TIPE 2024

Marilou Bernard de Courville

Introduction

1^{er} objectif : un trajet efficace en métro

Données du problème

Algorithme de Dijkstra, structures de données Résultat : stations les

plus éloignées

2° objectif : un

trajet constitué de plusieurs types de chemins

Cas préliminaire du métro

Formalisation du

Résolution, application

Conclusion

TIPE 2024

Apprendre à une intelligence artificielle à jouer à Snake en utilisant un algorithme génétique

Marilou Bernard de Courville

Nº SCEI 41188

16 octobre 2023

Introduction

Problématique et pertinence au regard du thème de l'année

- Objectif: parcourir efficacement la ville dans un but touristique.
- ▶ Recherche opérationnelle : permet d'atteindre l'objectif en réalisant des optimisations sous contraintes [1].
- Deux cas envisagés :
 - 1. optimiser un trajet en métro via l'algorithme de Dijkstra et différentes structures de données codées en OCaml [3];
 - 2. optimiser un trajet soit en métro ou à pied en passant par plusieurs types de chemins en utilisant un solveur linéaire (CPLEX d'IBM) et un code en Python.
- Ces deux cas sont modélisés à l'aide de graphes orientés.

TIPE 2024

Marilou Bernard de Courville

Introduction

Données du problème Algorithme de Diikstra. structures de données Résultat : stations les

Cas préliminaire du

Résolution, application au cadre de la ville

Trajet le plus court en métro - modélisation

Modèles de données utilisés (types)

Position

- Un tas est une représentation organisée en arbre des stations en fonction d'une priorité (distance du chemin).
- ► Représentation en tas (heap) efficace en complexité pour accéder au nœud de priorité minimum et mettre à jour les priorités.
- Trois structures étudiées : tas non modifiables (immutable heaps), tas modifiables, et tarbres (treap).
- ▶ Programmes réalisés en OCaml utilisent seulement le module Hashtbl de la bibliothèque standard pour manipuler les tas.

TIPE 2024

Marilou Bernard de Courville

Introduction

trajet efficace

Données du problème

Algorithme de Dijkstra, structures de données

Résultat : stations les plus éloignées

° objectif : un rajet constitué de lusieurs types de hemins

Cas préliminaire du

Formalisation du roblème

Résolution, application

onclusion

◆□ ト ◆□ ト ◆ 壹 ト ◆ 壹 ・ 釣 ♀ ♡ ○

11

Trajet le plus court en métro - algorithme

Algorithme de Dijkstra et influence des structures de données sur la complexité

Require: Un graphe G = (V, A). V sommets. A arêtes Require: Un noeud source s Ensure: d tableau des plus court chemins de s vers $v \in V$ for all $v \in V[G]$ do $d[v] \leftarrow +\infty$, père $[v] \leftarrow$ None end for $d[s] \leftarrow 0, S \leftarrow \emptyset, Q \leftarrow V[G]$ while $Q \neq \emptyset$ do $u \leftarrow \text{Extrait}_{\text{Min}}(Q)$ $S \leftarrow S \cup \{u\}$ for all arête (u, v) d'origine u do if d[u] + w(u, v) < d[v] then $d[v] \leftarrow d[u] + w(u,v),$ pere[v] := uend if end for

end while

Table – Dijkstra : complexité (opérations)

Implantation	Complexity
Naif	$\mathcal{O}\left(V^2+A\right)$
Tas	$\mathcal{O}\left(\left(V+A\right)\log V\right)$

Table - Simulations: temps exécution pour toutes les stations du métro

Туре	Temps exécution
Naif	960ms
Tas non mutable v1	312ms
Tas mutable	191ms
Tarbre	1018ms
Tas non mutable v2	145ms

TIPE 2024

Marilou Bernard de Courville

Données du problème

Algorithme de Diikstra. structures de données

Cas préliminaire du

Formalisation du Résolution, application au cadre de la ville

Plus compliqué : plus petit chemin passant par toutes les lignes du métro

Étude de la résolution à l'aide d'un solveur linéaire

- Sujet traité par Florian Sikora [7] par étude de graphe coloré pour le réseau du métro;
- Sommet : station, arête : trajet entre deux stations connexes, arête colorée par la couleur de la ligne reliant les stations
- Problème du "Generalised directed rural postman" [2];
- Problème NP-difficile : pas de solution en temps polynomial [6];
- Résolution requiert l'utilisation d'un solveur linéaire (CPLEX d'IBM) pour "integer linear programming" (ILP) [9];
- ► Fait intervenir une matrice de contraintes (MIP) de 1270x1847, 6999 coeffs non nuls.

