

PSMN011-30YLC

N-channel 30 V 11.6 m Ω logic level MOSFET in LFPAK using NextPower technology

Rev. 3 — 24 October 2011

Product data sheet

1. Product profile

1.1 General description

Logic level enhancement mode N-channel MOSFET in LFPAK package. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High reliability Power SO8 package, qualified to 175°C
- Low parasitic inductance and resistance
- Optimised for 4.5V Gate drive utilising NextPower Superjunction technology
- Ultra low QG, QGD, & QOSS for high system efficiencies at low and high loads

1.3 Applications

- DC-to-DC converters
- Load switching

Synchronous buck regulator

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C	-	-	30	V
I_D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Model}}$	-	-	37	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	29	W
T_j	junction temperature		-55	-	175	°C
Static char	racteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 4.5 \text{ V}; I_D = 10 \text{ A}; T_j = 25 ^{\circ}\text{C};$ see Figure 12	-	12.3	14.5	mΩ
		$V_{GS} = 10 \text{ V; } I_D = 10 \text{ A; } T_j = 25 \text{ °C;}$ see Figure 12	-	9.9	11.6	mΩ
Dynamic o	haracteristics					
Q_{GD}	gate-drain charge	$V_{GS} = 4.5 \text{ V}; I_D = 10 \text{ A}; V_{DS} = 15 \text{ V}; \text{see}$ Figure 14; see Figure 15	-	1.4	-	nC
$Q_{G(tot)}$	total gate charge	$V_{GS} = 4.5 \text{ V}; I_D = 10 \text{ A}; V_{DS} = 15 \text{ V}; \text{see}$ Figure 14; see Figure 15	-	4.9	-	nC

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source		_
2	S	source	mb	В
3	S	source		
4	G	gate		
mb	D	mounting base; connected to drain	1 2 3 4	mbb076 S

SOT669 (LFPAK; Power-SO8)

3. Ordering information

Table 3. Ordering information

Type number	Package	Package			
	Name	Description	Version		
PSMN011-30YLC	LFPAK; Power-SO8	plastic single-ended surface-mounted package; 4 leads	SOT669		

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C	-	30	V
V_{DGR}	drain-gate voltage	25 °C \leq T _j \leq 175 °C; R _{GS} = 20 k Ω	-	30	V
V_{GS}	gate-source voltage		-20	20	V
I _D	drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Model}}$	-	37	Α
		$V_{GS} = 10 \text{ V}; T_{mb} = 100 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Model}}$	-	26	Α
I _{DM}	peak drain current	pulsed; $t_p \le 10 \mu s$; $T_{mb} = 25 \text{ °C}$; see Figure 4	-	150	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	29	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
T _{sld(M)}	peak soldering temperature		-	260	°C
V _{ESD}	electrostatic discharge voltage	MM (JEDEC JESD22-A115)	140	-	V
Source-drain	diode				
Is	source current	T _{mb} = 25 °C	-	26	Α
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	150	Α
Avalanche rug	ggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 37 A; $V_{sup} \le$ 30 V; R_{GS} = 50 Ω; unclamped; see Figure 3	-	9	mJ

Continuous drain current as a function of Fig 1. mounting base temperature

Fig 2. Normalized total power dissipation as a function of mounting base temperature

(1) $T_{j \ (init)} = 25^{\circ}C$; (2) $T_{j \ (init)} = 100^{\circ}C$

Single pulse avalanche rating; avalanche current as a function of avalanche time Fig 3.

3 of 15

Fig 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see Figure 5	-	4.87	5.06	K/W

