AD A218 865

OPTOELECTRONIC WORKSHOPS

VI

TESTING / FABRICATION / GRADIENT INDEX OPTICS AND COMPUTER AIDED MANUFACTURE OF OPTICS

May 24, 1988

sponsored jointly by

ARO-URI Center for Opto-Electronic Systems Research
The Institute of Optics, University of Rochester

MCCANTY CD	CANKATION OF	TOIS PAGE						
		D	REPORT DOCUM	ENTATION	PAGE	_		
1a. REPORT S	ECURITY CLASS		CIEP	1b. RESTRICTIVE MARKINGS				
Line Value V	Unclassified AMAD 1.2.1000				3. DISTRIBUTION / AVAILABILITY OF REPORT			
					Approved for public release:			
26. DECLASSIFICATION / DOWNIGHT G SCHED				distribution unlimited.				
4. PERFORMING ORGANIZATION REPORT NUMBER(S)				S. MONITORING ORGANIZATION REPORT NUMBER(S)				
				ALO 24626.135-PH-UIR				
60. NAME OF PERFORMING ORGANIZATION 66. OFFICE SYMBOL			6b: OFFICE SYMBOL (M applicable)	7a. NAME OF MONITORING ORGANIZATION				
University of Rochester			(// ajjjin csore)	U. S. Army Research Office				
6c ADDRESS	City, State, and	ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)				
	itute of O er, NY 146	•		P. O. Box 12211				
				Research Triangle Park, WC 27709-2211				
	Ba. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL ORGANIZATION 0f applicable)				9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
U. S. A	U. S. Army Research Office				DAAL 03 - 86-K-0173			
•	Bc. ADDRESS (City, State, and ZIP Code)				FUNDING NUMBER	<u></u>	WORK UNIT	
	ox 12211 h Triangle	Park, NC 2	7709-2211	Program Element No.	PROJECT NO.	TASK NO.	ACCESSION NO.	
			7.03-2211				<u> </u>	
11. TITLE (include Security Classification) Optoelectronic Workshop VI: Testing/Fabrication/Gradient Index Optics and Computer Aided								
	Manufacture of Optics							
12. PERSONAL AUTHOR(S) Duncan T. Moore								
13a. TYPE OF REPORT 13b. TIME COVERED				14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT				
Technical FROM TO May 24, 1988 16. SUPPLEMENTARY NOTATION								
The view, opinions and/or findings contained in this report are those								
of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)								
FIELD	GROUP	SUB-GROUP	Workshop: Te	esting/fabrication/gradient index optics and				
			co	computer aided manufacture of optics				
19. ABSTRACT (Continue on reverse if necessary and identify by block number)								
This workshop on Testing/Fabrication/Gradient Index Optics and Computer Aided Manufacture of Optics represents the sixth of a series of intensive								
academic/ government interactions in the field of advanced electro-optics, as								
part of the Army sponsored University Research Initiative. By documenting								
the associated technology status and dialogue it is hoped that this baseline will serve all interested parties towards providing a solution to high priority								
Army requirements. Responsible for program and program execution are								
Dr. Nicholas George, University of Rochester (ARO-URI						and Dr. Rud	ly Buser,	
		NVEOC.	*			() Co	enty rg. 2	
•								
	20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED DISAME AS RPT. DITIC USERS				21. ABSTRACT SECURITY CLASSIFICATION Unclassified			
22a. NAME OF RESPONSIBLE INDIVIOUAL				226. TELEPHONE	Anciude Aree Code	DE OFFICE S	YMBOL	
	Nicholas	George		716	-275-2417	<u> </u>		

DD FORM 1473, 84 MAR

OPTOELECTRONIC WORKSHOP

ON

TESTING / FABRICATION / GRADIENT INDEX OPTICS AND COMPUTER AIDED MANUFACTURE OF OPTICS

Organizer: ARO-URI-University of Rochester and CECOM Center for Night Vision and Electro-Optics

- 1. INTRODUCTION
- 2. SUMMARY -- INCLUDING FOLLOW-UP
- 3. VIEWGRAPH PRESENTATIONS
 - A. Center for Opto-Electronic Systems Research Organizer -- Duncan Moore

Gradient Index Optics Duncan Moore

B. CECOM Center for Night Vision and Electro-Optics Organizer -- Robert Spande

Introduction Robert Spande

C. CVD Corporation/Gradient Lens Corporation

Gradient Index Infrared Optics H. Desai, R. Zinter

D. Gradient Lens Corporation

Infrared Gradient Objective Designs Leland G. Atkinson, III, J. Robert Zinter

Precision Optical Computer Aided Manufacturing Leland G. Atkinson, III

4. LIST OF ATTENDEES

	·						
	Acces	sion For					
	NTIS	GRA&I					
g	DTIC	TAB	Ē				
	Unannounced						
	Justification						
	Ву						
	Distribution/						
	Availability Codes						
- [Avail a	ad/or				
	Dist	Special					
Ī		1					
-	ادم						
ĺ	N,						
•	_						

1. INTRODUCTION

This workshop on "Testing/Fabrication/Gradient Index Optics and Computer Aided Manufacture of Optics" represents the sixth of a series of intensive academic/ government interactions in the field of advanced electro-optics, as part of the Army sponsored University Research Initiative. By documenting the associated technology status and dialogue it is hoped that this baseline will serve all interested parties towards providing a solution to high priority Army requirements. Responsible for program and program execution are Dr. Nicholas George, University of Rochester (ARO-URI) and Dr. Rudy Buser, CCNVEO.

2. SUMMARY AND FOLLOW-UP ACTIONS

Sound + Horizode con

As part of the URI program, I visited Fort Belvoir to give a workshop on gradient index optics. The workshop was organized by Bob Spande (703-664-6665) and Tom Cody who works for Bob. Approximately ten to twelve people attended the workshop, although the number varied throughout the day. In addition, representatives of CVD, Incorporated, Woburn, MA were in attendance (Dr. Ray Taylor and Dr. Hemant Desai) and two people from Gradient Lens Corporation (Dr. Leland Atkinson and Mr. Robert Zinter). I gave a standard presentation of gradient index optics which created pretty lively discussion, particularly on the possibilities of using gradient index for night vision goggles, helmet mounted displays, IR rifle scopes and IR goggles; Some interesting interaction occurred with the possibility of using tin in germanium to make gradient index; This has been suggested by Charles Freeman. He also suggested the possibility of making gradient detectors, for example, to change the spectraband of various detectors; Apparently this has been done already. He also suggested it might be possible to do space processing of radial gradients and that they would help us in doing this if we were interested. Finally, he suggested it might be time to revisit the Ogive problem. (This is a problem whereby the shape of the surface is no longer spherical but is pointed, and thus the optics are complicated. This would be particularly important since high index materials may now be available and it may be possible to correct the aberrations in a better way than had been previously done. It might be worth proposing something to them.

