

1  
2  
3  
4  
5  
6  
7  
8  
9

10 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23

TITLE: DOOR BREACH TRAINING SYSTEM AND  
METHOD OF USE

INVENTOR: JEFF WRIGHT

xxx/xxxxxx.fff

1

2                   BACKGROUND OF THE INVENTION

3

4           1. Field of The Invention

5                 The present invention relates to training devices for  
6                 public safety officers and cadets.

7

8           2. Background Information

9                 Public Safety personnel (e.g. fire fighters, police,  
10               sheriff, SWAT team, FBI and ATF officers), as well as military  
11               personnel are often faced with the need to perform a forced  
12               entry into structures. A forced entry can be, and often is a  
13               life-threatening scenarios, where every second counts.

14                 Variations in door breaching technique, how ever slight,  
15               as well as practice and conditioning for the operation are  
16               vital in shaving seconds from the operation - seconds which  
17               can span the difference between life-saving tactical surprise  
18               and life-ending ambush.

19                 Presently, forced entry training is performed using  
20               conventional doors and door frames. While this certainly  
21               provides realistic training opportunities, such an approach is  
22               quite costly for self-evident reasons (not only the cost of  
23               constantly replenishing door supplies, but the installations.

1 costs as well). While few would admit (even if aware of the  
2 fact) to trading off life-saving training for savings in door  
3 costs, many training facilities are thorough to limit door  
4 breach training to something of a practical minimum, simply  
5 because of the present cost implications.

6 Clearly, it would well serve those who perform emergency  
7 or law enforcement-related door breaching operations, as well  
8 as those civilians whose lives often depend on such operations  
9 (entrapped fire victims and hostages, for example) to provide  
10 an alternative means of training for door breach operations,  
11 which, because of considerably favorable cost efficiency when  
12 compared to conventional training options, and resulting lower  
13 resistance to more thorough and repeated practice training,  
14 results in more effective implementation of door breaching  
15 operations in the field.

16

17 SUMMARY OF THE INVENTION

18 In view of the foregoing, it is an object of the  
19 present invention to provide a novel, unobvious and  
20 beneficial door breach training system and related method of  
21 use thereof for use in cost-effectively training public  
22 safety, law enforcement and military personnel in door  
23 breach operations.

1           It is another object of the present invention to  
2       provide a door breach training system and related method of  
3       use thereof for use by public safety, law enforcement and  
4       military personnel in training for door breach operations,  
5       which system and method obviates the need for destruction of  
6       conventional doors and the associated costs related thereto.

7           It is another object of the present invention to  
8       provide a door breach training system and related method of  
9       use thereof for use by public safety, law enforcement and  
10      military personnel in training for door breach operations,  
11      which system and method facilitates repeated training  
12      exercises without the consumption of expensive supplies or  
13      equipment.

14          It is another object of the present invention to  
15       provide a door breach training system and related method of  
16       use thereof for use by public safety, law enforcement and  
17       military personnel in training for door breach operations,  
18       which system and method permits training for breaching doors  
19       of differing breach resistance without substantial or  
20       expensive modification to such system.

21          In satisfaction of these and related objects, the  
22       present invention provides a door breach training system and  
23       associated method for use thereof in the training of public

1 safety, law enforcement and military personnel for door  
2 breach operations. The system and method is based, in its  
3 preferred mode, on a substantially indestructible  
4 (relatively speaking) door and frame assembly which, despite  
5 its substantial resistance to literal destruction in the  
6 conventional sense, is user-configurable to present varying  
7 degrees of resistance to breach in order to mimic real world  
8 doors of varying breach-resistant characteristics (hollow,  
9 solid, wood, metal, reinforced, etc.). The system includes  
10 user-replaceable shear pins which are engineered to shear  
11 substantially at known force levels which, respectively,  
12 present the breach resistance of the varying door types just  
13 mentioned.

14 After each use of the present system, the then sheared  
15 pins are simply replaced (with very inexpensive replacement  
16 pins) for the next exercise, with no need to replace an  
17 expensive door or frame, and very little time involved to  
18 "re-set" the system.

19 The present system is believed to present an  
20 opportunity for substantial savings to training facilities  
21 and their sponsor organizations, as well as provide a subtle  
22 incentive for more thorough, frequent and effective training  
23 in vital door breach operations.

1

2                   BRIEF DESCRIPTION OF THE DRAWINGS

3                   Fig. 1 is a perspective view of the door breaching  
4                   training system of the present invention.

5                   Fig. 2 is a second perspective view of the door  
6                   breaching training system of the preferred embodiment.

7                   Fig. 3 is a perspective view of the preferred  
8                   embodiment of the replaceable pin of the present invention.

9                   Fig. 4 is a sagittal cross sectional view of the pin of  
10                  Fig. 3 shown received within door frame and door sockets as  
11                  in a pre-exercise position.

12                  Fig. 5 depicts specific dimensions and geometry of the  
13                  preferred pin for use in the present system and method.

