Experiment No: 10

	,
book	Aim: Write a program to implement 1 A3/AB/A8
	GSM security algorithms
	Theory:
	(==
مرا ب	-ASM uses three different security algorithms
	called A3, As, A'8 good generally implemented
1,	dogethersingalo and do notalisto (a
	An As/ As algorithm is implemented in
const	: SIM roads and in gam getworks authentication
	centres, robreson dans poi plan
	It is used to guthenticate customers and
	generate a key for encomption voice and data
	traffic.
•	Development of A3 and A8 inlgosithms is
	considered a matter for individual arm networks
2-64-5	operators, although example implementations
	are available.
<u> </u>	And AB knows tion algorithm scrambles the
	user's voice and data tradition between the
	handset and the base station to provide
	privacy.
1	An A's algorithm is implemented in both
	the handset and the BSSIII
-	A 3
-	
) Authentication algorithm
	2) Calculates CRES Bosed on the Kikey of 1

RAND send by the Mac

by each operational discon men De Key generation algorithm needed to calculate anthemisessions key the JA &A ballon 2) Calculation of the elepends of the and

PANDaioni i militionello & the same be choosen independehos amorales short-has-thup at 64211 21 LT? 2) Streamploipher tused to enought over the

2) Cipheat ng ist based on the god the frame

number:

3) Specified at winternational terelito enable is moraning will at a to b box 31700 2000 shivory as nothing and and are are trobust control and a confirmation of the later of sold of ved bride and ?

of town town in a S

, , , , , ,

115.0

Code:

А3

```
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Random;
public class Main {
    public static void main(String[] args) throws NoSuchAlgorithmException {
        long k = generateRandomKey();
        long m = generateRandomMessage();
        String sres = a3Algorithm(k, m);
        System.out.println("128-bit Secret Key (K in hexadecimal): " +
Long.toHexString(k));
        System.out.println("128-bit Random Message (M in hexadecimal): " +
Long.toHexString(m));
        System.out.println("RES/SRES (in hexadecimal): " + sres);
    public static long generateRandomKey() {
        Random random = new Random();
        return random.nextLong();
    public static long generateRandomMessage() {
        Random random = new Random();
        return random.nextLong();
    public static String a3Algorithm(long k, long m) throws
NoSuchAlgorithmException {
        byte[] keyBytes = toByteArray(k);
        byte[] messageBytes = toByteArray(m);
        MessageDigest md = MessageDigest.getInstance("MD5");
        byte[] hash = md.digest(concatenateArrays(keyBytes, messageBytes));
        StringBuilder sres = new StringBuilder();
        for (byte b : hash) {
            sres.append(String.format("%02X", b));
        return sres.toString();
    public static byte[] toByteArray(long value) {
        byte[] result = new byte[16];
```

```
for (int i = 0; i < 8; i++) {
      result[i] = (byte) (value >> (56 - i * 8));
}
return result;
}

public static byte[] concatenateArrays(byte[] a, byte[] b) {
    byte[] result = new byte[a.length + b.length];
    System.arraycopy(a, 0, result, 0, a.length);
    System.arraycopy(b, 0, result, a.length, b.length);
    return result;
}
```

Output:

```
✓ Run
10s on 11:02:58, 03/19 ✓
128-bit Secret Key (K in hexadecimal): 75b0022a0ee84e0d
128-bit Random Message (M in hexadecimal): dc86fd9a7438fcba
RES/SRES (in hexadecimal): 098D641E383AA2B82780E37DD50A731D
```

Code:

Α5

```
public class Main {

private int[] register1 = new int[19];
private int[] register2 = new int[22];
private int[] register3 = new int[23];

public Main() {

    // Initialize registers with arbitrary values
    for (int i = 0; i < 19; i++) {
        register1[i] = 0;
    }
    for (int i = 0; i < 22; i++) {
        register2[i] = 0;
    }
    for (int i = 0; i < 23; i++) {
        register3[i] = 0;
    }
}

public void setKey(String key) {
    // Set the key for register 1
    for (int i = 0; i < 19; i++) {</pre>
```

```
register1[i] = Character.getNumericValue(key.charAt(i % key.length()));
    // Set the key for register 2
    for (int i = 0; i < 22; i++) {
      register2[i] = Character.getNumericValue(key.charAt((i + 19) %
key.length()));
    // Set the key for register 3
    for (int i = 0; i < 23; i++) {
      register3[i] = Character.getNumericValue(key.charAt((i + 41) %
key.length()));
 public void generateKeyStream(int numBits) {
    for (int i = 0; i < numBits; i++) {
      int majority = (register1[8] & register2[10]) ^ (register1[8] &
register3[10]) ^ (register2[10] & register3[10]);
      int newBit = majority ^ register1[18] ^ register2[21] ^ register3[22];
      shiftRegister(register1);
      shiftRegister(register2);
     shiftRegister(register3);
     System.out.print(newBit);
   System.out.println();
 private void shiftRegister(int[] register) {
   int feedback = (register[13] ^ register[16] ^ register[17] ^ register[18])
& 0x01;
   for (int i = register.length - 1; i > 0; i--) {
     register[i] = register[i - 1];
   register[0] = feedback;
 public static void main(String[] args) {
   Main a5 = new Main();
    String key = "01010101010101010"; // Example key
   String randomMessage = "1010101010101010101"; // Example random message
   a5.setKey(key);
   System.out.println("Secret Key: " + key);
    System.out.println("Random Message: " + randomMessage);
   System.out.print("Generated Key Stream: ");
```

```
a5.generateKeyStream(100); // Generate 100 key bits
}
```

Output:

Code:

Α8

```
public class Main {
    // Constants
    private static final int LFSR_LENGTH = 22;
    private static final int[] INIT_STATE = {1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0};
    // Variables
    private int[] lfsr = new int[LFSR_LENGTH];
    // Constructor
    public Main() {
        // Initialize LFSR with initial state
        System.arraycopy(INIT_STATE, 0, 1fsr, 0, LFSR_LENGTH);
    // Clocking function
    private void clock() {
        int feedback = lfsr[0] ^ lfsr[1] ^ lfsr[2] ^ lfsr[8];
        for (int i = LFSR\_LENGTH - 1; i > 0; i--) {
            lfsr[i] = lfsr[i - 1];
        lfsr[0] = feedback;
    // Generate key stream
    public int[] generateKeystream(int numBits) {
        int[] keystream = new int[numBits];
        for (int i = 0; i < numBits; i++) {
            keystream[i] = lfsr[LFSR LENGTH - 1];
```

```
clock();
}
return keystream;
}

public void printInitialState() {
    System.out.println("Initial State of LFSR:");
    for (int bit : lfsr) {
        System.out.print(bit);
    }
    System.out.println();
}

public static void main(String[] args) {
    Main a8 = new Main();
    a8.printInitialState();

    int[] keystream = a8.generateKeystream(100); // Generate 100 key bits System.out.println("Generated Key Stream:");
    for (int bit : keystream) {
        System.out.print(bit);
    }
}
```

Output: