

■ 사물 인터넷의 개념 및 주요 기술

- 초연결 사회로 진입
 - ▶ 2030년까지 전 세계 사물 인터넷 장치는 254억 개로 증가할 것으로 예측
 - ➤ 저전력 광역 통신망(Low Power Wide-Area, LPWA) 접속기기도 상당수에 이를 것으로 예상
 - > 스마트폰과 태블릿은 서비스의 급성장과 인터넷이 가능한 사물들의 증가에 결정적 기여
 - ➤ 주변의 모든 사물이 네트워크를 통해 서로 연결되는 초연결 사회(Hyper-Connected Society)로 진입

■ 사물 인터넷의 필요성 증가

- ▶ 공공 분야에서 재난, 재해, 기상, 질병 등의 상황 정보를 감지하고 분석할 필요가 증가
- ▶ 생성된 데이터의양이 방대해지면서 이를 수집, 관리, 분석하기 위한 기술의 필요성이 증가
- ▶ 여러 산업 분야에서 빅 데이터 기반의 다양한 서비스 개발
- ▶ 기업 간(B2B) 서비스에서 일반 소비자형(B2C) 서비스로 발전

■ 사물 인터넷 활용 사례

■ 여러 종류의 사물들과 통신하면서 다양한 서비스를 활용하는 것이 가능

One Mode for Copyright like

| Important to produce of the limit of th

(a) 주차(샌프란시스코)

(b) 파이어캐스트2.0(시카고)

(c) 스마트 신호등(코펜하겐)

(d) 스마트크린(LG)

(e) 스마트가로등(바로셀로나)

(f) 사물 인터넷 실증단지(경기도)

출처: https://www.ftickr.com/, https://cleantechnica.com/, http://www.citylab.com/, http://urbanomnibus.net/, http://gyinews.co.kr/

■ 사물 인터넷의 현실화

- 다양한 종류의 기기 및 사물에 근거리 및 원거리 통신 모듈이 탑재되고 사물이 소형화 및 지능화
- ▶ 사물과 사람 간 또는 사물과 사물 간의 데이터 송수신이 가능
- 정보를 수집하는 센싱, 사물 간 네트워킹, 정보 처리 등의 동작을 인간의 개입 없이 상호 협력하며 지능적인 서비스를 제공

■ 사물 인터넷의 정의

- 인간, 사물, 서비스 세 가지 환경 요소에 대해 인간의 개입 없이 상호 협력적으로 센싱, 네트워킹, 정보 처리 등 지능적인 관계를 형성하는 사물 공간 연결망을 의미
- 즉, 주변 사물들이 유무선 네트워크로 연결되어 수집한 정보를 공유하며 상호 작용하는 지능형/자율형 네트워킹 기술 및 환경을 의미
- 정보 통신 기술을 기반으로 실세계와 가상 세계의 다양한 사물들을 연결하여 진보된 서비스를 제공하기 위한 기반 기술

■ 사물 인터넷의 정의

- 유비쿼터스 공간을 구현하기 위한 컴퓨팅 장치들이 주변 사물에 이식되어 환경이나 사물이 지능화되는 것
 - → 사물 통신의 개념을 인터넷으로 확장한 사물
 - → 현실과 가상 세계의 모든 정보가 언제 어디서나 상호 작용하는 개념으로 진화

출처: 소프트웨어정책연구소의 네이버 지식백과 '사물 인터넷' 재구성

■ 사물 인터넷의 개념적 변화 과정

▶ 사물 통신의 개념이 사물 인터넷에 흡수되어 지능 통신으로 발전

[시물 인터넷의 기본 개념]

[사물 인터넷의 개념적 변화 과정]

