<mark>2</mark> (базовый уровень, время – 3 мин)

Тема: Анализ таблиц истинности логических выражений.

Что проверяется:

Умение строить таблицы истинности и логические схемы.

- 1.5.1. Высказывания, логические операции, кванторы, истинность высказывания
- 1.1.6. Умение строить модели объектов, систем и процессов в виде таблицы истинности для логического высказывания

Про обозначения

К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (\land , \lor , \neg), неудобны, интуитивно непонятны и никак не проявляют аналогии с обычной алгеброй. Автор, к своему стыду, до сих пор иногда путает \land и \lor . Поэтому на его уроках операция «НЕ» обозначается чертой сверху, «И» — знаком умножения (поскольку это все же логическое умножение), а «ИЛИ» — знаком «+» (логическое сложение). В разных учебниках используют разные обозначения. К счастью, в начале задания ЕГЭ приводится расшифровка закорючек (\land , \lor , \neg), что еще раз подчеркивает проблему.

Что нужно знать:

• условные обозначения логических операций

¬ A,
$$\overline{A}$$
 не A (отрицание, инверсия)

A \wedge **B**, $A \cdot B$ А и В (логическое умножение, конъюнкция)

A \vee **B**, $A + B$ А или В (логическое сложение, дизъюнкция)

A \rightarrow **B** импликация (следование)

A \equiv **B** эквивалентность (равносильность)

• операцию «импликация» можно выразить через «ИЛИ» и «НЕ»:

$$\mathbf{A} \rightarrow \mathbf{B} = \neg \mathbf{A} \vee \mathbf{B}$$
 или в других обозначениях $\mathbf{A} \rightarrow \mathbf{B} = \overline{A} + B$

• иногда для упрощения выражений полезны формулы де Моргана:

$$\neg (A \land B) = \neg A \lor \neg B$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\neg (A \lor B) = \neg A \land \neg B$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

- если в выражении нет скобок, сначала выполняются все операции «НЕ», затем «И», затем «ИЛИ», «импликация», и самая последняя «эквивалентность»
- таблица истинности выражения определяет его значения при всех возможных комбинациях исходных данных
- если известна только часть таблицы истинности, соответствующее логическое выражение однозначно определить нельзя, поскольку частичной таблице могут соответствовать несколько разных логических выражений (не совпадающих для других вариантов входных данных);
- количество *разных* логических функций, удовлетворяющих неполной таблице истинности, равно 2^k , где k число *отсутствующих* строк; например, полная таблица истинности выражения с тремя переменными содержит 2^3 =8 строчек, если заданы только 6 из них, то можно найти 2^{8-6} = 2^2 =4 *разных* логических функции, удовлетворяющие этим 6 строчкам (но отличающиеся в двух оставшихся)
- логическая сумма A + B + C + ... равна 0 (выражение ложно) тогда и только тогда, когда все слагаемые одновременно равны нулю, а в остальных случаях равна 1 (выражение истинно)

- логическое произведение $A \cdot B \cdot C \cdot ...$ равно 1 (выражение истинно) тогда и только тогда, когда все сомножители одновременно равны единице, а в остальных случаях равно 0 (выражение ложно)
- логическое следование (импликация) А→В равна 0 тогда и только тогда, когда А (посылка) истинна, а В (следствие) ложно
- эквивалентность А≡В равна 1 тогда и только тогда, когда оба значения одновременно равны 0 или одновременно равны 1

Пример задания:

P-22 (демо-2021). Логическая функция F задаётся выражением

$$(x \lor y) \land \neg (y \equiv z) \land \neg w.$$

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1		1		1
0	1		0	1
	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (построение таблицы истинности для F = 1):

- 1) перепишем выражения в виде $F = (x + y) \cdot (y \neq z) \cdot \overline{w}$
- 2) поскольку имеем логическое произведение значение w обязательно должно быть равно 0, то есть, в столбце w таблицы должны быть все нули; это возможно только в последнем столбце:

3	?	?	w	F
1		1	0	1
0	1		0	1
	1	1	0	1

- 3) теперь определим все комбинации переменных, для которых функция равна 1 (их не должно быть много!)
- 4) чаще всего в выражении встречается переменная у, поэтому мы сначала примем y=0, а затем y=1.
- 5) при y = 0 (и w = 0) получаем $F = x \cdot (0 \neq z)$, что справедливо только при x = 1 и z = 1:

x	У	z	W	F
1	0	1	0	1

6) при y=1 (и w=0) получаем $F=(x+1)\cdot (1\neq z)=(1\neq z)$, что справедливо при z=0 и любом x, это даёт ещё два варианта:

x	y	z	W	F
0	1	0	0	1
1	1	0	0	1

7) объединим три полученных строки:

x	У	Z	W	F
1	0	1	0	1
0	1	0	0	1
1	1	0	0	1

8) видим, что в столбце z должна быть одна единица и два нуля, это возможено только в первой строке исходной таблицы:

z	?	?	W	F
1		1	0	1
0	1		0	1
0	1	1	0	1

9) при z=1 нужно, чтобы y=0, поэтому второй столбец – это y, а третий – x:

z	У	ж	w	F
1	0	1	0	1
0	1	0	0	1
0	1	1	0	1

10) Ответ: <mark>zyxw</mark>.

Решение (построение таблицы с помощью электронных таблиц, П.Е. Финкель, г. Тимашевск)

- 1) поскольку во время компьютерного экзамена есть возможность использовать электронные таблицы, можно построить таблицу истинности с их помощью
- 2) заполняем первую часть таблицы, перечисляя все комбинации переменных в порядке возрастания двоичного кода:

	А	В	С	D
1	X	Y	Z	W
2	0	0	0	0
3	0	0	0	1
4	0	0	1	0
5	0	0	1	1
6	0	1	0	0
7	0	1	0	1
8	0	1	1	0
9	0	1	1	1
10	1	0	0	0
11	1	0	0	1
12	1	0	1	0
13	1	0	1	1
14	1	1	0	0
15	1	1	0	1
16	1	1	1	0
17	1	1	1	1

3) для каждой строчки определяем выражения, входящие в логическое произведение, а затем — значение функции:

K33 ▼ (f _x								
	Α	В	С	D	Е	F	G	Н
1	X	Υ	Z	W	X+Y	Y<>Z	not W	F
2	0	0	0	0	=ИЛИ(А2;В2)	=HE(B2=C2)	=HE(D2)	=ECЛИ(И(E2;F2;G2);1;0)
3	0	0	0	1	=ИЛИ(А3;В3)	=HE(B3=C3)	=HE(D3)	=ECЛИ(И(E3;F3;G3);1;0)
4	0	0	1	0	=ИЛИ(А4;В4)	=HE(B4=C4)	=HE(D4)	=ECЛИ(И(E4;F4;G4);1;0)
5	0	0	1	1	=ИЛИ(А5;В5)	=HE(B5=C5)	=HE(D5)	=ECЛИ(И(E5;F5;G5);1;0)
6	0	1	0	0	=ИЛИ(А6;В6)	=HE(B6=C6)	=HE(D6)	=ECЛИ(И(E6;F6;G6);1;0)
7	0	1	0	1	=ИЛИ(А7;В7)	=HE(B7=C7)	=HE(D7)	=ECЛИ(И(E7;F7;G7);1;0)

4) сортируем строки таблицы по столбцу Н по убываниию:

Α	В	С	D	E	F	G	Н	1
X	Y	Z	W	X+Y	Y<>Z	not W	F	
0	1	0	0	ИСТИНА	ИСТИНА	ИСТИНА	1	
1	0	1	0	ИСТИНА	ИСТИНА	ИСТИНА	1	
1	1	0	0	ИСТИНА	ИСТИНА	ИСТИНА	1	
0	0	0	0	ложь	ложь	ИСТИНА	0	
0	0	0	1	ложь	ложь	ложь	0	
0	0	1	0	ложь	ИСТИНА	ИСТИНА	0	
			X Y Z 0 1 0 1 0 1 0 1 1 1 0 0 0 0	X Y Z W 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1	X Y Z W X+Y 0 1 0 0 ИСТИНА 1 0 1 0 ИСТИНА 1 1 0 0 ИСТИНА 0 0 0 ЛОЖЬ 0 0 0 1 ЛОЖЬ	X Y Z W X+Y Y Z A 0	X Y Z W X+Y Y Y Z not W A 0<	X Y Z W X+Y Y⇔Z not W F 0 1 0 0 ИСТИНА ИСТИНА ИСТИНА 1 1 0 1 0 ИСТИНА ИСТИНА ИСТИНА 1 1 1 0 0 ИСТИНА ИСТИНА 1 0 0 0 ЛОЖЬ ЛОЖЬ ИСТИНА 0 0 0 0 1 ЛОЖЬ ЛОЖЬ ЛОЖЬ ЛОЖЬ О

5) удаляем строки, где функция равна 0; можно также скрыть вспомогательные столбцы Е, F, G:

	Α	В	С	D	Н
1	X	Υ	Z	W	F
2	0	1	0	0	1
3	1	0	1	0	1
4	1	1	0	0	1
_					

- 6) дальше рассуждаем так же, как и при теоретическом решении
- 7) Ответ: <mark>zyxw</mark>.

Решение (построение таблицы с помощью программы, А.С. Гусев, г. Москва,

https://youtu.be/RRL1Wal9ImU):

- 1) поскольку во время компьютерного экзамена есть возможность использовать среды программирования, для построения частичной таблицы истинности (всех строк, при которых F=1) можно написать переборную программу на Python
- 2) перебор выполняем во вложенном цикле:

```
for x in 0, 1:
  for y in 0, 1:
  for z in 0, 1:
    for w in 0, 1:
    # вычисление функции F
    # вывод (x, y, z, w), если F=1
```

3) для вычисления значения функции необходимо понимать, как логические операторы записываются на языке программирования; в Python их можно реализовать следующим образом:

```
∧ конъюнкция and
для языков, где логическое значение True воспринимается как 1, а False – как 0,
можно использовать обычное умножение *
```

- V дизъюнкция **or**¬ отрицания **not()**≡ тождество **==**⊕ строгая дизъюнкция **!**=
- \rightarrow импликация для импликации в python оператора нет, но импликацию можно преобразовать в дизъюнкцию; например, $a \rightarrow b$ можно записать как $\neg a \lor b$, а это в свою очередь записать как **not(a)or b**, **not a or b** или **a <= b**
- 4) Запишем нашу функцию на языке программирования:

```
F = (x \text{ or } y) \text{ and } not(y == z) \text{ and } not(w)
```

5) чтобы выводить не полную таблицу истинности, а только те строки, в которых функция равна 1, добавим условие вывода:

```
if F: # TO WE CAMOE, TO "if F == True:" print(x, y, z, w)
```

6) Приведём полную программу:

```
print('x y z w')
for x in 0, 1:
    for y in 0, 1:
    for z in 0, 1:
        for w in 0, 1:
        F = (x or y) and not(y == z) and not(w)
        if F:
            print(x, y, z, w)
```

7) после запуска программы получаем все интересующие нас строки:

```
x y z w 0 1 0 0
```

1 0 1 0 1 1 0 0

8) дальше рассуждаем так же, как и в приведённом выше теоретичеком решении

9) Ответ: <mark>zyxw</mark>.

Решение (прямой перебор, А. Богданов):

1) в принципе, можно написать программу, которая сразу выдает решение этого задания прямым перебором вариантов

2) Часть 1: https://www.youtube.com/watch?v=yX5oSYtM5E0

3) Часть 2: https://www.youtube.com/watch?v=eSkrt4KrsmU

4) Ответ: <mark>zyxw</mark>.

Ещё пример задания:

P-21. Логическая функция F задаётся выражением

$$((x \land \neg y) \lor (w \to z)) \equiv (z \equiv x).$$

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

'n	?	?	?	F
	0	0	1	1
0	1	0	0	1
0			1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (построение таблицы истинности для F = 1):

1) перепишем выражение, раскрыв импликацию по формуле $A \to B = \overline{A} + B$: $F = (x\overline{y} + \overline{w} + z) \equiv (z \equiv x)$

2) сначала предположим, что z=x ; в этом случае получаем $F=(x\overline{y}+\overline{w}+x)\equiv 1$

3) так как $x\overline{y}+x=x(\overline{y}+1)=x$, получим $F=(\overline{w}+x)\equiv 1$; при этом значение y может быть любым (1 или 0)

4) теперь пусть $z=\overline{x}$, тогда получаем $F=(x\overline{y}+\overline{w}+\overline{x})\equiv 0$

5) используем распределительный закон: $x\overline{y}+\overline{x}=(x+\overline{x})(\overline{y}+\overline{x})=\overline{y}+\overline{x}$, так что $F=(\overline{y}+\overline{w}+\overline{x})\equiv 0$, откуда сразу следует x=y=w=1 и $z=\overline{x}=0$ — единственный вариант!

6) этот единственный вариант, для которого $z=\overline{x}$, ОБЯЗАТЕЛЬНО должен быть в приведённой таблице, потому что иначе мы не сможем различить столбцы z и x; это может быть только последняя строчка, куда нужно добавить две единицы:

z	?	?	?	F
	0	0	1	1
0	1	0	0	1
0	1	1	1	1

- 7) в остальных строчках должно вполняться равенство z=x, значит x точно не второй столбец (не подходит вторая строка)
- 8) предположим, что x третий столбец, и в свободной ячейке нуль:

z ? x ? F

0	0	0	1	1
0	1	0	0	1
0	1	1	1	1

9) при этом для остальных двух столбцов в этих строчках должно выполняться условие $F=(\overline{w}+x)\equiv 1$, а оно не может выполняться — при любом варианте в одной строке сумма $\overline{w}+x$ равна 0; значит x — последний столбец, и в первой строке z=1:

z	?	?	ж	F
1	0	0	1	1
0	1	0	0	1
0	1	1	1	1

- 10) чтобы разобраться с последними двумя столбцами снова вспомним, что при z=x должно выполняться условие $F=(\overline{w}+x)\equiv 1$; это возможно только тогда, когда второй столбец это y, а третий w
- **11)** Ответ: <mark>zywx</mark>

Решение (А.Н. Носкин, заполнение исходной ТИ и анализ полной таблицы истинности для F = 1):

1) в выражении 4 логических переменных, тогда всех решений будет 16 (24).

x	У	w	z
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

2) подставим набор значений логических переменных и удалим все решения, которые не дают в ответе $\mathbf{F} = \mathbf{1}$

x	У	w	z
0	0	0	0
0	1	0	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0
1	1	1	1

Получаем 7 решений. Анализируя ТИ исходной функции видим, что набора 0000 и 1111 нет. Уберем их из ТИ решений.

x	У	w	z
0	1	0	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3) В ТИ решений только одна строка имеет три нуля, тогда сравнивая с ТИ исходной функции видим, что 1 соответствует Y.

?	Y	?	?	F
	0	0	1	1
0	1	0	0	1
0			1	1

4) **ДОЗАПОЛНИМ** таблицу истинности исходной функции (желтая заливка) на основе анализа ТИ решений, а именно т.к больше строк с тремя «0» нет, то в первой строке в пустой ячейке будет «1». И раз нет больше строк с двумя «0», то в третьей строке пустые ячейки равны «1».

