BASICS OF DIFFERENTIAL GEOMETRY 2

Notes of BIMSA course

Misuzu/Yuxuan Liu

February 20, 2025

${\tt CONTENTS}$

Contents

1	Pri	Principle Bundles		
	1.1	Lie Groups	3	
	1 2	Definition of Principle Bundles	8	

Introduction

Last semester:

- Geometry of vector bundles
- Basic Riemannian geometry
- Differential operators on manifolds

We will learn this semester:

- Theory of principle bundles
- characteristic classes
- Basics of complex manifold, Kähler manifold, symplectic manifold.

History of principle bundles

Early Topology and the Hopf Fibration (1930s)

Key Figure: Heinz Hopf

Example: The **Hopf fibration** $S^3 \to S^2$, discovered in 1931, was the first non-trivial principal bundle (with structure group U(1)). It demonstrated that S^3 is not merely $S^2 \times S^1$, but a twisted space where the U(1)-action encodes global topological complexity. This revealed the existence of higher homotopy groups (e.g., $\pi_3(S^2) \neq 0$), challenging the notion that spheres are "simple" and inspiring the study of fiber bundles in algebraic topology.

Differential Geometry and Chern Classes (1940s)

Key Figure: Shiing-Shen Chern

Example: Chern's work on characteristic classes linked principal bundles to global geometry. For a U(n)-principal bundle (associated with complex vector bundles), Chern classes were constructed via curvature forms, solving problems like the generalized Gauss-Bonnet theorem. These invariants measure the "twisting" of bundles, showing how local differential geometry (connections) relates to global topology.

Ehresmann Connections and Formalization (1950s)

Key Figure: Charles Ehresmann

Example: Ehresmann formalized connections on principal bundles, generalizing Levi-Civita connections. An Ehresmann connection splits the tangent bundle of the total space into vertical and horizontal subspaces, enabling parallel transport. For instance, the frame bundle (a $GL(n,\mathbb{R})$ -principal bundle) uses connections to define covariant derivatives on associated vector bundles, unifying Cartan's moving frames with modern differential geometry.

Gauge Theory and Physics (1950s–1970s)

Key Figure: Chen-Ning Yang, Robert Mills

Example: Yang-Mills theory (1954) framed gauge fields as connections on principal bundles with structure groups like SU(2). For example, the SU(2)-bundle over spacetime describes non-Abelian gauge fields, where curvature corresponds to the field strength. This tied principal bundles to quantum field theory, later influencing the Standard Model and the unification of forces.

Modern Developments: Topology and Analysis (1960s–Present)

Key Figures: Michael Atiyah, Isadore Singer

Example: The **Atiyah-Singer Index Theorem** (1963) linked analytic data (e.g., Dirac operators) to topological invariants (e.g., Chern classes) on principal bundles. For a spin structure (a Spin(n)-principal bundle), the theorem relates the index of the Dirac operator to the A-hat genus, showcasing how principal bundles bridge analysis and topology.

Legacy and Impact

- Classification: Steenrod's work on classifying spaces (e.g., BG for structure group G) showed that principal bundles are classified by homotopy classes of maps to BG.
- Reduction of Structure Groups: Cartan's idea of reducing GL(n)-bundles to O(n)-bundles (for Riemannian metrics) exemplifies how symmetry groups encode geometric structures.
- Mathematical Physics: Principal bundles underpin string theory (e.g., Calabi-Yau SU(3)-bundles) and quantum gravity (e.g., connections in loop quantum gravity).

1 Principle Bundles

In this section, we introduce the connections of principle bundles, it's closely related to the connections of vector bundles.

1.1 Lie Groups

Definition 1.1. Let G be a smooth manifold. G is a Lie group if G is a group s.t. multiplication and inverse are smooth.

