<u>Areas Between Curves</u>

1. **Problem.** Find the area bounded by parabolas

$$y = 2 - x^2$$
 and $y = x^2$.

2. Fact. (Area Between Curves).

Suppose f and g are continuous and $f(x) \ge g(x)$ for all $x \in [a,b]$. The area A bounded by the curves y = f(x), y = g(x), and the lines x = a and x = b, is given by

$$A = \int_a^b f(x) - g(x) \ dx.$$

3. **Example.** Find the area bounded by parabolas

$$y = 2 - x^2$$
 and $y = x^2$.

4. **Example.** Find the area of the region bounded by the line y=x and the parabola $y=6-x^2$.

5. **Example.** Find the area of the region bounded by the line y=x/2 and the parabola $y^2 = 8 - x$.

6. Doing this area calculation along the y-axis...

Suppose the area A is bounded by the curves x=f(y), x=g(y), and the lines y=c, y=d, where f and g are continuous and $f(y)\geq g(y)$ for all $y\in [c,d].$ Then the area is given by

$$A = \int_{c}^{d} [f(y) - g(y)]dy.$$

7. **Example.** Find the area of the region bounded by the line y=x/2 and the parabola $y^2=8-x$.

Notes