6. Characteristics

Table 6. Characteristics

Vere Static characteristics Io = 250 μA; Vos = 0 V; Tj = 25 °C 30 - V V V V V V V V	nable 0.	Cital acteristics	0 114		-		
V(BR)DSS drain-source breakdown voltage I _D = 250 μA; V _{GS} = 0 V; T _j = 25 °C 30 - - V VGS(th) gate-source threshold voltage I _D = 1 mA; V _{DS} = V _{OS} ; T _j = 25 °C; see Figure 11 1.05 1.57 1.95 V In Expense of the see of th	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage ID = 250 μA; VGS = 0 V; Tj = -55 °C 27 V VGS(th)							
VGS(h) gate-source threshold voltage See Figure 10 See Figure 11 See Figure 12 See Figure 13 See Figure 14 See Figure 15 See Figure 16 See Figure 17 See Figure 17 See Figure 18 See Figure 18 See Figure 19 Se	$V_{(BR)DSS}$				-	-	
Voltage See Figure 10; see Figure 11 Ip = 10 mA; Vps = Vss; Tj = 150 °C 0.5 - - V Ip = 1 mA; Vps = Vss; Tj = 150 °C - - 2.25 V Ip = 1 mA; Vps = Vss; Tj = 55 °C - - 2.25 V Ip = 1 mA; Vps = Vs; Tj = 25 °C - - 100 μA Ip = 10 ma; Vps = 0 V; Tj = 25 °C - - 100 μA Ip = 10 ma; Vps = 0 V; Tj = 25 °C - - 100 πA Ip = 10 ma; Vps = 0 V; Tj = 25 °C - - 100 πA Ip = 10 ma; Vps = 0 V; Tj = 25 °C - - 100 πA Ip = 10 ma; Vps = 0 V; Tj = 25 °C - - 100 πA Ip = 10 ma; Vps = 0 V; Tj = 25 °C - - 100 πA Ip = 10 ma; Tj = 150 °C; - - 100 πA Ip = 10 ma; Tj = 150 °C; - - 100 πA Ip = 10 ma; Tj = 150 °C; - - 100 πA Ip = 10 ma; Tj = 150 °C; - - 100 πA Ip = 10 ma; Tj = 150 °C; - - - 100 πA Ip = 10 ma; Tj = 150 °C; - - - 100 πA Ip = 10 ma; Tj = 150 °C; - - - - - - Ip = 10 m; Tj = 150 °C; - - - - - Ip = 10 m; Tj = 150 °C; - - - - - Ip = 10 m; Tj = 150 °C; - - - - Ip = 10 m; Tj = 150 °C; - - - - Ip = 10 m; Tj = 150 °C; - - - - Ip = 10 m; Tj = 150 °C; - - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - - - Ip = 10 m; Tj = 150 °C; - -		<u> </u>			-	-	
Ip = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C	$V_{GS(th)}$	•		1.05	1.57	1.95	V
Vas = 30 V; Vas = 0 V; T _j = 25 °C - - 1 μA Vas = 30 V; Vas = 0 V; T _j = 150 °C - - 100 μA Vas = 30 V; Vas = 0 V; T _j = 150 °C - - 100 μA Vas = 16 V; Vas = 0 V; T _j = 25 °C - - 100 nA Vas = 16 V; Vas = 0 V; T _j = 25 °C - - 100 nA Vas = 16 V; Vas = 0 V; T _j = 25 °C - - 100 nA Vas = 16 V; Vas = 0 V; T _j = 25 °C - - 100 nA Vas = 4.5 V; I ₀ = 10 A; T _j = 25 °C; - 12.3 14.5 mΩ Vas = 4.5 V; I ₀ = 10 A; T _j = 150 °C; - 23.4 mΩ Vas = 10 V; I ₀ = 10 A; T _j = 150 °C; - 9.9 11.6 mΩ Vas = 10 V; I ₀ = 10 A; T _j = 150 °C; - 9.9 11.6 mΩ Vas = 10 V; I ₀ = 10 A; T _j = 150 °C; - 9.9 11.6 mΩ Vas = 10 V; I ₀ = 10 A; T ₀ = 150 °C; - 10.3 - nC Vas = 10 V; I ₀ = 10 A; Vas = 15 V; Vas = 10 V; - 10.3 - nC Vas = 10 V; I ₀ = 10 A; Vas = 15 V; Vas = 10 V; - 10.3 - nC Vas = 10 V; I ₀ = 10 A; Vas = 15 V; Vas = 10 V; - 10.3 - nC Vas = 10 V; I ₀ = 10 A; Vas = 15 V; Vas = 10 V; - 1.5 - nC Vas = 10 X; Vas = 15 V; Vas = 10 V; - 1.5 - nC Vas = 10 X; Vas = 15 V; Vas = 4.5 V; - 1.5 - nC Vas = 10 X; Vas = 15 V; Vas = 15 V; Vas = 4.5 V; - 1.5 - nC Vas = 10 X; Vas = 15 V; Vas = 15 V; Vas = 4.5 V; - 1.5 - nC Vas = 10 X; Vas = 15 V; Va			$I_D = 10 \text{ mA}; V_{DS} = V_{GS}; T_j = 150 \text{ °C}$	0.5	-	-	V
V _{DS} = 30 V; V _{DS} = 0 V; T _j = 150 °C			$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C}$	-	-	2.25	V
$ \begin{array}{c} l_{GSS} \\ l_{GSS} $	I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	μΑ
$ \begin{array}{c} R_{DSon} \\ R_{$			$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$	-	-	100	μΑ
RDSon drain-source on-state resistance V _{GS} = 4.5 V; I _D = 10 A; T _j = 25 °C; see Figure 12 12.3 14.5 mΩ See Figure 12 V _{GS} = 4.5 V; I _D = 10 A; T _j = 150 °C; see Figure 13 - - 23.4 mΩ V _{GS} = 4.5 V; I _D = 10 A; T _j = 150 °C; see Figure 12 - - 9.9 11.6 mΩ V _{GS} = 10 V; I _D = 10 A; T _j = 150 °C; see Figure 12 - - 18.8 mΩ R _G gate resistance f = 1 MHz - 2 4 Ω Dynamic characteristics W _{GG(b0)} total gate charge I _D = 10 A; V _{DS} = 15 V; V _{GS} = 10 V; see Figure 15 - 10.3 - nC D _D = 10 A; V _{DS} = 15 V; V _{GS} = 10 V; see Figure 15 - 10.3 - nC Q _{GS} gate-source charge I _D = 10 A; V _{DS} = 15 V; V _{GS} = 4.5 V; see Figure 15 - 1.5 - nC Q _{GS(th-pl)} post-threshold gate-source charge I _D = 10 A; V _{DS} = 15 V; V _{GS} = 4.5 V; see Figure 14; see Figure 15 - 1.1 - nC	I _{GSS}	gate leakage current	$V_{GS} = 16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	100	nA
