Nekonečné rady Funkčné rady

Aleš Kozubík

Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline

18. októbra 2011

Bodová konvergencia a obor konvergencie

Definícia (Bodová konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ bodovo konverguje na množine $M \subseteq \bigcap D(f_n)$ k funkcii f(x) ak:

Bodová konvergencia a obor konvergencie

Definícia (Bodová konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ bodovo konverguje na množine $M \subseteq \bigcap D(f_n)$ k funkcii f(x) ak: $\forall x \in M$ a $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N}$ také, že $\forall n \geq n_0$ platí $|f_n(x) - f(x)| < \varepsilon$.

Bodová konvergencia a obor konvergencie

Definícia (Bodová konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ bodovo konverguje na množine $M \subseteq \bigcap D(f_n)$ k funkcii f(x) ak: $\forall x \in M$ a $\forall \varepsilon > 0$ existuje $n_0 \in \mathbb{N}$ také že $\forall n > n_0$ platí $|f_n(x)|$

 $\forall x \in M \text{ a } \forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N}$ také, že $\forall n \geq n_0$ platí $|f_n(x) - f(x)| < \varepsilon$.

Píšeme lim $f_n(x) = f(x)$ pre $x \in M$ alebo $f_n \to f$ na M.

Bodová konvergencia a obor konvergencie

Definícia (Bodová konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ bodovo konverguje na množine $M \subseteq \bigcap D(f_n)$ k funkcii f(x) ak: $\forall x \in M$ a $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N}$ také, že $\forall n \geq n_0$ platí $|f_n(x) - f(x)| < \varepsilon$.

Píšeme lim $f_n(x) = f(x)$ pre $x \in M$ alebo $f_n \to f$ na M.

Definícia (Obor konvergencie)

Ak M je množina všetkých hodnôt z $\bigcap D(f_n)$, pre ktoré postupnosť $f_n(x)$ konverguje, tak ju nazývame obor konvergencie.

- Určte obor konvergencie postupnosti $\{x^n\}$. Zobrazte niekoľko členov a odhadnite limitnú funkciu.
- Nech $f_n(x) = (1 x^2)^n$. Určte obor konvergencie, zobrazte niekoľko členov a odhadnite limitnú funkciu.
- Nech $f_n(x) = \frac{1}{1+nx^2}$. Určte obor konvergencie, zobrazte niekoľko členov a odhadnite limitnú funkciu.
- Nech $f_n(x) = \frac{2}{\pi} \operatorname{arctg}(nx)$. Určte obor konvergencie, zobrazte niekoľko členov a odhadnite limitnú funkciu.
- Nech $f_n(x) = (1 + \frac{x}{n})^n$. Určte obor konvergencie, zobrazte niekoľko členov a odhadnite limitnú funkciu.

Rovnomerná konvergencia postupnosti funkcií

Definícia (Rovnomerná konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ konverguje na množine $M \subseteq \bigcap D(f_n)$ rovnomerne k funkcii f(x) ak:

Rovnomerná konvergencia postupnosti funkcií

Definícia (Rovnomerná konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ konverguje na množine $M \subseteq \bigcap D(f_n)$ rovnomerne k funkcii f(x) ak: $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N}$ také, že $\forall n \geq n_0$ a $\forall x \in M$ platí

$$|f_n(x)-f(x)|<\varepsilon.$$

Rovnomerná konvergencia postupnosti funkcií

Definícia (Rovnomerná konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ konverguje na množine $M \subseteq \bigcap D(f_n)$ rovnomerne k funkcii f(x) ak: $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N}$ také, že $\forall n \geq n_0$ a $\forall x \in M$ platí

$$|f_n(x)-f(x)|<\varepsilon.$$

Píšeme $f_n \rightrightarrows f$ na M.

Rovnomerná konvergencia postupnosti funkcií

Definícia (Rovnomerná konvergencia)

Nech $f_n(x)$ je postupnosť funkcií. Hovoríme, že postupnosť $f_n(x)$ konverguje na množine $M \subseteq \bigcap D(f_n)$ rovnomerne k funkcii f(x) ak: $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N}$ také, že $\forall n \geq n_0$ a $\forall x \in M$ platí

$$|f_n(x)-f(x)|<\varepsilon.$$

Píšeme $f_n \Rightarrow f$ na M.

V čom je rozdiel bodová ⇔ rovnomerná konvergencia

Bodová: $\forall x \in M$ a $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N} \Rightarrow n = n(x, \varepsilon)$, teda pre každé x iné n_0 .

