Inżynieria Oprogramowania Planowanie

Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski www.mimuw.edu.pl/~dabrowski

Rational Unified Process

Projekt informatyczny

Planowanie

Planowanie projektu informatycznego

- Podstawowe pytania
 - Ile pracy jest potrzebne do wykonania zadania?
 - Jaki jest całkowity koszt wykonania produktu (wszystkich zadań)?
 - Ile dni kalendarzowych jest potrzebne do wykonania zadania?
 - Jaki zespół jest potrzebny do wykonania zadania?
- Oszacowanie pracochłonności i harmonogramu prac są nierozerwalnymi elementami realizacji projektu informatycznego

Dobrze zaplanować duży projekt nie jest łatwo

Drojokt	Kos: (\$M	_	Czas trv (miesi		Anu- lowa-	
Projekt	Początek	Koniec	Początek	Koniec	ny (m)	
PROMS (Royalty Collection)	12	21	22	46	28	
London Ambulance	1.5	6	7	17+	17	
London Stock Exchange	60-75	150	19	70	36	
Confirm (Travel Reservation)	56	160	45	60+	48	
Master Net (Banking)	22	80	9	48+	48	

- Wycenić by wygrać
- Analogia
- Opinia ekspertów
- Prawo Parkinsona

- lub:
- Szczegółowa analiza

Strategia wyceny: wycenić by wygrać

- Projekt kosztuje tyle, ile klient może na niego wydać
- Zazwyczaj dostajemy kontrakt
- Prawdopodobieństwo, że klient dostanie system który zamawia jest małe
- Koszty nie odzwierciedlają wymaganej pracy

Strategia wyceny: analogie

- Porównujemy rozmiaru projektu z innym historycznym projektem
- Najlepiej z projektem w tej samej technologii i z tej samej dziedziny
- Koszty proporcjonalne do rozmiarów

Strategia wyceny: opinia ekspertów

- Konsultacje z ekspertami z dziedziny problemu i wytwórstwa oprogramowania
- Porównanie i dyskusja otrzymanych niezależnie oszacowań
- Iteracja do uzyskania konsensusu

Strategia wyceny: prawo Parkinsona

- "Work expands to fill-in all time available"
- Koszt jest oszacowywany na podstawie dostępnych zasobów a nie celów
- Jeśli 5 osób ma wytworzyć system w 12 miesięcy, to koszt odpowiada 60 osobomiesiącom

Strategia wyceny: podejście analityczne

- Oszacowanie pracochłonności
 - różne metody ...
- Sprzęt, oprogramowanie systemowe, narzędzia
- Podróże, szkolenia
- Wynajem budynku, ogrzewanie, oświetlenie
- Sieć i komunikacja
- Elementy współdzielone
 - Biblioteka, kantyna, recepcja
 - **.** . . .

SITA PASO

Oszacowanie pracochłonności

Sposoby:

- Metryki
 - Metoda punktów funkcyjnych
 - Metoda punktów obiektowych
 - ...
- Ekspertyzy
 - Struktura podziału pracy
 - Diagram sieciowy
 - Zrównoważenie zasobów
 - ...
- Inne pomysły?
 - Szacowanie na podstawie wielkości kodu źródłowego?
 - · ...

SITAVI SASOV

Metoda punktów funkcyjnych

- Chcemy jak najwcześniej (w cyklu deweloperskim) dokonać oszacowania pracochłonności prac
- Bazujemy na funkcjonalności systemu
- Uwzględniamy aspekty
 - Technologiczne
 - Środowiskowe
 - Funkcjonalne
 - Przypadki użycia
 - Aktorów

Aspekt technologiczny

TCF (Technical Complexity Factors)

Czynniki technologiczne	Opis	Waga	Postrzeganie złożoności	Wyliczony współczynnik
T1	Rozproszenie systemu	2	5	10
T2	Wydajność	1	4	4
T3	Zaawansowanie interfejsu użytkownika	1	5	5
T4	Złożoność przetwarzania wewnętrznego	1	4	4
T5	Reużywalność	1	3	3
T6	Łatwość instalacji	0,5	1	0,5
T7	Łatwość użycia	0,5	4	2
T8	Przenośność	2	3	6
Т9	Wprowadzanie zmian	1	3	3
T10	Współbieżność	1	5	5
T11	Bezpieczeństwo	1	5	5
T12	Dostęp bezpośredni dla innych podmiotów	1	5	5
T13	Szkolenie użytkowników	1	2	2
	UTV (Unadjusted TCF Value)		UTV:	54,5

TCF = 0.6 + (0.01 * UTV)TCF = 1,145

Aspekt środowiskowy

ECF (Environmental Complexity Factors)

