Deep Learning - Theory and Practice

IE 643 Lectures 9, 10

August 30 & Sep 2, 2022.

- Recap
 - MLP for prediction tasks

- MLP for multi-class classification
 - Cross-entropy
 - Training MLP for multi-class classification

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y \in \mathcal{Y}, \ \forall i \in \{1, \dots, S\}$ and MLP architecture parametrized by weights w.
- Aim of training MLP: To learn a parametrized map $h_w: \mathcal{X} \to \mathcal{Y}$ such that for the training data D, we have $y^i = h_w(x^i), \ \forall i \in \{1, \dots, S\}.$
- Aim of using the trained MLP model: For an unseen sample $\hat{x} \in \mathcal{X}$, predict $\hat{y} = h_w(\hat{x}) = MLP(\hat{x}; w)$.

Methodology for training MLP

- Design a suitable loss (or error) function $e: \mathcal{Y} \times \mathcal{Y} \to [0, +\infty)$ to compare the actual label y^i and the prediction \hat{y}^i made by MLP using $e(y^i, \hat{y}^i), \forall i \{1, \dots, S\}$.
- Usually the error is parametrized by the weights w of the MLP and is denoted by $e(\hat{y}^i, y^i; w).$
- Use Gradient descent/SGD/mini-batch SGD to minimize the total error:

$$E = \sum_{i=1}^{S} e(\hat{y}^{i}, y^{i}; w) =: \sum_{i=1}^{S} e^{i}(w).$$

4 / 59

Stochastic Gradient Descent for training MLP

SGD Algorithm to train MLP

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y^i \in \mathcal{Y}$, $\forall i$; MLP architecture, max epochs K, learning rates γ_k , $\forall k \in \{1, \ldots, K\}$.
- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ..., K
 - ► Choose a sample $j_k \in \{1, ..., S\}$.
 - Find $\hat{y}^{j_k} = MLP(x^{j_k}; w^k)$. (forward pass)
 - Compute error $e^{j_k}(w^k)$.
 - ► Compute error gradient $\nabla_w e^{j_k}(w^k)$ using backpropagation.
 - ▶ Update: $w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k} (w^k)$.
- **Output:** $w^* = w^{K+1}$.

Recall forward pass: For an arbitrary sample (x, y) from training data D, and the MLP with weights $w = (W^1, W^2, \dots, W^L)$, the prediction \hat{y} is computed using forward pass as:

$$\hat{y} = \mathsf{MLP}(x; w) = \phi(W^{L}\phi(W^{L-1}\dots\phi(W^{1}x)\dots)).$$

Recall backpropagation: For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights at ℓ -th layer is computed as:

$$abla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (a^{\ell-1})^{ op}$$

Recall backpropagation: For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights at ℓ -th layer is computed as:

$$\nabla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (a^{\ell-1})^\top$$
 where $\mathsf{Diag}(\phi^{\ell'}) = \begin{bmatrix} \phi'(z_1^\ell) & & & \\ & \ddots & & \\ & & \phi'(z_{N_\ell}^\ell) \end{bmatrix}$, $\delta^\ell = \begin{bmatrix} \frac{\partial e}{\partial z_1^\ell} \\ \vdots \\ \frac{\partial e}{\partial z_n^\ell} \end{bmatrix}$ and $a^{\ell-1} = \begin{bmatrix} a_1^{\ell-1} \\ \vdots \\ a_{N_{\ell-1}}^{\ell-1} \end{bmatrix}$.

Recall backpropagation: For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights at ℓ -th layer is computed as:

$$\nabla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (a^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} V^{\ell+2} \dots V^L \delta^L (a^{\ell-1})^\top$$
 where $V^{\ell+1} = (W^{\ell+1})^\top \mathsf{Diag}(\phi^{\ell+1'})$.

- Task considered so far: $\mathcal{Y} = \{+1, -1\}$.
- Corresponds to two-class (or binary) classification.
- Usually a single neuron at the last (*L*-th) layer of MLP, with logistic sigmoid function $\sigma: \mathbb{R} \to (0,1)$ with $\sigma(z) = \frac{1}{1+e^{-z}}$, for some $z \in \mathbb{R}$.
- **Prediction:** $MLP(\hat{x}; w) = \sigma(W^L a^{L-1})$, followed by a thresholding function.