Rovnomerná: $\forall \varepsilon > 0$, existuje $n_0 \in \mathbb{N} \Rightarrow n = n(\varepsilon)$ a platí $\forall x \in M$. Teda jednotné n_0 spoločné pre všetky x.

- ① Ukážte, že postupnosť $\{x^n\}$ konverguje bodovo, ale nie rovnomerne.
- ② Nech $f_n(x) = \frac{1}{1+nx}, x > 0$. Potom $\lim f_n(x) = 0$ Ukážte, že táto konvergencia je rovnomerná na (a, ∞) pre každé a > 0, ale nie na $(0, \infty)$.
- **3** Nech $f_n(x) = x + \frac{1}{n}\sin x, x \in (-\infty, \infty)$. Ukážte, že $f_n \rightrightarrows x$.
- **1** Nech $f_n(x) = \frac{2nx}{1+n^2x^2}$. Rozhodnite o konvergencii na intervaloch $\langle 0, 1 \rangle$ a $\langle 1, 2 \rangle$.

Súčet nekonečného funkčného radu

Definícia (Bodová konvergencia funkčného radu)

Nech $f_n(x)$ je postupnosť funkcií, $M\subseteq \bigcap D(f_n)$. Pre $n\in \mathbb{N}$ položme $s_n(x)=\sum_{i=1}^n f_i(x)$. Hovoríme, že rad $\sum_{n=1}^\infty f_n(x)$ bodovo konverguje na množine M a má súčet s(x) ak na množine M platí $s_n(x)\to s(x)$.

Súčet nekonečného funkčného radu

Definícia (Bodová konvergencia funkčného radu)

Nech $f_n(x)$ je postupnosť funkcií, $M\subseteq \bigcap D(f_n)$. Pre $n\in \mathbb{N}$ položme $s_n(x)=\sum_{i=1}^n f_i(x)$. Hovoríme, že rad $\sum_{n=1}^\infty f_n(x)$ bodovo konverguje na množine M a má súčet s(x) ak na množine M platí $s_n(x)\to s(x)$.

Oborom konvergencie nazývame množinu $M \subseteq D = \bigcap D(f_n)$, $M = \{x \in D, \sum f_n(x) \mid \text{konverguje}\}.$

Súčet nekonečného funkčného radu

Definícia (Bodová konvergencia funkčného radu)

Nech $f_n(x)$ je postupnosť funkcií, $M\subseteq \bigcap D(f_n)$. Pre $n\in \mathbb{N}$ položme $s_n(x)=\sum_{i=1}^n f_i(x)$. Hovoríme, že rad $\sum_{n=1}^\infty f_n(x)$ bodovo konverguje na množine M a má súčet s(x) ak na množine M platí $s_n(x)\to s(x)$.

Oborom konvergencie nazývame množinu $M \subseteq D = \bigcap D(f_n)$, $M = \{x \in D, \sum f_n(x) \text{ konverguje}\}.$

Definícia (Rovnomerná konvergencia funkčného radu)

Hovoríme, že rad $\sum f_n(x)$ konverguje rovnomerne ku svojmu súčtu, ak pre postupnosť čiastočných súčtov platí $s_n(x) \rightrightarrows s(x)$.

- Nájdite obor konvergencie funkčného radu $\sum_{n=1}^{\infty} \ln^n x$.
- 2 Vyšetrite obor konvergencie funkčného radu $\sum_{n=1}^{\infty} x^n$.
- **3** Vyšetrite obor konvergencie funkčného radu $\sum_{n=1}^{\infty} x^n \operatorname{tg} \frac{x}{2^n}$.
- Určte obor konvergencie funkčného radu $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$.
- Určte obor konvergencie funkčného radu $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \cdot 2^n}$.

Kritériá rovnomernej konvergencie Weirstrassovo kritérium

Weirstrassovo kritérium

Nech $f_n(x)$ je postupnosť funkcií, $M\subseteq\bigcap D(f_n)$. Nech pre každé $n\in\mathbb{N}$ a každé $x\in M$ platí $|f_n(x)|\leq a_n$. Ak číselný rad $\sum_{n=1}^\infty a_n$ konverguje, tak funkčný rad $\sum f_n(x)$ konverguje absolútne a rovnomerne na M.

Kritériá rovnomernej konvergencie Weirstrassovo kritérium

Weirstrassovo kritérium

Nech $f_n(x)$ je postupnosť funkcií, $M\subseteq\bigcap D(f_n)$. Nech pre každé $n\in\mathbb{N}$ a každé $x\in M$ platí $|f_n(x)|\leq a_n$. Ak číselný rad $\sum_{n=1}^\infty a_n$ konverguje, tak funkčný rad $\sum f_n(x)$ konverguje absolútne a rovnomerne na M.

