WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	DER THE PATENT COOPERATIO	N TREATY (PCT)		
(51) International Patent Classification ⁴ :		(1	1) International Publication Number:	WO 88/ 05046
C07D 231/06, A01N 43/56	A2	(4:	3) International Publication Date:	14 July 1988 (14.07.88)
(21) International Application Number: PCT/US (22) International Filing Date: 4 January 1988 (-		(72) Inventor; and (75) Inventor/Applicant (for US only, mas, Martin [US/US]; 103 In DE 19702 (US).):STEVENSON, Tho- oquois Court, Newark,
(31) Priority Application Numbers:	000,3 113,5		(74) Agent: COSTELLO, James, A. mours and Company, Legal 1 ket Street, Wilmington, DE 19	Department, 1007 Mar-
(32) Priority Dates: 5 January 1987 (28 October 1987 ((28.10.		(81) Designated States: SD, US, US.	
Filed on 5 January 1987 (26 (CO (05.01.: 30 (CO (28.10.: : E.I. I [US/U	N) 87) 87) 87)		report and to be repu- port.
			1	

(54) Title: INSECTICIDAL PYRAZOLINES

(57) Abstract

Pyrazolines and their intermediates, including all geometric and stereoisomers of the pyrazolines and intermediates, agricultural compositions containing the pyrazolines, and methods for use as insecticides.

FOR THE PURPOSES OF INFORMATION ONLY

 $\label{lem:codes} \textbf{Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.}$

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	. NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark .	MC	Monaco	US	United States of America
FI	Finland	MG	Madagascar		

INSECTICIDAL PYRAZOLINES

Cross-Reference To Related Application

This is a continuation-in-part of copending
5 application bearing U.S. Serial No. 000,326, filed on
January 5, 1987.

Background of the Invention

Vaughan, J. Org. Chem., 20 (1955), pages 1619 to 1626, discloses 1,5-diphenyl-2-pyrazoline-3-

10 carboxamide. No utility is given for the disclosed compound which, in any event, does not suggest a compound of the instant invention.

U.S. 4.070.365 discloses insecticidal compounds of the formula

15

wherein X is halogen. and Y is halogen, NO₂ or alkyl.

20

25 EP 153.127 discloses insecticidal compounds of the formula

10

wherein

A is unsubstituted or substituted phenyl;

B is unsubstituted or substituted phenyl:

U is O. S or NR:

Y is alkyl, unsubstituted or substituted
 phenyl. or C(X)G:

Z is H. cycloalkyl, unsubstituted or substituted phenyl R⁴-Q;

X is O or S; and

G and R^4 -Q are broadly defined.

Harhash et al., <u>J. Heterocyclic Chem.</u>, <u>21</u> (1984), at page 1013, discloses the preparation of five pyrazoline compounds, none of which is disclosed in the instant application. No utility is given for any of said compounds:

where R/Ar are C_6H_5/C_6H_5 : $C_2C_2H_5/C_6H_5$: $C(0)NHC_6H_5/C_6H_5$: $CH=CHC_6H_5/C_6H_5$; and $CH_3/4-NO_2-C_6H_4$.

25

20 .

30

Summary of the Invention

This invention concerns certain 4.5-dihydro-lHpyrazole-3-carboxamides (hereinafter referred to as
pyrazolines) and intermediates to said compounds,
including all geometric and stereoisomers of the
pyrazolines and the intermediates. This invention
also concerns agricultural compositions comprising at
least one of said pyrazolines as active ingredient and
an agriculturally suitable carrier therefor. This
invention also concerns a method for controlling
insects comprising contacting them or their
environment with an effective amount of a pyrazoline
of this invention.

More specifically, this invention pertains to pyrazolines of Formula I and agriculturally suitable salts thereof:

$$(R_2)_{n}$$

$$N$$

$$N$$

$$K$$

$$N$$

$$Y$$

$$(R_1)_{n}$$

Formula I

wherein:

35

30 X is O or S;

Y is H. C₁ to C₄ alkyl. C₂ to C₄ alkoxyalkyl.

C₁ to C₄ alkylthio, C₁ to C₄ haloalkylthio, phenylthio, or phenylthio substituted with 1 to 3 substituents independently selected from W. C₂ to C₄ alkoxycarbonyl. C(O)H.

C₂ to C₄ alkylcarbonyl or C₂ to C₄ haloalkylcarbonyl;

	A is H, C, to C, alkyl, phenyl, phenyl substi-
5	tuted by (R ₅) _D , CN, CO ₂ R ₃ , C(O)R ₃ , C(O)NR ₃ R ₄ ,
	$C(S)NR_3R_4$. $C(S)R_3$ or $C(S)SR_3$;
	B is H, C to C alkyl, C to C haloalkyl,
	C2 to C6 alkoxyalkyl, C2 to C6 cyanoalkyl,
	C3 to C8 alkoxycarbonylalkyl, C2 to C6 alkenyl,
10	C ₂ to C ₆ alkynyl, C ₂ to C ₆ alkoxycarbonyl,
	phenyl, phenyl substituted with 1 to 3 sub-
	stituents independently selected from W.
	benzyl or benzyl substituted with 1 to 3 sub-
	stituents independently selected from W;
15	W is halogen, CN, NO $_2$, C $_1$ to C $_2$ alkyl, C $_1$ to C $_2$
	haloalkyl, C_1 to C_2 alkoxy, C_1 to C_2 halo-
	alkoxy, C_1 to C_2 alkylthio, C_1 to C_2 halo-
	alkylthio, C_1 to C_2 alkylsulfonyl or C_1 to C_2
	haloalkylsulfonyl;
20	R_1 , R_2 and R_5 are independently R_3 , halogen, CN,
	N_3 , SCN, NO_2 , OR ₃ , SR ₃ , S(O)R ₃ , S(O) ₂ R ₃ , OC(O)R ₃
~	$OS(0)_2^{R_3}$, $CO_2^{R_3}$, $C(0)_{R_3}$, $C(0)_{R_3}^{R_4}$, $S(0)_2^{R_3}^{R_4}$,
	NR_3R_4 , $NR_4C(0)R_3$, $OC(0)NHR_3$, $NR_4C(0)NHR_3$,
	$NR_4S(0)_2R_3$, or when m, n or p is 2, R_1 , R_2 or R_5
25	can be taken together as $-OCH_2O-$, $-OCF_2O-$,
	-OCH ₂ CH ₂ O-, -CH ₂ C(CH ₃) ₂ O-, -OCF ₂ CF ₂ O-, or
	-CF ₂ CF ₂ O- to form a cyclic bridge; provided R ₁
	is other than H;
	R_3 is H, C_1 to C_4 alkyl, C_1 to C_4 haloalkyl, C_2
30	to C ₄ alkenyl, C ₂ to C ₄ haloalkenyl, C ₂ to
	C ₄ alkynyl, C ₂ to C ₄ haloalkynyl, C ₂ to C ₄
	alkoxyalkyl, C ₂ to C ₄ alkylthioalkyl, C ₁ to
	C ₄ nitroalkyl, C ₂ to C ₄ cyanoalkyl, C ₃ to C ₆
	alkoxycarbonylalkyl, C ₃ to C ₆ cycloalkyl, C ₃
35	to C halocycloalkyl, phenyl, benzyl, or
	phenyl or benzyl substituted with 1 to 3
	substituents independently selected from W;

 R_4 is H or C_1 to C_4 alkyl, or when R_3 and R_4 are attached to a single nitrogen atom, they can be taken together as $\{CH_2\}_4$, $\{CH_2\}_5$ or $\{CH_2CH_2CH_2CH_2\}_5$;

m is 1 to 3;

10 n is 0 to 3; and

p is 0 to 3.

In the above definitions, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl", means straight chain or branched alkyl such as methyl, ethyl, n-propyl, isopropyl or the different butyl, pentyl, hexyl isomers.

Alkoxy includes methoxy, ethoxy, \underline{n} -propyloxy, isopropyloxy and the different butoxy or pentoxy isomers.

Alkenyl includes straight chain or branched alkenes, such as vinyl, 1-propenyl, 2-propenyl, 3-propenyl and the different butenyl, pentenyl and hexenyl isomers.

Alkynyl includes straight chain or branched
25 alkynes, such as ethynyl, 1-propynyl, 2-propynyl and the
different butynyl, pentynyl and hexynyl isomers.

Alkylthio includes methylthio, ethylthio and the different propylthio and butylthio isomers.

Alkylsulfonyl and the like are used analogously to the above examples.

Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", means fluorine, chlorine,

35 bromine or iodine. Further, when used in compound words

such as "haloalkyl" said alkyl can be partially or fully substituted with halogen atoms, which may be the same or different. Examples of haloalkyl include CH₂CH₂F, CF₂CF₂H and CH₂CHFCl. The terms "halocycloalkyl", "haloalkenyl" and "haloalkynyl" are used analogously to "haloalkyl".

The total number of carbon atoms in a substituent 10 group is indicated by the "C $_{\boldsymbol{i}}$ to C $_{\boldsymbol{i}}$ " prefix where i and j are numbers from 1 to 8. For example, C_1 to C, alkylsulfonyl would designate methylsulfonyl through propylsulfonyl; C2 alkoxyalkoxy would 15 designate OCH₂OCH₃; C₄ alkoxyalkoxy would designate the various isomers of an alkoxy group substituted with a second alkoxy group containing a total of 4 carbon atoms, examples including OCH_OCH_CH_CH_3 and OCH_CH_OCH_CH_3; C_ cyanoalkyl would 20 designate CH₂CN and C₃ cyanoalkyl would designate CH2CH2CN and CH(CN)CH3; C2 alkylcarbonyl would designate $C(0)CH_3$ and C_4 alkylcarbonyl would include $C(0)CH_2CH_2CH_3$ and $C(0)CH(CH_3)_2$; and as a final example, C_3 alkoxycarbonylalkyl would designate $CH_2CO_2CH_3$ and C_4 25 alkoxycarbonylalkyl would include CH2CH2CO2CH3. CH, CO, CH, CH, and CH(CH,)CO, CH, .

Preferred compounds (A) are those of Formula I wherein

30 X is O; Y is H, CH_3 , SCH_3 , $SCCl_3$, SC_6H_5 , $2-(NO_2)C_6H_4S$, $C(O)CH_3$, C(O)H, $C(O)CF_3$, CO_2CH_3 or $CO_2C_2H_5$; R_3 is C_1 to C_4 alkyl, C_1 to C_2 haloalkyl, C_2 to C_4 alkenyl, C_2 to C_4 haloalkenyl,

```
propargyl, phenyl, benzyl, or phenyl or benzyl
                    substituted with one of F, Cl. Br, CF, OCF, H,
 5
                    OCF<sub>3</sub> or NO<sub>2</sub>;
                n is 0 to 2;
                p is 0 to 2; and
                m is 1 to 2.
10
            Preferred compounds (B) are preferred compounds
    (A) wherein
                R_1 is halogen, CN, SCN, NO<sub>2</sub>, R_3, OR<sub>3</sub>, SR<sub>3</sub>,
                    S(O)_2R_3, CO_2R_3 or C(O)R_3, or when m is 2,
                    R<sub>1</sub> can be taken together as -OCF<sub>2</sub>O-.
15
                    -CH<sub>2</sub>C(CH<sub>3</sub>)<sub>2</sub>O-, -OCF<sub>2</sub>CF<sub>2</sub>O- or -CF<sub>2</sub>CF<sub>2</sub>O-;
                R_2 and R_5 are independently halogen, CN, SCN,
                    NO_{2}, R_{3}, OR_{3}, SR_{3}, S(O)_{2}R_{3}, OC(O)R_{3},
                    OS(0)_2^R_3, CO_2^R_3, C(0)R_3, C(0)NR_3^R_4.
                    S(O) NR R or NR R ;
20
                R_3 is C_1 to C_4 alkyl, C_1 to C_2 haloalkyl.
                    C2 to C4 alkenyl, C2 to C4 haloalkenyl or
                    propargyl;
                R_4 is H or C_1 to C_2 alkyl;
                A is C_1 to C_4 alkyl, phenyl, phenyl substituted
25
                    with (R_5)_D, CO_2R_3, C(O)R_3, C(O)NR_3R_4
                    or C(O)NR<sub>4</sub>phenyl said phenyl optionally
                    substituted with F, Cl, Br, CF<sub>3</sub>, OCF<sub>2</sub>H, OCF<sub>3</sub>
                    or NO; and
                B is H, C_1 to C_4 alkyl, C_1 to C_4 haloalkyl,
30
                    or C<sub>3</sub> to C<sub>4</sub> alkenyl.
            Preferred compounds (C) are preferred compounds
     (B) wherein
                Y is H, CH<sub>3</sub>, C(0)CH<sub>3</sub> or CO<sub>2</sub>CH<sub>3</sub>;
35
                m is 1 or 2 and one substituent is in the
                     4-position of the phenyl ring;
                 n is 1 or 2 and one substituent is in the
                     4-position of the phenyl ring;
```

	p is 1 or 2 and one substituent is in the
5	3 or 4-position of the phenyl ring;
	R, is F, Cl, Br, CF, OCF, H, OCF, or CN.
	or when m is 2, R_1 can be taken together
	as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-;
	R ₂ is F, Cl, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₃ , OCF ₂ H,
10	OCF ₃ , SCH ₃ , SCF ₂ H, S(O) ₂ CH ₃ or N(CH ₃) ₂ ;
	R ₅ is F, Cl, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₂ H,
	OCF ₃ , SCH ₃ , SCF ₂ H, S(O) ₂ CH ₃ , S(O) ₂ CF ₂ H,
	CO_2CH_3 , $C(O)NHCH_3$, $C(O)N(CH_3)_2$, $S(O)_2N(CH_3)_2$
	or N(CH ₃) ₂ ;
15	A is phenyl or phenyl substituted with $(R_5)_p$; and
	B is H or CH ₃ .
	3
	Preferred compounds (D) are preferred compounds
	(B) wherein
20	V is H. CH. C(O)CH or CO CH:
20	Y is H, CH ₃ , C(O)CH ₃ or CO ₂ CH ₃ ; m is 1 or 2 and one substituent is in the
20	m is 1 or 2 and one substituent is in the
20	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring;
20	<pre>m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the</pre>
	<pre>m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring;</pre>
25	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, Cl, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN,
	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, Cl, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together
	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, Cl, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-;
	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, Cl, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-; R ₂ is F, Cl, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₃ , OCF ₂ H,
25	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, Cl, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-; R ₂ is F, Cl, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₃ , OCF ₂ H, OCF ₃ , SCH ₃ , SCF ₂ H, S(O) ₂ CH ₃ , S(O) ₂ CF ₂ H,
	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, C1, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-; R ₂ is F, C1, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₃ , OCF ₂ H, OCF ₃ , SCH ₃ , SCF ₂ H, S(O) ₂ CH ₃ , S(O) ₂ CF ₂ H, CO ₂ CH ₃ , C(O)NHCH ₃ , C(O)N(CH ₃) ₂ , S(O) ₂ N(CH ₃) ₂
25	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, Cl, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-; R ₂ is F, Cl, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₃ , OCF ₂ H, OCF ₃ , SCH ₃ , SCF ₂ H, S(O) ₂ CH ₃ , S(O) ₂ CF ₂ H, CO ₂ CH ₃ , C(O)NHCH ₃ , C(O)N(CH ₃) ₂ , S(O) ₂ N(CH ₃) ₂ or N(CH ₃) ₂ ;
25	m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; R ₁ is F, C1, Br, CF ₃ , OCF ₂ H, OCF ₃ or CN, or when m is 2, R ₁ can be taken together as -CH ₂ C(CH ₃) ₂ O- or -CF ₂ CF ₂ O-; R ₂ is F, C1, Br, CN, NO ₂ , CF ₃ , CH ₃ , OCH ₃ , OCF ₂ H, OCF ₃ , SCH ₃ , SCF ₂ H, S(O) ₂ CH ₃ , S(O) ₂ CF ₂ H, CO ₂ CH ₃ , C(O)NHCH ₃ , C(O)N(CH ₃) ₂ , S(O) ₂ N(CH ₃) ₂

B is CH₃.

Especially preferred compounds are:

- 5 (E) A compound of (D):

 Methyl 1-(4-chlorophenyl)-4.5-dihydro5-methyl-3-[[4-(trifluoromethyl)phenyl]aminocarbonyl]-1H-pyrazole-5-carboxylate.
- (F) A compound of (C):

 1-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5
 dihydro-N-[4-(trifluoromethyl)phenyl]-1Hpyrazole-3-carboxamide.
 - (G) A compound of (C):
 1,5-bis(4-chlorophenyl)-4,5-dihydro-N-[4(trifluoromethyl)phenyl]-lH-pyrazole-3carboxamide.
- 15 (H) A compound of (C):

 1-(4-chlorophenyl)-5-(4-cyanophenyl)-4.5
 dihydro-N-[4-(trifluoromethyl)phenyl]-lHpyrazole-3-carboxamide.

This invention also pertains to compounds of

Formula II which are useful as intermediates to prepare compounds of Formula I. The intermediates of this invention are:

$$(R_2)_{n}$$

$$N$$

$$X$$

$$X$$

Formula II

wherein:

30

35

x is O or S;

X₁ is OH, Cl or C₁ to C₆ alkoxy;
A is H, C₁ to C₆ alkyl, phenyl, phenyl substituted by (R₅)_p, CN, CO₂R₃, C(O)R₃, C(O)NR₃R₄,

C(S)NR₃R₄, C(S)R₃ or C(S)SR₃;

B is H, C to C alkyl, C to C haloalkyl, C to C haloalkyl, C to C cyanoalkyl, C to C cyanoalkyl, C to C

-	C ₈ alkoxycarbonylalkyl, C ₁ to C ₆ alkenyl, C ₁ to C ₆ alkynyl, C ₂ to C ₆ alkoxycarbonyl, phenyl,
5	or phenyl substituted with 1 to 3 substituents
	independently selected from W. benzyl, benzyl
	substituted with 1 to 3 substituents inde-
	pendently selected from W;
10	W is halogen, CN, NO ₂ , C ₁ to C ₂ alkyl, C ₁ to C ₂
	haloalkyl, C_1 to C_2 alkoxy, C_1 to C_2 halo-
	alkoxy, C_1 to C_2 alkylthio, C_1 to C_2 halo-
	alkylthio, C_1 to C_2 alkylsulfonyl or C_1 to
	C, haloalkylsulfonyl;
15	R_2 and R_5 are independently R_3 , halogen, CN,
	N_3 , SCN, NO_2 , OR_3 , SR_3 , $S(O)R_3$, $S(O)_2R_3$,
	$OC(O)R_3$, $OS(O)_2R_3$, CO_2R_3 , $C(O)R_3$, $C(O)NR_3R_4$,
	$S(O)_2NR_3R_4$, NR_3R_4 , $NR_4C(O)R_3$, $OC(O)NHR_3$,
	$NR_4C(O)NHR_3$, $NR_4S(O)_2R_3$, or, when n or p is 2,
20	R_2 or R_5 can be taken together as -OCH ₂ O
20	-OCF ₂ O-, -OCH ₂ CH ₂ O-, -CH ₂ C(CH ₃) ₂ O-,
	-OCF ₂ CF ₂ O- or -CF ₂ CF ₂ O- to form a cyclic bridge;
	except that both R ₂ and R ₅ are not H;
	R ₃ is H, C ₁ to C ₄ alkyl, C ₁ to C ₄ haloalkyl, C ₂
25	to C ₄ alkenyl, C ₂ to C ₄ haloalkenyl, C ₂ to
	C ₄ alkynyl, C ₂ to C ₄ haloalkynyl, C ₂ to C ₄
	alkoxyalkyl, C ₂ to C ₄ alkylthioalkyl, C ₁ to
	C_4 nitroalkyl, C_2 to C_4 cyanoalkyl, C_3 to C_6
	alkoxycarbonylalkyl, C ₃ to C ₆ cycloalkyl, C ₃
30	to C halocycloalkyl, phenyl, benzyl, or
	phenyl or benzyl substituted with 1 to 3
	substituents independently selected from W;
	R_4 is H or C_1 to C_4 alkyl, or when R_3 and R_4 are
	attached to a single nitrogen atom, they can be
35	taken together as $\{CH_2\}_4$, $\{CH_2\}_5$ or
	(CH ₂ CH ₂ OCH ₂ CH ₂);
	n is 0 to 3; and
	p is 0 to 3.

Details of the Invention

Compounds of Formula I can be obtained by the reaction of activated carbonyl or thiocarbonyl compounds of Formula II with substituted anilines in the presence or absence of an acid acceptor or suitable condensing agent. Methods for performing this transformation are well known in the art; see. Zabicky. "The Chemistry of the Amides". Interscience, 1970.

One particularly useful method involves the 10 chlorination of an acid derivative (II, $X_1 = OH$) with thionyl chloride or another chlorinating agent followed by treatment with an aniline (III) in the presence of an acid acceptor such as an amine base, 15 preferably triethylamine. Suitable solvents for the chlorination reaction are inert to hydrogen chloride and include benzene, toluene, and dichloromethane. Preferred temperatures for this process are from 20° to 100°C with temperatures between 20° and 80°C being 20 particularly preferred. The latter reaction can be carried out in many different inert solvents such as dialkylethers, chlorinated hydrocarbons, and aromatic hydrocarbons. While temperatures at or below 25°C are preferred, higher temperatures can also be employed. These reactions are normally run at atmospheric pressure, but can also be carried out at elevated pressures.

30
$$\underbrace{\text{II}}_{(R_1)_m} + \underbrace{\text{Acid}}_{\text{Acceptor}} \underbrace{\text{III}}_{\text{III}}$$

Esters of Formula II (X₁ = C₁ to C₆ alkoxy)

5 can be converted directly to compounds of Formula I in several ways. In the presence of Lewis acids such as AlMe₃, anilines react readily with esters of Formula II. The reaction is best carried out at room temperature to 120°C. Suitable solvents include

10 dichloromethane, 1,2-dichloroethane, and toluene. The method described by Weinreb et al., Organic Synthesis, 59, 49, (1982), proceeds best with esters of lower alcohols such as methanol or ethanol.

Acids of Formula II (X₁ = OH) can be converted

directly to compounds of Formula I by use of coupling
agents known in the peptide art in conjunction with
anilines. Coupling agents include dicyclohexylcarbodimide (DCC), N-hydroxysuccinimide, 2-chloro-Nmethylpyridinium iodide, carbonyl diimidazole, or
other agents capable of activating an acid function
or acting as a dehydrating agent. These and other
methods are described in Gross et al., "The Peptides,"
3 Vols., Academic Press, New York, 1979 to 1981.

the cyclization of appropriate phenylhydrazines (V) with keto-acid derivatives (IV). It will be appreciated by those skilled in the art that this process applies equally to acids, esters, and anilides and further that the interconversion of these groups as discussed in the sequence (II→I) can be carried out after the cyclization reaction. The conditions for these reactions are well known in the art and described by Hill et al., Trans. Illinois Acad. Sci., 33 (1940), 112 and by Vaughan, J. Org. Chem., 20 (1955), 1619.

The cyclization reaction is best carried out on an unsaturated keto-acid derivative (IV) in refluxing alcoholic media, in refluxing lower carboxylic

PCT/US88/00001

13

acids, or in polar aprotic solvents such as

dimethylformamide or dimethyl sulfoxide. Ethanol containing acetic acid or acetic acid alone are the preferred solvents although other protic or aprotic solvents and mixtures are also applicable. In some cases, phenyl hydrazones can be isolated prior to final cyclization and these can be refluxed further in order to complete the cyclization. While the unsaturated acid derivatives (IV) are preferred, saturated compounds with a reactive group such as a halogen beta to the carbonyl can be employed in certain instances.

Z = OH, C_1 to C_6 alkoxy or NY- $(R_1)_m$

Compounds of Formula I and intermediates of 25 Formula II can also be obtained by the dipolar cycloaddition reaction of nitrile-imines, generated from substituted phenylhydrazones of Formula VI, with appropriately substituted alkenes. The presence of an acid acceptor (generally an amine base, for example, 30 triethylamine) is necessary for the formation of the nitrile-imine. In a typical reaction, the alkene is used in a two- to five-fold molar excess and the amine base in a three- to five-fold excess based on the hydrazone (VI). Suitable solvents include but are not 35 restricted to benzene, toluene, 1.2-dichloroethane, chloroform, and tetrahydrofuran. The reaction can be carried out at temperatures ranging from 20° to 120°C with the relative reactivity of the alkene (VII) governing the required temperature for a given example.

The required hydrazones (VI) for the synthesis of com-5 pounds of Formula I and II can be prepared by methods known in the art or by modifications thereof; see, e.g., Shawali et al., <u>Tetrahedron</u>, 20 (1971), 2517.

10
$$Z$$

C1

H

H

Acid

Acceptor

I or II

 $(R_2)_n$
 VI
 VII
 $Z = C_1$ to C_6 alkoxy or NY
 $(R_1)_m$

Some compounds of Formula I (Y=H) can be converted to other compounds of Formula I by alkylation, acylation, and sulphenylation reactions (Y=H). Reaction of compounds of Formula I in the presence of an acid acceptor with electrophilic agents (Y-leaving group) results in substitution on nitrogen. Strong bases such as sodium hydride, potassium t-butoxide, potassium hydride, and other bases known in the art to deprotonate amides are preferred in the process. Suitable electrophiles include, but are not restricted to alkyl halides, acyl halides, acid anhydrides, carbonates, chloroformates, disulphides, and sulphenyl halides. This reaction is normally run in the temperature range of 0-25°C, but can be run at temperatures up to 120°C if unreactive

electrophiles are used.

Solvents not deprotonated

WO 88/05046 PCT/US88/00001

under the reactions conditions such as tetrahydrofuran. dimethylformamide. dimethoxyethane. and diethyl ether are preferred.

Compounds of Formula I (X=O) can be converted to compounds of Formula I (X=S) by means of thiating agents. Conversion of amides to thioamides is well known in the art. Phosphorous pentasulfide either alone or in combination with organic or inorganic bases is a preferred reagent to effect this conversion. When phosphorous pentasulfide is used alone, organic bases such as pyridine are the preferred solvents. When it is used in conjunction with inorganic bases such as sodium bicarbonate, the preferred solvents are ethers such as diglyme.

15 Temperatures between 20° to 160°C can be employed successfully with temperatures between 90° to 120°C preferred. These and other means to convert amides to thioamides are described by Lapucha, Synthesis (1987).

It will be appreciated by those skilled in the art that, regardless of the method of synthesis, compounds of Formula II can be converted to compounds of the instant invention by the methods described above. Many functional group transformations known to those skilled in the art can be employed to convert compounds of Formula I to new compounds of Formula I and that this will overcome any incompatibility of certain such groups with reagents and conditions disclosed above with respect to typical reaction

15

20

25

30

Example 1

5 N-(4-Chlorophenyl)-2-[(4-chlorophenyl)amino]-2-oxoethanehydrazonoyl chloride

The compound, 4-chloroaniline (7.8 gm), was diazotized in 30 ml of 6N hydrochloric acid with sodium nitrite (4.5 gm) at 0 to 5°C. The resulting solution was added over twenty minutes by means of an insulated dropping funnel to a vigorously stirred mixture of 2.4'-dichloroacetoacetanilide (10 gm) and sodium acetate (15.1 gm) in ethanol (260 ml) held at 0 to 5°C. The suspension was stirred for 2 hours (temperature 20°C) and filtered. The solid was dried by dissolution in dichloromethane and addition of magnesium sulfate., Filtration, evaporation of the solvent and trituration with butyl chloride provided the title compound (15.2 gm), m.p.: 180° to 181°C.

NMR(CDCl₃) 8.5 (br, NH), 8.3 (br, NH), 7.6-7.1 (m, 8H).

Example 2

N-(4-Chlorophenyl)-2-[4-(trifluoromethyl)phenyl]-amino-2-oxoethanehydrazonoyl chloride

Similarly prepared by the method of Example 1, 2-chloro-4'-trifluoromethylacetoacetanilide (8.6 gm) gave the title compound (3.8 gm), m.p.: 167° to 168.5°C. NMR (CDCl₃) 8.6 (br, NH), 8.3 (br, NH), 7.7-7.1 (m, 8H, ArH).

Example 3

Methyl 1-(4-chlorophenyl)-3-[(4-chlorophenyl)aminocar-bonyl]-4,5-dihydro-5-methyl-1H-pyrazole-5-carboxylate

A sample of the compound of Example 1 (0.82 gm)
was heated in refluxing benzene (15 ml) containing
methyl methacrylate (4 ml). The resulting solution
was treated dropwise with a solution of triethylamine
(1.5 ml) in benzene (10 ml) and heated an additional

2 hours. The mixture was partitioned between ethyl acetate (50 ml) and lN hydrochloric acid and the organic layer dried with magnesium sulfate. The organic residue was purified by silica gel chromatography with 20% ethyl acetate/hexanes followed by recrystallization from methanol to afford the title compound (0.62 gm); m.p.: 138° to 140°C. HNMR (CDCl₃) 8.4 (br. NH), 7.6-6.9 (m. ArH, 8H), 3.8 (s. CH₃, 3H); 3.7 (d. 1H, CH), 3.3 (d. 1H, CH), 1.7 (s. 3H, CH₃).

15

Example 4

Methyl 1-(4-chlorophenyl)-4.5-dihydro-5-methyl-3-[[[4-(trifluoromethyl)phenyl]amino]carbonyl]-1Hpyrazole-5-carboxylate

Analogous treatment of the compound of Example 2 (3.0 gm) under the conditions of Example 3 gave the title compound (2.0 gm); m.p. (MeOH): 178.5° to 180°C.

NMR (CDCl₃) 8.5 (NH, br), 7.6-7.0 (m, 8H, ArH), 3.8 (s, CH₃, 3H), 3.7 (d, 1H, CH), 3.3 (d, 1H, CH), 1.7 (s, CH₃, 3H).

25

Example 5

N,1-bis(4-chlorophenyl)-5-(4-cyanophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide

Repetition of Example 3 with 4-cyanostyrene (1.5 ml) on one-fifth the original scale gave the title compound (0.21 gm); m.p. (Ethanol): 183° to 186°C.

NMR (CDCl₃) 8.5 (br. NH), 7.6-6.9 (m. 12H, ArH), 5.4 (dd, 1H, CH), 3.8 (dd, 1H, CH), 3.1 (dd, 1H, CH).

Example 6

35 Ethyl chloro[2-(4-chlorophenyl)hydrazono]acetate

The compound, 4-chloroaniline (15.6 gm), was diazotized as described in Example 1 and repetition of that experiment with ethyl-2-chloroacetoacetate (16.5

ml) and sodium acetate (32 gm) gave the title compound (22.9 gm) as reddish needles after recrystallization from benzene: m.p.: 145° to 147.5°C. NMR (CDCl₃) 8.3 (lH. NH. br). 7.3-7.1 (m. 4H. ArH). 4.4 (q. 2H. OCH₂). 1.4 (t. 3H. CH₃).

Example 7

Methyl chloro[2-(4-chlorophenyl)hydrazono]acetate

Similarly obtained by the method of Example 6

from methyl-2-chloroacetoacetate (29.5 gm), 4-chloroaniline (25 gm), and sodium acetate (51 gm) was the
title compound (36.4 gm); m.p.: 149° to 150°C. NMR
(CDCl₃) 8.3 (br, NH), 7.3 (m, 2H), 7.1 (m, 2H), 3.9
(s. 3H, CH₃).

15

30

Example 8

Methyl chloro[2-(4-fluorophenyl)hydrazono]acetate

The title compound (16.4 gm) was obtained on repeating the procedure of Example 7 at 2/3 scale with 4-fluoroaniline (13.3 gm); m.p.: 110° to 113°C. NMR (CDCl₃) 8.34 (br. NH). 7.3-7.0 (m. ArH. 4H). 3.93 (s. CH₃. 3H).

Example 9

25 Ethyl 1,5-bis(4-chlorophenyl)-4,5-dihydro-lHpyrazole-3-carboxylate

The compound of Example 6 (5.0 gm) was heated in refluxing benzene (30 ml) containing 4-chlorostyrene (7.0 ml). Addition of a benzene (10 ml) solution of triethylamine(7.5 ml) was followed by one hour of continued heating. The cooled mixture was filtered, rotovapped, and dried on the vacuum pump to remove excess styrene. The residual solid was recrystallized from hexane/benzene (charcoal) to give the title compound (6.3 gm); m.p.: 128° to 130°C. NMR (CDCl₃)

7.3-6.9 (m, 8H, ArH), 5.4 (dd, 1H, CH), 4.3 (q, 2H, OCH₂), 3.8 (m, 1H, CH), 3.0 (m, 1H, CH), 1.38 (t, 3H, CH₃).

5

Example 10

Ethyl 1.5-bis(4-Chlorophenyl)-4.5-dihydro-5-methyl-1H-pyrazole-3-carboxylate

The compound of Example 6 (1.0 gm) was converted to the title compound (0.6 gm) by adaptation of the procedure of Example 9 to 4-chloro-α-methyl styrene (2.5 ml). The product was a yellow oil. NMR (CDCl₃) 7.3-6.8 (m, ArH, 8H), 4.3 (q, 2H, CH₂), 3.3 (m, 2H, CH₂), 1.8 (s, 3H, CH₃), 1.3 (t, 3H, CH₃).

Example 11

Dimethyl 1-(4-fluorophenyl)-4.5-dihydro-5-methyl-1H-pyrazole-3.5-dicarboxylate

A solution of the compound of Example 8 (5 gm) in ethyl acetate (30 ml) was treated with methyl methacrylate (10 ml) and triethylamine (6 ml). After stirring for 4 hours the reaction was partitioned between ethyl acetate (100 ml) and water (100 ml). The organic layer was washed with aqueous HCl (1N 100 ml), dried, and concentrated to leave the title compound (5 g): m.p.: 114-118°C. NMR (CDCl₃) 7.26-7.0 (m. ArH. 4H) 3.88 (s. OMe. 3H), 3.77 (s. OMe, 3H), 3.5 (d. CH 1H), 3.2 (d. CH. 1H), 1.7 (s. Me. 3H).

