고계경계조건을 가지는 비선형분수계미분방정식에 대한 병행 구역분해단조반복법

송철우, 림명길

분수계미분방정식은 최근년간 점탄성, 전기회로와 뉴론모형화와 같은 과학과 공학의 여러 분야에서 제기되고있다.

론문에서는 고계경계조건을 가지는 비선형분수계미분방정식에 대한 병행구역분해단 조반복법을 연구하였다.

1. 선행연구결과와 문제설정

선행연구[1, 2]에서는 디리클레경계조건을 가지는 단항분수계미분방정식

$$D^{\delta}u(t) + g(t, u) = 0, t \in (0, 1), 1 < \delta \le 2$$

 $u(0) = a, u(1) = b$

에 대하여 아래풀이와 웃풀이에 기초한 단조반복법을 연구하였다.

또한 선행연구[3]에서는 다음과 같은 형태의 다항분수계미분방정식의 고계경계값문제

$$D^{\alpha}u(t) + f(t, u, u'') = 0, t \in (0, 1), 3 < \alpha \le 4$$
 (1)

$$u(0) = e_1, \ u(1) = e_2$$
 (2)

$$u''(0) - \mu_1 u'''(0) = e_3, \ u''(1) + \mu_2 u'''(1) = e_4$$
 (3)

에 대하여 아래풀이와 웃풀이에 기초한 단조반복법을 제기하고 아래풀이와 웃풀이들로 구성된 단조렬이 주어진 문제의 정확한 풀이에로 평등수렴한다는것을 증명하였다. 여기서 $f:[0,1]\times \mathbf{R}^2\to \mathbf{R}$ 는 련속함수이고 $e_1,e_2,e_3,e_4\in \mathbf{R},\mu_1,\mu_2\geq 0$ 은 주어진 상수, 함수 f는 둘째 변수와 셋째 변수에 관하여 미분가능한 함수이며 D^α 는 α 계캐푸터도함수이다.

론문에서는 고계경계조건을 가지는 비선형분수계미분방정식 (1)-(3)에 대한 병행구역분해단조반복법을 론의한다.

 $u_1(x) = u(x), u_2(x) = -u''(x)$ 로 놓으면 분수계미분방정식 (1)-(3)은 다음의 동등한 방 정식으로 변형되다.

$$D^{2}u_{1}(t) + u_{2}(t) = 0, \ t \in (0, 1)$$
(4)

$$D^{\delta}u_{2}(t) + g(t, u_{1}, u_{2}) = 0 \ (t \in (0, 1), 1 < \delta \le 2)$$
 (5)

$$u_1(0) = a_1, \ u_1(1) = b_1$$
 (6)

$$u_2(0) - \mu_1 u_2'(0) = a_2, \ u_2(1) + \mu_2 u_2'(1) = b_2$$
 (7)

여기서 $a_1=e_1,\ b_2=e_2,\ a_2=-e_3,\ b_2=-e_4,\ \delta=\alpha-2$ 이고 $g(t,\ u_1,\ u_2)=-f(t,\ u_1,\ -u_2)$ 이다. 이때 함수 u_1 은 방정식 (1)-(3)의 풀이로 된다.

보조정리 1[4] 함수 $z \in C^2(0, 1) \cap C[0, 1]$ 이 $t_0 \in (0, 1)$ 에서 최소값을 가지면 $D^{\delta}z(t_0) \ge 0$ 이 성립한다.

보조정리 2 $z(t) \in C^2([0, 1], \mathbf{R})$ 이고 r(t) < 0, $\forall t \in [0, 1]$ 이고 유계라고 하자. 만일 z(t) 가

$$D^{\delta}z(t) + r(t)z(t) \le 0, \ t \in (0, 1)$$
(8)

$$z(0) - \mu_1 z'(0) \ge 0$$
, $z(1) + \mu_2 z'(1) \ge 0$

이면 $z(t) \ge 0$, $\forall t \in [0, 1]$ 이다.