Czynniki środowiskowe	Opis	Waga	Postrzeganie wpływu	Wyliczony współczynnik
E1	Znajomość UML/RUP	1,5	1	1,5
E2	Doświadczenie w dziedzinie	0,5	2	1
E3	Doświadczenie w technikach obiektowych	1	2	2
E4	Lead analyst capability	0,5	3	1,5
E5	Motywacja zespołu do pracy	1	3	3
E6	Stabilnośćwymagań	2	3	6
E7	Pracownicy czasowi	-1	0	0
E8	Trudny język programowania	-2	3	-8
	UEV (Unadjusted ECF Value)		UEV:	9

ECF = 1.40 + (-0.03 * UEV) ECF = 1,13

Przypadki użycia

UUCP (Unadjusted Use Case Points: Unadjusted Use Case

Przypadek użycia	Opis	Waga	Lilozba	Wyni k
Łabwy	Prosty interfejs użytkownika, związek z pojedynczą encją bazodanową, scenariusz powodzenia ma do 3 kroków, implementacja wymaga do 5 klas.	5	15	75
Średni	Wymaga projektu interfejsu, związek z 2 lub więcej encjami bazodanowymi, od 4 do 7 kroków, od 5 do 10 klaas.	10	15	150
Trudny	Skomplikowany interfejs lub przetwarzanie, co najmniej 3 encje bazodanowe, ponad 7 kroków, ponad 10 klas.	15	3	46
			UUCW:	270

Kod	Nazwa przypadku użycia	Łatwy	Średni	Trudny
		15	15	3
1	Samo obsługowa rejestracja zgłoszenia	1		
2	Samo obsługowa rejestracja zgłoszenia przez www		1	
3	Rejestracja uproszczona zgłoszenia	1		
4	Rozpoznanie typu klienta	1		
5	Zgłoszenie potencjalnego klienta		1	
6	Rejestracja zgłoszenia		1	
7	W enyfik acja i przypisanie właściciela zgłoszenia			1
8	Automatyczne ustalenie właściciela		1	
9	Powiadomienie klienta	1		
10	Centralna obsługa zgłoszenia	1		
11	Zmiana kategorii zgłoszenia	1		
12	Ski erowanie zgłoszenai do analizy			1
13	Rozwiązywanie zgłoszenia		1	
44	7			4

Metoda punktów funkcyjnych

Aktorzy

UUCP (Unadjusted Use Case Points: Unadjusted

Aktor	Opis	Waga	Liczba	Wynik
Simple	Reprezentuje inny system ze zdefiniowanym API.	1	1	1
Average	Reprezentuje inny system komunikujący się poprzez protokół	2	14	28
Complex	Osoba działająca poprzez interfejs użγtkownika.	3	7	21
			UAW:	50

Code	Actor Name	Łatwy	Średni	Trudny
		1	14	7
1	Użytkownik			1
2	Administrator		1	
3	Operator		1	
4	Kontroler			1
5	Rejestrator			1
6	Konsultant		1	
7	Zgłaszający		1	
8	Raportujący			1
9	Monitorujący		1	
10	Interesariusz		1	
11	Klient potencjalny			1
12	Klient zidetyfikowany			1
13	Klient anonimowy			1
14	Scheduler		1	
15	Konsultant zewnętrzny		1	
16	Hurtownia danych		1	
17	System transakcyjny		1	
18	Baza klientów		1	
19	Baza kontaktów		1	
20	Baza dokumentów		1	

UCP = TCP * ECF * (UUCW + UAW) * PF					
TCP =	1,145	Technical Complexity Factors			
ECF =	1,13	Environmental Complexity Factors			
UUCW =	270	Unadjusted Use Case Weight			
UAW =	50	Unadjusted Actor Weight			
PF =	20	Productivity Factor			
UCP =	8281	[osobogodzin roboczych]			
=	52	[osobomiesięcy roboczych]			

SITA SITA NO

Struktura podziału pracy (WBS)

Struktura podziału pracy

- WBS = Work Breakdown Structure
- Definicja zakresu projektu
 - Hierarchiczna lista czynności
- Tworzona w oparciu o podstawowe techniki
 - Abstrakcja
 - Dekompozycja
- Jakość bazuje na jakości ekspertów
- Stopień szczegółowości:
 - Kto jest odpowiedzialny?
 - Ile czasu trwa realizacja zadania?
 - Jaki jest koszt realizacji zadania?
- Podejścia do tworzenia
 - Według faz, produktów, ról, ...