?	Y	?	?	F
1	0	0	1	1
0	1	0	0	1
0	1	1	1	1

5) Анализируя 1ю строку выше приведенной таблице и ТИ решений видим, что строка с двумя «0» всего одна, из которых один нуль известен - это Y, тогда второй это – W;

?	Y	W	?	F
1	0	0	1	1
0	1	0	0	1
0	1	1	1	1

- 6) Далее рассуждая видим, что в ТИ решений (кроме столбца Y) один «0» имеет X, тогда последний столбец это X, а первый столбец Z.
- 7) Ответ: **zywx**

Решение (построение таблицы с помощью программы, Б.С, Михлин)

Ещё пример задания:

P-20. Логическая функция F задаётся выражением

$$((x \wedge y) \vee (y \wedge z)) \equiv ((x \to w) \wedge (w \to z)).$$

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	1	1
0	1	0		1
0	1	0		1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (построение таблицы истинности для F = 1):

- 1) запишем выражение в более понятной форме: $F = (xy + yz) \equiv (x \rightarrow w) \cdot (w \rightarrow z)$
- 2) попробуем найти все сочетания переменных, при которых функция равна 1 (их должно быть не очень много)
- 3) при x=0 получаем $F=yz\equiv (0\to w)\cdot (w\to z)$; импликация с нулём в левой части всегда истинна (из лжи следует всё, что угодно), поэтому $F=yz\equiv (w\to z)$
- 4) пусть теперь ещё z=0, тогда $F=y\cdot 0\equiv (w\to 0)$, что истинно при w=1 и при любом y;
- 5) пусть теперь x = 0 и z = 1, тогда $F = y \equiv (w \to 1) = 1$, что истинно при y = 1 и при любом w;
- 6) из 4 и 5 получаем такие строки в таблице истинности исходной функции:

х	У	z	w	F
0	0	0	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

- 7) остаётся рассмотреть случай, когда x=1, при этом $F=(y+yz)\equiv (1\to w)\cdot (w\to z)$
- 8) учитываем, что y + yz = y(1+z) = y и $1 \to w = 0 + w = w$; получаем $F = y \equiv w(w \to z)$
- 9) преобразуем импликацию $w(\overline{w}+z)=wz$, так что $F=y\equiv wz$
- 10) для y=0 это выражение истинно при (w,z)=(0,0), (0,1) и (1,0), а для y=1 только при w=z=1, это даёт ещё 4 строки в таблице истинности

x	У	z	W	F
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	1	1	1	1

11) итак, у нас есть 8 строк в таблице истинности, где функция равна 1:

x	У	z	W	F
0	0	0	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	1	1	1	1

попробуем сопоставить их с заданными в условии строками:

?	?	?	?	F
0	1	1	1	1

0	1	0	1
0	1	0	1

- 12) замечаем, что есть одна характерная строка с тремя единицами; кроме того, поскольку все строки различны, в одной из пустых ячеек должен стоять 0, а во второй 1
- 13) в полученной нами таблице видим единственную строку с тремя единицами, что сразу позволяет определить, что первый столбец это x, который всегда равен 0:

x	У	z	w	F
0	0	0	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

- 14) теперь из оставшихся двух строк остаётся найти 2 строки, значения которых различаются только в одном столбце; под это условие подходит только пара двух верхних строк, они различаются в столбце y из исходной таблицы видим, что это 4-й столбец
- 15) также из исходной таблицы видим, что во втором столбце в этих двух строках единицы это w, тогда третий столбец это z
- 16) Ответ: <mark>xwzy</mark>.

Решение (А.Н. Носкин, построение таблицы истинности для F = 1):

- 1) запишем выражение в более понятной форме: $F = (xy + yz) \equiv (x \rightarrow w) \cdot (w \rightarrow z)$
- 2) вынесем у за скобки: $F = (y^*(x+z) \equiv ((x \rightarrow w)^*(w \rightarrow z))$
- 3) F = 1, при 0=0 и 1=1. Тогда составим ТИ для левой части выражения равные 0 и 1.

У	x	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
У	x	Z
1	0	1

		1	1	1		
4)	Объединим эти таблицы, по	дключим	перемен	іную w и у	уберем из таблицы строки, пр	И
	которых F=0 после подключе	ения пере	еменной у	w.		

У	x	z	W
0	0	0	1
0	1	0	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	1	1

- 5) Получилось 8 всевозможных решений.
- 6) Обратим внимание, что по условию у нас нет повторяющихся строк, но в таблице есть строки с тремя одинаковыми ячейками, тогда можно **ДОЗАПОЛНИТЬ** таблицу истинности исходной функции (желтая заливка) в одну из них вставив 0, в другую 1.

? ? ? ? F

_	-	-	-	-
0	1	1	1	1
0	1	0	1	1
0	1	0	0	1

- 7) Анализ строк таблицы истинности исходной функции показывает:
 - строки, состоящей из четырех «1» нет, поэтому ее можно убрать (красная заливка);
 - только одна строка имеет в ячейках три единицы и один «0». И в ТИ всех решений (желтая заливка) этот «0» будет соответствовать X в **ТИ исходной функции**.

У	x	z	w
0	0	0	1
0	1	0	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	1	1

8) Так как мы определили, что первый столбец соответствует X и содержит только «0», то строки ТИ решений с «1» в столбце X – удалим (синяя заливка)

У	х	z	W
0	0	0	1
0	1	0	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	1	1

и получим ТИ меньшего размера.

У	x	z	w
0	0	0	1
1	0	0	1
1	0	1	0

9) Анализ столбцов **ТИ исходной функции** показывает, что одна «1» в третьем столбце соответствует Z, а в третьей строке **ТИ исходной функции** две неизвестные переменные противоположны «0» и «1», что соответствует W и Y, так как X и Z уже определены и равны «0» (зеленая заливка)

У	x	z	w
0	0	0	1
1	0	0	1
1	0	1	0

10) Ответ: <mark>xwzy</mark>.

Решение (построение таблицы с помощью программы, Б.С, Михлин)

```
print('x y z w') # заголовок таблицы
k = 0, 1 # k - кортеж констант (0 - False, 1 - True)
for x in k:
  for y in k:
```

```
for z in k:
    for w in k:
    if (x and y or y and z) == ((not x or w) \
        and (not w or z)):
        # можно короче:
        # if ( x * y or y * z ) == ( x <= w)*( w <= z):
        # '*' вместо 'and'
        print(x, y, z, w) # если F = 1
```

Р-19. Логическая функция F задаётся выражением

$$((w \lor y) \equiv x) \lor ((w \to z) \land (y \to w)).$$

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1			1	0
			1	0
1		1		0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение:

- 1) запишем выражение в более понятной форме: $F = ((w + y) \equiv x) + (w \rightarrow z) \cdot (y \rightarrow w)$
- 2) попробуем найти все сочетания переменных, при которых функция равна 0 (их должно быть не очень много)
- 3) выберем для начальной подстановки переменную, которая чаще всего встречается в выражении и поэтому подстановка её значения даст наибольшую информацию; у нас это переменная w
- 4) подставим сначала w=0, а затем w=1, и таким образом построим все строки таблицы истинности, где функция равна нулю
- 5) при w=0 получаем $F=(y\equiv x)+(0\to z)\cdot (y\to 0)$ поскольку $0\to z=1$ при всех z, имеем $F=(y\equiv x)+(y\to 0)$
- 6) для того, чтобы сумма была равна 0, оба слагаемых должны быть равны 0, так что $(y\equiv x)=0 \implies y\neq x$ $(y\to 0)=0 \implies y=1$
- 7) таким образом, при w=0 получаем $y=1,\; x=0,$ а значение z может быть любое; это даёт две строки в таблице истинности:

x	У	z	W	F
0	1	0	0	0
0	1	1	0	0

- 8) теперь рассмотрим случай, когда w=1: получаем $F=(1\equiv x)+(1\to z)\cdot (y\to 1)$ поскольку $y\to 1=1$ при всех y, имеем $F=(1\equiv x)+(1\to z)$
- 9) для того, чтобы сумма была равна 0, оба слагаемых должны быть равны 0, так что $(1\equiv x)=0 \quad \Rightarrow \quad x=0$ $(1\to z)=0 \quad \Rightarrow \quad z=0$

10) таким образом, при w=1 получаем x=0, z=0, а значение y может быть любое; добавляем ещё две строки в таблицу истинности:

х	У	z	w	F
0	1	0	0	0
0	1	1	0	0
0	0	0	1	
0	1	0	1	

11) сравниваем эту таблицу с таблицей в задании:

1	2	3	4	F
1			1	0
			1	0
1		1		0

- 12) две единицы могут быть только в столбцах y и w, поэтому это столбцы 1 и 4
- 13) кроме этих столбцов единственная единица может быть в столбце z, поэтому столбец 3 это z
- 14) при z = 1 должно быть y = 1, поэтому столбец 1 -это y, а столбец 4 -это w
- 15) остаётся столбец 2 это x
- 16) Ответ: *ухzw*.

Решение (разбиение на два слагаемых, А.Н. Носкин):

- 1) запишем выражение в более понятной форме: $F = ((w + y) \equiv x) + (w \rightarrow z) \cdot (y \rightarrow w)$
- 2) Каждое из слагаемых скобок должна быть равна 0, поэтому составим для каждой таблицу истинности.
- 3) Рассмотрим ($(w \to z) \land (y \to w)$), а именно первую скобку ($w \to z$), она равна 0 при ситуации $1 \to 0$, тогда y во второй скобке может быть любым

w	z	У
1	0	0
1	0	1

Теперь рассмотрим вторую скобку $(y \to w)$, она равна 0 при ситуации $1 \to 0$, тогда z во первой скобке может быть любым. Добавим эти значения в таблицу истинности, которая приведена выше.

w	z	У
1	0	0
1	0	1
0	0	1
0	1	1

4) Теперь рассмотрим ($(w \lor y) \equiv x$). Эта скобка будет равна 0 при ($(w \lor y) \neq x$). Составим таблицу истинности

W	У	x
0	0	1
1	0	0
0	1	0
1	1	0

Анализ этой таблицы показывает, что набора 001 (выделено цветом) быть не может иначе система будет равна 1 по скобке $((w \to z) \land (y \to w))$.

5) Сравним полученные таблицы истинности с исходной таблицей в задании:

1	2	3	4	F
1			1	0

		1	0
1	1		0

6) x в таблице истинности во всех строках равен 0, тогда он соответствует второму столбцу, так как там нет ни одной единицы. Сразу заполним нулями.

1	x	3	4	F
1	0		1	0
	0		1	0
1	0	1		0

7) w и y в таблице истинности имеют 2 и более единицы, а z всего 1, тогда z - это столбец 3. Заполним сразу 0.

1	x	z	4	F
1	0	0	1	0
	0	0	1	0
1	0	1		0

8) Так как строки не повторяются, то в первой ячейке второй строки может быть только 0. Заполним ее.

1	x	Z	4	F
1	0	0	1	0
0	0	0	1	0
1	0	1		0

- 9) Теперь проанализируем последнюю ячейку третьей строки. Ее значения могут быть 0 и 1. Предположим, что там 0, а в первом столбце w, тогда выражение примет вид $((1 \lor 0) \equiv 0) \lor ((1 \to 1) \land (0 \to 1))$ этого быть не может, так как выражение равно 1. Предположим, что там 1 и в первом столбце w, тогда выражение примет вид $((1 \lor 1) \equiv 0) \lor ((1 \to 1) \land (1 \to 1))$ этого быть не может, так как выражение равно 1. Таким образом в первом столбце w не может быть ни при каком случае. Там только w0, ну а w0 отправляется в 4-й столбец.
- 10) Ответ: *ухzw*.

Решение (построение таблицы с помощью программы, Б.С, Михлин)

Ещё пример задания:

P-18. Логическая функция F задаётся выражением $(x \lor y) \to (y \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0		0
0			0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение:

- 1) запишем выражение в более понятной форме: $F = (x + y) \rightarrow (y \equiv z)$
- 2) для решения этой задачи используем свойство операции «импликация»: $a \to b = 0$ тогда и только тогда, когда a = 1 и b = 0
- 3) в обеих строках приведённой части таблицы функция равна 0, поэтому везде
 - хотя бы одна из величин, x или y равна 1, что даёт (x + y) = 1;
 - y и z различны, что даёт ($y \equiv z$) = 0
- 4) поскольку значения в первых двух столбцах в первой строке равны 0, один из этих столбцов это x
- 5) предположим, что x это первый столбец:

	х	?	?	F
1	0	0		0
2	0			0

тогда в обеих строках получаем $F=(0+y) \to (y\equiv z)=0$, откуда сразу следует, что есть единственная пара остальных переменных, удовлетворяющих условию задачи: y=1, z=0, и вторая строка олжна быть копией первой (второй подходящей пары y, z нет!), что противоречит условию

6) это значит, что x – это не первый, а второй столбец:

	?	X	3	F
1	0	0		0
2	0			0

- 7) если при этом предположить, что первый столбец это у, то в первой строке получаем $F=(0+0) \to (0\equiv z)=1$ (при любом z!), что противоречит условию; поэтому первый столбец это z, а третий y
- 8) на всякий случай проверяем первую строку: $F = (0 + y) \rightarrow (y \equiv 0) = 0$ справедливо при y = 1
- 9) во второй строке условие $F = (x + y) \rightarrow (y \equiv 0) = 0$ справедливо при x = 1 и y = 1 (что отличается от варианта в первой строке значением x)
- 10) Ответ: <mark>zxy</mark>.

Решение (построение части таблицы истинности, С.В. Логинова):

- 1) По свойству импликации функция имеет значение 0 тогда, когда в первой скобке получится 0, а во второй 1. Из этого следует что возможные сочетания для переменных x и y равны 01, 10, 11.
- 2) Вторая скобка равна 0, если y и z имеют разные значения.
- 3) Составим таблицу истинности для всех возможных вариантов.

x	У	z	F
0	1	0	0
1	0	1	0
1	1	0	0

14

- 4) Из получившейся таблицы истинности мы видим, что только одна строка этой таблицы содержит 2 нуля и одну 1 в исходных данных. Эта единица переменная y, значит третий столбец y. Среди столбцов только один содержит два нуля столбец z. Отсюда следует, что первый столбец z.
- 5) Ответ: <mark>zxy</mark>

Решение (метод исключения, С.Н. Лукин, г. Москва):

1) всего возможно 6 вариантов решения задачи:

x	У	z
х	z	У
У	x	z
У	z	x
z	х	У
z	У	х

В процессе решения будем вычеркивать лишние варианты, пока не останется одинединственный. Также будем по возможности заполнять пустые клетки таблицы (по принципу «Чем меньше неопределенностей, тем лучше»).

