

Custom Procurement Report

Control How You Source Building Systems

Directly access suppliers and automate sourcing, procurement, and financing—all from one platform

Customer Information

Customer LF Driscoll

Name Contact Ken Rienstra

Person
Contact
Email

krienstra@lfdriscoll.com

Contact N/A

Project Information

Project HMH JSUMC Periop Expansion Name

Location 1945 New Jersey 33, Neptune City, NJ 07753

Start Date N/A

Completion 6/20/2025

Date Budget N/A

Scope 4-story building including MER Penthouse; 128,000 gsf total. Jer-

sey Shore University Medical Center perioperative expansion including operating rooms, sterile processing department, and sup-

porting medical facilities.

Project ID N/A

Project URL BuildVision Project Link
Contract
Type
BuildIngConnected Lead

Project Size

ect Size 138602 sq. ft.

Request Budget
Type
Date Invited 6/6/2025
Created 6/6/2025

Prepared By

Ben Lyddane Ben@BuildVision.io 202-365-8628

Mackenzie Hoover Mackenzie@buildvision.io 843-609-3265

Date: 2025-06-13

Project Equipment

Air Handling Units

Equipment Tag	Manufacturer	Model
AHU-R-1		
AHU-R-2		
AHU-R-3		
AHU-R-4		
AHU-R-5		

Notes

Custom hospital grade units with less than 1% leakage, double wall 4 inch insulated with thermal break, all internal components 100% aluminum or stainless steel

Heat Exchangers

Equipment Tag	Manufacturer	Model
HX-1		
HX-2		
HX-3		
HX-4		
HX-5		

Notes

Steam-to-water and plate frame heat exchangers for heating water generation and heat recovery

Pumps

Equipment Tag	Manufacturer	Model
HWP-1		
HWP-2		
HWP-3		
HWP-4		
HWP-5		

Notes

Base-mounted centrifugal and vertical inline hydronic pumps with variable speed drives

Computer Room Air Conditioners

Equipment Tag	Manufacturer	Model
CRAH-IDF		
CRAH-UPS		

Notes

Small-capacity floor-mounted units for IT rooms with 100% redundancy

Fan Coil Units

Equipment Tag	Manufacturer	Model
FCU-EMS		
FCU-MER		
FCU-Stair		
FCU-VPR		

Notes

Vertical fan coil units for various applications including stairwells and mechanical rooms

Exhaust Fans

Equipment Tag	Manufacturer	Model
EF-Air Compressor		
EF-Battery		
EF-Cart		
EF-General		
EF-Med Gas		
SF-Air Compressor		

Notes

Centrifugal HVAC fans for various exhaust applications throughout the facility

Energy Recovery Units

Equipment Tag	Manufacturer	Model
ERU-CSPD		

Notes

Run-around energy recovery systems for heat recovery from exhaust air

Suppliers

Air Handling Units

Manufacturer	Model	Representative	Compatibility Notes	BoD
Haakon	Not specified	N/A	Suitable for hospital-grade custom air handling units with double wall construction and 100% aluminum or stainless steel internal components	Yes
Haakon	Not specified	N/A	Suitable for hospital-grade custom air handling units with double wall construction and 100% aluminum or stainless steel internal components	No
Temtrol	Not specified	N/A	Compatible with hospital- grade air handling systems requiring less than 1% leak- age and multiple fan arrays	No
AdaptivAir	Not specified	N/A	Suitable for medical facility AHUs requiring low-leakage performance and multi-fan array capability.	No
Ingenia Technologies	Not specified	N/A	Engineered for healthcaregrade air handlers with sub-1% casing leakage and redundant fan array configurations.	No
ClimateCraft	Not specified	N/A	Suitable for custom hospital-grade units with energy recovery wheels and UVGI systems	No

Heat Exchangers

Manufacturer	Model	Representative	Compatibility Notes	BoD
		N/A	Includes liquid-to-liquid and steam-to-water heat	Yes
			exchangers for hot water	
			generation	

	N/A	Includes liquid-to-liquid and steam-to-water heat exchangers for hot water generation	No
Bell & Gossett	N/A	Industry standard manu- facturer for heat exchang- ers and hydronic systems	No
Armstrong	N/A	Well-known manufacturer for heat exchangers and HVAC equipment	No
Alfa Laval	N/A	Leading manufacturer for plate heat exchangers, suitable for hospital applications	No

Pumps

Manufacturer	Model	Representative	Compatibility Notes	BoD
Armstrong Fluid Technologies		N/A	Well-known manufacturer for hydronic pumping applications	Yes
Stancor	Elevator sump pump or ap- proved equal	N/A	For elevator pit drainage applications	Listed
Taco		N/A	Suitable for HVAC and process water applications, widely used in healthcare facilities	No
Bell & Gossett	Series 1510 and e- 1510	N/A	High efficiency pumps suitable for hydronic systems, compatible with BMS controls	No
Grundfos	CR and CRN Series	N/A	Stainless steel multistage pumps, suitable for domestic water and process applications	No

