T1	T2	$\sum_{\mathrm{T}i}$	UE	\sum	N

Prüfung (Exam) VU Einführung in die Künstliche Intelligenz, 184.735, 2020S 11.02.2021

Name:

Matrikelnummer (Student ID):

Kennzahl (Study Code):

Bitte leserlich mit Füllfeder oder Kugelschreiber schreiben. *Kein Bleistift*! (Please give readable answers and use a fountain or ball pen. *No lead pencil*!)

Für die Multiple-Choice Fragen: Jede richtige Antwort zählt positiv, jede falsche Antwort negativ!

(Multiple-Choice Questions: Correct answers give positive points, but wrong answers give negative points!)

Teil (Part) 1

40 Punkte (points)

a) Modellieren Sie ein neuronales Netz mit maximal einem inneren Layern, welches zwei binäre Eingangssignale I_1 , I_2 sowie drei Ausgangssignale O_1 , O_2 , O_3 besitzt und dessen Signale sich wie in der folgenden Wahrheitstabelle verhalten. Sie können auch für jeden der Ausgänge ein eigenes Netzwerk zeichnen.

(Model a neural network with at most one inner layer, which has two binary input signals I_1 , I_2 and three output signals O_1 , O_2 , O_3 . The signals should behave according to the entries of the following truth table. You can also draw a separate network for every output.)

I_1	I_2	O_1	O_2	O_3
1	1	1	1	1
1	0	0	0	0
0	1	1	1	0
0	0	0	1	1

Verwenden Sie für jedes Neuron folgende Aktivierungsfunktion:

(For each neuron, use the following activation function:)

$$g(x) = \begin{cases} 1 & \text{wenn (if) } \frac{1}{3} \cdot x \ge 2, \\ 0 & \text{sonst (otherwise)}. \end{cases}$$

1 \	
b)	Erklären Sie das Konzept eines <i>zielbasierten Agenten</i> und zeichnen Sie ein Diagramm, welches den Aufbau des Agenten verdeutlicht. Inwiefern unterscheiden sich zielbasierte Agenten von nutzenbasierten Agenten?
	(Explain the concept of a goal-based agent and draw a diagram which explains the structure of the agent. In what way are goal-based agents different from utility-based agents?)
	4 Punkte (points)
c)	Erklären sie die Begriffe <i>Uninformed Search</i> , <i>Overfitting</i> , <i>Aktivierungsfunktion</i> , und <i>Deep Learning</i> .
	(Explain the terms uninformed search, overfitting, activation function and deep learning.)
	4 Punkte (points)

u) Meuzen die Zunenendes ai	d)	Kreuzen	Sie	Zutreffendes	an:
-----------------------------	----	---------	-----	--------------	-----

(Check the correct answers:)

(i)	Local Beam Search entspricht einer lokal begrenzten Ausführung von k Random-Restart
	Suchen.

(Local beam search amounts to a locally confined run of k random-restart searches.)

richtig (true) □ falsch (false) □

(ii) Neuronale Netze sind generell schlecht in der Objekterkennung. (Neural networks are generally bad in object recognition.)

richtig (true) □ falsch (false) □

(iii) Ein rationaler Agent wählt nicht unbedingt immer die bestmögliche Aktion. (A rational agent does not necessarily always select the best possible action.)

richtig (true) □ falsch (false) □

(iv) Eine Pokerpartie ist eine diskrete Umgebung.

(A game of poker is a *discrete environment*.) richtig (true) □

e) □ falsch (false) □

4 Punkte (points)

e) Betrachten Sie folgende Beispieldaten:

(Consider the following example data:)

	A	B	$\mid C \mid$	Output
1	a_1	b_1	c_2	T
2	a_2	b_1	c_1	F
3	a_2	b_2	c_2	T
4	a_2	b_3	c_1	F
5	a_2	b_3	c_1	T
6	a_2	b_3	c_1	T
7	a_2	b_3	c_2	F
8	a_1	b_2	c_2	T

Konstruieren Sie einen Entscheidungsbaum aus den Beispieldaten. Verwenden Sie dafür den Algorithmus aus der Vorlesung. Der nächste Attribut wird immer nach der festen Reihenfolge A, B, C ausgewählt. Welcher Sonderfall tritt auf? Wie geht der Algorithmus damit um? (Construct a decision tree from the given data, using the algorithm from the lecture. The next attribute is always chosen according to the predetermined order: A, B, C. Which special case occurs? How does the algorithm deal with it?)

f) Gegeben sei folgendes Suchproblem mit Ausgangsknoten S und Zielknoten G. (The following search problem is given, with starting node S and goal node G.)

