

Policy-based

30 сентября 2025

О чем сегодня поговорим?

- → Откроем новый тип алгоритмов RL
- → Докажем теорему
- → И ещё одну
- → Соответственно получим +2 новых алгоритма

Recap. Value-based

Что мы обучали в Q-learning и DQN?

Ответ: Q

Social Experiment 1

left or right?

Social Experiment 2

Too hard (harder than the task actually)

What's **Q(s,right)** under gamma=0.99?

Минусы Q-learning?

Simple 2-state world

	True	(A)	(B)
Q(s0,a0)	1	1	2
Q(s0,a1)	2	2	1
Q(s1,a0)	3	3	3
Q(s1,a1)	100	50	100

True Q
so
so
100

RIGHT POLICY

LOW MSE

 $Lpprox E[Q(s,a)-(R_{t+1}+\gamma\max_{a'}Q(s',a'))]^2$

Итоги

- Вычислять Q сложнее, чем выбирать лучшие действия
- Для того, чтобы сразу учиться выбирать лучшие действия, будем учить политику напрямую

NOT how humans survived

how humans survived

Стохастические и детерминированные политики

$$a \sim \pi(a \mid s)$$
 $a = \pi(s)$

- Детерминированные частный случай стохастических.
- Где нужны стохастические?

Как работать с дискретными действиями?

Our policy network is a 2-layer fully-connected net.

Как работать с непрерывными действиями?

 $\mu, \sigma \leftarrow \pi_{\Theta}(ext{state})$ action $\sim N(\cdot \mid \mu, \sigma)$

wait, but how I backprop then?

action $\leftarrow \mu + \sigma \cdot \epsilon$, where $\epsilon \sim N(\cdot \mid 1, 0)$

Reparametrization trick

 $\mu, \sigma \leftarrow \pi_{\Theta}(ext{state})$ action $\sim N(\cdot \mid \mu, \sigma)$

wait, but how I backprop then?

action $\leftarrow \mu + \sigma \cdot \epsilon$, where $\epsilon \sim N(\cdot \mid 1, 0)$

: deterministic node

: random node

Что мы хотим?

We want max G over π

G - ожидаемая кумулятивная дисконтированная награда

Что мы хотим?

Теперь более аккуратно

- 1. Траектория (эпизод): $au = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T)$
- **2**. Функция награды за траекторию: $G(au) = \sum_{t=0}^T \gamma^t \; r_t$
- 3. Распределение траекторий под политикой π_{θ} :

$$p(au; heta) = p(s_0) \, \prod_{t=0}^T \pi_ heta(a_t|s_t) \, p(s_{t+1}|s_t,a_t)$$

Целевая функция (Objective)

Ожидаемое суммарное вознаграждение: $J(heta) = \mathbb{E}_{ au \sim p(au; heta)}[G(au)]$

или более развёрнуто: $J(heta) = \int p(au; heta)\,G(au)\,d au$

А нам нужен градиент (чтобы максимизировать)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int p(\tau; \theta) G(\tau) d\tau$$

Вносим градиент внутрь: $abla_{ heta} J(heta) = \int
abla_{ heta} p(au; heta) \, G(au) \, d au$

Offtop

Кто помнит, чему равно $d\ln(x)$?

Варианты ответа:

- 1. dx
- $2. \quad \frac{1}{x} dx$
- 3. x dx
- 4. $\ln(x) dx$

Log-derivative trick OR трюк с логарифмом 🏋

$$d\ln(x) = \frac{1}{x} dx$$

 $x d\ln(x) = dx$
 $dx = x d\ln(x)$

Тогда:

$$\nabla_{\theta} J(\theta) = \int \nabla_{\theta} \ p(\tau; \theta) \ G(\tau) \ d\tau$$

У нас тут есть $\nabla_{\theta} p(\tau; \theta)$

Используем трюк с логарифмом: $\nabla_{\theta} p(\tau; \theta) = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta)$

Подставляем: $\nabla_{\theta}J(\theta) = \int p(\tau;\theta) \, \nabla_{\theta} \log p(\tau;\theta) \, G(\tau) \, d\tau$

Итого:
$$abla_{ heta}J(heta) = \mathop{\mathbb{E}}_{ au \sim p(au; heta)}ig[
abla_{ heta}\log p(au; heta)\,G(au)ig]$$

A зачем нам $\log p(au; heta)$?

$$a \log_a b = b$$
 $a > 0$ Свойства логарифмов: $a \neq 1$ $b > 0$ $a \neq 1$ $b > 0$ $a \neq 1$ $b > 0$ $a \neq 1$ $a \neq 1$

А зачем нам $\log p(au; heta)$?

