Package 'psychReport'

October 14, 2022

2 psychReport-package

14
 15
 15
 16
 17
 18
 19
 20
 21
 22
 23
 23
 24
 25
 26
 27
 28
 29
31
31

Description

Helper functions for producing reports in Psychology (Reproducible Research). Provides required formatted strings (APA style) for use in 'Knitr'/'Latex' integration within *.Rnw files.

Author(s)

Maintainer: Ian G Mackenzie <ian.mackenzie@uni-tuebingen.de> Authors:

• Carolin Dudschig <carolin.dudschig@uni-tuebingen.de>

addDataDF 3

addDataDF

addDataDF

Description

Add simulated ex-gaussian reaction-time (RT) data and binary error (Error = 1, Correct = 0) data to an R DataFrame. This function can be used to create simulated data sets.

Usage

```
addDataDF(dat, RT = NULL, Error = NULL)
```

Arguments

dat DataFrame (see createDF)

RT RT parameters (see rtDist)

Error Error parameters (see errDist)

Value

DataFrame with RT (ms) and Error (bool) columns

```
# Example 1: default dataframe
dat <- createDF()</pre>
dat <- addDataDF(dat)</pre>
hist(dat$RT, 100)
table(dat$Error)
# Example 2: defined overall RT parameters
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))</pre>
dat \leftarrow addDataDF(dat, RT = c(500, 150, 100))
boxplot(dat$RT ~ dat$Comp)
table(dat$Comp, dat$Error)
# Example 3: defined RT + Error parameters across conditions
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))</pre>
dat <- addDataDF(dat,</pre>
  RT = list(
    "Comp comp" = c(500, 80, 100),
    "Comp incomp" = c(550, 80, 140)
  ),
  Error = list(
    "Comp comp" = 5,
    "Comp incomp" = 10
  )
boxplot(dat$RT ~ dat$Comp)
```

4 aovDispMeans

```
table(dat$Comp, dat$Error)
# Example 4:
# create dataframe with defined RT + Error parameters across different conditions
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp", "neutral")))</pre>
dat <- addDataDF(dat,</pre>
  RT = list(
    "Comp comp" = c(500, 150, 100),
    "Comp neutral" = c(550, 150, 100),
    "Comp incomp" = c(600, 150, 100)
  ),
  Error = list(
    "Comp comp" = 5,
    "Comp neutral" = 10,
    "Comp incomp" = 15
  )
)
boxplot(dat$RT ~ dat$Comp)
table(dat$Comp, dat$Error)
# Example 5:
# create dataframe with defined RT + Error parameters across different conditions
dat <- createDF(</pre>
  nVP = 50, nTrl = 50,
  design = list(
    "Hand" = c("left_a", "right_a"),
    "Side" = c("left_a", "right_a")
  )
)
dat <- addDataDF(dat,</pre>
  RT = list(
    "Hand:Side left_a:left_a" = c(400, 150, 100),
    "Hand:Side left_a:right_a" = c(500, 150, 100),
    "Hand: Side right_a: left_a" = c(500, 150, 100),
    "Hand:Side right_a:right_a" = c(400, 150, 100)
  ),
  Error = list(
    "Hand:Side left_a:left_a" = c(5, 4, 2, 2, 1),
    "Hand:Side left_a:right_a" = c(15, 4, 2, 2, 1),
    "Hand:Side right_a:left_a" = c(15, 7, 4, 2, 1),
    "Hand:Side right_a:right_a" = c(5, 8, 5, 3, 1)
  )
)
boxplot(dat$RT ~ dat$Hand + dat$Side)
table(dat$Error, dat$Hand, dat$Side)
```

aovDispTable 5

Description

Displays marginal means from model.tables in the command window.

Usage

```
aovDispMeans(aovObj, value = "value", caption = sys.call())
```

Arguments

aov0bj Output from aov or ezANOVA (NB. ezANOVA must be called with \"return_aov = TRUE\"")

value String for column name

caption Required for heading

Examples

 ${\tt aovDispTable}$

aovDispTable

Description

Display formatted ANOVA table in command window.

