ゼミノート #12

Quotients of Algebraic Spaces

七条彰紀

2019年8月19日

目次

1	Notes on Topology	1
1.1	Constructible Topology	1
1.2	Equivalence Relation on Topological Space Induced by Groupoid	3
2	Quotients	3
2.1	Definitions	3
2.2	Propositions · Paraphase	F

1 Notes on Topology

1.1 Constructible Topology

以下を参考にした.

- [2] §1
- http://virtualmath1.stanford.edu/~conrad/Perfseminar/Notes/L3.pdf by B.Conrad
- [4] 08YF https://stacks.math.columbia.edu/tag/08YF

定義 1.1

X:: topological space とする.

- (i) X の locally closed subset とは、closed subset と open subset の共通部分で表せる subset である.
- (ii) X の constructible set とは、X の有限個の locally closed subset の和集合で表せる subset のことである.
- (iii) $U \subseteq X$ が X の locally constructible set であるとは, U のある開被覆 $\{U_i\}$ について, 各 $U \cap U_i$ が constructible set である, ということ.
- (iv) X の constructible topology とは、X の constructible set を開基とする位相のことである。X の underlying set に X の constructible topology を与えた位相空間を $X_{\rm cons}$ と書く.

- (v) 有限個とは限らない X の constructible set の、和集合を ind-constructible subset と呼び、共通部分を pro-constructible subset と呼ぶ^{†1}.
- (vi) map of topological spaces :: $f: X \to Y$ について、 f^{cons} を constructible topology での map とする。 (map of sets としては $f = f^{\text{cons}}$ である。)

命題 1.2

X:: topological space > > > >

- (i) $X \mathcal{O}$ open subset \mathcal{E} closed subset \mathcal{E} constructible set \mathcal{E} as \mathcal{E} .
- (ii) 有限個の constructible set の和, 共通部分は constructible set である. constructible set の補集合も constructible set である.
- (iii) X の constructible topology に於ける open subset は ind-constructible subset に限る. 同様に, closed subset は pro-constructible subset に限る.
- (iv) map of topological spaces :: $f: X \to Y$)))))))) continuous.

(証明). 自明. ■

- 命題 1.3 (i) qcqs(=quasi-compact and quasi-separated) scheme の pro-constructible subset は, affine scheme からの射の像に限る.
 - (ii) locally of finite presentation morphism は constructible topology において open.
 - (iii) quasi-compact morphism は constructible topology において closed.
 - (iv) f :: surjective morphism で f :: locally of finite presentation or quasi-compact ならば $f^{\rm cons}$:: submersive.

(証明). (i) は Rydh10 の Prop1.1 である. (ii) は Chevalley's theorem からの帰結. (iii) は locally に調べれば容易に分かる. (iv) は (ii), (iii) からの帰結である. ■

注意 1.4

constructible topology は spectral space $^{\dagger 2}$ と共に扱われることが多い。例えば qcqs scheme の underlying space は spectral である.

命題 1.5

- [2] Prop1.7 morphism of schemes :: $f: X \to Y, g: Y' \to Y$ を考え、f の g による pullback を f' と書く.
 - (i) P を open, closed, submersive のいずれかとする. q が submersive ならば、f' :: P と f :: P は同値.
 - (ii) P を universally open, universally closed, universally submersive, separated のいずれかとする. g が universally submersive ならば、f' :: $P \geq f$:: P は同値.
 - (iii) g^{cons} が universally submersive ならば、f':: quasi-compact と f:: quasi-compact は同値.

(証明). (TODO) (iii) だけ証明を与える.

^{†1 &}quot;ind-"は inductive limit を意味し, "pro-"は projective limit を意味する.

^{†2} spectral space とは、以下の性質をもつ位相空間: sober, quasi-compact, the intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-compact opens forms a basis for the topology ([4] 08FG).

注意 1.6

おそらく,[3] はこの命題を利用するために,topological quotient に「 q^{cons} :: universal submersive」を要求している.より詳しく言うと以下の命題で使われている.

命題 1.7 ([3] Prop2.12 (ii))

 $R \rightrightarrows_t^s X$:: groupoid とし、 $q: X \to Y$ を topological quotient とする. j :: quasi-compact と、Y :: quasi-separated かつ $j_{/Y}$:: quasi-compact は同値.

