LAWCG' 22 45

How to draw a K(n,2) Kneser graph?[†]

A. D. R. de Sousa^{1*} J. C. Carneiro¹ L. Faria¹ M. V. Pabon²

¹ UERJ ² Université Paris-13

Keywords: Kneser graph K(n,k), crossing number, 2-page crossing number

Take a 2-page drawing $D(K_{2\lceil\frac{n}{2}\rceil-1})$ of the complete graph $K_{2\lceil\frac{n}{2}\rceil-1}$ from algorithm (de Klerk, Pasechnik and Salazar (2013)) (a), (b) and (c). Replace each vertex of $K_{2\lceil\frac{n}{2}\rceil-1}$ by $q=\lceil\frac{n-1}{2}\rceil$ vertices corresponding to clique $C_i, i \in \{1,2,\ldots,2\lceil\frac{n}{2}\rceil-1\}$ with the order of the Hamiltonian cycle from algorithm (Berge (1973)). Add the edges between the pair of vertices of each 2 cliques according to the geometric position of the $D(K_{2\lceil\frac{n}{2}\rceil-1})$ edges. Place the 1-page drawing of $K_{\lceil\frac{n-1}{2}\rceil}$ from (de Klerk, Pasechnik and Salazar (2013)) for each clique C_i on the half-plane with the fewest outgoing edges of the vertex C_i of $D(K_{2\lceil\frac{n}{3}\rceil-1})$ (d).

Let v(G) and $v_2(G)$ be the minimum number of crossings for a drawing D(G) of G, respectively, in the plane, and into a 2-page drawing, we prove that $\frac{n^8}{2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} - \frac{n^4}{2^7} - \frac{n^3}{2^9} \le v(K(n,2)) \le v_2(K(n,2)) \le \frac{n^8}{2^{10}} - \frac{3n^7}{2^8} + \frac{31n^6}{2^83} + \frac{7n^5}{2^6} - \frac{563n^4}{2^73} + \frac{517n^3}{2^53} - \frac{267n^2}{2^5} + \frac{107n}{2^33}$.

Figure 1 2-page drawing construction of K_5 in (a) and (b), and 2-page drawings of K_5 in (c) and K(6,2) in (d).

 $^{^\}dagger$ CAPES 001, CNPq 406036/2021-7, 308654/2018-8, 152340/2021-1, FAPERJ E26/202.902/2018.