Convolution as Smoothing

domain
$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

Sang-wook Lee(Yonsei)

Convolution as Smoothing

What is convolution? Averaging

What is averaging? Smoothing

Smoothness

Smooth: Small f'' or less wiggly

Small f'' and less wiggly

Big f'' and more wiggly

Averaging is smoothing?

- 1. Consumption smoothing in Economics
- 2. KNN
- 3. CLT

Consumption smoothing

KNN

KNN: K=1 KNN: K=100

CLT

No matter how ugly the distribution is...

Philosophy of Averaging

Local info vs. global info

Convex combination(weighted average)

$$\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i$$
 s.t. $\sum_{i=1}^{n} \frac{1}{n} = 1$

$$X^* = \sum_{i=1}^n w_i X_i$$
 s.t. $\sum_{i=1}^n w_i = 1, w_i \ge 0$

Integral as averaging

$$\bar{f} = \sum_{i=1}^{n} \frac{1}{n} f(x_i) \rightarrow \int_0^1 f(x) dx$$

Convolution as averaging

$$\sum_{i=1}^{n} \frac{1}{n} f(x_i) \to \int_0^1 f(t) dt = \int_0^1 1 \cdot f(t) dt$$

$$\sum_{i=1}^{n} w_{i} f(x_{i}) \to \int_{0}^{1} g(x-t) \cdot f(t) dt = f * g(x)$$

Why need to use convolution?

- 1. Nice algebraic properties
- 2. Kernel smoothing
- 3. Image processing
- 4. Fourier transform

Nice algebraic properties

Commutativity

$$f * g = g * f$$

Proof: By definition

$$(fst g)(t)=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au$$

Changing the variable of integration to u=t- au the result follows.

Associativity

$$f * (g * h) = (f * g) * h$$

Proof: This follows from using Fubini's theorem (i.e., double integrals can be evaluated as it

Distributivity

$$f * (g + h) = (f * g) + (f * h)$$

Proof: This follows from linearity of the integral.

Associativity with scalar multiplication

$$a(f*g) = (af)*g$$

for any real (or complex) number a.

Multiplicative identity

No algebra of functions possesses an identity for the convolution. The lack of identity is typ convolved with a delta distribution or, at the very least (as is the case of L^1) admit approxin convolution. Specifically,

$$f * \delta = f$$

where δ is the delta distribution.

Inverse element

Some distributions have an inverse element for the convolution, $S^{(-1)}$, which is defined by

$$S^{(-1)} * S = \delta.$$

The set of invertible distributions forms an abelian group under the convolution.

Complex conjugation

$$\overline{f*g}=\overline{f}*\overline{g}$$

...그만 알아보자

Kernel Smoothing

\underline{Idea}

Suppose we use a bandwidth $g(\neq h)$ and the kernel L to estimate θ_2 .

Then,

Bias
$$(\widetilde{\theta}_{2,0}(g)) = -\frac{1}{2} \mu_2(L*L) \theta_3 g^2 + o(n^{-1}g^{-5} + g^2)$$

var $(\widetilde{\theta}_{2,0}(g)) = 2n^{-2}g^{-9} \int (L''*L'')^2 \theta_0 + O(n^{-1}) + o(n^{-2}g^{-9})$
 $g_{\text{opt}} = \underset{g>0}{\operatorname{argmin}} \operatorname{MSE}(\widetilde{\theta}_{2,0}(g))$

$$= \left[\frac{18 \int (L''*L'')^2}{\mu_2(L*L)^2}\right]^{1/13} \left(\frac{\theta_0}{\theta_2^2}\right)^{1/13} n^{-2/13}$$

Kernel Smoothing

Image processing

$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$
 filter signal

Fourier Transform

$$\mathcal{F}\{g*h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

What is Fourier transform?

$$\mathcal{L}(f) = \int_{-\infty}^{+\infty} e^{-xt} f(x) dx = F_1(t)$$

$$\mathfrak{F}(f) = \int_{-\infty}^{+\infty} e^{-ixt} f(x) dx = F_2(t)$$

$$f(x) \to F(t)$$

Why need to know Fourier transform?

- 1. Solving differential equation
- 2. Image process
- 3. Fourier series
- 4. MGF, characteristic function

Image process

Fourier transforms of natural images

Example

Seolgwangeun.jpg 750x750 jpeg image Thus the SVD of the image has 750 summands

rank 3 rank 45 rank 297

Image process

Spatial domain filtering

Frequency domain filtering

Taylor series vs. Fourier series

Taylor series:
$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$

Fourier series:
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

where
$$c_n = \int_{-\infty}^{+\infty} e^{-int} f(t) dt$$

???

MGF, CF

$$M_X(t) = E(e^{Xt}) = \int_{-\infty}^{+\infty} e^{-xt} f(x) dx = \mathcal{L}(f)$$

$$\phi_X(t) = E(e^{iXt}) = \int_{-\infty}^{+\infty} e^{-ixt} f(x) dx = \Im(f)$$

Summary

What is convolution? Averaging

What is averaging? Smoothing

What is Fourier? Awesome thing

Reference

- [1] Yongho Jeon (Yonsei), (2019) "Nonparametric Function Estimation" lecture note
- [2] Sunjoo Kim(Yonsei), (2019), "Computer Vision" lecture note
- [3] Bumsup Ham, (2018), "Introductory Artificial Intelligence" lecture note
- [4] Kwangeun Seol, (2018), "Seoulkwangeun.jpg" 존잘 사진

질문 받아요

감사합니다

