

Experiment Title: 2.3			
Student Name: Pritam Kumar Dutta	UID: 20BCS3296		
Branch: CSE	Section/Group: 606-A		
Semester: 5	Date of Performance: Oct. 11, 2022		
Subject Name: Machine Learning Lab	Subject Code: 20CSP-317		

* Aim/Overview of the practical: Implement K-Nearest Neighbor on any data set.

❖ Code & Output:


```
In [3]: print(irisData.feature_names)
        ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
In [4]: print(irisData.target_names)
        ['setosa' 'versicolor' 'virginica']
In [5]: # Creating feature and target arrays
       X = irisData.data
       y = irisData.target
In [6]: # Splitting into training and test set
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=0)
In [7]: neighbors = np.arange(1, 15)
       print(neighbors)
        [1 2 3 4 5 6 7 8 9 10 11 12 13 14]
 In [8]: train_accuracy = np.empty(len(neighbors))
          test_accuracy = np.empty(len(neighbors))
 In [9]: # Looping over K values
          for i, k in enumerate(neighbors):
              knn = KNeighborsClassifier(n_neighbors=k)
              knn.fit(X_train, y_train)
              # Computing training and test data accuracy
              train_accuracy[i] = knn.score(X_train, y_train)
              test_accuracy[i] = knn.score(X_test, y_test)
```



```
In [10]: # Generating plot
    plt.plot(neighbors, test_accuracy, label = 'Testing dataset Accuracy')
    plt.plot(neighbors, train_accuracy, label = 'Training dataset Accuracy')

    plt.legend()
    plt.xlabel('n_neighbors')
    plt.ylabel('Accuracy')
    plt.show()
```



```
In [11]: # Using k=5
    knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train, y_train)

Out[11]: KNeighborsClassifier()

In [12]: y_pred = knn.predict(X_test)

In [13]: y_pred

Out[13]: array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0])
```



```
In [14]: from sklearn.metrics import confusion_matrix, classification_report
    print("\nConfusion Matrix:-\n", confusion_matrix(y_test,y_pred))
    print("\nClassification Report:-\n", classification_report(y_test,y_pred))
```

```
Confusion Matrix:-
[[11 0 0]
[ 0 12 1]
[ 0 0 6]]
```

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	11
1	1.00	0.92	0.96	13
2	0.86	1.00	0.92	6
accuracy			0.97	30
macro avg	0.95	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30

In []:

Learning outcomes (What I have learnt):

- 1. We learned about data analysis and data handling in python.
- 2. We learned about various basic functions and libraries required for data analysis using python.
- 3. We learned to implement K-Nearest Algorithm on any dataset in python.
- 4. We learned to verify accuracy of the KNN model.

Evaluation Grid:

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	Student Performance		12
	(Conduct of experiment)		
	objectives/Outcomes.		
2.	Viva Voce		10
3.	Submission of Work Sheet		8
	(Record)		
	Total		30

