Package 'PRECISION'

June 9, 2016

Type Package	
Citle PaiREd miCrorna sImulation Study desIgn mOlecular classificatioN	
Version 0.1.0	
Date 05/26/2016	
Author Huei-Chung Huang, Li-Xuan Qin	
Maintainer Huei-Chung Huang <huangh4@mskcc.org></huangh4@mskcc.org>	
Description This package asllows users to reuse the unique paired Agilent microRNA datasets and to repuduce our simulation studies in the paper linked to via the URL below.	ro-
icense GPL (>= 2)	
Depends R (>= $3.0.2$)	
mports glmnet, limma, pamr, preprocessCore, ruv, sva, vsn	
JRL http://clincancerres.aacrjournals.org/content/20/13/3371.long LazyData TRUE RoxygenNote 5.0.1 Suggests knitr, rmarkdown VignetteBuilder knitr R topics documented:	
amplify.ary.eff blocking.design calc.confounding.level classify.gene.type confounding.design estimate.ary.eff estimate.smp.eff lasso.intcv lasso.predict limma.pbset med.norm	3 4 5 6 7 8 8 9

2 amplify.ary.eff

med.sum.pbset	12
non.r.data.pl	12
pam.intcv	13
pam.predict	14
per.unipbset.truncate	15
precision.simulate	15
quant.norm	18
r.data.pl	19
reduce.signal	20
rehybridize	21
stratification.design	22
uni.handled.simulate	23
vs.norm	24
	26
ify.arv.eff Array effect amplification	
	non.r.data.pl pam.intcv pam.predict per.unipbset.truncate precision.simulate quant.norm r.data.pl reduce.signal rehybridize stratification.design uni.handled.simulate

Description

Amplifies array effect in specified slides in a training set by a multiplier.

Usage

```
amplify.ary.eff(ary.eff.tr, amplify.slide.id, amplify.level, type = "shift")
```

Arguments

ary.eff.tr the array effect training set to be modified, rows as probes, columns as samples.

amplify.slide.id

the slide IDs specified to have its array effect amplified; a vector of slide IDs if type = "shift" or "scale1", a list of vectors of slide IDs if type = "scale2".

amplify.level a multiplier specified to amplify array effect by; a multiplier if type = "shift" or "scale1"; a vector of multipliers if type = "scale2" which has to be equaal length to the amplify.slide.id list.

type a choice of amplification type, either "shift", "scale1" or "scale2" for either location shift amplification or scale amplification; default is "shift". Location shift amplification shifts the entire specified arrays up by a constant. Scaling amplification scales the expressions towards maximum and minimum per array.

Value

a array-effect-amplified array effect training data

blocking.design 3

Examples

```
## Not run:
smp.eff <- estimate.smp.eff(r.data = r.data.pl)</pre>
ary.eff <- estimate.ary.eff(r.data = r.data.pl,</pre>
                              non.r.data = non.r.data.pl)
ctrl.genes <- unique(rownames(r.data.pl))[grep("NC", unique(rownames(r.data.pl)))]</pre>
smp.eff.nc <- smp.eff[!rownames(smp.eff) %in% ctrl.genes, ]</pre>
ary.eff.nc <- ary.eff[!rownames(ary.eff) %in% ctrl.genes, ]</pre>
ary.eff.nc.tr <- ary.eff.nc[, c(1:64, 129:192)]</pre>
ary.eff.nc.tr.shift <- amplify.ary.eff(ary.eff.tr = ary.eff.nc.tr,</pre>
                                         amplify.slide.id = colnames(ary.eff.nc.tr)[1:64],
                                         amplify.level = 2, type = "shift")
ary.eff.nc.tr.scale1 <- amplify.ary.eff(ary.eff.tr = ary.eff.nc.tr,</pre>
                                         amplify.slide.id = colnames(ary.eff.nc.tr)[1:64],
                                          amplify.level = 2, type = "scale1")
amplify.slide.id <- list(1:40, 41:64, (129:160) - 64, (161:192) - 64)
for(i in 1:length(amplify.slide.id))
 amplify.slide.id[[i]] <- colnames(ary.eff.nc.tr)[amplify.slide.id[[i]]]</pre>
amplify.level <-c(1.2, 1.3, 1/3, 2/3)
ary.eff.nc.tr.scale2 <- amplify.ary.eff(ary.eff.tr = ary.eff.nc.tr,</pre>
                                          amplify.slide.id = amplify.slide.id,
                                          amplify.level = amplify.level,
                                          type = "scale2")
par(mfrow = c(2, 2), mar = c(4, 3, 2, 2))
rng <- range(ary.eff.nc.tr, ary.eff.nc.tr.shift, ary.eff.nc.tr.scale1, ary.eff.nc.tr.scale2)</pre>
boxplot(ary.eff.nc.tr, main = "original",
        ylim = rng, pch = 20, cex = 0.2, xaxt = "n")
boxplot(ary.eff.nc.tr.shift, main = "shifted",
        ylim = rng, pch = 20, cex = 0.2, xaxt = "n")
boxplot(ary.eff.nc.tr.scale1, main = "scaled 1",
        ylim = rng, pch = 20, cex = 0.2, xaxt = "n")
boxplot(ary.eff.nc.tr.scale2, main = "scaled 2",
        ylim = rng, pch = 20, cex = 0.2, xaxt = "n")
## End(Not run)
```

