# Proj3 Covid-19

June 9, 2020

[1]: pip install chart-studio

```
Requirement already satisfied: chart-studio in
    /srv/conda/envs/data100/lib/python3.7/site-packages (1.1.0)
    Requirement already satisfied: plotly in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from chart-studio) (4.5.0)
    Requirement already satisfied: six in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from chart-studio) (1.15.0)
    Requirement already satisfied: requests in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from chart-studio) (2.22.0)
    Requirement already satisfied: retrying>=1.3.3 in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from chart-studio) (1.3.3)
    Requirement already satisfied: chardet<3.1.0,>=3.0.2 in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from requests->chart-
    studio) (3.0.4)
    Requirement already satisfied: certifi>=2017.4.17 in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from requests->chart-
    studio) (2020.4.5.1)
    Requirement already satisfied: idna<2.9,>=2.5 in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from requests->chart-
    studio) (2.8)
    Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in
    /srv/conda/envs/data100/lib/python3.7/site-packages (from requests->chart-
    studio) (1.25.8)
    Note: you may need to restart the kernel to use updated packages.
[2]: import chart_studio.plotly as py
     import plotly.graph_objects as go #importing graphical objects
     from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
[3]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.linear model import LinearRegression
```

#### 1 PROJECT 3: COVID-19

#### 1.0.1 Data 100 Spring 2020 Final project

#### 1.0.2 Sabrina Chiang, Susan Zhang, Makena Wilcox

#### 1.1 Introduction

Through analyzing datasets of hospital resources against growing cases of coronavirus per county in the United State, we wanted to assess if hospitals have enough resources to treat the growing number COVID-19 patients. Specifically, we want to understand: what are the "current" hotspots of COVID-19 cases, do the amount of deaths in each county have an even ratio to the number of total cases in the same area, and does the amount of hospitals/ICU beds in each state impact the ratio of total cases to deaths in each state. We predict the percentage of deaths to cases will decrease with the number of hospitals and ICU beds available per county increases.

#### 1.2 EDA and Data Cleaning

Filtering out unnecessary, imcomplete data, and filling in missing words from the 'abridged\_couties.csv', 'covid19\_confirmed\_US.csv', 'time\_series\_covid19\_deaths\_US.csv' and data set. Removing columns except the last date of confirmed cases in the time series to get the most recent total number of cases from the time series dataset.

We named the abridged\_counties.csv "features\_data", the time\_series\_covid19\_confirmed\_US.csv "confirmed\_data", and the time\_series\_covid19\_deaths\_US.csv "death\_data". First we cleaned the features\_data by removing feature columns that were not relevant to the questions we were trying to answer. We kept the columns that had the county FIPS as the primary key, the columns for county names, state names, and state abbreviations so that we could group our data based on counties and states, the latitude and longitude columns so that we could plot each county in our visualizations of the United States map, the column containing the population estimate of 2018 so that we could calculate what percent of each state got COVID-19, and the columns containing the number of hospitals and the number of ICU beds so that we could use these variables to train our linear regression model.

```
[4]: features_data = pd.read_csv('abridged_couties.csv')
confirmed_data = pd.read_csv('covid19_confirmed_US.csv')
death_data = pd.read_csv('time_series_covid19_deaths_US.csv')
```

| [5]: | countyFIPS | CountyName Sta | teName | State   | PopulationEstimate2018 | \ |
|------|------------|----------------|--------|---------|------------------------|---|
| 0    | 01001      | Autauga        | AL     | Alabama | 55601.0                |   |
| 1    | 01003      | Baldwin        | AL     | Alabama | 218022.0               |   |
| 2    | 01005      | Barbour        | AL     | Alabama | 24881.0                |   |
| 3    | 01007      | Bibb           | AL     | Alabama | 22400.0                |   |

| 4    | 01009     |            | Blount     | AL    | Alabama | 57840.0 |
|------|-----------|------------|------------|-------|---------|---------|
| •••  | •••       |            |            | •••   |         | •••     |
| 3239 | 15005     |            | Kalawao    | HI    | NaN     | 88.0    |
| 3240 | 72039     | Ciales Mu  | nicipio    | PR    | NaN     | 15918.0 |
| 3241 | 72069     | Humacao Mu | nicipio    | PR    | NaN     | 50532.0 |
| 3242 | City1     | New Yo     | rk City    | NY    | NaN     | NaN     |
| 3243 | City2     | Kans       | as City    | MO    | NaN     | NaN     |
|      |           |            |            |       |         |         |
|      | lat       | lon        | #Hospitals | #ICU_ | beds    |         |
| 0    | 32.540091 | -86.645649 | 1.0        |       | 6.0     |         |
| 1    | 30.738314 | -87.726272 | 3.0        | į     | 51.0    |         |
| 2    | 31.874030 | -85.397327 | 1.0        |       | 5.0     |         |
| 3    | 32.999024 | -87.125260 | 1.0        |       | 0.0     |         |
| 4    | 33.990440 | -86.562711 | 1.0        |       | 6.0     |         |
| •••  | •••       | •••        |            | •     |         |         |
| 3239 | NaN       | NaN        | 0.0        |       | 0.0     |         |
| 3240 | NaN       | NaN        | NaN        |       | NaN     |         |
| 3241 | NaN       | NaN        | NaN        |       | NaN     |         |
| 3242 | NaN       | NaN        | NaN        |       | NaN     |         |
| 3243 | NaN       | NaN        | NaN        |       | NaN     |         |

