Notes on Real Analysis

Kai-Jyun Wang* Fall 2024

Foreword

I took Real Analysis in the fall of 2024 with Professor Tien. This is my note on the course. I tried to include all the proofs and details that has or has not been covered in the class, in order to make this note as self-contained as possible. Some of the proofs might be taken from somewhere and some might be wrong. The following topics are covered in the lecture: measure theory, Lebesgue integration, Banach space and Hilbert space.

Some funny things happened in the class. The professor had taught so fast that we had already reached the Banach space before our first midterm. Every student was wondering if the professor forgot that this is actually a one-year course. Time comes to the eleventh week, the professor walked into the class and said, "Few days ago, someone told me that we actually have two semesters for real analysis, and I didn't know that before!" It turns out that our concern was right. The professor then said, "But that is also a good thing, because we can learn more advanced topics in the second semester, like the harmonic analysis, the Fourier analysis..."

^{*}National Taiwan University, Department of Economics.

Contents

1	Mea	asure Theory and Integration	3
	1.1	Lebesgue Measure	3
	1.2	Lebesgue Integration	7
	1.3	Differentiation	13
	1.4	Radon-Nikodym Theorem	16
2	Banach Space		22
	2.1	Banach Space and Bounded Linear Functional	22
	2.2	ℓ^p Space	24
	2.3	\mathscr{L}^p Space	27
	2.4	Weak Convergence	40
	2.5	Open Mapping Theorem and Closed Graph Theorem	48
3	Hilbert Space		52
	3.1	Cauchy-Schwarz Inequality	52
	3.2	Separability and Orthonormal Basis	57
	3.3	Riesz Representation and Bilinear Form	61
	3.4	Symmetric and Compact Operators	66

1. Measure Theory and Integration

1.1. Lebesgue Measure

Definition 1.1

The **length** of an open interval (a,b) = I is b-a in the extended sense, denoted by $\ell(I)$.

Remark

We define $(a,a) = \emptyset$.

Definition 1.2

The **Lebesgue outer measure** (or in brief, **outer measure**) of a set $E \subset \mathbb{R}$ is

$$\mu^*(E) = \inf \left\{ \sum_n \ell(I_n) \, \middle| \, I_n \, \, are \, \, countable \, open \, \, intervals \, \, covering \, E
ight\}.$$

Proposition 1.3

- (a) Countable sets are of outer measure zero.
- (b) If $A \subset B$, then $\mu^*(A) \leq \mu^*(B)$.
- (c) For $x \in \mathbb{R}$ and $A \subset \mathbb{R}$, $\mu^*(A + x) = \mu^*(A)$.
- (d) For countable $A_n \subset \mathbb{R}$, $\mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$.

Proof. For (a), let x_n denumerate a countable set A. Then consider

$$I_n = (x_n - 2^{-n}\epsilon, x_n + 2^{-n}\epsilon)$$

for $n \in \mathbb{N}$. Then $A \subset \bigcup_n I_n$ and $\mu^*(A) \leq \sum_n 2 \cdot 2^{-n} \epsilon = 2\epsilon$. Since ϵ is arbitrary, $\mu^*(A) = 0$.

For (b), note that any cover of *B* must cover *A*. The result follows.

For (c), note that the translations of open intervals preserve their lengths.

For (d), let $\{I_j^n\}$ cover A_n for each n such that $\sum_j \ell(I_j^n) < \mu^*(A_n) + 2^{-n}\epsilon$. Then we have that $\bigcup_n \bigcup_j I_j^n$ covers $\bigcup_n A_n$ and

$$\sum_{n}\sum_{j}\ell(I_{j}^{n})<\sum_{n}\mu^{*}(A_{n})+2^{-n}\epsilon=\epsilon+\sum_{n}\mu^{*}(A_{n}).$$

Since ϵ is arbitrary, it follows that $\mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$.

Definition 1.4

A family of sets \mathcal{M} is called a σ -algebra if

- (a) $\varnothing \in \mathcal{M}$.
- (b) $A \in \mathcal{M}$ implies $A^c \in \mathcal{M}$.
- (c) For countably many $A_n \in \mathcal{M}$ we have $\bigcup_n A_n \in \mathcal{M}$.

The space (X,\mathcal{M}) is called a **measurable space** and the sets in \mathcal{M} are called **measurable sets**.

Proposition 1.5

 \mathcal{M} is a σ -algebra if and only if the following hold:

- (a) $X \in \mathcal{M}$.
- (b) $A, B \in \mathcal{M}$ implies $A \cap B, A \cup B, A B \in \mathcal{M}$.
- (c) For countably many $A_n \in \mathcal{M}$ we have $\bigcap_n A_n \in \mathcal{M}$.

Proof. Omitted.

Proposition 1.6

Let \mathcal{F} be a family of sets in X. Then there exists a unique smallest σ -algebra containing \mathcal{F} .

Proof. Let \mathcal{M} be the intersection of all σ -algebras containing \mathscr{F} . Since $\mathscr{P}(X)$ must be such a σ -algebra, \mathcal{M} is non-empty. Now we verify that \mathcal{M} is a σ -algebra. First, $\varnothing \in \mathcal{M}$ since \varnothing is in every σ -algebra. Second, if $A \in \mathscr{F}$ then A must belong to every σ -algebra containing \mathscr{F} and so does A^c . Hence $A^c \in \mathcal{M}$. The closure under countable unions follows from a similar argument. We conclude that \mathscr{M} is the desired σ -algebra.

Definition 1.7

For a family of sets \mathscr{F} , we denote the smallest σ -algebra containing \mathscr{F} by $\sigma(\mathscr{F})$.

Definition 1.8

Let \mathcal{T} be the family of all open sets. The **Borel** σ -algebra is defined as $\mathcal{B} = \sigma(\mathcal{T})$. The sets in \mathcal{B} are called **Borel sets**.

Definition 1.9

A set E is called **Lebesgue measurable** if for $\epsilon > 0$, there exists an open set V such that $E \subset V$ and $\mu^*(V - E) \leq \epsilon$.

Remark

The Lebesgue measurable sets form a σ -algebra.

Remark

The Borel sets are Lebesgue measurable.

Remark

Not all subsets in \mathbb{R} are Lebesgue measurable. Consider the Vitali set. For a Lebesgue measurable set that is not Borel, consider the preimage of a Vitali set of Cantor-Lebesgue function.

Definition 1.10

A function $f:(X,\mathcal{M})\to(\mathbb{R},\mathcal{B})$ is called \mathcal{M} -measurable if $f^{-1}(B)\in\mathcal{M}$ for all $B\in\mathcal{B}$.

Proposition 1.11

Let $f: X \to Y$ and A be an index set. Then

- (a) $f^{-1}(B^c) = f^{-1}(B)^c$.
- (b) $f^{-1}(\bigcup_{a\in A} B_a) = \bigcup_{a\in A} f^{-1}(B_a)$.
- (c) $f^{-1}(\bigcap_{a \in A} B_a) = \bigcap_{a \in A} f^{-1}(B_a)$

Proof. Omitted.

Proposition 1.12

 $f:(X,\mathcal{M})\to(\mathbb{R},\mathcal{B})$ is \mathcal{M} -measurable if $f^{-1}((a,\infty))\in\mathcal{M}$.

Proof. Observe that $\{A \subset \mathbb{R} \mid f^{-1}(A) \in \mathcal{F}\}$ is a σ -algebra. By assumption, [a,b], (a,b], [a,b) and (a,b) are in this σ -algebra for $a,b \in \overline{\mathbb{R}}$.

Proposition 1.13

 f_n are measurable. Then $\sup_n f_n$, $\inf_n f_n$, $\lim \sup_n f_n$ and $\lim \inf_n f_n$ are measurable.

Proof. Note that $\{\sup_n f_n > a\} = \bigcup_n \{f_n > a\}$ and $\{\inf_n f_n < a\} = \bigcup_n \{f_n < a\}$ are measurable. $\limsup_n f_n = \inf_k \sup_{n \ge k} f_n$ and $\liminf_n f_n = \sup_k \inf_{n \ge k} f_n$ are measurable as well.

Remark

 $\lim_n f_n = \limsup_n f_n = \liminf_n f_n$ is measurable.

Definition 1.14

Let (X,\mathcal{M}) be a measurable space. A **measure** on X is a function $\mu: \mathcal{M} \to [0,\infty]$ satisfying

- (a) $\mu(\emptyset) = 0$.
- (b) $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ for disjoint A_n .

The triple (X, \mathcal{M}, μ) is called a **measure space**.

Proposition 1.15

Let (X, \mathcal{M}, μ) be a measure space and $A, B \in \mathcal{M}$. Then

- (a) $A \subset B$ implies $\mu(A) \leq \mu(B)$.
- (b) $\mu(A-B) = \mu(A) \mu(B)$ if $B \subset A$ and $\mu(B) < \infty$.

Proof. Omitted.

Proposition 1.16

Let (X, \mathcal{M}, μ) be a measure space and E_n be a sequence of measurable sets. Then

- (a) If $E_n \nearrow E$, then $\mu(E_n) \to \mu(E)$ as $n \to \infty$.
- (b) If $E_n \setminus E$ and $\mu(E_1) < \infty$, then $\mu(E_n) \to \mu(E)$ as $n \to \infty$.

Proof. Suppose $\mu(E_n) < \infty$ for all n. Consider $S_n = E_n - E_{n-1}$ with $E_0 = \emptyset$. Then S_n are disjoint and $\bigcup_n S_n = E$. Then

$$\mu(E) = \mu(\bigcup_{n} S_n) = \sum_{n} \mu(S_n) = \sum_{n} \mu(E_n) - \mu(E_{n-1}) = \lim_{n} \mu(E_n).$$

If $\mu(E_n) = \infty$ for some n, then $\mu(E) = \infty$ and the result follows.

For the second part, note that $E_1 - E_n \nearrow E_1 - E$. Then

$$\mu(E_1) - \mu(E_n) = \mu(E_1 - E_n) \rightarrow \mu(E_1 - E) = \mu(E_1) - \mu(E).$$

Rearranging gives the desired result.

Theorem 1.17 (Egorov)

Let E be a measurable set with $\mu(E) < \infty$ and $f_n : E \to \mathbb{R}$ are measurable functions. If $f_n \to f$ a.e. on E, then for all $\epsilon > 0$, there exists a closed set $A_{\epsilon} \subset E$ such that $\mu(E - A_{\epsilon}) < \epsilon$ and $f_n \to f$ uniformly on A_{ϵ} .

Proof. Consider the case where $f_n \to f$ everywhere on E since $\{x \in E \mid f_n(x) \not\to f(x)\}$ is of measure zero. For each $n,k \in \mathbb{N}$, let $E_k^n = \{x \in E \mid |f_j(x) - f(x)| < 1/n \text{ for all } j > k\}$. Then fix n and note that $E_k^n \nearrow E$ as $k \to \infty$. By proposition 1.16, there exists k_n such that $\mu(E - E_{k_n}^n) < 2^{-n}$. Then we have $|f_j(x) - f(x)| < 1/n$ for every $j > k_n$ and $x \in E_{k_n}^n$. Choose N such that $\sum_{n \ge N} 2^{-n} < \epsilon/2$ and let $\hat{A}_\epsilon = \bigcap_{n \ge N} E_{k_n}^n$. Then $\mu(E - \hat{A}_\epsilon) \le \sum_{n \ge N} \mu(E - E_{k_n}^n) < \epsilon/2$. Also, for any $\delta > 0$, we may pick n > N with $1/n < \delta$ and for $x \in \hat{A}_\epsilon$, $|f_j(x) - f(x)| < \delta$ whenever $j > k_n$. Hence $f_n \to f$ uniformly on \hat{A}_ϵ . We may further find a closed $A_\epsilon \subset \hat{A}_\epsilon$ such that $\mu(\hat{A}_\epsilon - A_\epsilon) < \epsilon/2$. Then A_ϵ is the desired set.

Definition 1.18

A function $s: X \to Y$ is called **simple** if it only takes finitely many values.

Lemma 1.19

 $f: E \to [0,\infty]$ is measurable. Then there exists a sequence of simple functions $s_n \nearrow f$; furthermore, if f is bounded, then $s_n \to f$ uniformly.

Proof. Consider $s_n = \sum_{k=0}^{n2^n-1} k 2^{-n} \chi_{f^{-1}([k2^{-n},(k+1)2^{-n}))} + n \chi_{f^{-1}([n,\infty])}$. Then s_n are simple and $s_n \nearrow f$. If f is bounded, then $f^{-1}([n,\infty]) = \emptyset$ for some n large enough and $s_n \to f$ uniformly.

Theorem 1.20 (Lusin)

Let $E \subset \mathbb{R}$ be a set of finite measure and $f : E \to \mathbb{R}$ be a measurable, finite-valued function. Then for all $\epsilon > 0$, there exists a closed set $F_{\epsilon} \subset E$ such that $\mu(E - F_{\epsilon}) < \epsilon$ and $f|_{F_{\epsilon}}$ is continuous.

Proof. First we may partition E into $E = \bigcup_{i \in \mathbb{N}} E_i$ where $E_i = E \cap [-i, i]$. We first prove the result for simple functions. Let $f = \sum_{j=1}^{N} c_j \chi_{A_j}$ be a simple function with the stated

properties. Then for each j, we may find a closed set $F_j \subset A_j$ such that $\mu(A_j - F_j) < \epsilon/N$. Now since E_i are bounded, $F_j \cap E_i$ are compact and hence f being constant on each $F_j \cap E_i$ is continuous. Note that $F_\epsilon = \bigcup_{i,j=1}^N F_j \cap E_i$ satisfies the desired properties. Next, for a general measurable function f, we may find a sequence of simple functions $s_n \nearrow f$ by lemma 1.19. Now by Egorov's theorem, we may find a closed set $F_\epsilon \subset E$ such that $\mu(E - F_\epsilon) < \epsilon$ and $s_n \to f$ uniformly on F_ϵ . Since s_n are continuous on F_ϵ , f is continuous on F_ϵ .

Remark

By Tietze's extension theorem, f can be extended to a continuous function on all of \mathbb{R} .

Proposition 1.21

E is Lebesgue measurable if and only if $\mu(E \triangle B) = 0$ for some Borel set B.

Proof. Suppose E is Lebesgue measurable. Then for each n, there exists an open set V_n such that $E \subset V_n$ and $\mu(V_n - E) < 1/n$. Let $B = \bigcap_n V_n$. Then B is a Borel set and $\mu(E \triangle B) = 0$. Conversely, if $\mu(E \triangle B) = 0$ for some Borel set B, since B is measurable, there exists an open $V \supset B$ such that $\mu(V - B) < \epsilon$. Then $B = (E \cap B) \cup (B - E)$ and since the later set has outer measure zero, $E \cap B$ is measurable. And since E - B is outer measure zero, $E \cap B = E$ is measurable.

Proposition 1.22

If f is Lebesgue measurable, then there exists a Borel measurable function g such that f = g a.e.

Proof. Let $s_k \nearrow f$ be a sequence of simple functions with $s_k = \sum_{i=1}^{n_k} c_i \chi_{E_i}$ where E_i are measurable. Then for each E_i we may find a Borel set $B_i \subset E_i$ such that $\mu(E_i - B_i) = 0$ by the previous proposition. Then $t_k = \sum_{i=1}^{n_k} c_i \chi_{B_i}$ is a Borel measurable function. Let $g = \lim_{k \to \infty} t_k$. Then g is Borel measurable and f = g a.e. since $\mu(E_i - B_i) = 0$ for countably many i.

1.2. Lebesgue Integration

Definition 1.23

For a simple function $s = \sum_{i=1}^{n} c_i \chi_{E_i}$, its **Lebesgue integral** is defined as

$$\int s d\mu = \sum_{i=1}^{n} c_i \mu(E_i).$$

Definition 1.24

For a non-negative measurable function f, its **Lebesgue integral** is defined as

$$\int f d\mu = \sup \left\{ \int s d\mu \mid s \text{ is simple and } 0 \le s \le f \right\}.$$

Definition 1.25

For a measurable function $f: X \to [-\infty, \infty]$, its **Lebesgue integral** is defined as

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu,$$

where $f^+ = \max\{f, 0\}$ and $f^- = \max\{-f, 0\}$ provided that

$$\int |f| d\mu = \int f^+ d\mu + \int f^- d\mu < \infty.$$

In such a case, we say that f is **integrable**.

Proposition 1.26

For f, g integrable and $c \in \mathbb{R}$,

- (a) $\int cf + gd\mu = c \int fd\mu + \int gd\mu$.
- (b) If $f \le g$ a.e., then $\int f d\mu \le \int g d\mu$.

Proof. Omitted.

Theorem 1.27 (Lebesgue Monotone Convergence Theorem)

Let $f_n: X \to [0,\infty]$ be a sequence of measurable functions with $f_n \nearrow f$ a.e. Then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Proof. By the monotonicity we have

$$\int f_n d\mu \le \int f d\mu$$

for all n and hence

$$\lim_{n\to\infty}\int f_n d\mu \leq \int f d\mu.$$

To obtain the reverse inequality, note that for any $c \in (0,1)$, there exists N such that $f_n \ge cf$ a.e. for all $n \ge N$. Then

$$\int f_n d\mu \ge c \int f d\mu$$

for all $n \ge N$. Letting $n \to \infty$,

$$\lim_{n\to\infty}\int f_n d\mu \ge c\int f d\mu.$$

Taking $c \to 1^-$ then

$$\lim_{n\to\infty}\int f_n d\mu \geq \int f d\mu \implies \lim_{n\to\infty}\int f_n d\mu = \int f d\mu.$$

Remark

As a consequence,

$$\int \sum_{n} f_{n} d\mu = \sum_{n} \int f_{n} d\mu.$$

Theorem 1.28 (Bounded Covergence Theorem)

Suppose $\mu(X) < \infty$. Let $f_n : X \to \mathbb{R}_+$ be a sequence measurable functions such that $f_n \leq M$ a.e. for some $M \in \mathbb{R}$. If $f_n \to f$ a.e., then f is integrable and

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Proof. For any $\epsilon > 0$, by Egorov's theorem, there exists $F \subset X$ such that $\mu(X - F) < \epsilon$ and $f_n \to f$ uniformly on F. Then there exists N such that $|f_n - f| < \epsilon$ on F for all $n \ge N$. We have

$$\left| \int f_n d\mu - \int f d\mu \right| \le \int_X |f_n - f| d\mu$$

$$= \int_F |f_n - f| d\mu + \int_{X - F} |f_n - f| d\mu$$

$$\le \varepsilon \mu(F) + 2M\mu(X - F) = \varepsilon(\mu(F) + 2M\varepsilon).$$

Since $\mu(X) < \infty$ and ϵ is arbitrary, we may conclude that

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Lemma 1.29 (Fatou)

 $f_n: X \to [0,\infty]$ are measurable. Then

$$\int \liminf_n f_n d\mu \leq \liminf_n \int f_n d\mu.$$

Proof. Let $g_n = \inf_{k \ge n} f_k$. Then $g_n \nearrow g = \liminf_n f_n$. By LMCT,

$$\int g_n d\mu \to \int g d\mu = \int \liminf_n f_n d\mu.$$

Note that $f_n \ge g_n$ and thus $\int f_n d\mu \ge \int g_n d\mu$. Hence

$$\liminf_{n} \int f_n d\mu \ge \liminf_{n} \int g_n d\mu = \int g d\mu = \int \liminf_{n} f_n d\mu.$$

Theorem 1.30 (Lebesgue Dominated Convergence Theorem)

Let $f_n: X \to [-\infty, \infty]$ be a sequence of measurable functions such that $f_n \to f$ a.e. and

there exists an integrable function g such that $|f_n| \le g$ a.e. for all n. Then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Proof. Since $|f_n| \le g$ a.e., $|f| \le g$ a.e. Now $|f_n - f| \le |f_n| + |f| \le 2g$ a.e. Let $h_n = 2g - |f_n - f| \ge 0$ a.e. By Fatou's lemma,

$$\begin{split} \int 2g d\mu &= \int \liminf_n h_n d\mu \leq \liminf_n \int h_n d\mu = \liminf_n \int 2g - |f_n - f| \, d\mu \\ &= \int 2g d\mu - \limsup_n \int |f_n - f| \, d\mu. \end{split}$$

It follows that

$$0 \leq \liminf_{n} \int |f_n - f| \, d\mu \leq \limsup_{n} \int |f_n - f| \, d\mu \leq 0.$$

Hence

$$\lim_{n\to\infty}\int |f_n-f|\,d\mu=0.$$

By the triangle inequality,

$$\left| \int f d\mu - \int f_n d\mu \right| \leq \int |f - f_n| d\mu \to 0.$$

So

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Remark

If supp(f) has finite measure and f is bounded, then

$$\int f = \inf_{s \ge f} \int s d\mu,$$

where s is simple.

Definition 1.31

 $\mathcal{L}^1 = \{f : X \to \mathbb{R} \mid f \text{ is integrable}\} \text{ with the norm } ||f||_{\mathcal{L}^1} = \int |f| d\mu \text{ is called the } \mathcal{L}^1 \text{ space}.$

Remark

The elements in \mathcal{L}^1 are in fact equivalence classes of functions that are equal a.e.

Proposition 1.32

Let $f \in \mathcal{L}^1$ be a nonegative function. Then for every $\epsilon > 0$, there is some $\delta > 0$ such that for any measurable E with $\mu(E) \leq \delta$,

$$\int_E f d\mu \le \epsilon.$$

Proof. Let $E_n = \{x \in X \mid f(x) > n\}$. Then by Lebesgue dominated convergence theorem, since $f \chi_{E_n} \leq f$,

$$\int_{E_n} f d\mu \to 0.$$

For any $\epsilon > 0$, there exists *n* such that

$$\int_{E_n} f d\mu \le \frac{\epsilon}{2}.$$

Pick $\delta \le \epsilon/(2n)$. Then for any measurable *E* with $\mu(E) \le \delta$,

$$\int_{E} f d\mu = \int_{E \cap E_{n}} f d\mu + \int_{E \cap E_{n}^{c}} f d\mu \leq \int_{E_{n}} f d\mu + n\mu(E) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

since $f \leq n$ on E_n^c . This completes the proof.

Theorem 1.33 (Lebesgue-Vitali)

 $f: X \to \mathbb{R}$ is Riemann integrable if and only if the discontinuity set of f has Lebesgue measure zero. Furthermore, if f is Riemann integrable, then the Riemann integral and the Lebesgue integral agrees.

Proof. Define the oscillation of f at x as

$$\operatorname{osc}(f, x) = \inf_{U: x \in U} \operatorname{diam}(f(U)),$$

where U is open.

We first claim that f is continuous at x if and only if $\operatorname{osc}(f,x)=0$. Indeed, if f is continuous at x, then $\forall \, \epsilon > 0$, $\exists \, \delta > 0$ such that $|f(x)-f(y)| < \epsilon$ for all $y \in B_{\delta}(x)$. Then $\operatorname{diam}(f(B_{\delta}(x))) \leq 2\epsilon$. Since ϵ is arbitrary, $\operatorname{osc}(f,x)=0$. Conversely, if $\operatorname{osc}(f,x)=0$, then $\forall \, \epsilon > 0$, $\exists \, \text{open } U$ containing x such that $\operatorname{diam}(f(U)) < \epsilon$. This implies that $|f(x)-f(y)| < \epsilon$ for all $y \in U$ and hence f is continuous at x.

Next, let D_{ϵ} collect all points x such that $\operatorname{osc}(f,x) \geq \epsilon > 0$. We claim that D_{ϵ} is closed. For any convergent sequence $x_k \in D_{\epsilon}$, let $x_k \to x$. For any open U containing $x, \exists N$ such that $x_k \in U$ for all $k \geq N$. Then \exists an open neighborhood of x_N, U' , such that $U' \subset U$ and $\operatorname{diam}(f(U')) \geq \epsilon$. Hence $\operatorname{osc}(f,x) \geq \epsilon$ and $x \in D_{\epsilon}$, showing that D_{ϵ} is closed. Observe that $D = \bigcup_{n=1}^{\infty} D_{1/n}$.

Now suppose that f is Riemann integrable. Then for any $\epsilon > 0$, $\exists \mathscr{P}$ such that $\mathrm{U}(f,\mathscr{P}) - \mathrm{L}(f,\mathscr{P}) < \frac{1}{n}$ and $\|\mathscr{P}\| < \frac{1}{n}$. Then

$$\begin{split} &\sum_{\substack{Q\in\mathcal{P},\\Q\cap D_{\frac{1}{n}}\neq\varnothing}} (\sup_{Q} f - \inf_{Q} f)|Q| + \sum_{\substack{Q\in\mathcal{P},\\Q\cap D_{\frac{1}{n}}=\varnothing}} (\sup_{Q} f - \inf_{Q} f)|Q| \\ &= \sum_{\substack{Q\in\mathcal{P}\\Q\in\mathcal{P}}} (\sup_{Q} f - \inf_{Q} f)|Q| = \mathrm{U}(f,\mathcal{P}) - \mathrm{L}(f,\mathcal{P}) < \epsilon. \end{split}$$

Note that $\sup_Q f - \inf_Q f = \operatorname{diam}(f(Q))$. This gives that $2M\mu^*(D_{\frac{1}{n}}) < \epsilon$ for every n. Since ϵ is arbitrary, we conclude that $\mu^*(D_{\frac{1}{n}}) = 0$ for each n. Thus D is an union of sets of measure zero and hence also has measure zero.

