AUTOVALORES Y AUTOVECTORES

MÉTODO DE LA POTENCIA: CÓDIGO. FACTORIZACIÓN QR. CÓDIGO.

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Método de las potencias: código

```
1 #!/usr/bin/env pvthon3
 2 import numpy as np
 3
 4 def iter potencia(A, num iteraciones):
       n = A.shape[0]
       # Inicializar un vector aleatorio de tamaño n
       b = np.random.rand(n)
       # Normalizar el vector
       b = b / np.linalq.norm(b)
10
       for in range(num iteraciones):
11
           # Multiplicar la matriz A por el vector b
12
           Ab = np.dot(A, b)
13
           # Calcular el autovalor dominante
14
1.5
           autovalor = np.dot(b. Ab)
           # Normalizar el vector resultante
16
17
           b = Ab / np.linalq.norm(Ab)
18
       # Devolver el autovalor dominante v el autovector
19
       # correspondiente
20
       return autovalor, b
21
```

```
23 # Eiemplo de uso
24 # Definir una matriz de ejemplo
25
26 A = np.array([[2, 0, 0],
                 [1, 1, 2].
27
28
                 [1. -1. 411)
29
30 # Especificar el número de iteraciones
31 \text{ num iteraciones} = 100
32
33 # Aplicar el algoritmo de las potencias
34 autovalor, autovector = iter potencia(A, num iteraciones)
35
36 print(f"Autovalor dominante: {autovalor}")
37 print("Autovector correspondiente:")
```

```
$ ./potencias.py
Autovalor dominante: 3.000000000000001
Autovector correspondiente:
[ 2.62486865e-19 -7.07106781e-01 -7.07106781e-01]
```

Мéторо QR

Teorema:.

Si A es una matriz y $\lambda_1, \lambda_2, \dots, \lambda_k$ son autovalores distintos de A con autovectores asociados $\{v_1, v_2, \dots, v_k\}$, entonces $\{v_1, v_2, \dots, v_k\}$ es un conjunto linealmente independiente.

Método QR

Teorema:.

Si A es una matriz y $\lambda_1, \lambda_2, \dots, \lambda_k$ son autovalores distintos de A con autovectores asociados $\{v_1, v_2, \dots, v_k\}$, entonces $\{v_1, v_2, \dots, v_k\}$ es un conjunto linealmente independiente.

Definición : Conjunto ortogonal/ortonormal.

Un conjunto de vectores $\{ m{v}_1, m{v}_2, \cdots, m{v}_k \}$ recibe el nombre de **ortogonal** si $\langle m{v}_i, m{v}_j \rangle = 0$ para todo $i \neq j$. Si, además, $\langle m{v}_i, m{v}_i \rangle = 1$ para toda $i = 1, 2, \cdots, n$, el conjunto recibe el nombre de **ortonormal**.

Dado que $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = \|\boldsymbol{x}\|_2^2, \forall \boldsymbol{x} \in \mathbb{R}^n$, el conjunto $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_k\}$ es ortonormal si y solo si:

$$\| {m v}_i \|_2 = 1$$
 para todo $i = 1, 2, \cdots, n$

Método QR

Teorema:.

Si A es una matriz y $\lambda_1, \lambda_2, \dots, \lambda_k$ son autovalores distintos de A con autovectores asociados $\{v_1, v_2, \dots, v_k\}$, entonces $\{v_1, v_2, \dots, v_k\}$ es un conjunto **linealmente independiente**.

Definición: Conjunto ortogonal/ortonormal.

Un conjunto de vectores $\{ m{v}_1, m{v}_2, \cdots, m{v}_k \}$ recibe el nombre de **ortogonal** si $\langle m{v}_i, m{v}_j \rangle = 0$ para todo $i \neq j$. Si, además, $\langle m{v}_i, m{v}_i \rangle = 1$ para toda $i = 1, 2, \cdots, n$, el conjunto recibe el nombre de **ortonormal**.

Dado que $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = \|\boldsymbol{x}\|_2^2, \forall \boldsymbol{x} \in \mathbb{R}^n$, el conjunto $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_k\}$ es ortonormal si y solo si:

$$\| {m v}_i \|_2 = 1$$
 para todo $i = 1, 2, \cdots, n$

Teorema : Proceso de Gram-Schmidt.