これを経由して, $X \to S$:: quasi-separated ならば GC quotient :: $Y \to S$ が quasi-separated であることなどを示している (Prop4.7).

1.2 Equivalence Relation on Topological Space Induced by Groupoid

S :: algebraic space とし、groupoid in algebraic S-space :: $R \rightrightarrows_t^s X$ を考える、topological space :: |U| に、次のようにして同値関係 \sim_R を定義する.

定義 1.8

点 $x_1, x_2 \in |X|$ について,

$$x_1 \sim_R x_2 \iff \exists r \in |R|, \ |s|(r) = x_1, |t|(r) = x_2$$

と定義する.

 $|R \times_x R| \to |R| \times_{|X|} |R|$ が全射であることを用いると、groupoid の定義から、 \sim_R が同値関係であることが分かる.

定義 1.9

点 $x\in |X|$ の同値類を orbit と呼び,R(x) と書く.R(x) は $|t|(|s|^{-1}(x))$ と等しい. また, $W\subseteq |X|$ が R-stable であるとは,W が \sim_R について stable であること.すなわち,

$$\{x \in |X| \mid \exists w \in W, \ w \sim_R x\} = R$$

となること. これは $|s|^{-1}(W) = |t|^{-1}(W)$ in |R| とも同値.

注意 1.10

|4| 04XJ には, $S = |X| \times_{|[X/R]|} |X|$ とすると位相空間として |[X/R]| = |X|/S,という命題が有る.

2 Quotients

以降は引き続き S :: algebraic space とし、groupoid in algebraic S-space :: $R \rightrightarrows_t^s X$ を考える.

2.1 Definitions

定義 2.1 (equivariant morphism)

morphism :: $q: X \to Y$ について、 $q \circ s = q \circ t$ であるとき、q を equivariant morphism という.

定義 **2.2** (j, j_Y)

 $s,t: R \to X$ から $X \times_S X$ の普遍性により得られる射 $:: R \to X \times_S X$ を j と書く.

また、equivariant morphism :: $q:X\to Y$ について、s,t から $X\times_Y X$ の普遍性により得られる射 :: $R\to X\times_Y X$ を $j_{/Y}$ と書く.

stabilizer はまたの機会に定義する.

注意 2.3

fiber product の普遍性から、 $j_{/Y}$ に $X \times_Y X \to X \times_S X$ を合成すると j に一致する.

注意 2.4

equivariant morphism :: $R \rightrightarrows_t^s X \to Y$ は、quotient stack からの射 $[X/R] \to Y$ に一対一に対応する. (TODO: proof)

定義 2.5 (universal, uniform quotient)

 $q: X \to Y$ が性質 P をもつとする.

- 任意の射 $Y' \to Y$ による pullback :: $q' \colon X \times_Y Y' \to Y'$ も性質 P をもつ時,P は universal であると言う.
- 任意の flat 射 $Y' \to Y$ による pullback :: $q' \colon X \times_Y Y' \to Y'$ も性質 P をもつ時,P は uniform であると言う.

定義 2.6

equivariant morphism :: $q: X \to Y$ を考える.

Categorical quotient

任意の equivariant morphism :: $r: X \to Z$ が q を介して一意に分解する時、すなわち $\bar{r} \circ q = r$ を満たす射 :: $\bar{r}: Y \to Z$ が一意に存在するとき、q を categorical quotient と呼ぶ.

Zariski quotient

 $|q|\colon |X| \to |Y|$ が topological space の圏における $|R| \rightrightarrows_{|t|}^{|s|} |X|$ の coequalizer である時,q を Zariski quotient と呼ぶ.同値な言い換えとして,任意の点の |q| による逆像が丁度一つの orbit から成り,かつ |q| :: submersive である,というものが有る.

Constructible quotient

 $|q|^{\mathrm{cons}}\colon |X|^{\mathrm{cons}} o |Y|^{\mathrm{cons}}$ が topological space の圏における $|R|^{\mathrm{cons}} o |_{|t|^{\mathrm{cons}}}^{|s|^{\mathrm{cons}}} |X|^{\mathrm{cons}}$ の coequalizer である時,q を constructible quotient と呼ぶ。言い換えについては Zariski quotient と同様である.

