PRÊT A DEPENSER

Implémentation d'un score client et création d'un tableau de bord

Problématique

- Mettre en place un modèle de scoring des clients afin de décider l'octroi d'un prêt.
- Contraintes imposées
 - Tenir compte de la spécificité métier
 - Veiller à l'interprétabilité du score
 - Présenter une interface à destination des conseillers client
- Problématique spécifique
 - Tenir compte du déséquilibre des effectifs

Fichers de données

- Appliction_train.csv:
 - 307 511 clients(282 686 classe [0]; 24825 classe [1]), soit un ratio de 8,78% de défaut.
- bureau.csv et bureau_balance.csv:
 - Informations sur tous les emprunts actuels ou passés (tous organismes confondus)
- previous_application.csv:
 - Informations sur tous les emprunts actuels ou passés (Home Credit)
- POS_CASH_balance.csv
 - Balance mensuelle des crédits en point de vente et en cash de Home Credit
- credit card balance.csv
 - Balance mensuelle des crédits revolving auprès de Home Credit
- installments_payments.csv
 - Historique des payements des précédents emprunts auprès de Home Credit

Analyse exploratoire

L'analyse exploratoire des données a été menée de manière à trouver, ou créer, un nombre raisonnable de variables explicables permettant la modélisation de la problématique.

- feature engineering:
 - limité à des agrégations simples (min, max, moyenne, médiane, somme, ...)
 - Création de variables ratio interprétables
- Filtrage des variables:
 - Quantitatives, corrélées à plus de 3% avec la cible
 - Qualitatives, p-value < 5%, F-value > 200

Afin de limiter la perte d'information 20% de valeurs manquantes maximum (stratégie de non imputation retenue)

- Toutes les tables sont jointes sur SK_ID_CURR
- Suppression d'une variables de variance nulle
- Reste 39 variables expliquant la cible, renseignées pour 166 167 clients

Modélisation: Métrique spécifique

Calcul de la fréquence de chaque vraie classe suivant les prédictions.

 Pondération des fréquences en pénalisant les cas défavorables au business model et en récompensant les cas favorables.

Les modèles sont ensuite évalués et optimisés sur cette métrique

Modélisation Modèles retenus

- Modèles retenus:
 - > Régression Logistique
 - > Random Forest classifier
 - ➤ Ligth Gradient Boosting classifier

Modélisation Procédure d'évaluation

Séparation des données:

► Entrainement : 132 933 clients avec un taux de défaut de 8.552180%

Validation : 33 234 clients avec un taux de défaut de 8.551084%

Modélisation Procédure d'évaluation

Solutions de rééquilibrage des classes:

- Sous échantillonnage de la classe majoritaire
- Sur échantillonnage de la classe minoritaire
- Pondération inversement proportionnelle aux effectifs des échantillons

Afin de limiter le biais de chaque option la stratégie retenue est la suivante:

- Sur-échantillonnage modéré afin de minimiser le biais introduit
- Sous-échantillonnage modéré afin de ne pas omettre trop d'informations
- Le déséquilibre restant entre les effectifs de classes est compensé par pondération

Modélisation Procédure d'évaluation

Pour chaque modèle, toutes les options précédentes sont évaluées:

- Les scores moyens sont établis par cross validation (5 StratifiedKfolds).
- L'évolution des effectifs des matrices de confusion permettra de vérifier la bonne prise en charge par le modèle des impératifs métier de la classification.

Régression logistique

Pondération

Approche retenue

Random Forest

Pondération

Approche retenue

Light Gradient Boosting

Pondération

Approche retenue

Optimisation des paramètres

Pour chacun des modèles on va tester différents paramètres sur la préparation des données :

Sur-échantillonnage de 50% à 100% de la classe minoritaire.

Sous-échantillonnage de 0 à 50% de la classe majoritaire.

