INTRODUCTION TO FOURIER ANALYSIS

CARSON JAMES

Contents

1. Fourier Analysis on \mathbb{R}	6
1.1. Schwartz Space and Bump Functions	2
1.2. The Fourier Transform on \mathcal{S}	13
1.3. The Fourier Transform on $\mathcal{M}(\mathbb{R})$	23
2. Fourier Analysis on \mathbb{R}^n	25
2.1. Schwartz Space	25
2.2. The Convolution	26
2.3. The Fourier Transform	29
3. Fourier Analysis on LCA Groups	31
3.1. The Convolution	31
4. Fourier Analysis on Banach Spaces	32
References	33

1. Fourier Analysis on \mathbb{R}

1.1. Schwartz Space and Bump Functions.

Definition 1.1.1. Let $f \in C^{\infty}(\mathbb{R})$, and $\alpha, N \in \mathbb{N}_0$. We define $\|\cdot\|_{\alpha,N} : C^{\infty}(\mathbb{R},\mathbb{C}) \to [0,\infty]$ by

$$||f||_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} f(x)| \right]$$

We define **Schwartz space** on \mathbb{R} , denoted \mathcal{S} , by

$$S = \{ f \in C^{\infty}(\mathbb{R}) : \text{ for each } \alpha, N \in \mathbb{N}_0, \|f\|_{\alpha,N} < \infty \}$$

Exercise 1.1.2. Let $f \in \mathcal{S}$. Then

- (1) f is Lipschitz
- (2) $f \in L^1(m)$

Proof.

(1) There exists M > 0 such that for each $x \in \mathbb{R}$,

$$|\partial f(x)| \le M(1+|x|)^{-1} < M$$

Thus ∂f is bounded which implies that $\partial^{\alpha} f$ is Lipschitz.

(2) There exists $C \geq 0$ such that for each $x \in \mathbb{R}$,

$$|f(x)| \le C(1+|x|)^{-2}$$

 $\le C(1+|x|^2)^{-1}$

Define $g: \mathbb{R} \to [0, \infty)$ defined by $g(x) = (1 + |x|^2)^{-1}$. Then $g \in L^1(m)$ which implies that $f \in L^1(m)$.

Exercise 1.1.3. We have that S is a vector space and for each $\alpha, N \in \mathbb{N}_0$, $\|\cdot\|_{\alpha,N} : S \to [0,\infty)$ is a seminorm on S.

Proof. Let $f, g \in \mathcal{S}$ and $\lambda \in \mathbb{C}$.

(1)

$$\|\lambda f\|_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} [\lambda f](x)| \right]$$

$$= \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\lambda \partial^{\alpha} f(x)| \right]$$

$$= \sup_{x \in \mathbb{R}} \left[|\lambda| (1 + |x|)^N |\partial^{\alpha} f(x)| \right]$$

$$= |\lambda| \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} f(x)| \right]$$

$$= |\lambda| \|f\|_{\alpha,N}$$

Thus $\lambda f \in \mathcal{S}$ and $\|\lambda f\|_{\alpha,N} = |\lambda| \|f\|_{\alpha,N}$.

$$\begin{split} \|f+g\|_{\alpha,N} &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha [f+g](x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |[\partial^\alpha f + \partial g](x)| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha f(x)| + (1+|x|)^N |\partial g(x)| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha f(x)| \right] + \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial g(x)| \right] \\ &= \|f\|_{\alpha,N} + \|g\|_{\alpha,N} \end{split}$$

Hence $f + g \in S$ and $||f + g||_{\alpha, N} \le ||f||_{\alpha, N} + ||g||_{\alpha, N}$.

So S is a vector space and $\|\cdot\|_{\alpha,N}$ is a seminorm on S.

Exercise 1.1.4. We have that S is a algebra under pointwise multiplication and for each $\alpha, N \in \mathbb{N}_0$,

$$||fg||_{\alpha,N} \le \sum_{\beta=0}^{\alpha} ||f||_{\beta,N} ||g||_{\alpha-\beta,0}$$

Hint:
$$\partial^{\alpha}[fg] = \sum_{\beta=0}^{\alpha} (\partial^{\beta} f)(\partial^{\alpha-\beta} g)$$

Proof. Let $f, g \in \mathcal{S}$ and $\alpha, N \in \mathbb{N}_0$. Then

$$\begin{split} \|fg\|_{\alpha,N} &= \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha}[fg](x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N \left| \sum_{\beta=0}^{\alpha} \partial^{\beta} f(x) \partial^{\alpha-\beta} g(x) \right| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N \left(\sum_{\beta=0}^{\alpha} |\partial^{\beta} f(x)| |\partial^{\alpha-\beta} g(x)| \right) \right] \\ &= \sup_{x \in \mathbb{R}} \left[\sum_{\beta=0}^{\alpha} (1 + |x|)^N |\partial^{\beta} f(x)| |\partial^{\alpha-\beta} g(x)| \right] \\ &\leq \sum_{\beta=0}^{\alpha} \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\beta} f(x)| |\partial^{\alpha-\beta} g(x)| \right] \\ &\leq \sum_{\beta=0}^{\alpha} \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\beta} f(x)| \right] \sup_{x \in \mathbb{R}} \left[|\partial^{\alpha-\beta} g(x)| \right] \\ &= \sum_{\beta=0}^{\alpha} \|f\|_{\beta,N} \|g\|_{\alpha-\beta,0} \\ &< \infty \end{split}$$

So $fg \in \mathcal{S}$.

Definition 1.1.5. Set $\mathcal{P} = (\|\cdot\|_{\alpha,N})_{\alpha,N\in\mathbb{N}_0}$. Then \mathcal{P} is a countable family of seminorms on \mathcal{S} . We equip \mathcal{S} with the topology \mathcal{T} induced by the family of projections

$$\pi_{\|\cdot\|_{\alpha,N}}: \mathcal{S} \to \mathcal{S}/\ker \|\cdot\|_{\alpha,N}$$

i.e. $\mathcal{T} = \tau_{\mathcal{S}}((\pi_{\|\cdot\|_{\alpha,N}})_{\alpha,N\in\mathbb{N}_0}).$

Explicitly, for a net $(f_{\alpha})_{\alpha \in A} \subset \mathcal{S}$ and $f \in \mathcal{S}$, $f_{\alpha} \to f$ iff for each $\alpha, N \in \mathbb{N}_0$, $||f_{\alpha} - f||_{\alpha, N} \to 0$. Hence $(\mathcal{S}, \mathcal{T})$ is a locally convex space. Since \mathcal{P} is countable, we may write $\mathcal{P} = (p_j)_{j \in \mathbb{N}}$ and thus $(\mathcal{S}, \mathcal{T})$ is metrizable with metric

$$d_{\mathcal{S}}(f,g) = \sum_{j \in \mathbb{N}} 2^{-j} \frac{p_j(f-g)}{1 + p_j(f-g)}$$

Exercise 1.1.6. Let $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}_0$. Then $\partial^{\alpha} f \in \mathcal{S}$ and for each $\beta, N \in \mathbb{N}_0$,

$$\|\partial^{\alpha} f\|_{\beta,N} \le \|f\|_{\alpha+\beta,N}$$

Proof. Let $f \in \mathcal{S}$, and β , $N \in \mathbb{N}_0$. By definition,

$$\|\partial^{\alpha} f\|_{\beta,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\beta} [\partial^{\alpha} f](x)| \right]$$
$$= \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\alpha+\beta} f(x)| \right]$$
$$= \|f\|_{\alpha+\beta,N}$$
$$< \infty$$

So $\partial^{\alpha} f \in \mathcal{S}$.

Exercise 1.1.7. Let $f \in \mathcal{S}$. Then for each $\alpha, N \in \mathbb{N}_0$,

$$||f||_{\alpha,N} = ||\partial^{\alpha} f||_{0,N}$$

Proof. Clear by preceding exercise.

Exercise 1.1.8. Let $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}$. Define $g : \mathbb{R} \to \mathbb{C}$ by g(x) = xf(x). Then for each $x \in \mathbb{R}$, $\partial^{\alpha} g(x) = x\partial^{\alpha} f(x) + \alpha \partial^{\alpha-1} f(x)$.

Proof. The claim is clear if $\alpha = 1$. Suppose that $\alpha > 1$ and that the claim is true for $\alpha - 1$ so that for each $x \in \mathbb{R}$, $\partial^{\alpha-1}g(x) = x\partial^{\alpha-1}f(x) + (\alpha-1)\partial^{\alpha-2}f(x)$. Then

$$\begin{split} \partial^{\alpha}g(x) &= \partial[\partial^{\alpha-1}g(x)] \\ &= \partial[x\partial^{\alpha-1}f(x) + (\alpha - 1)\partial^{\alpha-2}f(x)] \\ &= \partial[x\partial^{\alpha-1}f(x)] + \partial[(\alpha - 1)\partial^{\alpha-2}f(x)] \\ &= [x\partial^{\alpha}f(x) + \partial^{\alpha-1}f(x)] + [(\alpha - 1)\partial^{\alpha-1}f(x)] \\ &= x\partial^{\alpha}f(x) + \alpha\partial^{\alpha-1}f(x) \end{split}$$

So the claim is true for α .

