Proteomics data analysis: heart

Lieven Clement

statOmics, Ghent University (https://statomics.github.io)

Contents

1	Bac	ekground	1
2	Dat	ā.	3
	2.1	Data import	3
	2.2	Data exploration	4
3	Pre	processing	4
	3.1	Log transform the data	4
	3.2	Filtering	5
	3.3	Normalize the data	7
	3.4	Summarization to protein level	10
4	Dat	ca Analysis	11
	4.1	Estimation	11
	4.2	Inference	11
	4.3	Evaluate results contrast $\log_2 FC_{V-A}^L$	13
	4.4	Evaluate results contrast $\log_2 FC_{V-A}^R$	16
	4.5	Evaluate results average contrast $\log_2 FC_{V-A}$	18
	4.6	Interaction	21

1 Background

Researchers have assessed the proteome in different regions of the heart for 3 patients (identifiers 3, 4, and 8). For each patient they sampled the left atrium (LA), right atrium (RA), left ventricle (LV) and the right ventricle (RV). The data are a small subset of the public dataset PXD006675 on PRIDE.

Suppose that researchers are mainly interested in comparing the ventricular to the atrial proteome. Particularly, they would like to compare the left atrium to the left ventricle, the right atrium to the right ventricle, the average ventricular vs atrial proteome and if ventricular vs atrial proteome shifts differ between left and right heart region.

Figure 1: Representation of the heart

2 Data

We first import the peptides.txt file. This is the file that contains your peptide-level intensities. For a MaxQuant search [6], this peptides.txt file can be found by default in the "path_to_raw_files/combined/txt/" folder from the MaxQuant output, with "path_to_raw_files" the folder where raw files were saved. In this tutorial, we will use a MaxQuant peptides file from MaxQuant that can be found in the data tree of the SGA2020 github repository https://github.com/statOmics/SGA2020/tree/data/quantification/heart.

2.1 Data import

Click to see background and code

To import the data we use the QFeatures package.

We generate the object peptideRawFile with the path to the peptideRaws.txt file. Using the grepEcols function, we find the columns that contain the expression data of the peptideRaws in the peptideRaws.txt file.

```
library(tidyverse)
library(limma)
library(QFeatures)
library(msgrob2)
library(plotly)
peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/heart/peptides.t.
ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))</pre>
pe <- readQFeatures(</pre>
 table = peptidesFile,
 fnames = 1,
 ecol = ecols,
  name = "peptideRaw", sep="\t")
ре
## An instance of class QFeatures containing 1 assays:
    [1] peptideRaw: SummarizedExperiment with 31319 rows and 12 columns
pe[["peptideRaw"]]
## class: SummarizedExperiment
## dim: 31319 12
## metadata(0):
## assays(1): ''
## rownames(31319): AAAAAAAAA AAAAAAAAEQQSSNGPVK ... YYTPVPCESATAK
##
     YYTYLIMNK
## rowData names(91): Sequence N.term.cleavage.window ...
     Oxidation..M..site.IDs MS.MS.Count
## colnames(12): Intensity.LA3 Intensity.LA4 ... Intensity.RV4
     Intensity.RV8
## colData names(0):
```

We will make use from data wrangling functionalities from the tidyverse package. The %>% operator allows us to pipe the output of one function to the next function.

```
colData(pe)$location <- substr(</pre>
  colnames(pe[["peptideRaw"]]),
  11,
  11) %>%
  unlist %>%
  as.factor
colData(pe)$tissue <- substr(</pre>
    colnames(pe[["peptideRaw"]]),
    12,
    12) %>%
    unlist %>%
    as.factor
colData(pe)$patient <- substr(</pre>
  colnames(pe[["peptideRaw"]]),
  13) %>%
  unlist %>%
  as.factor
```

We calculate how many non zero intensities we have per peptide and this will be useful for filtering.

```
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
```

Peptides with zero intensities are missing peptides and should be represent with a NA value rather than 0.

```
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
```

2.2 Data exploration

Click to see background and code

63% of all peptide intensities are missing and for some peptides we do not even measure a signal in any sample. The missingness is similar across samples.

