

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 43: Popular Optimizing Gradient Descent

Challenges

- ☐ Deep learning is data hungry.
- ☐ Overfitting or lack of generalization.
- ☐ Vanishing/Exploding Gradient Problem.
- ☐ Appropriate Learning Rate.
- ☐ Covariate Shift.
- ☐ Effective training.

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ ResNet
 - ☐ Gradient Descent Challenges
 - ☐ Momentum Optimizer
 - ☐ Nestevor Accelerated Gradient
 - ☐ Adagrad.
 - **u** etc.

Gradient Descent Challenges

Challenges of Mini-batch Gradient Descent

- ☐ Choice of Proper Learning Rate:
 - ☐ Too small a learning rate leads to slow convergence.
 - □ A large learning rate may lead to oscillation around the minima or may even diverge.

Gradient Descent

- Challenges
 Learning Rate Schedules: changing learning rate according to some predefined schedule.
 - The same learning rate applies to all parameter updates.
 - The data may be sparse and different features have very different frequencies.
 - ☐ Updating all of them to the same extent might not be proper.
 - ☐ Larger update for rarely occurring features might be a better choice.

Gradient Descent Challenges

- Challenges

 Avoiding getting trapped in suboptimal local minima.
 - ☐ Difficulty arises from saddle points, i.e. points where one dimension slopes up and another slopes down.
 - ☐ These saddle points are usually surrounded by a plateau of the same error, which makes it hard for SGD to escape, as the gradient is close to zero in all dimensions.

Optimizing Gradient Descent

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ ResNet
 - ☐ Gradient Descent Challenges
 - ☐ Momentum Optimizer
 - ☐ Adagrad.
 - **u** etc.

Momentum Optimizer

Momentum Optimizer

Momentum Optimizer

Momentum Optimizer

Nesterov Accelerated Gradient (NAG)

Nesterov Accelerated Gradient (NAG)

Problem with Momentum Optimizer/NAG

- Optimizer/NAG

 Both the algorithms require the hyper-parameters to be set manually.
- ☐ These hyper-parameters decide the learning rate.
- ☐ The algorithm uses same learning rate for all dimensions.
- ☐ The high dimensional (mostly) non-nonconvex nature of loss function may lead to different sensitivity on different dimension.
- ☐ We may require learning rate could be small in some dimension and large in another dimension.

NPTEL ONLINE CERTIFICATION COURSES

Thank you