■ IBM의 사물 인터넷 발전 단계

▶ 디바이스 연결 단계(IoT 1.0), 인프라 구축 단계 (IoT 2.0), 산업별 혁신 솔루션 개발 단계 (IoT 3.0) 등 3단계로 구분

출처: IBM

■ loT 1.0 : 디바이스 연결 단계

- ▶ 초기 단계 : 사물을 인터넷에 연결하는 기술 중심
- 네트워크에 연결된 사물의 기능이나 수집한 정보가 제한적이어서, 실시간으로 데이터를 조회하는 수준의 단계
- ➤ 케빈 애쉬튼이 "RFID와 센서가 일상생활의 다양한 사물에 탑재되어 사물 인터 넷이 구축될 것"이라고 언급
 - ✓ RFID 기술은 사물 인터넷을 위한 기반 기술
- ▶ 단말기에 센서와 통신 모듈을 부착하는 등 하드웨어 차원의 발전이 주로 이루어짐

■ loT 2.0 : 인프라 구축 단계

- 중간 단계: 사물이 주변 환경을 센싱하는 능력뿐만 아니라 다른 사물과 연결이 가능해지는 시기
- 센서와 통신 모듈 가격 하락, 통신 기술 발전 등으로 인터넷에 연결된 기기 수가 급격히 증가, 대량의 데이터 수집, 분석을 위한 빅 데이터 플랫폼, 예측 분석, 사물 인터넷 미들웨어 등 다양한 인프라 기술이 개발되는 단계
- 센서가 직접 센싱한 데이터나 이벤트를 구동기에 보내고, 구동기는 전달된
 신호에 따라 기계를 작동시키거나 간단한 동작이 가능
- ▶ 집안의 자동 온도 조절 장치, 사용자가 집근처에 왔을 때 냉난방기 자동 가동과 같은 원격으로 제어 가능
- ➤ RFID의 기술적 성숙으로 다양한 분야에 RFID 도입이 확산하는 시기
- 대용량 데이터가 빠르게 생성됨에 따라, 사물 데이터의 실시간 수집 및 분석에 대한 요구가 증가
- ▶ 개별적으로 흩어져 있는 사물 인터넷 데이터를 통합하여 서비스를 제공하는 단계
- ▶ 데이터들을 묶어 줄 수 있는 역할을 하는 데이터 플랫폼이 서비스의 가치를 결정

■ loT 3.0 : 산업별 혁신 솔루션 개발 단계

- 마지막 단계: 사물의 자동 수행 능력과 상호 연결성을 이용하여 산업 혁신을 위한 솔루션을 개발하는 시기
- 현실 세계의 복잡한 현상을 데이터를 기반으로 추상화하고 문제 해결을 위해 프로그램화한 사업 솔루션으로 행동 가능한 통찰력 제공
- 사물은 더욱 지능화되어 주변 환경을 센싱, 다른 사물이나 센서, 서비스 등과 상호 작용하면서 스스로 정보를 수집하고 공유
- 기반 인프라와 서비스의 통합을 통해 신개념의 사업 최적화가 가능한 환경을 의미
- 현재는 클라우드 및 엣지 컴퓨팅을 활용하여 각 산업 분야별 최적화 솔루션인 서비스 플랫폼을 제공하는 사물 인터넷 3.0 시대
- ▶ 자율주행 자동차, 지능형 교통 제어 시스템, 스마트의료, 스마트시티, 스마트농장, 스마트유통/물류 등은 모두 사물 인터넷의 영역

■ 사물 통신(Machine-to-Machine, M2M)

- 정의: "사람이 개입하지 않는, 혹은 최소한의 개입 상태에서 기기 및 사물 간에 일어나는 통신"
- ▶ 디바이스가 스스로 통신을 하기 위해 장치마다 그 역할에 따른 지능화가 필요
- 기계, 센서, 컴퓨터 등 다양한 디바이스가 유무선 통신 기술을 이용하여 서로 정보를 교환
 - → 디바이스의 기능이나 성능을 개선하고 개별 디바이스가 제공하지 못하던 새로운 지능형 서비스를 제공
- ▶ 활용 분야
 - ✓ 전기, 가스 등 원격 검침, 신용카드 조회, 위치 추적, 시설물 관리, 버스 운행 시스템 등

