Über Parameterisierte Aufzählkomplexität

Alexander Temper

Seminar der Komplexitätstheorie SS2024

Outline

Fixed Parameter Tractability für Entscheidungsprobleme

Motivation & Hintergrund

Grundbegriffe

Kernelization

Fixed Parameter Tractability für Aufzählprobleme

Grundbegriffe

Enum-Kernelization

Self-Reducibility

Outline

Fixed Parameter Tractability für Entscheidungsprobleme Motivation & Hintergrund

Grundbegriffe Kernelization

Fixed Parameter Tractability für Aufzählprobleme Grundbegriffe Enum-Kernelization Self-Reducibility

NP-Schwere ist für generelle Instanzen

- ▶ NP-Schwere betrachtet die schwierigsten generellen Instanzen.
- In der Praxis sind sehr viele Probleme NP-schwer.
- Soll man diese Probleme aufgeben?

Praktische Probleme weisen Struktur auf I

Liste Nr.	Für die gewählte Partei im Kreis ein X einsetzen!	Kurz- bezeichnung	Parteibezeichnung	Bezeichnung einer Bewerberin oder eines Bewerberis (Name und/ oder Reihungsnummer) durch die Wählerin oder durch den Wähler
1		ÖVP	Österreichische Volkspartei	
2		SPÖ	Sozialdemokratische Partei Österreichs	
3		FPÖ	Freiheitliche Partei Österreichs (FPÖ) – Die Freiheitlichen	
4		GRÜNE	Die Grünen – Die Grüne Alternative	
5		NEOS	NEOS – Das Neue Europa	
6		DNA	DNA – Demokratisch – Neutral – Authentisch	
7		KPÖ	Kommunistische Partei Österreichs – KPÖ Plus	

Präferenzprofile:

- ightharpoonup Wählerinnen $w_1, \ldots w_n$,
- Alternativen a_1, \ldots, a_m und
- Präferenzen

$$w_1: a_1 \succ a_2 \succ \dots$$

 $w_2: a_4 \succ a_n \succ \dots$

- Unzählige NP-schwere Probleme über
 Präferenzprofile, aber
- ► Anzahl der Alternativen *m* oft klein!

Praktische Probleme weisen Struktur auf I

Liste Nr.	Für die gewählte Partei im Kreis ein X einsetzen!	Kurz- bezeichnung	Parteibezeichnung	Bezeichnung einer Bewerberin oder eines Bewerbers (Name und/ oder Reihungsnummer) durch die Wählerin oder durch den Wähler
1		ÖVP	Österreichische Volkspartei	
2		SPÖ	Sozialdemokratische Partei Österreichs	
3		FPÖ	Freiheitliche Partei Österreichs (FPÖ) – Die Freiheitlichen	
4		GRÜNE	Die Grünen – Die Grüne Alternative	
5		NEOS	NEOS – Das Neue Europa	
6		DNA	DNA – Demokratisch – Neutral – Authentisch	
7		KPÖ	Kommunistische Partei Österreichs – KPÖ Plus	

- Präferenzprofile:
 - ightharpoonup Wählerinnen $w_1, \ldots w_n$,
 - Alternativen a_1, \ldots, a_m und
 - Präferenzen

$$w_1: a_1 \succ a_2 \succ \dots$$

 $w_2: a_4 \succ a_n \succ \dots$

- Unzählige NP-schwere Probleme über
 Präferenzprofile, aber
- Anzahl der Alternativen m oft klein!

Praktische Probleme weisen Struktur auf II

U-Bahn Netzwerke haben sehr viel Struktur: niedrige Grade, wenige wichtige Knoten, oft "fast" planar.

Motivation & Hintergrund Grundbegriffe Kernelization

Outline

Fixed Parameter Tractability für Entscheidungsprobleme

Motivation & Hintergrund

Grundbegriffe

Kernelization

Fixed Parameter Tractability für Aufzählprobleme Grundbegriffe Enum-Kernelization Self-Reducibility

Was ist ein parameterisiertes Problem?

Definition (Parameterisiertes Problem)

Sei X eine Problemklasse.

