(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 April 2002 (11.04.2002)

PCT

(10) International Publication Number WO 02/29029 A2

(51) International Patent Classification⁷:

C12N 15/00

(21) International Application Number: PCT/EP01/09723

(22) International Filing Date: 23 August 2001 (23.08.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 100 48 603.7
 30 September 2000 (30.09.2000)
 DE

 101 09 691.7
 28 February 2001 (28.02.2001)
 DE

 101 36 986.7
 28 July 2001 (28.07.2001)
 DE

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: FARWICK, Mike; Gustav-Adolf-Strasse
 11, 33615 Bielefeld (DE). HUTHMACHER, Klaus;
 Lärchenweg 18, 63584 Gelnhausen (DE). SCHISCHKA,
 Natalie; Stuttgarter Strasse 1, 33659 Bielefeld (DE).
 BATHE, Brigitte; Twicten 1, 33154 Salzkotten (DE).
 PFEFFERLE, Walter; Jahnstrasse 33, 33790 Halle
 (Westf.) (DE). BINDER, Michael; Kalberkamp 28,
 33803 Steinhagen (Westf.) (DE). GREISSINGER, Dieter; Augasse 1f, 61194 Niddatal (DE). THIERBACH,
 Georg; Gunststrasse 21, 33613 Bielefeld (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GΛ, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: NUCLEOTIDE SEQUENCES WHICH CODE FOR THE CYSD, CYSN, CYSK, CYSE AND CYSH GENES

(57) Abstract: The invention provides nucleotide sequences from coryneform bacteria which code for the cysD, cysN, cysK, cysE and cysH genes and a process for the fermentative preparation of amino acids using bacteria in which the genes mentioned are enhanced, a process for the fermentative preparation of L-amino acids using coryneform bacteria in which at least the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene is present in enhanced form, and the use of polynucleotides which contain the sequences according to the invention as hybridization probes and a process for the preparation of an L-methionine-containing animal feedstuffs additive from fermentation broths.

Nucleotide Sequences which Code for the cysD, cysN, cysK, cysE and cysH Genes

Field of the Invention

The invention provides nucleotide sequences from coryneform bacteria which code for the cysD, cysN, cysK, cysE and cysH genes and a process for the fermentative preparation of amino acids using bacteria in which the endogene genes mentioned are enhanced.

Prior Art

30

L-Amino acids, in particular L-lysine, L-cysteine and L-methionine, are used in human medicine and in the pharmaceuticals industry, in the foodstuffs industry and very particularly in animal nutrition.

It is known that amino acids are prepared by fermentation from strains of coryneform bacteria, in particular Corynebacterium glutamicum. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the process can relate to fermentation measures, such as, for example, stirring and supply of oxygen, or the composition of the

nutrient media, such as, for example, the sugar concentration during the fermentation, or the working up to the product form by, for example, ion exchange chromatography, or the intrinsic output properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites or are auxotrophic for metabolites of regulatory importance and produce amino acids are obtained in this manner.

WO 02/29029 PCT/EP

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of Corynebacterium strains which produce L-amino acid, by amplifying individual amino acid biosynthesis genes and investigating the effect on the amino acid production.

Object of the Invention

5

30

The inventors had the object of providing new measures for improved fermentative preparation of amino acids.

Summary of the Invention

- Where L-amino acids or amino acids are mentioned in the following, this means one or more amino acids, including their salts, chosen from the group consisting of L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-
- isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-arginine. L-Lysine and the sulfur-containing L-amino acids L-cysteine and L-methionine are particularly preferred.
- When L-lysine or lysine are mentioned in the following, not only the bases but also the salts, such as e.g. lysine monohydrochloride or lysine sulfate, are meant by this.
 - When L-cysteine or cysteine are mentioned in the following, the salts, such as e.g. cysteine hydrochloride or cysteine S-sulfate are also meant by this.
- When L-methionine or methionine are mentioned in the following, the salts, such as e.g. methionine hydrochloride or methionine sulfate are also meant by this.

The invention provides isolated polynucleotides from coryneform bacteria comprising one or more of the polynucleotide sequences which code for the cysD gene, the

cysN gene, the cysK gene, the cysE gene or the cysH gene, chosen from the group consisting of

a) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2,

5

10

30

- b) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 3,
- c) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 5,
- 15 d) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 6,
- e) polynucleotide which is identical to the extent of at
 least 70% to a polynucleotide which codes for a
 polypeptide which comprises the amino acid sequence of
 SEQ ID No. 8,
- f) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 2,
 - g) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 3,

- h) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 5,
- 5 i) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 6,
- j) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 8,
- k) polynucleotide which is complementary to the polynucleotides of a), b), c), d), e), f), g), h), i)
 or j), and
 - polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a), b), c), d), e), f), g), h), i), j) or k),
- the polypeptides preferably having the corresponding activities, namely of sulfate adenylyl transferase, cysteine synthase A, serine acetyl transferase or 3'-phopshoadenylyl sulfate reductase.

The invention also provides the above-mentioned polynucleotides, these preferably being DNAs which are capable of replication, comprising:

- (i) one or more nucleotide sequences shown in SEQ ID No. 1, SEQ ID No. 4 or SEQ ID No. 7, or

- (iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii), and optionally
- (iv) sense mutations of neutral function in (i).
- The invention also provides
 - polynucleotides, in particular DNAs, which are capable of replication and comprise one or more nucleotide sequences as shown in SEQ ID No. 1, SEQ ID No. 4, or SEQ ID No. 7;
- 10 polynucleotides which code for one or more polypeptides which comprises the corresponding amino acid sequences, as shown in SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 6, or SEQ ID No. 8;
- a vector containing one or more of the polynucleotides 15 according to the invention, in particular shuttle vectors or plasmid vectors, and
- coryneform bacteria which contain the vector or in which one or more of the endogene genes chosen from the group consisting of the cysD gene, cysN gene, cysK gene, cysE 20 gene and cysH gene is/are enhanced.

The invention also provides a process for the fermentative preparation of amino acids using bacteria in which one or more endogene genes chosen from the group consisting of

- the cysD gene which codes for the subunit II of sulfate 25 adenylyltransferase,
 - the cysN gene which codes for the subunit I of sulfate adenylyl transferase,
 - the cysK gene which codes for cysteine synthase A,
 - the cysE gene which codes for serine acetyl transferase,

WO 02/29029

6

• the cysH gene which codes for 3'-phosphoadenylyl sulfate reductase

is enhanced.

All five endogene genes (cysD gene, cysN gene, cysK gene,

5 cysE gene and cysH gene) participate in the biosynthesis of
the sulfur-containing L-amino acids L-cysteine and Lmethionine. The carbon matrix of these amino acids is
predominantly derived from the same metabolic intermediates
as that of the amino acids of the aspartate family, to

10 which L-lysine belongs. Over-expression of one or more of
the genes mentioned leads to pool shifts in the
participating biosynthesis pathways, which has a positive
effect on the formation of L-lysine, L-methionine and Lcysteine.

The invention also provides polynucleotides which substantially comprise a polynucleotide sequence, which are obtainable by screening by means of hybridization of a corresponding gene library of a coryneform bacterium, which comprises the complete gene or parts thereof, with a probe which comprises the sequence of the polynucleotides according to the invention according to SEQ ID No. 1, SEQ ID No. 4 or SEQ ID No. 7 or a fragment thereof, and isolation of the polynucleotide sequence mentioned.

Detailed Description of the Invention

Polynucleotides which comprise the sequences according to the invention are suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate, in the full length, nucleic acids or polynucleotides or genes which code for sulfate adenylyl transferase, cysteine synthase A, serine acetyl transferase and/or 3'-phosphoadenylyl sulfate reductase, or to isolate those nucleic acids or polynucleotides or genes which have a high similarity of

sequence with that of the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene.

Polynucleotides which comprise the sequences according to the invention are furthermore suitable as primers with the aid of which DNA of genes which code for sulfate adenylyl transferase, cysteine synthase A, serine acetyl transferase and/or 3'-phosphoadenylyl sulfate reductase can be prepared by the polymerase chain reaction (PCR).

In one aspect of this invention, the cysD gene according to the invention codes for the subunit II of sulfate adenylyl transferase, the cysN gene according to the invention codes for the subunit I of sulfate adenylyl transferase, the cysK gene according to the invention codes for cysteine synthase A, the cysE gene according to the invention codes for serine acetyl transferase and the cysH gene according to the invention codes for 3'-phosphoadenylyl sulfate reductase.

In another aspect of this invention, it is possible that these genes according to the invention occur in pairs or in combination with several genes, in which case they then code for the combined activities. That is to say, if, for example, the a) cysE gene and cysK gene, or b) cysK gene and cysH gene, or c) cysN gene and cysD gene and cysE gene and cysK gene are enhanced at the same time, these code for a) serine acetyl transferase and cysteine synthase A, b) cysteine synthase A and 3'-phosphoadenylyl sulfate reductase, and c) sulfate adenylyl transferase and serine acetyltransferase and cysteine synthase A.

Such oligonucleotides which serve as probes or primers

comprise at least 30, preferably at least 20, very
particularly preferably at least 15 successive nucleotides.

Oligonucleotides which have a length of at least 40 or 50 nucleotides are also suitable. Oligonucleotides with a

length of at least 100, 150, 200, 250 or 300 nucleotides are optionally also suitable.

"Isolated" means separated out of its natural environment.

"Polynucleotide" in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.

The polynucleotides according to the invention include a polynucleotide according to SEQ ID No. 1, SEQ ID No. 4, or SEQ ID No. 7 or a fragment prepared therefrom and also those which are at least 70%, preferably at least 80% and in particular at least 90% to 95% identical to the polynucleotide according to SEQ ID No. 1, SEQ ID No. 4 or SEQ ID No. 7 or a fragment prepared therefrom.

"Polypeptides" are understood as meaning peptides or 15 proteins which comprise two or more amino acids bonded via peptide bonds.

The polypeptides according to the invention include the polypeptides according to SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 6 and SEQ ID No. 8, in particular those with the biological activity of sulfate adenylyl transferase, cysteine synthase A, serine acetyl transferase and/or 3'-phosphoadenylyl sulfate reductase, and also those which are at least 70%, preferably at least 80% and in particular at least 90% to 95% identical to the polypeptides according to SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 6 or SEQ ID No. 8 and have the activities mentioned.

The invention furthermore relates to a process for the fermentative preparation of amino acids chosen from the group consisting of L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-

5

arginine using coryneform bacteria which in particular already produce amino acids and in which the nucleotide sequences which code for the cysD gene, the cysN gene, cysE gene, the cysK gene and/or the cysH gene are enhanced, in particular over-expressed.

The term "enhancement" in this connection describes the increase in the intracellular activity of one or more enzymes (proteins) in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or using a gene or allele which codes for a corresponding enzyme (protein) having a high activity, and optionally combining these measures.

By enhancement measures, in particular over-expression, the activity or concentration of the corresponding protein is in general increased by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%, up to a maximum of 1000% or 2000%, based on that of the wild-type protein or the activity or concentration of the protein in the starting microorganism.

The microorganisms which the present invention provides can produce L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They can be representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.

30 Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum (C. glutamicum), are in particular the known wild-type strains

5

15

WO 02/29029 PCT/EP01/09723 10

> Corynebacterium glutamicum ATCC13032 Corynebacterium acetoglutamicum ATCC15806 Corynebacterium acetoacidophilum ATCC13870 Corynebacterium thermoaminogenes FERM BP-1539 Corynebacterium melassecola ATCC17965 Brevibacterium flavum ATCC14067 Brevibacterium lactofermentum ATCC13869 and Brevibacterium divaricatum ATCC14020

and L-amino acid-producing mutants or strains prepared 10 therefrom.

The new cysD, cysN, cysK, cysE and cysH genes of C. glutamicum which code for the enzymes sulfate adenylyl transferase (EC 2.7.7.4), cysteine synthase A (EC 4.2.99.8), serine acetyl transferase (EC 2.3.1.30) and 3'phosphoadenylyl sulfate reductase (EC 1.8.99.4) have been isolated.

To isolate the cysD gene, the cysN gene, the cysK gene, the cysE gene, the cysH gene or also other genes of C. glutamicum, a gene library of this microorganism is first set up in Escherichia coli (E. coli). The setting up of 20 gene libraries is described in generally known textbooks and handbooks. The textbook by Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Germany, 1990), or the handbook by Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring 25 Harbor Laboratory Press, 1989) may be mentioned as an example. A well-known gene library is that of the E. coli K-12 strain W3110 set up in λ vectors by Kohara et al. (Cell 50, 495 -508 (1987)). Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) describe a gene 30 library of C. glutamicum ATCC13032, which was set up with the aid of the cosmid vector SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the E. coli K-12 strain NM554 (Raleigh et 35 al., 1988, Nucleic Acids Research 16:1563-1575).

Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) in turn describe a gene library of C. glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)).

- 5 To prepare a gene library of C. glutamicum in E. coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) or pUC9 (Vieira et al., 1982, Gene, 19:259-268). Suitable hosts are, in particular, those E. coli strains which are restriction- and recombination-10 defective. An example of these is the strain DH5cmcr, which has been described by Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649). The long DNA fragments cloned with the aid of cosmids can in turn be subcloned in the usual vectors suitable for 15 sequencing and then sequenced, as is described e.g. by Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467,
- The resulting DNA sequences can then be investigated with known algorithms or sequence analysis programs, such as e.g. that of Staden (Nucleic Acids Research 14, 217-232(1986)), that of Marck (Nucleic Acids Research 16, 1829-1836 (1988)) or the GCG program of Butler (Methods of Biochemical Analysis 39, 74-97 (1998)).

1977).

