TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hê đào tao: Chính quy, Bâc học: Đai học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không \ k\mathring{e}$ thời gian phát $d\mathring{e}$)

\mathbf{D} ề số 1

Câu 1 (2,0 điểm). Cho các ma trận

$$A = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & -2 \end{bmatrix}.$$

- (a) Tính $A + 2A^T$, trong đó A^T là ma trận chuyển vị của A.
- (b) Tính AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases} x - 2y + 3z &= 1\\ x + 2y - z &= 1\\ 2x + y - 3z &= 0. \end{cases}$$

Câu 3 (2,0 điểm). Trong không gian \mathbb{R}^3 cho hệ véc tơ:

$$V = \{v_1 = (3, 4, 2); v_2 = (-2, 0, 7); v_3 = (4, -5, 0)\}.$$

- (a) Kiểm tra xem hệ véc tơ trên là độc lập tuyến tính hay phụ thuộc tuyến tính?
- (b) Biểu diễn tuyến tính véc tơ x=(10,6,-3) qua các véc tơ của hệ V.

 $\mathbf{C\hat{a}u} \mathbf{4} (2,0 \text{ diểm})$. Cho ma trận

$$C = \begin{bmatrix} 1 & 3 & -3 \\ 5 & -1 & -5 \\ 2 & -2 & -4 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Tìm A^{12} biết

$$A = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa. Câu 1. Ta có (a) 1 điểm

$$A + 2A^{T} = \begin{pmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{pmatrix} + 2 \begin{pmatrix} 1 & -2 & -3 \\ 2 & 3 & 2 \\ -3 & -1 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & -2 & -9 \\ 2 & 9 & 3 \\ -9 & 0 & 12 \end{pmatrix}$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

(b) Ta có

$$AB = \begin{pmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ -1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & 12 \\ 8 & 4 \\ -1 & -10 \end{pmatrix}$$

$$(0,25 \text{ diểm})$$

$$(0,75 \text{ diểm})$$

Câu 2 (2,0 điểm)

Cách 1: Giải theo công thức Cramer:

- Sinh viên xác định được ma trận hệ số: (0.25 đ)

$$A = \left[\begin{array}{rrr} 1 & -2 & 3 \\ 1 & 2 & -1 \\ 2 & 1 & -3 \end{array} \right].$$

- Sinh viên xác định được định thức của A: (0.25 d)

$$\det(A) = -16 \neq 0.$$

- Sinh viên viết và tính định thức của A_1 : (0.25 đ)

$$A_1 = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & -1 \\ 0 & 1 & -3 \end{bmatrix}, \ \det(A_1) = -8$$

- Sinh viên tính được nghiệm x: (0.25 d)

$$x = \frac{\det(A_1)}{\det(A)} = \frac{1}{2}.$$

- Sinh viên viết và tính định thức của A_2 : (0.25 đ)

$$A_2 = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & -1 \\ 2 & 0 & -3 \end{bmatrix}, \ \det(A_2) = -8$$

- Sinh viên tính được nghiệm y: (0.25 d)

$$y = \frac{\det(A_2)}{\det(A)} = \frac{1}{2}.$$

- Sinh viên viết và tính định thức của A_3 : (0.25 đ)

$$A_3 = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}, \det(A_3) = -8$$

- Sinh viên tính được nghiệm z: (0.25 d)

$$z = \frac{\det(A_3)}{\det(A)} = \frac{1}{2}.$$

Cách 2: Giải theo phương pháp khử Gauss:

- Viết được mở trận mở rộng (bổ sung) \bar{A} : (0.25 đ)

$$\bar{A} = \left[\begin{array}{rrrr} 1 & -2 & 3 & 1 \\ 1 & 2 & -1 & 1 \\ 2 & 1 & -3 & 0 \end{array} \right].$$

- Bước 1: H1 - H2: (0.25 đ)

$$\left[\begin{array}{cccc}
1 & -2 & 3 & 1 \\
0 & -4 & 4 & 0 \\
2 & 1 & -3 & 0
\end{array}\right].$$

- Bước 2: 2H1 - H3: (0.25 đ)

$$\left[\begin{array}{cccc}
1 & -2 & 3 & 1 \\
0 & -4 & 4 & 0 \\
0 & -5 & 9 & 2
\end{array}\right].$$

- Bước 3: 5*H2 - 4*H3: (0.25 đ)

$$\left[\begin{array}{ccccc}
1 & -2 & 3 & 1 \\
0 & -4 & 4 & 0 \\
0 & 0 & -16 & -8
\end{array}\right].$$

- Viết lại được hệ phương trình mới: (0.25 đ)

- Tính được z từ hàng cuối: (0.25 d)

$$-16z = -8 \to z = \frac{1}{2}.$$

- Tính được y từ hàng hai: (0.25 d)

$$-4y + 4z = 0 \rightarrow y = z = \frac{1}{2}.$$

- Tính được x: (0.25 d)

$$x - 2y + 3z = 1 \to x = \frac{1}{2}.$$

Cách 3: Giải theo phương pháp Gauss-Jordan: Từ phương pháp khử Gauss thêm 3 bước biến đổi nữa để đưa A về ma trận đơn vị, mỗi bước 0.25 điểm.

Câu 3.

a) (1,0 điểm):

Xét ma trận:

$$A = \begin{bmatrix} 3 & 4 & 2 \\ -2 & 0 & 7 \\ 4 & -5 & 0 \end{bmatrix}$$
 (0,25 điểm)

$$\rightarrow \begin{bmatrix} 3 & 4 & 2 \\ 0 & 8 & 25 \\ 0 & 0 & 237 \end{bmatrix}$$
(0,25 điểm)

(0.25 d)

Suy ra $r(A) = 3 \Rightarrow$ nên hệ véc tơ là độc lập tuyến tính.

Cách 2: Tính định thức của ma trận các véc tơ hàng (hoặc cột): $det(A) = 237 \neq 0$ (0.75 đ)

Suy ra
$$r(A) = 3 \Rightarrow$$
 và do đó $r(V) = 3$ nên hệ véc tơ là độc lập tuyến tính. (0.25 đ)

b) (1,0 điểm):

Giả sử
$$x = k_1 v_1 + k_2 v_2 + k_3 v_3, k_1, k_2, k_3 \in \mathbb{R}$$
 (0.25 đ)

$$\begin{cases}
3k_1 - 2k_2 + 4k_3 = 10 \\
4k_1 - 5k_3 = 6 \\
2k_1 + 7k_2 = -3
\end{cases}$$
(0.25 d)

$$\Leftrightarrow \begin{cases} k_1 &= \frac{448}{237} \\ k_2 &= \frac{-241}{237} \\ k_3 &= \frac{106}{237} \end{cases}$$
 (0.25 d)

Kết luận
$$x = \frac{448}{237}v_1 + \frac{-241}{237}v_2 + \frac{106}{237}v_3$$
. (0.25 đ)

Câu 4.

a) (1,0 điểm):

+ Đa thức đặc trưng

$$|C - \lambda I_3| = -\lambda^3 - 4\lambda^2 + 20\lambda + 48.$$
 (0,5 điểm)

+ Giá trị riêng
$$\lambda_1 = -2$$
; $\lambda_2 = 4$ và $\lambda_3 = -6$ (0.5 điểm)

b) (1,0 điểm):

+ Với
$$\lambda_1 = -2$$
, véc tơ riêng $u_1 = k(1,0,1)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_2 = 4$$
, véc tơ riêng $u_2 = k(1, 1, 0)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_3 = -6$$
, véc tơ riêng $u_3 = k(0, 1, 1)$ với $k \neq 0$. (0.25 điểm)

+ Ma trận P và ma trận chéo cần tìm là

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \ P^{-1}CP = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -6 \end{pmatrix}.$$
 (0,25 điểm)

Câu 5. Viết được:

$$A = \begin{bmatrix} \cos \pi/6 & -\sin \pi/6 \\ \sin \pi/6 & \cos \pi/6 \end{bmatrix}. \tag{0.5 d}$$

Tính được:

$$A^{12} = \begin{bmatrix} \cos 2\pi & -\sin 2\pi \\ \sin 2\pi & \cos 2\pi \end{bmatrix}. \tag{1.0 d}$$

Kết quả

$$A^{12} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \tag{0.5 d}$$

Chú ý: nếu chéo hoá rồi tính, các bước và điểm tương tự cho như trên.