- ▶ Funktion $p: X \to \mathbb{N}$ ist eine Parameterisierung.
- ▶ Das Paar (X, p) ist ein parameterisiertes Problem.
- ▶ Das Paar (x, p(x)) ist eine Instanz von (X, p). Oft k := p(x).

Beispiel

- Präferenzprofile parameterisiert durch Anzahl Alternativen
- Graphen parameterisiert durch deren maximalen Grad
- Probleme parameterisiert durch die maximale Lösungsgröße

Was ist Fixed Parameter Tractability (FPT)?

Definition (Fixed Parameter Tractable, [1])

Ein parameterisiertes Problem (X, p) ist fixed parameter tractable wenn ein Algorithmus $x \in X$ in

$$f(p(x)) \cdot poly(|x|)$$

löst. (f beliebig)

Triviales Beispiel

3-SAT parameterisiert durch die Anzahl Variablen n ist FPT: alle 2^n Zuweisungen via brute-force prüfen.

Outline

Fixed Parameter Tractability für Entscheidungsprobleme

Motivation & Hintergrund Grundbegriffe

Kernelization

Fixed Parameter Tractability für Aufzählprobleme Grundbegriffe Enum-Kernelization Self-Reducibility

Kernelization

Intuition

Kann eine Probleminstanz x so klein gemacht werden, sodass Brute-forcing ein FPT-Algorithmus ist?

Definition (Kernelization)

Eine Kernelization $K: X \to X$ für (X, p) ist eine Reduktion von $(x, k) \in (X, p)$ zu einem Kernel $K(x) \in (X, p')$ sodass

- die Berechnung des Kernels polynomielle Zeit dauert,
- der Kernel äquivalent zu x ist und
- ▶ Größen beschränkt sind: $|K(x)| + p'(x) \le h(p(x))$, h beliebig.

Kernelization

Intuition

Kann eine Probleminstanz x so klein gemacht werden, sodass Brute-forcing ein FPT-Algorithmus ist?

Definition (Kernelization)

Eine Kernelization $K: X \to X$ für (X, p) ist eine Reduktion von $(x, k) \in (X, p)$ zu einem Kernel $K(x) \in (X, p')$ sodass

- die Berechnung des Kernels polynomielle Zeit dauert,
- ▶ der Kernel äquivalent zu x ist und
- ▶ Größen beschränkt sind: $|K(x)| + p'(x) \le h(p(x))$, h beliebig.

Kernelization

Intuition

Kann eine Probleminstanz x so klein gemacht werden, sodass Brute-forcing ein FPT-Algorithmus ist?

Definition (Kernelization)

Eine Kernelization $K: X \to X$ für (X, p) ist eine Reduktion von $(x, k) \in (X, p)$ zu einem Kernel $K(x) \in (X, p')$ sodass

- die Berechnung des Kernels polynomielle Zeit dauert,
- der Kernel äquivalent zu x ist und
- ▶ Größen beschränkt sind: $|K(x)| + p'(x) \le h(p(x))$, h beliebig.

Beispiel: k-Vertex Cover

Definition (Vertex Cover)

- ▶ Sei G = (V, E) ein Graph.
- ▶ Teilmenge der Knoten $V' \subset V$ ist Vertex Cover für G wenn jede Kante zumindest einen Endpunkt in V' hat.
- ▶ k-Vertex Cover wenn zusätzlich $|V'| \le k$.

Beispiel

Beispiel: k-Vertex Cover

Definition (Vertex Cover)

- ▶ Sei G = (V, E) ein Graph.
- ▶ Teilmenge der Knoten $V' \subset V$ ist Vertex Cover für G wenn jede Kante zumindest einen Endpunkt in V' hat.
- ▶ k-Vertex Cover wenn zusätzlich $|V'| \le k$.

Beispiel

Vertex Cover mit $k \leq 2$?

Beispiel: *k*-Vertex Cover

Definition (Vertex Cover)

- ightharpoonup Sei G = (V, E) ein Graph.
- ▶ Teilmenge der Knoten $V' \subset V$ ist Vertex Cover für G wenn jede Kante zumindest einen Endpunkt in V' hat.
- ▶ k-Vertex Cover wenn zusätzlich $|V'| \le k$.

Beispiel

Vertex Cover mit $k \le 2$?

Beispiel Finde Vertex Cover V' mit Größe k < 4.

- ► Isolierte Knoten können entfernt werden.
- ► Knoten mit Grad > k müssen in V' sein

Beispiel

Finde Vertex Cover V' mit Größe k < 4.

- ► Isolierte Knoten können entfernt werden.
- ► Knoten mit Grad > k müssen in V' sein.

Beispiel

Finde Vertex Cover V' mit Größe k < 4.

- Isolierte Knoten können entfernt werden.
- ► Knoten mit Grad > k müssen in V' sein.

Beispiel

Finde Vertex Cover V' mit Größe k < 4.

- Isolierte Knoten können entfernt werden.
- ► Knoten mit Grad > k müssen in V' sein.

Beispiel

Finde Vertex Cover V' mit Größe k < 4.

- ► Isolierte Knoten können entfernt werden.
- ► Knoten mit Grad > k müssen in V' sein.

Beispiel

Finde Vertex Cover V' mit Größe k < 4.

- ► Isolierte Knoten können entfernt werden.
- Knoten mit Grad > k müssen in V' sein.

Satz

Die "exhaustive" Anwendung der Reduktionsregeln

- 1. Entferne isolierte Knoten.
- 2. Falls ein Knoten Grad höher als k entferne ihn und seine Kanten und setze k := k 1.

ist eine Kernelization für Vertex Cover parameterisiert durch die Lösungsgröße.

Beweis.

- ► Läuft in polynomieller Zeit: maximal |V| Reduktionschritte.
- Beide Regeln führen zu äquivalenten Instanzen.
- ▶ Danach haben Knoten Grad zwischen 1 und k' < k. Wenn mehr als k'^2 Kanten, gib NEIN-Instanz aus, sonst reduzierte Instanz mit $O(k'^2)$ Knoten.

Kernelization charakterisiert FPT

Satz (Folklore [1])

Die folgenden Sätze sind äquivalent:

- 1. (X, p) hat einen FPT-Algorithmus.
- 2. Es gibt eine Kernelization für (X, p).

Outline

Fixed Parameter Tractability für Entscheidungsprobleme Motivation & Hintergrund Grundbegriffe Kernelization

Fixed Parameter Tractability für Aufzählprobleme Grundbegriffe

Enum-Kernelization Self-Reducibility

FPT Aufzählprobleme

Definition (FPT Aufzählalgorithmus)

Ein FPT Aufzählalgorithmus listet alle Lösungen für (X, p) in Zeit $f(p(x)) \cdot poly(|x|)$.

FPT Aufzählprobleme

Definition (FPT Aufzählalgorithmus)

Ein FPT Aufzählalgorithmus listet alle Lösungen für (X, p) in Zeit $f(p(x)) \cdot poly(|x|)$.

Definition (delayFPT Aufzählalgorithmus [2])

Ein delayFPT Aufzählalgorithmus listet alle Lösungen für (X, p), und zwischen jeder Lösung vergeht $f(p(x)) \cdot \text{poly}(|x|)$ Zeit.

Outline

Fixed Parameter Tractability für Entscheidungsprobleme Motivation & Hintergrund Grundbegriffe Kernelization

Fixed Parameter Tractability für Aufzählprobleme

Grundbegriffe

Enum-Kernelization

Self-Reducibility

Intuition Können die Lösungen zu (x, k) von den Lösungen des Kernels K(x) aufgebaut werden?

Definition (enum-Kernelization [2])

Besteht aus

- ► Kernelization *K*
- Algorithmus K^{-1} , der Probleminstanz x und eine Lösung $y \in Sol(K(x))$ zu Lösungen von x mappt

- $K^{-1}(x, y_1) \cap K^{-1}(x, y_2) = \emptyset,$
- $\bigvee \bigcup_{y \in \operatorname{Sol}(K(x))} K^{-1}(x,y) = \operatorname{Sol}(x)$ und
- $ightharpoonup K^{-1}$ ein delayFPT Aufzählalgorithmus ist.

