27. a. *x* is the predator population; *y* is the prey population. **b.** x' = 0 on the lines x = 0 and $y = \frac{1}{2}$; y' = 0 on the lines y = 0 and $x = \frac{1}{4}$. **c.** $(0,0), (\frac{1}{4},\frac{1}{2})$

and
$$x = \frac{1}{4}$$
. **c.** $(0,0), (\frac{1}{4},\frac{1}{2})$

d.
$$x' > 0$$
 and $y' > 0$ for $0 < x < \frac{1}{4}, y > \frac{1}{2}$

$$x' > 0$$
 and $y' < 0$ for $x > \frac{1}{4}$, $y > \frac{1}{2}$

$$x' < 0$$
 and $y' < 0$ for $x > \frac{1}{4}$, $0 < y < \frac{1}{2}$

$$x' < 0$$
 and $y' > 0$ for $0 < x < \frac{1}{4}$, $0 < y < \frac{1}{2}$

e. The solution evolves in the clockwise direction.

29. a. *x* is the predator population; *y* is the prey population. **b.** x' = 0 on the lines x = 0 and y = 3; y' = 0 on the lines y = 0and x = 2. **c.** (0, 0), (2, 3)

d.
$$x' > 0$$
 and $y' > 0$ for $0 < x < 2, y > 3$

$$x' > 0$$
 and $y' < 0$ for $x > 2$, $y > 3$

$$x' < 0$$
 and $y' < 0$ for $x > 2$, $0 < y < 3$

$$x' < 0$$
 and $y' > 0$ for $0 < x < 2$, $0 < y < 3$

e. The solution evolves in the clockwise direction.

31. a. True **b.** True **c.** True **35. c.** $\lim m(t) = C_i V$, which is the amount of substance in the tank when the tank is filled with the

inflow solution. **d.** Increasing *R* increases the rate at which the solution in the tank reaches the steady-state concentration.

37. a.
$$I = \frac{V}{R}e^{-t/(RC)}$$
 b. $Q = VC(1 - e^{-t/(RC)})$

Chapter 9 Review Exercises, pp. 636-638

1. a. False **b.** False **c.** True **d.** True **e.** False **3.**
$$y = Ce^{-2t} + 3$$
 5. $y = Ce^{t^2}$ **7.** $y = Ce^{\tan^{-1}t}$

9.
$$y = \tan(t^2 + t + C)$$
 11. $y = \sin t + t^2 + 1$

13.
$$Q = 8(1 - e^{t-1})$$
 15. $u = (3 + t^{2/3})^{3/2}, t > 0$

17.
$$s = \frac{t\sqrt{2}}{\sqrt{t^2 + 1}}$$

c.
$$0 < A < 2$$

d.
$$A > 2$$
 or $A < 0$

e.
$$y = 0$$
 and $y = 2$

21. a. 1.05, 1.09762 **b.** 1.04939, 1.09651 **c.** 0.00217, 0.00106; the error in part (b) is smaller. 23. y = -3 (unstable), y = 0(stable), y = 5 (unstable) **25.** y = -1 (unstable), y = 0 (stable),

$$y = 2$$
 (unstable) **27. a.** 0.0713 **b.** $P = \frac{1600}{79e^{-0.0713t} + 1}, t \ge 0$

c. Approx. 61 hours **29. a.** $m = 2000(1 - e^{-0.005t})$

b. 2000 g **c.** Approx. 599 minutes **31. a.** *x* represents the predator. **b.** x'(t) = 0 when x = 0 and y = 2. y'(t) = 0 when y = 0 and x = 5. **c.** (0,0) and (5,2) **d.** x' > 0, y' > 0 when 0 < x < 5 and y > 2; x' > 0, y' < 0 when x > 5 and y > 2; x' < 0, y' < 0 when x > 5 and 0 < y < 2; x' < 0, y' > 0 when 0 < x < 5 and 0 < y < 2

e. Clockwise direction

33. a.
$$p_1 = 3, p_2 = -4$$
 b. $y(t) = t^3 - t^{-4}, t > 0$

CHAPTER 10

Section 10.1 Exercises, pp. 647-649

1. A sequence is an ordered list of numbers. Example: $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$

3. 1, 1, 2, 6, 24 **5.**
$$a_n = (-1)^{n+1} n$$
, for $n = 1, 2, 3, ...$; $a_n = (-1)^n (n+1)$, for $n = 0, 1, 2, ...$ (Answers may vary.)

