Personal Software Process - ISO/IEC 12207

Oscar León Trureo Sebastián Menéndez Sáez Claudio Piña Novoa

Universidad Tecnológica Metropolitana

26 de octubre de 2012

Índice

- Personal Software Process
 - Introducción
 - Historia
 - PSP
- 2 ISO/IEC 12207
 - Introducción
 - Historia
 - Desarrollo1
 - Desarrollo2
- Conclusión
- 4 Bibliografía

- Crear mejores aplicaciones.
- Llevar un mejor proceso de desarrollo.
- Agilizar el desarrollo en sí.
- etc . . .

- Crear mejores aplicaciones.
- Llevar un mejor proceso de desarrollo.
- Agilizar el desarrollo en sí.
- etc . . .

- Crear mejores aplicaciones.
- Llevar un mejor proceso de desarrollo.
- Agilizar el desarrollo en sí.
- etc . . .

- Crear mejores aplicaciones.
- Llevar un mejor proceso de desarrollo.
- Agilizar el desarrollo en sí.
- etc . . .

- Crear mejores aplicaciones.
- Llevar un mejor proceso de desarrollo.
- Agilizar el desarrollo en sí.
- etc . . .

Existen una gran cantidad de metodologías, las cuales pueden estar enfocadas al desarrollo en sí, a la gestión, a la calidad, al desarrollador, como también puede ser una mezcla.

Personal Software Process, es una metodología enfocada a la calidad del desarrollo del software a nivel personal, la cual se basa en factores que veremos más adelante.

- Creado en el año 1995 por Watt's S. Humphrey en la Universidad de Carnegie Mellon, en Pittsburgh, Pennsylvania.
- El primer curso fue impartió en la Universidad de Carnegie Mellon.
- fue plasmado en el libro "A Discipline for SW Engineering" de Humphrey.

- Creado en el año 1995 por Watt's S. Humphrey en la Universidad de Carnegie Mellon, en Pittsburgh, Pennsylvania.
- El primer curso fue impartió en la Universidad de Carnegie Mellon.
- fue plasmado en el libro "A Discipline for SW Engineering" de Humphrey.

- Creado en el año 1995 por Watt's S. Humphrey en la Universidad de Carnegie Mellon, en Pittsburgh, Pennsylvania.
- El primer curso fue impartió en la Universidad de Carnegie Mellon.
- fue plasmado en el libro "A Discipline for SW Engineering" de Humphrey.

- Creado en el año 1995 por Watt's S. Humphrey en la Universidad de Carnegie Mellon, en Pittsburgh, Pennsylvania.
- El primer curso fue impartió en la Universidad de Carnegie Mellon.
- fue plasmado en el libro "A Discipline for SW Engineering" de Humphrey.

"La calidad del software está dada por la cantidad de procesos usados para desarrollarlo y mantenerlo".

- Watts S. Humphrey, Creador de Personal Software Process

PSP

Personal Software Process, que en español significa Proceso Personal de Software (PSP), es un conjunto de buenas prácticas las cuales se enfocan al control del tiempo y en la productividad de los Ingenieros en Software, ya sea en la mantencion de sistemas o en tareas de desarrollo.

PSP

PSP no es un estándar, es más bien un alternativa que permite mejorar la forma en la que se construye el software, pero con un enfoque "individual", por lo que es muy recomendada para los desarrolladores que estén interesados en mejorar en lo que llamamos "desarrollo individual".

Figura: Niveles de la Organización

- Los ingenieros deben ser entrenados por un instructor calificado de PSP.
- La Capacitacion es sobre grupos o equipos, y seran grupos que asi lo han sido y seguiran siendo.
- Requiere un fuerte soporte de administración, en este sentido es necesario que los administradores entiendan el PSP, saber como apoyarlos y como monitorear sus avances, sin un adecuado monitoreo los ingenieros caeran otra vez en los malos habitos.
- Después de ser bien entrenados y bien administrados lo que sigue es optimizar la interaccion entre equipos y aquí entraría Team Software Process, el TSP extiende y refina los metodos de CMM y PSP sobre desarrollo y mantenimiento de equipos, y llegar a lo que se le llama un equipo autodirigido.

- Los ingenieros deben ser entrenados por un instructor calificado de PSP.
- 2 La Capacitacion es sobre grupos o equipos, y seran grupos que asi lo han sido y seguiran siendo.
- Requiere un fuerte soporte de administración, en este sentido es necesario que los administradores entiendan el PSP, saber como apoyarlos y como monitorear sus avances, sin un adecuado monitoreo los ingenieros caeran otra vez en los malos habitos.
- ① Después de ser bien entrenados y bien administrados lo que sigue es optimizar la interaccion entre equipos y aquí entraría Team Software Process, el TSP extiende y refina los metodos de CMM y PSP sobre desarrollo y mantenimiento de equipos, y llegar a lo que se le llama un equipo autodirigido.

- Los ingenieros deben ser entrenados por un instructor calificado de PSP.
- 2 La Capacitacion es sobre grupos o equipos, y seran grupos que asi lo han sido y seguiran siendo.
- Requiere un fuerte soporte de administración, en este sentido es necesario que los administradores entiendan el PSP, saber como apoyarlos y como monitorear sus avances, sin un adecuado monitoreo los ingenieros caeran otra vez en los malos habitos.
- Después de ser bien entrenados y bien administrados lo que sigue es optimizar la interaccion entre equipos y aquí entraría Team Software Process, el TSP extiende y refina los metodos de CMM y PSP sobre desarrollo y mantenimiento de equipos, y llegar a lo que se le llama un equipo autodirigido.

