Cross-Lingual GENQA: A Language-Agnostic Generative Question Answering Approach for Open-Domain Question Answering

Benjamin Muller^{1*}, Luca Soldaini², Rik Koncel-Kedziorski², Eric Lind², Alessandro Moschitti²

¹Inria, Paris, France ²Amazon Alexa AI

benjamin.muller@inria.fr
{lssoldai,rikzk,ericlind,amosch}@amazon.com

Abstract

Open-Retrieval Generative Question Answering (GENQA) is proven to deliver high-quality, natural-sounding answers in English. In this paper, we present the first generalization of the GENQA approach for the multilingual environment. To this end, we present the GEN-TYDIQA dataset, which extends the TyDiQA evaluation data (Clark et al., 2020) with natural-sounding, well-formed answers in Arabic, Bengali, English, Japanese, and Russian. For all these languages, we show that a GENQA sequence-to-sequence-based model outperforms a state-of-the-art Answer Sentence Selection model. We also show that a multilingually-trained model competes with, and in some cases outperforms, its monolingual counterparts. Finally, we show that our system can even compete with strong baselines, even when fed with information from a variety of languages. Essentially, our system is able to answer a question in any language of our language set using information from many languages, making it the first Language-Agnostic GENQA system.

1 Introduction

Improving coverage of the world's languages is of great importance for retrieval-based question answering systems. Not only can it help provide a better experience for non-English speaking users, but answers from multilingual systems include diverse viewpoints coming from a large set of linguistic communities. Moreover, as described by Valentim et al. (2021), not all facts are distributed equally across linguistic communities on the Internet. For this reason, there is a need for multilingual, multi-source, open-domain question answering.

With the advance of large-scale language models, multilingual modeling has made impressive

progress at performing complex NLP tasks without requiring explicitly translated data. Using pretrained models such as large-scale mask-language models (Devlin et al., 2019; Conneau et al., 2020) or pretrained denoising encoder-decoder models (Xue et al., 2021; Liu et al., 2020), it is now possible to train models that accurately process textual data in multiple languages (Kondratyuk and Straka, 2019) and that perform cross-lingual transfer accurately (Pires et al., 2019) by making use of annotated data in one language to process another language.

In this work, we study how open-domain question answering can be addressed in a multilingual setting. In particular, we investigate how multilingual generative models can be used to answer a question in one language using information retrieved from multiple languages.

We choose an answer generation approach for several reasons. First, generative approaches have been shown to be effective for many English question answering tasks, including machine reading (MR) (Izacard and Grave, 2021; Lewis et al., 2020b), question-based summarization (Iida et al., 2019; Goodwin et al., 2020; Deng et al., 2020), and, most relevant to this work, answer generation for open retrieval question answering (Hsu et al., 2021), which we refer to as GENQA. By building several monolingual pipelines, we show that this result extends to Arabic, Bengali, Japanese, and Russian. We refer to these systems as MONO-LINGUAL GENQA. Secondly, we show that our task can be approached in a multilingual fashion by training one single model to answer questions in all the languages we work with. We refer to it as MULTILINGUAL GENQA. Thirdly, our design allows for the synthesis of answer candidates from multiple languages without the cost and cascading errors introduced by translation. We refer to this approach as CROSS-LINGUAL GENQA. We show that an end-to-end system can perform as

^{*} This work was completed while the author was an intern at Amazon Alexa.

Figure 1: Illustration of our proposed Multilingual Open-Retrieval GENQA pipeline.

well as and in some cases outperform monolingual pipelines by a large margin.

Similarly to Hsu et al. (2021), we first obtain documents using an information retrieval system and apply an Answer Sentence Selection (AS2) model (Garg et al., 2020; Vu and Moschitti, 2021) to extract answer candidates. For each question, we retrieve relevant sentence candidates in multiple languages which our GENQA model then aggregates into well-formed, complete, and accurate answer sentences. Our evaluation with both automatic and human metrics shows that our CROSS-LINGUAL GENQA system outperforms an AS2 approach, competes with a collection of monolingual GENQA pipelines, and extends the number of answerable questions by finding relevant information in languages distinct from the question.

Given the scarcity of annotated corpora for GENQA, specifically in languages different from English, we introduce the GEN-TYDIQA dataset. GEN-TYDIQA is an extension of the TyDiQA dataset, a question-answering dataset for typologically diverse languages in which questions are answered with passages or short spans extracted from Wikipedia articles (Clark et al., 2020). GEN-TYDIQA includes human-generated, natural-sounding, and self-contained answers in Arabic, Bengali, English, Russian and Japanese, making it a useful resource to design Multilingual Generative Question Answering systems.

In summary, our contribution is three-fold:

(i) We introduce GEN-TYDIQA, an evaluation dataset that contains natural-sounding answers in Arabic, Bengali, English, Russian and Japanese, to foster the development of multilingual GENQA systems;

- (ii) We confirm and extend the results of Hsu et al.(2021) by showing that MONOGENQA outperforms extractive QA systems in Arabic,Bengali, and English;
- (iii) Using GEN-TYDIQA, we show that Question Answering can be tackled in a language-agnostic way by using information from multiple languages and show that this approach outperforms all our baselines for Arabic, Russian, and Japanese.

We make GEN-TYDIQA available at the following URL: https://github.com/alexa/wqa-cascade-transformers/tree/master/arxiv2021mgqa.

2 Related Work

Multilingual Datasets for Question Answering

The NLP community has made several datasets for question answering in multiple languages. In contrast with our GEN-TYDIQA dataset, to the best of our knowledge, all those datasets have been designed exclusively for extractive question answering. Artetxe et al. (2019) extended the English machine reading SQUAD dataset (Rajpurkar et al., 2016) by translating the test set to 11 languages. Similarly, Lewis et al. (2020a) collected new question and answer pairs for 7 languages following the SQUAD format. Longpre et al. (2020) recently released the MKOA dataset which includes question and answer pairs (predominantly Yes/No answers and entities) for 26 languages. Finally, Clark et al. (2020) released TyDiQA which includes training and test data for extractive Question Answering in 11 typologically diverse languages.

