Bizonyítás és programozás

Kaposi Ambrus

University of Nottingham Functional Programming Lab

Hackerspace Budapest 2015. január 6.

Bizonyítás, érvelés

Példa:

ha vizes a föld, esett az eső sáros a csizmám vizes a föld ha sáros a csizmám, esett az eső

Melyek a megengedett lépések? Rossz példa:

> a halak tudnak úszni a delfinek halak a delfinek tudnak úszni a delfinek nem halak a delfinek nem tudnak úszni

Egy egyszerű logika

Állítások:

- ▶ igaz: ⊤
- ▶ hamis: ⊥
- ▶ ha A és B állítás, akkor $A \land B$ is az
- ▶ hasonlóképp $A \rightarrow B$
- ▶ alapállítások: sáros a csizmám, esett az eső, vizes a föld

Logikai szabályok:

Axiómák:

 $vizes a f\"{o}Id \rightarrow esett az es\~{o}$ $s\'{a}ros a csizm\'{a}m$ $vizes a f\"{o}Id$

Halmazelmélet.

Állítások:

- \blacktriangleright \top . \bot . $A \land B$. $A \lor B$. $A \to B$
- $\forall x.A, \exists x.A \text{ (változók)}, pl. \forall x.x + 3 = 3 + x$
- ▶ alapállítások: a = b, $a \in b$ (a és b kifejezések)

Kifejezések:

- változók (x, y, ...)
- **▶** ∅

Logikai szabályok mint az előbb, plusz:

$$\frac{A}{\forall x.A}$$
 (x szabad A-ban) $\frac{\forall x.A}{A[x\mapsto a]}$ a $\frac{A[x\mapsto a]}{\exists x.A}$ $\frac{\exists x.A}{A[x\mapsto a]}$

Axiómák:

$$\frac{a=b}{a=c} \frac{b=c}{c} \qquad \dots \qquad \forall x. \forall y. \forall z. (z \in x \leftrightarrow z \in y) \rightarrow x=y$$

$$\forall x. \forall y. \exists z. \forall q. q \in z \leftrightarrow q = x \lor q = y \text{ (rövidítés: } z \equiv \{x, y\}\text{)} \dots$$

ZFC

- 1. meghatározottság
- 2. pár
- 3. részhalmaz
- 4. unió
- 5. hatványhalmaz
- 6. végtelenség halmaz
- 7. helyettesítés
- 8. regularitás
- 9. kiválasztási

A matematika felépítése

- ► Ha x, y két halmaz, a belőlük álló rendezett pár: $(x,y) \equiv \{\{x\}, \{x,y\}\}.$
- Egy reláció rendezett párok halmaza.
- ► Egy f relációt függvénynek hívunk, ha $(x,y) \in f \land (x,y') \in f \rightarrow y = y'$.
- ▶ N definíciója:

$$\begin{array}{ll} 0\equiv\emptyset\\ \sup(x)\equiv x\cup\{x\} & \text{(unió axióma)}\\ \mathbb{N}=\{\emptyset\}\cup\{x\cup\{x\}\,|\,x\in\mathbb{N}\} & \text{(végtelenségi axióma)} \end{array}$$

► A + függvény az alábbi halmaz:

$$+ \equiv \{((0,x),x) \mid x \in \mathbb{N}\} \cup \{((suc(x),y), suc(x+y)) \mid x,y \in \mathbb{N}\}$$

▶ A fenti definíciókkal pl. levezethető, hogy $\forall x.x + 3 = 3 + x$.

Tarski (lengyel matematikus, 1901-1983) ötlete

Logikai összekötők jelentése:

- ▶ ⊤ jelentése t
- ▶ ⊥ jelentése f
- A logikai összekötők jelentése igazságtáblázattal adható meg:

Α	В	$A \wedge B$	$A \vee B$	$A \rightarrow B$
t	t	t	t	t
t	f	f	t	t
f	t	f	t	f
f	f	f	f	t

- ▶ $\forall x.A$ jelentése akkor és csak akkor t, ha minden a halmazra $A[x \mapsto a]$ jelentése t.
- ▶ $\exists x.A$ jelentése akkor és csak akkor t, ha létezik olyan a halmaz, melyre $A[x \mapsto a]$ jelentése t.

