7037 Class A Group M Final Project

Xia Yi 3036346450

Li Guiquan 3036347131

Huang Haowen 3036345298

Feng Jiayi 3036347234

Wu Zhuoya 3036345834

1. Form Hypotheses

Treatment group will have higher click-through rates compared to control group.

H₀: Showing a friend's like in the ad has no impact on click-through rate.

H₁: Showing a friend's like increases the click-through rate.

```
import pandas as pd
import numpy as np

import warnings

import scipy.stats as stats
from scipy.stats import ttest_ind, chi2_contingency, mannwhitneyu
import statsmodels.api as sm
from statsmodels.stats.power import NormalIndPower
from statsmodels.stats.proportion import proportion_effectsize
import statsmodels.formula.api as smf
from scipy.stats import levene

import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
```

```
In [2]: df = pd.read_csv("project_data.csv")
    print("data dimensions:", df.shape)
    display(df.head())
    print("\nData Types:")
    display(df.dtypes)
```

data dimensions: (1000000, 20)

	user			adid	week	expid	if_click	real_like_o	cnt	
0	297353	0b0fa14b56	5d3741178196	daaa92e6a1e	w_2	1	0		3	
1	98719	ea875acb7	6e0a806a7837	'174528f62d9	w_3	1	0		3	
2	205144	1f1fe82501	4d9e9a08812	33d9950bd43	w_2	1	0		1	
3	559194	1f1fe82501	4d9e9a08812	33d9950bd43	w_2	1	0		5	
4	11888	0d821612	70febc99f7def	b653e339113	w_3	0	0		1	(
4										
us ad	ta Types er id	:	int64 object							
	ek pid		object int64							
	click		int64							
	_click al_like_	cnt	int64							
	tegory		object							
	and_effe	ct	int64							
	perience		int64							
st	atus		int64							
us	er_age		int64							
	iend_age		int64							
	er_gende		object							
	iend_gen	der	object							
	er_city		object							
	iend_cit	•	object							
	er_degre		int64							
	iend_deg		int64							
	er_sns_l	omment_cnt	int64 int64							
uS	er_siis_c		11104							

2. Sanity Check

dtype: object

The Sanity Check is to ensure the scientific nature and credibility of the subsequent analysis results.

In the experiment, we conduct SRM check, Covariate balance check and A/A test in sanity check.

In SRM check, we use Chi-square homogeneity check and t-test check to check if the control/treatment group split aligns with expectations.

In Covariate balance check, we use t-test and Mann-Whitney U to ensure comparability between groups.

In A/A test, we run the experiment without any intervention to verify whether the platform can generate results with no differences between groups.

2.1 Sample Ratio Mismatch check

Sample Ratio Match (SRM): Check if the control/treatment group split aligns with expectations.

2.1.1 Chi-square Homogeneity Test

```
In [3]: # Calculate group sizes
        control_count = df[df['expid'] == 0].shape[0]
        treatment_count = df[df['expid'] == 1].shape[0]
        total = control_count + treatment_count
        expected_ratio = 0.5
        print(f"Control Group: {control_count} ({control_count/total:.2%})")
        print(f"Treatment Group: {treatment_count} ({treatment_count/total:.2%})")
       Control Group: 500000 (50.00%)
       Treatment Group: 500000 (50.00%)
In [4]: observed = [control_count, treatment_count]
        expected = [total * expected_ratio, total * expected_ratio]
        chi2, p = stats.chisquare(f_obs=observed, f_exp=expected)
        print(f"Chi-square Test: chi2={chi2:.4f}, p-value={p:.4f}")
        if p < 0.05:
            print("Warning: Significant SRM detected!")
        else:
            print("Passed: No significant SRM.")
       Chi-square Test: chi2=0.0000, p-value=1.0000
       Passed: No significant SRM.
```

2.1.2 T-tests

```
In [5]: observed_proportion_control = control_count / total
        observed_proportion_treatment = treatment_count / total
        p = expected_ratio
        variance = p * (1 - p) / total
        # standard error
        se = np.sqrt(variance)
        # t = (observed - expected) / se
        delta = observed_proportion_control - expected_ratio
        t_stat = delta / se
        degrees_of_freedom = total - 1
        p_value = 2 * (1 - stats.t.cdf(abs(t_stat), df=degrees_of_freedom))
In [6]: print(f"t-test:")
        print(f"t = {t stat:.4f}")
        print(f"dof = {degrees_of_freedom}")
        print(f"p-value = {p_value:.4f}")
        alpha = 0.05
```

```
if p_value < alpha:
    print("Warning: Significant SRM detected!")
else:
    print("Passed: No significant SRM.")

t-test:
t = 0.0000
dof = 999999
p-value = 1.0000
Passed: No significant SRM.</pre>
```

