SEMICONDUCTOR DEVICE FITTED WITH CERAMIC HEAT-RADIATING FINS

Patent Number:

JP3020067

Publication date:

1991-01-29

Inventor(s):

KAWASHIMA MASAMI

Applicant(s)::

TOKIN CORP

Requested Patent:

☐ JP<u>3020067</u>

Application Number: JP19890111167 19890429

Priority Number(s):

IPC Classification:

H01L23/34

EC Classification:

Equivalents:

Abstract

PURPOSE:To miniaturize a device and to improve heat radiation efficiency by constituting a substrate fitted with ceramic heat radiating fins so that it may sandwich a semiconductor element from both sides of it.

CONSTITUTION: This is put in such structure that a semiconductor element 5 is sandwitched from both sides by high heat conductive ceramics, and heat radiating fins 10 are formed at one side of the ceramic, and a semiconductor element 5 is mounted directly on the smooth face of the ceramic. And the heat generated from the semiconductor element 5 is radiated in two directions from the two sides of the semiconductor element 5 directly through the ceramic. Hereby, heat radiating effect becomes: large, and a semiconductor device of large output can be miniaturized as compared with the conventional structure.

Data supplied from the esp@cenet database - 12

19 日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

平3-20067

1 Int. Cl. 5

識別記号

庁内整理番号

❷公開 平成3年(1991)1月29日

H 01 L 23/34

С.

6412-5F

審査請求 未請求 請求項の数 3 (全5頁)

セラミツク放熱フイン付半導体装置

②特 願 平1-111167

②出 願 平1(1989)4月29日

@発明者 川島

正宝

官城県仙台市太白区郡山6丁目7番1号 株式会社トーキ

ン内

勿出 願 人 株式会社トーキン

宫城県仙台市太白区郡山6丁目7番1号

明 細 書

1 発明の名称

セラミック放然フィン付半導体装置

2 特許請求の範囲

1. 一方の面に放然フィンを形成し、もう一方の面に放然フィンを形成し、もう一方の面に放然フィンが形成された絶縁性セラの面を板を個の間に、少なくとも1個の半導体子をサンドイッチ状に挟持し、前記半導体を示するでは、もの心臓をできない。というを板に外部回路へ接続する所定の放然フィン付半導体装置。

2. 前記絶縁性セラミック基板の少なくとも1. 個を、 窒化アルミニウムにより形成した事を特徴とする 請求項1. 記載のセラミック放熱フィン付半導体装置。

3.2つの絶縁性セラミック基板の間の半導体素子

の、電極付前記絶縁性セラミック基板上に形成した 準体パターンとの間にうす板の半田をおき、 2 つの絶縁性セラミック基板の間を決める長さのスペーサを持つ速結ボルトにより 2 つの絶縁性セラミック基板を固定した後、昇温して 2 つの絶縁性 セラミック基板、半導体素子、基板上のスペーサ を半田により固定したことを特徴とする語求項 1、 請求項 2 記載のセラミック放熱フィン付半導体製 数整置。

3 発明の詳細な説明

イ、発明の目的

〔産業上の利用分野〕

本発明は世力増幅を目的に使用する電力増幅回路を構成する半導体装置において、熱伝導性に優れたセラミックを用い、セラミック放熱フィンを形成したセラミックス基板と、半導体素子とを一体に構成したセラミックス放熱フィン付半導体装置に関する。

(従来の技術)

健果の技術において、半導体者子より発生した 熱は、有機フィルム等熱伝導性に劣る絶縁シート を介し、半導体案子を納めた金属ゲースをアルミ ニウム等のフィンに実践しているため、放然方向 は絶縁シート偏一方向のみであり、介在する絶縁 シートにより熱葱抗が増加し、放熱特性が悪いと いう固題を有していた。

【猪明が解決しようとする辞題】

本発明は、前記の課題に対し、単導体類子から 指生する為を、金属アルミニウムと詞様な機伝導 率を有する、窒化アルミニウム、炭化塩素、酸化 べリリウムで代表される高熱伝導性セラミックに より、半導体索子を両面からサンドイッチにする 構造にして、セラミック片面に放為フィンを形成 し、数セラミックの平形な面に半導体来子を直接 実装する構造とし、半導体兼子より発生する機を 直接セラミックを介して半導体来子の2面より2 方向に放続させるよう構成したセラミック放動フィン付半導体 は、発明の構成

〔課題を解決するための手限〕

前記目的を達成するために、本類明におけるセラミック放為フィン付半導体装置は、残骸に伴う 半導体素子を実践するための配料基板として、型 化アルミニウム、炭化建粛、酸化ペリリウム等の