13.
$$\frac{1}{10}$$
, $\frac{1}{100}$, $\frac{1}{1000}$, $\frac{1}{10000}$, $\frac{1}{10000}$ **15.** $-\frac{1}{2}$, $\frac{1}{4}$, $-\frac{1}{8}$, $\frac{1}{16}$ **17.** $\frac{4}{3}$, $\frac{8}{5}$, $\frac{16}{9}$, $\frac{32}{17}$

7. *e* 9. 1, 5, 14, 30 11.
$$\sum_{k=1}^{\infty} 10$$
 (Answer is not unique.)
13. $\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10,000}$ 15. $-\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}$ 17. $\frac{4}{3}, \frac{8}{5}, \frac{16}{9}, \frac{32}{17}$
19. 2, 1, 0, 1 21. 2, 4, 8, 16 23. 10, 18, 42, 114 25. 1, $\frac{1}{2}, \frac{2}{3}, \frac{3}{5}$

27. a.
$$\frac{1}{32}$$
, $\frac{1}{64}$ **b.** $a_1 = 1$, $a_{n+1} = \frac{1}{2}a_n$, for $n \ge 1$ **c.** $a_n = \frac{1}{2^{n-1}}$,

for $n \ge 1$ **29. a.** 32, 64 **b.** $a_1 = 1$, $a_{n+1} = 2a_n$, for $n \ge 1$ **c.** $a_n = 2^{n-1}$, for $n \ge 1$ **31. a.** 243, 729 **b.** $a_1 = 1$, $a_{n+1} = 3a_n$, for $n \ge 1$ **c.** $a_n = 3^{n-1}$, for $n \ge 1$ **33. a.** -5, 5 **b.** $a_1 = -5$, $a_{n+1} = -a_n$, for $n \ge 1$ **c.** $a_n = (-1)^n \cdot 5$, for $n \ge 1$

35. 9, 99, 999, 9999; diverges **37.** $\frac{1}{10}$, $\frac{1}{100}$, $\frac{1}{1000}$, $\frac{1}{10,000}$;

converges to 0 **39.** 2, 4, 2, 4; diverges **41.** 2, 2, 2, 2; converges to 2

43. 54.545, 54.959, 54.996, 55.000; converges to 55

15.	n	a_n
	1	0.83333333
	2	0.96153846
	3	0.99206349
	4	0.99840256
	5	0.99968010
	6	0.99993600
	7	0.99998720
	8	0.99999744
	9	0.99999949
	10	0.99999990

_		
7.	n	a_n
	1	2
	2	6
	3	12
	4	20
	5	30
	6	42
	7	56
	8	72
	9	90
	10	110

The limit appears to be 1.

The sequence appears to diverge.

49. a.
$$\frac{5}{2}$$
, $\frac{9}{4}$, $\frac{17}{8}$, $\frac{33}{16}$ **b.** 2

• •	2,4	, 8, 16
51.	n	a_n
	1	3.00000000
	2	3.50000000
	3	3.75000000
	4	3.87500000
	5	3.93750000
	6	3.96875000
	7	3.98437500
	8	3.99218750
	9	3.99609375
	10	3.99804688

53.	n	a_n
	0	1
	1	5
	2	21
	3	85
	4	341
	5	1365
	6	5461
	7	21,845
	8	87,381
	9	349,525

The limit appears to be 4.

