Test functions for optimization

From Wikipedia, the free encyclopedia

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as:

- Velocity of convergence.
- Precision.
- Robustness.
- General performance.

Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given.

The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et. al. [2] and from Rody Oldenhuis software. [3] Given the amount of problems (55 in total), just a few are presented here. The complete list of test functions is found on the Mathworks website. [4]

The test functions used to evaluate the algorithms for MOP were taken from Deb, [5] Binh et. al. [6] and Binh. [7] You can download the software developed by Deb, [8] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [9] which implements the NSGA-II procedure with ES.

Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.

Contents

- 1 Test functions for single-objective optimization problems
- 2 Test functions for multi-objective optimization problems
- 3 See also
- 4 References

Test functions for single-objective optimization problems

Name	Plot	Formula	Minimum	Search domain
Ackley's function:		$f(x,y) = -20 \exp\left(-0.2\sqrt{0.5(x^2 + y^2)}\right)$ $-\exp\left(0.5(\cos(2\pi x) + \cos(2\pi y))\right) + e + 20$	f(0,0)=0	$-5 \le x, y \le 5$
Sphere function	10 10 10 10 10 10 10 10 10 10 10 10 10 1	$f(\boldsymbol{x}) = \sum_{i=1}^{n} x_i^2$	$f(x_1,\ldots,x_n)=f(0,\ldots,0)=0$	$-\infty \le x_i \le \infty,$ $1 \le i \le n$
Rosenbrock function	200 - 200 -	$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (x_i - 1)^2 \right]$	$Min = \begin{cases} n = 2 & \to & f(1,1) = 0, \\ n = 3 & \to & f(1,1,1) = 0, \\ n > 3 & \to & f\left(\underbrace{1,\dots,1}_{(n) \text{ times}}\right) = 0 \end{cases}$	$-\infty \le x_i \le \infty,$ $1 \le i \le n$
Beale's function	1000F	$f(x,y) = (1.5 - x + xy)^{2} + (2.25 - x + xy^{2})^{2} + (2.625 - x + xy^{3})^{2}$	f(3,0.5) = 0	$-4.5 \le x, y \le 4.5$
Goldstein– Price function:	15.000 15	$f(x,y) = \left(1 + (x+y+1)^2 \left(19 - 14x + 3x^2 - 14y + 6xy + 3y^2\right)\right)$ $\left(30 + (2x - 3y)^2 \left(18 - 32x + 12x^2 + 48y - 36xy + 27y^2\right)\right)$	f(0,-1)=3	$-2 \le x,y \le 2$
Booth's function:	2007 2007 2008 2008 2008 2009 2009 2009 2009 2009	$f(x,y) = (x + 2y - 7)^{2} + (2x + y - 5)^{2}$	f(1,3) = 0	$-10 \le x, y \le 10$
Bukin function N.6:	200 100 100 100 100 100 100 100 100 100	$f(x,y) = 100\sqrt{ y - 0.01x^2 } + 0.01 x + 10 $.	f(-10,1)=0	$-15 \le x \le -5$ $-3 \le y \le 3$

