- **1.** D $M = \rho V = \rho \cdot 4\pi r^3/3 = \rho \cdot \pi d^3/6$ slik at $d = (6m/\pi\rho)^{1/3} = 43.7$ mm.
- **2. E** Vertikalt faller steinen fra høyde h med konstant akselerasjon g/6. Dette tar en tid t gitt ved $h = gt^2/12$, dvs $t = \sqrt{12h/g}$. Horisontal lengde på kastet blir dermed $x = v_0t = 18 \cdot \sqrt{12 \cdot 1.7/9.81} = 26$ m.
- **3. B** Newtons 2. lov (N2), dp = F dt, gir her $F_{\text{max}} \cdot \tau/2 = 2mv \text{ med } \tau = 0.002 \text{ s}, m = 0.0027 \text{ kg og } v = 25 \text{ m/s}$. Dermed $F_{\text{max}} = 135 \text{ N}$.
- **4.** E Det maksimale ("terminale") effekttapet er $P_t = f \cdot v_t$. Terminalfart når luftmotstanden er lik kulenes tyngde:

$$\frac{1}{2}\rho \pi r^2 C_d v_t^2 = mg = \rho_S g \cdot 4\pi r^3 / 3.$$

Det betyr at v_t øker proporsjonalt med \sqrt{r} , mens f øker proporsjonalt med r^3 . (Selvsagt: f = mg når $v = v_t$.) Dermed er P_t proporsjonal med $r^{7/2}$, og $4^{7/2} = 128$.

- **5. A** Gravitasjonsloven og N2 med sentripetalakselerasjon gir $GMm/R^2 = mv^2/R = m(2\pi R/T)^2/R$ som løst mhp M gir $M = 4\pi^2 R^3/GT^2 \simeq 2 \cdot 10^{30}$ kg.
- **6. B** Punktmassen m følger en sirkelbane med radius $R = d/2 + L \sin 30^{\circ} = 8.5$ m. Det er ingen akselerasjon vertikalt, slik at $S \cos 30^{\circ} = mg$. Horisontal akselerasjon er v^2/R , forårsaket av snordragets horisontale komponent, slik at $S \sin 30^{\circ} = mv^2/R$. Omløpstida er $T = 2\pi R/v$. Vi dividerer N2 horisontalt med N1 vertikalt, setter inn $v = 2\pi R/T$, løser mhp T og finner $T = \sqrt{4\pi^2 R/g \tan 30^{\circ}} = 7.7$ s.
- **7. D** Vi setter $V_0 = 0.30 \text{ m/s}$, m = 0.10 kg, og V_1 og v_1 lik sluttfarten til hhv den store og den lille klossen. Impulsbevarelse gir da (1) $5mV_1 + mv_1 = 5mV_0$, mens energibevarelse gir (2) $5mV_1^2/2 + mv_1^2/2 = 5mV_0^2/2$. Fra (1) følger $V_1 = V_0 v_1/5$, som innsatt i (2) gir $5(V_0 v_1/5)^2 + v_1^2 = 5V_0^2$, dvs $-2V_0v_1 + 6v_1^2/5 = 0$, dvs $v_1 = 5V_0/3 = 0.50 \text{ m/s}$.
- 8. A Rotasjonslikevekt om midtpunktet gir en kraft tilsvarende tyngden av 80 kg, rettet nedover, på enden av stupebrettet (dvs der det står en pillar). I tillegg kommer stupebrettets egen tyngde, tilsvarende 120 kg, samt normalkraften fra personen på 80 kg, begge rettet nedover. I alt en kraft på stupebrettet tilsvarende tyngden av 280 kg, rettet nedover. N1 gir da en kraft rettet oppover fra pillaren på midten lik 280 \cdot 9.81 N = 2.75 kN.
- **9.** C Rotasjonslikevekt om kontaktpunktet gir $S = mg = 3.6 \cdot 9.81 = 35$ N (siden S og tyngden mg begge har en arm lik platas sidekant dividert med $\sqrt{2}$).
- **10.** A Rotasjonslikevekt om kontaktpunktet gir $S = mg/\sqrt{2} = 3.6 \cdot 9.81/\sqrt{2} = 25$ N (siden S her har en arm lik platas sidekant, mens tyngden mg har en arm lik platas sidekant dividert med $\sqrt{2}$).
- **11. D** I dette eksperimentet er mekanisk energi bevart. Derfor er farten lik v_0 neste gang kula passerer høyden y=0, dvs der hvor $(2x/L)(x^2/L^2-3/4)=0$, dvs $x=\sqrt{3}L/2=87$ cm.
- **12.** C Helningsvinkelen er gitt ved $\tan \theta = dy/dx = (H/L)(6x^2/L^2 3/2)$, som i origo blir (i absoluttverdi) $\theta = \arctan(3H/2L) = \arctan(90/200) = 24^{\circ}$.

