

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

TRAINING
ANALYSIS
AND
EVALUATION
GROUP

TECHNICAL REPORT NO. 103

THE LONG-RANGE ROLE AND MISSION OF INSTRUCTIONAL PROGRAM DEVELOPMENT CENTERS: ECONOMIC ASSESSMENT

SELECTE APR 2 5 1985

JUNE 1981

FOCUS ON THE T

TC FILE COPY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

aSON

TRAINING ANALYSIS AND EVALUATION GROUP
ORLANDO, FLORIDA 32912

ا م ن

4 4

J & 3

THE LONG-RANGE ROLE AND MISSION OF INSTRUCTIONAL PROGRAM DEVELOPMENT CENTERS: ECONOMIC ASSESSMENT

> William M. Swope F. Laurence Keeler

Training Analysis and Evaluation Group

June 1981

GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.

ALFRED F. SMODE, Ph.D., Director Training Analysis and Evaluation Group

W. L. MALOY, Ed.D.

Deputy Chief of Naval Education and Training for Educational Development/ Research, Development, Test, and

Evaluation

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TAEG Report No. 103	AD-A 152	725
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
THE LONG-RANGE ROLE AND MISSION OF PROGRAM DEVELOPMENT CENTERS: ECO	OF INSTRUCTIONAL DNOMIC	6. PERFORMING ORG. REPORT NUMBER
ASSESSMENT		
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
William M. Swope and F. Laurence	Keeler	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Training Analysis and Evaluation Orlando, Fl 32183	Group	AREA & WORK ONLY NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		June 1981
		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; dis	tribution is unl	imited
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	an Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary an		
Instructional Systems Developmen Instructional Program Developmen	t > Many	son (, llelegation, actualy, Kartuenesa,
Cost-Benefit Analysis	Cost &	Hectweness,
Economic Analysis		9
20 ABSTRACT (Continue on reverse side if necessary and	· · · · · · · · · · · · · · · · · · ·	
The purpose of this study was to be used to develop a realistic land efficient management of the leftort.	provide empirca ong-range plan fo	or the orderly implementation
		(continued)

20. Abstract (continued)

The specific objectives were:

- document the resources expended by functional areas of the ISD model,
- identify factors, contingencies, and problems encountered in the IPD effort which impact on efficiency;
- provide an objective data base from which productivity estimates can be derived for planning;
- provide data which can be used to aid in developing a more cost-effective management plan for future IPD efforts,
- identify areas which could be investigated as to the feasibility

for improving efficiency and operation of the IPDC effort.

Original to supplied key woods included: -- front

Accession For
NTIS GRA&I DTIC TAB Unannounced Justification
Ву
Distribution/
Availability Codes
Avail and/or
Dist Special
1-1
A-1
9916
(0007

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	5
	Purpose	6 8
II	ANALYSIS	11
	Courses/Ratings Currently Under Development	13
	Overview	
III	IPDC PRODUCTIVITY	27
	Resources Committed to the IPDCs	28
IV	SUMMARY OF FINDINGS	33
	Problem Areas	
BIBLIOGRA	РНY	39
APPENDIX	A Summary Cost and Productivity Data	41
APPENDIX	B Manpower Utilization	47

LIST OF ILLUSTRATIONS

Figure		<u>Page</u>
1	Percent of IPDC Time Assigned to Administration, 1976 to 1980 (San Diego)	. 24
2	Percent of Total Time Available Which Was Allocated to NonIPD and Nonidentified Tasks (1976 to 1980)	. 24
3	Distribution of Man-periods Among Ratings Which Were Assigned for Development at the San Diego IPDC (1976 to 1980)	. 26

LIST OF TABLES

<u>Table</u>	<u>Pag</u>	<u>e</u>
1	Completion Status for Courses/Ratings Under Development at the IPDCs as of September 1980	2
2	Relationship of Courses and Contact Hours to the Percent of Total Training Days for All NAVEDTRACOM Courses	4
3	Instructional Material Development Costs Per Hour for Selected Ratings	15
4	Labor Costs Incurred in the Development of 12 Selected Ratings	17
5	Man-hours Required Per Hour of Original Instruction for Selected Ratings Developed at the Navy IPDCs	18
6	Percentage Distribution by Selected Categories for Man-hours Committed to the IPDCs (1976 to 1980)	19
7	Man-hours Attributed to Each ISD Function at the San Diego IPDC (1976 to 1980)	20
8	Percentage Distribution of All IPDC Time Among the ISD FunctionsSan Diego (1976 to 1980)	23
9	Percentage Distribution of IPDC Task Time Assigned to the ISD FunctionsSan Diego (1976 to 1980)	23
10	Manpower Utilization as Distributed Between Assigned Tasks and Other Functions, San Diego (1976 to 1980)	25
11	Number of Incidents Reported for Selected Problem Areas (1977 to 1980)	36
A-1	Summary of Output Data for Selected Courses and/or Course Modules	42
A-2	Relationship of Courses and Contact Hours to the Percent of Total Training Days for Type "A" NAVEDTRACOM Courses	43
A-3	Relationship of Courses and Contact Hours to the Percent of Total Training Days for Type "C" NAVEDTRACOM Courses	43
A-4	Relationship of Courses and Contact Hours to the Percent of Training Days for Type "F" NAVEDTRACOM Courses.	44
A-5	Summary Performance Data for IPDCs Through September 1980	45

LIST OF TABLES (continued)

Table		Page
A-6	Instructional Systems Development Expenditures by Rating for the Period 1976 to September 1980 (\$1,000)	46
B-1	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the RM Rating	48
B-2	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the IC Rating	50
B-3	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the ST Rating	52
B-4	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the HT Rating	54
B-5	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the EO Rating	56
B-6	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the DP Rating	58
B-7	Distribution of Labor Among the ISD Functions for Each Pay Period (1976 to 1980) for the Development of the SA Rating	60
B-8	Percent of Civilian and Military Labor Devoted to Each ISD Functional AreaSan Diego (1976 to 1980)	62

SECTION I

INTRODUCTION

The Navy formally implemented Instructional Systems Development (ISD) in July 1976 with the establishment of an Instructional Program Development Center (IPDC) at San Diego. Since that date, considerable resources have been committed to the Navy's IPD effort.

There has been continuing concern about the efficiency and effectiveness of the IPDC network and a recognized need for a long-range plan. Consequently, the Training Analysis and Evaluation Group (TAEG) was tasked by the Chief of Naval Education and Training (CNET) to investigate the long-range role of the IPDC in the outyears. The tasking stated that "particular attention should be paid to the class 'C' and 'F' schools and to the cost effectiveness of the current and planned IPD center network." Neither the cost effectiveness of the ISD process nor the adequacy of the IPDCs performance was the central issue of the study.