Topological quotient

q :: universal Zariski & universal constructible quotient である時, q を topological quotient と呼ぶ.

Strongly topological quotient

q :: topological quotient かつ $j_{/Y}$:: universally submersive である時, q を strongly topological quotient と呼ぶ.

Geometric quotient

q が topological quotient であり、かつ \mathcal{O}_Y が Y_{ET} (category of etale sheaves on Y) における s^*, t^*

の equalizer である時, q を geometric quotient と呼ぶ.

$$\mathcal{O}_Y \longrightarrow q_* \mathcal{O}_X \xrightarrow{s^*} (q \circ s)_* \mathcal{O}_R$$

Strongly geometric quotient

q:: geometric quotient & strongly topological quotient であるとき, すなわち q:: geometric quotient かつ $j_{/Y}$:: universally submersive であるとき, q を strongly geometric quotient と呼ぶ.

注意 2.7

strongly topological quotient では $j_{/Y}\colon R\to X\times_Y X$ が univ. submersive であるから, $X\times_Y X\to X\times_S X$ も univ. submersive. このことは $X\times_Y X$ に「適切な」位相が入っていることを意味する.

注意 2.8

geometric quotient in [1]

- q :: surjective and equivariant.
- $\bullet \mathcal{O}_Y = (q_* \mathcal{O}_X)^R.$
- 任意の点 $y \in Y$ について, $q^{-1}(y)$ はただ一つの orbit からなる.
- $W_1, W_2 \subseteq X$:: disjoint closed subset について $\operatorname{cl}_Y(q(W_1)), \operatorname{cl}_Y(q(W_2))$:: disjoint.

以下のように言い換えても良い.

- q :: Zariski quotient.
- $\bullet \mathcal{O}_Y = (q_* \mathcal{O}_X)^R.$
- qの open immersion による pullback も上記を満たす.

ref. E.Viehweg "D. Mumford's Geometric Invariant Theory". なお, [1] の初版では q :: universally submersive を仮定している.

2.2 Propositions: Paraphase

定義 2.9

X :: algebraic space over a scheme S とする. 点 $x \in |X|$ の residue field とは, x を代表する monomorphism :: Spec $k \to X$ が存在するような体 k のことである.

注意 2.10

residue field は常に存在するとは限らない. "descent algebraic space"と呼ばれる重要な種類の algebraic space では、任意の点が residue field をもつ.

補題 2.11

X:: algebraic space over a scheme S とする. 点 $x \in |X|$ をとり,

- x を代表する monomorphism :: ϕ : Spec $k \to X$ と
- x を代表する任意の射 :: ψ : Spec $l \to X$

をとる. この時 ψ は ϕ を通じて一意に分解する.

(証明). fiber product :: $Y = (\operatorname{Spec} k) \times_{\phi, X, \psi} (\operatorname{Spec} l)$ をとる. mono は pullback で保たれるから $Y \to \operatorname{Spec} l$ も mono. よって [4] 03DP $^{\dagger 3}$ から $Y \cong \operatorname{Spec} l$.

$$\begin{array}{ccc} Y & \longrightarrow & \operatorname{Spec} k \\ & & \downarrow \phi \\ & \operatorname{Spec} l & \longrightarrow_{\psi} & X \end{array}$$

こうして ψ の ϕ による分解が存在する. ϕ は mono なのでこの分解は一意.

系 2.12

X:: algebraic space over a scheme S とする. 点 $x \in |X|$ を代表する monomorphism は高々一つ.

命題 **2.13** ([3], Prop2.3)

R-equivariant morphism :: $q: X \to Y$ を考える. 以下の $3 \times 3 = 9$ 個の命題を考える.

- (i) 任意の体 k と射 $y\colon k\to Y$ ^{†4}について $|X\times_Y k|$ は、 少なくとも 1 つの / 多くとも一つの / 丁度一つの、 $(R\times_Y k)$ -orbit を含む.
- (ii) q :: surjective / $j_{/Y}$:: surjective / $q, j_{/Y}$:: surjective.
- (iii) 任意の代数閉体 K について, $\bar{q}_K \colon X(K)/R(K) \to Y(K)$ †5は surjective / injective / bijective.

