Final_Project_Notebook

June 30, 2025

1 Explaining Music Recommendations through Audio Features and Spectrogram Analysis

Team 4: Anna-Mariia Chornohuz (h12014626) and Iana Schnattler (h11831531)

2 1. Literature Review

3 Project Overview: Spectrogram-Based Explainability in Music Recommender Systems

3.1 1. Introduction

Music recommender systems have become essential components of streaming platforms such as **Spotify**, **Apple Music**, and **Deezer**. These systems aim to increase user satisfaction and engagement by providing **personalized track suggestions** based on past listening behavior, inferred preferences, and contextual variables. Despite their success, a critical challenge remains: **explainability**—that is, the ability to convey to users why a particular song was recommended.

Explainable recommender systems (XRS) are especially relevant in domains like music, where preferences are **subjective**, **emotional**, **and context-sensitive**. Prior work has demonstrated that when users understand the reasoning behind recommendations, their trust and adoption rates increase (Zhang & Chen, 2018). However, most platforms today provide little to no insight into the underlying logic behind their recommendations.

3.2 2. Limitations of Traditional Systems

Most existing systems are based on two fundamental approaches: - Collaborative Filtering (CF): Recommends items liked by users with similar behavior. - Content-Based Filtering (CBF): Recommends items based on the features of previously liked items (e.g., tempo, energy, valence, etc.).

These features, while powerful, are typically **invisible to users** and highly technical, which makes human-centered explanations difficult. A user is unlikely to find it meaningful to hear that a song was recommended because it has a high "zero-crossing rate" or "spectral centroid" (Nam et al., 2022).

3.3 3. Post-Hoc Explainability Techniques

Recent advances in explainable AI (XAI) have led to the adoption of **model-agnostic techniques** such as: - **LIME** (Local Interpretable Model-Agnostic Explanations) - **SHAP** (SHapley Additive exPlanations)

These methods explain the model's decision by identifying which input features most contributed to the output. However, their reliance on low-level numeric features **limits user interpretability**, especially in music, where emotional and perceptual aspects dominate (Lundberg & Lee, 2017; Ribeiro et al., 2016; Marconi et al., 2023).

3.4 4. Spectrograms as Perceptual Explanation Tools

A **spectrogram** is a visual representation of an audio signal's frequency content over time. It captures structural elements of sound such as: - Rhythm - Timbre - Pitch contours - Instrumentation

Unlike numeric features, **spectrograms preserve the sonic character** of a track, allowing for intuitive, human-interpretable comparisons between songs. Spectrograms can effectively "show" the texture of music, acting as a bridge between signal-level data and human perception (Müller, 2015).

3.5 5. Proposed Method

This project proposes a **hybrid recommendation-explanation system** that: 1. Uses standard audio features (e.g., tempo, RMS, spectral centroid) for similarity-based recommendation. 2. Generates **spectrograms** from raw audio and uses them to both: - **Inform** deep learning models trained on image-based representations. - **Explain** recommendations visually to users.

By comparing spectrograms of a liked track and its recommendation, users can **visually perceive similarities** in structure, rhythm, or tonal content. This bridges the gap between black-box recommendation logic and perceptual user understanding.

3.6 6. Comparative Evaluation

We will compare: - Feature-based similarity models (e.g., cosine distance on tempo, RMS, ZCR). - Spectrogram-based CNN models (trained to predict similarity based on visual data). - User feedback on perceived clarity and trustworthiness of explanations.

Relevant previous work includes deep learning-based music classification using spectrograms and CNNs (e.g., ResNet-50, VGG-16), and feature-based interpretability studies (Nam et al., 2022).

3.7 7. Contribution to Explainable AI (XAI)

This work contributes to the XAI and human-centered AI design communities by: - Introducing perceptually aligned explanations in music recommendation. - Exploring spectrograms as both

input and explanation tools. - Highlighting how users can interact with visual data to enhance trust and satisfaction.

Ultimately, this approach seeks to make music recommendation not only accurate but also **transparent**, **interpretable**, and **emotionally resonant**.