For the converse, suppose that m(D) = 0. Then D_{ϵ} also has measure zero. Let \mathscr{P} be a partition on E with $\|\mathscr{P}\| < \delta$ for some $\delta > 0$, which will be determined later. Then

$$\begin{split} \mathbf{U}(f,\mathcal{P}) - \mathbf{L}(f,\mathcal{P}) &= \sum_{Q \in \mathcal{P}} (\sup_{Q} f - \inf_{Q} f) |Q| \\ &= \sum_{\substack{Q \in \mathcal{P}, \\ Q \cap D_{\varepsilon} = \varnothing}} (\sup_{Q} f - \inf_{Q} f) |Q| + \sum_{\substack{Q \in \mathcal{P}, \\ Q \cap D_{\varepsilon} \neq \varnothing}} (\sup_{Q} f - \inf_{Q} f) |Q| \end{split}$$

For the first term, $\sup_Q f - \inf_Q f < \varepsilon$ for $\|\mathscr{P}\| < \delta_1$ for some $\delta_1 > 0$. And thus the first term is bounded by $\varepsilon m(E)$. For the second term, $\sup_Q f - \inf_Q f < 2M$ and since D_ε has measure zero, $\exists Q_k$ cubic cover of D_ε such that $\sum_k |Q_k| < \varepsilon$. Now if $\operatorname{diam}(Q) < \delta_2$ for some $\delta_2 > 0$, then those Q intersecting D_ε nonempty are subset of $\bigcup_k Q_k$. Thus the second term is bounded by $2M\varepsilon$. Choosing $\delta = \min\{\delta_1, \delta_2\}$ yields that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon m(E) + 2M\epsilon$$

whenever $\|\mathcal{P}\| < \delta$. Since ϵ is arbitrary, f is Riemann integrable.

Proposition 1.34

- (a) Step functions are dense in \mathcal{L}^1 .
- (b) Continuous functions with compact support are dense in \mathcal{L}^1 .

Proof. Let $f \in \mathcal{L}^1$. By lemma 1.19, we already know that simple functions are dense in \mathcal{L}^1 . It now remains to show that step functions can approximate simple functions. Since simple functions are linear combinations of finitely many characteristic functions, it suffices to show that characteristic functions can be approximated by step functions. Now for any measurable E, there is a family of almost disjoint cubes Q_i such that $\mu(E \triangle \cup_{i=1}^M Q_i) \leq 2\epsilon$, and thus we may set the step function to be $\phi = \sum_{i=1}^M \chi_{Q_i}$, with $\|\chi_E - \phi\|_{\mathcal{L}^1} \leq 2\epsilon$.

For the second part, let it now suffices to show that continuous functions with compact support can approximate characteristic functions of a rectangle, say [a,b]. Then set

$$g(x) = \begin{cases} 0 & x \le a - \epsilon, \\ \frac{x - a + \epsilon}{\epsilon} & a - \epsilon \le x \le a, \\ 1 & a \le x \le b, \\ 1 - \frac{x - b}{\epsilon} & b \le x \le b + \epsilon, \\ 0 & x \ge b + \epsilon. \end{cases}$$

Then *g* is continuous with compact support and $\|\chi_{[a,b]} - g\|_{\varphi_1} \le \epsilon/2 + \epsilon/2 = \epsilon$.

1.3. Differentiation

Definition 1.35

Let $f \in \mathcal{L}^1(\mathbb{R}^d)$. The **Hardy-Littlewood maximal function** is defined as

$$f^*(x) = \sup_{B: x \in B} \frac{1}{\mu(B)} \int_B |f(y)| dy,$$

where the supremum is taken over all balls containing x.

Proposition 1.36

 f^* is measurable.

Proof. Let $E_{\alpha} = \{x \mid f^*(x) > \alpha\}$. We claim that it is an open set. Indeed, if $p \in E_{\alpha}$, there exists a ball B containing p such that

$$\frac{1}{\mu(B)} \int_{B} |f(y)| \, dy > \alpha.$$

Now any x close enough to p will be contained in B and hence in E_{α} . Thus E_{α} is open. Hence f^* is measurable.

Lemma 1.37

[Vitali Covering Lemma] Suppose $\{B_1, ..., B_N\}$ is a finite collection of open balls in \mathbb{R}^d . Then there exists a disjoint subcollection $\{B_{i_1}, ..., B_{i_k}\}$ such that

$$\mu\left(\bigcup_{j=1}^{N} B_j\right) \le 3^d \sum_{j=1}^{k} \mu(B_{i_j}).$$

Proof. First we make an observation that if B and B' are balls intersecting with, say, the radius of B is greater than the radius of B', then B' is contained in the ball \tilde{B} that is concentric with B but with 3 times the radius.

The construction of the subcollection is proceeded as follows. First, pick a ball B_{i_1} with the largest radius. Then remove all balls intersecting with \tilde{B}_{i_1} , the ball concentric with B_{i_1} but with 3 times the radius. Among the remaining balls, we repeat the process and pick B_{i_2} . The process terminates when no more balls can be picked, after at most N steps and we obtain a disjoint subcollection of balls $\{B_{i_1}, \ldots, B_{i_k}\}$.

Lastly, we verify the inequality. By the construction, we know that $\cup_{j=1}^N B_j \subset \cup_{j=1}^k \tilde{B}_{i_j}$ and thus

$$\mu\!\left(\bigcup_{j=1}^N B_j\right) \leq \mu\!\left(\bigcup_{j=1}^k \tilde{B}_{i_j}\right) \leq \sum_{j=1}^k \mu(\tilde{B}_{i_j}) = \sum_{j=1}^k 3^d \mu(B_{i_j}).$$

Theorem 1.38 (Weak-Type Inequality)

Let $f \in \mathcal{L}^1(\mathbb{R}^d)$. Then for all $\alpha > 0$,

$$\mu\left(\left\{x \in \mathbb{R}^d \mid f^*(x) > \alpha\right\}\right) \le \frac{A}{\alpha} \|f\|_{\mathcal{L}^1(\mathbb{R}^d)},$$

where $A = 3^d$.

Proof. Let $E_{\alpha} = \{x \mid f^*(x) > \alpha\}$. For each $x \in E_{\alpha}$ there exists a ball B_x containing x such that

 $\frac{1}{\mu(B_x)} \int_{B_x} |f(y)| \, dy > \alpha \quad \Rightarrow \quad \mu(B_x) < \frac{1}{\alpha} \int_{B_x} |f(y)| \, dy.$

Now for any fixed compact $K \subset E_{\alpha}$, K is covered by $\bigcup_{x \in E_{\alpha}} B_x$, and hence there exists a finite subcover $\{B_1, \ldots, B_N\}$ of K. By the Vitali covering lemma, there exists a disjoint subcollection $\{B_{i_1}, \ldots, B_{i_k}\}$ with

$$\mu\left(\bigcup_{j=1}^{N} B_j\right) \le 3^d \sum_{j=1}^{k} \mu(B_{i_j}).$$

As a result,

$$\begin{split} \mu(K) &\leq \mu\bigg(\bigcup_{j=1}^{N} B_{j}\bigg) \leq 3^{d} \sum_{j=1}^{k} \mu(B_{i_{j}}) \leq \frac{3^{d}}{\alpha} \sum_{j=1}^{k} \int_{B_{i_{j}}} |f(y)| \, dy \\ &\leq \frac{3^{d}}{\alpha} \int_{\bigcup_{j=1}^{k} B_{i_{j}}} |f(y)| \, dy \leq \frac{3^{d}}{\alpha} \int_{\mathbb{R}^{d}} |f(y)| \, dy. \end{split}$$

Since the inequality holds for all compact subset K of E_{α} , the proof is complete.

Remark

Note that $\{x \mid f^*(x) = \infty\} \subset \{x \mid f^*(x) > \alpha\}$ for every $\alpha > 0$. Taking $\alpha \to \infty$ yields

$$\mu(\lbrace x \mid f^*(x) = \infty \rbrace) = 0.$$

Hence $f^*(x) < \infty$ a.e.

Theorem 1.39 (Lebesgue Differentiation Theorem)

Let $f \in \mathcal{L}^1(\mathbb{R}^d)$. Then for almost every $x \in \mathbb{R}^d$,

$$\lim_{m(B)\to 0, x\in B}\frac{1}{m(B)}\int_B f(y)dy=f(x).$$

Proof. Since continuous functions are dense in \mathcal{L}^1 , we may find a continuous g such that $||f - g||_{\mathcal{L}^1} < \epsilon$. For such g, by the continuity, there exists a ball such that $|g(y) - g(x)| < \epsilon$

for all $x, y \in B$. Thus

$$\left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| = \left| \frac{1}{m(B)} \int_{B} (f(y) - g(y)) dy + \frac{1}{m(B)} \int_{B} g(y) - g(x) dy + g(x) - f(x) \right|$$

$$\leq \frac{1}{m(B)} \int_{B} |(f(y) - g(y))| dy + \frac{1}{m(B)} \int_{B} |g(y) - g(x)| dy + |g(x) - f(x)|$$

$$\leq (f - g)^{*}(x) + \epsilon + |g(x) - f(x)|.$$

Since ϵ can be arbitrary small, we have

$$\left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| \le (f - g)^{*}(x) + |g(x) - f(x)|.$$

Now we let

$$E_{\alpha} = \left\{ x \left| \limsup_{m(B) \to 0, x \in B} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| > 2\alpha \right\}.$$

We claim that E_{α} has measure zero. Set

$$F_{\alpha} = \{x \mid (f-g)^*(x) > \alpha\}$$
 and $G_{\alpha} = \{x \mid |g(x) - f(x)| > \alpha\}$.

Then we have $E_{\alpha} \subset F_{\alpha} \cup G_{\alpha}$. By the weak-type inequality and Tchebyshev's inequality,

$$\mu(F_{\alpha}) \leq \frac{A}{\alpha} \|f - g\|_{\mathcal{L}^1} < \frac{A}{\alpha} \epsilon \quad \text{and} \quad \mu(G_{\alpha}) \leq \frac{1}{\alpha} \|f - g\|_{\mathcal{L}^1} < \frac{1}{\alpha} \epsilon.$$

Thus $\mu(E_{\alpha}) \le \mu(F_{\alpha} \cup G_{\alpha}) < \frac{A+1}{\alpha}\epsilon$. Since ϵ is arbitrary, we have $\mu(E_{\alpha}) = 0$ and the proof is complete.

Remark

For $f \in \mathcal{L}^1(\mathbb{R})$, and $F(x) = \int_{-\infty}^x f(y) dy$, we have F'(x) = f(x) a.e. Indeed,

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \frac{1}{h} \left| \int_{x}^{x+h} f(y) - f(x) dy \right| \le \frac{1}{h} \int_{x}^{x+h} |f(y) - f(x)| \, dy$$

$$\le \frac{1}{h} \int_{x-h}^{x+h} |f(y) - f(x)| \, dy \le 2 \frac{1}{2h} \int_{x-h}^{x+h} |f(y) - f(x)| \, dy \to 0$$

 $as h \rightarrow 0 a.e. x.$

Remark

In fact, the requirement that $f \in \mathcal{L}^1$ can be relaxed to $f \in \mathcal{L}^1_{loc}$, which is defined as the set of all locally integrable functions, i.e., $f \chi_B \in \mathcal{L}^1$ for all finite balls B since the proof only requires B to be a ball near x.

1.4. Radon-Nikodym Theorem

Definition 1.40

Let (X, \mathscr{A}) be a measurable space. A **signed measure** is a function $\mu : \mathscr{A} \to [-\infty, \infty]$ such that $\mu(\varnothing) = 0$ and for any countable disjoint collection $\{A_i\}_{i \in \mathbb{N}}$,

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Remark

The range of μ can only include one of $\pm \infty$.

Definition 1.41

Let (X, \mathcal{A}, μ) be a measure space. μ is called σ -finite if X can be covered by countably many $A_n \in \mathcal{A}$ such that $\mu(A_n) < \infty$ for all n. In this case, we also call X σ -finite.

Definition 1.42

Let v, λ be two measures defined on a measurable space. v is said to be **absolutely continuous** with respect to λ if $\lambda(A) = 0$ implies that v(A) = 0 for all measurable A, denoted as $v \ll \lambda$.

Example

Let

$$v(A) = \int_A f \, d\lambda$$

where $f \ge 0$ is measurable. Then $\lambda(A) = 0$ implies $\nu(A) = 0$. $\nu \ll \lambda$.

Definition 1.43

Let v, λ be two measures defined on a measurable space. v is said to be **singular** with respect to λ if there exists a measurable set A such that $\lambda(A) = 0$ and $v(A^c) = 0$, denoted as $v \perp \lambda$.

Example

Let λ be the Lebesgue measure on [0,1] and

$$v(A) = \sum_{i} c_i \delta_{q_i}(A), \quad with \quad \sum_{i} c_i < \infty, \quad \delta_{q_i}(A) = \mathbf{1} \{q_i \in A\},$$

where q_i enumerates the rationals in [0,1] and **1** is the indicator function. Then $v \perp \lambda$.

Definition 1.44

v and λ are said to be **equivalent** if $v \ll \lambda$ and $\lambda \ll v$.

Definition 1.45

Let (X, \mathcal{A}, μ) be a measure space. A set $P \in \mathcal{A}$ is said to be **positive** if $\mu(A) \geq 0$ for all measurable $A \subset P$; a set $N \in \mathcal{A}$ is said to be **negative** if $\mu(A) \leq 0$ for all measurable $A \subset N$.

Theorem 1.46 (Hahn Decomposition)

Let μ be a signed measure on a measurable space (X, \mathcal{A}) . Then X can be partitioned into a positive set P and a negative set N. Furthermore, if P', N' form another such partition, then $P \triangle P'$ and $N \triangle N'$ are measure zero.

Proof. We may consider the case where $\mu(A) \neq -\infty$ for all $A \in \mathcal{A}$. The other case is similar. We first claim that every measurable set A contains a postive set P such that $\mu(P) \geq \mu(A)$.

To prove the claim, we first show that for every $\epsilon > 0$, there exists $A_{\epsilon} \subset A$ such that $\mu(A_{\epsilon}) \geq \mu(A)$ and $B \subset A_{\epsilon}$ implies $\mu(B) > -\epsilon$. Otherwise, we can pick a sequence of set B_k inductively, such that $B_1 \subset A$, ..., $B_k \subset A - (B_1 \cup \cdots \cup B_{k-1})$, ... with $\mu(B_k) \leq -\epsilon$. Put $B = \bigcup_k B_k$. Since B_k are disjoint, $\mu(B) = -\infty$. Also, $\mu(A - B) = \mu(A) - \mu(B) = \infty$, contradicting to the remark that μ cannot take both $\pm \infty$. Now choose $\epsilon_n \to 0$ and let $P = \cap_n A_{\epsilon_n}$. $A_{\epsilon_n} \setminus P$ and then $\mu(A_{\epsilon_n}) \to \mu(P)$ by proposition 1.16. Thus $\mu(P) \geq \mu(A)$.

Next, let $s = \sup \{\mu(A) \mid A \in \mathcal{A}\}$. There is a sequence P_n such that $\mu(P_n) \to s$. Note that $s \ge 0$ since $\emptyset \in \mathcal{A}$. By the claim, we may assume that P_n are positive. Putting $P = \cup_n P_n$, we have $\mu(P) = s$ and P is positive. Now let N = X - P. N is negative; otherwise if $E \subset N$ and $\mu(E) > 0$, then $\mu(P \cup E) = \mu(P) + \mu(E) > s$, which contradicts to the definition of s.

Finally, suppose P' and N' are another such partition. Then $P \cap N'$ and $N \cap P'$ are both negative and positive, implying that they are measure zero. $\mu(P \triangle P') = \mu(P \cap N') + \mu(N \cap P') = 0$. This furnishes the proof.

Corollary 1.47 (Hahn-Jordan Decomposition)

If v is a signed measure on a measurable space (X, \mathcal{A}) , then there exists a unique pair of positive measures v^+ and v^- such that $v = v^+ - v^-$.

Proof. By the Hahn decomposition, X can be partitioned into a positive set P and a negative set N. Define $v^+(A) = v(A \cap P)$ and $v^-(A) = -v(A \cap N)$. Then v^+ and v^- are positive measures and $v = v^+ - v^-$. The uniqueness follows from the uniqueness of the Hahn decomposition.

Theorem 1.48 (Radon-Nikodym)

Let (X, \mathcal{A}) be a measurable space and v, λ are σ -finite measures on (X, \mathcal{A}) . If $v \ll \lambda$, then there exists an \mathcal{A} -measurable function $f: X \to [0, \infty)$ such that for every $A \in \mathcal{A}$,

$$\nu(A) = \int_A f \, d\lambda.$$

Furthermore, if f and f' are two such functions, then f = f' a.e.

Proof. We first consider the case where ν and λ are finite. Let

$$F = \left\{ f: X \to [0, \infty] \middle| \int_A f \, d\lambda \le \nu(A) \text{ for all } A \in \mathscr{A} \right\}.$$

 $F \neq \emptyset$ since f = 0 is in F. Now let $f_1, f_2 \in F$ and $A \in \mathcal{A}$ and define

$$A_1 = \{x \in A \mid f_1(x) > f_2(x)\}, \quad A_2 = \{x \in A \mid f_1(x) \le f_2(x)\}.$$

Then

$$\int_{A} \max\{f_{1},f_{2}\} \, d\lambda = \int_{A_{1}} f_{1} d\lambda + \int_{A_{2}} f_{2} d\lambda \leq v(A_{1}) + v(A_{2}) = v(A).$$

Thus $\max\{f_1, f_2\} \in F$. Next, for any sequence of functions $f_n \in F$ such that

$$\lim_{n\to\infty}\int_X f_n d\lambda = \sup_{f\in F}\int_X f d\lambda,$$

we may assume that $f_n \nearrow$ by replacing f_n with the maximum among $f_1, ..., f_n$. Let g be the pointwise limit of f_n . By Lebesgue's monotone convergence theorem,

$$\int_{A} g d\lambda = \lim_{n \to \infty} \int_{A} f_n d\lambda \le v(A),$$

so $g \in F$. Also, by construction,

$$\int_X g d\lambda = \sup_{f \in F} \int_X f d\lambda.$$

Now define

$$v_0(A) = v(A) - \int_A g d\lambda.$$

Since $g \in F$, v_0 is a nonnegative measure. To prove the equality, we need to show that $v_0(A) = 0$ for all $A \in \mathcal{A}$. Suppose $v_0 > 0$. Then there exists $\epsilon > 0$ such that $v_0(X) > \epsilon \lambda(X)$. By the Hahn decomposition theorem, we can find a positive set P such that $v_0(A) \ge \epsilon \lambda(A)$ for each $A \subset P$. Thus

$$v(A) = \int_A g d\lambda + v_0(A) \ge \int_A g d\lambda + v_0(P \cap A) \ge \int_A g d\lambda + \varepsilon \lambda (P \cap A) = \int_A (g + \varepsilon \chi_P) d\lambda.$$

Note that $\lambda(P) > 0$, for otherwise $\lambda(P) = 0$ and $\nu_0(P) \le \nu(P) = 0 \implies \nu(P) = 0$ by the absolute continuity and hence

$$v_0(X) - \epsilon \lambda(X) = (v_0 - \epsilon \lambda)(N) \le 0$$
,

posing a contradiction. Meanwhile,

$$\int_{X} (g + \epsilon \chi_{P}) d\lambda \leq \nu(X) < \infty \implies g + \epsilon \chi_{P} \in F,$$

and

$$\int_X (g+\epsilon\chi_P)d\lambda > \int_X gd\lambda = \sup_{f\in F} \int_X fd\lambda.$$

This violates the definition of the supremum. Thus $v_0 = 0$ and we obtain that

$$v(A) = \int_A g d\lambda.$$

Finally, if we define

$$f(x) = \begin{cases} g(x) & \text{if } g(x) < \infty, \\ 0 & \text{if } g(x) = \infty, \end{cases}$$

since *g* is λ -integrable, $f = g \lambda$ -a.e. and f is the desired function.

For the uniqueness, suppose f and f' are two such functions. Then

$$v(A) = \int_A f d\lambda = \int_A f' d\lambda \implies \int_A (f - f') d\lambda = 0$$

for every A. In particular, letting $A = \{x \in X \mid f(x) \le f'(x)\}$ or $A = \{x \in X \mid f(x) \ge f'(x)\}$ gives

$$\int_X (f-f')^+ d\lambda = \int_X (f-f')^- d\lambda = 0.$$

Thus $f = f' \lambda$ -a.e.

For the general case where v and λ are σ -finite, we can write $X = \cup_n X_n$ such that $\lambda(X_n) < \infty$ and X_n are disjoint. For each n we can find f_n such that

$$\nu(A) = \int_A f_n d\lambda.$$

for every \mathscr{A} -measurable $A \subset X_n$. Let $f = \sum_n f_n \chi_{X_n}$.

$$\int_{A} f d\lambda = \sum_{n} \int_{A \cap X_{n}} f_{n} d\lambda = \sum_{n} \nu(A \cap X_{n}) = \nu(A),$$

for every $A \in \mathcal{A}$. The uniqueness follows from the uniqueness of f_n .

Remark

The function f can be chosen in $\mathcal{L}^1(X,\lambda)$ if v is finite.

Definition 1.49

The function f in the Radon-Nikodym theorem is called the **Radon-Nikodym derivative** of v with respect to λ , denoted as $f = \frac{dv}{d\lambda}$.

Proposition 1.50

Let v, μ and λ be σ -finite measures defined on measurable space (X, \mathcal{A}) . If $v \ll \lambda$ and $\mu \ll \lambda$, then

- (a) $\frac{d(\nu+\mu)}{d\lambda} = \frac{d\nu}{d\lambda} + \frac{d\mu}{d\lambda} \lambda$ -a.e.
- (b) If $v \ll \mu \ll \lambda$, then $\frac{dv}{d\lambda} = \frac{dv}{d\mu} \frac{d\mu}{d\lambda} \lambda$ -a.e.
- (c) If v and μ are equivalent, then $\frac{dv}{d\mu} = \left(\frac{d\mu}{dv}\right)^{-1} \mu$ -a.e.

(d) If g is v-integrable, then

$$\int_X g d\nu = \int_X g \frac{d\nu}{d\lambda} d\lambda.$$

Proof. For (a), note that $v + \mu \ll \lambda$ as well. Let $f = \frac{dv}{d\lambda}$ and $g = \frac{d\mu}{d\lambda}$. Then

$$\int_A (f+g)d\lambda = \int_A f d\lambda + \int_A g d\lambda = v(A) + \mu(A) = (v+\mu)(A) = \int_A \frac{d(v+\mu)}{d\lambda} d\lambda \quad \text{for all } A \in \mathcal{A}.$$

Thus $\frac{dv}{d\lambda} + \frac{d\mu}{d\lambda} = f + g = \frac{d(v+\mu)}{d\lambda} \lambda$ -a.e.

Next, we jump to (d). We start by considering the case where $g = \chi_A$ with $A \in \mathcal{A}$. By the Radon-Nikodym theorem,

$$\int_{X} g dv = \int_{X} \chi_{A} dv = v(A) = \int_{A} \frac{dv}{d\lambda} d\lambda = \int_{X} \chi_{A} \frac{dv}{d\lambda} d\lambda = \int_{X} g \frac{dv}{d\lambda} d\lambda.$$

By linearity, the result holds for simple functions. For a nonnegative $g \in \mathcal{L}^1(v)$, we can find a sequence of simple functions $g_n \nearrow g$ so that

$$\int_{X} g dv = \lim_{n \to \infty} \int_{X} g_{n} dv = \lim_{n \to \infty} \int_{X} g_{n} \frac{dv}{d\lambda} d\lambda = \int_{X} g \frac{dv}{d\lambda} d\lambda$$

by Lebesgue's monotone convergence theorem. For general $g \in \mathcal{L}^1(v)$, we can write $g = g^+ - g^-$ and apply the result to g^+ and g^- .

$$\int_X g dv = \int_X g^+ dv - \int_X g^- dv = \int_X g^+ \frac{dv}{d\lambda} d\lambda - \int_X g^- \frac{dv}{d\lambda} d\lambda = \int_X g dv.$$

With (d) established, we can now prove (b). By the Radon-Nikodym theorem,

$$\int_{A} \frac{dv}{d\mu} \frac{d\mu}{d\lambda} d\lambda = \int_{A} \frac{dv}{d\mu} d\mu = \int_{A} dv = v(A) = \int_{A} \frac{dv}{d\lambda} d\lambda.$$

Finally, for (c), letting $\lambda = v$ and applying (b) gives $1 = \frac{dv}{dv} = \frac{dv}{d\mu} \frac{d\mu}{dv} v$ -a.e. and thus μ -a.e. by the equivalence of v and μ . Hence $\frac{dv}{d\mu} = \left(\frac{d\mu}{dv}\right)^{-1} \mu$ -a.e.

Theorem 1.51 (Lebesgue Decomposition)

Let v, λ be two σ -finite measures defined on a measurable space (X, \mathcal{A}) . Then v can be decomposed uniquely into $v = v_a + v_s$ where $v_a \ll \lambda$ and $v_s \perp \lambda$.

Proof. We first assume that v, λ are finite measures. Let $\mu = v + \lambda$. Then clearly $\lambda \ll \mu$ and μ is σ -finite. By the Radon-Nikodym theorem, there exists a Radon-Nikodym derivative f such that

$$\lambda(A) = \int_A f d\mu.$$

Denote $\{x \in X \mid f(x) = 0\}$ by E. Define

$$v_a(A) = v(A \cap E^c), \quad v_s(A) = v(A \cap E)$$

for each $A \in \mathcal{A}$. Then clearly $v_a(A) + v_s(A) = v(A \cap E^c) + v(A \cap E) = v(A)$ for all $A \in \mathcal{A}$. Also, suppose $\lambda(A) = 0$. Then by proposition 1.50,

$$0 = \lambda(A) = \int_A f d\mu = \int_A f d\lambda + \int_A f d\nu = \int_A f d\nu.$$

Hence f(x) = 0 v-a.e. on A. This implies that $v(A) = v(A \cap E)$ and thus $v_a(A) = v(A \cap E^c) = v(A) - v(A \cap E) = 0$, so $v_a \ll \lambda$. Also, since $\lambda(E) = 0$ and $v_s(E^c) = v(\emptyset) = 0$, $v_s \perp \lambda$. For the uniqueness, suppose $v = v_a + v_s = v_a' + v_s'$ both satisfy the conditions. Since $v_a \ll \lambda$ and $v_a' \ll \lambda$, by the uniqueness of the Radon-Nikodym derivative, $v_a = v_a'$ and hence $v_s = v_s'$ as well.

