Section 2: Estimation and A/B Testing

Vadim Sokolov

Suggested Reading

OpenIntro Statistics, Chapters 4,5&6

Last Section

How to deal with uncertainty?

- Random Variables and Probability Distributions
- Joint and Conditional (Happy/Rich), Independence (Sally Clark),
- Expectation and Variance (Bookies vs Betters, Tortoise and Hare)
- Binomial Distribution (Patriot Coin Toss), Normal distribution (Crash of 1987)
- Decision Making under uncertainty (Marriage Problem and Probability and Decision Trees)
- ▶ Bayes Rule (Practice Hard ≠ Play in NBA)

This Section

- Estimating Parameters and Fitting Distributions
- Confidence and Prediction Intervals
- Means, Proportions, Differences
- A/B Testing

Why R? R is free!

All the code for the course and assignments are in Rexamples.R!

- Most Data Scientists are using R.
- R's syntax is very simple.
- There are a large number of add-on statistical packages that can be installed and run in R. You don't need to code anything.

You can use your favorite software: Excel, Stata, Matlab.

Statistics with R

You can download R and Rstudio for Windows, Linux, Mac at

```
http://www.r-project.org/
http://www.rstudio.com/
```

Rstudio is a very useful front-end interface to R.

Links, code for class, video tutorials are up on the course-page.

A list of books on doing statistics in R is at

```
http://www.r-project.org/doc/bib/R-books-html
http://www.r-bloggers.com
```

Start by watching R videos for Libraries and Packages/Files and Data.

Standard R Commands

```
Given vectors x and y we can apply mean (\ldots) computes the sample mean
median( ... ) computes the median
var( ... ) computes the sample variance
sd( ... ) computes the sample standard deviation
cov( ... ) computes the sample covariance
cor( ... ) computes the sample correlation
pnorm( ... ) calculates normal probabilities
hist( ... ) makes histograms
lm( ... ) for linear model (a.k.a regression)
summary ( . . . ) provides a summary analysis of the output
```

Stats in Excel

```
average( ... ) computes the sample mean
median( ... ) computes the median
var( ... ) computes the sample variance
stdev( ... ) computes the sample standard deviation
covar(..., ...) computes the sample covariance
normsdist( ... ) calculates normal probabilities
histogram( ... ) makes histograms
Regression commands include linest(yrange, xrange) for linear model (a.k.a
multiple regression)
slope(yrange, xrange) provides the regression \beta
```

Let X be daily returns. We assume that returns are independent and identically distributed as

$$X \sim N\left(\mu, \sigma^2\right)$$

Question: What are the values of μ and σ ? Let's assume that each observation in the random sample $\{x_1, x_2, \ldots, x_n\}$ is independent and distributed according to the model above, $X_i \sim N(\mu, \sigma^2)$. Then we use the sample mean, \bar{x} , and sample variance, s^2 ,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Prices and Returns

Assume that I invest all my money in Google! Your job is to tell me the following:

- 1. What is my expected one year return?
- 2. How about the risk? Volatility?
- 3. What's the probability that I lose at least 3% in a day?

We can use our model and R to answer our questions

>mean(ret) [1] 0.0007078 >sd(ret) [1] 0.01864

Annual expected return 0.0007078*252=17.8% a year Daily risk or volatility of 1.86% How about losing money?

$$Z = \frac{X - \mu}{\sigma} = \frac{-0.03 - 0.00070}{0.0186} = -1.65$$

>pnorm(-1.65,0,1) [1] 0.049

There's a 4.9% chance I can lose at least 3% in a day

The Genius at the Royal Mint (Sir Isaac Newton, 1643-1727)

Bad money drives out the good:

- English coins were worth less as currency in England than as precious metal in Europe.
- 2. Large variability in the weights of coins make it hard to stop coin clipping.

Trial of the Pyx was held by Newton to check whether the coins are good.

