Measurement of CPT Invariance in $\phi \to K_s K_s$

A comparison of two approaches

Sonja Bartkowski, Lorenzo Capriotti, Giulio Dujany, Jonathan Harrison, & George Lafferty

August 17, 2015

Introduction & Terminology

- Want to measure CPT invariance
- System of choice: $\phi \to K_S K_L$
 - ► CPTV ⇒ loss of coherence
- Two possible approaches:
 - inclusive ϕ production
 - ϕ from decays $D_s \to \phi \pi$
- Comparison of both approaches

Signal:
$$\phi \to K_S K_S \to \pi^+ \pi^- \pi^+ \pi^-$$

SM background: resulting from CPV, $\phi \to K_L K_S \to \pi^+ \pi^- \pi^+ \pi^-$

Regeneration background: regeneration $K_L \to K_S$ in material

Combinatoric background Prompt kaons and pions

Selection - inclusive ϕ

Inclusive ϕ production

- Stripping PhiToKSKS_PhiToKsKsLine
 - π TRGHOSTPROB < 0.35 P > 2.GeV MIPCHI2DV(PRIMARY) > 9.
 - K_S ADMASS('KS0') < 35.MeV VFASPF(VCHI2) < 25.
 - LL or LD combinations *) APT > 400 MeV VFASPF(VCHI2/VDOF) < 6 MIPCHI2DV(PRIMARY) < 9 M < 1100 MeV</p>
- 1010 MeV <phi_M< 1030 MeV</p>
- *) because of regeneration, KLOE follows the same approach

Selection - $D_s \rightarrow \phi \pi$

- Selection (inspired by PhiToKSKS_PhiToKsKsLine and other charm lines) on CHARMCOMPLETEEVENT.DST
- $\pi(K_S)$ PT > 150 MeV BPVIPCHI2() > 1.0 TRCHI2DOF < 5 TRGHOSTPROB < 0.3
 - K_S ADMASS('KS0') < 35 MeV VFASPF(VCHI2) < 2. PT > 200 MeV BPVVD > 10.0 mm BPVVDCHI2 > 100 VFASPF(VCHI2PDOF) < 10 BPVDIRA > 0.999

- ↓ LL or LD combinations
 ADMASS('phi(1020)')<70 MeV
 VFASPF(VCHI2/VDOF) < 6
 APT > 400 MeV
- $\pi(D_S)$ TRGHOSTPROB < 0.35 P > 2 GeV MIPCHI2DV(PRIMARY) > 9
 - D_S ADMASS('D_s+') < 150MeV (BPVVDCHI2 > 16.0) or (BPVLTIME() > 0.150 ps) VFASPF(VCHI2/VDOF) < 25.0
- 1010 MeV<phi_M<1030 MeV & 1955 MeV<Ds_M<1985 MeV
- IPCHI2 ≥ 15, (possible to tighten cut if more MC statistics available)

Efficiencies

	Inclusive ϕ	$D_{ extsf{S}} o \phi \pi$
Cross section (14 TeV)		
LHCb acceptance	3516 µb	388 µb
Branching fractions	34.2 %	4.5 % · 34.2 %
Fiducial cuts efficiency	2.5 %	7.0 %
Prob. $K_sK_s \rightarrow 4\pi$,		
exactly 1 (2) decays inside bp	15.1%(2.8%)	
Prob. $K_{\mathcal{S}}K_{\mathcal{L}} \to 4\pi$ (CPV),	_	
exactly 1 (2) decays inside bp	$3.98 \cdot 10^{-7} (4.99 \cdot 10^{-10})$	
Upper limit KLOE prob. $K_sK_L \rightarrow 4\pi$ (CPV		
+ CPTV), exactly 1 (2) decays inside bp	$5.13 \cdot 10^{-7} (1.64 \cdot 10^{-8})$	
Reconstruction & selection efficiency	7.9 %(7.6 %)	1.4 %(4.2 %)
L0 efficiency	16.1 %(18.6 %)	22.4 %(18.2 %)
HLT1 efficiency	13.7 %(16.7 %)	45.5 %(25.0 %)
HLT2 efficiency	65.6 %(100.0 %)	75.0 %(100.0 %)
Total efficiency SM background	$4.39 \cdot 10^{-5} (5.85 \cdot 10^{-5})$	$1.02 \cdot 10^{-4} (1.32 \cdot 10^{-4})$
Expected events SM background / fb ⁻¹	$21(3.51 \cdot 10^{-2})$	$2.43 \cdot 10^{-1} (3.94 \cdot 10^{-4})$
Upper limit for signal (KLOE)	27(1.15)	$3.13 \cdot 10^{-1} (1.29 \cdot 10^{-2})$
Background (data 2012) / fb-1	163110 (29120)	1170 (6100)

Mass plots - inclusive ϕ

Mass plots - $D_S o \phi \pi$

Mass plots - $D_{\mathcal{S}} o \phi \pi$

Comparisons

Good agreement with other studies!

$D_0 \rightarrow K_s K_s$ by Markward Britsch

	M. Britsch	inclusive/ D_s approach
Reconstruction & selection	0.2-0.5%	0.2%/ 0.1%
Efficiency L0+Hlt1	3%	10% / 4%
Efficiency L0+Hlt1+Hlt2	1%	7% / 4%

$X \to K_s K_s$ by Thomas Ruf

	T. Ruf	inclusive/D _s approach
Acceptance & reconstruction	10%	
Reconstruction & selection		0.2%/ 0.1%
Probability of at least 1 K_s decaying in beampipe	50%	44% / 42%

Backgrounds

Estimates from minimum bias MC (42 M events). Number in brackets is the the number of background events with physical K_s

Background category	inclusive ϕ	$D_{s} ightarrow \phi \pi$
light flavour	17(17)	0
$b\overline{b}$	1(1)	0
different PV	3(2)	0
physical bkg, partl. reconstructed	1(1)	1(1)
ghosts	0	1(0)
total	21(20)	2(1)

Remaining background for inclusive ϕ mostly irreducible

Time Resolution

Resolution of a few ps; the core that has a resolution of less than 1 ps

Summary

- Selection for $D_S \to \phi \pi$ was implemented
- Compared the inclusive and D_S strategies
- For both approaches, the background dominates
- In 2012 data, there is no ϕ peak visible
- \blacksquare The time resolution is about \sim 1 ns