t might be worth proposing services and the services of the se

CENTER FOR OPTO-ELECTRONIC SYSTEMS RESEARCH **GRADIENT INDEX OPTICS**

REFRACTION IN NATURE

MIRAGE -- UNUSUAL REFRACTION

MATHEMATICAL BASIS

Scoresby 1828
Brewster 1835

SUN

SCHMIDT

HUMAN EYE

HELMHOTZ 1909

INSECT EYE

Exner 1887

Figure 1.3 Compound Eye of the Musca Insect

Cross section of multilayer planar dielectric waveguide F1g. 1

OPTICAL GUIDED WAVES

OVERLAY THICKNESS

A- cos^{0.18} B- cos^{0.25}

ABERRATIONS

Southwell, J. Opt. Am. Soc, 67

N(y,z) = Base Index + A1 cos (pi = (z-.5=t)/t) = (1 + A2=y==2+ A3=y==4)

t=5 mm A1 = .7207 A2 = -.7967E-2 A3 = .1021E-5 BFL = 50 mm

R.S.Arthur, Trans Am Geophy Union, 1946

Water Wave Focusing

Water Wave Focusing

SEISHIC WAVES

RAY PATHS

Akii, Quantitative Seismology, vol 2,p652

SOUND IN WATER

CONSTANT TEMPERATURE PRESSURE INCREASES WITH DEPTH

TEMPERATURE DECREASES WITH DEPTH PRESSURE INCREASES WITH DEPTH

Clay, Acoustical Oceanography p88

SOUND IN THE ATLANTIC OCEAN

Clay, Acoustical Oceanography, p89

WHAT IS GRADIENT INDEX OPTICS

In a conventional optical system, the index refraction within each optical component is homogeneous. That is, it is
constant within the material. Therefore, in the design of
such systems, the lens designer is allowed to vary the
curvature, the thickness, and the index of refraction of
each component independently to try to optimize the performance. However, it is possible to manufacture a lens element whose index refraction varies continuously within the
material. Such a lens element is said to be a gradient
index component. We differentiate these types of elements
from elements which have random errors in their index of
refraction resulting from stria or cord in the material.
At this point, we can find no advantage in using materials
with these random errors.

The subject of gradient index optics is subdivided into two major sections. The first is gradient index components used for telecommunications. In this example, the material is normally a very long fiber of the order of many kilometers with a diameter approximately twenty to one hundred microns. The index of refraction varies radially out from the center such that the index of refraction is higher along the center of the fiber than it is near the edge. If the gradient profile is chosen properly, the height of the ray varies sinusoidally motion down the fiber - never actually touching the walls. This differs dramatically from the step index fiber which relays on total internal reflection of the walls. In this case, the propagation velocities of the various modes differ. In the gradient index fibers, all modes propagate at the same velocity and thus, the temporal bandwidth of such a fiber can be relatively high. In this particular publication, we are not concerned with telecommunications. interested reader is referred to the book by Midwinter entitled Optical Fibers for Transmission for more information.

The major thrust of this work will be the use of gradient index materials for imaging purposes. This does not rule out, however, the possibility of using fibers. In such a case, an image is formed on one end of the fiber and the entire image is transmitted to the opposite end of the fiber. The typical lengths for such a device are only a few meters with the dimmeters of approximately one millimeier.

Gradient index optical systems for imaging purposes can be divided into four distinct sections. The first is the design and analysis of such systems. This involves problems of calculating the aberrations, either by aberration theory or by using raytrace algorithms. Further, it is important to be able to evaluate complex lens systems with both inhomogeneous and homogeneous components.

The second important area is the manufacture of materials. For many years, this has been the limiting feature in implementing gradient index optics. There are now, however, many different materials in which gradients can be made. These include optical glasses, plastics, germanium, zinc selenide, and sodium chloride, to name but a few. Within this area, it is important to be able to not only make the materials but to be able to predict what the gradient will be, what its wavelength dependence will be, as well as its temperature and mechanical properties.

Once the materials have been manufactured, the optical properties must be determined. Currently, there is very little instrumentation for such metrology and the final implementation of such materials in a lens system relies heavily on being able to measure in a short time the various mechanical and optical properties.

Finally, once the other three steps have been completed, we must be able to fabricate them into finished components. It is not as straightforward as one might imagine to take a gradient index component and make it into a finished lens. Because the glass has certain symmetry properties, the axis of symmetry must be colinear with the optical axis of the lens surfaces. If it is not, then aberrations of non-rotationally symmetric lens systems become present.

Why Gradients

Cost Reduction

Weight Reduction

Length Reduction

Reliability

More Perfermance for same number of elements

GRADIENT INDEX FIBERS

PARAMETERS

TEMPORAL DAT

RATE

ENGTH ~! km

TELECOMMUNICATIONS

TIME (

IMAGING

SPATIAL DATA

RATE LENGTH ~1 m

INDEX OF REFRACTION POLYNOMIAL

$$N(x,\xi) = N_0(x) + N_1(x)\xi + N_2(x)\xi^2 + \cdots$$

where
$$\xi = Y^2 + Z^2$$

$$N_0(x) = N_{00} + N_{01}x + N_{02}x^2 + \cdots$$

 $N_1(x) = N_{10} + N_{11}x + N_{12}x^2 + \cdots$

Axial Geometry

Radial Geometry -

Axial Gradient

$$N_A(x) = N_{00} + N_{01}x + N_{02}x^2 + \cdots$$

Radial Gradient

$$N_R(x) = N_{00} + N_{10}\xi + N_{20}\xi^2 + \cdots$$

 $\xi = Y^2 + Z^2$

Spherical Geometry

$$N(R-\rho) = N_{00} + N_{01S}(R-\rho) + N_{02S}(R-\rho)^2 + N_{03S}(R-\rho)^3 + \cdots$$

HOMOGENEOUS SINGLE LENS
WITH SPHERICAL SURFACES
WI

HOMOGENEOUS SINGLE LENS WITH ASPHERICAL SURFACES

E = SPHERICAL ABERRATION

GRADIENT INDEX SINGLE LENS WITH SPHERICAL SURFACES

SINGLE ELEMENT COLLIMATOR

BL-3

f/4 focal length 20.0cm

N=1.5062-0.0355 Z

 $y' = \sigma_1 p^3 \cos\theta + \sigma_2 p^2 h'(2 + \cos 2\theta) + (3\sigma_3 + \sigma_1) p h'^2 \cos \theta +$

