Numerical Analysis Qualifying Exam Fall 1997

- 1. Explain the difficulty in evaluating $f(x) = x^{-1} (1 \cos x)$ when the absolute value of x is small and find a method without using the Taylor series to overcome the difficulty.
- 2. Prove the following theorem: If $f \in C^2(a, b)$, f'(x) $f''(x) \neq 0$, and f(x) has a zero in (a, b), then the zero is unique in (a, b), and the Newton iteration will converge to it if the starting value x_0 and the first approximation x_1 are both in (a, b). (You may just do a special case where f'(x) < 0, f''(x) < 0 in (a, b))
- 3. Prove the following theorem for Gaussian quadrature:

Let $I(f) = \int_a^b f(x)w(x)dx$, where w(x) is a positive weight function, be approximated by a quadrature formula $I_n(f) = \sum_{i=1}^n A_i f(x_i)$, where $x_i \in [a,b]$, i=1:n are distinct. Then the quadrature formula $I_n(f)$ has a maximum degree of precision of 2n-1. This is attained if and only if x_i, x_2, \ldots, x_n are the zeros of $p_n(x)$, the *n*th orthogonal polynomial, with the inner product

$$(f,g) = \int_{a}^{b} f(x)g(x)w(x)dx.$$

(Hint: if f(x) is a polynomial of degree m with $m \ge n$, then $f[x_1, x_2, \dots, x_n, x]$ is a polynomial of degree m - n)

4. Let f(x) be a piecewise constant function on [a,b]:

$$f(x) = \begin{cases} \alpha & a \le x \le c \\ \beta & c < x \le b \end{cases}$$

where a < c < b and $\alpha \neq \beta$. Let $x_0 < x_1 < \cdots < x_n$ be n+1 points and j be an integer with $0 \le j \le n-1$ such that $a < x_0 < \cdots < x_j < c < x_{j+1} < \cdots < x_n < b$ and that $P_n(x)$ is the polynomial of degree less than or equal to n interpolating f at the n+1 points x_i , $i=0,\ldots,n$. Show that $P_n(x)$ is monotone in the interval $[x_j, x_{j+1}]$. (Hint: Count the number of zeros of $\frac{dP_n(x)}{dx}$.)

5. Suppose $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, and PA = LU, where P is a permutation matrix, L is lower triangular, and U is upper triangular. A, b, P, L, U are known. Determine the purpose of the following algorithm:

For
$$i = 1 : k$$

solve for y in Ly = Pb overwrite b with y

solve for x in Ux = b overwrite b with x

end

(Hint: consider k = 1 first)

6. Let A be an invertible $n \times n$ matrix, and let u and v be two vectors in \mathbb{R}^n . Find the necessary and sufficient conditions on u and v in order that the matrix

$$B = \left[\begin{array}{cc} A & u \\ v^t & 0 \end{array} \right].$$

be invertible, and give the inverse in terms of A, u, v when it exists. (Hint: multiply B by a suitable matrix to have a simpler matrix to handle)

1

7. Suppose that an n by n nonsingular matrix A has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding right eigenvectors u_1, \ldots, u_n and left eigenvectors v_1, \ldots, v_n . Suppose

$$c_i = ||u_i||_2 ||v_i||_2 / |v_i^T u_i|, i = 1, \dots, n.$$

Show that the solution of Ax = b satisfies

$$||x||_2 \le ||b||_2 \sum_{i=1}^n \frac{c_i}{|\lambda_i|}.$$

(Hint: write x in terms of u_i)

8. State Schur's theorem and use it to show: Let A be an $n \times n$ complex matrix, it can be similar to a upper triangular matrix with $|\text{off-diag. entries}| \leq \varepsilon$, (Hint: on the result of Schur's, construct suitable diagonal matrices)