Let G be a Lie group, $g \in G$, we denote:

- $L_q: G \to G, h \mapsto gh$ (left translation)
- $R_q: G \to G, h \mapsto hg$ (right translation)
- $\mathfrak{X}^L(G) = \{X \in \mathfrak{X}(G) \mid \forall g \in G, (L_g)_*X = X\}$ (left invariant vector fields)

For $X \in \mathfrak{X}^L(G)$, $L_{g*}X = X$ means that X is L_g -related to X. Then for $\forall X, Y \in \mathfrak{X}^L(G)$, $L_{g*}([X,Y]) = [L_{g*}X, L_{g*}Y] = [X,Y]$, so $\mathfrak{X}^L(G)$ is closed under $[\cdot, \cdot]$

Definition 1.2. Set $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Given a \mathbb{K} -vector space \mathfrak{g} and a bilinear map $[\cdot,\cdot]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, we say \mathfrak{g} is a Lie algebra if:

- $(1) \ \forall X, Y \in \mathfrak{g}, [X, Y] = -[Y, X]$
- (2) $\forall X, Y, Z \in \mathfrak{g}, [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$
- $[\cdot,\cdot]$ is called Lie bracket.

So by definition we have $(\mathfrak{X}^L(G), [\cdot, \cdot])$ is a Lie algebra.

Definition 1.3. For Lie algebra $\mathfrak{g}, \mathfrak{h}$, a linear map $f : \mathfrak{g} \to \mathfrak{h}$ is called the Lie algebra homomorphism if: $\forall X, Y \in \mathfrak{g}, f([X,Y]) = [f(X), f(Y)]$

If f is in addition an isomorphism, then f is called a Lie algebra isomorphism.

Let $e \in G$ be the unit of G. Set $\iota : \mathfrak{X}^L(G) \to T_eG$, $X \mapsto X_e$. Then ι is a linear isomorphism. Let $\mathfrak{g} = T_eG$, so we can define the Lie bracket on \mathfrak{g} s.t. ι is a Lie algebra isomorphism, i.e. setting $X^{\sharp} = \iota^{-1}(X)$, $[X,Y] = [X^{\sharp},Y^{\sharp}]_e$. Note that $X_g^{\sharp} = (L_g)_{*e}X$, $g \in G$.

Definition 1.4. Let G be Lie group, $\mathfrak{g} = T_e G$ with $[\cdot, \cdot]$ is called the Lie algebra of G. $(\mathfrak{X}^L(G), [\cdot, \cdot])$ is also called the Lie algebra of G)

Definition 1.5. Let G, H be Lie groups. A map $\rho : G \to H$ is a Lie group homomorphism if ρ is a smooth map and a group homomorphism. For the special

case $(\mathbb{R},+) \to G$, $t \mapsto g_t$, $\{g_t\}_{t \in \mathbb{R}}$ is called one parameter subgroup of G.

Proposition 1.1. Let G be Lie group and \mathfrak{g} its Lie algebra. Then

- (1) $\forall X \in \mathfrak{g}, X^{\sharp} = \iota^{-1}(X)$ is complete, i.e. X^{\sharp} generates a flow $\{\varphi_t\}_{t \in \mathbb{R}}$.
- (2) Set $\exp_G(tX) = \varphi_t(e) \in G$. Then $\varphi_t = R_{\exp_G(tX)}$.
- (3) For $\overline{s,t\in\mathbb{R},\,\exp_G(sX)}\exp_G(tX)=\exp_G\left((s+t)\,X\right)$, i.e. $\{\exp_G(tX)\}_{t\in\mathbb{R}}$ is one parameter subgroup of G.
 - (4) $\mathfrak{g} \to \{\text{one parameter subgroup of } G\}, X \mapsto \{\exp_G(tX)\}_{t \in \mathbb{R}} \text{ is bijective.}$

Proof. (1) By ODE theory, $\exists \epsilon > 0, \ \gamma_e : (-\epsilon, \epsilon) \to G \text{ s.t. } \gamma_e(0) = e, \frac{d\gamma_e}{dt} = X_{\gamma_e(t)}^{\sharp}.$

Claim 1. $\forall g \in G$, define $\gamma_g : (-\epsilon, \epsilon) \to G$, $t \mapsto g\gamma_e(t)$ is the integral curve of X^{\sharp} with $\gamma_g(0) = g$.

Indeed, $\forall t \in (-\epsilon, \epsilon), \frac{d\gamma_g}{dt}(t) = (L_g)_{*\gamma_e(t)} \frac{d\gamma_e}{dt}(t) = X_{g \cdot \gamma_e(t)}^{\sharp}.$

Claim 2. $\gamma_e: (-\epsilon, \epsilon) \to G$ can be extended to integral curve $\gamma_e: \mathbb{R} \to G$ of X^{\sharp} with $\gamma_e(0) = e$.

