

دانشکدہ مهندسی کامپیوتر

مهلت ارسال: ساعت ۲۳ روز شنبه ۷ خرداد ۱۴۰۱

حل تمرین شش

به موارد زیر توجه کنید:

- ۱- حتما نام و شماره دانشجویی خود را روی پاسخنامه بنویسید.
- ۲- در حل سوالات به نوشتن جواب آخر اکتفا نکنید. همه مراحل میانی را هم بنویسید.
- ۳- کل پاسخ تمرینات را در قالب یک فایل pdf با شماره دانشجویی خود نام گذاری کرده در سامانه CW بار گذاری کنید.
 - ۴- در صورت مشاهده هر گونه مشابهت نامتعارف هر دو (یا چند) نفر <mark>کل نمره</mark> این تمرین را از دست خواهند داد.
 - ۵- هر ساعت تاخیر در ارسال تمرین ۲درصد از نمره آن را کم خواهد کرد و حداکثر تاخیر مجاز ۲۴ ساعت است.

سوالات:

۱- (۲ نمره) با توجه به شکل زیر نمودار زمانی خروجی Q را رسم کنید.

ابتدا مدار سمت راست را تحلیل می کنیم.

کافی است جدول حالت این مدار را بررسی کنیم. همچنین دقت کنید که IQ' و IQ' عملا ورودی های یک SR Latch هستند در نتیجه برای تحلیل راحت تر می توانیم در هر حالت ابتدا ورودی های IQ' و IQ' یک R یک به تحلیل ساده تر است به دست آوریم IQ' و با استفاده از آن ها مدار را تحلیل کنیم. جدول حالت به این شکل در می آید و می توانیم نتیجه بگیریم که این مدار یک IQ' است.

J	K	Q	Q+	
0	0	0	0	Memory
0	0	1	1	Memor y
0	1	0	0	Kill
0	1	1	0	KIII
1	0	0	1	T
1	0	1	1	Jump
1	1	0	1	T1-
1	1	1	0	Toggle

با استفاده از جدول حالت مدار سمت چپ را بررسی می کنیم. میبینیم که مدار در حالت JK = 11 حالت قبلی را حفظ می کند در حالی که باید Toggle کند. در نتیجه مدار دوم یک JK Latch نیست

	Q+	Q	K	J
Mamoru	0	0	0	0
Memory	1	1	0	0
Kill	0	0	1	0
KIII	0	1	1	0
Tuman	1	0	0	1
Jump	1	1	0	1
Mamanu	0	0	1	1
Memory	1	1	1	1

۳- (۲ نمره) با استفاده از یک D-FF و یک مالتی پلکسر ۲×۲ یک JK-FF بسازید.

ابتدا دقت كنيد جدول حالت JKFF به صورت زير است:

J	K	\mathbf{Q}^{+}
0	0	Q
0	1	0
1	0	1
1	1	0'

همچنین کافی است یک MUX 4x2 با استفاده از سه MUX 2x1 بسازیم وسپس ورودیهای MUX را مطابق با جدول حالت به ترتیب در حالت Mux و Jump و Jump و Toggle بگذاریم. در نتیجه مدار به شکل زیر در می آید:

۴- (* نمره) یک مدار ترتیبی دارای دو فلیپ فلاپ * و * از نوع * و دو ورودی * و * و یک خروجی به نام * است. معادلات ورودی فلیپ فلاپ ها نیز به شرح زیر است.

$$D_A = X'.y + x.A$$

$$D_{\scriptscriptstyle B} = x.A + x'B$$

E = B

مدار آن را با استفاده از گیتهای مورد نیاز رسم کرده و جدول حالت و نمودار حالت آن را به دست آورید.

А	В	х	Υ	D _A	D _B	A(T+1)) B _(T+1)	E=B
0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	1	0	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
1	0	1	0	1	1	1	1	0
1	0	1	1	1	1	1	1	0
1	1	0	0	0	1	0	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1

(4 ind) جدول حالت و نمودار حالت مدار زیر را رسم کنید. (مقادیر (4 p J) و (4 ind) و خود نشان دهید.)

از مدار داده شده می توانیم تساوی های زیر را بدست آوریم:

$$y = Q_1 + Q'_0$$

 $J = Q_0 + Q_1$
 $K = Q'_1 Q'_0$

حال با توجه به تساویهای بالا، جدول حالت مدار را رسم می کنیم:

Q1	Q0	X	J	K	Q1+	Q0+	Y
0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1
0	1	0	1	0	0	1	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	1	1
1	0	1	1	0	1	1	1
1	1	0	1	0	0	1	1
1	1	1	1	0	1	1	1

۶- (۲ نمره) اگر حالت ابتدایی مدار ABC=000 باشد، حالات مدار را برای ۶ پالس ساعت بعد رسم کنید.

فرض کنید ورودی D ،D-FF باشد و ورودی کلاک T-FF وسط برابر clkB باشد:

Clock Pulse	A	clkB	В	D	C
Initial state	0	1	0	1	0
1	1	1→0	0	1	0
2	0	0→1	0→1	0	0
3	1	1→0	1	0	0
4	0	0→1	1→0	1	0
5	1	1→0	0	1	0
6	0	0→1	0→1	0	0

پس در شش کلاک بعدی ABC به صورت زیر خواهد بود:

$$000 \rightarrow 100 \rightarrow 010 \rightarrow 110 \rightarrow 000 \rightarrow \ 100 \rightarrow 010$$

۷- (۳ نمره) جدول حالت زير را تا حد ممكن ساده كنيد.

Present	Next	Next state			
state	w = 0	w = 1	Z		
Α	В	С	1		
В	D	F	1		
C	F	E	0		
D	В	G	1		
Е	F	C	0		
F	Е	D	0		
G	F	G	0		

مواردی که دورشان کادر قرمز دارند، قابل قبول هستند.

ساده شده جدول به شکل زیر است.

PS	W=0	NS W=1	OUTPUT Z
Α	В	С	1
В	Α	F	1
С	F	С	0
F	С	Α	0