## UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO



**EXAMEN**: Tarea 1

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

**Ejercicio 1** Demuestra que el conjunto de todos los x tales que  $x \in A$  y  $x \notin B$  existe y que es único.

**Solución 1** Por el axioma de comprensión tenemos que  $P(x) := x \notin B$ . Para cualquier conjunto A hay un conjunto B, tal que si  $x \in B \Leftrightarrow x \in A$  y P(x). Construimos el conjunto  $C = \{x \in A | x \notin B\}$ . Supongamos que existe un  $C' = \{x \in A | x \notin B\}$ . Por el axioma de extensión, debemos mostrar que  $C \subseteq C'$  y  $C' \subseteq C$ . Sea  $x \in C$  si y solo si  $x \in A$  y  $x \notin B$  pero esta propiedad es la que cumplen los elementos de C'. Por lo tanto C = C'.

**Ejercicio 2** Demuestre que para cualquier conjunto X hay algún  $a \notin X$ .

Solución 2 La prueba es por contradicción. Supongamos que existe, para todo a elemento  $a \in X$  (lo contiene todo). Por el axioma de comprensión, tenemos un subconjunto de X, digamos  $A = \{a | P(x)\}$  donde  $P(x) := x \notin x$  Este conjunto es igual al de la paradoja de Russel. Cuando nos preguntamos si  $A \in A$  nos lleva a una contradicción. Por lo que suponer que existe tal conjunto no puede suceder.

**Ejercicio 3** Demuestre que  $A \subseteq \{A\}$  si y solo si  $A = \emptyset$ .

**Solución 3** Para la implicación  $A = \emptyset$ , entonces  $A \subseteq \{A\}$ . Es trivial. Para la dirección contraria tenemos que demostrarlo por contradicción. Supongamos que  $A \subseteq \{A\}$  y  $A \neq \emptyset$ , entonces existe  $x \in A$  tal que  $X \neq A$ . Como  $\{A\}$  tiene como único elemento el conjunto A y  $X \neq A$ , entonces como  $x \in A$  y  $x \notin \{A\}$ . Por lo tanto  $A \nsubseteq \{A\}$ .

**Ejercicio 4** Demuestre que si  $A \subseteq B$ , entonces  $P(A) \subseteq P(B)$ 

**Solución 4** Sea  $X \in P(A)$ , entonces  $X \subseteq A$  y por hipótesis  $A \subseteq B$  tenemos que  $X \subseteq B$ . Por lo tanto,  $X \in P(B)$ .

**Ejercicio 5** Demuestre que  $A \subseteq C$  si y solo si  $A \cup (B \cap C) = (A \cup B) \cap C$ 

**Solución 5** Para la demostras la idea tenemos que demostral la doble contención. Primero demostramos que  $A \cup (B \cap C) \subseteq (A \cup B) \cap C$ . Sea  $x \in A \cup (B \cap C)$ , entonces  $x \in A$  o  $x \in (B \cap C)$ . Caso (1) supongamos que  $x \in A$  y por hipótesis  $A \subseteq C$ , por lo que  $x \in C$ . Ademmás, como  $x \in A$ , entonces  $X \in A \cup B$ . Por lo tanto  $x \in (A \cup B) \cap C$ . La otra contención se demuestra de manera similar. Para el regreso. Sea  $x \in A$ , entonces  $x \in A \cup (B \cap C) = (A \cup B) \cap C$ . Así,  $x \in (A \cup B)$  y  $x \in C$ .

**Ejercicio 6** Si E es un conjunto que contiene a  $A \cup B$ , entonces:

- a)  $E \setminus (E \setminus A) = A$
- b)  $E \setminus \emptyset = E, E \setminus E = \emptyset$ .

## UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO



**EXAMEN**: Tarea 1

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

### Solución 6

a) Demostramos la doble contención. Por demostrar que  $E \setminus (E \setminus A) \subseteq A$ . Sea  $x \in E \setminus (E \setminus A)$ , entonces  $x \in E$  y  $x \notin (E \setminus A)$ . Lo anterior nos dice que  $x \in E$  y  $x \notin E$  o  $x \in A$ . Por tanto  $x \in A$ . Para el regreso tenemos que demostrar que  $x \in E \setminus (E \setminus A)$ . Sea  $x \in A$ , entonces  $x \notin E$  o  $x \in A$ . Así  $x \notin E \setminus A$ . Además,  $A \subset A \cup B \subset E$  por hipótesis, entonces  $x \in E$ . Por lo tanto  $x \in E \setminus (E \setminus A)$ .

b)

- 1. Por demostrar que  $E \setminus \emptyset = E$ . Primero demostraremos que  $E \setminus \emptyset \subseteq E$ , entonces  $x \in E$  y  $x \notin \emptyset$ . Por lo tanto  $x \in E$ . Tenemos que demostrar que  $E \subseteq E \setminus \emptyset$ , pero esta contención es trivial.
- 2. Por demostrar que  $E \setminus E = \emptyset$ . Sea  $x \in E \setminus E$ ,  $x \in E$  y  $x \notin E$ . No hay elementos que cumplan lo anterior. Por lo tanto es vacio.

**Ejercicio 7** Para todo conjunto A, B y C se cumple lo siguiente:

- a)  $A \triangle \emptyset = A$
- b)  $A \triangle A = \emptyset$
- c) Si  $A\triangle B = A\triangle C$ , entonces B = C

**Ejercicio 8** Sea F una familia de conjuntos. Pruebe que  $\bigcup F = \emptyset$  si y solo si  $F = \emptyset$  o  $A \in F$  implica  $A = \emptyset$ .

**Ejercicio 9** Demuestre que la unión y la intersección generalizada satisface la siguiente forma de asociación:

a) 
$$\bigcup\{A_{\alpha}|\alpha\in\bigcup I\}=\bigcup_{I\in I}(\bigcup_{\alpha\in I}A_{\alpha})$$

b) 
$$\bigcap \{A_{\alpha} | \alpha \in \bigcap I\} = \bigcap_{I \in I} (\bigcap_{\alpha \in I} A_{\alpha})$$

#### Ejercicio 10 Demuestra lo siguiente:

a)  $\bigcup_{\alpha}$  distribuye sobre  $\cap$  y  $\bigcup_{\alpha}$  distribuye sobre  $\cup$ ,

$$[\bigcap_{\alpha \in I} A_\alpha] \cup [\bigcap_{\beta \in J} B_\beta] = \bigcap \{A_\alpha \cup B_\beta | (\alpha,\beta) \in I \times J\}$$

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO



EXAMEN: Tarea 1

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:\_

b) Si el complemento es tomado respecto a X, entonces

$$X\backslash\bigcap\{A_\alpha|\alpha\in I\}=\bigcup\{X\backslash A_\alpha|\alpha\in I\}$$

c)  $\bigcup_{\alpha}$  y  $\bigcap_{\alpha}$  distribuyen sobre el producto cartesiano

$$[\bigcap_{\alpha \in I} A_\alpha] \times [\bigcap_{\beta \in J} B_\beta] = \bigcap \{A_\alpha \times B_\beta | (\alpha, \beta) \in I \times J\}$$