

Lecture 02

Lexical Analysis

Part 1: specification of tokens

Hyosu Kim

School of Computer Science and Engineering

Chung-Ang University, Seoul, Korea

https://sites.google.com/view/hyosukim

hskimhello@cau.ac.kr, hskim.hello@gmail.com

Overview

Overview

What does a lexical analyzer do?

"In this course, you will learn how to design and implement compilers"

In / this / course / , / you / will / learn / how / to / design / and / implement / compilers

Overview

What does a lexical analyzer do?

- 1. Reading the input characters of a source program
- Grouping the characters into meaningful sequences, called lexemes
- 3. Producing a sequence of tokens
- 4. Storing the token information into a symbol table
- 5. Sending the tokens to a syntax analyzer

Definition: Tokens

A token is a syntactic category

- Examples
 - In English: noun, verb, adjective, ...
 - In a programming language: identifier, number, operator, ...

- Tokens are structured as a pair consisting of a token name and an optional token value
 - e.g., for an identifier A,
 its token name is "identifier" and its token value is "A"

Definition: Lexemes

A lexeme is a sequence of characters that matches the pattern for a token

Pattern: a set of rules that defines a token

Examples

Token (token name)	Lexeme
IDENTIFIER (or simply ID)	pi, score, i, j, k
NUMBER	0, 3.14,
IF	if
COMMA	,
LPAREN	(
LITERAL	"Hello world"

Class of tokens

Keyword

e.g., IF for if, ELSE for else, FLOAT for float, CHAR for char

Operators

e.g., ADD for +, COMPARISON for <, >, ==, and, ...

Identifiers

e.g., ID for all kinds of identifiers

Constants

e.g., NUMBER for any numeric constant, INTEGER, REAL, LITERAL

Punctuation symbols

e.g., LPAREN for (, COMMA for ,

Whitespace

e.g., a non-empty sequence of blanks, newlines, and tabs

 Lexical analyzers usually discard uninteresting tokens that don't contribute to parsing e.g., whitespace, comment

Lexical analysis does

- 1. Partitioning input strings into substrings (lexemes)!!
 - 2. Identifying the token of each lexeme

Input	Α	=	В	+	С
Token name	ID	ASSIGN	ID	ADD	ID
Token value	A or pointer to symbol-table entry for A		В		С
Output	<id, a=""></id,>	<assign></assign>	<id, b=""></id,>	<add></add>	<id, c=""></id,>


```
bool compare(int a, int b) {
             /* compare a and b */
Input
             return a >= b;
Output
```

Remaining questions

How to specify the patterns for tokens?

Regular languages

How to recognize the tokens from input streams?

Finite automata

Why do we use "regular languages"??

Simple, but powerful enough to describe the pattern of tokens

The coverage of formal languages

Definition: Alphabet, string, and language

An alphabet Σ is any finite set of symbols

- Letter = $\Sigma^{L} = \{A, B, C, ..., Z, a, b, c, ..., z\}$
- $Digit = \Sigma^D = \{0, 1, 2, ..., 9\}$

A string s over alphabet Σ is a finite set of symbols drawn from the alphabet

- If $\Sigma = \{0\}$, s = 0,00,000,or,...
- If $\Sigma = \{a, b\}$, s = a, b, aa, ab, ba, bb, aaa, or, ...

A language L is any set of strings over some fixed alphabet Σ

- If $\Sigma = \{a, b\}$, $L_1 = \{a, ab, ba, aba\}$ and $L2 = \{a, b, aa, ab, ba, bb, aaa, ...\}$
 - L_1 is a finite language (the number of strings in the language is finite)
 - \updownarrow L_2 is an infinite language (the number of strings in the language is infinite)

