STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2019

Dr. Shivon Sue-Chee

February 4-8, 2019

STA 303/1002: Week 5-Generalized Linear Models

- Case Study III: The Donner Party Example
- ► Generalized Linear Models
 - What is a Generalized Linear Model?
 - Common link functions
 - What is a Binary Logistic Regression Model?
 - ▶ Maximum likelihood estimation of β 's
- Case Study III Example
 - Data and Questions
 - Estimated Model
 - Interpretations

Case Study III: The Donner Party Example

- Background: (D.K. Grayson, Journal of Anthropological Research, 1990: 223-42)
 - ▶ In mid 19th century, a group of 86 American pioneers headed out from Missouri toward California in a wagon train.
 - Due to a combination of harsh weather, unsuitable travel equipment and divisions with the party, the group got stuck in the Sierra Nevada mountain range.
 - ▶ They had planned to arrive safe and sound in September but those who survived did not make it there until the following March.
- Question: Who survived?- Men? -Older pioneers?
- Data:

 age sex

→ outcome: survived or not

AIM: Study the odds of survival

Case Study III: Model

- ▶ Response: Y_{i} a binary variable (eg., survived or died)
- ▶ Predictor: X_{i} eg., age, sex of *i*th pioneer
- ▶ Model: BINARY LOGISTIC REGRESSION

$$Y_i|X_i = \begin{cases} 1 & \text{if response is in category of interest} \\ 0 & \text{otherwise} \end{cases}$$

$$Y_i|X_i \sim \mathsf{Bernoulli}(\pi_i)$$

Then:

$$\triangleright$$
 $E[Y_i|X_i] = \pi_i$ and $Var(Y_i|X_i) = \pi_i(1-\pi_i)$

► A logistic regression model is an example of a **Generalized Linear Model**.

Generalized Linear Models

- Have: · response, Y and
 · a set of explanatory variables X₁,..., X_p
- ▶ Want: Model E(Y) as a linear function in the parameters, ie.,

$$g(E(Y)) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p = X\beta$$

► Key idea: Choice of the link function, g such that

$$g(E(Y)) = X\beta$$

E(g(y)) \$\daggar{g}(\beta)\end{array}

Some Link Functions

Let
$$E(Y) = \mu$$
.

	Link	Function	Usual distribution of $Y X$
	•	$g(\mu) = \mu$	Normal - General Linear Mode
{	-	$g(\mu) = \log \mu, \mu > 0$	Poisson (count data)
	Logit	$g(\mu) = \log\left(rac{\mu}{1-\mu} ight), 0 < \mu < 1$	Bernoulli (binary), Binomial

Note: Link function, $g(\cdot)$ is a function of $\mu = E(Y)$, the mean of Y, and not a transformation of the data.

$$\left(rg \left(\frac{\pi}{1-\pi} \right) \right)$$

GLMs vs Transforming the data

- ► Transform Y so it has an approximate normal distribution with constant variance. Common variance stabilizing transformations (Weisberg, 3rd ed, p. 179):
 - ▶ \sqrt{Y} : mild transformation; used when $Var(Y|X) \propto E(Y|X)$ as for Poisson data
 - $\log(Y)$: most common; if $Var(Y|X) \propto [E(Y|X)]^2$ or errors behave like percentage of Y.

Box-Cox

- ▶ 1/Y: used when responses are mostly close to 0, but some large values occur.
- As GLM (Agresti, p. 117):
 - distribution of Y not restricted to Normal
 - model parameters describe g[E(Y)] rather than E(g(Y)) as in transformed data approach
 - GLMs provide a unified theory of modelling that encompasses the most important models for continuous and discrete variables.

LOG ODDS, ODDS, ODDS RATIO

13

Let $\underline{\pi} = P(\text{"success"}), 0 < \pi < 1.$

5

► The ODDS in favour of "success" is:

$$(0,\infty)$$

$$\frac{\pi}{1-\pi} = \frac{P("success")}{P("failure)}$$

► Then the LOG ODDS is:

$$(-\infty,\infty)$$

$$\log\left(\frac{\pi}{1-\pi}\right)$$

An ODDS RATIO is a ratio of ODDS.

$$(0,\infty)$$

$$\frac{T_{1}/(1-T_{1})}{T_{2}/(1-T_{2})} = \frac{T_{1}}{T_{2}}\left(\frac{1-T_{2}}{1-T_{1}}\right)$$

log X

Binary Logistic Regression

AIM
$$\triangleright E(Y|X) = \pi$$

- ▶ $Var(Y|X) = \pi(1-\pi)$. Notice that variance is not constant!

Linear predictor:

$$\eta = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

▶ LOGISTIC FUNCTION: Find by inverting equation (1)

$$\pi(\eta) = \underbrace{e^{M}}_{1+e^{M}} = \underbrace{\frac{1}{1+e^{-M}}}_{1+e^{-M}} \underbrace{\frac{\log(\frac{\tau\tau}{1-\tau\tau})}{1-\tau\tau}}_{1-\tau\tau} = \underbrace{e^{M}}_{1-\tau\tau}$$

$$= \underbrace{e^{M}e^{M}}_{1-\tau\tau} = \underbrace{e^{M}}_{1-\tau\tau} = \underbrace{e^{M}}_{1-\tau\tau}$$

$$= \underbrace{e^{M}e^{M}}_{1-\tau\tau} = \underbrace{e^{M}}_{1-\tau\tau} = \underbrace{e^{M}}_{1$$

Binary Logistic Regression

What does the logistic function look like?

