Modelo BNP para datos discretos

con aplicación al rendimiento de clubes deportivos

Cristian Capetillo Constela

Pontificia Universidad Católica de Chile Facultad de matemática Departamento de Estadística

11 de Noviembre, 2024

Contenidos

Modelo RCRK

Estudio de simulación preliminar

3 Aplicación al rendimiento deportivo de clubes

4 Discusión

Contenidos

Modelo RCRK

- Estudio de simulación preliminar
- 3 Aplicación al rendimiento deportivo de clubes
- Discusión

Sea Y una variable aleatoria en $\mathbb N$ y Z una variable aleatoria en $\mathbb R.$ Suponemos que,

$$Z \in (a_j, a_{j+1}) \iff Y = j, \ \forall j = 0, 1, \dots$$

En consecuencia,

$$P(Y = j) = P(Z \in (a_j, a_{j+1})) = F(a_{j+1}) - F(a_j).$$

Sea Y una variable aleatoria en $\mathbb N$ y Z una variable aleatoria en $\mathbb R$. Suponemos que,

$$Z \in (a_j, a_{j+1}) \iff Y = j, \ \forall j = 0, 1,$$

En consecuencia,

$$P(Y = j) = P(Z \in (a_j, a_{j+1})) = F(a_{j+1}) - F(a_j).$$

Figura 1: Cuantía empírica de Y y función de densidad de Z.

Sea Y una variable aleatoria en $\mathbb N$ y Z una variable aleatoria en $\mathbb R$. Suponemos que,

$$Z \in (a_j, a_{j+1}) \iff Y = j, \ \forall j = 0, 1,$$

En consecuencia,

$$P(Y = j) = P(Z \in (a_j, a_{j+1})) = F(a_{j+1}) - F(a_j).$$

$$Y|F \sim \left\{ F(a_{j+1}) - F(a_j) \right\}_{j=0}^{\infty}$$

Figura 1: Cuantía empírica de Y y función de densidad de Z.

A considerar:

A considerar:

1. La distribución F es desconocida. Debemos darle una **estructura**.

A considerar:

- 1. La distribución F es desconocida. Debemos darle una **estructura**.
- 2. Dado que nuestro objetivo es relacionar Y con covariables ${\pmb x}$, F es en realidad F_x .

Estructura de F_x

Linear Dependent Dirichlet Process

Una medida de probabilidad aleatoria G_x se dice que sigue un Linear Dependent Dirichlet Process (LDDP) con parámetros $\alpha>0$ y G_0 medida de probabilidad sobre $\mathbb{R}^p\times\mathbb{R}_+$ si

$$G_x(\cdot) = \sum_{h=1}^{\infty} w_h \mathcal{N}(\cdot | \boldsymbol{x}^T \boldsymbol{\beta}_h, \tau_h^{-1}),$$

donde $w_h = v_h \prod_{l < h}^{\infty} (1 - v_h)$ para h = 2, 3, ..., y $w_1 = v_1, v_h \stackrel{iid}{\sim} \mathcal{B}eta(1, \alpha)$, y $(\beta_h, \tau_h) \stackrel{iid}{\sim} G_0$.

Linear Dependent Dirichlet Process

Una medida de probabilidad aleatoria G_x se dice que sigue un Linear Dependent Dirichlet Process (LDDP) con parámetros $\alpha>0$ y G_0 medida de probabilidad sobre $\mathbb{R}^p\times\mathbb{R}_+$ si

$$G_x(\cdot) = \sum_{h=1}^{\infty} w_h \mathcal{N}(\cdot | \boldsymbol{x}^T \boldsymbol{\beta}_h, \tau_h^{-1}),$$

donde $w_h = v_h \prod_{l < h}^{\infty} (1 - v_h)$ para h = 2, 3, ..., y $w_1 = v_1, v_h \stackrel{iid}{\sim} \mathcal{B}eta(1, \alpha)$, y $(\beta_h, \tau_h) \stackrel{iid}{\sim} G_0$.