Finally, for the general case where v, λ are σ -finite, write $X = \bigcup_n X_n$ where $\lambda(X_n) < \infty$ and X_n are disjoint. For each n we can find the corresponding decomposition v_a^n and v_s^n . Let $v_a = \sum_n v_a^n$ and $v_s = \sum_n v_s^n$. Then $v_a \ll \lambda$ and $v_s \perp \lambda$. The uniqueness follows from the uniqueness of the decompositions in each X_n . This establishes the proof.

Corollary 1.52

Let v be a signed measure and λ be a measure defined on a measurable space (X, \mathcal{A}) . Suppose both v and λ are finite and $v \ll \lambda$. Then there exists a unique $f \in \mathcal{L}^1(X, \lambda)$ such that

$$v(A) = \int_A f d\lambda.$$

Proof. By Hahn decomposition, there exists a positive set P and a negative set N such that $P \cup N = X$. Define

$$v_P(A) = v(A \cap P), \quad v_N(A) = -v(A \cap N).$$

Then clearly $v_P - v_N = v$ and $|v| = v_P + v_N$. Note that v_P and v_N are both positive measures. Also, by assumption, if $\lambda(A) = 0$ then v(A) = 0 and hence so are v_P and v_N . Thus $v_P \ll \lambda$ and $v_N \ll \lambda$. By the Radon-Nikodym theorem, there exists $f_P, f_N \in \mathcal{L}^1(X, \lambda)$ such that

$$v_P(A) = \int_A f_P d\lambda, \quad v_N(A) = \int_A f_N d\lambda.$$

Hence

$$v(A) = v_P(A) - v_N(A) = \int_A f_P d\lambda - \int_A f_N d\lambda = \int_A (f_P - f_N) d\lambda.$$

By setting $f = f_P - f_N$, we obtain the desired function. Uniqueness follows from the uniqueness of the Radon-Nikodym derivative.

2. Banach Space

2.1. Banach Space and Bounded Linear Functional

Definition 2.1

A space X is called a **Banach space** if it is a complete normed vector space.

Remark

 \mathcal{L}^1 is a Banach space with the norm

$$||f||_{\mathscr{L}^1} = \int |f| \, d\mu.$$

We treat f = g a.e. as the same element in \mathcal{L}^1 .

Definition 2.2

Let V, W be vector spaces. A map $T: V \to W$ is **linear** if for every $c \in \mathbb{R}$, $f, g \in V$, T(cf+g) = cT(f) + T(g).

Definition 2.3

A linear map $T: V \to W$ has **operator norm** defined by

$$||T|| = \sup_{||f||_V = 1} ||T(f)||_W.$$

T is **bounded** if $||T|| < \infty$. We denote the set of all bounded linear operators from V to W by B(V, W).

Proposition 2.4

Suppose W is a Bnach space. Then B(V,W) is a Banach space with the operator norm.

Proof. It suffices to show that B(V,W) is complete. Let $\{T_i\} \subset B(V,W)$ be a Cauchy sequence. Then for $f \in V$,

$$||T_i(f) - T_j(f)||_W \le ||T_i - T_j|| ||f||_V$$
.

Hence $\{T_i(f)\}$ is a Cauchy sequence in W. By the completeness of W, we may define Tf as the limit of $T_i(f)$ as $i \to \infty$. Now,

$$||Tf|| \le \sup_{i} ||T_{i}(f)|| \le \sup_{i} ||T_{i}|| ||f||.$$

Since Cauchy sequences are bounded, $||Tf|| < \infty$ for all $f \in V$ and $T \in B(V, W)$. It remains to show that T_i converges to T in the operator norm. For any $f \in V$, pick N such that $||T_i(f) - T_j(f)|| \le \varepsilon$ for all $i, j \ge N$. Then for fixed i,

$$\left\| (T_i - T_j) f \right\| \leq \left\| T_i - T_j \right\| \left\| f \right\| \leq \epsilon \left\| f \right\|$$

for every $f \in V$ and $j \ge N$. Hence $||T_i - T|| \le \epsilon$ for all $i \ge N$ and the proof is complete.

Definition 2.5

T is continuous if $f_i \to f$ in V implies that $T(f_i) \to T(f)$ in W.

Proposition 2.6

Suppose $T: V \to W$ is linear. Then T is continuous if and only if T is bounded.

Proof. Suppose T is not bounded. Then there exists $f_i \in V$ with $||f_i|| \le 1$ for all i and $||Tf_i|| \to \infty$. Thus

$$\frac{f_i}{\|Tf_i\|} \to 0, \quad \text{but} \quad T\left(\frac{f_i}{\|Tf_i\|}\right) = \frac{Tf_i}{\|Tf_i\|} \neq 0 \quad \text{as} \quad \frac{\|Tf_i\|}{\|Tf_i\|} = 1.$$

Hence T is not continuous.

Conversely, suppose *T* is bounded. Let $f_i \rightarrow f$ in *V*. Then

$$||Tf_i - Tf|| = ||T(f_i - f)|| \le ||T|| ||f_i - f|| \to 0.$$

Hence T is continuous.

Definition 2.7

A linear functional T is a linear map $T: V \to \mathbb{F}$, where $\mathbb{F} = \mathbb{R}$ or C is the scalar field of V.

Definition 2.8

Let V, W be vector spaces. $T: V \to W$ is linear. The **kernel** of T is defined as

$$\ker(T) = \{ f \in V \mid T(f) = 0 \}.$$

Proposition 2.9

Let X be a normed vector space and $T \in X'$. Then

- (a) ker(T) is a closed subspace of X.
- (b) If $T \neq 0$, there exists $x \in X$ such that $T(x) \neq 0$. Then for any $y \in X$, there exists $c \in \mathbb{R}$ and $z \in \ker(T)$ such that y = cx + z.

Proof. For (a), let $x, y \in \ker(T)$ and $c \in \mathbb{R}$.

$$T(cx + y) = cT(x) + T(y) = 0. \implies cx + y \in \ker(T).$$

Also, let $x_i \to x$ in X. Then since T is continuous,

$$T(x) = \lim_{n \to \infty} T(x_n) = 0. \implies x \in \ker(T).$$

Hence $\ker(T)$ is a closed subspace of X.

For the rest part, fix $x \in X$ and $f(x) \neq 0$. For each $y \in X$, let $\alpha = T(y)/T(x)$ and z = y - T(y)x/T(x). Then

$$\alpha x + z = \frac{T(y)}{T(x)}x + y - \frac{T(y)}{T(x)}x = y - \frac{T(y)}{T(x)}x = y.$$

Definition 2.10

The **dual space** of V is defined as $V' = B(V, \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or C.

Remark

The dual space is a Banach space.

Remark

 $T: X \rightarrow Y$ is bounded and linear. Then

$$||T|| = \inf\{c \in [0,\infty) \mid ||Tx||_Y \le c \, ||x||_X \text{ for all } x \in X\}.$$

Example

Let X = C([0,1]) with the supremum norm and $Y = \mathbb{R}$ with the usual norm. For $g \in X$, $g(t) \neq 0$ on [0,1], define $Tg: X \to \mathbb{R}$ by

$$Tg(f) = \int_0^1 f(t)g(t)dt.$$

Now for $||f||_{\infty} \leq 1$,

$$|Tg(f)| = \left| \int_0^1 f(t)g(t)dt \right| \le \int_0^1 |f(t)g(t)|dt \le \int_0^1 |g(t)| \sup_{[0,1]} |f(t)|dt$$
$$= ||f||_{\infty} \int_0^1 |g(t)|dt \le \int_0^1 |g(t)|dt.$$

Take f = g/|g|,

$$|Tgf| = \left| \int_0^1 \frac{g^2(t)}{|g(t)|} dt \right| = \int_0^1 |g(t)| dt. \implies ||Tg|| = \int_0^1 |g(t)| dt.$$

Example

Consider X = Y = C([0,1]) with the supremum norm. Define $T : C^1([0,1]) \to Y$ by Tf = f'. Then consider the sequnce $f_n(x) = e^{-n(x-1/2)^2}$, $f'_n(x) = e^{-n(x-1/2)^2}(-2n(x-1/2))$. Hence $||Tf_n|| / ||f_n|| = \sqrt{2n}e^{-1/2} \to \infty$ as $n \to \infty$. Thus T is not bounded.

2.2. ℓ^p Space

Definition 2.11

 $\ell^p = \big\{\{x_i\}_{i \in \mathcal{I}} \; \big| \; \|x\|_p < \infty \big\}, \; where \; \mathcal{I} \; is \; an \; countable \; index \; set \; and \; \|x\|_p = (\sum_i |x_i|^p)^{1/p}, \; 1 \leq n \leq n$

 $p < \infty$, is called the ℓ^p **space**. For $p = \infty$, the norm is defined as $||x||_{\infty} = \sup_i |x_i|$.

Definition 2.12

 $f: X \to Y$ is called a **homomophism** if it preserves the algebraic structure. In particular, for X, Y being vector spaces, f is a homomorphism if f(cx + y) = cf(x) + f(y).

Definition 2.13

 $f: X \to Y$ is called an **isomorphism** if it is a bijective homomorphism.

Definition 2.14

 $f: X \to Y$ is called an **isometry** if $||f(x)||_Y = ||x||_X$ for all $x \in X$.

Example

A rightward shift operator $S_R : \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N})$ is not an isomorphism, but $S_R : \ell^p(\mathbb{Z}) \to \ell^p(\mathbb{Z})$ is.

Lemma 2.15 (Young's Inequality)

Let $1 < p, p' < \infty$ with $\frac{1}{p} + \frac{1}{p'} = 1$. Then for all $a, b \ge 0$,

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'}.$$

Furthermore, the equality holds if and only if $a^p = b^{p'}$.

Proof. If a = 0 or b = 0, the inequality is trivial. Suppose a, b > 0. Let t = 1/p and we can write

$$\log(ab) = \log(a) + \log(b) = t\log(a^p) + (1-t)\log(b^{p'}) \le \log(ta^p + (1-t)b^{p'})$$

by the concavity of logarithm and Jensen's inequality. Exponentiating both sides yields the desired inequality. The equality holds if and only if $a^p = b^{p'}$ by the Jensen's inequality.

Theorem 2.16 (Hölder's Inequality in ℓ^p)

Let $1 \le p, p' \le \infty$ with $\frac{1}{p} + \frac{1}{p'} = 1$. Then for all $f \in \ell^p$ and $g \in \ell^{p'}$,

$$\|fg\|_1 \leq \|f\|_p \, \|g\|_{p'}.$$

Moreover, the equality holds if and only if f = cg for some constant c.

Proof. If one of f or g is zero, the inequality is trivial. If p=1 and $p'=\infty$, $|f_ig_i| \le \|g\|_{\infty}|f_i|$. Summing over i yields the desired inequality. For the case $p=\infty$ and p'=1 the proof is similar. Now suppose $1 and <math>1 < p' < \infty$. Without loss of generality, we may assume that $\|f\|_p = \|g\|_{p'} = 1$. By Young's inequality,

$$|f_i g_i| \le \frac{|f_i|^p}{p} + \frac{|g_i|^{p'}}{p'}.$$

Thus

$$\|fg\|_1 = \sum_i |f_ig_i| \le \sum_i \frac{|f_i|^p}{p} + \sum_i \frac{|g_i|^{p'}}{p'} = \frac{1}{p} \|f\|_p^p + \frac{1}{p'} \|g\|_{p'}^{p'} = 1.$$

Hence we obtain the desired inequality. The equality holds if and only if $|f_i|^p = |g_i|^{p'}$ for all i by the Young's inequality. In general, the equality holds if and only if f = cg for some constant c after scaling the both sides of the inequality by c.

Remark

We call p' the **conjugate exponent** of p for 1/p + 1/p' = 1.

Theorem 2.17 (Minkowski's Inequality in ℓ^p)

Let $1 \le p \le \infty$. Then for all $f, g \in \ell^p$,

$$||f+g||_p \le ||f||_p + ||g||_p$$
.

Proof. If p = 1, the inequality comes from the triangle inequality. For 1 ,

$$\begin{split} \|f+g\|_{p}^{p} &= \sum_{i} |f_{i}+g_{i}| |f_{i}+g_{i}|^{p-1} \\ &\leq \sum_{i} |f_{i}| |f_{i}+g_{i}|^{p-1} + \sum_{i} |g_{i}| |f_{i}+g_{i}|^{p-1} \\ &\leq \|f\|_{p} \left(\sum_{i} |f_{i}+g_{i}|^{(p-1)p'} \right)^{1/p'} + \|g\|_{p} \left(\sum_{i} |f_{i}+g_{i}|^{(p-1)p'} \right)^{1/p'} \\ &= \|f\|_{p} \|f+g\|_{p}^{p/p'} + \|g\|_{p} \|f+g\|_{p}^{p/p'} \end{split}$$

by the Hölder's inequality. Rearranging the inequality yields

$$||f + g||_p = ||f + g||_p^{p-p/p'} \le ||f||_p + ||g||_p.$$

For $p = \infty$,

$$||f+g||_{\infty} = \sup_{i} |f_i+g_i| \le \sup_{i} |f_i| + \sup_{i} |g_i| = ||f||_{\infty} + ||g||_{\infty}.$$

The proof is complete.

Remark

The Minkowski's inequality is exactly the triangle inequality in ℓ^p spaces. We can thus confirm that ℓ^p norms are indeed norms.

Theorem 2.18 (Dualities of ℓ^p Spaces)

Let $1 . Then <math>(\ell^p)' \cong \ell^{p'}$, where p' is the conjugate exponent of p.

Proof. We need to prove that there exists an isometric isomorphism $\psi: \ell^{p'} \to (\ell^p)'$ such that $\psi g f = \sum_i f_i g_i$ for all $g \in \ell^{p'}$ and $f \in \ell^p$. We show that ψ is well-defined, linear, bounded, bijective, and isometric.

First, we show that ψ is well-defined. For $f \in \ell^p$ and $g \in \ell^{p'}$,

$$\left| \psi g f \right| \le \sum_{i} |f_i g_i| \le \|f\|_p \|g\|_{p'} < \infty$$

by the Hölder's inequality. Thus $\psi g \in (\ell^p)'$ is well-defined.

Next, ψ is linear since for $g_1, g_2 \in \ell^{p'}$ and $c \in \mathbb{R}$,

$$\psi(cg_1+g_2)(f) = \sum_i f_i(cg_{1i}+g_{2i}) = c\sum_i f_ig_{1i} + \sum_i f_ig_{2i} = c\psi g_1(f) + \psi g_2(f)$$

for all $f \in \ell^p$. Hence $\psi(cg_1 + g_2) = c\psi g_1 + \psi g_2$.

Now, to show that ψ is bounded,

$$\begin{split} \left\| \psi g \right\| &= \sup \left\{ \left| \psi g f \right| \, \middle| \, \| f \|_p = 1 \right\} = \sup \left\{ \left| \sum_i f_i g_i \right| \, \middle| \, \| f \|_p = 1 \right\} \\ &\leq \sup_{\| f \|_p = 1} \left\{ \| g \|_{p'} \right\} \leq \| g \|_{p'}. \end{split}$$

We see that $\|\psi\| \le 1$. Next, let $h \in (\ell^p)'$ and define g by $g_i = h(e_i)$. Then

$$\|g\|_{p'} = \left(\sum_i |g_i|^{p'}\right)^{1/p'} = \left(\sum_i |h(e_i)|^{p'}\right)^{1/p'} \le \left(\sum_i \|h\|^{p'}\right)^{1/p'} = \|h\|.$$

Then $g \in \ell^{p'}$. Furthermore, for such g,

$$\psi g(f) = \sum_{i} f_{i} g_{i} = \sum_{i} f_{i} h(e_{i}) = h\left(\sum_{i} f_{i} e_{i}\right) = h(f)$$

for every $f \in \ell^p$. Hence ψ is surjective and $\|\psi g\| = \|h\|$. The isometry of ψ is immediate from that

$$\|\psi g\| \le \|g\|_{p'} \le \|h\| = \|\psi g\|.$$

Finally, ψ is injective since otherwise there exists $g \neq 0$ such that $\psi g = 0$. Then $\|g\|_{p'} = 0$ by the isometry of ψ , which implies that g = 0, a contradiction. We conclude that ψ is an isometric isomorphism and the proof is complete.

2.3. \mathcal{L}^p Space

Definition 2.19

Let (X, \mathcal{A}, μ) be a measure space and $1 \le p < \infty$. The space $\mathcal{L}^p(X)$ consists of all equivalence classes of measurable functions $f: X \to \mathbb{R}$ such that

$$||f||_{\mathcal{L}^p} = \left(\int_X |f|^p \, d\mu\right)^{1/p} < \infty,$$

where $f \sim g$ if f = g a.e. and the norm is defined on a representative of the equivalence class.

Definition 2.20

 $f: X \to \mathbb{R}$ is measurable. The **essential supremum** of f on X is defined as

$$\operatorname{ess\,sup}_X f = \inf \left\{ \sup_X g \;\middle|\; g = f \,\mu\text{-}a.e. \right\} = \inf \left\{ c \in \mathbb{R} \;\middle|\; \mu(\{x \mid f(x) > c\}) = 0 \right\}.$$

We called f essentially bounded if $\operatorname{ess\,sup}_X f < \infty$. The space $\mathcal{L}^\infty(X)$ consists of all equivalence classes of essentially bounded measurable functions with the norm

$$||f||_{\varphi_{\infty}} = \operatorname{ess\,sup}_{X} |f|.$$

Theorem 2.21 (Hölder's Inequality in \mathcal{L}^p)

Let $1 \le p, p' \le \infty$ with $\frac{1}{p} + \frac{1}{p'} = 1$. Then for all $f \in \mathcal{L}^p$ and $g \in \mathcal{L}^{p'}$,

$$||fg||_1 \le ||f||_p ||g||_{p'}.$$

Moreover, the equality holds if and only if f = cg for some constant c.

Proof. For the case p = 1 and $p' = \infty$, notice that

$$|fg| \leq |f| \operatorname{ess\,sup} |g| \implies \|fg\|_1 = \int |fg| \, d\mu \leq \int |f| \operatorname{ess\,sup} |g| \, d\mu = \|f\|_1 \, \|g\|_{\infty}.$$

For the case $p = \infty$ and p' = 1, the proof is similar. Now suppose $1 and <math>1 < p' < \infty$. If one of f or g is zero, the inequality is trivial. Without loss of generality, we may assume that $||f||_p = ||g||_{p'} = 1$. By the Young's inequality,

$$|fg| \le \frac{|f|^p}{p} + \frac{|g|^{p'}}{p'}.$$

Integrating both sides yields

$$\|fg\|_1 = \int |fg| \, d\mu \leq \int \frac{|f|^p}{p} d\mu + \int \frac{|g|^{p'}}{p'} d\mu = \frac{1}{p} + \frac{1}{p'} = 1.$$

Hence we obtain the desired inequality. The equality holds if and only if $|f|^p = |g|^{p'}$ a.e. by the Young's inequality. In general, the equality holds if and only if f = cg a.e. for some constant c after scaling the both sides of the inequality by c.

Theorem 2.22 (Minkowski's Inequality in \mathcal{L}^p)

Let $1 \le p \le \infty$. Then for all $f, g \in \mathcal{L}^p$,

$$||f+g||_p \le ||f||_p + ||g||_p$$
.

Proof. If p = 1, the inequality comes from the triangle inequality. For 1 ,

$$\begin{split} \|f+g\|_p^p &= \int |f+g|^p \, d\mu = \int |f+g| |f+g|^{p-1} \, d\mu \\ &\leq \int |f| |f+g|^{p-1} \, d\mu + \int |g| |f+g|^{p-1} \, d\mu \\ &\leq \|f\|_p \left(\int |f+g|^{(p-1)p'} \, d\mu \right)^{1/p'} + \|g\|_p \left(\int |f+g|^{(p-1)p'} \, d\mu \right)^{1/p'} \\ &= \|f\|_p \, \|f+g\|_p^{p/p'} + \|g\|_p \, \|f+g\|_p^{p/p'} \, . \end{split}$$

Rearranging the inequality yields

$$||f+g||_p = ||f+g||_p^{p-p/p'} \le ||f||_p + ||g||_p.$$

For $p = \infty$,

$$||f + g||_{\infty} = \operatorname{ess\,sup} |f + g| \le \operatorname{ess\,sup} |f| + \operatorname{ess\,sup} |g| = ||f||_{\infty} + ||g||_{\infty}.$$

The proof is complete.

Theorem 2.23

 $1 \le p \le \infty$. Simple functions are dense in \mathcal{L}^p .

Proof. For $p < \infty$, consider $f \ge 0$ and $f \in \mathcal{L}^1$. There exists a sequence of simple functions $f_n \nearrow f$ a.e. Note that $|f - f_n|^p \le |f|^p \in \mathcal{L}^1$. By Lebesgue's dominated convergence theorem, $||f_n - f||_p \to 0$ as $n \to \infty$. For $p = \infty$, pick an f in the f-equivalent class such that f is bounded. Then since the approximation of simple functions can be done uniformly, the result follows.

Remark

A simple function $s = \sum_{i=1}^{n} c_i \chi_{A_i} \in \mathcal{L}^p$ must have $\mu(A_i) < \infty$ for every i such that $c_i > 0$. Since continuous functions can approximate simple functions, they are dense in \mathcal{L}^p as well.

Lemma 2.24

 $1 \le p < \infty$. $g_k \in \mathcal{L}^p$ and $\sum_k \|g_k\|_p < \infty$. Then there exists $f \in \mathcal{L}^p$ such that $\sum_k g_k = f$ pointwise a.e. and in \mathcal{L}^p .

Proof. Define h_n and h by $h_n = \sum_{k=1}^n |g_k|$ and $h = \sum_k |g_k|$. Then $h_n \nearrow h$. By Lebesgue's monotone convergence theorem,

$$\lim_{n\to\infty}\int h_n^p d\mu = \int h^p d\mu.$$

By Minkowski's inequality,

$$\left(\int h_n^p d\mu\right)^{1/p} = \left(\int \left(\sum_{k=1}^n |g_k|\right)^p d\mu\right)^{1/p} \le \sum_{k=1}^n \left(\int |g_k|^p d\mu\right)^{1/p} \le \sum_{k=1}^n \|g_k\|_p < \infty$$

for every n, so $h \in \mathcal{L}^p$ and $||h||_p \leq M$ for some M bounding $\sum_k ||g_k||_p$. Now since $\sum_k g_k$ converges absolutely to some f pointwisely a.e. and $|f| \leq h$,

$$\left| f - \sum_{k=1}^n g_k \right|^p \le \left(|f| + \sum_{k=1}^n |g_k| \right)^p \le (2h)^p \in \mathcal{L}^1.$$

By Lebesgue's dominated convergence theorem, $\|f - \sum_{k=1}^n g_k\|_p \to 0$ as $n \to \infty$. Thus the proof is complete.

Theorem 2.25 (Riesz-Fischer)

 \mathcal{L}^p spaces are complete.

Proof. First, we focus on the case where $1 \le p < \infty$. Let f_k be a Cauchy sequence in \mathcal{L}^p . Take a subsequence f_{k_j} such that $\left\| f_{k_{j+1}} - f_{k_j} \right\| \le 2^{-j}$. Let $g_j = f_{k_{j+1}} - f_{k_j} \in \mathcal{L}^p$ and we have $\sum_j \|g_j\|_p < \infty$. By the lemma 2.24, there exists $f \in \mathcal{L}^p$ such that $f = \sum_j g_j$ a.e. and

$$\lim_{j\to\infty} f_{k_j} = \lim_{j\to\infty} f_{k_1} + \sum_{i=1}^{j-1} g_i = f_{k_1} + f \in \mathcal{L}^p.$$

Since f_k is Cauchy and a subsequence converges, the original sequence f_k converges to $f_{k_1}+f\in\mathcal{L}^p$ as well. We now consider the case where $p=\infty$. Let f_k be a Cauchy sequence in \mathcal{L}^∞ . Then for almost every x, $\{f_k(x)\}$ is a Cauchy sequence in \mathbb{R} . Thus we can define f(x) as the limit of $f_k(x)$ as $k\to\infty$. On the set where $f_k(x)$ does not converge, we let f(x) be zero. Then $f\in\mathcal{L}^\infty$ since $\{f_k\}$ is Cauchy and has an uniform bound except on a measure zero set. Also, for any $\epsilon>0$, we can find N such that $\|f_k-f_j\|_\infty<\epsilon$ for all $k,j\geq N$. Hence $\|f_k-f\|_\infty<\epsilon$ for all $k\geq N$. Thus $f_k\to f$ in \mathcal{L}^∞ . We conclude that \mathcal{L}^p spaces are complete.

Proposition 2.26

 $1 \le p < \infty$. 1/p + 1/p' = 1. Let $g \in \mathcal{L}^{p'}(X, \mu)$. Then the mapping $Tg : \mathcal{L}^p(X, \mu) \to \mathbb{R}$ defined by

$$Tg(f) = \int_X fg d\mu$$

is a bounded linear functional. Furthermore, $||Tg||_{\mathcal{L}^p \to \mathbb{R}} = ||g||_{p'}$.