blocking.design

Blocking Design

Description

Assigns arrays to samples with blocking design.

Usage

```
blocking.design(seed, num.smp)
```

Arguments

seed specifies seed for random assignment using set.seed().
num.smp number of samples.

Value

array-to-sample assignment, first half for group 1 (endometrial), second half for group 2 (ovarian)

Examples

```
blocking.design(seed = 1, num.smp = 128)
```

```
calc.confounding.level
```

Level of confounding calculation

Description

Calculates level of confounding between handling effects of a dataset and sample-group labels.

Usage

```
calc.confounding.level(data, group.id, nbe.genes)
```

Arguments

data expression dataset, rows as probes, columns as samples.

group.id sample group ID for the dataset.

nbe.genes a vector of non-biological genes indicated as TRUE or 1, equal length as number

of probes in the data.

Value

the level of confounding and the most correlated principal component of the non-biological genes in the dataset with the sample-group labels

classify.gene.type 5

classify.gene.type

Gene type classification

Description

Classifies genes into technical, biological or other based on the differential expression analysis results of the estimated sample and array effect data.

Usage

```
classify.gene.type(smp.eff, ary.eff, smp.eff.train.ind, ary.eff.train.ind,
  group.id, ary.to.smp.assign)
```

Arguments

smp.eff	estimated sample effect data, rows as probes, columns as samples; can only take in either probe-level data with 10 probe per unique probe or probe-set-level data.	
ary.eff	estimated array effect data, rows as probes, columns as samples; must have same dimensions and same probe name as sample effect data; can only take in either probe-level data with 10 probe per unique probe or probe-set-level data; must be the same dimensions as the estimated sample effect data.	
smp.eff.train.ind		
	training set index for samples from the estimated sample effect data.	
ary.eff.train.ind		
	training set index for arrays from the estimaed array effect data.	
group.id	sample group ID for the estimated sample effect data.	
ary.to.smp.assign		
	array-to-sample assignment for the arrays of the estimated array effect data.	

Value

gene category vector, -1 for technical, 0 for other, 1 for biological genes

6 confounding.design

Examples

```
## Not run:
smp.eff <- estimate.smp.eff(r.data = r.data.pl)</pre>
ary.eff <- estimate.ary.eff(r.data = r.data.pl,</pre>
                             non.r.data = non.r.data.pl)
ctrl.genes <- unique(rownames(r.data.pl))[grep("NC", unique(rownames(r.data.pl)))]</pre>
smp.eff.nc <- smp.eff[!rownames(smp.eff) %in% ctrl.genes, ]</pre>
ary.eff.nc <- ary.eff[!rownames(ary.eff) %in% ctrl.genes, ]</pre>
group.id <- substr(colnames(smp.eff.nc), 7, 7)</pre>
smp.eff.train.ind <- colnames(smp.eff.nc)[c(sample(which(group.id == "E"), size = 64),</pre>
sample(which(group.id == "V"), size = 64))]
smp.eff.test.ind <- colnames(smp.eff.nc)[!colnames(smp.eff.nc) %in% smp.eff.train.ind]</pre>
ary.eff.train.ind <- colnames(ary.eff.nc)[c(1:64, 129:192)]</pre>
group.id.list <- list("all" = group.id,</pre>
                       "tr" = substr(smp.eff.train.ind, 7, 7),
                       "te" = substr(smp.eff.test.ind, 7, 7))
ary.to.smp.assign <- list("all" = c(rep(c("E", "V"), each = 64),
                            rep(c("V", "E"), each = 32)),
                            "tr" = rep(c("E", "V"), each = 64),
                            "te" = rep(c("V", "E"), each = 32))
gene.cat <- classify.gene.type(smp.eff = smp.eff.nc,</pre>
                                 ary.eff = ary.eff.nc,
                                 smp.eff.train.ind = smp.eff.train.ind,
                                 ary.eff.train.ind = ary.eff.train.ind,
                                 group.id = group.id.list,
                                 ary.to.smp.assign = ary.to.smp.assign)
## End(Not run)
```

confounding.design

Confounding Design

Description

Assigns arrays to samples with confounding design.

