Part I - A

1. 11/13	2. -20 k	3. 4 F / 3M	4. F/3	5. 13.5 N·s	6. 9000 N	$7. \\ 7\omega ML^2/24$	8. 2g cosθ/(7L) or 20 cosθ/(7L)
9. BCDF	10. BD	$11.$ v^2 dm/dt	12. b/2	13. 2b	14. (2gH) ^{1/2}	15. (4gH/3) ^{1/2}	16. $[0, 3R/(4+2\pi)]$
					or $(20H)^{1/2}$	or $(40H/3)^{1/2}$	

Part I - B

1.	2.	3.	4.	5.	6.	7.	8.
−20 k	11/13	13.5 N⋅s	9000 N	v ² dm/dt	BCDF	BD	b/2
9.	10.	11.	12.	13.	14.	15.	16.
2b	4 F /3M	F/3	$7\omega ML^2/24$	$2g\cos\theta/(7L)$	$(2gH)^{1/2}$	$(4gH/3)^{1/2}$	$[0,3R/(4+2\pi)]$
				or $20 \cos\theta/(7L)$	or (20H) ^{1/2}	or $(40H/3)^{1/2}$	

Part II

1. (a)

$$E_{i} = \frac{1}{2}kd^{2} \text{ and } E_{f} = \frac{1}{2}mv^{2} + |fd| = \frac{1}{2}mv^{2} + \mu_{k}mgd$$

$$E_{i} = E_{f} : K = \frac{1}{2}mv^{2} = \frac{1}{2}kd^{2} - \mu_{k}mgd, : v = \sqrt{\frac{k}{m}d^{2} - 2\mu_{k}gd}$$

(b) When v = 0 in (a), $\mu_k = kd / 2mg$.

(c)

$$E_{f} = \frac{mv^{2}(x)}{2} + \frac{kx^{2}}{2} + |f(d-x)| = \frac{mv^{2}(x)}{2} + \frac{kx^{2}}{2} + \frac{kd(d-x)}{2}$$

$$E_{f} = E_{f} : K = \frac{mv^{2}(x)}{2} = \frac{k(xd-x^{2})}{2}$$

$$\frac{dK}{dx} = 0 = \frac{k(d-2x)}{2} \Rightarrow x = \frac{d}{2}$$

2. (a)

$$U_i = mgl, K_i = 0; U_f = mg(l-x)(1-\cos\alpha), K_f = \frac{1}{2}mv^2; E_i = E_f$$

$$\therefore mgl = mg(l-x)(1-\cos\alpha) + \frac{1}{2}mv^2$$

$$\therefore K = \frac{1}{2}mv^2 = mgx + mg\cos\alpha(l-x) = mg(l\cos\alpha + x - x\cos\alpha).$$

(b)
$$F_r = T - mg\cos\alpha = \frac{mv^2}{l-x}$$
, $\therefore T = mg\cos\alpha + \frac{mv^2}{l-x} = mg[\cos\alpha + \frac{2}{l-x}(l\cos\alpha + x - x\cos\alpha)]$.

$$\alpha = \pi$$
, at point A. $\therefore T = \frac{5x - 3l}{l - x} mg$

(c) To complete a circle, the tension of rope at point A must be. $T \ge 0$ in (b). Thus $x \ge 3l / 5$, the minimum of x = 3l / 5.

3. (See Example 9.8)

(a)

Momentum is conserved: $m_1v_1 + m_1m_2 = m_1v_{1f} + m_2v_{2f}$, so $v_{1f} + 2v_{2f} = 2$ ---- (1)

For elastic collision: $v_1 - v_2 = -(v_{1f} - v_{2f}), -v_{1f} + v_{2f} = 8 - (2)$

From (1) and (2), $v_{1f} = 10/3$ m/s, and $v_{2f} = -14/3$ m/s.

(b)

Use momentum conservation: $p_i = 2 = p_f = 3 + 2v_{2f}$, so $v_{2f} = -0.5$ m/s

(c)

 E_{mech} is conserved. $K_i = K_f + U$

$$K_i = 0.5 m_1 v_1^2 + 0.5 m_2 v_2^2 = 22 (J)$$
, and $K_f = 0.5 m_1 v_{1f}^2 + 0.5 m_2 v_{2f}^2 = 4.75 (J)$.

So
$$U = 17.25 = 0.5 \text{ kd}^2$$
, $d = 0.1 \text{ m}$

(d)

The max U (occurs at max compression) of the spring would occur when the two blocks are moving with the same velocity v.

$$p_i = (m_1 + m_2)v$$
, so $v = 2/3$. $U = K_i - K_f = 22 - 2/3 = 21.33$ (J)

4. (See Problem 11.35)

(a)
$$L_i = mvl$$
, $\Sigma \tau_{\text{ext}} = 0$, so $L_f = L_i = mvl$

(b) from (a),
$$L_f = (m + M)v_f l$$
, so $v_f = mv / (m + M)$

$$K_i = mv^2/2$$
, $K_f = (m + M) v_f^2/2$

 $v_f = mv / (m + M) = \text{speed of the bullet and block}$

Fraction of K loss = $(K_i - K_f)/K_i = M/(m + M)$.