

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 036 844 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 20.09.2000 Bulletin 2000/38

(21) Application number: 98955971.1

(22) Date of filing: 27.11.1998

MC NL PT SE

(51) Int. Cl.⁷: **C12N 15/12**, C12N 15/54, C12N 15/63, C12Q 1/68, C07K 16/40, A61K 48/00, A61K 38/43, A61K 33/32

(86) International application number: PCT/JP98/05357

(87) International publication number:WO 99/28459 (10.06.1999 Gazette 1999/23)

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

(30) Priority: 27.11.1997 JP 34425697

01.10.1998 JP 28035798

(71) Applicant:
 Chugai Research Institute for Molecular Medicine Inc.
 Niihari-gun, Ibaraki 300-4101 (JP)

(72) Inventors:

JENNE, Dieter, E.
 D-82061 Neuried (DE)

 NEZU, Jun-Ichl, Chugai Res.Inst_OMolec. Medic.Inc. Ibaraki 300-4101 (JP)

(74) Representative:
Jaenichen, Hans-Rainer, Dr.
Vossius & Partner,
Postfach 86 07 67
81634 München (DE)

(54) EXAMINATION METHOD, EXAMINATION REAGENT AND REMEDY FOR DISEASES CAUSED BY VARIATION IN LKB1 GENE $\stackrel{\sim}{}$

With respect to a range of 1.5 Mbp and more in the chromosome 19p13.3 region containing Peutz-Jeghers gene, a continuous cosmid contig is constructed and a restriction map is prepared. Next, genes mapped with this region are searched by using EST database and the locations of these genes are accurately determined. Based on the evaluation of biological data, etc., several highly likely candidates for Peutz-Jeghers genes are specified from the genes thus found. After successively analyzing variations in these genes in DNAs of patients with Peutz-Jeghers syndrome, it is found that one of these genes, i.e., "LKB1" has been specifically varied in these patients. Thus, the diseases caused by the variation in the LKB1 gene can be diagnosed and treated by using the LKB1 gene, primers and probes based on its base sequence, LKB1 protein, an antibody biding to this protein, etc.

EP 1 036 844 A1

Description

Technical Field

[0001] The present invention relates to a method of diagnostic of the diseases caused by mutations in the LKB1 gene and to an diagnostic reagent and a therapeutic preparation for said diseases.

Background Art

25

35

55

[0002] Peutz-Jeghers (PJ) syndrome [MIM 175200] is an autosomal dominantly inherited disorder characterized by melanotic pigmentation of lips, perioral and buccal regions and by benign, hamartomatous and adenomatous types of multiple gastrointestinal polyps. Patients with this syndrome are known to frequently develop benign or malignant neoplasms in the gastrointestinal tract, pancreas, ovaries, testis, breast and uterus. In particular, small benign tumors frequently occur in the ovary and are developed as multifocal, symmetrical germinal-cord structures with annular tubules. Then, they progress into granulosa cancer and result in ambisexual precocity in girls. It was found that multifocal germinal cord cancer in boys, though with low frequency, results in gynecomasty and feminization due to over-production of estrogen. Defects in the gene responsible for Peutz-Jeghers syndrome (PJ gene) appear to predispose to a wide spectrum of neoplastic diseases. In fact, 50% of the carriers with a defect in one of PJ allele are known to develop cancer by the age of 60 (Giardiello, F.M. et al. Increased risk of cancer in Peutz-Jeghers syndrome. N. Engl. J. Med. 316,1511-1514 (1987); Spigelman, A.D., Murday, V. & Phillips, R.K. Cancer and Peutz-Jeghers syndrome. Gut 30, 1588-1590 (1989). [MIM 175200]). It is believed that loss or inactivation of the PJ gene product results in disruption of the fundamental growth control mechanism within somatic cells that have potential high proliferative capacity, which triggers the growth of benign hamartomatous polyps some of which turn into malignant tumor cells after further genetic alteration.

[0003] Recently, it was reported that PJ gene was mapped to chromosome 19p13.3 by linkage analysis in 12 families of PJ syndrome with a multipoint lod score of 7.00 at the microsatellite genetic marker D19S886 (Hemminki, A. et al. Localization of a susceptibility locus for PJ syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat. Genet. 15 (1), 87-90 (1997)). A similar linkage between PJ gene and the genetic marker D19S886 was reported in a second study investigating five other families as well (with a multipoint lod score of 7.52) (Amos, C.I. et al. Fine mapping of a genetic locus for PJ syndrome on chromosome 19p. Cancer Res. 57, 3653-3656 (1997)). D19S565 was first known as a genetic marker proximal to the PJ gene, which causes recombination with the gene. Thereafter, the genetic marker D19S878 was found to be located more proximal to the gene. These two makers, therefore, were thought to define the proximal border of the PJ candidate region. In both linkage studies, no recombination was observed between the marker D19S886 and PJ gene, indicating that they are located in a narrow interval.

Disclosure of the Invention

[0004] An objective of the present invention is to identify the gene responsible for Peutz-Jeghers syndrome and to provide a method for diagnosing diseases resulting from a mutation in this gene, a diagnostic reagent and a therapeutic preparation for the diseases.

[0005] To identify the gene for PJ syndrome, the present inventors made a continuous cosmid contig and a restriction map for the region extending from 1.5 Mb within chromosome 19p13.3 which includes the PJ gene. EST database search for the genes mapped in this region was then performed, and the precise locations of these genes were determined. The inventors evaluated biological information of a number of genes thus found and selected several potent candidates of the PJ gene. Mutation analysis of these candidate genes in DNAs from patients with PJ syndrome revealed that one of the candidate genes, "LKB1," was specifically mutated in the patients with PJ syndrome. Thus, the inventors' intense investigations successfully identified the gene responsible for PJ syndrome for the first time. Based on this finding, the inventors found that diseases caused by mutations in the LKB1 gene can be diagnosed and treated by utilizing the LKB1 gene, primers and probes based on the sequence thereof, LKB1 protein and antibodies that bind to LKB1 protein.

[0006] As described above, the present invention relates to a method of diagnosing diseases caused by mutation in the LKB1 gene, the gene responsible for PJ syndrome, and to a diagnostic reagent and a therapeutic preparation for the diseases. More specifically, the present invention relates to:

- (1) a primer DNA used for diagnosing a disease caused by mutation in the LKB1 gene, the primer DNA comprising a nucleotide sequence containing at least a portion of any one of the nucleotide sequences shown in SEQ ID NOs:
- (2) the primer DNA according to (1), wherein the primer DNA has a nucleotide sequence corresponding to any one

of the nucleotide sequences shown in SEQ ID NOs: 7 to 30;

ď

5

10

15

20

25

30

35

40

45

50

- (3) the primer DNA according to (1) or (2), wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome;
- (4) a probe DNA used for diagnosing a disease caused by mutation in the LKB1 gene, the probe DNA comprising a nucleotide sequence containing at least a portion of any one of the nucleotide sequences shown in SEQ ID NOs: 1 to 4:
- (5) the probe DNA according to (4), wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome;
- (6) a therapeutic preparation for a disease caused by mutation in the LKB1 gene, the preparation comprising the LKB1 gene as an active ingredient;
- (7) a therapeutic preparation for a disease caused by mutation in the LKB1 gene, the preparation comprising the LKB1 protein an active ingredient;
- (8) a therapeutic preparation for a disease caused by mutation in the LKB1 gene, the preparation comprising a compound that enhances the activity of LKB1 protein as an active ingredient;
- (9) the therapeutic preparation according to (6) to (8), wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome;
- (10) a reagent for diagnostic of a disease caused by mutation in the LKB1 gene, the reagent comprising an antibody that binds to the LKB1 protein as an active ingredient;
- (11) the reagent according to (10), wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome:
- (12) a method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising detecting mutation in the LKB1 gene;
- (13) a method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a DNA sample from a patient;
 - (b) amplifying the DNA using the primer DNA according to (1);
 - (c) cleaving the amplified DNA;
 - (d) fractionating the DNA fragments according to their size;
 - (e) hybridizing the probe DNA according to (4) with the fractionated DNA fragments; and
 - (f) comparing the size of the DNA fragment thus detected to that from a control of a healthy subject;
- (14) a method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a RNA sample from a patient;
 - (b) fractionating the RNA sample depending on its size;
 - (c) hybridizing the probe DNA according to (4) with the RNA thus fractionated;
 - (d) comparing the size of the RNA thus detected to that from a control of a healthy subject;
- (15) a method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a DNA sample from a patient;
 - (b) amplifying the DNA using the primer DNA according to (1);
 - (C) separating the amplified DNA into single stranded DNA;
 - (d) fractionating the separated single stranded DNA on a non-denatured gel;
 - (e) comparing the mobility of the single stranded DNA separated on the non-denatured gel to that of a control of a healthy subject;
- (16) a method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a DNA sample from a patient;
 - (b) amplifying the DNA using the primer DNA according to (1);
 - (c) fractionating the amplified DNA on the DNA denatured gradient gel;
 - (d) comparing the mobility of the fractionated DNA on the gel to that of a control of a healthy subject;
- (17) the method according to any one of (12) to (16), wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome.
- [0007] The present invention was made based on the inventors' findings that Peutz-Jeghers syndrome is caused

by a mutation in the gene called "LKB1". The present invention primarily relates to the use of polynucleotides containing at least a portion of the nucleotide sequence corresponding to the genomic DNA coding LKB1 (including intron, promoter, and enhancer regions as well as exon regions), and said polynucleotides for diagnosing diseases resulting from mutations in the LKB1 gene. The genomic DNA regions of LKB1 are shown in the SEQ ID: 1 to 4. The sequences shown in SEQ ID: 1 to 4 correspond to 5' upstream region, exon 1 and intron 1 (a part) region, exons 2 to 8 and introns 1 (a part) to 8 (a part) region, and intron 8 (a part) and exon 9 region of the LKB1 gene, respectively.

[0008] Nucleotide sequences containing a portion of these regions can be used as primers or probes to diagnose the diseases resulting from mutations in the LKB1 gene. A nucleotide used as a primer is typically 15 to 100 bp, preferably 17 to 30 bp. Any primer can be used as long as it amplifies at least a portion of the LKB1 gene or regions regulating the gene expression. Such regions include, for example, exon, intron, promoter, and enhancer regions of the LKB1 gene. On the other hand, nucleotides used as a probe typically have a sequence of at least 15 bp or more when the nucleotides are synthetic oligonucleotides. Double stranded DNA obtained from a clone into which a vector such as plasmid DNA is incorporated can be used as a probe. For a region utilized as a probe, any part of the LKB1 gene or region regulating the expression thereof can be used. Such regions include, for example, exon, intron, promoter and enhancer regions of the LKB1 gene. When used as a probe, oligonucleotide or double stranded DNA is used after adequately labeling. Labeling methods, for example, include labeling of the 5'-terminus by phosphorylating with ³²P using T4 polynucleotide kinase, and labeling by incorporation of substrate bases labeled with isotopes such as ³²P, fluorochrome or biotin using DNA polymerases such as Klenow enzyme and primers such as random hexamer oligonucle-tides (random-primer method).

[0009] The diseases detectable using these nucleotides, which are caused by mutations in the LKB1 gene are not limited to Peutz-Jeghers syndrome. Any disease caused by mutations in the LKB1 gene is included. PTEN and APC genes were discovered as causative genes for Cowden's disease, which is one of hereditary cancers, and Familial Adenomatous polyposis (FAP), respectively. Both genes proved to be mutated with high frequency in the non-hereditary common cancers. PTEN and APC genes function to control cell proliferation in the normal tissues, and it is believed that a critical step in tumorigenesis occurs when these genes mutate and lose their functions resulting in cells escaping from the regulation of these genes. Similar to PTEN and APC genes, a mutation in the LKB1 gene possibly plays a part in common tumorigenesis.

[0010] The diagnostic method of the diseases caused by mutations in the LKB1 gene in the present invention features detection of mutations in the LKB1 gene. In the present invention, by the term "the diagnosis of the diseases caused by mutations in the LKB1 gene" is meant not only the testing of patients who have developed the particular symptoms resulting from a mutation in the LKB1 gene, but also testing a mutation in the LKB1 gene for determining whether the subject has a predisposition to the particular disease resulting from a mutation in the LKB1 gene. A mutation in one of allele of the LKB1 gene is thought to largely increase the risk for a particular disease caused by mutations in the LKB1 gene even if the symptom has not apparently been developed. The present invention also includes a diagnostic method for identifying patients who have a mutation in one of allele of the LKB1 gene (carriers). "Detection of a mutation in the LKB1 gene" in the present invention includes detection in DNA, RNA and protein.

[0011] One embodiment of the diagnostic method of the present invention is a method of directly determining the nucleotide sequence of the LKB1 gene of a patient. For example, sequencing is performed after amplifying the whole or a partial sequence of the LKB1 gene of a patient using a technique such as PCR (Polymerase Chain Reaction), using the nucleotides described above as primers, and the DNA isolated from a patient who is suspected of being afflicted with a disease caused by a mutation in the LKB1 gene, as template. The sequence thus determined can be used to diagnose the diseases caused by mutations in the LKB1 gene by comparing it to the sequence of the LKB1 gene from healthy subjects.

[0012] In addition to the methods as described above in which DNA from a patient is directly sequenced, different methods can be used as diagnostic methods of the present invention. One of such embodiments comprises the steps of (a) preparing DNA samples from patients, (b) amplifying the DNA from the patients using the primer DNA of the present invention, (c) separating the amplified DNA into the single stranded DNA, (d) fractionating the single stranded DNA separated on non-denaturing gel, and (e) comparing the mobility of the single stranded DNA separated on the gel to that of a control of ordinary person.

[0013] Such methods include PCR-SSCP (single-strand conformation polymorphism; polymorphism of single-stranded DNA in higher-order structure) method (Cloning and polymerase chain reaction-single-strand conformation polymorphism analysis of anonymous Alu repeats on chromosome 11. Genomics. 1992 Jan 1; 12(1): 139-146., Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1991 Aug 1; 6(8): 1313-1318., Multiple fluorescence-based PCR-SSCP analysis with postlabeling., PCR Methods Appl. 1995 Apr 1;4(5):275-282.). Having the advantage of relatively simple manipulation and smaller sample volume requirement, this method is particularly suitable for screening a large number of DNA samples. The principles of the method are as follows: when double stranded DNA fragments are denatured into single stranded DNA, each single stranded DNA forms an original higher-order structure peculiar to its nucleotide sequence;

these denatured DNA, even if they are complementary to each other and have the same chain-length, migrate to distinct positions according to their conformation when electrophoresed on a non-denaturing polyacrylamide gel; the conformations of these single stranded DNA are altered by substitution of a single nucleotide and the substituted DNA migrate with different mobility by electrophoresis on polyacrylamide gel; and thus, detection of the alteration in the mobility enables the detection of mutations such as point mutation, deletion or insertion in the DNA fragment of the interest.

