Krzysztof Dąbrowski gr. 3

Laboratorium sieci komputerowych - c3 Tworzenie i badanie sieci wewnętrznych

$11~\mathrm{maja}~2019$

Spis treści

1.	Cel	zajęć	1
2.	Sche	emat sieci	1
3.	. Statyczne adresowanie		2
	3.1.	Wybór adresów	2
	3.2.	Ustawienie adresów	3
		3.2.1. Maszyna BSD	3
		3.2.2. Maszyna Ubuntu	3
		3.2.3. Maszyna Windows	3
	3.3.	Test połączenia	3
4.	Dynamiczne adresowanie		
	4.1.	Konfiguracja serwera	4
	4.2.	Dynamiczne przydzielenie adresów	4
		4.2.1. Maszyna BSD	4
		4.2.2. Maszyna Windows	5
5 .	Drug	ga warstwa sieciowa	5
6.	Ana	liza ruchu sieciowego	6
	6.1.	Badanie ARP	6
	6.2.	Badanie DHCP	6
			6
		6 2 2 Magrupa Windows	7

1. Cel zajęć

Celem laboratoriów c3 było utworzenie kilku sieci wewnętrznych oraz podłączenie do nich interfejsów maszyn wirtualnych. W celu nadania adresów wykorzystane zostało adresowanie statyczne oraz dynamiczne. Po zakończeniu konfiguracji sieci należało przeprowadzić analizę ruchu sieciowego.

2. Schemat sieci

Do wykonania zadań została utworzona sieć o schemacie przedstawionym poniżej.

Rysunek 1. Schemat budowanej sieci

3. Statyczne adresowanie

Ręcznie wybiorę adresy, które przypiszę statycznie interfejsom maszyn.

3.1. Wybór adresów

Ponieważ wiem, że będę potrzebował 2 sieci postanowiłem wykorzystać podsieci prywatnej sieci 192.168.0.0. W celu ułatwienia obliczeń zdecydowałem, że maska podsieci będzie 24 bitowa.

- Adres pierwszej sieci 192.168.0.0/24.
- Adres drugiej sieci 192.168.2.0/24.

Maszyna BSD otrzyma statyczny adres 192.168.0.1/24, maszyna Windows 192.168.0.2/24, a maszyna Ubuntu adres 192.168.0.254/24.

3.2. Ustawienie adresów

3.2.1. Maszyna BSD

Poleceniem ifconfig sprawdziłem, który interfejs jest podłączony do sieci wewnętrznej. Interfejs em0 ma ustawiony adres ip, a em1 nie ma. Dzięki temu wiem, że em1 jest podłączony do sieci wewnętrznej.

Poleceniem ifconfig em1 192.168.0.1/24 nadałem adres. By upewnić się, że polecenie zadziało wywołałem ifconfig em1.

3.2.2. Maszyna Ubuntu

Poleceniem ifconfig sprawdziłem, który interfejs jest podłączony do sieci wewnętrznej. Interfejs enp0s3 ma ustawiony adres ip, a enp0s8 nie ma. Dzięki temu wiem, że enp0s8 jest podłączony do sieci wewnętrznej.

Poleceniem sudo ip address add 192.168.0.254/24 dev enp0s8 nadałem adres. By upewnić się, że polecenie zadziało wywołałem ip a.

3.2.3. Maszyna Windows

Poleceniem ipconfig sprawdziłem, który interfejs jest podłączony do sieci wewnętrznej. Interfejs Ethernet ma ustawiony adres ip, a Ethernet 2 nie ma. Dzięki temu wiem, że Ethernet 2 jest podłączony do sieci wewnętrznej.

Poleceniem netsh interface ip set address "Ethernet 2" static 192.168.0.2 255.255.25.0 nadałem adres. By upewnić się, że polecenie zadziało wywołałem ipconfig.