10 / 59

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S, x^i \in \mathcal{X} \subseteq \mathbb{R}^d, y^i \in \mathcal{Y}, \ \forall i \in \{1, \dots, S\}$ and MLP architecture parametrized by weights w.
- New Task: $\mathcal{Y} = \{1, ..., C\}, C \ge 2$.
- Corresponds to multi-class classification.

Question 1: What is a suitable architecture for the MLP's last (or output) layer?

Question 2: What is a suitable loss (or error) function?

Question 1: Can the same MLP architecture with single output neuron used in binary classification be used for multi-class classification?

Question 2: Can the same logistic sigmoidal activation function for the output neuron used in binary classification be used for multi-class classification?

We will use the following approach for multi-class classification:

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S, x^i \in \mathcal{X} \subseteq \mathbb{R}^d, y^i \in \mathcal{Y}, \ \forall i \in \{1, \dots, S\}$ and MLP architecture parametrized by weights w.
- New Task: $\mathcal{Y} = \{1, \dots, C\}, C \ge 2$ corresponds to multi-class classification.

• Transform
$$y = c$$
 to $y^{onehotenc} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.

- Note: $y^{onehotenc} \in \{0,1\}^C$ corresponding to $y=c \in \mathcal{Y}$ has a 1 at c-th coordinate, and other entries as zeros.
- y^{onehotenc} is called the one-hot encoding of y.

We will use the following approach for multi-class classification:

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S, x^i \in \mathcal{X} \subseteq \mathbb{R}^d, y^i \in \mathcal{Y}, \ \forall i \in \{1, \dots, S\}$ and MLP architecture parametrized by weights w.
- New Task: $\mathcal{Y} = \{1, \dots, C\}, C \ge 2$ corresponds to multi-class classification.

• Transform
$$y = c$$
 to $y^{onehotenc} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

- Note: $y^{onehotenc} \in \{0,1\}^C$ corresponding to $y=c \in \mathcal{Y}$ has a 1 at c-th coordinate, and other entires as zeros.
- y^{onehotenc} is called the one-hot encoding of y.
- $y^{onehotenc}$ for y=c corresponds to a discrete probability distribution with its entire mass concentrated at the c-th coordinate.

What change can be made to the network architecture so that the MLP outputs a discrete probability distribution?

Step 1: Since $\mathcal{Y} = \{1, \dots, C\}$, output layer of MLP to contain C neurons.

What change can be made to the network architecture so that the MLP outputs a discrete probability distribution?

Step 1: Since $\mathcal{Y} = \{1, \dots, C\}$, output layer of MLP to contain C neurons.

However activation functions of output neurons might be arbitrary!

What change can be made to the network architecture so that the MLP outputs a discrete probability distribution?

Step 1: Since $\mathcal{Y} = \{1, \dots, C\}$, output layer of MLP to contain C neurons.

However activation functions of output neurons might be arbitrary!

How do we get probabilities as outputs?

How do we get probabilities as outputs?

Step 2: Perform a soft-max function over the outputs from output layer so that the outputs are transformed into probabilities.

How do we get probabilities as outputs?

Step 2: Perform a soft-max function over the outputs from output layer so that the outputs are transformed into probabilities.

What is a soft-max function?

What is a soft-max function?

- Given arbitrary activations $a_1^L, a_2^L, \ldots, a_C^L$ from an output layer (*L*-th layer), how do we get probabilities?
- Perform the following transformation:

$$q_j = \frac{\exp(a_j^L)}{\sum_{r=1}^C \exp(a_r^L)}, \ \forall j = 1, \dots, C.$$

• q_1, \ldots, q_C form a discrete probability distribution. (Verify this claim!)

The transformation used to obtain the probabilities q_j is called the soft-max function.

Now that the MLP outputs a discrete probability distribution, how do we compare the one-hot encoding and the output distribution?

- We will use the popular divergence measure called Kullback-Leibler divergence (or KL-divergence).
- Given two discrete probability distributions $p=(p_1,\ldots,p_C)$ and $q=(q_1,\ldots,q_C)$, where $q_j>0 \ \forall j=1,\ldots,C$, KL-divergence between p and q is defined as:

$$\mathit{KL}(p||q) = \sum_{j=1}^{C} p_j \log rac{p_j}{q_j}.$$

- **Note:** The distribution *p* is usually called the true distribution and the distribution *q* is called the predicted distribution.
- Does the soft-max function give predictions $q_j > 0, j = 1, \dots, C$?

