

The solar wind event horizon

The solar wind event horizon

...are set by plasma properties here

$$n_{\odot}v_{\odot} = n_{\odot}c_{\odot}\frac{c_{\odot}}{c_{c}}\frac{r_{c}^{2}}{r_{\odot}^{2}}\exp\left[-\int_{r_{\odot}}^{r_{c}}\frac{r_{\odot}dr}{r^{2}}\frac{w^{2}}{c\left(r\right)^{2}}\right]$$
 Mass flux Constants

Integrate from surface Temperature profile; to critical point

 $c^2 \sim T$

The mass flux problem

Small variations in coronal temperature should result in large variations in mass flux

$$\frac{n_{\odot}v_{\odot} (T = 2 \text{ MK})}{n_{\odot}v_{\odot} (T = 1 \text{ MK})} \approx 100$$

The mass flux problem

Small variations in coronal temperature should result in large variations in mass flux

Is mass flux variation driven by coronal temperature?

Measuring mass flux

- ullet Using frozen-in flux theorem, $n_{\odot}v_{\odot}=n_{sw}v_{sw}rac{B_{\odot}}{B_{sw}}$
- Need to measure:
 - Solar wind mass flux + B → in-situ measurement
 - Coronal B → remote measurement (magnetograms)
- Compare to coronal T → in-situ or remote measurement

Coronal hole observations

[see Badman et al. 2020 for detailed modelling]

Coronal hole observations

Results

50% increase in Te results in ~ 200% increase in mass flux

Measuring active region T

- Could use same method, but no Active Region solar wind measured by PSP (at time of work)
- Active regions are dense + hot, emit lots of photons
- Use two AR outflows tracked to L1 in literature [van Driel-Gesztelyi 2012, Stansby 2020]

Results

Context and further work

- Example of multi-instrument comparison of wind sources
- Active regions are > 40% of solar wind at solar max
- PSP & Orbiter will increasingly measure active region solar wind

Conclusions

Hotter regions of the corona have higher mass fluxes

Example of what multiinstrument studies can do

New insights into active region solar wind sources

Stansby et al. 2021, A&A

Sensitivity of solar wind mass flux to coronal temperature

D. Stansby^{1*}, L. Berčič^{2,3}, L. Matteini⁴, C. J. Owen¹, R. J. French¹, D. Baker¹, and S. T. Badman^{5,6}

Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Surrey RH5 6NT, UK LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC University Paris 6, University Paris-Diderot, Meudon,

Physics and Astronomy Department, University of Florence, Sesto Fiorentino, Italy Department of Physics, Imperial College London, London, SW7 2AZ, UK Physics Department, University of California, Berkeley, CA 94720-7300, USA Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA

<u>d.stansby@ucl.ac.uk</u> Slides at <u>davidstansby.com/research</u>