Sea $\{x_1, x_2, \cdots, x_k\}$ un conjunto de k vectores linealmente independientes en \mathbb{R}^n . Entonces, $\{v_1, v_2, \cdots, v_k\}$ definido mediante:

$$egin{aligned} oldsymbol{v}_1 &= oldsymbol{x}_1 \ oldsymbol{v}_2 &= oldsymbol{x}_2 - rac{\langle oldsymbol{v}_1, oldsymbol{x}_2
angle}{\langle oldsymbol{v}_1, oldsymbol{v}_1
angle} oldsymbol{v}_1 \ oldsymbol{v}_3 &= oldsymbol{x}_3 - rac{\langle oldsymbol{v}_1, oldsymbol{x}_3
angle}{\langle oldsymbol{v}_1, oldsymbol{v}_1
angle} oldsymbol{v}_1 - rac{\langle oldsymbol{v}_2, oldsymbol{x}_3
angle}{\langle oldsymbol{v}_2, oldsymbol{v}_2
angle} oldsymbol{v}_2 \ &\vdots \ oldsymbol{v}_k &= oldsymbol{x}_k - \sum_{i=1}^{k-1} rac{\langle oldsymbol{v}_i, oldsymbol{x}_k
angle}{\langle oldsymbol{v}_i, oldsymbol{v}_i
angle} oldsymbol{v}_i \end{aligned}$$

es un conjunto de k vectores ortogonales en \mathbb{R}^n .

Se dice que una matriz Q es **ortogonal** si sus columnas $\{q_1,q_2,\cdots,q_n\}$ forman un conjunto ortonormal en \mathbb{R}^n .

Se dice que una matriz Q es **ortogonal** si sus columnas $\{q_1,q_2,\cdots,q_n\}$ forman un conjunto ortonormal en \mathbb{R}^n .

Propiedades:

- $lackbox{ } oldsymbol{Q}$ es invertible con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$
- $lackbox{} orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n, \langle oldsymbol{Q} oldsymbol{x}, oldsymbol{Q} oldsymbol{y}
 angle = \langle oldsymbol{x}, oldsymbol{y}
 angle$
- $lacksquare orall oldsymbol{x}
 otin eta^n, \|oldsymbol{Q}oldsymbol{x}\|_2 = \|oldsymbol{x}\|_2$
- $lackbox{ }$ Cualquier matriz invertible $oldsymbol{Q}$ con $oldsymbol{Q}^{-1} = oldsymbol{Q}^{\intercal}$ es ortogonal.

Se dice que una matriz Q es **ortogonal** si sus columnas $\{q_1, q_2, \cdots, q_n\}$ forman un conjunto ortonormal en \mathbb{R}^n .

Propiedades:

- $lackbox{ } oldsymbol{Q}$ es invertible con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$
- $lackbox{} orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n, \langle oldsymbol{Q} oldsymbol{x}, oldsymbol{Q} oldsymbol{y}
 angle = \langle oldsymbol{x}, oldsymbol{y}
 angle$
- $\blacktriangleright \ \forall \boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{Q}\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2$
- $lackbox{ }$ Cualquier matriz invertible $oldsymbol{Q}$ con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$ es ortogonal.

Definición: Matriz similar.

Dos matrices A y B son **similares** si existe una matriz no singular S con $A = S^{-1}BS$.

Se dice que una matriz Q es **ortogonal** si sus columnas $\{q_1,q_2,\cdots,q_n\}$ forman un conjunto ortonormal en \mathbb{R}^n .

Propiedades:

- $lackbox{ } oldsymbol{Q}$ es invertible con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$
- $\blacktriangleright \ \forall \boldsymbol{x},\boldsymbol{y} \in \mathbb{R}^n, \langle \boldsymbol{Q}\boldsymbol{x},\boldsymbol{Q}\boldsymbol{y}\rangle = \langle \boldsymbol{x},\boldsymbol{y}\rangle$
- $\blacktriangleright \ \forall \boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{Q}\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2$
- $lackbox{ }$ Cualquier matriz invertible $oldsymbol{Q}$ con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$ es ortogonal.

Definición: Matriz similar.

Dos matrices A y B son **similares** si existe una matriz no singular S con $A = S^{-1}BS$.

Teorema:.

Si \mathbf{A} y \mathbf{B} son matrices similares con $\mathbf{A} = \mathbf{S}^{-1}\mathbf{B}\mathbf{S}$, y λ es un autovalor de \mathbf{A} con el autovector \mathbf{v} asociado, entonces λ es un autovalor de \mathbf{B} con autovector asociado $\mathbf{S}\mathbf{v}$.

