Lista 11, Capítulo 6 - Geometria Analítica e Álgebra Linear

Profa. Roseli

- 1. Dados os vetores $\vec{u} = (1, a, -2a 1), \vec{v} = (a, a 1, 1)$ e $\vec{w} = (1, -1, 1),$ determine \mathbf{a} de modo que $\vec{u} \bullet \vec{v} = (\vec{u} + \vec{v}) \bullet \vec{w}$.
- **2.** Dados os pontos A = (-1, 0, 2), B = (-4, 1, 1) e C = (0, 1, 3), determinar o vetor \vec{x} tal que $2\vec{x} \overrightarrow{AB} = \vec{x} + (\overrightarrow{BC} \bullet \overrightarrow{AB})\overrightarrow{AC}$.
- **3.** Determinar o vetor \vec{v} , sabendo que $(3, 7, 1) + 2\vec{v} = (6, 10, 4) \vec{v}$.
- **4.** Dados os pontos A = (1, 2, 3), B = (-6, -2, 3) e C = (1, 2, 1), determinar o versor do vetor $3\overrightarrow{BA} 2\overrightarrow{BC}$.
- 5. Verificar se os seguintes vetores são unitários: $\vec{u}=(1,\,1,\,1)$ e $\vec{v}=(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})$.
- **6.** Determinar o valor de **n** para que o vetor $\vec{v} = (n, \frac{2}{5}, \frac{4}{5})$ seja unitário.
- 7. Seja $\vec{v}=(m+7)\vec{i}+(m+2)\ \vec{j}+5\vec{k}$. Calcular \mathbf{m} para que $\|\vec{v}\|=\sqrt{38}$.
- 8. Dados os pontos A = (1, 0, -1), B = (4, 2, 1) e C = (1, 2, 0), determinar o valor de \mathbf{m} para que $\|\vec{\mathbf{v}}\| = 7$, sendo $\vec{\mathbf{v}} = \mathbf{m}\overrightarrow{AC} + \overrightarrow{BC}$.
- 9. Dados os pontos A = (3, m 1, -4) e B = (8, 2m 1, m), determinar m de modo que $\|\overrightarrow{AB}\| = \sqrt{35}$.
- 10. Calcular o perímetro do triângulo de vértices $A=(0,\,1,\,2),\,B=(-1,\,0,\,-1)$ e $C=(2,\,-1,\,0).$
- **11.** Obter um ponto P do eixo das abscissas eqüidistante dos pontos A = (2, -3, 1) e B = (-2, 1, -1).
- 12. Seja o triângulo de vértices A = (-1, -2, 4), B = (-4, -2, 0) e C = (3, -2, 1). Determinar o ângulo interno ao vértice B.
- 13. Os pontos A, B e C são vértices de um triângulo eqüilátero cujo lado mede 10 cm. Calcular o produto escalar dos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- **14.** Determinar os ângulos do triângulo de cujos vértices são $A=(2,\,1,\,3),\,B=(1,\,0,\,\text{-}1)$ e $C=(\text{-}1,\,2,\,1).$
- **15.** Sabendo que o ângulo entre os vetores $\vec{u} = (2, 1, -1)$ e $\vec{v} = (1, -1, m + 2)$ é 60^0 , determinar o valor de \mathbf{m} .
- 16. Calcular $\bf n$ para que seja de 30^{0} o ângulo entra os vetores $\vec{\bf u}=(1,\,{\bf n},\,2)$ e $\vec{\bf j}.$

