Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	е
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм конструктора класса class1	11
3.2 Алгоритм метода Print класса class1	11
3.3 Алгоритм конструктора класса class2	12
3.4 Алгоритм метода Print класса class2	12
3.5 Алгоритм конструктора класса class3	12
3.6 Алгоритм метода Print класса class3	13
3.7 Алгоритм конструктора класса class4	13
3.8 Алгоритм метода Print класса class4	14
3.9 Алгоритм функции main	14
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	16
5 КОД ПРОГРАММЫ	18
5.1 Файл class1.cpp	18
5.2 Файл class1.h	18
5.3 Файл class2.cpp	19
5.4 Файл class2.h	19
5.5 Файл class3.cpp	20
5.6 Файл class3.h	20
5.7 Файл class4.cpp	21
5.8 Файл class4.h	21
5.9 Файл main.cpp	22
6 ТЕСТИРОВАНИЕ	23

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ24

1 ПОСТАНОВКА ЗАДАЧИ

Иерархия наследования

Описать четыре класса которые последовательно наследуют друг друга, последовательными номерами классов 1,2,3,4.

Реализовать программу, в которой использовать единственный указатель на объект базового класса (номер класса 1).

Наследственность реализовать так, что можно было вызвать методы, принадлежащие объекту конкретного класса, только через объект данного класса.

В закрытом разделе каждого класса определены два свойства: строкового типа для наименования объекта и целого типа для значения определенного целочисленного выражения.

Описание каждого класса содержит один параметризированный конструктор с строковым и целочисленным параметром.

В реализации каждого конструктора объекта определяются значения закрытых свойств:

- Наименование объекта по шаблону: «значение строкового параметра»_«номер класса»;
- Целочисленного свойства значением выражения возведения в степень номера класса целочисленного значения параметра конструктора.

Еще в описании каждого класса определен метод с одинаковым наименованием для всех классов, реализующий вывод значений закрытых свойств класса.

В основной функции реализовать алгоритм:

- 1. Вводится идентификатор и натуральное число от 2 до 10.
- 2. Создать объект класса 4, используя параметризированный конструктор,

которому в качестве аргументов передаются введенный идентификатор и натуральное число.

3. Построчно, для всех объектов согласно наследственности, от объекта базового (класс 1) до производного объекта (класса 4) вывести наименование объекта класса и значение целочисленного свойства.

1.1 Описание входных данных

Первая строка:

«идентификатор» «натуральное число»

Пример ввода:

Object 2

1.2 Описание выходных данных

Построчно (четыре строки):

«идентификатор»_ «номер класса» «значение целочисленного свойства»

Разделитель - 1 пробел.

Пример вывода:

Object_1 2

Object_2 4

Object_3 8

Object_4 16

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса class 4 предназначен для демонстрация иерархии наследования;
- cin объект стандартного потока ввода;
- cout объект стандартного потока вывода.

Класс class1:

- свойства/поля:
 - о поле поле хранения названия объекта:
 - наименование name;
 - тип string;
 - модификатор доступа private;
 - о поле поле хранения значения объекта:
 - наименование n;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод class1 конструктор, устанавливает имя и целочисленное значение объекту;
 - о метод Print выводит имя объекта и его значение.

Класс class2:

- свойства/поля:
 - о поле поле хранения названия объекта:
 - наименование name;
 - тип string;
 - модификатор доступа private;

- о поле поле хранения значения объекта:
 - наименование n;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод class2 конструктор, устанавливает имя и целочисленное значение объекту;
 - о метод Print выводит имя объекта и его значение.

Класс class3:

- свойства/поля:
 - о поле поле хранения названия объекта:
 - наименование name;
 - тип string;
 - модификатор доступа private;
 - о поле поле хранения значения объекта:
 - наименование n;
 - тип int;
 - модификатор доступа private;
- функционал:
 - метод class3 конструктор, устанавливает имя и целочисленное значение объекту;
 - о метод Print выводит имя объекта и его значение.