The new DNA sequences of C. glutamicum which code for the cysD, cysN, cysK, cysE and cysH genes and which, as SEQ ID No. 1, SEQ ID No. 4, and SEQ ID No. 7, are constituents of the present invention have been found. The amino acid sequence of the corresponding proteins has furthermore been derived from the present DNA sequences by the methods described above. The resulting amino acid sequences of the cysD, cysN, cysK, cysE and cysH gene products are shown in SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 6 and SEQ ID No. 8.

PCT/EP01/09723

Coding DNA sequences which result from SEQ ID No. 1, SEQ ID No. 4 or SEQ ID No. 7 by the degeneracy of the genetic code are also a constituent of the invention. In the same way, DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 or SEQ ID No. 4 or parts of SEQ ID No. 4 or SEQ ID No. 7 or parts of SEQ ID No. 7 are a constituent of the invention. Conservative amino acid exchanges, such as e.g. exchange of glycine for alanine or of aspartic acid for glutamic acid in proteins, are furthermore known among 10 experts as "sense mutations" which do not lead to a fundamental change in the activity of the protein, i.e. are of neutral function. It is furthermore known that changes on the N and/or C terminus of a protein cannot substantially impair or can even stabilize the function 15 thereof. Information in this context can be found by the expert, inter alia, in Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), in O'Regan et al. (Gene 77:237-251 (1989)), in Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), in Hochuli et al. (Bio/Technology 20 6:1321-1325 (1988)) and in known textbooks of genetics and molecular biology. Amino acid sequences which result in a corresponding manner from SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 6 and SEQ ID No. 8 are also a

25 In the same way, DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 or SEQ ID No. 4 or parts of SEQ ID No. 4 or SEQ ID No. 7 or parts of SEQ ID No. 7 are a constituent of the invention. Finally, DNA sequences which are prepared by the polymerase chain reaction (PCR) using primers which result from SEQ ID No. 1, SEQ ID No. 4 or SEQ 30 ID No. 7 are a constituent of the invention. Such oligonucleotides typically have a length of at least 15 nucleotides.

constituent of the invention.

Instructions for identifying DNA sequences by means of hybridization can be found by the expert, inter alia, in 35

the handbook "The DIG System Users Guide for Filter Hybridization" from Boehringer Mannheim GmbH (Mannheim, Germany, 1993) and in Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). The hybridization takes place under stringent conditions, that is to say only hybrids in which the probe and target sequence, i. e. the polynucleotides treated with the probe, are at least 70% identical are formed. It is known that the stringency of the hybridization, including the washing steps, is influenced or determined by varying the buffer 10 composition, the temperature and the salt concentration. The hybridization reaction is preferably carried out under a relatively low stringency compared with the washing steps (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, 15 UK, 1996).

A 5x SSC buffer at a temperature of approx. 50°C - 68°C, for example, can be employed for the hybridization reaction. Probes can also hybridize here with polynucleotides which are less than 70% identical to the sequence of the probe. Such hybrids are less stable and are 20 removed by washing under stringent conditions. This can be achieved, for example, by lowering the salt concentration to $2x\ SSC$ and optionally subsequently $0.5x\ SSC$ (The DIG System User's Guide for Filter Hybridisation, Boehringer 25 Mannheim, Mannheim, Germany, 1995) a temperature of approx. 50°C - 68°C being established. It is optionally possible to lower the salt concentration to 0.1x SSC. Polynucleotide fragments which are, for example, at least 70% or at least 80% or at least 90% to 95% identical to the sequence of the 30 probe employed can be isolated by increasing the hybridization temperature stepwise from 50°C to 68°C in steps of approx. 1 - 2°C. Further instructions on hybridization are obtainable on the market in the form of so-called kits (e.g. DIG Easy Hyb from Roche Diagnostics 35 GmbH, Mannheim, Germany, Catalogue No. 1603558).

Instructions for amplification of DNA sequences with the aid of the polymerase chain reaction (PCR) can be found by the expert, inter alia, in the handbook by Gait: Oligonucleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) and in Newton and Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Germany, 1994).

5

10

It has been found that coryneform bacteria produce amino acids in an improved manner after over-expression of one or more of the genes chosen from the group consisting of the cysD gene, cysN gene, cysK gene, cysE gene and cysH gene.

To achieve an over-expression, the number of copies of the corresponding genes can be increased, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes which are incorporated upstream of the structural gene act 15 in the same way. By inducible promoters, it is additionally possible to increase the expression in the course of fermentative amino acid production. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is also increased by 20 preventing the degradation of the enzyme protein. The genes or gene constructs can either be present in plasmids with a varying number of copies, or can be integrated and amplified in the chromosome. Alternatively, an overexpression of the genes in question can furthermore be 25 achieved by changing the composition of the media and the culture procedure.

Instructions in this context can be found by the expert, inter alia, in Martin et al. (Bio/Technology 5, 137-146 (1987)), in Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya and Morinaga (Bio/Technology 6, 428-430 (1988)), in Eikmanns et al. (Gene 102, 93-98 (1991)), in EP 0 472 869, in US 4,601,893, in Schwarzer and Pühler (Bio/Technology 9, 84-87 (1991), in Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132

5

35

(1994)), in LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in WO 96/15246, in Malumbres et al. (Gene 134, 15 - 24 (1993)), in JP-A-10-229891, in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), in Makrides (Microbiological Reviews 60:512-538 (1996)) and in known textbooks of genetics and molecular biology.

By way of example, for enhancement the cysD, cysN, cysK, cysE or cysH genes according to the invention were over-10 expressed with the aid of episomal plasmids. Suitable plasmids are those which are replicated in coryneform bacteria. Numerous known plasmid vectors, such as e.g. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-15 98 (1991)) or pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) are based on the cryptic plasmids pHM1519, pBL1 or pGA1. Other plasmid vectors, such as e.g. those based on pCG4 (US-A 4,489,160), or pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), or pAG1 (US-A 20 5,158,891), can be used in the same manner.

Plasmid vectors which are furthermore suitable are also those with the aid of which the process of gene amplification by integration into the chromosome can be used, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 25 (1994)) for duplication or amplification of the hom-thrB operon. In this method, the complete gene is cloned in a plasmid vector which can replicate in a host (typically E. coli), but not in C. glutamicum. Possible vectors are, for 30 example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Invitrogen, Groningen, Holland; Bernard et al., Journal of Molecular

Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) or pBGS8 (Spratt et al.,1986, Gene 41: 337-342). The plasmid vector which contains the gene to be amplified is then transferred into the desired strain of C. glutamicum by conjugation or transformation. The method of conjugation is described, for example, by Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described, for example, by Thierbach et 10 al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivnan (Bio/Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)). After homologous recombination by means of a "cross over" event, the resulting strain contains at 15 least two copies of the gene in question.

In addition, it may be advantageous for the production of L-amino acids to enhance, in particular over-express, one or more enzymes of the particular biosynthesis pathway, of glycolysis, of anaplerosis, of the citric acid cycle, of the pentose phosphate cycle, of amino acid export and optionally regulatory proteins, in addition to the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene.

Thus, for the preparation of L-amino acids, in addition to
25 enhancement of the cysD gene, the cysN gene, the cysK gene,
the cysE gene and/or the cysH gene, one or more endogene
genes chosen from the group consisting of

- the dapA gene which codes for dihydrodipicolinate synthase (EP-B 0 197 335),
- the gap gene which codes for glyceraldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),

- the tpi gene which codes for triose phosphate isomerase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- the pgk gene which codes for 3-phosphoglycerate kinase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- the zwf gene which codes for glucose 6-phosphate dehydrogenase (JP-A-09224661),
 - the pyc gene which codes for pyruvate carboxylase (DE-A-198 31 609),
- the mqo gene which codes for malate-quinone
 oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
 - the lysC gene which codes for a feed-back resistant aspartate kinase (Accession No.P26512; EP-B-0387527; EP-A-0699759),
- the lysE gene which codes for lysine export (DE-A-195 48 222),
 - the hom gene which codes for homoserine dehydrogenase (EP-A 0131171),
- the ilvA gene which codes for threonine dehydratase

 (Möckel et al., Journal of Bacteriology (1992) 80658072)) or the ilvA(Fbr) allele which codes for a "feed back resistant" threonine dehydratase (Möckel et al.,
 (1994) Molecular Microbiology 13: 833-842),
- the ilvBN gene which codes for acetohydroxy-acid synthase (EP-B 0356739),
 - the ilvD gene which codes for dihydroxy-acid dehydratase (Sahm and Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979),

20

25

WO 02/29029 PCT/EP01/09723 18

• the zwal gene which codes for the Zwal protein (DE: 19959328.0, DSM 13115)

can be enhanced, in particular over-expressed.

It may furthermore be advantageous for the production of Lamino acids, in addition to enhancement of the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene, for one or more genes chosen from the group consisting of

- the pck gene which codes for phosphoenol pyruvate 10 carboxykinase (DE 199 50 409.1; DSM 13047),
 - the pgi gene which codes for glucose 6-phosphate isomerase (US 09/396,478; DSM 12969),
 - the poxB gene which codes for pyruvate oxidase (DE: 1995) 1975.7; DSM 13114),
- the zwa2 gene which codes for the Zwa2 protein (DE: 15 19959327.2, DSM 13113)

to be attenuated, in particular for the expression thereof to be reduced. For the production of L-cysteine in particular, it may be advantageous, in addition to enhancement of the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene, for one or more genes chosen from the group consisting of

- ullet the aecD gene which codes for cystathionine eta-lyase (Accession Number M89931 des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA),
 - the metB gene which codes for cystathione γ -synthase (Accession Number AF1236953 des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)

to be attenuated, in particular for the expression thereof 30 to be reduced.

The term "attenuation" in this connection describes the reduction or elimination of the intracellular activity of one or more enzymes (proteins) in a microorganism which are coded by the corresponding DNA, for example by using a weak promoter or using a gene or allele which codes for a corresponding enzyme with a low activity or inactivates the corresponding gene or enzyme (protein), and optionally combining these measures.

By attenuation measures, the activity or concentration of the corresponding protein is in general reduced to 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild-type protein or of the activity or concentration of the protein in the starting microorganism.

- In addition to over-expression of the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene it may furthermore be advantageous for the production of amino acids to eliminate undesirable side reactions (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in:
- Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

The invention also provides the microorganisms prepared according to the invention, and these can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of amino acids. A summary of known culture methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die

Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/ Wiesbaden, 1994)).

10

WO 02/29029 PCT/EP01/09723 20

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General

Bacteriology" of the American Society for Bacteriology 5 (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e.g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e.g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e.g. glycerol and ethanol, and organic acids, such as e.g. acetic acid, can be used as the source of carbon. These substances can be used individually or as a mixture.

Organic nitrogen-containing compounds, such as peptones, 15 yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can 20 be used individually or as a mixture.

Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodiumcontaining salts can be used as the source of phosphorus.

Organic and inorganic sulfur-containing compounds, such as, 25 for example, sulfides, sulfites, sulfates and thiosulfates, can be used as a source of sulfur, in particular for the preparation of sulfur-containing amino acids.

The culture medium must furthermore comprise salts of metals, such as e. g. magnesium sulfate or iron sulfate, 30 which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the above-mentioned substances.

Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

- Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH of the culture. Antifoams, such as e.g. fatty acid polyglycol esters, can 10 be employed to control the development of foam. Suitable substances having a selective action, such as e.g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 20°C to 45° C, and preferably 25° C to 40°C. Culturing is continued until a maximum of the desired product has formed. This target is usually reached within 10 hours to 160 hours.
- The fermentation broths obtained in this way, in particular containing L-methionine, usually have a dry weight of 7.5 to 25 wt.% and contain L-methionine. It is furthermore also advantageous if the fermentation is conducted in a sugarlimited procedure at least at the end, but in particular over at least 30% of the duration of the fermentation. That is to say, the concentration of utilizable sugar in the fermentation medium is reduced to ≥ 0 to 3 g/l during this period.
- The fermentation broth prepared in this manner, in

 particular containing L-methionine, is then further processed. Depending on requirements, the all or some of the biomass can be removed from the fermentation broth by separation methods, such as e.g. centrifugation, filtration, decanting or a combination thereof, or it can be left completely in this. This broth is then thickened or

concentrated by known methods, such as e.g. with the aid of a rotary evaporator, thin film evaporator, falling film evaporator, by reverse osmosis, or by nanofiltration. This concentrated fermentation broth can then be worked up by methods of freeze drying, spray drying, spray granulation or by other processes to give a preferably free-flowing, finely divided powder.

This free-flowing, finely divided powder can then in turn by converted by suitable compacting or granulating

10 processes into a coarse-grained, readily free-flowing, storable and largely dust-free product. In the granulation or compacting it is advantageous to employ conventional organic or inorganic auxiliary substances or carriers, such as starch, gelatin, cellulose derivatives or similar

15 substances, such as are conventionally used as binders, gelling agents or thickeners in foodstuffs or feedstuffs processing, or further substances, such as, for example, silicas, silicates or stearates.

"Free-flowing" is understood as meaning powders which flow unimpeded out of the vessel with the opening of 5 mm (millimeters) of a series of glass outflow vessels with outflow openings of various sizes (Klein, Seifen, Öle, Fette, Wachse 94, 12 (1968)).

As described here, "finely divided" means a powder with a predominant content (> 50 %) with a particle size of 20 to 200 µm diameter. "Coarse-grained" means products with a predominant content (> 50 %) with a particle size of 200 to 2000 µm diameter. In this context, "dust-free" means that the product contains only small contents (< 5 %) with particle sizes of less than 20 µm diameter. The particle size determination can be carried out with methods of laser diffraction spectrometry. The corresponding methods are described in the textbook on "Teilchengrößenmessung in der Laborpraxis" by R. H. Müller and R. Schuhmann,

35 Wissenschaftliche Verlagsgesellschaft Stuttgart (1996) or

WO 02/29029 PCT/EP01/09723

in the textbook "Introduction to Particle Technology" by M. Rhodes, Verlag Wiley & Sons (1998).

"Storable" in the context of this invention means a product which can be stored for up to 120 days, preferably up to 52 weeks, particularly preferably 60 months, without a substantial loss (< 5%) of methionine occurring.