See Figure 12 V _{GS} = 4.5 V; I _D = 10 A; T _I = 150 °C; see Figure 13 V _{GS} = 4.5 V; I _D = 10 A; T _I = 150 °C; see Figure 13 V _{GS} = 10 V; I _D = 10 A; T _I = 25 °C; see Figure 12 V _{GS} = 10 V; I _D = 10 A; T _I = 25 °C; see Figure 13 V _{GS} = 10 V; I _D = 10 A; T _I = 150 °C; see Figure 13 V _{GS} = 10 V; I _D = 10 A; T _I = 150 °C; see Figure 13 V _{GS} = 10 V; I _D = 10 A; V _{GS} = 10 V;			$V_{GS} = -16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	100	nA
	20011		-	12.3	14.5	mΩ	
				-	-	23.4	mΩ
			-	9.9	11.6	mΩ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-	18.8	mΩ	
$ \begin{array}{c} Q_{G(tot)} \\ Q_{G(tot)} \\ \\ Q_{G(tot)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	R_G	gate resistance	f = 1 MHz	-	2	4	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic (characteristics					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q _{G(tot)} total gate charge		-	10.3	-	nC	
$\begin{array}{c} Q_{GS} & \text{gate-source charge} \\ Q_{GS(th)} & \text{pre-threshold gate-source} \\ \text{charge} \\ Q_{GS(th-pl)} & \text{post-threshold gate-source} \\ Q_{GD} & \text{gate-drain charge} \\ Q_{GS(pl)} & \text{gate-source plateau voltage} \\ Q_{CS(pl)} & gate-source pla$				-	4.9	-	nC
$\begin{array}{c} Q_{GS(th)} & \text{pre-threshold gate-source} \\ \text{charge} \\ Q_{GS(th-pl)} & \text{post-threshold gate-source} \\ Q_{GD} & \text{gate-drain charge} \\ Q_{GS(pl)} & \text{gate-source plateau voltage} \\ Q_{CS(pl)} & \text{gate-source plateau voltage} \\ Q_{DS} & gate-source plateau $			$I_D = 0 A; V_{DS} = 0 V; V_{GS} = 10 V$	-	9	-	nC
$\begin{array}{c} Q_{GS(th-pl)} \\ Q_{GS(th-pl)} \\ Q_{GD} \\ Q_{GD} \\ Q_{GS(pl)} \\ $	Q _{GS}	gate-source charge	$I_D = 10 \text{ A}$; $V_{DS} = 15 \text{ V}$; $V_{GS} = 4.5 \text{ V}$;	-	1.5	-	nC
$\begin{array}{c} \text{Charge} \\ \text{Q}_{GD} \\ \text{V}_{GS(pl)} \\ \text{gate-source plateau voltage} \\ \text{C}_{iss} \\ \text{input capacitance} \\ \text{C}_{Oss} \\ \text{Output capacitance} \\ \text{C}_{rss} \\ \text{reverse transfer capacitance} \\ \text{C}_{DS} = 15 \text{ V}; \text{ V}_{GS} = 0 \text{ V}; \text{ f} = 1 \text{ MHz}; \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{\text{Figure } 16} \\ \text{T}_{j} = 25 \text{ °C}; s$	Q _{GS(th)}	· · · · · · · · · · · · · · · · · · ·	see Figure 14; see Figure 15	-	1.1	-	nC
$\begin{array}{c} V_{GS(pl)} \\ V_{GS(pl)} \\ \end{array} \begin{array}{c} \text{gate-source plateau voltage} \\ \end{array} \begin{array}{c} I_D = 10 \text{ A; } V_{DS} = 15 \text{ V; see } \underline{\text{Figure 14}}; \\ \text{see } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{Figure 16}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{Figure 16}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{Figure 16}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } $	Q _{GS(th-pl)}			-	0.4	-	nC
$\begin{array}{c} V_{GS(pl)} \\ V_{GS(pl)} \\ \end{array} \begin{array}{c} \text{gate-source plateau voltage} \\ \end{array} \begin{array}{c} I_D = 10 \text{ A; } V_{DS} = 15 \text{ V; see } \underline{\text{Figure 14}}; \\ \text{see } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{Figure 16}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{Figure 16}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{Figure 16}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{Figure 16}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } \underline{\text{See } \underline{\text{See } \underline{\text{Figure 16}}}}} \\ \end{array} \begin{array}{c} - \\ \text{See } \underline{\text{See } $	Q_{GD}	gate-drain charge		-	1.4	-	nC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{GS(pl)}	gate-source plateau voltage		-	2.5	-	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{iss}	input capacitance	$V_{DS} = 15 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$	-	641	-	pF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{oss}	·		-	146	-	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{rss}	reverse transfer capacitance		-	46	-	pF
t_r rise time $R_{G(ext)} = 4.7 \Omega$ - 12.7 - ns $t_{d(off)}$ turn-off delay time - 16.8 - ns		turn-on delay time	$V_{DS} = 15 \text{ V}; R_L = 0.6 \Omega; V_{GS} = 4.5 \text{ V};$	-	13.4	-	ns
t _{d(off)} turn-off delay time - 16.8 - ns	t _r	rise time		-	12.7	-	ns
-()		turn-off delay time		-	16.8	-	ns
	t _f	<u> </u>		-	6.6	-	ns

