$A.\ \Pi.\ \Pi$ ожидaев

Лекции по теории колец

Новосибирск

2012

Оглавление

1	Час	ть І	4
	§1	Ω -алгебры, теоремы о гомоморфизмах	4
	$\S 2$	Тензорное произведение пространств	7
	§3	Модули	10
	§4	Радикал Джекобсона	12
	§5	Артиновы кольца	16
	§6	Полупростые артиновы кольца	18
	§7	Простое радикальное кольцо	21
	§8	Примитивные кольца. Теорема плотности	25
	§ 9	Подпрямая сумма	30
	§10	Тензорное произведение алгебр	32
	§11	Группа Брауэра	34
	§12	Максимальные подполя	35
	§ 13	Молули нал полупростыми артиновыми кольпами	37

Час	ть II	38
§1	Автоморфизмы и дифференцирования	38
§2	Теорема Фробениуса и теорема о двойном централизаторе	40
§3	О радикале кольца $R[t]$	41
§4	Стандартные тождества	42
§ 5	Теорема Капланского	45
§6	Проблема Куроша для РІ-алгебр	47
§7	Лемма Ширшова	50
§8	Теорема Ширшова о высоте	52
§9	Теорема Оре	55
§10	Теоремы Голди	56
§11	S-градуированные алгебры и супералгебры	60
§12	Классификация простых конечномерных ассоциативных	
	супералгебр над алгебраически замкнутыми полями	64
§13	PI-супералгебры и полупервичные супералгебры	66
Іредметный указатель		67

Глава 1

Часть І

Мы начинаем изложение с общих теорем о гомоморфизмах и тензорном произведении, после чего переходим к построению структурной теории колец, в основе которой лежит понятие радикала Джекобсона. А цель любой структурной теории — описать общие объекты через простые.

§1 Ω -алгебры, теоремы о гомоморфизмах

 Ω -Алгеброй над полем Φ называется линейное пространство A над Φ , на котором задана система полилинейных алгебраических операций $\Omega = \{\omega_i : |\omega_i| = n_i \in N, \ i \in I\}$, где символом $|\omega_i|$ обозначена арность операции ω_i .

Подпространство B Ω -алгебры A называется *подалгеброй*, если $\omega(b_1,\ldots,b_n)\in B$ для любых $b_1,\ldots,b_n\in B$ и $\omega\in\Omega,\,|\omega|=n.$

Подалгебра I Ω -алгебры A называется $u\partial eanom$, если $\omega(a_1,\ldots,a_{i-1},c,a_{i+1},\ldots,a_n)\in I$ для любых $a_1,\ldots,a_n\in A,\ c\in I,$ $\omega\in\Omega$ $(|\omega|=n)$ и любого $1\leq i\leq n.$

Если I — идеал в A, то мы можем рассмотреть фактор-пространство $A/I:=\{a+I:a\in A\}$ и определить на нём операции правилом:

$$\omega(a_1+I,\ldots,a_n+I)=\omega(a_1,\ldots,a_n)+I$$

для любых $a_i\in A$ и $\omega\in\Omega,$ $|\omega|=n.$ Легко проверить, что данные операции определены корректно и относительно них A/I становится Ω -

Часть І

алгеброй, которую называют фактор-алгеброй алгебры A по идеалу I (напомним, что $a_1 + I = a_2 + I \iff a_1 - a_2 \in I$).

Пусть A и $B-\Omega$ -алгебры с одной и той же системой операций Ω . Линейное отображение $\phi:A\mapsto B$ называется гомоморфизмом из A в B, если

$$\phi\left(\omega(a_1,\ldots,a_n)\right) = \omega(\phi(a_1),\ldots,\phi(a_n))$$

для любых $a_i \in A$ и $\omega \in \Omega$, $|\omega| = n$. Гомоморфизм ϕ : $A \mapsto B$ называется эпиморфизмом, если его образ совпадает с B, т.е. $\mathrm{Im}\,\phi = B$. Множество $\mathrm{Ker}\,\phi := \{x \in A : \phi(x) = 0\}$ называется ядром гомоморфизма ϕ . Если $\mathrm{Ker}\,\phi = 0$, то такой гомоморфизм называется мономорфизмом. Гомоморфизм, являющийся мономорфизмом и эпиморфизмом, называется изоморфизмом.

Теорема 1. Пусть $A, B - \Omega$ -алгебры над F и $\phi \in \operatorname{Hom}_F(A, B)$. Тогда $\operatorname{Ker} \phi \subseteq A$ и $A/\operatorname{Ker} \phi \cong \operatorname{Im} \phi$.

 \mathcal{A} оказательство. Пусть $a\in \mathrm{Ker}\,\phi.$ Тогда для любых $x_i\in A,\omega\in\Omega$ имеем

$$\phi(\omega(x_1,\ldots,a,\ldots,x_n)) = \omega_\phi(\phi(x_1),\ldots,\phi(a),\ldots,\phi(x_n)) = 0.$$

Следовательно, $\omega(x_1,\ldots,a,\ldots,x_n) \in \mathrm{Ker} \ \phi$.

Определим $\psi: A/\mathrm{Ker}\ \phi \mapsto \mathrm{Im}\ \phi$ правилом: $\psi(a+I) = \phi(a)$.

Корректность: $a + I = a_1 + I \Rightarrow a - a_1 \in I, \psi(a_1 + I) = \phi(a_1), \phi(a) = \phi(a_1).$

Биективность ψ очевидна.

Гомоморфность:
$$\psi(\omega(x_1 + I, ..., x_n + I)) = \psi(\omega(x_1, ..., x_n) + I) = \phi(\omega(x_1, ..., x_n)) = \omega_{\phi}(\phi(x_1), ..., \phi(x_n)) = \omega_{\phi}(\psi(x_1 + I), ..., \psi(x_n + I)).$$

Теорема 2. Пусть $A, B - \Omega$ -алгебры над F и $\phi \in \text{Hom }_F(A, B)$, $I := \text{Ker } \phi, \text{Im } \phi = B$. Тогда идеалы из A, содержащие I, находятся во взаимно однозначном соответствии c идеалами из B.

 \mathcal{A} оказательство. Пусть $J \unlhd A, I \subseteq J$. Покажем, что $\phi(J) \unlhd B$. Пусть $b \in \phi(J)$. Тогда $b = \phi(a), a \in J$. Имеем

$$\omega_{\phi}(y_1, \dots, b, \dots, y_n) = \omega_{\phi}(\phi(x_1), \dots, \phi(a), \dots, \phi(x_n)) =$$
$$\phi(\omega(x_1, \dots, a, \dots, x_n)) \in \phi(J).$$

Определим отображение $\psi_1,$ ставящее в соответствие идеалу J идеал $\phi(J).$

Определим отображение ψ_2 , ставящее в соответствие идеалу $H \leq B$ идеал $\psi_2(H) := \{x \in A : \phi(x) \in H\}$. Покажем, что $\psi_2(H)$ — действительно идеал в A. Пусть $a \in \psi_2(H)$, т.е. $\phi(a) \in H$. Тогда $\phi(\omega(x_1,\ldots,a,\ldots,x_n)) = \omega_\phi(\phi(x_1),\ldots,\phi(a),\ldots,\phi(x_n)) \in \omega_\phi(\phi(x_1),\ldots,H,\ldots,\phi(x_n)) \subseteq H$. Следовательно, $\omega(x_1,\ldots,a,\ldots,x_n) \in \psi_2(H)$. Покажем взаимно однозначность, т.е. докажем, что

- 1). $\psi_2 \psi_1(J) = J$;
- 2). $\psi_1 \psi_2(H) = H$.
 - 1). $\psi_1(J) = \phi(J) \Rightarrow \psi_2 \psi_1(J) = \psi_2 \phi(J) = \{x \in A : \phi(x) \in \phi(J)\}.$ Покажем, что $\psi_2 \phi(J) = J.$
 - а). Если $a \in J$, то $a \in \psi_2 \phi(J)$, т.е. $J \subseteq \psi_2 \phi(J)$.
- b). Если $b \in \psi_2 \phi(J)$, то $\phi(b) \in \phi(J)$, т.е. $\phi(b) = \phi(j)$ для некоторого $j \in J$. Тогда $\phi(b-j) = 0$, т.е. $b-j \in I$ и $b \in J$.
 - 2). $\psi_1 \psi_2(H) = \phi \psi_2(H) = \phi (\{x \in A : \phi(x) \in H\}) \subseteq H$.

Пусть $b \in H$, тогда существует $a \in A$ такой, что $b = \phi(a) \in H$. Следовательно, $a \in \psi_2(H)$, а потому $b \in \phi \psi_2(H)$.

Теорема 3. Пусть $A, B \unlhd C - \Omega$ -алгебры над F. Тогда $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.

 \mathcal{A} о к а з а T е A ь C T в о. $A \cap B \subseteq C, A \cap B \subseteq B$. Пусть $\phi: A + B \mapsto \frac{B}{A \cap B}$ такое, что $\phi(a+b) = b+I$, где $I:=A \cap B$.

- 1). Корректность. $a + b = a' + b' \Rightarrow a a' = b' b \in I$.
- 2). $\phi \in \operatorname{Hom}_F(A+B,B/I)$:

$$\phi(\omega(a_1+b_1,\ldots,a_n+b_n)) = \phi(a+\omega(b_1,\ldots,b_n)) =$$

$$\omega(b_1,\ldots,b_n) + I = \omega(b_1+I,\ldots,b_n+I) =$$

$$\omega(\phi(a_1+b_1),\ldots,\phi(a_n+b_n)).$$

- 3). Сюръективность очевидна.
- 4). Ker $\phi=A:x\in A\Rightarrow \phi(x+0)=0+I\Rightarrow x\in {\rm Ker}\,\phi.$ Обратно, $x\in {\rm Ker}\,\phi, x=a+b\Rightarrow \phi(x)=b+I=0+I\Rightarrow b\in I\Rightarrow x\in A.$ По теореме 1, $\frac{A+B}{A}\cong \frac{B}{A\cap B}.$

Теорема 4. Пусть $I, J \subseteq A, I \subseteq J$. Тогда $\frac{A}{I}/\frac{J}{I} \cong \frac{A}{J}$.

 \mathcal{A} оказательство. Определим $\psi:\frac{A}{I}\mapsto\frac{A}{J}$ правилом $\psi(a+I)=a+J.$

- 1). Корректность очевидна.
- 2). Гомоморфность:

$$\psi(\omega(\bar{x}_1,\ldots,\bar{x}_n)) = \psi(\omega(x_1,\ldots,x_n) + I) =$$

$$\omega(x_1,\ldots,x_n)+J=\omega(\psi(x_1),\ldots,\psi(x_n)).$$

3). Ker
$$\psi = J/I$$
.

§2 Тензорное произведение пространств

Теорема 1. Для любых векторных пространств V_1, \ldots, V_m над полем F существуют единственные (с точностью до изоморфизма) векторное пространство T и полилинейное отображение $\tau: V_1 \times \ldots \times V_m \mapsto T$, такие что: 1). Іт τ порождает T; 2). Для всякого полилинейного отображения $\phi: V_1 \times \ldots \times V_m \mapsto W$ в векторное пространство W над F существует линейное отображение $\phi_0: T \mapsto W$ такое, что $\phi = \tau \phi_0$.

 \mathcal{A} оказательство. Пусть $T=L^*$, где $L=\{f:V_1\times\ldots\times V_m\mapsto F:f$ полилинейно и $\dim\langle Supp\ f\rangle<\infty\}$, где $Supp\ f:=\{v_1+\ldots+v_m\in V_1\oplus\ldots\oplus V_m:f(v_1,\ldots,v_m)\neq 0\}.$

Для $v_i \in V_i$ обозначим через $v_1 \otimes \ldots \otimes v_m$ отображение из L в F такое, что

$$v_1 \otimes \ldots \otimes v_m(f) = f(v_1, \ldots, v_m).$$

Это отображение линейно. Положим $\tau(v_1,\dots,v_m)=v_1\otimes\dots\otimes v_m$. Очевидно, что τ полилинейно. Проверим 1). Пусть $\{e_i^{(k)}\}$ — база V_k . Достаточно показать, что $\{e_{i_1}^{(1)}\otimes\dots\otimes e_{i_m}^{(m)}\}$ — база T. Легко видеть, что $\{e_{i_1\dots i_m}^*\}$ — база в L, где

$$e_{i_1...i_m}^*(e_{j_1}^{(1)},\ldots,e_{j_m}^{(m)}) = \delta_{i_1,j_1}\cdot\ldots\cdot\delta_{i_m,j_m} = e_{j_1}^{(1)}\otimes\ldots\otimes e_{j_m}^{(m)}(e_{i_1...i_m}^*),$$

где δ_{ij} — символ Кронекера, откуда следует, что $\{e_{i_1}^{(1)}\otimes\ldots\otimes e_{i_m}^{(m)}\}$ — дуальная база к $\{e_{i_1\ldots i_m}^*\}$.

Докажем 2). Пусть такое ϕ задано. Возьмём в T базу $\{e_{i_1}^{(1)}\otimes\ldots\otimes e_{i_m}^{(m)}\}$. Мы должны положить

$$\phi_0(e_{i_1}^{(1)} \otimes \ldots \otimes e_{i_m}^{(m)}) = \phi(e_{i_1}^{(1)}, \ldots, e_{i_m}^{(m)}).$$

Продолжим далее ϕ_0 по линейности на T. Тогда для любых $v_i \in V_i$ имеем

$$\phi(v_1, \dots, v_m) = \phi\left(\sum_i \alpha_{1i} e_i^{(1)}, \dots, \sum_j \alpha_{mj} e_j^{(m)}\right) =$$

$$\sum_{i} \dots \sum_{j} \alpha_{1i} \dots \alpha_{mj} \phi(e_i^{(1)}, \dots, e_j^{(m)}) =$$

$$= \sum_{i} \dots \sum_{j} \alpha_{1i} \dots \alpha_{mj} \phi_0(e_i^{(1)} \otimes \dots \otimes e_j^{(m)}) =$$

$$\sum_{i} \dots \sum_{j} \alpha_{1i} \dots \alpha_{mj} \phi_0(\tau(e_i^{(1)}, \dots, e_j^{(m)})) = \tau \circ \phi_0(v_1, \dots, v_m),$$

откуда $\phi = \tau \circ \phi_0$.

Докажем единственность. Пусть T', τ' — другая пара со свойствами 1) и 2). Возьмём вместо ϕ отображение τ' . Тогда существует линейное отображение $\tau'_0: T \mapsto T'$ такое, что

$$\tau \tau_0' = \tau'. \tag{1}$$

Аналогично, существует линейное отображение $\tau_0: T' \mapsto T$ такое, что

$$\tau'\tau_0 = \tau. \tag{2}$$

Следовательно, $\tau'\tau_0\tau_0'=\tau'$. Так как $\operatorname{Im}\tau'=T'$, то $\tau_0\tau_0'=1_{T'}$. Аналогично, $\tau_0'\tau_0=1_T$, т.е. τ_0 и τ_0' взаимно обратны и $T\cong T'$.

Пространство T, построенное в теореме 1, называется mензорным nроизведением пространств V_1, \ldots, V_m и обозначается через $V_1 \otimes_F \ldots \otimes_F V_m$, или просто $V_1 \otimes \ldots \otimes V_m$.

Следствие. Пусть $\{e_i^{(k)}\}$ — база $V_k,\ k=1,\ldots,m$. Тогда $\{e_{i_1}^{(1)}\otimes\ldots\otimes e_{i_m}^{(m)}\}$ — база $V_1\otimes\ldots\otimes V_m$.

Рассмотрим ещё один подход к построению тензорного произведения пространств.

Пусть V, U, W — линейные пространства над полем F. Рассмотрим множество $V \times_s U$ формальных сумм $\sum_i \alpha_i(v_i, u_i)$, где $(v_i, u_i) \in V \times U$ $(V \times U$ — декартово произведение V и U как множеств), $\alpha_i \in F$. Тогда множество $V \times_s U$ является линейным пространством над F.

Отображение f из $V \times_s U$ в пространство W называется cбалансированным, если выполнены следующие условия:

$$f(\sum \alpha_i(v_i, u_i)) = \sum \alpha_i f(v_i, u_i),$$

$$f(v_1 + v_2, u) = f(v_1, u) + f(v_2, u),$$

$$f(v, u_1 + u_2) = f(v, u_2) + f(v, u_2),$$

 $f(\alpha(v, u)) = f(\alpha v, u) = f(v, \alpha u),$

здесь $v, v_1, v_2 \in V, u, u_1, u_2 \in U$ и $\alpha \in F$.

Пусть $f:V\times_s U\mapsto W$ и $g:V\times_s U\mapsto Z$ — сбалансированные отображения в пространства W и Z. Будем говорить, что отображение f факторизуемо с помощью пространства Z, если найдётся такое линейное отображение $h:Z\mapsto W$, что f=hg, т.е. f(v,u)=h(g(v,u)).

В пространстве $V \times_s U$ рассмотрим подпространство T, порождённое элементами

$$(v_1 + v_2, u) - (v_1, u) - (v_2, u),$$

 $(v, u_1 + u_2) - (v, u_1) - (v, u_2),$
 $(\alpha v, u) - (v, \alpha u), \quad \alpha(v, u) - (\alpha v, u),$

где $\alpha \in F$. Пусть $V \otimes U$ — фактор-пространство $V \times_s U$ по подпространству T. Обозначим через $v \otimes u$ образ элемента (v,u) в пространстве $V \otimes U$.

Легко показать, что отображение $f: V \times_s U \mapsto V \otimes U$ $(f(\sum (v_i, u_i)) = \sum v_i \otimes u_i)$ является сбалансированным и для любого $\alpha \in F$ выполняется

$$\alpha(v \otimes u) = \alpha v \otimes u = v \otimes \alpha u.$$

Каждый элемент пространства $V\otimes U$ имеет вид $\sum v_i\otimes u_i$, где $v_i\in V$, $u_i\in U$, а любое сбалансированное отображение из $V\times_s U$ в произвольное пространство Z факторизуемо с помощью $V\otimes U$.

Заметим, что для любого билинейного отображения t из $V \times U$ в произвольное пространство Z найдётся такое линейное отображение g: $V \otimes U \mapsto Z$, что t(v,u) = g(f(v,u)).

Пространство $V\otimes U$ называется тензорным произведением пространств V и U над полем F и обозначается как $V\otimes_F U$.

Теорема 2. Справедливы следующие утверждения.

- 1). Пространство $V \otimes_F F$ изоморфно V.
- 2). Пусть $V = V_1 \oplus V_2$, где V_1, V_2 подпространства в V, и U произвольное пространство. Тогда пространство $V \otimes_F U$ изоморфно пространству $V_1 \otimes_F U \oplus V_2 \otimes_F U$.
- 3). Пусть v_1, \ldots, v_k линейно независимые элементы пространства V. Тогда равенство $\sum_{i=1}^k v_i \otimes u_i = 0$ влечёт $u_i = 0$.

- 4). Пусть v_1, \ldots, v_k базис пространства V и u_1, \ldots, u_n базис пространства U. Тогда $v_i \otimes u_j$ базис пространства $V \otimes U$.
- 5). Отображение $\phi: V \otimes_F U \mapsto U \otimes_F V$, заданное правилом $\phi(v \otimes u) = u \otimes v$, является изоморфизмом пространств.
- 6). Отображение $\phi: (V \otimes_F U) \otimes_F W \mapsto V \otimes_F (U \otimes_F W)$, заданное правилом $\phi((v \otimes u) \otimes w) = v \otimes (u \otimes w)$, является изоморфизмом пространств.

Упражнение. Доказать теорему 2.

§3 Модули

Пусть R — ассоциативное кольцо. Абелева группа M называется R-модулем, если определено отображение $M \times R \mapsto M$ (переводящее (m,r) в mr) такое, что

- 1). m(a + b) = ma + mb;
- 2). $(m_1 + m_2)a = m_1a + m_2a;$
- 3). (ma)b = m(ab)

для любых $m, m_1, m_2 \in M, a, b \in R$.

Если $1 \in R$ и m1 = m для любого $m \in M$, то M называется унитарным (унитальным).

ПРИМЕРЫ. 1). R — кольцо, $\rho \leq_r R$. Тогда R действует справа на ρ , т.е. ρ — правый R-модуль.

- 2). Пусть $(R/\rho; +)$ фактор-группа. Положим $(x + \rho)r = xr + \rho$.
- 3). M=V векторное пространство над полем $F,\,R=F.$ При этом $v\alpha=0 \Leftrightarrow v=0$ или $\alpha=0.$ Над произвольным кольцом это не так.

Говорим, что M — точный R-модуль, если $Mr = 0 \Leftrightarrow r = 0$.

Определим $A(M) := \{x \in R : Mx = 0\}.$

Лемма 1. $A(M) \subseteq R$ u M — точный (R/A(M))-модуль.

 \mathcal{A} о к а з а т е ль с т в о. Положим m(r+A(M))=mr. Корректность очевидна. Если m(r+A(M))=0 для любого $m\in M$, то Mr=0.

Для $a \in R$ положим: $T_a: M \mapsto M, \ mT_a = ma$. Тогда $T_a \in E(M)$, где E(M) — кольцо всех аддитивных отображений на M. Рассмотрим отображение $T: R \mapsto E(M), \ a \mapsto T_a$. Имеем $T(a+b) = T(a) + T(b), \ T(ab) = T(a)T(b), \ \text{т.e.} \ T \in \text{Hom} \ (R, E(M)), \ \text{Ker} \ T = A(M)$. Таким образом, нами доказана

Лемма 2. $R/A(M) \cong B \leq E(M)$.

Следовательно, если M — точный R-модуль, то мы можем рассматривать R как подкольцо в E(M). Как расположено это подкольцо в E(M)?

 \underline{U} ентрализатором кольца R на M называется кольцо

$$C(M) = \{ \psi \in E(M) : T_a \psi = \psi T_a \forall a \in R \}.$$

Таким образом, если $\psi \in C(M)$, то $(m\psi)a = (ma)\psi$ и C(M) — гомоморфизмы в себя как R-модуля, т.е. C(M) — кольцо всех модульных эндоморфизмов M.

R-модуль M называется nenpusodumым, если $MR \neq 0$ и единственными подмодулями в M являются 0 и M.

Централизатор на неприводимом модуле имеет особое строение.

Теорема 1 (лемма Шура). M — неприводим \Rightarrow C(M) — тело.

 \mathcal{A} о к а з а т е ль с т в о. Покажем, что для любого ненулевого $\theta \in C(M)$ существует $\theta^{-1} \in C(M)$. Достаточно найти $\theta^{-1} \in E(M)$. Действительно, если существует $\theta^{-1} \in E(M)$, то из $\theta T_a = T_a \theta$ следует $\theta^{-1} T_a = T_a \theta^{-1}$.

Пусть $\theta \in C(M)$, $\theta \neq 0$. Если $M\theta = W$, то для любого $r \in R$ имеем

$$Wr = WT_r = (M\theta)T_r = (MT_r)\theta \subseteq M\theta = W.$$

Следовательно, W — подмодуль в M, а потому $M\theta = M$. Аналогично, $\operatorname{Ker} \theta = 0$. Следовательно, θ — изоморфизм и существует $\theta^{-1} \in E(M)$.

