ACTIVIDADE #1

CLUBE 'MÉTODO CIENTÍFICO'

SESSÃO #6 - TÉCNICAS: CONDUTÂNCIA DA PELE E EYE TRACKER

INÊS ALMEIDA

GRUPO MCB, CIBIT, UC 06.02.2020

ESCOLA EB2+3 MARTIM DE FREITAS, COIMBRA 2019/20

TÉCNICAS! A CONDUTÂNCIA DA PELE!

O que é a **condutância da pele**?

- 10. A condutância da pele é uma técnica geralmente denominada por polígrafo e é, por vezes, usada em programas de televisão onde são feitas perguntas às pessoas. Esta técnica permite: (escolhe a alternativa correta)
- a) detectar se alguém está a mentir
- b) detectar se alguém está muito nervoso
- b) actorial oc alguerii octa maito nei voco

c) detectar alterações no nível de suor na pele

- d) todas as anteriores
- e) nenhuma das anteriores

RESPOSTA DE CONDUTÂNCIA DA PELE

 Regulada pelo sistema nervoso periférico autónomo, divisão simpática (regula actividade das glândulas de suor)

Sympathetic

RESPOSTA DE CONDUTÂNCIA DA PELE

- Relacionada com a actividade das glândulas de suor
- Aumento de suor leva a facilidade de condução da electricidade através da pele

Figure 10.1 Anatomy of the eccrine sweat gland in various layers of skin. (Adapted from Hassett, 1978.)

CONDUTÂNCIA DA PELE COMO MEDIDA DA FUNÇÃO CEREBRAL

220 DAWSON, SCHELL, AND FILION

 Medida indirecta do sistema nervoso central

(por exemplo, usando estudos de condicionamento de medo e relacionando a SCR com a acatividade da amídala cerebral)

Figure 10.2 Central nervous system determiners of EDA in humans. (From Boucsein, 2012.)

RESPOSTA DE CONDUTÂNCIA DA PELE

- Medida de activação psicofisiológica
- Cuidado com interpretação como indicador de estado psicológico ou processo de interesse
- na grande maioria das situações, mudanças na atividade eletrodérmica não ocorrem isoladamente
- Em vez, elas ocorrem como p**arte de um complexo de respostas** mediado por o **sistema nervoso autónomo** (alterações no ritmo cardíaco, etc)

CONDUTÂNCIA DA PELE: TIPOS E COMPONENTES

SCRs: Respostas específicas a um evento

NS-SCRs: respostas não específicas a um evento

SCL: nível

Figure 10.5 Graphical representation of principal EDA components.

CONDUTÂNCIA DA PELE: MEDIDAS DE ANÁLISE

Measure	Definition	Typical values	
Skin conductance level (SCL)	Tonic level of electrical conductivity of skin	2–20 μS	
Change in SCL	Gradual changes in SCL measured at two or more points in time	1–3 µS	
Frequency of NS-SCRs	Number of SCRs in absence of identifiable eliciting stimulus	1–3 per min	
SCR amplitude	Phasic increase in conductance shortly following stimulus onset	0.2-1.0 μS	
SCR latency	Temporal interval between stimulus onset and SCR initiation	1–3 s	
SCR rise time	Temporal interval between SCR initiation and SCR peak	1–3 s	
SCR half recovery time	Temporal interval between SCR peak and point of 50% recovery of SCR amplitude	2–10 s	
SCR habituation (trials to habituation)	Number of stimulus presentations before two or three trials with no response	2–8 stimulus presentations	
SCR habituation (slope)	Rate of change of ER–SCR amplitude	0.01–0.5 μS per trial	

EXPERIMENTAR! USAR A CONDUTÂNCIA DA PELE NUMA TAREFA

Testar efeitos da:

- Respiração
- Sudação (actividade física)
- Bater palmas
- Tarefa rubber hand ramachandran

Figure 1. The conditions (viewed from above). In all experiments, subjects received the fake hand condition (a). In experiment 2 (form manipulation), subjects also received the table condition (b). In experiment 3 (location manipulation), subjects received the distant hand condition (c) rather than the table condition. Abbreviations: E, experimenter; S, subject; P, partition; FH, fake hand; SCR, SCR electrodes.

TÉCNICAS! 0 EYE TRACKER!

b) que permite medir a atividade elétrica do olho

9. O Eye Tracker é uma técnica: (escolhe a alternativa correta)

a) que permite espreitar para o cérebro através de uma máquina que colocamos à frente do olho

c) através da qual medimos a posição e o comportamento do movimento dos olhos

PARA QUE SERVE O EYE TRACKER?

