Питання на семестрову контрольну роботу

Питання №1 Опишіть загальні властивості послідовних алгоритмів.

Питання №2. Дано завдання побудувати алгоритми: обчислення факторіалу, сортування масиву, пошуку максимального числа та знаходження коренів нелінійного рівняння. Визначте, які з цих алгоритмів є чисельними, а які — логічними. Чи можна побудувати паралельний алгоритм додавання N чисел?

Питання №3. Нехай потрібно обчислити вираз

$$f\left(x,y\right) = egin{cases} x+y, \ x < y, \\ x/y, x \geq y \end{cases} -10 \leq x \leq 10, \ -5 \leq y \leq 5$$
, де x,y — цілі числа.

Запишіть псевдокод алгоритму обчислення виразу та задайте алгоритм графічно.

Питання №4.

Вкажіть способи задавання алгоритмів. Наведіть приклади кожного зі способів задавання.

Питання №5.

Наведіть блок-схему алгоритму з детермінованим циклом, блок-схему з ітераційним циклом та блок-схему з розгалуженням.

Питання №6. Вкажіть етапи розв'язування задач на комп'ютері. Дайте визначення алгоритму.

Питання №7. Дайте визначення і наведіть приклад послідовного алгоритму, визначення та приклад паралельного алгоритму.

Питання №8. Яку функцію одержують з g = 0 і h(x,y) = x за допомогою схеми примітивної рекурсії?

Питання №9. Показати, що S(x,y) = x + y – примітивно рекурсивна функція.

Питання №10. Показати, що функція $f_{\exp}(x, y) = x^y$ є примітивно рекурсивною функцією.

Питання №11. Яку функцію отримаємо із g і h за допомогою схеми примітивної рекурсії, за умови, що g(x) = 0 й h(x, y) = x?

Питання №12. За допомогою операції мінімізації обчислити f(4,1), якщо f(x,y) = x - y.

Питання №13. Система команд машини Тьюринга із зовнішнім

	q_1	q_2	q_3
а	q_1La	q_3Rp	q_3Ra
b	q_2La	q_2Ry	q_3Rb
λ			$q_0 E \lambda$

алфавітом $A = \{a,b,\lambda,y,p\}$ і алфавітом внутрішніх станів $Q = \{q_0,q_1,q_2,q_3\}$ записана у вигляді

Машина перебуває в стані q_{l} , голівка спостерігає комірку з символом a .

На стрічці записане слово bba.

Записати програму роботи машини Тьюринга у вигляді послідовності конфігурацій

Питання №14. Побудувати машину Тьюринга, що обчислює нульфункцію $\mathbf{0}(x) = 0$ та записати програму у вигляді послідовності конфігурацій.

Питання №15. Побудувати машину Тьюринга, що обчислює функцію проектування $I_1^2(x_1,x_2)$. Записати програму у вигляді послідовності конфігурацій.

Питання №16. Побудувати машину Тьюринга, яка обчислює числову функцію f(x,y) = x + y.

Питання №17. Нехай задана машина Тьюринга своїм зовнішнім алфавітом $A = \{0,1,2,3\}$ і алфавітом внутрішніх станів $Q = \{q_0,q_1,q_2\}$. Система команд включає такі команди:

$$q_3 \rightarrow 3Rq_3$$

$$q_1 2 \rightarrow 2Rq_1$$

$$q_1 1 \rightarrow 0Rq_2$$

$$q_2 0 \rightarrow 0Rq_3$$

$$q_3 \lambda \rightarrow \lambda E q_0$$

Записати програму машини Тьюринга у вигляді послідовності конфігурацій, якщо її початкова конфігурація має вигляд: $q_1 2103$.

Питання №18. Нехай $A = \{a, b\}$ — алфавіт. Схема нормального алгоритму Маркова в A має вигляд:

$$\begin{cases} a \to \Lambda \\ bb \to \Lambda \end{cases}$$

Застосувати цю схему до початкового слова: *aabab*.

Питання №19. Нормальний алгоритм Маркова в алфавіті $A = \big\{a, b, 1\big\}$ заданий схемою:

$$\begin{cases} a \to 1 \\ b \to 1 \end{cases}$$

Застосувати дану схему до слова abaabbb.

Питання №20. Нормальний алгоритм Маркова в алфавіті $A = \big\{a,b\big\}$ заданий схемою:

$$\begin{cases} ab \to a, \\ b \to \Lambda, \\ a \to b \end{cases}$$

Записати роботу алгоритму для слова abbbaaab.

Питання №21. Дано алфавіт $A = \{a, b\}$ і схему нормального алгоритму Маркова

$$\begin{cases} aa \to b, \\ bb \to a \end{cases}$$

Застосувати дану схему до початкового слова: *aababaa*

Питання №22. Побудувати нормальний алгоритм Маркова в алфавіті $A = \{1\}$, який реалізує нуль-функцію: 0(x) = 0.

Питання №23. Побудувати нормальний алгоритм Маркова в алфавіті $A = \{1\}$, який реалізує функцію слідування f(x) = x + 1.

Питання №24. Побудувати нормальний алгоритм Маркова в алфавіті $A = \{1\}$, який реалізує функцію проектування $I_1^2(x_1, x_2) = x_1$ на прикладі $I_1^2(4,3)$

Питання №25. Для функції f(x), заданої таблично, побудувати поліном Лагранжа, що проходить через точки $i=\overline{0,2}$.

i	0	1	2
x_i	1	2	4
y_i	9	6	18

Відповідь представити у вигляді: $f(x) = ax^2 + bx + c$.

Питання №26 Для функції f(x), заданої таблично, побудувати поліном Лагранжа, що проходить через точки $i = \overline{0,2}$.

i	0	1	2
x_i	4	8	14
y_i	40	24	60

Відповідь представити у вигляді: $f(x) = ax^2 + bx + c$.

Питання №27. Для функції f(x), заданої таблично, побудувати поліном Лагранжа для рівновіддалених вузлів, що проходить через точки $i = \overline{0,2}$

i	0	1	2
x_i	1	2	3
y_i	4	2	8

Відповідь представити у вигляді: $f(x) = ax^2 + bx + c$

Питання №28. Для функції f(x), заданої таблично, побудувати поліном Лагранжа для рівновіддалених вузлів, що проходить через точки $i = \overline{0,2}$

i	0	1	2
x_i	0	1	2
y_i	4	2	8

Відповідь представити у вигляді: $f(x) = ax^2 + bx + c$

Питання №29. Для функції f(x), заданої таблично, побудувати поліном Лагранжа для рівновіддалених вузлів, що проходить через точки $i = \overline{0,2}$

i	0	1	2
x_i	0	1	2
y_i	2	1	2

Відповідь представити у вигляді: $f(x) = ax^2 + bx + c$.

Також обчислити значення функції в точці x = 0.1.

Питання №30. Скласти розділені різниці першого порядку для функції y = f(x), яка задана таблицею, та обчислити їх значення.

$x_0 = 1$	<i>x</i> ₁ =2	x ₂ =5	<i>x</i> ₃ =12	x ₄ =22
<i>y</i> ₀ =2	<i>y</i> ₁ =4	<i>y</i> ₂ =7	y ₃ =28	y ₄ =68

Питання №31. Скласти скінченні різниці другого порядку для функції y = f(x). заданої таблицею, та обчислити їх значення.

$x_0=1$	$x_1 = 2$	x ₂ =5	<i>x</i> ₃ =12	<i>x</i> ₄ =22
y ₀ =2	<i>y</i> ₁ =4	<i>y</i> ₂ =7	<i>y</i> ₃ =28	y ₄ =68

Питання №32. По скінченних різницях

$$\Delta^2 f(x_0) = 1; \Delta^2 f(x_1) = 18; \Delta^2 f(x_2) = 36$$

побудувати розділені різниці f(0;1;2), f(1,2,3), f(2,3,4) за умови, що $x_{i+1}-x_i=2, i=0,1,2,3,4$.

Питання №33. Скласти розділені різниці першого порядку для функції Y = f(X) при $Y = (y_i)_{i=0}^4 = \{2,4,7,9,12\}$, $X = \{x_i\}_{i=0}^4 = \{1,2,5,7,11\}$

Питання №34. Нехай відомі значення функції Y = f(X)в точках: $Y = \left(y_i\right)_{i=0}^2 = \left\{4,6,12\right\}, \quad X = \left\{x_i\right\}_{i=0}^2 = \left\{0,1,4\right\}.$ За допомогою полінома Ньютона знайти значення функції в точці $x^* = 4$.

Питання №35. Функція представлена рівновіддаленими вузлами x_i , де i=0,1,2,3,4.... Відомі її початкове значення $f\left(x_0\right)=5$, де $x_0=0$ й скінченні різниці: $\Delta f\left(x_0\right)=12$, $\Delta^2 f\left(x_0\right)=4$. Знайти значення функції в точці x_2 за умови, що $x_{i+1}-x_i=2$.

