Number theory in cryptography

- Exercise set 6 -

The exercises P6.1, P6.2 have to be handed in on Tuesday, 2nd April 2024, 8:30 at latest.

THEORETICAL QUESTIONS

T 6.1 Let $f(X) \in \mathbb{F}_q[X]$ be a polynomial of degree n over the finite field \mathbb{F}_q . For i = 0, ..., n-1 consider the remainders

$$X^{iq} \mod f(X) = q_{i,0} + q_{i,1}X + \dots + q_{i,n-1}X^{n-1}.$$

Write the coefficients $\{q_{i,j}\}_{0 \le i,j \le n-1}$ as a matrix

$$Q = \begin{bmatrix} q_{0,0} & q_{1,0} & \cdots & q_{n-1,0} \\ q_{0,1} & q_{1,1} & \cdots & q_{n-1,1} \\ \vdots & \vdots & \ddots & \vdots \\ q_{0,n-1} & q_{1,n-1} & \cdots & q_{n-1,n-1} \end{bmatrix} \in \operatorname{Mat}_{n \times n}(\mathbb{F}_q).$$

For a polynomial $g(X) = c_0 + c_1 X + \cdots + c_{n-1} X^{n-1} \in \mathbb{F}_q[X]/(f(X)) =: R$, show that

$$g(X)^q = g(X) \text{ holds in } R \text{ if and only if } v_g := \begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix} \in \ker(Q - I_n).$$

T 6.2 (Rabin's irreducibility test) Prove the following criterion for a polynomial $f \in \mathbb{F}_q[x]$ of degree n: f is irreducible if and only if

- a) $f(x) | (x^{q^n} x),$
- b) $gcd(f(x), x^{q^{n/\ell}} x) = 1$ for every prime divisor $\ell \mid n$.

PROGRAMMING EXERCISES

- **P 6.1** In this exercise, you will implement a function Berlekamp(f, q) performing a Berlekamp factorization. It should take as an argument a square-free polynomial $f(X) \in \mathbb{F}_q[X]$ over some finite field \mathbb{F}_q . Return the list of non-trivial factors of f that you find using Berlekamp's algorithm if f is reducible (so it should just return f if your algorithm detects that f is irreducible), without using the built-in function factor for polynomials.
- **P 6.2** Use the above function to implement the function Berlekamp_factor(f, q), that, given a polynomial $f(X) \in \mathbb{F}_q[X]$ returns a list with all irreducible factors of f(X), together with their multiplicities. Don't forget to work with the square-free part¹ of f before using the Berlekamp function from above. Hint: you may want to consult https://doc.sagemath.org/html/en/reference/matrices/index.html to find information about the base class for matrices in SAGE.
- **P 6.3** (optional) Implement a function factor_fixed_degree(f) that takes a polynomial $f \in \mathbb{F}_q[X]$ of degree n and returns the list of all pairs (g_d, d) where g_d is a non-constant monic polynomial that is the product of all irreducible factors of f of degree d. Hint: think first about an *efficient* way to compute $\gcd(f, t^{q^r} t)$ for a polynomial $f \in \mathbb{F}_q[t]$ and r > 0.

¹You may want to use your function remove_repeated_factors from last week, or use the SAGE method f.radical().