Theorem: Suppose μ is σ -finite and $l \leq p < \infty$ $(q = conj = \frac{p}{p-1})$. Let ϕ be a bounded linear operator on L^p . Then $\exists g \in L^q$ s.t. $\phi(f) = |fg| = |fg| = |g|_q$.

Proof (ovidin Costinis notes)

Claim and discourse the same λ where $\lambda < \mu$ and $\frac{d\lambda}{d\mu} \in \ell^{q}$.

Let's assume μ is finite. Define $\lambda(E) = \phi(\chi_{E})$.

Suppose E_{i} , E_{2} ,... are mutually disjoint and $E = \bigcup_{i=1}^{\infty} E_{i}$,

Then $\chi_{E} = \sum_{i=1}^{\infty} E_{i}$ and $\chi_{E} = \sum_{i=1}^{\infty} \chi_{E_{i}} = \sum_{i=1}^{\infty} \chi_{E_{i}}$.

Radon-Nikodym: $\exists g \in L'(u)$ s.t. $\lambda(\xi) = \phi(\chi_{\xi}) = \int \chi_{\xi} g \, d\mu$. Linearly + density of simple functions + continuity of ϕ $\phi(f) = \int f g \, for all \, f \in L^{\xi}$.

Next we show: $\|g\|_q \leq \|\phi\|$.

Let $E_n = \{x : g(x) \leq n\}$ and $G = \chi_{E_n} \operatorname{Sign}(q) |g|^{2-1}$ Observe $|G| = |g|^q$ on E_n . Thus $|g|^q = |G| = |\phi(G)| = ||\phi|| (|g|^q)^{\frac{1}{p}}$ E_n $(|g|^q)^{\frac{1}{q}} = ||\phi(G)|| = ||\phi|| (|g|^q)^{\frac{1}{p}}$

Now: assure $\mu(x) = \infty$ and $\mu(x) = -f(n) + e$.

luma $\exists \omega \in \mathcal{L}(n)$ ril. $0 < \omega < 1$ in X, $d\tilde{\mu} := \omega d\mu$ is finite

and $\mu << \tilde{\mu}'$, $\tilde{\mu} << \mu$.

furtuemore, the map $f \mapsto \omega^{i} f$ is an isometric isomorphism $\mathcal{L}^{i}(\tilde{\mu}) \longleftrightarrow \mathcal{L}^{i}(\mu)$

Let ϕ be a bounded linear operator on L^p .

Define $\psi(f) := \phi(\omega^{\mu} f)$.

Since m is finite, $\exists G \in L^2(\hat{\mu})$ s.t.

 $\Psi(f) = \int f G d\tilde{\mu} \quad fw \quad f \in L^p(\tilde{\mu}).$

Let $g = \omega^{1/2}G$. Then

 $\int |g|^2 d\mu = \int |G|^2 d\tilde{\mu} = ||\Psi||^2 = ||\phi||^2$

And since $Gd\tilde{\mu} = \omega^{\prime p} gd\mu$, $\phi(f) = \Psi(\omega^{-\frac{1}{p}} f) = \int \omega^{-\frac{1}{p}} f Gd\tilde{\mu}$

This is also tree for P=1 if u is or finite.

if not or-finite, Lo -- (L')* fails to be injective.

Some Useful Inequalities

Theorem (Chehyshev's Inequality): for $1 \le P < \infty$, $\alpha > 0$, $f \in L^p$, $u(|f|>\alpha) \le \frac{1}{\alpha^p} \|f\|_p^p$

Pt
$$\|f\|_{p}^{p} = \int |f|^{p} \gg \int |f|^{p} \gg \int \alpha^{p} = \mu(|f| > \alpha) \cdot \alpha^{p}$$
.

An operator T of the form $Tf(x) = \int K(x,y) f(y) d\nu(y)$ is called a liker integral and K is called the <u>Kernel</u> of T.

Theorem let (X, M, μ) , (Y, M, ν) be σ -finite measure spaces and $K: X \times Y \longrightarrow C$ a Kernel which is uniformly L' with μ and ν , i.e. $\|K(\cdot, y)\|_{C(\mu)Y} \le C$ for a.e. y and $\|K(x, \cdot)\|_{C(\nu)Y} \le C$ for a.e. χ (for some C). Then for $1 \le P < \infty$, T is a bounded operator

from l' to l'... and sometimes else is true.