Estrategias Transversales en las Encuestas de Hogares

Curso de Muestreo Probabilístico en Encuestas de Hogares

Andrés Gutiérrez, Ph.D.

CEPAL - Unidad de Estadísticas Sociales

Motivación

Desde que se popularizaron las encuestas de hogares en 1940, se ha hecho evidente algunas tendencias que están ligadas a los avances tecnológicos en las agencias estadísticas y en la sociedad y se han acelerado con la introducción del computador.

Gambino & Silva (2009)

Bibliografía y referencias

- Kish, L. (1965) Survey Sampling. John Wiley and Sons.
- Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons.
- Särndal, et. al. (2003) Model-assisted Survey Sampling. Springer.
- Gutiérrez, H. A. (2016) Estrategias de muestreo: diseño de encuestas y estimación de parámetros. Ediciones de la U.
- Gutiérrez, H. A. (2017) TeachingSampling. R package.

Muestreo aleatorio simple en dos etapas estratificado

- La teoría discutida en las secciones anteriores es aplicable cuando las unidades primarias de muestreo son seleccionadas dentro de un estrato.
- No hay nuevos principios de estimación o diseño involucrado en el desarrollo de esta estrategia de muestreo.

- Se supone que el muestreo en cada estrato respeta el principio de la independencia.
- Las estimaciones del total, así como el cálculo y estimación de la varianza son simplemente resultado de añadir o sumar para cada estrato la respectiva cantidad.

- Dentro de cada estrato U_h $h=1,\ldots,H$ existen N_{lh} unidades primarias de muestreo, de las cuales se selecciona una muestra s_{lh} de n_{lh} unidades mediante un diseño de muestreo aleatorio simple.
- Suponga, además que el sub-muestreo dentro de cada unidad primaria seleccionada es también aleatorio simple.
- Para cada unidad primaria de muestreo seleccionada i ∈ s_{Ih} de tamaño N_i se selecciona una muestra s_i de elementos de tamaño n_i.

Para utilizar los prinicpios de estimación del último conglomerado en este diseño particular se definen las siguientes cantidades:

- 1 $d_{l_i} = \frac{N_{lh}}{n_{lh}}$, que es el factor de expansión de la *i*-ésima UPM en el estrato h.
- 2 $d_{k|i} = \frac{N_i}{n_i}$, que es el factor de expansión del k-ésimo hogar para la i-ésima UPM.
- (3) $d_k = d_{I_i} \times d_{k|i} = \frac{N_{Ih}}{n_{Ih}} \times \frac{N_i}{n_i}$, que es el factor de expansión final del k-ésimo elemento para toda la población U.

head(FrameI, 10)

PSU	Stratum	Persons	Income	Expenditure
PSU0001	idStrt001	118	70912	44232
PSU0002	idStrt001	136	68887	38382
PSU0003	idStrt001	96	37213	19495
PSU0004	idStrt001	88	36926	24031
PSU0005	idStrt001	110	57494	31142
PSU0006	idStrt001	116	75272	43473
PSU0007	idStrt001	68	33028	21833
PSU0008	idStrt001	136	64293	47660
PSU0009	idStrt001	122	33156	23292
PSU0010	idStrt002	70	65254	37115

head(sizes, 10)

Stratum	NIh	nlh	dl
idStrt001	9	2	4.5
idStrt002	11	2	5.5
idStrt003	7	2	3.5
idStrt004	13	2	6.5
idStrt005	11	2	5.5
idStrt006	5	2	2.5
idStrt007	14	2	7.0
idStrt008	7	2	3.5
idStrt009	8	2	4.0
idStrt010	8	2	4.0

head(FrameII,	, 10)
StratuNnhh nIh dI	HHIDPerson SDU Zon Sex Age Marit In Solin Tierpen Eintuple Power

idStrt 9 012	4.5 idHH 0001094P1 5U 0700081 Male27	Marri &3 74667	Empld yled Poo
idStrt 9 012	4.5 idHH000110941125U017000134Fem2116	Marri &3 74667	Empld yled Poo
idStrt 9 012	4.5 idHH000110941193\$U017000124Fem22le	NA 1374667	NA NotPoo
idStrt 9 012	4.5 idHH 00010960 15U0 70.0081 Male44	Marri d 25 592	Empld yled Poo
idStrt 9 012	4.5 idHH0001109150125U017000136Fem24102	Marri d 25 592	Inacti₩otPoo
idStrt 9 012	4.5 idHH000110965055U017000131Male20	Single425 592	Unem ¦xllo ty led o
idStrt 9 012	4.5 idHH0001109150945U017000131Femalle	Single425 592	Inacti₩otPoo
idStrt 9 012	4.5 idHH000119060115U017000131Male30	Marri 89 0 356	Empld yled Poo
idStrt 9 012	4.5 idHH0 0010906092SU0R000?3 Fem:3/15	Marri 89 0 356	Inacti₩otPoo