- **13. E** Banens lokale topp-punkt er bestemt av dy/dx=0 (samt $d^2y/dx^2<0$), dvs $(H/L)(6x^2/L^2-3/2)=0$, dvs x=-L/2. Her er kula i en høyde y=H/2. For at kula skal nå fram hit må vi ha $7mv_0^2/10=mgH/2$, dvs $v_0=\sqrt{5gH/7}=145$ cm/s. (Kinetisk energi: $K=(1+c)mv^2/2=7mv^2/10$ når c=2/5 for kompakt kule.)
- 14. E Banens lokale bunnpunkt er bestemt av dy/dx=0 (samt $d^2y/dx^2>0$), dvs $(H/L)(6x^2/L^2-3/2)=0$, dvs x=L/2. Her er kula i en høyde y=-H/2, og farten her er gitt ved $7mv^2/10-mgH/2=7mv_0^2/10=7mgH/10$, dvs $v^2=12gH/7$. Invers krumningsradius er her $1/\rho=|d^2y/dx^2|=12H(L/2)/L^3=6H/L^2$. N2 gir nå $N-mg=ma=mv^2/\rho=m\cdot(12gH/7)\cdot(6H/L^2)$, dvs $N=mg+72H^2mg/7L^2=1.93mg\simeq 2mg$.
- 15. E N2 for rotasjon om CM, $fR = I_0\dot{\omega}$, med $f = \mu mg$ og $I_0 = 2mR^2/5$, gir $\omega(t) = 5\mu gt/2R$. (Konstant dreiemoment, dermed konstant vinkelakselerasjon, dermed vinkelhastighet som øker lineært med tiden t.) Dermed tar det en tid $t = 2 \cdot 0.11 \cdot 30/5 \cdot 0.12 \cdot 9.81 = 1.1$ s før kula roterer med vinkelhastighet 30 rad/s.
- **16. B** Kun tyngdekraften mg har et dreiemoment mhp kontaktpunktet A. Vinkelen mellom \boldsymbol{d} (dvs vektoren fra A til CM) og $m\boldsymbol{g}$ er $\theta + \pi/2$, dvs 150°. Dreiemomentet blir dermed $\tau = mgd\sin(\theta + \pi/2) = 0.045 \cdot 9.81 \cdot 0.05 \cdot \sin 150^\circ = 11$ mN m.
- 17. **D** Resonansfrekvens: $\omega_0 = \sqrt{k/m} = \sqrt{12.5/0.125} = 10 \text{ s}^{-1}$. Dempingsfaktor: $\gamma = b/2m = 100/0.250 = 400 \text{ s}^{-1}$. Systemet har med andre ord meget sterk demping (som ventet, med sirup). Da kan vi neglisjere det ene bidraget til den generelle løsningen

$$x(t) = A \exp(-\alpha_1 t) + B \exp(-\alpha_2 t),$$

siden $\alpha_1 = \gamma + \sqrt{\gamma^2 - \omega_0^2} \simeq 2\gamma$ er mye større enn $\alpha_2 = \gamma - \sqrt{\gamma^2 - \omega_0^2} \simeq \omega_0^2/2\gamma = k/b$. Med andre ord, vi har $x(t) \simeq x_0 \exp(-kt/b)$, siden $x(0) = x_0 = 25.0$ cm. Tiden det tar før x er redusert til 5.0 cm, er bestemt av ligningen $25.0/5.0 = \exp(kt/b)$, dvs $t = (b/k) \ln 5 = (100/12.5) \ln 5 = 8 \ln 5 = 13$ sekunder.