■ 무선 센서 네트워크(Wireless Sensor Network, WSN)

- ▶ 센싱, 컴퓨팅, 무선 통신이 가능한 수많은 센서 노드로 구성된 무선 네트워크를 의미
- 장소에 제약을 받지 않고 언제 어디서나 컴퓨팅 환경에 접속할 수 있는 유비쿼터스 패러다임이 확대되면서 연구가 활발하게 진행됨
- ▶ 사물에 내장된 무선 네트워크 기술로서 기본적으로 RFID 등과 같은 내용을 포함

■ 유비쿼터스 센서 네트워크(Ubiquitous Sensor Network, USN)

- ▶ 태그와 센서 노드를 통해 주변 환경이나 사물의 상태 정보를 인식하고 수집하여 언제 어디서나 이용할 수 있도록 구성된 정보 네트워크를 의미
- ▶ 무선 센서 네트워크보다는 광의의 개념으로 사용
- 초소형 센서 노드를 통해 실시간으로 각종 정보를 수집하고, 각종 무선 네트워킹 기술을 이용하여 상호 작용
- ▶ 초기에는 ID 인식, 이력 관리 서비스가 중심
 - → 점차 환경 정보 센싱, 태그 간 통신, 태그 제어 기술 등 세부 기술의 발전으로 그 응용 대상이 확대

■ 만물 인터넷(Internet of Everything, IoE)

- ▶ 사물뿐만 아니라 사람, 공간, 업무 및 데이터까지 모든 것이 네트워크상에 연결되는 인터넷 즉, 네트워크들의 네트워크라는 개념
- ▶ 프로세스를 중심으로 연결된 수많은 사람, 사물, 공간, 데이터가 다시 프로세스 간의 연계를 통해 수십억 또는 수조 개가 연결될 수 있는 네트워크
- ▶ 사물 인터넷과의 차이
 - ✓ 프로세스와 데이터가 강조되었다는 점

출처 : 사물 인테넷(IoT) 생능출판사

■ 만물 인터넷(Internet of Everything, IoE)

▶ 사물 통신 및 사물 인터넷에서 진화된 개념

출처: 산업연구원

■ 사물 웹(Web of Things, WoT)

- ▶ "웹 기술을 통해 사물 인터넷 위에서 구동할 수 있는 응용 프로그램과 그 서비스 기술"
- 사물 간의 통신을 위한 프로토콜로 웹 기술을 이용하고 사물이 웹에 통합되고, 웹상의 각 사물은 접근 가능한 하나의 서비스로 보이게 하는 개념
- ▶ 스마트사회를 만드는 핵심 기술
- ▶ 인터넷 식별자(Uniform Resource Identifier, URI), HTTP(Hypertext Transfer Protocol), REST(Representational State Transfer). RSS(Rich Site Summary) 이용

제약 상태 디바이스

완전 상태 디바이스

출처: ITU

■ 사물 인터넷에서 사물의 의미

■ 사물 인터넷

- > 각종 사물에 프로세서와 통신 모듈을 내장하여 인터넷에 연결할 수 있는 기술
- ▶ 모든 종류의 사물들이 서로 연결되어 통신이 가능함을 의미

사물(Objects)

- ▶ 네트워크에 연결된 사용자 단말이나 다양한 형태의 장치
- 임의의 프로세서를 장착한 일종의 내장형 시스템
- 예) 스마트폰이나 태블릿과 같은 모바일 기기, 안경이나 시계 같은 착용형 기기, 자동차, TV, 냉장고와 같은 가전제품, 폐쇄 회로 텔레비전(Closed Circuit Television, CCTV), 드론 등

■ 사물들에 부착된 장치(Device)

- 주변 상황을 인지하고 필요한 데이터를 수집할 수 있는 센서,
- 수집한 데이터를 처리하거나 저장할 수 있는 처리기 및 저장 공간,
- 인터넷 망과 연결하여 데이터를 주고받을 수 있는 통신모듈,
- ▶ 자체 전원으로 구성

