<u>Aula 22</u>

Professor:

Mauricio Kischinhevsky

Estrutura da matéria (Parte 2)

Conteúdo:

Estrutura da matéria: A dualidade onda-partícula e a física quântica.

Interpretação da função de onda

Equação de Schrödinger

A função de onda relativa às ondas em uma corda é o deslocamento dos pontos da corda. Da mesma forma a das ondas sonoras pode fornecer o deslocamento longitudinal das moléculas de ar. Também as ondas eletromagnéticas têm, na função de onda, a descrição dos valores dos campos elétricos e magnéticos. O que poderia, então, fornecer a função de onda das ondas de elétrons? Concluiu-se que ela representaria uma densidade de probabilidade (P(x)), ou seja, a probabilidade de se encontrar a partícula na região em questão quando multiplicada pelo infinitésimo correspondente à região, dx. Há que se considerar que, se a partícula se encontra no domínio, a "probabilidade" de encontrá-la, seja lá onde for, é "1 Isto provê a condição de normalização. Assim,

$$P(x) = \psi^2(x)$$
 sendo $\int_{-\infty}^{\infty} \psi^2(x) dx = 1$.

Exemplo:

Uma partícula puntiforme clássica move-se na região confinada 0 < x < 8. Determine a densidade de probabilidade P(x); a probabilidade de encontrar a partícula em x=2; a probabilidade de encontrar a partícula entre x=3,0 e x=3,4.

Resposta:

Como a posição inicial da partícula não é conhecida ela pode estar em qualquer lugar de 0<x<8, com a mesma probabilidade. Assim, P(x)=P0, e P(x)=0, x<0 ou x>8. O valor P0 deve resultar da condição de normalização.

$$\int_{-\infty}^{\infty} \psi^{2}(x)dx = P_{0} \times (8cm) = 1 \to P_{0} = \frac{1}{8cm}.$$

Evidentemente, a probabilidade de a partícula estar no ponto específico (intervalo de tamanho nulo em torno do ponto) x=2 é P(2). $\Delta = x/(8cm)=0$ No caso do intervalo de tamanho x=3,4cm-3,0cm=0,4cm, ter-se-á a probabilidade x=3,4cm-3,0cm=0,4cm, ter-se-á a probabilidade x=3,4cm-3,0cm=0,4cm, ter-se-á a

A dualidade onda-partícula se relaciona diretamente com a ambigüidade de ondas eletromagnéticas e partículas poderem exibir propriedades corpusculares e ondulatórias. Qual seria, então o formalismo adequado para descrever seus comportamentos? Considere o caso do experimento das duas fendas em que se envia apenas um elétron a partir da fonte antes do anteparo com as fendas. Ocorre de o elétron ser muito provavelmente detectado nos pontos correspondentes a máximos de interferência e a chance de ele ser detectado em pontos em que a diferença de percurso a partir das duas fendas coincide com um número ímpar de meios comprimentos de onda.

Princípio da Incerteza

Este princípio fundamental estabelece que é impossível medir simultaneamente a posição e o momento de uma partícula com muita precisão.

Observe que, para "ver" uma partícula é preciso enviar pelo menos um fótor sobre ela. Por causa da difração, determina-se a posição com uma incerteza da ordem de $\Delta X \sim \lambda$. Para reduzir a imprecisão pode-se utiliza radiação de pequeno comprimento de onda.

Para determinar o momento p_x de uma partícula pode-se medir a posição em dois instantes de tempo vizinhos e calcular sua velocidade. Se a luz usada tiver comprimento de ondà , os fótons terão momento h/p_x . Com o espalhamento do fóton, o momento da partícula se altera de modo incontrolável. Portanto, a incerteza do momen Δ p_x do corpo introduzida pela observação com os fótons é da ordem de h/ . Ou, grosso modo, $\Delta X. \Delta p_x \sim h.$

Continuação:

Finalmente, enunciando de forma precisa essa descrição por meio do cálculo rigoroso dos desvios-padrão das medidas de posição e momento, obtém-se o enunciado conforme formulado por Werner Heisenberg em 1927, ou seja,

$$(\Delta x) \cdot (\Delta p_x) \ge \frac{1}{2} \frac{h}{2\pi},$$

sendo $h/2\pi$ denominad \hbar ("h cortado"). Na prática, as incertezas das medidas experimentais normalmente são muito maiores do que os limites inferiores acima

Partícula em uma caixa

Quando uma partícula clássica está confinada, a regra de que ela tem um comprimento de onda de deBroglie associado não é observada e quaisquer valores para a posição e o momento seriam possíveis. No caso de uma partícula para a qual a visão quântica é necessária, tem-se que a localização da partícula corresponderá à densidade de probabilidade. Os comprimentos de onda permitidos para a partícula serão correspondentes a $L=n.\lambda_n/2$, n=1,2,3,...