ПРИМЕРЫ. 1). F — поле, $M_n(F)$ — алгебра матриц, F_n — пространство строк. Для $A\subseteq M_n(F)$ через $\bar{A}=alg\,\langle A\rangle$ обозначим подалгебру в $M_n(F)$, порождённую A. Тогда F_n — точный неприводимый модуль над $M_n(F)$, а потому F_n — точный модуль над \bar{A} , F_n — унитарный неприводимый модуль над $M_n(F)$.

Множество матриц A называется неприводимым, если F_n неприводим как \bar{A} -модуль. В матричных терминах это равносильно тому, что не существует такой $S \in M_n(F)$, что

$$S^{-1}aS = \left(\begin{array}{cc} a_1 & 0\\ * & a_2 \end{array}\right)$$

для любой $a \in A$.

Централизатором множества A (\bar{A}) на F_n называется множество всех матриц из $M_n(F)$ перестановочных с каждой матрицей из A.

Центром кольца R называется множество Z(R) элементов кольца R, перестановочных со всеми элементами кольца. Если F — алгебраически замкнутое поле, то единственным телом, содержащим F в своём центре и конечномерным над F, является F (это мы покажем позже), поэтому централизатор неприводимого множества матриц в этом случае состоит только из скалярных матриц, т.е. справедлива

Теорема (классическая лемма Шура). Если F — алгебраически замкнутое поле, то централизатор неприводимого множества матриц состоит только из скалярных матриц.

- 2). Упражнение. Пусть $F=\mathbb{R},$ $A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix};$ $\{A\}$ неприводимо, а его централизатор тело, изоморфное $\mathbb{C}.$
- 3). Упраженение. $A=-e_{12}+e_{21}-e_{34}+e_{43},\ B=-e_{13}+e_{31}+e_{24}-e_{42}.$ $\{A,B\}$ неприводимо, а его централизатор тело, изоморфное телу кватернионов.

Лемма 3. Если M — неприводимый R-модуль, то $M\cong R/\rho$ для некоторого максимального правого идеала $\rho \leq_{max}^r R$. Далее, существует $a\in R$ такой, что $x-ax\in \rho$ для любого $x\in R$. Обратно, если $\rho \leq_{max}^r R$ и существует $a\in R$ такой, что $x-ax\in \rho$ для любого $x\in R$, то R-модуль R/ρ неприводим.

 \mathcal{A} о казательство. 1). $MR \neq 0$. 2). $S = \{m \in M : mR = 0\} \leq M \Rightarrow S = 0$. Таким образом, если $m \in M$, $m \neq 0$, то $mR \neq 0$. Но $mR \leq M$, а потому mR = M. Определим $\psi : R \mapsto M$ правилом $\psi(r) = mr$. Тогда $\psi \in \operatorname{Hom}(R,M), \ \rho = \operatorname{Ker} \psi = \{x \in R : mx = 0\} \leq_r R$. Следовательно, по теореме о гомоморфизмах $M \cong R/\rho$.

Если $I \leq_r R$ и $\rho \subseteq I$, то $\psi(I) \leq M \Rightarrow \rho \leq_r^{max} R$. Далее, mR = M, а значит существует $a \in R$ такой, что ma = m. Следовательно, для любого $x \in R$ имеем max = mx, $m(x - ax) = 0 \Rightarrow x - ax \in \rho$.

Упраженение. Доказать обратное утверждение.

§4 Радикал Джекобсона

Paдикалом Джекобсона кольца называется совокупность элементов из R, которые аннулируют все неприводимые R-модули и само кольцо, если неприводимых модулей не существует. Обозначение: J(R) — радикал Джекобсона.

 Π усть \mathfrak{M} — множество всех неприводимых правых R-модулей. По определению, $J(R) = \bigcap A(M)$. Так как $A(M) \subseteq R$, то $J(R) \subseteq R$.

Из леммы 3 §3 следует определение: правый идеал ρ в R называется регулярным, если существует $a \in R$ такой, что $x - ax \in \rho$ для любого $x \in R$. Обозначение: $\rho \unlhd_{reg} R$ или $\rho \unlhd^{reg} R$.

Если в кольце есть (левая) единица, то любой правый идеал кольца будет регулярным.

Пусть $\rho \leq^r R$. Положим

$$(\rho:R) := \{x \in R : Rx \subseteq \rho\}.$$

Теорема 1. $J(R) = \bigcap_{\rho \leq \frac{r, reg}{max} R} (\rho:R), \ a\ (\rho:R) -$ наибольший идеал кольца R, лежащий в ρ .

$$\mathcal{ \, \, | }$$
 Доказательство. Имеем $J(R)=\bigcap_{M\cong R/\rho,\rho \trianglelefteq \max_{r,r\in g}R}A(M).$ Далее,

$$x \in A(M) \iff Mx = 0 \iff (x + \rho)x = \rho \ \forall r \in R$$

$$\iff Rx \subseteq \rho \iff x \in (\rho : R).$$

Следовательно, $(\rho : R) = A(M)$.

Если $x\in(\rho:R),\ x-ax\in\rho\Rightarrow ax\in\rho\Rightarrow x\in\rho.$ Если $(\rho:R)\subseteq S\subseteq$ $ho,S \unlhd R$, то $S \subseteq (
ho:R)$. Значит, (
ho:R) — наибольший двусторонний идеал кольца R, лежащий в ρ .

Лемма 1. Если $\rho \leq_r^{reg} R$, то ρ содержится в некотором максимальном правом идеале, который также регулярен.

Доказательство. Пусть $a \in R$ такой, что $x - ax \in \rho$ для любого $x \in R$. Пусть \mathcal{M} — множество всех собственных правых идеалов из R, содержащих ρ . Если $\rho' \in \mathcal{M}$, то $a \notin \rho'$, иначе $ax \in \rho'$, $x - ax \in \rho \subseteq \rho' \Rightarrow$ ho'=R. В частности, $a
ot\in
ho.$ Следовательно, к $\mathcal M$ можно применить лемму Цорна. Пусть ρ_0 — максимальный элемент из \mathcal{M} , тогда он и является искомым.

Теорема 2.
$$J(R) = \bigcap_{\rho \leq \stackrel{r,reg}{max}R} \rho.$$

Доказательство. По теореме 1, $J(R) = \bigcap_{\substack{\rho \leq r, reg \\ R}} (\rho:R)$, а так как

 $(\rho:R)\subseteq \rho$, то $J(R)\subseteq \bigcap_{\substack{\rho\leq rac{r,reg}{max}R}} \rho$. С другой стороны, пусть $\bigcap_{\substack{\rho\leq rac{r,reg}{max}R}} \rho= au$

и $x \in \tau$. Покажем, что $I = \{xy + y : y \in R\} = R$. Действительно, если это не так, то $I \leq^{r,reg} R$ $(a = -x) \Rightarrow I \subseteq \rho_0$, где $\rho_0 \leq^{r,reg}_{max} R$. Так как $x \in \bigcap_{\substack{\rho \leq r,reg \\ max}} \rho \Rightarrow x \in \rho_0 \Rightarrow xy \in \rho_0 \Rightarrow y \in \rho_0$ для любого $y \in R$.

Следовательно, существует $w \in R$ такой, что xw+w=-x, т.е. x+w+xw=0. Если $\tau \not\subseteq J(R)$, то существует неприводимый R-модуль M такой, что $M\tau \neq 0$. Значит, $m\tau \neq 0$ для некоторого $m \in M$. Так как $m\tau \unlhd M$, то $m\tau = M$. Следовательно, существует $t \in \tau$ такой, что mt=-m. По доказанному, существует $s \in R$ такой, что t+s+ts=0. Имеем 0=m(s+t+st)=ms+mt+mts=-m. Получили противоречие. \square

При доказательстве мы обнаружили, что для любого $x \in J(R)$ существует $y \in R$ такой, что x + y + xy = 0.

Элемент $a \in R$ называется npaso- $\kappa sasuperулярным$ элементом, если существует $b \in R$ такой, что a+b+ab=0. Элемент b называется npasum- $\kappa sasuo spam ным$ для a. Идеал I (левый, правый, двусторонний) называется npaso- $\kappa sasuperулярным$, если все его элементы право- $\kappa sasuperулярны$ (обозначение: $I \leq_{qr} R$.).

 $\mathit{Упраженениe}.$ Если $1 \in R,$ то a — право-квазирегулярный элемент \Leftrightarrow 1+a обратим справа в R.

В ходе доказательства теоремы 2 мы установили, что

- 1). J(R) правый квазирегулярный идеал в R;
- 2). если ρ правый квазирегулярный идеал в R, то $\rho \subseteq J(R)$.

Таким образом, нами доказана

Теорема 3. J(R) — единственный максимальный правоквазирегулярный идеал в R.

Упраженение. Показать, что если a имеет и левый и правый квазиобратный, то они совпадают. Доказать, что $J(R) \leq_{qr}^l R.$

Аналогично определяется лево-квазирегулярный идеал и показывается, что J(R) — лево-квазирегулярный идеал. Таким образом, нет различий между левым и правым радикалом.

Элемент $a \in R$ называется ниль-элементом (нильпотентным), если $a^n = 0$ для некоторого $n \in \mathbb{N}_0$ (здесь и далее \mathbb{N}_0 обозначает множество натуральных чисел с нулём); идеал (левый, правый, двусторонний) называется ниль-идеалом, если каждый его элемент является нильпотентным.

Если I,J — идеалы в R (левый, правый, двусторонний), то через IJ обозначается абелева подгруппа в R, порождённая элементами ab, где $a\in I,b\in J$. Тогда IJ — идеал в R (левый, правый, двусторонний). Идеал I (левый, правый, двусторонний) называется нильпотентным, если $I^m=0$ для некоторого $m\in\mathbb{N}_0$. Заметим, что нильпотентный идеал (левый, правый, двусторонний) является ниль-идеалом, но обратное не верно в общем случае.

Лемма 2. Каждый правый ниль-идеал лежит в J(R).

$$\mathcal{A}$$
 о к а з а т е ль с тв о. Пусть $a^m=0$, положим $b=-a+a^2-a^3+\ldots+(-1)^{m-1}a^{m-1}$. Тогда $a+b+ab=0$.

Теорема 4. J(R/J(R)) = 0.

 \mathcal{A} о к а з а т е ль с т в о. Пусть $\bar{R}=R/J(R)$. Если $\bar{\rho}$ — максимальный правый идеал в \bar{R} , то $\bar{\rho}=\rho+J(R)$ для некоторого максимального регулярного правого идеала ρ из R. Таким образом,

$$\bigcap_{\bar{\rho} \leq_{max}^{r,reg} \bar{R}} \bar{\rho} = \bigcap_{\rho \leq_{max}^{r,reg} R} \rho + J(R) = \bar{0},$$

что и доказывает теорему.

Кольцо R называется полупростым, если J(R)=0, и радикальным, если J(R)=R.

Лемма 3. Идеалы полупростого кольца полупросты.

 \mathcal{L} оказательство. Пусть $A \subseteq R$, но $J(A) \neq 0$. Тогда $J(A)R \subseteq^r R$ и $I_1 = J(A)R \neq 0$, так как иначе $J(A) \subseteq^r R$ и J(A) нильпотентен. Также $I_1^2 \neq 0$, но $I_1^2 = J(A)RJ(A)R \subseteq J(A)A \subseteq J(A)$. Следовательно, для любого $x \in I_1^2$ существует правый квазиобратный и $I_1^2 \subseteq^r R$, что противоречиво.

Теорема 5. $A \subseteq R \Rightarrow J(A) = J(R) \cap A$.

 \mathcal{J} оказательство. Пусть J=J(R). Если $a\in J\cap A$, то a правоквазирегулярен. Если b — квазиобратный к a, то $b=a-ab\in A$, так как $A\unlhd R$. Следовательно, $J\cap A\unlhd^{qr}_{-}A$, а потому $J\cap A\subseteq J(A)$.

Рассмотрим эпиморфизм $\phi: R \mapsto \bar{R} := R/J$. Тогда $\phi(A) = A/J$. Кольцо \bar{R} полупросто, т.е. идеал A/J полупрост. Далее, $A/J = (A+J)/J \cong A/(A\cap J)$, т.е. $A/(A\cap J)$ полупросто. Рассмотрим эпиморфизм $A\mapsto A/(J\cap A)$. Образ квазирегулярного идеала — квазирегулярный идеал, но $A/(J\cap A)$ полупросто, т.е. $J(A)\subseteq J\cap A$.

Утверждение становится неверным, если A — односторонний идеал.

Упраженение. Пусть $R = M_2(F)$. Показать, что в R нет собственных идеалов, откуда J(R) = 0. Далее, показать, что

$$\rho = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right) \right\} \leq_r M_2(F), \left(\begin{array}{cc} 0 & c \\ 0 & 0 \end{array} \right) \in J(\rho),$$

T.e. $J(\rho) \neq 0 = \rho \cap J(R)$.

Далее в этом параграфе обозначаем через R_n кольцо матриц с элементами из кольца R.

y праженение. Пусть M — неприводимый R-модуль, тогда $M^{(n)}=\{(m_1,\ldots,m_n):m_i\in M\}$ — неприводимый R_n -модуль.

Теорема 6. $J(R_n) = J(R)_n$.

 \mathcal{A} о казательство. Пусть M — неприводимый R-модуль. Тогда для любого $(m_1,\ldots,m_n)\in M^{(n)}$ и для любой $(a_{ij})\in J(R_n)$ имеем

$$(m_1,\ldots,m_n)(a_{ij})=0 \Rightarrow Ma_{ij}=0 \Rightarrow a_{ij} \in J(R),$$

T.E. $J(R_n) \subseteq J(R)_n$.

Покажем, что $J(R)_n$ — квазирегулярный идеал в R_n . Пусть $\rho_i = \{\alpha_{i1}e_{i1} + \ldots + \alpha_{in}e_{in} : \alpha_{ij} \in J(R)\}$. Если $x = \alpha_{11}e_{11} + \ldots + \alpha_{1n}e_{1n}$ и $y = \alpha'_{11}e_{11}$, где $\alpha_{11} + \alpha'_{11} + \alpha_{11}\alpha'_{11} = 0$, то w = x + y + xy — треугольная матрица с нулевой диагональю. Следовательно, $w^n = 0$, а потому w квазирегулярен. Пусть w + z + wz = 0. Тогда

$$0 = x + y + z + xy + xz + yz + xyz = x + (y + z + yz) + x(y + z + yz).$$

Следовательно, x квазирегулярен и ρ_1 — правый квазирегулярный идеал в R_n , т.е. $\rho_1 \subseteq J(R_n)$. Аналогично, $\rho_i \subseteq J(R_n)$. Так как $J(R)_n = \rho_1 + \ldots + \rho_n$ и идеал $J(R_n)$ замкнут относительно сложения, то $J(R)_n \subseteq J(R_n)$. \square

§5 Артиновы кольца

Кольцо называется *артиновым* (справа), если любое непустое множество его правых идеалов имеет минимальный элемент.

Утверждение 1. Кольцо R артиново \iff любая убывающая цепь правых идеалов $\rho_1 \supseteq \rho_2 \supseteq \ldots \supseteq \rho_n \ldots$ обрывается.

$$\mathcal{A}$$
оказательство. очевидно.

Примеры. 1). Тело.

- 2). $M_n(T)$, где T тело.
- 3). Упражнение. Если кольцо R артиново, то и $M_n(R)$ артиново.
- 4). $R_1 \oplus \ldots \oplus R_k$ артиново, если все R_i артиновы.
- 5). Если A конечномерная алгебра над полем, то A артинова как алгебра. Как кольцо это может быть не артиново кольцо. Пример: $\mathbb{R}u, u^2 = 0$.

Теорема 1. Если кольцо R артиново, то J(R) — нильпотентный идеал.

 \mathcal{A} оказательство. Пусть J=J(R). Рассмотрим $J\supseteq J^2\supseteq\ldots\supseteq J^n\ldots$ Существует такое $n\in\mathbb{N},$ что $J^n=\ldots=J^{2n}.$ Рассмотрим $W=\{x\in R:xJ^n=0\}\unlhd R.$ Если $W\supseteq J^n,$ то $J^{2n}=0.$ Пусть $W\not\supseteq J^n.$ Рассмотрим $\bar{R}=R/W;$ при гомоморфизме $\phi:R\mapsto \bar{R}$ имеем

$$\phi(J^n) = \bar{J}^n \neq 0, \ \bar{J}^n \leq \bar{R}, \ \bar{J}^n \subseteq J(\bar{R}).$$

Так как \bar{R} артиново, то существует минимальный $\bar{\rho} \leq_r \bar{R}$ такой, что $\bar{\rho} \subseteq \bar{J}^n$. Рассматривая $\bar{\rho}$ как модуль над \bar{R} , замечаем, что либо $\bar{\rho}$ неприводим, либо $\bar{\rho}\bar{R}=0$. В обоих случаях $\bar{\rho}\bar{J}^n=0$. Переходя к прообразам в R, имеем

$$\rho J^n \subset W, \rho J^n J^n = \rho J^{2n} = 0 \Rightarrow \rho J^n = 0 \Rightarrow \rho \subseteq W \Rightarrow \bar{\rho} = 0.$$

Полученное противоречие доказывает теорему.

Следствие (Γ олкинс). Если кольцо R артиново, то любой его нильидеал нильпотентен.

Пусть R — кольцо, $\rho \neq 0$ — нильпотентный правый идеал в R. Если $R\rho \neq 0$ и $\rho^m=0$, то $R\rho \trianglelefteq R$ и $(R\rho)^m=\underbrace{R\rho\dots R\rho}_n$. Следовательно, в R

существует двусторонний нильпотентный идеал.

 Γ ипотеза ($K\ddot{e}me$). Если $I \leq_r R$, I — ниль, то в R существует двусторонний ниль-идеал.

Ненулевой элемент $e \in R$ называется uдемпотентом, если $e^2 = e$.

Лемма 1. Пусть R- кольцо без нильпотентных идеалов, $\rho \leq_r^{min} R.$ Тогда $\rho=eR.$

 \mathcal{A} о к а з а т е ль с т в о. Так как $\rho^2 \neq 0$, то существует $x \in \rho$ такой, что $x \rho \neq 0$. Поскольку $x \rho \leq_r R$ и $x \rho \subseteq \rho$, то $x \rho = \rho$, т.е. x = x e. Следовательно, $x e^2 = x e$, $x (e - e^2) = 0$. Пусть $\rho_0 = \{a \in \rho : x a = 0\}$. Тогда $\rho_0 \leq_r R$, $\rho_0 \subseteq \rho$, $\rho_0 \neq \rho$. Значит, $\rho_0 = 0$ и $e = e^2$. Далее, имеем $eR \subseteq \rho$, $eR \neq 0$, а потому $eR = \rho$.

Лемма 2. Пусть R — кольцо, $a^2 - a$ — нильпотентный элемент из R. Тогда либо a — нильпотентный элемент из R, либо существует $p(x) \in \mathbb{Z}[x]$ такой, что e = ap(a) - uдемпотент.

 \mathcal{A} о к а з а т е ль с т в о. Пусть $(a^2-a)^k=0$. Тогда $a^k=a^{k+1}p(a)$, откуда $a^k=a^kap(a)=a^k[ap(a)]^2$. Следовательно, $a^k=a^k[ap(a)]^k=a^{2k}p(a)^k$. Если $a^k\neq 0$, то $e=a^kp(a)^k\neq 0$ и $e^2=[a^{2k}p(a)^k]p(a)^k=a^kp(a)^k=e$. \square

Теорема 2. Пусть R — артиново кольцо, ρ — ненулевой ненильпотентный правый идеал в R. Тогда ρ содержит ненулевой идемпотент.

 \mathcal{J}_0 казательство. Так как ρ — ненулевой ненильпотентный правый идеал в R, то по теореме 1 получаем $\rho \not\subseteq J(R)$. Пусть $\phi: R \mapsto \bar{R} = R/J(R)$. Так как \bar{R} полупросто, то в \bar{R} нет нильпотентных идеалов. Пусть $\bar{\rho}$ — образ ρ в \bar{R} . Так как $\bar{\rho} \neq 0$, то в $\bar{\rho}$ существует минимальный правый идеал $\bar{\rho}_0$ из \bar{R} . По лемме 1, $\bar{\rho}_0 = \bar{e}\bar{R}$, где \bar{e} — идемпотент из $\bar{\rho}_0$. Пусть $\phi(a) = \bar{e}$. Тогда $\phi(a^2 - a) = \bar{0}$, откуда $a^2 - a \in J(R)$ и $a^2 - a$ — нильпотентный элемент. Так как $\phi(a^k) = \bar{e}^k = \bar{e} \neq 0$ для любого $k \in \mathbb{N}$, то a — ненильпотентный элемент. Следовательно, по лемме 2, ρ содержит ненулевой идемпотент.

§6 Полупростые артиновы кольца

Пусть F — поле, G — конечная группа. Групповой алгеброй F(G) группы G над F называется совокупность элементов вида $\sum \alpha_i g_i$ с естественными операциями сложения и умножения.

Теорема 1 (Машке). Пусть G — конечная группа, а F — поле характеристики θ или характеристики p > 0, которая не делит порядок группы G. Тогда F(G) — полупростая алгебра.

 \mathcal{A} о казательство. Определим отображение $T_a:F(G)\mapsto F(G)$ правилом $xT_a=xa$. Тогда $\psi:a\mapsto T_a$ — изоморфное вложение F(G)

в алгебру $\operatorname{End}_F F(G)$. Элементы из G рассмотрим как базис F(G). Если g — неединичный элемент из G, то $\operatorname{tr} T_q = 0$, $\operatorname{tr} T_1 = |G|$.

19

Пусть J=J(F(G)). Так как F(G) конечномерна над F, то она артинова как алгебра и её радикал нильпотентен. Пусть $x=\sum \alpha_i g_i$ — ненулевой элемент из J. Так как $J\unlhd F(G)$, то можно считать, что $g_1=1$ и $\alpha_1\neq 0$. Поскольку x нильпотентен, то T_x — нильпотентное линейное преобразование и $\operatorname{tr} T_x=0$, но

$$\operatorname{tr} T_x = \alpha_1 \operatorname{tr} T_1 + \ldots + \alpha_n \operatorname{tr} T_{g_n} = \alpha_1 \operatorname{tr} T_1 = \alpha_1 |G|.$$

Полученное противоречие завершает доказательство теоремы.

Пример. Если характеристика p поля делит порядок группы G, то F(G) не является полупростой. Действительно, рассмотрим $a=\sum_{g\in G}g$, $a\neq 0$. Тогда xa=ax=a для любого $x\in G$. Следовательно, $a\in Z(F(G))$. Далее, $a^2=a\sum_{g\in G}g=|G|a=0,\ I=F(G)a\unlhd F(G)$ и $I^2=0$, т.е. F(G) не является полупростой.

Теорема 2. Пусть R — полупростое артиново кольцо, ρ — ненулевой правый идеал в R. Тогда $\rho = eR$ для некоторого идемпотента $e \in \rho$.

