Amortized Analysis: Dynamic Arrays

Fatemeh Panahi
Department of Computer Science
University of Toronto
CSC263-Fall 2017
Lecture 7

Today

- Amortized Analysis
 - Aggregate Method
 - Accounting Method
- Dynamic Arrays

Reading Assignments

Chapter 17

Running time

- Best case
- Average case
- Worst case
- Expected running time
- Amortized cost

Amortized Analysis

- We do amortized analysis when we are interested in the total complexity of a sequence of operations.
- Unlike in average-case analysis where we are interested in a **single** operation.
- The *amortized sequence complexity* is the "average" cost per operation over the sequence. But unlike average-case analysis, there is NO probability or expectation involved.

Real life intuition

Monthly cost of living, a sequence of 12 operations

You are to maintain a collection of lists and support the following operations.

- insert(item, list): insert item into list (cost = 1).
- o sum(list): sum the items in list, and replace the list with a list containing one item that is the sum (cost = length of list).

Cost of an insert operation and the amortized cost of a sum operation.

Insert(4)

You are to maintain a collection of lists and support the following operations.

- insert(item, list): insert item into list (cost = 1).
- o sum(list): sum the items in list, and replace the list with a list containing one item that is the sum (cost = length of list).

Cost of an insert operation and the amortized cost of a sum operation.

Insert(7)

You are to maintain a collection of lists and support the following operations.

- insert(item, list): insert item into list (cost = 1).
- o sum(list): sum the items in list, and replace the list with a list containing one item that is the sum (cost = length of list).

Cost of an insert operation and the amortized cost of a sum operation.

Insert(2)

You are to maintain a collection of lists and support the following operations.

- insert(item, list): insert item into list (cost = 1).
- o sum(list): sum the items in list, and replace the list with a list containing one item that is the sum (cost = length of list).

Cost of an insert operation and the amortized cost of a sum operation.

Insert(6)

Sum()

You are to maintain a collection of lists and support the following operations.

- insert(item, list): insert item into list (cost = 1).
- o sum(list): sum the items in list, and replace the list with a list containing one item that is the sum (cost = length of list).

Cost of an insert operation and the amortized cost of a sum operation.

19							
----	--	--	--	--	--	--	--

Insert(6)

Sum()

Sum()

Methods for amortized analysis

- Aggregate method
- Accounting method
- Potential method (skipped, read Chapter 17 if interested)

Aggregate method

What is the amortized cost per month (operation)? Just **sum up** the costs of all months (operations) and **divide** by the number of months (operations). Amortized cost = $\frac{\$ 12600}{12} = 1050$

Aggregate method

For a sequence of m operations, let T(m) = worst-case complexity of m operations

Amortized sequence complexity $=\frac{T(m)}{m}$

The MAXIMUM possible *total* cost of among all possible sequences of m operations

Instead of calculating the average spending, we think about the cost from a **different angle**, i.e.,

How much money do I need to **earn** each month in order to **keep living**? That is, be able to pay for the spending every month and **never become broke**.

Instead of calculating the average spending, we think about the cost from a **different angle**, i.e.,

How much money do I need to **earn** each month in order to **keep living**?

That is, be able to pay for the spending every month and **never become broke**.

Accounting method: if I **earn** \$1,000 per month from Jan to Nov and earn \$1,600 in December, I will never become broke (assuming earnings are paid at the beginning of month).

So the **amortized cost**: \$1,000 from Jan to Nov and \$1,600 in Dec.

- We assign differing charges to different operations.
- We call the amount we charge an operation its amortized cost.
- When an operation's amortized cost exceeds its actual cost, we assign the difference to specific objects in the data structure as credit.

- \circ the actual cost of the operation $i: c_i$
- o the amortized cost of the operation i: $\widehat{c_i}$.

$$\sum_{i=1}^{n} \widehat{c_i} \ge \sum_{i=1}^{n} c_i$$

Aggregate vs Accounting

- Aggregate method is easy to do when the cost of each operation in the sequence is concretely defined.
- Accounting method is more interesting since it works even when the sequence of operation is not concretely defined.
- Accounting method can obtain more refined amortized cost than aggregate method (different operations can have different amortized cost)

Example: Incrementing a binary counter

• Implementing a k-bit binary counter that counts upward from o.

```
A = [0,1,...n]

INCREMENT(A)

1   i = 0

2   while i < A. length and A[i] == 1

3   A[i] = 0

4   i = i + 1

5   if i < A. length

6   A[i] = 1
```

```
A 76543210
  0000000
  0000001
  0000010
  0000011
  00000100
5 00000101
  00000110
  00000111
8 00001000
  00001001
10 00001010
11 00001011
12 00001100
13 00001101
14 00001110
15 00001111
16 00010000
```

Example: Incrementing a binary counter

• Implementing a k-bit binary counter that counts upward from o.

$$A = [0,1, \dots n]$$

```
INCREMENT(A)

1   i = 0

2   while i < A. length and A[i] == 1

3   A[i] = 0

4   i = i + 1

5   if i < A. length

6   A[i] = 1
```

```
A 76543210
  0000000
  0000001
  0000010
  00000011
  00000100
  00000101
  00000110
  000001111
  00001000
  00001001
10 00001010
11 00001011
12 00001100
13 00001101
14 00001110
15 00001111
  0001000
```

```
A[0] flips n times
A[1] flips \lfloor n/2 \rfloor times
A[1] flips \lfloor n/4 \rfloor times
A[i] flips |n/2^i| times
The total number of flips
\sum_{i=0}^{k-1} |n/2^i| < n \sum_{i=0}^{\infty} |1/2^i| =
2n
Total amortized cost
       = T(n)/n = O(1)
```

Aggregate vs Accounting

- Aggregate method is easy to do when the cost of each operation in the sequence is concretely defined.
- Accounting method is more interesting since it works even when the sequence of operation is not concretely defined.
- Accounting method can obtain more refined amortized cost than aggregate method (different operations can have different amortized cost)

Amortized Analysis on Dynamic Arrays

Problem description

 Think of an array initialized with a fixed number of slots, and supports APPEND and DELETE operations.