Usage

```
confounding.design(seed, num.smp, degree = "complete", rev.order = FALSE)
```

Arguments

seed specifies seed for random assignment using set.seed(). num.smp number of samples. level of confounding; has to be either "complete" or "partial" for either "comdegree plete confounding" or "partial confounding" design; default is "complete". rev.order FALSE indicating no reverse order, first half arrays to group 1 (endometrial),

second half arrays to group 2 (ovarian); default is FALSE.

estimate.ary.eff 7

Value

array-to-sample assignment, first half for group 1 (endometrial), second half for group 2 (ovarian)

Examples

estimate.ary.eff

Estimated array effect

Description

Estimates array effect from taking the differences between the expressions of the non-randomized and the randomized data, matched by samples

Usage

```
estimate.ary.eff(r.data, non.r.data)
```

Arguments

r.data randomized expression dataset, rows as probes, columns as samples.

non.r.data non-randomized expression dataset, rows as probes, columns as samples; must

have same dimensions and same probe name as randomized data.

Value

an estimation of the array effect

```
ary.eff <- estimate.ary.eff(r.data = r.data.pl, non.r.data = non.r.data.pl)</pre>
```

8 lasso.intev

estimate.smp.eff

Estimated Sample Effect

Description

Estimates sample effect from the expressions of the randomized data

Usage

```
estimate.smp.eff(r.data)
```

Arguments

r.data

randomized expression dataset, rows as probes, columns as samples.

Value

an estimation of the sample effect

Examples

```
smp.eff <- estimate.smp.eff(r.data = r.data.pl)</pre>
```

lasso.intcv

Least absolute shrinkage and selection operator through internal cross validation

Description

Builds a LASSO classifier using internal cross validation, with a 5-fold cross validation as default.

Usage

```
lasso.intcv(kfold = 5, X, y, seed, alp = 1)
```

Arguments

kfold	number of folds; default is 5.
Χ	expression dataset to be trained, rows as probes, columns as samples.
У	sample group corresponding to the dataset to be trained; should have the equal length as the number of samples as X.
seed	specifies seed for random assignment using set.seed().
alp	alpha, the penalty type from 0 to 1; default alp = 1 for LASSO; alp = 0 for a ridge classifier.

lasso.predict 9

Value

a LASSO classifier

Examples

lasso.predict

Prediction with least absolute shrinkage and selection operator classifier

Description

Predicts from a least absolute shrinkage and selection operator fit.

Usage

```
lasso.predict(lasso.intcv.model, pred.obj, pred.obj.group.id)
```

Arguments

Value

predicted object, predicted error and predicted features

10 limma.pbset

Examples

```
set.seed(101)
smp.eff <- estimate.smp.eff(r.data = r.data.pl)</pre>
ctrl.genes <- unique(rownames(r.data.pl))[grep("NC", unique(rownames(r.data.pl)))]</pre>
smp.eff.nc <- smp.eff[!rownames(smp.eff) %in% ctrl.genes, ]</pre>
group.id <- substr(colnames(smp.eff.nc), 7, 7)</pre>
smp.eff.train.ind <- colnames(smp.eff.nc)[c(sample(which(group.id == "E"), size = 64),</pre>
                                             sample(which(group.id == "V"), size = 64))]
smp.eff.test.ind <- colnames(smp.eff.nc)[!colnames(smp.eff.nc) %in% smp.eff.train.ind]</pre>
smp.eff.nc.tr <- smp.eff.nc[, smp.eff.train.ind]</pre>
smp.eff.nc.te <- smp.eff.nc[, smp.eff.test.ind]</pre>
lasso.int <- lasso.intcv(X = smp.eff.nc.tr,</pre>
                           y = substr(colnames(smp.eff.nc.tr), 7, 7),
                           kfold = 5, seed = 1, alp = 1)
lasso.pred <- lasso.predict(lasso.intcv.model = lasso.int,</pre>
                              pred.obj = smp.eff.nc.te,
                              pred.obj.group.id = substr(colnames(smp.eff.nc.te), 7, 7))
lasso.int$mc
lasso.pred$mc
```

limma.pbset

Differential expression analysis of probe-set data

Description

Performs two-group differential expression analysis using "limma".

