

范敏

2018-10-24

Contents

1. Network Representation Learning	
2. Classic Models	
3. Experiment Result	
4. Application and Challenge	

金融场景的反欺诈应用

Machine Learning with Network

Node classification Predict a type of a given node Machine Learning Link prediction X Machine Learning

Predict whether two nodes are linked

Machine Learning with Network

Key Goal: Map nodes to low-dimensional embedding

Graphs

• Graph
$$G = (V, E)$$

• Vertices
$$\mathcal{V} = \{1, \dots, n\}$$

• Edges
$$\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$$

• Vertex weights
$$b_i > 0$$
 for $i \in V$

• Edge weights
$$a_{ij} \geq 0 \text{ for } (i,j) \in \mathcal{E}$$

• Vertex fields
$$L^2(\mathcal{V}) = \{f : \mathcal{V} \to \mathbb{R}^h\}$$

Represented as $\mathbf{f} = (f_1, \dots, f_n)$

Hilbert space with inner product

$$\langle f, g \rangle_{L^2(\mathcal{V})} = \sum_{i \in \mathcal{V}} a_i f_i g_i$$

Graph Laplacian

• Laplacian operator $\Delta: L^2(\mathcal{V}) \to L^2(\mathcal{V})$

$$(\Delta f)_i = \frac{1}{b_i} \sum_{j:(i,j)\in\mathcal{E}} a_{ij} (f_i - f_j)$$

difference between f and its local average (2nd derivative on graphs)

- Core operator in spectral graph theory.
- Represented as a positive semi-definite $n \times n$ matrix

• Unnormalized Laplacian
$$\Delta = D - A$$

• Normalized Laplacian
$$\Delta = I - D^{-1/2}AD^{-1/2}$$

• Random walk Laplacian
$$\Delta = I - D^{-1}A$$

where
$$\mathbf{A} = (a_{ij})$$
 and $\mathbf{D} = \operatorname{diag}(\sum_{j \neq i} a_{ij})$

Intuition:

一张graph可以利用Laplacian矩阵表达,将矩阵进行分解,求得特征值和特征向量,目前的最优解是GraphWave求得特征值后,利用heat kernel进行采样。

但是, Laplacian的约束条件太苛刻, 导致矩阵分解在实际中无法计算以及 node feature learning, inductive learning问题

因此需要对约束条件进行放松,比如利用空间和谱阈的采样来近似原始Laplacian矩阵

$$L = D - A = U \Lambda U_T$$
 $g_{\theta} \star x = U g_{\theta} U^T x$,

- ☐ Spatial Sampling
 - Deepwalk (KDD2014)
 - Node2vec (KDD2016)
 - Struct2vec (KDD2017)
- ☐ Spectral Sampling
 - Graphwave (KDD2018)
 - GCN (ICLR2017)
 - GAT (ICLR2018)

Deepwalk KDD2014

Just run fixed-length, unbiased random walks starting from each node

V1, V3, V6......
V4, V1, V33...
V1, V3, V6.....
V4, V1, V33...
V1, V3, V6.....
V4, V1, V33...
V1, V3, V6.....

WORD2VEC

V1: (0.22, 0.33, 0.44....)

V2:(0.45,-0.1, 0.88....)

• • • • •

Skip-gram negative sampling

Node2vec KDD2016

Use flexible, biased random walks that can trade off between local and global views of the network

Word2vec Skip-gram negative sampling

Struct2vec KDD2017

Run random walks on modified versions of the original network

Graphwave KDD2018

Sampling methods:

$$L = D - A = U\Lambda U_{T}$$

$$q_s(\lambda) = e^{-\lambda s}$$

谱图小波的定义:

$$\Psi_a = \underline{U \operatorname{Diag}(q_s(\lambda_1), \dots, q_s(\lambda_N))} U^T \delta_a,$$

GCN (ICLR2017)

Graph View of GCN Model

At every iteration, the model aggregates information from one hop deeper.

GCN (ICLR2017)

Block View of the GCN Model

GAT(ICLR2018)

Localization in space = smoothness in frequency domain Convolution = re-weight = sampling

实验报告

Application and Challenge

Application

Anti-fraud

Struct2vec: Ant Financial bad/good people classification

Application and Challenge

Challenge

- How to efficiently and incrementally update the learned representations?
- How to do inductive learning?
- Subgraph Embedding?

感谢聆听 By Fan Min