- O eye tracker permite estudar o movimento dos olhos
- Os movimentos oculares são há muito utilizados para extrair inferências sobre percepção, cognição e função cerebral em muitas áreas da psicologia, ciência cognitiva e campos de pesquisa aplicada (e.g. marketing)

PARA QUE SERVE O EYE TRACKER?

 os movimentos oculares permitem-nos circular e orientar no meio-ambiente

PARA QUE SERVE O EYE TRACKER?

 Dois eventos (ou conceitos) que se destacam em grande parte da literatura sobre movimentos oculares são as fixações e sacadas

SACADAS E FIXAÇÕES

definidas com
base em:

- Duração
- Frequência
- Velocidade
- Amplitude

Table 1Major characteristics of fixation (including fixational eye movements) and saccades.

Eye movement type		Oculomotor characteristics				Response characteristics (dependence of movement on optical stimulus)	Function (contributions to gaze behavior)
		Eye-in-head angular velocity range	Amplitude	Duration	Frequency		
Fixational eye movements (FEM)	Fixation	n/a	n/a	>100 ms, highly task-dependent	About 2–4 per second, depending on task	n/a	Stabilizing gaze on a stationary target object or location
	Drift	<0.5°/s Rolfs (2009); 50 min arc/s (0.2-2°/s) Cherici et al. (2012); 48 min arc/s Kuang et al. (2012); 3.2°/s Aytekin et al. (2014) ^a	About 2–5 min arc Steinman et al. (1973); A few min arc Martinez-Conde et al. (2004); 1.5–4 min arc Collewijn and Kowler (2008); <0.13° (Rolfs, 2009); <1° Aytekin et al. (2014) ⁸	Depends on saccade frequency (fixation duration)	Present during entire fixation (except when a microsaccade occurs)	Random walk with memory Engbert et al. (2011): Sinn and Engbert, 2016).	object of location Possibly not distinct from OKR/VOR gaze stabilizing responses. Possibly slow control to maintain optimal retinal image speed to prevent receptor adaptation, and/or compensate for lower power in high frequencies in natural images ("whittening").
Rapid eye movements (REM)	Microsaccade	~10-120°/s vmax. Martinez-Conde et al. (2009)	<1°, typically 0.1-0.3° Martinez-Conde et al. (2009); <0.5° (Poletti & Rucci, in press)	About 10–20 ms Martinez-Conde et al. (2009)	<1 per second (depends on criterion used, and the task, relatively rarer in active/not high-acuity tasks)	Open loop (pre-programmed, "ballistic", not corrected by visual feedback during execution)	Gaze shift between objects or locations "on the same target" or very nearby targets in high-accuracy tasks.
	Saccade	125–500°/s vmax. Collewijn et al. (1988); 150–600°/s vmax. Baloh et al. (1975); 10–800°/s vmax. Bahill et al. (1975)	3°-80° Collewijn et al. (1988); 6°-90° Baloh et al. (1975); 0.1-60° Bahill et al. (1975)	25–300 ms Collewijn et al. (1988): 40–250 ms Baloh et al. (1975); 10–100 ms Bahill et al. (1975)	About 2–4 per second, depending on task	Open loop (pre-programmed, no visual or somatosensory feedback). Latency 200 ms Sparks (2002), but down to 100 ms for pre-cued "express saccades" Fischer and Ramsperger (1984).	Gaze shift between objects or locations, re-orienting visual axis in 3D space. Catch-up saccades in pursuit compensate for <1 smooth eye movement gain. Optokinetic nystagmus quick phase.

a Active manual task, not a head-restrained fixation task.

MOVIMENTOS OCULARES COMO MEDIDA DA FUNÇÃO CEREBRAL

- Controlo motor
- Input: atenção, memória, visão para acção/movimento, percepção de movimento, orientação espacial, balanço e postura

MOVIMENTOS OCULARES COMO MEDIDA DA FUNÇÃO CEREBRAL

3D FRAMES OF REFERENCE

SENSORIMOTOR TRANSFORMATIONS

 Quadros de referência (olho, cabeça, corpo, locomoção, cenário) & sistemas internos de representação sensoriomotora

EYE TRACKER: APLICAÇÕES

- Estudos com tarefas de processamento de informação visual
 - Leitura
 - Leitura de música
 - Digitação
 - Pesquisa visual
 - Percepção de cenas
 - Percepção de faces
 - Publicidade e marketing

TIPOS DE EYE TRACKER

Scanpath

Heatmaps

Região de interesse (ROI)

Control Group Autistic Group **Aplicações**

Pelphrey, K. A., Sasson, N. J., Reznick, J. S., Paul, G., Goldman, B. D., & Piven, J. (2002). Visual scanning of faces in autism. Journal of autism and developmental disorders, 32(4), 249-261.

Aplicações

EXPERIMENTAR! USAR O EYE TRACKER NUMA TAREFA

Clube Ciência Viva - Escola Martim de Freitas

Cofinanciado por:

MATERIAL SUPLEMENTAR: EXEMPLO DE UMA SCR

