Homework 8 CSCI4100

Han Hai Rin:661534083 haih2@rpi.edu

October 28th 2018

- 1. [200 points] Exercise 4.3 Deterministic noise depends on H, as some models approximate f better than others.
 - (a) Assume H is fixed and we increase the complexity of f. Will deterministic noise in general go up or down? Is there a higher or lower tendency to overfit?

Solution: If H is fixed and we increase the complexity of f, deterministic noise will go up, because there are more areas that we cannot model. And there is a lower tendency to overfit, because the target function becomes a more complex model, the original H will be more likely to underfit and less likely to overfit.

(b) Assume f is fixed and we derease the complexity of H. Will deterministic noise in general go up or down? Is there a higher or lower tendency to overfit?

Solution: deterministic noise will go up since H becomes simpler and it cannot model the complexity in f, and there is less tendency to overfit, since hypothesis model becomes simpler

2. [200 points] Exercise 4.5 [Tikhonov regularizer]

A more gneral soft constraint is the Tikhonov regularization constraint: $w^T\Gamma^T\Gamma w \leq C$

(a) What should Γ be to obtain the constraint $\sum_{q=0}^{Q} w_q^2 \leq C$ Solution:

When
$$\Gamma = I$$

 $w^T \Gamma^T \Gamma w = w^T w = \sum_{q=0}^{Q} w_q^2 \le C$

(b) What should Γ be to obtain the constraint $(\sum_{q=0}^{Q} w_q)^2 \leq C$

Solution:

Let Γ be a $(d+1)\times(d+1)$ matrix with first row 1s and the rest 0s. Γw becomes $(\sum_{q=0}^Q w_q), 0, 0, 0, \dots)^T$ So, $w^T\Gamma^T\Gamma w = (\sum_{q=0}^Q w_q)^2 \leq C$

3. [100points] Exercise 4.6

We have seen both the hard-order constraint and the soft-order constraint. Which do you expect to be more useful for binary classification using the perceptron model?

Hint: $sign(w^Tx) = sign(\alpha w^Tx)$

Solution:

I think hard-order constraint is more useful in this context. A soft-order constraint in this case is similar to what the hint describes, for $\alpha > 0$ weight won't affect the classification much. In contrary, setting weights to zero directly forbid the possibility of overfitting in this weight. Therefore, I believe

1

hard-order constraint is better.

4. [100 points] Exercise 4.7 Fix g^- (learned from D_{train}) and define $\sigma_{val}^2 = Var_{D_{val}}[E_{val}(g^-)]$ We consider how σ_{val}^2 depends on K. Let $\sigma^2(g^-) = Var_x[e(g^-(x), y)]$ be the pointwise variance in the out-of-sample error of g^- .

(a) Show that
$$\sigma_{val}^2 = \frac{1}{K}\sigma^2(g^-)$$

 $\sigma_{val}^2 = Var_{D_{val}}[E_{val}(g^-)]$
 $= \frac{1}{K}Var_{D_{val}}[e(g^-(x), y)]$
 $= \frac{1}{K}\sigma^2(g^-)$

- (b) In a classification problem, where $e(g-(x),y) = [g-(x) \neq y]$ express σ_{val}^2 in terms of $P[g^-(x) \neq y]$ $\sigma_{val}^2 = \frac{1}{K} \sigma^2(g^-)$ $= \frac{1}{K} Var_{D_{val}} [E_{val}(g^-)]$ $= \frac{1}{K} (E_x[e(g-(x),y)-(E_x[e(g-(x),y)]])^2$ $= \frac{1}{K} (E_x(1-P[g-(x) \neq y]-P[g-(x) \neq y]^2)$ $= \frac{1}{K} (1-P[g^-(x \neq y)])(P[g^-(x \neq y))$
- (c) Show that for any g- in a classification problem, $\sigma_{val}^2 \leq \frac{1}{4K}$ for any $x \leq 1$ $(1-x)x \leq \frac{1}{4}$ therefore $\sigma_{val}^2 = \frac{1}{K}(1-P)P \leq \frac{1}{4K}$
- (d) Is there a uniform upper bound for variance similar to c in the case of regression with squred error $e(g(x), y) = (g(x) y)^2$ No, since squared error is unbounded, $Var[E_{val}(g^-)] = e^2 - e^2$ is also unbounded
- (e) For regression with squred error, if we train using fewer points to get g⁻ do we expect σ²(g-) to be higher or lower?
 I expect it to be higher, a smaller training set will result in a higher expected error in terms of mean, and higher mean result in higher variance
- (f) Conclude that increasing the size of the validation set can result in a better or a worse estimate of E_{out} It depends, a higher validation set size reduce σ_{val}^2 , and it increases $\sigma_{g^-}^2$. There is a trade off, so finding the balance is key.
- 5. [Exercise 4.8]

Is E_m an unbiased estimate for the out of sample error $E_{out}(g_m^-)$? Yes, $E_m = E_{val}(g_m^-)$ and validation set is independent of training. Therefore it must be unbiased.