MATH 644

Chapter 5

SECTION 5.5: THE ARGUMENT PRINCIPLE

CONTENTS

	0 0 1 1 2 2 1 2 10		
		-	
The Argument Principle			2
Rouché's Theorem			3

Created by: Pierre-Olivier Parisé Spring 2023

THE ARGUMENT PRINCIPLE

THEOREM 1. Suppose f is meromorphic which not constant in a region Ω with zeros set $\{z_j\}$ and poles set $\{p_k\}$. Suppose γ is a cycle with $\gamma \sim 0$ in Ω , and suppose $\{z_j\} \cap \gamma = \emptyset$ and $\{p_k\} \cap \gamma = \emptyset$. Then

$$n(f(\gamma), 0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, z_j) - \sum_{k} n(\gamma, p_k).$$

Notes:

- ① The convention is if z is a zero of order k of f, then z appears k times in the list $\{z_j\}$.
- ② For the poles, we also have the same convention: if z is a pole of order k of f, then z appears k times in the list $\{p_k\}$.

Proof.

Rouché's Theorem

THEOREM 2. Suppose γ is a closed curve in a region Ω with $\gamma \sim 0$ in Ω and $n(\gamma, z) = 0$ or z = 1 for all $z \in \Omega \setminus \gamma$. If $z \in \Omega \setminus \gamma$ are analytic in Ω and satisfy

$$|f(z) + g(z)| < |f(z)| + |g(z)|,$$

for all $z \in \gamma$, then f and g have the same number of zeros enclosed by γ .

Notes:

① Again, the number of zeros of f and g are counted according to their multiplicity.

Proof.

EXAMPLE 3. Let $f(z) = z^9 - 2z^6 + z^2 - 8z - 2$.

- (a) How many zeros does f have in $\{z: |z| < 1\}$?
- (b) How many zeros does f have in $\{z : |z| < 2\}$?