

Robotik I: Introduction to Robotics **Chapter 2 – Kinematics**

Tamim Asfour

https://www.humanoids.kit.edu

Models in Robotics – Outline

Kinematic Models

Kinematics studies of motion of bodies and systems based **only on geometry**, i.e. without considering the physical properties and the forces acting on them. The essential concept is a **pose** (position and orientation).

Dynamic Models

Dynamics studies the relationship between the **forces and moments** acting on a robot and accelerations they produce,

Geometric Models

Geometry: Mathematical description of the shape of bodies

Content

- Kinematic Model
 - Kinematic Chain
 - Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix 2
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Content

Kinematic Model

- Kinematic Chain
- Denavit-Hartenberg Convention
- Direct Kinematics Problem
- Examples
- Jacobian Matrix
- Singularities and Manipulability
- Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Kinematic Model (1)

Kinematic Model (2)

Karlsruhe Institute of Technology

Two spaces

Kinematic Model (3)

Definition

The kinematic model of a robot describes the relationships between the joint space (robot coordinates, configuration space) and the space of end effector poses in world coordinates (task space, Cartesian space).

Areas of application

Relationship between joint angles and poses of the end effector

Reachability analysis

Geometric relation between the **body parts of the robot** (self-collision)

Geometric relation to the **environment** (collision detection)

Forward Kinematics

■ **Direct** kinematics problem

■ Input: Joint angles of the robot

Output: Pose of the end effector

Forward Kinematics: HERE!

End effector

Where is my hand?

Inverse Kinematics

■ Inverse kinematics problem

Input: Target pose of the end effector

Output: Joint angles

Inverse Kinematics: Determines the joint angles

How do I move my hand to the target?

Outline: Direct and Inverse Kinematics

Joint space (configuration space)

Transformation

Cartesian coordinates (task space)

Direct Kinematics

$$x = f(\theta)$$

 $(\theta_1, \dots, \theta_n) \in \mathcal{C} \subseteq \mathbb{R}^n$

Inverse Kinematics

$$\theta = f^{-1}(x)$$

Position and orientation of the end effector

$$\mathbf{x}_{EEF} = (x, y, z, \alpha, \beta, \gamma)$$

i: Joint degrees of freedom (DoF)

m: Cartesian degrees of freedom

Content

- Kinematic Model
 - **■** Kinematic Chain
 - Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Elements of a Kinematic Chain

Kinematic Chain: Definition

Definition:

A kinematic chain is formed by **several bodies** that are **kinematically connected by joints** (e.g. robot arm).

Open kinematic chain

Closed kinematic chain

Kinematic Chain: Conventions

■ Each arm element corresponds to one rigid body.

Each arm element is connected to the next one by a joint.

For prismatic and rotational joints: Each joint has only one degree of freedom (translation respectively rotation).

■ Kinematic parameters:

- Joint definition (e.g. rotation axis)
- Transformation between joints

Kinematic Parameters

Joint parameters

Revolute joint: rotation axis

Prismatic joint: direction of translation

...

Specification of the positions of joints relative to each other

Fixed transformation between two joints

Defines the local coordinate systems of the joints

Transformation from joint i-1 to joint i with transformation matrix i-1 T_i

Number of Parameters of the Kinematic Chain

A transformation must be determined for each link:

- **3** rotation parameters
- 3 translation parameters

→ 6 parameters per link of the kinematic chain

Contents

- Kinematic Model
 - Kinematic Chain
 - **■** Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Denavit-Hartenberg (DH) Convention

Goal: Reduction of the parameters for describing an arm element

Properties

Systematic description of relations (translations and rotations)

between adjacent joints

Reduction of the number of parameters from 6 to 4

Description with homogeneous matrices

Literature: Denavit, Hartenberg: "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices", Journal of Applied Mechanics, 1955, vol 77, pp 215-221

DH Convention for the Choice of Coordinate Systems

- Each coordinate system is determined on the basis of the following three rules:
 - 1. The z_{i-1} -axis lies along the axis of movement of the *i*-th joint
 - 2. The x_i -axis lies along the common normal of z_{i-1} and z_i (direction via cross product: $x_i = z_{i-1} \times z_i$)
 - 3. The y_i -axis completes the coordinate system according to the right-hand rule

$$i \in \{\text{base}, 1, ..., n\}$$

→ Derivation of parameters for arm element and joint

Remark

- Other variants of the DH convention can also be found in the literature
- In this lecture we consider the modified variant of Waldron and Paul

DH Convention: Parameters of the Arm Element (1)

- **Each arm element** i is embedded between two joints i and i+1
- $\blacksquare z_i$ runs along the joint axis i+1

DH Convention: Parameters of the Arm Element (2)

- **Link length** a_i of an arm element i describes the **distance** from z_{i-1} to z_i
- $\blacksquare x_i$ lies along the **normal of** z_{i-1} **and** z_i (cross product)

DH Convention: Parameters of the Arm Element (3)

■ Link twist α_i describes the angle from z_{i-1} to z_i around x_i .

DH Convention: Parameters of the Arm Element (4)

Link offset d_i is the distance between x_{i-1} -axis and x_i -axis along the z_{i-1} -axis

DH Convention: Parameters of the Arm Element (5)

■ Joint angle θ_i is the angle from x_{i-1} to x_i around z_{i-1}

DH Parameters

■ The four parameters a_i , α_i , d_i and θ_i are called DH parameters.