식 (4)-(7)의 순서화된 아래, 웃풀이 $V=(v_1,\ v_2),\ W=(w_1,\ w_2)$ 가 주어졌다고 하자. 이때 $v_1(t)\leq h_1(t)\leq w_1(t),\ v_2(t)\leq h_2(t)\leq w_2(t)$ $(0\leq t\leq 1)$ 를 만족시키는 함수쌍 $(h_1,\ h_2)$ 전부의모임을 $[V,\ W]$ 로 표시한다.

다음의 조건을 가정하겠다.

$$\frac{\partial g}{\partial u_1}(t, \ \xi_1(t), \ \xi_2(t)) \ge 0, \ t \in (0, \ 1), \ \forall (\xi_1, \ \xi_2) \in [V, \ W]$$
(9)

$$-c \le \frac{\partial g}{\partial u_2}(t, \ \xi_1(t), \ \xi_2(t)) < 0 \ (t \in (0, \ 1), \ \forall (\xi_1, \ \xi_2) \in [V, \ W])$$
 (10)

2. 병행구역분해단조반복법과 수값실험결과

문제 (4)-(7)의 아래풀이, 웃풀이를 초기함수로 하는 병행구역분해단조반복법을 제기 하고 반복함수렬이 정확한 풀이에로 평등수렴한다는것을 증명하였다.

V⁽⁰⁾ = (v₁⁽⁰⁾, v₂⁽⁰⁾) = V 와 W⁽⁰⁾ = (w₁⁽⁰⁾, w₂⁽⁰⁾) = W 로 놓고 구간 [0, 1] 을 2개의 중첩구간 [0, β]와 [α, 1] (0 < α < β < 1) 로 나눈다.

먼저 아래풀이를 초기함수로 하는 반복함수렬을 구성한다.

초기자료 $v_{11}^{(0)} = v_{21}^{(0)} = v_1^{(0)}, v_{12}^{(0)} = v_{22}^{(0)} = v_2^{(0)}$ 으로 놓는다.

부분구간 $[0, \beta]$ 에서 선형분수계경계값문제

$$-D^{2}v_{11}^{(k)}(t) = v_{12}^{(k-1)}(t), \ t \in (0, \ \beta)$$
(11)

$$-D^{\delta}v_{12}^{(k)}(t) - cv_{12}^{(k)}(t) = cv_{12}^{(k-1)}(t) + g(t, v_{11}^{(k-1)}, v_{12}^{(k-1)}), t \in (0, \beta)$$
 (12)

$$v_{11}^{(k)}(0) = a_1, \ v_{11}^{(k)}(\beta) = v_{21}^{(k-1)}(\beta)$$
 (13)

$$v_{12}^{(k)}(0) - \mu_1 D v_{12}^{(k)}(0) = a_2, \ v_{12}^{(k)}(\beta) = v_{22}^{(k-1)}(\beta)$$
(14)

를 풀어서 함수쌍 $V_1^{(k)} = (v_{11}^{(k)}, v_{12}^{(k)})$ 를 얻는다.

부분구간 [α, 1]에서 선형분수계경계값문제

$$-D^{2}v_{21}^{(k)}(t) = v_{22}^{(k-1)}(t), \ t \in (\alpha, 1)$$
(15)

$$-D^{\delta}v_{22}^{(k)}(t) - cv_{22}^{(k)}(t) = cv_{22}^{(k-1)}(t) + g(t, v_{21}^{(k-1)}, v_{22}^{(k-1)}), t \in (\alpha, 1)$$
 (16)

$$v_{21}^{(k)}(\alpha) = v_{11}^{(k-1)}(\alpha), \ v_{21}^{(k)}(1) = b_1$$
 (17)

$$v_{22}^{(k)}(\alpha) = v_{21}^{(k-1)}(\alpha), \ v_{22}^{(k)}(1) + \mu_2 D v_{22}^{(k)}(1) = b_2$$
 (18)

를 풀어서 함수쌍 $V_2^{(k)} = (v_{21}^{(k)}, v_{22}^{(k)})$ 를 얻는다.

