV(\phi)$.
 - ▶ If $\psi(\overline{x}, y)$ is a formula and y is a variable, then $\exists y. \psi(\overline{x}, y)$ is a formula with with free variables $FV(\psi) \setminus \{y\}$.

- ▷ The formulae ϕ over \mathcal{L} with free variables $FV(\phi)$ are defined inductively as follows (Note: the free variables of a term $t(\overline{x})$ is $\overline{x} = x_1, \dots, x_n$):
 - ▶ If $t_1(\overline{x})$ and $t_2(\overline{x})$ are terms, then $t_1(\overline{x}) = t_2(\overline{x})$ is a formula with free variables $FV(t_1 = t_2) = \overline{x}$.
 - ▶ If $t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n)$ are terms and R is a relation symbol of arity n, then $R(t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n))$ is a formula with $FV(R) = \{\overline{x}_1, \ldots, \overline{x}_n\}.$
 - ▶ If $\phi(\overline{x})$ and $\psi(\overline{x})$ are formulae, then $(\phi \lor \psi)(\overline{x})$ is a formula with $FV(\phi \lor \psi) = FV(\phi) \cup FV(\psi)$.
 - ▶ If $\phi(\overline{x})$ is a formula, then so is $\neg \phi(\overline{x})$ with $FV(\neg \phi) = FV(\phi)$.
 - ▶ If $\psi(\overline{x}, y)$ is a formula and y is a variable, then $\exists y. \psi(\overline{x}, y)$ is a formula with with free variables $FV(\psi) \setminus \{y\}$.

- ▶ The formulae ϕ over \mathcal{L} with free variables $FV(\phi)$ are defined inductively as follows (Note: the free variables of a term $t(\overline{x})$ is $\overline{x} = x_1, \dots, x_n$):
 - ▶ If $t_1(\overline{x})$ and $t_2(\overline{x})$ are terms, then $t_1(\overline{x}) = t_2(\overline{x})$ is a formula with free variables $FV(t_1 = t_2) = \overline{x}$.
 - ▶ If $t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n)$ are terms and R is a relation symbol of arity n, then $R(t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n))$ is a formula with $FV(R) = \{\overline{x}_1, \ldots, \overline{x}_n\}.$
 - ▶ If $\phi(\overline{x})$ and $\psi(\overline{x})$ are formulae, then $(\phi \lor \psi)(\overline{x})$ is a formula with $FV(\phi \lor \psi) = FV(\phi) \cup FV(\psi)$.
 - ▶ If $\phi(\overline{x})$ is a formula, then so is $\neg \phi(\overline{x})$ with $FV(\neg \phi) = FV(\phi)$.
 - ▶ If $\psi(\overline{x}, y)$ is a formula and y is a variable, then $\exists y. \psi(\overline{x}, y)$ is a formula with with free variables $FV(\psi) \setminus \{v\}$.

- ▶ The formulae ϕ over \mathcal{L} with free variables $FV(\phi)$ are defined inductively as follows (Note: the free variables of a term $t(\overline{x})$ is $\overline{x} = x_1, \dots, x_n$):
 - ▶ If $t_1(\overline{x})$ and $t_2(\overline{x})$ are terms, then $t_1(\overline{x}) = t_2(\overline{x})$ is a formula with free variables $FV(t_1 = t_2) = \overline{x}$.
 - ▶ If $t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n)$ are terms and R is a relation symbol of arity n, then $R(t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n))$ is a formula with $FV(R) = \{\overline{x}_1, \ldots, \overline{x}_n\}.$
 - ▶ If $\phi(\overline{x})$ and $\psi(\overline{x})$ are formulae, then $(\phi \lor \psi)(\overline{x})$ is a formula with $FV(\phi \lor \psi) = FV(\phi) \cup FV(\psi)$.
 - ▶ If $\phi(\overline{x})$ is a formula, then so is $\neg \phi(\overline{x})$ with $FV(\neg \phi) = FV(\phi)$.
 - ▶ If $\psi(\overline{x}, y)$ is a formula and y is a variable, then $\exists y. \psi(\overline{x}, y)$ is a formula with with free variables $FV(\psi) \setminus \{y\}$.

- ▶ The formulae ϕ over \mathcal{L} with free variables $FV(\phi)$ are defined inductively as follows (Note: the free variables of a term $t(\overline{x})$ is $\overline{x} = x_1, \dots, x_n$):
 - ▶ If $t_1(\overline{x})$ and $t_2(\overline{x})$ are terms, then $t_1(\overline{x}) = t_2(\overline{x})$ is a formula with free variables $FV(t_1 = t_2) = \overline{x}$.
 - ▶ If $t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n)$ are terms and R is a relation symbol of arity n, then $R(t_1(\overline{x}_1), \ldots, t_n(\overline{x}_n))$ is a formula with $FV(R) = \{\overline{x}_1, \ldots, \overline{x}_n\}.$
 - ▶ If $\phi(\overline{x})$ and $\psi(\overline{x})$ are formulae, then $(\phi \lor \psi)(\overline{x})$ is a formula with $FV(\phi \lor \psi) = FV(\phi) \cup FV(\psi)$.
 - ▶ If $\phi(\overline{x})$ is a formula, then so is $\neg \phi(\overline{x})$ with $FV(\neg \phi) = FV(\phi)$.
 - ▶ If $\psi(\overline{x}, y)$ is a formula and y is a variable, then $\exists y. \psi(\overline{x}, y)$ is a formula with with free variables $FV(\psi) \setminus \{y\}$.

- ▶ A variable x is called *bound* if it is in the scope of a quantifier, i.e. if $\exists x$ or $\forall x$.
- ▶ A formula $\sigma(\overline{x})$ is called a *sentence* if $FV(\sigma) = \emptyset$, that is, all of its variables are bound.
- We will use the common abbreviations for the following:

$$\triangleright \phi(\overline{x}) \land \psi(\overline{x}) \stackrel{\text{def}}{=} \neg((\neg \phi(\overline{x})) \lor (\neg \psi(\overline{x}))).$$

$$\triangleright \ \phi(\overline{x}) \Leftrightarrow \psi(\overline{x}) \stackrel{\text{def}}{=} (\phi(\overline{x}) \Rightarrow \psi(\overline{x})) \land (\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$$

$$\triangleright \ \forall y.\phi(\overline{x},y) \stackrel{\text{def}}{=} \neg \exists y. \neg \phi(\overline{x},y).$$

$$\triangleright \top \stackrel{\text{def}}{=} \forall x. (x = x).$$

$$\triangleright \perp \stackrel{\text{def}}{=} \exists x. (x \neq x).$$

A theory T is a set of sentences which we call the axioms of T.

- ▶ A variable x is called *bound* if it is in the scope of a quantifier, i.e. if $\exists x$ or $\forall x$.
- ▶ A formula $\sigma(\overline{x})$ is called a *sentence* if $FV(\sigma) = \emptyset$, that is, all of its variables are bound.
- ▶ We will use the common abbreviations for the following:

$$\triangleright \phi(\overline{x}) \wedge \psi(\overline{x}) \stackrel{\text{def}}{=} \neg((\neg \phi(\overline{x})) \vee (\neg \psi(\overline{x}))).$$

$$\triangleright \phi(\overline{x}) \Rightarrow \psi(\overline{x}) \stackrel{\text{def}}{=} (\neg \phi(\overline{x})) \vee \psi(\overline{x}).$$

$$\triangleright \phi(\overline{x}) \Leftrightarrow \psi(\overline{x}) \stackrel{\text{def}}{=} (\phi(\overline{x}) \Rightarrow \psi(\overline{x})) \land (\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$$

$$\triangleright \ \forall y.\phi(\overline{x},y) \stackrel{\text{def}}{=} \neg \exists y. \neg \phi(\overline{x},y).$$

$$\triangleright \top \stackrel{\text{def}}{=} \forall x. (x = x).$$

$$\triangleright \perp \stackrel{\text{def}}{=} \exists x. (x \neq x).$$

 \triangleright A *theory* T is a set of sentences which we call the *axioms* of T.

- ▶ A variable x is called *bound* if it is in the scope of a quantifier, i.e. if $\exists x$ or $\forall x$.
- \triangleright A formula $\sigma(\overline{x})$ is called a *sentence* if $FV(\sigma) = \emptyset$, that is, all of its variables are bound.
- ▶ We will use the common abbreviations for the following:

$$\triangleright \phi(\overline{x}) \wedge \psi(\overline{x}) \stackrel{\mathsf{def}}{=} \neg ((\neg \phi(\overline{x})) \vee (\neg \psi(\overline{x}))).$$

$$\triangleright \phi(\overline{x}) \Rightarrow \psi(\overline{x}) \stackrel{\mathsf{def}}{=} (\neg \phi(\overline{x})) \vee \psi(\overline{x}).$$

$$\triangleright \phi(\overline{x}) \Leftrightarrow \psi(\overline{x}) \stackrel{\mathsf{def}}{=} (\phi(\overline{x}) \Rightarrow \psi(\overline{x})) \wedge (\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$$

$$\triangleright \ \forall y.\phi(\overline{x},y) \stackrel{\mathsf{def}}{=} \neg \exists y. \neg \phi(\overline{x},y).$$

$$\triangleright \perp \stackrel{\mathsf{def}}{=} \exists x. (x \neq x).$$

A theory T is a set of sentences which we call the axioms of T.

- ▶ A variable x is called *bound* if it is in the scope of a quantifier, i.e. if $\exists x$ or $\forall x$.
- ▷ A formula $\sigma(\overline{x})$ is called a *sentence* if $FV(\sigma) = \emptyset$, that is, all of its variables are bound.
- ▶ We will use the common abbreviations for the following:

$$\triangleright \phi(\overline{x}) \wedge \psi(\overline{x}) \stackrel{\mathsf{def}}{=} \neg ((\neg \phi(\overline{x})) \vee (\neg \psi(\overline{x}))).$$

$$\triangleright \phi(\overline{x}) \Rightarrow \psi(\overline{x}) \stackrel{\mathsf{def}}{=} (\neg \phi(\overline{x})) \vee \psi(\overline{x}).$$

$$\triangleright \phi(\overline{x}) \Leftrightarrow \psi(\overline{x}) \stackrel{\mathsf{def}}{=} (\phi(\overline{x}) \Rightarrow \psi(\overline{x})) \wedge (\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$$

$$\triangleright \ \forall y. \phi(\overline{x}, y) \stackrel{\mathsf{def}}{=} \neg \exists y. \neg \phi(\overline{x}, y).$$

$$\triangleright \perp \stackrel{\mathsf{def}}{=} \exists x. (x \neq x).$$

A theory T is a set of sentences which we call the axioms of T.

- ▶ We define the theory of partially ordered sets (posets) as follows:
 - $\triangleright \mathcal{L} = \{\leq\}$, where \leq is a 2-ary relation symbol.
 - ▶ The theory consists of the following axioms:
 - (i) Reflexivity: $\forall x.(x \leq x)$.
 - (ii) Asymmetry: $\forall x, y. (x \leq y \land y \leq x \Rightarrow x = y)$.
 - (iii) Transitivity: $\forall x, y, z. (x \leq y \land y \leq z \Rightarrow x \leq z)$.
 - ▶ We obtain the theory of directed posets if we add the following axiom:
 - (iv) *Directed*: $\forall x, y. \exists z. (x \leq z \land y \leq z)$.
- ▶ We can define the theory of groups, rings, fields, number theory, etc.
- ▶ We CANNOT define the theory of topological spaces.

- ▶ We define the theory of partially ordered sets (posets) as follows:
 - $\triangleright \mathcal{L} = \{\leq\}$, where \leq is a 2-ary relation symbol.
 - ▶ The theory consists of the following axioms:
 - (i) Reflexivity: $\forall x.(x \leq x)$.
 - (ii) Asymmetry: $\forall x, y. (x \leq y \land y \leq x \Rightarrow x = y)$.
 - (iii) Transitivity: $\forall x, y, z. (x \leq y \land y \leq z \Rightarrow x \leq z)$.
 - ▶ We obtain the theory of directed posets if we add the following axiom:
 - (iv) *Directed*: $\forall x, y. \exists z. (x \leq z \land y \leq z)$.
- ▶ We can define the theory of groups, rings, fields, number theory, etc.
- ▶ We CANNOT define the theory of topological spaces.

- ▶ We define the theory of partially ordered sets (posets) as follows:
 - $\triangleright \mathcal{L} = \{\leq\}$, where \leq is a 2-ary relation symbol.
 - ▶ The theory consists of the following axioms:
 - (i) *Reflexivity*: $\forall x.(x \leq x)$.
 - (ii) Asymmetry: $\forall x, y. (x \leq y \land y \leq x \Rightarrow x = y)$.
 - (iii) Transitivity: $\forall x, y, z. (x \leq y \land y \leq z \Rightarrow x \leq z)$.
 - ▶ We obtain the theory of directed posets if we add the following axiom:
 - (iv) Directed: $\forall x, y. \exists z. (x \leq z \land y \leq z)$.
- ▶ We can define the theory of groups, rings, fields, number theory, etc.
- ▶ We CANNOT define the theory of topological spaces

- ▶ We define the theory of partially ordered sets (posets) as follows:
 - $\triangleright \mathcal{L} = \{\leq\}$, where \leq is a 2-ary relation symbol.
 - ▶ The theory consists of the following axioms:
 - (i) *Reflexivity*: $\forall x.(x \leq x)$.
 - (ii) Asymmetry: $\forall x, y. (x \leq y \land y \leq x \Rightarrow x = y)$.
 - (iii) Transitivity: $\forall x, y, z. (x \leq y \land y \leq z \Rightarrow x \leq z)$.
 - ▶ We obtain the *theory of directed posets* if we add the following axiom:
 - (iv) *Directed*: $\forall x, y. \exists z. (x \leq z \land y \leq z)$.
- ▶ We can define the theory of groups, rings, fields, number theory, etc.
- ▶ We CANNOT define the theory of topological spaces

- ▶ We define the theory of partially ordered sets (posets) as follows:
 - $\triangleright \mathcal{L} = \{\leq\}$, where \leq is a 2-ary relation symbol.
 - ▶ The theory consists of the following axioms:
 - (i) *Reflexivity*: $\forall x.(x \leq x)$.
 - (ii) Asymmetry: $\forall x, y. (x \le y \land y \le x \Rightarrow x = y)$.
 - (iii) Transitivity: $\forall x, y, z. (x \leq y \land y \leq z \Rightarrow x \leq z)$.
 - ▶ We obtain the *theory of directed posets* if we add the following axiom:
 - (iv) *Directed*: $\forall x, y. \exists z. (x \leq z \land y \leq z)$.
- ▶ We can define the theory of groups, rings, fields, number theory, etc.
- ▶ We CANNOT define the theory of topological spaces

- ▶ We define the theory of partially ordered sets (posets) as follows:
 - $\triangleright \mathcal{L} = \{\leq\}$, where \leq is a 2-ary relation symbol.
 - ▶ The theory consists of the following axioms:
 - (i) *Reflexivity*: $\forall x.(x \leq x)$.
 - (ii) Asymmetry: $\forall x, y. (x \leq y \land y \leq x \Rightarrow x = y)$.
 - (iii) Transitivity: $\forall x, y, z. (x \leq y \land y \leq z \Rightarrow x \leq z)$.
 - ▶ We obtain the *theory of directed posets* if we add the following axiom:
 - (iv) *Directed*: $\forall x, y. \exists z. (x \leq z \land y \leq z)$.
- ▶ We can define the theory of groups, rings, fields, number theory, etc.
- ▶ We CANNOT define the theory of topological spaces.

\mathcal{L} -Structure

- \triangleright We define a \mathcal{L} -structure to be a function from our language to a set M such that:
 - ▶ For each relation symbol R of arity n, we have an interpretation of R as a subset $M(R) \subseteq M^n$.
 - ▶ For each function symbol f of arity n, we have an interpretation of f as a function $M(f): M^n \to M$.
 - ▶ For each constant symbol c, we have an *interpretation* of c as an element $M(c) \in M$.

Semantics

- ▶ The *value* of a term $t(\overline{x})$ at $\overline{a} = a_1, \dots, a_n$ in a \mathcal{L} -structure M is defined as follows:
 - \triangleright If $t = x_i$ is a variable, then $t(\overline{a}) = a_i$.
 - ▶ If $t = f(t_1, ..., t_n)$, f a function symbol and t_i are terms, then $t(\overline{a}) = M(f)(t_1(\overline{a}), ..., t_n(\overline{a}))$.
- Solution Given a \mathcal{L} -structure M, a formula $\phi(\overline{x})$, and a tuple of element $\overline{a} = a_1, \dots, a_n \in M$, we define M satisfies ϕ with \overline{a} , denoted $M \models \phi(\overline{a})$, as follows:
 - ightharpoonup If $\phi(\overline{x}):=t_1(\overline{x})=t_2(\overline{x})$, then $M\vDash\phi(\overline{a})$ iff $t_1(\overline{a})=t_2(\overline{a})$.
 - ▶ If $\phi(\overline{x}) := R(t_1, ..., t_n)$, then $M \vDash \phi(\overline{a})$ iff $t_1(\overline{a}), ..., t_n(\overline{a}) \in M(R)$.
 - ▶ If $\phi(\overline{x}) := (\psi_1 \vee \psi_2)(\overline{x})$, then $M \vDash \phi(\overline{a})$ iff $M \vDash \psi_1(\overline{a})$ or $M \vDash \psi_2(\overline{a})$.
 - ightharpoonup If $\phi(\overline{x}):=(\neg\psi)(\overline{x})$, then $M\vDash\phi(\overline{a})$ iff not $M\vDash\psi(\overline{a})$.
 - ▶ If $\phi(\overline{x}) := \exists y. \psi(\overline{x}, y)$, then $M \vDash \phi(\overline{a})$ iff there exists $b \in M$ such that $M \vDash \psi(\overline{a}, b)$.