They describe the transformations between two successive rotational or translational robot joints

DH Parameters (Denavit-Hartenberg Parameters)

旋转关节

滑动关节

Parameter	Symbol	Revolute joint	Prismatic joint
Link length	а	constant	constant
Link twist	α	constant	constant
Link offset	d	constant	variable
Joint angle	θ	variable	constant

Transformation Between Two Robot Joints

DH Transformation Matrices (1)

Transformation from LCS_{i-1} to LCS_i

A **rotation** θ_i around the

$$Z_{i-1} \text{-axis so that the } x_{i-1} \text{-axis}$$
 is parallel to the x_i -axis.
$$x_{i-1} \quad y_{i-1} \quad R_{z_{i-1}}(\theta_i) = \begin{pmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

A translation d_i along the z_{i-1} -axis to the point where z_{i-1} and x_i intersect.

$$T_{z_{i-1}}(d_i) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 LCS_i : Local Coordinate System of joint i

DH Transformation Matrices (2)

Transformation from LCS_{i-1} to LCS_i

- 3. A translation a_i along the x_i -axis to align the origins of the coordinate systems.
- A **rotation** α_i around the x_i -axis to convert the z_{i-1} -axis into the z_i -axis.

$$T_{x_i}(a_i) = \begin{pmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$z_i$$
 y_i z_i

$$R_{x_{i}}(\alpha_{i}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 LCS_i : Local Coordinate System of joint i

DH Transformation Matrices (3)

Transformation LCS_{i-1} to LCS_i

$$A_{i-1,i} = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

$$= \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos \alpha_i & \sin \theta_i \cdot \sin \alpha_i & a_i \cdot \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cdot \cos \alpha_i & -\cos \theta_i \cdot \sin \alpha_i & a_i \cdot \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos \alpha_i & -\cos \theta_i \cdot \sin \alpha_i & a_i \cdot \sin \theta_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse DH Transformation

Transformation from LCS_{i-1} to LCS_i

$$\begin{split} A_{i-1,i}^{-1} &= A_{i,i-1} \\ &= \begin{bmatrix} \cos\theta_i & \sin\theta_i & 0 & -a_i \\ -\cos\alpha_i \cdot \sin\theta_i & \cos\theta_i \cdot \cos\alpha_i & \sin\alpha_i & -d_i \cdot \sin\alpha_i \\ \sin\theta_i \cdot \sin\alpha_i & -\sin\alpha_i \cdot \cos\theta_i & \cos\alpha_i & -d_i \cdot \cos\alpha_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

$$T = \begin{pmatrix} n_x & o_x & a_x & u_x \\ n_y & o_y & a_y & u_y \\ n_z & o_z & a_z & u_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad T^{-1} = \begin{pmatrix} n_x & n_y & n_z & -n^T \mathbf{u} \\ o_x & o_y & o_z & -o^T \mathbf{u} \\ a_x & a_y & a_z & -a^T \mathbf{u} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 See chapter 1

Concatenation of DH Transformations

- By concatenating the DH matrices, the pose of individual **coordinate systems** relative to the reference coordinate system can be determined.
- \blacksquare Position of the m-th coordinate system relative to the base:

$$S_{\text{base},m}(\boldsymbol{\theta}) = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot \dots \cdot A_{m-2,m-1}(\theta_{m-1}) \cdot A_{m-1,m}(\theta_m)$$
$$= \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}$$

lacktriangle This is a mapping of the configuration space $C \subset \mathbb{R}^n$ to the workspace $W \subset \mathbb{R}^m$

$$\mathbb{R}^n \to \mathbb{R}^m$$
: $x = f(\theta)$

DH Parameters – Notes

- The four parameters a_i , α_i , d_i and θ_i are called DH parameters.
- Important: Reference coordinate system (RCS) and end effector coordinate system (ECS) of the kinematic chain
 - As intuitive as possible; set so that the associated DH parameters are simple (preferably zero)
 - RCS as the coordinate system of the first joint in zero position
 - End effector coordinate system at an 'important reference point' at the end effector

Summary: Determination of the DH Parameters

- Sketch of the manipulator
- 2. Identify and enumerate the joints (1, ..., last link = n)
- 3. Draw the axes z_{i-1} for each joint i
- 4. Determine the **parameters** a_i between z_{i-1} and z_i
- 5. Draw the x_i -axes
- 6. Determine the **parameters** α_i (twist around the x_i -axes)
- 7. Determine the **parameters** d_i (link offset)
- 8. Determine the **angles** θ_i around the z_{i-1} -axes
- 9. Compose the joint transformation matrices $A_{i-1,i}$

Contents

- Kinematic Model
 - Kinematic Chain
 - Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Direct Kinematics Problem (1)

Karlsruhe Institute of Technology

Direct kinematics problem

■ Input: Joint angles of the robot

Output: Pose of the end effector

Forward Kinematics: HERE!

End effector

Where is my hand?

Direct Kinematics Problem (2)

- The pose of the end effector (EEF) is to be determined from the DH parameters and the joint angles.
- The pose of the end effector (EEF) in relation to the RCS is given by:

$$S_{base,EEF}(\theta) = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot \dots \cdot A_{n-2,n-1}(\theta_{n-1}) \cdot A_{n-1,n}(\theta_n)$$
$$= \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{pmatrix}$$

■ Joint angles $\theta_1, ..., \theta_n$ are given \Rightarrow The pose of the EEF is obtained from the equation above by inserting the joint angle values.

