Метод главных компонент

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Напоминание линейной алгебры
- 2 Задача снижения размерности
- ③ Метод главных компонент
- Построение главных компонент
- 5 Главные компоненты и подпространство наилучшей аппроксимации

Скалярное произведение

- Определяем $\langle a, b \rangle = a^T b$
- $||a|| = \sqrt{\langle a, a \rangle}$
- ullet Величина проекции (со знаком) x на $a:\langle x,a\rangle/\|a\|$
- Величина проекции (без знака) x на $a: |\langle x, a \rangle| / ||a||$
- К-мерная плоскость L_K м. быть представлена как линейная оболочка ортонормированного базиса пространства (ОНБ) $a_1, a_2, ... a_K$:

$$L_K = \mathcal{L}(a_1, a_2, ...a_K)$$

Собственные вектора и собственные значения

- ullet Если для матрицы $A \in \mathbb{R}^{D \times D}$ найдется $\lambda \in \mathbb{R}$ и $v \in \mathbb{R}^D$ такой, что $A v = \lambda v$, то
 - v собственный вектор (СВ) А
 - λ собственное значение (C3) A, отвечающее собственному вектору v.
- $\exists v \neq 0$: $Av = \lambda v \Leftrightarrow (A \lambda I) v = 0 \Leftrightarrow det(A \lambda I) = 0$. Таким образом, все собственные значения удовлетворяют $det(A \lambda I) = 0$, которое
 - является полиномом порядка D
 - имеет D решений (возможно, повторяющиеся, могут быть комплексными)

Симметричные матрицы

- ullet Матрица $A \in \mathbb{R}^{D imes D}$ называется симметричной, если $A^T = A$.
- Свойства:
 - Все собственные значения симметричной матрицы вещественные.
 - Собственные вектора, соответствующие различным λ , ортогональны друг другу.
 - если λ -повторяющийся корень $\det(A \lambda I) = 0$ m раз, то существуют m ортогональных CB, соответствующих C3 λ .
 - $\forall A \in \mathbb{R}^{D \times D}, A = A^T$ существует ортонормированный базис из CB A.

Спектральное разложение

Теорема 1 (Спектральное разложение.)

Любая симметричная $A \in \mathbb{R}^{D imes D}$ может быть представлена как

$$A = P\Lambda P^T$$

где $P \in \mathbb{R}^{D \times D}$ - ортогональная матрица, колонки которой $p_1,...p_D$ - CB A, а $\Lambda = \operatorname{diag}\{\lambda_1,...\lambda_D\}$ c C3 A на диагонали.

Интерпретация: трансформация Ax симметричной матрицей A эквивалентна

- $oldsymbol{0}$ переводу x в ортонормированный базис CB A
- ② масштабированию координат пропорционально $\lambda_1,...\lambda_D.$
- 3 возврату в исходный базис.

Неотрицательная определенность $A \succeq 0$

Определение

Симметричная матрица $A \in \mathbb{R}^{D \times D}$ называется неотрицательно определенной $(A \succeq 0)$, если

$$\forall x \in \mathbb{R}^D : \langle x, Ax \rangle = x^T Ax \ge 0$$

• Являются ли следующие матрицы неотрицательно определенными: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$?

Теорема

Симметричная матрица A неотрицательно определена <=> все её C3>0.

Оценка разброса распределения

Для случайной величины $x \in \mathbb{R}^D$, $x \sim F(\mu, \Sigma)$, и $\forall \alpha \in \mathbb{R}^D$:

$$var(\alpha^{T}x) = \mathbb{E}\left\{\left(\alpha^{T}x - \alpha^{T}\mu\right)^{2}\right\}$$
$$= \mathbb{E}\left\{\left(\alpha^{T}x - \alpha^{T}\mu\right)\left(x^{T}\alpha - \mu^{T}\alpha\right)\right\}$$
$$= \alpha\mathbb{E}\left\{\left(x - \mu\right)\left(x - \mu\right)^{T}\right\}\alpha = \alpha^{T}\Sigma\alpha$$

