Biologia Quantitativa

Algoritmos Genéticos

Módulo 11 - 2025/01

Departamento de Zoologia – UnB 10 de junho de 2025

Roteiro da Aula

- Definição de Algoritmos Genéticos
- Adaptação, Replicação, Recombinação, Mutação
- Aplicação: Resolução de problemas cuja solução analítica não é descrita ou não é NP-completa, ou de problemas maciçamente paralelos
- Vida Artificial

Referências

Artificial Life vols 1 a 5. David Langton,
editor. Santa Fe Institute, 1993 -2003

Características dos Algoritmos Genéticos

- Programas de computador que permitem a evolução de outros programas
- Cria-se um ambiente computacional onde são fixados:
- Função de adaptação
- Modo de replicação
- Função de recombinação
- Função de mutação
- O ambiente é inicializado com um conjunto de cromossomos que executa as funções acima e se reproduz.

Fontes de Variação na replicação

- Mutação: erros de cópia produzindo deleção, acréscimo, ou substituição de nucleotídeos
- Recombinação 1: pares de cromossomos trocam parte dos segmentos (na mitose)
- Recombinação 2: na reprodução sexuada, cada gameta leva 50% dos cromossomos de cada progenitor, por processo aleatório.

Estrutura Algoritmos Genéticos

- Três componentes:
- Ambiente (paisagem adaptativa)
- Função adaptativa, que definirá quais cromossomos sobreviverão
- Cromossomos com capacidade de replicação, recombinação, e/ou mutação

Funcionamento dos Algoritmos Genéticos

- Sistema é inicializado com população de cromossomas.
- Relógio controla a evolução do mesmo, permitindo reprodução e seleção a cada ciclo
- Sistema de seleção pode ser implementado por reprodução diferencial (fecundidade depende do índice de adaptação) ou apenas por mortalidade diferencial (todos reproduzem, mas população é mantida constante e indivíduos menos adaptados são eliminados)

Resultados dos Algoritmos Genéticos

- Taxa de Evolução depende das condições iniciais, da intensidade de seleção, e do tipo de paisagem adaptativa
- Se houver ótimos locais, evolução pode parar antes do ótimo global ser alcançado
- Variância na população pode não ser suficiente para atingir ótimo
- Condições permitem a evolução da solução ótima

Biossíntese como Algoritmo

synthesized in cells.

Seleção vs Mutação

Hamming distance from master sequence.

FIGURE 5 The opposing forces of mutation and selection on a population centered around a local optimum, where the Hamming distance from the master sequence is directly related to fitness ranking.

Mutação mais forte q Seleção

Hamming distance from master sequence.

FIGURE 6 When mutation outweighs selection so that the fittest rank can be lost, Muller's ratchet inexorably drives the population down the hill.

Busca de outros ótimos

Hamming distance from master sequence.

FIGURE 7 If the population can crawl down the hill far enough to reach a ridge of relatively high fitness, it will spread along it, potentially reaching new hills.

Otimização Algoritmo Genético

FIGURE 8 Sampling and search.

Criando algoritmos cromossomicos

608

John R. Koza

Before

After

FIGURE 4 Third point of the S-expression (left) was selected as the mutation point and the sub-expression (NOT D1) was randomly generated and inserted at that point to produce the S-expression (right).

Recombinação de Algoritmos

Rede Neural e Alg Genétic

FIGURE 2 Two crossover fragments or sub-trees

FIGURE 3 Two offspring resulting from crossover.

Problema dos 4 Quadrantes

FIGURE 3 Four-quadrant problem.

Soluções por AG para o problema dos quatro quadrantes

Mudança de frequencias no tempo - alg genéticos

Evolução genética de Software

Genetic Evolution and Co-Evolution of Computer Programs

613

FIGURE 7 Percent of runs of artificial ant on the Santa Fe Trail that are successfully solved in a given number of generations with population size of 1000, 2000, and 4000.

Exemplos de Algoritmos Genéticos

- Evolução de redes neurais usando algoritmos genéticos. Uso de AG reduziu tempo de aprendizado em até 2 ordens de grandeza (Belew et alii 1992)
- Evolução de comportamento forrageamento em formigas. Estabilizou entre 25 e 50 gerações (Koza 1992)
- Otimização de manutenção de PCs usando AG. Cada chamada é um gene, cada roteiro um cromossoma. Corretora Moody NYC, Clarkson 1995.

Usos de Algoritmos Genéticos

- Funções de replicação e seleção atribuídas externamente ao programa (maioria das aplicações)
- Replicação e seleção desenvolvidos pelo próprio sistema (vida artificial, modelos de Tom Ray)

Tom Ray programa Tierra

- Simulou surgimento da diversidade, não surgimento da vida
- Começou com organismo primitivo de 80 instruções em máquina virtual
- Linguagem baseada em DNA. 32 instruções de 5 bits. Endereçamento relativo tipo chave-fechadura.
- Organismos que evoluíram: parasitas 45 inst, hiper-parasitas 80 inst, hiper-parasita social 61 instr, hiper-hiper parasita 27 instr