Interference

STSCI/INFO/ILRST 3900: Causal Inference

Agenda

- Reminders and Announcements
- Interference
- Homework Check-in and Questions

Reminders and Announcements

- HW 2 due Friday (September 19) by 5pm
 - Submit a PDF from RMarkdown via Canvas
- Office Hours
 - Sam: Tuesday 4-5pm in 350 CIS Building
 - Filippo: Thursday 4-5pm in 321A CIS Building
 - Shira: Monday 5-6pm in 329A CIS Building

What is interference?

• What did you discuss in your groups?

- Good causal questions involve precise treatments (consistency) that exist (positivity).
- Interference occurs when an individual's outcome can be affected by the treatment of others in the population

What is interference?

Example: Advertisements

- Your friend sees an ad for a new Coca Cola flavor. You don't see it, but the next time you see them, they have a can of it. You buy a can next time you go to the store.
- You didn't interact with the ad, yet you were possibly affected through your friend!
- You friend's treatment "interfered" with your outcome

Hmmm, maybe I should try it...

- Example: Advertisements
 - Under NO interference, your outcome is only dependent on your own treatment
 - You buying the new Coca Cola flavor only has to do with whether or not you saw the ad
 - Under interference, your outcome may depend on the treatment of your friends
 - You buying the new Coca Cola flavor depends not only on whether or not you saw the ad, but whether or not your friends saw it

- Your friend sees an ad for a new Coca Cola flavor. You don't see it, but the next time you see them, they have a can of it. You buy a can next time you go to the store.
- What are the possible treatment combinations in this scenario?

- Your friend sees an ad for a new Coca Cola flavor. You don't see it, but the next time you see them, they have a can of it. You buy a can next time you go to the store.
- The possible treatment combinations in this scenario are:
 - 1. You and your friend both see the ad
 - 2. You see the ad, your friend does not see it
 - 3. You do not see the ad, your friend does
 - 4. Neither you nor your friend see the ad

- Possible Treatment Combinations:
 - 1. You and your friend both see the ad
 - 2. You see the ad, your friend does not see it
 - 3. You do not see the ad, your friend does
 - 4. Neither you nor your friend see the ad
- Do the following notations make sense? Why or why not?

What is interference?

Let a_1 be your treatment and a_2 be your friend's.

- 1. You and your friend both see the ad
- 2. You see the ad, your friend does not see it
- 3. You do not see the ad, your friend does
- 4. Neither you nor your friend see the ad
- How do we change the notation to reflect the interference?

From
$$Y_1^{a_1}$$
 and $Y_2^{a_2}$ to ...?

What is interference?

Let a_1 be your treatment and a_2 be your friend's.

- 1. You and your friend both see the ad $(a_1 = 1, a_2 = 1)$
- 2. You see the ad, your friend does not see it $(a_1 = 1, a_2 = 0)$
- 3. You do not see the ad, your friend does ($a_1 = 0$, $a_2 = 1$)
- 4. Neither you nor your friend see the ad $(a_1 = 0, a_2 = 0)$
- We change the notation to reflect the interference?

From
$$Y_1^{a_1}$$
 and $Y_2^{a_2}$ to $Y_i^{a_1,a_2}$

Write the potential outcome notation for yourself when **no interference** is present **versus** when **interference** is present. Let a_1 be your treatment and a_2 be your friend's.

NO Interference	Your friend is treated	Your friend is not treated
You are treated		
You are not treated		

Interference	Your friend is treated	Your friend is not treated
You are treated		
You are not treated		

Write the potential outcome notation for your friend when no interference is present versus when interference is present. Let a_1 be your treatment and a_2 be your friend's.

NO Interference	Your friend is treated	Your friend is not treated
You are treated	$Y_1^{a_1=1}$	$Y_1^{a_1=1}$
You are not treated	$Y_1^{a_1=0}$	$Y_1^{a_1=0}$

Interference	Your friend is treated	Your friend is not treated
You are treated	$Y_1^{a_1=1,a_2=1}$	$Y_1^{a_1=1,a_2=0}$
You are not treated	$Y_1^{a_1=0,a_2=1}$	$Y_1^{a_1=0,a_2=0}$

Write the potential outcome notation for your friend when no interference is present versus when interference is present. Let a_1 be your treatment and a_2 be your friend's.

NO Interference	Your friend is treated	Your friend is not treated
You are treated	$ya_1=1$ Two po	
You are not treated	$Y_{1}^{a_{1}=0}$	$Y_{1}^{a_{1}=0}$

Interference	Your friend is treated	Your friend is not treated
You are treated	Four p	$\begin{array}{c} \mathbf{x}_{2}a_{1}=1.a_{2}=0 \\ \text{otential} \\ \text{per person} \end{array}$
You are not treated	$Y_1^{a_1=0,a_2=1}$	$Y_{1}^{a_{1}=0,a_{2}=0}$

 In the most general settings, everyone can affect everyone's outcomes

$$Y_1^{a_1,a_2,\cdots,a_n}$$

- That's 2^n different possible potential outcomes per person!
- In some settings, assuming no interference can be reasonable
- In other settings, assuming no interference can lead to **very misleading** results (See What Do Randomized Studies of Housing Mobility

 Demonstrate? By Michael Sobel, 2006)

Problem Set Clarification

In question 2.9:

"Suppose the researchers had first conducted a pilot study in Boston only"

- Assume we don't have the results from Chicago
- We want to estimate the average causal effect of race on callback rates in Chicago

Questions about the HW?