この時,(i) \iff (ii) \iff (iii) がそれぞれ成り立つ. さらに $q,j_{/Y}$:: locally of finite type or integral ならば,(ii) \implies (iii) も成り立つ.

(証明). 以下で計6つの命題の証明を行う. そのために, 取り扱う6つの命題を以下のようにまとめる.

	a	b
1	(i) 少なくとも 1 つの	(i) 多くとも一つの
2	(ii) q :: surjective	(ii) $j_{/Y}$:: surjective
3	(iii) surjective	(iii) injective

例えば "(1a)"という記号は、(i) に含まれる「任意の体 k と射 y: $k \to Y$ について $|X \times_Y k|$ は少なくとも 1 つの $(R \times_Y k)$ -orbit を含む.」という命題を意味する.

体 :: k, morphism :: y: Spec $k \to Y$ をとる. Spec k を k と略し, $X \times_Y$ Spec k や $R \times_Y k$ をそれぞれ X_y, R_y と略す.

■(1a) \Longrightarrow (2a) 仮定より $|X_y| \neq \emptyset$ である.この集合から $|q|^{-1}(y)$ への写像が存在するので $|q|^{-1}(y) \neq \emptyset$. よって q は全射.

$$|X_y| \longrightarrow |X| \times_{|Y|} |k| \xrightarrow{\operatorname{pr}_{|X|}} |q|^{-1}(y)$$

^{†3} 証明を簡単にまとめると次のように成る. (1) 可換代数の命題「体から代数への全射準同型 $\phi: k \to R$ は同型(特に単射)」に帰着させる. (2) $R \to R \otimes_k R; r \mapsto r \otimes 1$ は, $\tilde{r} \in \phi^{-1}(r)$ について $r \otimes 1 = \tilde{r}(1 \otimes 1)$ なので単射. (3) R は体上の代数なので free,特に faithfully flat k-module.

 $^{^{\}dagger 4}$ Spec k を k と略した.

 $^{^{\}dagger 5}$ X(K)/R(K) は R(K) $\rightrightarrows_{t_K}^{s_K} X(K)$ の coequalizer で, \bar{q}_K は coequalizer による $q_K \colon X(K) \to Y(K)$ の一意な分解である.

■(2a) \Longrightarrow (1a) 仮定から直ちに次がわかる.

 $q: X \to Y :: \text{surj} \implies y^*q: X_y \to k :: \text{surj} \iff |y^*q| :: \text{surj} \iff \forall t \in |\operatorname{Spec} k|, |y^*q|^{-1}(t) \neq \emptyset$

 R_y -equiv. morphism による一点の逆像は R_y -orbit を含む $^{\dagger 6}$ から, $|X_y|$ は R_y -orbit $:: |y^*q|^{-1}(t) \subseteq |X_y|$ を含む.

- ■(3a) ⇒ (2a) k の代数閉包を K と書く、この時、y と k ⇔ K から誘導される射を合成すると、y と同値な点 $\operatorname{Spec} K \to \operatorname{Spec} k \to X$ が得られる、これを改めて y: $\operatorname{Spec} K \to X$ と命名する、以下、 $\operatorname{Spec} K$ を K と略す、すると仮定 $(X(K)/R(K) \to Y(K) ; ; \operatorname{surj})$ と米田の補題により、 $q \circ z = y$ を満たす $z \colon K \to X$ が存在する、よって |q| :: surj .
- **■**(2b) \Longrightarrow (1b) まず, $(X \times_Y X) \times_Y k \cong X_y \times_k X_y$ に注意する.以下の pullback 図式の $(j_{/Y})_y$ を考える.仮定からこれは全射.

$$R_{y} \xrightarrow{(j/Y)_{y}} X_{y} \times_{k} X_{y} \longrightarrow k$$

$$\downarrow \qquad \qquad \downarrow^{y}$$

$$R \xrightarrow{j/Y} X \times_{Y} X \longrightarrow Y$$

こうして全射 $|R_y| \to |X_y \times_k X_y| \to |X_y| \times_{|k|} |X_y|$ が得られる. $j_{/Y}$ の定義から,これらと $\operatorname{pr}_i\colon |X_y| \times_{|k|} |X_y| \to |X_y|$ (i=1,2) を合成すればそれぞれ |s|,|t| となる.よって任意の $u,v\in |X_y|$ について |s|(r)=u,|t|(r)=v となる $r\in |R_y|$ が存在する.すなわち,任意の $u,v\in |X_y|$ について $u\sim_{R_y} v$.