Computer Room Air Conditioners

Manufacturer	Model	Representative	Compatibility Notes	BoD
AboveAir		N/A	Established industry provider of computer room air conditioning equipment	Yes

AboveAir	N/A	Established industry Norwider of computer room air conditioning equipment	No
Liebert	N/A	Suitable for computer room air conditioning applications with chilled water coils, reheat coils, humidification, and filtration	No
Stulz	N/A	Precision air conditioning for data centers and IDF rooms with 100% redundancy requirements	No
ClimateWorx	N/A	Computer room air conditioning systems for critical facilities with leak detection and drip pan requirements	No

Fan Coil Units

Manufacturer	Model	Representative	Compatibility Notes	BoD
Carrier	Standard Fan Coil Units	N/A	Suitable for elevator machine rooms and mechanical rooms. Vertical arrangement recommended.	Yes
Carrier	Standard Fan Coil Units	N/A	Suitable for elevator machine rooms and mechanical rooms. Vertical arrangement recommended.	No
Trane	4-Pipe Fan Coil Units	N/A	Compatible with chilled water and hot water systems. Suitable for stairwells and mechanical rooms.	No
York	Vertical Fan Coil Units	N/A	Appropriate for elevator machine rooms and UPS rooms. Can accommodate supply fan, chilled water coil and filter sections.	No

Exhaust Fans

Manufacturer	Model	Representative	Compatibility Notes	BoD
Greenheck	Centrifugal HVAC Fan	N/A	Suitable for general exhaust applications, medical gas exhaust, and battery room exhaust	Yes
Greenheck	Centrifugal HVAC Fan	N/A	Suitable for general exhaust applications, medical gas exhaust, and battery room exhaust	No
Loren Cook	Centrifugal Ex- haust Fan	N/A	Compatible with hospital grade applications and code compliant exhaust requirements	No
PennBarry	Inline Centrifugal Fan	N/A	Suitable for general ventilation and exhaust applications in healthcare facilities	No
Twin City Fan	General Product Line	N/A	Established manufacturer with hospital-grade fan solutions	No

Energy Recovery Units

Manufacturer	Model	Representative	Compatibility Notes	BoD
No specific manufacturer identified	ERU-CSPD - Run- Around Energy Recovery Unit	N/A	Energy recovery unit for Central Sterile Processing Department with run- around heat recovery coil and exhaust fan with standby fan	Yes
No specific manufacturer identified	ERU-CSPD - Run- Around Energy Recovery Unit	N/A	Energy recovery unit for Central Sterile Processing Department with run- around heat recovery coil and exhaust fan with standby fan	No
Colmac Coil		N/A	Industry leading manufacturer for healthcare applications with proven reliability	No
Trox		N/A	Well-established manu- facturer with extensive healthcare facility experi- ence	No

BuildVision Recommendations

1. Standardize on Hospital-Grade Manufacturers with Proven Healthcare Experience

Rationale: The project lists multiple equipment categories including AHUs, heat exchangers, pumps, and CRAC units with 'No BOD Listed' status. Given the critical nature of perioperative environments requiring 24/7 reliability, establishing preferred manufacturers with proven hospital-grade equipment portfolios will ensure compatibility, reduce maintenance complexity, and provide better long-term support. Hospital-grade equipment meets stricter leakage requirements (less than 1% at 12 w.c.) and uses 100% aluminum or stainless steel internal components as specified in the narrative.

Estimated Impact: Significant reduction in equipment downtime, streamlined maintenance procedures, and improved long-term reliability for critical perioperative functions. Enhanced procurement efficiency through consolidated vendor relationships.

Implementation: Develop a preferred vendor list for each equipment category based on hospital-grade certifications and healthcare experience. Require all air handling units to meet hospital-grade specifications with less than 1% leakage rating. Establish framework agreements with selected manufacturers for standardized components and service support across all 27 operating rooms and supporting systems.

Priority: High

2. Implement Redundant Equipment Strategy for Critical Systems

Rationale: The project specifies multiple critical systems including medical air compressors (74 hp triplex), medical vacuum systems (quadraplex), and heating/cooling equipment serving 27 operating rooms. The narrative emphasizes reliability through multiple-like sized equipment with 100% redundancy capability. Given the critical nature of perioperative services, implementing N+1 redundancy for all critical systems will ensure uninterrupted operations during equipment maintenance or failures.

Estimated Impact: Elimination of service interruptions during equipment maintenance, enhanced patient safety through continuous system availability, and reduced risk of costly emergency repairs or service calls.

Implementation: Specify duplex configurations for all critical pumps and compressors. Require standby units for steam generators, heat exchangers, and exhaust fans. Design air handling systems with multiple fan arrays allowing for minimum one fan failure while maintaining 100% airflow. Establish preventive maintenance schedules that leverage redundant equipment capacity.