 \mathcal{A} о казательство. Так как ρ не является нильпотентным, то в ρ существует идемпотент. Для любого идемпотента $e \in \rho$ рассмотрим $A(e) = \{x \in \rho : ex = 0\} \leq_r R$. Множество таких идеалов непусто. Следовательно, оно имеет минимальный элемент $A(e_0)$.

Если $A(e_0)=0$, то из того, что $e_0(x-e_0x)=0$ для любого $x\in\rho$, следует $x=e_0x$. Тогда $\rho=e_0\rho\subseteq e_0R\subseteq\rho$, а потому $\rho=e_0R$.

Предположим, что $A(e_0)\neq 0$. Существует идемпотент $e_1\in A(e_0)$ такой, что $e_1\in \rho$ и $e_0e_1=0$. Элемент $e=e_0+e_1-e_1e_0$ является идемпотентом в ρ . Так как $ee_1=e_1\neq 0$, то $e\neq 0$. Если ex=0 для некоторого $x\in \rho$, то

$$e_0ex = 0, \ e_0e = e_0 \Rightarrow e_0x = 0 \Rightarrow x \in A(e_0) \Rightarrow A(e) \subseteq A(e_0).$$

Так как $e_1 \in A(e_0)$ и $e_1 \notin A(e)$, то $A(e) \subset A(e_0)$, что противоречит минимальности $A(e_0)$.

Следствие 1. Пусть R- полупростое артиново кольцо, A- ненулевой идеал в R. Тогда A=eR=Re, где e- идемпотент из центра кольца R.

 \mathcal{A} оказательство. Так как $A \unlhd_r R$, то A=eR. Рассмотрим $B=\{x-xe:x\in A\}\unlhd_l R$. Так как Be=0,eA=A, то $B^2\subseteq BA=BeA=A$

 $0 \Rightarrow B = 0 \Rightarrow x = xe$ для любого $x \in A$, и e — двусторонняя единица в A. Далее, $A = Ae \subseteq Re \subseteq A \Rightarrow A = Re$. Если $x \in R$, то $ex \in A$, $xe \in A$, и так как e — правая единица в A, то ex = exe, а поскольку e — левая единица в A, то xe = exe. Следовательно, ex = xe.

Следствие 2. Полупростое артиново кольцо имеет единицу.

Кольцо R называется кольцом без кручения (кольцом характеристики 0), если из равенства nx=0 для некоторого $n\in\mathbb{N}$ и $x\in R$ следует x=0.

Справедлива следующая теорема, доказательство которой мы опустим.

Теорема. Артиново справа кольцо без кручения имеет правую единицу.

Лемма 1. Любой идеал полупростого артинова кольца — полупростое артиново кольцо.

 \mathcal{A} о к а з а τ е π ь с τ в о. Пусть $A \subseteq R$. Тогда A = eR = Re для некоторого идемпотента $e \in R$. Пусть 1 — единица кольца R. Если $x \in R$, то x = xe + x(1-e) и R = Re + R(1-e) — пирсовское разложение кольца относительно e. Так как $1-e \in Z(R)$, то $R(1-e) \subseteq R$. Кроме того $Re \cap R(1-e) = 0$, так как если $x \in Re \cap R(1-e)$, то xe = x и xe = 0. Следовательно, $R = Re \oplus R(1-e)$ и $A = Re \cong R/R(1-e)$, а потому A — артиново кольцо и, по лемме 3 §4, A — полупростое кольцо.

Кольцо R называется npocmым, если единственные идеалы в R — это 0 и R.

Теорема 3 (Веддербарн). Полупростое артиново кольцо есть прямая сумма конечного числа простых артиновых колец.

 \mathcal{A}_0 казательство. Пусть $A_0 \leq_{min} R$. Тогда A_0 — простое кольцо. Действительно, $A_0^2 \neq 0$ и если $B \leq A_0$, то $A_0BA_0 \subseteq B$ и $A_0BA_0 \leq R$, а так как $1 \in A_0$, то $A_0BA_0 \neq 0$. Поскольку $A_0 \supseteq B \supseteq A_0BA_0$ и $A_0 \leq_{min} R$, то $A_0 = B$.

Из леммы 1 следует, что $R=A_0\oplus T_0$, где T_0 — полупростое артиново кольцо. Выбирая в T_0 минимальный идеал A_1 , получаем $T_0=A_1\oplus T_1$. Далее, для некоторого $k\in\mathbb{N}$ имеем $R=A_0\oplus\ldots\oplus A_k$. В противном случае $R_0=A_0\oplus A_1\oplus\ldots$, $R_1=A_1\oplus A_2\oplus\ldots$, $R_m=A_m\oplus A_{m+1}\oplus\ldots$, ... — бесконечная строго убывающая цепь идеалов.

Упражнение. Пусть R — кольцо полиномов $\{\sum \alpha_{ij}x^iy^j, \alpha_{ij} \in F, xy-yx=1\}$ над полем F характеристики ноль. Показать, что R — простая ассоциативная алгебра без делителей нуля, которая не является телом.

Лемма 2. Пусть R — полупростое артиново кольцо, $R = A_1 \oplus \ldots \oplus A_k$, где A_1, \ldots, A_k — простые кольца. Тогда $\{A_1, \ldots, A_k\}$ — это множество всех минимальных идеалов кольца R.

 \mathcal{A} о казатель ство. Пусть B — ненулевой минимальный идеал в R. Так как $1 \in R$, то $RB \neq 0$, но $RB = A_1B \oplus \ldots \oplus A_kB$. Следовательно, $A_iB \neq 0$ для некоторого i. Тогда $A_iB \subseteq R$, $A_iB \subseteq B$, $A_iB \subseteq A_i$. В итоге, $A_i = B$.

Кольцо называется *нётеровым справа*, если любое непустое множество его правых идеалов содержит максимальный элемент.

ПРИМЕРЫ. 1). Кольцо $\mathbb Z$ является нётеровым, так как любой идеал в $\mathbb Z$ главный.

2). Приведём пример кольца, которое является нётеровым справа, но не слева. Рассмотрим кольцо R, образованное матрицами вида $\begin{pmatrix} n & a \\ 0 & b \end{pmatrix}$, где $n \in \mathbb{Z},\ a,b \in \mathbb{Q},$ с обычными операциями.

Yпраженение. Показать, что R нётерово справа, но не слева (при этом рассмотреть левые идеалы вида $\begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$, где M — подмодуль \mathbb{Z} -модуля \mathbb{Q} , и заметить, что \mathbb{Q} не является конечнопорождённым \mathbb{Z} -модулем).

Теорема (Левицкий). Пусть A — односторонний ниль-идеал в нётеровом справа кольце. Тогда A нильпотентен.

§7 Простое радикальное кольцо

Влечёт ли простота кольца R его полупростоту? Если $1 \in R$, то ответ положителен, если R артиново, то ответ также положителен. Однако польский математик Е. Сансяда доказал, что существует простое радикальное кольцо ($Sansiada\ E.,\ Cohn\ P.M.,\ J.\ of\ Alg.,\ 1967$).

Лемма 1 (Андрунакиевич). Пусть $\rho \leq_{min} R$, $\rho^2 \neq 0$. Тогда ρ — простое кольцо.

 \mathcal{A} о к а з а т е л ь с т в о. Из минимальности получаем $\rho^2 = \rho$. Далее $Ann_r \rho \leq R, \rho \not\subseteq Ann_r \rho$, т.е. $Ann_r \rho \cap \rho = 0 \Rightarrow \rho x \neq 0$ для любого ненулевого $x \in \rho$. Аналогично, $x\rho \neq 0$. Если $0 \neq x \in \rho$, то $\rho x\rho \neq 0 \Rightarrow \rho x\rho = \rho$ для любого ненулевого $x \in \rho$.

Пусть R = F[[x,y]] — алгебра формальных рядов со свободными членами от двух некоммутирующих переменных x,y над полем F.

Обозначим через $R^0:=F^0[[x,y]]$ подалгебру в R, состоящую из рядов без свободных членов, $R^1:=F^1[[x,y]]$ — множество рядов со свободными членами 1. Рассмотрим в R идеал S, порождённый элементом $u=x-yx^2y$.

Теорема 1. (Cанся ∂ а) $x \notin S$.

Построим, исходя из этой леммы, пример Сансяды. Рассмотрим множество всех идеалов кольца R^0 , содержащих u, но не содержащих x. По лемме Цорна существует максимальный идеал S_0 с этим свойством. Пусть $Q=R^0/S^0$. В Q любой ненулевой идеал содержит ненулевой элемент $\bar{x}=x+S_0$. Следовательно, $cep \partial ue uua \ H=H(Q)$ (пересечение всех ненулевых идеалов) не равна нулю и $H=\langle \bar{x} \rangle$. Далее, $H^2 \neq 0$, так как $\bar{x}=(\bar{y}\bar{x})(\bar{x}\bar{y})$. Тогда по лемме 1 H является простым. Так как R^0 радикально, то

$$(1-f)^{-1} = 1 + f + f^2 + \dots, f \in \mathbb{R}^0$$

и H является гомоморфным образом идеала из R^0 , то H радикально.

 \mathcal{A} о казательство теоремы Сансяды основывается на нижеследующих леммах. Все леммы далее относятся к R.

Лемма 1. Пусть $c=\sum_{i=1}^n a_i u b_i,\ \emph{ede}\ b_1$ — обратимый элемент из $R.\ To\emph{eda}$

$$c = a'_1 u b'_1 + \sum_{i=2}^n a_i u b'_i, \ b'_1 \in \mathbb{R}^1, \ b'_i \in \mathbb{R}^0.$$

 \mathcal{A} оказательство. Пусть $b_1 = \beta b_1'$, где $0 \neq \beta \in F, b_1' \in R^1$. Пусть β_i — свободные члены элементов b_i , $2 \leq i \leq n$. Тогда

$$c = (\beta a_1 + \sum_{i=2}^n \beta_i a_i) ub_1' + \sum_{i=2}^n a_i u(b_i - \beta_i b_1') = a_1' ub_1' + \sum_{i=2}^n a_i ub_i'. \quad \Box$$

Лемма 2. Пусть $cx+dy=\sum_{i=1}^n a_iub_i,\ \emph{ede}\ b_1$ — обратимый элемент из R. Тогда

$$cx + dy = cu(1 + b_1^*) + \sum_{i=2}^{n} a_i u b_i^*,$$
 (*)

 $r\partial e \ b_1^* \in \mathbb{R}^0.$

 \mathcal{A} оказательство. По лемме 1 можно считать, что $b_1\in R^1,b_i\in R^0,i\geq 2.$ Тогда $b_1=1+b_1'x+b_1''y,b_i=b_i'x+b_i''y,\ i>1.$ Приравняем в

(*) элементы, оканчивающиеся на x (вспомним, что $u = x - yx^2y$):

$$c = a_1 + a_1 u b_1' + \sum_{i=2}^{n} a_i u b_i'.$$

Умножив справа на $(1+ub'_1)^{-1}=1+uq$, получим

$$c(1 + uq) = a_1 + \sum_{i=2}^{n} a_i u d_i.$$

Подставляя a_1 из этого равенства в (*), приходим к требуемому равенству

$$cx + dy = c(1 + uq)ub_1 + \sum_{i=2}^{n} a_i ub_i^* = cu(1 + b_1^*) + \sum_{i=2}^{n} a_i ub_i^*.$$

Следствие 1. Пусть $dy = \sum_{i=1}^{n} a_{i}ub_{i}$ и n- минимальное из возможных для данного элемента dy. Тогда все $b_{i} \in R^{0}$.

 \mathcal{A} оказательство. Если, например, $b_1 \notin \mathbb{R}^0$, то по лемме 2 при c=0 элемент dy обладает более коротким представлением.

Лемма 3. Идеал $\langle u \rangle$ в R, порождённый элементом u, не содержит одночленов.

Доказательство. Предположим противное. Пусть

$$c = \sum_{i=1}^{n} a_i u b_i \in \langle u \rangle, \tag{1}$$

— одночлен от x,y. Выберем одно из равенств (1) (одночлен c не фиксирован) с минимально возможным n, а среди них — равенство, для которого минимальна степень c. Если $c=c_1y$, то по следствию 1 $b_i \in R^0$, т.е. $c_1 = \sum_{i=1}^n a_i u b_i'$, что противоречит минимальности степени c. Следовательно, $c=c_1x$ и

$$c_1 x = \sum_{i=1}^n a_i u b_i \in \langle u \rangle, \qquad (2)$$

где не все $b_i \in R^0$. Это равенство будет основанием для следующей индукции: для любого r существуют одночлены p_1, \ldots, p_r степени

больше нуля такие, что

$$c_1 p_1 \dots p_r x = \sum_{i=1}^r c_1 p_1 \dots p_{i-1} u d_i + \sum_{j=r+1}^n a_j u d_j,$$
 (3)

24

где $d_i \notin R^0$ для некоторого $i, 1 \le i \le n$.

При r=0 (3) превращается в (2). Пусть r< n и имеет место (3). Докажем аналогичное равенство для r+1. Рассмотрим два случая.

1). Пусть $d_j \in R^0$ при $j \geq r+1$. Тогда существует $k \leq r$ такое, что $d_k \notin R^0$. Пусть $d_i = \lambda_i + d_i'x + d_i''y, \ \lambda_i \in F, \ 1 \leq i \leq n$. Приравняем в (3) элементы, оканчивающиеся на x:

$$c_1 p_1 \dots p_r = \sum_{i=1}^r c_1 p_1 \dots p_{i-1} \lambda_i + \sum_{i=1}^r c_1 p_1 \dots p_{i-1} u d_i' + \sum_{j=r+1}^n a_j u d_j'.$$

Пусть $s = min_{i < r} \{i : \lambda_i \neq 0\}$. Тогда

$$c_1 p_1 \dots p_{s-1} (1+f) \lambda_s = \sum_{i=1}^r c_1 p_1 \dots p_{i-1} u d_i' + \sum_{j=r+1}^n a_j u d_j',$$

где $f \in R^0$. Перенося теперь s-ый член первой суммы правой части в левую часть и умножая обе части получившегося равенства на $((1+f)\lambda_s - ud_s')^{-1}$, получим представление типа (1) с меньшим числом n.

3амечание. Эти рассуждения показывают, что при r=n равенство (3) невозможно.

2). Пусть, например, $d_{r+1} \notin R^0$. Применим к (3) лемму (2) (при d=0):

$$c_1 p_1 \dots p_r x = \sum_{i=1}^r c_1 p_1 \dots p_{i-1} u d_i^* + c_1 p_1 \dots p_r u (1 + d_{r+1}^*) + \sum_{j=r+2}^n a_j u d_j^*,$$

где $d_{r+1}^* \in R^0$. Из этого равенства имеем

$$c_1 p_1 \dots p_r y x^2 y = \sum_{i=1}^r c_1 p_1 \dots p_{i-1} u d_i^* + c_1 p_1 \dots p_r u d_{r+1}^* + \sum_{j=r+2}^n a_j u d_j^*, (4).$$

В силу следствия 1 все элементы d_i^* лежат в R^0 , поэтому (4) можно сократить справа на y. Если в полученном равенстве не все элементы

" d_i^* " лежат в R^0 , то индуктивный переход завершён ($p_{r+1} = yx$). Если же " d_i^* " лежит в R^0 , то (4) можно сократить на xy, не меняя вида этого равенства. Если теперь все " d_i^* " лежат в R^0 , то снова сокращая на x, мы оказываемся в условиях следствия 1, откуда следует возможность сокращения на y. Таким образом, (4) можно сократить на yx^2y , не меняя его вида, но тогда перенося $c_1p_1 \dots p_rud_{r+1}^*$ влево и домножая полученное на $(1-ud_{r+1}^*)^{-1}$, получим для $c_1p_1 \dots p_r$ более короткое представление. Противоречие показывает, что после сокращения (4) справа на xy не все полученные элементы лежат в R^0 , т.е. в качестве p_{r+1} можно взять y. \square

§8 Примитивные кольца. Теорема плотности

Кольцо R называется *примитивным*, если оно обладает точным неприводимым модулем. Стоит говорить о примитивности справа, так как Бергман построил пример кольца примитивного справа, но не слева.

Если M — неприводимый R-модуль, то кольцо R/A(M) примитивно. Если $\rho \leq_{max}^{r,reg} R$ и $M=R/\rho$, то $A(M)=(\rho:R)$ и $R/(\rho:R)$ примитивно. Если R содержит максимальный регулярный правый идеал ρ , в котором нет двусторонних идеалов из R, то R примитивно. Верно и обратное.

Кольцо R примитивно, значит R полупросто. Действительно, $J(R) = \cap (\rho:R) = 0.$

Теорема 1. Кольцо R примитивно \iff в R существует максимальный регулярный правый идеал ρ такой, что $(\rho:R)=0$. В этом случае R полупросто. Если R, кроме того, коммутативно, то R — поле.

Упражнение. Доказать последнюю часть теоремы 1, т.е. показать, что если R примитивно, полупросто и коммутативно, то R является полем

Пример. Кольцо $\mathbb Z$ полупросто и коммутативно, но не примитивно.

Пусть R — примитивное кольцо и M — точный неприводимый R-модуль. Если $\Delta = C(M)$ — централизатор R на M, то по лемме Шура Δ — это тело. Рассмотрим M как правое векторное пространство над Δ : $m\alpha = \alpha(m)$.

Говорят, что R действует nлоmно на M, если для любых $n \in \mathbb{N}$ и $v_1, \ldots, v_n \in M$ таких, что $\dim \langle v_1, \ldots, v_n \rangle = n$, и любых $w_i \in M$ существует $r \in R$ такой, что $v_i r = w_i$.

yпраженение. Если $\dim_{\Delta} M=n,$ а R действует точно и плотно на M, то $R\cong \operatorname{Hom}_{\Delta}(M,M),$ что также изоморфно кольцу $\Delta'_n,$ где Δ' — тело, антиизоморфное телу $\Delta.$

Теорема 2 (плотности). Пусть R — примитивное кольцо, M — точный неприводимый R-модуль, а $\Delta = C(M)$ — централизатор R на M. Тогда R — плотное кольцо линейных преобразований M над Δ .

 \mathcal{A} о к а з а т е л ь с т в о. Достаточно показать, что если V — конечномерное подпространство в M и $m \in M \setminus V$, то существует $r \in R$ такой, что Vr = 0 и $mr \neq 0$.

Пусть $v_1,\ldots,v_n\in M$ линейно независимы над Δ . Обозначим $V_i=\langle v_1,\ldots,\widehat{v}_i,\ldots,v_n\rangle_{\Delta}$. Имеем $mrR\neq 0$ и mrR=M. Значит поскольку $v_i\not\in V_i$, то существуют $t_i\in R$ такие, что $v_it_i=w_i,\ v_jt_j=0$ при $j\neq i$. Следовательно, при $t=t_1+\ldots+t_n$ имеем $v_it=w_i$.

Докажем это утверждение индукцией по $\dim_{\Delta} V$. Утверждение тривиально, если $\dim_{\Delta} V = 0$. Пусть $V = V_0 + w\Delta$ и $A(V_0) = \{x \in R : V_0 x = 0\}$. Тогда для любого $m \notin V_0$ существует $r \in A(V_0)$ такой, что $mr \neq 0$, т.е. если $mA(V_0)$, то $m \in V_0$. Так как $A(V_0) \trianglelefteq_r R$, $w \notin V_0$, то $wA(V_0) \neq 0$, а потому $wA(V_0) = M$.

Предположим, что существует $m \in M \setminus V$ такой, что Vr = 0 влечёт mr = 0.

Определим $\tau: M \mapsto M$ правилом $x\tau = ma$, если x = wa, $a \in A(V_0)$.

Корректность: если wa = 0, где $a \in A(V_0)$, то Va = 0, т.е. ma = 0.

По определению, $\tau \in E(M)$. Далее, если x=wa, где $a \in A(V_0)$, то для любого $r \in R$ имеем $ar \in A(V_0)$, а также

$$xr = (wa)r = w(ar), (xr)\tau = m(ar) = (a\tau)r.$$

Следовательно, $\tau \in \Delta$ и для любого $a \in A(V_0)$ справедливо

$$ma = (wa)\tau = (w\tau)a \Rightarrow (m - w\tau)a = 0.$$

Теперь по предположению индукции получаем $m-w\tau\in V_0$ и $m\in V$, что противоречиво.

Справедливо и обращение теоремы. Более того, справедливо следующее

Утверждение. Пусть V- векторное пространство над телом D, R- транзитивное кольцо линейных преобразований пространства V (т.е. для любого ненулевого $v \in V$ и любого $w \in V$ существует $r \in R$ такой, что vr = w). Тогда R примитивно.

 \mathcal{A} о к а з а т е л ь с т в о. Так как R — кольцо линейных преобразований, то V — точный R-модуль. Из транзитивности следует неприводимость V, т.е. R примитивно.

Централизатор кольца R на V может не совпадать с D. Включение $D\subseteq C(V)$ всегда имеет место, но оно может быть и строгим, что мы уже видели ранее.

Теорема 3. Пусть R- дважды транзитивное кольцо линейных преобразований векторного пространства V над телом D. Тогда R плотно на V и C(V)=D.

 \mathcal{A} о к а з а т е ль с т в о. Как и в утверждении выше, R примитивно. Пусть $\Delta = C(V), \ D \subset \Delta, \ \tau \in \Delta \setminus D$ и $0 \neq v \in V$. Если v и $v\tau$ линейно зависимы над D, то

$$v\tau = v\alpha, \alpha \in D \Rightarrow v(\tau - \alpha) = 0 \Rightarrow \tau = \alpha \in D,$$

что противоречиво. Следовательно, v и $v\tau$ линейно зависимы над D и существует $r \in R$ такой, что $vr = 0, (v\tau)r \neq 0$. Получили противоречие. По теореме плотности, R — плотное кольцо.

Теорема 4. Пусть R — примитивное кольцо. Тогда существует тело Δ' такое, что либо $R \cong M_n(\Delta')$, либо для любого $m \in \mathbb{N}$ в R существует подкольцо S_m , гомоморфно отображающееся на $M_m(\Delta')$.

 \mathcal{A} оказательство. Кольцо R действует как плотное кольцо линейных преобразований на некотором векторном пространстве V над телом Δ . Если $\dim_{\Delta} V = n$, то всё доказано. Если $\dim_{\Delta} V = \infty$, то для любого $m \in \mathbb{N}$ существуют элементы $v_1, \ldots, v_m \in V$ линейно независимые над Δ . Пусть $V_m = v_1 \Delta + \ldots + v_m \Delta$ и $S_m = \{x \in R : V_m x \subseteq V_m\}$. Тогда по теореме плотности любое Δ -линейное преобразование пространства V_m индуцируется некоторым элементом из S_m . Пусть $W_m = \{x \in S_m : V_m x = 0\}$. Тогда $S_m/W_m \cong \operatorname{Hom}_{\Delta}(V_m, V_m) \cong M_m(\Delta')$. \square

Кольцо R называется nepeuчным, если aRb влечёт, что либо a=0, либо b=0.

Если $S\subseteq R$, то *правым аннулятором* множества S называется следующее множество $A_r(S)=\{x\in R:Sx=0\}$. Аналогично определяется *левый аннулятор* $A_l(S)$.

