OPERAÇÕES UNITÁRIAS I

PROF^a KASSIA G SANTOS

2021/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 1

CAP. 1. SISTEMAS FLUIDOMECÂNICOS:

- 1. BOMBAS
- 1.1 Tipos
- 1.2 Deslocamento Positivo

Referências

- □ **Foust** *et all*; Princípios das Operações Unitárias; Guanabara Dois, 1982, 670 p.
- Macintyre, A.J.; Bombas e Instalações de Bombeamento; Guanabara Dois, 1987, 782 p.
- □ Cremasco, M. A. Operações
 Unitárias em sistemas particulados e fluido-mecânicos. Blucher. 2012.

INTRODUÇÃO

Movimentação de matéria (fluidos, sólidos, misturas)

DUTOS

 Cada material possui uma rugosidade diferente

ACESSÓRIOS

- Tês
- Luvas de redução
- Cotovelos
- Junções
- Curvas

DISPOSITIVO DE CONTROLE DE FLUXO

- Válvula pé de crivo
- Válvula de retenção

MÁQUINAS GERATRIZES

- Bombas
- Compressores
- Ventiladores
- Sopradores

1. BOMBAS

- ☐ Em um sistema com escoamento de um fluido é normalmente necessário adicionar energia ao fluido para mantê-lo em escoamento.
- □ A energia é fornecida por um equipamento motriz como uma bomba (escoamento de líquidos) ou compressores, ventiladores e sopradores (escoamento de gases).
- □ Esta energia adicionada ao fluido pode compensar as perdas por atrito ou contribuir para um aumento de velocidade, pressão ou altura do fluido.

Definição

Bombas são <u>máquinas geratrizes</u>, cuja finalidade é deslocar líquidos por escoamento.

Sendo uma máquina geratriz, transforma o trabalho mecânico que recebe de um motor em energia hidráulica sob as formas que o líquido é capaz de absorver, isto é:

Esquema de uma instalação de bombeamento típica

1.1 Classificação das Bombas

DESLOCAMENTO
POSITIVO
OU
VOLUMÉTRICAS

Alternativa: (embolo, diafragma, pistão). Para líquidos limpos e puros.

Rotativa: vazão uniforme, para líquidos viscosos e não abrasivos.

Vazão pulsante

BOMBAS CENTRÍFUGAS OU TURBOBOMBAS **AXIAL:** para líquidos limpos.

RADIAL: vazão estacionária, para líquidos sujos e abrasivos.

vazão estacionária

BOMBA A JATO Usam o movimento de uma corrente a alta velocidade para imprimir movimento a outra corrente, misturando as duas.

BOMBA ELETRO MAGNÉTICA Princípio igual ao motor de indução usada com líquidos de alta condutividade elétrica (metais líquidos) não tem partes mecânicas

1.2. Bombas de Deslocamento Positivo

As bombas de deslocamento positivo impelem uma quantidade definida do fluido em cada golpe ou volta do dispositivo. Uma porção de fluido é presa numa câmara, e pela ação de um pistão ou peças rotativas é impulsionado para fora. Desse modo, a energia do elemento rotativo ou pistão é transferida para o fluido.

Após 1 (uma) rotação de seu eixo ou ação do pistão, desloca-se um volume fixo de produto, independentemente das condições de pressão na saída.

Assim, elas não precisam transformar energia cinética em pressão pois a energia fornecida ao liquido decorre da variação do volume do fluido contido na bomba.

1.2. Bombas de Deslocamento Positivo

As moléculas de líquida em contacto com o órgão que transfere a energia tem aproximadamente a mesma trajetória que a do ponto do órgão com o qual está em contato

Estas Bombas possuem uma ou mais câmaras, em cujo interior o movimento de um órgão propulsor comunica energia de pressão ao líquido, provocando seu escoamento.

Há uma relação constante entre a capacidade de descarga da bomba (em termos de vazão e pressão) e a velocidade do órgão propulsor da bomba.

1.2. Bombas de Deslocamento Positivo

BOMBAS ALTERNATIVAS

Adicionam energia ao sistema fluido por meio de um pistão que atua contra um líquido confinado.

A Descarga é função do volume varrido pelo pistão e do número de golpes do pistão por unidade de tempo.

Entre todos os tipos de bombas, são as que imprimem ao fluido as pressões mais elevadas, mas a vazão produzida é relativamente pequena.

Usadas no bombeamento de água de alimentação de caldeiras, de óleos e lamas.

Não são recomendadas em líquidos que contem sólidos (abrasivos).

Bombas alternativas

Bomba de pistão

Bomba de diafragma

Bombas alternativas

A quantidade de fluido dependerá então, do volume do cilindro e do número de vezes que o pistão se move no cilindro. A vazão real, entretanto, pode ser menor que o volume total varrido, pois pode haver fugas através do pistão, ou ocorrer o enchimento incompleto do cilindro.

<u>Eficiência volumétrica:</u> é a razão entre a descarga real e a descarga baseada no deslocamento do pistão. No caso de bombas bem ajustadas, a eficiência volumétrica pode ser maior que 95%.