Ethernet adapter Ethernet 2:

```
Connection-specific DNS Suffix . :
Link-local IPv6 Address . . . . : fe80::84c8:23f5:a0ee:874e%2
IPv4 Address . . . . . . : 192.168.0.2
Subnet Mask . . . . . . . : 255.255.255.0
Default Gateway . . . . . . :
```

3.3. Test połączenia

W celu sprawdzenia utworzonej konfiguracji wysłałem ping między maszynami. Będąc zalogowanym na Ubuntu wykonałem ping 192.168.0.1 -c 1,

```
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=0.379 ms

--- 192.168.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.379/0.379/0.000 ms

Oraz ping 192.168.0.254 -c .
```

```
PING 192.168.0.254 (192.168.0.254) 56(84) bytes of data. 64 bytes from 192.168.0.254: icmp_seq=1 ttl=64 time=0.019 ms
--- 192.168.0.254 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 0.019/0.019/0.019/0.000 ms
```

Z wyniku komend widać, że maszyny są ze sobą połączone i mogą wymieniać informacje.

4. Dynamiczne adresowanie

Postanowiłem wykorzystać maszynę Ubuntu jako serwer DHCP. Położyłem statycznie adres z drugiej sieci poleceniem sudo ip a add 192.168.2.254 dev enp0s8.

4.1. Konfiguracja serwera

Zainstalowałem serwer DHCP poleceniem sudo apt install isc-dhcp-server. Następnie skonfigurowałem serwer edytując dwa pliki systemowe.

W pliku /etc/default/isc-dhcp-server umieściłem linię INTERFACES="enp0s8", która wskazuje na jakim interfejsie serwer DHCP ma pracować.

W pliku /etc/dhcp/dhcpd.conf umieściłem konfigurację samego serwera. Zawartość tego pliku wygląda następująco:

```
ddns-update-style none;
default-lease-time 600;
max-lease-time 7200;
subnet 192.168.2.0 netmask 255.255.255.0 {
  range 192.168.2.1 192.168.2.253;
}
```

Definiuje on na jaki czas będą przydzielane adresy oraz z jakie puli będą pochodzić.

Po zakończeniu konfiguracji uruchomiłem serwer poleceniem sudo systemctl start isc-dhcp-server.service oraz sudo systemctl enable isc-dhcp-server.service

By sprawdzić czy serwer działa wykonałem komendę systemctl status isc-dhcp-server.service.

4.2. Dynamiczne przydzielenie adresów

4.2.1. Maszyna BSD

By pozyskać adres od serwera DHCP na maszynie BSD uruchomiłem komendę dhclient em1.

```
DHCPDISCOVER on em1 to 255.255.255.255 port 67 interval 7 DHCPOFFER from 192.168.2.254 DHCPREQUEST on em1 to 255.255.255.255 port 67 DHCPACK from 192.168.2.254 bound to 192.168.2.1 -- renewal in 300 seconds.
```

4.2.2. Maszyna Windows

By móc pozyskać adres od serwera DHCP ustawiłem dynamiczne pobieranie adresów poleceniem netsh interface ip set address "Ethernet 2" dhcp. By sprawdzić wynik uruchomiłem ipconfig.

Ethernet adapter Ethernet 2:

```
Connection-specific DNS Suffix . :
Link-local IPv6 Address . . . . . : fe80::84c8:23f5:a0ee:874e%2
IPv4 Address . . . . . . . . : 192.168.2.3
Subnet Mask . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . :
```

Widać, że interfejs Ethernet 2 otrzymał dynamicznie adres z puli adresów serwera DHCP.

5. Druga warstwa sieciowa

Od początku planowałem kładzenie drugiej warstwy sieciowej. Skonfigurowałem serwer DHCP w ten sposób, że przydziela on adresy z drugiej, oddzielnej sieci niż adresy ustawione statycznie. Można to łatwo sprawdzić listując interfejsy maszyn.