- T.K. $\forall \alpha \ \alpha^T \Sigma \alpha = var(\alpha^T x) \ge 0$, to $\Sigma \succeq 0$.
- Выборочная ковариационная матрица $\widehat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (x_n \mu)(x_n \mu)^T = \frac{1}{N} X^T X \succeq 0$ $(X = [x_1^T, ... x_N^T]^T \in \mathbb{R}^{N \times D})$ т.к. $\alpha X^T X \alpha = (X \alpha)^T (X \alpha) = \|X \alpha\|^2 > 0$

Оценка разброса распределения

ullet Для различных $lpha \in \mathbb{R}^D, \|lpha\| = 1$

$$\operatorname{var}(\alpha^{T} x) = \alpha^{T} \Sigma \alpha = \alpha^{T} P \Lambda P^{T} \alpha =$$

$$= \left(\Lambda^{1/2} P^{T} \alpha \right)^{T} \left(\Lambda^{1/2} P^{T} \alpha \right) = \left\| \Lambda^{1/2} P^{T} \alpha \right\|^{2}$$

ullet $\alpha {
ightarrow} {
m B}$ базис CB, координаты масштабируются $\sqrt{\lambda_1},...\sqrt{\lambda_D}$.

• Направления, отвечающие максимальному изменению данных - CB Σ , отвечающие максимальным C3.

Оценка разброса распределения

Оценим средний разброс сл. вел. $x \sim F(\mu, \Sigma)$:

• используя инвариантность tr и det к смене базиса

$$\frac{1}{D} (\lambda_1 + ... + \lambda_D) = \frac{1}{D} \operatorname{trace} \Lambda = \frac{1}{D} \operatorname{trace} P \Lambda P^T = \frac{1}{D} \operatorname{trace} \Sigma$$

$$\sqrt[D]{\lambda_1 \cdot ... \cdot \lambda_D} = \sqrt[D]{\det \Lambda} = \sqrt[D]{\det P \Lambda P^T} = \sqrt[D]{\det \Sigma}$$

Содержание

- Папоминание линейной алгебрь
- 2 Задача снижения размерности
- ③ Метод главных компонент
- 4 Построение главных компонент
- Главные компоненты и подпространство наилучшей аппроксимации

Задача снижения размерности

Снижение размерности: трансформация признаков в уменьшенное число признаков, зависящих от всех входных в общем случае.

Применения снижения размерности

Применения снижения размерности:

- Визуализация многомерных данных в 2D или 3D
- Снижение вычислительных ресурсов при обучении и применении
 - процессор, память, хранение на диске, пересылка
- Повышение интерпретируемости модели
 - если извлеченные признаки интерпретируемы
- Повышение устойчивости некоторых методов
 - при линейно-зависимых признаках коэффициенты лин. регрессии не определены

Категоризация методов снижения размерности

Использование откликов:

- \bullet снижение размерности с учителем (по X, Y)
- \bullet снижение размерности без учителя (по X)

Преобразование признаков:

- линейное
- нелинейное

Метод главных компонент - линейный метод снижения размерности без учителя.

Содержание

- Напоминание линейной алгебры
- 2 Задача снижения размерности
- Метод главных компонент
 - Определение
 - Применение метода главных компонент
 - Оценка качества аппроксимации
 - ullet Проектирование на L_K
- 4 Построение главных компонент
- Главные компоненты и подпространство наилучшей аппроксимации

Метод главных компонент

- Определение
- Применение метода главных компонент
- Оценка качества аппроксимации
- ullet Проектирование на L_K

Проекции, ортогональные дополнения

- Для точки x и подпространства L обозначим:
 - р: проекция х on L
 - h: ортогональное дополнение
 - x = p + h, $\langle p, h \rangle = 0$.
- Для обучающей выборки $x_1, x_2, ... x_N$ и подпространства L обозначим:
 - проекции: p₁, p₂, ...p_N
 - ортогональные дополнения: $h_1, h_2, ... h_N$.

Подпространство наилучшей аппроксимации

Рассмотрим K-мерное подпространство - линейную оболочку базиса $v_1, v_2, ... v_K$: $L_K = \mathcal{L}(v_1, v_2, ... v_K)$

Определение 1

 L_K - подпространство наилучшей аппроксимации для набора точек $x_1, x_2, ... x_N$, если решает задачу

$$\sum_{n=1}^{N} \|h_n\|^2 \to \min_{L: \operatorname{rg} L = K}$$

Предложение 1

 L_K - подпространство наилучшей аппроксимации для набора точек $x_1, x_2, ... x_N$, если решает задачу a .

$$\sum_{n=1}^{N} \|p_n\|^2 \to \max_{L: \operatorname{rg} L = K}$$

 $^{^{}a}$ Докажите, используя $\|x\|^{2} = \|p\|^{2} + \|h\|^{2}$ для x = p + h и $\langle p, h \rangle = 0$.

