AD-756 863

ELECTROMAGNETIC PROPERTIES OF SOILS AT THREE TEST SITES NEAR FORT MONMOUTH, NEW JERSEY

William H. Hulse, et al

Army Electronics Command Fort Monmouth, New Jersey

December 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

(1)

(())

(1)

(()

153

1

Research and Development Technical Report ECOM-4063

ELECTROMAGNETIC PROPERTIES OF SOILS AT
THREE TEST SITES NEAR FORT MONMOUTH, NEW JERSEY

William H. Hulse John W. Walker

December 1972

DISTRIBUTION STATEMENT Approved for public release; distribution unlimited.

NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield VA 22151

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND . FORT MONMOUTH, N.J.

		V
ACCESSION TOT HTIS O O UNA.: O''''SET J'.CTI.:IGATION	White Section Buli Section	000
EISTRIZUTION OIST.	AVAILABILITY	CODES

THINGS WE FINDSHIRM SHOWED THE SECOND SECOND

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indersement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Security Classification		
DOCUMENT CONTI	ROL DATA - R & D	
(Security classification of tille, body of abstract and indexing a	anotation must be entered when the	overall report is classified)
1. GRIGINATING ACTIVITY (Corporate author)	Za. REPORT S	ECURITY CLASSIFICATION
II. S. Army Electronics Command	UNGLA	SSTED
Fort Monmouth, New Jersey 07703	28. GROUP	
1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	}	
3. REPORT TITLE		
ELECTROMAGNETIC PROPERTIES OF SOILS AT THREE	E TEST SITES NEAR FOR	T MONMOUTH, NEW JERSEY
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Report		
9- AUTHOR(S) (First name, middle initial, last name)		
William H. Hulse John W. Walker		
6. REPORT DATE	78. TOTAL NO. OF PAGES	78. NO. OF REFS
December 1972	53	5
MA CONTRACT OR GRANT NO.	Se. ORIGINATOR'S REPORT NUM	NER(S)
A. PROJECT NO. ITO 61102 B31A	ECOM-4063	
e. Task No01	95. OTHER REPORT NO(S) (Any	other numbers that way be essioned
∡ Work Unit No. −364	this report)	
19. DISTRIBUTION STATEMENT		
Approved for public release; distribution u	nlimited.	
11- SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACY	
	U. S. Army Electro	nics Command
\	ATTN: AMSEL-TL-AS	
	Fort Monmouth, New	Jersey 07703
The electromagnetic properties of the surfa Wayside, and Deal Areas of Fort Monmouth, N investigation was to provide engineers and assaying experimental observations or equipinteraction between the propagated energy a The soil of the Evans Area is a thin, poorl seldom more than one to two feet in thickne quartz sand. At Wayside, the soil is a prelocally display a distinct greenish color d dissemirated in varying proportions through of both the Evans and Wayside Areas is very glauconite can raise the conductivity of th present at Wayside is insufficient to cause	ew Jersey, are descriscientists with suppliment performance when not the near-surface so y developed, but well ss, which is underlaidominantly reddish sa erived from the miner the sand below. The low, generally I mmhe soil substantially,	bed. The object of the ementary data to aid in there is significant oil material., -drained sand loam, n by gravel and fine ndy loam that may al glauconite, which is electrical conductivity o/m or less. Although the concentration

The southeastern portion of the Deal Test Site which is underlain by quartz sand and gravels and covered by a thinly developed sandy loam, is similar to the Evans Test Site in respect to both physical properties and the attending low electrical conductivity of the near-surface materials. However, the northwestern portion of the Deal Test Site is marshy and underlain by glauconite sand with 'ow quartz content. The highest electrical conductivity, 47 mmho/m, is associated with concentrated deposits of glauconite; the electrical conductivity drops off sharply as the amount of quartz sand increases independent of moisture content. Lenses of limonite, a hydrous ferric

DD Form 1473 REPLACES DO FORM 1475, 1 JAN 64, THICH IS

Security Classification

(1)

13. Abstract (Oont)

oxide locally referred to as bog iron, occur within a few inches of the surface at scattered locations; however, this material does not contribute to the increased conductivity of the area. If the bog iron is composed of such minerals as goethite, hematite, a ferric oxide gel or ocher, the electrical conductivity should be consistently low. The high water table of this marsh area combined with the high electrical conductivity of the glauconite sand produces excellent grounding conditions and a natural counterpoise for antennas. The present investigation shows that similar conditions do not exist in either of the other two areas discussed in this report.

I.b

Security Classification	يرحيضين					
14. KEY WORDS	LIN		LIN		LINI	
	ROLE	WT	ROLE	WT	ROLE	WT
Test Sites						
Conductivity (Electrical)						
S olls	1:			1.1		
©astal Plain	}					
Gen logy					!	
Attenuation						,
Dielectric Constant	}					
			ł			
Electromagnetic Parameters	Ì					
			ł			
1	}	_	1	<u> </u>		
	}	}		ł		
			1			
'					'	
<u>.</u>	İ				1	
· · · · · · · · · · · · · · · · · ·						
	•		1			
	į	,				
	i					
			·			
-				ļ		
- :]	
+						
		ļ.				
		İ				
	}			j		
				1		
			1			
·			-	}		
				1		i i
	1				L	

HISA FM 454-73

Security Classification

IO

TECHNICAL REPORT ECOM-4063 ELECTROMAGNETIC PROPERTIES OF SOILS AT THREE TEST SITES NEAR FORT MONMOUTH, NEW JERSEY

WILLIAM H. HULSE AND JOHN W. WALKER

Antennas and Geophysical Effects Research Technical Area U. S. Army Electronics Technology and Devices Laboratory

December 1972

DA Work Unit No. 1TO 61102 B31A 01 364

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

U. S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY 07703

 \mathcal{I}

CONTENTS

		<u>Pa qe</u>
1.	INTRODUCTION	1
11.	PURPOSE	1
111.	SCOPE	t
ıv.	SAMPLING AND MEASUREMENT TECHNIQUES	2
٧.	SITE EVALUATION	2
٧١.	SUMMARY	7
	FIGURES	
	1. Evans Area Test Site	3
	2. Deal Yest Site	5
	3. Wayside Test Site	6
	TABLES	
	t Flootypppapatio Deponstics of Soil Camples	•

ELECTROMAGNETIC PROPERTIES OF SOILS AT THREE TEST SITES NEAR FORT MONMOUTH, NEW JERSEY

1. INTRODUCTION

The electrical properties of both the surface and subsurface soil influence the propagation of electromagnetic energy over as well as through the earth. Any device which is dependent on an electrical interface with the earth will be affected by perturbations arising from variations in the electrical properties; a knowledge of these variations is essential, particularly when evaluating equipment performance.

The Ground Effects Research Team of the U. S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, N. J., is currently conducting studies to develop a predictive model for estimating EM parameters of soils in militarily inaccessible areas. The chemical and mineralogical soil properties will be correlated with certain environmental factors. It has been established that the mineralogical environment, the weathering end-products (clays), the clastic content, and the moisture regime are the principal elements to be considered.

I'. PURPOSE

This survey was made, in part, in response to a request from the Office of the Associate Director for Laboratory Operations. Directorate of Research, Development and Engineering, for analysis of the electrical properties of field test sites located at the Evans, Wayside, and Deel Areas of Fort Monmouth. Since many experiments had been concluded and others were in progress at these sites, an evaluation of the electrical properties of the surface and subsurface soil was needed to provide scientists and engineers with qualitative and quantitative information for use in assaying field observations and equipment performance.

111. SCOPE

The information presented in this report is the result of a reconnaissance investigation in which four equally spaced borings were made at each site to produce a representative profile of the local surface and shallow subsurface conditions. With the exception of the Deal Test Site, the soil properties are fairly homogeneous and the data and interpretation provided can be applied rather broadly within the New Jersey Coastal Plain.

The maximum depth of sampling was 10 feet; however, several borings were terminated at a lesser depth due to hole collapse or shallow water influx.

The low-frequency electrical conductivity, moisture content, dry density and specific gravity of each soil sample were used to estimate the frequency dependent parameters of dielectric constant, effective conductivity, attenuation, and loss tangent in the 50~500 MHz range.

William H. Hulse, John W. Walker, and Douglas C. Pearce, "Electrical conductivity studies of the soils of the Middle Atlantic Region: Virginia," R&D Technical Report ECOM-3564, April 1972, U. S. Army Electronics Command, Fort Monmouth, N. J.

IV. SAMPLING AND MEASUREMENT TECHNIQUES

The three test areas lie within the physiographic province of the New Jersey Coastal Plain. As a result, the soils are poorly developed; with the exception of a thin surface veneer, the material is more correctly treated as relatively unaltered Tertiary and Cretaceous marine deposits. Since the borings were very shallow with respect to the magnitude of vertical stratification, they were arranged to obtain the most general representation of the lateral variations rather than a classical stratigraphic cross section. The data obtained is broadly representative of the characteristic surface material and safe generalizations can be made with respect to all of the local Coastal Plain except for the sea- and bay-margin areas.

For identification purposes, each boring has been given an alpha-numeric descriptor; Figs. 1-3 show the location of the borings with respect to land-marks and property boundaries. Standard disturbed sampling techniques were employed with sampling of 1-foot intervals to total depth.

The low-frequency conductivity (σ dc) was measured using a technique previously developed by Walker and Pearce. Moisture content, dry density, and specific gravity were measured using standard ASTM procedures.

Data obtained from the above measurements was used to estimate the electrical properties of the soil in the VHF-UHF range by digital computation. The estimates were based on a theory of multicomponent systems which has recently been developed at this Laboratory. Table I gives the electromagnetic parameters for each sample. The boring descriptor, sample interval, moisture content, dry density and specific gravity for each soil sample are given at the top of each column.

V. SITE EVALUATION

A. Evans Area G

This field site is situated in the southernmost portion of the Evans Area which is located in the Township of Wall, Mormouth County, N. J. The general area is dominated by gently rolling hills and terraces; the higher terraces on which the Evans Area is situated are capped by the Pensauken gravels and sand. The test area is an open field with low grass cover; small scrub and patchy wood lots remain in the marginal areas. The uppermost layer is a very thin, poorly developed sandy loam underlain by intercalated layers of gravel and gravelly sand which is in turn underlain by the Tertiary Kirkwood formation, a very fine, slightly micaceous quartz sand. The subsurface conditions are fairly homogeneous and typical of much of the region.

ZJohn W. Walker and Douglas C. Pearce, "Resistivity test set for the reconnaissance of soil electromagnetic parameters," R&D Technical Report ECOM-3240, February 1970, U. S. Army Electronics Command, Fort Monmouth, New Jersey.

³D. C. Pearce, W. H. Hulse, and J. W. Walker, "The application of heterogeneous dielectric theory to soil systems," Manuscript submitted to IEEE, September 1972.

Figure 1. Evans Area Test Site.

Borings EG2 and EG3 were abandoned at -8 feet and -7 feet, respectively, because of continuous sloughing and hole collapse. Boring EG4 was abandoned at -8 feet when shallow water was encountered. This latter boring was located at the lowest elevation of the test area (\cdot63 ft above sea level). Since the depth of such shallow-water zones commonly varies, no attempt has been made to establish an accurate elevation to this zone.

Figure 1 shows the orientation of the site and location of the borings. Note from Table 1 that the low frequency conductivity (g dc) of most of the soil samples is below 1 mmho/m. Some of the near-surface materials are somewhat more conductive due to higher moisture and clay contents. At this site, the soil below -3 feet has the lowest conductivity; the values are typical for a material which is chiefly composed of quartz and kaolin.

The effective conductivity is given in Table I as a function of frequency. It can be observed that the effective conductivity is greater than σ dc as a consequence of the dissipative effects of the dielectric relaxation mechanism of water. 3 , 4

B. The Deal Test Site

Figure 2 shows the location of the sample borings and orientation of this test site. Located at Deal, N. J., the site is situated on gently rolling hills and low terraces capped by the sands and gravels of the Cape May formation. The glauconitic Hornerstown and Vincentown formations of the Tertiary are also exposed in this area. Several low areas adjacent to small brooks form bog and murshland. The southernmost portion of the site, which borders Deal Road, is very similar both physically and electrically to Evans Area G.

The soil of the central and northwestern portions of the Deal Test Site is composed of an oliver to dark-green glauconite (a montmorillonite group) mineral) mari mixed with varying proportions of fine-to-medium grained quartz sand. A shallow limonite (bog iron) deposit also crops out in this area; however, other than trap surface water in the thin overlying soil, the deposit contributes little to the conductivity. Principally composed of goethite, often with heratite and a ferric oxide gel or red and brown other impurities, limonite has been found to respond much the same as kaplin and the hydroxides with respect to electrical conductivity. Cation exchange capacity and, hence conductivity, are low and the observed variations are largely due to changes in moisture content. At Boring D2, the shallow water table was encountered within the first foot from the surface; the associated water source here has not been known to show appreciable seasonal declines.

Table I shows considerable variability of the conductivity which ranges from 0.1 to 47.3 mmho/m, consistent with changing formation mineralogy. The high conductivity associated with the glauconite content of the soil degrades rapidly as the quartz content of the soil increases. Borings DI, D2, and D3

⁴ John W. Walker, William H. Hulse, and Donald W. Eckart, "Observations of the electrical conductivity of tropical soils of Western Puerto Rico," Bull. Geol. Soc. Amer. (in press).

Figure 2. Deal Test Site.

are within the poor drainage and high water table area; the samples, therefore, were quite moist. With the exception of the samples from D4, which were apparently all Cape May sand and gravel, the soils reflected the variability and inhomogenities of the local geology.

Borings D1, D2, and D3 were abandoned at -5, -2, and -4 feet, respectively, because of snallow water conditions. Boring D4 was abandoned at -7 feet because of hole collapse and continuous sloughing of the unconsolidated sand and gravel precluding sample differentiation.