Класс class4:

- свойства/поля:
 - о поле поле хранения названия объекта:
 - наименование name;
 - тип string;

- модификатор доступа private;
- о поле поле хранения значения объекта:
 - наименование n;
 - тип int;
 - модификатор доступа private;
- функционал:
 - метод class4 конструктор, устанавливает имя и целочисленное значение объекту;
 - о метод Print выводит имя объекта и его значение.

Таблица 1 – Иерархия наследования классов

	No	Имя класса	Классы-	Модификатор	Описание	Номер
			наследники	доступа при		
				наследовании		
1	L	class1			родительский класс, содержит	
					основные поля и методы	
2	<u> </u>	class2			дочерний класс класса class1	
			class1	private		1
3	}	class3			дочерний класс класса class2	
			class2	private		2
4	1	class4			Дочерний класс класса class3	
			class3	private		3

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса class1

Функционал: устанавливает имя и целочисленное значение объекту.

Параметры: string name, int n.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса class1

N₂	Предикат	Действия		
			перехода	
1		присвоить скрытому свойству пате значение параметра пате и	2	
		дописать "_1"		
2		присвоить скрытому свойству п значение параметра п	Ø	

3.2 Алгоритм метода Print класса class1

Функционал: выводит имя объекта и его значение.

Параметры: none.

Возвращаемое значение: -.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода Print класса class1

ľ	Īο	Предикат	Действия	N₂
				перехода
1			вывод значений скрытых свойств пате и п через пробел	Ø

3.3 Алгоритм конструктора класса class2

Функционал: устанавливает имя и целочисленное значение объекту.

Параметры: string name, int n.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса class2

N₂	Предикат	Действия		
			перехода	
1		присвоить скрытому свойству пате значение параметра пате и	2	
		дописать "_2"		
2		присвоить скрытому свойству n значение параметра n*n	Ø	

3.4 Алгоритм метода Print класса class2

Функционал: выводит имя объекта и его значение.

Параметры: none.

Возвращаемое значение: -.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода Print класса class2

N₂	Предикат	Действия	No
			перехода
1		вывод значений скрытых свойств пате и п через пробел	Ø

3.5 Алгоритм конструктора класса class3

Функционал: конструктор, устанавливает имя и целочисленное значение объекту.

Параметры: string name, int n.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса class3

N₂	Предикат	Действия		
			перехода	
1		присвоить скрытому свойству пате значение параметра пате и	2	
		дописать "_3"		
2		присвоить скрытому свойству n значение параметра n*n*n	Ø	

3.6 Алгоритм метода Print класса class3

Функционал: выводит имя объекта и его значение.

Параметры: none.

Возвращаемое значение: -.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода Print класса class3

N₂	Предикат	Действия	No
			перехода
1		вывод значений скрытых свойств пате и п через пробел	Ø

3.7 Алгоритм конструктора класса class4

Функционал: конструктор, устанавливает имя и целочисленное значение объекту.

Параметры: string name, int n.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса class4

N₂	Предикат	Действия		
			перехода	
1		присвоить скрытому свойству пате значение параметра пате и	2	
		дописать "_4"		
2		присвоить скрытому свойству n значение параметра n*n*n*n	Ø	

3.8 Алгоритм метода Print класса class4

Функционал: выводит имя объекта и его значение.

Параметры: none.

Возвращаемое значение: -.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода Print класса class4

No	Предикат	Действия	No
			перехода
1		вывод значений скрытых свойств пате и п через пробел	Ø

3.9 Алгоритм функции main

Функционал: запуск программы.

Параметры: none.