[3244 rows x 9 columns]

Filling in missing data values for state column. We noticed that a lot of states were missing their corresponding state name.

```
[6]: features_data['State'].iloc[67:94].fillna('Alaska', inplace=True)
    features_data['State'].iloc[3234:3239].fillna('Alaska', inplace=True)
    features_data['State'].iloc[2950:2953].fillna("Virginia", inplace=True)
    features_data['State'].iloc[2912:2928].fillna("Virginia", inplace=True)
    features_data['State'].iloc[2929:2938].fillna("Virginia", inplace=True)
    features_data['State'].iloc[2938:2950].fillna("Virginia", inplace=True)
    features_data['State'].iloc[2950:2953].fillna("Virginia", inplace=True)
    features_data['State'].iloc[543:547].fillna("Hawaii", inplace=True)
    features_data.loc[329,'State']= 'Florida'
    features_data.loc[3239,'State']= 'Hawaii'
    features_data.head()
```

```
[6]:
       countyFIPS CountyName StateName
                                           State
                                                   PopulationEstimate2018
                                                                                  lat
            01001
                     Autauga
                                                                            32.540091
     0
                                         Alabama
                                                                  55601.0
     1
            01003
                     Baldwin
                                     ΑL
                                         Alabama
                                                                 218022.0
                                                                           30.738314
     2
            01005
                     Barbour
                                     AL
                                         Alabama
                                                                  24881.0 31.874030
     3
            01007
                         Bibb
                                     ΑL
                                         Alabama
                                                                  22400.0
                                                                           32.999024
            01009
                      Blount
                                     AL
                                        Alabama
                                                                  57840.0 33.990440
              lon
                   #Hospitals
                                #ICU beds
                                      6.0
     0 -86.645649
                           1.0
```

```
      1 -87.726272
      3.0
      51.0

      2 -85.397327
      1.0
      5.0

      3 -87.125260
      1.0
      0.0

      4 -86.562711
      1.0
      6.0
```

Wanted to see how many counties we had data for per state.

```
[7]: state_counts = features_data['State'].value_counts().sort_values(ascending =

→False)

state_counts.head()
```

```
[7]: Texas 254
Georgia 159
Virginia 136
Kentucky 120
Missouri 115
Name: State, dtype: int64
```

Removing all the rows that do not include data from the 50 states in features data because this was not relevant to our analysis of the United States. We then dropped the last two rows because the format of the FIPS did not match the format of the rest of the other FIPS.

```
[8]: features_data = features_data[features_data.StateName != 'PR'] #dropping PR_\_
\[
\times from table
\]
features_data = features_data[features_data.StateName != 'MP'] #dropping MP_\_
\times from table
features_data = features_data[features_data.StateName != 'GU'] #dropping GU_\_
\times from table
features_data = features_data[features_data.StateName != 'AS'] #dropping AS_\_
\times from table
features_data = features_data[features_data.StateName != 'VI'] #dropping VI_\_
\times from table
features_data = features_data[features_data.StateName != 'VI'] #dropping VI_\_
\times from table
features_data = features_data[:-2] #drops bottom two rows with no data
```

Cleaning the confirmed data and confirmed deaths to only include the rows FIPS, Admin 2, Province State, Longitude, Latitute, and Cases since 4/18/20. We selected these columns so we can later use it to create visualizations.

```
#'District of Columbia', 'Grand Princess'
     cleaned_data = cleaned_data[cleaned_data['StateName'] != 'Diamond Princess']
     cleaned_data = cleaned_data[cleaned_data['StateName'] != 'District of Columbia']
     cleaned_data.head()
                                                    Long Cases_4/18/20
 [9]:
          FIPS CountyName StateName
                                           Lat
     5 1001.0
                  Autauga
                            Alabama 32.539527 -86.644082
                                                                     25
     6 1003.0
                  Baldwin
                            Alabama 30.727750 -87.722071
                                                                    109
     7 1005.0
                  Barbour
                            Alabama 31.868263 -85.387129
                                                                     18
     8 1007.0
                     Bibb
                            Alabama 32.996421 -87.125115
                                                                     26
     9 1009.0
                            Alabama 33.982109 -86.567906
                                                                     20
                   Blount
[10]: cleaned_deaths = death_data[['FIPS', 'Admin2', 'Province_State','Lat',__
      cleaned deaths = cleaned deaths.iloc[5:]
     cleaned_deaths.rename(columns={'4/18/20':'Deaths_4/18/20',
                               'Admin2': 'CountyName',
                               'Province_State':'StateName',
```

```
5 1001.0 Autauga Alabama 32.539527 -86.644082 2
6 1003.0 Baldwin Alabama 30.727750 -87.722071 2
7 1005.0 Barbour Alabama 31.868263 -85.387129 0
8 1007.0 Bibb Alabama 32.996421 -87.125115 0
9 1009.0 Blount Alabama 33.982109 -86.567906 0
```