Example 12

1,5-bis(4-Chlorophenyl)-N-(4-fluorophenyl)-4,5-30 dihydro-1H-pyrazole-3-carboxamide

The product of Example 9 (0.72 gm) was refluxed with 50% sodium hydroxide (1 ml) in 85% aqueous methanol (10 ml) for 2 hours. The mixture was acidified with 6N aqueous hydrochloric acid and partitioned

35

between ethyl acetate and water. The ethyl acetate 5 layer was dried with magnesium sulfate and concentrated to a yellow solid. The solid was suspended in benzene (20 ml) containing thionyl chloride (1.5 ml) and heated at reflux for 1.5 hour. The mixture was concentrated and azeotroped with toluene (10 ml) to give the oily 10 acid chloride which was dissolved in tetrahydrofuran (15 ml) and treated dropwise with a benzene solution (10 ml) of triethylamine (1.0 ml) and 4-fluoroaniline (0.3 ml). The reaction mixture was stirred for 18 hours and partitioned between ethyl acetate and 1N 15 hydrochloric acid. The organic layer was washed with sodium bicarbonate and brine. The dried organic layer (magnesium sulfate) was concentrated to leave a residue that could be purified by column chromatography or recrystallization from methanol. The title compound 20 (0.46 g) was a yellow solid; m.p.: 194° to 195.5°C. NMR (CDCl₂) 8.5 (br, NH), 7.7-7.0 (m, 12H, ArH), 5.4 (m, 1H, CH), 3.8 (m, 1H, CH), 3.2 (m, 1H, CH).

Example 13

25 l,5-Bis(4-chlorophenyl)-4,5-dihydro-N-[(4-trifluoro-methyl)phenyl]-lH-pyrazole-3-carboxamide

The title compound (6.3 g) was prepared by the method of Example 12 using 4-aminobenzotrifluoride (3.2 ml) and the compound of Example 9 (6.5 g). The compound was more conveniently prepared by omitting the acidification and extraction of the tetrahydrofuran solution. Simply evaporating the solvent and triturating the residue with methanol provided pure product as a powder: m.p.: 212.5 -214°C. NMR (CDCl₃) 8.6 (br. NH), 7.8-7.0 (m, ArH, 12H), 5.4 (dd, CH, 1H), 3.8 (dd, CH, 1H), 3.2 (dd, CH, 1H).

Example 14

5 l.5-bis(4-Chlorophenyl)-4.5-dihydro-5-methyl-N-[(4-4-trifluoromethyl)phenyl]-lH-pyrazole-3-carboxamide

Application of the procedure of Example 12 to the compound of Example 10 (0.60 g) and 4-trifluoromethylaniline (0.4 ml) gave the title compound (0.51 g) after silica gel chromatography in 20% ethyl acetate/hexanes and subsequent recrystallization from hexanes/butyl chloride; m.p.: 205° to 206°C. NMR (CDCl₃) 8.6 (br, NH), 7.8-6.9 (m, 12H, ArH), 3.4 (m, 2H, CH₂), 1.8 (s, 3H, CH₃).

15

20

25

Example 15

Methyl l-(4-fluorophenyl)-4.5-dihydro-3-[(4-iodophenyl)-aminocarbonyl]-5-methyl-1H-pyrazole-5-carboxylate

The compound of Example 11 (0.5 g) was dissolved in dichloromethane (5 ml) and added to a mixture of trimethylaluminum (2M in toluene, 1.68 ml) and 4-iodoaniline (0.7 g) in dichloromethane (10 ml). The mixture was stirred at room temperature for 16 hours and partitioned between 1N HCl (100 ml) and dichloromethane (100 ml). The organic layer was dried and evaporated to leave a solid. Recrystallization from ether/hexanes gave the title compound (0.73 g): m.p.: 84-85°C. NMR (CDCl₃) 8.4 (br. NH), 7.7-6.9 (m, ArH, 12H), 3.8 (s. OMe, 3H), 3.8 (d. CH, 1H), 3.3 (d. CH, 1H), 1.7 (s. Me, 3H).

30

Example 16

Potassium 4-(4-fluorophenyl)-2-oxo-3-butenoate

A solution of pyruvic acid and p-fluorobenzaldehyde (24.8 g) in methanol (20 ml) was cooled to 15°C and treated with a solution of potassium hydroxide (16.8 g) in (50 ml) methanol. After 2/3 of the addition was complete, the cooling bath was removed and the temperature was allowed to rise to 40°C. A yellow precipitate appeared and was filtered after standing overnight. The solid was washed well with methanol and ether. The title compound (34.5 g) was used without further purification.

Example 17

1-(3,4-Dichlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-N-[4-(trifluoromethyl)phenyl]-lH-pyrazole-3-carboxamide 15 The compound of Example 16 (9.0 g) was treated with a solution of 3.4-dichlorophenylhydrazene hydrochloride (9.5 g) in water (100 ml). The orange solid was filtered and air dried. It was suspended in glacial acetic acid (150 ml) and refluxed for 3 hr. On cooling the pyrazoline acid crystallized (3.3 g). A second crop was also collected (1.1 g). was suspended in benzene (100 ml) and treated with thionyl chloride (6 ml). The mixture was refluxed for 2 hr. and evaporated. The residue was dissolved in 25 dry tetrahydrofuran (50 ml) and separated into five equal portions. One aliquot was added to a solution of 4-aminobenzotrifluoride (0.35 ml) and triethylamine (0.9 ml) in tetrahydrofuran (10 ml). The mixture was stirred for 30 min. and evaporated. The residue was 30 triturated with methanol (10 ml) to give the title compound (0.9 g). m.p.: 241.5-243°C. NMR (CDC1,). 8.6 (m, NH), 7.8-6.7 (m, ArH, 11H), 5.4 (dd, 1H, CH), 3.8 (dd, 1H, CH), 3.2 (dd, 1H, CH).

Example 18

4-(4-Fluorophenyl)-2-oxo-N-[4-(trifluoromethyl)phenyl]-3-butenamide

The compound of Example 16 was converted to the corresponding carboxylic acid by the general method of Stecher (J. Am. Chem. Soc., 1952, 74, 4392). 10 acid (8.5 g) was treated with dichloromethylmethylether (10 ml) in 30 ml CH2Cl2. was heated at reflux with the evolution of HCl. Evaporation after 2 hr. gave the acid chloride which was dissolved in tetrahydrofuran (100 ml) and treated 15 dropwise with a mixture of triethylamine (8 ml) and 4-aminobenzotrifluoride (4 ml) in tetrahydrofuran (25 After 1 hr. the mixture was partitioned between IN HCl and ethyl acetate. On standing overnight the ethyl acetate layer deposited the title compound (5 20 g). m.p.: 200-201°C. NMR (CDCl₃), 9.2 (br, NH), 8.0-7.1 (m, Ar and CH_2 , 10H).

Example 19

25

4.5-Dihydro-4-(4-fluorophenyl)-1-phenyl-N-[4-(tri-fluoromethyl)phenyl]-1H-pyrazole-3-carboxamide

The title compound (0.4 g) was obtained by heating the compound of Example 18 (0.6 g) and phenylhydrazine (0.2 ml) in dimethylformamide (5 ml) at reflux for 1 hr. The residue was purified by chromatography on silica gel (50 g) with hexanes/ethylacetate (3:1) as eluent. m.p.: 183.5-184.5°C. NMR (CDCl₃) 8.6 (br. NH), 7.8-7.0 (m, ArH, 13 H), 5.4 (m, 1H, CH), 3.8 (m, 1H, CH) 3.2 (m, 1H, CH).

Example 20

5 1.5-Bis(4-chlorophenyl)-4.5-dihydro-N-methyl-N-[4-(trifluoromethyl)phenyl]-lH-pyrazole-3-carboxamide

The compound of Example 13 (2.1 g) was added to a suspension of sodium hydride (60% in oil: 0.2 g) in dry tetrahydrofuran (25 ml). After 30 min. methyl iodide (0.9 g) was added in three separate portions. The mixture was stirred for 18 hr. and quenched with ammonium chloride solution. The mixture was extracted with ethyl acetate and the organic layer was dried and evaporated. The oily residue was chromatographed on silica gel with hexanes/ethyl acetate (3:1) as 15 eluent to give the title compound (1.4 g): m.p.: 181-183°C. NMR (CDCl₃) 7.8-6.9 (m, ArH, 10H), 6.26 (d, ArH, 2H), 5.15 (dd, CH, 1H), 3.8 (dd, CH, 1H), 3.5 (s, NMe, 3H), 3.15 (dd, CH, 1H).

20

25

10

Example 21

N-acetyl-1,5-bis(4-chlorophenyl)-4,5-dihydro-N-[4-(trifluoromethyl)phenyl]-lH-pyrazole-3-carboxamide

The title compound (0.8 g) was prepared by the method of Example 20 at 1/2 scale using acetic anhydride (0.5 ml) in place of methyl iodide. Purification by silica gel chromatography using hexanes/ethyl acetate (5:1) as eluent gave a solid which crystallized as bright yellow needles from 158-160°C. NMR (CDC1₂) 7.7-6.9 methanol: m.p.: (m, ArH, 10H), 6.5 (d, ArH, 2H), 5.3 (dd, CH, 1H), 3.7 30 (dd, CH, 1H), 3.05 (dd, CH, 1H), 2.5 (s, COMe, 3H).

Example 22

Methyl 1-(4-chlorophenyl)-4,5-dihydro-5-methyl-3-[[[4-(trifluoromethyl)phenyl]amino]thioxomethyl]-lH-pyrazole-35 5-carboxylate

The compound of Example 4 (0.67 g) was heated under reflux with phosphorous pentasulfide (1.1 g) and WO 88/05046 PCT/US88/00001

pyridine (3 ml) for 1 hr. The mixture was cooled and poured into saturated sodium bicarbonate solution (100 ml) and ethyl acetate (100 ml). The organic layer was washed with 1N hydrochloric acid (100 ml) and the aqueous layer was reextracted with ethyl acetate. The combined organic layers were dried, evaporated and chromatographed on silica gel with hexanes/ethyl acetate (1:1) to give an oil. The title compound (0.46 g) solidified on standing: m.p.: 76-80°C (dec.). NMR (CDCl₃) 8.1-7.0 (m, ArH, 8H), 3.8 (s, Me, 3H), 3.8 (d, CH, 1H), 3.5 (d, CH, 1H), 1.7 (s, Me, 3H).

Using the procedures of Examples 1 to 22 and the methods described herein, the following compounds of Tables 1 to 7 can be prepared.

20

25

30

Structures for Tables

Table 1

15 Table 2

25 Table 3

Structures (continued)

Table 1

	R ₁	R ₂	<u>R</u> 5	m.p.(°C)
	4-CF ₃	4-C1	4-CN	160 to 164
5	4-CF ₃	4-F	4-CN	188 to 190
	4-CF ₃	4-H	4-CN	194 to 195
	4-CF ₃	4-Br	4-CN	
	4-CF ₃	4-I	4-CN	
	4-CF ₃	4-0CF ₃	4-CN	•
10	4-CF ₃	4-CF ₃	4-CN	
	4-CF ₃	4-OCF ₂ H	4-CN	
	4-CF ₃	4-CF ₂ H		
	4-CF ₃	4-C1	4-C1	212 to 214.5
	4-CF ₃	4-F	4-C1	161 to 162.5
15	4-CF ₃	4-H	4-C1	200 to 201
	4-CF ₃	4-Br	4-C1	227 to 229
	4-CF ₃	4-I	4-C1	· · · · · · · · · · · · · · · · · · ·
	4-CF ₃	4-0CF ₃	4-C1	-
	4-CF ₃	4-CF ₃	4-C1	218 to 220
20	4-CF ₃	4-OCF ₂ H	4-C1	187 to 188
	4-CF ₃	4-CF ₂ H	4-C1	
	4-CF ₃	4-C1	4-F	213 to 214.5
	4-CF ₃	4-F	4-F	180.5 to 183
	4-CF ₃	4-H	4-F	183.5 to 184.5
25	4-CF ₃	4-Br	4-F	•
	4-CF ₃	4-I	4-F	-*
	4-CF ₃	4-0CF ₃	4-F	179 to 180
	4-CF ₃	4-CF ₃	4-F	201 to 202
	4-CF ₃	4-OCF ₂ H	4-F	176 to 178
30	4-CF ₃	4-CF ₂ H		
	4-CF ₃	4-CN	4-CN	186 to 188
	4-CF ₃	4-CN	4-C1	
	4-CF ₃	4-CN	4-F	221 to 222
35	4-CF ₃	4-C1	4-H	

Table 1 (continued)

	R.	R ₂	R ₅	= - (°C)
				m.p.(°C)
	4-CF ₃			171 to 173
5	4-CF ₃			213 to 214
	4-CF ₃	4-Br	4-H	
	4-CF ₃			
	3	4-I		
	4-CF ₃			176 to 178
10	4-CF ₃			
	4-CF ₃	4-OCF ₂ H	4-H	
	4-CF ₃	4-CF ₂ H	4-H	
	4-CF ₃	4-C1	4-CH ₃	185 to 186
	4-CF ₃			
	4-CF ₃			
	4-CF ₃			
	4-CF ₃	4-CN	4-CH ₃	
	4-CF ₃	4-1	4-CH ₃	
		4-C1		200 to 201
20		4-F	3-C1	
	4-CF ₃	4-H	3-C1	
	4-CF ₃			
	4-CF ₃	4-CN	3-C1	
	4-CF ₃	4-OCF ₃	3-C1	
25	4-CF ₃	4-OCF ₂ H	3-C1	•
	4-CF ₃			
	4-CF ₃	4-CF ₂ H	3-C1	
	4-CF ₃	4-C1	3,4-di-F	193.5 to 195
	4-CF ₃	4-F	3,4-di-F	171 to 173
30	4-CF ₃	4-Br	3,4-di-F	
	4-CF ₃	4-H	3,4-di-F	
	4-CF ₃	4-CN	3,4-di-F	
	4-CF ₃	4-0CF ₃	3,4-di-F	

Table 1 (continued)

				•
	R ₁	R ₂	<u>R₅</u>	m.p.(°C)
	4-CF ₃	4-OCF ₂ H	3,4-di-F	
5	4-CF ₃	4-CF3	3,4-di-F	
	4-CF ₃	4-CF ₂ H	3,4-di-F	
	4-CF ₃	4-C1	3,4-di-Cl	225 to 226
	4-CF ₃	4-F	3,4-di-Cl	
	4-CF ₃	4-Br	3,4-di-Cl	
10	4-CF ₃	4-H	3,4-di-Cl	
	4-CF ₃	4-CN	3,4-di-Cl	
	4-CF ₃	4-0CF ₃	3,4-di-Cl	
	4-CF ₃	4-CF ₃	3,4-di-Cl	
	4-CF ₃	4-0CF ₂ H	3,4-di-Cl	
15	4-CF ₃	4-CF ₂ H	3,4-di-Cl	-
	4-CF ₃	4-C1	3-CN	
	4-CF ₃	4-F	3-CN	
	4-CF ₃	4-Br	3-CN	
	4-CF ₃	4-H	3-CN	· ·
20	4-CF ₃	4-CN	3-CN	171 to 173
	4-CF ₃	4-CF ₃	3-CN	
	4-CF ₃	4-OCF ₃	3-CN	- ·
	4-CF ₃	4-OCF ₂ H	3-CN	
	4-CF ₃	4-CF ₂ H	3-CN	
25	4-CF ₃	4-C1	4-CO ₂ Me	199 to 200
	4-CF ₃	4-F	4-C0 He	174 to 179
	4-CF ₃	4-Br	4-CO ₂ Me	
	4-CF ₃	4-H	4-CO ₂ Me	
	4-CF ₃	4-CN	4-CO ₂ Me	
30	4-CF ₃	4-CF ₃	4-C0 ₂ He	208 to 210
	4-CF ₃	4-0CF ₃	_	
	4-CF ₃	4-0CF ₂ H	-	
	4-CF ₃	4-CF ₂ H	4-CO ₂ Me	
	J	~	-	

Table 1 (continued)

	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
		4-C1		194 to 196
5	3	•	4-CF ₃	
	3	4-Br	4-CF ₃	
	4-CF ₃		4-CF ₃	
	4-CF ₃	4-CN	4-CF ₃	
	4-CF ₃	4-CF ₃	•	218 to 219
10	•	4-OCF ₃		
	4-CF ₃	4-OCF ₂ H		
		4-CF ₂ H		
	-	4-C1		207 to 208
	4-CF ₃	4-F	4-Br	
15	4-CF ₃	4-CN	4-Br	238 to 240
		4-CF ₃	4-Br	224 to 225
	4-CF ₃		4-Br	
	4-CF ₃	4-C1	3-Br	
	4-CF ₃	4-F	3-Br	
20	9	4-CF ₃	3-Br	
	J	4-CN	3-Br	•
	4-CF ₃	4-H	3-Br	
	4-0CF ₃	4-C1	4-CN	
	4-0CF ₃	4-F	4-CN	
25	4-0CF ₃	4-Br	4-CN	
	4-0CF ₃	4-H	4-CN	
	4-0CF ₃	4-CN	4-CN	
	4-0CF ₃	4-CF ₃	4-CN	
	4-0CF ₃	4-0CF ₃	4-CN	
30	4-0CF ₃	4-OCF ₂ H		
	4-0CF ₃	4-CF ₂ H	4-CN	
	4-0CF ₃	_	4-F	165 to 167
	4-0CF ₃	4-F	4-F	
	4-0CF ₃	4-Br	4-F	
35	-			

Table 1 (continued)

5				
	$\frac{R_1}{2}$	R ₂	R ₅	m.p.(°C)
	4-0CF ₃	4-H	4-F	
	4-0CF ₃	4-CN	4-F	
	4-0CF ₃	4-CF ₃	4-F	
10	4-0CF ₃	4-0CF ₃	4-F	140.5 to 142
	4-OCF3	4-OCF ₂ H	4-F	120 to 124
	4-0CF ₃	4-CF ₂ H	4-F	•
	4-0CF ₃	4-C1	4-C1	170 to 172
	4-0CF ₃	4-F	4-C1	•
15	4-OCF ₃	4-Br	4-C1	
	4-0CF ₃	4-CN	4-C1	
	4-0CF ₃	4-H	4-C1	
	4-0CF ₃	4-CF ₃	4-C1	
	4-0CF ₃	4-0CF ₃	4-C1	
20	4-0CF ₃	4-OCF ₂ H	4-C1	•
	4-0CF ₃	4-CF ₂ H	4-C1	
	4-0CF ₃	4-C1	3-C1	
	4-OCF ₃	4-F	3-C1	
	4-OCF ₃	4-Br	3-C1	
25	4-OCF ₃	4-H	3-C1	-
	4-OCF ₃	4-CN	3-C1	- -
	4-0CF ₃	4-CF ₃	3-C1	-
	4-OCF ₃	4-0CF ₃	3-C1	
	4-0CF ₃	4-OCF ₂ H	3-C1	- -
30	4-OCF ₃	4-CF ₂ H	3-C1	
	4-OCF ₃	4-C1	4-H	
	4-0CF ₃	4-F	4-H	
	4-0CF ₃	4-Br	4-H	*
	4-0CF ₃	4-H	4-H	
35	4-0CF ₃	4-CN	4-H	
	4-0CF ₃	4-CF ₃	4-H	
	4-0CF ₂	4-0CF ₂	4-H	

Table 1 (continued)

\$\begin{array}{cccccccccccccccccccccccccccccccccccc		<u>R</u> 1	R ₂	<u>R₅</u>	m.p.(°C)
5		4-0CF ₂	4-OCF ₂ H	4-H	
4-OCF ₃ 4-Cl 3,4-di-F 134.5 to 135.5 4-OCF ₃ 4-F 3,4-di-F 162.5 to 164 4-OCF ₃ 4-Br 3,4-di-F 4-OCF ₃ 4-CN 3,4-di-F 4-OCF ₃ 4-CN 3,4-di-F 4-OCF ₃ 4-CCF ₃ 3,4-di-F 4-OCF ₃ 4-CCF ₂ H 3,4-di-F 4-OCF ₃ 4-CCF ₂ H 3,4-di-F 4-OCF ₃ 4-Cl 4-CO ₂ Me 4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CCF ₃ 4-CCF ₃ 4-OCF ₃ 4-CCCF ₃ 4-CCF ₃ 4-OCCF ₃ 4-CCCF ₃ 4-CCF ₃	5	_		4-H	•
4-OCF ₃ 4-F 3,4-di-F 162.5 to 164 4-OCF ₃ 4-Br 3,4-di-F 4-OCF ₃ 4-CN 3,4-di-F 4-OCF ₃ 4-CN 3,4-di-F 4-OCF ₃ 4-CCF ₃ 3,4-di-F 4-OCF ₃ 4-OCF ₃ 3,4-di-F 4-OCF ₃ 4-OCF ₂ H 3,4-di-F 4-OCF ₃ 4-C1 4-C2 Me 4-OCF ₃ 4-Br 4-C0 Me 4-OCF ₃ 4-CN 4-C2 Me 4-OCF ₃ 4-CCF ₂ H 4-C0 Me 4-OCF ₃ 4-CCF ₂ H 4-CO Me 4-OCF ₃ 4-CCF ₂ H 4-CO Me 4-OCF ₃ 4-CCF ₃ 4-CCF ₃ 4-OCCF ₃ 4-CCCF ₃ 4-CCF ₃		_	4-C1	3,4-di-F	134.5 to 135.5
4-OCF ₃ 4-Br 3,4-di-F 4-OCF ₃ 4-CN 3,4-di-F 4-OCF ₃ 4-CN 3,4-di-F 4-OCF ₃ 4-OCF ₃ 3,4-di-F 4-OCF ₃ 4-OCF ₃ 3,4-di-F 4-OCF ₃ 4-OCF ₂ H 3,4-di-F 4-OCF ₃ 4-CI 4-CO ₂ Me 4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CS ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CS ₃ 4-CO ₂ Me 4-OCF ₃ 4-CS ₄ 4-CS ₃ 4-OCS ₃ 4-OCS ₄ 4-CS ₃		•	4-F	3,4-di-F	162.5 to 164
10		•	4-Br	3,4-di-F	
4-OCF ₃ 4-CF ₃ 3,4-di-F 4-OCF ₃ 4-OCF ₂ 3,4-di-F 4-OCF ₃ 4-OCF ₂ H 3,4-di-F 4-OCF ₃ 4-CF ₂ H 3,4-di-F 4-OCF ₃ 4-CI 4-CO ₂ Me 4-OCF ₃ 4-F 4-CO ₂ Me 4-OCF ₃ 4-H 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CC ₃ Me 4-OCF ₃ 4-CF ₃ 4-CC ₃ Me 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CCF ₃ 4-CCF ₃ 4-OCF ₃ 4-CCF ₃ 4-CCF ₃ 4-OCF ₃ 4-CCF ₃ 4-CCF ₃ 4-OCF ₃ 4-OCF ₃ 4-CCF ₃ 4-OCF ₃ 4-OCF ₃ 4-CCF ₃		•	4-H	3,4-di-F	
4-OCF ₃ 4-CF ₃ 3,4-di-F 4-OCF ₃ 4-OCF ₂ H 3,4-di-F 4-OCF ₃ 4-CF ₂ H 3,4-di-F 4-OCF ₃ 4-CI 4-CO ₂ Me 4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₂ H 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃	10	4-OCF ₃	4-CN	3,4-di-F	
4-OCF ₃ 4-OCF ₂ H 3,4-di-F 4-OCF ₃ 4-CF ₂ H 3,4-di-F 4-OCF ₃ 4-CI 4-CO ₂ Me 4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CI 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₂ H 4-CCF ₃		_	4-CF ₃	3,4-di-F	
4-OCF ₃ 4-CF ₂ H 3,4-di-F 4-OCF ₃ 4-CI 4-CO ₂ Me 4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CS ₃ 4-CO ₂ Me 4-OCF ₃ 4-CS ₄ 4-CS ₄ Me 4-OCF ₃ 4-CS ₄ 4-CS ₃ Me 4-OCF ₃ 4-CS ₃ 4-CS ₃ Ma-CS ₃		-	4-OCF ₃	3,4-di-F	
15		-		3,4-di-F	
4-OCF ₃ 4-F 4-CO ₂ Me 4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-H 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CI 4-CF ₃ 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃		4-0CF ₃	4-CF ₂ H	3,4-di-F	
4-OCF ₃ 4-Br 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₂ H 4-CF ₃	15	4-0CF ₃	4-C1	4-CO ₂ Me	
4-OCF ₃ 4-H 4-CO ₂ Me 4-OCF ₃ 4-CN 4-CO ₂ Me 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CI 4-CF ₃ 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃		4-0CF ₃	4-F.	4-CO ₂ Me	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-0CF ₃	4-Br	4-CO ₂ Me	
20 4-OCF ₃ 4-CF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ 4-OCF ₂ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CF ₂ H 4-CF ₃ 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃		4-0CF ₃	4-H	4-CO ₂ Me	
4-OCF ₃ 4-OCF ₃ 4-CO ₂ Me 4-OCF ₃ 4-OCF ₂ H 4-CO ₂ Me 4-OCF ₃ 4-CI 4-CF ₃ 4-OCF ₃ 4-F 4-CF ₃ 4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃		4-0CF ₃	4-CN	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	4-OCF ₃	4-CF ₃	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-OCF ₃	4-0CF ₃	4-CO ₂ Me	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-OCF ₃	4-OCF ₂ H	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-OCF ₃	4-CF ₂ H	4-CO ₂ Me	
4-OCF ₃ 4-Br 4-CF ₃ 4-OCF ₃ 4-H 4-CF ₃ 4-OCF ₃ 4-CN 4-CF ₃ 4-OCF ₃ 4-CF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₃ 4-OCF ₃ 4-CF ₃	2.5	4-OCF ₃	4-C1	4-CF ₃	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	4-0CF ₃	4-F		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-0CF ₃	4-Br	<u> </u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4-H		
4-OCF ₃ 4-OCF ₃ 4-CF ₃ 4-OCF ₂ H 4-CF ₃		4-0CF ₃			
4-OCF ₃ 4-OCF ₂ H 4-CF ₃	30				
5 2	30	4-0CF ₃	4-OCF ₃		
$4-OCF_3$ $4-CF_2H$ $4-CF_3$				_	
		4-0CF ₃	4-CF ₂ H	4-CF ₃	

Table 1 (continued)

	<u>R</u> 1	R ₂	^R 5	m.p.(°C)
	4-F	4-C1	4-CN	-
5	4-F	4-F	4-CN	174 to 175
	4-F	4-H	4-CN	204 to 207
	4-F	4-Br	4-CN	
	4-F	4-I	4-CN	
	4-F	4-CN	4-CN	
10	4-F	4-C1	4-C1	194 to 195.5
	4-F	4-F	4-C1	181 to 182
	4-F	4-H	4-C1	201 to 202
	4-F	4-Br	4-C1	
	4-F	4-I	4-C1	
15	4-F	4-CN	4-C1	
	4-F	4-C1	4-F	203 to 204
	4-F	4-F	4-F	157 to 158.5
	4-F	4-H	4-F	
	4-F	4-Br	4-F	
20	4-F	4-I	4-F	
	4-F	4-CN	4-F	204 to 206
	4-F	4-C1	4-H	
	4-F	4-F	4-H	168 to 169
	4-F	4-H	4-H	
25	4-F	4-Br	4-H	- * · · · · · · · · · · · · · · · · · ·
	4-F	4-I	4-H	
	4-F	4-CN	4-H	190 to 192
	4-F	4-Cl	4-CH ₃	170 to 171
	4-F	4-F	4-CH ₃	-
30	4-F	4-H	4-CH ₃	8
	4-F	4-Br	4-CH ₃	
	4-F	4-I	4-CH ₃	
	4-F	4-CN	4-CH ₃	

Table 1 (continued)

5				
	<u>R</u> 1	R ₂	^R ₅	m.p.(°C)
	4-C1	4-C1	4-CN	180 to 183
	4-C1	4-F	4-CN	169 to 170
	4-C1	4-H	4-CN	178 to 179
10	4-C1	4-Br	4-CN	
	4-C1	4-I	4-CN	
	4-C1	4-CN	4-CN	solid (a)
	4-C1	4-CF ₃	4-CN	
	4-Cl			
15	4-C1			
	4-C1	4-CF ₂ H	4-CN	
	4-C1	4-C1	4-C1	186 to 188
				137 to 139.5
	4-C1	4-H	4-Cl	
	4-C1	4-Br	4-C1	
	4-C1	4-I	4-C1	
	4-C1	4-CN	4-C1	
	4-C1	4-CF ₃	4-C1	206 to 208
	4-C1	4-OCF ₃	4-C1	
25	4-C1	4-OCF ₂ H	4-C1	173 to 175
	4-C1	4-CF ₂ H	4-C1	
	4-C1	4-C1	4-F	208 to 209.5
	4-C1	4-F	4-F	
	4-C1	4-H	4-F	
30	4-C1	4-Br	4-F	
	4-C1	4-I	4-F	
	4-C1	4-CN	4-F	215 to 218
	4-C1	4-CF ₃	4-F	
	4-C1	4-0CF ₃	4-F	181 to 183
35	4-C1	4-OCF ₂ H		175 to 176
	4-C1	4-CF ₂ H	4-F	
	4-C1	4-C1	4-H	

Table 1 (continued)

				•
	R ₁	<u>R</u> 2	R ₅	m.p.(°C)
	4-C1	4-F	4-H	140 to 142
5	4-C1	4-H	4-H	
	4-C1	4-Br	4-H	• .
	4-C1		4-H	
	4-C1		4-H	202 to 203
	4-C1		4-H	188 to 190
10		4-CF ₃	4-H	
		3		
	4-C1	4-OCF ₂ H		•
	4-C1	4-CF ₂ H	4-H	
	4-C1	4-C1	4-CH ₃	
	4-C1	4-F	4-CH ₃	-
15	4-C1	4-H	4-CH ₃	
	4-C1	4-Br	4-CH ₃	
	4-C1	4-I	4-CH ₃	
	4-C1	4-CN	4-CH ₃	
	4-C1	4-CF ₃	4-C1	206 to 208
20	4-C1	4-C1	3-C1	188 to 191
	4-Cl	4-F	3-C1	•
	4-C1	4-H	3-C1	
	4-C1	4-Br	3-C1	
	4-C1	4-CN	3-61	
	4-C1	4-0CF ₃	3-C1	
25	4-C1	4-OCF ₂ H		
	4-C1	4-CF ₃	3-C1	
	4-C1	4-CF ₂ H	3-C1	•
	4-C1	4-C1	3,4-di-F	148.5 to 151
	4-Cl	4-F	3,4-di-F	170 to 171
	4-CI	4-Br	3,4-di-F	
	4-C1	4-H	3,4-di-F	-
30	4-C1	4-CN	3,4-di-F	
	4-C1	4-0CF ₃	3,4-di-F	
	4-01	4-0013		
	4-C1	4-OCF ₂ H		•
	4-C1	4-CF ₃	3,4-di-F	
	4-C1	4-CF ₂ H	3,4-di-F	
35				-

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	<u>R</u> 5	m.p.(°C)
	4-C1	4-C1	3,4-di-Cl	
5	4-C1	4-F	3,4-di-Cl	
	4-C1	4-Br	3,4-di-C1	
	4-C1	4-H	3,4-di-Cl	
	4-C1	4-CN	3,4-di-Cl	
	4-C1	4-0CF ₃		
	4-C1	4-CF ₃	3,4-di-Cl	
10	4-Cl		3,4-di-Cl	
	4-Cl	4-CF ₂ H		
	4-C1	4-C1	3-CN	
	4-C1	4-F	3-CN 3-CN	
	4-C1	4-Br 4-H	3-CN	
	4-Cl 4-Cl	4-CN	3-CN	
15	4-C1	4-CF ₃	3-CN	168 to 170
	4-C1	4-0CF ₃	3-CN	
	4-C1	4-OCF ₂ H	3-CN	
	4-C1	4-CF ₂ H	3-CN	
	4-C1	4-C1	4-CO ₂ He	202 to 205
20	4-C1	4-F	4-CO ₂ Me	170 to 176
	4-C1	4-Br	4-CO ₂ Me	
	4-C1	4-H	4-CO ₂ Me	
	4-C1	4-CN	4-CO ₂ Me	
	4-C1	4-CF ₃	4-C0 ₂ Me	175 to 178
25	4-C1	4-OCF ₃	4-CO ₂ Me	
	4-C1	4-OCF ₂ H		•
	4-Cl	$4-CF_2H$	4-CO ₂ Me	
	4-C1	4-C1	4-CF ₃	
	4-Cl	4-F	4-CF ₃	
30	4-Cl	4-Br	4-CF ₃	
	4-Cl	4-H	4-CF ₃	
	4-C1	4-CN	4-CF ₃	
	4-C1	4-CF ₃	4-CF ₃	177 to 178
	4-C1	4-0CF ₃	4-CF ₃	
2.5				•

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	R ₅	m.p.(°C)
	4-C1	4-OCF ₂ H	4-CF ₃	
5	4-C1	4-CF ₂ H	4-CF ₃	
	4-Cl 4-Cl	4-C1 4-F	4-Br 4-Br	191 to 193.5
	4-C1 4-C1	4-CN 4-CF ₃	4-Br 4-Br	246 to 248
10	4-C1 4-C1 4-C1 4-C1	4-H 4-C1 4-F 4-CF ₃	4-Br 3-Br 3-Br 3-Br	
	4-C1 4-C1	4-CN 4-H	3-Br 3-Br	
	4-Br	4-F	4-CN	
15	4-Br	4-C1	4-CN	197.5 to 198.5
	4-Br	4-H	4-CN	
	4-Br	4-F	4-C1	
	4-Br	4-C1	4-C1	190 to 192
	4-Br	4-H	4-C1	
20	4-I	4-F	4-CN	*
	4-I	4-C1	4-CN	•
	4-I	4-H	4-CN	
	4-I	4-F	4-C1	9. 0
	4-I	4-C1	4-C1	207.5 to 209
25	4-I	4-H	4-C1	*
	4-(4'-chloro- phenoxy	4-C1	4-C1	214 to 215.5
	4-(4'-chloro- phenoxy	4-F	4-CN	
	4-0CH ₃	4-C1	4-CN	
30	4-NO ₂	4-C1	4-CN	222 to 223
	4-C0 ₂ Et	4-C1	4-CN	
	4-SMe	4-C1	4-CN	
	4-S0 ₂ Me	4-C1	4-CN	
35	4-He	4-C1	4-CN	(4) (4)
				-

