# 高级搜索

## 目录

#### 1. 理论课内容回顾

- 1.1 模拟退火算法
- 1.2 遗传算法
- 1.3 遗传算法在旅行商问题(TSP)中的应用

#### 2. 实验任务(选做)

(Coding) 用模拟退火算法和遗传算法编程求解 TSP 问题

## 1.1 模拟退火算法



## 1.1 模拟退火算法

功能意义 基本要素 设置方法 影响模拟退火算法全局搜索性能的 1、均匀抽样一组状态,以各状态目标值的方差定初温 重要因素之一。 实验表明, 初温越大, 获得高质量 初始温度 2、随机产生一组状态,以两两状态间最大差值定初温 解的几率越大,但花费的计算时间 3、利用经验公式给出初温 将增加。 状态空间与状态产生函数。 候选解一般采用按照某一概率密度函数对解空间进行 邻域函数 (状态产生函数)应尽可 邻域函数 随机采样来获得。 能保证产生的候选解遍布全部解空 概率分布可以是均匀分布、正态分布、指数分布等等 间。 指从一个状态 $X_k$ (一个可行解)向另 一般采用Metropolis准则 一个状态 $X_{new}$ (另一个可行解)的转 if  $E(j) \leq E(i)$ 接受概率  $e^{-(\frac{E(j)-E(i)}{KT})} = e^{-(\frac{\Delta E}{KT})}.$ 移概率,通俗的理解是接受一个新 otherwise 解为当前解的概率 1、经典模拟退火算法的降温方式  $t_k = \frac{1}{1}$ 指从某一较高温状态to向较低温状 冷却控制 态冷却时的降温管理表,或者说降 2、快速模拟退火算法的降温方式  $t_{k} = -$ 温方式 1、检验目标函数的均值是否稳定 内层平衡也称Metropolis抽样稳定 准则,用于决定在各温度下产生候 内层平衡 2、连续若干步的目标值变化较小 选解的数目 3、预先设定的抽样数目,内循环代数 1、设置终止温度的阈值 2、设置外循环迭代次数 算法的终止条件 终止条件 3、算法搜索到的最优值连续若干步保持不变 4、检验系统熵是否稳定

# 1.2 遗传算法



## 1.2 遗传算法

```
procedure: Simple GA
input: GA parameters
output: best solution
begin
    t \leftarrow 0:
                                               // t: generation number
                                               //P(t): population of chromosomes
    initialize P(t) by encoding routine;
    fitness eval(P) by decoding routine;
    while (not termination condition) do
         crossover P(t) to yield C(t);
                                               // C(t): offspring
         mutation P(t) to yield C(t);
         fitness eval(C) by decoding routine;
         select P(t+1) from P(t) and C(t);
         t \leftarrow t+1;
     end
     output best solution;
end
```

# 1.3 旅行商问题(TSP)

- ☐ The **Traveling Salesman Problem** (TSP) is one of the most widely studied combinatorial optimization problems.
- Its statement is deceptively simple: A salesperson seeks the shortest tour through n cities.



Fig. 3.4 George Dantzig, Ray Fulkerson, and Selmer Johnson (1954) a description of a method for solving the TSP :49 cities

### 1.3.1 Representation

#### □ Random Keys Representation

- This indirect representation encodes a solution with random numbers from (0,1).
- These values are used as sort keys to decode the solution.

|            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|------------|------|------|------|------|------|------|------|------|------|
| chromosome | 0.23 | 0.82 | 0.45 | 0.74 | 0.87 | 0.11 | 0.56 | 0.69 | 0.78 |

where position i in the list represents city i.

```
procedure: Random Keys Encoding
Input: city set,
        total number of cities N
output: chromosome v
begin
    for i = 1 to N
        v[i] ← random[0,1];
    output chromosome v;
end
```

```
procedure: Random Keys Decoding
Input: chromosome v,
    total number of cities N

output: tour list L

begin

L \leftarrow \emptyset;

for i = 1 to N

L \leftarrow L \cup i;

sort L by v[i];

output tour list L;

end
```

## 1.3.2 Crossover Operators

- □ During the past decade, several crossover operators have been proposed for permutation representation, such as partial-mapped crossover (PMX), order crossover (OX), cycle crossover (CX), position-based crossover, order-based crossoverand so on.
- ☐ These operators can be classified into two classes:
  - Canonical approach
    - ☐ The canonical approach can be viewed as an extension of two-point or multipoint crossover of binary strings to permutation representation.
  - Heuristic approach
    - ☐ The application of heuristics in crossover intends to generate an improved offspring.