주의 1 앞으로 $v_{1j}^{(k)}$, $v_{2j}^{(k)}$ (j=1, 2)는

$$v_{1j}^{(k)}(t) := \begin{cases} v_{1j}^{(k)}(t), & t \in [0, \beta] \\ v_{2j}^{(k-1)}(t), & t \in [\beta, 1] \end{cases}, \quad v_{2j}^{(k)}(t) := \begin{cases} v_{1j}^{(k-1)}(t), & t \in [0, \alpha) \\ v_{2j}^{(k)}(t), & t \in [\alpha, 1] \end{cases}$$
(19)

로 리해한다.

다음으로 웃풀이를 초기함수로 하는 반복함수렬을 구성한다.

초기자료 $w_{11}^{(0)} = w_{12}^{(0)} = w_{1}^{(0)}, \ w_{21}^{(0)} = w_{22}^{(0)} = w_{2}^{(0)}$ 으로 놓는다.

부분구간 $[0, \beta]$ 에서 선형분수계경계값문제

$$-D^{2}w_{11}^{(k)}(t) = w_{12}^{(k-1)}(t), \ t \in (0, \ \beta)$$
(20)

$$-D^{\delta}w_{12}^{(k)}(t) - cw_{12}^{(k)}(t) = cw_{12}^{(k-1)}(t) + g(t, w_{11}^{(k-1)}, w_{12}^{(k-1)}), t \in (0, \beta)$$
 (21)

$$w_{11}^{(k)}(0) = a_1, \ w_{11}^{(k)}(\beta) = w_{21}^{(k-1)}(\beta)$$
 (22)

$$w_{12}^{(k)}(0) - \mu_1 D w_{12}^{(k)}(0) = a_2, \ w_{12}^{(k)}(\beta) = w_{22}^{(k-1)}(\beta)$$
(23)

를 풀어서 함수쌍 $W_1^{(k)} = (w_{11}^{(k)}, w_{12}^{(k)})$ 를 얻는다.

부분구간 [α, 1]에서 선형분수계경계값문제

$$-D^{2}w_{21}^{(k)}(t) = w_{22}^{(k-1)}(t), \ t \in (\alpha, 1)$$
(24)

$$-D^{\delta}w_{22}^{(k)}(t) - cw_{22}^{(k)}(t) = cw_{22}^{(k-1)}(t) + g(t, w_{21}^{(k-1)}, w_{22}^{(k-1)}), t \in (\alpha, 1)$$
 (25)

$$w_{21}^{(k)}(\alpha) = w_{11}^{(k-1)}(\alpha), \ w_{21}^{(k)}(1) = b_1$$
 (26)

$$w_{22}^{(k)}(\alpha) = w_{21}^{(k-1)}(\alpha), \ w_{22}^{(k)}(1) + \mu_2 D w_{22}^{(k)}(1) = b_2$$
 (27)

를 풀어서 함수쌍 $W_2^{(k)} = (w_{21}^{(k)}, w_{22}^{(k)})$ 를 얻는다.

주의 2 주의 1과 마찬가지로 $w_{1j}^{(k)}$ 와 $w_{2j}^{(k)}$ (j=1, 2)는

$$w_{1j}^{(k)}(t) := \begin{cases} w_{1j}^{(k)}(t), & t \in [0, \beta] \\ w_{2j}^{(k-1)}(t), & t \in [\beta, 1] \end{cases}, \quad w_{2j}^{(k)}(t) := \begin{cases} w_{1j}^{(k-1)}(t), & t \in [0, \alpha) \\ w_{2j}^{(k)}(t), & t \in [\alpha, 1] \end{cases}$$
(28)

로 리해한다.