The relatively high conductivity of the glauconitic material and the high moisture content associated with the water conditions in the vicinity of Borings D1, D2, and D3 undoubtedly combine to form an excellent natural counterpoise for good antenna performance as well as to establish good electrical grounding.

C. The Wayside Site

This field test site is located near the village of Wayside, N. J. and is adjacent to the Earle Naval Ammunition Depot. The site is essentially a plains area with the exception of a few small rises near Boring WI. The site is heavily forested by a variety of generally small trees such as scrub oaks, shagbark pines, and locust; however, some cleared areas are present.

Figure 3. Wayside Test Site.

Figure 3 shows the location of the borings and the southeasterly boundaries of the property. The western portion of the test area where Boring ETA! was made lies within the Earle Naval Ammunition Depot. Although a small exposure of the Cohansey gravels lies within the test area, the area encompassed was not large enough to be considered representative of the site. The local soil is derived from a thin veneer of a fine-to-very-fine grained micaceous quartz sand, the Kirkwood formation of Tertiary age, but is dominated by the underlying glauconitic quartz sand of the Vincentewn formation. The latter has a distinctive olive-green color and the included quartz sand may appear almost ash-like. Although the color is decidedly dominated by green of the glauconite, the bulk of a sample is predominantly quartz sand as reflected by the very low electrical conductivity. Since the subsurface material is relatively homogeneous, the electrical properties show a similar homogeneous distribution.

VI. SUMMARY

The Evans Area G Test Site is fairly uniform with respect to both soil materials and electrical properties. The conductivity of all samples tested was less than 5 mmho/m, averaging 1 mmho/m. The soil is dominated by a quartz gravel or gravelly sand with minor amounts of kaolin clay.

The Wayside Test Site contains the most uniform soil of the three areas investigated. Subsurface materials are homogeneously composed of glauconitic quartz sand and exhibit a maximum conductivity of 1.9 mmho/m; the average, 0.6 mmho/m.

The Deal Test Site subsurface material is the most conductive and shows considerable variability in both physical and electrical properties. Conductivities range from 0.1 to 47.3 mmho/m, the average being 9.2 mmho/m. This broad range in conductivity is attributable to two distinctly different soils with contrasting mineral suites and moisture regimes: one similar to that of the Evans Area G, is a relatively dry, well-drained quartz dominated material of low conductivity; the other is a poorly-drained, moist glauconite-rich material of relatively high conductivity. The high conductivity and the high water table combine to form an excellent natural counterpoise and an efficient electrical ground which result in good antenna performance in this area.

However desirable these combined characteristics of the area may be, they cannot be considered typical of the Coastal Plain. The occurrence of glauconite in sufficient concentration as to have electrical significance is very limited in the local stratigraphic column; only the Hornerstown and Vincentown formations contain a concentration of the mineral. Of the two formations, only the Hornerstown has been found to occur sufficiently free of quartz so that its electrical characteristics become significantly different than the overlying and underlying quartz-rich formations.

The Evans Area G and Wayside Test Sites are more typical of the New Jersey Coastal Plain in terms of the areal extent of the material represented by the physical and electrical characteristics. If, for the purpose of making an electrical environmental association, the New Jersey Coastal Plain is defined as a quartz-kaolin environment (the percent content of the montmorillonite group minerals being low but not necessarily absent), the

electrical significance of the data for two of the three local test areas discussed is applicable to a much larger area. As representative of a predominantly quartz-kaolin environment, the data holds certain statistical relevance to the entire Atlantic Coastal Plain southward to at loast the Carolinas. At that point, increasing amounts of montmorillonite clay may enter the system as indicated by Neiheisel and Weaver⁵ and the restricted definition as a quartz-kaolin environment would no longer be valid.

J. Neiheisel and C. E. Weaver, "Transportation and deposition of clay minerals, southeastern United States," J. Sediment. Petrol., vol. 37, no. 4, pp. 1084-1116, 1967.

Table I. Blectromagnetic Properties of Soil Samples

IRGEND: O'demlow-freq. conductivity; MCmmoisture content;
DDmd:y density; 80mm specific gravity

EG1 0-1ft.; Ode 5 mmho/m; MC 22.54; DD 1.63; SG 2.61

Loss	TANGENT	9.19207288-02	5.01844098-02	3,81426508-02	3.35269768-02	3.18819708-02	3.17223380-02	3.24114950-02	3,36311388-02	3.52044296-02	3.70252638-02
ATTENUATION	CM/HO					3.44167688+00			5 a d 0 8 7 2 2 0 m + 0 0		
EFFECTIVE CONDUCTIVITY	(メ/8ロエネエ)								1.6902217#+01	1.99045598+01	2,3260104#+01
RELATIVE DIFLECTRIC	CUNSTANT	2.25720068+01	2.22702568+01			2.23698098+01					
>	(KE2)	5.00000000+01	1 - 00000000+02	1.50000008+62	2.0000000m	2.50000006+62	3.00000000	3.50000008+02	4.00000004	4.50000008+02	5.00000000+02

EG1 1-2ft.; Offe 2.5 mmbo/m; NC 20.14; DD 1.74; SG 2.68

	RELATIVE.	EFFECTIVE		
FREGIFACY	PIELECTRIC	CONDUCTIVITY	ATTENUATION	1.088
(747)	CONSTANT	ヘエノのロエエエン	08/#>	TANGENT
5.00000008+01		2,98219756+00	1.05124478+00	4.99612486-02
1.00000000000				
1.50000008+02				
2 • 00000000 • 2				
2.50000000+C2	2.14440528+01	6.93600240+00	2.44562048+00	
3.00000000	2.14440708+61			
3.50000008+02				
4.0000009402				2.7980042
4.50000008+02			K N	3.00842636-02
5.0000000000	2.14442140+01	1,92912030+01		3,23195720-02

EG1 2-3ft.; odc 2.3 mmho/m; MC 17.7%; DD 1.80; SG 2.65

1	L055	TANGENT	5,13280200-02	2.96621110-02	2.42154060-02						2,93855936-02	3,15089210-02	
	ATTENUATION	DB/H)	1.02684068+00	1.18704888+60	1.45366478+00	1.62687018+00					5.20103250+00	6.30459930+00	
EFFECTIVE	CONDUCTIVITY	(メ/のロエネエ)	2.76967408+00	3.20104566+00	3,9198587#+00	4.9261772#+00	6.2200072#+0n	7.8013486#+00	0.6701993#+00	1,1826556#+01	1.42704168+01	1.7001775#+01	
KELATIVE	PIELECTRIC	LZALOZOL	1.93861058+01	1.93854646+01	1,938535/8+01	1,94853338+01	1,938533/8+01	1.93853556+01	1.93853828+01	1.93854178+01	1.93854586+01	1.9385506#+01	
	FREDIFICA		5.00000008+01	2 • 0 C C C C C C C C C C C C C C C C C C	1.57.000008+0	2.00000000000	2・50でのでいる年中に2	3.000000000	3.50000008+02		_	-	

EG1 3-1/ft.; Ode 0.4 mmho/m; MC 06.4%; DD 1.76; SG 2.6.

LUSS	1.70262130=02	1.40846656-02	1.36975800-02	1.54055899402	1.65540730-02	1,91453730-02
ATTENHATIUN UB/M)	3.67350478m01 4.23632148m01	5.25644226101	8.5203398-01	1.34158506+00	1.6475401@+00 1.99427626+00	2.38178868+00
EFFECTIVE CONDUCTIVITY CHMHDS/P)	6.0749460@=01 7.1015398@=01	8.81144848611 4.40644064	1.4282726#+00	1.80441338+00 2.24893616+00	2.76183816+Un 3.3431156e+On	3,99276466+00
RELATIVE PIELECTRIC CURSIANT	7.49339878+00	7.49228748+00	7.49227436+00	7.49229918+00 7.49233488+00	7.49237946+00 7.49243208+00	7.49249198+00
F PERIFICY (NF.7)	5.00000008+01 1.0000008+02	1.50000CGB+02	20+60100002°C	3.00000c00+62 3.5c00cc00+62	4.0000006402	5.00000008+12

EG1 4-5rt.; Grac 0.1 mmbo/m; MC 0.284; DD 1.67; 8G 2.60

	KELATIVE	EFFECTIVE		
FREDIFICY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	ross
CML2	LNATURGO	CA/SOLET)	CH/H3	TANGEN
5.00000008+01		•	1.71819748-01	1.77482046-02
1.00000000402		2,6131910##01	2.00337818-01	1,03473130-02
1.50000008+02	বা	•	2.47793878-U1	8.53230056-03
2.000000000+02	4	4,09861510-01		8,11471568-03
2.5000000000		5,21258538-01		8.25617308-03
3.0000000	4	6.57406738-U1	S	8.67714438-03
3.5000000000000000000000000000000000000	7	8.1830479#m01	•	9.25781548-03
4.000000004	7	1,0039509#+00	7.69671988-01	9.93827178-03
4 - NCOCOCOR++	4	1.21434298+00	9.30961798-01	1.06857228-02
5.00000000000	3	1.44947,820+00	1.11121789+00	1.14784890-62
		0.1 maho/n; MC 0.	EG1 5-6rt.; orde 0.1 mmho/m; MC 0.37%; DD 1.69; SG 2.65	9
	RELATIVE	EFFECTIVE		
FREDIFNCY	DIELECTRIC	CUNDUCTIVIFY	ATTENUATION	LUSS

	RELATIVE	EFFECTIVE		
FRE OI FINCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	Luss
(847)	LEALVED	へよくのロエミエン	UB/M)	TANGENT
5.0000008+01	5,15818598+00	~	1.43149126-01	1,38677018-02
1.000000000			1./0719648-01	8,70532040-03
1.500000000			2.4064716P-U1	7,77103986-0
7.000000000000000000000000000000000000		4.53333578-01	3.2594135A-01	7.89403438°U
2.50000006			4.35602038-61	8.43993738-0
3.0000000E			5.60627688-01	9,19726968-0
3.5000008+02	_		7.28016769-01	1.00753888-02
4 0 C C C C C C C C C C C C C C C C C C				1,10289658-02
4 - 500000000			1,11/87328+00	1,20328140-0
5.0000000000000000000000000000000000000				1 c 307 1A 198 - 03

EG1 6-7ft.; O'de 0.1 mmho/m; MC 2.04; DD 1.62; SG 2.60

	L JSS	TANGENT	2.50120390-02			9.21664030-03		8.7715R58P-03	8,98205576-03	9.33684586-03	9.78787986-03	1.03061278-02
	ATTENUATION	CH/HO				3.30038638-01		4.71151568-01		6.68686648-01	7.88610048-01	
EFFECTIVE	CONDUCTIVITY										9.5125583@m01	1.1129287#+00
KELATIVE	DIELECTRIC	CONSTANT	3.64113888+00	3.8/985146+00	3.81962048+00	3.87954901+00	3.87952658+00	3.8/952558+00	3.8795365#+00	3.81955568+00	3,87958108+00	3.87961166+00
	FREDIFNCY	CM1 7 3	5.00000008+01	1 • 00000008+02		_	-		3・5ついいいいい ひょうしん		-	5.0000cum+u2

2.65
အ
1.63;
B
2.9%;
¥
mmbo/m;
0.1
; O'de
7-8ft.
153

	ATTENUATION LOSS	CB/H) TANGENT	8608-01	2.01804474-01 1.05378298-02	_	3.18206468-01 8.30645568-03			6.38151828-U1 9.51900278-U3		61	
EFFECTIVE	CHADUCTIVITY A	へましのこれまと	2,2288909#=01	2.60468948-01	3.23036264-01	4.1062089#-01	5.23225568-01	6.60849888-01	8,2349252#*01	1.01115170+60		
RELATIVE	PIELECTRIC		4.44057788+00			4.43998708+00			4.44003698+00			
	FREGIFFICY		5.0000008+01	1 - OCCOCCOR+OV	1.500000008+02	00+00000000000000000000000000000000000	0-100000000000000000000000000000000000	W-0000000	3.5000000000000000000000000000000000000	73+0000000075	4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Catonala

EG1 8-9ft.; O'de 0.2 mmhc/m; Mc 4.3%; DD 1.75; SG 2.63

LUSS TANGENT 2.19703348~02 1.29285388~02 1.07756908~02	1.06055660002 1.12098056702 1.2010957602 1.29351476702 1.3941329602
	5.80733688=01 7.36584518=61 9.20765796~01 1.13227469+00 1.37410776+00
EFFECTIVE CONDUCTIVITY (MMHOS/W) 3.5508759@=01 4.1786537@=01 5.2241609@=01 6.6877536@=01	8.56946276=01 1.0869281#+00 1.3587188#+00 1.6723161#+00 2.02771674+00
RELATIVE CUNSTANT 5.8465109#+00 5.8455138+00 5.84584678+00 5.84584468+00	5.8658543@+00 5.8658776@+00 5.8659107@+00 5.8659516@+00 5.86599958+00
	2.50000008+02 3.00000008+02 3.50000000+02 4.0000008+02 4.50000008+02

EG1 9-10ft.; O'da U.2 mmho/m; MC 4.1%; DD 1.77; SG 2.65

	CONDUCTIVITY ATTENUATION LOSS	CHAHOS/F) TANGENT	3,5953608emul 2,4579406emul 2,2643692em02	2,86972678-01	3.55506828-01	4.51440546-01		1,06113638+00 7.25518278-01 1,11398428-02	9.03459796-01	1.10919998+00	1.34213558+00	1.60746368+00
KELA I VE	د	CUNSTANT	16+00							5.76377978+00 1.		
	FREGIFICY	(M _F 7)	5.00000000+11	1.0000000000000000000000000000000000000	1.5000006+02	2,00000000462	2,5500000000000000000000000000000000000	3.00000000000	3.500000000462	4.00000000402	4.50000006+62	C.) + 010/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

EG2 0-1ft.; O'de 0.4 mmho/a; MC 4.8%; DD 1.56; SG 2.55

	RLLATIVE	EFFFCTIVE		
FREGIFNCY	FILLCIRIC	CONDUCTIVITY	ATTENUATION	L05S
(MF7)	CLNSIANI	(メ/Sロエユエ)	UB/M)	TANGENT
900	5.56409698+00	6.9101843##O1	4.78241308-01	4.46181770-02
1.0000008+02			5.21950260-01	2.43487968-02
1.50000006+02	5.56138666+00		5.94099726-01	1.84764679-02
2.000000000				1.62112290-02
2.5000000000000000000000000000000000000				1.5389576#-02
3.00000000		1.4200616#+00		1,52898448-U2
3.500000000+62			1.17051646+00	1.56026510.02
4.0000000402		7.00283168+0C	1.38677628+00	1.61732760-02
4.51000000+02			1.63174558+00	1,69157510-02
5.0000000000		2,7520623#+00	1.90552108+00	1.7778488-02
7	EG2 1-2ft.; G'de 0.3 mmho/m; MC 11.5%;	mmho/m; MC 11.5%;	DD 1.81; SG 2.65	

	LOSS	TANGENT	1.28586010-02	9.80839038-03	1.02934078-02	1.16622300-02	1.33845566-02	1,52836128-02	1.72836330-02	1.93467358-02	2.14518650-02	2,35863910-02
	ATIENUATION	08/W)	2.06245328-01	3.1464522R-U1	4.95305798-01			1.47083736+00			3.09660000+00	
EFF2CTIVE	CONDUCTIVITY	CALBONIA	4.45742184-01	6.8001147e-01	1.07045688+00	1.61707796+00	2,31987326+00	3.1788403#+00	4.1939761#+60	5.3652772#+00	6.69273958+00	A.1763584#+00
KEL ATIVE	DIEIFCTRIC	CUPSTANT	1.24539298+01	1.2453887#+01	1.24538936+01	1,24539118+01	1.24539346+01	1.24539728+01		1.24540596+01		
	FRECHEMEN	(NH2)	5.0000000403	1.0000000000	1,50000000+02	2.0C000006+02	2.5500000000000	3.00000008+02	3.5(0000000+62	4 . OCC OCUDE+C2	4.500000004	5.00000000-62

EG2 2-3ft.; O'de 1.0 mmho/m; MC 11.8%; DD 1.75; SG 2.64

	1.055	TANGERT				00 1.80174430-02					00 2.43263890"02		
	ATTENUATION	(#/RO	6.07834119-0	7.15907548-01	8.95858378-	1.14776398+00				2.87497198+00	3.48664728+00	4.17025808+00	0 1.73; 50 2.61
EFFECTIVE	CONDUCTIVITY	CALHOSIA	1.3046225#+00	1,53636606+00	1,9225032#+00	2.4630802#+00	3.15810088+00	4.0075640#+00	5.01146738+00	6.16980758+00	7.48258058+00	8,9497817#+00	EG2 3-4ft.; O'de 0.1 mmho/m; MC 4.0%; DD 1.73; SG 2.61
KELATIVE	PIELLCTRIC	CURBIANI	1.22791018+01	1,22785130+01	1.22784178+01	1.22784016+01			1.22784710+01		1.22785668+01		2 3-4rt.; orde 0.1 1
	FREGIFNCY	(84.7)	5.0000008+01	1.00000000+02	1.50000008+02	2.00000000462	2.5r000c0A+02	3.60000000	3.50000000+02	4.0000008+02	4.50000008+02	5.00000000+02	. 80.

	GELATIVE	FFFCTIVE		
FREGIFFICY	DIELECTRIC	CONDUCTIVITY	ATIENUATION	L055
CME73	CUNCIANT	CW/SUHWED	UH/M)	TANGENT
5.00000008+(1		1.9249116#-01	1.33523048-01	1.24798640-02
1 . 01000000			1.73039338-01	8.08668048-03
1.50000000+02			2.38884358-01	7.44255688-03
2.0000000000	5.54119008+00	4,77259136-01	3.3106405A-U1	7,73584258-03
2.500000000+02			4.49577758-01	8,4040P00P-03
3.00000000+62	5.54123928+00	.8.5692292#=U1	5.94423818-01	9,25976600-03
3.50000000000		1.10369718+00	7.65600028-01	1.02225348-02
4.0000008402			9.63103738-01	1.12521960-02
4.500000000402	5.54136518+00	1,71111756+00	1.18693188+00	1,23264200-02
5.60806008+09			1.43708078+00	1.34318020-02

EG2 4-5ft.; Cdc 0.2 mmho/m; MC 2.8%; DD 1.65; SG 2.57

LOSS TANGENŢ •4860n210m0	1.42337980 1.42337980 1.1.4233784130 1.1.16567880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.166675880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780 1.1.16667880 1.1.16667880 1.1.16667880 1.1.16667880 1.1.1666780	1.3123362#-0 1.3123362#-0	LOSS TANGERT •73751300°0	8.44581478-03 8.07483728-03 8.24997548-03 8.69816218-03 9.30235318-03 1.07706398-02 1.15826958-02
JENUATTUN UB/M) •3664044A~O	652373461 122266791 730730191 6796313191 68968973491 880873491	.26711388+C DD 1.71; SG 2	= 3 • •	
EFFECTIVE NDUCTIVITY (MMHOS/M)	4.75213274=01 5.36395474=01 6.21972864=01 7.31978096=01 8.66418154=01 1.20529436+00	. 6485273@+0 . mmho/m; MC 2	Ü	2.23284456 4.12111156 5.26312796 6.65888886 1.02115856 1.23684796 1.47790379
FIELP CHNS	4 4 4 4 4 4 4	4.51302196+00 BG2 5-6ft.; dae	ELEC ONST	4.503931988+00 4.50391988+00 4.50392576+00 4.50392576+00 4.50397178+00 4.50404346+00
F KE GI-F TICY (MF.Z) 5.00000008+61	1.000000008+02 1.5000008+07 2.0000008+07 2.50000008+02 3.0000008+02 3.5000008+02 4.0000008+02	20+3n0n0n0j0*5	FREQUENCY (ME2) 5-CORBORUBAL1	1.5CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

EG2 6-7ft.; 6 dc 0.1 mmho/m; MC 3.0%; DD 1.60; SG 2.61

LOSS 1 7 7 8 2 4 6 5 9 9 8 0 2 1 0 4 5 1 0 8 9 8 0 2 8 6 7 4 5 6 2 8 9 8 0 3 8 9 4 5 6 5 5 9 9 8 0 3 9 5 6 9 4 7 6 5 5 9 9 8 0 3	. 10835336-0 . 10835336-0 . 19204986-0 LUSS TANGENT	1.02288870-02 8.56167550-03 8.25054450-03 8.48189570-03 8.98447510-03 9.64201700-03 1.03963810-02 1.12157630-02
ATTENUATION UB/H) 1.71106746**U1 2.00643746**U1 3.49804998**U1 3.18620836**U1 4.07093918**U1 5.15223818**U1	.90447620=0 .57537190=0 .14427490+0 D 1.60; SG 2.0 1ENUATION 08/P)	1.97791478=01 2.48329098=01 3.19072888=01 4.10025058=01 5.21185028=01 6.52551068=01 8.04121228=01 9.75893118=01
FFECTIVE DUCTIVITY MMHUS/P) 21329234=0 59515260=0 23096864=0 12101990=0 26533150=0 56389866=0 31670770=0	1.0223741%+00 1.2384976%+00 1.48C0387%+0C .1 mmbo/m; MC 3.1% .CHNDUCTIVE CMNHOS/M) 2.1813514%=01	2.57667334-01 3.23500034-01 4.15657674-01 5.34142274-01 6.78953234-01 8.50089104-01 1.27132774-00
	.46053648+0 .40051858+0 .40051858+0 .27-8ft.; Gac ELATIVE ELECTRIC UNSTANI .52542228+0	4.52498788+00 4.52491808+00 4.52490648+00 4.52491508+00 4.52493458+00 4.52499548+00 4.52503488+00
FREQUENCY (MFZ) 5.000000000+01 1.00000000+02 1.500000000+02 2.500000000+02 3.000000000	. ~ .	1.00000000+02 2.00000000+02 2.00000000+02 3.00000000+02 3.50000000+02 4.50000000+62

EG3 0-1ft.; &dc 4.4 mmho/m; MC 19.5%; DD 1.62; SG 2.57

		TANGERT						9+00 3.19611258-02				18+c0 3.63595298-02	,
	ATTENUATION	UB/#)	1.93458998	2.09610468+U0	2.36238778+00	2.13479548	3.21349148	3.79851118+00	4.48986086+00	5.28753748	6.19153298+00	7.2018368B	
EFFECTIVE	CONDUCTIVITY	C M X C D X X X X X X X X X X X X X X X X X	5.1704428ë+0c	5.59704776+00	6.3070469e+0C	7,30091046+00	8.5786952#+00	1.01404138+01	1,19860680+01	1.41156560+01	1.65291778+01	1.9226626#+01	
RELATIVE	PJELECTRIC	CONSTANT	1.90006636+01	1.89982446+01			1.89975128+01		1.69976118+01	1.89976348+01	1.85976688+01	1.89977108+01	
	FREGIFNCY	(NF2)	5.00000000+01	1.00000000402	1.500000000000	2.00000000000	2.50000008+02	3.00000008+02	3.500000000402	4.00000000462	4.5000008+02	5.00000008+C2	

2.62
හි
1.39;
8
24.26;
¥
manho/m;
5.2
eft.; ode
BG3 1-

	REL ATIVE	EFFECTIVE		
FREOIFICY	PIELECIRIC	CONDUCTIVITY	ATIENUATION	LOSS
(MF7)	CONSTANT	CHAHOSIA	(エ/ਸ)	TANGENT
5.0000008+01		6.04304888+00	2.20504248+00	1.08729418-01
1.00000000		6.51042364+00		5.85769080-02
1.5000000462		7.2882056#+00		4.37174540-02
2.00000008+02		8.3769425#+00		3.76865490"02
2.50000000+02	1.99643120+01	0.7767014e+0r		3.51871750-02
3.0000000		1.14874976+01		3.44537560-02
3.50000000+62	1.99643028+01	1.35093336+01		3.47294686"02
4 - 6000000000		1.5842208#+01		3.56358860-02
4.50000000402		1.8486120#+01	6.75470788+00	3,69627640-02
5.000000000000000000000000000000000000		2.14410656+01	7.83429838+00	3.85839526-02

EG3 2-3ft.; d'de 0.7 mmho/m; MC 9.3%; DD 1.66; SG 2.59

	1.6891/10F-02 2.0246320P-02 2.1740232P-02 2.3331625P-02
≪	1.8406191m+00 2.2543890m+00 2.72331136+00 3.24737990+00
—	3.45214136+0r 4.22821856+0r 5.10776016+00 6.09076176+00
RELATIVE DIELECTRIC CUNSIANT 9.3/94137#+00 9.3/86395#+00 9.3/885107#+00 9.3/84895#+00 9.3/84896#+00	9.3/85492@+00 9.7/85942@+00 9.3/86474@+00 9.3/87083@+00
000000 +++++	3.50000000+09 4.000000000+02 4.50000000+02 5.0000000+09

EG3 3-4ft.; O'de 0.3 mmho/m; NC 6.9%; DD 1.54; SG 2.58

SEDIENCY	RELATIVE	COND.CTIVE	ATTENUATION	rcss
(K17)		(ネ)が日本家と	UB/H)	TANGENT
5.00000cm+01	6.8714024F+00	4.70668189-01	2.93171748-01	2.46085568-02
1.00000008+02	0.8/094428+00			1.47997258-02
1.5000008+02				1,26373750-02
2.00000000402				1,23872510-02
2 NC000C00+07	6.8/08818#+UC			1.29020496-02
3.000000000				1,37992888#02
3.50000000+02			1.24384038+00	1.49150320-02
4.00000008+02				1.61673090-02
4.500000000			1.87751660+00	1,75105700-02
5.000000000			2,25373820+00	1.89174836-02

EG3 4-5ft.; O'de 0.3 mmho/m; MC 6.4%; DD 1.66; SG 2.64

	LOSS	TANGENT	2.41279348-02	1.45099749-02	1.23893220-02	1.21435886-02	1.26478516-02					1.85434680-02	
	ATTENUATION	DB/H)		3.49163488-01			7.60886248-01						
EFFECTIVE	CONDUCTIVITY	(オ/80131)	4.70681438-01	5.66076558-01					1.9963715#+00	2.47311446+00	3.0134119@+00	3,61725986+00	
RELATIVE	PIEIECTRIC	CUTSTANI	7.00847208+00				7.00795158+0U			7.01806408+00		7.00817838+00	
	FREGIFFICY	(NF 2)	5.00000000000	1.000000001	1.500000000+02	2.0000000402	2.5cn00v0e+u2	3.0000000008	3.10000000462	4.00000008+02	4.50000006+02	5. c0000c0R+v2	

EG3 5-6ft.; o'de 0.3 mmho/m; MC 8.4%; DD 1.59; SG 2.60

	FELATIVE	EFFECTIVE		
FREDI FNCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(377)	CCRUMANA	CE/SOHEE)		TANGENT
5.00000000+01	8,2175599#+00	4.51211610-01		1,97266710-02
1.0000000000	8.21733918+00	5.79226268-01		1.26620330-02
1.500000000402	8.21731316+00	7,92561824-01		
2,000000000402	8.217321/6+00	1,09122700+00		
2.50000008+02	8.21734508+00	1,47522118+00		
3.0000000000	8.21737826+00	1.9445422#+00	1.10764960+00	1.41693288-02
3,50000008+62		P.49918746+00		
4.0000000004		3.1391533@+00		
4.50000000+02		3.86443620+00	2.20119780+00	
5.0000000#+02		4.67503150+00		

