Introduction to Machine Learning

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you should be able to:

- Explain what machine learning is
- List three applications of machine learning encountered in everyday life

... learning from data

- ... learning from data
- ... on its own

- ... learning from data
- ... on its own
- ... discovering hidden patterns

- ... learning from data
- ... on its own
- ... discovering hidden patterns
- ... data-driven decisions

Applications of Machine Learning

Credit Card Fraud Detection

Handwritten Digit Recognition

ZIP Code: 14221

Primary number: 276

Recommendations on Websites

You are not following anyone. Find people to follow by searching for a name, inviting friends, or choosing from people we recommend.

Machine Learning and Data Science

- Data mining
- Predictive analytics
- Big Data

Machine Learning Models

- Learn from data
- Discover patterns and trends
- Allow for data-driven decisions
- Used in many different applications

Categories of Machine Learning

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you should be able to:

- Describe the main categories of machine learning techniques
- Summarize how supervised learning differs from unsupervised learning

Regression

Goal: Predict numeric value

Cluster Analysis

Goal: Organize similar items into groups.

Association Analysis

Goal: Find rules to capture associations between items.

Categories of Machine Learning Techniques

- Classification
- Cluster Analysis
- Regression
- Association Analysis

Supervised vs. Unsupervised

- Supervised Approaches
 - Target (what model is predicting) is provided
 - 'Labeled' data
 - Classification & regression are supervised.

Supervised vs. Unsupervised

- Supervised Approaches
 - Target (what model is predicting) is provided
 - 'Labeled' data
 - Classification & regression are supervised.
- Unsupervised Approaches
 - Target is unknown or unavailable
 - 'unlabeled' data
 - Cluster analysis & association analysis are unsupervised.

Categories of Machine Learning Techniques

Terminology Related to Machine Learning

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you should be able to:

- Describe what a feature is and how it relates to a sample
- Name some alternative terms for 'feature'
- Summarize how a categorical feature differs from a numerical feature

Terms to Describe Data

Terms to Describe Data: SAMPLE

Samples

Terms to Describe Data: VARIABLE

Variables MinTemp **MaxTemp** ID Date Rainfall 2010-06-17 55 75 0.1 2 2010-06-18 52 78 0.0 3 2010-06-19 50 78 0.0 2010-06-20 54 77 0.0

Data Types

Most common

Numeric Categorical

Others

Numeric Variables

- Values are numbers
- Also called 'quantitative'

1

7x10⁵

163.92

-0.4902

Categorical Variables

- Values are labels, names, or categories
- Also called 'qualitative' or 'nominal'

Variable

- **Feature**
- Field
- Column
- •

Sample

Samples

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	55	75	0.1
2	2010-06-18	52	78	0.0
3	2010-06-19	50	78	0.0
4	2010-06-20	54	77	0.0

Variables

Categorical

Qualitative Nominal

- Instance
- Record
- Row
- Observation

Numeric

Quantitative

scikit-learn Machine Learning in Python

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you should be able to:

- Identify key strengths of scikit-learn
- Explain why it is a leading library for Machine Learning
- Navigate your way to find the right tool in scikit-learn
- Search for tutorials that provide problem specific examples using library functions

scikit-learn

- Open source library for Machine Learning in Python
- Built on top of NumPy, SciPy, matplotlib
- Active community for development
- Improved continuously by developers

Preprocessing Tools

- Utility Functions for
 - Transforming raw feature vectors to suitable format
- Provides API for
 - Scaling of features: remove mean and keep unit variance
 - Normalization to have unit norm
 - Binarization to turn data into 0 or 1 format
 - One Hot Encoding for categorical features
 - Handling of missing values
 - Generating higher order features
 - Build custom transformations

Provides organized tutorials with specifics.

Quick Start

A very short introduction into machine learning problems and how to solve them using scikit-learn. Introduced basic concepts and conventions.

User Guide

The main documentation. This contains an indepth description of all algorithms and how to apply them.

Other Versions

- scikit-learn 0.18 (stable)
- · scikit-learn 0.19 (development)
- scikit-learn 0.17
- scikit-learn 0.16
- scikit-learn 0.15

Tutorials

Useful tutorials for developing a feel for some of scikit-learn's applications in the machine learning field.

API

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Additional Resources

Talks given, slide-sets and other information relevant to scikit-learn.

Development

Information on how to contribute. This also contains useful information for advanced users, for example how to build their own estimators.

Flow Chart

A graphical overview of basic areas of machine learning, and guidance which kind of algorithms to use in a given situation.

FAQ

Frequently asked questions about the project and contributing.

Related packages

Other machine learning packages for Python and related projects. Also algorithms that are slightly out of scope or not well established enough for scikit-learn.

http://scikit-learn.org/stable/documentation.html

Clustering

• sklearn.cluster gives algorithms for grouping of unlabeled data

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

Dimensionality Reduction

- Enables you to reduce features while preserving variance
- scikit-learn has capabilities for:
 - Principal Component Analysis (PCA)
 - Singular Value Decomposition
 - Factor Analysis
 - Independent Component Analysis
 - Matrix Factorization
 - Latent Dirichlet Allocation

Model Selection

- Provides methods for Cross Validation
- Library functions for tuning hyper parameters
- Model Evaluation mechanisms to measure model performance
- Plotting methods for visualizing scores to evaluate models

Summary of scikit-learn

- Extensive set of tools for full pipeline in Machine Learning
- Dependable due to community support
- Provides easy to use API for training, and making predictions
- Collection of the best, most popular, algorithms in one place