Universidade Federal Fluminense

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

Domínio, curva de nível e gráfico de função real de duas variáveis Domínio e superfície de nível de função real de três variáveis

LISTA 1 - 2007-2

Nos exercícios 1. a 8. descreva e esboce o domínio da função real de duas ou de três variáveis, isto é, descreva analiticamente e represente geometricamente o maior subconjunto do \mathbb{R}^2 ou do \mathbb{R}^3 que torna a expressão que define a função, verdadeira em \mathbb{R} .

1.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

2.
$$f(x,y) = \ln x + \ln y$$

3.
$$f(x,y) = \sqrt{|x| - |y|}$$

10. Considere a função

4.
$$f(x,y) = \sqrt{1-x^2-y^2}$$

$$5. \ f(x,y) = \ln(xy - 1)$$

6.
$$f(x,y) = \arcsin(x-y)$$

7.
$$f(x, y, z) = y + \sqrt{25 - x^2 - y^2 - z^2}$$

8.
$$f(x,y,z) = \frac{\sqrt{4-x^2} + \sqrt{9-y^2}}{\sqrt{1-z^2}}$$

9. Considere a função de duas variáveis

$$f\colon \quad D\subset\mathbb{R}^2 \quad \to \quad \mathbb{R}$$

$$(x,y) \quad \mapsto \quad z=f(x,y)=x^2+y^2$$

definida em um subconjunto D de \mathbb{R}^2 . Faça um esboço do gráfico de f em cada um dos três casos abaixo.

(a)
$$D = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1\}.$$

(b)
$$D = \{(x, y) \in \mathbb{R}^2; -1 \le x \le +1 \text{ e } -1 \le y \le +1\}.$$

(c)
$$D = \{(x, y) \in \mathbb{R}^2; x^2/4 + y^2/9 \le 1\}.$$

Aqui é só substituir o ponto na função para

determinar o valor de C.

$$z = f(x, y) = \ln (e^{x+y} - 1)$$
.

- (a) Escreva a equação da curva de nível de f que passa pelo ponto (8,2) e da curva de nível que passa pelo ponto (-2,3).
- (b) Mais geralmente, escreva a equação da curva de nível de f que passa pelo ponto (a, b), com
- (c) Mostre que o valor de f sobre a reta y = -x + 2 é constante, isto é, que y = -x + 2 é uma curva de nível de f.
- (d) Mostre que o valor de f sobre a reta y = -x + 3 é constante, isto é, que y = -x + 3 é uma curva de nível de f.
- (e) Se, por um momento, f representasse um lucro e você fosse um empresário, sob qual reta você gostaria de estar: y = -x + 2 ou y = -x + 3? Justifique sua resposta.

Nos exercícios 11. a 18. esboce as curvas de nível e o gráfico da função dada.

11.
$$f(x,y) = 8 - 2x - y$$
 14. $f(x,y) = \sqrt{x^2 + y^2}$

14.
$$f(x,y) = \sqrt{x^2 + y^2}$$

17.
$$f(x,y) = \frac{1}{x^2 + y^2}$$

12.
$$f(x,y) = x^2 - y$$

15.
$$f(x,y) = e^{-x^2 - y^2}$$

18.
$$f(x,y) = \frac{1}{y^2}$$

13.
$$f(x,y) = 2x^2 + y^2$$

$$16. \ f(x,y) = xy$$

19. Na figura (1) temos, respectivamente, o desenho das curvas de nível das seis funções a seguir. Faça a associação destas seis curvas de nível com cada um dos seis gráficos apresentados na figura (2).

(a)
$$z = f_1(x, y) = \operatorname{sen}(xy)/(xy)$$
,
(b) $z = f_2(x, y) = e^{-x^2} + e^{-4y^2}$,
(c) $z = f_3(x, y) = 15 x^2 y^2 e^{-x^2 - y^2}/(x^2 + y^2)$,
(d) $z = f_4(x, y) = (xy^3 - x^3y)/2$,
(e) $z = f_5(x, y) = \operatorname{sen}(\sqrt{x^2 + y^2})$,

(f) $z = f_6(x, y) = (y^4 - 8y^2 - 4x^2)/21$.

