

SM16106

概述

SM16106 是专为 LED 显示屏设计的驱动芯片,内建 CMOS 位移寄存器与锁存功能,可以将串行的输入数据转换成并行输出数据格式。

SM16106 工作电压为 3.3V—5.0V,提供 16 个电流源,可以在每个输出端口提供 1mA—32mA 的恒定电流; 且单颗 IC 片内输出电流差异小于±2.5%; 多颗 IC 间的输出电流差异小于±3.5%; 通道输出电流不随着输出端电压(V_{DS})的变化而变化; 且电流受电压和环境温度影响的变化小于 1%; 每个通道的输出电流大小由外接电阻来调整。

SM16106 输出端口耐压可达 17V, 因此可以在每个输出端串接多个 LED 灯; 另外, SM16106 高达 25MHz 的时钟频率可以满足系统对大量数据传输的需求。

特点

- ◆ 16 通道恒流源输出
- ◆ 恒流电流:
 - 1-32mA@VDD=5.0V

@片内误差<±2.5%,片间误差<±3.5%

1-22mA@VDD=3.3V

@片内误差<±2.5%,片间误差<±3.5%

- ◆ 输出电流支持外部 Rext 电阻可调
- ◆ 快速的输出电流响应, OE (最小值): 35ns
- ◆ 高达 25MHz 时钟频率
- ◆ 工作电压: 3.3V~5.0V
- ◆ 封装形式: SSOP24、QSOP24、QFN24(4*4)

封装信息

产品名称	封装形式	塑封体尺寸 (mm)	脚间距 (mm)
SM16106D	SSOP24	13.0*6.0*1.8	1.0
SM16106SC	QSOP24	8.65*3.9*1.4	0.635
SM16106CN-2	QFN24(4*4)	4*4*0.85	0.5

管脚定义

Fax: 0755-26991336

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

应用领域

- ◆ 广告屏
- ◆ LED 照明

Fax: 0755-26991336

内部功能简单框图

管脚说明

名称	功能说明
GND	芯片地
SDI	串行数据输入端口
CLK	时钟信号的输入端口; 时钟上升沿时移位数据
LE	数据锁存控制端口。当 LE 为高电平时,串行数据会被传入至输出锁存器;当 LE 为低电平时,资
LE	料会被锁存
OUT0~OUT15	恒流源输出端口
<u></u>	输出使能控制端口。当 \overline{OE} 为低电平时,即会启动 $\overline{OUT0}\sim \overline{OUT15}$ 输出;当 \overline{OE} 为高电平时,
OE	OUT0~OUT15 输出会被关闭
SDO	串行数据输出端口;可接至下一个芯片的 SDI 端口

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

SM16106 LED 显示屏驱动 IC IT1GIGV1.0

R-EXT	连接外接电阻的输入端口; 此外接电阻可设定所有输出通道的输出电流
VDD	芯片电源

订购信息

江附和县	4- VII ±k+±	包装		坐 中 口 十	
订购型号	封装形式	管装	编带	卷盘尺寸	
SM16106D	SSOP24	36000 颗/箱	2000 颗/盘	13寸	
SM16106SC	QSOP24	100000 颗/箱	4000 颗/盘	13寸	
SM16106CN-2	QFN24(4*4)	/	5000 颗/盘	13寸	

网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

输出及输入等效电路

◆ OE 输入端

◆ CLK,SDI 输入端

◆ OUT0~OUT15 输出端

LE 输入端

SDO 输出端

Fax: 0755-26991336

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

时序图

真值表

CLK	LE	ŌĒ	SDI	OUT0····OUT7····OUT15	SDO
_	Н	L	Dn	DnDn-7Dn-15	Dn-15
—	L	L	Dn+1	No Change	Dn-14
_	Н	L	Dn+2	Dn+2Dn-5Dn-13	Dn-13
Y _	X	L	Dn+3	Dn+2Dn-5Dn-13	Dn-13
Y _	X	Н	Dn+3	off	Dn-13

