Homework #16

Donald Aingworth IV

December 11, 2024

1 Problem 1

Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.30 kg * m² about its central axis, is set spinning counterclockwise at 450 rev/min. The second disk, with rotational inertia 6.60 kg * m² about its central axis, is set spinning counterclockwise at 900 rev/min. They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 900 rev/min, what are their (b) angular speed and (c) direction of rotation after they couple together?

1.1 Solution

1.1.1 Section (a)

We have a concept called conservation of angular momentum.

$$L_i = L_f \tag{1}$$

$$L_f = l_1 + l_2 = I_1 \omega_1 + I_2 \omega_2 \tag{2}$$

$$\omega_f = \frac{I_1 \omega_1 + I_2 \omega_2}{I_1 + I_2} = \frac{3.3 * 450 + 6.6 * 900}{3.3 + 6.6}$$

$$= \frac{1485 + 5940}{9.9} = \boxed{750 \text{rev/min}}$$
(4)

$$= \frac{1485 + 5940}{99} = \boxed{750 \text{rev/min}} \tag{4}$$

1.1.2 Section (b)

We just need to change a positive to a negative.

$$\omega_f = \frac{I_1 \omega_1 + I_2 \omega_2}{I_1 + I_2} = \frac{3.3 * 450 - 6.6 * 900}{3.3 + 6.6}$$

$$= \frac{1485 - 5940}{9.9} = \boxed{-450 \text{rev/min}}$$
(5)

$$= \frac{1485 - 5940}{9.9} = \boxed{-450 \text{rev/min}} \tag{6}$$

1.1.3 Section (c)

Since the magnitude is negative and negative angular velocity corresponds to clockwise motion, the angular motion is | clockwise |.

2 Problem 2

The Sun's mass is 2.0×10^{30} kg, its radius is 7.0×10^5 km, and it has a rotational period of approximately 28 days. If the Sun should collapse into a white dwarf of radius 3.5×10^3 km, what would its period be if no mass were ejected and a sphere of uniform density can model the Sun both before and after?

2.1 Solution