Exercise 1.1.9. Let $f \in \mathcal{S}$ and $N \in \mathbb{N}_0$. Define $g : \mathbb{R} \to \mathbb{C}$ by g(x) = xf(x). Then $g \in \mathcal{S}$ and for each $\alpha, N \in \mathbb{N}_0$,

$$||g||_{\alpha,N} \le ||f||_{\alpha,N+1} + \alpha ||f||_{\alpha-1,N}$$

Proof. Let $\alpha, N \in \mathbb{N}_0$. The previous exercise implies that

$$\begin{split} \|g\|_{\alpha,N} &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha x f(x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |x \partial^\alpha f(x) + \alpha \partial^{\alpha-1} f(x)| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N+1} |\partial^\alpha f(x)| \right] + \alpha \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha-1} f(x)| \right] \\ &= \|f\|_{\alpha,N+1} + \alpha \|f\|_{\alpha-1,N} \end{split}$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $g \in \mathcal{S}$.

Definition 1.1.10. We define the

• position operator, denoted $X: \mathcal{S} \to \mathcal{S}$, by

$$Xf(x) = xf(x)$$

• momentum operator, denoted $D: \mathcal{S} \to \mathcal{S}$, by

$$Df(x) = -i\partial f(x)$$

Exercise 1.1.11. We have that

- (1) (a) $X: \mathcal{S} \to \mathcal{S}$ is linear
 - (b) $D: \mathcal{S} \to \mathcal{S}$ is linear
- (2) (a) $X: \mathcal{S} \to \mathcal{S}$ is continuous
 - (b) $D: \mathcal{S} \to \mathcal{S}$ is continuous

Proof.

- (1) Clear.
- (2) Let $(f_n)_{n\in\mathbb{N}}\subset\mathcal{S}$. Suppose that $f_n\to 0$. Then for each $\alpha,N\in\mathbb{N}_0, \|f_n\|_{\alpha,N}\to 0$.
 - (a) A previous exercise implies that

$$||Xf_n||_{\alpha,N} \le ||f_n||_{\alpha,N+1} + \alpha ||f_n||_{\alpha-1,N}$$

 $\to 0$

So $Xf_n \to 0$ and X is continuous at 0. Since X is linear, X is continuous.

(b) A previous exercise implies that

$$||Df_n||_{\alpha,N} = ||\partial f_n||_{\alpha,N}$$

$$\leq ||f_n||_{\alpha+1,N}$$

$$\to 0$$

So $Df_n \to 0$ and D is continuous at 0. Since D is linear, D is continuous.

Definition 1.1.12. Let $f \in \mathcal{S}$ and $y \in \mathbb{R}$. Then

- for each $ey \in \mathbb{R}$ we define the **translation of** f by y, denoted $\tau_y f : \mathbb{R} \to \mathbb{C}$, by $\tau_y f(x) = f(x y)$
- for each $\xi \in \mathbb{R}$, we define the **rotation of** f by ξ , denoted $\rho_{\xi} f : \mathbb{R} \to \mathbb{C}$ by $\rho_{\xi} f(x) = e^{-i\xi x} f(x)$
- for each $t \neq 0$, we define the **dilation of** f by t, denoted $\delta_t f : \mathbb{R} \to \mathbb{C}$ by $\delta_t f(x) = f(tx)$

Exercise 1.1.13. Let $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}_0$. Then

- (1) for each $y \in \mathbb{R}$, $\partial^{\alpha} \tau_{y} f = \tau_{y} \partial^{\alpha} f$
- (2) for each $\xi \in \mathbb{R}$,

$$\partial^{\alpha} \rho_{\xi} f = \rho_{\xi} [(-i\xi + \partial)^{\alpha} f]$$
$$= \sum_{k=0}^{\alpha} {\alpha \choose k} (-i\xi)^{\alpha-k} \rho_{\xi} \partial^{k} f$$

(3) for each $t \neq 0$, $\partial^{\alpha} \delta_t f = t^{\alpha} \delta_t \partial^{\alpha} f$

Proof.

- (1) Clear by chain rule.
- (2) Let $\xi \in \mathbb{R}$. The claim is clear for $\alpha = 0$ and $\alpha = 1$. Suppose that $\alpha > 1$ and the claim is true for $\alpha 1$ so that $\partial^{\alpha-1}\rho_{\xi}f = \rho_{\xi}[(-i\xi + \partial)^{\alpha-1}f]$. Set $g = (-i\xi + \partial)^{\alpha-1}f$. Then

$$\partial^{\alpha} \rho_{\xi} f = \partial [\partial^{\alpha - 1} \rho_{\xi} f]$$

$$= \partial \rho_{\xi} [(-i\xi + \partial)^{\alpha - 1} f]$$

$$= \partial \rho_{\xi} g$$

$$= \rho_{\xi} [(-i\xi + \partial)g]$$

$$= \rho_{\xi} [(-i\xi + \partial)^{\alpha} f]$$

Since $-i\xi$ id_S and ∂ commute, the binomial theorem implies that

$$\rho_{\xi}[(-i\xi + \partial)^{\alpha}f] = \rho_{\xi}[\sum_{k=0}^{\alpha} {\alpha \choose k}](-i\xi)^{\alpha-k}\partial^{k}f$$
$$= \sum_{k=0}^{\alpha} {\alpha \choose k}](-i\xi)^{\alpha-k}\rho_{\xi}\partial^{k}f$$

(3) Clear by chain rule

Exercise 1.1.14. Let $y \in \mathbb{R}$ and $t \neq 0$. Then

- (1) for each $x \in \mathbb{R}$, $(1+|x|) \le (1+|y|)(1+|x-y|)$
- (2) there exists C > 0 such that for each $x \in \mathbb{R}$, $1 + |x| \le C(1 + |tx|)^2$

Proof.

(1) Let $x \in \mathbb{R}$. Then

$$(1+|y|)(1+|x-y|) = 1+|x-y|+|y|+|y||x-y|$$

$$\geq 1+|x|+|y||x-y|$$

$$\geq 1+|x|$$

(2) Choose $C = \max(1/(2|t|), 1)$. Let $x \in \mathbb{R}$. Then

$$C(1 + |tx|)^{2} - (1 + |x|) = C + 2C|tx| + C(tx)^{2} - 1 - |x|$$

$$= C + (2C|t| - 1)|x| + C(tx)^{2} - 1$$

$$= (C - 1) + (2C|t| - 1)|x| + C(tx)^{2}$$

$$\geq 0$$

So $1 + |x| \le C(1 + |tx|)^2$.

Exercise 1.1.15. Let $f \in \mathcal{S}$. Then

- (1) for each $y \in \mathbb{R}$, $\tau_y f \in \mathcal{S}$ and for each $\alpha, N \in \mathbb{N}_0$, $\|\tau_y f\|_{\alpha,N} \leq (1+|y|)^N \|f\|_{\alpha,N}$
- (2) for each $\xi \in \mathbb{R}$, $\rho_{\xi} f \in \mathcal{S}$ and for each $\alpha, N \in \mathbb{N}_0$,

$$\|\rho_{\xi}f\|_{\alpha,N} \le \sum_{k=0}^{\alpha} {\alpha \choose k} |\xi|^{\alpha-k} \|f\|_{k,N}$$

(3) for each $t \neq 0$, $\delta_t f \in \mathcal{S}$ and $\kappa_t f \in \mathcal{S}$ and there exists $C_t > 0$ such that for each $\alpha, N \in \mathbb{N}_0$, $\|\delta_t f\|_{\alpha,N} \leq |t|^{\alpha} C_t^N \|f\|_{\alpha,2N}$

Proof.

(1) Let $y \in \mathbb{R}$ and $\alpha, N \in \mathbb{N}_0$. Then

$$\sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} \tau_y f(x)| \right] = \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\tau_y \partial^{\alpha} f(x)| \right]
= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} f(x-y)| \right]
\leq \sup_{x \in \mathbb{R}} \left[(1+|y|)^N (1+|x-y|)^N |\partial^{\alpha} f(x-y)| \right]
= (1+|y|)^N \sup_{x \in \mathbb{R}} \left[(1+|x-y|)^N |\partial^{\alpha} f(x-y)| \right]
= (1+|y|)^N \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} f(x)| \right]
= (1+|y|)^N ||f||_{\alpha,N}$$

(2) Let $\xi \in \mathbb{R}$ and $\alpha, N \in \mathbb{N}_0$. Then for each $x \in \mathbb{R}$, we have that

$$(1+|x|)^{N}|\partial^{\alpha}\rho_{\xi}f(x)| = (1+|x|)^{N} \left| \sum_{k=0}^{\alpha} {\alpha \choose k} (-i\xi)^{\alpha-k} \rho_{\xi} \partial^{k} f(x) \right|$$

$$= (1+|x|)^{N} \left| \sum_{k=0}^{\alpha} {\alpha \choose k} (-i\xi)^{\alpha-k} e^{-i\xi x} \partial^{k} f(x) \right|$$

$$\leq (1+|x|)^{N} \sum_{k=0}^{\alpha} {\alpha \choose k} |\xi|^{\alpha-k} |\partial^{k} f(x)|$$

$$= \sum_{k=0}^{\alpha} {\alpha \choose k} |\xi|^{\alpha-k} (1+|x|)^{N} |\partial^{k} f(x)|$$

$$\leq \sum_{k=0}^{\alpha} {\alpha \choose k} |\xi|^{\alpha-k} ||f||_{k,N}$$

Therefore,

$$\|\rho_{\xi}f\|_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\alpha}\rho_{\xi}f(x)| \right]$$
$$\leq \sum_{k=0}^{\alpha} {\alpha \choose k} |\xi|^{\alpha-k} \|f\|_{k,N}$$