The sequence appears to diverge.

55.	n	a_n
	1	8.00000000
	2	4.41421356
	3	4.05050150
	4	4.00629289
	5	4.00078630
	6	4.00009828
	7	4.00001229
	8	4.00000154
	9	4.00000019
	10	4.00000002

57. a. 20, 10, 5,
$$\frac{5}{2}$$
 b. $h_n = 20(\frac{1}{2})^n$, for $n \ge 0$ **59. a.** $30, \frac{15}{8}, \frac{15}{8}, \frac{15}{32}$ **b.** $h_n = 30(\frac{1}{4})^n$, for $n \ge 0$ **61.** $S_1 = 0.3$, $S_2 = 0.33$, $S_3 = 0.333$, $S_4 = 0.3333; \frac{1}{3}$ **63.** $S_1 = 4$, $S_2 = 4.9$, $S_3 = 4.99$, $S_4 = 4.999$; 5 **65.** $S_1 = 0.6$, $S_2 = 0.66$, $S_3 = 0.666$, $S_4 = 0.6666; \frac{2}{3}$ **67. a.** $\frac{2}{3}, \frac{4}{5}, \frac{6}{7}, \frac{8}{9}$ **b.** $S_n = \frac{2n}{2n+1}; \frac{10}{11}; \frac{12}{13}; \frac{14}{15}; \frac{16}{17}$ **c.** 1

The limit appears to be 4.

69. a. 9, 9.9, 9.99, 9.999 **b.** $S_n = 10 - (0.1)^{n-1}$; 9.9999, 9.99999, 9.999999, 9.999999 **c.** 10 **71. a.** True **b.** False **c.** True **73. a.** 20, 10, 5, $\frac{5}{2}$, $\frac{5}{4}$ **b.** $M_n = 20\left(\frac{1}{2}\right)^n$, for $n \ge 0$ **c.** $M_0 = 20$, $M_{n+1} = \frac{1}{2}M_n$, for $n \ge 0$ **d.** $\lim_{n \to \infty} M_n = 0$ **75. a.** 200, 190, 180.5, 171.475, 162.90125 **b.** $d_n = 200(0.95)^n$, for $n \ge 0$ **c.** $d_0 = 200$, $d_{n+1} = (0.95)d_n$, for $n \ge 0$ **d.** $\lim_{n \to \infty} d_n = 0$ **77. a.** 40, 70, 92.5, 109.375 **b.** 160 **79.** 0.739

Section 10.2 Exercises, pp. 659-662

1.
$$a_n = \frac{1}{n}, n \ge 1$$
 3. $a_n = \frac{n}{n+1}, n \ge 1$ **5.** Converges for $-1 < r \le 1$, diverges otherwise **7.** Diverges monotonically **9.** Converges, oscillates; 0 **11.** $\{e^{n/100}\}$ grows faster then $\{n^{100}\}$.

13. 0 15.
$$\frac{3}{2}$$
 17. $\frac{\pi}{4}$ 19. 2 21. 0 23. $\frac{1}{4}$ 25. 2 27. 0 29. 0 31. 3 33. Diverges 35. $\frac{\pi}{2}$ 37. 0 39. e^2 41. e^3 43. $e^{1/4}$ 45. 0 47. 1 49. 0 51. 6 55. 0 57. Diverges 59. Diverges 61. 0 63. 0 65. 0 67. 0 69. 0 71. a. $d_{n+1} = \frac{1}{2}d_n + 80$, for $n \ge 1$ b. 160 mg