- 2) используем следующее свойство импликации: выражение $a \rightarrow b$ равно нулю тогда и только тогда, когда a=1 и b=0. В нашем примере a это левая скобка, b правая.
- 3) теперь рассуждаем от противного. Пусть в пустой клетке первой строки таблицы истинности стоит ноль:

?	?	?	F
0	0	0	0

4) Тогда в любом из 6 вариантов решения получится x = 0 и y = 0, а значит ($x \lor y$)=0, что противоречит упомянутому свойству импликации. Значит, там стоит единица:

?	?	?	F
0	0	1	0
0			0

5) По той же причине в левых двух столбцах первой строки не могут находиться одновременно x и y. Это позволяет нам вычеркнуть два из шести вариантов решения:

		_
**	Y	-
		_
7	X	

Остаются 4 варианта:

x	z	У
У	z	x
z	х	У
z	У	х

6) Идем дальше. По упомянутому свойству импликации вторая скобка должна равняться 0, а значит y и z не должны совпадать. Это позволяет нам, погдядев на первую строку таблицы истинности, вычеркнуть еще два варианта решения:

¥	Z	×
-2	¥	*

Остаются 2 варианта:

x	z	У
z	х	У

- 7) Получается, что в правом столбце обязательно стоит y. Начало положено.
- 8) Попробуем заполнить пустые клетки во второй строке таблицы истинности. Способов заполнения четыре: 00, 01, 10, 11. Первый из них мы рассмотрели выше, он отпадает. Второй

отпадает, так как в этом случае две строки таблицы истинности будут совпадать, что противоречит условию задачи. Третий и четвертый способы приказывают нам иметь во втором столбце единицу. Спасибо и на этом:

?	?	У	F
0	0	1	0
0	1		0

- 9) Теперь рассмотрим первый из двух оставшихся вариантов решения (xzy), подставив сначала в пустую клетку ноль. Но ноль отпадает, так как x и y не могут одновременно равняться нулю. А единица отпадает, так как y и z не должны совпадать. Значит, отпадает и сам вариант решения xzy. Следовательно, решением задачи является единственный невычеркнутый вариант: zxy.
- 10) Из тех же соображений, что y и z не должны совпадать, в оставшуюся пустую клетку ставим единицу:

z	х	У	F
0	0	1	0
0	1	1	0

- 11) А теперь проверьте решение, подставив в выражение $(x \lor y) \to (y \equiv z)$ значения переменных из каждой строки таблицы.
- 12) Ответ: <mark>zxy</mark>.

Решение (метод инверсии, А.Н. Носкин, г. Москва):

- 1) Известно, что если F=0, то обратная её функция \overline{F} =1.
- 2) Применим закон де Моргана и упростим:

$$\overline{F} = \overline{(x \lor y)} \lor (y = z) = (x \lor y) \land (y \ne z)$$

3) тогда при тех же значениях аргументов функция \overline{F} истинна

ę.	?	œ.	\overline{F}
0	0		1
0			1

- 4) анализ формулы $\overline{F}=(x \lor y) \land (y \neq z)$ показывает, что для истинности функции \overline{F} необходимо, чтобы значение в каждой скобке были равны 1.
- 5) Кроме того, этот анализ показывает, что в первой строке таблицы, в ее последнем столбце, не может быть 0, так как тогда значение функции не будет равно 1. На основе этого анализа таблица примет вид:

3	?	?	\overline{F}
0	0	1	1
0			1

- 6) Анализ первой строки данной таблицы показывает, что в первых двух ячейках не может быть одновременно ни \mathbf{x} , ни \mathbf{y} . В этих ячейках рядом может быть только \mathbf{x} и \mathbf{z} , значит \mathbf{y} находится в последней ячейке.
- 7) Во второй ячейке, второй строки не может быть 0, так как должны быть **неповторяющиеся строки,** а все нули быть не могут (не выполнится условие \overline{F} =1). Значит в данной ячейке строго 1.

?	?	У	\overline{F}
0	0	1	1
0	1		1

- 8) Значит в оставшейся ячейке может быть только 0 или 1, а именно, во второй строке возможен набор **010** или **011**. Простой анализ с учетом того, что в последнем столбце **y**, дает итоговый ответ набор **011** .
- 9) Ответ: <mark>zxy</mark>.

P-17. Логическая функция F задаётся выражением $\neg x \lor y \lor (\neg z \land w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
0	0	0	1	0
0	1	0	1	0
0	1	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение:

- 1) запишем выражение в более понятной форме: $F = \bar{x} + y + \bar{z} \cdot w$
- 2) анализ формулы $F = \overline{x} + y + \overline{z} \cdot w$ показывает, что для того, чтобы функция F была ложна, необходимо, чтобы x всегдабыл равен 1, а y всегдабыл равен 0; поэтому x это последний столбец в таблице, а y первый:

У	?	?	ж	F
0	0	0	1	0
0	1	0	1	0
0	1	1	1	0

- 3) остается разобраться с двумя средними столбцами; обратим внимание на вторую строчку таблицы, в которой одна из оставшихся переменных равна 1, а вторая 0; так как функция равна 0, то $\bar{z} \cdot w = 0$, откуда следует, что z = 1 и w = 0 (иначе произведение будет равно 1)
- 4) Ответ: <mark>уzwx</mark>.

Решение (2 способ, инверсия выражения):

- 1) запишем выражение в более понятной форме: $F = \overline{x} + y + \overline{z} \cdot w$
- 2) попытаемся свести задачу к уже известной задаче; если при каком-то наборе аргументов функция F ложна, то обратная её функция, \overline{F} , истинна
- 3) построим обратную функцию, используя законы де Моргана:

$$\overline{F} = \overline{\overline{x} + y + \overline{z} \cdot w} = x \cdot \overline{y} \cdot (z + \overline{w})$$

4) тогда при тех же значениях аргументов функция \overline{F} истинна

?	?	?	?	\overline{F}
0	0	0	1	1
0	1	0	1	1
0	1	1	1	1

5) анализ формулы $\overline{F} = x \cdot \overline{y} \cdot (z + \overline{w})$ показывает, что для истинности функции \overline{F} необходимо, чтобы x всегдабыл равен 1, а y всегдабыл равен 0; поэтому x – это последний столбец в таблице, а y – первый:

|--|

17

0	0	0	1	1
0	1	0	1	1
0	1	1	1	1

- 6) остается разобраться с двумя средними столбцами; обратим внимание на вторую строчку таблицы, в которой одна из оставшихся переменных равна 1, а вторая 0; так как функция равна 1, то $z + \overline{w} = 1$, откуда следует, что z = 1 и w = 0 (иначе сумма будет равна 0)
- 7) Ответ: <mark>уzwx</mark>.

P-16. Логическая функция F задаётся выражением $(x \to y) \land (y \to z)$. Ниже приведён фрагмент таблицы истинности. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

?	?	?	F
1	0	1	1
0	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

Решение:

- 8) Выражение представляет собой логическое произведение имплкаций. Поэтому для его истинности обе импликации должны быть истинны.
- 9) Расмотрим верхнюю строчку таблицы, где функция принимает значение 1. Здесь одна из переменных равна 0, а две другие равны 1.
- 10) Нулю в этой строке может быть равна только переменная x, так как при y=0 получаем $(1 \to 0 \) \land (0 \to 1) = 0 \land 1 = 0$ а при z=0 имеем $(1 \to 1 \) \land (1 \to 0) = 1 \land 0 = 0$, то есть эти два варианта не подходят. Таким образом, второй стоблец x.
- 11) Теперь рассматриваем вторую строку, где мы должны получить 0. Мы уже знаем, что второй столбец x, поэтому во второй строке x = 0, и (0 \rightarrow y) \wedge (y \rightarrow z) = 0.
- 12) Первая импликация $0 \to y = 1$ независимо от значения y. Поэтому для того, чтобы все выражение было равно 0, нужно обеспечить $y \to z = 0$.
- 13) Это условие сразу даёт y = 1 и z = 0. Поэтому третий столбец y, а первый z.
- 14) Ответ: <mark>zxy</mark>.

Ещё пример задания (М.В. Кузнецова):

P-15. Логическая функция F задаётся выражением $(x \lor \neg y \lor \neg z) \land (\neg x \lor y)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

	?	?	?	F
1	0	0	0	1
2	0	0	1	0
3	0	1	0	1
4	0	1	1	1
5	1	0	0	1
6	1	0	1	0
7	1	1	0	0
8	1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу;

затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (М.В. Кузнецова, через СКНФ и сопоставление таблиц истинности):

1) Запишем заданное выражение в более простых обозначениях:

$$F = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y)$$

2) Функция $F=(x+\overline{y}+\overline{z})\cdot(\overrightarrow{x}+y)$ задана в виде КНФ (конъюнктивной нормальной формы), которую можно привести к СКНФ, используя известные тождества алгебры логики: a+0=a, $a\cdot\overline{a}=0$ и распределительный закон для операции «И» $a+b\cdot c=(a+b)\cdot(a+c)$.

Вторую дизъюнкцию дополним недостающей переменной д:

$$F = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y) = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y + z \cdot \overline{z}) = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y + z) \cdot (\vec{x} + y + \overline{z})$$
CKH Φ :

$$F = (x + y + \overline{z}) \cdot (\vec{x} + y + z) \cdot (\vec{x} + y + \overline{z})$$

3) Каждая дизъюнкция в СКНФ соответствует строке таблицы истинности, в которой F=0. Используя полученную СДНФ, делаем вывод: в таблице истинности имеется 3 строки, где F=0, заполним их:

	x	У	z	F
$x + \overline{y} + \overline{z}$	0	1	1	0
$\bar{x} + y + z$	1	0	0	0
$\bar{x} + y + \bar{z}$	1	0	1	0

4) В таблице, приведенной в задании, рассмотрим строки, где F=0:

3	?	?	F
0	0	1	0
1	0	1	0
1	1	0	0

- 5) Сравнивая столбцы этих таблиц, делаем выводы:
 - а. во втором (синем) столбце таблицы задания находится y (одна единица),
 - b. в первом (жёлтом) столбце таблицы задания находится z (в двух строках z=y),
 - с. в последнем (зелёном) столбце таблицы задания находится x (где z=y, там $x=\neg y$).
- 6) Ответ: *zyx*.

Решение (Л.Л. Воловикова, через уравнение):

1) Так как между скобками стоит операция И, решим уравнение:

$$(x + \overline{y} + \overline{z}) \cdot (\overline{x} + y) = 1$$

- 2) Чтобы функция была равна 1, нужно чтобы каждая скобка была равна 1.
- 3) Уравнение $\bar{x} + y = 1$ имеет 3 решения:

\boldsymbol{x}	у
0	0
0	1
1	1

4) Подставим найденные решения в первую скобку и найдем полный набор решений уравнения:

	X	У	z	$\boldsymbol{\mathit{F}}$
1	0	0	0	1

2	0	0	1	1
3	0	1	0	1
4	1	1	0	1
5	1	1	1	1

5) Сопоставляем найденное решение со строками исходной таблицы, в которых функция F=1:

	è.	·J	è.	F
1	0	0	0	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	1	1	1

- 6) Есть одна строка, где две переменных равна 1, а одна нулю, это строка 3 в последней таблице и строка 4 в предпоследней, поэтому первый столбец соответствует z
- 7) Далее видим, что в столбце y в предпоследней таблице три единицы, а в последней таблице три единицы только во втором столбце, поэтому второй столбец y, а третий x.
- 8) Ответ: *zyx*.

Ещё пример задания:

P-14. Логическая функция F задаётся выражением $(\neg z) \land x \lor x \land y$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (через полную таблицу):

9) запишем заданное выражение в более простых обозначениях:

$$F = \overline{z} \cdot x + x \cdot y$$

- 10) общий ход действий можно описать так: подставляем в эту формулу какое-нибудь значение (0 или 1) одной из переменных, и пытаемся определить, в каком столбце записана эта переменная;
- 11) например, подставим x=0, при этом сразу получаем F=0; видим, что переменная x не может быть ни в первом, ни во втором столбце (противоречие во 2-й строке):

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1

1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

а в третьем - может:

?	?	x	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 12) подставим x=1, тогда $F=\overline{z}+y$; логическая сумма равна 0 тогда и только тогда, когда все слагаемые равны 0, это значит, что F=0 только в одном случае при z=1 и y=0;
- 13) ищем такую строчку, где x = 1 и F = 0:

?	?	x	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 14) как мы видели, в этой строке таблицы должно быть обязательно z=1 и y=0; поэтому z в первом столбце, а y во втором
- 15) Ответ: *zyx*.

Решение (преобразование логического выражения, Дегтярева Е.В.):

1) Используя законы алгебры логики, а именно распределительный для операции «ИЛИ» (см. учебник 10 кл. 1 часть, стр. 185), запишем заданное выражение: $_$

$$F = \overline{z} \cdot x + x \cdot y = x \cdot (\overline{z} + y);$$

- 2) Поскольку добиться логической единицы в произведении сложнее, чем в сумме рассмотрим строки таблицы, где произведение равно 1(это 2-я, 4-я и 8-я строки);
- 3) Во <u>2-й строке</u> X обязательно должно быть равно 1. Поэтому X может быть только в третьем столбце, в первых двух могут быть и Y, и Z.

3	?	×	F
0	0	1	1

4) Анализируя <u>4 строку</u> приходим к выводу, что в первом столбце таблицы может быть только Z, во втором – Y.

z	y	×	F
0	1	1	1

5) В 8-й строке убеждаемся в верности своих рассуждений:

z	y	×	F
1	1	1	1

Т.о., немного упростив выражение, уменьшили количество рассматриваемых строк.

6) Ответ: *zyx*.

Решение (преобразование логического выражения, СДНФ, В.Н. Воронков):

1) Рассмотрим строки таблицы, где функция равна 1

a	b	С	F	
0	0	1	1	$\bar{a}\cdot\bar{b}\cdot c$
0	1	1	1	$\bar{a} \cdot b \cdot c$
1	1	1	1	$a \cdot b \cdot c$

и построим логическое выражение для заданной функции, обозначив переменные через a, b и c (см. § 22 из учебника для 10 класса):

$$F = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot c + a \cdot b \cdot c$$

2) Упрощаем это выражение, используя законы алгебры логики:

$$F = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot c + a \cdot b \cdot c = \overline{a} \cdot \overline{b} \cdot c + (\overline{a} + a) \cdot b \cdot c = \overline{a} \cdot \overline{b} \cdot c + b \cdot c =$$

$$= (\overline{a} \cdot \overline{b} + b) \cdot c = (\overline{a} + b) \cdot (\overline{b} + b) \cdot c = (\overline{a} + b) \cdot c = \overline{a} \cdot c + b \cdot c$$

- 3) Сравнивая полученное выражение с заданным $F=\overline{z}\cdot x+x\cdot y$, находим, что a=z, b=y и c=x.
- 4) Ответ: *zyx*.

Решение (сопоставление таблиц истинности, М.С. Коротков):

1) Рассмотрим строки таблицы, где функция равна 1, обозначив переменные через а, b и с

a	b	С	F
0	0	1	1
0	1	1	1
1	1	1	1

и сопоставим эти строки с теми строками таблицы истинности заданной функции

$$F = \overline{z} \cdot x + x \cdot y$$
 , где $F = 1$:

x	У	z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- 2) Сравнивая столбцы интересующих нас строк, определяем, что c=x (все три единицы в зеленых ячейках), b=y (один ноль и две единицы) и a=z (два ноля и единица).
- 3) Ответ: *zyx*.

Решение (М.В. Кузнецова, через приведение к СДНФ):

1) Функция $F=\overline{z}\cdot x+x\cdot y$ задана в виде ДНФ (дизъюнктивной нормальной формы), которую не сложно привести к СДНФ, используя известные тождества алгебры логики: $a\cdot 1=a$ и $a+\overline{a}=1$.