idStrt9012 4.5 idHH000P96P\$U0P00P3Male12 Single390 356 NA NotPoo

[1] 680

```
sam = S.SI(Ni[1], ni[1])
clusterII = FrameII[which(FrameII$PSU == sampleI[1]), ]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
clusterHH$dki <- Ni[1]/ni[1]
clusterHH$dk <- clusterHH$dI * clusterHH$dki
sam_data = clusterHH</pre>
```

head(sam_data, 10)

HHIDStratNihnII	n dl Pers ி DZ onSex AgeMari tal SoTm epe	enEdritpulnBegonmednknjidk
idH HdS @99002	4.5 idPelPCSUBR0008Fem312e Wido2v4e3d207	Empl Rydal9 ive40
idH HdS @19970022	4.5 idPelP02UB0008Fem1aBe Singl243 207	NA Relagive40
idH HdS @19970022	4.5 idPePOSUBO008Male NA 243 207	NA Rela
idH HdS @19970022	4.5 idPelP094UB0008Fem3lle NA 243 207	NA Rela
idH HdS 1699002	4.5 idPe1P05LU1P00018Male58 Marr2e218 87	Empl blycetdP oor40
idH HdS 1699002	4.5 idPe1P022U1R00018F1em518e Marr242218 87	InactNetPoor40
idH H61S1697 0022	4.5 idPePOSLUB0008Male36 Marr8e9dB 494	Empl blyætdP bor40
idH H61S1697 0022	4.5 idPelP02/UR000/#Tem3/fe Marr&9/8 494	Empl blyætdP bor40
idH H61S1697 002	4.5 idPelP0SUB0008Fem8le NA 893 494	NA NotPoor40
idH H61S1697 0022	4.5 idPe F09 -U 5 000 8 Fem 4 le NA 893 494	NA NotPoor40

```
for (i in 2:length(Ni)) {
    sam = S.SI(Ni[i], ni[i])
    clusterII = FrameII[which(FrameII$PSU == sampleI[i]), ]
    sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
    clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
    clusterHH$dki <- Ni[i]/ni[i]
    clusterHH$dk <- clusterHH$dI * clusterHH$dki
    data1 = clusterHH
    sam_data = rbind(sam_data, data1)
}
encuesta <- sam_data</pre>
```

```
dim(encuesta)
## [1] 2422 17
sum(encuesta$dk)
## [1] 144817
nrow(BigCity)
## [1] 150266
attach(encuesta)
```

Definir diseño muestral con la librería srvyr

```
library(srvyr)
diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = dk,
   nest = T
sum(weights(diseno))
```

```
## [1] 144817
```

Calibrando los pesos muestrales, para ello empleamos la función calibrate de la librería survey

```
library(survey)
totales <- colSums(model.matrix(~ -1 + Zone:Sex, BigCity))
diseno_cal <- calibrate(diseno, ~-1 + Zone:Sex, totales, calibrate)</pre>
```

```
sum(weights(diseno))
```

```
## [1] 144817
```

```
sum(weights(diseno_cal))
## [1] 150266
```

```
## [1] 150266
nrow(BigCity)
```

```
## [1] 150266
encuesta$wk <- weights(diseno_cal)
```

```
par(mfrow = c(1,2))
hist(encuesta$dk)
hist(encuesta$wk)
```


plot(encuesta\$dk,encuesta\$wk)

boxplot(encuesta\$wk ~ encuesta\$Stratum)

idStrt001 idStrt013 idStrt025 idStrt037 idStrt049 idStrt061 idStrt073 idStrt085 idStrt097 idStrt109

levels = c("0-5", "6-19", "46-60", "Más de 60")

ordered = TRUE))

CatAge = factor(CatAge,

```
saveRDS(object = encuesta, file = "../Data/encuesta.rds")
```