Exercise 1.13.

Prove that Fib (n) is the closest integer to $\phi^n/\sqrt{5}$, where $\phi = (1+\sqrt{5})/2$. Hint: Let $\psi = (1-\sqrt{5})/2$. Use induction and the definition of the Fibonacci numbers (see section 1.2.2) to prove that Fib $(n) = (\phi^n - \psi^n)/\sqrt{5}$.

Proof.

As indicated by the problem, in order to prove that Fib (n) is the closest integer to $\frac{\phi^n}{\sqrt{5}}$, we had better prove

Lemma. Fib $(n) = \frac{(\phi^n - \psi^n)}{\sqrt{5}}$ for all n greater than 0.

first.

On the other hand, we see that the lemma Fib $(n) = \frac{(\phi^n - \psi^n)}{\sqrt{5}}$ can be prove by means of mathematical induction.

Base Cases:

- (n=0) Fib $(n) = \frac{(\phi^n \psi^n)}{\sqrt{5}}$ is true for n=0, because Fib $(0) = 0 = \frac{(\phi^0 \psi^0)}{\sqrt{5}}$.
- (n=1) Fib $(n) = \frac{(\phi^n \psi^n)}{\sqrt{5}}$ also holds when n=1, for Fib $(1) = 1 = \frac{\frac{(1+\sqrt{5})}{2} \frac{(1-\sqrt{5})}{2}}{\sqrt{5}} = \frac{(\phi^1 \psi^1)}{\sqrt{5}}$

Inductive Step:

Suppose $n \ge 2$, this proposition stands true in the case n = k as well as n = k + 1, that is, Fib $(k) = \frac{(\phi^k - \psi^k)}{\sqrt{5}}$ and Fib $(k+1) = \frac{(\phi^{k+1} - \psi^{k+1})}{\sqrt{5}}$. We must show that this proposition also holds in the case where n = k + 2, namely, Fib $(k+2) = \frac{(\phi^{k+2} - \psi^{k+2})}{\sqrt{5}}$.

Using the equation

$$\phi^2 = \phi + 1$$
 (or $\psi^2 = \psi + 1$ identically)

we can express the value of Fib (k+2) in way akin to its predicessors':

$$\begin{aligned} \operatorname{Fib}(k+2) &= \operatorname{Fib}(k) + \operatorname{Fib}(k+1) \\ &= \frac{(\phi^k - \psi^k)}{\sqrt{5}} + \frac{(\phi^{k+1} - \psi^{k+1})}{\sqrt{5}} \\ &= \frac{\phi^k + \phi^{k+1} - (\psi^k + \psi^{k+1})}{\sqrt{5}} \\ &= \frac{\phi^k (1+\phi) - \psi^k (1+\psi)}{\sqrt{5}} \\ &= \frac{\phi^k \phi^2 - \psi^k \psi^2}{\sqrt{5}} \\ &= \frac{(\phi^{k+2} - \psi^{k+2})}{\sqrt{5}} \end{aligned}$$

Here we see that Fib $(n) = \frac{(\phi^n - \psi^n)}{\sqrt{5}}$ also holds when n = k + 2. This further completes the proof of the Lemma above by strong induction that Fib $(n) = \frac{(\phi^n - \psi^n)}{\sqrt{5}}$ holds for all $n \ge 0$.

Finally, notice that the value of ψ^n keeps oscillating between the negtive number $\phi = (1 - \sqrt{5})/2$ and the positive integer $\phi^0 = 1$ while the sign of it changing back and forth as n varies. So, the term ψ^n inside Fib $(n) = \frac{(\phi^n - \psi^n)}{\sqrt{5}}$ becomes less and less significant as n going larger and larger. Therefore, Fib (n) is the closest integer to $\frac{\phi^n}{\sqrt{5}}$.

^{*.} Creative Commons © 50 55 2013, Lawrence X. Amlord (颜世敏, aka 颜序).