### Basics for Enhanced Visualization: 3D/Data

### Transformations in 2D/3D



Rodrigo Cabral

Polytech Nice - Data Science

cabral@unice.fr

Source: http://www.lightandmatter.com/lm/

### **Outline**

- 1. Introduction
- 2. 2D/3D Euclidean space and Cartesian spaces
- 3. Linear, affine and rigid body transformations
- 4. Linear transformations: scaling and 2D rotation
- 5. 2D Translation and homogeneous coordinates
- Composition of transformations
- 7. 3D transformations
- 8. Conclusions

### Introduction

# What are and why do we need 3D transformations?

 Moving objects translate T and rotate R in space, with respect to a reference. Reference is called world reference or world frame.



 Objects can also deform. But here we consider mainly rigid body objects.

### Introduction

## What are and why do we need 3D transformations in static scenes?

- The scene is observed by a camera with position, orientation and an effective size with respect to the world reference. This reference is known as camera reference or camera frame.
- Using the camera frame as a reference equals to a translation T, rotation R and scaling S of the points forming the object.



Transformations from 3D to 2D known as projections are also required. Next class.

### Introduction

## Computer based approach

Lowest level description of an object is given by its vertices.





Objective: mathematically define the points and the transformations.

Solution: linear algebra.

## Euclidean space and cartesian coordinates

A point **p** in the 3D (2D) Euclidean space is analytically represented in Cartesian coordinates by

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \in \mathbb{R}^3 \qquad (\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2)$$

A vector as in linear algebra.



Keep in mind that there exist geometric objects called vectors. We will see later how to differentiate between both.

## Inner product, norm and angle

Note that we choose as basis vectors for the reference frame

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Define a metric with the inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle \triangleq \mathbf{u}^{\mathrm{T}} \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

This allows to evaluate:

- ▶ Distances to the origin : Norm  $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$
- ▶ Distances between points :  $\|\mathbf{u} \mathbf{v}\|$
- Angles with respect to the origin:  $cos(\theta) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$

Orthogonal vector to plane: Cross-product -  $\mathbf{u} \times \mathbf{v} = \mathbf{U}_{\times} \mathbf{v}$ 

$$\mathbf{U}_{\times} = \left[ \begin{array}{ccc} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{array} \right]$$

### Linear transformations

### **Definition:** linear transformation

A linear transformation (or linear function) T of a vector is a function respecting two properties:

- Additivity:  $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- ► Homogeneity:  $T(a\mathbf{u}) = aT(\mathbf{u})$

### Linear transformations

## Theorem: transformations and linear algebra

Any linear transformation T can be represented by the matrix-vector product  $T(\mathbf{u}) = \mathbf{A}\mathbf{u}$ .

Proof: **A** can be constructed by applying the transformation to the canonical basis  $\mathbf{e}_1, \dots, \mathbf{e}_N$  and using the two properties.

Moreover the columns of  $\mathbf{A} = [\mathbf{a}_1 | \cdots | \mathbf{a}_N]$  are directly the transformed canonical basis  $\mathbf{e}_1, \cdots, \mathbf{e}_N$ .

### Affine transformations

Similarly to linear transformations **affine transformations** T can be represented by a linear transformation plus a fixed vector  $\mathbf{b}$ :

$$T(\mathbf{u}) = \mathbf{A}\mathbf{u} + \mathbf{b}.$$

- Affine transformations include linear ones.
- Is the origin invariant to linear and affine transformations?

## Rigid body transformations

## Definition: rigid body transformation

A rigid body transformation  $\mathbf{m}:\mathbb{R}^3\to\mathbb{R}^3$  satisfies the following properties for vectors  $\mathbf{u}$  and  $\mathbf{v}$ , representing any two points ( $\mathbf{p}$  and  $\mathbf{q}$  for example) and  $\mathbf{w}=\mathbf{u}-\mathbf{v}$ ,  $\mathbf{x}$  representing differences between points:

- ► Distance is preserved:  $\|\mathbf{u} \mathbf{v}\| = \|m(\mathbf{u}) m(\mathbf{v})\|$
- Cross product is preserved:  $m(\mathbf{w} \times \mathbf{x}) = m_{\star}(\mathbf{w}) \times m_{\star}(\mathbf{x})$

where 
$$m_{\star}(\mathbf{w}) = m(\mathbf{u}) - m(\mathbf{v})$$

Consequences: rigid body transformations do not change the shape neither the volume of an object.

