Neural architectures

Evgeny Sokolov

Machine learning models

Linear models

Decision trees and ensembles

Computational graphs

Examples

Fully connected layer

Convolutional layer

Recurrent layer

Examples

Dropout layer

Image captioning example

Computational graphs

- State-of-the-art quality for many computer vision and NLP problems
- Sometimes even superhuman performance!
- Key components are:
 - Computational power and GPUs
 - Lots of data (or transfer learning)
 - Stochastic optimization
 - Regularization techniques

Universal approximation theorem

Let $\varphi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$, where $i=1,\cdots,N$, such that we may define:

$$F(x) = \sum_{i=1}^N v_i arphi \left(w_i^T x + b_i
ight)$$

as an approximate realization of the function f where f is independent of φ ; that is,

$$|F(x)-f(x)|$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

Training computational graphs

- $f_j(x, w_j)$ j-th layer of the network
- $v_j(x) = f_j(v_{j-1}(x), w_j)$
- $a(x, w) = v_n(x)$ output
- Optimization problem:

$$Q(w) = \sum_{i=1}^{\ell} L(y_i, a(x_i; w)) \to \min_{w}$$

Backprop

Backpropagation

Image representation

- Each pixel stores its brightness (or **intensity**) ranging from 0 to 255, 0 intensity corresponds to black color:
- Color images store pixel intensities for 3 channels: red, green and blue

Multilayer perceptron for image classification

- Normalize input pixels: $x_{norm} = \frac{x}{255} 0.5$
- Maybe MLP will work?

Multilayer perceptron for image classification

On this training image red weights w_{ij} will change a little bit to better detect a cat

On this training image green weights w_{ij} will change...

Convolutions

Convolution is a dot product of a **kernel** (or filter) and a patch of an image (**local receptive field**) of the same size

Convolutions

Convolution is a dot product of a **kernel** (or filter) and a patch of an image (**local receptive field**) of the same size

Convolutions have been used for a while

Convolution is similar to correlation

Convolution is translation invariant

Convolutional layers

Convolutional layer

Let's say we have a color image as an input, which is $W \times H \times C_{in}$ tensor (multidimensional array), where

- W is an image width,
- H is an image height,
- C_{in} is a number of input channels (e.g. 3 RGB channels).

Convolutional layer

- We want to train C_{out} kernels of size $W_k \times H_k \times C_{in}$.
- Having a stride of 1 and enough zero padding we can have $W \times H \times C_{out}$ output neurons.

One convolutional layer is not enough!

- Let's say neurons of the 1st convolutional layer look at the patches of the image of size 3x3.
- What if an object of interest is bigger than that?
- We need a 2nd convolutional layer on top of the 1st!

Pooling layer

• This layer works like a convolutional layer but doesn't have kernel, instead it calculates **maximum** or **average** of input patch values.

Pooling layer

Strictly speaking: maximum is not a differentiable function!

There is no gradient with respect to non maximum patch neurons, since changing them slightly does not affect the output.

For the maximum patch neuron we have a gradient of 1.

Convolutional network

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

AlexNet (2012)

- First deep convolutional neural net for ImageNet
- Significantly reduced top 5 error from 26% to 15%

- 11x11, 5x5, 3x3 convolutions, max pooling, dropout, data augmentation, ReLU activations, SGD with momentum
- 60 million parameters
- Trains on 2 GPUs for 6 days

VGG (2015)

- Similar to AlexNet, only 3x3 convolutions, but lots of filters!
- ImageNet top 5 error: 8.0% (single model)

- Training similar to AlexNet with additional multi-scale cropping.
- 138 million parameters
- Trains on 4 GPUs for 2-3 weeks

Inception V3 (2015)

- Similar to AlexNet? Not quite, uses Inception block introduced in GoogLeNet (a.k.a. Inception V1)
- ImageNet top 5 error: 5.6% (single model), 3.6% (ensemble)

- Batch normalization, image distortions, RMSProp
- 25 million parameters!
- Trains on 8 GPUs for 2 weeks

ResNet (2015)

- Introduces residual connections
- ImageNet top 5 error: 4.5% (single model), 3.5% (ensemble)

- 152 layers, few 7x7 convolutional layers, the rest are 3x3, batch normalization, max and average pooling.
- 60 million parameters
- Trains on 8 GPUs for 2-3 weeks.

Residual connections

• We create output channels adding a small delta F(x) to original input channels x:

• This way we can stack thousands of layers and gradients do not vanish thanks to residual connections

- Deep networks learn complex features extractor, but we need lots of data to train it from scratch!
- What if we can reuse an existing features extractor for a new task?

- You need less data to train (for training only final MLP)
- It works if a domain of a new task is similar to ImageNet's
- Won't work for human emotions classification, ImageNet doesn't have people faces in the dataset!

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

 $Honglak\ Lee, http://web.eecs.umich.edu/\sim honglak/icml09-Convolutional Deep Belief Networks.pdf$

- You can initialize deeper layers with values from ImageNet.
- This is called **fine-tuning**, because you don't start with a random initialization.
- Propagate all gradients with smaller learning rate.

Recurrent neural networks

$$x$$
 - input

$$\hat{y}$$
 - output (prediction)

h - hidden state

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$
$$\hat{y}_t = f_y(Uh_t + b_y)$$

Conclusions

- Simple differentiable computational blocks can be combined into graphs and still efficiently trained
- Convolutional architectures achieve superhuman performance in some vision problems
- Graphs trained on large datasets can be reused for other tasks
- Recurrent neural networks are quite efficient for sequential data