

Рассмотрим работу Универсального Логического Анализатора **OMEGA LOGIC** на следующем примере:

В автомагнитоле Becker Classic BE1150 (далее магнитоле) нужно определить адрес в EEPROM, по котрому находится счетчик попыток ввода кода, а также значение по адресу счетчика попыток, при котором счетчик сброшен.. В магнитоле используется микросхема EEPROM 24c02, работающая по протоколу i2c.

Запускаем LA.exe. Открывается окно программы:

Настраиваем анализатор под существующую задачу. Так как для анализа работы протокола i2c достаточно двух каналов анализатора, отключаем ненужные. Также выбираем максимально большой обьем буфера.

Options

Buffer

Channels

Выбираем тип декодера, соответствующий используемой в данном аппарате микросхеме и протоколу:

Decoder

Select Type

Выбираем протокол і2с и микросхему 24с02 256х8 📆 NewFile - ULW File Edit View Tools Decoder Options N REC PLAY (1) 0123 X 📭 🔒 ⊚ • Select Type Mode Normal ▼ Clock 1 MHz ▼ Trigger A × Group [8] Chip [11] 1:C1 12C Generic 2:C2 SPI 24C01 128x8 MicroWire EEPROM 24C04 512x8 Serial 24C08 1024x8 Parallel 24C16 2048x8 Other 24C32 4096x8 24064 Examples 8192x8 24C128 16384x8 24C256 32768x8 24C512 65536x8 OK Cancel > For Help, press F1 Begin=000000 Size=262144

Подключаем входы анализатора к информационным выходам микросхемы 24с02

5 pin – SDA 6 pin – SCL 4 pin – GND

Так как входы анализатора P1..P8 могут быть легко переназначены, подключение информационных выходов микросхемы 24с02 к входам аналзатора P1..P8 возможно в любом удобном порядке.

Для правильной работы декодера анализатора определяем, какие каналы подключены к каким выводам 24c02 и назначаем соответствующие каналы в меню декодера:

Decoder

Setup Channels

Используя меню **Decoder Channels Setup**, приводим в соответствие информационные каналы декодера и реально подключенные выводы микросхемы EEPROM.

Используя функцию **Rename Channels**, присваиваем каналам C1 и C2 соответствующие имена.

Все готово для проведения анализа работы устройства. Включаем питание магнитолы. Переводим анализатор в режим записи... и с огорчением понимаем, что на шине присутствует постоянный обмен данными...

Что же это за данные ?

Как же выделить из этого потока нужные нам чтение – запись в EEPROM 24c02 ?

office@scorpio-lk.com

И почему это окно декодера пустое ??

На самом деле все просто. Окно декодера остается пустым, потому что процессор магнитолы в это время к EEPROM не обращается. Естественный вопрос – «А куда же...??» легко разрешим при изменении типа протокола декодера на стандартный i2c.

Используя некоторые знания протокола i2c, можно легко увидеть, по каким адресам устройства общаются между собой и какими данными обмениваются.

Вернемся теперь собственно к чтению-записи EEPROM. Как это увидеть? Меняем протокол декодера обратно на i2c и микросхему 24c02 256x8. Для записи большего количества информации включим режим Adaptive, что позволит отсеять длинные повторы повторяющихся значений. Далее допустим, что процессор должен обратиться в EEPROM для записи ячейки, в которой находится счетчик попыток при вводе в магнитолу заведомо ложного кода. Проверим, так ли это.

Включаем запись кнопкой REC и вводим в магнитолу заведомо неправильный код:

В результате декодер отсеял все данные, не относящиеся к обращению к EEPROM и мы видим, к каким адресам было обращение.

Но как узнать — читал процессор данные из этих адресов или производил запись ? Для этого изменим формат вывода данных в окне декодера:

Options

Decoder

Dump Viev

Убираем галочку

office@scorpio-lk.com

В результате видим, что по адресу 9В производилось и чтение, и запись. С большой долей уверенности можно считать, что по адресу 9В и находится искомый счетчик попыток. Осталось узнать его начальное значение. Для этого повторяем анализ, вводя в магнитолу правильный код:

В результате видим, что процессор произвел по известному уже нам адресу 9В запись значения АА. Это и есть начальное значение счетчика попыток.