Statistics: Homework 3

- 10.5 Given $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$ and $Y = \max\{X_1, \ldots, X_n\}$, we have the cdf of Y to be $F_Y(y) = (y/\theta)^n$ for $y \in [0, 1/2]$.
 - (a) When we choose to reject H_0 when Y > c, the power function is $\beta(\theta) = 1 (c/\theta)^n$, $c \in [0, 1/2]$.
 - (b) Given size of the test to be .05, we need to solve,

$$1 - (2c)^n = .05$$

which gives us a solution of $c = 1/2(.95)^{1/n}$

(c) The size, $\alpha = \beta(1/2) = 1 - (2c)^n$, $c \in [0, 1/2]$. Thus, when n = 20, Y = .48, the p-value is

$$\inf\{\alpha: X^n \in R_\alpha\} = 1 - (2 \times .48)^{20} = 0.557997566$$

We would conclude that we do not reject H_0 with an approximate probability of 0.56, which does not give a strong evidence to reject H_0

- (d) When n = 20, Y = .52, using the α formula in (c) gives us $1 (2 \times .52)^{20} = -1.19112314$. But the given Y = .52 > 1/2 which is out of the defined boundaries of the size, i.e. $F_Y(0.52; \theta = 1/2) = 0$. Hence the p-value is 0. This allows us to conclude that H_0 is to be rejected as the p-value always lies in the criteria region; a very strong reason to reject H_0 .
- 10.7b Let $H_0: F_T = F_S$ and $H_1: F_T \neq F_S$, where the subscripts denote Twain and Snodgrass respectively. The observed value of the test statistic given by the absolute difference of their means, $|\overline{T} \overline{S}|$ is

$$|0.231875 - 0.2097| = 0.022175$$

Have to do some simulation here.

Under this p-value, do we reject H_0 at a 5 percent level? How about 2.5 percent level?

10.8 (a) The size of this test with rejection region R is

$$\mathbb{P}(T(X^n) > c | \theta = 0) = \mathbb{P}(\overline{X}_n > c)$$

$$= \mathbb{P}\left(Z > \sqrt{nc}\right), \ Z \text{ is the standard normal distribution}$$

$$= 1 - \Phi(\sqrt{nc}), \ \Phi \text{ is the cdf of the standard normal}$$

where by Central Limit Theorem, $\overline{X}_n \sim N(0, 1/\sqrt{n})$. Thus given size α , the c is $\Phi^{-1}(1-\alpha)/\sqrt{n}$

- (b) Under $H_1: \theta = 1$, the power is $\beta(1) = \mathbb{P}(T(X^n) > c | \theta = 1) = 1 \Phi(\sqrt{n}(c-1))$. Thus when $n \to \infty$, $\sqrt{n}(c-1) \to \infty$ for $c \neq 1$ which then $1 \Phi(\sqrt{n}(c-1)) \to 1$.
- (
- 10.12 (a) We known that the MLE for λ is $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. The Fisher information $I_n(\lambda)$ is

$$I_n(\lambda) = nI(\lambda) = -n\mathbb{E}_{\lambda}\left(\frac{\partial^2 f_X(X;\lambda)}{\partial \lambda^2}\right) = -n\mathbb{E}_{\lambda}\left(-\frac{X}{\lambda^2}\right) = \frac{n}{\lambda}$$

thus by the property of MLE,

$$\frac{\overline{X}_n - \lambda}{\hat{\mathsf{se}}} \leadsto N(0, 1)$$

thus the size of of the Wald test

$$\mathbb{P}\left(\left|\frac{\overline{X}_n - \lambda_0}{\sqrt{n/\lambda_0}}\right| > z_{\alpha/2}\right)$$

- (b)
- 11.3
- 11.4