Питання №36. Скласти скінченні різниці другого порядку для функції Y = f(X) при $Y = (y_i)_{i=0}^4 = \{2,4,7,9,12\}$, $X = \{x_i\}_{i=0}^4 = \{1,2,5,7,11\}$

Питання №37. Користуючись правилами наближених обчислень, виконати такі обчислення:

$$a = 125.6784$$
, $b = 115.371$, $a + b = ?$
 $a = 23.11$, $b = 21.2345$, $a - b = ?$
 $a = 4.890542$, $b = 0,123$, $a \cdot b = ?$
 $a = 46,134$, $b = 11.11$, $\frac{a}{b} = ?$
 $a = 148.844567$, $\sqrt{a} = ?$

Питання №38.

При вимірюванні ділянки землі визначили, що її довжина $x=122.2\pm0.12\,\mathrm{m}$, а ширина $y=11.1\pm0.09\,\mathrm{m}$. Знайти площу ділянки та визначити межі похибок.

Питання №39. Для виготовлення сталевих шариків задано радіус $r = 2 \pm 0.01$ см. Визначити об'єм деталі та вказати межу абсолютної похибки та межу відносної похибки.

Питання №40. Даний радіус R. Знайти площу круга й визначити межу абсолютної похибки та межу відносної похибки обчислення за умови, що $R=1,5\pm0,005$, $\pi=3,14\pm0.003$

Питання №41. Даний прямокутник ABCD з довжиною $L = 15 \pm 0.002$ й висотою $H = 5 \pm 0.001$.

Знайти площу прямокутника. Визначити граничну абсолютну й відносну погрішність обчислення.

Питання №42. Знайти відрізок довжиною $|a-b| \le 1$, що містить один корінь рівняння $(x-1)^2 - \frac{1}{2}e^x = 0$.

Питання №43. Перевірити наявність кореня рівняння $1 - x^2 + \frac{1}{6}x^3 = 0$ на відрізку [0,8;1,2].

Питання №44. Перевірити наявність кореня рівняння $\ln x + x^2 - 0.5 = 0$ на відрізку [0.5;1].

Питання №45. Перевірити наявність кореня рівняння $(x-1)^2 - \frac{1}{2}e^x = 0$ на відрізку [1;2].

Питання №46. Перевірити наявність кореня рівняння $4x - 5\ln(x) - 5 = 0$, на відрізку [0,5;1].

Питання №47. Визначте наявність коренів рівняння $4 - e^x - 2x^2 = 0$ на відрізку $\begin{bmatrix} -3;1 \end{bmatrix}$ та їх кількість.

Питання №48. Виконати одну ітерацію при уточненні значення кореня рівняння

$$f(x) \equiv x^3 - 0.2x^2 - 0.2x - 1.2 = 0$$

на відрізку [1;1.5] методом хорд.

Питання №49. Виконати одну ітерацію при уточненні значення кореня рівняння

$$(x-1)\ln(x)-1=0$$
,

на відрізку [2;3] методом хорд.

Питання №50. Виконати одну ітерацію при уточненні значення кореня рівняння

$$f(x) \equiv x^4 - 3x^2 - 75x - 10000 = 0$$

на відрізку [10;11] методом Ньютона.

Питання №51. Дано рівняння $\frac{1}{5}x^3 - x^2 + 1 = 0$. Ізольований корінь перебуває на відрізку [-1,-0,5]. Уточнити значення кореня методом Ньютона, виконавши одну ітерацію.

Питання №52. Знайти методом ітерацій корінь рівняння

$$f(x) = 4x - 5\ln(x) - 5 = 0,$$

приналежний відрізку [0,25;0.75]. Виконати тільки одну ітерацію.

Питання №53. Методом пропорційних частин обчислити один з коренів рівняння:

$$x^3 - 2x^2 + 2x - 10 = 0$$

на відрізку [2.5; 2.7]

Питання №54.

Модифікованим методом ітерацій обчислити один з коренів рівняння

$$3x^3 - 6x^2 + 5x - 3 = 0$$
.

Корінь знаходиться на відрізку [1.2;1.5].

Питання №55.