The task was divided into two phases. Phase I documented the costs, output, and problems of the IPDCs from their establishment in 1976 through September 1980. Phase II of the study addressed issues dealing with the improvement and efficiency of the IPD effort. Data from both efforts will support the development of a command-wide plan for developing and maintaining instructional material for all "A," "C," and "F" courses.

This report is the phase I study. Detailed analyses emphasize the economic aspects of the course development and implementation process as it occurred between July 1976 and September 1980. The study results also provide inputs to the phase II effort. The phase II effort will be reported in a separate document. Work on the project began in mid-1980 but was delayed in order that the analysis could include all of the FY 80 data. The FY 80 data was received in December 1980.

PURPOSE

The purpose of the present study was to provide empirically-based factors which could be used to develop a realistic long-range plan for the orderly implementation and efficient management of the Navy's IPD effort. Specific objectives were:

- . document the resources expended by functional areas of the ISD model
- . identify factors, contingencies, and problems encountered in the IPD effort which impact on efficiency
- . provide an objective data base from which productivity estimates can be derived for planning

CNET (N-53) tasking ltr of 21 Feb 1980, subj: Tasking for a study of the long range role and mission of Instructional Program Development Centers (IPDC's).

- . provide data which can be used to aid in developing a more costeffective management plan for future IPD efforts
- . identify areas which could be investigated as to the feasibility for improving efficiency and operation of the IPDC effort.

BACKGROUND

The CNET in January 1975, directed a study group to develop a plan for the full implementation of ISD using a centralized management concept. This study group developed and published a comprehensive plan² (subsequently called the "Blue Book") which set forth an approach for implementing the ISD procedure, published as NAVEDTRA 106A.

The comprehensive plan called for the ultimate establishment of five IPDCs to develop instructional programs for all NAVEDTRACOM courses. The Blue Book provided a plan for the management and organizational structure of the five IPDCs and an orderly procedure for the transition of course curriculum development and maintenance into the IPD program over a 12-year period. The Blue Book called for a two phased effort. During phase I, the ISD process was to be applied to the 193 high-volume indoctrination and basic skill courses. Phase II called for the application of ISD to the remaining 2,000 plus courses representing advanced skill training and system-specific courses.

This plan was based upon a set of assumptions and constraints on resource availability and productivity rates. These assumptions were derived from data obtained from previous ISD-like efforts in CNET and from industry experience. The funding requirements for the plan represented an estimate of resources required for full implementation of the CNET decision to utilize the ISD procedures and to phase in all course development into the IPD effort.

The CNET decision to implement the ISD program was supported by three economic analyses performed between November 1975 and July 1977. 3,4,5 These analyses were based upon a number of tentative assumptions dealing with the rate and resources required to develop course curricula using the ISD model.

²Chief of Naval Education and Training Support memorandum OlA:ELL of 11 Aug 1975, subj: Plan for the Implementation of ISD in NAVEDTRACOM.

³Economic Analysis of the Instructional Systems Development Plan, TAEG Technical Memorandum 75-6, 3 November 1975. Training Analysis and Evaluation Group, Orlando, FL 32813.

Morris G. Middleton, WIlliam M. Swope, William C. Rankin, Eric K. Green, and William F. Parrish. Cost/Benefit Analysis of the Instructional Systems

Development Implementation Plan (FY 77 to FY 82). TAEG Technical Memorandum
76-7, November 1976. Training Analysis and Evaluation Group, Orlando, FL 32813.

William M. Swope and Eric K. Green, <u>Cost/Benefit Analysis of the Instructional Systems Development Plan</u>. TAEG Technical Memorandum 77-6, July 1977, Training Analysis and Evaluation Group, Orlando, FL 32813.

These analyses generally demonstrated that the Naval Education and Training Command (NAVEDTRACOM) plan for implementation of the IPD effort would indeed result in a reduction of total training costs, especially for the first few years when the high throughput courses were brought under development.

A number of assumptions were necessary for the above economic analyses and these were fully documented in the referenced technical memorandums. Two of the most crucial assumptions which impacted heavily on the conclusions drawn from the economic analyses were: (1) each fully funded IPDC would be able to develop 1,000 hours of instructional material per year and (2) courses developed using the ISD process would result in an average 10 to 15 percent reduction in student training time. The previous economic analyses did not address the question of differential training effectiveness resulting from the application of the highly structured ISD process. It was assumed that training effectiveness would be at least equal to or "better" using the IPD-developed materials. Using the latter assumption, it was demonstrated that it would be economically efficient to adopt the proposed IPD implementation plan. This conclusion was justified entirely on the basis of the projected saving of student training time.

Experience to date, although limited, indicates that some of the assumptions made in the previous analyses are not tenable. For example, the time required for developing course curricula using the highly structured ISD process is much greater than anticipated. Also, indications are that in the long run the application of the ISD process may not lead to an average reduction of 10 to 15 percent in student time primarily because of the need to add new material to the revised course to satisfy validated task requirements. The economic feasibility of the highly structured ISD process must depend on demonstrating that the application of this process leads to "more relevant" or more effective training. Whether or not the potential benefits which might be derived from more effective training are worth the additional costs is a management decision.

Curriculum development is a necessary part of training. There is no essential agreement on just how and where that development should be organized and completed. The ISD procedures represent an orderly process for developing curriculum, but where that development is to be done and by whom are not addressed in the ISD model. The implementation of the ISD model can occur on a continuum represented at one end by a highly decentralized developmental effort concentrated at the school. The other end of the continuum is represented by a highly structured organization where resources are devoted exclusively to developing curriculum using the ISD models. Prior to the IPD effort the Navy depended on the local training organization to develop its own training program and curriculum. The products often were judged inadequate and suspected of not providing the most cost-effective training. Local curriculum development costs appeared to be low; however, these costs were usually confounded with other training costs which makes it difficult to isolate the unique curriculum development costs.

In 1976, with the formalization of the IPD effort in the IPDCs, the Navy moved toward a highly structured organizational approach to implementing ISD. To date, the productivity and effectiveness of these IPDCs are less than anticipated. A part of these deficiencies may result from inefficiencies

inherent in the implementation of any new and untried program. However, because of the complexity of a full-scale curriculum development program, it may simply be more expensive to develop curriculum than originally anticipated. In addition, when curricula are developed in an organization devoted entirely to that purpose then costs incurred are fully exposed, identifiable, and become totally incremental for that decision.

It is difficult to determine how much more expensive, if any, a curriculum developed at an IPDC is over a similar curriculum developed on a more ad hoc basis at the schoolhouse. This difficulty can be attributed to two major factors. First, it is almost impossible to establish unambiguously total curriculum development costs at the schoolhouse because so many of the resources required for curriculum development are jointly used for other parts of the training program. To estimate total curriculum development costs would require one to allocate these joint overhead costs among the various training functions.