Лемма 1. Кольцо R первично $\iff R$ удовлетворяет одному из следующих условий:

- 1). $0 \neq I \leq^r R \Rightarrow A_r(I) = 0$;
- 2). $0 \neq I \leq^{l} R \Rightarrow A_{l}(I) = 0;$
- 3). $A, B \leq R, AB = 0 \Rightarrow A = 0$ usu B = 0.

Упражнение. Доказать лемму.

Лемма 2. Примитивное кольцо первично.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть ρ — ненулевой правый идеал в R и $\rho a=0$ для некоторого $a\in R$. Кольцо R примитивно, значит существует точный неприводимый R-модуль M. Значит, $M\rho\neq 0$ и $M\rho=M$. Следовательно, $Ma=M\rho a=0$, а потому a=0.

Лемма 3. Пусть кольцо R первично, $0 \neq a \in Z(R)$. Тогда a не является делителем нуля в R. B частности, центр первичного (примитивного) кольца — область целостности.

 \mathcal{A} оказательство. Если $ab=0,\ 0\neq b\in R$, то 0=Rab=aRb. Следовательно, a=0.

Пусть R — кольцо, E(R) — кольцо эндоморфизмов аддитивной группы R^+ кольца R, $R_a, L_a \in E(R)$. Обозначим через B(R) подкольцо в E(R), порождённое отображениями R_a, L_a , когда a пробегает R. Тогда B(R) называется кольцом умножений кольца R. Заметим, что R^+ — модуль над B(R), а идеалы в R — это в точности B(R)-подмодули; при этом R^+ — неприводимый модуль $\iff R$ — простое кольцо.

Центроидом кольца R называется множество элементов из E(R), перестановочных со всеми элементами из B(R).

Лемма 4. Если $R^2 = R$, то центроид C(R) кольца R коммутативен.

 \mathcal{A} оказательство. Пусть $\sigma,\tau\in C(R).$ Тогда для любых $x,y\in R$ имеем

$$(xy)\sigma = xR_y\sigma = x\sigma R_y = (x\sigma)y = (yL_x)\sigma = x(y\sigma);$$

$$(xy)(\sigma\tau) = ((x\sigma)y)\tau = (x\sigma)(y\tau) = (x(y\tau))\sigma = (xy)(\tau\sigma).$$

Следовательно, $\sigma \tau - \tau \sigma = 0$.

Теорема 5. Если R просто, то центроид C(R) кольца R — поле, а R можно рассматривать как алгебру над C(R). Если $Z(R) \neq 0$, то $Z(R) \cong C(R)$.

 \mathcal{A} о к а з а т е л ь с т в о. По лемме Шура, C(R) — тело. Если $z\in Z^*$, то $Rz \trianglelefteq R$. Следовательно, Rz=R и $1\in R$. Отображение $z\mapsto T_z$ — это

изоморфизм на некоторое подкольцо в E(R). Если $\sigma \in C(R)$, то

$$r\sigma = (1r)\sigma = (r1)\sigma = (1\sigma)r = r(1\sigma).$$

29

Если $1\sigma = a$, то $a \in Z$, $\sigma = T_a$. Следовательно, $Z \cong C(R)$.

Теорема 6 (Веддербарн-Артин). Пусть R — простое артиново кольцо. Тогда $R \cong M_n(D)$. При этом n определено однозначно, а тело D — c точностью до изоморфизма. Обратно, $M_n(D)$ — простое артиново кольцо для любого тела D.

 \mathcal{A} о казатель ство. Заметим, что R примитивно. Действительно, так как R артиново, то J(R) — нильпотентный идеал в R. Поскольку $R^2=R$, то $J(R)\neq R$, а потому J(R)=0. Так как R просто и полупросто, то R примитивно.

Пусть M — точный неприводимый модуль над R. Тогда M — векторное пространство над телом D=C(M). Докажем, что $\dim_D M < \infty$. Если v_1,\ldots,v_m,\ldots линейно независимы, то $\rho_m=\{x\in R: v_ix=0,i=1,\ldots,m\} \leq_r R$ и $\rho_1\supseteq\rho_2\supseteq\ldots\supseteq\rho_m\supseteq\ldots$ По теореме плотности эти включения строгие. Противоречие с артиновостью. Следовательно, $R\cong M_n(D')$, где $n=\dim_D M$.

Докажем единственность. Докажем, что если $A:=M_m(D)\cong B:=M_n(\Delta),$ то m=n, а $D\cong \Delta.$

Пусть $e=e_{11}\in A,\ \phi:A\mapsto B$ — изоморфизм, и $f=\phi(e)$. Так как $eA\unlhd_r^{min}A$, то $fB\unlhd_r^{min}B$.

yпраженение. Пусть D — тело, а e — идемпотент из D. Показать, что существует автоморфизм кольца $M_n(D)$, переводящий e в диагональную идемпотентную матрицу (т.е. с 0 и 1 на диагонали).

В силу этого упражнения, можно считать, что f также имеет вид e_{11} . Тогда

$$D \cong eAe \cong fBf \cong \Delta$$
.

Так как $\dim_D A = m$, $\dim_{\Delta} B = n$, то m = n.

Упраженение. Доказать обращение теоремы.

Теорема 7. Пусть R — полупростое артиново кольцо. Тогда $R \cong \Delta_{n_1}^{(1)} \oplus \ldots \oplus \Delta_{n_k}^{(k)}$, где $\Delta^{(i)}$ — тело, $i=1,\ldots,k$.

Пусть A — алгебра над полем F. Элемент $a \in A$ называется алгебраическим элементом над F, если существует ненулевой $p(x) \in F[x]$ такой, что p(a) = 0. Алгебра называется алгебраической, если каждый её элемент является алгебраическим.

ПРИМЕР. 1). \mathbb{C} — алгебра над \mathbb{R} . Если a = b + di, то $p(x) = x^2 - 2bx + (b^2 + d^2)$.

2). Упражнение. Если A — алгебра над полем F, $\dim_F A = n$, то A — алгебраическая алгебра.

Лемма 5. Пусть F — алгебраически замкнутое поле, D — тело, являющееся алгебраической алгеброй над F. Тогда D = F.

 \mathcal{A} оказательство. Имеем $F\subseteq Z(D)$. Пусть $a\in D,\ p(a)=0$ и $p(x)=\prod (x-\lambda_i),\ \lambda_i\in F.$ Тогда $p(a)=\prod (a-\lambda_i)=0\Rightarrow a-\lambda_i=0.$ Следовательно, D=F.

Теорема 8. Пусть F — алгебраически замкнутое поле, A — конечномерная полупростая алгебра над F. Тогда $A \cong F_{n_1} \oplus \ldots \oplus F_{n_k}$.

Заметим, что центр прямой суммы — прямая сумма центров; $Z(M_n(F))$ одномерен. Следовательно, в условиях теоремы 8, $k=\dim_F Z(A)$.

Теорема 9. Пусть G — конечная группа, F — алгебраически замкнутое поле характеристики ноль или p (p не делит |G|). Тогда $F(G) \cong F_{n_1} \oplus \ldots \oplus F_{n_k}$.

§9 Подпрямая сумма

Прямым произведением (полной прямой суммой) колец R_{γ} ($\gamma \in I$) называется множество

$$\prod_{\gamma \in I} R_{\gamma} = \{ f : I \mapsto \cup_{\gamma \in I} R_{\gamma} : f(\gamma) \in R_{\gamma} \}.$$

Операции: $(f+g)(\gamma) = f(\gamma) + g(\gamma), (fg)(\gamma) = f(\gamma)g(\gamma).$

Обозначим через π_{γ} проекцию кольца $\prod_{\gamma \in I} R_{\gamma}$ на R_{γ} .

Кольцо R называется nodnpямой суммой колец R_{γ} ($\gamma \in I$), если существует мономорфизм $\psi: R \mapsto \prod_{\gamma \in I} R_{\gamma}$ такой, что $R\psi \pi_{\gamma} = R_{\gamma}$ для любого $\gamma \in I$.

Лемма 1. Пусть R- кольцо, $\psi_{\gamma}: R\mapsto R_{\gamma}-$ эпиморфизмы, $\psi: R\mapsto \prod R_{\gamma}$ составлен из ψ_{γ} . Пусть $U_{\gamma}=\mathrm{Ker}\;\psi_{\gamma}$. Тогда $\psi-$ мономорфизм (т.е. R- подпрямая сумма колец R_{γ}) $\iff \cap U_{\gamma}=0$.

Упражнение. Доказать лемму.

Кольцо называется *подпрямо неразложимым*, если пересечение всех его ненулевых идеалов отлично от нуля (т.е. кольцо не допускает нетривиального представления в виде подпрямого произведения).

ПРИМЕРЫ. 1). \mathbb{Z} — подпрямая сумма колец Z_{p^k} ;

2). \mathbb{Z} — подпрямая сумма полей Z_p , где p пробегает бесконечное множество простых чисел.

Лемма 2. Любое кольцо представимо как подпрямая сумма подпрямо неразложимых колец.

 \mathcal{A}_{O} казательство. Пусть $0 \neq a \in R$. Обозначим через U_a идеал в R максимальный по отношению к свойству не содержать элемент a. Он существует по лемме Цорна. Так как $\cap_{a\neq 0}U_a=0$, то R— подпрямая сумма колец R/U_a . Кольцо R/U_a подпрямо неразложимо: элемент $a+U_a\in R/U_a$ является ненулевым и лежит во всех ненулевых идеалах из R/U_a .

Лемма 3. Пусть R — кольцо без ниль-идеалов, тогда R — подпрямая сумма первичных колец.

 \mathcal{J}_{0} казательство. Пусть a — ненильпотентный элемент из R и $U_{a} \leq R$ максимальный по отношению к свойству не содержать степеней элемента a. Если $A, B \leq R$, $U_{a} \subseteq A$, $U_{a} \subseteq B$ и $AB \subseteq U_{a}$, то $a^{n} \in A, a^{k} \in B \Rightarrow a^{n+k} \in U_{a}$, что невозможно. Следовательно, $R_{a} = R/U_{a}$ первично. Если N — множество всех ненильпотентных элементов из R, то $\cap_{a \in N} U_{a}$ — ниль-идеал, а потому он равен нулю. Значит, R — подпрямая сумма колец R_{a} .

Заметим, что R_a обладает дополнительным свойством: если \bar{a} — образ элемента a в R_a и $\bar{U} \leq R_a$, то $a^{n(\bar{U})} \in \bar{U}$, т.е. степени элемента a попадают во все ненулевые идеалы кольца R_a .

Теорема 1. Кольцо R полупросто $\iff R - noдпрямая$ сумма примитивных колец.

 \mathcal{A} оказательство. Имеем $J(R)=\bigcap_{\rho \leq \frac{r,reg}{max}R}(\rho:R)=0.$ Тогда R —

подпрямая сумма колец $R/(\rho:R)$ по лемме 1. Как следует из §6, кольцо $R/(\rho:R)$ примитивно.

Обратно, пусть R — подпрямая сумма колец $R_{\lambda}:=R/U_{\lambda}$, где $\cap U_{\lambda}=0$. Кольцо R_{λ} примитивно, значит оно полупросто. Пусть $\psi_{\lambda}:R\mapsto R_{\lambda}$ — естественный гомоморфизм колец. Тогда $\psi_{\lambda}(J(R))$ — квазирегулярный идеал в R_{λ} . Следовательно, $J(R)\subseteq U_{\lambda}$ для любого λ , а потому J(R)=0. \square

Следствие. Коммутативное полупростое кольцо — подпрямая сумма полей.

Схема. Есть утверждение. 1). Доказать его для тел; 2). Доказать его для примитивных колец (сводя к матричным над телом); 3). Доказать его для полупростых колец; 4). Доказать его для радикала.

Утверждение. Пусть $R-\kappa$ ольцо, такое что

$$(ab - ba)^3 = ab - ba \tag{*}$$

для любых $a, b \in R$. Тогда R коммутативно.

 \mathcal{A} оказательство. 1). Пусть R — тело. Если $\alpha=ab-ba\neq 0$, то $\alpha^2=1$. Тогда $\alpha\in Z(R)\Rightarrow a(ab)-(ab)a\in Z(R)\Rightarrow a\alpha\in Z(R)\Rightarrow a\in Z\Rightarrow \alpha=0$.

- 2). Пусть R примитивно и $M_n(D)$, где D тело, является эпиморфным образом подкольца из R. Тогда (*) выполняется в $M_n(D)$. Возьмём $a=e_{11},b:=e_{12}$. Тогда $ab-ba=b,\ b^2=0\Rightarrow 0=(ab-ba)^3\neq ab-ba$.
- 3). Пусть R полупросто. Значит R подпрямая сумма примитивных колец R_{ψ} , которые являются гомоморфными образами кольца R. Следовательно, (*) верно в R_{ψ} , а потому каждое R_{ψ} коммутативно. В итоге R коммутативно как подкольцо коммутативного кольца.
- 4). Пусть R произвольно. Тогда R/J(R) полупросто, а потому R/J(R) коммутативно. Следовательно, $x=ab-ba\in J(R)$ для любых $a,b\in R$ и $x^3=x$. Следовательно, x=0: действительно, если $uy=u,y\in J$, то u=0, поскольку -y+z-yz=0 влечёт -uy+uz-uyz=-u=0.

§10 Тензорное произведение алгебр

Пусть A и B — алгебры над полем F. Рассмотрим тензорное произведение $A \otimes_F B$ пространств A и B над полем F. Определим на пространстве $A \otimes_F B$ умножение, полагая

$$\left(\sum_{i} a_{i} \otimes b_{i}\right) \left(\sum_{j} c_{j} \otimes d_{j}\right) = \sum_{ij} a_{i} c_{j} \otimes b_{i} d_{j},$$

где $a_i, c_j \in A, b_i, d_j \in B$.

Теорема 1. $A \otimes_F B$, с определённым выше умножением, является алгеброй. Пусть 1_A и 1_B — единицы алгебр A и B, соответственно.

Тогда подпространства $A \otimes 1_B$ и $1_A \otimes B$ — подалгебры в $A \otimes_F B$, причём A изоморфна $A \otimes 1_B$, а B изоморфна $1_A \otimes B$.

Упраженение. Доказать теорему 1.

Теорема 2. Пусть A — конечномерная алгебра над полем F c базисом из нильпотентных элементов. Тогда A нильпотентна.

 \mathcal{A} оказательство. Можно считать, что поле F алгебраически замкнуто. Действительно, пусть \bar{F} — алгебраическое замыкание поля F и $\bar{A}=A\otimes_F\bar{F}$. Тогда \bar{A} имеет базис $\{u_i\otimes 1\}$ над \bar{F} , где $\{u_i\}$ — база A над F. Каждый из элементов $u_i\otimes 1$ нильпотентен и если \bar{A} нильпотентна, то A нильпотентна, так как $A\cong A\otimes 1$.

Воспользуемся индукцией по dim A. Если dim A=1, то всё очевидно. Пусть dim A=n. Если J(A)=A, то A нильпотентна и всё доказано. Если $J(A)\neq 0$, то A/J(A) нильпотентна, но она полупроста. Следовательно, J(A)=0 и $A=A_1\oplus\ldots\oplus A_n$, где A_i- проста, $i=1,\ldots,n$. Но тогда след любого элемента алгебры нулевой, что противоречиво. \square

Алгебра A с единицей над полем F называется yентральной, если Z(A) = F.

Теорема 3. Пусть A — центральная простая алгебра над полем F, B — простая алгебра, содержащая F в своём центре. Тогда $A \otimes_F B$ проста.

 \mathcal{A}_{O} к а з а т е ль с т в о. Пусть $0 \neq U \leq A \otimes_F B$. Если $0 \neq u \in U$, то $u = \sum a_i \otimes b_i$, где можно считать, что b_i линейно независимы. Назовём число ненулевых a_i длиной элемента u. Пусть $u \in U$ — ненулевой элемент минимальной длины. Если $r,s \in A$, то $(r \otimes 1)u(s \otimes 1) = \sum ra_i s \otimes b_i \in U$. Так как A проста, то $Aa_1A = A$. Следовательно, можно считать, что $a_1 = 1$. Для любого $a \in A$ имеем $(a \otimes 1)u - u(a \otimes 1) \in U$. Значит, $\sum [a,a_i] \otimes b_i \in U$, где $[a,a_i] = aa_i - a_i a$. Длина полученного элемента меньше, а потому это ноль. Так как b_i линейно независимы, то $[a,a_i] = 0$ для любого i, т.е. $a_i \in Z(A) = F$. Пусть $a_i = \alpha_i \in F$. Тогда $u = 1 \otimes (b_1 + \sum_{i=2}^n \alpha_i b_i) = 1 \otimes b$, где $b \neq 0$, так как b_i линейно независимы. Следовательно, $U \supseteq (1 \otimes B)(1 \otimes b)(1 \otimes B) = 1 \otimes BbB = 1 \otimes B$, а потому $U \supseteq (A \otimes 1)(1 \otimes B) = A \otimes B$.

Теорема 4. Пусть A, B — центральные простые алгебры над полем F. Тогда $A \otimes_F B$ центральная простая алгебра над полем F.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть $z=\sum a_i\otimes b_i\in Z(A\otimes_F B)$, где b_i линейно независимы. Следовательно, для любого $a\in A$ имеем

$$0 = (a \otimes 1)z - z(a \otimes 1) = \sum [a, a_i] \otimes b_i.$$

Тогда $[a, a_i] = 0$ и $a_i = \alpha_i \in F$. Значит $z = 1 \otimes \sum \alpha_i b_i = 1 \otimes b$, а потому для любого $x \in B$ выполняется

$$0 = z(1 \otimes x) - (1 \otimes x)z = 1 \otimes [b, x],$$

т.е. [b,x]=0 и $b=\beta\in F$. Следовательно, $z=\beta(1\otimes 1)$.

§11 Группа Брауэра

Теорема 1. Пусть D- алгебра c делением, конечномерная над своим центром Z. Тогда $\dim[D:Z]=n^2, n\in\mathbb{N}$.

 $egin{align*} & \begin{align*} & \beg$

Теорема 2. Если A — конечномерная центральная простая алгебра над Z = Z(A), то dim $[A:Z] = n^2$, $n \in \mathbb{N}$.

 \mathcal{A} о к а з а т е л ь с т в о. Так как $A \cong M_m(D)$, где D — конечномерная алгебра с делением над Z и Z(D)=Z. Следовательно, $[D:Z]=n^2$, а потому $[A:Z]=(mn)^2$.

Пусть R' — кольцо взаимное к R (антиизоморфное; $\phi(xy) = \phi(y)\phi(x)$).

Теорема 3. Если A — конечномерная центральная простая алгебра над F, то $A \otimes A' \cong M_n(F)$, где $n = \dim_F A$.

 \mathcal{J}_O к а з а T е J_D с T в O. Рассматривая A как векторное пространство, имеем $L_F(A,A):=End_F(A):=L(A)\cong M_n(F)$. Пусть $A_r:=\{R_a:a\in A\}$, $A_l:=\{L_a:a\in A\}$. Тогда $A_r,A_l\leq L(A)$ и $A_r\cong A,A_l\cong A'$. Следовательно, $A\otimes_F A'\cong A_r\otimes_F A_l$ — центральная простая алгебра. Пусть $\phi:A_r\otimes_F A_l\mapsto A_rA_l\subseteq L(A)$ такое, что $\phi(\sum R_a\otimes L_b)=\sum R_aL_b$. Заметим, что A_r и A_l взаимно коммутируют, а ϕ является эпиморфизмом. В итоге, $A_r\otimes_F A_l\cong A_rA_l$ и $\dim_F(A_r\otimes_F A_l)=\dim_F(A_rA_l)=n^2$. Следовательно, $A_rA_l=L(A)=M_n(F)$, а потому $A\otimes A'\cong M_n(F)$.

Если A и B — конечномерные центральные простые алгебры над полем F, то говорим, что A и B эквивалентны $(A \sim B)$, если для

некоторых $m,n\in\mathbb{N}$ выполняется

$$A \otimes_F M_n(F) \cong B \otimes_F M_m(F)$$
.

Если $A\cong D_1\otimes_F M_n(F)$, а $B\cong D_2\otimes_F M_m(F)$, где D_1,D_2 — конечномерные над F тела с центром F, то $A\sim B\iff D_1\cong D_2$.

ynpa женение. Доказать, что \sim является отношением эквивалентности.

Пусть B(F) — множество классов эквивалентности конечномерных центральных простых алгебр над полем F. Обозначим через [A] класс, содержащий A, и определим произведение в B(F):

$$[A][B] = [A \otimes_F B].$$

Теорема 4. B(F) — абелева группа.

Упраженение. Доказать теорему.

Группа B(F) называется *группой Брауэра* поля F, она перечисляет все алгебры с делением над F, содержащие F как центр.

§12 Максимальные подполя

Пусть D — тело, $S \subseteq D$. Централизатором S в D называется множество

$$C_D(S) := C(S) = \{ x \in D : xs = sx \ \forall s \in S \}.$$

Легко видеть, что C(S) — подтело в D.

Mаксимальным подполем тела D называется поле $K\subseteq D$ такое, что K не содержится ни в каком большем поле из D.

Максимальное подполе K содержит центр Z тела D, так как иначе, присоединяя к K элементы из Z, получим большее тело.

Лемма 1. Если D- тело и K- подполе в D, то K максимально $\iff C(K)=K.$

 \mathcal{A} оказательство. Если K=C(K) и $L\supseteq K$ — подполе в D, то $L\subseteq C(K)=K$.

Если K максимально и $a \in C(K) \setminus K$, то $K(a) \supseteq K$ — большее поле. \square

Теорема 1. Пусть D- тело c центром F и K- максимальное подполе в D. Тогда $D\otimes_F K-$ плотное кольцо линейных преобразований D, рассматриваемого как векторное пространство над K.

 \mathcal{J}_O к а з а τ е π ь c τ в o. Пусть E(D) — кольцо эндоморфизмов аддитивной группы тела $D,\ D_r:=\{R_a:a\in D\},\ K_l:=\{L_k:k\in K\}.$ Тогда $[D_r,K_l]=0$. Так как D — тело, то $dD_r=D$ для любого $d\in D^*$, т.е. D_r неприводимо. Следовательно, D_rK_l неприводимо. Так как D_rK_l — алгебра линейных преобразований, то D_rK_l точно на D.

Пусть Δ — централизатор кольца D_rK_l на D (в E(D)). Так как Δ централизует D_r , то $\Delta\subseteq D_l$ (если $\delta\in\Delta$, то $m\delta=(1m)\delta=\delta(1)m=mL_{\delta(1)}$). Кроме того, Δ централизует K_l . Так как K_l — максимальное подполе в D_l , то $\Delta\subseteq K_l$. С другой стороны, $K_l\subseteq\Delta$, а потому $K_l=\Delta$. Таким образом, D_rK_l — плотное кольцо линейных преобразований пространства D над K_l .

Поскольку $K \cong K_l$, то $D \otimes_F K$ — простая алгебра. Отображение $\phi: D \otimes_F K \mapsto D_r K_l$, действующее по правилу $\phi(\sum a_i \otimes k_i) = \sum R_{a_i} L_{k_i}$, — изоморфизм. Значит, $D \otimes_F K \cong D_r K_l$ и $D \otimes_F K$ является плотным кольцом K-линейных преобразований пространства D.