3 Preprocessing

Click to see background and code

This section preforms standard preprocessing for the peptide data. This include log transformation, filtering and summarisation of the data.

3.1 Log transform the data

```
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")
limma::plotDensities(assay(pe[["peptideLog"]]))</pre>
```


3.2 Filtering

Click to see background and code

3.2.1 Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in a smaller subgroup.

pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])\$Proteins))</pre>

3.2.2 Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only identified by peptides with modifications.

First look to the names of the variables for the peptide features

pe[["peptideLog"]] %>% rowData %>% names

```
[1] "Sequence"
                                   "N.term.cleavage.window"
##
##
    [3] "C.term.cleavage.window"
                                   "Amino.acid.before"
##
       "First.amino.acid"
                                   "Second.amino.acid"
    [7]
        "Second.last.amino.acid"
                                   "Last.amino.acid"
##
##
   [9]
       "Amino.acid.after"
                                   "A.Count"
##
  [11] "R.Count"
                                   "N.Count"
## [13] "D.Count"
                                   "C.Count"
## [15] "Q.Count"
                                   "E.Count"
## [17] "G.Count"
                                   "H.Count"
## [19] "I.Count"
                                   "L.Count"
## [21] "K.Count"
                                   "M.Count"
## [23] "F.Count"
                                   "P.Count"
## [25] "S.Count"
                                   "T.Count"
## [27] "W.Count"
                                   "Y.Count"
## [29] "V.Count"
                                   "U.Count"
  [31] "O.Count"
                                   "Length"
## [33]
       "Missed.cleavages"
                                   "Mass"
## [35]
       "Proteins"
                                   "Leading.razor.protein"
## [37]
        "Start.position"
                                   "End.position"
  [39]
        "Gene.names"
                                   "Protein.names"
  [41]
                                   "Unique...Proteins."
       "Unique..Groups."
                                   "PEP"
  [43] "Charges"
## [45] "Score"
                                   "Identification.type.LA3"
## [47] "Identification.type.LA4" "Identification.type.LA8"
## [49] "Identification.type.LV3" "Identification.type.LV4"
## [51] "Identification.type.LV8" "Identification.type.RA3"
## [53] "Identification.type.RA4" "Identification.type.RA8"
##
  [55]
       "Identification.type.RV3" "Identification.type.RV4"
  [57] "Identification.type.RV8"
                                   "Fraction. Average"
                                   "Fraction.1"
## [59] "Fraction.Std..Dev."
## [61] "Fraction.2"
                                   "Fraction.3"
                                   "Fraction.5"
## [63]
       "Fraction.4"
## [65] "Fraction.6"
                                   "Fraction.7"
## [67]
        "Fraction.8"
                                   "Fraction.100"
   [69]
##
        "Experiment.LA3"
                                   "Experiment.LA4"
  [71]
       "Experiment.LA8"
                                   "Experiment.LV3"
  [73] "Experiment.LV4"
                                   "Experiment.LV8"
   [75] "Experiment.RA3"
##
                                   "Experiment.RA4"
##
   [77]
        "Experiment.RA8"
                                   "Experiment.RV3"
       "Experiment.RV4"
## [79]
                                   "Experiment.RV8"
                                   "Reverse"
## [81]
       "Intensity"
                                   "id"
## [83]
        "Potential.contaminant"
  [85]
        "Protein.group.IDs"
                                   "Mod..peptide.IDs"
  [87] "Evidence.IDs"
                                   "MS.MS.IDs"
## [89] "Best.MS.MS"
                                   "Oxidation..M..site.IDs"
   [91] "MS.MS.Count"
                                   "nNonZero"
```

No information on decoys.

```
pe <- filterFeatures(pe,~ Potential.contaminant != "+")</pre>
```

3.2.3 Drop peptides that were only identified in one sample

We keep peptides that were observed at least twice.

```
pe <- filterFeatures(pe,~nNonZero >= 2)
nrow(pe[["peptideLog"]])
```

```
## [1] 17432
```

We keep 17432 peptides after filtering.