Каждую конъюнкцию дополним недостающей переменной:

$$F = x \cdot \overline{z} \cdot (y + \overline{y}) + x \cdot y \cdot (z + \overline{z}) = x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot z + x \cdot y \cdot \overline{z}$$

СДНФ:

$$F = x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot z$$

2) Каждая конъюнкция в СДНФ соответствует строке таблицы истинности, в которой F=1. Используя полученную СДНФ, делаем вывод: в таблице истинности имеется 3 строки, где F=1, заполним их:

	х	У	z	F
$x \cdot y \cdot \overline{z}$	1	1	0	1
$x \cdot \overline{y} \cdot \overline{z}$	1	0	0	1
$x \cdot y \cdot z$	1	1	1	1

3) В таблице, приведенной в задании, рассмотрим строки, где F=1:

	?	?	?	F
I	0	0	1	1
I	0	1	1	1
Ī	1	1	1	1

- 4) Сравнивая столбцы этих таблиц, делаем выводы:
 - а. в первом (жёлтом) столбце таблицы задания находится z (одна единица),
 - b. во втором (синем) столбце таблицы задания находится *у* (две единицы),
 - с. в последнем (зелёном) столбце таблицы задания находится x (все единицы).
- 5) Ответ: *zyx*.

Ещё пример задания:

P-13. Каждое логическое выражение A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения $A \lor \neg B$?

Решение:

- 1) полная таблица истинности каждого выражения с пятью переменными содержит $2^5 = 32$ строки
- 2) в каждой таблице по 4 единицы и по 28 (= 32 4) нуля
- 3) выражение $A \lor \neg B$ равно нулю тогда и только тогда, когда A = 0 и B = 1
- 4) минимальное количество единиц в таблице истинности выражения A \vee \neg B будет тогда, когда там будет наибольшее число нулей, то есть в наибольшем количество строк одновременно A = 0 и B = 1
- 5) по условию A = 0 в 28 строках, и B = 1 в 4 строках, поэтому выражение $A \lor \neg B$ может быть равно нулю не более чем в 4 строках, оставшиеся 32 4 = 28 могут быть равны 1
- 6) Ответ: <mark>28</mark>.

Ещё пример задания:

Р-12. Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	F
0	0	1	0	0	0
1	0	1	0	1	1
0	1	1	1	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x1 не совпадает с F.

Решение:

- 1) полная таблица истинности выражения с пятью переменными содержит $2^5 = 32$ строки
- 2) в приведённой части таблицы в двух строках значение x1 совпадает с F, а в одной не совпадает
- 3) во всех оставшихся (неизвестных) 32 3 = 29 строках значения x1 и F могут не совпадать
- 4) всего несовпадающих строк может быть 1 + 29 = 30.
- 5) Ответ: <mark>30</mark>.

P-11. Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

x1	x2	х3	х4	х5	х6	х7	х8	F
	0						1	0
1			0					1
			1				1	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$

Решение:

1) перепишем выражения в более простой форме, заменив «И» (∧) на умножение и «ИЛИ» (∨) на сложение:

1)
$$x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7 \cdot \overline{x}_8$$

2)
$$x_1 + x_2 + x_3 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$$

3)
$$\overline{x}_1 \cdot x_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7 \cdot \overline{x}_8$$

4)
$$x_1 + \overline{x}_2 + x_3 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$$

- 2) в последнем столбце таблицы истинности видим две единицы, откуда сразу следует, что это не может быть цепочка операций «И» (конъюнкций), которая даёт только одну единицу; поэтому ответы 1 и 3 заведомо неверные
- 3) анализируем первую строку таблицы истинности; мы знаем в ней только два значения $x_2 = 0$ и $x_8 = 1$
- 4) для того, чтобы в результате в первой строке получить 0, необходимо, чтобы переменная x_8 входила в сумму с инверсией (тогда из 1 получится 0!), это условие выполняется для обоих оставшихся вариантов, 2 и 4
- 5) кроме того, переменная x_2 должна входить в выражение без инверсии (иначе соответствующее слагаемое в первой строке равно 1, и это даст в результате 1); этому условию не удовлетворяет выражение 4; остается один возможный вариант выражение 2
- 6) Ответ: <mark>2</mark>.

Ещё пример задания:

P-10. Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

x1	x2	х3	х4	х5	х6	х7	х8	F
	0						1	1
1			0					0

1 1 0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $x1 \land \neg x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land x8$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 1) перепишем выражения в более простой форме, заменив «И» (∧) на умножение и «ИЛИ» (∨) на сложение:
 - 1) $x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7 \cdot \overline{x}_8$
 - 2) $x_1 + x_2 + x_3 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$
 - 3) $x_1 \cdot \overline{x}_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7 \cdot x_8$
 - 4) $x_1 + \overline{x}_2 + x_3 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$
- 2) в последнем столбце в таблице видим одну единицу и два нуля, поэтому это не может быть дизъюнкция, которая даёт ноль только при одном наборе значений переменных; таким образом, варианты 2 и 4 заведомо неверные, нужно сделать выбор между ответами 1 и 3
- 3) рассматриваем «особую» строчку таблице, в которой функция равна 1;
- 4) поскольку мы говорим о конъюнкции, переменная x_2 должна входить в неё с инверсией (это выполняется для обоих оставшихся вариантов), а переменная x_8 без инверсии; последнее из этих двух условий верно только для варианта 3, это и есть правильный ответ.
- 5) Ответ: <mark>3</mark>.

Ещё пример задания:

P-09. Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

x1	x2	х3	х4	x5	х6	<i>x</i> 7	х8	F
	0						1	1
1			0					0
			1				1	0

Каким выражением может быть F?

- 1) $\neg x1 \land x2 \lor x2 \land \neg x3 \land \neg x4 \lor x2 \land \neg x5 \lor x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $(x1 \land \neg x2 \lor \neg x3 \lor x4) \land (x5 \lor x6 \lor \neg x7 \lor x8)$
- 3) $x1 \land \neg x8 \lor \neg x3 \land x4 \land x5 \lor \neg x6 \land \neg x7 \land x8$
- 4) $x1 \land \neg x4 \lor x2 \land x3 \land \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$

Решение:

- перепишем выражения в более простой форме, заменив «И» (∧) на умножение и «ИЛИ» (∨)
 на сложение:
 - 1) $\overline{x}_1 \cdot x_2 + x_2 \cdot \overline{x}_3 \cdot \overline{x}_4 + x_2 \cdot \overline{x}_5 + x_5 \cdot x_6 \cdot \overline{x}_7 \cdot \overline{x}_8$
 - 2) $(x_1 \cdot \overline{x}_2 + \overline{x}_3 + x_4) \cdot (x_5 + x_6 + \overline{x}_7 + x_8)$
 - 3) $x_1 \cdot \overline{x}_8 + \overline{x}_3 \cdot x_4 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot x_8$
 - 4) $x_1 \cdot \overline{x}_4 + x_2 \cdot x_3 \cdot \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$
- 2) среди заданных вариантов ответа нет «чистых» конъюнкций и дизъюнкций, поэтому мы должны проверить возможные значения всех выражений для каждой строки таблицы

- 3) подставим в эти выражения известные значения переменных из первой строчке таблицы, $x_2=0$ и $x_8=1$:
 - 1) $\bar{x}_1 \cdot 0 + 0 \cdot x_3 \cdot \bar{x}_4 + 0 \cdot \bar{x}_5 + x_5 \cdot x_6 \cdot \bar{x}_7 \cdot 0 = 0$
 - 2) $(x_1 \cdot 1 + \overline{x}_3 + x_4) \cdot (x_5 + x_6 + \overline{x}_7 + 1) = x_1 + \overline{x}_3 + x_4$
 - 3) $x_1 \cdot 0 + \overline{x}_3 \cdot x_4 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot 1 = \overline{x}_3 \cdot x_4 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7$
 - 4) $x_1 \cdot \overline{x}_4 + 0 \cdot x_3 \cdot \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + 0 = x_1 \cdot \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7$
- 4) видим, что первое выражение при $x_2=0$ и $x_8=1$ всегда равно нулю, поэтому вариант 1 не подходит; остальные выражения вычислимы, то есть, могут быть равны как 0, так и 1
- 5) подставляем в оставшиеся три выражения известные данные из второй строчки таблицы, $x_1 = 1$ и $x_4 = 0$:
 - 2) $(1 \cdot \overline{x}_2 + \overline{x}_3 + 0) \cdot (x_5 + x_6 + \overline{x}_7 + x_8) = (\overline{x}_2 + \overline{x}_3) \cdot (x_5 + x_6 + \overline{x}_7 + x_8)$
 - 3) $1 \cdot \bar{x}_8 + \bar{x}_3 \cdot 0 \cdot x_5 + \bar{x}_6 \cdot \bar{x}_7 \cdot x_8 = \bar{x}_8 + \bar{x}_6 \cdot \bar{x}_7 \cdot x_8$
 - 4) $1 \cdot 1 + x_2 \cdot x_3 \cdot 1 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8 = 1$
- 6) видим, что выражение 4 при этих данных всегда равно 1, поэтому получить F=0, как задано в таблице, невозможно; этот вариант не подходит
- 7) остаются выражения 2 и 3; подставляем в них известные данные из третьей строчки таблицы, $x_{_{\! A}}=1$ и $x_{_{\! B}}=1$:
 - 2) $(x_1 \cdot \overline{x}_2 + \overline{x}_3 + 1) \cdot (x_5 + x_6 + \overline{x}_7 + 1) = 1$
 - 3) $x_1 \cdot 0 + \overline{x}_3 \cdot 1 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot 1 = \overline{x}_3 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7$
- 8) Выражение 2 в этом случае всегда равно 1, поэтому оно не подходит (по таблице истинности оно должно быть равно 0); выражение 3 вычислимо, это и есть правильный ответ
- 9) Ответ: <mark>3</mark>.

Р-08. Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	F
1	0	1	0	1	1	1	0	0
0	1	0	1	1	0	0	1	0
0	1	1	0	1	0	1	0	1

Какое выражение соответствует F?

- 1) $(x2 \rightarrow x1) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land x8$
- 2) $(x2 \rightarrow x1) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x2 \rightarrow x1) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 4) $(x2 \rightarrow x1) \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor \neg x8$

Решение:

1) перепишем выражение в более простой форме, заменив «И» (∧) на умножение и «ИЛИ» (∨) на сложение:

$$(x_{2} \to x_{1}) \cdot \bar{x}_{3} \cdot x_{4} \cdot \bar{x}_{5} \cdot x_{6} \cdot \bar{x}_{7} \cdot x_{8}$$

$$(x_{2} \to x_{1}) + \bar{x}_{3} + x_{4} + \bar{x}_{5} + x_{6} + \bar{x}_{7} + x_{8}$$

$$(x_{2} \to x_{1}) \cdot x_{3} \cdot \bar{x}_{4} \cdot x_{5} \cdot \bar{x}_{6} \cdot x_{7} \cdot \bar{x}_{8}$$

$$(x_{2} \to x_{1}) + x_{3} + \bar{x}_{4} + x_{5} + \bar{x}_{6} + x_{7} + \bar{x}_{8}$$

- 2) в этом задании среди значений функции только одна единица, как у операции «И», это намекает на то, что нужно искать правильный ответ среди вариантов, содержащих «И», «НЕ» и импликацию (это варианты 1 и 3)
- 3) действительно, вариант 2 исключён, потому что при x_4 =1 во второй строке получаем 1, а не 0
- 4) аналогично, вариант 4 исключён, потому что при $x_5=1$ в первой строке получаем 1, а не 0
- 5) итак, остаются варианты 1 и 3; вариант 1 не подходит, потому что при x_6 =0 в третьей строке получаем 0, а не 1
- 6) проверяем подробно вариант 3, он подходит во всех строчках
- 7) Ответ: <mark>3</mark>.

Р-07. Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	F
0	1	0	0	1	1	0
0	0	1	0	0	1	0
0	1	0	1	0	1	0

Какое выражение соответствует F?

- 1) $(x1 \land x2) \lor (x3 \land x4) \lor (x5 \land x6)$
- 2) $(x1 \land x3) \lor (x3 \land x5) \lor (x5 \land x1)$
- 3) $(x2 \land x4) \lor (x4 \land x6) \lor (x6 \land x2)$
- 4) $(x1 \land x4) \lor (x2 \land x5) \lor (x3 \land x6)$

Решение:

- **1)** во-первых, обратим внимание, что в столбце F все нули, то есть, при всех рассмотренных наборах x1, ..., x6 функция ложна
- 2) перепишем предложенные варианты в более простых обозначениях:

$$x_1 \cdot x_2 + x_3 \cdot x_4 + x_5 \cdot x_6$$

$$x_1 \cdot x_3 + x_3 \cdot x_5 + x_5 \cdot x_1$$

$$x_2 \cdot x_4 + x_4 \cdot x_5 + x_6 \cdot x_2$$

$$x_1 \cdot x_4 + x_2 \cdot x_5 + x_3 \cdot x_6$$

- 3) это суммы произведений, поэтому для того, чтобы функция была равна 0, необходимо, чтобы все произведения были равны 0
- 4) по таблице смотрим, какие произведения равны 1:

1-я строка:
$$x_2 \cdot x_5$$
, $x_2 \cdot x_6$ и $x_5 \cdot x_6$

3-я строка:
$$x_2 \cdot x_4$$
, $x_2 \cdot x_6$ и $x_4 \cdot x_6$

5) таким образом, нужно выбрать функцию, где эти произведения не встречаются; отметим их:

$$x_1 \cdot x_2 + x_3 \cdot x_4 + x_5 \cdot x_6$$

$$x_1 \cdot x_3 + x_3 \cdot x_5 + x_5 \cdot x_1$$

$$x_2 \cdot x_4 + x_4 \cdot x_5 + x_6 \cdot x_2$$

$$x_1 \cdot x_4 + x_2 \cdot x_5 + x_3 \cdot x_6$$

- 6) единственная функция, где нет ни одного «запрещённого» произведения это функция 2
- **7)** Ответ: <mark>2</mark>.

Ещё пример задания:

P-06. (<u>http://ege.yandex.ru</u>) Дан фрагмент таблицы истинности выражения *F*.

X ₁	X 2	X 3	X 4	X 5	F
1	1	1	0	0	1
1	1	0	1	1	0
0	0	1	1	1	1

Одно из приведенных ниже выражений истинно при любых значениях переменных x1, x2, x3, x4, x5. Укажите это выражение.

- 1) $F(x1,x2,x3,x4,x5) \rightarrow x1$
- 2) $F(x1,x2,x3,x4,x5) \rightarrow x2$
- 3) $F(x1,x2,x3,x4,x5) \rightarrow x3$
- 4) $F(x1,x2,x3,x4,x5) \rightarrow x4$

Решение:

- 1) во всех заданных вариантах ответа записана импликация, она ложна только тогда, когда левая часть (значение функции F) истинна, а правая ложна.
- 2) выражение 1 ложно для набора переменных в третьей строке таблицы истинности, где F(...)=1 и $x_{\scriptscriptstyle \parallel}=0$, оно не подходит
- 3) выражение 2 ложно для набора переменных в третьей строке таблицы истинности, где $F(\ldots)=1$ и $x_2=0$, оно не подходит
- 4) выражение 3 истинно для всех наборов переменных, заданных в таблице истинности
- 5) выражение 4 ложно для набора переменных в первой строке таблицы истинности, где F(...)=1 и $x_{\scriptscriptstyle A}=0$, оно не подходит
- 6) ответ: <mark>3</mark>.

Ещё пример задания:

Р-05. Дано логическое выражение, зависящее от 5 логических переменных:

$$z1 \land \neg z2 \lor \neg z3 \land \neg z4 \land z5$$

Сколько существует различных наборов значений переменных, при которых выражение ложно?