- 17. Dados os vetores $\vec{a} = (2, 1, \alpha)$, $\vec{b} = (\alpha + 2, -5, 2)$ e $\vec{c} = (2\alpha, 8, \alpha)$, determinar o valor de α para que o vetor $\vec{a} + \vec{b}$ seja ortogonal ao vetor $\vec{c} \vec{a}$.
- **18.** Determinar o vetor \vec{v} , paralelo ao vetor $\vec{u} = (1, -1, 2)$, tal que $\vec{v} \cdot \vec{u} = -18$.
- 19. Determinar o vetor \vec{v} ortogonal ao vetor $\vec{u} = (2, -3, -12)$ e colinear ao vetor $\vec{w} = (-6, 4, -2)$.
- **20.** Determinar o vetor \vec{v} , colinear a $\vec{u} = (-4, 2, 6)$, tal que $\vec{v} \bullet \vec{w} = -12$, para $\vec{w} = (-1, 4, 2)$.
- **21.** Provar que os pontos A = (5, 1, 5), B = (4, 3, 2) e C = (-3, -2, 1) são vértices de um triângulo retângulo.
- **22.** Qual o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 5\vec{j} 4\vec{k}$ e $\vec{b} = (\alpha + 1)\vec{i} + 2\vec{j} + 4\vec{k}$ sejam ortogonais?
- **23.** Verificar se existe ângulo reto no triângulo ABC, sendo A = (2, 1, 3), B = (3, 3, 5) e C = (0, 4, 1).
- **24.** Determinar o vetor \vec{v} , sabendo que $\|\vec{v}\| = 5$, \vec{v} é ortogonal ao eixo Oz, $\vec{v} \bullet \vec{w} = 6$ e $\vec{w} = 2\vec{j} + 3\vec{k}$.
- **25.** Determinar um vetor unitário ortogonal a $\vec{v} = (2, -1, 1)$.
- **26.** Determinar um vetor de módulo 5 paralelo ao vetor $\vec{v} = (1, -1, 2)$.
- **27.** O vetor \vec{v} é ortogonal aos vetores $\vec{u}=(2,$ -1, 3) e $\vec{w}=(1,$ 0, -2) e forma um ângulo agudo com o vetor \vec{j} . Calcular \vec{v} , sabendo que $||\vec{v}||=3\sqrt{6}$.
- **28.** Determinar o vetor \vec{v} ortogonal ao eixo Oz, que satisfaz as condições $\vec{v} \cdot \vec{v}_1 = 10$ e $\vec{v} \cdot \vec{v}_2 = -5$, sendo $\vec{v}_1 = (2, 3, -1)$ e $\vec{v}_2 = (1, -1, 2)$.
- **29.** Determinar o vetor projeção do vetor $\vec{u}=(1,\,2,\,-3)$ na direção de $\vec{v}=(2,\,1,\,-2)$.
- **30.** Calcular o módulo dos vetores $\vec{u} + \vec{v}$ e \vec{u} \vec{v} , sabendo que $\|\vec{u}\| = 4$, $\|\vec{v}\| = 3$ e o ângulo entre \vec{u} e \vec{v} é de 60^{0} .
- **31.** Sabendo que $\|\vec{\mathbf{u}}\| = 2$, $\|\vec{\mathbf{v}}\| = 3$ e que $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$ formam um ângulo de $\frac{3\pi}{4}$, determine $\|(2\vec{\mathbf{u}} \vec{\mathbf{v}}) \bullet (\vec{\mathbf{u}} 2\vec{\mathbf{v}})\|$.
- **32.** O vetor \vec{v} é ortogonal aos vetores $\vec{a}=(1,\,2,\,0)$ e $\vec{b}=(1,\,4,\,3)$ e forma um ângulo agudo com o eixo dos x. Determinar \vec{v} , sabendo que $\|\vec{v}\|=14$.
- **33.** Dados os vetores $\vec{u} = (2, -1, 1), \vec{v} = (1, -1, 0)$ e $\vec{w} = (-1, 2, 2)$, calcular:
 - (a) $\vec{w} \wedge \vec{v}$
 - (b) $\vec{v} \wedge (\vec{w} \vec{u})$
 - (c) $(\vec{u} + \vec{v}) \wedge (\vec{u} \vec{v})$