18. B Nå er dempingsfaktoren $\gamma=b/2m=0.0010/0.250=0.0040~{\rm s}^{-1},$ dvs $\gamma\ll\omega_0,$ og systemet er svakt dempet. Da er

$$x(t) = x_0 e^{-\gamma t} \cos \omega t$$

med $\omega = \sqrt{\omega_0^2 - \gamma^2} \simeq \omega_0$. Oscillatorens mekaniske energi tilsvarer maksimal potensiell energi, som avtar eksponentielt med tiden (pga dempingen omdannes mekanisk energi til varme),

$$E(t) = \frac{1}{2}kx_0^2 e^{-2\gamma t}.$$

Den mekaniske energien er redusert med 50% når $\exp(-2\gamma t)=1/2$, dvs $t=(m/b)\ln 2=125\cdot \ln 2=87$ sekunder.

19. A

$$E = \frac{1}{2}kA(\omega_0)^2 = \frac{k}{2}\frac{(F_0/m)^2}{(2\gamma\omega_0)^2} = \frac{mF_0^2}{2b^2},$$

som med oppgitte tallverdier blir 4.0 J.

- **20.** D $Q = \omega_0/\Delta\omega = \omega_0/2\gamma = \sqrt{k/m}/(b/m) = \sqrt{12.5/0.125}/(0.0010/0.125) = 1250.$
- **21.** C N2-Rotasjon gir oss $\tau = I_0 \dot{\omega}$, hvor $\tau = F \cdot R$ og $I_0 = \frac{1}{2} M R^2$. Dermed fås vinkelfrekvensen $\omega(t) = FRt/(\frac{1}{2} M R^2) = 2Ft/MR$. Den kintetiske rotasjonsenergien er da gitt som $K = \frac{1}{2} I_0 \omega^2 = \frac{1}{4} M R^2 \cdot \frac{4F^2 t^2}{M^2 R^2} = \frac{F^2 t^2}{M} = \frac{10^6 \cdot 120^2}{600}$ J=24 MJ.
- **22.** B Uelastisk , det vil si ikke K. Rekylkraft i A som dedfører ikke p. Siden $\tau_A=0$ så er L bevart.
- **23.** C $P = F \cdot v = m\dot{v}v = \frac{mvdv}{dt}$, slik at $vdv = \frac{P}{m}dt \int vdv = \frac{P}{md}t$, som gir $t = \frac{m}{P} \cdot \frac{1}{2} \cdot v^2$. Vi får da $v(t) = \sqrt{2Pt/m} = dx/dt$, som gir at $x = \int \sqrt{2Pt/m}dt = \sqrt{2Pt/m} \cdot \frac{2}{3}t^{3/2} = 107$ m.
- **24.** A $k_V^{Tot}=3k_V=150$ N/m. $k_H^{Tot}=\frac{1}{3}k_V=60$ N/m. Total kraft med utsving x: -kx med $k=k_V^{Tot}+k_H^{Tot}=210$ N/m. Dette gir svingeperiode $T=\frac{2\pi}{\omega_0}=2\pi\sqrt{\frac{m}{k}}$.
- **25.** E $f \le \mu_s N = \mu_s mg$; Grensetilfelle : $F = \mu_s mg$. F=ma; $a = \ddot{x} = \omega_0^2 A \sin \omega_0 t = 4\pi^2 f^2 A \sin \omega_0 t$. Dette gir $\mu_s mg = m \cdot 4\pi^2 f^2 A$, som da gir $\mu_s = 4\pi^2 f^2 A/g = 4\pi^2 \cdot 1.4^2 \cdot 0.1/9.81 = 0.79$
- **26. D** Oppgitt $v_0(t_0) = 1$ m/s. $t_0 = 0.2618$ s $\theta(t_0) = 15^{\circ}$. $\Delta t = 0.1$ s. Finn $\theta_{Euler} = \theta(t_0 + \Delta t) = \theta(t_0) + \dot{\theta}(t_0) \cdot \Delta t$. Hvor $\dot{\theta}(t_0) = \frac{1m/s}{1m} = 1s^{-1}$. Det gir at $\theta(0.3618) = 15^{\circ} + 0.1 \cdot 1 rad/s = 15^{\circ} + \frac{18}{\pi} = 20.7^{\circ}$
- **27.** A N2 for masse 1: $m_O\ddot{x_1} = -k(x_1 x_2) = -kx_1 + kx_2$ N2 for masse 2: $m_O\ddot{x_2} = -k(x_2 x_3) k(x_2 x_1) = -kx_1 2kx_2 + kx_3$ N2 for masse 3: $m_O\ddot{x_2} = -k(x_3 x_2) = kx_2 kx_3$. Som gir ligningssettet

