Homework 5 - Berkeley STAT 157

Your name: XX, SID YY (Please add your name, and SID to ease Ryan and Rachel to grade.)

Please submit your homework through <u>gradescope (http://gradescope.com/)</u> instead of Github, so you will get the score distribution for each question. Please enroll in the <u>class</u> (<u>https://www.gradescope.com/courses/42432</u>) by the Entry code: MXG5G5

Handout 2/19/2019, due 2/26/2019 by 4pm in Git by committing to your repository.

In this homework, we will model covariate shift and attempt to fix it using logistic regression. This is a fairly realistic scenario for data scientists. To keep things well under control and understandable we will use <u>Fashion-MNIST (http://d2l.ai/chapter_linear-networks/fashion-mnist.html)</u> as the data to experiment on.

Follow the instructions from the Fashion MNIST notebook to get the data.

```
In [1]: %matplotlib inline
    from mxnet import autograd, gluon, init, nd
    from mxnet.gluon import data as gdata, loss as gloss, nn, utils
    import numpy as np
    import d2l

mnist_train = gdata.vision.FashionMNIST(train=True)
    mnist_test = gdata.vision.FashionMNIST(train=False)
```

1. Logistic Regression

- 1. Implement the logistic loss function $l(y, f) = -\log(1 + \exp(-yf))$ in Gluon.
- 2. Plot its values and its derivative for y = 1 and $f \in [-5, 5]$, using automatic differentiation in Gluon.
- 3. Generate training and test datasets for a binary classification problem using Fashion-MNIST with class 1 being a combination of shirt and sweater and class -1 being the combination of sandal and sneaker categories.
- 4. Train a binary classifier of your choice (it can be linear or a simple MLP such as from a previous lecture) using half the data (i.e. 12,000 observations mixed as abvove) and one using the full dataset (i.e. 24,000 observations as arising from the 4 categories) and report its accuracy.

Hint - you should encapsulate the training and reporting code in a callable function since you'll need it quite a bit in the following.

```
In [2]: def loss(y,f):
            l = -nd.log(1+nd.exp(-y * f))
            return l
        def dloss(y, f):
            f.attach grad()
            with autograd.record():
                z = loss(y, f)
            z.backward()
            return f.grad
In [3]:
        print(len(mnist_train), len(mnist_test))
        print(len(mnist_train[0]), len(mnist test[0]))
        print(len(mnist train[0][0]), len(mnist test[0][0]))
        print(len(mnist train[0][0][0]), len(mnist test[0][0][0]))
        print(len(mnist train[0][0][0][0]), len(mnist test[0][0][0][0]))
        60000 10000
        2 2
        28 28
        28 28
        1 1
In [4]:
        def get_fashion_mnist_labels(labels):
            return [text labels[int(i)] for i in labels]
        def get new labels(labels):
            return ['shirt' if i == -1 else 'shoe' for i in labels]
        def converter(label):
            if label == 2 or label == 6:
                return -1
            return 1
        def convert data(mnist):
            indices = (mnist[:][1] == 5) | (mnist[:][1] == 6) \
            | (mnist[:][1] == 7) | (mnist[:][1] == 2)
            data, labels = mnist[:]
            data = data.asnumpy()[indices].astype('float32')
            labels = labels[indices].astvpe('float32')
            labels = np.array(list(map(converter, labels))).astype('float32')
            return data, labels
        train data, train labels = convert data(mnist train)
        test data, test labels = convert data(mnist test)
        print(train data.shape, train labels.shape, \
              test data.shape, test labels.shape)
        (24000, 28, 28, 1) (24000,) (4000, 28, 28, 1) (4000,)
```

```
def show fashion mnist(images, labels):
             d2l.use_svg_display()
             # Here _ means that we ignore (not use) variables
              , figs = d2l.plt.subplots(1, len(images), figsize=(12, 12))
             for f, img, lbl in zip(figs, images, labels):
                 f.imshow(img.reshape((28, 28)))
                 f.set title(lbl)
                 f.axes.get xaxis().set visible(False)
                 f.axes.get_yaxis().set_visible(False)
        X, y = mnist_train[0:9]
         show_fashion_mnist(train_data[:9], get_new_labels(train_labels[:9]))
         print(X.shape)
         (9, 28, 28, 1)
           shirt
                   shirt
                                                            shoe
                           shoe
                                   shirt
                                           shirt
                                                   shoe
                                                                    shoe
                                                                            shoe
In [ ]:
In [ ]:
In [ ]:
In [6]:
        batch size = 256
         train iter = \
         gdata.DataLoader(gluon.data.ArrayDataset(train_data, train_labels)\
                          , batch size=batch size, shuffle=True)
         test iter = \
         gdata.DataLoader(gluon.data.ArrayDataset(test_data, test_labels)\
                          , batch size=batch size, shuffle=True)
```

```
In [7]:
        net = nn.Sequential()
        net.add(nn.Dense(1))
        net.initialize(init.Normal(sigma=0.01))
        loss = gloss.LogisticLoss()
        trainer = gluon.Trainer(net.collect params(), 'sgd', {'learning rate'
        : 0.1)
        num epochs, lr = 5, 0.1
        def ev ac(out, y):
            e = lambda x: -1 if x < 0.5 else 1
             return ((nd.array(list(map(e, out))) == y).sum().asscalar())
        def evaluate accuracy(data iter, net):
            acc sum, n = 0.0, 0
            for X, y in data_iter:
                y = y.astype('float32')
                #print('net', net(X)[:5], 'y', y[:5])
                acc_sum += ev_ac(net(X), y)
                 n += v.size
            return acc sum / n
        # This function has been saved in the d2l package for future use
        def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_siz
        e,
                       params=None, lr=None, trainer=None, v=True, a=False):
            for epoch in range(num epochs):
                 train l sum, train acc sum, n = 0.0, 0.0, 0
                 for X, y in train iter:
                     with autograd.record():
                         y_hat = net(X)
                         l = loss(y hat, y).sum()
                     l.backward()
                     if trainer is None:
                         d2l.sgd(params, lr, batch_size)
                     else:
                         # This will be illustrated in the next section
                         trainer.step(batch size)
                     y = y.astype('float32')
                     train l sum += l.asscalar()
                     train_acc_sum += ev_ac(y_hat, y)
                     n += y.size
                 test acc = evaluate accuracy(test iter, net)
                 if v:
                     print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f
                       % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_
        acc))
            if a:
                 print('loss %.4f, test acc %.3f'
                   % (train l sum / n, test acc))
```