Por ejemplo, utilizando la distribución $Normal\mbox{-}Gamma$ como medida base, se tiene que

$$\beta_h | \tau_h \stackrel{iid}{\sim} \mathcal{N}_p(\mu, (\kappa \tau_h)^{-1}),$$

 $\tau_h \stackrel{iid}{\sim} \mathcal{G}a(a_\tau, b_\tau).$

Metodología Spike-and-Slab

Para la selección de covariables, la metodología spike-and-slab consiste en **introducir una variable aleatoria** γ_j para cada coeficiente de regresión, de manera que

$$\gamma_j = \left\{ \begin{array}{l} 1 \ {\rm si \ la \ covariable} \ j \ {\rm es \ parte \ del \ modelo}, \\ 0 \ {\rm si \ no}. \end{array} \right.$$

Metodología Spike-and-Slab

Para la selección de covariables, la metodología spike-and-slab consiste en **introducir una variable aleatoria** γ_j para cada coeficiente de regresión, de manera que

$$\gamma_j = \left\{ \begin{array}{l} 1 \ {\rm si \ la \ covariable} \ j \ {\rm es \ parte \ del \ modelo}, \\ 0 \ {\rm si \ no}. \end{array} \right.$$

Luego, la priori Spike-and-Slab para (β,τ) , denotada por $SpikeSlab_{\gamma}$, viene dada por

$$\beta | \tau, \gamma \sim \mathcal{N}(\beta_0 | 0, (\kappa \tau)^{-1}) \prod_{j=1}^p (\gamma_j \mathcal{N}(\beta_j | 0, (\kappa \tau)^{-1}) + (1 - \gamma_j) \delta_0(\beta_j)),$$
$$\tau \sim \mathcal{G}a(a_\tau, b_\tau),$$

con κ , a_{τ} y b_{τ} hiperparámetros conocidos.

Metodología Spike-and-Slab

Para la selección de covariables, la metodología spike-and-slab consiste en **introducir una variable aleatoria** γ_j para cada coeficiente de regresión, de manera que

$$\gamma_j = \left\{ \begin{array}{l} 1 \ {\rm si \ la \ covariable} \ j \ {\rm es \ parte \ del \ modelo}, \\ 0 \ {\rm si \ no}. \end{array} \right.$$

Luego, la priori Spike-and-Slab para (β,τ) , denotada por $SpikeSlab_{\gamma}$, viene dada por

$$\beta | \tau, \gamma \sim \mathcal{N}(\beta_0 | 0, (\kappa \tau)^{-1}) \prod_{j=1}^p (\gamma_j \mathcal{N}(\beta_j | 0, (\kappa \tau)^{-1}) + (1 - \gamma_j) \delta_0(\beta_j)),$$
$$\tau \sim \mathcal{G}a(a_\tau, b_\tau),$$

con κ , a_{τ} y b_{τ} hiperparámetros conocidos.

Una priori para el vector γ puede ser la distribución Binomial, Beta-Binomial, o la que denominamos **priori de Womack** (Womack et al., 2015).

El **modelo RCRK** para la muestra $Y_1,...,Y_n$ está dado por

El **modelo RCRK** para la muestra $Y_1, ..., Y_n$ está dado por

$$Y_i|x_i, F_{x_i} \stackrel{ind}{\sim} \left\{ F_{x_i}(a_{j+1}) - F_{x_i}(a_j) \right\}_{j=0}^{\infty},$$

El **modelo RCRK** para la muestra $Y_1,...,Y_n$ está dado por

$$Y_i|x_i, F_{x_i} \stackrel{ind}{\sim} \left\{ F_{x_i}(a_{j+1}) - F_{x_i}(a_j) \right\}_{j=0}^{\infty},$$

$$F_{x_i} \sim LDDP(\alpha, G_{0,\gamma}),$$

El **modelo RCRK** para la muestra $Y_1, ..., Y_n$ está dado por

$$Y_i|x_i, F_{x_i} \stackrel{ind}{\sim} \left\{ F_{x_i}(a_{j+1}) - F_{x_i}(a_j) \right\}_{j=0}^{\infty},$$

$$F_{x_i} \sim LDDP(\alpha, G_{0,\gamma}),$$

$$G_{0,\gamma} \equiv SpikeSlab_{\gamma},$$

El **modelo RCRK** para la muestra $Y_1,...,Y_n$ está dado por

$$Y_i|x_i, F_{x_i} \stackrel{ind}{\sim} \left\{ F_{x_i}(a_{j+1}) - F_{x_i}(a_j) \right\}_{j=0}^{\infty},$$

