Gauß-Prozess-Regression-Optimierung

Tobias Wulf

Hochschule für Angewandte Wissenschaften Hamburg tobias.wulf@haw-hamburg.de

26. März 2021

Übersicht

- Klassischer Anwendungsfall
 - Winkelmessung
 - Kreisdarstellung der Winkelmessung
 - Euklidischer Abstand als Winkelabstand
- Kreisdarstellung in Norm-Notation
 - Vektor-2-Norm f
 ür einfache Vektorfelder
 - Überführung in höheren Norm-Raum für Vektormatrizen
 - Gegenüberstellung
- GPR-Verfahren
 - Skalierung der Kovarianzfunktion
 - Kreisdarstellung GPR ohne Mittelwertkorrektur
 - Kreisdarstellung GPR mit Mittelwertkorrektur
 - GPR-Trainingsphase
 - GPR-Arbeitsphase

Klassischer Anwendungsfall Winkelmessung

Winkelmessung

Winkelmessung

$$\underbrace{\begin{pmatrix} H_x(\alpha) \\ H_y(\alpha) \end{pmatrix}}_{\text{Gebermagnetfeld}} \Rightarrow \underbrace{\begin{pmatrix} V_{\cos}(H_x, H_y) \\ V_{\sin}(H_x, H_y) \end{pmatrix}}_{\text{Winkelsensormeswerte}} = \underbrace{\begin{pmatrix} r \cdot \cos(\alpha) \\ r \cdot \sin(\alpha) \end{pmatrix}}_{\text{Kreisdarstellung}} = \underbrace{\begin{pmatrix} a_x \\ a_y \end{pmatrix}}_{\text{Winkelmessung}} = \mathbf{A}(\alpha)$$

Orthogonalität der Messwerte

$$V_{cos}(H_{x}, H_{y}) \perp V_{sin}(H_{x}, H_{y}) \Leftrightarrow \mathbf{A} \mapsto \alpha$$

Kreisdarstellung der Winkelmessung

Kreisdarstellung der Winkelmessung

Kreisdarstellung der Winkelmessung

Radius

$$r = |\mathbf{A}| = \sqrt{a_x^2 + a_y^2}$$

Kreisdarstellung der Winkelmessung

Radius

$$r = |\mathbf{A}| = \sqrt{a_x^2 + a_y^2}$$

Winkel

$$\alpha = \begin{cases} \arctan 2(a_y, a_x) & \text{f. } a_y > 0 \\ \pi & \text{f. } a_y = 0 \\ \arctan 2(a_y, a_x) + 2\pi & \text{f. } a_y < 0 \end{cases}$$

Tobias Wulf (HAW)

Euklidischer Abstand als Winkelabstand

Winkelmessungen

 $\mathbf{A}\mapsto \alpha_1\quad \mathbf{B}\mapsto \alpha_2$

Euklidischer Abstand als Winkelabstand

Winkelmessungen

$$\mathbf{A} \mapsto \alpha_1 \quad \mathbf{B} \mapsto \alpha_2$$

Radius

$$r = |\mathbf{A}| = |\mathbf{B}| = konst.$$

Euklidischer Abstand als Winkelabstand

Winkelmessungen

$$\mathbf{A} \mapsto \alpha_1 \quad \mathbf{B} \mapsto \alpha_2$$

Radius

$$r = |\mathbf{A}| = |\mathbf{B}| = konst.$$

$$d_{\mathsf{E}}\langle \mathsf{A},\mathsf{B}\rangle =$$

Euklidischer Abstand als Winkelabstand

Winkelmessungen

$$\mathbf{A} \mapsto \alpha_1 \quad \mathbf{B} \mapsto \alpha_2$$

Radius

$$r = |\mathbf{A}| = |\mathbf{B}| = konst.$$

$$d_E\langle \mathbf{A},\mathbf{B}\rangle=\sqrt{(a_{\scriptscriptstyle X}-b_{\scriptscriptstyle X})^2}$$

Euklidischer Abstand als Winkelabstand

Winkelmessungen

$$\mathbf{A} \mapsto \alpha_1 \quad \mathbf{B} \mapsto \alpha_2$$

Radius

$$r = |A| = |B| = konst.$$

$$d_E\langle \mathbf{A}, \mathbf{B} \rangle = \sqrt{(a_x - b_x)^2 (a_y - b_y)^2}$$

