Calculus I Lecture 0 Representing Functions

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Ways to Represent a Function
 - The Definition of a Function
 - The Vertical Line Test
 - Piecewise Defined Functions
 - Symmetry
 - Increasing and Decreasing Functions
 - A Note on Domains of Functions

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

• Functions are also synonymously called "maps".

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Functions are also synonymously called "maps".

Definition (Domain)

The set *D* in the definition of *f* is called the domain of *f*.

Todor Milev Lecture 0 Representing Functions 2020

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Co-domain)

The set *E* in the definition of *f* is called the co-domain of *f*.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of f at x)

The number f(x) is called the value of f at x and is read "f of x".

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of f at x)

The number f(x) is called the value of f at x and is read "f of x".

• The value of *f* at *x* is also called the image of *x* under the map *f*.

Todor Miley Lecture 0 Representing Functions 2020

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of *f* at *x*)

The number f(x) is called the value of f at x and is read "f of x".

• The value of f at x is also called the image of x under the map f.

Todor Milev Lecture 0 Representing Functions 2020

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Range)

The set of all possible values taken by f(x) as the element x runs over elements of D is called the range of f.

Question

Given a curve in the plane, is it the graph of a function or not?

Todor Milev

Lecture 0

Representing Functions

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.

Piecewise Defined Functions

Definition (Piecewise Defined Function)

A piecewise defined function is a function that is defined by different algebraic formulas on different subsets of its domain.

Piecewise Defined Functions

Definition (Piecewise Defined Function)

A piecewise defined function is a function that is defined by different algebraic formulas on different subsets of its domain.

Example

$$f(x) = \begin{cases} 1 & \text{if} \quad x \ge 0 \\ -1 & \text{if} \quad x < 0 \end{cases}$$

The filled red circle means (0, 1) is on the curve.

The open circle means (0,-1) is not on the curve.

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.

Todor Milev

Lecture 0

Representing Functions

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.

Find a formula for the function *f* whose graph is given below.

Find a formula for the function *f* whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

Find a formula for the function *f* whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} & \text{if } 0 \leq x < 1 \\ & \text{if } 1 \leq x < 2 \\ & \text{if } 2 \leq x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} f(x) = \begin{cases} f(x) & \text{if } 0 \le x < 1 \\ f(x) & \text{if } 1 \le x < 2 \\ f(x) & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ ? & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function *f* whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \\ ? & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \\ 0 & \text{if } 2 \le x < 5 \end{cases}$$

Sketch the function f(x) = |2x - 3|.

Todor Milev

Lecture 0

Sketch the function
$$f(x) = |2x - 3|$$
.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

Sketch the function
$$f(x) = \frac{|4x+2|}{2x+1}$$
.

Sketch the function
$$f(x) = \frac{|4x+2|}{2x+1}$$
.

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

Todor Miley

Lecture 0

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Todor Milev

Lecture 0

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Todor Miley

Lecture 0

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Sketch the function
$$f(x) = \frac{|4x+2|}{2x+1}$$
.

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Sketch the function
$$f(x) = \frac{|4x + 2|}{2x + 1}$$
.

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

The function $g(x) = x^3$ is odd:

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function $g(x) = x^3$ is odd:

Symmetry

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function $g(x) = x^3$ is odd:

$$g(-x) = (-x)^3 = -x^3 = -g(x).$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$

$$q(x) = 1 - x^4$$

$$h(x)=2x-1$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = g(-x) = h(-x) =$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) =$ $h(-x) =$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = h(-x) = 0$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = h(-x) = 0$
 $= -x^5 - x$
 $= -(x^5 + x)$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x = 1 - x^{4}$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x = 1 - x^{4}$$

$$= -(x^{5} + x) = g(x)$$

$$= -f(x)$$

Therefore *f* is odd.

Todor Milev

13/15

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) =$
 $= -x^5 - x$ $= 1 - x^4$
 $= -(x^5 + x)$ $= g(x)$
 $= -f(x)$ Therefore g is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) = 2(-x) - 1$
 $= -x^5 - x$ $= 1 - x^4$
 $= -(x^5 + x)$ $= g(x)$
 $= -f(x)$ Therefore g is even.

Therefore *f* is odd.

Todor Milev

13/15

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) = 2(-x) - 1$
 $= -x^5 - x$ $= 1 - x^4$ $= -2x - 1$
 $= -(x^5 + x)$ $= g(x)$
 $= -f(x)$ Therefore g is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) = 2(-x) - 1$
 $= -x^5 - x$ $= 1 - x^4$ $= -2x - 1$
 $= -(x^5 + x)$ $= g(x)$ $\neq h(x), -h(x)$
 $= -f(x)$ Therefore g is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) = 2(-x) - 1$
 $= -x^5 - x$ $= 1 - x^4$ $= -2x - 1$
 $= -(x^5 + x)$ $= g(x)$ $\neq h(x), -h(x)$
 $= -f(x)$ Therefore g is even. Therefore h is neither

Therefore *f* is odd.

Therefore *h* is neither even nor odd.

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

• f is increasing on $[-1, -\frac{1}{2}]$.

Todor Milev

Lecture 0

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

- f is increasing on $[-1, -\frac{1}{2}]$.
- f is decreasing on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Todor Miley

Lecture 0

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

- f is increasing on $[-1, -\frac{1}{2}]$.
- f is decreasing on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
- f is increasing on $[\frac{1}{2}, 1]$.

Todor Milev

Lecture 0

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

Can't divide by 0.

Todor Miley

Lecture 0

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Even roots of a negative number are not defined in this course $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15} \dots$ not allowed).

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Even roots of a negative number are not defined in this course $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15}...$ not allowed).
- Taking $\log x$ if $x \le 0$ is not allowed in this course; taking $\log 0$ is not allowed in any course.