EG3 6-7ft.; d'de 1.3 mmho/m; MC 18.3%; DD 1.75; SG 2.62

S	TANGENT	.00668066-0	.90463486-0	S.	. 75484750-0	. 98539150-0	.06158708-0	.26386790-0	.4824506F-0	.711899998-0	.94895420-0			LOSS	ANGENT	0.36781060.	.52959538-0	4.10483759-02	0-2019//16*	.26583534"0	.18149998*0	.19293338=0	.26422218-0	.3754134460	.51453476"0	
ATTENUATION	CH/RO	.02665610-0	.63586088-U	140	.40707888+0	.88967988+0	.47951130+0	.17656620+0	.98083500+0	.89230756+0	.91097168+0	DD 1.64; SG 2.55		Z	(#)	.84380628+0	.9809904#+0	2,20618468+00	,52099718+0	.92562398+0	.42010920+0	.00445356+0	.67868666+0	.44277288+0	.29671416+0	
EFFECTIVE CONDICTIVITY		0+	0+	+	0+	0+	0+	0+	0+	0+	0+1	maho/m; MC 16.0%;	FECTIV	UCTIVI	X/SOHX	.45813388+0	.78480578+0	5,32771060+00	.08757020+0	06447286+0	.25843856+0	.66947196+0	.12975730+0	.31427399+0	.52049670+0	
LATIVE	CONSTANT	94528878+0	.94526918+0	94526668+0	.94526718+0	.94526898+0	.94527148+0	9452745840	.94527838+0	.9452826#+0	. 24528758+0	EG# 0-1ft.; O'de 3.7 mmho/m; MC 16.0%;	ELATIV	LLLCTR	エマトクスコ	.55472318	.55438068+0	.55431788+	5542972#+0	.55428940+0	.55428698+0	.55428726+0	.55428930+0	.55429278+0	5429710+0	
	F M C G (* M C . 1	Ĵ	C	ت د	• •	ت د	, C) ::	ټ د	, =	5.0000000000000000000000000000000000000	(SEA)		FREDRENCY	(244)	J		1 .50000uce+02	3	Ç	0	0	Ç	-	5.00000000+02	•

EG4 1-2ft.; Odc 0.7 mmho/m; MC 10.8%; DD 1.71; SG 2.61

•	1.055	HANGERH	3.07795110-02	1.86191910-02	1.59998416-02	1,57661320-02	1,64864990-02	1.76843880-02	1.91546940-02	2.07953600-02	2,25495730-02	2,43832400-02	
	ATTENUATION	UB/M)	4.54643858-01	5.62177669-01	7.24641778-01	9.52076688-01	1.24448478+00	1.60186338+00	2.07470848+00	2.51151488+00	3.06377638+00	3.68098608+00	
EFFECTIVE	CONDUCTIVITY	CM/SCHMM)	9.45306846=01	114367048+00	1.47410676+00	1.93676518+00	2,53160630+00	3.2586285#+00	4.11782920+00	5.10920486+00	6.2327513++00	7.4884642#+00	•
RELATIVE	DIELECTRIC	LAALVACC	1.10338658+01	10+80646656	10.10333768+01	1,10333718+01	1,10333878+01	1.10334168+01	1-10334549+01	1.10335000+01	1.10335536+01	1.10336138+01	
	A CAPEDIANA		0.000	CO+000000000000000000000000000000000000	00+0000000 * T		0 - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		70 + 80 3 3 0 0 0 0 1 mg	70+90000000 7		5,000000000	

EG4 2-3ft.; O'de 0.6 mmho/m; MC 12.3%; DD 1.65; SG 2.59

	RELATIVE	EFFECTIVE		
FREDIFIET	DIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(MLZ)	L Z Y L S Z C C	CHAHOS/H)	CH/H)	TANGENT
10+863000000	1.19698686+01	8,1438910e-01	3.84341608-01	2.44432530-02
1.00000000		1,04052008+00	4.91087728-01	1.56154840-02
10.000000000000000000000000000000000000		1.41737998+00	6.68956268-01	1,41808090-02
00+00:000000000000000000000000000000000		1.94497886+00		1,45945470-02
0 - NCOCOCC - C		2,62331608+00		1,57476439-02
30.000000000		3.45238958+00		1,72703980-02
3.50000000		4.43719638+00		1.90043646-02
27-80000000 * a		5,56273308+00		2,08703120-02
4 50000000		A.84399558+00		2,28242220-02
5.0000000000		8,27597500+00		2.48396790-02

EG4 3-4ft.; O'de 0.5 mmbo/m; MC 9.44; DD 1.64; SG 2.64

0000
.5.00000000+02 8.4/8 .000000000+02 6.4/8 .5.0000000+02 8.4/8 .5.0000000+02 8.4/8

EG4 5-6ft.; Gdc 0.5 mmho/m; MC 12.64; DD 1.86; SG 2.66

アスピロ1 アンクイ	PILLECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(MF 7)	CUNSTANT	CE/SOLEED	UB/M)	TANGENT
5.00000008+01	1.40498848+01	9170997	3.01323678-01	1.76875510-02
		9.68746776-01	4.22016530-01	1.23858730-02
	1.40497958+01	1.43046718+00	6-23156878-01	1.21927898-02
2.00000008+02	•	2.0768729#+00	9.04/48120-	1.32768760-02
2.5cn0ncom+c2	1.40498348+01	2.9079626#+00		1,48718169-02
3.0000008+02		3.9237339@+00		1.67221668-02
3.500000006+02		5.1241839#+00		1,87184430-02
4.00000004		6.5093093#+00		2.08059048-02
4.500000004	-	.0791059#	3.5193228#+00	2.29541339-02
5.00000c08+C2	1.41500506+01	83356936+0	4.28351598+00	2.5144R77P-02
	Ech 6-7ft.; ode 1	L.O mmho/m; MC 12.6	EC4 6-7ft.; O'de 1.0 mmho/m; MC 12.6%; DD 1.83; SG 2.40	•
4	RELATIVE	EFFECTIVE		

	RELATIVE	EFFECTIVE		
FREGI FACY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(x+7)	CONCIANT	へをしいロエエエン	UB/H)	T V N C N C N C N C N C N C N C N C N C N
5,0000000461	1.4c603088+01	1.2919385#+00	5.62532784-01	3.30113590-02
1 . 000000k+02		1.5625801#+00	6.4044301	1.99639180-02
1.50000000402		2,0135918#+00		1.71508430-02
2,00000000005		2,6449988#+00		
2.50000000#+02		3.4568028#+00		
3.0000000000		4.4490020#+00		
3.50000000+02	1.40599358+01	5.6215941000		
4.000000000A		6.97457568+00	3.03711418+00	
4,50000000+02		8.5079428#+00		
S.000000008		1,0221691#+01		2,61186880-02

Ech 7-8ft.; Cae 1.6 mmbo/m; MC 19.2%; DD 1.66; SG 2.45

	od 1.50; 8G 2.63	RELATIVE EFFECTIVE	RELATIVE	FREDITIEN
			M. Oalth die o .	
3.00400810-02	1 6.011n7598+00	⇒	10+20/00006.1	_
2.77508516-02		.3477496#+0	104200000000000000000000000000000000000	VO + EO 10000 10 + t
2,55554150-02		10322224	*O+#/0/00064**	
20-19/05/56 2			**********	C.14000000000
30 - VC03C50101		8 878780AB40A	1.03867508+01	3.5000008+02
0 14200R9100	2.50767718+00	7.00487158+00	1.9386719#+01	3 • 00000000 • 6
2 . DOGR 1 ORB 2 C	2.01004988+00	5.4276614#+00	1.93866968+01	AS+BUDDODG - V
1.91251760.02	1.53088818+00	4.120121/#+00	10+420000:4*7	70+26000 :: 100 A 2
20-100-002401	00+2506160		************	2,0000000000000000000000000000000000000
20: PC2/0/3343		3.12125308+00	1.93866848+01	1.5000000001
. 225.4025e.	8.90772278-01	2.40205694+00	1,93867298+01	
3.65160436-02	7.30656418-01	1.9705102#+00	10+2010706+01	
TANGERT	OB/E?		アメリカスワン	
F038				(41.7)
400	ATTENDATION	CONDUCTIVITY	PIELECTRIC	FREDLENCY
		EFFECTIVE	RELATIVE	

		LOSS	TANGENT		4.97051516.02	2.89475546-02	2.38117000-02	NO STATES OF THE	20-119//42909	Z • 29524996 02	2.40915820-02	2.54788416100	20-12000 10701	2.15462486-02	2.96003600-02	3-17851420-02
	ATTENHATORS.	NO. 1	08/X2	0.60077378-0			1.39128446+50	1.76047000+:10		00+1000	2.01525910+00	3.50083508+00	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	0048//601/05		6.19020048+00
EFFECTIVE	CONDUCTIVITY		つよくのつじまじょ	2.54404850+00	0000 TE 0000 C	00+23000×7×1	2 - 02 1 4 9 9 4 4 + 00	4.62043756+00	5.86620772400	001010000000	00+4460			1 34175700+00	101411111111	1.62474789+01
KELA I I VE	DIELECTRIC	FAAFSAES		1.03049728+01	1.83643898+01	1.8360000000	***********	19+4212+oco+F	1.83642788+01	1.83649078403	10+4-40+0+6+4	10+2026+050*	1.83643600+31	1.83644028+01		ID+BAChtoro.
2027	1 12 1 10 1 1	(AF2)	5		1.00000000	1.50000000400	001000000000000000000000000000000000000	20 ARGO 200 10 A G	Z0+0000000×0×	3.00000000	3.500000000	20+200000000000000000000000000000000000	** UCOUCOUS+02	4 • 5 c 0 0 0 0 0 0 e + C 2	5.000000000	30.000000000000000000000000000000000000

the state of the s

Dl 1-2ft.; o'de 1.5 mmho/m; MC 22.0%; DD 1.69; 8G 2.70

	RELATIVE	EF FECT IVE		
FREGLENCY	DILLECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(BF7)	CUNULANT	CANDUNAN	UB/H)	TANGENT
900		-	6.37934398-01	2,90737016-02
1.0000000001			8.17249140-01	1.87689820-02
1.50000000+02				1.72148400-02
2,00000000+62			1.55433520+00	1.78483950-02
2.55000cuR+02				1.93570260-02
3.00000000+02				2,13031846-02
3.500000000402				2.34993486-02
4.00000000+02	2.29464368+01		4.50243548+00	2,58517540-02
4.500000004		1,6272565#+01	5.54647548+00	2,83083100-02
5.0000000000	2,29465188+01	1,96962340+01	6.71329524+00	3.08377580-02
	•			

DL 2-3ft.; Cdc 4.6 mmho/m; MC 26.9%; DD 1.52; SG 2.72

	LOSS	TANGENT	6.79875250-02	3.84587228-02	3.05978326-02	2,81550988-02	2.78795186-02	2.86875190-02	3.01147046-02	3.19288720-02	3.40010200-02	3,62537460-02
	ATTENUATION	UB/M)	1.62895738+00	1.84359508+00	2,20031888+00	2.69959288+00	3.34146806+00	4 12594920+00	5. U530299#+00	6.12269860+00	7.33494088+00	8.68973928+00
EFFECTIVE	CONDUCTIVITY	へおくいのエヌエン	5.26480739+00	5.9561077#+00	7.1080784#+00	8,72081030+00					2,3696027#+01	2.8073369#+01
RELATIVE	DIELPCTRIC		2.74208038+01	2,7820096#+01	2,78199738+01			2			2.78200238	2,78200598+01
	FREGIENCY	(MFZ)	5.0000008+01	1.000000000	1.50000000+02	2.00000000402	2.500000000+02	3.00000000+02	3.50000009+02	4.00000000+52	4.5000000004	5.000000000000

. Dl 3-4ft.; O'de 12.8 mmbo/m; NC 33.3%; DD 1.30; SG 2.71

	RELATIVE	EFFECTIVE		9
FRESIFNCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(エトノ)	CONSTANT	CANDAMA	DB/H)	TANGENT
900	2,69370729+01	1,42503518+01	4.46352498+00	1.90060370-01
1.00000000000	2,69316759+01		4.69174940+00	8.95779750-02
1.50000000402			5.0491718#+00	7.14012070-02
2.000000000402			5.54649208+00	5.88137930-02
2.50000000402			6.18504738+UO	5,24634400-02
3.00000006+02			6.96516198+00	4.92318850-02
3.50000000+02				4.77825730-02
4.0000000004	2.69300420+01	2.8452542++01	8.95041130+00	4.74471850-02
4.500000000402	2,69300518+01		1.01555878+01	4.78544176-02
5.000000000-5	2.6930070#+01		1.15024610+01	4.87814798-02
			•	

Dl 4-5ft.; d'de 13.5 mmho/m; MC 22.5%; DD 1.35; SG 2.75

	L055	TANGENT	3,21596100-01	1,65339528-01							6.02589226-02	5.94483640-02
	ATTENUATION	08/H)										
EFFECTIVE	CONDUCTIVITY	くましのこととこ	1,57231188+01	1.6146109#+01	1.6820224#+01	1.77594998+01	1.8965876#+01	2.04398468+01	2.21815806+01	2.4191144#+01	2.6468571#+01	2,9013874#+01
RELATIVE	PIELECTRIC	CONSTANT	1,75648458+01		1.75372978+01	1.75356518+01			1.75342808+01		1.75340826+01	
	FREGIENCY	(MFZ)	5.00000000+01	1.00000000+02	1.5000000001	2.00000008+02	2.50000000+02	3.00000000+02	3.5000000000000	4.0000000000402	4.50000000+62	5.00000000005