Diverges

73. a. \$0, \$100, \$200.75, \$302.26, \$404.53 **b.** $B_{n+1} = 1.0075B_n + 100$, for $n \ge 0$ **c.** Approx. 43 months **75.** 0 **77.** Diverges **79.** 0 **81.** 1 **83. a.** True **b.** False **c.** True **d.** True **e.** False **f.** True **85. a.** Nondecreasing **b.** $\frac{1}{2}$ **87. a.** Nonincreasing **b.** 2 **89. a.** $d_{n+1} = 0.4d_n + 75$; $d_1 = 75$ **c.** 125; in the long run there will be approximately 125 mg of medication in the blood. **91.** 0.607 **93. b.** 9 **95. a.** $\sqrt{2}$, $\sqrt{2 + \sqrt{2}}$, $\sqrt{2 + \sqrt{2 + \sqrt{2}}}$, or 1.41421, 1.84776, 1.96157, 1.99037 **c.** 2 **97. a.** 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 **b.** No **99. b.** 1, 2, 1.5, 1.6667, 1.6 **c.** Approx. 1.618 **e.** $\frac{a + \sqrt{a^2 + 4b}}{2}$ **101.** Given a tolerance $\varepsilon > 0$, look beyond a_N , where $N > 1/\varepsilon$. **103.** Given a tolerance $\varepsilon > 0$, look beyond a_N , where $N > \frac{1}{4}\sqrt{3/\varepsilon}$, provided $\varepsilon < \frac{3}{4}$. **105.** Given a tolerance $\varepsilon > 0$, look beyond a_N , where $N > \frac{1}{4}\sqrt{3/\varepsilon}$,

where $N > c/(\varepsilon b^2)$. **107.** a < 1 **109.** $\{n^2 + 2n - 17\}_{n=3}^{\infty}$

Section 10.3 Exercises, pp. 668-671

111. n = 4, n = 6, n = 25

1. The constant r in the series $\sum_{k=0}^{\infty} ar^k$ 3. No 5. a. $a=\frac{2}{3}$; $r=\frac{1}{5}$ b. $a=\frac{1}{27}$; $r=-\frac{1}{3}$ 7. $S_n=\frac{1}{4}-\frac{1}{n+4}$; $S_{36}=\frac{9}{40}$ 9. 9841

11. Approx. 1.1905 13. Approx. 0.5392 15. $\frac{1093}{2916}$ 17. \$15,920.22 19. a. $\frac{7}{9}$ 21. $\frac{4}{3}$ 23. $\frac{10}{19}$ 25. 10 27. Diverges 29. $\frac{1}{e^2-1}$ 31. $\frac{1}{7}$ 33. $\frac{1}{500}$ 35. $\frac{3\pi}{\pi+1}$ 37. $\frac{\pi}{\pi-e}$ 39. $\frac{9}{460}$ 41. $\frac{4}{11}$ 43. $A_5=266.406$; $A_{10}=266.666$; $A_{30}=266.667$;

 $\lim_{n \to \infty} A_n = 266 \frac{2}{3} \text{ mg, which is the steady-state level.} \quad \textbf{45.} \ 400 \text{ mg}$ $\textbf{47.} \ 0.\overline{3} = \sum_{k=1}^{\infty} 3(0.1)^k = \frac{1}{3} \quad \textbf{49.} \ 0.\overline{037} = \sum_{k=1}^{\infty} 37(0.001)^k = \frac{1}{27}$

51.
$$0.\overline{456} = \sum_{k=0}^{\infty} 0.456(0.001)^k = \frac{152}{333}$$

53.
$$0.00\overline{952} = \sum_{k=0}^{\infty} 0.00952(0.001)^k = \frac{238}{24,975}$$

55.
$$S_n = \frac{n}{2n+4}; \frac{1}{2}$$
 57. $S_n = \frac{1}{7} - \frac{1}{n+7}; \frac{1}{7}$

59.
$$S_n = \frac{1}{9} - \frac{1}{4n+9}$$
; $\frac{1}{9}$ **61.** $S_n = \ln(n+1)$; diverges

63.
$$S_n = \frac{1}{p+1} - \frac{1}{n+p+1}; \frac{1}{p+1}$$

65.
$$S_n = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}}\right) - \left(\frac{1}{\sqrt{n+2}} + \frac{1}{\sqrt{n+3}}\right); \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}}$$

67.
$$S_n = \frac{13}{12} - \frac{1}{n+2} - \frac{3}{n+3} - \frac{1}{n+4}; \frac{13}{12}$$

69.
$$S_n = \tan^{-1}(n+1) - \tan^{-1}1; \frac{\pi}{4}$$
 71. a, b. $\frac{4}{3}$ **73.** $-\frac{1}{4}$

75.
$$\frac{2500}{19}$$
 77. $-\frac{2}{15}$ **79.** $\frac{1}{\ln 2}$ **81.** -2 **83.** $\frac{113}{30}$ **85.** $\frac{17}{10}$

g. True **89. a.**
$$\frac{1}{5}$$
 b. Approx. 0.19999695 **91.** Approx. 0.96

95. 462 months **99.**
$$\sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k A_1 = \frac{A_1}{1 - 1/4} = \frac{4}{3} A_1$$

101. a.
$$L_n = 3\left(\frac{4}{3}\right)^n$$
, so $\lim_{n \to \infty} L_n = \infty$ **b.** $\lim_{n \to \infty} A_n = \frac{2\sqrt{3}}{5}$

103.
$$R_n = S - S_n = \frac{1}{1 - r} - \left(\frac{1 - r^n}{1 - r}\right) = \frac{r^n}{1 - r}$$
 105. a. 60

b. 9 **107. a.** 13 **b.** 15 **109. a.**
$$1, \frac{5}{6}, \frac{2}{3}$$
, undefined, undefined

b.
$$(-1,1)$$
 111. Converges for x in $(-\infty, -2)$ or $(0, \infty)$; $x = \frac{1}{2}$

Section 10.4 Exercises, pp. 680-683

- 1. The series diverges. 3. $\lim a_k = 0$ 5. Converges for p > 1 and diverges for $p \le 1$ 7. $R_n = S - S_n$ 9. Diverges
- 11. Inconclusive 13. Diverges 15. Diverges 17. Diverges
- 19. Diverges 21. Converges 23. Diverges 25. Converges
- 27. Diverges 29. Converges 31. Converges 33. Converges
- **35.** Diverges **37.** Diverges **39.** a. $S \approx S_2 = 1.0078125$

b.
$$R_2 < 0.0026042$$
 c. $L_2 = 1.0080411$; $U_2 = 1.0104167$
41. a. $\frac{1}{5n^5}$ **b.** 3 **c.** $L_n = S_n + \frac{1}{5(n+1)^5}$; $U_n = S_n + \frac{1}{5n^5}$

d. (1.017342754, 1.017343512) **43. a.**
$$\frac{3^{-n}}{\ln 3}$$
 b. 7

c.
$$L_n = S_n + \frac{3^{-n-1}}{\ln 3}$$
; $U_n = S_n + \frac{3^{-n}}{\ln 3}$

- **d.** (0.499996671, 0.500006947) **45.** 1.0083 **47. a.** False
- b. True c. False d. True e. False f. False 49. Converges
- 51. Converges 53. Diverges 55. Diverges 57. Diverges
- **59.** Converges **61.** Converges **63.** Converges **65.** a. p > 1
- **b.** $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$ converges faster. **67.** $\zeta(3) \approx 1.202, \zeta(5) \approx 1.037$

69.
$$\frac{\pi^2}{8}$$
 73. a. $\frac{1}{2}$, $\frac{7}{12}$, $\frac{37}{60}$

Section 10.5 Exercises, pp. 687-688

- 1. Find an appropriate comparison series. Then take the limit of the ratio of the terms of the given series and the comparison series as $n \to \infty$. The value of the limit determines whether the series converges.
- 3. $\sum_{k=1}^{\infty} \frac{1}{k^2}$ 5. $\sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^k$ 7. $\sum_{k=1}^{\infty} \frac{1}{k}$ 9. Converges
- 11. Diverges 13. Converges 15. Converges 17. Converges
- 19. Diverges 21. Diverges 23. Converges 25. Diverges
- 27. Converges 29. Diverges 31. Diverges 33. Diverges
- 35. Converges 37. a. False b. True c. True d. True

