Lesson 44: Practice Problems Repeated Roots and $t^k Terms$

ODE 1 with Prof. Adi Ditkowski

Tel Aviv University

Part A: Identifying Multiplicities (5 problems)

- 1. Given the characteristic polynomial $(r-3)^2(r+1) = 0$, identify all roots and their multiplicaties.
- 2. Given the characteristic polynomial r^4 $8r^3$ + $24r^2$ 32r + 16 = 0, showthatitequals $(r-2)^4$ and identify the multiplicity.
- 3. The characteristic equation $(r^2 2r + 5)^2 = 0$ has complex roots. Find the mand their multiplications.
- 4. Factor completely: $r^3 + 3r^2 + 3r + 1 = 0$ and identify multiplicaties.
- 5. Given $(r^2 + 4)^3 = 0$, identify all roots and multiplications.

Part B: Solutions from Multiplicities (5 problems)

- 1. If r=3 is a triple root, write all three linearly independent solutions.
- 2. If r = -2 has multiplicity 4, write the form of the general solution.
- 3. Complex roots $1 \pm 2i$ each have multiplicity 2. Write all four real solutions.
- 4. The characteristic polynomial is $(r+1)^2(r-2)^3$. Writethegeneral solution.
- 5. If $\pm 3i$ are both double roots, write the general real solution.

Part C: Complete ODEs with Repeated Roots (5 problems)

- 6. Solve: y'' 6y' + 9y = 0
- 7. Solve: y''' + 3y'' + 3y' + y = 0
- 8. Solve: $y^{(4)} 4y''' + 6y'' 4y' + y = 0$

- 9. Solve: y'' + 4y' + 4y = 0 with y(0) = 2, y'(0) = -3
- 10. Solve: $y^{(4)} + 4y'' + 4y = 0$

Part D: Reduction of Order Applications (5 problems)

- 11. Given that $y_1 = e^{-t}$ solves $(D+1)^2[y] = 0$, usereduction of order to find y_2 .
- 12. Verify that te^{3t} solves y'' 6y' + 9y = 0 by direct substitution.
- 13. Show that if $y_1 = e^{rt}$ solves L[y] = 0 where r is a double root, then $y_2 = e^{rt}$ also solves it.
- 14. Given y'' 4y' + 4y = 0 has solution e^{2t} , find the second solution using $y_2 = v(t)e^{2t}$.
- 15. For the equation with characteristic polynomial $(r-a)^3 = 0$, $verify the Wronskian of e^{at}$, te^{at} , t^{2eat} is nonzero.

Part E: Complex Repeated Roots (5 problems)

- 16. Solve: $y^{(4)} + 8y'' + 16y = 0$
- 17. Find the general real solution when the characteristic polynomial is $(r^2 + 2r + 2)^2 = 0$.
- 18. Solve: $y^{(4)} + 4y''' + 8y'' + 8y' + 4y = 0$ (Hint: $(r^2 + 2r + 2)^2$)
- 19. If $2 \pm 3i$ are both triple roots, how many linearly independent real solutions are there? List them.
- 20. Solve the IVP: y'' + 2y' + 5y = 0 with y(0) = 0, y'(0) = 4, given that $-1 \pm 2i$ are roots.

Part F: Theoretical and Exam-Style Problems (5 problems)

- 21. Prove that if $r_0 is a root of multiplicity mofthecharacteristic polynomial, then <math>p(r_0) = p'(r_0) = \cdots = p^{(m-1)}(r_0) = 0 b u t p^{(m)}(r_0) \neq 0.$
- 22. Show that the dimension of the solution space equals the degree of the differential equation, even with repeated roots.
- 23. A fourth-order equation has characteristic polynomial with roots: r=2 (mult. 2), r=-1 (mult. 1), r=3 (mult. 1). If a solution satisfies y(0)=1,y'(0)=0,y''(0)=-1,y'''(0)=2, find it.
- 24. Explain why the functions $\{t^k e^{rt} : k = 0, 1, \dots, m-1\}$ span the solution space for a root of multiplicity m.

- 25. (Prof. Ditkowski style) Consider the family of equations $y'' 2ay' + a^{2y} = 0$ parameterized by $a \in \mathbb{R}$.
 - (a) Show that for all a, the characteristic equation has a repeated root.
 - (b) Find the general solution in terms of a.
 - (c) For which values of a do all solutions remain bounded as $t \to \infty$?
 - (d) Find the solution with y(0) = 1, y'(0) = 0.

