

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A sterol-based compound, characterized in that it corresponds to formula (I)

in which formula:

the carbon in position 4 of the cholesterol skeleton bears moieties T_1 and T_2 , which are, independently, H or CH_3 with CH_3 in the α and/or β position;

the carbon in position 24 bears a moiety T_4 which represents H, CH_3 or C_2H_5 ;

the carbon in position 14 bears a moiety T_3 , which may be is H or a β CH_3 , one of the bond between carbons 5 and 6 and the bond between carbons 7 and 8 may be is a double bond, whereas the other is a single bond ;

Z represents, in position 5 or 8, either H or OH, H or OH being able to be borne only by a carbon that does not bear a double bond; and

R represents in position 6 or 7, on a carbon not bearing a double bond, ~~the substituent of formula Q₀-Q₁,~~

~~Q₀ represents the radical of formula (II):~~

~~X-(CH₂)_{n0}[Y₁-(CH₂)_{n1}]_{p1}[Y₂-(CH₂)_{n2}]_{p2}[Y₃-(CH₂)_{n3}]_{p3}[Y₄-(CH₂)_{n4}]_{p4}[Y₅-(CH₂)_{n5}]_{p5}-(II)~~
~~in which formula (II):~~

~~p₁, p₂, p₃, p₄ and p₅ are integers independently equal to 0 or 1,~~

~~n₀, n₁, n₂, n₃, n₄ and n₅ are independent integers such that:~~

$$1 \leq n_0 \leq 4$$

$$0 \leq n_1, n_2, n_3, n_4, n_5 \leq 4$$

~~X represents S, O, CH₂ or NR₃,~~

~~R₃ is H or a C₁-C₄ alkyl radical, or alternatively a heterocycle~~

~~Y₁, Y₂, Y₃, Y₄ and Y₅ represent, independently of each other, S, O, CH₂ or NR₃, R₃ has the meaning given above,~~

~~and~~

~~Q₄ represents an indole nucleus, a morpholine or thiomorpholine nucleus attached via its nitrogen atom, a heterocycle~~

~~in which R₄ represents H, COCH₃, a C₁-C₄ alkyl radical,~~

or

~~Q₄ represents~~

~~in which R₄ has the meanings given above and R₂ represents H or a C₁-C₄ alkyl radical, R₁ and R₂ together possibly constituting a piperidine, pyridine or piperazine ring optionally substituted with a C₁-C₄ alkyl radical, or alternatively a pyrrole or pyrrolidine heterocycle comprising a nitrogen atom and 4 carbon atoms, with the proviso that:~~

if $X = \text{NH}$ and $Q_1 \rightarrow \text{N} \begin{cases} \text{C}_1\text{-C}_4 \text{ alkyl} \\ \text{C}_1\text{-C}_4 \text{ alkyl} \end{cases}$, at least one

of the numbers p_1, p_2, p_3, p_4 and p_5 is other than 0,
and

if $X = \text{CH}_2$, $n_0 = 1$ and all the numbers p_1, p_2, p_3, p_4
and p_5 are zero, Q_1 is other than NH_2
said compound selected from the group consisting of:
a compound corresponding to formula (I) in which the
bond between carbons C₇ and C₈ is a double bond, R = NH-(CH₂)₃-NH-

(CH₂)₄-NH₂ and T₁ = T₂ = T₃ = H,

a compound corresponding to formula (I) in which the
bond between carbons C₇ and C₈ is a double bond, R = NH-(CH₂)₃-NH-
(CH₂)₄-NH₂ and T₁ = T₂ = T₃ = H,

a compound corresponding to formula (I) in which the
bond between carbons C₇ and C₈ is a double bond, T₁ = T₂ = T₃ = H
and

a compound corresponding to formula (I) in which the
bond between carbons C₇ and C₈ is a double bond, T₁ = T₂ = T₃ = H
and R = -NH-(CH₂)₄-NH₂,

