Electrical component voltages	ponent voltages Maxwell's Equations (Guassian)	
Electrodynamics	Electrodynamics	
Maxwell's Equations (SI)	Gaussian Integrals	
Electrodynamics	General Math	
Geometric Series	Stirling's Approximation	
General Math	General Math	

Bernoulli's equation Adiabatic Process

MECHANICS THERMODYNAMICS

Adiabatic Properties of Ideal Gas Bose-Einstein Distribution

THERMODYNAMICS THERMODYNAMICS

$$\vec{\nabla} \cdot \vec{D} = 4\pi \rho_f \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \frac{1}{c} \left(\frac{\partial \vec{D}}{\partial t} + 4\pi \vec{J}_f \right)$$

$$V = IR$$

$$V = \frac{Q}{C}$$

$$V = L\frac{dI}{dt}$$

$$\begin{split} I_{n}(x) = & \int_{0}^{\infty} x^{n} e^{-ax^{2}} dx = \begin{cases} \frac{1}{2} \sqrt{\frac{\pi}{a^{m+1}}} \frac{(2m)!}{4^{m}m!} & n = 2m \\ \frac{1}{2} \frac{1}{a^{k+1}} k! & n = 2k+1 \end{cases} \qquad \vec{\nabla} \cdot \vec{D} = \rho_{f} \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ I_{0}(x) = & \frac{1}{2} \sqrt{\frac{\pi}{a}} \qquad I_{1}(x) = \frac{1}{2a} \qquad \vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}_{f} \\ I_{2}(x) = & \frac{1}{4a} \sqrt{\frac{\pi}{a}} \qquad I_{3}(x) = \frac{1}{2a^{2}} \end{split}$$

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

$$\ln n! \approx n \ln n - n$$

$$\sum_{i=0}^{N} r^{i} = \frac{1 - r^{N+1}}{1 - r}$$
$$\sum_{i=0}^{\infty} r^{i} = \frac{1}{1 - r}$$

Also called *isentropic*.
$$\Delta S = 0$$
 in the process. Use the thermodynamic identity at constant volume and a systems internal energy equation to derive properties about the entropy of the system.

$$\frac{v^2}{2} + gz + \frac{p}{\rho} = \text{constant}$$

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} - 1}$$

$$T_1 V_1^{\gamma - 1} = \text{const}$$

 $T_1^{\gamma/(1 - \gamma)} P_1 = \text{const}$
 $P_1 V_1^{\gamma} = \text{const}$

Carnot Efficiency	Carnot Cycle
Thermodynamics	Thermodynamics
Equipartition Theorem	Fermi Gasses
THERMODYNAMICS	Thermodynamics
Fermi-Dirac Distribution	Gibbs Free Energy
Thermodynamics	Thermodynamics

Ideal Gasses

THERMODYNAMICS

Ideal Gas (RMS Average Speed)

Ideal Monoatomic Gas

THERMODYNAMICS

Helmholtz Free Energy

THERMODYNAMICS THERMODYNAMICS

Characterized by alternating stages of isothermal and isentropic expansion and compression. Work done is

$$W = (T_h - T_l) (S_H - S_L)$$

where T_l and T_h are the low and high temperatures reached during the cycle and S_L and S_H are the low and high entropies of the working substance.

$$\eta = 1 - \frac{T_l}{T_h}$$

- 1. High kinetic energy
- 2. Low heat capacity
- 3. Low magnetic susceptibility
- 4. Low interparticle collision rate
- 5. High pressure

A classical gas's energy gains $\frac{1}{2}k_BT$ for each degree of freedom. An ideal monotomic gas has $U=\frac{3}{2}k_BT$ from three translational degrees of freedom, while an ideal diatomic gas has $U=\frac{5}{2}k_BT$ from an additional two degrees of rotational freedom.

$$G \equiv U + PV - TS$$

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1}$$

$$PV = nRT$$

$$PV = Nk_BT$$

$$Z_N = \frac{Z_1^N}{N!}$$

Acts as effective energy in isothermal changes of volume.

$$F \equiv U - TS$$

$$dF = dU - SdT$$

 $C_V = \frac{3}{2}Nk_B \qquad \qquad C_P = \frac{5}{2}Nk_B$ $U = \frac{3}{2}Nk_BT \qquad \qquad \gamma = \frac{5}{3}$

Derived by considering a single particle. For translation in three dimensions $KE=\frac{3}{2}k_BT$ and also $KE=\frac{1}{2}mv^2$ so that when combined,

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

$$v = \sqrt{\frac{3k_BT}{m}}$$

Maxwell Speed Distribution

Partition Function

Тн	ERMODYNAMICS		THERMODYNAMICS
Photon Gasses		Planck Distribution function	
Тн	ERMODYNAMICS		THERMODYNAMICS
Planck Spectral Density (frequency)		Radiant Energy Flux (blackbody)	
Тн	ERMODYNAMICS		THERMODYNAMICS
Stefan-Boltzmann Law (energ	y density)	Thermodynamic Ide	entity
Тн	ERMODYNAMICS		THERMODYNAMICS

$$Z = \sum_{n} e^{-\varepsilon_n/k_B T}$$

$$f(v) = \sqrt{\left(\frac{m}{2\pi k_B T}\right)^3} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

$$U = k_B T^2 \frac{\partial \ln Z}{\partial T} \qquad \qquad F = -k_B T \ln Z$$

$$v_{\rm rms} = \sqrt{\frac{3k_BT}{m}}$$
 $\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$

$$\langle s \rangle = \frac{1}{e^{\hbar \omega/k_B T} - 1}$$

$$U = \sigma_b V T^4$$

$$P = \frac{1}{3} \sigma_b V T^4$$

$$\mu = 0$$

$$J_u = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4$$
$$J_u = \frac{c}{4} u$$

$$u_{\omega} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega / k_B T} - 1}$$

$$dU = TdS - PdV + \mu dN$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V \qquad P = -\left(\frac{\partial U}{\partial V}\right)_S$$

$$\frac{U}{V} = u = \frac{\pi^2 k_B^3}{15\hbar^3 c^3} T^4$$
$$u = \sigma_B T^4$$
$$u = \frac{4}{c} J_u$$