Возвращаемое значение: код ошибки int.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции таіп

N₂	Предикат	Действия	No
			перехода
1		объявление переменной типа string	2
2		объявление переменной n типа int	3
3		ввод значения переменной пате	4
4		ввод значения переменной п	5
5		инициализация указателя obj на объект класса class1 адресом нового	6
		объекта класса class4 с помощью оператора функции new с передачей	
		конструктору параметров пате, п с приведением к указателю на	
		объект класса class1	
6		вызов метода Print() объекта obj	7
7		вывод переноса на новую строку	8

N₂	Предикат	Действия	
			перехода
8		вызов метода Print() объекта obj, приведенный к указателю на объект	
		класса class2	
9		вывод переноса на новую строку	
10		вызов метода Print() объектом obj, приведенный к указателю на	11
		объект класса class3	
11		вывод переноса на новую строку	12
12		вызов метода Print() объекта obj приведенный к указателю на объект класса class4	
13		освобождение памяти, выделенной под объект obj с помощью оператора функции delete	14
14		возврат значения 0	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл class1.cpp

```
#include "class1.h"
#include <iostream>

class1::class1(string name, int n)
{
    this->name=name+"_1";
    this->n=n;
}
void class1::Print()
{
    cout<<name<<" ";
    cout<<n;
}</pre>
```

5.2 Файл class1.h

Листинг 2 – class1.h

```
#ifndef __CLASS1__H
#define __CLASS1__H
#include <iostream>

using namespace std;

class class1
{
    private:
        string name;
        int n;
    public:
        class1(string name, int n);
        void Print();
};
```

5.3 Файл class2.cpp

Листинг 3 – class2.cpp

```
#include "class2.h"
#include "class1.h"
#include <iostream>

class2::class2(string name, int n):class1::class1(name, n)
{
    this->name=name+"_2";
    this->n=n*n;
}

void class2::Print()
{
    cout<<name<<" ";
    cout<<n;
}</pre>
```

5.4 Файл class2.h

```
#ifndef __CLASS2__H
#define __CLASS2__H
#include "class1.h"
#include <iostream>

using namespace std;

class class2:private class1
{
   private:
       string name;
       int n;
   public:
       class2(string name, int n);
       void Print();
};

#endif
```

5.5 Файл class3.cpp

Листинг 5 - class3.cpp

```
#include "class3.h"
#include "class2.h"

using namespace std;

class3::class3(string name, int n):class2::class2(name, n)
{
    this->name=name+"_3";
    this->n=n*n*n;
}
void class3::Print()
{
    cout<<name<<" ";
    cout<<n;
}</pre>
```

5.6 Файл class3.h

Листинг 6 – class3.h

```
#ifndef __CLASS3__H
  #define __CLASS3__H
  #include "class2.h"
  #include <iostream>

using namespace std;

class class3:private class2
{
  private:
    string name;
    int n;
  public:
    class3(string name, int n);
    void Print();
};

#endif
```

5.7 Файл class4.cpp

Листинг 7 – class4.cpp

```
#include "class4.h"
#include "class3.h"

using namespace std;

class4::class4(string name, int n):class3::class3(name, n)
{
    this->name=name+"_4";
    this->n=n*n*n*n;
}

void class4::Print()
{
    cout<<name<<" ";
    cout<<n;
}</pre>
```

5.8 Файл class4.h

Листинг 8 – class4.h

```
#ifndef __CLASS4__H
  #define __CLASS4__H
  #include "class3.h"
  #include <iostream>

using namespace std;

class class4:private class3
{
  private:
    string name;
    int n;
  public:
    class4(string name, int n);
    void Print();
};

#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "class1.h"
#include "class2.h"
#include "class3.h"
#include "class4.h"
int main()
{
   string name;
   int n;
  cin>>name;
   cin>>n;
   class1* obj=(class1*)new class4(name, n);
  obj->Print();
  cout<<endl;</pre>
   ((class2*)obj)->Print();
  cout<<endl;
   ((class3*)obj)->Print();
   cout<<endl;
   ((class4*)obj)->Print();
  delete obj;
   return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
Object 2	Object_1 2 Object_2 4 Object_3 8 Object_4 16	Object_1 2 Object_2 4 Object_3 8 Object_4 16
Object 69	Object_1 69 Object_2 4761 Object_3 328509 Object_4 22667121	Object_1 69 Object_2 4761 Object_3 328509 Object_4 22667121

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).