Alternatively, however, the product can be absorbed on to an organic or inorganic carrier substance which is known and conventional in feedstuffs processing, such as, for 10 example, silicas, silicates, grits, brans, meals, starches, sugars or others, and/or mixed and stabilized with conventional thickeners or binders. Use examples and processes in this context are described in the literature (Die Mühle + Mischfuttertechnik 132 (1995) 49, page 817).

15 Finally, the product can be brought into a state in which it is stable to digestion by animal stomachs, in particular the stomach of ruminants, by coating processes ("coating") using film-forming agents, such as, for example, metal carbonates, silicas, silicates, alginates, stearates, starches, gums and cellulose ethers, as described in 20 DE-C-4100920.

If the biomass is separated off during the process, further inorganic solids, for example added during the fermentation, are in general removed. In addition, the animal feedstuffs additive according to the invention 25 comprises at least the predominant proportion of the further substances, in particular organic substances, which are formed or added and are present in solution in the fermentation broth, where these have not been separated off by suitable processes. 30

In one aspect of the invention, the biomass can be separated off to the extent of up to 70%, preferably up to 80%, preferably up to 90%, preferably up to 95%, and

particularly preferably up to 100%. In another aspect of the invention, up to 20% of the biomass, preferably up to 15%, preferably up to 10%, preferably up to 5%, particularly preferably no biomass is separated off.

These organic substances include organic by-products which are optionally produced, in addition to the L-methionine, and optionally discharged by the microorganisms employed in the fermentation. These include L-amino acids chosen from the group consisting of L-lysine, L-valine, L-threonine, L-10 alanine or L-tryptophan. They include vitamins chosen from the group consisting of vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B12 (cyanocobalamin), nicotinic acid/nicotinamide and vitamin E (tocopherol). They include furthermore organic acids which carry one to three carboxyl groups, such as, for example, acetic acid, lactic acid, citric acid, malic acid or fumaric acid. Finally, they also include sugars, such as, for example, trehalose. These compounds are optionally desired if they improve the nutritional value of the product. 20

These organic substances, including L-methionine and/or D-methionine and/or the racemic mixture D,L-methionine, can also be added, depending on requirements, as a concentrate or pure substance in solid or liquid form during a suitable process step. These organic substances mentioned can be added individually or as mixtures to the resulting or concentrated fermentation broth, or also during the drying or granulation process. It is likewise possible to add an organic substance or a mixture of several organic substances to the fermentation broth and a further organic substance or a further mixture of several organic substances during a later process step, for example granulation.

The product described above is suitable as a feedstuffs additive, i.e. feed additive, for animal nutrition.

The L-methionine content of the animal feedstuffs additive is conventionally 1 wt.% to 80 wt.%, preferably 2 wt.% to 80 wt.%, particularly preferably 4 wt.% to 80 wt.%, and very particularly preferably 8 wt.% to 80 wt.%, based on the dry weight of the animal feedstuffs additive. Contents of 1 wt.% to 60 wt.%, 2 wt.% to 60 wt.%, 4 wt.% to 60 wt.%, 6 wt.% to 60 wt.%, 1 wt.% to 40 wt.%, 2 wt.% to 40 wt.% or 4 wt.% to 40 wt.% are likewise possible. The water content of the feedstuffs additive is conventionally up to 5 wt.%, preferably up to 4 wt.%, and particularly preferably less than 2 wt.%.

The invention accordingly also provides a process for the preparation of an L-methionine-containing animal feedstuffs additive from fermentation broths, which comprises the steps

- a) culture and fermentation of an L-methionine-producing microorganism in a fermentation medium;
- b) removal of water from the L-methionine-containing fermentation broth (concentration);

15

- 20 c) removal of an amount of 0 to 100 wt.% of the biomass formed during the fermentation; and
 - d) drying of the fermentation broth obtained according to a) and/or b) to obtain the animal feedstuffs additive in the desired powder or granule form.
- 25 If desired, one or more of the following steps can furthermore be carried out in the process according to the invention:
- e) addition of one or more organic substances, including L-methionine and/or D-methionine and/or the racemic mixture D,L-methionine, to the products obtained according to a), b) and/or c);

26

- f) addition of auxiliary substances chosen from the group consisting of silicas, silicates, stearates, grits and bran to the substances obtained according to a) to d) for stabilization and to increase the storability; or
- g) conversion of the substances obtained according to a) to e) into a form which is stable in an animal stomach, in particular rumen, by coating with film-forming agents.

Methods for the determination of L-amino acids are known from the prior art. The analysis can thus be carried out, for example, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190) by ion exchange chromatography with subsequent ninhydrin derivation, or it can be carried out by reversed phase HPLC, for example as described by Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).

The process according to the invention is used for fermentative preparation of amino acids.

The following microorganisms were deposited as a pure

20 culture on 18th May 2001 at the Deutsche Sammlung für

Mikroorganismen und Zellkulturen (DSMZ = German Collection

of Microorganisms and Cell Cultures, Braunschweig, Germany)

in accordance with the Budapest Treaty:

- E. coli DH5αmcr/pEC-XK99EcysEblex as DSM 14308,
- E. coli DH5αmcr/pEC-XK99EcysKalex as DSM 14310,
 - E. coli DH5αmcr/pEC-XK99EcysDalex as DSM 14311,
 - E. coli DH5αmcr/pEC-XK99EcysHalex as DSM 14315.

The present invention is explained in more detail in the following with the aid of embodiment examples.

PCT/EP01/09723 WO 02/29029

The isolation of plasmid DNA from Escherichia coli and all techniques of restriction, Klenow and alkaline phosphatase treatment were carried out by the method of Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA). Methods for transformation of Escherichia coli are also described in this handbook.

The composition of the usual nutrient media, such as LB or TY medium, can also be found in the handbook by Sambrook et 10 al.

Example 1

phosphatase.

Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032

- Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 15 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179) and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Diagnostics GmbH, Mannheim, Germany, Product 20 Description SAP, Code no. 1758250). The DNA of the cosmid vector SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description 25 SuperCosl Cosmid Vector Kit, Code no. 251301) was cleaved with the restriction enzyme XbaI (Amersham Pharmacia, Freiburg, Germany, Product Description XbaI, Code no. 27-0948-02) and likewise dephosphorylated with shrimp alkaline
- The cosmid DNA was then cleaved with the restriction enzyme 30 BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04). The cosmid DNA treated in this manner was mixed with the treated ATCC13032

DNA and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04). The ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extract (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217).

For infection of the E. coli strain NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) the cells were taken up in 10 mM $MgSO_4$ and mixed with an aliquot of the phage suspension. The infection and titering of the cosmid 10 library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor), the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) with 100 mg/l ampicillin. After incubation overnight at 37°C, recombinant individual clones 15 were selected.

Example 2

Isolation and sequencing of the cysD gene, the cysN gene, the cysK gene, the cysE gene or the cysH gene

- The cosmid DNA of an individual colony was isolated with 20 the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product
- 25 Description Sau3AI, Product No. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Diagnostics GmbH, Mannheim, Germany, Product Description SAP, Product No. 1758250). After separation by gel electrophoresis, the cosmid fragments in
- the size range of 1500 to 2000 bp were isolated with the 30 QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

WO 02/29029 PCT/EP01/09723 29

The DNA of the sequencing vector pZero-1, obtained from Invitrogen (Groningen, Holland, Product Description Zero Background Cloning Kit, Product No. K2500-01), was cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No. 27-0868-04). The ligation of the cosmid fragments in the sequencing vector pZero-1 was carried out as described by Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor), the DNA mixture being incubated overnight with T4 ligase (Pharmacia Biotech, 10 Freiburg, Germany). This ligation mixture was then electroporated (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) into the E. coli strain DH5 α MCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) and plated out on LB agar (Lennox, 1955, 15 Virology, 1:190) with 50 mg/l zeocin.

The plasmid preparation of the recombinant clones was carried out with the Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Germany). The sequencing was carried out by the dideoxy chain termination method of Sanger et al. 20 (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) with modifications according to Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). The "RR dRhodamin Terminator Cycle Sequencing Kit" from PE Applied Biosystems (Product No. 403044, Weiterstadt, 25 Germany) was used. The separation by gel electrophoresis and analysis of the sequencing reaction were carried out in a "Rotiphoresis NF Acrylamide/Bisacrylamide" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) with the "ABI Prism 377" sequencer from PE Applied Biosystems 30

The raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0. The individual sequences of the pZerol derivatives were assembled to a continuous contig.

(Weiterstadt, Germany).

35

The computer-assisted coding region analysis was prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231).

30

The resulting nucleotide sequences are shown in SEQ ID No.

1 SEQ ID No. 4 and SEQ ID No. 7. Analysis of the nucleotide sequences showed six open reading frames of 915 base pairs, 1302 base pairs, 936 base pairs, 567 base pairs and 786 base pairs, which were called the cysD gene, cysN gene, cysK gene, cysE gene and cysH gene. The cysD gene codes for a protein of 304 amino acids, the cysN gene codes for a protein of 433 amino acids, the cysK gene codes for a protein of 311 amino acids, the cysE gene codes for a protein of 188 amino acids and the cysH gene codes for a protein of 261 amino acids.

15 Example 3

Preparation of shuttle expression vectors based on pEC- XK99E for enhancement of the cysD, cysK, cysE and cysH genes in C. glutamicum

- 3.1 Amplification of the cysD, cysK, cysE and cysH genes
- From the strain ATCC 13032, chromosomal DNA was isolated by the method of Eikmanns et al. (Microbiology 140: 1817-1828 (1994)). On the basis of the sequences of the cysD, cysK, cysE and cysH genes known for C. glutamicum from Example 2, the following oligonucleotides, listed in Table 1, were
- chosen for the polymerase chain reaction (see SEQ ID No. 9, SEQ ID No. 10, SEQ ID No. 11, SEQ ID No. 12, SEQ ID No. 13, SEQ ID No. 14, SEQ ID No. 15 and SEQ ID No. 16). In addition, suitable restriction cleavage sites which allow cloning into the target vector were inserted into the
- primers. They are listed in Table 1 and identified by underlining in the nucleotide sequence.

Table 1

Primer	Sequence with restriction cleavage site	Amplified fragment
cysDex1	5'-ctggtacc-gcggacttcactcatgacca-3' KpnI	cysD (1017 bp)
cysDex2	5'-cg <u>tctaga</u> -ggaacctgcggtgcacagac-3' XbaI	
cysKex1	5'-agggtacc-caagcggtcgaccaacaaa-3' KpnI	cysK (1005 bp)
cysKex2	5'-ct <u>tctaga</u> -attagtcgcggatgtcttcg-3' XbaI	
cysEex1	5'-ctggtacc-tcacgctgttagacttgcct-3' KpnI	cysE (672 bp)
cysEex2	5'-ga <u>tctaga</u> -acaaacgcactctggagctt-3' XbaI	
cysHex1	5'-acggtacc-tgagtcgcaacaatgagctt-3' KpnI	cysH (884 bp)
cysHex2	5'-gt <u>tctaga</u> -cggaggatgtggattc-3' XbaI	

The primers shown were synthesized by MWG-Biotech AG
(Ebersberg, Germany) and the PCR reaction was carried out
by the standard PCR method of Innis et al. (PCR Protocols.
A Guide to Methods and Applications, 1990, Academic Press)
with Pwo-Polymerase from Roche Diagnostics GmbH (Mannheim,
Germany). With the aid of the polymerase chain reaction,
the primers allow amplification of a DNA fragment 1017 bp
in size, which carries the cysD gene, and a DNA fragment
1005 bp in size, which carries the cysK gene, a DNA
fregment 672 bp in size, which carries the cysE gene, and a
DNA fragment 884 bp in size, which carries the cysH gene.
The cysD fragment, the cysK fragment, the cysE fragment and
the cysH fragment were cleaved with the restriction

WO 02/29029 PCT/EP01/09723

endonucleases KpnI and XbaI and then isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

- 3.2 Construction of the shuttle vector pEC-XK99E
- The E. coli C. glutamicum shuttle vector pEC-XK99E was constructed according to the prior art. The vector contains the replication region rep of the plasmid pGA1 including the replication effector per (US-A- 5,175,108; Nesvera et al., Journal of Bacteriology 179, 1525-1532 (1997)), the kanamycin resistance gene aph(3')-IIa from Escherichia coli (Beck et al. (1982), Gene 19: 327-336), the replication origin of the trc promoter, the termination regions T1 and T2, the lacIq gene (repressor of the lac operon of E. coli) and a multiple cloning site (mcs) (Norrander, J.M. et al.
- 15 Gene 26, 101-106 (1983)) of the plasmid pTRC99A (Amann et al. (1988), Gene 69: 301-315).

The E. coli - C. glutamicum shuttle vector pEC-XK99E constructed was transferred into C. glutamicum DSM5715 by means of electroporation (Liebl et al., 1989, FEMS

20 Microbiology Letters, 53:299-303). Selection of the transformants took place on LBHIS agar comprising 18.5 g/l brain-heart infusion broth, 0.5 M sorbitol, 5 g/l Bactotryptone, 2.5 g/l Bacto-yeast extract, 5 g/l NaCl and 18 g/l Bacto-agar, which had been supplemented with 25 mg/l kanamycin. Incubation was carried out for 2 days at 33°C.

Plasmid DNA was isolated from a transformant by conventional methods (Peters-Wendisch et al., 1998, Microbiology, 144, 915 - 927), cleaved with the restriction endonuclease HindIII, and the plasmid was checked by subsequent agarose gel electrophoresis.

30

The plasmid construct thus obtained in this way was called pEC-XK99E and is shown in Figure 1. The strain obtained by electroporation of the plasmid pEC-XK99E in the C.

WO 02/29029 PCT

5

10

glutamicum strain DSM5715 was called DSM5715/pEC-XK99E and deposited as DSM 13455 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty.