Следствие 1. Если $[D:Z(D)] < \infty$ и K — максимальное подполе в D, то $D \otimes_Z K \cong K_n$, где n = [D:K].

 \mathcal{A} оказательство. Плотность $D\otimes_Z K$ на пространстве D над K означает, что $D\otimes_Z K\cong K_n$.

Теорема 2. Если D- алгебра c делением, а Z- центр тела D, u $[D:Z]<\infty,$ то для любого максимального подполя K справедливо

$$[D:K] = [K:Z] = \sqrt{[D:Z]}.$$

 \mathcal{A} о к а з а т е ль с т в о. Имеем $[D \otimes_Z K : K] = [D : Z]$. Так как $D \otimes_Z K \cong K_n$, то $[D \otimes_Z K : K] = n^2$. Следовательно, $[D : Z] = n^2$, а потому [D : K] = [K : Z] = n.

Следствие 2. Пусть D — конечномерная центральная некоммутативная алгебра c делением над \mathbb{R} . Тогда \mathbb{C} — максимальное подполе в D и $[D:\mathbb{R}]=4$.

 \mathcal{A} оказательство. \mathbb{C} — единственное конечное расширение поля \mathbb{R} .

Следствие 3. Тензорное произведение артиновых колец может быть не артиновым.

 \mathcal{L} о к а з а т е л ь с т в о. Если D — алгебра с делением и $[D:K]=\infty$, то $D\otimes_F K$ — не артинова (F=Z(D)), иначе $D\otimes_F K\cong K_n$, что противоречит бесконечномерности $D\otimes_F K$ над K.

§13 Модули над полупростыми артиновыми кольцами

Теорема 1. Пусть R — полупростое артиново кольцо, M — унитарный модуль над R. Тогда M — прямая сумма неприводимых R-модулей.

 \mathcal{A} о казатель ство. Так как R — полупростое артиново кольцо, то $R=R_1\oplus\ldots\oplus R_k$, где R_i — простое артиново кольцо и e_i — идемпотент из Z(R). Поскольку $1=e_1+\ldots+e_k$, то $M=Me_1\oplus\ldots\oplus Me_k$. Далее, Me_i — унитарный R_i -модуль и $Me_iR_j=0,\ i\neq j$. Следовательно, наше утверждение достаточно доказать, когда R — простое кольцо.

Если R — простое артиново кольцо, то $R\cong M_n(D)$. Пусть $\rho_i=e_{ii}R$. Тогда $R=\rho_1\oplus\ldots\oplus\rho_n$, где $\rho_i\unlhd_{min}^rR$. Значит, ρ_i — неприводимый R_i -модуль. Если $m\in M$, то $m=m_1+\ldots+m_n$, где $m_i=me_{ii}\in m\rho_i$. Имеем либо $m\rho_i=0$, либо $m\rho_i$ — неприводимый R-модуль. Следовательно, m содержится в сумме неприводимый R-модулей. Тогда M — сумма неприводимых R-модулей. Рассмотрим такие подмодули в M, которые являются прямыми суммами неприводимых R-модулей. По лемме Цорна выберем среди них максимальный — T_0 . Тогда $T_0=M$. Если $M_j\not\subseteq T_0$ для некоторого неприводимого подмодуля M_j , то $M_j\cap T_0=0$ и модуль $M_j\oplus T_0$ больше, чем T_0 . Следовательно, $T_0=M$.

Теорема 2. Пусть R — полупростое артиново кольцо, M — неприводимый модуль над R. Тогда $M \cong \rho$, где $\rho \leq_{min}^{r} R$. Если R — простое артиново кольцо, то все неприводимые R-модули изоморфны.

 \mathcal{A} оказательство. Имеем $M\cong R/\rho$, где $\rho \leq_{max}^r R$. Существует такой $e\in R$, что $\rho=eR$. Тогда $R=eR\oplus (1-e)R$ и $M\cong R/\rho\cong R/eR\cong (1-e)R$. Так как M неприводим, то $(1-e)R\leq_{min}^r R$.

Если R — простое артиново кольцо, то $R\cong M_n(D)$. Если $\rho \trianglelefteq_{min}^r R$, то $\rho=eR$, где $e^2=e$. Подходящим автоморфизмом кольца R матрицу e можно привести к диагональному виду. Из минимальности ρ следует, что $e=e_{11}$, а потому $\rho\cong\rho_1$, где $\rho_1=\{\sum_{i=1}^n\alpha_{1i}e_{1i}\}\unlhd_r M_n(D)$.

Глава 2

Часть II

§1 Автоморфизмы и дифференцирования

Теорема 1 (Нётер-Сколем). Пусть R — простое артиново кольцо с центром F. Предположим, что A и B — простые подалгебры в R, которые содержат F и имеют конечную размерность над F. Если ф — изоморфизм A и B, и $\phi(\alpha) = \alpha$ для любого $\alpha \in F$, то существует $x \in R$ такой, что $\phi(a) = x^{-1}ax$ для любого $a \in A$.

 \mathcal{A}_{O} казательство. Заметим, что $R_{l}\otimes A_{r}$ — простое артиново кольцо, изоморфное $R_{l}A_{r}$, а $R_{l}\otimes B_{r}\cong R_{l}B_{r}$. Пусть $\psi:R_{l}\otimes A_{r}\mapsto R_{l}\otimes B_{r}$ такое, что $\psi(L_{u}\otimes R_{a})=L_{u}\otimes R_{\phi(a)}$. Тогда ψ — изоморфизм, а кольцо R — модуль над $R_{l}\otimes A_{r}\colon x(L_{u}\otimes R_{a})=uxa$ для любого $x\in R$. Аналогично, кольцо R — модуль над $R_{l}\otimes B_{r}\colon x(L_{u}\otimes R_{\phi(a)})=ux\phi(a)$ для любого $x\in R$.

Кольцо R является прямой суммой неприводимых $R_l \otimes A_r$ -модулей V_i ($V_i \cong V_j$), а также R является прямой суммой неприводимых $R_l \otimes B_r$ -модулей U_i ($U_i \cong U_j$). Так как $R_l \otimes A_r \cong R_l \otimes B_r$, то $V_i \cong U_j$.

Пусть $R=V_1\oplus\ldots\oplus V_n$ и $R=U_1\oplus\ldots\oplus U_m,\ n\leq m.$ Тогда существует изоморфизм $\sigma_i:V_i\mapsto U_i$ такой, что $\sigma_i(v_iL_uR_a)=\sigma_i(v_i)L_uR_{\phi(a)}.$ Пусть $\sigma=\sum\sigma_i.$ Тогда σ — мономорфизм из R в R такой, что $\sigma(vL_uR_a)=\sigma(v)L_uR_{\phi(a)}.$

Если v=1, a=1, то для любого $u\in R$ имеем $\sigma(u)=u\sigma(1)=ux,$ где $x=\sigma(1).$ В частности, при u=a получаем $\sigma(a)=ax.$

Если v=u=1, то для любого $a\in A$ имеем $\sigma(a)=\sigma(1)\phi(a)=x\phi(a)$, т.е. $x\phi(a)=ax$ для любого $a\in A$.

Докажем, что x обратим в R. Если ux=0 для некоторого $u\in R$, то $\sigma(u)=0$ и поскольку σ — это мономорфизм, то u=0. Следовательно, x не является правым делителем нуля в R.

Так как R — кольцо матриц над некоторым телом, то R артиново слева.

Покажем, что если R артиново слева, а x не является правым делителем нуля, то R=Rx. Действительно, пусть $I_0=R$ и $I_1=Rx$. Если $I_1\neq I_0$, то положим $I_2=I_1x$. Тогда $I_2\subseteq I_1$ и если $I_2=I_1$, то $I_1x=Rx$, противоречие с тем, что x не является правым делителем нуля. Пусть мы уже построили $I_0\supseteq I_1\supseteq I_2\supseteq\ldots\supseteq I_k$, где все включения строгие и $I_s=I_{s-1}x$. Положим $I_{k+1}=I_kx$. Тогда $I_{k+1}=I_kx\subseteq I_{k-1}x=I_k$. Если $I_{k+1}=I_kx=I_{k-1}x=I_k$, то как и выше получаем противоречие. В итоге, противоречие с артиновостью слева.

Таким образом, x обратим и $\phi(a) = x^{-1}ax$.

Следствие. Пусть A- простая алгебра, конечномерная над своим центром. Тогда любой автоморфизм A является внутренним.

Аддитивное (линейное) отображение δ кольца (алгебры) R называется дифференцированием, если

$$\delta(xy) = \delta(x)y + x\delta(y)$$

для любых $x,y\in R$. При этом дифференцирование δ называется внутренним, если $\delta(x)=xc-cx$ для некоторого $c\in R$.

Теорема 2. Пусть A — простая алгебра, конечномерная над своим центром F. Тогда любое дифференцирование A является внутренним.

 \mathcal{A} о казательство. Алгебра $M_2(A)$ является простой, её центр изоморфен F и она является конечномерной над F. Пусть

$$B = \left\{ \left(\begin{array}{cc} a & \delta(a) \\ 0 & a \end{array} \right) : a \in A \right\}, \ C = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) : a \in A \right\}.$$

Если $\alpha \in F$, то $\delta(a)=0$. Следовательно, B — подалгебра в $M_2(A)$, содержащая центр алгебры $M_2(A)$. Отображение $\psi:C\mapsto B$, определённое правилом

$$\left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right) \mapsto \left(\begin{array}{cc} a & \delta(a) \\ 0 & a \end{array}\right),$$

— это изоморфизм C на B, при котором элементы из F неподвижны и $C\cong A$. Следовательно, существует обратимая матрица $\left(egin{array}{cc} x & y \\ z & w \end{array} \right)\in M_2(A)$ такая, что

$$\left(\begin{array}{cc} a & \delta(a) \\ 0 & a \end{array}\right) \left(\begin{array}{cc} x & y \\ z & w \end{array}\right) = \left(\begin{array}{cc} x & y \\ z & w \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right).$$

Значит $ax+\delta(a)z=xa,\ ay+\delta(a)w=ya, az=za, aw=wa.$ Следовательно, $z,w\in F.$ Так как $\left(egin{array}{c} x&y\\z&w \end{array} \right)$ обратима, то можно считать, что $z\neq 0.$ Полагая $u=-xz^{-1},$ получаем $\delta(a)=au-ua.$

§2 Теорема Фробениуса и теорема о двойном централизаторе

Теорема 1 (Фробениус). Пусть D — некоммутативная алгебра c делением, конечномерная над \mathbb{R} . Тогда D изоморфна алгебре кватернионов.

 \mathcal{A} о к а з а т е ль с т в о. По следствию 2, $[D:\mathbb{R}]=4$. Пусть K- максимальное подполе в D. Тогда $K\cong\mathbb{C}$. Рассмотрим автоморфизм в \mathbb{C} , переводящий элементы в комплексно сопряженные. Тогда он оставляет элементы из \mathbb{R} неподвижными. Следовательно, существует $x\in D$ такой, что $\alpha-\beta i=x^{-1}(\alpha+\beta i)x$. Тогда $x^{-1}ix=-i$, откуда $x^2i=ix^2$ и $x^2\in\mathbb{C}$. Так как $x^2\in\{a\in\mathbb{C}:\bar{a}=a\}$, то $x^2\in\mathbb{R}$, но $x\not\in\mathbb{R}$. Тогда $x^2=-\alpha^2$, $\alpha\in\mathbb{R}$. Пусть $j=x/\alpha$. Имеем $j^2=-1,ji=-ij$ и элементы 1,i,j,ij=k линейно независимы над \mathbb{R} , а поскольку $[D:\mathbb{R}]=4$, то это базис D над \mathbb{R} .

Рассмотрим централизатор $C_R(S)$ подмножества S кольца R. Легко видеть, что $C_R(S)$ — подкольцо в R и $S\subseteq C_R(C_R(S))$. В случае, когда R — простое артиново кольцо, о (двойном) централизаторе можно сказать большее.

Теорема 2 (о двойном централизаторе). Пусть R — простое артиново кольцо с центром F, и пусть $A \subseteq R$ — конечномерная простая подалгебра над F, содержащая F. Тогда $C_R(A)$ — простое кольцо и $A = C_R(C_R(A))$.

 \mathcal{A} о казательство. Рассмотрим A как кольцо линейных преобразований, действующих на A. Если $\dim_F A = n$, то A

изоморфно вкладывается в $M_n(F)$ $(A \cong A_r)$. Мы видели, что $C_{M_n(F)}(A_r) = A_l$, а потому $C_{M_n(F)}(C_{M_n(F)}(A_r)) = C_{M_n(F)}(A_l) = A_r$. Алгебра A_l антиизоморфна алгебре A. Следовательно, A_l проста и наше утверждение справедливо, если $R = M_n(F)$.

Кольцо $S:=R\otimes_F M_n(F)$ является простым артиновым кольцом с центром F. Так как $A\subseteq M_n(F)$ и $A\subseteq R$, то кольца $A\otimes 1$ и $1\otimes A$ лежат в S, являются конечномерными над F, простыми и изоморфными. При изоморфизме элементы из $F=F(1\otimes 1)$ неподвижны. По теореме Нётер-Сколема кольца $A\otimes 1$ и $1\otimes A$ сопряжены, а потому и их централизаторы в S сопряжены тем же самым элементом. Имеем

$$C_S(A \otimes 1) = C_R(A) \otimes M_n(F), \ C_S(1 \otimes A) = R \otimes C_{M_n(F)}(A).$$

Так как кольца $C_R(A) \otimes M_n(F)$ и $R \otimes C_{M_n(F)}(A)$ сопряжены в S то сопряжены их централизаторы:

$$C_S(C_R(A) \otimes M_n(F)) = C_R(C_R(A)) \otimes F \cong C_R(C_R(A)),$$

$$C_S(R \otimes C_{M_n(F)}(A)) = F \otimes C_{M_n(F)}(C_{M_n(F)}(A)) = F \otimes A \cong A.$$

Следовательно, $C_R(C_R(A)) \cong A$, т.е. они имеют одинаковую размерность над F. Так как $A \subseteq C_R(C_R(A))$, то $A = C_R(C_R(A))$.

Алгебры $C_R(A) \otimes M_n(F)$ и $R \otimes C_{M_n(F)}(A)$ сопряжены, а потому они изоморфны. Поскольку $C_{M_n(F)}(A)$ изоморфна A' и антиизоморфна алгебре A, то $R \otimes C_{M_n(F)}(A) \cong R \otimes A'$ — простое кольцо. Следовательно, $C_R(A) \otimes M_n(F)$ просто и $C_R(A)$ просто.

$\S 3$ О радикале кольца R[t]

Упраженение. Пусть R — ассоциативное коммутативное кольцо с единицей. Показать, что полином $a_0 + a_1 t + \ldots + a_n t^n \in R[t]$ обратим $\iff a_0$ обратим в R, а a_1, \ldots, a_n нильпотентны в R.

Теорема 1. Если R не имеет ненулевых ниль-идеалов, то кольцо R[t] полупросто.

Доказательство. Пусть $0 \neq J$ — радикал в R[t]. Пусть

$$r = a_0 t^{n_0} + \ldots + a_k t^{n_k} \quad (n_0 < \ldots < n_k)$$

— ненулевой элемент из J с наименьшим числом ненулевых коэффициентов a_i . Так как $a_i r - r a_i$ лежит в J и имеет меньше ненулевых

коэффициентов, то он должен быть равен нулю, откуда $a_i a_j = a_j a_i$ для всех i, j.

Покажем, что все a_0, \ldots, a_k нильпотентны. Элемент $r_1 = ra_i t$ лежит в J, поэтому существует s такой, что $r_1 + s + r_1 s = 0$, откуда

$$s = -r_1 - r_1 s = -r_1 + r_1 (r_1 + r_1 s) = -r_1 + r_1^2 + r_1^2 s.$$

Продолжая далее по индукции, получаем

$$s = -r_1 + r_1^2 - r_1^3 + \ldots + (-1)^n r_1^n + (-1)^n r_1^n s.$$

для любого $n \in \mathbb{N}$. Пусть n больше степени элемента s. Сравнивая коэффициенты при одинаковых степенях t, обнаруживаем, что коэффициенты полинома s суть полиномы от a_0,\ldots,a_k . Обозначим через R_0 подкольцо в R, порождённое a_0,\ldots,a_k , и через R'_0 — кольцо, полученное из R_0 формальным присоединением единицы 1. Тогда $r_1,s\in R'_0[t]$ и $(1+r_1)(1+s)=1$. Так как R'_0 коммутативно, то по упражнению выше получаем, что все коэффициенты многочлена $r_1=ra_it$ нильпотентны. В частности, a_i нильпотентен.

Обозначим через U множество таких элементов $a \in R$, что $r = at^{n_0} + b_1t^{n_1} + \ldots + b_kt^{n_k} \in J$ для некоторых b_1, \ldots, b_k . Тогда U — ниль-идеал в R и $0 \neq a_0 \in U$. Противоречие.

§4 Стандартные тождества

Далее рассматриваем алгебры над полем F. Говорят, что алгебра A над полем F удовлетворяет *полиномиальному тождеству*, если для некоторого d>0 существует ненулевой полином $f\in F[x_1,\ldots,x_d]$ от некоммутативных переменных x_1,\ldots,x_d над F, такой что

$$f(a_1,\ldots,a_d)=0$$

для всех $a_1, \ldots, a_d \in A$. Алгебру с полиномиальным тождеством будем называть PI-алгеброй.

Примеры. 1) Любая коммутативная алгебра является РІ-алгеброй, так как удовлетворяет тождеству $f(x_1,x_2)=x_1x_2-x_2x_1$.

2) Алгебра $M_2(F)$ удовлетворяет полиному

$$f(x_1, x_2, x_3) = (x_1x_2 - x_2x_1)^2 x_3 - x_3(x_1x_2 - x_2x_1)^2.$$

Лемма 1. Если $d \in \mathbb{N}$ и $0 \neq f \in F[x_1, \dots, x_d]$, то существует $n \in \mathbb{N}$ такое, что $M_n(F)$ не удовлетворяет f.

 \mathcal{A} о казательство. Пусть степень f равна k и M — идеал в $F[x_1,\ldots,x_d]$, порожденный всеми одночленами степени, большей k. Тогда алгебра $A=F[x_1,\ldots,x_d]/M$ конечномерна над F. Используя регулярное представление алгебры A, мы можем представить её как подалгебру полной матричной алгебры $M_n(F)$, где $n=\dim_F A$. Так как $f\not\in M$, то образ $\bar f$ элемента f в алгебре A отличен от нуля. Следовательно, существуют такие $a_1,\ldots,a_d\in M_n(F)$, что $f(a_1,\ldots,a_d)\neq 0$.

C тандартным полиномом степени n в алгебре $F[x_1,\ldots,x_n]$ $(n\geq 2)$ называется полином

$$[x_1,\ldots,x_n] := \sum_{\sigma \in \mathbb{S}_n} (-1)^{\sigma} x_{\sigma(1)} \ldots x_{\sigma(1)}.$$

Говорят, что алгебра A удовлетворяет стандартному тождеству, если для некоторого n полином $[x_1,\ldots,x_n]$ равен нулю на A.

Лемма 2. Если A — алгебра размерности n над F, то A удовлетворяет полиному $[x_1, \ldots, x_{n+1}].$

 \mathcal{A} оказательство. Из определения стандартного полинома следует, что он полилинеен и кососимметричен по всем аргументам. Расписывая элементы по базису e_1,\ldots,e_n и пользуясь полилинейностью и кососимметричностью, получаем представление $[x_1,\ldots,x_{n+1}]$ как сумму элементов вида $[e_{i_1},\ldots,e_{i_{n+1}}]$, где два базисных элемента совпадают, что дает равенство нулю.

Следствие 1. Алгебра $M_n(F)$ удовлетворяет полиному $[x_1, \dots, x_{n^2+1}].$

Следствие 2. Если A — коммутативная алгебра над полем F, то алгебра $M_n(A)$ удовлетворяет полиному $[x_1, \ldots, x_{n^2+1}]$.

Алгебра A называется алгебраической алгеброй ограниченной степени над полем F, если существует такое $n \in \mathbb{N}$, что для любого $a \in A$ существует полином вида $x^n + \alpha_1 x^{n-1} + \ldots + \alpha_n \in F[x]$, корнем которого является α .

Лемма 3. Если A — алгебраическая алгебра ограниченной степени над полем F, то A является PI-алгеброй.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть каждый $a \in A$ удовлетворяет полиному вида $x^n + \alpha_1 x^{n-1} + \ldots + \alpha_n \in F[x]$, где n — фиксированное число. Если

b — произвольный элемент из $A,\ {\rm тo},\ {\rm коммутиру} {\rm я}$ его с обеими частями равенства

$$a^n + \alpha_1 a^{n-1} + \ldots + \alpha_n = 0,$$

получим

$$[a^n, b] + \alpha_1[a^{n-1}, b] + \ldots + \alpha_{n-1}[a, b] = 0.$$

Коммутируя это равенство с элементом [a, b], получим

$$[[a^n, b], [a, b]] + \alpha_1[[a^{n-1}, b], [a, b]] + \ldots + \alpha_{n-2}[[a^2, b], [a, b]] = 0.$$

Прокоммутируем это равенство с элементом $[[a^2,b],[a,b]]$ и т.д. (n раз). В итоге получим специфическое тождество, которому удовлетворяет A. \square

Лемма 4. Если алгебра A удовлетворяет полиномиальному тождеству степени d, то она удовлетворяет полилинейному тождеству степени $\leq d$.

 \mathcal{A} оказательство. Пусть A удовлетворяет полиномиальному тождеству $f(x_1,\ldots,x_n)=0$ степени d. Тогда она удовлетворяет также тождеству

$$g(x_1, \dots, x_n, x_{n+1}) = f(x_1 + x_{n+1}, x_2, \dots, x_n)$$
$$-f(x_1, \dots, x_n) - f(x_{n+1}, x_2, \dots, x_n) = 0,$$

которое относительно x_1 имеет степень, меньшую, чем тождество f=0. Продолжая так далее, приходим к тождеству, линейному относительно x_1 . На каждом шаге этого процесса вводится новая переменная, а общая степень рассматриваемых тождеств не возрастает. Поэтому степень полученного тождества не превосходит d. Далее переходим к переменной x_2 и так далее. В итоге получим полилинейное тождество, которое выполняется в A и имеет степень не выше d.

Лемма 5. Если алгебра A удовлетворяет полилинейному тождеству f, то для любого расширения K поля F алгебра $A \otimes_F K$ также удовлетворяет f.

Упраженение. Доказать лемму 5.

§5 Теорема Капланского

Пемма 1. $M_n(F)$ не удовлетворяет никакому тождеству степени < 2n.

Доказательство. Можно считать, что тождество полилинейно:

$$f = x_1 \dots x_d + \sum_{\sigma \neq 1} \alpha_{\sigma} x_{\sigma(1)} \dots x_{\sigma(d)}, \ d < 2n.$$

Пусть $x_1=e_{11}, x_2=e_{12}, x_3=e_{22}, x_4=e_{23}, \dots$ Если $\sigma\neq 1$, то $x_{\sigma(1)}\dots x_{\sigma(d)}=0$. Следовательно, $f(e_{11},e_{12},e_{22},e_{23},\dots)=e_{11}e_{12}e_{22}e_{23}\dots\neq 0$.

