Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast

R. Scott McIsaac¹², Benjamin L. Oakes¹, Xin Wang¹³, Krysta A. Dummit¹, David Botstein¹³ and Marcus B. Noyes¹

¹The Lewis-Sigler Institute for Integrative Genomics, Princeton University

²Graduate Program in Quantitative and Computational Biology,

Princeton University

³Department of Molecular Biology, Princeton University

Carles Boix

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Results

▶ System to perturb the expression of a single gene only.

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

Results

- ▶ System to perturb the expression of a single gene only.
- ► Tool to understand complex regulatory networks.

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

esults

- System to perturb the expression of a single gene only.
- ► Tool to understand complex regulatory networks.
- Nutritional perturbation, such as GAL or MET promoters.

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

esults

- ▶ System to perturb the expression of a single gene only.
- ► Tool to understand complex regulatory networks.
- Nutritional perturbation, such as GAL or MET promoters.
- Use inducers that don't have any other influence on the system.

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

Results

- System to perturb the expression of a single gene only.
- ► Tool to understand complex regulatory networks.
- Nutritional perturbation, such as GAL or MET promoters.
- Use inducers that don't have any other influence on the system.
- ▶ Use DBDs that do not have multiple locations in the genome (\sim 9 bp)

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

Results

Create a system which is:

Fast

Tightly regulated

Gratuitous (no effect on other genes)

Gradable

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

esults

Create a system which is:

Fast

Tightly regulated

Gratuitous (no effect on other genes)

Gradable

This is the β -estradiol system which we are using.

DNA-binding domain (DBD)

Human estrogen receptor (ER)

VP16 activation domain

Use specific zinc fingers $(Z_3 \text{ and } Z_4)$

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

esults

Figure: Synthesized ATF system

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Background

Results

Figure : Constructed ATFs and Binding Motifs

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Results

Figure: Constructed ATFs and Binding Motifs

Figure : GFP level with reporter plasmid.

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Results

Figure: Gene expression levels and GFP mRNA levels.

More than 50-fold induction in 15 minutes.

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Results

Figure: Growth defect present in GEV strains.

Increasing β -estradiol decreases GEV growth rate. **70%** Growth rate decrease from 10nM to 10μ M.

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Ŭ

Results

Figure: Grading output by binding affinity

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Backgroun

Results

Figure: GCN4 (GOI) is a transcriptional activator of enzymes required for production of aa.

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

Results

The β -estradiol system:

- Is gradable
- Gratuitous
- ► Fast (50 fold in 15 min)
- ▶ Does not have a growth defect
- Can be moderated by binding affinity

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

ackground

Results

The β -estradiol system:

- Is gradable
- Gratuitous
- ► Fast (50 fold in 15 min)
- ▶ Does not have a growth defect
- ► Can be moderated by binding affinity

Have shown utility with a case study: GCN4. Authors find $\sim 200-300$ genes repressed and enriched (116 genes known before from ChIP data).

Journal Club 1

R. Scott McIsaac, Benjamin L. Oakes, Xin Wang, Krysta A. Dummit, David Botstein and Marcus B. Noyes

ackground

resuits