OPEN PROBLEMS IN GP APPROXIMATION AND BENCHMARKING

Mark van der Wilk Bayesian Decision-making and Uncertainty @ NeurIPS

$$\begin{split} p(y^*|x^*,(\boldsymbol{y},X),(\boldsymbol{\theta},\boldsymbol{\sigma})) &= \mathcal{N}\Big(y^*; \quad k_{*X}^{\theta}\big(K_{XX}^{\theta}+\boldsymbol{\sigma}^2\big)^{-1}\boldsymbol{y} \\ \\ k_{**}^{\theta}-k_{*X}^{\theta}\big(K_{XX}^{\theta}+\boldsymbol{\sigma}^2\big)^{-1}k_{X*}^{\theta}\Big) \end{split}$$

Which kernel should we use?

Which kernel should we use?

Which kernel should we use?

2. Automatic hyperparameter tuning

$$\operatorname*{argmax} _{\theta,\sigma} \log p(\boldsymbol{y}|X,(\theta,\sigma)) = \operatorname*{argmax} _{\theta,\sigma} \log \mathcal{N}\big(\boldsymbol{y};0,K_{XX}^{\theta} + \sigma^2 I\big)$$

Can even discover sophisticated structure in data!

Figure 1: "Automatic Statistician" (Duvenaud et al., 2013)

Can even discover sophisticated structure in data!

Figure 2: "Automatic Statistician" (Duvenaud et al., 2013)

- 1. Good uncertainty estimates from infinite basis functions.
- 2. Automatic hyperparameter / kernel selection from Bayesian model selection.

\bigcirc

GPs should be robust, no-nonsense tools!

Practitioners benefit from:

- trustworthy predictions, due to uncertainty,
- ease-of-use, due to automatic tuning to dataset.

GPs are a **silent workhorse** in data science & stats!

? What should I do if my dataset has 100,000 datapoints?

Decades of Progress in GP Approximations

- Eigenfunction approximation: Zhu et al. (1997), Ferrari-Trecate et al. (1998)
- Finite basis functions: Silverman (1985), Smola & Schölkopf (2000)
- Inducing points: Csató & Opper (2002), Seeger et al. (2003), Snelson & Ghahramani (2005), Titsias (2009)
- Conjugate gradients: Gibbs & MacKay (1996), Davies (2015), Wang et al. (2019)
- Grid structures: Saatçi (2011), Nickson et al. (2015), Wilson & Nickisch (2015)

... and many many more.

What should I do if my dataset has 100,000 datapoints?

Practitioner expects:

- gp_predict(X, Y) ⇒ gp_predict_approx(X, Y)
- accurate predictions, similar behaviour to full GP
- ... maybe gp_predict_approx(X, Y, prediction_sacrifice="1%")

Practitioner gets:

- "Well, which approximation do you want to use?" Too much choice!
- We need *fewer* answers to this question, not more!
- gp_predict_approx_variational(X, Y, num_inducing=100, inducing locations=???, jitter=1e-6, min lengthscale=1e-3)

<u>^</u>

We don't currently provide a black-box answer on how to approximate

Goal: Near-exact approximation, without thinking too hard

So how do current approximations match up to this?

Example: Variational Inducing Points (Titsias, 2009)

Approximation parameters:

- Number of inducing points
- How to pick the inducing points
- Jitter value, for numerical stability

A Relies on manual tuning

- Can't know correct M ahead of time for a new dataset
- Different advice on IP locations
- Jitter to make algorithm run

Figure 3: RMSE for elevators dataset

Example: Conjugate Gradients (Wang et al., 2019)

Approximation parameters:

- Number of probe vectors
- Lower noise limits
- CG termination criterion

• ...

Relies on Manual Tuning

Getting parameters wrong leads to underperformance, or even bad divergence.

Figure 4: RMSE for bike dataset. Noise-free dataset, so full GP gets 0.000 RMSE.