- (d) $(2\vec{u}) \wedge (3\vec{v})$
- (e) $(\vec{u} \wedge \vec{v}) \bullet (\vec{u} \wedge \vec{v})$
- (f) $(\vec{u} \wedge \vec{v}) \bullet \vec{w} \quad e \quad \vec{u} \bullet (\vec{v} \wedge \vec{w})$
- (g) $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$ e $\vec{u} \wedge (\vec{v} \wedge \vec{w})$
- (h) $(\vec{u} + \vec{v}) \bullet (\vec{u} \wedge \vec{w})$
- **34.** Dados os vetores $\vec{a} = (1, 2, 1)$ e $\vec{b} = (2, 1, 0)$, calcular:
 - (a) $2\vec{a} \wedge (\vec{a} + \vec{b})$ (b) $(\vec{a} + 2\vec{b}) \wedge (\vec{a} 2\vec{b})$
- **35.** Dados os pontos A = (2, -1, 2) , B = (1, 2, -1) e C = (3, 2, 1), determinar o vetor $\overrightarrow{CB} \wedge (\overrightarrow{BC} 2\overrightarrow{CA})$.
- **36.** Determinar um vetor simultaneamente ortogonal aos vetores $2\vec{a} + \vec{b} e \vec{b} \vec{a}$, sendo $\vec{a} = (3, -1, -2) e \vec{b} = (1, 0, -3)$.
- **37.** Dados os vetores $\vec{a} = (1, -1, 2), \vec{b} = (3, 4, -2)$ e $\vec{c} = (-5, 1, -4),$ mostrar que $\vec{a} \bullet (\vec{b} \land \vec{c}) = (\vec{a} \land \vec{b}) \bullet \vec{c}$
- **38.** Determinar o valor de **m** para que o vetor $\vec{w} = (1, 2, m)$ seja simultaneamente ortogonal aos vetores $\vec{u} = (2, -1, 0)$ e a $\vec{v} = (1, -3, -1)$.
- **39.** Dados os vetores $\vec{v}=(a,\,5b,\,-\frac{c}{2})$ e $\vec{w}=(-3a,\,x,\,y),$ determinar \mathbf{x} e \mathbf{y} para que $\vec{v}~\wedge~\vec{w}=\vec{0}.$
- **40.** Determinar um vetor unitário simultaneamente ortogonal aos vetores $\vec{u}=(1,\,1,\,0)$ e a $\vec{v}=(2,\,-1,\,3)$. Nas mesmas condições, determinar um vetor de módulo 5.
- **41.** Sabendo que $\|\vec{a}\| = 3$, $\|\vec{b}\| = \sqrt{2}$ e 45° é o ângulo entre \vec{a} e \vec{b} , calcular $\|\vec{a} \wedge \vec{b}\|$.
- **42.** Se $\|\vec{\mathbf{u}} \wedge \vec{\mathbf{v}}\| = 3\sqrt{3}$, $\|\vec{\mathbf{u}}\| = 3$ e 60^0 é o ângulo entre $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$, determinar $\|\vec{\mathbf{v}}\|$.
- **43.** Dados os vetores $\vec{a}=(3,\,4,\,2)$ e $\vec{b}=(2,\,1,\,1)$, obter um vetor de módulo 3 que seja ao mesmo tempo ortogonal aos vetores $2\vec{a} \vec{b}$ e $\vec{a} + \vec{b}$.
- 44. Calcular a área do paralelogramo definido pelos vetores $\vec{u}=(3,\,1,\,2)$ e $\vec{v}=(4,\,-1,\,0)$.
- **45.** Mostrar que o quadrilátero cujos vértices são os pontos A=(1,-2,3), B=(4,3,-1), C=(5,7,-3) e D=(2,2,1) é um paralelogramo e calcular sua área.
- **46.** Calcular a área do paralelogramo cujos lados são determinados pelos vetores $2\vec{u}$ e \vec{v} , sendo $\vec{u}=(2,$ -1, 0) e $\vec{v}=(1,$ -3, 2).

