IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Deep Isolation Forest for Anomaly Detection

Hongzuo Xu[®], Guansong Pang[®], Member, IEEE, Yijie Wang[®], and Yongjun Wang[®]

Limitation of iForest

 It cannot handle hard anomalies that are difficult to isolate in high-dimensional/non-linearseparable data space.

Limitation of iForest

 It assigns unexpectedly lower anomaly scores to artefact regions.

Limitation of iForest

 It assigns unexpectedly lower anomaly scores to artefact regions.

• Idea of Deep iForest:

 map the original data into a group of new data spaces, and nonlinear isolation can be easily achieved by performing simple axisparallel partitions upon these newly created data spaces

- novel representation scheme random representation ensemble – produced by optimization-free deep neural networks
 - These networks are only casually initialized and do not involve any optimization or training process.

 simply utilizes random axis-parallel cuts upon these representations

DIF first produces the random representation ensemble via optimisation-free neural networks, which is defined as

$$\mathscr{G}(\mathcal{D}) = \left\{ \mathcal{X}_u \subset \mathbb{R}^d \middle| \mathcal{X}_u = \phi_u(\mathcal{D}; \theta_u) \right\}_{u=1}^r, \tag{1}$$

where r is the ensemble size, $\phi_u : \mathcal{D} \mapsto \mathbb{R}^d$ is the network that maps original data into new d-dimensional spaces, and the network weights in θ_u are randomly initialised. Each representation is assigned with t iTrees, and a forest $\mathcal{T} = \{\tau_i\}_{i=1}^T$ containing $T = r \times t$ iTrees is constructed.

Algorithm 1: Construction of Deep Isolation Trees.

```
Input: \mathcal{D} - input dataset
 Output: \mathcal{T} - forest of deep isolation trees
1: Initialise \mathcal{T} \leftarrow \emptyset
2: Generate representations \{\mathcal{X}_u\}_{u=1}^r via \mathscr{G}_{CERE}
3: for u=1 to r do
    for i = 1 to t do
5:
          Initialise an isolation tree \tau_i by setting the root node
          using \mathcal{P}_1 \subseteq \mathcal{X}_u, |\mathcal{P}_1| = n
          while \mathcal{P}_k is a leaf node of tree \tau_i do
6:
             if |\mathcal{P}_k| > 1 and the depth is smaller than J then
7:
                Randomly select a dimension j_k \in \{1, \ldots, d\}
8:
9:
                Randomly select a split point \eta_k between the
                max and min values of dimension j_k in \mathcal{P}_k
                  \mathcal{P}_{2k} \leftarrow \{ \boldsymbol{x} | \boldsymbol{x}^{(j_k)} \leq \eta_k, \boldsymbol{x} \in \mathcal{P}_k \}
10:
                  \mathcal{P}_{2k+1} \leftarrow \{ oldsymbol{x} | oldsymbol{x}^{(j_k)} > \eta_k, oldsymbol{x} \in \mathcal{P}_k \}
11:
12:
               end if
13:
           end while
14:
        \mathcal{T} \leftarrow \mathcal{T} \cup 	au_i
15:
        end for
16: end for
17: return \mathcal{T}
```

- Deviation-Enhanced Anomaly Scoring function
 - utilise the deviation degree of the feature value to the branching threshold as additional weighting information to further improve the measurement of isolation difficulty.
- The averaged deviation degree of x_u in τ_i

$$g(\boldsymbol{x}_u| au_i) = rac{1}{|p(\boldsymbol{x}_u| au_i)|} \sum_{k \in p(\boldsymbol{x}_u| au_i)} |\boldsymbol{x}_u^{(j_k)} - \eta_k|.$$

Deviation-enhanced isolation anomaly scoring function

$$\mathscr{F}_{ ext{DEAS}}(oldsymbol{o}|\mathcal{T}) = 2^{-\mathbb{E}_{ au_i \in \mathcal{T}} \frac{|p(oldsymbol{x}_u| au_i)|}{C(T)}} imes \mathbb{E}_{ au_i \in \mathcal{T}} \left(g(oldsymbol{x}_u| au_i)
ight)$$

