Numerical analysis

• In graphical method, we plotted the two constraints simultaneously.

 In numerical analysis, we should provide the two constraints in functional forms

Numerical analysis

- In numerical analysis, we should provide the two constraints in functional forms
 - Residuals of the eq1 $(i_D = \frac{V}{R} \frac{v_D}{R})$: $i_D (V v_D)/R$
 - Residuals of the eq2 $(i_D = ae^{bv_D})$: $i_D ae^{bv_D}$
 - We need to define a new function with the following input parameters and return values
 - Input: (v_D, i_D)
 - Output: Residues of (eq1, eq2) = $\left(i_D \frac{V v_D}{R}, i_D ae^{bv_D}\right)$
 - Call scipy.optimize.root("new function name", "list of initial guess for (v_D, i_D) ")
 - By using the numerical analysis, we can find the correct value should be $v_D=0.562V$ and $i_D=0.438A$.
 - Check "Finding numerical solution.ipynb"

Incremental Analysis

- Demonstration of sound and signal distortion
 - Monotone.ipynb
 - Record sound.ipynb

Linear amplifier from nonlinear element

How can we implement linear amplifier from nonlinear components?

Result

Taylor expansion

- Assume that we are given some arbitrary function f(x) of x.
- Question: can we approximate this function as a some of polynomials of x? In other words,

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

- Answer: it depends on the types of function, but for many of the functions, it is possible.
- Question: the how can we find out $c_0, c_1, c_2, c_3, ...$?
- Answer: by matching the values of the derivatives at $x = x_0$.
- In general, $f(x) = f(x_0) + \frac{df}{dx}\Big|_{x=x_0} (x x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x=x_0} (x x_0)^2 + \frac{1}{3!} \frac{d^3 f}{dx^3}\Big|_{x=x_0} (x x_0)^3 + \cdots$
- Example 1) at x = 0, $f(x) = 1 + 2x + 3x^3 = c_0 + c_1x + c_2x^2 + c_3x^3 + \cdots$
- Example 2) at x = 1, $f(x) = 1 + 2x + 3x^3 = c_0 + c_1(x 1) + c_2(x 1)^2 + c_3(x 1)^3 + \cdots$

Why is the small signal response linear?

Can we guarantee that the response with respect to the small signal input always linear?

$$i_D = f(v_D)$$
 large DC
$$v_D = V_D + \Delta v_D$$
 increment about V_D

nonlinear

using Taylor's Expansion to expand

$$f(v_D)$$
 near $v_D=V_D$:

$$i_{D} = f(V_{D}) + \frac{df(v_{D})}{dv_{D}} \Big|_{v_{D} = V_{D}} \cdot \Delta v_{D}$$

$$+ \frac{1}{2!} \frac{d^{2} f(v_{D})}{dv_{D}} \Big|_{v_{D} = V_{D}} \cdot \Delta v_{D}^{2} + \cdots$$

neglect higher order terms because Δv_D is small

$$i_D \approx f(V_D) + \frac{df(v_D)}{dv_D}\Big|_{v_D = V_D} \cdot \Delta v_D$$

constant constant w.r.t. Δ

w.r.t. Δv_D

constant constant w.r.t. Δv_D w.r.t. Δv_D slope at V_D , I_D

$$I_D + \Delta i_D$$

$$I_D + \Delta i_D \approx f(V_D) + \left. \frac{df(v_D)}{dv_D} \right|_{v_D = V_D} \cdot \Delta v_D$$
ting DC and time-varying parts

$$I_D = f(V_D) \longrightarrow \text{operating point}$$

so, $\Delta i_D \propto \Delta v_D$

equating DC and time-varying parts,
$$I_D = f(V_D) \longrightarrow \text{operating}$$

constant w.r.t. Δv_D

ime-varying parts,
$$\longrightarrow \text{operating}$$

time-varying parts
$$(V_D) \longrightarrow \text{operating}$$

By notation,
$$\Delta i_D = i_d \\ \Delta v_D = v_d$$

$$I_{D} = f(V_{D}) \longrightarrow \text{oper}(V_{D})$$

$$\Delta i_{D} = \frac{df(v_{D})}{dv_{D}}\Big|_{v_{D} = V_{D}} \cdot \Delta v_{D}$$

Incremental Method (Small Signal Method)

- 1. Operate at some DC offset or bias point (V_D, I_D)
- 2. Superimpose small signal (v_d) (music) on top of (V_D)
- 3. Response i_d to small signal v_d is approximately linear.

Example

$$i_D = a e^{bv_D}$$

$$I_D + i_d \approx a e^{bV_D} + a e^{bV_D} \cdot b \cdot v_d$$

Equate DC and incremental terms,

$$i_d = \underbrace{(a e^{bV_D}) b \cdot v_d}$$
 $i_d = \underbrace{I_D \cdot b \cdot v_d}$ \longrightarrow small signal behavior constant \longrightarrow linear!

Graphical Interpretation

$$I_D = a e^{bV_D}$$
 \longrightarrow operating point

$$i_d = I_D \cdot b \cdot v_d$$

we are approximating

Combined Together Large signal circuit:

By using graphical or analytical solution, find bias point.

Small signal reponse: $i_d = I_D b v_d$

behaves like:

Linearization

small signal circuit:

inear!

Piecewise Linear Analysis

- Diode: $i_D = I_s(e^{v_D/V_{TH}} 1)$
- Analyze the circuit in two regimes

Open circuit case

- When $v_D < 0.7 V$

Close circuit case

- When $v_D > 0.7 \text{ V}$

Dependent sources

Section 2.6 in the textbook

New type of device: Dependent source

E.g., Voltage Controlled Current Source Current at output port is a function of voltage at the input port

Independent Source Example

Example 1: Find V

independent current source

$$V = I_0 R$$

Dependent sources: Example

voltage controled current source

Dependent sources: Example

Find V

voltage controlled current source

 $V = IR = \frac{K}{V}R$

or $V = \sqrt{KR}$

= 1 Volt

or $V^2 = KR$

e.g.
$$K = 10^{-3} \text{ Amp·Volt}$$

e.g.
$$K = 10^{-3} \text{ Amp} \cdot \text{Vol}$$

 $R = 1 \text{ k}\Omega$

Another Dependent Source Example

 Assume there exists a hypothetical voltage-controlled current source

$$i_D = f(v_{IN})$$

$$v_I \stackrel{i_N}{+} v_{IN}$$
 e.g.
$$i_D = f(v_{IN})$$

$$= \frac{K}{2}(v_{IN} - I)^2 \quad \text{for} \quad v_{IN} \ge 1$$

$$i_D = 0 \quad \text{otherwise}$$

Find $v_{\rm O}$ as a function of $\,v_{\rm I}^{}$.

Amplifier

$$v_O = V_S - \frac{K}{2}(v_I - 1)^2 R_L$$
 for $v_I \ge 1$
 $v_O = V_S$ for $v_I < 1$

What is the gain of this amplifier?

Let's look at the v_0 versus v_1 curve.

e.g.
$$V_S = 10V$$
, $K = 2\frac{mA}{V^2}$, $R_L = 5k\Omega$

$$v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$$

$$v_O = 10 - 5(v_I - 1)^2$$

$$\frac{\Delta v_O}{\Delta v_I} > 1$$
 — amplification

Amplification $\frac{\Delta v_0}{\Delta v_I} = -10$ around $v_I = 2V$.

Other Types of Controlled Sources

VCCS (voltage-controlled current source)

CCCS (current-controlled current source)

VCVS (voltage-controlled voltage source)

CCVS (current-controlled voltage source)