Санкт-Петербургский национальный исследовательский университет информационных технологий. механики и оптики

УНИВЕРСИТЕТ ИТМО **УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ** ФИЗИКИ ФТФ

Группа <u>М3111</u>	К работе допущен				
Студент Акберов Р.Х.	Работа выполнена				
Преподаватель Прохорова У. В.	Отчет принят				
Рабочий протокол и отчет по лабораторной работе № 3.02					
Характеристик	и источника тока.				

1.Цель работы:

Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.

Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешность.

2. Задачи, решаемые при выполнении работы:

Исследование характеристик источника тока. Нахождение полной мощности цепи и ее коэффициента полезного действия. Расчёт внутреннего сопротивления и ЭДС источника.

3. Объект исследования:

В качестве объекта рассматривается генератор регулируемого постоянного напряжения блока ГН1 с включенным внутренним сопротивлением

4. Метод экспериментального исследования:

Изменяя переменное сопротивление, записываем показания вольтметра и амперметра. На основе этих показаний выполняем дальнейшие вычисления: мощностей для каждой цепи и КПД в каждом из случаев

5. Рабочие формулы и исходные данные:

1)
$$U = \varepsilon - Ir$$

2) $I_k = \frac{\varepsilon}{r}$
3) $\varepsilon I = I^2 * R + I^2 * r$
4) $P = P_R + P_S$
5) $P_R = \varepsilon * I - I^2 * r$
6) $I_{1,2} = \begin{cases} I_K = \frac{\varepsilon}{r} \\ 0 \end{cases}$
7) $I^* = \frac{I_1 + I_2}{2} = \frac{\varepsilon}{2r}$
8) $P_{Rmax} = P_R(I^*) = \frac{\varepsilon^2}{4r}$
9) $\eta = \frac{P_R}{P} = \frac{UI}{\varepsilon I} = \frac{U}{\varepsilon}$
10) $\eta = \frac{\varepsilon - I_r}{\varepsilon} = 1 - \frac{I_r}{\varepsilon}$
11) $P_{max} = P_{Smax} = \frac{\varepsilon^2}{r}$
12) $\eta = \frac{U}{\varepsilon} = \frac{IR}{IR + Ir} = 50\%$
13) $r = \frac{I_K}{\varepsilon}$

6. Измерительные приборы:

Наименование	Диапазон измерений	Погрешность	
Амперметр	5–20 мА	0,01 мА	
Вольтметр	0–10 B	0,01 B	

7. Схема установки:

Рис. 1. Принципиальная электрическая схема лабораторной установки

Рис. 5. Стенд «С3-ЭМ01»

Рис. 6. Генератор напряжения ГН1

Рис. 7. Схема соединений источника, измерительных приборов и измерительного стенда

8) Результаты прямых измерений и их обработки

No	U, B	І, мА	Рг, мВт	Рs, мВт	Р, мВт	η
1	0	16,39	0,00	189,80	189,80	0,0000
2	1,59	14,05	22,34	139,47	161,81	0,1381
3	2,94	12,05	35,43	102,59	138,02	0,2567
4	3,94	10,58	41,69	79,09	120,77	0,3452
5	4,41	9,88	43,57	68,97	112,54	0,3872
6	5,02	8,98	45,08	56,98	102,05	0,4417
7	5,46	8,32	45,43	48,91	94,34	0,4816
8	5,89	7,69	45,29	41,78	87,08	0,5202
9	6,28	7,11	44,65	35,72	80,37	0,5556
10	6,62	6,62	43,82	30,96	74,79	0,5860
11	6,89	6,22	42,86	27,33	70,19	0,6106
12	7,09	5,93	42,04	24,85	66,89	0,6286
13	7,33	5,56	40,75	21,84	62,60	0,6511
14	7,56	5,22	39,46	19,25	58,72	0,6721
15	7,56	5,22	39,46	19,25	58,72	0,6721

9. Расчет результатов косвенных измерений:

МНК:

$$\bar{x} = \frac{1}{n} \sum_{i} x_{i}$$

$$\bar{y} = \frac{1}{n} \sum_{i} y_{i}$$

$$b = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}} = 11.18$$

$$a = \bar{y} - b\bar{x} = -0.71$$

Внутреннее сопротивление источника:

$$\Delta r = \frac{r = 0.71}{\sum_{i=1}^{15} x_i} = 0.1889$$

ЭДС:

$$\varepsilon = 11,18$$

$$\Delta \varepsilon = 3,7011$$

$$I *= \frac{11,18}{1,42} = 7,87$$

$$P_{Rmax} = \frac{124,99}{2,84} = 44,01$$

$$R = \frac{P_{Rmax}}{I^2} = \frac{44,01}{61,94} = 0,71$$

11. Результаты:

Линейный график U(I), график P(I) и график зависимости КПД от I

12. Вывод:

Исследованы зависимости мощностей, падения напряжения во внешней цепи и КПД источника от силы тока в цепи. Были найдены значения параметров источника.

Значение сопротивлений r и R равны.