Лабораторная работа №8

Дисциплина: Основы информационной безопасности

Коновалова Татьяна Борисовна

Содержание

1	Цель работы	5
2	Теоретические данные	6
3	Задание	7
4	Выполнение лабораторной работы	8
5	Выводы	11
6	Библиография	12

Список иллюстраций

4.1	Функция шифрования
4.2	Исходные данные
4.3	Случайный символьный ключ
4.4	Шифрование данных
4.5	Получение данных без ключа
4.6	Получение данных без ключа
4.7	Получение части данных

Список таблиц

1 Цель работы

Цель лабораторной работы — Освоить на практике применение однократного гаммирования при работе с различными текстами на одном ключе.

2 Теоретические данные

Гаммирование представляет собой наложение (снятие) на открытые (зашифрованные) данные последовательности элементов других данных, полученной с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Иными словами, наложение гаммы — это сложение её элементов с элементами открытого (закрытого) текста по некоторому фиксированному модулю, значение которого представляет собой известную часть алгоритма шифрования.

В соответствии с теорией криптоанализа, если в методе шифрования используется однократная вероятностная гамма (однократное гаммирование) той же длины, что и подлежащий сокрытию текст, то текст нельзя раскрыть. Даже при раскрытии части последовательности гаммы нельзя получить информацию о всём скрываемом тексте. Наложение гаммы по сути представляет собой выполнение операции сложения по модулю 2 (XOR) (обозначаемая знаком М) между элементами гаммы и элементами подлежащего сокрытию текста.

3 Задание

1.Не зная ключа и не стремясь его определить, прочитать оба исходных текста; 2.Разработать приложение, позволяющее шифровать и дешифровать тексты в режиме однократного гаммирования; 3.Определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

4 Выполнение лабораторной работы

Лабораторную работу выполнила на языке Pythin 3 в среде Jupiter Notebook.

1.Создала функцию, которая осуществляет однократное гаммирование посредством побитового XOR (рис. [4.1]).

```
Ввод [22]:

def cript(text, key):
    if len(text) != len(key):
        return "Предупреждение: длины текста и ключа должны быть одинаковы!"
    result = ''
    for i in range(len(key)):
        p = ord(text[i]) ^ ord(key[i])
        result += chr(p)
    return result
```

Рис. 4.1: Функция шифрования

2.Задала две равные по длине текстовые строки и создала случайный символьный ключ такой же длины (рис. [4.2]) и (рис. [4.3]).

```
Ввод [23]: 1 text1 = "С Новым годом, друзья!" 2 text2 = "С Новым годом, семья!!"
```

Рис. 4.2: Исходные данные

```
Ввод [24]:

1 from random import randint, seed
2 seed(20)
3 key = ''
4 for i in range(len(text)):
5 key += chr(randint(0, 100))
6 print(key)

2(<J9!VQ)I2244
```

Рис. 4.3: Случайный символьный ключ

3.Осуществила шифрование двух текстов по ключу с помощью написанной функции (рис. [4.4])

```
BBOA [25]:

1 cipher1 = cript(text1, key)
2 cipher2 = cript(text2, key)
3 print(cipher1, cipher2, sep="\n")

αωσγκίζΧΧηπβάΝπΩΩμαρίπΨSΩ
αωσγκίζΧΧηπβάΝπΩΩμαρικοκΩ
```

Рис. 4.4: Шифрование данных

4.Создала переменную, которая, прогнав два шифрованных текста через побитовый ХОR, поможет злоумышленнику получить один текст, зная другой, без ключа (рис. [4.5]) и (рис. [4.6]).

```
Ввод [26]:

1 vzlom = cript(cipher1, cipher2)
2 print(cript(vzlom, text1))

С Новым годом, семья!!
```

Рис. 4.5: Получение данных без ключа

```
Ввод [27]: 1 print(cript(vzlom, text2))

С Новым годом, друзья!
```

Рис. 4.6: Получение данных без ключа

5.Таким же способом я получила часть данных из исходных предложений (рис. [4.7])

```
Ввод [30]: 1 text2[2:13]

Out[30]: 'Новым годом'

Ввод [31]: 1 vzlom_part = cript(cipher1[2:13], cipher2[2:13])
2 print(cript(vzlom_part, text2[2:13]))

Новым годом
```

Рис. 4.7: Получение части данных

5 Выводы

Освоила на практике применение однократного гаммирования при работе с различными текстами на одном ключе.

6 Библиография

СПИСОК ЛИТЕРАТУРЫ

- 1.Медведовский И.Д., Семьянов П.В., Платонов В.В. Атака через Internet. HПО "Мир и семья-95", 1997. URL: http://bugtraq.ru/library/books/attack1/index.html
- 2.Теоретические знания, приведённые в Лабораторной работе №8 https://esystem.rudn.ru/pluginfile.php/2090135/mod_resource/content/2/008-lab crypto-key.pdf
- 3.Запечников С. В. и др. Информационн~пасность открытых систем. Том 1. М.: Горячаая линия -Телеком, 2006.

СПИСОК ИНТЕРНЕТ-ИСТОЧНИКОВ

- 1.[Электронный ресурс] доступ: https://codeby.school/blog/informacionnaya-bezopasnost/razgranichenie-dostupa-v-linux-znakomstvo-s-astra-linux
- 2.[Электронный ресурс] доступ: https://debianinstall.ru/diskretsionnoe-razgranichenie-dostupa-linux/