

## 74V1G80

# SINGLE POSITIVE EDGE TRIGGERED D-TYPE FLIP-FLOP

- HIGH SPEED:
  - $f_{MAX} = 180MHz$  (TYP.) at  $V_{CC} = 5V$
- LOW POWER DISSIPATION:  $I_{CC} = 1\mu A(MAX.)$  at  $T_A=25$ °C
- HIGH NOISE IMMUNITY: V<sub>NIH</sub> = V<sub>NIL</sub> = 28% V<sub>CC</sub> (MIN.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE:  $|I_{OH}| = I_{OL} = 8\text{mA (MIN)}$  at  $V_{CC} = 4.5\text{V}$
- BALANCED PROPAGATION DELAYS: t<sub>PLH</sub> ≅ t<sub>PHL</sub>
- OPERATING VOLTAGE RANGE: V<sub>CC</sub>(OPR) = 2V to 5.5V
- IMPROVED LATCH-UP IMMUNITY



#### **ORDER CODES**

| PACKAGE   | T&R        |
|-----------|------------|
| SOT23-5L  | 74V1G80STR |
| SOT323-5L | 74V1G80CTR |

#### **DESCRIPTION**

The 74V1G80 is an advanced high-speed CMOS SINGLE POSITIVE EDGE TRIGGERED D-TYPE FLIP-FLOP WITH INVERTED OUTPUT fabricated with sub-micron silicon gate and double-layer metal wiring C<sup>2</sup>MOS technology. it is designed to operate from 2V to 5.5V, making this device ideal for portable applications.

This D-Type flip-flop is controlled by a clock input (CK). On the positive transition of the clock, the  $\overline{Q}$  output will be set to the logic inverted state that was setup at the D input.

Following the hold time interval, data at the D input can be changed without affecting the level at the output. Power down protection is provided on input and 0 to 7V can be accepted on input with no regard to the supply voltage. This device can be used to interface 5V to 3V.

It's available in the commercial temperature range. All inputs and output are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

#### PIN CONNECTION AND IEC LOGIC SYMBOLS



July 2001 1/10

#### **INPUT EQUIVALENT CIRCUIT**



#### **PIN DESCRIPTION**

| PIN No | SYMBOL          | NAME AND FUNCTION           |
|--------|-----------------|-----------------------------|
| 1      | D               | Data Input                  |
| 2      | СК              | Clock Input (Positive Edge) |
| 4      | Q               | Inverted Flip-Flop Output   |
| 3      | GND             | Ground (0V)                 |
| 5      | V <sub>CC</sub> | Positive Supply Voltage     |

#### **TRUTH TABLE**

| D | СК | Q  |
|---|----|----|
| L |    | Н  |
| Н |    | L  |
| L |    | Qn |
| Н | _  | Qn |

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                              | Parameter                            | Value                         | Unit |
|-------------------------------------|--------------------------------------|-------------------------------|------|
| V <sub>CC</sub>                     | Supply Voltage                       | -0.5 to +7.0                  | V    |
| V <sub>I</sub>                      | DC Input Voltage                     | -0.5 to +7.0                  | V    |
| Vo                                  | DC Output Voltage                    | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>                     | DC Input Diode Current               | - 20                          | mA   |
| I <sub>OK</sub>                     | DC Output Diode Current              | ± 20                          | mA   |
| Io                                  | DC Output Current                    | ± 25                          | mA   |
| I <sub>CC</sub> or I <sub>GND</sub> | DC V <sub>CC</sub> or Ground Current | ± 50                          | mA   |
| T <sub>stg</sub>                    | Storage Temperature                  | -65 to +150                   | °C   |
| TL                                  | Lead Temperature (10 sec)            | 260                           | °C   |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol          | Parameter                                                                                   | Value                | Unit         |
|-----------------|---------------------------------------------------------------------------------------------|----------------------|--------------|
| V <sub>CC</sub> | Supply Voltage                                                                              | 2 to 5.5             | V            |
| V <sub>I</sub>  | Input Voltage                                                                               | 0 to 5.5             | V            |
| Vo              | Output Voltage                                                                              | 0 to V <sub>CC</sub> | V            |
| T <sub>op</sub> | Operating Temperature                                                                       | -55 to 125           | °C           |
| dt/dv           | Input Rise and Fall Time (note 1) ( $V_{CC}$ = 3.3 $\pm$ 0.3V) ( $V_{CC}$ = 5.0 $\pm$ 0.5V) | 0 to 100<br>0 to 20  | ns/V<br>ns/V |