3.3 Cloning of the cysD, cysK, cysE and cysH genes in the E. coli-C. glutamicum shuttle vector pEC-XK99E

The E. coli - C. glutamicum shuttle vector pEC-XK99E described in Example 3.1 was used as the vector. DNA of this plasmid was cleaved completely with the restriction enzymes KpnI and XbaI and then dephosphorylated with shrimp alkaline phosphatase (Roche Diagnostics GmbH, Mannheim, Germany, Product Description SAP, Product No. 1758250).

The fragments cysD, approx. 1000 bp in size, cysK, approx. `15 990 bp in size, cysE, approx. 660 bp in size and cysH, approx. 870 bp in size cleaved with the restriction enzymes KpnI and XbaI and isolated from the agarose gel were in each case mixed with the prepared vector pEC-XK99E and the batches were treated with T4 DNA ligase (Amersham 20 Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04). The ligation batches were transformed in the E. coli strain DH5cmcr (Hanahan, In: DNA Cloning. A Practical Approach. Vol. I, IRL-Press, Oxford, Washington DC, USA). Selection of plasmid-carrying 25 cells was made by plating out the transformation batches on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/l kanamycin. After incubation overnight at 37°C, recombinant individual clones were selected. Plasmid DNA was isolated from a transformant in each case with the Qiaprep Spin 30 Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and cleaved with the restriction enzymes KpnI and XbaI to check the plasmid by subsequent agarose gel electrophoresis. The plasmids obtained were called pEC-XK99EcysDalex, pEC-

PCT/EP01/09723 WO 02/29029 34

XK99EcysKalex, pEC-XK99EcysEblex and pEC-XK99EcysHalex. They are shown in Figures 2, 3, 4 and 5.

Example 4

Transformation of the strain DSM5715 with the plasmids pEC-XK99EcysDalex, pEC-XK99EcysKalex, pEC-XK99EcysEblex and pEC-XK99EcysHa1ex

The strain DSM5715 was transformed with in each case one of the plasmids pEC-XK99EcysDalex, pEC-XK99EcysKalex, pEC-XK99EcysEblex and pEC-XK99EcysHalex using the

- electroporation method described by Liebl et al., (FEMS 10 Microbiology Letters, 53:299-303 (1989)). Selection of the transformants took place on LBHIS agar comprising 18.5 g/l brain-heart infusion broth, 0.5 M sorbitol, 5 g/l Bactotryptone, 2.5 g/l Bacto-yeast extract, 5 g/l NaCl and 15
- 18 g/l Bacto-agar, which had been supplemented with 25 mg/l kanamycin. Incubation was carried out for 2 days at 33°C.

Plasmid DNA was isolated from a transformant in each case by conventional methods (Peters-Wendisch et al., 1998, Microbiology 144, 915-927). DNA of the plasmids pEC-

- 20 XK99EcysDalex, pEC-XK99EcysKalex, pEC-XK99EcysEblex and pEC-XK99EcysHalex were cleaved with the restriction endonucleases KpnI and XbaI. The plasmids were checked by subsequent agarose gel electrophoresis. The strains obtained were called DSM5715/pEC-XK99EcysDalex,
- 25 DSM5715/pEC-XK99EcysKalex, DSM5715/pEC-XK99EcysEblex or DSM5715/pEC-XK99EcysHalex.

Example 5

Preparation of Lysine

The C. glutamicum strains DSM5715/pEC-XK99EcysDalex, 30 DSM5715/pEC-XK99EcysKalex, DSM5715/pEC-XK99EcysEblex or DSM5715/pEC-XK99EcysHalex obtained in Example 4 were cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant of each strain was determined.

For this, the strains were first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with kanamycin (25 mg/l)) for 24 hours at 33°C. Starting from this agar plate culture, in each case a preculture was seeded (10 ml medium in a 100 ml conical flask). The complete medium CgIII was used as the medium for the precultures.

10

15

Medium Cg III

NaCl 2.5 g/l

Bacto-Peptone 10 g/l

Bacto-Yeast extract 10 q/l

Glucose (autoclaved separately) 2% (w/v)

The pH was brought to pH 7.4

Kanamycin (25 mg/l) was added to this. The precultures were incubated for 16 hours at 33°C at 240 rpm on a shaking machine. In each case a main culture was seeded from these precultures such that the initial OD (660nm) of the main cultures was 0.1. Medium MM was used for the main cultures.

Medium MM

CSL (corn steep liquor)	5 g/l
MOPS (morpholinopropanesulfonic acid)	20 g/l
Glucose (autoclaved separately)	50 g/l
(NH ₄) ₂ SO ₄	25 g/l
KH ₂ PO ₄	0.1 g/l
$MgSO_4 * 7 H_2O$	1.0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ * H ₂ O	5.0mg/l
Biotin (sterile-filtered)	0.3 mg/l
Thiamine * HCl (sterile-filtered)	0.2 mg/l
L-Leucine (sterile-filtered)	0.1 g/l
CaCO ₃	25 g/l

The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaCO₃ autoclaved in the dry state.

Culturing was carried out in a 10 ml volume in a 100 ml conical flask with baffles. Kanamycin (25 mg/l) was added. Culturing was carried out at 33°C and 80% atmospheric humidity.

10 After 48 hours the OD of the cultures DSM5715, DSM5715/pEC-XK99EcysDalex, DSM5715/pEC-XK99EcysKalex and DSM5715/pEC-

XK99EcysHalex and after 72 hours the OD of the culture DSM5715/pEC-XK99EcysEblex was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich). The amount of lysine formed was in each case determined with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivation with ninhydrin detection.

The result of the experiment is shown in Tables 2 and 3.

10

Table 2

Strain	OD (660 nm) (48 h)	Lysine HCl g/l (48 h)
DSM5715	11.3	13.11
DSM5715/pEC- XK99EcysDalex	13.7	13.54
DSM5715/pEC- XK99EcysKa1ex	13.5	14.35
DSM5715/pEC- XK99EcysHa1ex	11.5	15.22

Table 3

Strain	OD (660 nm) (72 h)	Lysine HCl (72 h)g/l
DSM5715	7.17	14.27
DSM5715/pEC- XK99EcysEblex	9.0	15.22

Brief Description of the Figures:

Figure 1: Map of the plasmid pEC-XK99E

Figure 2: Map of the plasmid pEC-XK99EcysDalex

Figure 3: Map of the plasmid pEC-XK99EcysKalex

5 Figure 4: Map of the plasmid pEC-XK99EcysEblex

Figure 5: Map of the plasmid pEC-XK99EcysHalex

The abbreviations and designations used have the following meaning:

Kan: Kanamycin resistance gene aph(3')-IIa from

Escherichia coli

HindIII Cleavage site of the restriction enzyme

HindIII

XbaI Cleavage site of the restriction enzyme XbaI

KpnI Cleavage site of the restriction enzyme KpnI

Ptrc trc promoter

T1 Termination region T1

T2 Termination region T2

per Replication effector per

rep Replication region rep of the plasmid pGA1

lacIq repressor of the lac operon of

Escherichia coli

cysD Cloned cysD gene

cysK Cloned cysK gene

cysE Cloned cysE gene

cysH Cloned cysH gene

What is claimed is:

5

10

- Isolated polynucleotide from coryneform bacteria comprising one or more of the polynucleotide sequences which code for the endogene cysD gene, cysN gene, cysK gene, cysE gene or cysH gene, chosen from the group consisting of
 - a) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2,
 - b) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 3,
- c) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 5,
- d) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 6,
- e) polynucleotide which is identical to the extent of at least 70% to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 8,
 - f) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 2,

- g) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 3,
- h) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 5,
- i) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 6,
- j) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequence of SEQ ID No. 8,
 - k) polynucleotide which is complementary to the polynucleotides of a), b), c), d), e), f), g), h), i), or j), and
- 1) polynucleotide comprising at least 15 successive
 nucleotides of the polynucleotide sequence of a),
 b), c), d), e), f), g), h), i), j) or k),
- the polypeptides preferably having the corresponding activities, namely of sulfate adenylyltransferase, cysteine synthase A, serine acetyltransferase or 3'-phopshoadenylyl sulfate reductase.
 - 2. Polynucleotide according to claim 1, wherein the polynucleotide is a preferably recombinant DNA which is capable of replication in coryneform bacteria.
- 30 3. Polynucleotide according to claim 1, wherein the polynucleotide is an RNA.

- 4. Polynucleotide according to claim 2, comprising the nucleic acid sequence as shown in SEQ ID No. 1, SEQ ID No. 4 or SEQ ID No. 7.
- 5. DNA according to claim 2 which is capable of replication, comprising

- (i) the nucleotide sequence shown in SEQ ID No. 1, SEQ ID No. 4 or SEQ ID No. 7, or
- (ii) at least one sequence which corresponds to sequence (i) within the range of the degeneration of the genetic code, or
- (iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii), and optionally
- (iv) sense mutations of neutral function in (i).
- DNA according to claim 5 which is capable of replication, characterized in that the hybridization is carried out under a stringency corresponding to at most 2x SSC.
- 7. Polynucleotide sequence according to claim 1, which codes for a polypeptide which comprises the amino acid sequence shown in SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 6 or SEQ ID No. 8.
- 8. A coryneform bacterium in which the cysD gene, cysN gene, cysK gene, cysE gene and/or the cysH gene are enhanced, in particular over-expressed.
 - DSM 14308 deposited at the Deutsche Sammlung für Mikroorganismen und Zellkulturen [German Collection of Microorganisms and Cell Cultures], Braunschweig, Germany).

10. Escherichia coli strain DH5αmcr/pEC-XK99EcysKalex as DSM 14310 deposited at the Deutsche Sammlung für Mikroorganismen und Zellkulturen [German Collection of Microorganisms and Cell Cultures], Braunschweig, Germany.

5

10

- 11. Escherichia coli strain DH5αmcr/pEC-XK99EcysDalex as DSM 14311 deposited at the Deutsche Sammlung für Mikroorganismen und Zellkulturen [German Collection of Microorganisms and Cell Cultures], Braunschweig, Germany.
- 12. Escherichia coli strain DH5αmcr/pEC-XK99EcysHalex as DSM 14315 deposited at the Deutsche Sammlung für Mikroorganismen und Zellkulturen [German Collection of Microorganisms and Cell Cultures], Braunschweig, Germany.
- 13. Process for the fermentative preparation of L-amino acids, in particular L-lysine, L-cysteine and L-methionine, characterized in that the following steps are carried out:
- a) fermentation of the coryneform bacteria which produce the desired L-amino acid and in which at least the cysD gene, cysN gene, cysK gene, cysE gene and/or the cysH gene or nucleotide sequences which code for them is or are enhanced, in particular over-expressed;
 - b) concentration of the L-amino acid in the medium or in the cells of the bacteria, and
 - c) isolation of the L-amino acid.
- 14. Process according to claim 13, characterized in that
 30 bacteria in which further genes of the biosynthesis
 pathway of the desired L-amino acid are additionally
 enhanced are employed.

PCT/EP01/09723 WO 02/29029 43

- 15. Process according to claim 13, characterized in that bacteria in which the metabolic pathways which reduce the formation of the desired L-amino acid are at least partly eliminated are employed.
- 5 16. Process according to claim 13, characterized in that a strain transformed with a plasmid vector is employed, and the plasmid vector carries the nucleotide sequence which codes for the cysD gene, cysN gene, cysK gene, cysE gene and/or cysH gene.
- 10 17. Process according to claim 13, characterized in that the expression of the polynucleotides which code for the cysD gene, cysN gene, cysK gene, cysE gene and/or cysH gene is enhanced, in particular over-expressed.
- Process according to claim 13, characterized in that 18. 15 the catalytic properties of the polypeptides (enzyme proteins) for which the polynucleotides cysD, cysN, cysK, cysE and/or cysH code are increased.
- Process according to claim 13, characterized in that 19. for the preparation of L-amino acids, coryneform 20 microorganisms in which at the same time one or more of the endogene genes chosen from the group consisting of
 - 19.1 the dapA gene which codes for dihydrodipicolinate synthase,
- 25 19.2 the gap gene which codes for glyceraldehyde 3phosphate dehydrogenase,
 - 19.3 the tpi gene which codes for triose phosphate isomerase,
- 19.4 the pgk gene which codes for 3-phosphoglycerate 30 kinase,

25

- 19.5 the zwf gene which codes for glucose 6-phosphate dehydrogenase,
- 19.6 the pyc gene which codes for pyruvate carboxylase,
- 5 19.7 the mgo gene which codes for malate-quinone oxidoreductase,
 - 19.8 the lysC gene which codes for a feed-back resistant aspartate kinase,
 - 19.9 the lysE gene which codes for lysine export,
- 10 19.10 the hom gene which codes for homoserine dehydrogenase
 - 19.11 the ilvA gene which codes for threonine dehydratase or the ilvA(Fbr) allele which codes for a feed back resistant threonine dehydratase,
 - 19.12 the ilvBN gene which codes for acetohydroxy-acid synthase,
 - 19.13 the ilvD gene which codes for dihydroxy-acid dehydratase,
- 20 19.14 the zwal gene which codes for the Zwal protein, is or are enhanced or over-expressed are fermented.
 - 20. Process according to claim 13, characterized in that for the preparation of L-amino acids, coryneform microorganisms in which at the same time one or more of the genes chosen from the group consisting of
 - 20.1 the pck gene which codes for phosphoenol pyruvate carboxykinase,

PCT/EP01/09723 WO 02/29029 45

- 20.2 the pgi gene which codes for glucose 6phosphate isomerase,
- 20.3 the poxB gene which codes for pyruvate oxidase,
- 20.4 the zwa2 gene which codes for the Zwa2 protein,
- 5 is or are attenuated are fermented.
 - 21. Process according to claim 13, characterized in that for the preparation of L-cysteine, in addition to enhancement of the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene, one or more genes chosen from the group consisting of
 - 21.1 the aecD gene which codes for cystathionine β lyase,
 - 21.2 the metB gene which codes for cystathionine γsynthase [sic],
- 15 is or are attenuated, in particular reduced in expression.
 - 22. Coryneform bacteria which contain a vector which carries a polynucleotide according to claim 1.
- 23. Process according to one or more of claims 13-21, 20 characterized in that microorganisms of the species Corynebacterium glutamicum are employed.
 - 24. Process according to claim 23, characterized in that the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysDalex is employed.
- 25 25. Process according to claim 23, characterized in that the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysKalex is employed.