Contents

Kinematic Model

Kinematic Chain

Denavit-Hartenberg Convention

Direct Kinematics Problem

Examples

Jacobian Matrix

Singularities and Manipulability

Representation of Reachability

Geometric Model

Areas of Application

Classification

Examples

Example 1: Planar Robot (in xy-Plane)

Example 1: Planar Robot

z-axes are parallel

No translation in z-direction

	•		
$p_{\mathcal{y}}$	y ₃ ▼ -	P	
n	y_2 $\int_{a_3}^{a_3}$	θ_3	
p_{Wy}	y_1 a_2 θ_2	V	
	a_1 θ_1		
///	x_0 p_{Wx}	$-\frac{1}{p_x}$	

Joint	a_i	α_i	d_{i}	$ heta_i$
1	a_1	0	0	$\overline{ heta_1}$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	$ heta_3$

$$A_{i-1,i} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i \cdot \cos\alpha_i & \sin\theta_i \cdot \sin\alpha_i & a_i \cdot \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cdot \cos\alpha_i & -\cos\theta_i \cdot \sin\alpha_i & a_i \cdot \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i-1,i} = \begin{bmatrix} c_i & -s_i & 0 & a_i c_i \\ s_i & c_i & 0 & a_i s_i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 1: Planar Robot

$$A_{0,3}(\theta) = A_{0,1} \cdot A_{1,2} \cdot A_{2,3} = \begin{bmatrix} c_{123} & -s_{123} & 0 & a_1c_1 + a_2c_{12} + a_3c_{123} \\ s_{123} & c_{123} & 0 & a_1s_1 + a_2s_{12} + a_3s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Abbreviations: $c_{123} = \cos(\theta_1 + \theta_2 + \theta_3)$, $s_{123} = \sin(\theta_1 + \theta_2 + \theta_3)$, etc.

Joint	a_i	$lpha_i$	d_i	$ heta_i$
1	0	-90	0	$\overline{ heta_1}$
2	0	90	d_2	$ heta_2$
3	0	0	d_3^-	0

$$A_{0,1} = \begin{bmatrix} c_I & 0 & -s_I & 0 \\ s_I & 0 & c_I & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i-1,i} = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

Joint	a_{i}	$lpha_i$	d_i	$ heta_i$
1	0	-90	0	$\overline{ heta_1}$
2	0	90	d_2	$ heta_2$
3	0	0	d_3	0

$$A_{1,2} = \begin{bmatrix} c_2 & 0 & s_2 & 0 \\ s_2 & 0 & -c_2 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Joint	a_i	$lpha_i$	d_{i}	$ heta_i$
1	0	-90	0	$\overline{ heta_1}$
2	0	90	d_2	$ heta_2$
3	0	0	d_3	0

$$A_{2,3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{0,3}(\theta) = A_{0,1} \cdot A_{1,2} \cdot A_{2,3} = \begin{bmatrix} c_1 c_2 & -s_1 & c_1 s_2 & c_1 s_2 d_3 - s_1 d_2 \\ s_1 c_2 & c_1 & s_1 s_2 & s_1 s_2 d_3 + c_1 d_2 \\ -s_2 & 0 & c_2 & c_2 d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DH Notation: Arm of ARMAR-I

Joint i	θ_i [°]	a_i [mm]	α_i [°]	d_i [mm]
1	$ heta_1$	30	-90	0
2	$\theta_2 - 90$	0	-90	0
3	$\theta_3 + 90$	0	90	223,5
4	$ heta_4$	0	-90	0
5	θ_5	0	90	270
6	$\theta_6 + 90$	0	-90	0
7	$ heta_7$	140	90	0

Forward Kinematics (1)

- Given: θ , $A_{i-1,i}(\theta)$
- **Desired:** $S_{base,EEF}(\theta)$

$$A_{i-1,i}(\theta) = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

$$= \begin{bmatrix} \cos\theta_i & -\sin\theta_i \cdot \cos\alpha_i & \sin\theta_i \cdot \sin\alpha_i & a_i \cdot \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cdot \cos\alpha_i & -\cos\theta_i \cdot \sin\alpha_i & a_i \cdot \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S_{base,EEF}(\theta) = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot \dots \cdot A_{n-2,n-1}(\theta_{n-1}) \cdot A_{n-1,n}(\theta_n)$$
$$= \begin{pmatrix} R & t \\ \mathbf{0}^T & 1 \end{pmatrix}$$

Forward Kinematics (2)

Pose of the end effector coordinate system relative to the base:

$$S_{base,EEF}(\boldsymbol{\theta}) = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot \dots \cdot A_{n-2,n-1}(\theta_{n-1}) \cdot A_{n-1,n}(\theta_n)$$

■ This is a mapping of the configuration space $C \subset \mathbb{R}^n$ to the workspace $W \subset \mathbb{R}^m$

$$\mathbb{R}^n \to \mathbb{R}^m$$
: $x = f(\theta)$

Derivation of the Forward Kinematics

■ Forward Kinematics: Joint angle position → end effector pose

$$\mathbb{R}^n \to \mathbb{R}^m$$
: $\mathbf{x}(t) = \mathbf{f}(\boldsymbol{\theta}(t))$
Pose of the EEF in W Joint angle vector in C

- How do the corresponding relationships look like?
 - Joint angular velocities → end effector velocities
 - Joint torques → end effector forces and torques
- Approach: Derive forward kinematics → Jacobian matrix

Contents

- Kinematic Model
 - Kinematic Chain
 - Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Reminder: Jacobian Matrix

Given a differentiable function

$$f \colon \mathbb{R}^n \to \mathbb{R}^m \ \left\{ \text{ i.e. } f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix} \right.$$

■ The Jacobian Matrix contains all first-order partial derivatives of f. For $a \in \mathbb{R}^n$:

$$J_{f}(\boldsymbol{a}) = \left(\frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{a})\right)_{i,j} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\boldsymbol{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\boldsymbol{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\boldsymbol{a}) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

 f_1, \dots, f_m denote the component functions of f and x_1, \dots, x_n the coordinates in \mathbb{R}^n .

