AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (currently amended) A substrate for an information recording medium, which is formed of a glass containing SiO₂, Al₂O₃, BaO, Na₂O, K₂O and ZrO₂ and no Li₂O, having a glass transition temperature (Tg) of 600°C or higher and having an etching rate of 0.1 μm/minute or less with regard to a hydrosilicofluoric acid aqueous solution that is maintained at a temperature of 45°C and has a hydrosilicofluoric acid concentration of 1.72 % by weight.
- 2. (original) The substrate for an information recording medium as recited in claim 1, wherein the glass contains SiO₂, Al₂O₃, CaO and K₂O as essential components.
- 3. (currently amended) The substrate for an information recording medium as recited in claim 2, wherein the glass has a composition comprising, by mol%, 45 to 70 % of SiO₂, 1 to 15 % of Al₂O₃, the total content of SiO₂ and Al₂O₃ being 57 to 85 %, 2 to 25 % of CaO, more than 0 [[to]] but not more than 15 % of BaO, 0 to 15 % of MgO, 0 to 15 % of SrO, 0 to 10 % of ZnO, the total content of MgO, CaO, SrO, BaO and ZnO being 2 to 30 %, more than 0 % but not more than 15 % of K₂O, more than 0 [[to]] but not more than 8 % of Na₂O, the total content of K₂O and Na₂O being 2 to 15 %, more than 0 [[to]] but not more than 12 % of ZrO₂ and 0 to 10 % of TiO₂, the total content of said components being at least 95 %.
- 4. (withdrawn) The substrate for an information recording medium as recited in claim 1, wherein the glass contains SiO₂, Al₂O₃, CaO, Na₂O and K₂O and has a chemically strengthened layer.
- 5. (withdrawn) The substrate for an information recording medium as recited in claim 4, wherein the glass has a composition comprising, by mol%, 47 to 70 % of SiO₂, 1 to 10 % of

Al₂O₃, the total content of SiO₂ and Al₂O₃ being 57 to 80 %, 2 to 25 % of CaO, 1 to 15 % of BaO, 1 to 10 % of Na₂O, more than 0 % but not more than 15 % of K₂O, 0 to 3 % of Li₂O, the total content of Na₂O, K₂O and Li₂O being 3 to 16 %, 1 to 12 % of ZrO₂, 0 to 10 % of MgO, 0 to 15 % of SrO, 0 to 10 % of ZnO, the total content of MgO, CaO, SrO, BaO and ZnO being 3 to 30 %, the ratio of the content of CaO to the total content of MgO, CaO, SrO and BaO being at least 0.5, and 0 to 10 % of TiO₂, the total content of said components being at least 95 %.

- 6. (withdrawn) The substrate for an information recording medium as recited in claim 1, wherein the glass contains SiO₂, Al₂O₃, CaO, BaO, Na₂O and ZrO₂ as essential components and has a chemically strengthened layer,
- 7. (currently amended/withdrawn) The substrate for an information recording medium as recited in claim 6, wherein the glass has a composition comprising, by mol%, 47 to 70 % of SiO₂, 1 to 10 % of Al₂O₃, the total content of SiO₂ and Al₂O₃ being 57 to 80 %, 2 to 25 % of CaO, 1 to 15 % of BaO, 1 to 10 % of Na₂O, more than 0 [[to]] but not more than 15 % of K₂O, 0 to 3 % of Li₂O, the total content of Na₂O, K₂O and Li₂O being 3 to 16 %, 1 to 12 % of ZrO₂, 0 to 10 % of MgO, 0 to 15 % of SrO, 0 to 10 % of ZnO, the total content of MgO, CaO, SrO, BaO and ZnO being 3 to 30 %, the ratio of the content of CaO to the total content of MgO, CaO, SrO and BaO being at least 0.5, and 0 to 10 % of TiO₂, the total content of said components being at least 95 %.
- 8. (withdrawn) The substrate for an information recording medium as recited in claim 1, which is for use in a perpendicular-magnetic-recording-mode information recording medium.
- 9. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 1.

IKENISHI, M. et al. Appl. No. 10/505,282 August 6, 2008

- 10. (withdrawn) The information recording medium as recited in claim 9, which is a perpendicular-magnetic-recording-mode magnetic recording medium.
- 11. (withdrawn) A process for manufacturing an information recording medium, which comprises the step of forming an information recording layer on a substrate for an information recording medium and uses the substrate for an information recording medium recited in claim 1 as said substrate, said step comprising the procedure of heating said substrate to a temperature of 300 to 600°C.
- 12. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 2.
- 13. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 3.
- 14. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 4.
- 15. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 5.
- 16. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 6.
- 17. (withdrawn) An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in claim 7.
- 18. (previously presented) The substrate for an information recording medium as recited in claim 3, wherein the ratio of the content of CaO to the total content of MgO, CaO, SrO and BaO (CaO/(MgO+CaO+SrO+BaO)) is 0.5 or more.

IKENISHI, M. et al. Appl. No. 10/505,282 August 6, 2008

19. (previously presented) The substrate for an information recording medium as recited in claim 3, wherein the glass has a composition comprising, by mol%, 50 to 67 % of SiO₂, 2 to 12 % of Al₂O₃, the total content of SiO₂ and Al₂O₃ being 57 to 79 %, 3 to 20 % of CaO, 0 to 14 % of BaO, 0 to 10 % of MgO, 0 to 10 % of SrO, 0 to 8 % of ZnO, the total content of MgO, CaO, SrO, BaO and ZnO being 3 to 30 %, 0 to 5 % of Na₂O, 0.5 % to 15 % of K₂O, the total content of K₂O and Na₂O being 4 to 12 %, 0 to 10 % of ZrO₂ and 0 to 8 % of TiO₂.