Решение:

1) перепишем выражение, используя другие обозначения:

$$z_1 \cdot \overline{z}_2 + \overline{z}_3 \cdot \overline{z}_4 \cdot z_5$$

это выражение с пятью переменными, которые могут принимать $2^5 = 32$ различных комбинаций значений

- 2) сначала определим число K комбинаций переменных, для которых выражение истинно; тогда число комбинаций, при которых оно ложно, вычислится как 32 K
- 3) заданное выражение истинно только тогда, когда истинно любое из двух слагаемых: $z_1\cdot \bar{z}_2$, $\bar{z}_3\cdot \bar{z}_4\cdot z_5$ или оба они истинны одновременно
- 4) выражение $z_1 \cdot \bar{z}_2$ истинно только при $z_1 = 1$ и $z_2 = 0$, при этом остальные 3 переменных могут быть любыми, то есть, получаем всего $8 = 2^3$ вариантов
- 5) выражение $\bar{z}_3 \cdot \bar{z}_4 \cdot z_5$ истинно только при $z_3 = z_4 = 0$ и $z_5 = 1$, при этом остальные 2 переменных могут быть любыми, то есть, получаем всего $\frac{4}{3} = 2^2$ варианта
- 6) заметим, что один случай, а именно $z_1=z_5=1$, $z_2=z_3=z_4=0$ обеспечивает истинность обоих слагаемых в исходном выражении, то есть, входит в обе группы (пп. 3 и 4), поэтому

исходное выражение истинно для 11 = 8 + 4 - 1 наборов значений переменных, а ложно - для 32 - 11 = 21 набора.

7) ответ: <mark>21</mark>.

Ещё пример задания:

Р-04. Дан фрагмент таблицы истинности выражения F. Какое выражение соответствует F?

X ₁	<i>X</i> ₂	X 3	X 4	X 5	X 6	X 7	F
0	1	0	1	1	1	0	0
1	1	0	1	0	1	0	1
0	1	0	1	1	0	1	0

- 1) $(x1 \lor x2) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7$
- 2) $(x1 \land x2) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor x7$
- 3) $(x1 \land \neg x2) \land x3 \land \neg x4 \land \neg x5 \land x6 \land \neg x7$
- 4) $(\neg x1 \land \neg x2) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7$

Решение:

- 1) в последнем столбце таблицы всего одна единица, поэтому стоит попробовать использовать функцию, состоящую из цепочки операций «И» (ответы 1, 3 или 4);
- 2) для этой «единичной» строчки получаем, что инверсия (операция «НЕ») должна быть применена к переменным x_3 , x_5 и x_7 , которые равны нулю:

<i>X</i> ₁	X ₂	X 3	X 4	X 5	X 6	X 7	F
1	1	0	1	0	1	0	1

таким образом, остается только вариант ответа 1 (в ответах 3 и 4 переменная х₃ указана без инверсии)

- 3) проверяем скобку ($\mathbf{x1} \lor \mathbf{x2}$): в данном случае она равна 1, что соответствует условию
- 4) ответ: <mark>1</mark>.

Ещё пример задания:

Р-03. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F. Какое выражение соответствует F?

Χ	Υ	Ζ	F
1	0	0	1
0	0	0	1
1	1	1	0

1)
$$\neg X \land \neg Y \land \neg Z$$

2)
$$X \wedge Y \wedge Z$$

$$3) \times \vee \times \vee$$

3)
$$X \lor Y \lor Z$$
 4) $\neg X \lor \neg Y \lor \neg Z$

Решение (основной вариант):

- 1) нужно для каждой строчки подставить заданные значения X, Y и Z во все функции, заданные в ответах, и сравнить результаты с соответствующими значениями F для этих данных
- 2) если для какой-нибудь комбинации X, Y и Z результат не совпадает с соответствующим значением F, оставшиеся строчки можно не рассматривать, поскольку для правильного ответа все три результата должны совпасть со значениями функции F
- 3) перепишем ответы в других обозначениях:

1)
$$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$$
 2) $X \cdot Y \cdot Z$ 3) $X + Y + Z$ 4) $\overline{X} + \overline{Y} + \overline{Z}$

29

- 4) первое выражение, $\overline{X} \cdot \overline{Y} \cdot \overline{Z}$, равно 1 только при X = Y = Z = 0 , поэтому это неверный ответ (первая строка таблицы не подходит)
- 5) второе выражение, $X \cdot Y \cdot Z$, равно 1 только при X = Y = Z = 1 , поэтому это неверный ответ (первая и вторая строки таблицы не подходят)

- 6) третье выражение, X+Y+Z , равно нулю при X=Y=Z=0 , поэтому это неверный ответ (вторая строка таблицы не подходит)
- 7) наконец, четвертое выражение, $\overline{X}+\overline{Y}+\overline{Z}$ равно нулю только тогда, когда X=Y=Z=1, а в остальных случаях равно 1, что совпадает с приведенной частью таблицы истинности
- 8) таким образом, правильный ответ 4; частичная таблица истинности для всех выражений имеет следующий вид:

X	Y	Z	F	$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$	$X \cdot Y \cdot Z$	X + Y + Z	$\overline{X} + \overline{Y} + \overline{Z}$
1	0	0	1	0 ×	0 ×	1	1
0	0	0	1	_	_	0 ×	1
1	1	1	0	_	_	_	0

(красный крестик показывает, что значение функции не совпадает с F, а знак «–» означает, что вычислять оставшиеся значения не обязательно).

Возможные ловушки и проблемы:

- серьезные сложности представляет применяемая в заданиях ЕГЭ форма записи логических выражений с «закорючками», поэтому рекомендуется сначала *внимательно* перевести их в «удобоваримый» вид;
- расчет на то, что ученик перепутает значки ∧ и ∨ (неверный ответ 1)
- в некоторых случаях заданные выражения-ответы лучше сначала упростить, особенно если они содержат импликацию или инверсию сложных выражений (как упрощать см. разбор задачи A10)

Решение (вариант 2):

- 1) часто правильный ответ это самая простая функция, удовлетворяющая частичной таблице истинности, то есть, имеющая единственный нуль или единственную единицу в полной таблице истинности
- 2) в этом случае можно найти такую функцию и проверить, есть ли она среди данных ответов
- 3) в приведенной задаче в столбце F есть единственный нуль для комбинации X=Y=Z=1
- 4) выражение, которое имеет единственный нуль для этой комбинации, это $\overline{X}+\overline{Y}+\overline{Z}$, оно есть среди приведенных ответов (ответ 4)
- 5) таким образом, правильный ответ 4

Возможные проблемы:

• метод применим не всегда, то есть, найденная в п. 4 функция может отсутствовать среди ответов

Еще пример задания:

P-02. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: X, Y, Z. Дан фрагмент таблицы истинности выражения F:

Χ	Υ	Ζ	F
1	0	0	1
0	0	0	0
1	1	1	0

Какое выражение соответствует F?

1)
$$\neg X \land \neg Y \land \neg Z$$
 2) $X \land Y \land Z$ 3) $X \land \neg Y \land \neg Z$ 4) $X \lor \neg Y \lor \neg Z$

Решение (вариант 2):

1) перепишем ответы в других обозначениях:

1)
$$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$$
 2) $X \cdot Y \cdot Z$ 3) $X \cdot \overline{Y} \cdot \overline{Z}$ 4) $X + \overline{Y} + \overline{Z}$

- 2) в столбце F есть единственная единица для комбинации X=1, Y=Z=0, простейшая функция, истинная (только) для этого случая, имеет вид $X\cdot \overline{Y}\cdot \overline{Z}$, она есть среди приведенных ответов (ответ 3)
- 3) таким образом, правильный ответ 3.

Р-01. Дано логическое выражение, зависящее от 5 логических переменных:

$$X_1 \wedge \neg X_2 \wedge X_3 \wedge \neg X_4 \wedge X_5$$

Сколько существует различных наборов значений переменных, при которых выражение ложно?

1) 1

2) 2

3) 31

4) 32

Решение (вариант 2):

1) перепишем выражение в других обозначениях:

$$X_1 \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} \cdot X_5$$

- 2) таблица истинности для выражения с пятью переменными содержит 2^5 = 32 строки (различные комбинации значений этих переменных)
- 3) логическое произведение истинно в том и только в том случае, когда все сомножители равны 1, поэтому только один из этих вариантов даст истинное значение выражения, а остальные 32-1=31 вариант дают ложное значение.
- 4) таким образом, правильный ответ -3.

Р-00. Дан фрагмент таблицы истинности выражения F.

x1	x2	хЗ	х4	х5	х6	х7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	0
0	1	0	1	1	0	0	1

Какое выражение соответствует F?

- 1) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7$
- 2) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 3) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$

Решение (вариант 2):

- 1) перепишем выражения 1-4 в других обозначениях:
 - 1. $\overline{x}_1 \cdot x_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7$
 - 2. $\bar{x}_1 + x_2 + \bar{x}_3 + x_4 + \bar{x}_5 + \bar{x}_6 + x_7$
 - 3. $x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7$
 - 4. $x_1 + \overline{x}_2 + x_3 + \overline{x}_4 + \overline{x}_5 + x_6 + \overline{x}_7$
- 2) поскольку в столбце F есть два нуля, это не может быть выражение, включающее только операции «ИЛИ» (логическое сложение), потому что в этом случае в таблице был бы только один ноль, поэтому варианты 2 и 4 отпадают:
 - 1. $\overline{x}_1 \cdot x_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7$
 - 3. $x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7$

аналогично, если бы в таблице был один ноль и две единицы, это не могла бы быть цепочка операций «И», которая всегда дает только одну единицу;

- 3) для того, чтобы в последней строке таблицы получилась единица, нужно применить операцию «НЕ» (инверсию) к переменным, значения которых в этой строке равны нулю, то есть к x_1, x_3, x_6 и x_7 ; остальные переменные инвертировать не нужно, так как они равны 1; видим, что эти условия в точности совпадают с выражением 1, это и есть правильный ответ
- 4) Ответ: <mark>1.</mark>

Задачи для тренировки1:

1) Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

Χ	Y	Ζ	F
1	1	1	1
1	1	0	1
1	0	1	1

1) $X \vee \neg Y \vee Z$

2) $X \wedge Y \wedge Z$

3) $X \wedge Y \wedge \neg Z$

 $4) \neg X \lor Y \lor \neg Z$

Ζ F Χ Υ 0 0 0 1 1 | 1 | 0 | 1

2) Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $\neg X \lor Y \lor \neg Z$

2) $X \wedge Y \wedge \neg Z$

3) $\neg X \land \neg Y \land Z$

4) $X \vee \neg Y \vee Z$

1	0	1	0
Χ	Υ	Ζ	F
0	0	0	1

3) Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $X \wedge Y \wedge Z$

2) $\neg X \land \neg Y \land Z$

3) $X \wedge Y \wedge \neg Z$

4) $\neg X \land \neg Y \land \neg Z$

0 1 0 0 0

 Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $\neg X \land \neg Y \land Z$

2) $\neg X \lor \neg Y \lor Z$ 3) $X \lor Y \lor \neg Z$

 $4) \times \times \times \times Z$

Χ	Υ	Ζ	F
0	0	0	1
0	0	1	0
0	1	0	1

5) Символом F обозначена логическая функция от двух аргументов (А и В), заданная таблицей истинности. Какое выражение соответствует F?

1) $A \rightarrow (\neg A \lor \neg B)$ 2) $A \land B$

3) $\neg A \rightarrow B$

4) ¬A ∧ ¬B

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

6) Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $X \wedge Y \wedge Z$

2) $\neg X \lor Y \lor \neg Z$ 3) $X \land (Y \lor Z)$

4) $(X \vee Y) \wedge \neg Z$

Υ	Ζ	F
0	0	0
1	0	1
0	0	1
	1	1 0

Χ Υ Ζ F 0 0 0 1 1 0 0 0 1 1

¹ Источники заданий:

^{1.} Демонстрационные варианты ЕГЭ 2004-2016 гг.

^{2.} Тренировочные и диагностические работы МИОО.

^{3.} Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.

^{4.} Якушкин П.А., Лещинер В.Р., Кириенко Д.П. ЕГЭ 2010. Информатика. Типовые тестовые задания. — М.: Экзамен, 2010, 2011.

^{5.} Якушкин П.А., Ушаков Д.М. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010. Информатика. — М.: Астрель, 2009.

^{6.} Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И. Информатика. ЕГЭ шаг за шагом. — М.: НИИ школьных технологий, 2010.

^{7.} Чуркина Т.Е. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.

^{8.} Самылкина Н.Н., Островская Е.М. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.:

^{9.} Крылов С.С., Ушаков Д.М. ЕГЭ 2015. Информатика. Тематические тестовые задания. — М.: Экзамен, 2015.

^{10.} Ушаков Д.М. ЕГЭ-2015. Информатика. 20 типовых вариантов экзаменационных работ для подготовки к ЕГЭ. М.: Астрель, 2014.

/)				их выражении от трех арицу справа). Какое выр	•		в: х,	Υ,
	1) $X \vee Y \wedge Z$	2) $\mathbf{X} \vee \mathbf{Y} \vee \mathbf{Z}$	3) $\mathbf{X} \wedge \mathbf{Y} \vee \mathbf{Z}$	$4)\neg X \vee \neg Y \wedge \neg Z$				
8)	Символом F обознач	ено одно из указан	іных ниже логически	іх выражений от трех	Χ	Υ	Ζ	F
•		* * * * * * * * * * * * * * * * * * * *		жения F (см. таблицу	0	0	0	1
	справа). Какое вырах		•	, ,,	0	0	1	1
		•	Z 3)¬(X∧Y)∨	Z 4) (X \ Y) \ Z	0	1	0	1
٥١	Cumpo som E okonyo			.v. n. mayyayyğ a .		1,4	_	
9)	Символом F обознач	• • •		·	X	Υ	Ζ	F
	трех аргументов: X, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?			выражения г (см.	0	0	0	0
				4)	1	0	1	1
	1) $X \wedge Y \wedge Z$	2) ¬ X ∨ Y ∨ ¬ Z	3) X ∧ Y ∨ Z	4) X ∨ Y ∧ ¬Z	0	1	0	1
10)		• •		нтов (А и В), заданная	[,	Α	В	F
	таблицей истинност	и. Какое выражени	е соответствует F?		L	0	0	0
	1) A $ ightarrow$ ($ ightarrow$ (A \wedge $ ightarrow$ E	3)) 2)A∧B	3) ¬ A → B	4) ¬A ∧ B	L	0	1	1
						1	0	1
						1	1	1
11)				іх выражений от трех	<u> </u>	Υ	Z	F
	аргументов: Х, Ү, Z. Д		•	жения F (см.	1	1	1	1
	таблицу справа). Кан	•	•		1	1	0	1
	1) $X \wedge Y \wedge Z$	$2) \neg X \lor \neg Y \lor Z$	3) $\mathbf{X} \vee \mathbf{Y} \vee \mathbf{Z}$	4) $X \wedge Y \wedge \neg Z$	1	0	1	1
					1	U	1	1
12) Символом F обозначено одно из указанных ниже логических выражений от				Х	Υ	Ζ	F	
	трех аргументов: Х, \		·	выражения F (см.	1	0	0	0
	таблицу справа). Как	•	•					
	1) $\neg X \lor Y \lor Z$	2) $\mathbf{X} \wedge \mathbf{Y} \wedge \neg \mathbf{Z}$	3) $\neg X \land \neg Y \land Z$	$4) \times \vee \neg Y \vee \neg Z$	0	0	0	1
					1	0	1	1
13)	Символом F обознач			•	Х	Υ	Ζ	F
трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см.			-					
	таблицу справа). Кан	кое выражение соот	гветствует F?		0	1	1	1
	1) $\neg X \lor Y \lor \neg Z$	2) $\neg X \wedge Y \wedge Z$	3) $\mathbf{X} \wedge \neg \mathbf{Y} \wedge \neg \mathbf{Z}$	$4)\neg X \vee \neg Y \vee Z$	0	1	0	0
					1	0	1	0
14)	Символом F обознач	ено одно из указан	іных ниже логически	іх выражений от		14	-	-
	трех аргументов: Х,	/, Z. Дан фрагмент т	аблицы истинности і	выражения F (см.	X	Υ	Z	F
	таблицу справа). Кан	кое выражение соот	гветствует F?		1	0	0	0
	1) $\neg X \wedge Y \wedge Z$	2) $X \land \neg Y \land \neg Z$	3) $\mathbf{X} \vee \neg \mathbf{Y} \vee \neg \mathbf{Z}$	$\mathbf{4)}\neg\mathbf{X}\vee\mathbf{Y}\vee\mathbf{Z}$	0	0	1	1
					0	0	0	1
15)	Дан фрагмент табли	цы истинности выр	ажения F (см. таблиц	цу справа). Какое		14		_
	выражение соответс	твует F?			X	Υ	Ζ	F
	1) $X \wedge Y \wedge Z$	2) $\neg x \lor \neg y \lor z$	3) $\mathbf{X} \vee \mathbf{Y} \vee \mathbf{Z}$	4) $X \wedge Y \wedge \neg Z$	1	1	1	1
					1	1	0	1
					1	0	1	1
16)	Дан фрагмент табли	цы истинности выр	ажения F (см. таблиц	цу справа). Какое				-
	выражение соответс	твует F?			X	Υ	Ζ	F
	1) $X \wedge Y \vee Z$	2) $\neg X \lor \neg Y \lor \neg Z$	3) ($X \lor Y$) $\land \neg Z$	4) $(x \vee y) \rightarrow z$	0	0	0	1

