Abstract Algebra: Homework #1

Joel Savitz

Wednesday 27 May 2020

1 Chapter 3: Excercise A1

Suppose * is defined on \mathbb{R} as a*b=a+b+k for any $a,b\in\mathbb{R}$ for some $k\in\mathbb{R}$.

Theorem 1. $\langle \mathbb{R}, * \rangle$ is a group.

Proof. Let a, b, and c be some arbitrary real numbers. Because $a*b=a+b+k\in\mathbb{R}$, we have that the real numbers are closed under *. Then, observe that a*(b*c)=a*(b+c+k)=a+(b+c+k)+k=(a+b+k)+c+k=(a+b+k)*c=(a*b)*c, so * is associative. We also have a*-k=a+(-k)+k=-k+a+k=-k*a=a, so -k is the identity for the real numbers under * Finally, consider the quantity -(2k+a). Since we have a*-(2k+a)=a+(-2k)+(-a)+k=-(2k+a)*a=-k, that quantity is the inverse of any a. Since * is closed under the real numbers and * is associative and -k is the identity of * under the real numbers and any real number a has an inverse under * of -(2k-a), $(\mathbb{R},*)$ is a group. \square