1 Ánh xạ tuyến tính

1.1 Định nghĩa

1.1.1 Định nghĩa

Cho V và W là hai không gian vectơ trên trường K. Ánh xạ $f:V\to W$ là một ánh xạ tuyến tính nếu thỏa mãn hai tính chất sau:

(i)
$$f(u+v) = f(u) + f(v)$$

(ii)
$$f(ku) = kf(u)$$

Với $\forall u, v \in V, \forall k \in K$

Ánh xạ tuyến tính $f:V \to V$ gọi là **toán tử tuyến tính** hay **phép biến đổi tuyến tính** trên V

Nhân xét: Ta có thể gộp (i) và (ii) thành

(iii)
$$f(ku + hv) = kf(u) + hf(v)$$
 với $\forall u, v \in V, \forall k, h \in K$

1.1.2 Ví du

VD1: Chứng minh ánh xạ $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ là ánh xạ tuyến tính.

$$(x_1, x_2) \mapsto f(x_1, x_2) = 2x_1 + x_2$$

Giải

Với $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ và $k \in \mathbb{R}$ ta có

$$f(x+y) = f(x_1 + y_1, x_2 + y_2) = 2(x_1 + y_1) + (x_2 + y_2)$$

$$= (2x_1 + x_2) + (2y_1 + y_2)$$

$$= f(x) + f(y)$$

$$f(kx) = f(k(x_1, x_2)) = f(kx_1, kx_2)$$

$$= 2kx_1 + kx_2 = k(2x_1 + x_2)$$

$$= kf(x)$$

1.2 Các phép toán

1.2.1 Định lý 1

Cho các ánh xạ tuyến tính $f,g:V \to W$. Khi đó các ánh xạ $\varphi,\phi:V \to W$ xác định bởi

$$\begin{array}{ll} \varphi &= (f+g)(x) = f(x) + g(x) & , \\ \phi &= (kf)(x) = kf(x) & , k \in \text{ trường } K \end{array}$$

cũng là ánh xạ tuyến tính

1.2.2 Định lý 2

Cho các ánh xạ tuyến tính giữa các không gian vector $f:V\to W,g:W\to U$. Khi đó, ánh xạ $h:V\to U$, với $h=g\circ f$ cũng là ánh xạ tuyến tính.

1.3 Đơn cấu - Toàn cấu - Đẳng cấu

1.3.1 Định nghĩa

Ánh xạ tuyến tính $f:V\to W$ gọi là đơn câu (toàn cấu, đẳng cấu) nếu ánh xạ f là đơn ánh (toàn ánh, song ánh).

Trường hợp f là đẳng cấu, ta nói V và W là đẳng cấu với nhau, kí hiệu $V\cong W$

1.3.2 Định lý

Mọi không gian vectơ n chiều trên trường K đều đẳng cấu với K^n

1.4 Hạt nhân - Ảnh - Hạng của ánh xạ tuyến tính

1.4.1 Dinh nghĩa 1

Cho ánh xạ tuyến tính $f: V \to W$ với V, W là các không gian vecto

- Hạt nhân của f, kí hiệu là $\mathrm{Ker}(f)$ xác định bởi $\mathrm{Ker}(f) = \{v \in V | f(v) = \theta\} = f^{-1}(\{\theta\})$ với θ là phần tử trung hòa của không gian vectơ W
- Ảnh của f, kí hiệu $\mathrm{Im}(f)$ xác định bởi $\mathrm{Im}(f)=\{f(u)|u\in V\}=f(V)$

MĐ 1: Ker(f) là không gian vectơ con của V và Im(f) là không gian vectơ con của W

1.4.2 Định nghĩa 2

Hạng của ánh xạ tuyến tính f, kí hiệu ${\bf r}(f)$ hay ${\rm rank}(f)$ là số chiều của ${\rm Im}(f)$

$$r(f) = \dim Im(f)$$

MĐ 2: Nếu $f:V \to W$ là ánh xạ tuyến tính và $V = \operatorname{span}(S)$ thì $f(V) = \operatorname{span}(f(S))$