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	R ₅	m.p.(°C)
	4-CH=CH ₂	4-C1	4-CN	
5	4-C≣CH	4-C1	4-CN	
	4-CONMe ₂	4-C1	4-CN	
	4-SCF ₃	4-C1	4-CN	
	4-OCH(CH ₃) ₂	4-C1	4-CN	
	4-050 ₂ CH ₃	4-C1	4-CN	
1.0	4-OCOCH ₃	4-C1	4-CN	
	4-NMe ₂	4-C1	4-CN	
	4-NHCOCH ₃	4-C1	4-CN	
	4-OCONHMe	4-C1	4-CN	
	4-NHCONH ₂	4-C1	4≓CN	
15	4-COCH ₃	4-C1	4-CN	
	4-OCH ₃	4-C1	4-C1	177 to 178
	4-NO ₂	4-C1	4-C1	223 to 225
	-	4-C1	4-C1	
	4-SMe	4-C1	4-C1 ·	
20	4-S0 ₂ Me	4-C1	4-C1	
	4-Me	4-C1	4-Cl	153 to 155
	4-CH=CH ₂	4-C1	4-C1	
	4-C≣CH	4-C1	4-Cl	
	4-CONMe ₂	4-Cl	4-C1	
25	4-SCF ₃	4-C1	4-C1	•
	4-0CH(CH ₃) ₂	4-Cl	4-Cl	
	4-OSO ₂ CH ₃	4-Cl	4-C1	
	4-OCOCH ₃	4-C1	4-C1	
	4-NMe	4-C1	4-Cl	
30	4-NHCOCH ₃	4-C1	4-C1	
	4-OCONHMe	4-C1	4-C1	
	4-NHCONH ₂	4-C1	4-C1	
	4-COCH ₃	4-Cl	4-C1	193 to 195

Table 1 (continued)

	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-0CH ₃	4-F	4-CN	* · · · · · · · · · · · · · · · · · · ·
5	4-NO ₂	4-F	4-CN	*
	4-co ₂ Et	4-F	4-CN	-
	4-SMe	4-F	4-CN	- - -
	4-S0 ₂ Me	4-F	4-CN	
	4-He	4-F	4-CN	*
10	4-CH=CH ₂	4-F	4-CN	
	4-c≡ch	4-F	4-CN	
	4-CONMe	4-F	4-CN	
	4-SCF ₃	4-F	4-CN	
	4-OCH(CH ₃) ₂	4-F	4-CN	
15	4-0S0 ₂ CH ₃	4-F	4-CN	*
	4-OCOCH ₃	4-F	4-CN	
	4-NMe ₂	4-F	4-CN	
	4-NHCOCH ₃	4-F	4-CN	+ - + .
	4-OCONHMe	4-F	4-CN	
20	4-NHCONH ₂	4-F	4-CN	
	4-COCH ₃	4-F	4-CN	
	4-0CH ₃	4-F.	4-C1	
	4-NO ₂	4-F	4-C1	180 to 185
	4-CO ₂ Et	4-F	4-C1	
25	4-SMe	4-F	4-C1	•
	4-S0 ² He	4-F	4-C1	
	4-Me	4-F	4-C1	÷
	4-CH=CH ₂	4-F	4-C1	
	4-C≣CH	4-F	4-C1	-
30	4-CONMe	4-F .	4-C1	
	4-SCF ₃	4-F	4-C1	
	4-OCH(CH ₃) ₂	4-F	4-C1	
	4-0S0 ₂ CH ₃	4-F	4-C1	
_	4-OCOCH ₃	4-F	4-C1	•
35	•			•

Table 1 (continued)

	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
		4-F	4-C1	
5		4-F	4-C1	•
	4-OCONHMe	4-F	4-C1	
	4-NHCONH ₂	4-F	4-C1	
	4-COCH ₃	4-F	4-C1	
	4-CF ₃	4-F	3-C1, 4-CN	•
10	4-CF ₃	4-C1	3-C1, 4-CN	
	4-CF ₃	4-F	3-CN, 4-F	
	4-CF ₃	4-C1	3-CN, 4-F	
	4-CF ₃	4-F	3-CN, 4-Cl	
15	4-CF ₃	4-C1	3-CN, 4-C1	
	4-CF ₃	4-F	2-F, 4-CN	
	4-CF ₃	4-C1	2-F, 4-CN	
	4-CF ₃	4-F	2-F, 4-C1	
	4-CF ₃	4-C1	2-F, 4-C1	
	4-CF ₃	4-F	2,4-di-F	
20	4-CF ₃	4-C1	2,4-di-F	
	4-CF ₃		3,5-di-F	
	4-CF ₃	4-C1	3,5-di-F	
	4-CF ₃	4-F	2-C1	
	4-CF ₃	4-C1	2-C1	190 to 192
25	4-CF ₃	4-F	3-F	
	4-CF ₃	4-C1	3-F	
	4-CF ₃	4-F	2-F	
	4-CF ₃	4-C1	2-F	
	4-CF ₃	4-F	2-CN	
30	4-CF ₃	4-C1	2-CN	
	4-CF ₃	4-F	3-CF ₃	
	4-CF ₃	4-C1	3-CF ₃	
	4-CF ₃	4-F	2-CF ₃	
35	4-CF ₃	4-C1	2-CF ₃	
			•	

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	R ₅	m.p.(°C)
	4-CF ₃	4-F	3,4-di-CN	
5	4-CF ₃	4-C1	3,4-di-CN	
	4-CF ₃	4-F	3-F, 4-C1	
	4-CF ₃	4-C1	3-F, 4-C1	
	4-CF ₃	4-F	3-C1, 4-F	
	4-CF ₃	4-C1	3-C1, 4-F	•
10	4-CF ₃	4-F	3-F, 4-CN	
	4-CF ₃	4-C1	3-F, 4-CN	
	4-CF ₃	4-F	3,5-di-Cl	
	4-CF ₃	4-C1	3,5-di-Cl	
	3 4-CF ₃	4-F	3-C1, 5-F	
15	3 4-CF ₃	4-C1	3-C1, 5-F	
	3 4-CF ₃	4-0CH ₃	4-CN	
	3 4-CF ₃	4-NO ₂	4-CN	
	4-CF ₃	4-CO ₂ Et	4-CN	
	3 4-CF ₃	4-SMe	4-CN	
20	4-CF ₃	4-S0 ₂ He	4-CN	
	4-CF ₃	4-Me	4-CN	-
	4-CF ₃	4-CH=CH ₂	4-CN	
	4-CF ₃	4-C≡CH	4-CN	•
	4-CF ₃	4-CONMe	4-CN	
25	4-CF ₃	4-SCF ₃	4-CN	
	4-CF ₃	4-0CH(CH ₃) ₂	4-CN	
	4-CF ₃	4-0S0 ₂ CH ₃	4-CN	
	4-CF ₃	4-OCOCH ₃	4-CN	-
	4-CF ₃	4-NMe ₂	4-CN	
30	4-CF ₃	4-NHCOCH ₃	4-CN	
	4-CF ₃	4-OCONHMe	4-CN	
	4-CF ₃	4-NHCONH ₂	4-CN	•
	4-CF ₃	4-COCH ₃	4-CN	
	_			

Table 1 (continued)

	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-CF ₃		4-F	
5	4-CF ₃		4-F	232 to 234
	4-CF ₃		4-F	
	_	4-SMe	4-F	
	3	4-S0 ₂ Me	4-F	242 to 244
	J		4-F	
10	4-CF ₃		4-F	
	4-CF	4-CH=CH ₂	4-F	
		4-CECH	4-F	
	-	4-CONMe ₂	4-F	
	4-CF ₃	4-5CF 3	4-F	
15	_	4-0CH(CH ₃) ₂	4-F	
	4-CF ₃	4-050 ₂ CH ₃	4-F	
	_	4-OCOCH ₃	4-F	
		4-NMe ₂	4-F	
		4-NHCOCH ₃	4-F	
20	_	4-OCONHMe	4-F	
20	_	4-NHCONH ₂	4-F	
	_	4-COCH ₃		
	-	4-0CH ₃	4-Cl	
	4-CF ₃		4-C1	
25	•	4-CO ₂ Et	4-C1	
25	4-CF ₃	4-SMe	4-C1	•
	4-CF ₃	4-SO ₂ Me	4-C1	201.5 to 203.5
	4-CF ₃	4- M e	4-C1	201.5 to 203.5
	4-CF ₃	4-CH=CH ₂	4-C1	
	4-CF ₃	4-C≡CH	4-Cl	
30	4-CF ₃	4-CONMe ₂	4-C1	
	4-CF ₃	4-SCF ₃	4-C1	
	4-CF ₃	4-0CH(CH ₃) ₂	4-C1	
÷.	4-CF ₃	4-050 ₂ CH ₃	4-C1	
	4-CF ₃	4-OCOCH ₃	4-C1	
35	J			

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	R ₅	m.p.(°C)
	4-CF ₃	4-NMe ₂	4-C1	
5	4-CF ₃	4-NHCOCH ₃	4-C1	
	4-CF ₃	4-OCONHMe	4-C1	
	4-CF ₃	4-NHCONH ₂	4-C1	
	4-CF ₃	4-COCH ₃	4-Cl	* .
10	4-C1	4-0CH ₃	4-CN	
	4-C1	4-NO ₂	4-CN	
	4-C1	4-CO ₂ Et	4-CN	
	4-C1	4-SMe	4-CN	
	4-C1	4-S0 ₂ Me	4-CN	- -
	4-C1	4-Me	4-CN	
15	4-C1	4-CH=CH ₂	4-CN	
	4-C1	4-C≡CH	4-CN	
	4-C1	4-CONMe	4-CN	
	4-C1	4-SCF ₃	4-CN	
	4-C1	4-0CH(CH ₃) ₂	4-CN	
20	4-C1	4-0S0 ₂ CH ₃	4-CN	
	4-C1	4-OCOCH ₃	4-CN	
	4-C1	4-NMe ₂	4-CN	
	4-C1	4-NHCOCH ₃	4-CN	
	4-C1	4-OCONHMe	4-CN	
25	4-C1	4-NHCONH ₂	4-CN	-
	4-C1	4-COCH ₃	4-CN	:
	4-C1	4-0CH ₃	4-C1	188 to 189
	4-C1	4-NO ₂	4-C1	-
	4-C1	4-CO ₂ Et	4-C1	
30	4-C1	4-SMe	4-CI	
	4-C1	4-50 ₂ Me	4-C1	
	4-C1.	4-He	4-Cl	
	4-C1	4-CH=CH ₂	4-CL	
35	4-C1	4-C≡CH	4-C1	

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	R ₅	m.p.(°C)
	4-C1	4-CONMe ₂	4-C1	
5	4-C1	4-SCF ₃	4-C1	
	4-C1	4-OCH(CH ₃) ₂	4-C1	
	4-C1	4-0S0 ₂ CH ₃	4-C1	
	4-C1	4-0COCH ₃	4-C1	
	4-C1	4-NMe ₂	4-C1	
10	4-C1	4-NHCOCH ₃	4-C1	
	4-C1	4-OCONHMe	4-C1	
	4-C1	4-NHCONH ₂	4-C1	
	4-C1	4-COCH ₃	4-C1	
	4-C1	4-OCH ₃	4-F	
15	4-C1	4-NO ₂	4-F	
	4-C1	4-CO ₂ Et	4-F	
	4-C1	4-SMe	4-F	
	4-Cl	4-SO ₂ Me	4-F	
	4-C1	4-Me	4-F	
20	4-C1	4-CH=CH ₂	4-F	
	4-Cl	4-C≡CH	4-F	
	4-C1	4-CONMe ₂	4-F	
	4-C1	4-SCF ₃	4-F	
	4-C1	4-OCH(CH ₃) ₂	4-F	
25	4-C1	4-OSO ₂ CH ₃	4-F	•
	4-C1	4-OCOCH ₃	4-F	
	4-C1	4-NMe ₂	4-F	
	4-C1	4-NHCOCH ₃	4-F	
	4-C1	4-OCONHMe	4-F	
30	4-C1	4-NHCONH ₂	4-F	
	4-C1	4-COCH ₃	4-F	

Table 1 (continued)

	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-CF ₃	4-C1	4-0CH ₃	163 to 164
5	4-CF ₃	4-C1	4-NO ₂	
	4-CF ₃	4-C1	4-CO ₂ Et	-
	4-CF ₃	4-C1	4-SMe	
	4-CF ₃	4-C1	4-SO ₂ Me	
	4-CF ₃	4-C1	4- M e	
10	4-CF ₃	4-C1	4-CH=CH ₂	
	4-CF ₃	4-C1	4-C≣CH	•
	4-CF ₃	4-C1	4-CONMe	
	4-CF ₃	4-C1	4-SCF ₃	
	4-CF ₃	4-C1	4-0CH(CH ₃) ₂	- -
15	4-CF ₃	4-C1	4-050 ₂ CH ₃	
	4-CF ₃	4-C1	4-OCOCH ₃	
	4-CF ₃	4-C1	4-NMe ₂	•
	4-CF ₃	4-C1	4-NHCOCH ₃	
	4-CF ₃	4-C1	4-OCONHMe	
20	4-CF ₃	4-C1	4-NHCONH ₂	-
	4-CF ₃	4-C1	4-COCH ₃	
	4-F	4-F	4-0CH ₃	
	4-F	4-F	4-NO ₂	-
	4-F	4-F	4-CO ₂ Et	
25	4-F	4-F	4-SMe	
	4-F	4-F	4-50 ₂ He	
	4-F	4-F	4-Me	
	4-F	4-F	4-CH=CH ₂	-
	4-F	4-F	4-C≡CH	
30	4-F	4-F	4-CONMe ₂	
	4-F	4-F	4-SCF ₃	
	4-F	4-F	4-OCH(CH ₃) ₂	
	4-F	4-F	4-050 ₂ CH ₃	
	4-F	4-F	4-OCOCH ₃	
35	4-F	4-F	4-NMe ₂	

Table 1 (continued)

5				
	<u>R</u> 1 .	$\frac{R_2}{2}$	<u>R₅</u>	m.p.(°C)
	4-F	4-F	4-NHCOCH3	
	4-F	4-F	4-OCONHMe	
	4-F	4-F	4-NHCONH ₂	
10	4-F	4-F	4-COCH ₃	
	4-C1	4-C1	4-0CH ₃	166 to 168
	4-C1	4-C1	4-NO ₂	
	4-C1	4-C1	4-CO ₂ Et	
	4-C1	4-C1	4-SMe	
15	4-C1	4-C1	4-S0 ₂ Me	
	4-Cl	4-C1	4-Me	
	4-C1	4-C1	4-CH=CH ₂	
	4-C1	4-C1	4-C≡CH	
	4-C1		4-CONMe	
20	4-C1	4-Cl	4-SCF ₃	
	4-Cl	4-C1	4-0CH(CH ₃) ₂	
	4-Cl	4-Cl	4-0502 ^{CH} 3	•
	4-Cl	4-C1	4-OCOCH ₃	
0.5	4-Cl	4-Cl	4-NMe ₂	
25	4-Cl	4-C1	4-NHCOCH ₃	
	4-C1	4-C1	4-OCONHMe	
	4-C1	4-C1	4-NHCONH ₂	-
	4-Cl	4-C1	4-COCH ₃	
2.0	3	4-Cl	4-CN	
30	3-C1, 4-CF ₃	4-Cl	4-CN	
	2-F, 4-CF ₃	4-Cl	4-CN	
	2-C1, 4-CF ₃	4-Cl		
	3-F, 4-Cl	4-Cl		
2.5	3,4-di-F	4-Cl	4-CN	
35	3-C1, 4-F	4-Cl		
	3,4-di-Cl			•
	4-F, 3-CF ₃	4-C1	4-CN	
	4-C1, 3-CF ₃	4-C1	4-CN 47	

Table 1 (continued)

	<u>R</u> 1	<u>R</u> 2	R ₅ m.p.(°C)
	5-F, 3-CF ₃	4-F	4-CN
5	5-C1, 3-CF ₃	4-F	4-CN
	3,5-di-F	4-F	4-CN
	3,5-di-Cl	4-F	4-CN
	3-F, 5-C1	4-F	4-CN
	3-CF ₃	4-F	4-CN
10	3-CF ₃	4-C1	4-CN
	3-C1	4-F	4-CN
	3-C1	4-C1	4-CN
	3-F	4-F	4-CN
	3-F	4-C1	4-CN
15	4-CF ₃	3-F	4-CN
	4-CF ₃	3-C1	4-CN
	4-CF ₃	3-F, 4-Cl	4-CN
	4-CF ₃	3-C1, 4-F	4-CN
	4-CF ₃	3,4-di-F	4-CN
20	4-CF ₃	3,4-di-C1	4-CN
	4-CF ₃	3,5-di-F	4-CN
	4-CF ₃	3,5-di-C1	4-CN
	4-CF ₃	3-F, 5-C1	4-CN
	4-CF ₃	3,4,5-trifluoro	4-CN
25	4-CF ₃	3,4,5-trichloro	4-CN
	4-CF ₃	2-F	4-CN
	4-CF ₃	2-C1	4-CN
	4-CF ₃	2-F, 4-Cl	4-CN
	4-CF ₃	2-C1, 4-F	4-CN
30	4-CF ₃	2,4-di-F	4-CN
	4-CF ₃	2,4-di-C1	4-CN
	4-CF ₃	3-F	4-F
	4-CF ₃	3-C1	4-F
35	4-CF ₃	3-F, 4-Cl	4-F

Table 1 (continued)

	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-CF ₃	3-C1, 4-F	4-F	
5	4-CF ₃	3,5-di-F	4-F	
	4-CF ₃	3,5-di-Cl	4-F	
	4-CF ₃	3-F, 5-Cl	4-F	
	4-CF ₃	3,4,5-trifluoro	4-F	
	4-CF ₃	3,4,5-trichloro	4-F	
10	4-CF ₃	2-F	4-F	
	4-CF ₃	2-C1	4-F	
	4-CF ₃	2-F, 4-Cl	4-F	
	4-CF ₃	2-C1, 4-F	4-F	
	4-CF ₃	2,4-di-F	4-F	
15	4-CF ₃	2,4-di-Cl	4-F	
	4-CF ₃	3-F	4-C1	
	4-CF ₃	3-F, 4-C1	4-CN	
		3-C1, 4-F	4-C1	
	4-CF ₃	3,4-di-F	4-C1	
20	4-CF ₃	3,5-di-F	4-C1	
		3,5-di-Cl	4-C1	
	4-CF ₃	3-F, 5-C1	4-C1	
	4-CF ₃	3,4,5-trifluoro	4-C1	
	4-CF ₃	3,4,5-trichloro	4-C1	
25	4-CF ₃	2-F	4-C1	•
	4-CF ₃	2-F, 4-Cl	4-C1	
	4-CF ₃	2-C1, 4-F	4-C1	
	4-CF ₃	2,4-di-F	4-Cl	
	4-CF ₃	2,4-di-Cl	4-C1	
30	4-C1	4-CF ₃	4-Cl	206 to 208
	4-C1	4-C1	4-Br	191 to 193.5
	4-CF ₃	4-C1	4-Br	207 to 208
	4-CN	4-C1	4-Cl	247 to 249

Table 1 (continued)

	R ₁	R ₂	R ₅	m.p.(°C)
		4-C1	4-C1	131 to 139
5	4-C1	4-C1	3-C1	188 to 191
	4-C1	4-C1	2-C1	192 to 195
	4-CF ₃	4-0Me	4-C1	204 to 205
	4-F	4-C1	3,4-di-Cl	185 to 186
	4-CF ₃	3-C1	4-C1	187 to 189
10	4-F	3-C1	4-C1	177 to 179
	4-CF ₃	2-C1	4-C1	125 to 126
	4-F	2-C1	4-C1	107 to 111
	4-CF ₃	4-F	4-SCH ₃	170 to 172.5
	4-CF ₃	4-F	4-OCF ₂ H	•
15	4-CF ₃	4-C1	4-OCF ₂ H	
	4-CF ₃	4-F	4-0CF ₃	
	4-CF ₃	4-C1	4-0CF ₃	
	3,4-OCF ₂ CF ₂ O	4-F	4-CN	
	4-CF ₃	3,4-0CF ₂ CF ₂ O	4-CN	
20	4-CF ₃	4-F ,	3,4-0CF ₂ CF ₂	0 .
	3,4-OCH ₂ O	4-F	4-CN	
	3,4-OCH ₂ CH ₂ O	4-F	4-CN	
	4-CF ₃	3,4-OCH ₂ O	4-CN	
	4-N ₃	4-F	4-CN	
25	4-SCN	4-F	4-CN	_
	4-NHSO2Me	4-F	4-CN	
	4-CF ₃	4-N ₃	4-CN	
	4-CF ₃	4-SCN	4-CN	
20	4-CF ₃	4-NHSO ₂ Me	4-CN	
30	4-CF ₃	4-F	4-N ₃	
	4-CF ₃	4-F	4-SCN	
	4-CF ₃	4-F	4-NHSO2Me	
	4-C1	4-C1	4-CH ₂ CN	143 to 145

Table 1 (continued)

5		•		
	R ₁	<u>R</u> 2	R ₅	m.p.(°C)
	4-CF ₃	4-iPr	4-C1	194 to 195
	4-C1	4-iPr	4-C1	207 to 209
	4-0Me	4-iPr	4-C1	162 to 163.5
10	4-C1	4-Me	4-Cl	201.5 to 203.5
	4-0Me	4-Me	4-C1	183 to 184.5
	4-iPr	4-Me	4-C1	172 to 174
	4-NO ₂	4-iPr	4-C1	242 to 244
	4-iPr	4-iPr	4-C1	122 to 126
15	2,5-di-F	4-CN	4-F	149 to 150
	3,5-di-NO ₂	4-CN	4-F	132 to 134
	4-Et	4-CN	4-F	215 to 216
	3-CF ₃ ,4-F	4-CN	4-F	175 to 176
	4-00 ₆ H ₅	4-CN	4-F	226 to 227
20	4-tBu	4-CN	4-H	126 to 128.5
	4-C1	4-CN	4-H	202 to 203
	4-CN .	4-CN	4-H	218.5 to 220.5
	4-CN . 2,3,4-tri-Cl	4-CN 4-CN	4-H 4-F	218.5 to 220.5 155 to 158
	2,3,4-tri-Cl			
25		4-CN	4-F	155 to 158
25	2,3,4-tri-Cl 3-CF ₃	4-CN 4-CN	4-F 4-F	155 to 158 175 to 177
25	2,3,4-tri-Cl 3-CF ₃ 3-Cl	4-CN 4-CN 4-CN	4-F 4-F 4-F	155 to 158 175 to 177 189 to 190
25	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CN	4-F 4-F 4-F 4-F 4-F	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173
25	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CN	4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198
25	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CS 4-CS 4-CS 3 4-CS	4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅ 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163
	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F 2,3,4-tri-Cl	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CS 4-CF 3 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅ 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186
	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F _{2,3,4-tri-Cl} 3-CF ₃ ,4-F	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CF 3 4-CF 3 4-CF 3 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅ 4-OC ₆ H ₅ 4-OC ₆ H ₅ 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186 141 to 143
	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F 2,3,4-tri-Cl 3-CF ₃ ,4-F 4-OC ₆ H ₅	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CS 4-CF 3 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186 141 to 143 169 to 171
	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F 2,3,4-tri-Cl 3-CF ₃ ,4-F 4-OC ₆ H ₅ 4-CF ₃	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CF 3 4-CF 3 4-CF 3 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-F 4-F 4-OC 6 H 5	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186 141 to 143 169 to 171 157 to 160
	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F 2,3,4-tri-Cl 3-CF ₃ ,4-F 4-OC ₆ H ₅ 4-CF ₃ 3-CF ₃	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CF 3 4-CF 3 4-CF 3 4-CF 3 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186 141 to 143 169 to 171 157 to 160 178 to 180
30	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F 2,3,4-tri-Cl 3-CF ₃ ,4-F 4-OC ₆ H ₅ 4-CF ₃ 3-CF ₃ 4-CN	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CF 3 4-CF 3 4-CF 3 4-CF 3 4-CF 3 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-F 4-F 4-OC 6 H 5	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186 141 to 143 169 to 171 157 to 160 178 to 180 150 to 152
30	2,3,4-tri-Cl 3-CF ₃ 3-Cl 2-Cl 3-F 2-F 2,3,4-tri-Cl 3-CF ₃ ,4-F 4-OC ₆ H ₅ 4-CF ₃ 3-CF ₃ 4-CN 3-CN	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CF 3	4-F 4-F 4-F 4-F 4-F 4-F 4-F 4-OC ₆ H ₅	155 to 158 175 to 177 189 to 190 194 to 196 184 to 185 172 to 173 196 to 198 161 to 163 185 to 186 141 to 143 169 to 171 157 to 160 178 to 180

Table 1 (continued)

5			• ,	
	<u>R</u> 1	. <u>2</u>	R ₅	m.p.(°C)
	4-C1	3-C1	4-C1	160 to 161
	3-C1	3-C1	4-Cl	173 to 175
	4-iPr	4-C1	4-C1	190 to 191
10	4-OCF ₂ CF ₂ H	4-C1	4-C1	172 to 173
	3-C1,4-C1	4-C1	4-C1	227 to 229
	2-F,4-Cl	4-C1	4-C1	184 to 185
	2,5-di-F	4-CN	4-Br	178 to 180
	3,5-di-NO ₂	4-CN	4-Br	259 to 264
15	2,3,4-tri-Cl	4-CN	4-Br	239 to 241
	4-Et	4-CN	4-Br	226 to 228
	3-CF ₃ ,4-F	4-CN	4-Br	171 to 172
	4-00 ₆ H ₅	4-CN	4-Br	216 to 217
	4-C ₆ H ₅	4-CN	4-Br	227 to 228
20	3-CF ₃	4-CN	4-Br	129 to 132
	2-CF ₃	4-CN	4-Br	175 to 180
	4-CN	4-CN	4-Br	150 to 151
	3-CN	4-CN	4-Br	210 to 212
-	2-CN	4-CN	4-Br	237 to 239
25	3-C1	4-CN	4-Br	180 to 182
	2-C1	4-CN	4-Br	224 to 226
	4-F	4-CN	4-Br	208 to 209
	3-F	4-CN	4-Br	202 to 203
	2-F	4-CN	4-Br	191 to 192
30	3-CF ₃	4-CF ₃	4-F	123 to 129
	4-CN	4-CF ₃	4-F	253 to 254
	3-CN	4-CF ₃	4-F	161 to 171
	4-F	4-CF ₃	4-F	168 to 176
	3-F	4-CF ₃	4-F	148 to 153
35	3-C1	4-C1	4-0 H e	167 to 169
	3-CF ₃	4-C1	4-0Me	179 to 180
	3-CF ₃ ,4-F	4-C1	4-0Me	135 to 136

Table 1 (continued)

	<u>R</u> _1	R ₂	R ₅	m.p.(°C)
	— 4-F	4-C1	4-0Me	158 to 159
5	4-CN	4-C1	4-0Me	222 to 224.
	3-CN	4-C1	4-0Me	205 to 208
	4-C ₆ H ₅	4-C1	4-C1	200.5 to 203
	6 5 4-0-s-Bu	4-C1	4-C1	176.5 to 178
	3,4-OCH ₂ O-	4-C1	4-C1	221.5 to 223
10	3,5-di-F	4-C1	4-C1	200.5 to 202
	2,3,4-tri-Cl	4-CF ₃	3-CN	243 to 246
	3-CF ₃ ,4-F	4-CF ₃	3-CN	195 to 197
	4-0C ₆ H ₅	4-CF ₃	3-CN	209 to 211 .
	6 5 3-CF ₃	4-CF ₃	3-CN	179 to 180
15	4-CN	4-CF ₃	3-CN	182 to 184
	3-CN	4-CF ₃	3-CN	182 to 184
	3-C1	4-CF ₃	3-CN	215 to 216
	4-F	4-CF ₃	3-CN	175 to 177
	4-CF ₃	4-OCF ₂ CF ₂ H	4-C1	198 to 199
20	3 4-Cl	4-OCF ₂ CF ₂ H	4-C1	186 to 187
	4-OCF2CF2H	4-OCF ₂ CF ₂ H	4-C1	137 to 138
	4-iPr	4-OCF ₂ CF ₂ H	4-C1	126 to 122.5
	4-CF ₃	4-OCF ₂ CF ₂ H	4-H	166 to 168.5
	3 4-Br	4-OCF ₂ CF ₂ H	4-H	183.5 to 185
25	4-CF ₃	2-Me,4-Cl	4-C1	151 to 152
	3 3-CF ₃	2-Me,4-Cl	4-C1	98 to 101
	4-CN	2-Me,4-Cl	4-C1	168 to 169
	3-CN	2-Me,4-Cl	4-Cl	177 to 178
	4-C1	2-Me,4-Cl	4-C1	152 to 153
30	3-C1	2-Me,4-C1	4-C1	111 to 113
	4-F	2-Me,4-C1	4-C1	142 to 148
	3-CF ₃ ,4-F	2-Me,4-Cl	4-C1	121 to 123
	2-Me,4-Cl	2-Me,4-Cl	4-C1	105 to 109
	3-C1,4-F	2-Me,4-Cl	4-C1	125 to 128
35				

Table 1 (continued)

5			•	
	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-CN	4-CF ₃	4-H	219 to 221
	2-CN	4-CF ₃	4-H	187 to 188
	3-C1	4-CF ₃	4-H	157 to 159
10	2-C1	4-CF ₃	4-H	210 to 212
	4-F	4-CF ₃	4-H	170 to 172
	2-F	4-CF ₃	4-H	178 to 179
	3-CF ₃	4-F	4-H	151 to 152
	4-CN	4-F	4-H	204 to 206
15	3-CN	4-F	4-H	195 to 196
	3-C1	4-F	4-H	170 to 172
	3-F	4-F	4-H	143 to 144
	3-CF ₃ ,4-F	4-F	4-H	178 to 180
	3-C1,4-F	4-F	4-H	187 to 189
20	4-NHCOMe	4-F	4-C1	278 to 280
	4-OEt	4-F	4-C1	199 to 200.5
_	4-C ₆ H ₅	4-F	4-C1	188 to 191
•	3-C1, 4-Br	4-F	4-C1	211 to 212.5
	2,4-di-F	4-F	4-C1	137 to 140
25	4-0Me	4-CN	4-0Me	190 to 191
	4-t-Bu	4-CN	4-0 M e	127 to 129
	4-NO ₂	4-CN	4-0 M e	230 to 232
	4-CN	4-CN	4-0 M e	221 to 223
	4-C1	4-CN	4-0Me	194 to 196
30	4-CF ₃	4-CN	4-0Me	189 to 191
	4-CF ₃	4-CF ₃	4-C ₆ H ₅	183 to 184
	4-CN	4-CF ₃	4-C ₆ H ₅	229 to 231
	4-C1	4-CF ₃	4-C ₆ H ₅	224 to 226
	4-F	4-CF ₃	4-C ₆ H ₅	206 to 208
35	4-t-Bu	4-CF ₃	4-C ₆ H ₅	206 to 208
	3-F,4-CF ₃	4-CF ₃	4-C ₆ H ₅	166 to 167
	2-0Me	4-C1	2-C1	158 to 160

Table 1 (continued)

5				
	R ₁	R ₂	R ₅	m.p.(°C)
	3-0Me	4-C1	2-C1	168 to 169
	4-OMe	4-C1	2-C1	153 to 155
	2-C1	4-C1	2-C1	182 to 184
10	3-C1	4-C1	2-C1	197 to 198
	4-CF ₃	4-CF ₃	4-CONEt ₂	195 to 196
	4-CN	4-CF ₃	4-CONEt ₂	238 to 241
	4-C1	4-CF ₃	4-CONEt ₂	219 to 223
	4-F	4-CF ₃	4-CONEt ₂	163 to 165
15	4-CF ₃	4-CO ₂ Me	4-F	172 to 176
	4-CN	4-CO ₂ Me	4-F	193 to 195
	4-C1	4-CO ₂ Me	4-F	191 to 193
	4-F	4-CO ₂ Me	4-F	188 to 189
	4-CF ₃	4-C0 ₂ Me	4-Cl	237 to 238
20	4-CN	4-CO ₂ Me	4-C1	261 to 263
	4-C1	4-C0 ₂ Me	4-C1	216 to 218
	4-t-Bu	4-C0 ₂ Me	4-C1	183 to 185
	2-CN	4-C1	2-C1	186 to 187
	3-CN	4-C1	2-C1	200 to 202
25	4-CN	4-C1	2-C1	232 to 234
	4-C1	4-C1	2-C1	190 to 192
	4-t-Bu	4-C1	2-C1	195 to 197
	4-CH ₂ C ₆ H ₅	4-C1	2-C1	154 to 157
	4-F	4-C1	2-C1	148 to 150
30	4-CF ₃	4-C1	2-C1	189 to 190
	3-0Me	2-C1	4-F	128 to 130
	4-0Me	2-C1	4-F	154 to 155
	4-C1	2-C1	4-F	165 to 166
	3-S02NH2	2-C1	4-F	98 to 101
35	4-SO2NH2	2-C1	4-F	195 to 197
	3-CN	2-C1	4-F	153 to 154
	4-CN	2-C1	4-F	160 to 163

Table 1 (continued)

5				
	$\frac{R_1}{2}$	R ₂	R ₅	m.p.(°C)
	4-t-Bu	2-C1	4-F	92 to 94
	2-0Me	3-C1	4-F	153 to 155
	3-0Me	3-C1	4-F	146 to 147
10	4-0Me	3-C1	4-F	200 to 201
	2-C1	3-Cl	4-F	137 to 139
	3-C1	3-C1	4-F	151 to 152
	4-C1	3-C1	4-F	192 to 194
	4-SO2NH2	3-C1	4-F	273 to 278
15	2-CN	3-C1	4-F	153 to 155
	3-CN	3-C1	4-F	195 to 196
	4-CN	3-C1	4-F	219 to 220
	4-t-Bu	3-C1	4-F	176 to 177
	4-CH ₂ C ₆ H ₅	3-C1	4-F	159 to 163
20	4-CF ₃	4-t-Bu	4-C ₆ H ₅	202 to 204
	4-C1	4-t-Bu	4-C ₆ H ₅	solid (b)
	4-C1	4-t-Bu	4-t-Bu	164 to 166
	4-CF ₃	4-t-Bu	4-t-Bu	161 to 164
	4-NO ₂	4-t-Bu	4-t-Bu	202 to 205
25	4-CN	4-t-Bu	4-t-Bu	234 to 237
	4-0Me	4-t-Bu	4-t-Bu	194 to 196
	4-0Me	4-CN	4-CN	209 to 211
	3,4,5-tri-Cl	4-C1	4-F	190 to 192
	4-SCH ₃	4-C1	4-F	183 to 185
30	4-CO ₂ Et	4-C1	4-F	183 to 184
	4-CF ₃	3,4-di-Cl	4-F	241 to 243
	4-0CF ₃	3,4-di-Cl	4-F	219 to 221
	4-C ₆ H ₅	3,4-di-Cl	4-F	193 to 194
	4-SO2NH2	3,4-di-Cl	4-F	261 to 264
35	4-0Et	3,4-di-C1	4-F	226 to 227
	4-CF ₃	4-CF ₃	4-COCF ₃	164 to 166
	4-CN	4-CF ₃	4-COCF ₃	110 to 113