Poznámka

Nekonečný funkčný rad $\sum_{n=1}^{\infty} f_n(x)$ konverguje absolútne na M, ak na M konverguje funkčný rad $\sum_{n=1}^{\infty} |f_n(x)|$.

Vyšetrite konvergenciu radov

- 3 $\sum_{n=1}^{\infty} \frac{1}{n^x}$. (Tzv. Riemannova dzéta funkcia $\zeta(x)$).

Kritériá rovnomernej konvergencie Dirichletovo kritérium

Dirichletovo kritérium

Nech $f_n(x)$ a $g_n(x)$ sú postupnosti funkcií, $M \subseteq \bigcap D(f_n) \cap \bigcap D(g_n)$. Nech postupnosť čiastočných súčtov radu $\sum f_n(x)$ je rovnomerne ohraničená na M a postupnosť $g_n(x)$ je monotónna a $g_n \rightrightarrows 0$ na M. Potom rad $\sum g_n(x)f_n(x)$ konverguje rovnomerne na M.

Kritériá rovnomernej konvergencie

Dirichletovo kritérium

Nech $f_n(x)$ a $g_n(x)$ sú postupnosti funkcií, $M \subseteq \bigcap D(f_n) \cap \bigcap D(g_n)$. Nech postupnosť čiastočných súčtov radu $\sum f_n(x)$ je rovnomerne ohraničená na M a postupnosť $g_n(x)$ je monotónna a $g_n \rightrightarrows 0$ na M. Potom rad $\sum g_n(x)f_n(x)$ konverguje rovnomerne na M.

Poznámka

Postupnosť funkcií $f_n(x)$ nazývame, že je: rovnomerne ohraničená na M, ak $\exists k \in \mathbb{R}^+$ také, že $\forall n \in \mathbb{N}$ a $\forall x \in M$ platí $|f_n(x)| \leq k$, nerastúca (neklesajúca) na M, ak číselná postupnosť $\{f_n(x)\}$ je nerastúca (neklesajúca) $\forall x \in M$.

Kritériá rovnomernej konvergencie

Dirichletovo kritérium

Nech $f_n(x)$ a $g_n(x)$ sú postupnosti funkcií, $M \subseteq \bigcap D(f_n) \cap \bigcap D(g_n)$. Nech postupnosť čiastočných súčtov radu $\sum f_n(x)$ je rovnomerne ohraničená na M a postupnosť $g_n(x)$ je monotónna a $g_n \rightrightarrows 0$ na M. Potom rad $\sum g_n(x)f_n(x)$ konverguje rovnomerne na M.

Dôsledok

Nech $f_n(x)$ je postupnosť funkcií a postupnosť jej čiastočných súčtov je rovnomerne ohraničená na M. Nech $\{a_n\}$ je monotónna číselná postupnosť, taká, že lim $a_n=0$. Potom rad $\sum a_n f_n(x)$ konverguje na M rovnomerne.

Ukážte, že rad

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$

konverguje rovnomerne na $\langle \delta, 2\pi - \delta \rangle$, kde $0 < \delta < \pi$.

Rozhodnite o rovnomernej konvergencii radu

$$\sum_{n=1}^{\infty} \frac{\sin x \sin nx}{\sqrt{n+x}},$$

ak
$$x \in (0, \infty)$$
.

Zachovanie spojitosti

Nech $f_n(x)$ je postupnosť funkcií a nech $f_n(x) \rightrightarrows f(x)$ $(\sum f_n(x) \rightrightarrows s(x))$ na intervale $J, x_0 \in J$. Ak všetky $f_n(x)$ sú všetky spojité v bode x_0 resp. na intervale J, tak aj funkcia f(x), (s(x)) je spojitá v bode x_0 resp. na intervale J.

Príklady:

Postupnosti

Funkcie $f_n(x)$ sú spojité, ale ich limita spojitá nie je.

