Teorija iger - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Sergia Cabella 2021/22

Kazalo

1	Strateške igre s funkcijami preferenc		
	1.1	Uvod	3
	1.2	Čisto Nashevo ravnotežje	4
	1.3	Dominacije	6
2	Stra	ateške igre s funkcijami koristnosti	7
	2.1	Uvod	7
	2.2	Igre koristnosti	8
	2.3	Nasheva ravnovesja	8
	2.4	Dominacije	10
	2.5	Dokaz Nashevega izreka	
		(dokaz je v zapiskih, tu le potrebno "orodje")	10
	2.6	Bimatrične in matrične igre	11

1 Strateške igre s funkcijami preferenc

1.1 Uvod

Definicija 1.1. Naj bo \mathcal{A} množica. *Funkcija preferenc* na množici \mathcal{A} je preslikava $u: \mathcal{A} \to \mathbb{R}$ funkcija preferenc. Intuicija: $\forall a, a' \in \mathcal{A}, a \neq a'$:

- u(a) > u(a') " \iff " a je boljše kot a'
- u(a) < u(a') " \iff " a je slabše kot a'
- u(a) = u(a') " \iff " med a in a' smo indiferentni

Opomba.

- Različne funkcije lahko določijo iste preference.
- Obravnavali bomo tudi več funkcij preferenc na isti množici (vsak igralec ima lahko svojo funkcijo).
- Preverence določimo kvalitativno, ne kvantitativno pomemben je le vrstni red, same vrednosti ne.
- \bullet Namesto \mathbb{R} bi lahko uporabili poljubno drugo linearno urejeno množico.

Definicija 1.2. Strateška igra s funkcijami preferenc je trojica

$$(N, (A_i)_{i \in N}, (u_i)_{i \in N}),$$

pri čemer:

- \bullet N je končna množica *igralcev*.
- \bullet Za vsakega igralca $i \in N$ je A_i neprazna množica akcij za $i \in N.$ Naj bo

$$\mathcal{A} := \prod_{i \in N} A_i$$

množica profilov akcij.

• Za vsakega igralca $i \in N$ je $u_i : \mathcal{A} \to \mathbb{R}$ je funkcija preferenc na \mathcal{A} za igralca i.

Opomba. Ponavadi: $N = [n] = \{1, \dots, n\}$. V tem primeru imamo trojico

$$([n], (A_1, \ldots, A_n), (u_1, \ldots, u_n)),$$

$$A = A_1 \times \ldots \times A_n \text{ ter } u_i : A_1 \times \ldots \times A_n \to \mathbb{R}.$$

1.2 Čisto Nashevo ravnotežje

Notacija.

$$(x_{\alpha}, x_{\beta}, x_{\gamma} \mid y; \beta) = (x_{-\beta}, y) = (x_{\alpha}, y, x_{\gamma})$$

Za funkcije preferenc:

$$u_i(x_1,\ldots,x_m \mid y) = u_i(x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_n).$$

Definicija 1.3. Naj bo $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ strateška igra s funkcijami preferenc. Naj bo

$$\mathcal{A} = \prod_{i \in N} A_i.$$

Profil akcij $a^* \in \mathcal{A}$ je čisto Nashevo ravnovesje $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\forall i \in N, \ \forall b \in A_i: \ u_i(a^*) \ge u_i(a^* \mid b).$$

Tak $a^* \in \mathcal{A}$ je strogo čisto Nashevo ravnovesje $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\forall i \in N, \ \forall b \in A_i \setminus \{a_i^*\}: \ u_i(a^*) > u_i(a^* \mid b).$$

Definicija 1.4. Naj bo $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ strateška igra s funkcijami preferenc. Označimo

$$\mathcal{A} = \prod_{n \in N} A_i.$$

 $Najbolj\check{s}i~odgovor$ igralca $i\in N$ je

$$B_{i}: \mathcal{A} \to 2^{A_{i}} = \{B \mid B \subseteq A_{i}\}$$

$$a \mapsto \{b \in A_{i} \mid \forall c \in A_{i} : u_{i}(a \mid b) \geq u_{i}(a \mid c)\}$$

$$= \{b \in A_{i} \mid u_{i}(a \mid b) = \max_{c \in A_{i}} (a \mid c)\}.$$

Za $N = [n] = \{1, \dots, n\}$ je formula v definiciji za igralca i = 1:

$$B_1(a_1, \dots, a_n) = \{b \in A_1 \mid u_1(b, a_2, \dots, a_n) = \max_{c \in A_1} u_1(c, a_2, \dots, a_n)\},\$$

analogno za $i = 2, \ldots, n$.