 Table 6.
 Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Q_{oss}	output charge	$V_{GS} = 0 \text{ V}; V_{DS} = 15 \text{ V}; f = 1 \text{ MHz}; $ $T_j = 25 \text{ °C}$	-	3.8	-	nC
Source-drain diode						
V_{SD}	source-drain voltage	$I_S = 10 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see Figure 17	-	0.85	1.1	V
t _{rr}	reverse recovery time	$I_S = 10 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$;	-	17	-	ns
Q _r	recovered charge	$V_{GS} = 0 \text{ V}; V_{DS} = 15 \text{ V}$	-	7	-	nC
t _a	reverse recovery rise time	$V_{GS} = 0 \text{ V}; I_S = 10 \text{ A};$	-	10	-	ns
t _b	reverse recovery fall time	$dI_S/dt = -100 A/\mu s$; $V_{DS} = 15 V$; see Figure 18	-	7	-	ns

Fig 6. Output characteristics; drain current as a function of drain-source voltage; typical values

Fig 7. Drain-source on-state resistance as a function of gate-source voltage; typical values

003aag222

N-channel 30 V 11.6 mΩ logic level MOSFET in LFPAK using NextPower technology

50

Fig 8. Forward transconductance as a function of drain current; typical values

Fig 9. Transfer characteristics; drain current as a function of gate-source voltage; typical values

Fig 10. Sub-threshold drain current as a function of gate-source voltage

Fig 11. Gate-source threshold voltage as a function of junction temperature

Fig 12. Drain-source on-state resistance as a function of drain current; typical values

Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature

Fig 14. Gate charge waveform definitions

 $T_j = 25^{\circ}C; I_D = 10A$

Fig 15. Gate-source voltage as a function of gate charge; typical values

Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Fig 17. Source current as a function of source-drain voltage; typical values

Fig 18. Reverse recovery timing definition

7. Package outline

Plastic single-ended surface-mounted package (LFPAK; Power-SO8); 4 leads

SOT669

OUTLINE		REFER	ENCES		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	JEITA PROJE		1330E DATE
SOT669		MO-235				06-03-16 11-03-25

Fig 19. Package outline SOT669 (LFPAK; Power-SO8)

PSMN011-30YLC

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN011-30YLC v.3	20111024	Product data sheet	-	PSMN011-30YLC v.2
Modifications:	 Data sheet status 	changed from preliminary	to product.	
	 Various changes to 	o content.		
PSMN011-30YLC v.2	20110930	Preliminary data sheet	-	PSMN011-30YLC v.1

9. Legal information

9.1 Data sheet status

Document status [1] [2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

PSMN011-30YLC

N-channel 30 V 11.6 mΩ logic level MOSFET in LFPAK using NextPower technology

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PSMN011-30YLC

N-channel 30 V 11.6 m Ω logic level MOSFET in LFPAK using NextPower technology

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits
1.3	Applications
1.4	Quick reference data1
2	Pinning information
3	Ordering information
4	Limiting values2
5	Thermal characteristics5
6	Characteristics6
7	Package outline
8	Revision history12
9	Legal information13
9.1	Data sheet status
9.2	Definitions13
9.3	Disclaimers
9.4	Trademarks14
10	Contact information 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

PSMN011-30YLC,115