Usage

```
aovDispTable(aovObj, caption = sys.call())
```

6 aovEffectSize

Arguments

aov0bj Output from aov or ezANOVA

caption Required for heading

Examples

 ${\tt aovEffectSize}$

aovEffectSize

Description

Add effect size to ANOVA table. Effect sizes: partial eta squared (pes), vs. ges (generalized eta squared, NB: default when using ezANOVA).

Usage

```
aovEffectSize(aovObj, effectSize = "pes")
```

Arguments

aov0bj Output from aov or ezANOVA effectSize Effect size (pes vs. ges)

Value

list

Examples

```
# Example 1:
# create dataframe with 2(Comp: comp vs. incomp) and 2(Side: left vs. right) factors/levels
dat <- createDF(nVP = 20, nTrl = 1,</pre>
                 design = list("Comp" = c("comp", "incomp", "neutral"),
                                "Side" = c("left", "right")))
dat <- addDataDF(dat,</pre>
                  RT = list("Comp:Side comp:left"
                                                        = c(500, 150, 150),
                                                        = c(500, 150, 150),
                             "Comp:Side comp:right"
                             "Comp:Side incomp:left" = c(550, 150, 150),
                             "Comp:Side incomp:right" = c(550, 150, 150),
                             "Comp:Side neutral:left" = c(525, 150, 150),
                            "Comp:Side neutral:right" = c(525, 150, 150))
aovRT <- aov(RT ~ Comp * Side + Error(VP/(Comp*Side)), dat)</pre>
aovDispMeans(aovRT)
aovRT <- aovEffectSize(aovRT)</pre>
aovRT <- aovDispTable(aovRT)</pre>
# or with ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),</pre>
                  return_aov = TRUE, detailed = TRUE)
aovRT <- aovEffectSize(aovRT)</pre>
aovDispTable(aovRT)
```

aovJackknifeAdjustment

adjustJackknifeAdjustment

Description

Adjust ezANOVA table with corrected F (Fc = $F/(n-1)^2$) and p values for jackkniffed data (see Ulrich and Miller, 2001. Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816-827.)

Usage

```
aovJackknifeAdjustment(aovObj, numVPs)
```

Arguments

aov0bj Output from aov or ezANOVA numVPs The number of participants 8 aovRoundDigits

Value

list

Examples

```
# Example 1:
# create dataframe with 2(Comp: comp vs. incomp) and 2(Side: left vs. right) factors/levels
dat <- createDF(nVP = 20, nTrl = 1,</pre>
                design = list("Comp" = c("comp", "incomp"),
                               "Side" = c("left", "right")))
dat <- addDataDF(dat,</pre>
                 RT = list("Comp:Side comp:left"
                                                      = c(500, 150, 150),
                            "Comp:Side comp:right" = c(500, 150, 150),
                            "Comp:Side incomp:left" = c(500, 150, 150),
                            "Comp:Side incomp:right" = c(500, 150, 150))
aovRT <- aov(RT ~ Comp*Side + Error(VP/(Comp*Side)), dat)</pre>
aovRT <- aovJackknifeAdjustment(aovRT, length(unique(dat$VP)))</pre>
aovDispTable(aovRT)
# or with ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),</pre>
                 return_aov = TRUE, detailed = TRUE)
aovRT <- aovJackknifeAdjustment(aovRT, length(unique(dat$VP)))</pre>
aovDispTable(aovRT)
```

aovRoundDigits

aovRoundDigits

Description

Round digits to n decimal places in ezANOVA table

Usage

```
aovRoundDigits(aovObj)
```

Arguments

aov0bj

Output from aov or ezANOVA

Value

dataframe

Examples

```
# Example 1:
# create dataframe with 2(Comp: comp vs. incomp) and 2(Side: left vs. right) factors/levels
dat <- createDF(nVP = 20, nTrl = 1,</pre>
                 design = list("Comp" = c("comp", "incomp"),
                                "Side" = c("left", "right")))
dat <- addDataDF(dat,</pre>
                  RT = list("Comp:Side comp:left"
                                                       = c(500, 150, 150),
                             "Comp:Side comp:right" = c(500, 150, 150),
                             "Comp:Side incomp:left" = c(500, 150, 150),
                             "Comp:Side incomp:right" = c(500, 150, 150))
aovRT <- aov(RT ~ Comp*Side + Error(VP/(Comp*Side)), dat)</pre>
aovRT <- aovRoundDigits(aovRT)</pre>
aovDispTable(aovRT)
# or using ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),</pre>
                  return_aov = TRUE, detailed = TRUE)
aovRT <- aovRoundDigits(aovRT)</pre>
aovDispTable(aovRT)
```

aovSphericityAdjustment

aovSphericityAdjustment

Description

Adjust ezANOVA table with corrections for sphericity (Greenhouse-Geisser or Huynh-Feldt). Called by default within aovTable