Definition (enum-Kernelization [2])

Besteht aus

- Kernelization K
- Algorithmus K^{-1} , der Probleminstanz x und eine Lösung $y \in Sol(K(x))$ zu Lösungen von x mappt

- $K^{-1}(x, y_1) \cap K^{-1}(x, y_2) = \emptyset$,
- $\bigcup_{y \in Sol(K(x))} K^{-1}(x,y) = Sol(x)$ und
- $ightharpoonup K^{-1}$ ein delayFPT Aufzählalgorithmus ist.

Definition (enum-Kernelization [2])

Besteht aus

- Kernelization K
- Algorithmus K^{-1} , der Probleminstanz x und eine Lösung $y \in Sol(K(x))$ zu Lösungen von x mappt

- $K^{-1}(x, y_1) \cap K^{-1}(x, y_2) = \emptyset$,
- lacksquare $\cup_{y\in \mathsf{Sol}(K(x))}K^{-1}(x,y)=\mathit{Sol}(x)$ und
- $ightharpoonup K^{-1}$ ein delayFPT Aufzählalgorithmus ist.

$K^{-1}(x, a)$		$K^{-1}(x,b)$	
	а	b	
	С	d	
K^{-1}	(x, c)	K^{-1}	(x, d)

Definition (enum-Kernelization [2])

Besteht aus

- Kernelization K
- ▶ Algorithmus K^{-1} , der Probleminstanz x und eine Lösung $y \in Sol(K(x))$ zu Lösungen von x mappt

- $K^{-1}(x, y_1) \cap K^{-1}(x, y_2) = \emptyset$,
- lacksquare $\cup_{y\in \mathsf{Sol}(K(x))}K^{-1}(x,y)=\mathit{Sol}(x)$ und
- $ightharpoonup K^{-1}$ ein delayFPT Aufzählalgorithmus ist.

$$f(p(x)) \cdot poly(|x|)$$

$$\begin{array}{c|cccc}
a_2 & -a_1 & K^{-1}(x, b) \\
a_3 & -a & b \\
\hline
c & d \\
K^{-1}(x, c) & K^{-1}(x, d)
\end{array}$$

enum-Kernelization für All-Vertex Cover

▶ Es gibt ein K^{-1} für die vorherige Kernelization:

$$K^{-1}(G, W) := \{W \cup V_D \cup V' | V' \subset V_I, W \cup V_D \cup V' \leq k\}$$

enum-Kernelization für All-Vertex Cover

- ► Verschiedene W geben disjunkte Lösungsmengen.
- ▶ Die Lösungsmengen $K^{-1}(G, W)$ vereint über alle W sind alle Lösungen.
- ▶ Bei gegebenenem $W |V_D| + |W|$ berechnen und alle V' einer bestimmten Menge berechnen ist delayFPT.

Enum-Kernelization charakterisiert delayFPT I

Satz

Die folgenden Sätze sind äquivalent:

- 1. (X, p) hat einen delayFPT-Algorithmus.
- 2. Es gibt eine enum-Kernelization für (X, p).

Enum-Kernelization charakterisiert delayFPT II

Enum-Kernelization charakterisiert delayFPT III

delayFPT Algorithmus \Rightarrow enum-Kernelization $f(p(x)) \cdot poly(|x|)$

Fall 1: Keine Lösung. - Sei K(x) triviale NEIN-Instanz x_0 .

Fall 2: Lösung y_1 aufgelistet. Sei x^* triviale JA-Instanz mit Lösung y^* . Lass $K(x) := x^*$, $K^{-1}(x, y) :=$ simuliere \mathcal{A} falls $y = y^*$ sonst tu nichts.

Fall 3: Noch kein Output. $poly(|x|)^2 < 2 \cdot f(p(x)) \cdot poly(|x|)$. Lass K(x) := x, $K^{-1}(x, y) = \{y\}$.

Outline

Fixed Parameter Tractability für Entscheidungsprobleme Motivation & Hintergrund Grundbegriffe Kernelization

Fixed Parameter Tractability für Aufzählprobleme

Grundbegriffe
Enum-Kernelization

Self-Reducibility

Max Ones 2-SAT

Definition

Gegeben: eine 2-CNF Formel Φ über Variablen $X := \{x_1, \dots, x_n\}$

Parameter: k

Frage: Kann man mindestens k Variablen auf 1 setzen sodass Φ erfüllt ist?

