

Sumário Executivo:

Nome: Shuttler

Tema: Modelo de negócio da Uber

Objetivo do projeto: O objetivo deste projeto é estudar e aplicar o modelo de negócio da Uber, em outros negócios de modo a solucionar algum problema. Tendo como base o mesmo modelo de negócio, todos os grupos terão de criar um projeto (PBL), que consiga incorporar não só o modelo de negócio, mas que consigam trabalhá-lo nas diferentes cadeiras.

Palavras-Chave: Shuttles, Mobile App, Disruptive, Business Model, Transportation

Alterações efetuadas no projeto(2.0):

Ao longo do projeto, este sofrer diversas alterações. Relativamente à arquitetura, como grupo conseguimos implementar o que nos comprometemos tendo atualmente um sistema de dupla autenticação quando um utilizador efetua o login(TOTP), fazendo o uso de node.js, express e speakeasy.

Em relação às tecnologias utilizadas necessitamos de adicionar o Postman.

Adaptação dos cenários de casos de uso adicionando os passos para um autenticação com sucesso.

Seguimos meticulosamente a calendarização proposta inicialmente, mas devido a demora em algumas partes do projeto tivemos de adiar as componentes de 2FA e RDP conection.

GitHub Repository: https://github.com/Eduardo-Francisco-Ricardo/Shuttler.git

Lista de Autores:

Biography – Eduardo Brado Domingues, média: 13,86 valores

Atualmente estou a estudar informática de gestão no IADE e considero-me um bom comunicador e demonstro boas capacidades de liderança. No meu secundário estudei multimédia, sendo atualmente certificado na área com competências técnicas e artísticas que são uma mais valia no mercado de trabalho, também sou uma pessoa bastante criativa.

Biography – Francisco Cabreiro, média: 13,43

No secundário acabei o curso na área de ciências socioeconómicas, de momento frequento o segundo ano no curso de informática de gestão. Considero—me uma pessoa aplicada e motivada para o trabalho, com grandes perspetivas de futuro.

1 Introdução ao âmbito do projeto

Este documento tem como objetivo expor a nossa ideia enquanto grupo. Foi-nos proposto um projeto com o seguinte tema: *Modelo de negócio da Uber* que será realizado no âmbito de diversas unidades curriculares, das quais: Redes e Comunicação de Dados, Programação Web, Cibersegurança e Administração e Gestão de Informação. O objetivo deste projeto visa proceder-se à especificação, modelação e implementação de um modelo de negócio, que tem por base uma comunidade de utilizadores internacional que agrega tanto condutores como passageiros.

Tendo ponderado em grupo sobre o tema proposto, fizemos pesquisa e debatemos ideias chegando a um consenso. Queríamos que o nosso projeto realmente trabalhasse e solucionasse um problema existente, não querendo simplesmente adaptar o modelo da Uber e adicionar mais funcionalidades. Com isto em mente escolhemos fazer o nosso PBL sobre Shuttles.

A Shuttler é um sistema de prestação de serviços na área dos transportes privados. Trata-se de uma Web App centrada em clientes que se deslocam várias vezes e necessitam de um transporte confortável, rápido e acessível. Através da Shuttler o utilizador pode solicitar uma reserva, adquirir descontos, escolher entre as três categorias disponíveis (Standart, Quality e Premium), avaliar o condutor e também adquirir pontos através das viagens efetuadas.

Cada categoria de Shuttlers disponibiliza diferentes características e benefícios sendo a categoria Standart definida como um Shuttler com um preço e comodidades acessíveis e a categoria Premium associada a comodidade mais sofisticada.

O utilizador ao definir o seu trajeto (origem e destino) e a categoria do Shuttler, é lhe atribuído um veiculo e o seu respetivo condutor. Após realizar este procedimento é calculado o valor total do trajeto definido pelo utilizador (RI xxxxx). Após a reserva ser finalizada, o utilizador pode atribuir uma avaliação (1-5 estrelas) ao condutor da viagem, assim como o condutor pode avaliar o seu passageiro. O utilizador recebe ainda x pontos por cada viagem efetuada, os quais podem ser descontados em viagens futuras.

O grande problema dos Shuttles são as empresas. Existem inúmeras empresas com foco na oferta de serviços Shuttle, mas todas estas empresas são individuais e sempre que um cliente queira alugar um Shuttle, tem de ligar com antecedência, a uma empresa com a esperança da mesma estar livre na data prevista. Isto cria complicações logísticas quer seja a famílias, empresas ou até mesmo outros clientes desta indústria.

