A nondeterministic finite automation is define as,

$$\mathbf{M} = \{\mathbf{Q},\,\sum,\,\delta,\,q_0,\,\mathbf{F}\,\,\}$$

where:

- 1. Q is a finite set of states,
- 2. \sum is the finite alphabet,
- 3. δ is transition function
- 4. q_0 is the start state
- 5. F \subseteq Q is the set of accept states.

As NFA defined on Page 54 of ITC textbook.

$$\begin{split} Q &= \{q_1,q_2,q_3,q_4\} \\ \sum &= \{0,1\} \\ F &= \{q_4\} \\ q_0 &= q_1 \\ \delta &= \{((q_1,0),\{q_1\}),((q_1,1),\{q_1,q_2\}),((q_1,\epsilon),\phi),\\ ((q_2,0),\{q_3\}),((q_2,1),\phi),((q_2,\epsilon),\{q_3\}),\\ ((q_3,0),\phi),((q_3,1),\{q_4\}),((q_3,\epsilon),\phi),\\ ((q_4,0),\{q_4\}),((q_4,1),\{q_4\}),((q_4,\epsilon),\phi)\} \end{split}$$

Transition Function in Table form:

	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1, q_2\}$	ϕ
q_2	$\{q_3\}$	ϕ	$\{q_3\}$
q_3	ϕ	$\{q_4\}$	ϕ
q_4	$\{q_4\}$	$\{q_4\}$	ϕ

NFA in pictorial form:

