Constraints

Ian Miguel

(ianm@cs.st-andrews.ac.uk)

Ian Gent, Andy Grayland, Chris Jefferson, Tom Kelsey, Lars Kotthoff, Steve Linton, Neil Moore, Peter Nightingale, Andrea Rendl

Constraints: A Natural Means of Knowledge Representation

- x + y = 30
- Adjacent countries on map cannot be coloured same.
- The helicopter can carry one passenger.
- Maths class must be scheduled between 9 - 11 am.

Constraint Solving

- Offers an efficient means of finding solutions to combinatorial problems.
 - E.g. Planning, Scheduling, Timetabling...
- A constraint model is a description of a combinatorial problem in a format suitable for input to a constraint solver.
- Constraint solver searches for solutions to the problem automatically.

Who Cares about Constraint Solving?

- Many important industrial applications.
- Visit www.ilog.com to see their customer list, including:
 - AT&T, Deutsche Telekom, France Telecom.
 - United Airlines, Southwest Airlines.
 - Compaq, Nissan, Visa.
- Google, Microsoft recruits CP people
- CISCO funded development of CP tool
- IBM bought ILOG

Constraint Modelling & Solving

- A constraint model is a description of a combinatorial problem in terms of a constraint satisfaction problem (CSP).
 - The features of a given problem are mapped onto the features of a CSP.
 - Our tool Tailor can help with modelling.

Constraint Satisfaction Problems

Given:

- A finite set of decision variables.
- For each decision variable, a finite domain of potential values.
- A finite set of constraints on the decision variables.

• Find:

 An assignment of values to variables such that all constraints are satisfied.

Decision Variables & Domains

- A decision variable corresponds to a choice that must be made in solving a problem.
 - E.g. university timetabling: we must decide the time & venue for each lecture.
- Values in the domain of a decision variable correspond to the various options for this choice.
 - E.g. lecture time: 9am, 10am, ...
 - E.g. lecture venue: Physics A, Maths A, ...
- A decision variable is assigned a value from its domain.
 - Equivalently, the choice associated with that variable is made.

Constraints

- A constraint specifies allowed/disallowed combinations of assignments:
 - No pair of lectures can share the same time and venue.
 - No pair of lectures given by the same lecturer can share the same time.

Constraint Modelling & Solving

- The CSP is input to a constraint solver (e.g. our own Minion solver), which produces a solution (or solutions).
- The model is used to map the solution(s) back onto the original problem.

Example: Sudoku

- Example taken from
 - "Sudoku as a Constraint Problem",
 - by Helmut Simonis.

The Sudoku Problem

	2	6				8	1	
3			7		8			6
4				5				7
	5		1		7		9	
		3	9		5	1		
	4		3		2		5	
1				3				2
5			2		4			9
	3	8				4	6	

- Given: a 9 x 9 grid, with some entries blank, some containing a digit.
- Find: a complete grid.

The Sudoku Problem: Constraints

	2	6				8	1	
3			7		8			6
4				5				7
	5		1		7		9	
		3	9		5	1		
	4		3		2		5	
1				3				2
5			2		4			9
	3	8				4	6	

- Such that:
 - On any row, all entries are distinct.

The Sudoku Problem: Constraints

	2	6				8	1	
3			7		8			6
4				5				7
	5		1		7		9	
		3	9		5	1		
	4		3		2		5	
1				3				2
5			2		4			9
	3	8				4	6	

- Such that:
 - On any column, all entries are distinct.

The Sudoku Problem: Constraints

	2	6				8	1	
3			7		8			6
4				5				7
	5		1		7		9	
		3	9		5	1		
	4		3		2		5	
1				3				2
5			2		4			9
	3	8				4	6	

Such that:

• These (the red & white) 3 × 3 squares contain distinct entries.

	2	6				8	1	
3			7		8			6
4				5				7
	5		1		7		9	
		3	9		5	1		
	4		3		2		5	
1				3				2
5			2		4			9
	3	8				4	6	

- 81 variables, one for each grid entry.
- Domain: {1, ..., 9}
 - For simplicity we'll assume that pre-filled entries are represented by variables with singleton domains.
- All-different constraints on rows, cols, 3×3 squares.