Notation	Definition	Examples / properties
S	A string (A finite set of symbols over alphabet Σ)	• If $\Sigma = \{a, b\}$, $s = a, b, ab, ba, aa, bb, aaa, or,$
<i>s</i>	The length of <i>s</i> (The number of occurrences of symbols in <i>s</i>)	 If s = a₁a₂a₃ a_k, s = k If s = compiler, s = 8
s_1s_2	Concatenation of s_1 and s_2	• If $s_1 = CSE$, $s_2 = @$, and $s_3 = CAU$, $s_1s_2s_3 = CSE@CAU$ • $ s_1s_2 = s_1 + s_2 $ • $s_1s_2 \neq s_2s_1$, if $s_1 \neq s_2$

Notation	Definition	Examples / properties
<i>€</i> (epsilon)	An empty string	• $ \epsilon = 0$ • $\epsilon s = s = s\epsilon$ • $s_1 \epsilon s_2 = s_1 s_2$
s ⁱ	•	• $s^{0} = \epsilon$ • $s^{1} = s$, $s^{2} = ss$, $s^{3} = sss$ • $s^{i} = s^{i-1}s$, for all $i > 0$ • $e.g., s^{1} = s^{0}s = \epsilon s = s$

Operations on languages

Notation	Definition	Examples / properties
L	A language (A set of strings over alphabet Σ)	• If $\Sigma = \{a, b\}, L = \{a, b, aa\}$
$L_1 \cup L_2$	Union of L_1 and L_2 $\{s \mid s \ is \ in \ L_1 \ or \ s \ is \ in \ L_2\}$	• If $L_1 = \{a, ab\}$ and $L_2 = \{b, aa\}$, $L_1 \cup L_2 = \{a, b, ab, aa\}$
L_1L_2	Concatenation of L_1 and L_2 $\{s_1s_2 \mid s_1 \text{ is in } L_1 \text{ and } s_2 \text{ is in } L_2\}$	• If $L_1 = \{a,ab\}$ and $L_2 = \{b,aa\}$, $L_1L_2 = \{ab,aaa,abb,abaa\}$
L^i	Concatenation of $L\ i$ -times	• If $L = \{a, ab\}$, $L^0 = \{\epsilon\}, L^1 = \{a, ab\}, L^2 = \{aa, aab, aba, abab\}$ • $L^i = L^{i-1}L$

Operations on languages

Notation	Definition	Examples / properties
L *	Kleene closure of L (Concatenation of L zero or more times)	• $L^* = \bigcup_{i=0}^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup \cdots$ • If $L = \{0\}$, $L^* = \{\epsilon, 0, 00, 000, 0000, \dots\}$
L^+	Positive closure of L (Concatenation of L one or more times)	• $L^{+} = \bigcup_{i=1}^{\infty} L^{i} = L^{1} \cup L^{2} \cup L^{3} \cup \cdots$ • $L^{+} = L^{*} - \{\epsilon\}$ • If $L = \{0\}$, $L^{+} = \{0,00,000,0000,\dots\}$

A notation for describing regular languages

Each regular expression r describes a regular language L(r)

Basic regular expressions

Regular expression	Expressed regular language
ϵ	$L(\epsilon) = \{\epsilon\}$
а	$L(a)=\{a\}$, where a is a symbol in alphabet Σ
$r_1 r_2$	$L(r_1) \cup L(r_2)$, where r_1 and r_2 are regular expressions
r_1r_2	$L(r_1r_2) = L(r_1)L(r_2) = \{s_1s_2 s_1 \in L(r_1) \text{ and } s_2 \in L(r_2)\}$
$oldsymbol{r}^*$	$L(r^*) = \bigcup_{i \ge 0} L(r^i)$

An expression is a regular expression

If and only if it can be described by using the basic regular expressions only

- Q1. Is a^+ a regular expression over alphabet $\Sigma = \{a\}$?
 - Yes, $a^+ = aa^*$
- Q2. Is $\binom{n}{n}^n$ ($0 \le n \le \infty$) a regular expression over alphabet $\Sigma = \{(,)\}$?

