Forelesning 8 — torsdag den 11. september

2.2 Divisjonsalgoritmen — forts.

Proposisjon 2.2.15. La n være et heltall. La l være et naturlig tall. La k og r være heltall slik at:

- (I) n = kl + r,
- (II) $0 \le r < l$.

La k' og r' også være heltall slik at:

- (III) n = k'l + r',
- (IV) $0 \le r' < l$.

Da er k = k' og r = r'.

Bevis. Anta først at $k \geq k'$. Vi gjør følgende observasjoner.

(1) Fra (I) og (III) har vi:

$$r' - r = (n - k'l) - (n - kl)$$

$$= n - n - k'l + kl$$

$$= kl - k'l$$

$$= (k - k')l.$$

- (2) Fra (II) har vi: $0 \le r$. Derfor er $-r \le 0$. Det følger at $r' r \le r'$.
- (3) Fra (IV) har vi: r' < l.
- (4) Det følger fra (2) og (3) at

$$r' - r \le r'$$

$$< l.$$

Dermed er r' - r < l.

(5) Fra (1) og (4) har vi:

$$(k - k')l = r' - r$$

$$< l.$$

Dermed er (k - k')l < l. Derfor er k - k' < 1.

- (6) Siden $k \ge k'$, er $k k' \ge 0$.
- (7) Siden k og k' er heltall, er k k' et heltall.
- (8) Fra (5) (7) har vi: k k' er et heltall og

$$0 \le k - k' \le 1$$
.

Derfor er k - k' = 0. Vi deduserer at k = k'.

(9) Det følger fra (1) og (8) at

$$r' - r = (k - k')l$$
$$= 0 \cdot l$$
$$= 0.$$

Vi deduserer at r = r'.

Anta nå at k < k', altså at $k' \ge k$. Da gjennomfører vi akkurat det samme argumentet ved å bytte om k og k' og å bytte om r og r'.

Merknad 2.2.16. La k og r være de heltallene vi får ved å benytte divisjonsalgoritmen. Proposisjon 2.2.15 fastslår at k og r er de *entydige* heltallene, det vil si de *eneste* heltallene, som oppfyller kravene (I) – (II) i Proposisjon 1.2.6.

Merknad 2.2.17. I praksis m^a vi ikke benytte divisjonsalgoritmen for å finne k og r. Faktisk kommer vi fortere til k og r ved å benytte metoden du lærte på barneskolen! Vi kan også godt prøve å gjette k og r, og sjekke om gjetningen er riktig. Proposisjon 2.2.15 fastslår at uansett hvordan vi kommer fram til k og r, får vi de samme heltallene som ved å benytte divisjonsalgoritmen.

Dette er et avgjørende poeng. Proposisjon 1.2.6 sier noe om *eksistensen* av heltallene k og r, mens Proposisjon 2.2.15 sier noe om *entydigheten* av k og r. Den beste måten å bevise teoretisk at en matematisk påstand er sann er ikke nødvendigvis den beste å gjennomføre i praksis. Den beste situasjonen er at vi har, som her, en proposisjon som garanterer at alle metoder er like verdige.

Eksempel 2.2.18. La n være 64, og la l være 17. Siden

$$64 = 3 \cdot 17 + 13$$
.

fastslår Proposisjon 2.2.15 at vi får k=3 og r=13 ved å bruke divisjonsalgoritmen som i Eksempel 1.2.8 – Eksempel 1.2.10.

Eksempel 2.2.19. La n være 127, og la l være 23. Siden

$$127 = 5 \cdot 23 + 12$$
,

fastslår Proposisjon 2.2.15 at vi får k=5 og r=12 ved å bruke divisjonsalgoritmen som i Eksempel 1.2.8 – Eksempel 1.2.10.

Korollar 2.2.20. La n være et heltall. La l være et heltall slik at $l \neq 0$. La k og r være heltall slik at:

- (I) n = kl + r,
- (II) 0 < r < |l|,

La k' og r' også være heltall slik at:

- (III) n = k'l + r',
- (IV) $0 \le r' < |l|$.

Da er k = k' og r = r'.

Bevis. Ett av følgende utsagn er sant:

- (1) l > 0;
- (2) l < 0.

