11.3. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

11.3.1. Классификация поверхностей второго порядка

Алгебраической поверхностью второго порядка называется геометрическое место точек пространства, которое в какой-либо аффинной системе координат Охуг может быть задано уравнением вида

$$\begin{aligned} a_{11} \cdot x^2 + a_{22} \cdot y^2 + a_{33} \cdot z^2 + 2 \cdot a_{12} \cdot x \cdot y + 2 \cdot a_{13} \cdot x \cdot z + 2 \cdot a_{23} \cdot y \cdot z + \\ & + 2 \cdot a_1 \cdot x + 2 \cdot a_2 \cdot y + 2 \cdot a_3 \cdot z + a_0 = 0 \ , \end{aligned}$$

где старшие коэффициенты a_{11} , a_{12} , a_{13} , a_{22} , a_{23} , a_{33} не равны нулю одновременно. Без ограничения общности можно считать, что система координат, в которой задано уравнение поверхности второго порядка, прямоугольная. Для каждой поверхности второго порядка существует прямоугольная система координат Oxyz, в которой уравнение принимает наиболее простой (*канонический*) вид. Она называется *канонической*, а уравнение – *каноническим*.

КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯЛКА

1. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ уравнение эллипсоида;

2. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ уравнение мнимого эллипсоида;

3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ уравнение мнимого конуса;

4. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ уравнение однополостного гиперболоида;

5. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ уравнение двуполостного гиперболоида;

6. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ уравнение конуса;

7. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2 \cdot z$ уравнение эллиптического параболоида;

8. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2 \cdot z$ уравнение гиперболического параболоида;

10. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ уравнение мнимого эллиптического цилиндра;

- 12. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ уравнение гиперболического цилиндра;
- 13. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$ уравнение пары пересекающихся плоскостей;
- 14. $y^2 = 2 \cdot p \cdot x$ уравнение параболического цилиндра;
- 15. $y^2 b^2 = 0$ уравнение пары параллельных плоскостей;
- 16. $y^2 + b^2 = 0$ уравнение пары мнимых параллельных плоскостей;

2

17.
$$y^2 = 0$$

уравнение пары совпадающих плоскостей.

В этих уравнениях a > 0, b > 0, c > 0, p > 0, причем $a \ge b \ge c$ в уравнениях 1–3; $a \ge b$ в уравнениях 4–7,9–11.

Поверхности (1),(4),(5),(6),(7),(8),(9), (12),(13),(14),(15),(17) называются вещественными (действительными), а поверхности (2),(3),(10),(11),(16) – мнимыми. Вещественные поверхности изображены в канонических системах координат. Изображения мнимых поверхностей даются штриховыми линиями только для иллюстрации.

Поверхность второго порядка называется *центральной*, если она имеет единственный центр (симметрии). В противном случае, если центр отсутствует или не является единственным, поверхность называется *нецентральной*. К центральным поверхностям относятся эллипсоиды (вещественный и мнимый), гиперболоиды (однополостный и двуполостный), конусы (вещественный и мнимый). Остальные поверхности – нецентральные.

АЛГОРИТМ СОСТАВЛЕНИЯ КАНОНИЧЕСКОГО УРАВНЕНИЯ ПОВЕРХНОСТИ ВТОРОГО ПОРЯЛКА

Пусть в прямоугольной системе координат *Охуг* поверхность второго порядка описывается уравнением

$$\begin{aligned} a_{11} \cdot x^2 + a_{22} \cdot y^2 + a_{33} \cdot z^2 + 2 \cdot a_{12} \cdot x \cdot y + 2 \cdot a_{13} \cdot x \cdot z + 2 \cdot a_{23} \cdot y \cdot z + \\ & + 2 \cdot a_1 \cdot x + 2 \cdot a_2 \cdot y + 2 \cdot a_3 \cdot z + a_0 = 0 \ . \end{aligned}$$

Требуется определить ее название и составить каноническое уравнение. Для этого нужно выполнить следующие действия.

