KEB-45251

Numerical Techniques for Process Modeling Exercise 9 - Advection 17.03.2021

Antti Mikkonen Niko Niemelä

Problem 1

Consider a one dimensional source-free heat conduction and advection. The ends are maintained at constant temperatures of $L_{x=0} = 10$ °C and $L_{x=L} = 5$ °C.

Thermal conductivity is $k=0.1\,\mathrm{W/mK}$, product of density and heat capacity is $c\rho=1\,\mathrm{J/m^3K}$, and length $L=1\,\mathrm{m}$.

Figure 1: Problem sketch

Using Finite Volume Method and central differencing (linear interpolation) for advection term

- solve the problem using
 - a) n = 5, $u = 0.1 \,\mathrm{m/s}$
 - **b)** $n = 5, u = 2.5 \,\mathrm{m/s}$
 - c) n = 5, $u = -0.1 \,\mathrm{m/s}$
 - **d)** $n = 5, u = -2.5 \,\mathrm{m/s}$

where n is the number of cells and u is velocity.

- Calculate Peclet number for each case. How does Peclet number and your results correlate? Why?
- Compare the results with analytical solution

$$\frac{T - T_0}{T_L - T_0} = \frac{\exp(c\rho ux/k) - 1}{\exp(c\rho uL/k) - 1}$$
 (1)

Feel free to use Examples 5.1 and 5.2 from Versteeg and Malalasekera or course notes, for reference. Note that we use non-zero boundary values here. Zero boundary values may easily mask a error in code as the contribution often becomes zero.

Problem 2

Repeat problem 1 using upwind scheme for advection.

Extras

- Add a source term to you solver.
- \bullet Add heat transfer coefficient to your solver. Maybe pipe flow.
- How would you implement a zero gradient boundary condition?
- Make a transient case solver.