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV. Bộ môn Toán

TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hê đào tao: Chính quy, Bâc học: Đai học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không \ k \ \mathring{e} \ thời \ gian \ phát \ d \ \mathring{e}$)

Đề số 2

Câu 1 (2,0) điểm). Cho hai ma trận A và B:

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

- (a) Hãy xác định ma trận C sao cho A + C = B.
- (b) Tính D = AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-2x + y - z &= 2 \\
x - 2y + z &= 2 \\
-x + y - 2z &= 2.
\end{cases}$$

Câu 3 (2,0 điểm). Trong không gian \mathbb{R}^3 cho hệ véc tơ:

$$V = \{v_1 = (4, -2, 3); v_2 = (0, 3, -5); v_3 = (6, -2, 0)\}.$$

- (a) Kiểm tra xem hệ véc tơ trên là độc lập tuyến tính hay phụ thuộc tuyến tính?
- (b) Biểu diễn tuyến tính véc tơ x=(7,9,-2) qua các véc tơ của hệ V.

Câu 4 (2,0 diểm). Cho ma trận

$$C = \begin{bmatrix} 3 & 1 & -1 \\ -1 & 5 & 1 \\ -2 & 2 & 4 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ${\cal C}.$
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và đưa ra ma trận chéo đó?

Câu 5 (2,0 điểm). Tìm A^{20} biết

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa.

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

Câu 1.

(a) 1 điểm

$$A + C = B \Rightarrow C = B - A$$
 (0,25 điểm)

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}.$$

$$(0,25 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

(b) 1 điểm

$$D = AB = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$
 (0,25 điểm)
=
$$\begin{bmatrix} 6 & 9 & 6 \\ 6 & 6 & 6 \\ 6 & 9 & 6 \end{bmatrix}.$$
 (0,75 điểm)

(0.25 diểm)

Câu 2. Ma trận hệ số và véc tơ cột về phải:

$$A = \begin{bmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -1 & 1 & -2 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.$$

$$+ \det(A) = -4 \neq 0$$
 nên hệ đã cho là hệ Crammer. (0,5 điểm)

$$+ \det(A) = -4 \neq 0 \text{ nên hệ đã cho là hệ Crammer.}$$

$$+ \det(A_1) = \begin{vmatrix} 2 & 1 & -1 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{vmatrix} = 6$$

$$+ \det(A_2) = \begin{vmatrix} -2 & 2 & -1 \\ 1 & 2 & 1 \\ -1 & 2 & -2 \end{vmatrix} = 10$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6$$

$$+ \det(A_2) = \begin{vmatrix} -2 & 2 & -1 \\ 1 & 2 & 1 \\ -1 & 2 & -2 \end{vmatrix} = 10$$
 (0,25 điểm)

$$+ \det(A_3) = \begin{vmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 6 \tag{0.25 diểm}$$

+ Hệ đã cho có nghiệm duy nhất

$$x = \frac{\det(A_1)}{\det(A)} = -\frac{3}{2}; \quad y = \frac{\det(A_2)}{\det(A)} = -\frac{5}{2}; \quad z = \frac{\det(A_3)}{\det(A)} = -\frac{3}{2}$$
 (0,5 diểm)

Câu 3.

a) (1,0 điểm):

Xét ma trận:

$$A = \begin{bmatrix} 4 & -2 & 3 \\ 0 & 3 & -5 \\ 6 & -2 & 0 \end{bmatrix}$$
 (0,25 diểm)

$$\rightarrow \begin{bmatrix} 4 & -2 & 3 \\ 0 & 3 & -5 \\ 0 & 2 & -9 \end{bmatrix}$$
(0,25 điểm)

$$\begin{array}{cccc}
 & 5 & -3 \\
 & 4 & -2 & 3 \\
 & 0 & 3 & -5 \\
 & 0 & 0 & -17
\end{array}$$
(0,25 diểm)

(0.25 d)

Suy ra $r(A) = 3 \Rightarrow$ nên hệ véc tơ là độc lập tuyến tính.

Cách 2: Tính định thức của ma trận các véc tơ hàng (hoặc cột): $det(A) = -34 \neq 0$ (0.75 đ)

Suy ra
$$r(A) = 3 \Rightarrow$$
 và do đó $r(V) = 3$ nên hệ véc tơ là độc lập tuyến tính. (0.25 đ)

b) (1,0 điểm):

Giả sử
$$x = k_1 v_1 + k_2 v_2 + k_3 v_3, k_1, k_2, k_3 \in \mathbb{R}$$
 (0.25 đ)

$$\begin{cases}
4k_1 & + 6k_3 = 7 \\
-2k_1 + 3k_2 - 2k_3 = 9 \\
3k_1 - 5k_2 & = -2
\end{cases}$$
(0.25 d)

$$\Leftrightarrow \begin{cases} k_1 &= 152/17 \\ k_2 &= 98/17 \\ k_3 &= -163/17 \end{cases}$$
 (0.25 d)

Kết luận
$$x = -\frac{152}{17}v_1 + \frac{98}{17}v_2 - \frac{163}{17}v_3.$$
 (0.25 đ)

Câu 4.

(a) (1,0 dim):

+ Đa thức đặc trưng

$$|C - \lambda I_3| = -\lambda^3 + 12\lambda^2 - 44\lambda + 48$$
 (0,75 điểm)

+ Giá trị riêng
$$\lambda_1 = 2$$
; $\lambda_2 = 4$ và $\lambda_3 = 6$ (0,25 điểm)

b) (1,0 điểm):

+ Với
$$\lambda_1 = 2$$
, véc tơ riêng $u_1 = k(1, 0, 1)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_2 = 4$$
, véc tơ riêng $u_2 = k(1, 1, 0)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_3 = 6$$
, véc tơ riêng $u_3 = k(0, 1, 1)$ với $k \neq 0$. (0,25 điểm)

+ Ma trận P và ma trận chéo cần tìm là

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \ P^{-1}CP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}. \tag{0.25 diểm}$$

Câu 5. Viết được:

$$A = \begin{bmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{bmatrix}. \tag{0.5 d}$$

Tính được:

$$A^{20} = \begin{bmatrix} \cos 5\pi & -\sin 5\pi \\ \sin 5\pi & \cos 5\pi \end{bmatrix}. \tag{1.0 d}$$

Kết quả

$$A^{20} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}. \tag{0.5 d}$$

Chú ý: nếu chéo hoá rồi tính, các bước và điểm tương tự cho như trên.

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV. Bộ môn Toán

TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hê đào tao: Chính quy, Bâc học: Đai học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không\ kể\ thời\ gian\ phát\ đề$)

Đề số 3

Câu 1 (2,0 điểm). Cho các ma trận sau:

$$A = \begin{bmatrix} -3 & 4 & -6 \\ 5 & 7 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 5 \\ -7 & 4 \\ 1 & -3 \end{bmatrix}.$$

Tính các ma trận $A^T + 2B$ và BA, trong đó A^T là ma trận chuyển vị của A.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
4x + 3y + z = 2 \\
-5x + 2y + 8z = -3 \\
x + 3y + 5z = 7.
\end{cases}$$

Câu 3 (2,0 điểm). Trong trong không gian véc tơ \mathbb{R}^3 cho hệ véc tơ

$$S = \{v_1 = (0, 1, 1); v_2 = (1, 0, 1); v_3 = (1, 1, 0)\}.$$

- (a) Chứng minh hệ S độc lập tuyến tính. Từ đó suy ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ u=(1,2,1) trong cơ sở S.