1. Вычислить ортогональные инварианты

$$\begin{aligned} \tau_1 &= a_{11} + a_{22} + a_{33} \,, \qquad \tau_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \,, \\ \delta &= \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix} \,, \qquad \Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{1} \\ a_{12} & a_{22} & a_{23} & a_{2} \\ a_{13} & a_{23} & a_{33} & a_{3} \\ a_{1} & a_{2} & a_{3} & a_{3} \end{vmatrix} \,.$$

Если $\delta = \Delta = 0$, то вычислить *семиинвариант*

$$\kappa_2 = \begin{vmatrix} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} & a_1 \\ a_{13} & a_{33} & a_3 \\ a_1 & a_3 & a_0 \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} & a_2 \\ a_{23} & a_{33} & a_3 \\ a_2 & a_3 & a_0 \end{vmatrix}.$$

Если $\delta = \Delta = 0$ и $\tau_2 = \kappa_2 = 0$, то вычислить семиинвариант

$$\kappa_1 = \begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} + \begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix} + \begin{vmatrix} a_{33} & a_3 \\ a_3 & a_0 \end{vmatrix}.$$

- 2. По таблице 11.1 определить название поверхности, а по названию каноническое уравнение поверхности второго порядка.
- 3. Составить характеристическое уравнение $-\lambda^3 + \tau_1 \cdot \lambda^2 \tau_2 \cdot \lambda + \delta = 0$, используя коэффициенты, вычисленные в п.1, либо разлагая определитель

$$\det(A - \lambda \cdot E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{12} & a_{22} - \lambda & a_{23} \\ a_{13} & a_{23} & a_{33} - \lambda \end{vmatrix} = -\lambda^3 + \tau_1 \cdot \lambda^2 - \tau_2 \cdot \lambda + \delta.$$

Найти корни $\lambda_1, \lambda_2, \lambda_3$ (с учетом кратности) характеристического уравнения.

- 4. Занумеровать корни $\lambda_1, \lambda_2, \lambda_3$ характеристического уравнения в соответствии с правилами:
 - а) если поверхность эллиптического типа, то $\left|\lambda_1\right| \leq \left|\lambda_2\right| \leq \left|\lambda_3\right|$;
- б) если поверхность гиперболического типа, то обозначить через λ_1 и λ_2 корни одного знака так, чтобы $\left|\lambda_1\right| \leq \left|\lambda_2\right|$, а через λ_3 корень противоположного знака;
 - в) если поверхность параболического типа и
 - если нулевой корень двойной, то $\lambda_1 = \lambda_3 = 0$ и $\lambda_2 \neq 0$;
 - если нулевой корень простой, а ненулевые корни одного знака, то $\lambda_3 = 0 \;\; \text{и} \; \left| \; \lambda_1 \; \right| \leq \left| \; \lambda_2 \; \right|;$
 - если нулевой корень простой, а ненулевые корни разных знаков, то $\lambda_3=0$ и либо $\lambda_1>0$, если $\Delta\neq 0$ или $\Delta=\kappa_2=0$; либо $\lambda_1\cdot\kappa_2>0$, если $\Delta=0$ и $\kappa_2\neq 0$.
- 5. Вычислить коэффициенты канонического уравнения и записать его в канонической системе координат O'x'y'z':
 - а) для поверхностей эллиптического типа:

(1) — при
$$\Delta < 0$$
 — уравнение эллипсоида $\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} + \frac{(z')^2}{c^2} = 1$ с коэффициентами $a^2 = -\frac{\Delta}{\lambda_1 \cdot \delta}$, $b^2 = -\frac{\Delta}{\lambda_2 \cdot \delta}$, $c^2 = -\frac{\Delta}{\lambda_2 \cdot \delta}$;

