Летний экзамен по алгебре

hse-ami-open-exams

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Описание всех подгрупп в группе $(\mathbb{Z},+)$	3
	1.1 Бинарные операции	3
		3
	1.3 Коммутативные группы	3
	1.4 Примеры групп	3
	1.5 Порядок группы	3
	1.6 Описание всех подгрупп в группе $(\mathbb{Z},+)$	3
2	Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь меж-	
	ду порядком элемента и порядком порождаемой им циклической подгруппы.	4
	2.1 Циклические подгруппы	4
	2.2 Циклические группы	4
	2.3 Порядок элемента	4
	2.4 Связь между порядком элемента и порядком порождаемой им циклической подгруппы	4
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа.	5
	3.1 Смежные классы	5
	3.2 Индекс подгруппы	5
	3.3 Теорема Лагранжа	5
4	Пять следствий из теоремы Лагранжа.	6
	4.1 Следствие 1	6
	4.2 Следствие 2	6
	4.3 Следствие 3	6
	4.4 Следствие 4	6
	4.5 Следствие 5	6
5	Нормальные подгруппы и факторгруппы.	7
	5.1 Нормальные подгруппы.	7
	5.1.1 Эквивалентность условий нормальности группы	7
	5.2 Факторгруппы	7
	5.2.1 Корректность	7
	5.2.2 Примеры факторгрупп	7
	5.2.2 Примеры факторгрупп	'
6	Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и	0
	образ гомоморфизма групп, их свойства.	8
	6.1 Гомоморфизмы групп	8
	6.2 Простейшие свойства гомоморфизмов	8
	6.3 Изоморфизмы групп	8
	6.4 Ядро и образ гомоморфизма групп, их свойства	8
7	Теорема о гомоморфизме для групп.	9
8	Классификация циклических групп.	10
9	Прямое произведение групп. Разложение конечной циклической группы.	11
-	9.1 Прямое произведение групп	11
	9.2 Разложение конечной пиклической группы.	11

10 Подгруппы р-кручения в абелевых группах. Разложение конечной абелевой группы в пря-	
мое произведение подгрупп р-кручения.	12
10.1 Подгруппы р-кручения в абелевых группах.	12
10.2 Разложение конечной абелевой группы в прямое произведение подгрупп р-кручения	12
11 Примарные абелевы группы. Теорема о строении конечных абелевых групп, доказательство	
единственности.	13
11.1 Примарные абелевы группы	13
11.2 Теорема о строении конечных абелевых групп, доказательство единственности	13
12 Экспонента конечной абелевы группы и критерий цикличности.	14
13 Криптография с открытым ключом. Задача дискретного логарифмирования. Система Дифф	и-
Хеллмана обмена ключами. Криптосистема Эль-Гамаля.	15
13.1 Задача дискретного логарифмирования	15
13.2 Система Диффи-Хеллмана обмена ключами	15
13.3 Криптосистема Эль-Гамаля	15
14 Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. При-	
меры колец. Поля. Критерий того, что кольцо вычетов является полем.	16
14.1 Кольца	16
14.2 Коммутативные кольца.	16
14.3 Обратимые элементы, делители нуля и нильпотенты	16
14.4 Примеры колец	16
14.5 Поля	16
14.6 Критерий того, что кольцо вычетов является полем	17

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Описание всех подгрупп в группе $(\mathbb{Z}, +)$

1.1 Бинарные операции.

Определение 1. Множество с бинарной операцией – это множество М с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

1.2 Полугруппы, моноиды и группы.

Определение 2. Множество с бинарной операцией (M, \circ) называется **полугруппой**, если данная бинарная операция **ассоциативна**, т.е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a, b, c \in M$.

Определение 3. Полугруппа (S, \circ) называется **моноидом**, если в ней есть нейтральный элемент, т.е. такой элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Определение 4. Моноид (S, \circ) называется **группой**, если для каждого элемента $a \in S$ найдется обратный элемент, т.е. такой $b \in S$, что $a \circ b = b \circ a = e$.

1.3 Коммутативные группы.

