HackatH2On IoT

La telelectura al servei de la ciutadania, la ciutat, i el medi ambient.

HackatH2On IoT

Introducció a Wize

Marc Fàbregas

Wize

Wize és una evolució d'un protocol àmpliament provat i amb milions de dispositius desplegats.

Dels "busques" a la IoT

Wize, Wize-Alliance, AllWize

Entenent què és què

La Wize-Alliance

- Suez i GRDF han estat fent servir la banda de 169MHz durant anys.
- Suez té més de 3.5 milions de dispositius connectats a Europa, al voltant d'un milió a Espanya.
- GRDF tindrà 12 milions de dispositius a finals de 2023 a França, el 90% del territori continental cobert.
- GRDF s'està preparant per operar la seva xarxa com a telco.

Una mica d'història

- El 1999 la fregüència dedicada als buscapersones s'allibera.
- El 2013 la mateixa freqüència és assignada a Wireless M-Bus type N (EN-13757).
- El 2017 neix la Wize Alliance i defineix la primera versió del protocol Wize, basat en Wireless M-Bus 4 però orientat a la IoT.
- El 2018 AllWize s'uneix a la Wize Alliance amb la intenció fer més fàcil l'accés a la tecnologia (maquinari assequible, biblioteques de codi,...).
- El 4^t trimetre de 2018 AllWize presenta una placa de desenvolupament Wize basada en la família MKR d'Arduino.
- El 2ⁿ trimestre de 2019 es posen a la venda la AllWize K1 (capa d'Arduino) i la AllWize K2 (*standalone*).

Característiques principals del protocol

- És un protocol LAN (local area network).
- Defineix les capes OSI 1 (canals i modulació), 2 (MAC, flux de missatges, OTA), 6 (presentació) i 7 (aplicació).
- Fa servir la bada de 169MHz, sense llicència a la Unió Europea i menys ocupada que 868MHz.
- Té una potència màxima de transmissió superior.
- No hi ha «chip lock-in» ni «network lock-in». La especificació és completament oberta.
- Fa servir modulació de banda estreta (12.5 25kHz).
- És bidireccional.
- Defineix mecanismes d'encriptació.
- Permet actualitzacions remotes (OTA).

On es fa servir?

A la UE és una banda ISM, a la resta de països es fa servir amb llicències específiques

Avantatges i desavantatges de fer servir la banda de 169

Pèrdues de transmissió	Les pèrdues de transmissió són proporcionals a la freqüència (al voltant de +14dB millor per 169MHz vs 868MHz)		
Pèrdues per obstacles	Les freqüències més baixes tenen major penetració	ОК	
Pèrdues per la polarització	No afecta la freqüència	-	
Guany de l'antena	Les antenes són més complexes i menys eficients a baixes freqüències (les antenes per nodes bones a 169MHz tenen guanys de ~0dBi!!)	КО	
Potència de transmissió	L'ETSI limita a 27dBm (500mW) la potència de transmissió per 169MHz, mentre que a 868MHz és només de 14dBm (25mW)	ОК	
Sensibilitat de la recepció La velocitat de transmissió mínima amb Wize és de 2400bps, per Sigfox (com a exemple) és 300bps. Transmissions més ràpides impliquen menor sensibilitat		КО	
Guany en el processament	Sigfox i LoRa fan servir tècniques de modulació més avançades, Wize fa servir FSK per compatibilitat (LoRa és capaç de decodificar missatges amb relacions senyal-soroll de -20dB)	КО	

Avaluant l'abast

Calculem el balanç de l'enllaç en diferents escenaris i tecnologies

	LoRaWAN	SigFox	Wize	NB-IoT
Potència TX	14	14	27	160
Sensibilitat RX	-141	-142	-126	
Velocitat (bps)	300	100	2400	10000
Guany antena TX	2	2	-9	1
Guany antena RX	4	4	4	8
Atenuació per la freqüència	-31	-31	-17	-31
Balanç aire lliure	130	131	131	138
Pèrdues típiques en interiors	-35	-35	-25	-35
Balanç en interiors	95	96	106	103

Avaluant el consum

Calculem el consum per un cas d'us concret però força representatiu

12 bytes/missatge	LoRaWAN	SigFox	Wize	NB-IoT
Tamany capçalera	18	8	26	21
Longitud màxima (bytes)	51	12	102	
Velocitat (bps)	300	100	2400	10000
Durada TX (s)	0,80	1,60	0,13	
Factor de repetició	1	3	1	
Durada TX (s)	0,80	4,80	0,13	
Consum TX (mA)	33	33	250	
Energia TX (mA·s)	26,40	158,40	31,67	90-500
Duara RX (s)	0,16		0,02	
Consum RX (mA)	15		28	
Energia RX (mA·s)	2,40		0,56	10-100
Energia total (mA·s)	28,80		32,23	100-600

Gràcies

