

# Gout: Prevalence, Risk Factors and Statistical Analysis

Using Electronic Medical Records to Predict Gout

Mengying Sun Nov. 5<sup>th</sup> 2015



## **Outline**

- Facts of Gout
- ARIC
- Statistical Analysis
- Discussion

## **Gout: Pathogenesis**

### **Symptom**

- A recurrent attack of acute inflammatory arthritis
- a red, tender, hot, swollen joint

### Cause

- crystallization of uric acid within the joints
- hyperuricemia



Choi et al., 2005 "Pathogenesis of Gout"

## Gout: Prevalence and Temporal Trend

### Prevalence

- More than doubled between 1960s-1990s. (Lawrence et al., 2008)
- Increased by 80% from 1990 to 1999. (Wallace et al., 2004)

### 2007 – 2008 [NHANES]

- *3.9%* (8.3 million individual)
- *Men*: 5.9% (6.1 million)
- *Women: 2.0% (2.2 million)*

"Remains substantial and may have increased over past 2 decades." (Zhu et al., 2011)



## Gout: Research history and findings

| Before Men, White | Campion et al., 1987                                         |                              |
|-------------------|--------------------------------------------------------------|------------------------------|
| 1995              | 1995 Small number of patients Single risk factor association | Roubenoff R et al., 1991     |
|                   |                                                              | Hochberg et al., 1995        |
| 1995 –            | Overall (Sex, Race)                                          | Arromdee et al., 2002        |
| 2005              | Multi risk factors                                           | Hyon K. Choi, 2005           |
|                   | Diet, Comorbidities                                          | Choi et al., 2004            |
|                   | Baseline history                                             | Ford ES et al., 2002         |
| 2005 –            | Bigger dataset, Reviews                                      | Zhu et al., 2012             |
| Current           | Longitudinal studies                                         | McAdams-DeMarco et al., 2012 |
|                   | Adjustment for risk factors                                  | Janet W. Maynard., 2013      |
|                   |                                                              | Kuo et al., 2015             |



### **Gout: Risk Factors**

|                       | Age                               |  |
|-----------------------|-----------------------------------|--|
| Covariates            | Sex                               |  |
|                       | Race                              |  |
| Primary Risk Factor   | Uric Acid (Serum Urate)           |  |
|                       | Hypertension (Blood Pressure)     |  |
|                       | Obesity (BMI)                     |  |
|                       | Medication (Diuretics)            |  |
| Secondary Risk Factor | Renal Function (eGFR, Creatinine) |  |
|                       | Lipoprotein (HDL, LDL)            |  |
| _                     | Diet (Alcohol intake)             |  |
| _                     | Diabetes (Glucose)                |  |



### **Gout: Our Target?**





### **ARIC**

- 4 Exams, 4 Communities, every 3 years, 1987 1998
- 12771 obs, 363 variables
- Abundant Measurements
- Longitudinal data
- Can be used widely within area.
- Gout: Exam 4 self-report
- 'Y', 'N'

| Measurements                     | Variable                                                                                               |
|----------------------------------|--------------------------------------------------------------------------------------------------------|
| Lipid Measurements               | Cholesterol, triglycerides<br>Lipoprotein                                                              |
| Chemistry Measurements           | Glucose, insulin, sodium, calcium, magnesium, creatinine, urea nitrogen, uric acid, albumin, protein   |
| Hematologic measurements (blood) | White blood cell, red blood cell, platelet counts, hematocrit, hemoglobin, blood pressure, heart rate, |
| Lifestyle                        | Diet, physical activity, Cigarette smoking, Hypertension                                               |
| Diseases                         | Coronary heart disease,<br>Diabetes, Intermittent<br>claudication                                      |
| Other variables                  | Sex, race, place, time,<br>medication                                                                  |



## **Statistical Analysis**

### Outline

- Descriptive Statistics
- Generalized Linear Models
- Mixed Models

## **Descriptive Analysis**

**TABLE 1 Number of Subjects by Sex and Race** 

|         | В              | W              | Total |
|---------|----------------|----------------|-------|
|         | 1266           | 4084           | 5350  |
| F       | 0.237<br>0.640 | 0.763<br>0.538 | 0.559 |
|         | 713            | 3511           | 4224  |
| M       | 0.169<br>0.360 | 0.831<br>0.462 | 0.441 |
| Total   | 1979           | 7595           | 9574  |
| Total — | 0.207          | 0.793          | 9374  |

### Remarks:

- M ~ F
- W > B



## **Descriptive Analysis**

**TABLE 2 Incidence of Gout by Sex** 

|         | F              | M              | Total |
|---------|----------------|----------------|-------|
|         | 5158           | 3855           | 9013  |
| N       | 0.572<br>0.964 | 0.428<br>0.913 | 0.941 |
|         | 192            | 369            | 561   |
| Y       | 0.342<br>0.036 | 0.658<br>0.087 | 0.059 |
| T-4-1   | 5350           | 4224           | 0574  |
| Total - | 0.559          | 0.41           | 9574  |
|         |                |                |       |