D2 0-1ft.; Cdc 7.2 mmho/m; NC 33.6%; DD 1.23; SG 2.49

	HFI ATTVE	EFFECTIVE		
LEFOLFNCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
	COMSTANT	ペポ/SCHAEC	UB/M>	TANGENT
5.00000008+01	2,54687898+01	8,1461627#+00	2.63146858+00	1,14910690-01
00+80000000+		8.7782165#+00		6.19185688-02
1.5000000000000000000000000000000000000	7.5466256F+01	9.8306291#+00	3.18013378+00	4.62286659-02
00+00000000000000		1,13038710+01		3.98676538-02
70 + 80 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0		1.3198000#+01	4.26986718+00	3,72385170-02
2-000000000 3-00000000000	7.546606VB+C1	1.55130280+01	5.01837050+00	3,64753800-02
3.5000000000000000000000000000000000000	2.54660758+01	1,82489598+01	5.90399878+00	3.67785360-02
4 - OCOOOB+C	2.5466091R+01	2.1405792e+01		3,77481280-02
4.500000004	2.54661178+01	2,49835246+01		3,91620010-02
5.00000c0#+02	2.54661498+01	2,89821538+01	9.37607058+00	4.08868626-02

D2 1-2ft.; Gdc 47.3 mmho/m; NC 64.24; DD 0.97; SG 2.60

	LOSS	TANGENT	4.19637958-01	2,14798670-01	1.48018316-01	1.17140880-01	9.95491010-02	8.89010998-02	8,22212568-0	7.80216148-02	7.54754830-0	7.40868260-02
	ATTENUATION	38/M)	1,22349418+01	1,27135208+01	1.3232469m+U1	1.39206410+01	1.4794526#+01	1.58583920+01	1.71137038+01	1,85610580+01	2.02007338+01	101 2.20328578+01
	COMBUCTIVITY		5,0094263#+31	-	5,32056784401	5.59143820+01	5.93961200+01	6,36512339+01	6.86798400+01	2.44819928+01	8,10577086+01	8.8407002#+01
KELATIVE	DIELECTRIC	CURSTANT	4,24873928+01	4,28752748+01	4.28726988+01	4.26/17738+01	4.28713478+01	4.2871121#+01	4.28709920+01	E709168	4.24708728+01	4.28708490+01
	FREDIFINGY		5.000000000	1,000000000+02	1,500000000		2.5r000cce+02	3.00000008+02	3.50000008+62	4.000000000402		5.00000cup+u2

S	
86 2.62	
t)	
Ø	
DD 1.07:	
3	
-	
A	
ä	
3	
MC 190.36	
-	
-	
2	
L mmbo/m; M	
ď	
~	
g	
P	
• 4	
5	
D3 0-1ft.; dde 7.1	
m	
A	

LOSS TANGENT 8,24959050-0	0 4.59789708-0 0 3.59077118-0	0 3.244	0 3.21420000=0 0 3.34054700=0	0 3.51416300m0 0 3.71924450m0	1 3,94636550-0		0.0	ANGENT	0 7.91484768-0	10 4.38724498-02	3.05248286-0	0 2,95727390-0	0 2,98921990-0	0 3.09382560-0	0 3,24384280-0	0 3.42413340-0	0 3.62561408-0
TENUATJUN DB/M) •10803810	.45155398+ .8721367#+	3.46068828+0	.14202208+ .23481548+	49567798+	.05215360+	DD 1.50; SG 2.72	ATTENUATION	(H/A	.70988278+	1.89657038+0	+61864669	.19641210+	+87712098+	.68156258+	.60972854+	.66160730+	*83718A98+
E → C → C → C → C → C → C → C → C → C →	.8107796#+ .0321254#+	435887	.8477668F+ .2404816F+	69361358+	.78112746+	manbo/m; MC	EFFECTIVE CONDUCTIVITY	X/SOHAH)	0+24046486°	5.52606716+00	68957218+0	,31215510+0	41295302#+0	.3639014#+0	,63432870+0	.94081186+0	+28335056+0
LATIVE LECTRIC NSTANT 44231328+0	.44224268+0 .44223018+0	44222	.4422275#+0	44222934+0	.4455345#+0	D3 1-2ft.; d'de 4.3	RELATIVE Dielectric	CONSTANT	26273578+0	26261	26258748+0	26258588+0	20258638+0	26258818+0	26259088+0	26259410+0	26259818+0
FREQUENCY CMLZ) 5.0000000#+01	1.000000000+02 1.5c0000000+02	2.000000000+02 2.50000000+02	3.00000000+02 3.5000006+02	4.0(00000#+02	5.0000000000000000000000000000000000000	1	2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	(MFZ))	1.00000006+02	د د	9	၁	Э	0	Э	9

D3 2-3ft.; ddc 3.0 mmho/m; MC 19.8%; DD 1.71; 8G 2.65

LGSS TANGENT 6.18558794.02 3.5033658-02 2.79146189-02 2.57226928-02 2.55015728-02 2.62658608-02 2.75932318-02 3.11864014-02		
ATTENUATION DB/M) 1.27652738+00 1.44641429+00 1.72884699+00 2.52415368+00 2.63237098+00 3.25350139+00 3.98754038+00 4.83447928+00 5.79430768+00	DD 1.62; SG 2.89	
EFFECTIVE CANDUCTIVITY (MMHDS/H) 3.55251944+00 4.02437126+00 4.86989938+00 5.90960746+01 7.3235068+00 9.05159856+01 1.1093818+01 1.34503528+01 1.910584461	D3 3-4ft.; orde 46.0 mmbo/m; MC 26.14; DD 1.62; SG 2.89	EFFECTIVE CONDICTIVITY
helative constant 2.0c357756+01 2.0c357756+01 2.0c347616+01 2.0c347229+01 2.0c34718+01 2.0c3478701 2.0c348761 2.0c348701 2.0c348701	D3 3-4ft.; ode 46.	KELATIVE Pielectric
FREQUENCY (MFZ) 5.00000000001 1.000000000000000000000		FREQUENCY

	LUSS TANGENT 6.8402129@"01 3.4772099@"01 2.3695385@"01 1.8293997@"01 1.5168412@"01 1.3182047@"01 1.1847075@"01 1.0263256@"01
ביים ביים לשתור כי ניים	ATTENUATION DB/M) 1.52492818+01 1.60540568+01 1.65311078+01 1.77057678+01 1.83810538+01 2.04204608+01 2.29088768+01
	EFFECTIVE CANDUCTIVIFY (MMHDS/V) 5.06512058+01 5.14008118+05 6.25148058+01 5.40486038+01 5.60128228+01 5.6012828+01 6.12424848+01 6.45094568+01 6.82115618+01
	KELATIVE DIELECTRIC CUNSTANT P.66033646+01 2.65537266+01 2.65334526+01 2.65334526+01 2.65313926+01 2.65309026+01 2.65309026+01 2.65305786+01
	F KE DI-F NCY (NH7) 5.00000000001 1.00000000001 1.5000000000000000000000000000000000000

D4 0-1ft.; ofde 3.7 mmho/m; MC 15.84; DD 1.80; SG 2.65

LUSS TANGENT 9.27880398-02 5.02500608-02 3.77705988-02 3.28109238-02 3.08592118-02 3.04119158-02 3.17733738-02 3.46391038-02	LOSS TANGENT 1.6710098#01 8.7579299#02 6.27964778*02 5.17214829*02 4.32855638*02 4.20068679*02 4.17080008*02 4.20623618*02
ATTENUATION DB/M) 1.74221486+00 1.88830848+00 2.12929726+00 2.4634746+00 2.89959966+00 3.42908426+00 4.77676348+00 5.59494836+00	ATTENUATION DB/M) 3.27928928+00 3.44533368+00 4.07173548+00 4.53991218+00 5.11190598+00 5.65756798+00
EFFECTIVE CONDUCTIVITY (MMHOS/P) 4.41707204+00 4.7834,590+00 5.39314924+00 5.24654026+00 7.34371676+00 8.68469126+00 1.02694668+01 1.20980404+01 1.41704104+01	EFFECTIVE CONDUCTIVITY CMPHOS/W) R.7311641@+00 9.8388932@+00 1.0804623@+01 1.2046073@+01 1.3563319@+01 1.5356386#+01 1.5356386#+01 1.5356386#+01
#ELATIVE CUNSTANT 1.71094728+01 1.71099308+01 1.70993198+01 1.70993198+01 1.70992678+01 1.7099268+01 1.70993718+01	D4 1-2ft.; ddc 7.5 HLLAIIVE DIELFCTHIC CUNSTANT 1.87719575+01 1.87719575+01 1.87645628+01 1.8762889+01 1.8762889+01 1.8762889+01 1.8762889+01 1.87623458+01 1.87623458+01 1.87623458+01 1.87623458+01
##EQLFNCY [MHZ] 5.00000000000000000000000000000000000	F KF GI FNCY (ML7) 5.00000006+01 1.00000000+02 2.00000000+02 2.50000000+02 3.50000000+02 4.00000000+02 5.00000000+02

D4 2-3ft.; of dc 3.6 maho/n; MC 14.4%; DD 1.83; SG 2.67

	KEL AT IVE	EFFECTIVE		
FEFOR FROM	PIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(KFZ)	CUNUTANT	CMYHOS/FO	UB/M)	TANGENT
5.0000000000	3.51906138+01	A.33855488+00	1./8066048+00	9.87103080-02
1.0000008+62	1,5/874316+01	4.66712670+00	1.91735928+00	5.31036716-02
1.550000000402	1.5/868488+01	5.2133604#+00	2.14213940+00	3,95473588-02
2.0C00C00R+U2		5.9779020#+00		3,40106540-02
2.5rc0rc08+c2		A.9608304##60		3.16824810-62
3.000000000		B.1621631@+UC	3.354n688R+UO	3.09587026-02
3,50000000+02	j.51865728+01	9.5819043#+00		3.11517436-02
4.600000004	1.5/86595#+01	1,12200538+01	4.61060550+00	3,19177958-02
4.50000006462		1.3076608#+01	5.37345498+00	3.3065841##02
20+860000000	1.5/866748+01	1,51515640+01	6.22401519+00	3,44817680-02

D4 3-4rt.; O'de 0.5 mmho/m; MC [.0%; DD 1.70; SG 2.62

	HLL. ATIVE	EFFECTIVE		
F RE OL FINCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	1.055
(NEZ)	CUNSIANT	(X/SOHME)	UM/M)	TANGENT
5.00000000005	7.6832308@+U(7,41252228-01	4.36607748-01	3.46607960-02
1.000000000	7.682326/8+00			1,99101030-02
1.50000000+12				1,61352110-02
2.000000000462			7.61165938-01	1,51058280-02
2.500000000000			9.55799978-01	1.51747758-02
3,0000000003			1.19367798+00	1,57928894-02
3.50000000402	7,60219558+00	2,50338498+00	1.47479720+00	1,67247889-02
4.000000004			1.79915454+00	1,78527754902
4.50000196+02	7.68229178+00	3.67799038+00	2.16674568+00	1,91114520-02
5.00000000000	5.0000000000000 7.68235178+00	4.3753915#+00	2,57756528+00	2.04615790-02

D4 4-5ft.; G'de 0.2 mmhc/m; MC 4.1%; DD 1.66; 3G 2.66

7088	TANGENT	2,48519800-02	1,4316533#=02	1.16404188-02	1.09310750-02	1,10082038-02	1.14785640-02	1.21738640-02	1,30094930-02	1,39387090-02	1.49333998-02
ATTENUATTON	08/H)	2,60735410-01	3.00399248-61	3.65375928-01	4.58724779-01	5.77451908-01				-	
EFFECTIVE CONDUCTIVITY	CH/SOHWN)	3,68635698-01		5,1791982	6.48463869-	A.16299598-01					2,2148119#+00
RELATIVE PIELECTRIC	CUNSTANT	5.32908696+00				5.32818818+00			5.32827520+00		5,32837258+00
FRECL'FN(Y		5.00000000+61	1.00000000	1.5000000000000000000000000000000000000	2.00000006+62	2.5000008+02	3.05000008+02	3.50000008+02	4.0000006+62	4.5000000B+02	5.000000008+02

D4 5-6ft.; fdc 0.1 mmho/m; MC 4.3%; DD 1.61; SG 2.63

	RELATIVE	EFFECTIVE		
FREDIFNCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	L055
(847)	CONSTANT	CHEHOSIA	UM/M)	TANGENT
5.000000000	5.32567598+00	1.92686574-01		1.29984968-02
1.800000000		2,49741108-01	1.76/12958-01	8.42394818"03
1.500000000402			2.43986338-01	7.75399168-03
2.0000000402				8.06033388-03
2.500000008+02				8.7571A298-U3
3.00000008+02		8.5820811#-01		9,64925689-03
3.500000000+02	5,3255788#+00	1,10538738+00		1.0652R550-02
4.00000000402		1,39058710+00	9.83939026-01	1,17261210-02
4.50000008+02		1.71380488400	1.21262880+00	1,28457980-02
5-000000000-72		2.0750369@+00	1.46821100+00	1.39979246-02

.02189140-02 9.58645720-03 .01023110-02 .10774720-02 .22822596-02 .50361540-02 ..65086810-02 .8019396e-02 1.54442060-02 .36187280-02 TANGERT . 44428698+UU D4 6-7ft.; orde 0.2 mmho/m; MC 6.64; DD 1.72; SG 2.63 1.18329754+00 .4931474B+00 2.23672600+00 1.91707836-01 3.56990408-01 6.8752299#-01 9.14756488-01 2.53694868-01 5.016n018a-01 ATTENUATION UB/H) .9791590#+0n .49742002+00 4.24317734-01 .1499220#+0n .5299919#+UC 1.0847712#+00 3.7412083#+00 3.2065003#"01 .9708334#-01 3,38951758-01 EFFECTIVE CONDUCTIVITY (X/SOLEX) .4590258#+00 .45886658+00 . 45885168+0u .45886378+0U . 45ABBR28+00 .45906K2R+UU 7.4591282#+00 .45892178+UL .45901108+0C 30+896248+0C PIELECTRIC CONSTANT RELATIVE 1.000000004c2 2,00000038+12 2.5rn00cum+c2 3.0000009+62 3.5000000402 5.00.000003+01 1.50000000+02 4.00000000402 4.500000000409 5.0cn00cn4-u2 F REOI FACY ヘノユエン

