ĐẠI HỌC QUỐC GIA HÀ NỘI

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

----**-**

THIẾT KẾ MẠCH ĐIỆN VÀ ĐÁNH GIÁ MỨC ĐỘ BẢO MẬT CỦA BỘ SINH SỐ NGẪU NHIÊN TRÊN CÁC LINH KIỆN RỜI RẠC VÀ TÍCH HỢP VÀO HỆ THỐNG VI XỬ LÝ MICROBLAZE

Giảng viên: GS.TS Trần Xuân Tú

TS. Bùi Duy Hiếu

Nhóm sinh viên: Phạm Thành Nam 20021251

Phạm Thị Huyền Trang 20021271

Võ Tá Phong 20021258

Bùi Thị Quỳnh Nga 20021252

Hà Nội - 2023

TÓM TẮT

Tóm tắt: Bộ sinh số ngẫu nhiên thực - True Random Number Generator (TRNG) là một trong những giải pháp quan trọng trong bảo mật. Độ phổ biến của TRNG đã tăng lên do nhu cầu ngày càng cao trong các ứng dụng an ninh mạng, mã hóa dữ liệu và các lĩnh vực khác yêu cầu số ngẫu nhiên chất lượng cao. Do đó, việc nghiên cứu về TRNG rất cần được quan tâm và xem xét. Nhận thấy tính cấp bách của đề tài nên nhóm sinh viên chúng em đã tiến hành nghiên cứu và thử nghiệm TRNG. Nội dung của bản báo cáo tập trung trình bày việc thiết kế mạch tạo số ngẫu nhiên dựa trên hiện tượng nhiễu avalanche và kết nối với mạch FPGA. Kiểm thử khả năng tạo số ngẫu nhiên của mạch bằng bài NIST test. Tìm hiểu về các cách tấn công mạch tạo số ngẫu nhiên

Từ khóa: Nhiễu avalanche, FPGA, NIST, TRNG.

MỤC LỤC

CHƯƠNG 1. THIẾT KẾ BỘ TẠO SỐ NGẪU NHIỀN THỰC	1
1.1. GIỚI THIỆU BỘ TẠO SỐ NGẪU NHIÊN THỰC	
1.2. THIẾT KẾ MẠCH TẠO SỐ NGẪU NHIỀN DỰA TRÊN NHIỀU AVALANCHE	
1.2.1. Sơ đồ mạch và nguyên lý hoạt động	
1.2.2. Giới thiệu về chức năng của từng khối trong mạch	1
1.3. LINH KIỆN THIẾT KẾ MẠCH	6
1.4. Lắp ráp mạch	7
1.5. KÉT LUẬN	7
CHƯƠNG 2. THỰC THI TRÊN FPGA	8
2.1. GIỚI THIỆU VỀ FPGA	8
2.2. CÂU HÌNH PHẦN CỨNG ĐỂ KẾT NỐI MẠCH SINH SỐ NGẪU NHIÊN VỚI ARTY	8
2.3. DỮ LIỆU ĐẦU RA	11
2.4. KÉT LUẬN	12
CHƯƠNG 3. ĐÁNH GIÁ KẾT QUẢ SỬ DỤNG NIST TEST	13
3.1. GIỚI THIỆU NIST TEST	13
3.2. KÉT QUẢ NIST TEST	14
3.3. KÉT LUẬN	16
CHƯƠNG 4. MỘT SỐ PHƯƠNG PHÁP TẦN CÔNG MẠCH	17
4.1. CÁC CÁCH TẦN CÔNG	17
4.1.1. Thay đổi điện áp nguồn	17
4.1.2. Tăng nhiệt độ của nguồn entropy	18
4.2. KÉT LUÂN	23

DANH SÁCH HÌNH ẢNH

Hình 1.1. Mạch sau khi thiết kế lại bằng phần mềm proteus nguồn [4]	1
Hình 1.2. Khối tăng điện áp	2
Hình 1.3. Sơ đồ mạch của một module tăng áp [5]	2
Hình 1.4. Mạch tạo và khuếch đại nhiễu [6]	3
Hình 1.5. Ảnh minh họa của một nhiễu avalanche [9]	4
Hình 1.6. IC 74HC14	4
Hình 1.7. Nguyên lý hoạt động của khối [10]	5
Hình 1.8. Khối D flip-flop	5
Hình 1.9. Nguyên lý hoạt động của khối [11]	6
Hình 1.10. Mạch vật lý sau khi kết nối	7
Hình 2.1. Kit Artix 7 100T Arty FPGA Evaluation [13]	8
Hình 2.2. Cấu hình phần cứng của Arty-7 100T	10
Hình 2.3. Mạch sinh số ngẫu nhiên khi kết nối với Arty	11
Hình 2.4. Kết quả chuỗi số ngẫu nhiên	12
Hình 4.1. Vị trí tấn công điện áp nguồn	17
Hình 4.2. Kết quả hiển thị trên màn hình sau khi ngắt nguồn cấp	18
Hình 4.3. Vị trí nguồn entropy để tấn công nhiệt	19

DANH SÁCH CÁC BẢNG

Bảng 1.1. Linh kiện thiết kế mạch	6
Bảng 3.1. Danh sách các bài NIST test	13
Bảng 3.2. Kết quả của các NIST test của 23.000.000 bit	14
Bảng 4.1. Kết quả của các NIST test của 500.000 bit khi nguồn entropy hoạt độ bình thường	
Bảng 4.2. Kết quả của các NIST test của 500.000 bit khi nguồn entropy bị tá	c động bởi
nhiệt độ	21