Напомним: $p(au; heta) = p(s_0) \prod_{t=0}^T \pi_{ heta}(a_t|s_t) \, p(s_{t+1}|s_t,a_t)$

Берём логарифм: $\log p(au; heta) = \log p(s_0) + \sum_{t=0}^T \log \pi_{ heta}(a_t|s_t) + \sum_{t=0}^T \log p(s_{t+1}|s_t,a_t)$

Зависимость от heta только в $\pi_{ heta}$. Поэтому: $abla_{ heta} \log p(au; heta) = \sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_t|s_t)$

Итого: перешли

от вероятности траектории (много шагов политики + шаги среды) к политике (один шаг политики)

Получили REINFORCE

$$abla_{ heta} J(heta) = \mathop{\mathbb{E}}_{ au \sim p(au; heta)} \Big[\Big(\mathop{ ext{\sum}}_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_t | s_t) \Big) \, G(au) \Big]$$

$$abla_{ heta} J(heta) = \mathbb{E} igg[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \, G_t igg]$$

Почему $abla_{ heta}J(heta) = \mathbb{E}\Big[\sum_{t=0}^{T} abla_{ heta}\log\pi_{ heta}(a_{t}|s_{t})\,G_{t}\Big]$ — это круто?

«Если действие привело к большой награде, увеличим вероятность его выбора». Всё!

1. Не нужна модель среды

- Учимся на опыте, на основе реальных траекторий.
- Подходит для любых наград и неизвестных динамик среды.
- То есть для любой награды, на основе опыта сможем учиться улучшать действия, которые максимизируют её

2. Гибкость действий

- Работает для дискретных и непрерывных действий.
- Любая параметризованная политика: нейросеть, линейная модель и т.д.

3. Теоретическая гарантия сходимости

- Градиент действительно направлен в сторону увеличения ожидаемой награды.
- Если шаги обучения малы и эпизоды разнообразны, мы постепенно улучшаем политику.

Иллюстрация для policy gradient

А теперь минусы REINFORCE (по сравнению с DQN)

1. Высокая дисперсия градиента

REINFORCE:

 Градиент, вычисленный по одной траектории, может сильно отличаться от «истинного».

• Последствия:

- Медленная сходимость → нужно много эпизодов.
- Нестабильное обучение → большие колебания в производительности.

Value-Based (DQN):

• Буфер опыта и целевая сеть стабилизируют градиент → меньше дисперсия.

А теперь минусы REINFORCE (по сравнению с DQN)

2. Неэффективное использование данных (On-policy) REINFORCE:

- Использует только данные текущей политики → старые траектории не переиспользуются.
- Требуется собирать много новых данных на каждом шаге.

Value-Based (DQN):

- Off-policy → переиспользует данные из буфера опыта многократно.
- Более эффективное и стабильное обучение.

А теперь минусы REINFORCE (по сравнению с DQN)

3. Применимость только к эпизодическим задачам

REINFORCE:

- Требует завершения эпизода для вычисления полного возврата G_t .
- Непригоден для непрерывных задач без естественного завершения.

Value-Based (DQN):

- Обновляет Q-функцию на основе одношаговых переходов.
- Может использоваться в непрерывных задачах.

Пример из реального мира:

- Робот, который должен ходить вечно
- Система охлаждения сервера 24/7
- Торговый агент на фондовом рынке

Компромиссы и применимость

Использовать REINFORCE / Policy-Based:

- Пространство действий непрерывное (роботы, физические симуляции)
- Оптимальная политика стохастическая
- Нужна теоретическая гарантия сходимости

Использовать Value-Based / DQN:

- Пространство действий дискретное и небольшое
- Требуется высокая эффективность данных
- Задача непрерывная (неэпизодическая)

Можно ли улучшить ситуацию?

Переход от G_t к оценке G_t

Чтобы снизить дисперсию и учесть вклад конкретного действия:

- 1. Вспомним о Q-функции: $Q^\pi(s_t,a_t)=\mathbb{E}[G_t\mid s_t,a_t]$
- 2. Градиент через Q: REINFORCE можно переписать с использованием Q:
 - ullet Было: $abla_{ heta}J(heta) = \mathop{\mathbb{E}}_{ au\sim\pi_{ heta}}\Big[\sum_{t=0}^{T}
 abla_{ heta}\log\pi_{ heta}(a_{t}|s_{t})\,G_{t}\Big]$
 - ullet Стало: $abla_{ heta}J(heta) = \mathop{\mathbb{E}}_{ au\sim\pi_{ heta}}\Big[\sum_{t=0}^{T}
 abla_{ heta}\log\pi_{ heta}(a_{t}|s_{t})\,Q^{\pi}(s_{t},a_{t})\Big]$

Но вообще оценка всё равно так себе :(

Expected Grad-Log-Prob (EGLP) Lemma

samples x and $\nabla_{\theta} \log p(x)$ for the mean

Если $P_{\theta}(x)$ — это параметризованное распределение вероятностей над случайной величиной x, то:

$$\mathop{\mathbb{E}}_{x \sim P_{ heta}} [
abla_{ heta} \log P_{ heta}(x)] = 0.$$

Почему это важно?