Figura 1: Curvas de nível de seis funções diferentes.

Figura 2: Gráfico de seis funções diferentes.

Nos exercícios 20. a 23. utilize os planos x=k, y=k e z=k para fazer um esboço da superfície de nível de cada uma das funções abaixo f associada ao nível w=0. Se preciso, leia o comentário a seguir para resolver esses exercícios.

20.
$$w = f(x, y, z) = x^2 + y^2 - 1$$

21.
$$w = f(x, y, z) = x^2 - y$$

22.
$$w = f(x, y, z) = x^2 + 2 - z$$

23.
$$w = f(x, y, z) = |y| - z$$

Comentário: (Superfícies cilíndricas) Todas estas superfícies de nível têm algo em comum: apesar de f depender de três variáveis, apenas duas aparecem na expressão algébrica que define f. Mais especificamente, temos

$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto w = f(x, y, z) = g(x, y)$, onde $g: \mathbb{R}^2 \to \mathbb{R}$,

para o caso onde é a variável "z" que está faltando na definição de f. Como você deve ter percebido, para desenhar uma superfície de nível w=k de uma função deste tipo, basta desenhar a curva de nível g(x,y)=k de g no plano xy e então, sobre cada ponto desta curva, desenhar uma reta perpendicular ao plano xy (veja a figura abaixo). Os casos onde a variável "x" ou a variável "y" estão faltando são tratados de maneira análoga. Estas superfícies de nível são denominadas superfícies cilíndricas.

Figura 3: Uma superfície cilíndrica.

Em cada um dos exercícios 24. a 31. chame de n o nível da função dada e encontre todos os possíveis valores de n. Chame de $C_n(f)$ o conjunto de nível n de f e descreva analiticamente todos os possíveis conjuntos de nível n da função dada e ainda, se for possível, represente-os geometricamente.

24.
$$f(x,y) = \arcsin(xy)$$

29.
$$f(x,y) = \frac{x}{y-1}$$

25.
$$f(x,y) = x^2 + y^2 - z^2$$

30.
$$f(x, y, z, w) = \frac{\sqrt{x - y}}{z - w}$$

26.
$$f(x, y, z) = x + y + z$$

27. $f(x, y, z) = z - x^2 - y^2$

31.
$$f(x,y) = y \operatorname{sen} x$$

28.
$$f(x,y) = x^2 + y^2$$

32.
$$f(x,y) = \arctan(x^2 + y^2)$$

33. O desenho de uma esfera de centro em (0,0,0) e raio 1 pode ser o gráfico de alguma função z = f(x,y) de duas variáveis? Justifique sua resposta.

- 34. As superfícies de nível da função $w = f(x, y, z) = z x^2 y^2$ associadas aos níveis w = -2, w = 0 e w = 2 podem se cortar? Justifique sua resposta!
- 35. Resolva as questões abaixo.
 - (a) Considere a função $w = f(x) = x^2$. Determine os conjuntos de nível de f e faça um esboço de seu gráfico.
 - (b) Considere a função $w = g(x, y) = x^2$. Determine as curvas de nível de g e faça um esboço de seu gráfico.
 - (c) Considere a função $w = h(x, y, z) = x^2$. Determine as superfícies de nível de h.
 - (d) Suponha que você chegue em uma sala de aula onde a única sentença escrita no quadro é: "Faça um esboço do gráfico da função $w=x^2!$ ". Que desenho você faria?
- 36. Resolva as questões abaixo.
 - (a) Faça o gráfico da função $y = f(x) = x^2$. Escreva uma função $F : \mathbb{R}^2 \to \mathbb{R}$ cuja curva de nível associada ao nível 0 seja igual ao gráfico de f.
 - (b) Mais geralmente, dada uma função $f \colon \mathbb{R} \to \mathbb{R}$, escreva uma função $F \colon \mathbb{R}^2 \to \mathbb{R}$ cuja curva de nível associada ao nível 0 seja igual ao gráfico de f. O que você pode dizer a respeito das curvas de nível de F para níveis diferentes de 0?
 - (c) Seja $z=f(x,y)=x^2+y^2$. Escreva uma função $F\colon\mathbb{R}^3\to\mathbb{R}$ cuja superfície de nível associada ao nível 0 seja igual ao gráfico de f.
 - (d) Mais geralmente, dada uma função $f: \mathbb{R}^2 \to \mathbb{R}$, escreva uma função $F: \mathbb{R}^3 \to \mathbb{R}$ cuja superfície de nível associada ao nível 0 seja igual ao gráfico de f. O que você pode dizer a respeito das superfícies de nível de F para níveis diferentes de 0?

