1. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-19x^2 + 7x + 3 = 0$$

- A. $x_1 \in [-16.61, -16.43]$ and $x_2 \in [16.54, 17.56]$
- B. $x_1 \in [-0.28, -0.15]$ and $x_2 \in [0.44, 0.98]$
- C. $x_1 \in [-1.31, -0.42]$ and $x_2 \in [0.19, 0.48]$
- D. $x_1 \in [-12.62, -11.26]$ and $x_2 \in [4.67, 5.14]$
- E. There are no Real solutions.
- 2. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$10x^2 + 33x - 54 = 0$$

- A. $x_1 \in [-10, -8.4]$ and $x_2 \in [0.49, 1.1]$
- B. $x_1 \in [-5.4, -4.3]$ and $x_2 \in [1.13, 1.66]$
- C. $x_1 \in [-3.2, 0.2]$ and $x_2 \in [3.45, 4.34]$
- D. $x_1 \in [-45.7, -43.9]$ and $x_2 \in [11.88, 12.65]$
- E. $x_1 \in [-16.6, -11.8]$ and $x_2 \in [-0.14, 0.57]$
- 3. Graph the equation below.

$$f(x) = (x+2)^2 - 18$$

X

A.

С.

E. None of the above.

4. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

A.
$$a \in [-1.7, -0.3], b \in [-5, -3], \text{ and } c \in [-2, 0]$$

B.
$$a \in [-1.7, -0.3], b \in [-1, 7], \text{ and } c \in [-2, 0]$$

C.
$$a \in [-0.5, 1.6], b \in [-5, -3], \text{ and } c \in [0, 5]$$

D.
$$a \in [-0.5, 1.6], b \in [-5, -3], \text{ and } c \in [6, 7]$$

E.
$$a \in [-0.5, 1.6], b \in [-1, 7], \text{ and } c \in [6, 7]$$

5. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 - 33x - 10$$

- A. $a \in [1.92, 2.94], b \in [-5, 0], c \in [24, 34], and <math>d \in [-1, 3]$
- B. $a \in [0.57, 1.03], b \in [-49, -40], c \in [0, 2], and <math>d \in [9, 14]$
- C. $a \in [11.87, 12.58], b \in [-5, 0], c \in [4, 5], and <math>d \in [-1, 3]$
- D. $a \in [5.38, 6.08], b \in [-5, 0], c \in [7, 14], and <math>d \in [-1, 3]$
- E. None of the above.
- 6. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 + 15x - 54 = 0$$

- A. $x_1 \in [-45.96, -44.18]$ and $x_2 \in [29.57, 30.1]$
- B. $x_1 \in [-2.29, -1.39]$ and $x_2 \in [1.14, 1.28]$
- C. $x_1 \in [-3.98, -3.12]$ and $x_2 \in [0.57, 0.64]$
- D. $x_1 \in [-9.7, -8.02]$ and $x_2 \in [0.05, 0.25]$
- E. $x_1 \in [-1.35, 0.14]$ and $x_2 \in [3.43, 3.76]$
- 7. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

A. $a \in [-1, 0], b \in [7, 12], \text{ and } c \in [-14, -7]$

B.
$$a \in [-1, 0], b \in [-8, -4], \text{ and } c \in [-14, -7]$$

C.
$$a \in [0, 5], b \in [7, 12], \text{ and } c \in [18, 22]$$

D.
$$a \in [0, 5], b \in [-8, -4], \text{ and } c \in [18, 22]$$

E.
$$a \in [-1, 0], b \in [-8, -4], \text{ and } c \in [-21, -17]$$

8. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-18x^2 + 8x + 2 = 0$$

A.
$$x_1 \in [-0.3, 0]$$
 and $x_2 \in [0.47, 0.75]$

B.
$$x_1 \in [-0.9, -0.5]$$
 and $x_2 \in [-0.4, 0.4]$

C.
$$x_1 \in [-11.7, -10.7]$$
 and $x_2 \in [3.19, 3.82]$

D.
$$x_1 \in [-15.4, -13.3]$$
 and $x_2 \in [13.48, 14.68]$

- E. There are no Real solutions.
- 9. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$16x^2 + 8x - 15$$

A.
$$a \in [1.04, 3.02], b \in [-3, -1], c \in [7.36, 8.39], and $d \in [3, 8]$$$

B.
$$a \in [7.33, 9.11], b \in [-3, -1], c \in [1.17, 3.37], and $d \in [3, 8]$$$

C.
$$a \in [-0.67, 1.7], b \in [-15, -11], c \in [0.58, 1.89], and d \in [20, 22]$$

D.
$$a \in [2.63, 5.47], b \in [-3, -1], c \in [3.97, 5.28], and $d \in [3, 8]$$$

- E. None of the above.
- 10. Graph the equation below.

$$f(x) = -(x+1)^2 - 13$$

A.

В.

С.

D.

E. None of the above.

5170-5105 Summer C 2021