In the PCR-SSCP method, the whole or a portion of the LKB1 gene is initially amplified using a technique [0014] such as PCR. A nucleotide sequence ranging in length from about 200 to 400 bp is typically preferred as a fragment to be amplified. Portions to be amplified include an exon, intron, promoter and enhancer of the LKB1 gene. PCR can be performed under the conventional conditions (for example, the conditions used for amplification of each exons using the primers shown in example 5). On amplifying the gene fragment by PCR, DNA fragments to be synthesized in the PCR reaction may be labeled with primers labeled with an isotope such as ³²P, fluorochrome or biotin, or by adding substrate nucleotides labeled with an isotope such as ³²P, fluorochrome or biotin in the PCR reaction solution. The said DNA fragments may also be labeled by adding substrate nucleotides labeled with an isotope such as 32P, fluorochrome or biotin to the synthesized DNA fragments by using Klenow enzyme after the PCR reaction. The labeled DNA fragments thus obtained are denatured by heat, for example, aid electrophoresed on a polyacrylamide gel without any denaturing agent, such as urea. As to the electrophoresis, conditions for fractionating DNA fragments can be improved by adding an appropriate amount of glycerol (5 to 10%) to polyacrylamide. Conditions for electrophoresis vary depending on the nature of each DNA fragment. Electrophoresis is typically performed at room temperature (20 to 25°C), but when preferable fractionation is not obtained, in the temperature ranging from 4 to 30°C, it is better to test the optimal mobility to determine the temperature which gives the most desirable mobility. After the electrophoresis, mobility of the DNA fragment is detected and analyzed by autoradiography using X-ray films and by scanner for detection of fluorescence. When the bands with different mobility are detected, those bands are directly dissected from the gel, re-amplified by PCR, and subjected to direct sequencing to confirm the mutation. In case where DNA fragments synthesized by PCR are not labeled, the bands of said DNA fragments may be detected using staining techniques such as ethidium bromide or silver staining.

[0015] Another embodiment of the diagnostic methods of the present invention comprises the steps of (a) preparing a DNA sample from a patient, (b) amplifying the DNA derived from the patient using the DNA primers of the present invention, (c) cleaving the DNA thus amplified, (d) fractionating the DNA fragments depending on their size, (e) hybridizing the DNA fragments thus fractionated with the probe DNA of the present invention, and (f) comparing the length of the DNA fragment thus detected to that from healthy subjects.

These methods include the methods utilizing restriction fragment length polymorphism (RFLP) and PCR-RFLP method. These methods are based on the principle that when a mutation has occurred in the recognition site for a restriction enzyme or when insertion or deletion of bases has occurred in the DNA fragments generated by treatment with a restriction enzyme, the length of those fragments treated with the restriction enzyme generally deviates from that of normal subjects. In fact, for Peutz-Jeghers syndrome, in the LKB1 gene of the four patients shown as samples, D, B, MA and FA, with Peutz-Jeghers syndrome, acquisition of Scal site, elimination of Ahdl, Rsal, and BsrBl site had occurred, respectively (Table 3). Therefore, these mutations can be detected as the differences of bands' mobility after electrophoresis, which was performed after the portions containing these mutations are amplified by PCR and then treated with the restriction enzymes mentioned above. Alternatively, the mutations can be detected by subjecting DNA from patients to southern blotting using the probe DNA of the present invention, after the DNA is treated with these restriction enzymes and electrophoresed. Restriction enzymes used other than those mentioned above are properly selected depending on each mutation. In this method, besides detecting the mutations via restriction enzyme treatment of genomic DNA prepared from patients, cDNA prepared by the treatment of RNA prepared from patients with reverse transcriptase is directly treated with the restriction enzyme and then can be used for southern blotting to detect mutations. This cDNA can also be used as a template for PCR, and the amplified product thereof (the whole or a portion of the LKB1 gene) can be digested with a restriction enzyme and then electrophoresed to detect mutations shown as difference of mobility of the DNA fragments.

[0017] RNA prepared from patients may be used for the detection instead of DNA. Such a method comprises the steps of (a) preparing an RNA sample from a patient, (b) fractionating the prepared RNA depending on the size, (c) hybridizing the RNA thus fractionated to the DNA probe of the present invention, and (d) comparing the size of the RNA fragment thus detected to that from normal subjects. Specifically, RNA prepared from a patient is electrophoresed and subjected to northern blotting to detect the difference of mobility.

[0018] Other embodiments of the diagnostic methods of the present invention comprise the steps of (a) preparing a DNA sample from a patient, (b) amplifying the DNA derived from the patient using the primers of the present invention, (c) fractionating the amplified DNA by electrophoresis on the denaturing gradient gel, (d) comparing the mobility of the DNA on the gel fractionated to that from normal subjects.

[0019] A similar method includes denaturant gradient gel electrophoresis (DGGE) method. In this method, the

whole or a portion of the LKB1 gene is amplified by PCR using primers of the present invention, for example, and electrophoresed on the polyacrylamide gel in which the concentration of a denaturant such as urea gradually increases as the DNA migrate through the gel. The mobility of the DNA is compared to that of normal subjects. If a DNA fragment contains a mutation, it comes to be melted into single stranded DNA in the point of lower denaturant concentration and is remarkably retarded in mobility, and detection of such difference of mobility allows detection of a mutation.

[0020] Besides these methods, allele specific oligonucleotide (ASO) hybridization method can be used for the purpose of only detecting only a mutation in a specific position. In this method, an oligonucleotide containing sequence supposed to have a mutation is synthesized and hybridized with a DNA sample. If the DNA sample has a mutation, the efficiency of hybridization decreases, and this decrease is detected using techniques such as southern blotting and the method of utilizing the florescence quenching property of specific florescent reagents, which are quenched when intercalated into the gap between the hybrids.

[0021] Ribonuclease A mismatch cleavage may also be used for the detection. In this method, the whole or a portion of the LKB1 gene is amplified by PCR, for example, and the amplified DNA is subjected to hybridization with labeled RNA prepared from LKB1 cDNA or and such, which is inserted into a plasmid vector and such. This hybrid forms single stranded structures at the sites of mutation, and said sites may be cleaved by ribonuclease A and then detected using some method such as autoradiography. Presence of mutations, can be thus detected.

The present invention relates to a diagnostic reagent for diseases caused by mutations in the LKB1 gene, wherein the reagent comprises, as an active ingredient, an antibody, which binds to the LKB1 protein. Antibodies, which bind to LKB1 protein, can be prepared according to methods well known in the art. As for polyclonal antibodies, for example, a small animal such as a rabbit is immunized with the LKB1 protein (a natural protein as well as a recombinant KLB1 protein expressed in suitable host cells (E.coli, yeast or mammalian cells), such as LKB1 protein expressed as a fusion protein with GST in E.coli) or its partial peptide(for example, peptide composed of amino acid sequence shown in the SEQ ID: 31 or 34) to obtain antiserum, which then can be purified and prepared using a method such as ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatography, affinity columns coupled with LKB1 protein or synthetic peptide. For monoclonal antibodies, for example, a small animal such as a mouse is immunized with LKB1 protein or a part of the peptide, and then dissected to remove the spleen. The spleen is homogenized to isolate the cell fraction. These cells are fused with mouse myeloma cells and a reagent such as polyethylene glycol to create fusion cells (hybridomas). From the hybridoma cells thus generated, an appropriate clone which produces an antibody which binds to LKB1 protein is selected. Subsequently, the hybridoma cells thus obtained are intraperitoneally transferred into a mouse, ascites is harvested from the same mouse, and the monoclonal antibody thus obtained can be prepared by purifying by means of, for example, ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatography, affinity columns coupled with LKB1 protein or synthetic peptide.

[0023] When used as a reagent, the antibody is, if necessary, mixed with sterile water, physiological saline, vegetable oils, surface active agent, lipids, solubility increasing agent, stabilizers (e.g. BSA and gelatin), and preservatives and such. In a test using said antibody, a tissue or cells from a patient are stained using a method such as enzymelabeled or fluorescence-labeled antibody technique to detect deficiency, aberrant accumulation, or unusual intracellular distribution of LKB1 protein. Alternatively, the protein, which is fractionated from cell extracts prepared from a tissue or cells from patients with Peutz-Jeghers syndrome using a method such as SDS-PAGE, is transferred onto a membrane such as nitrocellulose or PVDF, and detected using a staining method such as enzyme-labeled technique above (western blotting, immunoblotting).

[0024] By constructing a detailed physical map of 19p13.3 region, the inventors revealed that the disease-related gene LKB1 for Peutz-Jeghers syndrome is located in the close proximity of a microsatellite marker D19S886, i.e. their distance on chromosome is about 190 kb. Therefore, the loss of heterozygosity (LOH) test utilizing D19S886 marker may effectively serve as a test for diagnosing various diseases based on mutations in the LKB1 gene.

[0025] The present invention also relates to a therapeutic preparation for diseases caused by mutations in the LKB1 gene. In one embodiment, it comprises the LKB1 gene as an active ingredient. When the LKB1 gene is used as a therapeutic preparation, the whole or a portion of the genomic LKB1 DNA, or the LKB1 cDNA (SEQ ID: 5) is incorporated into an appropriate vector, such as adenovirus vector, adenoassociated virus vector, retrovirus vector, and plasmid DNA, and administered orally, intravenously, or topically to the patient. As a method of administration, *ex vivo* administration can be used as well as *in vivo* administration. In administration of a drug, enclosing the gene into a liposome generated by micellization of phoshpholipids can enhance the mobility and intake of the gene into the tissue. Alternatively, cationic lipids may be added to form a complex with DNA, which can enhance the mobility and intake of the gene into the tissue. Using these methods, the LKB1 gene mutated in the patient can be substituted by a normal gene, or the normal gene can be additionally administered to the patient, resulting in the possible treatment of a disease caused by a mutation in LKB1 gene.

[0026] Another embodiment of a therapeutic preparation for the diseases caused by mutations in the LKB1 gene, comprises the LKB1 protein as an active ingredient. The LKB1 protein may be prepared as a natural protein or a recombinant protein by utilizing a recombinant DNA technology. The amino acid sequence of the LKB1 protein is shown in

SEQ ID: 6. A natural protein may be isolated using well-known methods. For example, it can be isolated from the cultured cells of the testis, fetal liver or K562 cell, in which the LKB1 protein is expressed at a high level, and by affinity column chromatography using an antibody against a partial peptide of the LKB1 protein described in Example 7. On the other hand, a recombinant protein can be prepared by culturing cells transformed by DNA (SEQ ID: 5) encoding LKB1 protein. Cells that can be used to produce a recombinant protein include mammalian cells, such as COS, CHO, and NIH3T3 cells; insect cells, such as Sf9 cells; yeast; and *E. coli*. The vectors suitable for expressing a recombinant protein intracellularly depend on the host cells, for example, pcDNA3 (Invitrogen) or pEF-BOS (Nucleic Acids. Res. 1990, 18(17), p.5322) vector is used for mammalian cells; "BAC-to-BAC baculovirus expression system" (GIBCO BRL) for insect cells; "Pichia Expression Kit" (Invitrogen) for yeast; and pGEX-5X-1 (Pharmacia) and "QIAexpress system" (Quiagen) for *E. coli*. The vectors can be introduced into the host cells by a well-known method such as the calcium phosphate method, DEAE dextran method, the method using cationic liposome DOTAP (Boehringer Mannheim) or SuperFect (Quiagen), electroporation, and calcium chloride. A recombinant protein thus obtained can be purified using a conventional technique, for example, the method described in "The Qiaexpressionist handbook, Quiagen, Hilden, Germany".

[0027] When the LKB1 protein obtained is used as a therapeutic preparation for diseases caused by mutations in the LKB1 gene, the LKB1 protein can be directly administered, or can be given after formulating by a well-known pharmaceutical process. For example, formulations may be administered in proper combination with a pharmaceutically acceptable carrier or medium, such as sterile water, physiological saline, vegetable oils, surfactants, lipids, dissolving adjuvants, stabilizers, or preservatives. While the dosage for administration differs depending on various factors, such as weight, age, and health conditions, or the method of administration, a person skilled in the art will be able to advantageously select the appropriate dosage. Typically, the dosage is in the range of 0.01 to 1000 mg/kg. Administration can be conducted, for example, orally, intravenously, intramuscularly or subcutaneously.

[0028] A person skilled in the art can easily carry out substitution, deletion, addition and/or insertion of amino acids in the amino acid sequence of the LKB1 protein for the purpose of improving the activity and stability of the drug of the present invention, utilizing a well-known method, such as PCR-based site-directed mutagenesis (GIBCO-BRL, Gaithersburg, Maryland), site-directed mutagenesis using oligonucleotides (Kramer, W. and Fritz, HJ (1987) Methods in Enzymol., 154:350-367), the Kunkel's method (Methods Enzymol. 85, 2763-2766 (1988)). A similar altered LKB1 protein can also be used as a therapeutic preparation of the present invention.

[0029] Another embodiment of a therapeutic preparation for diseases caused by mutations in the LKB1 gene, the therapeutic preparation comprises a compound, which enhances the activity of the LKB1 protein, as an active ingredient. The LKB1 gene encodes a serine threonine kinase that shows as high as 82% homology with XEEK1 serine threonine kinase from Xenopus. A collapse of the serine threonine kinase activity of the LKB1 protein is closely associated with the emergence of diseases resulting from mutations in the LKB1 gene. Therefore, it is envisaged that enhancement of the said serine threonine kinase activity will serve to treat diseases caused by mutations in the LKB1 gene.

[0030] A screening method for a compound that enhances the activity of the LKB1 protein is as follows. For example, LKB1 proteins expressed in *E.coli* as a fusion protein with GST, or those expressed in mammalian or insect cells, are used to determine kinase activities of these proteins in the presence of the test compound, to select a compound that enhances the activity of the LKB1 protein.

[0031] More specifically, for example, phosphorylation activity of a substrate protein for the LKB1 protein, or auto-phosphorylation activity of the LKB1 protein may be determined by measuring the transfer of 32 P from [$_{17}$ - 32 P]ATP to the substrate in an appropriate reaction solution (e.g. 50 mM Tris-HCl, pH 7.2, 1 mM dithiothreitol (DTT), 10 mM MgCl2, 10 mM MnCl2, and so on), using a device, such as a liquid scintillation counter, and thus a compound which enhances the activity of LIB1 protein can be isolated by selecting a compound that increass the 32 P transfer level. Like the LKB1 protein used as therapeutic preparation as described above, the isolated compound may be formulated using well-known pharmaceutical processes to be administered for treatment of a disease. Typically, the dosage is in the range of 0.01 to 1000 mg/kg.