Found the total number of cases and deaths of COVID-19 per state after grouping by state name and then added the abbreviations of the state table. Labeled the tables total\_per\_state and total\_deaths\_state.

```
Γ13]:
                     Cases_4/18/20 Abrev
      StateName
      New York
                            241712
                                      NY
     New Jersey
                             81420
                                      NJ
     Massachusetts
                             36372
                                      MA
      Pennsylvania
                             31652
                                      PA
      California
                             30491
                                      CA
[14]: total_deaths_state = cleaned_deaths.groupby('StateName')[['Deaths_4/18/20']].
       ⇒sum()
[15]: Abrevs = features_data.sort_values(by='State', ascending=False).

→groupby('State').first()
      Abrevs
      total_per_state['Abrev'] = Abrevs['StateName']
      total_deaths_state.sort_values('Deaths_4/18/20',ascending = False).head()
[15]:
                     Deaths_4/18/20
      StateName
      New York
                              17671
      New Jersey
                               4070
     Michigan
                               2291
     Massachusetts
                               1404
      Louisiana
                               1267
```

#### 1.3 Visualizations

Made a choropleth that shows the number of coronavirus cases per state with color gradient legend to reflect the states with the most/least cases.

### 1.4 Scattergeo Plot of COVID-19 Deaths and Cases

Making a scattergeo plot of the county's in the United States to see the clustering and number of COVID-19 cases/deaths. This visualization provides a color classification for each county depending on how confirmed cases are documented. From this we can recognize New York City has the highest number of cases compared to the other documented counties from the dot being colored red. One city in Southern California and a few others in the East Coast have a light blue color indicating they also have a higher number of cases. It is important to note that the amount of dots in each state are determined by the data provided in the CSV files, they do not show a density of cases.

```
[17]: data = dict(
              type = 'scattergeo',
              locationmode = 'USA-states',
              mode = 'markers'
      data_high = data.copy()
      data_high['lon'] = cleaned_data[cleaned_data['Cases_4/18/20'] > 250] ['Long']
      data_high['lat'] = cleaned_data[cleaned_data['Cases_4/18/20'] > 250] ['Lat']
      data_high['marker'] = dict(color = 'red', size=3)
      data_high['name'] = '> 250 Cases'
      data_med = data.copy()
      data med['lon'] = cleaned data[cleaned data['Cases 4/18/20'] < 250] ['Long']
      data_med['lat'] = cleaned_data[cleaned_data['Cases_4/18/20'] < 250] ['Lat']
      data_med['marker'] = dict(color = 'orange', size=3)
      data_med['name'] = '< 250 Cases'</pre>
      data_lowMed = data.copy()
      data_lowMed['lon'] = cleaned_data[cleaned_data['Cases_4/18/20'] < 150] ['Long']
      data_lowMed['lat'] = cleaned_data[cleaned_data['Cases_4/18/20'] < 150] ['Lat']
      data_lowMed['marker'] = dict(color = 'lawngreen', size=3)
      data_lowMed['name'] = '< 150 Cases'</pre>
      data low = data.copy()
      data_low['lon'] = cleaned_data[cleaned_data['Cases_4/18/20'] < 50] ['Long']</pre>
      data low['lat'] = cleaned data[cleaned data['Cases 4/18/20'] < 50] ['Lat']
      data_low['marker'] = dict(color = 'blue', size=3)
      data_low['name'] = '< 50 Cases'</pre>
      layout = dict(
          title = 'COVID-19 County Cases in USA Map',
          geo = dict(
              scope = 'usa',
              projection = dict(type='albers usa'),
                  ),
```

```
fig = dict(data=[data_high, data_med, data_lowMed, data_low], layout=layout)
#plotly.offline.plot(fig)
iplot(fig)
```

```
[18]: data = dict(
             type = 'scattergeo',
             locationmode = 'USA-states',
              mode = 'markers'
      data_high = data.copy()
      data_high['lon'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] > 20]__
      data_high['lat'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] > 20] ['Lat']
      data_high['marker'] = dict(color = 'red', size=3)
      data_high['name'] = '> 20 Deaths'
      data_med = data.copy()
      data_med['lon'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] < 20] ['Long']
      data med['lat'] = cleaned deaths[cleaned deaths['Deaths 4/18/20'] < 20] ['Lat']
      data_med['marker'] = dict(color = 'orange', size=3)
      data_med['name'] = '< 20 Deaths'</pre>
      data_lowMed = data.copy()
      data_lowMed['lon'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] < 10]
      data_lowMed['lat'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] < 10]
      data_lowMed['marker'] = dict(color = 'lawngreen', size=3)
      data_lowMed['name'] = '< 10 Deaths'</pre>
      data low = data.copy()
      data_low['lon'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] < 5] ['Long']
      data_low['lat'] = cleaned_deaths[cleaned_deaths['Deaths_4/18/20'] < 5] ['Lat']
      data_low['marker'] = dict(color = 'blue', size=3)
      data_low['name'] = '< 5 Deaths'</pre>
      layout = dict(
         title = 'COVID-19 Deaths Per County in USA Map',
         geo = dict(
             scope = 'usa',
             projection = dict(type='albers usa'),
                  ),
              )
      fig = dict(data=[data_high, data_med, data_lowMed, data_low], layout=layout)
```

```
#plotly.offline.plot(fig)
iplot(fig)
```