Semantics

- ▶ The *value* of a term $t(\overline{x})$ at $\overline{a} = a_1, \dots, a_n$ in a \mathcal{L} -structure M is defined as follows:
 - \triangleright If $t = x_i$ is a variable, then $t(\overline{a}) = a_i$.
 - ▶ If $t = f(t_1, ..., t_n)$, f a function symbol and t_i are terms, then $t(\overline{a}) = M(f)(t_1(\overline{a}), ..., t_n(\overline{a}))$.
- \triangleright Given a \mathcal{L} -structure M, a formula $\phi(\overline{x})$, and a tuple of element $\overline{a} = a_1, \ldots, a_n \in M$, we define M satisfies ϕ with \overline{a} , denoted $M \models \phi(\overline{a})$, as follows:
 - $\qquad \qquad \mathsf{If} \ \phi(\overline{x}) := t_1(\overline{x}) = t_2(\overline{x}), \ \mathsf{then} \ M \vDash \phi(\overline{a}) \ \mathsf{iff} \ t_1(\overline{a}) = t_2(\overline{a}).$
 - ▶ If $\phi(\overline{x}) := R(t_1, ..., t_n)$, then $M \vDash \phi(\overline{a})$ iff $t_1(\overline{a}), ..., t_n(\overline{a}) \in M(R)$.
 - ▶ If $\phi(\overline{x}) := (\psi_1 \vee \psi_2)(\overline{x})$, then $M \vDash \phi(\overline{a})$ iff $M \vDash \psi_1(\overline{a})$ or $M \vDash \psi_2(\overline{a})$.
 - $\qquad \qquad \mathsf{If} \ \phi(\overline{x}) := (\neg \psi)(\overline{x}), \ \mathsf{then} \ M \vDash \phi(\overline{a}) \ \mathsf{iff} \ \mathsf{not} \ M \vDash \psi(\overline{a}).$
 - ▶ If $\phi(\overline{x}) := \exists y. \psi(\overline{x}, y)$, then $M \vDash \phi(\overline{a})$ iff there exists $b \in M$ such that $M \vDash \psi(\overline{a}, b)$.

- F If $T = \{\sigma_i\}_{i \in I}$ is a theory with axioms σ_i , then a \mathcal{L} -structure M is a *model* of T if $M \models T$, that is, $M \models \sigma_i$ for each $\sigma_i \in T$.
- riangleright A poset (P, \leq_P) is a model of the theory of posets with

$$x \leq_P y \Leftrightarrow (x,y) \in \leq_P (\subseteq P \times P).$$

▶ Let M and N be models of a theory T. A function $f:M\to N$ is an *elementary embedding* if for every formula $\phi(\overline{\mathbf{x}})$ and $\overline{\mathbf{a}}\in M^n$, we have

$$M \vDash \phi(\overline{a}) \Leftrightarrow N \vDash \phi(f(\overline{a})).$$

An elementary embedding between posets is a monotone function

- ▷ If $T = {\{\sigma_i\}}_{i \in I}$ is a theory with axioms σ_i , then a \mathcal{L} -structure M is a *model* of T if $M \vDash T$, that is, $M \vDash \sigma_i$ for each $\sigma_i \in T$.
- \triangleright A poset (P, \leq_P) is a model of the theory of posets with

$$x \leq_P y \Leftrightarrow (x,y) \in \leq_P (\subseteq P \times P).$$

▶ Let M and N be models of a theory T. A function $f:M\to N$ is an *elementary embedding* if for every formula $\phi(\overline{\mathbf{x}})$ and $\overline{\mathbf{a}}\in M^n$, we have

$$M \vDash \phi(\overline{a}) \Leftrightarrow N \vDash \phi(f(\overline{a})).$$

▶ An elementary embedding between posets is a monotone function

- ▷ If $T = {\{\sigma_i\}}_{i \in I}$ is a theory with axioms σ_i , then a \mathcal{L} -structure M is a *model* of T if $M \vDash T$, that is, $M \vDash \sigma_i$ for each $\sigma_i \in T$.
- \triangleright A poset (P, \leq_P) is a model of the theory of posets with

$$x \leq_P y \Leftrightarrow (x,y) \in \leq_P (\subseteq P \times P).$$

▷ Let M and N be models of a theory T. A function $f: M \to N$ is an *elementary embedding* if for every formula $\phi(\overline{x})$ and $\overline{a} \in M^n$, we have

$$M \vDash \phi(\overline{a}) \Leftrightarrow N \vDash \phi(f(\overline{a})).$$

An elementary embedding between posets is a monotone function

- ▷ If $T = {\{\sigma_i\}}_{i \in I}$ is a theory with axioms σ_i , then a \mathcal{L} -structure M is a *model* of T if $M \vDash T$, that is, $M \vDash \sigma_i$ for each $\sigma_i \in T$.
- \triangleright A poset (P, \leq_P) is a model of the theory of posets with

$$x \leq_P y \Leftrightarrow (x,y) \in \leq_P (\subseteq P \times P).$$

▷ Let M and N be models of a theory T. A function $f: M \to N$ is an *elementary embedding* if for every formula $\phi(\overline{x})$ and $\overline{a} \in M^n$, we have

$$M \vDash \phi(\overline{a}) \Leftrightarrow N \vDash \phi(f(\overline{a})).$$

▶ An elementary embedding between posets is a monotone function.

Ultrafilters

- \triangleright An *ultrafilter* $\mathcal U$ on a set S is a subset of the powerset $\mathcal P(S)$ such that
 - $\triangleright S \in \mathcal{U}$.
 - ▶ For each $S_0, S_1 \in \mathcal{U}$, we have $S_0 \cap S_1 \in \mathcal{U}$.
 - ightharpoonup If $S_0 \in \mathcal{U}$ and $S_1 \subseteq S_0$ then $S_1 \in \mathcal{U}$.
 - ▶ For every $S_0 \subseteq S$, exactly one of S_0 and $S \setminus S_0$ is in \mathcal{U} .
- \triangleright If $s \in S$, then we have the *principal ultrafilter*

$$\mathcal{U}_s = \{S_0 \subseteq S : s \in S_0\}.$$

Ultrafilters

- \triangleright An *ultrafilter* $\mathcal U$ on a set S is a subset of the powerset $\mathcal P(S)$ such that
 - $\triangleright S \in \mathcal{U}$.
 - ▶ For each $S_0, S_1 \in \mathcal{U}$, we have $S_0 \cap S_1 \in \mathcal{U}$.
 - $\quad \quad \mathsf{If} \ S_0 \in \mathcal{U} \ \mathsf{and} \ S_1 \subseteq S_0 \ \mathsf{then} \ S_1 \in \mathcal{U}.$
 - \triangleright For every $S_0 \subseteq S$, exactly one of S_0 and $S \setminus S_0$ is in \mathcal{U} .
- \triangleright If $s \in S$, then we have the *principal ultrafilter*

$$\mathcal{U}_s = \{S_0 \subseteq S : s \in S_0\}.$$

ightharpoonup Given a collection of (nonempty) sets $\{X_s\}_{s\in S}$ and an ultrafilter $\mathcal U$ on S, we define an equivalence relation $\sim_{\mathcal U}$ on $\prod_{s\in S} X_s$ by

$$\left(\left\{x_{s}\right\}_{s\in\mathcal{S}}\sim_{\mathcal{U}}\left\{y_{s}\right\}_{s\in\mathcal{S}}\right)\Leftrightarrow\left\{s\in\mathcal{S}:x_{s}=y_{s}\right\}\in\mathcal{U}.$$

We let $x^{\mathcal{U}}$ denote the equivalence class of $\{x_s\}_{s\in S}$.

 \triangleright Then the *ultraproduct of* $\{X_s\}_{s\in S}$ *w.r.t* \mathcal{U} , denoted

$$\left(\prod_{s\in S}X_s\right)/\mathcal{U}=\left\{x^{\mathcal{U}}:\left\{x_s\right\}_{s\in S}\in\prod_{s\in S}X_s\right\}$$

is the set of equivalence classes of the relation $\sim_{\mathcal{U}}$.

ightharpoonup Given a collection of (nonempty) sets $\{X_s\}_{s\in S}$ and an ultrafilter $\mathcal U$ on S, we define an equivalence relation $\sim_{\mathcal U}$ on $\prod_{s\in S} X_s$ by

$$\left(\left\{x_{s}\right\}_{s\in\mathcal{S}}\sim_{\mathcal{U}}\left\{y_{s}\right\}_{s\in\mathcal{S}}\right)\Leftrightarrow\left\{s\in\mathcal{S}:x_{s}=y_{s}\right\}\in\mathcal{U}.$$

We let $x^{\mathcal{U}}$ denote the equivalence class of $\{x_s\}_{s\in S}$.

▷ Then the *ultraproduct of* $\{X_s\}_{s \in S}$ *w.r.t* \mathcal{U} , denoted

$$\left(\prod_{s\in\mathcal{S}}X_{s}\right)/\mathcal{U}=\left\{x^{\mathcal{U}}:\left\{x_{s}\right\}_{s\in\mathcal{S}}\in\prod_{s\in\mathcal{S}}X_{s}\right\},$$

is the set of equivalence classes of the relation $\sim_{\mathcal{U}}$.

Let T be a theory and let $\{M_s\}_{s\in S}$ be a collection of models of T.

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(R)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}) \Leftrightarrow \{s\in S: M_s(R)(x_{s,1},\ldots,x_{s,n})\} \in \mathcal{U}$$

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(f)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}) = \left(M_s(f)(x_{s,1},\ldots,x_{s,n}): s\in S\right)^{\mathcal{U}}$$

$$\left(\left(\prod_{s\in S} M_{s}\right)/\mathcal{U}\right)(c) = \left(M_{s}(c): s\in S\right)^{\mathcal{U}} \in \left(\prod_{s\in S} M_{s}\right)/\mathcal{U}.$$

$$\{x_s\}_{s\in S}\leq_{\mathit{UP}}\{y_s\}_{s\in S}\Leftrightarrow \{s\in S:x_s\leq_{P_s}y_s\}\in\mathcal{U}.$$

Let \mathcal{T} be a theory and let $\{M_s\}_{s\in S}$ be a collection of models of \mathcal{T} . Let \mathcal{U} be an ultrafilter on S. Then the *ultraproduct of the models* $\{M_s\}_{s\in S}$ *w.r.t.* \mathcal{U} is the \mathcal{L} -structure $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ defined by:

 \triangleright For each relation symbol R of arity n and each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(R)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}) \Leftrightarrow \left\{s\in S: M_s(R)(x_{s,1},\ldots,x_{s,n})\right\} \in \mathcal{U}$$

 \triangleright For each function symbol f of arity n each tuple of equivalence classes $x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(f)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}})=\left(M_s(f)(x_{s,1},\ldots,x_{s,n}):s\in S\right)^{\mathcal{U}}$$

 \triangleright For each constant symbol c,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(c) = \left(M_s(c): s\in S\right)^{\mathcal{U}} \in \left(\prod_{s\in S} M_s\right)/\mathcal{U}.$$

 \triangleright If $\{(P_s, \leq_{P_s})\}_{s \in S}$ are posets

$$\{x_s\}_{s\in S}\leq_{UP}\{y_s\}_{s\in S}\Leftrightarrow \{s\in S:x_s\leq_{P_s}y_s\}\in\mathcal{U}.$$

Let \mathcal{T} be a theory and let $\{M_s\}_{s\in S}$ be a collection of models of \mathcal{T} . Let \mathcal{U} be an ultrafilter on S. Then the *ultraproduct of the models* $\{M_s\}_{s\in S}$ *w.r.t.* \mathcal{U} is the \mathcal{L} -structure $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ defined by:

 \triangleright For each relation symbol R of arity n and each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S}M_s\right)/\mathcal{U}\right)(R)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}})\Leftrightarrow \{s\in S:M_s(R)(x_{s,1},\ldots,x_{s,n})\}\in \mathcal{U}.$$

 \triangleright For each function symbol f of arity n each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S}M_s\right)/\mathcal{U}\right)(f)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}})=\left(M_s(f)(x_{s,1},\ldots,x_{s,n}):s\in S\right)^{\mathcal{U}}$$

 \triangleright For each constant symbol c,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(c) = \left(M_s(c): s\in S\right)^{\mathcal{U}} \in \left(\prod_{s\in S} M_s\right)/\mathcal{U}.$$

 \triangleright If $\{(P_s, \leq_{P_s})\}_{s \in S}$ are posets

$$\{x_s\}_{s\in S}\leq_{UP}\{y_s\}_{s\in S}\Leftrightarrow \{s\in S:x_s\leq_{P_s}y_s\}\in\mathcal{U}.$$

Ultraproducts

Let \mathcal{T} be a theory and let $\{M_s\}_{s\in S}$ be a collection of models of \mathcal{T} . Let \mathcal{U} be an ultrafilter on S. Then the *ultraproduct of the models* $\{M_s\}_{s\in S}$ *w.r.t.* \mathcal{U} is the \mathcal{L} -structure $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ defined by:

 \triangleright For each relation symbol R of arity n and each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(R)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}) \Leftrightarrow \{s\in S: M_s(R)(x_{s,1},\ldots,x_{s,n})\} \in \mathcal{U}.$$

 \triangleright For each function symbol f of arity n each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(f)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}})=\left(M_s(f)(x_{s,1},\ldots,x_{s,n}):s\in S\right)^{\mathcal{U}}$$

For each constant symbol c

$$\left(\left(\prod_{s\in S}M_s\right)/\mathcal{U}\right)(c)=\left(M_s(c):s\in S\right)^{\mathcal{U}}\in\left(\prod_{s\in S}M_s\right)/\mathcal{U}.$$

 \triangleright If $\{(P_s, \leq_{P_s})\}_{s \in S}$ are posets

$$\{x_s\}_{s\in S}\leq_{UP}\{y_s\}_{s\in S}\Leftrightarrow \{s\in S:x_s\leq_{P_s}y_s\}\in\mathcal{U}.$$

Ultraproducts

Let \mathcal{T} be a theory and let $\{M_s\}_{s\in S}$ be a collection of models of \mathcal{T} . Let \mathcal{U} be an ultrafilter on S. Then the *ultraproduct of the models* $\{M_s\}_{s\in S}$ *w.r.t.* \mathcal{U} is the \mathcal{L} -structure $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ defined by:

 \triangleright For each relation symbol R of arity n and each tuple of equivalence classes $x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(R)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}) \Leftrightarrow \{s\in S: M_s(R)(x_{s,1},\ldots,x_{s,n})\}\in \mathcal{U}.$$

 \triangleright For each function symbol f of arity n each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(f)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}})=\left(M_s(f)(x_{s,1},\ldots,x_{s,n}):s\in S\right)^{\mathcal{U}}$$

 \triangleright For each constant symbol c,

$$\left(\left(\prod_{s\in S}M_s\right)/\mathcal{U}\right)(c)=\left(M_s(c):s\in S\right)^{\mathcal{U}}\in\left(\prod_{s\in S}M_s\right)/\mathcal{U}.$$

 \triangleright If $\{(P_s, \leq_{P_s})\}_{s \in S}$ are posets

$$\{x_s\}_{s\in S}\leq_{UP}\{y_s\}_{s\in S}\Leftrightarrow \{s\in S:x_s\leq_{P_s}y_s\}\in\mathcal{U}.$$

Ultraproducts

Let T be a theory and let $\{M_s\}_{s\in S}$ be a collection of models of T. Let $\mathcal U$ be an ultrafilter on S. Then the *ultraproduct of the models* $\{M_s\}_{s\in S}$ *w.r.t.* $\mathcal U$ is the $\mathcal L$ -structure $\left(\prod_{s\in S}M_s\right)/\mathcal U$ defined by:

▷ For each relation symbol R of arity n and each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(R)(x_1^{\mathcal{U}},\ldots,x_n^{\mathcal{U}}) \Leftrightarrow \{s\in S: M_s(R)(x_{s,1},\ldots,x_{s,n})\}\in \mathcal{U}.$$

 \triangleright For each function symbol f of arity n each tuple of equivalence classes $x_1^{\mathcal{U}}, \ldots, x_n^{\mathcal{U}}$,

$$\left(\left(\prod_{s\in\mathcal{S}}M_{s}\right)/\mathcal{U}\right)(f)(x_{1}^{\mathcal{U}},\ldots,x_{n}^{\mathcal{U}})=\left(M_{s}(f)(x_{s,1},\ldots,x_{s,n}):s\in\mathcal{S}\right)^{\mathcal{U}}$$

 \triangleright For each constant symbol c,

$$\left(\left(\prod_{s\in S} M_s\right)/\mathcal{U}\right)(c) = \left(M_s(c): s\in S\right)^{\mathcal{U}} \in \left(\prod_{s\in S} M_s\right)/\mathcal{U}.$$

 \triangleright If $\{(P_s, \leq_{P_s})\}_{s \in S}$ are posets

$$\{x_s\}_{s\in S}\leq_{UP}\{y_s\}_{s\in S}\Leftrightarrow \{s\in S:x_s\leq_{P_s}y_s\}\in\mathcal{U}.$$

Łoś Ultraproduct Theorem

Łoś Ultraproduct Theorem

Let $\{M_s\}_{s\in S}$ be a collection of models of a theory T and let \mathcal{U} be an ultrafilter on S. Then the ultraproduct $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ is also a model of T.

- ▶ The ultraproduct of a collection of posets (groups, rings, etc.) is a poset (group, ring, etc.).
- ▶ We will prove a more general version of Łoś Ultraproduct Theorem using Category Theory.

Łoś Ultraproduct Theorem

Łoś Ultraproduct Theorem

Let $\{M_s\}_{s\in S}$ be a collection of models of a theory T and let \mathcal{U} be an ultrafilter on S. Then the ultraproduct $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ is also a model of T.

- ▶ The ultraproduct of a collection of posets (groups, rings, etc.) is a poset (group, ring, etc.).
- We will prove a more general version of Łoś Ultraproduct Theorem using Category Theory.

Łoś Ultraproduct Theorem

Łoś Ultraproduct Theorem

Let $\{M_s\}_{s\in S}$ be a collection of models of a theory T and let \mathcal{U} be an ultrafilter on S. Then the ultraproduct $\left(\prod_{s\in S}M_s\right)/\mathcal{U}$ is also a model of T.

- The ultraproduct of a collection of posets (groups, rings, etc.)
 is a poset (group, ring, etc.).
- ▶ We will prove a more general version of Łoś Ultraproduct Theorem using Category Theory.

- \triangleright We can define functions between sets, i.e. $f: X \to Y$, where dom(f) = X and cod(f) = Y.
- \triangleright For any three sets X,Y,Z and functions $f:X\to Y$, $g:Y\to Z$ between them, we are able to compose f and g to create a new function

$$g \circ f : X \to Z$$
.

This composition is *associative*, that is, for any three functions $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$ we have $h \circ (g \circ f) = (h \circ g) \circ f$

$$n \circ (g \circ r) = (n \circ g) \circ r.$$

- $hd \ \$ For any set X, we have the identity function $\mathrm{id}_X:X o X.$
- ightharpoonup This identity function is *unital*, i.e. has the property that for any $f: X \to Y$, we have

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$$

- \triangleright We can define functions between sets, i.e. $f: X \to Y$, where dom(f) = X and cod(f) = Y.
- \triangleright For any three sets X,Y,Z and functions $f:X\to Y$, $g:Y\to Z$ between them, we are able to compose f and g to create a new function

$$g \circ f : X \to Z$$
.

