UERJ

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO DE FÍSICA ARMANDO DIAS TAVARES

Alunos:

Matheus Ramos de Souza Raphael Marcelo Costa de Lima

Ressonância do Spin do Elétron

Sumário

1. Introdução

- 1.1 O momento magnético e momento angular do spin
- 1.2 Efeito do campo magnético no momento ângular

2. Objetivos

- 2.1 Fator de Landé
- 2.2 Dados Necessários

3 Procedimento Experimental

- 3.1 Materiais utilizados
- 3.1.1 Figura 1 Formato do experimento
- 3.1.2 Tabela de dados

4. Análise de dados

- 4.1 Visualização dos dados coletados
- 4.2 Encontrando o Fator de Landé do experimento
- 4.2 Incerteza do coeficiente angular com monte carlo

Conclusao

Introdução

O momento magnético e momento angular do spin

$$\overrightarrow{\mu_s} = -g_s \mu_B rac{ec{s}}{\hbar}$$
 (1)

- ullet g_s é o fator de Landé
- μ_g é o magneton de bohr (uma constante $\mu_B=rac{e\hbar}{2m_e}$)
- $ec{s}$ é o momento angular do spin

temos também que, pela quantização do momento angular do spin:

$$\stackrel{
ightarrow}{S_z} = m_s \hbar$$

$$m_s=rac{\stackrel{
ightarrow}{S_z}}{\hbar}$$
 (2)

onde o número quântico magnético m_s só pode assumir os valores $\pm {1\over 2}$

substituindo (2) em (1):

$$\overrightarrow{\mu_s} = g_s \mu_B m_s$$

sabendo que quando um campo magnético externo é aplicado, a energia associada com o momento é:

$$E=-\overrightarrow{\mu_s}.\, ec{B}$$

devido a quantização do spin, sabemos que só podemos ter 2 estados de energia:

1. o menor estado de energia $m_s=+rac{1}{2}$

$$E_{min}=-rac{g_s\mu_b B}{2}$$

2. o maior estado de energia $m_s=-rac{1}{2}$

$$E_{max}=rac{g_s\mu_b B}{2}$$

logo, quando o eletron for do menor estado de energia para o maior estado de energia

$$\Delta E = g_s \mu_b B$$

quando ocorre a transição entre 2 níveis de energia, sabemos que o sistema deve obrigatoriamente absorver ou emitir um fóton, então:

$$hv = g_s \mu_b B$$

onde podemos isolar o v para chegar na fórmula presente no roteiro do experimento:

$$v = \frac{g_s \mu_b B}{h}$$

Efeito do campo magnético no momento ângular

O campo magnético não afeta na magnetude do spin do momento angular (já que ele não faz parte da fórmula...), mas ele influencia a orientação de \vec{s} em relação a direção do campo - o que queremos afimar com isso:

$$E=-ec{\mu}.ec{B}$$

abrindo o produto escalar:

$$E = -|\mu|.|B|cos\theta$$

na ausencia de B, é impossível determinar a direção heta, agora com B...

1.
$$m_s=-rac{1}{2}$$
 o ângulo $heta$ será 0

2. por consequência $m_s=+rac{1}{2}\,$ o ângulo heta será 180

então sabemos que só poderemos ter esses 2 estados do elétron quando está sob efeito de um campo magnético.

Objetivos

Fator de Landé

Dada a introdução, sabemos que quando há um campo magnético, podemos observar a seguinte fórmula:

$$v=rac{g_s\mu_bec{B}}{h}$$

h é a constante de planck = $6.626 imes 10^{-34} J.s$

 μ_b é o magneton de Bohr $= 9.274 imes 10^{-24}$

então, temos como objetivo calcular g_s , a partir de dados coletados, desta maneira teremos como observar os 2 estados mostrados na introdução sobre o spin do elétron.

o fator de Landé g_s = 2 é o fator para o elétron.

Dados necessários

com isso em mente montados um experimento que conseguimos ter a frequência e a corrente que foi passada nas bobinas. Assim podemos calcular o campo magnético, que é dado por:

$$B = rac{8\mu_0 NI}{\sqrt{125}R}$$

onde temos:

$$\mathsf{R} = 6.8 \times 10^{-2} \; \mathsf{m}$$

N = 320, número de espiras na bubina, adimensional.