Table 1 (continued)

5				
	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-C1	4-CF ₃	4-COCF ₃	122 to 125
	4-F	4-CF ₃	4-COCF ₃	74 to 76
	4-t-Bu	4-CF ₃	4-COCF ₃	95 to 98
10	4-C0 ₂ Me	4-CF ₃	4-COCF ₃	104 to 108
	4-SO2NH2	4-C1	2-C1	276 to 283
	4-F	3-C1	4-F	167 to 168
	4-CF ₃	3-C1	4-F	181 to 183
	3-SO2NH2	4-C1	2-C1	186 to 189
15	3-0Me	2-C1	4-F	101 to 105
	4-0Me	2-C1	4-F	101 to 105
	2-SO2NH2	4-C1	2-C1	242 to 246
	3-0Me	2-CN	4-F	167 to 168
	4-0 M e	2-CN	4-F	202 to 205
20	2-C1	2-CN	4-F	141 to 142
	3-C1	2-CN	4-F	173 to 174
	4-C1	2-CN	4-F	181 to 182
	3-SO ₂ NH ₂	2-CN	4-F	149 to 153
	4-SO_NH_2	2-CN	4-F	170 to 174
25	2-CN	2-CN	4-F	159 to 161
	3-CN	2-CN	4-F	184 to 186
	4-CN	2-CN	4-F	258 to 259
	4-t-Bu	2-CN	4-F	206 to 207
2.0	4-CF ₃	2-CN	4-F	206 to 207
30	2-0Me	4-C1	3-C1	131 to 133
	3-0Me	4-C1	3-C1	149 to 150
	4-0Me	4-C1	3-C1	201 to 202
	2-C1	4-C1	3-C1	171 to 173
2=	3-C1	4-C1	3-C1	143 to 146
35	2-SO2NH2	4-C1	3-C1	205 to 207
	4-SO2NH2	4-C1	3-C1	275 to 280
	2-CN	4-C1	3-C1	146 to 149

Table 1 (continued)

			•	
5				
	R_1	R ₂	^R ₅	m.p.(°C)
	3-CN	4-C1	3-C1	155 to 157
	4-t-Bu	4-C1	3-C1	106 to 107
	4-CH ₂ C ₆ H ₅	4-C1	3-C1	119 to 125
10	4-CN	4-C1	3-C1	179 to 185
	4-CO ₂ -n-Pr	4-C1	3-C1	166 to 168
	3,5-di-Cl	4-C1	3-C1	184 to 187
	4-CO ₂ -n-Pr	4-C1	4-F	183.5 to 184.5
	4-CF ₃	4-CF ₃	4-CO ₂ H	261 to 265
15	4-CN	4-CF ₃	4-CO ₂ H	137 to 141
	4-C1	4-CF ₃	4-CO ₂ H	228 to 230
	4-F	4-CF ₃	4-CO ₂ H	154 to 160
	4-t-Bu	4-CF ₃	4-CO ₂ H	146 to 153
	4-CF ₃	4-CF ₃	4-C ₂ H ₅	131 to 133
20	4-CF ₃	4-NH ₂	4-F	195 to 197
	3-SO_NH_2	4-C1	3-C1	130 to 138
	4-CN	2-0Me	4-F	173 to 176
	2-CH ₂ C ₆ H ₅	2-0Me	4-F	117 to 121
	4-CF ₃	2-0Me	4-F	154 to 159
25	2-0Me	2-0Me	4-F	107 to 111
	4-0Me	2-0Me	4-F	109 to 111
	2-C1	2-0Me	4-F	90 to 97
	4-C1	2-0Me	4-F	155 to 157
2.0	4-SO2NH2	2-0Me	4-F	141 to 144
30	2-CN	2-0Me	4-F	179 to 181
	3-0Me	2-0Me	4-F	oil (c)
	3-C1	2-0Me	4-F	oil (d)
	3-0Me	4-C1	2-0Me	112 to 114
2.5	4-t-Bu	2-0Me	4-F	76 to 83
35	3-CN	2-0Me	4-F	80 to 81
	4-0Me	4-C1	2-0Me	149 to 153
	2-G1	4-C1	2-0Me	130 to 132

Table 1 (continued)

5				
	<u>R</u> 1	<u>R</u> -2	R ₅	m.p.(°C)
	3-C1	4-C1	2-0He	139 to 141
	4-C1	4-C1	2-0Me	155 to 157
10	2-SO2NH2	4-C1	2-0Me	123 to 127
	4-SO2NH2	4-C1	2-0Me	248 to 256
	2-0Me	4-C1	2-0Me	124 to 126
	2-CN	4-C1	2-0Me	163 to 165
	3-CN	4-C1	2-0Me	154 to 160
15	4-CN	4-C1	2-0Me	153 to 159
	2-CH ₂ C ₆ H ₅	4-C1	2-0Me	148 to 150
	4-CF ₃	4-C1	2-0Me	172 to 173
	3-SO2NH2	4-Cl	2-0Me	118 to 123
	4-t-Bu	4-C1	2-0Me	87 to 92
	2-SO2NH2	3-C1	4-F	114 to 121
20	3-SO2NH2	3-C1	4-F	118 to 123
	2-SO2NH2	2-0Me	4-F	oil (e)
	3-SO2NH2	2-0Me ·	4-F	oil (f)
	4-OMe	2-CH ₂ C ₆ H ₅	4-F	153 to 154
	4-Br	4-F	3,4-di-F	175.5 to 177.5
25	4-CN	4-CN	4-CN	173 to 176
	4-t-Bu	4-CN	4-CN	143 to 142
	4-OMe	4-C1	4-0Me	174 to 175
	4-NO ₂	4-C1	4-0 M e	238 to 239
	4-Br	4-0CF ₃	4-F	187.5 to 189
30	4-OCF ₂ CF ₂ H	4-C1	3,4-di-F	145 to 146
	3,4,5-tri-Cl	4-C1	4-C1	>250°
	4-CN	2-CH ₂ C ₆ H ₅	4-F	156 to 161
	4-t-Bu	2-CH ₂ C ₆ H ₅	4-F	182 to 184
	4-CF ₃	2-CH ₂ C ₆ H ₅	4-F	85 to 87
35	4-CF ₃	3,4-di-F	4-F	193.5 to 195
	4-OCF ₃	3,4-di-F	4-F	205 to 206
	4-SMe	3,4-di-F	4-F	208.5 to 210

Table 1 (continued)

5		***************************************		
	<u>R</u> 1	R ₂	R ₅	m.p.(°C)
	4-Br	3,4-di-F	4-F	195 to 196
	4-SO2NH2	3,4-di-F	4-F	>250°
	4-C ₆ H ₅	3,4-di-F	4-F	>140°
10	4-Cl	3,4-di-F	4-F	172 to 174
	4-0Et	3,4-di-F	4-F	220.5 to 221.5
	4-F	4-C1	4-NO2	167 to 176
	4-C1	4-Cl	-	
	4-0Me	4-Cl	4-t-Bu	173 to 175
15	4-CN	4-C1	4-t-Bu	151 to 155
	4-CF ₃	4-C1	4-t-Bu	150 to 153
	4-t-Bu	4-C1	4-t-Bu	201 to 202
	4-NO ₂	4-C1	4-t-Bu	246 to 252
	4-C1	4-C1	4-C ₆ H ₅	211 to 213
20	4-0Me	4-C1	4-C ₆ H ₅	206 to 208
	4-CN	4-Cl		220 to 222
	4-CF ₃	4-C1	4-C ₆ H ₅	195 to 197
	4-t-Bu	4-C1	4-C ₆ H ₅	211 to 213
	4-NO ₂	4-C1	4-C ₆ H ₅	220 to 225
25	4-CN	4-CF ₃	4-Br	255 to 257
	4-C1	4-CF ₃	4-Br	206 to 207
	4-F	4-CF ₃	4-Br	209 to 210
	4-NO ₂	4-CF	4-Br	239 to 242
	4-CN	4-F	4-C0 ₂ Me	164 to 168
30	4-F	4-F	4-C0 ₂ Me	164 to 167
	4-t-Bu	4-F	4-CO ₂ Me	198 to 202
	3-CF ₃ ,4-F	4-F	4-CO ₂ Me	113 to 118
	4-CN	4-CF ₃	4-C0 ₂ Me	191 to 192
	4-F	4-CF ₃	4-C0 ₂ Me	156 to 157
35	4-C0 ₂ Me	4-CF ₃	4-C0 ₂ Me	170 to 172
	4-CF ₃	4-NO ₂	4-C1	240 to 242 .

Table 1 (continued)

5						
	<u>R</u> 1	R ₂	<u>R₅</u>	m.p.	(°(<u>:)</u>
	4-CF ₃	4-CF ₃	$4-CONH(p-C_6H_4-CF_3)$	>275	;	
	4-C1	4-CF ₃	4-CONH(p-C ₆ H ₄ -C1)	276	to	279
	4-F		4-CO ₂ Me	195	to	197
10	4-CF ₃	4-NH ₂		155	to	160
	4-C ₆ H ₄ S(p-C ₆ H ₄ Cl)	3-CN		205	to	209
	2-CN, 2-CF ₃	3-CN	4-F	210	to	215
	2-0CH ₃	3-0CH ₃	4-F	75	to	78
	3-0CH ₃	3-0CH ₃		87	to	90
15	4-0CH ₃	3-0CH ₃	4-F	174	to	176
	2-C1	3-0CH ₃		143	to	145
	3-C1	3-0CH ₃		141	to	143
	4-C1	3-0CH ₃		163	to	165
	2-SO2NH2	3-0CH ₃		100	to	105
	3-SO ₂ NH ₂	3-0CH ₃		105	to	110
	4-SO ₂ NH ₂	3-0CH ₃		255	to	257
	2 - CN	3-0CH ₃	4-F			
	4-t-Bu	3-0CH ₃		136	to	138
	2-CH ₂ C ₆ H ₅	3-0CH ₃	4-F	149	to	150
25	4-CF ₃	3-0CH ₃		166	to	170
	4-OCH ₃	4-C1	3-CN	107	to	109
	3-C1	4-C1	3-CN	96	to	99
	4-Cl	4-C1	3-CN	102	to	105
	2-SO2NH2	4-C1	3-CN	134	to	138
30	3-SO ₂ NH ₂	4-C1	3-CN	135	to	142
	4-SO ₂ NH ₂	4-C1	3-CN	229	to	231
	4-CN	4-C1	3-CN	195	to	198
	4-t-Bu	4-C1	3-CN	122	to	126
	4-CF ₃	4-C1	3-CN	188	to	190
35	4-CN	3-0CH ₃	4-F	127	to	135
	2-0CH ₃	4-C1	2-CN	196	to	198
	2-C1	4-C1	2-CN	201	to	202

Table 1 (continued)

5				
	<u>R</u> 1	.R2	<u>R</u> 5	m.p.(°C)
	3-C1	4-C1	2-CN	198 to 200
	4-C1	4-Cl	2-CN	150 to 153
	2-SO2NH2	4-C1	2-CN	181 to 185
10	3-S0,NH,	4-Cl	2-CN	125 to 130
	4-SO ₂ NH ₂	4-C1	2-CN	258 to 260
	2-CN	4-C1	2-CN	190 to 192
	3-CN	4-C1	2-CN	186 to 189
	4-CN	4-C1	2-CN	237 to 241
15	4-t-Bu	4-C1	2-CN	203 to 205
	2-CH ₂ C ₆ H ₅	4-C1	2-CN	186 to 188
	4-CF ₃	4-C1	2-CN	194 to 196
	4-F 4-Br	4-C1 \ 4-OCHF ₂	2-CN 4-F	200 to 202 181 to 182.5
20	H ¹ NMR spectra	(8):	(a) 8.55(NH) (b) 8.5 (NH) (c) 8.50(NH) (d) 8.55(NH) (e) 10.35(NH) (f) 8.75(NH)	

25

30

Table 2

5								
	<u>R</u> 1	<u>R</u> _2	<u>w</u>	A	<u>¥</u>	m.p.	(°(<u>:)</u>
	4-CF ₂	4-F		CH ₃	н			
	4-CF	4-F	4-CN	CH ₂ CH ₃	Н			
	4-CF	4-F	4-CN	CO2CH3	H			
10	4-CF ₂	4-F	4-CN	CO2CH2CH3	H			
	4-CF	4-F	4-CN	COCH3	H			
	4-CF ₂	4-F	4-CN	_	H			
	4-CF ₂	4-F	4-C1	СНЗ	Н			
	4-CF	4-F	4-CF ₃	CH ₃	H			
15	4-CF ₂	4-F	4-F	CH ₃	H			
	4-CF ₂	4-F	3,4-di-F	CH ₃	Н			
	4-CF ₂	4-F	3-C1	CH ₃	Н			
	4-CF ₂	4-F	4-CO ₂ Me	CH ₃	H			
	4-CF ₂	4-F	3-CN	CH ₃	H			
20	4-CF ₂	4-C1	4-C1	CH ₃	Н	205	to	206
	4-CF ₂	4-C1	4-F		Н	195	to	197
		4-C1			Н		•	
		4-C1			н			
	4-CF ₂	4-C1		CH ₃	H			
25	4-CF ₃	4-C1	4-C0 ₂ Me		Н			
	4-CF ₃	4-Cl	3-CN	CH ₃	Н			
		4-CF ₃		CH ₃	Н	136	to	139
			4-F	CH ₃	Н	149	to	150

30

Table 2 (continued)

	R ₁	<u>R</u> 2	M	<u>A</u>		<u>¥</u>	m.p.(°C)
	4-CF ₃	4-CF ₃	4-CF ₃	CH ₃		Ή	
5	4-CF ₃	4-CF ₃	3,4-di-F	CH ₃		H	
	4-CF ₃	4-CF ₃	3-C1	CH ₃		H	
	4-CF ₃	4-CF ₃	4-C0 ₂ Me	CH ₃		H	-
	4-CF ₃	4-CF ₃	3-CN	CH ₃		Н	
	4-CF ₃	4-0CF ₃	4-C1	CH ₃	-	Н	136 to 139
10	4-CF ₃	4-0CF ₃	4-F	CH ₃	-	Н	149 to 150
	4-CF ₃	4-0CF ₃	4-CF ₃	CH ₃		Н	
	4-CF ₃	4-0CF ₃	4-CO ₂ Me	CH ₃		Н	
	4-CF ₃	4-0CF ₃	3-C1	CH ₃		Н, -	
	4-CF ₃	4-0CF ₃	3,4-di-F	CH ₃		Н	
15	4-CF ₃	4-0CF ₃	4-CN	ĊH ₃		Н	
	4-CF ₃	4-0CF ₃	3-CN	CH ₃	-	Н	
	4-CF ₃	4-OCF ₂ H	4-C1	CH ₃		Н	
	4-CF ₃	4-OCF ₂ H	4-F	CH ₃		H	
	4-CF ₃	4-0CF_H	4-CF ₃	CH ₃		Н	
20	4-CF ₃	4-OCF ₂ H		CH ₃		H	
	4-CF ₃	4-OCF ₂ H	3-C1	CH ₃		H	
	4-CF ₃	4-OCF ₂ H	3,4-di-F	CH ₃		H	-
	4-CF ₃	4-OCF ₂ H	4-CN	CH ₃		Н	
	4-CF3	4-OCF ₂ H	3-CN	CH ₃	-	H	
25	4-CF ₃	4-CN	4-C1	CH ₃	-	H	•
	4-CF3	4-CN	4-F	CH ₃		H	
	4-CF ₃	4-CN	4-CF ₃	CH ₃		H	÷
	4-CF ₃	4-CN	4-C0 ₂ Me	CH ₃		H	
2.2	4-CF ₃	4-CN	3-C1	CH ₃	-	H	•
30	4-CF ₃	4-CN	3,4-di-F	CH ₃		Н	
	4-CF ₃	4-CN	4-CN	CH ₃	•	H	
	4-CF ₃	4-CN	3-CN	CH ₃		H	•
	4-CF3	4-H	4-C1	CH3		H	
2.5	4-CF3	4-H	4-F	CH3		H -	
35	-						** **

Table 2 (continued)

	R ₁	R ₂	M	<u>A</u>	<u>Y</u>	m.p.(°C)
		4-H ·		CH ₃	Н	
5	_		4-CO ₂ Me	CH ₃	Н	
	3		3-C1	CH ₃	Н	
	4-CF ₃		3,4-di-F	CH ₃	н	
	3 4-CF ₃		4-CN	CH ₃	Н	
	3 4-CF ₃		3-CN	CH ₃	Н	
10	4-CF ₃		4-C1	CH ₃	Н	
	4-CF ₃	4-Br	4-F	CH ₃	Н	
	4-CF ₃	4-Br		CH ₃	Н	
	3 4-CF ₃	4-Br	_	CH ₃	Н	
	4-CF ₃	4-Br	3-C1	CH ₃	Н	
15	4-CF ₃		3,4-di-F	_	Н	
	4-CF ₃		4-CN	CH ₃	Н	
	_		4-C1	CH ₃	Н	
	4-0CF ₃	4-F	4-0CF ₃	CH ₃	Н	
	4-0CF ₃		4-F	CH ₃	Н	
20	4-0CF ₃		3,4-di-F		H	
	4-0CF ₃		3-C1	CH ₃	H	
	4-0CF ₃	4-F	4-CO2Me	CH ₃	Н	
	_	4-F	3-CN	CH ₃	H	
	4-0CF ₃	4-C1	4-C1	CH ₃	H	
25	_	4-C1	4-F	CH ₃	Н	
	_	4-C1		CH ₃	Н	
	4-0CF ₃		3,4-di-F		Н	
	4-0CF ₃		3-C1	CH ₃	Н	
	4-0CF ₃	4-C1	4-CO ₂ Me	CH ₃	Н	
30	4-0CF ₃	4-C1	3-CN	CH ₃	Н	
	4-0CF ₃	4-CF ₃	4-Cl	CH ₃	Н	
	4-0CF ₃	4-CF ₃	4-F		Н	
	4-0CF ₃	4-CF ₃	4-CF ₃	CH ₃	Н	
35		4-CF ₃		CH ₃	H.	

Table 2 (continued)

	R ₁	<u>R</u> 2	<u>w</u>	<u>A</u>	<u>¥</u>	m.p.(°C)
	4-0CF ₃	4-CF ₃	_ 3-Cl	CH ₃	H	
5	4-0CF ₃	3 - 4-CF ₃	4-C0 ₂ Me	CH ₃	н	
	3 4-0CF ₃	3 4-CF ₃	2 3-CN	CH ₃	H	•
	3 4-OCF 3		4-C1	CH ₃	Н	. •
	3 4-OCF ₃	4-OCF ₃	4-F	CH ₃	н	
	4-0CF ₃	4-0CF ₃	4-CF ₃	CH ₃	н	
10	4-0CF ₃	4-0CF ₃	4-CO ₂ Me	CH ₃	н	÷
	4-0CF ₃	4-0CF ₃	3-C1	CH ₃	Н	
	4-OCF ₃	4-0CF ₃	3,4-di-F	CH ₃	H	
	4-0CF ₃	4-0CF ₃	4-CN	CH ₃	Н	•
	4-0CF ₃	•	3-CN	CH ₃	H	
15	4-0CF ₃	4-0CF ₂ H	4-Cl	CH ₃	H	-
	4-0CF ₃	4-0CF ₂ H	4-F	CH ₃	Н	
	4-0CF ₃	_	4-CF ₃	CH ₃	Н	
	4-0CF ₃		4-CO ₂ Me	CH ₃	H	
	4-0CF ₃	4-OCF ₂ H	3-C1	CH ₃	H	
20	4-0CF ₃	4-OCF ₂ H	3,4-di-F	CH ₃	Н	
	4-0CF ₃	4-OCF ₂ H	4-CN	CH ₃	H	
	4-0CF ₃	4-0CF_H	3-CN	CH ₃	Н	
	4-0CF ₃	4-CN	4-C1	CH ₃	H	•
	4-0CF ₃	4-CN	4-F	CH ₃	H	
25	4-0CF ₃	4-CN	4-CF ₃	CH ₃	Ħ	
	4-0CF ₃	4-CN	4-CO ₂ Me	CH ₃	Н	
	4-0CF ₃	4-CN	3-C1	CH ₃	Н	
	4-0CF ₃	4-CN	3,4-di-F	3	Н	
20	4-0CF ₃	4-CN	4-CN	CH ₃	Н	
30	4-0CF ₃	4-CN	3-CN	CH ₃	Н	
	4-0CF ₃		4-C1	CH ₃	H	
	4-0CF ₃		4-F	CH ₃	H	
	4-0CF ₃		4-CF ₃	CH ₃	Н	
35	4-0CF ₃	4-H	4-CO ₂ Me	CH ₃	Н.	

Table 2 (continued)

	R ₁	R ₂	<u>w</u>	A	¥	m.p.(°C)
			3-C1	CH ₃	н	
5	4-0CF	4-H	3,4-di-F	CH ₃	H	
	4-0CF ₃		4-CN	CH ₃	н	
	4-0CF ₃		3-CN	CH ₃	H	
	-		4-C1	CH ₃	Н	
	•	4-Br	4-F	CH ₃	н	
10	4-0CF ₃	4-Br	4-CF ₃	CH ₃	Н	
	4-OCF ₃	4-Br	4-CO ₂ Me	CH ₃	Н	
	4-0CF ₃	4-Br	3-C1	CH ₃	Н	
	4-0CF ₃	4-Br	3,4-di-F	CH ₃	H	
	4-0CF ₃	4-Br	4-CN	CH ₃	Н	
15		4-F	4-C1	сн ₃	н	195 to 197.5
	4-C1	4-F	4-CF ₃	CH ₃	Н	
	4-C1	4-F	4-F	CH ₃	Н	
	4-C1	4-F	3,4-di-F	CH3	Н	
	4-C1	4-F	3-C1	CH ₃	H	
20	4-Cl	4-F	4-CO2Me		Н	
	4-C1	4-F	3-CN	5	Н	
	4-C1	4-C1	4-C1	CH ₃	Н	189 to 190
	4-C1	4-C1	4-F	CH ₃	н	
			4-CF ₃		H	
25	4-C1		3,4-di-F			
	4-C1	4-C1 -	3-C1	-	Н	
	4-C1	4-C1	4-CO ₂ Me		Н	
	4-Cl	4-C1	3-CN	CH ₃	H	100 to 126
		4-CF ₃	4-C1	CH ₃	Н	
30			4-F		Н	108 to 111
	4-C1		4-CF ₃		Н	
		3	3,4-di-F		н	
	4-C1	4-CF ₃	3-C1	_	н	
2.5	4-C1	4-CF ₃	4-C0 ₂ Me	CH ₃	Н	
35						

Table 2 (continued)

	<u>R</u> 1	R ₂	<u>w</u>	<u>A</u>	<u>¥</u>	m.p.(*C)
	 4-Cl	4-CF ₃	3-CN	CH ₃	Н	
5	4-C1	4-0CF ₃	4-C1	CH ₃	Н	:
	4-C1	4-0CF ₃	4-F	CH3	Н	
	4-Cl	4-0CF ₃	4-CF ₃	CH ₃	н	-
	4-C1	4-0CF ₃	3,4-di-F	CH ₃	Н	
	4-C1	4-0CF ₃	3-C1	CH ₃	Н	
10	4-C1	4-0CF ₃	4-C0 ₂ Me	CH ₃	Н	2
	4-C1	4-0CF ₃	3-CN	CH ₃	Н	
	4-C1	4-OCF ₂ H	4-C1	CH ₃	H	
	4-C1	4-0CF ₂ H	4-F	CH ₃	H	
	4-C1	4-OCF ₂ H	4-CF ₃	CH ₃	Н	
15	4-C1	4-OCF ₂ H	4-CO ₂ Me	CH ₃	Н	
	4-C1	4-OCF ₂ H	-	CH ₃	Н	:
	4-C1	-	3,4-di-F	_	н	
	4-C1	4-OCF ₂ H	4-CN	CH ₃	H	••
	4-C1	4-OCF ₂ H	3-CN	CH ₃	H	
20	4 , C1	4-CN	4-C1	CH ₃	H	
	4-C1	4-CN	4-F	CH ₃	H	
	4-C1	4-CN	4-CF ₃	CH ₃	Н	
	4-C1	4-CN	4-CO2He	CH ₃	Н	
	4-C1	4-CN	3-C1	CH ₃	Н	-
25	4-CI	4-CN	3,4-di-F	CH ₃	H	
	4-C1	4-CN	4-CN	CH ₃	H	
	4-Cl	4-CN	3-CN	CH ₃	Н	
	4-C1	4-H	4-C1	CH ₃	Н	
	4-C1	4-H	4-F	CH ₃	Н	
30	4-C1	4-H	4-CF ₃	CH ₃	Н	
	4-C1	4-H	4-CO2He	CH ₃	• Н	
	4-C1		3-C1	_	Н	
	4-C1	4-H	3,4-di-F		Н :	:
35	4-C1	4-H	4-CN	CH ₃	н	

Table 2 (continued)

	<u>R</u> 1	R ₂	<u>w</u>	A	¥	m.p.(°C)
	 4-Cl	4-H	3-CN	CH ₃	H	
5		4-Br	4-C1	CH ₃	H	
	4-C1	4-Br	4-F	CH ₃	H	
		4-Br	4-CF ₃	CH ₃	H	
		4-Br	_	CH ₃	H	
	4-C1		3-C1	CH ₃	Н	
10		4-Br	3,4-di-F		Н	
	4-C1		4-CN	CH ₃	Н	
	4-C1	4-Br	3-CN	CH ₃	H	
	4-Br	4-F	4-C1	CH ₃	Н	
	4-Br	4-F	4-CF ₃	CH ₃	Н	
15		4-F	4-F	CH ₃	Н	
	4-Br		3,4-di-F		H	
		4-F	3-C1	CH ₃	Н	
	4-Br	4-F	4-CO ₂ Me	CH ₃	Н	
	4-Br	4-F	3-CN	CH ₃	Н	
20	4-Br	4-C1	4-C1	CH ₃	Н	
	4-Br	4-C1	4-F	CH ₃	Н	
	4-Br	4-C1	4-CF ₃	CH ₃	H	
	4-Br	4-C1	3,4-di-F	CH ₃	Н	
	4-Br	4-C1	3-C1	CH ₃	Н	
25	4-Br	4-C1	4-CO2Me		Н	
	4-Br	4-C1	3-CN	CH ₃	Н	
	4-Br	4-CF ₃	4-C1	CH ₃	H	
	4-Br	4-CF3	4-F	CH ₃	H	
	4-Br	4-CF3	4-CF ₃	сн _з	H	
30	4-Br		3,4-di-F		Н	
	4-Br	4-CF ₃	3-C1	сн _з	H	
	4-Br	4-CF ₃	4-CO ₂ Me	CH ₃	H	
	4-Br	4-CF ₃	3-CN	CH ₃	H	
	4-Br	4-0CF ₃	4-C1	CH ₃	H	•
35		_				

Table 2 (continued)

	_			•		
	<u>R</u> 1	<u>R</u> 2	<u>w</u>	<u>A</u>	<u>¥</u>	$m.p.(^{\circ}C)$
	4-Br	4-OCF ₃	4-F	CH ₃	н	
5	4-Br	4-0CF ₃	4-CF ₃	CH ₃	н	
	4-Br	4-0CF ₃	4-C0 ₂ Me	CH ₃	н	
	4-Br	4-0CF ₃	3-C1	CH ₃	. · H	
	4-Br	4-0CF ₃	3,4-di-F	CH ₃	H	
	4-Br	4-0CF ₃	4-CN	CH ₃	н	
10	4-Br	4-0CF ₃	3-CN	CH ₃	H	
	4-Br	4-OCF ₂ H	4-C1	CH ₃	H	
	4-Br	4-OCF ₂ H	4-F	CH ₃	н	
	4-Br	4-0CF ₂ H	4-CF ₃	CH ₃	н	-
	4-Br	4-OCF ₂ H	4-CO2Me	CH ₃	Н	
15	4-Br	4-OCF ₂ H	3-C1	CH ₃	Н	
	4-Br	4-OCF ₂ H	3,4-di-F	CH ₃	Н	
	4-Br	4-0CF ₂ H	4-CN	CH ₃	Н	
	4-Br	4-OCF ₂ H	3-CN	CH ₃	Н	
	4-Br	4-CN	4-C1	CH ₃	н	
20	4-Br	4-CN	4-F	CH ₃	Н	0
	4-Br	4-CN	4-CF ₃	CH ₃	Н	•
	4-Br	4-CN	4-C0 ₂ Me	CH ₃	Н	
	4-Br	4-CN	3-C1	CH ₃	Н	•
	4-Br	4-CN	3,4-di-F	CH3	Н	-
25	4-Br	4-CN	4-CN	CH3	н	
	4-Br	4-CN	3-CN	CH ₃	ιН	•
	4-Br	4-H	4-C1	CH ₃	Н	
	4-Br	4-H	4-F	CH ₃	H	
	4-Br	4-H	4-CF ₃	CH ₃	H	-
30	4-Br	4-H	4-CO2Me	CH3	H	•
	4-Br	4-H	3-C1	CH ₃	н	
	4-Br	4-H	3,4-di-F	CH ₃	H	
	4-Br	4-H	4-CN	CH ₃	H	•
35	4-Br	4-H	3-CN	CH ₃	H -	

Table 2 (continued)

5					
	R ₁	<u>R</u> 2 .	<u>w</u>	A	\underline{Y} m.p.(°C)
	4-Br	4-Br	4-C1	CH ₃	н .
10	4-Br	4-Br	4-F	CH ₃	н
	4-Br	4-Br	4-CF ₃		Н
	4-Br	4-Br	4-C0_Me	CH ₃	Н
	4-Br	4-Br	3-C1	CH ₃	Н
	4-Br	4-Br	3,4-di-F		Н
	4-Br	4-Br	4-CN	CH ₃	Н
15	4-CF ₃	4-F	4-CN	Н	CH2CH3
	4-CF ₃		4-CN	Н	CO ₂ Me
	_	4-F	4-CN	Н	CO ₂ Et
	4-CF ₃	4-F	4-CN	Н	COCF ₃
	4-CF ₃	4-F	4-CN	Н	COCH ₂ Cl
	4-CF ₃		4-CN	Н	COCO ₂ Me
20	_	4-F	4-CN	Н	-scc1 ₃
	4-CF ₃	4-F	4-CN	Н	-SC ₆ H ₅
	4-CF ₃	4-C1	4-F	Н	-co ₂ Et
	4-CF ₃	4-Cl	4-F	Н	-CH ₂ CH ₃
25		4-Cl	4-F		-coch ₂ cl
	_	4-Cl	4-F	н .	-coch ₂ ch ₃
	4-CF ₃	4-Cl	4-F	Н	-s-ccl ₃
	4-CF ₃	4-Cl	4-F	н	-s-c ₆ H ₅

Table 2 (continued)

5					
	<u>R</u> 1	R ₂ -	<u>w</u> .	<u>A</u>	Y m.p.(°C)
	4-CF ₃	4-C1	4-F	н	propyl
	4-CF ₃	4-Cl	4-F	H	butyl
	4-CF ₃	4-F	4-C1	CH ₃	H
10	4-CF ₃	4-F	4-F	CH ₃	H
	4-CF ₃	4-C1	4-CN	CH ₃	H
	4-CF ₃	4-C1	4-F	CH ₃	H
	4-CF ₃	4-C1	4-C1	CH ₃	H 205 to 206
	4-CF ₃	4-H	4-CN	CH ₃	H
15	4-CF ₃	4-H	4-F	CH ₃	H
	4-CF ₃	4-H	4-C1	CH ₃	H
	4-F	4-F	4-F	CH ₃	H
	4-F	4-F	4-CN	CH ₃	H
	4-F	4-F	4-C1	CH ₃	H
20	4-F	4-C1	4-CN	CH ₃	H
	4-F	4-C1	4-F	CH ₃	H
	4-F	4-C1	4-C1	CH ₃	H
	4-F	4-H	4-CN	CH ₃	н
	4-F	4-H	4-F	CH ₃	H
25	4-I	4-H	4-C1	CH ₃	H
	4-Cl	4-F	4-CN	CH ₃	H
	4-C1	4-C1	4-CN	CH ₃	H
	4-CF ₃	4-C1	4-F	н	CH ₃ 164 to 167
	4-CF ₃	4-C1	4-C1	Н	CH ₃ 181 to 183
30	4-CF ₃	4-C1	4-CN	Н	CH ₃
	4-CF ₃	4-C1	3-CN	н	CH3
	4-CF ₃	4-C1	4-C0 ₂ Me	H	CH ₃
	4-CF ₃	4-Cl	3,4-di-F	н	CH3
	4-CF ₃	4-C1	3-C1	H	CH3
35	4-CF ₃	4-F	4-F	Н	CH ₃

Table 2 (continued)

