The group G is isomorphic to the group labelled by [48, 33] in the Small Groups library. Ordinary character table of $G \cong ((C4 \times C2) : C2) : C3$:

Trivial source character table of $G \cong ((C4 \times C2) : C2) : C3$ at p = 3:

Normansers N_i	1V1						11/2			
p-subgroups of G up to conjugacy in G	P_1						P_2			
Representatives $n_j \in N_i$	1a	4a	4b	2a	2b	4c	1 <i>a</i>	4a	2a	4b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	3	3	3	3	3	3	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	3	-3	3	3	-3	-3	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	6	6 * E(4)	0	-6	0	-6 * E(4)	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	6	-6 * E(4)	0	-6	0	6 * E(4)	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$	3	-3	-1	3	1	-3	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	3	3	-1	3	-1	3	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	-1	1	1	-1	-1	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	4	4 * E(4)	0	-4	0	-4 * E(4)	1	E(4)	-1	-E(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	4	-4 * E(4)	0	-4	0	4 * E(4)	1	-E(4)	-1	E(4

 $P_2 = Group([(1,3,11)(2,7,18)(4,13,39)(5,28,25)(6,14,27)(8,20,43)(9,35,32)(10,21,34)(12,26,15)(16,30,47)(17,42,40)(19,33,22)(23,37,48)(24,46,44)(29,41,31)(36,45,38)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,26,15)(6,14,27)(8,20,43)(9,35,32)(10,21,34)(12,26,15)(16,30,47)(17,42,40)(19,33,22)(23,37,48)(24,46,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,38,24,22)(11,25,27,40)(13,42,30,28)(13,24,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,38,24,22)(11,25,27,40)(13,42,30,28)(13,24,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,38,24,22)(11,25,27,40)(13,42,30,28)(13,24,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,38,24,22)(11,25,27,40)(13,42,30,28)(13,24,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,38,24,22)(11,25,27,40)(13,42,30,28)(13,24,44)(13,39)(5,28,25)(6,14,27)(8,29,34)(13,24,34)(12,26,15)(16,30,47)(17,42,40)(19,33,22)(23,37,48)(24,46,44)(29,41,31)(36,45,38), (1,2,6,13)(3,24,44)(29,41,31)(36,45,38), (1,2,6,13)(3,24,44)(29,41,31)(36,45,38), (1,2,6,13)(3,24,44)(29,41,31)(36,45,38), (1,2,6,13)(3,24,44)(29,43,44)(29,4$