Определение 5. Группа (G, \circ) называется **коммутативной** или **абелевой**, если групповая операция коммутативна, т.е. $a \circ b = b \circ a$ для любых $a, b \in G$.

1.4 Примеры групп.

- 1. Числовые аддитивные группы: $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{Z}_n,+).$
- 2. Числовые мультипликативные группы: $(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_p\setminus\{0\},\times), p$ простое.
- 3. Группы матриц: $GL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) \neq 0\}; SL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) = 1\}.$
- 4. Группы подстановок: симметрическая группа S_n все подстановки длины $n, |S_n| = n!$; знакопеременная группа A_n четные подстановки длины $n, |A_n| = n!/2$.

1.5 Порядок группы.

Определение 6. Порядок группы G – это число элементов в G. Группа называется конечной, если ее порядок конечен, и **бесконечной** иначе.

1.6 Описание всех подгрупп в группе $(\mathbb{Z}, +)$

Определение 7. Подмножество H группы G называется **подгруппой**, если выполнены следующий три условия:

- 1. $e \in H$
- $2. \ ab \in H \ \partial$ ля любых $a,b \in H$
- 3. $a^{-1} \in H$ для любого $a \in H$

Утверждение 1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z} = \{ka \mid a \in \mathbb{Z}\}$ для некоторого целого неотрицательного k.

Доказательство. Пусть H — подгруппа в \mathbb{Z} . Если $H = \{0\}$, положим k = 0. Иначе пусть $k = \min(H \cap \mathbb{N})$ — наименьшее натуральное число, лежащее в H. Тогда $k\mathbb{Z} \subseteq H$. С другой стороны, если $a \in H$ и a = qk + r — результат деления a на k с остатком, то $0 \le r \le k - 1$ и $r = a - qk \in H$. Отсюда r = 0 и $H = k\mathbb{Z}$.

2 Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы.

2.1 Циклические подгруппы.

Определение 8. Пусть G – группа и $g \in G$. **Циклической подгруппой**, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$. Циклическая подгруппа, порожденная элементом g, обозначается $\langle g \rangle$. Элемент g называется **порождающим** или **образующим** для подгруппы $\langle g \rangle$.

2.2 Циклические группы.

Определение 9. Группа G называется **циклической**, если найдется такой элемент $g \in G$, что $G = \langle g \rangle$.

2.3 Порядок элемента.

Определение 10. Пусть G – группа u $g \in G$. **Порядком элемента** g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности. Порядок элемента обозначается ord(g).

2.4 Связь между порядком элемента и порядком порождаемой им циклической подгруппы.

Утверждение 2. Пусть G – группа $u g \in G$. Тогда $ord(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k = g^s$, то $g^{k-s} = e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элеметы $e = g^0, g = g^1, g^2, ..., g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n = mq + r, где $0 \leqslant r \leqslant m - 1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, ..., g^{m-1}\}$ и $|\langle g \rangle| = m$.

3 Смежные классы. Индекс подгруппы. Теорема Лагранжа.

3.1 Смежные классы.

Определение 11. Пусть G – группа, $H \subseteq G$ – подгруппа $u \ g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

3.2 Индекс подгруппы.

Определение 12. Пусть G – группа и $H \subseteq G$ – подгруппа. **Индексом подгруппы** H в группе G называется число левых смежных классов G по H. Индекс группы G по подгруппе H обозначается [G:H].

3.3 Теорема Лагранжа.

Лемма 1. Пусть G – группа, $H\subseteq G$ – ее подгруппа и $g_1,g_2\in G$. Тогда либо $g_1H=g_2H$, либо $g_1H\cap g_2H=\varnothing$.

Доказательство. Предположим, что $g_1G\cap g_2H\neq\varnothing$, т.е. $g_1h_1=g_2h_2$ для некоторых $h_1,h_2\in H$. Нужно доказать, что $g_1H=g_2H$. Заметим, что $g_1H=g_2h_2h_1^{-1}H\subseteq g_2H$. Обратное включение доказывается аналогично.

Лемма 2. Пусть G – группа и $H \subseteq G$ – конечная подгруппа. Тогда |gH| = |H| для любого $g \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Теорема 1. Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своем) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

4 Пять следствий из теоремы Лагранжа.

