Building Detection Using Graph Cut

12 mai 2014

Author : LI Jia XU Minmin Course : Méthodes avancées de traitement d'images

- Grab cut
 - approach
 - synthetic test
- 2 Automation
 - shadow detection
 - vegetation detection
 - 8 ROI region
 - Foreground region

Motivation

- Application: urban monitoring, change detection, estimation of human population, etc.
- Challenging: complex background, without human interacting.

FIGURE 1: Example of Arian Urban Image

Intuition

Approach proposed by Ok et. al [?] :

• Grab cut (Rother [?]): semi-automatic segmentation, with a user defined foreground-background window.

FIGURE 2: Grab cut method illustration

 Foreground-background estimation : prior knowledge, shadow, vegetation ...

- Grab Cut
 - Approach
 - 2 Experience
- 2 Automation
 - shadow detection
 - vegetation detection
 - 8 ROI region
 - Foreground region

Image Segmentation by Graph Cut

Gibb's energy for image segmentation:

$$\mathbf{E}(\alpha, \theta, \mathbf{z}) = U(\alpha, \theta, \mathbf{z}) + V(\alpha, \mathbf{z})$$

- $z = (z_1, z_2, ..., z_N)$, a *N*-pixel image.
- $\alpha = (\alpha_1, \alpha_2, ..., \alpha_N)$ label for each pixel, typically $\alpha_n \in \{0, 1\}$.
- θ , background model for each label/class, empirical histogram, GMM...

Image Segmentation by Graph Cut

Gibb's energy for image segmentation:

$$\mathbf{E}(\alpha, \theta, \mathbf{z}) = U(\alpha, \theta, \mathbf{z}) + V(\alpha, \mathbf{z})$$

- $U = \sum_{n} -\log(p_{\theta}(\alpha_{n}, z_{n}))$ the likelihood term.
- $V = \gamma \sum_{n,m \in \mathbf{C}} [\alpha_m \neq \alpha_n] \exp(-\beta |z_n z_m|^2)$ the regularity term, $\beta = 0$ correspond to the Isings model.

Segmentation : $\hat{\alpha} = \arg\min_{\alpha} \mathbf{E}(\alpha, \theta)$

 Standard graph cut for minimization. ([Boykov and Jolly 2001; Kolmogorov and Zabih 2002])

Grab Cut

Grab cut for foreground background separation :

- GMM for the likelihood term. One GMM for the foreground and the other for the background.
- Iterative estimation and parameters learning instead of a one-shot minimization.
- Relaxed user interactive labeling.

FIGURE 3: Illustration of Graph cut and Grab cut labeling. (Rother 2004 [?])

Grab Cut

Energy for grab cut:

$$\mathbf{E}(\alpha, \mathbf{k}, \theta, \mathbf{z}) = U(\alpha, \mathbf{k}, \theta, \mathbf{z}) + V(\alpha, \mathbf{z})$$

- $\mathbf{k} = (k_1, k_2, ..., k_N)$, with $k_n \in \{1, ..., K\}$ assigning each pixel to a GMM component.
- $U(\alpha, \mathbf{k}, \theta, \mathbf{z}) = \sum_{n} D_{n}(\alpha, \mathbf{k}, \theta, \mathbf{z})$, with

$$D_{n}(\alpha, \mathbf{k}, \theta, \mathbf{z}) = -\log(p_{\theta}(\alpha_{n}, k_{n}, z_{n})) - \log(\pi(\alpha_{n}, k_{n}))$$

$$= -\log(\pi(\alpha_{n}, k_{n})) - 1/2\log \det \Sigma(\alpha_{n}, k_{n})$$

$$-1/2[z_{n} - \mu(\alpha_{n}, k_{n})]^{T} \Sigma(\alpha_{n}, k_{n})^{-1}[z_{n} - \mu(\alpha_{n}, k_{n})]$$

Minimization Algorithm

- **1** *Initialization*. $\alpha_n = 1$ for $n \in \mathbf{T}_u$, $\alpha_n = 0$ otherwise.
- 2 Learning. $\mathbf{k} = \arg\min_{\mathbf{k}} U(\alpha, \mathbf{k}, \theta, \mathbf{z}), \ \theta = \arg\min_{\theta} U(\alpha, \mathbf{k}, \theta, \mathbf{z})$
- **3** Estimation. min min $\mathbf{E}(\alpha, \mathbf{k}, \theta, \mathbf{z})$
- Iteration. Repeat 2,3 until convergence.

FIGURE 4: Illustration of the algorithm

- Grab Cut
 - Approach
 - 2 Experience
- 2 Automation
 - shadow detection
 - vegetation detection
 - § Foreground region
 - O ROI region

shadow detection

Two steps: K-means and growth of region

- Use K-means to find the first peak and therefore find a simple threshold for shadows. Normally 5 or 6 cluster would be enough for the detection.
- Use the result of threshold as seed to apply method of growth of region to obtain the complete shadows. We need to choose the tolerance.

FIGURE 5: Shadow detection

vegetation detection

• Likelihood between the color and the color of vegetation.

Clean shadows

- First remove the detected vegetation from the shadow.
- Remove the shadow corresponding to the detected vegetation by double threshold θ_1, θ_2 of fuzzy map on each connected component. $\nu_{L,\lambda,\sigma,\kappa} = \nu_{L,\lambda,\kappa} * \nu_{\sigma,\kappa}$

FIGURE 6: Cleaned shadow

Foreground detection

- Construct shadow structural element with reversed sun direction and length of shadow.
- Create the fuzzy map and then apply the double threshold to obtain the foreground mask.

FIGURE 7: Fuzzy map and Foreground detection

ROI detection

 Construct shadow structural element with reversed sun direction and length to be configured.

ROI detection

 Dilate the shadow with the shadow structural element in order to obtain the regions of interest(in which there are buildings we want to detect).

Thank you!

Q&A

References