■ 사물 인터넷에서 사물의 의미

- 초기의 사물(Objects)은 네트워크에 연결된 사용자 단말이나 임의의 프로세서를 장착한 일종의 내장형 시스템.
- 최근 지능형 사물 인터넷이 등장하면서
 초기의 물리적 사물 뿐만 아니라,
 디지털 사물 그리고 생물학적 존재를
 총칭하는 의미로 확대
- 사물 인터넷 개념
 - 여러 기술에 대한 비전들이 융합된 결과로 탄생

출처: "The Internet of Things: A Survey" in Int'l Journal of Computer and Telecommunications Networking, vol. 54, Issue 15, 2010.)

■ 사물 인터넷의 기반 기술

- 센싱 기술
 - ▶ 사물과 주위 환경에서 정보를 얻기 위한 기술
 - ▶ 센서
 - ✓ 대상으로부터 물리, 화학, 생물학적 속성값을 측정하여 사용자나 시스템에서 사용할 수 있도록 저장하거나 전달하는 기능을 제공
 - ✓ 온도, 습도, 열, 가스량, 조도, 위치, 움직임 감지 등 다양한 속성값을 측정할 수 있는 센서가 활용
 - ✓ 센서 내에 프로세서를 내장하여 스스로 판단하고, 정보를 처리할 수 있는 스마트센서(Smart Sensor) 등장
 - ✓ 센서 스스로 에너지를 생산하는 에너지 하비스팅(Energy Harvesting) 관련 연구도 활발

■ 사물 인터넷의 기반 기술

- 센싱 기술
 - ▶ 사물과 주위 환경에서 정보를 얻기 위한 기술
 - ▶ 센서
 - ✓ 대상으로부터 물리, 화학, 생물학적 속성값을 측정하여 사용자나 시스템에서 사용할 수 있도록 저장하거나 전달하는 기능을 제공
 - ✓ 온도, 습도, 열, 가스량, 조도, 위치, 움직임 감지 등 다양한 속성값을 측정할 수 있는 센서가 활용
 - ✓ 센서 내에 프로세서를 내장하여 스스로 판단하고, 정보를 처리할 수 있는 스마트센서(Smart Sensor) 등장
 - ✓ 센서 스스로 에너지를 생산하는 에너지 하비스팅(Energy Harvesting) 관련 연구도 활발

■ 사물 인터넷의 기반 기술

- 유무선 통신 및 네트워크 인프라 기술
 - ▶ 인간-사물-서비스를 연결하는 데 필요
 - ➤ Wi-Fi(Wireless-Fidelity), 근거리 통신, Wi-Fi, 4G/LTE/해상무선통신 (LTE based Maritime Wireless Communication, LTE-M)/5G 등이 대표적
 - ➤ 2030년 상용를 목표로 연구 개발 중인 6G도 주목
 - ▶ IP를 사용하지 않는 기기 간 통신은 USB, 블루투스, 지그비(ZigBee), RFID, NFC(Near Field Communication) 등의 통신 방식을 사용

■ 사물 인터넷의 기반 기술

- 서비스 및 인터페이스 기술
 - ▶ 사람·사물·서비스를 통해 특정 기능을 수행하는 응용 서비스와 연동하는 역할
 - 즉, 단순한 네트워크 인터페이스 개념이라기 보다는 사물 인터넷망을 통해 저장, 처리 및 변환, 검색 등 다양한 서비스를 제공
 - ▶ 오픈 웹 아키텍처인 REST가 대표적으로 사용
 - > REST는 웹 프로토콜를 활용하여 자원 중심으로 네트워크 또는 아키텍처를 구성하는 개념
 - ▶ REST(Representational State Transfer)는 자원의 상태를 표현하는 것이라는 뜻
 - 프로토콜을 기반으로 동작하므로, 네트워크 스위치 장비, 방화벽, 프락시 서버등에서 수정 없이 전달 가능
 - ▶ 거의 모든 운영체제에서 지원 가능

