#### **PSSD**

Dynamic programming 0-1 Knapsack problem

# 0-1 Knapsack problem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight  $w_i$  and benefit value  $b_i$  (all  $w_i$ ,  $b_i$  and W are integer values)
- <u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?

# 0-1 Knapsack problem: a picture

This is a knapsack: (max weight W = 20)



|       | Weight           | Benefit value $b_i$ |
|-------|------------------|---------------------|
| Items | $\mathbf{W}_{i}$ | o <sub>i</sub>      |
|       | 2                | 3                   |
|       | 3                | 4                   |
|       | 4                | 5                   |
|       | 5                | 8                   |
|       | 9                | 10                  |

# 0-1 Knapsack problem

The problem, in other words, is to find  $\max \sum_{i \in T} b_i$  subject to  $\sum_{i \in T} w_i \le W$ 

The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.

Just another version of this problem is the "Fractional Knapsack Problem", where we can take fractions of items.

# 0-1 Knapsack problem: brute-force approach

Let's first solve this problem with a straightforward algorithm:

- Since there are n items, there are  $2^n$  possible combinations of items.
- Discard all subsets whose sum of the weights exceed W (not feasible)
- Select the maximum total benefit of the remaining (feasible) subsets
- Running time will be  $O(2^n)$

# Example

Let's run our algorithm on the following data:

```
n = 3 (# of elements)
W = 5 (max weight)
Elements (weight, benefit):
(2,3) (3,4) (4,5)
```

# The example with "brute force"

| { }                       | W = 0 | \$0 |
|---------------------------|-------|-----|
| { item 1 }                | W = 2 | \$3 |
| { item 2 }                | W = 3 | \$4 |
| { item 3 }                | W = 4 | \$5 |
| { item 1, item 2 }        | W = 5 | \$7 |
| { item 1, item 3 }        | W > 5 |     |
| { item 2, item 3 }        | W > 5 |     |
| { item 1, item 2, item 3} | W > 5 |     |

Note: the knapsack capacity is W=5, and the items are (2,3), (3,4), (4,5)

# 0-1 Knapsack problem: brute-force approach

- Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems...

#### Let's try this:

```
If items are labeled 1..n, then a subproblem would be to find an optimal solution for S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}
```

# Defining a Subproblem

If items are labeled 1..n, then a subproblem would be to find an optimal solution for  $S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}$ 

- This is a valid subproblem definition.
- The question is: can we describe the final solution  $(S_n)$  in terms of subproblems  $(S_k)$ ?
- Unfortunately, we <u>can't</u> do that. Counterexample follows....

#### Defining a Subproblem (larger scenario)



Solution for  $S_4$  is not part of the solution for  $S_5!!!$ 

| $w_3 = 4$ $b_3 = 5$ |   | $w_2 = 3$ $b_2 = 4$ |  |
|---------------------|---|---------------------|--|
|                     | 4 | 2                   |  |

#### For S<sub>4</sub>:

Total weight: 14 total benefit: 20

|   | $w_4 = 5$ $b_4 = 8$ |  |
|---|---------------------|--|
| _ |                     |  |

#### For S<sub>5</sub>:

Total weight: 20 total benefit: 26

# Defining a Subproblem (continued)

- As we have seen, the solution for  $S_4$  is not part of the solution for  $S_5$
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- The subproblem then will be to compute B[k,w]

#### Recursive Formula for subproblems

Recursive formula for subproblems:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

It means, that the best subset of  $S_k$  that has total weight w is one of the two:

- 1) the best subset of  $S_{k-1}$  that has total weight w, or
- 2) the best subset of  $S_{k-1}$  that has total weight w- $w_k$  plus the item k

#### Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- The best subset of  $S_k$  that has the total weight w, either contains item k or not.
- First case:  $w_k > w$ . Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Second case:  $w_k <= w$ . Then the item k can be in the solution, and we choose the case with greater value

#### 0-1 Knapsack Algorithm

```
for w = 0 to W
  B[0,w] = 0
for i = 0 to n
  B[i,0] = 0
  for w = 0 to W
   if w_i \le w // item i can be part of the solution
      if b_i + B[i-1,w-w_i] > B[i-1,w]
          B[i,w] = b_i + B[i-1,w-w_i]
      else
          B[i,w] = B[i-1,w]
   else B[i,w] = B[i-1,w] // w_i > w
```

# Running time

for 
$$w = 0$$
 to  $W$ 

$$B[0,w]=0$$

for 
$$i = 0$$
 to n

$$B[i,0] = 0$$

for 
$$w = 0$$
 to W

< the rest of the code >

What is the running time of this algorithm?

$$O(n*W)$$

Remember that the brute-force algorithm takes O(2<sup>n</sup>)

# Example

Let's run our algorithm on the following data:

```
n = 4 (# of elements)
W = 5 (max weight)
Elements (weight, benefit):
(2,3), (3,4), (4,5), (5,6)
```

#### Example (2)



No itemset considered → no profit!

for 
$$w = 0$$
 to  $W$   
 $B[0,w] = 0$ 

#### Example (3)



No itemset considered → no profit!