Доказательство. Применим следствие 3 к группе $(\mathbb{Z}_p \setminus \{0\}, \times)$.

4.5

Следствие 5.

4.1 Следствие 1. **Следствие 1.** Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда |H| делит |G|. 4.2 Следствие 2. Следствие 2. Пусть G – конечная группа $u \in G$. Тогда ord(g) делит |G|. Доказательство. Это вытекает из следствия 1 и утверждения 2. 4.3 Следствие 3. **Следствие 3.** Пусть G – конечная группа $u \ g \in G$. Тогда $g^{|G|} = e$. Доказательство. Согласно следствию 2 мы имеем $|G| = ord(g) \cdot s$, откуда $g|G| = (g^{ord(g)})^s = e^s = e$. 4.4 Следствие 4. **Следствие 4.** Пусть G – группа. Предположим, что |G| – простое число. Тогда G – циклическая группа, порождаемая любым своим неединичным элементом. Доказательство. Пусть $g \in G$ – произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

Следствие 5 (малая теорема Ферма). Пусть $p-npocmoe\ число\ u\ HOД(a,p)=1$. Тогда $a^{p-1}\equiv 1\mod p$.

5 Нормальные подгруппы и факторгруппы.

5.1 Нормальные подгруппы.

Определение 13. Подгруппа H группы G называется **нормальной**, если gH = Hg для любого $g \in G$.

5.1.1 Эквивалентность условий нормальности группы.

Утверждение 3. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- 1. Н нормальна
- $2. \ gHg^{-1} \subseteq H$ для любого $g \in G$
- 3. $gHg^{-1}=H$ для любого $g\in G$

Доказательство. (1) \Rightarrow (2) Пусть $h \in H$ и $g \in G$. Поскольку gH = Hg, имеем gh = h'g для некоторого $h' \in H$. Тогда $ghg^{-1} = h'gg^{-1} = h' \in H$.

- $(2) \Rightarrow (3)$ Так как $gHg^{-1} \in H$, остается проверить обратное включение. Для $h \in H$ имеем $h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} \in gHg^{-1}$, поскольку $g^{-1}hg \in H$ в силу пункта (2), где вместо g взято g^{-1} .
- $(3) \Rightarrow (1)$ Для произвольного $g \in G$ в силу (3) имеем $gH = gHg^{-1}g \subseteq Hg$, так что $gH \subseteq Hg$. Аналогично проверяется обратное включение.

5.2 Факторгруппы.

5.2.1 Корректность.

Обозначим через G/H множество смежных классов группы G по нормальной подгруппе H. На G/H можно определить бинарную операцию следующим образом:

$$(q_1H)(q_2H) := q_1q_2H.$$

Утверждение 4. Указанная выше операция корректна.

Доказательство. Заменим g_1 и g_2 другими представителями g_1h_1 и g_2h_2 тех же смежных классов. Нужно проверить, что $g_1g_2H=g_1h_1g_2h_2H$. Это следует из того, что $g_1h_1g_2h_2=g_1g_2(g_2^{-1}h_1g_2)h_2$ и $g_2^{-1}h_1g_2$ лежит в H. Ясно, что указанная операция на множестве G/H ассоциативна, обладает нейтральным элементом eH и для каждого элемента gH есть обратный элемент $g^{-1}H$.

Определение 14. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

- 5.2.2 Примеры факторгрупп.
 - 1. Если $G = (\mathbb{Z}, +)$ и $H = n\mathbb{Z}$, то G/H это в точности группа вычетов $(\mathbb{Z}_n, +)$.

6 Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства.

6.1 Гомоморфизмы групп.

Определение 15. Пусть G и F – группы. Отображение $\varphi: G \to F$ называется гомоморфизмом, если $\varphi(ab) = \varphi(a)\varphi(b)$ для любых $a,b \in G$.

6.2 Простейшие свойства гомоморфизмов.

