Lecture 11 - Limit Theorems

Introduction

- By doing experiments we observe that the frequency of some event occurring tends to the probability of that event as the number of trials tends to infinity.
- The law of large numbers was formulated by Jacob Bernoulli as:

"With sufficiently large number of trials, the frequency of a given random event will be arbitrarily close to the probability of this event."

 We often think about the law of large numbers as a way of defining the probabilities.

The frequency of events and Bernoulli scheme

- The occurrence/non-occurrence of a given event can be encoded by a Bernoulli random variable.
- ullet Let n be the number of trials in which we observe if a given event A happened or not
- Define random variables X_1,\ldots,X_n which concern consecutive trials as:

$$X_i(\omega) = \left\{egin{array}{ll} 1 & ext{if } \omega \in A & ext{"A occured"} \ 0 & ext{if } \omega
ot\in A & ext{"A did not occur"} \end{array}
ight.$$

- Those variables are independent and all have the Bernoulli distribution B(p) with parameter $p=P(X_i=1)=P(A)$
- We can define "frequency of the event A" as the number of successes: $S_n = X_1 + \ldots + X_n$ divided by the number of trials n: frequency $= \frac{S_n}{n}$.

Lecture 11 - Limit Theorems

• The law of large numbers states that as $n \to \infty$, $\frac{S_n}{n} \to p$, where p is the probability of the event A.

Bernoulli scheme

- Let X_1, \ldots, X_n be independent random variables with the distribution B(p).
- We know that the number of successes $S_n = X_1 + \ldots + X_n$ has the binomial distribution B(n,p):

$$ES_n = np \quad D^2(S_n) = np(1-p)$$

- The distribution "grows", or stretches horizontally as $n \to \infty$.
- Let $\overline{X}_n = rac{S_n}{n}$, the frequency of successes, then:

$$egin{align} E\overline{X}_n &= Eigg(rac{S_n}{n}igg) = rac{ES_n}{n} = p \ D^2(\overline{X}_n) &= D^2igg(rac{S_n}{n}igg) = rac{D^2(S_n)}{n^2} = rac{p(1-p)}{n} \ D(\overline{X}_n) &= \sqrt{rac{p(1-p)}{n}} \ \end{cases}$$

• The distribution "shrinks" as $n \to \infty$.

Law of Large Numbers for Bernoulli distribution

- Remainder: Chebyshev's inequality:
 - $\circ~$ For a random variable X with finite expectation and variance:

$$orall \epsilon > 0 \quad P(|X - EX| \geq \epsilon) \leq rac{D^2(X)}{\epsilon^2}$$

• If we apply this inequality to \overline{X}_n :

$$P(|\overline{X}_n - p| > \epsilon) \leq rac{p(1-p)}{n\epsilon^2}$$

• By negating and adding one:

$$P(|\overline{X}_n - p| \leq \epsilon) \geq 1 - rac{p(1-p)}{n\epsilon^2}$$

- And from this we arrive at the Bernoulli's Law of Large Numbers:
 - For any $\epsilon > 0$:

$$\lim_{n o\infty}P(|\overline{X}_n-p|\leq\epsilon)=1$$

 \circ Random variable \overline{X}_n converges "in probability" to p.

Generalizing the Law of Large Numbers

- We have shown that the frequency of any given random event converges to its probability.
- We used the fact that with large probability the arithmetic mean of n
 Bernoulli random variables ("the frequency of successes") is close to
 its expected value (probability of success), but this property also holds for
 other random variables.
- We will generalize the LLN to:

"For sufficiently large n, the arithmetic mean of n realizations of a random variable is arbitrarily close to its expectation"

- · For example:
 - For large n, the mean of n rolls of a die is close to 3.5
 - For large n, the average win in n independent games is close to the expected value of win

 $\circ~$ For large n, the average of n numbers drawn (independently) from a uniform distribution on [0,1] is close to 0.5

Sequence of independent random variables

- X_1,\ldots,X_n independent random variables with the same distribution, so also with the same expected value $EX_i=\mu$ and variance $D^2(X_i)=\sigma^2$.
- Define: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then:

$$E\overline{X}_n = \mu \ D^2(\overline{X}_n) = rac{\sigma^2}{n}$$

Applying the Chebyshev's inequality:

$$P(|\overline{X}_n - \mu| \geq \epsilon) \leq rac{D^2(\overline{X}_n)}{\epsilon^2} = rac{\sigma^2}{n\epsilon^2}$$