BSD:

```
root@:~ # ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
        options=81009b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,VLAN_HWFILTER>
       ether 08:00:27:a7:2f:18
        inet 192.168.1.128 netmask 0xffffff00 broadcast 192.168.1.255
       media: Ethernet autoselect (1000baseT <full-duplex>)
       status: active
       nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
em1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
       options=81009b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,VLAN_HWFILTER>
        ether 08:00:27:d1:f2:36
        inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
        inet 192.168.2.1 netmask 0xffffff00 broadcast 192.168.2.255
       media: Ethernet autoselect (1000baseT <full-duplex>)
       status: active
       nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
       options=680003<RXCSUM,TXCSUM,LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
        inet6 ::1 prefixlen 128
       inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3
        inet 127.0.0.1 netmask 0xff000000
       groups: lo
       nd6 options=21<PERFORMNUD, AUTO_LINKLOCAL>
```

Ubuntu:

```
link/ether 08:00:27:d0:35:77 brd ff:ff:ff:ff:ff
        inet 192.168.1.127/24 brd 192.168.1.255 scope global dynamic enp0s3
       valid_lft 78646sec preferred_lft 78646sec
        inet6 2002:1fb3:6f53:0:a127:289:2b4b:63b7/64 scope global temporary dynamic
       valid_lft 26sec preferred_lft 16sec
        inet6 2002:1fb3:6f53:0:7fae:fbd2:731f:5366/64 scope global mngtmpaddr noprefixrout
       valid_lft 26sec preferred_lft 16sec
        inet6 fe80::3318:4036:2866:1c4a/64 scope link
       valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group defa
       link/ether 08:00:27:c2:b7:2e brd ff:ff:ff:ff:ff
        inet 192.168.2.254/32 scope global enp0s8
       valid_lft forever preferred_lft forever
        inet 192.168.0.254/32 scope global enp0s8
       valid_lft forever preferred_lft forever
        inet6 fe80::a00:27ff:fec2:b72e/64 scope link
        valid_lft forever preferred_lft forever
```

Widać wyraźnie, że interfejsy mają przypisane dwa adresy ip z różnych sieci.

6. Analiza ruchu sieciowego

W celu zbadania ruchu sieciowego skorzystam z konsolowego narzędzia tcpdump.

6.1. Badanie ARP

By przechwycić ruch związany z protokołem ARP uruchomiłem nasłuchiwanie na maszynie Ubuntu poleceniem sudo tcpdump -i em1 -X arp.

Maszyna BSD ma zapamiętany adres MAC maszyny Windows ponieważ wykonywałem pingowanie. Aby to zmienić muszę wyczyścić cashe ARP poleceniem arp -d -a.

Wykonałem polecenie ping -c 1 192.168.2.254 na maszynie BSD by sprowokować użycie ARP.

Wynik działania tcpdump:

6.2. Badanie DHCP

6.2.1. Maszyna BSD

By przechwycić ruch związany z dynamicznym nadawaniem adresów uruchomiłem nasłuchiwanie na maszynie Ubuntu poleceniem sudo tcpdump -i enp0s8 port 67 or port 68 -X.

192.168.2.1 pytała o to kto ma adres 192.168.2.254.

By móc na nowo pozyskać adres na maszynie BSD zatrzymałem działającego klienta DHCP poleceniem kill -9 931. Następnie wywołałem dhclient em1. Zwrócony został następujący komunikat.

```
DHCPREQUEST on em1 to 255.255.255.255 port 67 DHCPACK from 192.168.2.254 bound to 192.168.2.1 -- renewal in 300 seconds.
```

