This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1. A compound of the formula I:

$$R_2$$
 R_3
 R_4
 R_5

5

20

25

(1)

wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;

A=-COOR, -CONR'R", -CN, -COR7 wherein R, R', R" and R7 are defined below;

X = H, OH, or C_1 - C_{10} linear or branched alkyl or alkenyl groups, optionally substituted with COOR, carbonyl, or halo;

R = H or C_1 - C_{20} linear or branched alkyl or aryl or aralkyl, or a pharmaceutically acceptable counter-ion;

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 are independently H; C_1 - C_2 0 linear or branched alkyl or alkenyl groups optionally substituted; COOR where R is as defined previously; NR'R" or CONR'R", where R' and R" may be independently H or C_1 - C_2 0 linear or branched alkyl or aryl; OH; C_1 - C_2 0 alkoxy; C_1 - C_2 0 acylamino; C_1 - C_2 0 acyloxy; C_1 - C_2 0 alkoxycarbonyl; halo; NO2; SO2R'"; CZ3, where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR'", where R'" may be H or linear or branched C_1 - C_2 0 alkyl; or R_2 and R_3 together, or R_5 and R_6 together may be joined to

form methylenedioxy or ethylenedioxy groups; with the proviso that when X, R_3 , R_5 and R_4 are H; R_4 is p-hydroxy; R_1 and R_2 together are 3,5-dimethoxy; then the dotted line is not a double bond in the E-configuration.

Atty Dkt. No. 08948-012001 50037031

- A compound according to claim 1 wherein A=-COOR. 2.
- A compound of the formula II: 3.

(II)

wherein the bond represented by the dotted line may be an optional double bond, 10 the geometry across the bond may be E or Z, and the naphthyl group may be linked at

A=-COOR; -CONR'R", -CN, -COR, wherein R, R', R" and R, are defined below;

X = H, OH, or C_1 - C_{10} linear or branched alkyl or alkenyl groups, optionally substituted with COOR, carbonyl, or halo; 15

R = H or C_1 - C_{20} linear or branched alkyl or aryl or aralkyl, or a pharmaceutically acceptable counter-ion;

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 are independently H; C_1 - C_{20} linear or branched alkyl or alkenyl groups optionally substituted; COOR where R is defined previously; R; NR'R" or CONR'R", where R' and R" may be independently H or C_1 - C_{20} linear or branched alkyl 20 or aryl; OH; C_1 - C_{20} alkoxy; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; halo; NO_2 ; SO_2R''' ; CZ_3 ; where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR'", where R'" may be H or linear or branched $C_1\text{-}C_{20}$ alkyl or R_2 and R_3 together, or R_5 and R_6 together may be joined to form metheylenedioxy or ethylenedioxy groups.

5

25

- 4. A compound according to claim 1, wherein A=-COOR, X, R_3 , R_5 and R_6 are H; R_4 is p-hydroxy; R_1 R_2 together are 3,5-dimethoxy; and the dotted line is a double bond in the Z-configuration.
- 5. A compound according to claim 4, wherein R is H.
 - 6. A compound according to claim 4, wherein R is Na+.
- 7. A compound according to claim 2, wherein R_4 is p-hydroxy; R_1 and R_2 together are 3,5-dimethoxy and the dotted line represents a double bond.
 - 8. A compound according to claim 3, wherein R_1 and R_2 together are 3,5-dimethoxy and the dotted line represents a double bond.
- 9. A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound of any one of the claims 1 to 8, or mixtures thereof, in a pharmaceutically acceptable carrier.
 - 10. A composition according to claim 9 which is suitable for oral administration.
 - 11. A method for treating diabetes comprising the step of administering to a subject suffering from a diabetic condition a therapeutically effective amount of a compound according to any one of claims 1 to 8, or mixtures thereof, in a pharmaceutically acceptable carrier.
 - 12. A method according to claim 11 in which said compound is administered orally to said subject.
- 13. A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound according to any of claims 1 to 8 in a physiologically acceptable carrier, wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;

Atty Dkt. No. 08948-012001 50037031

20

25

R = H, linear or branched C_1 - C_{20} alkyl, aryl or aralkyl, or a pharmaceutically acceptable counter-ion.

- 14. A composition according to claim 13, wherein R is H or Na+ and said double bond is in the E-configuration.
 - 15. A composition according to claim 13, wherein R is H or Na+ and said double bond is in the Z-configuration.
- 16. A composition according to claim 15, wherein R is Na+.
 - 17. A composition according to claim 14, wherein R is Na+.
- 18. A composition according to claim 13, wherein said composition is suitable for oral administration.
 - 19. A method of treating diabetes comprising a step of administering to a subject suffering from a diabetic condition a therapeutically effective amount of a compound according to any of claims 1 to 8 in a physiologically acceptable carrier, wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z:
 - R=H, linear or branched $C_1\text{-}C_{20}$ alkyl or aryl, or a pharmaceutically acceptable counter-ion.
- 25 20. A method according to claim 19, wherein R is H or Na+ and said double bond is in the E-configuration.
 - 21. A method according to claim 19, wherein R is H or Na+ and said double bond is in the Z-configuration.

30

20

- 22. A method according to claim 20, wherein R is Na+.
- 23. A method according to claim 21, wherein R is Na+.