3

Таблица 11.1. Классификация поверхностей второго порядка

	Признаки вида						Название поверхности	№
Центральные поверхности	δ≠0	Эллиптический тип	$\begin{cases} \tau_2 > 0, \\ \tau_1 \cdot \delta > 0 \end{cases}$		$\Delta < 0$		Эллипсоид	1
					$\Delta > 0$		Мнимый эллипсоид	2
		Элл			$\Delta = 0$		Мнимый конус	3
		Гиперболический тип			$\Delta > 0$		Однополостный гиперболоид	4
			$\begin{bmatrix} \tau_2 \\ \tau_1 \end{bmatrix}$	$\leq 0,$ $\delta \leq 0$	$\Delta < 0$		Двуполостный гиперболоид	5
					$\Delta = 0$		Конус	6
Нецентральные поверхности	δ =0	Параболический тип	Δ<0				Эллиптический параболоид	7
				$\Delta > 0$			Гиперболический параболоид	8
			$\Delta = 0$	τ ₂ >0	$\tau_1 \cdot \kappa_2 < 0$		Эллиптический цилиндр	9
					$\tau_1 \cdot \kappa_2 > 0$		Мнимый эллиптический цилиндр	10
					$\kappa_2 = 0$		Пара мнимых пересекающих- ся плоскостей	11
				τ ₂ < 0	κ ₂ ≠0		Гиперболический цилиндр	12
					$\kappa_2 = 0$		Пара пересекающихся плоскостей	13
				$\tau_2 = 0$	κ ₂ ≠0		Параболический цилиндр	14
					$\kappa_2 = 0$	$\kappa_1^{} < 0$	Пара параллельных плоскостей	15
						$\kappa_1 > 0$	Пара мнимых параллельных плоскостей	16
						$\kappa_1 = 0$	Пара совпадающих плоскостей	17

(2) при $\Delta > 0$ — уравнение *мнимого* эллипсоида $\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} + \frac{(z')^2}{c^2} = -1 \quad \text{с} \quad \text{коэффициентами} \quad a^2 = \frac{\Delta}{\lambda_1 \cdot \delta} \,, \qquad b^2 = \frac{\Delta}{\lambda_2 \cdot \delta} \,,$ $c^2 = \frac{\Delta}{\lambda_3 \cdot \delta} \,;$

(3) при $\Delta = 0$ – уравнение мнимого конуса $\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} + \frac{(z')^2}{c^2} = 0$ с коэффициентами $a^2 = \frac{1}{|\lambda_1|}$, $b^2 = \frac{1}{|\lambda_2|}$, $c^2 = \frac{1}{|\lambda_3|}$;

б) для поверхностей гиперболического типа:

(5) при $\Delta < 0$ — уравнение *двуполостного гиперболоида* $\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} - \frac{(z')^2}{c^2} = -1 \quad \text{с} \quad \text{коэффициентами} \quad a^2 = \frac{\Delta}{\lambda_1 \cdot \delta} \,, \qquad b^2 = \frac{\Delta}{\lambda_2 \cdot \delta} \,,$ $c^2 = -\frac{\Delta}{\lambda_2 \cdot \delta} \,;$

(6) при $\Delta = 0$ – уравнение конуса $\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} - \frac{(z')^2}{c^2} = 0$ с коэффициентами $a^2 = \frac{1}{|\lambda_1|}$, $b^2 = \frac{1}{|\lambda_2|}$, $c^2 = \frac{1}{|\lambda_3|}$;

в) для поверхностей параболического типа:

(7) при $\Delta < 0$ — уравнение эллиптического параболоида $\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} = 2 \cdot z \qquad \text{с} \qquad \text{коэффициентами} \qquad a^2 = \sqrt{-\frac{\Delta}{\lambda_1^2 \cdot \tau_2}} \; ,$ $b^2 = \sqrt{-\frac{\Delta}{\lambda_2^2 \cdot \tau_2}} \; ;$

(8) при $\Delta > 0$ — уравнение *гиперболического параболоида* $\frac{(x')^2}{a^2} - \frac{(y')^2}{b^2} = 2 \cdot z \qquad \text{с} \qquad \text{коэффициентами} \qquad a^2 = \sqrt{-\frac{\Delta}{\lambda_1^2 \cdot \tau_2}} \,,$ $b^2 = \sqrt{-\frac{\Delta}{\lambda_2^2 \cdot \tau_2}} \,;$

 $(9) \ \text{при} \ \ \Delta = 0 \ , \ \ \tau_2 > 0 \ , \ \ \tau_1 \cdot \kappa_2 < 0 \ \ - \ \text{уравнение} \ \text{эллиптического} \ \ \text{ии}$ $\text{линдра} \qquad \frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} = 1 \qquad \text{с} \qquad \text{коэффициентами} \qquad a^2 = -\frac{\kappa_2}{\lambda_1 \cdot \tau_2} \ ,$ $b^2 = -\frac{\kappa_2}{\lambda_2 \cdot \tau_2} \ ;$

