CSCI361

Ring Signatures: How to Leak a Secret

Problem

• How to generate an anonymous signature from a high-ranking White

House official

➤ We want to hide who signed the message

Proposed by Rivest, Shamir and Tauman

Who signed?

Ring Signature

- A type of digital signature that can be produced by any member of a group of users who have private keys
- A message signed with a ring signature can be verified by anyone
- Important features
 - ➤ It is impossible (computationally infeasible) to determine which of the group members' keys was used to produce the signature
 - There is no way to revoke the anonymity of a given ring signature
 - Any members in the ring can produce a ring signature without setup

- Setup: User-1 with public key
 P₁=(e₁,N₁) and private key (d₁,N₁);
 User-2 with public key P₂=(e₂,N₂) and private key (d₂,N₂)
- They are using RSA for underlying singing algorithm
- H: A cryptographic hash function like SHA
- E: Symmetric encryption. E⁻¹: Symmetric decryption = D → E is called a Pseudo Random Function (PRF).

- Assume that User-2 is the signer
 - \triangleright User-2 gets his message m and calculate the key k = H(m).
 - ➤ Pick a random glue value v.
 - \triangleright Pick a random x_1 for User-1 and calculate $y_1 = x_1^{e_1} \mod N_1$.
 - Solve an equation for $E_k(y_2 \oplus E_k(y_1 \oplus v))=v$, where E is symmetric encryption, to get y_2 : $y_2 = E^{-1}_k(v) \oplus E_k(y_1 \oplus v)$
 - \triangleright Calculate $x_2 = y_2^{d_2} \mod N_2$.
 - The ring signature is now (P_1, P_2, v, x_1, x_2) .

Signature Verification

- \triangleright Calculate $y_1 = x_1^{e_1} \mod N_1$ and $y_2 = x_2^{e_2} \mod N_2$.
- \triangleright Calculate k = H(m).
- \triangleright Check whether $E_k(y_2 \oplus E_k(y_1 \oplus v))=v$. If yes, the ring signature on m is valid, otherwise, it is invalid.

- Setup: User-1 with public key P_1 =(3,55) and private key (27,55); User-2 with public key P_2 =(5,65) and private key (29,65)
- They are using RSA for underlying singing algorithm
- H: SSHA (4 bit output)
- E: Symmetric encryption. E⁻¹: Symmetric decryption = D

- Assume that User-2 is the signer
 - \triangleright User-2 gets his message m=5 and calculate the key k= 1101 = H(5).
 - ➤ Pick a random glue value v=1010001.
 - Fick a random $x_1 = 3(=0000011)$ for User-1 and calculate $y_1 = x_1^{e_1} \mod N_1 = 3^3 \mod 55 = 27 = 0011011$.
 - ► Solve an equation for $E_k(y_2 \oplus E_k(y_1 \oplus v)) = v \rightarrow E_{1101}(y_2 \oplus E_{1101}(0011011 \oplus 1010001)) = 1010001$ to get y_2 :
 - \checkmark y₂ = E⁻¹₁₁₀₁(1010001) \oplus E₁₁₀₁(0011011 \oplus 1010001) = E⁻¹₁₁₀₁(1010001) \oplus E₁₁₀₁(1001010) = 1010111 \oplus 0100101 = 1110010 mod 65 = 114 mod 65 = 49=0110001 (Assume that E⁻¹₁₁₀₁(1010001) = 1010111) and E₁₁₀₁(1001010) = 0100101)
 - ✓ After y_2 is calculated, we know that $E_{1101}(0110001 \oplus 0100101) = E_{1101}(0010100) = 1010001$

```
(continued)
```

- ightharpoonup Calculate $x_2 = y_2^{d_2} \mod N_2 = 49^{29} \mod 65 = 4 = 0000100$.
- The ring signature is now $(P_1, P_2, v, x_1, x_2) = ((3,55)(5,65),1010001,0000011,0000100).$

Signature Verification

- Calculate $y_1 = x_1^{e_1} \mod N_1 = 0000011^3 \mod 55 = 3^3 \mod 55 = 27$ (=0011011) and $y_2 = x_2^{e_2} \mod N_2 = 0011101^5 \mod 65 = 49$ (=0110001).
- \triangleright Calculate k = H(m)=H(5)=1101.
- ➤ Check whether $E_k(y_2 \oplus E_k(y_1 \oplus v)) = v$. $\rightarrow E_{1101}(0110001 \oplus E_{1101}(0011011 \oplus 1010001)) \rightarrow E_{1101}(0110001 \oplus E_{1101}(1001010)) \rightarrow E_{1101}(0110001 \oplus 0100101) \rightarrow E_{1101}(0010100) = 1010001$ (See page 8)

• Before we desribe n user scheme, assume (without loss of generality) that among n users, "User-n" is always a name for the group member who generates a ring siganture.

✓ Of course anyone in the group can be "User-n"

- User-1 with public key $P_1=(e_1,N_1)$ and private key (d_1,N_1) ; User-2 with public key $P_2=(e_2,N_2)$ and private key (d_2,N_2) ;..., User-(n-1) with public key $P_{n-1}=(e_{n-1},N_{n-1})$ and private key (d_{n-1},N_{n-1})
 - \triangleright User-n gets her message m and calculate the key k = H(m).
 - ➤ Pick a random glue value v.
 - ightharpoonup Pick a random x_1 for User-1, x_2 for User-2, ..., x_{n-1} for User-(n-1) and calculate $y_1 = x_1^{e_1} \mod N_1$, $y_2 = x_2^{e_2} \mod N_1$, ..., $y_{n-1} = x_{n-1}^{e_{n-1}} \mod N_{n-1}$.

- Solve an equation for $E_k(y_n \bigoplus E_k(y_{n-1} \bigoplus E_k(\bullet \bullet \bullet E(_k(y_1 \bigoplus v) \bullet \bullet \bullet)))=v$, where E is symmetric encryption.
- \triangleright Calculate $x_n = y_n^{d_n} \mod N_n$.
- The ring signature is now $(P_1, P_2, ..., P_n, v, x_1, x_2, ..., x_n)$.