- 사물 인터넷의 기반 기술
 - 인터넷 인프라에 직접 연결에 중점 둔 사물 인터넷

■ 사물 인터넷의 주요 기술

■ 가트너(Gartner)의 사물 인터넷 실현을 위해 필요한 핵심 기술

요소 기술	개요			
저전력 네트워킹 기술	 사물의 통신 방식에 따라 단말에서 지원되는 통신 반경, 데이터 전송률, 단말 가격, 소모 전력이 많이 달라진다. 데이터 전송률은 낮지만, 저전력을 사용하는 지그비, 블루투스 LE, Sub-GHz 방식의 802.11ah 및 지-웨이브(Z-Wave) 방식이 사용되고 있다. 			
센싱 데이터 경로 최적화 및 관리 기술	 사물 인터넷 서비스는 수많은 단말로 구성되고, 단말 간 데이터 전송이 빈번하게 발생할수 있어 단말의 전력 소모가 많아지게 된다. 이러한 환경에서 저전력 데이터 전송을 위한 데이터의 경로 설정 및 흐름 제어 등의 데이터 전송 효율화 기술이다. 			
저전력 내장형 운영 체제 기술	 사물에 장착되는 저비용 · 저전력 하드웨어 모듈은 상대적으로 저성능, 제한된 자원을 가지게 되며, 이에 따라 데이터 수집 및 전송을 효율적으로 관리해 주는 경량 운영 체제 가 필요하게 되었다. TinyOS, Contiki, NanoOplus 등의 경량 운영 체제가 사용되고 있다. 			
새로운 전력 공급 및 저장 기술	 단말들은 직선뿐 아니라 곡선 등 다양한 형태를 가지며, 이를 위한 플렉시블(flexible) 전력 공급 장치와 보다 장기간 사용할 수 있는 고밀도 배터리 기술이 필요하다. 반영구적인 사용을 위해 전력을 자가 생산하거나 무선 충전하는 기술이 요구된다. 			
저가격 · 저전력 프로세서 기술	단말의 빠른 확산을 위해 제품의 가격이 낮아야 큰 저항 없이 소비자의 삶에 스며들 수 있 어 대중화에 유리할 수 있다.			

■ 사물 인터넷의 주요 기술

- ICT R&D 기술로드맵 2025 보고 서에서 사물 인터넷 기술 분류
 - > 디바이스(Device, D)
 - ▶ 네트워킹(Networking, N)
 - ➢ 플랫폼(Platform, P)
 - > 서비스(Service, S)
- 최근 들어 사물 인터넷이 빅 데이터, 인공 지능, 엣지 컴퓨팅기술 등의 기반 기술과 융합되면서 플랫폼의 중요성이 커지면서 이를 반영

출처: ETRI 재구성

■ 사물 인터넷의 주요 기술

- 센서(Sensor)
 - ▶ 소리, 빛, 열, 가스, 온도, 습도 등 주변의 물리·화학·생물학적 정보뿐만 아니라 주변 이미지/모션 정보를 감지하여 전기적 신호로 변환하는 장치
 - ▶ 데이터를 수집하고 이를 처리하여 전달하는 기능을 수행
 - ▶ 단순한 하나의 기능을 수행하기 도 하지만, 여러 기능의 센서나 하드웨어 모듈이 하나의 디바이스 내에 포함되어 보다 다양한 기능을 수행
 - 예) 자동차를 타고 가다가 앞차가 급정거를 하는 경우, 충돌 방지 레이더나 충돌 방지 센서, 카메라 등이 이를 감지

■ 사물 인터넷의 주요 기술

- 오픈 소스 하드웨어 플랫폼 (Open Source Hardware Platform, OSHP)
 - 다양한 종류의 센서 장치가 필요한 사물 인터넷 서비스 개발을 효율적으로 지원
 - 오픈 API를 이용하여 자신이 원하는 서비스들을 손쉽게 개 발할 수 있을 뿐만 아니라, 센 서 장치에 대한 제어도 훨씬 간 편하게 이용

