

- 1. 按下 code 後再按 Download zip
- 2. 下載 anaconda,來加速環境建置

https://ithelp.ithome.com.tw/articles/10229662

path 記得勾選

3. 安裝相關套件

打開 CMD

```
図 含色展示字元
Microsoft Windows [版本 10.0.19045.5371]
(c) Microsoft Corporation. 著作権所有,並保留一切権利。

C:\Users\User>_
```

打上

pip install EntropyHub

pip install seaborn

pip install smote

pip install pyhht

pip install xgboost

pip install lightgbm

pip install scipy=1.10.1

pip install nolds

pip install openpyxl

4. 程式使用教學

4.1. Approximate Entropy V2

```
# 設定資料夾路徑
folder_path = r'C:\Users\User\Desktop\T\eye\內差法後excel'
```

改成你的資料夾路近(例如:E:\Biomedical-Signal-Feature-Extraction-main\data)

```
# 確保數據是一維數組
x_data = data['X'].values.flatten()
y_data = data['Y'].values.flatten()
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

m (維度)可以自己條

```
# 定義自訂的 Approximate Entropy 函數

def ApEn(Datalist, r=0.2, m=2):

th = r * np.std(Datalist)

return EH.ApEn(Datalist, m, r=th)[0][-1]
```

4.2. Coherence

```
# 設定資料灰路徑,請根據實際情況修改
folder_path = r"C:\Users\User\Desktop\eyetracker sample data\採樣結果\採樣後post"
```

改成你的資料夾路近(例如: E:\Biomedical-Signal-

Feature-Extraction-main\data)

```
# 檢查是否含有 'X' 與 'Y' 欄位
if 'X' in df.columns and 'Y' in df.columns:
    coh = calculate_coherence(df['X'], df['Y'])
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

```
if 'X' in df.columns and 'Y' in df.columns:

coh = calculate_coherence(df['X'], df['Y'])

results.append({'檔名': file, 'coherence': coh})
```

4.3. Correlation

```
# 設定資料夾路徑,請自行更新
folder_path = r"C:\Users\User\Desktop\eyetracker sample data\採樣結果\採樣後post"
```

改成你的資料夾路近(例如:E:\Biomedical-Signal-

Feature-Extraction-main\data)

```
# 檢查是否包含 'X' 與 'Y' 欄位

if 'X' in df.columns and 'Y' in df.columns:

correlation = Pearson_correlation(df['X'], df['Y'])

results.append({'檔名': file, 'correlation': correlation})

else:
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

4.4. entropyV2

```
# 设置你的数据文件夹路径
data_folder = r'E:\Biomedical-Signal-Feature-Extraction-main\data'
output_file = r'E:\Biomedical-Signal-Feature-Extraction-main\data\post结果.xlsx'
```

Data_folder 改成你的資料夾路近(例如:E:\Biomedical-Signal-Feature-Extraction-main\data)

Output_file 改成你要存放檔案的位置(例如:

E:\Biomedical-Signal-Feature-Extraction-main\data\post 結果.xlsx)一定要路徑+?. Xlsx

```
df['X'] = df['X'].round().astype(int)
df['Y'] = df['Y'].round().astype(int)
entropy_value_X = calculate_entropy(df['X'])
entropy_value_Y = calculate_entropy(df['Y'])

prob_X = calculate_probabilities(df['X'])
prob_Y = calculate_probabilities(df['Y'])
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

```
df['X'] = df['X'].round().astype(int)

df['Y'] = df['Y'].round().astype(int)

entropy_value_X = calculate_entropy(df['X'])

entropy_value_Y = calculate_entropy(df['Y'])

prob_X = calculate_probabilities(df['X'])

prob_Y = calculate_probabilities(df['Y'])
```

4.5. Feature parameter extraction

```
# 設定資料灰路徑
folder_path = r"C:\Users\User\Desktop\post\1"
```

改成你的資料夾路近(例如:E:\Biomedical-Signal-

Feature-Extraction-main\data)

```
# 計算 X 欄位的統計量

x_stats = compute_statistics(df, 'X')

# 計算 V 欄位的統計量

y_stats = compute_statistics(df, 'Y')
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