Lösen Sie das Suchproblem mittels der A^* -Suche. Geben Sie für jeden Schritt die Inhalte der Priority-Queue, den bisherigen Pfad und die Gesamtkosten an. Verwenden Sie dabei folgende Heuristikfunktion:

(Solve the search problem using A^* search. In every step, write down the contents of the priority queue, the path until that point and the total costs. Use the following heuristic function:)

$$h(S) = 10, h(a) = 7, h(b) = 8, h(c) = 5, h(d) = 3, h(e) = 2, h(f) = 2, h(h) = 0, h(G) = 0.$$

Step	Priority queue before step	Path after step	Cost
0	S(10)	S	0
1	a(10), b(12)	$S \rightarrow a$	3

-	eschreiben Sie die Funktionsweise von <i>Hill-Climbing</i> . Welches Problem k chen Vorgehensweise auftreten und welche Lösung eignet sich dafür?	ann bei einer ein-
	Describe how hill climbing functions. Which problem can occur when usicoach to hill climbing and what is a suitable solution to it?)	ing the simple ap- 5 Punkte (points)
Ge	eschreiben Sie kurz die <i>Depth-First-Suche (DFS)</i> und die <i>Iterative-Deepe</i> eben Sie die <i>worst-case</i> Zeit- und Speicherkomplexitäten in big-O Notati Igorithmen immer vollständig bzw. optimal wenn der <i>branching Faktor</i> en	ion an. Sind diese
the	Briefly describe the <i>Depth-first search (DFS)</i> and <i>Iterative deepening search</i> be worst-case time and space complexities in big- \mathcal{O} notation. Are these appropriate or optimal when the <i>branching factor</i> is finite?)	
		Punkte (points)

a) Betrachten Sie das folgende Kryptarithmetische Puzzle, wobei jedem Buchstaben eine Ziffer zugeordnet werden soll sodass je zwei Buchstaben nicht dieselbe Ziffer besitzen:

(Consider the following cryptarithmetic puzzle in which every letter is assigned a digit such that no two letters have the same digit:)

Beschreiben Sie das Puzzle als ein *Constraint-Satisfaction Problem* (CSP), d.h. geben Sie die Menge der Variablen, die Constraints und die Domänen jeder Variablen an.

(Describe the puzzle as a *constraint-satisfaction problem* (CSP), i.e., describe the set of variables, the constraints, and the domains of each variable.) **8 Punkte (points)**

b) Wir betrachten das Dreifärbbarkeitsproblem für folgenden Graphen: (Consider the three-colorability problem for the following graph:)

(i) Ausgehend von der partiellen Zuordnung " $1=\operatorname{gr\"{u}n},2=\operatorname{rot}$ ", welchen Wert w\"{u}rde der Variablen 3 durch die Least-Constraining-Value Heuristik zugeordnet werden? Begr\"{u}nden Sie Ihre Antwort kurz!

(Based on the partial assignment "1 = green, 2 = red", which value would be assigned to the variable 3 by the *least-constraining-value heuristic*? Explain your answer briefly!)

(ii) Betrachten Sie die partielle Zuordnung "2 = blau, 5 = rot, 7 = grün". Welche Variable würde durch die *Minimum-Remaining-Values Heuristik* als nächstes ausgewählt werden? Begründen Sie Ihre Antwort kurz!

(Consider the partial assignment "2 = blue, 5 = red, 7 = green". Which variable would be assigned next using the *minimum-remaining-values heuristic*? Explain your answer briefly!)

(iii) Welche Variable würde durch die *Degree Heuristik* als erstes einen Wert aus ihrer Domäne zugeordnet bekommen? Begründen Sie Ihre Antwort kurz!