Главные компоненты (principal components)

- ullet 1ая главная компонента $a_1:\; L_1=\mathcal{L}\left(a_1
 ight),\; \|a_1\|=1$
- ullet 2ая главная компонента $a_2:\; L_2=\mathcal{L}\left(a_1,a_2
 ight),\; \|a_2\|=1, \langle a_1,a_2
 angle=0$
- ullet D-я главная компонента $a_D:\ L_3=\mathcal{L}\left(a_1,a_2,...a_D
 ight),\ \|a_D\|=1,\langle a_1,a_i
 angle=0,\ i=1,2,...D-1$
- Метод главных компонент (principal component analysis): нахождение разложения в первых K гл. компонентах для всех объектов:

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_K a_K$$

Главные компоненты

• На практике главные компоненты находятся из сингулярного разложения матрицы *X*.

Свойства главных компонент

- D главных компонент образуют ортонормированный базис пространства признаков.
- Не инвариантны к сдвигу $x_1, x_2, ... x_D$.
- Не инвариантны к масштабу $x_1, x_2, ... x_D$.
 - рекомендуется центрировать и приводить к одинаковой шкале.
 - не делается для текстовых данных:
 - X разреженная, поэтому уже $\bar{x}_i \approx 0$. Сдвиг сделает X не разреженной.
 - если признаки индикаторы встречаемости или частоты слов, они уже в единой шкале [0,1].

Пример L_1

• Рассмотрим одномерное подпространство наилучшей аппроксимации L_1 :

• В чем отличие от нахождения y = wx в линейной регрессии?

- 3 Метод главных компонент
 - Определение
 - Применение метода главных компонент
 - Оценка качества аппроксимации
 - ullet Проектирование на L_K

Визуализация

Фильтрация данных

Убираем шум из данных¹:

¹X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS).

Применение метода главных компонент

Снижение размерности

Задача идентификации человека по лицу:

Для фото HxW: HW признаков, переобучение.

Применение метода главных компонент

Главные компоненты (eigenfaces)

Главные компоненты (eigenfaces).

Проекции на гл. компоненты - информативные признаки.

Анализ текстов

- Объекты текстовые файлы.
- Индикаторные, TF, TF-IDF кодировки приводят в высокому D.
 - ullet вычислительно долгая работа с X и настройкой моделей
- Разреженность данных приводит к проблемам:
 - например, задача поиска:
 "ремонт машины" != "обслуживание автомобилей"

Анализ текстов

- Объекты текстовые файлы.
- Индикаторные, TF, TF-IDF кодировки приводят в высокому D.
 - ullet вычислительно долгая работа с X и настройкой моделей
- Разреженность данных приводит к проблемам:
 - например, задача поиска:
 "ремонт машины" != "обслуживание автомобилей"
- Снижение размерности РСА позволяет решить эти проблемы.
 - технически-через сокр. сингулярное разложение
 - достаточно 200-300 гл. компонент
 - признаки не центрируются, чтобы не потерять разреженность
 - англ. latent semantic analysis (LSA)

- 3 Метод главных компонент
 - Определение
 - Применение метода главных компонент
 - Оценка качества аппроксимации
 - ullet Проектирование на L_K

Т.к.
$$a_1,a_2,...a_D$$
 - ОНБ, для любого x
$$x=\langle x,a_1\rangle a_1+\langle x,a_2\rangle a_2+...+\langle x,a_D\rangle a_D$$

Т.к.
$$a_1, a_2, ... a_D$$
 - ОНБ, для любого x
$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_D \rangle a_D$$
 Пусть p^K - проекция, а h^K - орт. дополнение x на L_K .
$$p^K = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$$

$$h^K = x - p^K = \langle x, a_{K+1} \rangle a_{K+1} + ... + \langle x, a_D \rangle a_D$$

Т.к. $a_1, a_2, ... a_D$ - ОНБ, для любого x

$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + \dots + \langle x, a_D \rangle a_D$$