" = + p 3 sin8 + o p h' sin28 + (o + o) ph' sin8

 σ_i = Sum of ordinary surface contributions

+

Sum of inhomogeneous surface contributions

+

Sum of inhomogeneous transfer contributions

0+,= = = = = No, yo, = + [4N2 yo, + 2N, yo, vo, - = No, vo,] dx

 $a^*_2 = \frac{1}{2} \nabla N_0 y_0 v_0^2 v_b + \int [4N_2 y_0^3 y_b + N_1 y_0 v_0 (y_0 v_b + y_b v_0) - \frac{1}{2} N_0 v_0^3 v_b] dx$

 $a^{*}_{3} = \frac{1}{2} \nabla N_{0} y_{0} v_{0}^{2} + \int \left[4N_{2} y_{0}^{2} y_{b}^{2} + 2N_{1} y_{0} y_{b} v_{0} v_{b}^{2} - \frac{1}{2} N_{0} v_{0}^{2} v_{b}^{2} \right] dx$

xp(2N/N) / χ = 1,0

 $a_{s}^{*} = \frac{1}{2} \nabla N_{o} y_{a} v_{b}^{3} + \int \left[4N_{2} y_{a} y_{b}^{3} + N_{1} y_{b} v_{b} (y_{a} v_{b} + y_{b} v_{a}) - \frac{1}{2} N_{o} v_{a} v_{b}^{3} \right] dx$

AXIAL GRADIENT

DEGREES OF FREEDOM

CORRECTION

VALUE OF N 01 SPHERICAL ABERRATION

FIRST CURVATURE COMA

SECOND CURVATURE FOCAL LENGTH

STOP POSITION DISTORTION

Contribution Aspheric

Surface Contribution Inhomogeneous

- 4 AD y4 An

 $\frac{-c^2}{2} \quad y_0^4 \Delta \dot{N}_0$

8 AD An

ΔŇo

Noo + Noix + Noz x2

f /4 Axial Gradient Collimator Spherochromatism

TOLERANCING GRADIENT

TEN PARAMETERS TO BE TOLERANCED

N₀₁, N₀₂, N₀₃, N₀₄, N₁₀, N₂₀, N₃₀, N₄₀, TILT, DECENTER

Large chromatic chromatic = 0 Aberration S. A = 0 SA = 0 Result Linear vs Quadratic Profiles Profile Shape b ō Lens

Spherical Aberration For Gradient Index Corrector Plate and Spherical Mirror

$$y_{d3}^{4}$$
 c_{primary} + $\frac{y_{d1}^{4}}{2}$ [2 N₀₂t + 3N₀₃t²...] ~0
Let N_{0j} = 0 j ≥ 3 and assume $y_{d1} = y_{d3}$

Third Order Aberration Coefficients Spherical Aberration

Ordinary Enhomogeneous Surface Surface Contribution Contribution

Transfer Contribution

-.000012

Plate

000000

+ .015006

Primary -.014832

0.0

0.0

Total of * + .000168

RAY INTERCEPT PLOT CORRECTOR PLATE SAGITTAL FAN

RAY DISPLACEMENT PLOTS ARADIENT CORRECTOR PLATE VARIOUS GRADIENT DISPLACEMENTS

FIGURE 3-9

THE PROJECT

To redesign the M19 binocular objective using gradient index materials to:

- 1) reduce the number of elements,
- 2) maintain equivalent performance, and
- 3) develop a system that can be manufactured using ion exchange techniques.

BINOCULAR SYSTEM

PR YODER, JR., J. OPT. 80C. AM. 80. 491 (1960)

The original M19 binocular has a three element telephoto objective.

FIRST ORDER SPECIFICATIONS

Effective Focal Length	150 m m
F number	3.0
Semi-field Angle	3.66 °
Entrance Pupil	5 0 mm
Telephoto Ratio	0.80

THE PLAN

Design a two element telephoto system using an axial gradient index positive lens and a homogeneous negative lens.

N=N_0+N_01Z+N_02Z2+...

Comparing positive elements:

Original system——2 lenses

GRIN system-----1 lens,1 gradient

The major function of the gradient is to control spherical aberration.

GRADIENT INDEX GLASS

The Base Glass: We used an alumina silicate crown glass, manufactured by Bausch and Lomb for ion difusion, for the positive lens.

$$N_d = 1.5011$$
 $V = (n_d - 1)/(n_F - n_c) = 58.0$

The Gradient: A Ag⁺ for Na⁺ ion exchange was used as the basis for the design, having a maximum theoretical index change $_{\Delta}n=0.15$. The dispersion of the gradient is $V_{01}=15$, where $V_{01}=N_{01,d}/(N_{01,F}-N_{01,C})$.

We restricted △n≤0.05 for ease of fabrication and better transmission.

CONVENTIONAL TELEPHOTO DESIGN

For a focal length F, telephoto ratio k, and separation d, the focal lengths of the elements are *,

$$f_1 = F/\{F(1-k)+d\}$$
 and $f_2 = (f_1-d)(kF-d)/(f_1-kF)$

Kingslake, Fundementals of Lens Design 1978

Chromatic Aberration in Telephoto Design

Paraxial Axial Color, PAC---- the variation in focal point with wavelength

For a thin lens, PAC $\propto y_a^2/Vf$, where y_a =axial ray height f=focal length and $V=(n_c-1)/(n_F-n_c)$

For two thin lenses,

$$PAC \propto y_{a1}^{2}/V_{1}f_{1} + y_{a2}^{2}/V_{2}f_{2}$$

For PAC=0, then,

$$(y_a)^2 f_2 V (y_a)^2 f_1 = -V_1 / V_2$$

We saw from the graph that as the separation increased, this ratio also increased, since f_2 increases faster than f_1 .

Therefore to get weak element we need a large ratio V_1/V_2 .

We found that our best gradient index design had the largest value of V_1/V_2 that we could use.

SYSTEM COMPARISON

GRIN

$$V_1 = 58.0$$

$$V_1/V_2 = 2.84$$

ORIGINAL

$$V_1 = V_2 = 64.2$$
 (BK7)

TELEPHOTO SOLUTIONS

TRANSVERSE ABERRATIONS

HONOGENEOUS

HOMOGENEOUS

2 ELEMENT

3 ELEMENT

SPOT DIAGRAMS

2 ELEMENT HOMOGENEOUS OBJECTIVE

2 ELEMENT GRIN OBJECTIVE

3 ELEMENT HOMOGENEOUS OBJECTIVE

FABRICATION OF THE GRADIENT

Giass -Bausch and Lomb 2406

Salt -AgCI

Ion Exchange --- Ag+ for Na+

Diffusion Time-39.5 hours

Temperature ---- 515° C

Anneal - 10 hours at 515° C

Index Profiles

INDEX PROFILE

DESIGN VS. EXPERIMENT

$$C_1 = 0.0197271 / mm.$$

$$t_1 = 14.00 \, \text{mm}.$$

$$t_2 = 1.877 \, \text{mm}.$$

Index profiles - shifted

Interference pattern Due to Index of Refraction Gradient

m = myt

System Testing

1) Wavefront measurement with Zygo Interferometer

2) MTF Measurement

3) Visual Resolution Test with UASF -1951 Target

Grin 1

Grin 2

SUMMARY

Key Results

- 1. This was the first large-scale axial gradient-index system ever fabricated.
- 2. The number of elements was reduced while maintaining equivilant performance.
- 3. The ability to alter the index profile after diffusion was demonstrated.
- 4. Reproducibility and the potential for mass production were also demonstrated.