- ▶ This composition is *associative*, that is, for any three functions $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$ we have $h \circ (g \circ f) = (h \circ g) \circ f$.
- \triangleright For any set X, we have the identity function $\mathrm{id}_X:X\to X.$
- ightharpoonup This identity function is *unital*, i.e. has the property that for any $f: X \to Y$, we have

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$$

- \triangleright We can define functions between sets, i.e. $f: X \to Y$, where dom(f) = X and cod(f) = Y.
- \triangleright For any three sets X,Y,Z and functions $f:X\to Y$, $g:Y\to Z$ between them, we are able to compose f and g to create a new function

$$g \circ f : X \to Z$$
.

▷ This composition is *associative*, that is, for any three functions $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$ we have

$$h\circ (g\circ f)=(h\circ g)\circ f.$$

- riangleright For any set X, we have the identity function $\mathrm{id}_X:X o X$.
- ▶ This identity function is *unital*, i.e. has the property that for any $f: X \to Y$, we have

$$f \circ id_X = f = id_Y \circ f$$

- \triangleright We can define functions between sets, i.e. $f: X \to Y$, where dom(f) = X and cod(f) = Y.
- ▷ For any three sets X, Y, Z and functions $f: X \to Y$, $g: Y \to Z$ between them, we are able to compose f and g to create a new function

$$g \circ f : X \to Z$$
.

- ▶ This composition is *associative*, that is, for any three functions $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$ we have
 - $h\circ (g\circ f)=(h\circ g)\circ f.$
- \triangleright For any set X, we have the identity function $id_X : X \to X$.
- ightharpoonup This identity function is *unital*, i.e. has the property that for any $f: X \to Y$, we have

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$$

- \triangleright We can define functions between sets, i.e. $f: X \to Y$, where dom(f) = X and cod(f) = Y.
- \triangleright For any three sets X,Y,Z and functions $f:X\to Y$, $g:Y\to Z$ between them, we are able to compose f and g to create a new function

$$g \circ f : X \to Z$$
.

▶ This composition is *associative*, that is, for any three functions $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$ we have

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

- \triangleright For any set X, we have the identity function $id_X: X \to X$.
- \triangleright This identity function is *unital*, i.e. has the property that for any $f: X \to Y$, we have

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f.$$

Category

A *category* C consists of the following data:

- \triangleright a collection C_0 of *objects:* X, Y, Z, ...
- \triangleright a collection C_1 of *morphisms* (or *arrows*): f, g, h, \ldots

such that

- > Each f ∈ C₁ has a domain and a codomain object, with f: X → Y the notation used to denote that dom(f) = X and cod(f) = Y.
- ▶ For each $X \in C_0$, there is an *identity morphism* $id_X : X \to X$.
- ⊳ For each pair $f, g \in C_1$ such that dom(g) = cod(f), there exist a composite morphism $g \circ f \in C_1$ with $dom(g \circ f) = dom(f)$ and $cod(g \circ f) = cod(g)$.

This data is required to satisfy the following axioms:

- ▶ For any $f: X \to Y$, we have $id_Y \circ f = f = f \circ id_X$, that is, composition is *unital*.
- For any composable triple $f, g, h \in C_1$, we have that $h \circ (g \circ f) = (h \circ g) \circ f$, that is, composition is associative

Category

A *category* C consists of the following data:

- \triangleright a collection C_0 of *objects:* X, Y, Z, ...
- \triangleright a collection C_1 of *morphisms* (or *arrows*): f, g, h, \ldots

such that

- ightharpoonup Each $f \in C_1$ has a *domain* and a *codomain* object, with $f: X \to Y$ the notation used to denote that dom(f) = X and cod(f) = Y.
- \triangleright For each $X \in C_0$, there is an *identity morphism* $id_X : X \to X$.
- ▷ For each pair $f, g \in C_1$ such that dom(g) = cod(f), there exist a *composite morphism* $g \circ f \in C_1$ with $dom(g \circ f) = dom(f)$ and $cod(g \circ f) = cod(g)$.

This data is required to satisfy the following axioms:

- ▶ For any $f: X \to Y$, we have $id_Y \circ f = f = f \circ id_X$, that is, composition is *unital*.
- For any composable triple $f, g, h \in C_1$, we have that $h \circ (g \circ f) = (h \circ g) \circ f$, that is, composition is associative.

Category

A *category* C consists of the following data:

- \triangleright a collection C_0 of *objects:* X, Y, Z, ...
- \triangleright a collection C_1 of *morphisms* (or *arrows*): f, g, h, \ldots

such that

- ightharpoonup Each $f \in C_1$ has a *domain* and a *codomain* object, with $f: X \to Y$ the notation used to denote that dom(f) = X and cod(f) = Y.
- \triangleright For each $X \in C_0$, there is an *identity morphism* $id_X : X \to X$.
- ▷ For each pair $f, g \in C_1$ such that dom(g) = cod(f), there exist a *composite morphism* $g \circ f \in C_1$ with $dom(g \circ f) = dom(f)$ and $cod(g \circ f) = cod(g)$.

This data is required to satisfy the following axioms:

- ▷ For any $f: X \to Y$, we have $id_Y \circ f = f = f \circ id_X$, that is, composition is *unital*.
- ⊳ For any composable triple $f, g, h \in C_1$, we have that $h \circ (g \circ f) = (h \circ g) \circ f$, that is, composition is associative.

- $\,\triangleright\,$ Set: the category of sets and set functions.
- ▶ Top: the category of topological spaces and continuous functions.
- □ Grp: the category of groups and group homomorphisms.
- → Mod(T): the category of models of a first order theory T and elementary embeddings.
- Any set X can be regarded as a category, whose objects are the elements and the only arrows are the identity arrows. This is known as a discrete category.
- Any poset (P, \leq) can be regarded as a category, whose objects are the elements and there exists an arrow $f: x \to y$ if and only if $x \leq y$. In particular, we have categories \mathbb{O} , $\mathbb{1}$, and \mathbb{C} that look as follows:

- ▷ Set: the category of sets and set functions.
- ▶ Top: the category of topological spaces and continuous functions.
- □ Grp: the category of groups and group homomorphisms.
- \triangleright Mod(T): the category of models of a first order theory T and elementary embeddings.
- Any set X can be regarded as a category, whose objects are the elements and the only arrows are the identity arrows. This is known as a discrete category.
- ▷ Any poset (P, \leq) can be regarded as a category, whose objects are the elements and there exists an arrow $f: x \to y$ if and only if $x \leq y$. In particular, we have categories \mathbb{O} , $\mathbb{1}$, and \mathbb{C} that look as follows:

- ▷ Set: the category of sets and set functions.
- ▶ Top: the category of topological spaces and continuous functions.
- ▷ Grp: the category of groups and group homomorphisms.
- \triangleright Mod(T): the category of models of a first order theory T and elementary embeddings.
- Any set X can be regarded as a category, whose objects are the elements and the only arrows are the identity arrows. This is known as a discrete category.
- ▷ Any poset (P, \leq) can be regarded as a category, whose objects are the elements and there exists an arrow $f: x \to y$ if and only if $x \leq y$. In particular, we have categories \mathbb{O} , $\mathbb{1}$, and \mathbb{C} that look as follows:

- ▷ Set: the category of sets and set functions.
- ▶ Top: the category of topological spaces and continuous functions.
- ▷ Grp: the category of groups and group homomorphisms.
- $\triangleright \operatorname{\mathsf{Mod}}(T)$: the category of models of a first order theory T and elementary embeddings.
- Any set X can be regarded as a category, whose objects are the elements and the only arrows are the identity arrows. This is known as a discrete category.
- ▶ Any poset (P, \leq) can be regarded as a category, whose objects are the elements and there exists an arrow $f: x \to y$ if and only if $x \leq y$. In particular, we have categories \mathbb{O} , $\mathbb{1}$, and \mathbb{C} that look as follows:

- ▷ Set: the category of sets and set functions.
- ▶ Top: the category of topological spaces and continuous functions.
- ▷ Grp: the category of groups and group homomorphisms.
- $\triangleright \operatorname{\mathsf{Mod}}(T)$: the category of models of a first order theory T and elementary embeddings.
- ▷ Any set X can be regarded as a category, whose objects are the elements and the only arrows are the identity arrows. This is known as a discrete category.
- Any poset (P, \leq) can be regarded as a category, whose objects are the elements and there exists an arrow $f: x \to y$ if and only if $x \leq y$. In particular, we have categories \mathbb{O} , $\mathbb{1}$, and \mathbb{C} that look as follows:

- ▷ Set: the category of sets and set functions.
- ▶ Top: the category of topological spaces and continuous functions.
- ▷ Grp: the category of groups and group homomorphisms.
- $\triangleright \operatorname{\mathsf{Mod}}(T)$: the category of models of a first order theory T and elementary embeddings.
- ▷ Any set X can be regarded as a category, whose objects are the elements and the only arrows are the identity arrows. This is known as a discrete category.
- ▷ Any poset (P, \leq) can be regarded as a category, whose objects are the elements and there exists an arrow $f: x \to y$ if and only if $x \leq y$. In particular, we have categories \mathbb{O} , $\mathbb{1}$, and \mathbb{O} that look as follows:

- \triangleright If C is a category, then a *subcategory* D of C consists of subcollections $D_0 \subseteq C_0$ and $D_1 \subseteq C_1$ such that:
 - ightharpoonup If $f: X \to Y$ is in D, then $X, Y \in D_0$.
 - ▶ If $f, g \in D_1$, then $g \circ f \in D_1$.
 - ▶ If $X \in D_0$, then $id_X \in D_1$.
- ▶ We say D is a full subcategory of C if the following also holds:
 - ightharpoonup If $X,Y\in \mathsf{D}_0$ and f:X o Y is in C , then $f\in \mathsf{D}_1$.
- ▶ We have the category of finite sets Finset is a full subcategory of Set.
- ▷ The *opposite category* C^{op} of C is the category with the same objects but $f^{op}: X \to Y$ is in C^{op} iff $f: Y \to X$ is in C.
- \triangleright Given two categories C, D, we can form their *product category* $\mathsf{C} \times \mathsf{D}$.
- ▷ If C is a category and S is a set, then $C^S = \prod_{s \in S} C$ is the product category of C with itself S many times.

- \triangleright If C is a category, then a *subcategory* D of C consists of subcollections $D_0 \subseteq C_0$ and $D_1 \subseteq C_1$ such that:
 - ▶ If $f: X \to Y$ is in D, then $X, Y \in D_0$.
 - ▶ If $f, g \in D_1$, then $g \circ f \in D_1$.
 - ▶ If $X \in D_0$, then $id_X \in D_1$.
- ▶ We say D is a full subcategory of C if the following also holds:
 - ▶ If $X, Y \in D_0$ and $f: X \to Y$ is in C, then $f \in D_1$.
- We have the category of finite sets Finset is a full subcategory of Set.
- ▷ The *opposite category* C^{op} of C is the category with the same objects but $f^{op}: X \to Y$ is in C^{op} iff $f: Y \to X$ is in C.
- \triangleright Given two categories C, D, we can form their *product category* $\mathsf{C} \times \mathsf{D}.$
- ▶ If C is a category and S is a set, then $C^S = \prod_{s \in S} C$ is the *product category* of C with itself S many times.

- \triangleright If C is a category, then a *subcategory* D of C consists of subcollections $D_0 \subseteq C_0$ and $D_1 \subseteq C_1$ such that:
 - ▶ If $f: X \to Y$ is in D, then $X, Y \in D_0$.
 - ▶ If $f, g \in D_1$, then $g \circ f \in D_1$.
 - ▶ If $X \in D_0$, then $id_X \in D_1$.
- ▶ We say D is a full subcategory of C if the following also holds:
 - ▶ If $X, Y \in D_0$ and $f: X \to Y$ is in C, then $f \in D_1$.
- ▶ We have the category of finite sets Finset is a full subcategory of Set.
- ▶ The *opposite category* C^{op} of C is the category with the same objects but $f^{op}: X \to Y$ is in C^{op} iff $f: Y \to X$ is in C.
- \triangleright Given two categories C, D, we can form their *product category* $\mathsf{C} \times \mathsf{D}$.
- ▶ If C is a category and S is a set, then $C^S = \prod_{s \in S} C$ is the *product category* of C with itself S many times.

- \triangleright If C is a category, then a *subcategory* D of C consists of subcollections $D_0 \subseteq C_0$ and $D_1 \subseteq C_1$ such that:
 - ightharpoonup If $f: X \to Y$ is in D, then $X, Y \in D_0$.
 - ▶ If $f, g \in D_1$, then $g \circ f \in D_1$.
 - ▶ If $X \in D_0$, then $id_X \in D_1$.
- ▶ We say D is a full subcategory of C if the following also holds:
 - ▶ If $X, Y \in D_0$ and $f: X \to Y$ is in C, then $f \in D_1$.
- ▶ We have the category of finite sets Finset is a full subcategory of Set.
- ▶ The *opposite category* C^{op} of C is the category with the same objects but $f^{op}: X \to Y$ is in C^{op} iff $f: Y \to X$ is in C.
- \triangleright Given two categories C, D, we can form their *product category* $\mathsf{C} \times \mathsf{D}$.
- ▶ If C is a category and S is a set, then $C^S = \prod_{s \in S} C$ is the *product category* of C with itself S many times.

- \triangleright If C is a category, then a *subcategory* D of C consists of subcollections $D_0 \subseteq C_0$ and $D_1 \subseteq C_1$ such that:
 - ▶ If $f: X \to Y$ is in D, then $X, Y \in D_0$.
 - ▶ If $f, g \in D_1$, then $g \circ f \in D_1$.
 - ▶ If $X \in D_0$, then $id_X \in D_1$.
- ▶ We say D is a full subcategory of C if the following also holds:
 - ▶ If $X, Y \in D_0$ and $f: X \to Y$ is in C, then $f \in D_1$.
- ▶ We have the category of finite sets Finset is a full subcategory of Set.
- ▶ The *opposite category* C^{op} of C is the category with the same objects but $f^{op}: X \to Y$ is in C^{op} iff $f: Y \to X$ is in C.
- \triangleright Given two categories C, D, we can form their *product category* C \times D.
- ▷ If C is a category and S is a set, then $C^S = \prod_{s \in S} C$ is the *product category* of C with itself S many times.

- \triangleright If C is a category, then a *subcategory* D of C consists of subcollections $D_0 \subseteq C_0$ and $D_1 \subseteq C_1$ such that:
 - ▶ If $f: X \to Y$ is in D, then $X, Y \in D_0$.
 - ightharpoonup If $f,g\in D_1$, then $g\circ f\in D_1$.
 - ▶ If $X \in D_0$, then $id_X \in D_1$.
- ▶ We say D is a full subcategory of C if the following also holds:
 - ▶ If $X, Y \in D_0$ and $f: X \to Y$ is in C, then $f \in D_1$.
- ▶ We have the category of finite sets Finset is a full subcategory of Set.
- ▶ The *opposite category* C^{op} of C is the category with the same objects but $f^{op}: X \to Y$ is in C^{op} iff $f: Y \to X$ is in C.
- \triangleright Given two categories C, D, we can form their *product category* C \times D.
- ▷ If C is a category and S is a set, then $C^S = \prod_{s \in S} C$ is the *product category* of C with itself S many times.

Let C be a category and $f: X \to Y$ be an arrow.

- \triangleright We say f is an *isomorphism* if there exists a unique arrow $g:Y\to X$ such that $g\circ f=\operatorname{id}_X$ and $f\circ g=\operatorname{id}_Y$.
- ▶ We say f is a monomorphism (or monic) if for every parallel pair of arrows $g, h : Z \rightrightarrows X$,

$$Z \xrightarrow{g \atop h} X \xrightarrow{f} Y. \qquad f \circ g = f \circ h \Rightarrow g = h$$

 \triangleright We say f is an *epimorphism* (or *epic*) if for every parallel pair of arrows $g, h: Y \rightrightarrows Z$,

$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$
 $g \circ f = h \circ f \Rightarrow g = h.$

Let C be a category and $f: X \to Y$ be an arrow.

- ho We say f is an *isomorphism* if there exists a unique arrow $g:Y\to X$ such that $g\circ f=\operatorname{id}_X$ and $f\circ g=\operatorname{id}_Y$.
- ▶ We say f is a *monomorphism* (or *monic*) if for every parallel pair of arrows $g, h : Z \rightrightarrows X$,

$$Z \xrightarrow{g \atop h} X \xrightarrow{f} Y.$$
 $f \circ g = f \circ h \Rightarrow g = h.$

▶ We say f is an *epimorphism* (or *epic*) if for every parallel pair of arrows $g, h : Y \Rightarrow Z$,

$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$
 $g \circ f = h \circ f \Rightarrow g = h.$

Let C be a category and $f: X \to Y$ be an arrow.

- ho We say f is an *isomorphism* if there exists a unique arrow $g:Y\to X$ such that $g\circ f=\operatorname{id}_X$ and $f\circ g=\operatorname{id}_Y$.
- ▶ We say f is a *monomorphism* (or *monic*) if for every parallel pair of arrows $g, h : Z \rightrightarrows X$,

$$Z \xrightarrow{g \atop h} X \xrightarrow{f} Y.$$
 $f \circ g = f \circ h \Rightarrow g = h.$

▶ We say f is an *epimorphism* (or *epic*) if for every parallel pair of arrows $g, h : Y \Rightarrow Z$,

$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$
 $g \circ f = h \circ f \Rightarrow g = h.$

Let C be a category and $f: X \to Y$ be an arrow.

- ho We say f is an *isomorphism* if there exists a unique arrow $g:Y\to X$ such that $g\circ f=\mathrm{id}_X$ and $f\circ g=\mathrm{id}_Y$.
- ▶ We say f is a *monomorphism* (or *monic*) if for every parallel pair of arrows $g, h : Z \rightrightarrows X$,

$$Z \xrightarrow{g \atop h} X \xrightarrow{f} Y.$$
 $f \circ g = f \circ h \Rightarrow g = h.$

▶ We say f is an *epimorphism* (or *epic*) if for every parallel pair of arrows $g, h : Y \rightrightarrows Z$,

$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$
 $g \circ f = h \circ f \Rightarrow g = h.$

Let C be a category and $f: X \to Y$ be an arrow.