Теорема 1. Если A — примитивная алгебра, удовлетворяющая полиномиальному f тождеству степени d, то A — конечномерная простая алгебра над своим центром Z и $\dim_Z A \leq [d/2]^2$.

 \mathcal{A} о казательство. Так как A примитивна, то $A\cong M_n(\Delta):=\Delta_n$ или для любого $m\in\mathbb{N}$ существуют $B\leq A$ и $\phi\in Hom(B,\Delta_m)$ такие, что $\phi(B)=\Delta_m$. Во втором случае f — это тождество на Δ_m для любого $m\in\mathbb{N}$. Следовательно, f — тождество на Z_m , где Z — центр Δ , что в силу леммы 1 невозможно. Значит, $A\cong\Delta_n$.

Пусть K — максимальное подполе в Δ . Тогда кольцо $\Delta \otimes_Z K$ является плотным кольцом линейных преобразований пространства Δ над K. Можно считать, что A удовлетворяет полилинейному тождеству f степени $\leq d$. Тогда f — это тождество и на $\Delta \otimes_Z K$. Как и выше, заключаем, что $\Delta \otimes_Z K \cong M_m(K)$, откуда $A \otimes_Z K \cong \Delta_n \otimes_Z K \cong M_{mn}(K)$. Так как f — тождество на $M_{mn}(K)$, то $d \geq 2mn$ и $mn \leq [d/2]$ Поскольку $\dim_K (A \otimes_Z K) = \dim_Z A = (mn)^2$, то $\dim_Z A \leq [d/2]^2$.

Как мы видели выше, если A — коммутативная алгебра над полем F, то алгебра $M_n(A)$ удовлетворяет полиному $[x_1,\ldots,x_{n^2+1}]$. Можно ли утверждать обратное, т.е. что любое РІ-кольцо лежит в B_n для подходящего коммутативного кольца B и $n \in \mathbb{N}$? Это слишком общий подход. К примеру, можно рассмотреть бесконечномерную алгебру Грассмана Γ над полем характеристики ноль с образующими u_i и соотношениями $u_iu_i=-u_iu_i$.

Упражнение. Показать, что [[x,y],z]=0 — тождество на Γ , а $[x_1,\ldots,x_k]$ не является тождеством на Γ для любого $k\in\mathbb{N}$.

Теорема 2. Если A - PI-алгебра без ниль-идеалов, то $A \leq B_m$, где $B - \kappa$ оммутативное кольцо (прямая сумма полей).

 \mathcal{A} о к а з а τ е π ь c τ в o. По теореме 1 §3 кольцо A[t] полупросто и $A[t]=A\otimes_F F[t]$. Пусть f — тождество на A. Можно считать, что f полилинейно. Тогда f — тождество на A[t]. Так как $A\leq A[t]$, то из $A[t]\leq B_m$ следует наше утверждение. Таким образом, считаем, что A полупроста. Тогда A — подпрямая сумма примитивных колец A_α и f — тождество на A_α . Если $\deg f=d$, то $\dim_{Z_\alpha}A_\alpha\leq [d/2]^2$. Используя регулярное представление алгебры A_α , можем вложить её в алгебру $M_k(Z_\alpha)$, где $k=\dim_{Z_\alpha}A_\alpha\leq [d/2]^2$. Тогда существует $m\in\mathbb{N}$ такое, что $A_\alpha\leq M_m(Z_\alpha)$ для любого α . Пусть $B=\oplus_\alpha Z_\alpha$. Тогда $A\leq B_m$.

Следствие. Если A - PI-алгебра без ниль-идеалов, то на A выполнено стандартное тождество.

Алгебру $M_n(F)$ можно отличить от её собственных подалгебр с помощью тождеств. Пусть r(n) — минимальная степень стандартных тождеств выполняющихся в $M_n(F)$.

Лемма 2. $r(n) \ge r(n-1) + 2$.

 \mathcal{A} о казательство. Имеем вложение $M_{n-1}(F) \hookrightarrow M_n(F), A \mapsto \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$. Пусть t = r(n-1)-1. Тогда существуют $a_1,\dots,a_t \in M_{n-1}(F)$ такие, что $[a_1,\dots,a_t] \neq 0$. Следовательно, $[a_1,\dots,a_t,e_{kn},e_{nn}] = [a_1,\dots,a_t]e_{kn} \neq 0$ для некоторого k, откуда r(n) > t+2 = r(n-1)+1. \square

Теорема 3. Пусть R — простая алгебра, конечномерная над своим центром F, $A \leq R$ такая, что любое полилинейное тождество с коэффициентами из простого подполя $P \subseteq F$, выполняющееся в A, имеет место и в R. Тогда A = R.

 \mathcal{A} о казательство. Если \bar{F} — алгебраическое замыкание поля F, то условия теоремы верны для $R \otimes_F \bar{F}$. Следовательно, можно считать, что поле F алгебраически замкнуто. Тогда $R = M_n(F)$ по теореме Веддербарна.

Если A полупроста, то $A\cong M_{n_1}(F)\oplus\ldots\oplus M_{n_k}(F)$. Если g выполняется на $M_s(F)$, то g выполняется на A, где $g\in P[\bar{x}],\ s=\max\{n_1,\ldots,n_k\}$, т.е. g выполняется на $M_n(F)$ и по лемме $2\ s=n$ и A=R

Если A не полупроста, то её радикал $N \neq 0$ и $A/N \cong M_{n_1}(F) \oplus \ldots \oplus M_{n_k}(F)$, где все $n_i < n$. Если $s = max\{n_1,\ldots,n_k\}$, то на A/N выполняется стандартное тождество степени r := r(s), т.е. $[a_1,\ldots,a_r] \in N$ для любых $a_1,\ldots,a_r \in A$. Пусть $N^t = 0$. Так как $g = b_1[a_1,\ldots,a_r]b_2[a_{r+1},\ldots,a_{2r}]\ldots b_t[a_{r(t-1)+1},\ldots,a_{rt}] \in P[\bar{x}]$, то из

выполнимости g на A следует выполнимость g на $M_n(F)$, а потому элементы $[x_1, \ldots, x_r]$ $(x_i \in M_n(F))$ порождают нильпотентный идеал в $M_n(F)$. Следовательно, $[x_1, \ldots, x_r] = 0, s < n$. Противоречие.

§6 Проблема Куроша для PI-алгебр

Проблема Куроша для алгебр, аналогичная проблеме Бернсайда для групп, формулируется следующим образом. Пусть A — алгебраическая алгебра над полем; верно ли, что любое конечное множество элементов из A порождает конечномерную подалгебру в A? В такой общности ответ отрицателен, однако если A является PI-алгеброй, то ответ положителен.

Алгебра над полем называется *локально конечной*, если любая её подалгебра, порождённая конечным числом элементов, является конечномерной.

Лемма 1. Пусть A- алгебра над полем F, $B \unlhd A$, B и A/B локально конечны. Тогда алгебра A локально конечна.

 \mathcal{A} о к а з а т е ль с т в о. Пусть $\{a_1,\dots,a_r\}\subseteq A, \bar{a}_1,\dots,\bar{a}_r\in A/B,\ alg\,\langle\bar{a}_1,\dots,\bar{a}_r\rangle = \langle\bar{a}_1,\dots,\bar{a}_r,\bar{a}_{r+1},\dots,\bar{a}_m\rangle_F$. Пусть a_1,\dots,a_m — их прообразы. Так как $\bar{a}_i,\bar{a}_j=\sum \alpha_{ijk}\bar{a}_k$, то $a_ia_j=\sum \alpha_{ijk}a_k+b_{ij}$, где $b_{ij}\in B$. Пусть $M=alg\,\langle b_{ij},a_kb_{ij},b_{ij}a_k,a_kb_{ij}a_t\rangle\subseteq B$. Тогда M конечномерна. Положим $W=alg\,\langle a_1,\dots,a_m\rangle$. Тогда $M\trianglelefteq W$ и $W/M=\langle a_1+M,\dots,a_m+M\rangle_F$. Следовательно, M и W/M конечномерны. Тогда и W конечномерна , но $\{a_1,\dots,a_r\}\subseteq W$. \square

Лемма 2. Пусть B, C — локально конечные идеалы в A. Тогда B+C также локально конечный идеал в A.

 \mathcal{A} оказательство. Имеем $(B+C)/C \cong B/(B\cap C)$ и $B/(B\cap C)$ локально конечна как гомоморфный образ локально конечной алгебры. \Box

Если $\{B_{\alpha}\}$ — линейно упорядоченное по включению семейство локально конечных идеалов A, то $\cup B_{\alpha}$ — локально конечный идеал. Следовательно, существует максимальный локально конечный идеал в A и справедлива

Лемма 3. В любой алгебре A существует единственный локально конечный идеал L(A), в котором содержатся все локально конечные идеалы алгебры A.

Идеал L(A) называется локально конечным радикалом алгебры A.

Лемма 4. L(L/L(A)) = 0.

 \mathcal{A} о к а з а т е ль с т в о. Если \bar{C} — локально конечный идеал в \bar{A} и C — его прообраз в A, то $C\supseteq L(A)$ и $C/L(A)=\bar{C}$. Следовательно, C локально конечен, $C\subseteq L(A)=\bar{C}=0$.

Теорема 1. Если C — левый локально конечный идеал в A, то $C \subseteq A$.

 \mathcal{A} о к а з а т е л ь с т в о. Переходя к A/L(A), можно считать, что L(A)=0. Надо доказать, что C=0.

Рассмотрим идеал CA в A. Покажем, что он локально конечен. Пусть $x_1,\ldots,x_m\in CA$. Можно считать, что $x_i=c_ia_i$. Пусть $y_{ij}=a_ic_j$. Тогда $y_{ij}\in C$ и $W=alg\,\langle c_1,y_{ij}\rangle$ конечномерна над F. Имеем

$$x_ix_j=c_ia_ic_ja_j=c_iy_{ij}a_j\in Wa_j\subseteq \sum Wa_j:=T,$$

$$Wa_jx_t = Wa_jc_ta_t = Wy_{jt}a_t \subseteq Wa_t \subseteq T.$$

Следовательно, $alg \langle x_1, \dots, x_m \rangle \subseteq T + \langle x_1, \dots, x_m \rangle_F$ конечномерна, т.е. CA локально конечен, откуда CA = 0 и C — локально конечный идеал в A. Значит, C = 0.

Теорема 2. Пусть A — алгебраическая PI-алгебра над полем F, A конечнопорождена u без ниль-элементов. Тогда $L(A) \neq 0$.

 \mathcal{A} о казательство. Упраженение. Показать, что в алгебраической алгебре J(A) — ниль-идеал.

Можем считать, что A полупроста. Пусть a — необратимый ненулевой элемент из A. Тогда $a^n+\alpha_1a^{n-1}+\ldots+\alpha_ka^{n-k}=0,$ $\alpha_k\neq 0,$ $n-k\geq 1,$ откуда $((a^k+\alpha_1a^{k-1}+\ldots+\alpha_k)a)^{n-k}=0$ и $a^{k+1}+\alpha_1a^k+\ldots+\alpha_ka=0$. Следовательно, существует $p(x)\in F[x]$ такой, что $a=a^2p(a)$. Значит e=ap(a) — идемпотент $(e\neq 0,1)$ и ae=a.

Далее, для любого имеем

$$(xe - exe)^2 = 0$$
, $(ex - exe)^2 = 0 \Rightarrow xe = exe = ex \Rightarrow e \in Z(A)$.

Пусть $M \subseteq A, a_1, \ldots, a_n \in M$. Покажем по индукции, что существует идемпотент $e \in M, e \in Z(A)$ такой, что $a_i e = a_i$ для всех i. Пусть

существует $e_1\in M$ такой, что $a_1e_1=a_1,\dots,a_{n-1}e_1=a_{n-1}$ и $a_ne_1-a_n\neq 0$. Тогда существует $e_2\in M$ такой, что $(a_ne_1-a_n)e_2=a_ne_1-a_n$ или $a_n=a_n(e_1+e_2-e_1e_2)$. Заметим, что $e:=e_1+e_2-e_1e_2$ — идемпотент и

$$a_n e = a_n$$
, $a_i e = a_i (e_1 + e_2 - e_1 e_2) = a_i + a_i e_2 - a_i e_2 = a_i$.

Пусть P такой идеал в A, что A/P примитивна. Тогда A/P — простая конечномерная над своим центром алгебра. Так как A/P алгебраична над F, то Z(A/P) — алгебраическое расширение поля F. Алгебра A конечнопорождена, поэтому и A/P конечнопорождена над F. Покажем, что Z(A/P) конечнопорождена над F.

Пусть $\bar{e}_1,\ldots,\bar{e}_n$ — базис A/P над $Z(A/P),\bar{a}_1,\ldots,\bar{a}_m$ — образующие в A/P. Тогда $\bar{a}_i=\sum \lambda_{ij}\bar{e}_j, \bar{e}_i\bar{e}_j=\sum \gamma_{ijk}\bar{e}_k,\ \lambda_{ij},\gamma_{ijk}\in Z(A/P)$ и $Z(A/P)=alg\,\langle\lambda_{ij},\gamma_{ijk}\rangle.$ В итоге $\dim_F A/P<\infty$.

Пусть $\bar{y}_1,\dots,\bar{y}_m$ — базис A/P над F и $\bar{x}_1,\dots,\bar{x}_n$ — образующие алгебры A. Если y_i — прообраз элемента \bar{y}_i , то

$$x_i = \sum_{j=1}^{m} \alpha_{ij} y_j + u_i, y_i y_j = \sum_{j=1}^{m} \rho_{ijk} y_k + u_{ij},$$

где $u_i,u_{ij}\in P$. Пусть $P_0=id\langle u_i,u_{ij}\rangle \leq A$. Тогда $P_0\subseteq P$. Так как $alg\langle x_1,\dots,x_n\rangle=A$, то для любого $a\in A$ имеем $a=\sum\gamma_iy_i+u$, где $\gamma_i\in F,u\in P_0$. В частности, если $a\in P$, то, переходя к фактор-алгебре A/P, получим $\sum\gamma_i\bar{y}_i=0$. Следовательно, $\gamma_i=0$ и $a=u\in P_0$, откуда $P=P_0$.

Существует идемпотент $e \in P$ такой, что $u_i e = u_i, u_{ij} e = u_{ij}$ для любых i,j, при этом $e \in Z(A)$. Так как $P = id \langle u_i, u_{ij} \rangle$, то ep = p для любого $p \in P$, откуда P = Ae. Положим $P_1 = \{x - xe : x \in A\} \unlhd A$. Тогда $A = P \oplus P_1$ и $P_1 \cong A/P$. Так как A/P конечномерна над F, то она локально конечна. Следовательно, P_1 — локально конечный идеал в A, а потому $L(A) \neq 0$.

Теорема 3. Пусть A — алгебраическая PІ-алгебра над полем F. Тогда A локально конечна.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть A удовлетворяет полилинейному тождеству степени d. Индукция по d. Если d=2, то либо A коммутативна, либо A антикоммутативна, а потому локально конечна. Переходя к $\bar{A}=A/L(A)$, можно считать, что L(A)=0. Более того, можно считать, что она конечнопорождена (так как нас интересует конечномерность конечнопорождённых подалгебр, то и рассматриваем

такую. Если у неё A = L(A), то доказывать нечего, если $A \neq L(A)$, то факторизуем по L(A) и приходим к противоречию).

Если A без нильпотентных элементов, то $L(A) \neq 0$ по теореме 2.

Пусть $a\in A$ такой, что $a^2=0$ и T — левый идеал, порожденный элементом a. Тогда Ta=0. Пусть в выполнено $f(x_1,\ldots,x_d)=x_1q(x_2,\ldots,x_d)+h(x_1,\ldots,x_d)=0$, где в h слагаемые не начинаются на x_1 . Возьмём $x_1=a$ и $x_2,\ldots,x_d\in T$. Тогда $aq(x_2,\ldots,x_d)=0$. Пусть $W=\{x\in T:ax=0\}$. Тогда TW=0 и $W\unlhd T$. Так как $q(t_2,\ldots,t_d)\in W$ для любых $t_2,\ldots,t_d\in T$, то в $\bar T=T/W$ выполняется $q(x_2,\ldots,x_d)=0$. По индукции $\bar T$ локально конечна. Так как $W^2=0$, то W локально конечна. Следовательно, T — ненулевой локально конечный левый идеал в A. Теперь $T\subseteq L(A)$ по теореме 1.

Теорема 4. Пусть A — алгебраическая алгебра ограниченной степени над полем F. Тогда A локально конечна.

§7 Лемма Ширшова

Рассмотрим ассоциативные слова от $R = \{x_1, \dots, x_k\}, x_1 < \dots < x_k$. Слово α называется x_k -неразложимым, если оно имеет вид $\alpha = x_k \dots x_k x_{i_1} \dots x_{i_s}, s \geq 1, i_t \neq k$. Представление слова β в виде произведения x_k -неразложимых слов называется x_k -разложением слова β . Для β существует (при том единственное) x_k -разложение $\iff \beta = x_k \dots x_s$, где $s \neq k$.

Пусть $l(\alpha)$ означает длину слова α . На ассоциативных словах от R введём частичный порядок: если $l(\alpha)=l(\beta)$, то положим $\alpha>\beta$ в лексикографическом смысле. Пусть T — множество всех x_k неразложимых слов. Линейный порядок на T: пусть $\alpha,\beta\in T$, полагаем $\alpha>\beta$, если $\alpha>_{lex}\beta$ или α — начало слова β . Ассоциативное слово γ называется n-разбиваемым, если оно может быть представлено в виде произведения своих подслов так, что при любой нетождественной перестановке этих подслов получаются слова меньшие γ .

Пример. Слово $\gamma = x_3x_1x_2x_2x_1x_1x_2x_1x_1x_1$ является 3-разбиваемым, при этом имеем 3 различных разбиения:

$$(x_3x_1)(x_2x_2x_1x_1)(x_2x_1x_1x_1), (x_3x_1x_2)(x_2x_1x_1)(x_2x_1x_1x_1),$$

 $(x_3)(x_1x_2x_2x_1x_1x_2)(x_1x_1x_1).$

Слово $x_1x_2x_1x_3x_2x_1x_2x_3x_2$ не является 2-разбиваемым.

Слова, допускающие x_k -разложение, можно рассматривать как слова в алфавите T (T-слова), при этом можно говорить о T-длине и R-длине. На множестве всех ассоциативных T-слов введём частичный порядок \prec : для T-слов α и β с одной длиной положим $\alpha \prec \beta$, если $\alpha <_{lex} \beta$. Имеет смысл говорить об n-разбиваемых T-словах. Поэтому в дальнейшем используем термины: n_R -разбиваемость и n_T -разбиваемость.

Лемма 1. Пусть α — ассоциативное T-слово. Тогда из его n_T -разбиваемости следует n_R -разбиваемость.

 \mathcal{A} о казательство. Пусть $\alpha = \alpha_1 \dots \alpha_n - n_T$ -разбиение. Тогда $\alpha, \alpha_1, \dots, \alpha_n$ допускают x_k -разложение. Так как $\alpha \prec_T \alpha_{i_1} \dots \alpha_{i_n}$, то это же верно и для R-слов: $\alpha > \alpha_{i_1} \dots \alpha_{i_n}$.

Лемма 2. $(n-1)_T$ -разбиваемость α влечёт n_R -разбиваемость αx_k .

 \mathcal{A} о казательство. Из леммы 1 следует существование $(n-1)_R$ - разбиения слова α :

$$\alpha = (x_k x_{i_1} \dots x_{i'_1})(x_k x_{i_2} \dots x_{i'_2}) \dots (x_k x_{i_{n-1}} \dots x_{i'_{n-1}}),$$

где $x_{i'_{+}} \neq x_{k}$. Тогда для слова αx_{k} имеем n_{R} -разбиение:

$$\alpha x_k = (x_k)(x_{i_1} \dots x_{i'_1} x_k)(x_{i_2} \dots x_{i'_2} x_k) \dots (x_{i_{n-1}} \dots x_{i'_{n-1}} x_k).$$

Действительно, если есть перестановка, сохраняющая (x_k) , то она преобразует αx_k в $\alpha' x_k$, где α' получается перестановкой подслов в $(n-1)_R$ -разбиваемом слове α . Следовательно, $\alpha > \alpha'$ и $\alpha x_k > \alpha' x_k$.

Если же x_k смещается, то полученное слово будет начинаться меньшим числом символов x_k по сравнению с αx_k .

Лемма 3 (А.И.Ширшов). Для любых $k, s, n \in \mathbb{N}$ существует $N(k, s, n) \in \mathbb{N}$ такое, что в любом ассоциативном слове длины N(k, s, n) от k упорядоченных символов либо встретится s равных подслов, либо n-разбиваемое подслово.

 \mathcal{A} о казательство. Рассматриваем слова от $R = \{x_1, \dots, x_k\}, \ x_1 < \dots < x_k$. Число N(k,s,1) существует для любых $k,s \in \mathbb{N}$. Индукция по n. Предположим, что существует N(k,s,n-1) для любых $k,s \in \mathbb{N}$. Число N(1,s,n) существует. Далее индукция по k. Пусть существует N(k-1,s,n). Докажем, что существует N(k,s,n).

Рассмотрим произвольное ассоциативное слово α длины

$$[s+N(k-1,s,n)][N(k^{s+N(k-1,s,n)},s,n-1)+1].$$

Если в начале α стоят символы $x_i, i \neq k$, и их число $\geq N(k-1,s,n)$, то выполняется предположение индукции к этому подслову. Поэтому можно считать, что его длина < N(k-1,s,n). В конце α может быть подслово $x_k \dots x_k$ и можно считать, что его длина < s. Отбросив эти подслова (если они существуют), получим слово α_1 , длина которого больше числа

$$[s+N(k-1,s,n)][N(k^{s+N(k-1,s,n)},s,n-1)].$$

Для α_1 существует x_k -разложение $\alpha_1 = \alpha_{11} \dots \alpha_{1m}$. Можно предполагать, что длина каждого x_k -неразложимого слова $\alpha_{1i} < s + N(k-1,s,n)$. Существует $\leq k^{s+N(k-1,s,n)}$ различных x_k -неразложимых слов при указанном ограничении на длину. Рассмотрим α_1 как T-слово. Его T-длина $> N(k^{s+N(k-1,s,n)},s,n-1)$, т.е. в α_1 или s последовательных равных подслов, или $(n-1)_T$ -разбиваемое подслово β . Если второе, то ввиду строгого неравенства для T-длины T-слова α_1 мы можем считать, что за β следует символ x_k . По лемме 2 слово βx_k является n_R -разбиваемым.

Лемма 4. Пусть α — ассоциативное слово длины m ($\alpha \neq \beta^t, t > 1$). Тогда для любого $n \leq m$ слово α^{2n} содержит n-разбиваемое подслово.

