Laboratorio 1, Tópicos en análisis datos 1

Joshua Isaac Cervantes Artavia

2023-08-22

Table of contents

1	Carga de tablas de datos	1
2	Gráficos de dispersión	4
3	Creación de histogramas básicos	9
4	Frecuencias relativas, incluyendo ajuste a una curva normal	10
5	Control del ancho de los intervalos en los hitogramas	11
6	Usando intervalosdel mismo efectivo	12

1 Carga de tablas de datos

```
library(MASS)
data(survey)
names(survey)

[1] "Sex" "Wr.Hnd" "NW.Hnd" "W.Hnd" "Fold" "Pulse" "Clap" "Exer"
[9] "Smoke" "Height" "M.I" "Age"

# Se hace un grafico
pie(table(survey$Smoke))
```


Se cargan los datos de iris
data(iris)

Se realiza un grafico de caja
boxplot(iris\$Sepal.Width)

boxplot(iris\$Sepal.Length, iris\$Sepal.Width, iris\$Petal.Length, iris\$Petal.Width)


```
# Se ven las instrucciones de la funcion boxplot
?boxplot
```

starting httpd help server ... done

2 Gráficos de dispersión

Se generan dos series de datos normales:

```
C1 <- matrix(rnorm(200, sd = 0.5), ncol = 2)
C2 <- matrix(rnorm(200, mean = 1, sd = 0.5), ncol = 2)

# Se unen las matrices
mat <- rbind(C1, C2)
```

Se grafica C1

```
plot(C1)
```



```
plot(C1, col = "blue")
# Se añaden los puntos de C2
points(C2, col = "red")
```


Se procede a ajustar el tamaño del gráfico

```
plot(C1,
    col = "blue",
    xlim = range(mat[, 1]),
    ylim = range(mat[, 2]),
    main = "Representacion de una nube de puntos",
    xlab = "X1", ylab = "X2"
)
points(C2, col = "red")
```

Representacion de una nube de puntos

Se retoca el gráfico

Representacion de una nube de puntos

Se generan varios gráficos al mismo tiempo

Iris de Fisher

Se genera un gráfico de dispersión separando colores según sexo

```
plot(survey$Wr.Hnd, survey$NW.Hnd, pch = ifelse(survey$Sex == "Male", 1, 19))
legend("topleft", inset = 0.01, c("Hombre", "Mujer"), pch = c(1, 19))
```


3 Creación de histogramas básicos

```
hist(survey$Height,
    col = grey(0.9),
    border = grey(0.2),
    main = paste("Talla de", nrow(survey), "estudiantes"),
    xlab = "Talla [cm]",
    ylab = "Número",
    labels = TRUE,
    las = 1,
    ylim = c(0, 50)
)
```


4 Frecuencias relativas, incluyendo ajuste a una curva normal

```
hist(survey$Height,
      col = grey(0.9), border = grey(0.2),
    main = paste("Talla de", nrow(survey), "estudiantes"),
    xlab = "Talla [cm]", proba = TRUE
)

x <- seq(
    from = min(survey$Height, na.rm = T),
    to = max(survey$Height, na.rm = T), length = 100
)
lines(x, dnorm(
    x, mean(survey$Height, na.rm = TRUE),
    sd(survey$Height, na.rm = TRUE)
))
mtext("Ajuste (dudoso) a una distribuci'on normal")</pre>
```


5 Control del ancho de los intervalos en los hitogramas

```
hist(survey$Height,
    col = grey(0.9), border = grey(0.2),
    main = paste("Talla de", nrow(survey), "estudiantes"),
    xlab = "Talla [cm]",
    proba = TRUE,
    breaks = seq(from = 150, to = 200, length = 15)
)
```


6 Usando intervalosdel mismo efectivo

```
isohist <- function(x, nclass, ...) {
   breaks <- quantile(x,
        seq(from = 0,
        to = 1,
        length = nclass + 1),
        na.rm = TRUE)
   invisible(hist(x, breaks = breaks, ...))
}
isohist(survey$Height, 10,
   col = grey(0.9), border = grey(0.2),
   main = paste("Talla de", nrow(survey), "estudiantes"),
   xlab = "Talla [cm]", proba = TRUE
)</pre>
```

