Qualifying Exam: Geometry and Topology

August 21, 2012, 6:00 p.m. to 9:00 p.m.

Examiners: Prof. Ricardo Castaño-Bernard and Prof. David Yetter

Instructions: Do all eight problems. Start each problem on a separate page and clearly indicate the problem number. Problems that are completely solved and thoroughly justified will be given more credit than scattered attempts leading to partial answers.

- 1. Let $z, z' \in \mathbb{C}^{n+1} \{0\}$ and define the equivalence relation: $z \sim z'$ if and only if $z = \lambda z'$ for some $\lambda \in \mathbb{C}$, $\lambda \neq 0$. The *complex projective space* is defined to be the quotient, $\mathbb{CP}^n := \mathbb{C}^{n+1} \{0\} / \sim$.
 - (a) Define local coordinates for \mathbb{CP}^n , and use them to prove it is a C^{∞} manifold.
 - (b) Show that on the unit sphere $S^3 \subset \mathbb{C}^2$ there is an S^1 -action such that

$$S^3/S^1 = \mathbb{CP}^1.$$

- (c) Use the map $H: \mathbb{C}^2 \to \mathbb{C} \times \mathbb{R}$, $H(z_0, z_1) = (2z_0\bar{z}_1, |z_0|^2 |z_1|^2)$ to show that \mathbb{CP}^1 is diffeomorphic to S^2 .
- 2. a) Write the statement of the Inverse Function Theorem for $f: M \to N$, where M and N are manifolds. Give the definition of the co-derivative $f^*(q)$ of at $q = f(p) \in N$ (also called pullback).
 - b) Define the tangent space T_pM . Find $T_{(x,y,0)}S^2$, for all $(x,y,0) \in S^2$ where S^2 is the standard 2-sphere in \mathbb{R}^3 .
 - c) Describe the surface C, $x^2 + y^2 = 1$ in \mathbb{R}^3 . Describe the intersection $C \cap S^2$ and show that it is not transversal. Define a small perturbation of C thats makes C transversal to S^2 .
- 3. (a) Let M be a smooth manifold. Define the vector spaces $H^k_{dR}(M)$. Calculate the de Rham cohomology of the twice-punctured disc: $M = D \{p, q\}$;

1

- (b) On \mathbb{R}^4 define $\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$ and $H = x_1y_2 x_2y_1$.
 - i) Find a vector field X on \mathbb{R}^4 satisfying the equation:

$$dH(\ \cdot\)=\omega(X,\ \cdot\).$$

ii) Find the flow ϕ_t of X, compute $\phi_t^* \omega$

4. Let $\mathbb{C}[z]$ be the ring of polynomials in one variable with complex coefficients and let S be a subset of $\mathbb{C}[z]$. Define

$$V(S) = \{ p \in \mathbb{C} \mid f(p) = 0, \text{ for all } f \in S \}.$$

The Zariski topology on \mathbb{C} is the topology \mathcal{Z} , whose closed sets are V(S) for all S.

- (a) Show that $V(S) = V(\langle S \rangle)$, where $\langle S \rangle$ is the ideal generated by S.
- (b) Let X be an arbitrary subset of \mathbb{C} . Show that the closure of X is $V(S_X)$, where

$$S_X = \{ f \in \mathbb{C}[z] \mid f(X) = 0 \}.$$

Hint: Show that $V(S) \cap V(T) = V(S \cup T)$.