データベース設計論

第2回 ERモデルによるデータベース設計 2019年10月8日

データモデル

- データモデル:
 - データベース中のデータとそれに対する操作を規定する枠組み
 - ・実世界の事象をデータベースに写し込む枠組み
 - ・ データベースの操作(検索・更新)を規定する枠組み

データモデルの世代

第一世代

ネットワークモデル(network data model)
ファイルシステムの高度化を目的に、1971年、CODASYLが定義.
階層データモデル(hierarchical data model)
レコード型を基本にしたデータモデル.

第二世代

リレーショナルデータモデル (relational data model)

集合論に基づいたテーブル型のデータモデル. 1970年にDr. Coddが提案. 現在広く一般に使われている.

第三世代

オブジェクト指向データモデル
(object-oriented data model)
オブジェクト指向モデルに基づいたデータモデル.
多様に形を変えて浸透.

(新世代)

分散Key Value Storeモデル (KVS)

ネットワークデータモデル

- レコード/レコード型
- ・レコード型間の親子関係
 - グラフ構造を記述

階層データモデル

- レコード型をノードとする木構造
 - 親は一つだけ(1対多関係)
 - ネットワークモデルでは、複数の親を持てる
 - 複雑な関係の記述が困難
 - 多対多
 - ...

リレーショナルデータモデル

- 集合論に基づいた表形式のモデル
- 関係代数演算を用いて問合せを行う
- ・論理モデルが実際のストレージの物理構造と独立 →データ独立性

sid	name	age
53666	Jones	18
53688	Smith	18
53650	Smith	19
53831	Madayan	11
53832	Guldu	12

問合せ:15歳以下の学生の名前

概念モデル

- UoDをデータベース設計の要求仕様として書き出し、それを記号化したもの
- ERモデルやUMLが一般的
 - 本授業ではERモデルを教えます

- ・情報科学科には15人の教員がいる
- •30の授業がある
- 40名の学生がある
- 学生が授業を履修し、成績がつけられる

概念設計の手順

- UoDをデータベース設計の要求仕様として文章に書き出す
- 要求仕様をもとに概念モデルを作成する

学生が授業を履修し、成績がつけられる

ERダイアグラム

- Entity-Relation Diagram(実体-関連図)
- データベース化したい現実の世界(Universe of Discourse)を, EntityとRelationによって表現する

エンティティ

- 分析の対象となるもの
- 人, もの, 場所, 事象, 情報, 概念
- ・リレーション
 - エンティティ間の関連

エンティティ

- ・リソース系:いわゆる「もの」
 - 人, 物, 場所のような物理的に存在するもの
 - ・概念的なもの
- イベント系:いわゆる「こと」
 - 出来事

リソース系	物理的に存在するもの	人	顧客, 社員, 会員, 受講生
		物	製品,書籍,部品,材料
		場所	会場,教室,会議室,倉庫
	概念的なもの		組織,部門,予算,実績
イベント系	出来事		購入, 受注, 販売, 仕入れ

リレーションシップ

- ・カーディナリティ: 何対何の関係か
 - 1対1, 1対多, 多対多

リレーションシップ

- ・オプショナリティ
 - ・必須:必ず1つ以上存在しなければならない
 - 任意:存在しない場合もある

概念設計の手順

- ・要求仕様を洗い出す
 - データベース化したい実世界(Universe of Discourse)をとにかく文章化する

大学の授業の履修データベースを作りたい

要求仕様

- 教員が授業の講義を行う.一人の教員が複数の授業を担当するが、 ひとつの授業を複数の教員が担当することはないとする.
- ・学生は授業を履修する.一人の学生が複数の授業を取り、その結果 成績をもらう.ひとつの授業は複数の学生によって履修される
- 教員データは名前と役職と性別の情報が必要
- ・学生データは名前と学科と血液型が必要
- ・授業データは授業名と開講する部屋の名前と単位数が必要

要求仕様からE-Rダイアグラムを作成する

- 名詞と動詞を抜き出す
 - 教員が授業を講義する。一人の教員が複数の授業を担当するが、 ひとつの授業を複数の教員が担当することはないとする。
 - •学生は授業を履修する 一人の学生が複数の授業を取り、その結果 成績をもらう ひとつの授業は複数の学生によって履修される
 - 教員データは名前と役職と性別の情報が必要
 - 学生データは名前と学科と血液型が必要
 - ・授業データは授業名と開講する部屋の名前と単位数が必要

属性名を洗い出す

- 教員データは名前と役職と性別の情報が必要
- 学生データは名前と学科と血液型が必要
- ・授業データは授業名と開講する部屋の名前と単位数が必要
- ・学生は授業を履修する.一人の学生が複数の授業を取り、その結果 成績をもらう.ひとつの授業は複数の学生によって履修される

演習:ER図を作ってみよう

演習1: 回転ずしの注文履歴データベースを設計 してみよう

座席番号

寿司

- 名前
- 写真
- 値段
- 「わさび入り」

カテゴリ (重複あり)

注文リスト

- メニュー
- 個数

画面に含まれない要素

• 注文した時刻

演習:ER図を作ってみよう

・演習2: Twitterの基本機能を使えるようにする ためのデータベースを設計してみよう

ER図を作る時のポイント

- できるだけシンプルに
 - ・不必要なデータを含めない
 - 1to1の関係はエンティティと属性の関係にする

自己参照の関係

- ・従業員で上司と部下の関係はどう表現する?
 - 係長には部下もいるが上司もいる

三つ組以上の関係

- 作ってもよい
 - ただし、できるだけ作らないように工夫しよう

三つ組をばらす

• 中心のリレーションをエンティティにする

汎化・特化の関係

共通の属性はこちらに書く