Ineffectiveness of the Trial

Batches of n=2,500 coins, each supposed to weigh 100 grams with an allowable margin of error of ± 1 gram. Trial set the bounds for the average weight to be ± 1 gram! A bad mistake.

$$\text{Variability of an Average} = \frac{\text{Variability of a Single Measurement}}{\sqrt{\text{Sample Size}}} = \frac{\sigma}{\sqrt{n}}$$

According to modern statistics, the bound should be:

$$100\pm\frac{1}{\sqrt{2500}}=100\pm0.02$$

Sampling Distribution of Sample Mean

The sampling distribution explains how much our estimate \bar{X} will vary over different datasets of size n

• We'll use s^2 to estimate σ^2 and use

$$\bar{X} \sim N\left(\mu, \frac{s^2}{n}\right)$$

► The quantity $s_{\bar{X}}^2 = \frac{s^2}{n}$ defines the standard deviation

$$s_{\bar{\chi}}=rac{s}{\sqrt{n}}$$
 .

Confidence Intervals

In summary, our best guess at μ is \bar{x}

- ▶ How large a mistake can we make? The distribution is $\bar{X} \sim N\left(\mu, s_{\bar{X}}^2\right)$ where $s_{\bar{X}} = s/\sqrt{n}$.
- $[\bar{x} \pm 1.96 s_{\bar{X}}] \text{ give us a 95\% range of plausible values for } \mu$ We call it a 95% Confidence Interval (C.I.)

$$\left(\bar{x}-1.96\frac{s}{\sqrt{n}},\ \bar{x}+1.96\frac{s}{\sqrt{n}}\right)$$

What if I want 90% or 99% confidence?

Prediction intervals

- 1. A confidence interval estimates the mean, μ .
- 2. A prediction interval answers the question:

"What range of values are plausible for a single future observation"?

 $100(1-\alpha\%)$ of the data lie in the interval

$$\overline{x} \pm z_{\alpha/2} \ s\sqrt{1+1/n}$$
.

For example, if $\alpha = 0.05$, we have $z_{0.05/2} = 1.96$.

Standard Error and Confidence Interval for a Proportion

Suppose that we have a proportion $\hat{p} = X/n$ rather than a mean

We can compute the standard error for the proportion:

$$s_{\hat{p}} = \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Then we can calculate a 95% Confidence Interval

$$\hat{p}\pm 1.96 imes extit{s}_{\hat{p}}$$

Example: Google Search Algorithm

Google is testing a new search algorithm. 2,500 searches and check how often people clicked through. Here's our data:

Table: Google Search Algorithm

	Algo1	Algo2
success	1755	1818
failure	745	682
	2500	2500

The probability of success is estimated to be $\hat{p}_1 = 0.702$ for the current algorithm and $\hat{p}_2 = 0.727$ for the new algorithm.

Is the new algorithm better? For sure??

Example: Google Search

We could calculate 95% confidence intervals separately

For Algo 1:

$$0.702 \pm 1.96 \sqrt{\frac{0.702 \times 0.298}{2500}} = (0.693, 0.711)$$

For Algo 2:

$$0.727 \pm 1.96 \sqrt{\frac{0.727 \times 0.273}{2500}} = (0.718, 0.735)$$

What do you think?

Maybe its more accurate to do the difference!!

Standard Error for the Difference in Means

Suppose that we have two samples

We can compute the standard error for the difference in means:

$$s_{ar{X}_1 - ar{X}_2} = \sqrt{\frac{s_{ar{X}_1}^2}{n_1} + \frac{s_{ar{X}_2}^2}{n_2}}$$

We can compute the standard error for the difference in proportions:

$$s_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Confidence Interval for the Difference in Means & Proportions

We can now compute the confidence interval for the difference in means:

$$(\hat{X}_1 - \hat{X}_2) \pm 1.96 imes s_{\bar{X}_1 - \bar{X}_2}$$

or the confidence interval for the difference in proportions:

$$(\hat{p}_1 - \hat{p}_2) \pm 1.96 \times s_{\hat{p}_1 - \hat{p}_2}$$

Example: Google Search

Now we get

$$s_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{0.702 \times 0.298}{2500} + \frac{0.727 \times 0.273}{2500}} = 0.0128$$

The Confidence Interval becomes

$$(0.702-0.727)\pm1.96\times0.0128=(-0.05,0.00)$$

What's our conclusion now?

Let's revisit the Patriots example ...

The data tells us that the Patriots have won 19 out 25 tosses.

Assume they were using the same coin the entire time and that the Patriots always choose heads...

What is the data telling us about the probability of heads in this coin?

