Лекции по алгебре Лектор: Всемирнов Максим Александрович

Содержание

1	Отображения. Композиция отображений.	2
2	Обратимые отображения и их свойства	3
3	Тождественное отображение	4
4	Равносильность инъективности и обратимости слева	4
5	Равносильность сюръективности и обратимости справа	6
6	Инъективное отображение конечного множества на себя является биективным	6
7	Сюръективное отображение конечного множества на себя является биективным	7
8	Бинарные отношения	8

1. Отображения. Композиция отображений.

 $\mathfrak{Def}\colon \ {\rm A,B}\ -$ множества. $\varGamma_f\subset A\times B$ \varGamma — график отображения если выполнены два условия:

- 1. $\forall a \in A \exists b \in B(a,b) \in \Gamma_f$
- 2. $\forall a \in A \exists b_1, b_2 \in B(a, b_1) \in \Gamma_f \land (a, b_2) \in \Gamma_f \Rightarrow b_1 = b_2$

 $\mathfrak{Def}\colon\ A,B,\Gamma_f\subset A\times B$

говорим, что задано отображение f из A в B с графком Γ_f

$$f:A\to B$$

$$A \xrightarrow{f} B$$

 $(a,b)\in \varGamma_f \Leftrightarrow b=f(a)$

A — область определения

В — область назначения

$$f: A \to B$$

$$f_1:A_1\to B_1$$

$$f = f_1 \Leftrightarrow A = A_1, B = B_1, \Gamma_f = \Gamma_{f_1}$$

Def: Композиция отображения

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$g \circ f : A \to C$$

$$(g \circ f)(a) = g(f(a))$$

$$\Gamma_{q \circ f}$$

$$(a,c) \in \varGamma_{q \circ f} \Leftrightarrow \exists b \in B(a,b) \in \varGamma_f \land (b,c) \in \varGamma_q$$

Область определение $g\circ f$ — область определения f $\mathrm{Dom}(\mathrm{f})$

Область назначения $g \circ f$ — область назначения g coDom(f)

Теорема 1.1. Композиция отображения ассоциативна.

$$h \circ (q \circ f) = (h \circ q) \circ f$$

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

lackbox Область определения $Dom(h\circ (g\circ f))=Dom(g\circ f)=Dom(f)=A$ $Dom((h\circ g)\circ f)=Dom(f)=A$ Область назначений $Dom(h\circ (g\circ f))=coDom(h)=D$

$$Dom((h \circ g) \circ f) = coDom((h \circ g)) = coDom(h) = D$$

$$\forall a \in A$$

$$(h \circ (g \circ f))(a) = h(g \circ f(a)) = h(g(f(a)))$$

$$((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a)))$$

2. Обратимые отображения и их свойства

$$f:A o B$$
 $\mathfrak{Def}\colon$ f — обратное справа, если $\exists g:B o A$ $f\circ g=id_B$ f — обратим слева, если $\exists g:B o A$ $g\circ f=id_A$ f обратимо, если $\exists g:B o A$

$$g \circ f = id_A, f \circ g = id_B$$

 ${\bf g}$ — отображение, обратное к f.(обозначение
 $f^{-1})$ Тосрома 2 1

Теорема 2.1.

- 1. f обратимо \Leftrightarrow f обратимо слава и справа.
- 2. f обратимо, то обратное отображение единственно.

1. f обратимо ⇒ f обратимо слева и справа.

Если у f есть и левый и правый обратный, то они совпадают.

 ${
m g}\,\,-\,$ правый обратный к f, h $\,\,-\,$ левый.

$$(h\circ f)\circ g=id_A\circ g=g$$

$$h \circ (f \circ g) = h \circ id_B = h$$

$$\Rightarrow g = h$$

2. Пусть f обратимое и g и h $\,-\,$ два обратных. В частности g $\,-\,$ обратное справа, h $\,-\,$ обратное слева.

Теорема 2.2.
$$f:A \rightarrow B, g:B \rightarrow C$$
 $g \circ f:A \rightarrow C$

- 1. Если f, g обратимы справа, то и $q \circ f$ обратима справа.
- 2. Если f, g обратимы слева, то и $g \circ f$ обратима слева.
- 3. Если f, g обратимы, то $g \circ f$ обратима $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

1.

$$\begin{split} u:B\to A, f\circ u &= id_B\\ v:C\to Bg\circ v &= id_C\\ (g\circ f)\circ (u\circ v) &= g\circ (f\circ (u\circ v)) =\\ &= g\circ ((f\circ u)\circ v) = g\circ (id_B\circ v) = g\circ v = id_C \end{split}$$

 $u \circ v$ — правый обратный к $g \circ f$

2. аналогично

3.

$$(g \circ f)(f^{-1} \circ g^{-1}) = g \circ ((f \circ f^{-1}) \circ g^{-1}) = g \circ (id_B \circ g^{-1}) = g \circ g^{-1} = id_C$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1}(g^{-1} \circ g) \circ f = f^{-1} \circ id_B \circ f = f^{-1} \circ f = id_A$$

Следствие 2.2.1. Композиция сюръективных — сюръективна.