Anta først at l > 0. Da er l et naturlig tall, og |l| = l. Derfor følger det fra Proposisjon 2.2.15 at k = k' og r = r'.

Anta nå at l < 0. Da er -l et naturlig tall, og |l| = -l. Derfor følger det fra Proposisjon 2.2.15 for heltallet n og det naturlige tallet -l at k = k' og r = r'.

Merknad 2.2.21. Korollar 2.2.20 fastslår at uansett hvordan vi kommer fram til k og r, får vi de samme heltallene som ved å benytte tilnærmingsmetoden i Eksempel 1.2.12 – 1.2.14. Sammenlign med Merknad 2.2.17.

Eksempel 2.2.22. La n være -33, og la l være 12. Siden

$$-33 = -3 \cdot 12 + 3$$

fastslår Korollar 2.2.20 at vi får k=-33 og r=3 ved å bruke tilsnærmingsmetoden i Eksempel 1.2.12 – 1.2.14.

Eksempel 2.2.23. La n være 25, og la l være -7. Siden

$$25 = -3 \cdot -7 + 4$$
,

fastslår Korollar 2.2.20 at vi får k=-3 og r=4 ved å bruke tilsnærmingsmetoden i Eksempel 1.2.12 – 1.2.14.

Eksempel 2.2.24. La n være -156, og la l være -38. Siden

$$-156 = 5 \cdot -38 + 34,$$

fastslår Korollar 2.2.20 at vi får k=5 og r=34 ved å bruke tilsnærmingsmetoden i Eksempel 1.2.12 – 1.2.14.

Proposisjon 2.2.25. La m og n være heltall. La l være et heltall slik at $l \neq 0$. Anta at lm = ln. Da er m = n.

Bevis. Vi gjør følgende observasjoner.

(1) Siden lm = ln, er

$$0 = lm - ln$$
.

altså

$$0 = (m - n) \cdot l$$

(2) Vi har:

$$0 = 0 \cdot l$$
.

Fra (1), (2), og Korollar 2.2.20 følger det at

$$m-n=0$$
,

altså at m = n.

Merknad 2.2.26. Vi er vant til å kunne fjerne l fra begge sider av ligningen

$$lm = ln$$
.

Proposisjon 2.2.25 fastslår formelt at dette er en gyldig algebraisk manipulasjon.

Er det ikke nok å si: «vi deler begge sider av ligningen med l»? Jo, men hva mener vi egentlig med dette? Poenget med Proposisjon 2.2.25 er at Korollar 2.2.20 gir oss muligheten til formelt å gjennomføre argumentene vi hadde kommet fram til om vi funderte på dette spørsmålet.

2.3 Partall og oddetall

Terminologi 2.3.1. Ved å la l være 2 i Korollar 1.2.11, får vi at, for et hvilket som helst heltall n, det finnes et heltall k slik at enten n = 2k eller n = 2k + 1.

- (1) Dersom n = 2k, sier vi at n er et partall.
- (2) Dersom n = 2k + 1, sier vi at n er et oddetall.

Merknad 2.3.2. Det følger fra Proposisjon 2.2.15 at et heltall ikke kan være både et partall og et oddetall!

Eksempel 2.3.3. Siden $57 = 2 \cdot 28 + 1$, er 57 et oddetall.

Eksempel 2.3.4. Siden $26 = 2 \cdot 13$, er 26 et partall.

Eksempel 2.3.5. Siden $-3 = 2 \cdot (-2) + 1$, er -3 et oddetall.

2.4 Eksempler på bevis som benytter divisjonsalgoritmen

Merknad 2.4.1. La n være et heltall, og la l være heltall slik at $l \neq 0$. Korollar 1.2.11 sier at det finnes et heltall k slik at n er lik et av de følgende heltallene: kl, kl+1, kl+2, ..., kl+|l|-1. Når l er for eksempel 5, fastslår korollaret at, for alle heltall n, det finnes et heltall k slik at n er lik et av de følgende heltallene: 5k, 5k+1, 5k+2, 5k+3, 5k+4. For å bevise en matematisk påstand om heltall, kan vi derfor:

- (1) velge et heltall l;
- (2) sjekke om påstanden er sann, for alle heltall k, i hvert av de følgende tilfellene: n = kl, n = kl + 1, n = kl + 2, ..., n = kl + |l| 1.

