Math 55a, Fall 2004

First Assignment, due September 28

- 1. In lecture, we gave an informal description of a particular bijective map $F: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Write out an explicit formula for a map of this type, or for the inverse of such a map. Show that your map has the required properties.
- **2.** Let X be a non-empty countable set. Prove the following two assertions:
- a) X has the same cardinality as \mathbb{N} if and only if there exists a non-empty, proper subset $Y \subset X$ such that $\operatorname{card}(Y) = \operatorname{card}(X)$.
- b) If X does not contain a subset $Y \subset X$ of this type, there exists a unique integer $n \geq 1$ such that $\operatorname{card}(X) = \operatorname{card}\{1, 2, \dots n\}$.
- **3.** Let n be an integer strictly greater than one. Construct a surjective map from $Mor(\mathbb{N}, \{1, 2, ..., n\})$ to the set of non-negative real numbers. Either show that your map is also injective, or analyze the degree to which it fails to be injective. Deduce that \mathbb{R} , the set of real numbers, has the same cardinality as the power set of \mathbb{N} , i.e., the same cardinality as $Mor(\mathbb{N}, \{0, 1\})$.