	HEL ATTVE	SALLUESES		
PLOIFNCY	PILLECTRIC	CHNUCCIIVITY	ATTENUATION	1.055
(F+7)	CUNSTANT	(3/50123)	DB/MS	TANGENT
5.05000008+61	6.10159458+00	3.2469254#=01	C	1.91181288-02
1.0000000+62	6.10138138+00	4.14796896-01		1.22121050-02
1.5500000064	6.10135558+00	5.6495066FF01	3.7346785R=01	1.10886470=02
2.00000cc06+c2		7.75161858-01	5.12429906-01	1.14109548-02
2.5rc00c0R+62	6.10138378+00	1.0454300#+00		1.23115588-02
3.000000006	6.1C14140€+00	1.37575356+00		1.35012408=02
3.500000006+62	0.1(145)98+00	1.7661298#+0C	1.16/49928+00	1.48562020-02
4.0600006462	0.11149678+00	2.2165562#+00	1.46523978+00	1.63143139-02
4.5cc00.08+C2	0.111548UF+0U	7.7270294#+UD		1.78411859-02
5.000000 us+12	5.000000 us+c2 6.10160598+00			1.04161480-00

W1 0-1ft.; O'de 0.2 mmho/m; MC 8.3%; DD 1.23; SG 2.63

W1 1-2ft.; ofde 0.2 mmh 'm; MC 10.0%; DD 1.60; SG 2.58

	RELATIVE	EFFECTIVE		
FREDIFINGY	DIELLCTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(Zim)	CUNSTANT	(MISCHEL)	UB/R)	1 ANGENT
SCO.	9.5/783636+00	3.13964384-01	1.65653930-01	1.17768560-02
1.0000000	9.5/778918+00	4.7688089#-01	2,51614410-01	8,94398518-03
1.50000000402	9.5/779528+00	7.4880477#-01	3.94876778-01	9,35763610-03
2.0C000LUB+U2				1,05829160-02
2.50000008+62				1,21328250-02
3.00000099+62	9.5/787898+00			1,38450199-02
3.50000000402			1.54091488+00	1,56499198-02
4.000000004				1.75127300-02
4.50000000+02	9.5/802788+00			1,94141170-02
5.00000000+02	9.5/809108+00	5.6899355#+00	3.00196558+00	2,13424760-02

W1 2-3ft.; J'de 0.2 mmbo/m; MC 6.7%; DD 1.62; SG 2.65

	KELATIVE	EFFECTIVE		
FREDIFNCY	DIELPCTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(MFZ)	CCZVIAZI	(エ/の口に立て)	UB/#)	TANGENT
5.000000000+01	7.03770766+00	3.23177756-01	1.98917798-01	1,64978238-02
1.00000008+02	7,03752218+00	4.21160420-01	2,59235218-01	1,07501428-02
1.50000008+02	7.03750246+00	5.84448050-01	3.59744258-01	9.94540588-03
2.000000008+02		A.13046924-01	5.00452350-01	1.03765468-02
2.50000000402		1,10695620+00	6.81358598-01	1.13020230-02
3.000000000	7.03756968+00	1,4661740#+00	9.02460649-01	1,24746380-02
3.50000008+02	7.03761048+06	1.8906976#+00	1.16375548+00	1,37884430-02
4.00000c0P+02		2,3805239#+00	1.46523908+00	1,51904550-02
4.500000000+02		2.9356492#+00	1.80690730+00	1,66517360-02
5.00000000000		3.55606948400	2.18875524+00	1,81531180-02

W1 3-4ft.; O'de 0.6 mmho/m; MC 13.5%; DD 1.66; SG 2.67

	. KELATIVE	EFFECTIVE		
FREGITINEY	PIELFCIRIC	CONDUCTIVITY	ATTENUATION	LOSS
(NH7)	CUNCTANT	(A/SOHAE)	UB/M)	TANGERT
5.000000000		R.1173292#-01	3.6588423R-C1	2,22238430-02
1.00000008+02	1.31221600+01	1.0717206#+00	4.83091930-01	1.46710998-02
1.50000008+02		1.50501778+00		1.37351038-02
2.0000000000		2.11162998+00		1.44533660-02
から そのこうじゅうじょう		2.89155596+00		
3.600000068+02		3.84479378+50		
3.5000000000	1.31222508+01	4.97134038+00	2.24UR4288+U0	1.94439088-02
4.00000008+02		6.2711921#+00	2.82671988+00	2.14618290-02
4.500000000+02	1.312234/9+01	7.74434518+00	3.49069078+00	2.35584700-02
5.00000008+62	1.31224058+01	9.3907948#+00	4.23274709+00	2.57101920-02
	•			

W1 4-5ft.; 0'de 1.0 mmho/m; MC 15.8%; DU 1.67; SG 2.63

	RELATIVE	EFFECTIVE		
FREDITNCY	PIELECTRIC	CHNICOTIVITY	ATTENUATION	L055
(X - X)	CURSTANT	(ま/のロエエエ)	UE/#)	TANGENT
5.00000008+01	1.56001586+01	1.28426400+00	5.30890418-01	2.95761540-02
1.0000000000	1.57999188+01	1.61251700+00		1,85681418-02
1.50000008+62		2,15957436+00	8.92801588-01	1,65783720-02
2.00000000002		7,92544876+00		1.68433078-02
2.50000000+02		3,91014014+00		
3,00000000+02		5,1136466#+00		
3.5000000000000000000000000000000000000		6.5359654#+00	2.70199978+00	2,15032608-02
4.0000006+02		8.1770930#+00		
4.500000004	1.56000618+01	1,00370266+01		2,56834086-02
5.00000008+02		1.2115759#+01		2,79027518-02

W1 5-6ft.; fdc 0.6 metho/m; MC 16.04; DD 1.49; SG 2.72

FPERIFMEY	helative Piélectric	EFFECTIVE CONDUCTIVITY	ATTENUATION	7088
	トスターのそこじ	(X/SDHAM)	(H/RQ	TANGENT
5.00000000401	1.30427648+01	8.11217460-01	3.58611248-01	2,13624636-02
8+62	1.36426448+01	1,09491518+00	4.84041358-01	816-0
1.50000006+02	1.30426358+01	1,56773289+00	.93066978-U	.37616000-
36+02	1.36426488+01	2,22967430+00	9.85695918-01	1.46790918-02
20+00	1,30426718+01	3,08073820+00	1.36192568+0	1.62256398-02
08+C2	1,36427028+01	4		1.80866958-02
98+C2	1.30427398+01		~	2.01274506-02
06+62	1,36427838+01		~	
08+C2	1.30428348+01		м	2.45083750-02
\$0+80100000°C	1,36428908+01	1.0172795#+01	4	
	m 6-7ft., o'de 0.3	41 6-7ft. J T de 0.3 mmho/m; MC 13.9%; D. 1.54; SG 2.66	D. 3.54; 86 2.66	
	RELATIVE	EFFECTIVE	•	
	PIELLCTRIC	CONDUCTIVITY	ATTENUATION	1.055
	CUNSTANT	(エ/SOHエエ)	(エ/ご)	TANGENT
5.00000000+01	1.23496506+01	4.46780254-01	2.07596508-01	
•	* * * * * * * * * * * * * * * * * * * *		1	

Reproduced from best available copy.

1,0000000000

1.0042277e=02 1.0632112e=02 1.2108176e=02 1.394646e=02 1.8055456e=02 2.0227699e=02 2.2442084e=02 2.442084e=02

3.26796408-01 5.09457048-01 7.73577858-01

> 1.09642746+00 1.66485548+00 2.39569448+00 3.28893718+00 4.34458038+00 5.552078+00 6.94305398+00

6,90397288601

1,23496118401 1,23496188401 1,23496378401 1,23496648401 2,5845807m+00 3,2259314m+00 3,9427066m+00

1.23497384+01 1.23497858+01 1.23498388+01 1.23498978+01

.23496986+01

3.00000000+62

3.50000000+02 4.00000000+02 4.50000000+02 5.00000000+02

Water Contraction of the Contrac

1.11315568+00 1.52818588+00 2.01866308+00

W1 7-8ft.; ddc 0.9 mmho/m; MC 16.3%; DD 1.67; SG 2.65

	AN TALLES) 1 3 1 1		
FREGIFNCY	DIELECIPIC	ONO VI	ATTENUATTON	L055
	CUNCTANT	HAST)		-
5.000000000	1.61092856+01	1.166	-	2.60153999-0
1.00000000+02	1.61091136+01	1.509	-	1.68359458-0
1.5/000/08+02	1.61390948+01	2.0819		1.54772878-0
2.0000000000	1.61091028+01	2.882		,
2°216001000+02	1.61091236+01	3,9127		1.74524378-0
3.05000008+02	1.61091518+01	5,1714		1,92224036-0
3.50000006+02	1.61091868+01	4.659	• •	2,12156010-0
4.000000004	1.61092268+01	B.3754		2,33484270-0
4.50000004+02	1.61092758+01	1.032	-	2.55743200-0
5.00000cge+62	1.61393298+01	1.2491	5.08284748+00	2,78653400-0
	W1 8-9ft.; & de 0.4 mmho/m; MC 11.0%;	mmho/m; MC 11.0%;	DD 1.60; SG 2.61	
	HEI AT EVE	VIIV		
FREGIFNCY	FILLECTRIC	CONDUCTIVITY	ATTENUATION	L055
(MF7)	_	35/1		TANGENT
5.0000000000	1.03868820+01	•		1.97028578*
1.0000000000		.5518918		1,30606129-
1.500000000+02		.0644283	-	1.22725108-
2.000000000+c2		.4973593		1,29480368-
2.50000008+02		.0539810		1,42089910
3.00000000		.7342913		1.57626400-
3.500000000		3,53428718+00	1.79265899+00	1.74835140-02
4.0000009462		.4659649	-	1.93088768-
4 • 5 C n n n n n n n + C n		.5173206		2,12038680-
2.000000000		6973496		2.31475700-

Reproduced from best available copy.

W1 9-10ft.; o'de 0.4 mmbo/m; MC 10.6%; ND 1.60; SG 2.64

LOSS TANGENT	1.34001440102	1,30249820-02	1.57107918-02	1.91616788*02	2.1014566F02 2.29183936-02
ATTENUATION DB/M)	3.85519818=01		1.45598228+00		2.72057170+00 3.29669080+00
CFFECTIVE CONDUCTIVITY (NRHOS/P)	7.47247896=01	1,04116869+00	1.98170170+00 2.62831080+00	3.39247800+0n 4.27419970+0C	5.27,34720@+00 6.3902900@+00
HELATIVE DIELECTRIC CONSTANT	1.0017270#+01	1.00170730+01	1.00171088+01 1.00171428+01	1.00171830+01 1.00172318401	1.00172878+01 1.00173498+01
	5.0000000000000 1.0000000000000	1.500000000+02 2.000000000+02	2.5C000c0m+u2 3.00005c0m+u2	3.5rr00rup+u2 4.00000uu#+u2	4.500000000+02 5.0000000000+02

W2 0-114.; O'de 0.1 mmho/m; MC 6.4%; DD 1.42; SG 2.63

1055		-	9432956-	4743546-	7121346"	8,67492396-03	905798#-	0621758-	4228410-	1,38391390-02	2	67717280-0
ATTAIN TTA		CH/HO	1.21147818-01	1.73750350-01	2.61415230-01	3.84143548-01	5.41933638-01	7.34783198-01	9.02689198-01	1.22564830+00	1.52365640+00	.8567090
EFFECTIVE				2,59174128	3.89939176		A.08379758	1.09605209+	1.4360226#+	1.8282886#+	2.2728	0+9866969
KELATIVE	2	CONSTANT	5.93274378+00	1.0506714B+00	5.03767198+00	いっていますのでものできることが、	00-31-75635-75	5.0377450 5.0377450 5.0377450	00+89988668 5-94278668+00	001000000000000000000000000000000000000	5.03288548+00	5.93294428+
	という さいしん		10+000000000	C3+8030000000	00+00000000000000000000000000000000000	20+00000000000000000000000000000000000	201200000000000000000000000000000000000	COTOCOCOCO R		20+20000000°8	20 - VC 0000000 V	20+e00000000°S

W2 1-2ft.; O'de 0.1 mmho/m; MC 6.3%; DD 1.59; SG 2.62

	LOSS	TANGENT	9.68127/10-03	7.23805366*03	7.48905030-03	8.41360530-03	9.60755576-03	1.09361710-02	1.23417030-02	1,37952729-02	1.52804299-02	1.67887400-02	•
	ATTENUATION	OB/80	1.13380678-01	1.69534778-01	2.63120608-01	3.94138428-01	5.62586508-01		1.01175298+00		1.61062		
たとうだらしていた	CHNDUCTIVITY	(A/SDHAW)	1.78915040-01	2.67523888-01	4,1520165#-01	6.2194850#-01	8.87762910-01	1,21264280+00	1,5965856#400	2.03958824+00	2.54164700+00	3,1027580/1+00	
KLLA I IVE	PIELFCIRIC	CONSTANT					0.63942538+00	00+86656669*0	0.63950148+00	6.6395497#+00	6.63960456+00	0.6396658#+00	•
	FREDLFNCY	(MFZ)	900	1.00000000+02	1.50000000000000	2.06000008+02	2.5c000c0F+02	3,0000000000	3.500000008+02			5.00000000005	

W2 2-3ft.; of dc 0.1 mmbo/m; NC 7.0%; DD 1.63; SG 2.63

	LOSS	TANGENT	8.70871576"03	6,91254760-03	7.45072828-03	8.57248526-03	9.92764430-03	1.13994736-02	1.29379350-02	1.45180090-02	1.61257890-02	1.77529260-02
	ATTENUATION	02/40	1.07162730-01	1.70121188-01	2.75048980-01	4.21945546-01	6.10808928-01	8.41636468-01	1.11442488+00	1.42917010+00	1.78586798+00	2.18451300+00
EFFECTIVE	CONDUCTIVITY	(メ/のロエエエ)	1.7767768#-01	2,8206227#"01	4.56034154-01	6.99592818-01	1.01273660+00	1.3954633#+00	1.8477702#+00	2,36965400+00	2.9611109@+00	3,62213690+00
KELATIVE	DIELECTRIC	CONCIANT	7.32985148+00	7.32981948+00	7.32982828+00	7.32984870+00	7.32987738+00	7.32991306+00	7.3299557#+00	7,33000518+00	7.33006128+00	7.33012408+00
	FREOLFNCY	(MHZ)	900	1.0000000001	1.50000000000000	2.000000002	2.50000000402	3.00000000000	3.500000000462	4.00000008+02	4.50000008+02	5.0000008462