## 1.5 Merging Tables

Changed countyFIPS in features data to match cleaned data, so tables can be merged together. Also removed rows with certain FIPS numbers, as no data were present for each of those columns.

```
[20]: features_data = features_data[features_data.countyFIPS != 2201]
features_data = features_data[features_data.countyFIPS != 2232]
features_data = features_data[features_data.countyFIPS != 2280]
features_data = features_data[features_data.countyFIPS != 12025]
features_data = features_data[features_data.countyFIPS != 30113]
features_data = features_data[features_data.countyFIPS != 51560]
features_data = features_data[features_data.countyFIPS != 51780]
#FIPS: 2201, 2232, 2280, 12025,30113, 51560, 51780
#Remove these because there is no data in rows with this FIPS number
```

We merged the three datasets on the primary key, FIPS. We only keep the columns, 'FIPS' and '4/18/20', in both confirmed\_data and death\_data so that we know how many confirmed cases and deaths there are for each FIPS in features\_data. Confirmed\_data and death\_data have more rows than features\_data because we did not clean them, but we did not have to clean them because when we merged on FIPS, the merged data frame only kept the rows that we needed. This new merged data frame includes all the features, the number of cases, and the number of deaths which we need to use for our cross-validation training.

```
[22]: #merging the datasets on FIPS

merged_cases = pd.merge(features_data, chopped_confirmed, left_on='countyFIPS',

→right_on='FIPS')

#drop the FIPS column because it is the same as countyFIPS

merged_cases = merged_cases.drop(['FIPS'], axis=1)

merged_cases
```

```
[22]:
            countyFIPS
                                                  CountyName StateName
                                                                            State
      0
                   1001
                                                     Autauga
                                                                     AL
                                                                         Alabama
      1
                   1003
                                                     Baldwin
                                                                         Alabama
                                                                     AL
      2
                   1005
                                                     Barbour
                                                                     AL
                                                                         Alabama
      3
                                                                         Alabama
                   1007
                                                        Bibb
                                                                     AL
      4
                   1009
                                                      Blount
                                                                     AL
                                                                         Alabama
```

```
3134
                   2195
                                        Petersburg Borough
                                                                    ΑK
                                                                         Alaska
      3135
                   2198
                         Prince of Wales-Hyder Census Area
                                                                         Alaska
                                                                    AK
                                      Skagway Municipality
      3136
                   2230
                                                                    ΑK
                                                                         Alaska
      3137
                   2275
                                 Wrangell City and Borough
                                                                         Alaska
                                                                    ΑK
      3138
                 15005
                                                    Kalawao
                                                                    HΙ
                                                                         Hawaii
            PopulationEstimate2018
                                            lat
                                                            #Hospitals
                                                                         #ICU beds
                                                       lon
      0
                                     32.540091 -86.645649
                                                                    1.0
                                                                                6.0
                            55601.0
      1
                                                                    3.0
                                                                              51.0
                           218022.0
                                     30.738314 -87.726272
      2
                            24881.0
                                     31.874030 -85.397327
                                                                    1.0
                                                                               5.0
      3
                            22400.0
                                     32.999024 -87.125260
                                                                    1.0
                                                                               0.0
      4
                            57840.0
                                     33.990440 -86.562711
                                                                    1.0
                                                                               6.0
                                                                     •••
      •••
                                                                    1.0
                                                                               0.0
      3134
                             3221.0
                                            NaN
                                                       NaN
      3135
                             6422.0
                                            NaN
                                                       NaN
                                                                    0.0
                                                                               0.0
      3136
                                                       NaN
                                                                    0.0
                                                                               0.0
                             1148.0
                                            NaN
      3137
                             2503.0
                                            NaN
                                                       NaN
                                                                    1.0
                                                                               0.0
      3138
                               88.0
                                            NaN
                                                       NaN
                                                                    0.0
                                                                               0.0
            Cases_4/18/20
      0
                        25
      1
                       109
      2
                        18
      3
                        26
      4
                        20
                         2
      3134
      3135
                         2
                         0
      3136
                         0
      3137
      3138
                         0
      [3139 rows x 10 columns]
[23]: merged_deaths = pd.merge(merged_cases, cleaned_deaths, left_on='countyFIPS',__
       merged deaths = merged deaths.

¬drop(['FIPS','Lat','Long','CountyName_y','StateName_y'], axis=1)
      merged_deaths
[23]:
            countyFIPS
                                               CountyName_x StateName_x
                                                                            State
      0
                   1001
                                                    Autauga
                                                                      ΑL
                                                                          Alabama
      1
                   1003
                                                    Baldwin
                                                                      ΑL
                                                                          Alabama
      2
                   1005
                                                    Barbour
                                                                          Alabama
                                                                      AL
      3
                   1007
                                                       Bibb
                                                                      AL
                                                                          Alabama
      4
                   1009
                                                     Blount
                                                                          Alabama
                                                                      ΑL
```

