Ejemplo comparación de resultados predictores in sillico

Cambio de estudio KRAS c.34G>C (chr12:25245351 G/C, rs121913530 o NM_033360.4: c.34G>C)

Exón 2 e intrones adyacentes:

El cambio se encuentra en la primera línea del exón 2 (la **g** en color rojo subrayada de amarillo).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice	sites, direct	t strand	d -			Donor	splice :	sites, direct	stran	d -		
	pos 5'->3' 79 97 303	phase 0 1 0	strand + + +	confidence 0.00 0.37 0.65	5' exon intron 3' TCATATAAAG^GTGAGTTTGT GTATTAAAAG^GTACTGGTGG AACAATAGAG^GTAAATCTTG			pos 5'->3' 79 97 303	phase 0 1 0	strand + + +	confidence 0.00 0.37 0.69	5' exon intron 3' TCATATAAAG^GTGAGTTTGT GTATTAAAAG^GTACTGGTGG AACAATAGAG^GTAAATCTTG
Donor splice s	sites, comple	ement st	trand			Donor	splice :	sites, comple	ement s	trand		
pos 3'->5' 434	pos 5'->3' 49	phase 2	strand -	confidence 0.00	5' exon intron 3' GAAACCCAAG^GTACATTTCA	pos	3'->5' 434	pos 5'->3' 49	phase 2	strand -	confidence 0.00	5' exon intron 3' GAAACCCAAG^GTACATTTCA
Acceptor splic	ce sites, dir	rect st	rand			Accept	tor spli	ce sites, di	ect st	rand		
	pos 5'->3' 180 338	1	strand + +	confidence 0.18 0.19	5' intron exon 3' TTATTATAAG^GCCTGCTGAA ACTGGTGCAG^GACCATTCTT			pos 5'->3' 180 216 222	phase 1 1	strand + + +	confidence 0.17 0.07 0.07	' intron exon 3' TTATTATAAG^GCCTGCTGAA CTTGTGGTAG^TTGGAGCTCG GTAGTTGGAG^CTCGTGGCGT
Acceptor spli	ce sites, con	mplement	t strand	I				234	1	+	0.07	CGTGGCGTAG^GCAAGAGTGC
No acceptor	r site predio	tions a	above th	reshold.				338	1	+	0.18	ACTGGTGCAG^GACCATTCTT
						Accept	tor spli	ce sites, cor	plemen	t strand		
						No	accepto	r site predic	tions	above th	reshold.	

Aparecen tres sitios *acceptor* nuevos (en azul) en la secuencia mutante. Tienen poca confianza, pero, si el *spliceosome* los reconociera, se produciría la pérdida de los primeros 36, 42 o 54 nt del exón.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for wt:

Exon Intron	·e	Score	End	Start
tataaag gt gagttt	9	0.99	86	72
ttaaaag gt actggt	9	0.79	104	90
aatagag gt aaatct	9	0.99	310	296

Donor site predictions for mut:

Exon Intron	Score	End	Start
tataaag gt gagttt	0.99	86	72
ttaaaag gt actggt	0.79	104	90
aatagag gt aaatct	0.99	310	296

Acceptor site predictions for wt:

Start	End	Score	Intron	Exon
160	200	0.69	tttcattattt	ttattata ag gcctgctgaaaatgactgaa
336	376	0.67	caggaccatto	tttgatac ag ataaaggtttctctgaccat

Acceptor site predictions for mut:

Start	End	Score	Intron	Exon
160	200	0.69	tttcattatt	ttattata ag gcctgctgaaaatgactgaa
336	376	0.67	caggaccatt	tttgatac ag ataaaggtttctctgaccat

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
gagct(g/c)gtggc	agctgg	agctcg	31152	81%

Human Splicing Finder

No significant impact on splicing signals.

No significant impact on splicing signals.