Fortunately, management decisions regarding curriculum development costs do not require one to estimate total costs at the schoolhouse. The appropriate and relevant cost information required by management is the incremental costs; i.e., how costs will change if the curriculum development function is added or removed from the schoolhouse. Therein lies the second difficulty. To estimate incremental costs it is necessary to determine the value in alternative uses (opportunity costs) of the resources which are currently devoted to curriculum development. The problem of estimating costs for individuals who develop curriculum is especially difficult. Many of these individuals have other duties and removing their responsibility for curriculum development often will not eliminate their billets because of these additional duties. For example, an instructor may be required to be onboard even though he teaches only 50 percent of the time. If he is presently doing curriculum development then his time may, in fact, be "free" when computing the economic development costs. If the curriculum development function is removed, he may be forced to do trivial or nonproductive work to fully utilize his time.

APPROACH

As indicated earlier, TAEG was tasked to examine the question of which most efficient and effective organizational and management structure for intinued implementation of a highly structured IPD capability within the Navy. A return to the pre-ISD/IPDC status quo was not considered an option. Since the tasking explicitly stated that "particular attention should be paid to class 'C' and 'F' schools and to the cost-effectiveness of the current and planned IPD center network," it was necessary to examine the past performance of the IPDCs in terms of the utilization of resources and the rate at which instructional material was being developed. This examination involved an analysis of the cost and manpower data bases being maintained by the IPDCs and other empirical data collected directly from the IPDCs.

Visits were made to the major IPDCs to obtain a qualitative summary of problems which impact on the productivity of each center. Situation summaries,

 $^{^6\}mathrm{OP}$ cit. CNET N-5 tasking 1tr of 21 Feb 1980.

TAEG Report No. 103

TABLE 8. PERCENTAGE DISTRIBUTION OF ALL IPDC TIME AMONG THE ISD FUNCTIONS--SAN DIEGO (1976 to 1980)

Function	1976*	1977	1978	1979	1980*
Administration	59.5	59.5	55.5	57.0	53.0
Analyze	20.8	15.5	16.8	11.8	4.5
Design	3.5	3.1	3.6	6.3	5.3
Develop	5.5	11.0	15.4	16.1	26.3
Media	0.5	7.2	3.7	4.7	6.7
Evaluation	0.0	0.7	2.1	1.9	3.0
Training	9.9	2.5	2.5	1.8	0.9

^{*}Not a full year

TABLE 9. PERCENTAGE DISTRIBUTION OF IPDC TASK TIME ASSIGNED TO THE ISD FUNCTIONS - SAN DIEGO (1976 to 1980)*

Function	1976	1977	1978	1979	1980
 Administration	19.6	19.3	21.6	17.1	15.3
Analyze	54.6	32.5	31.3	23.6	8.3
Design	9.5	6.7	6.8	12.6	9.6
Develop	14.8	23.1	28.6	32.3	48.3
Media	0.6	15.0	6.9	9.4	12.3
Evaluation	0.0	1.6	3.9	3.8	5.5
Training	0.6	1.5	0.5	0.9	0.4

^{*} Excludes time assigned to nonIPD functions, leave, and nonidentified tasks.

to tasks supporting that rating. If for any pay period the equivalent number working on the task exceeded nine individuals then the number was coded with an appropriate symbol as given in the legend on the figure. For example, during the last pay period shown in 1980, the equivalent of four individuals were working on the RT rating, three on the SA rating, one on the GT rating, nine on the HT rating, four on the EO rating, nine on the RM rating, and four on the IC rating. The ST and DP ratings were coded as an "A" which indicated that the equivalent of 11 to 19 individuals were working on each of these ratings. Finally, the last row, "OH" is the administrative overhead. The time attributed to administration during the last period shown was coded as "D" which indicated that there was the equivalent of 40 to 49 individuals assigned full time to the administration functions/duties. This figure illustrates the distribution of the work effort over the period illustrated and shows which ratings were being emphasized in each pay period (in terms of the IPDC's work effort) over the entire life of the center. During 1979 there were more tasks underway than for any of the other years as indicated by the number of tasks to which manpower was allocated.

The distribution of labor among the IPDC functions, as a percent of the total available to the IPDC, is shown in table 8. In each year more than half of the available time was assigned to functions classified as administration. There has been a steady decrease in the percentage (of the total time available) which has been attributed to analysis and a steady increase in the percentage attributed to development. This change in emphasis can, with a high probability, be attributed to the phasing of work under development. The San Diego IPDC has not been in existence long enough to attain a steady state in the composition and phasing of tasks under the various stages of ISD. In the long run, the distribution of work among the ISD phases in the IPDC may prove to be cyclical as new tasks are phased in and others completed.

The major reason that so much of the IPDCs time has been assigned to administration arises from the large amount of time attributed to nonIPD and nonidentified tasks. Most of the time attributed to these latter two categories was assigned to the administrative function. If the nonIPD functions, leave, and nonidentified tasks are excluded from the distribution of time, then the amount of total administrative time used in support of the assigned tasks varies from a high of 21.6 percent in 1978 to a low of 15.3 percent in 1980 (table 9).

The trend in administration as a percent of all IPDC time is illustrated in figure 1. The figure shows the trend in administration time used in direct support of the assigned IPD tasks. There appears to be a slight downward trend in percent of total time devoted to administration.

Given a fixed labor base, the rate at which the IPDCs can develop the courses assigned for ISD will be affected by the proportion of time allocated to the nonIPD and nonidentified tasks, especially if those tasks are not in support of the courses assigned the IPDC for development. In 1976, 50 percent of the total IPDC time was assigned to other nonIPD or nonidentified tasks (table 10). There has been a fairly steady decline in this percentage since the establishment of the IPDC as illustrated in figure 2. In 1980 an estimated 34 percent of the time was devoted to nonIPD and nonidentified tasks.

The distribution of time among the functions for a selected set of ratings is shown in appendix B (tables B-1 through B-7). The man-hour and percentage of the total time assigned during each two week period over the life of the project is displayed in the appendix tables. As expected, most projects have a large percentage of project time assigned to administration during the first few accounting periods. Analysis tends to be heavy during the beginning periods of the task, but it also appears that during the life of most projects that there are subsequent periods when a significant part of the effort is shifted back to analysis. The phasing of the work effort among the ISD blocks seems to have occurred in a fairly linear sequence for most tasks presented in appendix B.