Câu 4 (2,0 điểm). Cho ma trận

$$C = \begin{bmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -11 & 1 & -2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và đưa ra ma trận chéo đó?

Câu 5 (2,0 điểm). Cho hai ma trận vuông, thực A và B thoả mãn các điều kiện sau:

$$A^{2021} = 0$$
 và $AB = A + B$.

Chứng minh rằng det(B) = 0.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa. Câu 1.

$$A^{T} + 2B = \begin{bmatrix} -3 & 5 \\ 4 & 7 \\ -6 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 10 \\ -14 & 8 \\ 2 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 15 \\ -10 & 15 \\ -4 & -3 \end{bmatrix}$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

$$BA = \begin{bmatrix} 2 & 5 \\ -7 & 4 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} -3 & 4 & -6 \\ 5 & 7 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 43 & 3 \\ 41 & 0 & 54 \\ -18 & -17 & -15 \end{bmatrix}$$

$$(0,25 \text{ diểm})$$

$$(0,75 \text{ diểm})$$

(0.25 diễm)

Câu 2. Ma trận hệ số và véc tơ cột vế phải:

$$A = \begin{bmatrix} 4 & 3 & 1 \\ -5 & 2 & 8 \\ 1 & 3 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}.$$

$$+ \det(A) = 26 \neq 0$$
 nên hệ đã cho là hệ Crammer. (0,5 điểm)

$$+ \det(A_1) = \begin{vmatrix} 2 & 3 & 1 \\ -3 & 2 & 8 \\ 7 & 3 & 5 \end{vmatrix} = 162 \tag{0.25 diểm}$$

$$+ \det(A) = 26 \neq 0 \text{ nen hẹ da cho la hẹ Crammer.}$$

$$+ \det(A_1) = \begin{vmatrix} 2 & 3 & 1 \\ -3 & 2 & 8 \\ 7 & 3 & 5 \end{vmatrix} = 162$$

$$+ \det(A_2) = \begin{vmatrix} 4 & 2 & 1 \\ -5 & -3 & 8 \\ 1 & 7 & 5 \end{vmatrix} = -250$$

$$+ \det(A_3) = \begin{vmatrix} 4 & 3 & 1 \\ -5 & 2 & -3 \\ 1 & 3 & 7 \end{vmatrix} = 154$$

$$(0,25 \text{ diểm})$$

$$(0,25 \text{ diểm})$$

$$+ \det(A_3) = \begin{vmatrix} 4 & 3 & 1 \\ -5 & 2 & -3 \\ 1 & 3 & 7 \end{vmatrix} = 154 \tag{0.25 diểm}$$

+ Hệ đã cho có nghiệm duy nhất

$$x = \frac{\det(A_1)}{\Delta} = \frac{81}{13}; \quad y = \frac{\det(A_2)}{\Delta} = \frac{-125}{13}; \quad z = \frac{\det(A_3)}{\Delta} = \frac{77}{13}$$
 (0,5 diểm)

Câu 3.

a) (1,0 điểm):

Cách 1: Tính định thức của ma trân các véc tơ côt (hoặc hàng):

$$\det(A) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 2 \neq 0 \tag{0.5 diểm}$$

Suy ra
$$r(A) = 3 \Rightarrow$$
 và do đó $r(V) = 3$ nên hệ véc tơ là độc lập tuyến tính. (0.25 đ)
Số chiều của \mathbb{R}^3 . bằng 3, và V gồm 3 véc tơ DLTT nên V là một cơ sở của \mathbb{R}^3 . (0.25 đ)

Cách 2: Ta xét phương trình véc tơ sau (0,25 điểm):

$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0 (0.25 \text{ diểm})$$

$$\begin{cases} c_2 + c_3 = 0 \\ c_1 + c_2 + c_3 = 0 \\ c_1 + c_2 = 0 \end{cases}$$
 (0,25 diểm)

$$c_1 = c_2 = c_3 = 0$$
 (0,25 điểm)

(Có thể giải trực tiếp hệ trên hoặc tính định thức ma trận hệ số $\det(A)=2\neq 0$ nên hệ có nghiệm duy nhất $c_1=c_2=c_3=0$)

Do đó hệ véc tơ là ĐLTT.

Số chiều của \mathbb{R}^3 bằng 3, và V gồm 3 véc tơ ĐLTT nên V là một cơ sở của \mathbb{R}^3 . (0.25 đ)

(b) (1,0 điểm) Giả sử

$$u = c_1 v_1 + c_2 v_2 + c_3 v_3. (0.25 \text{ diểm})$$

$$\begin{cases} c_2 + c_3 = 1 \\ c_1 + c_3 = 2 \\ c_1 + c_2 = 1 \end{cases}$$
 (0,25 điểm)

(0.25 d)

$$c_1 = 1, c_2 = 0, c_3 = 1$$
 (0,25 điểm)

Tọa độ của utrong cơ sở S là (1,0,1)

Hoặc tọa độ cột của u là:

$$[u]_S = \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right].$$

Câu 4.

(a) (1,0 diễm):

+ Phương trình đặc trưng $|C - \lambda I_3| = 0$:

$$-\lambda^3 - 6\lambda^2 + \lambda + 6 = 0 \tag{0.75 diểm}$$

+ Giá trị riêng
$$\lambda_1 = -6$$
; $\lambda_2 = 1$ và $\lambda_3 = 1$ (0,25 điểm)

b) (1,0 điểm):

+ Với
$$\lambda_1 = -6$$
, véc tơ riêng $u_1 = k(1, -1, 3)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_2 = 4$$
, véc tơ riêng $u_2 = k(0, 1, 1)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_3 = 6$$
, véc tơ riêng $u_3 = k(-1, 1, 4)$ với $k \neq 0$. (0,25 điểm)

+ Ma trận P và ma trận chéo cần tìm là

$$P = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & -1 \\ 3 & 1 & 4 \end{bmatrix}, \ P^{-1}CP = \begin{bmatrix} -6 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 (0,25 điểm)

Câu 5. Từ điều kiện
$$A^{2021} = 0$$
 ta suy ra $\det(A^{2021}) = [\det(A)]^{2021} = 0$, (0,5 điểm)

từ đó
$$\det(A) = 0.$$
 (0,5 điểm)

Mặt khác, từ điều kiện
$$A + B = AB$$
 ta suy ra $B = A(B - I)$ (0,5 điểm)

Do đó,
$$\det(B) = \det(A(B-I)) = \det(A)\det(B-I) = 0$$
 (Dpcm). (0,5 điểm)

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV Bộ môn Toán

TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng.....năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 4

Câu 1 (2,0 diểm). Cho các ma trận

$$A = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & -2 \end{bmatrix}.$$

- (a) Tính $2A + A^T$, trong đó A^T là ma trận chuyển vị của A.
- (b) Tính AB.

Câu 2 (2,0 điểm). Giải hệ phương trình tuyến tính sau:

$$\begin{cases} x - 2y - 3z = 0 \\ 3x + 2y + z = 2 \\ 3x + y - 2z = 0. \end{cases}$$

Câu 3 (2,0 điểm). Trong không gian véc tơ \mathbb{R}^3 cho hệ véc tơ

$$S = \{u_1 = (1, -2, 3); u_2 = (2, 3, 5); u_3 = (-7, -9, 2)\}.$$

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v=(2,1,4) trong cơ cở S.

Câu 4 (2,0 điểm). Cho ma trận sau:

$$C = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và đưa ra ma trận chéo đó?

Câu 5 (2,0 diểm).