	R ₁	<u>R</u> 2	<u>w</u>	<u>A</u>	<u>¥</u>	m.p.(*C)
		4-F .		н	CH ₃	
5			4-CN	н	CH ₃	
	4-CF ₃		4-C0 ₂ Me	н	CH ₃	
		4-F	_	Н	CH ₃	
			3-CN	н	CH ₃	
10			3,4-di-F	Н	CH ₃	
	4-CF ₃		4-F		CH ₃	
	4-CF ₃	· ·	4-C1	н	CH ₃	
	4-CF ₃	_	4-CN	Н	CH ₃	
	4-CF ₃	_	4-CO ₂ Me	Н	CH ₃	
15	4-CF ₃	•	3-C1	н	CH ₃	
	4-CF ₃	4-CF ₂	3-CN	Н	CH ₃ .	
	4-CF ₃	4-CF ₂	3,4-di-F	Н	CH ₃	
	4-CF ₃	-	4-F	Н	CH ₃	
	4-CF ₃		4-C1	н	CH ₃	
	_		4-CN	Н	CH ₃	
20	4-CF ₃		4-CO2Me	н	CH ₃	
	4-CF ₃	4-H	3-C1	Н	сн ₃	
	4-CF ₃	4-H	3-CN	Н	СН _З	
	4-CF ₃	4-H	3,4-di-F	Н	СН _З	
	4-CF ₃		4-F	н	сн ₃	
25	4-CF ₃	4-CN	4-C1	Н	CH ₃	
	4-CF ₃	4-CN	4-CN	н	сн _з	
	4-CF ₃		4-CO ₂ Me		CH ₃	
	4-CF ₃	4-CN	3-C1	Н	CH ₃	
	4-CF ₃	4-CN	3-CN	н	CH ₃	
30	4-CF ₃		3,4-di-F	н	CH ₃	
	4-0CF ₃		4-F	Н	CH ₃	
		4-C1	4-C1	Н	CH ₃	
			4-CN	Н	CH ₃	
35	4-0CF ₃		3-CN	н	CH ₃	

Table 2 (continued)

	D	5				
	$\frac{R_1}{2}$	<u>R</u> 2	<u>W</u>	<u>A</u>	<u>¥</u>	m.p.(*C)
_	4-OCF ₃	4-C1 -	4-C0 ₂ Me	Н -	CH ₃	
5	4-OCF ₃	4-C1	3,4-di-F	H	CH ₃	
	4-0CF ₃	4-C1	3-C1	Н	CH ₃	•
	4-0CF ₃	4-F	4-F	H	CH ₃	
٠	4-0CF ₃	4-F	4-C1	Н	CH ₃	
	4-0CF ₃	4-F	4-CN	H	CH ₃	
10	4-0CF ₃	4-F	4-C0 ₂ Me	Н	CH ₃	
	4-0CF ₃	4-F	3-C1	н	CH ₃	
	4-0CF ₃	4-F	3-CN	Н .	CH ₃	
	4-0CF ₃	4-F	3,4-di-F	H	CH ₃	
	4-OCF ₃	4-CF ₃	4-F	Н	CH ₃	-
15	4-0CF ₃	4-CF ₃	4-C1	Н	CH ₃	
	4-0CF ₃	4-CF3	4-CN	H	CH ₃	-
	4-0CF ₃	4-CF ₃	4-CO,Me	H	CH ₃	
	4-0CF ₃	4-CF ₃	3-C1	Н	CH ₃	
	4-0CF ₃	4-CF ₃	3-CN	H	CH ₃	
20	4-0CF ₃	4-CF ₃	3,4-di-F	Н	CH ₃	
	4-0CF ₃	4-H	4-F	H	CH ₃	
	4-0CF ₃	4-H	4-C1	Н	CH ₃	
	4-0CF ₃	4-H	4-CN	н	CH ₃	
	4-0CF ₃	4-H	4-CO ₂ Me	Н	CH ₃	•
25	4-0CF ₃	4-H	3-C1	Н	CH ₃	
	4-0CF ₃	4-H	3-CN	н	CH ₃	
	4-0CF ₃	4-H	3,4-di-F	H -	CH ₃	
	4-0CF ₃	4-CN	4-F	н	CH ₃	- 1
	4-0CF ₃	4-CN	4-C1	н	CH ₃	
30	4-0CF ₃	4-CN	4-CN	Н	CH ₃	
	4-0CF ₃	4-CN	4-CO ₂ Me	н	CH ₃	
	4-0CF ₃	4-CN	3-C1	н	CH ₃	
	4-0CF ₃	4-CN	3-CN	н -	CH ₃	-
35	4-0CF ₃	4-CN	3,4-di-F	Н.	CH ₃	•

Table 2 (continued)

	<u>R</u> 1	R ₂	<u>w</u>	<u>A</u>	<u>Y</u>	m.p.(°C)
	4-C1	4-C1	4-F	н	CH ₃	•
5	4-C1	4-C1	4-C1	Н	CH ₃	
	4-C1	4-Cl	4-CN	н	CH ₃	
		4-C1	3-CN	н	CH ₃	
	4-C1	4-C1	4-C0 ₂ Me	н	CH ₃	
	4-C1	4-C1	3,4-di-F		CH ₃	
10	4-C1	4-C1	3-C1	Н	CH ₃	
	4-C1	4-F	4-F	Н	CH ₃	
	4-C1	4-F	4-C1	Н	CH ₃	
	4-C1	4-F	4-CN	Н	CH ₃	
	4-C1	4-F	4-CO2Me	Н	CH ₃	
15	4-C1	4-F	3-C1	Н	CH3	
	4-C1	4-F	3-CN	Н	CH ₃	
	4-C1	4-F	3,4-di-F	Н	CH ₃	
	4-C1	4-CF ₃	4-F	Н	CH ₃	
	4-C1	•	4-C1	Н	CH ₃	
20	4-C1	4-CF ₃	4-CN	Н	CH ₃	
	4-C1	4-CF ₃	4-C0 ₂ Me	Н	CH ₃	
	4-C1		3-C1	н	CH ₃	
	4-C1	_	3-CN	Н	CH ₃	
		-	3,4- di- F	Н	CH _{3.}	•
25	4-C1	4-H	4-F	Н	CH ₃	
	4-C1	4-H	4-C1	Н	CH ₃	
	4-C1	4-H	4-CN	Н	СН _З	
	4-C1	4-H	4-CO ₂ Me	Н	CH ₃	
	4-Cl	4-H	3-C1	Н	CH ₃	
30	4-C1	4-H	3-CN	Н	CH ₃	
	4-C1	4-H	3,4-di-F	Н	CH ₃	
	4-C1	4-CN	4-F	Н	CH ₃	
	4-C1	4-CN	4-C1	н	CH ₃	
35	4-C1	4-CN	4-CN	Н	CH ₃	

Table 2 (continued)

	R ₁	R ₂	<u>w</u>	<u>A</u>	<u>¥</u>	m.p.(°C)
	4-C1	4-CN	4-C0 ₂ Me	н	CH ₃	
5	4-C1	4-CN	3-C1	н	CH ₃	
	4-C1	4-CN	3-CN	H .	CH ₃	•
	4-C1	4-CN	3,4-di-F	н .	CH ₃	-
	4-CF ₃	4-F	4-C1	H	COCF ₃	
	4-CF ₃	4-F	4-F	н	COCF ₃	
10	4-CF ₃	4-C1	4-CN	н	COCF ₃	
	4-CF ₃	4-C1	4-F	H .	COCF ₃	
	4-CF ₃	4-C1	4-C1	H	COCF	
	4-F	4-F	4-F	H	COCF ₃	
	4-F	4-F	4-CN	н	COCF ₃	-
15	4-F	4-F	4-C1	H	COCF ₃	ŧ
	4-F	4-C1	4-CN	н	COCF ₃	
	4-F	4-C1	4-F	H.	COCF ₃	-
	4-F	4-C1	4-C1	н	COCF ₃	
	4-C1	4-F	4-CN	H	COCF ₃	
20	4-C1	4-C1	4-CN	H	COCF ₃	
	4-Cl	4-F	4-C1	Н	COCF ₃	
	4-CF ₃	4-F	4-C1	Н	CO ₂ Me	
	4-CF ₃	4-F	4-CN	Н	CO ₂ Me	
	4-CF ₃	4-F	4-F	н	CO ₂ Me	
25	4-CF ₃	4-C1	4-CN	H	CO ₂ Me	
	4-CF3	4-C1	4-F	Н	CO ₂ Me	75 to 78
	4-CF ₃	4-C1	4-C1	H	CO ₂ Me	120 to 124
	4-CF ₃	4-CF ₃	4-CN	н	CO ₂ Me	•
	4-CF ₃	4-CF ₃	4-F	H	CO ₂ Me	
30	4-CF ₃	4-CF ₃	4-C1	H	CO ₂ Me	-
	4-CF ₃	4-0CF ₃	4-CN	Н	CO2Me	
	4-CF ₃	4-0CF ₃	4-C1	H	CO2Me	
	4-CF ₃	4-H	4-CN	н	CO ₂ Me	
35	4-CF ₃	4-H	4-F	H	CO ₂ He	

Table 2 (continued)

	<u>R</u> 1	R ₂	<u>w</u>	<u>A</u>	<u>Y</u>	m.p.(°C)
		4-H		н	CO ₂ Me	
5	4-OCF ₃	4-F	4-F	Н	CO ₂ Me	
	4-OCF.	4-F	4-C1	Н	CO2He	
			4-F		CO2He	
			4-C1		CO ₂ Me	
	4-OCF ₃		4-F	н	CO2Me	
10	4-0CF ₃	-	4-C1	н	CO ₂ Me	
	3 4-F	_	4-F	н	CO ₂ Me	
			4-CN	Н	CO2Me	
		4-F	4-Cl	Н	CO ₂ Me	
	4-F	4-Cl	4-CN	Н	CO ₂ Me	
15		4-C1	4-F	Н	CO ₂ Me	
	4-F	4-C1	4-C1	Н	CO ₂ Me	
	4-C1	4-F	4-CN	Н	CO2He	
	4-C1	4-C1	4-CN	Н	CO ₂ Me	
	4-C1	4-F	4-C1	Н	CO2Me	
.20	4-CF ₃	4-F	4-C1	Н	CHO	
	_	4-F	4-F	Н	сно	
	_	4-C1	4-CN	Н	CHO	
	•	4-C1	4-F	н	CHO	
	4-CF ₃	4-C1	4-C1	Н	СНО	
25	4-F	4-F	4-F	Н	CHO	
	4-F	4-F	4-CN	H ·	CHO	
	4-F	4-F	4-C1	Н	CHO	
	4-F	4-C1	4-CN	Н	СНО	
	4-F	4-C1	4-F	Н	CHO	
30	4-F	4-C1	4-C1	Н	CHO	
	4-C1	4-F	4-CN	Н	CHO	
-	4-C1	4-C1	4-CN	н	CHO	
	4-C1	4-F	4-C1	н	CHO	
35	4-CF ₃	4-F	4-C1	Н	COCH ₃	

Table 2 (continued)

			-	•		
	$\frac{R_1}{1}$	R ₂	<u>w</u>	<u>A</u>	Y	m.p.(°C)
	4-CF ₃	4-F	4-F	Н	COCH3	:
5	4-CF ₃	4-C1	4-CN	Н	COCH ₃	
	4-CF ₃	4-C1	4-F	Н	COCH ₃	153 to 155
	4-CF ₃	4-C1	4-C1	н	COCH ₃	158 to 160
	4-CF ₃	4-CF ₃	4-F	Н	COCH ₃	
	4-CF ₃	4-CF ₃	4-C1	Ĥ	COCH ₃	~
10	4-CF ₃	4-CF ₃	4-CN	Н	COCH ₃	
	4-CF ₃	4-CN	4-F	н	COCH ₃	
	4-CF ₃	4-CN	4-C1	Н	COCH ₃	. *
	4-CF ₃	4-CN	4-CN	Н	COCH ₃	
15	4-CF3	4-H	4-F	H	COCH ₃	
	4-CF ₃	4-H	4-C1	H	COCH ₃	-
	4-CF ₃	4-H	4-CN	Н	COCH ₃	•
	4-0CF ₃	4-F	4-F	H	COCH ₃	
	4-0CF ₃	4-F	4-C1	н	COCH3	
	4-0CF ₃	4-F	4-CN	H	COCH3	-
20	4-0CF ₃	4-C1	4-F	H	COCH ₃	
	4-0CF ₃	4-C1	4-C1	H	COCH ₃	
	4-0CF3	4-C1	4-CN	H	COCH ₃	
	4-OCF ₃	4-CF ₃	4-F	H	COCH ₃	
	4-0CF ₃	4-CF ₃	4-C1	Н	COCH ₃	
25	4-0CF ₃	4-CF ₃	4-CN	H	COCH3	
	4-0CF ₃	4-H	4-F	н	COCH ₃	
	4-0CF ₃	4-H	4-Cl	Н	COCH ₃	
	4-0CF ₃	4-H	4-CN	H	COCH ₃	-
	4-0CF ₃	4-CN	4-F	н	COCH ₃	
30		4-CN			COCH ₃	
	4-0CF ₃	4-CN	4-CN	Н	COCH ₃	
	4-F	4-F	4-F	H	COCH ₃	
	4-F	4-F	4-CN	Н	COCH3	
35		4-F				

Table 2 (continued)

5						
	<u>R</u> 1	$\frac{R_2}{2}$	<u>w</u>	<u>A</u>	<u>¥</u>	m.p.(°C)
	4-F	4-C1	4-CN	Н	COCH ₃	
	4-F	4-C1	4-F	Н	COCH ₃	
	4-F	4-C1	4-C1	Н	COCH ₃	
10	4-C1	4-F	4-CN	Н	COCH ₃	
	4-C1	4-Cl	4-CN	Н	COCH ₃	
	4-C1	4-F	4-C1	Н	COCH ₃	
	4-CF ₃	4-C1	4-C1	Н	CH ₂ CH ₃	
	4-CF ₃	4-C1	4-C1	Н	CH ₂ CO ₂ Me	
15	4-CF ₃	4-Cl	4-C1	Н	CO ₂ Me	
	2,5-di-F	4-Cl	4-Cl	CH ₃	Н	158 to 159.5
	3,5-di-NO ₂	4-C1	4-C1	CH ₃	Н	252.5 to 255
	2,3,4-tri-Cl	4-C1	4-C1	CH ₃	Н	242 to 246
	4-Et	4-Cl	4-C1	СН 3	Н	180 to 181
20	3-CF ₃ ,4-F	4-C1	4-C1	CH ₃	Н	165 to 166
	4-C ₆ H ₁₁	4-C1	4-C1	CH ₃	Н	181 to 182
	3-CN	4-C1	4-C1	CH ₃	Н	112 to 116
	2-CN	4-C1	4-C1	CH ₃	Н .	
	2-C1	4-C1	4-C1	CH ₃	Н	157 to 159
25	4-F	4-Cl	4-C1	CH ₃	Н	141.5 to 142.5
	3-F	4-Cl	4-C1	CH ₃	Н	149 to 150
	2-F	4-C1	4-C1	CH ₃	H	129 to 135
	2,3,4-tri-Cl	3-CF ₃	4-C1	CH ₃	Н	191 to 192
	3-CF ₃ ,4-F	_	4-C1	CH ₃	н .	188 to 189
30	4-00 H ₅	3-CF ₃	4-C1	CH ₃	н	110 to 114
	4-CF ₃	3-CF ₃	4-Cl	сн ₃	Н	211 to 213

Table 2 (continued)

	R	R				
	<u>R</u> 1	R ₂	M	<u>A</u> .	<u>¥</u>	m.p.(°C)
	3-CF ₃	3-CF ₃	4-Cl	CH ₃	Н	146 to 148
	4-CN	3-CF ₃	4-C1	CH ₃	H	161 to 163
10	3-CN	3-CF ₃	4-C1	CH ₃	H	189 to 191
	4-C1	•	4-C1	CH ₃	Н	178 to 181
	3-C1	•	4-Cl	CH ₃	н	122 to 125
	4-F :	•	4-Cl	CH ₃	н	184 to 186
	4-CF ₃	2-Me,4-C1	4-C1	CH ₃	H	oil (a)
15	3-CF ₃	2-Me,4-Cl	4-C1	CH ₃	H	oil (b)
	4-CN	2-Me,4-Cl	4-C1	CH ₃	H ·	oil (c)
	3-CN	2-Me,4-Cl	4-C1	CH ₃	Н	80 to 82
	4-Cl	2-Me,4-Cl	4-C1	CH ₃	H	82 to 84
	3-C1	2-Me,4-Cl	4-Cl	CH3	H	68 to 70
20	4-F	2-Me,4-C1	4-Cl	CH ₃	H	82 to 84
	3-CF ₃ ,4-F	2-Me,4-C1	4-C1	CH ₃	H	oil (d)
	4-CN	4-CF ₃	4-F	CH ₃	H	94 to 96
	4-F	4-CF ₃	4-F	CH ₃	H	98 to 100
	4-CF ₃	4-F	4-H	Н	COCH	156 to 158
25	4-CF ₃	4-C1	4-F	н	COCH CH 3	132 to 134
	4-CF ₃	4-OCF ₂ H	4-F	Н .	CH ₃	oil (e)
	H ¹ NMR spectra	(δ):	(a) 8	.60(NH)		
		-	(b) 8	.52(NH)		
30			(c) 8	.60(NH)		
		•	(d) 8	.54(NH)		
			(e) 3	.5(NMe)		

81 Table 3

	<u>R</u> 1	R ₂	<u>B</u>	A	<u>¥</u>	m.p.(°C)
	<u>-</u> 4-CF	4-F				
5	4-CF	4-H	CH,	CO ₂ Me	Н	
	4-CF	4-C1	CH ₂	CO Me	н	178.5 to 180
		4-Br	CH	CO2Me	н	186 to 188
	4-CF ₃		CH	CO2Me	н	
		4-CN		CO2Me	Н	198 to 203
10	4-CF	4-OCF ₂ H				·
	4-CF	4-0CF ₃	CH	CO,Me	H	
	4-CF ₃		CH3	CO ₂ Me	Н	198 to 199
	_	3 4-F	CH3	CO ₂ Me	Н	
		4-H	CH ₃	CO ₂ He	H	
15	•	4-C1	CH ₃	CO ₂ Me	H	
	4-F	4-Br	CH ₃	CO2Me	H	
	4-F	4-I	CH ₃	CO2Me	Н	
	4-F	4-CN	CH ₃	CO2Me	Н	
	4-C1	4-F	CH ₃	CO2He	Н	•
20	4-C1	4-H	CH_	CO_Me	H	
	4-C1	4-Cl	CH ₃	CO2Me	H	138 to 140
	4-Cl	4-Br	CH ₃		Н	132 to 136
	4-Cl	4-I	CH ₃			
	4-C1	4-CN	СН _З	CO2Me	H	187 to 192
25		4-CF ₃		CO ₂ Me		_
	4-C1	4-0CF ₃	CH ₃	CO2Me	Н	162 to 165
	4-OCF ₃	4-CF ₃	снз	CO ₂ Me	Н	
	4-0CF ₃	4-0CF ₃	CH ₃	CO ₂ Me	H	
	4-0CF ₃	4-C1	CH ₃	CO ₂ Me	H	
30	4-0CF ₃	4-Br	CH ₃			gum (oo)
	4-0CF ₃	4-H	CH ₃	CO ₂ Me		
	4-0CF ₃	4-CN	CH ₃			
	4-0CF ₃	4-F	CH ₃	CO ₂ Me	Н	

Table 3 (continued)

	R ₁	R ₂	<u>B</u>	A	<u>¥</u>	m.p.(°C)
	4-CF ₃	4-F	CH ₃	CO ₂ Et	Н	
5	4-CF ₃	4-H	CH ₃	COZEt	Н	• •
	4-CF ₃	4-C1	CH ₃	COZEt	Н	
	4-CF ₃	4-Br	CH ₃	CO_Et	Н	
	4-CF ₃	4-I	CH ₃	COZEt	Н	
	4-CF ₃	4-CN	CH ₃	COZEt	Н.	
10	3 4-F	4-F	CH ₃	COZEt	н .	
	4-F	4-H	CH ₃	CO ₂ Et	H	
	4-F	4-C1	CH ₃	CO ₂ Et	H	•
	4-F	4-Br	CH ₃	COZEt	Н	
	4-F	4-I	CH ₃	COZEt	H	. •
15	4-F	4-CN	CH ₃	co_Et	H	
	4-C1	4-F	CH ₃	CO ₂ Et	H	112.5 to 114
	4-C1	4-H	CH ₃	COZEt	H	
	4-C1	4-C1	CH ₃	CO ₂ Et	H	•
	4-C1	4-Br	CH ₃	COZEt	Н	
20	4-C1	4-I	CH ₃	CO ₂ Et	H	
	4-C1	4-CN	CH3	CO ₂ Et	H	
	4-CF ₃	4-F	CH ₃	CONMe ₂	H	
	4-CF ₃	4-H	CH ₃	CONMe ₂	H	
	4-CF ₃	4-C1	CH ₃	CONMe ₂	H	
25	4-CF ₃	4-Br	CH ₃	CONMe ₂	H	
	4-CF ₃	4-I	CH ₃	CONMe ₂	H	
	4-CF ₃	4-CN	CH ₃	CONMe 2	Н	
	4-F	4-F	CH3	CONMe ₂	H	
	4-F	4-H	CH ₃	CONMe 2	H	•
30	4-F	4-C1	CH ₃	CONMe ₂	H.	•
	4-F	4-Br	CH ₃	CONMe ₂	H	- 3
	4-F	4-I	CH ₃	CONMe 2	H	
	4-F	4-CN	CH ₃	CONMe ₂	H	
	4-C1	4-F	CH ₃	CONMe ₂	H	(<u>E</u>)
35		-				

Table 3 (continued)

	R.	R	ъ	Δ	¥	m.p.(°C)
	<u>R</u> 1	R ₂	<u>B</u>	<u>A</u>	± H	<u></u>
5	4-C1	•	CH ₃	CONMe ₂	н	
5	4-C1		CH ₃	CONMe ₂		
	4-C1	4-Br	CH ₃	CONMe ₂	н	
	4-C1	4-I	CH ₃	CONMe 2	н	
	4-C1	4-CN	CH ₃	CONMe 2	H	
	4-CF ₃	4-OCH ₃	CH ₃	CO ₂ Me	Н	
10	4-CF ₃	4-NO ₂	CH ₃		H	
	4-CF ₃	4-CO ₂ Et	CH ₃	CO ₂ Me	Н	
	4-CF ₃	4-SMe	CH ₃	CO2Me	Н	
	4-CF ₃	4-SO ₂ Me	CH ₃	CO ₂ Me	H	
	4-CF ₃		CH ₃	CO ₂ Me	Н	
15	4-CF3	4-CH=CH ₂	CH ₃	CO ₂ Me	H	
	•	4-C≣CH	CH ₃	CO ₂ Me	Н	
	4-CF ₃		CH ₃	CO2Me	H	
	4-CF ₃		CH ₃	CO ₂ Me	H	
	4-CF ₃		CH ₃	CO ₂ Me	H	
20	4-CF ₃		CH ₃	CO ₂ Me	H	
	4-CF ₃	4-OCOCH ₃	CH ₃	CO2Me	H	
	4-CF ₃	4-NMe ₂	CH ₃	CO2He	Н	
	4-CF ₃		CH ₃	CO2He	Н	
	4-CF ₃				Н	
25					H	
	4-CF ₃		CH ₃		H	
	4-F	4-0CH ₃	CH ₃	CO ₂ Me	н	
	4-F	4-NO ₂	CH ₃	CO ₂ Me	H	
	4-F	4-CO ₂ Et		CO ₂ Me	H	
30	4-F	4-SMe		co ₂ Me	Н	
	4-F	4-S0 Me	CH ₃	CO2Me	H	
	4-F	_	CH ₃	CO ₂ Me	Н	
	4-F	4-CH=CH ₂	CH ₃	CO_He	Н	
		4-C≡CH	CH ₃		Н	
35			-			

Table 3 (continued)

	$\frac{R_1}{2}$	R ₂	<u>B</u>	<u>A</u>	<u>¥</u>	m.p.(°C)
	4-F	4-CONMe ₂	CH ₃	CO ₂ Me	H	
5	4-F	4-SCF ₃	CH ₃	CO ₂ Me	H	
	4-F	4-OCH(CH ₃) ₂	CH ₃	CO ₂ Me	H	
	4-F	4-0S0 ₂ CH ₃		CO ₂ Me	Н	x - *
	4-F	4-OCOCH ₃	_	CO2Me	н	÷ .
	4-F	4-NMe ₂	_	CO2Me	H	
10	4-F	4-NHCOCH ₃	_	CO ₂ Me	H	-
	4-F	4-OCONHMe		CO ₂ Me	H	
	4-F	4-NHCONH ₂	_	CO2Me	H .	
	4-F	4-COCH ₃	CH ₃	CO ₂ Me	Н	
	4-0CH ₃	4-F	CH ₃	CO ₂ Me	H-	•
15	4-NO ₂	4-F	CH ₃	CO2Me	Н	
	4-CO ₂ Et	4-F	CH ₃	CO ₂ Me	H	
	4-SMe	4-F	CH ₃	CO2Me	H	•
	4-50 ₂ Me	4-F		CO ₂ Me	Н	
	4-Me	4-F	CH ₃	CO2He	H	
20	4-CH=CH ₂	4-F		CO2Me	H	
	4-C≣CH	4-F		CO2Me	H	
	4-CONMe	4-F	CH ₃	CO ₂ Me	H	-
	4-SCF ₃	4-F	CH ₃	CO ₂ Me	Н	
25	4-0CH(CH ₃) ₂	4-F	CH ₃	CO2He	H	
25	4-0S0 ₂ CH ₃	4-F	CH ₃	CO ₂ Me	H	
	4-OCOCH ₃	4-F	CH ₃	CO ₂ Me	н	
	4-NMe ₂	4-F	CH ₃	CO ₂ Me	H	
	4-NHCOCH ₃	4-F		CO ₂ Me	H	
30	4-OCONHMe	4-F	CH ₃	CO ₂ Me	Н .	
30	4-NHCONH ₂	4-F	CH ₃	CO2Me	Н	
	4-COCH ₃	4-F	CH ₃	CO2Me	Н	
	4-0CH ₃	4-C1	CH ₃	CO2Me	H	
	4-NO ₂	4-C1	CH ₃	CO2He	H	
35	4-CO ₂ Et	4-C1	CH ₃	CO ₂ Me	Н	

Table 3 (continued)

	R ₁	R ₂	<u>B</u>	<u>A</u>	Ā	m.p.(°C)
	4-SMe			CO ₂ Me	Н	
5	4-S0 ₂ Me		-	CO_He	Н	
	4-Me	4-C1	_	CO_He	Н	
	4-CH=CH ₂		-	CO ₂ Me	Н	
	4-C≡CH	4-C1	CH ₃	CO2He	Н	
	4-CONMe	4-C1	CH ₃	CO ₂ Me	Н	
10	4-SCF ₃		CH ₃	CO ₂ Me	Н	
	4-OCH(CH ₃) ₂		•	CO ₂ Me	H	
	4-050 ₂ CH ₃		CH ₃	CO ₂ Me	H	
	4-OCOCH ₃	4-C1	CH ₃	CO ₂ Me	H	
	4-NMe ₂	4-Cl	CH ₃	CO ₂ Me	H	
15		4-C1	CH ₃	CO ₂ Me	H	
	4-OCONHMe	4-C1	CH ₃	CO2Me	Н	
	4-NHCONH ₂	4-Cl	CH ₃	CO ₂ Me	Н	
	4-COCH ₃	4-Cl		CO ₂ Me	Н	
	4-CF ₃	4-F	CH ₃	co ₂ H	Н	
20	4-CF ₃	4-F	CH ₃	COCH ₃	Н	
	4-CF ₃	4-F	CH ₃	COCH ₂ CH ₃	Н	
	4-CF ₃	4-F	CH ₃	co ₂ ch ₂ ch ₂ ch ₃	H	
	4-CF ₃	4-F	CH ₃	co ₂ ch(ch ₃) ₂	Н	
	4-CF ₃	4-F	CH ₃	^{CO} 2 ^C 6 ^H 5	Н	
25	4-CF ₃	4-F	CH ₃	COC ₆ H ₅	Н	
	4-CF ₃	4-F	CH ₂ CH ₃		Н	
	4-CF ₃	4-F	сн ₂ сн ₃	CO ₂ Et	Н	
	4-CF ₃		CH ₂ CH ₃		Н	
	4-CF ₃	4-F	с ₆ н ₅	CO ₂ Me	Н	
30	4-CF ₃		C ₆ H ₅	CO ₂ Et	Н	
	4-CF ₃	4-F		CO2Me	H	
	4-CF ₃		Н	_	Н	
	4-CF ₃	4-F	Н	CO ₂ Et	н	

86

<u>Table 3</u> (continued)

	<u>R</u> 1	<u>R</u> 2	<u>B</u>	<u>A</u> .	<u>¥</u>	m.p.(°C)
	4-CF ₃		Н	CONHe ₂	Н	
5	4-CF ₃	4-F	CH ₂ CH ₃	CONMe ₂	н	
	4-CF ₃	4-C1	н	CO,Et	H	
	4-CF ₃	4-C1	Н	CO_He	н	200 to 204
	4-F	4-C1	н	CO2He	H	
	4-C1	4-C1	Н	CO ₂ He	н	
10	4-C1	4-CF ₃	H	CO ₂ Me	Н	162 to 164.5
	4-F	4-F	Н	CO ₂ Me	Н	
	4-C1	4-F	H	CO2He	Н	147 to 148
	4-C1	4-F	CH ₃	со ₂ с ₆ н ₅	H	161 to 163.5
	4-C1	4-CF ₃	CH ₂ CO ₂ Me	CO2Me	H .	138 to 142
15	4-CF ₃	4-F	CH ₂ CO ₂ Me	CO2Me	H	155 to 156
	4-CF ₃	4-Cl	CH ₂ CO ₂ Me	CO ₂ Me	H	
	4-CF ₃	4-Cl	CH ₂ CN	CO ₂ Me	Н	
	4-Br	4-Cl	Н	CO2He	·H	174 to 177
	4-C1	4-C1	Н	COCH ₂ CH ₃	H	198 to 199
20	4-CF ₃	4-F	CH ₃	CO2Me	СНО	
	4-CF ₃	4-H	CH ₃	CO2Me	CHO	
	4-CF ₃	4-C1	CH ₃	CO2He	СНО	
	4-CF ₃	4-Br	CH ₃	CO_Me	CHO	
0.5	4-CF ₃	4-I	CH ₃	CO ₂ Me	СНО	
25	4-CF ₃	4-CN	CH ₃	CO ₂ Me	СНО	
	4-F	4-F	CH3	CO ₂ Me	СНО	
	4-F	4-H	CH ₃	CO ₂ He	СНО	
	4-F	4-C1	CH ₃	CO ₂ Me	СНО	
3.0	4-F	4-Br	CH ₃	CO ₂ Me	СНО	
30	4-F	4-I	CH ₃	CO ₂ Me	СНО	
	4-F	4-CN	CH ₃	CO ₂ Me	СНО	
	4-C1	4-F	CH ₃	CO ₂ He	CHO-	
	4-Cl	4-H	CH ₃	CO ₂ Me	СНО	

Table 3 (continued)

	R ₁	R ₂	<u>B</u>	<u>A</u>	¥	m.p.(°C)
	4-Cl	4-C1.	CH ₃	CO ₂ Me	CHO	
5	4-C1	4-Br	-	CO ₂ Me	CHO	
	4-C1	4-I	_	CO ₂ Me	CHO	
	4-C1	4-CN		CO2Me	СНО	
	4-CF ₃	4-F	CH ₃	CO2Me	сосн	
	4-CF ₃	4-H	CH ₃	CO ₂ Me	COCH3	
10	4-CF ₃	4-C1	CH ₃	CO ₂ Me	COCH ₃	
	4-CF ₃	4-Br	CH ₃	CO ₂ Me	сосн	,
	4-CF ₃	4-I	CH ₃	CO ₂ Me	COCH3	i
	4-CF ₃	4-CN	CH ₃	CO2Me	COCH3	,
	4-F	4-F	CH ₃	CO ₂ Me	COCH	}
15	4-F	4-H	СН _З	CO2Me	COCH3	,
	4-F	4-C1	CH3	CO ₂ Me	COCH	•
	4-F	4-Br	CH ₃	CO2Me	COCH	
	4-F	4-I	сн _з	CO ₂ Me	COCH	
	4-F	4-CN	CH ₃	CO ₂ Me	COCH	
20	4-C1	4-F	CH ₃	CO ₂ Me	COCH	3
	4-C1	4-H	. 3	CO ₂ Me	COCH	•
	4-C1	4-Cl	CH ₃	CO ₂ Me	COCH	•
	4-C1	4-Br	CH ₃	CO2Me	COCH	•
	4-C1	4-I	CH ₃	CO ₂ Me	COCH	•
25	4-C1	4-CN	_	CO ₂ Me	COCH	•
	4-CF ₃	4-F	CH ₃	CO ₂ Me	CO2M	
	4-CF ₃	4-H	CH ₃	CO ₂ Me	CO2M	2
	4-CF ₃	4-Cl	CH ₃	CO ₂ Me	CO2M	
2.0	4-CF ₃	4-Br	3	CO ₂ Me	CO2M	
30	4-CF ₃	4-I	3	CO ₂ Me	CO2H	
	4-CF ₃	4-CN		CO ₂ Me	CO2H	
	4-F	4-F	J	CO ₂ Me	CO ₂ H	
	4-F	4-H	CH ₃	CO ₂ Me	CO2H	e

88

<u>Table 3</u> (continued)

