Faster Rotated Regionbased Convolutional Neural Network

Viet Nguyen

viet.nguyen@tum.de

Supervisor: Dr. Csaba Domokos

Outline

- Introduction
- Dataset
- Model
- Experiment
- Conclusion

Introduction

Faster R-CNN for object detection

Introduction

- Question: How many relevant pixels are there in a bounding box?
- Challenge: What happen if object's orientation is not axis-aligned?

Dataset

- VOC2012 dataset.
- Segmentation dataset → oriented detection dataset.

Dataset

	Original dataset	New dataset	
Number of images	291	3	
Number of objects per image*	2.380		
Number of object-related pixel per object*	18957.812		
Percentage of object-related pixels per bounding box*	53.5%	56.7%	
Bounding box's area*	35453.926	33462.425	

^{*}Average value

Model

Architecture

Rotation anchors

- Different scales.
- Different ratios.
- Different angles.

Intersection over Union

- Most important and difficult part: Intersection.
- Axis-aligned bounding boxes: Simple.
- Rotated bounding box: Several challenges.

 Algorithm still exists, but theoretically, not practically.

Intersection over Union

- Input: 2 rectangles (2 sets of MxN rectangles)
- Output: Intersection (MxN intersection matrix)
- Algorithm:
 - Find out vertices of the first rectangle inside the second rectangle and vice versa.
 - Find out intersection points between 2 rectangles.
 - Sort the above-found points.
 - Area of a polygon with n ordered vertices:

Area =
$$\left| \frac{(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_ny_1 - x_1y_n)}{2} \right|$$

Skew Non-Maximum Suppression

- An important sub-module:
- 2 tasks:
 - Reduce set of proposals.
 - Assign score for proposals.
- Criteria:
 - IoU threshold (e.g. 0.7)
 - Angle difference threshold (e.g. $\pi/12$)

How Rol pooling layer work ?

			in	put			
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

How to apply the pooling operation on oriented Rols?

Rotated Rol Pooling layer

RPN Loss function

Predicted probability of being an object for anchor i

True box coordinates

- i = anchor index in minibatch.
- N_{cls} = Number of anchor in minibatch.
- N_{reg} = Number of anchor location.

- Base network: Pre-trained VGG16 (until conv5_3 layer).
- Dataset: VOC2012.
- Training: Learning rate starts with 0.001 and is reduced by a half after 50000 iterations.
 Training finishes at 70000 iterations.
- Evaluation: mAP (Mean Average Precision).

Groundtruth

Prediction

Groundtruth

Groundtruth

Faster R-CNN

Faster RR-CNN

Faster R-CNN vs Faster RR-CNN

mAP	Monitor	Car	Cat	Sheep	Train	Horse
70.0	67.6	80.4	82.0	68.3	81.1	79.8
70.6*	73.6*	80.1	79.1	72.2*	72.2	80.1*

Motorbike	Cow	Aeroplane	Person	Bus	Table	Boat
75.0	75.3	70.0	76.3	78.2	67.2	57.3
77.2*	73.3	69.2	77.7*	81.7*	67.0	59.1*

Plant	Bird	Dog	Sofa	Bottle	Chair	Bicycle
39.1	70.1	80.3	67.3	49.9	52.2	80.6
41.7*	68.4	82.3*	64.8	54.6*	53.6*	78.7

Conclusion

- Oriented object detection is a potential approach.
- Result in better performance in many cases in comparison with traditional axis-aligned object detection model
- Still have rooms for improvement:
 - Apply NMS for reducing set of proposals.
 - Fine-tune anchor generation's parameters.
 - Faster IoU and RRoI computation.

THANK YOU

			inį	out			
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

	pooling sections								
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27		
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70		
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26		
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25		
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48		
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32		
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48		
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91		

