§7.4 初等因子组,广义 Jordan 标准形 作业参考答案

1. 已知 $A(\lambda)$ 在 ℚ 上的不变因子为:

$$1, \dots, 1, \lambda, \lambda(\lambda^2 - 2), \lambda(\lambda^2 - 2)^2(\lambda^2 + 1), \lambda^2(\lambda^2 - 2)^4(\lambda^2 + 1)^2(\lambda - 9).$$

写出 $A(\lambda)$ 在 \mathbb{C} 上的初等因子组.

解: $A(\lambda)$ 在 $\mathbb C$ 上的初等因子组为: λ , λ , λ , λ^2 , $\lambda - \sqrt{2}$, $(\lambda - \sqrt{2})^2$, $(\lambda - \sqrt{2})^4$, $\lambda + \sqrt{2}$, $(\lambda + \sqrt{2})^2$, $(\lambda + \sqrt{2})^4$, $\lambda - i$, $(\lambda - i)^2$, $\lambda + i$, $(\lambda + i)^2$, $\lambda - 9$.

2. 已知 5 阶 λ - 矩阵 $A(\lambda)$ 的秩为 4, 初等因子组为:

$$\lambda, \lambda^2, \lambda^2, \lambda + 1, \lambda - 1, \lambda - 1, (\lambda + 1)^3$$
.

求 $A(\lambda)$ 的行列式因子和不变因子.

解: $A(\lambda)$ 的不变因子为: $1, \lambda, \lambda^2(\lambda - 1)(\lambda + 1), \lambda^2(\lambda - 1)(\lambda + 1)^3$; $A(\lambda)$ 的行列式因子为: $1, \lambda, \lambda^3(\lambda - 1)(\lambda + 1), \lambda^5(\lambda - 1)^2(\lambda + 1)^4$.

3. 求下列矩阵的初等因子组.

$$\left(\begin{array}{ccc} \lambda & 1 \\ & \lambda & 1 \\ & & \lambda \end{array}\right), \quad \left(\begin{array}{ccc} \lambda-2 & 1 & -1 \\ -2 & \lambda-2 & 1 \\ -1 & -2 & \lambda+1 \end{array}\right), \quad \left(\begin{array}{ccc} \lambda^2+\lambda & & \\ & \lambda & \\ & & (\lambda+1)^2 \end{array}\right).$$

解: (1) 因为 $A(\lambda)$ 有一个二阶子式为非零常数,因此 $D_2(\lambda)=1$. 所以所求行列式因子为: $1,1,\lambda^3,$ 进而 $A(\lambda)$ 的不变因子为: $1,1,\lambda^3,A(\lambda)$ 的初等因子组为: λ^3 .

(2) 因为 $A(\lambda)$ 有一个二阶子式 $\begin{vmatrix} 1 & -1 \\ \lambda - 2 & 1 \end{vmatrix} = \lambda - 1$, 又有个二阶子式 $\begin{vmatrix} -2 & \lambda - 2 \\ -1 & -2 \end{vmatrix} = \lambda - 2$, 因此 $D_2(\lambda) = 1$, 从而行列式因子为: $1, 1, (\lambda - 1)^3$, 从而 $A(\lambda)$ 的不变因子为: $1, 1, (\lambda - 1)^3$, 初等因子组为: $(\lambda - 1)^3$.

(3) 注意到矩阵是对角矩阵,因此可直接对对角元做因式分解,即得矩阵的初等因子组为: $\lambda,\lambda,\lambda+1(\lambda+1)^2$.

 $4. \ \ \text{设} \ \ A(\lambda) = \left(\begin{array}{cc} \lambda+1 \\ & \lambda-1 \end{array}\right), \ B(\lambda) = \left(\begin{array}{cc} \lambda^2-1 \\ & 1 \end{array}\right), \ \ \text{求} \ A(\lambda) \ \ \text{和} \ B(\lambda) \ \ \text{的初等因子组,} \ \ \text{问} \ A(\lambda) \ \ \text{是否相抵于} \ B(\lambda).$

解: $A(\lambda)$, $B(\lambda)$ 为对角阵, 直接计算即得初等因子组均为: $\lambda-1,\lambda+1$. 故 $A(\lambda)$ 和 $B(\lambda)$ 相抵.

5. 写出例 2 中矩阵 A 分别在 Q 和 C 上的 Frobenius 标准型和广义 Jordan 标准型.

解。由于最大公因式与数域扩大无关, k 行列式因子是所有 k 阶子式的最大公因式,所以行列式因子与数域扩大无关,进而不变因子与数域扩大无关。但 Frobenius 标准形由不变因子唯一确定,因此 A 在 $\mathbb Q$ 上的 Frobenius 标准形和在 $\mathbb C$ 上的 Frobenius 标准形一样.

A 的不变因子为: $1,1,\cdots,1,(\lambda-1)^2,(\lambda-1)^2(\lambda+1),(\lambda-1)^2(\lambda+1)(\lambda^2+1)^2$, 所以 A 在 $\mathbb Q$ 上 和在 $\mathbb C$ 上的的 Frobenius 标准形均为:

A 在 $\mathbb Q$ 上的初等因子组为: $(\lambda-1)^2, (\lambda-1)^2, (\lambda-1)^2, \lambda+1, \lambda+1, (\lambda^2+1)^2$, 所以 A 在 $\mathbb Q$ 上的广义 Jordan 标准形为:

A 在 $\mathbb C$ 上的初等因子组为: $(\lambda-1)^2, (\lambda-1)^2, (\lambda-1)^2, \lambda+1, \lambda+1, (\lambda+i)^2, (\lambda-i)^2$, 所以 A 的 Jordan 标准形为:

6. 写出例 4 中矩阵 A 在 $\mathbb C$ 上的 Frobenius 标准形和广义 Jordan 标准形.

解. A 在 $\mathbb C$ 上的不变因子为: $1, 1, \cdots, 1$, $(\lambda-2)^2(\lambda-\sqrt{2}i)(\lambda+\sqrt{2}i)$, $(\lambda-2)^2(\lambda-\sqrt{2}i)^2(\lambda+\sqrt{2}i)^2$, 所以 A 在 $\mathbb C$ 上的 Frobenius 标准形为:

$$\begin{pmatrix} 0 & -8 & & & & \\ 1 & 0 & 8 & & & & \\ & 1 & 0 & -6 & & & & \\ & 1 & 4 & & & & & \\ & & 0 & & -16 & & \\ & & 1 & 0 & & -16 & \\ & & 1 & 0 & & -20 & \\ & & & 1 & 0 & & 16 & \\ & & & 1 & 0 & -8 & \\ & & & & 1 & 4 & \\ \end{pmatrix}.$$

A 在 $\mathbb C$ 上的初等因子组为: $(\lambda-2)^2$, $(\lambda-2)^2$, $\lambda-\sqrt{2}i$, $\lambda+\sqrt{2}i$, $(\lambda+\sqrt{2}i)^2$, $(\lambda-\sqrt{2}i)^2$, 所以 A 在 $\mathbb C$ 上的广义 Jordan 标准形为:

(李小凤解答)