Implications

- 1. Weight reduction
- 2. Improved reliability
- 3. Improved performance with the same number of elements
- 4. Cost

RADIAL GRADIENT

DEGREES OF FREEDOM C

CORRECTION

COMA

N N ASTIGMATISM

FIRST CURVATURE

SPHERICAL ABERRATION

DISTORTION

STOP POSITION

N 20

FOCAL LENGTH

SECOND CURVATURE.

THICKNESS

WOOD LENS

$$N(r) = N_{00} + N_{10} r^2 + N_{20} r^4 + \cdots$$

WOOD LENS

HOMOGENEOUS

Wer

be No

$$V_{10} \in \frac{(2, \infty)}{(-5, -\infty)}$$

etzv al

iffusion

BINOCULAR SYSTEM

PR. YODER, JR., J. OPT. SOC. AM. 50, 491 (1960)

BINOCULAR OBJECTIVE

CONVENTIONAL PHOTOGRAPHIC OBJECTIVE

fl=50mm {/2 hfov=21°

GRADIENT INDEX PHOTOGRAPHIC OBJECTIVE

fl = 50 mm f/2 hfov = 21°

CONVENTIONAL 40% MICROSCOPE OBJECTIVE

CONVENTIONAL 40X MICROSCOPE OBJECTIVE

GRADIENT 40X MICROSCOPE OBJECTIVE

GRADIENT 40X HICROSCOPE OBJECTIVE

FIRST ORDER PROPERTIES

NUMERICAL APERTURE

0.45

FOCAL LENGTH

*8.0mm.

FULL FIELD OF VIEW

700mm.

LENS DIAMETER

*8mm.

COVER PLATE

1.1mm.

TWO APPROACHES

- I. WOOD LENS (RADIAL GRADIENT WITH PLAND SURFACES)
- II. RADIAL GRADIENT WITH CURVED SURFACES

 $N(r) = N_{00} + N_{10} r^2 + N_{20} r^4 + N_{30} r^6 + .$

TOLERANCE DATA

PARACTER	MONITAL VALUE SOLERANCE	
73	1.1 m	*0.15 =
T ₀₀	1.70	. 20.001
W ₁₀	-0.356-02 m ⁻²	20.002-02 m ⁻²
2 20	-0.902-05 m ⁻⁴	29.930-05 m ⁻⁴
Milt	0.0 radiana	40.003 Fadians
Secontration	0.0 m	29.100 m
cr ₁	9.1346 m ⁻¹	S riage
cu³	0.0(55 m ⁻¹	\$ Tings

Assumes all parameters are independent. Pocal shift correction allowed in all cases.

 $R(r) = 1.7 - 0.36 \times 10^{-2} r^2 - 0.90 \times 10^{-5} r^4$ t = 8.9 nm $c_1 = 0.135 \text{ nm}^{-1}$ $c_2 = 0.046 \text{ nm}^{-1}$

Manufacture of Gradients

<u>6lass</u>	Size	ΔN
Neutron Irradiation	0.1 mm	0.02
Chemical Vapor Deposition (CYD)	1.0 mm	0.03
Polymerization Techniques	20.0 mm	0.04
ion Exchange	18.0 mm	0.15
Stuffing	10.0 mm	0.04
Infrared Materials		
Ge-Si	20.0 mm	0.15
ZuSe-ZnS	10.0 mm	0.24

GRADIENT INDEX FABRICATION METHOD OF ION EXCHANGE

LIST OF BASE GLASSES

BK-7	517.642	SF-2	648.339
BK-13	521.628	SF-4	755.276
SK-3	609.589	SF-6	805.254
FK-5	487.704	SF-64	706.308
BaF-3	583.465	S-8000	518.599
BALF-3	571.529	BASF-51	724.381
BAK-1	573.575	LASF-5	881.410
LAK-23	669.574	LAK-NI4	697.554
LAF-N2	744.448	BASF-I	626.390
LAF-24	4 757.478	KF-3	515.547

MODELS

- 1. DIFFUSION COEFFICIENT
- 2. INDEX OF REFRACTION
- 3. SPECTRAL PROPERTIES
- 4. THERMAL AND MECHANICAL PROPERTIES

ION EXCHANGE GLASS KF3 DIFFUSANT LIBR

OVEN INTERFEROMETER DATA: Anneal shown at 1/2 hr inter-	vals beginning at 1 hr. 505C AgCl/BL2406 Lamda = .6471 um	9.684 M
DN: . 886.9		

GLASS: Bausch and Lomb 2406

SiO₂ 67.0% Na₂O 25.6% Al₂O₃ 7.4%

Cylindrical sample, 40mm dia. x 50mm long

SALT: 1.0 kg AgCl with approx. 1% NaCl due to previous experiments

TEMPERATURE: 515 °C

TIME: 960 hours (40 days and 40 nights)

RESULTS

1) The sample surface was significantly degraded, but no bulk deformation was evident.

2) The sample was not devitrified.

Fig.1. Iou stuffing process for fabricating GRIN rod lens.

Fig.2. Ag and He concentration profile in the glass rod after ion stuffing (left' and after ion unstuffing (right'.

2.5

Fig.3. A typical example of the radial variation of refractive index of the 2.0 mm diameter lens.

Fig.4. Image of spot formed by the 2 mm diameter rod lens.

Fig. 5. Optical micrograph of the image of the resolution target formed by the 2 mm diameter lens.

Fig.6. Photograph of a GREN lens 9.4 mm in disseter and 5.3 mm in thickness.