Algorithm 2: Deviation-Enhanced Anomaly Scoring.

```
Input: o - data object, \mathcal{T} - set of deep isolation trees
 Output: anomaly score \mathscr{F}_{DEAS}(o|\mathcal{T})
1: Generate representations \{\boldsymbol{x}_u\}_{u=i}^r via \mathcal{G}_{CERE}
2: for u=1 to r do
3:
     for i=1 to t do
4:
          Initialise k \leftarrow 1, \beta \leftarrow 0, p(\boldsymbol{x}_u | \tau_i) \leftarrow \emptyset
         while |\mathcal{P}_k| > 1 and not reaching J do
5:
6: if x_u^{(j_k)} \leq \eta_k then
7: k \leftarrow 2k
8:
             else
9: k \leftarrow 2k+1
10: end if
       p(\boldsymbol{x}_u|	au_i) \leftarrow p(\boldsymbol{x}_u|	au_i) \cup k, \, eta \leftarrow eta + |\boldsymbol{x}_u^{(j_k)} - \eta_k|
11:
12:
            end while
            g(\boldsymbol{x}_u|\tau_i) \leftarrow \beta/|p(\boldsymbol{x}_u|\tau_i)|
13:
         end for
14:
15: end for
16: return
      \mathscr{F}_{	ext{DEAS}}(oldsymbol{o}|\mathcal{T}) \leftarrow 2^{-\mathbb{E}_{	au_i \in \mathcal{T}} rac{|p(oldsymbol{x}_u|	au_i)|}{C(T)}} 	imes \mathbb{E}_{	au \in \mathcal{T}}(g(oldsymbol{x}_u|	au_i))
```

Experiments

AUC-ROC and AUC-PR Performance (Mean \pm Standard Deviation) of DIF and IF-Based Competing Methods on Tabular Datasets

Data	AUC-ROC					AUC-PR				
	DIF (ours)	EIF	PID	LeSiNN	IF	DIF (ours)	EIF	PID	LeSiNN	IF
Analysis	$0.931_{\pm 0.006}$	$0.910_{\pm 0.005}$	$0.820_{\pm 0.019}$	$0.903_{\pm 0.008}$	$0.782_{\pm 0.017}$	$0.404_{\pm 0.051}$	$0.198_{\pm 0.022}$	$0.075_{\pm 0.007}$	$0.183_{\pm 0.028}$	$0.063_{\pm 0.006}$
Backdoor	$0.918_{\pm 0.002}$	$0.902_{\pm 0.005}$	$0.808_{\pm 0.016}$	$0.894_{\pm 0.006}$	$0.731_{\pm 0.021}$	$0.453_{\pm 0.051}$	$0.218_{\pm 0.028}$	$0.066_{\pm 0.005}$	$0.205_{\pm 0.031}$	$0.046_{\pm 0.004}$
DoS	$0.932_{\pm 0.003}$	$0.918_{\pm 0.004}$	$0.802_{\pm 0.013}$	$0.896_{\pm 0.009}$	$0.747_{\pm 0.020}$	$0.440_{\pm 0.023}$	$0.269_{\pm 0.027}$	$0.075_{\pm 0.004}$	$0.185_{\pm 0.028}$	$0.060_{\pm 0.005}$
Exploits	$0.858_{\pm 0.010}$	$0.840_{\pm 0.008}$	$0.797_{\pm 0.011}$	$0.816_{\pm 0.005}$	$0.745_{\pm 0.010}$	$0.273_{\pm 0.020}$	$0.167_{\pm 0.011}$	$0.077_{\pm 0.003}$	$0.120_{\pm 0.013}$	$0.062_{\pm 0.003}$
R8	$0.930_{\pm 0.008}$	$0.854_{\pm 0.006}$	$0.881_{\pm 0.018}$	$0.859_{\pm 0.001}$	$0.853_{\pm 0.016}$	$0.145_{\pm 0.031}$	$0.101_{\pm 0.009}$	$0.078_{\pm 0.011}$	$0.094_{\pm 0.000}$	$0.075_{\pm 0.008}$
Cover	$0.972_{\pm 0.010}$	$0.872_{\pm 0.017}$	$0.939_{\pm 0.007}$	$0.885_{\pm 0.008}$	$0.888_{\pm 0.017}$	$0.246_{\pm 0.069}$	$0.040_{\pm 0.006}$	$0.069_{\pm 0.006}$	$0.051_{\pm 0.004}$	$0.055_{\pm 0.008}$
Fraud	$0.953_{\pm 0.002}$	$0.950_{\pm 0.001}$	$0.950_{\pm 0.002}$	$0.952_{\pm 0.000}$	$0.950_{\pm 0.001}$	$0.387_{\pm 0.031}$	$0.378_{\pm 0.027}$	$0.186_{\pm0.033}$	$0.401_{\pm 0.001}$	$0.155_{\pm 0.015}$
Pageblocks	$0.903_{\pm 0.006}$	$0.902_{\pm 0.001}$	$0.851_{\pm 0.003}$	$0.887_{\pm 0.002}$	$0.900_{\pm 0.005}$	$0.547_{\pm 0.012}$	$0.537_{\pm 0.006}$	$0.421_{\pm 0.011}$	$0.511_{\pm 0.007}$	$0.476_{\pm 0.013}$
Shuttle	$0.941_{\pm 0.006}$	$0.843_{\pm 0.009}$	$0.864_{\pm 0.017}$	$0.805_{\pm 0.005}$	$0.862_{\pm 0.019}$	$0.150_{\pm 0.017}$	$0.061_{\pm 0.003}$	$0.059_{\pm 0.008}$	$0.048_{\pm 0.001}$	$0.075_{\pm 0.014}$
Thrombin	$0.913_{\pm 0.003}$	OOM	OOM	$0.912_{\pm 0.000}$	$0.905_{\pm 0.002}$	$0.468_{\pm 0.020}$	OOM	OOM	$0.458_{\pm0.001}$	$0.372_{\pm 0.008}$
Average	$0.925_{\pm 0.006}$	$0.888_{\pm 0.006}$	$0.857_{\pm0.011}$	$0.881_{\pm 0.004}$	$0.836_{\pm0.013}$	$0.351_{\pm 0.033}$	$0.219_{\pm 0.015}$	$0.123_{\pm 0.010}$	$0.226_{\pm0.011}$	$0.144_{\pm 0.008}$
p-value) -	0.004	0.004	0.002	0.002	- (- Control of Contro	0.004	0.004	0.006	0.002