$$\begin{bmatrix} m_{\mathcal{O}} & 0 & 0 \\ 0 & m_{\mathcal{C}} & 0 \\ 0 & 0 & m_{\mathcal{O}} \end{bmatrix} \begin{bmatrix} \ddot{x_1} \\ \ddot{x_2} \\ \ddot{x_3} \end{bmatrix} = \begin{bmatrix} -k & k & 0 \\ k & -2k & k \\ 0 & k & -k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \tag{1}$$

28. B

 $V_M \approx V_0 \kappa^2 (x-d)^2 = \frac{1}{2} k(x-2)^2$, der k er fjærkonstanten i masse fjær modellen. En harmonisk oscillator har frekvens $\omega_0 = \sqrt{k/m}$, som gir $\omega = \sqrt{2V_0\kappa^2/m_O} = \sqrt{2\cdot5.5\cdot1.6\cdot10^{-19}(\cdot34.35\cdot10^9)^2/(16\cdot1.67\cdot10^{-27})} \approx 2.8\cdot10^{14} \text{ rad/s}.$

- **29.** C $k_x = \frac{2\pi}{4d/5}, k_y = \frac{2\pi}{4d/6}$. $\tan \theta = k_y/k_x$. Dermed er $\theta = 50^\circ$.
- **30.** C v=1200m/14s= $\sqrt{S/\mu}$ = $\sqrt{\frac{S\cdot 600}{100}}$, som gir at S= $\frac{1}{6}\cdot (1200/14)^2$ N=1224 N ≈ 1.2 kN.
- **31.** D $v=\sqrt{S/\mu}; S(y)=\mu Lg(1-y/L)$. Dette gir $v(y)=\sqrt{gL}\sqrt{1-y/L}$. Dette tilsvarer kurve D.
- **32. B** Fra $\beta(dB) = 10 \log(I/I_0) \ge 60$ dB må vi ha $I \ge 10^{-6} W/m^2$. Energien som omgjøres til lyd er $E_0 = 0.005 \cdot 30 k J = 150$ J. $(E_0/\Delta t)/(4/pir^2) \ge 10^{-6}$ W/m². Dette gir $r = \sqrt{(150/0.1)/(4\pi)} \cdot 10^3 = 10.92$ km ≈ 11 km.
- 33. C T=1-R=1 (r^2) . $r=\frac{(Z_2-Z_1)}{(Z_2+Z_1)}$. Oppgitt Z=p/v og $p=-B\partial\xi/\partial x$. Fra disse ser vi at Z= $\sqrt{\rho\cdot B}=$ Z= $\sqrt{\rho\cdot ElastiskModul}$. Vi velger riktig elastisk modul, som for tynn stang vil være Y. Dermed fås r= $\frac{\sqrt{2700\cdot70\cdot10^9}-\sqrt{7850\cdot200\cdot10^9}}{\sqrt{2700\cdot70\cdot10^9}+\sqrt{7850\cdot200\cdot10^9}}=0.43$, som gir T=77%.