```
# 計算 X 欄位的統計量

x_stats = compute_statistics(df, 'X')

# 計算 Y 欄位的統計量

y_stats = compute_statistics(df, 'Y')
```

4.6. HHT_NLID

```
# 設定資料夾路徑 folder_path = r"F:\ts\T\t" # 讀替換成你的資料夾路徑
```

改成你的資料夾路近(例如:E:\Biomedical-Signal-Feature-Extraction-main\data)

```
# 確保 X 和 Y 欄位存在
if "X" not in df.columns or "Y" not in df.columns:
    print(f"檔案 {file_name} 內缺少 'X' 或 'Y' 欄位,跳過此檔案。")
    continue

# 取得 X 和 Y 信號
signal_x = df["X"].values
signal_y = df["Y"].values
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	в т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

```
# 確保 X 和 Y 欄位存在

if "X" not in df.columns or "Y" not in df.columns:
        print(f"檔案 {file_name} 內缺少 'X' 或 'Y' 欄位,跳過此檔

案。")

continue

# 取得 X 和 Y 信號
signal_x = df["X"].values
signal_y = df["Y"].values
```

4.7. NLID_V5_ui

選好後會自動計算

```
if not {'X', 'Y'}.issubset(df.columns):
    print(f"跳過檔案(缺少 X 或 Y 欄位): {filename}")
    continue

x = df['X'].dropna().values
y = df['Y'].dropna().values
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

```
if not {'X', 'Y'}.issubset(df.columns):
print(f"跳過檔案(缺少 X 或 Y 欄位): {filename}")
continue
```

```
x = df['X'].dropna().values
y = df['Y'].dropna().values
```

4.8. sample entropy_V3

