

프라이버시 보호 딥러닝 서비스 개발

컴퓨터공학과 [사그램]

14 조 승 현, 14 이 상 화, 17 김 수 민, 17 김 주 희

지도교수: 임성수멘토: ㈜노타채명수대표

배경

- 빅데이터의 축적 및 활용
- 개인정보 관련 산업 급성장
- 개인의 프라이버시 침해 논란 발생
- 해결방법 요구

*자료 : 개인정보보호위원회 / 그래픽: 유정수 디자인기자

목표

- ✔ 데이터 보호 알고리즘 도입을 통한 개인정보 침해 방지
- ✓ 높은 성능의 AI기반 추천시스템 개발

주요개념

- 차등 프라이버시 보호 (Differential Privacy)

- 기존 개인정보 비식별화 기술과의 차이점

구분	개별화 가능성	연결 가능성	추론 가능성		
K-익명성	No	Yes	Yes		
L-다양성	No	Yes	May not		
차등 프라이버시 보호	May not	May not	May not		
해싱/토큰화	Yes	Yes	May not		

^{*} 자료: ARTICLE 29 DATA PROTECTION WORKING PARTY, "Opinion on Anonymisation Techniques", 2014.4.10

향후계획

설계

- 사용 도구

프로그래밍 언어로 Python을 사용했으며 개발 환경으로 Jupyter Notebook을 활용했다. 차등 프라이버시 알고리즘이 적용된 K-means Clustering은 IBM의 Diffprivlib 라이브러리를 사용했다.

- 사용 데이터

한국신용정보원 빅데이터 센터를 통해 신용거래 차주들의 신용정보를 데이터셋으로 활용했다. 그 중 의미 있는 속성인 나이, 성별, 업권코드, 대출금액 값으로 clustering을 수행했다.

생년	성별	업권코드	대출금액	대출상품
1974	2(여성)	5	100	0
1980	1(남성)	1	25000	100
1989	2(여성)	1	87000	220
1949	1(남성)	5	5100	0
1977	1(남성)	5	1500	0
1975	1(남성)	5	26000	240
1952	1(남성)	3	12000	100

< 차주 신용정보 데이터 57677 건 >

< 4차원 데이터 분포 그래프 >

- 수행 과정

Process				
차등 프라이버시 보호가 적용된 K-means Clustering를 수행한다.				
추천 받고자 하는 차주의 cluster를 예측한다.				
예측된 cluster에서 가장 많이 사용되는 상품을 추천해주는 recommend 함수를 수행한다.				
차등 프라이버시 보호가 적용된 K-means Clustering 알고리즘을 수행한 추천 상품 결과와 차등 프라이버시 보호가 적용되지 않은 K-means Clustering 알고리즘을 수행한 추천 상품 결과를 비교/확인한다.				

결과

차등 프라이버시 보호 적용 전/후 K-means Clustering 결과

- ☑ 비슷한 속성을 가진 고객들의 데이터를 기반으로 사용자에게 맞춤형 상품을 보다 안전하고 정확하게 제공할 수 있음

차등 프라이버시를 적용한 연합학습 도입(9~11월)

- 기존 시스템: 서버에 가중치 전송, 서버에서 학습 후 장치로 재 배포
- 목표 시스템 : 서버로 전송되는 가중치에 차등 프라이버시 적용
- 장점 : ① 데이터를 서버로 전송하지 않아 보안 우수 ② 중간 통계 값에 의한 프라이버시 누출 방지

• 목적 : 데이터 역추적을 방지하여 프라이버시 보호 강화

개발일정

	3월	4월	5월	6월	7윌	8월	9월	10월	11월
1) 프라이버시 보호 기법 학습									
2) 클러스터링 기반 추천 알고리즘 구현									
3) 연합학습 시스템 구현									
4) 차등 프라이버시 적용 연합학습 구현									