- ho We say f is an *isomorphism* if there exists a unique arrow $g:Y\to X$ such that $g\circ f=\mathrm{id}_X$ and $f\circ g=\mathrm{id}_Y$.
- ▶ We say f is a *monomorphism* (or *monic*) if for every parallel pair of arrows $g, h : Z \rightrightarrows X$,

$$Z \xrightarrow{g \atop h} X \xrightarrow{f} Y.$$
 $f \circ g = f \circ h \Rightarrow g = h.$

▶ We say f is an *epimorphism* (or *epic*) if for every parallel pair of arrows $g, h : Y \rightrightarrows Z$,

$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$
 $g \circ f = h \circ f \Rightarrow g = h.$

Functors

- ▷ Let C and D be categories. A *(covariant) functor* $F : C \to D$ is a morphism consisting of the following data:
 - ▶ for each object $X \in C_0$ there is an object $F(C) \in D_0$,
 - ▷ for each morphism $f: X \to Y \in C_1$, there is an arrow $F(f): F(X) \to F(Y) \in D_1$.
- ▷ The morphism F is required to satisfy the following axioms:
 - ▶ For any composable pair $f, g \in C_1$, we have $F(g) \circ F(f) = F(g \circ f)$.
 - \triangleright For each object $X \in C_0$, we have $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$.

Functors

- ▶ Let C and D be categories. A *(covariant) functor* $F : C \to D$ is a morphism consisting of the following data:
 - ▶ for each object $X \in C_0$ there is an object $F(C) \in D_0$,
 - ▷ for each morphism $f: X \to Y \in C_1$, there is an arrow $F(f): F(X) \to F(Y) \in D_1$.
- \triangleright The morphism F is required to satisfy the following axioms:
 - ▶ For any composable pair $f, g \in C_1$, we have $F(g) \circ F(f) = F(g \circ f)$.
 - ightharpoonup For each object $X \in C_0$, we have $F(id_X) = id_{F(X)}$.

Examples of Functors

- \triangleright For each category C we have the *identity functor* $\mathrm{Id}_\mathsf{C}:\mathsf{C}\to\mathsf{C}.$
- ▶ If $Y \in D_0$, we have the *constant functor* $\hat{Y} : C \to F$ with $\hat{Y}(X) = Y$ and $\hat{Y}(f) = id_Y$.
- ightharpoonup There are forgetful functors $U: \mathsf{Grp} \to \mathsf{Set}$ and $U: \mathsf{Top} \to \mathsf{Set}$ that forgets the structure and sends an object to the underlying set.
- ightharpoonup The fundamental group is a functor $\pi_1: \mathsf{Top} \to \mathsf{Grp}$.

Examples of Functors

- \triangleright For each category C we have the *identity functor* $\mathrm{Id}_{\mathsf{C}}:\mathsf{C}\to\mathsf{C}.$
- ▷ If $Y \in D_0$, we have the *constant functor* $\hat{Y} : C \to F$ with $\hat{Y}(X) = Y$ and $\hat{Y}(f) = id_Y$.
- ▶ There are forgetful functors U : Grp → Set and U : Top → Set that forgets the structure and sends an object to the underlying set.
- \triangleright The fundamental group is a functor π_1 : Top \rightarrow Grp.

Examples of Functors

- \triangleright For each category C we have the *identity functor* $\mathrm{Id}_{\mathsf{C}}:\mathsf{C}\to\mathsf{C}.$
- ▷ If $Y \in D_0$, we have the *constant functor* $\hat{Y} : C \to F$ with $\hat{Y}(X) = Y$ and $\hat{Y}(f) = id_Y$.
- ightharpoonup There are forgetful functors $U: \mathsf{Grp} \to \mathsf{Set}$ and $U: \mathsf{Top} \to \mathsf{Set}$ that forgets the structure and sends an object to the underlying set.
- \triangleright The fundamental group is a functor π_1 : Top \rightarrow Grp.

Examples of Functors

- \triangleright For each category C we have the *identity functor* $\mathrm{Id}_{\mathsf{C}}:\mathsf{C}\to\mathsf{C}.$
- ▷ If $Y \in D_0$, we have the *constant functor* $\hat{Y} : C \to F$ with $\hat{Y}(X) = Y$ and $\hat{Y}(f) = id_Y$.
- ightharpoonup There are forgetful functors $U: \mathsf{Grp} \to \mathsf{Set}$ and $U: \mathsf{Top} \to \mathsf{Set}$ that forgets the structure and sends an object to the underlying set.
- ightharpoonup The fundamental group is a functor $\pi_1: \mathsf{Top} \to \mathsf{Grp}$.

Natural Transformations

- ▷ Given categories C and D and functors $F, G : C \Rightarrow D$, a natural transformation $\alpha : F \Rightarrow G$ consists of:
 - ▶ For each object $X \in C$ an arrow $\alpha_X : F(X) \to G(X)$ in D, the collection of which define the *components* of α ,
 - so that, for any morphism $f: X \to Y$ in C, IFDC in D $F(X) \xrightarrow{\alpha_X} G(X)$ $F(f) \downarrow \qquad \qquad \downarrow G(f) \qquad \qquad G(f) \circ \alpha_X = \alpha_Y \circ F(f).$ $F(Y) \xrightarrow{\alpha_Y} G(Y)$
- ightharpoonup A natural isomorphism is a natural transformation $\alpha: F \Rightarrow G$ in which every component α_X is an isomorphism.

Natural Transformations

- \triangleright Given categories C and D and functors $F, G : C \Rightarrow D$, a natural transformation $\alpha : F \Rightarrow G$ consists of:
 - ▶ For each object $X \in C$ an arrow $\alpha_X : F(X) \to G(X)$ in D, the collection of which define the *components* of α ,
 - so that, for any morphism $f:X\to Y$ in C, TFDC in D

$$F(X) \xrightarrow{\alpha_X} G(X)$$
 $F(f) \downarrow \qquad \qquad \qquad G(f) \circ \alpha_X = \alpha_Y \circ F(f).$
 $F(Y) \xrightarrow{\alpha_Y} G(Y)$

 \triangleright A natural isomorphism is a natural transformation $\alpha: F \Rightarrow G$ in which every component α_X is an isomorphism.

Natural Transformations

- \triangleright Given categories C and D and functors $F, G : C \Rightarrow D$, a natural transformation $\alpha : F \Rightarrow G$ consists of:
 - ▶ For each object $X \in C$ an arrow $\alpha_X : F(X) \to G(X)$ in D, the collection of which define the *components* of α ,
 - so that, for any morphism $f:X\to Y$ in C, TFDC in D

$$F(X) \xrightarrow{\alpha_X} G(X)$$
 $F(f) \downarrow \qquad \qquad \qquad G(f) \circ \alpha_X = \alpha_Y \circ F(f).$
 $F(Y) \xrightarrow{\alpha_Y} G(Y)$

▷ A *natural isomorphism* is a natural transformation $\alpha : F \Rightarrow G$ in which every component α_X is an isomorphism.

Equivalence of Categories

ightharpoonup We say that a functor $F: C \to D$ is an *equivalence of* categories if there exists a functor $G: D \to C$ such that we have natural isomorphism

$$G \circ F \cong \mathrm{Id}_{\mathsf{C}}$$
 and $F \circ G \cong \mathrm{Id}_{\mathsf{D}}$.

Equivalence of Categories

 \triangleright We say that a functor $F: C \to D$ is an *equivalence of* categories if there exists a functor $G: D \to C$ such that we have natural isomorphism

$$G \circ F \cong \mathrm{Id}_{\mathsf{C}}$$
 and $F \circ G \cong \mathrm{Id}_{\mathsf{D}}$.

ightharpoonup Given two categories C and D, the *functor category* Fun(C, D) whose objects are functors $F: C \to D$ and whose morphisms are natural transformations.

Let $\ensuremath{\mathcal{T}}$ be a first-order theory.

We can construct the *syntactic category of* T, Syn(T), as follows:

- ▶ The objects of Syn(T) will be the formulae $\phi(\overline{x})$ of the language of T (which we will denote by $[\phi(\overline{x})]$ to avoid confusion).
 - Intuitively, the collection of tuples \overline{x} satisfying ϕ .
- ▶ Let $[\phi(\overline{x})]$ and $[\psi(\overline{y})]$ be objects of $\mathsf{Syn}(\mathcal{T})$. Then a morphism from $[\phi(\overline{x})]$ to $[\psi(\overline{y})]$ will be an equivalence class of formulae $\theta(\overline{x},\overline{y})$ satisfying

$$T \vDash (\forall \overline{x}, \overline{y}.[\theta(\overline{x}, \overline{y}) \Rightarrow \phi(\overline{x}) \land \psi(\overline{y})] \land \forall \overline{x}.[\phi(\overline{x}) \Rightarrow \exists ! \overline{y}.\theta(\overline{x}, \overline{y})]),$$

where two formulae $\theta(\overline{x}, \overline{y}), \theta'(\overline{x}, \overline{y})$ equivalent if

$$T \vDash \forall \overline{x}, \overline{y}. [\theta(\overline{x}, \overline{y}) \Leftrightarrow \theta'(\overline{x}, \overline{y})].$$

Intuitively, T implies that θ defines the graph from \overline{x} satisfying ϕ to \overline{y} satisfying ψ .

Let T be a first-order theory.

We can construct the *syntactic category of* T, Syn(T), as follows:

- ▶ The objects of $\operatorname{Syn}(T)$ will be the formulae $\phi(\overline{x})$ of the language of T (which we will denote by $[\phi(\overline{x})]$ to avoid confusion).
 - Intuitively, the collection of tuples \overline{x} satisfying ϕ .
- ▶ Let $[\phi(\overline{x})]$ and $[\psi(\overline{y})]$ be objects of $\mathsf{Syn}(T)$. Then a morphism from $[\phi(\overline{x})]$ to $[\psi(\overline{y})]$ will be an equivalence class of formulae $\theta(\overline{x},\overline{y})$ satisfying

$$T \vDash (\forall \overline{x}, \overline{y}.[\theta(\overline{x}, \overline{y}) \Rightarrow \phi(\overline{x}) \land \psi(\overline{y})] \land \forall \overline{x}.[\phi(\overline{x}) \Rightarrow \exists ! \overline{y}.\theta(\overline{x}, \overline{y})]),$$

where two formulae $\theta(\overline{x},\overline{y}),\theta'(\overline{x},\overline{y})$ equivalent if

$$T \vDash \forall \overline{x}, \overline{y}. [\theta(\overline{x}, \overline{y}) \Leftrightarrow \theta'(\overline{x}, \overline{y})].$$

Intuitively, T implies that θ defines the graph from \overline{x} satisfying ϕ to \overline{y} satisfying ψ .

▶ Let $[\phi(\overline{x})]$ be an object of $\mathsf{Syn}(T)$ and $\bar{x'}$ be variables not appearing in $\phi(\overline{x})$. Then the morphism

$$[\phi(\overline{x})] \xrightarrow{[\phi(\overline{x}) \land (\overline{x} = \overline{x'})]} [\phi(\overline{x'})]$$

is the identity morphism for $[\phi(\overline{x})]$.

▷ Let $[\theta(\overline{x}, \overline{y})] : [\phi(\overline{x})] \to [\psi(\overline{y})]$ and $[\theta'(\overline{y}, \overline{z})] : [\psi(\overline{y})] \to [\gamma(\overline{z})]$ be morphisms in Syn(\mathcal{T}). Then their composition is $[\rho(\overline{x}, \overline{z})] = [\theta'(\overline{y}, \overline{z})] \circ [\theta(\overline{x}, \overline{y})]$, where

$$\rho(\overline{x},\overline{z}) := \exists \overline{y}. [\theta(\overline{x},\overline{y}) \land \theta'(\overline{y},\overline{z})].$$

▶ Let $[\phi(\overline{x})]$ be an object of $\mathsf{Syn}(T)$ and $\bar{x'}$ be variables not appearing in $\phi(\overline{x})$. Then the morphism

$$[\phi(\overline{x})] \xrightarrow{[\phi(\overline{x}) \land (\overline{x} = \overline{x'})]} [\phi(\overline{x'})]$$

is the identity morphism for $[\phi(\overline{x})]$.

$$\rho(\overline{x},\overline{z}) := \exists \overline{y}. [\theta(\overline{x},\overline{y}) \land \theta'(\overline{y},\overline{z})].$$

Examples of Syntactic Categories

- ▶ The category of definable sets Def(T) has, for each model $M \models T$:
 - ▶ For each formula $\phi(\overline{x})$ of T we have a *definable set* $M[\phi] = \{\overline{a} \in M^n : M \models \phi(\overline{a})\}.$
 - ▶ Each arrow $f: M[\phi] \to M[\psi]$ is *definable* by a formula $\theta(\overline{x}, \overline{y})$ with

$$M[\theta] = \left\{ (\overline{c}, \overline{d}) \in M^{n+m} : M \vDash \phi(\overline{c}) \text{ and } f(\overline{c}) = \overline{d} \right\}.$$

ightharpoonup For each category C (with sufficient structure) there exists a (typed) first-order theory $\mathcal{T}(C)$ such that C is equivalent to $\operatorname{Syn}(\mathcal{T}(C))$.

Examples of Syntactic Categories

- ▶ The *category of definable sets* Def(T) has, for each model $M \models T$:
 - ▶ For each formula $\phi(\overline{x})$ of T we have a *definable set* $M[\phi] = \{\overline{a} \in M^n : M \models \phi(\overline{a})\}.$
 - ▶ Each arrow $f: M[\phi] \to M[\psi]$ is *definable* by a formula $\theta(\overline{x}, \overline{y})$ with

$$M[\theta] = \left\{ (\overline{c}, \overline{d}) \in M^{n+m} : M \vDash \phi(\overline{c}) \text{ and } f(\overline{c}) = \overline{d} \right\}.$$

Question

What structure do Set and Syn(T) have?

Given two sets X, Y, we can form the *Cartesian product* $X \times Y$, which comes with projection arrows $\pi: X \times Y \to X$, $\pi': X \times Y \to Y$.

In general, given X,Y in C the *product of* X *and* Y in C is $(X\times Y,\pi,\pi')$ such that

$$\pi \circ \beta = f$$
 and $\pi' \circ \beta = g$

Given two sets X, Y, we can form the *Cartesian product* $X \times Y$, which comes with projection arrows $\pi: X \times Y \to X$, $\pi': X \times Y \to Y$. In general, given X, Y in C the *product of* X *and* Y in C is $(X \times Y, \pi, \pi')$ such that

$$\pi \circ \beta = f$$
 and $\pi' \circ \beta = g$

Given two sets X, Y, we can form the *Cartesian product* $X \times Y$, which comes with projection arrows $\pi: X \times Y \to X$, $\pi': X \times Y \to Y$. In general, given X, Y in C the *product of* X *and* Y in C is $(X \times Y, \pi, \pi')$ such that

 $\pi \circ \beta = f$ and $\pi' \circ \beta = g$

Given two sets X, Y, we can form the *Cartesian product* $X \times Y$, which comes with projection arrows $\pi: X \times Y \to X$, $\pi': X \times Y \to Y$. In general, given X, Y in C the *product of* X *and* Y in C is $(X \times Y, \pi, \pi')$ such that

 $\pi \circ \beta = f$ and $\pi' \circ \beta = g$

Given two sets X,Y, we can form the *Cartesian product* $X\times Y$, which comes with projection arrows $\pi:X\times Y\to X$, $\pi':X\times Y\to Y$. In general, given X,Y in C the *product of* X *and* Y in C is $(X\times Y,\pi,\pi')$ such that

$$\pi \circ \beta = f$$
 and $\pi' \circ \beta = g$

Given two sets X,Y, we can form the *Cartesian product* $X\times Y$, which comes with projection arrows $\pi:X\times Y\to X$, $\pi':X\times Y\to Y$. In general, given X,Y in C the *product of* X *and* Y in C is $(X\times Y,\pi,\pi')$ such that

 $\pi\circ eta=f$ and $\pi'\circ eta=g$

We have that any singleton set $\{*\}$ is such that for any other set X, there is a unique arrow

$$1_X: X \to \{*\} :: 1_X(x) = *.$$

In general, a *terminal object* in C is an object 1 such that

$$X \xrightarrow[\exists 1]{\mathcal{P}} 1.$$

We have that any singleton set $\{*\}$ is such that for any other set X, there is a unique arrow

$$1_X: X \to \{*\} :: 1_X(x) = *.$$

In general, a terminal object in C is an object 1 such that

$$X \longrightarrow \frac{\beta}{\exists !} \rightarrow 1.$$

We have that any singleton set $\{*\}$ is such that for any other set X, there is a unique arrow

$$1_X: X \to \{*\} :: 1_X(x) = *.$$

In general, a terminal object in C is an object 1 such that

$$X \longrightarrow \frac{\beta}{\exists !} \rightarrow 1.$$

We have that any singleton set $\{*\}$ is such that for any other set X, there is a unique arrow

$$1_X: X \to \{*\} :: 1_X(x) = *.$$

In general, a terminal object in C is an object 1 such that

$$X \xrightarrow{\beta} 1.$$

We have that any singleton set $\{*\}$ is such that for any other set X, there is a unique arrow

$$1_X: X \to \{*\} :: 1_X(x) = *.$$

In general, a terminal object in C is an object 1 such that

$$X \xrightarrow{\beta} 1.$$

Let $f: X \to Z$ and $g: Y \to Z$ be set functions. Then we have a subset of $X \times Y$ (with projections) known as the *fibered product* defined as follows:

$$X \times_Z Y = \{(x,y) \in X \times Y : f(x) = g(y)\}.$$

In general, given f:X o Z, g:Y o Z, we define their *pullback* to be $(X imes_ZY,f',g')$ such that

$$g \circ f' = f \circ g'$$
 $g \circ \lambda' = f \circ \lambda$
 $g' \circ \beta = \lambda$ and $f' \circ \beta = \lambda'$.