2.2 Covariate Balance Check

Covariate Balance: Verify if user characteristics are balanced across groups.

```
In [8]: # t-test/Mann-Whitney U for continuous variables
        warnings.filterwarnings("ignore",
                                 message="scipy.stats.shapiro: " \
                                 "For N > 5000, " \
                                 "computed p-value may not be accurate.")
        def check_continuous_balance(var):
            control = df[df['expid'] == 0][var].dropna()
            treatment = df[df['expid'] == 1][var].dropna()
            # Normality check (Shapiro-Wilk)
            _, p_control = stats.shapiro(control)
            _, p_treatment = stats.shapiro(treatment)
            if (p_control < 0.05) or (p_treatment < 0.05):</pre>
                # Non-normal -> Mann-Whitney U
                 stat, p = stats.mannwhitneyu(control, treatment)
                test_type = "Mann-Whitney U"
            else:
                 # Normal -> T-test
                stat, p = stats.ttest_ind(control, treatment)
                test_type = "T-test"
            return test_type, p
```

```
In [9]: print("Categorical Variables Balance:")
for var in categorical_vars:
    p = check_categorical_balance(var)
    print(f"{var}: p={p:.4f} {'(Imbalanced)' if p < 0.05 else '(Balanced)'}")</pre>
```

```
Categorical Variables Balance:
        user_gender: p=0.1597 (Balanced)
        user_city: p=0.3797 (Balanced)
        category: p=1.0000 (Balanced)
        brand_effect: p=0.9886 (Balanced)
In [10]: print("Continuous Variables Balance:")
         for var in continuous_vars:
             test_type, p = check_continuous_balance(var)
             print(f"{var} ({test\_type}): p={p:.4f} {'(Imbalanced)' if p < 0.05}
                                                     else '(Balanced)'}")
        Continuous Variables Balance:
        user_age (Mann-Whitney U): p=0.7586 (Balanced)
        user degree (Mann-Whitney U): p=0.2262 (Balanced)
        user_sns_like_cnt (Mann-Whitney U): p=0.1126 (Balanced)
        user_sns_comment_cnt (Mann-Whitney U): p=0.1807 (Balanced)
         2.3 A/A test
In [13]: from statsmodels.stats.proportion import proportions_ztest
         control_df = df[df['expid'] == 0].copy()
         np.random.seed(42)
         control_df['AA_group'] = np.random.choice(['A1', 'A2'],
                                                    size=len(control_df), p=[0.5, 0.5])
         aa_counts = control_df['AA_group'].value_counts()
         print(aa_counts)
        AA_group
        Α2
            250445
              249555
        Α1
        Name: count, dtype: int64
In [24]: # ctr of aa1 and aa2
         aa1_clicks = control_df[control_df['AA_group'] == 'A1']['if_click'].mean()
         aa2 clicks = control df[control df['AA group'] == 'A2']['if click'].mean()
         # z-test
         clicks = [control_df[control_df['AA_group'] == 'A1']['if_click'].sum(),
                   control_df[control_df['AA_group'] == 'A2']['if_click'].sum()]
         nobs = [aa_counts['A1'], aa_counts['A2']]
         z stat, p click = proportions ztest(clicks, nobs)
         print(f"A/A ctr: A1={aa1_clicks:.3f}, A2={aa2_clicks:.3f}, p-value={p_click:.4f}
         if p_click < 0.05:</pre>
             print("Warning: Exist significant difference "
             "in the click-through rates of the A/A subgroups.")
         else:
             print("Pass: No significant difference "
             "in the click-through rates of the A/A subgroups.")
        A/A ctr: A1=0.067, A2=0.066, p-value=0.1642
```

Pass: No significant difference in the click-through rates of the A/A subgroups.

2.4 Conclusion

The experiment has passed the SRM check, the covariate balance check and A/A test, indicating that the randomization mechanism of the experiment is effective and the data quality is reliable.

Next, we can analyze the differences in click-through rates between the treatment group and the control group to evaluate whether displaying "1 like" in the advertisement can significantly enhance user interaction.

3. Power Analysis

3.1 Extract Effect Sizes (ΔCTR)

We need the baseline click-through rate (CTR) in Control and the CTR in Treatment for each product category, then compute Δ CTR = CTR_Treatment – CTR_Control. We will use the smallest Δ CTR (most conservative) for our power calculations.

3.2 Post-Hoc Power Calculation

```
In [27]: from statsmodels.stats.power import NormalIndPower
    from statsmodels.stats.proportion import proportion_effectsize

alpha = 0.05
    p1 = 0.0677
    delta = 0.0068
    p2 = p1 + delta
    n_per_group = 100000
```

Post-hoc power = 1.000

This means with 100 k observations per group, you have virtually 100% chance of detecting a 0.0068 CTR uplift at α =0.05.

3.3 A-priori Sample Size

Required N per group for 80% power: 22409

3.4 Power Curve

[251073.54532742177, 85464.45805562967, 42825.16151824529, 25756.376967262233, 17 234.763357283256, 12369.465782141377, 9328.484500104596, 7299.439577785061, 5877. 004926399219, 4840.467144607184]

3.5 Conclusion:

To ensure our experiment can reliably detect even the smallest meaningful lift in click-through rate (CTR), we conducted both post-hoc and a-priori power calculations based on the minimum observed effect size.

1. Post-hoc Power:

- Inputs: Δ CTR = 0.0068, N = 100 000 per arm, α = 0.05
- **Result**: Achieved power ≈ 1.000 (100%)
- **Interpretation**: Even the smallest observed lift would almost certainly be detected. There is virtually no risk of a false negative due to insufficient sample size.

2. A-priori Sample Size:

- To achieve 80% power for Δ CTR = 0.0068, the required sample size is \approx 25 756 per group.
- For larger lifts (e.g. Δ CTR \geq 0.0107), fewer than 10 000 per group are needed; for very small lifts (Δ CTR \approx 0.002), over 250 000 per group would be required.

3. Implications:

• Our current sample size (100 k per arm) far exceeds what is needed, ensuring robust detection across all product categories.

• If resources become constrained, sample sizes could be reduced to ~30 k per arm while still maintaining \geq 80% power for a 0.68 pp lift. To design future tests for smaller lifts (e.g. Δ CTR = 0.003–0.005), plan for ~ 43 k–85 k per arm, as indicated by the power curve.

The experiment is highly powered, ensuring that all practically important CTR improvements can be detected with high confidence.

4. Compare test

4.1 Compare the test and control groups

We need to calculate the CTR mean and standard deviation for control and treatment groups. And we use t-test to check if the difference is significant and use levins test to check if the variance is equal.

```
In [30]: # 1 calculate the click-through rate (CTR)
         group_summary = df.groupby('expid')['if_click'].agg(
             ['mean', 'std', 'count']).reset_index()
         group_summary.columns = ['Group (0=Control, 1=Treatment)',
                                   'CTR Mean', 'CTR Std Dev', 'N']
         print(group_summary)
          Group (0=Control, 1=Treatment) CTR Mean CTR Std Dev
                                      0 0.066604 0.249335 500000
                                       1 0.074506 0.262593 500000
In [31]: # 2 calculate the variance of the click-through rate (CTR) for each group
         control = df[df['expid'] == 0]['if click']
         treatment = df[df['expid'] == 1]['if_click']
         var_control = np.var(control, ddof=1)
         var_treatment = np.var(treatment, ddof=1)
         print(f"Control variance: {var_control:.4f}")
         print(f"Treatment variance: {var treatment:.4f}")
        Control variance: 0.0622
        Treatment variance: 0.0690
In [32]: # 3 test for the CTR mean in CTR between the two groups
         t_stat, p_val = stats.ttest_ind(treatment, control, equal_var=False)
         print(f"T-test result: t = {t_stat:.4f}, p = {p_val:.4f}")
         # 4 test for the CTR variance between the two groups
         f, p_val_var = stats.levene(control, treatment)
         print(f"Levene's test result: F = \{f:.4f\}, p = \{p\_val\_var:.4f\}")
        T-test result: t = 15.4306, p = 0.0000
```