Euklidischer Abstand als Winkelabstand

Winkelmessungen

$$\mathbf{A}\mapsto \alpha_1\quad \mathbf{B}\mapsto \alpha_2$$

Radius

$$r = |A| = |B| = konst.$$

Euklidischer Abstand

$$d_E\langle \mathbf{A},\mathbf{B}\rangle=\sqrt{(a_x-b_x)^2+(a_y-b_y)^2}$$

Abstandsquadrat

$$d_E^2\langle \mathbf{A},\mathbf{B}\rangle=(a_x-b_x)^2+(a_y-b_y)^2$$

Vektor-2-Norm für einfache Vektorfelder

Zweidimensionales Problem

Tobias Wulf (HAW)

Vektor-2-Norm für einfache Vektorfelder

- Zweidimensionales Problem
- Vektorfeld in 1. Dimension $\mathbf{A} = \begin{pmatrix} a_X \\ a_Y \end{pmatrix}$
- $A \mapsto \alpha$ bildet 2. Dimension

Tobias Wulf (HAW)

Vektor-2-Norm für einfache Vektorfelder

- Zweidimensionales Problem
- Vektorfeld in 1. Dimension $\mathbf{A} = \begin{pmatrix} a_X \\ a_V \end{pmatrix}$
- $A \mapsto \alpha$ bildet 2. Dimension
- Beträge als Norm

Radius

$$r := |\mathbf{A}| = \sqrt{\sum_{i=1}^{n} |A_i|^2} = ||\mathbf{A}||_2$$

Vektor-2-Norm für einfache Vektorfelder

- Zweidimensionales Problem
- Vektorfeld in 1. Dimension $\mathbf{A} = \begin{pmatrix} a_X \\ a_V \end{pmatrix}$
- $A \mapsto \alpha$ bildet 2. Dimension
- Beträge als Norm
- Abstand als Differenznorm

Radius

$$r := |\mathbf{A}| = \sqrt{\sum_{i=1}^{n} |A_i|^2} = \|\mathbf{A}\|_2$$

$$d_E\langle \mathbf{A}, \mathbf{B} \rangle := \sqrt{\sum_{i=1}^n (A_i - B_i)^2} = \|\mathbf{A} - \mathbf{B}\|_2$$

Vektor-2-Norm für einfache Vektorfelder

- Zweidimensionales Problem
- Vektorfeld in 1. Dimension $\mathbf{A} = \begin{pmatrix} a_X \\ a_Y \end{pmatrix}$
- $A \mapsto \alpha$ bildet 2. Dimension
- Beträge als Norm
- Abstand als Differenznorm
- Es gilt: Dreiecksungleichung

Radius

$$r := |\mathbf{A}| = \sqrt{\sum_{i=1}^{n} |A_i|^2} = \|\mathbf{A}\|_2$$

Euklidischer Abstand

$$d_{\mathsf{E}}\langle \mathsf{A},\mathsf{B}\rangle := \sqrt{\sum_{i=1}^n (A_i - B_i)^2} = \|\mathsf{A} - \mathsf{B}\|_2$$

Dreiecksungleichung

$$\left| \| \mathbf{A} \|_2 - \| \mathbf{B} \|_2 \right| \le \| \mathbf{A} \pm \mathbf{B} \|_2 \le \left| \| \mathbf{A} \|_2 + \| \mathbf{B} \|_2 \right|$$

Überführung in höheren Norm-Raum für Vektormatrizen

Vierdimensionales Problem

Überführung in höheren Norm-Raum für Vektormatrizen

- Vierdimensionales Problem
- 1. + 2. Dimension durch Array-Geometrie

Überführung in höheren Norm-Raum für Vektormatrizen

- Vierdimensionales Problem
- 1. + 2. Dimension durch Array-Geometrie
- $A \mapsto \alpha$ bildet 3. Dimension

Überführung in höheren Norm-Raum für Vektormatrizen

- Vierdimensionales Problem
- 1. + 2. Dimension durch Array-Geometrie
- $A \mapsto \alpha$ bildet 3. Dimension
- Vektorfelder in 4. Dimension $\mathbf{A} = [\mathbf{A}_{\mathbf{x}}, \mathbf{A}_{\mathbf{y}}]$