Some useful properties of KL-divergence:

• KL-divergence is **not** a distance function.

Some useful properties of KL-divergence:

- KL-divergence is **not** a distance function.
- **Recall:** A distance function $d: X \times X \to [0, \infty)$ has the following properties:
 - ▶ d(x,x) = 0, $\forall x \in X$ (identity of indistinguishables)
 - ▶ $d(x,y) = d(y,x), \forall x, y \in X$ (Symmetry)
 - ▶ $d(x,z) \le d(x,y) + d(y,z), \forall x,y,z \in X$ (triangle inequality)

Some useful properties of KL-divergence:

- KL-divergence is **not** a distance function.
- **Recall:** A distance function $d: X \times X \to [0, \infty)$ has the following properties:
 - ▶ d(x,x) = 0, $\forall x \in X$ (identity of indistinguishables)
 - ▶ $d(x, y) = d(y, x), \forall x, y \in X$ (Symmetry)
 - ▶ $d(x,z) \le d(x,y) + d(y,z), \forall x,y,z \in X$ (triangle inequality)
- KL-divergence does not obey symmetry property.
 - Simple example: compute KL(p||q) and KL(q||p) for p = (1/4, 3/4) and q = (1/2, 1/2).

Some useful properties of KL-divergence:

- KL-divergence is **not** a distance function.
- **Recall:** A distance function $d: X \times X \to [0, \infty]$ has the following properties:
 - ▶ d(x,x) = 0, $\forall x \in X$ (identity of indistinguishables)
 - ▶ $d(x,y) = d(y,x), \forall x, y \in X$ (Symmetry)
 - ▶ $d(x,z) \le d(x,y) + d(y,z), \forall x,y,z \in X$ (triangle inequality)
- Does KL-divergence obey triangle inequality?

Some useful properties of KL-divergence:

• For two discrete probability distributions $p = (p_1, p_2, ..., p_C)$ and $q = (q_1, q_2, ..., q_C)$, $q_j > 0$, $\forall j = 1, ..., C$, $KL(p||q) \ge 0$.

KL-Divergence: Equivalent Representation

• Given two discrete probability distributions $p = (p_1, \ldots, p_C)$ and $q = (q_1, \ldots, q_C)$, where $q_j > 0 \ \forall j = 1, \ldots, C$, KL-divergence between p and q is defined as:

$$\mathit{KL}(p||q) = \sum_{j=1}^{C} p_j \log \frac{p_j}{q_j} = \sum_{j=1}^{C} p_j \log p_j - \sum_{j=1}^{C} p_j \log q_j.$$

KL-Divergence: Equivalent Representation

• Given two discrete probability distributions $p = (p_1, \ldots, p_C)$ and $q = (q_1, \ldots, q_C)$, where $q_j > 0 \ \forall j = 1, \ldots, C$, KL-divergence between p and q is defined as:

$$KL(p||q) = \sum_{j=1}^{C} p_j \log \frac{p_j}{q_j} = \sum_{j=1}^{C} p_j \log p_j - \sum_{j=1}^{C} p_j \log q_j.$$

Note: $\sum_{j=1}^{C} p_j \log p_j$ is called negative entropy associated with distribution p (denoted by NE(p)) and $-\sum_{j=1}^{C} p_j \log q_j$ is called cross-entropy between p and q (denoted by CE(p,q)).

• Hence KL(p||q) = NE(p) + CE(p,q).

Question:

• Why should we transform $y \in \mathcal{Y}$ taking an integer value, to a $y^{onehotenc}$ which represents a discrete probability distribution?

One possible answer:

- If the prediction \hat{y} made by MLP is also a discrete probability distribution, then the comparison between \hat{y} and $y^{onehotenc}$ becomes a comparison between two discrete probability distributions.
- Multiple ways to compare two probability distributions.
- Loss function design becomes possibly simpler?

Loss function using KL-Divergence:

• Given two discrete probability distributions $p = (p_1, \ldots, p_C)$ and $q = (q_1, \ldots, q_C)$, where $q_j > 0 \ \forall j = 1, \ldots, C$, KL-divergence between p and q is defined as:

$$KL(p||q) = \sum_{j=1}^{C} p_j \log \frac{p_j}{q_j} = \sum_{j=1}^{C} p_j \log p_j - \sum_{j=1}^{C} p_j \log q_j.$$

= $NE(p) + CE(p, q).$

 Our aim is to minimize the error measured using KL-divergence between the true distribution p and the predicted distribution q.