Methods work in the paper, but current default approximation parameters don't work well for all datasets

"I tried <approximation method>,

but the results were bad

... so GPs must be bad. "

Decades of Progress in GP Approximations

- ... have brought us
- many methods, but little clarity on which one to use, and when
- approximations that need tuning, negating promise #2!

Approximate GPs should be robust, no-nonsense tools!

GPs are a **silent workhorse** in data science & stats!

... but approximate scalable GPs are not!

Decades of Progress in GP Approximations

... have also brought us scalable methods, that are extremely accurate, when tuned correctly.

Case study:

Variational Inducing Points (Titsias, 2009)

VS

Conjugate Gradients (Davies, 2015; Gibbs & MacKay, 1996; Wang et al., 2019)

? So which method is better?

Keeping in mind: both are arbitrarily accurate, if tuned correctly.

Common Benchmarking

Some self-criticism (Artemev et al., 2021), but common practice.

- Pick a few datasets
- Run various approximations, possibly with various tuning parameters
- Measure predictive performance, present in a table, **bold** == publish.

		LML		NLPD		RMSE	
		Approx	Cholesky	Approx	Cholesky	Approx	Cholesky
bike n=17379, d=17	Iterative GP	30992.8	31319.1	-2.016	-3.257	0.020	0.014
	SGPR-4096	30502.5	32814.2	-3.280	-3.336	0.010	0.010
	CGLB-4096	37732.7	42023.0	-4.216	-4.329	0.004	0.004
	CGLB-2048	34102.8	38936.7	-3.811	-3.972	0.003	0.003
	CGLB-1024	30493.9	35351.8	-3.403	-3.615	0.005	0.005
elevators n=16599,d=18	Iterative GP	-4709.0	-4705.1	0.407	0.384.	0.353	0.353
	SGPR-4096	-4675.3	-4653.3	0.386	0.386	0.354	0.354
	CGLB-4096	-4669.8	-4659.1	0.386	0.386	0.354	0.354

Benchmarking Problems

⚠ All these methods can be arbitrarily accurate

All convergent approximations, if tuned correctly, should give **exactly the same** results.

⇒ **Any** performance difference, is **purely** down to tuning approximation parameters!

- So we are **not** measuring intrinsic quality of the approximation.
- Instead, we measure the quality of our tuning of the **approximation** parameter.
- Time-quality trade-off is only thing that matters, but not tested!

How Approximations should Work

Currently, approximations work by:

- making a choice for the approximation parameters,
- and then *measuring* the resulting performance.

We should develop methods which

- take a desired tolerance on predictive performance,
- the method runs until this guarantee is satisfied,
- we measure how long it takes to reach this.

How we should be Benchmarking

If approximations worked in this way, benchmarking would be easier too.

Measure time until accuracy target is reached

	Method 1	Method 2	Method 3
Dataset #1	11s	102s	3600s
Dataset #2	2345s	3134s	3714s
Dataset #3	142s	10s	343s

Table 1: Time until with 10% of optimal predictive accuracy

<u>^</u>

For this benchmarking to make sense, methods need to converge to the right answer!

- **Goal: Near-exact approximation, without thinking too hard**
- Compute time is compared to human intervention.
- Methods should be set up such that more time makes them get continuously better, without human intervention.
- ? How can we make methods convergent?

Making Variational Inducing Points Convergent

We know that as $M \to N$, we converge to the true posterior (Burt et al., 2019; 2020).

- To remove *all* tuning, we need to steadily increase the number of inducing points during training.
- Slow due to many repeated training runs, but does remove all tuning!
- Much closer to how method is used in practice!
- This cost **should** be measured in benchmarking!

⚠ This is a difficult and a pain!

Takes lots of effort, but this is the problem we are faced with.

Approximation and Model Specification are Dependent

Approximations will behave strangely, if the true GP they are approximating behave strangely.

Approximation and Model Specification are Dependent

But this is fixed if model misspecification is removed!

