9.3 Из тонкой однородной жести изготовили куб, диагонально противоположным вершинам которого припаяли электрические контакты. Сопротивление куба в этом случае $R = 10O_M$. оказалось равным Какой электрический ток I будет пересекать ребро куба AB, если куб подключить к источнику постоянного напряжения U = 60B?

9-4. Сплошной однородный цилиндр радиуса R и лежит на дне сосуда в форме параллелепипеда длины чуть большей L, ширины чуть большей 2R. Сосуд заполнен жидкостью, так что она полностью покрывает цилиндр. Плотность материала цилиндра ρ , плотность жидкости ρ_0 .

Какую минимальную работу необходимо совершить, чтобы вынуть цилиндр из жидкости?

9-5. Однородную гибкую нерастяжимую веревку массы m и длины L втаскивают на гладкую горку высоты h, профиль которой показан на рисунке, действием постоянной горизонтельно направленной силы

Определите ускорение веревки.

10 класс

Высокая открытая стеклянная трубка вставлена в сосуд с водой. В трубке находится стобик ртути высотой l = 15 cm, который запирает столб воздуха. При температуре $t_0 = 20^{\circ} \, C$ высота столба

воздуха $h_0 = 10 c_M$. Воду

сосуде начинают медленно подогревать.

Используя график зависимости давления насыщенных паров $P_{{\scriptscriptstyle Hac.}}$ воды от температуры t^o , постройте график зависимости высоты столба воздуха в трубке от температуры в диапазоне от $20^o\,C$ до $90^o\,C$. Атмосферное давление $P_a=1.0\cdot 10^5\,\Pi a$.

10-2. Два одинаковых цилиндрических бака расположены один над другим и соединены между собой трубой с насосом. Баки частично заполнены водой. Площади оснований баков равны S. На сколько изменится вес всей системы, когда насос начнет перекачивать воду из нижнего бака в верхний с постоянной скоростью $V(m^3/c)$? А если насос будет

перекачивать воду из верхнего в нижний с той же скоростью?

Тепловой насос работает по идеальному обратному циклу забирая теплоту из теплоизолированного $m_1 = 3.0$ кг воды при температуре $t_1 = 30^{\circ} C$ содержащего передавая ее сосуду 2, содержащему $m_2 = 1.0 \kappa z$ горячей воды, температуре $t_2 = 100^{\circ} C$. кипения при находящейся температура установится в сосуде 1, когда в сосуде 2 вся вода выкипит? Какую работу совершит при этом тепловой насос? Теплоемкость воды $c_1 = 4.2 \kappa Дж / (\kappa z \cdot K)$; теплоемкость $c_2 = 2,1\kappa$ Дж $c / (\kappa z \cdot K);$ удельная теплота парообразования $r = 2260 \kappa Дж / \kappa z$; удельная теплота плавления льда $\lambda = 336 \kappa$ Дж / кг.

10-4. Два одинаковых металлических шарика массы m = 1,0 г подвешены в одной точке на двух непроводящих нитях длины l = 15 см.

