OWNML MACHINE LEARNING CANVAS

Designed for: Turkish Music Model Designed by: Team 24 MLOps

Oct, 2025

DATA SOURCES

Iteration: One

PREDICTION TASK

Clasificación supervisada multiclase (singlelabel) para inferir la emoción predominante en un clip de música turca. La unidad de predicción es cada fragmento de audio ya preprocesado (normalización, duración fija).

Resultados y observación.

El modelo predice una de 4 clases: Feliz, Triste, Enojado, Relajado (salida: probabilidades y clase por argmax). Las etiquetas existen en el dataset; en producción se confirman a posteriori vía anotación/feedback de usuario para cerrar el ciclo de reentrenamiento.

DECISIONS

Cada clip se etiqueta con una emoción (Feliz/Triste/Enojado/Relajado) y una confianza. Esa etiqueta alimenta: (1) un recomendador por estado de ánimo (playlists relajantes/energizantes), (2) enriquecimiento del catálogo con metadatos emocionales para búsqueda/ordenación, y (3) dashboards afectivos para análisis (por artista, álbum o sesión de musicoterapia). Para decisiones a nivel pista, agregamos múltiples clips por voto mayoritario o promedio de probabilidades.

Parámetros de decisión (app/pipeline):

Regla principal: argmax si confianza 2 0.75; si no, Top-2 o "Revisión". Agregación por pista con ventana configurable (p. ej., 30-60 s). Objetivo de latencia < 2 s/clip en línea; procesamiento batch para bibliotecas grandes. Interpretabilidad con SHAP/LIME visible en el dashboard. A/B testing para umbrales y presentación; feedback del usuario registrado como ground truth para reentrenamiento (programado o por drift).

VALUE PROPOSITION

Beneficiarios: plataformas musicales (curaduría/recomendación). musicólogos/investigadores y clínicas de musicoterapia.

Dolores: etiquetado emocional manual e inconsistente; falta de modelos para música turca/no occidental; baja trazabilidad y poca escalabilidad del análisis.

Integración y flujo: API REST/Batch que enriquece catálogos con emoción + confianza y se conecta al recomendador/ETLs; dashboard con distribuciones por emoción y explicaciones (SHAP/LIME). Umbrales configurables, alertas por drift y feedback para retraining.

DATA COLLECTION

continua

Internas (principal)

Repositorio DVC/S3:

Audio WAV/MP3 (carpetas raw/processed) y features tabulares (CSV/Parauet).

Tablas:

- tracks (id track, artista, título, fuente, género, año)
- clips (id_clip, id_track, start_s, dur_s, sr, bitrate)
- labels (id_clip, emoción∈{Feliz, Triste, Enojado, Relajado}, fuente_etiqueta)
- features (id_clip, mfcc_, chroma_, rolloff, zcr, rms, tempo)
- feedback (id_clip/pista, predicción, "correcto/incorrecto", timestamp)

Externas (potenciales)

- Spotify Web API: search, tracks/{id}, audiofeatures, audio-analysis (metadatos, tempo, key, duración).
- YouTube Data API v3: search,list, videos,list (metadatos e IDs; ingesta de audio sujeta a licencias).
- Repos públicos etiquetados (p. ej., corpus de música turca con emociones) para ampliación y benchmark.

Conectores/Extracción: Librosa (MFCC, cromas, espectrales, tempo) y Pandas para consolidar a tablas versionadas con DVC.

audios/features versionados con DVC

Dataset modificado/limpio Turkish

Music Emotion: 400 clips de 30 s

(≈100/clase: Feliz, Triste, Enojado,

Relaiado). Extraemos MFCC, cromas,

tempo, ZCR, RMS a CSV/Parquet;

Actualización (frescura/costo)

(raw-processed).