Matyas function:	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	$f(x,y) = 0.26 (x^2 + y^2) - 0.48xy$	f(0,0) = 0	$-10 \le x, y \le 10$
Lévi function N.13:	200 200 200 200 200 200	$f(x,y) = \sin^2(3\pi x) + (x-1)^2 \left(1 + \sin^2(3\pi y)\right) + (y-1)^2 \left(1 + \sin^2(2\pi y)\right)$	f(1,1)=0	$-10 \le x, y \le 10$
Three-hump camel function:	2000 - 10	$f(x,y) = 2x^2 - 1.05x^4 + \frac{x^6}{6} + xy + y^2$	f(0,0) = 0	$-5 \le x, y \le 5$
Easom function:	63 - 63 - 63 - 63 - 63 - 63 - 63 - 63 -	$f(x,y) = -\cos(x)\cos(y)\exp(-((x-\pi)^2 + (y-\pi)^2))$	$f(\pi,\pi)=-1$	$-100 \le x, y \le 100$
Cross-in-tray function:	-88* -18* -13.4 -28* -5	$f(x,y) = -0.0001 \left(\left \sin(x) \sin(y) \exp\left(\left 100 - \frac{\sqrt{x^2 + y^2}}{\pi} \right \right) \right + 1 \right)^{0.1}$	$\operatorname{Min} = \begin{cases} f\left(1.34941, -1.34941\right) &= -2.06261 \\ f\left(1.34941, 1.34941\right) &= -2.06261 \\ f\left(-1.34941, 1.34941\right) &= -2.06261 \\ f\left(-1.34941, -1.34941\right) &= -2.06261 \end{cases}$	$-10 \le x, y \le 10$
Eggholder function:	200 - 200 -	$f(x,y) = -(y+47)\sin\left(\sqrt{\frac{ x }{2} + (y+47)}\right) - x\sin\left(\sqrt{ x-(y+47) }\right)$	f(512, 404.2319) = -959.6407	$-512 \le x,y \le 512$

Hölder table function:		$f(x,y) = -\left \sin(x)\cos(y)\exp\left(\left 1 - \frac{\sqrt{x^2 + y^2}}{\pi}\right \right)\right $	$ Min = \begin{cases} f(8.05502, 9.66459) &= -19.2085 \\ f(-8.05502, 9.66459) &= -19.2085 \\ f(8.05502, -9.66459) &= -19.2085 \\ f(-8.05502, -9.66459) &= -19.2085 \end{cases} $	$-10 \le x, y \le 10$
McCormick function:		$f(x,y) = \sin(x+y) + (x-y)^2 - 1.5x + 2.5y + 1$	f(-0.54719, -1.54719) = -1.9133	$ \begin{array}{c} -1.5 \le x \le 4, \\ -3 \le y \le 4 \end{array} $
Schaffer function N. 2:	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$f(x,y) = 0.5 + \frac{\sin^2(x^2 - y^2) - 0.5}{(1 + 0.001(x^2 + y^2))^2}$	f(0,0)=0	$-100 \le x, y \le 100$
Schaffer function N. 4:	43 - 43 - 43 - 43 - 43 - 43 - 43 - 43 -	$f(x,y) = 0.5 + \frac{\cos^2(\sin(x^2 - y^2)) - 0.5}{(1 + 0.001(x^2 + y^2))^2}$	f(0, 1.25313) = 0.292579	$-100 \le x, y \le 100$
Styblinski– Tang function:	200 200 200 200 200 200 200 200 200 200	$f(\boldsymbol{x}) = \frac{\sum_{i=1}^{n} x_i^4 - 16x_i^2 + 5x_i}{2}$	$-39.16617n < f\left(\underbrace{-2.903534, \dots, -2.903534}_{(n) \text{ times}}\right) < -39.16616n$	$-5 \le x_i \le 5$ $1 \le i \le n.$
Simionescu function: ^[10]	125 127 127 128 128 128 128 128 128 128 128	$f(x,y)=0.1xy,$ subjected to: $x^2+y^2\leq \left(r_T+r_S\cos\left(n\arctan\frac{x}{y}\right)\right)^2$ where: $r_T=1, r_S=0.2$ and $n=8$	$f(\pm 0.85586214, \mp 0.85586214) = -0.072625$	$-1.25 \le x, y \le 1.25$