Loss function using KL-Divergence:

• Given two discrete probability distributions $p = (p_1, \ldots, p_C)$ and $q = (q_1, \ldots, q_C)$, where $q_j > 0 \ \forall j = 1, \ldots, C$, KL-divergence between p and q is defined as:

$$KL(p||q) = \sum_{j=1}^{C} p_j \log \frac{p_j}{q_j} = \sum_{j=1}^{C} p_j \log p_j - \sum_{j=1}^{C} p_j \log q_j.$$

= $NE(p) + CE(p, q).$

- Our aim is to minimize the error measured using KL-divergence between the true distribution p and the predicted distribution q.
- However, minimizing KL-divergence between p and q is equivalent to minimizing cross-entropy between p and q. (why?)

Loss function using KL-Divergence:

• Given two discrete probability distributions $p = (p_1, \ldots, p_C)$ and $q = (q_1, \ldots, q_C)$, where $q_j > 0 \ \forall j = 1, \ldots, C$, KL-divergence between p and q is defined as:

$$KL(p||q) = \sum_{j=1}^{C} p_j \log \frac{p_j}{q_j} = \sum_{j=1}^{C} p_j \log p_j - \sum_{j=1}^{C} p_j \log q_j.$$

= $NE(p) + CE(p, q).$

- Our aim is to minimize the error measured using KL-divergence between the true distribution p and the predicted distribution q.
- However, minimizing KL-divergence between p and q is equivalent to minimizing cross-entropy between p and q. (why?)
- Hence we will consider the cross-entropy between p and q as our loss function.

Cross-entropy loss function:

• Given two discrete probability distributions $p = (p_1, \ldots, p_C)$ and $q = (q_1, \ldots, q_C)$, where $q_j > 0 \ \forall j = 1, \ldots, C$, cross-entropy between p and q is defined as:

$$CE(p,q) = -\sum_{j=1}^{C} p_j \log q_j.$$

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y^i \in \tilde{\mathcal{Y}}$, $\forall i \in \{1, ..., S\}$ and MLP architecture parametrized by weights w.
- Without loss of generality, assume $\tilde{\mathcal{Y}} = \{0,1\}^C$ corresponding to the output space $\mathcal{Y} = \{1,\ldots,C\}, C \geq 2$ and y^i are one-hot encoded vectors.

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S, x^i \in \mathcal{X} \subseteq \mathbb{R}^d, y^i \in \tilde{\mathcal{Y}}, \ \forall i \in \{1, \dots, S\} \ \text{and} \ \text{MLP architecture parametrized by weights } w.$
- Aim of training MLP: To learn a parametrized map $h_w: \mathcal{X} \to \tilde{\mathcal{Y}}$ such that for the training data D, we have $y^i = h_w(x^i)$, $\forall i \in \{1, \dots, S\}$.
- Aim of using the trained MLP model: For an unseen sample $\hat{x} \in \mathcal{X}$, predict $\hat{y} = h_w(\hat{x}) = MLP(\hat{x}; w)$; to find integer label use $\operatorname{argmax}_{\hat{j}} \hat{y_j}$.

Methodology for training MLP

- Design a suitable loss (or error) function $e: \tilde{\mathcal{Y}} \times \tilde{\mathcal{Y}} \to [0, +\infty)$ to compare the actual label y^i and the prediction \hat{y}^i made by MLP using $e(y^i, \hat{y}^i)$, $\forall i\{1, \ldots, S\}$.
- recall: $e(y^i, \hat{y}^i) = CE(y^i, \hat{y}^i)$, the cross-entropy loss function.
- Usually the error is parametrized by the weights w of the MLP and is denoted by $e(\hat{y}^i, y^i; w)$.
- Use Gradient descent/SGD/mini-batch SGD to minimize the total error:

$$E = \sum_{i=1}^{S} e(\hat{y}^{i}, y^{i}; w) =: \sum_{i=1}^{S} e^{i}(w).$$

P. Balamurugan

Deep Learning - Theory and Practice

SGD for training MLP for multi-class classification

SGD Algorithm to train MLP

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y^i \in \tilde{\mathcal{Y}}$, $\forall i$; MLP architecture, max epochs K, learning rates γ_k , $\forall k \in \{1, \ldots, K\}$.
- Start with $w^0 \in \mathbb{R}^d$.
- For $k = 0, 1, 2, \dots, K$
 - ▶ Choose a sample $j_k \in \{1, ..., S\}$.
 - Find $\hat{y}^{j_k} = MLP(x^{j_k}; w^k)$. (forward pass)
 - Compute error $e^{j_k}(w^k)$ using cross-entropy loss function.
 - ► Compute error gradient $\nabla_w e^{jk}(w^k)$ using backpropagation.
 - ▶ Update: $w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k} (w^k)$.
- **Output:** $w^* = w^{K+1}$.