Opomba.

- Bolj pravilno bi bilo reči "množica najboljših odgovorov".
- Večkrat velja $|B_i(a)| = 1$ (le en najboljši odgovor). V tem primeru pišemo brez $\{\}$.
- \bullet Pri definiciji B_i nima a_i nobene vloge. Za dva igralca bomo ponavadi napisali

$$B_1(a_2) \equiv B_1(*, a_2)$$

 $B_2(a_1) \equiv B_2(a_1, *).$

Trditev 1.1. Profil akcij $a^* = (a_i^*)_{i \in N}$ je čisto Nashevo ravnovesje \iff

$$\forall i \in N: \ a_i^* \in B_i(a^*).$$

Trditev 1.2. Profil akcij $a^* = (a_i^*)_{i \in N}$ je strogo čisto Nashevo ravnovesje \iff

$$\forall i \in N : a_i^* \in B_i^{\text{str}}(a^*),$$

kjer B_i^{str} definiramo kot

$$B_i^{\text{str}}: \mathcal{A} \to 2^{A_i}$$

$$a \mapsto \{b \in A_i \mid \forall c \in A_i \setminus \{b\} : u_i(a^* \mid b) > u_i(a^* \mid c)\}$$

$$= \begin{cases} \text{edini max}; & \text{\'e obstaja}, \\ \emptyset; & \text{sicer}. \end{cases}$$

1.3 Dominacije

Definicija 1.5. Naj bo $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ strateška igra s funkcijo preferenc. Označimo

$$\mathcal{A} = \prod_{i \in N} A_i.$$

Akcija $b \in A_i$ šibko dominira akcijo $c \in A_i$, če velja

$$\forall a \in \mathcal{A} : u_i(a \mid b) > u_i(a \mid c).$$

Akcija $b \in A_i$ strogo dominira akcijo $c \in A_i$, če velja

$$\forall a \in \mathcal{A} : u_i(a \mid b) > u_i(a \mid c).$$

Trditev 1.3. Če $b \in A_i$ strogo dominira $c \in A_i$, potem ne obstaja čisto Nashevo ravnovesje $a^* = (a_i^*)_{i \in N}$ z $a_i^* = c$. Če $b \in A_i$ dominira $c \in A_i$, potem obstaja strogo čisto Nashevo ravnovesje $a^* = (a_i^*)_{i \in N}$ z $a_i^* = c$.

2 Strateške igre s funkcijami koristnosti

2.1 Uvod

Definicija 2.1. Naj bo $A=(a_1,\ldots,a_\Pi)$ končna množica in π funkcija verjetnosti:

$$\pi \sim \begin{pmatrix} a_1 & \dots & a_{\Pi} \\ \pi(a_1) & \dots & \pi(a_{\Pi}) \end{pmatrix}.$$

Množica $\pi(A)$, definirana kot

$$\pi(A) = \{ ((\pi(a_i))_{a_i \in A} \mid \forall a_i \in A_i : \pi(a_i) \ge 0, \sum_{a_i \in A} \pi(a_i) = 1 \}$$

je množica loterij na A.

Definicija 2.2. Naj bo A končna. Funkcija koristnosti na <math>A je prelikava $u: A \to \mathbb{R}$, ki določa preference na množici $\pi(A)$ in sicer

$$\hat{u}: \pi(A) \to \mathbb{R}$$

 $\pi = (\pi(a))_{a \in A} \mapsto \sum_{a \in A} \pi(a)u(a),$

če je \hat{u} razširitev funkcije u. Osnovni princip bo:

$$\hat{u}(\pi) \ge \hat{u}(\pi') \iff \pi \text{ ni slabše od } \pi'.$$

Opomba. Lahko imamo različni funkciji koristnosti, ki določata iste preference na $\pi(A)$. En del teorije koristnosti se ukvaraja z obratno smerjo, in sicer za katere preference nad $\pi(A)$ obstaja funkcija koristnosti $u: A \to \mathbb{R}$, za katero imamo razširitev iste preference $\pi(A)$.