3.3 Normalize the data

Click to see background and code

3.3.1 Explore normalized data

Click to see background and code

After normalisation the density curves for all samples are comparable.

```
limma::plotDensities(assay(pe[["peptideNorm"]]))
```


This is more clearly seen is a boxplot.

Peptide distribtutions after normalisation

We can visualize our data using a Multi Dimensional Scaling plot, eg. as provided by the 1imma package.

```
limma::plotMDS(assay(pe[["peptideNorm"]]),
  col = colData(pe)$location:colData(pe)$tissue %>%
    as.numeric,
  labels = colData(pe) %>%
    rownames %>%
    substr(start = 11, stop = 13)
)
```


The first axis in the plot is showing the leading log fold changes (differences on the log scale) between the samples.

3.4 Summarization to protein level

Click to see background and code

We use robust summarization in aggregateFeatures. This is the default workflow of aggregateFeatures so you do not have to specify the argument fun. However, because we compare methods we have included the fun argument to show the summarization method explicitly.

```
pe <- aggregateFeatures(pe,
    i = "peptideNorm",
    fcol = "Proteins",
    na.rm = TRUE,
    name = "proteinRobust",
    fun = MsCoreUtils::robustSummary)</pre>
```

Your quantitative and row data contain missing values. Please read the ## relevant section(s) in the aggregateFeatures manual page regarding the ## effects of missing values on data aggregation.

```
plotMDS(assay(pe[["proteinRobust"]]),
  col = colData(pe)$location:colData(pe)$tissue %>%
   as.numeric,
```

```
labels = colData(pe) %>%
  rownames %>%
  substr(start = 11, stop = 13)
)
```


4 Data Analysis

4.1 Estimation

We model the protein level expression values using msqrob. By default msqrob2 estimates the model parameters using robust regression.

```
pe <- msqrob(
  object = pe,
  i = "proteinRobust",
  formula = ~ location*tissue + patient)</pre>
```

4.2 Inference

Explore Design

```
library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~ location*tissue + patient)$plotlist
```

\$'location = L'

location = L

##
\$'location = R'

location = R


```
design <- model.matrix(~location*tissue + patient, data = colData(pe))
L <- makeContrast(
    c(
        "tissueV = 0",
        "tissueV + locationR:tissueV = 0",
        "tissueV + 0.5*locationR:tissueV = 0","locationR:tissueV = 0"),
    parameterNames = colnames(design)
    )

pe <- hypothesisTest(object = pe, i = "proteinRobust", contrast = L, overwrite=TRUE)</pre>
```

4.3 Evaluate results contrast $\log_2 FC_{V-A}^L$

4.3.1 Volcano-plot

4.3.2 Heatmap

We first select the names of the proteins that were declared signficant.

```
sigNamesLeft <- rowData(pe[["proteinRobust"]])$tissueV %>%
rownames_to_column("proteinRobust") %>%
filter(adjPval<0.05) %>%
pull(proteinRobust)
heatmap(assay(pe[["proteinRobust"]])[sigNamesLeft, ])
```


There are 199 proteins significantly differentially expressed at the 5% FDR level.

```
rowData(pe[["proteinRobust"]])$tissueV %>%
  cbind(.,rowData(pe[["proteinRobust"]])$Protein.names) %>%
  na.exclude %>%
  filter(adjPval<0.05) %>%
  arrange(pval) %>%
  head(10) %>%
  knitr::kable(.)
```