	<u>R</u> 1	R ₂	<u>B</u>	A	<u>¥</u>	m.p.(°C)
	4-F	4-C1	CH ₃	CO2Me	CO ₂ He	
5	4-F	4-Br	CH ₃	CO_Me	CO ₂ He	
	4-F	4-I	CH ₃	CO ₂ Me	CO ₂ He	
	4-F	4-CN	CH ₃	CO ₂ Me	CO ₂ He	
	4-C1	4-F	CH ₃	CO ₂ Me	CO ₂ Me	
	4-C1	4-H	CH ₃	CO ₂ He	CO ₂ Me	-
10	4-C1	4-C1	CH ₃	CO ₂ He	CO ₂ Me	
	4-C1	4-Br	CH ₃	CO ₂ Me	CO ₂ Me	
	4-C1	4-I	CH ₃	CO ₂ Me	CO ₂ Me	
	4-Cl	4-CN	CH ₃	CO ₂ Me	CO ₂ Me	
	4-CF ₃	4-C1	CH3	CO ₂ He	CH ₃	oil (a)
15	4-CF ₃		CH ₃	CO ₂ Me	CH ₃	91 to 95
	4-CF ₃		CH ₃	CO ₂ Me	CH ₃	145 to 149
			CH ₃	CO ₂ Me	CH ₃	114 to 116
	4-CF ₃	_	CH ₃	CO ₂ Me	CH ₃	126 to 130
	_	4-0CF ₃	CH ₃	CO2He	CH ₃	78 to 82
20	4-CF3	4-H	CH ₃	CO2He	. CH ₃	
	4-CF.3	4-C1	CH ₃	CO ₂ Me	CH ₂ CH ₃	
	4-CF3	4-F	CH ₃	CO ₂ Me	CH ₂ CH ₃	
	4-CF ₃	4-CN	CH ₃	CO ₂ Me	CH ₂ CH ₃	
	-	4-CF ₃	CH ₃	CO ₂ Me	CH ₂ CH ₃	-
25	4-CF ₃		CH ₃	CO ₂ Me	CH ₂ CH ₃	
	4-CF ₃		CH ₃	CO ₂ Me	CH ₂ CH ₃	
	4-CF ₃	4-H	CH ₃	CO ₂ He	CH ₂ CH ₃	
	4-CF ₃	4-C1	CH ₃	CO ₂ He	CH ₂ CH ₂ CH ₃	
	4-CF ₃	4-F	CH ₃	CO ₂ He	CH ₂ CH ₂ CH ₃	oil (b)
30	4-CF ₃	4-CF ₃	CH ₃	CO ₂ Me	CH2CH2CH3	oil (c)
	4-CF ₃		CH ₃	CO ₂ He	CH2CH2CH3	oil (d)
	_	4-CN	CH ₃	CO ₂ Me		
		4-Br	CH ₃	CO ₂ Me	CH ₂ CH ₂ CH ₃	
2.5	4-0CF		CH ₃	CO ₂ Me	CH ₃	

Table 3 (continued)

	<u>R</u> 1	R ₂	<u>B</u>	<u>A</u>	<u>¥</u>	m.p.(°C)
				CO ₂ Me		
5	4-0CF	4-CF_	CH_	CO ₂ Me	CH_	
	3 4-0CF	3 4-CN	CH_	CO ₂ Me	CH ₃	
	_		_	CO ₂ Me		
	_	4-0CF ₃				
	_	4-Cl	_	CO2He		
10		4-F	•	-	_	
		4-CF ₃		CO ₂ Me	-	
		4-CN	CH ₂	CO ₂ Me	-	
		4-Br	-	_	_	
				CO ₂ Me		
15		4-C1				141 to 142
	4-Br	4-F			•	151 to 154
	4-Br	4-CF ₃		CO ₂ Me		
		•	_	CO ₂ Me	CH ₃	
	4-Br		•	CO ₂ Me		
20			_	CO ₂ Me	_	oil (e)
		4-C1	_	н	н	167 to 168
	_	4-F		н	Н	
	4-CF ₃	4-CF ₃	Н	Н	Н	
	4-CF ₃	4-CN	н	Н	Н	
25	4-CF ₃	4-H	H	H	Н	
	4-CF ₃	4-0CF ₃	Н	Н	Н	
	4-CF ₃	4-C1	Н	Н	CH ₃	
	4-CF ₃	4-C1	н	Н	COCH ₃	
2.0	4-CF ₃	4-C1 4-C1	H	Н	CO2CH3	
30	4-0CF ₃	4-Cl	н	H	Н	
	4-0CF ₃	4-CF ₃	н	Н	н	
		4-CN		Н .	н	
		4-Cl		Н	Н	
3 5	4-C1	4-CF ₃	Н	н	н	

90
Table 3 (continued)

	R ₁	R ₂	<u>B</u>	<u>A</u> -	<u>¥</u>	m.p.(°C)
	4-C1	4-CN	н	н	н .	
5	4-CF ₃	4-C1	4-F-Benzyl	н	н	
	_	4-C1	4-Cl-Benzyl	н	н	
	_	4-C1	4-CN-Benzyl	н	н	
	_	4-F	4-F-Benzyl	н	Н	
	_		4-Cl-Benzyl	н	Н	
10	_	4-F	4-CN-Benzyl	н	H	
	_	4-CF ₃	4-F-Benzyl	H	н	
	_	_	4-Cl-Benzyl	н	Н	
			4-CN-Benzyl	Н	Н	٠
15			CH ₂ CH ₂ CH ₃	сн ₃	H ₂ ×	
			CH ₂ CH ₂ CH ₃		- H	122 to 125
	_		CH2CH2CH3	CH ₃	Н	-
	_	_	CH2CH2CH3	CH ₃	H	
	_		CH2CH2CH3	CH ₃	Н	
	4-CF ₃			-CH ³	H	
20			CH ₂ CH ₂ CN	н	H	
	_		CH2CH2CH	н	Н	
	4-CF ₃	4-C1	CH ₂ CH ₂ CN	CH ₃	H.	
	4-CN		н	COHe	H	192 to 197
	4-C1	4-Cl	н	CO ₂ Me	Н	166 to 168
25	2-F,4-Cl	4-C1	H	CO He	H	160 to 170
	4-C1	4-CN	Н	CO ₂ Me	н	187 to 190
	4-CN	4-CN	Н	COMe	H *	182 to 185
	4-CN	4-CN	CH ₃	соуне	Н	205 to 215
	2-F,4-C1		CH ₃	CO2He	H.	195 to 197
30	4-CN	4-Cl	CH ₃	соиние	н	>250
	4-C1	4-C1	Н	CONHMe	Н	>250

Table 3 (continued)

	R ₁	R ₂	<u>B</u>	<u>A</u>	<u>Y</u>	m.p.(°C)
	4-F	4-CN	CH ₃	CN	Н	200 to 202
5	2-F,4-C1	4-CN	н	CONH-n-Bu	Н	205 to 210
	4-CN	2-F,4-C1	CH ₃	CO ₂ Me	Н	oil (f)
	4-CN	4-F	CH ₃	сно	Ħ	116 to 121
	4-F	4-F	CH ₃	СНО	Н	122 to 125
	2,4-di-Cl	4-F	СН ₃	СНО	Н	104 to 113
10	4-CF ₃	4-F	i-Pr	СНО	Н	128 to 132
	4-CN	4-F	i-Pr	СНО	Н	182 to 185
	4-F	4-F	i-Pr	CHO	н	124 to 129
	2-F,4-Cl	4-F	i-Pr	CHO	Н	108 to 115
	4-CF ₃	4-CF ₃	i-Pr	СНО	H	133 to 138
15	4-CN	4-CF ₃	i-Pr	СНО	Н	foam (g)
	4-CF ₃	4-C1	i-Pr	CHO	Н	145 to 149
	4-CN	4-Cl	i-Pr	СНО	н	160 to 164
	4-CF ₃	4-CN	CH ₃	CO ₂ Me	снз	129 to 130
	4-Br	4-CF ₃	CH ₃	CO ₂ Me	Н	128 to 182
20	4-Br	4-CN	CH ₃	CO ₂ Me	Н	170 to 173
	4-Br	4-C1	CH ₃	CO ₂ Me	Н	147 to 148
	4-Br	4-C1	CH ₃	CONHC H (p-Br)	н	glass (h)
	4-Br	4-F	CH ₃	CO ₂ Me	Н	153 to 157
	2,4-di-Cl	4-C1	i-Pr	СНО	Н	glass (i)
25	4-CF ₃	4-CF ₃	Ме	CONHC ₆ H ₄ (p-CF ₃)	H	foam (j)
•	4-CN	4-CN	i-Pr	сно	H	oil (k)
	4-F	4-CN	i-Pr	СНО	H	oil (1)
	4-CF ₃	4-F	n-Bu	CO ₂ Me	CH ₃	oil (m)
	4-CF ₃	4-C1	n-Bu	CO ₂ Me	CH ₃	oil (n)
30	4-CF ₃	4-CF ₃	n-Bu	CO ₂ Me	сн ₃	oil (o)
	4-I		CH ₃	CO ₂ Me	H	84 to 85
	4-OCF ₃			2	н	110 to 115
	4-0CF ₃		-	CO ₂ Me	H	89 to 92
	-	2,4-di-Cl		2		oil (p)
3 5	4-F	2,4-di-Cl	CH ₂ C ₆ H ₅	CO ₂ Me	H	oil (q)

Table 3 (continued)

	$\frac{R_1}{2}$	R ₂	<u>B</u>	A	<u>¥</u>	m.p.(°C)
_	4-CF ₃	2,4-di-Cl	CH ₃	CO ₂ Me	H	145 to 146
5	4-Br	2,4-di-C1	CH_C_H_	CO ₂ Me	H	oil (r)
	4-CF ₃	2,4-di-C1	CH_C_H_	CO_n-Bu	H	oil (s)
	4-CF_3	2-F,4-C1	CH ₃	CO ₂ n-Bu	H.	129 to 131
	4-CF3	2-F,4-C1	CH ₃	CO ₂ He	H	156 to 160
	4-0CF ₃	2-F,4-C1	CH ₃	CO ₂ n-Bu	H	123 to 124
10	4-CF ₃	2,4-di-C1	CH ₃	CO ₂ n-Bu	CH ₃	oil (t)
	4-CF ₃	4-F	CH ₃	CO ₂ n-Bu	H	132 to 140
	4-0CF ₃	4-F	CH ₃	CO ₂ n-Bu	Н	109 to 111
	4-C0_He	4-F	CH ₃	CO ₂ n-Bu	H	112 to 114
	4-Br	4-F	CH ₃	CO ₂ n-Bu	H	137 to 139
15	4-CF ₃	4-F	CH ₃	CO ₂ n-Bu	CH ₃	oil (u)
	4-CN	4-F	CH ₃	CO ₂ n-Bu	СН	151 to 153
	4-0CF ₃	4-F	n-Bu	CO ₂ Me	н	84 to 87
	4-Br	4-F	n-Bu	CO ₂ Me	Н	125 to 128
20	4-Br	4-0CF3	CH ₃	CO ₂ Me	н	oil (v)
20	4-I	4-F	n-Bu	CO ₂ Me	н	153 to 155
	4-CN	4-F	n-Bu	CO ₂ Me	н	168 to 170
	4-SMe	4-F	n-Bu	CO ₂ Me	H	113 to 115
	4-CF ₃	4-F	n-Bu	CO ₂ Me	H	124 to 126
25	4-CN	4-0CF ₃	CH ₃	CO ₂ Me	H	146 to 149
25	4-Br	4-C1	CH ₂ C ₆ H ₅	CO ₂ Me	Н	185 to 187
	4-F	4-Cl	CH ₂ C ₆ H ₅	CO ₂ Me	H	180 to 181
	4-0CF ₃	4-C1	CH ₂ C ₆ H ₅	CO ₂ Me	H	151 to 155
	4-Br	4-Br	CH ₃	CO Me	CH ₃	144 to 149
3.0	4-CN	4-Br	CH ₃	CO ₂ Me	CH ₃	foam (w)
30	4-Br	4-Br	CH ₃	CO ₂ Me	H	80 to 83
	4-CF ₃	4-C1	CH ₃	CO ₂ -t-Bu	CH ₃	131 to 132
	4-CF ₃	4-Br	CH ₃	CONHC H (P-CF3)	Н	foam (x)

93
Table 3 (continued)

	R	R.	_		v	(°C)
	$\frac{R_1}{4-Br}$	$\frac{R_2}{4-Br}$	<u>в</u> сн _з	A CONHC 6H (p-Br)	<u>¥</u>	m.p.(°C) glass (y)
5	4-OCF ₃	4-Br	CH ₃	CONHC ₆ H ₅ (p-CF ₃)	Н	foam (z)
	4-CN	4-C1	allyl	CO ₂ Me	Н	172 to 175.5
	4-SMe	4-C1	allyl	CO ₂ Me	н	105 to 108.5
	4-CF ₃	4-C1	allyl	CO ₂ Me	Н	oil (aa)
	4-CF ₃	4-C1	allyl	CO_Me	CH ₃	oil (bb)
10	4-CF ₃	4-C1	allyl	CO ₂ Me	n-Pr	oil (cc)
	_	4-C1	allyl	CO Me	CH ₃	125
	4-CF	4-F	CH ₃	CO Me	n-Pr	oil (dd)
		4-C1	CH ₃	CO He	n-Pr	solid (ee)
	_	4-C1	allyl	CO Me	Н	oil (ff)
15	4-I	4-C1	CH3	CO ₂ Me	Н	
		4-OCF ₃	CH ₃	CO ₂ -t-Bu	н	oil (gg)
	_	4-OCF ₃	CH ₃	CO ₂ -t-Bu	н	oil (hh)
	4-CF ₃	•	CH ₃	co ₂ -t-Bu	СН	oil (ii)
	4-Br		CH ₃	CO ₂ -t-Bu	н	oil (jj)
20	4-0CF ₃	4-Br	CH ₃	CO ₂ -t-Bu	Н	oil (kk)
	_	4-OCF ₃	сн ₃	co ₂ -t-Bu	Н	oil (11)
	4-CF ₃	4-Br	CH ₃	CO ₂ -t-Bu	Н	oil (mm)
	_	4-Br	CH ₃	CO ₂ -t-Bu	Н	oil (nn)
	4-C1		CH ₃	сно	Н	203 to 205
25	4-CF ₃	4-F	CH ₃	СНО	Н	178 to 180
	Infrar	ed spect:	ra v _{CO} (CI	4 ^{−1}):		
					(b)	1740, 1635
		(a) (c)	1740, 16 1745, 16		(d)	1745, 1640
		(e)	1740, 16		(f)	1745, 1680
		(g)	1735, 16		(h)	1670, 1660
30		(i)	1730, 16	580	(j)	1705, 1685
		(k)	1730, 16		(1)	1730, 1665
		(m)	1740, 16		(n)	1740, 1640
		(0)	1745, 16		(p)	1740, 1675
		(p)	1735, 16	570	(r)	1735, 1670
		(s)	1735, 16		(t)	1740, 1645
		(u)	1740, 16		(v)	1740, 1665
35		(w)	1740, 16		(x)	1690, 1670
		(y)	1680, 16		(z)	1675, 1665
		(aa)	1740, 16		(bb)	1740, 1640
		(cc)	1740, 16		(dd)	1740, 1635
		(ee)	1740, 16		(ff)	1740, 1670
		(gg)	1740, 16		(hh)	1740, 1675
		(ii)	1740, 16		(jj)	1730, 1670
		(kk)	1740, 16		(11)	1740, 1670
		(mm)	1740, 16	570	(nn) (oo)	1740, 1670 1740, 1665

4-C1

4-F

4-F-phenyl

```
X m.p.(°C)
                                             <u>B</u>
                                                   Y
       4-CF<sub>3</sub> 4-Cl
                           4-F-phenyl
                                             Н
                                                   H
                                                         S
                                                             169 to 171
       4-CF<sub>3</sub> 4-Cl · 4-F-phenyl
                                             CH<sub>3</sub> H
                                                  CH<sub>3</sub>
                 4-C1
                           4-F-phenyl
                                             H
       4-CF<sub>3</sub>
                                             CH3 CH3 S
                 4-Cl
                           4-F-phenyl
       4-CF<sub>3</sub>
                                                   Н
                 4-C1
                           4-Cl-phenyl
                                             H
                                                         S
       4-CF<sub>3</sub>
                 4-CN
                           4-Cl-phenyl
                                                   Н
                                                         S
10
                           4-F-phenyl
                 4-F
                                                   H
                                                        S
                          4-Cl-phenyl
                 4-F
                                             Н
                                                  H
       4-CF<sub>3</sub>
                           4-CN-phenyl
                 4-F
       4-CF<sub>3</sub> 4-CF<sub>3</sub>
                           4-F-phenyl
                                             Н
                                                  H
                                                        S
       4-CF<sub>3</sub> 4-CF<sub>3</sub>
                           4-Cl-phenyl
       4-CF<sub>3</sub> 4-CF<sub>3</sub>
                           4-CN-phenyl
                                             Н
       4-CF_3 4-OCF_3 4-F-phenyl
       4-CF<sub>3</sub> 4-OCF<sub>3</sub> 4-Cl-phenyl
       4-CF<sub>3</sub> 4-OCF<sub>3</sub> 4-CN-phenyl
                                                  Н
                                                        $
       4-CF<sub>3</sub> 4-H
                          4-F-phenyl
                                                  H
                                                        S
20
       4-CF<sub>3</sub> 4-H 4-Cl-phenyl
                                                  H
                                                        S
       4-CF<sub>3</sub>
                4-H 4-CN-phenyl H
       4-CF<sub>3</sub> 4-CN
                         4-F-phenyl
                                                  H
                                                        S
       4-CF<sub>3</sub>
                4-CN
                           4-Cl-phenyl
                                                        S
       4-CF<sub>3</sub>
                4-CN
                          4-CN-phenyl H
                                                        S
25
       4-0CF<sub>3</sub> 4-C1
                                                        S
                          4-F-phenyl
       4-0CF<sub>3</sub> 4-C1
                          4-Cl-phenyl H
                                                        S
      4-OCF<sub>3</sub> 4-F
                          4-F-phenyl
                                            Н
                                                  H .
                                                        S
       4-OCF<sub>3</sub> 4-I
                          4-Cl-phenyl
                                                  Н
       4-OCF<sub>3</sub> 4-CF<sub>3</sub>
                          4-F-phenyl
                                                  Н
30
      4-OCF<sub>3</sub> 4-CF<sub>3</sub>
                          4-Cl-phenyl H
      4-OCF_3 4-OCF_3 4-F-phenyl
                                                  H
      4-OCF<sub>3</sub> 4-OCF<sub>3</sub> 4-Cl-phenyl
                                                        s
       4-C1
                4-C1
                          4-F-phenyl
                                                  H
      4-C1
                4-C1
                          4-Cl-phenyl H
                                                  Н
                                                        S
35
```

95 <u>Table 4</u>

	R ₁	R ₂	<u>A</u>	<u>B</u>	<u>Y</u>	X	m.p.(°C)
	4-C1	4-F	4-C1-phenyl		Н	S	
5	4-C1	4-CF ₃	4-F-phenyl	н	Н	s	
	4-C1	_		H	Н	2	
	4-CF ₃	4-C1	CO ₂ Me	CH ₃	H	s	76 to 80
	4-CF ₃	4-C1	CO ₂ Me	CH ₃		S	oil (a)
10	4-CF ₃	4-F	CO ₂ Me	CH ₃		S	120
	4-CF ₃	4-CF3	CO ₂ Me	CH ₃		S	
	4-CF3	4-0CF ₃	CO ₂ Me	CH ₃		S	
	4-CF ₃	4-Br	CO ₂ Me	CH ₃	H	s	
	4-CF ₃	4-CN	CO ₂ Me	CH ₃	H	S	
	4-CF ₃	4-H	CO ₂ He	CH ₃		S	
15	4-0CF ₃	4-C1	CO ₂ Me	CH ₃	Н	S	
	4-0CF ₃	4-F	CO ₂ Me	CH ₃	Н	S	•
	4-0CF ₃	4-CF ₃	CO ₂ Me	CH ₃	H	S	
	4-OCF ₃	4-OCF ₃	CO ₂ Me	CH ₃	Н	S	
20	4-Cl	4-C1	CO ₂ Me	CH ₃	.H	S	
	4-C1	4-F	CO ₂ Me	CH ₃	Н	2	
	4-C1		CO ₂ Me	CH ₃	Н	S	
	4-C1	4-OCF ₃	CO ₂ Me	CH ₃	H	S	

96 Table 5

```
Physical Properties
                                  <u>B</u>
                                                solid
                                          OH
             4-C1-phenyl
                                  H
                                          C1
             4-C1-phenyl
                                  H
     4-F
                                          OH.
                                  H
             4-F-phenyl
     4-F
                                          C1
             4-F-phenyl
     4-F
                                                v_{\rm CO} = 1680 \, {\rm cm}^{-1}
                                          OH
             4-CN-phenyl
     4-F
                                          C1
             4-CN-phenyl
                                  H
     4-F
10
                                          OH
                                   H
     4-C1
            4-C1-phenyl
                                   H
                                          Cl
             4-Cl-phenyl
     4-C1
                                                m.p.: 188 to 191°C
                                          OH
             4-F-phenyl
      4-C1
                                                v_{\rm CO} = 1720 \, {\rm cm}^{-1}
                                          CI
                                   Н
      4-C1
             4-F-phenyl
                                          OH
                                   H
15
     4-C1
            4-CN-phenyl
                                   Cl
      4-C1
            4-CN-phenyl
                                                         216 to 217°C
                                   H
                                          OH
      4-C1
             3,4-di-F-phenyl
                                          Cl
      4-C1
           3,4-di-F-phenyl
      4-Cl 3-Cl-phenyl
                                          OH
                                          Cl
     4-Cl 3-Cl-phenyl
                                   H
20
     4-CF<sub>3</sub> 4-Cl-phenyl
                                          OH
                                   Н
      4-CF<sub>3</sub> 4-Cl-phenyl
                                   Н
                                          Cl
                                   H
                                          OH
      4-CF<sub>3</sub> 4-F-phenyl
                                          CI
      4-CF<sub>3</sub> 4-F-phenyl
                                   H
                                   CHa
                                          OH
     4-C1 CO2He
25
                                   CH<sub>3</sub>
                                          OH
             CO, Me
      4-F
                                          OH
                                   CH3
      4-C1
             4-C1-phenyl
                                   CH<sub>3</sub>
                                          Cl
      4-C1
             4-C1-phenyl
                                          OH
                                   CH<sub>3</sub>
      4-C1
             4-F-phenyl
                                          Cl
      4-Cl 4-F-phenyl
                                   CH<sub>3</sub>
                                          OMe
                                                m.p.: 103 to 106
      4-C1
             4-C1-phenyl
                                   Н
                                                 m.p.: 128 to 130°C
      4-Cl 4-Cl-phenyl
                                   H
                                                 m.p.: 121 to 123°C
                                          OMe
      4-Cl 4-F-phenyl
                                   H
                                                m.p.: 134 to 135.5°C
                                          OMe
      4-Cl 4-CN-phenyl
                                   H
                                                 NMR: 3.8 (OMe)
35
      4-C1
            4-CF<sub>3</sub>-phenyl
                                          OMe
```

PCT/US88/00001

97
<u>Table 5</u> (continued)

	R ₂	<u>A</u>	B	<u> </u>	Physical Properties
5	4-C1	3,4-di-Cl-phenyl	H	OMe	m.p.: 128 to 129°C
	4-C1	3,4-di-F-phenyl	Н	OMe	m.p.: 154 to 156°C
	4-C1	3-Cl-phenyl	H	OMe	NMR: 3.8 (OMe)
	4-C1	4-Cl-phenyl	CH ₃	OMe	NMR: 3.8 (OMe)
10	4-C1	4-F-phenyl	CH ₃	OMe	
	4-F	4-Cl-phenyl	н	OMe	NMR: 3.8 (OMe)
	4-F	4-F-phenyl	H	OMe	m.p.: 88 to 90.5°C
	4-F	4-CN-phenyl	Н	OMe	m.p.: 144.5 to 145.5°C
	4-F	3.4-di-F-phenyl	Н	OMe	m.p.: 120 to 121.5°C

Formulation and Use

The compounds of this invention will generally be used in formulation with a carrier comprising a liquid or solid diluent or an organic solvent. Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include dusts. granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like. Many of these can be applied directly. Sprayable formulations can be extended in 10 suitable media and used at spray volumes of from about one to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain about 1% to 99% by weight of active 15 ingredient(s) and at least one of a) about 0.1% to 20% surfactant(s) and b) about 5% to 99% solid or liquid diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

20	<u> </u>	Percent by Weight			
		Active Ingredient	Diluent(s)	Surfactant(s)	
	Wettable Powders	25-90	0-74	1-10	
25	Oil Suspensions, Emulsions, Solutions, (including Emulsifiab Concentrates)	1-50 le	40-95	0-35	
	Dusts	1-25	70-99	0-5	
	Granules and Pellets	1-95	5-99	0-15	
30	High Strength Compositions	90-99	0-10	0-2	

Lower or higher levels of active ingredient can. of course, be present depending on the intended use and the physical properties of the compound. Higher ratios of surfactant to active ingredient are some-

times desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins. et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, New Jersey. The more absorptive diluents are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for 10 suspension concentrates: solution concentrates are preferably stable against phase separation at 0°C. "McCutcheon's Detergents and Emulsifiers Annual". Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active 1.5 Agents", Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth, etc. Preferably, ingredients should be approved by the U.S. 20 Environmental Protection Agency for the use intended.

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, U.S. 3.060.084). Granules and pellets can be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pages 147 and following, and "Perry's Chemical Engineer's Handbook", 4th Ed., McGraw-Hill, New York, 1963, pages 8 to 59 and following.

30

25

Many of the compounds of the invention are most efficacious when applied in the form of an emulsifiable concentrate mixed with a spray oil or spray oil concentrate. Although any oil can be used as a spray oil, spray oils usually have these characteristics: they are not phytotoxic to the crop sprayed, and they have appropriate viscosity. Petroleum based oils are commonly used for spraying. In some areas, crop oils are preferred such as the following:

Common Crop Oils Used as Spray Oils Linseed Oil Corn Oil Soybean Oil Cottonseed Oil Sunflower Oil Coconut Oil Olive Oil Rapeseed Oil Palm Oil Peanut Oil 15 Sesame Oil Safflower Oil Caster Oil Mustardseed Oil

The following oils also meet the criteria for a spray oil: mineral, fish and cod liver oil.

Spray oil concentrates comprise a spray oil together with one or more additional ingredients such as emulsifiers and wetting agents. A number of useful spray oil and spray oil concentrates can be found in "A Guide to Agricultural Spray Adjuvants Used in the United States" by Thomson, Thomson Publications, California, 1986.

Examples of useful formulations of compounds of the present invention are as follows:

Example 23

30 Emulsifiable Concentrate

35

N,5-bis(4-chlorophenyl)-1-(4-fluorophenyl)-4,5dihydro-1H-pyrazole-3-carboxamide 20%
blend of oil soluble sulfonates
and polyoxyethylene ethers 10%
isophorone 70%

The ingredients are combined and stirred with gentle warming to speed solution. A fine screen filter is included in packaging operation to insure the absence of any extraneous undissolved material in the product.

Example 24

Wettable Powder

Methyl 1-(4-chlorophenyl)-4,5-dihydro-5-methyl-3
[[4-(trifluoromethyl)phenyl]aminocarbonyl]-1H
pyrazole-5-carboxylate 30%

sodium alkylnaphthalenesulfonate 2%

sodium ligninsulfonate 2%

synthetic amorphous silica 3%

kaolinite 63%

The active ingredient is mixed with the inert materials in a blender. After grinding in a hammer-mill, the material is re-blended and sifted through a 50 mesh screen.

Example 25

Dust

20

Wettable powder of Example 24 10% pyrophyllite (powder) 90%

The wettable powder and the pyrophyllite diluent are thoroughly blended and then packaged. The product is suitable for use as a dust.

Example 26

Granule

1.5-bis(4-chlorophenyl)-4.5-dihydro-N-[4-(trifluoro-methyl)phenyl]-lH-pyrazole-3-carboxamide 10% attapulgite granules (low volative

matter, 0.71/0.30 mm; U.S.S. No.

25-50 sieves)

90%

The active ingredient is dissolved in a volatile solvent such as acetone and sprayed upon dedusted and pre-warmed attapulgite granules in a double cone blender. The acetone is then driven off by heating. The granules are then allowed to cool and are packaged.

Example 27

G	r	а	nu	le	

Wettable powder of Example 24 15%
gypsum 69%
potassium sulfate 16%

The ingredients are blended in a rotating mixer and water sprayed on to accomplish granulation. When most of the material has reached the desired range of 0.1 to 0.42 mm (U.S.S. No. 18 to 40 sieves), the granules are removed, dried, and screened. Oversize material is crushed to produce additional material in the desired range. These granules contain 4.5% active ingredient.

Example 28

Solution

20

N,5-bis(4-chlorophenyl)-1-(4-fluorophenyl)-4,5dihydro-1H-pyrazole-3-carboxamide 25%
N-methyl-pyrrolidone 75%

The ingredients are combined and stirred to produce a solution suitable for direct, low volume application.

Example 29

_		
Zaneone	Suspensi	חח

water

2 3	Methyl 1-(4-chlorophenyl-4,5-di-	40%
	hydro-5-methyl-3-[[4-(trifluoro-	
	methyl)phenyl]aminocarbonyl]-1H-	
	pyrazole-5-carboxylate	
30	polyacrylic acid thickener	0.3%
	dodecyclophenol polyethylene glycol	
	ether	0.5%
-	disodium phosphate	1.0%
	monosodium phosphate	0.5%
35	polyvinyl alcohol	1.0%
-		

88.0%

10

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

Example 30

Oil Suspension

Methyl 1-(4-chlorophenyl)-4,5-di- 35.0%

hydro-5-methyl-3-[[4-(trifluoro-

methyl)phenyl]aminocarbonyl]-1H-

pyrazole-5-carboxylate

blend of polyalcohol carboxylic 6.0%

esters and oil soluble petroleum

sulfonates

xylene range solvent 59.0%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

20 Example 31

Bait Granules

Methyl 1-(4-chlorophenyl)-4,5-di- 3.0%

hydro-5-methyl-3-[[4-(trifluoro-

methyl)phenyl]aminocarbonyl]-1H-

pyrazole-5-carboxylate

blend of polyethoxylated nonyl- 9.0%

phenols and sodium dodecyl-

benzene sulfonates

ground up corn cobs

The active ingredient and surfactant blend are dissolved in a suitable solvent such as acetone and sprayed onto the ground corn cobs. The granules are then dried and packaged.

or more other insecticides, fungicides, nematocides, bactericides, acaricides, or other biologically active compounds to form a multi-component pesticide giving

an even broader spectrum of effective agricultural protection. Examples of other agricultural protectants with which compounds of the present invention can be mixed or formulated are:

<u>Insecticides:</u>

- 3-hydroxy-N-methylcrotonamide(dimethylphosphate)ester (monocrotophos)
- methylcarbamic acid. ester with 2.3-dihydro-2.2-dimethyl-7-benzofuranol (carbofuran)
- O-[2.4.5-trichloro-α-(chloromethyl)benzyl]phosphoric acid, O'.O'-dimethyl ester (tetrachlorvinphos)
 - 2-mercaptosuccinic acid, diethyl ester, S-ester with thionophosphoric acid, dimethyl ester (malathion) phosphorothioic acid, O.O-dimethyl, O-p-nitrophenyl
 - ester (methyl parathion)
- methylcarbamic acid. ester with α-naphthol (carbaryl)
 methyl O-(methylcarbamoyl)thiolacetohydroxamate
 (methomyl)
 - N'-(4-chloro-o-tolyl)-N.N-dimethylformamidine (chlordimeform)
 - O.O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidylphos-phorothioate (diazinon)
 - octachlorocamphene (toxaphene)
 - O-ethyl O-p-nitrophenyl phenylphosphonothicate (EPN)
- (S)- α -cyano- \underline{m} -phenoxybenzyl(lR,3R)-3-(2,2-dibromo-vinyl)-2,2-dimethylcyclopropanecarboxylate (delta-methrin)
 - Methyl N', N'-dimethyl-N-[(methylcarbamoyl)oxy]-l-thio-oxamimidate (oxamyl)
- cyano(3-phenoxyphenyl)-methyl-4-chloro-α-(1-methylethyl)benzeneacetate (fenvalerate)
 - (3-phenoxyphenyl)methyl(+)-cis.trans-3-(2.2-dichloroethenyl)-2.2-dimethylcyclopropanecarboxylate (permethrin)
- α-cyano-3-phenoxybenzyl 3-(2.2-dichlorovinyl)-2.2dimethylcyclopropane carboxylate (cypermethrin)

PCT/US88/00001

- O-ethyl-S-(p-chlorophenyl)ethylphosphonodithioate (profenofos)
- phosphorothiolothionic acid. O-ethyl-O-[4-(methylthio)-phenyl]-S- \underline{n} -propyl ester (sulprofos).
- Additional insecticides are listed hereafter by their common names: triflumuron, diflubenzuron, methoprene, buprofezin, thiodicarb, acephate, azinphos-methyl, chlorpyrifos, dimethoate, fonophos, isofenphos, methidathion, methamidiphos, monocrotophos, phosmet.
- phosphamidon, phosalone, pirimicarb, phorate, profenofos, terbufos, trichlorfon, methoxychlor, bifenthrin, biphenate, cyfluthrin, fenpropathrin, fluvalinate, flucythrinate, tralomethrin, metaldehyde and rotenone.

15 Fungicides:

- methyl 2-benzimidazolecarbamate (carbendazim) tetramethylthiuram disulfide (thiuram) n-dodecylguanidine acetate (dodine) manganese ethylenebisdithiocarbamate (maneb)
- 20 1.4-dichloro-2.5-dimethoxybenzene (chloroneb)
 methyl l-(butylcarbamoyl)-2-benzimidazolecarbamate
 (benomyl)
 - 1-[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole (propiconazole)
- 2-cyano-N-ethylcarbamoyl-2-methoxyiminoacetamide (cymoxanil)
 - 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone (triadimefon)
 - N-(trichloromethylthio)tetrahydrophthalimide (captan)
- N-(trichloromethylthio)phthalimide (folpet)

 1-[[[bis(4-fluorophenyl)][methyl]silyl]methyl]-lH
 1.2.4-triazole.

Nematocides:

35

S-methyl 1-(dimethylcarbamoyl)-N-(methylcarbamoyloxy)-thioformimidate

S-methyl l-carbamoyl-N-(methylcarbamoyloxy)thioformimi-date

N-isopropylphosphoramidic acid, O-ethyl O'-[4-(methyl-thio)- \underline{m} -tolyl]diester (fenamiphos).

Bactericides:

tribasic copper sulfate streptomycin sulfate.

10 Acaricides:

senecioic acid, ester with 2-sec-butyl-4,6-dinitrophenol (binapacryl)

6-methyl-1,3-dithiolo[4,5-ß]quinoxalin-2-one (oxythioquinox)

ethyl 4,4'-dichlorobenzilate (chlorobenzilate)
1,1-bis(p-chlorophenyl)-2,2,2-trichloroethanol
(dicofol)

bis(pentachloro-2,4-cyclopentadien-1-yl) (dienochlor) tricyclohexyltin hydroxide (cyhexatin)

trans-5-(4-chlorophenyl)-N-cyclohexyl-4-methyl-2-oxo-thiazolidine-3-carboxamide (hexythiazox)

amitraz

propargite

fenbutatin-oxide

25 bisclofentezin.

