

UNIVERSIDADE FRANCISCANA

Curso: Ciência da Computação — 2025-02.

Disciplina: Sistemas Digitais. Professor: André Flores dos Santos.

Nome do aluno: Romeo Noro Guterres

Data: 20/08/2025

Trabalho 01 - Peso 3,0.

Objetivo

Projetar e implementar SOMENTE com portas lógicas (sem registradores, contadores, comparadores) a lógica de controle de um elevador que:

- (i) só se move com a porta fechada;
- (ii) decide entre Subir e Descer quando houver pedidos;
- (iii) em conflito (U=1 e L=1), prioriza Subir;
- (iv) nunca aciona Subir e Descer simultaneamente.

Sinais

Entradas (3): D = Porta Fechada (1=fechada, 0=aberta); U = Pedido para Subir; L = Pedido para Descer.

Saídas (2): UP = Aciona motor para Subir; DOWN = Aciona motor para Descer.

Regras de Operação

1) Se D=0 (porta aberta), o elevador não se move (UP=0 e DOWN=0).

2) Se D=1 e U=1 e L=0, acione UP=1 e DOWN=0.

3) Se D=1 e U=0 e L=1, acione DOWN=1 e UP=0.

4) Se D=1 e U=1 e L=1, priorize Subir: UP=1 e DOWN=0.

Tabela-Verdade (preencher)

D	U	L	UP	DOWN
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Tarefas a realizar (e relatar no DOCX)

MINTERMOS

UP = 1 nas linhas: 110 (m6) e 111 (m7).

DOWN = 1 na linha: 101 (m5).

EQUAÇÃO CANÔNICA (SOP)

 $UP(D,U,L) = m6 + m7 = D \cdot U \cdot \overline{L} + D \cdot U \cdot L$

 $DOWN(D,U,L) = m5 = D \cdot U^{-} \cdot L$

Simplificação (MAPA DE KARNAUGH de 3 variáveis)

UP

D \ (U,L)	00	01	11	10
0	0	0	0	0
1	0	0	1	1

Agrupamento máximo: células (D=1, (U,L)=10 e 11) \rightarrow expressão mínima: UP = D·U.

DOWN

D \ (U,L)	00	01	11	10
0	0	0	0	0
1	0	1	0	0

Agrupamento possível: isolado (não combina com adjacentes) \Rightarrow expressão mínima: DOWN = $D \cdot \bar{U} \cdot L$.

Forma Mínima

 $UP = D \cdot U$

 $\mathsf{DOWN} = \mathsf{D} \cdot \bar{\mathsf{U}} \cdot \mathsf{L}$

Formato e Prazos de Entrega

- Entrega INDIVIDUAL, até o FINAL DA AULA de hoje.
- Anexar no Minha UFN: (1) este DOCX preenchido e (2) o arquivo .circ do Logisim.
- Após a entrega, acesse o material da Aula 04 no Minha UFN e realize a REVISÃO para a Prova 01 até 20/08/2025 às 23:59.

Critérios de Avaliação (3,0 pontos)

- Tabela-verdade + mintermos corretos 0,8
- Equação canônica (SOP) de cada saída 0,4
- Simplificação (K-map ou álgebra) até a forma mínima 0,8
- Circuito no Logisim conforme a forma mínima + testes mostrados 0,8
- Apresentação (capa, resumo/descrição clara e print legível) 0,2