(Which variable would be assigned a value from its domain first by the *degree heuristic*? Explain your answer briefly!)

6 Punkte (points)

c)		zen Sie Zutreffendes an: ck the correct answers:)		
	(i)	Ein CSP darf nur binäre constraints enthalten. (A CSP can only contain binary constraints.)	richtig (true) □	falsch (false) □
	(ii)	Die Backtracking-Suche ist ein uninformierter Suchal (The backtracking search is an uninformed search alg	-	falsch (false) □
	(iii)	Das Axiom der Stetigkeit lautet: $A \succ B \succ C \Rightarrow \exists p[p]$ (The axiom of continuity is: $A \succ B \succ C \Rightarrow \exists p[p,A;1]$		falsch (false) □
			6	Punkte (points)
d)		en Sie die Formel für das Axiom der <i>Monotonie</i> aus de cify the formula for the axiom of <i>monotonicity</i> from t		n. Punkte (points)
e)		zen Sie Zutreffendes an: ck the correct answers:)		
	(i)	Klassische Planungsumgebungen sind statisch. (Classical planning environments are static.)	richtig (true) □	falsch (false) □
	(ii)	$\exists x \; Meets(x,bob)$ ist ein syntaktisch korrektes Ziel in $(\exists x \; Meets(x,bob)$ is a syntacically correct goal in ST.		
			richtig (true) \Box	falsch (false) □
	(iii)	Im Gegensatz zu STRIPS unterstützt ADL Gleichheit (Unlike STRIPS, ADL supports equality.)	richtig (true) □	falsch (false) □
	(iv)	In Partial Order Planning besagt der Constraint $A \prec geführt werden muss.$	(B, dass A unmit)	telbar vor B aus-
		(In partial order planning, the constraint $A \prec B$ meadiately before B .)	ans that A must be richtig (true) \Box	e executed <i>imme</i> -falsch (false)
			8	Punkte (points)

f) Formalisieren Sie in *STRIPS* Syntax eine Aktion *AttendingMeeting*, die darstellt, dass ein Mitarbeiter an einem Meeting teilnimmt.

(Use *STRIPS* syntax to formalize an action *AttendingMeeting*, that represents that an employee attends a meeting.)

- Vorbedingung für diese Aktion ist, dass der Mitarbeiter zum Meeting eingeladen wurde, dass er sich im Besprechungsraum befindet und dass er eine FFP2-Maske trägt.
 (The precondition for this action is that the employee was invited to the meeting, that he is in the meeting room, and that he wears an FFP2-mask.)
- Der Effekt soll sein, dass der Mitarbeiter nicht gut atmen kann und gestresst ist. (The effect should be that the employee cannot breathe well and is stressed.)
- "Mitarbeiter" soll erster Parameter und "Raum" soll zweiter Parameter der Aktion sein. Sie dürfen die Namen auch abkürzen.
 - ("Employee" should be the first parameter and "Room" the second parameter of the action. You may also shorten the parameter names.)
- Die Parameter sollen in der Vorbedingung entsprechend ihrem Typus geprüft werden. (The parameters should be checked in the precondition according to their type.)

Verwenden Sie für die Modellierung die Prädikate:

(Use the following predicates for the modelling:)

Employee, Room, Invited, In, Mask, Breathes-Well, Stressed.

Die Bedeutung der Prädikate ist wie folgt:

(The meaning of the predicates is as follows:)

```
Employee(x),
                     x ist ein Mitarbeiter,
                                                                  (x \text{ is an employee,})
Room(x),
                     x ist ein Besprechungsraum,
                                                                  (x \text{ is a meeting room,})
Invited(x),
                     x wurde zum Meeting eingeladen,
                                                                  (x was invited to the meeting,)
                     x befindet sich in y,
                                                                  (x \text{ is in } y_{\bullet})
In(x,y),
                     x trägt eine FFP2-Maske,
                                                                  (x wears an FFP2-mask,)
Mask(x),
Breathes-Well(x), x kann gut atmen,
                                                                  (x can breathe well,)
                     x ist gestresst.
                                                                  (x is stressed.)
Stressed(x),
```