3.2.0 Exponent and Log Review

Properties of Exponents:

1.
$$a^n a^m =$$

4.
$$(ab)^n =$$

7.
$$a^{-n} =$$

5.
$$\left(\frac{a}{b}\right)^n = _{---}$$

8.
$$a^{\frac{1}{n}} =$$

3.
$$(a^n)^m =$$
 9. $a^{\frac{m}{n}} =$

6.
$$a^0 =$$

9.
$$a^{\frac{m}{n}} =$$

Logarithms:

If $\log_a x = y, \dots$

Facts about Logarithms:

1.
$$\log x$$
 is ...

4.
$$a^{\log_a x} =$$

7.
$$\log_a(n^t) =$$

2.
$$\ln x$$
 is ...

5.
$$\log_a(nm) =$$

8.
$$\log_a 1 =$$

3.
$$\log_a(a^x) =$$

6.
$$\log_a(\frac{n}{m}) =$$

9.
$$\log_a a =$$

1. Simplify the following expressions.

(a)
$$\left(\frac{5a^0b^3}{a^3b^{-2}}\right)^{-2}$$

(d)
$$\sqrt{t}(t^2 - 3t + 2)$$

(b)
$$\ln\left(e^2\right)$$

(e)
$$\frac{x^3y^{-1} + x}{\sqrt{x^3}}$$

(c)
$$\log_2\left(\frac{1}{8}\right)$$

(f)
$$2c^{-1}(c^2+c)-2$$

2. Solve the following equations for x.

(a)
$$\log\left(3x^3\right) = 2$$

$$(c) 7 \cdot 2^x = 2 \cdot 3^x$$

(b)
$$15e^{(3x+5)} = 5$$

(d)
$$25x^5 = 100$$

3. Match the graph on the left to the function equation on the right. (Yes, multiple equations match the same graph.)

a)
$$f(x) = 2^x$$

b)
$$g(x) = 2^{-x}$$

c)
$$h(x) = \left(\frac{1}{2}\right)^x$$

$$d) k(x) = \ln(x)$$

e)
$$m(x) = -\ln(x)$$