Patriots and Coin Tosses

Our best guess at p is $\hat{p} = \frac{19}{25} = 0.76$

We have a 95% Confidence Interval given by

$$0.76 \pm 1.96 \sqrt{\frac{0.76 \times 0.24}{25}} = 0.76 \pm 1.96 \times 0.0854$$

The interval is (0.592, 0.927).

Why so wide? What do we conclude??

Conclusions

There's a number of things:

 Estimates are based on random samples and therefore random (uncertain) themselves

We need to account for this uncertainty!

- 2. Standard Error measures the uncertainty of an estimate
- 3. We construct 95% Confidence Intervals

This provides us with a plausible range for the quantity we are trying to estimate.

A/B Testing

The key elements of hypothesis testing are:

- 1. Setting Up a Hypothesis Test
- 2. Significance Levels
- 3. p-values
- 4. Testing a Mean and Difference in Means
- 5. Testing a Proportion
- 6. Tests for Small Samples

Coke versus Pepsi

The most famous hypothesis test in history in whether people can decide the difference between Coke and Pepsi

Double Blind: neither the experimenter or subject know the allocation

- Pepsi claimed that more than ¹/₂ of Diet Coke drinkers said they preferred to drink Diet Pepsi
- Suppose we take a random sample of 100 drinkers and find that 56 favor Pepsi?

A/B Testing

Scientific Testing is the underpinning of many things ...

Controlled experiment (designed) or observational study

- 1. A Statistic. Sample mean, proportion, difference in means, ...
- 2. A Null hypothesis: $H_0: \mu = \mu_0, H_0: p = p_0, \dots$ A level of significance α
- Sampling distribution: The probability distribution of the statistics values (Normal, t)

Z and T-Score

How many standard deviations are you away from the mean? We'll address this

with a Z or T-score

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

If σ is unknown, we'll use s instead

$$T = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

For small samples, Student's t distribution with (n-1) degrees of freedom.

Guinness: Testing the quality of beer in 1908.

What is Hypothesis Testing?

A hypothesis is a statement about a population developed for the purpose of testing with data

- Step 1: Null Hypothesis (H₀): assume to be true unless there is sufficient evidence to the contrary.
 - Alternative Hypothesis (H_1): test against the null. If there is evidence that H_0 is false, we accept H_1 .
- Step 2: Select the significance level α . $\alpha=0.05$ (the 5% level) is the most commonly used. $\alpha=0.01$ (the 1% level) is prevalent in medical and quality assurance examples.

Hypothesis Testing

Making a decision

- ► Step 3: Compute the Test Statistic (*Z* or *T*)
- Step 4: Formulate the Decision Rule
 For example, reject the Null hypothesis if | Z |> 1.96
- Step 5: Make a Decision, Compute the p-value.
 p-value: The smallest significance level at which a null hypothesis can be rejected.

Two Sided Test vs One Sided Test

We calculate sample statistic \bar{x} from data.

Are we sure that the true value x is different from some value μ ?

It can be different in three ways: not equal, greater or less.

We calculate *T*-score.

If *T* score is inside the white area, cannot reject H_0 at p = 0.05.

Revisit Google Algorithm

	Algo1	Algo2
success	1755	1818
failure	745	682
	2500	2500

The statistic we are interested is the difference of proportions

$$\hat{p}_1 - \hat{p}_2 = 1755/2500 - 1818/2500$$
 and $\mu = 0$

The search team claims that new algorithms (Algo2) is better. Thus

$$H_0: p_1-p_2 \geq 0, \ H_1: p_1-p_2 \leq 0$$

prop.test(c(1755,1818),c(2500,2500), alternative = "less", correct = F)

Coke versus Pepsi

The most famous hypothesis test in history in whether people can decide the difference between Coke and Pepsi

Double Blind: neither the experimenter or subject know the allocation

- Pepsi claimed that more than ¹/₂ of Diet Coke drinkers said they preferred to drink Diet Pepsi
- Suppose we take a random sample of 100 drinkers and find that 56 favor Pepsi?

