

Input:

A set S of n D-dimensional points.

Goal:

Design a data stucture that, given $p_1 \in \mathbb{Z}^D, p_2 \in \mathbb{Z}^D$ can:

- Report the number of points $q \in S$ such that $p_1 \leq q \leq p_2$.
- Report *the set* of points $q \in S$ such that $p_1 \leq q \leq p_2$.
- Report the point $q \in S$, $p_1 \le q \le p_2$, with smallest D-th coordinate.

• . . .

An easy case: D=1

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- ullet Perform queries by binary searching for p_1 and p_2

An easy case: D=1

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- ullet Perform queries by binary searching for p_1 and p_2

Query time: $O(\log n + k)$

k = "size" of the output.

- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

An easy case: D=1

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- ullet Perform queries by binary searching for p_1 and p_2

Query time: $O(\log n + k)$

k = "size" of the output.

- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

Space complexity: O(n)

Range Trees:
$$D=1$$

Range Trees: D=1

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- ullet The root of T has T_1 and T_2 as its left and right subtrees.
- \bullet Return T

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $pprox \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- ullet The root of T has T_1 and T_2 as its left and right subtrees.
- \bullet Return T

Time:
$$O(n \log n) + T(n)$$
, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$
$$O(n \log n)$$

Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $pprox \frac{n}{2}$ elements each. O(1)
- ullet Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- ullet The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Time:
$$O(n \log n) + T(n)$$
, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$

$$O(n \log n)$$

What if S is already sorted?

Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $pprox \frac{n}{2}$ elements each. O(1)
- ullet Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- ullet The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Time:
$$O(n \log n) + T(n)$$
, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$

$$O(n \log n)$$

What if S is already sorted? O(n) (we will need this later)

Preprocessing time: $O(n \log n)$

Query time: $O(\log n + k)$

- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

Space complexity: O(n)

y	1			×							
		×				×					×
								×			
			×						×		
	×				×		×			×	
											
											x

Build a range tree on the set of x-coordinates of the points in S

For each node v representing an interval $I_v = [x_1, x_2]$, build a range tree R_v on the y coordinates of the points in S with x-coordinate in I_v

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- ullet Store, in v, a pointer to a new 1D Range Tree on S
- \bullet Return T

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $pprox \frac{n}{2}$ elements each.
- ullet Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- ullet Store, in v, a pointer to a new 1D Range Tree on S
- Return T

Time:
$$O(n \log n) + T(n)$$
, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(n \log n)$
$$O(n \log^2 n)$$

 S^y is the set S sorted on the y-coordinate

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $pprox \frac{n}{2}$ elements each.
- Recursively build (T_1, S_1^y) and (T_2, S_2^y) from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Merge S_1^y and S_2^y into S^y .
- ullet Store, in v, a pointer to a new 1D Range Tree on S^y
- Return (T, S^y)

 S^y is the set S sorted on the y-coordinate

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $pprox rac{n}{2}$ elements each.
 - Recursively build (T_1, S_1^y) and (T_2, S_2^y) from S_1 and S_2 , respectively.
 - The root v of T has T_1 and T_2 as its left and right subtrees.
 - Merge S_1^y and S_2^y into S^y .
 - ullet Store, in v, a pointer to a new 1D Range Tree on S^y
 - Return (T, S^y)

Time:
$$O(n \log n) + T(n)$$
, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$
$$O(n \log n)$$

To report the points $p_1 = (x_1, y_1) \le q \le p_2 = (x_2, y_2)$:

- Use T to find the $h = O(\log n)$ subtrees R_1, \ldots, R_h that store the points q = (x, y) with $x_1 \le x \le x_2$.
- For each tree $R_j \in \{R_1, \dots, R_h\}$ representing the x-interval I_j :
 - Query R_j to report the number of/set of points q=(x,y) with $x\in I_j$ and $y_1\leq y\leq y_2$.

To report the points $p_1 = (x_1, y_1) \le q \le p_2 = (x_2, y_2)$:

- Use T to find the $h = O(\log n)$ subtrees R_1, \ldots, R_h that store the points q = (x, y) with $x_1 \le x \le x_2$.
- For each tree $R_j \in \{R_1, \dots, R_h\}$ representing the x-interval I_j :
 - Query R_j to report the number of/set of points q=(x,y) with $x\in I_j$ and $y_1\leq y\leq y_2$.