Let $f: X \to Z$ and $g: Y \to Z$ be set functions. Then we have a subset of $X \times Y$ (with projections) known as the *fibered product* defined as follows:

$$X \times_Z Y = \{(x,y) \in X \times Y : f(x) = g(y)\}.$$

In general, given $f: X \to Z$, $g: Y \to Z$, we define their *pullback* to be $(X \times_Z Y, f', g')$ such that

Let $f: X \to Z$ and $g: Y \to Z$ be set functions. Then we have a subset of $X \times Y$ (with projections) known as the *fibered product* defined as follows:

$$X \times_Z Y = \{(x,y) \in X \times Y : f(x) = g(y)\}.$$

In general, given $f: X \to Z$, $g: Y \to Z$, we define their *pullback* to be $(X \times_Z Y, f', g')$ such that

Let $f: X \to Z$ and $g: Y \to Z$ be set functions. Then we have a subset of $X \times Y$ (with projections) known as the *fibered product* defined as follows:

$$X \times_Z Y = \{(x,y) \in X \times Y : f(x) = g(y)\}.$$

In general, given $f: X \to Z$, $g: Y \to Z$, we define their *pullback* to be $(X \times_Z Y, f', g')$ such that

$$g\circ f'=f\circ g'$$
 $g\circ \lambda'=f\circ \lambda$
 $g'\circ \beta=\lambda$ and $f'\circ \beta=\lambda'$

Let $f: X \to Z$ and $g: Y \to Z$ be set functions. Then we have a subset of $X \times Y$ (with projections) known as the *fibered product* defined as follows:

$$X \times_Z Y = \{(x,y) \in X \times Y : f(x) = g(y)\}.$$

In general, given $f: X \to Z$, $g: Y \to Z$, we define their *pullback* to be $(X \times_Z Y, f', g')$ such that

$$g \circ f' = f \circ g'$$
 $g \circ \lambda' = f \circ \lambda$
 $g' \circ \beta = \lambda \text{ and } f' \circ \beta = \lambda'.$

Let $f: X \to Z$ and $g: Y \to Z$ be set functions. Then we have a subset of $X \times Y$ (with projections) known as the *fibered product* defined as follows:

$$X \times_Z Y = \{(x,y) \in X \times Y : f(x) = g(y)\}.$$

In general, given $f: X \to Z$, $g: Y \to Z$, we define their *pullback* to be $(X \times_Z Y, f', g')$ such that

In Syn(
$$\mathcal{T}$$
), the pullback of $[\theta(\overline{x}, \overline{z})]$ and $[\theta'(\overline{y}, \overline{z})]$ is $[\rho(\overline{x}, \overline{y})] := \exists \overline{z}. (\theta(\overline{x}, \overline{z}) \land \theta'(\overline{y}, \overline{z})).$

- ightharpoonup A diagram of shape J in a category C is a functor $D: J \rightarrow C$.
- ▶ The diagrams for product, terminal object, and pullback were

 $hd A \ \textit{limit of } D \ \text{is a natural transformation} \ \lambda : \widehat{\lim}_{\mathbb{T}} \widehat{D} \Rightarrow D \ \text{such}$ that

$$\lambda_K = D(f) \circ \lambda_J$$
 $\pi_K = D(f) \circ \pi_J$
 $\forall J \in J_0$
 $\pi_J = \lambda_J \circ \beta$.

- \triangleright A *diagram* of *shape* J in a category C is a functor $D: J \rightarrow C$.
- Delta The diagrams for product, terminal object, and pullback were

 $ightharpoonup A \ limit \ of \ D$ is a natural transformation $\lambda: \lim_{\mathbb{T}} D \Rightarrow D$ such that

$$\lambda_K = D(f) \circ \lambda_J$$
 $\pi_K = D(f) \circ \pi_J$
 $\forall J \in J_0$
 $\pi_J = \lambda_J \circ \beta$.

- ightharpoonup A diagram of shape J in a category C is a functor $D: J \rightarrow C$.
- The diagrams for product, terminal object, and pullback were

ho A *limit of* D is a natural transformation λ : $\bar{\lim}_{J} \bar{D} \Rightarrow D$ such that

$$\lambda_{K} = D(f) \circ \lambda_{J}$$

$$\pi_{K} = D(f) \circ \pi_{J}$$

$$\forall J \in J_{0}$$

$$\pi_{J} = \lambda_{J} \circ \beta.$$

- ightharpoonup A diagram of shape J in a category C is a functor $D: J \rightarrow C$.
- ▷ The diagrams for product, terminal object, and pullback were

ho A $\it limit of D$ is a natural transformation λ : $label{lim_J} \tilde{D} \Rightarrow D$ such that

$$egin{aligned} &\lambda_{\mathcal{K}} {=} D(f) \circ \lambda_{J} \ &\pi_{\mathcal{K}} = D(f) \circ \pi_{J} \ &orall_{J} \in \mathbb{J}_{0} \ &\pi_{J} = \lambda_{J} \circ eta. \end{aligned}$$

- ightharpoonup A diagram of shape J in a category C is a functor $D: J \rightarrow C$.
- ▷ The diagrams for product, terminal object, and pullback were

ho A $\it limit of D$ is a natural transformation $\lambda: \bar{\lim}_{\mathbb{J}} \bar{D} \Rightarrow D$ such that

$$\lambda_{K} = D(f) \circ \lambda_{J}$$
 $\pi_{K} = D(f) \circ \pi_{J}$
 $\forall J \in J_{0}$
 $\pi_{J} = \lambda_{J} \circ \beta$.

Finite Limits

- \triangleright A diagram $D: J \rightarrow C$ is said to be *finite* if J is finite, that is, J has a finite number of morphisms.
- We say a category C has finite limits if it has a limit for every finite diagram.
- A category has finite limits if it has pullbacks for every pair of arrows and a terminal object.
- ▶ Both Set and Syn(T) have finite limits.

Finite Limits

- \triangleright A diagram $D: J \rightarrow C$ is said to be *finite* if J is finite, that is, J has a finite number of morphisms.
- ▶ We say a category C has *finite limits* if it has a limit for every finite diagram.
- A category has finite limits if it has pullbacks for every pair of arrows and a terminal object.
- ▶ Both Set and Syn(T) have finite limits.

Finite Limits

- \triangleright A diagram $D: J \rightarrow C$ is said to be *finite* if J is finite, that is, J has a finite number of morphisms.
- ▶ We say a category C has *finite limits* if it has a limit for every finite diagram.
- A category has finite limits if it has *pullbacks* for every pair of arrows and a *terminal object*.
- ▷ Both Set and Syn(T) have finite limits.

Finite Limits

- \triangleright A diagram $D: J \rightarrow C$ is said to be *finite* if J is finite, that is, J has a finite number of morphisms.
- ▶ We say a category C has *finite limits* if it has a limit for every finite diagram.
- A category has finite limits if it has *pullbacks* for every pair of arrows and a *terminal object*.
- ▶ Both Set and Syn(T) have finite limits.

Let $D: J \to C$ be a diagram.

A *colimit of* D is a natural transformation $\lambda:D\Rightarrow \mathsf{colim}_{\mathsf{J}}D$ such that

$$\lambda_{J} = \lambda_{K} \circ D(f)$$

$$\pi_{J} = \pi_{K} \circ D(f)$$

$$\forall J \in J_{0}$$

$$\pi_{J} = \beta \circ \lambda_{J}.$$

- ▷ Coporducts: Disjoint unions
- ▶ Initial object: ∅
- ▷ Pushouts: Quotient of a disjoint union

Let $D: J \to C$ be a diagram.

A *colimit of* D is a natural transformation $\lambda:D\Rightarrow\operatorname{colim}_{\mathsf{J}}D$ such that

$$\lambda_{J} = \lambda_{K} \circ D(f)$$

$$\pi_{J} = \pi_{K} \circ D(f)$$

$$\forall J \in J_{0}$$

$$\pi_{J} = \beta \circ \lambda_{J}.$$

- ▷ Coporducts: Disjoint unions
- ▷ Initial object: (
- ▶ Pushouts: Quotient of a disjoint union

Let $D: J \to C$ be a diagram.

A *colimit of* D is a natural transformation $\lambda:D\Rightarrow\operatorname{colim}_{\operatorname{J}}D$ such that

$$\lambda_{J} = \lambda_{K} \circ D(f)$$
 $\pi_{J} = \pi_{K} \circ D(f)$
 $\forall J \in J_{0}$
 $\pi_{J} = \beta \circ \lambda_{J}$.

- ▷ Initial object: (
- Pushouts: Quotient of a disjoint union

Let $D: J \to C$ be a diagram.

A *colimit of* D is a natural transformation $\lambda:D\Rightarrow\operatorname{colim}_{\operatorname{J}}D$ such that

$$\lambda_J = \lambda_K \circ D(f)$$
 $\pi_J = \pi_K \circ D(f)$
 $\forall J \in J_0$
 $\pi_J = \beta \circ \lambda_J.$

- ▷ Initial object: (
- Pushouts: Quotient of a disjoint union

Let $D: J \to C$ be a diagram.

A *colimit of* D is a natural transformation $\lambda:D\Rightarrow\operatorname{colim}_{\operatorname{J}}D$ such that

$$\lambda_J = \lambda_K \circ D(f)$$
 $\pi_J = \pi_K \circ D(f)$
 $\forall J \in J_0$
 $\pi_J = \beta \circ \lambda_J.$

In Set, we have

▶ Coporducts: Disjoint unions

▷ Initial object: ∅

▶ Pushouts: Quotient of a disjoint union.

- ▷ A category J is said to be filtered if
 - ▶ There exists an object in J.
 - ▶ For every pair of objects $X, Y \in J_0$, there exists an object $Z \in J_0$ and a pair of morphisms

$$X \longrightarrow Z \longleftarrow Y$$
.

▶ For every parallel pair of morphism $f, g: X \Longrightarrow Y$ in J, there exists a morphism $h: Y \to Z$ such that

$$X \xrightarrow{f} Y \xrightarrow{h} Z \qquad h \circ f = h \circ g.$$

A filtered category is to be thought of as a categorification of a directed set.

- ▷ A category J is said to be filtered if
 - ▶ There exists an object in J.
 - ▶ For every pair of objects $X, Y \in J_0$, there exists an object $Z \in J_0$ and a pair of morphisms

$$X \longrightarrow Z \longleftarrow Y$$
.

 \triangleright For every parallel pair of morphism $f,g:X\rightrightarrows Y$ in J, there exists a morphism $h:Y\to Z$ such that

$$X \xrightarrow{f} Y \xrightarrow{h} Z \qquad h \circ f = h \circ g.$$

A filtered category is to be thought of as a categorification of a directed set.

- ▷ A category J is said to be *filtered* if
 - ▶ There exists an object in J.
 - ▶ For every pair of objects $X, Y \in J_0$, there exists an object $Z \in J_0$ and a pair of morphisms

$$X \longrightarrow Z \longleftarrow Y$$
.

▶ For every parallel pair of morphism $f, g: X \Longrightarrow Y$ in J, there exists a morphism $h: Y \to Z$ such that

$$X \xrightarrow{f} Y \xrightarrow{h} Z$$

$$h \circ f = h \circ g$$
.

A filtered category is to be thought of as a categorification of a directed set.

- ▷ A category J is said to be *filtered* if
 - ▶ There exists an object in J.
 - ▶ For every pair of objects $X, Y \in J_0$, there exists an object $Z \in J_0$ and a pair of morphisms

$$X \longrightarrow Z \longleftarrow Y$$
.

▶ For every parallel pair of morphism $f, g: X \Longrightarrow Y$ in J, there exists a morphism $h: Y \to Z$ such that

$$X \xrightarrow{f} Y \xrightarrow{h} Z$$
 $h \circ f = h \circ g.$

▷ A filtered category is to be thought of as a categorification of a directed set.

- Any ultrafilter $\overline{\mathcal{U}}$ on a set S is a poset (which can be regarded as a category).
- ightharpoonup Then $\mathcal{U}^{\mathrm{op}}$ is a directed poset (since \mathcal{U} has is closed under intersections) and is a filtered category.
- hd A diagram D: J o C is called a *filtered diagram* if J is filtered.
- A colimit of a filtered diagram is called a filtered colimit
- ▶ Then the ultraproduct of $\{M_s\}_{s \in S}$ is defined to be the filtered colimit of the product $\prod_{s \in S} M_s$:

$$\left(\prod_{s \in S} M_s\right) / \mathcal{U} = \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} M_s.$$

- \triangleright Any ultrafilter \mathcal{U} on a set S is a poset (which can be regarded as a category).
- ightharpoonup Then $\mathcal{U}^{\mathrm{op}}$ is a directed poset (since \mathcal{U} has is closed under intersections) and is a filtered category.
- hd A diagram D: J o C is called a *filtered diagram* if J is filtered
- A colimit of a filtered diagram is called a filtered colimit
- ▶ Then the ultraproduct of $\{M_s\}_{s \in S}$ is defined to be the filtered colimit of the product $\prod_{s \in S} M_s$:

$$\left(\prod_{s\in S} M_s\right)/\mathcal{U} = \operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}} \prod_{s\in S_0} M_s.$$

- \triangleright Any ultrafilter \mathcal{U} on a set S is a poset (which can be regarded as a category).
- ightharpoonup Then $\mathcal{U}^{\mathrm{op}}$ is a directed poset (since \mathcal{U} has is closed under intersections) and is a filtered category.
- ightharpoonup A diagram $D: J \rightarrow C$ is called a *filtered diagram* if J is filtered.
- A colimit of a filtered diagram is called a filtered colimit
- ▶ Then the ultraproduct of $\{M_s\}_{s \in S}$ is defined to be the filtered colimit of the product $\prod_{s \in S} M_s$:

$$\left(\prod_{s\in S} M_s\right)/\mathcal{U} = \underset{S_0\in\mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s\in S_0} M_s.$$

- \triangleright Any ultrafilter \mathcal{U} on a set S is a poset (which can be regarded as a category).
- ightharpoonup Then $\mathcal{U}^{\mathrm{op}}$ is a directed poset (since \mathcal{U} has is closed under intersections) and is a filtered category.
- ightharpoonup A diagram $D: J \rightarrow C$ is called a *filtered diagram* if J is filtered.
- ▷ A colimit of a filtered diagram is called a filtered colimit.
- ▶ Then the ultraproduct of $\{M_s\}_{s \in S}$ is defined to be the filtered colimit of the product $\prod_{s \in S} M_s$:

$$\left(\prod_{s \in S} M_s\right)/\mathcal{U} = \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} M_s.$$

- \triangleright Any ultrafilter \mathcal{U} on a set S is a poset (which can be regarded as a category).
- ightharpoonup Then $\mathcal{U}^{\mathrm{op}}$ is a directed poset (since \mathcal{U} has is closed under intersections) and is a filtered category.
- ightharpoonup A diagram $D: J \rightarrow C$ is called a *filtered diagram* if J is filtered.
- ▶ A colimit of a filtered diagram is called a *filtered colimit*.
- ▶ Then the ultraproduct of $\{M_s\}_{s \in S}$ is defined to be the filtered colimit of the product $\prod_{s \in S} M_s$:

$$\left(\prod_{s\in S}M_s\right)/\mathcal{U}=\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}M_s.$$

Categorical Ultraproduct

Let C^+ be a category and let $C \subseteq C^+$ be a full subcategory. We say that C has ultraproducts in C^+ if the following conditions are satisfied:

- ▶ For every collection $\{M_s\}_{s \in S}$ of objects of C indexed by S, there exists a product $\prod_{s \in S} M_s$ in the category C⁺.
- ▶ For every collection $\{M_s\}_{s \in S}$ of objects of C indexed by S and every ultrafilter \mathcal{U} on S, the diagram

$$D: \mathcal{U}^{\mathrm{op}} \to \mathsf{C}^+ :: (S_0 \in \mathcal{U}^{\mathrm{op}}) \mapsto \left(\prod_{s \in S_0} M_s\right)$$

admits a colimit (in the category C^+) which belongs to the subcategory $C \subseteq C^+$.

In this case, we denote this colimit by $\operatorname{colim}_{S_0 \in \mathcal{U}^{\operatorname{op}}} \prod_{s \in S_0} M_s$ and refer to it as the *categorical ultraproduct of* $\{M_s\}_{s \in S}$ wrt \mathcal{U}

Categorical Ultraproduct

Let C^+ be a category and let $C \subseteq C^+$ be a full subcategory. We say that C has ultraproducts in C^+ if the following conditions are satisfied:

- ▶ For every collection $\{M_s\}_{s \in S}$ of objects of C indexed by S, there exists a product $\prod_{s \in S} M_s$ in the category C⁺.
- ▶ For every collection $\{M_s\}_{s \in S}$ of objects of C indexed by S and every ultrafilter \mathcal{U} on S, the diagram

$$D: \mathcal{U}^{\mathrm{op}} o \mathsf{C}^+ :: (\mathcal{S}_0 \in \mathcal{U}^{\mathrm{op}}) \mapsto \left(\prod_{s \in \mathcal{S}_0} \mathcal{M}_s\right)$$

admits a colimit (in the category C^+) which belongs to the subcategory $C \subseteq C^+$.

In this case, we denote this colimit by $\operatorname{colim}_{S_0 \in \mathcal{U}^{\operatorname{op}}} \prod_{s \in S_0} M_s$ and refer to it as the *categorical ultraproduct of* $\{M_s\}_{s \in S}$ w.r.t. \mathcal{U} .

Categorical Ultraproduct

Let C^+ be a category and let $C \subseteq C^+$ be a full subcategory. We say that C has ultraproducts in C^+ if the following conditions are satisfied:

- ▶ For every collection $\{M_s\}_{s \in S}$ of objects of C indexed by S, there exists a product $\prod_{s \in S} M_s$ in the category C⁺.
- ▶ For every collection $\{M_s\}_{s \in S}$ of objects of C indexed by S and every ultrafilter \mathcal{U} on S, the diagram

$$D: \mathcal{U}^{\mathrm{op}} o \mathsf{C}^+ :: (\mathcal{S}_0 \in \mathcal{U}^{\mathrm{op}}) \mapsto \left(\prod_{s \in \mathcal{S}_0} \mathcal{M}_s\right)$$

admits a colimit (in the category C^+) which belongs to the subcategory $C \subseteq C^+$.

In this case, we denote this colimit by $\operatorname{colim}_{S_0 \in \mathcal{U}^{\operatorname{op}}} \prod_{s \in S_0} M_s$ and refer to it as the *categorical ultraproduct of* $\{M_s\}_{s \in S}$ *w.r.t.* \mathcal{U} .