EXERCÍCIOS DE APLICAÇÃO

- 37. Uma chapa plana de metal está situada no plano xy de modo que a temperatura T (em °C) no ponto (x, y) é inversamente proporcional à distância da origem (0, 0).
 - (a) Descreva as isot'ermicas, isto \'e, as curvas de nível de T que representam pontos onde a temperatura \'e constante.
 - (b) Se a temperatura no ponto (4,3) é 40°C, ache a equação da isotérmica para uma temperatura de 20°C.
- 38. O potencial elétrico V no ponto (x, y, z) é dado por

$$V = 6/(x^2 + 4y^2 + 9z^2)^{1/2}.$$

- (a) Descreva as superfícies equipotenciais, isto é, as superfícies de nível de V que representam pontos onde o potencial elétrico é constante.
- (b) Ache a equação da superfície equipotencial V = 120.
- 39. De acordo com a lei de gravitação universal de Newton, se uma partícula de massa m_0 está na origem (0,0,0) de um sistema de coordenadas xyz, então o módulo F da força exercida sobre uma partícula de massa m situada no ponto (x,y,z) é dada por

$$F = G \cdot \frac{m_0 \cdot m}{x^2 + y^2 + z^2},$$

onde G é a constante de gravitação universal. F depende de quantas variáveis? Se $m_0=1.99\,10^{30}$ kg e $m=5.98\,10^{24}$ kg, descreva as superfícies de nível da função resultante. Qual é o significado físico dessas superfícies de nível?

40. De acordo com a lei dos gases ideais, a pressão P, o volume V e a temperatura T de um gás confinado estão relacionados pela equação

$$P \cdot V = k \cdot T$$

para uma constante k. Expresse P como função de V e T e descreva as curvas de nível associadas a esta função. Qual é o significado físico dessas curvas de nível?

41. A pressão atmosférica nas proximidades do solo em uma certa região é dada por

$$p(x,y) = a \cdot x^2 + b \cdot y^2 + c,$$

com a, b e c constantes positivas. Descreva as isobáricas (curvas de nível de p) para pressões superiores a c.

RESPOSTAS DA LISTA 1

1.
$$\mathbb{R}^2 - \{(0,0)\}$$

2.
$$\{(x,y) \in \mathbb{R}^2; x > 0 \in y > 0\}$$

3.
$$\{(x,y) \in \mathbb{R}^2; -|x| \le y \le |x|\}$$

4.
$$\{(x,y) \in \mathbb{R}^2; \ x^2 + y^2 \le 1\}$$

2.

5. $\{(x,y) \in \mathbb{R}^2; xy > 1\}$

6.
$$\{(x,y) \in \mathbb{R}^2; \ x-1 \le y \le x+1\}$$

7.
$$\{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 \le 25\}$$

8.
$$\{(x, y, z) \in \mathbb{R}^3; |x| \le 2, |y| \le 3, |z| < 1\}$$

y

5.

1.

6.

7.

3.

8.

4.

9.