4.1.1 Click-Through Rate Comparison

Levene's test result: F = 238.1031, p = 0.0000

According to the code results:

- Control Group (0): CTR = 6.66% (SD = 0.249)
- Treatment Group (1): CTR = 7.45% (SD = 0.263)
- T-test: t=15.43, p<0.001
- Levene's Test: F=238.10, p<0.001

We can summarize the results as follows:

- 1. Statistically Significant Improvement: The treatment group (showing 1 organic like) achieves a 0.79% absolute increase in CTR (11.8% relative increase) compared to the control group. The extremely low p-value (p<0.001) confirms this difference is not due to chance. For context, even small CTR improvements in large-scale platforms like WeChat Moments Ads can translate to millions of incremental clicks.
- 2. Unequal Variance: The Levene's test (p<0.001) rejects equal variance between groups. The treatment group exhibits higher variance in CTR (σ 2=0.069) than the control (σ 2=0.062), suggesting heterogeneity in user responses to social proof. Some users in the treatment group may be more influenced by the displayed like, while others remain indifferent.

4.1.2 Bootstrap

To make test more reliable, we can use bootstrap method to calculate the confidence interval for CTR. The bootstrap method is a resampling technique that allows us to estimate the distribution of a statistic (in this case, CTR) by repeatedly sampling from the data with replacement. This can help us obtain more robust estimates of the mean and standard deviation, especially when the sample size is small or when the data is not normally distributed.

```
In [33]: # 5 bootstrap the CTR mean difference between the two groups
def bootstrap_diff_means(a, b, n_bootstrap=10000):
    boot_diffs = []
    for _ in range(n_bootstrap):
        sample_a = np.random.choice(a, size=len(a), replace=True)
        sample_b = np.random.choice(b, size=len(b), replace=True)
        boot_diffs.append(sample_b.mean() - sample_a.mean())
    return boot_diffs

boot_diffs = bootstrap_diff_means(control, treatment)

# confidence interval
ci_low = np.percentile(boot_diffs, 2.5)
ci_high = np.percentile(boot_diffs, 97.5)

sns.histplot(boot_diffs, kde=True)
plt.axvline(ci_low, color='red', linestyle='--', label='2.5% CI')
plt.axvline(ci_high, color='red', linestyle='--', label='97.5% CI')
```

```
plt.axvline(np.mean(boot_diffs), color='black', label='Mean Difference')
plt.title('Bootstrap Distribution of Mean Differences (Treatment - Control)')
plt.legend()
plt.show()
print(f"95% CI from bootstrap: ({ci_low:.4f}, {ci_high:.4f})")
```

Bootstrap Distribution of Mean Differences (Treatment - Control)

95% CI from bootstrap: (0.0069, 0.0089)

According to the code results, we can find: The 95% CI does not include zero, reinforcing the t-test conclusion (p<0.001) that the treatment effect is statistically significant. Also, the narrow CI (0.0069–0.0089) suggests high certainty that the true CTR lift lies between 0.6% and 0.9%. This is critical for quantifying the business impact.

4.2 Conclusion

The treatment group (showing 1 organic like) achieves a statistically significant CTR improvement of 0.79% (11.8% relative increase) compared to the control group. The bootstrap method confirms this effect with a 95% confidence interval of (0.0069, 0.0089). The treatment group also exhibits higher variance in CTR, indicating heterogeneous user responses to social proof.

4.3 improve sensitive

4.3.1 Method 1: CUPED

After applying the CUPED adjustment using user_sns_like_cnt as the covariate, the adjusted click-through rates (CTR) are 6.66% for the control group and 7.45% for the treatment group. The t-test yields a highly significant t-statistic of 15.43 (p < 0.0001), indicating that the difference in CTR between treatment and control is statistically significant after adjustment. However, the reduction in standard deviation (like for treatmen from about 0.262593 to 0.262591) is relatively small, suggesting that user_sns_like_cnt alone may not be a strong covariate. More covariates could be considered to further improve the variance reduction and test sensitivity.

```
In [34]: def cuped_adjust(y, x):
            theta = np.cov(y, x)[0,1] / np.var(x)
             y_{adj} = y - theta * (x - np.mean(x))
             return y_adj
         # Apply CUPED
         df['If click adj'] = cuped adjust(df['if click'], df['user sns like cnt'])
         control_adj = df[df['expid'] == 0]['If_click_adj']
         treatment_adj = df[df['expid'] == 1]['If_click_adj']
         print(df.groupby('expid')['If_click_adj'].mean())
         print(df.groupby('expid')['If_click_adj'].std())
         # T-test on adjusted outcome
         t_stat_adj, p_val_adj = ttest_ind(treatment_adj, control_adj, equal_var=False)
         print(t_stat_adj, p_val_adj)
        expid
        0 0.066603
        1 0.074507
        Name: If_click_adj, dtype: float64
        expid
        0 0.249335
        1 0.262591
        Name: If_click_adj, dtype: float64
        15.434507182195537 9.731616423447789e-54
```

4.4 Multivariate CUPED

After applying multi-variable CUPED adjustment using several user behavior covariates (user_sns_like_cnt, user_sns_comment_cnt, User_degree, and Real_like_cnt), the adjusted CTRs are 0.066603 for the control group and 0.074507 for the treatment group. The t-test yields a t-statistic of -15.44 with a p-value < 0.0001, indicating a highly significant difference in adjusted CTRs. Compared to single-variable CUPED, the variance reduction is slightly better (standard deviations decreased marginally), but the overall sensitivity is still primarily driven by the large sample size.

```
df_cuped = df.dropna(subset=covariates + ['if_click'])
 X = df_cuped[covariates]
 y = df_cuped['if_click']
 model = LinearRegression().fit(X, y)
 # predict the click-through rate using the covariates
 y_pred = model.predict(X)
 # CUPED adjustment
 y_{adj} = y - (y_{pred} - y_{mean})
 df_cuped['If_click_adj_multi'] = y_adj
 control_adj = df_cuped[df_cuped['expid'] == 0]['If_click_adj_multi']
 treatment_adj = df_cuped[df_cuped['expid'] == 1]['If_click_adj_multi']
 # T-test on adjusted outcome
 t_stat_adj, p_val_adj = ttest_ind(control_adj, treatment_adj, equal_var=False)
 print("T-test results after multivariate CUPED:")
 print(f"t-statistic: {t_stat_adj}")
 print(f"p-value: {p_val_adj}")
 print(df_cuped.groupby('expid')['If_click_adj_multi'].agg(['mean', 'std']))
T-test results after multivariate CUPED:
t-statistic: -15.436472359739689
p-value: 9.439732307805363e-54
          mean std
expid
     0.066603 0.249315
      0.074507 0.262585
```

4.5 Stratification (gender, city, category)

we implemented stratified analysis with the primary goal of reducing variance and increasing the sensitivity of our estimation when comparing click-through rates (CTR) between the Treatment and Control groups.