Vi skal nå se på noen eksempler hvor denne tilnærmingsmetoden benyttes.

Proposisjon 2.4.2. La n være et heltall. Da finnes det et heltall m slik at enten $n^2 = 4m$ eller $n^2 = 4m + 1$.

Bevis. Ved å la l være 2 i Korollar 1.2.11, får vi at det finnes et heltall k slik at ett av følgende utsagn er sant:

- $(1) \ n = 2k,$
- (2) n = 2k + 1.

Anta først at (1) er sant. La m være k^2 . Da er

$$n^2 = (2k)^2$$
$$= 4k^2$$
$$= 4m.$$

Dermed er proposisjonen sann i dette tilfellet.

Anta nå at (2) er sant. La m være $k^2 + k$. Da er

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 4(k^{2} + k) + 1$$

$$= 4m + 1.$$

Dermed er proposisjonen sann i dette tilfellet også.

Eksempel 2.4.3. Når n=3, fastslår Proposisjon 2.4.2 at det finnes et heltall m slik at enten $3^2=4m$ eller $3^2=4m+1$, altså slik at enten 9=4m eller 9=4m+1. Det er nemlig sant at $9=4\cdot 2+1$.

Eksempel 2.4.4. Når n=6, fastslår Proposisjon 2.4.2 at det finnes et heltall m slik at enten $6^2=4m$ eller $6^2=4m+1$, altså slik at enten 36=4m eller 36=4m+1. Det er nemlig sant at $36=4\cdot 9$.

Eksempel 2.4.5. Når n=57, fastslår Proposisjon 2.4.2 at det finnes et heltall m slik at enten $57^2=4m$ eller $57^2=4m+1$, altså slik at enten 3249=4m eller 3249=4m+1. Det er nemlig sant at $3249=4\cdot812+1$.

Eksempel 2.4.6. Når n = -6, faststlår Proposisjon 2.4.2 at det finnes et heltall m slik at enten $(-6)^2 = 4m$ eller $(-6)^2 = 4m + 1$, altså slik at enten 36 = 4m eller 36 = 4m + 1. Det er nemlig sant at $36 = 4 \cdot 9$.

Eksempel 2.4.7. Når n = -7, faststlår Proposisjon 2.4.2 at det finnes et heltall m slik at enten $(-7)^2 = 4m$ eller $(-7)^2 = 4m + 1$, altså slik at enten 49 = 4m eller 49 = 4m + 1. Det er nemlig sant at $49 = 4 \cdot 12 + 1$.

Merknad 2.4.8. For å oppsummere beviset for Proposisjon 2.4.2, delte vi det opp i to tilfeller:

- (1) hvor n er et partall;
- (2) hvor n er et oddetall.

Vi beviste at Proposisjon 2.4.2 er sann i disse to tilfellene hver for seg.

Proposisjon 2.4.9. La *n* være et oddetall. Da finnes det et heltall *m* slik at $n^2 = 8m + 1$.

Bevis. Ved å la l være 4 i Korollar 1.2.11, får vi at det finnes et heltall k slik at ett av følgende utsagn er sant:

- (1) n = 4k,
- (2) n = 4k + 1,
- (3) n = 4k + 2.
- (4) n = 4k + 3.

Siden n er et oddetall, må faktisk enten (2) eller (4) være sant.

Anta først at (2) er sant. La m være $2k^2 + k$. Da er

$$n^{2} = (4k + 1)^{2}$$

$$= 16k^{2} + 8k + 1$$

$$= 8(2k^{2} + k) + 1$$

$$= 8m + 1.$$

Dermed er proposisjonen sann i dette tilfellet.

Anta nå at (4) er sant. La m være $2k^2 + 3k + 1$. Da er

$$n^{2} = (4k + 3)^{2}$$

$$= 16k^{2} + 24k + 9$$

$$= (16k^{2} + 24k + 8) + 1$$

$$= 8(2k^{2} + 3k + 1) + 1$$

$$= 8m + 1.$$

Dermed er proposisjonen sann i dette tilfellet også.

Eksempel 2.4.10. Når n = 5, fastslår Proposisjon 2.4.9 at det finnes et heltall m slik at $5^2 = 8m + 1$, altså slik at 25 = 8m + 1. Det er nemlig sant at $25 = 8 \cdot 3 + 1$.