DANH MỤC TỪ VIẾT TẮT

Ký hiệu	Tên tiếng anh	Tên tiếng việt
DC	Direct Current	Dòng điện một chiều
FPGA	Field – Programmable Gate Array	Thiết bị lập trình trường đa cổng
GPIO	General – Purpose Input/Output	Cổng vào/ra mục đích chung
I/O	Input/Output	Vào/ra
I2C	Inter – Integrated Circuit	Mạch tích hợp
IoT	Internet of Things	Internet vạn vật
IP	Interllectual Property	Sở hữu trí tuệ
NIST	National Institute of Standards and	Viện nghiên cứu quốc gia về tiêu chuẩn
	Technology	và công nghệ
RAM	Random Access Memory	Bộ nhớ truy cập ngẫu nhiên
ROM	Read – Only Memory	Bộ nhớ chỉ đọc
SDK	Software Development Kit	Bộ phần mềm phát triển
SPI	Serial Peripheral Interface	Giao tiếp ngoại vi nối tiếp
TRNG	True Random Number Generator	Bộ tạo số ngẫu nhiên thực
UART	Universal Asynchronous Receiver –	Bộ truyền nhận nối tiếp không đồng bộ
	Transmitter	
VHDL	VHSIC Hardware Description Language	Ngôn ngữ mô tả phần cứng
XDC	Xilinx Design Constraints	Ràng buộc thiết kế Xilinx

CHƯƠNG 1. THIẾT KẾ BỘ TẠO SỐ NGẪU NHIỀN THỰC

1.1. Giới thiệu bộ tạo số ngẫu nhiên thực

Sự phổ biến của các thiết bị được kết nối và tính chất ngày càng gia tăng của các cuộc tấn công, vi phạm và phần mềm độc hại khiến nhu cầu bảo mật trong các sản phẩm trở nên quan trọng hơn bao giờ hết. Các số ngẫu nhiên thực sự - True random number là trọng tâm của bất kỳ hệ thống bảo mật nào và chất lượng của chúng góp phần nâng cao sức mạnh bảo mật của thiết kế. Ngày nay, số ngẫu nhiên thực sự được yêu cầu quan trọng nhất trong mật mã và vô số ứng dụng của nó vào cuộc sống hàng ngày của chúng ta: thông tin di động, truy cập e-mail, thanh toán trực tuyến, thanh toán không dùng tiền mặt, ngân hàng điện tử, giao dịch qua Internet, điểm bán hàng, thẻ trả trước, khóa không dây, mô phỏng số, nghiên cứu thống kê, thuật toán ngẫu nhiên, xổ số,v.v [1]. Các số ngẫu nhiên yếu hoặc có thể dự đoán được sẽ mở ra cơ hội cho các cuộc tấn công có thể xâm phạm khóa, chặn dữ liệu và cuối cùng là hack các thiết bị cũng như hoạt động liên lạc của chúng.

Bộ tạo số ngẫu nhiên thực - True Random Number Generator (TRNG) là một hàm hay thiết bị dựa trên những hiện tượng vật lý không thể dự đoán được [2], gọi là nguồn entropy, được thiết kế để tạo ra dữ liệu không xác định (ví dụ: chuỗi số) cho các thuật toán bảo mật gốc. Để có hiệu quả, các số ngẫu nhiên phải không thể đoán trước, độc lập về mặt thống kê (không liên quan đến bất kỳ số ngẫu nhiên nào được tạo trước đó) và phân bố đồng đều (xác suất bằng nhau đối với bất kỳ số nào được tạo) [3].

1.2. Thiết kế mạch tạo số ngẫu nhiên dựa trên nhiễu avalanche

1.2.1. Sơ đồ mạch và nguyên lý hoạt động

Sơ đồ mạch tạo số ngẫu nhiên được tạo từ nguyên mẫu thiết kế có ở hình 1.1 sau đây và được thiết kế và chỉnh sửa lại thông qua phân mềm proteus.

Hình 1.1. Mạch sau khi thiết kế lại bằng phần mềm proteus nguồn [4]

Nguyên lý: Điện áp 5V được cấp vào bộ chuyển đổi tăng áp (Voltage booster), điện áp đầu ra sẽ tăng lên 12V. Dòng điện 12V đi tới transistor Q3 tạo nhiễu và được khuếch đại bởi transistor Q1 và Q2. Bộ chuyển đổi tín hiệu (Hex Schmitt-Trigger inverter) sẽ chuyển đổi các tín hiệu được khuếch thành các tín hiệu xung clock. Khi nhận được xung clock thì D-flip-flop sẽ lưu trữ giá trị trên lối vào D và đưa ra giá trị tương ứng bit 0 hoặc 1 trên lối ra Q. Dữ liệu đầu ra có định dạng là các bit 0 hoặc 1. Đầu ra của mạch sẽ được kết nối với một thiết bị khác để kết nối, hiển thị và ghi lại trên máy tính.

1.2.2. Giới thiệu về chức năng của từng khối trong mạch

a. Khối tăng áp

Hình 1.2. Khối tăng điện áp

Module tăng áp-boost converter có chức năng tăng điện áp một chiều ở đầu vào thành điện áp một chiều có giá trị cao hơn ở đầu ra. Tụ điện được đặt ở đầu ra của module có chức năng ổn định điện áp đầu ra ở mức 12V.

Cách hoạt động của module tăng áp dựa trên nguyên lý lưu trữ năng lượng trên trong cuộn cảm. Lượng điện áp giảm xuyên suốt của cuộn cảm tỷ lệ thuận với sự thay đổi về dòng điện chạy trong mạch.

Hình 1.3. Sơ đồ mạch của một module tăng áp [5]

Trong sơ đồ mạch này, transistor hiệu ứng trường - Metal Oxide Semiconductor Field Effect Transistor (MOSFET) S được đặt vào với chức năng như một công tắc đóng và ngắt mạch, diode D được sử dụng như một công tắc thứ 2 ngăn điện áp ngược. Module sẽ hoạt động ở hai chế độ. Ở chế độ 1, công tắc S bật và D tắt, dòng điện sẽ đi vào cuộn cảm và cuộn cảm sẽ lưu trữ năng lượng do ảnh hưởng ở trường điện từ. Ở chế độ 2, công tắc S tắt và D bật, trong chế độ này, cuộn cảm sẽ giải phóng năng lượng

vào tụ điện điện trở của mạch từ đó tăng điện áp đầu ra. Quá trình bật tắt diễn ra liên tục và nhanh không thể quan sát được bằng mắt thường. [5]

b. Mạch tạo nhiễu

- Giới thiệu về cách hoạt động của mạch

Mạch hoạt động dựa trên nguyên lý nhiễu avalanche tạo bởi transistor Q3. Tín hiệu nhiễu sau khi được tạo ra sẽ được khuếch đại bởi transistor Q1 và Q2.