Пусть p^K - проекция, а h^K - орт. дополнение x на L_K .

$$p^{K} = \langle x, a_{1} \rangle a_{1} + \langle x, a_{2} \rangle a_{2} + \dots + \langle x, a_{K} \rangle a_{K}$$
$$h^{K} = x - p^{K} = \langle x, a_{K+1} \rangle a_{K+1} + \dots + \langle x, a_{D} \rangle a_{D}$$

Рассчитаем квадраты длин x, p^K, h^K :

$$||x||^{2} = \langle x, x \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$
$$||p^{K}||^{2} = \langle p^{K}, p^{K} \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{K} \rangle^{2}$$
$$||h^{K}||^{2} = \langle h^{K}, h^{K} \rangle = \langle x, a_{K+1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$

 p_n^K, h_n^K - проекция и ортогональное дополнение x_n для L_K .

$$L(K) = \frac{\sum_{n=1}^{N} \|h_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}, \quad S(K) = \frac{\sum_{n=1}^{N} \|p_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}, \quad L(K) + S(K) = 1$$

Вклад a_k в описание $x: \langle x, a_k \rangle^2$.

Вклад a_k в описание $x_1, x_2, ... x_N$: $\sum_{n=1}^N \langle x_n, a_k \rangle^2$

Относительный вклад (explained variance ratio):

$$E(a_k) = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{d=1}^{D} \sum_{n=1}^{N} \langle x_n, a_d \rangle^2} = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \|x_n\|^2}$$

$$E(a_k) \in [0,1]; \quad \sum_{k=1}^K E(a_k) = S(K)$$

Выбор числа главных компонент

• Визуализация данных: 2 или 3 компоненты.

- \bullet Можно брать a_k , пока $E(a_k)$ не упадет резко вниз.
- Или брать по порогу, например

$$K^* = \underset{\kappa}{\operatorname{arg \; min}} \; E(a_K) < 0.01$$

$$K^* = \arg\min_{K} S(K) = \arg\min_{32/54} \left\{ \sum_{k=1}^{K} E(a_k) \right\} > 0.95$$

- Метод главных компонент
 - Определение
 - Применение метода главных компонент
 - Оценка качества аппроксимации
 - ullet Проектирование на L_K

Расчет p^K по x

Если y - вектор проекций x на $a_1, ... a_D$, то

$$y = A^{T}(x - \mu), x = Ay + \mu,$$

 $\mu = \frac{1}{N} \sum_{n=1}^{N} x_{n}, A = [a_{1}|a_{2}|...|a_{D}] \in \mathbb{R}^{D \times D}$

Для $A_K = [a_1|a_2|...|a_K] \in \mathbb{R}^{D \times K}$, проекции на $a_1,...a_K$:

$$y^K = A_K^T(x - \mu)$$

Проекция p^K для x на L_K :

$$p^{K} = A \begin{pmatrix} y^{K} \\ 0 \end{pmatrix} + \mu = A_{K} y^{K} + \mu$$

$$p^{K} = A_{K}A_{K}^{T}(x - \mu) + \mu, \quad \operatorname{rg}\left[A_{K}A_{K}^{T}\right] = \operatorname{rg}\left[A_{K}\right] = K \ \forall A_{K}$$

Метод локальной линейной проекции²

²X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS).

Метод локальной линейной проекции

Метод локальной линейной проекции удаляет шум в данных за счет замены $x_n \to p_n$ (на <u>гиперплоскость</u>, <u>локально</u> описывающую данные).

ВХОЛ:

К-локальная размерность данныхМ-число ближайших соседей

для каждого хі в Х:

найти M ближайших соседей x_i . определить $a_1,...a_K$ по центрированным ближайшим соседям составить μ и A_K $x_i \to p_i = A_K A_K^T (x - \mu) + \mu$

ВЫХОД:

данные, очищенные от шума $p_1, p_2, ... p_K$.