Time complexity:

$$O(\log n) \cdot O(\log n) + O(k) = O(\log^2 n + k)$$

Number of R_i s Time to query R_i

"size" of the output

Preprocessing time: $O(n \log n)$

Query time: $O(\log^2 n + k)$

- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

Space complexity:

- Bounded by the overall size of 1D Range Trees
- Each point belongs to $O(\log n)$ 1D Range Tees
- Total space: $O(n \log n)$

Higher dimensions: construction

To store points p = (x, y, z, w, ...) in D > 2 dimensions: Recursive construction:

- ullet Build a Range Tree T on the first coordinate x of the points:
- For each subtree T_v of T associated with the interval $I_v = [x_1, x_2]$:
 - Construct a range tree R_v on the last D-1 coordinates (y,z...) of the set of points p=(x,y,...) with $x\in I_v$.
 - ullet Store, in v, a pointer to R_v .

Time: $O(n \log^{D-1} n)$.

Space: $O(n \log^{D-1} n)$.

Higher dimensions: query

Let
$$p_1=(x_1,y_1,z_1,\dots)$$
, $p_2=(x_2,y_2,z_2,\dots)$.

To report the points $p_1 \leq q \leq p_2$:

- Use T to find the $h = O(\log n)$ subtrees R_1, \ldots, R_h that store the points $q = (x, y, z, \ldots)$ with $x_1 \le x \le x_2$.
- For each tree $R_j \in \{R_1, \dots, R_h\}$ representing the x-interval I_j :
 - Recursively query R_i to report the number/set of points q s.t. $x \in I_j$ and $(y_1, z_1, \dots) \leq q \leq (y_2, z_2, \dots)$.

Query time: $O(\log^D n + k)$.

Recap

Size	Preprocessing Time	Query Time	Notes
O(n)	$O(n \log n)$	$O(\log n + k)$	
$O(n \log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^D n + k)$	
	$O(n)$ $O(n \log n)$	$O(n)$ $O(n \log n)$ $O(n \log n)$	$O(n)$ $O(n \log n)$ $O(\log n + k)$ $O(\log n)$ $O(\log^2 n + k)$

Fractional Cascading: The problem

Input:

k sorted arrays A_1, \ldots, A_k of n elements each:

$$A_2 \quad \boxed{3} \quad 7 \quad 10 \quad 11 \quad 15 \quad 17 \quad 20 \quad 36 \quad 62 \quad 64$$

$$A_3$$
 21 23 29 35 37 40 52 57 61 66

Query:

Given x report, for $i=1,\ldots,k$, x if $x\in A_i$ or its *predecessor* if $x\not\in A_i$.

Fractional Cascading: The problem

Input:

k sorted arrays A_1, \ldots, A_k of n elements each:

$$x = 31$$

$$A_2$$
 3 7 10 11 15 17 20 36 62 64

Query:

Given x report, for $i=1,\ldots,k$, x if $x\in A_i$ or its *predecessor* if $x\not\in A_i$.

Fractional Cascading: The problem

Input:

k sorted arrays A_1, \ldots, A_k of n elements each:

$$x = 58$$

$$A_2$$
 3 7 10 11 15 17 20 36 62 64

Query:

Given x report, for $i=1,\ldots,k$, x if $x\in A_i$ or its *predecessor* if $x\not\in A_i$.

Fractional Cascading: A Trivial solution

- For i = 1, ..., k:
 - Binary search for x in A_i

Time: $O(k \log n)$

First idea: cross linking

How much time does it take?

Worst-case time: O(kn)

Second idea: fractional cascading

For $i = k, k - 1, \ldots, 2$: Add every other element of A_i to A_{i-1} .

Keep pointers from newly added elements to A_i to their predecessor among the original elements of A_i

Size O(kn) Preprocessing O(kn) Query: $O(k + \log n)$

Reuse the cross-linking idea from fractional cascading

Reuse the cross-linking idea from fractional cascading

Reuse the cross-linking idea from fractional cascading

 \forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

 \forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

 \forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

 \forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

Query: $O(k + \log n)$

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n \log n)$	$O(\log n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^D n + k)$	

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n \log n)$	$O(\log n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^D n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log n + k)$	with cross-linking

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n \log n)$	$O(\log n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^D n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log n + k)$	with cross-linking
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^{D-1} n + k)$	with cross-linking

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n \log n)$	$O(\log n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^D n + k)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log n + k)$	with cross-linking
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^{D-1} n + k)$	with cross-linking

Can be made dynamic (supports point insertion / deletion) in $O(\log^D n)$ amortized time per update.