26. Process according to claim 23, characterized in that the Corynebacterium glutamicum strain

27. Process according to claim 23, characterized in that 5 the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysHalex is employed.

DSM5715/pEC-XK99EcysEblex is employed.

- 28. Process for the preparation of an L-methioninecontaining animal feedstuffs additive from fermentation broths, characterized by the steps
- 10 culture and fermentation of an L-methioninea) producing microorganism in a fermentation medium;
 - b) removal of water from the L-methionine-containing fermentation broth (concentration);
- c) removal of an amount of 0 to 100 wt.% of the 15 biomass formed during the fermentation; and
 - d) drying of the fermentation broth obtained according to b) and/or c) to obtain the animal feedstuffs additive in the desired powder or granule form.
- 29. Process according to claim 28, characterized in that 20 microorganisms in which further genes of the biosynthesis pathway of L-methionine are additionally enhanced are employed.
- 30. Process according to claim 28, characterized in that 25 microorganisms in which the metabolic pathways which reduce the formation of L-methionine are at least partly eliminated are employed.
 - Process according to claim 28, characterized in that the expression of the polynucleotides which code for the cysD, cysN, cysK, cysE or cysH gene is enhanced, in particular over-expressed.

PCT/EP01/09723 47

- 32. Process according to one or more of claims 28-31, characterized in that microorganisms of the species Corynebacterium glutamicum are employed.
- 33. Process according to claim 32, characterized in that 5 the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysDalex is employed.
 - Process according to claim 32, characterized in that 34. the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysKalex is employed.
- Process according to claim 32, characterized in that 10 35. the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysEblex is employed.
 - Process according to claim 32, characterized in that 36. the Corynebacterium glutamicum strain DSM5715/pEC-XK99EcysHalex is employed.

15

- Process according to claim 28, characterized in that 37. one or more of the following steps is or are additionally also carried out:
- e) addition of one or more organic substances, including L-methionine and/or D-methionine and/or 20 the racemic mixture D,L-methionine, to the products obtained according to b), c) and/or d);
 - addition of auxiliary substances chosen from the f) group consisting of silicas, silicates, stearates, grits and bran to the substances obtained according to b) to e) for stabilization and to increase the storability; or
- conversion of the substances obtained according g) to b) to f) into a form which is stable in an 30 animal stomach, in particular rumen, by coating with film-forming agents.

- 38. Process according to claim 28 or 37, characterized in that some of the biomass is removed.
- 39. Process according to claim 38, characterized in that up to 100% of the biomass is removed.
- 5 40. Process according to claim 28 or 37, characterized in that the water content is up to 5 wt.%.
 - 41. Process according to claim 40, characterized in that the water content is less than 2 wt.%.
- 42. Process according to claim 37, 38, 39, 40 or 41,

 characterized in that the film-forming agents are metal carbonates, silicas, silicates, alginates, stearates, starches, gums or cellulose ethers.
 - 43. Animal feedstuffs additive prepared according to claims 28 to 42.
- 15 44. Animal feedstuffs additive according to claim 43, which comprises 1 wt.% to 80 wt.% L_methionine, D-methionine, D,L-methionine or a mixture thereof, based on the dry weight of the animal feedstuffs additive.
- 45. Process for discovering RNA, cDNA and DNA in order to isolate nucleic acids, or polynucleotides or genes which code for sulfate adenylyl transferase, cysteine synthase A, serine acetyl transferase and/or 3'-phosphoadenylyl sulfate reductase or have a high similarity with the sequences of the cysD gene, the
- cysN gene, the cysK gene, the cysE gene and/or the cysH gene, characterized in that the polynucleotide comprising the polynucleotide sequences according to claims 1, 2, 3 or 4 is employed as hybridization probes.

Figure 1: Plasmid pEC-XK99E

Figure 2: Plasmid pEC-XK99EcysDalex

Figure 3: Plasmid pEX-XK99EcysKalex

Figure 4: Plasmid pEC-XK99EcysEblex

WO 02/29029 PCT/EP01/09723

SEQUENCE PROTOCOL

<110> Degussa AG

5 <120> Nucleotide sequences which code for the cysD, cysN, cysK, cysE and cysH genes

<130> 000491 BT

10 <140>

<141>

<160> 16

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 2640

<212> DNA

20 <213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (232)..(1143)

25 <223> cysD gene

<220>

<221> CDS

<222> (1146)..(2444)

30 <223> cysN gene

<400> 1

45

50

tgcgctgagc ttggatgcca ccggcaggct caagatttct ccaattatca cctggtcatt 60

35 ggaggaaacc aacgagttca ttgcggacaa caacctcatc gatcacccac ttacccatca 120

gggttatcca tcaattggat gcgaaacctg cacccttcct gttgctgaag gacaagaccc 180

tagggccggc cgttgggctg gaaacgccaa gacagaatgc ggacttcact c atg acc 237 40 Met Thr

aca acc gtt gca tca gta cta tcc cca cac ctt aaa gat ctt gaa aat 285 Thr Thr Val Ala Ser Val Leu Ser Pro His Leu Lys Asp Leu Glu Asn 5 10

gaa tcc atc cac atc ctc cgc gag gta gct ggc cag ttt gat aag gtc 333 Glu Ser Ile His Ile Leu Arg Glu Val Ala Gly Gln Phe Asp Lys Val 20 25 30

ggc ctg ctg ttt tcc ggc ggt aag gat tcc gtc gtg gtg tac gag ctt 381 Gly Leu Leu Phe Ser Gly Gly Lys Asp Ser Val Val Val Tyr Glu Leu 35 40 45 50

55 gcg cgc cgc gct ttc gct cca gct aac gtg cct ttt gaa ttg ctg cac 429
Ala Arg Arg Ala Phe Ala Pro Ala Asn Val Pro Phe Glu Leu Leu His
55 60 65

WO 02/29029 PCT/EP01/09723 2

	gtg Val	gac Asp	acc Thr	ggc Gly 70	His	aac Asn	ttc Phe	cca Pro	gag Glu 75	Val	ttg Leu	gaa Glu	ttc Phe	cgc Arg	Asp	aac	477
5	ctg Leu	gtg Val	gag Glu 85	Arg	acc Thr	ggc	gcc Ala	cgc Arg 90	Leu	cgc Arg	gta Val	gct Ala	aaa Lys 95	Val	cag Gln	gac Asp	525
10	tgg Trp	atc Ile 100	Asp	cgc	ggt Gly	gac Asp	ctg Leu 105	Gln	gaa Glu	cgc Arg	cca Pro	gac Asp 110	Gly	acc	cgc Arg	aac Asn	573
15	cca Pro 115	ctg Leu	cag Gln	act Thr	gtc Val	cct Pro 120	ttg Leu	gtg Val	gag Glu	acc Thr	atc Ile 125	gct Ala	gag Glu	cag Gln	ggc	tac Tyr 130	621
20	gac Asp	gca Ala	gtg Val	ctt Leu	ggt Gly 135	ggc ggc	gct Ala	cgc Arg	cgc Arg	gat Asp 140	gag Glu	gag Glu	cgt Arg	gcc Ala	cgc Arg 145	gcc Ala	669
	aag Lys	gag Glu	cgt Arg	gtg Val 150	ttc Phe	tct Ser	gtg Val	cgt Arg	gac Asp 155	tcc Ser	ttc Phe	ggt Gly	ggt Gly	tgg Trp 160	gat Asp	cca Pro	717
25	cgc Arg	cgt Arg	cag Gln 165	cgc Arg	cca Pro	gag Glu	ctg Leu	tgg Trp 170	acc Thr	ctc Leu	tac Tyr	aac Asn	ggt Gly 175	Gly	cac His	ctg Leu	765
30	cca Pro	ggc Gly 180	gaa Glu	aac Asn	atc Ile	cgt Arg	gtt Val 185	ttc Phe	cca Pro	atc Ile	tcc Ser	aac Asn 190	tgg Trp	act Thr	gaa Glu	gct Ala	813
35	gac Asp 195	att Ile	tgg Trp	gag Glu	tac Tyr	atc Ile 200	ggc Gly	gcc Ala	cgt Arg	ggc Gly	atc Ile 205	gaa Glu	ctt Leu	cca Pro	ccg Pro	atc Ile 210	861
40	tac Tyr	ttc Phe	tcc Ser	cac His	gac Asp 215	cgc Arg	gaa Glu	gtt Val	ttc Phe	gag Glu 220	cgc Arg	gac Asp	ggc Gly	atg Met	tgg Trp 225	ctg Leu	909
	acc Thr	gca Ala	ggc Gly	gag Glu 230	tgg Trp	GTA	GTĀ	Pro	Lys	aag Lys	Gly	Glu	gag Glu	atc Ile 240	Val	acc Thr	957
45	aag Lys	act Thr	gtc Val 245	cgc Arg	tac Tyr	cgc Arg	acc Thr	gtc Val 250	ggc Gly	gat Asp	atg Met	tcc Ser	tgc Cys 255	acc Thr	ggt Gly	gct Ala	1005
50	gtg Val	ctc Leu 260	tcc Ser	gaa Glu	gcc Ala	cgc Arg	acc Thr 265	att Ile	gac Asp	gat Asp	gtg Val	atc Ile 270	gaa Glu	gag Glu	atc Ile	gcc Ala	1053
55	acc Thr 275	tcc Ser	acc Thr	ctt Leu	Thr	gaa Glu 280	cgt Arg	ggc Gly	gca Ala	acc Thr	cgc Arg 285	gcc Ala	gat Asp	gac Asp	Arg	ctc Leu 290	1101
	agc Ser	gaa Glu	tcc Ser	gca Ala	atg Met 295	gaa Glu	gac Asp	cgc Arg	Lys	aag Lys 300	gaa Glu	ggc Gly	tac Tyr	ttc Phe	M	tg et 05	1148

5	act Thr	gct Ala	cca Pro	acc Thr	ttg Leu 310	aat Asn	aaa Lys	gca Ala	tcc Ser	gaa Glu 315	aag Lys	att Ile	gca Ala	tca Ser	cgc Arg 320	gag Glu	1196
	acc Thr	ctt Leu	cgt Arg	ctg Leu 325	tgc Cys	acc Thr	gca Ala	ggt Gly	tcc Ser 330	gta Val	gat Asp	gat Asp	ggc Gly	aag Lys 335	tcc Ser	acc Thr	1244
10	ttc Phe	gtc Val	ggc Gly 340	cgc Arg	ctc Leu	ctg Leu	cac His	gac Asp 345	acc Thr	aag Lys	tct Ser	gtt Val	ctt Leu 350	gct Ala	gat Asp	cag Gln	1292
15	ctg Leu	gct Ala 355	tcc Ser	gta Val	gag Glu	cgc Arg	acc Thr 360	tcc Ser	gcc Ala	gac Asp	cgt Arg	ggc Gly 365	ttc Phe	gaa Glu	ggc Gly	ctc Leu	1340
20	gac Asp 370	ctg Leu	tca Ser	ctc Leu	ctc Leu	gtc Val 375	gac Asp	ggc Gly	ctg Leu	cgc Arg	gcc Ala 380	gag Glu	cgt Arg	gag Glu	cag Gln	ggc Gly 385	1388
25	atc Ile	acc Thr	atc Ile	gac Asp	gtt Val 390	gcc Ala	tac Tyr	cgc Arg	tac Tyr	ttc Phe 395	gcc Ala	acc Thr	gac Asp	aag Lys	cgc Arg 400	acc Thr	1436
	ttc Phe	atc Ile	ctg Leu	gct Ala 405	gat Asp	acc Thr	cca Pro	ggt Gly	cac His 410	gtg Val	cag Gln	tac Tyr	acc Thr	cgc Arg 415	aac Asn	acc Thr	1484
30	gtc Val	acc Thr	ggc Gly 420	gtc Val	tcc Ser	acc Thr	tcc Ser	cag Gln 425	gtt Val	gta Val	gtt Val	ttg Leu	ctt Leu 430	gtc Val	gac Asp	gcc Ala	1532
35	cgc Arg	cac His 435	ggc Gly	gtc Val	gtc Val	gag Glu	cag Gln 440	acc Thr	cgc Arg	cgc Arg	cac His	ctg Leu 445	tcc Ser	gta Val	tcg Ser	gct Ala	1580
40	ctg Leu 450	ctg Leu	ggc Gly	gta Val	cgc Arg	acg Thr 455	gtg Val	atc Ile	ctc Leu	gca Ala	gtc Val 460	aac Asn	aaa Lys	att Ile	gac Asp	ctt Leu 465	1628
45	gtt Val	gat Asp	tac Tyr	agc Ser	gaa Glu 470	gaa Glu	Val	Phe	Arg	aac Asn 475	Ile	gaa Glu	Lys	gaa Glu	Phe	gtt Val	1676
	ggc Gly	ctg Leu	gca Ala	tct Ser 485	gca Ala	ctt Leu	gat Asp	gtc Val	aca Thr 490	gac Asp	acc Thr	cac His	gtt Val	gtt Val 495	cca Pro	atc Ile	1724
50	tct Ser	gcg Ala	ctc Leu 500	aag Lys	ggc Gly	gac Asp	aac Asn	gtt Val 505	gca Ala	gaa Glu	cct Pro	tcc Ser	acc Thr 510	cac His	atg Met	gat Asp	1772
55	tgg Trp	tac Tyr 515	acc Thr	gga Gly	cca Pro	acc Thr	gtg Val 520	ctg Leu	gaa Glu	atc Ile	ctg Leu	gaa Glu 525	aac Asn	gta Val	gaa Glu	gtt Val	1820