정리 1 우의 반복도식에 대하여

① $\{v_{ij}^{(k)}\}_k$ 는 증가하는 함수렬, $\{w_{ij}^{(k)}\}_k$ 는 감소하는 함수렬들이다.(i, j=1, 2)

②
$$v_{11}^{(k)} \le v_{21}^{(k+1)}$$
, $v_{21}^{(k)} \le v_{11}^{(k+1)}$, $v_{12}^{(k)} \le v_{22}^{(k+1)}$, $v_{22}^{(k)} \le v_{12}^{(k+1)}$, $w_{11}^{(k)} \le w_{21}^{(k+1)}$, $w_{21}^{(k)} \le w_{11}^{(k+1)}$, $w_{12}^{(k)} \le w_{22}^{(k+1)}$, $w_{22}^{(k)} \le w_{12}^{(k+1)}$

③ $v_{ii}^{(k)} \le w_{ii}^{(k)}$ (i, j=1, 2)

가 성립된다.

정리 2 경계값문제 (4)-(7)에서 $g(t, u_1, u_2)$ 가 조건 (9), (10)을 만족시킨다고 하자. $v_{11}^{(k)}$, $v_{12}^{(k)}$, $w_{11}^{(k)}$, $w_{12}^{(k)}$ (혹은 $v_{21}^{(k)}$, $v_{22}^{(k)}$, $w_{21}^{(k)}$, $w_{22}^{(k)}$)를 우의 반복도식에 의한 반복렬이라고 하자. 이때 렬 $\{v_{11}^{(k)}\}$, $\{v_{12}^{(k)}\}$, $\{w_{11}^{(k)}\}$, $\{w_{12}^{(k)}\}$ (혹은 $\{v_{21}^{(k)}\}$, $\{v_{22}^{(k)}\}$, $\{w_{21}^{(k)}\}$, $\{w_{22}^{(k)}\}$)는 구간 $[0, \beta]$ (혹은 $[\alpha, 1]$)에서 v_1^* , v_2^* , w_1^* , v_2^* , v_1^* , v_2^* ($v_1^* \le w_1^*$, $v_2^* \le w_2^*$)에로 평등수렴한다.

정리 3 조건 (9), (10)의 가정밑에서 v_1^* , v_2^* , w_1^* , w_2^* 은 방정식 (4)—(7)의 풀이로 된다. 또한 방정식 (4)—(7)의 임의의 풀이 $(u_1, u_2) \in [V, W]$ 에 대하여 $v_1^* \le u_1 \le w_1^*$, $v_1^* \le u_1 \le w_1^*$, $v_2^* \le u_2 \le w_2^*$ 이 성립한다.

선형분수계미분방정식의 경계값문제

$$-D^{\delta}u + cu = f(t), \ t \in (0, \ \beta)$$
 (29)

$$u(0) - \mu_1 u'(0) = a_1, \ u(\beta) = a_2$$
 (30)

는 다음의 적분방정식과 동등하다.

$$u(t) = k_{12} + k_{11}(a_2 - a_1)t + \int_0^\beta G_1(s, t)(f(s) - cu(s))ds$$
(31)

여기서

$$G_{1}(s, t) = \frac{1}{\Gamma(\delta)} \begin{cases} k_{1}(t + \mu_{1})(\beta - s)^{\delta - 1} - (t - s)^{\delta - 1}, & 0 \le s \le t \le \beta \\ k_{1}(t + \mu_{1})(\beta - s)^{\delta - 1}, & 0 \le t \le s \le \beta \end{cases}$$

$$k_{11} = \frac{1}{\beta + \mu_{1}}, \quad k_{12} = k_{11}(\beta a_{1} + \mu_{1}a_{2})$$
(32)

이다.