[0032] In addition to the methods as described above, a method utilizing the regions regulating the LKB1 gene expression, or a factor binding to the gene can be used for treatment of the diseases caused by mutations in the LKB1 gene. The present invention has revealed the structure of the LKB1 gene and the 5' upstream region thereof (SEQ ID: 1). This 5' upstream region may contain the regions regulating the LKB1 gene expression (e.g. promoters and enchancers), and a person skilled in the art could easily specify genetic regions regulating the LKB1 gene expression, using several known methods in combination. A method for specifying the region regulating gene, for example, comprises the following steps: (a) constructing a vector in which a reporter gene is joined to downstream of the 5' upstream region of the LKB1 gene (DNA composed of the whole or a portion of sequence shown in SEQ ID:1); (b) introducing said vector into appropriate cells; and (c) detecting the activity of the reporter gene. Specifically, the upstream region of the LKB1 gene is cleaved into appropriate sized fragments, for example, by various restriction enzymes, and these fragments are integrated into the upstream site of a reporter gene, such as a firefly luciferase, secretory alkali phosphatase, or chloramphenicol acetyltransferase (CAT) gene to construct expression vectors (PicaGeneTM Vector, Wako Pure Chemicals

Industries, Ltd). Subsequently, these expression vectors are introduced into appropriate host cells, such as COS, HEK293, and CHO cells, and then incubated for a certain interval. After the incubation, the intracellular and extracellular reporter gene product expression is separately measured to determine the promoter activity of the individual gene fragment integrated into the vector. Once a gene fragment showing the promoter activity is identified, such a fragment may further be cleaved into smaller fragments and subjected again to the same process as described above to define the active site to a more specified region. To finally confirm the active site, the nucleotide sequence of the region specified as the active site may be altered by, for example, site-directed mutagenesis and the activity is measured. The region regulating the LKB1 gene expression is particularly useful in the gene therapy described above, since it can direct the expression of the LKB1 gene in vivo, under natural expression control, when this region is joined to the upstream of the normal LKB1 gene described above and then administered to a patient whose LKB1 gene is mutated. In addition, once the promoter region is defined in the upstream of the LKB1 gene, screening for compounds that can regulate the LRB1 gene expression may be easily facilitated by investigating effects on the production of the reporter gene product using reporter gene expression vectors with this site and various compounds. Such screening method comprises the steps of: (a) constructing a vector in which a reporter gene is joined to downstream of the promoter region of the LKB1 gene; (b) introducing said vector into appropriate cells; and (c) detecting the activity of the reporter gene by exposing a test compound to the said cells and/or introducing the compound into the said cells. Test compounds include, but are not limited to, proteins, peptides, synthetic compounds, natural compounds, genes, and gene products and such.

[0034] Screening for compounds that can regulate the LKB1 gene expression may be carried out by exposing a test sample to the promoter region and selecting the compound (e.g. a protein) that binds to said promoter region. For instance, transcriptional regulatory factors which control the LKB1 gene expression and bind to this promoter can be purified using affinity-purification by, creating a synthetic oligo-DNA and such containing the promoter sequence, binding this to a suitable supporting-agent, such as cellulose, and exposing it to a cell-extract and such.

[0035] Additionally, the inventors have revealed that neoplasia, such as polyps, develop as a result of a mutation in the LKB1 gene in the patients with Peutz-Jeghers syndrome. This finding lead to a notion decreasing in the amount or activity of the LKB1 protein can render normal cells temporary cell proliferation activity. Therefore, the artificial reduction in the amount or activity of the LKB1 protein, which is achieved by utilizing anti-sense DNA for the LKB1 gene or the cDNA thereof, or by utilizing a compound which inhibits the activity of the LKB1 gene, will possibly serve to treat the diseases which require fresh cell proliferation, such as wound curing and anagenesis.

Brief Description of the Drawings

[0036]

30

35

40

45

50

55

Figure 1a illustrates the chromosomal organization of the LKB1 gene and the adjacent regions together with the restriction enzyme map, wherein R indicates *EcoRl* site; B, *BamH*I; S, *SacI*; K, *KpnI*; BssH, *BssHII*. Nine exons of the LKB1 gene were indicated by boxes. Closed and open boxes represent the translated and untranslated regions, respectively. Figure 1b shows a schematic illustration of gene rearrangement found in Peutz-Jeghers patient A. The upper part of the panel shows the organization of the normal-type LKB1 gene; the bottom part shows the organization of the mutant-type gene from Peutz-Jeghers patient A. The orientations and the positions of the primers used in PCR analysis are shown by arrows.

Figure 2 shows a contig of cosmid clones in the region neighboring to the position of microsatellite marker D19S886, and the map of EcoRI site in the region. The bottom shows a schematic illustration of positional relationship between the LKB1 gene and microsatellite marker D19S886 in the region of human chromosome 19p13.3; tel denotes the direction to the telomere; cen, the direction to the centromere. The upper part of the panel shows the partially overlapping, arranged cosmid clones.

Figure 3a displays the pedigree of patient A expanding three generations. The symbol in which the right half is filled indicates an affected member. Figure 3b shows the result obtained by long distance PCR with primers, DJ666 and DJ660. An aberrant type of PCR products of 2.5kbp, which is indicated by a filled triangle, is observed only in the affected family members. Figure 3c shows the result obtained by PCR analysis with primers, DJ666 and DJ684. The amplification of the PCR products is observed only in the affected members, which indicates that an inversion exists in the corresponding region.

Figure 4 shows the pattern of agarose gel electrophoresis of LKB1 exons amplified by PCR. Exon Numbers are indicated on the top. MW represents the molecular weight marker.

Figure 5 shows an electrophoretic pattern obtained by PCR-RFLP analysis. The marks, Ahdl, BsrBl, Rsal, and Scal on the pattern indicate the samples treated with the corresponding restriction enzymes shown. WT denotes a DNA sample from a healthy normal person; B, Peutz-Jeghers patient B; FA, Peutz-Jeghers patient FA; MA, Peutz-Jeghers patient MA; D, Peutz-Jeghers patient D. MW indicates the molecular weight marker.

Figure 6 shows the autophosphorylation activity of LKB1 protein investigated in the presence of various divalent cations; the protein was immunoprecipitated. The result shows that the autophosphorylation activity of LKB1 (kinase activity) is hardly enhanced by Mg²⁺ but strongly enhanced by Mn²⁺.

Figure 7 shows the autophosphorylation activities of the wild-type LKB1 protein and the various mutants thereof. The top panel displays the autoradiography pattern showing autophosphorylation activity diagnosed by autoradiography; the bottom shows the results of a Western blotting stained with an anti-c-Myc antibody. Each protein is observed to be to be produced at a similar level.

Figure 8 shows an electrophoretic pattern of a GST-fusion of LKB1-myc protein expressed in *E. coli*, which was analyzed by Western blotting. M indicates the molecular weight marker; 1, a lysate of the *E. coli* cells prior to the induction by IPTG; 2, a lysate of the *E. coli* cells after the induction by IPTG; 3, the GST-fusion of LKB1-myc protein purified with glutathione Sepharose. The filter labeled with "Anti-Myc antibody" was stained using the anti-myc antibody; the one labeled with "Anti-LKB1 antibody" was stained with an affinity-purified anti-LKB1 peptide antibody. Figure 9 shows the result of Western blotting using the respective antibodies. Lane 1 contains a sample lysate from COS7 cells with transfected DNA of pcDNA3 vector alone; lane 2, a lysate from COS7 cells with transfected pcDNA3/LKB1myc; lane 3, a lysate from HeLa S3 cells. The samples were stained with the antibodies indicated at the left and the anti-c-Myc antibody. Peptides used in the pre-incubation treatment are shown on the top.

Figure 10 shows a tissue section of human fetal colon stained using anti-LKB1 P3 antibody. The cytoplasm of the epithelial cells is positive in the stain. The cells, which are assumed to be endocrine cells, are also stained very intensely.

Figure 11 shows a tissue section of human adult pancreas stained with the anti-LKB1 P3 antibody. The islet cells are positive in this staining.

Figure 12 shows a tissue section of human fetal testis stained with the anti-LKB1 P3 antibody. The undeveloped germ cells were stained intensely.

25 Best Mode for Carrying out the Invention

٩ť,

5

10

15

20

[0037] The present invention will be described further in detail by referring to the examples below, but is not to be construed as being restricted thereto.

30 Example 1. Construction of a cosmid clone contig covering a region on human chromosome 19p13.3

[0038] In order to identify efficiently all the genes located in the region of human chromosome 19p13.3, a contig of contiguous clones (contig of arranged clones) assembled with cosmid clones and other clones was constructed. Suitable cosmid clones were selected from a group of clones mapped in this region by FISH, having short and different overlapping regions; and gaps between the clones were successively filled with clones obtained by screening cosmid, phosmid and BAC libraries (cosmid walking, chromosome walking). A high-resolution physical map was, thus, prepared by constructing a contig of the contiguous clones covering a 1.5Mbp region on chromosome 19pter.

Specifically, the contig was constructed as described below. A short contig of cosmid clones covering a region on chromosome 19p13.3, which was mapped and alligned previously by FISH (Ashworth, L. K. et al. An integrated metric physical map of human chromosome 19. Nature Genet. 11, 422-427 (1995)), was further extended using genomic clones obtained from chromosome 19-specific cosmid libraries with Lawrist5 vector as well as Lawrist16 vector, a chromosome 19-specific phosmid library with pBeloBac11 vector, and an entire human genome cosmid library (Stratagene) as well as an entire human genome BAC library (Research Genetics). The cosmid walking was started from the ends of two contigs each containing the PRNT3 gene locus (Zimmer, M. et al. Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc. Natl. Acad. Sci. U.S.A. 89, 8215-8219 (1992)) or the GZMM gene locus (Pilat, D. et al. The human Met-ase gene (GZMM): structure, sequence and close physical linkage to the serine protease gene cluster on 19p13.3. Genomics, 24, 445-450 (1994)) on 19p13.3. Specifically, overlapping clones were successively obtained by screening using the EcoRI fragments derived from the ends of the contigs as probes; the high-density filters of the cosmid and phosmid libraries were treated with Cot1 DNA (New England Biolabs) for background reduction. In some cases, nucleotide sequences of the insert ends were determined directly using the cosmid clones as sequence templates; the primers used were Llawrist vector-specific primers, DJ180 (SEQ ID NO: 35/CGACTCACTATAGGGAGACCCA) and DJ181 (SEQ ID NO: 36/CCTCGAGAATTACCCTCACTAA). The sequences determined were utilized: (i) to search the databases for the identification of novel genes exhibiting significant homologies to known genes; (ii) to prepare STS (Sequence Tagged Site) which is used for further experiments of chromosome walking. Thus, the contig was assembled from cosmid clones covering a 1.5Mbp region near the telomere on chromosome 19. Restriction sites of BamHI, BssHII, EcoRI, HindIII, KpnI, and SacI were mapped on the cosmid clones, to prepare a restriction enzyme map of the region. More specifically, the map construction was carried out by the following procedures: the cosmid DNAs were lin-

earized by treatment with lambda terminase and by partial digestion using restriction enzymes; the cos sites of the DNAs were labeled, and subsequently digested with restriction enzymes; the map was made based on the length of each restriction fragment (cos-site labeling method; Rackwitz, H. R., et al. Analysis of cosmids using linearization by phage lambda terminase. Gene 40, 259-266 (1985)).

Example 2. Identification of genes mapped on the cosmid clone contig on 19p3.3

[0040] Previously, by radiation hybrid mapping method, 91 clones of EST (Expressed Sequence Tag) have been mapped in a region more proximal to the telomere than the genetic marker, D19S216, on 19p3.3. Clones of EST overlapping one another were removed by analyzing the sequences using a software program, UNIGENE, (http://www.ncbi.nlm.nih.gov/UniGene/index.html), and as a consequence, 60 clones of EST were finally identified to be derived from independent genes. Primer sets for amplifying the respective ESTs were purchased from Research Genetics; the cosmid clones belonging to the previously constructed contig on 19p3.3 were categorized into four non-overlapping groups; then the locations of the respective genes were assigned on the contig by PCR screening. When an EST gave the positive signal, then the databases were searched for other overlapping ESTs to extend the sequence of the EST. Complementary DNAs corresponding to the respective positive ESTs were purchased from Research Genetics; using the inserts of the cDNAs as probes, EcoRI-digested cosmid clones were analyzed by Southern hybridization, to determine the accurate positions of the respective genes in the contig.

[0041] The accurate position of genetic marker D19S886 (GenBank accession number: Z52881) was also determined in this cosmid clone contig. Specifically, a DNA fragment containing the marker sequence was prepared from the human total DNA by PCR amplification using the sense primer (SEQ ID NO: 37/TGGATCTACACTCCGGC) and the antisense primer (SEQ ID NO: 38/ATTTTACTGGCTGGCACTTG); the cosmid clone, R32184, was digested with EcoRI, SacI, BamHI, or BssHII, and then the digest was subjected to Southern-blot analysis using the DNA fragment as a probe, to determine the accurate position of the marker on the EcoRI map.

[0042] Moreover, mouse genes mapped previously in a region of mouse chromosome 10, which corresponds to human 19p, were mapped on this contig by similar procedures. Furthermore, new genes contained in this contig were identified by searching databases such as LLNL database [http://www-bio.llnl.gov] with the sequences of the cosmid ends

30 Example 3. Identification of a candidate region containing the Peutz-Jeghers gene

[0043] Earlier linkage studies have reported that a candidate region for the Peutz-Jegners gene may be located more proximally to the telomere than markers D19S878 and D19S565; however there was no reported marker located on the telomere side of these markers at all, and accordingly the candidate region was assumed to span over a genomic region of as long as approximately 2Mb or more on the telomere side of the markers. Nonetheless, there was the possibility that the mutant gene was located very near this marker, considering the close linkage of D19S886 marker and the Peutz-Jeghers gene locus. Thus, the accurate position of marker D19S886 was first determined in the cosmid contig as described above, and then the neighboring genes were diagnosed. The result showed that there were 21 genes within the region of 400kbp neighboring to marker D19S886. Candidates for the causative gene of Peutz-Jeghers syndrome were selected from the newly identified genes, based on a wide variety of biological information such as information obtained by the analyses of the counterpart genes of other species. The samples of chromosomal DNA prepared from Peutz-Jeghers patients were diagnosed for nucleotide mutations within the respective genes selected.

Example 4. Identification of the LKB1 gene and the analysis of genomic organization thereof

[0044] The GenBank database was searched for the sequences exhibiting homologies to cosmid clone R29114 at its end on the telomere side, which was contained in the contig spanning over a region on 19p3.3; the result showed that the cosmid end shared a short sequence of 32bp with a cDNA (GenBank accession number: U63333) encoding a novel human serine-threonine protein kinase (LKB1). The cosmid clone was directly sequenced using primers, DJ649 (SEQ ID NO: 24) corresponding to the 5' end of the LKB1 cDNA sequence and DJ650 (SEQ ID NO: 29) corresponding to the 3' end; clone R29114 and the adjacent clone R26552 contained the LKB1 gene, and thus it was clarified that the LKB1 gene was located in this region. For the determination of the entire exon-intron organization of the LKB1 gene and for further analyses in detail, PCR primers and sequence primers (shown below; Tables 1 and 2) were designed, based on the LKB1 cDNA sequence (1302bp). Sequences of the respective gene segments were determined by direct sequencing of the PCR products amplified from the cosmid DNAs. The sequences obtained were compared with the LKB1 cDNA sequence to identify positions of the exons and the splice junctions of all the introns. Each exon position on the restriction map was determined by comparing the positions of restriction sites in the genomic sequence and by comparing the distances, estimated by long distance PCR, between the respective segments of the gene (Figure 1a).

Nucleotide sequence was determined by bi-directional sequencing in almost all the regions except for prominently long introns 1 and 8.

[0045] The result showed that the LKB1 gene spanning over 23kb or more was split into 9 coding exons and a non-coding exon. Moreover, the gene was presumed to be transcribed toward the direction from the telomere to the centro-mere (Figure 2); interestingly, the splice junction of intron 2 was revealed to violate the GT/AG rule characteristic of ordinary intron-exon junctions. The sequence of intron 2 starts with "ATATCCCTT" at the 5' end and terminates with "CCCAC"; the "TCCTTAAC" motif is located 15bp upstream of exon 3. These three sequence elements have close similarities to those of the eukaryotic intron which has been recently reported to be as a very rare intron. Introns with this sequence pattern are spliced in a U12 snRNA-dependent manner, which is not the general way of splicing.