(3) Let $t \neq 0$ and $\alpha, N \in \mathbb{N}_0$. The previous exercise implies that there exists $C_t > 0$ such that for each $x \in \mathbb{R}$, $1 + |x| \leq C_t (1 + |tx|)^2$. Then for each $x \in \mathbb{R}$, we have that

$$(1+|x|)^{N}|\partial^{\alpha}\delta_{t}f(x)| = (1+|x|)^{N}|t|^{\alpha}|\delta_{t}\partial^{\alpha}f(x)|$$

$$= |t|^{\alpha}(1+|x|)^{N}|\partial^{\alpha}f(tx)|$$

$$\leq |t|^{\alpha}C_{t}^{N}(1+|tx|)^{2N}|\partial^{\alpha}f(tx)|$$

$$\leq |t|^{\alpha}C_{t}^{N}||f||_{\alpha,2N}$$

Therefore

$$\|\delta_t f\|_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^\alpha \delta_t f(x)| \right]$$

$$\leq |t|^\alpha C_t^N \|f\|_{\alpha,2N}$$

Exercise 1.1.16. For each $y, \xi \in \mathbb{R}$, $t \neq 0$, we have that $\tau_y : \mathcal{S} \to \mathcal{S}$, $\rho_{\xi} : \mathcal{S} \to \mathcal{S}$ and $\delta_t : \mathcal{S} \to \mathcal{S}$ are

- (1) linear
- (2) continuous

Proof. Let $y, \xi \in \mathbb{R}$ and $t \neq 0$.

- (1) Clear.
- (2) Let $(f_n)_{n\in\mathbb{N}}\subset\mathcal{S}$. Suppose that $f_n\to 0$. Then for each $\alpha,N\in\mathcal{N}_0, \|f_n\|_{\alpha,N}\to 0$.

• Let $\alpha, N \in \mathcal{N}_0$. Then

$$\|\tau_y f_n\|_{\alpha,N} \le (1+|y|)^N \|f_n\|_{\alpha,N}$$
$$\to 0$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\tau_y f_n \to 0$. So τ_y is continuous at 0. Since τ_y is linear, τ_y is continuous.

• Let $\alpha, N \in \mathcal{N}_0$. Then

$$\|\rho_{\xi} f_n\|_{\alpha,N} \le \sum_{k=0}^{\alpha} {\alpha \choose k} |\xi|^{\alpha-k} \|f_n\|_{k,N}$$

$$\to 0$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\rho_{\xi} f_n \to 0$. So ρ_{ξ} is continuous at 0. Since ρ_{ξ} is linear, ρ_{ξ} is continuous.

• Let $\alpha, N \in \mathcal{N}_0$. Define C_t as in the previous exercise. Then

$$\|\delta_t f_n\|_{\alpha,N} \le |t|^{\alpha} C_t^N \|f_n\|_{\alpha,2N}$$

$$\to 0$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\delta_t f_n \to 0$. So δ_t is continuous at 0. Since δ_t is linear, δ_t is continuous.

Definition 1.1.17. Define $\tau : \mathbb{R} \to \mathcal{S}$ by $\tau f(y) = \tau_y f(y)$

Exercise 1.1.18. Let $f \in \mathcal{S}$. Then $\tau f : \mathbb{R} \to \mathcal{S}$ is a homomorphism

Note 1.1.19. Let $f, g \in \mathcal{S}$ and $x \in \mathbb{R}$, Define $h : \mathbb{R} \to \mathbb{R}$ defined by $h_x(y) = f(x - y)g(y)$. A previous exercise implies that $h_x = (\delta_{-1}\tau_x f)g \in \mathcal{S} \subset L^1(m)$ and for each $\alpha, N \in \mathbb{N}_0$, $||h_x||_{\alpha,N} \leq \sum_{\beta=0}^{\alpha} (1+|x|)^N ||f||_{\beta,N} ||g||_{\alpha-\beta,0}$

FINISH FIX THIS!!!

Definition 1.1.20. Let $f, g \in \mathcal{S}$. We define the **convolution of** f **and** g, denoted $f * g : \mathbb{R} \to \mathbb{R}$ by

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y)dm(y)$$

Exercise 1.1.21. Let $f, g \in \mathcal{S}$. Then for each $\alpha \in \mathbb{N}_0$, $\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g$.

Proof. The claim is clear if $\alpha = 0$. Suppose that $\alpha > 0$ and that the claim is true for $\alpha - 1$ so that $\partial^{\alpha-1}(f * g) = (\partial^{\alpha-1}f) * g$. Define $h : \mathbb{R}^2 \to \mathbb{R}$ by $h(x,y) = \partial_x^{\alpha-1}f(x-y)g(y)$. Then for each $x,y \in \mathbb{R}$,

$$|h(x,y)| = |\partial_x^{\alpha-1} f(x-y)g(y)|$$

$$\leq ||\tau_y f||_{\alpha-1,0} |g(y)|$$

$$\leq ||f||_{\alpha-1,0} |g(y)|$$

Since $g \in L^1(m)$, we may differentiate under the integral to obtain that

$$\begin{split} [\partial_x^\alpha (f*g)](x) &= \partial_x [\partial_x^{\alpha-1} (f*g)](x) \\ &= \partial_x [(\partial_x^{\alpha-1} f) * g](x) \\ &= \partial_x \int_{\mathbb{R}} \partial_x^{\alpha-1} f(x-y) g(y) \, dm(y) \\ &= \int_{\mathbb{R}} \partial_x [\partial_x^{\alpha-1} f(x-y) g(y)] \, dm(y) \\ &= \int_{\mathbb{R}} \partial_x^\alpha f(x-y) g(y) \, dm(y) \\ &= [(\partial_x^\alpha f) * g](x) \end{split}$$

So the claim is true for α .

Exercise 1.1.22. Let $f, g \in \mathcal{S}$, then $f * g \in \mathcal{S}$ and there exists C > 0 such that for each $\alpha, N \in \mathbb{N}_0$, $||f * g||_{\alpha,N} \le C||f||_{\alpha,N}||g||_{0,N+2}$.

Proof. Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|y|)^2} \, dm(y)$$

Let $\alpha, N \in \mathbb{N}_0$ and $x \in \mathbb{R}$. Then

$$(1+|x|)^{N}|\partial^{\alpha}(f*g)(x)| = (1+|x|)^{N}|(\partial^{\alpha}f)*g(x)|$$

$$= (1+|x|)^{N}\left|\int_{\mathbb{R}}\partial^{\alpha}f(x-y)g(y)\,dm(y)\right|$$

$$\leq \int_{\mathbb{R}}(1+|x|)^{N}|\partial^{\alpha}f(x-y)g(y)|\,dm(y)$$

$$\leq \int_{\mathbb{R}}(1+|y|)^{N}(1+|x-y|)^{N}|\partial^{\alpha}f(x-y)||g(y)|\,dm(y)$$

$$\leq ||f||_{\alpha,N}\int_{\mathbb{R}}(1+|y|)^{N}|g(y)|\,dm(y)$$

$$= ||f||_{\alpha,N}\int_{\mathbb{R}}(1+|y|)^{N+2}\frac{|g(y)|}{(1+|y|)^{2}}\,dm(y)$$

$$\leq ||f||_{\alpha,N}||g||_{0,N+2}\int_{\mathbb{R}}\frac{1}{(1+|y|)^{2}}\,dm(y)$$

$$= C||f||_{\alpha,N}||g||_{0,N+2}$$

Since $x \in \mathbb{R}$ is arbitrary, we have that

$$||f * g||_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} (f * g)(x)| \right]$$

$$\leq C||f||_{\alpha,N} ||g||_{0,N+2}$$

Exercise 1.1.23. The convolution $*: \mathcal{S} \times \mathcal{S} \to \mathcal{S}$

- (1) is bilinear
- (2) is continuous

Proof.