Set $\varphi_t = R_{\gamma_e(t)}$, then $\{\varphi_t\}_{t \in \mathbb{R}}$ is the flow generated by X^{\sharp} . So the following are easy.

By this proposition, we can define the exponential map $\exp_G : \mathfrak{g} \to G$.

Proposition 1.2. Let G, H be Lie groups with Lie algebra $\mathfrak{g}, \mathfrak{h}$. If $f: G \to H$ is Lie group homomorphism, then $f_{*e}: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. We only need to show that X^{\sharp} and $(f_{*e}X)^{\sharp}$ are f-related. Since $X = \frac{d}{dt} \exp_G(tX)|_{t=0}$, we have $f_{*g}(X_g^{\sharp}) = \frac{d}{dt} f\left(g \cdot \exp_G(tX)\right)|_{t=0} = \frac{d}{dt} f(g) f\left(\exp_G(tX)\right)|_{t=0} = \left(L_{f(g)}\right)_{*e} (f_{*e}X) = (f_{*e}X)_{f(g)}^{\sharp}$.

Example 1.1. Let V be a \mathbb{R} -vector space, G = GL(V), \mathfrak{g} Lie algebra of G. Then $\mathfrak{g} = End(V)$, the bracket is given as follows:

Proposition 1.3. $\forall X, Y \in End(V), [X, Y] = XY - YX.$

Proof. For $X \in End(V)$, set matrix exponential $e^{tX} = \sum_{k=0}^{\infty} \frac{(tX)^k}{k!}$. Then $\{e_{tX}\}_{t \in \mathbb{R}}$ is a one parameter subgroup of G and $\frac{d}{dt}e^{tX}|_{t=0} = X$. So $\exp_G(tX) = e^{tX}$.

Then
$$[X,Y] = [X^{\sharp},Y^{\sharp}]_e = \left(\mathcal{L}_{X^{\sharp}}Y^{\sharp}\right)_e = \frac{d}{dt}\left(\varphi_{-t}\right)_{*e^{tX}}\left(Y_{e^{tX}}^{\sharp}\right)|_{t=0} = \frac{d}{dt}\frac{d}{ds}\varphi_{-t}\left(e^{tX}e^{sY}\right)|_{s=t=0} = XY - YX.$$

Example 1.2. Set

- $O(n) = \{g \in GL(n; \mathbb{R}) \mid g^t g = E_n\}$ (orthogonal group)
- $SO(n) = \{g \in O(n) \mid \det g = 1\}$ (special orthogonal group)

we can check that O(n), SO(n) are Lie subgroups of $GL(n; \mathbb{R})$.

SO(n) is the unit component of O(n), so $\mathfrak{o}(n) = \mathfrak{so}(n)$ (Lie algebra of O(n)) and SO(n)). This is a Lie subalgebra of $End(\mathbb{R}^n)$ given by

$$\mathfrak{o}(n) = \mathfrak{so}(n) = \{ X \in End(\mathbb{R}^n) \mid X^t + X = O_n \}$$

where O_n is the zero matrix of size n.

Similarly, set

- $U(n) = \{g \in GL(n; \mathbb{C}) \mid g^*g = E_n\}$ (unitary group) where $g^* = \overline{g^t}$
- $SU(n) = \{g \in U(n) \mid \det g = 1\}$ (special unitary group)

We can check that

- U(n), SU(n) are Lie subgroups of $GL(n; \mathbb{C})$
- $\mathfrak{u}(n) = \{X \in End(\mathbb{C}^n) \mid X^* + X = O\}$ (Lie algebra of U(n))
- $\mathfrak{su}(n) = \{X \in End(\mathbb{C}^n) \mid X^* + X = O, \operatorname{tr} X = 0\}$ (Lie algebra of SU(n))

Note. A Lie subgroup H of G is a Lie group s.t.

- \bullet *H* is a subset of *G*
- ullet inclusion map $H\hookrightarrow G$ is an embedding and group homomorphism

Fact. A closed subgroup of G is a Lie subgroup of G.

Definition 1.6. Let V be a \mathbb{K} -vector space, G a Lie group. A Lie group homomorphism $\rho: G \to GL(V)$ is called a representation of V. The Lie algebra homomorphism $\rho_{*e}: \mathfrak{g} \to End(V)$ is called a differential representation.