Limitný prechod za integračným znakom

Nech $f_n(x)$ je postupnosť funkcií a nech $f_n(x) \rightrightarrows f(x)$ $(\sum f_n(x) \rightrightarrows s(x))$ na intervale $\langle a,b \rangle$, $x_0 \in J$ a nech funkcie $f_n(x)$ sú integrovateľné na $\langle a,b \rangle$. Potom je aj funkcia f(x) (s(x)) integrovateľná na intervale $\langle a,b \rangle$ a platí

$$\int_a^b f(x) dx = \int_a^b \lim f_n(x) dx = \lim \int_a^b f_n(x) dx$$

resp.

$$\int_a^b s(x) dx = \int_a^b \sum f_n(x) dx = \sum \int_a^b f_n(x) dx.$$

Limitný prechod za integračným znakom

Nech $f_n(x)$ je postupnosť funkcií a nech $f_n(x) \rightrightarrows f(x)$ $(\sum f_n(x) \rightrightarrows s(x))$ na intervale $\langle a,b \rangle$, $x_0 \in J$ a nech funkcie $f_n(x)$ sú integrovateľné na $\langle a,b \rangle$. Potom je aj funkcia f(x) (s(x)) integrovateľná na intervale $\langle a,b \rangle$ a platí

$$\int_a^b f(x) dx = \int_a^b \lim f_n(x) dx = \lim \int_a^b f_n(x) dx$$

resp.

$$\int_a^b s(x) dx = \int_a^b \sum f_n(x) dx = \sum \int_a^b f_n(x) dx.$$

Význam

Rovnomerne konvergentú postupnosť resp. rad je možné integrovať člen po člene.

- ① Postupnosť $f_n(x) = 2nx e^{-nx^2}$ na intervale (0, 1).
- 2 Určte súčet radu $\sum \frac{1}{n2^n}$. (Návod: Uvážte, že $\int x^{n-1} dx = \frac{x^n}{n} + C$.
- **3** Vypočítajte určitý integrál $\int_0^{2\pi} s(x) dx$, kde funkcia

$$s(x) = 1 + \frac{1}{3}\cos x + \frac{1}{3^2}\cos 2x + \dots + \frac{1}{3^n}\cos nx + \dots$$

Derivovanie člen po člene

Nech $f_n(x)$ je postupnosť funkcií, ktoré majú na otvorenom intervale J derivácie $f'_n(x)$. Nech postupnosť $f_n(x)$ (rad $\sum f_n(x) = s(x)$) konverguje na intervale J, a nech na J rovnomerne konverguje postupnosť $f'_n(x)$ (rad $\sum f'_n(x)$). Potom funkcia $f(x) = \lim f_n(x)$ (s(x)) má na intervale J deriváciu a platí

$$f'(x) = (\lim f_n(x))' = \lim f'_n(x),$$

resp.

$$s'(x) = \left(\sum f_n(x)\right) = \sum f'_n(x).$$

Derivovanie člen po člene

Nech $f_n(x)$ je postupnosť funkcií, ktoré majú na otvorenom intervale J derivácie $f'_n(x)$. Nech postupnosť $f_n(x)$ (rad $\sum f_n(x) = s(x)$) konverguje na intervale J, a nech na J rovnomerne konverguje postupnosť $f'_n(x)$ (rad $\sum f'_n(x)$). Potom funkcia $f(x) = \lim f_n(x)$ (s(x)) má na intervale J deriváciu a platí

$$f'(x) = (\lim f_n(x))' = \lim f'_n(x),$$

resp.

$$s'(x) = \left(\sum f_n(x)\right) = \sum f'_n(x).$$

Význam

Rovnomerne konvergentú postupnosť resp. rad je možné derivovať člen po člene.

- ① Určte súčet radu $\sum \frac{n}{4^n}$. (Návod: Uvážte, že $(x^n)' = nx^{n-1}$.
- Ukážte, že funkcia

$$s(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$$

je diferencovateľná na $(-\infty, \infty)$.

3 Nájdite obor konvergencie a súčet radu $\sum n^2 x^n$.

Mocninový (potenčný) rad

Definícia (Mocninový rad)

Nech $\{a_n\}$ je postupnosť, $x_0 \in \mathbb{R}$. Mocninovým (potenčným) radom so stredom x_0 a koeficientmi a_n nazývame funkčný rad v tvare

$$a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n+\cdots=\sum_{n=0}^{\infty}a_n(x-x_0)^n.$$

Poznámka

Špeciálne, pre $x_0=0$ máme rad $\sum a_nx^n$. Pretože jednoduchou substitúciou $x-x_0=z$ je možné mocninový rad s ľubovoľným stredom previesť na mocninový rad so stredom v začiatku, budeme sa ďalej zaoberať iba radmi tvaru $\sum a_nx^n$.

Obor konvergencie mocninového radu

Veta

Nech $\sum a_n x^n$ je mocninový rad a nech

$$a = \limsup \sqrt[n]{|a_n|}.$$

Ak je a=0, rad konverguje pre každé $x\in\mathbb{R}$ (hovoríme, že rad vždy konverguje).