A distribution of the work effort over the various ratings assigned to the San Diego IPDC is shown in figure 3. The distribution is shown by each two-week pay period starting from the 12th pay period in 1976 and ending with the 20th pay period in 1980. The vertical columns at each pay period indicate the equivalent number of employees (or man-periods) working on tasks associated with each of the ratings. Each man-period represents 80 hours of time assigned

TABLE 7. MAN-HOURS ATTRIBUTED TO EACH ISD FUNCTION AT THE SAN DIEGO IPDC (1976 to 1980)

Year	Administration	Analyze	Design	Develop	Media	Evaluation	Training	TOTAL
1976*	36,065	12,654	2,149	3,352	326	0	900*9	60,552
1977	145,423	38,025	7,810	26,965	17,749	1,912	6,225	244,109
1978	147,859	44,823	9,834	40,979	10,038	5,621	6,873	266,027
1979	156,350	32,440	17,427	44,386	13,015	5,349	5,034	274,001
1980*	104,799	8,965	10,523	51,989	13,344	5,957	1,938	197,515
TOTAL	590, 496	136,907	47,743	167,671	54,472	18,839	26,076	1,042,204

not a full year

Table 6 shows a summary of the distribution of man-hours reported by the IPDCs since their establishment. Seventy-two percent of the time has been attributed to course development, but only 45 percent of the total hours have been directly attributed to the analysis, design, development, and validation of instructional materials. Indirect course development support (made up largely of nonidentified tasks) and nonIPD tasks accounted for approximately 48 percent of the total labor reported during the period 1976 to 1980. In general, the man-hour accounting instruction directs that employees occupying billets which are not IPD dedicated but who work on IPD tasks will assign that portion of their time they are not working on IPD tasks to the nonIPD category. It is not clear whether the time has been appropriately assigned per the instruction. There was some indication that at least a part of the time assigned to the nonIPD category was under the management control of the IPDCs.

TABLE 6. PERCENTAGE DISTRIBUTION BY SELECTED CATEGORIES FOR MAN-HOURS COMMITTED TO THE IPDCs (1976 to 1980)

Category	Percent
Course Development	72
Direct Indirect	45 27
Course Maintenance NonIPD Other	5 21 2
TOTAL	100

SAN DIEGO IPDC. An analysis of the labor utilization at the San Diego IPDC from July 1976 to September 1980 is described next. The analysis is limited to the San Diego IPDC since it is the only site which has been in operation long enough to establish any trends. Even this site has relatively few data points from which to estimate trends. Another reason for limiting the analysis to the San Diego site is that a complete set of data showing a detailed functional breakdown of how labor was used is readily available and in a format adaptable for automated data analysis.

The total man-hours expended by the IPDC are shown in table 7. The man-hours shown for 1976 are for less than a full year since the site was not established until July of that year. Similarly, the data for 1980 includes only the first 9 months; i.e., through September 1980. The labor used by the IPDC has increased from 60,552 hours in 1976 to a projected level of 270,000 hours for 1980 and has not changed significantly in the last two years.

⁹CNETSUPPORTINST 7400.1 Code N62 of 27 Jun 1978, subj: Man-hour Accounting for Instructional Program Development (IPD): policy and procedures for.

5 was 308 hours per original course hour. ⁸ Design and development of the course materials accounted for 34 percent of the time. Indirect labor accounted for 37 percent of the total labor used. Indirect labor includes training and orientation time of new employees, administrative support, leave time, and miscellaneous unidentified tasks. Miscellaneous unidentified tasks accounted for 24 percent of the total labor costs as determined from the detailed man-hour accounting data available. The indirect category does not include typing, audiovisual support, or any other support which could be directly related to each task. The "other" category includes specific tasking of a general nature including, but not limited to, tasks which attempt to develop improved procedures for executing the ISD model.

TABLE 5. MAN-HOURS REQUIRED PER HOUR OF ORIGINAL INSTRUCTION FOR SELECTED RATINGS DEVELOPED AT THE NAVY IPDCs*

Rating A	nalysis	Design/ Development	Other***	Indirect	Total
RM	19	131	65	110	325
IC	93	301	98	252	744
ST	63	92	42	101	298
ET	32	54	22	53	161
HT	24	65	13	52	154
EM**	31	92	94	104	321
FA**	8	113	103	106	330
E0	12	44	17	38	111
DP	61	85	28	89	263
SA	15	275	88	194	572
AA	27	247	138	351	763
Average****	40	106	47	115	308
Percent of Tota	1 13	35	15	37	100

^{*} All instructional material for the above ratings is complete or nearing completion. For those still incomplete, an estimate was made of man-hour requirements. The EM, SA, and AA were significantly increased in length which biases upward the per hour labor estimates.

^{**} Does not include labor services included in contractual support.

^{***} Other includes time which was in direct support of the course but not elsewhere classified.

^{****} Weighted by hours developed for each course.

⁸The average labor requirements for the same set of ratings, when computed using revised hours, were slightly lower at 298 manhours per revised course hour.

TABLE 4. LABOR COSTS INCURRED IN THE DEVELOPMENT OF 12 SELECTED RATINGS

	Lê	Labor Costs (\$1,000	1,000)	Equivalent Hours	nt Hours	Labor Cost Per Hour	Per Hour
Rating	Military Civil	Civilian	Total	Original	Revised	Original	Revised
<u>\$</u>	\$ 48.4	\$ 838.0	\$ 886.4	396	396	\$ 2,238	\$ 2,238
21	212.3	1,388.8	1,601.1	284	242	5,638	6,616
ST	126.7	536.1	662.8	300	270	2,209	2,455
ET	189.8	560.0	749.8	772	765	941	086 6
H	62.7	258.1	320.8	311	281	1,031	1,142
EM*	19.1	273.3	292.4	149	225	1,962	1,299
FA*	37.2	431.5	468.7	85	140	5,076	3,348
E0	95.7	101.8	197.5	230	230	859	829
DP	180.8	315.0	495.8	287	258	1,728	1,922
SA	55.3	325.4	380.7	82	140	4,479	2,719
AA	47.2	340.7	387.9	82	140	4,564	2,771
BE&E	0	126.2	126.2	16	06	1,387	1,402

*Contract supported

and IT). Twelve ratings assigned to the IPDCs were sufficiently complete to estimate development costs. The development costs per revised course hour for these 12 ratings ranged from \$1,461 for the EO rating to \$12,686 for the IC rating. The average cost per revised course hour was \$4,635. The average cost per original course hour for those 12 ratings was only slightly higher at \$4,970. Appendix A provides a summary of course characteristics for courses completed or nearing completion. Much of the variation in development costs can be attributed to the scope of the tasking and the characteristics of the instructional material being developed. Therefore, the costs experienced for any given course must be judiciously interpreted in conjunction with the tasking and the product. If a new course is significantly different in length from the old course, the development cost per original course hour will be biased in terms of cost per hour of new material developed. Although cost stated in terms of the new course material would be preferable for auditing purposes, the costs in terms of the old course length are more useful for projecting expected development costs. These average development costs appear to be within an acceptable range as determined from previous experience. Furthermore, the average costs were not significantly different whether stated in terms of the old course length or new course length. However, there was considerable variability among the costs for the various ratings.