MĐ 3: Ánh xạ tuyến tính $f:V \to W$ là đơn cấu khi và chỉ khi $\mathrm{Ker}(f) = \{\theta_V\}$

MĐ 4: Ánh xạ tuyến tính $f:V \to W$ là toàn cấu khi và chỉ khi ${
m Im}(f)=f(V)=W$

MĐ 5: Nếu $f:V \to W$ là ánh xạ tuyến tính và $\mathrm{dim} V = n$ thì $\mathrm{dim} Im(f) + \mathrm{dim} \mathrm{Ker}(f) = \mathrm{dim} V = n$

 \mathbf{HQ} : Hai không gian hữu hạn chiều trên trường K đẳng cấu khi và chỉ khi số chiều của chúng bằng nhau.

1.4.3 Ví dụ

VD: Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi $f(x_1, x_2) = (x_1 + x_2, x_2 - 2x_1)$

- a) Chứng minh f là toán tử tuyến tính.
- b) Tìm số chiều và một có sở của Im(f) và Ker(f)

Giải

a) Ta có
$$x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$$
 và $k \in \mathbb{R}$

Xét $f(x+y) = f(x_1+y_1, x_2+y_2)$

$$= ((x_1+y_1) + (x_2+y_2), (x_2+y_2) - 2(x_1+y_1))$$

$$= ((x_1+x_2) + (y_1+y_2), (x_2-2x_1) + (y_2-2y_1))$$

$$= (x_1+x_2, x_2-2x_1) + (y_1+y_2, y_2-2y_1)$$

$$= f(x) + f(y) \qquad (1)$$

Xét $f(kx) = f(kx_1, kx_2, kx_3)$

$$= (kx_1+kx_2, kx_2-2kx_3)$$

$$= (k(x_1+x_2), k(x_2-2x_1))$$

$$= k(x_1+x_2, x_2-2x_1)$$

(2)

= k f(x)Từ (1) và (2) \Rightarrow f là ánh xạ tuyến tính

b) Ta có
$${\rm Im}(f) = \{u = f(x) \in \mathbb{R}^2 | x \in \mathbb{R}^2 \}$$
)
Ta thấy $\forall u \in {\rm Im}(f)$ thì $\exists (x_1, x_2) \in \mathbb{R}^2$ sao cho: $u = (x_1 + x_2, x_2 - 2x_1) = x_1(1, -2) + x_2(1, 1) = {\rm span}\{(1, -2), (1, 1)\}$ Mà $\{(1, -2), (1, 1)\}$ độc lập tuyến tính. $\Rightarrow \{(1, -2), (1, 1)\}$ là một cơ sở của ${\rm Im}(f) \Rightarrow {\rm dim}{\rm Im}(f) = 2$
Lại có ${\rm dim}{\rm Im}(f) + {\rm dim}{\rm Ker}(f) = {\rm dim}(\mathbb{R}^2) = 2$
 $\Rightarrow {\rm dim}{\rm Ker} = 0$

Ma trận của ánh xạ tuyến tính 2

2.1 Định nghĩa

Cho ánh xạ tuyến tính giữa các vectơ hữu hạn chiều $f:V\to W$. Giả sử $B_V=\{v_1,v_2,...,v_m\}$ và $B_W = \{u_1, u_2, ..., u_n\}$ lần lượt là cơ sở của V và W

Ma trận A có cột j là ma trận tọa độ của vecto $f(v_i)$ đối với cơ sở B_W gọi là ma trận của ánh xạ f đối với cặp cơ sở B_V và B_W :

$$A = \left(\left(f(v_1) \right)_{B_W} \quad \left(f(v_2) \right)_{B_W} \quad \dots \quad \left(f(v_m) \right)_{B_W} \right)$$

Nhận xét:

(i) A là ma trận cỡ $n \times m$

(ii)
$$\begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix} A = \begin{pmatrix} f(v_1) & f(v_2) & \dots & f(v_m) \end{pmatrix}$$

MĐ1: $r(A) = r(f) = \dim \text{Im}(f)$

VD: Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi $f(x_1, x_2, x_3) = (x_1 + x_2, 2x_2 - x_3)$

