AV/EDR EVASION

WHO AW I

Red Teamer @ Golrang Industrial Group

Background

- Red Team
- Blue Team

Likes

- Sigint
- Reaserch in Windows

AGENDA

- What are Antivirus and EDR?
- History of Malware Detection
- How These Security Mechanisms Work
- How to Bypass These Mechanisms

WHAT ARE ANTIVIRUS & EDR

• Antivirus (AV): Software designed to detect, prevent, and remove malware from computers. It typically uses signature-based detection.

• Endpoint Detection and Response (EDR): Advanced security solutions that monitor endpoints (devices like laptops, servers, or desktops) to detect suspicious activities, investigate incidents, and respond to threats in real time.

EVOLUTION

- The Beginnings: Signature-Based Detection (1980s–1990s)
- Heuristic Analysis (1990s–2000s)
- Behavior-Based Detection (2000s–2010s)
- Cloud-Based Detection (2010s)
- Machine Learning & AI-Powered Detection (2015–Present)
- Endpoint Detection and Response (EDR) (2015–Present)
- Hybrid Detection (2020–Present)

CORE COMPONENTS

• AV systems rely on multiple layers of integration with the operating system:

• User-Mode Components:

- Scanning engines, user interfaces, and heuristics.
- Limited access to system internals (requires elevated privileges for deeper inspection).

• Kernel-Mode Components:

- Drivers and kernel hooks.
- Operate with high privileges, enabling AV software to monitor and control system processes at a low level.

HOOKING

- User-Mode Hooking
- Kernel-Mode Hooking

USER-MODE HOOKING

API Hooking :

- The AV replaces the address of key APIs (e.g., CreateFile, WriteProcessMemory) in the Import Address Table (IAT) of processes.
- When malware calls these APIs, the AV's code is executed first.

Inline Hooking :

- The AV modifies the prologue of a function to redirect execution to its own monitoring code.
- When malware calls these APIs, the AV's code is executed first.

KERNEL-MODE HOOKING

System Service Descriptor Table (SSDT) Hooking

- SSDT contains addresses of kernel functions. The AV modifies these entries to point to its driver functions.
- Example: Redirecting NtCreateFile to inspect file creation events.

Interrupt Descriptor Table (IDT) Hooking

• Used to monitor interrupts (e.g., system calls via int 0x2E on older Windows systems).

Kernel Callbacks

 Modern AVs register callbacks (e.g., PsSetCreateProcessNotifyRoutine) instead of modifying critical structures.

KERNEL CALLBACK TABLES OVERVIEW

- Windows provides mechanisms for drivers to register callbacks for certain kernel-level events. These callbacks allow monitoring tools (like EDRs) to track key system activities.
- Examples of Kernel Callbacks:
- Process Creation Callbacks (PsSetCreateProcessNotifyRoutine):
- Invoked when a new process is created or terminated.
- Thread Creation Callbacks (PsSetCreateThreadNotifyRoutine):
- Triggered when a thread is created or terminated.
- Image Load Callbacks (PsSetLoadImageNotifyRoutine):
- Called when a module (e.g., DLL or EXE) is loaded into memory.
- Registry Callbacks (CmRegisterCallback):
- Used to monitor registry operations.
- EDRs leverage these callbacks to collect telemetry on system activities and detect malicious behavior.

DRIVER ARCHITECTURE

- File System Filtering
- Process Monitoring
- Memory Scanning
- Registry Monitoring
- Networking Hooks

REAL-TIME MONITORING MECHANISMS

Kernel Callbacks

 AVs use callback routines to monitor events like process creation (PsSetCreateProcessNotifyRoutine), thread creation, or file operations.

Inline Patch Guard Bypasses

 Some AVs bypass PatchGuard restrictions by dynamically generating and injecting code into kernel-mode threads.

Sandboxing

 Drivers isolate unknown programs in a controlled environment to observe behavior without impacting the host system.

KERNEL PATCH PROTECTION (PATCHGUARD)

- PatchGuard periodically checks the integrity of critical kernel structures, including:
- System Service Descriptor Table (SSDT).
- Interrupt Descriptor Table (IDT).
- Global Descriptor Table (GDT).
- Kernel code sections.
- If a violation is detected, PatchGuard triggers a system crash (BSOD) to prevent further exploitation.

EVADING

- Obfuscation Techniques
- Packing and Encryption
- Living Off the Land (LOTL) Techniques
- Process Injection
- Anti-Analysis Techniques
- Code Injection and Reflection
- API Hooking Evasion
- Network Evasion
- Memory-Based Techniques

OBFUSCATION TECHNIQUES

- String Obfuscation
 - Rotr32
 - Stack Strings
- AES
- IAT Hiding

LIVING OFF THE LAND

- Substring Execution
- Ordinal Number
- Token Execution

AMSI (ANTIMALWARE SCAN INTERFACE)

PROTECTED PROCESS LIGHT (PPL) SIGNER LEVELS

- PPL uses a hierarchy of trust levels, with each level granting specific privileges:
- WinTcb (Windows Trusted Computing Base):
- The highest level of trust.
- Reserved for the core operating system and highly sensitive processes.
- Example: lsass.exe (Local Security Authority Subsystem Service).
- Windows:
- Processes that are signed by Microsoft and are part of the OS.
- Example: winlogon.exe.
- Windows Antimalware:
- Designed for antivirus and EDR processes.
- Example: Processes related to Microsoft Defender and third-party AV/EDRs.
- App:
- Protects applications with specific signing requirements.
- Example: Media-related processes with DRM.

PROCESS INJECTION

Classic Process Injection Create Remote Thread Fiber Injection APC Injection

ANTI-ANALYSIS TECHNIQUES

- Detecting Debuggers
- Detecting Debugger Via NtQueryInformationProcess
- BlackListed
- Breakpoint Detection Via GetTickCount64
- Detecting Delays
- Previously Mounted USBs Check

API HOOKING EVASION

- Direct syscall
- In-direct syscall