Labor costs for the 12 ratings are shown in table 4. Labor costs have accounted for 45 percent of all noncontract IPD expenditures. (See table A-6, appendix A.) The most potential for improvement in the productivity rates of the IPDCs will come from the utilization of labor, because other expenditures are largely determined by course characteristics. Since labor costs account for 45 percent of all noncontract expenditures, the potential for improvement in total productivity is somewhat constrained.

MANPOWER UTILIZATION

OVERVIEW. The man-hours utilized for revising the instructional material for the ratings which are substantially complete are presented in table 5. The manhour requirements are based on the number of hours required for development per original course hour. It would conceptually be more appropriate to state the labor utilization rates in terms of the hours of instructional material developed, but those rates would be of little value for planning purposes since the number of hours in the new course are not known until the course is developed. Justification for utilizing present course lengths stems from the fact that present course lengths are reasonably reliable predictors of the newly developed course lengths. Furthermore, it has often been dictated by administrative fiat that the new course must not be longer than the original course and new material has almost always ensured it will be nearly as long.

The labor required per original course hour varied from 111 hours for the EO rating to 744 hours for the IC rating. The average labor requirement (weighted by hours developed for each course) for the ratings listed in table

⁷Original course hours are determined by the course length in group-paced courses and by average completion time in self-paced courses. The estimates are based on the length of course before development.

INSTRUCTIONAL MATERIAL DEVELOPMENT COSTS PER HOUR FOR SELECTED RATINGS TABLE 3.

* \$2,082	Rating	Total Expenditure	Contract Hours	Hours	Equity Hours	Equivalent nurs Complete	Cost Per Equivalent Hours	t Hours
\$2,082 396 396 396 396 396 396 396 396 396 396								
357 931 10 10* 10* 10* 10* 10* 10* 10* 10* 10*	₹	\$2,082	396	396	336	396	\$5,260	\$5,260
3,197 295 252 284 242 1 1,111 300 270 300 270 2,145 848 840 777 765 7,175 426 385 311 281 1,523 2,13** 322 149 225 1,544 240 240 225 1,544 240 240 230 230 356 346 240 240 230 230 35 346 240 240 230 230 35 346 240 240 230 230 35 346 240 240 10 10 29 25 25 25 10 10 10 20 365 365 10 10 10 20 267 881 134 1 1,186 45 385 10 10 10 4 240 10 10 54 190 10 10 54 190 10	DS***	357	931	2	•	2	•	•
1,111 300 270 370 270 270 270 27,145 48 848 840 772 765 7,175 4** 100 10 10 10 10 10 15,523 213** 322 149 225 11 15,523 240 240 240 230 230 230 10 10 10 10 10 10 10 10 10 10 10 10 10	2	3,197	295	252	284	242	11,257	12,686
2,145 848 840 772 765 7,175 426 385 311 281 1,523 426 385 311 281 1,544 885 140 85 140 1,544 885 140 85 140 1,544 885 140 85 1,544 885 140 85 1,03 298 298 10 10 20 20 251 251 10 10 20 365 365 10 10 10 2,122 85 140 81 134 2,122 85 140 81 134 4 190 10 10 5 2,02 267 835 10 10 10 2,122 85 140 81 134 4 190 10 10 5 2,02 267 835 10 10 1,186 85 140 81 133 4 190 10 10 5 2,02 267 835 10 10 10 10 1,186 85 140 81 133 1,186 85 140 81 133 1,186 85 140 81 133 1,186 85 140 81 10 1,186 85 140 81 10 1,54 - 190 10 1,533	ST	ווו,ו	<u>0</u>	270	300	270	3,703	4,115
7,175	ᇤ	2,145	848	840	772	765	2,778	2,804
1,523	3	7,175	*	01	2	01	2	
1,523 213** 322 149 225 1,544 86** 140 85 140 1,346 240 240 230 1,346 240 240 230 1,346 240 240 230 1,346 240 240 230 1,03 298 298 10 10 1,03 298 298 10 10 1,53	Ξ	583	426	382	31	281	1,868	2.068
1,544 85** 140 85 140 1 336 240 240 230 230 230 161 336 355 10 10 10 20 365 251 10 10 10 20 365 365 10 10 10 831 85 140 81 134 726 85 140 81 134 4 55 140 81 133 4 190 10 10 5 4 190 10 1,533 1,533 1,533 1,533 1,534 85** 140 85 10 10 10 10 10 10 10 10 10 1		1,523	213**	322	149	225	10,221	6,768
336 240 230 230 61 355 355 10 10 10 10 10 10 10 10 10 10 10 10 10	Ŧ	1,544	82**	140	88	140	18,165	11,028
#### 61 355 355 10 10 10 298 298 10 10 10 29 298 10 10 10 10 20 251 251 10 10 10 10 10 10 10 10 10 10 10 10 10	<u></u>	336	240	240	230	230	1,461	1,461
103 298 298 10 10 10 29 299 11 10 10 10 20 365 365 11 10 11 10 10 10 10 10 10 10 10 10 10	3	19	355	355	2	2	2	91
35 312 312 10 10 10 20 259 259 10 10 10 10 10 10 10 10 10 10 10 10 10	5	103	298	298	2	2	01	2
29 251 251 10 10 20 365 365 110 110 897 312 280 287 258 831 85 140 81 134 726 85 140 81 133 455 385 110 110 15,186 *** 91 10 10 54 190 110 15,33 252 10 1,533 -	E	35	312	312	a	2	<u>a</u>	21
20 365 365 10 10 10 897 217 217 10 10 10 897 312 280 287 258 81 134 134 134 134 134 134 134 134 134 13	28	29	251	251	2	2	Q	10
### 897 217 217 10 10 10 897 831 85 140 81 134 1 1 134 1 1 1 1	35	20	365	365	9	2	2	21
897 312 280 287 258 831 85 140 81 134 726 85 140 81 133 726 85 140 81 133 726 85 140 81 133 727 8** 91 90 90 72,122 *** 10 10 74 190 10 75 240 10 75 240 10 75 240 10 75 240 10 75 255 10	<u>u</u>	ĸ	217	217	2	2	9	2
#### ### ### ### ### ### ### ### ### #	පි	897	312	280	287	258	3,125	3,477
### 726 85 140 81 133 ### 267	SA	831	82	140	8	134	10,259	6,201
### 81 455 385 10 10 2,122	AA	726	88	140	≅	133	8,963	5,459
2,122 *** 91 90 90 2,122 *** 1D 90 90 1,186 *** 1D 1D 54	F1***	18	455	382	2	2	2	01
2,122 *** 10 1,186 ** 10 54 - 10 4 190 10 133 125 10 18 252 10 1,533	BESE	267	New	6	8	8	2,967	2,967
1,186		2,122	**		2		₽	
54 - 10 4 190 110 5 240 110 133 125 110 18 252 110 1,533	=	1,186	‡		2		2	
4 190 10 5 240 10 133 125 10 18 252 10 1,533	RT	5 5	•		2		01	
fing 2,965	Ŧ	4	190		2		<u>e</u>	
133 125 10 18 252 10 10 2,965	81	S	240		21		01	
18 252 10 10 2,965	띪	133	125		2		2	
fng 2,965	3	18	252		2		2	
1,533	Existing	2,965	1		•		•	
\$31,156 7,276 3,066	Other .	1,533	•		•		•	
1	Total	\$31,156	7,276		3,066		•	
	Average	•	•		•		4,970	4,635