- a) Tìm ma trận của f đối với cặp cơ sở chính tắc
- b) Tìm ma trận của f đối với cặp cơ sở $B = \{v_1 = (1;1;0), v_2 = (1;0;2), v_3 = (1;1;1)\}$ của \mathbb{R}^3 và $B' = \{u_1 = (1;0), u_2 = (1,2)\}$ của \mathbb{R}^2

Giải

a) Cặp cơ sở chính tắc của \mathbb{R}^3 và \mathbb{R}^2 là $\{(1;0;0),(0;1;0),(0;0;1)\}$ và $\{(1;0),(0;1)\}$

Cáp có số chính tác của
$$\mathbb{R}^3$$
 và \mathbb{R}^4 là $\{(1,0,0),(0,1,0),(0,0,1)\}$ và $\{(1,0),(0,1)\}$ Có
$$\begin{cases} f(1;0;0) = (1;0) \\ f(0;1;0) = (1;2) \end{cases}$$
 ma trận của f đối với cặp cơ sở chính tắc là $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \end{pmatrix}$ $f(0;0;1) = (0,-1)$

b) Có
$$\begin{cases} f(1;1;0) = (2;2) = (1;0) + (1;2) = (1;1)_{B'} \\ f(1;0;2) = (1;-2) = 2(1;0) - (1;2) = (2;-1)_{B'} \\ f(1;1;1) = (2,1) = \frac{5}{2}(1;0) - \frac{1}{2}(1;2) = \left(\frac{5}{2};-\frac{1}{2}\right)_{B'} \end{cases}$$
 ma trận của f đối với cặp cơ sở B và B' là $A' = \begin{pmatrix} 1 & 2 & \frac{5}{2} \\ 1 & -1 & -\frac{1}{2} \end{pmatrix}$

2.2 Công thức tọa độ

Cho $f: V \to W$ là ánh xạ tuyến tính có ma trận A đối với cặp cơ sở B_V và B_W . Khi đó, với $\forall u \in V$ ta có

$$f(u)_{B_W} = Au_{B_V}$$

VD Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to P_2[x]$ Xác định f(v) với v = (1, 2, 3) biết f có ma trận đối với cặp

cơ sở chính tắc là
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

Giải

Ta có
$$f(v) = Av \Rightarrow f(v) = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 10 \\ 10 \end{pmatrix}$$

$$\Rightarrow f(v) = -2x^2 + 10x + 10$$

Nhận xét: Cho B_V và B_W tương ứng là cơ sở của các không gian vecto V và W, $\dim V = n$, $\dim W = m$.

Khi đó ta có tương ứng ánh xạ tuyến tính $f:V\to W$ có ma trận cỡ $m\times n$

2.3 Ma trận của ánh xạ tổng và ánh xa tích

2.3.1 Định lý 1

Nếu $f,g:V\to W$ là các ánh xạ tuyến tính có ma trận đối với cặp cơ sở B_V và B_W lần lượt là A và B thì ma trận của các ánh xạ f+g và λf đối với cặp cơ sở B_V và B_W tương ứng là A+B và λA

2.3.2 Định lý 2

Nếu $f:V\to W,\,g:W\to U$ là các ánh xạ tuyến tính, f có ma trận A đối với cặp cơ sở B_V và B_W và g có ma trận B đối với cặp cơ sở B_W và B_U thì ma trận của các ánh xạ $g\circ f$ đối với cặp cơ sở B_V và B_U là BA

2.4 Ma trận của toá<mark>n tử tuyến tính theo một cơ sở</mark>

2.4.1 Định nghĩa

Cho toán tử tuyến tính $f:V\to V$ trên không gian n chiều V và B là một cơ sở của V. Ma trận của f đối với cặp cơ sở của B gọi là ma trận của toán tử f đối với cơ sở B.

