STAT 231 October 3,2016

Course Notes: < Chapler 3 for the midterm. (approx)

Roadmap

- · Estmation techniques, and dikelihood function
- Relative dikelehard function Log Relative - . r (0)
- · Invariance property of the MLE.
- · Model Selection
 - ·Graphical methods (Q-Q plot, Run Chart)
 - · Numerical methods (Especte) versus observed frequences)

Model: $Y_{i} \cap f(y_{i}; \theta)$ i = 1, ..., n Y_{i} 's undependent.

Likelihood function $L(\theta; y_1, ..., y_n) = TT f(y_i; \theta)$ I = If= probability function y funchin Yis discrete. of a > un known = density function y boramper. Y is Conhauous

= Product of the distribution (dansily)
function, evaluated at the sample
point

Formate) if the MLE (Max. Likelihood Eshmate) if the maximize L(t).

Sa. Il θ maximize $L(\theta)$ $(=) \theta$ maximize $L(\theta)$

because log is a monotonic funchon We then take the log of the likelihord funchin and maximum l(0)

COMMON DISTRIBUTIONS

· Binomial: Yn Bin (n, t) Z: unknown parameter y= observed # of successes

m your sample.

· Poisson: Yn Poi (Y)

- Sample. y,,...yn

Exponential Distribution

1/2 undep

not sample vanianu.

Example

Suppose Y va a r.v. with the following density function

 $f(y;\theta) = \frac{2y}{\theta} e^{-\frac{y^2}{\theta}}.$

where θ is the unknown parameter.

Sample = of y1>... yn 3 drawn from

this olist."

find &: MLE for B

Likelihood function? L(0; y1,...yn) = $\frac{2y_1}{\theta}$ = $\frac{91/4}{2y_2}$ = $\frac{-92/4}{2y_2}$... 24n e - 4n/v. = 2 (y1. y2.. yn) e - = \ \(\sum_{2}^{2} \). 5tep 2 To Log-Rikeluhord function $L(\theta) = L_{19}(2^{n}, y_{1}...y_{n}) - n \ln \theta$ $-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}^{2}$

Step 3
$$dl/do = 0$$
 and solve.

$$-\frac{n}{\theta} + \frac{1}{\theta^2} \frac{\sum y_i^2 - 0}{\int \theta = \frac{\sum y_i^2}{n}}$$

A few notes:
$$L = P(Y_1 = Y_1) \dots P(Y_n = Y_n)$$

As nt, the Likelihood function values become smaller and smaller.

The Relative Likelihood function

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})}$$
, where $\hat{\theta} = MLE$

function =
$$r(\theta)$$
 = $log R(\theta)$

 $R(\theta) > 0$; $R(\theta) \le 1$ $R(\theta) > 0$; $R(\theta) \le 1$ $R(\theta) > 0$; $R(\theta) \le 1$

R(8)= 1

Question: From the graph above,
find all B; s.t R(+) > 0.1
Construct PLAUSIBLE Intervals for O.

Example Suppose Yn Bin (200, E)

$$y = 80. = \# \text{ of successes}$$

Cloulate $R(0.5)$
 $L = \frac{200}{80} \pi^{80} (1-\pi)^{120}$
 $\pi = 0.4 \frac{(20/200)}{200} = \frac{500}{120} \pi^{120} (0.5)^{120}$
 $R(0.5) = \frac{L(0.5)}{L(0.4)} = \frac{200}{200} (0.4)^{80} (0.5)^{20}$

INVARIANCE PROPERTY OF THE

Theorem: If it is the MLE for B,
then $g(\delta)$ is the MLE for $g(\delta)$

Example: Suppose Y13... Yn 1 Poi(r)

Find the MLE for .2 p+3

MLE for 2/+3 > 2 \$\tilde{y}\$ +3 = 2 \tilde{y}\$ +3.

Example 2 Y1, -.. Yn
$$r$$
 Exp (θ)

Find the MLE for Var (\overline{Y}) l undep.

Var (Y_{l}) = θ . 2 (for exponential)

Var (Y_{l} + Y_{2} +... Y_{n})

= $\frac{1}{n^{2}}$ $V(Y_{l})$ + $V(Y_{2})$ + $V(Y_{n})$]

= $\frac{1}{n^{2}}$ $V(Y_{l})$ + $V(Y_{2})$ + $V(Y_{n})$]

= $\frac{1}{n^{2}}$ $V(Y_{n})$ + $V(Y_{n})$ + $V(Y_{n})$

Example: Objective: To estimate

Uti 95th percentile of a Wormal

Distribution)

Y1, - ... Yn ~ G (+, 5) when

Gy1, - ... Yn ? ... G.

A= V+1.65 T

MLE for A

 $\frac{1}{9} + 1.65$ $\sqrt{\frac{1}{n}} \frac{279.-9}{9}^{2}$

If we want to find the MLE for $g(\theta)$, we find θ out the MLE is then $g(\hat{\theta})$.

Left en exercise.

Find the MLE for the IQR of a Gaussian (V, T)

{y1, -.. yn}