Coke versus Pepsi

This is a hypothesis test about the proportion of drinkers who prefer Pepsi

$$H_0: p \le \frac{1}{2} \text{ and } H_1: p > \frac{1}{2}$$

My best estimate of the true p

$$\hat{p} = X/n = 56/100 = 0.56.$$

The standard error of my statistic

$$\sqrt{\hat{p}(1-\hat{p})/n}=0.0496$$

The 95% confidence interval is then

$$0.56 \pm 1.96(0.0496) = 0.56 \pm 0.098 = (0.463, 0.657)$$

Testing

The *T*-score now with $s_{\hat{p}} = \sqrt{p_0(1-p_0)/n} = 0.05$

$$Z = \frac{\hat{p} - p_0}{s_{\hat{p}}} = \frac{0.56 - 0.5}{0.05} = 1.2 < 1.64$$

Let's take the usual $\alpha = 0.05$. Don't reject H_0 for a one-sided test at 5% level.

We need a larger *n* to come to a more definitive conclusion.

Common to take n = 1000

As a Hypothesis test:

prop.test(56,100,alternative="greater", conf.level = 0.95)

Type I and II Errors

There are two types of errors you can make when testing

- 1. Type I Error: Rejecting a true H_0 .
- 2. Type II Error: Not rejecting a false H_0 .
- ▶ Significance Level: $P(\text{reject}H_0 \mid H_0 \text{ true}) = P(\text{type I error}).$

Type I and II Errors

Fconomist

Source: http://www.economist.com/blogs/graphicdetail/2013/10/daily-chart-2

Scientific Reporting

Higgs Boson

The five-sigma concept is somewhat counter-intuitive. It has to do with a one-in-3.5-million probability.

That is not the probability that the Higgs boson doesn't exist. It is, rather, the inverse: If the particle doesn't exist, one in 3.5 million is the chance an experiment just like the one announced this week would nevertheless come up with a result appearing to confirm it does exist.

In other words, one in 3.5 million is the likelihood of finding a false positive a fluke produced by random statistical fluctuation that seems as definitive as the findings released by two teams of researchers at the CERN laboratory in Geneva.

p-value one-in-3.5-million and T-score Z=5.

Pfizer

Pfizer introduced Viagra in early 1998

- During 1998 of the 6 million Viagra users 77 died from coronary problems such as heart attacks.
- Pfizer claimed that this rate is no more than the general population.
- A clinical study found 11 out of 1,500,000 men who were not on Viagra died of coronary problems during the same length of time as the 77 Viagra users who died in 1998.

Is this statistically significant?

Confidence Interval

A 95% confidence interval for a difference in proportions $p_1 - p_2$ is

$$(\hat{p}_1 - \hat{p}_2) \pm 1.96 \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

- 1. Can do a confidence interval or a T-score test.
- 2. With Viagra, $\hat{p}_1 = 77/6000000 = 0.00001283$ and without Viagra $\hat{p}_2 = 11/1500000 = 0.00000733$.
- 3. Need to test whether these are equal.

Confidence Interval

With a 95% confidence interval for $(p_1 - p_2)$ you get an interval

$$(1.06 \times 10^{-5}, 3.04 \times 10^{-7})$$

This doesn't contain zero. The evidence is that the proportion is higher.

- 1. Measured very accurately as *n* is large even though *p* is small.
- 2. With testing might use a one-sided test and an α of 0.01.

Difference of proportions:

```
> prop.test(x=c(11, 77), n=c(1500000, 6000000),
correct = F, alternative = "greater")
```

Electronic Arts

EA SimCity 5, one of EA's most popular video games, sold 1.1 million copies in the first two weeks of its launch last year. 50% of digital sales due to a A/B testing strategy.

Promotion banner or not?

Surprising results: The variation with no offer messaging whatsoever drove 43.4% more purchases.

Confounding variables?

R: abtest

Examine whether a black or pink background results in more purchases Run experiment for one week:

- Pink background: 40% purchase rate with 500 visitors
- ▶ Black background: 30% purchase rate with 550 visitors

abtest to see which is more effective Purchase rate for the pink background is significantly higher

- > abtestfunc(site1, site2)
- [1] 37.2 42.8
- [1] 27.5 32.5

Google

Google offers A/B Testing

Create an A/B test

Follow these steps to create a simple A/B test.

An A/B test is a randomized experiment using two or more variants of the same web page (A and B). Variant A is the original and variant B through n each contain at least one element that is modified from the original.