Лемма 3. Пусть $\varphi: G \to F$ – гомоморфизм групп и пусть e_G и e_F – нейтральные элементы групп G и F соответственно. Тогда

- (a) $\varphi(e_G) = e_F$
- (б) $\varphi(a^{-1}) = \varphi(a)^{-1}$ для любого $a \in G$.

Доказательство. (а) Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$ (например, слева) получим $e_F = \varphi(e_G)$.

(б) Имеем
$$\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e_G) = e_F$$
, откуда $\varphi(a^{-1}) = \varphi(a)^{-1}$.

6.3 Изоморфизмы групп.

Определение 16. Гомоморфизм групп $\varphi: G \to F$ называется **изоморфизмом**. если отображение φ биективно.

6.4 Ядро и образ гомоморфизма групп, их свойства.

Определение 17. C каждым гомоморфизмом групп $\varphi: G \to F$ связаны его ядро

$$Ker(\varphi) = \{g \in G \mid \varphi(g) = e_F\}$$

и образ

$$\operatorname{Im}(\varphi) = \{ a \in F \mid \exists \ g \in G : \varphi(g) = a \}.$$

Ясно, что $\operatorname{Ker}(\varphi) \subseteq G$ и $\operatorname{Im}(\varphi) \subseteq F$ – подгруппы.

Лемма 4. Гомоморфизм групп $\varphi: G \to F$ инъективен тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}.$

 \mathcal{A} оказательство. Ясно, что если φ инъективен, то $\mathrm{Ker}(\varphi)=\{e_G\}$. Обратно, пусть $g_1,g_2\in G$ и $\varphi(g_1)=\varphi(g_2)$. Тогда $g_1^{-1}g_2\in \mathrm{Ker}(\varphi)$, поскольку $\varphi(g_1^{-1}g_2)=\varphi(g_1^{-1})\varphi(g_2)=\varphi(g_1)^{-1}\varphi(g_2)=e_F$. Отсюда $g_1^{-1}g_2=e_G$ и $g_1=g_2$. \square

Следствие 6. Гомоморфизм групп $\varphi: G \to F$ является изоморфизмом тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}$ и $\mathrm{Im}(\varphi) = F$.

Утверждение 5. Пусть $\varphi: G \to F$ – гомоморфизм групп. Тогда подгруппа $\operatorname{Ker}(\varphi)$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg \in \mathrm{Ker}(\varphi)$ для любых $g \in G$ и $h \in \mathrm{Ker}(\varphi)$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = e_F.$$

7 Теорема о гомоморфизме для групп.

Теорема 2. Пусть $\varphi: G \to F$ – гомоморфизм групп. Тогда группа $\operatorname{Im}(\varphi)$ изоморфна факторгруппе $G/\operatorname{Ker}(\varphi)$.

Доказательство. Рассмотрим отображение $\psi:G/\operatorname{Ker}(\varphi)\to F$, заданное формулой $\psi(g\operatorname{Ker}(\varphi))=\varphi(g)$. Проверка корректности: равенство $\varphi(gh_1)=\varphi(gh_2)$ для любых $h_1,h_2\in\operatorname{Ker}(\varphi)$ следует из цепочки равенств

$$\varphi(gh_1) = \varphi(g)\varphi(h_1) = \varphi(g) = \varphi(g)\varphi(h_2) = \varphi(gh_2).$$

Отображение ψ сюръективно по построению и инъективно в силу того, что $\varphi(g)=e_F$ тогда и только тогда, когда $g\in \mathrm{Ker}(\varphi)$ (т.е. $g\,\mathrm{Ker}(\varphi)=\mathrm{Ker}(\varphi)$). Остается проверить, что ψ – гомоморфизм:

$$\psi((g\operatorname{Ker}(\varphi))(g'\operatorname{Ker}(\varphi))) = \psi(gg'\operatorname{Ker}(\varphi)) = \varphi(gg') = \varphi(g)\varphi(g') = \psi(g\operatorname{Ker}(\varphi))\psi(g'\operatorname{Ker}(\varphi)).$$

8 Классификация циклических групп.