Exemplo de um possível caso de uso(2.0):

1- O Sr. João encontra-se na baixa de Lisboa e gostaria de pedir um Shuttle para o final do dia para ir a Coimbra ter uma reunião. O Sr.João abre o seu Smartphone, entra na aplicação faz o login e após confirmar o token entra na aplicação. Após esta ação vai ter de escolher que shuttle usar (standard, quality e premium). Como é uma viagem relativamente curta o Sr.João opta por ir num shuttle normal. Ele adiciona a morada onde se encontra e a hora que quer que o venham buscar.

Por fim a aplicação informa o Sr. João se há Shuttles disponíveis para aqueles horários e por fim é concluído o pedido e a recolha fica confirmada.

2- Uma família de 6 pessoas tem férias marcadas, decidiram pedir um shuttle para se deslocar do porto até ao algarve. O processo foi muito simples, abriram a aplicação shuttle e deram inicio ao pedido. Eles escolheram um shuttle standart para terem um maior conforto pois a viagem ainda é longa. A aplicação processou os dados e confirmou o seu pedido, necessitando por fim a morada e a hora da recolha e o pedido ficou concluído.

2 Shuttler

i. Descrição genérica da solução a implementar

A nossa solução consiste em criar uma aplicação que reúna todas as empresas de Shuttles num só local, mostrando ao cliente qual o Shuttle mais próximo que se encontre disponível. Teremos em consideração o número de lugares ocupados e caso o Shuttle não esteja cheio iremos sugerir a funcionalidade de Shuttle Sharing, que possibilita a economização de combustível entre viagens que a nível ecológico é importante.

A nossa solução foca-se mais nas viagens de média e longa duração ao contrário da Uber, que se foca nas viagens de curta e média duração. Mas o que nos diferencia é a possibilidade do cliente puder escolher que tipo de pessoas vão ao seu lado nestas viagens, visto que viagens de longa duração costumam ser monótonas, a nossa ideia é melhorar a qualidade das viagens dos nossos condutores e zelar pelos melhores interesses dos nossos utilizadores.

ii. Enquadramento nas áreas de cada Unidade Curricular que faz parte do PBL

Redes e Comunicação de Dados — Iremos desenvolver conhecimentos da conceção das componentes protocolares das redes de computadores, bem como de algumas componentes práticas de redes TCP/IP e de equipamentos ativos de rede.

Programação Web – Criação da camada de apresentação (GUI's), ou seja WebApp que servirá para fazer demonstrações visuais do nosso progresso. Teremos foco em aprender a proteger o Website com sistemas de dupla autenticação. Iremos programar em HTML, CSS, Javascript, JAVA e NodeJS.

Cibersegurança – Objetivo é proteger a nossa solução de possiveís atacantes (Hackers), iremos aprender seguranças a ter e mecanismos de defesa a usar num potêncial ataque informático. Vamos usar máquinas virtuais (VM's) como a Linux, Owasp, Metasploitable e Windows XP.

Administração e Gestão de Informação – Teremos de criar a base de dados da nossa solução, que tenha em consideração todas as regras do modelo de negócio da Uber. Saberemos tratar grandes quantidades de dados e a melhor maneira de os proteger. Estamos a usar Microsoft SQL Server.

iii. Requisitos Técnicos para desenvolvimento do projeto(2.0):

Independente da metodologia de desenvolvimento utilizada, o levantamento de requisitos é o ponto de partida de qualquer projeto de software, pois é a partir dos resultados obtidos durante esta etapa que será possível definir quais as próximas etapas de desenvolvimento a ser executadas. Nesta proposta apresentamos uma visão geral do processo de levantamento de requisitos.

Requisitos Funcionais: Cadastrar condutores/ Empresas de Shuttle, Cadastrar clientes, Consultar saldo em conta corrente, Consultar Shuttles disponíveis, Disponibilizar rating do Shuttle, Averiguar local de chegada, Averiguar local de destino, Possibilitar escolha de passageiros.

Requisitos não funcionais: Confiabilidade (sistema não irá divulgar dados pessoais a terceiros), Validações (sistema tem de validar os cartões de cidadão dos utilizadores), Velocidade (sistema deve executar transações em 5 segundos), Segurança (sistema só pode ser acessado através de leitura biométrica pelos administradores).

iv. Arquitetura da Solução 2.0

Arquitetura de solução é o processo de desenvolvimento de soluções com base em processos predefinidos, diretrizes e melhores práticas com o objetivo de que a solução desenvolvida se encaixe na arquitetura corporativa em termos de arquitetura de informação, portfólios de sistema, requisitos de integração e muito mais.