Human Generated Answer for QA Generating automatically human-sounding answers is still in

its infancy. Most of the data collection effort has been allocated to extracting spans from documents. Still, being able to generate natural-sounding, well-formed answers is highly needed to provide a better user experience, specifically for Voice Assistants such as Alexa, Siri, or Google Assistant. One of the large-scale available resources is the MS MARCO dataset (Nguyen et al., 2016). It includes 182,669 (question, answer) pairs with human-written well-formed answers.

Our GEN-TYDIQA dataset is an extension of the TyDiQA (Clark et al., 2020) that contains natural human-generated answers for Arabic, Bengali, English, Japanese, and Russian. To the best of our knowledge, it is the first work that provides well-formed, natural-sounding answers for non-English languages.

Multilingual QA Models Designing QA models for languages different from English is challenging due to the restricted number of resources and the limited size of those datasets. For this reason, a lot of studies have focused on doing transfer learning across languages (i.e. cross-lingual transfer) which consists in designing systems that can make use of annotated data in one language to model another language. For instance, Clark et al. (2020) showed that concatenating the training data from multiple languages improves the performance of the model on all the target languages for extractive question answering. In the Open-Retrieval Question Answering setting, multilingual modeling can be used to answer questions in one language using information retrieved from other languages. Da San Martino et al. (2017) showed how cross-language tree kernel can be used to rank English answer candidates for Arabic questions. Montero et al. (2020) designed a cross-lingual question similarity technique to map a question in one language to a question in English for which an answer has already been found. Asai et al. (2021a) showed that extracting relevant passages from English Wikipedia can deliver better answers than relying only on the Wikipedia corpora of the question. Vu and Moschitti (2021) showed how machine translated question-answer pairs can be used to train a multilingual question answering model; in their study, they leveraged English data to train an English and German answer sentence selection model.

Answer Sentence Selection (AS2) As shown in Figure 1, we rely on an answer sentence selec-

tion component to obtain candidate sentences for our MONOGENQA, MULTIGENQA, and CROSS-GENQA approaches. Several approaches for monolingual AS2 have been proposed in recent years. Severyn and Moschitti (2015) used CNNs to learn and score question and answer representations, while others proposed alignment networks (Shen et al., 2017; Tran et al., 2018; Tay et al., 2018). Compare-and-aggregate architectures have also been extensively studied (Wang and Jiang, 2017; Bian et al., 2017; Yoon et al., 2019). Tayyar Madabushi et al. (2018) exploited fine-grained question classification to further improve answer selection. Garg et al. (2020) achieved state-of-the-art results by fine-tuning transformer-based models on a large QA dataset first, and then adapting to smaller AS2 dataset. Matsubara et al. (2020) showed how, similar is spirit to GENQA, multiple heterogeneous systems for AS2 can be be combined to improve a question answer pipeline.

3 The GEN-TYDIQA Dataset

3.1 Collecting human-generated answers

TyDiQA (Clark et al., 2020) is a question answering dataset that includes questions for 11 typologically diverse languages. Each entry is composed of a human-generated question and a single Wikipedia document providing relevant information to answer it. For a large subset of those questions, TyDiQA also contains a human-annotated passage extracted from the Wikipedia document as well as a short span of text that answers the question.

We extend the TyDiQA dataset by collecting human-generated answers based on the provided questions and passages. For each language, we extend the validation set.¹ To do so, we use Mechanical Turk² and rely on a two-stage collection process. We describe in the Appendix A.1 detail on turkers hiring criteria and rewards.

Answer Generation First, we ask turkers to craft a natural-sounding answer. For each question, we show 1 turker the question and the passage and ask him/her to write an answer by respecting the following three conditions:

• The answer should be **factually correct and aligned** with the information provided in the

¹The TyDiQA test set is not publicly available.

²https://requester.mturk.com/create/ projects/new

Question: When were fossils of the Pararhabdodon first found?

TyDiQA Span: 1980s

GEN-TyDIQA Answer: Pararhabdodon has been classified in a number of different positions within Iguanodontia since its remains were first discovered in the mid-1980s.

Question: What do pallid sturgeons eat?

TyDiQA Span: -

GEN-TYDIQA Answer: Pallid sturgeons eat various species of insects and fish depending on the seasons.

Question: Когда закончилась Английская революция? When did the English Revolution end?

TyDiQA Span: 1645

GEN-TYDIQA Answer: Английская революция, известная также как Английская гражданская вой закончилась в 1645, когда Кромвель создал «Армию нового образца», одержавшую решающую победу в сражении при Нэйсби The English Revolution, also known as the English Civil War; ended in 1645, when Cromwell created the "Army of the new model", which won a decisive victory at the Battle of Naysby.

Question: ストーンズリバーの戦いによる戦死者は何人 *How many were the deaths from the Battle of Stones River?*

TyDiQA Span: 23,515名 23,515 people **GEN-TyDiQA Answer**: ストーンズリバーの 戦いで23,515人が川で殺されました。 23,515 people were killed in the river in the Battle of Stones River.

Table 1: Examples of GEN-TYDIQA question and answer pairs for English, Russian and Japanese (along with TyDiQA spans when available)

passage. If no information in the passage answers the question, the turker is requested to answer with NULL.

- The answer should be a complete grammatically correct sentence or made of a few complete sentences.
- The answer should be self-contained. The answer should be understood in itself without reading the question or the passage. Based on this condition, Yes/No Answer are not acceptable answers.

We do so by only using one turker per question.

Answer Validation Second, we show 5 turkers the question, the passage, and the human-generated

Lang. (iso)	# Answers	Avg. Length	% TyDiQA
Arabic (AR)	864	152.5	75.7
Bengali (BN)	89	177.2	63.6
English (EN)	593	64.0	79.5
Japanese (JA)	555	112.0	62.1
Russian (RU)	596	277.9	52.6

Table 2: GEN-TYDIQA number of human generated natural answers collected with mechanical turk along with the average answer length in utf-8 bytes.

collected answer from the previous step. We ask them to vote for each collected answer on each of the three properties: correct, complete, and self-contained. We aggregate the votes and keep only answers that received 3 votes out of 5 for each property. In Table 1, we illustrate some collected samples along with the gold span provided by Ty-DiQA when it is available³.

