Given a graph, find an embedding s.t. greedy routing works

Greedy embedding of a graph

Greedy embedding

 Given a graph G, find an embedding of the vertices in R^d, s.t. for each pair of nodes s, t, there is a neighbor of s closer to t than s itself.

Questions to ask

- We want to find a virtual coordinates such that greedy routing always works.
- Does there exist such a greedy embedding in R²?
- in R³?
- in Euclidean metric? Hyperbolic space?
- If it exists, how to compute?

Greedy embedding does not always exist

• K_{1,6} does not have a greedy embedding in R²

A lemma

- Lemma: each node t must have an edge to its closest (in terms of Euclidean distance) node u.
- Otherwise, u has no neighbor that is closer to t than itself.

Proof

 K_{1,6} does not have a greedy embedding in R²

Proof:

- 1. One of the angles is less than $\pi/3$.
- 2. One of ab_2 and ab_3 , say, ab_2 , is longer than b_2b_3 .
- 3. Then b₂ does not have edge with its closest point b₃.

A conjecture

- Corollary: $K_{k, 5k+1}$ does not have a greedy embedding in \mathbb{R}^2 .
- Conjecture: Any planar 3-connected graph has a greedy embedding R².
- Hint: this is tight.
- K_{2.11} is planar but not 3-connected.
- $K_{3.16}$ is 3-connected but not planar. (it has $K_{3.3}$ minor).
- Planar 3-connected graph has a greedy embedding in R³

Polyhedral routing

Theorem: Any 3-connected planar graph has a greedy embedding \mathbf{e} in \mathbb{R}^3 , where the distance function is defined as $d(u, v) = -\mathbf{e}(u) \cdot \mathbf{e}(v)$.

Proof:

- Any 3-connected planar graph is the edge graph of a 3D convex polytope, with edges tangent to a sphere. [Steinitz 1922].
- 2. Each vertex has a supporting hyperplane with the normal being the 3D coordinate of the vertex.

106

Polyhedral routing

Proof: For any s, t, there is a neighbor v of s, d(v,t)<d(s,t).

1. $d(s,t)-d(v,t)=[e(v)-e(s)]\cdot e(t)>0$.

 Now suppose such neighbor v does not exist, then s is a reflex vertex, with all the neighbors pointing away from t.

3. This contradicts with the convexity of the polytope.

Discussions

- Papadimitriou's conjecture: Any planar 3-connected graph has a greedy embedding R². has been proved!
- The theorem only gives a sufficient condition, not necessary.
 - K_{3.3} has a greedy embedding.
 - A graph with a Hamiltonian cycle has a greedy embedding on a line.
- Given a graph, can we tell whether it has a greedy embedding in R²? Is this problem hard? (Recall that many such embedding problems are hard...)
- More understanding of greedy embedding in R²,
 R³...

Follow-up work

- Dhandapani proved that any triangulation admits a greedy embedding (SODA'08).
- Leighton and Moitra proved the conjecture (FOCS'08).
- Independently, Angelini et al. also proved it (Graph Drawing'08).
- Goodrich and D. Strash improved the coordinates to be of size O(log n) (under submission).
- We briefly introduce the main idea.

Leighton and Moitra

- All 3-connected planar graph contain a spanning Christmas Cactus graph.
- All Christmas Cactus graphs admit a greedy embedding in the plane.

Leighton and Moitra

- A cactus graph is connected, each edge is in at most one simple cycle.
- A Christmas Cactus graph is a cactus graph for which the removal of any node disconnects into at most 2 pieces.

A Christmas Cactus

Example

Connection to graph labeling

- Given a graph, find a labeling of the nodes such that one can compute the (approximate) shortest path distance between any two vertices from their labels only.
- Tradeoff between approximation ratio and the label size.
- For shortest path distance, the maximum label size is $\Theta(n)$ for general graph, $O(n^{1/2})$ ($\Omega(n^{1/3})$) for planar graphs, and $\Theta(\log^2 n)$ for trees.
- General graph: ∃ a scheme with label size O(kn¹/k) and approximation ratio 2k-1.
- Google "distance labeling" for the literature.

Approach II: Embed a spanning tree in polar coordinate system

Embed a tree in polar coordinate system

- Start from any node as root, flood to find the shortest path tree.
- Assign polar ranges to each node in the tree.
 - The range of a node is divided among its children.
 - The size of the range is proportional to the size of its subtree.
- Order the subtrees that align with the sensor connectivity.

Embed a tree in polar coordinate system

- Order the subtrees that align with the sensor connectivity.
 - Three reference nodes flood the network. Each node knows the hop count to each reference.
 - Each node embed itself with respect to the references. (trilateration with hop counts)
 - A node's position is defined as the center of mass of all the nodes in its subtree.
 - This will provide an angular ordering of all the children.

Routing on a tree

- Route to the common ancestor of the source and destination.
 - Check whether the destination range is included in the range of the current node.
 - If not, go to the parent.
 - Otherwise go to the corresponding child.

Path may be long.

Routing on a tree

- Be a little smarter: store a local routing table that keeps the ranges of up to k-hop neighbors. → find shortcuts.
- Virtual Polar Coordinate Routing: check the neighborhood, find the node that is closer to the destination. ← greedy forwarding in polar coordinates.

If the upper/lower bound is closer to the destination.

Load balancing

Root is still the bottleneck even for smart routing.

Routing on spanning trees – in theory and in practice

 For any graph G there is a spanning tree T, s.t. the average stretch of the shortest paths on T, compared with G, is O((lognloglogn)²).