Energy surface: $^{135}\mathrm{Pr}$

Study of the energy function H^\prime through the classical approach

Pentru momentele de inertie obtinute din fit: $\mathcal{I}_1=89 \;, \mathcal{I}_2=12 \;, \mathcal{I}_3=48 \;.$ Am calculat elispoidul momentului cinetic total (fixat la o valoare I=19/2) de raza I si de asemenea, elipsoidul asociat energiei de rotatie:

$$E = A_1 I_1^2 + A_2 I_2^2 + A_3 I_3^2$$

Pentru diferinte valori E=E', se vede ca initial sistemul se roteste in jurul axei 3 (cea de moment cinetic mijlociu), apoi isi schimba directia de miscare in jurul axei cu moment cinetic maxim, si anume \mathcal{I}_1 .

Rosu: sferia de moment cinetic I=19/2. **Albastru**: Elipsoidul de rotatie pentru un set de factori de inertie. Axa colorata cu rosu este axa cu moment de inertie maxim, adica 1.

Formula classica

$$H'=x_2^2+ux_3^2+2v_0x_1$$

Aceasta expresie NU poate fi reprezentata sub forma unui elipsoid, intrucat x_1 este coordonata sub forma de termen liniar.

Elipsoid:

Ecuatia unui elispoid este:

$$rac{x_1^2}{a_1^2} + rac{x_2^2}{a_2^2} + rac{x_3^2}{a_3^2} = 1$$

Pentru I=19/2, cu u si v_0 asociat, rezolv ecuatia

$$x_2^2 + ux_3^2 + 2v_0x_1 = e \; ,$$

unde e este mai mic decat H_{max}' .

H'=e pentru cateva valori numerice ale lui e. Forma lui H' nu genereaza un elipsoid de rotatie.