MAT195S CALCULUS II

Midterm Test #2

29 March 2018

9:10 am - 10:55 am

Closed Book, no aid sheets, no calculators

Instructors: F. Al Faisal and J. W. Davis

Family Name:	JW Davis	
Given Name:	Solutions	***************************************
Student #:		

FOR MARKER USE ONLY					
Question	Marks	Earned			
1	13				
2	8				
3	5				
4	10				
5	10				
6	10				
7	8				
8	8				
TOTAL	72	/ 65			

Tutorial Section:		
TA Name:		

1) Test the series for convergence or divergence:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$$
 b) $\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$ c) $\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$ d) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$

b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} ne^{-1}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$$

$$d) \sum_{n=1}^{\infty} \frac{2^n}{n^2}$$

(13 marks)

a)
$$\leq (-1)^k \frac{3n-1}{2n+1}$$
 | $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{3-1/n}{2+1/n} = \frac{3}{2} \neq 0$

: diverges by the test for divergence

b)
$$\xi(-1)^{n+1}$$
 =7 show decreasing: consider $f(x) = xe^{-x}$
 $f'(x) = e^{-x}(1-x)$ to for $x > 1$

: decreasing

: \(\frac{2}{5}(-1)^{m} ne^{-n} \) converges by the AH series test

c)
$$\mathcal{L} \left(\frac{-z}{n}\right)^n$$

(c)
$$\frac{2}{2} \left(\frac{-2}{n}\right)^n = \frac{1}{n} \left| \frac{1}{n} \left| \frac{2}{n} \right| = \frac{2}{n} = \frac{2}{n}$$

: converges by root test

$$\frac{2}{2}$$
 $\frac{2}{n}$ converges : $\frac{2}{2}$ $\frac{(-2)^{N}}{n}$ converges

d)
$$\frac{z}{z} = \frac{z^n}{n^2}$$
 ratio test: $\left|\frac{a_{nn}}{a_n}\right| = \frac{z^{n+1}}{(n+1)^2} \cdot \frac{n^2}{z^n} = z\left(\frac{n}{n+1}\right)^2 - \frac{1}{2}z^{n-1}$

:.
$$\frac{2}{5}$$
 $\frac{2}{n^2}$ diverges

2) a) Find the radius and interval of convergence of the power series:
$$\sum_{n=2}^{\infty} \frac{x^{2n}}{n(\ln n)^2}$$

(4 marks)

ratio test:
$$\left| \frac{z^{2n+2}}{(n+1)(\ln(n+1))^2} \cdot \frac{n(\ln n)^2}{z^{2n}} \right| = \left(\frac{n}{n+1} \right) \left(\frac{\ln n}{\ln(n+1)} \right)^2 \cdot |z|^2 \longrightarrow |z|^2$$

lim
$$\frac{\ln x}{2}$$
 = $\lim_{x\to\infty} \frac{1}{|x|} = \lim_{x\to\infty} \frac{1}{|x|} = 1$: convergent for $|x| = 1$

end points:
$$x = \pm 1 \implies \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

Integral test: $\int_{2}^{\infty} \frac{dx}{x(\ln x)^2} = \int_{\ln x}^{\infty} \frac{du}{u^2} = \int_{-1}^{\infty} \frac{du}{u^2} = \int_{\ln x}^{\infty} \frac{du}{u^2} =$

(4 marks)

b) If k is a positive integer, find the radius of convergence of the series: $\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n$

ratio test:
$$\frac{((n+1)!)^k \times^{n+1}}{(kn+k)!} \cdot \frac{(kn)!}{(n!)^k \times^n} = |\chi|(n+1)^k \frac{(kn)!}{(kn+k)!}$$

3) Prove that if $\sum c_n$ converges absolutely, then $\sum c_n^p$ converges absolutely for all integers p > 1.

(5 marks)

Alternate: limit comparison test:

lim $\frac{C_n}{C_n} = \lim_{n \to \infty} C_n$ $\frac{C_n}{C_n} = \lim_{n \to \infty} C_n$ $\frac{P^1}{C_n} = \lim_{n \to \infty} C_n = 0$ Since $\frac{P^1}{C_n} = \lim_{n \to \infty} C_n = 0$ Since $\frac{P^1}{C_n} = 0$ $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ Since $\frac{P^1}{C_n} = 0$ $\frac{P^1}{C_n} = 0$ Since $\frac{P$

4) Find, from first principles, the Taylor series expansion for $f(x) = 3^x$ about a = 0. Prove that f is equal to the sum of this series by showing that the Taylor remainder, $R_n(x)$, goes to zero as $n \to \infty$. Recall, the Taylor remainder theorem which states that

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1} \text{ where } |f^{(n+1)}(x)| \le M.$$

(10 marks)

Now
$$\int_{-\infty}^{(n+1)} (z) = 3^{2} (\ln 3)^{n+1} = 7 M = 3^{2} (\ln 3)^{n+1}$$

$$\therefore R_{n}(x) \leq \frac{3^{2} |x \ln 3|^{n+1}}{(n+1)!} \xrightarrow{n \to \infty} 0$$

$$\therefore 3^{2} = \frac{3^{2} |x \ln 3|^{n}}{n!}$$

$$\therefore 3^{2} = \frac{3^{2} |x \ln 3|^{n}}{n!}$$

5) Find the Fourier series, ie., evaluate the Fourier coefficients, for the function:

$$f(t) = 1 - t, -1 < t \le 1.$$

Provide a sketch of the function, and a sketch of what you imagine the sum of the first few terms of the series would look like.