In A/B testing, if covariates such as gender, city, or ad category systematically influence CTR, a simple comparison of group-level averages may be biased or inefficient. By stratifying users based on these variables—gender, user_city, and category—and calculating within-stratum CTRs followed by a weighted average, we can better control for these confounding effects.

In this part, we choose gender, city, and category for stratification analysis.

```
In [37]: def stratified_analysis_test(df, group_col, strata_col, outcome_col):
    """
    Stratified analysis + visualization + t-test + SE comparison

Parameters:
    df -- original data
    group_col -- grouping column, such as 'group'
```

```
strata_col -- stratification column, such as 'user_city'
outcome_col -- result column, such as 'click'
Return:
stratified_df -- detailed table after stratification
summary -- weighted statistics for each group
t_test_result -- t-test statistic and p-value
e_comparison -- percentage change in SE before and after stratification
# overall statistics
overall = df.groupby(group_col)[outcome_col].agg(
    ['mean', 'count', 'std']).reset_index()
overall['se'] = overall['std'] / np.sqrt(overall['count'])
# stratified statistics
stratified = df.groupby([group_col, strata_col])[outcome_col].agg(
    ['mean', 'count', 'std']).reset_index()
stratified['se'] = stratified['std'] / np.sqrt(stratified['count'])
summary = {}
stratified_means = {}
for group in stratified[group_col].unique():
    subset = stratified[stratified[group_col] == group]
    weighted_mean = np.average(subset['mean'], weights=subset['count'])
    weighted_var = ((subset['se'] ** 2) * (subset['count'] ** 2)
                    ).sum() / (subset['count'].sum() ** 2)
    weighted_se = np.sqrt(weighted_var)
    weighted_std = weighted_se * np.sqrt(subset['count'].sum())
    summary[group] = {
        'weighted_mean': weighted_mean,
        'weighted_se': weighted_se,
        'weighted std': weighted std,
        'total_count': subset['count'].sum()
    stratified_means[group] = weighted_mean
# -- t test --
group0_mean = stratified_means[0]
group1_mean = stratified_means[1]
group0_se = summary[0]['weighted_se']
group1_se = summary[1]['weighted_se']
t_stat = (group1_mean - group0_mean) / np.sqrt(group0_se**2 + group1_se**2)
from scipy.stats import norm
p_value = 2 * (1 - norm.cdf(abs(t_stat)))
t_test_result = {'t_statistic': t_stat, 'p_value': p_value}
# compare SE before and after stratification
original_se0 = overall.loc[overall[group_col]==0, 'se'].values[0]
original_se1 = overall.loc[overall[group_col]==1, 'se'].values[0]
stratified_se0 = summary[0]['weighted_se']
```

```
stratified_se1 = summary[1]['weighted_se']
reduction0 = (original_se0 - stratified_se0) / original_se0 * 100
reduction1 = (original_se1 - stratified_se1) / original_se1 * 100
se comparison = {
    'Control SE reduction (%)': reduction0,
    'Treatment SE reduction (%)': reduction1
}
# plotting
groups = list(summary.keys())
weighted_means = [summary[g]['weighted_mean'] for g in groups]
weighted_ses = [summary[g]['weighted_se'] for g in groups]
plt.figure(figsize=(8, 6))
plt.bar(groups, weighted_means, yerr=weighted_ses, capsize=5,
        color=['skyblue', 'salmon'])
plt.xlabel('Group')
plt.ylabel('Weighted CTR')
plt.title(f'Weighted CTR by Group (Stratified by {strata_col})')
plt.xticks(groups)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
return stratified, summary, t_test_result, se_comparison
```

4.5.1 Stratifying by city

After stratifying by city, the weighted CTR is 0.0666 for the Control group and 0.0745 for the Treatment group.

The standard errors changed only marginally (SE reduction of about 0.0021% and 0.00055%, respectively), suggesting that city-level heterogeneity in CTR is minimal, and stratification by city has limited impact on variance reduction.

Nevertheless, the t-test still yields a highly significant result (t = 15.43, p < 0.001), indicating a strong treatment effect overall.

Weighted CTR by Group (Stratified by user_city)


```
----info----
Group 0: Weighted CTR=0.0666, Weighted SE=0.000353, Weighted STD=0.249330
Group 1: Weighted CTR=0.0745, Weighted SE=0.000371, Weighted STD=0.262591
----t test----
{'t_statistic': 15.430792802478825, 'p_value': 0.0}
----SE change percentage (stratified sensitivity improvement)----
{'Control SE reduction (%)': 0.002149270866631768, 'Treatment SE reduction (%)': 0.0005548966099489254}
```

4.5.2 Stratifying by gender

After stratifying by gender, the weighted CTR remains the same (0.0666 vs. 0.0745). However, the standard errors did not improve; they slightly increased (SE change around -0.00009%), indicating that gender does not significantly explain the variance in CTR. Gender is not an effective stratification variable in this context—likely due to balanced gender distribution or minimal gender influence on CTR.

```
In [39]: stratified_df, summary, t_test_result, se_comparison = stratified_analysis_test(
    df, group_col='expid', strata_col='user_gender', outcome_col='if_click'
)

print("----info----")
for group, info in summary.items():
    print(f"Group {group}: Weighted CTR={info['weighted_mean']:.4f}, Weighted SE

print("\n----t test----")
print(t_test_result)
```



```
----info----

Group 0: Weighted CTR=0.0666, Weighted SE=0.000353, Weighted STD=0.249335

Group 1: Weighted CTR=0.0745, Weighted SE=0.000371, Weighted STD=0.262593

----t test----

{'t_statistic': 15.430576362113849, 'p_value': 0.0}

----SE change percentage (stratified sensitivity improvement)----

{'Control SE reduction (%)': -9.004878223387991e-05, 'Treatment SE reduction (%)': -9.344655083062433e-05}
```

4.5.3 Stratifying by category

Stratifying by category produced the most significant improvement in sensitivity: SE dropped 2.14% for Control, SE dropped 2.98% for Treatment

While average CTR remains consistent, the reduction in estimation error indicates that ad category explains a meaningful portion of CTR variation.

