

Departamento de Matemática, Universidade de Aveiro Cálculo I - Agrupamento IV — Exame Final - Época de Recurso

30 de janeiro de 2018 Duração: 2h30m

Continua na folha suplementar N		N.° Mec.:				No	me:													
$-\text{ Justifique todas as respostas e indique os cálculos efetuados} - 1. \text{ Seja } f \text{ contínua em } [0, +\infty[\text{ e definida em } \mathbb{R}^+ \text{ por } f(x) = \frac{1}{2 + (\ln x)^2}, x > 0.$ s] (a) Indique, justificando, o valor de $f(0)$. Continua na folha suplementar N' (b) Seja g uma função diferenciável e tal que $g(0) = e^2$ e $g'(0) = 3$. Calcule o valor de		(Declaro q	լue de	sisto:)		N.° f	olhas	suple	ementa	ares:	
1. Seja f contínua em $[0,+\infty[$ e definida em \mathbb{R}^+ por $f(x)=\frac{1}{2+(\ln x)^2}, x>0.$ sj (a) Indique, justificando, o valor de $f(0)$. $\begin{array}{c} \text{Continua na folha suplementar N}^{\text{N}} \\ \text{Seja } g \text{ uma função diferenciável e tal que } g(0)=e^2 \text{ e } g'(0)=3. \text{ Calcule o valor de } g(0) \end{array}$																				
1. Seja f contínua em $[0,+\infty[$ e definida em \mathbb{R}^+ por $f(x)=\frac{1}{2+(\ln x)^2}, x>0.$ sj (a) Indique, justificando, o valor de $f(0)$. $\begin{array}{c} \text{Continua na folha suplementar N}^{\text{N}} \\ \text{Seja } g \text{ uma função diferenciável e tal que } g(0)=e^2 \text{ e } g'(0)=3. \text{ Calcule o valor de } g(0) \end{array}$,																			
1. Seja f contínua em $[0,+\infty[$ e definida em \mathbb{R}^+ por $f(x)=\frac{1}{2+(\ln x)^2}, x>0.$ sj (a) Indique, justificando, o valor de $f(0)$. $\begin{array}{c} \text{Continua na folha suplementar N}^{\text{N}} \\ \text{Seja } g \text{ uma função diferenciável e tal que } g(0)=e^2 \text{ e } g'(0)=3. \text{ Calcule o valor de } g(0) \end{array}$					ıstific	que t	odas	as r	espo	stas	e in	diqu	e os	cálcı	ulos	efetu	ados	S –		
$f(x)=\frac{1}{2+(\ln x)^2}, x>0.$ sj (a) Indique, justificando, o valor de $f(0)$. Continua na folha suplementar Novasi (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g'(0)=3$. Calcule o valor de funcion $g'(0)=g'(0)=3$. Calcule o valor de funcion $g'(0)=g'(0)=3$.		1. Seja	a f co																	
(a) Indique, justificando, o valor de $f(0)$. Continua na folha suplementar \mathbb{N}^4 (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g'(0)=3$. Calcule o valor de		Í	J			L /							x >	· 0.						
Continua na folha suplementar N' sj (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g'(0)=3$. Calcule o valor de	pts]	(a)	Indi	ique,	justif	icano	do, o				+ (In	$x)^2$								
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de	-			1 /	<u>, </u>				<i></i>	()										
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de																				
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de																				
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de																				
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de																				
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de																				
s) (b) Seja g uma função diferenciável e tal que $g(0)=e^2$ e $g^\prime(0)=3$. Calcule o valor de																				
		4.				. ~	. ,,,		.,			(6		9	1(0)					
	ts]	(b)				tunça	ao di	eren	ciave	el e ta	al qu	e g(0)	0) =	e² e	g'(0)	=3	s. Ca	alcule	o valor	de
	[() 0	9) (0	·)·															

	2. Seja	$\mathbf{a} \; lpha \in \mathbb{R} \; \mathbf{e} \; h \; \mathbf{a} \; \mathrm{função} \; \mathrm{definida} \; \mathrm{por} \; h(x) = lpha \mathrm{arcsen}(x^2-1) + x^2 - rac{\pi}{2} x.$
[07pts]	(a)	Determine o domínio de h .
l		Continua na folha suplementar N°
[13pts]	(b)	
		Continua na folha suplementar Nº
	2 Col	$ a_{1} a_{2} a_{3} $ $ a_{1} a_{2} $ $ a_{1} a_{2} $ $ a_{2} $ $ a_{1} $
[15pts]	3. Cai	cule o limite $\lim_{x\to 0^+} (1+\arcsin(x^2))^{\frac{1}{x}}$.