Jacobian Matrix in Forward Kinematics

Problem: Forward kinematics is matrix-valued (n: number of joints)

$$f \colon \mathbb{R}^n \to \mathrm{SE}(3)$$

- ⇒ Jacobian matrix not defined
- Solution: Select vector representation,
 e.g. use roll, pitch and yaw angles to represent orientations

$$f \colon \mathbb{R}^n \to \mathbb{R}^6 \left\{ \begin{pmatrix} x \\ y \\ z \\ \alpha \\ \beta \\ \gamma \end{pmatrix} \right\}$$

End Effector Velocities

Assumption: The kinematic chain moves along a trajectory

$$\theta: \mathbb{R} \to \mathbb{R}^n$$

■ Pose of the end effector $x(t) \in \mathbb{R}^6$ at time t:

$$\mathbf{x}(t) = f(\theta(t))$$

■ The end effector velocity depends linearly on the joint velocities (chain rule):

$$\dot{x}(t) = \frac{\partial f(\theta(t))}{\partial t} = \frac{\partial f(\theta(t))}{\partial \theta} \cdot \frac{\partial \theta(t)}{\partial t} = J_f(\theta(t)) \cdot \dot{\theta}(t)$$

End Effector Velocities

The Jacobian matrix relates Cartesian end effector velocities to joint angle velocities

$$\dot{\mathbf{x}}(t) = J_f(\theta(t)) \cdot \dot{\theta}(t)$$

- The following problems can be solved with this relation:
 - Forward kinematics in the velocity space: Given joint angle velocities, which Cartesian end effector velocities are realized?
 - Inverse kinematics in the velocity space: Given Cartesian end effector velocities, which joint angle velocities are necessary to realize them?

Kinematics using the Jacobian Matrix (1)

Forward kinematics:

Given the joint angle velocities $\dot{\theta}(t)$, which Cartesian end effector velocities $\dot{x}(t)$ are realized?

Insert $\dot{\theta}(t)$:

$$\dot{\boldsymbol{x}}(t) = J_f(\boldsymbol{\theta}(t)) \cdot \dot{\boldsymbol{\theta}}(t)$$

Kinematics using the Jacobian Matrix (2)

Inverse kinematics:

Given a Cartesian end effector velocities $\dot{x}(t)$, which joint angle velocities $\dot{\theta}(t)$ are necessary to realize them?

$$\dot{\boldsymbol{x}}(t) = J_f(\theta(t)) \cdot \dot{\boldsymbol{\theta}}(t)$$

$$J_f^{-1}(\theta(t)) \cdot [\quad]$$

$$\dot{\boldsymbol{\theta}}(t) = J_f^{-1}(\theta(t)) \cdot \dot{\boldsymbol{x}}(t)$$

Forces and Torques at the End Effector

Assumption: The kinematic chain moves along a trajectory

$$\theta: \mathbb{R} \to \mathbb{R}^n$$

■ The work done (force · distance) must remain constant regardless of the reference system (friction neglected) ②略摩擦

$$\int_{t_1}^{t_2} \dot{\theta}(t)^T \cdot \tau(t) \, dt = W = \int_{t_1}^{t_2} \dot{x}(t)^T \cdot F(t) \, dt$$

With:

 $\dot{\theta}(t)$: $\mathbb{R} \to \mathbb{R}^n$, Joint velocities

 $\tau(t)$: $\mathbb{R} \to \mathbb{R}^n$, Joint torques

 $\dot{x}(t)$: $\mathbb{R} \to \mathbb{R}^6$, End effector velocities

F(t): $\mathbb{R} \to \mathbb{R}^6$, Force-torque vector at the end effector

Forces and Torques at the End Effector

$$\int_{t_1}^{t_2} \dot{\theta}(t)^T \cdot \tau(t) \, dt = W = \int_{t_1}^{t_2} \dot{x}(t)^T \cdot F(t) dt$$

■ The relation must apply for each time interval $[t_1, t_2]$, therefore:

$$\dot{\theta}(t)^T \cdot \tau(t) = \dot{x}(t)^T \cdot F(t)$$

Known relation between end effector velocity and Jacobian matrix:

$$\dot{\theta}(t)^T \cdot \tau(t) = \dot{\theta}(t)^T \cdot J_f^T(\theta(t)) \cdot F(t) \qquad \dot{x}(t) = J_f(\theta(t)) \cdot \dot{\theta}(t)$$

■ Since $\dot{\theta}(t)$ is arbitrary, it follows that:

$$\tau(t) = J_f^T(\theta(t)) \cdot F(t)$$

Forces and Torques at the End Effector

■ The Jacobian matrix relates forces and torques at the end effector to the torques in the joints:

$$\tau(t) = J_f^T \big(\theta(t) \big) \cdot F(t)$$

- The following problems can be solved with this relation:
 - Given forces/torques at the end effector, which torques must act in the joints to resist this force?
 - Given the torques in the joints, which resulting forces and torques act on the (fixed) end-effector?