No knapsack capacity

→ no profit!

for 
$$i = 0$$
 to n  
B[i,0] = 0

#### Example (4)

Items:

i 0 1 2 3 4

1: (2,3) 2: (3,4)

3: (4,5)

 $0 \rightarrow 0$ 

0

0

0

i=1

 $b_i=3$ 

0

2

0

 $\overline{w_i}=2$ 

4

3

w=1

$$W-W_i = -1$$

if  $w_i \le w$  // item i can be part of the solution if  $b_i + B[i-1,w-w_i] > B[i-1,w]$   $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] //  $w_i > w$ 

#### Example (5)

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i=3$$

$$w_i=2$$

$$w=2$$

$$w-w_i=0$$

i=1

if  $\mathbf{w_i} \le \mathbf{w}$  // item i can be part of the solution if  $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$   $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$ else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$  //  $\mathbf{w_i} > \mathbf{w}$ 

W

0

2

3

4

#### Example (6)

Items:

i 0 3

1: (2,3) 2: (3,4)

W 0 0 0 0 0 0 0

3: (4,5)

4: (5,6)

2 3 0

 $b_i=3$ 

i=1

3

0

0

0

 $\overline{w_i}=2$ 

4

W=3

5

$$w-w_i=1$$

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else  $B[i,w] = B[i-1,w] // w_i > w$ 

#### Example (7)

1: (2,3)

Items:

i 0 3

2: (3,4)

0 0 0 0 0

3

3

3

3: (4,5)

4: (5,6)

0 0

0

0

0

i=1

2

W

 $b_i=3$ 

3

 $\overline{w_i}=2$ 

w=4

5

$$w-w_i=2$$

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else  $B[i,w] = B[i-1,w] // w_i > w$ 

#### Example (8)

Items: 1: (2,3)

i 0 1 2 3 4
W
0 0 0 0 0 0
1 0 0
2 0 0

3

3

0

0

0

2: (3,4)

3: (4,5)

i=1

4: (5,6)

$$b_i=3$$

$$w_i=2$$

$$w=5$$

$$w-w_i=2$$

if  $\mathbf{w_i} \le \mathbf{w}$  // item i can be part of the solution if  $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$   $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$ else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$  //  $\mathbf{w_i} > \mathbf{w}$ 

3

4

#### Example (9)

Items: 1: (2,3)

**i** 

0

3

2: (3,4)

W

3

5

| 0 | 0   | 0          | 0 | 0 |
|---|-----|------------|---|---|
| 0 | 0 - | <b>→</b> 0 |   |   |
| 0 | 3   |            |   |   |
| 0 | 3   |            |   |   |
| 0 | 3   |            |   |   |
| 0 | 3   |            |   |   |

 $W_i = 3$ w=1

$$w-w_i=-2$$

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] //  $W_i > W$ 

#### Example (10)

3

Items:

i 0 W 0 0 0

1: (2,3)

2: (3,4)

 $\overline{3}$ : (4,5)

4: (5,6)

i=2  $b_i=4$ 

 $\dot{w}_i = 3$ 

w=2

 $w-w_i=-1$ 

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] //  $w_i > w$ 

2

3

4

#### Example (11)

Items:

i 0 1 2 3 4

1: (2,3)

 $\begin{bmatrix} \mathbf{W} \\ \mathbf{0} \\ \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf$ 

2: (3,4) 3: (4,5)

=2 4: (5,6)

3

3

3

4

i=2  $b_i=4$   $w_i=3$ 

4 0

0

0

w=3

5

3

$$w-w_i=0$$

if  $\mathbf{w_i} \le \mathbf{w}$  // item i can be part of the solution if  $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$   $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$ else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$  //  $\mathbf{w_i} > \mathbf{w}$ 

#### Example (12)

Items:

|   |   |   |   | - |   |
|---|---|---|---|---|---|
| ĺ | 0 | 1 | 2 | 3 | 4 |

1: (2,3)