4 D > 4 A > 4 B > 4 B > 9 Q (

Recall forward pass: For an arbitrary sample (x, y) from training data D, and the MLP with weights $w = (W^1, W^2, \dots, W^L)$, the prediction \hat{y} is computed using forward pass as:

$$\hat{y} = \mathsf{MLP}(x; w) = \mathsf{softmax}(\phi(W^L \phi(W^{L-1} \dots \phi(W^1 x) \dots))).$$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ②

Backpropagation: For an arbitrary sample (x, y) from training data D, and the MLP with weights $w = (W^1, W^2, \dots, W^L)$, how do we compute the error gradient?

Backpropagation: Indeed, the error gradients are very similar to the binary classification setup.

Backpropagation: Indeed, the error gradients are very similar to the binary classification setup. For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights W^ℓ in ℓ -th layer is:

$$\nabla_{W^{\ell}} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^{\ell} (\mathbf{a}^{\ell-1})^{\top}$$

$$\text{where Diag}(\phi^{\ell'}) = \begin{bmatrix} \phi'(z_1^\ell) & & & \\ & \ddots & & \\ & & \phi'(z_{N_\ell}^\ell) \end{bmatrix}, \ \delta^\ell = \begin{bmatrix} \frac{\partial e}{\partial z_1^\ell} \\ \vdots \\ \frac{\partial e}{\partial z_{+}^\ell} \end{bmatrix} \text{ and } a^{\ell-1} = \begin{bmatrix} a_1^{\ell-1} \\ \vdots \\ a_{N_{\ell-1}}^{\ell-1} \end{bmatrix}.$$

Backpropagation: Indeed, the error gradients are very similar to the binary classification setup. For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights W^ℓ in ℓ -th layer is:

$$\begin{split} \nabla_{W^\ell} \mathbf{e} &= \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (\mathbf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} V^{\ell+2} \dots V^L \delta^L (\mathbf{a}^{\ell-1})^\top \\ &\quad \text{where } V^\ell = (W^{\ell+1})^\top \mathsf{Diag}(\phi^{\ell+1'}). \end{split}$$

□ > <□ > < □ > < □ > < □ >
 □ > < □ > < □ >

Backpropagation: Indeed, the error gradients are very similar to the binary classification setup. For an arbitrary sample (x, y) from training data D, and the MLP with weights $w = (W^1, W^2, \dots, W^L)$, the error gradient with respect to weights W^ℓ in ℓ -th layer is:

$$\nabla_{W^{\ell}} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^{\ell}(\mathbf{a}^{\ell-1})^{\top} = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} V^{\ell+2} \dots V^{L} \frac{\delta^{L}}{\delta^{L}} (\mathbf{a}^{\ell-1})^{\top}$$

The main difference arises in the procedure to find $\delta^L = \begin{bmatrix} \frac{\partial e}{\partial a_1^L} \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$.

Recall: For an arbitrary sample (x, y) from training data D, and the prediction \hat{y} from the MLP, we know the following:

• y is in one-hot encoded form: $y = \begin{bmatrix} y_1 \\ \vdots \\ y_C \end{bmatrix}$ with some particular y_c taking value 1 (corresponding to the label c) and $y_j = 0, j \neq c$.

Recall: For an arbitrary sample (x, y) from training data D, and the prediction \hat{y} from the MLP, we know the following:

- y is in one-hot encoded form: $y = \begin{bmatrix} y_1 \\ \vdots \\ y_C \end{bmatrix}$ with some particular y_c taking value 1 (corresponding to the label c) and $y_j = 0, j \neq c$.
- y and \hat{y} are discrete probability distributions.