Proof. We start by checking that Tg is well-defined. For $f \in \mathcal{L}^p$,

$$|Tg(f)| = \left| \int fg d\mu \right| \le \int |fg| d\mu \le ||f||_p ||g||_{p'}$$

by Hölder's inequality. Thus $Tg(f) \in \mathbb{R}$. Also, we obtain that $||Tg||_{\mathcal{L}^p \to \mathbb{R}} \leq ||g||_{p'}$. For the linearity, let $c \in \mathbb{R}$ and $f_1, f_2 \in \mathcal{L}^p$.

$$Tg(cf_1+f_2) = \int (cf_1+f_2)gd\mu = c\int f_1gd\mu + \int f_2gd\mu = cTg(f_1) + Tg(f_2).$$

Lastly, to furnish the isometry, let $g \neq 0$ and define

$$f = \operatorname{sgn}(g) \left(\frac{|g|}{\|g\|_{p'}} \right)^{p'/p} \implies \int |f|^p d\mu = \int \left(\frac{|g|}{\|g\|_{p'}} \right)^{p'} d\mu < \infty.$$

Then $f \in \mathcal{L}^p$ and $||f||_p = 1$. Also,

$$Tg(f) = \int \operatorname{sgn}(g) \left(\frac{|g|}{\|g\|_{p'}} \right)^{p'/p} g d\mu = \|g\|_{p'}.$$

It follows that $||Tg||_{\mathcal{L}^p \to \mathbb{R}} = ||g||_{p'}$.

Theorem 2.27 (Riesz Representation)

Let (X, \mathcal{A}, μ) be a σ -finite measure space and $1 \le p < \infty$. Then the mapping $T : \mathcal{L}^{p'}(X, \mu) \to (\mathcal{L}^p(X, \mu))'$ defined by $Tg \in \mathcal{L}^p(X, \mu)$,

$$Tg(f) = \int fg d\mu,$$

is an isometric isomorphism.

Proof. By proposition 2.26, Tg is a bounded linear functional. Besides, let $c \in \mathbb{R}$ and $g_1, g_2 \in \mathcal{L}^{p'}$,

$$T(cg_1+g_2)(f) = \int (cg_1+g_2)f d\mu = c\int g_1f d\mu + \int g_2f d\mu = cTg_1(f) + Tg_2(f) = (cTg_1+Tg_2)(f)$$

for all $f \in \mathcal{L}^p$. Thus T is linear. It remains to show that T is a bijection. We first verify that T is surjective.

Consider the case where p > 1 and $\mu(X) < \infty$. Let $h \in (\mathcal{L}^p)'$. Define $v : \mathcal{A} \to \mathbb{R}$ by $v(A) = h(\chi_A)$. We claim that v is a finite measure and $v \ll \mu$. Since

$$|\nu(A)| = |h(\chi(A))| \le ||h||_{\mathscr{L}^p \to \mathbb{R}} ||\chi_A||_p = ||h||_{\mathscr{L}^p \to \mathbb{R}} \mu(A)^{1/p},$$

we see that v is finite since so is μ . Also, if $\mu(A) = 0$, then |v(A)| = 0 and hence v(A) = 0. Thus $v \ll \mu$. For finite additivity, let $A_1, A_2 \in \mathscr{A}$ be disjoint.

$$v(A_1 \cup A_2) = h(\chi_{A_1 \cup A_2}) = h(\chi_{A_1} + \chi_{A_2}) = h(\chi_{A_1}) + h(\chi_{A_2}) = v(A_1) + v(A_2).$$

To show the σ -additivity, let $A_j \in \mathcal{A}$ be countably many disjoint sets. Put $A = \cup_j A_j$,

 $A = B_n + C_n$ where $B_n = \bigcup_{j=1}^n A_j$ and $C_n = \bigcup_{j=n+1}^\infty A_j$. Then since $B_n \cap C_n = \emptyset$,

$$v(A) = v(B_n + C_n) = v(B_n) + v(C_n) = \sum_{j=1}^{n} v(A_j) + v(C_n)$$

for all n. Since $\mu(X) < \infty$, $\sum_{j} \mu(A_{j}) < \infty$ and $\mu(C_{n}) \to 0$ as $n \to \infty$. Thus

$$|\nu(C_n)| = |h(C_n)| \le ||h||_{\mathscr{L}^p \to \mathbb{R}} \mu(C_n)^{1/p} \to \infty.$$

We conclude that $v(A) = \sum_{i} v(A_i)$ and v is a measure.

Next, since $v \ll \lambda$, by the Radon-Nikodym theorem, there exists a unique $g \in \mathcal{L}^1(X,\mu)$ such that

$$h(\chi_A) = v(A) = \int_A g d\mu = \int_X \chi_A g d\mu = Tg(\chi_A).$$

for arbitrary $A \in \mathscr{A}$. Extend by linearity to p-integrable simple functions, say $s = \sum_{i=1}^n c_i \chi_{A_i}$.

$$h(s) = \sum_{i=1}^{n} c_i h(\chi_{A_i}) = \sum_{i=1}^{n} c_i \int_{X} \chi_{A_i} g d\mu = \int_{X} \sum_{i=1}^{n} c_i \chi_{A_i} g d\mu = \int_{X} sg d\mu = Tg(s).$$

For a general $f \in \mathcal{L}^p$, by separating $f = f^+ - f^-$ if necessary, we may assume that $f \ge 0$. By lemma 1.19, there exists a sequence of simple functions $s_n \nearrow f$. Then by Lebesgue's monotone convergence theorem, $\|f - s_n\|_p \to 0$. Since h is a bounded linear functional, it is continuous, and hence $h(s_n) \to h(f)$ as $n \to \infty$. We obtain that

$$h(f) = \lim_{n \to \infty} h(s_n) = \lim_{n \to \infty} \int_X s_n g d\mu = \int_X f g d\mu = Tg(f)$$

for all $f \in \mathcal{L}^p$. Thus Tg = h. It remains to check that $g \in \mathcal{L}^{p'}$. Let

$$f_n = \begin{cases} |g|^{p'-1} \operatorname{sgn}(g) & \text{if } |g(x)|^{p'-1} \le n, \\ n \operatorname{sgn}(g) & \text{otherwise.} \end{cases}$$

Then $f_n \in \mathcal{L}^p$ and $f_n g \nearrow |g|^{p'}$.

$$|Tg(f_n)| = \left| \int f_n g d\mu \right| \le ||Tg||_{\mathcal{L}^p \to \mathbb{R}} ||f_n||_p.$$

Also, $f_n g = |f_n| |g| \ge |f_n| |f_n|^{1/(p'-1)} = |f_n|^p$ and

$$||f_n||_p^p = \int |f_n|^p d\mu \le \int f_n g d\mu \le ||Tg||_{\mathcal{L}^p \to \mathbb{R}} ||f_n||_p.$$

As a result,

$$\|g\|_{p'}^{p'} = \int |g|^{p'} d\mu = \lim_{n \to \infty} \int f_n g d\mu \le \|Tg\|_{\mathcal{L}^{p} \to \mathbb{R}} \|f_n\|_p < \infty.$$

Hence $g \in \mathcal{L}^{p'}$ and T is indeed surjective. Furthermore, such g is unique by the uniqueness of the Radon-Nikodym derivative. We also conclude that T is injective.

For the case where p=1 and $\mu(X)<\infty$, $p'=\infty$. We consider the same mapping T with $Tg(f)=\int f\,g\,d\mu$. We claim that $g\in \mathscr{L}^\infty$. Suppose $g\not\in \mathscr{L}^\infty$. Then for every K, the set $A_K=\{x\in X\mid |g(x)|>K\}$ has positive measure. Define $f_K=\mathrm{sgn}(g)\chi_{A_K}/\mu(A_K)$. Note that $\|f_K\|_1=1$. If $g\geq 0$, then

$$|Tg(f_K)| = \int f_K g d\mu > K$$

for all K. But Tg is a bounded linear functional, which is a contradiction. Thus $g \in \mathcal{L}^{\infty}$.

Finally, we prove the case where X is σ -finite. Write $X = \bigcup_n X_n$ where $\mu(X_n) < \infty$ and $X_n \subset X_{n+1}$. For every $f \in \mathcal{L}^p(X_k,\mu)$, consider $\hat{f} \in \mathcal{L}^p(X,\mu)$ defined by $\hat{f} = f$ on X_k and $\hat{f} = 0$ on $X - X_k$. Then $\|f\|_{\mathcal{L}^p(X_k)} = \|f\|_{\mathcal{L}^p(X)}$. Let $h \in (\mathcal{L}^p(X))'$ and consider $h_k \in (\mathcal{L}^p(X_k))'$ by $h_k(f) = h(\hat{f})$. Then $\|h_k\| \leq \|h\|$. By the previous result, we can find a unique $g_k \in \mathcal{L}^{p'}(X_k,\mu)$ such that

$$h_k(f) = \int f g_k d\mu, \|g_k\|_{\mathcal{L}^{p'}(X_k)} \le \|h_k\| \le \|h\|.$$

Since $X_n \subset X_{n+1}$, for $f \in \mathcal{L}^p(X_k)$, we have $h_k(f) = h(\hat{f}) = h_{k+1}(f)$ and $g_k = g_{k+1}$ μ -a.e. in X_k . Define $g = g_k$ on X_k with $\|g\|_{\mathcal{L}^{p'}(X)} \leq \|h\|$. Let $f \in \mathcal{L}^p(X,\mu)$. Hölder's inequality implies that $fg \in \mathcal{L}^1(X,\mu)$ and

$$h(f\chi_{X_k}) = h_k(f) = \int f\chi_{X_k} g_k d\mu$$

Since $f\chi_{X_k} \leq |f|$, $f\chi_k \to f \in \mathcal{L}^p(X,\mu)$ by Lebesgue's dominated convergence theorem. Also,

$$h_k(f) = \int f \chi_{X_k} g_k d\mu \to \int f g d\mu = Tg(f)$$

by Lebesgue's dominated convergence theorem. Thus T is indeed the desired isometric isomorphism.

Remark

 $\mathscr{L}^{\infty} \not\supseteq \mathscr{L}^{1}$. Consider $C^{\infty}([-1,1])$, a subspace of \mathscr{L}^{∞} . Define a linear functional δ : $\mathbb{C}^{\infty}([-1,1]) \to \mathbb{R}$ by $\delta(f) = f(0)$. Clearly $\delta \in (\mathscr{L}^{\infty})'$. Now suppose there exists $g \in \mathscr{L}^{1}$ such that $\delta(f) = \int_{-1}^{1} f g dx$. Let $f = \chi_{A}$ where $A = [-1,1] - [-\epsilon,\epsilon]$ for some small $\epsilon > 0$. Then $f \in \mathscr{L}^{\infty}$ and by definition,

$$0 = f(0) = \delta(f) = \int_{-1}^{1} f g dx = \int_{A} g dx.$$

Thus g = 0 a.e. and $\delta = 0$, a contradiction.

Definition 2.28

M(X) is a space consisting of all finite signed measures. For $v \in M(X)$, the total varia-

tion norm of v is defined by $||v|| = v^+(X) + v^-(X)$, where v^+ and v^- are the Hahn-Jordan decompositions of v.

Proposition 2.29

M(X) with the total variation norm forms a Banach space.

Proof. Clearly, M(X) forms a vector space. We check that $\|\cdot\|$ is indeed a norm. For $v \in M(X)$, clearly $\|v\| \ge 0$. If $\|v\| = 0$, then $v^+(X) = v^-(X) = 0$, $v^+(A)$ and $v^-(A)$ are zero for all $A \in \mathcal{A}$, and hence v = 0. Conversely, if v = 0, then so are v^+ and v^- and hence $\|v\| = 0$. For $c \in \mathbb{R}$,

$$||cv|| = |c|v^{+}(X) + |c|v^{-}(X) = |c|(v^{+}(X) + v^{-}(X)) = |c||v||.$$

Lastly, let $v, \mu \in M(X)$. Notice that $(v + \mu)^+ \le v^+ + \mu^+$ and $(v + \mu)^- \le v^- + \mu^-$. Thus

$$\|v + \mu\| = (v + \mu)^{+}(X) + (v + \mu)^{-}(X) \le v^{+}(X) + \mu^{+}(X) + v^{-}(X) + \mu^{-}(X) = \|v\| + \|\mu\|,$$

proving that $\|\cdot\|$ is indeed a norm.

For the completeness, let v_n be a Cauchy sequence in M(X). We define a measure v by $v(A) = \lim_{n \to \infty} v_n(A)$ for all $A \in \mathcal{A}$. We claim that the limit exists and v is indeed a finite signed measure. Since the sequence is Cauchy, for every $\epsilon > 0$, there exists N such that

$$(v_m - v_n)^+(X) + (v_m - v_n)^-(X) = ||v_m - v_n|| \le \epsilon$$

for all $m, n \ge N$. Since both $(v_m - v_n)^+$ and $(v_m - v_n)^-$ are positive measures, we have

$$(v_m - v_n)^+(A) \le (v_m - v_n)^+(X) \le \epsilon$$
, and $(v_m - v_n)^-(A) \le (v_m - v_n)^-(X) \le \epsilon$

for every $A \in \mathcal{A}$. Thus

$$|v_m(A) - v_n(A)| = |(v_m - v_n)^+(A) - (v_m - v_n)^-(A)| \le \epsilon.$$

It follows that for any fixed $A \in \mathcal{A}$, $v_n(A)$ is a Cauchy sequence in \mathbb{R} and hence the limit exists. Also, taking A = X, we see that v(X) is finite. To show that v is a measure, first note that $v(\emptyset) = 0$. For finite additivity, let $A_1, A_2 \in \mathcal{A}$ be disjoint. Then

$$v(A_1 \cup A_2) = \lim_{n \to \infty} v_n(A_1 \cup A_2) = \lim_{n \to \infty} v_n(A_1) + v_n(A_2) = v(A_1) + v(A_2).$$

For the σ -additivity, let $A_n \in \mathscr{A}$ be countably many disjoint sets. Put $A = \bigcup_n A_n$, $A = B_n \cup C_n$ where $B_n = \bigcup_{j=1}^n A_j$ and $C_n = \bigcup_{j=n+1}^\infty A_j$. Since $v(X) < \infty$, $\sum_j v(A_j) < \infty$ and hence $v(C_n) \to 0$ as $n \to \infty$. Thus

$$v(A) = v(B_n) + v(C_n) = \sum_{j=1}^{n} v(A_j) + v(C_n)$$

for every n and by letting $n \to \infty$, we obtain $\nu(A) = \sum_{j} \nu(A_{j})$. Finally, fix n and let $m \to \infty$,

$$\|v-v_n\|=\lim_{m\to\infty}\|v_m-v_n\|=\lim_{m\to\infty}|v_m(X)-v_n(X)|=|v(X)-v_n(X)|\leq \epsilon$$

for all $n \ge N$. Thus $v_n \to v$ in norm and M(X) is complete.

Definition 2.30

Let $f:[a,b] \to \mathbb{R}$. The **variation** of f is defined by

$$V_{\mathscr{P}}(f) = \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)|,$$

where $\mathscr{P} = \{a = t_0 < t_1 < \dots < t_n = b\}$ is a partition of [a,b]. The **total variation** of f on [a,b] is defined by

$$V(f) = \sup_{\mathscr{P}} V_{\mathscr{P}}(f).$$

Definition 2.31

The **bounded variation space** BV([a,b]) consists of all functions $f:[a,b] \to \mathbb{R}$ such that $V(f) < \infty$. For $f \in BV([a,b])$, the **total variation norm** is defined by $||f||_{TV} = |f(a)| + V(f)$.

Proposition 2.32

BV([a,b]) with the total variation norm forms a Banach space.

Proof. It clearly forms a vector space. We check that $\|\cdot\|_{TV}$ is indeed a norm. First, clearly $\|f\|_{TV} \ge 0$. If $\|f\|_{TV} = 0$, then f(a) = 0 and f(t) = f(t') for all $t, t' \in [a, b]$. Hence f = 0; if f = 0, then V(f) = 0 and f(a) = 0 and $\|f\|_{TV} = 0$. Next, for $c \in \mathbb{R}$,

$$\|cf\|_{TV} = |cf(a)| + \sum_{i=0}^{n-1} |cf(t_{i+1}) - cf(t_i)| = |c| \left(|f(a)| + \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \right) = |c| \|f\|_{TV}.$$

Lastly, let $f, g \in BV([a, b])$. Then

$$\begin{split} \|f+g\|_{TV} &= \sup_{\mathscr{P}} |(f+g)(a)| + \sum_{i=0}^{n-1} |(f+g)(t_{i+1}) - (f+g)(t_i)| \\ &\leq \sup_{\mathscr{P}} |f(a)| + |g(a)| + \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| + \sum_{i=0}^{n-1} |g(t_{i+1}) - g(t_i)| \\ &\leq \sup_{\mathscr{P}} |f(a)| + \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| + \sup_{\mathscr{P}} |g(a)| + \sum_{i=0}^{n-1} |g(t_{i+1}) - g(t_i)| = \|f\|_{TV} + \|g\|_{TV} \,. \end{split}$$

Thus $\|\cdot\|_{TV}$ is indeed a norm.

For the completeness, let f_n be a Cauchy sequence in BV([a,b]). For $\epsilon > 0$, there exists N such that $||f_m - f_n||_{TV} < \epsilon$ for all $m, n \ge N$. Given any $x \in [a,b]$, consider the partition

 $\mathscr{P} = \{a < x < b\}.$

$$|f_m(x) - f_n(x)| = |f_m(x) - f_m(a) + f_m(a) - f_n(a) + f_n(a) - f_n(x)|$$

$$\leq |((f_m(x) - f_n(x))) - (f_m(a) - f_n(a))| + |f_m(a) - f_n(a)|$$

$$\leq V(f_m - f_n) + |f_m(a) - f_n(a)| = \epsilon.$$

Thus $\{f_n(x)\}$ is a Cauchy sequence in $\mathbb R$ and hence converges pointwisely to, say f(x). Furthermore, observe that the choice of N does not depend on x, and thus the convergence is uniform. We claim that $f \in BV([a,b])$. Indeed, for any partition $\mathscr{P} = \{a = t_0 < \cdots < t_n = b\}$,

$$\sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \le \sum_{i=0}^{n-1} |f(t_{i+1}) - f_N(t_{i+1})| + \sum_{i=0}^{n-1} |f(t_i) - f_N(t_i)| + V(f_N).$$

Since the convergence is uniform, we can choose N such that $|f(t) - f_N(t)| \le \varepsilon/(2n)$. Thus

$$\sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \le \epsilon + V(f_N).$$

Since f_N is of bounded variation, we see that $f \in BV([a,b])$ as well. Lastly, to show that $\|f-f_n\|_{TV} \to 0$, first note that by definition we have $|f_n(a)-f(a)| \to 0$. It remains to show that $V(f_n-f) \to 0$. For any $\epsilon > 0$, there exists N such that $V_{\mathscr{P}}(f_m-f_n) < \epsilon$ for all $m,n \geq N$ and some partition \mathscr{P} . Taking $m \to \infty$, we obtain $V_{\mathscr{P}}(f-f_n) < \epsilon$ for all $n \geq N$. Since the partition is arbitrary, we have $V(f-f_n) < \epsilon$ for all $n \geq N$. Thus $f_n \to f$ in BV([a,b]) and BV([a,b]) is complete.

Theorem 2.33

M([a,b]) is isometrically isomorphic to BV([a,b]).

Proof. We define the mapping $\phi: M([a,b]) \to BV([a,b])$ by

$$\rho(t) = \phi v(t) = v([a, t]).$$

First, we show that $\rho \in BV([a,b])$. For any partition $\mathscr{P} = \{a = t_0 < \cdots < t_n = b\}$,

$$\begin{split} \sum_{i=0}^{n-1} \left| \rho(t_{i+1}) - \rho(t_i) \right| + \left| \rho(a) \right| &= \sum_{i=0}^{n-1} |\nu([a,t_{i+1}]) - \nu([a,t_i])| + |\nu(\{a\})| \\ &= \sum_{i=0}^{n-1} |\nu((t_i,t_{i+1}])| + |\nu(\{a\})| \\ &= \sum_{i=0}^{n-1} |\nu|((t_i,t_{i+1}]) + |\nu|(\{a\}) = |\nu|([a,b]) = \|\nu\| \,. \end{split}$$

Since v is a finite signed measure, $\rho \in BV([a,b])$. Furthermore, taking supremum over all partitions, we obtain that $\|\rho\|_{TV} = \|v\|$. It remains to show that ϕ is an isomorphism. Suppose $v, \mu \in M([a,b])$ and $\phi v = \phi \mu$. Then $v([a,t]) = \mu([a,t])$ for all $t \in [a,b]$. Since

[a,t] generates the Borel σ -algebra on [a,b], we have $v=\mu$. Thus ϕ is injective. For surjectivity, let $\rho \in BV([a,b])$. Consider the signed measure v defined by $v([a,t]) = \rho(t)$ and $v(\emptyset) = 0$. Then v is a finite signed measure and $\phi v = \rho$. The proof is complete.

Lemma 2.34

Let X be a normed vector space and $M \subseteq X$ be a proper subspace. Suppose $S: M \to \mathbb{R}$ is a bounded linear functional. Then for every $x \in X \setminus M$, there exists a linear $U: M' \to \mathbb{R}$ such that $\|U\|_{M' \to \mathbb{R}} = \|S\|_{M \to \mathbb{R}}$, where $M' = M + \mathbb{R}x$.

Proof. Clearly M' is a subspace; furthermore, $M' = M \oplus \mathbb{R}x$ since if v = w + cx = w' + c'x for some $w, w' \in M$ and $c, c' \in \mathbb{R}$, then $(c - c')x = w - w' \in M$. Since $x \notin M$, this implies that c = c', w = w' and hence the representation is unique.

Now we can define U on M' by $U(w+cx)=Sw+c\lambda$ for any $w+cx\in M'$ and some $\lambda\in\mathbb{R}$ to be determined. To make U have the same norm as U, we need to find λ such that $|Sw+c\lambda|\leq \|S\|\,\|w+cx\|$ holds for all $w\in M$ and $c\in\mathbb{R}$. Clearly if c=0, the inequality is already satisfied. For $c\neq 0$, by deviding both sides by |c|, we see that the condition is equivalent to $|Sw+\lambda|\leq \|S\|\,\|w+x\|$ for all $w\in M$. Now for any $w,v\in M$,

$$Sw - Sv = S(w - v) \le |S(w - v)| \le |S| ||w - v|| = ||S|| ||w + x - (v + x)|| \le ||S|| (||w + x|| + ||v + x||).$$

Thus

$$Sw - ||S|| ||w + x|| \le Sv + ||S|| ||v + x||$$
.

Fix v and taking supremum over all $w \in M$ on the left,

$$\sup_{w \in M} Sw - \|S\| \|w + x\| \le Sv + \|S\| \|v + x\|.$$

Taking infimum over all $v \in M$ on the right,

$$\sup_{w\in M}Sw-\|S\|\,\|w+x\|\leq \inf_{v\in M}Sv+\|S\|\,\|v+x\|\,.$$

Hence there exists $\lambda \in \mathbb{R}$ such that

$$S(w) - ||S|| \, ||w + x|| \le -\lambda \le S(w) + ||S|| \, ||w + x||$$

for all $w \in M$. Picking this λ , we see that

$$|Sw + \lambda| \le ||S|| \, ||w + x||$$

as desired. Thus U is a bounded linear functional on M' with $||U||_{M'\to\mathbb{R}} = ||S||_{M\to\mathbb{R}}$. Also, on M, U = S and hence U is an extension of S.

Theorem 2.35 (Hahn-Banach)

Let X be a normed vector space and $M \subset X$ be a subspace. Suppose $S: M \to \mathbb{R}$ is a bounded

linear functional on M. Then there exists a bounded linear functional $T: X \to \mathbb{R}$ such that $T|_M = S$ and $||T||_{X \to \mathbb{R}} = ||S||_{M \to \mathbb{R}}$.

Proof. The proof relies on Zorn's lemma.¹ We start by constructing a partial order space. Let (P, \leq) be a partial order space with

 $P = \{(U,Y) \mid M \subset Y \subset X, Y \text{ is a subspace of } X, U \text{ is a bounded extension of } S \text{ on } V\}$

and the partial order: $(U_1,Y_1) \leq (U_2,Y_2)$ if $Y_1 \subset Y_2$ and U_2 is a bounded extension of U_1 on Y_2 . Clearly the pair indeed forms a partial order space. We now check the assumptions of Zorn's lemma. Let $C = \{(U_\alpha,Y_\alpha) \mid \alpha \in A\}$ with an arbitrary index set A be a chain in P. Put $Y = \bigcup_{\alpha \in A} Y_\alpha$. We claim that Y is a subspace of X. Indeed, for $y_1,y_2 \in Y$ and $c_1,c_2 \in \mathbb{R}$, there exist $\alpha_1,\alpha_2 \in A$ such that $y_1 \in Y_{\alpha_1}$ and $y_2 \in Y_{\alpha_2}$. Since Y is a chain, one of them is a subspace of the other, say Y_{α_1} is a subspace of Y_{α_2} . Then $y_1,y_2 \in Y_{\alpha_2}$ and hence $c_1y_1+c_2y_2 \in Y_2 \subset Y$. Thus Y is a subspace.

Next we need to define a bounded linear functional U on Y so that U is a bounded extension of S on Y. For $y \in Y$, we can find an $\alpha \in A$ such that $y \in Y_{\alpha}$ and set $U(y) = U_{\alpha}(y)$. Such U is well-defined since if α_1 and α_2 are two indices satisfying $y \in Y_{\alpha_1} \cap Y_{\alpha_2}$, then $U_{\alpha_1}(y) = U_{\alpha_2}(y)$ since one of them is an extension of the other. Also, U is linear since U_{α} is linear for every $\alpha \in A$. Lastly, U is a bounded extension of U_{α} on Y for any $\alpha \in A$ because every $U_{\alpha'}$ with $(U_{\alpha}, Y_{\alpha}) \leq (U_{\alpha'}, Y_{\alpha'})$ is a bounded extension of U_{α} . We conclude that $(U, Y) \in P$ is an upper bound of C.

By Zorn's lemma, there exists a maximal element $(T,Z) \in P$. We claim that Z = X. Suppose $Z \subsetneq X$. Then there exists $x \in X \setminus Z$ and also a bounded extension T' of T on $Z + \mathbb{R}x \supseteq Z$ by lemma 2.34. But then $(T', Z + \mathbb{R}x) \in P$ and $(T,Z) \preceq (T', Z + \mathbb{R}x)$, contradicting the maximality of (T,Z). Thus Z = X and T is a bounded extension of S on X.