 \mathcal{A} о казательство. Из α циклической перестановкой порождающих можно получить m слов: $\alpha = \alpha_0, \alpha_1, \dots, \alpha_{m-1}$. Так как $\alpha \neq \beta^t$, то $\alpha_i \neq \alpha_j$. Пусть $\alpha_{i_0} > \alpha_{i_1} > \dots > \alpha_{i_{m-1}}$. Очевидно, что $\alpha_i = u_i v_i$, где $v_i u_i = \alpha$. Рассмотрим слово

$$\alpha^{2n} = v_{i_0} u_{i_0} v_{i_0} u_{i_0} v_{i_1} u_{i_1} v_{i_1} u_{i_1} \dots v_{i_{n-1}} u_{i_{n-1}} v_{i_{n-1}} u_{i_{n-1}}.$$

Пусть $\alpha'_{i_k} = u_{i_k} v_{i_k} u_{i_k} v_{i_{k+1}}, \ k = 0, \dots, n-2, \ \alpha'_{i_{n-1}} = u_{i_{n-1}} v_{i_{n-1}} u_{i_{n-1}}, \ \gamma = v_{i_0}$. Тогда $\alpha^{2n} = \gamma \alpha'_{i_0} \alpha'_{i_1} \dots \alpha'_{i_{m-1}}$. Так как начало α'_j совпадает со словом α_j , то $\alpha'_{i_0} \alpha'_{i_1} \dots \alpha'_{i_{m-1}}$ является n-разбиваемым.

§8 Теорема Ширшова о высоте

Пусть F — ассоциативное коммутативное кольцо с 1 и A — ассоциативная алгебра, порождённая a_1,\ldots,a_n . Обозначим через F[X] свободную ассоциативную алгебру от порождающих x_1,\ldots,x_n . Для любого $f(x_1,\ldots,x_k)\in F[X]$ через \bar{f} обозначим образ f при гомоморфизме $F[X]\mapsto A$ таком, что $x_i\mapsto a_i$.

Будем говорить, что одночлен $u \in F[X]$ имеет $mun\ [n_1, \ldots, n_k]$, если слово u содержит x_i ровно n_i раз, причём $n_k \neq 0$, но $n_j = 0$ для j > k. Пусть $u = x_{i_1}^{j_1} \ldots x_{i_h}^{j_h}$, причём $i_r \neq i_{r+1}$ для $r = 1, \ldots, h-1$. Число h назовём высотой u.

Пусть $Y=\{f_1,\ldots,f_l\}$ — однородные многочлены из $F[X],\ \bar{Y}=\{\bar{f}_1,\ldots,\bar{f}_l\},\ v$ — одночлен из F[X]. Предположим, что существуют $q\in\mathbb{N}$ и одночлены $u_i(x_1,\ldots,x_l)$ с максимумом высот q такие, что $\bar{v}=\sum_i u_i(\bar{f}_1,\ldots,\bar{f}_l)$ и каждый элемент $u_i(f_1,\ldots,f_l)$ имеет тот же тип, что и v. Наименьшее число q с этим свойством называется высотой одночлена \bar{v} относительно \bar{Y} . Если высоты всех одночленов алгебры A относительно \bar{Y} ограничены в совокупности некоторым числом h, то A — алгебра ограниченной высоты h относительно \bar{Y} .

Примеры. 1) В $F[x_1, x_2]$ высота одночлена $x_1x_1x_2x_1x_1x_2x_1x_1x_2$ равна 6 относительно $\{x_1, x_2\}$ и равна 1 относительно $\{x_1x_1x_2\}$.

2) Любая коммутативная конечнопорождённая алгебра A — это алгебра ограниченной высоты. Действительно, если v типа $[i_1,\ldots,i_k]$, то $\bar{v}=\alpha a_1^{i_1}\ldots x_k^{i_k}$, т.е. высота \bar{v} относительно множества $\{a_1,\ldots,a_k\}$ не превосходит k.

Теорема 1 (А.И.Ширшов). Пусть A — ассоциативная конечнопорождённая PI-алгебра над F от порождающих $\{a_1,\ldots,a_k\}$ c тождеством степени n. Тогда A — ограниченной высоты относительно множества \bar{Y} , где Y — все слова из F[X] длины < n.

 \mathcal{A} о казательство. Можно считать, что тождество полилинейно. Достаточно доказать, что существует M=M(n,k) такое, что любое ассоциативное слово s от x_1,\ldots,x_k высоты $\geq M$ относительно Y содержит n-разбиваемое подслово. Действительно, в A выполняется $\bar{s}=\sum_i \alpha_i \bar{s}_i$, где s_i — слова от x_1,\ldots,x_k того же состава, что и s, но меньшие s. Если s_i высоты $\geq M$, то продолжаем далее. Ввиду строгой монотонности, получим требуемое.

По лемме Ширшова существует N=N(k,2n,n) такое, что любое ассоциативное слово длины N от x_1,\ldots,x_k , не содержащее n-разбиваемых подслов, содержит подслово v^{2n} . Можно считать, что $v\neq v_1^t,t>1$. Тогда по лемме 4 §7 d(v)< n. Следовательно, любое слово от x_1,\ldots,x_k высоты $\geq N+2$ относительно Y без n-разбиваемых подслов содержит подслово v_1 вида v^nv' , где n>d(v)>d(v') и v' не начало v. Ввиду конечности подслов указанного вида, для большого M любое слово высоты $\geq M$ относительно Y, без n-разбиваемых послов, содержит

n равных подслов вида v^nv' . Но тогда существует n-разбиение:

$$(v^n v' u_1 v)(v^{n-1} v' u_2 v^2) \dots (v v' u_n),$$

 $(v' u_1 v^{n-1})(v v' u_2 v^{n-2}) \dots (v^{n-1} v' u_n),$

в зависимости от того, какое из слов v, v' больше.

Следствие 1 (И.Капланский). Ассоциативная конечнопорождённая алгебраическая PI-алгебра над полем конечномерна.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть V — множество всех произведений < n порождающих алгебры A (n — степень тождества), а m — максимум их степеней алгебраичности, h — высота A относительно V. Тогда A порождается как векторное пространство конечным числом (< (m-1)nh) элементов.

Следствие 2 (Левицкий). Ассоциативная конечнопорождённая ниль-PI-алгебра над кольцом нильпотентна. В частности, ассоциативная ниль-алгебра ограниченного индекса локально нильпотентна.

Будем говорить, что алгебра A имеет *локально ограниченную* высоту, если каждая её конечнопорождённая подалгебра есть алгебра ограниченной высоты.

Следствие 3 (Левицкий). Всякая ассоциативная имеет локально ограниченную высоту.

Пусть I — некоторый идеал в F. Элемент F-алгебры A называется алгебраическим над I, если существуют $i_k \in I$ и $m \in \mathbb{N}$, такие что $a^m = \sum_{k=1}^{m-1} i_k a^k$. Конечнопорождённая алгебра A называется конечной над I, если существуют $a_1, \ldots, a_k \in A$ и $m \in \mathbb{N}$ такие, что для любого $c \in A^m$ имеем $c = \sum_{k=1}^{m-1} i_k a_k$ для некоторых $i_k \in I$. Алгебра A называется локально конечной над I, если каждая её конечнопорождённая подалгебра является конечной над I. В частности, если I = 0, алгебраические элементы над I — это просто нильпотентные элементы, а локальная конечность над I превращается в локальная конечность над I превращаются в обычную алгебраичность и локальную конечномерность над F.

Теорема 2. Если в ассоциативной конечнопорождённой PI-алгебре A над F все произведения < n порождающих алгебраичны над F, то A конечна над F.

§9 Теорема Оре

Элемент кольца R называется peryлярным, если он не является ни левым ни правым делителем нуля. Кольцо $Q(R) \supseteq R$ называется negum кольцом частных для R, если

- 1) любой регулярный $r \in R$ обратим в Q(R);
- 2) любой $x \in Q(R)$ имеет вид $x = a^{-1}b$, где $a,b \in R,\ a$ регулярный элемент.

При этом кольцо R называется левым порядком в Q(R).

Теорема 1. Кольцо R имеет левое кольцо частных \iff для любых $a, b \in R$ (b регулярен) существуют такие $a_1, b_1 \in R$ (b_1 регулярен), что $a_1b = b_1a$ (условия Ope).

Доказательство. Если существует Q(R), то существует $ab^{-1} \in Q(R)$, а потому $ab^{-1} = b_1^{-1}a_1$.

Обратно, пусть выполнены условия Оре и $\mathcal{M} = \{(a,b): a,b \in R, b \text{ регулярен}\}$. Определим в \mathcal{M} отношение \sim , полагая $(a,b) \sim (c,d) \iff$ существуют такие $b_1,d_1 \in R$, что $d_1a=b_1c,\ d_1b=b_1d$ и b_1 регулярен. Покажем, что d_1 регулярен. Из $d_1b=b_1d$ следует, что d_1 не является правым делителем нуля. Так как d регулярен, то существуют $b_2,d_2 \in R$ такие, что $d_2b=b_2d$ и d_2 регулярен. Тогда существуют $e_1,e_2 \in R$ такие, что $e_1b_1=e_2b_2$ и e_2 регулярен. Следовательно,

$$e_1b_1d = e_2b_2d = e_1d_1b = e_2d_2b \Rightarrow e_1d_1 = e_2d_2.$$

Так как e_2, d_2 регулярны, то d_1 не является левым делителем нуля, а потому d_1 регулярен.

Покажем, что отношение \sim не зависит от выбора регулярных элементов $b_1,d_1\in R$ таких, что $d_1b=b_1d$.

Действительно, пусть $b_2, d_2 \in R$ регулярны и $d_2b = b_2d$. Из тех же рассуждений следует, что

$$e_1b_1 = e_2b_2, \ e_1d_1 = e_2d_2 \Rightarrow e_2d_2a = e_1d_1a = e_1b_1c = e_2b_2c \Rightarrow d_2a = b_2c.$$

ynpa женение. Показать, что \sim является отношением эквивалентности.

Класс, содержащий пару (a,b) обозначим через a/b. Пусть Q(R) — множество всех классов эквивалентности. Определим операции на Q(R):

$$a/b + c/d = (d_1a + b_1c)/b_1d$$
, где $d_1b = b_1d$;

 $(a/b)(c/d) = (a_1c)/(g_1b)$, где $g_1a = a_1d, g_1$ регулярен.

 $\mathit{Упраженениe}.$ Проверить корректность определения операций и аксиомы кольца на Q(R).

§10 Теоремы Голди

Пусть S — непустое подмножество в кольце R. Левым аннулятором множества S называется множество $l(S)=\{x\in R: xs=0 \forall s\in S\}.$ Левый идеал I называется левым аннуляторным идеалом, если I=l(S) для некоторого $S\subseteq R$. Аналогично для правых идеалов.

Кольцо R называется левым кольцом Голди, если

- 1) R удовлетворяет условию обрыва возрастающих цепей левых аннуляторов;
- 2) R не содержит бесконечных прямых сумм левых идеалов.

 Π ример. Пусть R — нётерово слева кольцо.

Упраженение. Пусть $A=R[x_1,\ldots,x_n,\ldots].$ Показать, что A — кольцо Голди и A не нётерово.

Левый идеал I кольца R называется $cyщественным (большим), если <math>I \cap J \neq 0$ для любого ненулевого левого идеала J из R.

Упраженение. Условие обрыва возрастающих цепей левых аннуляторов эквивалентно условию обрыва убывающих цепей аннуляторов.

Лемма 1. Пусть R — полупервичное кольцо, удовлетворяющее условию обрыва возрастающих цепей левых аннуляторов. Если $A, B \leq_l R, \ A \supseteq B \ u \ r(A) \neq r(B), \ mo \ cyществует такой <math>a \in A, \ umo \ Aa \neq 0, \ Aa \cap B = 0.$

 \mathcal{A} о к а з а т е ль с т в о. Так как $A\supset B$, то $r(A)\subset r(B)$ и включения строгие. Пусть U — правый аннулятор минимальный по отношению к свойству $r(A)\subset U\subseteq r(B)$. Тогда $AU\neq 0$ и $AUAU\neq 0$. Пусть ua такой, что $AuaU\neq 0$. Покажем, что $Aua\cap B=0$. В противном случае существует такой $x\in A$, что $0\neq xua\in Aua\cap B$. Так как $x\in A$, то $r(x)\supset r(A)$. Рассмотрим $r(x)\cap U$, который является правым аннулятором. Тогда $r(A)\subset r(x)\cap U\subseteq r(B)$. Действительно, $xua\in B$, поэтому xuaU=0 и $uaU\subseteq r(x)\cap U$, но $uaU\not\subseteq r(A)$. Следовательно, $r(x)\cap U=U,U\subseteq r(x)$, и xu=0, что противоречит неравенству $xua\neq 0$.

Следствие 1. Пусть R удовлетворяет условию леммы, а Rx, Ry-существенные левые идеалы в R, тогда R-существенный левый идеал в R.

 \mathcal{A} оказательство. Пусть A — ненулевой левый идеал в R и $\bar{A}=\{r\in R: ry\in A\}$. Так как Ry — существенный левый идеал, то $\bar{A}\neq 0$ и $\bar{A}y=Ry\cap A\neq 0$. Далее, $\bar{A}\supseteq l(y),\ \bar{A}y\neq 0$ и l(y)y=0. По лемме 1 существует такой $T\subseteq \bar{A}$, что $T\neq 0$ и $T\cap l(y)=0$. Пусть $\bar{T}=\{r\in R: rx\in T\}$. Тогда $\bar{T}x=Rx\cap T\neq 0$ и $\bar{T}xy\neq 0$. Поскольку $\bar{T}xy\subseteq Ty\subseteq A$, то $Rxy\cap A\neq 0$.

Следствие 2. Пусть R удовлетворяет условию леммы, а Ra — существенный левый идеал в R, тогда а регулярен.

 \mathcal{A} о к а з а т е л ь с т в о. Кольцо R полупервично, значит r(R)=0. Если $r(A)\neq 0$, то условия леммы выполнены для A=R, B=Ra. Так как Ra — существенный левый идеал в R, то r(a)=0. Рассмотрим l(a). Цепь $l(a)\subseteq l(a^2)\subseteq l(a^3)\subseteq\dots$ обрывается на n-ом шаге: $l(a^n)=l(a^{n+1})$. Если $x\in Ra^n\cap l(a)$, то $x=ya^n$ и $xa=ya^{n+1}=0$, откуда $y\in l(a^{n+1})=l(a^n)$. Следовательно x=0 и $Ra^n\cap l(a)=0$, но Ra^n — существенный левый идеал в R, поэтому l(a)=0.

Далее в этом параграфе предполагаем, что R — полупервичное левое кольцо Голди.

Лемма 2. Кольцо R удовлетворяет условию обрыва убывающих цепей левых аннуляторов.

 \mathcal{A} оказательство. Пусть $L_1\supset L_2\supset\ldots\supset L_n\supset\ldots$ — строго убывающая цепь. Тогда $r(L_i)\neq r(L_{i+1})$. По лемме 1 в каждом L_i существует $C_i\unlhd_l R$ такой, что $C_i\cap L_{i+1}=0$. Но тогда в R существует бесконечная прямая сумма $\oplus\sum C_i$.

Лемма 3. Если $l(c)=0,\ mo\ Rc\ -\ cyщественный левый идеал в <math>R,$ а потому c регулярен.

 \mathcal{A} о казательство. Пусть A — ненулевой левый идеал в R. Тогда $A\cap Rc=0$, а потому левые идеалы $Ac^n\ (n\geq 0)$ образуют бесконечную прямую сумму. Действительно, если $a_0+a_1c+\ldots+a_nc^n=0$, где n минимально, то $a_0\in A\cap Rc$, откуда $(a_1+\ldots+a_nc^{n-1})c=0$ и $a_1+\ldots+a_nc^{n-1}$.

Идеал S кольца R называется аннуляторным, если S=l(T), где $T \leq_l R$.

Заметим, что $ST = 0 \Rightarrow (TS)^2 = 0 \Rightarrow TS = 0$.

Лемма 4. Ненулевой минимальный аннуляторный идеал в R является первичным кольцом Голди. Существует конечная прямая сумма таких идеалов, образующая существенный левый идеал в R.

 \mathcal{A} оказательство. Пусть S — ненулевой минимальный аннуляторный идеал в R и T — ненулевой левый идеал в S. Тогда $ST \neq 0$, так как иначе $S \cap r(S)$ — ненулевой нильпотентный идеал. Кроме того, $T \supseteq ST \unlhd_l R$, т.е. S не содержит бесконечных прямых сумм.

Упражнение. Условие максимальности переносится на подкольцо.

В итоге, S — левое кольцо Голди.

Пусть $A, B \subseteq S$ такие, что AB = 0. Тогда ASB = 0 и $A \subseteq l(SB) \cap S$ — аннуляторный идеал в R. Если $A \neq 0$, то $S \subseteq l(SB)$, откуда $(SB)^2 = 0$. Следовательно, SB = 0, т.е. B = 0 и S — первичное кольцо Голди.

Пусть $A=S_1\oplus\ldots\oplus S_n$ — максимальная прямая сумма минимальных аннуляторных идеалов. Пусть — K ненулевой левый идеал в R. Если $A\cap K=0$, то $AK\subseteq A\cap K=0$, откуда $K\subseteq r(A)=l(A)\neq 0$. Так как R полупервично, то $A\cap r(A)\neq 0$. Следовательно, существует ненулевой минимальный аннуляторный идеал в r(A), который не пересекается с A, но тогда его можно присоединить к прямой сумме. Значит, $A\cap K\neq 0$. \square

Лемма 5. Если I-существенный левый идеал в <math>R, то I содержит регулярный элемент.

 \mathcal{A} оказательство. Пусть R первично и $a \in I$ такой, что l(a) минимален. Если a регулярен, то всё доказано. Иначе существует ненулевой идеал J такой, что $Ra \cap J = 0$. Так как I является существенным, то $I \cap J \neq 0$, а потому можно считать, что $J \subseteq I$. Если $x \in J$ и $b \in l(a+x)$, то $ba = -bx \in Ra \cap J = 0$, откуда $b \in l(a) \cap l(x)$ и из минимальности l(a) следует, что $l(a) \subseteq l(x)$. Значит, l(a)x = 0 для любого $x \in J$, а потому l(a)J = 0. Но в первичном кольце левый аннулятор ненулевого левого идеала равен нулю, т.е. l(a) = 0 и a регулярен.

Пусть теперь R полупервично, $A=S_1\oplus\ldots\oplus S_n,\ S_i$ — первичное кольцо Голди и $S_i\cap I$ — существенный левый идеал в S_i . Тогда $S_i\cap I$ содержит регулярный элемент r_i . Покажем, что $r=r_1+\ldots+r_n$ регулярен в R. Если $l(r)\neq 0$, то из существенности идеала A следует, что $l(r)\cap A\neq 0$. Пусть $0\neq t\in l(r)\cap A,\ t=t_1+\ldots+t_n\ (t_i\in S_i)$. Тогда $tr=\sum t_ir_i=0$, а потому $t_ir_i=0$. Теперь регулярность r_i в S_i даёт t=0

Теорема 1. Пусть R — полупервичное левое кольцо Голди. Тогда существует левое кольцо частных Q(R).

 \mathcal{A} оказательство. Пусть $a,b\in R,\ a$ регулярен. По лемме $3\ Ra$ — существенный левый идеал в R, а потому $M=\{r\in R: rb\in Ra\}$ — существенный левый идеал в R (так как если $0\neq A\unlhd_l R$, то $Ab\unlhd_l R$ и если Ab=0, то $A\subseteq M$; если $Ab\neq 0$, то $Ab\cap Ra\neq 0$, а значит $M\cap A\neq 0$). По лемме 5 существует регулярный элемент $c\in M$ и cb=da.

Упражнение. $I \leq_l R \Rightarrow I = Q(I \cap R)$.

Упраженение. Если $A = A_1 \oplus \ldots \oplus A_n$ — прямая сумма левых идеалов в R, то $QA = QA_1 \oplus \ldots \oplus QA_n$ — прямая сумма левых идеалов в Q(R).

 $\mathit{Указаниe}$: если $x_1,\dots,x_k\in Q$, то существует регулярный $a\in R$ такой, что $x_i=a^{-1}b_i$, где $b_1,\dots,b_k\in R$.

Теорема 2. Кольцо Q полупросто и удовлетворяет условию минимальности для левых идеалов.

 \mathcal{A} о к а з а т е ль с т в о. Пусть I — ненулевой левый идеал в Q и $I_1 = I \cap R$. Рассмотрим максимальную прямую сумму $S = I_1 \oplus \ldots \oplus I_n \leq_l R$. Тогда S — существенный идеал в R. Пусть $K = I_2 \oplus \ldots \oplus I_n \leq_l R$. Следовательно, $S = I_1 \oplus K$, а потому по лемме 5 существует регулярный элемент в S, но тогда $Q(I_1 \oplus K) = I \oplus QK = Q$. Так как $1 \in Q$, то 1 = i + k, откуда $i^2 = i$, $k^2 = k$, ik = ki = 0. Ясно, что I = Qi. Таким образом, Q нётерово слева, а потому это левое кольцо Голди. Так как любой идеал порождается идемпотентом, то нет нильпотентных идеалов, т.е. Q полупервично.

Пусть I — ненулевой левый идеал в Q. Тогда $I=Qe,\ e^2=e$ и $r(Qe)=r(e)=(1-e)Q;\ l((1-e)Q)=l(1-e)=Qe.$ Следовательно, любой левый идеал является левым аннулятором, а потому по лемме 2 удовлетворяет условию минимальности для левых идеалов. Радикал J(Q) такого кольца нильпотентен, т.е. J(Q)=0.

Теорема 3. Пусть S — полупростое артиново кольцо, R — левый порядок в S. Тогда R — полупервичное кольцо Голди. Кроме того, если S просто, то R первично.

 \mathcal{A} о казательство. Так как S — полупростое артиново кольцо, то любой левый идеал порождается идемпотентом. Следовательно, S удовлетворяет условию максимальности для левых аннуляторов. Так как это свойство переносится и на подкольца, то R удовлетворяет условию максимальности.

Пусть A_1, \ldots, A_n — левые идеалы в R такие, что сумма $A_1 + \ldots + A_n$ является прямой. Тогда и сумма $SA_1 + \ldots + SA_n$ также прямая. Действительно, если $\sum s_i a_i = 0$, то существует регулярный $d \in R$ такой,

что $s_i=d^{-1}b_i,\,b_i\in R$. Тогда $\sum b_ia_i=0\Rightarrow b_ia_i=0\Rightarrow d^{-1}b_ia_i=0\Rightarrow s_ia_i=0$. В итоге, R — кольцо Голди.

Пусть N — нильпотентный идеал в R, $N^m=0,N^{m-1}\neq 0$. Тогда $0\neq SNS \trianglelefteq S$ ($1\in S$) $\Rightarrow SNS=eS$ ($e\in Z(S)$). Пусть $e=\sum a_iu_ib_i$. Следовательно, существует регулярный $a\in R$ такой, что $a_i=a^{-1}c_i$, где $c_i\in R$. Тогда $e=a^{-1}\sum c_iu_ib_i=a^{-1}\sum w_ib_i$, где $w_i=c_iu_i\in N$ (так как ae=ea). Далее,

$$N^{m-1}ea = N^{m-1}ae = N^{m-1}\sum w_ib_i = 0.$$

Так как a регулярен, то $N^{m-1}e=0$. Но e — единица в SNS. Значит, $Ne=N, N^{m-1}=0$ — противоречие.