Hình 1.4. Mạch tạo và khuếch đại nhiễu [6]

- Nguyên lý nhiễu avalanche

Khi một điện áp ngược được đặt trên diode vẫn sẽ có một lượng nhỏ dòng điện được đi qua. Khi điện áp ngược tăng lên, nó sẽ chạm tối một mốc khi mà dòng điện tăng đột biến. Sự tăng đột biến của dòng điện dưới tác động của điện áp ngược đó là đặc trưng của sự đánh thủng và giá trị điện áp ngược gây hiện tượng trên được gọi là điện áp đánh thủng.

Nhiễu avalanche là nhiễu được tạo ra khi ta đặt điện áp ngược lên một phân lớp p-n vượt quá điện áp đánh thủng. Nó xảy ra khi bề mặt phân lớp thu được đủ thế năng dưới sự tác động của trường điện tích mạnh tạo ra thêm các cặp điện tích-lỗ trống do sự va chạm của các nguyên tử trong cấu trúc tinh thể. [7]

Để có thể tạo ra nhiễu avalanche ta sử dụng phân lớp base-emitter của một NPN transistor bởi vì phân lớp này có điện áp đánh thủng thấp. Lượng nhiễu được tạo ra sẽ phụ thuộc vào tính chất vật lý của phân lớp như vật liệu và mức độ pha tạp. Tại đây, nhiễu avalanche sẽ được ứng dụng làm 1 nguồn entropy. [8]

Hình 1.5. Ảnh minh họa của một nhiễu avalanche [9]

c. Khối tạo xung clock

Khối tạo xung clock sử dụng IC 74HC14 nhận điện áp vào là nhiễu sau khi đã khuếch đại. Nếu điện áp đầu vào của khối lớn hơn giá trị VT+ thì điện áp đầu ra sẽ được đặt ở mức thấp VOL. ngược lại, nếu điện áp đầu vào của khối nhỏ hơn giá trị VT- thì điện áp ở đầu ra sẽ được đặt ở mức cao VOH. [10]

Hình 1.6. IC 74HC14

Hình 1.7. Nguyên lý hoạt động của khối [10]

d. Khối D flip-flop

Hình 1.8. Khối D flip-flop

Trong khối flip-flop thì Q là chân dữ liệu ra, \overline{Q} là chân đảo của Q và được kết nối với chân dữ liệu vào D, xung clock sẽ được đưa vào chân CLK của khối.

Khi Q được đặt ở 1 thì \overline{Q} sẽ được đặt ở 0, khi xung clock đầu vào bắt đầu sườn lên thì điện áp Q sẽ được đặt 0 và \overline{Q} được đặt thành 1. Khi xung clock bắt đầu sườn lên tiếp theo lên thì điện áp của hai chân Q và \overline{Q} đảo ngược lại thành 1 và 0. Quá trình diễn ra liên tục và arduino sẽ đọc giá trị đầu ra của chân Q. [11]

Hình 1.9. Nguyên lý hoạt động của khối [11]

1.3. Linh kiện thiết kế mạch

Bảng 1.1 dưới đây là danh sách số lượng và thông số của những liên kiện phục vụ cho quá trình thiết kế mạch.

Bảng 1.1. Linh kiện thiết kế mạch

Tên linh kiện	Mã linh kiện	Số lượng
Module tăng áp 5V DC lên 12V DC		1
Bộ chuyển đổi Hex-Schmitt Trigger	SN74LS14N	1
D-flop	CD4013BE	1
Tụ 0.1 microFarad	0.1uF Cap	1
Tụ 10 microFarad	10uF CP	1
Transistor loại NPN	2N3904	3
Điện trở 4.7K Ohm 1/4W 1%	4.7k resistors	1
Điện trở 1M Ohm	1M resistors	1
Điện trở 10k Ohm	10k resistors	2

Bảng mạch	Breadboard	1
Dây nối	Jumpwire	

1.4. Lắp ráp mạch

Sau khi chuẩn bị và kết nối các linh kiện lại với nhau đúng theo như mô phỏng bên trên cho ra kết quả là mạch vật lý như hình 1.10.

Hình 1.10. Mạch vật lý sau khi kết nối

1.5. Kết luận

Thông qua chương 1, báo cáo đã được cung cấp thông tin khái quát về bộ tạo số ngẫu nhiên thực và chức năng của mạch tạo số ngẫu nhiên cũng như chức năng cụ thể của từng khối trong mạch. Từ bản vẽ bằng phần mềm ta kết nối các linh kiện với nhau để tạo ra mạch hoàn chỉnh.

CHUONG 2. THỰC THI TRÊN FPGA

2.1. Giới thiệu về FPGA

Mảng cổng lập trình được dạng trường (Field-Programmable Gate Array – FPGA) là vi mạch dùng cấu trúc mảng phần tử, được cấu hình bằng ngôn ngữ thiết kế phần cứng như VHDL hay Verilog, các khối logic có thể định cấu hình được kết nối thông qua các kết nối có thể lập trình được. Thành phần cấu tạo của FPGA gồm: các khối logic có thể tái cấu hình, các cổng I/O để giao tiếp giữa các khối logic và kiến trúc bên ngoài, kết nối trong (interconnect) để liên kết các khối logic và cổng I/O, khối ROM/RAM để lưu trữ dữ liệu. FPGA có thể được lập trình lại theo yêu cầu ứng dụng hoặc chức năng mong muốn sau khi sản xuất. FPGA được dùng để giải quyết những bài toán phức tạp, ứng dụng trong xử lí tín hiệu số, hàng không vũ trụ, mật mã học và nhiều lĩnh vực khác [12].