3.2 Data Statistics

We report the number of GEN-TYDIQA collected human-generated natural answers in Table 2. We also report the coverage of our answers compared to the number of (question, passage) pairs available in the TyDiQA dataset. We do not reach 100% coverage due to our highly selective validation (we only accept answers that receive 3/5 votes for each requested property) stage which guarantees a high-quality dataset.

4 Candidate Retriever Pipeline

Our generative model is built on top of a standard Question Answering (QA) pipeline composed of two modules: a document retriever (cf. 4.2) followed by an Answer Sentence Selection (AS2) system (cf. 4.3). This pipeline, firstly introduced by Wang et al. (2007), takes questions in one language as input and outputs relevant sentence candidates in the same language as the question. The full GENQA pipeline is shown in Figure 1.

4.1 Question Translation

To collect relevant candidates in multiple languages for a given question, we first translate the question to all the languages we want to retrieve candidates for. We do so using Amazon's AWS Translate⁴ service. We then feed each question to the Retriever pipeline.

³We note that a span or a Yes/No answer is not always available in the TyDiQA dataset

⁴https://aws.amazon.com/translate/

Lang. (iso)	# Candidates	% Positive Candidates
Arabic (AR)	1,163,407 / 100,066	1.30 / 1.46
English (EN)	688,240 / 197,606	0.56 / 0.49
Bengali (BN)	334,522 / 23892	0.76 / 0.74
Japanese (JA)	827,628 / 214,524	0.47 / 0.47
Russian (RU)	1,910,388 / 245,326	0.34 / 0.48

Table 3: AS2-TyDiQA dataset extracted from the TyDiQA dataset. We report Train/Dev set following the TyDiQA split. We note that each question have at least one positive candidate

4.2 Retriever

Wikipedia dumps We retrieve documents from Wikipedia. We use a Wikipedia snapshot from May 2021. We clean the HTML Wikipedia pages using the WikiExtractor package (Attardi, 2015).

BM25 For each language, we index Wikipedia dumps with a BM25-based (Robertson and Zaragoza, 2009) retriever using the pyterrier package (Macdonald and Tonellotto, 2020).

Evaluation We evaluate the retriever independently using the titles of the retrieved documents. For each question, we compare the exact match of the title retrieved by the model with the gold document's title provided by TyDiQA. We compute the Hit@N at the document level (noted Hit@N doc.) The Hit@N is simply the number of questions that have the correct document in the top-N predicted documents.

For all our experiments, we retrieve the top-100 documents from Wikipedia and feed them to the downstream modules.

4.3 Answer Sentence Selection (AS2)

For each question, we collect candidate answers by extracting them from the retrieved documents using an Answer Sentence Selection (AS2) model. The AS2 task was introduced by Wang et al. (2007) for the TREC competition. In the neural era, AS2 models have been studied by (Wang and Jiang, 2017; Garg et al., 2020).

Task AS2 can be simply defined as follows: given a question q and a set of sentences $\{c_1, ..., c_n\}$, an AS2 ranker model (i) assigns a relevance score to each c_i quantifying its probability to be a correct answer for the question, and (ii) returns the candidate associated with the highest score. A simple approach to implement an AS2 model consists in training a binary classifier, where

the positive and negative labels are associated with correct and incorrect c_i , respectively.

Model We use the multilingual pretrained mask language model XLM-R (Conneau et al., 2020) to model it. XLM-R was pretrained on Web-based data from 100 languages.

AS2 TyDiQA Data To fine-tune XLM-R for AS2 in multiple languages we use the TyDiQA dataset to collect training and evaluation data for Answer Sentence Selection. To do so we follow closely what Garg et al. (2020) did for English with the NQ dataset (Kwiatkowski et al., 2019) to build the ASNQ dataset. We refer the reader to it for complete details on the procedure. In a nutshell, for each (question, Wikipedia document, span) triplet from the TyDiQA dataset, we use the spans to identify positive and negative sentence candidates in the wikipidia document. We first segment each document at the sentence level using the spacy library ⁵. We define positive candidates as the sentences that contain the span provided by the Ty-DiQA dataset. We define all the other sentences from the same Wikipedia document as negative candidates. We describe the AS2-TyDiQA in Table 3.

Fine-tuning We fine-tune the XML-R on the AS2-TyDiQA dataset as a binary classifier. At test time, we rank the candidates using the output probability of the XLM-R model. We hypothesize that the higher the probability (the more confident the model is predicting a positive candidate), the more likely the candidate is to be positive.

We find that similarly to the original TyDiQA machine reading task described in Clark et al. (2020), the model performs better when we fine-tune the model on the concatanation of the datasets from all the languages.

Evaluating AS2 We evaluate the AS2 model using the Hit@10 (referred to as Hit@10 sent.). Hit@10 is the average number of questions for which the model ranked at least one correct candidate in the top-10.

Additionally, not only the AS2 model provides the candidates for the downstream GENQA model, it is also a strong baseline. For this reason, we also evaluate the AS2 model with the same metric as the GENQA models.

⁵https://spacy.io/

	Retriever		AS2			GENQA		
	Hit@1 doc.	Hit@100 doc.	Hit @ 10 sent.	MRR	Accuracy	BLEU	ROUGE	Accuracy
Arabic	18.4	70.7	30.9	43.2	68.0	17.2	38.8	68.4
Bengali	22.7	66.3	19.8	30.9	62.4	21.7	43.0	67.4
English	15.4	66.9	50.0	30.5	39.0	23.0	46.4	43.6
Japanese	12.8	57.0	44.2	28.2	63.5	19.4	45.0	64.3
Russian	19.0	67.8	53.1	31.7	67.1	6.4	23.4	61.3

Table 4: Performance of each module of the Monolingual GENQA pipelines. The Retriever is based on BM25. The AS2 model is a XLM-R model fine-tuned and evaluated on TyDiQA and GENQA is fine-tuned on MS MARCO (translated for non-English languages) and evaluated on GEN-TyDiQA based on retrieved and reranked candidates. Accuracy corresponds to the Human Evaluation estimated with mechanical turk. The Oracle Retriever performance is 99.5%.

