ITCS 461 Computer & Communication Security

ID: 6388014 Name: Waris Damkham Section: 2

Save your answer sheet as "**Student_ID_Firstname_Lab02.pdf**". Submit to the lab folder in MyCourses website according to your section.

Lab 2 : Public-Key Cryptography

Date: 30/01/2023

Follow Lab 2 explanation (Lab2_Explain.pdf) and answer these questions:

Part I: RSA Key Generation

Question 1: What are the values of "N" and "d"?	
value of "N" = <u>77</u>	
value of "d" = <u>53</u>	
calculate $\phi(N) = (P - 1) \times (Q - 1) = \underline{\qquad 60}$	_
Verify that $N = P \times Q$?	(Y/N)
Verify that $e \times d \equiv 1 \mod \varphi(N)$?	(Y/N)
If No, why? 901 is no equal 1	
Question 2 : (e = 13)	
What is the value of private key "d"?37	_
Verify $e \times d \equiv 1 \mod \varphi(N)$?(Y/N)	
If No, why? 481 is not equal 1	
Question 3 : (e = 5)	
What is the value of private key "d"?Error	_
$Verify \; e \times d \equiv 1 \; mod \; \varphi(N) \; ? \underline{\hspace{1cm}} N \underline{\hspace{1cm}} (Y/N)$	
If No, why? Error to generator	

Part II: RSA Encryption/Decryption

Question 4:
What is the ciphertext (C)? 52
What is the encryption key (e)?17
Is it correct? Y (Y/N) (check manually by using a calculator)
Question 5 : (input = 2)
What is the ciphertext (C)? 18
Is it correct? Y (Y/N) (check manually by using a calculator)
Question 6 : (input = 79)
What is the ciphertext (C)?18
Is it the same as output in question 5 ? $\underline{\underline{Y}}$ $\underline{\underline{Y}}$ $\underline{\underline{Y}}$
Question 7: What is the message output (M)? 61
Verify that the decrypted value is identical to the input message of Question 4 . Y (Y/N) (check for P, C, e and d. If you cannot get "yes", try again.)
Question 8:
What is the message output (M)?
Verify that the decrypted value is identical to the input message of Question 5 . Y (Y/N)
(check for P, C, e and d. If you cannot get "yes", try again.)
Question 9:
What is the message output (M)?
Verify that the decrypted value is identical to the input message of Question 6 . N (Y/N)
If no, what do you think the reason is ? The max of length N

Question 10: What is the maximum value of plaintext that will get a successful decryption?

Part III: Attack to Break RSA

Question 11: Is "334780716989568987860441698482126908177047949837137685689124313889828	
83793878002287614711652531743087737814467999489"	
a prime number ? Y (Y/N)	
Question 12: Use this workspace to find two prime numbers (i.e. P and Q) in the range	
of 900 - 1000 and calculate N and $\phi(N)$	
$P = \underbrace{907}_{0.11}$	
$Q = \underline{\qquad \qquad 911}$ Calculate N = P \times Q = \tag{826277}	
Calculate $\Phi(N) = (P-1) \times (Q-1) = 824460$	
Calculate $\psi(N) = (P - 1) \times (Q - 1) = 824400$	
Question 13 : Factorize N = 3992003	
P = 1997	
Q = 1999	
(check your answer by using a calculator)	
Question 14 : Factorize N = 98448473560141	
P = 8827823	
Q = 11152067	
(check your answer by using a calculator)	
Overestion 15 Attack to DCA by twing to design private leaved. Suppose multiplication	
Question 15 : Attack to RSA by trying to derive private key (d). Suppose, public-key (e) of Alice is 6007 and global modulus number (N) is 43562419. Find the corresponding	
private-key(d) of Alice.	
$N = P \times Q$	
P = 5501	
$Q = \frac{7919}{}$	
$\phi(N) = (P-1) \times (Q-1) = 43549000$	
e = 6007	
$d = e^{-1} \mod \phi(N) = 33769143$	
(check your answer by using a calculator, verify that $e \times d = 1 \mod \phi(N)$? If not,	
try again.)	
• •	