Mernel search and approximation are related problems

... and should probably be studied together.

Conclusion

Good approximations to GPs already exist... if you tune them correctly

Procedures should converge to exact solution as they run longer.

⚠ Kernel search and approximation are related problems

... and should probably be studied together.

For more: Recommendations for Baselines and Benchmarking Approx GPs (Ober et al., 2024)

Outlook

Lots of interesting problems are still open:

- **Mathematical**: Can we find *proofs* on how to scale approximation tuning parameters to *guarantee* convergence to an exact solution?
- **Statistical**: How do we solve the statistical and computational problems *together*?
- **Software**: How do we build tools that practitioners can easily use to solve their prediction problems? (Huge current bottleneck!)

Bibliography

- Artemev, A., Burt, D. R., & Wilk, M. van der. (2021). Tighter bounds on the log marginal likelihood of Gaussian process regression using conjugate gradients. *International Conference on Machine Learning*, 362–372.
- Burt, D. R., Rasmussen, C. E., & Wilk, M. van der. (2020). Convergence of Sparse Variational Inference in Gaussian Processes Regression. *Journal of Machine Learning Research*, *21*(131), 1–63. http://jmlr.org/papers/v21/19-1015.html
- Burt, D., Rasmussen, C. E., & Van Der Wilk, M. (2019). Rates of Convergence for Sparse Variational Gaussian Process Regression. In K. Chaudhuri & R. Salakhutdinov (Eds.), *Proceedings of the 36th International Conference on Machine Learning: Vol. 97. Proceedings of the 36th International Conference on Machine Learning.* https://proceedings.mlr.press/v97/burt19a.html
- Csató, L., & Opper, M. (2002). Sparse on-line Gaussian processes. Neural Computation, 14(3).
- Davies, A. J. (2015). Effective implementation of Gaussian process regression for machine learning.
- Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., & Zoubin, G. (2013,). Structure discovery in nonparametric regression through compositional kernel search. *International Conference on Machine Learning*.
- Ferrari-Trecate, G., Williams, C., & Opper, M. (1998). Finite-dimensional approximation of Gaussian processes. Advances in Neural Information Processing Systems.

- Gibbs, M., & MacKay, D. (1996). Efficient implementation of gaussian processes.
- Nickson, T., Gunter, T., Lloyd, C., Osborne, M. A., & Roberts, S. (2015). Blitzkriging: Kronecker-structured stochastic Gaussian processes. *Arxiv Preprint Arxiv:1510.07965*.
- Ober, S. W., Artemev, A., Wagenländer, M., Grobins, R., & Wilk, M. van der. (2024,). *Recommendations for Baselines and Benchmarking Approximate Gaussian Processes*. https://arxiv.org/abs/2402.09849
- Saatçi, Y. (2011). Scalable inference for structured Gaussian process models.
- Seeger, M. W., Williams, C. K., & Lawrence, N. D. (2003,). Fast forward selection to speed up sparse Gaussian process regression. *International Workshop on Artificial Intelligence and Statistics*.
- Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. *Journal of the Royal Statistical Society: Series B (Methodological)*, *47*(1).
- Smola, A. J., & Schölkopf, B. (2000,). Sparse Greedy Matrix Approximation for Machine Learning. *Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000).*
- Snelson, E., & Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs. *Advances in Neural Information Processing Systems*, 18.

- Titsias, M. (2009,). Variational learning of inducing variables in sparse Gaussian processes. *Artificial Intelligence and Statistics*.
- Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K. Q., & Wilson, A. G. (2019,). Exact Gaussian Processes on a Million Data Points. *Advances in Neural Information Processing Systems*.
- Wilson, A., & Nickisch, H. (2015,). Kernel interpolation for scalable structured Gaussian processes (KISS-GP). *International Conference on Machine Learning*.
- Zhu, H., Williams, C. K., Rohwer, R., & Morciniec, M. (1997). Gaussian regression and optimal finite dimensional linear models.