- (a) Cho A là ma trận phản đối xứng cấp n (tức A là ma trận thực vuông cấp n thỏa mãn $A^T = -A$). Chứng minh rằng nếu n lẻ thì $\det(A) = 0$.
- (b) Cho ma trận cấp 2:

$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, \quad a, b, c \in \mathbb{R}.$$

- Chứng minh rằng nếu $A^{2020} = 0$ thì $A^2 = 0$.
- Tìm a,b,c sao cho tồn tại n để $A^n=I,$ với I là ma trận đơn vị cấp 2.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa. Câu 1. Ta có (a) 1 điểm

$$2A + A^{T} = \begin{bmatrix} 2 & 4 & -6 \\ -4 & 6 & -2 \\ -6 & 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & -2 & -3 \\ 2 & 3 & 2 \\ -3 & -1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 2 & -9 \\ -2 & 9 & 0 \\ -9 & 3 & 12 \end{bmatrix}$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

(b) Ta có

$$AB = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 10 & 12 \\ 8 & 4 \\ -1 & -10 \end{bmatrix}$$

$$(0,25 \text{ diểm})$$

$$(0,75 \text{ diểm})$$

Câu 2.

Cách 1: Giải theo công thức Cramer:

- Sinh viên xác định được ma trận hệ số: (0.25 đ)

$$A = \left[\begin{array}{rrr} 1 & -2 & -3 \\ 3 & 2 & 1 \\ 3 & 1 & -2 \end{array} \right].$$

- Sinh viên xác định được định thức của A: (0.25 pt)

$$\det(A) = -14 \neq 0.$$

- Sinh viên viết và tính định thức của A_1 : (0.25 đ)

$$A_1 = \left[\begin{array}{ccc} 0 & -2 & -3 \\ 2 & 2 & 1 \\ 0 & 1 & -2 \end{array} \right].$$

- Sinh viên tính được nghiệm x: (0.25 d)

$$\det(A_1) = -14 \to x = \frac{\det(A_1)}{\det(A)} = 1.$$

- Sinh viên viết và tính định thức của A_2 : (0.25 đ)

$$A_2 = \left[\begin{array}{rrr} 1 & 0 & -3 \\ 3 & 2 & 1 \\ 3 & 0 & -2 \end{array} \right].$$

- Sinh viên tính được nghiệm y: (0.25 d)

$$\det(A_2) = 14 \to y = \frac{\det(A_2)}{\det(A)} = -1.$$

- Sinh viên viết và tính định thức của A_3 : (0.25 đ)

$$A_3 = \left[\begin{array}{rrr} 1 & -2 & 0 \\ 3 & 2 & 2 \\ 3 & 1 & 0 \end{array} \right].$$

- Sinh viên tính được nghiệm z: (0.25 d)

$$\det(A_3) = -14 \to z = \frac{\det(A_3)}{\det(A)} = 1.$$

Cách 2: Giải theo phương pháp khử Gauss:

- Viết được mở trận mở rộng (bổ sung) \bar{A} : (0.25 đ)

$$\bar{A} = \left[\begin{array}{rrrr} 1 & -2 & -3 & 0 \\ 3 & 2 & 1 & 2 \\ 3 & 1 & -2 & 0 \end{array} \right].$$

- Bước 1: H1 - H2: (0.25 đ)

$$\left[\begin{array}{cccc}
1 & -2 & -3 & 0 \\
0 & -1 & -3 & -2 \\
3 & 1 & -2 & 0
\end{array}\right].$$

- Bước 2: 3*H1 - H3: (0.25 đ)

$$\left[\begin{array}{cccc}
1 & -2 & -3 & 0 \\
0 & -1 & -3 & -2 \\
0 & -7 & -7 & 0
\end{array}\right].$$

- Bước 3: 7*H2 - H3: (0.25 đ)

$$\left[\begin{array}{cccc} 1 & -2 & -3 & 0 \\ 0 & -1 & -3 & -2 \\ 0 & 0 & -14 & -14 \end{array}\right].$$

- Viết lại được hệ phương trình mới: (0.25 đ)
- Tính được z từ hàng cuối: (0.25 d)

$$-14z = -14 \rightarrow z = 1.$$

- Tính được y từ hàng hai: (0.25 d)

$$-y - 3z = -2 \rightarrow y = -3z + 2 = -1.$$

- Tính được x từ hàng đầu: (0.25 d)

$$x - 2y - 3z = 0 \rightarrow x = 2y + 3z = 1.$$

Cách 3: Giải theo phương pháp Gauss-Jordan: Từ phương pháp khử Gauss thêm 3 bước biến đổi nữa để đưa A về ma trận đơn vị, mỗi bước 0.25 điểm.

Câu 3.

a) (1,0 điểm):

+ Định thức của ma trận có các cột là các véc tơ u_1, u_2, u_3

$$\begin{vmatrix} 1 & 2 & -7 \\ -2 & 3 & -9 \\ 3 & 5 & 2 \end{vmatrix} = 138 \neq 0. \tag{0.5 diểm}$$

+ Suy ra r(A) = 3 = r(S) nên hệ S độc lập tuyến tính. (0,25 điểm)

+ Vì dim(\mathbb{R}^3) = 3 = "Số phần tử của S" nên S là một cơ sở của \mathbb{R}^3 . (0,25 điểm)

(b) (1,0 điểm): Biểu diễn

$$v = \alpha u_1 + \beta u_2 + \gamma u_3 \tag{0.25 diểm}$$

$$\Leftrightarrow \begin{cases} \alpha + 2\beta - 7\gamma = 2 \\ -2\alpha + 3\beta - 9\gamma = 1 \\ 3\alpha + 5\beta + 2\gamma = 4 \end{cases}$$
 (0,25 điểm)

+ Giải hệ ta được $\alpha = \frac{25}{46}, \beta = \frac{1}{2}, \gamma = -\frac{3}{46}.$ (0,25 điểm)

+ Vậy tọa độ của v trong cơ sở S là $(v)_S = (\frac{25}{46}, \frac{1}{2}, -\frac{3}{46}).$ (0,25 điểm)

Câu 4

(a) (**1,0** điểm)

+ Phương trình đặc trưng $|C - \lambda I_3| = 0$:

$$\begin{vmatrix} -\lambda & 1 & 1\\ 1 & -\lambda & 1\\ 1 & 1 & -\lambda \end{vmatrix} = 0 \tag{0.25 diểm}$$

$$\Leftrightarrow -\lambda^3 + 3\lambda + 2 = 0 \tag{0.5 diểm}$$

+ Giá trị riêng
$$\lambda_1 = -1$$
 (bội 2) và $\lambda_2 = 2$ (bội 1) (0,25 điểm)

b) (1,0 điểm):

+ Với $\lambda_1=-1$, các véc tơ riêng là nghiệm khác không của hpt

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases} \Leftrightarrow x_3 = -x_1 - x_2$$
 (0,25 diểm)

Cho $x_1=1,\,x_2=0$ thì $x_3=-1$ hoặc $x_1=0,\,x_2=1$ thì $x_3=-1$ nên ta chọn được 2 véc tơ riêng DLTT là

$$p_1 = (1, 0, -1), p_2 = (0, 1, -1).$$
 (0,25 điểm)

+ Với $\lambda_2 = 2$, chọn 1 véc tơ riêng $p_3 = (1, 1, 1)$ từ là nghiệm khác không của hpt: (0.25 diễm)

$$\begin{cases}
-2x_1 + x_2 + x_3 = 0 \\
x_1 - 2x_2 + x_3 = 0 \\
x_1 + x_2 - 2x_3 = 0
\end{cases} \Leftrightarrow x_1 = x_2 = x_3$$