2.2 Igre koristnosti

Definicija 2.3. Strateška igra s funkcijami koristnosti je trojica

$$\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N}),$$

pri čemer:

- \bullet je N neprazna in končna množica igralcev.
- \bullet je A_i neprazna in končna množica akcij za igralca $i\in N.$ Naj bo $A=\prod_{i\in N}A_i$ množica profilov akcij.
- $\bullet\,$ je $u_i:A\to\mathbb{R}$ funkcija koristnosti za igralca $i\in N.$

Množica strategij za igralca $i \in N$ je $S_i = \pi(A_i)$. Strategija $\pi \in S_i$ meša akcije $\{a \in A_i \mid \pi_i(a) > 0\}$. Strategija $\pi \in S_i$ je čista, če je $\pi = S(a)$ za nek $a \in A_i$. Množica profilov strategij je $S = \prod_{i \in N} S_i$.

Trditev 2.1. Definiramo:

$$u_i: S = \prod_{j \in N} S_j \to \mathbb{R}$$

$$\pi = (\pi_j)_{j \in N} \mapsto \sum_{a \in A} \left(\prod_{j \in N} \pi_j(a_j) \right) u_i(a).$$

Velja:

$$u_i(\pi) = \sum_{a_i \in A} \pi_i(a_i) \left[u_i(\pi \mid \delta(a_i)) \right].$$

2.3 Nasheva ravnovesja

Definicija 2.4. Naj bo $\Gamma(N,(A_i)_{i\in N},(u_i)_{i\in N})$ strateška igra s funkcijami koristnosti. Profil strategij

$$\Pi^* = (\pi_i^*) \in S = \prod_{i \in N} S_i$$

je Nashevo ravnovesje $\stackrel{\mathrm{def}}{\Longleftrightarrow}$

$$\forall i \in N, \ \forall \pi'_i \in S_i, \ \pi'_i \neq \pi^*_i : \ u^*_i(\pi^*) > u_i(\pi^* \mid \pi'_i).$$

Imamo preslikavo

$$\phi_{\mathcal{K}\to\mathcal{D}}$$
: {igra s funkcijami koristnosti} \to {igra s funkcijami preferenc} $(N,(A_i)_{i\in N},(u_i)_{i\in N}) \mapsto (N,(S_i=\pi(A_i))_{i\in N},(u_i)_{i\in N}).$

 $\phi_{\mathcal{K}\to\mathcal{P}}$ je mešana razširitev igre Γ .

Trditev 2.2. Naj bo Γ strateška igra s funkcijami koristnosti in naj bo π profil strategij v Γ . π je Nashevo ravnovesje v $\Gamma \iff \pi$ je čisto Nashevo ravnovesje v $\phi_{\mathcal{K} \to \mathcal{P}}(\Gamma)$.

Izrek 2.1 (Nash, 1949). Vsaka strateška igra s funkcijami koristnosti ima vsaj eno Nashevo ravnovesje.

Opomba.

- Dokaz je nekonstruktiven, nič ne pove kako Nashevo ravnovesje najti.
- Pomembno je, da ima vsak igralec končno množico akcij. Obstajajo sicer tudi posplošitve za neskončno mnogo akcij.
- Če je igra generična, potem je število Nashevih ravnovesij liho.

Trditev 2.3. Profil strategij $\pi^* = (\pi_i^*)_{i \in N}$ je Nashevo ravnovesje

$$\iff \forall i \in N \ \forall a_i \in A_i : \ u_i(\pi^*) > u_i(\pi^* \mid \delta(a_i)).$$

Trditev 2.4 (Princip indiferentnosti). Če je $\pi^* = (\pi_i^*)_{i \in N}$ Nashevo ravnovesje, potem velja

$$\forall i \in N \ \forall a_i \in A_i : \ (\pi_i^*(a_i) > 0 \ \Rightarrow \ u_i(\pi^*) = u_i(\pi^* \mid \delta(a))).$$

Opomba.