Usage

```
limma.pbset(data, group.id, group.id.level = c("E", "V"), pbset.id = NULL)
```

Arguments

data	expression dataset to be differentially expression analyzed, rows as unique probesets, columns as samples.
group.id	sample group label; must be a 2-level non-numeric factor vector.
group.id.level	sample group label level, the first one being the reference level; default = $c("E", "V")$ in our studies when comparing endometrial to ovarian samples.
pbset.id	unique probe-set name; default is NULL, the rownames of the dataset.

Value

differential expression anlysis results, group means, group standard deviations

med.norm 11

Examples

med.norm

Median nomalization

Description

Normalizes training dataset so that each array shares a same median, stores the median from the training dataset as the reference to frozen median normalize test dataset.

Usage

```
med.norm(train, test = NULL)
```

Arguments

test

train training data to be median normalized, rows as probes, columns as samples.

test data to be frozen median normalized, rows as probes with equal number of

rows as the training set, columns as samples.

Value

a list of two datasets, the normalized training set and the frozen normalied test set

12 non.r.data.pl

mad	CLIM	pbset
mea.	sum.	buset

Probe-set median summarization

Description

Summarizes probe-set using median of each unique probe, only taking in data matrix with a fixed number of probes per unique probe-set.

Usage

```
med.sum.pbset(data, pbset.id = NULL, num.per.unipbset = 10)
```

Arguments

data

expression data to be summarized, rows as probes, columns as samples; rownames as probe names; only accept data matrix with a fixed number of probes per unique probe-set. If the data is already on the probe-set level, no manipulation will be done.

: A

pbset.id

unique probe-set name, if not specified then use the unique probe name of the

data.

num.per.unipbset

number of probes for each unique probe-set; default is 10.

Value

probe-set median summarized data

Examples

non.r.data.pl

The non-randomized (test) probe-level dataset, 10 probes for each unique probe

Description

The non-randomized probe-level dataset, non-control-probe-removed, 10 probes for each unique probe, no background adjusted and after logged 2.

Usage

```
non.r.data.pl
```

pam.intcv 13

Format

A data matrix with 1810 rows (probes) and 192 columns (samples), column names ending with E/V are endometrial/ovarian samples.

pam.intcv

Nearest shrunken centroid through internal cross validation

Description

Builds a PAM classifier using internal cross validation, with 5-fold cross validation as the default.

Usage

```
pam.intcv(X, y, vt.k = NULL, n.k = 30, kfold = 5, folds = NULL, seed)
```

Arguments

X	expression dataset to be trained, rows as probes, columns as samples.
у	sample group corresponding to the data to be trained; must have the equal length as the number of samples as X.
vt.k	custom-specified threshold list; default is NULL predetermined by the PAM package.
n.k	number of threshold values desired; default is 30.
kfold	number of folds for cross validation; default is 5
folds	prespecifies samples to folds; default is NULL for no prespecification.
seed	specifies seed for random assignment using set.seed().

Value

a PAM classifier

14 pam.predict

pam.predict

Prediction with nearest shrunken centroid classifier

Description

Predicts from a nearest shrunken centroid fit.

Usage

```
pam.predict(pam.intcv.model, pred.obj, pred.obj.group.id)
```

Arguments

```
pam.intcv.model

a PAM classifier built with pam.intcv().

pred.obj expression dataset to have its sample group predicted, rows as probes, columns as samples; should have equal number of probes as the data trained.

pred.obj.group.id

sample group corresponding to the data to be predicted; should have equal length as the number of samples as pred.obj.
```

Value

predicted object, predicted error and predicted features

```
set.seed(101)
smp.eff <- estimate.smp.eff(r.data = r.data.pl)</pre>
ctrl.genes <- unique(rownames(r.data.pl))[grep("NC", unique(rownames(r.data.pl)))]</pre>
smp.eff.nc <- smp.eff[!rownames(smp.eff) %in% ctrl.genes, ]</pre>
group.id <- substr(colnames(smp.eff.nc), 7, 7)</pre>
smp.eff.train.ind <- colnames(smp.eff.nc)[c(sample(which(group.id == "E"), size = 64),</pre>
                                             sample(which(group.id == "V"), size = 64))]
smp.eff.test.ind <- colnames(smp.eff.nc)[!colnames(smp.eff.nc) %in% smp.eff.train.ind]</pre>
smp.eff.nc.tr <- smp.eff.nc[, smp.eff.train.ind]</pre>
smp.eff.nc.te <- smp.eff.nc[, smp.eff.test.ind]</pre>
pam.int <- pam.intcv(X = smp.eff.nc.tr,</pre>
                      y = substr(colnames(smp.eff.nc.tr), 7, 7),
                      kfold = 5, seed = 1)
pam.pred <- pam.predict(pam.intcv.model = pam.int,</pre>
                          pred.obj = smp.eff.nc.te,
                          pred.obj.group.id = substr(colnames(smp.eff.nc.te), 7, 7))
pam.int$mc
pam.pred$mc
```

per.unipbset.truncate 15

per.unipbset.truncate Classification analysis of uniformly-handled data

Description

Performs classification analysis on the uniformly-handled data by reassigning samples to training and test set in Qin et al. (see reference).