Überführung in höheren Norm-Raum für Vektormatrizen

- Vierdimensionales Problem
- 1. + 2. Dimension durch Array-Geometrie
- $\mathbf{A} \mapsto \alpha$ bildet 3. Dimension
- Vektorfelder in 4. Dimension
 A = [A_x, A_y]
- Frobenius Norm Matrix als langer Vektor

Vektor-2-Norm² f. *j*-te Spalte

$$\|\mathbf{A}_{\mathbf{x}}\|_{F} = \sqrt{\sum_{j=1}^{n} \|A_{xj}\|_{2}^{2}}$$

Überführung in höheren Norm-Raum für Vektormatrizen

- Vierdimensionales Problem
- 1. + 2. Dimension durch Array-Geometrie
- $\mathbf{A} \mapsto \alpha$ bildet 3. Dimension
- Vektorfelder in 4. Dimension
 A = [A_x, A_y]
- Frobenius Norm Matrix als langer Vektor
- Nutzen von Ähnlichkeit

Vektor-2-Norm² f. *j*-te Spalte

$$\|\mathbf{A}_{\mathbf{x}}\|_{F} = \sqrt{\sum_{j=1}^{n} \|A_{xj}\|_{2}^{2}}$$

Ungleichung: Vektor-2-Norm

$$\left|\|\boldsymbol{\mathsf{A}}\|_2 - \|\boldsymbol{\mathsf{B}}\|_2\right| \leq \|\boldsymbol{\mathsf{A}} \pm \boldsymbol{\mathsf{B}}\|_2 \leq \left|\|\boldsymbol{\mathsf{A}}\|_2 + \|\boldsymbol{\mathsf{B}}\|_2\right|$$

Überführung in höheren Norm-Raum für Vektormatrizen

- Vierdimensionales Problem
- 1. + 2. Dimension durch Array-Geometrie
- $\mathbf{A} \mapsto \alpha$ bildet 3. Dimension
- Vektorfelder in 4. Dimension
 A = [A_x, A_y]
- Frobenius Norm Matrix als langer Vektor
- Nutzen von Ähnlichkeit
- Es muss Dreiecksungleichung gelten

Vektor-2-Norm² f. *j*-te Spalte

$$\|\mathbf{A}_{\mathbf{x}}\|_{F} = \sqrt{\sum_{j=1}^{n} \|A_{xj}\|_{2}^{2}}$$

Ungleichung: Vektor-2-Norm

$$\left|\|\boldsymbol{\mathsf{A}}\|_2 - \|\boldsymbol{\mathsf{B}}\|_2\right| \leq \|\boldsymbol{\mathsf{A}} \pm \boldsymbol{\mathsf{B}}\|_2 \leq \left|\|\boldsymbol{\mathsf{A}}\|_2 + \|\boldsymbol{\mathsf{B}}\|_2\right|$$

 \Downarrow

Ungleichung: Frobenius Norm

$$\left| \| A_x \|_F - \| B_x \|_F \right| \le \| A_x \pm B_x \|_F \le \left| \| A_x \|_F + \| B_x \|_F \right|$$

Überführung in höheren Norm-Raum für Vektormatrizen

Aufbau über euklidischen Abstand

$$d_F^2\langle \mathbf{A}, \mathbf{B} \rangle =$$

$$d_F^2\langle \mathbf{A}, \mathbf{B} \rangle =$$

Überführung in höheren Norm-Raum für Vektormatrizen

Einsetzen v. Einzelnormen,
 "runter brechen"d. Komplexität

Aufbau über euklidischen Abstand

$$\textit{d}_\textit{E}^2\langle \textbf{A}, \textbf{B}\rangle = \left(\|\textbf{A}_\textbf{x}\|_\textit{F} - \|\textbf{B}_\textbf{x}\|_\textit{F}\right)^2 + \left(\|\textbf{A}_\textbf{y}\|_\textit{F} - \|\textbf{B}_\textbf{y}\|_\textit{F}\right)^2$$

$$d_F^2\langle \mathbf{A}, \mathbf{B} \rangle =$$

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Überführung in höheren Norm-Raum für Vektormatrizen

