Tarea 2.

La fecha de entrega es el lunes 21 de septiembre de 2020.

Lecturas

- Casella y Robert, leer la sección 1.5 y el capítulo 2.
- Fast Generation of Discrete Random Variables Artículo de *Journal of Statistical Software*, *July 2004*, *Volume 11*, *Issue 3*
- Introduction to simulation using R Capítulo 13
- Marc C. Bove, et. al Effect of El Niño on U.S. Landfalling Hurricanes, Revisited

Problemas

- 1. **Problema de captura-recaptura** Un estadístico está interesado en el número N de peces que hay en un estanque. El captura 250 peces, los marca y los regresa al estanque. Unos cuantos días después regresa y atrapa peces hasta que obtiene 50 peces marcados, en ese punto también tiene 124 peces no marcados (la muestra total es de 174 peces).
 - ¿Cuál es la estimación de *N*?
 - Hagan un programa que permita simular el proceso de obtener la primera y segunda muestra considerando como parámetros el tamaño N de la población de interés, el tamaño de la primera y segunda muestra y como datos a estimar son: de qué tamaño debe ser n₁ y n₂ para obtener una buena aproximación y ver cómo se afecta por el tamaño N.
- 2. Este problema es una versión simplificada de dos problemas comunes a los que se enfrentan las compañías de seguros: calcular la probabilidad de quebrar y estimar cuánto dinero podrán hacer. Los parámetros se dan en conjuntos, se pide simular combinaciones de los diferentes parámetros (probabilidad de reclamo, horizonte de tiempo).
 - Supongan que una compañía de seguros tiene activos por $\$\,10^7$ de pesos. Tienen n=1,000 clientes que pagan individualmente una prima anual de \$5,500, al principio

de cada año. Basándose en experiencia previa, se estima que la probabilidad de que un cliente haga un reclamo es $p \in \{0.01, 0.1, 0.15, 0.2\}$ por año, independientemente de reclamos previos de otros clientes. El tamaño X de los reclamos varía, y tiene la siguiente densidad con $\alpha = 5$ y $\beta = 125,000$:

$$f(x) = I(x \ge 0) \frac{\alpha \beta^{\alpha}}{(x+\beta)^{\alpha+1}}$$

(Tal X se dice que tiene una distribución Pareto, y en el mundo real no es un modelo infrecuente para el tamaño de los reclamos a las aseguradoras).

Suponemos las fortunas de la compañía aseguradora sobre un horizonte de $T \in \{5,10,20\}$ años. Sea Z(t) los activos de la compañía al final del año t, así que Z(0) = 10,000,000, y $Z(t) = I(Z(t-1) > 0) max\{Z(t-1) + \text{primas} - \text{reclamos}, 0\}$

Noten que si $\mathbb{Z}(t)$ cae bajo 0 entonces se queda ahí. Si la compañía se va a bancarrota, deja de operar.

- Calcular la función de distribución F_X , E[X], y Var[X]. Obtengan por simulación una muestra de X y su función de distribución, y comparen su estimado con la verdadera.
- Escriban una función para simular los activos de la compañía en el horizonte de tiempo *T* y estimen: (1) la probabilidad de que la compañía se vaya a bancarrota, y (2) Los activos esperados al final de cinco años.
- Toma de ganancias. Supongan ahora que la compañía toma ganancias al final de cada año. Esto es, si Z(t) > 10,000,000 entonces Z(t) 10,000,000 se le paga a los accionistas. Si $Z(t) \le 10,000,000$ entonces los accionistas no reciben nada ese año. Usando este nuevo esquema, estimar: (1) la probabilidad de irse a la quiebra, (2) los activos esperados después de T años, y (3) Las ganancias totales esperadas después de T años.
- 3. Proponer algoritmos (método y código, así como una corrida) para generar muestras de las siguientes densidades:
 - (a) Cauchy

$$f(x) = \frac{1}{\pi\beta \left[1 + \left(\frac{x-\gamma}{\beta}\right)^2\right]}$$

donde $\gamma, x \in \Re, \beta > 0$.

(b) Gumbel (o de valor extremo)

$$f(x) = \frac{1}{\beta} \exp\left(-e^{-(x-\gamma)/\beta} - \frac{x-\gamma}{\beta}\right)$$

donde $\gamma, x \in \Re, \beta > 0$.

(c) Logística

$$f(x) = \frac{(1/\beta)e^{-(x-\gamma)/\beta}}{(1+e^{-(x-\gamma)/\beta})^2}$$

donde $\gamma, x \in \Re, \beta > 0$.

(d) Pareto

$$f(x) = \frac{\alpha_2 c^{\alpha_2}}{x^{\alpha_2 + 1}}$$

donde $c > 0, \alpha_2 > 0, x > c$.

(e) Vasicek

$$f_{p,\rho}(x) = \sqrt{\frac{1-\rho}{\rho}} \exp\left(\frac{1}{2} \left\{ \Phi^{-1}(x)^2 - \left(\frac{\sqrt{1-\rho}\Phi^{-1}(x) - \Phi^{-1}(p)}{\sqrt{\rho}}\right)^2 \right\} \right)$$

donde $p, \rho \in (0,1)$ y $\Phi(x)$ es la distribución normal estándar.