Ultraproduct Maps

▶ For each $S_0 \in \mathcal{U}$, we have a *quotient map* given by the colimit above:

$$q_{\mathcal{U}}^{S_0}:\prod_{s\in S_0}M_s o \operatornamewithlimits{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}M_s.$$

ho Given a collection of functions $\{f_s:M_s o N_s\}_{s\in S}$ in C, we let

$$\underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} f_s : \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} M_s \to \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} N_s$$

denote the unique map in C such that for each $S_0 \in \mathcal{U}$, TFDC in C^+ :

$$\prod_{s \in S_0} M_s \xrightarrow{q_{\mathcal{U}}^{S_0}} \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} M_s$$

$$\prod_{s \in S_0} f_s \downarrow \qquad \qquad \downarrow \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} f_s \qquad \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} f_s \circ q_{\mathcal{U}}^{S_0} = q_{\mathcal{U}}^{S_0} \circ \prod_{s \in S_0} f_s$$

$$\prod_{s \in S_0} N_s \xrightarrow{q_{\mathcal{U}}^{S_0}} \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} N_s$$

Ultraproduct Maps

 \triangleright For each $S_0 \in \mathcal{U}$, we have a *quotient map* given by the colimit above:

$$q_{\mathcal{U}}^{\mathcal{S}_0}:\prod_{s\in\mathcal{S}_0}M_s o \operatornamewithlimits{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in\mathcal{S}_0}M_s$$

 $q_{\mathcal{U}}^{S_0}: \prod_{s\in S_0} M_s \to \operatornamewithlimits{colim}_{S_0\in \mathcal{U}^{\operatorname{op}}} \prod_{s\in S_0} M_s.$ Given a collection of functions $\{f_s: M_s \to N_s\}_{s\in S}$ in C, we let

$$\underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} f_s : \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} M_s \to \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} N_s$$

denote the unique map in C such that for each $S_0 \in \mathcal{U}$, TFDC

$$\prod_{s \in S_0} M_s \xrightarrow{q_{\mathcal{U}}^{S_0}} \underset{s \in S_0}{\operatorname{colim}} \prod_{s \in S_0} M_s$$

$$\prod_{s \in S_0} f_s \downarrow \qquad \qquad \downarrow \underset{S_0 \in \mathcal{U}^{\operatorname{op}}}{\operatorname{colim}} \prod_{s \in S_0} f_s \qquad \underset{s \in S_0}{\operatorname{colim}} \prod_{s \in S_0} f_s \circ q_{\mathcal{U}}^{S_0} = q_{\mathcal{U}}^{S_0} \circ \prod_{s \in S_0} f_s$$

$$\prod_{s \in S_0} N_s \xrightarrow{q_{\mathcal{U}}^{S_0}} \underset{S_0 \in \mathcal{U}^{\operatorname{op}}}{\operatorname{colim}} \prod_{s \in S_0} N_s$$

Ultraproduct Maps

 \triangleright For each $S_0 \in \mathcal{U}$, we have a *quotient map* given by the colimit above:

$$q_{\mathcal{U}}^{\mathcal{S}_0}:\prod_{s\in\mathcal{S}_0}M_s o \operatornamewithlimits{colim}_{\mathcal{S}_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in\mathcal{S}_0}M_s$$

 $q_{\mathcal{U}}^{S_0}: \prod_{s\in S_0} M_s \to \operatornamewithlimits{colim}_{S_0\in \mathcal{U}^{\operatorname{op}}} \prod_{s\in S_0} M_s.$ Given a collection of functions $\{f_s: M_s \to N_s\}_{s\in S}$ in C, we let

$$\underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} f_s : \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} M_s \to \underset{S_0 \in \mathcal{U}^{\mathrm{op}}}{\mathsf{colim}} \prod_{s \in S_0} N_s$$

denote the unique map in C such that for each $S_0 \in \mathcal{U}$, TFDC in C+:

$$\prod_{s \in S_0} M_s \xrightarrow{q_{\mathcal{U}}^{S_0}} \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} M_s$$

$$\prod_{s \in S_0} f_s \downarrow \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} f_s \qquad \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} f_s \qquad \underset{s \in S_0}{\text{colim}} \prod_{s \in S_0} f_s \circ q_{\mathcal{U}}^{S_0} = q_{\mathcal{U}}^{S_0} \circ \prod_{s \in S_0} f_s$$

$$\prod_{s \in S_0} N_s \xrightarrow{q_{\mathcal{U}}^{S_0}} \underset{S_0 \in \mathcal{U}^{\text{op}}}{\text{colim}} \prod_{s \in S_0} N_s$$

Ultraproduct Functor

▶ We have the ultraproduct functor

$$\begin{array}{c} \mathop{\mathsf{colim}}_{S_0 \in \mathcal{U}^{\mathrm{op}}} \prod_{s \in S_0} (\bullet) : \mathsf{C}^s \to \mathsf{C} \\ \\ \left\{ M_s \right\}_{s \in S} \mapsto \mathop{\mathsf{colim}}_{S_0 \in \mathcal{U}^{\mathrm{op}}} \prod_{s \in S_0} M_s \\ \\ \left\{ f_s \right\}_{s \in S} \mapsto \mathop{\mathsf{colim}}_{S_0 \in \mathcal{U}^{\mathrm{op}}} \prod_{s \in S_0} f_s. \end{array}$$

Question

- ▷ Set and Syn(T) have finite limits.
- What other structure do they have?

Question

- ▷ Set and Syn(T) have finite limits.
- ▶ What other structure do they have?

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrowtail X$, where

$$i_0 \sim i_1 \Leftrightarrow i_0 = i_1 \circ e$$

- We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▶ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}.(\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrowtail X$, where

$$i_0 \sim i_1 \Leftrightarrow i_0 = i_1 \circ e$$

- We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▷ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}.(\psi(\overline{x}) \Rightarrow \phi(\overline{x}))$.

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrow X$, where

$$i_0 \sim i_1 \Leftrightarrow i_0 = i_1 \circ e$$

- We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▶ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}.(\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrowtail X$, where

$$i_0 \sim i_1 \Leftrightarrow i_0 = i_1 \circ e$$

- We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▷ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}.(\psi(\overline{x}) \Rightarrow \phi(\overline{x}))$.

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrowtail X$, where

$$i_0 \sim i_1 \Leftrightarrow i_0 = i_1 \circ e$$

- \triangleright We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▷ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}.(\psi(\overline{x}) \Rightarrow \phi(\overline{x}))$.

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrowtail X$, where

$$\textit{i}_0 \sim \textit{i}_1 \Leftrightarrow \textit{i}_0 = \textit{i}_1 \circ \textit{e}$$

- \triangleright We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▷ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}. (\psi(\overline{x}) \Rightarrow \phi(\overline{x}))$.

- \triangleright For any set X, we have a set $\mathcal{P}(X)$ of subsets of X.
- ▷ If X is an object in a category C, then a *subobject* is an equivalence class of monomorphisms $i_0: X_0 \rightarrowtail X$, where

$$i_0 \sim i_1 \Leftrightarrow i_0 = i_1 \circ e$$

- \triangleright We will usually refer to a subobject of X by its domain and assume that the monomorphism is supplied.
- \triangleright We denote by Sub(X) the set of subobjects of X.
- ▷ In Syn(T), a subobject of $[\phi(\overline{x})]$ has the form $[\psi(\overline{x})]$ which is such that $T \vDash \forall \overline{x}. (\psi(\overline{x}) \Rightarrow \phi(\overline{x})).$

- ightharpoonup We can define a partial order on $\operatorname{Sub}(X)$ by, for $X_0, X_1 \in \operatorname{Sub}(X)$, $X_0 \leq X_1$ if and only if there is a unique morphism $e: X_0 \to X_1$ such that $i_0 = i_1 \circ e$.
- ▷ In $\mathcal{P}(X)$, we have that $\emptyset \in \mathcal{P}(X)$ is the *least element* and for any two $X_0, X_1 \in \mathcal{P}(X)$ their union (*join*) $X_0 \cup X_1 \in \mathcal{P}(X)$.
- \triangleright We have that Sub(X) (in the categories Set and Syn(T)) is an *upper semilattice*, that is, it has a *least element* 0_X and *joins* $X_0 \lor X_1$.

- ightharpoonup We can define a partial order on $\operatorname{Sub}(X)$ by, for $X_0, X_1 \in \operatorname{Sub}(X)$, $X_0 \leq X_1$ if and only if there is a unique morphism $e: X_0 \to X_1$ such that $i_0 = i_1 \circ e$.
- ▷ In $\mathcal{P}(X)$, we have that $\emptyset \in \mathcal{P}(X)$ is the *least element* and for any two $X_0, X_1 \in \mathcal{P}(X)$ their union (*join*) $X_0 \cup X_1 \in \mathcal{P}(X)$.
- > We have that Sub(X) (in the categories Set and Syn(T)) is an upper semilattice, that is, it has a least element 0_X and joins X₀ ∨ X₁.

- \triangleright We can define a partial order on $\operatorname{Sub}(X)$ by, for $X_0, X_1 \in \operatorname{Sub}(X)$, $X_0 \leq X_1$ if and only if there is a unique morphism $e: X_0 \to X_1$ such that $i_0 = i_1 \circ e$.
- ▶ In $\mathcal{P}(X)$, we have that $\emptyset \in \mathcal{P}(X)$ is the *least element* and for any two $X_0, X_1 \in \mathcal{P}(X)$ their union (*join*) $X_0 \cup X_1 \in \mathcal{P}(X)$.
- \triangleright We have that Sub(X) (in the categories Set and Syn(T)) is an *upper semilattice*, that is, it has a *least element* 0_X and *joins* $X_0 \lor X_1$.

Subobjects

▷ If $f: X \to Y$ is a morphism in C, then the *inverse morphism* between Sub(Y) and Sub(X) is defined by

$$f^{-1}:\operatorname{Sub}(Y) o \operatorname{Sub}(X):: f^{-1}(Y_0) = X \times_Y Y_0$$

▶ We have that f^{-1} is a morphisms of upper semilattices if $f^{-1}(0_Y) = 0_X$ and $f^{-1}(Y_0 \vee Y_1) = f^{-1}(Y_0) \vee f^{-1}(Y_1)$.

Subobjects

▷ If $f: X \to Y$ is a morphism in C, then the *inverse morphism* between Sub(Y) and Sub(X) is defined by

$$f^{-1}:\operatorname{Sub}(Y) o \operatorname{Sub}(X):: f^{-1}(Y_0) = X \times_Y Y_0$$

 \triangleright We have that f^{-1} is a morphisms of upper semilattices if $f^{-1}(0_Y) = 0_X$ and $f^{-1}(Y_0 \vee Y_1) = f^{-1}(Y_0) \vee f^{-1}(Y_1)$.

ightharpoonup If f,g:X
ightrightharpoonup Y are a parallel pair of arrows in C, then their coequalizer is an object Q and arrow q:Y
ightarrow Q such that

$$q \circ f = q \circ g$$
$$k \circ f = k \circ g$$
$$k = \beta \circ q.$$

ightharpoonup Given a set X and an equivalence relation $R \subseteq X \times X$, the set of equivalence classes X/R with the quotient map $q:X \twoheadrightarrow X/R$ is the coequalizer of the projections $\pi,\pi':R \rightrightarrows X$.

▷ If $f, g: X \implies Y$ are a parallel pair of arrows in C, then their coequalizer is an object Q and arrow $q: Y \rightarrow Q$ such that

▷ Given a set X and an equivalence relation $R \subseteq X \times X$, the set of equivalence classes X/R with the quotient map $q:X \twoheadrightarrow X/R$ is the coequalizer of the projections $\pi.\pi':R \rightrightarrows X.$

 \triangleright If $f,g:X \Longrightarrow Y$ are a parallel pair of arrows in C, then their coequalizer is an object Q and arrow $q:Y \to Q$ such that

ightharpoonup Given a set X and an equivalence relation $R \subseteq X \times X$, the set of equivalence classes X/R with the quotient map $q:X \twoheadrightarrow X/R$ is the coequalizer of the projections $\pi,\pi':R \rightrightarrows X$.

▷ If $f, g: X \implies Y$ are a parallel pair of arrows in C, then their coequalizer is an object Q and arrow $q: Y \rightarrow Q$ such that

ightharpoonup Given a set X and an equivalence relation $R \subseteq X \times X$, the set of equivalence classes X/R with the quotient map $q:X \twoheadrightarrow X/R$ is the coequalizer of the projections $\pi,\pi':R \rightrightarrows X$.

ightharpoonup If f,g:X
ightharpoonup Y are a parallel pair of arrows in C, then their coequalizer is an object Q and arrow q:Y
ightharpoonup Q such that

ightharpoonup Given a set X and an equivalence relation $R\subseteq X\times X$, the set of equivalence classes X/R with the quotient map $q:X\twoheadrightarrow X/R$ is the coequalizer of the projections $\pi,\pi':R\rightrightarrows X.$

- ▷ Suppose $f: X \to Y$ is a surjection and let $R = \{(x_0, x_1) \in X \times X : f(x_0) = f(x_1)\}$ be an equivalence relation (notice that $R = X \times_Y X$).
- ▶ Then we have that Y = X/R, that is, Y is the coequalizer of the projection maps $\pi, \pi' : X \times_Y X \to X$.
- We say that a equivalence relation R is *effective* if it arises as the pullback $R = X \times_Y X$.
- ▶ Let C be a category which admits pullbacks, and suppose that $f: X \to Y$ is a morphism in C. Then f is an effective epimorphism if it exhibits Y as a coequalizer of the maps $\pi, \pi': X \times_Y X \rightrightarrows X$.
- ▶ Every effective epimorphism is an epimorphism (in Set the converse is true).

- ▷ Suppose $f: X \to Y$ is a surjection and let $R = \{(x_0, x_1) \in X \times X : f(x_0) = f(x_1)\}$ be an equivalence relation (notice that $R = X \times_Y X$).
- ▶ Then we have that Y = X/R, that is, Y is the coequalizer of the projection maps $\pi, \pi' : X \times_Y X \to X$.
- We say that a equivalence relation R is *effective* if it arises as the pullback $R = X \times_Y X$.
- Let C be a category which admits pullbacks, and suppose that f: X → Y is a morphism in C.
 Then f is an effective epimorphism if it exhibits Y as a coequalizer of the maps π, π': X × γ X ⇒ X.
- ▶ Every effective epimorphism is an epimorphism (in Set the converse is true).

- ▷ Suppose $f: X \to Y$ is a surjection and let $R = \{(x_0, x_1) \in X \times X : f(x_0) = f(x_1)\}$ be an equivalence relation (notice that $R = X \times_Y X$).
- ▶ Then we have that Y = X/R, that is, Y is the coequalizer of the projection maps $\pi, \pi' : X \times_Y X \to X$.
- \triangleright We say that a equivalence relation R is *effective* if it arises as the pullback $R = X \times_Y X$.
- Let C be a category which admits pullbacks, and suppose that
 f: X → Y is a morphism in C.
 Then f is an effective epimorphism if it exhibits Y as a
 coequalizer of the maps π, π': X × Y X ⇒ X.
- Every effective epimorphism is an epimorphism (in Set the converse is true).

- ▷ Suppose $f: X \to Y$ is a surjection and let $R = \{(x_0, x_1) \in X \times X : f(x_0) = f(x_1)\}$ be an equivalence relation (notice that $R = X \times_Y X$).
- ▶ Then we have that Y = X/R, that is, Y is the coequalizer of the projection maps $\pi, \pi' : X \times_Y X \to X$.
- \triangleright We say that a equivalence relation R is *effective* if it arises as the pullback $R = X \times_Y X$.
- Let C be a category which admits pullbacks, and suppose that f: X → Y is a morphism in C.
 Then f is an effective epimorphism if it exhibits Y as a coequalizer of the maps π, π': X ×_Y X ⇒ X.
- Every effective epimorphism is an epimorphism (in Set the converse is true).

- ▷ Suppose $f: X \to Y$ is a surjection and let $R = \{(x_0, x_1) \in X \times X : f(x_0) = f(x_1)\}$ be an equivalence relation (notice that $R = X \times_Y X$).
- ▶ Then we have that Y = X/R, that is, Y is the coequalizer of the projection maps $\pi, \pi' : X \times_Y X \to X$.
- \triangleright We say that a equivalence relation R is *effective* if it arises as the pullback $R = X \times_Y X$.
- Let C be a category which admits pullbacks, and suppose that f: X → Y is a morphism in C.
 Then f is an effective epimorphism if it exhibits Y as a coequalizer of the maps π, π': X ×_Y X ⇒ X.
- ▷ Every effective epimorphism is an epimorphism (in Set the converse is true).

▶ We say that the collection of effective epimorphisms in C is closed under pullbacks if, in C we have the following pullback square

$$X' \longrightarrow X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \longrightarrow Y,$$

if f is an effective epi, then f' is also an effective epi.

▶ Let $f: X \to Y$ be a set function. Then we can (uniquely) factor f into a surjection g and an injection h:

$$X \xrightarrow{g} \operatorname{im}(f) \xrightarrow{h} Y.$$

In general (that is in Set and Syn(T)), we generalize this factorization into an effective epimorphism and a monomorphism.

▶ We say that the collection of effective epimorphisms in C is closed under pullbacks if, in C we have the following pullback square

$$X' \longrightarrow X$$

$$f' \downarrow \qquad \qquad \downarrow t$$

$$Y' \longrightarrow Y,$$

if f is an effective epi, then f' is also an effective epi.

▶ Let $f: X \to Y$ be a set function. Then we can (uniquely) factor f into a surjection g and an injection h:

$$X \xrightarrow{g} \operatorname{im}(f) \xrightarrow{h} Y.$$

▷ In general (that is in Set and Syn(T)), we generalize this factorization into an effective epimorphism and a monomorphism.

▶ We say that the collection of effective epimorphisms in C is closed under pullbacks if, in C we have the following pullback square

$$X' \longrightarrow X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \longrightarrow Y,$$

if f is an effective epi, then f' is also an effective epi.

▶ Let $f: X \to Y$ be a set function. Then we can (uniquely) factor f into a surjection g and an injection h:

$$X \xrightarrow{g} \operatorname{im}(f) \xrightarrow{h} Y.$$

▷ In general (that is in Set and Syn(T)), we generalize this factorization into an effective epimorphism and a monomorphism.

Coherent Category

- ▷ A coherent category C is a category satisfying the axioms:
 - ▶ The category C has finite limits.
 - ▶ For every object $X \in C_0$, the poset Sub(X) is an upper semilattice.
 - ▶ For every morphism $f: X \to Y$ in C, the inverse map $f^{-1}: \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$ is a morphism of upper semilattices.
 - ▷ Every morphism $f: X \to Z$ in C can be written as a composition $X \stackrel{g}{\twoheadrightarrow} \operatorname{im}(f) \stackrel{h}{\rightarrowtail} Z$, where g is an effective epimorphism and h is a monomorphism.
 - ▶ The collection of effective epimorphisms in C is closed under pullbacks.
- \triangleright Set and Syn(T) are coherent categories.

Coherent Category

- ▷ A coherent category C is a category satisfying the axioms:
 - ▶ The category C has finite limits.
 - ▶ For every object $X \in C_0$, the poset Sub(X) is an upper semilattice.
 - ▶ For every morphism $f: X \to Y$ in C, the inverse map $f^{-1}: \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$ is a morphism of upper semilattices.
 - ▷ Every morphism $f: X \to Z$ in C can be written as a composition $X \stackrel{g}{\twoheadrightarrow} \operatorname{im}(f) \stackrel{h}{\rightarrowtail} Z$, where g is an effective epimorphism and h is a monomorphism.
 - ▶ The collection of effective epimorphisms in C is closed under pullbacks.
- \triangleright Set and Syn(T) are coherent categories.

- ▶ Let C and D be coherent categories. A functor $F : C \to D$ is a *coherent functor* if it satisfies the following:
 - ▶ F preserves finite limits.
 - ▶ F carries effective epimorphism in C to effective epimorphisms in D.
 - ▷ For every object $X \in C_0$ the induced map $Sub(X) \to Sub(F(X))$ is a homomorphism of upper semilattices.
- ▶ The composition of coherent functors is a coherent functor.
- \triangleright We let $Fun^{\mathrm{coh}}(C,D)$ denote the full subcategory of Fun(C,D) whose objects are coherent functors.