- Эта лемма показывает, что градиент логарифма вероятности, усредненный по всем возможным значениям x, равен нулю.
- Это свойство позволяет нам манипулировать выражениями для градиентов, не меняя их математического ожидания.

Докажем
$$\mathop{\mathbb{E}}_{x\sim P_{ heta}}[
abla_{ heta}\log P_{ heta}(x)]=0.$$
 (EGLP)

1. Начнем с того, что любое распределение вероятностей нормализовано:

$$\int_x P_\theta(x) dx = 1.$$

Выводим:

$$\mathbb{E}_{x\sim P_{ heta}}[
abla_{ heta}\log P_{ heta}(x)] = \int_x P_{ heta}(x)
abla_{ heta}\log P_{ heta}(x)dx =$$

$$\left[\log \operatorname{derivative trick:} \nabla_{\theta} P_{\theta}(x) = P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)\right]$$

$$=\int_x
abla_ heta P_ heta(x) dx =
abla_ heta \int_x P_ heta(x) dx =
abla_ heta 1 = 0$$

$$\mathop{\mathbb{E}}_{x\sim P_{ heta}}[
abla_{ heta}\log P_{ heta}(x)]=0.$$

Теперь можно "упростить" формулу

Из EGLP-леммы следует, что мы можем добавить или вычесть любую функцию $b(s_t)$, зависящую только от состояния, без изменения математического ожидания градиента:

$$abla_{ heta} J(\pi_{ heta}) = \mathbb{E}_{ au \sim \pi_{ heta}} \left| \sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{t}|s_{t}) \left(G_{t} - b(s_{t})
ight)
ight|.$$

Что такое базовая функция?

- Базовая функция $b(s_t)$ это функция, которая помогает уменьшить дисперсию градиента.
- Наиболее распространенный выбор: $b(s_t) = V^{\pi}(s_t)$, где $V^{\pi}(s_t)$ это значение состояния (ожидаемая награда, если агент начинает из состояния s_t).

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &= \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_t | s_t) \left(Q(s_t, a_t) - V(s_t)
ight)
ight] = \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_t | s_t) \left(A(s_t, a_t)
ight)
ight] . \end{aligned}$$

Advantage

$$A(s,a) = Q(s,a) - V(s)$$

 $Q(s_t,a_t)$: Ожидаемая награда за выполнение действия a_t в состоянии $s_t.$

• Интуиция:

 $V(s_t)$: Ожидаемая награда за нахождение в состоянии s_t (независимо от действия).

- 0 0(e.
 - $Q(s_t,a_t)$ показывает, насколько хорошо конкретное действие a_t в состоянии s_t .
 - $V(s_t)$ показывает, насколько хорошее состояние s_t в среднем (для всех возможных действий).
 - \circ Разница $A(s_t,a_t)$ говорит, насколько действие a_t лучше или хуже среднего.

good state

state:

Иллюстрация для policy gradient

Actor-Critic

$$A(s,a) = Q(s,a) - V(s)$$
 $Q(s,a) = r + \gamma V(s')$ $A(s,a) = r + \gamma V(s') - V(s)$

Actor-Critic — это гибридный метод, который сочетает:

- **Actor**: Политика $\pi_{\theta}(a_t|s_t)$, которая обучается выбирать действия.
- **Critic**: Оценка состояния $V^\pi(s_t)$, которая помогает оценивать политику.

Как работает А2С?

- 1. Actor:
 - Обновляет политику, используя advantage function:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{t}|s_{t}) A(s_{t},a_{t})
ight].$$

- 2. Critic:
 - Обучается минимизировать ошибку между предсказанными значениями состояний $V(s_t)$ и реальными наградами:

$$L = \mathbb{E}\left[\left(G_t - V(s_t)
ight)^2
ight].$$

- 3. Объединение:
 - Critic предоставляет более точную оценку advantage, что делает обновления Actor более стабильными и менее шумными.

Итоги

- → Попробовали учить политику напрямую
- → Для этого вывели REINFORCE

$$abla_{ heta} J(heta) = \mathbb{E} \Big[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \, G_t \Big]$$

→ А потом улучшили его и получили Actor-Critic!

$$abla_{ heta}J(\pi_{ heta}) = \mathbb{E}_{ au \sim \pi_{ heta}}\left[\sum_{t=0}^{T}
abla_{ heta}\log \pi_{ heta}(a_{t}|s_{t})\left(Q(s_{t},a_{t}) - V(s_{t})
ight)
ight] = \mathbb{E}_{ au \sim \pi_{ heta}}\left[\sum_{t=0}^{T}
abla_{ heta}\log \pi_{ heta}(a_{t}|s_{t})\left(A(s_{t},a_{t})
ight)
ight]$$

Вопросы?