- Los ingenieros deben ser entrenados por un instructor calificado de PSP.
- 2 La Capacitacion es sobre grupos o equipos, y seran grupos que asi lo han sido y seguiran siendo.
- Requiere un fuerte soporte de administración, en este sentido es necesario que los administradores entiendan el PSP, saber como apoyarlos y como monitorear sus avances, sin un adecuado monitoreo los ingenieros caeran otra vez en los malos habitos.
- Después de ser bien entrenados y bien administrados lo que sigue es optimizar la interaccion entre equipos y aquí entraría Team Software Process, el TSP extiende y refina los metodos de CMM y PSP sobre desarrollo y mantenimiento de equipos, y llegar a lo que se le llama un equipo autodirigido.

- Planeación
- ② Diseño de Alto Nivel
- Revisión de Alto Nivel
- O Desarrollo Ciclico
- O Post Mortem
- Integración
- Pruebas

- Planeación
- ② Diseño de Alto Nivel
- Revisión de Alto Nivel
- Desarrollo Ciclico
- O Post Mortem
- Integración
- Pruebas

- Planeación
- Oiseño de Alto Nivel
- Revisión de Alto Nivel
- O Desarrollo Ciclico
- Ost Mortem
- Integración
- Pruebas

- Planeación
- Oiseño de Alto Nivel
- Revisión de Alto Nivel
- Desarrollo Ciclico
- Ost Mortem
- Integración
- Pruebas

- Planeación
- Diseño de Alto Nivel
- Revisión de Alto Nivel
- O Desarrollo Ciclico
- O Post Mortem
- Integración
- Pruebas

- Planeación
- Oiseño de Alto Nivel
- Revisión de Alto Nivel
- Desarrollo Ciclico
- Post Mortem
- Integración
- Pruebas

- Planeación
- Diseño de Alto Nivel
- Revisión de Alto Nivel
- Desarrollo Ciclico
- Post Mortem
- Integración
- Pruebas

- Planeación
- Oiseño de Alto Nivel
- Revisión de Alto Nivel
- Desarrollo Ciclico
- Post Mortem
- Integración
- Pruebas

Fase de Planeación

Input

Descripción del problema, resumen del proyecto, resumen cíclico, tamaño estimado, tiempo estimado, formas de planeación.

Actividad

Requerimientos, tamaño estimado, desarrollo estrategia, estimados de recursos, planificación y programas de tareas, estimación de defectos.

Output

Diseño conceptual, resumen plan, resumen del ciclo, patrones de estimados de tamaño y planeación de tareas, programas de patrones de planeación, registro de tiempos.

Fase de Diseño de Producto

Input

Tipificación requerimientos, diseño conceptual, patrones de estimaciones de tamaño, resumen parte ciclico, seguimiento, etc ...

Actividad

Especificaciones externas, diseño modular, prototipos, estrategia de desarrollo y documentación.

Output

Diseño de programa, escenarios operacionales, especificación de funciones y lógica, resumen cíclico, seguimiento y estrategias de pruebas.

Fase Revisión o Validación del Diseño

Input

Programa de diseño, escenarios operacionales, especificación de funciones y lógica, resumen ciclico, seguimiento y estrategia de pruebas y ciclo.

Actividad

Diseño de apariencia, verificación de máquinas y lógica, consistencia del diseño, reuso, estrategia de verificación, detectar errores.

Output

Diseño de alto nivel, registro de seguimiento, tiempos y defectos.

Fase de Desarrollo o Implementación

Input

Diseño de alto nivel, registro de seguimiento, tiempos y defectos, ciclo de desarrollo, estrategia de pruebas, patrones de operación y función.

Actividad

Diseño de módulos, revisión de diseño, código, revisión de código, compilación, pruebas, aseguramiento de calidad y del ciclo.

Output

Modulos de sw, patrón de diseño, lista de verificación de código y diseño, resumen del ciclo, patrón de reporte de pruebas, registro de tiempo, defectos y seguimiento.

Fase PostMortem, Evaluación Ciclo

Input

Definición de problema y requerimientos, plan de proyecto y de ciclo, producto de software, patrón de diseño, lista de verificación de código y diseño, resumen del ciclo, patrón de reporte de pruebas, registro de tiempo, defectos y seguimiento.

Actividad

Defectos previstos, removidos, tamaño, tiempo del producto.

Output

Producto, listas de verificación, plan de proyecto y ciclo, patrón de reporte de pruebas y diseño, forma con propuesta de mejora, registro seguimiento pruebas y tiempo.

contenido introducción

contenido historia ISO

Desarrollo1

contenido Desarrollo1

Desarrollo2

contenido Desarrollo2

Conclusión

aquí va la conclusión

Bibliografía

Victor M. Fleites Sabido

Personal Software Process,

http://www.slideshare.net/Tonymx/introduccion-a-personal-software-process.

Armando David Espinoza Robles

Metodologías de Desarrollo de Software,

http://www.slideshare.net/juliopari/4-clase-metodologia-dedesarrolo-de-software.

http://calidades of tware.word press.com/2012/02/23/personal-software-process/

http://es.pdfsb.com/readonline/5a56464364516835575846394358706

http://ingsw.ccbas.uaa.mx/sitio/images/material/psp.htm