Theorem 2.36 (Riesz Representation of C([a,b]))

 $C([a,b])' \cong BV([a,b]) \cong M([a,b])$ isometrically.

Proof. In theorem 2.33, we have shown that $M([a,b]) \cong BV([a,b])$. We are going to show this by constructing an isometric isomorphism between C([a,b])' and BV([a,b]).

Let X = C([a,b]) and $\ell \in X'$. $\ell : X \to \mathbb{R}$ is a bounded linear functional. We need to find a $v \in M([a,b])$ such that

$$\ell(f) = \int_{[a,b]} f \, dv$$

for $f \in C([a,b])$. Let $Y = B([a,b]) = \{f : [a,b] \to \mathbb{R} \mid f \text{ is bounded}\}$. By Hahn-Banach theorem, there exists a bounded linear extension $L: Y \to \mathbb{R}$ of ℓ . Now if $f = \chi_{[a,t]} \in Y$, then

$$L(f) = \int_{[a,b]} \chi_{[a,t]} dv = \nu([a,t]) = \rho(t).$$

¹Zorn's lemma states that if every chain in a partially ordered set has an upper bound, then the set has a maximal element. It is a direct consequence of the axiom of choice.

We claim that $\rho \in BV([a,b])$. For any partition $\mathscr{P} = \{a = t_0 < \dots < t_n = b\},\$

$$\begin{split} V_{\mathcal{P}}(\rho) &= \sum_{i=0}^{n-1} \left| \rho(t_{i+1}) - \rho(t_i) \right| = \sum_{i=0}^{n-1} \left| L(\chi_{[a,t_{i+1}]}) - L(\chi_{[a,t_i]}) \right| \\ &= \sum_{i=0}^{n-1} L(\chi_{(t_i,t_{i+1}]}) s_i = L \left(\sum_{i=0}^{n-1} \chi_{(t_i,t_{i+1}]} s_i \right) \leq \|L\| \left\| \sum_{i=0}^{n-1} \chi_{(t_i,t_{i+1}]} s_i \right\|_{\infty} \leq \|L\| \end{split}$$

by letting $s_i = \operatorname{sgn}(\rho(t_{i+1}) - \rho(t_i))$. Thus $\rho \in BV([a,b])$ and $\|\rho\|_{TV} \le \|L\| = \|\ell\|$. To extend to $f \in C([a,b])$ so that

$$\ell(f) = L(f) = \int_{[a,b]} f dv,$$

we first note that by our established result, $f = \chi_{[a,t]} \in Y$ holds. By linearity so does simple functions. For $f \in C([a,b])$, consider

$$h_{\mathscr{D}}(t) = f(a) + \sum_{i=0}^{n-1} f(t_i) \chi_{(t_i, t_{i+1}]}(t).$$

Since L is continuous and $h_{\mathscr{P}} \to f$ uniformly as $\|\mathscr{P}\| \to 0$, we have

$$L(f) = \lim_{\|\mathscr{D}\| \to 0} L(h_{\mathscr{D}}) = \int_{a}^{b} f \, d\rho.$$

L is an extension of ℓ and hence

$$\ell(f) = \int_a^b f d\rho = f(a)\rho(a) + \int_a^b f d\rho.$$

Finally, we claim that $\|\ell\| \le \|\rho\|_{TV} \le \|L\| = \|\ell\|$. Take $f \in X$.

$$|\ell(f)| = \left| \int_a^b f d\rho \right| \le \|f\|_{\infty} \|\rho\|_{TV} \le \|f\|_{\infty} \|L\| = \|\ell\| \|f\|_{\infty}.$$

Hence $\|\ell\| \le \|\rho\|_{TV} \le \|L\| = \|\ell\|$. It follows that the mapping $\ell \mapsto \rho$ is isometric. Conversely, if $\rho \in BV([a,b])$, define

$$\ell_{\rho}(f) = f(a)\rho(a) + \int_{a}^{b} f d\rho.$$

We need to check that ℓ_{ρ} is linear and $\|\rho\|_{TV} \leq \|\ell\| \leq \|\rho\|_{TV}$. ℓ_{ρ} has an extension L_{ρ} : $Y \to \mathbb{R}$. Define $\lambda(t) = L_{\rho}(\chi_{[a,t]})$. Then $\|\rho\|_{TV} = \|\lambda\| \leq \|L_{\rho}\| = \|\ell_{\rho}\|$.

Remark

If $\ell \in C([a,b])'$, there exists $\rho \in BV([a,b])$ such that

$$\ell(f) = \int_a^b f d\rho;$$

if $\rho \in BV([a,b])$,

$$\ell_{\rho}(f) = f(a)\rho(a) + \int_{a}^{b} f d\rho$$

and $\|\ell_{\rho}\| = \|\rho\|_{TV}$.

2.4. Weak Convergence

Definition 2.37

Let $(X, \|\cdot\|)$ be a normed space. A sequence $\{x_n\}$ in X is said to **converge weakly** to $x \in X$, denoted by $x_n \to x$, if for every $L \in X'$, $L(x_n) \to L(x)$ as $n \to \infty$.

Remark

Strong convergence implies weak convergence. If $x_n \to x$,

$$|L(x_n) - L(x)| = |L(x_n - x)| \le ||L|| ||x_n - x|| \to 0$$

as $n \to \infty$. Thus $x_n \to x$. However, the converse is not true in general.

Example

Consider ℓ^2 . Note that $(\ell^2)' \cong \ell^2$. For all $L \in (\ell^2)'$, there exists $y \in \ell^2$ such that $L(x) = \sum_{n=1}^{\infty} x_n y_n$. Let $x_n = e^n$ be the sequence with 1 at the n-th position and 0 elsewhere. Then $x_n \to 0$ since for every $L \in (\ell^2)'$,

$$L(x_n) = \sum_{i} e_i^n y_i = y_n \to 0$$

for $y \in \ell^2$. However, $||x_n||_{\ell^2} = 1$ for every n and thus $x_n \neq 0$.

Example

Consider X = C([0,1]) with the supremum norm. Let

$$x_n(t) = \begin{cases} nt & \text{if } 0 \le t \le 1/n, \\ 2 - nt & \text{if } 1/n \le t \le 2/n, \\ 0 & \text{if } 2/n \le t \le 1. \end{cases}$$

Then $\|x_n\|_{\infty} = 1$ and thus $x_n \neq 0$. Instead, we have $x_n \to 0$. Assume not, then we can find $T \in X'$ and a subsequence $\{x_{n_k}\}$ such that $|T(x_{n_k})| \geq \delta > 0$. For simplicity, we consider the case $T(x_{n_k}) \geq \delta$, but the other case is similar. Since $T \in X'$, $|T(x_{n_k})| \leq \|T\|_{X \to \mathbb{R}} \|x_{n_k}\|_{\infty}$. Let $y_K = \sum_{k=1}^K x_{n_k}$. Then $T(y_K) = \sum_{k=1}^K T(x_{n_k}) \geq K\delta$ and $T(y_K) \leq \|T\|_{X \to \mathbb{R}} \|y_K\|_{\infty}$. This implies that y_K cannot be bounded. Now consider x_{n_k} with $n_{k+1} \geq 2n_k$. For $t \in [0, 1/n_K]$, $x_{n_k}(t) = n_k t$.

$$y_K(t) = \sum_{k=1}^K n_k t \le \sum_{k=1}^K n_k / n_K \le 1 + \sum_{k=1}^K 2^{K-k} \le 1 + \sum_k 2^{-k} = 2.$$

For $t \in [1/n_K, 1/n_{K-1}]$,

$$y_K(t) = \sum_{k=1}^K x_{n_k}(t) \leq 1 + \sum_{k=1}^{K-1} n_k t \leq 1 + \frac{1}{n_{K-1}} \sum_{k=1}^{K-1} n_k \leq 1 + 1 + \sum_{k} 2^{-k} = 3.$$

On $[1/n_K, 1/n_{K-1}]$, we have $||y_K|| \le 3$. Thus $\delta K \le ||T||_{X \to \mathbb{R}} ||y_K||_{\infty} \le 3 ||T||_{X \to \mathbb{R}}$, which is impossible for sufficiently large K. Hence $x_n \to 0$.

Proposition 2.38

 $(X, \|\cdot\|_X)$ is a normed space and $x_n \in X$. If $\|x_n\|_X \leq C$ for all $n \in \mathbb{N}$ and $L(x_n) \to L(x)$ for all $L \in A \subset X'$, where A is dense in X', then $x_n \to x$ in X.

Proof. Let $\epsilon > 0$ be given. A is dense in X'. For $T \in X'$, there is an $L \in A$ such that $||T - L||_{X' \to \mathbb{R}} \le \epsilon$. Also, there exists N such that $|L(x_n) - L(x)| \le \epsilon$ for all $n \ge N$. Then

$$|T(x_n) - T(x)| \le |T(x_n) - L(x_n)| + |L(x_n) - L(x)| + |L(x) - T(x)|$$

$$\le ||T - L||_{X' \to \mathbb{R}} (||x_n||_X + ||x||_X) + |L(x_n) - L(x)| \le 2C\epsilon + \epsilon$$

for all $n \leq N$. Since ϵ is arbitrary, $x_n \rightarrow x$.

Definition 2.39

A space X is called a **Baire space** if for any sequence of open dense subsets $\{E_n\}$, $\cap_n E_n$ is dense in X.

Theorem 2.40 (Baire Category Theorem)

A complete metric space is a Baire space.

Proof. Let X be a complete metric space and $\{E_n\}$ be a sequence of open dense subsets in X. Put $E = \cap_n E_n$. We want to show that any nonempty open set $G \subset X$ intersects E.

 E_1 is dense in X so $G \cap E_1$ is nonempty. Then there exists $x_1 \in E_1 \cap G$. Note that $E_1 \cap G$ is open; there exists $1 > \delta_1 > 0$ such that $B_{\delta_1}(x_1) \subset E_1 \cap G$. By shrinking δ_1 , we can have $\overline{B_{\delta_1}(x_1)} \subset E_1 \cap G$. Now since E_2 is dense in X, there exists $x_2 \in E_2 \cap B_{\delta_1}(x_1)$ and also a $1/2 > \delta_2 > 0$ such that $\overline{B_{\delta_2}(x_2)} \subset E_2 \cap B_{\delta_1}(x_1)$. Continue this process, we obtain a sequence $\{x_n\}$ and $\delta_n \leq 1/n$ such that $\overline{B_{\delta_n}(x_n)} \subset E_n \cap B_{\delta_{n-1}}(x_{n-1})$.

For every $m,n\geq N$, we have $x_n\in B_{\delta_n}(x_n)\subset\cdots\subset B_{\delta_N}(x_N)$ and $x_m\in B_{\delta_m}(x_m)\subset\cdots\subset B_{\delta_N}(x_N)$ by construction. Hence $d(x_n,x_m)\leq 2\delta_N\leq 2/N$ and $\{x_n\}$ is a Cauchy sequence. Since X is complete, $\{x_n\}$ converges to some $x\in X$. We claim that $x\in E\cap G$. Clearly $x\in G$. By construction $x_m\in \overline{B_{\delta_n}(x_n)}$ for all $m\geq n$. Thus $x\in B_{\delta_n}(x_m)\subset E_N$ for $m\geq n\geq N$. We see that $x\in \cap_n E_n$. Notice that G is arbitrary, so E is dense in X, proving that X is a Baire space.

Theorem 2.41 (Uniform Boundedness Principle I)

X is a complete metric space. $f_{\alpha}: X \to \mathbb{R}$ is continuous for every $\alpha \in A$, where A is an index

set. If for every $x \in X$, there exists $M(x) < \infty$ such that

$$\sup_{\alpha \in A} |f_{\alpha}(x)| \le M(x),$$

then there exists an open G and a constant $C < \infty$ such that

$$\sup_{\alpha \in A} |f_{\alpha}(x)| \le C$$

for all $x \in G$.

Proof. By Baire Category Theorem, X is a Baire space. For each n, let

$$F_n = \left\{ x \in X \mid \sup_{\alpha \in A} |f_\alpha(x)| \le n \right\}.$$

We claim that F_n is closed and $X = \bigcup_n F_n$. Indeed, set $x_k \to x \in X$, where $x_k \in F_n$ for all k. For any $\alpha \in A$, $|f_{\alpha}(x_k)| \le n$ for all k and by continuity of f_{α} ,

$$|f_{\alpha}(x)| = \lim_{k \to \infty} |f_{\alpha}(x_k)| \le n.$$

Hence $x \in F_n$ and F_n is closed. Next, for any $x \in X$, take $N \ge M(x)$. Then $x \in F_N \subset \bigcup_n F_n$. This shows that $X = \bigcup_n F_n$.

Finally, observe that F_n cannot have empty interiors for all n. Otherwise, $\emptyset = X^c = (\cup_n F_n)^c = \cap F_n^c \neq \emptyset$ since F_n^c are open dense subsets of X, which is absurd. Hence there is some n such that F_n has nonempty interior, say $G \subset F_n$. Then $\sup_{\alpha \in A} |f_\alpha(x)| \leq n$ for all $x \in G$ as desired.

Definition 2.42

A function $f: X \to \mathbb{R}$ is said to be **sub-additive** if $f(x+y) \le f(x) + f(y)$ for all $x, y \in X$.

Theorem 2.43 (Uniform Boundedness Principle II)

X is a Banach space. $\alpha \in A$ is an arbitrary index set. $f_{\alpha}: X \to \mathbb{R}$ are continuous, subadditive and satisfy $f_{\alpha}(cx) = |c| f_{\alpha}(x)$ for all $x \in X$ and $c \in \mathbb{R}$. If for every $x \in X$, there exists $M(x) < \infty$ such that

$$\sup_{\alpha \in A} |f_{\alpha}(x)| \le M(x),$$

then there exists a constant $C < \infty$ such that

$$\sup_{\alpha \in A} |f_{\alpha}(x)| \le C \, \|x\|_X$$

for all $x \in X$.

Proof. By theorem 2.41, there exists an open G and a constant $C < \infty$ such that

$$\sup_{\alpha \in A} |f_{\alpha}(x)| \le C$$

for all $x \in G$. The proof will be complete if we can extend G to X. Since G is open, there exists r > 0 such that $B_r(z) \subset G$ for all $z \in G$. For any $x \in B_r(z)$, $\sup_{\alpha \in A} |f_\alpha(x)| \le C$ and hence $\sup_{\alpha \in A} |f_\alpha(z+y)| \le C$ for all $y \in B_r(0)$. Take y with $||y|| \le r/2$. Then

$$-2C \le f_{\alpha}(y+z) - f_{\alpha}(z) \le f_{\alpha}(y) \le f_{\alpha}(y+z) + f_{\alpha}(-z) = f_{\alpha}(y+z) + f_{\alpha}(z) \le 2C.$$

Hence $|f_{\alpha}(y)| \le 2C$ for all y with $||y|| \le r/2$. Take $x \in X$.

$$|f_{\alpha}(x)| = \left| f_{\alpha} \left(\frac{x}{\|x\|} \frac{r}{2} \frac{2}{r} \|x\| \right) \right| = \frac{2}{r} \|x\| |f_{\alpha}(y)| \le \frac{4C}{r} \|x\|.$$

Thus

$$\sup_{\alpha \in A} |f_\alpha(x)| \leq \frac{4C}{r} \, \|x\|$$

for all $x \in X$.

Corollary 2.44

X is a Banach space. $L_{\alpha} \in X'$ and $\alpha \in A$. If for every $x \in X$, there exists $M(x) < \infty$ such that $\sup_{\alpha \in A} |L_{\alpha}(x)| \le M(x)$, then there exists a constant $C < \infty$ such that $\sup_{\alpha \in A} \|L_{\alpha}\| \le C$.

Proof. Apply theorem 2.43 to $f_{\alpha}(x) = |L_{\alpha}(x)|$. First, L_{α} is linear and the sub-linearity follows from the triangle inequality. Next, $|L_{\alpha}(cx)| = |c| |L_{\alpha}(x)|$ for all $c \in \mathbb{R}$. Also, $L_{\alpha} \in X'$ implies that f_{α} is continuous. The conclusion follows from theorem 2.43.

Corollary 2.45

X is a normed space. $x_{\alpha} \in X$ for all $\alpha \in A$ with the property that for every $L \in X'$, there is $M(L) < \infty$ such that $\sup_{\alpha} |L(x_{\alpha})| \leq M(L)$ and $(X', \|\cdot\|_{X \to \mathbb{R}})$ is a Banach space. Then there exists $C < \infty$ such that $\|x_{\alpha}\|_{X} \leq C$ for all $\alpha \in A$.

Proof. Apply the theorem 2.43 to $f_{\alpha}(L) = |L(x_{\alpha})|$. First, for $L, T \in X'$,

$$f_{\alpha}(L+T) = |L(x_{\alpha}) + T(x_{\alpha})| \le |L(x_{\alpha})| + |T(x_{\alpha})| = f_{\alpha}(L) + f_{\alpha}(T).$$

Next, for $c \in \mathbb{R}$,

$$f_{\alpha}(cL) = |cL(x_{\alpha})| = |c||L(x_{\alpha})| = |c|f_{\alpha}(L).$$

Finally, to verify that f_{α} is continuous, note that for $L_n \to L$ in X',

$$|f_{\alpha}(L_n) - f_{\alpha}(L)| = |L_n(x_{\alpha}) - L(x_{\alpha})| \le ||L_n - L||_{X' \to \mathbb{R}} ||x_{\alpha}||_X \to 0$$

for each $\alpha \in A$. The conclusion follows from theorem 2.43.

Corollary 2.46

X is a normed space and $x_n \in X$ with $x_n \to x$ in X. Then there exists $C < \infty$ such that $\|x_n\|_X \leq C$ for all n.

Proof. This is a direct consequence of corollary 2.45 with $A = \mathbb{N}$.

Proposition 2.47

Let $f_n \in \mathcal{L}^p(X,\mu)$ and $1 \le p < \infty$. Then $f_n \to f \in \mathcal{L}^p$ if

$$\lim_{n\to\infty}\int f_n g d\mu = \int f g d\mu$$

for all $g \in \mathcal{L}^{p'}(X,\mu)$ and some f in \mathcal{L}^p where p' is the conjugate exponent of p.

Proof. By the assumption and Riesz representation theorem, for every $T \in (\mathcal{L}^p)'$, there exists a unique $g \in \mathcal{L}^{p'}$ such that

$$T(f_n) = \int f_n g d\mu \rightarrow \int f g d\mu = T(f).$$

Hence $f_n \rightarrow f$.

Proposition 2.48

 $f_n \in \mathcal{L}^p(X,\mu)$ and $1 \le p < \infty$. If $f_n \rightharpoonup f$ in \mathcal{L}^p , then f_n is bounded and

$$||f_n||_p \leq \liminf_{n\to\infty} ||f_n||_p$$
.

Proof. Consider the function

$$g = \frac{|f|^{p/p'}}{\|f\|_p^{p/p'}}.$$

Note that

$$\|g\|_{p'}^{p'} = \int |g|^{p'} d\mu = \int \frac{|f|^p}{\|f\|_p^p} d\mu = 1.$$

Hence $g \in \mathcal{L}^{p'}$ with $\|g\|_{p'} = 1$. Also notice that $|g| = |f|^{p/p'} / \|f\|_p^{p/p'} = |f|^{p-1} / \|f\|_p^{p-1}$. By the weak convergence and Riesz representation theorem,

$$\|f\|_{p} = \int \frac{|f|^{p}}{\|f\|_{p}^{p-1}} d\mu = \int |fg| d\mu = \lim_{n \to \infty} \int |f_{n}g| d\mu \le \liminf_{n \to \infty} \|f_{n}\|_{p} \|g\|_{p'} = \liminf_{n \to \infty} \|f_{n}\|_{p}$$

by the Hölder inequality. Note that by corollary 2.46, f_n is bounded uniformly in n.

Proposition 2.49

 $1 \le p < \infty$ and 1/p + 1/p' = 1. Suppose $f_n \to f$ in \mathcal{L}^p and $g_n \to g$ in $\mathcal{L}^{p'}$. Then

$$\lim_{n\to\infty}\int f_ng_nd\mu=\int fgd\mu.$$

Proof. By the Hölder inequality,

$$\left| \int f_n g_n d\mu - \int f g d\mu \right| \le \left| \int f_n (g_n - g) d\mu \right| + \left| \int (f_n - f) g d\mu \right|$$

$$\le \|f_n\|_p \|g_n - g\|_{p'} + \|f_n - f\|_p \|g\|_{p'}.$$

Note that by proposition 2.48, f_n converges to f strongly and hence weakly. It follows that $||f_n||$ is bounded by some $C < \infty$. Since g_n converges to g and f_n converges to f in their respective norms, the right hand side of the inequality converges to 0 as $n \to \infty$.

Remark

If we loosen the condition to $f_n \rightharpoonup f$ in \mathcal{L}^p and $g_n \rightharpoonup g$ in $\mathcal{L}^{p'}$, then the conclusion fails.

Example

Suppose p=p'=2 and $f_n(x)=\sqrt{2/\pi}\sin(nx)$ for $x\in[0,\pi]$. Then $f_n\in\mathcal{L}^2([0,\pi])$ and

$$\int_0^{\pi} f_n^2 dx = \frac{2}{\pi} \int_0^{\pi} \sin^2(nx) dx = 1.$$

To see that $f_n \to 0$, let $g \in \mathcal{L}^2([0,\pi])$. For every $\epsilon > 0$, there is a step function ϕ such that $\|g - \phi\|_2 < \epsilon$. Note that every step function is a finite linear combination of characteristic functions of intervals. Hence it suffices to show that $f_n \chi_I$ can be arbitrary small for n sufficiently large. On every interval,

$$\left| \int_{I} \sin(nx) dx \right| \le \int_{0}^{\pi/n} \sin(nx) dx = \frac{2}{n} \to 0$$

as $n \to \infty$. Thus $f_n \to 0$ in $\mathcal{L}^2([0,\pi])$. However, f_n does not converge to 0 strongly in $\mathcal{L}^2([0,\pi])$ since $||f_n||_2 = 1 \neq 0$ for all n.

Proposition 2.50

 $1 \le p < \infty$. Let $f_n \in \mathcal{L}^p(X,\mu)$ be a bounded sequence of functions. Then $f_n \to f$ in \mathcal{L}^p if and only if

$$\lim_{n\to\infty}\int_A f_n d\mu = \int_A f d\mu$$

for all $A \in \mathcal{A}$ when p = 1 and for A with finite measure when p > 1.

Proof.

$$f_n \to f \iff \int f_n g d\mu \to \int f g d\mu \text{ for all } g \in \mathcal{L}^{p'}$$

$$\iff \int_A f_n s d\mu \to \int_A f s d\mu \text{ for all simple } s \in \mathcal{L}^{p'}$$

$$\iff \int_A f_n d\mu = \int f_n \chi_A d\mu \to \int f \chi_A d\mu = \int_A f d\mu$$

for $A \in \mathcal{A}$ such that $\chi_A \in \mathcal{L}^{p'}$. If p = 1, then A can be taken to be any $A \in \mathcal{A}$; if p > 1, then A must have finite measure.

Proposition 2.51

 $1 . Let <math>f_n \in \mathcal{L}^p(X, \mu)$ be a sequence with $||f_n||_p \le M$ and $f_n \to f$ pointwise a.e. Then $f_n \to f$ in \mathcal{L}^p .

Proof. Since $||f_n||_p \leq M$,

$$\int |f|^p d\mu = \int \liminf_{n \to \infty} |f_n|^p d\mu \le \liminf_{n \to \infty} \int |f_n|^p d\mu = M^p$$

by Fatou's lemma. Hence $f \in \mathcal{L}^p$. It remains to show that the convergence is weak. By proposition 2.50, it is equivalent to show that

$$\lim_{n\to\infty}\int_A f_n d\mu = \int_A f d\mu$$

for all $A \in \mathscr{A}$ with $\mu(A) < \infty$. Indeed, by Egorov's theorem, for every $\epsilon > 0$, there exists $F_{\epsilon} \subset A$ with $\mu(A - F_{\epsilon}) \le \epsilon$ and $f_n \to f$ uniformly on F_{ϵ} . Furthermore, by proposition 1.32, we can choose F_{ϵ} so that

$$\int_{A-F_{\epsilon}} |f_n - f|^p \, d\mu \le \epsilon$$

since $f_n, f \in \mathcal{L}^p$ and so does $|f_n - f|^p$. Also, let $E = \{x \in A - F_{\varepsilon} \mid |f_n - f| > 1\}$. Then for n sufficiently large,

$$\begin{split} \int_{A} |f_{n} - f| \, d\mu &\leq \int_{F_{\epsilon}} |f_{n} - f| \, d\mu + \int_{A - F_{\epsilon}} |f_{n} - f| \, d\mu \\ &\leq \int_{A} \epsilon d\mu + \int_{A - F_{\epsilon} - E} |f_{n} - f| \, d\mu + \int_{E} |f_{n} - f| \, d\mu \\ &\leq \epsilon \mu(A) + \mu(A - F_{\epsilon}) + \int_{A - F_{\epsilon}} |f_{n} - f|^{p} \, d\mu \leq \epsilon \mu(A) + \epsilon + \epsilon. \end{split}$$

Hence $f_n \rightarrow f$.

Remark

The proposition fails for p = 1. Consider $f_n = n\chi_{[0,1/n]}$. Then $||f_n||_1 = 1$ and $f_n \to 0$ pointwise a.e. However,

$$\int_0^1 f_n(x)dx = 1 \neq 0 = \int_0^1 0dx.$$

Thus f_n does not converge weakly to 0 in \mathcal{L}^1 .

Theorem 2.52 (Radon-Riesz)

1

Proof. Suppose $f_n \to f$ in \mathcal{L}^p . Then the strong convergence immediately implies the

weak convergence. Also, note that $||f_n||_p \le ||f_n - f||_p + ||f||_p$ and thus

$$\left| \|f_n\|_p - \|f\|_p \right| \le \|f_n - f\|_p \to 0$$

by the strong convergence. Conversely, suppose that $\|f_n\|_p \to \|f\|_p$ and $f_n \to f$ in \mathcal{L}^p .