Com ajuda da relação de deBrogli $p_n = h/\lambda_n$, pode-se calcular a energia cinética como $E_n = p_n^2/(2.m) = h^2/(2.m)$.

Ou seja, $E_n = n^2 . E_1$, $E_1 = h^2 / (8.m.L^2)$.

Funções de onda

Para o problema da partícula na caixa escreve-se (normalização)

$$\psi_n(x) = A_n \sin(n\pi \frac{x}{L}) \to A_n = \sqrt{\frac{2}{L}}.$$

Continuação:

O número n é denominado número quântico e caracteriza também a energia (máximos denotam pontos de maior probabilidade).

Para grandes números quânticos os cálculos clássico e quantico fornecem o mesmo (Princípio da Correspondência de Bohr)

Exemplo:

Um elétron está em uma caixa unidimensional de 0,1nm de comprimento. Determine as energias do estado fundamental até o estado n=3 em elétrons-volt, determinando a seguir os comprimentos de onda dos fótons emitidos em transições de n=3 para n=2 e de n=3 para n=1.

Resposta:

$$E_1 = \frac{(h \cdot c)^2}{8(m \cdot c^2)L^2} = \frac{(1240eV \cdot nm)^2}{8(5, 11 \times 10^5 eV)(0, 1nm)^2} = 37, 6eV,$$

$$E_n = n^2 E_1, \rightarrow E_2 = (2)^2 \cdot E_1 = 150 eV, E_3 = 338 eV.$$

Assim, os comprimentos de onda pedidos serão

$$\lambda_{32} = \frac{(h \cdot c)}{E_3 - E_2} = \frac{1240eV \cdot nm}{338eV - 150eV} = 6,6nm,$$

$$\lambda_{31} = \frac{(h \cdot c)}{E_3 - E_2} = \frac{1240eV \cdot nm}{338eV - 37, 6eV} = 4,13nm,$$

Valor esperado e quantização de energia

Valores esperados

Também denominado esperança matemática, expressa a ponderação para uma grandeza qualquer sujeita a uma distribuição de probabilidade. Em geral, o valor esperado para uma grandeza f(x) é

$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x)\psi^2(x)dx.$$

Exemplo:

Uma partícula em uma caixa unidimensional de comprimento L está no estado fundamental. Calcule a probabilidade de se encontrar a partícula no intervalo de tamanho 0,01L centrado em L/2 e na região 0<x<L/4.

Resposta:

no primeiro caso, tratando-se de um intervalo pequeno pode-se considerar como uma integral sobre uma faixa (aproximação por platô); no segundo, a integração é requerida.

Tem-se então,
$$\mathrm{com} (\psi(x) = \sqrt{\frac{2}{L} \sin(\pi \frac{x}{L})}$$
 , temos

$$\psi^{2}(L/2) = \frac{2}{L}\sin^{2}(\pi \frac{L/2}{L}) = \frac{2}{L}$$

e, portanto,

$$P = \psi^2(L/2) \cdot (\Delta x) = \frac{2}{L} \times 0,01L = 0,02.$$

Resposta (continuação):

No caso do intervalo que não pode ser considerado infinitesimal, com auxílio de mudança de variável par $\theta=\pi x/L$, tem-se

$$P = \int_0^{L/4} \psi^2(x) dx$$

$$= \int_0^{L/4} \frac{2}{L} \sin^2 \frac{\pi x}{L} dx = \frac{2}{L} \int_0^{\pi/4} \sin^2 \theta d\theta = \frac{2}{\pi} \left(\frac{\pi}{8} - \frac{1}{4} \right) = 0,091.$$

Quantização da energia no átomo de hidrogênio

Elétron ligado a um próton através de força relacionada como o inverso do quadrado da distância entre eles. A energia pode ser igualada a zero quando o elétron estiver a distância infinita do próton. Assim, para distâncias finitas a energia é negativa. As energias também são descritas por número quântico n, da seguinte forma:

