PSALTer results panel $\mathcal{S} == \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{3} r_{\underline{}} (4 \, \partial_{\beta} \mathcal{A}_{\alpha_{\ell}\theta} - 2 \, \partial_{\beta} \mathcal{A}_{\alpha\theta_{\ell}} + 2 \, \partial_{\beta} \mathcal{A}_{\alpha_{\theta}\theta} + \partial_{\theta} \mathcal{A}_{\alpha_{\beta}\theta} + \partial_{\theta} \mathcal{A}_{\alpha_{\beta}\theta} - 2 \, \partial_{\theta} \mathcal{A}_{\alpha_{\ell}\theta}) \, \partial^{\theta} \mathcal{A}^{\alpha\beta\ell} - 2 \, \partial_{\theta} \mathcal{A}_{\alpha_{\ell}\theta} + 2 \, \partial_{\theta} \mathcal{A}_{\alpha_{\ell}\theta}$ $2r_{\stackrel{\cdot}{3}}(\partial_{\beta}\mathcal{R}_{\stackrel{\cdot}{i}\stackrel{\theta}{\theta}}\partial^{i}\mathcal{R}_{\stackrel{\alpha\beta}{\alpha}}^{\alpha\beta}+\partial_{i}\mathcal{R}_{\stackrel{\theta}{\beta}\stackrel{\theta}{\theta}}\partial^{i}\mathcal{R}_{\stackrel{\alpha\beta}{\alpha}}^{\alpha\beta}+\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}\stackrel{\cdot}{i}}^{\alpha\beta}-2\partial^{i}\mathcal{R}_{\stackrel{\alpha\beta}{\alpha}}^{\alpha\beta}\partial_{\theta}\mathcal{R}_{\stackrel{\theta}{\beta}\stackrel{\cdot}{i}}^{\beta}+\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\alpha}\stackrel{\theta}{\beta}}^{\alpha\beta}-2\partial^{i}\mathcal{R}_{\stackrel{\alpha\beta}{\alpha}\stackrel{\theta}{\alpha}}^{\alpha\beta}\partial_{\theta}\mathcal{R}_{\stackrel{\beta}{i}\stackrel{\theta}{\beta}}^{\beta}-2\partial^{i}\mathcal{R}_{\stackrel{\alpha\beta}{\alpha}\stackrel{\theta}{\alpha}}^{\alpha\beta}\partial_{\theta}\mathcal{R}_{\stackrel{\beta}{i}\stackrel{\theta}{\beta}}^{\alpha\beta})+2\partial_{\beta}\mathcal{R}_{\stackrel{\beta}{\alpha}\stackrel{\theta}{\beta}}^{\alpha\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}\stackrel{\theta}{\beta}}^{\alpha\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\alpha}\stackrel{\theta}{\beta}}^{\alpha\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}\stackrel{\theta}{\beta}}^{\alpha\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}}^{\alpha\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}}^{\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}}^{\alpha\beta}\partial_{\alpha}\mathcal{R}_{\stackrel{\beta}{\beta}}^{\beta}\partial_{\alpha}\mathcal{R$ $\frac{1}{6}t_{1}\left(2\,\mathcal{R}^{\alpha_{i}}_{\phantom{\alpha_{i}}\alpha}\,\mathcal{R}^{\theta}_{\phantom{\alpha_{i}}\theta}-4\,\mathcal{R}^{\theta}_{\phantom{\alpha_{i}}\theta}\,\partial_{i}f^{\alpha_{i}}+4\,\mathcal{R}^{\theta}_{\phantom{\alpha_{i}}\theta}\,\partial^{i}f^{\alpha}_{\phantom{\alpha_{i}}\alpha}-2\,\partial_{i}f^{\theta}_{\phantom{\alpha_{i}}\theta}\partial^{i}f^{\alpha}_{\phantom{\alpha_{i}}\alpha}-2\,\partial_{i}f^{\alpha_{i}}\,\partial_{\theta}f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta}+4\,\partial^{i}f^{\alpha}_{\phantom{\alpha_{i}}\alpha}\,\partial_{\theta}f^{\theta}_{\phantom{\alpha_{i}}\theta}-2\,\partial_{i}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}+4\,\partial^{i}f^{\alpha_{i}}_{\phantom{\alpha_{i}}\alpha}\partial_{\theta}f^{\theta}_{\phantom{\alpha_{i}}\theta}$ $6\,\partial_{\alpha}f_{_{I\theta}}\partial^{\theta}f^{\alpha_{I}}-3\,\partial_{\alpha}f_{_{\theta_{I}}}\partial^{\theta}f^{\alpha_{I}}+3\,\partial_{i}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha_{I}}+3\,\partial_{\theta}f_{_{\alpha_{I}}}\partial^{\theta}f^{\alpha_{I}}+3\,\partial_{\theta}f_{_{I\alpha}}\partial^{\theta}f^{\alpha_{I}}+6\,\,\mathcal{A}_{_{\alpha\theta_{I}}}\left(\mathcal{A}^{\alpha_{I}\theta}+2\,\partial^{\theta}f^{\alpha_{I}}\right)\right)+$ $r_{.5}^{.}\left(\partial_{\scriptscriptstyle i}\mathcal{A}_{\theta\kappa}^{\kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha}-\partial_{\theta}\mathcal{A}_{,\kappa}^{\kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha}-(\partial_{\alpha}\mathcal{A}_{\alpha}^{\alpha}-2\,\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha}\right)(\partial_{\kappa}\mathcal{A}_{,\alpha}^{}-\partial_{\kappa}\mathcal{A}_{\theta\alpha}^{})))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$

Wave operator $\overset{0^{+}}{\mathcal{A}}^{\parallel} \ \overset{0^{+}}{\cdot} f^{\parallel} \ \overset{0^{+}}{\cdot} f^{\perp} \quad \overset{0}{\cdot} \mathcal{A}^{\parallel}$

$\overset{0^+}{\cdot}\sigma^{\parallel}\ \overset{0^+}{\cdot}\tau^{\parallel}\ \overset{0^+}{\cdot}\tau^{\perp}$

Spin-parity form	Covariant form	Multiplicities
0. ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$0^+_{\cdot} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$\frac{2ik 1 \sigma^{\perp}^{\alpha} + 1 \tau^{\perp}^{\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^+_{\cdot} \sigma^{\perp}{}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2ik^{2^{+}}\sigma^{\parallel^{\alpha\beta}} + 2^{+}_{.}\tau^{\parallel^{\alpha\beta}} == 0$	5	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\ \delta}^{\ \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$	
Total expected gauge generators:		

Massive spectrum

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 1$
Square mass:	$\frac{t}{\frac{1}{r}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

$-2t_1p^2-4(2r_1+r_5)p^4$

Pole residue:	$-\frac{r}{2r.+r.}_{3} + \frac{1}{5}$	$\frac{1}{t^2} > 0$				
Polarisations:	2					

Unitarity conditions

 $r. \in \mathbb{R} \&\&r. < 0 \&\&t. < 0 \&\&r. < -2r. \\ 1 < 0 \&\&r. < -2r. \\ 3$