Arty A7 là bo mạch phát triển FPGA của hãng Digilent được xây dựng dựa trên nền tảng FPGA Artix-7 của Xilinx, sản phẩm phù hợp với cho quá trình tìm hiểu về FPGA. Nó có các cổng giao tiếp thông dụng như: UARTs, SPIs, I2Cs, được thiết kế đặc biệt để dùng làm hệ thống vi xử lý mềm MicroBlaze. Gồm 2 phiển bản là Arty-35T và Arty-100T, phiên bản được sử dụng trong báo cáo này là Arty-100T.

Hình 2.1. Kit Artix 7 100T Arty FPGA Evaluation [13]

2.2. Cấu hình phần cứng để kết nối mạch sinh số ngẫu nhiên với Arty

Để thực thi bộ sinh số ngẫu nhiên, trước tiên phải thiết kế và cấu hình cho FPGA. Sau đây là các bước trong quy trình cấu hình cho FPGA để nhận dữ liệu từ mạch, và hiển thị trên màn hình máy tính. Việc thiết kế được thực hiện trên phần mềm Vivado-một công cụ phần mềm của Xilinx được thực hiện theo các bước dưới đây:

- 1. Tạo Block Design: Block Design được tạo bằng việc thêm các IP và kết nối chúng. Bước này giúp thêm các mô-đun cần thiết cho FPGA để có thể nhận và truyền dữ liệu. Trong quá trình thiết kế Block Design có thể sử dụng công cụ Validate design để có kiểm tra thiết kế đáp ứng các yêu cầu của một hệ thống.
- 2. Tạo tệp wapper cho hệ thống: Tệp wapper được dùng để chuyển đổi hệ thống từ Block Design sang ngôn ngữ mô tả phần cứng. Chọn Create HDL Wrapper để tạo mô hình VHDL cấp cao nhất.
- 3. Tạo tệp Constraint: Tệp Constraint được dùng để ràng buộc các chân đầu ra cho hệ thống FPGA. Để ràng buộc các chân GPIO, cần chỉ định tên các chân GPIO và ánh xạ tới FPGA. Thêm dòng lệnh sau trong tệp XDC để thêm một chân GPIO cần thiết:

set_property -dict {<Pin name> IOSTANDARD LVCMOS33} [get_ports {GPIO name }];

- 4. Systhesis: Là quá trình chuyển đổi ngôn ngữ mô tả phần cứng của thiết kế thành netlist (Netlist là một danh sách các cổng và các cấu trúc logic cụ thể trong thiết kế). Bước này còn giúp điều chỉnh và tối ưu hóa thiết kế trước khi thực thi trên FPGA
- 5. Implementation: Bước này giúp triển khai thiết kế từ mô hình logic thành nguyên mẫu để chạy trên FPGA. Quá trình này để đảm bảo thiết kế được thực thi một cách chính xác trên FPGA.
- 6. Tạo Bitstream: Đây là một trong những bước quan trọng nhất trong quá trình cấu hình FPGA. Tạo một tệp bitstream để có thể nạp vào FPGA để thực hiện chức năng cụ thể đã được thiết kế.
- 7. Lập trình trên FPGA: Sau khi tạo tệp bitstream từ bước trước đó, cần tạo code trên phần mềm SDK. Chương trình sẽ được biên dịch và chạy trên FPGA, kết quả sẽ được hiển thị trên phần mềm.

Hình 2.2 sau đây là sơ đồ khối cấu hình phần cứng của Arty-7 100T bằng phần mềm Vivado. Sơ đồ khối phần cứng sẽ được thêm vào 2 khối UART để kết nối với máy tính và AXI GPIO để cấu hình chân đọc giá trị đầu ra của mạch tạo số ngẫu nhiên.

Hình 2.2. Cấu hình phần cứng của Arty-7 100T

Sau khi đã cấu hình phần cứng trên Arty A7-100T, tiếp theo là quá trình kết nối và giao tiếp giữa mạch sinh số ngẫu nhiên và bo mạch Arty A7-100T.

Dữ liệu từ bộ sinh số ngẫu nhiên sẽ được truyền đến bo mạch Arty qua chân IO số 26. Để dữ liệu có thể truyền, cần thêm các ràng buộc GPIO tại tệp XDC trong quá trình cấu hình. Cần đảm bảo rằng kết nối này được thực hiện đúng cách để dữ liệu có thể truyền đến mạch Arty.

Arty A7-100T giao tiếp với máy tính thông qua cổng UART. Vì vậy, cần kết nối các chân UART của Arty với máy tính và cấu hình AXI-UART trong thiết kế. Cổng UART được sử dụng để gửi và nhận dữ liệu giữa FPGA và máy tính.

Khi Arty A7-100T được kết nối với máy tính, dữ liệu đầu ra từ mạch sinh số ngẫu nhiên có thể được truyền và hiển thị trên màn hình máy tính. Dữ liệu được biểu diễn dưới dạng các chuỗi bit 0 và 1, cần sử dụng phần mềm trên máy tính để dữ liệu hiển thị rõ ràng hơn.

Hình 2.3 sau đây là hình ảnh ghép nối mạch sinh số ngẫu nhiên và Arty A7-100T. Sau khi ghép nối mạch, Arty và máy tính thì dữ liệu sẽ được truyền và nhận để hiển thị:

Hình 2.3. Mạch sinh số ngẫu nhiên khi kết nối với Arty

2.3. Dữ liệu đầu ra

Sử dụng phần mềm Coolterm để ghi dữ liệu đầu ra, dữ liệu được hiển thị trên màn hình theo các dòng, mỗi dòng 25 bit 0 và 1. Kết quả được ghi vào tệp text để phục vụ cho việc đánh giá. Qua đánh giá chủ quan, có thể thấy các dữ liệu được sinh ra có số lượng bit 0 và bit 1 đồng đều, tuy nhiên, việc đánh giá cần sử dụng các bài test để có độ chính xác cao hơn.