У рівнянні

$$2x^3 - 0.1x^2 - 0.1x - 1 = 0$$

уточнити значення методом хорд на відрізку [0,1]

Питання №56. Визначити ранг матриці $A = \begin{pmatrix} 2 & 1 & 2 & 1 \\ 0 & 2 & -1 & 1 \\ 4 & -2 & 6 & 0 \end{pmatrix}$

Питання №57. Знайти загальний розв'язок неоднорідної системи лінійних рівнянь

$$\begin{cases} x_1 + 4x_2 - 3x_3 - 5x_4 = 1, \\ 3x_3 + 2x_4 = 5, \\ x_3 + 2x_4 = 3, \end{cases}$$

Питання №58. Розв'язати систему методом Гауса-Жордана.

$$\begin{cases} 2x_1 & +x_2 & -x_3 & = 2 \\ 3x_1 & +x_2 & -2x_3 & = 3 \\ x_1 & & +x_3 & = 3 \end{cases}$$

Питання №59. Розв'язати систему методом Гауса

$$\begin{cases} x_1 - x_3 = 2, \\ 4x_2 + 4x_3 = 12, \\ -x_1 + 4x_2 + 14x_3 = 19 \end{cases}$$

Питання №60. Визначити, при яких значеннях параметра λ існує

матриця, обернена до матриці
$$A = \begin{pmatrix} 1 & -2 & 2 \\ \lambda & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

Питання №61. Розв'язати систему алгебраїчних рівнянь методом Якобі з точністю $\varepsilon = 2$.

Питання №62. Методом простих ітерацій з точністю $\varepsilon = 0.6$ розв'язати таку систему алгебраїчних рівнянь:

$$\begin{cases} 2x_1 + 2x_2 + 10x_3 = 14, \\ 12x_1 + 11x_2 + 2x_3 = 25, \\ 2x_1 + 10x_2 + x_3 = 13. \end{cases}$$

Питання №63. Виконати одну ітерацію розв'язку лінійних алгебраїчних рівнянь модифікованим методом простих ітерацій.

$$\begin{cases} x_1 - 4x_2 + 10x_3 = 0. \\ 5x_1 + 4_2 - x_3 = -2, \\ 3x_1 + 5x_2 - 2x_3 = 1, \end{cases}$$

Питання №64. Методом Гауса-Зейделя знайти розв'язок СЛАР з точністю $\varepsilon = 1.4$

$$\begin{cases} x_1 + 6x_2 + 2x_3 = 9, \\ 4x_1 - x_2 + x_3 = 4, \\ -x_1 - 2x_2 + 5x_3 = 2 \end{cases}$$

Питання №65. Розв'язати систему алгебраїчних рівнянь методом Гауса-Зейделя

$$\begin{cases} 2x_1 + 2x_2 + 10x_3 = 14, \\ 10x_1 + x_2 + x_3 = 12, \\ 2x_1 + 10x_2 + x_3 = 13. \end{cases}$$
 з точністю $\varepsilon = 1.1$

Питання №66. Обчислити приблизно інтеграл $\int_{0}^{1} (x^{2} + x + 1) dx$,

використовуючи середні прямокутники в методі Ньютона-Котеса за умови, що h=0.2 .

Питання №67. Обчислити приблизно інтеграл $\int\limits_0^1 \Big(x^2+x+1\Big) dx$, використовуючи метод трапецій при h=0.2.

Питання №68. Обчислити приблизно інтеграл $\int_{0}^{1} (2x^{2} - x + 1) dx$,

використовуючи ліві прямокутники в методі Ньютона-Котеса за умови, що $\,h=0.2\,.$

Питання №69. Розв'язати методом Ейлера диференціальне рівняння y' = x + y при початковій умові y(0) = 1 на відрізку [0; 0.5] із кроком 0.1.

Питання №70. Використовуючи метод Ейлера, побудувати наближений розв'язок для наступної задачі Коші:

$$\frac{dy}{dx} = x - y, \ x_0 = y_0 = 0$$
 на сітці із кроком 0,2 в інтервалі [0;1]

Питання №71.Розв'язати задачу Коші

 $y' = y^2 - x$, y(1) = 0 на відрізку [1,2] методом Ейлера з кроком h = 0.2 .

Питання №72. Методом Ейлера знайти розв'язок диференціального рівняння, y' = x + y, що задовольняє початковій умові y(0) = 1 на відрізку [0,0.5] із кроком h = 0.1

Питання №73. Розв'язати методом Ейлера диференціальне рівняння $y' = \cos y + 3x$ з початковою умовою y(0) = 1.3 на відрізку [0, 0.6], прийнявши крок h = 0.2.