3.1.4 Conservative Fields and Potential Functions

When does the value of a TLI not depend on path?

Answer: For **conservative** force fields, where the work done in moving from *A* to *B* depends **only on where** *A* **and** *B* **are** and **not** on the path between them.

Examples:

Gravity is a conservative force field. Friction is **not** conservative.

If $\mathbf{F}(\mathbf{r})$ is conservative, $\oint_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = 0$ for all closed paths C.

How can we determine if a field is conservative?

Theorem:

A force field $\mathbf{F}(\mathbf{r})$ is conservative in a region of space if, at all points in that region, it can be written as the gradient of a scalar field.

ie
$$\mathbf{F}(\mathbf{r})$$
 is conservative if $\mathbf{F} = \nabla \phi$

Since for **any** scalar field $\nabla \times \nabla \phi = \mathbf{0}$, this means

 $\mathbf{F}(\mathbf{r})$ is conservative if $\nabla \times \mathbf{F} = \mathbf{0}$ everywhere.

So, a conservative field $\mathbf{F}(\mathbf{r})$ is associated with a scalar field $\phi(\mathbf{r})$ through the equation $\mathbf{F} = \nabla \phi$.

 $\phi({\bf r})$ is called the "potential function" of ${\bf F}({\bf r})$

For a conservative field, the tangential line integral along **any** path between 2 points is given by the **potential difference** between the points:

$$\int_{A}^{B} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{A}^{B} \nabla \phi \cdot d\mathbf{r} = \phi_{B} - \phi_{A}$$

[Aside: to see this is true, compare with the more familiar result

$$\int_{A}^{B} \frac{dy}{dx} dx = \left[y \right]_{A}^{B} = y_{B} - y_{A}.$$

Here $\nabla \phi \cdot d\mathbf{r}$ is the component of $\nabla \phi$ along the path. Let the coordinate along the line be s. Then

$$\nabla \phi \cdot d\mathbf{r} = \frac{d\phi}{ds} ds,$$

SO

$$\int_{A}^{B} \nabla \phi \cdot d\mathbf{r} = \int_{A}^{B} \frac{d\phi}{ds} ds = \left[\phi\right]_{A}^{B} = \phi_{B} - \phi_{A}.$$

Example:

Gravity is a conservative force.

At (or near to) the surface of the Earth, the gravitational acceleration is $g \approx 9.8 \, \mathrm{ms}^{-2}$, and the force attracting an object of mass m to the Earth is

$$\mathbf{F}(\mathbf{r}) = -mg\mathbf{k}$$
. [Check that $\nabla \times \mathbf{F} = \mathbf{0}$]

The potential function is

$$\phi(\mathbf{r}) = mgz$$
 [Check that $\mathbf{F} = -\nabla \phi$].

So, the work done against the Earth's gravitation attraction moving an object from A to B is

$$\phi_B - \phi_A = mg(z_B - z_A),$$

irrespective of the path taken.

Finding potential functions of conservative fields

First make sure $\mathbf{F}(\mathbf{r})$ is conservative. Then find $\phi(\mathbf{r})$ by "partial integration" of each component of \mathbf{F} .

Illustrate by example:

- (i) Show that $\mathbf{F} = \mathbf{i} z\mathbf{j} y\mathbf{k}$ is conservative.
- (ii) Find $\phi(\mathbf{r})$ such that $\mathbf{F} = \nabla \phi$.
- (iii) Evaluate $\int_A^B \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ along any path between A = (2,1,1) and B = (4,-1,1).
- (i) Need to show that $\nabla \times \mathbf{F} = \mathbf{0}$:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 & -z & -y \end{vmatrix} = \mathbf{i}(-1+1) - 0\mathbf{j} + 0\mathbf{k} = \mathbf{0}$$

This shows $\mathbf{F} = \mathbf{i} - z\mathbf{j} - y\mathbf{k}$ is conservative.

So potential function $\phi(\mathbf{r})$ must exist.

(ii)
$$F_{x}=1=\frac{\partial\phi}{\partial x}$$

$$F_{y}=-z=\frac{\partial\phi}{\partial y}$$

$$F_{z}=-y=\frac{\partial\phi}{\partial z}$$

Integrate each of these equations...

$$\frac{\partial \phi}{\partial x} = 1$$
, $\therefore \quad \phi = x + c_1 + f_1(y, z)$

where c_1 is unknown constant and $f_1(y,z)$ is unknown function of y and z.

Similarly,

$$\frac{\partial \phi}{\partial y} = -z, \quad \therefore \quad \phi = -zy + c_2 + f_2(x, z)$$

and

$$\frac{\partial \phi}{\partial z} = -y, \quad \therefore \quad \phi = -zy + c_3 + f_3(x, y)$$

Now inspect these 3 ways of writing $\phi(\mathbf{r})$ to see that

$$\phi(\mathbf{r}) = x - zy + c$$

(iii) As $\mathbf{F}(\mathbf{r})$ is conservative, the line integral may be found from the potential difference:

$$\phi(2,1,1) = 1+c$$
 and $\phi(4,-1,1) = 5+c$.

$$\therefore \int_A^B \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \phi_B - \phi_A = 4$$

[If you don't yet believe, choose a path between *A* & *B*, parameterise it, & integrate to check you get this answer.]

3.1.5 Other types of line integral

So far, only considered "tangential" line integrals

$$\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}.$$

Other line integrals are possible and useful. eg

$$\int_{C} \phi(\mathbf{r}) dr \text{ and } \int_{C} \mathbf{F}(\mathbf{r}) \times d\mathbf{r}$$
(where $dr = |d\mathbf{r}|$)

3.2 Surface integrals

Integrals over a surface S include things like

$$\int_{S} \psi(\mathbf{r}) dS$$
, $\int_{S} \mathbf{F}(\mathbf{r}) dS$ $\int_{S} \psi(\mathbf{r}) d\mathbf{S}$, $\int_{S} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{S}$.

Start with $\int_{S} \psi(\mathbf{r}) dS$. When does this arise?

Eg suppose we have a charged 2-d plate, area S, in the xy plane, with charge density $\sigma(x,y)$. What is the total charge Q on the plate?

- (a) σ constant: $Q = \sigma S$
- (b) $\sigma = \sigma(x, y)$ and / or S an awkward shape:

Divide S into infinitesimal patches of area dS. In one patch, $dQ = \sigma(x, y)dS$.

Add up charge on all patches:

$$Q = \int_{S} \sigma dS$$

How do we evaluate $Q = \int_{S} \sigma dS$?

In this unit, all surfaces will have 1 coordinate fixed. In Cartesians, x, y or z will be fixed. Then

$$dS = dydz$$
 or $dS = dxdz$ or $dS = dxdy$