ne en

	tcc Ser 530	Hls	ggc	cgt Arg	gca Ala	cac His 535	Asp	ctg Leu	ggc	ttc Phe	cgc Arg 540	Phe	cca Pro	ato Ile	cag Gln	tac Tyr 545	1868
5	gtc Val	atc Ile	cgc Arg	gag Glu	cac His 550	gcc Ala	acc Thr	gac Asp	tac Tyr	cgt Arg 555	ggc Gly	tac Tyr	gcc Ala	GJ À	acc Thr	atc	1916
10	aac Asn	gct Ala	ggt Gly	tcc Ser 565	Val	tcc Ser	gtg Val	ggc	gat Asp 570	Thr	gtg Val	tac Tyr	cta Leu	cct Pro	Glu	ggc	1964
15	cgc Arg	acc Thr	acc Thr 580	GIn	gtc Val	acc Thr	cac His	atc Ile 585	gat Asp	tcc Ser	gct Ala	gac Asp	gga Gly 590	tcc Ser	ctc Leu	cag Gln	2012
20	acc Thr	gca Ala 595	tca Ser	gtt Val	gga Gly	gaa Glu	gcc Ala 600	gtt Val	gtc Val	ctg Leu	cgc Arg	cta Leu 605	gcc Ala	cag Gln	gaa Glu	atc Ile	2060
	gac Asp 610	ctc Leu	atc Ile	cgc Arg	Gly	gaa Glu 615	ctc Leu	atc Ile	gct Ala	ggc Gly	gaa Glu 620	gac Asp	cgc Arg	cca Pro	gaa Glu	tcc Ser 625	2108
25	gtt Val	cgc Arg	tcc Ser	ttc Phe	aac Asn 630	gcc Ala	act Thr	gtt Val	gtt Val	ggc Gly 635	ttg Leu	gcc Ala	gat Asp	cgc Arg	acc Thr 640	atc Ile	2156
30	aaa Lys	cca Pro	ggt Gly	gca Ala 645	gca Ala	gtc Val	aag Lys	gtt Val	cgc Arg 650	tac Tyr	ggc Gly	acc Thr	gag Glu	ctg Leu 655	gtc Val	cgc Arg	2204
35	gga Gly	cgc Arg	gtc Val 660	gca Ala	gcc Ala	atc Ile	gaa Glu	cga Arg 665	gtc Val	ctc Leu	gac Asp	atc Ile	gac Asp 670	ggc Gly	gtc Val	aac Asn	2252
40	gac Asp	aac Asn 675	gaa Glu	gca Ala	cca Pro	gaa Glu	acc Thr 680	tac Tyr	Gly	ctc Leu	aac Asn	gac Asp 685	atc Ile	gca Ala	cac His	gtg Val	2300
	cgc Arg 690	тте	gac Asp	gtt Val	gca Ala	ggc Gly 695	gaa Glu	ctc Leu	gaa Glu	V,a1	gaa Glu 700	gat Asp	tac Tyr	gct Ala	gcc Ala	cgc Arg 705	2348
45	ggc Gly	gcc Ala	atc Ile	gga Gly	tcc Ser 710	ttc Phe	ctc Leu	ctc Leu	Ile	gac Asp 715	caa Gln	tcc Ser	tcc Ser	ggc Gly	gat Asp 720	acc Thr	2396
50	ctc Leu	gca Ala	Αта	ggc Gly 725	ttg Leu	gtt Val	ggc Gly	His .	cgc Arg 730	cta Leu .	cgc Arg	aat Asn	Asn	tgg Trp 735	tcg Ser	atc Ile	2444
	taga	ccag	tg t	ctta	ggca	a ga	cccc	attt	agg	acac	ctc	atga	ttcc	cc t	gatt	acgct	2504
55	ttcc	cacg	gt t	cccg	caaa	a ag	tccg	cagc	tgc	aggc	att	actg	cgct	ga c	tcat	gaggc	2564
	cgga	cgaa	tg c	tgga	aaca	с са	gccg	tgga	agc	gcat [.]	tta	gage	ttgc	tg a	acct	tccct	2624
	tgat	cagg	tt g	tggc	a												2640

WO 02/29029 PCT/EP01/09723 5

```
<210> 2
      <211> 304
  5
      <212> PRT
      <213> Corynebacterium glutamicum
      <400> 2
     Met Thr Thr Val Ala Ser Val Leu Ser Pro His Leu Lys Asp Leu
10
                                          10
     Glu Asn Glu Ser Ile His Ile Leu Arg Glu Val Ala Gly Gln Phe Asp
                                      25
     Lys Val Gly Leu Leu Phe Ser Gly Gly Lys Asp Ser Val Val Val Tyr
                                  40
15
     Glu Leu Ala Arg Arg Ala Phe Ala Pro Ala Asn Val Pro Phe Glu Leu
                              55
                                                  60
     Leu His Val Asp Thr Gly His Asn Phe Pro Glu Val Leu Glu Phe Arg
                          70
                                              75
     Asp Asn Leu Val Glu Arg Thr Gly Ala Arg Leu Arg Val Ala Lys Val
20
     Gln Asp Trp Ile Asp Arg Gly Asp Leu Gln Glu Arg Pro Asp Gly Thr
                                     105
                                                         110
     Arg Asn Pro Leu Gln Thr Val Pro Leu Val Glu Thr Ile Ala Glu Gln
                                 120
     Gly Tyr Asp Ala Val Leu Gly Gly Ala Arg Arg Asp Glu Glu Arg Ala
25
                            135
     Arg Ala Lys Glu Arg Val Phe Ser Val Arg Asp Ser Phe Gly Gly Trp
                        150
                                             155
     Asp Pro Arg Arg Gln Arg Pro Glu Leu Trp Thr Leu Tyr Asn Gly Gly
30
                    165
                                        170
                                                             175
     His Leu Pro Gly Glu Asn Ile Arg Val Phe Pro Ile Ser Asn Trp Thr
                 180
                                     185
     Glu Ala Asp Ile Trp Glu Tyr Ile Gly Ala Arg Gly Ile Glu Leu Pro
                                 200
35
     Pro Ile Tyr Phe Ser His Asp Arg Glu Val Phe Glu Arg Asp Gly Met
                            215
                                                 220
     Trp Leu Thr Ala Gly Glu Trp Gly Gly Pro Lys Lys Gly Glu Glu Ile
     225
                         230
                                            235
     Val Thr Lys Thr Val Arg Tyr Arg Thr Val Gly Asp Met Ser Cys Thr
40
                                        250
     Gly Ala Val Leu Ser Glu Ala Arg Thr Ile Asp Asp Val Ile Glu Glu
                                     265
     Ile Ala Thr Ser Thr Leu Thr Glu Arg Gly Ala Thr Arg Ala Asp Asp
                                 280
     Arg Leu Ser Glu Ser Ala Met Glu Asp Arg Lys Lys Glu Gly Tyr Phe
45
                             295
     <210> 3
50
     <211> 433
     <212> PRT
     <213> Corynebacterium glutamicum
     <400> 3
    Met Thr Ala Pro Thr Leu Asn Lys Ala Ser Glu Lys Ile Ala Ser Arg
55
                                          10
     Glu Thr Leu Arg Leu Cys Thr Ala Gly Ser Val Asp Asp Gly Lys Ser
```

WO 02/29029 PCT/EP01/09723

Thr Phe Val Gly Arg Leu Leu His Asp Thr Lys Ser Val Leu Ala Asp 40 Gln Leu Ala Ser Val Glu Arg Thr Ser Ala Asp Arg Gly Phe Glu Gly 55 Leu Asp Leu Ser Leu Leu Val Asp Gly Leu Arg Ala Glu Arg Glu Gln 70 75 Gly Ile Thr Ile Asp Val Ala Tyr Arg Tyr Phe Ala Thr Asp Lys Arg 90 Thr Phe Ile Leu Ala Asp Thr Pro Gly His Val Gln Tyr Thr Arg Asn 10 105 Thr Val Thr Gly Val Ser Thr Ser Gln Val Val Leu Leu Val Asp 115 120 Ala Arg His Gly Val Val Glu Gln Thr Arg Arg His Leu Ser Val Ser 135 Ala Leu Leu Gly Val Arg Thr Val Ile Leu Ala Val Asn Lys Ile Asp 15 150 155 Leu Val Asp Tyr Ser Glu Glu Val Phe Arg Asn Ile Glu Lys Glu Phe 165 170 Val Gly Leu Ala Ser Ala Leu Asp Val Thr Asp Thr His Val Val Pro 20 180 185 Ile Ser Ala Leu Lys Gly Asp Asn Val Ala Glu Pro Ser Thr His Met 200 Asp Trp Tyr Thr Gly Pro Thr Val Leu Glu Ile Leu Glu Asn Val Glu 215 25 Val Ser His Gly Arg Ala His Asp Leu Gly Phe Arg Phe Pro Ile Gln 230 235 Tyr Val Ile Arg Glu His Ala Thr Asp Tyr Arg Gly Tyr Ala Gly Thr 245 250 Ile Asn Ala Gly Ser Val Ser Val Gly Asp Thr Val Tyr Leu Pro Glu 30 260 265 Gly Arg Thr Thr Gln Val Thr His Ile Asp Ser Ala Asp Gly Ser Leu 280 Gln Thr Ala Ser Val Gly Glu Ala Val Val Leu Arg Leu Ala Gln Glu 295 35 Ile Asp Leu Ile Arg Gly Glu Leu Ile Ala Gly Glu Asp Arg Pro Glu 310 315 Ser Val Arg Ser Phe Asn Ala Thr Val Val Gly Leu Ala Asp Arg Thr 330 Ile Lys Pro Gly Ala Ala Val Lys Val Arg Tyr Gly Thr Glu Leu Val 40 340 345 Arg Gly Arg Val Ala Ala Ile Glu Arg Val Leu Asp Ile Asp Gly Val Asn Asp Asn Glu Ala Pro Glu Thr Tyr Gly Leu Asn Asp Ile Ala His 375 45 Val Arg Ile Asp Val Ala Gly Glu Leu Glu Val Glu Asp Tyr Ala Ala 390 395 Arg Gly Ala Ile Gly Ser Phe Leu Leu Ile Asp Gln Ser Ser Gly Asp 405 410 Thr Leu Ala Ala Gly Leu Val Gly His Arg Leu Arg Asn Asn Trp Ser 50 . 425 Ile

55 <210> 4 <211> 2170 <212> DNA <213> Corynebacterium glutamicum

PCT/EP01/09723 WO 02/29029

5	<220> <221> CDS <222> (271)(1203) <223> cysK gene	
	<220> <221> CDS <222> (1392)(1955) <223> cysE gene	
10	<400> 4 tccgacaacg gacttcttta aaagatgctt ttcgacgccg ctccccaacc attaaccccg 60)
15	cgagaaatat tcatcgaata gatgtcgatc tacctgcaaa tacgctcggt ctacaaataa 12	
	tgaacagaac tgtctacttt tcaaactgct ttttgtgtag actcaagtca cagaggccac 18	
	ttcaagtaga tgtttcgtaa ttgtttacag cgtttacgca agcggtcgac caacaaaaac 24	
20	agcacttcaa tgattggagc accacccgac atg ggc aat gtg tac aac aac atc 29 Met Gly Asn Val Tyr Asn Asn Ile 1 5	34
25	acc gaa acc atc ggc cac acc cca ctg gta aag ctg aac aag ctc acc 34 Thr Glu Thr Ile Gly His Thr Pro Leu Val Lys Leu Asn Lys Leu Thr 10 15 20	12
30	gaa ggc ctc gac gca act gtc ctg gtc aag ctt gag tca ttc aac cca 39 Glu Gly Leu Asp Ala Thr Val Leu Val Lys Leu Glu Ser Phe Asn Pro 25 30 35 40	} 0
35	gca aac too gto aag gao ogt ato ggt otg goo ato gtt gaa gat goa 43 Ala Asn Ser Val Lys Asp Arg Ile Gly Leu Ala Ile Val Glu Asp Ala 45 50 55	38
	gag aag too ggt gca otg aag oca ggo ggo aco ato gtt gaa gca aco 48 Glu Lys Ser Gly Ala Leu Lys Pro Gly Gly Thr Ile Val Glu Ala Thr 60 65 70	36
40	tcc ggc aac acc ggt atc gca ctg gca atg gtc ggc gct gca cgc gga 53 Ser Gly Asn Thr Gly Ile Ala Leu Ala Met Val Gly Ala Ala Arg Gly 75 80 85	34
45	tac aac gtt gtt ctc acc atg ccg gag acc atg tcc aac gag cgt cgc 58 Tyr Asn Val Val Leu Thr Met Pro Glu Thr Met Ser Asn Glu Arg Arg 90 95 100	12
50	gtt ctc ctc cgc gct tac ggt gca gag atc gtt ctt acc cca ggt gca 63 Val Leu Leu Arg Ala Tyr Gly Ala Glu Ile Val Leu Thr Pro Gly Ala 105 110 115 120	0
55	gca ggc atg cag ggt gca aag gac aag gca gac gaa atc gtc gct gaa 67 Ala Gly Met Gln Gly Ala Lys Asp Lys Ala Asp Glu Ile Val Ala Glu 125 130 135	8
	cgc gaa aac gca gtc ctt gct cgc cag ttc gag aac gag gca aac cca 72 Arg Glu Asn Ala Val Leu Ala Arg Gln Phe Glu Asn Glu Ala Asn Pro 140 145 150	6