Conclusion: Category is a high-value stratification variable and should be prioritized in future experimental design or quota planning.

```
print(f"Group {group}: Weighted CTR={info['weighted_mean']:.4f}, Weighted SE
print("\n----t test----")
print(t_test_result)

print("\n----SE change percentage (stratified sensitivity improvement)----")
print(se_comparison)
```



```
----info----

Group 0: Weighted CTR=0.0666, Weighted SE=0.000353, Weighted STD=0.249282

Group 1: Weighted CTR=0.0745, Weighted SE=0.000371, Weighted STD=0.262514

----t test----

{'t_statistic': 15.434580785250795, 'p_value': 0.0}

----SE change percentage (stratified sensitivity improvement)----

{'Control SE reduction (%)': 0.021419592717211333, 'Treatment SE reduction (%)': 0.029849599870161312}
```

4.6 Covariate Adjustment (Regression)

The model adjusts for the potential confounding effects of various covariates, such as demographic information (e.g., user_gender, user_age), user behaviors (e.g., user_sns_like_cnt), and other ad-related variables (e.g., category, brand_effect). By adjusting for these covariates, the model attempts to isolate the effect of the primary treatment variable group (control vs. treatment) on the outcome (click).

We can find that Group variable (Treatment Effect): The group variable has a significant positive coefficient (0.0079, p-value < 0.001), indicating that, on

average, the treatment group has a higher click-through rate (CTR) than the control group. The covariate adjustment increases sensitivity by reducing bias that could arise from omitting important variables.

In addition, we also find something intersting like:

Brand effect and Experience goods have a significant negative effect on CTR, which may suggest that ads for well-known brands or experience-based products lead to lower engagement.

User demographics: Gender and city-level variables show some variation in the coefficients but are not as significant in driving CTR (for example, user gender[T.male] is not significant).

Week: There is a significant decline in CTR in weeks 2 and 3 compared to week 1, as indicated by the negative coefficients for week[T.w_2] and week[T.w_3].

```
In [41]: # Regression model with covariates
model_covariate = smf.ols('if_click ~ ' \
    'expid + user_sns_like_cnt + user_sns_comment_cnt '
    '+ user_degree + real_like_cnt + user_age + user_gender + ' \
    'user_city + friend_age + friend_gender + ' \
    'friend_city + friend_degree + ' \
    'category + brand_effect + experience + status + C(week)', data=df).fit()

# OUTPUT
print(model_covariate.summary())
```

OLS Regression Results

OLS Regression Results								
Dep. Variable: Model: Method: Date:	if_cli (Least Squar	click R-squared: OLS Adj. R-squared: uares F-statistic: 四月 2025 Prob (F-statistic):			0.002 0.002 0.002 103.4 0.0			
Time: No. Observations: Df Residuals: Df Model:	18:23: 1000 9999	000 AIC: 076 BIC: 23	kelihood:		-55486. 1.110e+05 1.113e+05			
Covariance Type:	nonrobu							
 0.975]	coef	std err	t	P> t	[0.025			
Intercept 0.123	0.1168	0.003	35.583	0.000	0.110			
<pre>user_gender[T.male] 0.001</pre>	0.0002	0.001	0.423	0.672	-0.001			
user_city[T.level_2] -0.001	-0.0021	0.001	-3.140	0.002	-0.003			
user_city[T.level_3] 0.000	-0.0014	0.001	-1.829	0.067	-0.003			
<pre>friend_gender[T.male] 0.000</pre>	-0.0008	0.001	-1.578	0.115	-0.002			
<pre>friend_city[T.level_2] 0.002</pre>	0.0002	0.001	0.331	0.741	-0.001			
<pre>friend_city[T.level_3] 0.003</pre>	0.0018	0.001	2.410	0.016	0.000			
category[T.Car]	0.0342	0.005	6.475	0.000	0.024			
category[T.Clothes] 0.047	0.0364	0.005	6.860	0.000	0.026			
<pre>category[T.Cosmetrics] 0.005</pre>	0.0006	0.002	0.296	0.767	-0.003			
<pre>category[T.Jewelry] 0.004</pre>	-0.0012	0.002	-0.503	0.615	-0.006			
C(week)[T.w_2] -0.017	-0.0183	0.001	-21.387	0.000	-0.020			
C(week)[T.w_3] -0.023	-0.0253	0.001	-22.753	0.000	-0.027			
expid 0.009	0.0079	0.001	15.515	0.000	0.007			
user_sns_like_cnt 3.93e-06	1.489e-06	1.24e-06	1.198	0.231	-9.48e-07			
user_sns_comment_cnt 2.14e-06	-4.373e-07	1.31e-06	-0.333	0.739	-3.01e-06			
user_degree 5.31e-06	4.089e-06	6.24e-07	6.548	0.000	2.86e-06			
real_like_cnt	-7.749e-05	0.000	-0.700	0.484	-0.000			
user_age 4.7e-05	-3.571e-05	4.22e-05	-0.846	0.398	-0.000			
friend_age 0.000	9.952e-05	4.39e-05	2.267	0.023	1.35e-05			
friend_degree 5.49e-07	-5.098e-08	3.06e-07	-0.167	0.868	-6.5e-07			

brand_effect	-0.0422	0.005	-8.769	0.000	-0.052	
-0.033						
experience	-0.0435	0.003	-16.966	0.000	-0.049	
-0.038						
status	0.0148	0.002	6.402	0.000	0.010	
0.019						
=======================================		======			=======	
Omnibus:	663454.324	Durbi	n-Watson:		2.000	
Prob(Omnibus):	0.000	Jarque	e-Bera (JB):	53	5396209.355	
Skew:	3.343	Prob(JB):			0.00	
Kurtosis:	12.210	Cond. No.			4.50e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.5e+04. This might indicate that there are strong multicollinearity or other numerical problems.