- Einsetzen v. Einzelnormen,
 "runter brechen"d. Komplexität
- Neue normierte Kreisbahn $\|r\|_F$

Aufbau über euklidischen Abstand

$$\textit{d}_\textit{E}^2\langle \textbf{A}, \textbf{B} \rangle = \left(\|\textbf{A}_\textbf{x}\|_\textit{F} - \|\textbf{B}_\textbf{x}\|_\textit{F} \right)^2 + \left(\|\textbf{A}_\textbf{y}\|_\textit{F} - \|\textbf{B}_\textbf{y}\|_\textit{F} \right)^2$$

$$d_F^2\langle {\sf A}, {\sf B} \rangle =$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Überführung in höheren Norm-Raum für Vektormatrizen

- Einsetzen v. Einzelnormen, "runter brechen"d. Komplexität
- Neue normierte Kreisbahn $||r||_F$

Dreiecksungleichung

Aufbau über euklidischen Abstand

$$d_{E}^{2}\langle \mathbf{A}, \mathbf{B} \rangle = (\|\mathbf{A}_{\mathbf{x}}\|_{F} - \|\mathbf{B}_{\mathbf{x}}\|_{F})^{2} + (\|\mathbf{A}_{\mathbf{y}}\|_{F} - \|\mathbf{B}_{\mathbf{y}}\|_{F})^{2}$$

$$\leq$$

$$d_{E}^{2}\langle \mathbf{A}, \mathbf{B} \rangle =$$

Überführung in höheren Norm-Raum für Vektormatrizen

- Einsetzen v. Einzelnormen, "runter brechen"d. Komplexität
- ullet Neue normierte Kreisbahn $\|r\|_F$

- Dreiecksungleichung
- Vergleich der Einzelkreisbahnen $r_{i,j}$ f. $d_F^2\langle \mathbf{A}, \mathbf{B} \rangle$

Aufbau über euklidischen Abstand

$$d_E^2\langle \mathbf{A}, \mathbf{B} \rangle = (\|\mathbf{A}_{\mathbf{x}}\|_F - \|\mathbf{B}_{\mathbf{x}}\|_F)^2 + (\|\mathbf{A}_{\mathbf{y}}\|_F - \|\mathbf{B}_{\mathbf{y}}\|_F)^2$$

$$(1)$$

$$d_F^2(\mathbf{A}, \mathbf{B}) = \|\mathbf{A}_{\mathbf{x}} - \mathbf{B}_{\mathbf{x}}\|_F^2 + \|\mathbf{A}_{\mathbf{y}} - \mathbf{B}_{\mathbf{y}}\|_F^2 = \|\mathbf{A} - \mathbf{B}\|_F^2$$
 (2)

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Gegenüberstellung

Vektor-2-Norm	\Rightarrow	Frobenius Norm
$\mathbf{A}=(a_{\scriptscriptstyle X},a_{\scriptscriptstyle Y})$	\Rightarrow	$\mathbf{A} = [\mathbf{A_x}, \mathbf{A_y}]$
$\ \mathbf{A}\ _2 = \sqrt{\sum_{i=1}^n A_i ^2}$	\Rightarrow	$\ \mathbf{A_x}\ _F = \sqrt{\sum_{j=1}^n \ A_{xj}\ _2^2}$ f. j -te Spalte
		, \downarrow
$d_E^2\langle \mathbf{A}, \mathbf{B} \rangle$	\Rightarrow	$d_F^2\langle {\sf A},{\sf B} angle$
$= \ \mathbf{A} - \mathbf{B}\ _2^2$	\Rightarrow	$= \ A - B\ _F^2$
=		=
i i		$\ \textbf{A}_{\textbf{x}}-\textbf{B}_{\textbf{x}}\ _{\textit{F}}^2+\ \textbf{A}_{\textbf{y}}-\textbf{B}_{\textbf{y}}\ _{\textit{F}}^2$
i i		≥
$(a_x - b_x)^2 + (a_y - b_y)^2$	\Leftrightarrow	$ (\ \mathbf{A}_{\mathbf{x}}\ _{F} - \ \mathbf{B}_{\mathbf{x}}\ _{F})^{2} + (\ \mathbf{A}_{\mathbf{y}}\ _{F} - \ \mathbf{B}_{\mathbf{y}}\ _{F})^{2} $
*		V
$r = \mathbf{A} = \sqrt{a_x^2 + a_y^2}$	\Rightarrow	$ r _F = \mathbf{A} _F = \sqrt{ \mathbf{A}_{\mathbf{x}} _F^2 + \mathbf{A}_{\mathbf{y}} _F^2}$

