CSC 227: Operating Systems Fall 2008/2009 Final Exam Date: Feb. 2, 2009 Time: 1:00 - 3:30 pmStudent Name: ID#: Section#: This examination is close notes and close book. QUESTION 1 [10 marks] 1. [1 mark] Define an OS from your point of view. [1 mark] An OS performs allocation of resources. Mention two of these resources. [2 marks] Give example of each of the following: Privileged instruction Exception An i/o interrupt A system call 4. [1 mark] A process is executing and it enters an infinite loop. What is going to happen to other processes in a Multiprogramming system Time-sharing system 5. [1 mark] Rank the following types of memory according to their sizes; writing the smallest first: RAM, Magnetic disk, CPU registers, tape drives, cache 6. [2 marks] Write down two cache information you will look for when you intend to buy a new laptop. Cache use may also create a problem. Write down such problem [1 mark] One set of OS services provides functions that are helpful to the user. Mention two of such services. [1 mark] What tasks are performed by the bootstrap program? QUESTION 2 [10 marks] 1. [1 mark] Give two reasons why a process may terminate without completing execution.

CSC 227: Operating Systems Final Exam Fall 2008/2009

	udent Name: is examination is close notes and close book.	Date: Feb. 2, 2009 ID#:	Time: 1:00 – 3:30 pm Section#:
2.	[0.5 mark] What is the main difference between user-level and kernel-level threads?		
3.	[2 marks] What is context switch?		
	Is this executed in the user mode or kernel mode?		
	What would happen if the context switch time were too long?		
4.	[1 mark] Assume that the OS implements Many-to-Many multithreading model. What is the minimum number of kernel threads required to achieve better? Why?		
5.	[2 marks] What is the purpose of a system call?		
6.	Mention two methods used to pass parameters to the OS. 2 mars] How many times does each of the programs below prints "Hello"?		
	<pre>int main() { fork(); fork(); fork(); print "Hello" } }</pre>	<pre>int main () { fork(); print "Hello" fork(); print "Hello" fork(); print "Hello" }</pre>	
7.	[0.5 mark] When a process is not responding in a Windows environment, in which queue is the process placed?		
8.	[0.5 mark] How is a system call different from a procedure call?		
9.	[0.5 mark] What is the purpose of the interrupt vector	or?	

CSC 227: Operating Systems Fall 2008/2009 Final Exam Date: Feb. 2, 2009 Time: 1:00 - 3:30 pmSection#: Student Name: ID#: This examination is close notes and close book. **QUESTION 3** [6 marks] 1. [2 marks] What advantage is there in having different time-quantum sizes on different levels of a multilevel queuing 2. [2 marks] What is the difference between multilevel queue scheduling and multilevel feedback queue scheduling? 3. [2 marks] What are the advantages and disadvantages in choosing a small length of the time-slice in round robin scheduling? **QUESTION 4** [8 marks] 1. [2 marks] Show that if the wait() and signal() semaphore operations are not executed atomically, then mutual exclusion may be violated. 2. [4 marks] Suppose two processes with IDs 0 and 1 need to share some critical region of code, which only one at a time is allowed to execute, and where they are required to repeatedly cycle through this section in the natural order (0, 1). If turn is a shared integer variable initialized to zero, and currentPid is the ID of the currently executing process, and each executes the following pseudo-code, could a race condition occur? Why or why not? Be precise. While (TRUE) while(turn != currentPid) /* wait */; critical region(); turn = (turn + 1) % 2;noncritical region();

CSC 227: Operating Systems Fall 2008/2009 Final Exam Date: Feb. 2, 2009 Time: 1:00 - 3:30 pmStudent Name: ID#: Section#: This examination is close notes and close book. 3. [2 marks] Consider two processes Pa and Pb using two semaphores S and Q initialized to 1. S and Q are implemented with waiting queues. Pa Pb wait (S); wait (Q); wait (Q); wait (S); signal (S); signal (Q); signal (Q); signal (S); What situation may occur when Pa and Pb are running? **QUESTION 5** [6 marks] 1. [4.5 marks] Consider a swapping system in which memory consists of the following hole sizes in memory order: 10 KB, 4 KB, 20 KB, 18 KB, 7 KB, 9KB, 12 KB, and 15 KB. Which hole is taken for successive segment requests of (a) 12 KB (b) 10 KB (c) 9 KB for First Fit. Repeat the question for Best Fit and Worst Fit. 2. [1.5 marks] A swapping system eliminates holes by compaction. Assuming a random distribution of many holes and many data segments and a time to read or write a 32-bit memory word of 10 nsec, about how long does it take to compact 128 MB?