```
# 设定参数
# 設置資料夾路徑
folder_path = r'C:\Users\User\Desktop\T\eye\內差法後excel' # 替換為你的資料夾路徑
output_file = r'C:\Users\User\Desktop\T\eye\Entropy\post-entropy_results.xlsx' # 結果輸出文件
m = 1 # 嵌入维度
```

folder_path 改成你的資料夾路近(例如:E:\Biomedical-Signal-Feature-Extraction-main\data)

Output_file 改成你要存放檔案的位置(例如:

E:\Biomedical-Signal-Feature-Extraction-main\data\post 結果.xlsx)一定要路徑+?. Xlsx

M(維度)可以根據分析檔案給定

4.9. Regression Analysis_ui_V5

給 CSV 檔案格式如下

4.10. 多元分類 v2

選擇CSV檔案:	選擇文件	
選擇輸入參數:	Fixation_count_25 Fixation_count_10% Observation_length_25% Y-Sample Entropy X-Sample EntropyEntropy X_SD X_CV Y_SD Y_CV D	確認輸入參數
選擇目標參數:	•	確認目標參數
選擇分類器:	· ·	
	開始執行	

給 CSV 檔案格式如下

A	В	С	υ	E	F	G	Н	1	J	K	L	M	N	U	Р	Q	R	S	1	U	V	W
Fixation_c	Fixation_c	Observatio:	Y-Sample	X-Sample I	X_SD	X_CV	Y_SD	Y_CV	D	NLID	correlation	R50	Observatio	SSQ-TS	SSQNLabe	SSQOLabe	SSQDLab	SSQTSLa	b myssqts	SSQN	SSQO	SSQD
987	129	27.1	0.1	0.13	47.66	0.03	128.3	0.12	192.8065	0.769272	0.011935	56.45678	3.57	490	1	2	1		1 1	28.6	60.6	41.8
1360	12	19.8	0.07	0.03	193.23	0.1	224.84	0.22	361.8846	0.65	0.0114	122.3899	0.168	56.7	1	1	1		1 1		15.2	. C
173	19	11.4	0.01	0.01	582.06	0.28	226.49	0.3	508.3675	0.343853	0.062047	455.5298	1.22	449.7	1	2	1		1 2	19.1	45.5	55.7
118	4	1.98	0.12	0.06	212.03	0.12	147.96	0.16	340.6	0.353842	0.062047	223.6485	0.059	165.5	1	1	1		1 2	2 0	30.3	13.9
31	3	2.1	0.01	0.03	107.21	0.06	339.85	0.37	298.5716	0.616497	-0.05907	161.9047	0.172	345.6	1	2	1		1 1	19.1	45.5	27.8
87	1	4.24	0.06	0.06	101	0.05	266.85	0.2	337.7961	0.755593	-0.18725	160.088	0.027	281.5	1	2	1		1 2	9.5	37.9	27.8
142	16	5.01	0.12	0.08	139.45	0.07	300.6	0.19	384.5055	0.686501	-0.04311	212.6016	0.458	35.7	1	1	1		0 2	9.5		C
46	5	2.9	0.02	0.01	256.22	0.13	428.6	0.26	503.0965	0.425462	-0.06552	420.551	0.635	189.2	1	1	1		1 2	2 0	22.7	27.8
187	13	3.18	0.12	0.13	198.35	0.09	258.29	0.2	363.6102	0.506756	-0.07113	194.4496	0.186	771.3	1	2	2	2	1 2	19.1	75.8	111.4
416	94	9.11	0.08	0.16	103.73	0.06	571.64	0.64	389.9646	0.520255	0.011935	434.2476	2.1	293.5	1	2	1		1 2	19.1	45.5	13.9
1712	378	28.8	0.13	0.11	69.7	0.04	100.6	0.07	131.7963	0.89438	0.069126	62.75018	6.25	373.7	1	1	2	2	1 1		30.3	69.6
903	91	18.2	0.14	0.19	71.73	0.04	146.92	0.15	272.6888	0.697066	-0.36574	95.53474	2.07	201.1	1	1	1		1 1	9.5	30.3	13.9
1788	1074	27.3	0.14	0.06	126.24	0.07	168.2	0.13	55.64967	0.68	0.336179	95.52742	16	345.6	1	2	1		1 1	19.1	45.5	27.8
112	3	3.86	0.1	0.09	88.24	0.05	198.64	0.24	470.3622	0.785959	-0.12436	127.6645	0.067	390.3	1	2	1		1 2	9.5	53.1	41.8
1755	142	26.8	0.1	0.2	63.36	0.04	148.09	0.14	172.0178	0.980967	0.04	56.88091	2.1	120.7	1	1	1		1 1	9.5	22.7	C

4.11. Hht

```
# 讀取 Excel 檔案
file_path = "T\pre-p3.xlsx" # 請替換成你的 Excel 檔案名稱
df = pd.read_excel(file_path)
```

給定一個檔案相對路近(如 data\post-pl.xlsx)

```
# 確保 X 和 Y 欄位存在
if "X" not in df.columns or "Y" not in df.columns:
    raise ValueError("Excel 檔案內必須包含 'X' 和 'Y' 欄位!")

# 取得 X 和 Y 信號
signal_x = df["X"].values
signal_y = df["Y"].values
```

請換為你的檔案欄位(參考下圖,我的檔案欄位是X跟Y)

	A T	В Т	C T
1	Time	Х	Υ
2	0	1,731	892
3	1	1,730.39	885.96
4	2	1,729.79	879.93
5	3	1,729.18	873.89
6	4	1,728.57	867.86
7	5	1,727.96	861.82
8	6	1,727.36	855.79

須改紅色字的地方

```
# 確保 X 和 Y 欄位存在

if "X" not in df.columns or "Y" not in df.columns:
    raise ValueError("Excel 檔案內必須包含 'X' 和 'Y' 欄位!")

# 取得 X 和 Y 信號
signal_x = df["X"].values
signal_y = df["Y"].values
t = np.arange(len(signal_x)) # 假設時間軸是索引序列
```