WO 02/29029 PCT/EP01/09723

	cgc Arg	gtc Val	cac His 155	Arg	gac Asp	acc Thr	acc Thr	gcg Ala 160	aag Lys	gaa Glu	atc Ile	ctc Leu	gaa Glu 165	gac Asp	acc Thr	gac Asp	774
5	ggc	aac Asn 170	Val	gat Asp	atc Ile	ttc Phe	gtt Val 175	gca Ala	agc Ser	ttc Phe	ggc Gly	acc Thr 180	ggc Gly	gga Gly	acc Thr	gtc Val	822
10	acc Thr 185	ggc Gly	gtt Val	ggc Gly	cag Gln	gtc Val 190	ctg Leu	aag Lys	gaa Glu	aac Asn	aac Asn 195	gca Ala	gac Asp	gta Val	cag Gln	gtc Val 200	870
15	tac Tyr	acc Thr	gtc Val	gag Glu	cca Pro 205	gaa Glu	gcg Ala	tcc Ser	cca Pro	ctt Leu 210	ctg Leu	acc Thr	gct Ala	ggc Gly	aag Lys 215	gct Ala	918
20	ggt Gly	cca Pro	cac His	aag Lys 220	atc Ile	cag Gln	ggc Gly	atc Ile	ggc Gly 225	gca Ala	aac Asn	ttc Phe	atc Ile	ccc Pro 230	gag Glu	gtc Val	966
	ctg Leu	gac Asp	cgc Arg 235	aag Lys	gtt Val	ctc Leu	gac Asp	gac Asp 240	gtg Val	ctg Leu	acc Thr	gtc Val	tcc Ser 245	aac Asn	gaa Glu	gac Asp	1014
25	gca Ala	atc Ile 250	gca Ala	ttc Phe	tcc Ser	cgc Arg	aag Lys 255	ctc Leu	gct Ala	acc Thr	gaa Glu	gag Glu 260	ggc Gly	atc Ile	ctc Leu	ggc Gly	1062
30	ggt Gly 265	atc Ile	tcc Ser	acc Thr	G1y ggc	gca Ala 270	aac Asn	atc Ile	aag Lys	gca Ala	gct Ala 275	ctt Leu	gac Asp	ctt Leu	gca Ala	gca Ala 280	1110
35	aag Lys	cca Pro	gag Glu	aac Asn	gct Ala 285	ggc Gly	aaa Lys	acc Thr	atc Ile	gtc Val 290	acc Thr	gtt Val	gtc Val	acc Thr	gac Asp 295	ttc Phe	1158
40	Gly	gag Glu	cgc Arg ~	tac Tyr 300	gtc Val	tcc Ser	acc Thr	gtt Val	ctt Leu 305	tac Tyr	gaa Glu	gac Asp	Ile	cgc Arg 310	gac Asp		1203
	taat	tctt	ag c	gact	gtta	a cc	acto	aago	tct	ttgc	ttg	ggtg	gttt	tt t	catg	tctca	1263
	aggt	cggg	rtc g	ggtg	cgat	t cg	ggtc	ggtt	ttg	agtg	tct	ttga	gtcc	tt t	taag	tcctt	1323
45	cttt	gccc	gt g	aata	attc	t ct	ggat	agtt	tcc	acgt	gca	gtta	agtc	ac g	ctgt	tagac	1383
5.0	ttgc	ctgc	atg Met	ctc Leu	tcg Ser	aca Thr 315	ata Ile	aaa Lys	atg Met	atc Ile	cgt Arg 320	Glu	gat Asp	ctc Leu	gca Ala	aac Asn 325	1433
50	gct d Ala A	cgt Arg	gaa Glu	His .	gat Asp 330	cca Pro i	gca Ala	gcc Ala	Arg	ggc Gly 335	gat Asp	tta Leu	gaa Glu	Asn .	gca Ala 340	ata	1481
55	gtt t Val 1	tac Tyr	Ser	gga Gly 345	ctc (Leu 1	cac (gcc Ala	Ile	tgg Trp 2 350	gca (Ala	cat His	cga (Arg '	Val 2	gcc Ala 355	aac a Asn a	agc Ser	1529

	tgg tgg Trp Tr	g aaa p Lys 360	Ser	ggt Gly	ttc Phe	cgc Arg	ggc Gly 365	ccc Pro	gcc Ala	cgc Arg	gta Val	tta Leu 370	gcc Ala	caa Gln	ttc Phe	1577
5	acc cga Thr Arg 37	g Phe	ctc Leu	acc Thr	ggc Gly	att Ile 380	gaa Glu	att Ile	cac His	ccc Pro	ggt Gly 385	gcc Ala	acc Thr	att Ile	ggt Gly	1625
10	cgt cgc Arg Arg 390	ttt g Phe	ttt Phe	att Ile	gac Asp 395	cac His	gga Gly	atg Met	gga Gly	atc Ile 400	gtc Val	atc Ile	ggc Gly	gaa Glu	acc Thr 405	1673
15	gct gaa Ala Glu	a atc 1 Ile	ggc Gly	gaa Glu 410	ggc Gly	gtc Val	atg Met	ctc Leu	tac Tyr 415	cac His	ggc Gly	gtc Val	acc Thr	ctc Leu 420	ggc Gly	1721
20	gga cad Gly Glr	g gtt n Val	ctc Leu 425	acc Thr	caa Gln	acc Thr	aag Lys	cgc Arg 430	cac His	ccc Pro	acg Thr	ctc Leu	tgc Cys 435	gac Asp	aac Asn	1769
	gtg aca Val Thr	ytc Val 440	ggc Gly	gcg Ala	ggc Gly	gca Ala	aaa Lys 445	atc Ile	tta Leu	ggt Gly	ccc Pro	atc Ile 450	acc Thr	atc Ile	ggc Gly	1817
25	gaa ggo Glu Gly 455	Ser	gca Ala	att Ile	ggc Gly	gcc Ala 460	aat Asn	gca Ala	gtt Val	gtc Val	acc Thr 465	aaa Lys	gac Asp	gtg Val	ccg Pro	1865
30	gca gaa Ala Glu 470	cac His	atc Ile	gca Ala	gtc Val 475	gga Gly	att Ile	cct Pro	gcg Ala	gta Val 480	gca Ala	cgc Arg	cca Pro	cgt Arg	ggc Gly 485	1913
35	aag aca Lys Thr	gag Glu	aag Lys	atc Ile 490	aag Lys	ctc Leu	gtc Val	gat Asp	ccg Pro 495	gac Asp	tat Tyr	tac Tyr	att Ile			1955
	taagaac															
40	gtgcgtt														_	
	ctcagca									cta	gttc	ttta	ga t	cctt	atact _.	2135
4.5	cagggtt	ctt c	tgaa	tgaa	g cc	agcg	actg	cag	ag							2170
45	<210> 5 <211> 3 <212> P <213> C	11 RT	bact	eriu	m al	ut am	i cum									
50	<400> 5				gr	acam	a Cuii	•								
	Met Gly	Asn	Val	Tyr 5	Asn .	Asn	Ile	Thr	Glu 10	Thr	Ile	Gly	His '	Thr	Pro	
55	Leu Val	Lys	Leu 20	Asn	Lys	Leu	Thr	Glu 25		Leu .	Asp .	Ala	Thr 30		Leu	
	Val Lys	Leu 35	Glu	Ser	Phe .	Asn	Pro 40		Asn	Ser	Val :	Lys 1		Arg	Ile	
	Gly Leu 50	Ala	Ile	Val	Glu .	Asp 55	Ala	Glu	Lys	Ser	Gly 2 60		Leu :	Lys	Pro	

Gly Gly Thr Ile Val Glu Ala Thr Ser Gly Asn Thr Gly Ile Ala Leu 70 Ala Met Val Gly Ala Ala Arg Gly Tyr Asn Val Val Leu Thr Met Pro 85 5 Glu Thr Met Ser Asn Glu Arg Arg Val Leu Leu Arg Ala Tyr Gly Ala 105 Glu Ile Val Leu Thr Pro Gly Ala Ala Gly Met Gln Gly Ala Lys Asp 120 Lys Ala Asp Glu Ile Val Ala Glu Arg Glu Asn Ala Val Leu Ala Arg 10 135 Gln Phe Glu Asn Glu Ala Asn Pro Arg Val His Arg Asp Thr Thr Ala 150 155 Lys Glu Ile Leu Glu Asp Thr Asp Gly Asn Val Asp Ile Phe Val Ala 165 170 Ser Phe Gly Thr Gly Gly Thr Val Thr Gly Val Gly Gln Val Leu Lys 15 180 185 Glu Asn Asn Ala Asp Val Gln Val Tyr Thr Val Glu Pro Glu Ala Ser 200 Pro Leu Leu Thr Ala Gly Lys Ala Gly Pro His Lys Ile Gln Gly Ile 20 215 220 Gly Ala Asn Phe Ile Pro Glu Val Leu Asp Arg Lys Val Leu Asp Asp 230 235 Val Leu Thr Val Ser Asn Glu Asp Ala Ile Ala Phe Ser Arg Lys Leu 245 250 25 Ala Thr Glu Glu Gly Ile Leu Gly Gly Ile Ser Thr Gly Ala Asn Ile 260 265 Lys Ala Ala Leu Asp Leu Ala Ala Lys Pro Glu Asn Ala Gly Lys Thr 280 Ile Val Thr Val Val Thr Asp Phe Gly Glu Arg Tyr Val Ser Thr Val 30 295 Leu Tyr Glu Asp Ile Arg Asp

35 <210> 6 <211> 188 <212> PRT <213> Corynebacterium glutamicum

40 <400> 6 Met Leu Ser Thr Ile Lys Met Ile Arg Glu Asp Leu Ala Asn Ala Arg Glu His Asp Pro Ala Ala Arg Gly Asp Leu Glu Asn Ala Val Val Tyr Ser Gly Leu His Ala Ile Trp Ala His Arg Val Ala Asn Ser Trp Trp 45 40 Lys Ser Gly Phe Arg Gly Pro Ala Arg Val Leu Ala Gln Phe Thr Arg 55 Phe Leu Thr Gly Ile Glu Ile His Pro Gly Ala Thr Ile Gly Arg Arg 50 Phe Phe Ile Asp His Gly Met Gly Ile Val Ile Gly Glu Thr Ala Glu 90 Ile Gly Glu Gly Val Met Leu Tyr His Gly Val Thr Leu Gly Gly Gln 100 105 Val Leu Thr Gln Thr Lys Arg His Pro Thr Leu Cys Asp Asn Val Thr 55 120 Val Gly Ala Gly Ala Lys Ile Leu Gly Pro Ile Thr Ile Gly Glu Gly

 Ser Ala Ile Gly Ala Asn Ala Val Val Thr
 Lys Asp Val Pro Ala Glu

 145
 150
 155
 160

 His Ile Ala Val Gly Ile Pro Ala Val Ala Arg Pro Arg Gly Lys Thr
 175
 175

- 5 Glu Lys Ile Lys Leu Val Asp Pro Asp Tyr Tyr Ile 180 185
- 10 <210> 7
 - <211> 1240
 - <212> DNA
 - <213> Corynebacterium glutamicum
- 15 <220>
 - <221> CDS
 - <222> (250)..(1032)
 - <223> cysH gene
- 20 <400> 7

- tggtgtgagt cttcggagga aacccaatcc caaccgcaac caccctctgt actgcccata 60
- ctgcgcggga gaagttcttt tccccgatga gcaaacagaa ttcgcgtggt tgtgtgcgga 120
- 25 ttgcaccaga gtttttgaag tgaaatatca cggccaggac gatccagtgc acaggccagc 180
 - accagcaaag tccacatcgc aagcattaaa agaatctctc gaaagacaca aaagaggtga 240
- gtcgcaaca atg agc ttt caa cta gtt aac gcc ctg aaa aat act ggt tcg 291

 Met Ser Phe Gln Leu Val Asn Ala Leu Lys Asn Thr Gly Ser

 1 5
- gta aaa gat ccc gag atc tca ccc gaa gga cct cgc acg acc aca ccg 339
 Val Lys Asp Pro Glu Ile Ser Pro Glu Gly Pro Arg Thr Thr Thr Pro
 35 15 20 25 30
 - ttg tca cca gag gta gca aaa cat aac gag gaa ctc gtc gaa aag cat 387 Leu Ser Pro Glu Val Ala Lys His Asn Glu Glu Leu Val Glu Lys His 35 40 45
 - gct gct gcg ttg tat gac gcc agc gcg caa gag atc ctg gaa tgg aca 435 Ala Ala Ala Leu Tyr Asp Ala Ser Ala Gln Glu Ile Leu Glu Trp Thr 50 55 60
- 45 gcc gag cac gcg ccg ggc gct att gca gtg acc ttg agc atg gaa aac 483 Ala Glu His Ala Pro Gly Ala Ile Ala Val Thr Leu Ser Met Glu Asn 65 70 75
- acc gtg ctg gcg gag ctg gct gcg cac ctg ccg gaa gct gat ttc 531 50 Thr Val Leu Ala Glu Leu Ala Ala Arg His Leu Pro Glu Ala Asp Phe 80 85 90
- ctc ttt ttg gac acc ggt tac cac ttc aag gag acc ctt gaa gtt gcc 579
 Leu Phe Leu Asp Thr Gly Tyr His Phe Lys Glu Thr Leu Glu Val Ala
 55 95 100 105 110
 - cgt cag gta gat gag cgc tat tcc cag aag ctt gtc acc gcg ctg ccg 627 Arg Gln Val Asp Glu Arg Tyr Ser Gln Lys Leu Val Thr Ala Leu Pro 115 120 125

