K-Nearest-Neighbors Algorithm

Lê Anh Cường

KNN is a Method in Instance-Based Learning

• Instance-based learning is often termed *lazy* learning, as there is typically no "transformation" of training instances into more general "statements"

KNN is a Method in Instance-Based Learning

• Instance-based learning is often termed *lazy* learning, as there is typically no "transformation" of training instances into more general "statements"

K-Nearest-Neighbors Algorithm

• A case is classified by a majority voting of its neighbors, with the case being assigned to the class most common among its K nearest neighbors measured by a Distance Function.

• If K=1, then the case is simply assigned to the class of its nearest neighbor

What is the most possible label for c?

- Solution: Looking for the nearest K neighbors of c.
- Take the majority label as c's label
- Let's suppose k = 3:

Distance Function Measurements

Minkowski Distance

Minkowski distance: a generalization

$$d(i,j) = \sqrt[q]{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q} \quad (q > 0)$$

- If q = 2, d is Euclidean distance
- If q = 1, d is Manhattan distance

Example

ID	Height	Age	Weight	
1	5	45	77	Н
2	5.11	26	47	L
3	5.6	30	55	М
4	5.9	34	59	М
5	4.8	40	72	Н
6	5.8	36	60	М
7	5.3	19	40	L
8	5.8	28	60	М
9	5.5	23	45	L
10	5.6	32	58	М
11	11 5.5		?	

kNN for Classification

 A simple implementation of KNN classification is a majority voting mechanism.

- Given: training examples D={x_i, y_i}, and a new example x
 where
 - x_i: attribute-value representation of the example ith
 - y_i: corresponding label or class of example ith
- Algorithm:
 - Compute distance $D(x,x_i)$ for every x_i of the training data D
 - Select k closest instances $x_{i1}, ..., x_{ik}$ with their labels are $y_{i1},...y_{ik}$
 - $y = majority (y_{i1},...y_{ik})$ is the predicted label of x

Example

Weight Category

ID	Height	Age	Weiaht	
1	5	45	Н	
2	5.11	26	L	
3	5.6	30	M	
4	5.9	34	M	
5	4.8	40	Н	
6	5.8	36	M	
7	5.3	19	L	
8	5.8	28	M	
9	5.5	23	L	
10	5.6	32	M	
11	5.5	38		

kNN for Regression

• A simple implementation of **KNN regression** is to calculate the average of the numerical target of the K nearest neighbors.

Given:

- training examples $\{x_i, y_i\}$
 - x_i ... attribute-value representation of examples
 - y_i ... real-valued target (profit, rating on YouTube, etc)
- testing point x that we want to predict the target

• Algorithm:

- compute distance $D(x,x_i)$ to every training example x_i
- select k closest instances $x_{i1}...x_{ik}$ and their labels $y_{i1}...y_{ik}$
- output the mean of $y_{i1}...y_{ik}$: $\hat{y} = f(x) = \frac{1}{k} \sum_{i=1}^{k} y_{i_i}$

Example

ID	Height	Age	Weight	
1	5	45	77	Н
2	5.11	26	47	L
3	5.6	30	55	М
4	5.9	34	59	М
5	4.8	40	72	Н
6	5.8	36	60	М
7	5.3	19	40	L
8	5.8	28	60	М
9	5.5	23	45	L
10	5.6	32	58	М
11	11 5.5		?	

Distance-weighted k-NN

• Replace
$$\hat{f}(q) = \underset{v \in V}{\operatorname{arg max}} \sum_{i=1}^{k} \delta(v, f(x_i))$$
 by:

$$\hat{f}(q) = \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^{k} \frac{1}{d(x_i, x_q)^2} \delta(v, f(x_i))$$

Issues with Distance Metrics

- Most distance measures were designed for linear/real-valued attributes
- Two important questions in the context of machine learning:
 - How to handle nominal attributes
 - What to do when attribute types are mixed

Nominal data type

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hamming Distance

• For category variables, Hamming distance can be used.

Hamming Distance

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

$$x = y \Rightarrow D = 0$$

$$x \neq y \Rightarrow D = 1$$

Х	Υ	Distance
Male	Male	0
Male	Female	1

Normalization

Age	Loan	Default	Distance		
25	\$40,000	N	102000		
35	\$60,000	N	82000		
45	\$80,000	N	62000		
20	\$20,000	N	122000		
35	\$120,000	N	22000	2	
52	\$18,000	N	124000		
23	\$95,000	Υ	47000		
40	\$62,000	Υ	80000		
60	\$100,000	Υ	42000	3	
48	\$220,000	Υ	78000		
33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000	1	
		1			
48	\$142,000	?			
$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$					

Normalization

0.11 0.21	N	0.7652
0.21	NI.	
	N	0.5200
0.31	_N←	0.3160
0.01	N	0.9245
0.50	N	0.3428
0.00	N	0.6220
0.38	Υ	0.6669
0.22	Υ	0.4437
0.41	Υ	0.3650
1.00	Υ	0.3861
0.65	Υ	0.3771
ne 0.61	ذ 👇	
	0.01 0.50 0.00 0.38 0.22 0.41 1.00 0.65	0.01 N 0.50 N 0.00 N 0.38 Y 0.22 Y 0.41 Y 1.00 Y 0.65 Y

$$X_{s} = \frac{X - Min}{Max - Min}$$

Exercise

Customer	Age	Loan	Default	E
John	25	40000	N	
Smith	35	60000	N	
Alex	45	80000	N	
Jade	20	20000	N	Τ
Kate	35	120000	N	
Mark	52	18000	N	Τ
Anil	23	95000	Υ	
Pat	40	62000	Υ	
George	60	100000	Υ	
Jim	48	220000	Υ	
Jack	33	150000	Υ	
Andrew	48	142000	?	

What to do when attribute types are mixed

- Convert categorical values into numerical values
 - Binary values: convert to 0 and 1, for example 'male', 'female'
 - Multiple degress, such as 'low', 'average', and 'high': convert to 1, 2, 3
 - if the values are "Red", "Green", "Blue" (or more generally, something that has no intrinsic order): convert to [1,0,0], [0,1,0], [0,0,1]
- Normalize or scale the data into the same interval.

Exercise

case ID		predictors		target		
CUST_ID CUST	_GENDER 🖁 I	EDUCATION 2	OCCUPATION	2 AGE	AFFINITY	_CARD
101501 F	Mas	sters Pro	of.	41		0
101502 M	Bac	h. Sal	es	27		0
101503 F	HS-	grad Cle	ric.	20		0
101504 M	Bac	h. Ex	ec.	45		1
101505 M	Mas	sters Sal	es	34		1
101506 M	HS-	grad Oth	ner	38		0
101507 M	< B:	ach. Sal	es	28		0
101508 M	HS-	grad Sal	es	19		0
101509 M	Bac	h. Oth	ner	52		0
101510 M	Bac	h. Sal	es	27		1

Discussions

- kNN can deal with complex and arbitrary decision boundaries.
- Despite its simplicity, researchers have shown that the classification accuracy of kNN can be quite strong and in many cases as accurate as those elaborated methods.
- kNN is slow at the classification time
- kNN does not produce an understandable model