* ID = Insufficient Data **Contract Supported

*** Analysis Only ****Phase I Only

TABLE 2. RELATIONSHIP OF COURSES AND CONTACT HOURS TO THE PERCENT OF TOTAL TRAINING DAYS FOR ALL NAVEDTRACOM COURSES*

Cumulative Number of Courses	Cumulative Training Days (1,000)	Percent of Total Training Days	Cumulative Contact Hrs	Percent of Total Hrs
7	820	5	227	0.04
15	1,640	10	622	0.11
24	2,461	15	1,630	0.30
28	3,281	20	1,842	0.34
34	4,101	25	2,613	0.48
48	4,921	30	4,420	0.82
62	5,742	35	6,478	1.20
90	6,562	40	9,662	1.79
110	7,382	45	12,846	2.38
129	8,202	50	17,490	3.25
151	9,023	55	21,500	3.99
181	9,843	60	26,508	4.92
231	10,663	65	35,001	6.49
310	11,483	70	47,899	8.89
417	12,303	75	63,952	11.87
572	13,124	80	86,183	15.99
826	13,944	85	125,124	23.22
1,145	14,764	90	180,101	33.42
1,663	15,584	95	279,005	51.77
2,869	16,405	100	538,932	100.00

^{*} Excludes Basic Military Training

When past IPDC performance is compared to the task of applying the ISD process to the 539,000 contact hours in the 2,900 courses reported in NITRAS, the impossibility of accomplishing this task using a few highly centralized IPDCs is apparent. Though this limitation of the IPDCs capacity was recognized in the IPDC planning, the mechanics and resources for applying ISD to all Navy courses are still not available.

A summary of these courses, contact hours, and training days as computed from NITRAS data is contained in table 2. The courses have been ranked by throughput and the data cumulated for each 5 percent increment in total training days. For example, the first 129 courses represent approximately 8.2 million training days or 50 percent of the total training days and approximately 17.5 thousand contact hours or 3.25 percent of the total contact hours. (The distribution of training days and contact hours for the "A," "C," and "F" courses is shown in tables A-2, A-3, and A-4, respectively (See appendix A.))

Table 2 shows that a relatively large share of the total Navy training is represented by a relatively small share of the total contact hours. The IPD effort could be applied to 75 percent of total Navy training by developing only 12 percent of the total contact hours or 63,900 course contact hours. All of the courses making up the above 12 percent will not need major revision and by carefully selecting the courses for development a substantial part of Naval training can be developed without completely developing all courses. The most return for resources utilized at the IPDCs will be realized if those courses scheduled for development in the IPDCs are those courses which have a relatively high throughput and are the most deficient in meeting the current training objectives.

IPD EXPENDITURES

From the establishment of the IPDCs in 1976 through September 1980, the total IPD expenditures have exceeded \$31 million (table 3). These represent the actual budgeted expenditures and are considerably less than the actual taxpayer costs of the program. Much of the overhead costs are not included in these cost data. A total of \$7.2 million, or 23 percent of the total IPD resources, was expended on software development (and some minor equipment purchases) supporting the EW rating. Approximately \$2.2 million was committed for a software development contract to support EW. Much of the output of this software contract was of minimal value because the contract for hardware (for which the software was being developed) was terminated. Detailed expenditure and other summary data for each rating are shown in table A-5 (appendix A).

Nearly \$3 million was apparently devoted to supporting existing school programs and was not used in direct support for developing the instructional material for courses assigned to the IPDCs for development. The ratings listed in table 3 are listed by dates in which they were first tasked by CNET. There is no evidence from these data to indicate that productivity rates have been improving. However, variation in tasking, contract services, and the extent of the development effort would tend to obscure trends which might indicate changes in productivity rates.

The original 7,200 course contact hours scheduled for ISD at the IPDCs do not include those ratings which have been heavily contract supported (EW, CT,

TABLE 1. COMPLETION STATUS FOR COURSES/RATINGS UNDER DEVELOPMENT AT THE IPDCS AS OF SEPTEMBER 1980

		Pe	rcent Complete	
Rating	Analysis	Design	Development	Validation
RM	100	100	100	100
DS	100	N/A	N/A	N/A
IC	100	95	95	95
ST	100	0-99	0-99	0-99
ET	100	85	85	85
HT	100	63	63	63
EM	100	60	60	0
FA	N/A	100	100	75
ΕO	100	95	95	95
CM	100	0	0	0
UT	100	46	46	46
EA	100	0	0	
BU	100	Ŏ		0 0 0 0 87
SW	100	0 0 0	0 0 0	0
CE	100	Ŏ	0	0
DP	100	87	87	87
SA	N/A	96	96	96
AA	N/A	100	100	85
FT	60	10	10	0
BE&E	N/A	9 <u>0</u>	90	10
EW	*	*	*	*
CT	*	*	*	*
ΪŤ	*	*	*	*
RT	30	N/A	N/A	N/A
MM	35	, <i>r</i> .	8	0
BT	35	8 8	8	
PE	75	30	30	0 0 0
GM	N/A	30 5	8 8 30 5	0

^{*} Contract supported

SECTION II

ANALYSIS

This section includes:

- . an analysis of cost and productivity for developmental work completed and currently underway at the IPDCs
- . a summary of the IPDC expenditures for the 1976 to 1980 period

いののからいないないできんできるいからい

- . an analysis of the expenditure and output data to determine productivity and trends in development cost
- an analysis of the utilization of manpower.

