CM 045 H - Geometria Analítica Ciência da Computação e Informática Biomédica

02 de Abril de 2018 Prova 1

		•	
Nome:	- [P:	20

Q:	1	2	3	4	Total
P:	20	20	35	25	100
N:					

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
GRR								

Diga se é possível efetuar cada expressão a seguir e justifique. Se sim, diga se o resultado é um vetor ou um número escalar.

(a)
$$\boxed{6}$$
 $\vec{a} \times (\vec{b} \times \vec{c})$

(b)
$$\boxed{7} (\vec{a} \cdot \vec{b}) \times (\vec{c} \cdot \vec{d})$$
 (c) $\boxed{7} \vec{a} \cdot \vec{b} + \vec{c}$

(c)
$$[7] \vec{a} \cdot \vec{b} + \vec{c}$$

Os ângulos α , β e γ que o vetor não-nulo $\vec{u} = (x, y, z)$ faz, respectivamente, com os vetores \vec{i} , \vec{i} , \vec{k} são chamados ângulos diretores de \vec{u} .

- (a) | 7 | Determine e demonstre quem são os cossenos diretores.
- (b) 7 Mostre que $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- (c) 6 Se $\alpha = \frac{\pi}{4}$ e $\beta = \frac{2\pi}{3}$, calcule γ .

Considere os pontos $A(d_5 + 1, 0, 0)$, B(2, 0, -1), C(1, 2, -1).

- (a) 7 Encontre um vetor ortogonal ao plano através dos planos A, B e C.
- (b) | 7 | Determine a área do triângulo ABC.
- (c) 7 O ângulo do triângulo ABC é agudo ou obtuso? Justifique
- (d) 7 Determine o ponto $D(m, d_8, m)$ de modo que os pontos A, B, C e D sejam coplanares.
- (e) $\boxed{7}$ Calcule o volume do paralelogramo determinado pelos vetores \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , dado O(0,0,0).

Questão 4

Considere os vetores $\vec{a} = (3, 2), \vec{b} = (2, -1), \vec{c} = (7, 1).$

- (a) | 6 | Determine o vetor \vec{u} de módulo $d_7 + 1$ que possui mesmo sentido que $\vec{c} \vec{a}$.
- (b) | 6 | Determine o vetor \vec{v} unitário de sentido contrário de $\vec{a} + \vec{b}$.
- (c) $\boxed{7}$ Determine os escalares que fazem de \vec{c} seja resultado de uma combinação linear de \vec{a}
- (d) 6 Esboce no gráfico o problema resolvido no item (c). Isto é, esboce os vetores \vec{a} , \vec{b} e \vec{c} e interprete geometricamente os escalares encontrados no item (c).