또한 선형분수계미분방정식의 경계값문제

$$-D^{\delta}u + cu = f(t), \ t \in (\alpha, 1)$$
(33)

$$u(\alpha) = b_1, \ u(1) + \mu_2 u'(1) = b_2$$
 (34)

는 다음의 적분방정식과 동등하다.

$$u(t) = k_{24} + k_{21}(b_2 - b_1)t + \int_{\alpha}^{1} G_2(s, t)(f(s) - cu(s))ds + \int_{0}^{\alpha} H(s, t)g(s, u(s))ds$$
 (35)

여기서

$$G_{2}(s, t) = \frac{1}{\Gamma(\delta)} \begin{cases} (k_{21}t - k_{22})(1 - s)^{\delta - 2}(1 - s + (\delta - 1)\mu_{2}) - (t - s)^{\delta - 1}, & \alpha \leq s \leq t \leq 1 \\ (k_{21}t - k_{22})(1 - s)^{\delta - 2}(1 - s + (\delta - 1)\mu_{2}), & \alpha \leq t \leq s \leq 1 \end{cases}$$

$$H(s, t) = \frac{1}{\Gamma(\delta)} [(k_{23} - k_{21}t)(\alpha - s)^{\delta - 1} + (k_{21}t - k_{22})(1 - s)^{\delta - 2}(1 - s + (\delta - 1)\mu_{2}) - (t - s)^{\delta - 1}]$$

$$k_{21} = \frac{1}{1 + \mu_{2} - \alpha}, \quad k_{22} = \alpha k_{21}, \quad k_{23} = 1 + k_{22}, \quad k_{24} = k_{23}b_{1} - k_{22}b_{2}$$

이다.

실례 분수계경계값문제

$$D^{7/2}u - ue^{-u} = 0, \ t \in (0, 1)$$

$$u(0) = 1, \ u(1) = 0, \ u''(0) - 2u'''(0) = -1, \ u''(1) = -1$$
 (37)

에 대하여 론문에서 제기한 방법의 효과성을 검증하자.

방정식 (36), (37)은 다음의 동등한 방정식으로 변형된다.

$$D^2 u_1 + u_2 = 0 (38)$$

$$D^{3/2}u_2 - u_2e^{u_2} = 0 (39)$$

$$u_1(0) = 1, \ u_1(1) = 0$$
 (40)

$$u_2(0) - 2u_2'(0) = 1, \ u_2'(1) = 1$$
 (41)

함수쌍 $(v_1^{(0)}, v_2^{(0)}) = (2t(t-1), 0), (w_1^{(0)}, w_2^{(0)}) = (1-t(t-1), 1)$ 이 문제 (38)-(41)의 순서화된 아래풀이, 웃풀이로 된다는것은 쉽게 알수 있다.

 $g(t, u_1, u_2) = -u_2 e^{u_2}$ 는 조건 (9), (10)을 만족시키며

$$-2e \le \frac{\partial g(t, u)}{\partial u} = -e^{u}(1+u) \le -1 < 0, \ \forall u \in [v^{(0)}, w^{(0)}]$$

이므로 c=2e로 놓는다.

이 문제에 대하여 론문에서 제기한 방법을 적용하면 $\varepsilon=10^{-5}$ 일 때 $E(34)<\varepsilon$ 임을 알수 있다. 여기서

$$E(k) := \max_{t \in [0,1]} |w_1^k(t) - v_1^k(t)|$$

이다.

결과를 아래의 표에 보여주었다.

표. 수값실험결과						
k	0	5	10	20	34	
E(k)	1.72	0.386 68	0.060 75	0.001 514 8	8.726 4e-06	

참 고 문 헌

- [1] M. Al-Refai, M. Ali Hajji; Nonlinear Anal., 74, 3531, 2011.
- [2] Myong-Gil Rim, Chol-Guk Choe; http://doi.org/10.1142/S1793557119500116, 2017.
- [3] M Syam, M. Al-Refai; Journal of Fractional Calculus and Applications, 4, 1, 2013.
- [4] A. A. Kilbas et al.; North-Holland Mathematics Studies, 204, 12, 2006.

주체107(2018)년 6월 5일 원고접수

Parallel Domain Decomposition Monotone Iterative Technique for Nonlinear Fractional Differential Equations with Higher-Order Boundary Conditions

Song Chol U, Rim Myong Gil

In this paper, we investigate a parallel domain decomposition monotone iterative technique for nonlinear fractional differential equations with higher-order boundary conditions.

Key words: fractional differential equation, domain decomposition