- When we APPEND too many elements, the array would be **full** and we need to **expand** the array (make the size larger).
- When we DELETE too many elements, we want to **shrink** to the array (make the size smaller).
- Requirement: the array must be using one contiguous block of memory all the time.

One way to expand

- If the array is full when APPEND is called
 - o Create a new array of **twice** the size
 - Copy the all the elements from old array to new array
 - Append the element

One way to expand

- If the array is full when APPEND is called
 - Create a new array of twice the size
 - Copy the all the elements from old array to new array
 - Append the element

Amortized analysis of expand

Now consider a dynamic array initialized with size 1 and a sequence of MPPEND operations on it.

Analyze the amortized cost per operation

Assumption: only count array assignments, i.e., **append** an element and **copy** an element

Use the aggregate method

What is the cost for **copying** the elements when an element is appended? What is the cost for **appending** the elements when an element is inserted?

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	•••	31	32	33
Copy	-	1	2	-	4	-	-	-	8	-	-	-	-	-	-	-	16	-	-	-	•••	-	-	32
Append	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•••	1	1	1
total	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	1	1		1	1	33

$$c_i = \begin{cases} i+1 & if \ i \ is \ power \ of \ 2 \\ 1 & otherwise \end{cases}$$

Use the aggregate method

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		31	32	33
Copy	-	1	2	-	4	-	-	-	8	-	-	-	-	-	-	-	16	-	-	-		-	-	32
Append	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•••	1	1	1
total	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	1	1	•••	1	1	33

n operation of append operation.

$$Let m = \log n \rightarrow n = 2^m$$

Cost for copies:
$$1 + 2 + \dots 2^m = \sum_{i=0}^m 2^i = 2^{m+1} = 2n$$

Cost for appends:
$$\sum_{i=0}^{n} 1 = n$$

Total cost =
$$3n$$
 Amortized cost = $3n/n = 3$

Use the accounting method

Cost sequence concretely defined, sum-and-divide can be done, but we want to do something more interesting...

How much money do we need to **earn** at each operation, so that all future costs can be paid for?

How much money to earn for **each APPEND'ed element**? \$1 ?

\$2?

\$3?

\$log m ?

\$m?

Amortized cost 1\$?

Earn \$1 for each appended element

• This \$1 is spent when appending the element.

But, when we need to copy this element to a new array (when expanding the array), we don't any money to pay for it.

Amortized cost 2\$?

Earn \$2 for each appended element

• \$1 (the "append-dollar") will be spent when appending the element.

Amortized cost 2\$?

Earn \$2 for each appended element

\$1 (the "copy-dollar") will be spent when copying the element to a new array. How about the elements that have been copied more than one time?

Amortized cost 3\$?

Earn \$3 for each appended element

• \$1 (the "append-dollar") will be spent when appending the element.

Amortized cost 3\$?

Earn \$3 for each appended element

\$1 (the "copy-dollar") will be spent when copying the element to a new array.

Use the accounting method!

Earn \$3 for each appended element

• The elements in the first half have been copied twice.

 1
 1
 1
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0

• The elements in the first quarter have been copied three times.

Use the accounting method!

If we earn \$3 upon each APPEND it is enough money to pay for all costs in the sequence of APPEND operations.

In other words, for a sequence of m APPEND operations, the amortized cost per operations is 3, which is in O(1).

In a regular worst-case analysis (non-amortized), what is the worst-case runtime of an APPEND operation on an array with m elements?

Amortized Analysis on Shrinking Dynamic Arrays

First idea

When the array is ½ full after DELETE, create a new array of half of the size, and copy all the elements.

Consider the following sequence of operations performed on a **full** array with **n**element...

• APPEND, DELETE, APPEND, DELETE, APPEND, ...

\(\theta(n)\) amortized cost per operation since every APPEND or DELETE causes allocation of new array.

NO GOOD!

Better solution

When the array is ¼ full after DELETE, create a new array of ½ of the size, and copy all the elements.

Earning \$3 per APPEND and \$3 per DELETE would be enough for paying all the cost.

- 1 append/delete-dollar
- 1 copy-dollar
- 1 recharge-dollar

Shrinking cost

The array, after shrinking...

Array is half-empty

Elements who just spent their copy-dollars

Before the **next expansion**, we need to **fill** the **empty half**, which will spare enough money for copying the green part.

Before the **next shrinking**, we need to **empty** half, which will spare enough money for copying what's left.

Summary

- In a dynamic array, if we expand and shrink the array as discussed (double on ½ full, halve on 1/4 full)...
- For any sequence of APPEND or DELETE operations, earning \$3 per operation is enough money to pay for all costs in the sequence,...
- Therefore the amortized cost per operation of any sequence is upper-bounded by 3, i.e., O(1).

Questions