Usage

```
per.unipbset.truncate(data, pbset.id = NULL, num.per.unipbset = 10)
```

Arguments

```
data expression data, rows as probes, columns as samples.

pbset.id unique probe-set name; default is NULL, the rownames of the dataset.

num.per.unipbset

number of probes for each unique probe-set; default is 10.
```

Value

benchmark analysis results with list of models built and internal and external misclassification error stored, also a list of assignment stored

References

http://clincancerres.aacrjournals.org/content/20/13/3371.long

Examples

```
r.data.pl.p5 <- per.unipbset.truncate(data = r.data.pl,
num.per.unipbset = 5)</pre>
```

precision.simulate

Classification analysis of simulation study

Description

Performs simulation study in Qin et al. (see reference).

Usage

```
precision.simulate(myseed, N, smp.eff.tr, smp.eff.te, ary.eff.tr, ary.eff.te,
  group.id.tr, group.id.te, design.list = c("CC+", "CC-", "PC+", "PC-"),
  norm.list = c("NN", "QN"), class.list = c("PAM", "LASSO"),
  batch.id = NULL, icombat = FALSE, isva = FALSE, iruv = FALSE,
  smp.eff.tr.ctrl = NULL, ary.eff.tr.ctrl = NULL, norm.funcs = NULL,
  class.funcs = NULL, pred.funcs = NULL)
```

precision.simulate

Arguments

Ī		
	myseed	specifies seed for random assignment using set.seed().
	N	number of simulation runs.
	smp.eff.tr	sample effect training data, rows as probes, columns as samples.
	smp.eff.te	sample effect test data, rows as probes, columns as samples; must have same number of probes and probe names as sample effect training data.
	ary.eff.tr	array effect training data, rows as probes, columns as samples; must have same dimensions and same probe name as sample effect training data.
	ary.eff.te	array effect test data, rows as probes, columns as samples; must have same dimensions and same probe name as array effect test data.
	group.id.tr	sample group ID of the sample effect training data; has to be "E" and "V".
	group.id.te	sample group ID of the sample effect test data; has to be "E" and "V".
	design.list	a list of strings for study designs compared in the simulation study; built-in designs are "CC+", "CC-", "PC+", "PC-", "BLK", and "STR" for "Complete Confounding 1", "Complete Confounding 2", "Partial Confounding 1", "Partial Confounding 2", "Blocking", "Stratification" in Qin et al.
	norm.list	a list of strings for normalization methods compared in the simulation study; build-in available normalization methods are "NN", "QN", "MN", "VSN" for "No Normalization", "Quantile Normalization", "Median Normalization", "Variance Stablizing Normalization"; user can provide a list of normalization methods given the functions are supplied (also see norm.funcs).
	class.list	a list of strings for classification methods compared in the simulation study; built-in classification methods are "PAM" and "LASSO" for "prediction analysis for microarrays" and "least absolute shrinkage and selection operator"; user can provide a list of classification methods given the correponding model-building and predicting functions are supplied (also see class.funcs and pred.funcs).
	batch.id	a list of batch id by the number of batches when stratification study design is specified; default is NULL.
	icombat	indicator for combat adjustment; default is not to adjust (icombat = FALSE).
	isva	indicator for sva adjustment; default is not to adjust (isva = FALSE).
	iruv	indicator for RUV-4 adjustment; default is not to adjust (iruv = FALSE).
	smp.eff.tr.ctrl	· · · · · · · · · · · · · · · · · · ·
		negative-control gene sample effect data if iruv = TRUE, rows as probes, columns as samples; must have same number of probes and probe names as non-control gene sample effect training data.
	ary.eff.tr.ctrl	
		negative-control gene array effect data if iruv = TRUE, rows as probes, columns as samples; must have same number of probes and probe names as non-control gene array effect training data.
	norm.funcs	a list of strings for names of user-defined normalization method functions, in the order of norm.list excluding any built-in normalization methods.
	class.funcs	a list of strings for names of user-defined classification model-building functions, in the order of class.list excluding any built-in classification methods.
	pred.funcs	a list of strings for names of user-defined classification predicting functions, in the order of class.list excluding any built-in classification methods.