**TABLE 3 Incidence of Gout by Race** 

|         | В     | W          | Total |
|---------|-------|------------|-------|
|         | D     | <b>v</b> v | 10tai |
| _       | 1819  | 7194       | 9013  |
| N       | 0.202 | 0.798      | 0.041 |
|         | 0.919 | 0.947      | 0.941 |
|         | 160   | 401        | 561   |
| Y       | 0.285 | 0.715      | 0.050 |
|         | 0.081 | 0.053      | 0.059 |
| Total   | 1979  | 7595       | 9574  |
| Total - | 0.207 | 0.793      | 9374  |

Remarks: p(M)>p(F), p(B)>p(W)

## **Descriptive Analysis**

TABLE 4 Mean and SD under different Gout condition

|               | Mean(SD)      |               |               |
|---------------|---------------|---------------|---------------|
| Variable      | Overall       | With Gout     | No Gout       |
| Uric Acid     | 5.94(1.49)    | 7.59(1.91)    | 5.83(1.4)     |
| Creatinine    | 1.09(0.18)    | 1.18(0.21)    | 1.08(0.18)    |
| BMI           | 27.48(5.14)   | 29.85(5.46)   | 27.34(5.09)   |
| SBP           | 119.32(17.19) | 125.45(19.15) | 118.94(16.99) |
| Glucose       | 5.83(1.73)    | 6.28(2.09)    | 5.8(1.7)      |
| HDL           | 1.35(0.43)    | 1.21(0.37)    | 1.36(0.44)    |
| LDL           | 3.55(0.99)    | 3.63(1.03)    | 3.54(0.99)    |
| Triglycerides | 1.4(0.72)     | 1.75(0.87)    | 1.38(0.71)    |



## **Sequence of Models**



### **Univariate Model**

### logit(p)~x

|               | Intercept | Coefficient | P        |
|---------------|-----------|-------------|----------|
| Uric Acid     | -7.51     | 0.71        | <2e-16   |
| Creatinine    | -5.75     | 2.63        | <2e-16   |
| BMI           | -4.98     | 0.08        | <2e-16   |
| SBP           | -5.17     | 0.02        | <2e-16   |
| Glucose       | -3.39     | 0.10        | 1.56e-09 |
| HDL           | -1.54     | -0.97       | 8.36e-16 |
| LDL           | -3.07     | 0.08        | 0.06     |
| Triglycerides | -3.64     | 0.56        | <2e-16   |
| RaceW         | -2.43     | -0.46       | 2.64e-06 |
| SexM          | -3.29     | 0.94        | <2e-16   |
| Age           | -4.66     | 0.03        | 5.73e-06 |
| ·             | ·         | ·           | ·        |

### Remarks:

• All Significant



## Multiple Linear Regression Model

 $logit(p) \sim$ .

|               | Coefficient | Odds Ratio | P       |
|---------------|-------------|------------|---------|
| Intercept     | -1.056e+01  |            | <2e-16  |
| Uric Acid     | 6.268e-01   | 1.87       | <2e-16  |
| Creatinine    | 3.345e-04   | 1.00       | 0.99909 |
| BMI           | 2.813e-02   | 1.03       | 0.00284 |
| SBP           | 7.195e-03   | 1.01       | 0.00949 |
| Glucose       | 6.662e-02   | 1.07       | 0.00400 |
| HDL           | 1.779e-01   | 1.19       | 0.20882 |
| LDL           | -6.909e-02  | 0.93       | 0.13840 |
| Triglycerides | 1.910e-01   | 1.21       | <2e-16  |
| RaceW         | -2.215e-01  | 0.80       | 0.05474 |
| SexM          | 3.637e-01   | 1.44       | 0.00344 |
| Age           | 2.214e-02   | 1.02       | 0.00873 |

### Remarks:

- Not significant
- Creatinine
- HDL
- LDL



## Multiple Linear Regression Model (Selected Predictors)

|               | Coefficient | Odds Ratio | P       |
|---------------|-------------|------------|---------|
| Intercept     | -10.3812    | 3.1e-05    | <2e-16  |
| Uric Acid     | 0.6212      | 1.86       | <2e-16  |
| BMI           | 0.0261      | 1.03       | 0.00489 |
| SBP           | 0.0074      | 1.01       | 0.00732 |
| Glucose       | 0.0659      | 1.07       | 0.00453 |
| Triglycerides | 0.1583      | 1.17       | 0.00867 |
| RaceW         | -0.2346     | 0.79       | 0.03798 |
| SexM          | 0.3189      | 1.38       | 0.00229 |
| Age           | 0.0215      | 1.02       | 0.01043 |
|               |             |            |         |

### Remark:

- Every predictor is significant
- 2. Numbers are boring
- 3. What effect may every predictor have wrt risk of developing gout
- 4. Plot (risk~pred)

### Risk of Gout by Sex



#### Remark:

- 1. Uric Acid = 7
- 2.Come up with Richard's question
- "Why people have high level uric acid still don't get gout?"
- 3. Even though other factors singlely don't have certain pattern affecting gout, will they affect the effect that uric acid have on gout?