Recap – DH Transformation Matrices

Transformation from LCS_{i-1} to LCS_i

$$A_{i-1,i} = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

$$= \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos \alpha_i & \sin \theta_i \cdot \sin \alpha_i & a_i \cdot \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cdot \cos \alpha_i & -\cos \theta_i \cdot \sin \alpha_i & a_i \cdot \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos \alpha_i & -\cos \theta_i \cdot \sin \alpha_i & a_i \cdot \sin \theta_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Recap – Direct and Inverse Kinematics

Joint angle space (configuration space)

Transformation

Cartesian coordinates (workspace)

 $X \subset \mathbb{R}^m$

$$x = f(\theta)$$

$$\boldsymbol{\theta} = f^{-1}\left(\boldsymbol{x}\right)$$

E.g. position and orientation of the end effector

$$\mathbf{x}_{EEF} = (x, y, z, \alpha, \beta, \gamma)$$

Recap – Jacobian Matrix

$$\mathbf{x} = f(\theta)
\dot{\mathbf{x}} = f(\theta)
\dot{\mathbf{x}} = J_f(\theta) \cdot \dot{\boldsymbol{\theta}}
J_f(\theta) = \left(\frac{\partial f_i}{\partial \theta_j}(\theta)\right)_{i,j} = \left(\frac{\partial f_1}{\partial \theta_1}(\theta) & \cdots & \frac{\partial f_1}{\partial \theta_n}(\theta) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial \theta_1}(\theta) & \cdots & \frac{\partial f_m}{\partial \theta_n}(\theta)
\right) \in \mathbb{R}^{m \times n}$$

$$\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \alpha, \beta, \mathbf{y})^T \in \mathbb{R}^{m=6} \text{ and } \theta \in \mathbb{R}^n$$

$$J_{f}(\boldsymbol{\theta}) = \left(\frac{\partial f_{i}}{\partial \theta_{j}}(\boldsymbol{\theta})\right)_{i,j} = \begin{pmatrix} \frac{\partial x}{\partial \theta_{1}}(\boldsymbol{\theta}) & \cdots & \frac{\partial x}{\partial \theta_{n}}(\boldsymbol{\theta}) \\ \frac{\partial y}{\partial \theta_{1}}(\boldsymbol{\theta}) & & \frac{\partial y}{\partial \theta_{n}}(\boldsymbol{\theta}) \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial \theta_{1}}(\boldsymbol{\theta}) & \cdots & \frac{\partial y}{\partial \theta_{n}}(\boldsymbol{\theta}) \end{pmatrix} \in \mathbb{R}^{6 \times n}$$

Recap – Jacobian Matrix

Velocity space

$$\dot{x}(t) = J_f(\theta(t)) \cdot \dot{\theta}(t)$$

Force space

$$\tau(t) = J_f^T(\theta(t)) \cdot F(t)$$

Calculation of the Jacobian Matrix

lacktriangle Each column of the Jacobian matrix corresponds to a joint θ_i of the kinematic chain

$$J_f = \begin{pmatrix} \frac{\partial f}{\partial \theta_1} & \dots & \frac{\partial f}{\partial \theta_n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

$$J_{f}(\boldsymbol{\theta}) = \left(\frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{\theta})\right)_{i,j} = \begin{pmatrix} \frac{\partial f_{1}}{\partial \theta_{1}}(\boldsymbol{\theta}) & \cdots & \frac{\partial f_{1}}{\partial \theta_{n}}(\boldsymbol{\theta}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial \theta_{1}}(\boldsymbol{\theta}) & \cdots & \frac{\partial f_{m}}{\partial \theta_{n}}(\boldsymbol{\theta}) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Approach:

The numerical calculation of the Jacobian matrix is carried out column by column

⇒ joint by joint

Geometric Calculation of the Jacobian Matrix

$$\mathbf{x} = f(\theta)$$

$$\mathbf{x} = (x, y, z, \alpha, \beta, \gamma)^T \in \mathbb{R}^{m=6} \text{ and } \theta \in \mathbb{R}^{n=6}$$

$$\dot{\boldsymbol{x}} = J(\theta) \cdot \dot{\boldsymbol{\theta}}$$

$$\begin{pmatrix} x \\ y \\ z \\ \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \\ j_{31} & j_{32} \\ j_{41} & j_{42} \\ j_{51} & j_{52} \\ j_{61} & j_{62} \end{pmatrix}$$

$$\begin{vmatrix}
\dot{J}_{16} \\
\dot{J}_{26} \\
\dot{J}_{36} \\
\dot{J}_{46} \\
\dot{J}_{56} \\
\dot{J}_{66}
\end{vmatrix} = \begin{pmatrix}
\dot{\theta}_1 \\
\dot{\theta}_2 \\
\dot{\theta}_3 \\
\dot{\theta}_4 \\
\dot{\theta}_5 \\
\dot{\theta}_6
\end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{v} \\ \mathbf{\omega} \end{pmatrix} = \begin{pmatrix} J_1(\theta), J_2(\theta), \dots, J_6(\theta) \end{pmatrix} \cdot \boldsymbol{\theta}^*$$