Example 5. Analysis of mutations in patients affected with Peutz-Jeghers syndrome

[0046] Sequences of the primers used for the mutation analysis of the patients affected with Peutz-Jeghers syndrome are shown in table 1 below.

Table 1

DJ705	5'-GGGAATTCGGAACACAAGGAAG-3'	(SEQ ID NO: 23/exon 1)
DJ649	5'-ATGGAGGTGGTGGACCCGC-3'	(SEQ ID NO: 24/exon 1)
DJ659	5'-GTTACGGCACAAAAATGTCATCCA-3'	(SEQ ID NO: 25/exon 2)
DJ666	5'-GGTGATGGAGTACTGCGTGTG-3'	(SEQ ID NO: 26/exon 3)
DJ684	5'-ACATCGGGAAGGGAGCTACG-3'	(SEQ ID NO: 27/exon 6)
DJ660	5'-CCGGGCACCGTGAAGTCCTG-3'	(SEQ ID NO: 28/exon 8)
DJ650	5'-TCACTGCTGCTTGCAGGCC-3'	(SEQ ID NO: 29/exon 9)
DJ717	5'-GCAGGCGGCCAGCCTCA-3'	(SEQ ID NO: 30/exon 9)

30

10

15

20

25

[0047] Mutation analysis was carried out using DNA samples from five unrelated patients affected with Peutz-Jeghers syndrome (patients A, B, D, MA and FA). The deletion and rearrangement of the gene were screened by long distance PCR using the primer sets, DJ659 and DJ660, and DJ660.

[0048] All the DNA samples derived from the patients and healthy normal persons as controls gave the products of 3.9kbp in the PCR amplification with the primer set of DJ666 and DJ660. However, not only the 3.9kbp products but also the products of 2.5kbp were found in the sample of Peutz-Jeghers patient A (Figure 3b). The shorter DNA fragment was subcloned, sequenced and then compared with the chromosomal DNA sequence of the normal counterpart; the result showed that the LKB1 gene was complicatedly rearranged in the chromosome of this patient (Figure 1b). Specifically, the PCR products of 2.5kbp had two deletion mutations; one is a deletion of a 1286bp segment located between intron 3 and intron 5, and the other is a deletion of an 81bp segment located inside intron 7. The longer deletion contains exons 4 and 5. In addition to this, an inversion was found in the central region containing exons 6 and 7. The existence of the inversion was confirmed by PCR analysis using sense primers, DJ666 and DJ684, which were specific to exon 3 and exon 6, respectively. Both of these primers correspond to the sense chain, and therefore PCR products are given only when the inversion exists. The analysis has revealed that the inversion is carried by all the affected family members, including patient A, for two generations. On the other hand, this mutation was found neither in the healthy members of the same family nor in unrelated healthy normal persons used as controls (Figures 3a and 3c).

[0049] The complicated LKB1 mutation was analyzed at the level of transcripts by RT-PCR using RNA prepared from the cells of peripheral blood of patient A. The RNA was isolated using an RNA Isolation Kit (Qiagen) and reverse-transcribed into cDNA using Superscript (GIBCO-BRL, Life Technologies). Two distinct PCR products of 730bp and 270bp were given by PCR using a primer set of DJ660 and DJ666. There is a length difference of about 460bp between the two types of the PCR products; the length agrees well with the length between exon 4 to exon 7 in the transcript, suggesting the production of the transcript from which the segment of exons 4 to 7 has been removed by splicing, and which was presumed to be caused by the complicated mutation. The aberrant splicing event, in which exon 3 directly links to exon 8, does not result in frameshift, but the resulting transcript is assumed to encode an aberrant protein consisting of 281 amino acids in which the C-terminal half of the catalytic domain is missing.

[0050] The aberrant PCR products were not observed in any of patients B, D, MA, and FA. Eight sets of primers were designed for the screening of point mutations in the LKB1 gene (Table 2); the respective exons were amplified independently and then directly sequenced (Figure 4).

네일 중심 🕶

Table 2

5

10

15

20

25

DJ698	5'-GGTCCCCGAGGACGAAGTTGA-3'	(SEQ ID NO:7/exon 1 sense)
DJ673	5'-ACCATCAGCACCGTGACTGG-3'	(SEQ ID NO:8/exon 1 antisense)
DJ703	5'-TCGCCGGCCGATGACAGA-3'	(SEQ ID NO:9/exon 2 sense)
DJ674	5'-AAGGAGACGGGAAGAGGAGCAG-3'	(SEQ ID NO:10/exon 2 antisense)
DJ690	5'-GAGGAGGGGCAAGGTGGGT-3'	(SEQ ID NO:11/exon 3 sense)
DJ680	5'-GTGTGGCCTCACGGAAAGGAG-3'	(SEQ ID NO:12/exon 3 antisense)
DJ692	5'-AGCTGGGCCTGTGGTGTTTG-3'	(SEQ ID NO:13/exon 4-5 sense)
DJ694	5'-CAGAGGCCCCTCGGAGTGTG-3'	(SEQ ID No:14/exon 4-5 antisense)
DJ695	5'-GCCTCTGTCCCTGGGGTAGA-3'	(SEQ ID NO:15/exon 6 sense)
DJ693	5'-TCAGTCCTCTCAATGCCTGCTG-3'	(SEQ ID NO:16/exon 6 antisense)
DJ696	5'-GCGGGTCCCCCTTAGGAG-3'	(SEQ ID NO:17/exon 7 sense)
DJ697	5'-CTAGCGCCCGCTCAACAG-3'	(SEQ ID NO:18/exon 7 antisense)
DJ675	5'-GGAGCTGGGTCGGAAAACTGGA-3'	(SEQ ID No:19/exon 8 sense)
DJ702	5'-TGCTCCCGTGGGACATCCTG-3'	(SEQ ID NO:20/exon 8 antisense)
DJ676	5'-GTAAGTGCGTCCCCGTGGTG-3'	(SEQ ID NO:21/exon 9 sense)
DJ677	5'-GTGGCATCCAGGCGTTGTCC-3'	(SEQ ID No:22/exon 9 antisense)

[0051] Since the intron between exon 4 and exon 5 is short, the exons were amplified together at the same time. The result showed that all the patients carry mutations in one of the two alleles of the LKB gene. The result is shown in Table 3. Codon numbers in the table indicate the last wild-type codon. Restriction enzyme sites were diagnosed for the presence of mutations in the PCR products of the Peutz-Jeghers patients as well as healthy normal persons. The symbols, + and -, accompanying the names of restriction enzyme indicate the presence and absence of the site, respectively. Nucleotides of LKB1 genes derived from patients B, MA and FA have been numbered on referring to nucleotide numbers assigned in the LKB1 cDNA sequence deposited in GenBank (accession number: U63333). Nucleotide numbers used in the LKB1 sequence from patient D are indicated on referring to those of the LKB1 gene sequence deposited in GenBank (accession number: AF032985).

Table 3

40	Patient	Mutation type	Mutation position	Codon	Restriction site	Possible influence
	Α	inversion/deletion	exon 4-7	155		deletion of codons 156- 307
45	D	G2412A	intron 3	156	+Scal	deletion of splice acceptor site
						exon 4 skipping; frameshift
50						premature termination at codon 242
	В	deletion of GGTC at nucleotide position 716	exon 5	240	-Ahdl	premature termination at codon 285; frameshift
55	MA	C759A	exon 6	252	-Rsal	• Tyr253 (TAC)→ Stop codon (TAA)
	FA	deletion of G at nucleotide position 843	exon 6	280	-BsrBl	frameshift; premature ter- mination at codon 286

[0052] In patient MA, C is substituted for A at nucleotide position 759 (in exon 6), and as a result, TAC codon of tyrosine is altered to a stop codon, TAA, at amino acid position 253. It was revealed that, in patient B, four base pairs from nucleotide position 717 to 720 (in exon 5) were deleted; the deletion results in the generation of a stop codon at the position 135bp downstream from the codon for tryptophan at amino acid position 239. In patient D, the di-nucleotide AG to be conserved strictly at the splice acceptor site located at the 3'end of intron 3 was found to be altered to AA. When exon 4 is skipped and as a result exon 3 links to exon 5, a frameshift occurs immediately behind amino acid position 155 and the protein sequence terminates at amino acid 241. It was found that, in patient FA, nucleotide G at nucleotide position 843 (exon 6) was deleted, which caused a frameshift and the generation of a stop codon, TGA, at nucleotide 857.

[0053] All the mutations found in the LKB1 gene of the five patients affected with Peutz-Jeghers syndrome result in loss of the indispensable part in the kinase domain, and as a consequence the conformation is presumed to be destroyed in the mutant LKB1 proteins. In addition, the C-terminal amino acids, which were assumed to constitute the regulation domain in LKB1 protein, were missing in the four of these patients. These mutations in the LKB1 gene were considered to give rise to the loss of kinase activity in the LKB1 proteins as mutant gene products, and the signal transduction pathway in which LKB1 was involved was blocked as a consequence.

[0054] The genomic organization of the LKB1 gene was similarly investigated in a Japanese patient affected with polyposis who was suspected of Peutz-Jeghers syndrome (SK1). The genomic DNA was extracted from the peripheral blood of the patient using a QIAamp Blood kit (Qiagen), and the LKB1 gene was amplified by PCR using the DNA as a template and using the primers indicated in Table 2. The result of direct sequencing analysis of the PCR products showed that there was a single-base (C) deletion (the C is the third nucleotide of codon "GAC" corresponding to Asp at amino acid position 207) in the coding region within exon 5. The mutation results in a frameshift on the C-terminal side of Asp 207, which perhaps generates a truncated protein without the kinase activity as a result.

[0055] The PCR amplification of the LKB1 gene derived from the DNA sample was performed basically under the following conditions: the reaction solution, of which total volume was 50 μl, contained 100 ng of chromosomal DNA (template DNA), 50pmol of primer, PCR buffer J (Invitrogen), 2.5 units of AmpliTaq (Perkin Elmer), and 2.5 μl of DMSO, or the solution contained 100 ng of chromosomal DNA (template DNA), 20pmol of primer, 5 μl of 10x TaKaRa Tag buffer (TaKaRa), 4 μl of 2.5mM dNTPs (TaKaRa), 0.4 μl of TaKaRa Tag DNA polymerase (TaKaRa), and 0.4 μl of TaqstartTM Antibody (CLONTECH); the reaction profile was: pre-heat at 94°C for 2 to 4 minutes; 35 cycles of denaturation at 94°C for 30 to 45 seconds, annealing at 58°C or 62°C for 30 seconds and extension at 72°C for 45 seconds; and the final extension at 72°C for 3 minutes. The resulting PCR products were purified using a QlAquick Gel Extraction kit (Qiagen) after agarose gel electrophoresis, or purified from the PCR reaction solution using a QlAquick Nucleotide Removal kit (Qiagen); using the purified PCR products as a template, direct sequencing was performed bidirectionally. A Drhodamine terminator cycle sequencing kit (Applied Biosystems) was used in the sequencing.

[0056] In order to verify that the mutations found were not caused by artifacts in PCR amplification or in sequencing, DNAs covering the regions containing the mutations were amplified by PCR under the conditions described above, the resulting PCR products were digested with restriction enzymes selected for the respective mutations, and then the lengths of the fragments obtained by the digestion were diagnosed for the mutation sites (PCR-RFLP analysis). Specifically, a 20 μ l reaction solution consisting of 5 μ l of PCR products, 4 units of restriction enzyme (AhdI, BsrB I, Rsal or scal) and 2 μ l of restriction enzyme buffer was incubated at 37°C for 1.5 hours; the resulting lengths of the DNA fragments were analyzed by agarose electrophoresis.

[0057] When the DNA samples from 50 healthy persons were diagnosed by the same analysis, the mutations were not observed in these samples at all; thus the results showed that the mutations were specific to patients with Peutz-Jeghers syndrome (Figure 5).

5 Example 6. Construction of plasmid DNAs for the expression of the LKB1 gene in E. coli and mammalian cells

[0058] A DNA fragment encoding the entire LKB1 amino acid sequence with a c-Myc epitope sequence (SEQ ID NO: 41/Glu Gln Lys Leu lle Ser Glu Glu Asp Leu) as a C-terminal tag was amplified by PCR using the LKB1 cDNA clone as a template and using LK E1 primer (SEQ ID NO: 39/5'-gat gaa ttc ggg tcc agc atg gag gtg gtg gac-3') and LK E2 primer (SEQ ID NO: 40/5'-gat gaa ttc tta gag gtc ttc ttc tga gat gag ctt ctg ctc ctg ctg ctg gac ggc gga-3'); the PCR products were digested at the EcoRI sites located within the primer sequences; the EcoRI fragment was inserted into pcDNA3 vector (Invitrogen) at the EcoRI site for the expression in mammalian cells or into pGEX-5X-1 vector (Pharmacia) at the site for the expression in E. coli. The cloned DNAS were diagnosed by sequencing not to have any sequence variations as artifacts caused by PCR amplification; and such clones were selected and used for expression experiments.

[0059] In vitro mutagenesis was carried out using pcDNA3/LKB1myc as a template and using GeneEditor™ (Promega), to prepare expression plasmid DNAs with the mutations corresponding to the amino acid substitutions found in the Peutz-Jeghers patients. Specifically, the expression plasmid DNA (pcDNA3/LKB1 D176Nmyc) for D176N

mutation (the abbreviation means the substitution mutation from Asp to Asn at amino acid 176; the mutations shown below are also abbreviated in the same way) was constructed by introducing the mutation using LK D176N primer (SEQ ID NO: 45/5'-att gtg cac aag aac atc aag ccg ggg-3'); the plasmid for mutation W308C (pcDNA3/LKB1 W308Cmyc), LK W308C primer (SEQ ID NO: 46/5'-cgg cag cac agc tgc ttc cgg aag aaa-3'); the plasmid for L67P mutation (pcDNA3/LKB1 L67Pmyc), LK L67P primer (SEQ ID NO: 47/5'-gtg aag gag gtg ccg gac tcg gag acg-3'); plasmid DNA for K781 mutation (pcDNA3/LKB1 K781myc), LK KI1 primer (SEQ ID NO: 48/5'-agg agg gcc gtc atc atc ctc aag aag-3') The DNA strand was newly synthesized by annealing the single-stranded template DNA of the plasmid with two primers; one was the primer for the introduction of the mutation, and the other was a selection primer (for bottom strand) appended to the kit. The prepared DNA was introduced into *E. coli* cells; clones resistant to the antibiotic, Gene Editor TM, were selected to obtain the cells containing the plasmids with the mutation. The plasmids, which were verified to have the mutation by sequencing, were used for expression experiments.

[0060] The C-terminal end of LKB1 protein can be tagged with an epitope peptide (SEQ ID NO: 44/NH₂-YPYDVP-DYASL-COOH) recognized by anti-HA antibody or tagged with a sequence of consecutive 6 histidine (H) residues (histidine hexamer), by introducing, into a variety of vectors, the DNA fragments prepared by PCR using LK E4 primer (SEQ ID NO: 42/5'-gat ggg ccc tta cag gga ggc ata gtc agg cac atc ata tgg gta ctg ctg ctg ctg cga ggc cga-3') or LK E5 primer (SEQ ID NO: 43/5'-gat gga ttc tta gtg atg gtg atg gtg atg ctg ctg ctg cag ggc cga-3'), respectively, instead of LK E2 primer. By utilizing the tagged constructions, LKB1 protein can be detected by the methods using with anti-HA antibody or antihistidine hexamer-antibody, or can be purified by an affinity-purification method with anti-HA antibody or the nickel column.

