Présentation Projet SDA

Projet Algorithmique

Cerisara Nathan, Lardy Emilie, Gerouille Guilhem

Sommaire

- 1. Présentation du sujet
- 2. Equilibrage des données
- 3. Méthode: ACP + Arbre de décision
- 4. Méthode: Modèles linéaires
- 5. Méthode: Resnet
- 6. Méthode: ACP + SVM
- 7. Conclusion

1. Présentation du sujet

 Classification de champs

10 images (3 canaux)-> 1 par mois

20 classes de cultures

2. Equilibrage des données

Méthode 1:

- Utilisation paramètre équilibrage poids automatiques

2. Equilibrage des données

Méthode 2:

- Resnet / modèles linéaires -> Équilibrage manuel
 - Avec N le nombre max d'elt dans une classe
 - On ajoute à toutes les classes N-N; elts comme suit:
 - On prend une image de base de la classe, auquel on ajoute un bruit gaussien

Arbre de décision :

- Puissants pour la classification
- Facilement interprétables
- Problème : dimension très élevée
- Solution : ACP

ACP:

- Réduction à 10 dimensions

- Calcul plus rapide

Résultats:

Précision	Sans équilibrage	Avec équilibrage
Jeu d'entraînement	75%	50%
Jeu de test	68%	40%

Améliorations possibles :

- Optimisation par bagging

- Optimisation par boosting

4. Méthode: Modèles linéaires

Moyenne des couleurs:

4.b. Modèles linéaires

5. Méthode: Resnet

model.count_params() = 11 285 396 !

6. Méthode: SVM + ACP

Pourquoi utiliser une SVM?

- Simple
- Classes non linéaires
- Adapté à tout nombre de caractéristiques

6. Méthode: SVM + ACP

- Mise en oeuvre
- Résultats
 - (base): 60% accuracy
 - (optimaux): 65% accuracy
- Conclusion
 - Classes proches

7. Conclusion

- Difficultés
- Performances
- Limites
- Nouvelles perspectives