Rules for regular expressions

- **Precedence:** exponentiation (*, *) > concatenation > union (|)
 - $(r_1)|((r_2)^*(r_3)) = r_1|r_2^*r_3$
- Equivalence: $r_1 = r_2$, if $L(r_1) = L(r_2)$
- Algebraic laws

Operations	Laws
(union)	• Commutative: $r_1 r_2=r_2 r_1$ • Associative: $r_1 (r_2 r_3)=(r_1 r_2) r_3$
Concatenation	• Associative: $r_1(r_2r_3)=(r_1r_2)r_3$ • Concatenation distributes over $:r_1(r_2 r_3)=r_1r_2 r_1r_3$
ϵ	• The identity for concatenation: $r_1\epsilon=\epsilon r_1=r_1$ • Always guaranteed in a closure: $r^*=(r \epsilon)^*$
a^*	• Idempotent: $a^{**}=a^*$

Example 1. Keyword

- Keyword is "if", "else", "for", or ...
- Regular expression:

$$Keyword = if|else|for|...$$

Example 2. Comparison

- Comparison is all the operators related with comparison (e.g., <, >, <=, >=)
- Regular expression:

$$Comparison = < |>| <= |>= \cdots$$

Example 3. Whitespace

- Whitespace is a non-empty sequence of blanks, newlines, and tabs (e.g., \t, \n, \t\t, \n)
- Regular expression:

$$Whitespace = |\langle t| \langle n| \langle t| \rangle | \rangle^{+}$$

Example 4. Integer

- Integer is a non-empty string of digits (e.g., 0, 11, 1530, ...)
- Regular expression:

Example 5. Identifier

- Identifier is a non-empty string of letters or digits or '_', not starting with digits (e.g., aaa, i, funcAtoB, _var, main, variable123, ...)
- Regular expression:

Example 6. Float

- 0.5, 3.14, -6.111, 1.0E+3, 100.0, -10.53E-1, 9.123E3
- Regular expression:

We can specify tokens

Keyword

Identifier

Comparison

Float

Whitespace

How can we recognize

these tokens from input streams?

1. Merge the regular expression of tokens

Keyword Identifier Comparison Float Whitespace

Merged = Keyword | Identifier | Comparison | Float | Whitespace | ...

2. When an input stream $a_1 a_2 a_3 \dots a_n$ is given,

```
mIdx = 0; for \ 1 \leq i \leq n if \ a_1a_2 \dots a_i \in L(Merged), mIdx = i end partition \ and \ classify \ a_1a_2 \dots a_{mIdx}
```


2. When an input stream $a_1 a_2 a_3 \dots a_n$ is given,

```
mIdx = 0; If a_1a_2 \dots a_{mIdx} \in L(Keyword) and \ a_1a_2 \dots a_{mIdx} \in L(identifier)???? if \ a_1a_2 \dots a_i \in L(Merged), mIdx = i end Make a priority for each token!!! a_1a_2 \dots a_{mIdx}
```


end

2. When an input stream $a_1 a_2 a_3 \dots a_n$ is given,

mIdx = 0; error handling routines $for \ 1 \le i \le n$ (e.g., what happens if $a_1 \notin L(Merged)$) $if \ a_1 a_2 \dots a_i \in L(Merged), mIdx = i$

This pseudo code also needs

partition and classify $a_1a_2 \dots a_{mIdx}$

2. When an input stream $a_1 a_2 a_3 \dots a_n$ is given,

$$mIdx=0$$
; How to check this easily???
$$for \ 1 \leq i \leq n \qquad \qquad \text{Finite automata}$$
 $if \ a_1a_2 \dots a_i \in L(Merged), mIdx=i$ end
$$partition \ and \ classify \ a_1a_2 \dots a_{mIdx}$$

Summary

What does a lexical analyzer do?

More questions in designing lexical analyzers

- 1. How to specify the patterns for tokens? Regular languages
- 2. How to recognize the tokens from input streams? Finite automata