3. MÉTODO DE LA POTENCIA Y SUS RELATIVOS

Una referencia es: [Sauer, Capítulo 12].

Definicion 4. Sea $A \in \mathbb{C}^{n \times n}$ una matriz con eigenvalores ordenados de la manera

$$|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$$
.

Cuando $|\lambda_1| > |\lambda_2|$, decimos que λ_1 es el eigenvalor dominante de A. En este caso, al eigenvector asociado, \mathbf{v}_1 , se le llama eigenvector dominante y al par $(\lambda_1, \mathbf{v}_1)$ eigenpar dominante.

Bonito: Si A tiene un eigenvalor dominante, entonces podemos aproximar la pareja $(\lambda_1, \boldsymbol{v}_1)$ por el Método de la Potencia.

3.1. Teoría. La idea del método es tomar un vector $q \in \mathbb{C}^n$ (casi cualquiera) y formar la secuencia

$$\boldsymbol{q}, A\boldsymbol{q}, A^2\boldsymbol{q}, A^3\boldsymbol{q}, \ldots,$$

que convergirá a la dirección del eigenvector dominante. Después veremos como obtener el eigenvalor asociado.

Ejemplo 2 (La idea geométrica del método).

Dado
$$A = \begin{pmatrix} 2 & \cdot \\ \cdot & 1 \end{pmatrix}$$
 y $\mathbf{q} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ dibuje $\mathbf{q}, A\mathbf{q}, A^2\mathbf{q}, A^3\mathbf{q}$.

Nota. El cálculo de A^i es "costoso", pero nunca es requerido, puesto que $A^{i+1} \boldsymbol{q} = A(A^i \boldsymbol{q}).$

Teorema 4. Sea $A \in \mathbb{C}^{n \times n}$ una matriz semisimple. Si A tiene un eigenpar dominante $(\lambda_1, \mathbf{v}_1)$, entonces la secuencia de vectores

(1)
$$q^{i+1} := \frac{1}{\lambda_1} A q^i, \quad q^0 := q$$

tiende al vector $c_1 \mathbf{v}_1$ cuando $i \to \infty$ y $\mathbf{q} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$ con $c_1 \neq 0$.

Demostración.

Ejercicio 1. Considere la última igualdad de la secuencia $\mathbf{q}^i = A^i \mathbf{q}/\lambda_1^i$ y muestre que $\exists C > 0$ tal que

$$\|\boldsymbol{q}^i - c_1 \boldsymbol{v}_1\| \le C \left| \frac{\lambda_2}{\lambda_1} \right|^i \quad \text{con} \quad i = 2, 3, \dots$$

y por lo tanto $q^i \to c_1 v_1$.

Definicion 5. Decimos que una secuencia $\{x^i\}_i$ convergente a x^* , es linealmente convergente si existe $r \in (0,1)$ tal que

$$\lim_{i \to \infty} \frac{\left\| x^{i+1} - x^\star \right\|}{\left\| x^i - x^\star \right\|} = r$$

donde r es el radio de convergencia.

Ejercicio 2. Muestre que bajo la hipotesis $|\lambda_1| > |\lambda_2| > |\lambda_3|$, $c_1 \neq 0$, $c_2 \neq 0$, la secuencia $\mathbf{q}^i = A^i \mathbf{q}/\lambda_1^i$ converge linealmente hacia $c_1 \mathbf{v}_1$ con el radio de convergencia $r = |\lambda_2/\lambda_1|$.