- (1) Clear.
- (2) Let $(f_n, g_n)_{n \in \mathbb{N}} \subset \mathcal{S} \times \mathcal{S}$ and $(f, g) \in \mathcal{S} \times \mathcal{S}$. Suppose that $(f_n, g_n) \to (f, g)$. Then $f_n \to f$ and $g_n \to g$. Hence for each $\alpha, N \in \mathbb{N}_0$, $||f_n f||_{\alpha, N} \to 0$ and $||g_n g||_{\alpha, N} \to 0$. In particular

$$\left| \|g_n\|_{0,N+2} - \|g\|_{0,N+2} \right| \le \|g_n - g\|_{0,N+2}$$

$$\to 0$$

So that $(\|g_n\|_{0,N+2})_{n\in\mathbb{N}}$ is bounded. Let $\alpha, N \in \mathbb{N}_0$. Define C > 0 as in the previous exercise. Then

$$||f_n * g_n - f * g||_{\alpha,N} = ||f_n * g_n - f * g_n + f * g_n - f * g||_{\alpha,N}$$

$$\leq ||(f_n - f) * g_n||_{\alpha,N} + ||f_*(g_n - g)||_{\alpha,N}$$

$$\leq C||f_n - f||_{\alpha,N}||g_n||_{0,N+2} + C||f||_{\alpha,N}||g_n - g||_{0,N+2}$$

$$\to 0$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $f_n * g_n \to f * g$. Thus $* : \mathcal{S} \times \mathcal{S} \to \mathcal{S}$ is continuous.

Exercise 1.1.24. Let $f, g \in \mathcal{S}$. Then $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof. Tonelli's theorem implies that

$$||f * g||_{1} = \int_{\mathbb{R}} |f * g(x)| dm(x)$$

$$= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(x - y)g(y) dm(y) \right| dm(x)$$

$$\leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)g(y)| dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)g(y)| dm(x) \right] dm(y)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)| dm(x) \right] |g(y)| dm(y)$$

$$= ||f||_{1} \int_{\mathbb{R}} |g(y)| dm(y)$$

$$= ||f||_{1} ||g||_{1}$$

Exercise 1.1.25. Let $f, g \in \mathcal{S}$, then f * g = g * f.

Proof. Let $x \in R$. Define $a, b : \mathbb{R} \to \mathbb{R}$ by a(z) = f(z)g(x-z) and b(y) = x - y. Then for each $A \in \mathcal{B}(\mathbb{R})$,

$$b_* m(A) = m(b^{-1}(A))$$
$$= m(x - A)$$
$$= m(A)$$

So $b_*m = m$ and

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y) dm(y)$$

$$= \int_{b^{-1}(\mathbb{R})} a \circ b dm$$

$$= \int_{\mathbb{R}} a db_* m$$

$$= \int_{\mathbb{R}} a dm$$

$$= \int_{\mathbb{R}} g(x - z)f(z) dm(z)$$

$$= g * f(x)$$

Since $x \in \mathbb{R}$ is arbitrary, f * g = g * f.

Definition 1.1.26. We define the **bump functions** on \mathbb{R} , denoted $C_c^{\infty}(\mathbb{R})$, by

$$C_c^{\infty}(\mathbb{R}) = C_c(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$$

Exercise 1.1.27. Let $f \in C_c^{\infty}(\mathbb{R})$. Then $f \in \mathcal{S}$.

Proof. Let $\alpha, N \in \mathbb{N}^0$. Define $g: \mathbb{R} \to \mathbb{C}$ by

$$g(x) = (1 + |x|)^N |\partial^{\alpha} f(x)|$$

Then g is continuous. Since $\operatorname{supp}(\partial^{\alpha} f) \subset \operatorname{supp}(f)$, we have that $g \in C_c(\mathbb{R})$ and

$$\sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} f| \right] = \sup_{x \in \mathbb{R}} g(x)$$
$$= ||g||$$
$$< \infty$$

Exercise 1.1.28. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = e^{-x^2}$. Then $f \in \mathcal{S}$.

Proof. meh... \Box

Exercise 1.1.29. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & x \in (-1,1) \\ 0 & x \notin (-1,1) \end{cases}$$

Then $f \in \mathcal{S}$.

Proof. meh... \Box

Exercise 1.1.30. Let $a, b \in \mathbb{R}$. Suppose that a < b. Then for each $\epsilon > 0$, there exists $f \in \mathcal{S}$ such that $\chi_{[a,b]} \leq f \leq \chi_{[a-\epsilon,b+\epsilon]}$.

Proof. Set
$$f(x) =$$

Exercise 1.1.31. Let $f \in \mathcal{S}$. Define

1.2. The Fourier Transform on S.

Exercise 1.2.1. Let $\phi: \mathbb{R} \to S^1$ be a measurable homomorphism.

(1) Then $\phi \in L^1_{loc}(\mathbb{R})$ and there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

(2) Define

$$c = \left[\int_{(0,a]} \phi dm \right]^{-1}$$

Then For each $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$

- (3) $\phi \in C^{\infty}(\mathbb{R})$ and $\phi' = c(\phi(a) 1)\phi$
- (4) Define $b = c(\phi(a) 1)$ and $g \in C^{\infty}(\mathbb{R})$ by $g(x) = e^{-bx}\phi(x)$. Then g is constant and there exists $\xi \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Proof.

(1) Let $K \subset \mathbb{R}$ be compact. Then

$$\int_{K} |\phi| dm = m(K) < \infty$$

So $\phi \in L^1_{loc}(\mathbb{R})$. For the sake of contradiction, suppose that for each a > 0,

$$\int_{(0,a]} \phi dm = 0$$

Then the FTC implies that $\phi = 0$ a.e. on $[0, \infty)$, which is a contradiction. So there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

(2) For $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(0,a]} \phi(x)\phi(t)dm(t)$$
$$= c \int_{(0,a]} \phi(x+t)dm(t)$$
$$= c \int_{(x,x+a]} \phi dm$$

(3) Part (2) and the FTC imply that ϕ is continuous. Let $d \in \mathbb{R}$. Define $f_d \in C((d, \infty))$ by

$$f_d(x) = \int_{(d,x]} \phi dm$$

Since ϕ is continuous, the FTC implies that f_d is differentiable and for each x > d $f'_d(x) = \phi(x)$. Part (2) implies that for each x > d,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$
$$= c(f_d(x+a) - f_d(x))$$

So for each x > d, ϕ is differentiable at x and

$$\phi'(x) = c(\phi(x+a) - \phi(x))$$
$$= c(\phi(a) - 1)\phi(x)$$

Since $d \in \mathbb{R}$ is arbitrary, ϕ is differentiable and $\phi' = c(\phi(a) - 1)\phi$. This implies that $\phi \in C^{\infty}(\mathbb{R})$.

(4) Let $x \in \mathbb{R}$. Then

$$g'(x) = e^{-bx}\phi'(x) - be^{-bx}\phi(x)$$
$$= be^{-bx}\phi(x) - be^{-bx}\phi(x)$$
$$= 0$$

So g'=0 and g is constant. Hence there exists $k \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x)=ke^{bx}$. Since $\phi(0)=1,\ k=1$. Since $|\phi|=1$, there exists $\xi \in \mathbb{R}$ such that $b=2\pi i \xi$.

Note 1.2.2. To summarize, for each measurable homomorphism $\phi : \mathbb{R} \to S^1$, there exists $\xi \in \mathbb{R}$ such such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Definition 1.2.3. Let $f \in \mathcal{S}$. We define the Fourier transform of f, denoted $\hat{f} : \mathbb{R} \to \mathbb{C}$, by

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(x) \, dm(x)$$

Exercise 1.2.4. Let $f \in \mathcal{S}$. Then $\hat{f} \in C_b(\mathbb{R})$.

Proof. Since $f \in \mathcal{S}$, $f \in L^1(m)$. Then for each $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi x} f(x) \, dm(x) \right|$$

$$\leq \int_{\mathbb{R}} |e^{-i\xi x} f(x)| \, dm(x)$$

$$= \int_{\mathbb{R}} |f(x)| \, dm(x)$$

$$= ||f||_{1}$$

So f is bounded. Let $(\xi_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ and $\xi\in\mathbb{R}$. Suppose that $\xi_n\to\xi$. Define $(\phi_n)_{n\in\mathbb{N}}\subset L^1(m)$ and $\phi\in L^1(m)$ by $\phi_n(x)=e^{-i\xi_nx}f(x)$ and $\phi(x)=e^{-i\xi x}f(x)$. Then $\phi_n\xrightarrow{\text{p.w.}}\phi$ and for each $n\in\mathbb{N}$,

$$|\phi_n| = |f|$$
$$\in L^1(m)$$

The dominated convergence theorem implies that

$$\hat{f}(\xi_n) = \int_{\mathbb{R}} e^{-i\xi_n x} f(x) \, dm(x)$$

$$= \int_{\mathbb{R}} \phi_n \, dm$$

$$\to \int_{\mathbb{R}} \phi \, dm$$

$$= \int_{\mathbb{R}} e^{-i\xi x} f(x) \, dm(x)$$

$$= \hat{f}(\xi)$$

So \hat{f} is continuous. Hence $\hat{f} \in C_b(\mathbb{R})$.

Definition 1.2.5. We define the Fourier transform on \mathcal{S} , denoted $\mathcal{F}: \mathcal{S} \to C_b(\mathbb{R})$, by

$$\mathcal{F}(f) = \hat{f}$$

Exercise 1.2.6. We have that $\mathcal{F}: \mathcal{S} \to C_b(\mathbb{R})$ is linear.