4.4 Candidates Aggregations

When we perform GENQA using candidates in the question language, the candidate aggregation step is trivial. We simply select the top-5 ranked candidates from the AS2 model (following Hsu et al. (2021)).

For CROSS-LINGUAL GENQA, each question relies on information collected from multiple languages. To this end, we need to collect relevant candidates in multiple languages. To do so, we set up two candidate aggregation strategies based on the output ranking scores of the AS2 models.

- Top 2 per language: This strategy consists in selecting the top 2 candidates for each language and concatenating them.
- Top 10 candidates across all languages: This strategy consists in comparing the AS2 scores across all languages and selecting the 10 candidates that receive the highest scores.

5 GENQA

Task We now define formally our GENQA task. Following Hsu et al. (2021), for a given question $q \in Q_L$ written in a language L, a human generated answer $g \in G_L$ in the language L and given the extracted candidates $\{c_1,..,c_N\} \in C_{L_1} \mathbf{x}..\mathbf{x} C_{L_N}$ written in $L_1,..,L_N$ languages, the task is to generate g based on $\{q,c_1,..,c_N\}$.

Model We model this task using the pretrained multilingual T5 (MT5) model (Xue et al., 2021). MT5 is an encoder-decoder transformer-based model (Vaswani et al., 2017) pretrained with a spanmasking objective on a large amount of web-based data from 101 languages. We use the base version.

Fine-tuning We fine-tune MT5 following (Hsu et al., 2021). For each sample, we input to the model the question concatenated with the candidates and we train the model to generate a natural answer. In all our experiments, our GENQA models are fine-tuned on MS MARCO (Nguyen et al., 2016)⁶. MS MARCO includes 182,669 examples of (question, 10 candidate passages, natural answer) instances in English. When the target language (i.e. the language of the question and answer) is not English or when we aim at using candidates in multiple languages, we simply translate the training samples with the aws-translate and finetune on translated data. For instance, assuming we want to evaluate a GENQA model to answer questions in Arabic by using candidate passages from multiple languages such as Arabic, English, and Bengali. This GENQA model will be fine-tuned on the MS MARCO datasets with questions and answers in Arabic translated from English and with candidates in Arabic, English and Bengali translated from the English MS MARCO passages.

Evaluation of GENQA Models As described by Chen et al. (2019), evaluating generative Question Answering systems automatically is challenging. For this reason, we mainly rely on human evaluation. We use mechanical-turk⁷ and ask turkers to vote on whether an answer is correct or not. For each question, we ask 3 turkers to vote on whether the generated answer is correct or not. We report the $\frac{\sum PositiveVotes}{TotalVotes}$ and we refer to it as Accuracy. For completeness and comparison with previous work, we also report the BLEU score, computed with the SacreBLEU metric (Post, 2018) and the

 $^{^6\}mbox{We}$ use the training split of the NLGEN(v2.1) MS MARCO dataset.

⁷We describe in A.1 how we choose and reward turkers.

F-score of the ROUGE-L metric (Lin, 2004). Both of these scores are n-gram based metrics that compare the reference with the predicted answer.

6 Comparing GENQA Models

Here is how we plan to compare our new systems and show they improve the state of the art.

Our experimental space is defined by the set of languages we work with. First, the language the question is written in, i.e. the user language (which is also the language of the answer). Second, the language set in which the candidate sentences are written. Based on how we pick those languages, the experiments we present in this paper can be divided into three sets that also defines the three-level of contributions we make:

MONOLINGUAL GENQA In this set of experiments, the candidate language is the same as the question. For each language we work with, among Arabic, Bengali, English, Japanese and Russian, we fine-tune monolingually MT5. We then report the performance of each GENQA model on the GEN-TYDIQA dataset. Those results are reported in Table 6 part and described in section 7.2.1.

For this set of experiments, our contribution is to show that our approach, firstly introduced by Hsu et al. (2021) for English, delivers similar performance for other languages.

MULTILINGUAL GENQA In this set of experiments, the language set is defined in the same way as the Monolingual GENQA Pipeline. The difference here comes from the fine-tuning regime. In this setting, we concatenate the training and validation set from all the languages and fine-tune in a multilingual way. At test time, this means that we have a single model that can answer questions in multiple languages (assuming that we provide candidates in the same language as the question). We report the performance of this MULTIGENQA model on the GEN-TYDIQA dataset in Table 6 and describe them in section 7.2.2.

For this set of experiments, our contribution is to show that a single multilingual GENQA model can compete with monolingual models at test time.

CROSS-LINGUAL GENQA In this set of experiments, we make use of candidates in multiple languages with several languages different from the question language (e.g. Russian, English, Arabic) to answer a question in one language (e.g. Arabic). After retrieving and reranking sentence candidates

Candidate Languages	BLEU	ROUGE	Accuracy
EN	37.4	55.6	77.9
DE	29.9	52.6	70.5
DE-EN-ES-FR-IT NO SAMP.	24.3	53.6	51.2
DE-EN-ES-FR-IT OVER SAMP.	30.1	52.8	68.8
AR-JA-KO NO SAMP.	19.8	50.4	31.4
None	18.8	43.8	21.0

Table 5: Performance of our GENQA model fine-tuned and evaluated on MS MARCO with translated candidates. In this setting, Questions and answers are written in English.

in each language from the candidate language set, aggregating candidates across all the languages (using strategies described in Section 4.4), we generate answers and report the performance on the GEN-TYDIQA dataset. Those results are reported in Table 6 and described in section 7.2.3.

For this set of experiments, our contribution is to show that our generative QA model can make use of information retrieved from multiple languages while still outperforming the baseline methods.