Hình 2.4. Kết quả chuỗi số ngẫu nhiên

2.4. Kết luận

Hệ thống FPGA không thể thực hiện hoạt động mà không được cấu hình trước. Để thực thi bộ sinh số ngẫu nhiên trên bo mạch Arty A7, quá trình cấu hình là bước quan trọng không thể bỏ qua. Trong quá trình này, thông tin về cách các khối logic và các thành phần kết nối của FPGA được ghi vào một tệp bitstream.

Tệp bitstream chứa các chỉ dẫn cụ thể để FPGA được cấu hình và kết nối đúng cách. Đây là quy trình quyết định cấu trúc và chức năng của FPGA để thích ứng với thiết kế cụ thể của bạn. Sau khi tạo bitstream, nó sẽ được nạp vào FPGA, các khối trên FPGA sẽ được kết nối theo thông tin trong tệp bitstream.

Vì vậy, quá trình cấu hình là bước rất quan trọng trong việc đưa hệ thống FPGA từ trạng thái chưa được cấu hình đến trạng thái có thể hoạt động theo yêu cầu thiết kế được đưa ra. Chương này đã cho thấy quy trình thiết kế và cấu hình để thực thi bộ sinh số ngẫu nhiên tích hợp vào hệ thống MicroBlaze.

CHƯƠNG 3. ĐÁNH GIÁ KẾT QUẢ SỬ DỤNG NIST TEST

3.1. Giới thiệu NIST test

Bộ kiểm tra của Viện Tiêu chuẩn và Công nghệ Quốc gia Mỹ - National Institute of Standards and Technology (NIST) là gói thống kê bao gồm 16 thử nghiệm được phát triển để kiểm tra tính ngẫu nhiên của các chuỗi nhị phân (dài tùy ý) được tạo bởi các bộ tạo số ngẫu nhiên hoặc giả ngẫu nhiên bằng mật mã dựa trên phần cứng hoặc phần mềm. Các thử nghiệm này tập trung vào nhiều loại không ngẫu nhiên khác nhau có thể tồn tại theo một trình tự. Một số bài kiểm tra có thể phân tách thành nhiều bài kiểm tra phụ. Tại bảng 4.1 dưới đây là 16 bài kiểm tra. [14]

Bảng 3.1. Danh sách các bài NIST test

STT	Tên bài kiểm tra	Mục đích
1.	Frequency (Monobit) Test	Kiểm tra tỉ lệ số lượng số 1 so với số 0 trong chuỗi bit, đánh giá xem chuỗi có phân phối đều không.
2.	Frequency Test within a Block	Chia chuỗi thành các khối và kiểm tra sự phân bố của số 1 và số 0 trong từng khối.
3.	Runs Test	Kiểm tra số lượng chuỗi (runs) liên tục của số 1 hoặc số 0 trong chuỗi bit
4.	Test for the Longest Run of Ones in a Block	Kiểm tra số lần xuất hiện của chuỗi số 1 dài nhất trong từng khối
5.	Binary Matrix Rank Test	Xác định hạng của ma trận nhị phân được tạo từ chuỗi bit
6.	Discrete Fourier Transform (Spectral) Test	Sử dụng phép biến đổi Fourier rời rạc để kiểm tra tính phổ của chuỗi
7.	Non-overlapping Template Matching Test	Kiểm tra số lần mẫu (template) xuất hiện không chồng lấn trong chuỗi
8.	Overlapping Template Matching Test	Kiểm tra số lần mẫu xuất hiện có chồng lấn trong chuỗi
9.	Maurer's "Universal Statistical" Test	Sử dụng kỹ thuật thống kê để kiểm tra tính không chu kỳ của chuỗi

10.	Linear Complexity Test	Đo độ phức tạp tuyến tính của chuỗi bit		
11.	Serial Test	Kiểm tra sự phụ thuộc giữa các chuỗi bit liên tiếp trong chuỗi		
12.	Approximate Entropy Test	Đánh giá độ ngẫu nhiên của chuỗi dựa trên độ lệch của thông tin entropy xấp xỉ		
13.	Cumulative Sums Test (Forward)	Kiểm tra xem tổng tích luỹ của chuỗi có lớn hay nhỏ so với kỳ		
14.	Cumulative Sums Test (Backward)	vọng của một chuỗi ngẫu nhiên hay không		
15.	Random Excursions Test:	Đếm số lượng chu kỳ cụ thể trong một cuộc đi bộ ngẫu nhiên của chuỗi		
16.	Random Excursions Variant	Đếm số lần một trạng thái cụ thể được thăm trong một cuộc đi bộ ngẫu nhiên của chuỗi		

3.2. Kết quả NIST test

Bảng 3.2 sau đây là kết quả của NIST test với định dạng đầu vào bộ số ngẫu nhiên gồm 23.000.000 bit.