3.8 8. Next Steps

- Implement spectrogram extraction and visualization.
- Train CNN or similarity-based models on spectrograms.
- Compare outputs with traditional feature-based models.
- Conduct user testing to evaluate interpretability and trust.

3.9 References

- Zhang, Y., & Chen, X. (2020). Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1–101.
- Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 30.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144.
- Marconi, L., Matamoros Aragón, R., & Epifania, F. (2023). A Short Review on Explainability for Recommender Systems. CEUR Workshop Proceedings, Vol. 3463.
- Müller, M. (2015). Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Springer.
- Nam, J., Herrera, J., Slaney, M., & Smith III, J. O. (2012, October). Learning Sparse Feature Representations for Music Annotation and Retrieval. In ISMIR (pp. 565-570).

4 2. Preparation

4.1 Step 1: Load and Prepare Data

```
[19]: import pandas as pd

# Load datasets

df_deezer = pd.read_csv("Deezer Data/metadata_DEEZER_active.csv")

df_spotify = pd.read_csv("Spotify Data/train.csv")

# Clean Deezer data

df_deezer_clean = df_deezer.dropna(subset=["country"]).copy()
```

```
# Clean Spotify data
      df_spotify_clean = df_spotify[[
          "track_id", "track_name", "artists", "danceability", "energy", "valence",
          "tempo", "acousticness", "instrumentalness", "speechiness", "track_genre"
      ]].dropna()
      df_spotify_clean["track_name_lc"] = df_spotify_clean["track_name"].str.lower().
       ⇔str.strip()
      df_spotify_clean["artist_lc"] = df_spotify_clean["artists"].str.lower().str.
       ⇔strip()
      # Simulate matched tracks (random pairing)
      sample_matched_spotify = df_spotify_clean.sample(n=100, random_state=1).copy()
      sample_matched_spotify["deezer_item_id"] = df_deezer_clean["deezer_item_id"].
       ⇒sample(n=100, random_state=2).values
      # Merge to add country info
      df_matched = pd.merge(sample_matched_spotify, df_deezer_clean,_
       ⇔on="deezer_item_id")
      df matched.head()
[19]:
                       track_id
                                              track_name
                                                                  artists \
      0 1JiR4RJaZlbZ5b3HG8jkeL
                                 Longtime (feat. Skepta)
                                                            Wizkid; Skepta
      1 6cfNBFSKFB59w08xIFZ0qI
                                  Dom na wiślanym brzegu
                                                          Ivan komarenko
      2 5VcFzH97JEHgXgedErp4cP
                                                Idea 686
                                                             Jayla Darden
      3 7oMBY3VmIxqNVeZ7yneYuN
                                       Me Voy Enamorando
                                                            Chino & Nacho
      4 7g8U2TPh6JPFJK5LgqsNeE
                                          What I've Done
                                                              Linkin Park
         danceability energy valence
                                          tempo
                                                 acousticness instrumentalness \
      0
                0.850
                        0.660
                                 0.622 101.947
                                                       0.4170
                                                                        0.000051
      1
                0.640
                                                                        0.000000
                        0.758
                                 0.849 106.978
                                                       0.4970
      2
                0.712
                        0.347
                                 0.500 135.975
                                                       0.3780
                                                                        0.021200
      3
                0.686
                        0.912
                                 0.511
                                         99.952
                                                       0.0533
                                                                        0.000000
                0.623
                        0.930
                                 0.287 120.119
                                                       0.0141
                                                                        0.000002
                                                                 artist_lc \
         speechiness track_genre
                                            track_name_lc
      0
              0.1690
                       dancehall
                                  longtime (feat. skepta)
                                                             wizkid; skepta
                                   dom na wiślanym brzegu
      1
              0.0675
                           disco
                                                           ivan komarenko
      2
              0.0410
                           chill
                                                  idea 686
                                                              javla darden
      3
              0.0685
                         electro
                                        me vov enamorando
                                                             chino & nacho
      4
              0.0324
                                           what i've done
                                                               linkin park
                          grunge
         deezer_item_id country
      0
                  58552
                             DF.
      1
                  15195
                             DF.
      2
                             FR
                 340815
```

