ML-101: Neural Networks

BY SARTHAK CONSUL

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is ficensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Perceptron – predecessor to the neuron

inputs

weights weighted unit step function sum

Focus on ideal weight not best output

Frank Rosenblatt, 1957

Problems with the Perceptron

- Cannot learn unless right features are used.
 Need to choose by hand enough features IMPRACTICAL
- ❖Eg. XNOR: Positive Cases (1,1), (0,0); Negative Cases (1,0), (0,1)

Can't RETURN OF THE SITH ISIGMOID

Pattern differentiation (of same pixels and with wrap around)

Components of the Neural Network

- Biases & Weights
- Activation Function
- Layers
- Neurons

Neural Network Architectures

- Feedforward Network
- Recurrent Network

Softmax Classifier (Multinomial logistic Regression)

A 'soft' max function (s=log probabilities of class)

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

- Want to maximize the log likelihood
- Loss Function

$$L_i = -\log P(Y = y_i | X = x_i)$$

$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation

- Essentially Chain Rule
- ❖ Eg. f(x, y, z) = (x + y).z

$$q(x,y) = x + y$$
 $f = q.z$

$$\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

For another step by step example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Why Zero Mean Data?

- Suppose input is always positive
- $f(w^Tx + b)$
- $\frac{\partial f}{\partial w} = x \ge 0$
- \star Gradient $\frac{dy}{dw}$, always positive or negative
- Inefficient Gradient Updates!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

- o squashes range to (0,1)
- + nice interpretation of saturating firing rate of neuron
- Gradients 'killed' at saturation
- not zero centered
- exp() is computationally expensive
- o squashes range to (-1,1)
- + zero centered
- Gradients 'killed' at saturation
- + Does not saturate (for x>0)
- + Computationally efficient
- + Faster convergence (6x)
- + Closer approximation to biological neurons
- -not zero centered
- Gradient saturation in -ve region

Activation functions contd.

Leaky ReLU $\max(0.1x, x)$

ELU

- + neuron will not 'die'
- o PReLU has parameter of slope for x<0
- +closer to zero centering

- + closer to zero centering
- computation requires exp()
- + robustness to noise
- + does not saturate

Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

- + generalizes ReLU and Leaky ReLU
- + non-linearity
- Twice the parameters

ConvNets

- Image Classification
- ❖Image Retrieval
- Detection
- Segmentation
- Image Captioning
- ❖Fun Stuff!
 - DeepArt
 - Self Driving Cars
 - Street sign recognition

No errors

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

Minor errors

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Somewhat related

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Source: Justin Johnson

Convolution

- ♦ Image of size 32 × 32 × 3
- $^{\circ}$ 'Slide' filter size $5 \times 5 \times 3$ (Conv5)
- ❖Similar to Grey Transforms

Convolution

Stride in Conv. Layers

- ❖Input of size 7 x 7
- 3×3 (Conv3) with stride = 2

❖Output Size = (N-F)/Stride + 1

Max Pooling

- Makes layer more manageableOne method of Downsampling
- ❖Input of size 4 x 4
- 2×2 MaxPool with stride = 2

❖Output Size = (N-F)/Stride + 1

1	1	2	4
5	6	8	8
3	3	4	0
1	2	3	4

Convolutional Network

- ConvNet is sequence of convolutional layers, interspersed with activation functions
 - ❖[(Conv-ReLU)*N-POOL]*M (FC-ReLU)*K-Softmax

https://cs.stanford.edu/people/karpathy/connetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/image_regression.html

Deep Learning Demos

- https://playground.tensorflow.org/
- http://deeplearning.net/demos/