Eksempel 2.4.11. Når n = 9, fastslår Proposisjon 2.4.9 at det finnes et heltall m slik at $9^2 = 8m + 1$, altså slik at 81 = 8m + 1. Det er nemlig sant at $81 = 8 \cdot 10 + 1$.

Eksempel 2.4.12. Når n = 57, fastslår Proposisjon 2.4.9 at det finnes et heltall m slik at $57^2 = 8m + 1$, altså slik at 3249 = 8m + 1. Det er nemlig sant at $3249 = 8 \cdot 406 + 1$.

Eksempel 2.4.13. Når n = -7, fastslår Proposisjon 2.4.9 at det finnes et heltall m slik at $(-7)^2 = 8m + 1$, altså slik at 49 = 8m + 1. Det er nemlig sant at $49 = 8 \cdot 6 + 1$.

Eksempel 2.4.14. Når n = -11, fastslår Proposisjon 2.4.9 at det finnes et heltall m slik at $(-11)^2 = 8m+1$, altså slik at enten 121 = 8m+1. Det er nemlig sant at $121 = 8 \cdot 15 + 1$.

Merknad 2.4.15. Utsagnet i Proposisjon 2.4.9 er gal når n er et partall, siden n^2 er et partall om n er et partall, men 8m + 1 er et oddetall for alle heltall m. Et riktig utsagn er at det finnes et heltall m slik at enten $n^2 = 8m$ eller $n^2 = 8m + 4$ når n er et partall.

Proposisjon 2.4.16. La n være et heltall. Da finnes det et heltall m slik at ett av følgende utsagn er sant:

- (1) $n^3 = 9m$
- (2) $n^3 = 9m + 1$
- (3) $n^3 = 9m + 8$.

Bevis. Ved å la l være 3 i Korollar 1.2.11, får vi at det finnes et heltall q slik at ett av følgende utsagn er sant:

- $(1) \ n = 3k,$
- (2) n = 3k + 1,
- (3) n = 3k + 2.

Anta først at (1) er sant. La m være $3k^3$. Da er

$$n^{3} = (3k)^{3}$$
$$= 27k^{3}$$
$$= 9 \cdot (3k^{3})$$
$$= 9m.$$

Dermed er proposisjonen sann i dette tilfellet.

Anta nå at (2) er sant. La m være $3k^3 + 3k^2 + k$. Ut ifra Proposisjon 1.9.30 er

$$(3k+1)^3 = {3 \choose 0} \cdot (3k)^3 \cdot 1^0 + {3 \choose 1} \cdot (3k)^2 \cdot 1^1 + {3 \choose 2} \cdot (3k)^1 \cdot 1^2 + {3 \choose 3} \cdot (3k)^0 \cdot 1^3$$
$$= (3k)^3 + 3 \cdot (3k)^2 + 3 \cdot (3k) + 1$$
$$= 3^3 \cdot k^3 + 3^3 \cdot k^2 + 3^2 \cdot k + 1.$$

Derfor er

$$n^{3} = (3k+1)^{3}$$

$$= 3^{3} \cdot k^{3} + 3^{3} \cdot k^{2} + 3^{2} \cdot k + 1$$

$$= (3^{2}) \cdot (3k^{3} + 3k^{2} + k) + 1$$

$$= 9m + 1.$$

Dermed er proposisjonen sann i dette tilfellet.

Anta nå at (3) er sant. La m være $3k^3 + 6k^2 + 4k$. Ut ifra Proposisjon 1.9.30 er

$$(3k+2)^3 = {3 \choose 0} \cdot (3k)^3 \cdot 2^0 + {3 \choose 1} \cdot (3k)^2 \cdot 2^1 + {3 \choose 2} \cdot (3k)^1 \cdot 2^2 + {3 \choose 3} \cdot (3k)^0 \cdot 2^3$$
$$= (3k)^3 + 3 \cdot (3k)^2 \cdot 2 + 3 \cdot (3k) \cdot 2^2 + 2^3$$
$$= 3^3 \cdot k^3 + 3^3 \cdot 2 \cdot k^2 + 3^2 \cdot 4 \cdot k + 8.$$

Derfor er

$$n^{3} = (3k + 2)^{3}$$

$$= 3^{3} \cdot k^{3} + 3^{3} \cdot 2 \cdot k^{2} + 3^{2} \cdot 4 \cdot k + 8$$

$$= (3^{2}) \cdot (3k^{3} + 3 \cdot 2 \cdot k^{2} + 4k) + 8$$

$$= 9(3k^{3} + 6k^{2} + 4k) + 8$$

$$= 9m + 8.$$

Dermed er proposisjonen sann i dette tilfellet også.