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	12	65	tgctgaaaa	0.481644311634	0.38333333333	60	0	0	-3.0837295
wt	12	59	aaatgactg	1.10723640726	0.407407407407	54	0	0	-2.4512154
wt	12	55	gactgaata	0.297230706651	0.4 50	0	0	-2.5175	7
wt	12	49	atataaact	-1.22794910316	0.409090909091	44	0	0	-2.732024
mut	12	65	tgctgaaaa	0.481644311634	0.4 60	0	0	-3.0783	466
mut	12	59	aaatgactg	1.10723640726	0.425925925926	54	0	0	-2.4452345
mut	12	55	gactgaata	0.297230706651	0.42 50	0	0	-2.5111	106
mut	12	49	atataaact	-1.22794910316	0.431818181818	44	0	0	-2.7246838

Variant Effect Predictor tool

ENST00000256078.8:c.34G>C	12:25245351- G 25245351	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000256078.10 protein_coding	2/6	224	34	12	G/R	GGT/CGT	rs121913530, CM076251, COSV55497461, COSV55497469, COSV55497582,
ENST00000256078.8:c.34G>C	12:25245351- G 25245351	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000311936.8 protein_coding	2/5	224	34	12	G/R	GGT/CGT	COSV55497582, COSV56157736 rs121913530, CM076251, COSV55497461, COSV55497469, COSV55497582, COSV56157736
ENST00000256078.8:c.34G>C	12:25245351- G 25245351	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000556131.1 protein_coding	2/3	211	34	12	G/R	GGT/CGT	COSV56157736 rs121913530, CM076251, COSV55497461, COSV55497469, COSV55497582, COSV56157736
ENST00000256078.8:c.34G>C	12:25245351- G 25245351	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000557334.5 protein_coding	2/3	231	34	12	G/R	GGT/CGT	COSV56157736 rs121913530, CM076251, COSV55497461, COSV55497469, COSV55497582, COSV56157736

ESEfinder

Se observan 4 resultados con puntuaciones positivas en WT:

198 (-285)	GGT 3.32010	198 (-285) GAATATAAACTTGTGGTAGTTGGAGCTGGT -18.66980	198 (-285) GAATATAAACTTGTGGTAGTTGGAGCTGGT	3.09350	198 (-285) GAATATAAACTTGTGGTAGTTGGAGCTGGT -20.92360
211 (-272) TGGTAGTTGGAGCTGGTGGCGTAGGC	AGA 1.32130	211			
216 (-267) GTTGGAGCTGGTGGCGTAGGCAAGAGT	GCC 1.20390	(-267)			
220 (-263) GAGCTGGTGGCGTAGGCAAGAGTGCCT	TGA 4.48380	220 (-263) GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA -0.89750	220 (-263) GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA	4.30110	220 GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA -0.94060

Se comparan las puntuaciones con las de la secuencia mutante:

198 (-285)	GAATATAAACTTGTGGTAGTTGGAGCTGAT	2.97960	19 (-28	98 GAATATAAACTTGTGGTAGTTGGAGCTG 5)	AT -18.749	90 (-2	198 GAATATAAACTTGTGGTAGTTGGAGC 85)	TGAT 2.6	2380 (198 GAATATAAACTTGTGGTAGTTGGAGG	TGAT -20.94550
211 (-272)	TGGTAGTTGGAGCTGATGGCGTAGGCAAGA	-9.66120	211 (-272)	TGGTAGTTGGAGCTGATGGCGTAGGCAAGA	-11.37130	21: (-272)	TGGTAGTTGGAGCTGATGGCGTAGGCAAG	A -9.9191	0 (-27)	11 TGGTAGTTGGAGCTGATGGCGTAGGCAAG <i>I</i> 2)	-12.68870
(-267)	GTTGGAGCTGATGGCGTAGGCAAGAGTGCC			GTTGGAGCTGATGGCGTAGGCAAGAGTGCC	ł		GTTGGAGCTGATGGCGTAGGCAAGAGTGCC	1.32740	21 (-267	6 GTTGGAGCTGATGGCGTAGGCAAGAGTGCC	-31.55810
220 (-263)	GAGCTGATGGCGTAGGCAAGAGTGCCTTGA	4.32730	220 (-263)	GAGCTGATGGCGTAGGCAAGAGTGCCTTGA	-1.39130	220 (-263)	GAGCTGATGGCGTAGGCAAGAGTGCCTTGA	4.14180	220 (-263)	GAGCTGATGGCGTAGGCAAGAGTGCCTTGA -	1.62400

Lo más probable es que se esté perdiendo un sitio donor, lo que no tendrá mucho efecto en el splicing.

