Biomedical Signal Processing and Signal Modeling

Eugene N. Bruce
University of Kentucky

Contents

riciace			^1
Chapter 1	The	Nature of Biomedical Signals	1
	1.1	The Reasons for Studying Biomedical Signal	
		Processing 1	
	1.2	What Is a Signal? 3	
	1.3	Some Typical Sources of Biomedical Signals 5	
	1.4	Continuous-Time and Discrete-Time 9	
	1.5	Assessing the Relationships Between Two Signals 11	
	1.6	Why Do We "Process" Signals? 13	
	1.7	Types of Signals: Deterministic, Stochastic, Fractal and Chaotic 14	
	1.8	Signal Modeling as a Framework for Signal Processing	18
	1.9	What Is Noise? 20	
	1.10	Summary 22	
		Exercises 23	
Chapter 2	Men	nory and Correlation	29
	2.1	Introduction 29	
	2.2	Properties of Operators and Transformations 30	
	2.3	Memory in a Physical System 35	
	2.4	Energy and Power Signals 42	
	2.5	The Concept of Autocorrelation 44	
	2.6	Autocovariance and Autocorrelation for DT Signals 50	

	2.7	Summary 55
		Exercises 55
Chapter 3	The	Impulse Response 63
	3.1	Introduction 63
	3.2	Thought Experiment and Computer Exercise: Glucose Control 65
	3.3	Convolution Form of an LSI System 68
	3.4	Convolution for Continuous-Time Systems 79
	3.5	Convolution as Signal Processing 87
	3.6	Relation of Impulse Response to Differential Equation 87
	3.7	Convolution as a Filtering Process 94
	3.8	Impulse Responses for Nonlinear Systems 97
	3.9	The Glucose Control Problem Revisited 99
	3.10	Summary 100
		Exercises 101
Chapter 4	Fred	quency Response 109
	4.1	Introduction 109
	4.2	Biomedical Example (Transducers for Measuring Knee Angle) 110
	4.3	Sinusoidal Inputs to LTIC Systems 112
	4.4	Generalized Frequency Response 118
	4.5	Frequency Response of Discrete-Time Systems 125
	4.6	Series and Parallel Filter Cascades 130
	4.7	Ideal Filters 131
	4.8	Frequency Response and Nonlinear Systems 133
	4.9	Other Biomedical Examples 134
	4.10	Summary 138
		Exercises 139
Chapter 5		leling Continuous-Time Signals as Sums of Waves 147
	5.1	Introduction 147
	5.2	Introductory Example (Analysis of Circadian Rhythm) 148
	5.3	Orthogonal Functions 150
	5.4	Sinusoidal Basis Functions 151
	5.5	The Fourier Series 152

5.6	The Frequency Response and Nonsinusoidal Periodic Inputs 161
5.7	Parseval's Relation for Periodic Signals 163
5.8	The Continuous-Time Fourier Transform (CTFT) 164
5.9	Relationship of Fourier Transform to Frequency
	Response 168
5.1	Properties of the Fourier Transform 169
5.1	1 The Generalized Fourier Transform 174
5.1	2 Examples of Fourier Transform Calculations 175
5.1	3 Parseval's Relation for Nonperiodic Signals 177
5.1	4 Filtering 178
5.1	5 Output Response via the Fourier Transform 181
5.1	6 Summary 185
	Exercises 186
Re	sponses of Linear Continuous-Time Filters to
Ark	pitrary Inputs 193
6.1	Introduction 193
6.2	Introductory Example 194
6.3	Conceptual Basis of the Laplace Transform 196
6.4	Properties of (Unilateral) Laplace Transforms 200
6.5	The Inverse (Unilateral) Laplace Transform 205
6.6	Transfer Functions 209
6.7	Feedback Systems 215
6.8	Biomedical Applications of Laplace Transforms 221
6.9	Summary 225
	Exercises 226
Мо	deling Signals as Sums of Discrete-Time
	e Waves 231
7.1	Introduction 231
7.2	Interactive Example: Periodic Oscillations in the
	Amplitude of Breathing 232
7.3	The Discrete-Time Fourier Series 233
7.4	Fourier Transform of Discrete-Time Signals 238
7.5	Parseval's Relation for DT Nonperiodic Signals 242
7.6	Output of an LSI System 244
7.7	Relation of DFS and DTFT 248
7.8	Windowing 250