## Rigid body transformations

### Rotations and translations

(like the "rigid ballet dancer")



General form: input vector **u** 

$$y = Ru + t$$

- ▶ **R** is a square orthogonal matrix with det(**R**) = 1.
- t is a vector.
- Rigid body transformations are affine transformations.

### 2D transformation

- Vector u is a point in 2D space.
- $u_1$  is the coordinate in  $\mathbf{e}_1$  standard  $\mathbf{x}$  axis coordinate.
- $u_2$  is the coordinate in  $\mathbf{e}_2$  standard  $\mathbf{y}$  coordinate.

$$T(\mathbf{u}) = \left[ \begin{array}{cc} a & c \\ b & d \end{array} \right] \left[ \begin{array}{cc} u_1 \\ u_2 \end{array} \right]$$

- T( $\mathbf{e}_1$ ) =  $\begin{bmatrix} a \\ b \end{bmatrix}$  transformation of a unitary vector in x axis.
- ►  $T(\mathbf{e}_2) = \begin{bmatrix} c \\ d \end{bmatrix}$  transformation of a unitary vector in y axis.

## Scaling

- First coordinate is scaled by factor s<sub>x</sub>.
- Second coordinate is scaled by factor  $s_v$ .

$$\mathbf{T}(\mathbf{e}_1) = \left[ \begin{array}{c} s_x \\ 0 \end{array} \right] \quad \text{and} \quad \mathbf{T}(\mathbf{e}_2) = \left[ \begin{array}{c} 0 \\ s_y \end{array} \right] \quad \Longrightarrow \mathbf{T} = \left[ \begin{array}{c} s_x & 0 \\ 0 & s_y \end{array} \right]$$



- Changes the size of the object
- But also translates the object if not in origin.
- It does not preserve distances.
- In general, it does not preserve angles.

Scaling changes shape: not a rigid body transformation.

#### Questions:

- Why a scaling is not a rigid body transformation mathematically?
- Is the origin invariant in linear transformations?

### Rotation

▶ Rotation about origin by an angle  $\theta$ .



► 
$$\mathbf{T}(\mathbf{e}_1) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
 and  $\mathbf{T}(\mathbf{e}_2) = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$ 

$$\implies \mathbf{T} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- Rotations are rigid body transformations. (Proof?)
- ▶ To rotate around the center of the object a translation is required.
- Inversion is easy. (In general, what is the inverse of a rigid body transformation?)
- How to encode a sequence of rotations and scalings?



### **Translation**



- ►  $T(\mathbf{u}) = \mathbf{u} + \mathbf{t} = \begin{bmatrix} u_1 + t_1 \\ u_2 + t_2 \end{bmatrix}$ : an affine transformation  $\longrightarrow$  not linear.
- We cannot compose it with other types of transformation.
- ► If we want a linear framework for rigid body transformations (plus scaling) what do we do? ②

# 2D Translation and homogeneous coordinates Homogeneous coordinates

- We add a dimension corresponding to a w axis. This generates a supplementary coordinate.
- The 2D space is now embedded in the 3D space.
- But how to specify this third coordinate?
- Add a constant coordinate, 1 for example:

$$u_{c} = \left[ \begin{array}{c} x \\ y \end{array} \right] \Longrightarrow u_{h} = \left[ \begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

Furthermore, points  $\mathbf{u}_h = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix}$  for any  $w \neq 0$  are equivalent.

