OPTIMIZATION

JAYANT RANGI(MA17BTECH11006) RITESH YADAV(MA17BTECH11009)

February 27, 2019

Question:

The cost matrix of a Transportation problem is given by

6	4	1	5
8	9	2	7
4	3	6	2

The following values of the basic variables were obtained at the first iteration :

$$x_{11} = 6, x_{12} = 8, x_{22} = 2, x_{23} = 14, x_{33} = 1, x_{34} = 4$$

Then:

Options:

- (A) the current solution is optimal.
- **(B)** the current solution is non optimal and the entering and leaving variables are x_{31} and x_{33} respectively.
- **(C)**the current solution is non optimal and the entering and leaving variables are x_{21} and x_{22} respectively.
- **(D)**the current solution is non optimal and the entering a leaving variables are x_{14} and x_{12} respectively.

Solution:

Given x_{ij} table is :-

6	8	0	0
0	2	14	0
0	0	1	4

Modified cost matrix with u and v values is :-

u/v	v=6	v=4	v=-3	v=-7
u=0	6	4	1	5
u=5	8	9	2	7
u=9	4	3	6	2

Penalities for given solution:

$$p_{ij} = u_{ij} + v_{ij} - c_{ij}$$

So, table for penalties is :-

0	0	-4	-12
3	0	0	-9
11	10	0	0

As we can see p_{21} , p_{31} , p_{32} are positive. So, given solution is not optimal.

Entering and leaving variable

 x_{ij} table is (P represents positive penalty):-

6	8	0	0
Р	2	14	0
Р	Р	1	4

Only possible loop that can be made is $x_{21}x_{11}x_{12}x_{22}$. After assigning positive and negative signs to loop elements.

6-	8+	0	0
P^+	2-	14	0
Р	Р	1	4

Since x_{22} is smallest from all negative assigned values . So option **(C)** is correct .

The current solution is non optimal and the entering and leaving variables are x_{21} and x_{22} respectively.