- ▶ Let C and D be coherent categories. A functor $F : C \to D$ is a *coherent functor* if it satisfies the following:
 - ▶ F preserves finite limits.
 - ▶ F carries effective epimorphism in C to effective epimorphisms in D.
 - ▷ For every object $X \in C_0$ the induced map $Sub(X) \to Sub(F(X))$ is a homomorphism of upper semilattices.
- ▶ The composition of coherent functors is a coherent functor.
- \triangleright We let $Fun^{coh}(C, D)$ denote the full subcategory of Fun(C, D) whose objects are coherent functors.

- ▶ Let C and D be coherent categories. A functor $F : C \to D$ is a *coherent functor* if it satisfies the following:
 - F preserves finite limits.
 - ▶ F carries effective epimorphism in C to effective epimorphisms in D.
 - ▷ For every object $X \in C_0$ the induced map $Sub(X) \to Sub(F(X))$ is a homomorphism of upper semilattices.
- ▶ The composition of coherent functors is a coherent functor.
- ightharpoonup We let $Fun^{\mathrm{coh}}(C,D)$ denote the full subcategory of Fun(C,D) whose objects are coherent functors.

- \triangleright For any first-order theory \mathcal{T} , we have the models of \mathcal{T} are exactly the coherent functors $\mathsf{Syn}(\mathcal{T}) \to \mathsf{Set}$.
- \triangleright In this case, we will say, for any coherent category C, the models of C are the coherent functors $M: C \rightarrow Set$.

$$\mathsf{Mod}(\mathsf{C}) = \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{Set})$$

- the category of models of C.
- $\, \, \triangleright \, \, \mathsf{Mod}(\mathsf{Syn}(\mathcal{T})) \, \, \mathsf{is equivalent to} \, \, \mathsf{Mod}(\mathcal{T}).$

- \triangleright For any first-order theory \mathcal{T} , we have the models of \mathcal{T} are exactly the coherent functors $\mathsf{Syn}(\mathcal{T}) \to \mathsf{Set}$.
- ▷ In this case, we will say, for any coherent category C, the models of C are the coherent functors $M: C \to Set$.

$$\mathsf{Mod}(\mathsf{C}) = \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{Set})$$

- the category of models of C.
- $\, \triangleright \, \mathsf{Mod}(\mathsf{Syn}(\,\mathcal{T})) \text{ is equivalent to } \mathsf{Mod}(\,\mathcal{T}).$

- \triangleright For any first-order theory \mathcal{T} , we have the models of \mathcal{T} are exactly the coherent functors $\mathsf{Syn}(\mathcal{T}) \to \mathsf{Set}$.
- ▷ In this case, we will say, for any coherent category C, the models of C are the coherent functors $M: C \to Set$.
- ▶ We denote by

$$\mathsf{Mod}(\mathsf{C}) = \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{Set})$$

the category of models of C.

 $\triangleright \operatorname{\mathsf{Mod}}(\operatorname{\mathsf{Syn}}(T))$ is equivalent to $\operatorname{\mathsf{Mod}}(T)$.

- \triangleright For any first-order theory \mathcal{T} , we have the models of \mathcal{T} are exactly the coherent functors $\mathsf{Syn}(\mathcal{T}) \to \mathsf{Set}$.
- ▷ In this case, we will say, for any coherent category C, the models of C are the coherent functors $M: C \to Set$.
- ▶ We denote by

$$\mathsf{Mod}(\mathsf{C}) = \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{Set})$$

the category of models of C.

 $\triangleright \operatorname{\mathsf{Mod}}(\operatorname{\mathsf{Syn}}(T))$ is equivalent to $\operatorname{\mathsf{Mod}}(T)$.

- \triangleright Consider two theories T and T' defined as follows:
 - ▶ The language of T has no symbols and T has a single axiom $\exists ! x.(x = x)$.
 - ▶ The language of T' has a single 1-ary relation R and a pair of axioms $\exists ! y.R(y)$ and $\exists ! z. \neg R(z)$.
- \triangleright We have that (up to isomorphism) \mathcal{T} and \mathcal{T}' have a single model, $M = \{x\}$ and $M' = \{y, z\}$.
- \triangleright So Mod(T) is equivalent to Mod(T').
- \triangleright But, Syn(T) is equivalent to the poset $\{0 \le 1\} = 2$ while Syn(T') is equivalent to Finset.
- ▶ The structure of a coherent category is not enough. We will want to preform a pretopos completion on the syntactic category.

- \triangleright Consider two theories T and T' defined as follows:
 - ▶ The language of T has no symbols and T has a single axiom $\exists ! x.(x = x)$.
 - ▶ The language of T' has a single 1-ary relation R and a pair of axioms $\exists! y.R(y)$ and $\exists! z. \neg R(z)$.
- ▶ We have that (up to isomorphism) T and T' have a single model, $M = \{x\}$ and $M' = \{y, z\}$.
- \triangleright So Mod(T) is equivalent to Mod(T')
- ho But, Syn(T) is equivalent to the poset $\{0 \le 1\} = 2$ while Syn(T') is equivalent to Finset.
- ▶ The structure of a coherent category is not enough. We will want to preform a pretopos completion on the syntactic category.

- \triangleright Consider two theories T and T' defined as follows:
 - ▶ The language of T has no symbols and T has a single axiom $\exists ! x.(x = x)$.
 - ▶ The language of T' has a single 1-ary relation R and a pair of axioms $\exists ! y.R(y)$ and $\exists ! z. \neg R(z)$.
- \triangleright We have that (up to isomorphism) T and T' have a single model, $M = \{x\}$ and $M' = \{y, z\}$.
- \triangleright So Mod(T) is equivalent to Mod(T').
- \triangleright But, Syn(T) is equivalent to the poset $\{0 \le 1\} = 2$ while Syn(T') is equivalent to Finset.
- □ The structure of a coherent category is not enough. We will
 want to preform a pretopos completion on the syntactic
 category.

- \triangleright Consider two theories T and T' defined as follows:
 - ▶ The language of T has no symbols and T has a single axiom $\exists!x.(x=x)$.
 - ▶ The language of T' has a single 1-ary relation R and a pair of axioms $\exists! y.R(y)$ and $\exists! z. \neg R(z)$.
- ▶ We have that (up to isomorphism) T and T' have a single model, $M = \{x\}$ and $M' = \{y, z\}$.
- \triangleright So Mod(T) is equivalent to Mod(T').
- ho But, Syn(T) is equivalent to the poset $\{0 \le 1\} = 2$ while Syn(T') is equivalent to Finset.
- □ The structure of a coherent category is not enough. We will
 want to preform a pretopos completion on the syntactic
 category.

- \triangleright Consider two theories T and T' defined as follows:
 - ▶ The language of T has no symbols and T has a single axiom $\exists ! x.(x = x)$.
 - ▶ The language of T' has a single 1-ary relation R and a pair of axioms $\exists ! y.R(y)$ and $\exists ! z. \neg R(z)$.
- We have that (up to isomorphism) T and T' have a single model, $M = \{x\}$ and $M' = \{y, z\}$.
- \triangleright So Mod(T) is equivalent to Mod(T').
- ho But, Syn(T) is equivalent to the poset $\{0 \le 1\} = 2$ while Syn(T') is equivalent to Finset.
- □ The structure of a coherent category is not enough. We will
 want to preform a pretopos completion on the syntactic
 category.

▷ Given two sets X, Y, we can form their disjoint union by creating isomorphic copies of X and Y:

$$X' = \{(x,0) : x \in X\}, \quad Y' = \{(y,1) : y \in Y\},$$

- This is the coproduct in Set.
- In general, coproducts are not "disjoint."
- If C is a category with pullbacks, then the coproduct X + Y of X, Y ∈ C₀ (if it exists) is disjoint if
 - ▶ The injection maps $i: X \to X + Y$, $i': Y \to X + Y$ are monomorphism.
 - ▶ The *intersection* (*meet*) $X \times_{X+Y} Y$ of X and Y is an initial object of C.
- ▷ In the case $X_0, X_1 \in \mathsf{Sub}(X)$ such that $X_0 \land X_1 = \emptyset$, then $X_0 \lor X_1$ is their disjoint coproduct.
- > We have disjoint coproducts in Finset but not in the poset 2

▷ Given two sets X, Y, we can form their disjoint union by creating isomorphic copies of X and Y:

$$X' = \{(x,0) : x \in X\}, \quad Y' = \{(y,1) : y \in Y\},$$

- ▶ This is the *coproduct* in Set.
- In general, coproducts are not "disjoint."
- If C is a category with pullbacks, then the coproduct X + Y of X, Y ∈ C₀ (if it exists) is disjoint if
 - ▶ The injection maps $i: X \to X + Y$, $i': Y \to X + Y$ are monomorphism.
 - ▶ The *intersection* (*meet*) $X \times_{X+Y} Y$ of X and Y is an initial object of C.
- ▷ In the case $X_0, X_1 \in \operatorname{Sub}(X)$ such that $X_0 \wedge X_1 = \emptyset$, then $X_0 \vee X_1$ is their disjoint coproduct.
- > We have disjoint coproducts in Finset but not in the poset 2

▷ Given two sets X, Y, we can form their disjoint union by creating isomorphic copies of X and Y:

$$X' = \{(x,0) : x \in X\}, \quad Y' = \{(y,1) : y \in Y\},$$

- ▶ This is the *coproduct* in Set.
- In general, coproducts are not "disjoint."
- ▷ If C is a category with pullbacks, then the coproduct X + Y of $X, Y \in C_0$ (if it exists) is *disjoint* if
 - ▶ The injection maps $i: X \to X + Y$, $i': Y \to X + Y$ are monomorphism.
 - ▶ The *intersection* (*meet*) $X \times_{X+Y} Y$ of X and Y is an initial object of C.
- ▷ In the case $X_0, X_1 \in \mathsf{Sub}(X)$ such that $X_0 \land X_1 = \emptyset$, then $X_0 \lor X_1$ is their disjoint coproduct.
- > We have disjoint coproducts in Finset but not in the poset 2

 \triangleright Given two sets X, Y, we can form their disjoint union by creating isomorphic copies of X and Y:

$$X' = \{(x,0) : x \in X\}, \quad Y' = \{(y,1) : y \in Y\},$$

- ▶ This is the *coproduct* in Set.
- In general, coproducts are not "disjoint."
- \triangleright If C is a category with pullbacks, then the coproduct X+Yof $X, Y \in C_0$ (if it exists) is *disjoint* if
 - \triangleright The injection maps $i: X \to X + Y$, $i': Y \to X + Y$ are monomorphism.
 - \triangleright The intersection (meet) $X \times_{X+Y} Y$ of X and Y is an initial object of C.

▷ Given two sets X, Y, we can form their disjoint union by creating isomorphic copies of X and Y:

$$X' = \{(x,0) : x \in X\}, \quad Y' = \{(y,1) : y \in Y\},$$

- ▶ This is the *coproduct* in Set.
- ▶ In general, coproducts are not "disjoint."
- ▷ If C is a category with pullbacks, then the coproduct X + Y of $X, Y \in C_0$ (if it exists) is *disjoint* if
 - ▶ The injection maps $i: X \to X + Y$, $i': Y \to X + Y$ are monomorphism.
 - ▶ The *intersection* (*meet*) $X \times_{X+Y} Y$ of X and Y is an initial object of C.
- ▷ In the case $X_0, X_1 \in \mathsf{Sub}(X)$ such that $X_0 \land X_1 = \emptyset$, then $X_0 \lor X_1$ is their disjoint coproduct.
- ▶ We have disjoint coproducts in Finset but not in the poset 2

▷ Given two sets X, Y, we can form their disjoint union by creating isomorphic copies of X and Y:

$$X' = \{(x,0) : x \in X\}, \quad Y' = \{(y,1) : y \in Y\},$$

- ▶ This is the *coproduct* in Set.
- ▶ In general, coproducts are not "disjoint."
- ▷ If C is a category with pullbacks, then the coproduct X + Y of $X, Y \in C_0$ (if it exists) is *disjoint* if
 - ▶ The injection maps $i: X \to X + Y$, $i': Y \to X + Y$ are monomorphism.
 - ▶ The *intersection* (*meet*) $X \times_{X+Y} Y$ of X and Y is an initial object of C.
- ▷ In the case $X_0, X_1 \in \mathsf{Sub}(X)$ such that $X_0 \land X_1 = \emptyset$, then $X_0 \lor X_1$ is their disjoint coproduct.
- \triangleright We have disjoint coproducts in Finset but not in the poset 2.

Pretopos

- ▶ Let C be a category. We say that C is a *pretopos* if it satisfies the following axioms:
 - ▶ The category C admits finite limits.
 - ▶ The category C admits finite coproducts, and coproducts are disjoint.
 - ▶ The formation of finite coproducts in C is preserved by pullbacks.
 - ▶ Every equivalence relation if effective.
 - ▶ The collection of effective epimorphisms in C is closed under pullbacks.
- Every pretopos is a coherent category
- \triangleright Set is a pretopos. Syn(T) is NOT in general.

Pretopos

- ▶ Let C be a category. We say that C is a *pretopos* if it satisfies the following axioms:
 - ▶ The category C admits finite limits.
 - ▶ The category C admits finite coproducts, and coproducts are disjoint.
 - ▶ The formation of finite coproducts in C is preserved by pullbacks.
 - ▶ Every equivalence relation if effective.
 - ▶ The collection of effective epimorphisms in C is closed under pullbacks.
- Every pretopos is a coherent category.
- \triangleright Set is a pretopos. Syn(T) is NOT in general.

Pretopos

- ▶ Let C be a category. We say that C is a *pretopos* if it satisfies the following axioms:
 - ▶ The category C admits finite limits.
 - ▶ The category C admits finite coproducts, and coproducts are disjoint.
 - ▶ The formation of finite coproducts in C is preserved by pullbacks.
 - ▶ Every equivalence relation if effective.
 - ▶ The collection of effective epimorphisms in C is closed under pullbacks.
- ▷ Every pretopos is a coherent category.
- \triangleright Set is a pretopos. Syn(T) is NOT in general.

Pretopos Functor

- ▷ Let C and D be pretoposes. A functor $F : C \rightarrow D$ is a *pretopos functor* if it satisfies the following:
 - ▶ F preserves finite limits.
 - ▶ F carries effective epimorphism in C to effective epimorphisms in D.
 - ▶ F preserves finite coproducts.
- A pretopos functor M : C → Set is called a model of C and Mod(C) is the full subcategory of Fun(C, Set) whose objects are models.

Pretopos Functor

- ▷ Let C and D be pretoposes. A functor $F : C \rightarrow D$ is a *pretopos functor* if it satisfies the following:
 - ▶ F preserves finite limits.
 - ▶ F carries effective epimorphism in C to effective epimorphisms in D.
 - ▶ F preserves finite coproducts.
- ▶ The composition of pretopos functors is a pretopos functor.
- A pretopos functor M : C → Set is called a model of C and Mod(C) is the full subcategory of Fun(C, Set) whose objects are models.

Pretopos Functor

- ▷ Let C and D be pretoposes. A functor $F : C \to D$ is a *pretopos functor* if it satisfies the following:
 - ▶ F preserves finite limits.
 - ▶ F carries effective epimorphism in C to effective epimorphisms in D.
 - ▶ F preserves finite coproducts.
- ▶ The composition of pretopos functors is a pretopos functor.
- A pretopos functor M : C → Set is called a model of C and Mod(C) is the full subcategory of Fun(C, Set) whose objects are models.

> Given a small coherent category C, there exists a small pretopos C^{eq} and a coherent functor $\lambda:C\to C^{eq}$ with the property that, for any other pretopos D, composition with λ induces a functor

$$\lambda \circ : \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C}^{eq},\mathsf{D}) o \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{D}) \ (F : \mathsf{C}^{eq} o \mathsf{D}) \mapsto (\lambda \circ F : \mathsf{C} o \mathsf{D})$$

- ▷ If D = Set, then $\lambda \circ$: Mod(C^{eq}) \rightarrow Mod(C) is an equivalence of categories.
- ▶ This process is called the *pretopos completion* of C.
- ▶ Freely adjoining finite coproducts and coequalizers of equivalence relations to C.
- \triangleright We say a (typed) first-order theory T eliminates imaginaries if $\operatorname{Syn}(T)$ is a pretopos.
- \triangleright We will denote by $\operatorname{Syn}^{eq}(T)$ the pretopos completion of $\operatorname{Syn}(T)$.

> Given a small coherent category C, there exists a small pretopos C^{eq} and a coherent functor $\lambda:C\to C^{eq}$ with the property that, for any other pretopos D, composition with λ induces a functor

$$\lambda \circ : \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C}^{eq},\mathsf{D}) o \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{D}) \ (F : \mathsf{C}^{eq} o \mathsf{D}) \mapsto (\lambda \circ F : \mathsf{C} o \mathsf{D})$$

- ▷ If D = Set, then $\lambda \circ : \mathsf{Mod}(\mathsf{C}^{eq}) \to \mathsf{Mod}(\mathsf{C})$ is an equivalence of categories.
- ▶ This process is called the *pretopos completion* of C.
- ▶ Freely adjoining finite coproducts and coequalizers of equivalence relations to C.
- We say a (typed) first-order theory T eliminates imaginaries if Syn(T) is a pretopos.
- \triangleright We will denote by $\operatorname{Syn}^{eq}(T)$ the pretopos completion of $\operatorname{Syn}(T)$.

> Given a small coherent category C, there exists a small pretopos C^{eq} and a coherent functor $\lambda:C\to C^{eq}$ with the property that, for any other pretopos D, composition with λ induces a functor

$$\lambda \circ : \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C}^{eq},\mathsf{D}) \to \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{D}) \ (F : \mathsf{C}^{eq} \to \mathsf{D}) \mapsto (\lambda \circ F : \mathsf{C} \to \mathsf{D})$$

- ▷ If D = Set, then $\lambda \circ : \mathsf{Mod}(\mathsf{C}^{eq}) \to \mathsf{Mod}(\mathsf{C})$ is an equivalence of categories.
- ▶ This process is called the pretopos completion of C.
- Freely adjoining finite coproducts and coequalizers of equivalence relations to C.
- \triangleright We say a (typed) first-order theory T eliminates imaginaries if $\operatorname{Syn}(T)$ is a pretopos.
- We will denote by Syn^{eq}(T) the pretopos completion of Syn(T).

