Let $A \subseteq \mathbf{1}^{**}$ be any unary language. Show that if A is NP-complete, then P = NP. (Hint: Consider a polynomial time reduction f from SAT to A. For a formula ?, let ?₀₁₀₀ be the reduced formula where variables x_1 , x_2 , x_3 , and x_4 in ? are set to the values 0, 1, 0, and 0, respectively. What happens when you apply f to all of these exponentially many reduced formulas?)

Step-by-step solution

Step 1 of 2

A language is defined as a **unary language** if it is subset of 1^* (at most n strings of length $\leq n$). **A unary language is** NP-complete then P=NP. The given statement can be shown by the following way:

Suppose $U \subset l^*$ be a unary language and let that $SAT \subseteq U$ through reduction R. The function φ , which is defined as $\varphi(x_1, x_2, ..., x_n)$ is an instance of SAT

Here, $\ SAT$ can be defined by the following algorithm:

$$SAT(\varphi(A))$$

If $(|\varphi|=1)$ return φ //trivial case True or False

If
$$(A(f(\varphi))! = \text{undefined})_{\text{return}} A(f(\varphi))$$

$$A(f(\varphi)) = SAT(\varphi(T,x_2,...,x_n)) ||SAT(\varphi(F,x_2,...,x_n))$$

return $A(f(\varphi))$

The above algorithm explains how the self-reduction and reduction applied on the function φ (which is further described below).

Comment

Step 2 of 2

Consider the figure which is given below:

$$R(\varphi(0,x_{2},...,x_{n}))$$

$$R(\varphi(0,x_{2},...,x_{n}))$$

$$\vdots$$

$$R(\varphi(0,0,...,0))$$

$$R(\varphi(1,x_{2},...,x_{n}))$$

$$\vdots$$

$$R(\varphi(1,1,...,1))$$

Satisfying assignment

The above figure **explain self-reduction tree for** φ . Now, by the input of length $m = |\varphi(x_1, x_2, ..., x_n)|$, R produces a string of length $|\varphi(x_1, x_2, ..., x_n)|$

- · Here R's different outputs are colors. One color for the string which is not in 1* and at most p(m) for other colors .
- $\cdot \text{Hence, puzzle solution } \Rightarrow_{\text{can solve }} SAT_{\text{in }} \left(p(m) + 1, n + 1 \right) = poly(m) \text{ }_{\text{time!}}.$

Hence from the above explanation it can be said that "A unary language is $\ ^{NP}$ -complete then $\ ^{P=NP}$."