Standard solution-

A solution of known concentration is called standard solution.

Titration;-

The process of adding the solution taken in the burette dropwise to a fixed volume of other solution taken in the conical flask till the endpoint, is called titration.

End point-

The stage at which the reaction is just completed.

Indicators-

The endpoint is detected with the help of some substance is called indicators. They exhibit a marked colour change at the endpoint.

Acid -base titration

Two type;- i) Acidimetry-determination of amount of base in a solution by titrating with a standard acid solution.

ii) Alkalimetry;- determination of amount of acid in a acid solution by titrating against a standard base solution.

pH range of indicators-

orange rea to gorden yenow.

Indicator	pH Range	Colour		
		Acid Medium	Basic Medium	
Phenolphthalene	8.3 - 10	Colourless	Pink	
Methyl Orange	3.1 - 4.5	Pink	Yellow	
Litmus	4.5 - 8.3	Red	Blue	

Choice of indicators in acid -Base titration

- Titration of strong acid against strong base: Eg- HCI/HNO₃ /H₂SO₄ VS NaOH/KOH
 Methyl orange or Phenolphthalein
- Titration of weak Acid Against Strong Base
 Eg-Oxalic acid/Acetic acid vs NaOH/KOH
 Phenolphthalein

 Titration of Strong acid against Weak Base

HCI/HNO₃/H₂SO₄ vs Na₂CO₃/K₂CO₃
Methyl orange

 Titration of Weak acid against weak Base Oxalic acid/Acetic acid vs Na₂CO₃/K₂CO₃

Titration has no sharp pH change ,none of the indicator cannot be used

Principle of Volumetric analysis;-

N1V1=N2V2

N1=normality of titrant V1=volume of titrant N2=normality of titrate V2=volume of titrate 1. 500ml of a decinormal solution is diluted by adding 300ml of water.what is the normality of resulting solution?

```
V1=24MI
N1=?
V2=20ml
N2=0.1N
V1N1=V2N2
Then N1=V2N2/V1
       =20*0.1/24
        =0.083N
v=400ml
E=49gm
N=0.083N
N=w*1000/E*V
 Then w=N*E*V/1000
      =0.08*49*400/1000
      =1.63gm
```

```
w=0.252g
v=200ml
E=45g
```

```
N=w*1000/E*V
=0.252*1000/45*200
=0.028N
```

```
Calculate the normality of KoH solution containing 1.4g kOH in 700ml? w=1.4g V=700ml E=56gm N=w1000/EV
```

=1,4*1000/56*700

=0.0357N

```
Calculate the pH of o.02M NaOH?
[OH] = 0.02M
pOH=-log[OH]
   =-log[0.02]
   =1.69
pH+pOH=pKw=14
So pH=14-pOH
    =14-1.69
    =12.30
```