

Statistics and sampling Distributions

Statistics are the numerical descriptive measures that you calculate from the random sample of a population (eg. sample mean, sample variance)

these staticstics can vary or change for each different random sample \Rightarrow they are random variables the probability distribution of these statistics, of this random variable, is called sampling distributions

The sampling distribution of a statistic is the probability distribution for the possible values of the statistic that results when random samples of size n are repeatedly drawn from the population.

=relative frequency

histogram size→o

> 1 mathematically · 3 ways of finding sampling distribution probability

3 Use statistical theorem (2) Simulation

calca lot of Stats from a

lof of samples and plof the

relative frequency his togram

bellower's importance

The central limit theorem by v. imp

+ Sample mean

it is a statistical theorem that describes the sampling distribution of statistics that are sums or averages

distribution of statistics that are sums or averages

theorem:

sums and means of random samples of measurements

drown from a population tend to have an approxi
matchy normal distribution

as n increases, the distribution of it becomes more and more normal + skew decreases

The CLT can be restated to apply to the Jumof

The CLT can be restated to apply to the Jumof sample measurements $\Sigma x_i \rightarrow$ as n becomes large has an approximately normal distribution with mean $n\mu$ and standard deviation $\sigma T n$.

to apply to the mean of sample measurements \overline{x}_i , as $n \rightarrow large$, has an approximately normal distribution with mean μ and standard deviation $\sigma T n$.

WHEN TO USE CLT if sampled population is normal, sampling distribution of \overline{x} will be normal \forall n

if sampled population is approximately symmetric, (LT holds for relatively small n

if sampled pollution is skewed, for n = 30, 2 will be approximately normal

Standard from of sample Mean Standard deviation of a statistic = standard error of

the utimator (SE) : standard deviation of $\bar{x} - \frac{\sigma}{\sqrt{n}}$

= standard error of the mean $(SE(\bar{z}) SEM)$

finding probabilities for the sample mean it assuming \(\overline{\pi}\) \approx normal $\begin{array}{ccc}
(1) & \mu, \bar{\chi}, \sigma & \leftarrow \text{calc} \\
& SE(\bar{\chi}) = \underline{\sigma} & \leftarrow \text{calc} \\
& \overline{\sqrt{n}}
\end{array}$

(2) calc z value $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$

use normal table to compute the probability of \tilde{x}

note: population mean should be the peak of the mean and sample means normal distribution the normal dut of greater the n (sample size), less the deviation for mean: $\sigma_{\bar{s}} = \sigma$

np > 10, n(1-p) > 10 then normal

Properties of sampling distribution of sample proportion binomial population: SUCESS or
facture
's parameter 'p'
p: probability of success for
whole population no of trials. prob success in sample sd = 0 = spq } of random variable Y = { a b 5 MC (CCS) Pailure when plotting sampling distribution of p mean = $\frac{\rho}{SFM}$ because its of $\frac{\rho}{N}$ sd = $\frac{sd sample}{N}$ no of samples / observations 2/N

can be approximated for np > 5 AND ng > 5 calculate probabilities for \hat{p} the same way.

8.

Point Estimation

point estimator -> a statistic used to estimate the value (pe) of an unknown parameter of a population

practically, we can have many pe's ← how to pick best?

characteristics of pe.

Descripting dist of pe should be cuntered over true value of parameter (pe - pp)

should be unbiased

2 variance of pe's sampling dist should be as small as

possible

(3) error of estimation: difference blw an estimate of the parameter measured in SE of estimators sampling of other parameter of error = 95% margin of error = practical

margin of error = 95% margin of error = practical upper bound for error of estimation.

