Informationen zur Feststellungsprüfung

im Fach Mathematik (T-Kurs)

Allgemeine Hinweise

Voraussetzung für die erfolgreiche Teilnahme an der Prüfung sind solide mathematischinhaltliche und fachsprachliche Kenntnisse, Fertigkeiten und Fähigkeiten, die etwa dem Niveau der Sekundarstufe II (Leistungskurs) entsprechen.

Die Aufgaben tragen komplexen, stoffgebietsübergreifenden Charakter. Es dominieren innermathematische Aufgabenstellungen. Bezüge auf physikalisch technische Sachverhalte sind möglich.

Das Lösen der Aufgaben setzt u.a. voraus:

- mathematisch-inhaltliches und fachsprachliches Analysieren der Aufgabentexte
- Formulieren von mathematischen Lösungsansätzen
- Anwenden von mathematischen Lösungsverfahren
- Formulieren und Interpretieren von Resultaten.

Folgende Grundfertigkeiten und -fähigkeiten werden vorausgesetzt:

- Anwenden der Mengenschreibweise
- Rechnen in der Menge der natürlichen, ganzen, rationalen, reellen und komplexen Zahlen
- Anwenden von geometrischen Grundkenntnissen
- Rechnen mit Beträgen, Potenzen, Wurzeln und Logarithmen
- Lösen von linearen und quadratischen Gleichungen/Ungleichungen
- Lösen von Gleichungen höheren Grades durch Polynomdivision, Substitution oder Produktbildung
- Rechnen mit einem wissenschaftlichen Taschenrechner.

Spezielle Hinweise

Die Aufgaben ergeben sich aus den nachfolgend aufgeführten Stoffgebieten.

Zahlenbereiche

Menge C der komplexen Zahlen Schwerpunkte:

- Grundrechenoperationen in der Menge C;
- Potenzieren, Radizieren, Logarithmieren in der Menge C

Funktionen

Schwerpunkte:

- Funktionsbegriff;
- allgemeine Eigenschaften von Funktionen;
- lineare, quadratische und andere ganzrationale Funktionen;
- gebrochenrationale Funktionen;
- Wurzelfunktionen; Exponentialfunktionen;
- Logarithmusfunktionen;
- Winkelfunktionen;
- Umkehrfunktionen;
- Zahlenfolgen;
- Partialsummen

Differential rechnung

Schwerpunkte:

- Grenzwertbegriff;
- Differenzen- und Differentialquotient;
- Ableitung rationaler und nichtrationaler Funktionen;
- Kurvendiskussion:
- Extremwertaufgaben;
- einfache Differentialgleichungen

Integralrechnung

Schwerpunkte:

- Stammfunktion;
- unbestimmtes und bestimmtes Integral;
- Integration nach Substitution;
- partielle Integration;
- Flächenberechnungen;
- Volumenberechnungen von Rotationskörpern

Lineare Gleichungssysteme

Schwerpunkte:

- Matrizen;
- Rang;
- Lösbarkeitskriterien, homogene und inhomogene Gleichungssysteme;
- Gauß'scher Algorithmus

Vektorrechnung

Schwerpunkte:

- Vektorbegriff;
- Vektoraddition;
- skalare Multiplikation;
- Skalarprodukt;
- Vektorprodukt;
- Spatprodukt;
- lineare Abhängigkeit/Unabhängigkeit;
- Beweise mit Vektoren;
- Teilungsverhältnis

Analytische Geometrie

Schwerpunkte:

- Geradengleichungen ohne/mit Parameter;
- Ebenengleichungen ohne/ mit Parameter;
- Projektionen auf die Koordinatenebenen;
- Spurpunkte;
- Spurgeraden

Kegelschnitte

Schwerpunkte:

- Kreis in allgemeiner Lage;
- Kreis und Geraden;
- Parabel in achsenparalleler Lage;
- Ellipse in achsenparalleler Lage;
- Hyperbel;
- Asymptoten einer Hyperbel;
- allgemeine Gleichung von Kegelschnitten in achsenparalleler Lage

Literaturhinweise

- Deutsch für das Studium Mathematik, Teil 1 bis 5; Universität Leipzig Studienkolleg Sachsen; Hausdruck
- Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und Landwirte; Vorbereitungsband, Teil 1, 2, 13; Teubner Verlagsgesellschaft, Leipzig
- Lambacher, Schweizer; Analysis 1 und 2; Ernst Klett Verlag, Stuttgart
- Lambacher, Schweizer; Analytische Geometrie mit Linearer Algebra; Ernst Klett Verlag, Stuttgart
- Das neue Tafelwerk; Volk und Wissen Verlag GmbH, Berlin

Beispiel für eine Prüfungsklausur

Dauer: 180 Minuten

Hilfsmittel: nichtprogrammierbarer Taschenrechner, Tafelwerk, einsprachiges Wörterbuch

1. Gegeben ist eine Funktionsschar f_t durch

$$f_t(x) = (x-t) \cdot e^{2-\frac{x}{t}} \text{ mit } t \in \mathbb{R}^+$$

- 1.1. Geben Sie für diese Funktionen folgende Eigenschaften an:
- Definitionsbereich
- Stetigkeit!
- 1.2. Berechnen Sie die Koordinaten der
- Schnittpunkte mit der x- und mit der y-Achse
- Extrempunkte
- Wendepunkte

(jeweils in Abhängigkeit vom Parameter *t*)!