Example 1.3. Let G be a Lie group, $\mathfrak g$ its Lie algebra. $\forall g \in G$, define a homomorphism

$$F_g: G \to G, \ h \mapsto ghg^{-1}$$

Note that $F_g \circ F_{g'} = F_{gg'}$. This induces a Lie algebra homomorphism $(F_g)_{*e}$: $\mathfrak{g} \to \mathfrak{g}$ which satisfies $(F_g)_{*e} \circ (F_{g'})_{*e} = (F_{gg'})_{*e}$. So we obtain a representation

$$Ad: G \to GL(\mathfrak{g}), \ g \mapsto (F_q)_{*e}$$

called adjoint representation of G. The differential representation $ad: \mathfrak{g} \to End(\mathfrak{g})$ of Ad is given as follows.

Proposition 1.4. $\forall X, Y \in \mathfrak{g}, ad(X)(Y) = [X, Y].$

Proof. Note that $F_g = R_{g^{-1}} \circ L_g$. Then

$$ad(X)(Y) = \frac{d}{dt} Ad(\exp_G(tX))(Y)|_{t=0} = \frac{d}{dt} \left(R_{\exp_G(-tX)} \right)_{* \exp_G(tX)} \left(L_{\exp_G(tX)} \right)_{*e} (Y)|_{t=0} = [X^{\sharp}, Y^{\sharp}]_e = [X, Y].$$

Recall that there is a exponential map in Riemannian geometry. The Riemannian exp and the Lie group exp are related as follows.

Definition 1.7. A Riemannian metric $\langle \cdot, \cdot \rangle$ on a Lie group G is said to be bi-invariant if $\forall g, h \in G$, $L_q^* R_h^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$.

Theorem 1.1. Let G be a Lie group with a bi-invariant metric $\langle \cdot, \cdot \rangle$. Then $\exp_e = \exp_G$.

To show this we describe the Levi-Civita connection ∇ of $\langle \cdot, \cdot \rangle$.

Lemma 1.1.
$$\forall X, Y \in \mathfrak{g}, \nabla_{X^{\sharp}}Y^{\sharp} = \frac{1}{2}[X,Y]^{\sharp}.$$

Proof. By Koszul formula, we have

$$\langle \nabla_{X^{\sharp}} Y^{\sharp}, Z^{\sharp} \rangle = \frac{1}{2} \left(X^{\sharp} \langle Y^{\sharp}, Z^{\sharp} \rangle + Y^{\sharp} \langle Z^{\sharp}, X^{\sharp} \rangle - Z^{\sharp} \langle X^{\sharp}, Y^{\sharp} \rangle - \langle Y^{\sharp}, [X^{\sharp}, Z^{\sharp}] \rangle - \langle Z^{\sharp}, [Y^{\sharp}, X^{\sharp}] \rangle + \langle X^{\sharp}, [Z^{\sharp}, Y^{\sharp}] \rangle \right)$$

Since for $\forall g \in G$, $X_g^{\sharp} = \frac{d}{dt} g \cdot \exp_G(tX) \mid_{t=0}$, we have

$$X^{\sharp}\langle Y^{\sharp}, Z^{\sharp}\rangle = \frac{d}{dt}\langle Y_{g \cdot \exp_G(tX)}^{\sharp}, Z_{g \cdot \exp_G(tX)}^{\sharp}\rangle_{g \cdot \exp_G(tX)} \mid_{t=0} = \frac{d}{dt}\langle Y, Z \rangle_e \mid_{t=0} = 0$$

Since $\langle \cdot, \cdot \rangle$ is bi-invariant,

$$L_g^*R_{g^{-1}}^*\langle\cdot,\cdot\rangle_e = \langle\cdot,\cdot\rangle_e \text{ for } \forall g \in G \iff \langle Ad(g)(\cdot),Ad(g)(\cdot)\rangle_e = \langle\cdot,\cdot\rangle_e$$

Setting $g = \exp_G(tZ)$ and $\frac{d}{dt}|_{t=0}$, we have $\langle ad(Z)(\cdot), \cdot \rangle_e + \langle \cdot, ad(Z)(\cdot) \rangle_e = 0$, which shows that $\langle Y^{\sharp}, [X^{\sharp}, Z^{\sharp}] \rangle + \langle X^{\sharp}, [Z^{\sharp}, Y^{\sharp}] \rangle = 0$, so we have $\nabla_{X^{\sharp}} Y^{\sharp} = \frac{1}{2} [X, Y]^{\sharp}$.