Nếu $B = \{v_1, v_2, ..., v_n\}$ và A là ma trận của f đối với cơ sở B thì

$$\begin{bmatrix} f(v_1) & f(v_2) & \dots & f(v_n) \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} A$$

2.4.2 Mệnh đề

Cho f là một toán tử tuyến tính trên không gian vector V. $\alpha = \{v_1, v_2, ..., v_n\}$ và $\alpha' = \{u_1, u_2, ..., u_n\}$ là 2 cơ sở của V. Giả sử ma trận chuyển cơ sở từ α sang α' là C, ma trận của f đối với cơ sở α và α' lần lượt là A và B. Khi đó:

$$B = C^{-1}AC$$

Ví dụ:

VD1: Cho toán tử tuyến tính $f:\mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi $f(x_1,x_2,x_3)=(x_1+2x_2,x_1-x_2-x_3,x_2-2x_3)$

- a) Tìm ma trận của f đối với cơ sở chính tắc
- b) Tìm ma trận của f đối với $B=\{(1;0;0),(1;1;0),(1;1;1)\}$

Giải

a)
$$\begin{bmatrix} x_1 + 2x_2 \\ x_1 - x_2 - x_3 \\ x_2 - 2x_3 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Ma trận của f đối với cơ sở chính tắc là : $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & -1 \\ 0 & 1 & -2 \end{bmatrix}$

b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = C \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ma trận chuyển từ cơ sở chính tắc sang cơ sở B là: $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Ma trận của f đối với cơ sở B là: $A_B = C^{-1}AC = \begin{bmatrix} 0 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$

VD2: Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ có ma trận A đối với cơ sở $B = \{(1;1;1), (1;1;2), (1;2;3)\}$. Tính f(6;9;14) biết

$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Giải

Ta có: $B = \{(1; 1; 1), (1; 1; 2), (1; 2; 3)\} = \{v_1, v_2, v_3\}$

$$v = (6; 9; 14) = v_1 + 2v_2 + 3v_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_B$$

$$[f(v)]_B = A[v]_B = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \\ 9 \end{bmatrix}$$

$$\Rightarrow f(v) = -2v_1 + 7v_2 + 9v_3 = (14; 23; 39)$$

2.4.3 Định nghĩa

Hai ma trận A và B gọi là đồng dạng, ký hiệu A B, nếu tồn tại ma trận khả nghịch C sao cho $B = C^{-1}AC$.

- i) Các ma trận của một toán tử tuyến tính f trên không gian vector V theo hai cơ sở của V đồng dạng với nhau.
- ii) Quan hệ đồng dạng của hai ma trận là quan hệ tương đương.
- iii) A và B đồng dạng thì $\det A = \det B$

3 Trị riêng và vector riêng của một toán tử tuyến tính

3.1 Trị riêng và vector riêng

3.1.1 Định nghĩa 1

Cho f là **một toán tử tuyến tính** trên không gian vector V trên trường K. Phần tử $\lambda \in K$ gọi là **giá trị riêng** (hoặc **trị riêng** của f nếu tồn tại vector $x \in V(x \neq \theta \text{ sao cho } f(x) = \lambda x$. Khi đó, x gọi là **vector riêng** của f ứng với trị riêng λ .

VD2: $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (3x_1 + x_2, x_1 + 3x_2)$ Khi đó $\lambda = 2$ là một trị riêng của f vì với x = (1; -1), ta có f(x) = f(1; -1) = (2; -2) = 2(1; -1) = 2x

3.1.2 Mệnh đề 1

Cho f là một toán tử tuyến tính trên không gian vector V. Khi đó, các mệnh đề sau là tương đương:

- (i) λ là trị riêng của f
- (ii) $(f \lambda \cdot Id_v)$ không là đơn ánh trong đó Id_v là ánh xạ đồng nhất trên V.

3.1.3 Định lý 1

Các vector riêng ứng với các tri riêng khác nhau đôi một của một toán tử tuyến tính là độc lập tuyến tính.

3.1.4 Mệnh đề 2

Cho f là một toán tử tuyến tính f trên không gian vector V.

Khi đó, với mọi $\lambda \in K$, tập $V_{\lambda} = \{v | f(v) = \lambda v\}$ là một không gian con bất biến của f và không gian con này khác \emptyset khi và chỉ khi λ là một trị riêng của f.

Nếu λ là một trị riêng của f thì V_{λ} là tập tất cả các vector riêng của f ứng với λ và vector không.

3.1.5 Dinh nghĩa 2

Nếu λ là một trị riêng của f thì V_{λ} ($V_{\lambda}(f)$) gọi là **không gian riêng** ứng với giá trị riêng λ .

3.2 Bài toán tìm trị riêng và vector riêng của toán tử tuyến tính trong không gian hữu han chiều

3.2.1 Phương trình đặc trưng

Cho f là một toán tử tuyến tính trên không gian vector n chiều V và có ma trận đối với cơ sở $B = \{v_1, v_2, ..., v_n\}$. Gọi v là một vector riêng ứng với trị riêng λ và toạ độ của v đối cới B là $(v)_B = (x_1, x_2, ..., x_n)$.

Khi đó ta có $[f(v)]_B = A[v]_B$ và $f(v) = \lambda v$.

Ta có:
$$f(v) = \lambda v \Leftrightarrow [\lambda v]_B = A[v]_B \Leftrightarrow A[v]_B - [\lambda v]_B = 0 \Leftrightarrow (A - \lambda E)[v]_B = 0$$

Vì $[v]_B \neq 0$ nên $\det(A - \lambda E) = 0$.

Định nghĩa 1: Cho ma trận A vuông cấp n và λ là một số. Nếu tồn tại vector cột $x \neq 0$ sao cho $(A - \lambda E)x = 0$ thì λ gọi là tri riêng của A và x gọi là vector riêng của A.

Rõ ràng, λ là trị riêng của $A \Leftrightarrow det(A - \lambda E) = 0$.

Nếu λ là trị riêng, v là vector riêng của f khi và chỉ khi λ là trị riêng, $[v]_B$ là vector riêng của A và ngược

Định nghĩa 2: Đa thức $det(A - \lambda E)$ (bậc n đối với biến λ gọi là đa thức đặc trưng của f và cũng gọi là đa thức đặc trưng của A.

Nghiệm của đa thức đặc trưng là các trị riêng của f và ngược lại. Định lý: Đa thức đặc trưng của toán tử tuyến tính f không phu thuộc vào cách chon cơ sở của V.

Hai ma trân đồng dang có cùng đa thức đặc trưng.

Thuật toán tìm tri riêng và vector riêng của toán tử tuyến tính 3.2.2

B1: Tìm ma trận A của f đối với một cơ sở nào đó của V. (thông thường ta chọn cơ sở chính tắc)

B2: Tìm đa thức đặc trưng của $f : \det(A - \lambda E)$

B3: Giải phương trình $\det(A - \lambda E) = 0$. Nghiệm của phương trình $\lambda_1, \lambda_2, ..., \lambda_n$ là các trị riêng của f.

B4: Với mỗi trị riêng λ_i , giải hệ $(A - \lambda_i E)x = 0$. Nghiệm khác không của hệ là toạ độ các vector riêng ứng với trị riêng λ_i .

VD2: Tìm trị riêng và vector riêng của toán tử tuyến tính $f: P_2[x] \to P_2[x]$ xác định bởi

$$f(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_0 - 2a_2)x^2$$

Giải Ma trận của
$$f$$
 đối với cơ sở chính tắc $B=\{1;x;x^2\}$ là:
$$\begin{bmatrix}5a_0+6a_1+2a_2\\-a_1+8a_2\\a_0-2a_2\end{bmatrix}=A\begin{bmatrix}a_0\\a_1\\a_2\end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 5 & 6 & 2 \\ -1 & -8 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

Đa thức đặc trưng của f:

$$det(A - \lambda E) = 0$$

$$\Leftrightarrow \begin{vmatrix} 5 - \lambda & 6 & 2 \\ -1 & -8 - \lambda & 0 \\ 1 & 0 & -2 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (5 - \lambda)(-8 - \lambda)(-2 - \lambda) - 2 \cdot (-8 - \lambda) \cdot 1 - 6 \cdot (-1) \cdot (-2 - \lambda) = 0$$

$$\Leftrightarrow -\lambda^3 - 5\lambda^2 + 30\lambda = 0$$

4 Bài toán chéo hoá ma trận

4.1 Ma trận chéo hoá được

Định nghĩa: Ma trận đồng dạng với ma trận chéo được gọi là ma trận chéo hoá được.