Recall: For an arbitrary sample (x, y) from training data D, and the prediction \hat{y} from the MLP, we know the following:

- y is in one-hot encoded form: $y=\begin{bmatrix}y_1\\ \vdots\\ y_C\end{bmatrix}$ with some particular y_c taking value 1 (corresponding to the label c) and $y_j=0, j\neq c$.
- y and \hat{y} are discrete probability distributions.

$$\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_C \end{bmatrix}.$$

Recall: For an arbitrary sample (x, y) from training data D, and the prediction \hat{y} from the MLP, we know the following:

- y is in one-hot encoded form: $y = \begin{bmatrix} y_1 \\ \vdots \\ y_C \end{bmatrix}$ with some particular y_c taking value 1 (corresponding to the label c) and $y_j = 0, j \neq c$.
- ullet y and \hat{y} are discrete probability distributions.

$$\hat{y} = \begin{bmatrix} y_1 \\ \vdots \\ \hat{y}_C \end{bmatrix}.$$

• $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^{j} = -\sum_{j=1}^{C} y_{j} \log \hat{y}_{j}$.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久で

Recall: For an arbitrary sample (x, y) from training data D, and the prediction \hat{y} from the MLP, we know the following:

- y is in one-hot encoded form: $y = \begin{bmatrix} y_1 \\ \vdots \\ y_C \end{bmatrix}$ with some particular y_c taking value 1 (corresponding to the label c) and $y_j = 0, j \neq c$.
- ullet y and \hat{y} are discrete probability distributions.

$$\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_C \end{bmatrix}.$$

- $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^{j} = -\sum_{j=1}^{C} y_j \log \hat{y}_j$.
- Note: $\hat{y}_j = \frac{\exp(a_j^L)}{\sum_{j=1}^C \exp(a_j^L)}$, $\forall j = 1, \dots, C$.

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q Q

• $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^j = -\sum_{j=1}^{C} y_j \log \hat{y}_j$, with $\hat{y}_j = \frac{\exp\left(a_j^l\right)}{\sum_{j=1}^{C} \exp\left(a_j^l\right)}$, $\forall j = 1, \dots, C$.

• $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^{j} = -\sum_{j=1}^{C} y_{j} \log \hat{y}_{j}$, with $\hat{y}_{j} = \frac{\exp(a_{j}^{l})}{\sum_{i}^{C} \exp(a_{j}^{l})}$, $\forall j = 1, \dots, C$.

Aim: To find
$$\delta^L = \left[\frac{\partial e}{\partial a_1^L} \cdots \frac{\partial e}{\partial a_C^L}\right]^{\top}$$
.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (^)

• $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^j = -\sum_{j=1}^{C} y_j \log \hat{y}_j$, with $\hat{y}_j = \frac{\exp(a_j^l)}{\sum_{i=1}^{C} e^{y_i}(a_j^{l-1})}$, $\forall j = 1, \dots, C$.

Aim: To find
$$\delta^L = \begin{bmatrix} \frac{\partial e}{\partial a_1^L} & \cdots & \frac{\partial e}{\partial a_L^L} \end{bmatrix}^\top$$
.

• We have $\frac{\partial e}{\partial a_i^L} = \sum_{m=1}^C \frac{\partial e^m}{\partial \hat{y}_m} \frac{\partial \hat{y}_m}{\partial a_i^L}$, $\forall j$.

4 D > 4 A > 4 B > 4 B > B 9 Q (*)

- $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^{j} = -\sum_{j=1}^{C} y_{j} \log \hat{y}_{j}$, with $\hat{y}_{j} = \frac{\exp(a_{j}^{l})}{\sum_{i}^{C} e^{i}\exp(a_{j}^{l})}$, $\forall j$.
- We have $\frac{\partial e}{\partial a_i^L} = \sum_{m=1}^C \frac{\partial e^m}{\partial \hat{y}_m} \frac{\partial \hat{y}_m}{\partial a_i^L}$.