Arquitetura (2.0):

Usando como referencial o modelo de negócio da UBER, o sistema irá atribuir prioridade ao serviço solicitado com base no perfil e ranking do cliente. Quando o sistema regista um pedido de um novo serviço, o mesmo é encaminhado para os condutores com um perfil & veículo compatível com o perfil e ranking do cliente que solicita o serviço.

Implementar um sistema de autenticação de dois fatores fazendo o uso de TOTP (Time-based One-Time Password) que é uma OTP baseada em tempo. Assim como no HOTP, a seed do TOTP é estática, porém o moving factor usado no TOTP é baseado em tempo e não em contador.

O total de tempo válido para a nossa senha também chamado de timestep, tendo como regra um intervalo de 2 minutos entre as atualizações. Quando a senha exibida não é utilizada no tempo disponível ela será descartada, sendo necessário solicitar uma nova para obter acesso à aplicação ou outro ambiente.

Serviços 2.0:

Utilizamos o serviço ssh, como descrito no laboratório 2, que permite o acesso remoto a outros sistemas, atráves da VM Ubuntu no sistema operativo Linux . Deste modo verificamos se a ligação foi bem efetuada (a autenticidade do host só é solicitada a primeira vez que tenta fazer ssh para um certo host) Figura 1 – Remote server via ssh tunnel para Windows.

Como serviço web conhecido como http, vamos fazer a testagem ao longo do nosso projeto da ligação, para isso dentro da VM mencionada instalamos o software Putty que serve para criar um tunel entre a porta de origem e a porta de destino, podendo originar uma sessão conectada a um servidor. Figura 2 - Remote host ip adress of remote machine.

Maquina virtuais:

Iremos utilizar como predefinição a máquina virtual Linux Seedubuntu. Ubuntu é um sistema operacional ou um sistema operativo de código aberto, construído a partir do núcleo Linux, baseado no Debian e utiliza GNOME como ambiente de desktop de sua mais recente versão com suporte de longo prazo. Geralmente é executado em computadores pessoais e também em servidores de rede, geralmente executando a versão Ubuntu Server, com recursos de classe empresarial.

No nosso projeto implementarendereçamento IP e routin e introduiz mecanismos de firewall através de testagens ICMP(internet control massage protocol) com o objetivo de impedir que um host responda a pings.

v. Tecnologias a utilizar 2.0

Iremos usar diferentes softwares ao longo do PBL, iremos enumerar os que sabemos atualmente que vamos necessitar:

- 1. Visual Studio Code; (Qualquer outro programa de desenvolvimento de código)
- 2. Microsoft SQL Server; (Tratamento e medidas de segurança dos dados)
- 3. Virtual Machines:
 - a) **Linux** (Obrigatoriade de usar em Redes e Cibersegurança)
 - Em Redes iremos utilizar Linux para a realização dos laboratórios e no decorrer do desenvolvimento do projeto. Em Cibersegurança iremos usar Linux (Metasploitable e Owasp) com a finalidade de encontrar fragilidades na segurança das mesmas e descobrir backdoors.
 - b) **Windows** (Obrigatoriedade de usar em Cibersegurança e Admistração de sistemas)
 - Em Cibersegurança usamos o Windows XP, como explicado anteriormente, para encontrar fragilidades de segurança. Em Admistração de Sistemas utilizamos Windows para poder criar Base de Dados sem ter problemas como a perca de dados e possível crash's de sistema.
- 4. GitHub/ Fork; (Update do nosso progresso e controlo de versões)
- 5. Teams; (Reunir a equipa e armazenar ficheiros)
- 6. Notion; (Calendarização e ferramenta de Scrum Master)
- 7. Office 365; (Desenvolvimento de documentos e apresentações)
- 8. Postman; (uso para a verificação do token)

Não temos conhecimento da necessidade de qualquer hardware, que seja necessário para o desenvolvimento do projeto em qualquer uma das cadeiras. (Exceto um computador);

Finalmente será futuramente irá ser testado o redirecionamento de tráfego através de regras na firewall. O teste será efetuado através do acesso ao serviço ssh, de modo a verificar o endereço IP da máquina de destino. Verificando se houve algum package atualizado desde o último login;

3 Planeamento e calendarização 2.0

Todos os tópicos não referentes à unidade curricular de Redes nomeadamente MileStones, desenvolvimento de interface foram todos realizados dentro dos prazos esperados. No que toca à disciplina de redes não chegamos a avançar com matéria de TCP/IP pois não se tornou relevante para o nosso projeto, no entanto antecipamoso desenvolvimento do nosso website juntamente com a ligação do mesmo à base de dados.