(10 marks)

$$a_n = \frac{7}{7} \int_{-7h}^{7h} f(t) \cos n\omega t dt \Rightarrow a_0 = \int_{-1}^{1} (1-t) dt = \left[t - \frac{t^2}{2}\right]_{-1}^{1} = \left(1 - \frac{1}{2} + 1 + \frac{1}{2}\right) = 2$$

$$= -\left[\frac{t}{n\pi} \operatorname{siw}(n\pi + T) + \int_{-\infty}^{\infty} \frac{1}{n\pi} \operatorname{siw}(n\pi + dt) = 0\right]$$

$$= -\left[\frac{-t}{n\pi}\cos n\pi t\right]_{-1}^{-1} - \left[\frac{1}{n\pi}\cos n\pi t\right]_{-1}^{-1} - \left[\frac{-2}{n\pi}\cos n\pi t\right]_{-1}^{$$

:.
$$f(t) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{Z}{n\pi} \sin n\pi t$$

Page 6 of 9

- 6) a) Give an ϵ - δ definition of uniform continuity of a function f defined for real numbers.
 - b) Using the ϵ - δ definition, prove that $f(x) = \sin x$ is uniformly continuous on \mathbb{R} . HINT: Use the mean value theorem.

(10 marks)

a) We say that a function f is uniformly continuous on a set \mathcal{T} , if for any ϵ 70 then exists a ϵ 70 such that whenever $|x_1 - x_2| \leq \epsilon$, for any $x_1, x_2 \in \mathcal{T}$, then $|f(x_1) - f(x_2)| \leq \epsilon$.

b) Given $|x_2-x_1| < \delta \rightarrow show |sin x_2-sin x_1| < \epsilon$ Mean Value Theorem: $f'(z) = \frac{f(b)-f(a)}{b-a}$; $z \in (b,a)$

or $\cos z = \frac{\sin x_2 - \sin x_1}{x_2 - x_1}$; $z \in (x_1, x_2)$

 $|\sin \alpha x - \sin \alpha_1| = |\cos \alpha \cdot (\alpha_2 - \alpha_1)|$ $|\sin \alpha x - \sin \alpha_1| = |\sin \alpha x - \sin \alpha_1| \leq |\alpha_2 - \alpha_1|$ $|\cot \beta x = |\cot \beta x = |\cot \alpha x|$ $|\cot \beta x = |\cot \alpha x|$

:. For $|a_2-x_1| < \delta = \epsilon$ then $|\sin x_2 - \sin x_1| < \epsilon$:. $\sin x$ is uniformly continuous. 7) Find the curvature at a general point on the curve: $r(t) = t \hat{i} + \sqrt{2} \ln t \hat{j} + \frac{1}{t} \hat{k}$.

(8 marks)

$$\ddot{r}(t) = (t, 5z h t, 1/t)$$

$$\ddot{r}'(t) = (1, \frac{5z}{t}, \frac{-1}{t^{2}})$$

$$|| \dot{r}'(t)|| = \int 1 + \frac{z}{t^{2}} + \frac{1}{t^{4}} = \frac{1}{t^{2}} \int t^{4} + zt^{2} + 1 = \frac{t^{2} + 1}{t^{2}}$$

$$\ddot{r}''(t) = (0, -\frac{5z}{t^{2}}, \frac{z}{t^{2}})$$

$$\ddot{r}''(t) = (1, -\frac{5z}{t^{2}}, \frac{z}{t^{2}})$$

$$\ddot{r}'''(t) = (1, -\frac{5z}{t^{$$

8) a) Let
$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 1 & \text{for } (x,y) = (0,0) \end{cases}$$

Show that f is continuous on \mathbb{R}^2 .

(4 marks)

b) Does $\lim_{(x,y)\to(1,0)} \tan^{-1}\frac{x}{y}$ exist? If so, find its value; if not, explain.

(4 marks)

= consider the line x=1

=> we can approach y=0 from

above or below

lim tan'
$$y = -\frac{\pi}{2}$$
 = lim tan' z
 $y \to 0$ lim tan' $z = +\frac{\pi}{2}$ = lim tan' z
 $y \to 0$ tan' $z = +\frac{\pi}{2}$ = $z \to +\infty$

8a) Somewhat different approach
Civen lim sint = 1

: given 670 we can find a 570 such that
for 0 1 (t | 1 & => | 4int -1 | 4 t

Now, for this same S, we can set:

O L 11 (x,y) - (0,0) 11 L JS'

Or O L J x 2 + y 2 L S

So, by the result above, with t= >12 + y 2,

So, by the result above, with to set you we have | sin (zzyyz) -1 | 4 €