The proof of the theorem completes once shown that $\exp_G(tX)$ is geodesic, which is left as an exercise.

Exercise 1.1. Prove the theorem.

Remark 1.1. Existence/uniqueness of bi-invariant metrics? Some facts from representation theory are needed, the argument here is not used after this remark.

Existence When G is compact, \exists bi-invariant metric using "averaging trick".

- We first define Ad-invariant inner product on \mathfrak{g} .
- Then extend it to the whole G by pulling back L_q .

Note: \exists bi-invariant on $G \iff \exists Ad$ -invariant inner product on \mathfrak{g} .

 (\Rightarrow) Trivial.

(\Leftarrow) Given Ad-invariant inner product on \mathfrak{g} , we can extend it to left-invariant metric on G, this is also right-invariant by pullback of $R_h = R_h \circ L_{h^{-1}} \circ L_h = Ad(h^{-1}) \circ L_h$

Uniqueness When G is abelian, then $L_g = R_g$, so \exists many bi-invariant metrics on G (Any inner product on \mathfrak{g} induces left-invariant metric on \mathfrak{g} , by the note above it is bi-invariant). Suppose that \exists Ad-invariant inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} . By $\langle \cdot, \cdot \rangle$, we have an irreducible decomposition of (\mathfrak{g}, Ad) : $\mathfrak{g} = \mathfrak{g}_1^{\oplus n_1} \oplus \cdots \oplus \mathfrak{g}_r^{\oplus n_r}$, where \mathfrak{g}_i is irreducible representation of G and $\mathfrak{g}_i \neq \mathfrak{g}_j$ for $i \neq j$. Then

$$\dim \left\{ Ad\text{-invariant symmetric bilinear map } \mathfrak{g} \times \mathfrak{g} \to \mathbb{R} \right\} = \sum_{i=1}^r n_i^2$$

To see this, take $T \in \{Ad\text{-invariant symmetric bilinear map }\}$ and use Schur's lemma to

$$T_{ij}: \mathfrak{g}_i \hookrightarrow \mathfrak{g} \xrightarrow{x \mapsto T(x,\cdot)} \mathfrak{g}^* \stackrel{\langle \cdot, \cdot \rangle}{\cong} \mathfrak{g} \xrightarrow{proj.} \mathfrak{g}_j$$

Then $T_{ij} = \begin{cases} 0 & (i \neq j) \\ c \cdot id & (i = j) \text{ for } \exists c \in \mathbb{R} \end{cases}$, so uniqueness up to scalar multiplication holds only when r = 1, n = 1, i.e. (\mathfrak{g}, Ad) is irreducible $\iff G$ is simple Lie group.

Definition 1.8. Let M be smooth manifold, G be Lie group with unit e. A smooth map

$$A: M \times G \to M, (x,g) \mapsto xg$$

is called the right action of G on M if

- (1) $\forall x \in M, xe = x$
- (2) $\forall x \in M, \forall g, g \in G, (xg)h = x(gh)$

We write the right action as M
subseteq G.

Definition 1.9. Suppose M
sigma G.

- (1) For $\forall g \in G$, set $R_g : M \to M$, $X \mapsto xg$ (right translation).
- (2) For $\forall X \in \mathfrak{g}$, define the fundamental vector field $X^{\sharp} \in \mathfrak{X}(M)$ by $X_x^{\sharp} = \frac{d}{dt}x \cdot \exp_G(tX)|_{t=0} = dA(x,\cdot)_e(X)$.

