PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedną odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

⊅OPE ZON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedna poprawna odpowiedź.

Zadanie 1. (*1 pkt*)

Liczba $3\sqrt{3\sqrt[3]{9\sqrt{9}}}$ jest równa:

A.
$$3\sqrt{3}$$

B.
$$\sqrt{3}$$

Zadanie 2. (*1 pkt*)

W trójkacie prostokatnym o przyprostokatnych długości 1 i 2 katy ostre sa równe α i β ($\alpha > \beta$). Wartość wyrażenia $tg\alpha - 5 \sin \alpha \cos \beta$ jest równa:

$$A. -\frac{14}{3}$$

$$\mathbf{B.}-2$$

$$\mathbf{D}_{\bullet} - \frac{1}{2}$$

Zadanie 3. (*1 pkt*)

Wiemy, że $x = \sqrt{2} + 1$, $y = \sqrt{2} - 1$, $z = 2\sqrt{2}$. Wtedy: **A.** $\frac{x}{y} = z$ **B.** $\frac{x}{y} - 3 = z$ **C.** $\frac{x}{y} = \frac{z}{2}$

$$\mathbf{A} \cdot \frac{x}{y} = z$$

$$\mathbf{B} \cdot \frac{x}{y} - 3 = z$$

$$\mathbf{C} \cdot \frac{x}{y} = \frac{z}{2}$$

$$\mathbf{D}_{\bullet} \frac{x}{v} = \frac{z}{x}$$

Zadanie 4. (*1 pkt*)

Liczby całkowite ujemne spełniające nierówność $\sqrt{(x-4)^2}$ < 7 to:

$$A. -2, -1$$

$$\mathbf{B}_{\bullet} - 3 = 2 = 1$$

$$\mathbf{C}_{\bullet} - 10, -9, -8, -7, -6, -5, -4, -3, -2, -1$$

$$\mathbf{D}_{\bullet} - 4, -3, -2, -1$$

Zadanie 5. (*1 pkt*)

Połowę liczby *a* zwiększono o 20%. Otrzymano:

D.
$$0.5a + 0.2$$

Zadanie 6. (*1 pkt*)

 $\frac{5x}{x(x+1)(x-\sqrt{7})(x^2+7)}$ Do dziedziny funkcji f określonej wzorem $f(x) = \frac{1}{x}$

A. nie należą 2 liczby

B. nie należą 3 liczby

C. nie należą 4 liczby D. nie należy 5 liczb

Zadanie 7. (*1 pkt*)

Funkcja kwadratowa g określona jest wzorem $g(x) = x^2 - 4$. Aby wykres tej funkcji miał dokładnie jeden punkt wspólny z prostą y = 2, należy go przesunąć o: **B.** 6 jednostek do góry wzdłuż osi *OY* **D.** 2 jednostki w let

A. 6 jednostek w prawo wzdłuż osi *OX*

C. 6 jednostek do dołu wzdłuż osi OY

Zadanie 8. (*1 pkt*)

Wykresem układu równań $\begin{cases} 2x + 6y = 1\\ (a-3)x + 6y = b-a \end{cases}$ są dwie proste pokrywające się. Zatem:

A.
$$a = 2, b = 1$$

B.
$$a = 1, b = 0$$

$$\mathbf{C} \cdot a = 6, b = 5$$

D.
$$a = 5, b = 6$$

Zadanie 9. (*1 pkt*)

Wielomian P(x) = W(x) - K(x) jest siódmego stopnia oraz $W(x) = mx^7 - 6x^5 + 2$,

 $K(x) = 3x^3 - 6x^5 + (3m + 2)x^7$. Wynika stąd, że liczba m jest różna od:

Zadanie 10. (*1 pkt*)

Wykres funkcji liniowej f jest prostopadły do prostej $y = \frac{1}{4}x - 11$ i przechodzi przez punkt (0,2). Miejscem zerowym tej funkcji jest liczba:

B.
$$-8$$

$$D_{\bullet} - 0.5$$

Zadanie 11. (*1 pkt*)

W okregu o środku w punkcie B kat środkowy α i kat wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa kątowi prostemu. Wierzchołek kata β znajduje się w punkcie D. Wynika stad, że trójkat:

A. ADC jest równoboczny

B. ADC jest prostokatny

C. ABC jest równoboczny

D. ABC jest prostokatny

Zadanie 12. (*1 pkt*)

Zadanie 12. (1 pm.)

Po skróceniu wyrażenie $\frac{6(-x^2+16)(2x-4)}{2(x-4)(2-x)}$ ma postać:

D -6(x+4)

C.3(x-2)

A.
$$6(x + 4)$$

B.
$$-6(x+4)$$

$$C.3(x-2)$$

Zadanie 13. (*1 pkt*)

Ciąg (a_n) określony jest wzorem $a_n = n - \frac{(-1)^n}{n}$. Suma trzech początkowych wyrazów tego ciągu jest równa:

B. 6
$$\frac{5}{6}$$

B.
$$6\frac{5}{6}$$
 C. $3\frac{5}{6}$

Zadanie 14. (*1 pkt*)

Ile liczb zapisanych za pomocą różnych cyfr i większych od 6000 można utworzyć z cyfr: 6, 2, 3, 5?