사례		기업	주요 특징
아두이노 (Arduino)		아트멜 (Atmel)	 ATMega 계열 저전력 프로세서 이용 아두이노 통합 개발 환경 제공. C++ 언어 기반 개발(넓은 사용자) 윈도, 리눅스, 맥 OS X의 크로스 플랫폼 지원 http://www.arduino.cc
라즈베리 파이 (Raspberry Pi)		브로드컴 (Broadcom)	Broadcom BCM2835 Soc. ARM Cortex-A7 0.9Ghz 프로세서 이클립스(Eclipse) 같은 기존의 통합 개발 환경 이용 리눅스 운영 체제 플랫폼 중심, 파이썬(Python) 언어 기반 개발 http://www.raspberrypi.org
비글보드 (Beagle Board)		텍사스 인스트루먼트	ARM Cortex—A8 시리즈 프로세서 이용 이클립스 같은 기존의 통합 개발 환경 이용 리눅스, 안드로이드 운영 체제(Ardroid OS) 플랫폼 http://Beagloboard.org
갈릴레오 (Galileo)		인텔	 Intel Quark X1000 프로세서 이용 아두이노 통합 개발 환경 호환 지원 윈도, 리눅스, 맥 OS X 플랫폼 지원 http://software.intel.com/en-us/iot/hardware/galleo

출처: www.iitp.kr

■ 사물 인터넷의 주요 기술

- 사물 인터넷 네트워크
 - 기존의 유무선 통신 기술과 근거리 무선 통신 기술을 융합하여 네트워크 인프라를 구축
 - ▶ 무선 통신 기술: 부호 분할 다중 접속(Code Division Multiple Access, CDMA), 광대역 부호 분할 다중 접속(Wideband CDMA, W-CDMA), 5G, LTE, 해상무선통신(LTE-M), 와이파이(Wi-Fi) 등
 - ➤ 저전력·저비용 **근거리 무선 통신 기술** : 근접 무선 통신(NFC) 기술과 지그비, 블루투스 등
 - ➤ 최근에는 LoRa(Long Range), 협대역 사물 인터넷(Narrow Band-Internet of Things, NB-IoT) 등의 **사물 인터넷 전용 통신망**도 이용
 - ▶ LoRa : 사물 상호 간 통신을 위한 저전력 의 장거리 통신(Low Power Wide Area, LPWA) 기술
 - ▶ NB-IoT : 데이터 통신에서 협대역을 이용하여 전력 소비가 적은 광역 통신을 지원하는 사물 인터넷 표준 기술

■ 사물 인터넷의 주요 기술

- 사물 인터넷 네트워크(IoT Network) 기술 구분
 - > 공공 네트워크(인터넷, 5G, LTE 등) 기술 : 보편적인 서비스를 제공하기 위해 활용
 - > 지역 네트워크(액세스 네트워크) 기술 : 사용자 중심의 단말 디바이스로 구성

■ 공공 네트워크 기술

- ➤ 대규모 사물 인터넷(massive loT, mloT)을 지원하기 위해 5G 기반의 초고속 네트워크 인프라 기술과 더불어 광역 기반의 저전력 네트워킹 기술, 즉 대규모 사물 통신(massive Machine-Type Communication, mMTC)을 제공
- ▶ 디지털 트윈, AVB(Audio Video Bridging) 등 확정적 저지연의 고신뢰 서비스를 위한 가장 중요한 요소(critical loT, cloT) 기술이 개발
- 고신뢰·저지연(Ultra-Reliable and Low-Latency Communications, URLLC) 네트워킹 및 정보 중심 네트워킹 기술 등의 주요 이슈가 존재