I = corrente, será coletada pelo multimetro

 μ_0 é uma constante conhecida, permissividade do vácuo, dada por: $1.256 imes 10^{-6} N/A$

assim, podemos tentar encontrar g_s

Procedimento Experimental

Materiais utilizados

Lista dos materiais utilizados:

- 1 multímetro MINPA ET2042C
- 4 cabos (para ligar os componentes)
- 1 fonte de alimentação
- gerador de rádio-frequência
- osciloscópio
- 2 bobinas de Helmholtz

conectamos os 4 cabos, a fonte, o multímetro (que será utilizado para medir a corrente entre a unidade de controle e as bobinas) e o gerador de radio-frequência.

Figura 1: Experimento montado sem o osciloscópio fonte: relatório.

precisamos que as bobinas fiquem paralelas, com o "sample probe" aproximadamente na região central entre as duas, e que a distância entre as 2 bobinas deve ser aproximadamente o seu raio.

seguindo o passo a passo ofereceido pelo roteiro, montamos o experimento e fizemos as 10 medidas:

I (A)	∥ MHz ⊔∟	I I_err (A)	B (T)
0.58	30	0.0616	0.00245298
0.63	33	0.0626	0.00266444
0.71	36	0.0642	0.00300278
0.79	39	0.0658	0.00334113
0.88	42 42	0.0676	0.00372176
0.92	45	0.0684	0.00389093
1	48 48	0.07	0.00422927
1.06	51	0.0712	0.00448303
1.11	54	0.0722	0.00469449
1.17	57	0.0734	0.00494825
1.25	60	0.075	0.00528659

com as suas respectivas unidades. Não foi pego o erro possível da frequencia, porém temos o erro do multímetro: 2% + 5D.

B foi calculado a partir da fórmula disponível na parte de **objetivos**

Análise de dados

Gráfico representando os dados que coletamos

Figura 2: Visualização dos dados coletados Fonte: Autores

Podemos fazer o método de mínimos quadrados entre B e MHz de tal maneira que:

$$v=rac{g_s\mu_bec{B}}{h}$$

será:

$$y=rac{g_s\mu_b}{h}x$$

e na nossa regressão linear será:

$$y = ax$$

onde:

$$a=rac{g_s\mu_b}{h}$$

note que vamos fazer o mínimos quadrados com Hz e não MHz.

Gráfico com mínimos quadrados

Figura 3: Gráfico com mínimos quadrados. fonte: Autores.

Encontrando Gs do experimento

com o nosso valor de a (coeficiente angular), podemos encontrar g_s experimental:

```
a = 11535318040
```

sabemos que multiplicarmos esse valor pela constante de planck e dividir por μ_0 , teremos:

```
g_s=0.824 (approx)
```

Incerteza do coeficiente angular utilizando monte carlo

para calcular o erro que essa regressão contém, podemos fazer simulação de monte-carlo para estimar incertezas:

o código abaixo pode ser encontrado neste link

```
a_values = []
for _ in range(1000):
    x_synthetic = df['I'].values + np.random.normal(0, df['I_err'])
    x_synthetic = u0 * N * x_synthetic * (4/5) ** (3/2)/R

X = x_synthetic.reshape(-1, 1)
    Y = df['MHz'].values.reshape(-1, 1) * 1e6

model = LinearRegression(fit_intercept=False)
```

```
model.fit(X, Y)

a_values.append(model.coef_[0][0])

a_mean = np.mean(a_values)
a_std = np.std(a_values)
```

na simulação, encontramos que:

$$g_s = 0.824 + -0.017$$

sabendo que o valor teórico é 2, o nosso dado está bem fora do esperado.

compatibilidade:

$$|0.824-2|/0.017 < 2st$$
 erro menor que 2 desvios padrões

o que é bem distante de 2.

Conclusão

o valor que encontramos é incompatível com o valor esperado. Podemos levantar alguns pontos para isso, como a dificuldade para ficar reajustando o experimento conforme o aumento da frequência, por conta da instabilidade do sinal. Interferências externas podem ter atrapalhado também no campo magnético.