En cuanto a los ESE, se producen algunas alteraciones que pueden estar afectando al *splicing*:

219	-4.98070	219	219	219
(-264) GGAGCTC		(-264) GGAGCTC -3.65153	(-264) GGAGCTCG 0.36938	(-264) GGAGCTC -3.32797
220 GAGCTCG (-263)	-2.05624	220 (-263) GAGCTCG -2.17882	220 (-263) GAGCTCGT -1.55618	220 GAGCTCG -1.60679
221	0.83257	221	221	221
(-262) AGCTCGT		AGCTCGT 0.67513	(-262) AGCTCGTG 3.55344	AGCTCGT -4.44566
222	-3.46816	222	222	222
(-261) GCTCGTG		(-261) GCTCGTG -2.83859	(-261) GCTCGTGG -1.10005	(-261) GCTCGTG -1.80432
223	-0.69252	223	223	223
(-260)		(-260) CTCGTGG 1.00274	(-260) CTCGTGGC -5.17740	(-260) CTCGTGG 1.29005
224	-3.59471	224	224	224
(-259) TCGTGGC		(-259) TCGTGGC -2.05833	(-259) TCGTGGCG -2.62991	(-259) TCGTGGC -2.06622
225	-2.98536	225	225	225
(-258) CGTGGCG		(-258) CGTGGCG -0.38008	(-258) CGTGGCGT -4.32178	(-258) CGTGGCG -0.48562
}				
j				
219	-3.50084	219	219	219
(-264) GGAGCTG		(-264) GGAGCTG -2.66251	(-264) GGAGCTGG -1.30618	(-264) GGAGCTG -2.48533
GGAGCTG	-3.50084	219	219	219
	0.52149	GGAGCTG -2.66251	GGAGCTGG -1.30618	GGAGCTG -2.48533
(-264) GGAGCTG 220 (-263) GAGCTGG 221	0.52149	219 (-264) GGAGCTG -2.66251 220 GAGCTGG -0.53152	219 (-264) GGAGCTGG -1.30618 220 GAGCTGGT -2.47149	219 (-264) GGAGCTG -2.48533 220 GAGCTGG -1.30117
(-264) GGAGCTG 220 (-263) GAGCTGG 221 (-262) AGCTGGT 222	0.52149	219 GGAGCTG -2.66251 220 GAGCTGG -0.53152 (-263) 221 AGCTGGT 0.46720	219 GGAGCTGG -1.30618 220 GAGCTGGT -2.47149 221 AGCTGGTG 2.65576	219 (-264) GGAGCTG -2.48533 220 (-263) GAGCTGG -1.30117 221 AGCTGGT -5.26324
(-264) GGAGCTG 220 (-263) GAGCTGG 221 (-262) AGCTGGT 222 (-261) GCTGGTG 223	0.52149	219 GGAGCTG -2.66251 220 GAGCTGG -0.53152 221 AGCTGGT 0.46720 222 GCTGGTG -4.15254	219 GGAGCTGG -1.30618 220 GAGCTGGT -2.47149 (-263) AGCTGGTG 2.65576 221 AGCTGGTG 2.65576	219 (-264) GGAGCTG -2.48533 220 (-263) GAGCTGG -1.30117 221 (-262) AGCTGGT -5.26324 222 GCTGGTG -3.52864
(-264) GGAGCTG 220 (-263) GAGCTGG 221 (-262) AGCTGGT 222 (-261) GCTGGTG 223 (-260) CTGGTGG 224	0.52149 0.22846 -5.38319	219 GGAGCTG -2.66251 220 GAGCTGG -0.53152 (-263) AGCTGGT 0.46720 221 AGCTGGT -4.15254 223 CTGGTGG 0.62148	219 GGAGCTGG -1.30618 220 GAGCTGGT -2.47149 (-263) AGCTGGTG 2.65576 221 AGCTGGTG -3.79819 223 CTGGTGGC -7.48497	219 (-264) GGAGCTG -2.48533 220 (-263) GAGCTGG -1.30117 221 (-262) AGCTGGT -5.26324 222 (-261) GCTGGTG -3.52864 223 CTGGTGG 1.07681

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
	(count)	(count)	(count)	(count)	. ,	(count)		(count)	(count)	(count)		(count)		(total)	(total)	(ratio)
wt	0	4	3	33	510.6662	16	-23.7770	8	15	44	500.3453	49	58.2806	56	116	0.48
mut	0	3	2	29	455.4963	15	-22.5634	6	15	41	464.2102	47	56.8045	49	109	0.45

Allele wt has a higher chance of exon skipping than allele mut.

HOT-SKIP