Hoja de ejercicios 1 (Espacios de probabilidad)

σ -álgebras

- **1.-** Sean $A, B \subset \Omega$. Describir la σ -álgebra generada por la colección $\mathcal{C} = \{A, B\}$, es decir, $\sigma(\mathcal{C})$.
- **2.-** Se consideran las siguientes colecciones de $\mathcal{P}(\Omega)$:

 $\mathcal{F}_1 = \{ A \subset \Omega : A \text{ es finito } ó A^c \text{ es finito} \},$

 $\mathcal{F}_2 = \{ A \subset \Omega : A \text{ es contable ó } A^c \text{ es contable} \},$

 $\mathcal{F}_3 = \{ A \subset \Omega : A \subset B \text{ ó } A^c \subset B \}, \text{ donde } B \subset \Omega \text{ es un conjunto fijo. }$

- (a) Mostrar que \mathcal{F}_1 es σ -álgebra cuando y sólo cuando Ω es finito.
- **(b)** Mostrar que \mathcal{F}_2 y \mathcal{F}_3 son σ -álgebras.
- 3.- Demuestra o da un contraejemplo para las siguientes afirmaciones.
 - (a) La unión de álgebras no es necesariamente un álgebra.
 - **(b)** La unión de σ -álgebras no es necesariamente una σ -álgebra incluso cuando \mathcal{F} no es finito.
 - (c) Si $\{\mathcal{F}_n\}$ es una colección creciente de σ -álgebras $(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots)$, la unión $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ puede no ser una σ álgebra.
 - (d) Si \mathcal{F}_1 y \mathcal{F}_2 son dos σ-álgebras sobre Ω , entonces $\sigma(\mathcal{F}_1 \cup \mathcal{F}_2) = \sigma(\mathcal{C})$, donde $\mathcal{C} = \{A \cap B : A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$. SUGERENCIA: Para los apartados (b) y (c) se puede usar el conjunto de los números naturales y σ -álgebras del tipo \mathcal{F}_3 del problema anterior.
- **4.-** Sea Ω un conjunto no vacío. Describir $\sigma(\mathcal{H})$, donde
 - (a) $\mathcal{H} = \{A_1, A_2, \dots\}$ es una partición (contable) de Ω , es decir, los elementos de \mathcal{H} son dos a dos disjuntos y la unión de todos ellos es Ω .
 - **(b)** \mathcal{H} es la colección de los subconjuntos finitos de Ω . Distinguir si Ω es contable o no.

Espacios de probabilidad

- 5.- Demostrar las propiedades básicas de la probabilidad. ¿Cuáles de estas propiedades no son ciertas para medidas positivas? Pon los contraejemplos necesarios.
- **6.-** Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y $A \in \mathcal{F}$ tal que P(A) = 1. Probar que $P(B) = P(A \cap B)$, para todo $B \in \mathcal{F}$.
- 7.- Sea Ω un conjunto infinito no numerable. Sobre la σ -álgebra $\mathcal F$ formada por los subconjuntos contables o cuyo complementario es contable, se define la aplicación

$$P(A) = \begin{cases} 0 & \text{si } A \text{ contable,} \\ 1 & \text{si } A^c \text{ contable.} \end{cases}$$

Mostrar que P es una medida de probabilidad sobre (Ω, \mathcal{F}) .

- **8.-** Sean A_1, A_2, \ldots sucesos en (Ω, \mathcal{F}, P) tales que $\sum_{k=1}^n P(A_k) > n-1$. Demuestra que $P(\bigcap_{k=1}^n A_k) > 0$.
- **9.-** Probar o refutar las afirmaciones siguientes:

(a)
$$P(A \cap B) \ge P(A) - P(B^c)$$
.
(b) $P(A_1 \cap \cdots \cap A_n) > P(A_1) - \sum_{i=2}^n P(A_i^c)$

(b)
$$P(A_1 \cap \cdots \cap A_n) \geq P(A_1) - \sum_{i=2}^n P(A_i^c)$$
.

(c)
$$P(A \triangle B) = P(A) + P(B) - 2P(A \cap B)$$

= $2P(A \cup B) - P(A) - P(B)$.

(d)
$$P(A \cap B) \leq P(A)P(B)$$
.

(e)
$$P(A_1 \cap \cdots \cap A_n) \leq \min(P(A_1), \ldots, P(A_n))$$
.

(f)
$$P(A_1 \cup \cdots \cup A_n) \geq \max(P(A_1), \ldots, P(A_n)).$$

(g) Si
$$P(A_k) = 1$$
 para $k \ge 1$, entonces $P(\bigcap_{k=1}^{\infty} A_k) = 1$.

Recordamos que " \triangle " simboliza la *diferencia simétrica*, definida por $A\triangle B = (A-B) \cup (B-A) = (A\cup B) - (A\cap B)$.

10.- Sean A_1, A_2, \ldots sucesos (en un espacio de probabilidad) tales que $P(A_i \cap A_j) = 0$, siempre que $i \neq j$. Mostrar que

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

- **11.-** Sean A y B son sucesos tales que P(A|B) = P(B|A), $P(A \cup B) = 1$ y $P(A \cap B) > 0$. Mostrar que P(A) > 1/2.
- 12.- Probar o refutar las siguientes afirmaciones relativas a probabilidades condicionales (se supone en todos los casos que los sucesos condicionantes son de probabilidad no nula):
 - (a) $P(A|C) + P(A|C^c) = 1$.
 - **(b)** $P(A|C) + P(A^c|C^c) = 1$.
 - (c) Si $P(A|C) \ge P(B|C)$ y $P(A|C^c) \ge P(B|C^c)$, entonces $P(A) \ge P(B)$.
 - (d) $P(A|B) \ge (P(A) + P(B) 1)/P(B)$.