Assume $p \ge 2$. For any $y \in \mathbb{R}$, notice that $|1+y|^p \ge 1+py+c|y|^p$ for some $c \in (0,1)$. Let $E = \{x \in X \mid f(x) = 0\}$ and apply $y = (f_n - f)/f$ on E^c . Then on E^c ,

$$\left| \frac{f_n}{f} \right|^p \ge 1 + p \left(\frac{f_n - f}{f} \right) + c \left| \frac{f_n - f}{f} \right|^p$$

Thus

$$|f_n|^p \ge |f|^p + p(f_n - f)|f|^{p-1}\operatorname{sgn}(f) + c|f_n - f|^p$$
.

Rearranging the inequality and integrating both sides on E^c gives

$$c\int_{E^c} |f_n - f|^p d\mu \le \int_{E^c} |f_n|^p - |f|^p d\mu - p\int_{E^c} |f|^{p-1} \operatorname{sgn}(f)(f_n - f) d\mu$$

Note that as shown in the proof of proposition 2.48, $|f|^{p-1}\operatorname{sgn}(f) \in \mathcal{L}^{p'}$. By the assumptions we see that

$$\int_{\mathbb{R}^c} |f_n - f|^p \, d\mu \to 0$$

as $n \to \infty$. On *E*, we have f = 0 and

$$\int_{E} |f_{n} - f|^{p} d\mu = \int_{E} |f_{n}|^{p} d\mu \to 0$$

as $n \to \infty$. Hence $f_n \to f$ in \mathcal{L}^p .

Assume $1 . Then we have the same inequality for <math>|z| \ge 1$, i.e.,

$$|1+z|^p \ge 1 + p|z| + c|z|^p$$

Also, for $|z| \le 1$,

$$\frac{|1+z|^p-1-pz}{z^2}$$

is strictly positive. Now let $E_n = \{x \in X \mid |f_n(x) - f(x)| \le |f(x)|\}$. Then by applying the same argument above on E_n^c , we have

$$\int_{E_n^c} |f_n - f|^p d\mu \le \frac{1}{c} \int_{E_n^c} |f_n|^p - |f|^p d\mu - \frac{p}{c} \int_{E_n^c} |f|^{p-1} \operatorname{sgn}(f)(f_n - f) d\mu$$

as $n \to \infty$. On E_n , replacing z by $(f_n - f)/f$,

$$\left| \frac{f_n}{f} \right|^p \ge 1 + p \frac{f_n - f}{f} + c' \left(\frac{f_n - f}{f} \right)^2 \implies |f_n|^p \ge |f|^p + p(f_n - f)|f|^{p-1} \operatorname{sgn}(f) + c'|f_n - f|^2 |f|^{p-2}$$

for some c' > 0. Thus

$$\int_{E_n} |f_n - f|^2 |f|^{p-2} d\mu \le \frac{1}{c'} \int_{E_n} |f_n|^p - |f|^p d\mu - \frac{p}{c'} \int_{E_n} |f|^{p-1} \operatorname{sgn}(f) (f_n - f) d\mu.$$

Adding up the two inequalities, we have

$$\int_{E_n^c} |f_n - f|^p d\mu + \int_{E_n} |f_n - f|^2 |f|^{p-2} d\mu \to 0$$

as $n \to \infty$ by the assumptions. Note that on E_n , $|f| \ge |f_n - f|$ and

$$\begin{split} \int_{E_n} |f_n - f|^p \, d\mu &\leq \int_{E_n} |f_n - f| \, |f|^{p-1} \, d\mu \leq \left(\int_{E_n} |f_n - f|^2 \, |f|^{p-2} \, d\mu \right)^{1/2} \left(\int_{E_n} |f|^p \, d\mu \right)^{1/2} \\ &\leq \left(\int_{E_n} |f_n - f|^2 \, |f|^{p-2} \, d\mu \right)^{1/2} \, \|f\|_p^{p/2} \to 0. \end{split}$$

Hence $f_n \to f$ in \mathcal{L}^p . We conclude that $f_n \to f$ strongly in \mathcal{L}^p if and only if $f_n \to f$ in \mathcal{L}^p and $||f_n||_p \to ||f||_p$.

Remark

Radon-Riesz theorem fails for p = 1. Consider $f_n(x) = 1 + \sin(nx)$ on $X = [-\pi, \pi]$. Then for every $g \in \mathcal{L}^{\infty}$,

$$\int (f_n - 1)g d\mu \le \int \sin(nx)g d\mu \to 0$$

by the step function approximation argument. Also, $||f_n||_1 = 2\pi$ for all n and hence converges to $||1||_1 = 2\pi$. However, f_n does not converge to 1 in \mathcal{L}^1 since

$$\int_{-\pi}^{\pi} |f_n - 1| \, d\mu = \int_{-\pi}^{\pi} |\sin(nx)| \, d\mu = 2n \int_{0}^{\frac{\pi}{2n}} \sin(nx) \, dx = 2$$

for all n.

2.5. Open Mapping Theorem and Closed Graph Theorem

Proposition 2.53

If X is a Baire space and F_n is a sequence of closed sets in X such that $\bigcup_{n=1}^{\infty} F_n = X$, then there exists some n and a nonempty open set G such that $G \subseteq F_n$.

Proof. Let $G_n = F_n^c$ be open sets in X. Then $\bigcap_{n=1}^{\infty} G_n = \bigcap_{n=1}^{\infty} F_n^c = \left(\bigcup_{n=1}^{\infty} F_n\right)^c = \emptyset$. By the Baire category theorem, at least one of the G_n is not dense in X. Thus there is some $x \in G^c$ and an open neighborhood U of x such that $U \cap G_n = \emptyset$. This implies $U \subseteq F_n$.

Theorem 2.54 (Open Mapping Theorem)

Let X and Y be Banach spaces and $T: X \to Y$ be a bounded surjective linear map. Then for any open set $U \subset X$, T(U) is open in Y.

Proof. We first claim that for any open ball B centered at 0 in X, $\overline{T(B)}$ contains an open neighborhood of zero in Y. By the surjectivity, $Y \subset T(X) = T(\bigcup_n nB) = \bigcup_n T(nB) \subset \bigcup_n \overline{T(nB)}$. By proposition 2.53, there is some n such that $\overline{T(nB)}$ contains an interior point, say y, and some open ball $B_r(y) \subset \overline{T(nB)}$. Then for every $z \in Y$ with ||z|| < r, $z - y \in B_r(-y) \subset \overline{T(-nB)} = \overline{T(nB)}$ and

$$z = y + (z - y) \in y + B_r(-y) \subset \overline{T(nB)} + \overline{T(nB)} \subset \overline{T(2nB)}.$$

Deviding z by 2n gives that $z/2n \in \overline{T(B)}$ and $B_{r/2n}(0) \subset \overline{T(B)}$.

Next, let B be an unit ball. To shorten the notation, denote r/2n by δ and $B_{r/2n}(0)$ by B_{δ} . Let $y \in B_{\delta}$ and $c_n > 0$ be a sequence. Since $B_{\delta} \subset \overline{T(B)}$, $\overline{B_{\delta}} \subset \overline{T(B)}$. Thus for every $z \in Y$ and $\epsilon > 0$, we can find some $x \in X$ such that $\|x\| < \delta^{-1} \|z\|$ and $z \in B_{\epsilon}(T(x))$. Now taking z = y and $\epsilon = c_1$, we can find an x_1 such that $\|x_1\| < \delta^{-1} \|y\|$ and $\|y - Tx_1\| < c_1$. Similarly, we can take $z = y - Tx_1$ and $\epsilon = c_2$ to find an x_2 such $\|x_2\| < \delta^{-1} \|y - Tx_1\| < \delta^{-1}c_1$ and $\|y - Tx_1 - Tx_2\| < c_2$. Iductively, we find a sequence $\{x_n\}$ such that $\|x_n\| < \delta^{-1}c_{n-1}$ and $\|y - T(\sum_{k=1}^n x_k)\| < c_n$. Now we choose $c_n = 2^{-n}c$ for arbitrary c > 0. Then

$$\left\| \sum_{k=1}^{n} x_{k} \right\| \leq \sum_{k=1}^{n} \|x_{k}\| \leq \frac{\|y\|}{\delta} + \sum_{k=2}^{n} \frac{c_{k-1}}{\delta} \leq \frac{\|y\|}{\delta} + \frac{c}{\delta} \sum_{k=1}^{\infty} 2^{-k} = \frac{\|y\|}{\delta} + \frac{c}{\delta}.$$

Hence $\sum_n x_n$ converges in X to some x with ||x|| < 1 by making c arbitrarily small. Also,

$$\left\| y - T \left(\sum_{k=1}^{n} x_k \right) \right\| \le c_n = 2^{-n} c \to 0.$$

Thus Tx = y and $y \in T(B)$, which implies $B_{\delta} \subset T(B)$.

Finally, let U be an open set in X. Then for any $y \in T(U)$, there is some $x \in U$ such that y = Tx. Since U is open, there is some $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$. By the previous claim, there is some s > 0 such that $B_s(0) \subset T(B_1(0))$. Multiplying both sides by ε gives $B_{s\varepsilon}(0) \subset T(B_{\varepsilon}(0))$. Then

$$B_{s\epsilon}(y) = y + B_{s\epsilon}(0) \subset y + T(B_{\epsilon}(0)) = Tx + T(B_{\epsilon}(0)) = T(x + B_{\epsilon}(0)) = T(B_{\epsilon}(x)) \subset T(U).$$

Thus T(U) is open. This completes the proof.

Theorem 2.55 (Bounded Inverse Theorem)

Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear map. If T is bijective, then T^{-1} is bounded.

Proof. By the open mapping theorem, there is r > 0 such that $B_r(0) \subset T(B_r(0))$. For any $y \in Y$ with ||y|| = r/2, there exists $x \in B_1(0)$ such that y = Tx. For $z \in Y$, write

$$z = \frac{rz}{2\|z\|} \frac{2}{r} \|z\|.$$

Then since $\left\|\frac{rz}{2\|z\|}\right\| = r/2$, there is some $x \in B_1(0)$ such that $\frac{rz}{2\|z\|} = Tx$. Thus $z = \frac{2}{r}\|z\|Tx$,

$$T^{-1}z = \frac{2}{r} \|z\| x \implies \|T^{-1}z\| \le \frac{2}{r} \|z\| \|x\|.$$

Note that $||x|| \le 1$. We see that $||T^{-1}||$ is bounded by 2/r.

Remark

The completeness in the open mapping theorem is essential. For counterexample, consider X as the space of all sequences with finitely many nonzero terms equipped with the supremum norm. Define $T: X \to X$ by

$$T(x_1, x_2,...) = (x_1, \frac{x_2}{2}, \frac{x_3}{3},...).$$

Note that X is not complete since the sequence $x^{(n)} = (1, 1/2, ..., 1/n, 0, 0, ...)$ converges to (1, 1/2, ...), which does not belong to X. In this case T^{-1} exists but is not bounded.

Definition 2.56

X,Y are Banach spaces. $T:X\to Y$ is a bounded linear map. The set

$$\Gamma(T) = \{(x, Tx) \in X \times Y \mid x \in X\}$$

is called the **graph** of T. We define the norm of x on the graph by

$$||(x,Tx)||_{\Gamma} = ||x||_{X} + ||Tx||_{Y}.$$

Note that $(\Gamma(T), \|\cdot\|_{\Gamma})$ *forms a normed space.*

Definition 2.57

A linear map $T: X \to Y$ is called **closed** if its graph is a closed, i.e., for any sequence $x_n \in X$, if $x_n \to x \in X$ and $Tx_n \to y \in Y$, then Tx = y and $(x, y) \in \Gamma(T)$.

Remark

If T is bounded, it is closed. To see this, note that if $x_n \to x \in X$, by the continuity we have $Tx_n \to Tx \in Y$.

Theorem 2.58 (Closed Graph Theorem)

Let X and Y be Banach spaces and $T: X \to Y$ be a linear map. If T is closed, then T is bounded.

Proof. Observe that $\Gamma(T)$ is a Banach space with the norm $\|\cdot\|$ on $\Gamma(T)$. This follows from the closedness of T. Now define $S:\Gamma(T)\to X$ by S(x,Tx)=x. We claim that S is bounded, linear and bijective. For linearity, let $(x_1,Tx_1),(x_2,Tx_2)\in\Gamma(T)$ and $c\in\mathbb{R}$.

$$S(c(x_1, Tx_1) + (x_2, Tx_2)) = S(cx_1 + x_2, cTx_1 + Tx_2) = cx_1 + x_2 = cS(x_1, Tx_1) + S(x_2, Tx_2).$$

For boundedness,

$$||S(x,Tx)||_X = ||x||_X \le ||x||_X + ||Tx||_Y = ||(x,Tx)||_{\Gamma}.$$

Thus $||S|| \le 1$. For bijectivity, notice that

$$S(x_1, Tx_1) = S(x_2, Tx_2) \implies x_1 = S(x_1, Tx_1) = S(x_2, Tx_2) = x_2.$$

and for any $x \in X$, $(x, Tx) \in \Gamma(T)$ and S(x, Tx) = x. Thus S is bounded, linear and bijective. By the bounded inverse theorem, $S^{-1}: X \to \Gamma(T)$ is bounded as well. For any $x \in X$,

$$\|Tx\|_Y = \|(x, Tx)\|_{\Gamma} - \|x\|_X = \|S^{-1}x\|_{\Gamma} - \|x\|_X \le C \|x\|_X - \|x\|_X = (C-1) \|x\|_X$$

for some constant $C < \infty$. Thus T is bounded.

Definition 2.59

Suppose X is a vector space with norms $\|\cdot\|_1$ and $\|\cdot\|_2$. The norms are said to be **compatible** if $x_n \to x$ in $\|\cdot\|_1$ and $x_n \to y$ in $\|\cdot\|_2$ implies x = y.

Definition 2.60

Let X be a vector space with norms $\|\cdot\|_1$ and $\|\cdot\|_2$. The norms are said to be **equivalent** if there are constants $c_1, c_2 > 0$ such

$$c_1 \|x\|_1 \le \|x\|_2 \le c_2 \|x\|_1$$

for all $x \in X$.

Proposition 2.61

Suppose X is a vector space with norms $\|\cdot\|_1$ and $\|\cdot\|_2$. If the norms are equivalent, then they are compatible.

Proof. Suppose $||x_n - x||_1 \to 0$ and $||x_n - y||_2 \to 0$. By the equivalence, $||x - y||_1 \le ||x - x_n||_1 + ||x_n - y||_1 \le ||x - x_n||_1 + c_2 ||x_n - y||_2 \to 0$ for some $c_2 > 0$. Similarly, $||x - y||_2 \le c_1 ||x - x_n||_1 + ||x_n - y||_2 \to 0$ for some $c_1 > 0$. Thus x = y.

Proposition 2.62

If $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ are Banach spaces. Then the norms are equivalent.

Proof. By the closed graph theorem, the identity map $I:(X,\|\cdot\|_1) \to (X,\|\cdot\|_2)$ is a closed linear map and thus bounded. Suppose $x_n \to x$ in $\|\cdot\|_1$. Then $x_n = Ix_n \to Ix = x$ in $\|\cdot\|_2$ by the continuity of I. Since I is bounded, $\|x\|_2 = \|Ix\|_2 \le c_1 \|x\|_1$ for some $c_1 > 0$. Applying the same argument exchanging the roles of $\|\cdot\|_1$ and $\|\cdot\|_2$ gives $\|x\|_1 \le c_2 \|x\|_2$ for some $c_2 > 0$. Hence

$$\frac{1}{c_2} \|x\|_1 \le \|x\|_2 \le c_1 \|x\|_1$$

and the norms are equivalent.

3. Hilbert Space

3.1. Cauchy-Schwarz Inequality

Definition 3.1

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{F}$ is an inner product on X if it satisfies

- (a) $\langle cx + y, z \rangle = c \langle x, z \rangle + \langle y, z \rangle$ for all $x, y, z \in X$ and $c \in \mathbb{F}$.
- (b) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in X$.
- (c) $\langle x, x \rangle > 0$ for all $x \neq 0$.

Remark

An inner product automatically induces a norm on X by $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.

Definition 3.2

A **Hilbert space** is a complete vector space with an inner product inducing a norm that makes it a Banach space. We denote the Hilbert space by \mathcal{H} .

Remark

If X is a vector space with an inner product but not complete, then X is called a **pre-Hilbert space**.

Proposition 3.3 (Cauchy-Schwarz Inequality)

For all $x, y \in \mathcal{H}$,

$$|\langle x, y \rangle| \le ||x|| ||y||$$
.

Furthermore, equality holds if and only if x and y are linearly dependent.

Proof. If $\langle x, y \rangle = 0$, then the inequality is trivial. Otherwise, let $t \in \mathbb{R}$. Then

$$\begin{split} 0 &\leq \left\langle t \frac{|\langle x, y \rangle|}{\langle x, y \rangle} x + y, t \frac{|\langle x, y \rangle|}{\langle x, y \rangle} x + y \right\rangle \\ &= t^2 \|x\|^2 + 2t \Re \left(\frac{|\langle x, y \rangle|}{\langle x, y \rangle} \langle x, y \rangle \right) + \|y\|^2 = t^2 \|x\|^2 + 2t |\langle x, y \rangle| + \|y\|^2. \end{split}$$

Hence

$$4 |\langle x, y \rangle|^2 - 4 ||x||^2 ||y||^2 \le 0 \implies |\langle x, y \rangle| \le ||x|| ||y||.$$

Note that if the equality holds, then

$$t^{2} \|x\|^{2} + 2t \|\langle x, y \rangle\| + \|y\|^{2} = t^{2} \|x\|^{2} + 2t \|x\| \|y\| + \|y\|^{2} = (t \|x\| + \|y\|)^{2} = 0$$

by taking $t = -\|y\|/\|x\|$. But this implies that

$$t\frac{|\langle x, y \rangle|}{\langle x, y \rangle} x + y = 0$$

and so x and y are linearly dependent. Conversely, suppose cx = y. Then $|\langle x, y \rangle| = |c| \|y\|^2 = \|x\| \|y\|$.

Proposition 3.4 (Parallelogram Law)

For all $x, y \in \mathcal{H}$,

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
.

Proof. Note that

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\Re(\langle x, y \rangle) + ||y||^2,$$

$$||x - y||^2 = \langle x - y, x - y \rangle = ||x||^2 - 2\Re(\langle x, y \rangle) + ||y||^2.$$

Adding the two equations gives

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
.

Proposition 3.5

For all $x \in \mathcal{H}$,

$$||x|| = \sup_{||y||=1} |\langle x, y \rangle|.$$

Proof. By the Cauchy-Schwarz inequality,

$$|\langle x, y \rangle| \le \|x\| \|y\| \implies \left| \left\langle x, \frac{y}{\|y\|} \right\rangle \right| \le \|x\| \implies \sup_{\|y\|=1} |\langle x, y \rangle| \le \|x\|.$$

Taking $y = x/\|x\|$ gives the equality and $\|y\| = 1$.

Theorem 3.6 (Completion of Pre-Hilbert Space)

Let $(X, \langle \cdot, \cdot \rangle)$ be a pre-Hilbert space. Then there exists a Hilbert space \mathcal{H} such that X is dense in \mathcal{H} and $\langle \cdot, \cdot \rangle_*$ on \mathcal{H} is an extension of $\langle \cdot, \cdot \rangle$.

Proof. Define $\langle x, y \rangle_* = \lim_{n \to \infty} \langle x_n, y_n \rangle$ for Cauchy sequences $\{x_n\}, \{y_n\} \subset X$ and $x, y \in \overline{X}$. We first check that $\langle \cdot, \cdot \rangle_*$ is well-defined. Note that

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| &\leq |\langle x_n, y_n \rangle - \langle x_n, y_m \rangle| + |\langle x_n, y_m \rangle - \langle x_m, y_m \rangle| \\ &\leq \|x_n\| \|y_n - y_m\| + \|x_n - x_m\| \|y_m\| \to 0 \end{aligned}$$

as $n, m \to \infty$ by the Cauchy-Schwarz inequality. Since $\mathbb F$ is complete, the limit exists. To see that $\langle \cdot, \cdot \rangle_*$ is independent of the choice of sequences, suppose $\{x_n^1\}, \{y_n^1\}$ and $\{x_n^2\}, \{y_n^2\}$ are two pairs of Cauchy sequences converging to x and y respectively. Then

$$\begin{aligned} \left| \left\langle x_{n}^{1}, y_{n}^{1} \right\rangle - \left\langle x_{n}^{2}, y_{n}^{2} \right\rangle \right| &\leq \left| \left\langle x_{n}^{1}, y_{n}^{1} \right\rangle - \left\langle x_{n}^{1}, y_{n}^{2} \right\rangle \right| + \left| \left\langle x_{n}^{1}, y_{n}^{2} \right\rangle - \left\langle x_{n}^{2}, y_{n}^{2} \right\rangle \right| \\ &\leq \left\| x_{n}^{1} \right\| \left\| y_{n}^{1} - y_{n}^{2} \right\| + \left\| x_{n}^{1} - x_{n}^{2} \right\| \left\| y_{n}^{2} \right\| \to 0. \end{aligned}$$

Hence $\langle x,y\rangle_*$ is well-defined. We now show that $\langle \cdot,\cdot\rangle_*$ is indeed an inner product on \overline{X} . For the linearity in the first argument, let $x,y,z\in\overline{X}$, $\{x_n\},\{y_n\},\{z_n\}\subset X$ be Cauchy sequences converging to x,y,z respectively and $c\in\mathbb{F}$. Then

$$\begin{split} \langle cx+y,z\rangle_* &= \lim_{n\to\infty} \langle cx_n+y_n,z_n\rangle = \lim_{n\to\infty} c\,\langle x_n,z_n\rangle + \langle y_n,z_n\rangle \\ &= c\,\lim_{n\to\infty} \langle x_n,z_n\rangle + \lim_{n\to\infty} \langle y_n,z_n\rangle = c\,\langle x,z\rangle_* + \langle y,z\rangle_* \,. \end{split}$$

For the conjugate symmetry, let $x, y \in \overline{X}$ and $\{x_n\}, \{y_n\} \subset X$ be Cauchy sequences converging to x and y respectively. Then

$$\overline{\langle x, y \rangle_*} = \overline{\lim_{n \to \infty} \langle x_n, y_n \rangle} = \lim_{n \to \infty} \overline{\langle x_n, y_n \rangle} = \lim_{n \to \infty} \langle y_n, x_n \rangle = \langle y, x \rangle_*.$$

For the positive definiteness, let $x \in \overline{X}$, $x \neq 0$ and $\{x_n\} \subset X$ be a Cauchy sequence converging to x. Then

$$\langle x, x \rangle_* = \lim_{n \to \infty} \langle x_n, x_n \rangle = \lim_{n \to \infty} ||x_n||^2 > 0.$$

Hence $\langle \cdot, \cdot \rangle_*$ is an inner product on \overline{X} and induces a norm on \overline{X} . Lastly, for every $x, y \in \overline{X}$, pick $x_n = x$ and $y_n = y$ to see that

$$\langle x, y \rangle_* = \lim_{n \to \infty} \langle x, y \rangle = \langle x, y \rangle,$$

which shows that $\langle \cdot, \cdot \rangle_*$ is an extension of $\langle \cdot, \cdot \rangle$. We conclude that $\mathcal{H} = \overline{X}$ forms a Hilbert space.

Example

Let X = C([0,1]) with the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$$

Then X is a pre-Hilbert space. To see this, set $f_n(x) = x^n$.

$$||f_m - f_n||^2 = \int_0^1 (x^m - x^n)^2 dx = \frac{1}{2m+1} + \frac{2}{m+n+1} + \frac{1}{2n+1} \to 0$$

as $m, n \to \infty$. Hence $\{f_n\}$ is Cauchy in X. However, f_n converges to

$$f(x) = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1, \end{cases}$$

which is not in X. Hence X is not complete. But by the proposition 1.34, X is dense in $\mathcal{L}^2([0,1])$ and so X can be completed to a Hilbert space $\mathcal{H} = \mathcal{L}^2([0,1])$, which is complete

by Riesz-Fischer theorem.

Definition 3.7

A set X is called **convex** if for all $x, y \in X$ and $t \in [0, 1]$, $tx + (1 - t)y \in X$.

Theorem 3.8

Let $K \subset \mathcal{H}$ be a closed convex set. For $x \in \mathcal{H}$, define the distance from x to K as

$$d(x,K) = \inf_{y \in K} ||x - y||.$$

Then there exists a unique $z \in K$ such that d(x,K) = ||x-z||.

Proof. Let $\{y_n\} \subset K$ be a sequence such that $\|y_n - x\| \to d(x,K)$. We claim that $\{y_n\}$ is Cauchy. Let $\epsilon > 0$ be given. By the parallelogram law,

$$2(\|x - y_n\|^2 + \|x - y_m\|^2) = \|2x - y_n - y_m\|^2 + \|y_n - y_m\|^2$$

Rearranging gives

$$\frac{1}{4} \|y_n - y_m\|^2 = \frac{1}{2} \|x - y_n\|^2 + \frac{1}{2} \|x - y_m\|^2 - \left\|x - \frac{y_n + y_m}{2}\right\|^2$$

$$\leq \frac{1}{2} (d(x, K) + \epsilon)^2 + \frac{1}{2} (d(x, K) + \epsilon)^2 - d(x, K)^2$$

$$= \epsilon^2 + 2\epsilon d(x, K)$$

for all $m,n \geq N$ for some $N \in \mathbb{N}$. The inequality follows from the fact that $(y_n + y_m)/2 \in K$ by the convexity of K. Since $\epsilon > 0$ is arbitrary, we conclude that $\{y_n\}$ is Cauchy. By the completeness of \mathscr{H} , $\{y_n\}$ converges to some $z \in \mathscr{H}$. Since K is closed, $z \in K$. To see the uniqueness, suppose $z_1, z_2 \in K$ are such that $\|x - z_1\| = \|x - z_2\| = d(x, K)$. Then by the parallelogram law,

$$\begin{split} 4d(x,K)^2 &= 2\left\|x-z_1\right\|^2 + 2\left\|x-z_2\right\|^2 = \left\|z_1-z_2\right\|^2 + \left\|2x-z_1-z_2\right\|^2 \\ &= \left\|z_1-z_2\right\|^2 + 4\left\|x-\frac{z_1+z_2}{2}\right\|^2. \end{split}$$

Hence

$$\|z_1 - z_2\|^2 = 4d(x,K)^2 - 4\|x - \frac{z_1 + z_2}{2}\|^2 \le 4d(x,K)^2 - 4d(x,K)^2 = 0$$

and so $z_1 = z_2$.