• So as $n o \infty$:

$$P(|\overline{X}_n - \mu| \ge \epsilon) \le 0$$

Law of Large Numbers

Weak Law of Large Numbers (Khinchin)

• Let X_1,\ldots be a sequence of independent random variables with the same distribution, expected value μ and variance $\sigma^2<\infty$. Then for any $\epsilon>0$:

$$\lim_{n o \infty} P(|\overline{X}_n - \mu| \le \epsilon) = 1$$

 The Bernoulli's LLN is a special case of this theorem for random variables having Bernoulli distribution.

Convergence in probability

- Let $X_n = (X_1, X_2, \ldots)$ be a sequence of random variables.
- We say that sequence X_n converges to X in probability, if for any $\epsilon>0$:

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$$

- We denote it as $X_n \overset{P}{ o} X$.
- In particular if X has a degenerate distribution, i.e. P(X=c)=1, we denote $X_n \overset{P}{\to} c$.
- We can use this to rewrite the law of large numbers:

Weak Law of Large Numbers (Khinchin) (again)

• Let X_1,\ldots be a sequence of independent random variables with the same distribution, expected value μ and variance $\sigma^2<\infty$. Then:

$$\overline{X}_n \stackrel{P}{
ightarrow} \mu$$

Weak Law of Large Numbers (Chebyshev)

• Let X_1,X_2,\ldots be a sequence of independent random variables with expected values $EX_i=\mu_i$ and variances $D^2(X_i)=\sigma_i^2$, jointly bounded by σ^2 (i.e., $\sigma_i^2\leq\sigma^2$ for all i). Let $\overline{\mu}_n=\frac{1}{n}\sum_{i=1}^n\mu_i$. Then:

$$\overline{X}_n - \overline{\mu}_n \stackrel{P}{ o} 0$$

Convergence "with probability 1"

Consider an event:

$$\lim_{n o\infty}X_n=X$$

- This is a random event, since it is a statement about random variables.
- · Consider an event:

$$orall \omega \in \Omega \quad \lim_{n o \infty} X_n(\omega) = X(\omega)$$

- This statement is called "sure" convergence: the convergence holds for all $\omega \in \Omega.$
- Usually it is too strong, since it must hold even for ω , for which $P(\{\omega\})=0$
- We say that a sequence X_n converges to a random variable X with probability 1 ("almost surely") if:

$$P(\lim_{n o\infty}X_n=X)=1$$

- ullet We denote it by: $X_n \overset{ ext{w. pr. 1}}{
 ightarrow} X$
- Convergence with probability 1 implies convergence in probability (it is stronger):

$$X_n \stackrel{\text{w. pr. } 1}{\rightarrow} X \implies X_n \stackrel{P}{\rightarrow} X$$

Strong Law of Large Numbers

We know that (from the proofs during lectures):

$$X_n \stackrel{P}{\to} X \implies X_n \stackrel{\text{w. pr. 1}}{\to} X$$

ullet Despite that, the LLN can be strengthen to $X_n \overset{ ext{w. pr. 1}}{
ightarrow} X$

Strong Law of Large Numbers (Khinchin)

• Let X_1, X_2, \ldots be a sequence of independent random variables with the same distribution, expected value μ and variance $\sigma^2 < \infty$. Then:

$$\overline{X}_n \stackrel{\text{w. pr. } 1}{\rightarrow} \mu$$

Strong Law of Large Numbers (Chebyshev)

• Let X_2,X_2,\ldots be a sequence of independent random variables with expected values $EX_i=\mu_i$ and variances $D^2(X_i)=\sigma_i^2$, jointly bounded by σ^2 (i.e., $\sigma_i^2\leq\sigma^2$ for all i). Let $\overline{\mu}_n=\frac{1}{n}\sum_{i=1}^n\mu_i$. Then:

$$\overline{X}_n - \overline{\mu}_n \overset{ ext{w. pr. 1}}{
ightarrow} 0$$