Eksempel 2.4.17. Når n = 4, fastslår Proposisjon 2.4.16 at det finnes et heltall m slik at ett av følgende utsagn er sant:

- (1) $4^3 = 9m$, altså 64 = 9m;
- (2) $4^3 = 9m + 1$, altså 64 = 9m + 1;
- (3) $4^3 = 9m + 8$, altså 64 = 9m + 8;

Det er nemlig sant at $84 = 9 \cdot 7 + 1$.

Eksempel 2.4.18. Når n = 11, fastslår Proposisjon 2.4.16 at det finnes et heltall m slik at ett av følgende utsagn er sant:

- (1) $11^3 = 9m$, altså 1331 = 9m;
- (2) $11^3 = 9m + 1$, altså 1331 = 9m + 1;
- (3) $11^3 = 9m + 8$, altså 1331 = 9m + 8.

Det er nemlig sant at $1331 = 9 \cdot 147 + 8$.

Eksempel 2.4.19. Når n = 57, fastslår Proposisjon 2.4.16 at det finnes et heltall m slik at ett av følgende utsagn er sant:

- (1) $57^3 = 9m$, altså 185193 = 9m;
- (2) $57^3 = 9m + 1$, altså 185193 = 9m + 1;
- (3) $57^3 = 9m + 8$, altså 185193 = 9m + 8.

Det er nemlig sant at $185193 = 9 \cdot 20557$.

Eksempel 2.4.20. Når n = -7, fastslår Proposisjon 2.4.16 at det finnes et heltall m slik at ett av følgende utsagn er sant:

- (1) $(-7)^3 = 9m$, altså -343 = 9m;
- (2) $(-7)^3 = 9m + 1$, altså -343 = 9m + 1:
- (3) $(-7)^3 = 9m + 8$, altså -343 = 9m + 8:

Det er nemlig sant at $-343 = 9 \cdot (-39) + 8$.

Eksempel 2.4.21. Når n = -8, fastslår Proposisjon 2.4.16 at det finnes et heltall m slik at ett av følgende utsagn er sant:

- (1) $(-8)^3 = 9m$, altså -512 = 9m;
- (2) $(-8)^3 = 9m + 1$, altså -512 = 9m + 1:
- (3) $(-8)^3 = 9m + 8$, altså -512 = 9m + 8.

Det er nemlig sant at $-512 = 9 \cdot (-57) + 1$.

Eksempel 2.4.22. Når n = -12, fastslår Proposisjon 2.4.16 at det finnes et heltall m slik at ett av følgende utsagn er sant:

- (1) $(-12)^3 = 9m$, altså -1728 = 9m;
- (2) $(-12)^3 = 9m + 1$, altså -1728 = 9m + 1;
- (3) $(-12)^3 = 9m + 8$, altså -1728 = 9m + 8.

Det er nemlig sant at $-1728 = 9 \cdot (-192)$.

2.5 Grunnleggende proposisjoner om delbarhet

Definisjon 2.5.1. La l og n være heltall. Da er n delelig med l dersom det finnes et heltall k slik at n = kl.

Notasjon 2.5.2. La l og n være heltall. Dersom n er delelig med l, skriver vi $l \mid n$.

Terminologi 2.5.3. La l og n være heltall. Dersom n er delelig med l, sier vi at l er en divisor til n.

Eksempel 2.5.4. Siden $6 = 3 \cdot 2$, er 6 delelig med 2. Derfor skriver vi: $2 \mid 6$.

Eksempel 2.5.5. Siden $16 = 4 \cdot 4$, er 16 delelig med 4. Derfor skriver vi: $4 \mid 16$.

Eksempel 2.5.6. Siden $-15 = (-5) \cdot 3$, er -15 delelig med 3. Derfor skriver vi: $3 \mid -15$.

