Linear regression

- 1 Multiple linear regression
- 2 Standardized coefficients
- 3 Regression dummies
- 4 Regression diagnostics

Multiple linear regression

. reg births schooling log_gdpc

Source	SS	df	MS
Model Residual	150.301883 70.475313	2 83	75.1509417 .849100157
Total	220.777196	85	2.59737878

Number of ob	s =	86
F(2, 83	3) =	88.5
Prob > F	=	0.000
R-squared	=	0.6808
Adj R-square	ed =	0.673
Root MSE	=	.92147

births	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
schooling log gdpc	1976117 4703416	.0724595	-2.73 -3.55	0.008 0.001	3417306 7337796	0534927 2069036
_cons	7.950304	.6861182	11.59	0.000	6.585642	9.314965

Multiple linear regression

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots, + \beta_k X_k + \epsilon$$

Partial derivatives

Each coefficient is calculated by holding all others constant.

Least squares

The model is still optimized by minimizing the squared error terms.

Sanity check

The model is still assuming *linear*, additive relationships.

Lin-log coefficients

Linear-linear relationships

 $Y = \beta_0 + \beta_1 X$: an increase of one unit of X is associated with an increase of β_1 units of Y.

Log-linear relationships

In $Y = \beta_0 + \beta_1 X$: an increase of one unit of X is associated with a $100 \times \beta_1\%$ increase in Y (true effect: $Y \times \exp(\beta_1)$).

Linear-log relationships

 $Y = \beta_0 + \frac{\beta_1 \ln X}{\ln X}$: a 1% increase in X is associated with a $0.01 \times \beta_1$ unit increase in Y (e.g. $\beta_1 \times \log(1.15)$ for +15% in X).

Log-log relationships

In $Y = \beta_0 + \beta_1 \ln X$: a 1% increase in X is associated with a β_1 % increase in Y.

reg births schooling log_gdpc, beta

Each variable can be normalized to fit $\mathcal{D} \sim \mathcal{N}(0,1)$, so that their standardized coefficients have comparable standard deviation units:

births	Coef.	Std. Err.	t	P> t	Beta
schooling log_gdpc _cons	1976117 4703416 7.950304	.0724595 .1324501 .6861182	-2.73 -3.55 11.59	0.008 0.001 0.000	3686479 4800156

(identical output for overall model fit omitted)

Sanity check

Interpret unstandardized coefficients; use standardization only for model comparisons.

reg births schooling log_gdpc i.region

Categorical variables can be used as dummies, i.e. binary recodes of each category that are tested against a reference category to provide regression coefficients for the net effect of each category:

births	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
schooling	0415563	.0639718	-0.65	0.518	1688888	.0857763
log_gdpc	742187	.1380037	-5.38	0.000	-1.016876	4674975
region						
2	6523485	.5803126	-1.12	0.264	-1.807432	.5027349
3	.3682404	.254364	1.45	0.152	1380585	.8745393
4	1.411177	.2486027	5.68	0.000	.9163457	1.906008
5	1.167491	.337383	3.46	0.001	.4959471	1.839035
_cons	8.315004	.8006456	10.39	0.000	6.721359	9.908649

(identical output for overall model fit omitted)

Regression diagnostics

Residuals

- predict yhat: fitted values
- predict r, resid: residuals
- predict r, rsta: standardized residuals

Use rvfplot for residuals-versus-fitted values plots.

Interaction terms

- Use vif to detect variables with VIF > 10
- Use c. and # for interactions

Thanks for your attention

Project

- Name your paper and do-file like Briatte_Petev_2
- Make sure to print your paper to a slick PDF

Readings

■ Stata Guide, Sec. 10, 11, 13 and 15

Practice

- Replicate do-file
- Use its structure for Draft No. 2