- 39. Converges 41. Diverges 43. Diverges 45. Diverges
- 47. Converges 49. Diverges 51. Converges 53. Converges
- 55. Diverges 57. Converges 59. Diverges 61. Converges

Section 10.6 Exercises, pp. 694-696

- 1. Because $S_{n+1} S_n = (-1)^n a_{n+1}$ alternates sign 3. Because the remainder $R_n = S S_n$ alternates sign
- **5.** $|R_n| = |S S_n| \le |S_{n+1}| |S_n| = a_{n+1}$ **7.** No; if a series of positive terms converges, it does so absolutely and not conditionally.
- 9. Yes, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$ has this property. 11. Converges 13. Diverges
- **15.** Converges **17.** Converges **19.** Diverges **21.** Diverges **23.** Diverges **25.** Diverges **27.** Converges **29.** $S_4 = -0.945939$;
- $|S S_4| \le 0.0016$ 31. $S_5 = 0.70696$; $|S S_5| \le 0.001536$
- **33.** 10,000 **35.** 5000 **37.** 10 **39.** -0.973 **41.** -0.269
- **43.** -0.783 **45.** Converges conditionally **47.** Converges absolutely
- **49.** Converges absolutely **51.** Converges absolutely **53.** Diverges
- 55. Converges conditionally 57. Diverges 59. Converges abso-
- lutely **61.** Converges conditionally **63.** Converges absolutely 65. a. False b. True c. True d. True e. False f. True
- **g.** True **69.** x and y are divergent series.

71. b.
$$S_{2n} = \sum_{k=1}^{n} \left(\frac{1}{k^2} - \frac{1}{k} \right)$$

Section 10.7 Exercises, pp. 699-700

- 1. Take the limit of the magnitude of the ratio of consecutive terms of the series as $k \to \infty$. The value of the limit determines whether the series converges absolutely or diverges. 3. 999,000
- 5. $\frac{1}{(k+2)(k+1)}$ 7. Ratio Test 9. Converges absolutely
- 11. Diverges 13. Converges absolutely 15. Converges absolutely
- 17. Diverges 19. Diverges 21. Converges absolutely
- 23. Converges absolutely 25. Diverges 27. Converges absolutely
- 29. Diverges 31. a. False b. True c. True d. True
- 33. Converges absolutely 35. Diverges 37. Converges absolutely
- **39.** Converges conditionally **41.** Converges absolutely
- **43.** Converges absolutely **45.** Converges conditionally
- 47. Converges absolutely 49. Converges conditionally
- **51.** p > 1 **53.** p > 1 **55.** p < 1 **57.** Diverges for all p
- **59.** -1 < x < 1 **61.** $-1 \le x \le 1$ **63.** -2 < x < 2

Section 10.8 Exercises, pp. 703-704

- **1.** Root Test **3.** Divergence Test **5.** *p*-series Test or Limit Comparison Test 7. Comparison Test or Limit Comparison Test
- 9. Alternating Series Test 11. Diverges 13. Diverges
- 15. Converges 17. Diverges 19. Converges 21. Converges
- 23. Converges 25. Converges 27. Converges 29. Diverges
- 31. Converges 33. Diverges 35. Converges 37. Diverges
- 39. Diverges 41. Converges 43. Diverges 45. Converges
- 47. Diverges 49. Converges 51. Diverges 53. Converges
- 55. Diverges 57. Converges 59. Converges 61. Diverges
- **63.** Diverges **65.** Converges **67.** Converges **69.** Diverges
- 71. Converges 73. Converges 75. Converges 77. Diverges
- 79. Diverges 81. Converges 83. Converges 85. Converges
- 87. a. False b. True c. True d. False 89. Diverges
- **91.** Diverges **93.** Diverges