26. März 2021

Gegenüberstellung

Kovarianz:

Kernel: QFCAPX

Implementierung nach (1)

Implementierung nach (2)

Kovarianz:

Gegenüberstellung

Kernel: *QFCAPX*

Implementierung nach (1)

Approximierte Lösung

Kernel: QFC

Implementierung nach (2)

Genaue Lösung

Kovarianz:

Kovarianz:

Gegenüberstellung

Kernel: *QFCAPX*

Implementierung nach (1)

- Approximierte Lösung
- Frobenius Norm vor Kovarianzfunktion

Kernel: QFC

Implementierung nach (2)

- Genaue Lösung
- Frobenius Norm in Kovarianzfunktion

Kovarianz:

$$\mathsf{cov}(\mathsf{A},\mathsf{B}) = rac{\mathsf{a}}{\mathsf{b} + \mathsf{d}_\mathsf{F}^2 \langle \mathsf{A},\mathsf{B}
angle}$$

Kovarianz:

$$cov(A,B) = \frac{a}{b + d_F^2 \langle A, B \rangle}$$

Kreisdarstellung in Norm-Notation

Gegenüberstellung

Kernel: QFCAPX

Implementierung nach (1)

- Approximierte Lösung
- Frobenius Norm vor Kovarianzfunktion
- Vektoren als Trainingsdaten

Kovarianz:

$$\mathsf{cov}(\mathsf{A},\mathsf{B}) = \frac{\mathit{a}}{\mathit{b} + \mathit{d}_{\mathsf{E}}^2 \langle \mathsf{A},\mathsf{B} \rangle}$$

Kernel: QFC

Implementierung nach (2)

- Genaue Lösung
- Frobenius Norm in Kovarianzfunktion
- Matrizen als Trainingsdaten

Kovarianz:

$$cov(A, B) = \frac{a}{b + d_F^2 \langle A, B \rangle}$$

Kreisdarstellung in Norm-Notation

Gegenüberstellung

Kernel: QFCAPX

Implementierung nach (1)

- Approximierte Lösung
- Frobenius Norm vor Kovarianzfunktion
- Vektoren als Trainingsdaten
- Informationsverlust

Kovarianz:

$$cov(A, B) = \frac{a}{b + d_E^2 \langle A, B \rangle}$$

Kernel: QFC

Implementierung nach (2)

- Genaue Lösung
- Frobenius Norm in Kovarianzfunktion
- Matrizen als Trainingsdaten
- Höherer Speicherbedarf

Kovarianz:

$$cov(A, B) = \frac{a}{b + d_F^2 \langle A, B \rangle}$$

Skalierung der Kovarianzfunktion

Skalierung nach RBF-Vorbild

Skalierung der Kovarianzfunktion

Skalierung nach RBF-Vorbild

RBF Kernel

$$\sigma_f^2 \cdot e^{-\frac{d_X^2 \langle \mathbf{A}, \mathbf{B} \rangle}{2\sigma_I^2}}$$

Vorbild

Skalierung der Kovarianzfunktion

• Skalierung nach RBF-Vorbild

Vorbild

Skalierung der Kovarianzfunktion

- Skalierung nach RBF-Vorbild
- ullet Bei Auslöschung cov $({f A},{f B})=\sigma_f^2$ f. $d_{\scriptscriptstyle X}^2\langle{f A},{f B}
 angle=0$

Skalierung der Kovarianzfunktion

- Skalierung nach RBF-Vorbild
- Bei Auslöschung cov(A, B) = σ_f^2 f. $d_x^2 \langle A, B \rangle = 0$

Vorbild

Skalierung der Kovarianzfunktion

- Skalierung nach RBF-Vorbild
- ullet Bei Auslöschung $\mathrm{cov}(\mathbf{A},\mathbf{B})=\sigma_f^2$ f. $d_x^2\langle\mathbf{A},\mathbf{B}
 angle=0$
- $a = \sigma_f^2 \cdot 2\sigma_I^2$
- $b = 2\sigma_I^2$