Proof. Let $f, g \in \mathcal{S}$ and $\lambda \in \mathbb{C}$. Then

$$\mathcal{F}(f + \lambda g) = \int_{\mathbb{R}} e^{-i\xi x} [f(x) + \lambda g(x)] dm(x)$$

$$= \int_{\mathbb{R}} e^{-i\xi x} f(x) + \lambda e^{-i\xi x} g(x) dm(x)$$

$$= \int_{\mathbb{R}} e^{-i\xi x} f(x) dm(x) + \lambda \int_{\mathbb{R}} e^{-i\xi x} g(x) dm(x)$$

$$= \mathcal{F}(f) + \lambda \mathcal{F}(g)$$

Exercise 1.2.7. Let $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}^0$. Then

(1)
$$\mathcal{F}(X^{\alpha}f) = (-1)^{\alpha}D^{\alpha}\mathcal{F}(f)$$

(2) $\mathcal{F}(D^{\alpha}f) = X^{\alpha}\mathcal{F}(f)$

(2)
$$\mathcal{F}(D^{\alpha}f) = X^{\alpha}\mathcal{F}(f)$$

Proof.

(1) The claim is clear for $\alpha = 0$. Suppose that $\alpha > 0$ and that the claim is true for $\alpha - 1$ so that $\mathcal{F}(X^{\alpha - 1}f) = (-1)^{\alpha - 1}D^{\alpha - 1}\mathcal{F}(f)$. Define $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $\phi(\xi, x) = e^{-i\xi x} x^{\alpha - 1} f(x)$. Then for each $\xi, x \in \mathbb{R}$,

$$|\partial_{\xi}\phi(\xi,x)| = |-ixe^{-i\xi x}x^{\alpha-1}f(x)|$$
$$= |x^{\alpha}f(x)|$$
$$= |(X^{\alpha}f)(x)|$$

Since $X^{\alpha}f \in \mathcal{S} \subset L^1$, we may switch the order of differentiation and integration to obtain

$$\mathcal{F}(X^{\alpha}f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} x^{\alpha} f(x) dm(x)$$

$$= \int_{\mathbb{R}} i \partial_{\xi} \left[e^{-i\xi x} x^{\alpha - 1} f(x) \right] dm(x)$$

$$= i \partial_{\xi} \left[\int_{\mathbb{R}} e^{-i\xi x} x^{\alpha - 1} f(x) dm(x) \right]$$

$$= i \partial_{\xi} \mathcal{F}(X^{\alpha - 1}f)(\xi)$$

$$= -D \mathcal{F}(X^{\alpha - 1}f)(\xi)$$

$$= (-1)^{\alpha} D^{\alpha} \mathcal{F}(f)(\xi)$$

So the claim is true for α .

(2) The claim is clear for $\alpha = 0$. Suppose that $\alpha > 0$ and that the claim is true for $\alpha - 1$ so that $\mathcal{F}(D^{\alpha-1}f) = X^{\alpha-1}\mathcal{F}(f)$. Then integration by parts yields

$$\mathcal{F}(D^{\alpha}f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} [-i\partial_x D^{\alpha-1}f(x)] \, dm(x)$$

$$= -\int_{\mathbb{R}} -i\xi e^{-i\xi x} [-iD^{\alpha-1}f(x)] \, dm(x)$$

$$= \xi \int_{\mathbb{R}} e^{-i\xi x} D^{\alpha-1}f(x) \, dm(x)$$

$$= X \mathcal{F}(D^{\alpha-1}f)(\xi)$$

$$= X^{\alpha}\mathcal{F}(f)(\xi)$$

So the claim is true for α .

Exercise 1.2.8. Let P()

Proof. content...

Exercise 1.2.9. There exists C > 0 such that for each $f \in \mathcal{S}$, $\|\hat{f}\|_{0,0} \leq C\|f\|_{0,2}$. Hint: Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

Proof. Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

Let $f \in \mathcal{S}$. Let $\xi \in \mathbb{R}$. Then

$$|\hat{f}(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi x} f(x) \, dm(x) \right|$$

$$\leq \int_{\mathbb{R}} |f(x)| \, dm(x)$$

$$= \int_{\mathbb{R}} \frac{(1+|x|)^2 |f(x)|}{(1+|x|)^2} \, dm(x)$$

$$\leq ||f||_{0,2} \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

$$= C||f||_{0,2}$$

Since $\xi \in \mathbb{R}$ is arbitrary, $\|\hat{f}\|_{0,0} \leq \|f\|_{0,2}$.

Exercise 1.2.10. Let $a, b \in \mathbb{R}$ and $N \in \mathbb{N}_0$. Then $(a+b)^N \leq 2^{N-1}(a^N+b^N)$. **Hint:** Jensen's inequality

Proof. Jensen's inequality implies that

$$2^{-N}(a+b)^N = \left(\frac{a}{2} + \frac{b}{2}\right)^N$$
$$\leq \left(\frac{a^N}{2} + \frac{b^N}{2}\right)$$
$$= 2^{-1}(a^N + b^N)$$

So
$$(a+b)^N \le 2^{N-1}(a^N + b^N)$$
.

Exercise 1.2.11. We have that $\mathcal{F}(\mathcal{S}) \subset \mathcal{S}$ and $\mathcal{F}: \mathcal{S} \to \mathcal{S}$ is continuous.

Proof. Let $f \in \mathcal{S}$ and $\alpha, N \in \mathbb{N}_0$. Then the previous exercise implies that for each $\xi \in \mathbb{R}$,

$$\xi^{N} \partial_{\xi}^{\alpha} \mathcal{F}(f)(\xi) = (-i)^{\alpha} X^{N} D^{\alpha} \mathcal{F}(f)(\xi)$$
$$= i^{\alpha} X^{N} \mathcal{F}(X^{\alpha} f)(\xi)$$
$$= i^{\alpha} \mathcal{F}(D^{N} X^{\alpha} f)(\xi)$$

Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

as in the previous exercise. Since $\mathcal{F}(X^{\alpha}f)$, $\mathcal{F}(D^{N}X^{\alpha}f) \in C_{b}(\mathbb{R})$, we have that

$$\|\mathcal{F}(f)\|_{\alpha,N} = \sup_{\xi \in \mathbb{R}} \left[(1 + |\xi|)^N |\partial_{\xi}^{\alpha} \mathcal{F}(f)(\xi)| \right]$$

$$\leq \sup_{\xi \in \mathbb{R}} \left[2^{N-1} (1 + |\xi|^N) |\partial_{\xi}^{\alpha} \mathcal{F}(f)(\xi)| \right]$$

$$= \sup_{\xi \in \mathbb{R}} \left[|2^{N-1} \partial_{\xi}^{\alpha} \mathcal{F}(f)(\xi)| + |2^{N-1} \xi^N \partial_{\xi}^{\alpha} \mathcal{F}(f)(\xi)| \right]$$

$$= \sup_{\xi \in \mathbb{R}} \left[|\mathcal{F}(2^{N-1} X^{\alpha} f)(\xi)| + |\mathcal{F}(2^{N-1} D^N X^{\alpha} f)(\xi)| \right]$$

$$\leq \|\mathcal{F}(2^{N-1} X^{\alpha} f)\|_{0,0} + \|\mathcal{F}(2^{N-1} D^N X^{\alpha} f)\|_{0,0}$$

$$\leq C 2^{N-1} \|X^{\alpha} f\|_{0,2} + C 2^{N-1} \|D^N X^{\alpha} f\|_{0,2}$$

$$< \infty$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\mathcal{F}(f) \in \mathcal{S}$ and since $f \in \mathcal{S}$ is arbitrary, $\mathcal{F}(\mathcal{S}) \subset \mathcal{S}$. Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{S}$. Suppose that $f_n \to 0$. Since $X, D : \mathcal{S} \to \mathcal{S}$ are continuous, $X^{\alpha} f_n \to 0$ and $D^N X^{\alpha} f_n \to 0$. Therefore, $\|X^{\alpha} f_n\|_{0,2} \to 0$ and $\|D^N X^{\alpha} f_n\|_{0,2} \to 0$. From above, we see that

$$\|\mathcal{F}(f_n)\|_{\alpha,N} \le C2^{N-1} \|X^{\alpha} f_n\|_{0,2} + C2^{N-1} \|D^N X^{\alpha} f_n\|_{0,2}$$

$$\to 0$$

Hence $\mathcal{F}(f_n) \to 0$ and \mathcal{F} is continuous.

Exercise 1.2.12. Let $f \in \mathcal{S}$. Then

- (1) for each $y \in \mathbb{R}$, $\mathcal{F}(\tau_y f) = \rho_y \mathcal{F}(f)$
- (2) for each $\eta \in \mathbb{R}$, $\mathcal{F}(\rho_{\eta}f) = \tau_{-\eta}\mathcal{F}(f)$
- (3) $\mathcal{F}(\delta_t f) = t^{-1} \delta_{t-1} \mathcal{F}(f)$

Proof.

