```
#import dataset
import pandas as pd
df = pd.read_csv('/content/bank-full.csv', sep=';')
df
```

→		age	job	marital	education	default	balance	housing	loan	con
	0	58	management	married	tertiary	no	2143	yes	no	unk
	1	44	technician	single	secondary	no	29	yes	no	unk
	2	33	entrepreneur	married	secondary	no	2	yes	yes	unk
	3	47	blue-collar	married	unknown	no	1506	yes	no	unk
	4	33	unknown	single	unknown	no	1	no	no	unk
	•••									
	45206	51	technician	married	tertiary	no	825	no	no	CI
	45207	71	retired	divorced	primary	no	1729	no	no	CI
	45208	72	retired	married	secondary	no	5715	no	no	CI
	45209	57	blue-collar	married	secondary	no	668	no	no	telep
	45210	37	entrepreneur	married	secondary	no	2971	no	no	CI

45211 rows × 17 columns

#Checking for null values
df.isnull().sum()

0 0 age job 0 marital 0 education default 0 balance 0 housing 0 loan 0 contact 0 day 0 month 0 duration 0 campaign 0 pdays 0 previous 0 poutcome 0 у

dtype: int64

df.describe()

	age	balance	day	duration	campaign	pd
count	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000
mean	40.936210	1362.272058	15.806419	258.163080	2.763841	40.197
std	10.618762	3044.765829	8.322476	257.527812	3.098021	100.128
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.000
25%	33.000000	72.000000	8.000000	103.000000	1.000000	-1.000
50%	39.000000	448.000000	16.000000	180.000000	2.000000	-1.000
75%	48.000000	1428.000000	21.000000	319.000000	3.000000	-1.000
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	871.000

```
le = LabelEncoder()
label_mappings = {}
for col in df.select_dtypes(include='object').columns:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
    label_mappings[col] = dict(zip(le.classes_, le.transform(le.classes_)))
#heatmap
import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(df.corr(), annot=True)
plt.show()
\rightarrow
                                                                                 - 1.00
             age - 10.02-0.40.10L008098.109.00602.6099.109.004060480240010007.402
             job -).02<mark>21</mark>.062.107.006916.103.01330620303096004079630024009011.0.04
                                                                                - 0.75
         marital -0.4.0621 0.10.000000200000479039053007012009019915500704
       education -0.10.17.11 1 0.00.0 655091049.1010 2B 055001935.22-0054800996
         default -0.001.8905.990701 1 0.04670 0.66 707001.50 09.40 10.0010 1-0.003.0 0.80 305 0.2
                                                                                - 0.50
        balance -.0980180206506 10.0690840200450202020201503.44070205
        housing -0.1-9.103.0-D60-910-0606-10.0401.1-9.02820700-6.10204102.03-70.10.14
                                                                                - 0.25
            loan -).0-1060-1330-4070-4-90-7070-18-40-4 1 1 0.001.0 1010-2020 102-00.0-2030 0.0-2050 6
         contact -.02060492039.101.0-105027.19.01 11 0.02836.021.0-20.2-40.16.2-70.15
             day - 00390230050280094045028-D102 10.095.08.16.09305208802
#Split features and target
x = df.drop('y', axis=1)
y = df['y']
#Split into training and testing sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#create decisiontree model
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(x_train, y_train)
\rightarrow
      v DecisionTreeClassifier ① ??
     DecisionTreeClassifier()
#make prediction
y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score, classification_report
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
print('\nClassification Report: ',classification_report(y_test, y_pred))
Accuracy: 0.8736038925135464
     Classification Report:
                                                  precision recall f1-score
                                                                                         support
```

0	0.93	0.93	0.93	7952
1	0.48	0.48	0.48	1091
accuracy			0.87	9043
macro avg	0.70	0.70	0.70	9043
weighted avg	0.87	0.87	0.87	9043

```
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(2,2))
cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True,fmt="d",cmap="Blues",xticklabels=["NO","YES"],yticklabels=["NO"
plt.title("Confusion Matrix")
plt.show()
```


from sklearn.tree import plot_tree
plt.figure(figsize=(5,5))
plot_tree(model, feature_names=x.columns, class_names=["No", "Yes"], filled=True, max_dep
plt.show()