Usage

```
aovSphericityAdjustment(aovObj, type = "GG", adjDF = TRUE)
```

Arguments

aov0bj The returned object from a call to ezANOV	
type	"GG" (Greenhouse-Geisser) or "HF" (Huynh-Feldt)
adiDF	TRUE/FALSE Should DF's be adjusted?

Value

list

10 aovTable

Examples

aovTable

aovTable

Description

Adjust ezANOVA table output. Options include calculation of alternative effect sizes (eta squared, partial eta squared), the calculation of marginal means and formatting options for the ANOVA table (e.g., detailed, rounding).

Usage

```
aovTable(
  aovObj,
  effectSize = "pes",
  sphericityCorrections = TRUE,
  sphericityCorrectionType = "GG",
  sphericityCorrectionAdjDF = FALSE,
  removeSumSquares = TRUE
)
```

Arguments

```
aov0bj Output from aov or ezANOVA (NB. ezANOVA must be called with detailed = TRUE)

effectSize Effect size (pes vs. ges)

sphericityCorrections

TRUE/FALSE (ezANOVA)
```

aovTidyTable 11

```
sphericityCorrectionType

"GG" (default) vs. "HF" (ezANOVA)

sphericityCorrectionAdjDF

TRUE/FALSE Should DF's values be corrected?

removeSumSquares

TRUE/FALSE Remove SSn/SSd columns from the ANOVA table
```

Value

list

Examples

```
# Example 1:
# create dataframe with 2(Comp: comp vs. incomp) and 2(Side: left vs. right) factors/levels
dat <- createDF(nVP = 20, nTrl = 1,</pre>
                 design = list("Comp" = c("comp", "incomp"),
                                "Side" = c("left", "right")))
dat <- addDataDF(dat,</pre>
                  RT = list("Comp:Side comp:left"
                                                       = c(500, 150, 150),
                             "Comp:Side comp:right" = c(500, 150, 150),
                             "Comp:Side incomp:left" = c(500, 150, 150),
                             "Comp:Side incomp:right" = c(500, 150, 150))
aovRT <- aov(RT ~ Comp*Side + Error(VP/(Comp*Side)), dat)</pre>
aovRT <- aovTable(aovRT)</pre>
# or using ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),</pre>
                  return_aov = TRUE, detailed = TRUE)
aovRT <- aovTable(aovRT)</pre>
```

aovTidyTable

aovTidyTable

Description

Take output from base aov function and produce a "tidy" ANOVA table similar to the output of ezANOVA. The output also contains the marginal means.

Usage

```
aovTidyTable(aovObj)
```

Arguments

aov0bj

Output from aov function

12 ciStrT

Value

list

Examples

ciStrT

ciStrT

Description

Returns a string with the 95% CI from a t.test in Latex format.

Usage

```
ciStrT(tObj, numDigits = 0, unit = "")
```

Arguments

tObj The returned object from a call to t.test numDigits The number of digits to round to unit "" vs. "ms" vs. "mv" vs. "%"

Value

character

createDF 13

createDF

createDF

Description

Create dataframe (see also addDataDF)

Usage

```
createDF(
  nVP = 20,
  nTrl = 50,
  design = list(A = c("A1", "A2"), B = c("B1", "B2"))
)
```

Arguments

nVP Number of participants

nTrl Number of trials per factor/level for each participant

design Factors and levels

Value

dataframe

```
# Example 1
dat <- createDF()

# Example 2
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))

# Example 3
dat <- createDF(nVP = 50, nTrl = 50, design = list(
    "Comp" = c("comp", "incomp"),
    "Side" = c("left", "right", "middle")
))</pre>
```

effectsizeValueString

effectsizeValueString effectsizeValueString

Description

Returns required Latex formatted string for effect size (partial eta squared) = XXX for R/knitr integration. Returns values to 2 sig decimal places.