IN -	Mec:		Nome:				
	4. Deter	mine:					
[15pts]	(a)	$\int \cos x \cdot \ln(\sec x)$	$\operatorname{en} x) dx$				
		<u> </u>					
						Continua na folha	a cunlementar N
[20pts]	(b)	$\int \frac{1}{\sqrt{1-x^2}}$	dx (Sugestão: ut	lize a mudanc	a de variável	dada por $x =$	$= 2\sec t$. indi
							,
		$\int x\sqrt{x^2-4}$ cando um don	nínio adequado a es	ta substituição).		
		$\frac{J}{\text{cando um don}} \frac{x\sqrt{x^2 - 4}}{\sqrt{x^2 - 4}}$	dx (Sugestão: ut	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um don	nínio adequado a es	ta substituição).		
	($\int x\sqrt{x^2-4}$ cando um don	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um don	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um don	nínio adequado a es	ta substituição).		
	•	$\int x\sqrt{x^2-4}$ cando um don	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		
		$\int x\sqrt{x^2-4}$ cando um dom	nínio adequado a es	ta substituição).		

	5. Con	sidere a função F de domínio $[-1,1]$ definida por $F(x)=\int_{rcsen x}^0 \frac{(\sec t)^2}{e^t+1}dt.$
[13pts]	(a)	Justifique que F é diferenciável em $]-1,1[$ e determine $F'(x)$ para $x\in]-1,1[$.
		Continuo no folho aunlementen NO
[12pts]	(b)	Continua na folha suplementar N° Estude F quanto à monotonia e identifique os extremantes globais de F .
[12pts]	(b)	Estude F quanto à monotonia e identifique os extremantes globais de F .
[12pts]	(b)	

20pts]	20pts] 6. Calcule a área da região do plano delimitada respetivamente, por $f(x) = \frac{2}{x} \text{e}$	
,	e pelas retas de equações $y=0$ e $x=3$.	

7.	Seja $f:]1,+\infty[ightarrow\mathbb{R}$ a função definida por $f(x)=rac{1}{x}$	$\frac{1}{\sqrt{1}}$.
		$v\sqrt{\ln x}$

[13pts]

(a) Determine a primitiva de f que se anula no ponto x=e.

Continua na folha suplementar Nº

[07pts]

(b) Estude a natureza do integral impróprio $\int_2^{+\infty} \frac{1}{x\sqrt{\ln x}} \, dx$.

8	Estude a	natureza das	sequintes	séries	numéricas:
ο.	EStude a	natureza uas	seguintes	261162	numencas.

[15pts]

(a)
$$\sum_{n=1}^{+\infty} \frac{n^2 - 1}{2n^5 + e^n + 1}.$$

Continua na folha suplementar Nº

[15pts]

(b)
$$\sum_{n=1}^{+\infty} (-2)^n \frac{(n!)^2}{(n+1)!}.$$

9. Seja $\sum\limits_{n=1}^{+\infty}a_n$ uma série de termos positivos convergente. Indique, justificando, a natureza das seguintes séries:

[07pts]

(a)
$$\sum_{n=1}^{+\infty} (\arctan(n) + a_n).$$

Continua na folha suplementar No

[13pts]

(b)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{a_n}{3 + a_n^2}.$$

Continua na folha suplementar Nº

Formulário

$(f(x)^p)' = p (f(x))^{p-1} f'(x), \operatorname{com} p \in \mathbb{R}$	
$\left(a^{f(x)}\right)' = f'(x)a^{f(x)}\ln(a), \operatorname{com} a \in \mathbb{R}^+ \setminus \{1\}$	$\left(\log_a(f(x))\right)' = \frac{f'(x)}{f(x)\ln(a)}, \operatorname{com} a \in \mathbb{R}^+ \setminus \{1\}$
$(\operatorname{sen}(f(x)))' = f'(x)\operatorname{cos}(f(x))$	$(\cos(f(x)))' = -f'(x)\sin(f(x))$
$(\operatorname{tg}(f(x)))' = f'(x) \sec^2(f(x))$	$(\cot g(f(x)))' = -f'(x)\csc^2(f(x))$
$(\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$	$(\operatorname{cosec}(f(x)))' = -f'(x)\operatorname{cosec}(f(x))\operatorname{cotg}(f(x))$
$(\arcsin(f(x)))' = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$	$(\arccos(f(x)))' = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$
$(\operatorname{arctg}(f(x)))' = \frac{f'(x)}{1 + (f(x))^2}$	$(\operatorname{arccotg}(f(x))' = -\frac{f'(x)}{1 + (f(x))^2}$

$1 + \operatorname{tg}^2(x) = \sec^2(x)$, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$	$1 + \cot^2(x) = \csc^2(x)$, para $x \neq k\pi, k \in \mathbb{Z}$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\operatorname{sen}(x \pm y) = \operatorname{sen} x \cos y \pm \cos x \operatorname{sen} y$
$\cos^2(x) = \frac{1 + \cos(2x)}{2}$	$\operatorname{sen}^2(x) = \frac{1 - \cos(2x)}{2}$