| 3134<br>3135<br>3136<br>3137<br>3138 | 2195<br>2198 I<br>2230<br>2275<br>15005 |            | Wales-Hyder<br>Skagway 1 | ourg Borough<br>Census Area<br>Municipality<br>and Borough<br>Kalawao | AK<br>AK<br>AK | Alaska<br>Alaska |   |
|--------------------------------------|-----------------------------------------|------------|--------------------------|-----------------------------------------------------------------------|----------------|------------------|---|
|                                      | PopulationEst                           | timate2018 | lat                      | lon                                                                   | #Hospitals     | #ICU beds        | \ |
| 0                                    | •                                       | 55601.0    |                          | -86.645649                                                            | 1.0            | 6.0              |   |
| 1                                    |                                         | 218022.0   |                          | -87.726272                                                            | 3.0            | 51.0             |   |
| 2                                    |                                         | 24881.0    |                          | -85.397327                                                            | 1.0            | 5.0              |   |
| 3                                    |                                         | 22400.0    | 32.999024                | -87.125260                                                            | 1.0            | 0.0              |   |
| 4                                    |                                         | 57840.0    | 33.990440                | -86.562711                                                            | 1.0            | 6.0              |   |
|                                      |                                         | •••        | •••                      | •••                                                                   |                |                  |   |
| 3134                                 |                                         | 3221.0     | NaN                      | NaN                                                                   | 1.0            | 0.0              |   |
| 3135                                 |                                         | 6422.0     | NaN                      | NaN                                                                   | 0.0            | 0.0              |   |
| 3136                                 |                                         | 1148.0     | NaN                      | NaN                                                                   | 0.0            | 0.0              |   |
| 3137                                 |                                         | 2503.0     | NaN                      | NaN                                                                   | 1.0            | 0.0              |   |
| 3138                                 |                                         | 88.0       | NaN                      | NaN                                                                   | 0.0            | 0.0              |   |
|                                      | Cases_4/18/20                           | Deaths_    | 4/18/20                  |                                                                       |                |                  |   |
| 0                                    | 25                                      | 5          | 2                        |                                                                       |                |                  |   |
| 1                                    | 109                                     | 9          | 2                        |                                                                       |                |                  |   |
| 2                                    | 18                                      | 3          | 0                        |                                                                       |                |                  |   |
| 3                                    | 26                                      | 5          | 0                        |                                                                       |                |                  |   |
| 4                                    | 20                                      | )          | 0                        |                                                                       |                |                  |   |
| •••                                  | •••                                     |            | •••                      |                                                                       |                |                  |   |
| 3134                                 |                                         | 2          | 0                        |                                                                       |                |                  |   |
| 3135                                 |                                         | 2          | 0                        |                                                                       |                |                  |   |
| 3136                                 | (                                       | )          | 0                        |                                                                       |                |                  |   |
| 3137                                 |                                         | )          | 0                        |                                                                       |                |                  |   |
| 3138                                 | (                                       | )          | 0                        |                                                                       |                |                  |   |
|                                      |                                         |            |                          |                                                                       |                |                  |   |

[3139 rows x 11 columns]

Grouped the merged table by State and StateName\_X, while sorting the table by the Cases/Population.

```
[24]: merged_per_state = merged_deaths.

⇒groupby(['State', 'StateName_x'])[['PopulationEstimate2018', 'Deaths_4/18/

⇒20', 'Cases_4/18/20', '#Hospitals', '#ICU_beds']].sum()

merged_per_state['%Deaths/Cases'] = (merged_per_state['Deaths_4/18/20']/

⇒merged_per_state['Cases_4/18/20']) * 100

merged_per_state['%Cases/Population'] = (merged_per_state['Cases_4/18/20']/

⇒merged_per_state['PopulationEstimate2018']) * 100

merged_per_state.sort_values('%Cases/Population',ascending = False)
```