Struktura podziału pracy

SITA SON

Struktura podziału pracy

Diagram sieciowy

- Diagram sieciowy (diagram projektu)
 - Identyfikacja zależności pomiędzy działaniami w projekcie
 - Wynikiem graf zależności
 - Jeden początek (źródło) i koniec (ujście)
 - Ścieżki w grafie, ścieżka krytyczna
 - Niepewność oszacowania

Diagram sieciowy

Ścieżka krytyczna

Ścieżka krytyczna

- Najdłuższa (z wagami) ścieżka od startu do zakończenia
- Dla każdej czynności:
 - Najwcześniejsze rozpoczęcie / zakończenie
 - Najpóźniejsze rozpoczęcie / zakończenie
- Obliczanie "w przód"
- Obliczanie "w tył"

Zapas zadania

- najpóź. zakończenie najwcześ. zakończenie
 - czynność na ścieżce krytycznej ma zerowy zapas
- wolny zapas
- całkowity zapas

Diagram sieciowy

Ścieżka krytyczna

Wykres Gantta

- Metoda prezentacji harmonogramu
 - także tworzenia harmonogramu
- Poza zależnościami między zadaniami:
 - przydział zasobów do zadań
 - daty rozpoczęcia / zakończenia zadań
 - kamienie milowe
 - abstrakcja (uproszczenie) harmonogramu

SITAL SOLUTION OF THE SOLUTION

Wykres Gantta

Wykres Gantta

- Skracanie harmonogramu
 - Dotyczy działań na ścieżce krytycznej
 - Czas realizacji projektu jest za długi. Co zrobić?
 - Skracanie zadań
 - Wykorzystanie dodatkowych zasobów
 - Minimalizacja kosztów dodatkowych zasobów
 - Zrównoleglanie zadań
 - Wzrasta znaczenie komunikacji
 - Wzrasta ryzyko opóźnień

Wykres Gantta

Przykład:

- Projekt ma 3 tygodnie opóźnienia. Którą opcję należy wybrać aby nadgonić opóźnienie, zakładając, że zadania reprezentują ścieżkę krytyczną?
- Jaki będzie koszt skrócenia projektu?

Zadanie	Czas początk.	Czas skrócony	Oszczęd- ność	Koszt	Koszt przy skróceniu	Wzrost kosztu	Wzrost kosztu na tydz.
А	14	12	2	10.000	14.000	4.000	2.000
В	9	7	2	17.000	27.000	10.000	5.000
С	3	2	1	25.000	26.000	1.000	1.000
D	7	6	1	14.000	16.000	2.000	2.000
E	11	8	3	27.000	36.000	9.000	3.000

Histogram zasobów

Ścieżka krytyczna

 musimy założyć 100% dostępności zasobów

Histogram zasobów

- Obciążenie zasobów w jednostkach czasu
- Identyfikacja przeciążenia zasobów

- Heurystyki
- W konsekwencji wydłużenie harmonogramu

Nieco inne podejście

- Podejść do planowania jest wiele
- A może by tak...

Założenie 1:

- Oszacowania czasu trwania są zazwyczaj "bezpieczne"
 - Każdy uwzględnia margines bezpieczeństwa przy podawaniu oszacowań
 - Najbardziej prawdopodobny czas ukończenia jest zwykle bliżej optymistycznego niż pesymistycznego
 - Do oszacowania jest podawany wariant bliższy pesymistycznemu
 - Pracownicy są zazwyczaj karani za przekroczenie terminu, nie są nagradzani za wcześniejsze ukończenie

Założenie 2:

- Prawo Parkinsona: praca trwa tyle, ile na nią przeznaczymy
- Syndrom Studenta: mając świadomość posiadanego marginesu bezpieczeństwa dla zadania rozpoczyna się je jak najpóźniej

Założenie 3:

 praca w trybie wielozadaniowości powoduje wydłużenie wszystkich realizowanych zadań

- Określ czas prawdopodobny
- Policz czas agresywny
 - Np. skróć prawdopodobny o połowę

- Harmonogramuj zadania jak najpóźniej
- Wyeliminuj konflikty zasobów
- Określ łańcuch krytyczny

- Harmonogramuj zadania jak najpóźniej
- Wyeliminuj konflikty zasobów
- Określ łańcuch krytyczny

- Zidentyfikuj i rozmieść rezerwy
 - zasobów (dla poszczególnych zasobów tu nie widać)
 - projektu (jeden na końcu)
 - zasilające (na stykach ze ścieżką krytyczną)
- Zarządzaj rezerwami w trakcie trwania projektu

STATE OF STA

- Zarządzanie rezerwami
 - do 1/3 wykorzystanej rezerwy
 - nie podejmujemy żadnych kroków
 - od 1/3 do 2/3 wykorzystanej rezerwy
 - planujemy czynności naprawcze
 - ponad 2/3 wykorzystanej rezerwy
 - wdrażamy czynności naprawcze