## 1.3.2 Crossover Operators

#### e.g. Partial-Mapped Crossover (PMX)

```
procedure: PMX crossover
input: chromosome v_1, v_2,
         length of chromosome l
output: offspring v_1', v_2'
begin
     R \leftarrow \phi:
      // step 1: select two positions
      at random
      s \leftarrow \text{random}[1:l-1];
      t \leftarrow \text{random}[s+1:l];
      // step 2: exchange two substrings
         \leftarrow v_1[1:s-1] // v_2[s:t] // v_1[t+1:l];
       v_1' \leftarrow v_2[1:s-1] // v_1[s:t] // v_2[t+1:l];
      //vstep 3: determine the mapping
                    relationship
      R \leftarrow \text{relation}(v_1[s:t], v_2[s:t]);
      // step 4: legalize offspring
      legalize (,,R);
      output offspring , ;
end
```



 $v_1$ : parent chromosome 1  $v_2$ : parent chromosome 2 l: length of chromosome  $v_1'$ : offspring chromosome 1  $v_2'$ : end position of substring relation( $v_1, v_2$ ): searching relationship between  $v_1$  and  $v_2$  legalize( $v_1, v_2, R$ ) change genes value of  $v_1, v_2$  based on relationship R

#### 1.3.3 Mutation Operators

#### e.g. Inversion Mutation

```
procedure: Inversion Mutation
input: chromosome v_1, v_2,
        length of chromosome l
output: offspring v'
begin
      // step 1: select subtour at random
       s \leftarrow \text{random}[1:l-1];
       t \leftarrow \text{random}[s+1:l];
      // step 2: produce offspring by
                 copying inverse string of
                 substring
       S \leftarrow \text{invert}(v[s:t]);
       v' \leftarrow v[1:s-1] // S // v[t+1:l];
      output offspring y'
end
```

#### step 1: select subtour at random



step 2: produce offspring by copying inverse string of substring



v: parent chromosome l: length of chromosome v': offspring chromosome s: start position of substring t: end position of substring s: inverse string of substring invert(string): inversely changing order of string

## 1.3.4 Overall Algorithm

#### ☐ GA procedure for Traveling Salesperson Problem

```
procedure: GA for Traveling Salesperson Problem (TSP)
Input: TSP data set, GA parameters
output: best tour route
begin
     t ←0;
      initialize P(t) by permutation encoding or random keys encoding;
     fitness eval(P) by permutation decoding or random keys decoding;
     while (not termination condition) do
            crossover P(t) to yield C(t) by partial-mapped crossover;
            mutation P(t) to yield C(t) by swap mutation;
            fitness eval(C) by permutation decoding or random keys decoding;
            select P(t+1) from P(t) and C(t);
            t \leftarrow t+1:
     end
      output best tour route;
end
```

# 实验任务(选做)

- □ 在TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/,多个地址有备份;其他网站还可以找到有趣的art TSP和national TSP)中选一个大于100个城市数的TSP问题,使用模拟退火和遗传算法求解。
- □ 模拟退火:
  - 采用多种邻域操作的局部搜索策略求解;
  - 在局部搜索策略的基础上,加入模拟退火策略,并比较两者的效果;
  - 提供可视化,观察路径的变化和交叉程度(参考附录往届学生演示)。
- □ 遗传算法:
  - 设计较好的交叉操作,并且引入多种局部搜索(变异)操作;
  - 和之前的模拟退火算法(采用相同的局部搜索操作)进行比较;
  - 得出设计高效遗传算法的一些经验,并比较单点搜索和多点搜索的优缺点。

□ 路径可视化



#### □ 路径可视化



#### □ 路径可视化



#### □ 模拟退火收敛曲线