Vorbild

Übertragen

Umstellen

Kreisdarstellung - GPR ohne Mittelwertkorrektur

 $\bullet \ \, \mathsf{Normierung} \to \mathsf{Ellipse}$

Kreisdarstellung - GPR ohne Mittelwertkorrektur

- ullet Normierung o Ellipse
- ullet Trainingsdaten, Fehler ightarrow lpha, \emph{r}

Trainingsdaten

- ullet Normierung o Ellipse
- Trainingsdaten, Fehler $\rightarrow \alpha$, r
- K-Matrix liefert Autokorrelation

- Normierung \rightarrow Ellipse
- ullet Trainingsdaten, Fehler o lpha, r
- K-Matrix liefert Autokorrelation

- Normierung → Ellipse
- Trainingsdaten, Fehler $\rightarrow \alpha$, r
- K-Matrix liefert Autokorrelation
- Regression zielt auf Einheitskreis

- Normierung \rightarrow Ellipse
- Trainingsdaten, Fehler $\rightarrow \alpha$, r
- K-Matrix liefert Autokorrelation
- Regression zielt auf Einheitskreis
- GPR richtet sich direkt auf Regressionsziele
- GPR direkt durch Gewichte gestützt

Kreisdarstellung - GPR mit Mittelwertkorrektur

 Trainingsdaten, Autokorrelation identisch

Regressionsziel

- Trainingsdaten, Autokorrelation identisch
- Mittelwertbildung üb. $m(X) = H'(X) \cdot \beta$

- Trainingsdaten, Autokorrelation identisch
- Mittelwertbildung üb. $m(X) = H'(X) \cdot \beta$
- 2. Gewichtsniveau durch Mittelwert
- Vorwiegend Amplituden-/ Offset-Korrektur

- Trainingsdaten, Autokorrelation identisch
- Mittelwertbildung üb. $m(X) = H'(X) \cdot \beta$
- 2. Gewichtsniveau durch Mittelwert
- Vorwiegend Amplituden-/ Offset-Korrektur
- Guter Mittelwert, kleine Korrekturgewichte
- Höherer Rechenaufwand

GPR-Trainingsphase

Init GPR:

MAT-Dateien, Struct

GPR-Trainingsphase

Init GPR:

- MAT-Dateien, Struct
- Infos, Bounds, etc.

GPR-Trainingsphase

Init GPR:

- MAT-Dateien, Struct
- Infos, Bounds, etc.
- Einheitskreis, Bezüge

Return

GPR-Trainingsphase

Init GPR:

- MAT-Dateien, Struct
- Infos, Bounds, etc.
- Einheitskreis, Bezüge
- Module, Data-Fit

GPR-Trainingsphase

Init GPR:

- MAT-Dateien, Struct
- Infos, Bounds, etc.
- Einheitskreis, Bezüge
- Module, Data-Fit
- GPR Parametrierung

GPR-Trainingsphase

GPR-Trainingsphase

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+

GPR-Trainingsphase

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+
- Anpassung üb. alle Winkel

GPR-Trainingsphase

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+
- Anpassung üb. alle Winkel
- Vorgabe von $\sigma_n^2 = konst$.

GPR-Trainingsphase

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+
- Anpassung üb. alle Winkel
- Vorgabe von $\sigma_n^2 = konst$.
- Durchlaufzahl entscheidend

GPR-Trainingsphase

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+
- Anpassung üb. alle Winkel
- Vorgabe von $\sigma_n^2 = konst.$
- Durchlaufzahl entscheidend
- Modellsuche

GPR-Trainingsphase

Äußere Optimierung (Modell):

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+
- Anpassung üb. alle Winkel
- Vorgabe von $\sigma_n^2 = konst$.
- Durchlaufzahl entscheidend
- Modellsuche