## **Interactions!**



Base Model: Gout ~ Sex+Race+Age+UricAcid

**Risk of Gout: No interaction** 





Base Model: Gout ~ Sex+Race+Age+UricAcid+Sex\*UA





Note: Race\*UA is not that significant



$$Gout \sim Sex + Race + Age + UricAcid + Sex * UA + UricAcid * CAT (Predictor)$$

### Thresholds used to categorize risk factors

|               | Cut Point (N/H) | Overall Mean |
|---------------|-----------------|--------------|
| BMI           | 30              | 27.5         |
| SBP           | 150             | 120          |
| Glucose       | 7               | 5.8          |
| Triglycerides | 2               | 1.4          |

### Remark:

- Some using normal value
- Some higher than normal value

```
Gout \sim Sex + Race + Age + UricAcid + Sex * UA + UricAcid * CAT (BMI)
Gout \sim Sex + Race + Age + UricAcid + Sex * UA + UricAcid * CAT (SBP)
Gout \sim Sex + Race + Age + UricAcid + Sex * UA + UricAcid * CAT (Glucose)
Gout \sim Sex + Race + Age + UricAcid + Sex * UA + UricAcid * CAT (Triglycerides)
```



#### Remark:

- Color-Sex
- LineType-Race
- Lwd-Level

### Risk of Gout: UA \* Glucose





### **Aspects we need To be careful with:**

• Female Curve

### Why Random effects?

- Doctors care more about Normal/High levels instead of specific numbers
- If treat interactions as fixed effects
- Explain fixed effects interactions, eg 3 variables ab,ac,bc,abc, # of parameters will increase dramatically
- Some categories will have little/0 observations -- MLE will not work



|              | Cut Point | Levels |
|--------------|-----------|--------|
| BMI          | 30        | N,H    |
| SBP          | 150       | N,H    |
| Glucose      | 7         | N,H    |
| riglycerides | 2         | N,H    |
| Uric Acid    | 7         | N,H    |
| Sex          | /         | M,F    |
| Race         | /         | B,W    |
|              |           |        |

- Combine all the category as one index.
- People in the same group share some dependence

| Random Effect | Cat_Index |  |
|---------------|-----------|--|
| Obs 1         | ННННМВ    |  |
| Obs 2         | NNNNHFW   |  |
| Obs 3         | HNNHNFB   |  |
|               |           |  |

$$p(Y_{ij} = 1) = \theta_j$$

$$\log\left(\frac{\theta_j}{1 - \theta_j}\right) = \mu + u_j$$

$$\mathbf{u} \sim N(\mathbf{0}, \mathbf{I}\sigma_u^2)$$



| Fixed effects | Coefficient | P        |
|---------------|-------------|----------|
| Intercept     | -0.2341     | 0.288246 |
| cat_GlucoseN  | -0.4613     | 0.001558 |
| cat_uaN       | -1.6442     | < 2e-16  |
| cat_sbpN      | -0.6863     | 2.23e-05 |
| cat_TriN      | -0.3440     | 0.003172 |
| cat_bmiN      | -0.3915     | 0.000383 |
| SexM          | 0.5084      | 4.87e-06 |
| RaceW         | -0.3036     | 0.008335 |
|               |             |          |
| Random Effect | Cat_Index   | -        |

|    | Risk       | Index   |
|----|------------|---------|
| 1  | 0.02701296 | NNNNMW  |
| 2  | 0.21923477 | NHNNHMB |
| 3  | 0.03355356 | NNNNHFB |
| 4  | 0.03807269 | NNNHNMW |
| 5  | 0.05929691 | HNNNNMB |
| 6  | 0.16705677 | NHNHNMW |
| 7  | 0.02701296 | NNNNMW  |
| 8  | 0.11893686 | NHNHNFW |
| 9  | 0.01515288 | NNNNFW  |
| 10 | 0.02701296 | NNNNMW  |
| 11 | 0.01515288 | NNNNFW  |
| 12 | 0.14263139 | NHNNNMW |



**Output** 



### What else did we do?

- Principal Component Analysis
- Splines
- What else can we do? Suggestions



## Thank you!