precision.simulate 17

Value

simulated results with list of models built and internal and external misclassification error stored, also a list of assignment stored

References

http://clincancerres.aacrjournals.org/content/20/13/3371.long

```
## Not run:
set.seed(101)
smp.eff <- estimate.smp.eff(r.data = r.data.pl)</pre>
ary.eff <- estimate.ary.eff(r.data = r.data.pl,</pre>
                              non.r.data = non.r.data.pl)
ctrl.genes <- unique(rownames(r.data.pl))[grep("NC", unique(rownames(r.data.pl)))]</pre>
smp.eff.nc <- smp.eff[!rownames(smp.eff) %in% ctrl.genes, ]</pre>
ary.eff.nc <- ary.eff[!rownames(ary.eff) %in% ctrl.genes, ]</pre>
group.id <- substr(colnames(smp.eff.nc), 7, 7)</pre>
# randomly split sample effect data into training and test set with
# equal number of endometrial and ovarian samples
smp.eff.train.ind <- colnames(smp.eff.nc)[c(sample(which(group.id == "E"), size = 64),</pre>
                                            sample(which(group.id == "V"), size = 64))]
smp.eff.test.ind <- colnames(smp.eff.nc)[!colnames(smp.eff.nc) %in% smp.eff.train.ind]</pre>
smp.eff.train.test.split =
  list("tr" = smp.eff.train.ind,
       "te" = smp.eff.test.ind)
# non-randomly split array effect data into training and test set
ary.eff.train.test.split =
  list("tr" = c(1:64, 129:192),
       "te" = 65:128)
smp.eff.nc.tr <- smp.eff.nc[, smp.eff.train.ind]</pre>
smp.eff.nc.te <- smp.eff.nc[, smp.eff.test.ind]</pre>
ary.eff.nc.tr <- ary.eff.nc[, c(1:64, 129:192)]
ary.eff.nc.te <- ary.eff.nc[, 65:128]</pre>
# Simulation without batch adjustment
precision.results <- precision.simulate(myseed = 1, N = 3,</pre>
                                          smp.eff.tr = smp.eff.nc.tr,
                                          smp.eff.te = smp.eff.nc.te,
                                          ary.eff.tr = ary.eff.nc.tr,
                                          ary.eff.te = ary.eff.nc.te,
                                      group.id.tr = substr(colnames(smp.eff.nc.tr), 7, 7),
                                      group.id.te = substr(colnames(smp.eff.nc.te), 7, 7),
                                          design.list = c("PC-", "STR"),
                                          norm.list = c("NN", "QN"),
```

18 quant.norm

```
class.list = c("PAM", "LASSO"),
                                          batch.id = list(1:40,
                                                           41:64,
                                                           (129:160) - 64,
                                                           (161:192) - 64))
# Simulation with RUV-4 batch adjustment
smp.eff.ctrl <- smp.eff[rownames(smp.eff) %in% ctrl.genes, ]</pre>
ary.eff.ctrl <- ary.eff[rownames(ary.eff) %in% ctrl.genes, ]</pre>
smp.eff.tr.ctrl <- smp.eff.ctrl[, smp.eff.train.test.split$tr]</pre>
ary.eff.tr.ctrl <- ary.eff.ctrl[, ary.eff.train.test.split$tr]</pre>
precision.ruv4.results <- precision.simulate(myseed = 1, N = 3,</pre>
                                               smp.eff.tr = smp.eff.nc.tr,
                                               smp.eff.te = smp.eff.nc.te,
                                               ary.eff.tr = ary.eff.nc.tr,
                                               ary.eff.te = ary.eff.nc.te,
                                      group.id.tr = substr(colnames(smp.eff.nc.tr), 7, 7),
                                      group.id.te = substr(colnames(smp.eff.nc.te), 7, 7),
                                               design.list = c("PC-", "STR"),
                                               norm.list = c("NN", "QN"),
                                               class.list = c("PAM", "LASSO"),
                                               batch.id = list(1:40,
                                                                41:64,
                                                                (129:160) - 64,
                                                                (161:192) - 64),
                                               iruv = TRUE,
                                               smp.eff.tr.ctrl = smp.eff.tr.ctrl,
                                               ary.eff.tr.ctrl = ary.eff.tr.ctrl)
## End(Not run)
```

quant.norm

Quantile nomalization

Description

Normalizes training dataset with quantile normalization, stores the quantiles from the training dataset as the references to frozen quantile normalize test dataset.