Với A là một ma trận vuông cho trước, quá trình làm chéo hoá A là quá trình tìm ma trận không suy biến T sao cho $T^{-1}AT$ là ma trận chéo. Khi đó, ma trận T gọi là ma trận làm chéo hoá A.

$$A = \begin{bmatrix} 5 & 2 \\ 2 & 8 \end{bmatrix}, T = \begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}, T^{-1} = \begin{bmatrix} \frac{-2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{bmatrix}$$

$$\Rightarrow TAT^{-1} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$$

A là ma trận chéo hoá được và T là ma trận làm chéo hoá A.

4.2 Tiêu chuẩn để một ma trận chéo hoá được

Định lý: Điều kiện cần và đủ để một ma trận chéo hoá được là ma trận đó có đủ n vector riêng độc lập tuyến tính.

 \mathbf{H} ệ quả: Nếu ma trận A có n trị riêng phân biệt thì nó chéo hoá được.

4.3 Thuật toán chéo hoá ma trận

- B1: Giải phương trình đặc trưng $\det(A \lambda E) = 0$. Nếu phương trình có đủ n nghiệm và giả sử trong tập đó chỉ có k nghiệm phân biệt $\lambda_1, \lambda_2, ..., \lambda_k$ thì chuyển sang bước 2.
- B2: Giải các hệ phương trình $(A \lambda_i E)X = 0$ (i = 1, 2, ..., k). Nếu không tìm đủ n nghiệm độc lập tuyến tính thì A không chéo hoá được. Trong trường hợp tìm được đủ n nghiệm độc lập tuyến tính $u_1, u_2, ..., u_n$ thì ta thực hiện bước 3.
- B3: Lập ma trận T có các cột là $u_1, u_2, ..., u_n$ và T chính là ma trận làm chéo hoá A.
- B4: Ma trận $T^{-1}AT$ là ma trận chéo có các phần tử chéo là các trị riêng tương ứng với các vector riêng

$$u_1, u_2, ..., u_n$$

VD: Đưa ma trận A về dạng chéo:

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

Giải

Đa thức đặc trưng của A:

$$det(A - \lambda E) = 0$$

$$\Leftrightarrow (3 - \lambda)^3 + 1 + 1 - 3(3 - \lambda) = 0$$

$$\Rightarrow \begin{cases} \lambda_1 = 5 \\ \lambda_2 = 2 \end{cases}$$

Xét
$$\lambda_1 = 5$$
:

$$(A - 5E)X = 0$$

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Hệ phương trình có nghiệm:
$$\begin{cases} x_1 = t \\ x_2 = t \\ x_3 = t \end{cases}$$

Vecotor riêng ứng với trị riêng λ_1 là $v_1 = (1; 1; 1)$

Xét
$$\lambda_2 = 2$$
: $(A - 2E)X = 0$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Hệ phương trình có nghiệm: $\begin{cases} x_1 = u \\ x_2 = t \\ x_3 = u - t \end{cases}$

Vecotor riêng ứng với trị riêng λ_2 là $v_2 = (1; 0; 1)$ và $v_3 = (0; 1; -1)$

3 vector v_1 , v_2 , v_3 độc lập tuyến tính nên A có chéo hoá được.

Ma trận
$$T=\begin{bmatrix}1&1&0\\1&0&1\\1&1&-1\end{bmatrix}$$
 là ma trận làm chéo hoá ma trận A .

$$T^{-1}AT = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

4.4 Bài toán tìm cơ sở để ma trận của một toán tử tuyến tính là ma trận chéo

Cho toán tử tuyến tính $f: V \to V$. Tìm một cơ sở B của V để ma trận của f theo cơ sở đó có dạng chéo.

