Problem Session #2

1) The heat capacity of a gas may be represented by

$$\bar{C}_{p} = \alpha + \beta T + \gamma T^{2}$$

For N_2 α =26.984 $JK^{-1}mol^{-1}$, β =5.910 x 10^{-3} $JK^{-2}mol^{-1}$ and Υ = -3.377 x 10^{-7} $JK^{-3}mol^{-1}$. How much heat is required to heat a mole of N_2 from 300 K to 1000 K?

- **2)** Evaluate ΔE for 1.00 mole of oxygen, O_2 , going from -20.0°C to 37.0°C at constant volume in the following cases.
- a) It is an ideal gas with $c_{\rm v}$ = 20.78 J/mol.K.
- **b)** It is a real gas with an experimentally determined $c_v = 21.6 + 4.18 \times 10^{-3} \text{T} (1.67 \times 10^5)/\text{T}^2$.
- **3)** If the Joule-Thomson coefficient for carbon dioxide, CO₂, is 0.6375 K/atm, estimate the final temperature of carbon dioxide at 20 atm and 100°C that is forced through a barrier to a final pressure of 1 atm.
- **4)** Suppose 0.100 mol of a perfect gas having $C_{v,m}=1.50$ R independent of temperature undergoes the reversible cyclic process $1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 1$ shown in the below figure, where either P or V is held at constant in each step. Calculate Q, W and ΔE for each step and for the complete cycle.