Geometric Calculation of the Jacobian Matrix

- 1. Case: Prismatic joint 移动关节
- **Assumption**: The j-th joint performs a translation in direction of the unit vector $z_i \in \mathbb{R}^3$.
- It follows:

$$J_j(\boldsymbol{\theta}) = \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_j} = \begin{bmatrix} \mathbf{z}_j \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^6$$

- 2. Case: Revolute joint 旋转关节
- **Assumption:** The *j*-th joint performs a rotation around the axis $z_i \in \mathbb{R}^3$ at the position $p_i \in \mathbb{R}^3$.
- It follows:

$$J_j(\boldsymbol{\theta}) = \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_j} = \begin{bmatrix} \boldsymbol{z}_j \times (f(\boldsymbol{\theta}) - \boldsymbol{p}_j) \\ \boldsymbol{z}_j \end{bmatrix} \in \mathbb{R}^6$$

Geometric Calculation of the Jacobian Matrix

2. Case: Revolute joint

$$J_j(\boldsymbol{\theta}) = \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_i} = \begin{bmatrix} \boldsymbol{z}_j \times (f(\boldsymbol{\theta}) - \boldsymbol{p}_j) \\ \boldsymbol{z}_j \end{bmatrix} \in \mathbb{R}^6$$

 \blacksquare Manipulator with n joints

$$J(\boldsymbol{\theta}) = \begin{bmatrix} \mathbf{z}_0 \times (f(\boldsymbol{\theta}) - \boldsymbol{p}_0) & \mathbf{z}_1 \times (f(\boldsymbol{\theta}) - \boldsymbol{p}_1) & \dots & \mathbf{z}_{n-1} \times (f(\boldsymbol{\theta}) - \boldsymbol{p}_{n-1}) \\ \mathbf{z}_0 & \mathbf{z}_1 & \dots & \mathbf{z}_{n-1} \end{bmatrix}$$

Summary: Jacobian Matrix

Forward kinematics:

$$f: \mathbb{R}^n \to \mathbb{R}^6, \ f(\boldsymbol{\theta}) = \boldsymbol{x} = (x, y, z, \alpha, \beta, \gamma)$$

Jacobian matrix:

$$J_f = \begin{pmatrix} \frac{\partial f}{\partial \theta_1} & \dots & \frac{\partial f}{\partial \theta_n} \end{pmatrix} \in \mathbb{R}^{6 \times n}$$

- Properties:
 - \blacksquare J_f describes the relations between
 - Joint angle velocities (n-dimensional)
 and end effector velocities (6-dimensional)
 - Joint torques (n-dimensional) and forces and torques at the end effector (6-dimensional)
 - The Jacobian matrix depends on the joint angle configuration

Jacobian Matrix: Example (1)

Karlsruhe Institute of Technology

- \blacksquare Manipulator with two joints θ_1 , θ_2
- \blacksquare Find \dot{x}

Jacobian Matrix: Example (2)

Forward kinematics

$$\mathbf{x} = f(\boldsymbol{\theta})$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = f \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

Velocity of the end effector

$$\dot{\boldsymbol{x}} = J_f(\boldsymbol{\theta}) \cdot \dot{\boldsymbol{\theta}}$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = J_f(\theta) \cdot \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

Jacobian Matrix: Example (3)

Forward kinematics

$$x_1 = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) x_2 = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = f \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

Jacobian Matrix: Example (4)

Forward kinematics

$$x_1 = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

 $x_2 = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$

Derivation

$$\dot{x_1} = -L_1 \dot{\theta}_1 \sin \theta_1 - L_2 (\dot{\theta}_1 + \dot{\theta}_2) \sin(\theta_1 + \theta_2)
\dot{x_2} = L_1 \dot{\theta}_1 \cos \theta_1 + L_2 (\dot{\theta}_1 + \dot{\theta}_2) \cos(\theta_1 + \theta_2)$$

Jacobian matrix

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

$$I_1(\theta) \qquad I_2(\theta)$$

Jacobian Matrix: Example (5)

End effector velocity

$$\boldsymbol{v}_{EEF} = J_1(\boldsymbol{\theta})\dot{\theta}_1 + J_2(\boldsymbol{\theta})\dot{\theta}_2$$

As long as $J_1(\theta)$ and $J_2(\theta)$ are **not linearly dependent**, v_{EEF} can be generated in any direction in the x_1x_2 -plane.

Singularities

$$J_1(\theta)$$
 and $J_2(\theta)$ linearly dependent $\rightarrow J(\theta)$ becomes singular

E.g. if
$$\theta_2 = 0^{\circ}$$

The possible movements of the end effector are restricted.

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \frac{\theta_2}{\theta_2}) & -L_2 \sin(\theta_1 + \frac{\theta_2}{\theta_2}) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \frac{\theta_2}{\theta_2}) & L_2 \cos(\theta_1 + \frac{\theta_2}{\theta_2}) \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1) & -L_2 \sin(\theta_1) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1) & L_2 \cos(\theta_1) \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

$$\begin{pmatrix} -(L_1 + L_2) \sin \theta_1 & -L_2 \sin \theta_1 \\ (L_1 + L_2) \cos \theta_1 & L_2 \cos \theta_1 \end{pmatrix}$$

Contents

- Kinematic Model
 - Kinematic Chain
 - Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Recap – Jacobian Matrix

Velocity space

$$\dot{\mathbf{x}}(t) = J_f(\theta(t)) \cdot \dot{\theta}(t)$$

Force space

$$\tau(t) = J_f^T(\theta(t)) \cdot F(t)$$

Kinematic Singularities

- If a robot is in a configuration $\theta_{singular} \in C$ in which it is no longer able to move instantaneously in one or more directions, this is referred to as a kinematic singularity.
- Configurations $\theta_{singular} \in C$ that lead to a kinematic singularity are called singular.
- Can we distinguish singular from non-singular configurations?
 - → Via the Jacobian matrix

There is no joint angular velocity that generates an end effector velocity in the **red direction**.