AS2 Baseline Models We compare our GENQA systems to Answer Sentence Selection (AS2) models in all the languages we work with. Given the retrieved documents, We take the top-1 ranked sentence as the prediction. In consequence, we note that AS2 models play two important roles in our paper. First, we use them to select the relevant candidate sentences from retrieved Wikipedia documents that are fed to the GENQA models at test time. Second, they provide us with a strong baseline for Open Domain QA.

7 Experiments

7.1 Translated Candidates

Before working on real candidates in multiple languages on GEN-TYDIQA, we first experiment with machine-translated candidates. This allows us to have full control over the language set that we use.

In this setting, we evaluate the model on the MS MARCO (Nguyen et al., 2016) dataset. Given a question in English, the task is to generate a natural answer in English given candidates in various languages after translating them from English. For each question, we use the top 5 answer passages and we work with several combinations of languages.

• EN: As a baseline, we experiment with English candidates without any translation. We expect this experiment to provide us with an

MODEL	USER	CANDIDATES	BLEU	ROUGE	Accuracy
AS2	AR	AR	5.9	20.6	68.0
MonoGenQA	AR	AR	17.2	38.8	68.4
MULTIGENQA	AR	AR	17.4	39.0	72.7
CrossGenQA	AR	AR-BN-EN-JA-RU top 2 per language	15.3	36.5	72.0
CrossGenQA	AR	AR-BN-EN-JA-RU top 10 across all languages	14.7	36.3	73.2
AS2	BN	BN	3.8	16.6	58.0
MonoGenQA	BN	BN	21.7	43.0	67.4
MultiGenQA	BN	BN	23.7	44.9	76.5
CrossGenQA	BN	AR-BN-EN-JA-RU top 2 per language.	35.2	56.5	25.3
CrossGenQA	BN	AR-BN-EN-JA-RU top 10 across all languages	33.5	54.8	18.5
AS2	EN	EN	5.6	20.0	39.0
MonoGenQA	EN	EN	23.0	46.4	43.6
MultiGenQA	EN	EN	21.8	46.2	37.4
CrossGenQA	EN	AR-BN-EN-JA-RU top 2 per language	21.0	45.5	31.0
CROSSGENQA	EN	AR-BN-EN-JA-RU top 10 across all languages	20.2	44.8	29.3
AS2	JA	JA	6.7	22.4	70.4
MonoGenQA	JA	JA	19.4	45.0	64.3
MultiGenQA	JA	JA	19.1	45.5	65.5
CrossGenQA	JA	AR-BN-EN-JA-RU top 2 per language	17.6	42.2	70.3
CrossGenQA	JA	AR-BN-EN-JA-RU top 10 across all languages	16.6	43.0	71.6
AS2	RU	RU	7.4	13.3	67.0
MonoGenQA	RU	RU	6.4	23.4	61.3
MultiGenQA	RU	RU	6.4	23.2	66.7
CrossGenQA	RU	AR-BN-EN-JA-RU top 2 per language	4.2	21.0	74.3
CrossGenQA	RU	AR-BN-EN-JA-RU top 10 across all languages	5.3	22.8	74.7

Table 6: Performance of GENQA models on GEN-TYDIQA based on retrieved and reranked candidates. USER indicates the language of the question and the answer while CANDIDATES indicates the language set of the retrieved candidate sentences.

upper-bound score (as answering a question in English using information from English should be easier than when it is written in multiple non-English languages).

- DE: In this setting, we translate all the candidates to German and measure how well MT5
 can answer a question in English using relevant candidates in German.
- DE-ES-FR-IT NO SAMPLING: For each candidate, we sample a language within {German, Spanish, French, Italian} and translate the candidate from English to the sampled language.
- DE-ES-FR-IT OVER-SAMPLING: We translate all candidates to each language {German, Spanish, French, Italian}. The difference with the NO-SAMPLING strategy is that it expands 4 times the training set.
- AR-KO-JA OVER-SAMPLING: For each candidate, we sample a language within {Arabic, Korean, Japanese} and translate the candidate from English to the sampled language. This experiment will show the impact of using distant language on performance.

 NONE: As a baseline, we experiment with feeding no candidate to the model. This setting is equivalent to the Cloze-Book setting described by Roberts et al. (2020). With this experiment, we measure the ability of mT5 to answer questions without being fed any relevant information.

For all those experiments, we fine-tune MT5 using the same optimization procedure so that only the candidate language set impacts the performance difference.

Results We report the results in Table 5. All the models outperform the model trained with No candidates (NONE) from a very large margin. This shows that MT5 can extract information from candidates in any language including distant ones (e.g. Arabic, Japanese and Korean). As expected, the EN candidate model performs the best with 77.9% accuracy. Then comes the model fine-tuned on DE candidates with 70.5% of correct answers and closely followed by the model, with candidates in multiple languages related to English with 68.8%. We note that language relatedness is a very important factor. Indeed, the model fed with candidates

in Arabic, Japanese and Koran only reach 31.4% in accuracy. Still, it is unclear if this drop in performance is due to the poor quality of the candidates' translation or to the more challenging cross-lingual transfer required.

Overall, this experiment shows that using candidates in multiple languages is a promising strategy to deliver good quality answers to end-users.

7.2 GEN-TYDIQA Experiments

We now experiment with the full GENQA pipeline using candidates retrieved from Wikipedia documents. In this setting, we report the performance of the models on the GEN-TYDIQA dataset. For each question, we retrieve documents with the BM25 retriever and rank relevant candidates using the AS2 model. We then feed those candidates to the GENQA models. We note that we cannot compare the performance of the models between languages. Indeed, as pointed out in (Clark et al., 2020) from which we extracted the GEN-TYDIQA's questions, each language has its own set of questions with variable difficulty.