34

17) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое				
выражение соответствует F?	X	Y	Ζ	F
1) $(\mathbf{X} \vee \neg \mathbf{Y}) \rightarrow \mathbf{Z}$ 2) $(\mathbf{X} \vee \mathbf{Y}) \rightarrow \neg \mathbf{Z}$ 3) $\mathbf{X} \vee (\neg \mathbf{Y} \rightarrow \mathbf{Z})$ 4) $\mathbf{X} \vee \mathbf{Y} \wedge \neg \mathbf{Z}$	0	0	0	0
	1	0	0	1
18) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое				
выражение соответствует F?	Χ	Y	Ζ	F
1) $X \wedge Y \vee Z$ 2) $(X \vee Y) \rightarrow \neg Z$ 3) $(\neg X \vee Y) \wedge Z$ 4) $X \rightarrow \neg Y \vee Z$	1	1	0	1
	1	0	1	0
	0	0	1	1
19) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое		1	1 1	
выражение соответствует F?	Χ	Υ	Ζ	F
1) $(\mathbf{x} \to \mathbf{Y}) \to \mathbf{z}$ 2) $\mathbf{x} \to (\mathbf{Y} \to \mathbf{z})$ 3) $\neg \mathbf{x} \vee \mathbf{Y} \to \mathbf{z}$ 4) $\mathbf{x} \vee \mathbf{Y} \wedge \neg \mathbf{z}$	0	1	0	1
	1	1	1	1
	1	1	0	0
20) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое		.,		
выражение соответствует F?	X	Y	Ζ	F
1) $(\neg x \lor \neg y) \land z$ 2) $x \land y \lor z$ 3) $(x \rightarrow y) \land z$ 4) $x \land (y \lor z)$	0	0	1	1
	1	0	1	0
	1	1	1	1
21) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	V	Υ	Ζ	F
выражение соответствует F?	X		1	
1) $(\mathbf{X} \to \mathbf{Z}) \wedge \mathbf{Y}$ 2) $\mathbf{X} \wedge \mathbf{Y} \vee \mathbf{Z}$ 3) $\mathbf{X} \vee \mathbf{Y} \vee \mathbf{Z}$ 4) $\mathbf{X} \wedge (\mathbf{Y} \to \mathbf{Z})$	0	1		0
	1	0	0	1
	1	1	U	0
		Ι.,	I _ I	
22) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	X	Y	Z	F
выражение соответствует F?	1	1	0	1
1) $\mathbf{X} \wedge \mathbf{Y} \vee \mathbf{Z}$ 2) $(\mathbf{X} \vee \mathbf{Y}) \rightarrow \neg \mathbf{Z}$ 3) $(\neg \mathbf{X} \vee \mathbf{Y}) \wedge \mathbf{Z}$ 4) $\mathbf{X} \rightarrow (\neg \mathbf{Y} \vee \mathbf{Z})$	1	0	1	0
	0	0	1	1
23) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	X	Y	Ζ	F
выражение соответствует F?	0	0	0	0
1) $(X \lor \neg Y) \to Z$ 2) $(X \lor Y) \to \neg Z$ 3) $X \lor (\neg Y \to Z)$ 4) $X \lor Y \land \neg Z$	0	1	1	1
$1/(\mathbf{A} \vee \mathbf{\Pi} \mathbf{I}) \neq \mathbf{Z} \qquad 2/(\mathbf{A} \vee \mathbf{I}) \neq \mathbf{Z} \qquad 3/\mathbf{A} \vee (\mathbf{\Pi} \mathbf{I} \neq \mathbf{Z}) \qquad 4/\mathbf{A} \vee \mathbf{I} \wedge \mathbf{Z}$	1	0	0	1
			U	
24) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?	1	0	0	1
1) $\neg X \land Y \land Z$ 2) $X \land \neg Y \land \neg Z$ 3) $X \lor \neg Y \lor \neg Z$ 4) $\neg X \lor Y \lor Z$	0	1	1	0
	0	0	0	1
				_
25) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?				0
·	0	0	1	1
35 http:/	/kr0nl	vatro	v On	^

F

1

0

0

F

0

1

1

F

1

1

1

F

0

1

0

F

0

0

1

1

1

0

0

1

0

Ζ 26) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 1 1 выражение соответствует F? 0 1 0 1) $\neg X \wedge Y \wedge Z$ 2) $\neg X \lor Y \lor \neg Z$ 3) $X \land \neg Y \land \neg Z$ 4) $\neg X \lor \neg Y \lor Z$ 1 0 Ζ 27) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 0 1 выражение соответствует F? 1 1 1 1) $X \wedge \neg Y \wedge \neg Z$ 2) $\neg X \land \neg Y \land Z$ 3) $\neg X \lor \neg Y \lor Z$ 4) $X \vee \neg Y \vee \neg Z$ 0 0 1 Ζ Χ 28) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 1 1 1 выражение соответствует F? 1 1 0 1) $X \vee \neg Y \vee Z$ 2) $\mathbf{X} \wedge \mathbf{Y} \wedge \mathbf{Z}$ 3) $X \wedge Y \wedge \neg Z$ 4) $\neg X \lor Y \lor \neg Z$ 1 0 1 Χ Ζ 29) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 1 0 выражение соответствует F? 1 1) $(x \sim z) \wedge (\neg x \rightarrow y)$ 2) $(\neg x \sim z) \land (\neg x \rightarrow y)$ 1 0 1 1 3) $(X \sim \neg Z) \wedge (\neg X \rightarrow Y)$ 4) $(X \sim Z) \land \neg (Y \rightarrow Z)$ Знак \sim означает «эквивалентность», то есть « $\mathbf{X} \sim \mathbf{Z}$ » значит «значения \mathbf{X} и \mathbf{Z} совпадают». Χ Ζ 30) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 0 0 1 выражение соответствует F? 1 1 1 1) $\neg X \lor \neg Y \lor \neg Z$ 2) $\neg X \land \neg Y \land Z$ 3) $X \land (Y \lor \neg Z)$ 0 0 4) $(X \wedge \neg Y) \vee \neg Z$ 31) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 0 1 выражение соответствует F? 0 2) $A \land C \lor A \land \neg B$ 3) $A \land C \lor \neg A \land \neg C$ 0 0 1) $A \wedge B \vee \neg A \wedge C$ 1 0 1 4) $A \wedge (C \vee \neg B) \wedge \neg C$ 32) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое 1 0 0 выражение соответствует F? 1 1 1 1) $A \rightarrow \neg B \land \neg C$ 2) $A \rightarrow B \wedge C$ 3) $\neg A \rightarrow B \wedge C$ 1 4) $(A \rightarrow B) \rightarrow C$ 0

3) $\neg X \lor \neg Y \lor Z$

4) $X \vee Y \vee \neg Z$

2) $\neg X \land \neg Y \land Z$

1) $X \wedge Y \wedge \neg Z$

4) $X \vee \neg Y \wedge Z$

3) $X \wedge Y \wedge \neg Z$

33) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое

2) $\neg X \lor Y \lor Z$

выражение соответствует F?

1) $(X \vee Y) \wedge \neg Z$

34) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1)	X	V	Y	\rightarrow	Z
----	---	---	---	---------------	---

2)
$$\neg x \lor y \to z$$
 3) $\neg x \land z \to y$

3)
$$\neg x \wedge z \rightarrow y$$

4)
$$X \vee \neg Z \rightarrow Y$$

Χ	Υ	Ζ	F
0	0	0	1
0	0	1	0
0	1	0	1

35) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1)
$$(A \rightarrow \neg B) \lor C$$
 2) $(\neg A \lor B) \land C$

3)
$$(A \land B) \rightarrow C$$

4)
$$(A \lor B) \rightarrow C$$

Α	В	С	F
0	1	1	1
1	0	0	0
1	0	1	1

36) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1)
$$X \rightarrow Z \wedge Y$$

2)
$$\neg z \rightarrow (x \rightarrow y)$$

3)
$$\neg$$
 (X \vee Y) \wedge Z 4) \neg X \vee \neg (Y \wedge Z)

37) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1)
$$\neg x \rightarrow z \wedge y$$

2)
$$z \rightarrow x \vee y$$

3)
$$(\neg X \lor Y) \land Z$$

4)
$$X \vee Y \rightarrow \neg Z$$

Χ	Υ	Ζ	F
0	1	0	1
1	0	1	0
1	0	0	1

38) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	1	1
1	0	1	0	1	1	0	0
0	1	0	1	1	0	1	1

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land x6 \land x7$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$

39) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	1	1
1	0	1	0	1	1	1	0
0	1	0	1	1	0	1	1

37

- 1) $\neg x1 \land \neg x2 \land x3 \land x4 \land x5 \land x6 \land \neg x7$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 3) $x1 \land x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land x7$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$

40) (http://ege.yandex.ru) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	F
0	1	0	1	1	0
0	1	1	1	0	1
0	1	0	1	1	0

Какое выражение может соответствовать F?

- 1) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5$
- 2) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5$
- 3) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5$
- 4) $\neg x1 \land x2 \land x3 \land x4 \land \neg x5$
- 41) Дано логическое выражение, зависящее от 6 логических переменных:

$$X_1 \wedge \neg X_2 \wedge X_3 \wedge \neg X_4 \wedge X_5 \wedge X_6$$

Сколько существует различных наборов значений переменных, при которых выражение истинно?

- 1) 1
- 2) 2
- 3) 63
- 4) 64

42) Дано логическое выражение, зависящее от 6 логических переменных:

$$X_1 \vee \neg X_2 \vee X_3 \vee \neg X_4 \vee X_5 \vee X_6$$

Сколько существует различных наборов значений переменных, при которых выражение истинно?

- 1) 1
- 2) 2
- 3) 63
- 4) 64

43) Дано логическое выражение, зависящее от 7 логических переменных:

$$X_1 \lor \neg X_2 \lor X_3 \lor \neg X_4 \lor \neg X_5 \lor \neg X_6 \lor \neg X_7$$

Сколько существует различных наборов значений переменных, при которых выражение ложно?

- 1) 1
- 2) 2
- 3) 127
- 4) 128

44) Дан фрагмент таблицы истинности выражения F.

x1	x2	хЗ	х4	х5	х6	х7	F
0	1	0	1	1	1	0	0
1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	0

- 1) $x1 \rightarrow (x2 \land x3 \lor x4 \land x5 \lor x6 \land x7)$
- 2) $x2 \rightarrow (x1 \land x3 \lor x4 \land x5 \lor x6 \land x7)$
- 3) $x3 \rightarrow (x1 \land x2 \lor x4 \land x5 \lor x6 \land x7)$
- 4) $x4 \rightarrow (x1 \land x2 \lor x3 \land x5 \lor x6 \land x7)$
- 45) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	0	0
1	1	0	1	0	0	1	0
0	1	0	1	0	1	1	0

Какое выражение соответствует F?

- 1) $(x2 \land x3 \lor x4 \land x5 \lor x6 \land x7) \rightarrow x1$
- 2) $(x1 \land x3 \lor x4 \land x5 \lor x6 \land x7) \rightarrow x2$
- 3) $(x1 \land x2 \lor x4 \land x5 \lor x6 \land x7) \rightarrow x3$
- 4) $(x1 \land x2 \lor x3 \land x5 \lor x6 \land x7) \rightarrow x4$
- 46) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	F
1	0	0	0	0	1	0
0	1	1	0	0	1	0
0	0	0	0	1	1	0

Какое выражение соответствует F?

- 1) $x1 \land x5 \lor x2 \land x4 \lor x6 \land x3$
- 2) $x1 \wedge x3 \vee x2 \wedge x5 \vee x6 \wedge x4$
- 3) $x1 \wedge x4 \vee x3 \wedge x5 \vee x6 \wedge x2$
- 4) $x1 \wedge x2 \vee x3 \wedge x4 \vee x6 \wedge x5$
- 47) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	F
1	1	0	0	0	1	0
1	0	1	0	0	1	0
1	1	0	1	0	0	0

Какое выражение соответствует F?

