IN THE CLAIMS

Please amend claims 2, 6, 9, and 13-17 as indicated below.

1. (Canceled)

2. (Currently Amended) A method comprising:

establishing a plurality of transmission time slots, each time slot corresponding to one of a plurality of optical transmitters coupled to a head end via an interleaving device a passive optical network (PON) splitter;

forming a bit interleaved optical data stream at the <u>interleaving device PON splitter</u> based on a plurality of optical bits transmitted by the plurality of optical transmitters during a respective time slot associated with each of the optical transmitters, each of the optical transmitters transmitting only one optical bit to the interleaving device within each respective time slot; and

transmitting the bit interleaved optical data stream from the <u>interleaving device</u> PON splitter to the head end over an optical network.

3. (Original) The method of claim 2 further comprising:

enabling each of the plurality of optical transmitters to transmit an optical bit during its corresponding time slot.

4. (Original) The method of claim 3 further comprising:

adding an additional optical transmitter to the optical network.

- 5. (Original) The method of claim 2 wherein at least one of the plurality of optical transmitters is a vertical cavity surface emitting laser.
- 6. (Currently Amended) A network comprising:

a head end;

a passive optical network (PON) splitter an interleaving device coupled to the head end; and

a plurality of transmitters coupled to the head end via the <u>interleaving device PON</u> splitter, each of the plurality of transmitters are enabled to transmit an optical bit during an established time slot corresponding to said each transmitter to the <u>interleaving device PON splitter</u> to create a bit interleaved optical data stream, wherein the bit interleaved optical data stream is transmitted from the <u>interleaving device PON splitter</u> to the head end, and wherein each transmitter transmits only one optical bit to the interleaving device within each respective time slot.

- 7. (Original) The network defined in Claim 6 wherein at least one of the plurality of transmitters comprises a vertical cavity surface emitting laser.
- 8. (Canceled)
- 9. (Currently Amended) An apparatus comprising:

means for establishing a plurality of transmission time slots, each time slot corresponding to one of a plurality of optical transmitters coupled to a head end via an interleaving device a passive optical network (PON) splitter;

means for forming a bit interleaved optical stream at the <u>interleaving device PON</u>

splitter based on a plurality of optical bits transmitted by the plurality of optical transmitters during a respective time slot associated with each of the optical transmitters, each of the optical transmitters transmitting only one optical bit to the interleaving device within each respective time slot; and

means for transmitting a bit interleaved optical data stream from the <u>interleaving</u>

<u>device PON splitter</u> to the head end over an optical network.

- 10. (Original) The apparatus of claim 9 further comprising:
 means for enabling each optical transmitter to transmit an optical bit during its
 corresponding time slot.
- 11. (Original) The apparatus of claim 10 further comprising:

 means for adding an additional optical transmitter to the optical network.
- 12. (Original) The apparatus of claim 11, wherein at least one optical transmitter is a vertical cavity surface emitting laser.
- 13. (Currently Amended) A computer readable medium, which, when executed by a processing system, enables the system to perform:

establishing a plurality of transmission time slots, each time slot corresponding to one of a plurality of optical transmitters coupled to a head end via an interleaving device a passive optical network (PON) splitter;

forming a bit interleaved optical stream at the <u>interleaving device</u> PON splitter based on a plurality of optical bits transmitted by the plurality of optical transmitters during a respective time slot associated with each of the optical transmitters, each of the optical transmitters transmitting only one optical bit to the interleaving device within each respective time slot; and

transmitting the bit interleaved optical data stream from the <u>interleaving device</u> PON splitter to the head end over an optical network.

14. (Currently Amended) The method of claim 2, wherein each of the plurality of optical transmitters is assigned an up to <u>a</u> 10 nanosecond time slot, and wherein each bit of the bit interleaved optical data stream is transmitted via an up to <u>a</u> 2.5 ns pulse over the optical network.

15. (Currently Amended) The method of claim 2, further comprising increasing transmitting power for each bit of the bit interleaved optical data stream to allow a peak of the transmitting power exceeding a predetermined threshold that would cause human eye damage, while maintaining an average transmitting power of the bit interleaved optical data stream below [[a]] the predetermined threshold that would cause a human eye damage.

16. (Currently Amended) The network of claim 6, wherein each of the plurality of optical transmitters is assigned an up to a 10 nanosecond time slot, and wherein each bit of the bit

interleaved optical data stream is transmitted via an up to a 2.5 ns pulse over the optical .

network.

17. (Currently Amended) The network of claim 6, wherein each bit of the bit interleaved optical data stream is transmitted via a pulse having a duty cycle such that, while carrying a relative high transmitting power having a peak value higher than a predetermined threshold that would cause human eye damage, an average transmitting power of the bit interleaved optical data stream is maintained below [[a]] the predetermined threshold that would cause [[a]] human eye damage.