7.2.1 MONOLINGUAL GENQA Performance

We evaluate the performance of the GENQA models and we compare it to AS2 on the GEN-TYDIQA dataset of each language. We report the results in Table 6 (cf. MONOGENQA). We find that for English, GENQA outperforms significantly AS2 with a 43.6% accuracy while the AS2 model only reaches 39.0% accuracy (of its top-1 prediction). This shows that GENQA delivers better answers than AS2. For Japanese and Arabic, GENQA outperforms AS2 from a small margin while we observe a +5 points gain in accuracy in Bengali. Only with Russian, the AS2 model outperforms GENQA. Overall, this experiment extends results from Hsu et al. (2021) to Arabic, Bengali, and Japanese showing that Generative Question Answering is a better approach than AS2 in terms of answer quality.

7.2.2 MULTILINGUAL GENQA Performance

We now compare the performance of the MONO-LINGUAL GENQA models (one model per language) to the performance of the MULTILINGUAL GENQA model fine-tuned after concatenating the training datasets from all the languages. We report the performance in Table 6 (cf. MULTIGENQA). We find that multilingual fine-tuning improves the performance over monolingual fine-tuning for all languages except English. This shows that lan-

Language	BLEU	ROUGE	Accuracy
Monolingual GenQA			
AR	24.8 / 17.2	47.6 / 38.8	77.1 / 68.4
BN	27.4 / 21.7	48.6 / 43.0	82.0 / 67.4
EN	31.5 / 23.0	54.4 / 46.4	68.5 / 43.6
JA	24.5 / 19.4	50.2 / 45.0	72.3 / 64.3
RU	10.2 / 6.4	30.2 / 23.4	82.6 / 61.3
Multilingual GenQA			
AR	24.3 / 17.4	47.9 / 39.0	74.9 / 72.7
BN	27.3 / 23.7	47.8 / 44.9	84.3 / 76.5
EN	30.8 / 21.8	54.5 / 46.2	65.3 / 37.4
JA	23.9 / 19.1	50.0 / 45.5	76.8 / 65.5
RU	10.6 / 6.4	31.0 / 23.2	76.6 / 66.7

Table 7: Performance of our GENQA models fine-tuned on MSMARCO and evaluated on GENTYDIQA using GOLD-CANDITATES / RETRIEVED-CANDIDATES

guages can benefit from training on samples from different languages. For Bengali, we observe an improvement of around 9 points in Accuracy. This result has a strong practical consequence: at test time, this means that we do not need one GENQA model per language but one single model trained on the concatenation of datasets from multiple languages is better for the GENQA task (except for English). This result generalizes what has been observed for extractive question answering by Clark et al. (2020) to the GENQA task.

7.2.3 CROSS-LINGUAL GENQA Performance

We now reach our last and most important contribution. In Table 6, we report the performance of a GENQA model trained and evaluated with candidates in multiple languages (cf. CROSSGENQA). In a nutshell, this means that our model can answer a user question in one language (e.g. Japanese) by using information retrieved from other languages (for instance Arabic, Bengali, English, Japanese, and Russian). For Arabic, Japanese, and Russian we observe that CROSS-LINGUAL GENQA outperforms other approaches by a large margin with an up to 8 points improvement for Russian.

For Bengali, the model completely fails to generate decent answers (CROSSGENQA models reach at best 25.3% in accuracy compared to the 76.9% reached by the MULTIGENQA model). We hypothesize that this poor performance is the consequence of a poor translation quality of the question from Bengali to other languages such as English, Arabic or Japanese which propagates to poor candidate retrieval and selection leading to very inaccurate generated answers.

Finally, we compare the two candidate aggregation strategies used for CROSS-LINGUAL GENQA.

MODEL	CANDIDATES	Accuracy			
	Open QA for English				
AS2	EN	39.0			
MonoGenQA	EN	43.6			
MULTIGENQA	EN	37.4			
CROSSGENQA	AR-BN-EN-JA-RU top 2 / lang.	31.0			
CrossGenQA	AR-BN-EN-JA-RU top 10 all lang	29.3			
Open QA	Open OA for English with Japanese-specific questions				
MonoGenQA	EN	59.0			
CROSSGENQA	JA	56.4			
CROSSGENQA	AR-BN-JA-RU top 10 all	56.2			
CROSSGENQA	AR-BN-JA-RU top 2 / lang	59.0			

Table 8: Performance of our GENQA models based on retrieved and reranked candidates. USER indicates the language of the question while CANDIDATES indicates the language set of the candidates.

On the one hand, we selected the top 2 candidates ranked by the AS2 model per language. On the other hand, we have extracted the top 10 ranked candidates regardless of the language they are written in. We observe that the choice of the aggregation strategy impacts moderately downstream performance. For English, Arabic, Japanese and Russian the gap between the two methods is at most 2 points in accuracy. Only in Bengali, we observe a 6 points difference in performance that concerns an already poor-performing model. We leave for future work the refinement of the candidates' selection strategy in the multilingual setting. One alternative solution, described in a concurrent work by Asai et al. (2021b), would be to use a multilingual dense retriever.

7.3 Analysis

Human Evaluation vs. BLEU and ROUGE As seen in previous work discussing automatic evaluation of Question Answering systems by (Chaganty et al., 2018; Chen et al., 2019), we observe that for many cases, BLEU and ROUGE do not correlate with human evaluation. For instance, for Bengali, the model that gets the highest BLEU score with 35.2 only gets 25.3 in human estimated accuracy. Similarly, for Arabic, the model that got the secondworst ROUGE and BLEU scores is the best model in terms of accuracy. Those examples just show how limited and imperfect BLEU and ROUGE scores are to evaluate the quality of Question Answering systems. For this reason, we mostly rely on human evaluation. We leave for future work the development of an automatic evaluation method for multilingual GENQA.

Error Propagation We report in Table 7 the performance of the Monolingual and Multilingual

GENQA models fed with gold passage (extracted from the TyDiQA dataset) to compare with the retrieved candidate setting. We observe that the GENQA models are highly impacted by the retriever and AS2 quality. For English, the GenQA performance drops from around 28 points in accuracy. This suggests that large progress could be achieved in GENQA by focusing on the candidates' retriever or AS2 modules.