最大极限参数

特性	代表符号	最大限定范围	单位
电源电压	VDD	0~7.0	V
输入端电压	V _{SDA} ,V _{CLK} ,V _{LE} ,V _{OE}	-0.4∼VDD+0.4V	V
电流输出端电流	I _{OUT}	+45	mA
输出端承受电压	V_{DS}	-0.5∼+17.0	V
时钟频率	f _{CLK}	30	MHz
IC 工作时的环境温度	T _{opr}	-40∼+85	$^{\circ}$ C
IC 储存时的环境温度	T _{stg}	-55∼+150	$^{\circ}$
HBM 人体放电模式	V _{ESD}	>4	KV

备注:表贴产品焊接最高峰值温度不能超过 260℃,温度曲线依据 J-STD-020 标准、参考工厂实际和锡膏商建议由工厂自行设定。

Tel: 0755-26991392

Fax: 0755-26991336

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

直流特性

(VDD= 5.0V, Ta = 27°C)

特性	代表符号	测量	量条件	最小值	典型值	最大值	单位
静态电流	IDD	VDD = 5.0V, R-E	-	1.5	-	mA	
OUT 端口耐压	V _{DS} (MAX)	OUT0	OUT0 ~ OUT15		-	17	V
OUT 端口输出电流	l _{OUT}	VDD	= 5.0V	1	-	32	mA
SDO 驱动电流	I _{OH}	VDD	= 5.0V	-	-21	-	mA
SDO 驱列电流	I _{OL}	ا ال	- 5.0V	-	21	-	mA
炒)	V _{IH}			0.7*VDD	-	VDD	V
输入端口翻转电平	VIL			GND	-	0.3*VDD	V
OUT 输出端漏电流	I _{OH}	V _{DS}	=17V	-	-	0.5	uA
SDO 输出端电压	V _{OL}	I _{OL} =	+1mA	-	-	0.4	V
300 湘山坳电压	V _{OH}	I _{OH} =	1mA	4.6	-	-	V
OUT 端口输出端电流 1	I _{OUT1}	V _{DS} =1.0V	rext = 1800Ω	-	8.8	-	mA
M. J. J. Market	D _{IOUT}	$I_{OUT} = 8.8 \text{mA}$ $V_{DS} = 1.0 \text{V}$	片内	-	-	±2.5%	
输出电流误差	DIOUT	$rext = 1800\Omega$	片间	-	-	±3.5%	
OUT 端口输出端电流 2	I _{OUT2}	V _{DS} = 1.0V	rext = 920Ω	-	17.5	-	mA
松山山水田光	D	I _{OUT} = 17.5mA	片内	-	-	±2.5%	
输出电流误差	D _{IOUT}	$V_{DS} = 1.0V$ rext = 920Ω	片间	-	-	±3.5%	
输出电流误差/V _{DS} 变化量	%/ΔV _{DS}	V _{DS} =1.	0V∼3.0V	-	±0.5%	-	%/V
输出电流误差/vpD 变化量	%/ΔV _{DD}	V _{DD} =4.	5V∼5.5V	-	±0.5%	-	%/V
Pull-up 电阻	R _{OE} (up)		OE	-	250	-	ΚΩ
Pull-down 电阻	R _{LE} (down)		LE	-	250	-	ΚΩ
	I _{DD} (off)1	R-EXT 悬空,OU	JT0~OUT15 = OFF	-	1.5	-	
IC 静态电流	I _{DD} (off)2	rext = 1800Ω, O	UT0~OUT15 = OFF	-	2.6	-	mA
	I _{DD} (off)3	rext = 920Ω, Ol	JT0~OUT15 = OFF	-	3.8	-	

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

(VDD=3.3V, Ta = 27° C)