Ak je $a=\infty$, rad diverguje pre každé $x\in\mathbb{R}, x\neq 0$ (hovoríme, že rad vždy diverguje).

Ak je $0 < a < \infty$, rad absolútne konverguje pre $|x| < \frac{1}{a}$ a diverguje pre $|x| > \frac{1}{a}$.

Číslo $r = \frac{1}{a}$ nazývame polomer konvergencie a interval (-r, r) konvergenčný interval.

- Nájdite polomer konvergencie radu $\sum_{n=0}^{\infty} (1+\frac{1}{n})^{n^2} x^n$.
- ② Nájdite polomer (obor) konvergencie radu $\sum \frac{x^n}{(n+1)5^n}$.
- Nájdite polomer konvergencie radu $\sum (-1)^n \left[\frac{2^n(n!)^2}{(2n+1)!}\right]^p x^n$, kde $p \in \mathbb{R}$.
- **1** Nájdite polomer konvergencie radu $\sum 2^n x^{2n}$.

Vlastnosti mocninových radov

Veta

Nech mocninový rad $\sum a_n x^n$ má polomer konvergencie r>0. Potom tento rad konverguje rovnomerne na každom uzavretom podintervale $\langle -\rho, \rho \rangle$ intervalu (-r, r).

Dôsledky

Pre mocninový rad s polomerom konvergencie r > 0 platí:

- $(\sum a_n x^n)' = \sum (a_n x^n)' = \sum n a_n x^{n-1}.$

- vyjadrite funkciu $\ln(1+x)$ ako mocninový rad a s jeho pomocou vyjadrite súčet Leibnitzovho radu $\sum (-1)^{n-1} \frac{1}{n}$
- ② Určte polomer konvergencie a súčet radu $\sum_{n=1}^{\infty} \frac{x^{4n-3}}{4n-3}$.
- **1** Určte polomer konvergencie a súčet radu $\sum_{n=1}^{\infty} n(n+2)x^n$.

Taylorov rad

Definícia (Taylorov rad)

Nech f(x) je funkcia, ktorá má v bode $x_0 \in \mathbb{R}$ derivácie všetkých rádov. Pod Taylorovým radom tejto funkcie v bode x_0 rozumieme mocninový rad

$$f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \cdots,$$

tj. rad

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Ak je $x_0 = 0$, hovoríme o Maclaurinovom rade, ktorý má tvar

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

990

Taylorov rad

Konvergencia Taylorovho radu

Definícia (Taylorov zvyšok)

Taylorovým zvyškom nazývame funkciu $R_n(x)$, pre ktorú platí

$$R_n(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$
 kde $\xi \in J, \xi \neq x, x_0$.

Veta

Nech funkcia f má v bode $x_0 \in \mathbb{R}$ derivácie všetkých rádov. Taylorov rad funkcie f v bode x_0 konverguje na nejakom intervale J obsahujúcom bod x_0 k funkcii f:

- a) Práve vtedy ak pre postupnosť Taylorových zvyškov platí $\lim R_n = 0$ na J.
- b) Postupnosť derivácií $f^{(n)}$ je rovnomerne ohraničená na J.

Nájdite Maclaurinov rad elementárnych funkcií:

$$\bullet e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad x \in \mathbb{R}.$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$

$$os x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}.$$

$$\binom{a}{n} = \frac{a(a-1)(a-2)...(a-n+1)}{n!}$$
 je binomický koeficient.

Rozviňte do Maclaurinovho radu a určte obor konvergencie:

1
$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

$$(x) = \operatorname{arctg} x.$$

$$f(x) = e^{-x^2}$$

Rozviňte do Taylorovho radu funkcie:

$$f(x) = \frac{1}{x} \text{ v bode } x_0 = -2.$$

2
$$f(x) = \sin \frac{x\pi}{4}$$
 v bode $x_0 = 2$.

- Určte hodnoty:
 - a) $\sin 18^{\circ}$ s chybou menšou než 10^{-4} .
 - b) $\sqrt[5]{250}$ s chybou menšou než 10^{-3} .
- Koľko členov rozvoja nasledujúcich funkcií je treba vypočítať, aby sme určili $\ln 2$ s chybou menšou než 10^{-5}
 - a) ln(x + 1).
 - b) $\ln\left(\frac{1+x}{1-x}\right)$.
- Určte súčet mocninových radov:
 - a) $\sum_{n=0}^{\infty} \frac{(2n+1)x^{2n}}{n!}$. b) $\sum_{n=0}^{\infty} \frac{(n^2+1)x^{2n}}{2^n n!} x^n$.