Culture-Specific Questions in English One striking result across our experiments is the poor performance of CROSS-LINGUAL GENQA models on English. We hypothesize that English questions from the GEN-TYDIQA dataset are more easily answered using information retrieved from English compared to other languages because those questions are centered on cultures specific to English-speaking countries.

To verify our hypothesis, we re-run the same set of experiments, but use culture-specific Japanese questions rather than English queries. To do so, we (i) took the Japanese questions set from GEN-TYDIQA, (ii) manually translated it in English, and (iii) run the same GENQA pipeline on those questions.

The performance of the GENQA models is reported in Table 8. We find that in this setting, the CROSS-LINGUAL GENQA model matches the performance of the Monolingual GenQA model. This suggests CROSS-LINGUAL GENQA can benefit also English if the question set is culturally not centered on English.

8 Conclusion

To conclude, we introduced the GEN-TYDIQA dataset, a new multilingual Question Answering dataset that includes natural-sounding, complete, and self-contained answers for Arabic, Bengali, English, Japanese and Russian. Based on this dataset, we showed that Generative Question Answering (GENQA) (Hsu et al., 2021) is an accurate modeling approach for Open-Domain Question Answering, and this in an end-to-end setting. Based on these results, we presented the first multilingual and cross-lingual GENQA systems. Our model can accurately answer questions in one language using information retrieved from any language and outperforms monolingual baselines for Arabic, Russian, and Japanese.

Acknowledgements

We would like to thank Heba Elfardy, Pavel Kheyfets, Sam Elshamy, Yusuke Watanabe, and Elena Uskova for help in translating the annotation guidelines for the different languages. Many thanks to Ankit Chadha for his support and comments to an early draft of the paper.

References

- Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. 2019. On the cross-lingual transferability of monolingual representations. *CoRR*, abs/1910.11856.
- Akari Asai, Jungo Kasai, Jonathan Clark, Kenton Lee, Eunsol Choi, and Hannaneh Hajishirzi. 2021a. XOR QA: Cross-lingual open-retrieval question answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 547–564, Online. Association for Computational Linguistics.
- Akari Asai, Xinyan Yu, Jungo Kasai, and Hannaneh Hajishirzi. 2021b. One question answering model for many languages with cross-lingual dense passage retrieval. *CoRR*, abs/2107.11976.
- Giusepppe Attardi. 2015. Wikiextractor. https://github.com/attardi/wikiextractor.
- Weijie Bian, Si Li, Zhao Yang, Guang Chen, and Zhiqing Lin. 2017. A compare-aggregate model with dynamic-clip attention for answer selection. In *Proceedings of the 2017 ACM on Conference on Information and Knowledge Management*, CIKM '17, page 1987–1990, New York, NY, USA. Association for Computing Machinery.
- A. Chaganty, Stephen Mussmann, and Percy Liang. 2018. The price of debiasing automatic metrics in natural language evaluation. In *ACL*.
- Anthony Chen, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019. Evaluating question answering evaluation. In *Proceedings of the 2nd Workshop on Machine Reading for Question Answering*, pages 119–124, Hong Kong, China. Association for Computational Linguistics.
- Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and Jennimaria Palomaki. 2020. TyDi QA: A benchmark for information-seeking question answering in typologically diverse languages. *Transactions of the Association for Computational Linguistics*, 8:454–470.
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised

- cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 8440–8451, Online. Association for Computational Linguistics.
- Giovanni Da San Martino, Salvatore Romeo, Alberto Barroón-Cedeño, Shafiq Joty, Lluís Maàrquez, Alessandro Moschitti, and Preslav Nakov. 2017. Cross-language question re-ranking. In *Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '17, page 1145–1148, New York, NY, USA. Association for Computing Machinery.
- Yang Deng, Wai Lam, Yuexiang Xie, Daoyuan Chen, Yaliang Li, Min Yang, and Ying Shen. 2020. Joint learning of answer selection and answer summary generation in community question answering. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7651–7658. AAAI Press.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
- Siddhant Garg, Thuy Vu, and Alessandro Moschitti. 2020. Tanda: Transfer and adapt pre-trained transformer models for answer sentence selection. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(05):7780–7788.
- Travis Goodwin, Max Savery, and Dina Demner-Fushman. 2020. Towards Zero-Shot Conditional Summarization with Adaptive Multi-Task Fine-Tuning. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 3215–3226, Online. Association for Computational Linguistics.
- Chao-Chun Hsu, Eric Lind, Luca Soldaini, and Alessandro Moschitti. 2021. Answer generation for retrieval-based question answering systems. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 4276–4282, Online. Association for Computational Linguistics.
- Ryu Iida, Canasai Kruengkrai, Ryo Ishida, Kentaro Torisawa, Jong-Hoon Oh, and Julien Kloetzer. 2019. Exploiting background knowledge in compact answer generation for why-questions. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in

- Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 February 1, 2019, pages 142–151. AAAI Press.
- Gautier Izacard and Edouard Grave. 2021. Leveraging passage retrieval with generative models for open domain question answering. In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 874–880, Online. Association for Computational Linguistics.
- Dan Kondratyuk and Milan Straka. 2019. 75 languages, 1 model: Parsing Universal Dependencies universally. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 2779–2795, Hong Kong, China. Association for Computational Linguistics.
- Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: A benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:452–466.
- Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian Riedel, and Holger Schwenk. 2020a. MLQA: Evaluating cross-lingual extractive question answering. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7315–7330, Online. Association for Computational Linguistics.
- Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. 2020b. Retrieval-augmented generation for knowledge-intensive NLP tasks. *arXiv preprint arXiv:2005.11401*.
- Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.
- Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pretraining for neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:726–742.
- Shayne Longpre, Yi Lu, and Joachim Daiber. 2020. Mkqa: A linguistically diverse benchmark for multilingual open domain question answering.
- Craig Macdonald and Nicola Tonellotto. 2020. Declarative experimentation ininformation retrieval using pyterrier. In *Proceedings of ICTIR 2020*.

