Big data science Day 1 - Hands on

F. Legger - INFN Torino

What we will use

- Python with Jupyter notebooks
- Prerequisites: some familiarity with numpy and pandas
 - Day 1: familiarise with ML dataset, parquet files
- ML libraries
 - Day 2: MLlib
 - Gradient Boosting Trees GBT
 - Multilayer Perceptron Classifier MCP
 - Day 3: Keras
 - Sequential model
 - Day 4: bigDL
 - Sequential model

Input dataset for hands-on

- Open HEP dataset @UCI https://archive.ics.uci.edu/ml/datasets/HIGGS
- Signal (heavy Higgs) + background (ttbar)

Baldi, Sadowski, and Whiteson. "Searching for Exotic Particles in High-energy Physics with Deep Learning." Nature Communications 5

Input dataset

- Open HEP dataset @UCI, 7GB (.csv)
- 10M Monte Carlo events
 - 21 low level features
 - pt's, angles, MET, b-tag, …
 - 7 high level features
 - Invariant masses (m(jj),
 m(jjj), ...)
- Smaller datasets for code testing (1M, 100k)
- You'll find them on HDFS

Hands-on today

- You will familiarize with jupyter notebooks, numpy and pandas
- Input data:
 - efficient format: convert CSV to Parquet
 - A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values
 - And Apache parquet?
 - Create input for ML. Format depends on chosen ML library, in our case MLLib from Apache
- Visualization
 - explore dataset, plot features
 - correlation matrix
- Slides and notebooks available on github https://github.com/leggerf/MLCourse-1819

How to start

- 1. Point your browser to: https://yoga.to.infn.it
- 2. **Authenticate** through github
- 3. Open a terminal:
 - o git clone https://github.com/leggerf/MLCourse-1819.git
 - o cp MLCourse-1819/Notebooks/Day1/* .
- 4. From JupyterHub Home tab:
 - start and run inputForML_day1.ipynb