Композиция инъективных — инъективна.

Композиция биективных — биекция.

Теорема 2.3. $f: A \to B$ f — обратима, тогда f^{-1} обратима и $(f^{-1})^{-1} = f$ $\blacktriangleright f \circ f^{-1} = id_B$ $f^{-1} \circ f = id_A \Rightarrow f$ — обратное к f^{-1} В силу единственности обратного $(f^{-1})^{-1} = f$

3. Тождественное отображение

 $\mathfrak{Def}\colon A, id_A:A\to A$ $\forall a\in Aid_A(a)=a$ id_A — тождественное отображение множетсва A. $\Gamma_{id_A}=$ диагональ $A\times A\{(a,a)|a\in A\}$ **Теорема 3.1.** $f:A\to B$ $f\circ id_A=f=id_B\circ f$ \blacktriangleright Области определения и назначения совпадают. $\forall y\in B, id_B(y)=y$ $a\in A$ $(f\circ id_A)(a)=f(id_A(a))=f(a)$ $a\in A$ $(id_B\circ f)(a)=id_B(f(a))=f(a)$

4. Равносильность инъективности и обратимости слева

 $\mathfrak{Def}\colon A, B$ $f:A o B, \Gamma_f, f$ — инъективное отображение(инъекция). $\forall a_1, a_2 \in A\exists b(a_1,b) \in \Gamma_f \wedge (a_2,b) \in \Gamma_f \Rightarrow a_1=a_2$ $\forall a_1, a_2 \in Af(a_1)=f(a_2)\Rightarrow a_1=a_2$ $f:A \rightarrowtail B$ — инъективное отображение.

Def: Отображение f назывется сюръективным (сюрекцией «отображение на»)

 $\forall b \in B \exists a \in A(b = f(a))$

$$f: A \twoheadrightarrow B$$

Def: f называется биективным(или биекцией) если f и сюръективно и инъективное.

 $\{b \in B | \exists c \in Cb = f(c)\} = f(C)$ — образ С.

 $\{a \in A | f(a) \in D\} = f'(D)$ — полный прообраз D.

 $f(f^{-1}(D)) \subset D$ — но не обязательно совпадет.

f инъективно \Leftrightarrow прообраз любого одноэлементного множества содержит не более одного элемента.

f сюръективно $f(A) = B, f: A \to B$

Теорема 4.1. $f: A \rightarrow B, g: B \rightarrow A$

 $g \circ f = id_A$ тогда f — инъективно, g — сюръективно.

1. $a_1, a_2 \in Af(a_1) = f(a_2)$

$$a_1 = a_2$$

$$g(f(a_1)) = g(f(a_2))$$

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$id_A(a_1)=id_A(a_2)$$

$$a_1 = a_2 \Rightarrow f$$
 — инъективна.

 $2. \ a \in A$

$$g(f(a)) = (g \circ f)(a) = id_A(a) = a$$

$$b = f(a)$$

$$a = g(b)$$

 $\forall a \in A \exists b \in Ba = g(b) \Rightarrow g$ — сюръективно.

Теорема 4.2. $f: A \to B(A \neq 0)$

f обратимо слева $\Leftrightarrow f$ — инъективна.

$$\exists gg \circ f = id_A \Rightarrow f$$
 — инъективно.

$$\leftarrow$$

$$C = f(A)$$

$$h_1:C\to A$$

$$\begin{aligned} &(c,a) \in \varGamma_{h_1} \Leftrightarrow (a,c) \in \varGamma_f \\ &\text{Почему } \varGamma_{h_1} - \text{график?} \\ &\forall c \in C \exists a \in A(a,c) \in \varGamma_f \end{aligned}$$

$$\forall c \in C \exists a \in A(a,c) \in \Gamma_t$$

$$\forall c \in C \exists a \in A(c,a) \in \Gamma_{h_1}$$

f — инъективно.

$$\forall a_1, a_2 \in A \exists b \in B(a_1, b) \in \varGamma_f \land (a_2, b) \in \varGamma_f \Rightarrow a_1 = a_2$$

$$\forall a_1, a_2 \in A \exists b \in C(a_1, b) \in I_f \land (a_2, b) \in I_f \Rightarrow a_1 = a_2$$

$$\forall a_1, a_2 \in A \exists b \in C(a_1, b) \in \varGamma_f \land (a_2, b) \in \varGamma_f \Rightarrow a_1 = a_2 \\ \forall a_1, a_2 \in A \exists b \in C(b, a_1) \in \varGamma_{h_1} \land (b, a_2) \in \varGamma_{h_1} \Rightarrow a_1 = a_2$$

```
\begin{split} &\Rightarrow \varGamma_{h_1} - \mathrm{график.} \\ h: B \to A \\ &\text{возьмем какой-то } a \in A \\ h(b) &= \begin{cases} h_1(b), & h_1(b), b \in C \\ a, & b \notin C \end{cases} \\ x \in A \\ (h \circ f)(x) &= h(f(x)) = h_1(f(x)) = x \end{split}
```