2. Covariate Shift

Your goal is to introduce covariate shit in the data and observe the accuracy. For this, compose a dataset of 12,000 observations, given by a mixture of shirt and sweater and of sandal and sneaker respectively, where you use a fraction $\lambda \in \{0.05,0.1,0.2,\dots0.8,0.9,0.95\}$ of one and a fraction of $1-\lambda$ of the other datasets respectively. For instance, you might pick for $\lambda=0.1$ a total of 600 shirt and 5,400 sweater images and likewise 600 sandal and 5,400 sneaker photos, yielding a total of 12,000 images for training. Note that the test set remains unbiased, composed of 2,000 photos for the shirt + sweater category and of the sandal + sneaker category each.

- 1. Generate training sets that are appropriately biased. You should have 11 datasets.
- 2. Train a binary classifier using this and report the test set accuracy on the unbiased test set.

```
In [9]:
        def convert data(mnist):
             indices = (mnist[:][1] == 5) | (mnist[:][1] == 6) \setminus
             | (mnist[:][1] == 7) | (mnist[:][1] == 2)
            data, labels = mnist[:]
            data = data.asnumpy()[indices].astype('float32')
            labels = labels[indices].astype('float32')
            labels = np.array(list(map(converter, labels))).astype('float32')
             return data, labels
        def gen(train, labels, l):
            num = 6000
             permuted = np.random.permutation(len(train))
            train, labels = train[permuted], labels[permuted]
             indices = labels == -1
            tn1, ln1 = train[indices], labels[indices]
             t1, l1 = train[~indices], labels[~indices]
            b = int(num*l)
             r1, r2 = np.concatenate([t1[b:num], tn1[:b]]),\
                      np.concatenate([l1[b:num], ln1[:b]])
            permuted = np.random.permutation(num)
             return r1[permuted], r2[permuted]
```

```
In [10]: gen(train_data, train_labels, .1); print('hi')
```

```
In [21]: def train(ls=[.05] + [x/10 \text{ for } x \text{ in } range(1,10)] + [.95]):
              for l in ls:
                  print("lambda:", l)
                  td, tl = gen(train_data, train_labels, l)
                  print(sum(tl == -1))
                  train iter = \
                  gdata.DataLoader(gluon.data.ArrayDataset(td, tl)\
                           , batch size=batch size, shuffle=True)
                  test iter = \
                  gdata.DataLoader(gluon.data.ArrayDataset(test data, test labe
         ls)\
                                    , batch_size=batch_size, shuffle=True)
                  net = nn.Sequential()
                  net.add(nn.Dense(1))
                  net.initialize(init.Normal(sigma=0.01))
                  loss = gloss.LogisticLoss()
                  trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learni
          ng_rate': 0.01})
                  train_ch3(net, train_iter, test_iter, loss, num_epochs,
                    batch size, None, lr, trainer, False, True)
          train()
```

lambda: 0.05 300 loss 1.9714, test acc 0.985 lambda: 0.1 600 loss 1.9366, test acc 0.992 lambda: 0.2 1200 loss 1.0862, test acc 0.996 lambda: 0.3 1800 loss 1.6848, test acc 0.997 lambda: 0.4 2400 loss 1.5750, test acc 0.997 lambda: 0.5 3000 loss 2.8005, test acc 0.996 lambda: 0.6 3600 loss 3.5741, test acc 0.997 lambda: 0.7 4200 loss 4.3835, test acc 0.995 lambda: 0.8 4800 loss 3.3879, test acc 0.993 lambda: 0.9 5400 loss 4.8682, test acc 0.989 lambda: 0.95 5700 loss 6.1234, test acc 0.971

3. Covariate Shift Correction

Having observed that covariate shift can be harmful, let's try fixing it. For this we first need to compute the appropriate propensity scores $\frac{dp(x)}{dq(x)}$. For this purpose pick a biased dataset, let's say with $\lambda=0.1$ and try to fix the covariate shift.