TIPE 2024

Marilou Bernard de Courville

Données du problème

Algorithme de Diikstra. structures de données Résultat : stations les

Cas préliminaire du métro

Résolution, application au cadre de la ville

Formalisation du problème : variables

- ▶ Ensemble V des sommets, A des arêtes, C des couleurs. $(u,v) \in V^2$, $u \xrightarrow[l \in C]{} v \in A$.
- ▶ $x_{u,v,l} \in \{0,1\}$: variable binaire pour chaque arc $u \to v$ (sur ligne l), avec x = 1 si l'arc est considéré, x = 0 sinon.
- $ightharpoonup w_{u,v,l} \in \mathbb{N}$: est le temps pour parcourir l'arête $u \to v$
- $(u,v) \in V^2$, $f_{u,v,l}, y_v \in \mathbb{N}$ sont les flots des arcs/sommets : positifs si l'arc/sommet est sur le chemin considéré.
- ightharpoonup s, t sont les points de départ/arrivée fictifs (temps nul pour rejoindre tout sommet).
- $\forall ((u,v,l_1),(v,w,l_2)) \in A^2, z_{u,v,w,l_1,l_2} \in \{0,1\} \text{ indique si deux arêtes sont utilisées consécutivement } u \xrightarrow[l_1]{} v \xrightarrow[l_2]{} w.$

TIPE 2024

Marilou Bernard de Courville

Introduction

trajet efficace en

Données du problème

Algorithme de Dijkstra, structures de données Résultat : stations les plus éloignées

2º objectif : un trajet constitué de plusieurs types de chemins

Cas préliminaire du métro

Formalisation du problème

Résolution, application au cadre de la ville

onclusion

Formalisation du problème : optimisation

Objectif: minimiser distance $\sum w_{u,v,l} \times x_{u,v,l}$ sous contraintes.

$(u,v,l)\in A$			
Autant de chemins qui entrent sur un sommet et qui en sortent :	$\sum_{(u,v,l)\in A} x_{u,v,l} = \sum_{(v,w,l)\in A} x_{v,w,l}$	(1)	
Unique chemin de la source et vers la cible :	$\sum_{(s,v,l)\in A} x_{s,v,l} = \sum_{(u,t,l)\in A} x_{u,t,l} = 1$	(2)	
Pour chaque ligne au moins 1 arc de cette ligne sélectionné :	$\forall l \in C, \sum_{(u,v,l) \in A} x_{u,v,l} \ge 1$	(3)	
Evite solutions disjointes : le flot est décroissant pour solution connectée	$\forall (u, v, l) \in A, V x_{u,v,l} \ge f_{u,v,l}$	(4)	
Tous les sommets perdent du flot sauf la source :	$\sum_{(u,v,l)\in A} f_{u,v,l} - \sum_{(v,w,l)\in A} f_{v,w,l} \ge y_v$	(5)	
Le flot au niveau du som- met est positif s'il est dans la solution :	$y_v - \sum_{(u,v,l) \in A} x_{u,v,l} - \sum_{(v,w,l) \in A} f_{v,w,l} \ge 0$	(6)	
Evite de prendre deux fois le même sommet :	$y_v \ge 2$	(7)	
Chemin consécutif :	$\begin{array}{c} x_{u,v,l_1} + x_{v,w,l_2} \le z_{u,v,w,l_1,l_2} + 1 \\ \forall l \in C, \end{array}$	(8)	
Evite de reprendre deux fois la même ligne :	$\sum z_{u,v,w,l_1,l_2} = 2$	(9)	
	$ \begin{array}{c c} (u,v,l_1),(v,w,\overline{l_2}) \text{ / } l = l_1 \text{ ou } l = l_2 \\ \hline \\ & \square \vdash \blacktriangleleft \square \vdash \blacktriangleleft \square \vdash \blacksquare \vdash \blacksquare \blacksquare \\ \end{array} $	<u> </u>	
		240	

TIPE 2024

Marilou Bernard de Courville

Données du problème

Algorithme de Diikstra. structures de données Résultat : stations les plus éloignées

Cas préliminaire du

Formalisation du problème

Résolution, application au cadre de la ville

Conclusion

TIPE 2024

Marilou Bernard de Courville

Données du problème

Algorithme de Diikstra. structures de données Résultat : stations les

Cas préliminaire du

Formalisation du

Résolution, application au cadre de la ville

Conclusion

- Deux problématiques urbaines traitées :
 - optimisation d'un trajet en métro
 - parcours touristique efficace d'une ville en empruntant différents types de chemins
- Pertinence de la modélisation des problèmes urbains par des graphes pour les résoudre.
- Application de la recherche opérationnelle pour trouver une solution.
 - Optimisation fait intervenir un grand nombre de contraintes résultant en des problèmes combinatoires complexes sans solution analytique.
 - Importance du choix des algorithmes et structures de données pour obtenir des solutions pratiques efficaces.