1015 RAG 내용발표

관련 논문 : Retrieval-Augmented-Generation for Knowledge-Intensive NLP Tasks(2020)

https://arxiv.org/abs/2005.11401?ref=pangyoalto.com

RAG (Retrieval검색 - Augmented증강 - Generation생성)

: 질의에 대해 검색하고 이를 바탕으로 응답을 생성하는 모델

sequence - to - sequence 구조 채택 / 검색기와 생성기는 동시에 학습됨 /

R(Retrieval): 요청된 사항을 어디선가 가져옴

A(Augmented): 원래의 것에 뭔가 덧붙이거나 보태어 증강됨

G(Generation): 사용자의 질문에 대한 응답을 텍스트로 생성

[LLM의 한계]

- 1. 정보의 정확성 문제: LLM은 훈련된 데이터에만 의존하기 때문에 최신 정보나 특정 도메인의 깊이 있는 정보에 대한 답변을 제공하는 데 한계가 있습니다.
- 2. 모델의 크기와 효율성: 대형 언어 모델은 매우 크고 무겁기 때문에 실시간 응답을 제공하는 데 있어 비효율적일 수 있습니다.
- 3. 맥락 유지의 어려움: 긴 대화나 복잡한 질문의 경우, 맥락을 유지하면서 정확한 답변을 제공하는 데 어려움을 겪을 수 있습니다.
- 4. 데이터 편향 문제: LLM은 훈련 데이터의 편향을 그대로 반영할 수 있으며, 이는 부정확하거나 편향된 답변을 초래할 수 있습니다.

[RAG가 LLM의 한계를 극복하는 방법]

1. 실시간 정보 검색

질문에 따라 외부 데이터를 검색해 답변을 생성하기 때문에 신뢰성 높은 답변 가능

1015 RAG 내용발표 1

2. 검색을 통한 정보 보완

기존에 저장되어 있지 않은 정보도 결합해 보완할 수 있다.

3. 정보의 정확성 향상

LLM 단독으로 작업할 때보다 검색을 통해 세부정보 및 정확한 데이터를 보완해 답변을 제공할 수 있다.

4. 문맥 강화

검색 결과를 단어가 아닌 문맥을 통해 답변을 생성하기 때문에 복잡한 질문에 대해 더 좋은 답변을 제공할 수 있다.

[RAG의 작동 순서]

- Retriever
- 1. 사용자의 검색 정보 이해 및 키워드 추출
- 2. 키워드 바탕의 문서 검색 및 대규모 DB에서 관련성 높은 문서 탐색(딥러닝 기반 문서 임베딩 기술 활용)
- Generator
- 1. 검색된 문서를 기반으로 정보 추출 및 요약
- 2. 자연어 생성 모델을 사용하여 자연스러운 응답 제작

[RAG의 두 가지 모델]

- 1. RAG-Sequence Model
 - 관련 문서를 검색해서 통합하여 최종 답변을 생성
 - 다양한 문서에서 정보를 통합해 더 풍부한 답변 생성 및 연관성 고려 가능
 - 완성된 sequence를 생성하기 위해 같은 문서만을 사용하는 모델

2. RAG-Token Model

• 관련 문서를 검색해서 필요한 토큰만을 선택해 최종 답변을 생성

- 불필요한 정보는 제외하고 관련성 높은 특정된 정보만 사용가능
- 각 target token마다 다른 문서 사용 가능

[RAG의 장단점]

• 장점

정보에 기반해서 응답을 생성하기 때문에 질문-응답 시스템에 유리함 다양한 관점에서의 응답 생성

특정 주제에 대해 사전 학습된 모델을 사용하기 때문에 매번 학습 불필요 \rightarrow 시간과 자원 절약

단점

검색을 통해 응답을 생성하기 때문에 문서에 따라 최신 정보가 아니거나 부정확한 정보일 수 있음

대규모 DB에서 정보를 검색하기 때문에 의존성이 크고 시간도 오래걸림

1015 RAG 내용발표 3