WO 02/29029 PCT/EP01/09723

5	atc Ile	ctc Leu	aag Lys	cgc Arg 130	acg Thr	gag Glu	cag Gln	gat Asp	tcc Ser 135	att Ile	tat Tyr	ggt Gly	ctc Leu	aac Asn 140	ctg Leu	tac Tyr	675
	cgc Arg	agc Ser	aac Asn 145	cca Pro	gcg Ala	gcg Ala	tgc Cys	tgc Cys 150	cga Arg	atg Met	cgc Arg	aaa Lys	gtt Val 155	gaa Glu	ccg Pro	ctg Leu	723
10	gcg Ala	gcg Ala 160	tcg Ser	tta Leu	agc Ser	cca Pro	tac Tyr 165	gct Ala	ggc Gly	tgg Trp	atc Ile	acc Thr 170	ggc Gly	ctg Leu	cgc Arg	cgc Arg	771
15	gct Ala 175	gat Asp	ggc Gly	cca Pro	acc Thr	cgt Arg 180	gct Ala	caa Gln	gcc Ala	cct Pro	gcg Ala 185	ctg Leu	agc Ser	ttg Leu	gat Asp	gcc Ala 190	819
20														ttg Leu			867
25														cca Pro 220			915
	cat His	cag Gln	ggt Gly 225	tat Tyr	cca Pro	tca Ser	att Ile	gga Gly 230	tgc Cys	gaa Glu	acc Thr	tgc Cys	acc Thr 235	ctt Leu	cct Pro	gtt Val	963
30	gct Ala	gaa Glu 240	gga Gly	caa Gln	gac Asp	cct Pro	agg Arg 245	gcc Ala	ggc Gly	cgt Arg	tgg Trp	gct Ala 250	gga Gly	aac Asn	gcc Ala	aag Lys	1011
35				gga Gly				tgad	caca	ac o	gtto	gcato	ca gt	acta	tccc	:	1062
	caca	acctt	caa a	agato	ttga	a aa	tgaa	atcca	tco	cacat	cct	ccgc	gago	gta ç	gctgc	gccagt	1122
40	ttga	taaç	ggt o	ggcc	etget	g tt	ttcc	ggcg	g gta	agga	ttc	cgto	gtgg	jtg t	acga	igcttg	1182
	egeç	geege	ege t	ttcg	geted	a go	taac	egtge	ctt	ttga	att	gcto	JCaco	gtg g	jacad	ecgg	1240
45	<212	L> 26 2> PF	RT	ebact	eriu	um gl	.utan	nicum	ı								
50	<400 Met 1		Phe	Gln	Leu 5	Val	Asn	Ala	Leu	Lys 10	Asn	Thr	Gly	Ser	Val 15	Lys	
55	Asp	Pro	Glu	Ile 20	Ser	Pro	Glu	Gly	Pro 25	Arg	Thr	Thr	Thr	Pro 30	Leu	Ser	
	Pro	Glu	Val 35	Ala	Lys	His	Asn	Glu 40	Glu	Leu	Val	Glu	Lys 45	His	Ala	Ala	

WO 02/29029 PCT/EP01/09723 13

	Ala	Leu 50	Tyr	Asp	Ala	Ser	Ala 55	Gln	Glu	Ile	Leu	Glu 60	Trp	Thr	Ala	Glu
5	His 65	Ala	Pro	Gly	Ala	Ile 70	Ala	Val	Thr	Leu	Ser 75	Met	Glu	Asn	Thr	Val 80
	Leu	Ala	Glu	Leu	Ala 85	Ala	Arg	His	Leu	Pro 90	Glu	Ala	Asp	Phe	Leu 95	Phe
10	Leu	Asp	Thr	Gly 100	Tyr	His	Phe	Lys	Glu 105	Thr	Leu	Glu	Val	Ala 110	Arg	Gln
15	'Val	Asp	Glu 115	Arg	Tyr	Ser	Gln	Lys 120	Leu	Val	Thr	Ala	Leu 125	Pro	Ile	Leu
	Lys	Arg 130	Thr	Glu	Gln	Asp	Ser 135	Ile	Tyr	Gly	Leu	Asn 140	Leu	Tyr	Arg	Ser
20	Asn 145	Pro	Ala	Ala	Cys	Cys 150	Arg	Met	Arg	Lys	Val 155	Glu	Pro	Leu	Ala	Ala 160
			Ser		165					170					175	-
25			Thr	180					185					190		
30			Lys 195					200					205			
		210	Ile				215					220				
35	225		Pro			230					235					240
4.0			Asp		245	Ala	Gly	Arg		Ala 250	Gly	Asn	Ala	Lys	Thr 255	Glu
40	Cys	Gly		His 260	Ser											
45	<210 <211 <212 <213	> 28 > DN	Α	cial	seq	uenc	e									
50	<220: <223:	> De	scri sDex	ptio 1	n of	the	art	ific	ial	sequ	ence	: Pr	imer			
55	<400 ctgg	-	gc g	gact	tcac	t ca	tgac	ca								

28

<210> 10 <211> 28

	<212> DNA <213> Artificial sequence	
5	<220> <223> Description of the artificial sequence: Primer cysDex2	
10	<400> 10 cgtctagagg aacctgcggt gcacagac	28
15	<210> 11 <211> 28 <212> DNA <213> Artificial sequence	
20	<220> <223> Description of the artificial sequence: Primer cysEex1	
	<400> 11 ctggtacctc acgetgttag acttgcct	28
25	<210> 12 <211> 28 <212> DNA <213> Artificial sequence	
30	<220> <223> Description of the artificial sequence: Primer cysEex2	
35	<400> 12 gatctagaac aaacgcactc tggagctt	28
40	<210> 13 <211> 28 <212> DNA <213> Artificial sequence	
45	<220> <223> Description of the artificial sequence: Primer cysHex1	
	<400> 13 acggtacetg agtegeaaca atgagett	28
50	<210> 14 <211> 28	
55	<212> DNA <213> Artificial sequence <220>	
	<pre><223> Description of the artificial sequence: Primer cvsHex2</pre>	

WO 02/29029 PCT/EP01/09723

	<400> 14 gttctagacg gaggatgtgg atggattc	28
5	<210> 15 <211> 28 <212> DNA <213> Artificial sequence	
10	<220> <223> Description of the artificial sequence: Primer cysKex1	
15	<400> 15 agggtaccca agcggtcgac caacaaaa	28
20	<210> 16 <211> 28 <212> DNA <213> Artificial sequence	
25	<220> <223> Description of the artificial sequence: Primer cysKex2	
30	<400> 16 cttctagaat tagtcgcgga tgtcttcg	28

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 April 2002 (11.04.2002)

PCT

(10) International Publication Number WO 02/29029 A3

- (51) International Patent Classification7: C12N 9/12, 9/88, 9/10, 9/02, 1/21, C12P 13/04, 13/12, C12Q 1/68, A23K 1/16
- (21) International Application Number: PCT/EP01/09723
- (22) International Filing Date: 23 August 2001 (23.08.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 100 48 603.7
 30 September 2000 (30.09.2000)
 DE

 101 09 691.7
 28 February 2001 (28.02.2001)
 DE

 101 36 986.7
 28 July 2001 (28.07.2001)
 DE

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: FARWICK, Mike: Gustav-Adolf-Strasse
 11. 33615 Bielefeld (DE). HUTHMACHER, Klaus;
 Lärchenweg 18, 63584 Gelnhausen (DE). SCHISCHKA,
 Natalie: Stuttgarter Strasse 1, 33659 Bielefeld (DE).
 BATHE, Brigitte; Twieten 1, 33154 Salzkotten (DE).
 PFEFFERLE, Walter: Jahnstrasse 33, 33790 Halle
 (Westf.) (DE). BINDER, Michael; Kalberkamp 28,
 33803 Steinhagen (Westf.) (DE). GREISSINGER, Dieter; Augasse 1f, 61194 Niddatal (DE). THIERBACH,
 Georg; Gunststrasse 21, 33613 Bielefeld (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, C2, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 13 June 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

d

(54) Title: NUCLEOTIDE SEQUENCES WHICH CODE FOR THE CYSD, CYSN, CYSK, CYSE AND CYSH GENES OF C. GLUTAMICUM

(57) Abstract: The invention provides nucleotide sequences from coryneform bacteria which code for the cysD, cysN, cysK, cysE and cysH genes and a process for the fermentative preparation of amino acids using bacteria in which the genes mentioned are enhanced, a process for the fermentative preparation of L-amino acids using coryneform bacteria in which at least the cysD gene, the cysN gene, the cysK gene, the cysE gene and/or the cysH gene is present in enhanced form, and the use of polynucleotides which contain the sequences according to the invention as hybridization probes and a process for the preparation of an L-methionine-containing animal feedstuffs additive from fermentation broths.

ternational Application No

PCT/EP 01/09723 A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N9/12 C12N C12N9/02 C12N1/21 C12N9/88 C12N9/10 A23K1/16 C12Q1/68 C12P13/04 C12P13/12 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C12P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical search terms used) EPO-Internal, SEQUENCE SEARCH, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication. where appropriate, of the relevant passages Category ' 28,43,44 WO 97 15673 A (CONSORTIUM ELEKTROCHEM IND X ;LEINFELDER WALFRED (DE); HEINRICH PETE) 1 May 1997 (1997-05-01) 1-45 Υ page 2, paragraph 2 1-45 EP 1 006 192 A (DEGUSSA) Υ 7 June 2000 (2000-06-07) paragraph '0017! 1-7 DATABASE EBI 'Online! X EMBL; MMCV_STRLA, 30 May 2000 (2000-05-30) . XP002191266 70% identity with Seq ID 2 in 293 aa overlap -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. χ Special categories of cited documents: "T" tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention consider the considered to involve an invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed "8" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 03/04/2002 25 February 2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

1

Stolz, B

ernational Application No
PCT/EP 01/09723

C.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *		Relevant to claim No.
P,X	WO 01 00842 A (BASF AG) 4 January 2001 (2001-01-04) -& DATABASE EBI 'Online! AAH68058, XP002191267 100% identity with Seq ID 1 in 912 nt overlap (232-1142:1-912) -& DATABASE EBI 'Online! AAF71139, XP002191268 100% identity with Seq ID 1 in 980 nt overlap (1488-2467:1-980) -& DATABASE EBI 'Online! AAF71310, XP002191269 100% identity with Seq ID 7 in 541 nt overlap (150-690:1-541)	1-45
P,X	WO 01 00843 A (BASF AG) 4 January 2001 (2001-01-04) -& DATABASE EBI 'Online! AX064763, XP002191270 100% identity with Seq ID 7 in 541 nt overlap (150-690:1-541) -& DATABASE EBI 'Online! AX063961, XP002191271 100% identity with seq ID 4 in 669 nt overlap (1310-1978:1-669) -& DATABASE EBI 'Online! AX063963, XP002191272 99.8% identity with Seq ID 4 in 1056 nt overlap (171-1226:1-1056)	1-45

:emational Application No PCT/EP 01/09723

		PCT/EP 01/09723						
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT								
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.						
, X	EP 1 108 790 A (KYOWA HAKKO KOGYO KK) 20 June 2001 (2001-06-20) -& DATABASE EBI 'Online! AAH68057, XP002191273 100% identity with seq ID 1 in 1299 nt overlap (1146-2444:1-1299) -& DATABASE EBI 'Online! AAH68058, XP002191274 100% identity with Seq ID 7 in 209 nt overlap (1032-1240:1-209) -& DATABASE EBI 'Online! AAH68059, XP002191275 100% identity with Seq ID 7 in 693 nt overlap (340-1032:1-693) -& DATABASE EBI 'Online! AAH67783, XP002191276 100% identity with Seq ID in 546 nt overlap (1410-1955:1-546) -& DATABASE EBI 'Online! AAH67782, XP002191277 100% identity with seq ID 4 in 924 nt overlap (289-1203:1-924)	1-45						

Information on patent family members

ternational Application No PCT/EP 01/09723

Patent document ited in search report		Publication date	•	Patent family member(s)	Publication date
NO 9715673	A	01-05-1997	DE	19539952 A1	30-04-1997
10 3713073	,,	•• ••	AT	211175 T	15-01-2002
;			BR	9610910 A	13-07-1999
			CA	2235752 A1	01-05-1997
			CN	1200764 A	02-12-1998
			CZ	9801269 A3	15-07-1998
			DE	59608521 D1	31-01-2002
			WO	9715673 A1	01-05-1997
			ĒΡ	0858510 A1	19-08-1998
			HU	9900078 A2	28-04-1999
			JP	2000504926 T	25-04-2000
			PL	327187 A1	23-11-1998
			US	6218168 B1	17-04-2001
EP 1006192	A	07-06-2000	DE	19855313 A1	08-06-2000
			BR	9905776 A	24-04-2001
			CN	1256314 A	14-06-2000
			ΕP	1006192 A2	07-06-2000
			HU	9904447 A2	28-11-2000
			JР	2000228990 A	22-08-2000
			SK	163399 A3	11-07-2000
	*		US	6184007 B1	06-02-2001
			ZA	9907406 A	08-06-2000
WO 0100842	Α	04-01-2001	AU	5420500 A	31-01-2001
			WO	0100842 A2	04-01-2001
		į	WO	0100843 A2	04-01-2001
		1	AU	5421600 A	31-01-2001
			WO	0100805 A2	04-01-2001
			AU	5559000 A	31-01-2001
			WO	0100844 A2	04-01-2001
1			AU	5421300 A	31-01-2001
1		•	ΑÜ	5836900 A	31-01-2001
		· · · · · · · · · · · · · · · · · · ·	WO	0100804 A2	04-01-2001
WO 0100843	Α	04-01-2001	AU	5421300 A	31-01-2001
			WO	0100843 A2	04-01-2001
			AU	5559000 A	31-01-2001
			WO	0100844 A2	04-01-2001
			AU	5836900 A	31-01-2001
			WO	0100804 A2	04-01-2001
			AU	5421600 A	31-01-2001
			WO	0100805 A2	04-01-2001
			ΑŲ	5420500 A	31-01-2001
			WO	0100842 A2	04-01-2001
EP 1108790	A	20-06-2001	EP	1108790 A2	20-06-2001