| [24]: |                |             | PopulationEstimate2018 | Deaths_4/18/20 | \ |
|-------|----------------|-------------|------------------------|----------------|---|
|       | State          | StateName_x | -                      |                |   |
|       | New York       | NY          | 19542209.0             | 16612          |   |
|       | New Jersey     | NJ          | 8908520.0              | 4068           |   |
|       | Massachusetts  | MA          | 6902149.0              | 1384           |   |
|       | Louisiana      | LA          | 4659978.0              | 1266           |   |
|       | Connecticut    | CT          | 3572665.0              | 1083           |   |
|       | Rhode Island   | RI          | 1057315.0              | 3              |   |
|       | Michigan       | MI          | 9995915.0              | 2286           |   |
|       | Delaware       | DE          | 967171.0               | 67             |   |
|       | Pennsylvania   | PA          | 12807060.0             | 1042           |   |
|       | Illinois       | IL          | 12741080.0             | 1256           |   |
|       | Maryland       | MD          | 6042718.0              | 421            |   |
|       | South Dakota   | SD          | 867926.0               | 7              |   |
|       | Indiana        | IN          | 6691878.0              | 545            |   |
|       | Georgia        | GA          | 10519475.0             | 666            |   |
|       | Colorado       | CO          | 5695564.0              | 388            |   |
|       | Washington     | WA          | 7535591.0              | 613            |   |
|       | Mississippi    | MS          | 2986530.0              | 152            |   |
|       | Vermont        | VT          | 626299.0               | 37             |   |
|       | Florida        | FL          | 21299325.0             | 748            |   |
|       | Nevada         | NV          | 3034392.0              | 151            |   |
|       | New Hampshire  | NH          | 1356458.0              | 3              |   |
|       | Alabama        | AL          | 4887871.0              | 153            |   |
|       | Virginia       | VA          | 8517685.0              | 164            |   |
|       | Idaho          | ID          | 1754208.0              | 43             |   |
|       | Tennessee      | TN          | 6770010.0              | 141            |   |
|       | Utah           | UT          | 3161105.0              | 25             |   |
|       | Ohio           | OH          | 11689442.0             | 451            |   |
|       | New Mexico     | NM          | 2095428.0              | 53             |   |
|       | Missouri       | MO          | 6126452.0              | 184            |   |
|       | South Carolina | SC          | 5084127.0              | 119            |   |
|       | Iowa           | IA          | 3156145.0              | 74             |   |
|       | California     | CA          | 39557045.0             | 1140           |   |
|       | Wisconsin      | WI          | 5813568.0              | 212            |   |
|       | North Dakota   | ND          | 760077.0               | 9              |   |
|       | Arizona        | AZ          | 7171646.0              | 180            |   |
|       | Texas          | TX          | 28701845.0             | 476            |   |
|       | Maine          | ME          | 1338404.0              | 32             |   |
|       | Kansas         | KS          | 2911505.0              | 85             |   |
|       | Nebraska       | NE          | 1929268.0              | 15             |   |
|       | North Carolina | NC          | 10383620.0             | 187            |   |
|       | Oklahoma       | OK          | 3943079.0              | 131            |   |
|       | Kentucky       | KY          | 4468402.0              | 138            |   |
|       | Arkansas       | AR          | 3013825.0              | 38             |   |
|       | Wyoming        | WY          | 577737.0               | 1              |   |
|       | Oregon         | OR          | 4190713.0              | 72             |   |
|       |                |             |                        |                |   |

| West Virginia  | WV          | 1805832.0     |            | 7         | 7  |  |
|----------------|-------------|---------------|------------|-----------|----|--|
| Alaska         | AK          | 729135.0      |            | Ę         | 5  |  |
| Montana        | MT          | 1062305.0     |            | 10        | 10 |  |
| Hawaii         | HI          | 1             | 9          | 9         |    |  |
| Minnesota      | MN          | 5             | 611179.0   | 121       | 1  |  |
|                |             |               |            |           |    |  |
| _              |             | Cases_4/18/20 | #Hospitals | #ICU_beds | \  |  |
| State          | StateName_x |               |            |           |    |  |
| New York       | NY          | 241712        | 165.0      | 3952.0    |    |  |
| New Jersey     | NJ          | 80672         | 64.0       | 1822.0    |    |  |
| Massachusetts  | MA          | 35616         | 58.0       | 1326.0    |    |  |
| Louisiana      | LA          | 23523         | 111.0      | 1289.0    |    |  |
| Connecticut    | CT          | 17025         | 30.0       | 674.0     |    |  |
| Rhode Island   | RI          | 3345          | 10.0       | 279.0     |    |  |
| Michigan       | MI          | 30074         | 130.0      | 2423.0    |    |  |
| Delaware       | DE          | 2508          | 6.0        | 186.0     |    |  |
| Pennsylvania   | PA          | 31652         | 162.0      | 3169.0    |    |  |
| Illinois       | IL          | 29076         | 176.0      | 3144.0    |    |  |
| Maryland       | MD          | 12326         | 47.0       | 1134.0    |    |  |
| South Dakota   | SD          | 1541          | 56.0       | 152.0     |    |  |
| Indiana        | IN          | 10641         | 118.0      | 1861.0    |    |  |
| Georgia        | GA          | 16634         | 129.0      | 2508.0    |    |  |
| Colorado       | CO          | 8980          | 80.0       | 1095.0    |    |  |
| Washington     | WA          | 11332         | 88.0       | 1265.0    |    |  |
| Mississippi    | MS          | 3974          | 95.0       | 824.0     |    |  |
| Vermont        | VT          | 793           | 14.0       | 94.0      |    |  |
| Florida        | FL          | 25489         | 178.0      | 5604.0    |    |  |
| Nevada         | NV          | 3592          | 36.0       | 900.0     |    |  |
| New Hampshire  | NH          | 1342          | 26.0       | 242.0     |    |  |
| Alabama        | AL          | 4712          | 86.0       | 1533.0    |    |  |
| Virginia       | VA          | 8053          | 81.0       | 1654.0    |    |  |
| Idaho          | ID          | 1655          | 42.0       | 314.0     |    |  |
| Tennessee      | TN          | 6293          | 100.0      | 2209.0    |    |  |
| Utah           | UT          | 2917          | 45.0       | 565.0     |    |  |
| Ohio           | OH          | 10222         | 156.0      | 3314.0    |    |  |
| New Mexico     | NM          | 1798          | 42.0       | 340.0     |    |  |
| Missouri       | MO          | 5167          | 106.0      | 1888.0    |    |  |
| South Carolina | SC          | 4248          | 57.0       | 1225.0    |    |  |
| Iowa           | IA          | 2512          | 116.0      | 545.0     |    |  |
| California     | CA          | 30491         | 329.0      | 7338.0    |    |  |
| Wisconsin      | WI          | 4199          | 122.0      | 1159.0    |    |  |
| North Dakota   | ND          | 528           | 44.0       | 238.0     |    |  |
| Arizona        | AZ          | 4724          | 76.0       | 1559.0    |    |  |
| Texas          | TX          | 18704         | 384.0      | 6199.0    |    |  |
| Maine          | ME          | 846           | 33.0       | 256.0     |    |  |
| Kansas         | KS          | 1821          | 132.0      | 767.0     |    |  |
| Nebraska       | NE          | 1189          | 87.0       | 440.0     |    |  |
| MENT ADVA      | 1411        | 1109          | 01.0       | 440.0     |    |  |