Bảng 3.2. Kết quả của các NIST test của 23.000.000 bit

Bài kiểm tra	P-Value	Kết luận
01. Frequency (Monobit) Test	0.231696559	Ngẫu nhiên
02. Frequency Test within a Block	0.47346398	Ngẫu nhiên
03. Runs Test	0.622316246	Ngẫu nhiên
04. Test for the Longest Run of Ones in a Block	0.195221157	Ngẫu nhiên
05. Binary Matrix Rank Test	0.369339513	Ngẫu nhiên

06. Discrete Fourier Tra (Spectral) Test	1 0 11238		86576		Ngẫu nhiên
07. Non-overlapping Te Matching Test	UXINX		16571		Ngẫu nhiên
08. Overlapping Temp Matching Test	olate	0.7679	32496		Ngẫu nhiên
09. Maurer's "Unive Statistical" Test	rsal	0.2184	12003		Ngẫu nhiên
10. Linear Complexity	Test	0.9153	16791		Ngẫu nhiên
44.6 : 17 .		0.5127	47579		Ngẫu nhiên
11. Serial Test:		0.8120	05813		Ngẫu nhiên
12. Approximate Entrop	y Test	0.0836	54909		Ngẫu nhiên
13. Cumulative Sums (Forward)	Test	0.357141265		Ngẫu nhiên	
14. Cumulative Sums (Backward)	Test	0.300269413		Ngẫu nhiên	
		15. Random Ex	cursions Test:		
Trạng thái	Chi Squared		P-Value		Kết luận
-4	0.9	982896471	0.9639334	16	Ngẫu nhiên
-3	0.	832695082	0.9749012	45	Ngẫu nhiên
-2	2.	150779194	0.8279129	97	Ngẫu nhiên
-1	2.	147540984	0.8283762	45	Ngẫu nhiên
1	8.016393443		0.1553344	64	Ngẫu nhiên
2	5.38818053		0.3703631	18	Ngẫu nhiên
3	1.95255082		0.8556708	26	Ngẫu nhiên
4	4.200080568		0.5209836	61	Ngẫu nhiên
16. Random Excursions Variant					
Trạng thái	COUNTS		P-Value		Kết luận
-7		266	0.8091369	43	Ngẫu nhiên

-6	288	0.607058312	Ngẫu nhiên
-5	304	0.451267892	Ngẫu nhiên
-4	302	0.428576985	Ngẫu nhiên
-3	282	0.566378589	Ngẫu nhiên
-2	268	0.681342728	Ngẫu nhiên
-1	235	0.855426029	Ngẫu nhiên
1	217	0.480401901	Ngẫu nhiên
2	233	0.618521679	Ngẫu nhiên
3	264	0.365276044	Ngẫu nhiên
4	283	0.308069426	Ngẫu nhiên
5	293	0.321209231	Ngẫu nhiên
6	287	0.461904248	Ngẫu nhiên
7	254	0.880060193	Ngẫu nhiên
8	241	0.967338681	Ngẫu nhiên
9	256	0.880243464	Ngẫu nhiên

3.3. Kết luận

Bộ test gồm 23.000.000 bit đã vượt qua 16 bài NIST test và đưa ra kết quả là không thể dự đoán được. Với số lượng mẫu là 23.000.000 cũng đã là một bộ mẫu ở mức trung bình. Vì vậy ta có thể kết luận rằng mạch tạo số ngẫu nhiên có thể tin tưởng được.

CHƯƠNG 4. MỘT SỐ PHƯƠNG PHÁP TẮN CÔNG MẠCH

4.1. Các cách tấn công

Việc tấn công vào mạch tạo số ngẫu nhiên được thực hiện nhằm để tạo ra giá trị ngẫu nhiên như phía tấn công muốn từ đó có thể dự đoán trước được kết quả mong muốn. Trong chương 4 sẽ đưa ra 2 cách để tấn công mạch tạo số ngẫu nhiên đó là thay đổi điện áp cấp nguồn và tăng nhiệt độ của nguồn entropy. [15]

4.1.1. Thay đổi điện áp nguồn

Hình 4.1. Vị trí tấn công điện áp nguồn

Theo hình 4.1 ta tấn công vào vị trí 1 hoặc 2 với mục đích thay đổi nguồn điện áp cấp vào Q3 hay nguồn entropy của hệ thống. Việc tấn công dựa trên nguyên lý hiệu ứng avalanche rằng nhiễu tạo bởi phân lớp p-n chỉ được tạo ra khi đáp ứng một điện áp ngược lớn điện áp đánh thủng của phân lớp đó. Việc ngắt nguồn làm cho mạch không thể tạo ra nhiễu từ đó không tạo ra được xung clock và làm cho giá trị đầu ra Q của D flip-flop dừng lại ở giá trị 0 hoặc 1 như ở hình 4.2.

Hình 4.2. Kết quả hiển thị trên màn hình sau khi ngắt nguồn cấp

4.1.2. Tăng nhiệt độ của nguồn entropy

Trong trường hợp này ta tấn công bằng cách dùng hơi nóng tăng nhiệt độ cho nguồn entropy transistor Q3 trong hình 4.3. Do transistor là một linh kiện điện tử do đó tồn tại một mốc nhiệt độ để transistor có thể hoạt động bình thường. Nếu tăng nhiệt độ của transistor vượt trên mốc này thì sẽ ảnh hưởng đến khả năng hoạt động của linh kiện từ đó ảnh hưởng đến nhiễu và kết quả đầu ra. Để kiểm chứng cách tấn công này thì giá trị số ngẫu nhiên trong khi thay đổi nhiệt độ sẽ được ghi lại tương tự như phương thức ở chương 3 để so sánh với mẫu thử có cùng số lượng mẫu khi hoạt động ở nhiệt độ bình thường.

Hình 4.3. Vị trí nguồn entropy để tấn công nhiệt

Bảng 4.1 bên dưới là kết quả các NIST test với 500.000 bit thử khi nguồn entropy hoạt động ở nhiệt độ bình thường.

