Math 21C Kouba Disussion Sheet 4 - Key Answers by Doug DESherman@UCDavis.edu

1. Use what you know about convergin geometric series to write each power series as an ordinary function

a.)
$$\sum_{n=2}^{\infty} \frac{x^n}{3^n}$$

b.)
$$\sum_{n=0}^{\infty} \frac{x^n}{3^n}$$

c.)
$$x^2 - x^{5/2} + x^3 - x^{7/2} + x^4 - x^{9/2} + \cdots$$

d.)
$$\sum_{n=0}^{\infty} (n+1) x^n$$

2. Recall that if y = f(x) is a function and

$$a_0 + a_1(x-a) + a_2(x-a)^2 + a_3(x-a)^3 + a_4(x-a)^4 + \dots = \sum_{n=0}^{\infty} a_n(x-a)^n$$

is the Taylor Series (or Maclaurin for series if a=0) centered at x=a for y=f(x), then $a_n=\frac{f^{(n)}(a)}{n!}$. Use this formula to compue the first four nonzero terms and the general formula for the Taylor series expansion for each function about the given value of a.

a.)
$$f(x) = e^x$$
 centered at $x = 0$

b.)
$$f(x) = e^x$$
 centered at $x = \ln 2$

c.)
$$f(x) = \frac{1}{1-x}$$
 centered at $x=0$

d.)
$$f(x) = \sin x$$
 centered at $x = 0$

e.)
$$f(x) = \frac{1}{x}$$
 centered at $x = 1$

f.)
$$f(\mathbf{x}) = \sqrt{\mathbf{x} + \mathbf{5}}$$
 centered at $\mathbf{x} = -1$

3. Use the sugessted method to find the first four nonzero terms of the Maclaurin series for each function

a.)
$$f(x) = \frac{1}{1+x^2}$$
 (Substitute $-x^2$ into the Maclaurin series for $\frac{1}{1-x}.)$

- b.) $f(x) = x^3 e^{-3x}$ (Substitute -3x into the Maclaurin series for e^x and then multiply by x^3)
- c.) $f(x) = e^x \frac{1}{1-x}$ (Multiply the Maclaurin series for e^x and $\frac{1}{1-x}$ term by term and then group like powers of x)
- d.) $f(x) = \frac{e^x}{1-x}$ (Use polynomial division. Divide the Maclaurin series for e^x by 1-x)
- e.) $f(x) = 3x^2 \cos(x^3)$ (Substitute x^3 into the Maclaurin series for $\sin x$ then differentiate term by term)
- f.) $f(x) = \arctan x$ (Integrate the Maclaurin series for $\frac{1}{1+t^2}$ from 0 to x)
- 4. The Maclaurin series for $f(x)=\frac{1}{1+x}$ is $1-x+x^2-x^3+x^4-x^5+\cdots$
- a.) Show that $f(x) = \frac{1}{1+x}$ and $1-x+x^2-x^3+x^4-x^5+\cdots$ have the same value at x=0.
- b.) Show that $f(x) = \frac{1}{1+x}$ and $1 x + x^2 x^3 + x^4 x^5 + \cdots$ have the same value at x = 1/2.
- c.) Show that $f(x) = \frac{1}{1+x}$ and $1-x+x^2-x^3+x^4-x^5+\cdots$ have the same value at x=1.
- d.) For what x-values is $f(x) = \frac{1}{1+x}$ defined?
- d.) For what x-values is $1 x + x^2 x^3 + x^4 x^5 + \cdots$ defined?

Note: It can be shown that $f(x) = \frac{1}{1+x}$ and its Maclaurin series $1-x+x^2-x^3+x^4-x^5+\cdots$ are equal on the interval (-1,1).

- 5. Determine (Use shortcuts.) the third-degree Taylor polynomial, $P_3(x;0)$, for the function $f(x)=\frac{x}{1+x}$. Use $\int_0^1 P_3(x;0) \ dx$ to estimate the value of $\int_0^1 \frac{x}{1+x} \ dx$. Now evaluate $\int_0^1 \frac{x}{1+x} \ dx$ directly to see how good the estimate is.
- 6. The following definite integral cannot be evaluated using the Fundamental Theorem of Calculus. Use the Maclaurin series for $\cos x$ and the absolute error $|R_n|$ for an alternating series to estimate the value of this integral with error at most $0.0001:\int_0^1\cos(x^2)\ dx$.
- 7. Write each Maclaurin series as an ordinary function.

a.)
$$(3x) - \frac{(3x)^3}{3!} + \frac{(3x)^5}{3!} - \frac{(3x)^7}{3!} + \frac{(3x)^9}{3!} - \cdots$$
 (HINT: Use $\sin x$)

b.)
$$x^2 - x^3 + x^4 - x^5 + x^6 - \cdots$$
 (HINT: Factor)

c.)
$$\frac{1}{2!} + \frac{x}{3!} + \frac{x^2}{6!} + \frac{x^3}{5!} + \frac{x^4}{6!} + \cdots$$
 (HINT: Use e^x)

d.)
$$x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + \cdots$$
 (Challenging)

8. Use any method to find the given Taylor polynomial for each function. Then estimate the Absolute Taylor Error on the indicated interval.

a.)
$$f(x)=e^{-2x},\ P_3(x;0),\ for\ [-1/2,1/3]$$

b.)
$$f(x) = \sin 2x$$
, $P_5(x; 0)$, for $[0, 3/4]$

c.)
$$f(x) = \frac{x}{1-x}, \ P_4(x;0), \, for \, [-1/3,0]$$

9. What should n be so that the nth-degree Taylor Polynomial $P_n(x;a)$ estimates the value of the given function on the indicated interval with Absolute Taylor Error at most 0.00001?

a.)
$$f(x) = e^{-x}$$
 for $a = 1$ and $[0, 1]$

a.)
$$f(x)=\frac{x+3}{x+1}$$
 for $a=0$ and $[0,1/2]$

10. (Challenging) Use shortcuts to find the first three nonzero terms in the Taylor Series centered at x=-1 for $f(x)=\frac{x}{3-x}$.