Eksempel 2.5.7. La n være et hvilket som helst naturlig tall. Siden $n = n \cdot 1$, er n delelig med 1. Derfor skriver vi: $1 \mid n$.

Merknad 2.5.8. La l og n være heltall. Fra Korollar 1.2.11 vet vi at det alltid er et heltall k og et heltall r slik at:

- (I) n = kl + r,
- (II) $0 \le r < |l|$.

Anta at n er delelig med l, altså at det finnes et heltall k' slik at n = k'l. Da følger det fra Proposisjon 2.2.15 at k = k' og at r = 0.

Hvis på en annen side r > 0, følger det fra Proposisjon 2.2.15 at n ikke er delelig med l.

Proposisjon 2.5.9. La l og n være heltall. Anta at $l \mid n$. Da er $-l \mid n$.

Bevis. Siden $l \mid n$, finnes det et heltall k slik at n = kl. Da er $n = (-k) \cdot (-l)$. Siden k er et heltall, er -k et heltall. Vi konkluderer at $-l \mid n$.

Eksempel 2.5.10. Siden $6 = 2 \cdot 3$, er $3 \mid 6$. Derfor er $-3 \mid 6$. Vi har: $6 = (-2) \cdot (-3)$.

Eksempel 2.5.11. Siden $-14 = 2 \cdot -7$, er $-7 \mid -14$. Derfor er $7 \mid -14$. Vi har: $-14 = (-2) \cdot 7$.

Proposisjon 2.5.12. La l og n være heltall. Anta at $l \mid n$. Da er $l \mid -n$.

Bevis. Oppgave O2.1.5. \Box

Eksempel 2.5.13. Siden $20 = 4 \cdot 5$, er $5 \mid 20$. Derfor er $5 \mid -20$. Vi har: $-20 = (-4) \cdot 5$.

Eksempel 2.5.14. Siden $-33 = (-11) \cdot 3$, er $3 \mid -33$. Derfor er $3 \mid 33$. Vi har: $33 = 11 \cdot 3$.

Proposisjon 2.5.15. La l, l', n, og n' være heltall. Anta at $l \mid n$ og $l' \mid n'$. Da er $l \cdot l' \mid n \cdot n'$.

Bevis. Oppgave O2.1.6. \Box

Eksempel 2.5.16. Siden $18 = 3 \cdot 6$ er $6 \mid 18$. Siden $56 = 14 \cdot 4$ er $4 \mid 56$. Derfor er $6 \cdot 4 \mid 18 \cdot 56$, altså $24 \mid 1008$. Vi har: $1008 = 42 \cdot 24$.

Eksempel 2.5.17. Siden $-15 = 5 \cdot (-3)$ er $-3 \mid -15$. Siden $-100 = (-10) \cdot 10$ er $10 \mid -100$. Derfor er $-3 \cdot 10 \mid (-15) \cdot (-100)$, altså $-30 \mid 1500$. Vi har: $1500 = (-50) \cdot (-30)$.

Korollar 2.5.18. La l', n, og n' være heltall. Anta at $l' \mid n'$. Da er $l' \mid n \cdot n'$.

Bevis. Følger umiddelbart fra Proposisjon 2.5.15 ved å la l være 1.

Eksempel 2.5.19. Siden $72 = 8 \cdot 9$ er $9 \mid 72$. Derfor er $9 \mid 4 \cdot 72$, altså $9 \mid 288$. Vi har: $288 = 32 \cdot 9$.

Eksempel 2.5.20. Siden $-12 = (-2) \cdot 6$ er $6 \mid -12$. Derfor er $6 \mid 63 \cdot (-12)$, altså $6 \mid -756$. Vi har: $-756 = (-126) \cdot 6$.

Korollar 2.5.21. La l, l', og n' være heltall. Anta at $l' \mid n'$. Da er $ll' \mid ln'$.

Bevis. Siden $l=1\cdot l$, har vi: $l\mid l$. Derfor følger utsagnet umiddelbart fra Proposisjon 2.5.15 ved å la n være l.

Eksempel 2.5.22. Siden $42 = 6 \cdot 7$ er $7 \mid 42$. Derfor er $8 \cdot 7 \mid 8 \cdot 42$, altså $56 \mid 336$. Vi har: $336 = 6 \cdot 56$.