Численное нахождение главных компонент

 Определяем вектор средних и станд. отклонений каждого признака:

$$\mu, \sigma \in \mathbb{R}^D$$

 Приводим все признаки к нулевому среднему и единой шкале:

$$x_1,...x_N \rightarrow \frac{x_1-\mu}{\sigma},...\frac{x_N-\mu}{\sigma}$$

• Формируем матрицу объекты-признаки

$$X = [x_1^T; ...x_N^T]^T \in \mathbb{R}^{N \times D}$$

$$\widehat{\Sigma} = \frac{1}{N} X^T X$$

Численное нахождение главных компонент

- По $\widehat{\Sigma}$: находим C3 $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$ и соответствующие CB $a_1, a_2, ... a_D$.
 - $\widehat{\Sigma} = \widehat{\Sigma}^T$, поэтому существует ОНБ из СВ с вещественными СЗ
 - $\widehat{\Sigma} \succeq 0$, поэтому все $C3 \ge 0$
- \bullet $a_1, a_2, ... a_K$ первые K главных компонент, k = 1, 2, ... D.
- Сумма квадратов проекций на а_i:

$$||Xa_i||^2 = \sum_{n=1}^N \langle x_n, a_i \rangle^2 = \lambda_i$$

• Доля объясненной информации аі:

$$E(a_i) = \frac{\lambda_i}{\sum_{d=1}^{D} \lambda_d}$$

Содержание

- Напоминание линейной алгебрь
- Задача снижения размерности
- ③ Метод главных компонент
- 4 Построение главных компонент
- 5 Главные компоненты и подпространство наилучшей аппроксимации

Конструктивное определение главных компонент

- ullet $a_1= {
 m arg \ max}_a \left\| X_a
 ight\|^2$, при ограничении $\langle a,a
 angle =1$
- ullet $a_2=rg \max_a \|Xa\|^2$, при ограничениях $\langle a,a
 angle =1,\langle a,a_1
 angle =0$
- $a_3=\arg\max_a\|Xa\|^2$, при ограничениях $\langle a,a\rangle=1,\langle a,a_1\rangle=0,\langle a,a_2\rangle=0$
-
- $a_D=\arg\max_a\|Xa\|^2$, при ограничениях $\langle a,a\rangle=1,\langle a,a_1\rangle=0,...\langle a,a_{D-1}\rangle=0$
- $Xa_i = [\langle x_1, a_i \rangle, ... \langle x_N, a_i \rangle]$ вектор координат (проекций) всех объектов вдоль a_i .
- Квадрат нормы через $\langle \cdot, \cdot \rangle$:

$$||b||^2 = b^T b$$
, $||Xa||^2 = (Xa)^T (Xa) = a^T X^T Xa$

Векторные производные некоторых функций³

ullet Рассмотрим $x = [x^1, ... x^D]$ и $f(x) = f(x^1, ... x^D)$. Векторная производная

$$\frac{\partial f(x)}{\partial x} := \begin{pmatrix} \frac{\partial f(x)}{\partial x^1} \\ \frac{\partial f(x)}{\partial x^2} \\ \cdots \\ \frac{\partial f(x)}{\partial x^D} \end{pmatrix}$$

ullet Для любых $x, b \in \mathbb{R}^D$:

$$\frac{\partial [b^T x]}{\partial x} = b, \quad \frac{\partial [x^T x]}{\partial x} = 2x$$

ullet Для любых $x \in \mathbb{R}^D$ и симметричной $B \in \mathbb{R}^{D \times D}$:

$$\frac{\partial [x^T B x]}{\partial x} = 2Bx$$

 $^{^{3}}$ Докажите их формулу. Как изменится формула для несимметричной B?

Вычисление 1-й главной компоненты

$$\begin{cases} \|Xa_1\|^2 \to \mathsf{max}_{a_1} \\ \|a_1\| = 1 \end{cases} \tag{1}$$

Лагранжиан оптимизационной задачи (1):

$$\textit{L}(\textit{a}_1, \mu) = \textit{a}_1^{\textit{T}} \textit{X}^{\textit{T}} \textit{X} \textit{a}_1 - \mu (\textit{a}_1^{\textit{T}} \textit{a}_1 - 1) \rightarrow \mathsf{extr}_{\textit{a}_1, \mu}$$

$$\frac{\partial L}{\partial a_1} = 2X^T X a_1 - 2\mu a_1 = 0$$

поэтому a_1 - один из CB матрицы X^TX .