## Homogeneous coordinates



## Homogeneous coordinates

If you have a point in homogeneous coordinates  $\mathbf{u}_h = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix}$  $(w' \neq 0)$  you can get Cartesian coordinates as follows

$$\mathbf{u}_h = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Longrightarrow \begin{bmatrix} \frac{x'}{w'} \\ \frac{y'}{w'} \\ 1 \end{bmatrix} \Longrightarrow \mathbf{u}_c = \begin{bmatrix} \frac{x'}{w'} \\ \frac{y'}{w'} \end{bmatrix}$$

# Linear transformations and Homogeneous coordinates

To keep w unchanged (w = 1 for example) we can define linear transformations in homogeneous coordinates as follows:

$$T_{c} = \left[ \begin{array}{cc} a & c \\ b & d \end{array} \right] \implies T_{h} = \left[ \begin{array}{cc} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 1 \end{array} \right]$$

- ► *T<sub>c</sub>* is the transformation we want to apply in Cartesian coordinates.
- ► *T<sub>h</sub>* is its corresponding version in homogeneous coordinates
- ▶ This works for all linear transformations: scaling, rotations etc.

### How to do a translation?

Now we can do it!

For a translation 
$$\mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$
 we have

► Verify it with a vector 
$$\mathbf{u}_h = \begin{bmatrix} u_1 \\ u_2 \\ 1 \end{bmatrix}$$
!

# 2D Translation and homogeneous coordinates Homogenized transformations

All previous transformations in homogenized form:

| Transformation | Matrix                                                                                                                        |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Scaling        | $\mathbf{S} = \left[ \begin{array}{ccc} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{array} \right]$    |  |  |  |  |  |  |
| Rotation       | $\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$ |  |  |  |  |  |  |
| Translation    | $\mathbf{T} = \left[ \begin{array}{ccc} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{array} \right]$                          |  |  |  |  |  |  |

### Brief comment on geometric vectors



- A point is represented by  $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & \mathbf{1} \end{bmatrix}^T$  in homogeneous coordinates.
- A vector starting on a point cannot be translated. We define it as  $\mathbf{v} = \begin{bmatrix} u_1 & u_2 & \mathbf{0} \end{bmatrix}^T$ .
- The last coordinate makes geometric vectors unchanged by translation.
- Example : normal vectors in lighting rendering.

## Composition of functions

- How can we combine multiple transformations?
- How do we describe linear transformations sequentially with functions?
- Transformations are functions.
- Functions can be composed sequentially:  $f \circ g(\mathbf{u}) = f(g(\mathbf{u}))$
- If we want to apply first  $T_1$  and then  $T_2 \Longrightarrow$

Matrix product:  $T_{12} = T_2T_1$ .

## Matrix product

- We are able to make more complex transformations using composition.
- Example: first scale **S**, then rotate **R** and finally translate **T** a point  $\mathbf{u} = \begin{bmatrix} x & y & 1 \end{bmatrix}^{\mathrm{T}}$ :

Composition is read from right to left.

## Non commutativity

As any composition, order matters: matrix multiplication is not commutative.

Rotate 
$$45^{\circ} \Longrightarrow \text{Translate} \left[ \begin{array}{c} t_1 \\ 0 \end{array} \right] \longrightarrow \text{Rotate } 45^{\circ}$$

Translate 
$$\begin{bmatrix} t_1 \\ 0 \end{bmatrix}$$
  $\Longrightarrow$  Rotate 45°





### A few questions:

- Do an inverse exist for each of the previously presented transformations in homogeneous coordinates?
- What are the inverses of these transformations in homogeneous coordinates?
- How do you use translations and inverses to write the rotation of an object around its center?

Transformations in homogeneous coordinates (4 coord.):

| Transformation | Matrix                                                 |                   |       |       |                       |  |  |  |
|----------------|--------------------------------------------------------|-------------------|-------|-------|-----------------------|--|--|--|
| Scaling        | <b>S</b> =                                             | $s_x$ $0$ $0$ $0$ | 0     | 0     | 0                     |  |  |  |
|                |                                                        | 0                 | $s_y$ | 0     | 0                     |  |  |  |
|                |                                                        | 0                 | 0     | $s_z$ | 0                     |  |  |  |
|                |                                                        | 0                 | 0     | 0     | 1                     |  |  |  |
| Rotation       | They can be defined around any axis. (see next slides) |                   |       |       |                       |  |  |  |
| Translation    | <b>T</b> =                                             | 1                 | 0     | 0     | $t_1$                 |  |  |  |
|                |                                                        | 0                 | 1     | 0     | <i>t</i> <sub>2</sub> |  |  |  |
|                |                                                        | 0                 | 0     | 1     | <i>t</i> <sub>3</sub> |  |  |  |
|                |                                                        | 0                 | 0     | 0     | 1                     |  |  |  |

