图神经网络

一、使用GAT和GCN在20ng和ohsumed数据集上进行文本 分类

数据集

本实验采用的是 20 Newsgroups (20ng) 和 OHSUMED 数据集。这两个数据集常用于文本分类和自然语言处理(NLP)研究。

- **20 Newsgroups(20ng)**: 这个数据集包含大约20,000个新闻组文档,分布在20个不同的新闻组中,每个新闻组对应一个类别。
- **OHSUMED**: 是一个医学文献数据集,包含了大约34,000篇关于心血管疾病的摘要,分为23 个类别。

模型结构:

使用图注意力网络(GAT)和图卷积网络(GCN)进行文本分类。详细信息参见附带的 20ng&ohsumed+GAT&GCN.ipynb 文件。

图数据的构建方式:

- 将每篇文档视为图的一个结点,所有文档组成一个图。
- 使用TF-IDF方法计算文档特征,这种方式相比于将每个词视为结点更加简单直接。
- TF-IDF是一种常用的信息检索和文本挖掘技术,通过统计方法评估词语在文档集合中的重要性。
- 也尝试过将单词视作结点,文档视作图,使用图汇聚方法对整个图进行分类,使用word2vec 方法对单词进行嵌入。这种方法理论上能够达到更高的模型上限(因为考虑到不同词语出现 的顺序信息,而不是将文档简单看作一个词袋模型)但是由于计算过于复杂,模型性能迟迟 无法上升,故没有坚持这一条路线。

TF-IDF的计算:

- 1. **词频(TF)**: $\mathrm{TF}(t,d)=rac{\mathrm{d}\, d\, \mathrm{d}\, \mathrm{$
- 2. **逆文档频率(IDF)**: $\mathrm{IDF}(t,D) = \log \frac{$ 语料库中的文档总数 |D| 包含词条 t 的文档数目 $(\mathbb{D} \log t)$ $(\mathbb{D} \log t)$
- 3. **TF-IDF**: TF-IDF $(t, d, D) = TF(t, d) \times IDF(t, D)$

GAT与GCN的机制和公式:

• **GCN**: 在GCN中,节点的特征更新依赖于其邻居的特征,通过一个加权平均过程实现信息的 传播。

关键公式: $H^{(l+1)} = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$

• **GAT**: GATs引入注意力机制来加权邻居节点的特征,允许模型学习邻居节点对目标节点的重要性。

关键公式: Attention $(h_i, h_j) = \operatorname{softmax}_j(\operatorname{LeakyReLU}(a^T[Wh_i||Wh_j]))$

实验结果:

两个模型两个数据集一共四个实验的结果可视化如下:

GAT:

20ng

ohsumed

GCN:

• 20ng

ohsumed

对比benchmark

在ohsumed数据集上:

Rank Model

10	diiK	Model		-	accuracy T	гарег			Code	Kesuit	Year	lags 🗷
	1	RoBERTaGCN			72.8	BertGCN: Ti		ive Text Classification by Combining	O	Ð	2021	GCN
	2	Our Model*			69.4	Text Level 0	Graph Ne	ural Network for Text Classification	0	Ð	2019	
	3	SGCN			68.5	Simplifying	Graph Co	onvolutional Networks	0	Ð	2019	GCN
	4	SGC			68.5	Simplifying	Graph Co	onvolutional Networks	0	Ð	2019	
	5	SSGC			68.5	Simple Spec	ctral Gra	ph Convolution	0	∌	2021	
	6	Text GCN			68.36	Graph Conv	olutional	l Networks for Text Classification	0	Ð	2018	GCN
	7	GraphStar			64.2	Graph Star Net for Generalized Multi-Task Learning Rep the Set: Neural Networks for Learning Set Representations			0	Ð	2019	
	8	ApproxRepSet			64.06				0	€	2019	
	9	REL-RWMD k-NN			58.74	Speeding up Word Mover's Distance and its variants via properties of distances between embeddings			O	∌	2019	
	10	CNN+Lowercased			36.2	On the Role of Text Preprocessing in Neural Network Architectures: An Evaluation Study on Text Categorization and Sentiment Analysis			0	Ð	2017	
在20ng数据集上:												
1	L	inearSVM+TFIDF	93	93			×	A Comparison of SVM against Pre-trained Language Models (PLMs) for Text Classification Tasks		Ð	2022	LinearSVM
2	R	oBERTaGCN	89.5				×	BertGCN: Transductive Text Classification by Combining GCN and BERT	0	Ð	2021	
3	S	SGC	88.6				×	Simple Spectral Graph Convolution	0	Ð	2021	
4	S	GC	88.5				✓	Simplifying Graph Convolutional Networks	0	Ð	2019	
5	S	GCN	88.5				~	Simplifying Graph Convolutional Networks	0	Ð	2019	GCN
6		MDL 15 RDLs)	87.91				×	RMDL: Random Multimodel Deep Learning for Classification	0	€	2018	
7	s	parse Tensor Classifier	87.3	86.6	87.1	86.6	×	An Explainable Probabilistic Classifier for Categorical Data Inspired to Quantum Physics	0	Ð	2021	
8	G	iraphStar	86.9				×	Graph Star Net for Generalized Multi-Task Learning	0	Ð	2019	
9	N	IABoE-full	86.8	86.2			×	Neural Attentive Bag-of-Entities Model for Text Classification	0	Ð	2019	
10	T	ext GCN	86.34				✓	Graph Convolutional Networks for Text Classification	0	Ð	2018	GCN