14

15                  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

16                  Referring to Figures 1 and 2, the door breach training  
17                  system of the present invention is identified generally by  
18                  the reference numeral 10. System 10 includes a door 12 and  
19                  an associated door frame 14.

20                  To simulate the locks within the training system,  
21                  embodiments of the present invention include door sockets  
22                  16, frame sockets 18, and shear pins 20.

1           Door sockets 16 are inserted into door 12, while frame  
2           socket 18 is inserted into the door frame 14. The number of  
3           door sockets 16 and corresponding frame sockets 18 utilized  
4           for any given exercise can be user-varied to represent the  
5           number of locks, or the over-all breach resistance to be  
6           simulated in any given exercise.

7           Referring in combination to Figs. 1, 2 and 3, to  
8           complete a set-up for an exercise, door 12 is placed in its  
9           conventional "closed" position relative to door frame 14,  
10          and the appropriate pin(s) 20 for representing the desired  
11          condition (such as wood door and metal frame, etc) are  
12          inserted to engage the bores 22 and 24, respectively, of  
13          both door sockets 16 and frame sockets 18

14          Upon forced entry of a trainee, the resistance force of  
15          pin(s) 20 simulates that encountered in field forced entry.  
16          Once door 12 has been breached or entered, pin(s) 20 are  
17          simply removed and the system 10 can be reset for the next  
18          trainee.

19          By collecting data from numerous physical breaching  
20          tests on doors and frames of different construction, an  
21          engineered pin has been developed which when utilized in the  
22          designed system replicates the same forces and impact  
23          resistance found in field conditions as encountered by

1           public safety personnel. The engineered pins not only  
2           involve the shape and form of the pin but also the material  
3           properties of construction. This results in various pin  
4           types being used to simulate various conditions. When  
5           utilized with a fortified door and frame, the overall system  
6           is engineered to fail in a controlled, repeatable and  
7           measurable manner with the pins being the only consumable  
8           for training.

9           Referring to Figs. 3, 4 and 5, the preferred pins 20  
10          for use in embodiments of the present invention are made of  
11          unfilled polycarbonate with a known shear strength of 4675  
12          psi, and are configured as shown. The core hole 26 of each  
13          pin 20 will vary, depending on the type of pin 20 to be  
14          constructed. For example, a "wood frame type" pin 20 will,  
15          when made of the above polycarbonate, material, and  
16          according to the depicted geometry, have a core hole  
17          diameter of .303 inches (for a resulting .121 sq. inch  
18          material for this type pin 20), a "metal frame type" pin 20  
19          will have a .217 diameter (for a resulting .217 sq. inch  
20          material for this type pin 20), and a reinforced type pin 20  
21          will have no core hole at all.

22          By the use of test data from physical testing of  
23          various combinations of door and frame construction, pin 20

1       constitutes a preferred, calculated geometry (shown in Fig.  
2       5) and material property, which results in a failure  
3       replicating that of the test data. This allows pins of  
4       identical overall dimension, but varying internal geometry  
5       (bore size of sockets 22 and 24) and material property to be  
6       utilized in the same sockets while simulating totally  
7       different breaching scenarios or conditions. Clearly  
8       variations of the depicted geometry, dimensions and/or  
9       materials will still fall within the scope of the present  
10      invention, but those shown are now believed to be optimal,  
11      based on present tests and analysis.

12       Tests by the present inventor reveal that the average  
13      wood frame door with a single bolt (deadbolt or doorknob  
14      type) required approximately 480 lbs. pressure for door  
15      breach, while a metal frame door of the same configuration  
16      required an average 645 lbs. of pressure. The addition of  
17      more locks or bolts varies the pressure.

18       If using the presently engineered pins as previously  
19      described, the following are examples of appropriate  
20      configurations for training exercises:

21       Wood frame door with doorknob bolt and additional  
22                  deadbolt - Use 2 "wood type" pins 20 for breaching  
23                  force requirement of 960 lbs;

1           Metal frame door with doorknob bolt and additional two  
2           deadbolts - Use 3 "metal type" pins 20 for  
3           breaching force requirement of 1935 lbs; and  
4           Reinforced door - Use 3 "reinforced type" pins 20 for  
5           breaching force requirement of 2640 lbs.

6           Note that all holes are tapered 4° from the opening at the  
7           open end of pin 20.

8           Clearly, variations in pin configuration and material  
9           constituency can vary the pin requirements for the above  
10          examples, but an analogous concept would fall within the  
11          scope of the present invention.

12          Although the invention has been described with  
13          reference to specific embodiments, this description is not  
14          meant to be construed in a limited sense. Various  
15          modifications of the disclosed embodiments, as well as  
16          alternative embodiments of the inventions will become  
17          apparent to persons skilled in the art upon the reference to  
18          the description of the invention. It is, therefore,  
19          contemplated that the appended claims will cover such  
20          modifications that fall within the scope of the invention.