(1) Let $y, \xi \in \mathbb{R}$. Then

$$\mathcal{F}(\tau_y f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(x - y) \, dm(x)$$

$$= \int_{\mathbb{R}} e^{-i\xi(z+y)} f(z) \, dm(z)$$

$$= e^{-i\xi y} \int_{\mathbb{R}} e^{-i\xi z} f(z) \, dm(z)$$

$$= e^{-i\xi y} \mathcal{F}(f)(\xi)$$

$$= \rho_y \mathcal{F}(f)(\xi)$$

(2) Let $\eta, \xi \in \mathbb{R}$. Then

$$\mathcal{F}(\rho_{\eta}f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} e^{-i\eta x} f(x) \, dm(x)$$
$$= \int_{\mathbb{R}} e^{-i(\xi + \eta)x} f(x) \, dm(x)$$
$$= \mathcal{F}(f)(\xi + \eta)$$
$$= \tau_{-\eta} \mathcal{F}(f)(\xi)$$

(3) Let $\xi \in \mathbb{R}$. Then

$$\mathcal{F}(\delta_t f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(tx) dm(x)$$

$$= \int_{\mathbb{R}} e^{-i\xi t^{-1}z} f(z) t^{-1} dm(z)$$

$$= t^{-1} \mathcal{F}(f)(t^{-1}\xi)$$

$$= t^{-1} \delta_{t^{-1}} \mathcal{F}(f)(\xi)$$

Exercise 1.2.13. Let $f, g \in \mathcal{S}$. Then $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$.

Proof. Let $\xi \in \mathbb{R}$. Tonelli's theorem implies that

$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}} |e^{-i\xi x} f(x - y) g(y)| \, dm(y) \right] dm(x) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y) g(y)| \, dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y) g(y)| \, dm(x) \right] dm(y)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)| \, dm(x) \right] |g(y)| \, dm(y)$$

$$= ||f||_1 \int_{\mathbb{R}} |g(y)| \, dm(y)$$

$$= ||f||_1 ||g||_1$$

So we may apply Fubini's theorem and change the order of integration to obtain that

$$\mathcal{F}(f * g)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} (f * g)(x) \, dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x - y) g(y) \, dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x - y) g(y) \, dm(x) \right] dm(y)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x - y) \, dm(x) \right] g(y) \, dm(y)$$

$$= \int_{\mathbb{R}} [\mathcal{F}(\tau_y f)(\xi)] g(y) \, dm(y)$$

$$= \int_{\mathbb{R}} [e^{-i\xi y} \mathcal{F}(f)(\xi)] g(y) \, dm(y)$$

$$= \mathcal{F}(f)(\xi) \int_{\mathbb{R}} e^{-i\xi y} g(y) \, dm(y)$$

$$= \mathcal{F}(f)(\xi) \mathcal{F}(g)(\xi)$$

Since $\xi \in \mathbb{R}$ is arbitrary, $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$

Exercise 1.2.14. Let $f, g \in \mathcal{S}$. Then

$$\int_{\mathbb{R}} \hat{f}g \, dm = \int_{\mathbb{R}} f\hat{g} \, dm$$

Proof. Tonelli's theorem implies that

$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}} |e^{-i\xi x} f(x) g(\xi)| \, dm(x) \right] dm(\xi) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x)| \, dm(x) \right] |g(\xi)| \, dm(\xi)$$

$$= \|f\|_1 \int_{\mathbb{R}} |g(\xi)| \, dm(\xi)$$

$$= \|f\|_1 \|g\|_1$$

So we may apply Fubini's theorem and switch the order of integration to obtain that

$$\int_{\mathbb{R}} \hat{f}g \, dm = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x) \, dm(x) \right] g(\xi) \, dm(\xi)
= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x) g(\xi) \, dm(x) \right] dm(\xi)
= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x) g(\xi) \, dm(\xi) \right] dm(x)
= \int_{\mathbb{R}} f(x) \left[\int_{\mathbb{R}} e^{-i\xi x} g(\xi) \, dm(\xi) \right] dm(x)
= \int_{\mathbb{R}} f(x) \hat{g}(x) \, dm(x)
= \int_{\mathbb{R}} f \hat{g} \, dm$$

Exercise 1.2.15. Define $f \in \mathcal{S}$ by $f(x) = e^{-x^2/2}$. Then $\mathcal{F}(f) = \sqrt{2\pi}f$.

Proof. Note that for each $\xi \in \mathbb{R}$,

$$\mathcal{F}(Df)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} ix e^{-x^2/2} dm(x)$$
$$= -\int_{\mathbb{R}} \partial_{\xi} \left[e^{-i\xi x} e^{-x^2/2} \right] dm(x)$$
$$= -\partial_{\xi} \mathcal{F}(f)(\xi)$$

A previous exercise implies that $\mathcal{F}(Df) = X\mathcal{F}(f)$. So for each $\xi \in \mathbb{R}$, $\partial_{\xi} \hat{f}(\xi) = -\xi \hat{f}(\xi)$. Define $g \in \mathbb{C}^{\infty}(\mathbb{R})$ by $g(\xi) = e^{\xi^2/2}$. Then

$$\partial_{\xi}(\hat{f}g) = (\partial_{\xi}\hat{f})g + \hat{f}(\partial_{\xi}g)$$
$$= 0$$

So there exists $C \in \mathbb{R}$ such that $\hat{f}g = C$. Hence for each $\xi \in \mathbb{R}$,

$$\hat{f}(\xi) = Ce^{-\xi^2/2}$$
$$= Cf(\xi)$$

Therefore,

$$C = Cf(0)$$

$$= \hat{f}(0)$$

$$= \int_{\mathbb{R}} e^{-x^2/2} dm(x)$$

$$= \sqrt{2\pi}$$

So
$$\hat{f} = \sqrt{2\pi} f$$
.

Exercise 1.2.16. Let $f \in \mathcal{S}$. Define $g : \mathbb{R} \to L^1$ by $g(x) = \tau_x f$. Then g is continuous. **Hint:** approximate by functions in $C_c(\mathbb{R})$.

Proof. Suppose that
$$f \in C_c(\mathbb{R})$$
. Then

Definition 1.2.17. Let $f \in \mathcal{S}$ and $t \neq 0$. We define $f_t \in \mathcal{S}$ by $f_t = t^{-1}\delta_{t^{-1}}f$.

Exercise 1.2.18. Let $\phi \in \mathcal{S}$ and $t \neq 0$. Then

$$\int_{\mathbb{R}} \phi_t \, dm = \int_{\mathbb{R}} \phi \, dm$$

Proof. We have that

$$\int_{\mathbb{R}} \phi_t \, dm = \int_{\mathbb{R}} t^{-1} \phi(t^{-1}x) \, dm(x)$$
$$= \int_{\mathbb{R}} \phi(z) \, dm(z)$$
$$= \int_{\mathbb{R}} \phi \, dm$$

Exercise 1.2.19. Let $\phi \in \mathcal{S}$. Set

$$\alpha = \int_{\mathbb{R}} \phi \, dm$$

Then for each $f \in \mathcal{S}$, $f * \phi_{1/n} \xrightarrow{L^1} \alpha f$. **Hint:** for each $t \neq 0$ and $x \in \mathbb{R}$,

$$f * \phi_t(x) - \alpha f(x) = \int_{\mathbb{R}} [\tau_{tz} f(x) - f(x)] \phi(z) dm(z)$$

Proof. Let $t \neq 0$ and $x \in \mathbb{R}$. The previous exercise implies that

$$f * \phi_t(x) - \alpha f(x) = \int_{\mathbb{R}} f(x - y)\phi_t(y) dm(y) - \int_{\mathbb{R}} \phi(y) dm(y) f(x)$$

$$= \int_{\mathbb{R}} f(x - y)\phi_t(y) dm(y) - \int_{\mathbb{R}} \phi_t(y) dm(y) f(x)$$

$$= \int_{\mathbb{R}} f(x - y)\phi_t(y) - f(x)\phi_t(y) dm(y)$$

$$= \int_{\mathbb{R}} [f(x - y) - f(x)]\phi_t(y) dm(y)$$

$$= \int_{\mathbb{R}} [f(x - y) - f(x)]t^{-1}\phi(t^{-1}y) dm(y)$$

$$= \int_{\mathbb{R}} [f(x - tz) - f(x)]\phi(z) dm(z)$$

$$= \int_{\mathbb{R}} [\tau_{tz}f(x) - f(x)]\phi(z) dm(z)$$

Tonelli's theorem implies that

$$||f * \phi_t - \alpha f||_1 = \int_{\mathbb{R}} |f * \phi_t(x) - \alpha f(x)| \, dm(x)$$

$$\leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |\tau_{tz} f(x) - f(x)| |\phi(z)| \, dm(z) \right] \, dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |\tau_{tz} f(x) - f(x)| |\phi(z)| \, dm(x) \right] \, dm(z)$$

$$= \int_{\mathbb{R}} ||\tau_{tz} f - f||_1 |\phi(z)| \, dm(z)$$

For $n \in \mathbb{N}$, define $g_n \in \mathcal{S}$ by $g_n(z) = \|\tau_{n^{-1}z}f(x) - f(x)\|_1 \phi(z)$. Then $g_n \xrightarrow{\text{p.w.}} 0$ and $|g_n| \leq 2\|f\|_1 |\phi|$ $\in L^1(m)$

The dominated convergence theorem implies that

Definition 1.2.20. content...