<u>Eficiência mecânica:</u> é a razão entre a energia suprida ao fluido pela energia suprida à bomba. Esta eficiência é menor que a volumétrica pois existem elevadas perdas provocadas pelo atrito.

As bombas alternativas podem ser de **simples efeito**, quando apenas uma face do êmbolo atua sobre o líquido, e de **duplo efeito**, quando as duas faces atuam.

São ainda classificadas em:

(duplex, triplex, etc \Rightarrow O número de cilindro.)

- Simplex: quando existe apenas uma câmara com pistão ou êmbolo.
- □ **Duplex**: dois os pistões ou êmbolos.
- ☐ <u>Triplex:</u> três os pistões ou êmbolos.
- Multiplex: quatro ou mais os pistões ou êmbolos. Sofrem menor flutuação.

Simplex simples efeito

Outlet

<u>Simplex de simples efeito</u>: o líquido sai pela válvula de descarga até que ela se feche no final do golpe, quando o pistão para e inverte o seu movimento. Nesse instante, a válvula de admissão se abre e o cilindro se enche, mas não há descarga durante a admissão, o resultado é um fluxo intermitente.

<u>Simplex de duplo efeito</u> quase elimina os efeitos dos períodos de descarga nula, mas o escoamento ainda cai a zero quando o pistão inverte o seu movimento.

Duplex de duplo efeito: fluxo ainda mais uniforme

Nesse caso, a descarga de um cilindro está deslocada à metade de um golpe em relação à descarga do outro, de modo que a descarga total sofre

menor flutuação.

Dúplex de duplo efeito

Curvas de descarga de bombas alternativas

Bombas de Deslocamento Positivo

BOMBAS ROTATIVAS

O líquido retido no espaço entre os dentes ou entre palhetas deslizantes é deslocado de modo contínuo pelo movimento de rotação desde a entrada até a saída da bomba.

Usadas com líquidos de quaisquer viscosidades.

Usadas no bombeamento de os óleos minerais, vegetais e animais, gorduras, glicose, melaço, tintas, vernizes, maioneze, bronzeadores, etc.

Não são recomendadas em líquidos que contem sólidos (abrasivos).

EXEMPLOS DE BOMBAS ROTATIVAS

Suction Discharge

Bomba de

Bomba de Bomba de engrenagens palhetas

Bomba de parafuso

Bomba de 3 lóbulos

Bomba pistão duplo circunferencial

Bomba tubo flexível (peristáltica)

BOMBAS DE EMGRENAGENS

BOMBA DE PARAFUSOS OU HELICOIDAL

Projeto de Bombas de Deslocamento Positivo

A seleção do modelo da bomba de deslocamento positivo é feita de posse dos dados de **pressão e capacidade máxima** do modelo, geralmente dispostos em gráficos e tabelas, fornecidos no catálogo do fabricante.

Tabela 1 - Especificação de bombas alternativas

Modelo	Capacidade Máxima	Pressão Máxima				
	(cm^3/h)	(kgf/cm ²)				
M-5	780	204				
M-4	1040	136				
M-3	2300	68				
M-2	4200	34				
M-1	6500	20				

Neste exemplo, o fabricante indica que há um decréscimo de 1% a 1,5% na capacidade para cada aumento de pressão na ordem de 6,8 kgf/cm² devido a tolerâncias de fabricação e vedação das válvulas.

Atividades da Aula 1

download)

Individual: Assista os vídeos indicados no Classroom, para complementar o aprendizado. Procure Tabelas que apresentem a perda de carga de diversos acessórios. Atividade da Empresa: Criar site. Adicionar aba de vídeos no site, com vídeos de diferentes bombas, mostrando suas partes ou aplicações. Procurar catálogos de bombas de deslocamento positivo e postar no site (crie uma área de documentos, para que as pessoas possam fazer

☐ Fazer um vídeo sobre tipos e aplicações de tubulações, explicando os tipos de acessórios e válvulas mais utilizados. Envie no Classroom e poste no site.

OPERAÇÕES UNITÁRIAS I

PROFª KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

EXERCÍCIOS DA AULA 1

BOMBA DE DESLOCAMENTO POSITIVO

EX. I (pg. 514 Foust):

Bombear a uma vazão constante um líquido de densidade igual a da água para um reator a uma taxa de 90 gal/min. A bomba deve operar contra uma pressão de 200 psi conforme o balanço de energia do sistema.

Dispõe-se de uma bomba que se comporta de acordo com a curva característica a seguir. Qual a velocidade (rpm) em que se deve operar a bomba?

Qual a potência necessária para manter o escoamento?

EX. I (pg. 514 Foust):

Dados:

Capacidade: 90 gal/min

Pressão: 200 psi

Interpolando

	Q [gal/min]	rpm
1	31	200
2	73	400
3	90	X
4	97	600

Solução: A velocidade de operação está entre 400 e 600 rpm → 541,6 rpm

Ex 2: Selecionar a potência do motor e a rotação para uma bomba de deslocamento positivo.

O sistema possui altura de projeto de 80 psi (=551580 Pa ou 56,30 mca) e 70 galões/minuto (=15,9 m³/h) de vazão de projeto.