SOL-GEL

MYDROLYSIS: Si(OC2H5)4 + 4H2O = Si(OH)4 + 4C2H5OH

POLYMERIZATION: Si(OH)4 - SiO2 + 2H2O

SCHEMATIC GEL STRUCTURE

GRADIENT SYSTEMS FOR IR

SPECIAL GLASSES TO 3.5 MICRONS

GERMANIUM DIFFUSIONS

ZN SE - ZN S CVD

GRADIENT NA CL - AG CL

CHEMICAL VAPOR DEPOSITION PROCESS INTRODUCTION TO

ZINC SELENIDE (SOLID) + HYDROGEN (GAS) • ZINC (VAPOR) + { HYDROGEN SELENIDE (GAS) | HYDROGEN SULFIDE (GAS)

D HETEROGENEOUS REACTION, NOT GAS PHASE

• CONDITIONS:

- PRESSURE LESS THAN 100 TORR

- TEMPERATURE APPROXIMATELY 600-750C

DEPOSITION RATE

- 10-75 mm PER HOUR

- HIGHER DEPOSITION RATE DEGRADES OPTICAL QUALITY

MIGH PURITY, 99.9999

D POLYCHYSTALLINE MATERIAL

- ORAIN SIZE, 10-100 µm

• THEORETICALLY DENSE MATERIAL, NEGLIGIBLE VOIDS

4 MASS PLOW NETENS & CONTROLLER MICROPROCESSOR ISAAC / APPLE 7, ₹ **DEPOSITS OF GRADIENT INDEX MATERIAL EXPERIMENTAL CVD CHAMBER USED FOR** 0 O messure morcator TEMPERATURE CONTROLLER ę TEMPERATURE MDICATOR RETORT H EUBSTRATE TEMPERATURE CONTROLLER INJECTORS BUBBTRATE EXHAUST ZONE TEMPERATURE CONTROLLER **{** FILTER VALVE 0 0 8 PURNANCE PREBURE CONTROL VALVE FILTER EXHAUST DAS SCRUBBER 0 VACUUM PUM

CVD FURNACE

CONCEPT TO DEVELOP A GRADIENT INDEX IR MATERIAL

- D ZAS AND ZAS ARE WIDELY USED INFRARED OPTICAL MATERIALS
- PRODUCED VIA CHEMICAL VAPOR DEPOSITION (CVD)
 - HAVE DIFFERENT INDICES OF REFRACTION
- ARE MIXABLE IN SOLID STATE, I.E., ALLOY ZAS, Soj-H WITH 0 S H S 1 EXISTS.
- CODEPOSIT ZAS SO 1-H WITH A VARYING WITH DISTANCE, B
 - INDEX IS A FUNCTION OF MOLAR COMPOSITION n Ang [8] + Bng. [50] with A and B 1.6.

• CONCENTRATE ON AXIAL INDEX GRADIENTS.

INTERFEROGRAM OF GRADIENT INDEX MATERIAL

INDEX OF REFRACTION OF ZnS and ZnSe

CZOCHRALSKI CRYSTAL GROWING

Crystal Grower Sketch Figure 4-5

Refractive Index versus Ge-Si Alley Composition

Gradient - Index Polymers

Leo R. Gardner

MONOMER :

MENO (single) - MEROS (parts)

Methylmethacrylate (MMR):

POLYMER:

POLY (many) - MEROS (parts)

Polymethylmethacrylate (PMMA):

2.2.2 - THE LUCKCETHYL METHACRYLATE

STMA

	HOMOPOLYMER	HOMOPOLYMER
TYPICAL	from CR39°	from HIRI" II
PROPERTIES	MONOMER	CASTING RESIN
Visible Light	89-91%	92-93%
Transmittance	2.7 mm thick	2.5 mm thick
Refractive Index (at 20°C)	co = 1.486	a _D = 1.5563
Abbe number	59. 3	37.7
Density	1.31 g/cc	1.216 g/cc
Heat Distortion		
Temperature	131-149° F	168° F
(for 10 mil deflection)		
-		

information courtesy of PPG Industries, Inc.

-1100 MIVING

(diethylene glycol bis (allyl carbonate) np (polymer) = 1.50)

HIRI™II casting resin

(a proprietary mixture of the carbonate ester family np (polymer) = 1.56)

3FMA

(2, 2, 2 - trifluoroethyl methacrylate no (polymer) = 1.42)

MEASUREMENT OF GRADIENTS

PRESENT

INDEX OF REFRACTION PROFILE
CHROMATIC DISPERSION
MAXIMUM SLOPE OF GRADIENT
TRANSMISSION
ION CONCENTRATION

FUTURE

INCREASE ACCURACY OF SLOPE TO 0.1% MORE DATA

GRADIENT INDEX SCHLIEREN SYSTEM

CONVENTIONAL ENDOSCOPIC SYSTEM

Homogeneous Fiber Bundle

10,000 fibers

Relay System

many relay elements

INHOMOGENEOUS SINGLE FIBER

Space Bandwidth = number of resolution elements across field

Axis Representation of the Ourved GRIN Rod

Gradient Index Array: Mon-Unit Magnification

Conventional System

Gradient Index Rod

PLC = 0.0

Symmetry d Rod MULTIPLEXER Non Rotational 1/4 Period

CECOM CENTER FOR NIGHT VISION AND ELECTRO-OPTICS INTRODUCTION

OPTOELECTRONICS WORKSHOP GRADIENT INDEX/ CAD OPTICAL FABRICATION

Gradient Index as a concept has been around since the nineteenth century. While practical applications have appeared only within the last decade. The first application is for fiber optics, where very long lengths are required in communication systems. The use of gradient index technology improved fiber optic transmission efficiency, making possible longer communication distances with gradient index fibers.

Today the technology has extended into optics for binoculars, both the objective and the eyepieces. Currently CCNVEO is developing gradient optics for the far infrared, where cost and performance benefits are will be realized above homogeneous optics. With these technology demonstrators future gradient index optics applications include night vision goggles, displays, both helmet and heads-up and IR/Visual optical trains.

With the advent of the microcomputer it is possible to grind and polish optics through a computer controlled processing. A system will be described that can fabricate greater than 80% of the all the different geometries required for U.S. Army's weapon systems.

OPTOELECTRONICS WORKSHOP GRADIENT INDEX/ CAD OPTICAL FAB.

OVERVIEW
SYSTEM REQUIREMENTS
SENSOR REQUIREMENTS
COMPONENT REQUIREMENTS

OPTICAL DESIGNS

SPHERICAL SURFACES - HOMOGENOUS MATERIAL ASPHERIC SURFACES - MIRRORS, GERMANIUM GRADIENT INDEX - VISIBLE, INFRARED

COMPUTER CONTROLLED GRINGING AND POLISHING AND POLISHING CONVENTIONAL GRINDING OPTICAL MANUFACTURING

OPTOELECTRONICS WORKSHOP GRADIENT INDEX APPLICATIONS

VISIBLE APPLICATIONS

NV GOGGLE OBJECTIVE LENSES

HELMET MOUNTED DISPLAYS

DISPLAYS

IR APPLICATIONS
RIFLE SIGHT APPLICATIONS
IR OPTICAL TRAINS
IR GOGGLES

24 MAY, 1988

OPTOELECTRONICS WORKSHOP SPHERICAL - AXIAL GRADIENT

3" APERTURE, F/1.0 28 MAY, 1988

OPTOELECTRONICS WORKSHOP ASPHERIC -HOMOGENEOUS

3" APERTURE, F/1.0 28 MAY, 1988

OPTOELECTRONICS WORKSHOP ANVIS GRIN OBJECTIVE LENS

SCALE 2.0

SCALE 2.0

HOMOGENEOUS

GRADIENT INDEX

28 MAY, 1988

OPTOELECTRONICS WORKSHOP SPHERICAL - HOMOGENEOUS

3" APERTURE, F/1.0 28 MAY, 1988

CVD CORPORATION/GRADIENT LENS CORPORATION GRADIENT INDEX INFRARED OPTICS

AGENDA

O PROGRAM INTRODUCTON H. DESAI

O AXIAL GRADIENT (AGRIN)