47. Calcular a área do triângulo de vértices:

(a)
$$A = (-1, 0, 2), B = (-4, 1, 1) e C = (0, 1, 3)$$

(b)
$$A = (1, 0, 1), B = (4, 2, 1) e C = (1, 2, 0)$$

(c)
$$A = (2, 3, -1), B = (3, 1, -2) e C = (-1, 0, 2)$$

(d)
$$A = (-1, 2, -2), B = (2, 3, -1) e C = (0, 1, 1)$$

- **48.** Calcular a área do paralelogramo que tem um vértice no ponto A = (3, 2, 1) e uma diagonal de extermidades B = (1, 1, -1) e C = (0, 1, 2).
- **49.** Calcular \mathbf{x} , sabendo que $\mathbf{A}=(\mathbf{x},\,1,\,1),\,\mathbf{B}=(1,\,-1,\,0)$ e $\mathbf{C}=(2,\,1,\,-1)$ são vértices de um triângulo de área $\frac{\sqrt{29}}{2}$.
- **50.** Dado o triângulo de vértices A = (0, 1, -1), B = (-2, 0, 1) e C = (1, -2, 0), calcular a altura relativa ao lado BC.
- **51.** Determinar \vec{v} ortogonal ao eixo dos \mathbf{y} e tal que $\vec{u} = \vec{v} \wedge \vec{w}$, sendo $\vec{u} = (1, 1, -1)$ e $\vec{w} = (2, -1, 1)$.
- **52.** Dados os vetores $\vec{u}=(0,\ 1,\ -1),\ \vec{v}=(2,\ -2,\ -2)$ e $\vec{w}=(1,\ -1,\ 2),$ determinar o vetor \vec{x} paralelo a \vec{w} e que satisfaz à condição: $\vec{x}\wedge\vec{u}=\vec{v}.$
- **53.** Dados os vetores $\vec{u} = (2, 1, 0)$ e $\vec{v} = (3, -6, 9)$, determinar o vetor \vec{x} que satisfaz a relação $\vec{v} = \vec{u} \wedge \vec{x}$ e que seja ortogonal a $\vec{w} = (1, -2, 3)$.
- **54.** Calcule $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$ e $\vec{u} \wedge (\vec{v} \wedge \vec{w})$ diretamente e, a seguir, usando as fórmulas dadas no texto, sendo: $\vec{u} = (1, -\frac{3}{2}, \frac{1}{2}), \quad \vec{v} = (6, -2, -4)$ e $\vec{w} = (\frac{1}{7}, \frac{2}{7}, \frac{3}{7}).$
- **55.** Resolva o sistema:

$$S: \quad \begin{array}{lll} \vec{x} \; \wedge \; \vec{u} \; = \; \vec{0} \\ \vec{x} \; \bullet \; \vec{u} \; = \; 1, & \quad (\vec{u} \; \neq \; \vec{0}) \end{array}$$

(Sugestão: Use que $\vec{x} = \alpha \vec{u}$, uma vez que $\vec{x} \wedge \vec{u} = \vec{0}$)

56. Resolva o sistema:

$$S: \quad \begin{array}{lll} \vec{x} \; \wedge \; \vec{u} \; = \; \vec{v} \\ \vec{x} \; \bullet \; \vec{u} \; = \; m, & \quad (\vec{u} \; \bullet \; \vec{v} \; = \; 0, \quad \vec{u} \neq \; \vec{0}) \end{array}$$

(Sugestão: Calcule $(\vec{x} \wedge \vec{u}) \wedge \vec{u}$)

RESPOSTAS

1.
$$a = \frac{-1 \pm \sqrt{13}}{2}$$

2.
$$\vec{x} = (-17, -13, -15)$$

3.
$$\vec{v} = (1, 1, 1)$$

4.
$$(\frac{7}{9}, \frac{4}{9}, \frac{4}{9})$$

5.
$$\vec{u}$$
 não é e \vec{v} é

6.
$$\pm \frac{\sqrt{5}}{5}$$

7.
$$m = -4$$
 ou $m = -5$

8.
$$m = 3$$
 ou $m = -\frac{13}{5}$

9.
$$m = -1$$
 ou $m = -3$

10. 2
$$\sqrt{11} + \sqrt{12}$$
 u.c. = $2(\sqrt{11} + \sqrt{3})$ u.c.