	$\log FC$	se	df	\mathbf{t}	pval	$adj Pval \ row Data(pe[["proteinRobust"]]) \$ Protein.names$
P08590	7.967951	0.4374873	.36714718	.21298	870.00e+	00.000254Myosin light chain 3
P12883	4.669883	0.3716628	0.18166812	.56483	84.00e-	0.0004379Myosin-7
					07	
P10916	6.926109	0.5291456	7.36714713	.08923	32.30e-	0.0015506Myosin regulatory light chain 2,
					06	ventricular/cardiac muscle isoform
Q6UW	Y5 -	0.382889	0.113260	-	1.26e-	0.0046705Olfactomedin-like protein 1
	3.253643		8.4	197596	05	
O75368	-	0.2715292	0.289260	-	1.27e-	0.004670\$H3 domain-binding glutamic acid-rich-like
	2.271594		8.3	365932	05	protein
P46821	-	0.2632626	0.367147	-	1.38e-	0.0046705Microtubule-associated protein 1B;MAP1B
	2.166880		8.2	230871	05	heavy chain;MAP1 light chain LC1
O95865	-	0.2826203	0.367147	-	2.42e-	0.0065478N(G),N(G)-dimethylarginine
	2.173219		7.6	689536	05	dimethylaminohydrolase 2

\log FC	se	df	\mathbf{t}	pval	$adjPval \ rowData(pe[["proteinRobust"]]) \$ Protein.names$
Q8N474 -	0.3804443	7.897481	-	2.58e-	0.006547Secreted frizzled-related protein 1
3.309023		8.6	697787	05	
Q9ULL5	0.3998973	.846127	-	3.05e-	0.006888Proline-rich protein 12
3 3.416540		8.5	543546	05	
P14854 2.401913	0.3057866	3.4314697.8	354864	3.71e-	0.0069621Cytochrome c oxidase subunit 6B1
				05	

4.4 Evaluate results contrast $\log_2 FC_{V-A}^R$

4.4.1 Volcano-plot

4.4.2 Heatmap

We first select the names of the proteins that were declared signficant.

```
sigNamesRight <- rowData(pe[["proteinRobust"]])$"tissueV + locationR:tissueV" %>%
rownames_to_column("proteinRobust") %>%
filter(adjPval<0.05) %>%
pull(proteinRobust)
heatmap(assay(pe[["proteinRobust"]])[sigNamesRight, ])
```


There are 87 proteins significantly differentially expressed at the 5% FDR level.

```
rowData(pe[["proteinRobust"]])$"tissueV + locationR:tissueV" %>%
  cbind(.,rowData(pe[["proteinRobust"]])$Protein.names) %>%
  na.exclude %>%
  filter(adjPval<0.05) %>%
  arrange(pval) %>%
  head(10) %>%
  knitr::kable(.)
```

	$\log FC$	se	df	t	pval	adj Pval row Data (pe [["protein Robust"]]) \$ Protein.names
P08590	0 5.503838	0.4374873 9.3	867147	12.580565	4.00e-	0.0007167 Myosin light chain 3
					07	
P06858	8 3.354674	0.35446309.2	249267	9.464102	4.60e-	0.0047205 Lipoprotein lipase
					06	
Q9UL1	D0 -	0.37372227.3	867147	-	2.05e-	0.0138839 2-oxoglutarate dehydrogenase-like,
	3.575906			9.568355	05	mitochondrial

logFC	se	df	\mathbf{t}	pval	adj Pval row Data (pe [["protein Robust"]]) \$ Protein.names
P35442 -	0.4065828	8 8.367147	=	3.43e-	0.0146265 Thrombospondin-2
3.24646	0		7.984746	05	
P02776 -	0.3421511	7.975973	-	3.60e-	0.0146265 Platelet factor 4; Platelet factor 4,
2.81836	3		8.237189	05	short form
P21810 -	0.4081159	8.756796	-	6.06e-	0.0197128 Biglycan
2.92478	3		7.166550	05	
O75368 -	0.2697137	7 9.289260	-	7.23e-	0.0197128 SH3 domain-binding glutamic
1.81932	6		6.745396	05	acid-rich-like protein
A6NMZ7 -	0.4709254	19.367147	-	9.07e-	0.0197128 Collagen alpha- $6(VI)$ chain
3.07084	8		6.520879	05	
P54652 -	0.4117048	9.078544	-	9.29e-	0.0197128 Heat shock-related 70 kDa protein 2
2.72668	1		6.622904	05	
Q6UWY5 -	0.3739352	9.113260	-	9.70e-	0.0197128 Olfactomedin-like protein 1
2.45687	4		6.570320	05	