- 1) $x1 \wedge x2 \vee x3 \wedge x4 \vee x5 \wedge x6$
- 2) $x1 \wedge x3 \vee x4 \wedge x5 \vee x6 \wedge x2$
- 3) $x1 \land x4 \lor x2 \land x5 \lor x6 \land x3$
- 4) $x1 \wedge x5 \vee x2 \wedge x3 \vee x6 \wedge x4$
- 48) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
1	1	0	1	1	1	1	1
1	0	1	0	1	1	0	0
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 2) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 3) $x1 \wedge x2 \wedge \neg x3 \wedge x4 \wedge x5 \wedge x6 \wedge x7$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 49) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	1
0	1	0	1	1	0	1	0

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$

4) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$

50) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	F
1	1	0	1	1	1	1	1
1	0	1	0	1	1	0	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 2) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$

51) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	0	0
1	1	0	1	0	1	0	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 2) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor x7$
- 3) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7$
- 4) $x1 \wedge x2 \wedge \neg x3 \wedge x4 \wedge \neg x5 \wedge x6 \wedge \neg x7$

52) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	0	0
0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \wedge x2 \wedge \neg x3 \wedge \neg x4 \wedge x5 \wedge x6 \wedge \neg x7$
- 2) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \land \neg x2 \land x3 \land x4 \land \neg x5 \land \neg x6 \land x7$
- 4) $\neg x1 \lor \neg x2 \lor x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$

53) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	x4	x5	х6	<i>x7</i>	F
0	1	0	1	1	1	0	1
1	0	1	1	0	0	1	1
1	1	0	1	1	0	1	0

- 1) $x1 \wedge x2 \wedge \neg x3 \wedge x4 \wedge x5 \wedge \neg x6 \wedge x7$
- 2) $x1 \lor x2 \lor \neg x3 \lor x4 \lor x5 \lor \neg x6 \lor x7$
- 3) $\neg x1 \land \neg x2 \land x3 \land \neg x4 \land \neg x5 \land x6 \land \neg x7$
- 4) $\neg x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 54) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	0	1
1	0	1	1	0	0	1	1
0	1	0	1	0	1	0	0

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7$
- 2) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 55) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	х8	х9	x10	F
0	1	0	1	1	1	0	1	1	1	1
1	0	1	1	0	0	1	1	1	0	1
0	1	0	1	0	1	0	0	1	0	0

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 3) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor x9 \lor \neg x10$
- 56) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	х8	х9	x10	F
0	1	0	1	1	1	0	1	1	1	0
1	0	1	1	0	0	1	1	1	0	0
0	1	0	1	0	1	0	0	1	0	1

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 3) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor x9 \lor \neg x10$
- 57) (http://ege.yandex.ru) Дано логическое выражение, зависящее от 6 логических переменных:

$$\neg x1 \lor \neg x2 \lor \neg x3 \lor x4 \lor x5 \lor x6$$

Сколько существует различных наборов значений переменных, при которых выражение истинно?

- 1) 1
- 2) 2
- 3) 61
- 4) 63
- 58) (http://ege.yandex.ru) Дано логическое выражение, зависящее от 5 логических переменных:

$$(\neg x1 \lor \neg x2 \lor \neg x3 \lor x4 \lor x5) \land (x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5)$$

Сколько существует различных наборов значений переменных, при которых выражение истинно?

- 1) 0
- 2) 30
- 3) 31
- 4) 32

59) Дан фрагмент таблицы истинности выражения F.

x1	x2	хЗ	х4	x5	х6	х7	F
0	1	0	1	1	1	0	0
0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \wedge x2 \wedge \neg x3 \wedge \neg x4 \wedge x5 \wedge (x6 \vee \neg x7)$
- 2) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor (x6 \land \neg x7)$
- 3) $\neg x1 \lor \neg x2 \lor x3 \lor x4 \lor \neg x5 \lor (\neg x6 \land x7)$
- 4) $\neg x1 \land \neg x2 \land x3 \land x4 \land \neg x5 \land (\neg x6 \lor x7)$

60) (<u>http://ege.yandex.ru</u>) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	F
1	1	0	0	0	1	0
1	0	1	0	0	1	0
1	1	0	1	0	0	0

Какое выражение соответствует F?

- 1) $(x1 \land x2) \lor (x3 \land x4) \lor (x5 \land x6)$
- 2) $(x1 \land x3) \lor (x4 \land x5) \lor (x6 \land x2)$
- 3) $(x1 \land x4) \lor (x2 \land x5) \lor (x6 \land x3)$
- 4) $(x1 \land x5) \lor (x2 \land x3) \lor (x6 \land x4)$

61) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	F
1	0	1	0	1	1	1	0	1
0	1	0	1	1	0	0	1	1
1	0	1	0	1	0	1	0	0

Какое выражение соответствует F?

- 1) $(x1 \rightarrow x2) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land x8$
- 2) $(x1 \rightarrow x2) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x1 \rightarrow x2) \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 4) $\neg (x1 \rightarrow x2) \land x3 \land \neg x4 \land \neg x5 \land \neg x6 \land x7 \land \neg x8$

62) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	F
1	0	1	0	1	1	1	0	0
0	1	0	1	1	0	0	1	0
1	0	1	0	1	0	1	0	1

Какое выражение соответствует F?

- 1) $(x1 \rightarrow x2) \land \neg x3 \land x4 \land x5 \land x6 \land \neg x7 \land x8$
- 2) $(x1 \rightarrow x2) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x1 \rightarrow x2) \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 4) $\neg (x1 \rightarrow x2) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land \neg x8$

63) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	х9	x10	F
0	1	0	1	1	1	0	1	1	1	1
1	0	1	1	0	0	1	1	1	0	1
0	1	0	1	0	1	0	0	1	0	0

Какое выражение соответствует F?

- 1) $(x1 \lor \neg x2) \land (x3 \lor \neg x4) \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $(x1 \land \neg x2) \lor (x3 \land \neg x4) \lor x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 3) $(\neg x1 \land x2) \lor (\neg x3 \land x4) \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor x9 \lor \neg x10$
- 4) $(\neg x1 \lor x2) \land (\neg x3 \lor x4) \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 64) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	х9	x10	F
0	1	1	0	1	1	0	1	1	1	1
1	0	1	1	0	0	1	1	1	0	0
1	0	0	0	1	1	0	0	1	0	1

Какое выражение соответствует F?

- 1) $(x1 \lor \neg x2) \land (x3 \lor \neg x4) \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $(x1 \land \neg x2) \lor (x3 \land \neg x4) \lor \neg x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 3) $(\neg x1 \land x2) \lor (\neg x3 \land x4) \lor x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor \neg x9 \lor x10$
- 4) $(\neg x1 \lor x2) \land (\neg x3 \lor x4) \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 65) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	F
1	1	0	0	0	0	0
1	0	1	0	0	1	0
1	0	0	1	0	0	0

Какое выражение соответствует F?

- 1) $(x1 \land x2) \lor (x3 \land x4) \lor (x5 \land x6)$
- 2) $(x1 \land x3) \lor (x3 \land x5) \lor (x5 \land x1)$
- 3) $(x2 \wedge x4) \vee (x4 \wedge x6) \vee (x6 \wedge x2)$
- 4) $(x1 \land x4) \lor (x2 \land x5) \lor (x3 \land x6)$
- 66) Дан фрагмент таблицы истинности выражения F.

	x1	x2	х3	х4	х5	х6	х7	х8	F
Ī	1	0	1	0	1	1	1	0	0
Ī	0	1	0	1	1	0	0	1	0
Ī	1	0	0	1	0	1	0	1	1

Какое выражение соответствует F?

- 1) $(x2 \rightarrow x1) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land x8$
- 2) $(x2 \rightarrow x1) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x2 \rightarrow x1) \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 4) $(x2 \rightarrow x1) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 67) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	<i>x</i> 7	х8	F
		1				1		0
1					1			1
			1				1	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 68) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	х7	х8	F
----	----	----	----	----	----	----	----	---

	1			1		0
1			1			1
		1			1	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $x1 \wedge x2 \wedge \neg x3 \wedge x4 \wedge x5 \wedge \neg x6 \wedge \neg x7 \wedge \neg x8$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 69) Дан фрагмент таблицы истинности для выражения F:

Ī	x1	x2	х3	х4	х5	х6	х7	х8	F
Ī			0				1		1
Ī	1					1			1
ſ				1				0	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 70) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
		0				1		0
1					0			0
		0				1		1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 71) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	x7	х8	F
		0				1		1
1		0			1			0
			1				0	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 72) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	<i>x</i> 7	х8	F
		0				1		0
1		0			1			1
			1				0	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 73) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	F
			1		0		1
			0			1	1
0			1				0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 3) $x1 \wedge x2 \wedge \neg x3 \wedge x4 \wedge x5 \wedge \neg x6 \wedge \neg x7$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 74) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	<i>x</i> 7	F
			1		0		0
			0			1	1
0			1				0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land x7$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 3) $x1 \wedge x2 \wedge \neg x3 \wedge x4 \wedge x5 \wedge \neg x6 \wedge x7$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 75) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	1	0	0	0	0
1	0	1	0	1	1	1
0	1	1	1	0	0	1

Укажите минимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x1 совпадает с F.

76) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	1	1	0	0	1
0	0	0	0	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.

77) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	1	1	0	0	0
0	1	0	0	1	1	1
0	0	0	0	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x4 не совпадает с F.

78) Дан фрагмент таблицы истинности для выражения F:

	x1	x2	х3	х4	x5	х6	х7	F
ĺ	0	0	1	1	0	0	1	0
	0	1	0	0	1	1	0	1
I	0	0	0	0	1	1	1	1
ĺ	1	0	1	0	1	1	0	1
	0	1	1	1	0	1	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x4 не совпадает с F.

79) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	F
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	1
0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	1
0	1	1	1	0	1	0	1

Укажите минимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x5 совпадает с F.

80) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x6 не совпадает с F.

81) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x7 не совпадает с F.

82) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	1	1	0	0	1
0	0	0	0	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение выражения $x3 \wedge x4$ не совпадает с F.

83) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	0	1	0	0	0
0	1	0	0	1	1	1
0	0	1	1	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $x2 \lor x4$ не совпадает с F.

84) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	F
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	1
0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	1
0	1	1	1	0	1	1	1

46

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $x4 \land \neg x7$ не совпадает с F.

85) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	F
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	1
0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	1
0	1	1	1	0	1	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $\neg x5 \lor x1$ совпадает с F.

86) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	0	0	1	1
0	0	0	0	1	1	1	1	1
1	1	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1
1	0	0	1	1	1	1	1	0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $x6 \land \neg x2$ совпадает с F.

87) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $\neg x7 \lor \neg x5$ не совпадает с F.

- 88) Каждое логическое выражение A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?
- 89) Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения $A \lor B$?
- 90) Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 5 единиц. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?
- 91) Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения $A \wedge B$?
- 92) Каждое из логических выражений A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Сколько единиц будет содержаться в столбце значений таблицы истинности выражения A ∧ B?

- 93) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Сколько единиц будет содержаться в столбце значений таблицы истинности выражения A ∨ B?
- 94) Каждое из логических выражений A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения ¬А ∨ В?
- 95) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 5 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ ¬В?
- 96) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 4 единицы в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧ В?
- 97) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 8 единиц в каждой таблице. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения ¬А ∧ В?
- 98) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 4 единицы в каждой таблице. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения A ∨ ¬В?
- 99) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 5 единиц в каждой таблице. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∨ ¬В?
- 100) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 4 единицы в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∨ В?
- 101) Каждое из логических выражений А и В зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 18 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧ В?
- 102) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 25 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧¬В?
- 103) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений А и В зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 8 единиц в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧ ¬В?
- 104) (**М.В. Малышев, г. Кострома**) Каждое из логических выражений A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 8 единиц в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬ (A ∧ B)?

- 105) Каждое из логических выражений A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 17 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения ¬(A ∧ B)?
- 106) Каждое из логических выражений F и G содержит 7 переменных. В таблицах истинности выражений F и G есть ровно 8 одинаковых строк, причем ровно в 5 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?
- 107) Каждое из логических выражений F и G содержит 6 переменных. В таблицах истинности выражений F и G есть ровно 10 одинаковых строк, причем ровно в 3 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?
- 108) Каждое из логических выражений F и G содержит 8 переменных. В таблицах истинности выражений F и G есть ровно 7 одинаковых строк, причем ровно в 3 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∧ G содержит 0 в столбце значений?
 109) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
1	0					1
		1	1			0
				0	0	0

Каким выражением может быть F?

- 1) $\neg x1 \land \neg x2 \land x3 \land \neg x4 \land \neg x5 \land x6$
- 2) $x1 \lor x2 \lor x3 \lor x4 \lor \neg x5 \lor \neg x6$
- 3) $x1 \land \neg x2 \land \neg x3 \land x4 \land \neg x5 \land \neg x6$
- 4) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor \neg x6$
- 110) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	1					1
		1	1			1
				0	0	0

Каким выражением может быть F?

- 1) $\neg x1 \land \neg x2 \land x3 \land \neg x4 \land \neg x5 \land x6$
- 2) $x1 \lor x2 \lor x3 \lor x4 \lor \neg x5 \lor \neg x6$
- 3) $x1 \land \neg x2 \land \neg x3 \land x4 \land \neg x5 \land \neg x6$
- 4) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor x6$
- 111) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	<i>x</i> 7	F
			0		1		1
			0			0	0
0			1				0

Каким выражением может быть F?

- 1) $x1 \wedge (x2 \rightarrow x3) \wedge \neg x4 \wedge x5 \wedge x6 \wedge \neg x7$
- 2) $x1 \lor (\neg x2 \rightarrow x3) \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \land (x2 \rightarrow \neg x3) \land x4 \land \neg x5 \land x6 \land x7$
- 4) $x1 \lor (x2 \rightarrow \neg x3) \lor \neg x4 \lor x5 \lor \neg x6 \land x7$
- 112) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	F
			0		0		0
			0			0	1
1			1				1

Каким выражением может быть F?

- 1) $x1 \wedge (x2 \rightarrow x3) \wedge \neg x4 \wedge x5 \wedge x6 \wedge \neg x7$
- 2) $x1 \lor (\neg x2 \rightarrow x3) \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \land (x2 \rightarrow \neg x3) \land x4 \land \neg x5 \land x6 \land x7$
- 4) $\neg x1 \lor (x2 \rightarrow \neg x3) \lor x4 \lor x5 \lor x6 \land x7$
- 113) Логическая функция F задаётся выражением $\neg a \lor (b \land \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

114) Логическая функция F задаётся выражением $\neg a \lor (b \land \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

115) Логическая функция F задаётся выражением $(a \land b) \lor (a \land \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

116) Логическая функция F задаётся выражением $(a \wedge b) \vee (a \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0

50

1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

117) Логическая функция F задаётся выражением $(a \wedge \neg c) \vee (\neg b \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

118) Логическая функция F задаётся выражением $(a \wedge \neg c) \vee (\neg b \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

119) Логическая функция F задаётся выражением $(a \land \neg c) \lor (\neg a \land b \land c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

120) Логическая функция F задаётся выражением $(a \wedge \neg c) \vee (\neg a \wedge b \wedge c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

121) Логическая функция F задаётся выражением ($\neg x \land y \land z$) \lor ($\neg x \land y \land \neg z$) \lor ($\neg x \land \neg y \land \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

122) Логическая функция F задаётся выражением ($\neg x \land y \land z$) \lor ($\neg x \land \neg y \land z$) \lor ($\neg x \land \neg y \land \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

123) **(М.В. Кузнецова)** Логическая функция F задаётся выражением

 $(\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor z) \land (x \lor \neg y \lor \neg z)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

	•		
?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

124) **(М.В. Кузнецова)** Логическая функция F задаётся выражением

 $(x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

?	?	?	F
0	0	0	1
0	0	1	1

0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

125) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(x \lor y) \land (\neg x \lor y \lor \neg z)$.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

126) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \lor \neg c) \land (\neg a \lor b \lor c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

127) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \lor \neg c) \land (b \lor c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

128) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(\neg a \lor b \lor \neg c) \land (b \lor \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

129) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \land b) \lor (c \land (\neg a \lor b))$.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

130) Логическая функция F задаётся выражением $(a \wedge c) \vee (\neg a \wedge (b \vee \neg c))$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

131) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \to b) \land ((a \land b) \to \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1

54

1	1	1	0

132) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \to b) \to (\neg a \land c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