Se dice que una matriz Q es **ortogonal** si sus columnas $\{q_1,q_2,\cdots,q_n\}$ forman un conjunto ortonormal en \mathbb{R}^n .

Propiedades:

- $lackbox{ } oldsymbol{Q}$ es invertible con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$
- $lackbox{} orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n, \langle oldsymbol{Q} oldsymbol{x}, oldsymbol{Q} oldsymbol{y}
 angle = \langle oldsymbol{x}, oldsymbol{y}
 angle$
- $\blacktriangleright \ \forall \boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{Q}\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2$
- $lackbox{ }$ Cualquier matriz invertible $oldsymbol{Q}$ con $oldsymbol{Q}^{-1} = oldsymbol{Q}^\intercal$ es ortogonal.

Definición: Matriz similar.

Dos matrices A y B son **similares** si existe una matriz no singular S con $A = S^{-1}BS$.

Teorema:.

Si \mathbf{A} y \mathbf{B} son matrices similares con $\mathbf{A} = \mathbf{S}^{-1}\mathbf{B}\mathbf{S}$, y λ es un autovalor de \mathbf{A} con el autovector \mathbf{v} asociado, entonces λ es un autovalor de \mathbf{B} con autovector asociado $\mathbf{S}\mathbf{v}$.

Teorema:.

Una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ es similar a una matriz diagonal \mathbf{D} si y sólo si \mathbf{A} tiene n autovectores linealmente independientes. En este caso $\mathbf{D} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$, donde las columnas de \mathbf{S} son los autovectores y el i-ésimo elemento diagonal de \mathbf{D} es el autovalor que corresponde a la i-ésima columna de \mathbf{S} .

3

Teorema: Teorema de Schur.

Sea $m{A}$ una matriz arbitraria. Existe una matriz no singular $m{U}$ con la propiedad de que

$$T = U^{-1}AU$$

donde $m{T}$ es una matriz triangular superior, cuyas entradas diagonales consisten en autovalores de $m{A}$.

Se cumple $\| oldsymbol{U} oldsymbol{x} \|_2 = \| oldsymbol{x} \|_2, orall oldsymbol{x} \mapsto$ matrices unitarias.

Teorema: Teorema de Schur.

Sea $m{A}$ una matriz arbitraria. Existe una matriz no singular $m{U}$ con la propiedad de que

$$T = U^{-1}AU$$

donde T es una matriz triangular superior, cuyas entradas diagonales consisten en autovalores de A.

Se cumple $\| \boldsymbol{U} \boldsymbol{x} \|_2 = \| \boldsymbol{x} \|_2, \forall \boldsymbol{x} \mapsto \mathsf{matrices}$ unitarias.

Factorización QR: A = QR, donde:

- $lackbox{ } oldsymbol{Q}$ es una matriz ortogonal
- $lackbox{ } oldsymbol{R}$ es una matriz triangular superior

Teorema : Teorema de Schur.

Sea $m{A}$ una matriz arbitraria. Existe una matriz no singular $m{U}$ con la propiedad de que

$$T = U^{-1}AU$$

donde T es una matriz triangular superior, cuyas entradas diagonales consisten en autovalores de A.

Se cumple $\| \boldsymbol{U} \boldsymbol{x} \|_2 = \| \boldsymbol{x} \|_2, \forall \boldsymbol{x} \mapsto \mathsf{matrices}$ unitarias.

Factorización QR: $oldsymbol{A} = oldsymbol{Q} oldsymbol{R}$, donde:

- $lackbox{ } oldsymbol{Q}$ es una matriz ortogonal
- $lackbox{ } R$ es una matriz triangular superior

Cálculo de la factorización:

- ▶ Ortogonalización de Gram-Schmidt
- ▶ Reflexiones de Householder

Ortogonalización de Gram-Schmidt:

Friedrich and Carama-Schmidt.
$$A=[a_1|a_2|\cdots|a_n]$$
 $u_1=a_1, \quad e_1=\dfrac{u_1}{\|u_1\|}$ $u_2=a_2-\langle e_1,a_2\rangle, \quad e_2=\dfrac{u_2}{\|u_2\|}$ $u_3=a_3-\langle e_1,a_3\rangle-\langle e_2,a_3\rangle, \quad e_3=\dfrac{u_3}{\|u_3\|}$

$$oldsymbol{u}_k = oldsymbol{a}_k - \sum_{j=1}^{k-1} \langle oldsymbol{e}_j, oldsymbol{a}_{oldsymbol{k}}
angle, \quad oldsymbol{e}_k = rac{oldsymbol{u}_k}{\|oldsymbol{u}_k\|}$$

Teorema : Teorema de Schur.