COURSES/RATINGS CURRENTLY UNDER DEVELOPMENT

The first tasking from CNET to the IPDCs was issued in May 1976. Since then, taskings have been issued to develop and revise courses and/or modules which support nearly 30 ratings. The taskings have varied from those requiring complete revision of an entire curriculum (e.g., RM rating) to others which focused on the development of instructional material for specific equipments (e.g., the ST rating).

Table 1 lists the ratings for which instructional material development has been completed or is underway. The RM rating is the only rating reported 100 percent complete as of September 1980. Several ratings are nearing completion, and the revised curricula for a number of these have been tested and are being implemented. Considerable difficulty has been encountered with the RM and IC curricula and consequently there have been a number of special taskings to correct deficiencies. Much of the difficulty stems from the fact that these were the first ratings developed. The resources required for these corrective taskings have been attributed to course maintenance and included in the course maintenance data in the resource accounting. A number of ratings listed in table 1 include recent taskings and only minimal work has been accomplished to date on these taskings.

The courses supporting the 28 ratings listed in table ! which have been scheduled for treatment by the IPDCs represent approximately 7,200 original contact hours as determined from data in the Navy Integrated Training Resources and Administrative System (NITRAS). These courses, when completed, will include less than 2 percent of the total contact hours and 17 percent of the total training days. However, many of the courses included represent recent taskings, and the work underway does not accurately reflect or measure the accomplishment over the first four years of the ISD/IPDC commitment. If only those ratings are included in which the validation phase is reported at least 85 percent complete as of September 1980, then approximately 0.5 percent of all contact hours have been revised which includes less than 4 percent of the total training days. Tasking to date has almost totally involved the "A" courses. Those courses which are substantially complete account for approximately 4 percent of all "A" school contact hours and include approximately 12 percent of the total "A" school training.

which were submitted at least bi-weekly between the period 1976 and 1980, were also reviewed to isolate those problems which were reported and assumed to impact on the operation of the IPDCs.

Each IPD site reports a detailed breakdown of labor utilization in a CNET developed and maintained man-hour accounting system. These data were collected, summarized, and analyzed to extract information on the utilization of labor.

The expenditures attributed to the IPD effort have been carefully documented since the establishment of the first IPDC at San Diego in July 1976. These expenditures are documented in sufficient detail to identify the resources expended by each tasking and/or course. These detailed cost data were collected for the period July 1976 to September 1980 and are the basis of the cost analysis presented in this study. The cost data compiled for each tasking and course were reconciled with the official budgetary records to insure data integrity.

Each month the situation summaries for each IPDC provide an estimate of the percent complete of each tasking. These estimates were used to determine the equivalent hours. The equivalent hours were then used as a basis for determining the cost of work in progress. Each IPDC was asked to complete a form explaining the characteristics of the courses which have been developed. A summary of the survey results is presented in appendix A. Productivity rates were computed on the basis of equivalent hours completed using data obtained from the above sources.

The man-hour accounting data and cost summaries presented in this report are often drawn from different sources. These aggregate summaries were used to extract information which would enable judgments to be made about current productivity rates and trends, and to relate the potential work effort ahead to what has been accomplished over the first four years of the IPDCs' efforts.

The need to draw data from various sources has led to some reduction in precision of numbers but not in the objective of obtaining useful management information for planning. This study drew extensively from existing data bases and interim status reports and any deficiencies in these data bases and reports will, to some extent, be reflected in the study findings. An effort was made to identify these deficiencies, and the findings were then appropriately caveated.

ORGANIZATION OF THE REPORT

In addition to this introduction, the report contains three sections and two appendices. Section II contains an analysis of the cost and utilization of manpower for the period 1976 to 1980. The analysis focuses on the two major IPDCs at San Diego and Great Lakes and includes a detailed descriptive analysis of manpower utilization trends at the San Diego IPDC. Section III addresses problems dealing with productivity and output of the IPDCs. Section IV contains a summary of the report including resources expended, problems, and recommendations. Appendix A is a summary of cost and productivity data. Appendix B includes detailed labor utilization by ISD functions and pay periods for a selected set of courses which have been developed.

Figure 1. Percent of IPDC Time Assigned to Administration, 1976 to 1980 (San Diego)

Figure 2. Percent of Total Time Available Which Was Allocated to NonIPD and Nonidentified Tasks (1976 to 1980)

MANPOWER UTILIZATION AS DISTRIBUTED BETWEEN ASSIGNED TASKS AND OTHER FUNCTIONS, SAN DIEGO (1976 to 1980) TABLE 10.

	1976	9,	1977	7	1978		1979	6	1980	0
Category	Hours	Percent	Hours	Percent	Hours	Percent	Hours	Percent Hours Percent	Hours	Percent
Non-IPD/No Task	30,779	50	87,154	36	110,749	41	101,135	37	67,520	34
Leave	7,200	12	29,300	12	31,900	12	35,646	13	22,447	Ξ
Assigned Tasks	22,573	38	127,655	52	123,398	46	137,220	20	107,548	55
TOTAL	60,552	100	244,109	100	266,027	100	274,001	100	197,515	100
							,			