W2 3-4rt.; O'de 0.3 mmho/m; MC 8.64; DD 1.51; SG 2.70

LOSS TANGENT 1.92317050-02	1899788- 5196348- 3922758-	00000	LOSS TANGENT 3.81917648-02
ATTENUATION DB/M) 2.53181346-01		1.13590928+00 1.46375398+00 1.84202388+00 2.27071408+00 2.74981848+00	ATTENUATION DB/M) 7.26021050-01
CONDUCTIVE CONDUCTIVITY CHMHDS/M)	5.8336564001 8.07064080=01 1.12023772+00 1.52288566+00	2.0150057#+00 2.5965953@+00 3.267650@@+00 4.0281684@+00 4.0781435@+00	CONDUCTIVE CHANDS/N 1 ,8602799#+00
RELATIVE DIELECTAIC CONSTANT 8,39026570+00	8.39006988+00 8.39004858+00 8.39005878+00 8.39005278+00	8.34011648+00 2.01500578+00 1.13590928+00 8.39015808+00 2.59659538+00 1.46375398+00 8.39020718+00 3.26765088+00 1.84202388+00 8.39026338+00 4.02816848+00 2.27071408+00 8.39032658+00 4.0281848+00 2.74981848+00 W2 4-5ft; Jac 1.5 mmbo/m; NC 18.2%; DD 1.62; SG 2.65	RELATIVE PIELECTRIC CONSTANT 1.74994740+01
FREG(FNCY (MHZ) 5.0000000+01	1.000000000000000000000000000000000000	3.00000000+02 3.500000000+02 4.000000000+02 4.5000000000+02 5.000000000+02	FREBLIFNCY CMPZ3 5.0000000+01

2.976215576 1.976215576 1.94351200 2.02943376 2.17456266 2.35355266 2.3535566 2.7679666 2.95377366 2.95208996 2.95208996

1.92919463+00 .2.98056956±00 3.13217580+00

4.9424616@+U0 6.3550977@+DO 8.02456970+00 9.95087448+00 1,21340089+01 1.45739668901

> 1.74991200+01 1.74991592+01

1.74990898+01

.74992030+01 1.74992548+01

3.8840054#+00 4.7360482#+00 5.68829310+00

1.12716388+00

2.24558680+60 2.88770620+00 3.78666390+00

1.74991120+01 1.74990568+01 10-415066421 .74990658+01

1.50000000+02 1.0000000001

2.50000000+02 3.00000000 3.50000000+02 4.00000000402 4.50000000+02 5.00000000e+u2

8.76507344-01

W2 5-6ft.; G'de 0.1 mmbo/m; MC 16.4%; DD 1.82; SG 2.64

LOSS	TANGENT	4.89226080-03	6,34622970-03	8.56425240-03	1.09732778-02	1.34586888-02	1.59822780-02	1.85276700-02	2.10866729-02	2,36547319-02	2.62291140-02
ATTENUATION	UB/M)	9.4512802e-02	2.45203060-01	4.96351348-01	8.47954316-01			2.50543968+00		4.11258539+00	5.06677558+00
EFFECTIVE CONDUCTIVITY	C M X D H X M X	2.46017110-01	6.3826589#*01	1.29201300+00	2.20725720+00	3,38399670+00	4.82222930+00	A.5219522#+U0	8.4831620#+00	1.07058559+01	1,3190027#+01
RELATIVE Dielectric	CONSTANT	1.8664208+01	1.806642/8+01	1.80664438+01	1.8664598+01	1.80664838+01	1.80665138+01	1.80665488+01	1.80665888+01	1.80666348+01	1.80666858+01
FREQUENCY	(MF7)	5.000000000000	1.0000000001	1.50000004+02	2.060000098+62	2.50000000402	3:000000000	3.550000008+02	4.000000004	4.500000000402	5.00000000000

W2 6-7ft.; Gde 1.5 mmho/m; MC 17.1\$; DD 1.80; 8G 2.62

	KELATIVE	EFFECTIVE		
f real ency	PIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(エエノ)	このトシーをとし	(M/SOHMW)	DH/H)	TANGENT
5.000000008+01	1.80821118+01	1.8578684#+00	7.01770748-01	3.57277280-02
1.00000009402	1.80818048401	2.2680635#+00		2.18083494-02
1.500000000402	1.86817598+01	2,95167510+00	1.11507178+00	1,89210800-02
2.00000000002	1.86817588+01	3,9087235#+00		1.87920270-02
5000000F+C2			1.94146098+00	1.97662680-02
000000000+02	1.80817968+01		2,50958276+00	2,12921456-02
Sc000100+02			3.18098118+00	2,31332306-02
4.00000000402			3.95564768+00	2,51713050-02
4.500000000402	1.80819098+01	1,27954880+01		2.73406920-02
5,00000000+62	1.86819588+01	1,53931240+01		2,96019818-02

W2 7-8ft.; Gde 1.4 mmbo/m; MC 18.84; DD 1.76; SG 2.66

	3.1035660F-02 1.9578324F-02	75635699-	79095538-		29944416	195234## 508414@#	
ENUATION B/m)	6.33334656*01 7.00110048*01	075324	462007	2.56677510+00	284846	4.1133650#+00 5.0523189#+00	1016959A+0
EFFECTIVE CONDUCTIVITY CONDUCTIVITY	1.74181248+00	2,95712398+00	02050240+	5.38769958+00 7.05871338+00	0335414#+	1.13121816+01 1.38086278+01	67A0877#+U
:	2.01630768+01			2.01628708+01	2.01629268+01	2.01629628+01	2.01630526+01
FREQUENCY CMEZL	5.00000000+01	1.50000000+02	2.00000000002	2.500000000+02	3.5000000000000000000000000000000000000	4.00000009+02	5 + 00000000 + 02

W2 8-9ft.; o'de 1.2 mmho/m; MC 17.3%; DD 1.72; SG 2.67

2.4478911@-02 2.6715295@-02 2.9029127@-02	3.75714189+00 4.61288188+00 5.56925939+00	1.1926443@+01 1.4399376#+01	1.78206598+01 1.78206598+01 1.78207048+01 1.78207558+01	4.0000000#+02 4.50000000#+02 5.00000000#+02
	3.40205030+00			3.5000000462
			1.78205878+01	3.000000008+02
1.8699441				2.50000000+02
				2.000000000462
				1.500000000+02
1,91964996-02	7.36612296-01	1,90439568+00		1.00000000+02
3.05201966-02		1.51390230+00	1./820789#+01	5.000000000+01
TANGENT	CH/PO	CE/SOHEE)	CUNSTANT	(MFZ)
LOSS	ATIENUATION	CONDUCTIVITY	DIELECTRIC	FREGLENCY
		EFFECTIVE	RELATIVE	

W2 9-10ft.; ofde 1.0 mmho/m; MC 16.8%; DD 1.71; SG 2.62

	N LOSS	TANGENT	10					8+00 1.95626678-02				2,82935430
	ATTENUATION	UB/M)	5.05418679-	6.51647888-01	8.95312568-01							5,3294393
EFFECTIVE	CONDUCTIVITY	CH/SDHHA)	1.28297700+00	1,65407638+00	2.27255476+00	3.13842018+00	4.25167188+00	5.61230789+00	7,22032544+00	9,0757212#+00	1.1178491#+01	1.35286324+01
RELATIVE	DIELECTRIC	NAT SALE	1.71783768+01	1.71782028+01	1.71781828+01	1.71781909+01	1.71782098+01	1.71782378+01	1.71782716+01	1.71783118+01	1.71783578+01	1.71784098+01
	FREDIENCY	(817)	5 OCOCOUR 5	1.00000000402	4 - 500000000000000000000000000000000000	60+90100000000	0.1400000000000000000000000000000000000	3 - 0000000 X 42	4 - FOOOD COB+C	00+800000000 4	60+000000000000000000000000000000000000	00-100000000 to

W3 0-1ft.; O'de 0.3 mmbo/m; NC 7.6%; DD 1.62; SG 2.62

	HEL ATIVE	EFFECTIVE		
FREDIENCY	DIELECTRIC	CONDUCTIVITY	ATTENUATION	LOSS
(2007)	ENAFORCE	CH/SOLEN)	08/80	TANGENT
5.056006000+6.1	7.74646386+00	4.56845229=01	2.68012798-01	2,11876119-02
00+880000000		5.71971030-01	3.35570198-01	
1.5000000001		7.63A15768-01	4.48126900-01	
00+80500000°0		1.0323925#+00	6.05699090-01	
0 - 20000000000000000000000000000000000		1.3777014#+00	8.08286828-01	
3.000000000	7.7461944@+Du	1.79974046+00	1.05558770+00	
00+80100001016 8-4500000000		2,29850690+00	1.34849858+00	1.52290740-02
A - 000000000		2,87399760+00		
4.5000008+02	7,74633856+00	3,5262088#+00		
5.00000000000		4,25513610+00	2.49634668+00	1.97346700-02

W3 1-2ft.; o'de 0.2 mmhbo/m; MC 9.5%; DD 1.69; SG 2.63

	RELATIVE	EFFECTIVE		
FREDIFICA	DIELECTRIC	CONDUCTIVITY	ATTENCATION	LOSS
	LINKTANDO	CM/SUMMEN	DB/H)	TANGENT
5.00000000		3,1399334#*01	1.64608228-01	1,16275600-02
20+000000000		4.77666018-01	2.5041458##01	8,84437258-03
1.55000000+02		7.50450188-01	3.93420108-01	9.26340326-03
00-00-00-00-00-00-00-00-00-00-00-00-00-		1,13234586+00	5.93624778-01	1.04830628-02
7.5000000000000000000000000000000000000		1.62335110+00		1.20229286-02
3-0000000E		2,223463600		1,37228718-02
3.5000000000000000000000000000000000000			1.53740478+00	1.55142588-02
4 - 00000000 4		3.75099820+00	1,9663729@+00	1.73627680-02
4.50000000400			2.45251998+00	1.92493286-02
5.00000000000			2,99583938+00	2.11624946-02

W3 2-3ft.; O'de 0.3 mmbo/m; MC 6.24; DD 1.70; SG 2.64

	LOSS	TANGENT	1,86581028-02	1.21447198-02	1.12245430-02	1.17027960-02	1.27404100-02	1.405,6768-02	1.55347148-02	1.71115780-02	0	2.04448720-02
	ATTENUATION	UB/H)	2.49279248-01	3.24520550-01		6.25424308-01		1.12690688+00				2.73149828+00
Errell 1 VC	CONDUCTIVITY	CELEDRATO	4,48780386-01							3,29263670+00		
KELAIIVE	DIELECTRIC	CONSTANT	8.64137410+00	8.64118358+00						8,64132168+00	8.64137758+00	8-64144059+00
	FREGIFNCY		5 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000000	1.500000000+00	27-000000002	2.50000000+02	3.0000000000	3.50000000+02	4.000000004	4.5000000000000	5.00000u08+02

W3 3-4ft.; ode 0.3 mmho/m; MC 9.84; pp 1.67; SG 2.38

1055	TANGER	00 40 00 00 00 00 00 00 00 00 00 00 00 0	30 14 A T 10 C 10 C 1	1.08633386-02	1,05590810-02	1,1401948#-02	1 07034546102	00000000000000000000000000000000000000	20 - 10C / 1C / 1	1.58969148-02	1.76409556-02	1.94395568-02	0.10763198-02	
ATTENERATION						10 and 70 com and 1		10-1124011-6	1.2338843#+00	. 1.60761569+00	0.4884488400		001401601666	3001 300 3111
EFFECTIVE	CHECCITATIO	ヘエノSOHエWン	4.43106934-01	4 1101332W=01		-0-2-20t00A-C	1.28261436+00	1.7863099#+00	7.4019330#+UC	2 420ABACAB4C2	00 + 00 00 00 00 00 00 00 00 00 00 00 00	20 + 20 A T () () ()	+36565626	5,96363328400
RELATIVE	•	トスターのとコロ	1.0103635#+01		10101010101									1.01038038+01
	THE DI FINCY			1 3 + 87 0000000000000000000000000000000000	1,00000008+02	1.5<0000000015	C3+80000000000	0.5000 COC		シントサフランバンンジ・カ	3.50000CD8+C2	4.000000004	4.50000008+02	\$2+800000000 FS
													مبعير	7

W3 4-5ft.; Gdc 0.2 mmho/m; MC 8.8%; DD 1.67; SG 2.55

LOSS TANGENT 1.24367950-02 9.26514770-0 1.32714370-0 1.494064420 1.66723860-0 1.8457870-0
ATTENUATION DG/M) 1.70163040=01 2.48968880=01 5.64173680=01 6.00571208=01 1.08949510+00 1.43094158+00 1.82490609+00 2.27138348+00 2.27138348+00
EFFECTIVE CONDUCTIVITY CMMHOS/P) 3.13711256-01 4.58991328-01 7.01119828-01 1.47592228+00 1.47592228+00 2.63810428+00 3.364454900 3.16765614+00
RELATIVE DIELECTRIC CUNSTANT 9.0622916#+00 9.0622265#+00 9.062292#+00 9.0622755#+00 9.0623110#+00 9.0623592#+00
F F E & L F N C Y (N L Z) 5. 000000000000000000000000000000000000