Sea $m{A}$ una matriz arbitraria. Existe una matriz no singular $m{U}$ con la propiedad de que

$$T = U^{-1}AU$$

donde T es una matriz triangular superior, cuyas entradas diagonales consisten en autovalores de A.

Se cumple $\| \boldsymbol{U} \boldsymbol{x} \|_2 = \| \boldsymbol{x} \|_2, orall \boldsymbol{x} \mapsto$ matrices unitarias.

Factorización QR: A = QR, donde:

- $lackbox{ } oldsymbol{Q}$ es una matriz ortogonal
- lacktriangleright R es una matriz triangular superior

Cálculo de la factorización:

- Ortogonalización de Gram-Schmidt
- ▶ Reflexiones de Householder

Ortogonalización de Gram-Schmidt:

$$egin{aligned} A &= egin{aligned} |a_1||a_2||\cdots|a_n| \ u_1 &= a_1, \quad e_1 = rac{u_1}{\|u_1\|} \ u_2 &= a_2 - \langle e_1, a_2
angle, \quad e_2 = rac{u_2}{\|u_2\|} \ u_3 &= a_3 - \langle e_1, a_3
angle - \langle e_2, a_3
angle, \quad e_3 = rac{u_3}{\|u_3\|} \end{aligned}$$

$$oldsymbol{u}_k = oldsymbol{a}_k - \sum_{j=1}^{k-1} \langle oldsymbol{e}_j, oldsymbol{a}_k
angle, \quad oldsymbol{e}_k = rac{oldsymbol{u}_k}{\|oldsymbol{u}_k\|}$$

Ahora podemos expresar los $oldsymbol{a}_i$ en la nueva base:

$$egin{aligned} oldsymbol{a}_1 &= \langle oldsymbol{e}_1, oldsymbol{a}_1
angle e_1, oldsymbol{a}_2
angle e_1 + \langle oldsymbol{e}_2, oldsymbol{a}_2
angle e_2 \ oldsymbol{a}_3 &= \langle oldsymbol{e}_1, oldsymbol{a}_3
angle e_1 + \langle oldsymbol{e}_2, oldsymbol{a}_3
angle e_2 + \langle oldsymbol{e}_3, oldsymbol{a}_3
angle e_3 \ & \ldots \end{aligned}$$

$$oldsymbol{a}_k = \sum_{j=1}^k \langle oldsymbol{e}_j, oldsymbol{a}_k
angle oldsymbol{e}_j$$

Resulta
$$oldsymbol{A} = oldsymbol{Q} oldsymbol{R}$$
, con $oldsymbol{Q} = [oldsymbol{e}_1 | oldsymbol{e}_2 | \cdots | oldsymbol{e}_n]$, y

$$m{R} = egin{bmatrix} \langle m{e_1}m{a_1}
angle & \langle m{e_1}m{a_2}
angle & \langle m{e_1}m{a_3}
angle & \cdots & \langle m{e_1}m{a_n}
angle \ 0 & \langle m{e_2}m{a_2}
angle & \langle m{e_2}m{a_3}
angle & \cdots & \langle m{e_2}m{a_n}
angle \ 0 & 0 & \langle m{e_3}m{a_3}
angle & \cdots & \langle m{e_3}m{a_n}
angle \ dots & dots & dots & \ddots & \ddots \ 0 & 0 & 0 & \cdots & \langle m{e_n},m{a_n}
angle \end{bmatrix}$$

Resulta $oldsymbol{A} = oldsymbol{Q} oldsymbol{R}$, con $oldsymbol{Q} = [oldsymbol{e}_1 | oldsymbol{e}_2 | \cdots | oldsymbol{e}_n]$, y

$$\mathbf{R} = \begin{bmatrix} \langle \mathbf{e}_1 \mathbf{a}_1 \rangle & \langle \mathbf{e}_1 \mathbf{a}_2 \rangle & \langle \mathbf{e}_1 \mathbf{a}_3 \rangle & \cdots & \langle \mathbf{e}_1 \mathbf{a}_n \rangle \\ 0 & \langle \mathbf{e}_2 \mathbf{a}_2 \rangle & \langle \mathbf{e}_2 \mathbf{a}_3 \rangle & \cdots & \langle \mathbf{e}_2 \mathbf{a}_n \rangle \\ 0 & 0 & \langle \mathbf{e}_3 \mathbf{a}_3 \rangle & \cdots & \langle \mathbf{e}_3 \mathbf{a}_n \rangle \\ \vdots & \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & \langle \mathbf{e}_n, \mathbf{a}_n \rangle \end{bmatrix}$$