Утверждение 6. Пусть G – циклическая группа. Тогда:

- 1. Если $|G| = \infty$, то $G \simeq (\mathbb{Z}, +)$
- 2. Если $|G| < \infty$, то $G \simeq (\mathbb{Z}_n, +)$

Доказательство. По определению, если G – циклическая, то $G=\langle g \rangle$ для некоторого $g \in G$.

- 1. $\varphi:\mathbb{Z}\to G, \varphi:k\mapsto g^k$ Это гомоморфизм и биекция \Rightarrow изоморфизм.
- 2. $\varphi: \mathbb{Z} \to G, \varphi: k \mapsto g^k$ Рассмотрим, куда переходит k+ns, где $0 \leqslant k \leqslant n-1$ $k+ns \mapsto g^{k+ns} = g^k g^{ns} = g^k (g^n)^s = g^k.$

9 Прямое произведение групп. Разложение конечной циклической группы.

9.1 Прямое произведение групп.

Определение 18. *Прямым произведением* групп $G_1, ..., G_m$ называется множество

$$G_1 \times ... \times G_m = \{(g_1, ..., g_m) \mid g_1 \in G_1, ..., g_m \in G_m\}$$

c операцией $(g_1,...,g_m)(g_1',...,g_m')=(g_1g_1',...,g_mg_m')$. Ясно, что эта операция ассоциативна, обладает нейтральным элементом $(e_{G_1},...,e_{G_m})$ и для каждого элемента $(g_1,...,g_m)$ есть обратный элемент $(g_1^{-1},...,g_m^{-1})$.

https://youtu.be/1oceAPu3b8o

9.2 Разложение конечной циклической группы.

Определение 19. Группа G раскладывается в прямое произведение своих подгрупп $H_1, ..., H_m$, если отображение $H_1 \times ... \times H_m \to G, (h_1, ..., h_m) \mapsto h_1 \cdot ... \cdot h_m$ является изоморфизмом.

https://youtu.be/1oceAPu3b8o?t=293

Теорема 3. Пусть n = ml – разложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \simeq \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi: \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l$$
, $(k \mod n) \mapsto (k \mod m, k \mod l)$.

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ – гомоморфизм. Далее, $a \mod n \in \mathrm{Ker}(\varphi) \Rightarrow a \mod m = 0, a \mod l = 0 \Rightarrow a$ делится на m, a делится на k. Так как $\mathrm{HOД}(m, l) = 1$, то a делится на $n = ml \Rightarrow a \mod n = 0 \Rightarrow \mathrm{Ker}(\varphi) = \{0\}$. Следовательно, гомоморфизм φ инъективен. Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно. \square

https://youtu.be/1oceAPu3b8o?t=585

Следствие 7. Пусть $n \geqslant 2$ — натуральное число и $n = p_1^{k_1}...p_s^{k_s}$ — его разложение в произвежение простых множителей (где $p_i \neq p_j$ при $i \neq j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

10 Подгруппы р-кручения в абелевых группах. Разложение конечной абелевой группы в прямое произведение подгрупп р-кручения.

10.1 Подгруппы р-кручения в абелевых группах.

Определение 20. Пусть (A,+) – абелева группа, p – простое число. Положим

$$T_p(A) := \{ a \in A \mid \exists k \geqslant 0 : p^k \cdot a = 0 \} = \{ a \in A \mid \exists m \geqslant 0 : \operatorname{ord}(a) = p^m \}$$

– подгруппа в A. Тогда $T_p(A)$ называется **подгруппой р-кручения**.

https://youtu.be/1oceAPu3b8o?t=1260

10.2 Разложение конечной абелевой группы в прямое произведение подгрупп р-кручения.

Утверждение 7 (без доказательства). Пусть $|A| < \infty$ и $T_p(A) = A$ для некоторого простого p. Тогда $A \simeq \mathbb{Z}_{p^{k_1}} \times ... \times \mathbb{Z}_{p^{k_s}}, k_i \geqslant 1$, причем число множителей и их порядки определены однозначно (с точностью до перестановки).

https://youtu.be/1oceAPu3b8o?t=1474

Утверждение 8. Пусть $|A| < \infty, |A| = p_1^{k_1} \times ... \times p_s^{k_s}$ – разложение на простые множители. Тогда $A = T_{p_1}(A) \times ... \times T_{p_s}(A)$.

