

**Course Code: ETE 203** 

Course Title: Electronics Device and Circuit – I

**Lab Experiment No: 10** 

**Experiment Name: Common Source JFET Characteristics** 

**Submitted By: (Group 3)** 

**Submitted to:** 

**1. Samanta Jahan Bonna (193014036)** 

Dr. Tama Fouzder

2. Pranto Barai (201014035)

**Assistant Professor, EEE (ULAB)** 

- 3. Md. Mizanur Rahman (201014061)
- 4. Morium Begum (201014072)
- 5. Tasnima Islam (201014039)

**Apparatus:** 

- 1. Dual Regulated DC Power supply (0–30 Volts)
- 2. JFET (BFW11 or equivalent)
- 3. Resistors (1k  $\square$ )
- 4. DC Ammeters (0-100m A)
- 5. DC Voltmeters (0-30V)
- 6. Bread Board and connecting wires

# **Theory:**

The full form of JFET is junction-gate field effect transistor. JEFTs are three terminal semiconductor devices named Drain, Gate and Source which are also known as voltage control devices. There are mostly 2 type of JFET one is n-channel JFET and another is p-channel JFET.A JFET is usually "on" when there is no voltage between its gate and source terminals.. By applying a reverse bias voltage to a gate terminal, the channel is "pinched", so that the electric current is impeded or switched off completely. If a potential difference of the proper polarity is applied between its gate and source terminals, the JFET will be more resistive to current flow.

#### **Procedure:**

#### **Drain characteristics:**

- 1. First we connect the circuit as shown in the Fig 1.
- 2. For the drain characteristics we keep VGS=0V by varying VGG.
- **3.** Then varying VDD and recording the reading of VDS and D I in table 1.
- **4.** Repeating the procedure for VGS= -1V and VGS= -2V and record reading in table 1.

## **Transfer characteristics:**

- 1. For transfer characteristics we keep VDS=1V.
- 2. Vary VGG and record reading of VGS and D I in table 2.
- **3.** We repeat the procedure for VDS=1.5V and VDS=2V and record the reading from table 2.

**Working Circuit Diagram and graph:** 







# **Calculation:**

### **Drain Characteristics**

Table: 1

| NO. | $V_{GS}=0V$         |           | $V_{GS}$ =-1 $V$    |           | $V_{GS}$ =-2 $V$ |           |
|-----|---------------------|-----------|---------------------|-----------|------------------|-----------|
|     | V <sub>DS</sub> (V) | $I_D(mA)$ | V <sub>DS</sub> (V) | $I_D(mA)$ | $V_{DS}(V)$      | $I_D(mA)$ |
| 1.  | 0                   | 0         | 0                   | 0         | 0                | 0         |
| 2.  | 0.1                 | 1.85      | 0.1                 | 1.4       | 0.1              | 1.25      |
| 3.  | 0.2                 | 2.7       | 0.2                 | 2.5       | 0.2              | 2.27      |
| 4.  | 0.3                 | 3.9       | 0.3                 | 3.55      | 0.3              | 3.25      |
| 5.  | 0.4                 | 5.09      | 0.4                 | 4.5       | 0.4              | 4.08      |
| 6.  | 0.6                 | 7.1       | 0.6                 | 6.51      | 0.6              | 4.85      |
| 7.  | 0.8                 | 8.03      | 0.8                 | 7.45      | 0.8              | 6.35      |
| 8.  | 1.9                 | 10        | 1.9                 | 8.6       | 1.9              | 6.2       |
| 9.  | 3                   | 11        | 3                   | 9.2       | 3                | 6.8       |
| 10. | 5                   | 12        | 5                   | 10        | 5                | 7.5       |

### **Transfer Characteristics:**

Table: 2

| NO. | $V_{DS}$ =0.5 $V$   |           | $V_{DS}=1V$         |           | $V_{DS}$ =1.5 $V$ |           |
|-----|---------------------|-----------|---------------------|-----------|-------------------|-----------|
|     | V <sub>GS</sub> (V) | $I_D(mA)$ | V <sub>GS</sub> (V) | $I_D(mA)$ | $V_{GS}(V)$       | $I_D(mA)$ |
| 1.  | 0                   | 6         | 0                   | 3         | 0                 | 9         |
| 2.  | -0.2                | 5         | -0.1                | 2.5       | -0.3              | 7.5       |
| 3.  | -0.4                | 4         | -0.2                | 2         | -0.6              | 6         |
| 4.  | -0.6                | 3.2       | -0.3                | 1.6       | -0.9              | 4.8       |
| 5.  | -0.8                | 2.4       | -0.4                | 1.2       | -1.2              | 3.6       |
| 6.  | -1                  | 1.8       | -0.5                | 0.9       | -1.5              | 2.7       |
| 7.  | -1.2                | 1.4       | -0.6                | 0.7       | -1.8              | 2.1       |
| 8.  | -1.4                | 1         | -0.7                | 0.5       | -2.1              | 1.5       |
| 9.  | -1.6                | 0.6       | -0.8                | 0.3       | -2.4              | 0.9       |
| 10. | -1.8                | 0.2       | -0.9                | 0.1       | -2.7              | 0.3       |

## **Discussion:**

In this experiment we are going to see the characteristics of a junction-gate field effect transistor in a circuit. When current is put through the circuit, variation of ID is seen with increase in VDS. ID increases linearly with increase in VDS till the VDS reaches a value where the saturation effect sets in. The value of VDS where the saturation effect sets in is referred to as the pinch off voltage (at VGS=0). For VDS > VP, JFET has characteristics of a constant current source. It can be further seen that the VGS is the control voltage for JFETs in the same way as the base current (IB) is for BJTs.