Definition 3.9

 $Y \subset \mathcal{H}$ is a closed subspace. The **orthogonal complement** of Y, denoted by Y^{\perp} , is defined as

$$Y^{\perp} = \{x \in \mathcal{H} \mid \langle x, y \rangle = 0 \; for \; all \; y \in Y\} \,.$$

Proposition 3.10

 $Y \subset \mathcal{H}$ is a closed subspace. Then

- (a) Y^{\perp} is a closed subspace.
- (b) $\mathcal{H} = Y \oplus Y^{\perp}$.
- (c) $(Y^{\perp})^{\perp} = Y$.

Proof. For (a), we first check that Y^{\perp} is a subspace. First note that $0 \in Y^{\perp}$. Also, if $x, z \in Y^{\perp}$ and $c \in \mathbb{F}$, then

$$\langle cx + z, y \rangle = c \langle x, y \rangle + \langle z, y \rangle = 0$$

for all $y \in Y$. Hence $cx + z \in Y^{\perp}$. This shows that Y^{\perp} is a subspace. To see that Y^{\perp} is closed, let $\{x_n\} \subset Y^{\perp}$ be a sequnce converging to x. Then for all $y \in Y$,

$$|\langle x, y \rangle - \langle x_n, y \rangle| = |\langle x - x_n, y \rangle| \le ||x - x_n|| \, ||y|| \to 0$$

by the Cauchy-Schwarz inequality. Thus $\langle \cdot, y \rangle$ is a continuous functional on \mathcal{H} . Therefore,

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = 0$$

for all $y \in Y$ and so $x \in Y^{\perp}$. This shows that Y^{\perp} is closed.

For (b), notice that Y as a closed subspace is convex. By theorem 3.8, for any $u \in \mathcal{H}$, there exists a unique $y \in Y$ such that $||u - y|| \le ||u - y'||$ for all $y' \in Y$. Let z = u - y. We claim that $z \in Y^{\perp}$. To see this, let $y' \in Y$ and $t \in \mathbb{R}$. Then

$$||z||^{2} = ||u - y||^{2} \le ||u - y - ty'||^{2}$$

$$= ||u - y||^{2} - 2t\Re(\langle u - y, y' \rangle) + t^{2} ||y'||^{2}$$

$$= ||z||^{2} - 2t\Re(\langle z, y' \rangle) + t^{2} ||y'||^{2}.$$

Rearranging gives

$$2t\Re(\langle z,y'\rangle)-t^2\|y'\|^2\leq 0.$$

If y' = 0, we have $\langle z, y' \rangle = 0$; if $y' \neq 0$, then take $t = \Re(\langle z, y' \rangle / ||y'||^2)$. Substituting this back gives

$$0 \ge 2 \frac{\left(\Re(\langle z, y' \rangle)\right)^{2}}{\|y'\|^{2}} - \frac{\left(\Re(\langle z, y' \rangle)\right)^{2}}{\|y'\|^{2}} = \frac{\left(\Re(\langle z, y' \rangle)\right)^{2}}{\|y'\|^{2}}.$$

Hence $\Re(\langle z,y'\rangle)=0$ for all $y'\in Y$. Similarly, replacing t with it gives $\Im(\langle z,y'\rangle)=0$ for all $y'\in Y$. Therefore, $\langle z,y'\rangle=0$ for all $y'\in Y$ and so $z\in Y^\perp$. Since our choice of y is unique, we can write u=y+z uniquely for $y\in Y$ and $z\in Y^\perp$. This shows that $\mathscr{H}=Y\oplus Y^\perp$.

For (c), note that we can apply (a) and (b) to Y^{\perp} and obtain that $(Y^{\perp})^{\perp}$ is a closed subspace and $\mathscr{H} = Y \oplus Y^{\perp} = (Y^{\perp})^{\perp} \oplus Y^{\perp}$. It follows that for every $u \in \mathscr{H}$, we can write u = y + z = x + z for $x \in (Y^{\perp})^{\perp}$, $y \in Y$ and $z \in Y^{\perp}$ by the uniqueness of decomposition. This implies that y = x and hence $(Y^{\perp})^{\perp} = Y$.

3.2. Separability and Orthonormal Basis

Definition 3.11

A Hilbert space \mathcal{H} is said to be **separable** if there exists a countable dense subset in \mathcal{H} .

Definition 3.12

 $\{x_{\alpha} \mid \alpha \in A\} \subset \mathcal{H}$, where A is an arbitrary index set. The **linear span** of $\{x_{\alpha} \mid \alpha \in A\}$ is defined as

$$\operatorname{span}\{x_{\alpha}\} = \left\{ \sum_{\alpha \in A} c_{\alpha} x_{\alpha} \mid c_{\alpha} \in \mathbb{F} = \mathbb{R} \text{ or } \mathbb{C} \right\},\,$$

where the sum is a finite sum.

Definition 3.13

 $\{x_{\alpha} \mid \alpha \in A\} \subset \mathcal{H}$, where A is an arbitrary index set. The **closed linear span** of $\{x_{\alpha} \mid \alpha \in A\}$ is defined as the smallest closed subspace of \mathcal{H} containing $\{x_{\alpha} \mid \alpha \in A\}$.

Proposition 3.14

Let $Y = \overline{\operatorname{span}(\{x_{\alpha}\})} \subset \mathcal{H}$ be a closed linear span of $\{x_{\alpha}\}$. Then for any $x \in \mathcal{H}$, $\langle x, x_{\alpha} \rangle = 0$ for all $\alpha \in A$ if and only if $\langle x, z \rangle = 0$ for all $z \in Y$.

Proof. Assume first that for $x \in \mathcal{H}$, $\langle x, x_{\alpha} \rangle = 0$ for all $\alpha \in A$. For each $z \in Y$, write $z = \sum_{\alpha_i \in A} c_{\alpha_i} x_{\alpha_i}$. Then

$$\langle x,z
angle = \lim_{M o \infty} \left\langle x, \sum_{j=1}^M c_{\alpha_j} x_{\alpha_j} \right\rangle = \lim_{M o \infty} \sum_{j=1}^M \overline{c_{\alpha_j}} \left\langle x, x_{\alpha_j} \right\rangle = 0.$$

The converse is trivial since $x_{\alpha} \in Y$ for all $\alpha \in A$.

Definition 3.15

 $\{x_{\alpha} \mid \alpha \in A\}$ is said to be **orthonormal** if $\langle x_{\alpha}, x_{\beta} \rangle = \delta_{\alpha\beta}$ for all $\alpha, \beta \in A$.

Definition 3.16

 $\{x_{\alpha} \mid \alpha \in A\}$ forms a **othonormal basis** of \mathcal{H} if it is orthonormal and $\overline{\operatorname{span}(\{x_{\alpha}\})} = \mathcal{H}$.

Remark

This definition of basis is different from the definition of basis in linear algebra. In linear algebra, one can only express a vector as a finite linear combination of basis vectors; however, in Hilbert space, one can express a vector as a countable linear combination of basis vectors.

Lemma 3.17 (Bessel's Inequality)

Let $\{x_{\alpha} \mid \alpha \in A\}$ be an orthonormal set in \mathcal{H} . For any $x \in \mathcal{H}$, let $c_{\alpha} = \langle x, x_{\alpha} \rangle$. Then

- (a) The set $\{\alpha \mid c_{\alpha} \neq 0\}$ is at most countable.
- (b) $\sum_{\alpha} |c_{\alpha}|^2 \le ||x||^2$.

Proof. We assume that (a) is established and prove (b) first. Let $J \subset A$ be a countable subset with $J = \{\alpha_k \mid k \in \mathbb{N}\}$. For each $M \in \mathbb{N}$,

$$\begin{split} 0 &\leq \left\| \sum_{k=1}^{M} c_{\alpha_{k}} x_{\alpha_{k}} - x \right\|^{2} = \sum_{k=1}^{M} \left| c_{\alpha_{k}} \right|^{2} - 2\Re\left(\left\langle x, \sum_{k=1}^{M} c_{\alpha_{k}} x_{\alpha_{k}} \right\rangle\right) + \|x\|^{2} \\ &= \sum_{k=1}^{M} \left| c_{\alpha_{k}} \right|^{2} - 2\Re\left(\sum_{k=1}^{M} \overline{c_{\alpha_{k}}} \left\langle x, x_{\alpha_{k}} \right\rangle\right) + \|x\|^{2} = \sum_{k=1}^{M} \left| c_{\alpha_{k}} \right|^{2} - 2\sum_{k=1}^{M} \left| c_{\alpha_{k}} \right|^{2} + \|x\|^{2} \\ &= \|x\|^{2} - \sum_{k=1}^{M} \left| c_{\alpha_{k}} \right|^{2} \implies \sum_{k=1}^{M} \left| c_{\alpha_{k}} \right|^{2} \leq \|x\|^{2} \,. \end{split}$$

Taking $M \to \infty$, we have $\sum_{k=1}^{\infty} |c_{\alpha_k}|^2 \le ||x||^2$.

Now we turn back to establish (a). For $m \in \mathbb{N}$, let $J_m = \{\alpha \in A \mid |c_{\alpha}| \geq 1/m\}$. Then J_m is finite or we can find infinitely many $\alpha \in J_m$ such that $|c_{\alpha}| \geq 1/m$. This implies that $x \in \mathcal{H}$ and

$$||x||^2 = \sum_{\alpha \in A} |c_{\alpha}|^2 \ge \sum_{\alpha \in J_m} |c_{\alpha}|^2 \ge \sum_{\alpha \in J_m} \frac{1}{m^2} = \infty,$$

which is absurd. Thus J_m is finite for all $m \in \mathbb{N}$. Observe that $\bigcup_{m \in \mathbb{N}} J_m = \{\alpha \in A \mid c_\alpha \neq 0\}$. It follows that as a countable union of finite sets, $\{\alpha \in A \mid c_\alpha \neq 0\}$ is at most countable. (b) follows from (a) and the previous argument.

Remark

There is a non-separable Hilbert space. Consider an uncountable set S. Let

$$\mathcal{H} = \left\{ f: S \to \mathbb{R} \,\middle|\, \sum_{s \in S} f(s)^2 < \infty, f(S) \setminus \{0\} \text{ is at most countable} \right\}.$$

Then \mathcal{H} is a Hilbert space with the inner product

$$\langle f, g \rangle = \sum_{s \in S} f(s)g(s).$$

To see that \mathcal{H} is a Hilbert space, note that the countable union of countably many non-zero points is countable. Also, it is not separable since the set

$$\{e_s: S \to \mathbb{R} \mid e_s(t) = \delta_{st}\}$$

forms an orthonormal set in \mathcal{H} and for each $s \neq r$, $||e_s - e_r|| = \sqrt{2}$. This shows that it is nowhere dense in \mathcal{H} . Thus \mathcal{H} is not separable.

Proposition 3.18

 $\{x_{\alpha}\}\ is\ orthonormal.\ Let\ Y\ be\ the\ closed\ linear\ span\ of\ \{x_{\alpha}\}.\ Then$

$$Y = \left\{ \sum_{j} c_{j} x_{\alpha_{j}} \left| \sum_{j} |c_{j}|^{2} < \infty, \alpha_{j} \in A \right. \right\}.$$

Proof. Let $S = \left\{ \sum_{j} c_{j} x_{\alpha_{j}} \left| \sum_{j} \left| c_{j} \right|^{2} < \infty, \alpha_{j} \in A \right\} \right\}$. For $x \in S$, $x = \sum_{j} c_{j} x_{\alpha_{j}}$ with $\sum_{j} \left| c_{j} \right|^{2} < \infty$. Then $z_{n} = \sum_{j=1}^{n} c_{j} x_{\alpha_{j}} \to x$ as $n \to \infty$. Each $z_{n} \in Y$ and thus $x \in Y$. Hence $S \subset Y$.

Conversely, we claim that S is a closed subspace of \mathcal{H} . Clearly $0 \in S$. For $c \in \mathbb{F}$, $x = \sum_j c_j x_{\alpha_j} \in S$ and $y = \sum_j d_j x_{\alpha_j} \in S$, we have

$$cx + y = c\sum_{j} c_{j}x_{\alpha_{j}} + \sum_{j} d_{j}x_{\alpha_{j}} = \sum_{j} (cc_{j} + d_{j})x_{\alpha_{j}} \in S,$$

where the summation is over all j such that either $c_j \neq 0$ or $d_j \neq 0$. To see that S is closed, let $z_n \in S$ where $z_n = \sum_j c_j^n x_{\alpha_j^n}$ with $\sum_j \left| c_j^n \right|^2 < \infty$ for all $n \in \mathbb{N}$. Let $J_n = \left\{ \alpha_j^n \mid j \in \mathbb{N} \right\}$ and $J = \bigcup_n J_n \subset A$ is at most countable. Consider the transformation $T: S \to \ell^2$ defined by $\sum_j c_j x_{\alpha_j} \mapsto \{c_j\}$. Such definition is well-defined since if $\sum_j c_j x_{\alpha_j} = \sum_j d_j x_{\alpha_j}$, then $\sum_j (c_j - d_j) x_{\alpha_j} = 0$ and thus $c_j = d_j$ for all j since every x_{α_j} is orthogonal and thus linearly independent. Furthermore, T is clearly linear. Also, it is isometric since

$$\left\| \sum_{j} c_{j} x_{\alpha_{j}} \right\|^{2} = \sum_{j} |c_{j}|^{2} = \left\| \{c_{j}\} \right\|^{2}.$$

For $z_n \in S$, $z_n \to z$. Since z_n is Cauchy and T is isometric, $\left\{c_j^n\right\}$ is Cauchy in ℓ^2 and thus converges to some $\left\{c_j\right\} \in \ell^2$. Define $w = \sum_j c_j x_{\alpha_j} \in S$. It follows that $Tz_n \to Tw$. Hence $z = w \in S$ by the isometry of T. Thus S is closed. It follows that by the definition of Y, $Y \subset S$. We conclude that Y = S.

Lemma 3.19 (Gram-Schmidt)

Suppose $\{x_{\alpha}\}$ is an orthonormal set in \mathcal{H} with $\overline{\operatorname{span}(\{x_{\alpha}\})} \neq \mathcal{H}$. Then there exists $y \in \mathcal{H}$ such that $\{x_{\alpha}\} \cup \{y\}$ is orthonormal.

Proof. Pick $z \in \mathcal{H}$ such that $z \notin \overline{\operatorname{span}(\{x_{\alpha}\})}$. By lemma 3.17, there are at most countably many α such that $\langle z, x_{\alpha} \rangle \neq 0$. Let α_j denumerate all α such that $\langle z, x_{\alpha} \rangle \neq 0$. Set $\hat{z} = \sum_j \langle z, x_{\alpha_j} \rangle x_{\alpha_j}$. For each x_{α_k} ,

$$\begin{aligned} \left\langle z - \hat{z}, x_{\alpha_{k}} \right\rangle &= \lim_{m \to \infty} \left\langle z - \sum_{j=1}^{m} \left\langle z, x_{\alpha_{j}} \right\rangle x_{\alpha_{j}}, x_{\alpha_{k}} \right\rangle \\ &= \lim_{m \to \infty} \left\langle z, x_{\alpha_{k}} \right\rangle - \sum_{j=1}^{m} \left\langle z, x_{\alpha_{j}} \right\rangle \delta_{jk} \\ &= \left\langle z, x_{\alpha_{k}} \right\rangle - \left\langle z, x_{\alpha_{k}} \right\rangle = 0. \end{aligned}$$

And for those x_{α} such that $\langle z, x_{\alpha} \rangle = 0$, $\langle z - \hat{z}, x_{\alpha} \rangle = \langle z, x_{\alpha} \rangle - \langle \hat{z}, x_{\alpha} \rangle = 0$ since x_{α_j} and x_{α} are orthogonal. Now set $y = (z - \hat{z})/\|z - \hat{z}\|$. Then $\{x_{\alpha}\} \cup \{y\}$ forms a orthonormal set.

Theorem 3.20

Every Hilbert space has an orthonormal basis.

Proof. We plan to use Zorn's lemma. Denote the space consisting of all orthonormal sets in \mathcal{H} by \mathcal{O} . Define a partial order as the inclusion of sets. Let $\mathcal{C} \subset \mathcal{O}$ be a chain. We claim that $B = \bigcup_{\{x_{\alpha}\} \in \mathcal{C}} \{x_{\alpha}\}$ is an upper bound of \mathcal{C} . By construction we have $\{x_{\alpha}\} \subset B$ for all $\{x_{\alpha}\} \in \mathcal{C}$. We need to show that $B \in \mathcal{O}$. For distinct x_{α} , $x_{\beta} \in B$, they belong to a common set $C \in \mathcal{C} \subset \mathcal{O}$. Hence C is orthonormal and $\langle x_{\alpha}, x_{\beta} \rangle = 0$. Also, it is clear that for every $x_{\alpha} \in B$, x_{α} belongs to some $C \in \mathcal{C}$ and thus $\|x_{\alpha}\| = 1$. It follows that B is also orthonormal. By Zorn's lemma, there exists a maximal element in \mathcal{O} , say B, such that if $C \in \mathcal{O}$ and $B \subset C$, then B = C. We claim that B is an orthonormal basis. It suffices to check that $\overline{\text{span}(B)} = \mathcal{H}$. Suppose not, then by lemma 3.19, there exists $y \in \mathcal{H}$ such that $\{x_{\alpha}\} \cup \{y\}$ forms an orthonormal set. This contradicts the maximality of B. We conclude that B is an orthonormal basis.

Theorem 3.21

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Suppose that \mathcal{H} is a Hilbert space. Then \mathcal{H} is separable if and only if \mathcal{H} has a countable orthonormal basis.

Proof. Suppose that \mathcal{H} has a countable orthonormal basis $\{x_n\}$. Then consider the sets

$$A_n = \left\{ \sum_{j=1}^n c_j x_j \mid c_j \in S \right\},\,$$

where $S = \mathbb{Q}$ if $\mathbb{F} = \mathbb{R}$ and $S = \mathbb{Q} + \mathbb{Q}i$ if $\mathbb{F} = \mathbb{C}$. Since S is countable, each A_n being a finite union of countable sets is countable. Put $A = \bigcup_n A_n$ and let $\epsilon > 0$ be given. Since A is a countable union of countable sets, it is also countable. For every $x \in \mathcal{H}$, we can write $x = \sum_j \langle x, x_j \rangle x_j$ with

$$\left\| \sum_{j=N+1}^{\infty} \langle x, x_j \rangle x_j \right\| < \frac{\epsilon}{2}$$

for some $N \in \mathbb{N}$. Since S is dense in \mathbb{F} , we can pick some $c_j \in S$ with $|c_j - \langle x, x_j \rangle| < \epsilon/2^{j+1}$. Then

$$\left\| x - \sum_{j=1}^{N} c_{j} x_{j} \right\| = \left\| \sum_{j=1}^{\infty} \left\langle x, x_{j} \right\rangle x_{j} - \sum_{j=1}^{N} \left\langle x, x_{j} \right\rangle x_{j} + \sum_{j=1}^{N} \left\langle x, x_{j} \right\rangle x_{j} - \sum_{j=1}^{N} c_{j} x_{j} \right\|$$

$$\leq \left\| \sum_{j=1}^{\infty} \left\langle x, x_{j} \right\rangle x_{j} - \sum_{j=1}^{N} \left\langle x, x_{j} \right\rangle x_{j} \right\| + \left\| \sum_{j=1}^{N} \left\langle x, x_{j} \right\rangle x_{j} - \sum_{j=1}^{N} c_{j} x_{j} \right\|$$

$$\leq \left\| \sum_{j=N+1}^{\infty} \left\langle x, x_{j} \right\rangle x_{j} \right\| + \sum_{j=1}^{N} \left| \left\langle x, x_{j} \right\rangle - c_{j} \right| \left\| x_{j} \right\| \leq \frac{\epsilon}{2} + \sum_{j=1}^{N} \frac{\epsilon}{2^{j+1}} \leq \epsilon.$$

It follows that A is dense in \mathcal{H} and hence \mathcal{H} is separable.

Conversely, suppose that \mathcal{H} is separable. Let $S \subset \mathcal{H}$ be a countable subset. Assume that every orthonormal basis of \mathcal{H} is uncountable. Denote an orthonormal basis of \mathcal{H} by $\{x_{\alpha}\}$. For each distinct x_{α} $x_{\beta} \in S$, $\|x_{\alpha} - x_{\beta}\| = \sqrt{2}$. Consider the open balls $B_{1/2}(x_{\alpha})$. They are clearly disjoint since if y lies in two such balls, then $\sqrt{2} = \|x_{\alpha} - x_{\beta}\| \leq \|x_{\alpha} - y\| + \|x_{\alpha} - y\|$

 $\|y-x_{\beta}\|<1$, which is absurd. Now since S is dense in \mathcal{H} , for each α we can find some $s_{\alpha}\in S$ such that $s_{\alpha}\in B_{1/2}(x_{\alpha})$. It follows that each s_{α} is distinct and thus S is uncountable. This contradicts to our assumption that S is countable. Thus \mathcal{H} must have a countable orthonormal basis.

Proposition 3.22

Let \mathcal{H} be a Hilbert space and $\{x_{\alpha} \mid \alpha \in A\}, \{y_{\beta} \mid \beta \in B\}$ be two orthonormal bases in \mathcal{H} . Then $\operatorname{card}(A) = \operatorname{card}(B)$.

Proof. Fixed an $\alpha \in A$, $B_{\alpha} = \{\beta \in B \mid \langle y_{\beta}, x_{\alpha} \rangle \neq 0\}$ is at most countable by lemma 3.17 and $B_{\alpha} \subset B$. We claim that $B \subset \bigcup_{\alpha \in A} B_{\alpha}$. Take $\beta \in B$, we can write $y_{\beta} = \sum_{k} \langle y_{\beta}, x_{\alpha_{k}} \rangle x_{\alpha_{k}}$ with at least one $\langle y_{\beta}, x_{\alpha_{k}} \rangle \neq 0$. Hence $\beta \in B_{\alpha_{k}}$ for some $\alpha_{k} \in A$. It follows that $B \subset \bigcup_{\alpha \in A} B_{\alpha}$ and hence $\operatorname{card}(B) \leq \operatorname{card}(A)$. By symmetry, we have $\operatorname{card}(A) \leq \operatorname{card}(B)$ and thus $\operatorname{card}(A) = \operatorname{card}(B)$.

Remark

If \mathcal{H} is separable, then \mathcal{H} has a countable orthonormal basis and hence every orthonormal basis of \mathcal{H} is countable.

Proposition 3.23 (Parseval's Identity)

Let $\{x_{\alpha}\}\$ be an orthonormal basis of \mathcal{H} . Then

$$||x||^2 = \sum_j |\langle x, x_{\alpha_j} \rangle|^2.$$

Proof. Let $x \in \mathcal{H}$. Write $x = \sum_{j} c_{j} x_{\alpha_{j}}$ with $\sum_{j} |c_{j}|^{2} < \infty$. Then

$$\langle x, x_{\alpha_k} \rangle = \lim_{M \to \infty} \left\langle \sum_{j=1}^{M} c_j x_{\alpha_j}, x_{\alpha_k} \right\rangle = \lim_{M \to \infty} \sum_{j=1}^{M} c_j \langle x_{\alpha_j}, x_{\alpha_k} \rangle = c_k.$$

It follows that

$$\|x\|^2 = \lim_{M \to \infty} \left\langle \sum_{j=1}^M c_j x_{\alpha_j}, \sum_{j=1}^M c_j x_{\alpha_j} \right\rangle = \lim_{M \to \infty} \sum_{j=1}^M \left| c_j \right|^2 = \sum_j \left| c_j \right|^2 = \sum_j \left| \langle x, x_{\alpha_j} \rangle \right|^2.$$

3.3. Riesz Representation and Bilinear Form

Proposition 3.24

 $\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}. \ T : \mathcal{H} \to \mathbb{F} \text{ is a nonzero bounded linear functional.}$

- (a) $\mathcal{H} = \operatorname{span}(\{w\}) \oplus \ker(T)$ for $w \notin \ker(T)$.
- (b) If S,T are bounded linear functionals and $\ker(S) = \ker(T)$, then there exists $c \in \mathbb{F}$ such that S = cT.

(c) ker(T) is closed.

Proof. For (a), since T is nonzero, there is some w such that $Tw \neq 0$. For $x \in \mathcal{H}$, set $\alpha = Tx/Tw$ and $u = x - \alpha w$. Then $x = \alpha w + u$ and

$$Tu = Tx - \frac{Tx}{Tw}Tw = 0.$$

Hence $u \in \ker(T)$. Also, if $v \in \operatorname{span}(\{w\}) \cap \ker(T)$, v = cw and Tv = 0. Then cTw = Tv = 0; c = 0 and thus v = 0. Therefore, $\operatorname{span}(\{w\}) \cap \ker(T) = \{0\}$ and $\mathcal{H} = \operatorname{span}(\{w\}) \oplus \ker(T)$.