Ingesta periódica desde Spotify/YouTube deduplicación; extracción incremental v caché solo para nuevos/cambiados: batch semanal. Costos: storage tiering y retención. Etiquetado humano para baja confianza; retraining por tiempo o

IMPACT SIMULATION

Impact Simulation

Costo/Ganancia. Predicción correcta → mayor uso del recomendador y confianza; Incorrecta → degradación de UX y credibilidad (≈ 10–15% de caída por cada +10% de error).

Datos para simular. Train/val/test (80/20), k-fold estratificado, piloto en catálogo (batch replay) y muestra con etiquetado humano.

Criterios de despliegue. Fl_macro ≥ 0.78, Accuracy ≥ 80%, latencia < 2 s/clip, confianza calibrada, artefactos en MLflow y datos DVC.

Equidad. Métricas por clase y género/tempo; Δ F1 por clase ≤ 10 pts; revisión manual para baja confianza y monitoreo de drift tras el despliegue.

MAKING PREDICTIONS

Modos: Batch (offline) y tiempo real (API).

Frecuencia: batch al llegar nuevos lotes o en ventana nocturna; online on-demand por clip/pista.

SLA/tiempo: < 2 s/clip end-to-end (prepro + features + inferencia + decisión); caché de features y micro-batching cuando aplique.

Recursos: CPU optimizada (multihilo) para batch; GPU opcional si el modelo lo requiere; servicio Docker + FastAPI, orquestado (p. ej., K8s/ECS) con autoscaling.

Integración: API REST/job batch que retorna probabilidades + clase y registra confianza/telemetría para retraining.

BUILDING MODELS

alticlase Rep

En producción: 1 clasificador multiclase (emociones); modelo sombra para A/B en actualizaciones; calibración opcional.

Actualización: Trimestral o por drift/210-15% de nuevos datos etiquetados; promoción controlada en MLflow Registry (datos en DVC).

Tiempo (E2E): ventana nocturna (<8 h) para featureado incremental + entrenamiento + análisis (k-fold, F1 macro, matriz de confusión).

Recursos: CPU optimizada para Sklearn/featureado; GPU (T4) opcional si se prueba un modelo profundo.

FEATURES

Representación (predicción): vector por clip con MFCC (1–13 + $\Delta/\Delta\Delta$), Chroma, Spectral Centroid/Rolloff/Contrast, ZCR, RMS/Energy y Tempo; se agregan por ventanas a estadísticos (media, std, p10/p90) para un único vector por clip.

 $\label{eq:transformaciones:} \mbox{audio} \rightarrow \mbox{mono } 22.05 \mbox{ kHz y loudness norm; framing } (\approx \mbox{ls } / \mbox{0.5 s hop}); \mbox{z-score} \mbox{(parámetros del train), imputación si aplica; PCA opcional } (20–40 \mbox{ comps}). \mbox{Paridad train/serve en el mismo pipeline } \mbox{(librosa/sklearn), caché y versionado DVC } \mbox{(CSV/Parquet)}.$

MONITORING

- Métricas técnicas (\$Lls/\$LOs): Fl_macro y Fl por clase, Accuracy, latencia p95 < 2 s/clip, tasa de error, calibración (ECE), drift de datos/modelo (PSI/KL, cambio en distribución de clases), cobertura y % de predicciones de baja confianza.
- Métricas de negocio: uso del recomendador (CTR, skips, tiempo en sesión), satisfacción (CSAT/NPS), tasa de feedback/etiquetado y acuerdos entre anotadores.

Revisión & acciones:

- Alertas en tiempo real (latencia, caída de FI, drift); revisión semanal operativa y mensual de negocio en dashboards (Prometheus/Grafana + MLflow).
- Triggers: retraining/umbral cuando ΔF1_macro > 5-10 pts o drift significativo; rollback/canary si empeora; seguimiento de fairness (ΔF1 por clase ≤ 10 pts).

Version 1.2. Created by Louis Dorard, Ph.D. Licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International License</u>. Please keep this mention and the link to <u>ownml.co</u> when sharing.

OWNML.CO

Introduction to the Machine Learning Canvas

Get started with the MLC in this short course taught by its author.

Start now at ownml.co/intro