Eksempel 2.5.23. Siden $-32 = 4 \cdot (-8)$ er $-8 \mid -32$. Derfor er $(-6) \cdot (-8) \mid (-6) \cdot (-32)$, altså $48 \mid 192$. Vi har: $192 = 4 \cdot 48$.

Proposisjon 2.5.24. La l, m, og n være heltall. Anta at $l \mid m$ og $l \mid n$. Da er $l \mid m+n$.

Bevis. Siden $l \mid m$, finnes det et heltall k slik at m = kl. Siden $l \mid n$, finnes det et heltall k' slik at n = k'l. Da er

$$m + n = kl + k'l$$
$$= (k + k')l.$$

Siden k og k' er heltall, er k + k' et heltall. Vi konkluderer at $l \mid m + n$.

Eksempel 2.5.25. Siden $14 = 2 \cdot 7$ er $7 \mid 14$. Siden $63 = 9 \cdot 7$ er $7 \mid 63$. Derfor er $7 \mid 14 + 63$, altså $7 \mid 77$. Vi har: $77 = 11 \cdot 7$.

Eksempel 2.5.26. Siden $-16 = (-4) \cdot 4$ er $4 \mid -16$. Siden $-32 = (-8) \cdot 4$ er $4 \mid -32$. Derfor er $4 \mid (-16) + (-32)$, altså $4 \mid -48$. Vi har: $-48 = (-12) \cdot 4$.

Proposisjon 2.5.27. La l, m, og n være heltall. Anta at $l \mid m$ og at $m \mid n$. Da er $l \mid n$.

Bevis. Siden $l \mid m$, finnes det et heltall k slik at m = kl. Siden $m \mid n$, finnes det et heltall k' slik at n = k'm. Da er

$$n = k'm$$

$$= k'(kl)$$

$$= (k'k)l.$$

Siden k og k' er heltall, er kk' et heltall. Vi konkluderer at $l \mid n$.

Eksempel 2.5.28. Siden $24 = 3 \cdot 8$ er $8 \mid 24$. Siden $72 = 3 \cdot 24$ er $24 \mid 72$. Derfor er $7 \mid 8 \mid 72$. Vi har: $72 = 9 \cdot 8$.

Eksempel 2.5.29. Siden $-21 = 3 \cdot (-7)$ er $-7 \mid -21$. Siden $63 = (-3) \cdot (-21)$ er $63 \mid -21$. Derfor er $-7 \mid 63$. Vi har: $63 = (-9) \cdot (-7)$.

Proposisjon 2.5.30. La l og n være naturlige tall. Anta at $l \mid n$. Da er $l \leq n$.

Bevis. Siden $l \mid n$ og både l og n er naturlige tall, finnes det et naturlig tall m slik at n = ml. Siden m er et naturlig tall, er $1 \le m$. Derfor er

$$l \le ml \\ = n.$$

Eksempel 2.5.31. Siden $27 = 3 \cdot 9$, er $9 \mid 27$. Vi har: $9 \le 27$.

Korollar 2.5.32. La l være et heltall, og la n være et heltall slik at $n \neq 0$. Anta at $l \mid n$. Da er $|l| \leq |n|$.

Bevis. Oppgave O2.1.7.
$$\Box$$

Eksempel 2.5.33. Siden $-4 = 2 \cdot (-2)$, er $-2 \mid -4$. Vi har: $2 \le 4$, altså $|-2| \le |-4|$.

Eksempel 2.5.34. Siden $9 = (-3) \cdot (-3)$, er $-3 \mid 9$. Vi har: $3 \le 9$, altså $|-3| \le |9|$.

Oppgaver

O2.1 Oppgaver i eksamens stil

Oppgave O2.1.1. La n være et partall. Bevis at det er et heltall m slik at enten $n^2 = 8m$ eller $n^2 = 8m + 4$.

Oppgave O2.1.2. La n være et heltall. Bevis at det er et heltall m slik at enten $n^4 = 5m$ eller $n^4 = 5m + 1$. Tips: Benytt Proposisjon 1.9.30 i løpet av svaret ditt.