- (10) при $\Delta=0$, $\tau_2>0$, $\tau_1\cdot\kappa_2>0$ уравнение мнимого эллиптического цилиндра $\frac{(x')^2}{a^2}+\frac{(y')^2}{b^2}=-1$ с коэффициентами $a^2=\frac{\kappa_2}{\lambda_1\cdot\tau_2}$, $b^2=\frac{\kappa_2}{\lambda_2\cdot\tau_2}$;
- (11) при $\Delta=0$, $\tau_2>0$, $\kappa_2=0$ уравнение *пары мнимых пересе-кающихся* плоскостей $\frac{(x')^2}{a^2}+\frac{(y')^2}{b^2}=0$ с коэффициентами $a^2=\frac{1}{|\lambda_1|}$, $b^2=\frac{1}{|\lambda_2|}$;
- (12) при $\Delta=0$, $\tau_2<0$, $\kappa_2\neq 0$ уравнение *гиперболического ци- линдра* $\frac{(x')^2}{a^2}-\frac{(y')^2}{b^2}=1$ с коэффициентами $a^2=-\frac{\kappa_2}{\lambda_1\cdot\tau_2}$, $b^2=\frac{\kappa_2}{\lambda_2\cdot\tau_2}$;
- (13) при $\Delta=0$, $\tau_2<0$, $\kappa_2=0$ уравнение *пары пересекающихся плоскостей* $\frac{(x')^2}{a^2}-\frac{(y')^2}{b^2}=0$ с коэффициентами $a^2=\frac{1}{\lambda_1}$, $b^2=-\frac{1}{\lambda_2}$;
- (14) при $\Delta=0$, $\tau_2=0$, $\kappa_2\neq 0$ уравнение *параболического ци- линдра* $\left(y'\right)^2=2\cdot p\cdot x'$ с коэффициентом $p=\sqrt{-\frac{\kappa_2}{\tau_1^3}}$;
- (15) при $\Delta=0$, $\tau_2=0$, $\kappa_2=0$, $\kappa_1<0$ уравнение *пары параллельных плоскостей* $(y')^2-b^2=0$ с коэффициентом $b^2=-\frac{\kappa_1}{\tau_1^2}$;
- (16) при $\Delta = 0$, $\tau_2 = 0$, $\kappa_2 = 0$, $\kappa_1 > 0$ уравнение *пары мнимых параллельных плоскостей* $(y')^2 + b^2 = 0$ с коэффициентом $b^2 = \frac{\kappa_1}{\tau^2}$;
- (17) при $\Delta = 0$, $\tau_2 = 0$, $\kappa_2 = 0$, $\kappa_1 = 0$ уравнение *пары совпа-* дающих плоскостей $(y')^2 = 0$.

11.3.6. Нахождение канонической системы координат и построение поверхности второго порядка

Пусть в стандартной системе координат *Охуг* алгебраическая поверхность второго порядка задана уравнением (11.18):

$$a_{11} \cdot x^2 + a_{22} \cdot y^2 + a_{33} \cdot z^2 + 2 \cdot a_{12} \cdot x \cdot y + 2 \cdot a_{13} \cdot x \cdot z + 2 \cdot a_{23} \cdot y \cdot z + 2 \cdot a_{12} \cdot x + 2 \cdot a_{12} \cdot y + 2 \cdot a_{13} \cdot z + a_{0} = 0.$$
(11.25)

Требуется:

- I) определить название поверхности второго порядка, составить ее каноническое уравнение (см. разд.11.3.1);
- II) найти каноническую систему координат O'x'y'z' (в которой уравнение поверхности имеет канонический вид);
 - III) построить поверхность в заданной системе координат *Охуг*.