{1,2,3,4,5, 6,7,8,9}	2	6	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	8	1	{1,2,3,4,5, 6,7,8,9}
3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7	{1,2,3,4,5, 6,7,8,9}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6
4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7
{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	1	{1,2,3,4,5, 6,7,8,9}	7	{1,2,3,4,5, 6,7,8,9}	9	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	9	{1,2,3,4,5, 6,7,8,9}	5	1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{1,2,3,4,5, 6,7,8,9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{1,2,3,4,5, 6,7,8,9}	2	6	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	8	1	{1,2,3,4,5, 6,7,8,9}
3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7	{1,2,3,4,5, 6,7,8,9}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6
4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7
{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8 0)	1	{1,2,3,4,5,	7	{1,2,3,4,5,	9	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID	iff on 3	$\times 3 sc$	quare _{5,}	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{1,2,3,4,5, 6,7,8,9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{1,5,7, 8 , 9}	2	6	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	8	1	{1,2,3,4,5, 6,7,8,9}
3	{1,5,7,8, 9}	{1,5,7,8, 9}	7	{1,2,3,4,5, 6,7,8,9}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6
4	{1,5,7,8, 9}	{1,5,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7
{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8 9}	1	{1,2,3,4,5, 6,7,8,9}	7	{1,2,3,4,5, 6,7,8,9}	9	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID 6,7,8,9}	iff on re	ow 1.	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{1,2,3,4,5, 6,7,8,9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{5,7,9}	2	6	{3,4,5,7, 9}	{3,4,5,7, 9}	{3,4,5,7, 9}	8	1	{3,4,5,7, 9}
3	{1,5,7,8, 9}	{1,5,7,8, 9}	7	{1,2,3,4,5, 6,7,8,9}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6
4	{1,5,7,8, 9}	{1,5,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7
{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8 9}	1	{1,2,3,4,5, 6,7,8,9}	7	{1,2,3,4,5, 6,7,8,9}	9	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID 6,7,8,9}	iff on c	ol 1.	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{1,2,3,4,5, 6,7,8,9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{7,9}	2	6	{3,4,5,7, 9}	{3,4,5,7, 9}	{3,4,5,7, 9}	8	1	{3,4,5,7, 9}
3	{1,5,7,8, 9}	{1,5,7,8, 9}	7	{1,2,3,4,5, 6,7,8,9}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6
4	{1,5,7,8, 9}	{1,5,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8 °°	1	{1,2,3,4,5,	7	{1,2,3,4,5,	9	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID	iff on 3	$\times 3 sc$	ouare 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	4	Can y	ou see	312345 Why 3	3, 4, 9	can be	remov	112345, /ed?
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{7,9}	2	6	{3,4,9}	{3,4,9}	{3,4,9}	8	1	{3,4,5,7, 9}
3	{1,5,7,8, 9}	{1,5,7,8, 9}	7	{1,2,6}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6
4	{1,5,7,8, 9}	{1,5,7,8, 9}	{1,2,6}	5	{1,2,6}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8 9}	1	{1,2,3,4,5, 6 7 8 9}	7	{1,2,3,4,5, 6,7,8,9}	9	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID	iff on r	ow 1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	4	{1,2,3,4.5 6,7,8	gain 3,	4, 9 Ca	an be r	emove	ed	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{7}	2	6	{3,4,9}	{3,4,9}	{3,4,9}	8	1	{5}	
3	{1,5,7,8, 9}	{1,5,7,8, 9}	7	{1,2,6}	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	6	
4	{1,5,7,8, 9}	{1,5,7,8, 9}	{1,2,6}	5	{1,2,6}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	7	
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8 °°	1	{1,2,3,4,5,	7	{1,2,3,4,5,	9	{1,2,3,4,5, 6,7,8,9}	
{2,6,7,8,	{1,2,3,4,5,	Pr	Propagate AllDiff on 3 × 3 square						
9}	6,7,8,9}			6,7,8,9}		_	6,7,8,9}	6,7,8,9}	
{2,6,7,8, 9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9	
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}	

{7}	2	6	{3,4,9}	{3,4,9}	{3,4,9}	8	1	{5}	
3	{1,5,7,8, 9}	{1,5,7,8, 9}	7	{1,2,6}	8	{2,3,4,9}	{2,3,4,9}	6	
4	{1,5,7,8, 9}	{1,5,7,8, 9}	{1,2,6}	5	{1,2,6}	{2,3,4,9}	{2,3,4,9}	7	
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8	1	{1,2,3,4,5,	7	{1,2,3,4,5,	9	{1,2,3,4,5, 6,7,8,9}	
{2,6,7,8,	{1,2,3,4,5,	Pr 3	opaga	opagate AllDiff on 3 × 3 square					
9}	6,7,8,9}	3		6,7,8,9}	3	1	6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	
{2,6,7,8, 9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}	
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9	
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}	