1.3. The Fourier Transform on $\mathcal{M}(\mathbb{R})$.

Note 1.3.1. Recall that

$$\mathcal{M}(\mathbb{R}) = \{ \mu : \mathcal{B}(\mathbb{R}) \to \mathbb{C} : \mu \text{ is a complex measure} \}$$

Definition 1.3.2. Let $\mu \in \mathcal{M}(\mathbb{R})$. We define the **Fourier transform of** μ , denoted $\hat{\mu} : \mathbb{R} \to \mathbb{C}$, by

$$\hat{\mu}(\xi) = \int_{\mathbb{R}} e^{-i\xi x} \, d\mu(x)$$

Exercise 1.3.3. Let $\mu \in \mathcal{M}(\mathbb{R})$. Then Then $\hat{\mu} : \mathbb{R} \to \mathbb{C}$ is bounded.

Proof. Let $\xi \in \mathbb{R}$.

$$|\hat{\mu}(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi x} d\mu(x) \right|$$

$$\leq \int_{\mathbb{R}} |e^{-i\xi x}| d|\mu|(x)$$

$$= |\mu|(\mathbb{R})$$

So $\hat{\mu}$ is bounded.

Exercise 1.3.4. Let $\mu \in \mathcal{M}(\mathbb{R})$. Then $\hat{\mu} \in C_b(\mathbb{R})$.

Proof. Let $(\xi_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ and $\xi\in\mathbb{R}$. Define $(f_n)_{n\in\mathbb{N}}\subset L^1(\mu)$ and $f\in L^1(\mu)$ by $f_n(x)=e^{-i\xi_n x}$ and $f(x)=e^{-i\xi x}$. Suppose that $\xi_n\to\xi$. Then $f_n\xrightarrow{\text{p.w.}} f$ and for each $n\in N$ and $x\in\mathbb{R}$,

$$|f_n(x)| = |e^{-i\xi_n x}|$$

$$= 1$$

$$\in L^1(|\mu|)$$

The dominated convergence theorem implies that

$$|\hat{\mu}(\xi_n) - \hat{\mu}(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi_n x} d\mu(x) - \int_{\mathbb{R}} e^{-i\xi x} d\mu(x) \right|$$

$$= \left| \int_{\mathbb{R}} e^{-i\xi_n x} - e^{-i\xi x} d\mu(x) \right|$$

$$\leq \int_{\mathbb{R}} |e^{-i\xi_n x} - e^{-i\xi x}| d|\mu|(x)$$

$$\to 0$$

So $\hat{\mu}: \mathbb{R} \to \mathbb{C}$ is continuous. Hence $\hat{\mu} \in C_b(\mathbb{R})$.

Definition 1.3.5. Let X be a real normed vector space. We define $\mathcal{F}: \mathcal{M}(\mathbb{R}) \to C_b(\mathbb{R})$ by

$$\mathcal{F}(\mu) = \hat{\mu}$$

Exercise 1.3.6. Let X be a real normed vector space. Then $\mathcal{F}: \mathcal{M}(\mathbb{R}) \to C_b(\mathbb{R})$ is linear.

Proof. Let $\mu, \nu \in \mathcal{M}(\mathbb{R})$ and $\xi \in \mathbb{R}$. Then

$$\mathcal{F}[\mu + \nu](\xi) = \int_{\mathbb{R}} e^{-i\xi x} d[\mu + \nu](x)$$
$$= \int_{\mathbb{R}} e^{-i\xi x} d\mu(x) + \int_{\mathbb{R}} e^{-i\xi x} d\nu(x)$$
$$= \mathcal{F}[\mu](\xi) + \mathcal{F}[\nu](\xi)$$

Since $\xi \in \mathbb{R}$ is arbitrary, $\mathcal{F}(\mu + \nu) = \mathcal{F}(\mu) + \mathcal{F}(\nu)$ and \mathcal{F} is linear.

Exercise 1.3.7. Let X be a real normed vector space. If X is separable, then \mathcal{F} is injective.

Proof. Suppose that X is separable. Let $\mu \in \mathcal{M}(X)$. Suppose that $\mu \in \ker \mathcal{F}$. Then $\hat{\mu} = 0$ and for each $\phi \in X^*$,

$$0 = \hat{\mu}(\phi)$$

$$= \int_X e^{-i\phi(x)} d\mu(x)$$

$$= \int_{\mathbb{R}} e^{-ix} d[\phi_*\mu](x)$$

Exercise 1.3.8. Let X be a real normed vector space. Then $\mathcal{F} \in L(\mathcal{M}(X), C_b(X^*))$ and $\|\mathcal{F}\| \leq 1$.

Proof. For $\mu \in \mathcal{M}(X)$ and $\phi \in X^*$, we have that

$$|\mathcal{F}[\mu](\phi)| = \left| \int_X e^{-i\phi(x)} d\mu(x) \right|$$

$$\leq \int_X |e^{-i\phi(x)}| d|\mu|(x)$$

$$= |\mu|(X)$$

$$= |\mu||$$

Hence

$$\|\mathcal{F}(\mu)\| = \sup_{\phi \in X^*} |\mathcal{F}[\mu](\phi)|$$

$$\leq \|\mu\|$$

which implies that $\mathcal{F} \in L(\mathcal{M}(X), C_b(X^*))$ and $\|\mathcal{F}\| \leq 1$.

2. Fourier Analysis on \mathbb{R}^n

2.1. Schwartz Space.

Definition 2.1.1. Let $\alpha \in \mathbb{N}_0^n$ and $x, y \in \mathbb{R}^n$. We define

- (1) $\langle x, y \rangle = \sum_{j} x_{j} y_{j}$
- (2) $|x| = \langle x, x \rangle^{1/2}$
- (3) $|\alpha| = \alpha_1 + \dots + \alpha_n$ (4) $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ (5) $\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$

Definition 2.1.2. Let $f \in C^{\infty}(\mathbb{R}^n), \alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. We define

$$||f||_{\alpha,N} = \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |\partial^{\alpha} f(x)|$$

We define Schwartz space, denoted \mathcal{S} , by

$$S = \{ f \in C^{\infty}(\mathbb{R}^n) : \text{ for each } \alpha \in \mathbb{N}_0^n, N \in \mathbb{N}_0, \|f\|_{\alpha,N} < \infty \}$$

Exercise 2.1.3. For each $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$.

Proof. Let $f \in \mathcal{S}$, $\alpha \in \mathbb{N}_0^n$. Then there exists $C \geq 0$ such that for each $x \in \mathbb{R}^n$,

$$|\partial^{\alpha} f(x)| \le C(1+|x|^2)^{-1}$$

Define $g: \mathbb{R}^n \to [0, \infty)$ defined by $g(x) = (1 + |x|^2)^{-1}$. Then $g \in L^1(\mathbb{R}^n)$ which implies that $\partial^{\alpha} f \in L^1(\mathbb{R}^n).$

Definition 2.1.4.

2.2. The Convolution.

Definition 2.2.1. Let $f, g \in L^0(\mathbb{R}^n)$. If for a.e. $x \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} |f(x-y)g(y)| dm(y) < \infty$$

we define the **convolution of** f with g, denoted $f * g : \mathbb{R}^n \to \mathbb{C}$, by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dm(y)$$

Exercise 2.2.2. Let $f, g \in L^1(\mathbb{R}^n)$. Then $f * g \in L^1(\mathbb{R}^n)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x,y) = f(x-y)g(y). Tonelli's theorem implies that,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2 = \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |f(x - y)g(y)| dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}^n} |g(y)| \left[\int_{\mathbb{R}^n} |f(x - y)| dm(y) \right] dm(x)$$

$$= ||f||_1 \int_{\mathbb{R}^n} |g(y)| dm(x)$$

$$= ||f||_1 ||g||_1$$

$$< \infty$$

Then $h \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$. Fubini's theorem implies that $f * g \in L^1(\mathbb{R}^n)$. Clearly

$$||f * g||_1 \le \int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2$$

 $\le ||f||_1 ||g||_1$

Exercise 2.2.3. Let $f, g, h \in L^1(\mathbb{R}^n)$. Then (f * g) * h = f * (g * h).

Hint: use the substitution $z \mapsto z - y$

Proof. Let $x \in \mathbb{R}^n$. Then using the substitution $z \mapsto z - y$ and Fubini's theorem, we obtain

$$(f*g)*h(x) = \int f*g(x-y)h(y)dm(y)$$

$$= \int \left[\int f(x-y-z)g(z)dm(z)\right]h(y)dm(y)$$

$$= \int \left[\int f(x-z)g(z-y)dm(z)\right]h(y)dm(y)$$

$$= \int \left[\int f(x-z)g(z-y)h(y)dm(z)\right]dm(y)$$

$$= \int \left[\int f(x-z)g(z-y)h(y)dm(y)\right]dm(z)$$

$$= \int f(x-z)\left[\int g(z-y)h(y)dm(y)\right]dm(z)$$

$$= \int f(x-z)g*h(z)dm(z)$$

$$= f*(g*h)(z)$$

So (f * g) * h = f * (g * h).

Exercise 2.2.4. Let $f, g \in L^1(\mathbb{R}^n)$. Then f * g = g * f.

Proof. Let $x \in \mathbb{R}^n$. Using the transformation $y \mapsto x - y$, we obtain that

$$f * g(x) = \int f(x - y)g(y)dm(y)$$
$$= \int f(y)g(x - y)dm(y)$$
$$= \int g(x - y)f(y)dm(y)$$
$$= g * f(x)$$

So f * g = g * f.