Solutions

Part A: Identifying Multiplicities

- 1. Roots: r = 3 (multiplicity 2), r = -1 (multiplicity 1)
- 2. Expand $(r-2)^4 = r^4 8r^3 + 24r^2 32r + 16\checkmark$ Root :r = 2(multiplicity4)
- 3. $(r^2 2r + 5)^2 = 0 \Rightarrow r^2 2r + 5 = 0$ $r = 2 \pm \sqrt{4 - 20} = 0$ Roots: 1 + 2i (mult. 2), 1 - 2i (mult. 2)
- 4. $r^3 + 3r^2 + 3r + 1 = (r+1)^3 = 0$ Root :r = -1(multiplicity3)
- 5. $(r^2 + 4)^3 = 0 \Rightarrow r^2 = -4 \Rightarrow r = \pm 2i$ Roots: 2i (mult. 3), -2i (mult. 3)

Part B: Solutions from Multiplicities

- 6. e^{3t} , te^{3t} , t^{2e3t}
- 7. $y(t) = (c_1 + c_{2t} + c_{3t}^2 + c_{4t}^3)e^{-2t}$
- 8. Real solutions: $e^t \cos(2t)$, $te^t \cos(2t)$, $e^t \sin(2t)$, $te^t \sin(2t)$
- 9. $y(t) = (c_1 + c_{2t})e^{-t} + (c_3 + c_{4t} + c_{5t}^2)e^{2t}$
- 10. $y(t) = (c_1 + c_{2t})\cos(3t) + (c_3 + c_{4t})\sin(3t)$

Part C: Complete ODEs with Repeated Roots

- 11. Char. eq.: r^2 6r + 9 = (r-3)² = 0 Root :r = 3(mult.2) General solution :y(t) = (c₁ + c_{2t})e^{3t}
- 12. Char. eq.: $r^3 + 3r^2 + 3r + 1 = (r+1)^3 = 0$ Root : r = -1(mult.3)General solution : $y(t) = (c_1 + c_{2t} + c_{3t}^2)e^{-t}$
- 13. Char. eq.: $(r-1)^4 = 0$ Root : r = 1(mult.4) $General solution : y(t) = (c_1 + c_{2t} + c_{3t}^2 + c_{4t}^3)e^t$
- 14. $(r+2)^2 = 0$, $soy = (c_1 + c_{2t})e^{-2t}$ $y(0) = c_1 = 2$ $y'(t) = c_{2e}^{-2t} - 2(c_1 + c_{2t})e^{-2t}$ $y'(0) = c_2 - 2c_1 = -3$

$$c_2 = 1$$

Solution :y(t) = $(2 + t)e^{-2t}$

15.
$$r^4 + 4r^2 + 4 = (r^2 + 2)^2 = 0$$

 $Roots : \pm i\sqrt{2} \text{ (each mult. 2)}$
 $y(t) = (c_1 + c_{2t})\cos(\sqrt{2}t) + (c_3 + c_{4t})\sin(\sqrt{2}t)$

Part D: Reduction of Order Applications

16. Let
$$y_2 = v(t)e^{-t}$$

Substituting into $(D+1)^2[y] = y'' + 2y' + y = 0$:
 $After simplification : v'' = 0$
 $Thus v = c_{1t} + c_2$
 $Second solution : y_2 = te^{-t}$

17.
$$y = te^{3t}$$

 $y' = e^{3t} + 3te^{3t} = (1+3t)e^{3t}$
 $y'' = 3e^{3t} + 3(1+3t)e^{3t} = (6+9t)e^{3t}$
Substitute: $(6+9t)e^{3t} - 6(1+3t)e^{3t} + 9te^{3t}$
 $= e^{3t}[6+9t-6-18t+9t] = 0 \checkmark$

18. For double root
$$r: (D-r)^2[y] = 0$$

 $If y = te^{rt}: y' = e^{rt} + rte^{rt}$
 $y'' = 2re^{rt} + r^{2tert}$
 $(D-r)^2[y] = D[(D-r)[te^{rt}]] = D[e^{rt}] = re^{rt} - re^{rt} = 0 \checkmark$