Example 7. Gene expression of LKB1 in mammalian cell and the kinase activity assay

[0061] About 10 µg of the expression plasmid DNAs, including the plasmid DNA prepared for LKB1 expression (pcDNA3/LKB1myc), was introduced into COS7 cells (by transfection) by the method using SuperFect (Qiagen). Specifically, after about 10⁶ COS7 cells were placed in a 10cm dish and cultured overnight, a mixture consisting of 10 µg of plasmid DNA and 60 µl of SuperFect was added thereto and then cultured for about 3 hours. Subsequently, the cells were further cultured in a fresh medium for 1 to 2 days, and then harvested by using a trypsin-EDTA solution. The cells were suspended in an NP40 kinase lysis buffer (10mM Tris-hydrochloride (pH7.8), 1% NP40, 0.15M sodium chloride, 1mM EDTA, 50mM sodium fluoride, 5mM sodium pyrophosphate, 10 µg/ml aprotinin, and 1mM PMSF); the proteins were solubilized by stirring the suspension at 4°C for 30 minutes. Protein A/G plus agarose (Santa Cruz) was added to the cell lysate obtained, and the mixture was stirred for 30 minutes to remove non-specific proteins adsorbed by the beads. Anti-c-Myc antibody A14 (Santa Cruz) was added to the mixture and then the mixture was left to stand at 4°C for 1 hour; protein A/G plus agarose (Santa Cruz) was added thereto, and the mixture was allowed to stand for another 1 hour. The resultant immune-complex was precipitated from the mixture by centrifugation, washed several times with the NP40 kinase lysis buffer, a buffer containing 1M sodium chloride and a solution of 50mM Tris-hydrochloride (pH7.8); the precipitate was used to assay the kinase activity.

[0062] The kinase assay was performed in the reaction system of a 50μ l solution containing 50mM Tris-hydrochloride (pH7.8), 1mM DTT, 10mM divalent cation (Mn, etc.), and $10~\mu$ Ci of [γ^{-32} P] ATP. The immunoprecipitate was incubated in the kinase assay solution at 37°C for 30 minutes and then the reaction was stopped by adding the SDS-PAGE sample buffer and boiling; the sample was subjected to SDS-PAGE. The gel was fixed with a methanol/acetic acid solution, dried and then analyzed by a BAS200 image-analyzer (FujiFilm). The kinase activity of LKB1 assayed was evaluated as the autophosphorylation activity. The protein expressed was detected by SDS-PAGE followed by Western blotting using anti-c-Myc antibody A14.

[0063] The divalent cation-dependency in the kinase activity was first diagnosed, and the result showed that the kinase activity was hardly enhanced by Mg²⁺ but enhanced intensely by Mn²⁺ (Figure 6). The kinase activity was diagnosed in the mutant proteins containing amino acids substituted in the Peutz-Jeghers patients; none of the mutant proteins exhibited the kinase activity (Figure 7). These findings strongly suggest that LKB1 kinase loses its activity in Peutz-Jeghers patients and which becomes the cause of the disease.

Example 8. Expression of LKB1 protein in E. coli

20

[0064] Plasmid pGEX/LKB1myc was introduced into $E.\ coli$ strain DH5 α , and a single-colony was selected. The $E.\ coli$ cells were cultured in 10 ml of 2xYT medium at 37°C overnight; an aliquot taken from the culture was diluted 100 times by fresh 2xYT medium; the $E.\ coli$ cells were further cultured at 37°C until the OD value of the medium measured at 600nm reached 0.6. IPTG (isopropyl β -D(-)-thiogalactopyranoside) was then added to the culture at a final concentration of 0.1mM, and the culture was prolonged for another several hours. The bacterial cells were collected by centrifugation, suspended in PBS containing 1% TritonX-100 and 1% Tween 20 and lysed by sonication to solubilize their proteins. LKB1 protein expressed as a fusion protein with glutathione-S-transferase (GST) was purified from the solu-

bilized sample by an affinity purification method using glutathione Sepharose 4B (Pharmacia). The LKB1 protein expressed in *E. coli* was also detectable by Western blotting using anti-c-Myc antibody A14 (Figure 8).

Example 9. Preparation of antibody against LKB1 protein and the use thereof

[0065] Two peptides were synthesized (Sawady Technology) based on the amino acid sequences of the N-terminal end and the C-terminal end of LKB1 protein, and the sequences are as follows: NH₂-CHRIDSTEVIYQPRRKRAKL-COOH (SEQ ID NO: 34) of LKB1 P6 peptide (amino acid 27-45) and NH₂-CLSTKSRAEGRAPNPARKA-COOH (SEQ ID NO: 31) of LKB1 P3 peptide (amino acid 400-417). The respective peptides were conjugated at the N-terminal cysteine with keyhole limpet hemocyanin (KLH) by a method using m-maleimidebenzoyl-N-hydroxysuccinimide ester (MBS) (Sawady Technology). The conjugated peptides were given to rabbits several times as antigens for immunization. The specific antibodies reacting to these peptides were purified from the antiserum by affinity columns prepared using cellulofine (Seikagaku Co.) to which the peptides were linked.

The results of Western blotting with these antibodies (anti-LKB1P6 antibody and anti-LKB1P3 antibody recognize the N-terminal and C-terminal ends of LKB1 protein, respectively) are shown in Figure 9. The results showed that the band (indicated by arrow) of about 55 kDa corresponding to the LKB1 protein expressed in COS7 cells was detectable by each antibody. Because the positive immunoreaction was blocked when the antibody was pre-incubated with a large excess of the corresponding peptide antigen, the reaction was considered to be specific to the epitope. In addition, no cross-reaction was seen with the lysate from HeLa S3 cells; the cells express no LKB1 protein; and thus it is safe to conclude that LKB1 protein can be detected with high specificity by these antibodies. It was also shown that the LKB1 protein expressed as a GST fusion protein in E. coli was detectable with anti-LKB1 P3 antibody (Figure 8). The results of immuno-staining of human tissue sections with the antibodies are shown in Figures 10, 11, and 12. Figure 10 shows an immuno-stained tissue section of human fetal colon. The cytoplasm of the epithelial cells was positively stained. The cells, which are assumed to be endocrine cells, are also stained very intensely. Figure 11 shows an immuno-stained tissue section of human adult pancreas. The islet cells are stained positively. Figure 12 shows an immuno-stained tissue section of human fetal testis. The undeveloped germ cells are stained intensely. The immuno-staining patterns shown were obtained with anti-LKB1 P3 antibody; similar results were also obtained with anti-LKB1 P6 antibody. The positive immunoreactions shown were blocked when the antibody was pre-incubated with the corresponding peptide antigen, so that the staining was considered to be specific.

Industrial Applicability

30

50

55

[0068] The present invention revealed that Peutz-Jeghers syndrome was caused by the mutations in the LKB1 gene. The invention made it possible to diagnose and treat the diseases caused by the mutations in the LKB1 gene, such as Peutz-Jeghers syndrome, by utilizing the LKB1 gene, primers or probes designed based on the sequence thereof, LKB1 protein and the antibodies thereto.

SEQUENCE LISTING

5	CITO CHUGAI ABSEARCH INSTITUTE FOR MULECULAR MEDICINE, INC.	
	<120> DIAGNOSTIC METHOD, DIAGNOSTIC REAGENT AND THERAPEUTIC PREPARATION FOR DISEASES CAUSED BY VARIATION IN LKB1 GENE	ON
10	<130> C2-909DP1PCT	
15	<150> JP 1997-344256 JP 1998-280357	
	<151> 1997-11-27 1998-10-01	-
20	<160> 48	
25	<210> 1 <211> 3765 <212> DNA <213> Homo sapiens	
30	<400> 1 gcccactgct ttatgcggcc gtttcatttg atgtaatccg agcccggtgc gaagccgaag	60
	caggtggatc acctgaggtt aggagttcgg gaccagcctg aacaatatgg tgaaaccctg 1	20
35	tctctattga aaatccaaaa attatccagc catggtggtg tatgcctgta gtcccagcta 1	80
	ctccagaggc tgagacagga gaattgcttg aatctgggaa gcagaggttg cagtgaacca 2	40
40	agateatgee attgeactee ageeegggea acagagegag acteegtete aaaaaaaaaa 3	00
	aaagagagtc agtgtggagg gaagtgtctc tgttgggtcc gggtgctctg tgggactctg 3	60
45	aggaaaagct cgcaccaggt agatgctgtt ctgtccccat gggtaaagga caccccaaca 4	20
	aaccgaggag caaaatgtee tegtatgeee tettegegea gacctgeeag gaagagcaca 4	80
50		40
	gatggaagac cacgtctgca aaggagaagt gaagtttgaa gagaaggcaa aaagtgacaa 6	00

16

agetegetgt gacagggaga ttaaaaatta catteeteeg aaatgtaaga aagggtaaga	660
aaggaaagaa aaaggatege aatgeteeta gaaggeeace atetgeette tteetgtttt	720
getetgaaca tegeceaaag atcaaaagtg gacaceeagg cetatttgte gtggaaactg	780
caaagaaact gggtgaaatg tggtctgggc agtcagccaa agataaacaa ccatatgagc	840
agaaagcagt taagctacag gagagatatg aaaagggtat tgctgcatat cgtgctaagg	900
gcaaaagtga agcaggaaag aagggctcaa agaagaacaa accagaagat gaggaggagg	960
aggaggagaa agaagatgaa gatgaggagg aagagggtga agatgaagaa taaatggcta	1020
tcctttaatg atgcctgtgc agtgggcttg ttttgctaag aatgtgaatt ctagtacagc	1080
tcagtattag cttcagtata aaactgtaca aattttcgta tagctcataa gattctctgt	1140
acagaaaata ettttetttt ettttetttt ttttgagaca gagttteget ettgttgeet	1200
aggetggagt geaatggegt gatetegget cacegeaace teegeeteec gggteetggt	1260
tcaagcagtt ctcctgcctc agcctcctga gtagctggga ttacaggcac atgccaccac	1320
gctcagctaa tttttgtatt tttagtagag atggggtttc accatgttgg ccaggctgct	1380
ttcaaactcc tgacctcgtg atccgcctgc ttcggcctcc casaatactg ggattacagg	1440
tgtgagccac cgcaccctgc ctaatgtccc taaatattta atggttttta aaaaatttat	1500
tgtgtatggc agcacagcac acttgtagga attagtatca acagtacatc ttgcgttttt	1560
taagatgetg cattttttaa cattttgtaa taaaattatg cgtatcaaaa aaacaaagaa	1620
attecgtgtg tagttcacae teacageaca tetecgteca ggeaettgag agaatgaeta	1680
ggaggggttc ttggaggagg tggtctttga acggagaatc catcttcaag gattctgtct	1740
gtaatggtca ccaagtattt cctgagtcac ttccatgtgt cctgcagttc tctgaagggg	1800
cgtgggacct accgatgcca attatccagc attatctcca gattccaaga agttggggtg	1860
tgagccagca atcagtacag aaaagagata ccaaaataag tttgagttgg ggagtgttcc	1920

ttcaacttca gttttctgga agagatettt tttttttttt tgagacagag tttcgctctt	1980
attgcccaag ctggagtgca gtggcacgat ctcggctcac cgcaacctcc tcctcccggg	2040
ttcaagcgat tctcctccct cagccttctg agtagctggg attacagaca tgcacctgta	2100
atttctacta asaatacaaa aattagccgg gcgtggtggc gcacgcctgt aatctcagct	2160
actggggagg ctgaggcagg agaatcgctt gaaaccagga ggcggagatt gtaccaagat	2220
agtttgttcc agctaaacaa cctggcgcta gtgcaggaaa aggtggaagg cacggggcta	2280
gcacaggagg gttcaatatt ttcaacctta tcaagccata ttttggcaac tcttgttttt	2340
cacgagaage eccegetggg ettgteecag egetgteetg aggetteece catgagttee	2400
gatagggcag aggccgccct gagcgtttct ctttcccctg gtccaagagt ggctcaaaag	2460
aaggattttt gactggaatt ggccactttg tgttactttt tgacccttga cctcgcccca	2520
aagggggatg cggggggggg gctctggtag gggtggcccc gctccttcca ggtccgcaag	2580
cccaggttcc cgcccaccgg gctcagccca ccctgcggcc gttcagggag gccgttggca	2640
cccgtgacct acgacccct tcccgagccc caccgaggtc acagccgtgg cctcgtctcc	2700
ccatgcctgc ttcccgcccc ctgcccgtga cgggcgtctc cgaggaccaa tgagcgcgct	2760
gtatccaccc ctegggeggg gccaagegee gaccaatege egetegggeg eeeggeeggg	2820
tccaaacgct ccaatcgtca gcggcggcgg ggcgggcaga gggccgggga tggcaggttc	2880
aaccaacggg tgggcacgtc gtcctcgcga ggaggcgtgc cctgcggccg ggcgtgcggt	2940
gtccgcggcg gcgcagggag gggagggag gtaaacaaga tggcggcggc gtgtcgggcg	3000
cggaaggggg aggcgcccg gggcgcccgc gagtgaggcg cgggggggg aagggagcgc	3060
gggtggcggc acttgctgcc gcggccttgg atgggctggg cccccctcgc cgctccgcct	3120
cctccacacg cgcggcggcc gcggcgaggg ggacgcgccg cccggggccc ggcaccttcg	3180

	ggaacccccc ggcccggagc ctgcggcctg cgccgcctcg gccgccggga gccccgtgga	3240
5	geocecegecg cegegecece cegeggaceg gacgetgagg geactegggg eggggegege	3300
	gctcgggcag acgtttgcgg ggagggggc gcctgccggg ccccggcgac caccttgggg	3360
10	gtcgcgggcc ggctcggggg gcgcccagtg cgggccctcg cgggcgccgg gcagcgacca	3420
	gccctgagcg gagctgttgg ccgcgggggg aggcctcccg gacgccccca gccccccgaa	3480
15	cgctcgcccg ggccggcggg agtcggcgcc ccccgggagg tccgctcggt cgtccgcggc	3540
	ggagcgtttg ctcctgggac aggcggtggg accgggggcgt cgccggagac gcccccagcg	3600
20	aagttgggct ctccaggtgt gggggtcccg gggggtagcg acgtcgcgga cccggcctgt	3660
20	gggatgggcg gcccggagaa gactgcgctc ggccgtgttc atacttgtcc gtgggcctga	3720
	ggtccccgga ggatgaccta gcactgaaaa gccccggccg gcctc	3765
<i>25</i> <i>30</i>	<210> 2 <211> 1006 <212> DNA <213> Homo sapiens	
35	<220> <221> exon <222> (1)(628)	
	<220> <221> intron <222> (629)(1006)	
40	<400> 2	
	cccagggtcc ccgaggacga agttgaccct gaccgggccg tctcccagtt ctgaggcccg	60
45	ggtcccactg gaactcgcgt ctgagccgcc gtcccggacc cccggtgccc gccggtccgc	120
	agaccetgea cegggettgg actegeagee gggactgacg tgtagaacaa tegtttetgt	180
50	tggaagaagg gtttttccct tccttttggg gtttttgttg ccttttttt ttctttttc	240
	tttgtaaaat tttggagaag ggaagtegga acacaaggaa ggacegetea eeegeggaet	300