| North Carolina | NC          | 6328          | 106.0         | 2227.0 |
|----------------|-------------|---------------|---------------|--------|
| Oklahoma       | OK          | 2357          | 118.0         | 1064.0 |
| Kentucky       | KY          | 2634          | 91.0          | 1392.0 |
| Arkansas       | AR          | 1702          | 74.0          | 732.0  |
| Wyoming        | WY          | 309           | 27.0          | 102.0  |
| Oregon         | OR          | 1844          | 59.0          | 663.0  |
| West Virginia  | WV          | 785           | 49.0          | 653.0  |
| Alaska         | AK          | 314           | 22.0          | 119.0  |
| Montana        | MT          | 426           | 62.0          | 165.0  |
| Hawaii         | HI          | 568           | 21.0          | 201.0  |
| Minnesota      | MN          | 2209          | 127.0         | 1171.0 |
|                |             |               |               |        |
|                |             | %Deaths/Cases | %Cases/Popula | ation  |
| State          | StateName_x |               | _             |        |
| New York       | NY          | 6.872642      | 1.23          | 36871  |
| New Jersey     | NJ          | 5.042642      | 0.90          | 05560  |
| Massachusetts  | MA          | 3.885894      | 0.51          | 16013  |
| Louisiana      | LA          | 5.381967      | 0.50          | 04788  |
| Connecticut    | CT          | 6.361233      | 0.47          | 76535  |
| Rhode Island   | RI          | 0.089686      | 0.31          | 16367  |
| Michigan       | MI          | 7.601250      | 0.30          | 00863  |
| Delaware       | DE          | 2.671451      | 0.25          | 59313  |
| Pennsylvania   | PA          | 3.292051      | 0.24          | 17145  |
| Illinois       | IL          | 4.319714      | 0.22          | 28207  |
| Maryland       | MD          | 3.415544      | 0.20          | 3981   |
| South Dakota   | SD          | 0.454250      | 0.17          | 77550  |
| Indiana        | IN          | 5.121699      | 0.15          | 59014  |
| Georgia        | GA          | 4.003848      | 0.15          | 58126  |
| Colorado       | CO          | 4.320713      | 0.15          | 57667  |
| Washington     | WA          | 5.409460      | 0.15          | 50380  |
| Mississippi    | MS          | 3.824862      | 0.13          | 33064  |
| Vermont        | VT          | 4.665826      | 0.12          | 26617  |
| Florida        | FL          | 2.934599      | 0.11          | 19670  |
| Nevada         | NV          | 4.203786      | 0.11          | 18376  |
| New Hampshire  | NH          | 0.223547      | 0.09          | 98934  |
| Alabama        | AL          | 3.247029      | 0.09          | 96402  |
| Virginia       | VA          | 2.036508      | 0.09          | 94544  |
| Idaho          | ID          | 2.598187      | 0.09          | 94345  |
| Tennessee      | TN          | 2.240585      | 0.09          | 92954  |
| Utah           | UT          | 0.857045      | 0.09          | 92278  |
| Ohio           | OH          | 4.412052      | 0.08          | 37446  |
| New Mexico     | NM          | 2.947720      | 0.08          | 35806  |
| Missouri       | MO          | 3.561061      | 0.08          | 34339  |
| South Carolina | SC          | 2.801318      | 0.08          | 33554  |
| Iowa           | IA          | 2.945860      | 0.07          | 79591  |
|                | ~.          |               |               |        |

California

Wisconsin

CA

WI

0.077081 0.072228

3.738808

5.048821

| North Dakota   | ND | 1.704545 | 0.069467 |
|----------------|----|----------|----------|
| Arizona        | AZ | 3.810330 | 0.065871 |
| Texas          | TX | 2.544910 | 0.065167 |
| Maine          | ME | 3.782506 | 0.063210 |
| Kansas         | KS | 4.667765 | 0.062545 |
| Nebraska       | NE | 1.261564 | 0.061630 |
| North Carolina | NC | 2.955120 | 0.060942 |
| Oklahoma       | OK | 5.557913 | 0.059776 |
| Kentucky       | KY | 5.239180 | 0.058947 |
| Arkansas       | AR | 2.232667 | 0.056473 |
| Wyoming        | WY | 0.323625 | 0.053485 |
| Oregon         | OR | 3.904555 | 0.044002 |
| West Virginia  | WV | 0.891720 | 0.043470 |
| Alaska         | AK | 1.592357 | 0.043065 |
| Montana        | MT | 2.347418 | 0.040101 |
| Hawaii         | HI | 1.584507 | 0.039986 |
| Minnesota      | MN | 5.477592 | 0.039368 |