Доказательство. Нужно доказать, что отображение $\varphi: T_{p_1}(A) \times ... \times T_{p_s}(A) \to A, (a_1,...,a_s) \mapsto a_1 + ... + a_s$ является изоморфизмом. Ясно, что φ – гомоморфизм. Докажем инъективность. Пусть $(a_1,...,a_s) \in T_{p_1}(A) \times ... \times T_{p_s}(A)$, такое что $a_1 + ... + a_s = 0$. Для любого $i, 1 \leqslant i \leqslant s \operatorname{ord}(a_i) = p_i^{m_i}, m_i \geqslant 0$. При фиксированном i умножим $a_1 + ... + a_s = 0$ на $n_i = p_1^{m_1} \cdot ... \cdot p_{i-1}^{m_{i-1}} \cdot p_{i+1}^{m_{i+1}} \cdot ... \cdot p_s^{m_s}$ и получим $n_i \cdot a_i = 0$. Следовательно, n_i делится на $p_i^{m_i} \Rightarrow m_i = 0 \Rightarrow \operatorname{ord}(a_i) = 1 \Rightarrow a_i = 0 \Rightarrow \operatorname{Ker}(\varphi) = 0$. Докажем сюръективность. $a \in A \Rightarrow \operatorname{ord}(a) = p_1^{m_1} \cdot ... \cdot p_s^{m_s}$ по следствию 7 о разложении конечной циклической группы. $\langle a \rangle = \langle b_1 \rangle \times ... \times \langle b_s \rangle$, где $b_i \in \langle a \rangle$ и $\operatorname{ord}(b_i) = p_i^{m_i} \Rightarrow a = a_1 + ... + a_s$, где $a_i \in \langle b_i \rangle \subseteq T_{p_i}(A)$.

11 Примарные абелевы группы. Теорема о строении конечных абелевых групп, доказательство единственности.

11.1 Примарные абелевы группы.

Определение 21. Конечная абелева группа A называется **примарной**, если $|A| = p^k$ для некоторого простого p.

https://youtu.be/loceAPu3b8o?t=2379

11.2 Теорема о строении конечных абелевых групп, доказательство единственности.

Теорема 4. Пусть $|A| < \infty$ — конечная абелева группа. Тогда $A \simeq \mathbb{Z}_{p_1^{k_1}} \times ... \times \mathbb{Z}_{p_s^{k_s}}$, где p_i — (не обязательно различные) простые числа $(k_i \geqslant 1)$, причем в этом разложении число примарных циклических множителей и их порядки (с точностью до перестановки) определены однозначно.

Доказательство. Существование следует из утверждений 7 и 8. Докажем единственность. Зафиксируем простое p. Тогда в разложении $A\simeq \mathbb{Z}_{p_1^{k_1}}\times ... \times \mathbb{Z}_{p_s^{k_s}}$

$$\prod_{p_i=p} \mathbb{Z}_{p_i^{k_i}} \subseteq T_p(A).$$

Пусть $a \in A$. Тогда $a = (n_1, ..., n_s), n_i \in \mathbb{Z}_{p_i^{k_i}}$. Если $p^k \cdot a = 0$ для некоторого k, то для любого i $p^k \cdot n_i$ делится на $p_i^{k_i}$. Если $p \neq p_i$, то n_i делится на $p_i^{k_i} \Rightarrow n_i \equiv 0 \mod p_i^{k_i} \Rightarrow a \in T_p(A) \Leftrightarrow$ для любого i с условием $p \neq p_i$ $n_i = 0$ в $\mathbb{Z}_{p_i^{k_i}} \Rightarrow T_p(A) \subseteq \prod_{p_i = p} \mathbb{Z}_{p_i^{k_i}}$. Итог: достаточно доказать единственность каждого $T_p(A)$. Теперь пусть $B = T_p(A) \simeq \mathbb{Z}_{p^{m_1}} \times ... \times \mathbb{Z}_{p^{m_r}}$. Индукция по |B|. База: $|B| = p \Rightarrow$ по следствию 4 из теоремы Лагранжа $B \simeq \mathbb{Z}_p$. Теперь пусть $|B| > p, |B| = p^m$, где $m = m_1 + ... + m_r$. Рассмотрим подгруппу $pB \subseteq B$, где $pB = \{pb \mid b \in B\}$ $\Rightarrow pB \simeq \mathbb{Z}_{p^{m_1-1}} \times ... \times \mathbb{Z}_{p^{m_r-1}}$, в частности |pB| < |B|. Если $m_i = 1$, то соответствующий множитель исчезает. По предположению индукции набор ненулевых чисел среди $m_1 - 1, ..., m_r - 1$ определен однозначно с точностью до перестановки. Следовательно, однозначно восстанавливаются все m_i с условием $m_i > 1$ Число $m_i = 1$ однозначно восстанавливается из условия $m_1 + ... + m_r = m$.