- **34. E** Dobbelt dopplerskift: $f_M = \frac{v v_M}{v v_F} f_0 = \frac{355}{330} f_0$. $f_F = \frac{350}{325} f_M = \frac{350 \cdot 355}{325 \cdot 330} \cdot 100 \text{ kHz} = 116 \text{ kHz}$.
- **35.** A Oppgitt $\xi = b_n \sin k_n x \cos \omega_n t$, med $b_3 = 1$ mm. første overtone er gitt av $k_3 = \frac{3\pi}{2L}\lambda$, og $p = -B\frac{\partial \xi}{\partial x} = -Bbk_3 \cos k_3 x \cos \omega_3 t$; max $p = 1.4 \cdot 10^5 \cdot 10^{-3} \cdot \frac{3\pi}{2} \cdot \cos(\frac{3\pi \cdot L}{2L \cdot 2})$ Pa = 467 Pa.
- **36. A** Gitter avstand gitter $a=1/100 \text{ mm} = 10\mu \text{ m}$. Leser av for Grating 1 : $\tan \theta = 0.046/0.724 = 0.0634$. Leser av for Grating 2 $\tan \theta = 0.1395/0.725 = 0.1924$. $a_2 = a_1 \cdot 0.046/0.1395 = 3.3\mu \text{m}$.
- 37. C $D_1 = D_0 \cos(x-t)$; $D_2 = D_0 \cos(0.9x + 0.4358y t)$. $D_1 + D_2 = 2D_0 \cos(\frac{0.1x 0.4358y}{2}) \cos|(0.95x + (0.4358/2)y 1)$. Intensiteten går som $I = 4D_0^2 \cos^2(\frac{0.1x 0.4358y}{2}) \cos^2(0.95x + (0.4358/2)y 1)$. Innfører $\Delta k = \sqrt{0.05^2 + 0.2179^2} = 0.2236$. Avstanden mellom interferensstripene i intensiteten er da gitt av $\Lambda = \frac{\pi}{\Delta k} = \frac{\pi}{0.2236} = 14.05 \approx 14.1$ m.
- **38.** A $<\epsilon>=\frac{1}{2}\mu\omega^2y_0^2$; Her er $\mu=m/L=0.3$ kg/10m=0.03 kg/m, mens v= $\omega_3/k_3=\sqrt{\frac{S}{\mu}}=\sqrt{20/0.03}$ m/s=25.82 m/s, og $k_3=3\cdot\pi/L$. Dermed er $\omega_3=vk_3=25.82\cdot3\pi/10=24.33$ rad per s^{-1} . Dermed blir energitettheten i mode n=3: $<\epsilon>=\frac{1}{2}\cdot0.03kg/m\cdot24.33^2s^{-2}\cdot0.1^2m^2=89$ mJ/m;
- 39. B

 $dK = \frac{1}{2}\mu(\frac{\partial y}{\partial t})^2 \cdot dx = \frac{1}{2}b_2^2 S k_2^2 \sin^2 k_3 x \sin^2 \omega_2 t \cdot dx; \text{ Potensiell energi } dU = \frac{1}{2}S(\frac{\partial y}{\partial x})^2 \cdot dx = \frac{1}{2}b_2^2 S k_2^2 \cos^2 k_2 x \cos^2 \omega_2 t \cdot dx; \text{ Total energi for en gitt mode } n=2 \text{ er gitt av } E(t) = \int (dK + dU) = \frac{1}{2}b_2^2 S k_2^2 \int_0^L dx (\sin^2 k_2 x \sin^2 \omega_2 t + \cos^2 k_2 x \cos^2 \omega_2 t) = \frac{1}{2}b_2^2 S k_2^2 \cdot \frac{L}{2} \left[\sin^2 \omega_2 t + \cos^2 \omega_2 t\right] = \frac{1}{4}b_2^2 S k_2^2 = \frac{1}{4} \cdot 0.2^2 \cdot 20 \cdot (\frac{2\pi}{10})^2 \cdot 10J = 0.79 \text{ J}.$

40. E Bølgen er ikke dispersiv nær k=0 da kurva er nesten lineær der, og dermed er v uavhengig av k og videre er $v_g \approx v$.