5. Равносильность сюръективности и обратимости справа

Аксиома выбора

```
B0 \neq X_b, b \in B
\exists \Phi: B \to \cup_{b \in B} X_b
\forall b \in B\Phi(b) \in X_b
Теорема 5.1.
f — обратимо справа \Leftrightarrow f — сюръективно.

ightharpoons
\Leftarrow
f:A\to B
\forall b \in Bf^{-1}(\{b\}) \neq 0(X_b)
g: B \to \cup_{b \in B} X_b
g(b) \in X_b = f^{-1}(\{b\}), f(g(b)) = b
f^{-1}(\{b\}) = X_b \subset A \Rightarrow \cup_B X_b \subset A
a \in A
a \in X_{f(a)}
g: B \to A
\forall b \in Bf(g(b)) = b
\forall b \in B(f \circ g)(b) = b
f \circ g = id_B
f — обратимо справа.
Следствие 5.1.1.
```

f — обратимо $\Leftrightarrow f$ — биективно.

6. Инъективное отображение конечного множества на себя является биективным

Теорема 6.1. А — конечное множество. $f:A \rightarrowtail A, \text{ тогда } f = \text{биекция}.$ **▶** f = сюръекция? $a_0 = a$ $a_{i+1} = f(a_i)$ $\exists m \neq n a_m = a_n m > n$ Лемма 6.1. $a_{m-n} = a$ **▶** Индукция по n. **База:** $n = 0, a_m = a_0 = a$ **Переход** $n \ge 1$

Так как инъекция $a_{m-1} \le a_{n-1}$

$$a_{m-n}=a_{(m-1)-(n-1)}=a$$

$$a_{m-n}=a$$

$$m-n\geq 1$$

$$a=a_{m-n}=f(a_{m-n-1})$$

а есть образ $a_{m-n-1} \Rightarrow f$ — сюръекция.

7. Сюръективное отображение конечного множества на себя является биективным

Теорема 7.1. А — конечное множество. $f:A \twoheadrightarrow A$, тогда f — биекция.

- $1. \ \forall a \exists n_a \{f \circ f \circ \dots \circ f\}(a) = a$
- $2. \ \exists n \forall a (f \circ \dots \circ f)(a) = a$
- 3. f инъекция.

$$\begin{aligned} a_0 &= a \\ a_i f^{-1}(\{a_i\}) \neq 0 \\ \exists a_{i+1} \in f^{-1}(\{a_i\}) \\ \exists m > n a_m = a_n \end{aligned}$$

Лемма 7.1. $a_{m-n} = a$

lacktriangle Индукция по n. База: $n=0, a_m=a_0=a$ Переход:

$$a_m = a_n$$

$$f(a_m) = f(a_n)$$

$$a_{m-1} = f(a_m) = f(a_n) = a_{n-1}$$

По индукционному предположению

$$a_{m-n} = a_{(m-1)-(n-1)} = a$$

$$\begin{aligned} a_{m-n} &\in f^{-1}(f^{-1} \dots (\{a\})) \\ &f(f(\dots f(a_{m-n}))) = a \\ &f(f(\dots f(a))) = a \\ &(f \circ f \circ \dots)(a) = a \\ &\forall a \in A \exists n_a \geq 1 \underbrace{(f \circ \dots \circ f)}_{n_a}(a) = a \\ &k \in N \underbrace{(f \circ \dots \circ f)}_{n_a k}(a) = a \end{aligned}$$

(индукция по k)

$$\begin{split} N &= \prod_{a \in A} n_a \underbrace{(f \circ \dots \circ f)}_{N}(a) = a \\ \\ a, b &\in A \\ f(a) &= f(b) \\ a &= (\underbrace{f \circ \dots \circ f}_{N-1} \circ f)(a) = (\underbrace{f \circ \dots \circ f}_{N-1} \circ f)(b) = b \end{split}$$

8. Бинарные отношения

 $\mathfrak{Def}\colon \ \mathrm{Ha}\ \mathrm{A}$ задано бинарное отношение $\mathrm{R},\ \mathrm{ec}$ ли задано $R\subset A$

 $(a,b) \in R$

а и b находятся в отношение с R

aRb

R = 0 пустое

 $R = A^2$ полное.

 $\mathfrak{Def} \colon A, R \subset A^2$

- 1. R рефлексивно, если $\forall a \in A, aRa(a, a) \in R$
- 2. R антирефлексивно, если $\forall a \in A \neg (aRa)$
- 3. R симметрично, если $\forall a,b \in AaRb \Rightarrow bRa$
- 4. R асимметрично, если $\forall a, b \in AaRb \Rightarrow \neg (bRa)$
- 5. R антисимметрично, если $\forall a, b \in A(aRb \land bRa) \Rightarrow a = b$
- 6. R транзитивно, если $\forall a, b, c \in A(aRb \land bRc) \Rightarrow aRc$

 \mathfrak{Def} : R называется отношением несторого частичного порядка, если оно рефлексивно, транзетивно и антисимметрино.

 \mathfrak{Def} : R называется отношением сторого частичного порядка, если оно антирефлексивно, транзетивно и асимметрино.

Если на А задано отношение частичного порядко, то А — частично упорядоченное множество.