Usage

```
effectsizeValueString(aovObj, effect, effectSize = "pes")
```

Arguments

aov0bj	Output from aov or ezANOVA (NB. ezANOVA must be called with detailed = TRUE)
effect	The effect within the ANOVA table to return
effectSize	pes (partial eta squared) vs. ges (generalised eta squared)

Value

character

```
# Example 1:
# create dataframe and add data with 2(Comp: comp vs. incomp) and 2(Side: left vs. right)
dat <- createDF(nVP = 20, nTrl = 1,</pre>
                 design = list("Comp" = c("comp", "incomp"),
                                "Side" = c("left", "right")))
dat <- addDataDF(dat, RT = list("Comp:Side comp:left"</pre>
                                                            = c(500, 150, 100),
                                  "Comp:Side comp:right" = c(500, 150, 100),
                                  "Comp:Side incomp:left" = c(520, 150, 100),
                                  "Comp: Side incomp:right" = c(520, 150, 100))
aovRT <- aov(RT ~ Comp*Side + Error(VP/(Comp*Side)), dat)</pre>
aovRT <- aovTable(aovRT)</pre>
pesString <- effectsizeValueString(aovRT, "Comp") # partial eta squared</pre>
pesString <- effectsizeValueString(aovRT, "Comp:Side")</pre>
# or using ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),
                  return_aov = TRUE, detailed = TRUE)
aovRT <- aovTable(aovRT)</pre>
pesString <- effectsizeValueString(aovRT, "Comp") # partial eta squared</pre>
```

errDist 15

```
pesString <- effectsizeValueString(aovRT, "Comp:Side")</pre>
```

errDist

errDist

Description

Returns a random vector of 0's (correct) and 1's (incorrect) with defined proportions (default = 10% errors).

Usage

```
errDist(n = 10000, proportion = 10)
```

Arguments

n Number

proportion Approximate proportion of errors in percentage

Value

double

Examples

```
# Example 1: approx 10% errors
x <- errDist(1000)
table(x)

# Example 2: approx 20% errors
x <- errDist(1000, 20)
table(x)</pre>
```

fValueString

fValueString

Description

Returns required Latex formatted string for F(df1, df2) = XXX for R/knitr integration. For example, F(1, 23) = 3.45. Returns values to 2 sig decimal places.

Usage

```
fValueString(aovObj, effect)
```

16 mathString

Arguments

aov0bj Output from aov or ezANOVA (NB. ezANOVA must be called with detailed =

TRUE)

effect The effect within the ANOVA table to return

Value

character

Examples

```
# Example 1:
# create dataframe and add data with 2(Comp: comp vs. incomp) and 2(Side: left vs. right)
dat \leftarrow createDF(nVP = 20, nTrl = 1,
                 design = list("Comp" = c("comp", "incomp"),
                                "Side" = c("left", "right")))
                                                            = c(500, 150, 100),
dat <- addDataDF(dat, RT = list("Comp:Side comp:left"</pre>
                                  "Comp:Side comp:right" = c(500, 150, 100),
                                  "Comp:Side incomp:left" = c(520, 150, 100),
                                  "Comp:Side incomp:right" = c(520, 150, 100))
# or using ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),</pre>
                  return_aov = TRUE, detailed = TRUE)
aovRT <- aovTable(aovRT)</pre>
fString <- fValueString(aovRT, "Comp")</pre>
fString <- fValueString(aovRT, "Comp:Side")</pre>
```

mathString

mathString

Description

Returns formatted string following addition/subtraction.

Usage

```
mathString(str1, str2, operation = "-", numDigits = 0, unit = "ms")
```

Arguments

```
        str1
        string

        str2
        string

        operation
        "+", "-", "*", "/"
```

meanStrAov 17

```
\begin{array}{ll} \mbox{numDigits} & \mbox{number } 0 \mbox{ (default)} \\ \mbox{unit} & \mbox{"ms"} \mbox{, "mV"} \mbox{, "mv", or "\%"} \end{array}
```

Examples

```
# Example 1:
string <- mathString("550 ms", "480 ms", "-")
# Example 2:
string <- mathString("2.34", "1.65", "+", numDigits = 2, unit = "mV")</pre>
```

meanStrAov

meanStrAov

Description

Returns marginal means from ezANOVA object for requested effect in Latex format. Assumes means added to aovObj (e.g., aovObj\$means <- model.tables(aovObj\$aov, type = "mean").

