Preuve que notre problème est NP-difficile

Introduction

Nous considérons le problème suivant :

Entrée:

- Une position de départ fixe s = (0,0).
- Une position d'arrivée fixe t = (800, 800), différente de s.
- Un ensemble de points $M = \{v_1, v_2, \dots, v_n\}$ dispersés dans le plan.

Objectif:

Trouver le chemin le plus court qui part de s, visite exactement une fois chaque point de M, et se termine en t.

But : Prouver que ce problème est NP-difficile.

Étape 1 : Rappel du Problème du Chemin Hamiltonien (PCH)

Le Problème du Chemin Hamiltonien (PCH) est défini comme suit :

Entrée:

- Un graphe non orienté G = (V, E).
- Deux sommets distincts $s', t' \in V$.

Question:

Existe-t-il un chemin dans G de s' à t' qui visite chaque sommet de V exactement une fois ? Complexité :

Le PCH est un problème **NP-complet**.

Étape 2 : Réduction du PCH à notre problème

Pour montrer que notre problème est NP-difficile, nous effectuons une **réduction polynomiale** du PCH à notre problème.

Transformation:

1. Correspondance des sommets :

Pour chaque sommet $v \in V$ du PCH, nous associons un point p_v dans le plan (un élément de M).

2. Positionnement des points :

Nous plaçons les points p_v de manière à ce que :

- Les distances courtes entre p_u et p_v correspondent aux arêtes existantes $(u,v) \in E$.
- Les distances longues entre p_u et p_v correspondent à l'absence d'arête $(u,v) \notin E$.

3. Positions de départ et d'arrivée :

- s correspond au point de départ (0,0).
- t correspond au point d'arrivée (800, 800).

Remarque:

Cette transformation peut être réalisée en temps polynomial par rapport à la taille de G.

Étape 3 : Correspondance des solutions

Implications:

- Si le PCH a une solution (c'est-à-dire qu'il existe un chemin hamiltonien de s' à t' dans G), alors il existe un chemin dans notre problème qui visite chaque point de M exactement une fois, avec une longueur minimale (en utilisant les distances courtes).
- Si notre problème a une solution optimale (le chemin le plus court de s à t en visitant chaque point de M exactement une fois), alors ce chemin correspond à un chemin hamiltonien de s' à t' dans G.

Justification:

- Les distances courtes entre les points p_v encouragent le chemin à suivre les arêtes existantes dans G.
- \bullet Les distances longues pénalisent les chemins passant par des paires de points non adjacents dans G
- \bullet Ainsi, le chemin le plus court dans notre problème correspond à un chemin hamiltonien dans G.

Étape 4 : Conclusion

Réduction polynomiale :

La transformation de l'instance du PCH en une instance de notre problème se fait en temps polynomial.

Conclusion:

Puisque résoudre notre problème permettrait de résoudre le PCH (un problème NP-complet), **notre problème est donc NP-difficile**.

Référence

Le PCH a été prouvé NP-complet dans :

Richard M. Karp, Reducibility Among Combinatorial Problems, in Complexity of Computer Computations, pp. 85–103, 1972.

Disponible en ligne : $\label{eq:doi.org/10.1007/978-1-4684-2001-2_9} \text{Disponible en ligne}: \\ \text{https://doi.org/10.1007/978-1-4684-2001-2_9} \\ \text{Disponible en ligne}: \\ \text{Disponibl$