⇒ The configuration is singular.

Kinematic Singularities: Example

Forward kinematics:
$$\mathbf{x} = f(\boldsymbol{\theta}) = \begin{pmatrix} l_1 \cdot \cos \theta_1 + l_2 \cdot \cos(\theta_1 + \theta_2) \\ l_1 \cdot \sin \theta_1 + l_2 \cdot \sin(\theta_1 + \theta_2) \end{pmatrix}$$

Jacobian matrix:
$$J(\boldsymbol{\theta}) = \begin{pmatrix} -l_1 \cdot \sin \theta_1 - l_2 \cdot \sin(\theta_1 + \theta_2) & -l_2 \cdot \sin(\theta_1 + \theta_2) \\ l_1 \cdot \cos \theta_1 + l_2 \cdot \cos(\theta_1 + \theta_2) & l_2 \cdot \cos(\theta_1 + \theta_2) \end{pmatrix}$$

For the singular configuration $\boldsymbol{\theta} = \left(\frac{\pi}{4}, 0\right)^T$:

The first and second column are linearly dependent

$$\boldsymbol{J}_1 = \frac{l_1 + l_2}{l_2} \cdot \boldsymbol{J}_2$$

Kinematic Singularities: Jacobian Matrix (1)

Forward kinematics in the velocity space:

The end effector velocity is a **linear combination** of the columns of the Jacobian matrix.

$$J(\boldsymbol{\theta}) = \left(\frac{\partial f}{\partial \theta_{1}}, \frac{\partial f}{\partial \theta_{2}}, \dots, \frac{\partial f}{\partial \theta_{n}}\right) = (\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \dots, \boldsymbol{J}_{n})$$

$$\dot{\boldsymbol{x}} = J(\boldsymbol{\theta}) \cdot \dot{\boldsymbol{\theta}}$$

$$\dot{\boldsymbol{x}} = (\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \dots, \boldsymbol{J}_{n}) \cdot \begin{pmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{pmatrix} = \boldsymbol{J}_{1} \cdot \dot{\theta}_{1} + \boldsymbol{J}_{2} \cdot \dot{\theta}_{2} + \dots + \boldsymbol{J}_{n} \cdot \dot{\theta}_{n}$$

Kinematic Singularities: Jacobian Matrix (2)

The end effector velocity is a linear combination of the columns of the Jacobian matrix.

$$\dot{\mathbf{x}} = \mathbf{J}_1 \cdot \dot{\theta}_1 + \mathbf{J}_2 \cdot \dot{\theta}_2 + \dots + \mathbf{J}_n \cdot \dot{\theta}_n \qquad J(\boldsymbol{\theta}) = (\mathbf{J}_1, \mathbf{J}_2 \dots, \mathbf{J}_n)$$

If a robot is in a configuration $\theta_{singular} \in C$ in which it is no longer able to move instantaneously in one or more directions, this is referred to as a kinematic singularity.

In mathematical terms, kinematic singularity means that the linear combination of Jacobian columns does not span the entire end effector velocity space.

The Jacobian matrix $J(\theta)$ has a rank smaller than the workspace dimension.

$$rank J(\boldsymbol{\theta}) < m, \quad \dot{\boldsymbol{x}} \in \mathbb{R}^m$$

Kinematic Singularities: Definition

Given a forward kinematics function f

$$x = f(\theta), \quad \theta \in C \subset \mathbb{R}^n, \quad x \in W \subset \mathbb{R}^m$$

and the corresponding Jacobian matrix

$$J(\boldsymbol{\theta}) = \left(\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, \dots, \frac{\partial f}{\partial \theta_n}\right) \in \mathbb{R}^{m \times n},$$

a configuration $\theta_{\text{singular}} \in C$ is called **singular** if the rank of the Jacobian matrix is smaller than the dimension of the workspace.

rank
$$I(\boldsymbol{\theta}) < m$$

Singularities

Definition:

A kinematic chain is in a singular configuration if the associated Jacobian matrix is not of full rank, i.e. two or more columns of $J(\theta)$ are linearly dependent.

- A singular Jacobian matrix cannot be inverted
 - ⇒ Certain end effector movements are impossible

In the vicinity of singularities, large joint velocities may be necessary to maintain an end effector velocity.

在奇异点附近,可能需要较大的关节速度来保持末端执行器的速度

Manipulability

Manipulability: Measure of the freedom of movement of the end effector; also how 'close' a configuration is to a singularity

Manipulability ellipsoid

- lacktriangle Describes the end effector velocities for joint angle velocities with $\|\dot{ heta}\|=1$
- Use $J(\theta)$ to map the **unit circle** of joint angle velocities to the space of end effector velocities.
- Result: Manipulability ellipsoid
- Depends on joint angle configuration
- Analysis
 - Circle ('large ellipsoid'): End effector movement is possible without restriction in any direction.
 - Degenerate cases (compressed ellipsoid):
 End effector movement is restricted in certain directions.

