CMPS 312

Android Fundamentals

Dr. Abdelkarim Erradi CSE@QU

Outline

- 1. Introduction to Android
- 2. Android Programming Model

Introduction to Android

Why learn app development?

- Smart devices are ubiquitous
 - Estimated 3.5 billion smartphones + tablets, smart watches, IoT devices...
 - Apps interwoven into daily life work, play, study
 - Mobile = dominant end-user device. It represents and intimately "knows" the user: much more than just a small computer, it represents the user
 - Brings in outside world: sensing, location, communication
- Apps less expensive and more portable
- Large market opportunity for businesses and developers

Types of mobile development: Web vs Hybrid vs Native

Write

Test

Web Apps

- Multi-platform
- Leverage existing web dev skillset and code
- Web UI: Run in browser or WebView (can be offline)
- Least access to hardware, sensors, OS
- Slower performance

Hybrid Apps

Write

Build

Build

- Shared codebase for iOS & Android
- Leverage web dev skillset and code
- Web app hosted in a **native app shell** to mediate access to hardware, sensors, OS

Native Apps

- Single platform 📵 🖛 🖀
- Native UI and best user experience
- Run directly on OS: Fast performance
- Best system Integration: Full access to hardware, sensors, OS
- More expensive: requires multiple code bases and teams

Web vs Hybrid vs Native

What is Android?

- Open source mobile operating system (OS) based on <u>Linux kernel</u> for phones, tablets, wearable
 - originally purchased by Google from Android, Inc. in 2005
- The #1 OS worldwide
 - Used on <u>over 80%</u> of smartphones
 - As of 2019, over 2.5 billion Android devices worldwide
 - Over 2 Million Android apps in Google Play store
 - Highly customizable for devices by vendors

Android Software Stack

- **Applications** 3 Application Framework **Android Runtime** Libraries Linux Kernel
 - 1. Interacts and manages hardware
 - Expose native APIs & run apps
 - 3. Java API exposing Android OS features
 - 4. System and user apps (e.g., contacts, camera)

Android Software Stack

- 1. Optimized Linux Kernel for interacting with the device's processor, memory and hardware drivers (e.g., WiFi Driver)
 - Acts as an abstraction layer between the hardware and the rest of the software stack
- 2. Android runtime (ART) = Virtual Machine to run Apps
 - Each app runs in its own process and with its own instance of the Android Runtime that controls the app execution (e.g., permission checks) in isolation from other apps
 - Expose native APIs and OS Core Libraries including 2D/3D graphics, Audi Manager, SQLite database, encryption ...
- 3. Application Framework: Java APIs (Application Programming Interfaces) make Android OS features available to Apps (e.g., Activity Manager that manages the lifecycle of apps)

https://developer.android.com/guide/platform

Android Programming Model

Android Programming Model

- App is composed of one or more screens (called <u>Activity</u>)
- An **activity** has:
- a <u>Layout</u> that define its appearance (how it looks like)
 - Layout acts as a container for UI Components (called <u>View</u>)
 - It decides the size and position of views placed in it
 - Activity Kotlin class that provides the data to the UI and handles events
 - UI Components raise Events when the user interacts with them (such as a Clicked event is raised when a button is pressed).
 - In the activity class we define Event
 Handlers to respond to the UI events

Activity

- Activity provides the UI that the user interacts with
 - Allow the user to do something such as order groceries, send email
 - Has layout (.xml) file & Activity class
 - This allows a clear separation between the UI and the app logic
- Connecting activity with the layout is done in the onCreate method

setContentView(R.layout.activity_main)

- Activity class defines listeners to handle events:
 - User interaction events such press a button or enters text in a text view
 - External events such as receiving a notification or screen rotation

Example

```
class MainActivity : AppCompatActivity() {
     override fun onCreate(savedInstanceState: Bundle?) {
           super.onCreate(savedInstanceState)
           setContentView(R.layout.activity_main)
 Connects
 activity
with layout
           changeColorBtn.setOnClickListener {
               greetingTv.setTextColor(getRandomColor())
```

Event Driven Programming

- GUI programming model is based on event driven programming
 - Code is executed upon activation of events
- An event is a signal from Android system that some something of interest to the app has occurred
 - UI Events (click, tap, swipe, drag)
 - Input focus (gained, lost)
 - Keyboard (key press, key release)
 - Activity events (e.g., onCreate, onRestart)
 - Device: DetectedActivity such as walking, driving, tilting
- When an event is triggered, an event handler can run to respond to the event. e.g.,
 - When the button is clicked -> load the data from a file into a list₁₄

Steps to creating a GUI Interface

- Design it on paper (sketch)
 - Decide what information to present to the user and what input they should supply
 - Decide the UI components and the layout on paper
- Create a layout and add UI components to it using the Layout Editor
 - Use the Layout Editor to group and arrange components
- Add event handlers to respond to the user actions
 - Do something when the user presses a button, selects an item from list, change text of input field, etc.

UI Sketch - Example

You may design different layouts per screen size

Project structure

🥛 арр manifests java qa.edu.cmps312.firstapp C LoginActivity MainActivity 🕵 java (generated) res drawable layout activity_login.xml activity_main.xml mipmap values Gradle Scripts build.gradle (Project: FirstApp) www.build.gradle (Module: app) gradle-wrapper.properties (Gradle Version) proguard-rules.pro (ProGuard Rules for app)

- AndroidManifest.xml
 - app config and settings (e.g., list app activities and required permissions)
- □ java/...
 - Kotlin source code
- res/... = resource files (many are XML)
 - o drawable/ = images
 - layout/ = GUI layouts
 - menu/ = app menu options
 - values/ = Externalize constant values
 - strings/ = user-visible strings
 - styles/ = appearance styling
- Gradle
 - a build/compile management system
 - build.gradle = define config and dependencies (one for entire project & other for app module)

Resources

- Separate static data needed by the UI from the code that does computations and handles events
 - drawable image files
 - layout layout files for Activities
 - strings.xml: Defines any user-visible strings as string resources + Supports localization
 - dimens.xml: Defines any view/text dimensions
 - colors.xml & styles.xml: Define reusable colors and styles to customize the overall design aesthetic of the app
- Resource files are stored in res folder

Refer to resources in code

Layout:

```
setContentView(R.layout.activity_main)
```

View:

```
greetingTv.text = "Salam"
```

String:

In Kotlin: R.string.title

In XML: android:text="@string/title"

Externalize Constants

Edit res/layout/activity_main.xml

Replace string "Start" of the start button with "@string/start".

o Benefit = Localization, e.g., es/values-es/strings.xml

Start

Comienzo

Resources

- Android Kotlin Fundamentals Course
 - https://codelabs.developers.google.com/androidkotlin-fundamentals/
 - https://developer.android.com/courses/androidbasics-kotlin/course

- Android Dev Guide
 - https://developer.android.com/guide/