AND

RADIAL GRADIENT (RGRIN) DESIGNS

R. ZINTER

O AGRIN MATERIAL DEVELOPMENT

H, DESAI

CHEMICAL VAPOR DEPOSITION

• DEFINITION

CONDENSATION OF A COMPOUND OR COMPOUNDS FROM THE GAS PHASE ONTO A SUBSTRATE WHERE HETEROGENEOUS REACTION OCCURS TO PRODUCE A SOLID DEPOSIT

TYPICAL APPLICATIONS

- HARD COATINGS (TIC, AL203, C)
- PROTECTION AGAINST CORROSION (TA, BN, MoSi2, SIC)
- SOLID STATE ELECTRONIC DEVICES AND ENERGY CONVERSION (SI, GAAS)
- IR MATERIALS (ZNSE, ZNS, CDS, CDTE, ETC)
- MANUFACTURE OF CERAMICS (PYROLYTIC C, BN, POLY-SI, ETC.)

GENERAL CHARACTERISICS OF CVD PROCESS

- HIGH PURITY MATERIALS PRODUCED (99,999% TYPICAL)
- DEPOSITED MATERIAL IS POLYCRYSTALLINE, THEORETICALLY DENSE
- MICROSTRUCTURE (GRAIN SIZE, CRYSTAL ORIENTATION) CONTROLLED BY CVD PARAMETERS
- COMPOSITE MATERIALS CAN BE PRODUCED CVD
- COST-EFFECTIVE (AUTOMATION POSSIBLE)
- · REPLICATION DOWN TO MOLECULAR LEVEL POSSIBLE
- SCALABLE PROCESS

CVD OF ZNSE AND ZNS

R REACTIONS

$$ZN(G) + H2S(G) \xrightarrow{AR} A0 + H2(G)$$

670 C

$$ZN(G) + H_2SE(G) \xrightarrow{IR} ZNSE(S) + H_2(G)$$

750 C

- CETAILED REACTION MECHANISM NOT FULLY UNDERSTOOD
- $\mbox{\bf B}$ DCPOSITION RATE CRITICAL TO MATERIAL QUALITY (RD $\cong 1.2~\mu \mbox{M}\ \mbox{min.--}1)$
- POLYCRYSTALLINE, RANDOM ORIENTATION, GRAIN SIZE \sim 5 $_{\text{FM}}$ FOR ZNS AND \sim 70 $_{\text{FM}}$ FOR ZNSE

Schematic of research CVD furnace to be used in proposed program.

GRIN CONCEPT

- ZNS AND ZNSE HAVE DIFFERENT REFRACTIVE INDICES IN 1R
- I ZNS AND ZNSE ARE COMPLETELY MISCIBLE SOLIDS, I.E., ZNS_XSEl-x EXIST FOR ALL VALUES OF x
- INDEX OF $2NS_XSE_{1-X}$ RELATED 10 x, N = NZNSE(1-x) + NZNS(x)
- COUCPOSIT ZNS AND ZNSE IN A CONTROLLED MANNER, I.E., VARY x AS A FUNCTION OF THICKNESS (DEPOSITION TIME)

Indices of refraction of ZnS and ZnSe as a function of wavelength.

CHEMICAL VAPOR DEPOSITION OF INFRARED GRADIENT INDEX MATERIALS PROGRAM,

U.S. ARMY MISSILE COMMAND GUIDANCE AND CONTROL DIRECTORATE CONTRACT NUMBER DAAHO1-84-C-0085

SPONSOR:

DEMONSTRATE THE FEASIBILITY OF PRODUCING AN IR AXIAL GRADIENT MATERIAL. OBJECTIVE:

PERIOD OF 3/1/84 - 9/30/85

AVERAGE GRAIN SIZE (μm)

Figure 2.

MOLE FRACTION OF ZnS, x, IN ALLOY ZnS $_{\rm x}$ Se $_{\rm 1-x}$

Deposition rate, R_D , of alloy ZnS_XSe_{1-X} vs. gas phase composition. Solid line is a linear least squares fit to the data points.

Change in refractive index (0) and % ZnSe in solid vs. distance from substrate for ZnS_xSe_{1-x} gradient index material. Solid line through circles is a curve fit.

 $\lambda = 0.647 \ \mu \text{m}$ $\tau = 0.160 \ \text{mm}$

 $\lambda = 0.647 \, \mu\text{m}$ $\tau = 0.175 \, \text{mm}$

 $(\lambda = 0.647 \mu m)$ is moved along deposition axis (2) of gradient index material $Z_{x} = Z_{x} = Z_{x}$ Photographs of fringe pattern produced when a beam of light

PROGRAM: GRADIENT INDEX OPTICS

SPONSOR: U.S. ARMY/CECOM

CONTRACT NUMBER DAABO7-87-C-F108

OBJECTIVES: TO DESIGN, TOLERANCE, FABRICATE AND TEST GRADIENT INDEX MATERIALS IN AN INFRARED OBJECTIVE LENS ASSEMBLY.