Алгоритм решения I части задачи — определения названия поверхности и составления ее канонического уравнения — рассмотрен в разд.11.3.1. Рассмотрим план решения II и III частей задачи. Для нахождения канонической системы координат O'x'y'z' достаточно указать ее базисные векторы: $\overline{s}_1 = s_{11} \cdot \overline{i} + s_{21} \cdot \overline{j} + s_{31} \cdot \overline{k}$, $\overline{s}_2 = s_{12} \cdot \overline{i} + s_{22} \cdot \overline{j} + s_{32} \cdot \overline{k}$, $\overline{s}_3 = s_{13} \cdot \overline{i} + s_{23} \cdot \overline{j} + s_{33} \cdot \overline{k}$ (канонический базис), а также координаты x_0 , y_0 , z_0 ее начала O' в системе координат Oxyz. Заданная поверхность строится в найденной канонической системе координат по каноническому уравнению.

АЛГОРИТМ НАХОЖДЕНИЯ КАНОНИЧЕСКОЙ СИСТЕМЫ КООРДИНАТ ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Пусть выполнены пп. 1–5 алгоритма составления канонического уравнения поверхности второго порядка (см. разд. 11.3.1). Обозначим через

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

матрицу квадратичной формы в левой части уравнения (11.25).

6. Найти собственные векторы

$$l_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \quad l_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, \quad l_3 = \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix}$$

матрицы A, соответствующие корням λ_1 , λ_2 , λ_3 характеристического уравнения, по следующим правилам:

- а) если $\lambda_1=\lambda_2=\lambda_3$, то $l_1=\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$, $l_2=\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, $l_3=\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$;
- б) если все корни λ_1 , λ_2 , λ_3 простые, то для каждого корня найти ненулевое решение однородной системы уравнений

$$\begin{cases} (a_{11} - \lambda) \cdot x + a_{12} \cdot y + a_{13} \cdot z = 0, \\ a_{12} \cdot x + (a_{22} - \lambda) \cdot y + a_{23} \cdot z = 0, \\ a_{13} \cdot x + a_{23} \cdot y + (a_{33} - \lambda) \cdot z = 0, \end{cases}$$
(11.26)

а именно, решая (11.26) при $\lambda = \lambda_1$, найти $l_1 = \begin{pmatrix} x_1 & y_1 & z_1 \end{pmatrix}^T \neq o$; решая (11.26) при $\lambda = \lambda_2$, найти $l_2 = \begin{pmatrix} x_2 & y_2 & z_2 \end{pmatrix}^T \neq o$; решая (11.26) при $\lambda = \lambda_3$, найти $l_3 = \begin{pmatrix} x_3 & y_3 & z_3 \end{pmatrix}^T \neq o$.

Если $\lambda_3=0$ и корни λ_1 и λ_2 имеют разные знаки ($\lambda_1\cdot\lambda_2<0$), то столбец $l_3=\begin{pmatrix} x_3 & y_3 & z_3 \end{pmatrix}^T$ должен удовлетворять дополнительному условию $a_1\cdot x_3+a_2\cdot y_3+a_3\cdot z_3\leq 0$, в противном случае следует заменить столбец l_3 на противоположный: $l_3=\begin{pmatrix} -x_3 & -y_3 & -z_3 \end{pmatrix}^T$.

Если $\lambda_3=0$ и корни λ_1 и λ_2 одного знака $(\lambda_1\cdot\lambda_2>0)$, то столбец $l_3=\begin{pmatrix}x_3&y_3&z_3\end{pmatrix}^T$ должен удовлетворять дополнительному условию $\tau_1\cdot\begin{pmatrix}a_1\cdot x_3+a_2\cdot y_3+a_3\cdot z_3\end{pmatrix}<0$, в противном случае следует заменить столбец l_3 на противоположный: $l_3=\begin{pmatrix}-x_3&-y_3&-z_3\end{pmatrix}^T$;

в) если имеется двойной ненулевой корень $\lambda_1=\lambda_2\neq\lambda_3$, то для простого корня λ_3 найти соответствующий собственный вектор $l_3=\begin{pmatrix} x_3 & y_3 & z_3 \end{pmatrix}^T\neq o$ — любое ненулевое решение системы (11.26) при $\lambda=\lambda_3$. Для кратного корня $\lambda_1=\lambda_2$ в качестве $l_2=\begin{pmatrix} x_2 & y_2 & z_2 \end{pmatrix}^T\neq o$ взять любой ненулевой столбец матрицы $A-\lambda_3\cdot E$, а элементы столбца $l_1=\begin{pmatrix} x_1 & y_1 & z_1 \end{pmatrix}^T$ найти по формулам

$$x_1 = \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix}, \quad y_1 = -\begin{vmatrix} x_2 & z_2 \\ x_3 & z_3 \end{vmatrix}, \quad z_1 = \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}.$$