133) Логическая функция F задаётся выражением ($\neg x \land y \land z$) \lor ($\neg x \land \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

134) Логическая функция F задаётся выражением ($\neg x \land z$) \lor ($\neg x \land \neg y \land \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
0	0	1	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

135) Логическая функция F задаётся выражением $\neg y \land x \land (\neg z \lor w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	0	0	1
1	1	0	0	1
1	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

136) Логическая функция F задаётся выражением $\neg w \land (x \land \neg z \lor \neg x \land \neg y \land z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

55

?	?	?	?	F
0	0	0	1	1
0	0	1	1	1
1	0	0	0	1

137) Логическая функция F задаётся выражением $x \land \neg w \land (y \lor \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
0	1	0	1	1
0	1	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

138) Логическая функция F задаётся выражением $x \wedge (\neg y \wedge z \wedge w \vee y \wedge \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

139) Логическая функция F задаётся выражением $x \wedge (\neg y \wedge z \wedge \neg w \vee y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	0	1	1
0	1	1	0	1
1	1	0	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

140) Логическая функция F задаётся выражением $(\neg x \land y \land z \lor x \land \neg z) \land \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	1	1
1	0	0	0	1
1	0	0	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

141) Логическая функция F задаётся выражением $(\neg x \land y \land \neg z \lor x \land \neg y) \land \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1

1	0	0	0	1
1	1	0	0	1

142) Логическая функция F задаётся выражением $\neg x \land y \land z \lor x \land \neg y \land \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
1	0	0	1	1
1	0	1	0	1
1	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

143) Логическая функция F задаётся выражением $x \wedge (y \wedge z \vee z \wedge w \vee y \wedge \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

144) Логическая функция F задаётся выражением $x \wedge (z \wedge \neg w \vee y \wedge \neg w \vee y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	0	1
1	0	1	0	1
1	0	1	1	1
1	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

145) Логическая функция F задаётся выражением $x \wedge (y \wedge z \vee y \wedge \neg w \vee \neg z \wedge \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
1	0	0	1	1
1	0	1	1	1
1	1	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

146) Логическая функция F задаётся выражением $(x \to y) \land (y \to z)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

? ? ? F

1	0	0	0
1	0	1	1

147) Логическая функция F задаётся выражением $(x \to y) \land (y \to z)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

148) Логическая функция F задаётся выражением $(y \to z) \land (x \to y)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	0	1
1	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

149) Логическая функция F задаётся выражением $(y \to x) \land (z \to y)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	1	0
0	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

150) Логическая функция F задаётся выражением $(x \to z) \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	0	0
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

151) Логическая функция F задаётся выражением $(x \to z) \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

	=		
?	?	?	\mathbf{F}
1	0	0	1
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

152) Логическая функция F задаётся выражением $(x \to z) \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

	-		
?	?	?	F
1	0	1	1
0	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

153) Логическая функция F задаётся выражением $(x \to \overline{z}) \wedge (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	1	1
0	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

154) Логическая функция F задаётся выражением $(x \to \overline{z}) \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	1	0	1
0	1	0	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

155) Логическая функция F задаётся выражением $(x \to \overline{z}) \wedge (\overline{y} \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	1	0	0
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

156) Логическая функция F задаётся выражением $(x \to \overline{z}) \wedge (\overline{y} \to \overline{x})$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	1	0	0
0	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

157) Логическая функция F задаётся выражением $x \wedge \neg y \wedge (\neg z \vee w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

158) Логическая функция F задаётся выражением $\neg x \land y \land (w \to z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

159) Логическая функция F задаётся выражением $\neg w \land z \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

160) Логическая функция F задаётся выражением $(x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (x \lor y \lor z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	0
1	0	0	0
1	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

161) Логическая функция F задаётся выражением $(x \lor \neg y \lor \neg z) \land (x \lor y \lor \neg z) \land (x \lor y \lor z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	0
1	0	0	0
1	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

162) Логическая функция F задаётся выражением ($\neg x \lor y \lor z$) \land ($\neg x \lor \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	1	0
0	1	1	0
1	1	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

163) Логическая функция F задаётся выражением ($\neg x \lor z$) \land ($\neg x \lor \neg y \lor \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	${f F}$
0	1	0	0
1	1	0	0
1	1	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

164) Логическая функция F задаётся выражением $\neg y \lor x \lor (\neg z \land w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F

ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	0
0	0	1	1	0
1	0	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

165) Логическая функция F задаётся выражением $\neg w \lor (x \lor \neg z) \land (\neg x \lor \neg y \lor z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	1	0
1	1	0	0	0
1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

166) Логическая функция F задаётся выражением $x \vee \neg w \vee (y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	0
1	0	1	0	0
1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

167) Логическая функция F задаётся выражением $x \vee (\neg y \vee z \vee w) \wedge (y \vee \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

168) Логическая функция F задаётся выражением $x \vee (\neg y \vee z \vee \neg w) \wedge (y \vee \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	0	0
1	0	0	1	0
1	0	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

169) Логическая функция F задаётся выражением $(\neg x \lor y \lor z) \land (x \lor \neg z \lor \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	1	0	0	0

170) Логическая функция F задаётся выражением $(\neg x \lor y \lor \neg z) \land (x \lor \neg y) \lor \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	1	0
0	1	1	1	0
1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

171) Логическая функция F задаётся выражением $(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	0
0	1	0	1	0
0	1	1	0	0
1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

172) Логическая функция F задаётся выражением $\neg(x \land (y \lor z) \land (z \lor w) \land (y \lor \neg w))$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	1	1	0
1	1	0	0	0
1	1	1	0	0
1	1	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

173) Логическая функция F задаётся выражением $x \lor (z \land \neg w) \lor (y \land \neg w) \lor (y \land \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	0	0
0	0	0	1	0
0	1	0	1	0
1	1	0	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

174) Логическая функция F задаётся выражением $\neg x \lor (y \land z) \lor (y \land \neg w) \lor (\neg z \land \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при

которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	1	0	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

175) Логическая функция F задаётся выражением $(z \vee y) \to (x \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0		0	0
		0	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

176) Логическая функция F задаётся выражением $(x \lor y) \to (y \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3	?	?	F
		0	0
	0	0	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

177) Логическая функция F задаётся выражением $(x \vee y) \to (x \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
	0		0
	0	0	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

178) Логическая функция F задаётся выражением ($\neg z \lor \neg y$) \rightarrow ($x \equiv z$). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

	?	?	?	F
ſ	1	1		0
Ī		1		0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

179) Логическая функция F задаётся выражением ($\neg x \lor \neg z$) \rightarrow ($x \equiv y$). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3	?	?	F
1		1	0
		1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

180) Логическая функция F задаётся выражением $((y \lor z) \to x) \lor (x \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3	?	?	F
0		0	0
		0	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

181) Логическая функция F задаётся выражением $(y \to (z \land x)) \lor (x \equiv y)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3	?	?	F
0		0	0
		1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

182) Логическая функция F задаётся выражением $(x \lor y) \land \neg z \land \neg (z \equiv x)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0		0	1
		0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

183) Логическая функция F задаётся выражением $(y \to x) \land z \land \neg (z \equiv y)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3	?	?	F
0		0	1
		1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

184) Логическая функция F задаётся выражением

$$((x \to y) \land (y \to w)) \lor (z \equiv (x \lor y)).$$

64

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1			1	0
1				0
	1		1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

185) (С.В. Логинова) Логическая функция F задаётся выражением ($\neg x \land y \equiv z$) $\land w$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
	0			1
			0	1
0	0			1
0	0			1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

186) (С.В. Логинова) Логическая функция F задаётся выражением $(x \wedge y) \vee (\neg x \wedge \neg z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0		1
	0	0	1
	0	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

187) (С.В. Логинова) Логическая функция F задаётся выражением ($x \to y \land \neg z$) $\lor w$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
		1	0	0
0			1	0
1		1		0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

188) Логическая функция F задаётся выражением $(w \wedge y) \vee ((x \to w) \equiv (y \to z))$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
			1	0

1		1	0
1	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

189) Логическая функция F задаётся выражением $(x \wedge z) \vee ((w \to x) \equiv (z \to y))$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
			1	0
		1	1	0
	1	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

190) Логическая функция F задаётся выражением $((x \to z) \land (z \to w)) \lor (y \equiv (x \lor z))$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
	1			0
		1	1	0
	1		1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

191) Логическая функция F задаётся выражением $(x \land \neg y) \lor (y \equiv z) \lor w$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
			1	0
1				0
1	1			0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

192) Логическая функция F задаётся выражением $(x \equiv \neg z) \to ((x \lor w) \equiv y)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0		0		0
		0	0	0
	0	0	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

193) Логическая функция F задаётся выражением ($x \equiv \neg y$) \rightarrow (($x \land w$) $\equiv z$). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся**

строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
1	1			0
1	1		1	0
	1	1		0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

194) Логическая функция F задаётся выражением $((x \land w) \lor (w \land z)) \equiv ((z \to y) \land (y \to x))$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
1	0	1	1	1
1	0		0	1
1	0		0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

195) (**А. Богданов**) Логическая функция F задаётся выражением $((\neg y \to w) \to (x \to z)) \to (x \to w)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
0	0	0		0
0	0			0
0				0

196) Логическая функция F задаётся выражением $((y \to x) \lor (\neg z \land w)) \equiv (w \equiv x)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	3	?	F
	1	0	0	1
0	0	0	1	1
0	1			1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

197) Логическая функция F задаётся выражением $(w \to z) \land ((y \to x) \equiv (z \to y))$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
1			0	1
	0	1		1
1	0	0	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

198) Логическая функция F задаётся выражением $(w \to y) \land ((x \to z) \equiv (y \to x))$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
	1		0	1
0		1		1
0	1	0	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

199) (**Е. Джобс**) Логическая функция F задаётся выражением $(x \land (y \lor \neg z) \land w) \equiv (x \to \neg y \land z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
	1			1
1	1			1
1	1	1		1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

200) (**Е. Джобс**) Логическая функция F задаётся выражением $(y \to x \lor z) \land (z \to y)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	0
1	1	0	0	0
1	1	0	1	0
0	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Примечание. Да, в формуле нет переменной w. Но тут все правильно и задача имеет единственное решение.

201) (**Е. Джобс**) Логическая функция F задаётся выражением $\neg(x \equiv y \to z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	1	1
0	1	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

202) (**Е. Джобс**) Логическая функция F задаётся выражением $\neg w \land (y \lor z \rightarrow \neg x \land y)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
			1	1

	1	1
1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

203) **(Е. Джобс)** Логическая функция F задаётся выражением $((x \to w) \lor y \land \neg z) \land ((y \to \neg z) \lor x \land \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	3	?	?	F
	0	0		0
	0		0	0
0	0	0		0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

204) (Е. Джобс) Логическая функция F задаётся выражением

 $((x \to y) \lor \neg (z \to w)) \land ((w \to \neg x) \lor (\neg y \to z))$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

3	?	?	?	F
0	0	0		0
0		1		0
0	0		1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

205) **(Е. Джобс)** Логическая функция F задаётся выражением $w \lor (x \to y) \land (\neg z \to x)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	0
0	0	1	0	0
0	1	0	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

206) (**Е. Джобс**) Логическая функция F задаётся выражением $(a \to d) \land \neg (b \to c)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c,d.

?	?	?	?	F
1	0	1	0	1
1	1	1	0	1
0	0	1	0	1

В ответе напишите буквы a, b, c, d в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

207) (**Е. Джобс**) Логическая функция F задаётся выражением $\neg (b \to a) \land (c \to d) \neq (a \land b \land c \land \neg d)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.

?	?	?	?	F
	0	0	0	1
			0	1
		0	0	1
	0			1

В ответе напишите буквы a, b, c, d в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

208) (**Е. Джобс**) Логическая функция F задаётся выражением $a \equiv b \lor c \equiv b$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
	0	0	1
0			1
0		0	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

209) (**Е. Джобс**) Логическая функция F задаётся выражением $a \equiv b \lor b \to c$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
	0	0	1
0	0		1
0			1

В ответе напишите буквы a,b,c в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

210) (**В. Шубинкин**) Логическая функция F задаётся выражением $(x \to w) \land (y \to z) \lor w$. Ниже приведён частично заполненный фрагмент таблицы истинности этой функции, содержащий неповторяющиеся строки. Сколькими способами можно поставить в соответствие переменные w, x, y, z столбцам таблицы истинности функции F, опираясь на информацию из данного фрагмента?

?	?	?	?	F
			1	0
		1	1	0
	1	1	1	0

Пример. Функция F задана выражением $x \vee y \vee z$, а фрагмент таблицы истинности имеет вид:

3	?	?	F
0	1	1	1

В этом случае переменные можно расставить любым способом, значит, ответом будет число 6.

211) (**В. Шубинкин**) Логическая функция F задаётся выражением $(x \equiv y) \to (z \equiv w)$. Ниже приведён частично заполненный фрагмент таблицы истинности этой функции, содержащий неповторяющиеся строки. Сколькими способами можно поставить в соответствие переменные w, x, y, z столбцам таблицы истинности функции F, опираясь на информацию из данного фрагмента?

?	?	?	?	F
0	0	0	1	0
1	1	1	0	0

Пример. Функция F задана выражением $x \lor y \lor z$, а фрагмент таблицы истинности имеет вид:

? ? ? F

0	1	1	1

В этом случае переменные можно расставить любым способом, значит, ответом будет число 6.

212) (**В. Шубинкин**) Логическая функция F задаётся выражением $x \wedge (y \to z) \vee w$. Ниже приведён частично заполненный фрагмент таблицы истинности этой функции, содержащий неповторяющиеся строки. Сколькими способами можно поставить в соответствие переменные w, x, y, z столбцам таблицы истинности функции F, опираясь на информацию из данного фрагмента?

?	?	?	?	F
1	0		1	0
	0	1		0
	0			0

Пример. Функция F задана выражением $x \lor y \lor z$, а фрагмент таблицы истинности имеет вид:

?	?	?	F
0	1	1	1

В этом случае переменные можно расставить любым способом, значит, ответом будет число 6.

213) (**А. Богданов**) Миша заполнял таблицу истинности функции $(x \to y) \land (y \to z) \land (z \to w)$, но успел заполнить лишь фрагмент из трёх **различных** её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
	0	1		1
	1		0	1
	0	1		1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

214) **(Е. Джобс)** Логическая функция F задаётся выражением $(a \to b) \land \neg (b \equiv c) \land (d \to a)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.

3	?	?	?	F
0	0			1
0	0	0		1
	0	0	0	1

В ответе напишите буквы a, b, c, d в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

215) (**Е. Джобс**) Логическая функция F задаётся выражением $a \land \neg b \lor (a \lor b) \land c \lor d$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся наборы аргументов, при которых функция ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c,d.

?	?	?	?	F
			1	0
	1		1	0
1				0

В ответе напишите буквы a, b, c, d в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

216) (**Е. Джобс**) Логическая функция F задаётся выражением $((a \land b) \equiv \neg c) \land (b \to d)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c,d.

?	?	?	?	F
1	0	0	0	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1

В ответе напишите буквы a, b, c, d в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

217) (**А. Богданов**) Миша заполнял таблицу истинности функции ($\neg a \to b$) \land ($b \equiv \neg c$) $\land \neg d$, но успел заполнить лишь фрагмент из трёх различных её строк.

?	?	?	?	F
1				1
1	1			1
	1	1		1

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c,d.