Usage

```
quant.norm(train, test = NULL)
```

Arguments

train

training data to be quantile normalized, rows as probes, columns as samples.

test

test data to be frozen quantile normalized, rows as probes with equal number of

rows as the training set, columns as samples.

r.data.pl

Value

a list of two datasets, the normalized training set and the frozen normalied test set

References

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html

Examples

r.data.pl

The randomized (benchmark) probe-level dataset, 10 probes for each unique probe

Description

The randomized probe-level dataset, non-control-probe-removed, 10 probes for each unique probe, no background adjusted and after logged 2.

Usage

```
r.data.pl
```

Format

A data matrix with 1810 rows (probes) and 192 columns (samples), column names ending with E/V are endometrial/ovarian samples.

20 reduce.signal

reduce.signal

Biological signal reduction

Description

Reduces biological effect between sample group by a multiplier.

Usage

```
reduce.signal(smp.eff, group.id, group.id.level = c("E", "V"),
  reduce.multiplier = 1/2, pbset.id = NULL)
```

Arguments

smp.eff	estimated sample effect data, rows as probes, columns as samples; can only take in probe-level data with 10 probe per unique probe.	
group.id	sample group ID for the estimated sample effect data.	
group.id.level	sample group label level; default = $c("E", "V")$ in our studies when comparing endometrial to ovarian samples.	
reduce.multiplier		
	a multiplier specified to reduce between-sample-group signal by; default is 1/2.	
pbset.id	unique probe-set name, if not specified then use the unique probe name of the data.	

Value

estimated sample effect data with reduced biological signal

rehybridize 21

rehybridize Rehybridization with an array-to-sample assignment
--

Description

Creates simulated dataset through rehybridization with a specified array-to-sample assignment.

Usage

```
rehybridize(smp.eff, ary.eff, group.id, group.id.level = c("E", "V"),
   ary.to.smp.assign, icombat = FALSE, isva = FALSE, iruv = FALSE,
   smp.eff.ctrl = NULL, ary.eff.ctrl = NULL)
```

Arguments

	smp.eff	sample effect data, rows as probes, columns as samples.
	ary.eff	array effect data, rows as probes, columns as samples; must have same dimensions and same probe name as sample effect data.
	group.id	sample group label; must be a 2-level non-numeric factor vector.
	group.id.level	sample group label level, the first one being the reference level; default = $c("E", "V")$ in our studies when comparing endometrial to ovarian samples.
ary.to.smp.assign		gn
		array-to-sample assignment, equal length as number of samples of sample effect data; first half of the vector assigning to endometrial, second half to ovarian.
	icombat	indicator for combat adjustment; default is not to adjust, icombat = FALSE.
	isva	indicator for sva adjustment; default is not to adjust, isva = FALSE.
	iruv	indicator for RUV-4 adjustment; default is not to adjust, iruv = FALSE.
	smp.eff.ctrl	negative-control gene sample effect data if iruv = TRUE.
	ary.eff.ctrl	negative-control gene array effect data if iruv = TRUE

Value

simulated data, after batch adjustment if specified

22 stratification.design

```
group.id <- substr(colnames(smp.eff.nc), 7, 7)</pre>
sim.data.raw <- rehybridize(smp.eff = smp.eff.nc,</pre>
                             ary.eff = ary.eff.nc,
                              group.id = group.id,
                              ary.to.smp.assign = assign.ind)
sim.data.sva <- rehybridize(smp.eff = smp.eff.nc,</pre>
                              ary.eff = ary.eff.nc,
                              group.id = group.id,
                              ary.to.smp.assign = assign.ind,
                              isva = TRUE)
smp.eff.ctrl <- smp.eff[rownames(smp.eff) %in% ctrl.genes, ]</pre>
ary.eff.ctrl <- ary.eff[rownames(ary.eff) %in% ctrl.genes, ]</pre>
sim.data.ruv <- rehybridize(smp.eff = smp.eff.nc,</pre>
                              ary.eff = ary.eff.nc,
                              group.id = group.id,
                              ary.to.smp.assign = assign.ind,
                              iruv = TRUE,
                              smp.eff.ctrl = smp.eff.ctrl,
                              ary.eff.ctrl = ary.eff.ctrl)
## End(Not run)
```

stratification.design Stratification Design

Description

Assigns arrays to samples with stratification design.

Usage

```
stratification.design(seed, num.smp, batch.id)
```

Arguments

seed specifies seed for random assignment using set.seed().

num. smp number of samples.

batch.id sample group ID for the estimated sample effect data.