1)  $V_{IN}$  from 30% to 70% of  $V_{CC}$ 

#### **DC SPECIFICATIONS**

|                 |                             | Test Condition  |                              |                       |      |                    | Value              |                    |                    |                    |      |
|-----------------|-----------------------------|-----------------|------------------------------|-----------------------|------|--------------------|--------------------|--------------------|--------------------|--------------------|------|
| Symbol          | Parameter                   | v <sub>cc</sub> |                              | T <sub>A</sub> = 25°C |      |                    | -40 to             | 85°C               | -55 to 125°C       |                    | Unit |
|                 |                             | (V)             |                              | Min.                  | Тур. | Max.               | Min.               | Max.               | Min.               | Max.               |      |
| V <sub>IH</sub> | High Level Input            | 2.0             |                              | 1.5                   |      |                    | 1.5                |                    | 1.5                |                    |      |
|                 | Voltage                     | 3.0 to<br>5.5   |                              | 0.7V <sub>CC</sub>    |      |                    | 0.7V <sub>CC</sub> |                    | 0.7V <sub>CC</sub> |                    | V    |
| $V_{IL}$        | Low Level Input             | 2.0             |                              |                       |      | 0.5                |                    | 0.5                |                    | 0.5                |      |
|                 | Voltage                     | 3.0 to<br>5.5   |                              |                       |      | 0.3V <sub>CC</sub> |                    | 0.3V <sub>CC</sub> |                    | 0.3V <sub>CC</sub> | V    |
| V <sub>OH</sub> | High Level Output           | 2.0             | I <sub>O</sub> =-50 μA       | 1.9                   | 2.0  |                    | 1.9                |                    | 1.9                |                    |      |
|                 | Voltage                     | 3.0             | I <sub>O</sub> =-50 μA       | 2.9                   | 3.0  |                    | 2.9                |                    | 2.9                |                    |      |
|                 |                             | 4.5             | I <sub>O</sub> =-50 μA       | 4.4                   | 4.5  |                    | 4.4                |                    | 4.4                |                    | V    |
|                 |                             | 3.0             | I <sub>O</sub> =-4 mA        | 2.58                  |      |                    | 2.48               |                    | 2.4                |                    |      |
|                 |                             | 4.5             | I <sub>O</sub> =-8 mA        | 3.94                  |      |                    | 3.8                |                    | 3.7                |                    |      |
| V <sub>OL</sub> | Low Level Output            | 2.0             | I <sub>O</sub> =50 μA        |                       | 0.0  | 0.1                |                    | 0.1                |                    | 0.1                |      |
|                 | Voltage                     | 3.0             | I <sub>O</sub> =50 μA        |                       | 0.0  | 0.1                |                    | 0.1                |                    | 0.1                |      |
|                 |                             | 4.5             | I <sub>O</sub> =50 μA        |                       | 0.0  | 0.1                |                    | 0.1                |                    | 0.1                | V    |
|                 |                             | 3.0             | I <sub>O</sub> =4 mA         |                       |      | 0.36               |                    | 0.44               |                    | 0.55               |      |
|                 |                             | 4.5             | I <sub>O</sub> =8 mA         |                       |      | 0.36               |                    | 0.44               |                    | 0.55               |      |
| I <sub>I</sub>  | Input Leakage<br>Current    | 0 to<br>5.5     | V <sub>I</sub> = 5.5V or GND |                       |      | ± 0.1              |                    | ± 1                |                    | ± 1                | μΑ   |
| I <sub>CC</sub> | Quiescent Supply<br>Current | 5.5             | $V_I = V_{CC}$ or GND        |                       |      | 1                  |                    | 10                 |                    | 20                 | μА   |

## AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3 \text{ns}$ )

|                                   | Test Condition Value |                     |      |  |      |         |      |        |      |        |       |       |
|-----------------------------------|----------------------|---------------------|------|--|------|---------|------|--------|------|--------|-------|-------|
| Symbol                            | Parameter            | v <sub>cc</sub>     | CL   |  | Т    | A = 25° | С    | -40 to | 85°C | -55 to | 125°C | Unit  |
|                                   |                      | (V)                 | (pF) |  | Min. | Тур.    | Max. | Min.   | Max. | Min.   | Max.  |       |
| t <sub>PLH</sub> t <sub>PHL</sub> | Propagation Delay    | 3.3 <sup>(*)</sup>  | 15   |  |      | 4.9     | 8.4  | 1.0    | 9.8  | 1.0    | 10.8  |       |
|                                   | Time CK to Q         | 3.3 <sup>(*)</sup>  | 50   |  |      | 5.9     | 12.0 | 1.0    | 14.0 | 1.0    | 15.0  | ns    |
|                                   |                      | 5.0 <sup>(**)</sup> | 15   |  |      | 3.5     | 5.6  | 1.0    | 7.0  | 1.0    | 8.0   | 115   |
|                                   |                      | 5.0 <sup>(**)</sup> | 50   |  |      | 4.5     | 8.0  | 1.0    | 10.0 | 1.0    | 11.0  |       |
| t <sub>W</sub>                    | CK Pulse Width,      | 3.3 <sup>(*)</sup>  |      |  | 4.0  |         |      | 4.0    |      | 4.0    |       | 20    |
|                                   | HIGH or LOW          | 5.0 <sup>(**)</sup> |      |  | 3.0  |         |      | 3.0    |      | 3.0    |       | ns    |
| t <sub>s</sub>                    | Setup Time D to      | 3.3 <sup>(*)</sup>  |      |  | 4.0  |         |      | 4.0    |      | 4.0    |       | ns    |
|                                   | CK, HIGH or LOW      | 5.0 <sup>(**)</sup> |      |  | 3.0  |         |      | 3.0    |      | 3.0    |       | 115   |
| t <sub>h</sub>                    | Hold Time D to CK,   | 3.3 <sup>(*)</sup>  |      |  | 1.0  |         |      | 1.0    |      | 1.0    |       | nc    |
|                                   | HIGH or LOW          | 5.0 <sup>(**)</sup> |      |  | 1.0  |         |      | 1.0    |      | 1.0    |       | ns    |
| f <sub>MAX</sub>                  | Maximum Clock        | 3.3 <sup>(*)</sup>  | 50   |  | 100  | 120     |      | 90     |      | 90     |       | MHz   |
|                                   | Frequency            | 5.0 <sup>(**)</sup> | 50   |  | 165  | 180     |      | 150    |      | 150    |       | IVITZ |

<sup>(\*)</sup> Voltage range is 3.3V ± 0.3V (\*\*) Voltage range is 5.0V ± 0.5V

#### **CAPACITIVE CHARACTERISTICS**

|                 |                                              | Test Condition | Value |                                  |      |      |              |      |      |    |
|-----------------|----------------------------------------------|----------------|-------|----------------------------------|------|------|--------------|------|------|----|
| Symbol          | Parameter                                    |                | Т     | T <sub>A</sub> = 25°C -40 to 85° |      | 85°C | -55 to 125°C |      | Unit |    |
|                 |                                              |                | Min.  | Тур.                             | Max. | Min. | Max.         | Min. | Max. |    |
| C <sub>IN</sub> | Input Capacitance                            |                |       | 4                                | 10   |      | 10           |      | 10   | pF |
| C <sub>PD</sub> | Power Dissipation<br>Capacitance<br>(note 1) |                |       | 8                                |      |      |              |      |      | pF |

<sup>1)</sup> C<sub>PD</sub> is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I<sub>CC(opr)</sub> = C<sub>PD</sub> x V<sub>CC</sub> x f<sub>IN</sub> + I<sub>CC</sub>

#### **TEST CIRCUIT**



 $C_L$  = 15/50pF or equivalent (includes jig and probe capacitance)  $R_T$  =  $Z_{OUT}$  of pulse generator (typically  $50\Omega$ )