Note 2.2.5. To summarize, $(L^1(\mathbb{R}^n), *)$ is a commutative Banach algebra.

Exercise 2.2.6. Young's Inequality:

Let $p \in [1, \infty]$, $f \in L^1$ and $g \in L^p$. Then $f * g \in L^p$ and $||f * g||_p \le ||f||_1 ||g||_p$.

Proof. Define $K \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by K(x,y) = f(x-y). Since for each $x,y \in \mathbb{R}^n$,

$$\int |K(x,y)|dm(x) = \int |K(x,y)|dm(y)$$
$$= ||f||_{p}$$

an exercise in section 5.1 of [4] implies that $f * g \in L^p$ and $||f * g||_p \le ||f||_1 ||g||_p$.

Exercise 2.2.7. Let $p, q \in [1, \infty]$ be conjugate, $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$. Then

- (1) for each $x \in \mathbb{R}^n$, f * g(x) exists.
- (2) $||f * g||_u \le ||f||_p ||g||_q$

(3)

Proof. (1) Let $x \in \mathbb{R}^n$. Holder's inequality implies that

$$\int_{\mathbb{R}^n} |f(x - y)g(y)| dm(y) \le ||f||_p ||g||_q$$

Then f * g(x) exists.

(2) Let $x \in \mathbb{R}^n$. Then in part (1) we showed that

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} f(x - y)g(y)dm(y) \right|$$

$$\leq \int_{\mathbb{R}^n} |f(x - y)g(y)|dm(y)$$

$$\leq ||f||_p ||g||_q$$

Since $x \in \mathbb{R}^n$ is arbitrary, $||f * g||_u \le ||f||_p ||g||_q$. (3)

Exercise 2.2.8. Let $f \in L^1(\mathbb{R}^n)$, $k \in \mathbb{N}$ and $g \in C^k(\mathbb{R}^n)$. Suppose that for each $\alpha \in \mathbb{N}_0^n$, $|\alpha| \le k$ implies that $\partial^{\alpha} g \in L^{\infty}$. Then for each $\alpha \in \mathbb{N}_0^n$, $|\alpha| \le k$ implies that $f * g \in C^k$ and

$$\partial^{\alpha}(f * g) = f * \partial^{\alpha}g$$

Proof. Let $\alpha \in \mathbb{N}_0^n$. Suppose that $|\alpha| = 1$. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x,y) = g(x-y)f(y). Young's inequality implies that for a.e. $x \in \mathbb{R}^n$, $h(x,\cdot) \in L^1(m)$. For each $y \in \mathbb{R}^n$, $\partial^{\alpha}h(\cdot,y) = \partial^{\alpha}g(\cdot -y)f(y)$ and for each $x,y \in \mathbb{R}^n$, $|\partial^{\alpha}h(x,y)| \leq ||\partial^{\alpha}g||_{\infty}|f(y)| \in L^1(\mathbb{R}^n)$. An exercise in section 3.3 of [4] implies that for a.e. $x \in \mathbb{R}^n$, $\partial^{\alpha}(g * f)(x)$ exists and

$$\partial^{\alpha}(f * g)(x) = \partial^{\alpha}(g * f)(x)$$

$$= \partial^{\alpha} \int_{\mathbb{R}^{n}} h(x, y) dm(y)$$

$$= \int_{\mathbb{R}^{n}} \partial^{\alpha} g(x - y) f(y) dm(y)$$

$$= (\partial^{\alpha} g) * f(x)$$

$$= f * (\partial^{\alpha} g)(x)$$

Now proceed by induction on $|\alpha|$.

 \Box

2.3. The Fourier Transform.

Definition 2.3.1.

Exercise 2.3.2. Let $\phi: \mathbb{R} \to S^1$ be a measurable homomorphism.

(1) Then $\phi \in L^1_{loc}(\mathbb{R})$ and there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

(2) Define

$$c = \left[\int_{(0,a]} \phi dm \right]^{-1}$$

Then For each $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$

- (3) $\phi \in C^{\infty}(\mathbb{R})$ and $\phi' = c(\phi(a) 1)\phi$
- (4) Define $b = c(\phi(a) 1)$ and $g \in C^{\infty}(\mathbb{R})$ by $g(x) = e^{-bx}\phi(x)$. Then g is constant and there exists $\xi \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Proof.

(1) Let $K \subset \mathbb{R}$ be compact. Then

$$\int_{K} |\phi| dm = m(K) < \infty$$

So $\phi \in L^1_{loc}(\mathbb{R})$. For the sake of contradiction, suppose that for each a > 0,

$$\int_{(0,a]} \phi dm = 0$$

Then the FTC implies that $\phi = 0$ a.e. on $[0, \infty)$, which is a contradiction. So there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

(2) For $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(0,a]} \phi(x)\phi(t)dm(t)$$
$$= c \int_{(0,a]} \phi(x+t)dm(t)$$
$$= c \int_{(x,x+a]} \phi dm$$

(3) Part (2) and the FTC imply that ϕ is continuous. Let $d \in \mathbb{R}$. Define $f_d \in C((d, \infty))$ by

$$f_d(x) = \int_{(d,x]} \phi dm$$

Since ϕ is continuous, the FTC implies that f_d is differentiable and for each x > d $f'_d(x) = \phi(x)$. Part (2) implies that for each x > d,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$
$$= c(f_d(x+a) - f_d(x))$$

So for each x > d, ϕ is differentiable at x and

$$\phi'(x) = c(\phi(x+a) - \phi(x))$$
$$= c(\phi(a) - 1)\phi(x)$$

Since $d \in \mathbb{R}$ is arbitrary, ϕ is differentiable and $\phi' = c(\phi(a) - 1)\phi$. This implies that $\phi \in C^{\infty}(\mathbb{R})$.

(4) Let $x \in \mathbb{R}$. Then

$$g'(x) = e^{-bx}\phi'(x) - be^{-bx}\phi(x)$$
$$= be^{-bx}\phi(x) - be^{-bx}\phi(x)$$
$$= 0$$

So g'=0 and g is constant. Hence there exists $k\in\mathbb{R}$ such that for each $x\in\mathbb{R}$, $\phi(x)=ke^{bx}$. Since $\phi(0)=1,\ k=1$. Since $|\phi|=1$, there exists $\xi\in\mathbb{R}$ such that $b=2\pi i\xi$.

Note 2.3.3. To summarize, for each measurable homomorphism $\phi : \mathbb{R} \to S^1$, there exists $\xi \in \mathbb{R}$ such such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Exercise 2.3.4. Let $\phi: \mathbb{R}^n \to S^1$ be a measurable homomorphism. Then there exists $\xi \in \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$, $\phi(x) = e^{2\pi i \langle \xi, x \rangle}$.

Proof. When done in the category of measurable groups, an exercise in the section on direct products of groups of [?] implies that there exist measurable homomorphism $(\phi_j)_{j=1}^n \subset (S^1)^{\mathbb{R}}$ such that $\phi = \bigotimes_{j=1}^n \phi_j$. The previous exercise implies that there exist $\xi \in \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$, $\phi_j(x_j) = e^{2\pi i \xi_j x_j}$. Then for each $x \in \mathbb{R}^n$,

$$\phi(x) = \prod_{j=1}^{n} \phi_j(x_j)$$

$$= \prod_{j=1}^{n} e^{2\pi i \xi_j x_j}$$

$$= e^{2\pi i \sum_{j=1}^{n} \xi_j x_j}$$

$$= e^{2\pi i \langle \xi, x \rangle}$$

Definition 2.3.5. Let $f \in L^1(\mathbb{R}^n)$. We define the **Fourier transform of** f, denoted $\hat{f}: \mathbb{R}^n \to \mathbb{C}$ by

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-2\pi i \langle \xi, x \rangle} dm(x)$$

3. Fourier Analysis on LCA Groups

3.1. The Convolution.

Note 3.1.1. For the remainder of the section, we fix a locally compact abelian group G and a Haar measure μ on G.

Definition 3.1.2. Let $f, g \in L^1(\mu)$. We define the **convolution of** f **with** g, denoted $f * g : G \to \mathbb{C}$, by

$$f * g(x) = \int_X f(x - y)g(y)d\mu(y)$$

Exercise 3.1.3. Let $f, g \in L^1(\mu)$. Then $f * g \in L^1(\mu)$.

Proof. By Tonelli's theorem.

$$\begin{split} \int_X |f*g| d\mu &\leq \int_X \left[\int_X |f(x-y)g(y)| d\mu(y) \right] d\mu(x) \\ &= \int_X |g(y)| \left[\int_X |f(x-y)| d\mu(y) \right] d\mu(x) \\ &= \|f\|_1 \int_X |g(y)| d\mu(x) \\ &= \|f\|_1 \|g\|_1 \\ &< \infty \end{split}$$

4. FOURIER ANALYSIS ON BANACH SPACES

References

- [1] Introduction to Algebra

- [2] Introduction to Analysis
 [3] Introduction to Fourier Analysis
 [4] Introduction to Measure and Integration