BASES

•
$$(a+b)^2 = a^2 + 2ab + b^2$$

•
$$(a-b)^2 = a^2 - 2ab + b^2$$

•
$$a^2 - b^2 = (a+b)(a-b)$$

$$\bullet \ \sinh x = \frac{e^x - e^{-x}}{2}$$

$$\bullet \ \cosh x = \frac{e^x + e^{-x}}{2}$$

•	arco	0 (0°)	$\pi/6 \ (30^{\circ})$	$\pi/4~(45^{\circ})$	$\pi/3~(60^{\circ})$	$\pi/2~(90^{\circ})$
	\sin	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
	cos	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
	tan	0	$\sqrt{3}/3$	1	$\sqrt{3}$	-

MÓDULOS

•
$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

•
$$|x| \le a \Leftrightarrow x \le a \land x \ge -a \text{ ou } -a \le x \le a$$

•
$$|x| \ge a \Leftrightarrow x \ge a \lor x \le -a$$

LOGARITMOS

•
$$\log_a x = y \Leftrightarrow x = a^y$$

•
$$a^x = e^{x \ln a}$$

•
$$\log_a 1 = 0$$

•
$$\log_a a = 1$$

•
$$\log_a x \cdot y = \log_a x + \log_a y$$

•
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

•
$$\log_a x^p = p \log_a x$$

• Mudança de base:
$$\log_b x = \frac{\log_a x}{\log_a b}$$

LIMITES

Regras:

$$\bullet \ \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} [f(x) \times g(x)] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} [kf(x)] = k \lim_{x \to a} f(x)$$

Indeterminações:

•
$$\infty - \infty$$

•
$$\infty \times 0$$

•
$$\frac{\infty}{\infty}$$

$$\bullet$$
 $\frac{0}{0}$

Limites notáveis:

- $\lim_{x \to 0} \frac{\sin x}{x} = 1$ $\lim_{x \to 0} \frac{e^x 1}{x} = 1$

DERIVADAS E PRIMITIVAS SIMPLES

	Regras de Derivação	Regras de Primitivação
Soma	(u+v)' = u' + v'	$\int u + v = \int u + \int v$
Escalar	$(\alpha u)' = \alpha u'$	$\int \alpha u = \alpha \int u$
Produto	(uv)' = u'v + uv'	
Quociente	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	
Potência	$u^{\alpha})' = \alpha u^{\alpha - 1} u'$	$\int u'u^{\alpha} = \frac{u^{\alpha+1}}{\alpha+1}$ $\int u'\alpha^{u} = \frac{\alpha^{u}}{(\ln \alpha)}$
Exponencial	$(\alpha^u)' = u'\alpha^u(\ln \alpha)$	$\int u'\alpha^u = \frac{\alpha^u}{(\ln \alpha)}$
	$(e^u)' = u'e^u$	$\int u'e^u = e^u$
Logaritmo	$\log_{\alpha} u)' = \frac{u'}{u(\ln \alpha)}$	
	$(\ln u)' = \frac{u'}{u}$	$\int \frac{u'}{u} = \ln u $
Seno	$(\sin u)' = u' \cos u$	$\int u'\cos u = \sin u$
Cosseno	$(\cos u)' = -u'\sin u$	$\int u' \sin u = -\cos u$
Tangente	$(\tan u)' = \frac{u'}{\cos^2 u}$	$\int \frac{u'}{\cos^2 u} = \tan u$
$ m Seno^{-1}$	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$	$\int \frac{u'}{\sqrt{\alpha^2 - u^2}} = \arcsin \frac{u}{\alpha}$
Cosseno ⁻¹	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$ $(\arccos u)' = -\frac{u'}{\sqrt{1 - u^2}}$	$\int \frac{u'}{\sqrt{\alpha^2 - u^2}} = -\arccos\frac{u}{\alpha}$
Tangente ⁻¹	$(\arctan u)' = \frac{u'}{1 + u^2}$	$\int \frac{u'}{\alpha^2 + u^2} = \frac{1}{\alpha} \arctan \frac{u}{\alpha}$
Seno Hiperbólico	$(\sinh u)' = u' \cosh u$	$\int u' \sinh u = \cosh u$
Cosseno Hiperbólico	$(\cosh u)' = u' \sinh u$	$\int u' \cosh u = \sinh u$

REGRAS DE DERIVAÇÃO

Derivada da Função Composta

•
$$f[g(x)]' = f'[g(x)] \times g'(x)$$

Derivada da Função Inversa

•
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

REGRAS DE PRIMITIVAÇÃO

Primitivação por Partes

$$\bullet \int uv' \, dx = uv - \int u'v \, dx$$

- 1. Escolher u para derivar $(u \leadsto u')$.
- 2. Escolher v para primitivar $(v' \leadsto v)$.

Primitivas de Funções Racionais

•
$$f(x) = \frac{p(x)}{q(x)}$$

- 1. Garantir que grau p(x) < grau q(x).
- 2. Fatorizar q(x).

Raíz	Fator	Função	Primitiva (Primitiva)
Simples	(x-a)	$\frac{A}{x-a}$	ln
Múltipla	$(x-a)^m$	$\frac{A_1}{(x-a)^1} + \ldots + \frac{A_m}{(x-a)^m}$	potências
2º grau sem raízes	$(x-a)^2 + b^2$	$\frac{Ax+B}{(x-a)^2+b^2}$	ln + arctan

Primitivação por Substituição

•
$$\int f(x) dx = \left(\int f(u(t)) u'(t) dt \right)_{t=u^{-1}(x)}$$

- 1. Substituir x por u(t).
- 2. Multiplicar por $u'(t) = \frac{dx}{dt}$.
- 3. Primitivar.
- 4. Substituir t por x.