df_deezer_clean = df_deezer_clean.rename(columns={"item_id": "deezer_item_id"})

```
3 265475 FR
4 327431 US
```

```
[14]: import re
      # Helper to clean titles
      def clean title(title):
          if pd.isna(title):
              return None
          title = title.lower()
          title = re.sub(r"\setminus(.*?\setminus)", "", title) # remove anything in ( )
          title = re.sub(r"/.*", "", title) # remove anything after /
          title = re.sub(r"[^a-z0-9\s]", "", title) # remove punctuation
          return title.strip()
      # Helper to extract primary artist
      def clean_artist(artist):
          if pd.isna(artist):
              return None
          artist = artist.lower()
          artist = artist.split(";")[0] # only first artist
          artist = re.sub(r"(feat\.|with).*", "", artist) # remove 'feat.', 'with'
          artist = re.sub(r"[^a-z0-9\s]", "", artist) # remove punctuation
          return artist.strip()
      # Apply to both datasets
      df_deezer_enriched["track_name_clean"] = df_deezer_enriched["track_name"].
       →apply(clean_title)
      df_deezer_enriched["artist_clean"] = df_deezer_enriched["artists"].
       →apply(clean_artist)
      df_spotify_clean["track_name_clean"] = df_spotify_clean["track_name"].
       →apply(clean_title)
      df spotify clean["artist clean"] = df spotify clean["artists"].
       →apply(clean_artist)
      # Now merge on cleaned fields
      df_matched = pd.merge(
          df_deezer_enriched,
          df_spotify_clean,
          on=["track_name_clean", "artist_clean"],
          how="inner"
      )
      # Deduplicate
      df_matched = (
          df matched
```

```
.sort_values("valence", ascending=False)
          .drop_duplicates(subset=["deezer_item_id"])
      )
      # Save
      df_matched.to_csv("Matched Data/deezer_spotify_matched_200_cleaned.csv", __
       ⇒index=False)
      print(f" Matched {len(df_matched)} of 200 with cleaned matching.")
      display(df matched[["track name x", "artists x", "track name y", "artists y"]].
       →head())
       Matched 1 of 200 with cleaned matching.
                            track_name_x artists_x
                                                        track_name_y artists_y
     O Traumtänzerball (Album Version) Michelle Traumtänzerball Michelle
[15]: pip install rapidfuzz
     Collecting rapidfuzz
       Downloading
     rapidfuzz-3.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4
     MB)
                             | 3.4 MB 1.2 MB/s eta 0:00:01
     Installing collected packages: rapidfuzz
     Successfully installed rapidfuzz-3.9.7
     Note: you may need to restart the kernel to use updated packages.
[13]: print(" Sample from enriched Deezer data:")
      print(df_deezer_enriched[["track_name", "artists"]].dropna().drop_duplicates().
       \rightarrowhead(10))
      print("\n Sample from Spotify data:")
      print(df_spotify_clean[["track_name", "artists"]].dropna().drop_duplicates().
       \rightarrowhead(10))
       Sample from enriched Deezer data:
                                                                             artists
                                                 track_name
     4
                                Air (Johann Sebastian Bach)
                                                                        Ed Staginsky
                                    Grande Fratello (remix)
                                                                  Roberto Delledonne
     7
     8
                                                    My Life
                                                                     Mortimer Shuman
     9
                                                   Carousel
                                                                     Michael Jackson
     10
                                  Quincy Jones Interview #3
                                                                        Quincy Jones
     14
               Goodbye (na na na) (Original Radio Version)
                                                                               Rob M
     16 Voice-Over Intro / Voice-Over Session from Thr...
                                                                   Michael Jackson
     17
                                                       Untha Les Secrets De Morphee
     20
                                   A march for new european
                                                                        Jack Or Jive
     21 The Girl Is Mine (2008 with will.i.am) (with w...
                                                                   Michael Jackson
```

```
Sample from Spotify data:
                        track_name
                                                                 artists
     0
                            Comedy
                                                             Gen Hoshino
     1
                  Ghost - Acoustic
                                                            Ben Woodward
     2
                    To Begin Again
                                                  Ingrid Michaelson; ZAYN
     3
       Can't Help Falling In Love
                                                            Kina Grannis
     4
                           Hold On
                                                        Chord Overstreet
     5
              Days I Will Remember
                                                            Tyrone Wells
     6
                     Say Something A Great Big World; Christina Aguilera
     7
                         I'm Yours
                                                              Jason Mraz
     8
                                               Jason Mraz; Colbie Caillat
                             Lucky
     9
                            Hunger
                                                          Ross Copperman
[18]: # Combine title and artist for matching
      df_deezer_enriched["match_key"] = df_deezer_enriched["track_name_clean"] + " -__
       df_spotify_clean["match_key"] = df_spotify_clean["track_name_clean"] + " - " +11

¬df_spotify_clean["artist_clean"]
      spotify_keys = df_spotify_clean["match_key"].dropna().unique().tolist()
      # Updated safe function
      def find_best_match(deezer_key):
          if pd.isna(deezer_key) or not isinstance(deezer_key, str) or deezer_key.
       ⇔strip() == "":
             return pd.Series([None, 0])
         result = process.extractOne(deezer_key, spotify_keys, scorer=fuzz.
       →token_sort_ratio)
          if result is None:
             return pd.Series([None, 0])
         match, score, _ = result
         return pd.Series([match, score])
      # Apply to 200 entries
      df_sample = df_deezer_enriched.head(200).copy()
      df_sample[["best_match", "match_score"]] = df_sample["match_key"].
       →apply(find_best_match)
      # Filter and merge
      df matches fuzzy = df sample[df sample["match score"] >= 90].copy()
      df_spotify_subset = df_spotify_clean[["match_key", "track_id", "track_name",_

¬"artists", "danceability", "energy", "valence",
          "tempo", "acousticness", "instrumentalness", "speechiness", "track_genre"]]
      df_final_fuzzy = pd.merge(
```

```
df_matches_fuzzy,
        df_spotify_subset,
        left_on="best_match",
        right_on="match_key",
        how="left"
    )
    df_final_fuzzy.to_csv("Matched Data/deezer_spotify_matched_200_fuzzy.csv",
      →index=False)
    print(f" Fuzzy-matched {len(df_final_fuzzy)} Deezer tracks (score 90)")
    display(df_final_fuzzy[["track_name_x", "artists_x", "track_name_y", __

¬"artists_y", "match_score"]].head())
     Fuzzy-matched 1 Deezer tracks (score 90)
                         track_name_x artists_x
                                                  track_name_y artists_y \
    O Traumtänzerball (Album Version) Michelle Traumtänzerball Michelle
      match_score
    0
            100.0
    4.2 Step 2: Spectrogram Preparation and Feature Extraction
[2]: # Generate spectrogram placeholder paths
    df_matched["spectrogram_path"] = df_matched.apply(
        lambda row: f"spectrograms/{row['track_name'].replace('/',__
     o'-')}_{row['artists'].split(';')[0]}.png", axis=1
    # Extract audio features
    feature_cols = ['danceability', 'energy', 'valence', 'tempo', 'acousticness', | 
     df_features = df_matched[['track_id'] + feature_cols].set_index('track_id')
    df_features.head()
```