W3 5-6ft.; o'de 0.9 mmbo/m; MC 18.2%; DD 1.72; SG 2.&l

LOSS 1.509956001 1.509956001 1.553042101 1.72126860102 2.14153510102 2.61146078102	LOSS TANGENT 2.88382868.02 1.70129068.02 1.76159114.02 2.09938408.02 2.31481958.02 2.78765820.02
ATTENUATION DB/M) 4.39263958=01 5.97067789=01 8.60046349=01 1.22870863+00 2.28006489+00 2.96374659+00 3.75258569+00 5.68567178+00	DD 1.67; SG 2.61 ATTENUATION DB/M) 6.10704508-01 7.47055218-01 1.08090908+00 2.02119818+00 2.66762508+00 3.43156298+00 4.31300148+00 5.31192878+00
EFFECTIVE CONDUCTIVITY (MMHUS/M) 1.1702712#+00 1.5906295#+00 2.2912168#+00 3.2720361#+00 4.5330861#+00 6.0743648#+00 7.4958694#+00 1.2379543#+01	EFFECTIVE CONDUCTIVITY (MMHOS/M) 1.7429076+00 2.2460557+00 3.0846171*+00 4.2585989*+00 5.7680007*+00 7.6128204*+00 7.6128204*+01 1.2308704*+01
RELATIVE CUNSTANT 1.89231499401 1.89230518401 1.89230546401 1.89231038401 1.89231758401 1.89232198401	RELATIVE DIELECTRIC CUNSTANT 2.1/130758+01 2.1/129228+01 2.1/129286+01 2.1/129286+01 2.1/129286+01 2.1/129286+01 2.1/129386+01 2.1/139178+01 2.1/139386+01 2.1/139526+01 2.1/139526+01
F PE OLF NCY (HHZ) 5.0000008+0% 1.0000008+02 2.00000008+02 3.00000008+02 3.50000008+02 4.50000008+02 5.00000008+02	FREALFNCY (WHZ) 5.00000000001 1.00000000000000000000000

W3 7-8ft.; o'de 1.9 mmho/m; MC 23.8%; DD 1.60; SG 2.60

LOSS	TANGENT	3.51209678-02	2,18286420-02	1.92945146-02	1.94500340-02	2.06814148-02	2.24507176-02	2.45273930-02	2.67961684-02	2.91929970-02	3.16794524-02
ATTENUATION	UB/W)	7.74818238-01			1.71655579+00				4.72958118+00	5.796612224+00	6.98912664+00
EFFECTIVE CONNUCTIVITY	CANDHAND	2.3038721#+00	2.86381310+00	3.7970168#+00	5.1034964#+00	6.78325218+00	8,8362822#+00	1.1262584#+01	1.40621568+01	1.72349938+01	2.07810938+01
RELATIVE DJELECTRIC	CUNSTANT	2.35672188+01	2.35670046+01	2.3566975@+01		2.35669908+01	2.35670128+01	2,32670398+01	2.33670728+01	2.35671108+01	2.35671538+01
FREDIFACY	(NF 7)	5.0000008+01	1.06.0000.06+02	1・5000000000	2,000000000	7.50000008+02	3.00000000000	3.50000008+02	4.00000004	4.50000008+02	5.0000000005

ETAl 0-1ft.; & & 0.6 mmho/m; MC 11.3%; DD 1.50; SG 2.63

	KELATIVE	SFFECTIVE		
FKERIFICY	DIELFCTRIC	CUNDUCTIVITY	ATTENUATION	L055
(MF7)	CUNSTANT	(オ/のロエネエ)	(単/四)	TANGENT
5.0000000000	9.85418078+00	R.26576648-01	4.29970300-03	3.0139160P-02
1.00000000	9.85377568+00	1.0028630#+00	5.21656568-01	1.82820690-02
1.50000000+02			6.74380009-01	1,57561750-02
2.000000000402			8.88178618-01	1.55635078-02
2.50000000000				
3.000000000				
3.550000000+02				
4.000000004		4.5257515#+00	2.3541134a+00	
4 - 500000000000000000000000000000000000		5.52387020+00		
5.0000008+02	9.85395720+00	6.6393990@+00		

ETAL 1-2ft.; of de 0.8 maho/m; MC 13.44; DD 1.63; SG 2.65

L055	TANGENT	2,96973550-02	1.83783130-02					2,03745746-02			2.62596370-02
ATTENUATION	08/80	4,62141620-01						2.31540408+00			4.26338118+00
EFFECTIVE CONDUCTIVITY	CALBONA		1.30564750+00	1.72349010+00					6,31963266+00	7.74022978+00	9,32794029+00
RELATIVE		1,2/619538+01		1,2/61603#+01	1.2/616058+01	1.2/61623#+01	1,2/616528+01	1.2/516908+01		1.27617868+01	
E KF OHENC V		5.000000es	20+00000000 · 5	1.50000000	20+800000000000000000000000000000000000	2 - 2 - C - C - C - C - C - C - C - C -	3.000000000+62	3-50000000+02	4 COCOCCUB+00	4.50000098+02	5.00000000+02

ETA1 2-3ft.; ddc 0.4 mmho/m; MC 9.8%; DD 1.78; SG 2.62

	LUSS	TANGENT	1,93462218002	1.27844250-02	1.19796476-02	1,26142080-02	1,38244916-02	1.53226130-02			N	2.24660366-02
	ATTENUATION	08/W)	2.46023278-01	3.7					1.75783016+00	. 2.21773348+00	2.73593958+00	3.32144160+00
EFFECTIVE	CONDUCTIVITY	CH/SQHAW)	5.69821088-01	7.57090194-01	1.07452346+00	1.48612600+00	2.0358971#+00	2.70783440+00	3.50193496+60	4.41819530+00	•	6.6171790@+00
RELATIVE	NIELECTRIC	CUNSTANT	1,05817818+01	1,05816210+01	1.05816068+01	1.05816188+01	1.05816428+01	1.05816758+01	1.05817168+01	1.05817648+01	1.05818198+01	1.0581880@±01
	و	CMF/2)	5.00000000+01	1.000000000+02	1.50000000+02	2.000000000	2.50000608+02	3,00000000+02	3.500000000462	4.00000000402	4.50000000402	5.000000000+02

ETAl 3-4ft.; ofde 0.4 mmhc/m; MC 10.5%; DD 1.72; SG 2.61

	L055	TANGENT	1.88770330-02				1.39812928-02					
	ATTENUATION	CW/RC	0900-01	3.77733618-01								3,43022179+00
EFFECTIVE	CONDUCTIVITY	CELEDSIE	5.68960754-01	7,61222078-01	1,081644400	1.5302320@+00	2.10698398+00		6.	4	w	6.91310470+00
HELATIVE	PIELECTRIC	CONVIANT	1.08284178+01				•			1.03284236+01	1,00284788+01	1.06285400+01
	FREGIFINGY	· (H-7)	5.000000000	1.00000006+02	1.500000000+62	2.00000cum+02	2.5c000cue+c2	3.000000000	3.500000ge+U2	4.000000004	4.50000006+02	5.0000cup+62

ETAl 4-5ft.; ode 0.4 mmho/m; MC 9.3%; DD 1.59; SG 2.64

	L055	TANGENT	2,33981226-02	1.46621900-02	1,30663579-02	1,32557980-02	1.41593470-02	1.54199270-02	1.68844950-02	1.84765240-02	2.01534946-02	2.1889A89A-02
	ALIENDALIUN	CH/HD	3.16950A2A-01	3.97238000-01	5.31005690-01	7.18272298-01	9.59037668-01	1.25329920+00	1.60105318+00	2.0022946#+00	2.45701868+60	2.96521868+00
	CUNDOCITATIA	(メ/SDHAID)	5.7856679@=01	7,25082380-01	9.69242438-01	1,31106046+00	1.7505364@+00	2,2876683#+00	2,92245334+00	3.65488818+00	A.4849687#+UC	5.41269046+00
RELATIVE	ווברבנואונ	CONSTANT	A.86359816+00	8.88331208+00						8.8834208#+00	3.35347658+00	8.88353936+00
	1 'N 1 10 1 1 4 1	(MFZ)	5.0000000000000	1.0(0000000+62	1.500000000+02			3,00000000000	3.5000000000000	4.0000000040	4.50000008+07	5.00000000+02

ETAL 5-6ft.; o'de 0.4 mmbo/m; MC 7.5%; DD 1.65; SG 2.60

	ross	TANGENT	2.72731400-02	1.62911620-02	1.38083798-02	1,34510438-02		1.48618950-02				2.02336636-02
	ATTENUATION	DB/M)	3.47197080-01	4.14706288-01	5.27373888-01	6.44968878-01	8.87584168-01					2.57586878+00
EFFECTIVE	CONDUCTIVITY	CELEDSTER	5.95647104-01	7,11553794-01	9.0465964#-01					3.0286617#+00	3.68514368+00	4.41884400+00
RELATIVE	DIELECTRIC	CONSTANT	7.84639748+00	7.84588748+00	7.84580778+00		7,84581178+00				7.84597928+00	7.84604102+00
	FREGIFNCY		5.00000008+01	1.000000000	1.50000000+02	2.00000000+62	2.50000098+02	3.0000000	3.5000000000	4.00000000402	4.5000008+02	5.060n0.up+62

ETA1 6-7ft.; d'de 0.3 mmho/m; MC 6.3%; DD 1.59; SG 2.61

FREDLENCY	PIELECTAIC	COMBUCTIVITY	ATTENUATION	L055
(NHZ)	LANTUNCO		UB/H)	TANGENT
5.00000000+01	6.63024798+00	4.77605148-01	3.0239632A-01	2.58014554-02
	6.64969878+00			1.52964580-02
1.50000009+02				1,28577520-02
2.000000000+02			5.83004489-01	1.24358790-02
2.50000000000		1,1865062@+00		
3.00000000			9.57034988-01	
3.500000000+02			1.20014360+00	
4.00000009	6.64971828+00		1.48064378+00	
4.50000000+02				1,70506800-02
5.00000008+02				1,83769096-02

ETA1 7-8ft.; ofde 0.2 mmho/m; MC 6.9%; DD 1.60; SG 2.66

990	5503	- VECENT		1.03704976001	1.07153298-02		7021777700747	1.04369078=02	30 9 10 10 10 10 1	1.13969746.02	000000000000000000000000000000000000000	1.2601/904-02	4 . 200511050 00		1.33/01/46-02	A ABARBARANO		- 00505050 -	>	
	ALLENCALION	CM/M2		_	_	• •	3.61555416-01	•	→ ·	4 - 80 15 6 4 0 6 10 1		9.14374368-01	0048055781.4	001000000000000000000000000000000000000	00+98909/85	000000000000000000000000000000000000000				
EFFECTIVE	CUNDUCTIVITY	(A/SURVIV	ことのコロモモノ	3.22227564-01	TOTAL ANGEOU A	1012155677°	5,89163516-01		8,22/205/										3.62724116+00	•
RELATIVE	PIEL ECTRIC	, h = 4	これにつとつこ	7.08024268+00			00+80000000000000000000000000000000000			COTORVOUS A		7.0H011778+9U		20+1/100000000	001807080N0 7	00 - U0 - 04000	7.08026238+00		7.08032446+00	
	* July 10 10 10 10 10 10 10 10 10 10 10 10 10		(21:7)	5.000000000000000000000000000000000000	10.200000000	1.0000008+02	COT 80 10000 B	00 + 20 00 00 00 00 00 00 00 00 00 00 00 00	27+81.30001070		人の * まらしこのうしな。人	C0+e00000000 E	30.250000000	30 12 12 12 12 12 12 12 12 12 12 12 12 12		ソロチをロンこののとこ。す	というない こうしゅういん		5.000000000 E	

ETAL 8-9ft.; ofde 0.1 mmho/m; MC 5.8%; DD 1.59; SG 2.63

1.035 TANGENT 1.03424660"02 7.46191598"03 7.51965608"03 8.31198788"03 9.398178888"03 1.06311428"02 1.19480488"02 1.33173518"02 1.47215478"02
ATTENUATION DB/H) 1.1776845e=01 1.6993605e=01 2.5687654e=01 3.7854075e=01 3.7854075e=01 7.2633333e=01 7.263366e=01 1.2131435e+00 1.5086900e+00 1.8389917e+00
EFFECTIVE CONDUCTIVITY (MMHDS/W) 1.80691060=01 2.60728240=01 3.94118690=01 5.80863198=01 1.11440826+00 1.46120430+00 1.86134560+00 2.31482870+00
HEL ATIVE CONSTANT CO
F M F Q I F N C Y (M I 7) 5.00000000000 1.000000000000000000000

ETAL 9-10ft.; C'de 0.1 mmho/m; MC 6.24; DD 1.58; SG 2.56

	KELATIVE	EFFECTIVE		
FREDIFICA	DIELECTRIC	0	ATTENUATION	
	LANTSCO	(エ/のロエエエ)	DB/M)	
5 - 00000000000000000000000000000000000	6.58536720+00	1.79319100-01	1.14102190-01	9,78279534-03
20+0000000° \$	6.58531058+00	2,6551323#=01	1.68949850-01	7.24263056-03
1 - 15 COOCC 1 - 1	6.58531436+00	4.09166199-01	2.00358068-01	7.44077878-0
20+8070000000000000000000000000000000000	6.58533268+00	6.10278278-01	3.88327250-01	8.32351200-03
7 - 5 C C C C C C C C C C C C C C C C C C	6.58535968+00	8.68848010-01	5.52855648-01	9.48005200-0
20-00000000000000000000000000000000000	6.58539400+00	1.18487339+00	7.53940958-01	1.07734630-02
3.50000000+62	6,58543538+60	1,5583517#+00	9.91580078-01	1,21450510-03
4 - 000000000	6.58548326+00	1.98928000+00	1.26576958+00	1,35654650-0
4.50000000402	6.58553776+00	2,4776547#+00	1.57650540+00	1,50183920"0
5.00000u0#+02	6.54559888±00	3.02347199+00	1.92378300+00	1.64940410-0