CHEN 425 ASPEN Simulation Report

Title: Simulation of a Flash Process

Workshop: #2

Date: February 15, 2023

Prepared by: Mark Levchenko

To: Professor Mahmoud El-Halwagi

1 Summary of Results

1. Vapor flow: 32290.72 kmol/hr

Vapor stream composition:

Species Mole fraction	
HYDROGEN	0.272523897
CO	0.148649452
N2	0.421173402
WATER	0.009009942
CO2	0.061931519
METHANE	0.049549613
ETHYLENE	0.02477473
CYCLOHEXANE	0.012387445

2. Heat curve:

The dew point is 273.61 $^{\circ}$ F.

3. A temperature of 240 °F is required for the overall vapor fraction to be 90%.

2 Discussion of Simulation Results

1. Stream results for part i:

4		Units	INLET -	LIQUID -	VAPOR →	
þ.	Mass Enthalpy	cal/gm	-897.956	-3804.15	-504.622	
Þ	Molar Entropy	cal/mol-K	-0.692468	-39.3136	-1.63265	
Þ	Mass Entropy	cal/gm-K	-0.0326986	-2.18216	-0.0744412	
Þ	Molar Density	mol/cc	0.000406883	0.0538752	0.000568167	
Þ	Mass Density	gm/cc	0.00861667	0.970612	0.012461	
Þ	Enthalpy Flow	cal/sec	-2.11292e+08	-1.46766e+08	-9.92705e+07	
þ.	Average MW		21.1773	18.0159	21.932	
þ.	+ Mole Flows	kmol/hr	40000	7709.28	32290.7	
þ.	 Mole Fractions 					
Þ	HYDROGEN		0.22	9.11486e-07	0.272524	
ŀ	CO		0.12	2.74324e-07	0.148649	
Þ	N2		0.34	9.61615e-07	0.421173	
Þ	WATER		0.2	0.999972	0.00900994	
ŀ	CO2		0.05	2.42072e-05	0.0619315	
Þ	METHANE		0.04	9.45667e-07	0.0495496	
Þ	ETHYLENE		0.02	7.93929e-07	0.0247747	
Þ	CYCLOHEX		0.01	6.05875e-08	0.0123874	
Þ	+ Mass Flows	kg/hr	847091	138890	708201	
Þ	+ Mass Fractions					
Þ	Volume Flow	l/min	1.63847e+06	2384.92	947220	
Þ	+ Vapor Phase					
Þ	+ Liquid Phase					
> <	add properties>					

2. ASPEN Heat Curve:

The dew point is the temperature at which the vapor fraction changes to 1. ASPEN reports this point in the results.

3. Stream results showing that the vapor stream is 90% of the overall flow rate.

4		Units	INLET -	LIQUID -	VAPOR -
•	Pressure	atm	15	15	15
Þ.	Molar Vapor Fraction		1	0	0.998879
Þ.	Molar Liquid Fraction		0	1	0.00112087
þ.	Molar Solid Fraction		0	0	0
þ.	Mass Vapor Fraction		1	0	0.999062
þ.	Mass Liquid Fraction		0	1	0.00093804
þ.	Mass Solid Fraction		0	0	0
þ.	Molar Enthalpy	cal/mol	-19016.3	-67141.2	-15343.7
þ.	Mass Enthalpy	cal/gm	-897.956	-3726.62	-712.733
þ.	Molar Entropy	cal/mol-K	-0.692468	-35.3813	-0.958509
þ.	Mass Entropy	cal/gm-K	-0.0326986	-1.96382	-0.0445238
Þ	Molar Density	mol/cc	0.000406883	0.0500427	0.000470965
þ.	Mass Density	gm/cc	0.00861667	0.901601	0.0101389
Þ	Enthalpy Flow	cal/sec	-2.11292e+08	-7.45136e+07	-1.53457e+08
þ.	Average MW		21.1773	18.0166	21.528
þ.	+ Mole Flows	kmol/hr	40000	3995.29	36004.7
þ.	+ Mole Fractions				
þ.	+ Mass Flows	kg/hr	847091	71981.7	775109
þ.	Mass Fractions				
þ.	Volume Flow	l/min	1.63847e+06	1330.63	1.27415e+06
þ.	+ Vapor Phase				
þ.	+ Liquid Phase				
) <	add properties>				

Find on the heat curve where the vapor fraction is 0.9, and find the corresponding temperature.

3 Simulation Screenshots

Stream results are included in the discussion section.

4 Conclusions

- 1. It looks like the vapor is more concentrated in the more volatile components than the feed. The vapor flow is the majority of the outlet flow.
- 2. Looking at the heat curve, it is clear where the vapor becomes saturated. Above the dew point, the vapor fraction is constant.
- 3. The vapor fraction increases as the temperature increases. This increase can be seen in the heat curve and by comparing the results bewteen part i and part iii.