高熱伝導性セラミックを用いる。

これらのセラミックは、婚伝導率が200M/mkないし270M/mk前後と、熱伝導率が240M/mk程度の金属アルミニウムとほぼ同程度の熱伝導特性を有し、しかも電気観線体である。これらのセラミック基仮表面にそれぞれのセラミックに適するメタライズ手法により配級パターンを取け、半等体装置の実装基板とし、周辺回路と接続可能な稼進とする。

本構造のセラミック放為フィン付益板を半導体 派子の両側からサンドイッチとなるように構成す ることにより、半導体選子より列生する熱を半導 体第子両面より直接セラミック放為フィン付益板 へ逃がすことが出来るようにするものである。

即ち本処明は、

1. 一方の面に放熟フィンを形成し、もう一方の面に放熟フィンを形成し、もう一方の面に放発フィンが形成された絶縁性セラミック基板2個の間に、少なくとも1個の半導体素子の電影子を、それぞれ前記2個の絶縁性セラミック基板の海体パターンと導道させ、しかも該セラ

ミック基板に外部回路へ接続する所定の端子が形成してあることを特徴とするセラミックス放然フィン付半線体装置である。

3.2つの絶縁性セラミック茲板の間の半導体表 の電機性セラミック茲板の間の半導体表 の電機性性とラミを板の関係というである。 の単位は、2.20では、2.

(作用)

新出力特性の半導体素子を、放熱フィンの形に 加工した高い熱伝導率特性を持つ窒化アルミニウ

特別平3-20067(3)

ム、炭化珪素、酸化ベリリウムのセラミックの面 に電極パターン、並びに導体パターンを取付け、 半導体素子のドレン面をセラミックの面に半田に よりリフロー溶接を行い、一方半導体素子のソー ス電極面は、一方の放熱フィン付セラミックの上 に形成したソース電極パターンに接触させ、2つ の放然フィン付セラミックは4瞬にあけた連結用 穴を用い、中央に半導体素子と電極パターン、半 田層等の各部品の合計長さのスペーサを取付け、 固側にねじ取付けた連結ポルトを通し、ナットに より固定する構造のセラミック放熟フィン付半導 体装置とする。従って従来のパワー用半導体装置 では金属製放熱フィンとの間には電気絶縁のため の樹脂製フィルムを挿入し又半導体素子と金属ケ - スの間の接続にモリブデン板等を用いていたの に対して、半導体素子のドレン電極、並びにソー ス電板は、電板パターンのみであり、高い熱伝導 特性を持つ放熱フィン付セラミックに前記ドレン。 電極とソース電板が直接接触する構造であるので、 半導体素子に発生する熱は、直接セラミックスの

放然フィンに伝達される。一方半導体素子と電極パターンは、金属棒の中央の合計に相当を選挙を表示を関係のないのでは、半導体のでは、半導体のでは、半導体のでは、半導体のでは、半導体のでは、大力をでは、大力をでは、大力をでは、大力をでは、大力をでは、大力をでは、大力をできる。 を表示されている。 を表でななななななななななななななななななななななななななななななななななな

(実施例)

本発明の実施例について図面を参照し、詳細に説明する。

第1 図は本発明によるセラミック放為フィン付 半導体装置の平面図であり、第2 図は本発明によるもり、第2 図は本発明のであり、第2 図は本の正面図であり、第3 図はセラミック放為フィン付半導体素子を実施したセラミック放為フィイシース電極を取り付けたセラミック放為セラミニクで作られた半導体素子を実装する窒化アルミニ

ウム放熱フィン付基板1a、1bは、本発明の実施例では粒径が1μm以下の窒化アルミニウム原料粉に、酸化イットリウムを3重型%添加して混合を行い、得られた混合粉末にポリブチルブチラール(PVB)をパインダーとして添加し、乾式ブレス法により1ton/cm²の圧力で成形体を作る。成形体を500℃に於て除々にパインダーを除去した役、非酸化性雰囲気中、例えば窒素ガス、又はアルンガス雰囲気中で1850℃で5時間の焼結を行い、窒化アルミニウム放熱フィン付基板の焼結体ブロックを得る。放熱フィンは研削により滞10を形成する。

ついで、電極パターンを形成する面を研磨した 空化アルミニウム放然フィン付基板1aの面に、半 等体装置の電極を形成するためのドレン電極を ーン2aを、窒化アルミニウム放然フィン付基板1b の面にはソース電極パターン2cを形成する。窒化 アルミニウムフィン付基板に網層を主層とする レン電極パターン2a、ゲート電極パターン2b、ソース電極パターン2cを形成する手段は、本発明の 殖明者等によりすでに出願されている昭和63年特許顕第21025号の手法による。

