MITSUHARA *et al.* Application No.: 08/805,813 Page 4

APPENDIX I

CLAIMS PENDING AFTER AMENDMENT

1	21. (Amended) A method of conferring resistance to pathogenic fungi on a plant
. 2	using a DNA sequence encoding a member of the sarcotoxin 1 family or homolog thereof, the
3	method comprising the steps of: transforming a plant cell by introducing the DNA sequence
4	encoding the member of the sarcotoxin 1 family or homolog thereof; and regenerating the
5	transformed plant cell into a transgenic plant expressing the member of the sarcotoxin 1 family or
6	homolog thereof, wherein the DNA encoding the member of the sarcotoxin 1 family or homolog
7	thereof is in an expression vector, said expression vector comprising an expression cassette
8	comprising a first plant promoter induced by stress and a second plant promoter which is
9	constitutively expressed, wherein the first plant promoter and the second plant promoter are
10	positioned adjacent to each other, and wherein the transgenic plant has enhanced resistance to
11	pathogenic fungi as compared to a corresponding untransformed plant.
1	22. The method according to claim 21, wherein the pathogenic fungi are Rhizoctonia
2	solani, Pythium aphanidermatum, and Phytophthora infestans.
_	Solum, 1 yimum upmamuormatum, ana 1 nytopiimora ingestane.
1	23. (Amended) The method according to claim 21, wherein the member of the
2	sarcotoxin 1 family or homolog thereof is sarcotoxin 1a.
1	24. (Twice amended) The method according to claim 21, wherein the expression
2	cassette comprises the DNA sequence encoding the member of the sarcotoxin 1 family or homolog
3	thereof operably linked to the first plant promoter and a drug resistance gene operably linked to the
4	second plant promoter.
1	25. (Amended) The method according to claim 21, wherein the DNA sequence
1 2	encoding the member of the sarcotoxin 1 family or homolog thereof is operably linked to a plant
	gene via the hinge region of a tobacco chitinase gene.
3	gene via the hinge region of a tobacco cintinase gene.
1	26. (Amended) The method according to claim 21, wherein the DNA sequence
2	encoding the member of the sarcotoxin 1 family or homolog thereof is operably linked to a signal
3	sequence from a plant gene.

MITSUHARA et al.

Application No.: 08/805,813

Page 5

1

2

stress is the promoter of the tobacco PR-1a gene.

29. (Amended) The method according to claim 21, wherein the promoter induced by 1 2 stress is the promoter of the tobacco PR-1a gene. 30. (Amended) The method according to claim 24, wherein the expression cassette 1 2 further comprises the terminator of the tobacco PR-1a gene operably linked downstream of the DNA sequence encoding the member of the sarcotoxin 1 family or homolog thereof. 3 31. (Amended) The method according to claim 21, wherein the second plant 1 promoter is the cauliflower mosaic virus 35S promoter. 2 32. (Amended) A plant which confers resistance to pathogenic fungi, the plant 1 comprising an expression vector comprising an expression cassette comprising a DNA sequence 2 encoding a member of the sarcotoxin 1 family or homolog thereof operably linked to a promoter 3 induced by stress and a drug resistance gene operably linked to a constitutively expressed promoter, 4 wherein the promoter induced by stress and the constitutively expressed promoter are positioned 5 adjacent to each other, wherein the transgenic plant has enhanced resistance to pathogenic fungi as 6 7 compared to a corresponding untransformed plant. 33. The plant according to claim 32, wherein the pathogenic fungi are Rhizoctonia 1 2 solani, Pythium aphanidermatum, and Phytophthora infestans. 34. (Amended) The plant according to claim 32, wherein the member of the 1 2 sarcotoxin 1 family or homolog thereof is sarcotoxin 1a. 35. (Amended) The plant according to claim 32, wherein the DNA sequence 1 2 encoding the member of the sarcotoxin 1 family or homolog thereof is operably linked to a plant 3 gene via the hinge region of a tobacco chitinase gene. 36. (Amended) The plant according to claim 32, wherein the DNA sequence 1 2 encoding the member of the sarcotoxin 1 family or homolog thereof is operably linked to a signal 3 sequence from a plant gene.

38. (Amended) The plant according to claim 32, wherein the promoter induced by

MITSUHARA et al. Application No.: 08/805,813 Page 6

- 39. (Amended) The plant according to claim 32, wherein the expression cassette
 further comprises the terminator of the tobacco PR-1a gene operably linked downstream of the DNA
 sequence encoding the member of the sarcotoxin 1 family or homolog thereof.
- 1 40. The plant according to claim 32, wherein the constitutively expressed promoter is 2 the cauliflower mosaic virus 35S promoter.
- 1 41. The plant according to claim 32, wherein the expression vector further comprises 2 a T-DNA region and a drug resistance gene.