■(3b) ⇒ (2b) 点 z: Spec $k \to X \times_Y X$ を任意に取ると、上述のとおり、k をその代数閉包 K に取り替えることが出来る。したがってここでは z: Spec $K \to X \times_Y X$ を扱う。 $z_i := \operatorname{pr}_i \circ z, y := q \circ \operatorname{pr}_i \circ z$ とする。 $q \circ \operatorname{pr}_1 = q \circ \operatorname{pr}_2$ に注意。以下、Spec K を K と略し、米田の補題によって対応するもの(例えば射z: $K \to X$ と X(K) の元)を同じ記号で書く。

 $q_K(z_1)=q_K(z_2)=y$ なので、仮定から $s_K(r)=z_1,t_K(r)=z_2$ を満たす元 $r\in R(K)$ が存在する。 $s=\operatorname{pr}_1\circ j_{/Y},t=\operatorname{pr}_2\circ j_{/Y}$ なので、さらに以下の図式が可換に成る。

 $X \times_Y X$ の普遍性から $r \circ j_{/Y} = z$ が分かる. すなわち, $|j_{/Y}|$ は、したがって $j_{/Y}$ は全射である.

■(1b) \Longrightarrow (2b) 一つ前の段落と同じく z, z_i (i=1,2), y をとる. この y で $X \times_Y X \to X \to Y$ を pullback する. そこで $z_{i,y} \colon K \to X_y$ を z_i と id_K から誘導される射とする. さらに点 $z_y \colon K \to X_y \times_K X_y$

^{†6} 点 $t \in |\operatorname{Spec} k|$ について $q_y(t) = q_y(R_y(t))$ だから.

を $z_{1,y},z_{2,y}$ から誘導される射とする \dagger7 . 明らかに $z_{i,y}=\mathrm{pr}_{i,y}\circ z_{y}$ が成立する.

今,仮定 (1b) から, $r \in |R_y|$ が存在し, $|s_y|(r) = [z_{1,y}], |t_y|(r) = [z_{2,y}]$ を満たす.この r の代表元として \tilde{r} : Spec $L \to R_y$ をとる.

主張 2.14

 $z_y \circ \phi = (j_{/Y})_y \circ \tilde{r}$ を満たす射 $\phi: L \to K$ が存在する.

この主張から、任意の点 z について $|j_{/Y}|$ による像が z である点 $L \to R_y \to R$ の存在が言える.

$$\begin{array}{cccc} L & & & & & K \\ \downarrow & & & \downarrow z_y \\ R_y & \xrightarrow{(j_{/Y})_y} & X_y \times_K X_y \\ \downarrow & p.b. & & \downarrow \\ R & \xrightarrow{j_{/Y}} & X \times_Y X \end{array}$$

よって $j_{/Y}$ は全射.

(主張 2.14 の証明). $\tilde{r}' := (j_{/Y})_y \circ \tilde{r}$ とおく.

仮定 $|s_y|(r)=[z_{1,y}]$ から赤実線で示した 2 つの射は同値である. $q_y\circ z_{1,y}=q_y\circ \mathrm{pr}_1\circ z_y=\mathrm{id}_K$,とくにこ

 $^{^{\}dagger7}$ 定義の仕方から q_y o $\operatorname{pr}_{i,y}$ o $z_y=\operatorname{id}_K$ が成立する.これは重要な等式で, $z_{i,y}$ の後に z_y を定義したのもこのためである.ここで z_y から先に定義すると,i=1,2 の両方でこの等式が成立することを明言できない.

