STAT3003 Problem Sheet 2

ZHENG Weijia (William, 1155124322)

March 8, 2021

Q11

Note that L = 4, $N = N_1 + N_2 + N_3 + N_4 = 225$, with $N_1 = 64$, $N_2 = 43$, $N_3 = 92$, $N_4 = 26$. And $\hat{p_1} = \frac{2}{7}, \hat{p_2} = \frac{1}{3}, \hat{p_3} = \frac{8}{21}, \hat{p_4} = \frac{1}{3}$. Hence we can have the

$$\hat{p_{st}} = \frac{1}{N} \sum_{i=1}^{L} N_i \hat{p_i} = 0.3393.$$

Also, by

$$\hat{Var}(\hat{p_{st}}) = \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 (1 - \frac{n_i}{N_i}) \frac{1}{n_i - 1} \hat{p_i} (1 - \hat{p_i}) = \frac{197.979}{225^2} = 3.7724 * 10^{-3}.$$

Therefore, $\sqrt{\hat{Var}(\hat{p_{st}})} = 0.0614$.

Our goal is to find

$$(\hat{p}_{st} \pm t_{df,1-\frac{\alpha}{2}} * \sqrt{\hat{Var}(\hat{p}_{st})}).$$

By Satterthwaite's Approximation, we have

$$df \approx \frac{(\sum_{i=1}^{L} k_i s_i^2)^2}{\sum_{i=1}^{L} \frac{(k_i s_i^2)^2}{n_i - 1}}, k_i = \frac{N_i (N_i - n_i)}{N^2 n_i},$$

and hence df = 45.

Then $t_{df,1-\frac{\alpha}{2}} = t_{45,0.975} = 2.0141$. Therefore, then result should be

$$(0.3393 \pm 2.0141 * 0.0614)$$

Done.

2 Q2

Note that $L = 3, c = 500, c_0 = 0$. Using

$$n_{i} = \frac{(c - c_{0}) \frac{N_{i} S_{i}}{\sqrt{c_{i}}}}{\sum_{i=1}^{L} N_{i} S_{i} \sqrt{c_{i}}}.$$

Note that we have the σ_i are given, hence by $\hat{\sigma_i}^2 = \frac{N_i}{N_i-1}\sigma_i^2$. Then we have $s_i = \hat{\sigma_i}$. With $s_1 = 1.5067, s_2 = 1.8134, s_3 = 1.8235.$

Which gives that $n_1 = 18.1510$, $n_2 = 7.9581$, $n_3 = 3.8247$. By doing rounding, we have $n_1 = 18$, $n_2 = 8$, $n_3 = 4$. Under this case, we have the cost to be 506.

For saving the cost, we need to reduce the sample size in North America by 1.

Then we have $n_1 = 17$, $n_2 = 8$, $n_3 = 4$. Under this case, the cost is 497, which is okay. And by

$$Var(\bar{Y}_{st}) = \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \frac{\sigma_i^2}{n_i} (\frac{N_i - n_i}{N_i - 1}) = 0.08825 < 0.1.$$

Which can satisfy the corporation's requirement. Hence they can be happy. Done.

3 Q3

Recall that the function we want to optimize is

$$f(n_1, n_2, ..., n_L) = \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \frac{\sigma_i^2}{n_i} (\frac{N_i - n_i}{N_i - 1}).$$

And the constraint is

$$g(n_1, n_2, ..., n_L) = c - (c_0 + c_1 n_1 + ... + c_L n_L) = 0.$$

The lagrangian is

$$L = f - \lambda g.$$

Note that

$$\frac{\partial f}{\partial n_j} = \frac{1}{N^2} \frac{\partial (N_j^3 \ \sigma_j^2)}{n_j (N_j - 1)} = -\frac{N_j^3 \sigma_j^2}{N^2 (N_j - 1) n_j^2}.$$

And

$$\frac{\partial g}{\partial n_j} = -c_j.$$

Therefore we can have

$$\lambda c_j = \frac{1}{n_j^2} \frac{N_j^3 \sigma_j^2}{N^2 (N_j - 1)}.$$

Which implies

$$n_j = \frac{1}{\sqrt{\lambda}} \sqrt{\frac{N_j}{N_j - 1}} \frac{N_j \sigma_j}{\sqrt{c_j} N}.$$

Recall the constraint g=0. We can have

$$\sum_{j=1}^{L} c_{j} n_{j} = (c - c_{0}) = \sum_{j=1}^{L} \frac{1}{\sqrt{\lambda}} \sqrt{\frac{N_{j}}{N_{j} - 1}} \frac{N_{j} \sigma_{j}}{\sqrt{c_{j}} N}.$$

Hence

$$\frac{1}{\sqrt{\lambda}} = \frac{c - c_0}{\sum_{j=1}^L \sqrt{\frac{N_j}{N_j - 1}} \frac{N_j \sigma_j}{\sqrt{c_j} N}}.$$

And therefore,

$$n_{j} = \frac{c - c_{0}}{\sum_{j=1}^{L} \sqrt{\frac{N_{j}}{N_{j} - 1}} \frac{N_{j}\sigma_{j}}{\sqrt{c_{j}}N}} \sqrt{\frac{N_{j}}{N_{j} - 1}} \frac{N_{j}\sigma_{j}}{\sqrt{c_{j}}N} = \frac{(c - c_{0})(\sqrt{\frac{N_{i}}{N_{i} - 1}} \frac{N_{i}\sigma_{i}}{\sqrt{c_{i}}})}{\sum_{i=1}^{L} \sqrt{\frac{N_{i}}{N_{i} - 1}} N_{i}\sigma_{i}\sqrt{c_{i}}}.$$

Which is want we want.

Done.

4 Q4

By the formulae $\hat{\mu} = \frac{\hat{\tau}}{M}$, we can investigate the $\hat{\tau}$ and then go from $\hat{\tau}$ to get $\hat{\mu}$. Note that M = 3500, N = 108, n = 25.

Note that

$$\hat{\tau} = N \frac{1}{n} \sum_{i=1}^{n} Y_i = 151014.24.$$

And

$$t_{n-1,1-\frac{\alpha}{2}} = t_{24,0.975} = 2.06.$$

Also, we have

$$\hat{Var}(\hat{\tau}) = \hat{Var}(N\bar{Y}) = N^2(1 - \frac{n}{N})\frac{\hat{\sigma_c}^2}{n}.$$

Where the $\hat{\sigma_c}^2$ is the sample variance of cluster totals. Hence $\hat{\sigma_c}^2 = 149422.2016$. And

$$\hat{Var}(\hat{\tau}) = 53576824.61.$$

Therefore $\sqrt{\hat{Var}(\hat{\tau})} = 7319.6192$. Hence the 95% CI for τ is

$$(151014.24 \pm 2.06 * 7319.6192)$$

. Therefore 95% CI for μ is (43, 147 ± 4.3081).

5 Q5