Para $\gamma=0$ y $\beta=1$ en cada inciso (a), (b) y (c), usen los algoritmos que obtuvieron para generar una muestra aleatoria de 5000 y obtengan $\bar{X}(n)=\sum_{i=1}^n X_i/n$ para $n=50,100,150,\ldots,5000$ para verificar empíricamente la ley fuerte de los grandes números. Hacer lo mismo para (d) con c=1 y $\alpha_2=2$.

4. Grafiquen las siguientes densidades. Dar los algoritmos de transformación inversa, composición y aceptación-rechazo para cada una de las siguientes densidades. Discutir cuál algoritmo es preferible para cada densidad.

(a)

$$f(x) = \frac{3x^2}{2}I(x)_{[-1,1]}$$

(b) Para $0 < a < \frac{1}{2}$,

$$f(x) = \begin{cases} 0 & x \le 0\\ \frac{x}{a(1-a)} & 0 \le x \le a\\ \frac{1}{1-a} & a \le x \le 1 - a\\ \frac{1-x}{a(1-a)} & 1 - a \le x \le 1\\ 0 & x \ge 1 \end{cases}$$

- 5. Considerando la transformación polar de Marsaglia para generar muestras de normales estándar, muestren que la probabilidad de aceptación de $S=V_1^2+V_2^2$ en el paso 2 es $\pi/4$, y encuentren la distribución del número de rechazos de S antes de que ocurra una aceptación. ¿Cuál es el número esperado de ejecuciones del paso 1?
- 6. Obtengan una muestra de 1,000 números de la siguiente distribución discreta:

$$p(x) = \frac{2x}{k(k+1)}, x = 1, 2, \dots, k$$

para k = 100.

- 7. Desarrollen un algoritmo para generar una variable aleatoria binomial, usando la técnica de convolución (Hint: ¿cuál es la relación entre binomiales y Bernoullis?) Generar una muestra de 100,000 números. ¿Qué método es más eficiente, el de convoluciones o la función rbinom en R?
 - Ahora supongan que tienen Y como una suma de n=100 variables Bernoulli con parámetro p=0.6 correlacionadas, con correlación $\rho=0.3$. Obtener por simulación la estimación de la densidad de Y.
- 8. Escribir una función para generar una mezcla de una distribución normal multivariada con dos componentes con medias μ_1 y μ_2 y matrices de covarianzas S_1 y S_2 respectivamente.
 - a. Con el programa, generar una muestra de tamaño n=1000 observaciones de una mezcla $50\,\%$ de una normal 4-dimensional con $\mu_1=(0,0,0,0)$ y $\mu_2=(2,3,4,5)$, y matrices de covarianzas $S_1=S_2=I_4$.
 - Obtener los histogramas de las 4 distribuciones marginales.
- 9. **Distribución de Wishart**. Suponer que M = X'X, donde X es una matriz $n \times d$ de una muestra aleatoria de una distribución $\mathcal{N}_d(\mu, \Sigma)$. Entonces M tiene una distribución Wishart con matriz de escala Σ y n grados de libertad, y se denota $W \sim W_d(\Sigma, n)$. Cuando d = 1, los elementos de X son una muestra aleatoria de una $\mathcal{N}(\mu, \sigma^2)$, por lo que $W_1(\sigma^2, n) \sim \sigma^2 \chi^2_{(n)}$.
 - Una forma de generar observaciones de una distribución Wishart, es generar muestras de multivariadas normales y calcular la matriz producto XX'. Programar este método. Noten que este método es muy costoso porque se tienen que generar nd valores aleatorios normales para determinar las d(d+1)/2 diferentes entradas de M.
 - Un método más eficiente se basa en la descomposición de Bartlett: sea $T=(T_{ij})$ una matriz triangular inferior de $d\times d$ con entradas independientes que satisfacen
 - a) $T_{ij} \sim \mathcal{N}(0,1)$ independientes, para i > j.

b)
$$T_{ii} \sim \sqrt{\chi^2_{(n-i+1)}}, i = 1, \dots, d.$$

Entonces la matriz A=TT' tiene una distribución Wishart $W_d(I_d,n)$. Para generar variables $W_d(\Sigma,n)$, obtener la descomposición de Choleski $\Sigma=LL'$, donde L es triangular inferior. Entonces $LAL'\sim W_d(\Sigma,n)$. Implementar esta versión.

- Comparar en tiempo de ejecución de ambas versiones.
- 10. Construyan un vector de 100 números crecientes y espaciados regularmente entre 0.1 y 20. Llámenlo SIG2 . Ahora construyan otro vector de longitud 21 empezando en −1 y terminando en 1. Llámenlo RHO.

- Para cada entrada σ^2 de SIG2 y cada entrada de RHO:
 - Generar una muestra de tamaño N=500 de una distribución bivariada normal Z=(X,Y) donde $X\sim\mathcal{N}\left(0,1\right)$ y $Y\sim\mathcal{N}\left(0,\sigma^2\right)$ y el coeficiente de correlación de X y Y es ρ . Z es una matriz de dimensiones 500×2 .
 - Crear una matriz de 500×2 , llámenlo EXPZ, con las exponenciales de las entradas de Z. ¿Qué distribución tienen estas variables transformadas?
 - Calculen el coeficiente de correlación, $\tilde{\rho}$ de las columnas de EXPZ. Grafiquen los puntos $(\sigma^2, \tilde{\rho})$ y comenten sobre lo que obtuvieron.