特性	代表符号	测量	量条件	最小值	典型值	最大值	单位
静态电流	IDD	VDD =3.3V, R-E	VDD =3.3V,R-EXT 悬空,I _{OUT} 关闭			-	mA
OUT 端口耐压	V _{DS} (MAX)	OUT0 ~ OUT15		-	-	17	V
OUT 端口输出电流	I _{OUT}	VDD	=3.3V	1	-	22	mA
SDO 驱动电流	Іон	VDD	= 3.3V	-	-10.5	-	mA
300 驱幻电视	I _{OL}	7	- 3.3V	-	13.3	-	mA
怂) 港口新姑山亚	V _{IH}			0.7*VDD	-	VDD	V
输入端口翻转电平	V _{IL}			GND	-	0.3*VDD	V
OUT 输出端漏电流	I _{OH}	V _{DS}	=17V	-	-	0.5	uA
SDO 於山端中耳	V _{OL}	I _{OL} =	+1mA	-	-	0.3	V
SDO 输出端电压	V _{OH}	I _{OH} =	1mA	3.0	-	-	V
OUT 端口输出端电流 1	I _{OUT1}	V _{DS} =1.0V	rext = 1800Ω	-	8.8	-	mA
输出电流误差	D _{IOUT}	$I_{OUT} = 8.8 \text{mA}$ $V_{DS} = 1.0 \text{V}$	片内	-	-	±2.5%	
	Diout	$rext = 1800\Omega$	片间	-	-	±3.5%	
OUT 端口输出端电流 2	I _{OUT2}	V _{DS} = 1.0V	rext = 920Ω	-	17.5	-	mA
输出电流误差	D _{IOUT}	I _{OUT} = 17.5mA V _{DS} = 1.0V	片内	-	-	±2.5%	
抽出名地以左	D 1001	rext = 920Ω	片间	-	-	±4.5%	
输出电流误差/V _{DS} 变化量	%/ΔV _{DS}	V _{DS} =1.	0V∼3.0V	-	±0.5%	-	%/V
输出电流误差/ _{VDD} 变化量	%/ΔV _{DD}	V _{DD} =3.	3V∼3.8V	-	±1%	-	%/V
Pull-up 电阻	R _{OE} (up)		<u>OE</u>	-	250	-	ΚΩ
Pull-down 电阻	R _{LE} (down)		LE	-	250	-	ΚΩ
	I _{DD} (off)1	R-EXT 悬空,OU	JT0~OUT15 = OFF	-	1.2	-	
IC 静态电流	I _{DD} (off)2	rext = 1800Ω, O	UT0~OUT15 = OFF	-	3.6	-	mA
	I _{DD} (off)3	$rext = 920\Omega$, Ol	JT0~OUT15 = OFF	-	2.5	_	

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

直流特性测试电路

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

动态特性

(VDD= 5.0V)

特	性	代表符	测量条件	最小值	一般值	最大值	单位
	CLK-OUT	t _{pLH1}			30		ns
延迟时间	LEOUT	t _{pLH2}			26		ns
(低电平到高电平)	OE——OUT	t _{pLH3}	V _{IH} =VDD		30		ns
	CLK-SDO	t _{pLH}	V _{IL} =GND		28		ns
	CLK-OUT	t _{pHL1}	Rext=1800Ω		35		ns
延迟时间	LEOUT	t _{pHL2}	VDD=5.0V		33		ns
(高电平到低电平)	OEOUT	t _{pHL3}	R _L =400Ω		35		ns
	CLK-SDO	t_{pHL}	C _L =10pF		27		ns
电流输出上升沿时间		t _{OUT-RISE}		1	30		ns
电流输出下	降沿时间	t _{OUT-FALL}			35		ns

(VDD= 3.3V)

特	性	代表符	测量条件	最小值	一般值	最大值	单位
	CLK-OUT	t _{pLH1}			42		ns
延迟时间	LEOUT	t _{pLH2}			36		ns
(低电平到高电平)	OE——OUT	t _{pLH3}	V _{IH} =VDD	1	45	1	ns
	CLK-SDO	t _{pLH}	V _{IL} =GND		30		ns
	CLK-OUT	t _{pHL1}	Rext=1800Ω	1	38	1	ns
延迟时间	LEOUT	t _{pHL2}	VDD=3.3V	1	33	1	ns
(高电平到低电平)	OEOUT	t _{pHL3}	R _L =200Ω	1	40	1	ns
	CLK-SDO	t_{pHL}	C _L =10pF		29		ns
电流输出上升沿时间		t _{OUT-RISE}		1	26	1	ns
电流输出下	降沿时间	t _{OUT-FALL}		1	18	1	ns

电子邮件: market@chinaasic.com Tel: 0755-26991392

网址: www.chinaasic.com

地址:深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

Fax: 0755-26991336

动态特性测试电路

时序波形图

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

产品应用

将 SM16106 应用于 LED 显示屏设计时,通道间甚至芯片间的电流,差异极小。此源自于 SM16106 优异的恒流输出特性:

- ◆ 片内通道间的最大电流误差小于±2.5%,而芯片间的最大电流误差小于±3.5%。
- ◆ 当负载端电压(V_{DS})变化时,其输出电流的稳定性不受影响,如下图所示。

VDD = 5V 时,Iout 与 Vps 之间的关系曲线

调整输出电流

如下图所示,由外接一个 rext 电阻调整输出电流 I_{OUT} ,套用下列公式可计算出输出电流值: I_{OUT} =(16/rext)*1000 mA,

公式中的 rext 是指 R-EXT 端口对地的电阻值,电流单位是 mA。比如,当 rext = 750 Ω 时,通过公式计算可得输出电流值 21.4mA;当 rext = 6000 Ω 时,输出电流值为 2.7mA。

Iout 与 rext 电阻的关系曲线

电子邮件: market@chinaasic.com Tel: 0755-26991392 Fax: 0755-26991336

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

封装散热功率(PD)

封装的最大散热功率是由公式:

当 16 个通道完全打开时,实际功耗为:

实际功耗必须小于最大功耗,即 P_{D(act)}<P_{D(max)},为了保持 P_{D(act)}<P_{D(max)},输出的最大电流与占空比的关系为:

$$I_{out} = \frac{\frac{T_j - T_a}{R_{th(j-a)}} - IDD*VDD}{V_{DS}*Duty*16}$$

其中 Tj 为 IC 的工作温度,Ta 为环境温度,V_{DS} 为稳流输出端口电压,Duty 为占空比,R_{th (j-a)} 为封装的热阻。下图 为最大输出电流与占空比的关系:

如果需要更大的输出电流 lour,则需要加一定的散热片,其计算公式为:

由
$$\frac{1}{R_{\text{th(j-a)}}} + \frac{1}{R_{\text{fc}}} = \frac{P_{D(\text{act})}}{T_{j} - T_{a}}$$
得:

$$R_{\mathrm{fc}} = \frac{R_{th(j\text{-}a)} * \left(T_{j\text{-}}T_{a}\right)}{P_{D}\left(\mathsf{act}\right) * R_{th(j\text{-}a)\text{-}}T_{j} + T_{a}}$$

其中 P_{D(act)}=IDD*VDD+I_{OUT}*Duty*V_{DS}*16

因此如果要输出更大的电流 I_{OUT} ,由上面公式可以计算出必须给 IC 加热阻为 R_{fc} 的散热片。

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

负载端电压(VLED)

为使封装体散热能力达到最佳化,建议输出端电压(V_{DS})的最佳工作范围是 1.0V 左右(依据 I_{OUT} = 1mA \sim 32mA)。如果 V_{DS} = V_{LED} - V_F 且 V_{LED} =5.0V 时,此时过高的输出端电压(V_{DS})可能会导致 P_D (act) > P_D (max)。在此状况,建议尽可能使用较低的 V_{LED} 电压供应,也可用外串电阻或稳压管当做 V_{Drop} ,此可导致 V_{DS} =(V_{LED} - V_F)- V_{DROP} ,达到降低输出端电压(V_{DS})的效果。

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

封装形式

SSOP24

Symbol	Min(mm)	Max(mm)	
А	-	2.15	
A1	0.05	0.35	
A2	1.2	1.9	
b	0.15	0.75	
С	0.05	0.45	
D	12.6	13.5	
E	7.6	8.5	
E1	5.6	6.5	
е	1.0TYP		
L	0.2	1.0	
θ	0°	10°	

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

QSOP24

Symbol	Min(mm)	Max(mm)
А	-	1.95
A1	0.05	0.35
A2	1.05	-
b	0.1	0.4
С	0.05	0.254
D	8.2	9.2
E1	3.6	4.2
E	5.6	6.5
е	0.635	STYP
L	0.3	1.5
θ	0°	10°

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

QFN24(4*4)

Top VIew

Bottom Vew

Fax: 0755-26991336

Side View

Symbol	Min(mm)	Max(mm)
А	0.6	1.0
A1	-	0.1
A3	0.203REF	
D	3.8	4.3
E	3.8	4.3
D1	2.4	3.0
E1	2.4	3.0
K	0.2min	
е	0.5TYP	
b	0.1	0.4
L	0.2	0.7

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准