$$F_{x_i} \sim LDDP(\alpha, G_{0,\gamma}),$$

$$G_{0,\gamma} \equiv SpikeSlab_{\gamma},$$

$$\gamma \sim Womack(\rho),$$

El **modelo RCRK** para la muestra $Y_1,...,Y_n$ está dado por

$$Y_i|x_i, F_{x_i} \stackrel{ind}{\sim} \left\{ F_{x_i}(a_{j+1}) - F_{x_i}(a_j) \right\}_{j=0}^{\infty},$$

$$F_{x_i} \sim LDDP(\alpha, G_{0,\gamma}),$$

$$G_{0,\gamma} \equiv SpikeSlab_{\gamma},$$

$$\gamma \sim Womack(\rho),$$

$$\alpha \sim \mathcal{G}a(a_{\alpha}, b_{\alpha}).$$

Esquema MCMC

Realizando una **aumentación de datos**, el modelo RCRK puede ser reescrito jerárquicamente como

$$Y_{i}|Z_{i} \in (a_{j}, a_{j+1}) \stackrel{ind}{\sim} \delta_{j}, \ \forall j,$$

$$Z_{i}|x_{i}, F_{x_{i},\gamma}, S_{i} \sim \mathcal{N}(x_{i}^{T}\beta_{S_{i},\gamma}, \tau_{S_{i}}^{-1}),$$

$$S_{i}|w \sim \{w_{h}\}_{h=1}^{\infty},$$

$$v_{h} \sim \mathcal{B}eta(1, \alpha),$$

$$(\beta_{h}, \tau_{h}) \sim G_{0,\gamma},$$

$$\gamma \sim Womack(\rho),$$

$$\alpha \sim \mathcal{G}a(a_{\alpha}, b_{\alpha}).$$

Ishwaran y James (2001) propusieron truncar la suma hasta un número H lo suficientemente grande para una buena aproximación.

Contenidos

Modelo RCRK

- 2 Estudio de simulación preliminar
- 3 Aplicación al rendimiento deportivo de clubes

4 Discusión

Estudio de simulación preliminar

Evaluamos el modelo a datos sintéticos. En particular, se generan 5 escenarios: N-cat, Pois-cat, NB-cat, ZIP-cat y ZINB-cat.

Estudio de simulación preliminar

Evaluamos el modelo a datos sintéticos. En particular, se generan 5 escenarios: N-cat, Pois-cat, NB-cat, ZIP-cat y ZINB-cat.

Los hiperparámetros escogidos son $a_{\tau}=b_{\tau}=1$, $\kappa=0.001$, $\rho=1$, $a_{\alpha}=b_{\alpha}=2$. Además, H=30.

Estudio de simulación preliminar

Evaluamos el modelo a datos sintéticos. En particular, se generan 5 escenarios: N-cat, Pois-cat, NB-cat, ZIP-cat y ZINB-cat.

Los hiperparámetros escogidos son $a_{\tau}=b_{\tau}=1,\,\kappa=0.001,\,\rho=1,\,a_{\alpha}=b_{\alpha}=2.$ Además, H=30.

En cuanto a la simulación MCMC, el número de iteraciones es de 20000, con un periodo de quemado de $4000~{\rm y}$ un submuestreo cada 10 iteraciones.

Resultados: Pois-cat

Resultados: Pois-cat

Resultados: ZIP-cat

Resultados: ZIP-cat

Contenidos

Modelo RCRK

- Estudio de simulación preliminar
- 3 Aplicación al rendimiento deportivo de clubes

4 Discusión

Aplicación al rendimiento deportivo de clubes

Año ‡	Liga [‡]	G	anados :	Empatados	Perdidos [‡]	GF	GC [‡]	PorcVictorias ‡	Champions ‡	Europa ‡	Copa
2023	7		4			44	40	36.84	Octavos de final	No participa	Segunda ronda
2024	3		0			53		52.63	No participa	Campeón	Cuartos de fina
2025	4	2	0			57		52.63	Final	No participa	Campeón
2026	6					49		44.74	Cuartos de final	No participa	Campeón
2027	5			14		50		44.74	No participa	Campeón	Cuartos de fina
2028	3					55	28	55.26	No participa	Primera ronda	Campeón
2029	7		6			48	40	42.11	Cuartos de final	No participa	Segunda ronda
2030	3					59		60.53	No participa	Primera ronda	Semifinal
2031	1					56	28	60.53	Octavos de final	No participa	Segunda ronda
2032	6					45		44.74	Semifinal	No participa	Segunda ronda

Figura 2: 10 observaciones de un total de 24 sobre el rendimiento de un club de fútbol ficticio temporada a temporada (2020-2043).