5. Analyze the Heterogeneous Treatment Effects (HTE)

```
In [42]: # 2.1 Create treatment indicator
         df['treat'] = df['expid']
         # 2.2 Ensure product-type flags
         df['status'] = df['status']
         df['experience'] = df['experience']
         # 2.3 Compute relative status and standardize
         df['rel_status'] = df['friend_degree'] - df['user_degree']
         df['rel_status_z'] = (
             df['rel_status'] - df['rel_status'].mean()) / df['rel_status'].std()
         # 2.4 Standardize friend popularity (real like cnt)
         df['real_like_z'] = (
             df['real_like_cnt'] - df['real_like_cnt'].mean()) / df['real_like_cnt'].std(
         # 2.5 Convert certain columns to categorical dtype
         categorical_cols = ['user_gender', 'friend_gender',
                              'week','category','user_city','friend_city']
         for col in categorical cols:
             if col in df.columns:
                 df[col] = df[col].astype('category')
         print("Preprocessing complete. Summary of new features:")
         df[['treat','rel_status_z','real_like_z']].describe()
```

Preprocessing complete. Summary of new features:

	treat	rel_status_z	real_like_z
count	1000000.0	1.000000e+06	1.000000e+06
mean	0.5	4.141754e-17	5.824141e-17
std	0.5	1.000000e+00	1.000000e+00
min	0.0	-1.445237e+01	-7.485189e-01
25%	0.0	-4.437696e-01	-7.485189e-01
50%	0.5	-1.992248e-01	6.354039e-02
75%	1.0	1.653489e-01	6.354039e-02
max	1.0	1.907495e+01	5.284739e+01

Out[42]:

5.1 Compute Average Treatment Effect (ATE)

The treatment increases the click-through rate from 6.66% to 7.45%, an approximate 0.8 pp gain (nearly 12% relative improvement). This suggests a positive average treatment effect.

```
In [43]: print("=== 1. Average Treatment Effect (ATE) ===")
   ate = df.groupby('treat')['if_click'].mean().rename('ctr')
   print(ate.to_string())

=== 1. Average Treatment Effect (ATE) ===
   treat
   0   0.066604
   1   0.074506
```

5.2 HTE by Product Type

The logit shows a clear positive treatment effect (coef = 0.1267, p < 0.001). The interaction with status-type (coef = -0.0072, p = 0.707) and with experience-type (coef = 0.0111, p = 0.834) are both near zero and non-significant. In other words, the uplift in click probability from the treatment is essentially the same for status and experience products.

```
In [44]: # 4.1 HTE for status-type products
m_status = smf.logit(
    'if_click ~ treat + status + treat:status + user_age + friend_age '
    '+ C(user_gender) + C(friend_gender) + C(week)',
    data=df
).fit(disp=False)
print("---- HTE: treat × status ----")
print(m_status.summary())

# 4.2 HTE for experience-type products
m_exp = smf.logit(
    'if_click ~ treat + experience + treat:experience + user_age + friend_age '
    '+ C(user_gender) + C(friend_gender) + C(week)',
    data=df
).fit(disp=False)
```

```
print("---- HTE: treat × experience ----")
print(m_exp.summary())
```

Logit Regression Results

=======================================	Logic kegre					
Dep. Variable: Model: Method: Date: 週	if_click	No. Obse Df Resid Df Model	ervations: Uuals:		1000000 999990 9 0.00351	
<pre>Time: converged: Covariance Type:</pre>	18:24:28 True nonrobust	Log-Like LL-Null: LLR p-va	ılue:	-2.5418e+05 -2.5507e+05 0.000		
0.975]	coef	std err	Z	P> z	[0.025	
Intercept -2.570	-2.6237	0.027	-95.705	0.000	-2.677	
C(user_gender)[T.male] 0.019	0.0033	0.008	0.426	0.670	-0.012	
C(friend_gender)[T.male] 0.003	-0.0123	0.008	-1.575	0.115	-0.028	
C(week)[T.w_2] -0.282	-0.3043	0.011	-26.671	0.000	-0.327	
C(week)[T.w_3] -0.415	-0.4365	0.011	-39.642	0.000	-0.458	
treat 0.160	0.1267	0.017	7.465	0.000	0.093	
status 0.220	0.1915	0.015	12.930	0.000	0.162	
treat:status 0.030	-0.0072	0.019	-0.376	0.707	-0.045	
user_age 0.002	0.0012	0.001	1.939	0.053	-1.34e-05	
friend_age 0.005	0.0035	0.001	5.363	0.000	0.002	
		=======	:=======	=======	:=======	
HTE: treat × experie	Logit Regre					
Dep. Variable: Model: Method:	Logit	No. Obse Df Resid Df Model	ervations: Uuals:	======	1000000 999990 9	
Date: 週 2	三,30四月2	025 Pseu	do R-squ.:		0.00334	
Time:		Log-Like		-2.	5422e+05	
<pre>converged: Covariance Type:</pre>		True LL-Null:		-2.	5507e+05 0.000	
	========	=======		=======	=======	
0.975]	coef	std err	Z	P> z	[0.025	
Intercept	-2.1211	0.048	-43.791	0.000	-2.216	
-2.026 C(user_gender)[T.male] 0.019	0.0035	0.008	0.445	0.656	-0.012	

<pre>C(friend_gender)[T.male]</pre>	-0.0123	0.008	-1.569	0.117	-0.028
0.003					
C(week)[T.w_2]	-0.2406	0.012	-20.652	0.000	-0.263
-0.218					
C(week)[T.w_3]	-0.3140	0.010	-29.928	0.000	-0.335
-0.293					
treat	0.1103	0.052	2.102	0.036	0.007
0.213					
experience	-0.4388	0.039	-11.142	0.000	-0.516
-0.362					
treat:experience	0.0111	0.053	0.209	0.834	-0.093
0.115					
user_age	0.0012	0.001	1.957	0.050	-1.75e-06
0.002					
friend_age	0.0034	0.001	5.159	0.000	0.002
0.005					

========

5.3 HTE by Friend Characteristics

Relative Status: The coefficient for treat \times rel_status_z (0.0075, p=0.336) is effectively zero and not significant—meaning the treatment's impact on click-through doesn't depend on whether the friend is of higher or lower social status. Interestingly, the standalone effect of rel_status_z is slightly negative (-0.0165, p=0.004), suggesting that ads liked by friends with relatively higher status actually show a modest drop in baseline CTR.