11.
$$P = (1, 0, 0)$$

12.
$$\theta = 45^{\circ}$$

14.
$$\hat{A} = \arccos \frac{5\sqrt{7}}{21}$$
 $\hat{B} = \arccos \frac{2\sqrt{6}}{9}$ $\hat{C} = \arccos -\frac{\sqrt{42}}{21}$

15.
$$m = -4$$

16.
$$n = \sqrt{15}$$

17.
$$\alpha = -6$$
 ou $\alpha = 3$

18.
$$\vec{v} = (-3, 3, -6)$$

19. qualquer vetor colinear a \vec{w} é ortogonal a \vec{u} ; isto é, $t(3, -2, 1), \forall t \in \mathbb{R}$

20.
$$\vec{v} = (2, -1, -3)$$

21. Mostre que
$$\overrightarrow{BA} \bullet \overrightarrow{BC} = 0$$

22.
$$\alpha = -3$$
 ou $\alpha = 2$

23. sim,
$$\hat{A} = 90^{\circ}$$

24.
$$\vec{v} = (\pm 4, 3, 0)$$

- 25. um deles é $(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$
- 26. $(\frac{5\sqrt{6}}{6}, -\frac{5\sqrt{6}}{6}, \frac{10\sqrt{6}}{6})$
- 27. $\vec{v} = (2, 7, 1)$
- 28. $\vec{v} = (-1, 4, 0)$
- 29. proj $_{\vec{v}}\vec{u} = \frac{10}{9} \; (2, \, 1, \, \mbox{-}2)$
- 30. $\sqrt{37}$ e $\sqrt{13}$
- 31. $26 + 15\sqrt{2}$
- 32. $\vec{v} = (12, -6, 4)$
- 33. (a) (2, 2, -1) (b) (-1, -1, 0) (c) (-2, -2, 2) (d) (6, 6, -6)
 - (e) 3 (f) -1 e -1 (g) (4, -1, 3) e (1, -4, -6) (h) 1
- 34. (a) (-2, 4, -6) (b) (4, -8, 12)
- 35. (112, -8, 12)
- 36. $t(3, 7, 1), t \in \mathbb{R}$
- 38. m = -5
- 39. x = -15b e $y = \frac{3}{2}c$
- 40. $(\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3})$ ou $(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$ **e** $(\frac{5\sqrt{3}}{3}, -\frac{5\sqrt{3}}{3}, -\frac{5\sqrt{3}}{3})$ ou $(-\frac{5\sqrt{3}}{3}, \frac{5\sqrt{3}}{3}, \frac{5\sqrt{3}}{3})$
- 41. 3
- 42. 2
- 43. $\frac{q}{\frac{3}{10}}(2, 1, -5)$
- 44. $\sqrt{117}$ u.a.
- 45. $\sqrt{89}$ u.a.
- 46. 6 $\sqrt{5}$ u.a.
- 47. (a) $\sqrt{6}$ u.a. (b) $\frac{7}{2}$ u.a. (c) $9 \frac{\sqrt{2}}{2}$ u.a. (d) $2 \sqrt{6}$ u.a.
- 48. $\sqrt{74}$ u.a.
- 49. 3 ou $\frac{1}{5}$

50.
$$\frac{3\sqrt{35}}{7}$$
 uc

51.
$$\vec{v} = (1, 0, 1)$$

52.
$$\vec{x} = (-2, 2, -4)$$

53.
$$\vec{x} = (2b - 9, b, 3), b \in \mathbb{R}$$

54.
$$(1, -2, 1)$$
 e $\frac{1}{7}(-10, -13, -19)$

55.
$$\vec{x} = \frac{\vec{u}}{\|\vec{u}\|^2}$$

56.
$$\vec{x} = \frac{\vec{u} \wedge \vec{v}}{\|\vec{u}\|^2} + \frac{m\vec{u}}{\|\vec{u}\|^2}$$