Figure: Steps to create A/B testing on Google

Netflix

Netflix

Every product change Netflix considers goes through a rigorous A/B testing process before becoming the default user experience. Adaptive streaming and content delivery network algorithms.

It's All A/Bout Testing: The Netflix Experimentation Platform

Ever wonder how Netflix serves a great streaming experience with highquality video and minimal playback interruptions? Thank the team of engineers and data scientists who constantly A/B test their innovations to our <u>adaptive streaming and content delivery network</u> algorithms. What about more obvious changes, such as the complete <u>redesign of our UI layout</u> or our <u>new personalized homepage</u>? Yes, all thoroughly A/B tested.

Discovering Argon

Lord Rayleigh won the Nobel Prize for discovering Argon.

This discovery occurred when he noticed a small discrepancy between two sets of measurements on nitrogen gas that he had extracted from the air and one he had made in the lab.

- First, he removed all oxygen from a sample of air. He measured the density
 of the remaining gas in a fixed volume at constant temperature and pressure.
- Second, he prepared the same volume of pure nitrogen by the chemical decomposition of nitrous oxide (N₂O) and nitric oxide NO.

Here's the results

Data

Lord Rayleigh's data ...

From air	From chemical decomposition		
2.31017	2.30143		
2.30986	2.29890		
2.31010	2.29816		
2.31001	2.30182		
2.31024	2.29869		
2.31010	2.29940		
2.31028	2.29849		
_	2.29889		
average			
2.31011	2.29947		
st dev			
0.00014	0.00138		

Discovering Argon in R

```
t.test(a,b,var.equal=T)
```

```
t = 20.2137, df = 13, p-value = 3.321e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.009499327    0.011772816
sample estimates:
mean of x mean of y
    2.310109    2.299473
```

There's a T = 20.21! We've found Argon!

Cookie Cats

Cookie Cats: AB Testing

	retention_1	retention_7	sum_gamerounds
gate_30	[0.444, 0.453]	[0.187, 0.194]	[50.076, 54.836]
gate_40	[0.438, 0.447]	[0.178, 0.186]	[50.350, 52.248]
Observation	Overlap	No Overlap	Overlap
Decision	No Difference	Difference	No Difference

Observational Studies vs Field Experiments

Does owning a Tesla mean you have more money in the bank?

► I could go and buy a Tesla!

How do I test this? randomized experiment

- Randomly pick 100 and split into two groups 50/50
- Each person in the first group (treatment) gets a Tesla
- Each person in the second group (control) gets a Chevy
- In two years we compare average amount of money in each group

How to you test for difference between Booth and Kellog?

Randomized Controlled Trials: Nobel Prize 2019

On Oct 14, 2019 Duflo, Banerjee and Kremer got the prize for "for their experimental approach to alleviating global poverty."

- Experiment-based approach has transformed development economics
- Three ingredients: Right question + carefully designed experiment + statistical hypothesis testing
- Most of the traditional economic models are based on observational data
- Randomized experiments are the gold standard for understanding causality.
 Otherwise hard to distinguish correlation from causation.

How do we collect data: Field Experiment

Field experiments (a.k.a randomized experiments) are standard in natural sciences (medicine, agriculture,...)

- ► They are standard in many business applications (AB testing)
- Now standard in policy analysis (the prize)
- What are the issues when we do not randomize?

Field Experiments: Pollution Reduction Policy in India

Source: Duflo 2013: Truth-telling by Third-party Auditors and the Response of Polluting

Firms: Experimental Evidence from India

Field Experiments: Russian Election Fraud

Independent observers were randomly assigned to 156 of 3,164 polling stations in the city of Moscow

Source: Field experiment estimate of electoral fraud in Russian parliamentary elections

Coming Next: The Predictive Culture

Making a good prediction is arguably the most valuable application of machine learning and statistics in business problems.

- Instead of building a causal/interpretable/intuitive model the goal is to build a model that predicts well.
- ▶ This leads to very complex functions f(x), e.g. Deep Learning!

Coming soon to economics!

Summary

- Estimating Parameters and Fitting Distributions
- Confidence and Prediction Intervals
- Means, Proportions, Differences
- A/B Testing