Thomas Hartvigsen

Cambridge, Massachusetts

https://thartvigsen.github.io twhartvigsen@wpi.edu

RESEARCH INTERESTS

Machine Learning, Data Mining, Time Series, Natural Language Processing, Healthcare, Fairness in AI systems

ACADEMIC APPOINTMENTS

Massachusetts Institute of Technology, Cambridge, MA Postdoctorial Associate, CSAIL, PI: Marzyeh Ghassemi

Starting 01/2022

EDUCATION

Worcester Polytechnic Institute, Worcester, MA

08/2016-12/2021

PhD, Data Science¹

MS, Data Science

12/2018

Advised by Elke Rundensteiner and Xiangnan Kong

SUNY Geneseo, Geneseo, NY

BA, Applied Mathematics, minor in Biomathematics

08/2012-05/2016

RESEARCH EXPERIENCE

Worcester Polytechnic Institute, Research Fellow, PI: Elke Rundensteiner

08/2016-12/2021

Microsoft, PhD Intern with Dipankar Ray

05/2021-08/2021

UMass Medical School, Research Intern with Jomol Matthew

08/2018-09/2019

University of Arizona, Research Intern, PI: Shirley Papuga

2015

GRANTS

NSF-III: Timely Classification for Actionable Predictions (Under Review)

PI: Elke Rundensteiner, Co-PI: Xiangnan Kong.

This grant proposal is written based on my research and I am responsible for 90% of the writing.

SELECTED HONORS & AWARDS

₹ Best Poster, International Conference on Health Informatics	2020
Toutstanding Graduate Research Award, WPI	2019
P Best Poster, Graduate Research Innovation and Exchange, WPI	2019
People's Choice Poster Award , Graduate Research Innovation and Exchange, WPI	2017
GAANN Fellow (Annual Tuition + Stipend Award), U.S. Dept. of Education	2016-2021

PUBLICATIONS

I have published in KDD, NeurIPS, AAAI, ACL, CIKM, ECML, IEEE BigData, HEALTHINF, and IEEE BHI.

REFEREED

19. Recovering The Propensity Score from Biased Positive Unlabeled Data.

Walter Gerych, **Thomas Hartvigsen**, Luke Buquicchio, Emmanuel Agu, Elke Rundensteiner. **AAAI**, 2022.

18. Recurrent Bayesian Classifier Chains for Exact Multi-label Classification.

Walter Gerych, **Thomas Hartvigsen**, Luke Buquicchio, Emmanuel Agu, Elke Rundensteiner. **NeurIPS**, 2021.

¹expected in December

17. Learning Saliency Maps to Explain Deep Time Series Classifiers.

Prathyush Parvatharaju, Ramesh Doddaiah, **Thomas Hartvigsen**, Elke Rundensteiner. **CIKM**, 2021.

 Energy-Efficient Models for High-Dimensional Spike Train Classification using Sparse Spiking Neural Networks. Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, Sihong Xie. KDD, 2021.

15. Semi-Supervised Knowledge Amalgamation for Sequence Classification.

Jidapa Thadajarassiri, **Thomas Hartvigsen**, Xiangnan Kong, Elke Rundensteiner. **AAAI**, 2021.

14. Variational Open-Set Recognition.

Luke Buquicchio, Walter Gerych, Kavin Chandrasekaran, Abdulaziz Alajaji, Hamid Mansoor, **Thomas Hartvigsen**, Elke Rundensteiner, Emmanuel Agu. **IEEE BigData**, 2021.

13. Human-like Explanation for Text Classification with Limited Attention Supervision.

Dongyu Zhang, Cansu Sen, Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner.

IEEE BigData, 2021.

12. Recurrent Halting Chain for Early Multi-label Classification.

Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke Rundensteiner. **KDD**, 2020.

- 11. Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? Cansu Sen, **Thomas Hartvigsen**, Biao Yin, Xiangnan Kong, Elke Rundensteiner. **ACL**, 2020.
- 10. Learning to Selectively Update State Neurons in Recurrent Networks.

 Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke Rundensteiner.

CIKM, 2020.

9. Learning Similarity-Preserving Word Meta-Embedding.

Jidapa Thadajarassiri, Cansu Sen, **Thomas Hartvigsen**, Xiangnan Kong, Elke Rundensteiner. **IEEE BigData**, 2020.

8. Clinical Performance Evaluation of a Machine Learning System for Predicting Hospital-Acquired Clostridium Difficile Infection.

Erin Teeple, **Thomas Hartvigsen**, Cansu Sen, Kajal Claypool, Elke Rundensteiner. **HEALTHINF**, 2020. **₹ Best Poster**.

7. Adaptive-Halting Policy Network for Early Classification.

Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke Rundensteiner. **KDD**, 2019.

6. Patient-Level Classification of Clinical Note Sequences Guided by Attributed Hierarchical Attention.

Cansu Sen, **Thomas Hartvigsen**, Xiangnan Kong, Elke Rundensteiner. **IEEE BigData**, 2019.

5. Learning Temporal Relevance in Longitudinal Medical Notes.

Cansu Sen, **Thomas Hartvigsen**, Xiangnan Kong, Elke Rundensteiner. **IEEE BigData**, 2019.