- B1: Chọn một cơ sở E tuỳ ý của V (thường là cơ sở chính tắc). Tìm ma trận A của f đối với E.
- B2: Chéo hoá ma trận A. Nếu A không chéo hoá được thì không tồn tại cơ sở B thoả mãn điều kiện đầu bài. Nếu A chéo hoá được chuyển sng bước 3.
- B3: Giả sử T là ma trận làm chéo hoá A. Xét cơ sở B của V sao cho T là ma trận chuyển cơ sở từ E sang B. Khi đó, ma trận của f đối với cơ sở B là $T^{-1}AT$ có dạng chéo.

VD: Cho toán tử tuyến tính $f: P_2[x] \to P_2[x]$ thoả mãn

$$f(1+x+x^2) = 3+5x+3x^2;$$

$$f(2+x^2) = 10+8x^2;$$

$$f(2-x+3x^2) = 2-5x+4x^2;$$

- a) Tìm ma trận A của f đối với cơ sở $\{1; x; x^2\}$
- b) Tìm cơ sở của $P_2[x]$ để với cơ sở đó ma trận của f có dạng chéo. Xác định dạng chéo đó.

Giải

a) Đặt
$$f_1 = f(1 + x + x^2)$$
; $f_2 = (2 + x^2)$; $f_3 = f(2 - x + 3x^2)$

Ta có:
$$f(1) = \frac{4f_2 - f_1 - f_3}{5} = 7 + 5x^2;$$

$$f(x) = \frac{4f_1 - f_2 - f_3}{5} = 5x;$$

$$f(x^2) = \frac{2f_1 - 3f_2 + 2f_3}{5} = -4 - 2x^2$$

Ma trận A của f đối với cơ sở $\{1; x; x^2\}$ là:

$$A = \begin{bmatrix} [f_1]_B & [f_2]_B & [f_3]_B \end{bmatrix} = \begin{bmatrix} 7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2 \end{bmatrix}$$

b) Xét đa thức đặc trưng: $det(A-\lambda E)=0$

$$\begin{vmatrix} 7 - \lambda & 0 & -4 \\ 0 & 5 - \lambda & 0 \\ 5 & 0 & -2 - \lambda \end{vmatrix} = 0 \Leftrightarrow (7 - \lambda)(5 - \lambda)(-2 - \lambda) - 5.(5 - \lambda).(-4) = 0 \Leftrightarrow \begin{cases} \lambda_1 = 5 \\ \lambda_2 = 2 \\ \lambda_3 = 3 \end{cases}$$
* Yat \(\cdots = 5 \)

$$\begin{cases} (7-5)x_1 - 4x_3 = 0 \\ (5-5)x_2 = 0 \\ 5x_1 + (-2-5)x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = t \end{cases} \text{ Vector riêng tương ứng: } v_1 = (0; 1; 0) \\ x_3 = 0 \end{cases}$$
* Xét $\lambda_2 = 2$:

Giải hệ phương trình sau ta được:

Giái hệ phương trình sau ta được:
$$\begin{cases} (7-2)x_1 - 4x_3 = 0 \\ (5-2)x_2 = 0 \\ 5x_1 + (-2-2)x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 4t \\ x_2 = 0 \\ x_3 = 5t \end{cases}$$
 Vector riêng tương ứng: $v_2 = (4;0;5)$

Giải hệ phương trình sau ta được:

$$\begin{cases} (7-3)x_1 - 4x_3 = 0 \\ (5-3)x_2 = 0 \\ 5x_1 + (-2-3)x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = t \\ x_2 = 0 \end{cases} * \text{Vector riêng tương ứng: } v_3 = (1;0;1)$$

 $V_1 v_1; v_2; v_3$ độc lập tuyến tính nên A chéo hoá được. Xét cơ sở $V = \{v_1; v_2; v_3\}$:

Ma trận chuyển từ cơ sở chính tắc sang cơ sở V là:

$$S = \begin{bmatrix} [v_1]_E & [v_2]_E & [v_3]_E \end{bmatrix} = \begin{bmatrix} 0 & 4 & 1 \\ 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$

Vậy với cơ sở $V = \{(0;1;0); (4;0;5); (1;0;1)\}$ ma trận của f có dạng chéo là: $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$