COSC 417 Assignment 1

Instructions:

- (a) Due Feb 11.
- (b) Work in teams of 3-4 students (hand in one assignment with all the names on it).
- (c) For editing your homework. I recommend that you use Latex, see the template posted on the course website.

(d) If a problem has more questions, write down your answers in the same order as the order of questions. In principle, this should help you.

```
Problem 1. Let A = {x, y, z} and B = {x, y}. (a) Is A a subset of B?
(b) Is B a subset of A?

(c) What is A ∪ B?

={x,y,z}

(d) What is A ∩ B?

={x,y}
(e) What is A × B?

={(x,x),(x,y),(y,x),(y,y),(z,x),(z,y)}
(f) What is P(B)? (P(B) is the powerset of B).

={{Ø,{x},{y},{x,y}}}
```

(g) What is P(P(B))? (Be careful with the parenthesis syntax).

```
{{\varnothings},
{{\var
```

Problem 2. Show that the set EVEN = $\{0, 2, 4, ...\}$, of even positive integers, is countably infinite by giving an explicit bijective function $f: N \to EVEN$. Prove that your function f is a bijection.

- Even = $\{0,2,4\}$
- $f:N \rightarrow Even$
- f(n)(defined function)
- Prove $f \rightarrow$ Even, f(n)=2n is a bijective function:
 - o One-to-one (injectinve)
 - If x_1 and $x_2 \in \text{so } x_1 \neq x_2$
- Now,
 - \circ F:N \rightarrow Even, f(n)=2n
 - Let $x_1, x_2 \in \text{and } x_1 \neq x_2$
 - $f(x_1) = 2x_1$
 - $f(x_2) = 2x_2$
 - $2x_1 = 2x_2$
 - $\mathbf{x}_1 = \mathbf{x}_2$

Therefore $x_1 \neq x_2$

• F: N \rightarrow Even f(n) is 2, one – one

If f: $X \rightarrow Y$ be a sunjective function, then every elemt of Y has at least one element of $x \in X$ such that f(x) = y

Now, $f N \rightarrow Even$, f(n)=2n

 $Y \in Even$, there exists $x \in N$ such that f(x)=y

So, f: N \rightarrow Even, f(n)=2n is onto

Therefore, the function $f: \mathbb{N} \to \text{Even } f(n) = 2n$ is both one to one and onto. So it is bijective

Problem 3. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$ be two sets. Recall that $A \times B$ is the set of pairs (u, v) with $u \in A, v \in B$.

(a) List all the elements of $A \times B$.

```
\{(1,a),(1,b),(2,a),(2,b),(3,a)(3,b)\}
```

- (b) Write down one element (whichever you want) of $P(A) \times P(B)$. (Be careful with the parenthesis syntax). $P(A) = \{\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\} \{2,3\}, \{1,2,3\} \} \}$ $P(B) = \{\{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$
- (c) What is the size of $P(A) \times P(B)$?

- P(A) has 8 elements.
- P(B) has 4 elements
- $8 \times 4 = 32$

Problem 4. - EXTRA CREDIT. Let A be countably infinite set and $B = \{0, 1\}$. Show that $A \times B$ is countably infinite. You need to show how to obtain an enumeration g of $A \times B$ from an enumeration f of A. (Recall that an enumeration of a set C is a bijective function mapping N to C).