+ Ma trận P và ma trận chéo cần tìm là

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}, \ P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$
 (0,25 điểm)

a. (1 điểm) Giả thiết $A^T = -A$ suy ra

$$\det(A^T) = \det(-A) \tag{0.25 diểm}$$

Từ các tính chất của định thức chúng ta luôn có

$$\det(A^T) = \det(A) \quad \text{và } \det(-A) = (-1)^n \cdot \det(A), \tag{0.25 diểm}$$

nên đẳng thức ban đầu suy ra

$$\det(A) = (-1)^n \cdot \det(A). \tag{0.25 diểm}$$

Mặt khác do n lẻ nên đẳng thức trên trở thành

$$\det(A) = -\det(A) \Rightarrow \det(A) = 0 \tag{0.25 diểm}$$

b. (1 diểm) Biến đổi A thành tổng của hai ma trận giao hoán:

$$A = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} + \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = B + D. \tag{0.25 diểm}$$

Từ đó:

$$A^{n} = (B+D)^{n} = \sum_{k=0}^{n} C_{n}^{k} \cdot B^{n-k} \cdot D^{k} = \sum_{k=0}^{n} C_{n}^{k} \cdot \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix}^{n-k} \cdot \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}^{k}$$
 (0,25 điểm)

Với chú ý rằng $D^k = 0$, với mọi $k \ge 2$, nên

$$A^{n} = \begin{bmatrix} a^{n} & 0 \\ 0 & c^{n} \end{bmatrix} + n. \begin{bmatrix} a^{n-1} & 0 \\ 0 & c^{n-1} \end{bmatrix} . \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a^{n} & 0 \\ 0 & c^{n} \end{bmatrix} + \begin{bmatrix} 0 & n.a^{n-1}.b \\ 0 & 0 \end{bmatrix}$$
(0,25 diểm)

Từ đó suy ra: (0.25 diễm)

- Nếu $A^{2020}=0$ thì a=c=0 suy ra $A^2=0$.
- Nếu $A^n = I$ thì $a^n = c^n = 1$ và $a^{n-1}.b = 0$. Suy ra a = c = 1, b = 0 hoặc a = c = -1, b = 0 (n chẵn).

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV Bộ môn Toán

TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng.....năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

 \mathbf{D} ề số 5

Câu 1 (2,0 điểm). Cho ma trận

$$A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

Tính

- (a) $2A + A^T$;
- (b) $A^T A$, ở đó A^T là ma trận chuyển vị của A.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-x + 5y + 9z = -1 \\
-4x + 5y + 13z = 4 \\
5x + 6y + 6z = 9.
\end{cases}$$

Câu 3 (2,0 điểm). Cho họ véc tơ $S = \{v_1, v_2, v_3\}$ trong không gian véc tơ \mathbb{R}^3 với $v_1 = (0, 1, 1)$, $v_2 = (1, 0, 1)$ và $v_3 = (1, 1, 0)$.

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v = (1, 1, 1) trong cơ cở S.

 $\mathbf{Câu}$ 4 (2,0 điểm). Cho ma trận sau

$$C = \begin{bmatrix} 0 & -5 & -2 \\ 2 & 7 & 2 \\ -2 & -3 & 2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

 $\mathbf{Câu}\ \mathbf{5}\ (2,\!0\ \mathrm{diểm}).$ Cho các ma trận

$$D = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (a) Đặt E=D-M. Chứng minh rằng: EM=ME và $D^2=E^2+2ME+M^2$.
- (b) Tính D^{2021} .

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa. Câu 1. (a) Ta có

$$2A + A^{T} = 2 \begin{bmatrix} 1 & 1 & 2 \\ -1 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 & 4 \\ -1 & -3 & -1 \\ 2 & -2 & 3 \end{bmatrix}$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

(b) Ta có

$$A^{T}A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 3 & 1 \\ 2 & 1 & 5 \end{bmatrix}$$
 (1 điểm)

Câu 2. Ma trận hệ số

$$A = \begin{pmatrix} -1 & 5 & 9 \\ -4 & 5 & 13 \\ 5 & 6 & 6 \end{pmatrix}, \quad b = \begin{pmatrix} -1 \\ 4 \\ 9 \end{pmatrix}.$$

$$+ \det(A) = 52 \neq 0$$
 nên hệ đã cho là hệ Crammer. (0,5 điểm)

$$+ \det(A) = 52 \neq 0 \text{ lient file da cho fa file Crammer.}$$

$$+ \Delta_1 = \begin{vmatrix} -1 & 5 & 9 \\ 4 & 5 & 13 \\ 9 & 6 & 6 \end{vmatrix} = 324$$

$$+ \Delta_2 = \begin{vmatrix} -1 & -1 & 9 \\ -4 & 4 & 13 \\ 5 & 9 & 6 \end{vmatrix} = -500$$

$$+ \Delta_3 = \begin{vmatrix} -1 & 5 & -1 \\ -4 & 5 & 4 \\ 5 & 6 & 9 \end{vmatrix} = 308$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

$$+ \Delta_2 = \begin{vmatrix} -1 & -1 & 9 \\ -4 & 4 & 13 \\ 5 & 9 & 6 \end{vmatrix} = -500$$

$$+ \Delta_3 = \begin{vmatrix} -1 & 5 & -1 \\ -4 & 5 & 4 \\ 5 & 6 & 9 \end{vmatrix} = 308 \tag{0.5 diểm}$$

+ Hệ đã cho có nghiệm duy nhất

$$x = \frac{\Delta_1}{\Delta} = \frac{81}{13}; \quad y = \frac{\Delta_2}{\Delta} = \frac{-125}{13}; \quad z = \frac{\Delta_3}{\Delta} = \frac{77}{13}$$
 (0,5 điểm)

Câu 3 (2,0 điểm)

(a) + Xét định thực ma trận gồm các cột là các véc tơ v_1, v_2, v_3 :

$$\left| \begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right| = 2 \neq 0.$$

Vậy hệ S độc lập tuyến tính. (0.75 diểm)

+ Vì dim $\mathbb{R}^3 = 3 =$ "Số phần tử của hệ S" nên S là một cơ sở của \mathbb{R}^3 (0.25 diểm)

(b) + Để tính ma trận toạ độ của vector $u=(1,1,1)\in\mathbb{R}^3$ đối với cơ sở (họ) S, ta xét phương trình vector sau:

$$v = c_1 v_1 + c_2 v_2 + c_3 v_3. (0.25 \text{ diểm})$$

Phương trình vector này cho ta hệ phương trình tuyến tính sau:

$$\begin{cases} c_2 + c_3 = 1 \\ c_1 + c_3 = 1 \\ c_1 + c_2 = 1 \end{cases}$$
 (0,25 điểm)

(0.25 diểm)

(0.25 diễm)

(0.25 diểm)

(0.25 diểm)

+) Giải hệ phương trình này cho ta nghiệm $c_1 = c_2 = c_3 = 1/2$.

+) Như vậy, ma trận toạ độ của vector v đối với cơ sở S là

$$[u]_S = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}. \tag{0.25 diểm}$$

Câu 4.

(a):

+ Đa thức đặc trưng:
$$D(t) = -t^3 + 9t^2 - 26t + 24$$
. (0,75 điểm)

$$+ D(t) = 0$$
 khi và chỉ khi $t \in \{2, 3, 4\}.$ (0,25 điểm)

(b):

+ Xét $t_1 = 2$: giải hệ phương trình

$$(C-2I)x = 0 \Leftrightarrow \begin{cases} 2x_1 - 3x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

Chọn một véc tơ riêng tương ứng với t_1 là $v_1 = (3, -2, 2)$.

+ Xét $t_2 = 3$: giải hệ phương trình

$$(C-3.I)x = 0 \Leftrightarrow \begin{cases} x_1 - x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

Chọn một véc tơ riêng tương ứng với t_2 là $v_2 = (1, -1, 1)$.

+ Xét $t_3=4$: giải hệ phương trình

$$(C-4.I)x = 0 \Leftrightarrow \begin{cases} x_1 - 2x_3 = 0 \\ x_2 + 2x_3 = 0 \end{cases}$$

Chọn một véc tơ riêng tương ứng với t_3 là $v_3 = (2, -2, 1)$.