■ 사물 인터넷의 주요 기술

- 플랫폼 (Platform)
 - '다양한 제품이나 서비스를 제공하고 사용하기 위한 토대'
 - ▶ 컴퓨터 분야로 확대하면 소프트웨어 응용 프로그램들을 실행할 수 있는 기반
- 사물 인터넷 플랫폼(IoT Platform)
 - ▶ 실세계의 사물들을 언제 어디서나 서로 소통할 수 있도록 네트워크로 상호 연결 및 관리
 - ▶ 사물들이 생성하는 데이터를 수집하거나 사물을 제어하는 방법을 제공
 - 다양한 서비스를 개발하고 운영할 수 있도록 지원하는 시스템

출처: https://www.slideshare.net/ssuser4adfd7/io-t-case-study-integral-modular-62470199 재구성

■ 사물 인터넷의 주요 기술

- 이기종 센서 장치 관리, 연결 제어, 통합 관리 기술
 - > 장치의 등록 및 연결 상태 모니터링, 펌웨어 업데이트 등과 같은 **단말 관리 기술**이 필요
 - 사물 인터넷 시스템을 이루는 장치 간의 통신 및 네트워크 관리 기능은 연결성 관리 기술이 주로 담당
 - ▶ 오픈 소스 디바이스 플랫폼, 초연결 네트워크 인프라 기술, 통신 프로토콜 등이 필요
 - ✔ 네트워크 장치 : 게이트웨이, 허브 등이 이용
 - ✓ 통신 프로토콜 : MQTT(Message Queuing Telemetry Transport), 단순 객체 접근 프로토콜(SOAP), TCP/IP, HTTP 등이 이용
 - 사물 인터넷 서비스 제공을 위해 시스템 내의 모든 소프트웨어와 하드웨어를 통합 관리하는 사물 인터넷 통합 관리 기술도 필요

■ 사물 정보 수집 및 저장

- ▶ 대용량이면서 다양한 형식의 센서 데이터를 효율적으로 수집 밑 저장
- 실시간 데이터는 메인 메모리 기반 데이터 저장 관리
- ▶ 배치 처리용 데이터는 데이터베이스 기반 데이터 저장 관리
- ▶ 대규모 데이터는 클라우드 인프라 기반의 분산 빅 데이터 저장 및 처리 방법을 제공

■ 사물 인터넷의 주요 기술

- 사물 정보 검색·분석·시각화
 - 사물들로부터 수집된 대용량 데이터를 분석, 처리하여 지능형 서비스를 제공하기 위해 분석 처리 기술을 활용
 - ▶ 빅 데이터, 인공 지능, 기계 학습 등을 활용하며, 효율적인 데이터 분석 연산을 수행하기 위해 클라우드 시스템을 활용 → 이터 스트림 처리, 실시간 분석 및 배치 분석을 수행
 - 사물 인터넷 서비스에 따라 필터링, 통계, 데이터 마이닝, 의미 분석 등의 다양한 분석 기법들 제공

登村: http://www.cartographicperspectives.org/index.php/journal/article/view/cp72-peterson-et-al/479

■ 사물 인터넷의 주요 기술

- 사물 정보의 개방형 웹 서비스
 - 서비스의 개발을 효율적으로 지원하기 위해 자신이 보유한 기능들을 오픈 API를 통해 외부에 지원
 - 예) SWE(Sensor Web Enablement)는 사물 정보 수집 및 제어와 관련된 웹서비스 API 표준을 제시하고, 구글 맵에서 제공하는 오픈 API와 매시업되어 활용

빅 데이터와 인공 지능 및 클라우드 연계

- 사물 인터넷의 각 디바이스들은 지속적으로 데이터를 수집한 후 정해진 경로를 통해 전송
- 빅 데이터 분석을 통한 고도화된 사물 인터넷은 스스로 상황을 판단하고 자율적으로 후속 작업을 실행
- 전송 사물이 수집한 데이터를 활용하기 위해 최근에는 빅 데이터와 인공 지능 기술을 접목