To see (b), note that if S=0, $\mathcal{H}=\ker(S)=\ker(T)$. Thus T=0. If $S\neq 0$, by (a) we can write $\mathcal{H}=\operatorname{span}(\{w\})\oplus\ker(S)=\operatorname{span}(\{w\})\oplus\ker(T)$. Then for every $x\in\mathcal{H},\ x=\alpha w+u$ for some $\alpha\in\mathbb{F}$ and $u\in\ker(T)=\ker(S)$. Then $Tw\neq 0$ and

$$Sx = S(\alpha w + u) = \alpha Sw = \alpha Tw \frac{Sw}{Tw} = \frac{Sw}{Tw} T(\alpha w + u) = \frac{Sw}{Tw} Tx.$$

Taking c = Sw/Tw gives S = cT.

For (c), let $x_n \in \ker(T)$ be a sequence such that $x_n \to x \in \mathcal{H}$. Since T is continuous,

$$Tx = \lim_{n \to \infty} Tx_n = 0.$$

Hence $x \in \ker(T)$ and $\ker(T)$ is closed.

Theorem 3.25 (Riesz Representation on \mathcal{H})

 $\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}. \ T : \mathcal{H} \to \mathbb{F} \text{ is a bounded linear functional. Then there exists a unique } x^* \in \mathcal{H} \text{ such that } Ty = \langle y, x^* \rangle \text{ for all } y \in \mathcal{H}.$

Proof. If T=0, pick $x^*=0$ then $Ty=0=\langle y,0\rangle$. If $T\neq 0$, there is some $w\in \mathcal{H}$ such that $Tw\neq 0$. By proposition 3.24, we can write $\mathcal{H}=\mathrm{span}(\{w\})\oplus \ker(T)$ with $\ker(T)$ closed. Also, $\mathcal{H}=\ker(T)\oplus \ker(T)^\perp$ by proposition 3.10. We claim that $\ker(T)^\perp=\mathrm{span}(\{w\})$. First note that $\ker(T)^\perp\neq\{0\}$ or we would have $\mathcal{H}=\ker(T)$ and T=0, contradicting to our assumption. Now if $z_1,z_2\in \ker(T)^\perp$, write $z_1=\alpha_1w+u_1$ and $z_2=\alpha_2w+u_2$ for some $\alpha_1,\alpha_2\in\mathbb{F}$ and $u_1,u_2\in \ker(T)$. Then $\alpha_2z_1-\alpha_1z_2=\alpha_2u_1-\alpha_1u_2\in \ker(T)$ and $\alpha_2z_1-\alpha_1z_2\in \ker(T)^\perp$. Hence $\alpha_2z_1-\alpha_1z_2=0$ and z_1,z_2 are linearly dependent. Now define $S:\mathcal{H}\to\mathbb{F}$ by $Sx=\langle x,w\rangle$. Then S is a bounded linear functional and $\ker(S)=\{x\in\mathcal{H}\mid \langle x,w\rangle=0\}=(\ker(T)^\perp)^\perp=\ker(T)$ by proposition 3.10. Applying (b) of proposition 3.24 gives cS=T for some $c\in\mathbb{F}$. Then $Tx=cSx=c\langle x,w\rangle=\langle x,\overline{c}w\rangle$. Set $x^*=\overline{c}w$ proves the existence of x^* .

To see uniqueness, suppose $x_1^*, x_2^* \in \mathcal{H}$ are such that $Ty = \langle y, x_1^* \rangle = \langle y, x_2^* \rangle$ for all $y \in \mathcal{H}$. Then $\langle y, x_1^* - x_2^* \rangle = 0$ for all $y \in \mathcal{H}$. Hence $x_1^* - x_2^* = 0$ and $x_1^* = x_2^*$. Such x^* is unique.

Definition 3.26

Let X, Y be vector spaces. $T: X \to Y$ is called **skew-linear** if $T(cx + y) = \overline{c}Tx + Ty$ for all $x, y \in X$ and $c \in \mathbb{F}$.

Definition 3.27

 $\mathbb{F} = \mathbb{R} \ or \ \mathbb{C}. \ B : \mathcal{H} \times \mathcal{H} \to \mathbb{F} \ is \ called \ a \ bilinear \ form \ if$

- (a) $B(\cdot,x)$ is linear for all $x \in \mathcal{H}$.
- (b) $B(x,\cdot)$ is skew-linear for all $x \in \mathcal{H}$.

Definition 3.28

A bilinear form $B: \mathcal{H} \times \mathcal{H} \to \mathbb{F}$ is called **bounded** if there exists $C < \infty$ such that $|B(x, y)| \le C \|x\| \|y\|$ for all $x, y \in \mathcal{H}$.

Definition 3.29

A bilinear form $B: \mathcal{H} \times \mathcal{H} \to \mathbb{F}$ is called **coercive** if there exists $\delta > 0$ such that $B(x,x) \ge \delta \|x\|^2$ for all $x \in \mathcal{H}$.

Theorem 3.30 (Lax-Milgram I)

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . $B : \mathcal{H} \times \mathcal{H} \to \mathbb{F}$ is a bounded coercive bilinear form. Then for every $L \in \mathcal{H}'$, there exists $x \in \mathcal{H}$ such that Ly = B(y, x) for all $y \in \mathcal{H}$.

Proof. Fixed $x \in \mathcal{H}$. Then $B(\cdot,x)$ is a bounded linear functional defined on \mathcal{H} . By Riesz representation, there exists a unique $x^* \in \mathcal{H}$ such that $B(y,x) = \langle y, x^* \rangle$ for all $y \in \mathcal{H}$. Define $T : \mathcal{H} \to \mathcal{H}$ by $Tx = x^*$. Such definition is well-defined because x^* is unique. We claim that T is bounded and linear. For linearity, let $x, y, z \in \mathcal{H}$ and $c \in \mathbb{F}$. Then

$$\langle y, T(cx+z) \rangle = B(y, cx+z) = \overline{c}B(y, x) + B(y, z) = \overline{c}\langle y, Tx \rangle + \langle y, Tz \rangle = \langle y, cTx + Tz \rangle.$$

Hence T(cx+z) = cTx + Tz. For boundedness, by proposition 3.5,

$$\|Tx\| = \sup_{\|y\|=1} |\langle y, Tx \rangle| = \sup_{\|y\|=1} |B(y,x)| \le \sup_{\|y\|=1} C \|x\| \|y\| = C \|x\|.$$

Hence T is bounded.

Next, let $A = T(\mathcal{H})$. We claim that A is closed. Let $y_n \to y$ and $y_n \in A$. By the boundedness of T we have $||Tx|| \le C ||x||$. Also, by the coerciveness and proposition 3.5,

$$\delta \|x\|^2 \le B(x,x) \le |B(x,x)| = |\langle x, Tx \rangle| = \|x\| \left| \left\langle \frac{x}{\|x\|}, Tx \right\rangle \right| \le \|x\| \sup_{\|y\|=1} |\langle y, Tx \rangle| = \|x\| \|Tx\|.$$

So $||x|| \le \frac{1}{\delta} ||Tx||$. Then we see that the norms $||\cdot||$ and $||T(\cdot)||$ are equivalent. For $y_n \in A$, we can find $x_n \in \mathcal{H}$ such that $Tx_n = y_n$. Since y_n is Cauchy, x_n is also Cauchy by the equivalence of norms. By the completeness of \mathcal{H} , $x_n \to x \in \mathcal{H}$. Then the boundedness of T implies the continuity and $Tx_n \to Tx$. It follows that y = Tx by the uniqueness of the limit. Hence $y \in A$ and A is closed.

Finally, we claim that $A = \mathcal{H}$. Assume not. Then because A is closed, $\mathcal{H} = A \oplus A^{\perp}$ with $A^{\perp} \neq \{0\}$ by proposition 3.10. There is some $z \in A$ such that $\langle z, y \rangle = 0$ for all $y \in A^{\perp}$. This implies $B(z, x) = \langle z, Tx \rangle = 0$ for all $x \in \mathcal{H}$. Taking x = z gives $0 = B(z, z) \geq \delta \|z\|^2$ by

the coerciveness of B. Hence z = 0, $A^{\perp} = \{0\}$, and $A = \mathcal{H}$, a contradiction. We conclude that $A = \mathcal{H}$.

For any bounded linear functional L, there is $x^* \in \mathcal{H}$ such that $Ly = \langle y, x^* \rangle$ for all $y \in \mathcal{H}$ by Riesz representation. Then there is $x \in \mathcal{H}$ such that $Tx = x^*$. Then for all $y \in \mathcal{H}$,

$$Ly = \langle y, x^* \rangle = \langle y, Tx \rangle = B(y, x).$$

This completes the proof.

Remark

Lax-Milgram theorem ensures the existence of weak solutions to linear PDEs. For example, consider the Poisson equation

$$-\Delta u = f$$
 on $\Omega \subset \mathbb{R}^d$, $u|_{\partial\Omega} = 0$

for $f \in \mathcal{L}^2(\Omega)$. $\Delta = \sum_{i=1}^d \hat{\sigma}_i^2$ is the Laplacian. Then for all $\varphi \in C_c^{\infty}$,

$$L(\varphi) = B(u, \varphi) = \int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi.$$

Definition 3.31

A bilinear form $B: \mathcal{H} \times \mathcal{H} \to \mathbb{F}$ is called **symmetric** if B(x, y) = B(y, x) for all $x, y \in \mathcal{H}$.

Theorem 3.32 (Lax-Milgram II)

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Suppose that $B : \mathcal{H} \times \mathcal{H} \to \mathbb{F}$ is a bounded symmetric coercive bilinear form and $L \in \mathcal{H}'$ is a bounded linear functional. Then

$$\inf_{x \in \mathcal{H}} \frac{1}{2} B(x, x) - Lx$$

is attained at a unique $x \in \mathcal{H}$.

Proof. Set $F(x) = \frac{1}{2}B(x,x) - Lx$ and $\alpha = \inf_{x \in \mathcal{H}} F(x)$. We check that α is finite. Notice that for all $x \in \mathcal{H}$,

$$-M < \frac{1}{2}\delta \|x\|^2 - \|L\| \|x\| \le \frac{1}{2}B(x,x) - |Lx| \le F(x) \le \left| \frac{1}{2}B(x,x) - Lx \right| \le \frac{1}{2}C \|x\|^2 + \|L\| \|x\| < \infty$$

for some finite M, C > 0 and $\delta > 0$. The first inequality is due to $\delta > 0$ and the quadratic function is bounded below. Taking infimum of F(x) gives that α is finite.

Now by definition we can find $u_n \in \mathcal{H}$ such that $F(u_n) \to \alpha$. We claim that u_n is

Cauchy. For all $n, m \in \mathbb{N}$, we have

$$\begin{split} F(u_m) + F(u_n) &= \frac{1}{2} B(u_m, u_m) - L u_m + \frac{1}{2} B(u_n, u_n) - L u_n \\ &= 2 \Big(B\Big(\frac{u_m}{2}, \frac{u_m}{2}\Big) + B\Big(\frac{u_n}{2}, \frac{u_n}{2}\Big) \Big) - 2 L\Big(\frac{u_m + u_n}{2}\Big) \\ &= 2 \left[\frac{1}{2} \Big(B\Big(\frac{u_m + u_n}{2}, \frac{u_m + u_n}{2}\Big) + B\Big(\frac{u_m - u_n}{2}, \frac{u_m - u_n}{2}\Big) \Big) - L\Big(\frac{u_m + u_n}{2}\Big) \right] \\ &= 2 F\Big(\frac{u_m + u_n}{2}\Big) + B\Big(\frac{u_m - u_n}{2}, \frac{u_m - u_n}{2}\Big) \ge 2\alpha + \frac{\delta}{4} \|u_m - u_n\|^2 \,. \end{split}$$

For arbitrary $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \geq N$, $F(u_m), F(u_n) \leq \alpha + \epsilon$. Then

$$2\alpha + \frac{\delta}{4} \|u_m - u_n\|^2 \le F(u_m) + F(u_n) \le 2\alpha + 2\epsilon \implies \|u_m - u_n\|^2 \le \frac{8\epsilon}{\delta}.$$

Since ϵ is arbitrary, we obtain that u_n is Cauchy. By the completeness, $u_n \to u$ for some $u \in \mathcal{H}$. We check that u is the minimizer of F, i.e. $F(u) = \alpha$. Observe that if for $u_n \to u$ and $v_n \to v$, we have $B(u_n, v_n) \to B(u, v)$ and $Lu_n \to Lu$. Indeed, $Lu_n \to u$ by the boundedness and hence the continuity of L. Also,

$$|B(u_n, v_n) - B(u, v)| \le |B(u_n - u, v_n)| + |B(u, v_n - v)| \le C \|u_n - u\| \|v_n\| + C \|u\| \|v_n - v\| \to 0$$

since $u_n \rightarrow u$ as a Cauchy sequence must be bounded. This implies

$$F(u_n) = \frac{1}{2}B(u_n, u_n) - Lu_n \rightarrow \frac{1}{2}B(u, u) - Lu = F(u).$$

The uniqueness of the limit of u_n ensures that the minimizer is unique.

Theorem 3.33

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Suppose that $B : \mathcal{H} \times \mathcal{H} \to \mathbb{F}$ is a bounded symmetric coercive bilinear form and $L \in \mathcal{H}'$ is a bounded linear functional. $x_0 \in \mathcal{H}$ is a minimizer of $F(x) = \frac{1}{2}B(x,x) - Lx$ if and only if $B(x_0, y) = L(y)$ for all $y \in \mathcal{H}$.

Proof. Suppose that x_0 is a solution to $B(x_0, y) = L(y)$ for all $y \in \mathcal{H}$. Then for all $x \in \mathcal{H}$,

$$F(x_0 + x) - F(x_0) = \frac{1}{2}B(x_0 + x, x_0 + x) - L(x_0 + x) - \frac{1}{2}B(x_0, x_0) + L(x_0)$$
$$= B(x_0, x) - L(x) + \frac{1}{2}B(x, x) \ge \frac{\delta}{2} \|x\|^2 \ge 0$$

by the coerciveness of B. Hence $F(x_0) \le F(x_0 + x)$ for all $x \in \mathcal{H}$ and x_0 is a minimizer. Conversely, suppose that x_0 minimizes F. For all $t \in \mathbb{R}$ and $y \in \mathcal{H}$, consider the function $\phi(t) = F(x_0 + ty)$. Then since x_0 minimizes F, $\phi'(t)|_{t=0} = 0$. We compute that

$$\phi(t) = F(x_0 + ty) = \frac{1}{2}B(x_0 + ty, x_0 + ty) - L(x_0 + ty)$$
$$= \frac{1}{2}B(x_0, x_0) + tB(x_0, y) + \frac{1}{2}t^2B(y, y) - L(x_0) - tL(y).$$

Differentiating gives

$$0 = \phi'(t)|_{t=0} = B(x_0, y) - L(y) + tB(y, y)|_{t=0} = B(x_0, y) - L(y)$$

for each given $y \in \mathcal{H}$. Hence x_0 satisfies $B(x_0, y) = L(y)$ for all $y \in \mathcal{H}$.

3.4. Symmetric and Compact Operators

Definition 3.34

 $\mathcal{D}(A) \subset \mathcal{H}$ is dense in \mathcal{H} . A linear operator $A : \mathcal{D}(A) \to \mathcal{H}$ is said to be **symmetric** if $\langle Ax, y \rangle = \langle x, Ay \rangle$ for all $x, y \in \mathcal{D}(A)$.

Remark

Note that the domain $\mathcal{D}(A)$ is dense in \mathcal{H} . It follows that by density, the domain can often be extended to \mathcal{H} . For simplicity, we consider the domain to be \mathcal{H} , but the domain can be any dense subset of \mathcal{H} .

Definition 3.35

 $\lambda \in \mathbb{F}$ is an **eigenvalue** of a linear operator $A : \mathcal{H} \to \mathcal{H}$ if there exists a non-zero vector $x \in \mathcal{H}$ such that $Ax = \lambda x$. The vector x is called the **eigenvector** corresponding to the eigenvalue λ .

Proposition 3.36

Let $A: \mathcal{H} \to \mathcal{H}$ be a symmetric operator. The followings are true.

- (a) $\langle Ax, x \rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$.
- (b) If $\lambda \in \mathbb{F}$ is an eigenvalue of A, then $\lambda \in \mathbb{R}$.
- (c) If $\lambda_1, \lambda_2 \in \mathbb{F}$ are two distinct eigenvalues with respect to eigenvectors $x_1, x_2 \in \mathcal{H}$, then $\langle x_1, x_2 \rangle = 0$.
- (d) Suppose $\{x_{\alpha}\}$ is an orthonormal basis of \mathcal{H} with the property that each x_{α} is an eigenvector of A corresponding to the eigenvalue λ_{α} . Then if $\mu \in \mathbb{F}$ is also an eigenvalue of A, then $\mu = \lambda_{\alpha}$ for some α .

Proof. For (a), $\langle Ax, x \rangle = \langle x, Ax \rangle = \overline{\langle Ax, x \rangle}$. Then $\Im(\langle Ax, x \rangle) = 0$ and $\langle Ax, x \rangle \in \mathbb{R}$. For (b), let $x \in \mathcal{H}$ be the corresponding eigenvector to λ . Then

$$\langle Ax, x\rangle = \langle \lambda x, x\rangle = \lambda \, \langle x, x\rangle = \lambda \, \|x\|^2 \implies \lambda = \frac{\langle Ax, x\rangle}{\|x\|^2} \in \mathbb{R}.$$

For (c), by symmetry and (b), we have

$$\lambda_1 \langle x_1, x_2 \rangle = \langle Ax_1, x_2 \rangle = \langle x_1, Ax_2 \rangle = \overline{\lambda_2} \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle.$$

Since $\lambda_1 \neq \lambda_2$, $\langle x_1, x_2 \rangle = 0$.

For (d), let $\mu \in \mathbb{F}$ be an eigenvalue of A with eigenvector $y \in \mathcal{H}$, $y \neq 0$. We claim that $\mu = \lambda_{\alpha}$ for some α . Suppose not. Then write $y = \sum_{j} c_{j} x_{\alpha_{j}}$, where $c_{j} \in \mathbb{F}$. We see that

$$\|y\|^2 = \lim_{M \to \infty} \left\langle y, \sum_{j=1}^{M} c_j x_{\alpha_j} \right\rangle = \lim_{M \to \infty} \overline{c_j} \left\langle y, x_{\alpha_j} \right\rangle = 0$$

by (c), but this is a contradiction since $y \neq 0$. Thus $\mu = \lambda_{\alpha}$ for some α .

Definition 3.37

A linear operator $A: \mathcal{H} \to \mathcal{H}$ is called **bounded** if

$$||A|| = \sup_{||x||=1} ||Ax|| < \infty.$$

Proposition 3.38

 $A: \mathcal{H} \to \mathcal{H}$ is a symmetric bounded linear operator. Then

$$||A|| = \sup_{||x||=1} |\langle Ax, x\rangle|.$$

Proof. Assume ||x|| = 1. By Cauchy-Schwarz inequality, $|\langle Ax, x \rangle| \le ||Ax|| \, ||x|| = ||Ax||$. Taking supremum,

$$\sup_{\|x\|=1} |\langle Ax, x\rangle| \leq \sup_{\|x\|=1} \|Ax\| = \|A\|.$$

To see the reverse inequality, note that $||Ax||^2 = \langle Ax, Ax \rangle = \langle A^2x, x \rangle$. For any nonzero $\lambda \in \mathbb{R}$, define $x^+ = \lambda x + \frac{1}{\lambda} Ax$ and $x^- = \lambda x - \frac{1}{\lambda} Ax$. Then $x = \frac{1}{2\lambda} (x^+ + x^-)$ and $Ax = \frac{\lambda}{2} (x^+ - x^-)$. Now,

$$\begin{split} \left\langle A^2x, x \right\rangle &= \left\langle A \left(\frac{\lambda}{2} (x^+ - x^-) \right), \frac{1}{2\lambda} (x^+ + x^-) \right\rangle \\ &= \frac{1}{4} \left\langle Ax^+ - Ax^-, x^+ + x^- \right\rangle \\ &= \frac{1}{4} \left(\left\langle Ax^+, x^+ \right\rangle + \left\langle Ax^+, x^- \right\rangle - \left\langle Ax^-, x^+ \right\rangle - \left\langle Ax^-, x^- \right\rangle \right) \end{split}$$

Notice that $\langle A^2x, x \rangle$, $\langle Ax^+, x^+ \rangle$ and $\langle Ax^-, x^- \rangle$ are real numbers by proposition 3.36; hence $\Im(\langle Ax^+, x^- \rangle - \langle Ax^-, x^+ \rangle) = 0$. Also, $\langle Ax^-, x^+ \rangle = \overline{\langle x^+, Ax^- \rangle} = \overline{\langle Ax^+, x^- \rangle}$. We have

 $\Im(\langle Ax^+, x^- \rangle) = 0$ and $\langle Ax^+, x^- \rangle - \langle Ax^-, x^+ \rangle = 0$. Thus, letting $C = \sup_{\|x\|=1} |\langle Ax, x \rangle|$,

$$\begin{split} \langle A^2 x, x \rangle &= \frac{1}{4} (\langle A x^+, x^+ \rangle + \langle A x^-, x^- \rangle) \\ &\leq \frac{1}{4} C \Big(\|x^+\|^2 + \|x^-\|^2 \Big) \\ &= \frac{1}{4} C \Big(\langle x^+, x^+ \rangle + \langle x^-, x^- \rangle \Big) \\ &= \frac{1}{4} C \Big(2\lambda^2 \|x^2\| + \frac{2}{\lambda^2} \|Ax\|^2 \Big) = \frac{1}{2} C \Big(\lambda^2 \|x\|^2 + \frac{1}{\lambda^2} \|Ax\|^2 \Big). \end{split}$$

Notice that for $a, b \in \mathbb{R}$, $(a - b)^2 \ge 0$ and thus $a^2 + b^2 \ge 2ab$. Hence

$$\lambda^{2} \|x\|^{2} + \frac{1}{\lambda^{2}} \|Ax\|^{2} \ge 2\lambda \|x\| \frac{1}{\lambda} \|Ax\| = 2 \|Ax\| \|x\|.$$

We see that

$$||Ax||^2 = \langle A^2x, x \rangle \le \frac{1}{2} C \inf_{\lambda \ne 0} \lambda^2 ||x||^2 + \frac{1}{\lambda^2} ||Ax||^2 \le C ||Ax|| ||x||.$$

Clearly if Ax = 0 the inequality holds. Suppose $||Ax|| \neq 0$. Then deviding both sides by ||Ax|| and taking supremum gives

$$||A|| = \sup_{||x||=1} ||Ax|| \le C \sup_{||x||=1} ||x|| = C = \sup_{||x||=1} |\langle Ax, x \rangle|.$$

We conclude that $||A|| = \sup_{||x||=1} |\langle Ax, x \rangle|$.

Definition 3.39

X and Y are normed spaces. $M \subset X$. $A: M \to Y$ is an operator. We say that A is **compact** if A is continuous and for every bounded sequence $x_n \in M$, the sequence $Ax_n \in Y$ has a convergent subsequence.

Remark

A compact operator A transfers bounded sets in X to relatively compact sets in Y.

Example

Consider the integral operator $A: C([0,1]) \rightarrow C([0,1])$ equipped with the supremum norms. Define

$$Au(x) = \int_0^1 K(x, y) f(y) dy,$$

where $K \in C([0,1]^2)$. We verify that A is well-defined, i.e., $Au \in C([0,1])$. Let $x_n \to x \in [0,1]$.

$$\begin{aligned} |Au(x_n) - Au(x)| &= \left| \int_0^1 K(x_n, y) u(y) dy - \int_0^1 K(x, y) u(y) dy \right| \\ &\leq \int_0^1 |K(x_n, y) - K(x, y)| |u(y)| dy \leq ||K(x_n, y) - K(x, y)||_{\infty} ||u||_{\infty}. \end{aligned}$$

Since K is continuous, $(x_n, y) \rightarrow (x, y)$ implies $K(x_n, y) \rightarrow K(x, y)$. It follows that $Au(x_n) \rightarrow Au(x)$. Hence $Au \in C([0, 1])$.

We claim that A is compact. Let $\{u_n\}$ be a bounded sequence in C([0,1]). By Arzelà-Ascoli theorem, it suffices to show that $\{Au_n\}$ is bounded and uniformly equicontinuous. To see the boundedness, note that by assumption we have $\|u_n\|_{\infty} \leq M$ for all n. Also, since K is continuous on a compact set, we have $K(x,y) \leq C$ for all $x,y \in [0,1]$. Then

$$\begin{split} \|Au_n\|_{\infty} &= \sup_{x \in [0,1]} \left| \int_0^1 K(x,y) u_n(y) dy \right| \\ &\leq \sup_{x \in [0,1]} \int_0^1 |K(x,y)| \, |u_n(y)| \, dy \\ &\leq \sup_{x \in [0,1]} \int_0^1 C \, \|u_n\|_{\infty} \, dy = C \, \|u_n\|_{\infty} \leq CM. \end{split}$$

Thus $\{Au_n\}$ is bounded. To see the uniform equicontinuity, let $\epsilon > 0$ be given. By continuity of K, we can find $\delta > 0$ such that whenever $|x-z| < \delta$, $|K(x,y)-K(z,y)| < \epsilon/M$ for all $y \in [0,1]$. Then for each $n \in \mathbb{N}$,

$$\begin{split} |Au_n(x) - Au_n(z)| &= \left| \int_0^1 K(x, y) u_n(y) dy - \int_0^1 K(z, y) u_n(y) dy \right| \\ &\leq \int_0^1 |K(x, y) - K(z, y)| \, |u_n(y)| \, dy \leq \frac{\epsilon}{M} \, \|u_n\|_\infty \leq \epsilon. \end{split}$$

Thus $\{Au_n\}$ is uniformly equicontinuous. By Arzelà-Ascoli theorem, $\{Au_n\}$ has a convergent subsequence, i.e., A is compact.