- 1. When training a logistic regression binary classifier to fix covariate shift, we assumed so far that both sets are of equal size. Show that re-weighting data in training and test set appropriately can help address the issue when both datasets have different size. What is the weighting?
- 2. Train a binary classifier (using logistic regression) distinguishing between the biased training set and the unbiased test set. Note you need to weigh the data.
- 3. Use the scores to compute weights on the training set. Do they match the weight arising from the biasing distribution λ ?
- 4. Train a binary classifier of the covariate shifted problem using the weights obtained previously and report the accuracy. Note - you will need to modify the training loop slightly such that you can compute the gradient of a weighted sum of losses.

1) We want number_of_negative_class * weight = number_of_positive_class							
In	[]:						

```
# This function has been saved in the d2l package for future use
def train with weights(f, net, train iter, test iter, loss, num epoch
s, batch_size,
              params=None, lr=None, trainer=None, v=True, a=False):
    for epoch in range(num epochs):
        train_l\_sum, train\_acc\_sum, n = 0.0, 0.0, 0
        for X, y in train iter:
            with autograd.record():
                y hat = nd.multiply(net(X), f(X))
                l = loss(y_hat, y).sum()
            l.backward()
            if trainer is None:
                d2l.sgd(params, lr, batch_size)
            else:
                # This will be illustrated in the next section
                trainer.step(batch size)
            y = y.astype('float32')
            train l sum += l.asscalar()
            train_acc_sum += ev_ac(y_hat, y)
            n += v.size
        test acc = evaluate accuracy(test iter, net)
        if v:
            print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_
acc))
    if a:
        print('loss %.4f, test acc %.3f'
          % (train l sum / n, test acc))
def train(ls=[.05] + [x/10 for x in range(1,10)] + [.95]):
    for l in ls:
        print("lambda:", l)
        td, tl = gen(train data, train labels, l)
        print(sum(tl == -1))
        train iter = \
        gdata.DataLoader(gluon.data.ArrayDataset(\
        np.concatenate([td, test_data]),\
        np.concatenate([np.ones(len(td)).astype('float32'),\
        (np.ones(len(test data))*-1).astype('float32')]))\
                 , batch size=batch size, shuffle=True)
        test iter = \
        gdata.DataLoader(gluon.data.ArrayDataset(\
        np.concatenate([td, test_data]),\
        np.concatenate([np.ones(len(td)).astype('float32'),\
        (np.ones(len(test data))*-1).astype('float32')]))\
                 , batch size=batch size, shuffle=True)
        f = nn.Sequential()
        f.add(nn.Dense(1))
        f.initialize(init.Normal(sigma=0.01))
        loss = gloss.LogisticLoss()
        trainer = gluon.Trainer(f.collect params(), 'sqd', {'learning
```

```
_rate': 0.01})
        train_ch3(f, train_iter, test_iter, loss, num_epochs,
          batch_size, None, lr, trainer, False, True)
        train_iter = \
        gdata.DataLoader(gluon.data.ArrayDataset(td, tl)\
                 , batch_size=batch_size, shuffle=True)
        test iter = \
        gdata.DataLoader(gluon.data.ArrayDataset(test_data, test_labe
ls)\
                         , batch_size=batch_size, shuffle=True)
        net = nn.Sequential()
        net.add(nn.Dense(1))
        net.initialize(init.Normal(sigma=0.01))
        loss = gloss.LogisticLoss()
        trainer = gluon.Trainer(net.collect params(), 'sgd', {'learni
ng_rate': 0.01})
        train with weights(f, net, train iter, test iter, loss, num e
pochs,
          batch_size, None, lr, trainer, False, True)
train()
```

```
lambda: 0.05
300
loss 1791.4049, test acc 0.722
loss 43609246.3147, test acc 0.416
lambda: 0.1
600
loss 2069.5493, test acc 0.707
loss 78256105.0453, test acc 0.401
lambda: 0.2
1200
loss 3003.4900, test acc 0.672
loss 354647593.9840, test acc 0.477
lambda: 0.3
1800
loss 3976.1804, test acc 0.400
loss 478789471.5733, test acc 0.004
lambda: 0.4
2400
loss 4641.7990, test acc 0.600
loss 125925087.2863, test acc 0.997
lambda: 0.5
3000
loss 5324.4973, test acc 0.550
loss 149066612.3947, test acc 0.529
lambda: 0.6
3600
loss 5371.7406, test acc 0.600
loss 777692288.3413, test acc 0.995
lambda: 0.7
4200
loss 5468.5438, test acc 0.600
loss 8589824308.5653, test acc 0.992
lambda: 0.8
4800
loss 5243.2512, test acc 0.658
loss 161604589.1413, test acc 0.467
lambda: 0.9
5400
loss 5411.0195, test acc 0.738
loss 32919559.4773, test acc 0.501
lambda: 0.95
5700
loss 4839.1843, test acc 0.701
loss 85047661385.0453, test acc 0.500
```