BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017

Course Handout (Part - II B)

Date: 02-08-2016

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : PHA G541

Course Title : Computer Aided Drug Design

Instructor-in-Charge : Dr. S. Murugesan Instructors : Mr. Subhash Chander

1. Scope and Objective of the Course:

To develop an appreciation of inter- and intra- molecular energies and forces. To introduce the techniques of computational chemistry and to demonstrate their application to the design of drugs. To demonstrate the use of simulation as an alternative to experimental work. On completion the student should be aware of the scope and limitations of the various theoretical and computational tools available to the pharmaceutical scientist and of the application of these techniques in the design of novel drugs. The student will also have gained insight into the practical implementation of the methods of molecular and bio-molecular modeling.

2. Text Book:

1. Manfred E Wolff- "Burger's Medicinal Chemistry and Drug Discovery", Wiley-Interscience, Fifth Edition, N.Y., 1995, Vol. I - V.

3. Reference Book:

1. P.K.Larson, T.Liljefors & U.Madsen- "Textbook of Drug Design and Discovery", 1st edition, Indian edition, Chennai, 2004.

Besides the above relevant information on the topics are also available in the following:

- 1. Annual Reports in Medicinal Chemistry Academic Press Inc, Various volumes.
- 2. Journal of Medicinal Chemistry-ACS-Different Volumes.
- 3. Chemical Reviews-ACS-Various Volumes
- 4. Journal of Molecular Modeling Springer-Verlag.
- 5. Journal of computer-aided molecular design Kluwer Academic Publishers

4. Course Plan:

Lect No.	Objective	Topics to be covered	Reference
1-3	Introduction	Drug design overview, reason for failures of drugs,	T.B.
		stages where computational methods can be used	
4-6	Drug likeliness	Drug likeliness criteria, lead likeliness, hurdles in	T.B.
		drug discovery	
7-12	Protein	Crystallography, 2D NMR, homology modeling, de	T.B and
	structure	novo design and protein folding	Ref.(1)
	determination		
	and analysis		
13-16	Homology	Concept of homology and similarity, steps involved in	Reference
	model building	homology model building	(2)
17-20	Compound	Targeted Vs diverse libraries, fragment Vs reactions	T.B. and
	library design	approach, synthetic accessibility and compound	Ref.(1)
		selection techniques	

21-23 QSAR		2D QSAR, descriptors, process for generating	T.B.
		equation, 3D QSAR process, 3D QSAR packages	
24-26	ADMET	Oral bioavailability, plasma half life, BBB	Various
	predictions	permeability, toxicity predictions using computational	sources
		methods	
27-29	Pharmacophore	Components of pharmacophore tool, creating	T.B. and
	modeling	pharmacophore model from active compounds and	Ref.(1)
		active site, searching databases, reliability of results	
30-33	Docking	Molecular mechanics, force fields, search algorithms,	T.B. and
		scoring, validation of results, comparison of existing	various
		docking programmes, preparation of target, design of	databases
		ligands, analysis of results	
34-36	De novo and	De novo building of compounds and process adopted	Reference
	Data Mining		book 2
37-38	Drug design	Finding out initial hits, compound refinement	Ref. (1)
	process for	procedures, ADMET and drug resistance mechanisms	
	known target		
39-40	Drug Design	Initial hits, compound refinement and ADMET; DNA,	T.B and
	process for	RNA, receptors as targets, targets inside cells, CNS,	Ref.(1)
	unknown and	etc	
	other targets		

5. Evaluation:

Component	Duration	Weightage (%)	Date & Time	Remarks
Mid term	90 min	30	7/10 4:00 - 5:30 PM	CB
Continuous Evaluation*		40		OB
Comprehensive Exam	180 min	30	12/12 AN	CB

^{*} Components, number and weightage of continuous evaluation will be announced in the class. It may be consist of take home assignment, tutorials, laboratory, presentation, seminars, vivavoce etc.

Reading Assignments: Students are advised to read, collect additional information on the above mentioned topics from journals and other online sources.

Attendance: Although attendance is not compulsory, regularity in theory and practical classes will be decisive factor during make-up and grading, especially in borderline cases.

Chamber Consultation Hour: To be announced in the class.

Make-up policy: Generally make-up will be considered for regular students only and make-up's are not given as a routine. It is solely dependent on the "genuineness" of the circumstance under which a student fails to appear in a scheduled evaluation component. However, the make-up application should be personally given to Instructor-in-Charge and not slipped into the chamber of the Instructor-in-Charge.

Notices: Concerning this course will be displayed on Pharmacy N. B.

Instructor-in-Charge PHA G541