Min.-Kriterium

$$\begin{split} \sigma_n^2 | \mathcal{D}, \alpha_* &= \arg\min \textit{MSLLA}(\sigma_n^2 | \mathcal{D}, \alpha_*) \\ \textit{SLLA} &= 0, 5 \cdot \left(\log(2\pi\sigma_*^2) + \frac{(\alpha - \alpha_*)^2}{\sigma_*^2} \right) \\ \sigma_*^2 &= \sigma_n^2 + V_* \end{split}$$

GPR-Trainingsphase

Äußere Optimierung (Modell):

- Bayes-Optimierung, Std.-Verfahren
- Improve-Per-2nd+
- Anpassung üb. alle Winkel
- Vorgabe von $\sigma_n^2 = konst$.
- Durchlaufzahl entscheidend
- Modellsuche

Min.-Kriterium

$$\begin{split} \sigma_n^2 | \mathcal{D}, \alpha_* &= \arg\min \textit{MSLLA}(\sigma_n^2 | \mathcal{D}, \alpha_*) \\ \textit{SLLA} &= 0, 5 \cdot \left(\log(2\pi\sigma_*^2) + \frac{(\alpha - \alpha_*)^2}{\sigma_*^2} \right) \\ \sigma_*^2 &= \sigma_n^2 + V_* \end{split}$$

GPR-Trainingsphase

Innere Optimierung (Fit):

GPR-Trainingsphase

- fmincon, Std.-Verfahren
- SQP, klein- bis mittlere Probleme

GPR-Trainingsphase

- fmincon, Std.-Verfahren
- SQP, klein- bis mittlere Probleme
- Fit auf Trainingsdaten

GPR-Trainingsphase

- fmincon, Std.-Verfahren
- SQP, klein- bis mittlere Probleme
- Fit auf Trainingsdaten
- Teilreinitialisierung

GPR-Trainingsphase

- fmincon, Std.-Verfahren
- SQP, klein- bis mittlere Probleme
- Fit auf Trainingsdaten
- Teilreinitialisierung
- Bounds entscheidend

GPR-Trainingsphase

- fmincon, Std.-Verfahren
- SQP, klein- bis mittlere Probleme
- Fit auf Trainingsdaten
- Teilreinitialisierung
- Bounds entscheidend
- Best-Fit-Suche

GPR-Trainingsphase

Innere Optimierung (Fit):

- fmincon, Std.-Verfahren
- SQP, klein- bis mittlere Probleme
- Fit auf Trainingsdaten
- Teilreinitialisierung
- Bounds entscheidend
- Best-Fit-Suche

Min.-Kriterium

$$\begin{split} \sigma_l, \sigma_f^2 | \sigma_n^2 &= \arg\min \tilde{R}_{\mathcal{L}}(\sigma_l, \sigma_f^2 | \sigma_n^2) \\ \tilde{R}_{\mathcal{L}}(\sigma_l, \sigma_f^2 | \sigma_n^2) &= -(\log p(y_{cos} | X_{cos}, \sigma_l, \sigma_f^2, \sigma_n^2) + \\ &\log p(y_{sin} | X_{sin}, \sigma_l, \sigma_f^2, \sigma_n^2)) \end{split}$$

GPR-Trainingsphase

GPR-Trainingsphase

• Fit abhängig von Auflösung

GPR-Trainingsphase

- Fit abhängig von Auflösung
- Ausgleich $\mu(K)$, mittige Platzierung

GPR-Trainingsphase

- Fit abhängig von Auflösung
- Ausgleich $\mu(K)$, mittige Platzierung

• SLLA nur in Trainingsphase

◆□▶◆□▶◆□▶◆□▶ ■ 夕♀♡

Tobias Wulf (HAW) GPR-Optimierung 26. März 2021 20 / 29

GPR-Trainingsphase

- Fit abhängig von Auflösung
- Ausgleich $\mu(K)$, mittige Platzierung

- SLLA nur in Trainingsphase
- SLLR in beiden Phasen

Tobias Wulf (HAW) GPR-Optimierung 26. März 2021 20 / 29

GPR-Arbeitsphase

GPR Working

GPR-Arbeitsphase

• Umlegen d. Ausrichtung

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung

Kernel Parameter

Beta Coefficients

GPR Working

SLLR

Training Data

L-Matrix Sinoid Weights Angle CI-95%

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung
- Freie Ressourcen

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung
- Freie Ressourcen
- Vorhersage Sinoide