PERFORMANCE: 10/1/87 - 9/30/89

OBJECTIVES

PHASE I

2 gerk

O DESIGN OF AGRIN LENS

O FABRICATION AND TESTING OF (3)
AGRIN LENS ASSEMBLIES

O DESIGN OF RGRIN LENS

PHASE II = FRUNK

O FABRICATION AND TESTING OF (3) RGRIN LENS ASSEMBLIES

REQUIREMENTS

AGRIN

RGRIN

F/#

,

FOCAL LENGTH

3.0"

1.0"

OF ELEMENTS

1-2

HF0V

3°

2°

WAVELENGTH RANGE (mm)

7.5 - 11.75

7.5 - 11.75

6

SCHEDULE

MATERIAL DEVELOPMENT

0 STEP-INDEX GROWTH (\triangle n = .014)

O MICROPROCESSOR BASED PROCESS CONTROL

0 CONTINUOUS INDEX CHANGE (\triangle n = 1 X 10⁻⁴)

O ELIMINATION OF NODULES

BASIC MODES OF THIN FILM GROWTH

LAYER

STRANSKI -- KRASTANOV

MATERIAL DEVELOPMENT

O PULSED H2s AND H2Se FLOWS

(50 SEC. - ON; 10 SEC. 0FF)

O RANDOMIZING OF GROWTH DIRECTIONS

CONCLUSIONS

- O AGRIN DESIGN COMPLETE
- O COMPRABLE TO PRESFINT LENS DESIGNS
 -) ALL SPHERICAL SURFACES
- O RGRIN DESIGN
- O SUPERIOR TO AGRIN
-) ALL SPHERICAL SURFACES
- O MATERIAL DEVELOPMENT
- O DEMONSTRATION OF CVD PROCESS
 - TO PRODUCE AGRIN LENSES
- O PRODUCTION OF LENS BLANKS (6/88)
-) PROGRAM ON SCHEDULE
- O WILL ACHIEVE ALL OBJECTIVES

GRADIENT LENS CORPORATION INFRARED GRADIENT OBJECTIVE DESIGNS

PHONE: (716) 235-2620

FAX. (716) 235-5645

Infrared Gradient Objective Designs

Subcontract No. CVD SC-9091-1

Presented By:

Leland G. Atkinson, III
J. Robert Zinter

May 25, 1988

GRADIENT INDEX DESIGN OVERVIEW

- I) Homogeneous Triplet
- II) Development of Axial Gradient (AGRIN)
 - Possible Combinations
 - AGRIN Design
 - AGRIN Tolerancing
- III) Developmet of Radial Gradient (RGRIN)
 - Singlet Design
 - Two Element Design
- IV) Conclusions and Future Work

MAVELENGTH MEIGHT	8200.0 NK 1	DEFOCUSING 0.00000	36.50 40.56
AXIS T 1 0.7 FIELD (3.50*)	88T1.0 FIELD (5.00.)		16.22 20.28 24.33 28.39 32.44 AL FREQUENCY (CYCLES/MM)
TRIPLIET # 1 DIFFRACTION MTF	LGA 28-JAN-88	1.0 0.9 0.8 0.7 1.0 1.0 0.3 0.3 0.3	4.06 8.11 12.17 16. SPATIAL

LGA 27-JAN-88 26.3 KM SCALE 0.950 5° for the (L schront 8.2 t. 11.3 am ₩ 7 ZNSE TRIPLET GE

5

11300.0 NM 1 10600.0 NM 1 8200.0 NM 1	DEFOCUSING 0.00000	38.41 42.68
AXIS AXIS T 0.7 FIELD (3.50*)		17.07 21.34 25.61 29.88 34.14 AL FREGUENCY (CYCLES/MM)
TRIPLET # 2 DIFFRACTION MTF LGA 28-JAN-88	1.0 0.9 0.8 0.0 0.0 1.0 0.3 0.3	4.27 B.54 12.80 17. SPATIAL

Design Guidelines

An axial Gradient-index Doublet (delta N < 0.2)

E.P.D = 75 mmF# = 1.0

Half Field of View 0°- 5°

Wavelengths 11.3, 10.6, 8.2 microns

Color corrected

Axial Gradients

A material whose index of refraction varies as a function of z only, a series of planar surfaces each with a specific index given by the polynomial . . .

$$N(z) = N_{OO} + N_{01}Z + N_{02}Z^2 + N_{03}Z^3 + \dots$$

Third Order Starting Designs

PAC	0	0	0
Sigma 4	0	0	-0.012
Sigma 3	0	-0.15	-0.2
Sigma 2	0	0	0
Sigma 1	-0.72	0	0
Power 2 Separation	50.86	38.9	19.68
Power 2	-120.48	-99.01	26:89-
Power 1	62.79	59.52	46.08
V Ratio	35.27	13.91	4.53
	Gerzns	Ge/ZnSe	GaAs/ZnS

Material	Abbe #	n (8.2 µm)	n (10.6 µm)	n (8.2 µm) n (10.6 µm) n (11.3 µm) v/n (10.6)	v/n (10.6)
SuS	30.41	2.221	2.192	2.182	13.87
ZnSe	77.08	2.416	2.403	2.398	32.08
e G	1072.43	4.005	4.003	4.002	267.92
GaAs	137.64	3.283	3.271	3.267	42.08

	DEFOCUSING 0.01000		6.00 6.50 7.00
DIFFRACTION AXIS 0.7 FIELD	3.00-11 (3.00-1)		3.00 3.50 4.00 4.50 5.00 5.50 FREQUENCY (CYCLES/MM)
GERM/65% ZnSe GRIN DIFFRACTION MTF	KAH 23-MAY-88	1.0 0.8 0.8 0.8 0.6 1 1 1 1 0.3 0.3 0.3	0.50 1.00 1.50 2.00 2.50 SPATIAL

Axial Gradient Preliminary Tolerances:

Tolerances:	Germanium	70% ZnSe
Front Radius (mi	m) 77.251(8/2) 113.735(8/2)	-384.474(10/2) -520.154(12/3)
*Thickness (mm)	6.500 +/- 0.04	5.522+/- 0.04
N ₀₀ (@ 10.6 נייו)	4.003 +/- 0.002	2.329+/- 0.002
TIR (mm)	0.008	0.006
Tilt (mrad)	0.3	1.5
Decenter (mm)	0.100	0.100
	(mm) > 0.000 +/- 0.04 (mm)> 8.618 +/- 0.02	

Compensators:

Focal Plane Shift (mm) +/- 0.146

^{*} Most sensitive tolerances

MTF Effects from tolerances and compensation:

Probable change in MTF at 6.7lines/mm

	Cumulative Probability	Nominal MTF	Change in MTF
On Axis	97.7%	0.827	-0.153
0.7 Field	97.7%	0.271	-0.106

Note: Length tolerances are most sensitive, if lengths are held 0.02mm, then the tolerance and compensator effects are . . .

