Minimum Cut

Given a directed weighted graph and two vertices s, t, the goal is to find a subset U of the vertices such that $s \in U$, $t \notin U$, and the weight of edges from U to U is minimized.

Input

The first line of input contains four non-negative integers, $2 \le n \le 500$, $0 \le m \le 10\,000$, $0 \le s \le n-1$ and $0 \le t \le n-1$, separated by single spaces, where n is the numbers of nodes in the graph, m is the number of edges, s is the source and t is the sink ($s \ne t$). Nodes are numbered from 0 to n-1. Then follow m lines, each line consisting of three (space-separated) integers u, v and w indicating that there is an edge from u to v in the graph with weight $1 \le w \le 10^8$.

Output

Output should begin with a line containing an integer k, giving the size of U. Then follow k lines giving the vertices in U, one per line. If there are multiple choices for U any one will be accepted.

You may assume that there is a cut such that the total weight of edges from U to U is less than 2^{31} .

Sample Input 1

Sample Output 1

4 5 0 3 0 1 10 1 2 1 1 3 1	2 1 0
0 2 1	
2 3 10	

Sample Input 2

Sample Output 2

2 1 0 1 0 1 100000	1 0	

Sample Input 3

Sample Output 3

2 1 1 0 0 1 100000	1 1

Problem ID: mincut
CPU Time limit: 3 seconds
Memory limit: 1024 MB
Difficulty: 4.0

Author: Per Austrin

Source: KTH CSC Popup 2006

License: (©) BY