Если S просто и $0 \neq A \leq R$, то $0 \neq SAS \leq S \Rightarrow SAS = S, 1 = \sum a_i u_i b_i$ ($u_i \in A$), и существует регулярный $a \in R$ такой, что $a_i = a^{-1} c_i$, где $c_i \in R$. Тогда $1 = a^{-1} \sum c_i u_i b_i$. Если $B \leq R$ такой, что BA = 0, то

$$Ba = Ba \cdot 1 = B \sum c_i u_i b_i = 0.$$

Так как a регулярен, то B=0.

Теорема 4 (E.Posner). Пусть R — первичное кольцо, которое удовлетворяет полиномиальному тождеству над своим центроидом. Тогда R — порядок в D_n , где D — алгебра c делением конечномерная над своим центром.

§11 *S*-градуированные алгебры и супералгебры

Пусть A — алгебра над полем F, $\langle S; + \rangle$ — абелева полугруппа. Говорят, что алгебра A является S-градуированной, если $A = \bigoplus_{s \in S} A_s$, причём

$$A_{s_1}A_{s_2} \subseteq A_{s_1+s_2}$$
.

Подпространства A_s называются однородными компонентами A, и элементы из $\cup_{s \in S} A_s$ называются однородными.

Примеры. 1) A — алгебра многочленов, $A=F[x],\,S=\mathbb{N},\,A_n=\langle x^n\rangle.$ Тогда $A=\oplus_n A_n.$

2)
$$A = F[x_1, ..., x_k], S = \mathbb{N}, A_n = \langle u : u - \text{ одночлен }, deg u = n \rangle;$$

3) $A = F[x_1, \dots, x_k], S = \mathbb{N}^k = \{(n_1, \dots, n_k)\}$ — сложение покомпонентно; $A_{(n_1, \dots, n_k)} = \langle x_1^{n_1} \dots x_k^{n_k} \rangle$.

Если A — градуированная алгебра, $I\subseteq A$, то подпространство I называется однородным, если $I=\oplus_{s\in S}(I\cap A_s).$

 $\mathit{Упраженениe}.\ I\subseteq A$ однородно \iff для любого $i\in I$ все однородные компоненты элемента i также лежат в I.

4) Пусть A — свободная ассоциативная алгебра над полем F от порождающих x_1,\ldots,x_k . Тогда $A=\oplus A_{(n_1,\ldots,n_k)},$ где $A_{(n_1,\ldots,n_k)}=\langle u:deg_{x_i}\ u=n_i,\ i=1,\ldots,k\rangle.$

Пусть M — класс алгебр. Алгебра $F_M[X] \in M$ называется M-свободной от множества порождающих X, если для любой алгебры $A \in M$ и любого отображения $\phi: X \mapsto A$ существует единственный $\tilde{\phi} \in Hom_F(F_M[X], A)$, продолжающий ϕ .

Многообразие алгебр M называется $o\partial$ норо ∂ ным, если

$$F_M[X] = \bigoplus F_M[X]_{(n_1,\dots,n_k)}.$$

Упраженение. Показать, что многообразие F-алгебр, заданное тождествами

$$(xy)z = x(yz), xy = yx, x^2 = x$$

не является однородным, если $F = \mathbb{Z}_2$.

Упраженение. Над бесконечным полем любое многообразие алгебр однородно.

- 5) $A = M_n(F)$, $S = \mathbb{Z}_n$ циклическая группа порядка n, $A_i = \langle e_{rs} : s = r + i \pmod n \rangle$, A_0 диагональные матрицы, $A_i A_j \subseteq A_{i+i \pmod n}$.
- 6) $A=F[x_1,\dots,x_k],\ S=\mathbb{Z}_2,\ A_0=\langle$ одночлены чётной степени $\rangle,\ A_1=\langle$ одночлены нечётной степени $\rangle,\ A=A_0\oplus A_1.$

Cупералгебра — это \mathbb{Z}_2 -градуированная алгебра $A=A_0\oplus A_1,\ A_0$ называется vетной vастью A, а A_1 называется vетной vастью A, $A_iA_j\subseteq A_{i+j\pmod{2}}$; элементы из A_0 называются vетными, а элементы из A_1 — v0 неv0 называются v0 называю

Примеры. 1) $\mathbb{C} = \mathbb{R} \oplus \mathbb{R}i$;

2) $A=F[u]=F\oplus Fu, u^2=\alpha\in F;\ A=F[\epsilon]=F\oplus F\epsilon, \epsilon^2=0$ — алгебра дуальных чисел.

Если A и B — супералгебры над F, то можно рассмотреть их тензорное произведение $C = A \otimes B = C_0 \oplus C_1$, где

$$C_0 = A_0 \otimes B_0 + A_1 \otimes B_1, C_1 = A_0 \otimes B_1 + A_1 \otimes B_0.$$

Умножение: $(a_1 \otimes b_1)(a_2 \otimes b_2) = (a_1 a_2 \otimes b_1 b_2).$

Градуированное (скрученное) тензорное произведение: $C = C_0 \oplus C_1$ как и выше, но умножение такое:

$$(a_1 \tilde{\otimes} b_1)(a_2 \tilde{\otimes} b_2) = (-1)^{p(b_1)p(a_2)}(a_1 a_2 \tilde{\otimes} b_1 b_2),$$

 a_i, b_j — однородные, p(x) — $v\ddot{e}mhocmb$ элемента x, если x однороден, т.е.

$$p(x) = \left\{ \begin{array}{l} 0, \text{ если } x \text{ чётный,} \\ 1, \text{ если } x \text{ нечётный.} \end{array} \right.$$

Если A и B — ассоциативные алгебры, то $A\,\tilde{\otimes}B$ — ассоциативная алгебра.

 $Упраженение. \ \mathbb{C} \ \tilde{\otimes} \mathbb{C} \cong \mathbb{H} -$ кватернионы.

3) Алгебра Грассмана: $\Gamma_n=(F[\epsilon])^{\tilde{\otimes}n}=F[\epsilon]\tilde{\otimes}\ldots\tilde{\otimes}F[\epsilon]$, $\dim\Gamma_n=2^n$, базис $\Gamma_n:\{e_1\tilde{\otimes}\ldots\tilde{\otimes}e_n:e_i\in\{1,\epsilon\}\}$. Пусть $\varepsilon_i=1\tilde{\otimes}\ldots\tilde{\otimes}\epsilon\tilde{\otimes}\ldots\tilde{\otimes}1$, где ϵ стоит на i-ом месте. Тогда $\varepsilon_i^2=0$, $\varepsilon_i\varepsilon_j=-\varepsilon_j\varepsilon_i$ $(i\neq j)$. Пусть $\varepsilon_{i_1\ldots i_k}=1\tilde{\otimes}\ldots\tilde{\otimes}\epsilon\tilde{\otimes}\ldots\tilde{\otimes}1$, где ϵ стоит на i_1,\ldots,i_k -местах, $i_1<\ldots< i_k$. Тогда $\varepsilon_{i_1\ldots i_k}=\varepsilon_{i_1}\ldots\varepsilon_{i_k}$, т.е. $\Gamma_n=alg\,\langle\varepsilon_1,\ldots,\varepsilon_n\rangle$, Γ_n ассоциативна (играет роль cynepckanapos) и является супералгеброй. Более того,

$$\langle 1, \varepsilon_{i_1} \dots \varepsilon_{i_k}, k \in 2\mathbb{N} \rangle$$
 — чётная часть Γ_n , $\langle \varepsilon_{i_1} \dots \varepsilon_{i_{k+1}}, k \in 2\mathbb{N} \rangle$ — нечётная часть Γ_n .

4) Пусть $F[u_i] = F \oplus Fu_i, u_i^2 = \alpha_i \in F, \ i = 1, \ldots, n.$ Тогда $F[u_1] \tilde{\otimes} \ldots \tilde{\otimes} F[u_n] := Cl[u_1, \ldots, u_n] -$ алгебра Клиффорда. Если $\tilde{u}_i = 1 \tilde{\otimes} \ldots \tilde{\otimes} u_i \tilde{\otimes} \ldots \tilde{\otimes} 1$, где u_i стоит на i-ом месте, то $Cl[u_1, \ldots, u_n] =$ alg $\langle \tilde{u}_1, \ldots, \tilde{u}_n \rangle$, $\tilde{u}_i^2 = \alpha_i$, $\tilde{u}_i \tilde{u}_j = -\tilde{u}_j \tilde{u}_i$, dim $Cl[u_1, \ldots, u_n] = 2^n$, базис $Cl[u_1, \ldots, u_n]$: $\{1, \tilde{u}_{i_1} \ldots \tilde{u}_{i_k}\}$, где $i_1 < \ldots < i_k$.

Гомоморфизмы супералгебр предполагаются сохраняющими градуировку, поэтому "идеалы" в супералгебрах — это однородные идеалы. Супералгебра называется $npocmo\ddot{u}$, если она не содержит собственных однородных идеалов.

Пусть A — алгебра над F, $B = (A, A), B_0 = B_1 = A$ как векторное пространство. Определим умножение на B:

$$(a,b)(c,d) = (ac+bd,bc+ad).$$

 $Упраженение. \ (A,A)\cong A\otimes F[u]=A\otimes 1\oplus A\otimes u,$ где $A\otimes 1$ — чётная часть, $A\otimes u$ — нечётная часть.

Полученную алгебру обозначают A[u] и называют $y\partial soeнue M$ алгебры A.

 $\mathit{Упраженениe}.$ Если A — простая алгебра, то A[u] — простая супералгебра.

Упраженение. F[u] проста как супералгебра, но $\langle 1+u \rangle \leq F[u]$ как в алгебре $(u^2=1)$.

Теорема 1. Пусть A — простая супералгебра. Тогда либо A — простая алгебра, либо $A \cong A_0[u]$, где A_0 — простая алгебра.

 \mathcal{A} о к а з а т е ль с т в о. Пусть A не проста как алгебра и I — ненулевой идеал в A. Заметим, что $I\cap A_0=I\cap A_1=0$. Действительно, если, к примеру, $I\cap A_0\neq 0$, то $id_A\ \langle I\cap A_0\rangle$ — ненулевой однородный идеал в A. Рассмотрим отображения $\pi_i:A\mapsto A_i\ (i=1,2)$ такие, что $\pi_i(a)=a_i$, если $a=a_1+a_2$. Тогда $\operatorname{Ker}\pi\cap I=0$. Далее, $J=\pi_0(I)+\pi_1(I)$ — ненулевой однородный идеал в A. Действительно, если $c=c_0+c_1\in I$, то $I\ni ca_i=c_0a_i+c_1a_i$, где $c_0a_i\in A_i,\ c_1a_i\in A_{i+1}$. Тогда $c_0a_i=\pi_i(ca_i)\in J$. Остальные случаи разбираются аналогично. Следовательно, J=A и $\pi_0(I)=A_0,\pi_1(I)=A_1$.

Если $a \in A$, то существуют $i, j \in I$ такие, что $a = \pi_0(i) + \pi_1(j)$. Рассмотрим отображение $u : A \mapsto A$, определённое правилом: если $a = \pi_0(i) + \pi_1(j)$, то $u(a) = \pi_0(j) + \pi_1(i)$.

Корректность: если $\pi_0(i) = \pi_0(i_1), \ \pi_1(j) = \pi_1(j_1), \ \text{то} \ \pi_0(i-i_1) = 0, \ \pi_1(j-j_1) = 0 \Rightarrow i-i_1 \in A_1 \cap I = 0, j-j_1 \in A_0 \cap I = 0 \Rightarrow i=i_1, j=j_1.$ Легко видеть, что линейно. Покажем, что $u \in C(A)$ где $C(A) = \{\phi \in End(A) : \phi(ab) = a\phi(b) = \phi(a)b \ \forall a,b \in A\}$ — центроид A.

Покажем, что u(ax)=u(a)x=au(x). Достаточно это доказать только для однородных a и x. Пусть, например, $a\in A_0,\ x\in A_1$. Тогда $a=\pi_0(i),\ x=\pi_1(j)$ для некоторых $i,j\in I$, т.е. $i=a+i_1,\ j=j_0+x$, где $j_0\in A_0, i_1\in A_1$. Так как $I\ni aj=aj_0+ax$, то $ax=\pi_1(aj)$, а потому

$$u(ax) = \pi_0(aj) = aj_0 = a\pi_0(j) = au(x).$$

Остальные случаи разбираются аналогично. Так как $u(A_0)=A_1$, то $A=A_0\oplus u(A_0)$.

Так как $u^2=id_{|A}$, то легко видеть, что $A\cong A_0\otimes F[u]=A_0[u]$. Покажем, что A_0 проста. Действительно, если $J\unlhd A_0$, то J[u]:=J+u(J) — однородный идеал в A.

Упраженение. Показать, что $I=A_0(1+u)=\{a+u(a):a\in A_0\}$ и I-единственный идеал в A. Если характеристика поля не 2, то I и A_0 как алгебры изоморфны.

Упражнение. Пусть характеристика основного поля не равна 2. Показать, что алгебра A допускает структуру супералгебры \iff существует автоморфизм $\phi \in Aut\,A$ такой, что $\phi^2 = id$. При этом $\phi(a_0+a_1)=a_0-a_1,\; A_0=\{a\in A:\phi(a)=a\},\; A_1=\{a\in A:\phi(a)=-a\}$ (назовём такой автоморфизм cmandapmhым).

§12 Классификация простых конечномерных ассоциативных супералгебр над алгебраически замкнутыми полями.

Пусть V — векторное пространство над полем $F,\ V=V_0\oplus V_1,\ A=End_F(V).$ Тогда $A=A_0\oplus A_1,$ где

$$A_0 = \{ \phi \in A : \phi(V_i) \subseteq V_i \}, \ A_1 = \{ \phi \in A : \phi(V_i) \subseteq V_{i+1} \}.$$

Если V конечномерно, то $A=End_F(V)\cong M_n(F)$ — простая алгебра. Пусть v_1,\dots,v_k — базис $V_0,\,v_{k+1},\dots,v_n$ — базис V_1 . Тогда

$$A_0 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a \in M_k(F), b \in M_{n-k}(F) \right\},$$

$$A_1 = \left\{ \begin{pmatrix} 0 & c \\ d & 0 \end{pmatrix} : c \in M_{k,n-k}(F), b \in M_{n-k,k}(F) \right\}.$$

Построенная матричная супералгебра обозначается $M_{k,n-k}(F)$ и называется супералгеброй Мори́та.

Теорема 2. Всякая простая конечномерная ассоциативная супералгебра A над алгебраически замкнутым полем F характеристики не 2 изоморфна либо $M_n(F)[u]$, либо $M_{k,n-k}(F)$.

 \mathcal{A} о казательство. По теореме 1 либо $A \cong B[u]$, где B проста, либо A проста. Так как поле алгебраически замкнуто, то либо $A \cong M_n(F)[u]$,

либо $A\cong M_n(F)$. Пусть $A\cong M_n(F)$. Определим градуировку в A. Рассмотрим A как $End_F(V)$, где $\dim V=n$. Отображение $\phi:A\mapsto A$ такое, что $\phi(a_0+a_1)=a_0-a_1$, где $a_i\in A_i$, является автоморфизмом в A, $\phi^2=id$, $A_0=\{a\in A:\phi(a)=a\}$, $A_1=\{a\in A:\phi(a)=-a\}$. По теореме Нётер-Сколема существует обратимый $x\in A$ такой, что $\phi(a)=x^{-1}ax$ для любого $a\in A$. Так как $\phi^2=id$, то $a=\phi(\phi(a))=x^{-2}ax^2$ для любого $a\in A$, откуда $x^2\in Z(A)=F\cdot 1$, т.е. $x^2=\alpha\cdot 1\in F\cdot 1$. Так как поле алгебраически замкнуто, то вместо x можно рассмотреть элемент $y=x/\sqrt{\alpha}$. Тогда $x^{-1}ax=y^{-1}ay$ и $y^2=1$. Таким образом, можно считать, что $x^2=1$. Тогда $V=V_0\oplus V_1$, где $V_0=\{v\in V:x(v)=v\}$, $V_1=\{v\in V:x(v)=-v\}$. Действительно, если $v\in V$, то $v\in V$ 0, то $v\in V$ 1. Более того, так как $v\in V$ 2. $v\in V$ 3. Действительно, если $v\in V$ 4. Действительно, если, к примеру, $v\in V$ 4. $v\in V$ 6. Остальные случаи разбираются аналогично.

Пусть A — супералгебра, Γ — алгебра Грассмана от счетного числа порождающих. Подалгебра $\Gamma(A):=\Gamma_0\otimes A_0+\Gamma_1\otimes A_1\leq \Gamma\otimes A$ называется грассмановой оболочкой супералгебры A.

Пусть \mathcal{M} — некоторый класс алгебр. Говорят, что супералгебра A является \mathcal{M} -супералгеброй, если $\Gamma(A) \in \mathcal{M}$.

Пусть X и Y — непересекающиеся множества неизвестных. Назовём элементы из X чётными, а из Y — нечётными. Рассмотрим свободную алгебру $F\{X \cup Y\}$. Элемент $f(x_1, \ldots, x_n; y_1, \ldots, y_m) \in F\{X \cup Y\}$ называется градуированным тождеством супералгебры A, если $f(a_1, \ldots, a_n; b_1, \ldots, b_m) = 0$ для любых $a_1, \ldots, a_n \in A_0, b_1, \ldots, b_m \in A_1$.

Если мы знаем полилинейные тождества $\{f_i: i \in I\}$, определяющие \mathcal{M} , то градуированные тождества $\{\bar{f}_i: i \in I\}$, задающие \mathcal{M} -супералгебры, определяются правилом знаков Капланского: если элементы x_i и x_j поменялись местами i < j, то перед данным слагаемым добавляется знак $(-1)^{p(x_i)p(x_j)}$ (мы предполагаем, что слагаемое $\alpha x_1 \dots x_n$ содержится в рассматриваемом тождестве $f(x_1, \dots, x_n)$).

Совокупность всех градуированных тождеств образует идеал в $F\{X\cup Y\}$, так называемый T_2 -udean — идеал, устойчивый относительно эндоморфизмов в $F\{X\cup Y\}$ как супералгебры (считаем элемент $f\in F\{X\cup Y\}$ нечётным, если число нечётных неизвестных y_i в нём нечётно).

§13 РІ-супералгебры и полупервичные супералгебры

Пусть A — ассоциативная супералгебра. Тогда A называется РІсупералгеброй, если A — ассоциативная РІ-алгебра.

Теорема 3. Пусть F — поле характеристики не 2. Супералгебра $A = A_0 + A_1 - PI$ -супералгебра $\iff A - PI$ -алгебра.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть A является PI-супералгеброй. Тогда $\Gamma(A) = \Gamma_0 \otimes A_0 + \Gamma_1 \otimes A_1$ — ассоциативная PI-алгебра. Следовательно, $\Gamma_0 \otimes A_0$ — PI-алгебра. Так как $A_0 \leq \Gamma_0 \otimes A_0$, то A_0 — PI-алгебра. Используем следующую теорему B.K. Харченко: если A — ассоциативная алгебра, на которой действует конечная группа автоморфизмов G, в A нет |G|-кручения, $A^G := \{x \in A : x^g = x \ \forall g \in G\}$ — PI-алгебра, то A — PI-алгебра.

Рассмотрим стандартный автоморфизм ϕ на A. Пусть $G=gr\left\langle \phi\right\rangle$. Тогда $A^G=A_0,\,A_0$ — РІ-алгебра. Следовательно, A — РІ-алгебра.

Обратно, пусть A — PI-алгебра. Так как Γ — это также PI-алгебра (например, с тождеством [[x,y],z]), то $\Gamma\otimes A$ — PI-алгебра по теореме A. Регева: если A,B — ассоциативные PI-алгебры, то $A\otimes B$ — ассоциативная PI-алгебра.

Поскольку $\Gamma(A) \leq \Gamma \otimes A$, то $\Gamma(A)$ — PI-алгебра.

Супералгебра $A=A_0+A_1$ называется *полупервичной*, если она не содержит однородных идеалов с нулевым умножением.

Теорема 4. Пусть F — поле характеристики не 2. Супералгебра $A = A_0 + A_1$ полупервична \iff A полупервична как алгебра.

 \mathcal{A} оказательство. Пусть $I \leq A, I^2 = 0, \text{ а } \phi$ — стандартный автоморфизм на A. Заметим, что

$$(I+I^{\phi})^2 \subseteq II^{\phi} + I^{\phi}I \subseteq J := I \cap I^{\phi}.$$

Поскольку $J^{\phi}\subseteq J$, то J — однородный идеал в A и $J^2=0$. Следовательно, J=0, а потому и I=0.

В обратную сторону утверждение очевидно.

Предметный указатель

Ω -Алгебра, 4	
РІ-алгебра, 42	нильпотентный, 15 право-квазирегулярный, 14
автоморфизм стандартный, 64 алгебра алгебраическая, 29, 43 Грассмана, 62 градуированная, 60 Клиффорда, 62 локально конечная, 47 ограниченной высоты, 53 свободная, 61	регулярный, 13 существенный, 56 идемпотент, 17 изоморфизм, 5 кольцо антиизоморфное, 34 артиново, 16 без кручения, 20 взаимное, 34 Голди левое, 56 нётерово, 21 первичное, 27 подпрямо неразложимое, 31
центральная, 33 алгебры эквивалентные, 34 аннулятор левый, 27 правый, 27	
высота одночлена, 53	полупростое, 15 примитивное, 25
гомоморфизм, 5 группа Брауэра, 35	простое, 20 радикальное, 15
действие плотное, 25 дифференцирование алгебры, 39 внутреннее, 39 кольца, 39	характеристики 0, 20 частных левое, 55 компонента однородная, 60 лемма Шура, 11, 12
идеал, 4 большой, 56	многообразие однородное, 61 модуль, 10

неприводимый, 11 унитальный, 10 унитарный, 10 мономорфизм, 5 ниль-идеал, 15 ниль-элемент, 15	удвоение алгебры, 63 фактор-алгебра, 5 центр, 12 централизатор, 11, 35 центроид, 28
оболочка грассманова, 65	часть
отображение	нечетная, 61
сбалансированное, 8	четная, 61
факторизуемое, 9	чётность элемента, 62
подалгебра, 4	элемент
подполе максимальное, 35	алгебраический, 29
подпространство однородное, 61	нечетный, 61
полином стандартный, 43	нильпотентный, 15
порядок левый, 55	однородный, 60
	право-квазиобратный, 14
радикал	право-квазирегулярный, 14
Джекобсона, 12	регулярный, 55
локально конечный, 48	четный, 61
сердцевина, 22	эпиморфизм, 5
сумма подпрямая, 30	ядро, 5
супералгебра, 61	идро, о
Мори́та, 64	
простая, 62	
тензорное произведение	
градуированное, 62	
пространств, 8, 9	
скрученное, 62	
теорема	
Веддербарна, 20	
Веддербарна-Артина, 29	
Машке, 18	
Нетер-Сколема, 38	
тип одночлена, 53	
тождество полиномиальное, 42	