通常パワー用の半導体素子は、ドレン側にメタライズ層を形成した半導体素子をモリブデン板等にろう付けし形成されるが、本発明ではセラミック表面に形成された電極パターンのドレン電視パターン2a上に、半導体素子底面のドレン部と同じ大きさで、厚みが50μmの半田稼板を切断して設

置し、半導体報子の上から荷重を加えながら 350℃でリフロー半田溶接を行った。

ついで、第3回に示すように半導体素子5のゲ ート電極4bと、セラミックの導体パターンのゲー ト電極パターン2bを、直径50μmのアルミ線を用 い超音波ポンディングにより接続した。尚、ドレ ン電福パターン2a及びゲート電極パターン2bは、 本半導体装置をプリント基板等の表面に実装する 際、プリント基板側の配線パターンとの接合を容 易にするため、ブリント基板対向面の導体パター ン2a-1、2b-1、2c-1には、あらかじめ30μm前後 の厚みで鉛ー鉧共晶半田メッキによる塗装を施し た。一方、半導体装置のソース部に対向するソー ス電極パターン2cは、同様の手法にて他方の窒化 アルミニウム放熱フィン付基板1bのセラミック表 面に形成され、予め導体表面は30μm前後の鉛ー 姆共晶半田により被覆を施した。そして、ドレン 電極パターン、接合半田層、ドレン電極パターン、 半導体素子、ゲート電極パターン、ソース電極パ ターンの積層厚さに相当したスペーサ8aを取り付

けた連結ポルト9を用いて組立て、第1図、第2 図に示すように連結ポルトの両個ポルト部分を習 化アルミニウム放熱フィン付基板四隅の連結用孔 に通し、ナットにより2つの窟化アルミニウム放 然フィン付基板を連結し固定する。従って半導体 素子のソース電極パターン2cに半田付け、又はろ う付けを行うことなく接触のみで接続する。又こ のようにして形成された1組みのセラミック放熱 フィン付半導体装置は、270℃でリフロー炉を通 過させ半導体素子のソース電極パターン2cと導体 パターン2c-1を半田接合する。最後に耐湿性を考 慮して2つのセラミック放熟フィン付益板の間を 被覆樹脂7より完全に覆い固化し、半導体素子、 ジャンパー線、電極パターンを覆い完成する。樹 脂としては日本チパガイギー株式会社型半導体チ ップのコーティング樹脂、 XNR5100、 XNH5100等を

尚、本発明の実施例は窒化アルミニウムの例により説明したが、熱伝導特性に優れたセラミックである窒化アルミニウム以外の、炭化珪森、酸化

ベリリウム等を用いた組合せも、本発明と同様なセラミック放熱フィン付半導体装置を形成し得ることは当然である。又窒化アルミニウム表面に形成する金風層は、帯い網層を例に説明したが、ニッケルメッキ、金風アルミニウムや他の金属層を形成してもよい。

ハ:発明の効果

(発明の効果)

本発明は以上に説明したように構成されているので、以下に記載されるような効果を奏する。

半導体素子は、金属アルミニウムと同じ熱伝導特性を有し、しかも電気絶縁特性を持つ放然フィン付セラミックに半導体素子をマウントし金属ケースを介さずに一体化した実装構成した構造とのボタップの両面に放然フィンを構成した構造となっているため、放熱効果が極めて大きく、従来の構造に比較して大出力の半導体装置を小型化して提供できる。

以下氽白

4 図面の簡単な説明

第1図は本発明によるセラミック放為フィン付 半導体装置を示す平面図。

第2図は本発明によるセラミック放熟フィン付 半導体装置を示す正面図。

第3図は第1図における窒化アルミニウム放然フィン付基板1aの半導体素子搭載面の平面図。

第4図はソース電極パターン形成面の平面図。
1a,1b…窒化アルミニウム放熱フィン付基板、
2a…ドレン電極パターン、2b…ゲート電極パターン、2cmソース電極パターン、2a-1,2b-1,2c-1… 導体パターン、3…シリコンチップ接合半田層、
4a…ドレン電極、4b…ゲート電極、4cmソース電極、5…半導体素子、6…ジャンパー線、7…被覆 樹脂、8…ナット、8amスペーサ、9…速結ポルト、 10…薄、11…ナット。

特許出顧人 株式会社トーキン

特開平3-20067(5)

第3 图

第 4 図

