CLAIM AMENDMENTS

IN THE CLAIMS

This listing of the claims will replace all prior versions, and listing, of claims in the application or previous response to office action:

1-9. (Cancelled)

 (Currently Amended) A method for controlling a fuel pressure in a fuel supply device of an internal combustion engine having a regulator valve, the method comprising the steps of:

determining a desired fuel pressure value;

determining an actual fuel pressure value;

[[determining a variable]] <u>calculating an actual gradient</u> selected from the group consisting of: [[a variation in a]] <u>an actual</u> fuel flow rate <u>gradient</u> and [[a variation in the]] an actual fuel pressure <u>gradient</u>;

comparing the calculated actual gradient to a specified threshold gradient value;
and

if the <u>calculated actual gradient</u> [[variable]] is above [[a]] the specified threshold <u>gradient</u> value then determining an actuating signal as a function of the desired fuel pressure value and the <u>calculated actual gradient</u> [[variable]]; and

controlling said regulator valve with said actuating signal.

11. (Cancelled)

12. (Currently Amended) A method for controlling a fuel pressure in a fuel supply device of an internal combustion engine, wherein the supply device has a fuel pump that pumps a fuel into a fuel accumulator that supplies injection valves with the fuel and that is connected to a regulator valve that adjusts the fuel pressure as a function of an actuating signal comprising the steps of:

determining a desired fuel pressure value;

determining an actual fuel pressure value;

[[determining a variable]] calculating an actual gradient selected from the group consisting of: [[a variation in a]] an actual fuel flow rate gradient and [[a variation in the]] an actual fuel pressure gradient;

comparing the calculated actual gradient to a specified threshold gradient value;
and

if the <u>calculated actual gradient</u> [[variable]] is above [[a]] <u>the</u> specified threshold <u>gradient</u> value then determining an actuating signal as a function of the desired fuel pressure value and the <u>calculated actual gradient</u> [[variable]]; and

controlling said regulator valve with said actuating signal.

- 13. (Previously Presented) The method according to Claim 12, wherein the regulator valve is an electromagnetic regulator and an energization of the electromagnetic regulator is influenced by the actuating signal.
- 14. (Currently Amended) The method according to Claim [[12]] 13, wherein the step of controlling said regulator valve with said actuating signal includes:

if the flow rate increases, <u>decreasing</u> an energization of the electromagnetic regulator; [[is decreased]] and

if the flow rate falls, <u>decreasing</u> the energization <u>of the electromagnetic regulator</u> [[is increased]].

- 15. (Currently Amended) The method according to Claim 13, wherein the step of controlling said regulator valve with said actuating signal includes:
- if the fuel pressure increases, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator; [[is decreased]] and
- if the fuel pressure falls, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator [[is increased]].
- 16. (Currently Amended) The method according to Claim 14, wherein the step of controlling said regulator valve with said actuating signal includes:
- if the fuel pressure increases, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator; [[is decreased]] and
- if the fuel pressure falls, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator [[is increased]].
- 17. (Currently Amended) The method according to Claim 12, [[wherein]] further comprising if the <u>calculated actual gradient</u> [[variable]] is below said specified threshold <u>gradient</u> value then determining the actuating signal as a function of the desired fuel pressure value.

Cancelled.

19. (Previously Presented) The method according to Claim 10, wherein the regulator valve is an electromagnetic regulator and an energization of the electromagnetic regulator is influenced by the actuating signal.

- (Currently Amended) The method according to Claim 10, wherein the step of controlling said regulator valve with said actuating signal includes:
- if the flow rate increases, <u>decreasing</u> an energization of the electromagnetic regulator; [[is decreased]] and
- if the flow rate falls, <u>decreasing</u> the energization <u>of the electromagnetic regulator</u> [[is increased]].
- 21. (Currently Amended) The method according to Claim 19, wherein [[that]] the step of controlling said regulator valve with said actuating signal includes:
- if the fuel pressure increases, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator; [[is decreased]] and
- if the fuel pressure falls, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator [[is increased]].
- 22. (Currently Amended) The method according to Claim 20, wherein [[that]] the step of controlling said regulator valve with said actuating signal includes:
- if the fuel pressure increases, <u>decreasing</u> the energization <u>of the electromagnetic</u> <u>regulator;</u> [[is decreased]] and
- if the fuel pressure falls, <u>decreasing</u> the energization <u>of the electromagnetic</u> regulator [[is increased]].
- 23. (Currently Amended) The method according to Claim 10, [[wherein]] further comprising if the <u>calculated actual gradient</u> [[variable]] is below said specified threshold <u>gradient</u> value then determining the actuating signal as a function of the desired fuel pressure value.
 - 24 Cancelled.