Na Monotorização do tráfego de rede sentimos que ficamos aquém do que nos comprometemos visto que só testamos a ligação ssh para um possível servidor, podendo assim ter sido testado a ligação entre diversas máquinas virtuais bem como a transferência de dados entre elas.

Após a revisão da calendarização faltou-nos a dupla autenticação que foi realizada com sucesso através do uso do node.js e do Postman. Esta autenticação gera um token que é único pois é uma TOTP. Anexo 3-Calendarização do nosso projeto

Abaixo deixamos o link para poder ver em detalhe a nossa planificação: (Atenção pode sofrer alterações)

https://sharing.clickup.com/g/h/qamqf-241/b6ddeff895b23aa

Resultados:

Ao longo deste semestre a realização do nosso projeto foi realizado como está descrito na nossa calendarização, sendo que os tópicos atingidos foram 2FA, ligação à base de dados e a ligação entre duas máquinas virtuais.

Definimos que os nossos **pontos fortes** são maioritariamente segurança visto que investimos na criação de medidas de prevenção tanto na componente de base de dados bem como no front end e back end.

Na base de dados temos regras de certificação do condutor (carta de condução, > 23 anos) e para utilizador normal tem de ter um email válido e um método de pagamento associado. No front end verificamos mais uma vez o email e fazemos a ligação à base de dados podendo assim verificar se o username e a password estão corretos. No back end fazemos a ligação entre a base de dados e o nosso front end e aperfeiçoamos o método de login para TOTP, geramos um token que é enviado quando um utilizador efetua o login na nossa plataforma.

Os nossos **pontos fracos foram** a falta de monotorização do tráfego de rede visto que só testamos a ligação ssh para um possível servidor, podendo assim ter sido testado a ligação entre diversas máquinas virtuais bem como a transferência de dados entre elas. Em relação à matéria do lab2 não utilizamos nada relacionado com rooting nem firewall, podendo comprometer a segurança do nosso projeto.

Anexos:

Anexo 1 - Remote server via ssh tunnel para windows

Anexo 2 - Remote host ip adress of remote machine

Anexo 4- Calendarização do nosso projeto

Anexo 5 - é apresentada a página de Sign up, no qual para criar uma conta na plataforma Shuttler é necessário responder aos campos todos. Neste anexo é apresentado um inicio de sessão mal sucedido pois o campo Apelido não está preenchido e é lhe

Anexo 3 - No anexo 1 é apresentado um inicio de sessão (Login), onde podemos verificar que se no campo email não estiver correto, a sessão não é iniciada e é lhe apresentado uma mensagem de erro que neste caso diz que o "@" não está incluído no endereço de emai

Referências Bibliográficas 2.0

- [1] Charlotta, "Arquitetura da solução Definirtec." Definirtec.com, Jan. 11, 2021. https://definirtec.com/arquitetura-da-solucao/ (accessed Mar. 04, 2022).
- [2] "Levantamento de Requisitos O ponto de partida do projeto de software," *Cedrotech.com*, 2013. https://blog.cedrotech.com/levantamento-de-requisitos-o-ponto-de-partida-do-projeto-de-software (accessed Mar. 04, 2022).
- [3] A. Barre to and D. Yuan, "A arquitetura de sistemas de tempo real da Uber," InfoQ, Jun. 30, 2015. https://www.infoq.com/br/presentations/a-arquitetura-de-sistemas-de-tempo-real-da-uber/ (accessed Mar. 04, 2022).
- [4] Equipe Machine, "Uber Shuttle: o serviço de ônibus corporativos da Uber Machine," *Machine*, Jan. 14, 2022. https://machine.global/uber-shuttle/ (accessed Mar. 04, 2022).
- [5] "Entendendo a diferença entre OTP, TOTP e HOTP," *Iperiusbackup.net*, Mar. 13, 2021. https://www.iperiusbackup.net/pt-br/entendendo-a-diferenca-entre-otp-totp-e-hotp/ (accessed Mar. 18, 2022).
- [6] MySST, "MySST," Customs.gov.my, 2022. https://mysst.customs.gov.my/About (accessed Mar. 18, 2022).
- [7] "How to Use SSH to Connect to a Remote Server in Linux or Windows," Knowledge Base by phoenixNAP, Sep. 24, 2018. https://phoenixnap.com/kb/ssh-to-connect-to-remote-server-linux-or-windows (accessed May 15, 2022).