- $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^{j} = -\sum_{j=1}^{C} y_{j} \log \hat{y}_{j}$, with $\hat{y}_{j} = \frac{\exp(a_{j}^{L})}{\sum_{i}^{C} \exp(a_{i}^{L})}$, $\forall j$.
- We have $\frac{\partial e}{\partial a_j^L} = \sum_{m=1}^C \frac{\partial e^m}{\partial \hat{y}_m} \frac{\partial \hat{y}_m}{\partial a_j^L}$.
- $\bullet \ \frac{\partial e^m}{\partial \hat{y}_m} = -\frac{y_m}{\hat{y}_m}.$
- $\bullet \ \frac{\partial \hat{y}_m}{\partial a_j^L} = \frac{\partial}{\partial a_j^L} \left(\frac{\exp\left(a_m^L\right)}{\sum_{r=1}^C \exp\left(a_r^L\right)} \right).$

- $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^j = -\sum_{j=1}^{C} y_j \log \hat{y}_j$, with $\hat{y}_j = \frac{\exp(a_j^l)}{\sum^C \cdot \exp(a_j^l)}$, $\forall j$.
- We have $\frac{\partial e}{\partial a_j^L} = \sum_{m=1}^C \frac{\partial e^m}{\partial \hat{y}_m} \frac{\partial \hat{y}_m}{\partial a_j^L}$.
- $\bullet \ \frac{\partial e^m}{\partial \hat{y}_m} = -\frac{y_m}{\hat{y}_m}.$
- $\bullet \quad \frac{\partial \hat{y}_m}{\partial s_j^L} = \frac{\partial}{\partial s_j^L} \left(\frac{\exp\left(s_m^L\right)}{\sum_{r=1}^C \exp\left(s_r^L\right)} \right) = \begin{cases} \hat{y}_j (1 \hat{y}_j) & \text{if } j = m \\ -\hat{y}_m \hat{y}_j & \text{otherwise.} \end{cases}$ (Homework!)

- $e(\hat{y}, y)$ is the cross-entropy error function: $e(\hat{y}, y) = \sum_{j=1}^{C} e^{j} = -\sum_{j=1}^{C} y_{j} \log \hat{y}_{j}$, with $\hat{y}_{j} = \frac{\exp(a_{j}^{l})}{\sum_{i=1}^{C} \exp(a_{j}^{l})}$, $\forall j$.
- We have $\frac{\partial e}{\partial a_j^L} = \sum_{m=1}^C \frac{\partial e^m}{\partial \hat{y}_m} \frac{\partial \hat{y}_m}{\partial a_j^L}$.
- $\bullet \frac{\partial e^m}{\partial \hat{y}_m} = -\frac{y_m}{\hat{y}_m}.$
- $\bullet \ \, \frac{\partial \hat{y}_m}{\partial s_j^L} = \frac{\partial}{\partial s_j^L} \left(\frac{\exp{(s_m^L)}}{\sum_{r=1}^C \exp{(s_r^L)}} \right) = \begin{cases} \hat{y}_j (1 \hat{y}_j) \ \, \text{if } j = m \\ -\hat{y}_m \hat{y}_j \ \, \text{otherwise}. \end{cases}$ (Homework!)
- Hence by substitution, $\frac{\partial e}{\partial a_j^L} = \sum_{\substack{m=1 \ m \neq j}}^C y_m \hat{y}_j y_j (1 \hat{y}_j) = \hat{y}_j y_j.$

• Recall: We wanted to find
$$\delta^L = \begin{bmatrix} \partial a_1^L \\ \vdots \\ \frac{\partial e}{\partial a_L^L} \end{bmatrix}$$
 .

• We have
$$\frac{\partial e^m}{\partial a_j^L} = \hat{y}_j - y_j$$
.

• Hence
$$\delta^L = \begin{bmatrix} \hat{y}_1 - y_1 \\ \vdots \\ \hat{y}_C - y_C \end{bmatrix}$$
.

Since the backpropagation for multi-class classification is essentially similar to that of binary classification, it suffers from

- Exploding gradient problem and
- Vanishing gradient problem.

MLP for multi-label classification

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $\forall i \in \{1, ..., S\}$ and MLP architecture parametrized by weights w.
- New Task: $y^i \subseteq \mathcal{Y} = \{1, \dots, C\}, C \ge 2$.
- Corresponds to multi-label classification.

Question 1: What is a suitable architecture for the MLP's last (or output) layer?

Question 2: What is a suitable loss (or error) function?

MLP for multi-label classification

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $\forall i \in \{1, ..., S\}$ and MLP architecture parametrized by weights w.
- New Task: $y^i \subseteq \mathcal{Y} = \{1, \dots, C\}, C \ge 2$.
- Corresponds to multi-label classification.

Question 1: What is a suitable architecture for the MLP's last (or output) layer?

Question 2: What is a suitable loss (or error) function? (Homework!)