れが mono だから $z_{1,y}$:: mono. したがって補題より $\phi_1\colon L\to K$ が存在し, $\mathrm{pr}_1\circ z_y\circ\phi_1=\mathrm{pr}_1\circ\tilde{r}'$ となっている.青実線で示した 2 つの射についても,同じく $\phi_2\colon L\to K$ が存在し, $\mathrm{pr}_2\circ z_y\circ\phi_2=\mathrm{pr}_2\circ\tilde{r}'$. それぞれ q_y を合成して,

$$q_y \circ \operatorname{pr}_1 \circ z_y \circ \phi_1 = q_y \circ \operatorname{pr}_1 \circ \tilde{r}', \quad q_y \circ \operatorname{pr}_2 \circ \tilde{r}' = q_y \circ \operatorname{pr}_2 \circ z_y \circ \phi_2.$$

 $q_y \circ \operatorname{pr}_1 = q_y \circ \operatorname{pr}_2$ と $q_y \circ \operatorname{pr}_1 \circ z_y = q_y \circ \operatorname{pr}_2 \circ z_y = \operatorname{id}_K$ から,

$$\phi_1 = q_y \circ \operatorname{pr}_1 \circ \tilde{r}' = q_y \circ \operatorname{pr}_2 \circ \tilde{r}' = \phi_2.$$

したがって元の等式は次のように成る.

$$\operatorname{pr}_1 \circ (z_y \circ \phi_1) = \operatorname{pr}_1 \circ \tilde{r}', \qquad \operatorname{pr}_2 \circ (z_y \circ \phi_1) = \operatorname{pr}_2 \circ \tilde{r}'.$$

なので $X_y \times X_y$ の普遍性から $z_y \circ \phi_1 = \tilde{r}' = (j_{/Y})_y \circ \tilde{r}$.

注意 2.15

したがって quotient の定義の幾つかは次のように書き換えられる.

q:: univ. Zariski \iff q:: univ. submersive and $j_{/Y}::$ surjective.

q: topological \iff $q,q^{\text{cons}}:$ univ. submersive and $j_{/Y}:$ surjective.

q:: strongly topological $\iff q, q^{\text{cons}}, j_{/Y}::$ univ. submersive

補題 **2.16** ([3] Prop2.4, Remark2.5)

 $q: X \to Y:$ universal Zariski quotient とする. 以下の時, q: topological quotient.

- (i) q :: quasi-compact,
- (ii) q :: locally of finite presentation,
- (iii) q :: universally open/closed,
- (iv) s:: universally open/closed.

(証明). q^{cons} :: univ. submersive を示す。これには q^{cons} :: univ. open or univ. closed を示せば十分である。なので (i),(ii) については命題 (1.3) から分かる。(iii) について q^{cons} :: univ. open は自明。(iv) を証明する。

s:: univ. open/closed と仮定する. $j_{/Y}$ の定義から, s は以下のように分解できる.

$$R \xrightarrow{j_{/Y}} X \times_Y X \xrightarrow{\mathrm{pr}} X$$

一つ前の命題から,今 $j_{/Y}$:: surjective となっている. $U\subseteq X\times_Y X$ を open/closed とすると, $\operatorname{pr}(U)=s(j_{/Y}^{-1}(U))$ も open/closed. よって pr :: open/closed map. univ. open/closed や surj. は pullback で保たれるので,特に pr :: univ. open/closed. q :: univ. submersive なので,命題 (1.5) と合わせて q :: univ. open/closed を得る.

命題 2.17 ([3] Prop2.10)

 $q: X \to Y ::$ equivariant とし、 $f: Y' \to Y$ による q の pullback を $q': X \times_Y Y' \to Y'$ とする.

- (ii) f :: flat かつ q :: geometric quotient, ならば q' :: geometric quotient.
- (iii) f :: fpqc or fppf $^{\dagger 8}$ かつ q' :: topological / geometric / universal geometric quotient ならば, q も そうである.

いずれも "topological"を "strongly topological"に, "geometric"を "strongly geometric"に置き換えても成立する.

参考文献

- [1] David Mumford, John Fogarty, and Frances Kirwan. Geometric Invariant Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete 34). Springer-Verlag, 3rd ed. edition, 1992.
- [2] David Rydh. Submersions and effective descent of étale morphisms. Bulletin de la Société Mathématique de France, Vol. 138, No. 2, pp. 181–230, 2010.
- [3] David Rydh. Existence and properties of geometric quotients. *Journal of Algebraic Geometry*, Vol. 22, pp. 629–669, 08 2013.
- [4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2019.

^{†8} faithfully flat and quasi-compact または faithfully flat and locally of finite presentation