$\begin{array}{c} {\rm 3EE200} \\ {\rm TP~n}^{\circ}4 \\ {\rm Amplificateur~Source~Commune} \end{array}$

Chems-Eddine NAIMI

Sorbonne Université - Sciences et Ingénierie 3e année de Licence Électronique, Énergie Électrique et Automatique

1. Étude d'un montage amplificateur source commune à MOSFET et charge passive

Cahier de charge:

- $\bullet \qquad V_{DS0} = 3 \ V$
- $I_{DS0} = 1 \ mA$

Caractèristiques du MOSFET :

- $\bullet \qquad \mu_n C_{ox} \, \frac{W}{L} = 640 \mu S \; \pm 20 \%$
- $|V_{T|} = 1 \ V \ + -20\%$

On réalise le montage suivant :

Figure 1.

1.1. Représentation du schéma équivalent du montage

Figure 2.

$$A = rac{V_{out}}{V_s} = -g_m(r_{ds}//R_D)$$

1.2. Calcul de V_{GS0} , g_m , et le gain A

En théorie, le courant I_D doit valoir $1\,mA$, le montage étant un amplificateur, on suppose que le transistor est en régime sature, d'où l'expression du courant est la suivante :

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS0} - V_{Tn})^2$$

$$V_{GS0} = \sqrt{\frac{2I_DL}{\mu_n C_{ox}W}} + V_{Tn} \approx 2.77 \ V$$

De la même manière :

$$g_m = \frac{2I_D}{V_{GS0} - V_{Tn}} \approx 1.13 \times 10^{-3} S$$

Et enfin:

$$A = -g_m(r_{ds}//R_D)$$

Or $r_{ds} >> R_D$, donc :

$$A \approx -g_m R_D \approx -2.48$$

1.3. Mesure de V_{D0} et I_{D0}

On réalise le circuit et on pose : $V_s=2\ V$. On mesure V_{D0} et on trouve $V_{D0}=4.5\ V$, on peut en déduire le courant circulants au bornes de la resistance R_D qui est égale à I_D :

$$I_D = \frac{E - V_D}{R_D} \approx 227 \ \mu A$$

1.4. Augmenter la valeur de V_G jusqu'à $V_D=3\ V$

À $V_{G0}=2.7~V,~V_{D0}=3~V$ et donc $I_{D0}\approx 1~mA,$ on peut considerer que le cahier de charges à été rempli.

1.5. Mesure du gain à vide

On met en entrée une tension sinusoïdale de fréquence 1 kHz et d'amplitude crête à crête $V_{g_{pp}}=1~V$, On mesure en sortie $V_{d_{pp}}=2.6~V$, avec un inversion de phase. On en déduit que :

$$A = \frac{V_{in}}{V_{out}} = -2.6$$

1.6. Calcul de la valeur de g_m

 r_{ds} étant trés grand devant $R_{D},$ on peut le négliger et calculer g_{m} :

$$A = -g_m R_D = -2.6 \Rightarrow g_m = \frac{2.6}{R_D} \approx 1.18 \ mS$$

1.7. Mesure de $V_{in_{\max}}$

On augmente V_{in} jusqu'à la saturation, on trouve

$$V_{in_{\text{max}}} \approx 1.3 \ V$$

1.8. Mesure du gain à charge

On rajoute au montage précédent une capacité ${\cal C}$ et une résistance ${\cal R}_L$ en série :

Figure 3.

Avec $R_L=1~k\Omega$ et $C=1~\mu F$. Pour $V_{in_{pp}}=1~V$, l'amplitude de tension de sortie crête à crête $V_{out_{pp}}=0.8~V$, on en déduit que le gain en tension à charge vaut :

$$A_c \approx 0.8$$

1.9. Pourquoi peut-on négliger l'impédence du condensateur?

À f = 1 kHz, le module de l'impédence du condensateur vaut :

$$Z_c = \frac{1}{C2\pi f} \approx 159\Omega <\!\!< 2.\,2~k\Omega$$

1.10. Expression du gain en tension en charge en fonction du gain en tension à vide

On peut faire le schéma équivalent du montage amplificateur :

Figure 4.

$$V_{out} = \frac{R_L}{Z_{out} + R_L} A V_{in}$$

$$A_c = \frac{R_L}{Z_{out} + R_L} A$$

1.11. Déduire l'expression de Z_{out}

$$Z_{out} = \frac{AR_L V_{in} - R_L V_{out}}{V_{out}}$$

Pour $A=2.\,6,\;R_L=1\;k\Omega,\;V_{in}=1,\;V_{out}=0.\,8,$ on trouve :

$$Z_{out} = 2250\Omega \approx R_D$$

2. Étude d'un montage amplificateur Source Commune à MOSFET et charge active

Figure 5.

2.1. Schéma équivalent en courant alternatif

Figure 6.

2.2. Trouver V_{BIAS} pour que V_{D0} soit égal à $2.5\ V$

On se met à $V_{G0}=2.6\ V$ (pour que Q_N soit passant) et on fait varier V_{BIAS} jusqu'à avoir $V_{D0}=2.5\ V$. On trouve :

$$V_{BIAS} = 2.26 \ V$$

2.3. Trouver le gain à vide

On met en entrée un signal de fréquence $f=1~k\Omega$ et d'amplitude crête à crête $V_{in_{pp}}=200~mV$, on obtient en sortie $V_{out_{pp}}=2.8~V$, on calcule le gain à vide :

$$A = \frac{V_{out}}{V_{in}} = -14$$

2.4. Trouver r_{ds} et V_{AF}

On a:

$$V_{out} = -g_m \, rac{r_{ds}}{2} \, V_{gs}$$

$$r_{ds} = 2\,\frac{|A|}{g_m} \approx 25~k\Omega$$

On sait que
$$r_{ds} = \frac{V_{AF}}{I_d}$$
, donc :

$$V_{AF} = I_D \times r_{ds} = 25 \ V$$