Oppgave O2.1.3. La n være et heltall. Anta at det er heltall s slik at $n = s^3$. Anta i tillegg at det er et heltall t slik at $n = t^2$. Bevis at det er et heltall m slik at enten n = 7m eller n = 7m + 1. Tips: Gjør følgende.

- (1) Bevis at det er et heltall m slik at et av de følgende utsagnene er sant:
 - (i) n = 7m;
 - (ii) n = 7m + 1;
 - (iii) n = 7m + 6.

Benytt Proposisjon 1.9.30 og antakelsen at $n = s^3$ i løpet av svaret ditt.

- (2) Bevis at det er et heltall m' slik at et av de følgende utsagnene er sant:
 - (i) n = 7m';
 - (ii) n = 7m' + 1;
 - (iii) n = 7m' + 2;
 - (iv) n = 7m' + 4;

Benytt antakelsen at $n = t^2$ i løpet av svaret ditt.

(3 Benytt Korollar 2.2.20 ved å la l være 7.

Oppgave O2.1.4. La n være et naturlig tall.

- (1) Bevis at $7n^2 + 7n + 4$ er et partall.
- (2) Bevis at $n(7n^2 + 5)$ er delelig med 6.

Tips: Benytt induksjon i beviset for (2). Sjekk i tillegg om ligningen

$$(m+1)(7m^2 + 14m + 12) = m(7m^2 + 5) + (21m^2 + 21m + 12)$$

er sann for et hvilket som helst naturlig tall, og benytt denne ligningen i løpet av svaret ditt.

Oppgave O2.1.5. La l og n være heltall. Anta at $l \mid n$. Bevis at $l \mid -n$.

Oppgave O2.1.6. La l, l', n, og n' være heltall. Anta at $l \mid n$ og $l' \mid n'$. Bevis at $l \cdot l' \mid n \cdot n'$.

Oppgave O2.1.7. La l være et heltall, og la n være et heltall slik at $n \neq 0$. Anta at $l \mid n$. Ved å benytte Proposisjon 2.5.30, bevis at $|l| \leq |n|$.

O2.2 Oppgaver for å hjelpe med å forstå forelesningen

Oppgave O2.2.3. Hvilke heltall k og r får vi ved å bruke divisjonsalgoritmen når:

- (1) n = 348 og l = 39,
- (2) n = 179 og l = 7?

Tips: Se Merknad 2.2.17 og eksemplene som følger den.

Oppgave O2.2.4. Hvilke heltall k og r får vi ved å bruke divisjonsalgoritmen når:

- (1) n = 79 og l = -12,
- (2) n = -87 og l = -11,
- (3) n = -134 og l = -46?

Tips: Se Merknad 2.2.21 og eksemplene som følger den.

Oppgave O2.2.5. Hvilke av de følgende heltallene er partall, og hvilke er oddetall? Som i Eksempel 2.3.3 – Eksempel 2.3.5, begrunn svaret ditt ved å referere til Terminologi 2.3.1.

- (1) 46.
- (2) -53
- (3) -4.
- (4) 16.

Oppgave O2.2.6. Hva fastslår Proposisjon 2.4.2 når n = 15? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med 15. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.7. Hva fastslår Proposisjon 2.4.2 når n = 20? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med 20. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.8. Hva fastslår Proposisjon 2.4.2 når n = -10? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med -10. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.9. Hva fastslår Proposisjon 2.4.2 når n = -5? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med -5. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.10. Hva fastslår Proposisjon 2.4.9 når n = 7? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med 7. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.11. Hva fastslår Proposisjon 2.4.9 når n = 13? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med 13. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.12. Hva fastslår Proposisjon 2.4.9 når n = -5? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med -5. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.13. Hva fastslår Proposisjon 2.4.9 når n = -9? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med -9. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.14. Hva fastslår Proposisjon 2.4.16 når n = 5? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med 5. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.15. Hva fastslår Proposisjon 2.4.16 når n = 10? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med 10. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.16. Hva fastslår Proposisjon 2.4.16 når n = -12? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med -12. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?

Oppgave O2.2.17. Hva fastslår Proposisjon 2.4.16 når n = -5? Hva er m i dette tilfellet? Gå gjennom beviset for Proposisjon 2.4.2 ved å erstatte n med -5. Hvilket at utsagnene (1) og (2) stemmer? Hva er k i dette tilfellet?