- 1.3. Skizzieren Sie den Graphen $C(f_t)$ der Funktion $f_t(x)$ für t = 1 im Intervall I = [0;10]!
- 1.4. Zeigen Sie, dass für t = 1 der Graph $C(f_t)$ den positiven Teil der x-Achse als Asymptote hat.
- 1.5. Berechnen Sie für t = 1 die Fläche zwischen dem Graphen $C(f_t)$ und der x-Achse rechts von der Nullstelle!
- 2. Eine Ellipse, die symmetrisch bezüglich der *x*-Achse liegt, hat den Mittelpunkt M(3;0). Teile der oberen Hälfte sind im Intervall I = [0;3c] mit $0 \le c \le 2$ durch die Funktion f_c mit

$$f_c(x) = \frac{1}{2} \sqrt{6x - x^2}$$

gegeben.

- 2.1. Wie groß sind die beiden Halbachsen der Ellipse?
- 2.2. Berechnen Sie das Volumen $V(f_c)$ des Rotationskörpers, der entsteht, wenn der Graph $C(f_c)$ um die x-Achse rotiert!

- 2.3. Berechnen Sie die Zahl c, die man erhält, wenn $V(f_c) = 9$ VE beträgt!
- 3. Ein Lichtstrahl geht von einer Lampe im Punkt $P_1(-2;-1;13)$ aus und fällt durch $P_2(2;-3;9)$ auf die Ebene E_1 , die durch die Punkte A(4;-5;-3), B(5;-1;-11), C(7;-3;3) gebildet wird.
- 3.1. Geben Sie eine Parametergleichung der Ebene E₁ an!
- 3.2. Berechnen Sie die Koordinaten des Punktes S₁, in dem der Strahl auf der Ebene E₁ reflektiert wird!
- 3.3. Der reflektierte Strahl wird in S₂(2;-1;3) an einer zweiten Ebene E₂ nochmals reflektiert und geht dann durch den Punkt T(0;-3;7).

Zeigen Sie, dass der an der Ebene E₂ reflektierte Strahl durch T geht!

- 3.4. Berechnen Sie die parameterfreie Gleichung der Ebene E2!
- 3.5. Berechnen Sie den Abstand zwischen den Geraden P₁P₂ und S₂T!
- 3.6. Berechnen Sie das Volumen der dreiseitigen Pyramide, die durch die Punkte S₁, S₂, A und T gebildet wird!
- 4. In welchem Verhältnis müssen Höhe h und Radius r eines oben offenen, zylinderförmigen Messbechers stehen, damit bei gegebenem Volumen V möglichst wenig Material verbraucht wird?
- 5. Lösen Sie die folgenden Aufgaben!
- 5.1. Differenzieren Sie die folgenden Funktionen nach x!

5.1.1
$$y = f(x) = (\ln x)^2$$

5.1.2.
$$y = f(x) = x^{\sin x}$$

5.1.3.
$$F(x; y) = 2xy^2 - \ln y + e^x = 0$$

- 5.2. Lösen Sie die folgenden Integrale!
- 5.2.1. $\int \arctan x \, dx$

$$5.2.2. \int \sqrt{\sin x} \cos x \, dx$$

$$5.2.2. \int_{e^2} \sqrt{\sin x} \cos x \, dx$$
$$5.2.3. \int_{e}^{e^2} x \ln x \, dx$$

5.3. Lösen Sie das folgende lineare Gleichungssystem!

$$x_1 - x_2 + x_3 - x_4 = 1$$

$$x_1 - x_2 - x_3 + x_4 = 0$$

$$x_1 - x_2 - x_3 + x_4 = 0$$

$$2x_1 - 2x_2 - 4x_3 + x_4 = -1$$

5.4. Berechnen Sie die folgenden Werte in der Menge C der komplexen Zahlen! Geben Sie die Resultate in arithmetischer Form an!

5.4.1.
$$z = (1 - \sqrt{3}i)^6$$

5.4.2.
$$z = \sqrt[5]{-1+i}$$

5.4.3.
$$z = \ln(1-i)$$