## Rodrigues' formula

Rotation by angle 
$$\theta$$
 around unit vector  $\mathbf{v} = \begin{bmatrix} v_X \\ v_y \\ v_z \end{bmatrix}$ :

$$\mathbf{R}_{\mathbf{v},\theta} =$$

```
 \begin{bmatrix} \cos(\theta) + v_X^2 [1 - \cos(\theta)] & v_X v_Y [1 - \cos(\theta)] - v_Z \sin(\theta) & v_X v_Z [1 - \cos(\theta)] + v_Y \sin(\theta) & 0 \\ v_X v_Y [1 - \cos(\theta)] + v_Z \sin(\theta) & \cos(\theta) + v_Y^2 [1 - \cos(\theta)] & v_Y v_Z [1 - \cos(\theta)] - v_X \sin(\theta) & 0 \\ v_X v_Z [1 - \cos(\theta)] - v_Y \sin(\theta) & v_Y v_Z [1 - \cos(\theta)] + v_X \sin(\theta) & \cos(\theta) + v_Z^2 [1 - \cos(\theta)] & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Rotation around each axis (Euler's angles)

| Axis, Angle           | Matrix                                    |      |                             |          |                |   |  |  |  |
|-----------------------|-------------------------------------------|------|-----------------------------|----------|----------------|---|--|--|--|
| $	extbf{	iny X},\psi$ | $\mathbf{R}_{X,\psi}$ =                   | 1    | 0                           |          | 0              | 0 |  |  |  |
|                       |                                           | 0    | cos(                        | $(\psi)$ | $-\sin(\psi)$  | 0 |  |  |  |
|                       |                                           | 0    | $\cos(\psi)$ - $\sin(\psi)$ |          | $\cos(\psi)$   | 0 |  |  |  |
|                       |                                           | 0    | 0                           |          | 0              | 1 |  |  |  |
| <b>y</b> , θ          | ${\sf R}_{{\scriptscriptstyle X},\psi}$ = | C    | os(	heta)                   | 0        | $\sin(\theta)$ | 0 |  |  |  |
|                       |                                           |      | 0                           | 1        | 0              | 0 |  |  |  |
|                       |                                           | - 9  | $sin(\theta)$               | 0        | $\cos(\theta)$ | 0 |  |  |  |
|                       |                                           |      | 0                           | 0        | 0              | 1 |  |  |  |
| Ζ, φ                  | [                                         | cos  | $(\phi)$                    | -sin(    | (φ) <b>0</b>   | 0 |  |  |  |
|                       | <b>T</b> =                                | sin( | $(\phi)$                    | cos(     | $\phi$ ) 0     | 0 |  |  |  |
|                       |                                           | 0    | )                           | 0        | 1              | 0 |  |  |  |
|                       |                                           | 0    |                             | 0        | 0              | 1 |  |  |  |

### Rotation by $\theta$ around axis **v** with composition

- 1. Align **v** with *x* axis using rotations:
  - 1.1 rotate around y axis to put  $\mathbf{v}$  in xy plane  $\mathbf{R}_y$ .
  - 1.2 rotate around z axis to put  $\mathbf{v}$  in x axis  $\mathbf{R}_z$ .
- 2. Rotate by  $\theta$  around  $x \mathbf{R}_{x,\theta}$ .
- 3. Inverse the rotation used to align with *x* axis.

$$\mathbf{R}_{\mathbf{v},\theta} = \mathbf{R}_{y}^{-1}\mathbf{R}_{z}^{-1}\mathbf{R}_{x,\theta}\mathbf{R}_{z}\mathbf{R}_{y}$$

How to do a rotation around a line (axis which does not contain the origin)?

### Conclusions

- Vertices defining a 2D/3D object can be stored in vectors: 3 coordinates for 2D and 4 coordinates for 3D.
- Rigid body transformations plus scaling can be implemented by matrix multiplications.
- If the transformation is complex (a lot of compositions) and the number of vertices is large 

  Large complexity reduction by composing the matrix first.
- You need to be careful with the order in the composition.