Friend Likes: In contrast, the interaction between treatment and standardized like count is negative and significant (treat \times real_like_z = -0.0266, p=0.001). This shows that the more friends have already "liked" the ad, the smaller the incremental gain from revealing those likes. Nevertheless, a higher real_like_z on its own predicts a higher baseline click rate (0.0185, p=0.001).

```
In [45]: # 5.1 Interaction with relative status
         m_rel_status = smf.logit(
             'if_click ~ treat * rel_status_z + user_age + friend_age '
             '+ C(user gender) + C(friend gender) + C(week)',
             data=df
         ).fit(disp=False)
         print("---- HTE: treat x rel_status_z ----")
         print(m_rel_status.summary())
         # 5.2 Interaction with friend popularity
         m rel like = smf.logit(
             'if click ~ treat * real like z + user age + friend age '
             '+ C(user_gender) + C(friend_gender) + C(week)',
             data=df
         ).fit(disp=False)
         print("---- HTE: treat x real_like_z ----")
         print(m rel like.summary())
```

Logit Regression Results

	Logit Regre				
Dep. Variable: Model: Method: Date:	if_click Iogit MLE 週三,30 四月 2	No. Obse Df Resid Df Model	rvations: uals:		====== 1000000 999990 9 0.00294
	10.21.11	Log Liko	libood	2	E/22010E
Time:	18:24:44	Log-Like			5432e+05
converged:	True	LL-Null:		-2.	5507e+05
Covariance Type:	nonrobust	LLR p-va			0.000
=======================================	========	=======	=======		=======
========				5	F.O. 005
0.975]	coef		Z		[0.025
Intercept	-2.5970	0.026	-99.447	0.000	-2.648
-2.546	-2.3970	0.020	-33.447	0.000	-2.046
C(user_gender)[T.male]	0.0035	0.008	0.448	0.654	-0.012
0.019	0.005	0.008	0.446	0.054	-0.012
C(friend_gender)[T.male] -0.0123	0.008	-1.571	0.116	-0.028
0.003] -0.0123	0.008	-1.5/1	0.116	-0.028
	-0.2786	0 011	-24.634	0.000	-0.301
C(week)[T.w_2]	-0.2/80	0.011	-24.634	0.000	-0.301
-0.256	0.2564	0.010	25 496	0 000	0.276
C(week)[T.w_3]	-0.3564	0.010	-35.486	0.000	-0.376
-0.337	0.4200	0.000	45 444	0.000	0 106
treat	0.1209	0.008	15.444	0.000	0.106
0.136	0.0465	0.006	2 206	0.004	0.000
rel_status_z	-0.0165	0.006	-2.896	0.004	-0.028
-0.005	0 0075	0.000	0.063	0.226	0.000
treat:rel_status_z	0.0075	0.008	0.962	0.336	-0.008
0.023	0.0022	0.001	2 507	0.000	0 001
user_age	0.0023	0.001	3.587	0.000	0.001
0.003	0.0040	0.004	7 207	0.000	0.003
friend_age	0.0048	0.001	7.307	0.000	0.003
0.006					
	=========	=======	=======	:=======	=======
UT5. to at	121				
HTE: treat × real_	_	B	14-		
	Logit Regre				
				:=======	
Dep. Variable:	-	No. Obse			1000000
Model:		Df Resid			999990
Method:		Df Model			9
	週三,30四月2	025 Pseu	do R-squ.:		0.00294
5					
Time:		Log-Like		-2.	5432e+05
converged:		LL-Null:		-2.	5507e+05
Covariance Type:	nonrobust	LLR p-va	lue:		0.000
=======================================	=========	=======	========		=======
========					
	coef	std err	Z	P> z	[0.025
0.975]					
Intercept	-2.5942	0.026	-99.401	0.000	-2.645
-2.543					
<pre>C(user_gender)[T.male]</pre>	0.0035	0.008	0.452	0.651	-0.012
0.019					

<pre>C(friend_gender)[T.male]</pre>	-0.0123	0.008	-1.575	0.115	-0.028
0.003					
C(week)[T.w_2]	-0.2779	0.011	-24.573	0.000	-0.300
-0.256					
C(week)[T.w_3]	-0.3566	0.010	-35.320	0.000	-0.376
-0.337					
treat	0.1207	0.008	15.422	0.000	0.105
0.136					
real_like_z	0.0185	0.005	3.386	0.001	0.008
0.029					
<pre>treat:real_like_z</pre>	-0.0266	0.008	-3.392	0.001	-0.042
-0.011					
user_age	0.0023	0.001	3.625	0.000	0.001
0.004					
friend_age	0.0046	0.001	7.147	0.000	0.003
0.006					

========

5.4 Three-Way Interactions

When we test the three-way splits—combining treatment, product type, and friend feature—none of those higher-order interactions matter. Both:

```
treat × status × rel_status_z (coef \approx 0.0096, p\approx0.59)
treat × experience × real_like_z (coef \approx 0.0335, p\approx0.72)
```

are essentially zero and not statistically significant. In short, even when you look simultaneously at product type and friend status or popularity, the treatment lift stays the same.

```
In [46]: # 6.1 status × relative status
         m_3way_status = smf.logit(
              'if_click ~ treat * status * rel_status_z + user_age + friend_age '
             '+ C(user_gender) + C(friend_gender) + C(week)',
             data=df
         ).fit(disp=False)
         print("---- 3-way: treat x status x rel status z ----")
         print(m_3way_status.summary())
         # 6.2 experience × friend popularity
         m_3way_like = smf.logit(
             'if_click ~ treat * experience * real_like_z + user_age + friend_age '
             '+ C(user_gender) + C(friend_gender) + C(week)',
             data=df
         ).fit(disp=False)
         print("---- 3-way: treat × experience × real_like_z ----")
         print(m_3way_like.summary())
```