PID and EIF run out of memory (OOM) on the ultrahigh-dimensional dataset *Thrombin*.

The best performer is boldfaced.

Experiments

Fig. 5. Scalability test results. (**Top**) The training time of all the anomaly detectors on a CPU device; and (**Bottom**) The results of deep ensemble-based methods (including DIF) on a GPU device.

Experiments

Fig. 6. AUC-ROC w.r.t. different contamination ratios ρ

 An encoder network maps inputs into a lower-dimensional representation (code), and a decoder network reconstructs the original input data

- A special case of MLP
- induce a latent representation Z to enable dimension reduction (dim(Z) < dim(X))
- output the reconstruction of input data

$$\tilde{X} = g(Z)) = g(f(X))$$

• f and g are learnt jointly by minimizing the reconstruction loss $L(X,\tilde{X})$, the differences between the original input and the reconstruction

Training of AE requires X are normal data. Once the model is learnt, any input data that cannot be reconstructed back are taken as anomalies

Formulation of AutoEncoder

Mapping Function

Map input data to a unified space

Latent Space

Encoder $f(\cdot; \mathbf{W_f}): X \to Z$, Decoder $g(\cdot; \mathbf{W_g}): Z \to X$

Anomaly Score

Define the anomaly measure in the unified space

$$d(x) = || x - f(g(x)) ||$$

Decision Threshold

Determine whether the data is anomalous

x is anomaly if $d(x) > \tau$, normal o.w. τ fine-tuned by precision/recall

Approach:

- Train the autoencoder on normal data (to model normal behavior)
- 2. At inference, calculate the reconstruction error: e.g., RMSE deviation between the input instance and the corresponding reconstructed output
- If the reconstruction error is less than a threshold then label the instance as normal data, if it is greater than the threshold then label it as abnormal data (anomaly)
 - The manually-selected threshold value allows the user to tune the "sensitivity" to anomalies