two ole id	danceability	energy	valence	tempo	acousticness	\
-						
1JiR4RJaZlbZ5b3HG8jkeL	0.850	0.660	0.622	101.947	0.4170	
6cfNBFSKFB59w08xIFZ0qI	0.640	0.758	0.849	106.978	0.4970	
5VcFzH97JEHgXgedErp4cP	0.712	0.347	0.500	135.975	0.3780	
7oMBY3VmIxqNVeZ7yneYuN	0.686	0.912	0.511	99.952	0.0533	
7g8U2TPh6JPFJK5LgqsNeE	0.623	0.930	0.287	120.119	0.0141	
	instrumentaln	ess spe	echiness			
track_id						
1JiR4RJaZlbZ5b3HG8jkeL	0.000	051	0.1690			
6cfNBFSKFB59w08xIFZ0qI	0.000	000	0.0675			
	5VcFzH97JEHgXgedErp4cP 7oMBY3VmIxqNVeZ7yneYuN 7g8U2TPh6JPFJK5LgqsNeE track_id 1JiR4RJaZ1bZ5b3HG8jkeL	track_id 1JiR4RJaZlbZ5b3HG8jkeL	track_id 1JiR4RJaZlbZ5b3HG8jkeL 6cfNBFSKFB59w08xIFZ0qI 5VcFzH97JEHgXgedErp4cP 7oMBY3VmIxqNVeZ7yneYuN 7g8U2TPh6JPFJK5LgqsNeE instrumentalness spetrack_id 1JiR4RJaZlbZ5b3HG8jkeL 0.000051	track_id 1JiR4RJaZlbZ5b3HG8jkeL	track_id 1JiR4RJaZlbZ5b3HG8jkeL	track_id 1JiR4RJaZlbZ5b3HG8jkeL

```
      5VcFzH97JEHgXgedErp4cP
      0.021200
      0.0410

      7oMBY3VmIxqNVeZ7yneYuN
      0.000000
      0.0685

      7g8U2TPh6JPFJK5LgqsNeE
      0.000002
      0.0324
```

