

Oct. 7, 2019

NOTE: Homework 3 is due next Thursday (Oct. 20, 2019).

- 1. Let r.v.'s X_1, \dots, X_n i.i.d. $\sim N(\theta, \theta^2)$, is \bar{X} a sufficient statistic of θ ?
- 2. Let X_1, \dots, X_m $i.i.d. \sim N(a, \sigma^2), Y_1, \dots, Y_n$ $i.i.d. \sim N(b, \sigma^2)$ and X_i 's and Y_j 's are independent. Let $\bar{X} = \sum_{i=1}^m X_i/m, \ \bar{Y} = \sum_{j=1}^n Y_j/n,$ and

$$S^{2} = \frac{1}{n+m-2} \left[\sum_{i=1}^{m} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{n} (Y_{j} - \bar{Y})^{2} \right].$$

Show that (\bar{X}, \bar{Y}, S^2) is a sufficient and complete statistic of (a, b, σ^2) .

- 3. Let r.v.'s X_1, \dots, X_n be a random sample from a gamma (α, β) population. Find a two-dimentional sufficient statistic for (α, β) ?
- 4. Let X_1, \dots, X_n be a random sample from the distribution with p.d.f.

$$f(x; \theta) = \frac{1}{2\theta} \exp\left\{-\frac{|x|}{\theta}\right\}, \quad -\infty < x < +\infty, \ \theta > 0.$$

Show that $T = \sum_{i=1}^{n} |X_i|$ is a sufficient and complete statistic of θ .

- 5. Let r.v.'s X_1, \dots, X_n i.i.d. $\sim U(\theta, 2\theta), \ \theta > 0$, show that $(X_{(1)}, X_{(n)})$ is sufficient but not complete.
- 6. Let X_1, \dots, X_n be a random sample from two parameter exponential distribution with p.d.f.

$$f(x; \lambda, \mu) = \lambda^{-1} \exp\left\{-\frac{x-\mu}{\lambda}\right\} I_{\{x>\mu\}},$$

where $0 < \lambda < +\infty$, $-\infty < \mu < +\infty$ are two unknown parameters. Show that

- (i) $(X_{(1)}, \sum_{i=1}^{n} X_{(i)})$ is sufficient for (λ, μ) ; (ii) $X_{(1)}$ is independent of $\sum_{i=1}^{n} (X_i X_{(1)})$. 7. Let X be one observation from the p.d.f.

$$\left(\frac{\theta}{2}\right)^{|X|}\left(\left(-\theta\right)^{|-|X|}$$

$$f(x;\theta) = (\frac{1}{\theta})^{|x|} (1-\theta)^{1-|x|}, \underbrace{x = -1, 0, 1}; 0 \le \theta \le 1.$$

- (i) Is X a complete sufficient statistic?
- (ii) Is |X| a complete sufficient statistic?
- (iii) Does $f(x; \theta)$ belong to the exponential class?

$$E_0(\varphi(T(x))) = 0$$

$$\Rightarrow P(X \pm 0) \cdot (1-\theta) + P(X \neq 0) \frac{\theta}{2}$$

$$\varphi(0) + \varphi(1) = 0$$