Bảng 4.1. Kết quả của các NIST test của 500.000 bit khi nguồn entropy hoạt động ở nhiệt độ bình thường

Bài kiểm tra	P-Value	Kết luận
01. Frequency (Monobit) Test	0.048687609	Ngẫu nhiên
02. Frequency Test within a Block	0.016840464	Ngẫu nhiên
03. Runs Test	0.665579607	Ngẫu nhiên
04. Test for the Longest Run of Ones in a Block	0.338095928	Ngẫu nhiên
05. Binary Matrix Rank Test	0.550771115	Ngẫu nhiên
06. Discrete Fourier Transform (Spectral) Test	0.012599748	Ngẫu nhiên
07. Non-overlapping Template Matching Test	0.01024574	Ngẫu nhiên
08. Overlapping Template Matching Test	0.58036056	Ngẫu nhiên

09. Maurer's "Universal Statistical" Test		0.291774839		Ngẫu nhiên		
10. Linear Complexity Test		0.9010	0.901056092		Ngẫu nhiên	
		0.142174819		Ngẫu nhiên		
11. Serial Test:		0.054794836		Ngẫu nhiên		
12. Approximate Entropy Test		0.116742395		Ngẫu nhiên		
13. Cumulative Sums Test (Forward)		0.015707594		Ngẫu nhiên		
14. Cumulative Sums (Backward)	14. Cumulative Sums Test (Backward)		0.032460313		Ngẫu nhiên	
		15. Random Ex	xcursions Test:			
Trạng thái	Chi Squared		P-Value		Kết luận	
-4	13.40917864		0.0198316	54	Ngẫu nhiên	
-3	1.740423529		0.8837682	42	Ngẫu nhiên	
-2	1.352860486		0.9293995	42	Ngẫu nhiên	
-1	1.620915033		0.89870859	96	Ngẫu nhiên	
1	0.183006536		0.9992859	76	Ngẫu nhiên	
2	4.343419672		0.5011025	25	Ngẫu nhiên	
3	11.00828235		0.0512160	16	Ngẫu nhiên	
4	3.124868995		0.6807416	59	Ngẫu nhiên	
		16. Random Exc	cursions Variant			
Trạng thái	COUNTS		P-Value		Kết luận	
-7	303		0.9765361	.9	Ngẫu nhiên	
-6	349		0.6535802	13	Ngẫu nhiên	
-5	359		0.5523821	64	Ngẫu nhiên	
-4	335		0.7237523	53	Ngẫu nhiên	
-3	347		0.5806453	86	Ngẫu nhiên	
-2	341		0.5928291	11	Ngẫu nhiên	

-1	330	0.664389443	Ngẫu nhiên
1	339	0.44120852	Ngẫu nhiên
2	323	0.491966615	Ngẫu nhiên
3	308	0.935565055	Ngẫu nhiên
4	311	0.907105709	Ngẫu nhiên
5	340	0.538794938	Ngẫu nhiên
6	386	0.221607558	Ngẫu nhiên
7	380	0.318720388	Ngẫu nhiên
8	351	0.583379988	Ngẫu nhiên
9	359	0.552382164	Ngẫu nhiên

Bảng 4.2 bên dưới là kết quả bài kiểm tra NIST test với cùng số mẫu thử khi tác động nhiệt độ vào nguồn entropy

Bảng 4.2. Kết quả của các NIST test của 500.000 bit khi nguồn entropy bị tác động bởi nhiệt độ

Bài kiểm tra	P-Value	Kết luận
01. Frequency (Monobit) Test	0	Không ngẫu nhiên
02. Frequency Test within a Block	0	Không ngẫu nhiên
03. Runs Test	0	Không ngẫu nhiên
04. Test for the Longest Run of Ones in a Block	1.78E-20	Không ngẫu nhiên
05. Binary Matrix Rank Test	0.001218534	Không ngẫu nhiên
06. Discrete Fourier Transform (Spectral) Test	8.10E-86	Không ngẫu nhiên
07. Non-overlapping Template Matching Test	0	Không ngẫu nhiên
08. Overlapping Template Matching Test	0.575842126	Ngẫu nhiên

09. Maurer's "Universal Statistical" Test		0		Không ngẫu nhiên	
10. Linear Complexity Test		0.017113809		Ngẫu nhiên	
		0		Không ngẫu nhiên	
11. Serial Test:		0		Không ngẫu nhiên	
12. Approximate Entropy Test		(0 Khôn		Không ngẫu nhiên
13. Cumulative Sums Test (Forward)		Không ngẫu nhiên		Không ngẫu nhiên	
14. Cumulative Sums (Backward))	Không ngẫu nhiên	
		15. Random E	xcursions Test:		
Trạng thái	Chi Squared		P-Value		Kết luận
-4	13.40917864		0.0198316	54	Ngẫu nhiên
-3	1.740423529		0.8837682	42	Ngẫu nhiên
-2	1.352860486		0.9293995	42	Ngẫu nhiên
-1	1.620915033		0.8987085	96	Ngẫu nhiên
1	0.183006536		0.9992859	76	Ngẫu nhiên
2	4.343419672		0.5011025	25	Ngẫu nhiên
3	11.00828235		0.0512160	16	Ngẫu nhiên
4	3.124868995		0.6807416	59	Ngẫu nhiên
		16. Random Exc	cursions Variant		
Trạng thái		COUNTS	P-Value		Kết luận
-7	22		0.7241325	54	Ngẫu nhiên
-6	23		0.7305279	24	Ngẫu nhiên
-5		21	0.6619392	.5	Ngẫu nhiên
-4	20		0.60872750	09	Ngẫu nhiên
-3	13		0.3959510	25	Ngẫu nhiên
-2	14		0.3593006	54	Ngẫu nhiên

-1	20	0.447699072	Ngẫu nhiên
1	21	0.362726506	Ngẫu nhiên
2	27	0.395951025	Ngẫu nhiên
3	38	0.627625805	Ngẫu nhiên
4	39	0.726286149	Ngẫu nhiên
5	40	0.74488162	Ngẫu nhiên
6	57	0.291789863	Ngẫu nhiên
7	77	0.082180515	Ngẫu nhiên
8	97	0.02125027	Ngẫu nhiên
9	110	0.010583547	Ngẫu nhiên

Như có thể thấy ở 2 bảng trên, sau khi tăng nhiệt độ của nguồn entropy lên thì giá trị ngẫu nhiên thu được trở nên dễ đoán hơn dựa trên kết quả của NIST test. Vì vậy ta có thể kết luận rằng tăng nhiệt độ nguồn entropy là một trong những cách hiệu quả để tấn công mạch tạo số ngẫu nhiên.

