Figure 1A

This is an additional script aiming to illustrate beta distribution in 2D or 3D as a series of lines.

#by L.Bystrykh Feb 2022.

First we test how a single beta-distribution probability function works

Now we do the same with the series of distributions where alpha is gradually increasing and beta is gradually decreasing

```
size=50 #length of the density distribution series
series=20
span=seq(0.01,1,length.out=size) #size series in scale 0 to 1
z=c() #probabioity density itself
#generate series of probabioity densities with increasing alpha (i) and
#decreasing beta (21-i) at the same time
for (i in 1:series){
   z=rbind(z,dbeta(span,i,series+1-i))
}
#plot one result as a single probability density in 2D
plot(span, z[3,],"1")
```



```
#add all series to the same plot
plot(span, z[3,],"l", ylab="Probability density")
for (i in 1:series){
   points(span, z[i,], "l")
}
```


Next we try 3D interactive figure as a series of lines

```
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
   The following object is masked from 'package:ggplot2':
##
##
##
       last_plot
## The following object is masked from 'package:stats':
##
       filter
##
## The following object is masked from 'package:graphics':
##
##
       layout
```

```
#this loop will stitch coordinates for series (x), sizes (y) and
#make probability density distribution in zet (taken from the previous calculation)
Threedee=c()
for (i in 1:series){
    x=span
    y=rep(i,size)
    zet=z[i,]
    character=letters[i]
    block=cbind(x,y,zet,character)
    Threedee=rbind(Threedee, block)
}
```

Data are stitched together Now we show it in the plot. I choose for the shortest options. Plotly is a bit awkward in details. I need more time to find it all.

In real script the picture is rotating. In pdf format it is frozen at one angle. The plot clearly shows smooth transition from left-biased distribution to the right biased distribution. Note that the left biased distribution in real life is very biased (many small clones and a few big), whereas right biased distribution is close to equal or flat (many big clones and a few small). This is the end of the illustration. L.B. Feb 14 2022