Accuracy ↑ Paper

Code Result Year Tags ┏️

GNN相关的方法已经被广泛应用于处理诸如文本的非结构化数据,且一般能取得较好的效果。

- 与空白对照比较,模型实际"学习"到了某些关键的特征,但是准确率始终无法达到较高水平,对比benchmark数据,本实验中的模型没有达到理论上限,性能还有进一步提高的空间。原因可能是模型遇到了特征表示瓶颈、模型复杂程度不够无法提取复杂特征的问题。
- 本实验中的实现由于考虑到计算量的因素(tfidf计算需要大量时间和内存开销),在数据集大小上进行了大幅度裁剪,仅仅取了模型每个类的前80个文件作为子集。因此本实验复现出的同样模型算法和准确率要不如同类型模型,这也是模型性能不如benchmark的原因之一。

总结:

在文本分类任务中,GAT和GCN展现出了它们在处理图结构数据方面的优势。这两种方法在 20ng和ohsumed数据集上都取得了良好的结果,证明了它们在处理复杂的自然语言数据方面的潜力。其中,GAT由于其注意力机制,在捕捉文档间细微差异方面表现更为出色,而GCN在处理较 为规则的数据结构时更加高效。

三、利用异构图神经网络进行多模态异构文档分类的研究报 告

摘要

本报告探讨了利用异构图神经网络(Heterogeneous Graph Neural Networks, HGNN)对包含文本、图像和元数据(如作者、发表期刊或会议等)的多模态异构文档进行分类的方法。通过综合分析现有技术和策略,本报告提出了一种融合多模态信息的HGNN框架,并分析了其可行性和创新性。

1. 研究背景

在多模态文档数据中,文本、图像和元数据共同构成了丰富的信息源。传统的单模态方法难以充分利用这些不同类型的信息。近年来,异构图神经网络因其在处理多类型节点和边的能力上的优势,被广泛应用于多模态数据分析。

2. 现有方法和策略

- 多模态融合: 多模态融合技术旨在结合来自不同模态的信息。现有方法通常包括早期融合、 晚期融合和中间融合。
- **异构图网络**: 异构图网络处理包含不同类型节点和边的图。它们能够编码不同类型的实体和 关系,适用于多模态数据。

3. 设计的方法

3.1 架构

提出一种新型的HGNN架构,该架构旨在整合文本、图像及元数据,形成一个统一的图结构。

1. 节点表示:

- 文本节点:使用预训练的语言模型(如BERT)提取文本特征。
- 图像节点:使用卷积神经网络(如ResNet)提取图像特征。
- 元数据节点:将作者、期刊等信息编码为嵌入向量。

2. 边的构建:

- 文档与元数据间的边:基于文档的作者、发表期刊等构建边。
- 文档内部的文本-图像边:基于文本和图像内容的相关性建立边。

3. 异构图网络:

• 使用图卷积网络处理不同类型的节点和边,以学习节点的综合表示。

3.2 分类机制

- 通过聚合节点特征来获取文档的综合表示。
- 使用分类器(如支持向量机)基于综合特征进行文档分类。

4. 可行性分析

- 技术可行性: 当前的深度学习框架(如PyTorch、TensorFlow)支持实现复杂的HGNN模型。
- 数据获取: 多模态数据(文本、图像、元数据)通常可通过公开数据库或API获取。

5. 创新性分析

- 多模态融合:本方法在异构图中直接融合多种类型的数据,不同于传统的分阶段融合方法。
- **异构图结构**:利用HGNN处理不同类型的关系和实体,这在多模态文档分类中是一个较新的 尝试。
- **广泛的应用前景**:该方法不仅适用于学术文档,还可以扩展到新闻、法律文件等多种类型的文档。

6. 结论

本报告提出的多模态异构文档分类方法通过结合HGNN与多模态数据融合技术,提供了一种新的 视角来处理复杂的文档数据。此方法的应用潜力巨大,对于推进多模态数据处理技术的发展具有 重要意义。