Если $\lambda_3=0$, то столбец $l_3=\begin{pmatrix} x_3 & y_3 & z_3 \end{pmatrix}^T$ должен удовлетворять дополнительному условию $\tau_1\cdot \begin{pmatrix} a_1\cdot x_3+a_2\cdot y_3+a_3\cdot z_3 \end{pmatrix}<0$, в противном случае следует заменить столбец l_3 на противоположный: $l_3=\begin{pmatrix} -x_3 & -y_3 & -z_3 \end{pmatrix}^T$;

г) если имеется двойной нулевой корень $\lambda_1=\lambda_3=0$, то собственный вектор $l_2=\begin{pmatrix} x_2 & y_2 & z_2 \end{pmatrix}^T$, соответствующий простому корню λ_2 , найти как ненулевое решение системы (11.26). Вычислить столбец $a'=\begin{pmatrix} a_1' & a_2' & a_3' \end{pmatrix}^T$:

$$a_1' = a_1 - \frac{a_1 \cdot x_2 + a_2 \cdot y_2 + a_3 \cdot z_2}{x_2^2 + y_2^2 + z_2^2} \cdot x_2 \; , \; \; a_2' = a_2 - \frac{a_1 \cdot x_2 + a_2 \cdot y_2 + a_3 \cdot z_2}{x_2^2 + y_2^2 + z_2^2} \cdot y_2 \; , \; \; a_3' = a_3 - \frac{a_1 \cdot x_2 + a_2 \cdot y_2 + a_3 \cdot z_2}{x_2^2 + y_2^2 + z_2^2} \cdot z_2 \; .$$

Если a'=o, то столбец $l_1=\begin{pmatrix} x_1 & y_1 & z_1 \end{pmatrix}^T$ найти как ненулевое решение системы (11.26) при $\lambda=0$. Если $a'\neq o$, то элементы столбца $l_1=\begin{pmatrix} x_1 & y_1 & z_1 \end{pmatrix}^T$ вычислить по формулам $x_1=-\tau_1\cdot a_1',\quad y_1=-\tau_1\cdot a_2',\quad z_1=-\tau_1\cdot a_3'$. Элементы столбца $l_3=\begin{pmatrix} x_3 & y_3 & z_3 \end{pmatrix}^T$ найти по формулам

$$x_3 = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, \quad y_3 = -\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \quad z_3 = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}.$$

По собственным векторам $l_1 = (x_1 \ y_1 \ z_1)^T$, $l_2 = (x_2 \ y_2 \ z_2)^T$, $l_3 = (x_3 \ y_3 \ z_3)^T$ определить канонический базис:

$$\begin{split} \overline{s}_1 &= s_{11} \cdot \overline{i} + s_{21} \cdot \overline{j} + s_{31} \cdot \overline{k} = \frac{x_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}} \cdot \overline{i} + \frac{y_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}} \cdot \overline{j} + \frac{z_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}} \cdot \overline{k} \ , \\ \overline{s}_2 &= s_{12} \cdot \overline{i} + s_{22} \cdot \overline{j} + s_{32} \cdot \overline{k} = \frac{x_2}{\sqrt{x_2^2 + y_2^2 + z_2^2}} \cdot \overline{i} + \frac{y_2}{\sqrt{x_2^2 + y_2^2 + z_2^2}} \cdot \overline{j} + \frac{z_2}{\sqrt{x_2^2 + y_2^2 + z_2^2}} \cdot \overline{k} \ , \\ \overline{s}_3 &= s_{13} \cdot \overline{i} + s_{23} \cdot \overline{j} + s_{33} \cdot \overline{k} = \frac{x_3}{\sqrt{x_3^2 + y_3^2 + z_3^2}} \cdot \overline{i} + \frac{y_3}{\sqrt{x_3^2 + y_3^2 + z_3^2}} \cdot \overline{j} + \frac{z_3}{\sqrt{x_3^2 + y_3^2 + z_3^2}} \cdot \overline{k} \ . \end{split}$$