▶ LOGISTIC FUNCTION: $\pi = \frac{e^{\eta}}{1+e^{\eta}}$

- S-shaped; sigmoid function
- ▶ Horizontal asymptotes at 0 and 1; the logistic function, $\pi(\eta)$ varies between 0 and 1

Binary Logistic Regression Model

$$\log \left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}, \quad i = 1,\dots, n$$

- ▶ Log-odds, $\log(\pi/(1-\pi))$ are between $-\infty$ and ∞ (good characteristic of a link function)
- As π_i (the probability of "success") increases, odds of success and log-odds increase
- Predicts the natural log of the odds for a subject being in one category or another
- Regression coefficients can be used to estimate odds ratio for each of the independent variables
- ► Tells which predictors can be used to determine if a subject was in a category of interest

How to estimate the parameter coefficients?

Maximum Likelihood Estimation

- ▶ Data: $Y_i = \begin{cases} 1 & \text{if response is in category of interest} \\ 0 & \text{otherwise} \end{cases}$
- ▶ Model: $P(Y_i = y_i) = \pi_i^{y_i} (1 \pi_i)^{1 y_i}$
- ► Assume: The *n* observations are independent
- ► Joint density:

$$P(Y_1 = y_1, \dots, Y_n = y_n) = \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

where

$$\pi_{i}\left(M_{i}\right) \quad \pi_{i} = \frac{\exp(\beta_{0} + \beta_{1}X_{i1} + \ldots + \beta_{p}X_{ip})}{1 + \exp(\beta_{0} + \beta_{1}X_{i1} + \ldots + \beta_{p}X_{ip})} = \frac{e^{M}}{1 + e^{M}}$$
and
$$1 - \pi_{i} = 1 - \frac{e^{M}}{1 + e^{M}} = \frac{1 + e^{M} - e^{M}}{1 + e^{M}} = \frac{1 - e^{$$

Maximum Likelihood Estimation

, yi

logab=loga+logb

▶ Likelihood function: Plug in observed data and think of the joint density as a function of β 's-

► Maximize the log-likelihood:

$$(\widehat{\beta}_0, \dots, \widehat{\beta}_p) = \arg\max \{\log \mathcal{L}(\beta_0, \dots, \beta_p)\}$$

MLE solution methods

- No explicit expression exists for the maximum likelihood estimators $-(\widehat{\beta}_0, \dots, \widehat{\beta}_p)$.
- Two iterative numerical solution methods are:
 - (1) Newton-Raphson algorithm
 - (2) Fisher scoring or Iteratively Re-weighted Least Squares (IWLS). This is done in glm().

Large-sample properties of MLEs

If model is correct, and sample size is large enough, as $n \to \infty$

- 1. MLEs are unbiased
- 2. MLEs have minimum variance
- 3. MLEs are Normally distributed
- 4. Formulas for standard errors of MLEs are well-known. Estimates of standard errors are available as by-product of numerical optimization (maximization) procedures.

Case Study III: The Data

▶ Data: *n*=45 pioneers

AGE	SEX	STATUS
23	MALE	DIED
40	FEMALE	SURVIVED
40	MALE	SURVIVED
30	MALE	DIED
28	MALE	DIED
40	MALE	DIED

. . .

- AGE: Adults, 15-65 yrs oldSEX: 15 Females, 30 Males
- ▶ BINARY OUTCOME: 25 Died, 20 Survived
- Questions: What are the odds of survival for a 20-yr old female? Compare the odds of survival to that of a male of the same age.

Case Study III: Binary Logistic Regression Additive Model

$$\log\left(\frac{\pi_{i}}{1-\pi_{i}}\right) = \beta_{0} + \beta_{1}Age_{i1} + \beta_{2}Sex_{i2}, \quad i = 1, \dots, 45$$

- Can estimate:
 π_i (the probability of survival)
 odds of survival and
 log-odds of survival based on Age and Sex of a pioneer

Can be used to get point and interval estimates of odds ratios

Can test which predictors are relevant to determine odds of

Using R for fitting GLMs

fitting function:

glm(formula, family, data)

- ► family: link function, distribution of Y. Examples include binomial, gaussian, poisson, Gamma
- complementary functions:

- coefficients(): coefficient estimates
- summary(): prints a summary of results
- anova(): produces an analysis of variance table
- ✓ residuals
- deviance
- Optimization technique: Fisher Scoring / IWLS

Case Study III: Fitted equations

Using defaults, $\pi = P(SURVIVED)$:

sing deraults,
$$\pi = P(SONVIVLD)$$
.

