PROJECT CASE STUDY

- > Step 1: Choose the type of user (house or apartment) to create the load profile.
- > Step 2: Where the user is located in terms of Energy Price (SE1, SE2, SE3, SE4)?
- Step 3: Which user type is defined in your project (student, nurse, farmer, professor)?
- > Step 4: Make an assumption for the SoC% in the morning and afternoon.
- Step 5: Add a PV system production in the project (Scenario 2).

Max Power	Energy	Max PV	Daily V	BESS	BESS	EV Battery	EV Battery	Daily	Daily	Daily	
for the User	Price Zone	Production	Production	Capacity	CH & DIS	Capacity	SoC (M & E)	Energy from	Energy Cost	Energy from	
								Grid		Grid	
(30	enari	03).		Battery Ma	ınagement Servi	e Course (BMS)			2/8/20	24	1

OF=Min (Total Energy Costs)

UNIVERSITY Of SKÖVDE Pgrid(t) =
PgridtoHouse(t) +

				Daridtofult						
Max Power for the User	Energy Price Zone	Max PV Production	Daily PV Production	BESS Capacity	BESS CH & DIS	EV Battery Capacity	EV Battery SoC (M & E)	Total Daily Energy from Grid	New Daily Energy from Grid	Daily Energy Cost
6.5	SE3	NE	NE	NE	NE	44	83, 40	92,105	78,53	49

PROJECT CASE STUDY

OF=Min (Total Energy Costs)

UNIVERSITY Of Skövde

PV System

Pgrid(t) =
PgridtoHouse(t) +

Max Power for the User ECOST	Energy Price Zone	Production	Daily PV Production	BESS Capacity	BESS CH & DIS	EV Battery Capacity	EV Battery SoC (M & E)	Total Daily Energy from Grid	New Daily Energy from Grid	Daily Energy Cost
6.5	SE3	11. 71	51.56	NE	NE	44	85, 40	89	78 .53	32

PROJECT CASE STUDY

PV System

OF=Min (Total Energy Costs)

UNIVERSITY Of Skövde Pgrid(t) =
PgridtoHouse(t) +

				DAKIATAL VIT						
Max Power for the User	Energy Price Zone	Max PV Production	Daily PV Production	BESS Capacity	BESS CH & DIS	EV Battery Capacity	EV Battery SoC (M & E)	Total Daily Energy from Grid	New Daily Energy from Grid	Daily Energy Cost
6.5	SE3	11	56	18	6.4, 5.84	44	85, 40	89	49	40