A viscosidade do fluido é de 5000 cS.

Fatores de correção da potência e velocidade do motor de bombas de deslocamento positivo para fluidos viscosos:

Tabela de conversão de centi-Stokes para Saybolt Seconds Universal:

Centistokes	Poise	SSU			
· 1	.01	.31			
10	.10	60			
20	.20	100			
40	.40	210			
.60	.60	320			
: 80*	.80 430				
100	1.0	530			
200	2.0	1,000			
. 300	3.0	1.475			
400	4.0	1.950			
500	5.0	2.480			
1.000	10.0	4.600			
-2.000	20.0	9.400			
3.000	30.0	14.500			
4,000	40.0	18 500			
5.000	50.0	23.500			
6.000	60.0	28,000			
7.000	70.0	32.500			
8.000	80.0	37.000			
9.000	90.0	41.000			
10,000	100	46,500			
15.000	150	69.400			
20.000	200	92,500			
30.000	300	138. 600			

Dados: Fluido com 5000 cS Hproj. = 56,3 m Vazãoproj. = 15,9 m3/h

Corrigindo a velocidade de rotação e potência do motor, tem-se as seguintes necessidades para uma bomba de deslocamento positivo:

Potência do motor = 5 HP * 1,4 = 7 HP Rotação da bomba = 345rpm *0,30 = 104rpm

Ex 3: Selecionar uma bomba de lóbulos sanitária para deslocar óleo vegetal (100cS) a 3,6 m³/h (15,8 galões/min) e a 8 bar (116psig = 80.000Pa = 81,6 mca)

	Model Ióbulos da	•				uction & litary	k Disch Enla	Differential Pressure		Max. Speed	Max. Capacity at	
	Alfa Laval	litres/rev	Imp gal/ 100 rev	US gal/ 100 rev	mm	inch.	mm	inch.	bar	psi	₩ rev/min	1000 rpm m³/hr
	SRU1/005/LD or H SRU1/008/LD or H	0.053 0.085	1.17 1.87	1.40 2.25	25 25	1.0 1.0	- 40	- 1.5	8 5	115 75	1000 1000	3.18 5.10
1	SRU2/013/LS or HS	0.128	2.82	3.38	25	1.0	40	1.5	10	45	1000	7.68
	SRU2/013/LD or HD	0.128	2.82	3.38	25	1.0	40	1.5	15	215	1000	7.66
	SRU2/018/LS or HS	0.181	3.98	4.78	40	1.5	50	2.0	7	100	1000	10.86
	SRU2/018/LD or HD	0.181	3.98	4.78	40	1.5	50	2.0	10	145	1000	10.86
	SRU3/027/LS or HS	0.266	5.85	7.03	40	1.5	50	2.0	10	145	1000	15.96
	SRU3/027/LD or HD	0.266	5.85	7.03	40	1.5	50	2.0	15	215	1000	15.96
	SRU3/038/LS or HS	0.384	8.45	10.14	50	2.0	65	2.5	7	100	1000	23.04
	SRU3/038/LD or HD	0.384	8.45	10.14	50	2.0	65	2.5	10	145	1000	23.04
	SRU4/055/LS or HS	0.554	12.19	14.64	50	2.0	65	2.5	10	145	1000	33.24
	SRU4/055/LD or HD	0.554	12.19	14.64	50	2.0	65	2.5	20	290	1000	33.24
	SRU4/079/LS or HS	0.790	17.38	20.87	65	2.5	80	3.0	7	100	1000	47.40
	SRU4/079/LD or HD	0.790	17.38	20.87	65	2.5	80	3.0	15	215	1000	47.40
	SRU5/116/LS or HS	1.160	25.52	30.64	65	2.5	80	3.0	10	145	600	41.76
	SRU5/116/LD or HD	1.160	25.52	30.64	65	2.5	80	3.0	20	290	600	41.76
	SRU5/168/LS or HS	1.680	36.95	44.38	80	3.0	100	4.0	7	100	600	60.48
	SRU5/168/LD or HD	1.680	36.95	44.38	80	3.0	100	4.0	15	215	600	60.48
	SRU6/260/LS or HS	2.600	57.19	68.68	100	4.0	100	4.0	10	145	500	78.00
	SRU6/260/LD or HD	2.600	57.19	68.68	100	4.0	100	4.0	20	290	500	78.00
	SRU6/353/LS or HS	3.530	77.65	93.25	100	4.0	150	6.0	7	10	500	105.90
	SRU6/353/LD or HD	3.530	77.65	93.25	100	4.0	150	6.0	15	215	500	105.90

Curva característica de bomba de lóbulos da Alfa Laval

Dados: Hproj. = 81,6 m e Vazãoproj. = 3,6 m3/h Fluido com 100cS

Os seguintes valores finais são obtidos:

Rotação da bomba = 600 rpm NPSH requerido = 4,4 m

Potência necessária (P)

P= (1,0 * 600rpm / 10000) + 1,3

Fator multiplicativo (após etapa 5)

Potência hidráulica a 1cS da curva (após etapa 5)

P = 1,36 kW = 1,82 HP (usar 2HP)

NPSH requerido pela bomba de lóbulos