Código Python:

```
1 #!/usr/bin/env python3
2
3 import numpy as np
4
5 def gram_schmidt_qr(A):
6     m, n = A.shape
7     Q = np.zeros((m, n))
8     R = np.zeros((n, n))
```

```
for j in range(n):
10
11
           v = A[:, i]
12
           for i in range(i):
               R[i, j] = np.dot(0[:, i], A[:, j])
13
               v = v - R[i, i] * 0[:, i]
14
15
           R[j, j] = np.linalg.norm(v)
16
           0[:. i] = v / R[i. i]
17
18
       return Q, R
19
20 # Eiemplo de uso
21 # Definir una matriz de ejemplo
22 A = np.array([[1, 4, 3],
                 [2, 5, 1],
23
                 [3, 6, 211)
24
25
26 # Aplicar la factorización OR usando el método
27 # de Gram-Schmidt
28 O. R = gram schmidt gr(A)
20
30 print("Matriz Q:")
31 print(0)
32 print("Matriz R:")
33 print(R)
```

Método QR para el cálculo de autovalores:

Algoritmo recursivo que computa $\{A_k\}_{k=0}^{\infty}$ con los siquientes pasos:

- 1. $A_0 = A$
- 2. Para $k=0,1,2,\ldots$, dado \boldsymbol{A}_k :
 - 2.1 Calcular $oldsymbol{Q}_{k+1}oldsymbol{R}_{k+1}=oldsymbol{A}_k$
 - 2.2 Definir $oldsymbol{A}_{k+1} = oldsymbol{Q}_{k+1} oldsymbol{R}_{k+1}$

Método QR para el cálculo de autovalores:

Algoritmo recursivo que computa $\{A_k\}_{k=0}^{\infty}$ con los siguientes pasos:

- 1. $A_0 = A$
- 2. Para $k = 0, 1, 2, ..., dado A_k$:
 - 2.1 Calcular $oldsymbol{Q}_{k+1}oldsymbol{R}_{k+1}=oldsymbol{A}_k$
 - 2.2 Definir $oldsymbol{A}_{k+1} = oldsymbol{Q}_{k+1} oldsymbol{R}_{k+1}$

Teorema: Convergencia.

Si los autovalores de una matriz $oldsymbol{A}$ verifican que

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_n| > 0$$

entonces la suceción de matrices equivalentes contruidas con el algoritmo QR converge a una matriz triangular superior.

Código Python:

```
1 #!/usr/bin/env pvthon3
 2 import numpy as np
 4 def algoritmo gr(A, num iter):
       n = A.shape[0]
       autovalores = np.zeros(n, dtype=np.complex128)
       for in range(num iter):
           0, R = np.linalg.gr(A)
           A = np.dot(R. 0)
 9
       for i in range(n):
10
           autovalores[i] = A[i, i]
1.1
       return autovalores
12
13
14 A = np.array([[1, 2, 3],
15
                 [4, 5, 6].
                 [7, 8, 911)
16
17
18 \text{ num iter} = 100
19 autovalores = algoritmo gr(A, num iter)
20 print("Autovalores:")
21 print(autovalores)
```

- ▶ R.L. Burden, D.J. Faires y A.M. Burden. *Análisis numérico*. 10.ª ed. Mexico: Cengage Learning, 2017. Capítulo 9.
- ▶ Carlos Moreno González. *Introducción al cálculo numérico*. Madrid, España: Universidad Nacional de Educación a Distancia, 2014. Capítulo 3.
- ▶ B. Bradie. A Friendly Introduction to Numerical Analysis. New Jersey, United States: Pearson Education Inc., 2006. Capítulo 4.
- ▶ A.J. Salgado y S.M. Wise. *Classical Numerical Analysis*. Cambridge, United Kingdom: Cambridge University Press, 2023. DOI: 10.1017/9781108942607. Capítulo 8.
- A. Quarteroni, R. Sacco y F. Saleri. *Numerical Mathematics*. New York, United States: Springer-Verlag, 2000. Capítulo 5.