Usage

```
meanStrAov(aovObj, effect, level, unit = "ms", numDigits = 0)
```

Arguments

aov0bj	Output from aov or ezANOVA (NB. ezANOVA must be called with detailed = TRUE)
effect	Effect to return
level	Level of effect
unit	"ms" vs. "mv" vs. "%"
numDigits	"ms" vs. "mv" vs. "%"

Value

character

18 meanStrT

meanStrT

meanStrT

Description

Returns a string with the mean value from a t.test in Latex format.

Usage

```
meanStrT(tObj, numDigits = 0, unit = "")
```

Arguments

tObj The returned object from a call to t.test numDigits The number of digits to round to unit "" vs. "ms" vs. "mv" vs. "%"

Value

character

normData 19

normData

normData

Description

Aggregate data returning the mean, standard deviation, and standard error

Usage

```
normData(data, idvar, dvs)
```

Arguments

data A dataframe
idvar Column indicating the individual participants
dvs List of numeric data columns to normalise

Value

dataframe

```
# Example 1:
library(dplyr)
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))</pre>
dat <- addDataDF(dat,</pre>
  RT = list(
    "Comp comp" = c(500, 80, 100),
    "Comp incomp" = c(550, 80, 140)
  ),
  Error = list(
    "Comp comp" = 5,
    "Comp incomp" = 10
  )
)
datAggVP <- dat %>%
  group_by(VP, Comp) %>%
  summarize(
    N = n()
```

20 numValueString

```
RT = mean(RT[Error == 0]),
ER = (sum(Error) / N) * 100
)
datAggVP <- normData(datAggVP, "VP", c("RT", "ER"))</pre>
```

numValueString

numValueString

Description

Returns numerical value with requested unit in Latex format with numDigits number of decimal places and unit symbol.

Usage

```
numValueString(value, numDigits = 2, unit = "")
```

Arguments

```
value number  \label{eq:number} numDigits \qquad number \ 2 \ (default)  unit  \ "ms", "mv", "mV", or "\%" \ or "" \ (default)
```

Value

character

```
# Example 1:
string <- numValueString(100.341, 0, "ms")
# Example 2:
string <- numValueString(2.3412, 2, "mv")
# Example 3:
string <- numValueString(63.9812, 2, "")</pre>
```

printAovMeans 21

printAovMeans

printAovMeans

Description

Returns Latex formatted table of marginal means from model.tables. Uses printTable (xtable) latex package with some basic defaults. For more examples, see R package xtable

Usage

```
printAovMeans(..., caption = "Mean", digits = 3, dv = "ms")
```

Arguments

Output from aov or ezANOVA (NB. ezANOVA must be called with detailed = TRUE)

Caption Title for the table

digits Number of digits to round to

Name of the dependent variable (e.g., "ms", "%")

Value

character

22 printTable

printTable	printTable
printrable	ртинганы

Description

Returns Latex formatted table from dataframe or ezANOVA ANOVA table. Uses xtable latex package with some basic defaults. For more examples, see R package xtable

Usage

```
printTable(obj, caption = "DF", digits = 3, onlyContents = FALSE)
```

Arguments

obj Dataframe/ezANOVA object to print
caption Title of the dataframe
digits Number of digits to round to NB. length can be 1, or vector with length equal to the number of numeric columns

onlyContents TRUE/FALSE

Value

character

```
# Example 1:
library(ez)
# create dataframe
dat <- createDF(nVP = 6, nTrl = 1,</pre>
                design = list("Comp" = c("comp", "incomp", "neutral")))
dat <- addDataDF(dat, RT = list("Comp comp" = c(500, 150, 100),
                                 "Comp incomp" = c(520, 150, 100),
                                 "Comp neutral" = c(510, 150, 100))
printTable(dat, digits = c(0, 2)) # latex formatted
printTable(dat, digits = 0)
                                   # latex formatted
dat$VP <- as.factor(dat$VP)</pre>
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp),</pre>
                 return_aov = TRUE, detailed = TRUE)
aovRT <- aovTable(aovRT)</pre>
printTable(aovRT$ANOVA) # latex formatted
printTable(aovRT$ANOVA, digits = c(0,2,2,2)) # latex formatted
```

pValueString 23

pValueString

pValueString

Description

Returns Latex formatted string from a p-value required for R/knitr integration. For example, p = 0.11 or p < 0.01 Returns values to 3 sig decimal places or < .001