### WAVEFORM: PROPAGATION DELAY, SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)



## **SOT23-5L MECHANICAL DATA**

| DIM  |      | mm.  |      |       | mils |       |  |  |  |
|------|------|------|------|-------|------|-------|--|--|--|
| DIM. | MIN. | TYP  | MAX. | MIN.  | TYP. | MAX.  |  |  |  |
| А    | 0.90 |      | 1.45 | 35.4  |      | 57.1  |  |  |  |
| A1   | 0.00 |      | 0.15 | 0.0   |      | 5.9   |  |  |  |
| A2   | 0.90 |      | 1.30 | 35.4  |      | 51.2  |  |  |  |
| b    | 0.35 |      | 0.50 | 13.7  |      | 19.7  |  |  |  |
| С    | 0.09 |      | 0.20 | 3.5   |      | 7.8   |  |  |  |
| D    | 2.80 |      | 3.00 | 110.2 |      | 118.1 |  |  |  |
| E    | 2.60 |      | 3.00 | 102.3 |      | 118.1 |  |  |  |
| E1   | 1.50 |      | 1.75 | 59.0  |      | 68.8  |  |  |  |
| е    |      | 0.95 |      |       | 37.4 |       |  |  |  |
| e1   |      | 1.9  |      |       | 74.8 |       |  |  |  |
| L    | 0.35 |      | 0.55 | 13.7  |      | 21.6  |  |  |  |



## **SOT323-5L MECHANICAL DATA**

| DIM  |      | mm.  |      |      | mils |      |  |  |
|------|------|------|------|------|------|------|--|--|
| DIM. | MIN. | TYP  | MAX. | MIN. | TYP. | MAX. |  |  |
| А    | 0.80 |      | 1.10 | 31.5 |      | 43.3 |  |  |
| A1   | 0.00 |      | 0.10 | 0.0  |      | 3.9  |  |  |
| A2   | 0.80 |      | 1.00 | 31.5 |      | 39.4 |  |  |
| b    | 0.15 |      | 0.30 | 5.9  |      | 11.8 |  |  |
| С    | 0.10 |      | 0.18 | 3.9  |      | 7.1  |  |  |
| D    | 1.80 |      | 2.20 | 70.9 |      | 86.6 |  |  |
| E    | 1.80 |      | 2.40 | 70.9 |      | 94.5 |  |  |
| E1   | 1.15 |      | 1.35 | 45.3 |      | 53.1 |  |  |
| е    |      | 0.65 |      |      | 25.6 |      |  |  |
| e1   |      | 1.3  |      |      | 51.2 |      |  |  |
| L    | 0.10 |      | 0.30 | 3.9  |      | 11.8 |  |  |



| DIM  |      | mm.  |      |       |       |        |
|------|------|------|------|-------|-------|--------|
| DIM. | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.   |
| Α    |      |      | 180  |       |       | 7.086  |
| С    | 12.8 | 13.0 | 13.2 | 0.504 | 0.512 | 0.519  |
| D    | 20.2 |      |      | 0.795 |       |        |
| N    | 60   |      |      | 2.362 |       |        |
| Т    |      |      | 14.4 |       |       | 0.567  |
| Ao   | 3.13 | 3.23 | 3.33 | 0.123 | 0.127 | 0.131  |
| Во   | 3.07 | 3.17 | 3.27 | 0.120 | 0.124 | 0.128  |
| Ko   | 1.27 | 1.37 | 1.47 | 0.050 | 0.054 | 0.0.58 |
| Ро   | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161  |
| Р    | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161  |



# Tape & Reel SOT323-xL MECHANICAL DATA

| DIM. | mm.  |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.  |
| А    | 175  | 180  | 185  | 6.889 | 7.086 | 7.283 |
| С    | 12.8 | 13   | 13.2 | 0.504 | 0.512 | 0.519 |
| D    | 20.2 |      |      | 0.795 |       |       |
| N    | 59.5 | 60   | 60.5 |       | 2.362 |       |
| Т    |      |      | 14.4 |       |       | 0.567 |
| Ao   |      | 2.25 |      |       | 0.088 |       |
| Во   |      | 2.7  |      |       | 0.106 |       |
| Ko   |      | 1.2  |      |       | 0.047 |       |
| Ро   | 3.98 | 4    | 4.2  | 0.156 | 0.157 | 0.165 |
| Р    | 3.98 | 4    | 4.2  | 0.156 | 0.157 | 0.165 |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com