(a) We will first show $\langle Tx, Ty \rangle = \langle x, y \rangle \implies |Tx| = |x|$

$$|Tx|^2 = \langle Tx, Tx \rangle = \langle x, x \rangle = |x|^2$$

 $|Tx| = |x|$

Then, we will show $|Tx| = |x| \implies \langle Tx, Ty \rangle = \langle x, y \rangle$.

$$|T(x+y)| = |x+y|$$

$$|T(x+y)|^2 = |x+y|^2$$

$$\langle Tx + Ty, Tx + Ty \rangle = \langle x+y, x+y \rangle$$

$$\langle Tx, Tx \rangle + \langle Ty, Ty \rangle + 2\langle Tx, Ty \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle$$

$$|Tx|^2 + |Ty|^2 + 2\langle Tx, Ty \rangle = |x|^2 + |y|^2 + 2\langle x, y \rangle$$

$$\langle Tx, Ty \rangle = \langle x, y \rangle$$

Hence, $\langle Tx, Ty \rangle = \langle x, y \rangle \iff |Tx| = |x|$

(b) If |Tx| = |x|, $|Tx| = 0 \iff |x| = 0$. Since the norm is positive definite, $Tx = 0 \iff x = 0$. As T is a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$ and $\ker T = \{0\}$, T must be invertible hence it must be 1-1 and onto.

As T is norm preserving and $TT^{-1} = 1$, $|T(T^{-1}x)| = |T^{-1}x| = |x|$.