Value

array-to-sample assignment, first half for group 1 (endometrial), second half for group 2 (ovarian)

uni.handled.simulate 23

 $\verb"uni.handled.simulate" \textit{Classification analysis of uniformly-handled data}$

Description

Performs classification analysis on the uniformly-handled data by reassigning samples to training and test set in Qin et al. (see reference).

Usage

```
uni.handled.simulate(myseed, N, smp.eff, norm.list = c("NN", "QN"),
  class.list = c("PAM", "LASSO"), norm.funcs = NULL, class.funcs = NULL,
  pred.funcs = NULL)
```

Arguments

myseed	specifies seed for random assignment using set.seed().
N	number of simulation runs.
smp.eff	sample effect data, rows as probes, columns as samples.
norm.list	a list of strings for normalization methods compared in the simulation study; built-in normalization methods includes "NN", "QN", "MN", "VSN" for "No Normalization", "Quantile Normalization", "Median Normalization", "Variance Stablizing Normalization"; user can provide a list of normalization methods given the functions are supplied (also see norm.funcs).
class.list	a list of strings for classification methods compared in the simulation study; built-in classification methods are "PAM" and "LASSO" for "prediction analysis for microarrays" and "least absolute shrinkage and selection operator"; user can provide a list of classification methods given the correponding model-building and predicting functions are supplied (also see class.funcs and pred.funcs).
norm.funcs	a list of strings for names of user-defined normalization method functions, in the order of norm.list excluding any built-in normalization methods.
class.funcs	a list of strings for names of user-defined classification model-building functions, in the order of class.list excluding any built-in classification methods.
pred.funcs	a list of strings for names of user-defined classification predicting functions, in the order of class.list excluding any built-in classification methods.

Value

benchmark analysis results with list of models built and internal and external misclassification error stored, also a list of assignment stored

References

http://clincancerres.aacrjournals.org/content/20/13/3371.long

vs.norm

Examples

vs.norm

Variance stabalizing nomalization

Description

Normalizes training dataset with vsn, stores the fitted vsn model from the training dataset as the reference to frozen variance stabalizing normalize test dataset.

Usage

```
vs.norm(train, test = NULL)
```

Arguments

train training data to be variance stabalizing normalized, rows as probes, columns as

samples.

test test data to be frozen variance stabalizing normalized, rows as probes with equal

number of rows as the training set, columns as samples.

Value

a list of two datasets, the normalized training set and the frozen normalied test set

References

Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie Poustka and Martin Vingron. Variance Stabilization Applied to Microarray Data Calibration and to the Quantification of Differential Expression. Bioinformatics 18, S96-S104 (2002).

vs.norm 25

```
train.dat <- non.r.data.pl[, train.ind]
test.dat <- non.r.data.pl[, !colnames(non.r.data.pl) %in%train.ind]
data.vsn <- vs.norm(train = train.dat)
str(data.vsn)
data.vsn <- vs.norm(train = train.dat, test = test.dat)
str(data.vsn)
## End(Not run)</pre>
```

Index

*Topic DEA	estimate.smp.eff, 8
limma.pbset, 10	
*Topic classification	lasso.intcv, 8
classify.gene.type,5	lasso.predict, 9
lasso.intcv, 8	limma.pbset, 10
lasso.predict, 9	
pam.intcv, 13	med.norm, 11
pam.predict, 14	med.sum.pbset, 12
*Topic data.setup	non.r.data.pl, 12
amplify.ary.eff, 2	ποπ.τuata.p1, 12
calc.confounding.level,4	pam.intcv, 13
estimate.ary.eff,7	pam.predict, 14
${\sf estimate.smp.eff, 8}$	per.unipbset.truncate, 15
per.unipbset.truncate, 15	precision.simulate, 15
reduce.signal,20	p. 66261562
rehybridize, 21	quant.norm, 18
*Topic example.data	
non.r.data.pl, 12	r.data.pl, 19
r.data.pl, <u>19</u>	reduce.signal, 20
*Topic preprocess	rehybridize, 21
med.norm, 11	
med.sum.pbset, 12	stratification.design, 22
quant.norm, 18	out bondled simplets 22
vs.norm, 24	uni.handled.simulate, 23
*Topic simulation	vs.norm, 24
precision.simulate, 15	V3.1101 III, 24
uni.handled.simulate, 23	
*Topic study.design	
blocking.design,3	
confounding.design,6	
stratification.design, 22	
amplify.ary.eff,2	
blocking.design, 3	
<pre>calc.confounding.level, 4 classify.gene.type, 5 confounding.design, 6</pre>	
estimate.ary.eff, 7	