Chapter 6

Chapter 7

7.9 Sampling 255

7.10 The Discrete Fourier Transform (DFT) 261

	7.11	Biomedical Applications 267
	7.12	Summary 271
		Exercises 272
Chapter 8	Nois	se Removal and Signal Compensation 279
	8.1	Introduction 279
	8.2	Introductory Example: Reducing the ECG Artifact in an EMG Recording 280
	8.3	Eigenfunctions of LSI Systems and the Z-Transform 282
	8.4	Properties of the Bilateral Z-Transform 286
	8.5	Poles and Zeros of Z-Transforms 289
	8.6	The Inverse Z-Transform 291
	8.7	Pole Locations and Time Responses 295
	8.8	The Unilateral Z-Transform 295
	8.9	Analyzing Digital Filters Using Z-Transforms (DT Transfer Functions) 298
	8.10	Biomedical Applications of DT Filters 300
	8.11	Overview: Design of Digital Filters 303
	8.12	IIR Filter Design by Approximating a CT Filter 305
	8.13	IIR Filter Design by Impulse Invariance 307
	8.14	IIR Filter Design by Bilinear Transformation 309
	8.15	Biomedical Examples of IIR Digital Filter Design 311
	8.16	IIR Filter Design by Minimization of an Error Function 315
	8.17	FIR Filter Design 321
	8.18	Frequency-Band Transformations 331
	8.19	Biomedical Applications of Digital Filtering 333
	8.20	Summary 338
		Exercises 339
Chapter 9		leling Stochastic Signals as Filtered te Noise 345
	9.1	Introduction 345
	9.2	Introductory Exercise: EEG Analysis 346
	9.3	Random Processes 348
	9.4	Mean and Autocorrelation Function of a Random Process 354
	9.5	Stationarity and Ergodicity 356

	9.6	General Linear Processes 363
	9.7	Yule-Walker Equations 369
	9.8	Autoregressive (AR) Processes 373
	9.9	Moving Average (MA) Processes 381
	9.10	Autoregressive-Moving Average (ARMA) Processes 383
	9.11	Harmonic Processes 386
	9.12	Other Biomedical Examples 388
	9.13	Introductory Example Continued 390
	9.14	Summary 391
		Exercises 393
Chapter 10	Scali	ng and Long-Term Memory 399
	10.1	Introduction 399
	10.2	Geometrical Scaling and Self-Similarity 401
	10.3	Measures of Dimension 405
	10.4	Self-Similarity and Functions of Time 410
	10.5	Theoretical Signals Having Statistical Similarity 414
	10.6	Measures of Statistical Similarity for Real Signals 418
	10.7	Generation of Synthetic Fractal Signals 422
	10.8	Fractional Differencing Models 424
	10.9	Biomedical Examples 426
	10.10	Summary 430
		Exercises 432
Chapter 11	Nonli	near Models of Signals 435
	11.1	Introductory Exercise 435
	11.2	Nonlinear Signals and Systems: Basic Concepts 438
	11.3	Poincaré Sections and Return Maps 446
	11.4	Chaos 447
	11.5	Measures of Nonlinear Signals and Systems 451
	11.6	Characteristic Multipliers and Lyapunov Exponents 456
	11.7	Estimating the Dimension of Real Data 460
	11.8	Tests of Null Hypotheses Based on Surrogate Data 472
	11.9	Other Biomedical Applications 474
	11.10	Summary 480
		Exercises 481
Chapter 12	Asses	ssing Stationarity and Reproducibility 485
	12.1	Introduction 485

X CONTENTS

12.2	Assessing Stationarity of a Random Process from a Sample Function 486					
12.3	Statistical Properties of Autocovariance Estimators 490					
12.4	Statistical Properties of the Periodogram 492					
12.5	Analysis of Nonstationary Signals 496					
12.6	Nonstationary Second-Order Statistics 497					
12.7	Summary 508					
	Exercises 509					

Bibliography

511

Index

517