### Lagrangian Duality in 10 Minutes

David S. Rosenberg

New York University

February 13, 2018

#### Contents

- A General Optimization Problem
- 2 Lagrangian Duality
- Convex Optimization
- Consequences of Strong Duality



## General Optimization Problem: Standard Form

#### Inequality Constrained Optimization Problem: Standard Form

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0, i = 1,..., m$ 

where  $x \in \mathbb{R}^n$  are the optimization variables and  $f_0$  is the objective function.

- No assumptions on functions  $f_0, \ldots, f_m$ .
  - (In particular no convexity assumptions.)

#### The Primal and the Dual

• For any **primal form** optimization problem,

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$ ,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize 
$$g(\lambda)$$
  
subject to  $\lambda_i \ge 0, i = 1, ..., m$ ,

where  $\lambda = (\lambda_1, \dots, \lambda_m)$  are called **Lagrange multipliers** or **dual variables**.

In this formulation, g may take the value  $-\infty$ . Can get rid of this with additional constraints.

## The Dual is Always a Convex Problem

- For any primal problem (convex or not), g is a concave function.
- Thus the dual is a concave maximization problem:

maximize 
$$g(\lambda)$$
  
subject to  $\lambda_i \ge 0, i = 1, ..., m$ .

- Switch sign of g and change max  $\mapsto$  min to get a convex optimization problem.
- Because of the trivial equivalence to a convex optimization problem, concave maximization problems are also typically considered convex optimization problems.
- Can the dual problem help us solve the primal problem?

Lagrangian Duality

# Primal and Dual Optimal Points (Definitions)

#### Primal problem

#### Dual problem

```
minimize f_0(x) maximize g(\lambda)
subject to f_i(x) \le 0, i = 1, ..., m, subject to \lambda_i \ge 0, i = 1, ..., m,
```

- The **primal optimal value** is  $p^* = \inf\{f_0(x) \mid x \text{ satisfies all constraints}\}.$
- $x^*$  is an **primal optimal point** if  $x^*$  is feasible and  $f(x^*) = p^*$ .
- The dual optimal value is  $d^* = \sup\{g(\lambda) \mid \lambda_i \geqslant 0, i = 1, ..., m\}$ .
- $\lambda^*$  is a dual optimal point if  $\lambda_i^* \ge 0$ , i = 1, ..., m and  $g(\lambda^*) = d^*$ .
  - $\lambda_i^*$ 's are also called **optimal Lagrange multipliers**.

### Weak Duality

- For any optimization problem, we have  $p^* \ge d^*$ .
- This is called weak duality.

### Weak Duality - Illustrated



We always have weak duality:  $p^* \geqslant d^*$ .

Plot courtesy of Brett Bernstein.

### Strong Duality

- For some problems, we have strong duality:  $p^* = d^*$ .
- For *convex* problems, **strong duality** is fairly typical.

## Strong Duality - Illustrated



Under certain conditions, we have **strong duality**:  $p^* = d^*$ .

Plot courtesy of Brett Bernstein.

#### From Dual Solution to Primal?

- Suppose  $\lambda^*$  is the dual optimal solution.
- Does this help us find  $x^*$ , the primal optimal solution?
- In general, it may not be easy to go from  $\lambda^*$  to  $x^*$ .
- It depends on the form of the primal problem.
- For SVMs, we'll see that it's easy to go from dual to primal solution.

## Convex Optimization

### Convex Optimization Problem: Standard Form

#### Convex Optimization Problem: Standard Form

minimize 
$$f_0(x)$$

subject to 
$$f_i(x) \leq 0, i = 1, ..., m$$

where  $f_0, \ldots, f_m$  are convex functions.

## Slater's Constraint Qualifications for Strong Duality

- For a convex optimization problem over domain  $R^n$ ,
- a sufficient condition for strong duality is

$$\exists x \in \mathbb{R}^d$$
 such that  $f_i(x) < 0$  for  $i = 1, ..., m$ .

• Such an x is called a **strictly feasible** point.

# Consequences of Strong Duality

## Complementary Slackness

- If we have strong duality, we get an interesting relationship between
  - ullet the optimal Lagrange multiplier  $\lambda_i^*$  and
  - the *i*th constraint at the optimum:  $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

• Implies that at optimum, at least one of the following is satisfied:

$$\lambda_i^* = 0$$
 $f_i(x^*) = 0$  (constraint is "active")