

7ª Escuela de Invierno en Ciencia de Datos y Sistemas Complejos

Unidad Académica del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas en el Estado de Yucatán

Modelos de aprendizaje de máquinas y su interpretación para la toma decisiones

Presenta

Blanca Vázquez Artificial Intelligence in Biomedicine Group (ArBio)

18 de enero de 2024

Evolución de la Inteligencia Artificial (IA)

Aprendizaje de máquinas

- Es el estudio de programas que aprenden a partir de ejemplos para estimar comportamientos futuros.
- El resultado de un programa es la probabilidad de que un evento ocurra.

La idea: ¡aprender de los datos!

¿Cómo funciona?

Inferencia

Entrenamiento

Ejemplo de aplicaciones

Reconocimiento de rostros

Reconocimiento de emociones

Sugerir palabras

Diagnóstico y detección de enfermedades

Vista general del desarrollo y validación de modelos de aprendizaje de máquinas

Tipos de aprendizaje

Evaluación del rendimiento de los modelos

Una matriz de confusión es una representación matricial que describe el rendimiento de un modelo de clasificación binaria.

$$accuracy = \frac{VP + VN}{VP + VN + FP + FN}$$

$$recall = \frac{VP}{VP + FN}$$

$$precisión = \frac{VP}{VP + FP}$$

$$especificidad = \frac{VN}{VN + FP}$$

Curva ROC (Receiver Operating Characteristic)

Traslape: ¿qué tan bueno es el modelo para separar las clases positivas y las negativas?

Retos en los modelos de predicción

Interpretability is the degree to which a human can understand the cause of a decision (Miller, 2017).

Ejemplo

Supongamos que construimos un modelo para predecir precios de departamentos, las características que tomamos en cuenta para la predicción son:

- El número de pisos del edificio
- Si se permiten mascotas
- La cercanía a un parque
- El número de habitaciones
- Número de metros cuadrados

Tipos de interpretabilidad

Intrínsecos

Métodos de aprendizaje que por su naturaleza sencilla pueden ser explicados sin necesidad de cálculos adicionales.

Pos-adhoc

Métodos que se utilizan posterior al entrenamiento de los modelos.

Árboles de decisión

- Específicos
 - Dependen del modelo
 - Interpretan los pesos de una regresión o de una red profunda.
- Agnósticos
 - Son independientes del modelo.
 - No tienen acceso a los pesos del modelo construido.

Shap values: modelo para interpretar la salida de los modelos

- Es un enfoque basado en los valores Shapley y la teoría de juegos.
- Donde el juego es la tarea de predicción para una instancia y los jugadores son los valores de las características
- El valor Shapley φj (val) es el pago justo que recibe un jugador j por el juego y se define de la siguiente manera:

$$\phi_j(val) = \sum_{S \subseteq \{1,...,p\} \setminus \{j\}} \frac{|S|!(p-|S|-1)!}{p!} (val(S \cup \{j\}) - val(S))$$

donde la suma se basa en todos los subconjuntos posibles s de los demás jugadores; val es una función que devuelve la contribución de un subconjunto dado y p es el número total de jugadores.

Imagen tomada de Matthew Stewart, 2020.

Shap values: modelo para interpretar la salida de los modelos

 Para calcular la importancia de las variables, se promedian los valores absolutos Shapley sobre todos los conjuntos de datos:

$$I_j = \sum_{i=1}^n |\phi_j^{(i)}|$$

- Las variables con valores grandes Shapley se consideran importantes en la predicción.
- Se distingue por su capacidad interpretativa a nivel global, local e individual.

Imagen tomada de https://github.com/shap/shap

Inteligencia artificial en el área clínica

Diagnóstico	Pronóstico	Tratamientos
Predecir una enfermedad: - Cáncer - Neuro-degenerativas - Respiratorias - Cardiacas - Autoinmunes	Predecir el riesgo de un evento: - Mortalidad - Falla cardiaca - Accidente cerebro-vascular - Readmisión hospitalaria - Tamaño de la estancia - Intervención clínica - Estimar la sobrevivencia	Estimar los efectos de un tratamiento: - Medicina personalizada

¿Por qué aplicar modelos predictivos en el área de salud?

- Recursos limitados
- Decisiones críticas
- Cada minuto cuenta

https://southwesthealthcollaborative.org/workgroups/emergency-department-utilization/

¿Quiénes están trabajando?

MIT Clinical ML

... pero ¿cuál es el objetivo en común?

Imagen tomada de https://trends.levif.be

Gracias

Blanca Hilda Vázquez Gómez

Unidad Académica del IIMAS en el estado de Yucatán.

blancavazquez2013@gmail.com

http://turing.iimas.unam.mx/~blancavg/

Artificial Intelligence in Biomedicine Group