Cím

Princzes Barnabás

2023. március 16.

Kivonat

Lent hagytam a füzetem és jövő héten doga szóval time to kick ass! Írjunk egy jó kis jegyzetet.

1. Alapok

Van a $\{B\}A\{K\}$ azaz a Bemeneti feltétel (egy logikai állítás) Algoritmus és Kimeneti feltétel (szintén egy logikai állítás).

Legyen A algoritmus. e_1, \ldots, e_m elemi műveletek az algoritmusban és t_i az edott e_i -hez tartozó időigény. Az algoritmus tényleges futási ideje T(A,x) ahol x egy bemenet és a bemenet mérete |x| például (tömb, halmaz...) esetében az elemek száma. Az e_i és t_i és |x| együtt a bonyolultság mértéke.

2. Esetek

• Legjobb eset:

$$T_{lj} = \min\{T(A, x) : |x| = n\}$$

• Legrosszabb eset:

$$T_{lr} = \max\{T(A, x) : |x| = n\}$$

 \bullet Átlagos eset: Legyen $\Pr(x)$ annak a valószínűsége, hogy éppxleszAalgoritmus bemenete, ekkor

$$T_a(A, n) = \sum_{|x|=n} \Pr(x)T(A, x)$$

Itt Keres(A, n, x) futási ideje: $c_1 + (i+1)c_2 + ic_3 + c_4$

$$T_{lj} = c_1 + c_2 + c_4 = O(1)$$

$$T_{lr} = c_1 + (n+1)c_2 + nc_3 + c_4 = (c_2 + c_3)n + c_1 + c_2 + c_4 = O(n)$$

$$T_a(n) = \sum_{i=0}^n Pr((A, n, x))(c_1 + (i+1)c_2 + ic_3 + c_4)$$