Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 0655 CALIBRATION DATE: 07-Jun-24 SBE 16 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = -1.48563308e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
(0)	(130)	(3/111)	OUTFUT (KITZ)	COND (3/III)	(3/111)
22.0000	0.0000	0.00000	2.88530	0.00000	0.00000
0.9999	34.6739	2.96494	8.45941	2.96493	-0.00001
4.5000	34.6548	3.27098	8.83472	3.27100	0.00002
14.9999	34.6154	4.24956	9.93846	4.24957	0.00001
18.4999	34.6074	4.59363	10.29795	4.59361	-0.00002
23.9999	34.5992	5.14988	10.85359	5.14988	-0.00000
29.0000	34.5954	5.67020	11.34828	5.67020	0.00000
32.5001	34.5931	6.04147	11.68832	6.04157	0.00010

f = Instrument Output (kHz)

 $t = temperature \; (^{\circ}C); \quad p = pressure \; (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = (g + h * f^2 + i * f^3 + j * f^4) /10 (1 + δ * t + ϵ * p)

Residual (Siemens/meter) = instrument conductivity - bath conductivity