Usage

```
pValueString(pVal)
```

Arguments

pVal

p-value between 0 and 1

Value

character

Examples

```
# Example 1:
pString <- pValueString(0.670)
# Example 2:
pString <- pValueString(0.1234)
# Example 3:
pString <- pValueString("0.03")</pre>
```

pValueSummary

pValueSummary

Description

Returns p-values summarized using ***, **, *, or exact value when p > .05 (default 2 significant decimal places).

Usage

```
pValueSummary(pVal)
```

Arguments

pVal

vector with p-value between 0 and 1

24 requiredPackages

Value

character

Examples

```
# Examples:
psum <- pValueSummary(0.0067)
psum <- pValueSummary(c(0.0001, 0.002, 0.02, 0.1))</pre>
```

requiredPackages

requiredPackages

Description

Installs (default if required) and loads specified packages.

Usage

```
requiredPackages(
  packages,
  installPackages = FALSE,
  lib = .libPaths()[1],
  repos = "http://cran.us.r-project.org"
)
```

Arguments

packages A list of packages

installPackages

TRUE/FALSE Install package if not installed

lib character vector giving the library directories where to install the packages. Re-

cycled as needed. If missing, defaults to the first element of .libPaths()

repos character vector, the base URL(s) of the repositories to use, e.g., the URL of

a CRAN mirror such as "https://cloud.r-project.org". For more details on supported URL schemes see url. Can be NULL to install from local files, directories

or URLs: this will be inferred by extension from pkgs if of length one.

rtDist 25

rtDist rtDist

Description

Returns value(s) from a distribution appropriate to simulate reaction times. The distribution is a combined exponential and gaussian distribution called an exponentially modified Gaussian (EMG) distribution or ex-gaussian distribution.

Usage

```
rtDist(n = 10000, gaussMean = 600, gaussSD = 50, expRate = 200)
```

Arguments

n Number of observations

gaussMean Mean of the gaussian distribution
gaussSD SD of the gaussian distribution
expRate Rate of the exponential function

Value

double

Examples

```
# Example 1:
x <- rtDist()
hist(x, 100)

# Example 2:
x <- rtDist(n = 20000, gaussMean = 800, gaussSD = 50, expRate = 100)
hist(x, 100)</pre>
```

sphericityValueString sphericityValueString

Description

Returns required Latex formatted string for sphericity epsilon values (HF, GG) = XXX for R/knitr integration. Returns values to 2 sig decimal places.

Usage

```
sphericityValueString(aovObj, effect)
```

26 statStrAov

Arguments

aov0bj The returned object from a call to ezANOVA effect The effect within the ANOVA table to return

Value

character

Examples

statStrAov

statStrAov

Description

Returns Latex formatted string from ANOVA required for R/knitr integration. For example,

$$F(1,20) = 8.45, p < 0.01, pes = 0.45$$

Returns values to 2 sig decimal places and < 0.01, < 0.001 for p values.

Usage

```
statStrAov(aovObj, effect)
```

Arguments

aov0bj	Output from aov or ezANOVA (NB. ezANOVA must be called with detailed = TRUE)