(b)

- 10. (a) pelo ponto (8,2), reta x+y=10, pelo ponto (-2,3), reta x+y=1
 - (b) x + y = a + b
 - (c) $y = 2 x \Rightarrow f(x, y) = f(x, 2 x) = \ln(e^{x+2-x} 1) = \ln(e^2 1) = \text{constante}$
 - (d) $y = 3 x \Rightarrow f(x, y) = f(x, 2 x) = \ln(e^{x+3-x} 1) = \ln(e^3 1) = \text{constante}$
 - (e) y=-x+3. Podemos afirmar que $\ln\left(e^3-1\right)>\ln\left(e^2-1\right)$ pois as funções $F(t)=e^t$ e $G(t)=\ln t$ são estritamente crescentes.

13.

15.

16.

12.

14.

17.

18.

19. (1)-(e)

(2)-(a)

(3)-(f)

(4)-(c)

(5)-(b)

(6)-(d)

20.

21.

22.

23.

25. $C_n(f) = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 = z^2 + n\}, \forall n \in \mathbb{R}, n = 0$: cone de duas folhas, n > 0: hiperbolóide de uma folha, n < 0: hiperbolóide de duas folhas.

- 26. $C_n(f) = \{(x, y, z) \in \mathbb{R}^3; x + y + z = n\}, \forall n \in \mathbb{R}, \text{ planos paralelos.}$
- 27. $C_n(f) = \{(x, y, z) \in \mathbb{R}^3; z = x^2 + y^2 + n\}, \forall n \in \mathbb{R}, \text{ parabolóides com vértices no eixo } z.$
- 28. $C_n(f) = \{(x,y) \in \mathbb{R}^2; y \neq 1 \text{ e } x = n(y-1)\}, \forall n \in \mathbb{R}, \text{ retas furadas e concorrentes em } (0,1).$
- 29. $C_n(f) = \{(x, y, z, w) \in \mathbb{R}^4; x \geq y, z \neq w \text{ e } x y = n^2(z w)^2\} \quad \forall n \in \mathbb{R}, \text{ não existe representação geométrica.}$
- 30. $C_n(f) = \{(x,y) \in \mathbb{R}^2; y \operatorname{sen} x = n\}, n \in \mathbb{R}, n = 0 : \operatorname{retas} y = 0, y = k\pi, k \in \mathbb{Z}; n \neq 0 : \operatorname{gráfico} \operatorname{de} y = n \operatorname{csc} x.$
- 31. $C_n(f) = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 = \tan n\}, 0 \le n < \pi/2, n = 0: (0,0), n > 0$: circunferências de centro (0,0).

24.

25.

26.

27.

28.

30.

31.

- 36. (a) Circunferências de centro na origem
 - (b) Circunferência de raio 10 com centro na origem
- 37. (a) As superfícies equipotenciais, de potências k > 0, são elipsóides de semi-eixos $a = \frac{6}{k}$, $b = \frac{3}{k}$ e $c = \frac{4}{k}$, nos eixos x, y e z, respectivamente.
 - (b) $400x^2 + 1600y^2 + 3600z^2 = 1$
- 38. Depende de 4 variáveis, a saber, as coordenadas x, y e z do ponto onde está localizada a partícula e a sua massa m. As equações das superfícies de nível com força escalar constante e igual a k são esferas de centro na origem e raios $\frac{1}{k}(1.99)(5.98)10^{54}$.
- 39. As curvas de nível são semi-retas no sistema VOT, concorrentes na origem O, mas sem conter a origem (V > 0). As curvas de nível representam gases com mesma pressão e diz que quando os gases estão confinados sob pressão constante, o volume varia linearmente com a temperatura.
- 40. As isobáricas de pressão k > c são elipses com centro na origem do sistema de eixos no plano e cujos semi-eixos são $a = \sqrt{\frac{k-c}{a}}$ e $b = \sqrt{\frac{k-c}{b}}$, sobre os eixos x e y, respectivamente.