4.3 Step 3: Build Content-Based Recommender

```
[3]:
                     track_id danceability energy valence
                                                               tempo \
    0 OCyiCor3YLnPcBkZ04cLz2
                                     0.823
                                             0.782
                                                      0.939 109.892
    1 24SDeYAeTFda80UzVI1VR6
                                     0.571
                                             0.747
                                                      0.635
                                                             106.253
    2 6cfNBFSKFB59w08xIFZ0qI
                                     0.640
                                             0.758
                                                      0.849 106.978
       acousticness instrumentalness speechiness similarity
    0
              0.391
                                 0.0
                                           0.1980
                                                     0.999996
    1
              0.478
                                 0.0
                                           0.1700
                                                     0.999995
              0.497
                                 0.0
                                           0.0675
                                                     0.999995
```

4.4 Step 4: Visual Comparison Setup

```
[7]: track_name artists \
0 Longtime (feat. Skepta) Wizkid; Skepta
1 Dom na wiślanym brzegu Ivan komarenko
```

```
2
                                   Weh Di Time
                                                Voicemail; Delly Ranks; Bogle
3 TWIST & TURN (feat. Drake & PARTYNEXTDOOR)
                                                Popcaan; Drake; PARTYNEXTDOOR
  track_genre
                                                 spectrogram_path
    dancehall
                 spectrograms/Longtime (feat. Skepta)_Wizkid.png
0
1
        disco spectrograms/Dom na wiślanym brzegu_Ivan komar...
2
      j-dance
                          spectrograms/Weh Di Time_Voicemail.png
    dancehall spectrograms/TWIST & TURN (feat. Drake & PARTY...
3
```

5 3. Spectrogram Generation and Explanation

5.1 Step 1: Setup and Imports

```
[8]: import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import os
from pathlib import Path

# Create output folder if it doesn't exist
output_dir = Path("spectrograms")
output_dir.mkdir(exist_ok=True)
```

5.2 Step 2: Spectrogram Generator

```
[9]: # Alternative spectrogram generation using scipy to avoid librosa/numba issues
     import matplotlib.pyplot as plt
     from scipy.io import wavfile
     from scipy.signal import spectrogram
     def generate_spectrogram(audio_path, save_path):
         sr, y = wavfile.read(audio_path)
         f, t, Sxx = spectrogram(y, sr)
         plt.figure(figsize=(10, 4))
         plt.pcolormesh(t, f, 10 * np.log10(Sxx + 1e-10), shading='gouraud',
      ⇔cmap='viridis')
         plt.ylabel('Frequency [Hz]')
         plt.xlabel('Time [sec]')
         plt.title('Spectrogram (Scipy)')
         plt.colorbar(label='Intensity [dB]')
         plt.tight_layout()
         plt.savefig(save_path)
         plt.close()
```