- 7. Найти координаты $x_0\,, y_0\,, z_0\,$ начала O' канонической системы координат:
- а) для эллипсоидов, гиперболоидов, конусов, эллиптических или гиперболических цилиндров, пар плоскостей найти любое решение x_0 , y_0 , z_0 системы:

$$\begin{cases} a_{11} \cdot x + a_{12} \cdot y + a_{13} \cdot z + a_1 = 0, \\ a_{12} \cdot x + a_{22} \cdot y + a_{23} \cdot z + a_2 = 0, \\ a_{13} \cdot x + a_{23} \cdot y + a_{33} \cdot z + a_3 = 0; \end{cases}$$

б) для параболоидов и параболического цилиндра найти любое решение x_0 , y_0 , z_0 системы:

$$\begin{cases} a_{11} \cdot x + a_{12} \cdot y + a_{13} \cdot z + a_{1 \ 1}^{\perp} = 0, \\ a_{12} \cdot x + a_{22} \cdot y + a_{23} \cdot z + a_{2}^{\perp} = 0, \\ a_{13} \cdot x + a_{23} \cdot y + a_{33} \cdot z + a_{3}^{\perp} = 0, \\ \left(a_{1} + a_{1}' \right) \cdot x + \left(a_{2} + a_{2}' \right) \cdot y + \left(a_{3} + a_{3}' \right) \cdot z + a_{0} = 0, \end{cases}$$

где в зависимости от вида поверхности положить:

– для эллиптического и гиперболического параболоидов:

$$\begin{split} \mu &= a_1 \cdot s_{13} + a_2 \cdot s_{23} + a_3 \cdot s_{33} \;, \quad a_1' = \mu \cdot s_{13} \;, \quad a_2' = \mu \cdot s_{23} \;, \quad a_3' = \mu \cdot s_{33} \;, \\ a_1^\perp &= a_1 - a_1' \;, \quad a_2^\perp = a_2 - a_2' \;, \quad a_3^\perp = a_3 - a_3' \;; \end{split}$$

для параболического цилиндра;

$$\mu = a_1 \cdot s_{12} + a_2 \cdot s_{22} + a_3 \cdot s_{32} , \quad a_1^{\perp} = \mu \cdot s_{12} , \quad a_2^{\perp} = \mu \cdot s_{22} , \quad a_3^{\perp} = \mu \cdot s_{32} ,$$

$$a_1' = a_1 - a_1^{\perp} , \quad a_2' = a_2 - a_2^{\perp} , \quad a_3' = a_3 - a_3^{\perp} .$$

Найденные в пп.6,7 координаты x_0 , y_0 , z_0 начала O' и базисные векторы \overline{s}_1 , \overline{s}_2 , \overline{s}_3 определяют каноническую систему координат O'x'y'z' .

АЛГОРИТМ ПОСТРОЕНИЯ ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Пусть определено название поверхности второго порядка, составлено ее каноническое уравнение (см. пп.1–5 в разд.11.3.1), а также найдена каноническая система координат O'x'y'z' (пп.6,7 алгоритма). Требуется построить поверхность второго порядка в заданной системе координат Oxyz. Для этого нужно выполнить следующие действия.

- 8. В координатном пространстве Oxyz изобразить каноническую систему координат O'x'y'z', координаты x_0 , y_0 , z_0 начала O' которой найдены в п.7, а координаты базисных векторов в п.6.
- 9. Построить поверхность второго порядка в канонической системе координат O'x'y'z' по каноническому уравнению, найденному в п.5. Построение центральных поверхностей (эллипсоида, гиперболоидов, конуса) удобно начинать с изображения основного параллелепипеда (см. разд.11.3.2–11.3.4). При построении параболоидов, цилиндров и пар плоскостей использовать разд.11.3.5; 11.2.2–11.2.4, 11.1.1–11.1.3. Мнимые поверхности не изображаются, за исключением мнимого конуса или пары мнимых пересекающихся плоскостей (при этом изображаются только точка O' или ось O'z' соответственно).

11