{7}	2	6	{3,4,9}	{3,4,9}	{3,4,9}	8	1	{5}
3	{1,5,8,9}	{1,5,8,9}	7	{1,2,6}	8	{2,3,4,9}	{2,3,4,9}	6
4	{1,5,8,9}	{1,5,8,9}	{1,2,6}	5	{1,2,6}	{2,3,4,9}	{2,3,4,9}	7
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8 9}	1	{1,2,3,4,5, 6 7 8 9}	7	{1,2,3,4,5, 6 7 8 9}	9	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID 6,7,8,9}	iff on re	ow 2	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{7}	2	6	{3,4,9}	{3,4,9}	{3,4,9}	8	1	{5}
3	{1,5,9}	{1,5,9}	7	{1,2}	8	{2,4,9}	{2,4,9}	6
4	{1,5,8,9}	{1,5,8,9}	{1,2,6}	5	{1,2,6}	{2,3,4,9}	{2,3,4,9}	7
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8 9}	1	{1,2,3,4,5, 6 7 8 9}	7	{1,2,3,4,5, 6 7 8 9}	9	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	3 Pr	opaga	te AIID 6,7,8,9}	iff on re	ow 3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

{7}	2	6	{3,4,9}	{3,4,9}	{3,4,9}	8	1	{5}
3	{1,5,9}	<i>\$</i> 1.5.03	7	J1 23	Q.	32.4.93	52 4,9}	6
4	{1,8,9}	Propa	agate <i>F</i>	AllDiff c	1,2,6}	3 SQU 2 {2,3,9}	{2,3,9}	7
{2,6,7,8, 9}	5	{1,2,3,4,5, 6,7,8,9}	1	{1,2,3,4,5, 6,7,8,9}	7	{1,2,3,4,5, 6,7,8,9}	9	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	{1,2,3,4,5, 6,7,8,9}	3	9	{1,2,3,4,5, 6,7,8,9}	5	1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}
{2,6,7,8, 9}	4	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	5	{1,2,3,4,5, 6,7,8,9}
1	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	3	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2
5	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	2	{1,2,3,4,5, 6,7,8,9}	4	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	9
{2,6,7,8, 9}	3	8	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	{1,2,3,4,5, 6,7,8,9}	4	6	{1,2,3,4,5, 6,7,8,9}

...And so on:

{7}	2	6	{4 }	{9}	{3}	8	1	{5}
3	{1}	{5}	7	{2}	8	{9 }	{4}	6
4	{8}	{9}	{6 }	5	{1}	{2}	{3}	7
{8 }	5	{2}	1	{4}	7	{6 }	9	{3}
{6}	{7}	3	9	{8}	5	1	{2}	{4}
{9 }	4	{1}	3	{6}	2	{7}	5	{8}
1	{9 }	{4}	{8 }	3	{6}	{5}	{7}	2
5	{6}	{7}	2	{1}	4	{3}	{8}	9
{2}	3	8	{5 }	{7}	{9}	4	6	{1}

Backtracking

- Generally, it doesn't go as well as this
- Search will often involve backtracking
 - i.e. caching current state & making guess
 - Restoring cached state if guess fails
- No backtracking necessary this time
- Backtracking fast is critical in general because problems of this type can require a lot of search to solve.

Constraints & Symmetry

A familiar everyday concept:

- A structure-preserving transformation.
- Constraint problems often exhibit symmetry.
 Exploiting this symmetry is the subject of our inter-disciplinary research with mathematics.

Example: 4-queens Puzzle

 Place 4 queens on a 4 x 4 chess board such that no pair of queens attack each other.

A solution

Example: 4-queens Puzzle

- Place 4 queens on a 4 x 4 chess board such that no pair of queens attack each other.
- Now consider what happens when we flip the chess board horizontally.

Symmetry partitions solutions into equivalence classes.

Exploiting Symmetry

- We can exploit symmetry to reduce search.
- Restrict the search to finding one (or a reduced number) of the solutions in each equivalence class.

We want your problems

 If you have a problem that you think we could help to solve, please talk to us!