+ Hệ véc tơ $\{v_1, v_2, v_3\}$ độc lập tuyến tính.

Kết luận:

$$P = \begin{bmatrix} 3 & 1 & 2 \\ -2 & -1 & -2 \\ 2 & 1 & 1 \end{bmatrix}, \ P^{-1}CP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 (0,25 điểm)

 $\mathbf{C\hat{a}u} \mathbf{5}. (a) + \mathbf{T}a \, \mathbf{c}\acute{o}$

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$ME = M = EM \tag{0.5 diểm}$$

 \Longrightarrow

+ Chứng minh

$$\begin{split} D^2 &= (E+M)^2 \\ &= (E+M)(E+M) \\ &= E^2 + EM + ME + M^2 \\ &= E^2 + 2ME + M^2 \end{split} \tag{0.5 diểm}$$

(b) + Ta có
$$M^2 = O$$
. (0,25 điểm)

+ Vì M và E giao hoán (ME=EM)nên ta có

$$\begin{split} D^{2021} &= (E+M)^{2021} \\ &= \sum_{k=0}^{2021} C_{2021}^k M^k E^{2021-k} \\ &= E^{2021} + 2021 M E^{2020} \\ &= \begin{pmatrix} 1 & 0 & 6063 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \end{split} \tag{0.25 diểm}$$

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV Bộ môn Toán

TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 6

Câu 1 (2,0 điểm). Cho các ma trận sau:

$$A = \begin{bmatrix} 5 & 2 & 7 \\ -4 & -6 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & -8 \\ 5 & 3 \\ -1 & -2 \end{bmatrix}.$$

Tính

- (a) $A + 2B^T$, ở đó B^T là ma trận chuyển vị của B;
- (b) AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases} x_1 - 2x_2 + x_3 = -2\\ 2x_1 + 3x_2 - x_3 = 6\\ -x_1 + x_2 + 2x_3 = -2. \end{cases}$$

Câu 3 (2,0 điểm). Trong \mathbb{R}^3 cho hệ véc tơ

$$S = \{u_1 = (1, 2, 3); u_2 = (2, -3, 5); u_3 = (7, 9, 2)\}.$$

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v=(2,-4,8) trong cơ cở S.

 $\mathbf{Câu} \ \mathbf{4} \ (2,0 \ \text{điểm})$. Cho ma trận sau

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ${\cal C}.$
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Cho các ma trận

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}.$$

- (a) Đặt E=D-M. Chứng minh rằng: EM=ME và $D^2=E^2+2ME+M^2$.
- (b) Tính D^{2021} .

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa.

Câu 1 (2,0 điểm). (a) Ta có

$$A + 2B^{T} = \begin{bmatrix} 5 & 2 & 7 \\ -4 & -6 & 1 \end{bmatrix} + 2 \begin{bmatrix} 6 & 5 & -1 \\ -8 & 3 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 17 & 12 & 5 \\ -20 & 0 & -3 \end{bmatrix}$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

(b) Ta có

$$A.B = \begin{bmatrix} 33 & -48 \\ -55 & 12 \end{bmatrix} \tag{1,0 diểm}$$

Câu 2.

+ Ma trận hệ số mở rộng

$$\tilde{A} = \begin{bmatrix} 1 & -2 & 1 & -2 \\ 2 & 3 & -1 & 6 \\ -1 & 1 & 2 & -2 \end{bmatrix}$$
 (0.5 diểm)

+ Khử Gauss

$$\tilde{A} = \begin{bmatrix} 1 & -2 & 1 & | & -2 \\ 0 & 1 & -3 & | & 4 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$
 (0.5 điểm)

+ Thế ngược

$$\tilde{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
 (0.5 điểm)

 $+ \text{ Nghiệm } x_1 = 1, x_2 = 1 \text{ và } x_3 = -1.$

(0.5 diểm)

Chú ý, nếu dùng định thức hay ma trận nghịch đảo hay biến đổi thông thường, các bước tính và điểm tương ứng cho như trên.

Câu 3.

(a) + Định thức của ma trận có các cột là các véc tơ u_1, u_2, u_3

$$\begin{vmatrix} 1 & 2 & 7 \\ 2 & -3 & 9 \\ 3 & 5 & 2 \end{vmatrix} = 128 \neq 0. \tag{0,5 diểm}$$

+ Do đó hệ S độc lập tuyến tính.

(0.25 diểm)

+ Vì dim $(\mathbb{R}^3) = 3 =$ "Số phần tử của S" nên S là một cơ sở của \mathbb{R}^3 .

(0.25 dimm)

(b) Ta có

$$v = \alpha u_1 + \beta u_2 + \gamma u_3 \tag{0.25 diểm}$$

$$\Leftrightarrow \begin{cases} \alpha + 2\beta + 7\gamma = 2\\ 2\alpha - 3\beta + 9\gamma = -4\\ 3\alpha + 5\beta + 2\gamma = 8 \end{cases}$$
 (0,25 điểm)

+ Giải hệ ta được
$$\alpha = \frac{43}{64}, \beta = \frac{81}{64}, \gamma = -\frac{11}{64}.$$
 (0,25 điểm)
+ Vậy tọa độ của v trong cơ sở S là $(v)_S = (\frac{43}{64}, \frac{81}{64}, -\frac{11}{64}).$ (0,25 điểm)

(0.25 diểm)

Câu 4 (2,0 điểm).

(a):

+ Đa thức đặc trưng:
$$D(t) = -t^3 + 10t^2 - 27t + 18.$$
 (0.75 điểm)

$$+ D(t) = 0$$
 khi và chỉ khi $t \in \{1, 3, 6\}.$ (0,25 điểm)

(b):

+ Xét $t_1 = 1$: giải hệ phương trình

$$(C-I)x = 0 \Leftrightarrow \begin{cases} x_1 + x_2 &= 0 \\ x_3 &= 0 \end{cases}$$

Chọn một véc tơ riêng tương ứng với t_1 là $v_1 = (-1, 1, 0)$.

+ Xét $t_2 = 3$: giải hệ phương trình

$$(C-3.I)x = 0 \Leftrightarrow \begin{cases} 2x_1 + x_3 = 0 \\ 2x_2 + x_3 = 0 \end{cases}$$

Chọn một véc tơ riêng tương ứng với t_2 là $v_2 = (-1, -1, 2)$.

+ Xét $t_3 = 6$: giải hệ phương trình

$$(C-6.I)x = 0 \Leftrightarrow \begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Chọn một véc tơ riêng tương ứng với t_3 là $v_3 = (1, 1, 1)$.

ng ứng với t_3 là $v_3 = (1, 1, 1)$. (0.25 diễm)

(0.25 diễm)

(0.25 diễm)

+ Hệ véc tơ $\{v_1, v_2, v_3\}$ độc lập tuyến tính.

+ Kết luận:

$$P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix}, \ \hat{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$
 (0,25 điểm)

Câu 5. (a) + Ta có

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$ME = M = EM \tag{0.5 diểm}$$

 \Longrightarrow

+ Chứng minh

$$\begin{split} D^2 &= (E+M)^2 \\ &= (E+M)(E+M) \\ &= E^2 + EM + ME + M^2 \\ &= E^2 + 2ME + M^2 \end{split} \tag{0.5 diểm}$$

(b) + Ta có $M^2 = O$. (0,25 điểm)

+ Vì M và Egiao hoán (ME=EM)nên ta có

$$D^{2021} = (E + M)^{2021}$$

$$= \sum_{k=0}^{2021} C_{2021}^k M^k E^{2021-k}$$
(0,25 điểm)

$$= E^{2021} + 2021ME^{2020} \tag{0.25 diểm}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 6063 & 0 & 1 \end{pmatrix}. \tag{0.25 diểm}$$

TRƯỜNG ĐAI HOC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút (Khônq kể thời qian phát đề)

Đề số 7

Câu 1 (2,0 điểm). Cho hai ma trận A và B xác định như sau:

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- (a) Tìm ma trận D sao cho A D = B.
- (b) Tính AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-3x_1 + 5x_2 + 7x_3 = 2 \\
2x_1 + 4x_2 + 9x_3 = 5 \\
4x_1 + 3x_2 - 5x_3 = -9.
\end{cases}$$

Câu 3 (2,0 điểm). Trong \mathbb{R}^3 cho hệ véc tơ

$$S = \{u_1 = (1, -2, 3); u_2 = (2, 3, 5); u_3 = (-7, -9, 2)\}.$$

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v=(2,1,4) trong cơ cở S.