Zadanie 15. (1 pkt)

Równanie $3^x = 4 - 2m$ ma jedno rozwiązanie, gdy:

A.
$$m \in (2, \infty)$$

$$C m \in (-\infty, 2)$$

D.
$$m \in (-\infty, 4$$

Zadanie 16. (*1 pkt*)

Balon leci na wysokości 10 m nad ziemią. Z punktu A widać balon pod kątem α do poziomu. Balon znajduje się od punktu A w odległości:

$$\mathbf{A.}10\sin\alpha$$
 m

$$\mathbf{B} \cdot \frac{10}{\sin \alpha}$$
 m

D.
$$\frac{10}{\text{tg}\alpha}$$
 m

Zadanie 17. (*1 pkt*)

Funkcja kwadratowa f określona wzorem $f(x) = (2 - \frac{1}{4}k)x^2 + 4x - 2$ osiąga wartość największą, gdy: **A.** k < 8 **B.** k > 8 **C.** k > -8 **D.** k < -8

A.
$$k < 8$$

$$\mathbf{R}$$
 $k \setminus S$

$$C. k > -8$$

D.
$$k < -8$$

Zadanie 18. (*1 pkt*)

Kąt α jest kątem ostrym i $\sin \alpha - 2 \cos \alpha = 0$. Zatem:

$$\mathbf{A} \cdot \mathbf{tg} \alpha = 0.5$$

B.
$$tg\alpha = 2$$

C.
$$tg\alpha = 0.25$$

D.
$$tg\alpha = \frac{1}{\sqrt{5}}$$

Zadanie 19. (*1 pkt*)

Długość tworzącej stożka jest równa średnicy jego podstawy. Pole powierzchni bocznej stożka jest równe 8π . Pole podstawy stożka jest równe:

 $\mathbf{A}.\pi$

 $B.8\pi$

 $\mathbf{C.16}\pi$

 $\mathbf{D.}4\pi$

Zadanie 20. (1 pkt)

Trzech chłopców i *n* dziewczynek można ustawić na 12 sposobów, tak aby osoby tej samej płci nie stały obok siebie.

Liczba *n* dziewczynek jest równa:

A. 2

B. 4

 \mathbf{C}

D. 5

Zadanie 21. (1 pkt)

Zdarzenia A, B należą do tej samej przestrzeni zdarzeń elementarnych i $P(A') = \frac{8}{20}$, P(B') = 0,3, $P(A \cup B) = 0,8$. Wtedy $P(A \cap B)$ jest równe:

A.0.5

B. 0,1

C.0.3

D. 1

Zadanie 22. (1 pkt)

Każdą krawędź czworościanu foremnego powiększamy dwukrotnie. Pole powierzchni czworościanu zwiększy się:

A. dwukrotnie

B. czterokrotnie

C. ośmiokrotnie

D. szesnastokrotnie

Zadanie 23. (1 pkt)

Powierzchnia boczna walca po rozwinięciu na płaszczyznę jest kwadratem o polu 144 cm². Jeśli przyjmiemy $\pi \approx 3$, to promień podstawy walca będzie równy około:

A. 12 cm

B. 6 cm

C. 2 cm

D. 4 cm

Zadanie 24. (1 pkt)

Objętość sześcianu jest równa 64. Przekątna ściany bocznej tego sześcianu jest równa:

A. 4

B. $16\sqrt{2}$

C. $8\sqrt{2}$

D. $4\sqrt{2}$

Zadanie 25. (1 pkt)

Wskaż równanie symetralnej odcinka AB, gdy A = (-3, 4), B(3, -2).

A. y = x - 1

B. y = -x - 1

C. y = x + 1

D. y = -x + 1

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 *pkt*)

Wiadomo, że |AB| = 2 i |BC| = 6. Znajdź warunek, jaki musi spełniać odległość |AC|, aby punkty A, B, C były współliniowe.

Zadanie 27. (2 pkt)

Prosta x + y - 4 = 0 przecina oś OX w punkcie A i oś OY w punkcie B. Punkt S jest środkiem odcinka AB. Znajdź równanie okręgu o środku w punkcie S i promieniu |SA|.

Zadanie 28. (2 *pkt*)

Spotkało się kilku znajomych. Każdy witał się z każdym przez podanie ręki. Nastąpiło 10 powitań. Ilu znajomych się spotkało?

Zadanie 29. (2 pkt)

Znajdź x, dla którego liczby $2, 2^{x+1}, 2^{x+1}+6$ w podanej kolejności tworzą ciąg arytmetyczny.

Zadanie 30. (*2 pkt*) Z talii 52 kart wyciągamy losowo jedną. Oblicz prawdopodobieństwo, że wyciągnięta karta będzie damą lub treflem.

Zadanie 31. (*4 pkt*) Rozwiąż równanie: $4x^3 - 6x^2 + 2 = 0$.

Zadanie 32. (5 pkt)

Trzy liczby a, b, c, których suma jest równa 15, tworzą w tej kolejności ciąg arytmetyczny. Jeśli do pierwszej z tych liczb dodać 2, od drugiej odjąć 1, a trzecią podzielić przez 2, to tak otrzymane liczby (w tej kolejności) utworzą ciąg geometryczny malejący. Znajdź iloraz tego ciągu geometrycznego.

Zadanie 33. (6 pkt) Obwód rombu jest równy $8\sqrt{10}$ cm, a jedna z jego przekątnych jest o 8 cm dłuższa od drugiej. Oblicz pole rombu.