> Given a small coherent category C, there exists a small pretopos C^{eq} and a coherent functor $\lambda:C\to C^{eq}$ with the property that, for any other pretopos D, composition with λ induces a functor

$$\lambda \circ : \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C}^{eq},\mathsf{D}) o \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{D}) \ (F : \mathsf{C}^{eq} o \mathsf{D}) \mapsto (\lambda \circ F : \mathsf{C} o \mathsf{D})$$

- ▷ If D = Set, then $\lambda \circ : \mathsf{Mod}(\mathsf{C}^{eq}) \to \mathsf{Mod}(\mathsf{C})$ is an equivalence of categories.
- ▶ This process is called the *pretopos completion* of C.
- ▶ Freely adjoining finite coproducts and coequalizers of equivalence relations to C.
- \triangleright We say a (typed) first-order theory T eliminates imaginaries if $\operatorname{Syn}(T)$ is a pretopos.
- We will denote by Syn^{eq}(T) the pretopos completion of Syn(T).

ightharpoonup Given a small coherent category C, there exists a small pretopos C^{eq} and a coherent functor $\lambda:C\to C^{eq}$ with the property that, for any other pretopos D, composition with λ induces a functor

$$\lambda \circ : \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C}^{eq},\mathsf{D}) \to \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{D}) \ (F : \mathsf{C}^{eq} \to \mathsf{D}) \mapsto (\lambda \circ F : \mathsf{C} \to \mathsf{D})$$

- ▷ If D = Set, then $\lambda \circ : \mathsf{Mod}(\mathsf{C}^{eq}) \to \mathsf{Mod}(\mathsf{C})$ is an equivalence of categories.
- ▶ This process is called the *pretopos completion* of C.
- ▶ Freely adjoining finite coproducts and coequalizers of equivalence relations to C.
- \triangleright We say a (typed) first-order theory T eliminates imaginaries if Syn(T) is a pretopos.
- > We will denote by $\operatorname{Syn}^{eq}(T)$ the pretopos completion of $\operatorname{Syn}(T)$.

ightharpoonup Given a small coherent category C, there exists a small pretopos C^{eq} and a coherent functor $\lambda:C\to C^{eq}$ with the property that, for any other pretopos D, composition with λ induces a functor

$$\lambda \circ : \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C}^{eq},\mathsf{D}) o \mathsf{Fun}^{\mathrm{coh}}(\mathsf{C},\mathsf{D}) \ (F : \mathsf{C}^{eq} o \mathsf{D}) \mapsto (\lambda \circ F : \mathsf{C} o \mathsf{D})$$

- ▷ If D = Set, then $\lambda \circ : \mathsf{Mod}(\mathsf{C}^{eq}) \to \mathsf{Mod}(\mathsf{C})$ is an equivalence of categories.
- ▶ This process is called the *pretopos completion* of C.
- ▶ Freely adjoining finite coproducts and coequalizers of equivalence relations to C.
- \triangleright We say a (typed) first-order theory T eliminates imaginaries if Syn(T) is a pretopos.
- \triangleright We will denote by $\mathsf{Syn}^{eq}(T)$ the pretopos completion of $\mathsf{Syn}(T)$.

- ▶ Pretoposes (Syn^{eq}(T)) have the correct structure to do the syntax of a theory T.
- The models of a theory can be represented as pretopos functors from Syn^{eq}(T) to Set.
- ▷ Ultraproducts in C can be formed in a larger category C⁺.
- ▶ We have the ultraproduct functor

$$\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}(\bullet):\mathsf{C}^S\to\mathsf{C}.$$

- ▷ Pretoposes $(Syn^{eq}(T))$ have the correct structure to do the syntax of a theory T.
- ightharpoonup The models of a theory can be represented as pretopos functors from $\operatorname{Syn}^{eq}(T)$ to Set.
- ▷ Ultraproducts in C can be formed in a larger category C⁺.
- ▶ We have the ultraproduct functor

$$\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}(\bullet):\mathsf{C}^S\to\mathsf{C}.$$

- ▷ Pretoposes $(Syn^{eq}(T))$ have the correct structure to do the syntax of a theory T.
- ightharpoonup The models of a theory can be represented as pretopos functors from $\operatorname{Syn}^{eq}(T)$ to Set.
- imes Ultraproducts in ${\mathsf C}$ can be formed in a larger category ${\mathsf C}^+.$
- ▶ We have the ultraproduct functor

$$\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}(\bullet):\mathsf{C}^{\mathcal{S}}\to\mathsf{C}.$$

- ▷ Pretoposes $(Syn^{eq}(T))$ have the correct structure to do the syntax of a theory T.
- ightharpoonup The models of a theory can be represented as pretopos functors from $\operatorname{Syn}^{eq}(T)$ to Set.
- ▷ Ultraproducts in C can be formed in a larger category C⁺.
- ▶ We have the ultraproduct functor

$$\operatorname*{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}(ullet):\mathsf{C}^S o\mathsf{C}.$$

- ▷ Pretoposes $(Syn^{eq}(T))$ have the correct structure to do the syntax of a theory T.
- ightharpoonup The models of a theory can be represented as pretopos functors from $\operatorname{Syn}^{eq}(T)$ to Set.
- ▷ Ultraproducts in C can be formed in a larger category C⁺.
- ▶ We have the ultraproduct functor

$$\operatorname*{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}(ullet):\mathsf{C}^S o\mathsf{C}.$$

Łoś Ultraproduct Theorem

Let C be a pretopos and let $\{M_s: C \to \operatorname{Set}\}_{s \in S}$ be a collection of models of C. For every ultrafilter $\mathcal U$ on S, the ultraproduct $\operatorname{colim}_{S_0 \in \mathcal U^{\operatorname{op}}} \prod_{s \in S_0} M_s$ (formed in the category $\operatorname{Fun}(C,\operatorname{Set})$) is a model of C.

▶ The ultraproduct $\operatorname{colim}_{S_0 \in \mathcal{U}^{\operatorname{op}}} \prod_{s \in S_0} M_s$ will be a pretopos functor from C to Set, which can be defined explicitly as

$$\left(\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}M_s\right)(X)=\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}M_s(X).$$

Lemma

Let S be a set and let $\mathcal U$ be an ultrafilter on S. Then the ultraproduct functor $\mathrm{colim}_{S_0\in\mathcal U^\mathrm{op}}\prod_{s\in S_0}(\bullet):\mathrm{Set}^S\to\mathrm{Set}$ is a pretopos functor.

Łoś Ultraproduct Theorem

Let C be a pretopos and let $\{M_s: C \to \operatorname{Set}\}_{s \in S}$ be a collection of models of C. For every ultrafilter $\mathcal U$ on S, the ultraproduct $\operatorname{colim}_{S_0 \in \mathcal U^{\operatorname{op}}} \prod_{s \in S_0} M_s$ (formed in the category $\operatorname{Fun}(C,\operatorname{Set})$) is a model of C.

ightharpoonup The ultraproduct $\operatorname{colim}_{S_0 \in \mathcal{U}^{\operatorname{op}}} \prod_{s \in S_0} M_s$ will be a pretopos functor from C to Set, which can be defined explicitly as

$$\left(\operatorname*{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}M_s\right)(X)=\operatorname*{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}M_s(X).$$

Lemma

Let S be a set and let $\mathcal U$ be an ultrafilter on S. Then the ultraproduct functor $\mathrm{colim}_{S_0 \in \mathcal U^\mathrm{op}} \prod_{s \in S_0} (\bullet) : \mathrm{Set}^S \to \mathrm{Set}$ is a pretopos functor.

Łoś Ultraproduct Theorem

Let C be a pretopos and let $\{M_s: C \to \operatorname{Set}\}_{s \in S}$ be a collection of models of C. For every ultrafilter $\mathcal U$ on S, the ultraproduct $\operatorname{colim}_{S_0 \in \mathcal U^{\operatorname{op}}} \prod_{s \in S_0} M_s$ (formed in the category $\operatorname{Fun}(C,\operatorname{Set})$) is a model of C.

ightharpoonup The ultraproduct $\operatorname{colim}_{S_0 \in \mathcal{U}^{\operatorname{op}}} \prod_{s \in S_0} M_s$ will be a pretopos functor from C to Set, which can be defined explicitly as

$$\left(\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}M_s\right)(X)=\operatorname*{colim}_{S_0\in\mathcal{U}^{\mathrm{op}}}\prod_{s\in S_0}M_s(X).$$

Lemma

Let S be a set and let $\mathcal U$ be an ultrafilter on S. Then the ultraproduct functor $\mathrm{colim}_{S_0 \in \mathcal U^\mathrm{op}} \prod_{s \in S_0} (\bullet) : \mathrm{Set}^S \to \mathrm{Set}$ is a pretopos functor.

Proof.

Let $\{M_s: \mathsf{C} \to \mathsf{Set}\}_{s \in S}$ be a collection of models of C and let $\mathcal U$ be an ultrafilter on the index set S. Notice that we can write the ultraproduct $\mathsf{colim}_{S_0 \in \mathcal U^\mathrm{op}} \prod_{s \in S_0} M_s : \mathsf{C} \to \mathsf{Set}$ of the models of C as the following composition

$$C \xrightarrow{S_0 \in \mathcal{U}^{\mathrm{op}}} \prod_{s \in S_0} (\bullet)$$

$$C \xrightarrow{\{M_s\}_{s \in S}} \mathsf{Set}^S \xrightarrow{s \in S_0} \mathsf{Set} .$$

Since each M_s is a model of C, that is, a pretopos functor, we have that $\{M_s\}_{s\in S}$ is a pretopos functor. Also, by the Lemma, we have the second map is a pretopos functor. Then we have that $\operatorname{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}M_s$ is a pretopos functor and hence a model of C.

Classical Łoś Ultraproduct Theorem

Classical Łoś Ultraproduct Theorem

Let T be a first-order theory and let $\{M_s\}_{s\in S}$ be a collection of models of T. Then the ultraproduct $\operatorname{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}M_s$ is also a model of T.

Proof

Apply Łoś Ultraproduct Theorem to the pretopos completed syntactic category $\operatorname{Syn}^{eq}(T)$.

Classical Łoś Ultraproduct Theorem

Classical Łoś Ultraproduct Theorem

Let T be a first-order theory and let $\{M_s\}_{s\in S}$ be a collection of models of T. Then the ultraproduct $\operatorname{colim}_{S_0\in\mathcal{U}^{\operatorname{op}}}\prod_{s\in S_0}M_s$ is also a model of T.

Proof.

Apply Łoś Ultraproduct Theorem to the pretopos completed syntactic category $\operatorname{Syn}^{eq}(\mathcal{T})$.

- ▶ What Łoś Ultraproduct Theorem shows is that Mod(C) has ultraproducts in Fun(C, Set).
- Intuitively (and informally), an ultracategory is a category with an "ultraproduct" structure, that is, three collections of different types of ultraproduct functors satisfying some axioms.
- ▶ Mod(C) is an ultracategory.
- ▷ Set is both a pretopos and an ultracategory.
- An ultrafunctor is a functor between ultracategories which preserves the "ultraproduct" structure.
- \triangleright We let Fun^{Ult}(C, D) denote the category of ultrafunctors between C and D.

- What Łoś Ultraproduct Theorem shows is that Mod(C) has ultraproducts in Fun(C, Set).
- Intuitively (and informally), an ultracategory is a category with an "ultraproduct" structure, that is, three collections of different types of ultraproduct functors satisfying some axioms.
- ▷ Mod(C) is an ultracategory.
- $\, \triangleright \,$ Set is both a pretopos and an ultracategory.
- An ultrafunctor is a functor between ultracategories which preserves the "ultraproduct" structure.
- \triangleright We let Fun^{Ult}(C, D) denote the category of ultrafunctors between C and D.

- What Łoś Ultraproduct Theorem shows is that Mod(C) has ultraproducts in Fun(C, Set).
- Intuitively (and informally), an ultracategory is a category with an "ultraproduct" structure, that is, three collections of different types of ultraproduct functors satisfying some axioms.
- ▶ Mod(C) is an ultracategory.
- ▷ Set is both a pretopos and an ultracategory.
- An ultrafunctor is a functor between ultracategories which preserves the "ultraproduct" structure.
- ightharpoonup We let $Fun^{Ult}(C,D)$ denote the category of ultrafunctors between C and D.

- What Łoś Ultraproduct Theorem shows is that Mod(C) has ultraproducts in Fun(C, Set).
- Intuitively (and informally), an ultracategory is a category with an "ultraproduct" structure, that is, three collections of different types of ultraproduct functors satisfying some axioms.
- ▶ Mod(C) is an ultracategory.
- ▷ Set is both a pretopos and an ultracategory.
- An ultrafunctor is a functor between ultracategories which preserves the "ultraproduct" structure.
- ightharpoonup We let $Fun^{Ult}(C,D)$ denote the category of ultrafunctors between C and D.

- What Łoś Ultraproduct Theorem shows is that Mod(C) has ultraproducts in Fun(C, Set).
- Intuitively (and informally), an ultracategory is a category with an "ultraproduct" structure, that is, three collections of different types of ultraproduct functors satisfying some axioms.
- ▶ Mod(C) is an ultracategory.
- ▷ Set is both a pretopos and an ultracategory.
- ▷ An ultrafunctor is a functor between ultracategories which preserves the "ultraproduct" structure.
- We let Fun^{Ult}(C, D) denote the category of ultrafunctors between C and D.

- What Łoś Ultraproduct Theorem shows is that Mod(C) has ultraproducts in Fun(C, Set).
- Intuitively (and informally), an ultracategory is a category with an "ultraproduct" structure, that is, three collections of different types of ultraproduct functors satisfying some axioms.
- ▶ Mod(C) is an ultracategory.
- ▷ Set is both a pretopos and an ultracategory.
- ▷ An ultrafunctor is a functor between ultracategories which preserves the "ultraproduct" structure.
- ▶ We let Fun^{Ult}(C, D) denote the category of ultrafunctors between C and D.

- ⊳ For each object X in a pretopos C, define the *evaluation* functor $ev_X : Mod(C) \rightarrow Set$ by $ev_X(M) = M(X)$.
- ightharpoonup We have that ev_X is an ultrafunctor and the map $X \mapsto \operatorname{ev}_X$ determines a functor $\operatorname{ev}: C \to \operatorname{Fun}^{\operatorname{Ult}}(\operatorname{\mathsf{Mod}}(C),\operatorname{\mathsf{Set}}).$

Makkai's Strong Conceptual Completeness

Let C be a small pretopos. Then the evaluation map ev : $C \to Fun^{Ult}(Mod(C), Set)$ is an equivalence of categorie

Makkai-Reyes Conceptual Completeness Theorem

Let C and D be small pretoposes and $\lambda: C \to D$ be a pretopos functor. Consider the map induced by precomposition with λ ,

$$\circ \lambda : \mathsf{Mod}(\mathsf{D}) \to \mathsf{Mod}(\mathsf{C}) :: (F : \mathsf{D} \to \mathsf{Set}) \mapsto (F \circ \lambda : \mathsf{C} \to \mathsf{Set}),$$

If $\circ \lambda$ is an equivalence of categories, then so is λ

- ▷ For each object X in a pretopos C, define the *evaluation* functor $ev_X : Mod(C) \rightarrow Set$ by $ev_X(M) = M(X)$.
- ightharpoonup We have that ev_X is an ultrafunctor and the map $X \mapsto \operatorname{ev}_X$ determines a functor $\operatorname{ev}: \mathsf{C} \to \operatorname{\mathsf{Fun}}^{\mathsf{Ult}}(\mathsf{Mod}(\mathsf{C}),\mathsf{Set}).$

Makkai's Strong Conceptual Completeness

Let C be a small pretopos. Then the evaluation map $\mathsf{ev} : \mathsf{C} o \mathsf{Fun}^\mathsf{Ult}(\mathsf{Mod}(\mathsf{C}),\mathsf{Set})$ is an equivalence of categoric

Makkai-Reyes Conceptual Completeness Theorem

Let C and D be small pretoposes and $\lambda:C\to D$ be a pretopos functor. Consider the map induced by precomposition with λ ,

$$\circ \lambda : \mathsf{Mod}(\mathsf{D}) \to \mathsf{Mod}(\mathsf{C}) :: (F : \mathsf{D} \to \mathsf{Set}) \mapsto (F \circ \lambda : \mathsf{C} \to \mathsf{Set}),$$

If $\circ \lambda$ is an equivalence of categories, then so is λ .

- ▷ For each object X in a pretopos C, define the *evaluation* functor $ev_X : Mod(C) \rightarrow Set$ by $ev_X(M) = M(X)$.
- ightharpoonup We have that ev_X is an ultrafunctor and the map $X \mapsto \operatorname{ev}_X$ determines a functor $\operatorname{ev} : \mathsf{C} \to \operatorname{\mathsf{Fun}}^{\mathsf{Ult}}(\mathsf{Mod}(\mathsf{C}),\mathsf{Set}).$

Makkai's Strong Conceptual Completeness

Let C be a small pretopos. Then the evaluation map $ev: C \to Fun^{Ult}(Mod(C), Set)$ is an equivalence of categories.

Makkai-Reyes Conceptual Completeness Theorem

Let C and D be small pretoposes and $\lambda: C \to D$ be a pretopos functor. Consider the map induced by precomposition with λ ,

$$\circ \lambda : \mathsf{Mod}(\mathsf{D}) \to \mathsf{Mod}(\mathsf{C}) :: (F : \mathsf{D} \to \mathsf{Set}) \mapsto (F \circ \lambda : \mathsf{C} \to \mathsf{Set}),$$

If $\circ \lambda$ is an equivalence of categories, then so is λ

- ▷ For each object X in a pretopos C, define the *evaluation* functor $ev_X : Mod(C) \rightarrow Set$ by $ev_X(M) = M(X)$.
- \triangleright We have that ev_X is an ultrafunctor and the map $X \mapsto \operatorname{ev}_X$ determines a functor $\operatorname{ev} : \mathsf{C} \to \operatorname{\mathsf{Fun}}^{\mathsf{Ult}}(\mathsf{Mod}(\mathsf{C}),\mathsf{Set}).$

Makkai's Strong Conceptual Completeness

Let C be a small pretopos. Then the evaluation map $ev: C \to Fun^{Ult}(Mod(C), Set)$ is an equivalence of categories.

Makkai-Reyes Conceptual Completeness Theorem

Let C and D be small pretoposes and $\lambda: C \to D$ be a pretopos functor. Consider the map induced by precomposition with λ ,

$$\circ \lambda : \mathsf{Mod}(\mathsf{D}) \to \mathsf{Mod}(\mathsf{C}) :: (F : \mathsf{D} \to \mathsf{Set}) \mapsto (F \circ \lambda : \mathsf{C} \to \mathsf{Set}),$$

If $\circ \lambda$ is an equivalence of categories, then so is λ .

Conclusion

- ▶ Pretoposes: syntax Syn(T)
- \triangleright Ultracategories: semantics Mod(Syn(T)).

The End

Thank You!

 ${\sf Questions?}$