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung
- Freie Ressourcen
- Vorhersage Sinoide
- Winkel, Radius abgeleitet

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung
- Freie Ressourcen
- Vorhersage Sinoide
- Winkel, Radius abgeleitet
- Mehrere Qualitätskriterien
 - Std.-Abweichung

Simulative Inputs Sensor-Array Data Input/ Output Functions Input Function Angle Conversion

Predictions

Predictition

Risk/ Loss

GPR Working

Functions

L-Matrix Sinoid Weights

Kernel

Basis Function

Mean Function

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung
- Freie Ressourcen
- Vorhersage Sinoide
- Winkel, Radius abgeleitet
- Mehrere Qualitätskriterien
 - Std.-Abweichung
 - Konfidenzintervall Winkel
 - Konfidenzintervall Radius

GPR Working Simulative Inputs

GPR-Arbeitsphase

- Umlegen d. Ausrichtung
- Min. Parametrierung
- Freie Ressourcen
- Vorhersage Sinoide
- Winkel, Radius abgeleitet
- Mehrere Qualitätskriterien
 - Std.-Abweichung
 - Konfidenzintervall Winkel
 - Konfidenzintervall Radius
 - Modellanpassung Radius

GPR Working

GPR-Arbeitsphase

Kernel QFCAPX: $\sigma_f=9.28,\,\sigma_l=31.48,\,\sigma_n^2=7.77e-06,\,N=20$ 8 × 8 Sensor-Array, Posistion: (0.0,0.0,-7.0)mm, Magnet Tilt: 0.0°

20 Referenzwinkel

GPR-Arbeitsphase

Kernel QFCAPX: $\sigma_f=9.28,\,\sigma_l=31.48,\,\sigma_n^2=7.77e-06,\,N=20$ 8 × 8 Sensor-Array, Posistion: (0.0,0.0,-7.0)mm, Magnet Tilt: 0.0°

- 20 Referenzwinkel
- 720 Winkel, 0.5° Auflösung

GPR-Arbeitsphase

Kernel QFCAPX: $\sigma_f=9.28,\,\sigma_l=31.48,\,\sigma_n^2=7.77e-06,\,N=20$ 8 × 8 Sensor-Array, Posistion: (0.0,0.0,-7.0)mm, Magnet Tilt: 0.0°

- 20 Referenzwinkel
- 720 Winkel, 0.5° Auflösung

Approximierter Kernel (1)

GPR-Arbeitsphase

Kernel QFCAPX: $\sigma_f=9.28,\,\sigma_l=31.48,\,\sigma_n^2=7.77e-06,\,N=20$ 8 × 8 Sensor-Array, Posistion: (0.0, 0.0, -7.0) mm, Magnet Tilt: 0.0°

a) Rotation along Z-Axis in $^\circ$ 150 g 180€ 00 -GPR Ref. α

- 20 Referenzwinkel
- 720 Winkel, 0.5° Auflösung

- Approximierter Kernel (1)
- Konfidenzintervall konst.

Vielen Dank!

Kernel QFCAPX: $\sigma_f = 9.15$, $\sigma_l = 31.33$, $\sigma_n^2 = 7.75e - 06$, N = 20 8 × 8 Sensor-Array, Posistion: (0.0, 0.0, -7.0) mm, Magnet Tilt: 0.0° Objective function model

Kernel QFCAPX: $\sigma_f = 9.15$, $\sigma_l = 31.33$, $\sigma_n^2 = 7.75e - 06$, N = 20 8 × 8 Sensor-Array, Posistion: (0.0, 0.0, -7.0) mm, Magnet Tilt: 0.0° Min objective vs. Number of function evaluations

Kernel QFCAPX: $\sigma_f = 9.15$, $\sigma_l = 31.33$, $\sigma_n^2 = 7.75e - 06$, N = 20 8 × 8 Sensor-Array, Posistion: (0.0, 0.0, -7.0) mm, Magnet Tilt: 0.0°

Kernel QFCAPX: $\sigma_f=9.28,\,\sigma_l=31.48,\,\sigma_n^2=7.77e-06,\,N=20$ 8 × 8 Sensor-Array, Posistion: (0.0,0.0,-7.0) mm, Magnet Tilt: 0.0°