Biological

Bacillus thuringiensis Avermectin B.

30 Utility

35

The compounds of the present invention exhibit activity against a wide spectrum of foliar and soil inhabiting insects. Those skilled in the art will recognize that not all compounds are equally effective against all insects, but the compounds of this invention display activity against economically

important pest species, such as grasshoppers and cockroaches; thrips; hemipterans: plant bugs (Miridae), such as tarnished plant bug, lace bugs

- (Miridae), such as tarmished plant bug, its bugs (Tingidae), seed bugs (Lygaeidae) such as cinch bugs, stink bugs (Pentatomidae), leaf-footed bugs (Coreidae), such as squash bug, and red bugs and stainers (Pyrrhocoridae) such as cotton stainer; also
- homopterans such as whiteflies, leafhoppers, spittlebugs and planthoppers such as aster leafhopper, potato leafhopper and rice planthoppers, psyllids such as pear psylla, scales (coccids and diaspidids) and mealybugs; coleopterans including weevils, such as
- boll weevil and rice water weevil, grain borers, chrysomellid beetles, such as Colorado potato beetle, flea beetles and other leaf beetles, coccinellid beetles such as Mexican bean beetle, and soil insects such as southern corn rootworm and wireworm;
- lepidopterous larvae including noctuids such as fall armyworm, beet armyworm, other <u>Spodoptera</u> spp., <u>Heliothis virescens</u>, <u>Heliothis zea</u>, cabbage looper, green cloverworm, velvetbean caterpillar, cotton leafworm, black cutworm, and other noctuid cutworms
- and including pyralids such as European corn borer, navel orangeworm, and stalk/stem borers and including tortricids like codling moth and grape berry moth as well as pink bollworm and diamondback moth; and dipterans such as leafminers, soil maggots, midges,
- tephritid fruit flies. The specific species, for which control is exemplified below, are: fall armyworm, Spodoptera frugiperda; tobacco budworm, Heliothis virescens; boll weevil, Anthonomus grandis; European corn borer, Ostrinia nubilalis; southern corn rootworm, Diabrotica undecimpunctata howardi; and

aster leafhopper, <u>Macrosteles fascifrons</u>. The pest control afforded by the compounds of the present invention is not limited, however, to these species. Application

Insects are controlled and agricultural crops are protected by applying one or more of the Formula I compounds of this invention, in an effective amount, to the locus of infestation, to the area to be protected, or directly on the pests to be controlled. A preferred method of application is by spraying with spray equipment that distributes the compound on the foliage, in the soil, or to the plant part that is infested or needs to be protected. Alternatively, granular formulations of these compounds can be applied to soil or foliage or, optionally, incorporated into the soil. Either aerial or ground application can be used.

The pyrazoline compound(s) of this invention can be applied directly, but most often application will be of a formulation comprising one or more compounds of this invention, in an agriculturally suitable carrier or diluent. A most preferred method of application involves spraying a water dispersion or refined oil solution of the compounds. Combinations with spray oils and spray oil concentrates often enhance the efficacy of the compounds of Formula I.

The rate of application of the Formula I compounds required for effective control will depend on
such factors as the species of insect to be
controlled, the pest's life stage, its size, its location, the host crop, time of year of application,
ambient moisture, temperature conditions, and the
like. In general, application rates of 0.05 to 2 kg

15

of active ingredient per hectare are sufficient to provide effective control in large scale field operations under normal circumstances, but as little as 0.01 kg/hectare may be sufficient or as much as 8 kg/hectare may be required, depending upon the factors listed above. The addition of a compound such as piperonyl butoxide, can enhance the insecticidal activity of the compounds of Formula I.

The following Examples demonstrate the control efficacy of compounds of Formula I on specific insect pests wherein Compounds 1 through 476 and Compounds 1A through 132A are described in Tables 6 and 7, respectively.

Structures for Biological Tables

20 Table 6

Y-N R B R 5

25

Y-N X N N B

Table 7

110 Table 6

5	Compound	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>Y</u>	X
	1	4-F	4-C1	4-C1	Н	н	0
	2	4-C1	4-0Me	н	Н	н .	0
	3	4-CF ₂	4-C1	4-C1	Н	H	0
10			4-C1		Н	H	0
LU	5	4-C1	4-C1	4-CF ₃	Н	Н	0
			4-CN	_	H	н .	0
	7	4-C1	4-Br	4-C1	H	H	0
	8	4-C1	4-Br	4-CF ₃	H	H	0
15		4-C1	4-0Me		н	H	0
13	10	4-C1		4-C00Et	H	н	0
	11	4-C1	4-C1	4-I	Н	Н	0
	12	4-C1	4-C1	4-F	H	Н	0
	13	4-C1	4-C1	4-0C6H4P-C1	H	Н	0
20	14	4-C1	4-Cl	4-CN	H	H	0
20	15	4-C1	4-C1	3-CF ₃	H	H	0
20	16	4-C1	4-C1	4-CF ₃	Me	H	0
	17	4-C1	3-C1	4-C1	H	H	0
	18	4-C1	3-C1	4-CF ₃	H	H	0
25				4-C1			0
	20	4-C1	2-01	4-CF ₃	H	H :	0
	21	4-0Me	4-C1	4-CF3	H	H	
	22	4-0Me	4-C1	4-C1	н :	H	0
	23	4-C1	4-CN	4-CF ₃	H	Н	0
30		4-C1			H	H	0
	25	4-C1	4-Me	4-F	Н	H	0
	26	4-Cl	4-CF ₃	4-CF ₃	H	H	0
	27	4-Cl	4-CF ₃	4-F	Н	H	0
	28	4-C1	3.4-di-Cl	4-CF ₃	H	H	0
35			3,4-di-C1		H	Н	0
	30	4-C1	4-F	4-CF	H	H	0

111

<u>Table 6</u> (continued)

5	Compound	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>¥</u>	<u>x</u>
	31	4-C1	4-F	4-F	Н	Н	0
	32	4-F	4-C1	4-CF ₃	Н	Н	0
	33	4-F	4-C1	4-F	Н	Н	0
10	34	Н	4-C1	4-CF ₃	Н	Н	0
10	35	н	4-Cl	4-F	Н	Н	0
	36	3-C1	4-C1	4-CF ₃	Н	H	0
	37	3-C1	4-C1	4-F	Н	Н	0
	38	2-C1	4-C1	4-CF ₃	н	Н	0
1 6	39	2-C1	4-C1	4-F	Н	Н	0
15	40	4-F	4-SMe	4-CF ₃	н	Н	0
	41	4-F	4-F	4-CF ₃	H	Н	0
	42		4-F		Н	Н	0
	43	4-F	4-CN	4-CF ₃	Н	Н	0
20	44	4-F	4-CN	4-F	Н	Н	0
20	45	4-F	4-CN	4-C1	Н	Н	0
	46	Н	4-CN	4-CF ₃	Н	Н	0
	47	Н	4-CN	4-F	Н	Н	0
	48	Н	4-CN	4-C1	Н	Н	0
25	49	4-C1	4-CH ₂ CN	4-C1	Н	Н	0
25	50	4-F	н	4-C1	Н	Н	0
	51	4-C1	4-Cl	4-CF ₃	Н	COMe	0
	52	4-Cl	4-C1	4-CF ₃	Н	Мe	0
	54	4-CF ₃	4-C1	4-C1	Me	Н	0
30	55		4-Cl	4-F	Me	Н	0
30	56	4-F	4-C1	4-Cl	Me	Н	0
	57	3-Cl	4-C1	4-C1	Me	Н	0
	58	3-C1	4-C1	3-Cl	Me	Н	0
	59	4-C1	4-Cl	4-CF ₃	Н	COOMe	0
35	60	4-C1	4-Cl	4-CF ₃	Н	Et	0

112

Table 6 (continued)

5	Compound	R ₂	R ₅	<u>R₁</u>	<u>B</u>	<u>¥</u>	Ā
	61	4-C1 -	4-C1	4-CF ₃	Н	CH ₂ COOMe	0
	62	4-C1	4-C1	4-0Me	Н	H .	0
	63	4-C1	4-C1	4-i-Pr	Н	н	٥
10	64	4-C1	4-C1	4- M e	H	H	0
10	65	4-C1	4-C1	4-OCF ₂ CF ₂ H	Н	H	0
	66	4-C1	4-C1		Н	Н	0
	67	4-C1	4-C1	2-F,4-C1	H	H	0
	68	4-C1	4-C1	4-NO ₂	Н	Н	0
15	69	4-C1	4-C1	4-Br	Н	H :	٥
13	70	4-CN	4-Br	2,5-di-F	Н	H -	0
	71	4-CN	4-Br	3,5-di-NO2	H	H	0
	72	4-CN	4-Br	2,3,4-tri-Cl	H	Н	0
	73	4-CN	4-Br	4-Et	H	H	0
20	74	4-CN	4-Br	3-CF ₃ ,4-F	H	H	0
	75	4-CN	4-Br	4-C ₆ H ₅	Н	H	0
	76	4-CN	4-Br	4-cyclohexyl	H	H	0
	77	4-CN	4-Br	4-CF ₃	H	Н	0
	78	4-CN	4-Br	3-CF ₃	H	H	0
25	79	4-CN	4-Br	2-CF ₃	Н	Н	0
	80	4-CN	4-Br	4-CN	Н	H	0
	81	4-CN	4-Br	3-CN	н .	H	0
	82	4-CN	4-Br	2-CN	Н	H	0
30	83	4-CN	4-Br	4-C1	Н	H	0
	84	4-CN	4-Br	3-C1	H	H	0
	85	4-CN	4-Br	2-C1	H	H	0
	86	4-CN	4-Br	4-F	H	H	0
	87	4-CN	4-Br	3-F	H	H	0
35	88	4-CN	4-Br	2-F	н	H	0
	89	4-CF ₃	4-F	4-CF ₃	Н	H.	0
	90	4-CF ₃		-	H	Н	۰0

Table 6 (continued)

5	Compound #	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>¥</u>	X
	91	4-CF ₃ -	4-F	4-CN	Н	H	0
	92	4-CF ₃	4-F	3-CN	Н	Н	0
	93	4-CF ₂	4-F	4-F	Н	н	0
10	94	4-CF ₃			Н	Н	0
10	95	4-C1			Н	Н	0
	96	4-C1	4-CN	4-Br	Н	Н	0
	97	4-C1	4-0Me	3-C1	Н	Н	0
	98	4-C1	4-0Me	3-CF ₃	Н	Н	0
15	99	4-C1	4-0 M e	3-CF ₃ ,4-F	Н	Н	0
	100	4-C1	4-0 M e	4-F	Н	Н	0
	101	4-C1	4-0 M e	4-CN	н	Н	0
	102	4-C1	4-0 M e	3-CN	H	H	0
	103	4-C1	4-OMe	2,5-di-F	Me	Н	0
20	104	4-C1	4-C1	3,5-di-NO ₂	Me	Н	0
	105	4-C1	4-C1	2,3,4-tri-Cl	Мe	H	0
	106	4-C1	4-C1	4-Et	Мe	н	0
	107	4-C1	4-C1	3-CF ₃ ,4-F	Мe	Н	0
	108	4-C1	4-C1	4-cyclohexyl	Me	Н	0
25	109	4-C1	4-C1	3-CN	Me	Н	. 0
	110	4-C1	4-C1	2-CN	Нe	H	0
	111	4-C1	4-C1	4-C1	Me	Н	0
	112	4-C1	4-C1	2-C1	Мe	Н	0
	113	4-i-Pr	4-C1	4-CF ₃	Н	H	0
30	114	4-i-Pr	4-C1	4-C1	Н	Н	0
	115	4-i-Pr	4-C1	4-0Me	Н	Н	0
	116	4-Me	4-C1	4-CF ₃	H	Н	0
	117	4- M e	4-C1	4-C1	Н	Н	0
	118	4-Me	4-C1	4-OMe	Н	Н	0
35	119	4-Me	4-C1	4-i-Pr	Н	Н	0
	120	4-i-Pr	4-C1	4-NO ₂	H	H	0
	121	4-i-Pr	4-C1	4-i-Pr	H	H	,0

114

<u>Table 6</u> (continued)

5	Compound #	R ₂	R ₅	<u>R</u> 1	<u>B</u>	¥	X
	122	4-C1 -	4-C1	4-F	Мe	H ·	0
	123	4-C1	4-C1	3-F	Нe	H	0
	124	4-C1	4-C1	2-F	Me	H.	0
10	125	4-C1	4-C1	2-He,4-Cl	Me	H	O
	126	4-CN	4-F	2,5-di-F	H	H	0
	127	4-CN	4-F	3,5-di-NO ₂	H	H	0
	128	4-CN	4-F	4-Et	H	H	0
	129	4-CN	4-F	3-CF ₃ ,4-F	Н "	H	0
15	130 .	4-CN	4-F	4-0C ₆ H ₅	H	H	0
	131	4-CN	4-F	4-CF ₃	H	H	0
	132	4-CN	Н	4-CF ₃	H	H	0
	133	4-CN	H	4-t-Bu	H	H	0
	134	4-CN	Н	4-C1	H	H	0
20	135	4-CN	Н	4-CN	H	H	0
	136	4-CN	4-F	2,3,4-tri-C1	H	H	0
	137	4-CN	4-F	3-CF ₃	Н	H	0
	138	4-CN	4-F	4-C1	H	H	0
	139	4-CN	4-F	3-C1	H	H	Ö
25	140	4-CN	4-F	2-C1	H	H	0
	141	4-CN	4-F	4-F	H	H	0
	142	4-CN	4-F	3-F	H	H	0
	143	4-CN	4-F	2-F	H	H	0
	144	4-CF ₃	4-0C ₆ H ₅	2,3,4-tri-Cl	H	H	0
30	145	4-CF ₃	4-0C ₆ H ₅	3-CF ₃ ,4-F	H	H	0
	146	4-CF ₃	4-0C ₆ H ₅	4-0C ₆ H ₅		H	0
	147	4-CF ₃	4-0C ₆ H ₅ 4-0C ₆ H ₅	4-CF ₃	, H	H	0
	148	4-CF ₃	4-0C ₆ H ₅	3-CF ₃	H	H	0
	149	4-CF ₃	4-OC H	4-CN	H	H	0
35	150	4-CF ₃	4-0C6H5	3-CN	H	H	0
-	151	4-CF ₃	4-0C ₆ H ₅	4-C1	H	H	0
	152	4-CF ₃	4-0C ₆ H ₅	3-C1	H	H	0

115

Table 6 (continued)

5	Compound #	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>Y</u>	X
	153	4-CF3	4-0C ₆ H ₅	4-F	H	Н	0
	154	4-C1	4-C1	4-COMe	Н	H	0
	155	4-C1	4-C1	4-C ₆ H ₅	Н	н	0
	156	4-C1	4-C1	4-0-s-Bu	Н	H	0
10	157	4-C1	4-C1	3,4-0CH ₂ 0	H	H	0
	158	4-C1	4-C1	3-F,5-F	H	H	0
	159	3-CF ₃	4-C1	2,3,4-tri-Cl	Me	Н	0
	160	3-CF ₃	4-C1	3-CF ₃ ,4-F	Нe	Н	0
٦.	161	3-CF ₃	4-C1	4-0C ₆ H ₅	Мe	Н	0
15.	162	•	4-C1		Me	Н	0
	163	3-CF ₃	4-Cl	3-CF ₃	Me	Н	0
	164	3-CF ₃	4-C1	4-CN	Мe	H	0
	165	3-CF ₃	4-C1	3-CN	Me	H	0
20	166	3-CF ₃	4-C1	4-C1	Me	н	0
20	167	3-CF ₃	4-C1	3-C1	Мe	н	0
	168	3-CF ₃	4-C1	4-F	Me	н	0
	169	4-CF ₃	3-CN	2,3,4-tri-Cl	H	н	0
	170	4-CF ₃	3-CN	3-CF ₃ ,4-F	H	H .	0
25	171	4-CF ₃	3-CN	4-0C ₆ H ₅	H	Н	0
25	172	4-CF ₃	3-CN	4-CF ₃	Н	н	0
	173	4-CF ₃	3-CN	3-CF ₃	Н	Н	0
	174	4-CF ₃	3-CN	4-CN	Н	Н	0
	175	4-CF3	3-CN	3-CN	H	H	0
30	176	4-CF ₃	3-CN	4-C1	Н	H	0
30	177	4-CF ₃	3-CN	3-C1	Н	H	0
	178	4-CF ₃	3-CN	4-F	H	H	0
	179	4-OCF ₂ CF ₂ H	4-C1	4-CF ₃	H	Н	0
	180	4-OCF ₂ CF ₂ H	4-C1	4-C1	Н	Н	0
35	181	4-OCF ₂ CF ₂ H	4-C1	4-OCF ₂ CF ₂ H	H	Н	0
J J	182	4-OCF ₂ CF ₂ H	4-C1	4-i-Pr	н	Н	0

116

<u>Table 6</u> (continued)

5	Compound #	R ₂ -	R ₅	<u>R</u> 1	14.1	<u>В</u>	¥	X
	183	4-OCF ₂ CF ₂ H	Н	4-CF ₃		H	H	0
	184	4-OCF ₂ CF ₂ H	Н	3 4-Br		н .	н	0
	185	2 2 2-Me,4-Cl	4-C1	4-CF ₃		Нe	н	0
	186	2-Me,4-C1	4-C1	3-CF ₃	-	He	н	0
10	187	2-Me,4-C1	4-C1	3 4-CN		Нe	н	0
	188	2-Me,4-C1	4-G1	3-CN		Ме	H	0
	189	2-Me,4-C1	4-C1	4-C1		Нe	н	0
	190	2-He,4-Cl	4-C1	3-C1		Me	н	0
	191	2-Me,4-C1	4-C1	4-F		He	н	0
15	192	2-Me,4-C1	4-C1	3-CF ₃ ,4-F		Мe	н	0
	. 193	2-Me,4-Cl	4-C1	4-CF ₃		H	н	0
	194	2-Me,4-C1	4-C1	3-CF ₃		н	н	0
	195	2-Me,4-Cl	4-C1	3 4-CN		н	н	0
	196	2-Me,4-Cl	4-C1	3-CN		H	н	0
20	197	2-Me,4-Cl	4-C1	4-C1		н	н	0
	198	2-Me,4-C1	4-C1	3-C1		H	н	0
	199	2-Me,4-C1	4-C1	4-F	-	н	н	0
	200	2-Me,4-Cl	4-C1	3-CF ₃ ,4-F	÷	н	H	0
	201	2-Me,4-C1	4-C1	3- 2-Me,4-Cl		H .	н	0
25	202	2-Me,4-Cl	4-C1	3-C1,4-F	-	H	Н	0
	203	4-CF ₃	H	4-CF ₃		H ·	н	0
	204	3 4-CF 3	н	3 4-CN		н	н	0
	205	3 4-CF ₃	н	2-CN	=	н	н	0
2.0	206	4-CF ₃	H	4-C1		н	н	0
30	207	4-CF ₃	н	3-C1		H	H	0
	208	4-CF ₃	н	2-01	-	н	H	0
	209	4-CF ₃	H	4-F		Н	н	0
	210	4-CF ₃	Н	2-F		н	н	0
35	211	3 4-CN	H	4-F	-	н	н	0
35	212	4-F		4-CF ₃		н	н	0
	213	4-F	Н	3-CF ₃	-	н		0

117

<u>Table 6</u> (continued)

5	Compound #	<u>R</u> 2	R ₅	<u>R</u> 1	<u>B</u>	<u>¥</u>	X
	214	4-F	Н	4-CN	Н	H	0
	215	4-F	н	3-CN	Н	H	0
	216	4-F	н	3-C1	Н	Н	0
10	217	4-F	н	4-F	Н	H	0
10	218	4-F	Н	3-F	Н	H	0
	219	4-F	Н	3-CF ₃ ,4-F	Н	н	0
	220	4-F	Н	3-C1 ,4-F	н	H	0
	221	4-CF ₃	4-F	4-CF ₃	Me	H	0
15	222	4-CF ₃	4-F	4-CN	Не	H	0
	223		4-F	4-C1	Не	H	0
	224	4-CF3	4-F	4-F	Me	H	0
	225	4-C1	4-F	4-CF ₃	Н	COMe	0
	226	4-F	4-C1	4-NHCOMe	Н	H	0
20	227	4-F	4-C1	4-0Et	Н	H	0
	228	4-F	4-C1	4-C ₆ H ₅	Н	H	0
	229	4-F	4-C1	4-NO ₂	Н	H	0
	230	4-F	4-C1	3-C1,4-Br	Н	H	0
	231	4-F	4-C1	2-F,4-F	н	H	0
25	232	4-CN	4-0Me	4-0Me	Н	H	0
	233	4-CN	4-0Me	4-t-Bu	H	H	0
	234	4-CN	4-0Me	4-NO ₂	Н	H	0
	235	4-CN	4-0Me	4-CN	Н	H	0
	236	4-CN	4-0 M e	4-C1	Н	H	0
30	237	4-CN		3	Н	Н	0
	238	4-CF ₃	4-C ₆ H ₅	4-CF ₃	Н	H	0
	239	4-CF	4-C ₆ H ₅	4-CN	Н	Н	0
	240	4-CF ₃	4-C ₆ H ₅	4-C1	Н	Н	0
	241	4-CF	4-C6H5	4-F	Н	H	0
35	242	4-CF ₃	4-C,H5	4-t-Bu	H	н	0
	242 243	4-CF ₃	4-C ₆ H ₅	3-F,4-CF ₃	Н	Н	0

118

<u>Table 6</u> (continued)

5	Compound	<u>R</u> 2	R ₅	<u>R</u> 1	<u>B</u>	<u>¥</u>	X
	244	4-C1	2-C1	2-0He	Н	н	0
	245	4-C1	2-C1	3-0Me	H	н	0
	246	4-C1	2-C1	4-0Me	H	- H	0
10	247	4-C1	2-C1	2-C1	н	н	0
	248	4-C1	2-C1	3-C1	н.	н	0
	249	4-CF	4-CONEt ₂	4-CF ₂	Н	н	0
	250	4-CF ₃	4-CONEt2	_	H	н	0
	251		4-CONEt ₂		Н	H	0
15	252	_	4-CONEt ₂			Н	0
	253	4-Br		4-CF	H	H	0
	254	4-CF ₃	4-C1	4-CF ₃	H	H	0
	255	•	4-F	4-CF ₃	H	H	0
	256	4-C00Me	4-F	4-CN	Н	H	0
20	257	4-COOMe	4-F	4-C1	H	H	0
	258	4-C00Me	4-F	4-F	H :	H	0
	259	4-C00Me	4-C1	4-CF ₃	Н	H	0
	260	4-C00Me	4-C1	4-CN	Н	н	0
	261	4-C00He	4-C1	4-C1	н	Н	0
25	262	4-C00Me	4-C1	4-t-Bu	н	Н	0
	263	4-C00Me	2-C1	2-CN	H	Н	0
	264	4-C1	2-C1	3-CN	Н	Н	Ò
	265	4-C1	2-C1	4-CN	н	н	0
	266	4-C1	2-C1	4-CN	н	H.	0
30	267	4-C1	2-C1	4-t-Bu	H	н	0
	268	4-C1	2-C1	2-CH ₂ C ₆ H ₅	Н	н	0
	269	4-C1	2-C1		Н	H	0
	270	4-C1	2-C1	4-CF ₃	Н	н	0
	271	2-C1	4-F	3-0Me	н	н	0
35	272	2-C1	4-F	4-0Me	н	Н	0
	273	2-C1	4-F	4-C1	н	Н	0

119
Table 6 (continued)

5	Compound	R ₂	R ₅	<u>R₁</u>	<u>B</u>	<u>¥</u>	<u>x</u>
	274	2-C1	4-F	3-SO2NH2	Н	Н	0
	275	2-C1	4-F	4-S02NH2	Н	Н	0
	276	2-C1	4-F	3-CN	H	Н	0
10	277	2-C1	4-F	4-CN	H	H	0
	278	2-C1	4-F	4-t-Bu	H	Н	0
	279	3-C1	4-F	2-0Me	H	H	0
	280	3-C1	4-F	3-0 M e	H	Н	0
	281	3-C1	4-F	4-0Me	H	H	0
15	282	3-C1	4-F		H	Н	0
	283	3-C1	4-F	3-C1	Н	H	0
	284	3-C1	4-F		H	H	0
	285	3-C1	4-F	4-SO2NH2	H	Н	0
	286	3-C1	4-F	2-CN	H	н	0
20	287	3-C1	4-F	3- CN	H	H	0
	288	3-C1	4-F	4-CN	Н	H	0
	289	3-C1	4-F	4-t-Bu	Н	н	0
	290	3-C1	4-F	2-CH ₂ C ₆ H ₅	H	H	0
	291	4-t-Bu	4-C ₆ H ₅	2-CH ₂ C ₆ H ₅ 4-CF ₃ 4-C1	H	H	0
25	292	4-t-Bu	4-C ₆ H ₅	4-C1	Н	H	0
	293	4-t-Bu	4-t-Bu	4-Cl	H	H	0
	294	4-t-Bu	4-t-Bu	4-CF ₃	H	н	0
	295		4-t-Bu		H	H	0
	296	4-t-Bu	4-t-Bu	4-CN	H	H	0
30	297	4-t-Bu	4-t-Bu	4-0Me	H	Н	0
	298	4-CN	4-CN	4-C1	H	Н	0
	299	4-CN	4-CN	4-0Me	Н	н	0
	300	4-C1	4-F	3,4,5-tri-Cl	Н	H	0
35	301	4-CN	4-CN	4-CF ₃	н	н	0
-	302	н	Н	4-CF ₃	н	н	0

120

Table 6 (continued)

5	Compound	R	R	R		± .	
	#	<u>R</u> 2	R ₅	<u>R</u> 1	B	<u>x</u>	X
	303	4-C1 -	4-F	4-C1	Н	H	0
	304	4-C1	4-F	4-0CF	Н	H	0
	305	4-C1	4-F	4-SCH ₃	H	H	0
10	306	4-C1	4-F	4-C00Et	H	H	0
	307	3,4-di-Cl	4-F	4-CF ₃	H ·	Н	0
	308	3,4-di-Cl	4-F	4-OCF ₃	H	H	0
	309	3,4-di-Cl	4-F	4-C ₆ H ₅	H	H	0
	310	3,4-di-Cl	4-F	4-SO2NH2	H-	H	0
15	311	3,4-di-Cl	4-F	4-0Et	H	H	0
	312	4-CF ₃	4-COCF ₃	4-CF ₃	H	H	0
	313	4-CF ₃	4-COCF	4-CH	H	H	0
	314	4-CF ₃	4-COCF ₃	4-C1	H	H	0
	315	4-CF ₃	4-COCF ₃	4-F	H	Н	0
20	316	4-CF ₃	4-COCF ₃	4-t-Bu	H	- H	0
	317	4-CF ₃	4-COCF ₃	4-C00Me	Ĥ	H.	0
	318	4-C1	2-C1	4-S02NH2	H	H	0
	319	3-C1	4-F	4-F	H	H	0
	320	3-C1	4-F	4-CF ₃	H	H	0
25	321	4-C1	2-C1	3-SO2NH2	H	H	Ö
	322	2-C1	4-F	3-C1	Н	H	0
	323	2-C1	4-F	2-CN	H	H	0
	324	4-C1	2-C1	2-SO2NH2	H	H	0
	325	2-CN	4-F	3-0Me	H	. H	0
30	326	2-CN	4-F	4-0Me	H	H	0
	327	2-CN	4-F	2-C1	H	н	0
	328	2-CN	4-F	3-C1	H	н	0
	329	2-CN	4-F	4-C1	н	H	0
	330	2-CN	4-F	3-S02NH2	н	н	0
35	331	2-CN		4-SO2NH2	н	н	0
	332	2-CN	4-F	2-CN	н	Н	0

121

<u>Table 6</u> (continued)

5	Compound	R ₂	<u>R₅</u>	<u>R</u> 1	<u>B</u>	<u>¥</u>	X
	333	2-CN -	4-F	3-CN	Н	Н	0
	334	2-CN	4-F	4-CN	Н	н.	0
	335	2-CN	4-F	4-t-Bu	Н	Н	0
10	336	2-CN	4-F	4-CF ₃	н	Н	0
10	337	4-C1	3-C1	2-0Me	H	Н	0
	338	4-C1	3-C1	3-0Me	н	н	0
	339	4-C1	3-C1	4-0Me	H	Н	0
	340	4-C1	3-C1	2-C1	н	н	0
15	341	4-C1	3-C1	3-C1	Н	Н	0
+-	342	4-C1	3-C1	2-SO2NH2	Н	Н	0
		4-C1			H		0
		4-C1	3-C1	2-CN	H	Н	0
	345	4-C1	3-C1	3-CN	H	Н	0
20	346	4-C1	3-Cl	4-t-Bu	H	Н	0
20	347	4-C1	3-C1	2-CH ₂ C ₆ H ₅	H	Н	0
		4-C1			H		0
	349	4-C1	3-C1	4-C00-n-Pr	Н	Н	0
	350	4-C1	3-C1	3,5-C1	H	Н	Ò
25	351	4-C1	4-F	4-CF ₃	H	COOMe	0
	352	4-C1	4-F	4-CF ₃	Н	Ме	0
	353	4-C1	4-F	4-C00-n-Pr	H	Н	0
	354	4-C1	4-F	4-CF ₃	Н	Н	S
	355	4-CF ₃	4-C00H	4-CF ₃	Н	Н	0
30	356	4-CF ₃	4-C00H	4-CN	H	Н	0
	357	4-CF ₃	4-C00H	4-C1	Н	Н	0
	358	4-CF ₃	4-C00H	4-F	H	Н	0
	359	4-CF ₃	4-COOH	4-t-Bu	Н	Н	0
	360	4-CF ₃	4-CF ₃	4-CF ₃	H	Н	0
35	361	4-CF ₃	4-CF ₃	4-C1	H	Н	0
	362	4-CF ₃	C2H3	4-CF ₃	Н	Н	.0

Table 6 (continued)

5	Compound	R ₂	R ₅	R ₁	B	<u>¥</u>	X
	363	4-NO ₂ -	4-F	4-CF ₃	Н	H	0
	364	_	4-F	4-CF ₃	н	Н	0
	365		4-F	4-CF ₃	H	н	0
10	366	4-C1	3-C1	3-SO2NH2	H	H	0
10	367	2-0Me	4-F	4-CN	H	Н	0
	368	2-0Me	4-F	2-CH ₂ C ₆ H ₅	H	н	0
	369	2-0Me	4-F	4-CF ₃	H	H	0
	370	2-0Me	4-F	2-0Me	Н	Н .	0
15	371	2-0He	4-F	4-0Me	H	H	0
	. 372	2-0Me	4-F	2-C1	H	Н	0
	373	2-0Me	4-F	4-C1	H	. н	0
	374	2-0Me	4-F	4-SO2NH2	Н	Н	0
	375	2-0Me	4-F	2-CN	H	H	0
20	376	2-0Me	4-F	3-0Me	H	H	0
	377	2-0Me	4-F	3-C1	H	н	0
	378	4-C1	2-0Me	3-0Me	Н	H	0
	379	2-0Me	4-F	4-t-Bu	H	H	0
•	380	2-0Me	4-F	3-CH	. H	Н	0
25	381	4-C1	2-0Me	4-0Me	Н	H ·	O
	382	4-C1	2-0Me	2-C1	H	H	0
	383	4-C1	2-0He	3-C1	Н	Н	0
	384	4-C1	2-0Me	4-C1	H	H	0
	385	4-C1	2-0Me	2-CO2NH2	H	H	0
30	386	4-C1	2-0Me	2-SO2NH2	H	H	0
	387	4-C1	2-0Me	2-0Me	H	H	0
	388	4-C1	2-0Me	2-CN	H	Н	0
	389	4-C1	2-0 M e	3-CN	H	H	0
	390	4-C1	2-0Me	4-CN	H	Н	0
35	391	4-C1	2-0Me	203	H	Н	0
	392	4-C1	2-0Me	4-CF ₃	H	н	0
	393	4-C1	2-0 M e	3-502NH2	H	Н .	0,

Table 6 (continued)

5	Compound	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>x</u>	<u>x</u>
	394	4-C1 -	2-0Me	4-t-Bu	H	Н	0
	395	3-C1	4-F	2-SO2NH2	Н	Н	0
	396	3-C1	4-F	3-SO2NH2	Н	Н	0
10	397	2-0Me	4-F		Н	Н	0
10	398	2-0Me	4-F	3-SO2NH2	Н	Н	0
	399	2-CH ₂ C ₆ H ₅	4-F	4-0Me	Н	Н	0
	400	4-F	3,4-F	4-CF ₃	Н	H	0
	401	4-F	3,4-F	4-0CF ₃	Н	Н	0
15	402	4-F	3,4-F	4-C1	H	H	0
1.7	403	4-F	3,4-F	4-Br	H	H	0
	404	4-CN	4-CN	4-CN	Н	H	0
	405	4-CN	4-CN	4-t-Bu	H	Н	0
	406	4-Cl	4-0Me	4-0 M e	Н	H	0
20	407	4-C1	4-0Me	4-NO ₂	H	Н	0
20	408	4-C1	4-0Me	4-CF ₃	Н	H	0
	409	4-C1	4-0Me	4-t-Bu	Н	H	0
	410	4-0CF ₃	4-F	4-CF ₃	H	Н	0
	411	4-0CF ₃	4-F	4-0CF ₃	Н	Н	0
25	412	4-0CF ₃	4-F	4-C1	Н	Н	Ó
2 3	413	4-0CF ₃	4-F	4-Br	H	н	0
	414	4-C1	3,4-F	4-CF ₃	Н	H	0
	415	4-C1	3,4-F	4-OCF ₃	Н	Н	0
	416	4-C1	3,4-F	4-OCF CF H	Н	Н	0
30	417	4-C1	3,4-F	4-C1	Н	Н	0
30	418	4-C1	4-Cl	3,4,5-tri-Cl	Н	Н	0
	419	4-C1	4-C1	4-OCF ₃	Н	Н	0
	420	4-CF ₃	4-F	4-CF ₃	Н	H	0
	421	2-CH ₂ C ₄ H ₅	4-F	4-CN	Н	Н	0
35	422	2-CH ₂ C ₆ H ₅	4-F	4-t-Bu	Н	H	0
	423	2-CH ₂ C ₆ H ₅	4-F	4-CF ₃	Н	Н	0