Here the notation X^{\sharp} is the same as the left-invariant vector field on Lie group, we'll show that they have the same property:

Remark 1.2. (1) $\forall g \in G, \forall X \in \mathfrak{g}, (R_g)_* X^{\sharp} = (Ad(g^{-1})X)^{\sharp}.$ (2) $\forall X, Y \in \mathfrak{g}, [X^{\sharp}, Y^{\sharp}] = [X, Y]^{\sharp}.$

 $\begin{array}{lll} \textit{Proof.} \ (1) \ \forall x \in M, \ \left((R_g)_* X^\sharp\right)_x = (R_g)_* X_{xg^{-1}}^\sharp = \frac{d}{dt} x g^{-1} \exp_G(tX) g \mid_{t=0}. & \text{Since } \left\{g^{-1} \exp_G(tX) g\right\}_{t \in \mathbb{R}} \ \text{is a one parameter subgroup of } G \ \text{with } \frac{d}{dt} g^{-1} \exp_G(tX) g \mid_{t=0}=A d(g^{-1}) X, \ \text{then } g^{-1} \exp_G(tX) g = \exp_G(tA d(g^{-1}) X), \ \text{which gives } (1). \end{array}$

(2) By definition, $\{\varphi_t = R_{\exp_G(tX)}\}_{t \in \mathbb{R}}$ is flow of X^{\sharp} . So

$$[X^{\sharp},Y^{\sharp}] = \frac{d}{dt} \left(\varphi_{-t}\right)_{*} Y^{\sharp} \mid_{t=0} = \frac{d}{dt} \left(Ad\left(\exp_{G}(tX)\right)Y\right)^{\sharp} \mid_{t=0} = \left(ad(X)(Y)\right)^{\sharp} = [X,Y]^{\sharp}.$$

Remark 1.3. We can define the left action

$$A^L: G \times M \to M, \ (g,x) \mapsto gx$$

and also the fundamental vector field $X_L^\sharp \in \mathfrak{X}(M)$. The left and right actions are essentially the same, since the right action is given form the left action. Indeed, given A^L above, define A by $A(x,g) = A^L(g^{-1},x) = g^{-1}x$, then $X_L^\sharp = -X^\sharp$ for $X \in \mathfrak{g}$. $[X_L^\sharp, Y_L^\sharp] = [X, Y]^\sharp = -[X, Y]_L^\sharp$.

Definition 1.10. Suppose M
sigma G.

- (1) For $p \in M$, define $G_p = \{g \in G \mid pg = p\}$ (isotropy subgroup at p).
- (2) The G action is free of $G_p = \{e\}$ for $\forall p \in M$.
- (3) The G action is effective if $\bigcap_{p \in M} G_p = \{e\}$. In other words, $G \to \text{Diff}(M)$ is injective.

1.2 Definition of Principle Bundles

Definition 1.11. Let P, M be smooth manifolds and G be Lie group. The map $\pi_P: P \to M$ is a principle G-bundle or principle bundle with structure group G if:

- (1) $P \curvearrowleft G$.
- (2) There exists an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of M and diffeomorphisms called local trivialization

$$\phi_{\alpha}: \pi_P^{-1}(U_{\alpha}) \xrightarrow{\cong} U_{\alpha} \times G$$

such that

- (2.1) Denoting by $p_1:U_{\alpha}\times G\to U_{\alpha]}$ the projection, then $\pi_P=p_1\circ\phi_{\alpha}$
- (2.2) The G-action preserves each $\pi_P^{-1}(U_\alpha)$. Denoting the right G-action

on $U_{\alpha} \times G$ by

$$(U_{\alpha} \times G) \times G \to U_{\alpha} \times G, \ ((x,h),g) \mapsto (x,h) \cdot g = (x,hg)$$

Then ϕ_{α} is G-equivalent, i.e. $\forall \xi \in \pi_P^{-1}(U_{\alpha}), \forall g \in G, \phi_{\alpha}(\xi g) = \phi_{\alpha}(\xi)g$. Note that the G-action is free.

We often write $P|_{U} = \pi_{P}^{-1}(U)$ for open subset $U \subseteq M$ and $P_{x} = \pi_{P}^{-1}(x)$ for $x \in M$, P_{x} is called the fiber of P at x.

Recall that $e \in G$ is the unit, define a section $p_{\alpha} \in \Gamma(P | U_{\alpha})$ on U_{α} : $\phi_{\alpha}(p_{\alpha}(x)) = (x, e)$, which is equivalent to $p_{\alpha}(x) = \phi_{\alpha}^{-1}(x, e)$. Define $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ by $p_{\alpha}(x)g_{\alpha\beta}(x) = p_{\beta}(x)$, $\{g_{\alpha\beta}\}_{\alpha\beta}$ is called the transition map of $\pi_P : P \to M$. Note that $\forall x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, we have $g_{\alpha\beta}(x)g_{\beta\gamma}(x) = g_{\alpha\gamma}(x)$. Conversely, given open covering $\{U_{\alpha}\}_{\alpha\in A}$ of M and transition maps, we can recover principle G-bundle $\pi_P : P \to M$.