Resultados: Posición ~ GF, GC, %Victorias

GF, GC, %V	GF, GC	GF, %V	GC, %V	GF	GC	%V	
0	0	0.0069	0.0081	0	0	0.985	0

Resultados: Posición \sim GF, GC, %Victorias

Figura 3: Estimación de la distribución de la posición del equipo si éste posee 50 goles a favor, 50 goles en contra y un porcentaje de victoria de un $20\,\%$, junto a una región de $95\,\%$ de credibilidad.

Resultados: Posición ~ GF, GC, %Victorias

Figura 4: Estimación de la distribución de la posición del equipo si éste posee 50 goles a favor, 50 goles en contra y un porcentaje de victoria de un $40\,\%$, junto a una región de $95\,\%$ de credibilidad.

Resultados: Posición \sim GF, GC, %Victorias

Figura 5: Estimación de la distribución de la posición del equipo si éste posee 50 goles a favor, 50 goles en contra y un porcentaje de victoria de un $60\,\%$, junto a una región de $95\,\%$ de credibilidad.

Resultados: Posición \sim GF, GC, %Victorias

Figura 6: Estimación de la distribución de la posición del equipo si éste posee 50 goles a favor, 50 goles en contra y un porcentaje de victoria de un $75\,\%$, junto a una región de $95\,\%$ de credibilidad.

Contenidos

Modelo RCRK

- Estudio de simulación preliminar
- 3 Aplicación al rendimiento deportivo de clubes
- 4 Discusión

• El modelo RCRK permite modelar datos discretos de diversas naturalezas.

- El modelo RCRK permite modelar datos discretos de diversas naturalezas.
- Extención mediante el uso de un proceso más general que el LDDP.

- El modelo RCRK permite modelar datos discretos de diversas naturalezas.
- Extención mediante el uso de un proceso más general que el LDDP.
- Simulación MCMC exacta.

Referencias

Canale, A., and Dunson, D. B. (2011). Bayesian kernel mixtures for counts. Journal of the American Statistical Association, 106(496), 1528-1539.

Ishwaran, H., and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American statistical Association, 96(453), 161-173.

Womack, A. J., Fuentes, C., and Taylor-Rodriguez, D. (2015). Model Space Priors for Objective Sparse Bayesian Regression. arXiv preprint arXiv:1511.04745. 651, 654, 657.

¡Gracias por su atención!

Modelo BNP para datos discretos

con aplicación al rendimiento de clubes deportivos

Cristian Capetillo Constela

Pontificia Universidad Católica de Chile Facultad de matemática Departamento de Estadística

11 de Noviembre, 2024

Resultados

Data generator	Data size	(1, 1, 1, 1)	(1, 1, 1, 0)	(1, 1, 0, 1)	(1,0,1,1)	(1, 1, 0, 0)	(1,0,1,0)	(1,0,0,1)	(1,0,0,0)
	n = 50	0	0	0	0	0.0081	0.0006	0.0006	0.9906
N-cat	n = 300	0	0.0006	0.0019	0	0.9956	0	0	0.0019
	n = 1000	0	0.0013	0.0006	0	0.9981	0	0	0
	n = 50	0	0.0025	0	0.0006	0	0.8494	0.0019	0.1456
Pois-cat	n = 300	0	0	0	0	0	1	0	0
	n = 1000	0	0	0	0	0	1	0	0
	n = 50	0	0	0.0038	0.0044	0	0	0.9456	0.0463
NB-cat	n = 300	0	0	0	0	0	0	1	0
	n = 1000	0	0	0	0	0	0	1	0
	n = 50	0	0	0	0	0.0013	0.0031	0.0019	0.9938
ZIP-cat	n = 300	0	0	0	0	0	0.0069	0.0069	0.9863
	n = 1000	0	0	0	0	0	0	0.9163	0.0838
	n = 50	0	0.0031	0.0005	0	0.6581	0.0006	0	0.3331
ZINB-cat	n = 300	0	0	0.0006	0	0.9994	0	0	0
	n = 1000	0	0	0	0	1	0	0	0