W 0 0 0 0 0 0 0 0 2 3

2: (3,4)  $\overline{3}$ : (4,5)

i=2  $b_i=4$ 

 $\dot{w}_i = 3$ 

4: (5,6)

3 0

0

3 0 4

3  $\mathbf{0}$ 

3

w=4

 $w-w_i=1$ 

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else  $B[i,w] = B[i-1,w] // w_i > w$ 

3

4

#### Example (13)

Items:

i W 

1: (2,3)

2: (3,4)

 $\overline{3}$ : (4,5)

4: (5,6)

$$i=2$$
 $b_i=4$ 

$$\mathbf{w}_{i}=3$$

$$w=5$$

$$w-w_i=2$$

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else  $B[i,w] = B[i-1,w] // w_i > w$ 

#### Example (14)

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

 $b_i = 5$ 

 $w_i=4$ 

w = 1..3

if 
$$w_i \le w$$
 // item i can be part of the solution  
if  $b_i + B[i-1,w-w_i] > B[i-1,w]$   
 $B[i,w] = b_i + B[i-1,w-w_i]$   
else  
 $B[i,w] = B[i-1,w]$   
else  $B[i,w] = B[i-1,w]$  //  $w_i > w$ 

W

2

3

4

#### Example (15)

2 3 4

#### 1: (2,3) 2: (3,4) 3: (4,5) 4: (5,6)

Items:

| U | 1 | 2  | 3 | 4 |
|---|---|----|---|---|
| 0 | 0 | 0, | 0 | 0 |
| 0 | 0 | 0  | 0 |   |
| 0 | 3 | 3  | 3 |   |
| 0 | 3 | 4  | 4 |   |
| 0 | 3 | 4  | 5 |   |
| 0 | 3 | 7  |   |   |

$$i=3$$
 $b_i=5$ 
 $w_i=4$ 
 $w=4$ 
 $w-w_i=0$ 

if 
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution  
if  $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$   
 $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$   
else  
 $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$   
else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$  //  $\mathbf{w_i} > \mathbf{w}$ 

i

W

#### Example (15)

| $\mathbf{W}$ | 0 | 1 | 2 | 3 | 4 |
|--------------|---|---|---|---|---|
| 0            | 0 | 0 | 0 | 0 | 0 |
| 1            | 0 | 0 | 0 | 0 |   |
| 2            | 0 | 3 | 3 | 3 |   |
| 3            | 0 | 3 | 4 | 4 |   |
| 4            | 0 | 3 | 4 | 5 |   |

Items:

1: (2,3)

2: (3,4)

$$b_i = 5$$

$$w_i = 4$$

$$W=5$$

$$\mathbf{w} - \mathbf{w}_{i} = 1$$

if  $w_i \le w$  // item i can be part of the solution  $if b_i + B[i-1,w-w_i] > B[i-1,w]$  $B[i,w] = b_i + B[i-1,w-w_i]$ else

$$B[i,w] = B[i-1,w]$$
  
else  $B[i,w] = B[i-1,w] // w_i > w$ 

5

0

Example (16)

#### Items:

1: (2,3)

2: (3,4)

3: (4,5)

| i | 0 | 1 | 2 | 3          | 4          |
|---|---|---|---|------------|------------|
|   | 0 | 0 | 0 | 0          | 0          |
|   | 0 | 0 | 0 | 0 -        | <b>→</b> 0 |
|   | 0 | 3 | 3 | 3 <b>–</b> | <b>→ 3</b> |
|   | 0 | 3 | 4 | 4 —        | <b>→ 4</b> |
|   | 0 | 3 | 4 | 5 <b>—</b> | <b>→</b> 5 |
|   | 0 | 3 | 7 | 7          |            |

$$i=3$$
 $b_i=5$ 
 $w_i=4$ 
 $w=1..4$ 

if 
$$w_i \le w$$
 // item i can be part of the solution  
if  $b_i + B[i-1,w-w_i] > B[i-1,w]$   
 $B[i,w] = b_i + B[i-1,w-w_i]$   
else  
 $B[i,w] = B[i-1,w]$   
else  $B[i,w] = B[i-1,w]$  //  $w_i > w$ 

W

#### Example (17)

i W  $\mathbf{0}$ 

#### Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

 $b_i=5$   $w_i=4$ 

w=5

if 
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution  
if  $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$   
 $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$   
else  
 $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$   
else  $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$  //  $\mathbf{w_i} > \mathbf{w}$ 

#### Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary

#### Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- Running time (Dynamic Programming algorithm vs. naïve algorithm):
  - 0-1 Knapsack problem: O(W\*n) vs. O(2<sup>n</sup>)