effect The effect required from the anova table

statStrT 27

Examples

```
# Example 1:
# create dataframe and add data with 2(Comp: comp vs. incomp) and 2(Side: left vs. right)
dat <- createDF(nVP = 20, nTrl = 1,</pre>
                 design = list("Comp" = c("comp", "incomp"),
                                "Side" = c("left", "right")))
dat <- addDataDF(dat, RT = list("Comp:Side comp:left"</pre>
                                                             = c(500, 150, 100),
                                  "Comp:Side comp:right"
                                                             = c(500, 150, 100),
                                  "Comp:Side incomp:left" = c(520, 150, 100),
                                  "Comp:Side incomp:right" = c(520, 150, 100))
aovRT <- aov(RT ~ Comp*Side + Error(VP/(Comp*Side)), dat)</pre>
aovRT <- aovTable(aovRT)</pre>
aovString <- statStrAov(aovRT, "Comp")</pre>
aovString <- statStrAov(aovRT, "Comp:Side")</pre>
# or using ezANOVA
library(ez)
aovRT <- ezANOVA(dat, dv=.(RT), wid = .(VP), within = .(Comp, Side),
                  return_aov = TRUE, detailed = TRUE)
aovRT <- aovTable(aovRT)</pre>
aovString <- statStrAov(aovRT, "Comp")</pre>
aovString <- statStrAov(aovRT, "Comp:Side")</pre>
```

statStrT

statStrT

Description

Returns required Latex formatted string T-test required for R/Knitr integration. For example, t(11) = 3.45, p < 0.05. Returns values to 2 sig decimal places and < 0.01, < 0.001 for p values.

Usage

```
statStrT(t0bj)
```

Arguments

t0bj

The returned object from a call to t.test

Value

character

28 summaryMSDSE

Examples

summaryMSDSE

summaryMSDSE

Description

Aggregate data returning the mean, standard deviation, and standard error

Usage

```
summaryMSDSE(data, factors, dvs, withinCorrection = NULL)
```

Arguments

data A dataframe

factors List of factors over which to aggregate

dvs List of numeric data columns to aggregate

withinCorrection

List of dvs which to apply within-subjects correction to the calculation of the standard deviation and standard error. Within-subject correction calculated according to Morey (2008). NB Data should be normed first (see normData).

Value

dataframe

tValueString 29

```
# Example 1:
library(dplyr)
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))</pre>
dat <- addDataDF(dat,</pre>
  RT = list(
    "Comp comp" = c(500, 80, 100),
    "Comp incomp" = c(550, 80, 140)
  Error = list(
    "Comp comp" = 5,
    "Comp incomp" = 10
  )
)
datAggVP <- dat %>%
  group_by(VP, Comp) %>%
  summarize(
   N = n(),
    RT = mean(RT[Error == 0]),
    ER = (sum(Error) / N) * 100
datAgg <- summaryMSDSE(datAggVP, "Comp", c("RT", "ER"))</pre>
# Example 2:
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))</pre>
dat <- addDataDF(dat,</pre>
  RT = list(
    "Comp comp" = c(500, 80, 100),
    "Comp incomp" = c(550, 80, 140)
  ),
  Error = list(
    "Comp comp" = 5,
    "Comp incomp" = 10
  )
)
datAggVP <- dat %>%
  group_by(VP, Comp) %>%
  summarize(
    N = n(),
    RT = mean(RT[Error == 0]),
    ER = (sum(Error) / N) * 100
datAggVP <- normData(datAggVP, "VP", c("RT", "ER"))</pre>
datAgg <- summaryMSDSE(</pre>
  datAggVP, "Comp", c("RT", "ER", "RT_norm", "ER_norm"),
  c("RT_norm", "ER_norm")
)
```

30 tValueString

Description

Returns required Latex formatted string for t(df) = XXX for R/knitr integration. Returns values to 2 sig decimal places.

Usage

```
tValueString(tObj)
```

Arguments

t0bj

The returned object from a call to t.test

Value

character

Index

```
addDataDF, 3
aovDispMeans, 4
aovDispTable, 5
aovEffectSize, 6
aovJackknifeAdjustment, 7
{\tt aovRoundDigits}, {\tt 8}
aovSphericityAdjustment, 9
aovTable, 10
aovTidyTable, 11
ciStrT, 12
createDF, 13
effectsizeValueString, 14
errDist, 15
fValueString, 15
mathString, 16
meanStrAov, 17
meanStrT, 18
normData, 19
numValueString, 20
printAovMeans, 21
printTable, 22
psychReport (psychReport-package), 2
psychReport-package, 2
pValueString, 23
pValueSummary, 23
{\tt requiredPackages}, {\tt 24}
rtDist, 25
sphericityValueString, 25
statStrAov, 26
statStrT, 27
summaryMSDSE, 28
tValueString, 29
```