5	cagggctggc ggcgggactc caggaccctg ggtccagc atg gag gtg gtg gac ccg Met Glu Val Val Asp Pro 1 5	356
10	cag cag ctg ggc atg ttc acg gag ggc gag ctg atg tcg gtg ggt atg Gln Gln Leu Gly Met Phe Thr Glu Gly Glu Leu Met Ser Val Gly Met 10 15 20	404
15	gac acg ttc atc cac cgc atc gac tcc acc gag gtc atc tac cag ccg Asp Thr Phe Ile His Arg Ile Asp Ser Thr Glu Val Ile Tyr Gln Pro 25 30 35	452
20	cgc cgc aag cgg gcc aag ctc atc ggc aag tac ctg atg ggg gac ctg Arg Arg Lys Arg Ala Lys Leu Ile Gly Lys Tyr Leu Met Gly Asp Leu 40 45 50	500
25	ctg ggg gaa ggc tct tac ggc aag gtg aag gag gtg ctg gac tcg gag Leu Gly Glu Gly Ser Tyr Gly Lys Val Lys Glu Val Leu Asp Ser Glu 55 60 65 70	548
30	acg ctg tgc agg agg gcc gtc aag atc ctc aag aag aag aag ttg cga Thr Leu Cys Arg Arg Ala Val Lys Ile Leu Lys Lys Lys Lys Leu Arg 75 80 85	596
35	agg atc ccc aac ggg gag gcc aac gtg aag aa gtaagtatggc ttgctggggt Arg Ile Pro Asn Gly Glu Ala Asn Val Lys Lys 90 95	649
33	cggggccggg ccgggccagt cacggtgctg atggttctgt cttccttcct tctctcctc	709
40	ctccctccct tacttcctct taacaccctg agetggaccc gtctggcgcc tgtgtcctcc	769
	gtgccaggga gagcgtggtt gggggcctgc gttacggact ttcactcagg caaggccagt	829
45	tgtcgcagcg gggcgtgcgt ttgcatgggc tcttggactc cagttaaaat gccctggtag	889
	cgaaacccte etgagaaggg ageggeeece aateccctaa gaetageece ttggeteece	949
50		1006
	<210> 3 <211> 5661	

	<212>	DNA
	<213>	Homo sapiens
5		
	<220>	
	<221>	intron
	<222>	(1)(456)
10		
	<220>	
	<221>	
	<222>	(457)(540)
15		
	<220>	
		intron
	<222>	(541)(1363)
20		
20	<220>	
	<221>	
	<222>	(1364)(1453)
OF.		
25	<220>	
		intron
	<222>	(1454)(2412)
30	<220>	
	<221>	
	<222>	(2413)(2545)
	4000	
35	<220>	
		intron
	<222>	(2546)(2620)
	<220>	
40		0.7707
	<221>	(2621)(2757)
	\666 >	(2021)(2151)
	<220>	
45		intron
		(2758)(3252)
	~6667	(2100)(3434)
	<220>	
50	<221>	PAUL
		(3253)(3380)
	\UUU/	(0200)(0000)

	<220>	
	<221> intron	
5	<222> (3381)(3988)	
	<220>	
	<221> exon	
10	<222> (3989)(4046)	
	<220>	
•	<221> intron	
15	<222> (4047)(5024)	
	<220>	-
	<221> exon	
20	<222> (5025)(5212)	
	<220>	
	<221> intron	
	<222> (5213)(5661)	
25	.mam. (am2a)(aaa2)	
	<400> 3	
	ggtgaaaccc tgtctgtact aaaatacaaa aaaattagcc ggctgtggtg acacgtgcct	60
30	gtagtcccag ctactcggga ggctgaggca gggaaatcac ttgaacctgg gaggcagagg	120
	ttgcagtgag ctgagatcgg gccaccgtgc tccagcctag ggacagagca agactctgtc	180
35	tcagaaaaaa aaaaaagtgt cctaactgtg tcctccaaag ccctcgccgg ccgatgacag	240
	actagaggge getgtgetee caceccetae egecetgage etggaegegt ggeecetgea	300
40	gggccctttc ccacagcact gtgaactcac agcttctctc tagggaaggg aggaggtacg	360
	ccacttccac agggagatgg ggaggccgac tccagggatc caggccatca tcctgacgtt	420
45	gggtcggctg atacacccct gtcctctctg tcccag g gaa att caa cta ctg agg Glu Ile Gln Leu Leu Arg 100	475
50	agg tta cgg cac aaa aat gtc atc cag ctg gtg gat gtg tta tac aac Arg Leu Arg His Lys Asn Val Ile Gln Leu Val Asp Val Leu Tyr Asn 105 110 115	523

5	gaa gag aag cag aaa at atatcctttcc ggtgttggga ccgcggggcc Glu Glu Lys Gln Lys Met 120 125	571
	teegtgggag gggetgggge eetgggteeg eetgeetega ggeetgetee tetteeegte	631
10	teettgaagg agactggeac acgagggeeg tggcetteec tggtteeceg gaagteagee	691
	attgtggcaa tggctgcgca gcttgctgaa aggggccctg agccctggcc cctgtgtctt	751
15	gggcccgtgg ggtgtcaagt ccctttttc tcagagtctc ctcccaggct aaccaggggt	811
	gtagccacgg tctgcctgag acaggccacg cgggctgacc gttgtgggcc attttggtcg	871
20	tggctgggcg tgtcctcgtg tcatctgtgg acacccccat gggtcttacg ggcacagcct	931
	ccctacgggg actttgcttc ctaaggccct gtgcccagag caagagccag aagtggtcct	991
25	gaggetgggg etgtgttece tgagceaege ggteagggge eetgggaeeg teetgeatgg	1051
23	georgageet gettgggggg gegteeagga ggeaceatee eeegeecatg ggeagggtgg	1111
	gggacgtgag ccccgcagga acgctgcccc aagagtcagc cctgtcctcc ccttccccgt	1171
30	aggeteette eteetgggae getggggeee etgggeettt teagaggggt ggetgaggge	1231
	agggtgggcc ctggtcccga ggaggggcaa ggtgggtgca gagggtccct ccagagcccc	1291
35	ttttctggcc cccgtgctcc ctgggcctgt gagtggggcc gccccctgag ctgtgtgtcc	1351
40	ttagcgcccc ac g tat atg gtg atg gag tac tgc gtg tgt ggc atg cag Tyr Met Val Met Glu Tyr Cys Val Cys Gly Met Gln 130 135	1400
45	gaa atg ctg gac agc gtg ccg gag aag cgt ttc cca gtg tgc cag gcc Glu Met Leu Asp Ser Val Pro Glu Lys Arg Phe Pro Val Cys Gln Ala 140 145 150	1448
50	cac gg gtgcgtgcgcg gggcagggc cagggtgggg cgggggccgg gggccaggca His Gly 155	1504
	gggcaggctc ctttccgtga ggccacactg cttgtcctga tattcattga catgaaggcc	1564

caagtttttt tgtttttttg tttttttgtg tttttttt	1624
gcccaggctg gagtgcaatg gtgcgatctc ggctcactgc aagctccgcc tccgaggttc	1684
acgccattct tetgceteag ettecegagt agetgggatt acaggegeee gecaccaege	1744
ccggctaatt ttttgtattt ttagtagaga cggggtttca ccgtgttagc caggatggtc	1804
tcaaactcct gacctcgtga tccgcctgcc tcagcctccc aaagtgctgg gattacaggc	1864
atgagetace acgeeeggee ttgtaaagge ccaagttttt aaaaacagtt ttggggteee	1924
ccatgtgtgg catccacagg cagggctgct gccaacctcc cgcctccatc tttgctgggc	1984
ctgctgcctg aggccagtgg cctgcttcca gcccatcgct ggcagccgcc tgccctgacc	2044
agateteetg gatgeaggte tgtggeetea gagteaggge eeettgetge tgeaggacea	2104
caggggcagg gaggggcctg ctgttccagc aagactttgg ggtgcagccg gcctgtggcc	2164
cacaggaaaa tgagacctgt ggacatccgg ggccctgcca gacgtggctc ggccggacga	2224
gggtggccac tgcaggcgca ggtgtggctc cctgctggac ctagcctttc ctctgtcctg	2284
tgtgcctgga cttctgtgac ttcccagctg ggcctgtggt gtttgggagg ctcccaggca	2344
getgeaaagg ggacceetgt gaggggcagg gaggcetegg ceceaggacg ggtgtgtget	2404
georgeag g tac ttc tgt cag ctg att gac ggc ctg gag tac ctg cat Tyr Phe Cys Gln Leu Ile Asp Gly Leu Glu Tyr Leu His 160 165	2452
agc cag ggc att gtg cac aag gac atc aag ccg ggg aac ctg ctg ctc Ser Gln Gly Ile Val His Lys Asp Ile Lys Pro Gly Asn Leu Leu Leu 170 175 180	2500
acc acc ggt ggc acc ctc aaa atc tcc gac ctg ggc gtg gcc gag Thr Thr Gly Gly Thr Leu Lys Ile Ser Asp Leu Gly Val Ala Glu 185 190 195	2545
staggaanst setaggggg seretgggge sereetere saggartere tsagggetse	2605

;	acggcaccgc cacag gca ctg cac ccg ttc gcg gcg gac gac acc tgc cgg Ala Leu His Pro Phe Ala Ala Asp Asp Thr Cys Arg 200 205 210	2656
o .	acc agc cag ggc tcc ccg gct ttc cag ccg ccc gag att gcc aac ggc Thr Ser Gln Gly Ser Pro Ala Phe Gln Pro Pro Glu Ile Ala Asn Gly 215 220 225	2704
· 5	ctg gac acc ttc tcc ggc ttc aag gtg gac atc tgg tcg gct ggg gtc Leu Asp Thr Phe Ser Gly Phe Lys Val Asp Ile Trp Ser Ala Gly Val 230 235 240	2752
20	acc ct gtaagtgcccc gccccccgg gcactcacca cacgcacact ccgaggggcc Thr Leu 245	2808
	totgogtott gggcagotgc cggcctgtgg gcgcagggcg tggccaccgg cccagaccct	2868
ne.	ctctggccac agccgctagg gggtgcttac tttatggaaa tgtaactcat acggcagatg	2928
25	gtggttcacc cgtgtgaagt gcagcctggc ccgtcaggga tcttcacaga gtggcacggc	2988
	cgaccetect eccagagece cacagggaag etgggegggt gacagcaget ecaggeceet	3048
30	teccegggtg ggtecagagg acaeteceet cetacecegt ageetecaet agtggaaggt	3108
	ggtgaagaca gaggtgteet tgagteeaca gggeetetgg teeageagee aegggaegee	3168
35	tetgteetg gggtagaget ggggeteeta gggegteaac cacettgact gaccaegeet	3228
10	ttetteete eeetegaaat gaag e tae aac ate aee aeg ggt etg tae eee Tyr Asn Ile Thr Thr Gly Leu Tyr Pro 250	3280
15	ttc gaa ggg gac aac atc tac aag ttg ttt gag aac atc ggg aag ggg Phe Glu Gly Asp Asn Ile Tyr Lys Leu Phe Glu Asn Ile Gly Lys Gly 255 260 265 270	3328
50	age tac gec ate eeg ggc gae tgt ggc eec eeg ete tet gae etg etg Ser Tyr Ala Ile Pro Gly Asp Cys Gly Pro Pro Leu Ser Asp Leu Leu 275 280 285	3376
	aaa g gtgggagcctca tccctctgcc cgcagcccca gggaggcggg gcttttgtgc	3432

Lys

5	aganatgtag ggttgggggt gtcaggtggg gggctattgg ccccgagacc ccagcaggca	3492
	ttgagaggac tgagtggaga ggccgacctc cccgcagggc ctggtttgcc aggtccctca	3552
10	getecaceet gettetggge cetgtteace etecgaacte ceaceecaga gggeagtget	3612
	gccctgcgcc tcccccagcc ccaccctcgg gggctccctg gcttgcaggg tctgtcaggg	3672
15	ttgtcctgct gcacttccta cgcatggcag caggtggcac tggccgtccg tccatctgcc	3732
	cagtggcctt gggagaacgg aaccgccctg gccgtccagc ccagccctgt ctccctgcca	3792
20	geogegeaca ggetgteece ggeatgteec aggagtggag tggeetetgt cagggagace	3852
	gcctgtgcgc ggggtccccc ttaggagcgt ccaggtatca cccagggcct gacaacagag	3912
25	gctgggcagg cggggacggt tggtggggtc tcaggcctgt gcccagctga caggctcctc	3972
30	gccggcttct cctcag gg atg ctt gag tac gaa ccg gcc aag agg ttc tcc Gly Met Leu Glu Tyr Glu Pro Ala Lys Arg Phe Ser 290 295	4023
<i>35</i>	atc cgg cag atc cgg cag cac ag gtgagcggccc ctgggggcag tggggccgag Ile Arg Gln Ile Arg Gln His Ser 300 305	4077
	gctgcaggga ggccggccat gtgggcagct ggttgagcgg gcgctagagc agggcgtggt	4137
40	gggggtgcca ggctgggctg gggccagacc ccgtgcagcg cccgcagttc tcggggcccg	4197
	agtggggtct ctgggcagtg tcctgttacc ggccagaccc aggcgccttg tccgaactgg	4257
45	ggtctgagtg aggacatgcg tccgtccctg ccctaggcat ggagatgcgc caggaagggc	4317
	acagetggte ceaaacactg gegagageet etettttee eeteeteetg gggeteecag	4377
50	cagcagggtg tggctgggat ccagcccagg gcccccagct ccatgacagg gaagacagag	4437
	cagoggacgg ggtcagcagg coccacagtg cogcotcoct cacttogtgg gctctgctcc	449

	tetgeaceag cecetggagg ceettgagee gtetgetgga geceeteega geecegagge	4557
	cacccactga gaccggctct gggagtggga gtgtccggac ccctgaggcg ctggtgctga	4617
	ttgtgccttg ggggtctctg cacagctcgg gtcatctggg cgcctggcgg ggactggggc	4677
o	tgcccccga tagcctcctg ggctgggatg tgctcagggc cccccagacc cccttctggc	4737
	ctttgctggc tttgcagcca gcatccatct ggtgggtgct ggcttctgag tgccacctgg	4797
5	gacacaggcc tcagggtgga ggggacatct gtcaggcttg gagtcaggtc agcctgcctg	4857
	etectagagg acatggetga gettetgtgg teacagceae ecettgeaeg geetggteee	4917
ro	agetectgag tgtgtggcag gtaccetggg eccagaggag etgggtegga aaactggace	4977
	gccctggtgc cagcctgaca ggcgccactg cttctgggcg tttgcag c tgg ttc cgg Trp Phe Arg 310	5034
5	aag aaa cat cct ccg gct gaa gca cca gtg ccc atc cca ccg agc cca Lys Lys His Pro Pro Ala Glu Ala Pro Val Pro Ile Pro Pro Ser Pro 315 320 325	5082
	gac acc aag gac cgg tgg cgc agc atg act gtg gtg ccg tac ttg gag Asp Thr Lys Asp Arg Trp Arg Ser Met Thr Val Val Pro Tyr Leu Glu 330 335 340	5130
5	gac ctg cac ggc gcg gac gag gac gag gac ctc ttc gac atc gag gat Asp Leu His Gly Ala Asp Glu Asp Glu Asp Leu Phe Asp Ile Glu Asp 345 350 355	5178
o	gac atc atc tac act cag gac ttc acg gtg ccc g gtgagtctggcg Asp Ile Ile Tyr Thr Gln Asp Phe Thr Val Pro 360 365	5224
5	ggggcccctg cccggctctg ctgactcggc caggatgtcc cacgggagca gggtgcctgc	5284
	ctgtctgcaa caaggacagc ttctgccctc tggtggccaa tcccacgtcc ccaaagcctc	5344
o	cageceacet geaggetgee teegeeetge gggeegetgg gacatggetg aaaggtgtgg	5404
	ggtcagcggg ggcaccagcc caggcctgtc tggccaggag ggttcctcag gcgtctctcc	5464

	gggtgctgcc cagccaggca ccacccaccg gccttggcct gagtcccagc aggagcaggc	5524
5	gggggagccc cagggtcggg ggagggtagg tgagagtcag ggtgcagggt ggcccctcag	5584
	acagetggca tgagagaggg tecagtggce eteceteceg tegtecetga ggeetgeeeg	5644
10	ctggccctga tgccggc 5661	
15	<210> 4 <211> 2095 <212> DNA <213> Homo sapiens	-
20		
	<220> <221> intron <222> (1)(454)	
25		
	<220> <221> exon <222> (455)(2095)	
30	1400- 4	
	<400> 4 tttcgcgtgc ctggcctgag cctggcccga gcctggccct cctgtgtcct cacagatgag	60
35	catgtggcgg ctcctgggcc tctagaacca accatgggcc agggtgcccc aggggagcac	120
	gggagggtcc tgccttgtca gcttgcctcc tactcgtgag gttcctgcag tcagtacctg	180
40	ggtggggtcc cacctgcggc catggcaggt gcaacagacg tggtggaggg gacactcctg	240
	cccaggccat ctgcgggagg ctcagccccg gggggtgcct cccagagctg ctggggggca	30 0
45	gcatttcagg ctggatacac ctgggcctga cccgggggcg ggcatggcct gggcagcagc	360
	tgtaagtgcg tccccgtggt gggggccagc caggtccctg tggctctggg gttgcgcccc	420
50	teageteagg ceacaettge egteteete ee ga eag gte ee gaa gag gag Gly Gln Val Pro Glu Glu Glu 370 375	474