Câu 4 (2,0 điểm). Cho ma trận

$$C = \begin{bmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -11 & 1 & -2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Gọi A là ma trận vuông, thực cấp n thoả mãn tính chất sau $A^{-1} = 3A$. Hãy tính $\det(A^{2021} - A)$.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa.

Câu 1

(a) Ta có

$$D = A - B (0.5 \text{ diểm})$$

$$= \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 (0,5 diểm)

(b) Ta có

$$AB = \begin{bmatrix} 6 & 7 & 7 \\ 7 & 6 & 7 \\ 7 & 7 & 6 \end{bmatrix}$$
 (1,0 điểm)

Câu 2 (2,0 điểm).

$$\begin{bmatrix} -3 & 5 & 7 & 2 \\ 2 & 4 & 9 & 5 \\ 4 & 3 & -5 & -9 \end{bmatrix} \xrightarrow{0.5 \text{ diểm}} \begin{bmatrix} -3 & 5 & 7 & 2 \\ 0 & 22 & 41 & 19 \\ 0 & 29 & 13 & -19 \end{bmatrix} \xrightarrow{0.5 \text{ diểm}} \begin{bmatrix} -3 & 5 & 7 & 2 \\ 0 & 22 & 41 & 19 \\ 0 & 0 & -301 & -323 \end{bmatrix}$$

$$\begin{cases} -3x_1 + 5x_2 + 7x_3 = 2 \\ 22x_2 + 41x_3 = 19 \xrightarrow{1 \text{ diểm}} \begin{cases} x_1 = \frac{-17}{301} \\ x_2 = \frac{-342}{301} \\ x_3 = \frac{-323}{301} \end{cases}$$

Câu 3.

(a) + Định thức của ma trận có các cột là các véc to u_1, u_2, u_3

$$\begin{vmatrix} 1 & 2 & -7 \\ -2 & 3 & -9 \\ 3 & 5 & 2 \end{vmatrix} = 138 \neq 0. \tag{0.5 diểm}$$

+ Do đó hệ S độc lập tuyến tính.

(0.25 diểm)

+ Vì dim $(\mathbb{R}^3) = 3 =$ "Số phần tử của S" nên S là một cơ sở của \mathbb{R}^3 .

(0.25 dimm)

(b) Ta có

$$v = \alpha u_1 + \beta u_2 + \gamma u_3 \tag{0.25 diểm}$$

$$\Leftrightarrow \begin{cases} \alpha + 2\beta - 7\gamma = 2 \\ -2\alpha + 3\beta - 9\gamma = 1 \\ 3\alpha + 5\beta + 2\gamma = 4 \end{cases}$$
 (0,25 điểm)

+ Giải hệ ta được
$$\alpha = \frac{25}{46}, \beta = \frac{1}{2}, \gamma = -\frac{3}{46}$$
. (0,25 điểm)

+ Vậy tọa độ của
$$v$$
 trong cơ sở S là $(v)_S = (\frac{25}{46}, \frac{1}{2}, -\frac{3}{46}).$ (0,25 điểm)

 $\hat{\mathbf{Cau}}$ 4. (a) + $\hat{\mathbf{Da}}$ thức đặc trung

$$|C - \lambda I_3| = -\lambda^3 - 6\lambda^2 + \lambda + 6. \tag{0.5 diểm}$$

+ Giá trị riêng
$$\lambda_1 = 1$$
; $\lambda_2 = -6$ và $\lambda_3 = -1$ (0,5 điểm)

(b) + Với
$$\lambda_1 = 1$$
, véc tơ riêng $u_1 = k(-1, 1, 4)$ với $k \neq 0$. (0,25 điểm)

+ Với
$$\lambda_2 = -6$$
, véc tơ riêng $u_2 = k(1, -1, 3)$ với $k \neq 0$. (0,25 điểm)

+ Với $\lambda_3 = -1$, véc tơ riêng $u_3 = k(0, 1, 1)$ với $k \neq 0$. (0,25 điểm) + Ma trận P cần tìm là

$$P = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 4 & 3 & 1 \end{bmatrix}, \quad P^{-1}CP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -1 \end{bmatrix}. \tag{0,25 diểm}$$

Câu 5. Nhân hai vế của phương trình $3A = A^{-1}$ với A ta có

$$3A^2 = I \to A^2 = \frac{I}{3},$$
 (0,5 điểm)

với I là ma trận đơn vị cấp n.

Từ đây ta suy ra

$$\det(A^2) = \det\left(\frac{I}{3}\right) = \frac{1}{3^n} \Leftrightarrow [\det(A)]^2 = \frac{1}{3^n} \to \det(A) = \frac{1}{3^{n/2}} \tag{0.5 diểm}$$

và

$$A^{2020} = (A^2)^{1010} = \left(\frac{I}{3}\right)^{1010} = \frac{I}{3^{1010}}.$$
 (0,5 diểm)

Do đó, ta tính được

$$\begin{split} \det(A^{2021} - A) &= \det(A(A^{2020} - I)) \\ &= \det\left(A\left(\frac{I}{3^{1010}} - I\right)\right) \\ &= \det\left(A\left(\frac{1}{3^{1010}} - 1\right)\right) \\ &= \frac{1}{3^{n/2}}\left(\frac{1}{3^{1010}} - 1\right)^n. \end{split} \tag{0.5 diểm}$$

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV Bộ môn Toán

TRƯỜNG ĐAI HOC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 8

Câu 1 (2,0 điểm). Cho các ma trận

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 2 & -3 & 1 \\ 3 & 5 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 \\ -3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Tính

- (a) $2A + A^T$;
- (b) AB, ở đó A^T là ma trận chuyển vị của A.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-3x_1 + 5x_2 + 7x_3 = 2 \\
2x_1 + 4x_2 + 9x_3 = 5 \\
4x_1 + 3x_2 - 5x_3 = -9.
\end{cases}$$

Câu 3 (2,0 điểm). Trong không gian \mathbb{R}^3 cho hệ véc tơ:

$$V = \{v_1 = (3, 4, 2); \ v_2 = (-2, 0, 7); \ v_3 = (4, -5, 0)\}.$$

- (a) Kiểm tra xem hệ véc tơ trên là độc lập tuyến tính hay phụ thuộc tuyến tính?
- (b) Biểu diễn tuyến tính véc tơ x=(10,6,-3) qua các véc tơ của hệ V.

Câu 4 (2,0 điểm). Cho ma trận sau:

$$C = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Cho A và B là các ma trận vuông cấp n thoả mãn AB = BA và $B^{2021} = 0$.

