CS1026 - Digital Logic Design

Introducion to Flip Flops and Latches

Shane Sheehan 1

¹ADAPT Trinity College Dublin

February 7, 2017

Today's Overview

- 1 Introduction
- 2 Flip-flops vs Latches
- 3 Flip-flop/Latch Taxonomy
- 4 A Simple Set-Reset Latch

Making Memory I

In electronics, a flip-flop or latch denotes a circuit that has:

- 1 Two stable states
- Used to store state information.

Sound familiar?

Making Memory II

A flip-flop is a bistable multivibrator:

- Change state by signals applied to one or more control inputs
- It is the basic storage element in sequential logic:
 - Flip-flops/latches form fundamental building blocks for computers, embedded systems, etc.

Making Memory III

A flip-flop/latch stores a single bit (binary digit) of data:

- one state represents a "one"
- the other represents a "zero".

This allows the storage of state

Sync vs. Async I

Flip-flops:

Clocked (synchronous)

Latches:

Simple (transparent or asynchronous)

Hint

- Latch mainly used for storage elements
- Clocked devices denote Flip Flops

Sync vs. Async II

We use clocked devices for synchronous systems:

- Such devices ignore their inputs except at the transition of a dedicated clock signal
- Clocking causes the flip-flop to either change or retain its output signal
 - Based upon the values of the input signals at the transition

Sync vs. Async III

Flip-flops vs Latches

Some flip-flops change output on the rising edge of the clock...

...others on the falling edge.

Types of Flip-Flop/Latch I

Several Types:

- SR "Set-reset"
- D "Data" or "Delay"
- T "Toggle"
- JK Jack Kilby

Types of Flip-Flop/Latch II

The behavior of a particular type can be described by what is termed the characteristic equation:

- This derives the "next" output,
- Q_{next} in terms of the input signal(s) and/or the current output, Q.

SR NOR Latch [Kojima, 2013] I

Using logic gates, the most fundamental latch is the simple SR latch:

- Constructed from a pair of cross-coupled NOR logic gates
- The stored bit outputted at Q

SR NOR Latch [Kojima, 2013] II

Flip-flops vs Latches

While the R and S inputs are both low:

- Feedback maintains the Q and Q' outputs in a constant state
- Note: Q' the complement of Q

SR NOR Latch [Kojima, 2013] III

Flip-flops vs Latches

If S (Set) is pulsed high while we keep R (Reset) low:

- Then Q output becomes high
- Stays high when S returns to low

SR NOR Latch [Kojima, 2013] IV

Flip-flops vs Latches

Characteristic Table				Excitation Table			
S	R	Q_{next}	Action	Q	Q_{next}	S	R
0	0	Q	Hold State	0	0	0	Х
0	1	0	Reset	0	1	1	0
1	0	1	Set	1	0	0	1
1	1	Χ	Now allowed	1	1	Χ	0

Table: Characteristic and Exciation Table

Note: X means don't care

SR NOR Latch [Kojima, 2013] V

The R = S = 1 denotes a restricted combination or a forbidden state:

- Both NOR gates output zeros
- Then we have the logical equation Q = Q'

Whoops!

SR NOR Latch [Kojima, 2013] VI

Flip-flops vs Latches

Also inappropriate:

- Inputs go low simultaneously (i.e. a transition from restricted to keep)
- The output would lock at either 1 or 0 depending on the propagation time between the gates
- We have a race condition

Ahead of schedule

Any Problems?

- Ask!
- E-Mail: sheehas1@scss.tcd.ie

References (Homework) I

Kojima, S. (2013).Sr flip-flop.US Patent 8,497,722.