Sistemas de adquisición de datos

Alejandro J. Moreno Laboratorio 4- 2do Cuatrimestre 2011

Transducción, acondicionamiento de la señal y adquisición de datos

Sistema de adquisición de datos

Transductores

Se transforma el fenómeno físico en señales eléctricas a través de un componente denominado "transductor". Dichas señales a menudo deben ser acondicionadas para su posterior lectura:

Acondicionamiento de la señal

- Amplificación: las señales de bajo voltaje deben ser amplificadas para mejorar la resolución y disminuir el ruido. Se debe tener en cuenta que el rango de no amplificación no supere el rango de entrada del hardware.:
- -Aislamiento: por cuestiones de seguridad la señal generada por el transductor es aislada. La señal puede contener picos de alto voltaje capaces de dañar el equipo.
- Filtrado: las señales no deseadas ("ruido") son eliminadas seleccionandola banda de frecuencia en la que se encuentran (filtros pasa-altos y pasa bajos).

Adquisición (digitalización) de datos.

La señal es discretizada utilizando el código binario. Las variables involucradas en la discretización son:

- la velocidad de adquisición (sampleo)
- el rango
- la resolución.

Métodos de muestreo

- •Continuo:canal x canal
- Simultaneo: circuitos para cada canal (importancia de dt entre puntos)

Multiplexor

- •medir muchas señales con una ADC
- •más canales, menor frecuencia de muestreo por canal

Velocidad de muestreo y esta relacionada con cuantas muestras toma la placa en un intervalo de tiempo dado. Se la suele dar en muestras/seg, kilomuestras/seg, megamuestras/seg, etc. (no en hertz).

Frecuencia de muestreo de 22.050 Hz: 22.050 puntos serán incluidos en la muestra. Distancia de cada punto de muestreo será 45,35 ms

A mayor velocidad de muestreo más fidedigna será la señal analógica al reconvertir pero usará más memoria.

¿¿A QUE FRECUENCIA TOMAR LA MUESTRA??

Aliasing

SOLUCION!

$$f_{\text{Nyquist}} = 2f_{\text{señal}}$$

Oído Humano: percibe hasta 20 kHz-Frecuencia de Sampleo de CD 44100 muestras/seg

<u>Teléfono</u>: voz humana hasta 4 kHz. Sampleo 8000 muestras /seg

DIGITALIZACION

Paralelo (Flash ADC);
Digital-to-Analog Converter (contador de rampa, aproximaciones sucesivas, tracking);
Integratores (pendiente simple, pendiente dual);
Sigma-delta.

entradas

Numero y tipos de canales

El numero de canales dependerá de la cantidad de señales que se desean medir al mismo tiempo, mientras que los tipos de canales se clasifican en

- •**Tierra común**. Todos los canales toman el valor de la señal usando como referencia la tierra del sistema.
- •Diferenciales. El valor de la señal es medido respecto de un potencial fijo de referencia creado por la misma tarjeta de adquisición (disminuye el nivel de ruidos).

Rango

es el intervalo de voltaje en el que el conversor es capaz de detectar. Conviene ajustarlo al rango de medición esperado para mejorar la resolución.

Resolución

•n^{ro} de bits usados para representar la señal analógica

Resolución: corresponde al número de bits que el conversor utiliza para representar la señal analógica. Siendo n la cantidad de bits usados, se dicretizará un determinado rango en 2ⁿ intervalos.

$$2^3 = 8$$
 $2^8 = 256$ $2^{16} = 65536$

ADC ideal

Definición de LSB (Least Significant Bit)

- LSB = $V_r/(2^n gain)$
- El LSB determina la resolución del ADC

Como funciona la placa ADC

tensión analógica \longrightarrow [V1,V2] \longrightarrow palabra digital de n bits tres bits, [10]voltios

$$\triangle V = \frac{(V_2 - V_1)}{2^n}$$

Subibtervalos y palabras digitales 8, entre 000 y 111

ancho subintervalo *1,25* voltios

Figura4: Ejemplo de cómo una discretización suficientemente fina tiende a ser una buena representación de la señal

ADC ideal: conversión

Método de aproximaciones sucesivas:

- Si se cumple la desigualdad entonces se asigna un 1 si no un 0.
- El tiempo de asignación depende de la cantidad de bits.

ADC de 3 bits

Problemas ADC reales

Ruido

- •Aislar la placa por afuera y por adentro. Ambiente ruidoso de la PC
- •Por cuántos LSB se aparta del 0 y con que probabilidad (Gausiana)

No-linealidad

- •al incrementar el voltaje de entrada no se incrementa linealmente la señal digital
- •si la respuesta fuera ideal, la distancia entre dos valores consecutivos debería ser de 1 LSD
- •medida de la desviación del ancho de código
- •Escalera con escalones faltantes.

Tiempo de acomodación

- •Velocidad de condicionamiento de señal=velocidad de adquisición de placa
- •datos fuera de tiempo en etapa analógica: la placa no lo nota

Error de apertura:

Variación de la señal de entrada mientras se está realizando la conversión. Significativo en el caso de señales de alta frecuencia. Para minimizarlo se usan los circuitos de muestreo y retención.

Código faltante: significa que el ancho de voltaje de algún código es nulo, o sea, que la tarjeta de adquisición no podrá leer nunca en forma correcta una señal de entrada cuyo voltaje sea el que le *correspondería leer a dicho código. A esta señal se le atribuirá el código inmediato inferior o el superior*.

Figura 4: En la figura se observa cómo para el valor correspondiente a 120uV la digitalización falla

Error de corrimiento de escala Por ejemplo, si suponemos tener un conversor cuya resolución es de 5 mV, y el es de +3/2 LSB, entonces el primer código binario será activado a los 12.5 mV, el segundo código a los 17.5 mV, el tercero a los 22.5 mV, etc., en lugar de hacerlo a los 5, 10, y 15 mV respectivamente.

Referencias

BIBLIOGRAFÍA

Data Acquisition Tutorial, tomado de "Instrumentation, Reference and Catalog", 1997, National Instruments.

James R. Matey y M. J. Lauterbach, "How to control errors in Analog-to-Digital Conversion", Computers In Physics, Vol 7, № 4, Jul-Ago 1993.

INTERNET http://www.hardwaresecrets.com/article/317

Sensorland: www.sensorland.com

Digital Multimeter Measurement Fundamentals: http://zone.ni.com

IFIC-Instituto de Física Corpuscular (Electrónica para el procesado de señales): http://www.ific.csic.es

Redeweb: http://www.redeweb.com

http://www.hardwaresecrets.com/article/317