Title

Author* Author 2^{\dagger} email1 email2

Contents

1 Essential

\todo

 $\mbox{\mbox{\mbox{$\setminus$}}} marginpar \ \mbox{\mbox{\mbox{\setminus}}} mcomment$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$= \frac{1}{2\pi i} \oint_{\Gamma} \frac{(1+z)^n}{z^{k+1}} dz$$
(2)

Table 1: Caption

A	. B*
a	b
c	d
е	f
g	h

TensorFlow^{\dagger} (Abadi et al., 2016), Abadi et al. (2016). Section 1 on a page 1, table 1, figure 1, equations (1) and (2).

^{*}thanks

 $^{^{\}dagger}$ thanks

^{*}footnote mark-footnote text

 $^{^{\}dagger} footnote$

Figure 1: Caption

2 Other CO₂

Subfigures

Proof

The proof is easy and is left to a reader.

Test math

Figure 2: The caption

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \left| \oint_A^B f(z) \, dz \right| = \frac{du}{dx} = \mathcal{F}\mathfrak{F} = \frac{\sum a_{ij}}{\sum b_{ij\text{big long thing}}} = \sum a_k$$
 (3)

$$= \frac{\mathbb{P}\left\{\frac{X}{\mathbb{E}X} \leqslant \varepsilon\right\}}{\Pr\left\{\text{Poisson}(\lambda = 3) > 5\right\}} = \frac{\partial}{\partial x} \cdot \frac{\partial f}{\partial x} \cdot \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \frac{x^2 + 1}{x^3 + 1}\Big|_{x=0} = \frac{d}{dx} \frac{x^2 + 1}{x^3 + 1}\Big|_{x=0}$$
(4)

$$\bar{a} \ A \stackrel{*}{\approx} B \ \sum_{\substack{0 < i < n \\ j \neq i}} f(i) \ \sqrt[3]{P(x) + Q(x)} \ \frac{3}{8} \frac{3}{8} \frac{3}{8} 3/8 \ x = x \ x = x$$
(5)

Math fonts

(mathrm)	ABCDEFabcdef
(mathbf)	${\bf ABCDEFabcdef}$
(mathsf)	ABCDEFabcdef
(mathtt)	ABCDEFabcdef
(mathit)	ABCDEFabcdef
(mathcal)	$\mathcal{ABCDEF} \dashv \bigsqcup \lceil \rceil \{$
(mathnormal)	ABCDEFabcdef
(boldsymbol)	$ABCabc\Gamma\Omega\Xi\gamma\omega\xi$
(mathscr)	$\mathscr{A}\mathscr{B}\mathscr{C}\mathscr{D}\mathscr{E}\mathscr{F}$
(mathfrak)	ABCDEFabedef
(mathbb)	ABCDEFƏ℧⊮⊭⊮⋭≱
(mathbbm)	ABCDEFabcdef12

Text fonts

 $ABCDEFabcdef \ ABCDEFabcdef \ ABCDEFabcdef$

 ${\bf ABCDEFabcdef} \ \ {\bf ABCDEFabcdef}$

ABCDEFabcdef ABCDEFabcdef ABCDEFabcdef ABCDEFabcdef ABCDEFabcdef

General formatting

• x y

- "quote"
- Ph. D.
- Ph. D.
- Ph. D.
- A. B
- A. B
- yo_□wazup

3 Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265-283). Savannah, GA: USENIX Association. Retrieved from https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi