cero para cualquier (u,v) en D^* , y si T aplica la frontera de D^* de forma inyectiva y sobreyectiva en la frontera de D, entonces T es inyectiva y sobreyectiva entre D^* y D. (Esta demostración queda fuera del ámbito de este texto.)

En resumen, tenemos:

Aplicaciones invectivas y sobrevectivas Una aplicación T: $D^* \to D$ es invectiva si aplica puntos distintos a puntos distintos. Es sobrevectiva si la imagen de D^* bajo T es todo de D.

Una transformación lineal de \mathbb{R}^n en \mathbb{R}^n dada por la multiplicación por una matriz A es inyectiva y sobreyectiva si y solo si det $A \neq 0$.

Ejercicios

- **1.** Determinar si las siguientes funciones $T: \mathbb{R}^2 \to \mathbb{R}^2$ son inyectivas y/o sobreyectivas.
 - (a) T(x,y) = (2x,y).
 - (b) $T(x,y) = (x^2, y)$.
 - (c) $T(x,y) = (\sqrt[3]{x}, \sqrt[3]{y}).$
 - (d) $T(x,y) = (\operatorname{sen} x, \cos y)$.
- **2.** Determinar si las siguientes funciones $T: \mathbb{R}^3 \to \mathbb{R}^3$ son inyectivas y/o sobreyectivas.
 - (a) T(x, y, z) = (2x + y + 3z, 3y 4z, 5x).
 - (b) $T(x, y, z) = (y \sin x, z \cos y, xy)$.
 - (c) T(x, y, z) = (xy, yz, xz).
 - (d) $T(x, y, z) = (e^x, e^y, e^z)$.
- **3.** Sea D un cuadrado de vértices (0,0), (1,1), (2,0), (1,-1) y sea D^* un paralelogramo con vértices (0,0), (1,2), (2,1), (1,-1). Hallar una aplicación lineal T que aplique D^* sobre D.
- **4.** Sea D un paralelogramo cuyos vértices son (0,0), (-1,3), (-2,0), (-1,-3). Sea $D^* = [0,1] \times [0,1]$. Hallar una aplicación lineal T tal que $T(D^*) = D$.
- **5.** Sea $S^* = (0,1] \times [0,2\pi)$ y sea $T(r,\theta) = (r\cos\theta, r\sin\theta)$. Determinar la imagen S. Demostrar que T es inyectiva en S^* .
- **6.** Sea

$$T(x^*, y^*) = \left(\frac{x^* - y^*}{\sqrt{2}}, \frac{x^* + y^*}{\sqrt{2}}\right).$$

- Demostrar que T rota el cuadrado unidad, $D^* = [0, 1] \times [0, 1]$.
- 7. Sea $D^* = [0, 1] \times [0, 1]$ y sea T definida en D^* mediante $T(u, v) = (-u^2 + 4u, v)$. Hallar la imagen D. ¿Es T inyectiva?
- **8.** Sea D^* el paralelogramo limitado por las rectas $y = 3x 4, y = 3x, y = \frac{1}{2}x$ e $y = \frac{1}{2}(x + 4)$. Sea $D = [0, 1] \times [0, 1]$. Hallar una aplicación T tal que D es la imagen de D^* bajo T.
- **9.** Sea $D^* = [0,1] \times [0,1]$ y defínase T en D^* como $T(x^*,y^*) = (x^*y^*,x^*)$. Determinar la imagen D. ¿Es T inyectiva? Si no lo es, ¿podemos eliminar algún subconjunto de D^* de modo que el resto de T sea inyectiva?
- **10.** Sea D^* el paralelogramo con vértices en (-1,3), (0,0),(2,-1) y (1,2), y D el rectángulo $D=[0,1]\times[0,1]$. Hallar una aplicación T tal que D sea la imagen de D^* .
- **11.** Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ el cambio a coordenadas esféricas definido por $(\rho, \phi, \theta) \mapsto (x, y, z)$, donde

 $x = \rho \operatorname{sen} \phi \cos \theta$, $y = \rho \operatorname{sen} \phi \operatorname{sen} \theta$, $z = \rho \cos \phi$.

Sea D^* el conjunto de puntos (ρ,ϕ,θ) tales que $\phi \in [0,\pi], \theta \in [0,2\pi], \rho \in [0,1]$. Hallar $D=T(D^*)$. ¿Es T inyectiva? Si no lo es, ¿podemos eliminar algún subconjunto de D^* , de modo que en lo que quede T sea inyectiva?