5.3 Step 3: Example – Generate Spectrogram for One File

```
[11]: # Install required library (run only once)
      !pip install pydub
     Collecting pydub
       Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)
     Installing collected packages: pydub
     Successfully installed pydub-0.25.1
[12]: # Import required modules
      import numpy as np
      import matplotlib.pyplot as plt
      from scipy.io import wavfile
      from scipy.signal import spectrogram
      from pydub import AudioSegment
      import os
      # Create output directory
      output_dir = "spectrograms"
      os.makedirs(output_dir, exist_ok=True)
      # Define the MP3 input and paths
      mp3_path = "JJ - Wasted Love (Official Audio).mp3" # Your uploaded file
      wav_path = "converted_audio.wav"
      spectrogram_path = os.path.join(output_dir, "wasted_love_spectrogram.png")
      # Convert MP3 to WAV
      audio = AudioSegment.from_mp3(mp3_path)
      audio.export(wav_path, format="wav")
      # Define spectrogram generation function
      def generate_spectrogram(audio_path, save_path):
          sr, y = wavfile.read(audio_path)
          if y.ndim > 1: # Convert stereo to mono if needed
              y = y.mean(axis=1)
          f, t, Sxx = spectrogram(y, sr)
          plt.figure(figsize=(10, 4))
          plt.pcolormesh(t, f, 10 * np.log10(Sxx + 1e-10), shading='gouraud',
       ⇔cmap='viridis')
          plt.ylabel('Frequency [Hz]')
          plt.xlabel('Time [sec]')
          plt.title('Spectrogram')
          plt.colorbar(label='Intensity [dB]')
          plt.tight_layout()
          plt.savefig(save_path)
          plt.close()
```

```
# Generate and save the spectrogram
generate_spectrogram(wav_path, spectrogram_path)
print(f"Spectrogram saved to {spectrogram_path}")
```

Spectrogram saved to spectrograms/wasted_love_spectrogram.png

5.4 Step 4: Optional – Prepare for Clustering or SHAP Explanation

6 4. Download the MP3 from preview_url, Convert, and Generate Spectrogram

```
[]: import requests
     from pydub import AudioSegment
     import librosa
     import librosa.display
     import matplotlib.pyplot as plt
     import numpy as np
     import os
     # === CONFIG ===
     preview_url = "https://p.scdn.co/mp3-preview/..." # Replace with actual_
      ⇔preview_url
     output_dir = "spotify_previews"
     os.makedirs(output dir, exist ok=True)
     mp3_path = os.path.join(output_dir, "track_preview.mp3")
     wav_path = os.path.join(output_dir, "track_preview.wav")
     spectrogram_path = os.path.join(output_dir, "track_spectrogram.png")
     # === 1. Download the preview MP3 ===
     response = requests.get(preview_url)
     with open(mp3_path, "wb") as f:
         f.write(response.content)
     # === 2. Convert MP3 to WAV ===
     audio = AudioSegment.from_mp3(mp3_path)
     audio.export(wav_path, format="wav")
     # === 3. Generate Spectrogram from WAV ===
     y, sr = librosa.load(wav_path, sr=None)
```

```
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
S_DB = librosa.power_to_db(S, ref=np.max)

plt.figure(figsize=(10, 4))
librosa.display.specshow(S_DB, sr=sr, x_axis='time', y_axis='mel',u_cmap='viridis')
plt.colorbar(format='%+2.0f dB')
plt.title('Spectrogram of Spotify Preview')
plt.tight_layout()
plt.savefig(spectrogram_path)
plt.close()

print(f"Spectrogram saved to: {spectrogram_path}")
```