Heyting (holland matematikus, 1898 - 1980) ötlete

Logikai összekötők jelentése:

```
A \wedge B A egy bizonyítása és B egy bizonyítása
```

$$A \lor B \;\; \mathrm{egy} \; (i,p)$$
 pár, ahol ha $i=0$, akkor $p \; A \; \mathrm{egy}$ bizonyítása,

ha i=1, akkor $p\ B$ egy bizonyítása

$$A o B$$
 egy függvény, mely A egy bizonyítását átalakítja B egy bizonyításává

 $\forall x.A$ egy függvény, mely egy a halmazt $A[x\mapsto a]$ bizonyításává alakítja

 $\exists x.A \quad \text{egy } (a,p) \text{ pár, ahol } a \text{ halmaz, } p \text{ pedig } A[x \mapsto a] \text{ egy bizonyítása}$

⊥ (valami, aminek nincs bizonyítása)

Programozás

Programok típusai:

$$\mathsf{sort} : \mathsf{List} \, \mathsf{Int} \, \to \, \mathsf{List} \, \mathsf{Int} \qquad + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

Hogyan írunk adott típusú programot?

$$A \times B$$
 két program, egy A típusú és egy B típusú

$$A \lor B$$
 vagy egy A típusú, vagy egy B típusú program

$$A \rightarrow B$$
 $\lambda x.t$ ahol $x : A$, $t : B$, és t felhasználhatja x -et

$$\Pi x : A.B \ \lambda x.t \ \text{ahol} \ x : A, \ t : B, \ \text{ahol} \ t \ \text{\'es} \ B \ \text{felhaszn\'alhatja} \ x\text{-et}$$

$$\Sigma x : A.B \text{ egy } (a, b) \text{ pár, ahol } a : A, b : B[x \mapsto a]$$

Programok végrehajtása:

$$\frac{\lambda x.t: A \to B \quad u: A}{(\lambda x.t)(u) \equiv t[x \mapsto u]: B}$$

Észrevétel:

Típuselmélet

Észrevétel:

bizonyítás = programozás

Egy programozási nyelv, mely erre az észrevételre épül. Használható halmazelmélet helyett a matematika felépítésére. Előnyei:

- A bizonyítások számítógéppel ellenőrizhetők (típusellenőrzés).
- A bizonyítások végrehajthatók,
 - pl. ha bizonyítottam, hogy bármely két számnak van legnagyobb közös osztója, akkor ingyen kapok egy progamot is, mely ezt kiszámolja.
- A matematikusoknak van intuíciója a típusokról, pl. nem érdekes nekik, hogy 3 ∈ 5 igaz vagy sem. A típuselmélet explicitté teszi ezt az intuíciót.
- ► Egyszerűség: a típuselméletben →, a függvény típus, és ∀ megegyeznek. Nincs külön logikai és nem-logikai rész.

Curry-Howard izomorfizmus

- Logika és típuselmélet közti kapcsolat
- állítás = típus, bizonyítás = program
- példák:

$$\begin{array}{ll} A \wedge B \Rightarrow C \vee D & A \times B \rightarrow C + D \\ a = b & \operatorname{Id}(a,b) \\ \neg (x = 3) & \operatorname{Id}_{\mathbb{N}}(x,3) \rightarrow 0 \\ \forall x \in \mathbb{N}.x + \operatorname{zero} = x & \prod_{x:\mathbb{N}} \operatorname{Id}_{\mathbb{N}}(x + \operatorname{zero},x) \\ & (x:\mathbb{N}) \rightarrow \operatorname{Id}_{\mathbb{N}}(x + y, y + x) \end{array}$$
 List Char \Rightarrow Int List Char \Rightarrow Int

► Matematikát elsőrendű logikában végeznek: ha ezt képes kifejezni a típusrendszerünk, akkor minden matematikai állítás leírható vele

Példa

N típust a konstruktorokkal adjuk meg:

$$\mathsf{zero}:\mathbb{N}$$
 $\mathsf{suc}:\mathbb{N}\to\mathbb{N}$

▶ az összeadás $(_+_: \mathbb{N} \to \mathbb{N} \to \mathbb{N})$ függvényt rekurzívan definiáljuk:

$$zero + n :\equiv n$$

 $suc(m) + n :\equiv suc(m + n)$

rekurzívan definiáljuk az alábbi függvényt:

assoc :
$$\prod_{x,y,z:\mathbb{N}} \mathsf{Id}_{\mathbb{N}}((x+y)+z,x+(y+z))$$
$$\mathsf{assoc}(\mathsf{zero},y,z) :\equiv \mathsf{refl}(y+z)$$
$$\mathsf{assoc}(\mathsf{suc}(\mathsf{m}),y,z) :\equiv \mathsf{cong}(\mathsf{suc},\mathsf{assoc}(\mathsf{m},\mathsf{y},\mathsf{z}))$$

Következő lépések

- Magyarul: honlapomon egy cikk a homotópia-típuselméletről
- Könyvek:
 - ▶ logika és programozás kapcsolata: Girard, Lafont: Proofs and types (fent van a neten)
 - típuselmélet: Homotopy Type Theory könyv (letölthető) http://homotopytypetheory.org

- logika: Girard: The blind spot
- Martin-Löf típuselméletre épülő programozási nyelvek:
 - Coq: legrégebbi, inkább tételbizonyító rendszerként használják
 - Agda: legfeilettebb
 - Idris: gyakorlati programozásra