Name	Plot	Functions	Constraints	Search domain
Binh and Korn function:	(a) Parent text	Minimize = $\begin{cases} f_1(x, y) &= 4x^2 + 4y^2 \\ f_2(x, y) &= (x - 5)^2 + (y - 5)^2 \end{cases}$	s.t. = $\begin{cases} g_1(x,y) &= (x-5)^2 + y^2 \le 25 \\ g_2(x,y) &= (x-8)^2 + (y+3)^2 \ge 7.7 \end{cases}$	$0 \le x \le 5$ $0 \le y \le 3$
Chakong and Haimes function:	* • Facts bord	Minimize = $\begin{cases} f_1(x,y) &= 2 + (x-2)^2 + (y-1)^2 \\ f_2(x,y) &= 9x - (y-1)^2 \end{cases}$	s.t. = $\begin{cases} g_1(x,y) = x^2 + y^2 \le 225 \\ g_2(x,y) = x - 3y + 10 \le 0 \end{cases}$	$-20 \le x, y \le 20$
Fonseca and Fleming function:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\text{Minimize} = \begin{cases} f_1(\boldsymbol{x}) &= 1 - \exp\left(-\sum_{i=1}^n \left(x_i - \frac{1}{\sqrt{n}}\right)^2\right) \\ f_2(\boldsymbol{x}) &= 1 - \exp\left(-\sum_{i=1}^n \left(x_i + \frac{1}{\sqrt{n}}\right)^2\right) \end{cases}$		$-4 \le x_i \le 4,$ $1 \le i \le n$
Test function 4: ^[7]	** Parett fort	Minimize = $\begin{cases} f_1(x, y) &= x^2 - y \\ f_2(x, y) &= -0.5x - y - 1 \end{cases}$	s.t. = $\begin{cases} g_1(x,y) &= 6.5 - \frac{x}{6} - y \ge 0 \\ g_2(x,y) &= 7.5 - 0.5x - y \ge 0 \\ g_3(x,y) &= 30 - 5x - y \ge 0 \end{cases}$	$-7 \le x,y \le 4$
Kursawe function:	(* * Paren bort)	Minimize = $\begin{cases} f_1(\mathbf{x}) &= \sum_{i=1}^{2} \left[-10 \exp\left(-0.2 \sqrt{x_i^2 + x_{i+1}^2} \right) \right] \\ f_2(\mathbf{x}) &= \sum_{i=1}^{3} \left[x_i ^{0.8} + 5 \sin\left(x_i^3 \right) \right] \end{cases}$		$ \begin{array}{c} -5 \le x_i \le 5 \\ 1 \le i \le 3 \end{array} $
Schaffer function N. 1:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimize = $\begin{cases} f_1(x) = x^2 \\ f_2(x) = (x-2)^2 \end{cases}$		$-A \le x \le A$. Values of A form 10 to 10^5 have been used successfully. Higher values of A increase the difficulty of the problem.
Schaffer function N. 2:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimize = $\begin{cases} f_1(x) = \begin{cases} -x, & \text{if } x \le 1 \\ x - 2, & \text{if } 1 < x \le 3 \\ 4 - x, & \text{if } 3 < x \le 4 \\ x - 4, & \text{if } x > 4 \end{cases}$ $f_2(x) = (x - 5)^2$		$-5 \le x \le 10.$