On Axis	97.7%	0.827	-0.084
0.7 Field	97.7%	0.271	-0.062

Radial Gradients

A material whose index of refraction varies as a function of radius, a series of concentric cylinders each with a specific index, given by the polynomial ...

$$N(r) = N_{00} + N_{10}r^2 + N_{20}r^4 + N_{30}r^6 + \dots$$

$$r^2 = x^2 + y^2$$

Development of RGRIN Design

Design Step	Degrees of Freedom	Correction
First order Achromat; Stopped down	N ₁₀ , t, C, N ₀₀	Focal length and Axial Color
Third Order	Bending (C ₁), N ₂₀	Spherical and Coma aberration
Fifth Order (Opened to F#/1)	N ₃₀	5th order Spherical aberr.
*** Singlet design don Petaval field curv	Stop shifting (Unable to correct Astig.) hinated by third order astigmatism and lature	Astigmatism
Addition of Field Corrector	Power and bending	Petzval Field Curvature
Two Element Designane, providing for correction	gn Additional Element displant of the Astigmatism, rather than Petzva	•

Radial GRIN Designs

Desigr	of Viev	ΔN		_	tial MTF es/mrad.
	4	-0.0736	Petzval Field and Astigm.	On axis	Full Field 0.52
Пп	10	-0.0549	Petzval Field	0.66	0.64
	16	-0.0556	Petzval Field	0.66	0.10

Notes:

- 1) Both Designs are f#/1 , E.P.D. = 1" $N_{00} = N_{ZnSe} = 2.4028$ at 10.6 microns
- 2) For ZnSe/ZnS Gradients the V# $_{\rm gr}$ = 10.09, Consequence: f.l. hmg (+) and f.l. gr (+) for an Achromat, ie. 1/f.l. $_{\rm a}$ V $_{\rm a}$ = 1/f.l. $_{\rm b}$ V $_{\rm b}$
- 3) For Petzval Field correction . . .

Ptz α 1/f.l.N₀₀ hmg

Ptz α 1/f.l.N₀₀² GRIN

Consequence: Petzval and Axial Color cannot be simultaneously corrected for this type of singlet

4) Addition of second element aids in greater field of view.

Conclusions:

- AGRIN Limited by Astigmatism and Petzval field curvature
 - Restrictive length tolerances due to to steep ray angles
- RGRIN Singlet limited by Astigmatism and Petzval field curvature
 - Two Element limited by Petzval field curvature

Future Work:

- RGRIN Search for possible second solution to Two Element design.
 - Where the second element must be negative to correct for the inward curving Petzval field.

PRECISION OPTICAL COMPUTER AIDED MANUFACTURING **GRADIENT LENS CORPORATION**

FAX: (716) 235-6645

Precision Optical Computer Aided Manufacturing (PCAM)

Leland G. Atkinson, III

This work was partially supported by the U. S. Army DAAK10-80-C-0268

May 24, 1988

PCAM Objectives

Automation of Optical Fabrication
Integration of Grinding, Polishing and Testing
Use Standard CNC Machinery
High Speed Fabrication
High Quality Surfaces (1 Fringe)

Close Design - Fabrication Gap

Optical Fabrication Review

Cut Blank to Rough Size

Rough Grinding (Generation)

Full Surface Loose Abrasive Laps
Fixed Abrasive Full Surface Laps
Fixed Abrasive Ring Tools

Fine Grinding (Lapping)

Full Surface Loose Abrasive Laps
Fixed Abrasive Full Surface Laps
Fixed Abrasive Ring Tools

Polishing

Full Surface Loose Abrasive Polisher

Pitch - rosin, bees wax, asphalt compounds

Polyurethane

Felt

Fig. 2.8. Strabaugh Model 7-M curve generator and grinder for 24-in. (60 cm) diameter elements. Glass thicknesses of 7 in. (17.8 cm) can be handled.

Appendix 13

Angular Settings for Radius Generating

These tables are based on the formula $\sin t = D/2r$, where D equals the cutting edge of the cutter. For concave-surface generation the cutting edge is the peripheral edge and for convex surfaces, the inside edge; r is the required radius. Example: 53.5 in. concave radius. Diameter of cutter 4 in. Sin $t = 4/2 \times 53.5$, $\sin t = 4/107$, or $\sin t = 0.0373$. From a table of natural sine functions 0.0373 equals 2° 9'.

CIRCLE SETTINGS FOR RADIUS GENERATOR

1.0 in. OD Cutter

Conc	ave	1D × 0.750 m.		
D - 1	.0 in.			
Radius required	Circle setting	Radius required	Circle setting	
2.00"	14°-29′	2.00**	10°-48'	
2.25	12"-50"	2.25	9*-35"	
2.50	11*-33'	2.50	838.	
2.75 10°-29'		2.75	7*-50	
3 00	9"-36"	3.00	7*-11'	
3.25 8°-51'		3.25	6*-37'	
1.50 8"-13"		3.50	6*-9"	
3.75 7°-40°		3.75	5*-45'	
4 00	7~-11	4.00	5*-23'	
4.25	6"-45"	4.25	5*-4'	
1 70	6"-23"	4.50	4°-47'	
4.75	6 - 2.	4.75	4*-32"	
5.00	5°-45'	5.00	4*-18'	
5.25	5°-28'	5.25	4*-6"	
5.50	5*-13"	5 50	3"-54"	
5.75	4*-59"	5 75	3°-44'	
6.00	4*-47'	ú.00	3°-35'	
6.25	4*-36'	6.25	3°-27′	
6 50	4*-22'	6 50	3*-18'	
6.75	4°-15′	6.75	3*-11'	
7.00	4"-6"	7.00	3*-4'	

Fig. 2.26. This four-spindle Strasbaugh polisher and grinder Model P6Y shows a setup for grinding.

Optical Fabrication Methods

Transfer Techniques

Easily Automated

Accuracy Limited by Machine

Examples

Tracer Machines

Replication

Molding

Transformation Techniques

Hard to Automate

Accuracy Limited by Models

Examples

Loose Abrasive Grinding

Pitch Polishing

Computer Controlled Techniques

Modified Tracer

Examples

LODTM - LLL

PCAM Grinding - GLC

Modified Transformation

Examples

CCP - PE

CCOS - Itek

PCAM Polishing - GLC

Uses a computer to control

Uses a computer to control

a HARD tool in a

predictable path.

a SOFT tool motion and/or

characteristics.

OPTICAL SURFACING CENTER

Figure 3.1a: Optical Surfacing CAM Machine

Figure 2.1: Ring Tool Generation Geometry - Sphere.

Figure 4.1: Planar Polishing Model a) Polisher Geometry, b) Relative Wear.

Figure 4.13: Pressure Distribution for Convex Tool with k=0.01 units.

. **..**.

PCAM Summary

Automation of Spherical Surface Fabrication Achieve High Quality Optics Fast Cycle Times

Integration of Interferometric Surface Testing

Close the Design Fabrication Gap

Ideal for Prototyping of Optical Systems

LIST OF ATTENDEES

5. LIST OF ATTENDEES

Name	Affiliation
Dr. Edward Bender Dr. Thomas Coty Dr. Mark Gahler Dr. James Miller Mr. Mark Norton Dr. Robert Rohde Dr. Robert Spande	NVEOC NVEOC NVEOC NVEOC NVEOC NVEOC
Dr. Duncan Moore	UR
Dr. Hemit Desai Dr. Raymond Taylor	CVD CVD
Dr. Leland Atkinson Dr. Robert Zinte	GLC GLC