. 5	gcc agt cac aat gga cag cgc cgg ggc ctc ccc aag gcc gtg tgt atg Ala Ser His Asn Gly Gln Arg Arg Gly Leu Pro Lys Ala Val Cys Met 380 385 390	522 -
10	aac ggc aca gag gcg gcg cag ctg agc acc aaa tcc agg gcg gag ggc Asn Gly Thr Glu Ala Ala Gln Leu Ser Thr Lys Ser Arg Ala Glu Gly 395 400 405	570
15	cgg gcc ccc aac cct gcc cgc aag gcc tgc tcc gcc agc agc aag atc Arg Ala Pro Asn Pro Ala Arg Lys Ala Cys Ser Ala Ser Ser Lys Ile 410 415 420	618
	cgc cgg ctg tcg gcc tgc aag cag tgaggctggc cgcctgcagg Arg Arg Leu Ser Ala Cys Lys Gln Gln 425 430	665
20	tggggcgcgg cggggcccgg gtggggcatg tggggacaac gcctggatgc cacagccagc	725
	cgtgagcata gcccgcgcta gtcagtcatg gtgaccgtca cgtggctgcg cgtggttgcc	7 85
25	atgtggcctt tgggtggctt ggccacgtag cgatccccgt ggagggtgcc gtctcggggc	845
	ctggtgtctg gccagcgtgc tggtcatgga ggcctacgtg tggcggggct ctggggggc	905
30	gtgccgtcct cacagccace tetcagagtg ggtgcattce gaggaccetg ccctgggcct	965
	ggegeeeet ecceatgeee gegeegette cagganagge ttatgetggg etcageeeag	1025
35 .	aggettttga geaccagtgg gtggtgggtg gtggggaggg geegeggeet ceatggetet	1085
	gccggggtgc cgcaggctct gagccagctg ccaagtatgg ctgaggctga gtcgtgccgg	1145
40	acgetgeeet gteteteet gtgtgeetge eteeteteec ageeecagee ecageceegg	1205
	gtgggagacg gagtcccaga ggtgtcagag accettaagt cacetgccga ggatgcgggg	1265
45	tggatggggg cccgaggctg aagcccctgc cttgccacag cccctctccc aggttttggg	1325
	ggccaccgcc tgagttacat gtctgtcccc caaatgggtg cccacagccc atccaccagc	1385
50 ·	gtcagagece gecaggecee actgeaaaag gecacaeaat gtaceeeggg agtgaeteaa	1445
	gggtggcctt ccctggcctc ccctgctgcc ccccaggagt ccggtagccc catgactgta	1505

	ceteagette tecateetee caggggeeeg egggaggegg agaaceggtg ceeaggetga	1565
5	cetetteegt etteetteea eeetgeagee egtgteeagg ageeeegea ggtgeeegeg	1625
	ccaggecete agtetteetg ceggtteege cegeceteec ggagaggtgg cegecatget	1685
10	tetgtgeega ecaegeecea ggaceteegg agegeeetge agggeegge agggggacag	1745
	cagggacegg gegeagecet ecceetegg eegeeeggea gtgcaegegg ettgttgaet	1805
15	tegeageece gggeggagee tteeegggeg ggegtgggag gagggaggeg geeteeatge	1865
	actitatete gagactacte gccccgcccg tegcctcete ctccgcageg ceccagegc	1925
20	cgtccggcgg ccccgccgca gaccagctgg cgggtgtgga gaccaggctc ctgaccccgc	1985
	catgcatgca gcgccacctg gaagccgcgc ggccgctttg gttttttgtt tggttggttc	2045
25	cattttcttt ttttcttttt ttttttaaga aaaaataaaa ggtggatttg	2095
	<210> 5	
	<211> 1302	
30	<212> DNA <213> Homo sapiens	
	<220>	
35	<221> CDS <222> (1)(1302)	
	<400> 5	40
40	atg gag gtg gtg gac ccg cag cag ctg ggc atg ttc acg gag ggc gag Met Glu Val Val Asp Pro Gln Gln Leu Gly Met Phe Thr Glu Gly Glu	48
	1 5 10 15	
45	ctg atg tcg gtg ggt atg gac acg ttc atc cac cgc atc gac tcc acc Leu Met Ser Val Gly Met Asp Thr Phe Ile His Arg Ile Asp Ser Thr	96
	20 25 30	
50	gag gtc atc tac cag ccg cgc cgc aag cgg gcc aag ctc atc ggc aag Glu Val Ile Tyr Gln Pro Arg Arg Lys Arg Ala Lys Leu Ile Gly Lys	144
	35 40 45	

5												gtg a Val		192
10												atc c		240
15												gtg a Val 95		288
20	_	_			_	 		Arg				atc c Ile	_	336
25							Glu					atg g Met		384
30						Met					Asp	gtg c Val		432
35										Tyr		cag c Gln		480
									Gly			aag g Lys 175		528
40								Thr				aaa a Lys		576
45		-	-	Gly	 _	 _	Leu		_		_	gac g Asp		624
50												gag a Glu		672

		210					215					220					
5	_			_	_				-			Val			tgg Trp		720
10	-		-												ttc Phe 255		768
15		_				_	-								agc Ser		816
20	-														aaa (864
25	_		_		-	-	-	_					Arg		atc (912
30	_		_				_				_	Ala	-	-	cca ; Pro		960
35				_	_		_		_	_	Arg				atg Met 335	Thr	1008
40		_								Gly		_			gag . Glu		1056
45									Ile						acg Thr		1104
50								Glu					Gly		cgc Arg	cgg Arg	1152
	ggc	ctc	ccc	aag	gcc	gtg	tgt	atg	aac	ggc	aca	gag	gcg	gcg	cag	ctg	1200

	Gly 385	Leu	Pro	Lys	Ala	Val 390	Cys	Met	Asn	Gly	Thr 395	Glu	Ala	Ala	Gln	Leu 400	
5															gc a Arg 415		1248
10															ag c Lys		1296
	cag 1302 Gln																-
20	<212	l> 43 2> PE	lT.	sapie	ens												
25	<400)> 6				Pro	Gln	Gln	Leu	Gly 10	Met	Phe	Thr	Glu	Gly 15	Glu	
30	Leu	Met	Ser	Val 20	Gly	Met	Asp	Thr	Phe 25	Ile	His	Arg -	He	Asp 30	Ser	Thr	
35	Glu	Val	I1e 35	Туг	Gln	Pro	Arg	Arg 40	Lys	Arg	Ala	Lys	Leu 45	Ile	Gly	Lys	
40	Tyr	Leu 50	Met	Gly	Asp	Leu	Leu 55	Gly	Glu	Gly	Ser	Tyr 60	Gly	Lys	Val	Lys	
	Glu 65	Val	Leu	Asp	Ser	Glu 70	Thr	Leu	Cys	Arg	Arg 75	Ala	Val	Lys	Ile	Leu 80	
45	Lys	Lys	Lys	Lys	Leu 85	Arg	Arg	Ile	Pro	Asn 90	Gly	Glu	Ala	Asn	Val 95	Lys	
50	Lys	Glu	He	Gln 100	Leu	Leu	Arg	Arg	Leu 105	Arg	His	Lys	Asn	Val 110	He	Gln	
	Leu	Val	Asp	Val	Leu	Tyr	Asn	Glu	Glu	Lys	Gln	Lys	Met	Tyr	Met	Val	

			115					120					125			
5	Met	Glu 130	Tyr	Cys	Val	Cys	Gly 135	Met	Gln	Glu	Met	Leu 140	Asp	Ser	Val	Pro
10	Glu 145	Lys	Arg	Phe	Pro	Val 150	Cys	Gln	Ala	His	Gly 155	Tyr	Phe	Cys	Gln	Leu 160
	Ile	Asp	Gly	Leu	Glu 165	Tyr	Leu	His	Ser	Gln 170	G1y	Ile	Val	His	Lys 175	Asp
15	Ile	Lys	Pro	Gly 180	Asn	Leu	Leu	Leu	Thr 185	Thr	Gly	Gly	Thr	Leu 190	Lys	[]e
20	Ser	Asp	Leu 195	Gly	Val	Ala	Glu	Ala 200	Leu	His	Pro	Phe	Ala 205	Ala	Asp	Asp
_	Thr	Cys 210	Arg	Thr	Ser	Gln	Gly 215	Ser	Pro	Ala	Phe	Gln 220	Pro	Pro	Glu	Ile
25	Ala 225	Asn	G1y	Leu	Asp	Thr 230	Phe	Ser	Gly	Phe	Lys 235	Val	Asp	Ile	Trp	Ser 240
30	Ala	Gly	Val	Thr	Leu 245	Туг	Asn	Ile	Thr	Thr 250	Gly	Leu	Tyr	Pro	Phe 255	Glu
35	Gly	Asp	Asn	Ile 260	Tyr	Lys	Leu	Phe	Glu 265	Asn	lle	Glÿ	Lys	Gly 270	Ser	Tyr
	Ala	Ile	Pro 275	Gly	Asp	Cys	Gly	Pro 280	Pro	Leu	Ser	Asp	Leu 285	Leu	Lys	Gly
40	Met	Leu 290	Glu	Tyr	Glu	Pro	Ala 295	Lys	Arg	Phe	Ser	11e 300	Ārg	Gln	Ile	Arg
45	Gln 305	His	Ser	Trp	Phe	Arg 310	Lys	Lys	His	Pro	Pro 315	Ala	Glu	Ala	Pro	VaI 320
	Pro	Ile	Pro	Pro	Ser 325	Pro	Asp	Thr	Lys	Asp 330	Arg	Trp	Arg	Ser	Met 335	Thr
50	Val	Val	Pró	Tyr 340	Leu	Glu	Asp	Leu	His 345	Gly	Ala	Asp	Glu	Asp 350	Glu	Asp

_	Leu	Phe	Asp 355	Ile	Glu	Asp	Asp	11e 360	Ile	Tyr	Thr	Gln	Asp 365	Phe	Thr	Val
5	Pro	Gly 370	Gln	Val	Pro	Glu	Glu 375	Glu	Ala	Ser	His	Asn 380	Gly	Gln	Arg	Arg
10	Gly 385	Leu	Pro	Lys	Ala	Val 390	Cys	Met	Asn	Gly	Thr 395	Glu	Ala	Ala	Gln	Leu 400
15	Ser	Thr	Lys	Ser	Arg 405	Ala	Glu	Gly	Arg	Ala 410	Pro	Asn	Pro	Ala	Arg 415	Lys
	Ala	Cys	Ser	Ala 420	Ser	Ser	Lys	Ile	Arg 425	Arg	Leu	Ser	Ala	Cys 430	Lys	Gln
20	Gln															
25	<21 <21	0> 7 1> 2: 2> Di 3> Ai	A.	icial	l Sec	meno	:e									
30	<22(0> 3> De	escr	iptio		f Art	tific	cial	Seqı	lence	e: " I)J698	3", í	an a	rtifi	icially
35		0> 7 cccc	gag g	gacga	agti	tg a										21
40	<21 <21	0> 8 1> 2(2> D) 3> A	NA	icia	l Sec	quenc	ce						-			
45		3> I			ion ner :			ficia	al S	Seque	ence:	: *D	J673	, s	an a	artificially
50		0>8 atca	gca (ecgte	gacte	gg										20

5	<210> 9 <211> 18 <212> DNA <213> Artificial Sequ	lence				
10	<220> <223> Description o synthesized primer se	f Artificial	Sequence:	"DJ703",	an .	artificially
15	<400> 9 tcgccggccg atgacaga					18
	<210> 10 <211> 22 <212> DNA			•		· -
20	<213> Artificial Sequ 220					
25	<223> Description of synthesized primer seconds.		Sequence:	"DJ674",	an i	artificially
	<400> 10 aaggagacgg gaagaggago	: ag		•		22
30	<210> 11 <211> 19 <212> DNA <213> Artificial Sequ					
35	<220> <223> Description o		Sequence:	"DJ690",	an :	artificially
40	synthesized primer se <400>·11 gaggaggggc aaggtgggt	equence		-		19
45	<210> 12 <211> 21 <212> DNA					
50	<213> Artificial Sequ <220>	ience				
	<223> Description of	f Artificial	Sequence:	"DJ680",	an :	artificially

	synthesized primer sequence		
•	<400> 12		
	gtgtggcctc acggaaagga g		21
	<210> 13		
0	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
_	<220>		
5	<223> Description of Artificial Se	equence: . DJ692, an	artificially
	synthesized primer sequence		-
	<400> 13		
ro .	agctgggcct gtggtgtttg		20
	<210> 14		
	<211> 20		
<i>15</i>	<212> DNA		
	<213> Artificial Sequence		•
	<220>		
10	<223> Description of Artificial Se	equence: "DJ694", an	artificially
	synthesized primer sequence		
	<400> 14		
15	cagaggcccc tcggagtgtg		20
	<210> 15		
	<211> 20		
	<212> DNA	-	
10	<213> Artificial Sequence	·	
	<220>		
	<223> Description of Artificial Se	sequence: "DJ695", an	artificially
15	synthesized primer sequence	·	
	<400> 15		
	gcctctgtcc ctggggtaga		20
50	<210> 16		
	<211> 22		

