FUNDAMENTOS INGENIERÍA ELÉCTRICA EXAMEN PARCIAL NOVIEMBRE DE 2024

NOMBRE	FIRMA	

Instrucciones:

- Escriba su nombre, firme esta hoja y ponga su DNI o documento identificativo sobre la mesa en lugar visible.
- Está prohibido el uso de calculadoras programables y de teléfonos móviles.
- El examen se entrega en dos partes:
 - Hoja de enunciados junto con la resolución de los ejercicios 1, 2 y 3
 - Resolución del ejercicio 4

Ejercicio 1 (3 puntos) En el circuito de alterna de la figura la intensidad de la fuente viene determinada por la expresión $i_g(t) = 10\cos(1000t)$. Determina los valores de las intensidades i_1 , i_2 , i_3 para t = 0.5s, la potencia activa y reactiva de la fuente (indicando si es generada o consumida), así como el factor de potencia de la fuente (indicando si es inductivo o capacitivo)

$i_1(t=0.5)$ (A)		
$i_2(t=0.5)$ (A)		
$i_3(t=0.5)$ (A)		
P_g (W)	□ ge	en 🗆 con
Q_g (VAr)	□ ge	n 🗆 con
factor de potencia	□ in	$d \square cap$

Ejercicio 2 (2.5 puntos) En el circuito de alterna de la figura, la tensión eficaz de la fuente es 100V, y el coeficiente de acoplamiento de las bobinas 0.8. Calcula el valor de la resistencia a conectar entre A y B para que consuma la máxima potencia activa.

 $R(\Omega)$

Ejercicio 3 (2.5 puntos) En el circuito de corriente alterna de la figura, la fuente tiene una frecuencia de 50Hz y no consume ni cede potencia reactiva. Sabiendo que el amperímetro mide 1.5A y los voltímetros miden V1 = 100V y V3 = 60V, dibuja el diagrama fasorial y determina la medida del voltímetro V2, así como el valor de R, L y C.

V2 (V)	
$R(\Omega)$	
L (mH)	
$C (\mu F)$	

Ejercicio 4 (2 puntos) En el circuito de alterna de la figura una fuente de tensión de 220V de valor eficaz y 50Hz alimenta dos cargas en paralelo. Sabiendo que la impedancia de la carga C1 es 20 + 10j y que la carga C2 consume 2000W con un factor de potencia inductivo de 0.6, calcula la capacidad del condensador para que el factor de potencia inductivo resultante sea de 0.98.

C (μF)