Beispiel

Die Formel $\Phi := (a \lor b) \land (\neg a \lor \neg c)$ kann mit mindestens zwei 1 erfüllt werden. I(a) := 1, I(b) := 1, I(c) := 0.

Satz ([3], Thm. 7)

Es gibt einen FPT Algorithmus has Max Ones (und viele andere, generellere SAT-Probleme) für das obrige Problem.

Self Reducibility

Intuition Kann man ein Problem x in mehrere Subprobleme x_1, x_2, \ldots mit gleichen Eigenschaften teilen; sodass die Lösungen der Teilprobleme Lösungen von xsind?

Beispie

Max Ones 2-SAT ist self reducible! Zerteile (Φ, k) zu $(\Phi[v_0 := 1], k - 1)$ und $(\Phi[v_0 := 0], k)$.

Self Reducibility

Intuition

Kann man ein Problem x in mehrere Subprobleme x_1, x_2, \ldots mit gleichen Eigenschaften teilen; sodass die Lösungen der Teilprobleme Lösungen von x sind?

Beispiel

Max Ones 2-SAT ist self reducible! Zerteile (Φ, k) zu $(\Phi[v_0 := 1], k - 1)$ und $(\Phi[v_0 := 0], k)$.

FPT Aufzählalgorithmus für Max Ones 2-SAT

- ► Erste Lösung: $n \cdot h(k) \cdot \text{poly}(|\Phi|)$ Zeit.
- Nächste Lösung ist erste Lösung von kleinerem Baum, daher auch $n \cdot h(k) \cdot \text{poly}(|\Phi|)$ Zeit!

FPT Aufzählalgorithmus für Max Ones 2-SAT

- ▶ Erste Lösung: $n \cdot h(k) \cdot \text{poly}(|\Phi|)$ Zeit.
- Nächste Lösung ist erste Lösung von kleinerem Baum, daher auch $n \cdot h(k) \cdot \text{poly}(|\Phi|)$ Zeit!

FPT Aufzählalgorithmus für Max Ones 2-SAT

- **Erste Lösung**: $n \cdot h(k) \cdot \text{poly}(|\Phi|)$ Zeit.
- Nächste Lösung ist erste Lösung von kleinerem Baum, daher auch $n \cdot h(k) \cdot \text{poly}(|\Phi|)$ Zeit!

Zusammenfassung

- Fixed Parameter Tractability Algorithmen sind Algorithmen die Probleme mit einem fixierten Parameter in quasi polynomieller Zeit lösen.
- Ein FPT Aufzählalgorithmus zählt alle Lösungen in FPT Zeit auf, DelayFPT Algorithmen haben maximal FPT-Zeit langen Delay zwischen den Lösungen.
- Kernelization lässt sich gut auf delayFPT übersetzen und charakterisiert diese Klasse.
- Self-reducible Probleme lassen sich in mehrere Probleme zerteilen sodass die Teillösungen auch Teile der ganzen Lösungen sind.

Bibliographie I

- Marek Cygan et al. Parameterized Algorithms. Cham: Springer International Publishing, 2015. isbn: 978-3-319-21274-6
 978-3-319-21275-3. doi: 10.1007/978-3-319-21275-3.
 (Visited on 04/02/2024).
- [2] Nadia Creignou et al. "Paradigms for Parameterized Enumeration". In: *Mathematical Foundations of Computer Science 2013*. Ed. by Krishnendu Chatterjee and Jiri Sgall. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 290–301. isbn: 978-3-642-40313-2.

Bibliographie II

[3] Stefan Kratsch, Dániel Marx, and Magnus Wahlström. "Parameterized Complexity and Kernelizability of Max Ones and Exact Ones Problems". In: ACM Trans. Comput. Theory 8.1 (Feb. 2016). issn: 1942-3454. doi: 10.1145/2858787. url: https://doi.org/10.1145/2858787.