Вычисление 1-й главной компоненты

Поскольку мы ищем $\left\|Xa_1
ight\|^2 o \mathsf{max}_{a_1}$ и

$$||Xa_1||^2 = (Xa_1)^T Xa_1 = a_1^T X^T Xa_1 = \lambda a_1^T a_1 = \lambda$$

 a_1 должен быть CB, отвечающим максимальному C3 λ_1 .

Если существует несколько СВ для λ_1 , выберем любой единичной нормы.

Вычисление 2-й главной компоненты

$$\begin{cases} \|Xa_2\|^2 \to \max_{a_2} \\ \|a_2\| = 1 \\ a_2^T a_1 = 0 \end{cases}$$
 (2)

Лагранжиан оптимизационной задачи (2):

$$L(a_2, \mu) = a_2^T X^T X a_2 - \mu(a_2^T a_2 - 1) - \alpha a_1^T a_2 \rightarrow \operatorname{extr}_{a_2, \mu, \alpha}$$

$$\frac{\partial L}{\partial a_2} = 2X^T X a_2 - 2\mu a_2 - \alpha a_1 = 0 \tag{3}$$

Вычисление 2-й главной компоненты

Домножая на a_1^T слева, получим:

$$a_1^T \frac{\partial L}{\partial a_1} = 2a_1^T X^T X a_2 - 2\mu a_1^T a_2 - \alpha a_1^T a_1 = 0$$
 (4)

т.к.
$$\langle a_2, a_1 \rangle = 0$$
: $2\mu a_1^T a_2 = 0$

Поскольку $a_1^T X^T X a_2 \in \mathbb{R}$ и a_1 - CB $X^T X$:

$$a_1^T X^T X a_2 = (a_1^T X^T X a_2)^T = a_2^T X^T X a_1 = \lambda_1 a_2^T a_1 = 0$$

Следовательно (4) упрощается до $\alpha a_1^T a_1 = \alpha = 0$ и (3) становится

$$X^T X a_2 - \mu a_2 = 0$$

Значит a_2 - тоже CB $X^T X$.

Вычисление 2-й главной компоненты

Поскольку мы ищем $\left\|Xa_1
ight\|^2 o \mathsf{max}_{a_1}$ и

$$||Xa_2||^2 = (Xa_2)^T Xa_2 = a_2^T X^T Xa_2 = \lambda a_2^T a_2 = \lambda$$

 a_2 должен быть CB, отвечающим 2-му максимальному C3 λ_2 .

Если существует несколько CB для λ_1 , выберем любой, удовлетворяющий (2).

Вычисление к-й главной компоненты

$$\begin{cases} \|Xa_{k}\|^{2} \to \max_{a_{k}} \\ \|a_{k}\| = 1 \\ a_{k}^{T} a_{1} = \dots = a_{k}^{T} a_{k-1} = 0 \end{cases}$$
 (5)

Лагранжиан оптимизационной задачи (5):

$$L(a_k, \mu) = a_k^T X^T X a_k - \mu(a_k^T a_k - 1) - \sum_{j=1}^{k-1} \alpha_j a_k^T a_j \to \operatorname{extr}_{a_k, \mu, \alpha_1, \dots \alpha_{k-1}}$$

$$\frac{\partial L}{\partial a_k} = 2X^T X a_k - 2\mu a_k - \sum_{j=1}^{k-1} \alpha_j a_j = 0$$
 (6)

Вычисление к-й главной компоненты

Домножая на a_i^T слева для i=1,2,...k-1 получим:

$$2a_{i}^{T}X^{T}Xa_{k} - 2\mu a_{i}^{T}a_{k} - \alpha_{1}a_{i}^{T}a_{1} - \dots - \alpha_{k-1}a_{i}^{T}a_{k-1} = 0$$
 т.к. $\forall i \neq j \ \langle a_{i}, a_{j} \rangle = 0$: $2\mu a_{i}^{T}a_{k} = 0$, $\alpha_{j}a_{i}^{T}a_{j} = 0 \ \forall i \neq j$ (7)

Поскольку $a_i^T X^T X a_2 \in \mathbb{R}$ и a_i - CB $X^T X$:

$$a_i^T X^T X a_2 = \left(a_i^T X^T X a_k\right)^T = a_k^T X^T X a_i = \lambda_i a_k^T a_i = 0$$

Следовательно (7) упрощается до $\alpha_i a_i^T a_i = \alpha_i = 0$. Выбирая i=1,2,...k-1, получим $\alpha_1=\alpha_2=...=\alpha_{k-1}=0$ и (6) становится

$$X^T X a_k - \mu a_k = 0$$

Значит a_k - тоже CB X^TX .

