# CS544 Module3

Suresh Kalathur

# Module3

- Data Description
  - Univariate Data
  - Bivariate Data
  - Multivariate Data

# Types of Data

- Qualitative (categorical) data
  - Nominal data
  - Ordinal data
- Quantitative (numerical) data
  - Interval data
    - Measured on a scale of equal-sized units
  - Ratio data
    - Order of magnitude is also important

# Categorical Data

- Non-visual representations
  - Tables
    - table(x)
- Visual representations
  - Barplot, Piechart, etc.
  - Examples

## **Numerical Data**

- Measures of center and spread
  - Mean, median, mode
  - Range, variance, standard deviation
- Five number summary
  - fivenum(x) versus summary(x)
- Quantiles
- Z-scores

## ...Numerical Data

- Graphical representation
  - Barplot, Dotchart
  - Barplot with frequencies
  - Stem plot
  - Histogram
  - Boxplot

## **Bivariate Data**

- Contingency (two-way) tables
  - Summarize bivariate categorical data
  - table(x,y)
- Marginal Distributions of two-way tables
  - margin.table(...)
- Conditional Distributions of two-way tables
  - prop.table(...)

# ...Graphical

- Mosaic plots
- Bar plots of two-way tables
- Scatter plot
- Pair-wise plot and Correlation
- Other examples
  - IRIS dataset
  - Titanic dataset

## **Iris Flower Data Set**

Iris setosa

**Iris versicolor** 

Iris virginica







# ... Iris Data Set

- 50 samples from each species
- Four features from each sample (in cm.)
  - Sepal length
  - Sepal width
  - Petal length
  - Petal width
- Class label



## ...Iris Dataset

```
> names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
[4] "Petal.Width" "Species"
> data <- iris[c(1:4)]</pre>
>
> summary(data)
                           Petal.Length Petal.Width
  Sepal.Length Sepal.Width
                          Min. :1.0
Min. :4.3 Min. :2.0
                                       Min. :0.1
 1st Qu.:5.1 1st Qu.:2.8
                          1st Qu.:1.6
                                       1st Qu.:0.3
Median :5.8 Median :3.0
                          Median :4.3
                                       Median :1.3
                          Mean :3.8
                                       Mean :1.2
Mean :5.8 Mean :3.1
3rd Qu.:6.4 3rd Qu.:3.3
                          3rd Qu.:5.1
                                       3rd Qu.:1.8
             Max. :4.4
Max. :7.9
                          Max. :6.9
                                       Max. :2.5
```

Scatterplot and Correlation matrix

> pairs(data, pch=16, col="blue")

```
> cor(data)
            Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
                   1.00
                             -0.12
                                          0.87
                                                      0.82
Sepal.Width
                  -0.12
                                          -0.43
                                                     -0.37
                              1.00
                                                      0.96
Petal.Length
                   0.87
                                          1.00
                          -0.43
                             -0.37
Petal.Width
                   0.82
                                          0.96
                                                      1.00
```



#### > boxplot(data, col=rainbow(4))



### hist(data\$Sepal.Length, col="blue")

#### Histogram of data\$Sepal.Length



## **Mosaic Plots**

- Titanic Dataset
  - Class 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, Crew
  - Sex Male, Female
  - Age: Child, Adult
  - Survived: No, Yes

```
> # Sex
> t1 <- margin.table(Titanic, c(2))
> t1
Sex
    Male Female
    1731    470
> mosaicplot(t1, col=c("red", "blue"))
```





Sex 18

```
> # Crew, Survived
> t3 <- margin.table(Titanic, c(1, 4))</pre>
> t3
      Survived
                                    1st
                                        2nd
                                               3rd
                                                          Crew
Class
      No Yes
  1st 122 203
                                 ટ
  2nd 167 118
  3rd 528 178
  Crew 673 212
> mosaicplot(t3, col=c("red
```

Class

### Mosaic vs Bar Plots

```
> X
x \leftarrow matrix(c(50,25,10,15), nrow=2,
                                                    Pass Fail
            byrow = TRUE
                                             Class1
                                                      50 25
Х
                                             Class2 10
                                                            15
rownames(x) <- c("Class1", "Class2")</pre>
                                           > t(x)
colnames(x) <- c("Pass", "Fail")</pre>
                                                Class1 Class2
                                           Pass
                                                    50
                                                            10
X
                                           Fail
                                                    25
                                                            15
```

| <pre>&gt; addmargins(x)</pre> |      |      |     | > ad | <pre>&gt; addmargins(t(x))</pre> |        |     |  |
|-------------------------------|------|------|-----|------|----------------------------------|--------|-----|--|
|                               | Pass | Fail | Sum |      | Class1                           | Class2 | Sum |  |
| Class1                        | 50   | 25   | 75  | Pass | 50                               | 10     | 60  |  |
| Class2                        | 10   | 15   | 25  | Fail | 25                               | 15     | 40  |  |
| Sum                           | 60   | 40   | 100 | Sum  | 75                               | 25     | 100 |  |

```
par(mfrow=c(2,2))
mosaicplot(x, color=c("green", "red"),
           main = "mosaicplot(x)")
mosaicplot(t(x), color=c("red", "blue"),
           main = "mosaicplot(t(x))")
barplot(t(x), xlab = "Class",
        main = "barplot(t(x))",
        ylim=c(0,80), col=c("qreen", "red"))
legend("topright", legend = c("Pass", "Fail"),
       fill = c("green", "red"), horiz = TRUE, cex=0.8)
barplot(x, xlab = "Pass/Fail",
        main = "barplot(x)"
        vlim=c(0,80), col=c("red", "blue"))
legend("topright", legend = c("Class1", "Class2"),
       fill = c("red", "blue"), horiz = TRUE, cex=0.8)
par(mfrow=c(1,1))
```