Chapter 10 Review Exercises, pp. 704-707

- 1. a. False b. False c. True d. False e. True f. False **g.** False **h.** True **3.** Approx. 1.25; approx. 0.05 **5.** $\lim a_k = 0$,
- $\lim_{n \to \infty} S_n = 8 \quad \textbf{7.} \ a_k = \frac{1}{k} \quad \textbf{9.} \ \textbf{a.} \ 0 \quad \textbf{b.} \ \frac{5}{9} \quad \textbf{11.} \ \textbf{a.} \ \text{Yes; } \lim_{k \to \infty} a_k = 1$
- **b.** No; $\lim a_k \neq 0$ **13.** Diverges **15.** 5 **17.** 0 **19.** 0 **21.** 1/e
- **23.** Diverges **25. a.** 80, 48, 32, 24, 20 **b.** 16 **27.** Diverges
- **29.** Diverges **31.** Diverges **33.** $\frac{3\pi}{4}$ **35.** 3 **37.** 2/9
- **39.** $\frac{311}{990}$ **41.** 200 mg **43.** Diverges **45.** Diverges **47.** Converges
- 49. Converges 51. Converges 53. Converges 55. Converges
- **57.** Diverges **59.** Converges **61.** Converges **63.** Converges
- 65. Converges 67. Converges 69. Converges 71. Converges
- 73. Diverges 75. Diverges 77. Converges conditionally
- **79.** Converges absolutely **81.** Diverges **83.** Converges absolutely
- 85. Converges absolutely 87. Diverges 89. a. Approx. 1.03666
- **b.** 0.0004 **c.** $L_5 = 1.03685$; $U_5 = 1.03706$ **91.** 0.0067
- **93.** 100 **95. a.** 803 m, 1283 m, 2000 $(1 0.95^N)$ m **b.** 2000 m

97. a.
$$\frac{\pi}{2^{n-1}}$$
 b. 2π **99.** a. $T_1 = \frac{\sqrt{3}}{16}, T_2 = \frac{7\sqrt{3}}{64}$

b.
$$T_n = \frac{\sqrt{3}}{4} \left(1 - \left(\frac{3}{4} \right)^n \right)$$
 c. $\lim_{n \to \infty} T_n = \frac{\sqrt{3}}{4}$ **d.** 0

$$101. \ \sqrt{\frac{20}{g}} \left(\frac{1 + \sqrt{p}}{1 - \sqrt{p}} \right) s$$

CHAPTER 11

Section 11.1 Exercises, pp. 718-721

- **1.** $f(0) = p_2(0), f'(0) = p_2'(0), \text{ and } f''(0) = p_2''(0)$
- **3.** 1, 1.05, 1.04875 **5.** $p_3(x) = 1 + x^2 + x^3$; 1.048
- 7. $p_3(x) = 1 + (x 2) + 2(x 2)^3$; 0.898
- **9. a.** $p_1(x) = 8 + 12(x 1)$
- **b.** $p_2(x) = 8 + 12(x 1) + 3(x 1)^2$ **c.** 9.2; 9.23
- **11. a.** $p_1(x) = 1 2x$ **b.** $p_2(x) = 1 2x + 2x^2$ **c.** 0.8, 0.82
- **13.** a. $p_1(x) = 1 x$ b. $p_2(x) = 1 x + x^2$ c. 0.95, 0.9525
- **15.** a. $p_1(x) = 2 + \frac{1}{12}(x 8)$
- **b.** $p_2(x) = 2 + \frac{1}{12}(x 8) \frac{1}{288}(x 8)^2$ **c.** $1.958\overline{3}$, 1.95747
- **17.** $p_1(x) = 1, p_2(x) = p_3(x) = 1 18x^2, p_4(x) = 1 18x^2 + 54x^4$
- **19.** $p_3(x) = 1 3x + 6x^2 10x^3$,
- $p_4(x) = 1 3x + 6x^2 10x^3 + 15x^4$
- **21.** $p_1(x) = 1 + 3(x 1), p_2(x) = 1 + 3(x 1) + 3(x 1)^2,$
- $p_3(x) = 1 + 3(x 1) + 3(x 1)^2 + (x 1)^3$
- **23.** $p_3(x) = 1 + \frac{1}{e}(x e) \frac{1}{2e^2}(x e)^2 + \frac{1}{3e^3}(x e)^3$
- **25.** a. $p_1(x) = -x$, $p_2(x) = -x \frac{x^2}{2}$