Вычисление к-й главной компоненты

Поскольку мы ищем $\|Xa_k\|^2 o \mathsf{max}_{a_k}$ и

$$||Xa_{k}||^{2} = (Xa_{k})^{T} Xa_{k} = a_{k}^{T} X^{T} Xa_{k} = \lambda a_{k}^{T} a_{k} = \lambda$$

 a_k должен быть CB, отвечающим k-му максимальному C3 λ_k .

Если существует несколько CB для λ_k , выберем любой, удовлетворяющий (5).

Содержание

- 1 Напоминание линейной алгебры
- Задача снижения размерности
- Метод главных компонент
- 4 Построение главных компонент
- Главные компоненты и подпространство наилучшей аппроксимации

Главные компоненты и подпространство наилучшей аппроксимации

$$\mathcal{L}(a_1, a_2, ... a_K) = L_K$$

Далее все рассматривается в контексте фиксированной выборки X, L_K - подпространство наилучшей аппроксимации ранга K для X.

Теорема 2

Линейная оболочка главных компонент $a_1, a_2, ... a_K$, рассчитанных по X. Тогда

$$\mathcal{L}(a_1, a_2, ... a_K) = L_K \ \forall K$$

Доказательство: по индукции. Для K=1

$$\begin{cases} \|Xa_1\|^2 \to \mathsf{max}_{a_1} \\ \|a_1\| = 1 \end{cases}$$

$$||Xa_1||^2 = ||\langle x_1, a_1 \rangle, ... \langle x_N, a_1 \rangle||^2 = \sum_{n=1}^N p_n^2 \to \max_{a_1}$$

Главные компоненты и подпространство наилучшей аппроксимации

$$\mathcal{L}(a_1, a_2, ...a_K) = \mathcal{L}_K$$

Предположим, теорема верна для K-1. Рассмотрим оптимальное L_K , dim L=K, для которого мы всегда можем выбрать ОНБ $b_1, b_2, ... b_K$ такой, что

$$\begin{cases} ||b_{K}|| = 1 \\ b_{K} \perp a_{1}, b_{K} \perp a_{2}, \dots b_{K} \perp a_{K-1} \end{cases}$$
 (8)

выбирая b_K перпендикулярным проекциям $a_1,a_2,...a_{K-1}$ на $L_K.$

$\mathcal{L}\left(a_1,a_2,...a_K ight)$ - подпространство наилучшей аппроксимации

Рассмотрим сумму квадратов проекций:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{K-1}||^2 + ||Xb_K||^2$$

По предположению индукции $L[a_1,a_2,...a_{K-1}]$ подпространство наилучшей аппроксимации K-1 и $L[b_1,...b_{K-1}]$ - того же ранга, поэтому сумма квадратов проекций не меньше:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{K-1}||^2 \le ||Xa_1||^2 + ||Xa_2||^2 + ... + ||Xa_{K-1}||^2$$

при этом

$$||Xb_K||^2 \le ||Xa_K||^2$$

т.к. b_K по (8) удовлетворяет (5) а a_K оптимальное решение.

Заключение

- Снижение размерности преобразование признаков с переходом в уменьшенное признаковое пространство.
- Полезно для повышения точности, интерпретируемости и скорости работы моделей.
- Метод главных компонент метод линейного снижения размерности без учителя.
 - центрируем признаки и приводим их к единой шкале
 - вычисляем выборочную ковариационную матрицу $\widehat{\Sigma} = \frac{1}{N} X^T X$
 - определяем СВ $a_1, a_2, ... a_D$, отвечающие СЗ $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$
 - $\mathcal{L}(a_1, a_2, ... a_K)$ подпространство наилучшей аппроксимации ранга K:

$$||h_1||^2 + ... + ||h_N||^2 \to \min_{b_1,...b_k}$$

•
$$x = \alpha_1 a_1 + ... + \alpha_D a_D$$
: $(x^1, ... x^D) \rightarrow (\alpha^1, ... \alpha^K)$