Made a bar graph with all of the 50 different states to show the relative sizes of the %Deaths/Cases for each state.

```
[25]: merged_per_state[['%Deaths/Cases']].plot(kind = 'bar',figsize = (20,10))
   plt.xticks(rotation=90)
   plt.xlabel('State')
   plt.ylabel('Percent of Deaths/Cases')
   plt.title('Percent Deaths/Cases of COVID-19 Per State since 4/18/20')
   plt.show();
```



#### 1.6 Cross-Validation and Linear Regression

We split our merged data set into 20% testing and 80% training sets and trained our linear model on two different features: number of ICUs and number of hospitals. Then, created a scatter plot of the actual death rates to the predicted death rates.

```
[26]: from sklearn.model selection import train test split
[27]: tr, te = train_test_split(merged_per_state, test_size=0.1, random_state=83)
[28]: def phi(df):
          return df[["#Hospitals", "#ICU_beds"]]
[29]: X_train = phi(tr)
      X_test = phi(te)
      Y_train = tr['%Deaths/Cases']
      Y_test = te['%Deaths/Cases']
[30]: import sklearn.linear_model as lm
      from sklearn.linear_model import LinearRegression
      linear_model = lm.LinearRegression()
      # Fit the linear model
      linear_model.fit(X_train, Y_train)
      # Predict percent of deaths per # of cases on the test set
      Y_pred = linear_model.predict(X_train)
      # Plot predicted vs true %Deaths/Cases
      plt.scatter(Y_train, Y_pred, alpha=0.5)
      plt.xlabel("Actual death rate")
      plt.ylabel("Predicted death rate")
      plt.title("Actual death rate vs. Predicted death rate of COVID-19");
```



After training our data, we calculated a training and testing error with our rsme function.

```
[31]: def rmse(y, yhat):
    return np.sqrt(np.mean((y - yhat)**2))

[32]: train_error = rmse(Y_train, linear_model.predict(X_train))
    test_error = rmse(Y_test, linear_model.predict(X_test))

print("Training Error (RMSE):", train_error)
print("Testing Error (RMSE):", test_error)
```

Training Error (RMSE): 1.643019404049064 Testing Error (RMSE): 2.252984101653196

To further assess if we had made a good model, we used 5-fold cross validation. We normalized the data and found the hyperparameter with the smallest cross-validation error. We found that the best alpha value and the cross validation error for this alpha value.

```
[33]: from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer
```

```
[34]: def rmse_score(model, X, y):
    return np.sqrt(np.mean((y - model.predict(X)) ** 2))
```

```
[35]: from sklearn.preprocessing import StandardScaler
      from sklearn.linear_model import Ridge
      from sklearn.model_selection import cross_val_score
      alpha_arr = np.linspace(0.02, 0.5, 60)
      cv_errors = []
      model = Pipeline([
          ("transformer", StandardScaler()),
          ("LinearModel", Ridge(alpha=0.1))
      ])
      for alpha in alpha_arr:
          model.set_params(LinearModel__alpha=alpha)
      # compute the cross validation error
          cv_error = np.mean(cross_val_score(model, X_train, Y_train,_
       ⇒scoring=rmse_score, cv=5))
          cv_errors.append(cv_error)
      min_cv_error = min(cv_errors)
      index_of_min_cv_error = cv_errors.index(min_cv_error)
      best_alpha_ridge = alpha_arr[index_of_min_cv_error]
      print(f"The best alpha value is {best_alpha_ridge}")
      print(f"Cross validation error for the best alpha value is {cv_errors[np.
       →argmin(cv_errors)]}")
```

The best alpha value is 0.5 Cross validation error for the best alpha value is 1.9175874842651077

In order to visualize our errors and test to see if a linear regression model was good for the data, we created a residual plot. We then made a regression line to determine if there was correlation between the number of hospitals and the number of ICUs with COVID-19 death rate for each state.

```
[36]: y_fitted = linear_model.predict(X_train)
plt.scatter(y_fitted, Y_train - y_fitted)
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.title('Residual vs. Fitted for Linear Model')
sns.lmplot(x='#Hospitals',y='%Deaths/Cases',data=merged_per_state,fit_reg=True)
```

[36]: <seaborn.axisgrid.FacetGrid at 0x7f29b4cbbf50>





## 1.7 Congratulations!

You are finished with this assignment. Please don't forget to submit by 11:59pm PST on Wednesday, 05/13!

## 1.8 Submit

Make sure you have run all cells in your notebook in order before running the cell below, so that all images/graphs appear in the output. **Please save before submitting!**