(1) $\log\left(\frac{\hat{\pi}_i}{1-\hat{\pi}_i}\right) = 3.23 - 0.078 Age_i - 1.601_{Male,i}$

sing other reference status, $\pi = P(DIED)$:

Using other reference status, $\pi = P(DIED)$:

$$\log\left(rac{\hat{\pi}_i}{1-\hat{\pi}_i}
ight) = -3.23 + 0.078 Age_i + 1.60\mathbb{1}_{Male,i}$$

Using sex reference group as Males, $\pi = P(SURVIVED)$:

(3)
$$\log\left(\frac{\hat{\pi}_i}{1-\hat{\pi}_i}\right) = 1.63 - 0.078 Age_i + 1.60 \mathbb{1}_{\textit{Female},i}$$

Using sex reference group as Males, $\pi = P(DIED)$:

$$\log\left(rac{\hat{\pi}_i}{1-\hat{\pi}_i}
ight) = -1.63 + 0.078 Age_i - 1.60 \mathbb{1}_{Female,i}$$

Binary Logistic Regression

Case Study III: Using Fitted equation

Using the fitted equation for $\pi = P(SURVIVED)$:

$$\log\left(rac{\hat{\pi}_i}{1-\hat{\pi}_i}
ight) = 1.63 - 0.078 Age_i + 1.601_{Female,i},$$

Q: Estimate the log odds, odds and probability of survival for a:

Log odds,
$$\log(\frac{\hat{\pi}}{1-\hat{\pi}})$$
 Odds, $\frac{\hat{\pi}}{1-\hat{\pi}}$ $\hat{\pi}$

(i) 20-yr old Female
(ii) 40-yr old Female
(iii) 20-yr old Male
(iv) 40-yr old Male
(iv) 40-yr old Male
(iv) 40-yr old Male

Case Study III: Using Fitted equation

Using the fitted equation for $\pi = P(SURVIVED)$:

$$\log\left(rac{\hat{\pi}_i}{1-\hat{\pi}_i}
ight) = 1.63 - 0.078 Age_i + 1.60\mathbb{1}_{\textit{Female},i},$$

Q: Estimate the log odds, odds and probability of survival for a:

	Log odds, $\log(\frac{\hat{\pi}}{1-\hat{\pi}})$	Odds, $\frac{\hat{\pi}}{1-\hat{\pi}}$	$\hat{\pi}$
(i) 20-yr old Female	1.67	5.31	0.84
(i) 20-yr old Female (ii) 40-yr old Female	0.11	1.12	0.53
(iii) 20-yr old Male (iv) 40-yr old Male	0.07 -1.49	1.07 0.225	0.52 0.18

Qs: Compare the odds of survival for a 40-yr old Female to that of a 20-yr old Female. Compare the odds of survival for a 20-yr old Female to that of a Male of the same age.

Case Study III: Odds Ratios

1. Compare the odds of survival for a 40-yr old Female to that of a 20-yr old Female.

$$\frac{1.12}{5.31} = 0.21 \approx \frac{1}{5}$$

Hence, the odds of survival for a 20-yr old Female are about 5 times the odds for a 40-yr old Female.

2. Compare the odds of survival for a 20-yr old Female to that of a Male of the same age.

$$\frac{5.31}{1.07} = 4.96 \approx 5$$

Hence, the odds of survival for a 20-yr old Female are about 5 times the odds for a Male of the same age.

Interpreting coefficients of a Binary Logistic model

For $\pi = P(Y = 1)$, we model

$$\log\left(\frac{\pi}{1-\pi}\right) = \log \operatorname{odds}_{\{Y=1\}} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Let ω be the odds that Y=1 based on X_1,\ldots,X_p , then

$$\omega = \exp\{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p\}.$$

Interpretation of β_1 : Holding X_2, \ldots, X_p fixed, the ratio of the

odds ('ODDS RATIO') that
$$Y=1$$
 at $X_1=a$ to $X_1=b$ is
$$\frac{\omega_a}{\omega_b}=\exp\{\beta_1(a-b)\}.=\frac{\beta_s+\beta_1\alpha+\beta_2\chi_2+\ldots+\beta_p\chi_p}{e^{\beta_0+\beta_1}b+\beta_2\chi_2+\ldots+\beta_p\chi_p}$$

2B₁ 24 0 * e^B1

If X_1 increases by 1 unit, holding all other X's constant, the odds that Y=1 change by a multiplicative factor of e^{β_1} .

Binary Logistic Regression

Case Study III: Using coefficients to find Odds Ratios

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \widehat{\beta}_2 X_2 = 1.63 - 0.078 Age + 1.601_{\textit{Female}}$$

1. (Fixed Sex) Compare the odds of survival for a 40-yr old (Female/Male) to that of a 20-yr old (Female/Male).

$$\exp\{-0.78(40-20)\} = 0.21 \approx \frac{1}{5}$$

Hence, the odds of survival for a 20-yr old are about 5 times the odds for a 40-yr old of the same sex.

2. (Fixed Age) Compare the odds of survival for a 20-yr old Female to that of a Male of the same age.

$$\exp\{1.60(1-0)\} = 4.95 \approx 5$$

Hence, the odds of survival for a Female are about 5 times the odds for a Male of the same age.

Next

- ► Confidence interval for Odds Ratio
- ▶ Testing β 's → Higher-order Models