B. Tech. Degree VI Regular/Supplementary Examination June 2023

CS 19-202-0605 OPERATING SYSTEM

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Familiarize with the basic concepts of operating systems.
- CO2: Implement various process scheduling algorithms.
- CO3: Design programs to avoid the synchronization problems.
- CO4: Gain knowledge about memory management and virtual memory concepts.
- CO5: Analyze various security and protection mechanisms in file system implementation.
- CO6: Illustrate the problems related with deadlocks and deadlock handling.
- CO7: Compare different types of operating systems.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze, L5 – Evaluate,

L6 - Create

PO - Programme Outcome

PART A

		(Answer <i>ALL</i> questions) $(8 \times 3 = 24)$	Marks	BL	CO	PO
			2	LI	2	1,2
I.	(a)	What is meant by guaranteed scheduling? Explain in brief.	3		1	
	(b)	Define Operating System. Explain briefly about the services provided	3	L1	ı	1,2
		by Operating System.	3	L2	4	1,2
	(c)	A system supports 64 pages and size of page=512Byte.Physical memory consists of 32 page frames. Calculate the number of bits	3		*	,
		required in physical and logical address space.	•	7 1	4	1.2
	(d)	Explain the structure of a page table.	3	Ll	4	1,2
		Write short notes on clocks and terminals.	3	L1	5	1,2
	(e)	Differentiate between security and protection mechanisms.	3	L2	5	1,2
	(f)	Differentiate between security and protection measurement conditions for a	3	L1	6	1,2
	(g)	What is meant by deadlock? List out the necessary conditions for a		~ .		,
	4.5	deadlock to occur.	3	L1	6	1,2
	(h)	Discuss in brief on the methods for handling deadlocks.	_			

PART B

 $(4 \times 12 = 48)$

II. Consider the scenario given below:

PROCESS	ARRIVAL TIME	BURST TIME
P1	0	7
P2	2	4
P3	4	1
P4	5	5

For each of the following scheduling algorithms, draw the Gantt chart, determine the average turnaround time and waiting time:

- (i) First come first served
- (ii) Shortest Job First(Non preemptive)
- (iii) Round Robin (Q = 2).

L3

12

2

1,2

			Marks	BL	СО	РО
III.	(a)	Consider the following C programs P1 and P2 executed on a UNIX/Linux system:	8	L3	1	1,2
		/* P1 */ int main {				
		fork(); fork();				
		fork(); printf("Happy\n");				
		/* P2 */ int main			•	
		{				
	7	fork(); printf("Happy\n");				
		fork(); printf("Happy\n");				
		fork(); printf("Happy\n");				
		}				
		Calculate the number of times "Happy" gets displayed by P1 and P2 with suitable explanation.				
		Note:				
		(i) Fork is the primary method of process creation in UNIX-like operating systems. Fork system call is used for creating a new process, which is called the child process. Child process runs concurrently with the process that makes the fork() call (parent process). Assume that the system call fork() never fails.				
(b)	In a certain computation, the value of counting semaphore is initialized to 13. The following operations were done in given order: 10P, 15V, 20P, 14V, 10P, 12V, 15P, 10V. Find the value of the computation.	4	L3	3	1,2
IV.		Consider a main memory with five page frames and the following sequence of page references: 3, 8, 2, 3, 9, 1, 6, 3, 8, 9, 3, 6, 2, 1, 3.	12	L3	4	1,2
		What can you say about the number of page faults that occur when you follow First-In-First Out (FIFO) and Least Recently Used (LRU) page replacement policies? What happens when you increase the number of page frames in First-In-First Out (FIFO) page replacement policy? OR				
V. (á		In the paging scheme: You have a total of 1024 pages. Main Memory is divided into 2048 frames. Assume the page size to be 1 Byte. Find the size of your page table. Are you able to load your page table into main memory frames? If not, why? Explain what can be done in such a situation with suitable examples.	7	L3	4	1,2
_. (t)	When does internal fragmentation occur? How does it differ from external fragmentation? Explain with an example.	5	L2	4	1,2

(Continued)

BTS-VI(R/S)-06-23-1819

			Marks	BL	CO	PO
VI.		Explain in detail on the different disk scheduling policies (any four)	12	L2	5	1,2
¥ 1.		with an example.				
		OR				
VII.	(a)	Write a short note on DMA.	5	L1	5	1,2
	(b)	What are the characteristics of a real time operating system?	4	LI	7	1,2
	(c)	Find the disk size for the given data:	3	L2	5	1,2
	(0)	Number of platters = 8				
		Number of tracks = 256.				
		Tracks are further divided into 512 sectors where each sector holds				
		512 bytes of data.				
					_	1.0
VIII.	(a)	Explain Banker's algorithm with an example.	7	L2	6	1,2
	(b)	You are given four number of processes and three types of resources:	5	L3	6	1,2
		E, F and G. Check whether the system is deadlock free? If so, find the				
		safe sequence.				
		Process Assignment Max Need Available				
		E F G E F G				
		PO 1 0 1 4 3 1 3 3 0				
		P1 1 1 2 2 1 4				
		P2 1 0 3 1 3 3				
		P3 2 0 0 5 4 1				
		OR 5. 1	5	L3	6	1,2
IX.	(a)	Consider a system having three processes. Each requires two units of	3	L3	U	1,2
		resource R. Find the minimum value of R such that no deadlock				
	4.5	occurs.	7	L3	6	1,2
	(b)	What is the need for resource allocation graph in deadlock? Explain in	•		•	- ,
		detail.				

Blooms's Taxonomy Levels L1 – 36.36%, L2 – 27.27%, L3 – 36.36%.