Poloni's two objective function:	$\sum_{i=1}^{N} \frac{1}{i}$	$ \text{Minimize} = \begin{cases} f_1(x,y) &= [1 + (A_1 - B_1(x,y))^2 + (A_2 - B_2(x,y))^2] \\ f_2(x,y) &= (x+3)^2 + (y+1)^2 \end{cases} $ $ \text{where} = \begin{cases} A_1 &= 0.5\sin(1) - 2\cos(1) + \sin(2) - 1.5\cos(2) \\ A_2 &= 1.5\sin(1) - \cos(1) + 2\sin(2) - 0.5\cos(2) \\ B_1(x,y) &= 0.5\sin(x) - 2\cos(x) + \sin(y) - 1.5\cos(y) \\ B_2(x,y) &= 1.5\sin(x) - \cos(x) + 2\sin(y) - 0.5\cos(y) \end{cases} $	$-\pi \leq x,y \leq \pi$
Zitzler– Deb– Thiele's function N. 1:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\text{Minimize} = \begin{cases} f_1(\boldsymbol{x}) &= x_1 \\ f_2(\boldsymbol{x}) &= g(\boldsymbol{x}) h(f_1(\boldsymbol{x}), g(\boldsymbol{x})) \\ g(\boldsymbol{x}) &= 1 + \frac{9}{29} \sum_{i=2}^{30} x_i \\ h(f_1(\boldsymbol{x}), g(\boldsymbol{x})) &= 1 - \sqrt{\frac{f_1(\boldsymbol{x})}{g(\boldsymbol{x})}} \end{cases}$	$ \begin{array}{l} 0 \le x_i \le 1, \\ 1 \le i \le 30. \end{array} $
Zitzler– Deb– Thiele's function N. 2:	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ Minimize = \begin{cases} f_1(\mathbf{x}) &= x_1 \\ f_2(\mathbf{x}) &= g(\mathbf{x}) h(f_1(\mathbf{x}), g(\mathbf{x})) \\ g(\mathbf{x}) &= 1 + \frac{9}{29} \sum_{i=2}^{30} x_i \\ h(f_1(\mathbf{x}), g(\mathbf{x})) &= 1 - \left(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right)^2 \end{cases} $	$0 \le x_i \le 1, \\ 1 \le i \le 30$
Zitzler– Deb– Thiele's function N. 3:	10 Proced boat 10 Proced boat	$ Minimize = \begin{cases} f_1(\mathbf{x}) &= x_1 \\ f_2(\mathbf{x}) &= g(\mathbf{x}) h(f_1(\mathbf{x}), g(\mathbf{x})) \\ g(\mathbf{x}) &= 1 + \frac{9}{29} \sum_{i=2}^{30} x_i \\ h(f_1(\mathbf{x}), g(\mathbf{x})) &= 1 - \sqrt{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}} - \left(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right) \sin(10\pi f_1(\mathbf{x})) \end{cases} $	$0 \le x_i \le 1, \\ 1 \le i \le 30$
Zitzler– Deb– Thiele's function N. 4:	13 Page 5000 61	$ Minimize = \begin{cases} f_1(\boldsymbol{x}) &= x_1 \\ f_2(\boldsymbol{x}) &= g(\boldsymbol{x}) h(f_1(\boldsymbol{x}), g(\boldsymbol{x})) \\ g(\boldsymbol{x}) &= 91 + \sum_{i=2}^{10} (x_i^2 - 10\cos(4\pi x_i)) \\ h(f_1(\boldsymbol{x}), g(\boldsymbol{x})) &= 1 - \sqrt{\frac{f_1(\boldsymbol{x})}{g(\boldsymbol{x})}} \end{cases} $	$ 0 \le x_1 \le 1, \\ -5 \le x_i \le 5, \\ 2 \le i \le 10 $
Zitzler– Deb– Thiele's function N. 6:	Percent local	$ \operatorname{Minimize} = \begin{cases} f_1(\boldsymbol{x}) &= 1 - \exp(-4x_1) \sin^6(6\pi x_1) \\ f_2(\boldsymbol{x}) &= g(\boldsymbol{x}) h(f_1(\boldsymbol{x}), g(\boldsymbol{x})) \\ g(\boldsymbol{x}) &= 1 + 9 \left[\frac{\sum_{i=2}^{10} x_i}{9}\right]^{0.25} \\ h(f_1(\boldsymbol{x}), g(\boldsymbol{x})) &= 1 - \left(\frac{f_1(\boldsymbol{x})}{g(\boldsymbol{x})}\right)^2 \end{cases} $	$0 \le x_i \le 1$ $1 \le i \le 10$

