Laboratorio de Computación II

Archivos

Un registro de información de una determinada entidad debe cumplir una serie de reglas para poder ser almacenado en un archivo

- Registros deben tener longitud fija.
- Registros deben ser identificados por un valor único e irrepetible.
- El archivo, en consecuencia al ítem anterior, no debiera admitir registros duplicados.

Imaginemos que tenemos un cassette de audio. En él, cada canción dura exactamente dos minutos y se encuentran una inmediatamente después de la otra.

Aclaración para centennials: La imagen corresponde a un cassette de audio

Imaginemos que tenemos un cassette de audio. En él, cada canción dura exactamente dos minutos y se encuentran una inmediatamente después de la otra.

Aclaración para centennials: La imagen corresponde a un cassette de audio

No nos es posible ir fácilmente de la canción 2 a la canción 5. Pero sabemos que la canción 1 comienza en el segundo 0. La canción 2 en el segundo 120. Por lo tanto, la canción 5 en el segundo 480.

- Para ir del inicio de la canción 0 al inicio de la canción 3. No puedo decir "Adelantar 3 canciones desde la canción 0" pero sí puedo decir "Adelantar 360 segundos desde el segundo 0".
- Si estoy ubicado en la canción 3 y quisiera ir a la canción 1 podría "Retroceder 240 segundos desde el segundo 360".

- Pensemos la misma idea pero con archivos. Reemplacemos Canción por Registro y Segundos por Bytes. En lugar de música tenemos bits.
- Ya entendieron cómo se almacena información en un archivo binario.

fseek

La función que nos permite adelantar o retroceder el cursor de un archivo se llama fseek y recibe los siguientes parámetros.

fseek (FILE *archivo, long desplazamiento, int origen);

archivo - Es el puntero file al archivo que queremos manipular. Debe estar abierto previamente.

desplazamiento - Es la cantidad de bytes que queremos desplazarnos.

origen - Es una bandera que indica desde donde queremos desplazarnos la cantidad de bytes indicada por desplazamiento.

Valor	Alias	Descripción
0	SEEK_SET	Inicio del archivo
1	SEEK_CUR	Posición actual del archivo
2	SEEK_END	Final del archivo

Ejemplos de fseek

<pre>fseek(p, 500, SEEK_SET);</pre>	Se desplaza 500 bytes desde el inicio del archivo p
fseek(p, 500, SEEK_CUR);	Se desplaza 500 bytes desde la posición actual del archivo p
fseek(p, 0 , SEEK_END);	Se desplaza 0 bytes desde el final del archivo p
<pre>fseek(p, 4 * sizeof(XX), 0);</pre>	Se desplaza 4 veces el tamaño del tipo XX desde el inicio del archivo p
<pre>fseek(p, pos * sizeof(XX), 0);</pre>	Se desplaza pos veces el tamaño del tipo XX desde el inicio del archivo p

ftell

Devuelve la cantidad de bytes desde el inicio del archivo a la posición donde se encuentre el cursor al momento de ejecutar la función.

```
fseek(p, 0, SEEK_END);

t = ftell(p);

cr = t / sizeof(XX);
```


¿Qué tiene la variable t?

¿Qué tiene la variable cr?

¿Para qué nos sirve?

Ejemplos en C/C++