4. Comparing General and Locally-Learned Word Embeddings for Clinical Text Mining.

Jidapa Thadajarassiri, Cansu Sen, **Thomas Hartvigsen**, Xiangnan Kong, Elke Rundensteiner. **IEEE BHI**, 2019.

3. Detecting MRSA Infections by Fusing Structured and Unstructured Electronic Health Record Data.

Thomas Hartvigsen, Cansu Sen, Elke Rundensteiner. BIOSTEC, 2018.

2. Early Prediction of MRSA Infections using Electronic Health Records.

Thomas Hartvigsen, Cansu Sen, Sarah Brownell, Erin Teeple, Xiangnan Kong, Elke Rundensteiner. HEALTHINF, 2018. ♥ Best Student Paper runner up.

1. CREST - Risk Prediction for Clostridium Difficile Infection Using Multimodal Data Mining. Cansu Sen, **Thomas Hartvigsen**, Kajal Claypool, Elke Rundensteiner. **ECML**, 2017.

IN-SUBMISSION

- 7. TOXIGEN: Controlling Language Models to Generate Implied and Adversarial Toxicity. **Thomas Hartvigsen**, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, Ece Kamar.
- 6. Continuous-Time Attention Network for Irregularly-Sampled Time Series Classification. **Thomas Hartvigsen**, Jidapa Thadajarassiri, Xiangnan Kong, Elke Rundensteiner.
- 5. Early Classification of Irregular Time Series. **Thomas Hartvigsen**, Walter Gerych, Jidapa Thadajarassiri, Xiangnan Kong, Elke Rundensteiner.
- 4. *Knowledge Amalgamation for Multi-Label Classification via Label Dependency Transfer.*Jidapa Thadajarassiri, **Thomas Hartvigsen**, Walter Gerych, Xiangnan Kong, Elke Rundensteiner.
- 3. *Positive Unlabeled Learning with a Sequential Selection Bias*.
 Walter Gerych, **Thomas Hartvigsen**, Luke Buquicchio, Kavin Chandrasekaran, Abdulaziz Alajaji, Hamid Mansoor, Elke Rundensteiner, Emmanuel Agu.
- 2. *SAIL*: Recurrent Classifier Chains with Incomplete Labels. Walter Gerych, **Thomas Hartvigsen**, Emmanuel Agu, Elke Rundensteiner.
- 1. *SkipSNN: Efficiently Classifying Sparse and Noisy Spike Trains*. Hang Yin, Xiangnan Kong, Liping Liu, Xin Dai, **Thomas Hartvigsen**.

SELECTED TALKS

VELECTED THERE	
Harvard University , invited Adaptive-Halting Policy Networks for Early Classification Host: Prof. Finale Doshi-Velez	Cambridge, MA 2020
Florida State University, invited Adaptive-Halting Policy Networks for Early Classification Host: Prof. Karen Works	Panama, FL 2020
The MITRE Corporation , invited <i>Adaptive-Halting Policy Networks for Early Classification</i>	Bedford, MA 2020
Computational Sustainability Doctoral Consortium Adaptive-Halting Policy Networks for Early Classification	Virtual Event 2020
Worcester Polytechnic Institute, 3MT Competition Early Classification of Clinical Time Series	Worcester, MA 2020
University of Minnesota, Institute for Mathematics and its Applications Adaptive-Halting Policy Networks for Early Classification	Minneapolis, MN 2019
Northeastern University, New England Machine Learning Day Adaptive-Halting Policy Networks for Early Classification, poster	Boston, MA 2019
Worcester Polytechnic Institute, Arts and Sciences Week, invited Recurrent Models for Clinical Time Series	Worcester, MA 2019

TEACHING/MENTORING

I have supervised two Masters Theses and eight NSF-funded REU students.

Students Advised

Prathyush Parvatharaju (MS Thesis), WPI	2019-2021
- Masters Thesis: Learning Saliency Maps to Explain Deep Time Series Classifiers	
Ramesh Doddaiah, PhD, WPI	2020-2021
Aleksa Perucic, MS, WPI	2019-2020
- Masters Thesis: SIFT - A Deep Network for Irregular Multivariate Time Series	
Liubuo (Yuuna) Klindziuk, BS, Amherst College	2019
 Daniel Johnston, BS, Columbia University 	2019
 Lolita Nazarov, BS, StonyBrook University 	2019
Julia Friend, BS, Oberlin College	2018
Alex Hauck, BS, Valporaiso University	2018
 Sruthi Kurada, Advanced Math & Science Academy Charter School 	2018
Sarah Brownell, BS, Simmons University	2017
• Sean Tocci, BS, UMass Dartmouth	2017
Developed workshop on Deep Learning with PyTorch for Undergrads, WPI.	2019

SERVICE

Program Committee: AAAI ('21, '22), CVPR ('21), ICCV ('21), ACL ('21, '22), EMNLP ('21), NAACL ('22)

External Reviewer: KDD ('18, '19, '20)

Conference Volunteer: KDD ('19, '20, '21), NeurIPS ('20, '21)

Organized Deep Learning Reading Group, WPI2019-2020Graduate Student Advisory Council to the Dean of Arts & Sciences, WPI2018-2020Graduate Student Government Senate, WPI2018Data Science Graduate Student Council, WPI2016-2019