27. a.
$$p_1(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right),$$

$$p_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^2$$

- **29. a.** 1.0247 **b.** 7.6×10^{-6} **31. a.** 0.8613 **b.** 5.4×10^{-4} **33. a.** 1.1274988 **b.** Approx. 8.85×10^{-6} (Answers may vary if intermediate calculations are rounded.) **35. a.** Approx. -0.10033333**b.** Approx. 1.34×10^{-6} (Answers may vary if intermediate calculations are rounded.) **37. a.** 1.0295635 **b.** Approx. 4.86×10^{-7} (Answers may vary if intermediate calculations are rounded.) **39. a.** Approx. 0.52083333 **b.** Approx. 2.62×10^{-4} (Answers may vary if intermediate calculations are rounded.)
- **41.** $R_n(x) = \frac{\sin^{(n+1)}(c)}{(n+1)!} x^{n+1}$, for c between x and 0
- **43.** $R_n(x) = \frac{(-1)^{n+1}e^{-c}}{(n+1)!}x^{n+1}$, for c between x and 0
- **45.** $R_n(x) = \frac{\sin^{(n+1)}(c)}{(n+1)!} \left(x \frac{\pi}{2}\right)^{n+1}$, for c between x and $\frac{\pi}{2}$
- **47.** 2.0×10^{-5} **49.** 1.6×10^{-5} ($e^{0.25} < 2$) **51.** 2.6×10^{-4}
- **53.** With n = 4, $|error| \le 2.5 \times 10^{-3}$
- **55.** With n = 2, $|\text{error}| \le 4.2 \times 10^{-2} \, (e^{0.5} < 2)$
- **57.** With n = 2, $|error| \le 5.4 \times 10^{-3}$ **59.** 4 **61.** 3 **63.** 1
- 65. a. False b. True c. True d. True 67. a. C b. E
- **c.** A **d.** D **e.** B **f.** F **69. a.** 0.1; 1.7×10^{-4} **b.** 0.2; 1.3×10^{-3} **71. a.** 0.995; 4.2×10^{-6} **b.** 0.98; 6.7×10^{-5}
- **73. a.** 1.05; 1.3×10^{-3} **b.** 1.1; 5×10^{-3} **75. a.** 1.1; 10^{-2} **b.** 1.2; 4×10^{-2}
- 77. a.

-0.1	2.09×10^{-5}	8.51×10^{-8}
0.0	0	0
0.1	2.09×10^{-5}	8.51×10^{-8}
0.2	3.39×10^{-4}	5.51×10^{-6}

- **b.** The errors decrease as |x| decreases.
- $|e^{-x}-p_1(x)|$ $|e^{-x}-p_2(x)|$ 2.14×10^{-2} 1.40×10^{-3} -0.2-0.1 5.17×10^{-3} 1.71×10^{-4} 0.0 0 0.1 4.84×10^{-3} 1.63×10^{-4} 1.87×10^{-2} 1.27×10^{-3} 0.2
 - **b.** The errors decrease as |x| decreases.
- **81.** Centered at x = 0, for all n