Manipulability: Eigenvalue Analysis

- Calculate $A(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) \cdot J(\boldsymbol{\theta})^T \in \mathbb{R}^{m \times m}$
- lacksquare $A(oldsymbol{ heta})$ is
 - Quadratic 二次型
 - Symmetric 对称
 - Positive definite 正定
 - Invertible 可逆
- lacktriangle Eigenvalues λ_i and Eigenvectors $oldsymbol{v_i}$ of A
 - $Av_i = \lambda_i v_i$
 - $(\lambda_i I A) \mathbf{v}_i = \mathbf{0}$
- Singular values

Volume V is proportional to

$$\sqrt{\lambda_1 \lambda_2 \dots \lambda_m} = \sqrt{\det(JJ^T)}$$

Manipulability ellipsoid:

Geometric representation of the manipulability

Manipulability: Calculation

- Scalar measures for manipulability
 - Smallest singular value

$$\mu_1(\theta) = \sigma_{min}(A(\theta))$$

Inverse condition

$$\mu_2(\theta) = \frac{\sigma_{min}(A(\theta))}{\sigma_{max}(A(\theta))}$$

■ Determinant 决定因素

$$\mu_3(\theta) = \det A(\theta)$$

- Application:
 - Analysis of joint angle configurations
 - Singularity avoidance

Force Ellipsoid

$$\tau(t) = J_f^T(\theta(t)) \cdot F(t)$$

$$\rightarrow$$

$$F(t) = J_f^{-T}(\theta(t)) \cdot \tau(t)$$

Manipulability and Force Ellipsoid

Manipulability – Examples

Contents

- Kinematic Model
 - Kinematic Chain
 - Denavit-Hartenberg Convention
 - Direct Kinematics Problem
 - Examples
 - Jacobian Matrix
 - Singularities and Manipulability
 - Representation of Reachability
- Geometric Model
 - Areas of Application
 - Classification
 - Examples

Joint Angle Limits

- A robot with the configuration space $C \subset \mathbb{R}^n$ generally only covers part of the underlying \mathbb{R}^n as there are joint angle limits.
- There is a minimum and maximum value for each joint

$$\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n) \in C$$
$$\theta_i \in [\theta_{i,\min}, \theta_{i,\max}]$$

- Exception: Continuous rotation joints (ARMAR-6)
- Joint angle limits restrict the reachable part of the workspace

$$W_{\text{reachable}} \subseteq W \subset \mathbb{R}^6$$

Representation of Reachability (1)

- Reachable part of the workspace of the robot in \mathbb{R}^6
- Approximation using a 6-dimensional grid
- Entry in each grid cell:
 - Reachability:

Binary: Is there at least one joint angle configuration so that the Tool Center Point (TCP) lies within the 6D grid cell?

Manipulability:

Maximum manipulability value of a grid cell, e.g. $\mu_1(\theta)$

Vahrenkamp, N., Asfour, T. and Dillmann, R., Efficient Inverse Kinematics Computation based on Reachability Analysis, International Journal of Humanoid Robotics (IJHR), vol. 9, no. 4, 2012

Visualization of reachability and manipulability for the ARMAR-6 and ARMAR-III robots

Representation of Reachability (2)

Generation

- Offline process in simulation
- Check all joint angles
 - in x steps (e.g. x = 5°)
 - Determine the pose of the TCP using forward kinematics
 - Determine the grid cell and set the entry

Application

- Pre-calculated reachability information
- Quick decision whether a pose is reachable with the end effector. Effort: O(1)
- Can be used for grasp selection

Grasps that cannot be reached can be efficiently sorted out.

Contents

Kinematic Model

Kinematic Chain

Denavit-Hartenberg Convention

Direct Kinematic Problem

Examples

Jacobian Matrix

Singularities and Manipulability

Representation of Reachability

Geometric Model

Areas of Application

Classification

Examples

Geometric Model: Motivation (1)

Collision and contact calculation

Grasping

Motion planning

Geometric Model: Motivation (2)

Geometric Model: Motivation (3)

Simulation

Imitation

Haptic exploration

Geometric Model

Application

- Graphical representation of bodies (visualization)
- Starting point for distance measurements and collision detection
- Basis for calculating the movements of bodies
- Basis for determining the acting forces and torques

Geometric Model: Classification

- Classification according to spaces
 - 2D models
 - 3D models

基本元素

- Classification according to basic primitives
 - Edge or wireframe models
 - Surface models
 - Volume models

Block World

■ The bodies are represented by **bounding boxes**.

Used in the first steps of collision avoidance.

■ Class: 3D, volumes or surfaces

ARMAR-III block world model

Edge Model

The bodies are represented by polygons (edges).

Used for quick visualization.

Class: 3D, edges or surfaces

ARMAR-6 head model

ARMAR-III edge model

Volume Model

SALET LANGE OF THE PROPERTY OF

- The bodies are represented accurately.
- Precise collision detection possible.
- Used for displaying animations.
- Class: 3D, volume

ARMAR-III volume model

Collision Model

SOLIT

■ The bodies are represented in **simplified** form.

Fast collision detection possible

■ Class: 3D, volume

ARMAR-III collision model

Summary

Kinematic model

Denavit-Hartenberg convention: Minimum number of parameters to describe transformation between consecutive joints

Direct kinematics problem: Calculate end-effector pose from joint angles

Jacobian matrix: The solution for everything ©

Singularities and manipulability

Reachability

Geometric model

Classification according to space (2D/3D) and basic primitives (edge or wireframe models, surface models and volume models)

