Relación de ejercicios 2 EDIP

Carlos García, Bora Goker, Javier Gómez, Ana Graciani, J.Alberto Hoces

2020/2021

Ejercicio 1. En una encuesta de familias sobre el número de individuos que la componen (X) y el número de personas activas en ellas (Y) se han obtenido los siguientes resultados:

X/Y	1	2	3	4
1	7	0	0	0
2	10	2	0	0
3	11	5	1	0
4	10	6	6	0
5	8	6	4	2
6	1	2	3	1
7	1	0	0	1
8	0	0	1	1

a) Calcular la recta de regresión de Y sobre X.

X/Y	1	2	3	4	$n_{i.}$	$n_{i.}x_{i}$	$n_{i.}x_{i}^{2}$
1	7	0	0	0	7	7	7
2	10	2	0	0	12	24	48
3	11	5	1	0	17	51	153
4	10	6	6	0	22	88	352
5	8	6	4	2	20	100	500
6	1	2	3	1	7	43	252
7	1	0	0	1	2	14	98
8	0	0	1	1	2	16	128
$n_{.j}$	48	21	15	5	89		
$n_{.j}y_j$	48	42	45	20			
$n_{.j}y_j^2$	48	84	135	80			

La recta de regresión lineal de Y sobre X viene dada por la expresión:

$$y - \overline{y} = \frac{\sigma_{xy}}{\sigma_x^2}(x - \overline{x}) \Rightarrow y = \frac{\sigma_{xy}}{\sigma_x^2}x - \frac{\sigma_{xy}}{\sigma_x^2}\overline{x} + \overline{y}$$

Por lo tanto, comencemos calculando las medias aritméticas y la varianza de x y la covarianza:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{8} x_i n_{i.} = 3,8427 \text{ individuos} \qquad \overline{y} = \frac{1}{n} \sum_{j=1}^{4} y_j n_{.j} = 1,7416 \text{ personas activas}$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^8 n_{i.} x_i^2 - \overline{x}^2 = 2,5146 \text{ individuos}^2$$

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{8} \sum_{j=1}^{4} n_{ij} x_i y_j - \overline{x} \ \overline{y} = 0,7907$$

Por lo tanto, la recta de regresión de Y sobre X quedaría:

$$y = \frac{\sigma_{xy}}{\sigma_x^2} x - \frac{\sigma_{xy}}{\sigma_x^2} \overline{x} + \overline{y} = 0.3144x + 0.5333$$

b) ¿Es adecuado suponer una relación lineal para explicar el comportamiento de Y a partir de X?

Para ver cómo de adecuado es suponer dicha relación calculamos el coeficiente de correlación lineal:

$$r^2 = \sqrt{\frac{\sigma_{xy}^2}{\sigma_x^2 \sigma_y^2}} \qquad r = \sqrt{r^2}$$

Ahora calculamos la varianza de Y:

$$\sigma_y^2 = \frac{1}{n} \sum_{j=1}^4 n_{.j} y_j^2 - \overline{y}^2 = 0.8657 \text{ personas activas}^2$$

Por tanto:

$$r^2 = \frac{0,7907^2}{2,5146 \cdot 0,8657} = 0,2872 \qquad r = 0,536$$

Observando estos resultados podemos afirmar que no es adecuado suponer esta relación linear puesto que el coeficiente de correlación lienal está demasiado alejado de 1.