Priority: High

3. Establish Comprehensive Equipment Testing and Commissioning Program

Rationale: The project involves complex integration of HVAC, medical gas, fire protection, and electrical systems across a 128,000 square foot facility. The narrative specifies hospital-grade air handling units with custom configurations, specialized filtration (MERV 11, 14, and 17 HEPA), and critical pressure relationships for operating rooms and sterile processing. A structured commissioning program will ensure all equipment meets perfor-

mance specifications before occupancy.

Estimated Impact: Reduced startup delays, guaranteed performance compliance with healthcare codes and standards, minimized warranty issues, and enhanced system reliability from day one of operations.

Implementation: Develop equipment-specific testing protocols for all mechanical systems including air flow verification, pressure relationship testing, and filtration efficiency validation. Require factory testing reports for all major equipment. Establish commissioning agent requirements for independent verification of system performance. Create detailed acceptance criteria aligned with ASHRAE 170, NFPA 99, and FGI guidelines.

Priority: High

4. Optimize Procurement Timing Through Phased Equipment Delivery Strategy

Rationale: The project includes long-lead-time equipment such as custom hospital-grade air handling units, medical gas systems, emergency power equipment, and specialized sterilization support systems. The narrative indicates equipment will be located on the Level 5 penthouse with service elevator access. Coordinating delivery schedules with construction milestones will prevent storage issues and reduce handling costs.

Estimated Impact: Reduced equipment storage costs, minimized damage risk from multiple handling, improved construction schedule adherence, and optimized cash flow through strategic payment timing.

Implementation: Develop equipment delivery schedule aligned with construction milestones and penthouse access availability. Coordinate air handling unit deliveries with structural completion of Level 5 MER. Schedule medical gas equipment installation to align with piping rough-in completion. Establish secure staging areas for high-value equipment pending installation.

Priority: Medium

5. Establish Energy Efficiency Standards for All Mechanical Equipment

Rationale: The project narrative emphasizes energy conservation through ASHRAE 90.1-2019 compliance, variable frequency drives, and premium efficiency components. With significant cooling loads (920 tons) and heating requirements, selecting high-efficiency equipment will provide substantial operational savings over the facility lifecycle. The narrative specifically mentions right-sizing equipment and energy management through the building management system.

Estimated Impact: Meaningful reduction in long-term operational costs through improved energy efficiency, enhanced system performance through proper sizing, and improved environmental sustainability metrics.

Implementation: Establish minimum efficiency requirements exceeding ASHRAE 90.1-2019 standards for all HVAC equipment. Require variable frequency drives on all pumps and fans. Specify premium efficiency motors and transformers meeting current DOE standards. Include energy performance requirements in equipment specifications and require efficiency testing documentation.

Priority: Medium

Conclusion

Key Findings

- All major equipment categories currently show 'No BOD Listed' status, creating procurement risk for a critical healthcare facility requiring specialized hospital-grade equipment with less than 1% leakage ratings and 100% aluminum or stainless steel internal components
- Project demands extensive equipment redundancy including triplex medical air compressors, quadraplex vacuum systems, and standby configurations for heat exchangers and pumps to ensure uninterrupted perioperative operations
- Complex integration requirements exist between HVAC, medical gas, fire protection, and electrical systems with specialized filtration (MERV 11, 14, and HEPA), pressure relationship control, and emergency power coordination
- Long lead time equipment including custom hospital-grade air handling units and medical gas systems must be coordinated with penthouse installation access and construction milestones to prevent storage and handling issues
- Energy efficiency requirements per ASHRAE 90.1-2019 with variable frequency drives and premium efficiency components present opportunities for operational cost savings over facility lifecycle

Highest Priority Actions

- Immediately establish basis of design selections for all equipment categories with hospital-grade manufacturers having proven healthcare facility experience to eliminate procurement uncertainty and ensure code compliance
- Develop comprehensive redundancy strategy specifying N+1 configurations for all critical systems serving the 27 operating rooms and sterile processing department to prevent service interruptions
- Create detailed equipment delivery and installation schedule coordinated with Level 5 penthouse access availability and construction milestones to optimize logistics and minimize handling costs
- Establish rigorous testing and commissioning protocols for all mechanical systems including airflow verification, pressure relationship testing, and filtration efficiency validation to ensure compliance with ASHRAE 170, NFPA 99, and FGI requirements

Summary

The HMH JSUMC Perioperative Expansion represents a complex healthcare procurement initiative encompassing specialized hospital-grade HVAC systems, medical gas equipment, and supporting infrastructure for a 128,000 square foot facility. The project requires coordination of multiple equipment categories including custom air handling units, heat exchangers, pumps, computer room air conditioners, fan coil units, exhaust fans, and energy recovery systems to support 27 operating rooms and critical sterile processing operations.

Procurement strategy must prioritize hospital-grade specifications, redundant system design, and compliance with stringent healthcare codes while managing long lead times and complex installation logistics.

Ben Lyddane Ben@BuildVision.io 202-365-8628

Mackenzie Hoover Mackenzie@buildvision.io 843-609-3265

Date: 2025-06-13