12 Экспонента конечной абелевы группы и критерий цикличности.

Определение 22. Пусть A – конечная абелева группа. **Экспонента** группы A – это число

$$\exp(A) = HOK\{\operatorname{ord}(a) \mid a \in A\} = \min\{n \in \mathbb{N} \mid na = 0 \ \forall \ a \in A\}$$

https://youtu.be/1oceAPu3b8o?t=3792

Утверждение 9. Пусть A – конечная абелева группа. Тогда $\exp(A) = |A| \Leftrightarrow A$ – циклическая группа.

 \mathcal{A} оказательство. eq A – циклическая $\Rightarrow A \simeq \mathbb{Z}_n \Rightarrow \operatorname{ord}(a) = n = |A| \Rightarrow \exp(A) = |A|$

 $\Rightarrow \exp(A) = |A|$ Знаем, что $A \simeq T_{p_1}(A) \times ... \times T_{p_s}(A)$, где $|A| = p_1^{k_1} \cdot ... \cdot p_s^{k_s}$. Пусть $b_i \in T_{p_i}(A)$ — элемент наибольшего порядка $\Rightarrow \operatorname{ord}(b_i) = p_i^{m_i}$. Тогда для любого $a_i \in T_{p_i}(A), ..., a_s \in T_{p_s}(A)$ получаем $\operatorname{ord}(a_i) = p_i^{l_i}$, где $l_i \leqslant m_i$. $\operatorname{ord}(a_1 + ... + a_s) = \operatorname{ord}(a_1) \cdot ... \cdot \operatorname{ord}(a_s)$ делит $\operatorname{ord}(b_1) \cdot ... \cdot \operatorname{ord}(b_s) = \operatorname{ord}(b_1 + ... + b_s)$. Следовательно, $\exp(A) = \operatorname{ord}(b_1 + ... + b_s) \Rightarrow |A| = \exp(A) = |\langle b_1 + ... + b_s \rangle| \Rightarrow \langle b_1 + ... + b_s \rangle = A \Rightarrow A$ – циклическая группа.

13 Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи-Хеллмана обмена ключами. Криптосистема Эль-Гамаля.

Пусть у нас есть G – конечная абелева группа. И также есть элемент $g \in G$, для которого ord(g) будет достаточно большим значением.

13.1 Задача дискретного логарифмирования.

Дано: $h \in \langle g \rangle$. Найти такое α , что $g^{\alpha} = h$. Возведение в степень – задача более простая с технической стороны реализации. Существует алгоритм бинарного возведения в степень: $g^{16} = ((((g)^2)^2)^2)^2$. Задача нахождения степени решается только перебором или близким к перебору способом.

https://youtu.be/1oceAPu3b8o?t=4480

13.2 Система Диффи-Хеллмана обмена ключами.

