

Машинное обучение в науках о Земле

Михаил Криницкий

K.T.H.

Зав. лабораторией машинного обучения в науках о Земле МФТИ с.н.с. Института океанологии РАН им. П.П. Ширшова

Сокращение размерности

Михаил Криницкий

к.т.н. Зав. лабораторией машинного обучения в науках о Земле МФТИ с.н.с. Института океанологии РАН им. П.П. Ширшова

ПЛАН ЛЕКЦИИ

- Сокращение размерности
 - PCA (Principal Components Analysis, Метод главных компонент)
 - t-SNE (t-distributed Stochastic Neighbor Embedding)*
 - UMAP (Uniform Manifold Approximation and Projection)**

^{*}Hinton, Geoffrey E., and Sam Roweis. "Stochastic neighbor embedding." Advances in neural information processing systems 15 (2002).

^{**}McInnes L., Healy J., Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction // arXiv:1802.03426 [cs, stat]. 2020.

ОЧЕНЬ КРАТКОЕ ВВЕДЕНИЕ В МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - Снижение размерности
 - Кластеризация

Снижение размерности

что у меня есть?

признаковое описание объектов

что я хочу?

снизить размерность признакового описания объектов

Снижение размерности

что у меня есть?

признаковое описание объектов

что я хочу? Так а чо, какие проблемы-то?

снизить размерность признакового описания объектов

Снижение размерности

что у меня есть?

• признаковое описание объектов

что я хочу?

• снизить размерность признакового описания объектов

какие я предъявляю пожелания?

- сохранение отношений близости
- сохранение порядка
- (?) визуализация структуры в данных
- (?) сохранение статистических свойств данных

Идея:

- Предположим, что признаки в наборе данных скоррелированы;
- Перейдем в новые координаты, где признаки полностью раскоррелированы;
- Будем делать это «жадно»: выбирая новые признаки один за другим таким образом, чтобы суммарная объясненная дисперсия с каждой итерацией прирастала максимально.
- Для идеального восстановления исходных признаков необходима исходная размерность новых признаков;
- Для восстановления с потерями достаточно меньшего количества признаков; будем сохранять не менее 9х% дисперсии.

$$X \in \mathbb{R}^D$$

$$cov(X_i, X_j) = \mathbb{E}((X_i - \mu_i)(X_j - \mu_j))$$

$$cov(X_i, X_j) = \mathbb{E}(X_i X_j) - \mu_i \mu_j$$

$$X \in \mathbb{R}^D$$

$$cov(X_i, X_j) = \mathbb{E}\left((X_i - \mu_i)(X_j - \mu_j)\right)$$
 $cov(X_i, X_j) = \mathbb{E}(X_i X_j) - \mu_i \mu_j$
 $cov(X_i, X_j) = cov(X_j, X_i)$
 $cov(X_i, X_i) = Var(X_i)$

$$X \in \mathbb{R}^{D \times N}$$

$$cov(X_i, X_j) = \mathbb{E}\left((X_i - \mu_i)(X_j - \mu_j)\right)$$

$$cov(X_i, X_j) = \mathbb{E}(X_i X_j) - \mu_i \mu_j$$

$$cov(X_i, X_j) = cov(X_j, X_i)$$

$$cov(X_i, X_i) = Var(X_i)$$

$$\Sigma = \mathbb{E}[(X - M)(X - M)^T]$$

$$M = \mathbb{E}(X)$$

 $X \in \mathbb{R}^{D \times N}$

$$\Sigma = \mathbb{E}[X^o X^{o^T}]$$

$$\Sigma \in \mathbb{R}^{D \times D}$$

 Σ — квадратная, симметричная, действительная (=> эрмитова)

Тогда:

 Σ имеет D собственных значений λ_d и собственных векторов ξ_d

$$\Sigma \xi_d = \lambda_d \xi_d$$

(!!!) максимальная дисперсия данных достигается вдоль собственного вектора ξ_d^* , соответствующего максимальному собственному значению λ_d^* .

(!!!) максимальная дисперсия данных достигается вдоль собственного вектора ξ_d^* , соответствующего максимальному собственному значению λ_d^* .

- 1. Центрируем исходные признаки -> X^o ;
- 2. Найдем Σ , найдем собственные значения λ_d и собственные векторы ξ_d матрицы Σ ;
- 3. Отранжируем их по величине собственных значений λ_d по убыванию;
- 4. Возьмем k максимальных собственных значений и соответствующих им собственных векторов;
- 5. умножим исходную матрицу признаков $X^o \in \mathbb{R}^{N \times D}$ на матрицу k собственных векторов ($V_{(k)} \in \mathbb{R}^{D \times k}$) получим матрицу $Z \in \mathbb{R}^{N \times k}$ новых признаков-проекций на собственные векторы;