19.
$$y_2 = v(t)e^{2t}$$

 $y_2' = (v' + 2v)e^{2t}$
 $y_2'' = (v'' + 4v' + 4v)e^{2t}$
Substituting: $e^{2t}[v'' + 4v' + 4v - 4v' - 8v + 4v] = e^{2t} \cdot v'' = 0$
 $v'' = 0 \Rightarrow v = c_{1t} + c_2$
Second solution: $y_2 = te^{2t}$

20.
$$W = \begin{vmatrix} e^{at} & te^{at} & t^{2eat} \\ ae^{at} & (1+at)e^{at} & (2t+at^2)e^{at} \\ a^{2eat} & (2a+a^{2t})e^{at} & (2+4at+a^{2t2})e^{at} \end{vmatrix}$$

After calculation: $W = 2e^{3at} \neq 0$

Part E: Complex Repeated Roots

21.
$$(r^2 + 4)^2 = 0 \Rightarrow r = \pm 2i$$
 (each mult. 2)
 $y(t) = (c_1 + c_{2t})\cos(2t) + (c_3 + c_{4t})\sin(2t)$

22.
$$r^2 + 2r + 2 = 0 \Rightarrow r = -1 \pm i$$

Each root has mult. 2
 $y(t) = e^{-t}[(c_1 + c_{2t})\cos(t) + (c_3 + c_{4t})\sin(t)]$

23. Roots:
$$-1 \pm i$$
 (each mult. 2)
 $y(t) = e^{-t}[(c_1 + c_{2t})\cos(t) + (c_3 + c_{4t})\sin(t)]$

- 24. 6 linearly independent real solutions: $e^{2t}\cos(3t), te^{2t}\cos(3t), t^{2e2t}\cos(3t)$ $e^{2t}\sin(3t), te^{2t}\sin(3t), t^{2e2t}\sin(3t)$
- 25. Simple roots (not repeated): $r = -1 \pm 2i$ $y(t) = e^{-t}[c_1\cos(2t) + c_2\sin(2t)]$ $y(0) = c_1 = 0$ $y'(t) = e^{-t}[-c_1\cos(2t) - c_2\sin(2t) - 2c_1\sin(2t) + 2c_2\cos(2t)]$ $y'(0) = -c_1 + 2c_2 = 4$ $c_2 = 2$ $Solution : y(t) = 2e^{-t}\sin(2t)$

Part F: Theoretical and Exam-Style Problems

26. If
$$p(r) = (r - r_0)^m \operatorname{q}(r) where \operatorname{q}(r_0) \neq 0$$
:
 $p'(r) = m(r - r_0)^{m-1} q(r) + (r - r_0)^m \operatorname{q'}(r)$
 $Atr = r_0 : p'(r_0) = 0 i f m \ \ \ 1$
 $Continue differentiating to show p^{(k)}(r_0) = 0 f o r k \ \ \ m$
 $But p^{(m)}(r_0) = m! \cdot q(r_0) \neq 0$

- 27. Total number of solutions = sum of all multiplicities = degree of polynomial = order of ODE
- 28. Char. poly: $(r-2)^2(r+1)(r-3) = 0$ $y = (c_1 + c_{2t})e^{2t} + c_{3e}^{-t} + c_{4e}^{3t}$ Apply initial conditions (solve $4 \times 4 system$): $Final solution : y(t) = (1 - 2\frac{1}{3t)e^{2t} + \frac{1}{4}e^{-t} - \frac{1}{4}e^{3t}}$
- 29. The operator $(D-r)^m hasanm-dimensional kernel. The functions <math>t^k e^{rt}$ for $k=0,\ldots,m-1$ are linearly independent (nonzero Wronskian) and all satisfy $(D-r)^m[y]=0$.
- 30. (a) Char. eq.: $r^2 2ar + a^2 = (r-a)^2 = 0$ Alwaysadoublerootatr = a
- (b) $y(t) = (c_1 + c_{2t})e^{at}$
- (c) Bounded as $t \to \infty$ only if $a \le 0$

(d)
$$y(0) = c_1 = 1$$

 $y'(t) = c_{2e}^{at} + a(c_1 + c_{2t})e^{at}$
 $y'(0) = c_2 + ac_1 = 0$
 $c_2 = -a$
 $Solution : y(t) = (1 - at)e^{at}$