4.2. Kết luận

Thông qua chương 4 ta biết thêm được 2 cách tấn công vào mạch nhằm với mục đích vô hiệu hóa mạch tạo số ngẫu nhiên hoặc thao túng mạch để tạo ra giá trị mong muốn. Tuy nhiên, 2 phương pháp trên yêu cầu bên tấn công phải tương tác vật lý trực tiếp với mạch để có thể thay đổi. Do đó một trong những phương pháp để ngăn chặn kiểu tấn công này là bảo vệ mạch và nguồn cấp mạch tai những vị trí mà bên tấn công không thể tiếp xúc được và ít bị ảnh hưởng bởi yếu tố môi trường.

TÀI LIỆU THAM KHẢO

- [1] M. S. `. c. a. Ç. K. Koç, True Random Number Generators, 2014.
- [2] V. F. a. M. Drutarovsk'y, True Random Number Generator Embedded in Reconfigurable Hardware, 2002.
- [3] P. L'Ecuyer, Random Number Generation, 2012.
- [4] jongrover, "github.com," 2022. [Online]. Available: https://github.com/jongrover/true-random?tab=readme-ov-file.
- [5] B. Subedi, "how2electronics," Boost Converter: Basics, Working, Design & Application, [Online]. Available: https://how2electronics.com/boost-converter-basics-working-design-application/.
- [6] D. Rom^ao, Extremely Secure Communication, 2015.
- [7] Madhu-SUDAN-GUPTA, Noise in Avalanche Transit-Time Devices, 1971.
- [8] "altervista," Random Sequence Generator based on Avalanche Noise, [Online]. Available: http://holdenc.altervista.org/avalanche/.
- [9] N. C. Braga, "incbtech.com," [Online]. Available: https://www.incbtech.com/articles/17-paranormal-electronic/333-white-noise-generator-art078.html.
- [10] ONSEMI, "alldatasheet.com," 2006. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/12160/ONSEMI/MC74HC14A.html.
- [11] "electronics-tutorial.net," Toggle Flip-flop, [Online]. Available: https://www.electronics-tutorial.net/sequential-logic-circuits/toggle-flip-flop/.

- [12] A. Magyari, "mdpi," Review of State-of-the-Art FPGA Applications in IoT Networks, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/19/7496.
- [13] "reichelt," [Online]. Available: https://www.reichelt.com/it/en/arty-a7-100t-artix-7-fpga-development-board-digil-410-319-1-p285629.html?&nbc=1.
- [14] J. J. M. S. E. L. M. M. V. D. A. J. S. AndrewRukhin, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, 2010.
- [15] A. P. V. R. I. V. Yrjo Koyen, Attacking Hardware Random Number Generators in a Multi-Tenant Scenario, 2020.
- [16] "linhkien3m.vn," [Online]. Available: https://linhkien3m.vn/module-boost-dcdc-ghim-dien-ap-ra-5v8v9v12v-chuyen-dung-cho-pin-lithium-p27681827.html.
- [17] N. Semiconductors, "alldatasheet.com," 74HC14 Datasheet (PDF), 1997. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/112419/PHILIPS/74HC14.html.
- [18] T. INSTRUMENTS, CD4013B CMOS Dual D-Type Flip-Flop, 1998. [Online]. Available: https://www.ti.com/lit/ds/symlink/cd4013b.pdf.
- [19] theenggprojects, "rs-online.com," Basics of 2N3904, 2018. [Online]. Available: https://www.rs-online.com/designspark/basics-of-2n3904.
- [20] "pchcables.com," 1/4W 1% Metal Film Resistor 4.7k ohm, [Online]. Available: https://www.pchcables.com/83-1033.html.
- [21] "vietnic.vn," TU 0.1UF 50V, [Online]. Available: https://www.vietnic.vn/tu-0-1uf-50v.
- [22] "vietnic.v," TU 10UF 50V, [Online]. Available: https://www.vietnic.vn/tu-hoa-10uf-50v.

[23] "core-electronics.com.au," How to Use Breadboards, [Online]. Available: https://core-electronics.com.au/guides/how-to-use-breadboards/.

PHŲ LŲC A

Hình 1. Module tăng điện áp đầu vào từ 5V lên 12V [16]

Hình 2. Hex-Schmitt Trigger 74HC14 [17]

Hình 3. Mạch tích hợp CD4013BE (D-flip flop) [18]

Hình 4. Transistor loại NPN 2N 3904 [19]

Hình 5. Điện trở 4.7K Ohm [20]

Hình 6. Tụ điện 0.1 microFarad [21]

Hình 7. Tụ điện 10 microFarad [22]

Hình 8. Breadboard [23]

PHŲ LŲC B

Bảng 1. Thông số cơ bản của module tăng điện áp [16]

Kích thước	22x11mm
Khối lượng	10g
Đầu ra (đầu vào 3.7 V)	12V 0.3A
Đầu ra (đầu vào 5V)	12V 0.3A

Bảng 2. Mô tả chân của IC 74HC14 [17]

Pin	Mô tả
A1, A2, A3, A4, A5, A6	Chân đầu vào
Y1, Y2, Y3, Y4, Y5, Y6	Chân đầu ra
Vcc	Chân cấp nguồn
GND	Chân nối đất

Bảng 3. Mô tả chân của CD4013BE [18]

Pin	Mô tả
Q	Chân tín hiệu ra
Q	Chân tín hiệu đảo của Q
Clock	Lối vào xung clock
D	Lối vào dữ liệu (Data).
Set	Thiết lập đầu ra là 1
Reset	Thiết lập đầu ra là 0
Vss	Chân nối đất
Vdd	Điện áp nguồn

PHŲ LŲC C

Code lập trình cho FPGA https://github.com/jake-newbie/True-random-number-generator-on-FPGA