线性代数 B 期末试题 A 卷

座号	ナトノマ	ж	1.1 H	
ᇪᄹ	班级		姓名	
$\mu \psi \leftarrow$	111 Z/V	→ →	(+ / -	
			λΤ'.'U	

(试卷共6页, 八道大题. 解答题必须有解题过程, 试卷后空白页撕下做稿纸, 试卷不得拆散)

题 号	_	1 1	11]	四	五.	六	七	八	总分
得									
分									
签									
名									

得分	
----	--

一、填空题(每小题4分,共20分)

- 1、已知方阵A满足 $A^2+A-4I=O$,则 $(A-I)^{-1}=$ ________。
- 2、设A是一个 4×3 矩阵,且r(A)=2,而 $B=\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$,则r(AB)=________。
- 3、已知 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是 4 元列向量,且 4 阶行列式 $|\alpha_1, \alpha_2, \alpha_3, \beta_1| = m$, $|\alpha_1, \alpha_2, \beta_2, \alpha_3| = n$,则 4 阶行列式 $|\alpha_3, \alpha_2, \alpha_1, \beta_1 + \beta_2| =$ ______。
- 5、已知 $\alpha=(1,0,-1)^T$,且 $A=\alpha\alpha^T$,则 $A^{2019}=$ _____。

是A的伴随矩阵,求矩阵B。

得分

 Ξ (10 分)、设已知 R^3 的一组基为 $\alpha_1 = (1,2,0)^T \alpha_2 = (1,-1,2)^T$

 $\alpha_3 = (0,1,-1)^T$ 。由基 β_1 , β_2 , β_3 到基 α_1 , α_2 , α_3 的过渡矩阵为

$$P = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

- (1) 求基 β_1 , β_2 , β_3 ;
- (2) 若向量 γ 在 α_1 , α_2 , α_3 下的坐标为(1,2,1),求 γ 在 β_1 , β_2 , β_3 下的坐标。

得分

四 (10 分)、已知线性方程组 $\begin{cases} x_1+x_2+tx_3=4\\ x_1-x_2+2x_3=-4\\ -x_1+tx_2+x_3=t^2 \end{cases}$

性方程组的解的情况,并在有无穷多解的情况下,用导出组的基础解系来表示通解。

得分

五 (10 分)、设向量组 $\alpha_1 = (1,-1,2,1)^T, \alpha_2 = (2,-2,4,2)^T, \alpha_3 = (3,0,6,-1)^T,$

 $\alpha_4 = (0,3,0,-4)^T$ 。(1)求 $L(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 的维数和一组基;(2)求

 $L(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 的一组标准正交基。

得分

六(15分)、已知A是一个3阶矩阵, α_1 , α_2 , α_3 是线性无关的向量组且满足

$$A\alpha_1 = -\alpha_1 - 3\alpha_2 - 3\alpha_3, A\alpha_2 = 4\alpha_1 + 4\alpha_2 + \alpha_3, A\alpha_3 = -2\alpha_1 + 3\alpha_3$$

- (1) 求**A** 的特征值;
- (2) 求A 的特征向量(表示为 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合)。

得分

七(15 分)、二次型 $f(x_1, x_2, x_3) = 4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3$ 经过正

交替换X = QY化为标准形 $y_1^2 + 6y_2^2 + qy_3^2$,求实参数q及所用的正交矩阵Q,

并进一步判断此二次型是否正定。

得分

八(10分)、设 A 为3阶方阵, $^\lambda$ ₁, $^\lambda$ ₂, $^\lambda$ ₃ 是 A 的三个不同特征值,对应的

特征向量分别为 α_1 , α_2 , α_3 , 令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$ 。证明: β , $A\beta$, $A^2\beta$ 线性无关。