Группа G и некоторый ее элемент g известны всем, причем g имеет достаточно большой порядок. Пусть есть два пользователя системы — A и B. A фиксирует свое секретное $\alpha \in \mathbb{N}$ и сообщает всем пользователям g^{α} . B совершает аналогичные действия: фиксирует $\beta \in \mathbb{N}$ и сообщает всем пользователям g^{β} . Теперь A и B опять совершают аналогичные действия — каждый из них возводит элемент другого в свою секретную степерь, они оба получают элемент $g^{\alpha\beta}$, который извествен только им двоим. Теперь по этому ключу можно устроить шифрованный канал связи, к которому никто не имеет доступа. В силу сложности задачи дискретного логарифмирования по g^{α} и g^{β} нельзя быстро получить $g^{\alpha\beta}$.

https://youtu.be/mNd30oeCugc?t=78

13.3 Криптосистема Эль-Гамаля.

Группа G и некоторый ее элемент g известны всем, причем g имеет достаточно большой порядок. Пусть есть два пользователя системы – A и B. A фиксирует свое секретное $\alpha \in \mathbb{N}$ и сообщает всем пользователям g^{α} . B хочет передать для A элемент $h \in G$. Для этого B фиксирует какое-то $k \in \mathbb{N}$ и объявляет пару $\{g^k, h \cdot (g^{\alpha})^k\}$.

https://youtu.be/mNd30oeCugc?t=360

14 Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем.

14.1 Кольца.

Определение 23. Кольцо (ассоциативное кольцо с единицей) – это множество R с двумя бинарными операциями: сложение и умножение, удовлетворяющее следующим условиям

- 1. (R, +) абелева группа
- 2. для любых $a,b,c \in R$ выполняется a(b+c) = ab + ac (левая дистрибутивность) u(a+b)c = ac + bc (правая дистрибутивность)
- 3. для любых $a, b, c \in R$ выполняется (ab)c = a(bc) (ассоциативность умножения)
- 4. существует $1 \in R$ такая что $1 \cdot a = a \cdot 1 = a$ для любого $a \in R$

14.2 Коммутативные кольца.

Определение 24. Кольцо R называется **коммутативным**, если ab = ba для любых $a, b \in R$.

https://youtu.be/mNd30oeCugc?t=1287

14.3 Обратимые элементы, делители нуля и нильпотенты.

Определение 25. Пусть R – кольцо. Элемент $a \in R$ называется обратимым, если существует такое $b \in R$, что ab = ba = 1.

Определение 26. Пусть R – кольцо. Элемент $a \in R$ называется левым (правым) делителем нуля, если $a \neq 0$ и существует $b \in R \setminus \{0\}$, такое что ab = 0 (ba = 0).

Определение 27. Пусть R – кольцо. Элемент $a \in R$ называется нильпотентным (нильпотентом), если $a \neq 0$ и существует такое $n \in \mathbb{N}$, что $a^n = 0$.

https://youtu.be/mNd30oeCugc?t=1374

14.4 Примеры колец.

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $2. \ \mathbb{Z}_n$ кольцо вычетов
- $3. \ Mn(\mathbb{R})$ кольцо матриц
- 4. $\mathbb{R}[x]$ кольцо многочленов от переменной x с коэффициентами из \mathbb{R}

https://youtu.be/mNd30oeCugc?t=1115

14.5 Поля.

Определение 28. Поле – это коммутативное (ассоциативное) кольцо (с единицей), в котором $0 \neq 1$ и всякий ненулевой элемент обратим.

https://youtu.be/mNd30oeCugc?t=2243

14.6 Критерий того, что кольцо вычетов является полем.

Утверждение 10. Пусть $n \in \mathbb{N}$. Тогда \mathbb{Z}_n – поле $\Leftrightarrow n$ – простое число.

 \mathcal{A} оказательство. $\Rightarrow n=1 \Rightarrow \mathbb{Z}_n = \{0\}$ – не поле.

n>1 и n составное $\Rightarrow n=ml$, где $1< m< n, 1< l< n \Rightarrow$ в кольце $\mathbb{Z}_n ml=0 \Rightarrow$ есть делители $0\Rightarrow$ не поле.

 $\Leftarrow n=p$ – простое, $a\in\mathbb{Z}$, НОД $(a,p)=1\Rightarrow$ существуют $k,l\in\mathbb{Z}$, такие что $ak+pl=1\Rightarrow ak=1\Rightarrow$ любой ненулевой элемент обратим.

https://youtu.be/mNd30oeCugc?t=2484