	<212> UNA				
	<213> Artificial Sequence		•		
5	-				
	<220>				
	<pre><223> Description of Artificial</pre>	Sequence:	*D.1693*	an	artificially
	synthesized primer sequence	peddoneo.	Double ,	ш	of officially
	Synthesized primer Sequence				
10	1100- 10				
	<400> 16				
	teagteetet caatgeetge tg				22
15	<210> 17				
	<211> 19		•		
	<212> DNA				-
	<213> Artificial Sequence				
00					
20	<220>				
	<223> Description of Artificial	Sequence:	"DJ696",	an	artificially
	synthesized primer sequence	-	•		•
	0,100				
<i>25</i>	<400> 17				
	gcggggtccc ccttaggag				19
	80888000 00000				10
	<210> 18				
30	<211> 19				
	<212> DNA				
	<213> Artificial Sequence		-		
	2000				
35	<220>	0	ZD YCODZ		
	<223> Description of Artificial	Sequence:	_D1634_'	an	artificially
	synthesized primer sequence				
40	<400> 18				
	ctagegeeg etcaaceag				19
	<210> 19				
45	<211> 22				
	<212> DNA				
	<213> Artificial Sequence				
	-				
	<220>				
50	<223> Description of Artificial	Sequence:	"DJ675" -	an	artificially
	synthesized primer sequence	20470000.	,		
	plumporand brimor poduning				

	<400> 19 ggagctgggt cggaaaactg ga				22
5	<210> 20 <211> 20 <212> DNA <212> Artificial Seguence				
10	<213> Artificial Sequence				
15	<220> <223> Description of Artificial Synthesized primer sequence	Sequence:	"DJ702",	an	artificially
	<400> 20	•	•		•
	tgctcccgtg ggacatcctg				20
20	<210> 21 <211> 20 <212> DNA <213> Artificial Sequence				,
25	<220>				
	<223> Description of Artificial Synthesized primer sequence	Sequence:	"DJ676",	an	artificially
30	<400> 21 gtaagtgcgt ccccgtggtg				20
35	<210> 22				
	<211> 20 <212> DNA <213> Artificial Sequence				
40	<220> <223> Description of Artificial Synthesized primer sequence	Sequence:	"DJ677",	an	artificially
45	<400> 22 gtggcatcca ggcgttgtcc				20
50	<pre><210> 23 <211> 22 <212> DNA <213> Artificial Sequence</pre>				

	<220>				
	<223> Description of Artificial	Sequence:	"DJ705",	an	artificially
5	synthesized primer sequence				
	<400> 23				
	gggaattcgg aacacaagga ag				22
10	·				
	<210> 24				
	<211> 19				
	<212> DNA				
15	<213> Artificial Sequence		•		
	<220>				
	<223> Description of Artificial	Sequence:	"DJ649",	an	artificially
20	synthesized primer sequence				
	<400> 24				
	atggaggtgg tggacccgc				19
25	<210> 25				
	<211> 24				
	<212> DNA				
	<213> Artificial Sequence				
30					
	<220>	•			
	<223> Description of Artificial	Sequence:	~DJ659~,	an	artificially
	synthesized primer sequence				
35					
	<400> 25				
	gttacggcac aaaaatgtca tcca				24
40	<210> 26		÷		
	<211> 20 <211> 21				
	<211> 21 <212> DNA				
	<213> Artificial Sequence				
45	2107 At CITICIAI bequence				
~	<220>				
	<pre><223> Description of Artificial</pre>	Sagnanca:	"D.I666"	an	artificially
	synthesized primer sequence	bequence.	<i>D</i> 0000 ,	щ.	di cilicially
50	of removings hit mor coduction				
	<400> 26				
	ggtgatggag tactgcgtgt g				21
	00-000				

	<210> 27				
	<211> 21				
5	<212> DNA				
	<213> Artificial Sequence				
	<220>				
10	<223> Description of Artificial	Sequence:	"DJ684",	an	artificially
	synthesized primer sequence				
	<400> 27				
15	acategggaa ggggagetae g				21
	<210> 28				-
	<211> 20				
20	<212> DNA				
20	<213> Artificial Sequence				
	<220>				·
	<223> Description of Artificial	Sequence:	"DJ660",	an	artificially
25	synthesized primer sequence				
	<400> 28				
	ccgggcaccg tgaagtcctg				20
30					
	<210> 29		_ •		
	<211> 19	•	-		
	<212> DNA				
35	<213> Artificial Sequence				
	<220>				
	<223> Description of Artificial	Sequence:	"DJ650",	an	artificially
40	synthesized primer sequence		•		
	<400> 29				
	tcactgctgc ttgcaggcc				19
45					
	<210> 30				
	<211> 17				
	<212> DNA				
50	<213> Artificial Sequence				
	<220>				

<223> Description of Artificial Sequence: "DJ717", an artificially

```
synthesized primer sequence
5
            <400> 30
                                                                                   17
            gcaggcggcc agcctca
            <210> 31
10
            <211> 19
            <212> PRT
            <213> Homo sapiens
15
            <400> 31
            Cys Leu Ser Thr Lys Ser Arg Ala Glu Gly Arg Ala Pro Asn Pro Ala
                                                10
             1
                             5
20
            Arg Lys Ala
            <210> 32
            <211> 20
25
            <212> PRT
            <213> Homo sapiens
            <400> 32
30
            Cys Ile Arg Gln Ile Arg Gln His Ser Trp Phe Arg Lys Lys His Pro
                                                10
            Pro Ala Glu Ala
35
                        20
            <210> 33
            <211> 20
40
            <212> PRT
            <213> Homo sapiens .
            <400> 33
            Cys Phe Glu Gly Asp Asn Ile Tyr Lys Leu Phe Glu Asn Ile Gly Lys
45
             1
                             5
            Gly Ser Tyr Ala
                        20
50
            <210> 34
```

42

	<211> 20
	<212> PRT
5	<213> Homo sapiens
	<400> 34
	Cys His Arg Ile Asp Ser Thr Glu Val Ile Tyr Gln Pro Arg Arg Lys
10	1 5 10 15
•	Arg Ala Lys Leu
	20
15	<210> 35
	<211> 22
	<212> DNA
	<213> Artificial Sequence
20	
	<220>
	<223> Description of Artificial Sequence: "DJ180", an artificially
	synthesized primer sequence
25	
	<400> 35
	cgactcacta tagggagacc ca 22
	<210> 36
30	<211> 22
	<212> DNA
	<213> Artificial Sequence
	•
35	<220>
	<223> Description of Artificial Sequence: "DJ181", an artificially
	synthesized primer sequence
40	<400> 36
••	cetegagaat tacceteact aa 22
	ccicgagaat tacccicact aa 22
	<210> 37
45	<211> 17
	<212> DNA
	<213> Artificial Sequence
	<220>
50	<223> Description of Artificial Sequence: an artificially synthesized
	primer sequence
	L. mar salaman

	<400> 37
	tggatctaca ctccggc 17
5 .	
	<210> 38
	<211> 20
	<212> DNA
10	<213> Artificial Sequence
10	4210- 12 dilioini podnosoo
	<220>
	<223> Description of Artificial Sequence: an artificially synthesized
	primer sequence
15	bi thei seductice
	<400> 38
	attttactgg ctggcacttg 20
	acceptances conficulties 20
20	<210> 39
	<211> 33 <211> 33
	<212> DNA
	<213> Artificial Sequence
25	7219> VILITIGIAI Seddence
	<220>
	<223> Description of Artificial Sequence: "LK E1", an artificially
30	synthesized primer sequence
30	4400 00
	<400> 39
	gatgaattcg ggtccagcat ggaggtggtg gac 33
	-010- 40
35	<210> 40
	<211> 60
	<212> DNA
	<213> Artificial Sequence
40	
	<220>
	<pre><223> Description of Artificial Sequence: "LK E2", an artificially</pre>
	synthesized primer sequence
45	
	<400> 40
	gatgaattet tagaggtett ettetgagat gagettetge teetgetget tgeaggeega 60
50	<210> 41
	<211> 10
	<212> PRT

	<213> Artificial Sequence
5	<pre><220> <223> Description of Artificial Sequence: an artificially synthesized c-Myc partial sequence</pre>
10	<400> 41 Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 1 5 10
15	<210> 42 <211> 63 <212> DNA <213> Artificial Sequence
20	<pre><220> <223> Description of Artificial Sequence: "LK E4", an artificially synthesized primer sequence</pre>
25	<400> 42 gatgggccct tacagggagg catagtcagg cacatcatat gggtactgct gcttgcaggc 60 cga 63
30	<210> 43 <211> 48 <212> DNA <213> Artificial Sequence
35	<pre><220> <223> Description of Artificial Sequence: "LK E5", an artificially synthesized primer sequence</pre>
40	<400> 43 gatgaattet tagtgatggt gatggtgatg etgetgettg eaggeega 48
45	<210> 44 <211> 11 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: an artificially synthesized HA partial sequence

	<400> 44	
	Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu	
5	1 5 10	
	<210> 45	
	<211> 27	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
15	<223> Description of Artificial Sequence: "LK D176N", an artificial	Įу
	synthesized primer sequence	-
	< 400> 45	
20	attgtgcaca agaacatcaa gccgggg	27
	<210> 46	
	<211> 27	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: "LK W308C", an artificial	ly
30	synthesized primer sequence	
	< 400> 4 6	
	cggcagcaca gctgcttccg gaagaaa	27
35		
	<210> 47	
	<211> 27	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: "LK L67P", an artificial	ly
45	synthesized primer sequence	
	<400> 47	
	gtgaaggagg tgccggactc ggagacg	27
50		
	<210> 48	
	<211> 27	

<212> DNA

<213> Artificial Sequence

<220>

5

10

15

30

40

55

<223> Description of Artificial Sequence: "LK KI1", an artificially
synthesized primer sequence

<400> 48

aggagggccg tcatcatcct caagaag

27

Claims

- A primer DNA used for diagnosing a disease caused by mutation in the LKB1 gene, the primer DNA comprising a
 nucleotide sequence containing at least a portion of any one of the nucleotide sequences shown in SEQ ID NOs:
 1 to 4.
- 25 2. The primer DNA according to claim 1, wherein the primer DNA has a nucleotide sequence corresponding to any one of the nucleotide sequences shown in SEQ ID NOs: 7 to 30.
 - The primer DNA according to claim 1 or 2, wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome.
 - 4. A probe DNA used for diagnosing a disease caused by mutation in the LKB1 gene, the probe DNA comprising a nucleotide sequence containing at least a portion of any one of the nucleotide sequences shown in SEQ ID NOs: 1 to 4.
- 35 5. The probe DNA according to claim 4, wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome.
 - A therapeutic preparation for a disease caused by mutation in the LKB1 gene, the preparation comprising the LKB1 gene as an active ingredient.
 - A therapeutic preparation for a disease caused by mutation in the LKB1 gene, the preparation comprising the LKB1 protein an active ingredient.
- 8. A therapeutic preparation for a disease caused by mutation in the LKB1 gene, the preparation comprising a compound that enhances the activity of LKB1 protein as an active ingredient.
 - The therapeutic preparation according to claims 6 to 8, wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome.
- 10. A reagent for diagnosing a disease caused by mutation in the LKB1 gene, the reagent comprising an antibody that binds to the LKB1 protein as an active ingredient.
 - The reagent according to claim 10, wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome.
 - 12. A method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising detecting mutation in the LKB1 gene.

- 13. A method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a DNA sample from a patient;
 - (b) amplifying the DNA using the primer DNA according to (1);
 - (c) cleaving the amplified DNA;

5

15

20

25

30

35

40

45

50

- (d) fractionating the DNA fragments according to their size;
- (e) hybridizing the probe DNA according to (4) with the fractionated DNA fragments; and
- (f) comparing the size of the DNA fragment thus detected to that from a control of a healthy subject.
- 10 14. A method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a RNA sample from a patient;
 - (b) fractionating the RNA sample depending on its size;
 - (c) hybridizing the probe DNA according to (4) with the RNA thus fractionated;
 - (d) comparing the size of the RNA thus detected to that from a control of a healthy subject.
 - 15. A method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a DNA sample from a patient;
 - (b) amplifying the DNA using the primer DNA according to (1);
 - (c) separating the amplified DNA into single stranded DNA;
 - (d) fractionating the separated single stranded DNA on the non-denatured gel;
 - (e) comparing the mobility of the single stranded DNA separated on the non-denatured gel to that of a control of a healthy subject.
 - 16. A method of diagnosing a disease caused by mutation in the LKB1 gene, the method comprising the steps of:
 - (a) preparing a DNA sample from a patient;
 - (b) amplifying the DNA using the primer DNA according to (1);
 - (c) fractionating the amplified DNA on the DNA denatured gradient gel;
 - (d) comparing the mobility of the fractionated DNA on the gel to that of a control of a healthy subject.
 - 17. The method according to any one of claims 12 to 16, wherein the disease caused by mutation in the LKB1 gene is Peutz-Jeghers syndrome.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Anti-Myc Antibody Anti-LKB1 Antibody

Figure 9 Anti-cMyc Antibody P6 Peptide P3 Peptide Anti-LKB1 P3 Antibody. Anti-LKB1 P6 Antibody (N-term) (C-term)

Figure 10

Figure 11

Figure 12

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/05357

A CLASS	SIFICATION OF SUBJECT MATTER C1 C12N15/12, 15/54, 15/63,	C12Q1/68, C07K16/40, A	51K48/00,	
According to	38/43, 33/32 International Patent Classification (IPC) or to both na	ational classification and IPC		
B. FIELDS	SEARCHED			
Minimum d Int.	ocumentation searched (classification system followed C1 C12N15/09-15/90, C12Q1/68	by classification symbols) , C07R16/40, A61K48/00,	, 38/43, 33/32	
Documental	ion searched other than minimum documentation to th	e extent that such documents are included	d in the fields searched	
Electronic d MEDI	ata base consulted during the international search (nar INE (STN), WPI/L (DIALOG)	ne of data base and, where practicable, se	earch (crms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
x	JP, 8-308586, A (Chugai Phar 26 November, 1996 (26. 11. 9 & WO, 96/28554, Al & AU, 9 & EP, 816501, Al & US, 582	6) 649552, A	1-2, 4, 6-8, 10, 12-16	
A	2 25, 53551, 11 2 25, 552		3, 5, 9, 11, 17	
P, X	Jenne, E.T., et al., "Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase", Nature Genetics, Vol. 18, No. 1 (01. 98), p.38-43			
Р, Х	P, X Bignell, G.R., et al., "Low Frequency of Somatic Mutations in the LKB1/Peutz-Jeghers Syndrome Gene in Sporadic Breast Cancer", Cancer Research, Vol. 58, No. 7 (01. 04. 98), p.1384-1386			
Р, Х	Hemminki, A., et al., "A sering defective in Peutz-Jeghers s	threonine kinase gene	6-12, 17	
P, A	Vol. 391, No. 6663 (08. 01.	98), p.184-187	1-5, 13-16	
× Furthe	r documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E" "L" document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered on over a relevance; the claimed invention cannot be considered novel or cannot be considered invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step document.				
Date of the actual completion of the international search 9 February, 1999 (09. 02. 99) 23 February, 1999 (23. 02. 99)				
	nailing address of the ISA/ nese Patent Office	Authorized officer	·	
Facsimile No. Telephone No. Telephone No.				