---- 3-way: treat × status × rel_status_z ----Logit Regression Results

======================================		No. Obser			1000000
Model:	_	Df Residu			999986
Method:	•	Df Model:			13
	,30 四月 20				0.00353
	, 50 四万 20	723 PSEUU	io K-Squ		0.00333
4	10.24.50	1 1 - 1 - 1		2.5	44705
Time:	18:24:59	Log-Likel	.1nooa:		417e+05
converged:	True	LL-Null:		-2.5	507e+05
Covariance Type:	nonrobust	LLR p-val			0.000
	=======	=======			=======
=========	coef	std err	Z	P> z	[0.025
0.975]					-
Intercept	-2.6267	0.027	-95.753	0.000	-2.680
-2.573	2.0207	0.027	23.733	0.000	2.000
C(user gender)[T.male]	0.0033	0.008	0.425	0.671	-0.012
0.019	0.0033	0.000	0.123	0.072	0.012
C(friend_gender)[T.male]	-0.0123	0.008	-1.572	0.116	-0.028
0.003	0.0123	0.000	1.572	0.110	0.020
C(week)[T.w_2]	-0.3051	0.011	-26.736	0.000	-0.327
-0.283	-0.5051	0.011	-20.750	0.000	-0.327
C(week)[T.w_3]	-0.4370	0.011	-39.679	0.000	-0.459
-0.415	-0.4370	0.011	-39.079	0.000	-0.459
	0 1267	0.017	7 457	0 000	0 002
treat	0.1267	0.017	7.457	0.000	0.093
0.160	0 1003	0.015	12 041	0.000	0 161
status	0.1903	0.015	12.841	0.000	0.161
0.219	0 0070	0.010	0.365	0.745	0.045
treat:status	-0.0070	0.019	-0.365	0.715	-0.045
0.031					
rel_status_z	-0.0170	0.011	-1.572	0.116	-0.038
0.004					
treat:rel_status_z	0.0006	0.015	0.037	0.970	-0.029
0.030					
status:rel_status_z	0.0033	0.013	0.259	0.796	-0.022
0.028					
treat:status:rel_status_z	0.0096	0.018	0.546	0.585	-0.025
0.044					
user_age	0.0012	0.001	1.949	0.051	-6.81e-06
0.002					
friend_age	0.0036	0.001	5.549	0.000	0.002
0.005					
=======================================	========		.=======		=======
========					
3-way: treat × experie	nce × real_	like_z			
-	Logit Regre	ssion Resul	.ts		
	========	=======	:=======		======
Dep. Variable:	if_click	No. Obser	vations:		1000000
Model:	_	Df Residu			999986
Method:	MLE				13
	,30 四月 20		lo R-squ.:		0.00337
5	, /3 2		·		1.00007
Time:	18:25:05	Log-Likel	ihood:	_2 5	421e+05
converged:	10.23.03 True	LL-Null:	.11000.		507e+05
Covariance Type:	nonrobust	LLR p-val	110.	-2.5	0.000
		-			
	=======	=======	:=======		=======

025	0.975]	coef	std err	Z	P> z	[0.
Intercep	 t	-2.0981	0.050	-42.120	0.000	-2.
196	-2.001					
C(user_g 012	ender)[T.male] 0.019	0.0035	0.008	0.450	0.653	-0.
C(friend	_gender)[T.male] 0.003	-0.0123	0.008	-1.573	0.116	-0.
C(week)[-0.2409	0.012	-20.667	0.000	-0.
C(week)[T.w_3]	-0.3151	0.011	-29.868	0.000	-0.
336	-0.294	0.4003	0.056	4 007	0 074	
treat	0. 200	0.1003	0.056	1.807	0.071	-0.
009 experien	0.209	-0.4625	0.041	-11.262	0.000	-0.
543	-0.382	-0.4623	0.041	-11.202	0.000	-0.
treat:ex		0.0210	0.056	0.375	0.708	-0.
089	0.131	0.0210	0.030	0.373	0.700	•
real lik		0.1262	0.064	1.960	0.050	3.32e
-05	0.252					
treat:re	al_like_z	-0.0599	0.092	-0.651	0.515	-0.
240	0.120					
experien	ce:real_like_z	-0.1085	0.065	-1.679	0.093	-0.
235	0.018					
treat:ex	perience:real_like_z	0.0335	0.092	0.363	0.717	-0.
148	0.215					
user_age		0.0013	0.001	1.986	0.047	1.62e
-05	0.003					
friend_a	=	0.0034	0.001	5.187	0.000	0.
002	0.005					
======	=============	========	========	========		======

5.5 Robustness Check with Clustered SE

Robustness Check (clustered by adid):

- Treatment effect remains strong (coef = 0.1174, p < 0.001).
- Status-goods baseline uplift: +0.1694 (p = 0.013); Experience-goods: -0.3623 (p < 0.001).
- No type-specific lift: treat×status (p = 0.752), treat×experience (p = 0.553).
- Friend features lose significance when clustering: rel_status_z (p = 0.141), real_like_z (p = 0.912).

The positive average treatment effect and the lack of heterogeneity by product type are robust.

```
In [47]: m_cluster = smf.logit(
    'if_click ~ treat + status + experience + treat:status + treat:experience '
    '+ rel_status_z + real_like_z + user_age + friend_age '
    '+ C(user_gender) + C(friend_gender) + C(week)',
    data=df
```

```
).fit(
    disp=False,
    cov_type='cluster',
    cov_kwds={'groups': df['adid']}
)
print("=== Robust SE with Clustering on adid ===")
print(m_cluster.summary())
```

	Logit Regre	ession Resu				
Dep. Variable: Model: Method: Date: 5	if_click	Df Resid Df Model	No. Observations: Df Residuals: Df Model: 25 Pseudo R-squ.:		====== 1000000 999986 13 0.00381	
Time: converged: Covariance Type:	18:25:15 True cluster	Log-Like LL-Null: LLR p-va	lue:	-2.5	2.5410e+05 2.5507e+05 0.000	
<pre>0.975]</pre>	coef	std err	z 	P> z	[0.025	
Intercept -1.631 C(user_gender)[T.male]	-2.2323 0.0033	0.307 0.006	-7.281 0.549	0.000 0.583	-2.833 -0.009	
<pre>0.015 C(friend_gender)[T.male] 0.003</pre>	-0.0123	0.008	-1.609	0.108	-0.027	
C(week)[T.w_2] -0.173 C(week)[T.w_3]	-0.2707 -0.3938	0.050 0.092	-5.420 -4.271	0.000 0.000	-0.369 -0.574	
-0.213 treat 0.160	0.1174	0.022	5.400	0.000	0.075	
status 0.303 experience	0.1694 -0.3623	0.068 0.077	2.478 -4.723	0.013 0.000	0.035	
-0.212 treat:status	-0.0067	0.021	-0.316	0.752	-0.049	
0.035 treat:experience 0.040	0.0093	0.016	0.594	0.553	-0.021	
rel_status_z 0.004 real_like_z	-0.0110 0.0012	0.007 0.011	-1.471 0.111	0.141 0.912	-0.026 -0.021	
0.023 user_age 0.008	0.0005	0.004	0.125	0.900	-0.007	
friend_age 0.011 ======	0.0027	0.004	0.649	0.517	-0.005 ======	

========