- (a) Chứng minh rằng nếu $A^{2020}=0$ thì tồn tại số tự nhiên k để $(A+B)^k=0$.
- (b) Chứng minh rằng r(I+A+B)=r(I-A-B)=n (trong đó r(M) là hạng của ma trận M).
- (c) Chứng minh rằng nếu A là khả nghịch thì A+B là khả nghịch.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

SV giải đúng bằng cách khác vẫn được điểm tối đa. Câu 1. Ta có (a)

$$2A + A^{T} = 2 \begin{bmatrix} 3 & 2 & -1 \\ 2 & -3 & 1 \\ 3 & 5 & -1 \end{bmatrix} + \begin{bmatrix} 3 & 2 & 3 \\ 2 & -3 & 5 \\ -1 & 1 & -1 \end{bmatrix}$$

$$= \begin{pmatrix} 9 & 6 & 1 \\ 6 & -9 & 7 \\ 5 & 11 & -3 \end{pmatrix}.$$

$$(0,5 \text{ diểm})$$

$$(0,5 \text{ diểm})$$

(b) Ta có

$$AB = \begin{bmatrix} 3 & 2 & -1 \\ 2 & -3 & 1 \\ 3 & 5 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 \\ -3 & 1 \\ 1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -10 & 8 \\ 8 & 6 \\ -19 & 11 \end{bmatrix}$$
(1,0 diểm)

Câu 2 (2,0 điểm).

$$\begin{bmatrix} 3 & -2 & 5 & 7 \\ -4 & 1 & 4 & -5 \\ 2 & 4 & 9 & 6 \end{bmatrix} \xrightarrow{0.5 \text{ diểm}} \begin{bmatrix} 3 & -2 & 5 & 7 \\ 0 & -5 & 32 & 13 \\ 0 & 16 & 17 & 4 \end{bmatrix} \xrightarrow{0.5 \text{ diểm}} \begin{bmatrix} 3 & -2 & 5 & 7 \\ 0 & -5 & 32 & 13 \\ 0 & 0 & 199 & 76 \end{bmatrix}$$

$$\begin{cases} -3x_1 + 5x_2 + 7x_3 = 2 \\ -5x_2 + 32x_3 = 13 \xrightarrow{1 \text{ diểm}} \begin{cases} x_1 = \frac{317}{199} \\ x_2 = \frac{-31}{199} \\ x_3 = \frac{76}{199} \end{cases}$$

Câu 3 (2,0 điểm).

a.

+ Xét ma trân:

$$A = \begin{bmatrix} 3 & 4 & 2 \\ -2 & 0 & 7 \\ 4 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 4 & 2 \\ 0 & 8 & 25 \\ 0 & -31 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 4 & 2 \\ 0 & 8 & 25 \\ 0 & 0 & 237 \end{bmatrix}$$
 (0,5 diểm)

(Có thể tính $det(A) = 237 \neq 0$)

+ Suy ra $r(A) = 3 \Rightarrow \text{hệ véc tơ } V \text{ là độc lập tuyến tính.}$ (0,25 điểm)

+ Vì $\dim(\mathbb{R}^3) = 3 = \text{"Số phần tử của } V \text{" nên } V$ là một cơ sở của \mathbb{R}^3 . (0,25 điểm)

b. (1,0 điểm):

Giả sử tồn tại $k_1, k_2, k_3 \in \mathbb{R}$ sao cho $x = k_1.v_1 + k_2.v_2 + k_3.v_3$. Suy ra

$$\begin{cases} 3k_1 - 2k_2 + 4k_3 = 10 \\ 4k_1 - 5k_3 = 6 & \xrightarrow{0.75 \text{ diểm}} \\ 2k_1 + 7k_2 & = -3 \end{cases} \begin{cases} 3k_1 - 2k_2 + 4k_3 = 10 \\ + 8k_2 - 31k_3 = -22 & \xrightarrow{0.25 \text{ diểm}} \\ + 237 k_3 = 106 \end{cases} \begin{cases} k_1 = \frac{448}{237} \\ k_2 = \frac{-241}{237} \\ k_3 = \frac{106}{237} \end{cases}$$

Câu 4. (2,0 điểm)

(a)

+ Viết được phương trình đặc trưng và tìm được trị riêng:

$$\det(A - \lambda I) = 0$$

$$\Leftrightarrow \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & -\lambda & 1 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow -\lambda^3 + 2\lambda^2 + \lambda - 2 = 0$$

$$(0,75 \text{ diểm})$$

$$\Rightarrow \begin{cases} \lambda = -1 \\ \lambda = 1 \\ \lambda = 2 \end{cases}$$

$$(0,25 \text{ diểm})$$

(b)

+ Tìm vector riêng ứng với trị riêng $\lambda=-1$: Gọi $x=(x_1,x_2,x_3)$ là vector riêng cần tìm. Nó thoả mãn phương trình sau

$$(A - \lambda I)x = 0.$$

Phương trình này tương ứng với hệ phương trình sau:

$$\begin{cases} 2x_1 + x_2 = 0\\ x_1 + x_2 + x_3 = 0\\ x_2 + 2x_3 = 0 \end{cases}$$

Nghiệm của hệ phương trình này có dạng $x_1 = t$, $x_2 = -2t$, và $x_3 = t$, với t là số thực khác không tuỳ ý. Do đó, vector riêng có dạng tổng quát

$$x = (t, -2t, t) = t(1, -2, 1).$$

Cho t=1 ta có vector riêng đơn giản nhất (và là một cơ sở) của không gian riêng ứng với trị riêng $\lambda=-1$:

$$p_1 = (1, -2, 1).$$
 (0,25 điểm)

+ Tìm vector riêng ứng với trị riêng $\lambda = 1$: Hệ phương trình tương ứng có dạng sau:

$$\begin{cases} x_2 = 0 \\ x_1 - x_2 + x_3 = 0 \\ x_2 = 0 \end{cases}$$

Nghiệm của hệ phương trình này có dạng $x_1 = s$, $x_2 = 0$, và $x_3 = -s$ với s là số thực khác không tuỳ ý. Do đó, vector riêng có dạng tổng quát

$$x = (s, 0, -s) = s(1, 0, -1).$$

Cho s=1 ta có vector riêng đơn giản nhất (và là một cơ sở) của không gian riêng ứng với trị riêng $\lambda=1$:

$$p_2 = (1, 0, -1).$$
 (0,25 điểm)

+ Tìm vector riêng ứng với trị riêng $\lambda = 2$: Hệ phương trình tương ứng có dạng sau:

$$\begin{cases}
-x_1 + x_2 = 0 \\
x_1 - 2x_2 + x_3 = 0 \\
x_2 - x_3 = 0
\end{cases}$$

Nghiệm của hệ phương trình này có dạng $x_3 = x_2 = x_1 = k$ với k là số thực khác không tuỳ ý. Do đó, vector riêng có dạng tổng quát

$$x = (k, k, k) = k(1, 1, 1).$$

Cho k=1 ta có vector riêng đơn giản nhất (và là một cơ sở) của không gian riêng ứng với trị riêng $\lambda = 2$:

$$p_3 = (1, 1, 1).$$
 (0,25 điểm)

+ Viết được ma trận P làm chéo hoá ma trận C có dạng:

$$P = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \quad P^{-1}CP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}. \tag{0.25 diểm}$$

Câu 5 (2,0 điểm).

a. Có: $(A+B)^k = \sum_{i=0}^k .C_k^i.A^k.B^{k-i}$. Do đó chọn k=2021+2020=4041 suy ra đpcm. (0.5 diểm)

b. Có $I = I - (A+B)^k = (I-A-B)(I+(A+B)+\cdots+(A+B)^{k-1}).$

Suy ra $\det(I - A - B)$. $\det(I + (A + B) + \dots + (A + B)^{k-1}) = \det(I) = 1$. Suy ra $\det(I - A - B) \neq 0$ $0 \Rightarrow r(I-A-B) = n.$ Tương tự r(I+A+B) = n. (0,75 điểm) c. Có $A^{2021} = A^{2021} + B^{2021} = (A+B)(A^{2020} - A^{2019}.B + \cdots + B^{2020}).$ Vì A khả nghịch nên

 $det(A) \neq 0$, suy ra $det(A+B) \neq 0$. (0.75 diểm)

Trưởng bộ môn/khoa

Giảng viên ra đề

TS. Phan Quang Sáng

GV Bô môn Toán