a compound corresponding to formula (I) in which the bond C₇-C₈ is a double bond, T₁ = T₂ = T₃ = H and R = -NH-(CH₂)₂-O-(CH₂)₂-O-(CH₂)₂-NH₂,

a compound corresponding to formula (I) in which the two bonds C₅-C₆ and C₇-C₈ are single bonds, Z represents OH in position 5 and T₁ = T₂ = T₃ = H, R being in position 6, and R = -NH-(CH₂)₃-NH-(CH₂)₄-NH-(CH₂)₃-NH₂,

a compound corresponding to formula (I) in which the two bonds C₅-C₆ and C₇-C₈ are single bonds, Z represents OH in position 5 and T₁ = T₂ = T₃ = H, R being in position 6, and

a compound corresponding to formula (I) in which the two bonds C₅-C₆ and C₇-C₈ are single bonds, Z represents OH in position 5 and T₁ = T₂ = T₃ = H, R being in position 6 and having the meaning

a compound corresponding to formula (I) in which the two bonds C₅-C₆ and C₇-C₈ are single bonds, Z represents OH in position 5 and T₁ = T₂ = T₃ = H, R being in position 6 and having the meaning

, and

a compound corresponding to formula (I) in which the two bonds $\text{C}_5\text{---C}_6$ and $\text{C}_7\text{---C}_8$ are single bonds, Z represents OH in position 5 and $\text{T}_1 = \text{T}_2 = \text{T}_3 = \text{H}$, R being in position 6 and being: $\text{NH---(CH}_2)_3\text{---NH---(CH}_2)_4\text{---NH}_2$.

2-11. (cancelled)

12. (currently amended) A process for preparing a compound as claimed in claim 1, comprising:

in a first step, reacting meta-chloroperoxybenzoic acid, dissolved in a solvent [[A]], with a compound corresponding to formula (III)

in which formula the carbon in position 4 of the cholesterol skeleton bears moieties T_1 and T_2 which ~~may be~~ is, independently, H or CH_3 with CH_3 in the α and/or β position, the carbon in position 24 bears a moiety T_4 that represents H, CH_3 or C_2H_5 , the carbon in position 14 bears a moiety T_3 , which ~~may be~~ is

H or a β CH₃, at least one of the bond between carbons 5 and 6 and the bond between carbons 7 and 8 is a double bond, the compound of formula III being dissolved in a solvent B that is miscible with solvent A; and

in a second step, reacting the epoxy compound obtained in the first step, dissolved in a solvent C in the presence of an activator D, with an amine ~~of formula Q₆Q₁~~, dissolved in a solvent E that is miscible with the solvent C, the amine selected from the group consisting of:

13. (original) The process as claimed in claim 12, characterized in that the product obtained in the first step is purified before using it for the second step.

14. (previously presented) The process as claimed in claim 12, characterized in that lithium perchlorate is used as activator D.

15. (previously presented) The process as claimed in claim 12, characterized in that methylene chloride is used as solvent A.

16. (original) The process as claimed in claim 15, for the preparation of a compound of formula (I) bearing an OH on the carbon in position 5 and comprising a double bond between carbons 7 and 8, characterized in that a mixture of methylene chloride and of aqueous Na_2CO_3 solution is used as solvent B.

17. (original) The process as claimed in claim 15, for the preparation of a compound of formula (I) bearing an OH on the carbon in position 5 and comprising a single bond between carbons 7 and 8, characterized in that methylene chloride is used as solvent B.

18. (previously presented) The process as claimed in claim 16, characterized in that anhydrous ethanol or pyridine is used as solvent C, the reaction of the second step being performed at reflux, at atmospheric pressure.

19. (original) A medicament, characterized in that it comprises, in a pharmaceutically acceptable vehicle, at least one compound as claimed in claim 1.

20-25. (cancelled)

26. (previously presented) The medicament as claimed in claim 19, characterized in that the pharmaceutically acceptable vehicle is a vehicle for administration by injection.

27-28. (cancelled)