4.5 Evaluate results average contrast $\log_2 FC_{V-A}$

4.5.1 Volcano-plot

4.5.2 Heatmap

We first select the names of the proteins that were declared signficant.

```
sigNamesAvg <- rowData(pe[["proteinRobust"]])$"tissueV + 0.5 * locationR:tissueV" %>%
rownames_to_column("proteinRobust") %>%
filter(adjPval<0.05) %>%
pull(proteinRobust)
heatmap(assay(pe[["proteinRobust"]])[sigNamesAvg, ])
```


There are 449 proteins significantly differentially expressed at the 5% FDR level.

```
rowData(pe[["proteinRobust"]])$"tissueV + 0.5 * locationR:tissueV" %>%
  cbind(.,rowData(pe[["proteinRobust"]])$Protein.names) %>%
  na.exclude %>%
  filter(adjPval<0.05) %>%
  arrange(pval) %>%
  head(10) %>%
  knitr::kable(.)
```

$\log F$	С	se	df	t	pval	$adjPval rowData(pe[["proteinRobust"]]) \\ \$Protein.names$
P085906.735	894	0.3093503	0.36714721	.77433	0.0e + 0	00.000049Myosin light chain 3
P128833.319	491	0.2606314	0.18166812	.73634	4.0e-	0.0003891 Myosin-7
					07	
O75368	-	0.1913593	0.289260	-	1.6e-	0.0007082SH3 domain-binding glutamic acid-rich-like
2.045	460		10	.68911	06	protein
Q6UWY5	-	0.2675968	0.113260	-	1.9e-	0.0007082Olfactomedin-like protein 1
2.855	258		10	.67000	06	
P109164.923	642	0.3661150	7.36714713	.44835	1.9e-	0.0007082Myosin regulatory light chain 2,
					06	ventricular/cardiac muscle isoform
P46821	-	0.18615479	0.367147	-	2.4e-	0.0007082Microtubule-associated protein 1B;MAP1B
1.886	709		10	.13517	06	heavy chain;MAP1 light chain LC1
P068582.571	933	0.2519480	0.24926710	.20819	2.4e-	0.000708\Deltaipoprotein lipase
					06	

logFC	se	df	t	pval	adj Pval row Data (pe [["protein Robust"]]) \$ Protein.names
P21810 -	0.293121	7 8.756796	-	3.0e-	0.000766Biglycan
3.06966	2	10	.47231	06	
P05546 -	0.191699	39.271661	-	4.2e-	0.0009134Heparin cofactor 2
1.82984	1	9.5	54537	06	
P35442 -	0.268929	28.367147	-	4.8e-	0.0009134Γ hrombospondin-2
2.77375	5	10	.31407	06	

4.6 Interaction

4.6.1 Volcano-plot

4.6.2 Heatmap

There were no genes significant at the 5% FDR level. We return the top 25 genes.

```
sigNamesInt <- rowData(pe[["proteinRobust"]])$"locationR:tissueV" %>%
rownames_to_column("proteinRobust") %>%
filter(adjPval<0.05) %>%
pull(proteinRobust)
hlp <- order((rowData(pe[["proteinRobust"]])$"locationR:tissueV")[,"adjPval"])[1:25]
heatmap(assay(pe[["proteinRobust"]])[hlp, ])</pre>
```


There are 0 proteins significantly differentially expressed at the 5% FDR level.

```
rowData(pe[["proteinRobust"]])$"locationR:tissueV" %>%
  cbind(.,rowData(pe[["proteinRobust"]])$Protein.names) %>%
  na.exclude %>%
  filter(adjPval<0.05) %>%
  head(10) %>%
  knitr::kable(.)
```

 $\underline{\log} FC \quad \text{se} \quad df \quad t \quad pval \quad adjPval \quad rowData(pe[["proteinRobust"]]) \\ \$Protein.names$