Différentes transformations des distributions des données :

MinMaxSclaler, StandardScaler, QuantileTransformer, RobustScaler, PowerTransformer

Intégration des différentes étapes dans un pipeline:

[Sur échantillonnage, Sous échantillonnage, scaler, Modèle(class_weight='balanced')

- Utilisation de la bibliothèque Optuna pour la recherche la meilleure valeur pour les paramètres testés (algorithme d'optimisation TreeParser).
- Tous les résultats intermédiaires et finaux sont suivis et enregistrés via Neptune ai

Suivi des scores durant l'optimisation des paramètres

Résultats des modèles optimisés

	Model name	Cost on train	Auc on train	Cost on test
0	Logistic Regression [Out of bag]	0.503890	0.742715	0.504895
1	Logistic Regression [Under]	0.680324	0.742279	0.675100
2	Logistic Regression [Over]	0.681392	0.742983	0.676482
3	Logistic Regression [Balance]	0.681711	0.742946	0.677065
4	Logistic Regression [Samplers & Weight]	0.681730	0.742893	0.675233
5	Logistic Regression [Optimisation]	0.682181	0.743257	0.676767

	Model name	Cost on train	Auc on train	Cost on test
0	Random Forest [Out of bag]	0.501989	0.712528	0.501970
1	Random Forest [Under]	0.673418	0.732286	0.669826
2	Random Forest [Over]	0.505893	0.720975	0.506937
3	Random Forest [Balance]	0.500439	0.717160	0.500524
4	Random Forest [Samplers & Weight]	0.503469	0.723905	0.503684
5	Random Forest [Optimisation]	0.674362	0.737256	0.673935

	Model name	Cost on train	Auc on train	Cost on test
0	LightGradientBoosting [Out of bag]	0.505965	0.741017	0.507166
1	LightGradientBoosting [Under]	0.675307	0.737229	0.676836
2	LightGradientBoosting [Over]	0.675787	0.739987	0.675472
3	LightGradientBoosting [Balance]	0.677587	0.740348	0.675508
4	LightGradientBoosting [Samplers & Weight]	0.677038	0.740666	0.675385
5	LightGradientBoosting [Optimisation]	0.677858	0.741548	0.679327

Création d'un méta modèle

Voting Classifier

La classification est faite sur la somme de la probabilité d'appartenance à la classe 1

donnée par chacun des modèles.

Avec optimisation des poids des votes

Predict Labels

Validation

True Neg

False Pos

Entrainnement

False Pos

True Neg

Résultats finaux

Score final

	Model name	Cost max	Cost avr	Cost min	Fit time max	Fit time avr	Fit time min	Cost on test
0	lr	0.691204	0.681747	0.677224	12.333586	10.981507	9.408714	0.676302
1	rf	0.682291	0.674362	0.670829	24.107776	23.756953	23.225049	0.673935
2	lgbm	0.685214	0.677858	0.672996	21.914827	21.320651	20.082474	0.679327
3	voting	0.688778	0.681816	0.676641	116.180967	101.697165	74.831378	0.676640
4	voting opt	0.692513	0.683433	0.678822	58.099349	56.372617	52.532451	0.678270

Explicabilité

Explicabilité

Conclusion partie modélisation

- L'optimisation des paramètres du modèle, sur la métrique créée, permet de prédire si un client fera défaut dans 64,55% des cas tout en ne rejetant que 28,696% de bons clients.
- La démarche précédente permet d'obtenir un modèle de scoring maximisant les cas favorables au modèle économique de l'entreprise, étant entendu que la pondération choisie ici pourra évoluer en fonction des objectifs.

Pour aller plus loin :

- Il faudrait surement changer de paradigme quant à la sélection des variables (pour des raisons de temps de calcul, le choix à peut-être été trop restrictif)
- L'impact du choix arbitraire du random seed tout au long de cette étude serait à évaluer quant aux performances et qualité de généralisation de la modélisation.
- De la même manière l'élargissement du corps électoral du méta modèle est lui aussi à évaluer.

Code et versions

<u>Lien vers le dossier de versioning GitHub</u>

Dashboard

https://share.streamlit.io/mikaleroy/home_credit_app/main/application.py