Wynik działania tcpdump:

```
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on enp0s8, link-type EN10MB (Ethernet), capture size 262144 bytes
20:06:47.429724 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from 08:00:27:d1:f2:36 (oui Unk
    0x0000: 4510 0148 0000 0000 8011 3996 0000 0000 E..H.....9.....
    0x0010: fffff ffff 0044 0043 0134 095f 0101 0600 .....D.C.4._....
    0x0020: 0cal 3dff 0000 0000 0000 0000 0000 0000 ..=....
    0x0070:
          0000 0000 0000 0000 0000 0000 0000
    0x0090:
          0000 0000 0000 0000 0000 0000 0000 0000
    0x00a0:
          0000 0000 0000 0000 0000 0000 0000
    0x00d0:
          0000 0000 0000 0000 0000 0000 0000 0000
    0x0100: 0000 0000 0000 0000 6382 5363 3501 0332
                                    .....c.Sc5..2
    0x0110: 04c0 a802 013d 0701 0800 27d1 f236 370a
                                    .....=....,..67.
    0x0120: 011c 0279 030f 060c 771a ff00 0000 0000 ...y....w......
    . . . . . . . . . . . . . . . .
    0x0140: 0000 0000 0000 0000
20:06:47.441442 IP 192.168.2.254.bootps > 192.168.2.1.bootpc: BOOTP/DHCP, Reply, length 300
    Ox0000: 4510 0148 0000 0000 8011 b345 c0a8 02fe E..H.....E....
    0x0010: c0a8 0201 0043 0044 0134 7da0 0201 0600
                                   .....C.D.4}....
    0x0020: Ocal 3dff 0000 0000 0000 0000 c0a8 0201 ..=.....
    0000 0000 0000 0000 0000 0000 0000 0000
    0x0070:
          0000 0000 0000 0000 0000 0000 0000
    0x0090:
          0000 0000 0000 0000 0000 0000 0000 0000 .....
    0x00a0:
          0000 0000 0000 0000 0000 0000 0000 0000
                                    . . . . . . . . . . . . . . . . .
    0x00b0:
          0000 0000 0000 0000 0000 0000 0000
          0000 0000 0000 0000 0000 0000 0000 0000 .....
    0x00c0:
          0000 0000 0000 0000 0000 0000 0000
    .0P00x0
    0x0100: 0000 0000 0000 0000 6382 5363 3501 0536
                                    ....c.Sc5..6
    0x0110:
          04c0 a802 fe33 0400 0002 5801 04ff ffff
    . . . . . . . . . . . . . . . .
    0x0140: 0000 0000 0000 0000
2 packets captured
2 packets received by filter
0 packets dropped by kernel
```

6.2.2. Maszyna Windows

By przechwycić ruch związany z dynamicznym nadawaniem adresów uruchomiłem nasłuchiwanie na maszynie Ubuntu poleceniem sudo tcpdump -i enp0s8 port 67 or port 68 -X.

W celu pozbycia się wcześniej uzyskanego adresu wpisałem komendę ipconfig /release. Następnie by pozyskać adres od serwera DHCP wpisałem ipconfig /renew

Wynik działania tcpdump:

```
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on enp0s8, link-type EN10MB (Ethernet), capture size 262144 bytes
20:06:47.429724 IP 0.0.0.0.bootpc > 255.255.255.bootps: BOOTP/DHCP, Request from 08:00:27:d1:f2:36 (oui Unk
0x0000: 4510 0148 0000 0000 8011 3996 0000 0000 E..H.....9....
```

```
0x0010: fffff fffff 0044 0043 0134 095f 0101 0600 .....D.C.4._....
    0x0020: 0cal 3dff 0000 0000 0000 0000 0000 0000 ..=.....
    0x0030: 0000 0000 0000 0000 0800 27d1 f236 0000
                                . . . . . . . . . . ' . . 6 . .
    . . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    sudo tcpdump -i enp0s8 port 67 or port 68 -X
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on enp0s8, link-type EN10MB (Ethernet), capture size 262144 bytes
20:11:41.195971 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from 08:00:27:07:df:cb (oui Unk
    0x0000: 4500 014a 4280 0000 8011 f723 0000 0000 E..JB.....#....
    0x0010: ffff ffff 0044 0043 0136 769f 0101 0600 ....D.C.6v.....
    0x0020: efc1 01d4 0000 0000 0000 0000 0000 0000 .....
    0x0030: 0000 0000 0000 0000 0800 2707 dfcb 0000 .........
    . . . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    0000 0000 0000 0000 0000 0000 0000
    . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    0x0100: 0000 0000 0000 0000 6382 5363 3501 013d
                                 .....c.Sc5..=
    0x0110: 0701 0800 2707 dfcb 3204 c0a8 0203 0c0f
    0x0120: 4445 534b 544f 502d 4c52 5352 4144 353c DESKTOP-LRSRAD5<
    0x0130: 084d 5346 5420 352e 3037 0e01 0306 0f1f .MSFT.5.07......
    0x0140: 212b 2c2e 2f77 79f9 fcff
                                 !+,./wy...
20:11:42.198007 IP 192.168.2.254.bootps > 192.168.2.3.bootpc: BOOTP/DHCP, Reply, length 300
    0x0010: c0a8 0203 0043 0044 0134 ecdb 0201 0600 .....C.D.4......
    0x0020: efc1 01d4 0000 0000 0000 0000 c0a8 0203
                                 . . . . . . . . . . . . . . . .
    0x0030: c0a8 02fe 0000 0000 0800 2707 dfcb 0000
    0000 0000 0000 0000 0000 0000 0000
                                 . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . .
    0x0100: 0000 0000 0000 0000 6382 5363 3501 0236
    0x0110: 04c0 a802 fe33 0400 0002 5801 04ff ffff
                                .....3....X....
    . . . . . . . . . . . . . . . . . . .
    0x0140: 0000 0000 0000 0000
20:11:42.199351 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from 08:00:27:07:df:cb (oui Unk
    0x0000: 4500 0164 4281 0000 8011 f708 0000 0000 E..dB......
    0x0010: ffff ffff 0044 0043 0150 1679 0101 0600
                                .....D.C.P.y....
    0x0020: efc1 01d4 0000 0000 0000 0000 0000 0000
                                . . . . . . . . . . . . . . . .
    0x0030: 0000 0000 0000 0000 0800 2707 dfcb 0000
                                 . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . .
    0x00a0:
         0000 0000 0000 0000 0000 0000 0000
```

```
0x0100: 0000 0000 0000 0000 6382 5363 3501 033d .....c.Sc5..=
     0x0110: 0701 0800 2707 dfcb 3204 c0a8 0203 3604
     0x0120: c0a8 02fe 0c0f 4445 534b 544f 502d 4c52
                                      .....DESKTOP-LR
     0x0130: 5352 4144 3551 1200 0000 4445 534b 544f SRAD5Q....DESKTO
           502d 4c52 5352 4144 353c 084d 5346 5420 P-LRSRAD5<.MSFT.
     0x0140:
           352e 3037 0e01 0306 0f1f 212b 2c2e 2f77 5.07.....!+,./w
     0x0150:
     0x0160: 79f9 fcff
                                      y...
20:11:42.213375 IP 192.168.2.254.bootps > 192.168.2.3.bootpc: BOOTP/DHCP, Reply, length 300
     0x0010: c0a8 0203 0043 0044 0134 e9db 0201 0600 .....C.D.4......
     0x0020: efc1 01d4 0000 0000 0000 0000 c0a8 0203
                                      . . . . . . . . . . . . . . . . .
     0x0030: c0a8 02fe 0000 0000 0800 2707 dfcb 0000 .........
     0x0050:
           0000 0000 0000 0000 0000 0000 0000
                                      . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . .
     0x0090:
           0000 0000 0000 0000 0000 0000 0000
     . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . .
     0x00c0:
           0000 0000 0000 0000 0000 0000 0000
     . . . . . . . . . . . . . . . .
     0x00f0:
           0000 0000 0000 0000 0000 0000 0000
     0x0100: 0000 0000 0000 0000 6382 5363 3501 0536
                                      ....c.Sc5..6
     0x0110: 04c0 a802 fe33 0400 0002 5801 04ff ffff
                                      .....3....X.....
     . . . . . . . . . . . . . . . . . . .
     0x0140: 0000 0000 0000 0000
```

^C

⁴ packets captured

⁴ packets received by filter

O packets dropped by kernel