Table 6 (continued)

5	Compound	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>¥</u>	<u>x</u>
	424	3,4-di-F	4-F	4-CF ₃	н	H	0
	425	3,4-di-F		4-OCF ₃	H	Н	0
	426	3,4-di-F		4-SHe	H	Н	0
10	427	3,4-di-F		4-Br	H	Н	0
10	428	3,4-di-F	4-F	4-SO ₂ NH	H	н	0
_	429	3,4-đi-F		4-C ₆ H ₅	H	Н	0
	430	3,4-di-F		4-C1	H	Н	0
	431	3,4-di-F	4-F	4-OEt	Н	Н	0
15	432	4-F .	H	4-CF ₃	H	Ac	0
	433	4-NO ₂	4-C1	4-F	H	Н	٥
	434	_	4-C1	4-CF ₃	Me	,H	0
	435	4-C1	4-t-Bu	4-C1	н	H	0
	436	4-C1	4-t-Bu	4-0Me	H	H	0
20	437	4-C1	4-t-Bu	4-CN	H	- " H "	0
	438	4-C1	4-t-Bu	4-CF ₃	H	Н	0
	439	4-C1	4-t-Bu	•	H	Н	0
	440	4-C1	4-t-Bu	4-NO ₂	H	Н	0
	441	4-C1	4-C ₆ H ₅	4-C1	H	н	0
25	442	4-Cl	4-C ₆ H ₅		H	H	0
	443	4-C1	4-C ₆ H ₅		H	Н	0
	444	4-C1	4-C ₆ H ₅		H	Н	0
	445	4-C1	4-C ₆ H ₅		H	Н	0
	446	4-C1	4-C ₆ H ₅		H	H	0
30	447	4-CF ₃	4-Br	4-CF ₃	H	Н	0
	448	4-CF ₃	4-Br	4-CN	H	Н	0
	449	4-CF ₃	4-Br	4-C1	H	H .	0
	450	4-CF	4-Br	4-F	H	н	0
	451	4-CF ₃	4-Br		H	Н	0
35	452		4-C00Me	4-CF3	H	H	0
	453	4-F	4-C00Me	4-CN	Н	Н	0

Table 6 (continued)

5	Compound #	R ₂	R ₅	<u>R</u> 1	<u>B</u>	<u>¥</u>	<u>x</u>
	454	4-F -	4-C00Me	4-C1	н	H	0
	455	4-F	4-C00Me	4-F	H	Н	0
	456	4-F	4-C00Me	4-t-Bu	H	H	0
10	457	4-F	4-C00Me	3-CF ₃ ,4-F	H	Н	0
10	458	4-C1	4-F	4-CF ₃	Мe	H	0
	459	4-CF ₃	4-C00Me	4-CF ₃	Н	Н	0
	460	4-CF ₃	4-C00Me	4-CN	Н	Н	0
		4-CF ₃		4-Cl	H	Н	0
15	462	4-CF ₃	4-C00Me	4-F	Н	H	0
		4-CF ₃		4-C00Me	Н	Н	0
		4-NO ₂		4-CF ₃	Н	Н	0
	465	4-C1	4-F	4-CF3	H	COEt	0
	466	4-CF ₃	4-Br	4-NH ₂	H	Н	0
20	467	4-C1	4-C00Me	4-CF ₃	H	Н	0
	468	4-CF	4-CONHC ₆ H ₄ (p-CF ₃)	4-CF ₃	H	H	0
	469	4-C1	4-C00Me	4-C1	H	н	0
	470	4-C1	4-CONHC ₆ H ₄ (p-C1)	4-Cl	Н	н	Ó
	471	4-C1		4-F	H	Н	0
25	472	4-NH ₂	4-C1	4-CF	H	Н	Ó
	473	4-Br	4-F	4-CF	H	Н	0
	474	4-Br	4-F	4-Cl	H	Н	0
	475	4-Br	4-F	4-F	Н	Н	0

126 <u>Table 7</u>

5	Compound	R ₂	<u>R</u> 1	<u>B</u>	<u>A</u>	X	¥
	1A	4-F	4-C1	H .	COOMe	0	Н
	2A	4-F	4-C1	Ме	COOEt	0	H
	3A	4-C1	Н	н	COOMe	0	H
	4A	4-CF ₃	4-C1	н	C00Me	-O	H
10	5A	4-CF ₃	4-C1	CH2COOMe	COOMe	0	H
	6A .	4-C1	4-CF ₃	н	COOMe	0	H
	7A	4-C1	4-CF ₃	Me	COOMe	O _.	H
	8A	4-F	4-C1	Me	COOC ₆ H ₅	0	H
	9A	4-C1	4-C1	Me	COOMe	0	Н
15	10A	4-C1	4-C1	Me .	CN	0	H
	11A	4-Cl	4-C1	Me	СНО	0	H
	12A	4-Cl	4-C1	Н	COEŁ	.0	H
	13A	4-F	4-CF ₃	Ме	COOMe	0	Н
	14A	4-F	4-CF ₃	Me	СНО	0	Н
20	15A	4-F	4-CF _q	CH COOMe	COOMe	0	H
	16A	4-Cl	4-Br	н	COOMe	0	H
	17A	4-C1	4-CN	Н	COOMe	0	H
	18A	4-C1	4-C1	Н	COOMe	0	H
	19A	4-C1	2-F,4-Cl	Н	COOMe	0	H
25	20A	4-CN	4-C1	H	COOMe	0	H
	21A	4-CN	4-CN	H	COOMe	0	H
	22A	4-CN	4-C1	Me :	COOMe	0	H
	23A	4-CN	4-CN	Me	COOMe	• o .	H
	24A	4-CN	2-F,4-Cl	Me	COOMe	0	Н
30	25A	4-F	4-CF ₃	Me	CHO:	0	H
	26A	4-C1	4-CN	Me	CONHMe	0	Н
	27A	4-C1	4-C1	H	CONHMe	0	H
	28A	4-CN	4-F	Не	CN	0	H
	29A	4-C1	2-F,4-C1	H	CONHnBu	0	Н
35	30A	2-F,4-C1	4-CN	Мe	COOMe	0	H

Table 7 (continued)

5	Compound	R ₂	<u>R</u> 1	<u>B</u>	<u>A</u>	X	<u>Y</u>
	31A	4-F	4-CN	Me	сно	0	H
	32A	4-F	4-F	Me	СНО	0	Н
	33A	4-F	2,4-di-Cl	Нe	СНО	0	Н
	34A	4-C1	4-CF ₃	Н	н	0	H
10	35A	4-CN	4-CF ₃	Me	COOMe	0	Н
	36A	4-F	4-CF ₃	i-Pr	СНО	0	H
	37A	4-F	4-CN	i-Pr	СНО	0	Н
	38A	4-F	4-F	i-Pr	сно	0	Н
	39A	4-F	2-F,4-Cl	i-Pr	СНО	0	Н
15	40A	4-CF ₃	4-CF ₃	i-Pr	СНО	0	Н
	41A	4-CF ₃	4-CN	i-Pr	СНО	0	Н
	42A	4-CN	4-CF ₃	i-Pr	сно	0	Н
	43A	4-C1	4-CF ₃	i-Pr	сно	0	Н
	44A	4-C1	4-CN	i-Pr	сно	0	Н
20	45A	4-CF ₃	4-CF ₃	Me	COOMe	0	Н
	46A	4-CF ₃	4-CF ₃	Me	COOMe	0	Н
	47A	4-CN	4-CF ₃	Мe	COOMe	0	Н
	48A	4-F	4-CF ₃	Me	COOMe	0	Н
	49A	4-CF ₃	4-Br	Me	COOMe	0 .	Н
25	50A	4-CN	4-Br	Me	COOMe	0	H
	51A	4-C1	4-Br	Мe	COOMe	0	Н
	52A	4-C1	4-Br	Me	CONHC H Br	0	Н
	53A	4-F	4-Br	Me	COOMe	0	H
	54A	4-C1	4-CF ₃	Me	COOMe	0	Me
30	55A	4-C1	2,4-di-Cl	i-Pr	СНО	0	Н
	56A	4-CF ₃	4-CF ₃	Мe	CONHC6H4CF3	0	Н
	57A	4-CN	4-CN	i-Pr	CHO	0	Н
	58A	4-CN	4-F	i-Pr	сно	0	Н
	59A	4-F	4-CF ₃	n-Bu	COOMe	0	Me
35	60A	4-C1	4-CF ₃	n-Bu	COOMe	0	Me

Table 7 (continued)

5	Compound	R ₂	<u>R</u> 1	<u>B</u>	<u>A</u>	<u>X</u>	<u>¥</u>
	61A	4-CF ₃	4-CF ₃	n-Bu	COOMe	0	Мe
	62A	4-F	4-I	Ме	COOMe	0	H
	63A	2,4-di-Cl	4-0CF3	Me	COOMe	0	H
	64A	2,4-di-Cl	4-0CF ₃	Me	COOMe	0	H
10	65A	2,4-di-Cl	4-CF ₃	CH2C6H5	COOMe	0	Н
	66A	2,4-di-Cl	4-F	CH2C6H5	COOMe	0	H
	67A	2,4-di-Cl	4-CF _a	Me .	COOMe	0	Н
	68A	2,4-di-Cl	4-Br	CH2C6H5	COOn-Bu	0	Н
	69A	2,4-di-Cl	4-CF ₃	Me	COOn-Bu	0	Н
15	70A	2-F,4-Cl	4-CF ₃	Me	COOn-Bu	- 0	H
	71A	2-F,4-Cl	4-CF ₃	Me	COOnMe	0	Н
	72A	2-F,4-Cl	4-0CF ₃	He	COOn-Bu	0	Н
	73A	2-F,4-Cl	4-CF ₃	Мe	COOn-Bu	0	Н
	74A	4-F	4-CF ₃	Нe	n-Pr	0	H
20	75A	4-F	4-CF ₃	He	COOn-Bu	0	Н
	76A	4-F	4-0CF ₃	Ме	COOn-Bu	0	H
	77A	4-F	4-C00Me	Нe	COOn-Bu	0	H
	78A	4-F	4-Br	Нe	COOn-Bu	0	H
	79A	4-F	4-CF ₃	Me	COOn-Bu	0-	H
25	80A	4-F	4-CN	Ме	COOn-Bu	0	Ħ
	81A	4-F	4-0CF ₃	n-Bu	COOMe	0	H
	82A	4-F	4-Br	n-Bu	COOMe	0	Н
	83A	4-0CF ₃	4-Br	Ме	COOMe	0	H
	84A	4-F	4-I	n-Bu	COOMe	0	H
30	85A	4-F	4-CN	n-Bu	COOMe	0	H
	86A	4-0CF ₃	4-C1	Me	COOMe	0	H
	87A	4-F	4-SMe	n-Bu	COOMe	0	H
	88A	4-F	4-CF ₃	n-Bu	COOMe	0	H
	89A	4-F	4-Br	Нe	COOMe	0	H
3.5	90A	4-C1	4-Br	Ме	COOMe	0	H

Table 7 (continued)

5	Compound	R ₂	<u>R</u> 1	<u>B</u>	<u>A</u> .	x	<u>Y</u>
	91A	4-0CF	4-CF ₃	Me	COMe	0	Н
	92A	4-0CF ₃	4-Br	Ме	C00Me	0	Н
	93A	4-0CF ₃	4-CN	Me	COOMe	0	Н
	94A	4-Cl	4-Br	СН ₂ С ₆ Н ₅	COOMe	0	Н
10	95A	4-C1	4-F	CH ₂ C ₆ H ₅	COOMe	0	Н
	96A	4-C1	4-0CF ₃	CH ₂ C ₆ H ₅	COOMe	0	H
	97A	4-Br	4-Br	Me	COOMe	0	Н
	98A	4-Br	4-CF ₃	Me	COOMe	0	Н.
	99A	4-Br	4-CN	Me	COOMe	0	Н
3 5	100A	4-Br	4-CF ₃	Me	COOMe	0	Н
15	101A	4-Br	4-Br	Me	COOMe	. 0	Н
	102A	4-Br	4-OCF ₃	Me	COOMe	0	Н
	103A	4-Br	4-C1	Me	COOMe	0	H
	104A	4-C1	4-CF ₃	Me	COOt-Bu	0	Me
	105A	4-0CF ₃	4-CF ₃	Me	COOMe	0	n-Pr
20	106A	4-CF ₃	4-CF ₃	Ме	COOMe	0	n-Pr
	107A	4-Br	4-CF ₃	Me	CONHC6H4(p-CF3)	0	Н
	108A	4-Br	4-Br	Me	CONHC H (p-Br)	0	H
	109A	4-Br	4-OCF ₃	Нe	CONC ₆ H ₄ (p-OCF ₃)	0	H
	110A	4-C1	4-CN	allyl	COOMe	0	H
25	111A	4-Cl	4-SMe	allyl	COOMe	0	H
	112A	4-C1	4-CF ₃	allyl	COOMe	0	Н
	113A	4-C1	4-CF ₃	allyl	COOMe	0	Me
	114A	4-C1	4-CF ₃	allyl	COOMe	0	n-Pr
	115A	4-C1	4-Br	allyl	COOMe	0	Me
30	116A	4-F	4-CF ₃	Ме	COOMe	S	Н
	117A	4-Cl	4-CF ₃	Me	COOMe	S	Н
	118A	4-C1	4-CF ₃	Me	COOMe	S	Me
	119A	4-F	4-0CF ₃	n-Bu	COOMe	S	Н
	120A	4-F	4-CF ₃	Me	COOMe	0	n-Pr
35	121A	4-C1	4-CF ₃	Me	COOMe	0	n-Pr

130

<u>Table 7</u> (continued)

5	Compound #	R ₂	<u>R</u> 1	<u>B</u>	<u>A</u>	<u>x</u>	<u>¥</u>
	122A	4-C1	4-Br	allyl	COOEt	0	Н
	123A	4-C1	4-0CF ₃	Me	COOMe	0	Нe
10	124A	4-C1	4-I	Me	COOMe	0	H
	125A	4-0CF ₃	4-0CF ₃	Me	COOt-Bu	0	H
	126A	4-0CF ₃	4-CF ₃	Me	COOt-Bu	0	Me
	127A	4-Br	4-CF3	Мe	COOt-Bu	0	Me.
	128A	4-Br	4-Br	Нe	COOt-Bu	0	Н
	129A	4-Br	4-0CF ₃	Мe	COOt-Bu	0	Н
15	130A	4-0CF ₃	4-Br	Me	coot-Bu	0	H
+3	131A	4-Br	4-CF ₃	Me	coot-Bu	0	Н
	132A	4-Br	4-OCF	Me	COOt-Bu	. 0	H

25

Example 32

Fall Armyworm

Test units, each consisting of an 8-ounce plas-5 tic cup containing a layer of wheat germ diet, approximately 0.5 cm thick, were prepared. Ten third-instar larvae of fall armyworm (Spodoptera frugiperda) were placed into each cup. Solutions of each of the test compounds (acetone/distilled water 75/25 solvent) were 10 sprayed onto the cups, a single solution per set of three cups. Spraying was accomplished by passing the cups, on a conveyer belt, directly beneath a flat fan hydraulic nozzle which discharged the spray at a rate of 0.5 pounds of active ingredient per acre (about 0.55 kg/ha) at 30 p.s.i. The cups were then covered and held at 27°C and 50% relative humidity for 72 hours, after which time mortality readings were taken.

Of the compounds tested on fall armyworm, the following resulted in greater than or equal to 80% mortality:

1, 3, 4, 5, 6, 10, 11, 12, 14, 16, 17, 18,

20, 23, 26, 27, 29, 30, 31, 32, 33, 34, 36, 40, 41,

42, 44, 45, 46, 47, 48, 50, 51, 54, 59, 65, 67, 68,

69, 71, 74, 77, 86, 89, 90, 95, 96, 113, 116, 119,

132, 134, 135, 137, 138, 141, 162, 164, 166, 170, 172,

174, 176, 180, 184, 193, 195, 197, 200, 202, 203, 206,

221, 222, 223, 224, 225, 229, 231, 249, 253, 254, 255,

270, 303, 304, 305, 306, 307, 351, 352, 354, 357, 363,

364, 410, 411, 412, 414, 415, 417, 427, 430 from Table 6 and 7A, 9A, 13A, 46A, 50A, 51A 53A 61A, 62A, 83A, 100A, 102A, 103A from Table 7.

Example 33

Tobacco Budworm

The test procedure of Example 32 was repeated for efficacy against third-instar larvae of the

WO 88/05046 PCT/US88/00001

tobacco budworm (<u>Heliothis virescens</u>) except that mortality was assessed at 48 hours. Of the compounds tested on tobacco budworm, the following resulted in greater than or equal to 80% mortality:

1, 4, 5, 6, 11, 15, 23, 26, 27, 29, 30, 32, 41, 43, 45, 51, 54, 59, 65, 68, 69, 77, 96, 138, 172, 221, 222, 223, 225, 229, 249, 253, 303, 304, 305, 351, 352, 356, 358, 410, 411, 412, 414, 415, 417, 427, 430, from Table 6 and 7A, 40A, 46A, 54A, 62A, 83A, 100A, 102A, 103A from Table 7.

Example 34

European Corn Borer

15 Test units, each consisting of an 8-ounce plastic cup containing a one-inch square of wheat germ/soyflour diet were prepared. Five third-instar larvae of the European corn borer (Ostrinia nubilalis) were placed into each cup. Sets of three test units were sprayed as described in Example 32 with individual solutions of the test compounds. The cups were then covered and held at 27°C and 50% relative humidity for 48 hours, after which time mortality readings were taken. Of the compounds tested on European corn borer, the following resulted in greater than or equal to 80% mortality:

1, 5, 6, 18, 23, 30, 32, 33, 34, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 59, 65, 68, 74, 86, 89, 95, 96, 116, 132, 134, 135, 138, 141, 164, 172, 176, 178, 197, 203, 211, 222, 224, 225, 227, 229, 231, 237, 249, 251, 254, 303, 304, 305, 351, 352, 354, 364, 410, 411, 412, 414, 415, 417, 427, 430, from Table 6 and 1A, 2A, 7A, 13A, 18A, 40A, 43A, 46A, 51A, 53A, 54A, 74A, 100A, 102A, 103A from Table 7.

ŗ

Example 35

Southern Corn Rootworm

Test units, each consisting of an 8-ounce plastic cup containing 1 sprouted corn seed, were prepared. Sets of three test units were sprayed as described in Example 32 with individual solutions of the test compounds. After the spray on the cups had dried, five third-instar larvae of the southern corn rootworm (Diabrotica undecimpunctata howardi) were placed into each cup. A moistened dental wick was inserted into each cup to prevent drying and the cups were then covered. The cups were then held at 27°C and 50% relative humidity for 48 hours, after which time mortality readings were taken.

Of the compounds tested on southern corn rootworm, the following resulted in greater than or equal to 80% mortality:

5, 6, 11, 12, 16, 17, 18, 23, 26, 29, 30, 31, 32, 34, 41, 43, 44, 45, 46, 48, 51, 74, 77, 86, 89, 90, 96, 132, 138, 141, 172, 221, 225, 303, 304, 351, 352, 354, 364, 410, 412, 414, 415, 417, 427, 430 from Table 6 and 7A, 9A, 13A, 17A, 34A, 46A, 50A, 51A, 53A, 54A, 62A, 74A, 83A, 100A, 102A, 103A, from Table 7.

Example 36

Boll Weevil

Five adult boll weevils (Anthonomus grandis)
were placed into each of a series of 9-ounce cups.

The test procedure employed was then otherwise the same as in Example 32 with three cups per treatment.

Mortality readings were taken 48 hours after treatment.

Of the compounds tested on boll weevil, the following resulted in greater than or equal to 80%
mortality:

35 5, 6, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 45, 46, 51, 54, 59, 63,

66. 67, 68, 77, 89, 90, 95, 96, 116, 117, 132, 134, 137, 138, 139, 141, 162, 166, 172, 174, 176, 179, 181, 183, 203, 206, 217, 221, 222, 225, 227, 229, 249, 253, 270, 302, 303, 304, 305, 307, 351, 352, 410, 412, 414, 415, 417, 430 from Table 6 and 2A, 6A, 7A, 9A, 13A, 34A, 46A, 50A, 51A, 54A, 62A, 71A, 100A, 102A, 103A, from Table 7.

10

Example 37

Aster Leafhopper

Test units were prepared from a series of 12-ounce cups, each containing oat (Avena sativa) seedlings in a 1-inch layer of sterilized soil. Sets of three test units were sprayed as described in Example 32 with individual solutions of the test compounds. After the oats had dried from the spraying, between 10 and 15 adult aster leafhoppers (Mascrosteles fascifrons) were aspirated into each of the covered cups. The cups were held at 27°C and 50% relative humidity for 48 hours, after which time mortality readings were taken.

Of the compounds tested on aster leafhopper, the following resulted in greater than or equal to 80% mortality:

5, 6, 23, 32, 34, 41, 43, 45, 50, 69, 96, 221, 303, 304, 351, 352, 410, 415, 417, from Table 6 and 7A, 13A, 46A, 51A, 53A, 54A, 62A, 74A, 100A, 102A, 103A from Table 7.

30

25

Example 38

Combinations with Spray Oils

Both short-term and residual insecticidal activity of the tested compound (Compound 30) against fall armyworm, Spodoptera frugiperda, was improved when the emulsifiable concentrate formulation of the compound was combined with spray oils or spray oil concentrates.

The test compound was diluted in 5 ml of acetone and then mixed with distilled water to 100 and 50 ppm. Spray oil or spray oil concentrate was added to the solutions in the ratio 10:1 oil:active ingredient. The spray oil was a paraffinic petroleum-based oil having a median distillation temperature at atmospheric pressure of 377°C. The spray oil concentrate consisted of 83% isoparaffinic oil and 17% of a mixture of sorbitol ester and epoxylated sorbitol ester. Test units consisted of 3 week-old soybean plants growing in 4 inch pots. Three

epoxylated sorbitol ester. Test units consisted of 3 week-old soybean plants growing in 4 inch pots. Three plants were sprayed to runoff on a turntable sprayer at 10 rpm with an atomizing nozzle for each treatment.

in half and each piece was placed in one well of a 6-cell tissue culture plate. One third instar larva was placed in each cell. The entire unit was then capped with a piece of moistened blotter paper. Four such units were set up for each treatment. Test units were held at 27°C and 50% relative humidity.

Mortality was assessed at 72 hours. Treated plants were held at 27°C and 50% relative humidity and the

test was repeated at 7 and 14 days to determine residual activity.

£

Ļ

15

Ĺ

The results are recorded in Table 8.

Table 8

Compound 30 With and Without Spray Oil
or Spray Oil Concentrate

			<u> </u>	MORTALI	TY
10	TREATMENT	RATE (PPM)	DAY 0	DAY 7	DAY 14
	Compound 30 + Spray Oil Concentrate	100 50	100 100	100 96	100 96
15	Compound 30 + Spray Oil	100 50	100	100 100	100 100
	Compound 30 (without oil)	100	100	83 83	50 46

20

Example 39

Improved Activity with Synergists

Test units were prepared as described in Example 32 using 5 fall armyworm larvae, Spodoptera frugiperda. Prior to treatment with the test compound (Compound 30), the units were oversprayed with the piperonyl butoxide (PBO) at a rate 5X the concentration to be used for the test compound, using the technique described in Example 32. After 2.5 hours, the units were oversprayed with the test compound at 10, 5, 2.5, 1.0, 0.5 and 0.1 ppm. The test units were covered and held for 72 hours at 27°C and 50% relative humidity after which time mortality was assessed. The results are recorded in Table 9.

137 **Table 9**

Effect of Adding Piperonyl Butoxide

5

Ą

		% MORTALITY				
	RATE (PPM)	WITHOUT PBO	WITH PBO 5:1			
	10	100	100			
10	5	100	100			
	2.5	96	100			
	1.0	96	9 6			
	0.5	44	80			
15	0.1	20	80			

20

25

30

35

身

WHAT IS CLAIMED:

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A compound having the following formula, and agriculturally suitable salts thereof:

wherein:

X is O or S;

Y is H, C, to C, alkyl, C, to C, alkoxyalkyl, C_1 to C_A alkylthio, C_1 to C_A 20 haloalkylthio, phenylthio, or phenylthio substituted with 1 to 3 substituents independently selected from W, C, to C, alkoxycarbonyl, C(O)H, C₂ to C₄ alkylcarbonyl or C2 to C4 haloalkylcarbonyl; 25 A is H. C, to C alkyl, phenyl, phenyl substituted by $(R_5)_p$, CN, CO_2R_3 , $C(O)R_3$, $C(O)NR_3R_4$. $C(S)NR_3R_4$. $C(S)R_3$ or $C(S)SR_3$; B is H, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C2 to C6 alkoxyalkyl, C2 to C6 cyanoalkyl, 30 C3 to C8 alkoxycarbonylalkyl, C2 to C6 alkenyl, C2 to C6 alkynyl, C2 to C6 alkoxycarbonyl, phenyl, phenyl substituted with 1 to 3 substituents independently selected from W. benzyl or benzyl substituted with 1 to 3 sub-35 stituents independently selected from W; W is halogen, CN, NO_2 , C_1 to C_2 alkyl, C_1 to C_2

haloalkyl, C, to C, alkoxy, C, to C, halo-

```
alkoxy, C_1 to C_2 alkylthio, C_1 to C_2 halo-
                alkylthio, C_1 to C_2 alkylsulfonyl or C_1 to C_2
                haloalkylsulfonyl;
 5
            R_1, R_2 and R_5 are independently R_3, halogen, CN,
                \tilde{N}_{3}, SCN, NO<sub>2</sub>, OR<sub>3</sub>, SR<sub>3</sub>, S(O)R<sub>3</sub>, S(O)<sub>2</sub>R<sub>3</sub>,
                OC(O)R_3, OS(O)_2R_3, CO_2R_3,
                C(0)R_3, C(0)NR_3R_4, S(0)_2NR_3R_4, NR_3R_4,
                NR_{A}C(0)R_{3}, OC(0)NHR_{3}, NR_{4}C(0)NHR_{3},
10
                NR_4S(0)_2R_3, or when m, n or p is 2, R_1,
                R_2 or R_5 can be taken together as -OCH_2O-,
                -OCF<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -CH<sub>2</sub>C(CH<sub>3</sub>)<sub>2</sub>O-,
                -\text{OCF}_2\text{CF}_2\text{O-}, or -\text{CF}_2\text{CF}_2\text{O-} to form a cyclic
                bridge; provided R<sub>1</sub> is other than H;
15
            R_3 is H, C_1 to C_4 alkyl, C_1 to C_4 haloalkyl,
                C_2 to C_4 alkenyl, C_2 to C_4 haloalkenyl, C_2 to
                C_4 alkynyl, C_2 to C_4 haloalkynyl, C_2 to C_4
                alkoxyalkyl, C_2 to C_4 alkylthioalkyl, C_1 to
                C_4 nitroalkyl, C_2 to C_4 cyanoalkyl, C_3 to C_6
20
                alkoxycarbonylalkyl, C3 to C6 cycloalkyl, C3
                to C halocycloalkyl, phenyl, benzyl, or
                phenyl or benzyl substituted with 1 to 3
                substituents independently selected from W;
            R_4 is H or C_1 to C_4 alkyl, or when R_3 and R_4 are
25
                attached to a single nitrogen atom, they can be
                taken together as (CH_2)_4, (CH_2)_5 or
                (CH_CH_OCH_CH_);
            m is 1 to 3;
            n is 0 to 3; and
30
            p is 0 to 3.
              2. A compound according to Claim 1 wherein
                 X is 0;
                 Y is H, CH_3, SCH_3, SCCl_3, SC_6H_5, 2-(NO_2)C_6H_4S,
35
                     C(0)CH_3, C(0)H, C(0)CF_3, CO_2CH_3 or CO_2C_2H_5;
                 R<sub>3</sub> is C<sub>1</sub> to C<sub>4</sub> alkyl, C<sub>1</sub> to C<sub>2</sub> haloalkyl,
                   C2 to C4 alkenyl, C2 to C4 haloalkenyl,
```

```
propargyl, phenyl, benzyl, or phenyl or benzyl
                   substituted with one of F, Cl, Br, CF, OCF, H,
                   OCF, or NO;
 5
               n is 0 to 2;
               p is 0 to 2; and
               m is 1 to 2.
            3. A compound according to Claim 2 wherein
               R, is halogen, CN, SCN, NO, R, OR, SR,
10
                   S(O)_2R_3, CO_2R_3 or C(O)R_3, or when m is 2,
                   R, can be taken together as -OCF, O-.
                   -CH<sub>2</sub>C(CH<sub>3</sub>)<sub>2</sub>O-, -OCF<sub>2</sub>CF<sub>2</sub>O- or -CF<sub>2</sub>CF<sub>2</sub>O-;
               R_2 and R_5 are independently halogen, CN, SCN,
                   NO_2, R_3, OR_3, SR_3, S(O)_2R_3, OC(O)R_3,
15
                   OS(O)_2R_3, CO_2R_3, C(O)R_3, C(O)NR_3R_4,
                   S(O) NR R or NR R ;
               R_3 is C_1 to C_4 alkyl, C_1 to C_2 haloalkyl,
                   C_2 to C_4 alkenyl, C_2 to C_4 haloalkenyl or
                   propargyl;
20
               R, is H or C, to C, alkyl;
                A is C_1 to C_4 alkyl, phenyl, phenyl substituted
                   with (R_5)_p, CO_2R_3, C(O)R_3, C(O)NR_3R_4
                   or C(O)NR phenyl said phenyl optionally
                   substituted with F, Cl. Br, CF3, OCF2H,
25
                   OCF, or NO,); and
                B is H, C_1 to C_4 alkyl, C_1 to C_4 haloalkyl,
                   or C3 to C4 alkenyl.
           4. A compound according to Claim 3 wherein
30
              Y is H, CH<sub>2</sub>, C(O)CH<sub>2</sub> or CO<sub>2</sub>CH<sub>3</sub>;
               m is 1 or 2 and one substituent is in the
                  4-position of the phenyl ring;
               n is 1 or 2 and one substituent is in the
                  4-position of the phenyl ring;
35
               p is 1 or 2 and one substituent is in the
                  3 or 4-position of the phenyl ring;
```

PCT/US88/00001 WO 88/05046 R_1 is F, Cl. Br, CF_3 , OCF_2H , OCF_3 or CN, or when m is 2, R_1 can be taken together as $-CH_2C(CH_3)_2O-$ or $-CF_2CF_2O-$; 5 R₂ is F, Cl. Br, CN, NO₂, CF₃, CH₃, OCH₃, OCF₂H, OCF_3 , SCH_3 , SCF_2H , $S(O)_2CH_3$ or $N(CH_3)_2$; R₅ is F, Cl. Br. CN. NO₂, CF₃, CH₃, OCH₃, OCF₂H, ocf₃, scH₃, scF₂H, s(0)₂CH₃, s(0)₂CF₂H, CO_2CH_3 , $C(O)NHCH_3$, $C(O)N(CH_3)_2$, $S(O)_2N(CH_3)_2$ 10 or N(CH₃)₂; A is phenyl or phenyl substituted with $(R_5)_p$; and B is H or CH3. 5. A compound according to Claim 3 wherein 15 Y is H, CH_3 , $C(O)CH_3$ or CO_2CH_3 ; m is 1 or 2 and one substituent is in the 4-position of the phenyl ring; n is 1 or 2 and one substituent is in the 4-position of the phenyl ring; 20 R₁ is F, Cl, Br, CF₃, OCF₂H, OCF₃ or CN, or when m is Z, R_1 can be taken together as -CH₂(CH₃)₂O- or CF₂CF₂O-; R₂ is F, Cl. Br. CN, NO₂, CF₃, CH₃, OCH₃, OCF₂H, OCF_3 , SCH_3 , SCF_2 H, $S(O)_2$ CH₃, $S(O)_2$ CF₂H, 25 CO_2CH_3 , $C(O)NHCH_3$, $C(O)N(CH_3)_2$, $S(O)_2N(CH_3)_2$ or N(CH₃)₂; A is CO_2CH_3 , $CO_2C_2H_5$, $C(O)NHCH_3$ or $C(O)N(CH_3)_2$; and B is CH3. 30 6. A compound according to Claim 5: methyl

6. A compound according to Claim 5: methyl l-(4-chlorophenyl)-4,5-dihydro-5-methyl-3-[[4-(tri-fluoromethyl)phenyl]aminocarbonyl]-lH-pyrazole-5-carboxylate.

ŧ

ĩ

- 7. A compound according to Claim 4: 1-(4-chloro-phenyl)-5-(4-fluorophenyl)-4.5-dihydro-N-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide.
- 8. A compound according to Claim 4: 1,5-bis(4-chlorophenyl)-4,5-dihydro-N-[4-(trifluoromethyl)phenyl]-lH-pyrazole-3-carboxamide.
- 9. A compound of according to Claim 4:

 1-(4-chlorophenyl)-5-(4-cyanophenyl)-4,5-dihydro
 10 N-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide.
 - 10. A composition comprising an insecticidally effective amount of a compound according to Claim 1 and an agriculturally suitable carrier therefor.
- 15 ll. A composition comprising an insecticidally effective amount of a compound according to Claim 2 and an agriculturally suitable carrier therefor.
- 12. A composition comprising an insecticidally effective amount of a compound according to Claim 3 20 and an agriculturally suitable carrier therefor.
 - 13. A composition comprising an insecticidally effective amount of a compound according to Claim 4 and an agriculturally suitable carrier therefor.
- 14. A composition comprising an insecticidally 25 effective amount of a compound according to Claim 5 and an agriculturally suitable carrier therefor.
 - 15. A method of controlling insects comprising contacting them with an effective amount of a compound according to Claim 1.
- 16. A method of controlling insects comprising contacting them with an effective amount of a compound according to Claim 2.
- 17. A method of controlling insects comprising contacting them with an effective amount of a 35 compound according to Claim 3.

- 18. A method of controlling insects comprising contacting them with an effective amount of a compound according to Claim 4.
- 19. A method of controlling insects comprising contacting them with an effective amount of a compound according to Claim 5.
 - 20. A composition according to Claim 10 comprising additionally a spray oil or spray oil concentrate.
 - 21. A method for controlling insects comprising contacting them with an effective amount of a composition according to Claim 20.

10

٩

20

25

30