interval estimation interval estimator: rule for calculating 2 numbers (a1b)

which contains the parameter of

interest might constructing a confidence interval for a sampling distribution of a point estimator · 95% ~ PE + 1.96 SE variable center confidence units for confidence coeff (1-d) pe ± Z_{a/2} (SE) of estimator
a upper and lower confidence limits random

guantities use s if we don't > 5 \\

good interval is as narrow as possible; we large (1-\alpha)

but increasing confidence wie increasing width can only happen by changing sample size n

for population proportion p, \hat{p} = sample proportion is the best estimation $\hat{p} \pm Z_{\alpha/2} \left(\begin{array}{c} pq \\ n \end{array} \right) \qquad \text{assuming np>5 lng>5} \\ \text{s independent, p constant}$

Z Zipi population mean : µ = population sd: o theres NCn possible samples sample size: n population size: N CLT applies to random variable x; $n\mu$, σsin = sum of x_i (which is also a random var) μ , σsin = mean : $\Sigma x_i p_i$ (— ii —) pop normal \Rightarrow sampling dist normal $\forall n$ pop approx symmetric \Rightarrow for small n pop is skewed $\Rightarrow n > 30$. standard error = standard diviation of a satistic = SEM SE (mean) = = mean: μ $SE(mean) = \frac{6}{\sqrt{n}}$ SE(sum) = o.sn mean: nyu calculating probabilities: very simple - you know what standard error for sampling proportion

Standard error for sampling proportion $\mu = \rho , \quad \nabla = \sqrt{\frac{pq}{n}} \quad \rho = \text{population proportion}$ $n\rho > 5, nq > 5 \quad \text{can apply (LT less than 5 success } \text{right less than 5 failure} \rightarrow \text{left at least 5 s+f} \rightarrow \text{normal neither} \rightarrow \text{uniform}$

mean:
$$\overline{\chi} \pm 2\alpha/2 \left(\frac{\sigma}{\sqrt{n}}\right)$$
 can be s

population parameter estimation:

proportion:
$$\hat{p}$$
 1 Z_{AB} $\left(\begin{array}{c} \hat{p}\hat{q} \\ n \end{array} \right)$

other key points
$$E(\chi^2) = \mu_{\chi^2}$$

$$E(\chi^2) =$$

$$var(2\chi_1)$$

$$E(\chi^2) = \mu_{\chi^2}$$

$$var(2\chi_1) = \Sigma(1)$$

$$E(\chi^{2}) = \mu_{\chi^{2}} + \sigma_{\chi^{2}}$$

$$var(2\chi_{i}) = E(var(\chi_{i})) \qquad var(sum of \chi_{i}) = n \cdot \sigma^{2}$$

$$\mu_{\chi^2} + \tau_{\chi}$$
- $\Sigma(var(\chi$

:. sd = \(\sigma\). \(\sigma\)

some sums

pq30 ()
$$\mu = 8$$
 pop mean 0.09 $\sigma = 4$ pop Sd $\pi = 30$ sample Size π enough to approx π it is skewed.

Therefore any duration.

mid = 8

SEM = $4\sqrt{130}$ < 1.

mid = 8
SEN =
$$4\sqrt{30}$$
 < 1.
M (esson 2) μ = 210 3. μ = 60

p=0.6 == \langle 0.6 \times 0.4 = \langle 0.24

 $Sd: \mu \hat{\rho} = 0.6$ $\sigma \hat{\rho} = 0.24 = 0.022$

P9 12 7.10 N = 500

mid = D
SEM =
$$4\sqrt{30}$$
 < 1.
A lesson 21. μ = 210 3. μ = 60
2. μ = 30

A lesson 21.
$$\mu = 210$$

2. $\mu = 30$
 $\sigma = 1.5$
 $h = 3$

3. $\mu = 60$
 $n = 36$
 $0.5/6 =$

lesson 2 ·
$$\mu = 210$$
 3. $\mu = 60$
2 · $\mu = 30$ $\sigma = 0.5$
 $\sigma = 1.5$ $n = 36$
 $h = 3$ $0.5/6 =$
mean : $\mu = 30$

$$3. \mu = 60$$

2. $\mu = 30$
 $\sigma = 0.5$
 $h = 3$
 $0.5/6 = 1.5/\sqrt{3}$