- Yoshitomo Matsubara, Thuy Vu, and Alessandro Moschitti. 2020. Reranking for efficient transformer-based answer selection. In *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 1577–1580.
- Ivan Montero, Shayne Longpre, Ni Lao, Andrew J. Frank, and Christopher DuBois. 2020. Pivot through english: Reliably answering multilingual questions without document retrieval. *CoRR*, abs/2012.14094.
- Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading comprehension dataset. In *Proceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 co-located with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016*, volume 1773 of CEUR Workshop Proceedings. CEUR-WS.org.
- Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual BERT? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4996–5001, Florence, Italy. Association for Computational Linguistics.
- Matt Post. 2018. A call for clarity in reporting BLEU scores. In *Proceedings of the Third Conference on Machine Translation: Research Papers*, pages 186–191, Brussels, Belgium. Association for Computational Linguistics.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.
- Adam Roberts, Colin Raffel, and Noam Shazeer. 2020. How much knowledge can you pack into the parameters of a language model? In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 5418–5426, Online. Association for Computational Linguistics.
- Stephen Robertson and Hugo Zaragoza. 2009. *The probabilistic relevance framework: BM25 and beyond*. Now Publishers Inc.
- Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to rank short text pairs with convolutional deep neural networks. In *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '15, page 373–382, New York, NY, USA. Association for Computing Machinery.
- Gehui Shen, Yunlun Yang, and Zhi-Hong Deng. 2017. Inter-weighted alignment network for sentence pair modeling. In *Proceedings of the 2017 Conference on*

Empirical Methods in Natural Language Processing, pages 1179–1189, Copenhagen, Denmark. Association for Computational Linguistics.

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-cast attention networks. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '18, page 2299–2308, New York, NY, USA. Association for Computing Machinery.

Harish Tayyar Madabushi, Mark Lee, and John Barnden. 2018. Integrating question classification and deep learning for improved answer selection. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 3283–3294, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Quan Hung Tran, Tuan Lai, Gholamreza Haffari, Ingrid Zukerman, Trung Bui, and Hung Bui. 2018. The context-dependent additive recurrent neural net. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1274–1283, New Orleans, Louisiana. Association for Computational Linguistics.

Rodolfo Vieira Valentim, Giovanni Comarela, Souneil Park, and Diego Sáez-Trumper. 2021. Tracking knowledge propagation across wikipedia languages. *Proceedings of the International AAAI Conference on Web and Social Media*, 15(1):1046–1052.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.

Thuy Vu and Alessandro Moschitti. 2021. Multilingual answer sentence reranking via automatically translated data.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. 2007. What is the Jeopardy model? a quasisynchronous grammar for QA. In *Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, pages 22–32, Prague, Czech Republic. Association for Computational Linguistics.

Shuohang Wang and Jing Jiang. 2017. A compare-aggregate model for matching text sequences. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online. Association for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 483–498, Online. Association for Computational Linguistics.

Seunghyun Yoon, Franck Dernoncourt, Doo Soon Kim, Trung Bui, and Kyomin Jung. 2019. A compareaggregate model with latent clustering for answer selection. *CoRR*, abs/1905.12897.

A Reproducibility

A.1 Mechanical-Turk Settings

In this paper, we rely on mechanical turk for two distinct uses.

On the one hand, we use it to build the GEN-TYDIQA dataset. For data collection, we request 1 turker per question to generation an answer. For the GEN-TYDIQA data validation, we request 5 turkers to select only answers that are correct, aligned with the provided passage, self-contained and complete.

On the other hand, we use mechanical turk to estimate the answer accuracy of our models. To do so, for each question, we provide the GEN-TYDIQA reference and ask 3 turkers to vote on whether the generated answer is correct or not.

For those two uses, we use the following mechanical turk filters to hire turkers.

- We hire turkers that received at least a 95% HIT⁸ approval rate.
- We request turkers that have performed at least 500 approved HITs
- When possible, we use the « master turker » filter⁹ provided by mechanical turk. We

⁸A HIT, as defined in mechanical-turk, is a *Human Intelligent Task*. In our case, a HIT consists in generating, validating, or accepting an answer to a single question

⁹As stated on the mechanical turk website, "Mechanical Turk has built technology which analyzes Worker performance, identifies high performing Workers, and monitors their performance over time. Workers who have demonstrated excellence across a wide range of tasks are awarded the Masters Qualification. Masters must continue to pass our statistical

Parameter	Value	Bounds
Effective Batch Size	128	[1, 8192]
Optimizer	Adam	-
Learning Rate	5e-4	[1e-6,1e-3]
Gradient Clipping value	1.0	-
Epochs (best of)	10	[1, 30]
Max Sequence Length Input	524	[1, 1024]
Max Sequence Length Output	100	[1, 1024]

Table 9: Optimization Hyperparameter to fin-tune MT5 for the GENQA task. For each hyper-parameter, we indicate the value used as well as the parameter lower and upper bounds when applicable.

find that this filter can only be used for English. For other languages, this filter leads to a too-small turker pool making it unusable in practice.

On Mechanical turk, the reward unit for workers is the HIT. In our case, a HIT is the annotation/validation of a single question. We make sure that each turker is paid at least an average of 15 USD/hour. To estimate the fair HIT reward, we first run each step with 100 samples ourselves in order to estimate the average time required per task. For data collection, we set the HIT reward to 0.50 USD based on an estimation of 0.5 HIT/min. For data validation, we set it to 0.15 USD based on an estimation of 1.6 HIT/min. For model evaluation, we set the HIT reward to 0.10 USD based on an estimation of 2.5 HIT/min.

A.2 Model Optimization

All the GENQA experiments we present in this paper our based on fine-tuning MT5 base (Xue et al., 2021). To do so, we use the transformers python library (Wolf et al., 2020) as well as the pytorch-lightning library. For fine-tuning, we concatenate the question and the candidate sentences, input it to the model and train it to generate the answer. Across all our runs, we use the hyperparameters reported in Table 9.

monitoring to retain the Mechanical Turk Masters Qualification."