Viennet function:	2 430 - 480	Minimize = $\begin{cases} f_1(x,y) &= 0.5(x^2 + y^2) + \sin(x^2 + y^2) \\ f_2(x,y) &= \frac{(3x - 2y + 4)^2}{8} + \frac{(x - y + 1)^2}{27} + 15 \\ f_3(x,y) &= \frac{1}{x^2 + y^2 + 1} - 1.1 \exp(-(x^2 + y^2)) \end{cases}$		$-3 \le x, y \le 3$
Osyczka and Kundu function:	50 Pigetts from 1	Minimize = $\begin{cases} f_1(\boldsymbol{x}) &= -25(x_1 - 2)^2 - (x_2 - 2)^2 - (x_3 - 1)^2 - (x_4 - 4)^2 - (x_5 - 1)^2 \\ f_2(\boldsymbol{x}) &= \sum_{i=1}^6 x_i^2 \end{cases}$	s.t. = $\begin{cases} g_1(\boldsymbol{x}) &= x_1 + x_2 - 2 \ge 0 \\ g_2(\boldsymbol{x}) &= 6 - x_1 - x_2 \ge 0 \\ g_3(\boldsymbol{x}) &= 2 - x_2 + x_1 \ge 0 \\ g_4(\boldsymbol{x}) &= 2 - x_1 + 3x_2 \ge 0 \\ g_5(\boldsymbol{x}) &= 4 - (x_3 - 3)^2 - x_4 \ge 0 \\ g_6(\boldsymbol{x}) &= (x_5 - 3)^2 + x_6 - 4 \ge 0 \end{cases}$	$\begin{array}{c} 0 \leq x_1, x_2, x_6 \leq 10 \\ , 1 \leq x_3, x_5 \leq 5, \\ 0 \leq x_4 \leq 6. \end{array}$
CTP1 function (2 variables): ^[5]	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Minimize = $\begin{cases} f_1(x,y) = x \\ f_2(x,y) = (1+y) \exp\left(-\frac{x}{1+y}\right) \end{cases}$	s.t. = $\begin{cases} g_1(x,y) &= \frac{f_2(x,y)}{0.858 \exp(-0.541 f_1(x,y))} \ge 1\\ g_1(x,y) &= \frac{f_2(x,y)}{0.728 \exp(-0.295 f_1(x,y))} \ge 1 \end{cases}$	$0 \le x, y \le 1.$
Constr-Ex problem: ^[5]	Priests food	Minimize = $\begin{cases} f_1(x,y) = x \\ f_2(x,y) = \frac{1+y}{x} \end{cases}$	s.t. = $\begin{cases} g_1(x, y) &= y + 9x \ge 6 \\ g_1(x, y) &= -y + 9x \ge 1 \end{cases}$	$0.1 \le x \le 1, \\ 0 \le y \le 5$

See also

- Himmelblau's function
- Rosenbrock function
- Rastrigin function
- Shekel function

References

- 1. Bäck, Thomas (1995). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford: Oxford University Press. p. 328. ISBN 0-19-509971-0.
- 2. Haupt, Randy L. Haupt, Sue Ellen (2004). Practical genetic algorithms with CD-Rom (2nd ed.). New York: J. Wiley. ISBN 0-471-45565-2.
- 3. Oldenhuis, Rody. "Many test functions for global optimizers". Mathworks. Retrieved 1 November 2012.
- 4. Ortiz, Gilberto A. "Evolution Strategies (ES)". Mathworks. Retrieved 1 November 2012.
- 5. Deb, Kalyanmoy (2002) Multiobjective optimization using evolutionary algorithms (Repr. ed.). Chichester [u.a.]: Wiley. ISBN 0-471-87339-X.
- 6. Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic, pp. 176-182
- 7. Binh T. (1999) A multiobjective evolutionary algorithm. The study cases. Technical report. Institute for Automation and Communication. Barleben, Germany
- 8. Deb K. (2011) Software for multi-objective NSGA-II code in C. Available at URL:http://www.iitk.ac.in/kangal/codes.shtml. Revision 1.1.6
- 9. Ortiz, Gilberto A. "Multi-objective optimization using ES as Evolutionary Algorithm.". Mathworks. Retrieved 1 November 2012.
- 10. Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD Users (1st ed.). Boca Raton, FL: CRC Press. ISBN 9-781-48225290-3.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Test_functions_for_optimization&oldid=702899675"

Categories: Mathematical optimization | Constraint programming | Convex optimization | Types of functions

- This page was last modified on 2 February 2016, at 08:13.
 Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.