Árvore Binária Balanceada (AVL)

Árvore Binária de Busca

- Altura: profundidade ou nível máximo de suas folhas
- A eficiência da busca em uma ABB depende do seu balanceamento
- Algoritmos de inserção e remoção em ABB não garantem que a árvore gerada a cada passo seja balanceada

- ABB em que a diferença entre as alturas das duas subárvores de todo nó nunca é maior que 1
 - Fator de balanceamento do nó: altura da subávore esquerda menos altura da subárvore direita
 - Em uma árvore AVL, todo nó tem fator de balanceamento 0, 1 ou -1.

- Dificuldades
 - Manter a estrutura balanceada após as operações de inserção e remoção
 - Inserção e remoção em uma ABB não garante o balanceamento

• As seguintes inserções podem tornar a árvore desbalanceada:

- As seguintes inserções podem tornar a árvore desbalanceada:
 - O nó inserido é descendente esquerdo de um nó que tinha fator de balanceamento 1 (U1 e U8)
 - O nó inserido é descendente direito de um nó que tinha fator de balanceamento -1 (U9 e U12)

- A transformação que mantém a árvore balanceada é chamada de rotação
- A rotação pode ser feita à esquerda ou à direita, dependendo do desbalanceamento a ser tratado
- Dependendo do desbalanceamento a ser tratado, uma única rotação pode não ser suficiente

Rotação à direita

Rotação à direita

 Rotação à direita: subir o nó B para o lugar do nó A. Nó A desce para ser subárvore direita de B

Rotação à direita: antes

Rotação à direita: depois

• Rotação à esquerda:

• Rotação à esquerda:

• Rotação à esquerda: antes

• Rotação à esquerda: depois

Rotações duplas (esquerda/direita):

- Rotações duplas (esquerda/direita):
 - A é o nó mais jovem a se tornar desbalanceado

- Rotações duplas (esquerda/direita):
 - Passo 1: Rotação à esquerda em B

- Rotações duplas (esquerda/direita):
 - Passo 2: Rotação à direita em A

Funciona também se a inserção for em T3

- Rotações duplas (direita/esquerda):
 - A é o nó mais jovem a se tornar desbalanceado

- Rotações duplas (direita/esquerda):
 - Passo 1: Rotação à direita em B

- Qual rotação usar?
 - Se o sinal do nó A e do nó B forem iguais, então a rotação é simples
 - Se o fator de balanceamento do nó A for positivo, então a rotação é à direita

- Qual rotação usar?
 - Se o sinal do nó A e do nó B forem iguais, então a rotação é simples
 - Se o fator de balanceamento do nó A for negativo, então a rotação é à esquerda

- Qual rotação usar?
 - Se o sinal do nó A e do nó B forem diferentes, então a rotação é dupla
 - Se o fator de balanceamento do nó A for positivo, então a rotação é esquerda/direita

- Qual rotação usar?
 - Se o sinal do nó A e do nó B forem diferentes, então a rotação é dupla
 - Se o fator de balanceamento do nó A for negativo, então a rotação é direita/esquerda