As before, for $g \in G$, we can define $R_g : P \to P$ the right translation and the fundamental vector field X^{\sharp} generated by $X \in \mathfrak{g}$.

Definition 1.12. Let $\pi_P: P \to M$ be a principle G-bundle, $\rho: G \to GL(V)$ representation of G. Define the right G-action on $P \times V$ by

$$(P \times V) \times G \to P \times V, \ ((\xi, v), g) \mapsto (\xi g, \rho(g)^{-1}v)$$

 $P \times V = (P \times V) / G \text{ is called the associated vector bundle to } P.$ Set $\xi \times v$ the equivalence class of $(\xi, v) \in P \times V$. Set $E = P \times V$, $\pi_E : E \to M$, $\xi \times v \mapsto \pi_P(\xi)$. Then $\pi_E : E \to M$ is a vector bundle.

The local trivialization of E are induced from those of P:

$$\phi_{\alpha}^{E}: E \mid_{U_{\alpha}} \xrightarrow{\cong} U_{\alpha} \times V, \ p_{\alpha}(x) \underset{\rho}{\times} v \mapsto (x, v)$$

For $x \in U_{\alpha} \cap U_{\beta}$ and $v_{\beta} \in V$, $p_{\beta}(x) \underset{\rho}{\times} v_{\beta} = p_{\alpha}g_{\alpha\beta}(x) \underset{\rho}{\times} v_{\beta} = p_{\alpha}(x) \underset{\rho}{\times} \rho \left(g_{\alpha\beta}(x)\right) v_{\beta}$. The transition functions of E are given by $\{\rho(g_{\alpha\beta}) : U_{\alpha} \cap U_{\beta} \to GL(V)\}$.

We will explain some relations between P and E.

- First note that $\forall \xi \in P$, we have $\xi : V \xrightarrow{\cong} E_{\pi_P(\xi)}, v \mapsto \xi \underset{\rho}{\times} v$ is an isomorphism. For $\xi' \in P$ with $\xi' = \xi g$ for $g \in G$, we have $\xi^{-1} \left(\xi' \underset{\rho}{\times} v' \right) = \xi^{-1} \left(\xi \underset{\rho}{\times} \rho(g) v' \right) = \rho(g) v'$ for $v' \in V$.
- $\pi_P^* E$ is a trivial bundle. Indeed,

$$P \times V \xrightarrow[(\xi, v) \mapsto (\xi, \xi \times v)]{(\xi, e)} \pi_P^* E = \{(\xi, e) \in P \times E \mid \pi_P(\xi) = \pi_E(e)\} \text{ is isomorphism.}$$

• Next, for $s \in \Omega^q(E) = \Gamma(\Lambda^q T^*M \otimes E)$, define $\pi_P^* s \in \Omega^q(P; V)$ as follows (V-valued q-form on P)

- For
$$q = 0$$
, $(\pi_P^* s(\xi)) = \xi^{-1} (s(\pi_P(\xi)))$

- For
$$q > 1$$
, $\forall \alpha \in \Omega^q(M)$, $\forall s \in \Omega^0(E) = \Gamma(E)$,

$$\pi_P^* (\alpha \otimes s) = \pi_P^* \alpha \otimes \pi_P^* s$$

The left one is pullback and the right one is define above. In other words, $\forall \xi \in P, \forall v_1, \cdots, v_q \in T_{\xi}P$,

$$(\pi_{P}^{*}s)_{\xi}(v_{1},\cdots,v_{q})=\xi^{-1}(s_{\pi_{P}(\xi)}(\pi_{P*}(v_{1}),\cdots,\pi_{P*}(v_{q})))$$

Notation: denote $\Omega^q_B(P;V)$ to be the elements \widetilde{s} in $\Omega^q(P;V)$ satisfying:

$$- \ \forall X \in \mathfrak{g}, \ i(X^{\sharp})\widetilde{s} = 0.$$

$$- \forall g \in G, R_g^* \widetilde{s} = \rho(g)^{-1} \widetilde{s}.$$