- Uporabna, ker imamo enačbe.
- To ni karakterizacija. Uporabimo za iskanje kandidatov.
- Ko ima igralec $i |A_i| = 2$, potem, ko velja

$$u_i(\pi^* \mid \delta(a_i)) = u_i(\pi^* \mid \delta(b_i)) = u_i(\pi^*)$$

avtomatično velja pogoj sistema neenačb za igralca i:

$$u_i(\pi^* \mid \delta(a_i)) \leq u_i(\pi^*)$$

$$u_i(\pi^* \mid \delta(b_i)) \leq u_i(\pi^*)$$

2.4 Dominacije

Definicija 2.5. Strategija $\alpha_i \in S_i$ (*šibko*) dominira strategijo $\beta_i \in S_i$, če velja

$$\forall \pi \in S: \ u_i(\pi \mid \alpha_i) \ge u_i(\pi \mid \beta_i).$$

Strategija $\alpha_i \in S_i$ strogo dominira $\beta_i \in S_i$, če velja

$$\forall \pi \in S : u_i(\pi \mid \alpha_i) > u_i(\pi \mid \beta_i).$$

Trditev 2.5. Naj bo $\pi^*=(\pi_i^*)_{i\in N}$ Nashevo ravnovesje. Če strategija $\alpha_i\in S_i$ strogo dominira $\delta(b_i),$ potem

$$\pi_i^*(b_i) = 0.$$

2.5 Dokaz Nashevega izreka (dokaz je v zapiskih, tu le potrebno "orodje")

Izrek 2.2 (Brouwerjev izrek). Naj bo $X \subseteq \mathbb{R}^d$ konveksna in kompaktna množica ter $T: X \to X$ zvezna preslikava. Potem $\exists x \in X$, da velja T(x) = x.

2.6 Bimatrične in matrične igre

Definicija 2.6. Bimatrična igra je igra s funkcijami koristnosti za 2 igralca, $N = \{1, 2\}$, pri katerih je

$$A_1 = [m] = \{1, \dots, m\}$$

 $A_2 = [n] = \{1, \dots, n\}.$

Igro predstavimo z bimatriko.

Trditev 2.6. Profil $(\mathbf{p}^*, \mathbf{q}^*) \in \pi_1 \times \pi_2$ je Nashevo ravnovesje \iff

$$\forall \mathbf{p} \in \pi_1 : (\mathbf{p}^*)^\mathsf{T} \mathbf{A} \mathbf{q}^* \geq \mathbf{p}^\mathsf{T} \mathbf{A} \mathbf{q}^*$$

 $\forall \mathbf{q} \in \pi_2 : (\mathbf{p}^*)^\mathsf{T} \mathbf{B} \mathbf{q}^* \geq (\mathbf{p}^*)^\mathsf{T} \mathbf{B} \mathbf{q}$

Trditev 2.7 (Sistem neenačb). Profil $(\mathbf{p}^*, \mathbf{q}^*)$ je Nashevo ravnovesje \iff

$$\forall i \in [m]: (\mathbf{p}^*)^\mathsf{T} \mathbf{A} \mathbf{q}^* \geq [\mathbf{A} \mathbf{q}^*]_i$$

 $\forall j \in [n]: (\mathbf{p}^*)^\mathsf{T} \mathbf{B} \mathbf{q}^* \geq [(\mathbf{p}^*)^\mathsf{T} \mathbf{B}]_j$

Trditev 2.8 (Princip indiferentnosti). Če je profil $(\mathbf{p}^*, \mathbf{q}^*)$ Nashevo ravnovesje, potem

$$\forall i \in [m]: (p_i^* > 0) \Rightarrow (\mathbf{p}^*)^\mathsf{T} \mathbf{A} \mathbf{q}^* = [\mathbf{A} \mathbf{q}^*]_i$$

$$\forall j \in [n]: (q_j^* > 0) \Rightarrow (\mathbf{p}^*)^\mathsf{T} \mathbf{A} \mathbf{q}^* = [(\mathbf{p}^*)^\mathsf{T} \mathbf{A}]_j.$$