- ' '	1979 1 1979 1977 1 1988 1979	1977 BBCCCCCDDCDDCB	AAAAAAAAAA	AAAAAAAAA*	16768667557767	9897876567666	Jt 65664*688646	1980	89. K
	112365544524332	11236554452433233334443222222112111121211111-1-1	22112111212					11-162-41111	15
	-254688*7A8AAAAAAAAAA*AA98*AAABBBCBBBCDCCCCCCBBCCCCCBBBBAAA9AAABAAAAAA98AAAA987355368766677765667963454	AAAAAA*AA98*AA	ABBBCBBBCDDC	CCCCCBDCCCDC	BBBBAABAAAB	AAAA9*AAAA98/	399756368766	6/7/656679834	54 10
	-23333442323221	-233334423232212223389*778A8886A59**9*AAAA47775554453331	8A8886A59**9	*AAAA47775554	153331				<u> </u>
	-12123344211		332344433544	5543423321111	11332344433544554342332111113323222122223454546235744444554533212	34545462357444	1444554533212	2	<u>8</u>
	33322251	3332222111113232221 12443447366765666235436864667897949*A9A*AAAAAA*98775AA7*9*96*AA*AAAAAAAAAAAAAAAAAAAAAAAAAAAA	44344736676	5666623543686	1667897949*A9A	*AAAAAA*98775	47*9*96*AA*A	AHAAHAHAHAAA	AA ST
		1 1 1 1 1 1 1 1 1 1 1 1	112213	12213 321-11 111	112213 321-11 111 -		• • • • • • • • •	; ; ; ; ; ;	<u></u>
,			-21		t t t t t t	! ! ! ! ! !	• • • • • • • • • • • • • • • • • • •		. ¥
•		14	144422223213322	21-11233.	1-1123333576454554455422111565476799*A78A6589**9A8A76768889¦HT	542211156547	10799*A78A658	9**9A8A76768	H 68
1		+ + + + + + + + + + + + + + + + + + +			1333331	; ; ; ; ; ; ; ; ; ;		1 1 1 1 1 1 1 1 1 1	34.
,		! ! ! ! ! !	! ! ! ! ! ! ! !	T :			! ! ! !	; ; ; ; ; ; ; ;	≅
•			123	3344514453566	6*A98	4A*9A9998*7*88	8*499*89AAA	AAMAAAAAAA	AA DP
			! ! ! ! !		: :		- 11-111-		<u> </u>
					i				:
	• • • • • • • • • • • • • • • • • • • •			1212-1-	1212-111111111111212112431247446534446359A9*765655643355444 _. EU	12212431247446	53446359A9*	7656556433554	44 E
		* * * * * * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • • • •	1211121112321112321121111211-1	112321128211	211-1	; ; ; ; ; ;	5
		1 1 1 1 1 1 1 1 1 1 1 1	 	2	2	17	-211-1 1-12-		<u> </u>
		1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! ! ! !	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	•			: : : : : :	3
	· · · · · · · · · · · · · · · · · · ·	4 4 4 4 4 4 4 7	 	* ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	11122112211	1112211221132211242322-11113232332333422 -1111	113232332	333422 -1111	5
		! ! ! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,					<u>.</u>
		; ; ; ; ; ; ; ; ;	• • • • • • • • • • • • • • • • • • •		-234454	-23445422211-2332			<u>, 3</u>
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	! * * * * * * * * * * * * * * * * * * *		· · · · · · · · · · · · · · · · · · ·	12435	1243577*AAAAAAAAA*8A*AAA97.7*AAA787664687536443 <mark>1</mark> SA	A*AA97.7*AAA	7876646875364	43 5/
		; ; ; ; ; ; ; ; ; ;	# # # # # # # # # # # # # # # # # # #			· · · · · · · · · · · · · · · · · · ·		224443422434334 RI	34 8
	· · · · · · · · · · · · · · · · · · ·	1		-	2432-11-		! ! !		;=
1 47	AAAAACCOODODOOF OODEEEEEFEFEFFEFFFFFFFFFFFFFFFF	EEEFFFFFFFFF	FEFFFEGF0EE	EEEEDFEEFEEE	FFEFFFHGFFFF	EFEFFFGEFFGE	FGFGGFHFEEFF	FFEEECFFEEDF	<u></u>
. ~	, J[1977	JE	1978]	1979][1980	:
	LEGEND:								
	Blank = N - " ! to 9 =	<pre>= No time assigned = Less than 1 man-period = 1 to 9 man-periods</pre>	d -period ods	A = 11-19 B = 20-29 C = 30-39	man-periods man-periods man-periods				
	*	10 man-periods		"	. •				

Distribution of Man-periods Among Ratings Which Were Assigned for Development at the San Diego IPDC (1976 to 1980) (Man-period = one pay period or 80 man-hours.) Figure 3.

SECTION III

IPDC PRODUCTIVITY

The rate at which the IPDCs develop instructional materials can be increased by committing more resources to the IPDC and improving the efficiency of the developmental process.

RESOURCES COMMITTED TO THE IPDCs

The Navy must develop instructional material to train personnel in the use and maintenance of new technology and to update and improve existing courses. The essential question is whether the highly structured IPDC is the most efficient way to accomplish the necessary course development and/or revision.

Past justification for the IPDCs has rested on the assumption that an IPDC developed course would be of high quality and would usually reduce training time. It was assumed that expenditures to establish and operate the IPDC would be justified by the cost savings associated with the reduced training time. Therefore, there was little effort, if any, devoted to analyses of alternative strategies for implementing the ISD model. However, as shown in section II, the current rate of course development by the IPDCs will not be adequate to develop, update, and maintain all Navy courses in a timely manner.

Since the rate at which development occurs in the IPDCs depends primarily on the quantity of resources devoted to the ISD effort, it will require a massive investment and expenditure to apply the ISD process to all courses using the present highly structured IPDC organization. Even if the average development time at the IPDCs could be reduced to 100 man-hours per hour of instruction (a 100 percent improvement) with over 500,000 hours of instruction in all NAVEDTRACOM courses, it would require a minimum of six to seven thousand man-years to develop all courses. The labor required for course maintenance would add significantly to manning required.

The benefits of past IPD efforts, in terms of quality and relevancy of instruction and reduction of training time, may well exceed the costs even though it will require a large commitment of resources to completely ISD all Navy courses. For example, although most IPDC personnel would prefer to eliminate the IC rating (because of the high development costs) from any analysis which attempts to determine the returns to the ISD process, the data indicate that the IC course will be reduced by more than 20 percent in length. Assuming no degradation in student performance from using the new course, the reduction in course length will yield substantial benefits in terms of resources saved making it a highly attractive investment. The reduction in student costs would pay for the development costs in four to five years.

Even so, a favorable benefit/cost ratio does not justify the present structure of the IPDCs if the benefits per dollar of expenditure may be further increased by alternative means. For example, restructuring the IPDCs in a way which more fully integrates the local school resources into

the development process may reduce development costs. In addition, benefits could be improved by limiting the IPDC efforts to those courses which have high throughput and to those courses or parts of courses which are determined to be deficient in effectiveness and/or efficiency.

Resources committed to the ISD effort at the IPDC can yield significant returns, but the amount which should be allocated to ISD depends upon the alternative returns from other competing resource demands. Analyses to support those allocation decisions are beyond the scope of this effort. However, once the decision is made to allocate a specified level of funding to the IPD effort then an appropriate management objective is to utilize those funds to maximize the benefits to the training command. This report is intended to support the latter management objective.

MEASURING EFFICIENCY IN THE DEVELOPMENT OF COURSES

Efficiency in production is measured as the rate of output per unit of resources employed. Identification, measurement, and the tracking of resources utilized have been relatively complete and accurate for the Navy IPD effort. However, the identification and measurement of the IPDCs' output is at best a highly subjective undertaking. One measure of efficiency in production frequently employed is the resources used per original course hour revised and/or developed. Much of the criticism of this measure centers on the fact that the scope of the effort among the various tasks was quite different. Consequently, variation in resources utilized (per original course hour) among the various courses would arise from factors other than variation in efficiency. However, the present course length (or average contact hours), an indirect measure, is the only readily available measure for estimating the magnitude of work required for any course scheduled for ISD. Productivity rates derived from these measures provide useful data for management and planning.

The cost and man-hour requirements per original contact hour were computed for courses presently under development at the IPDC. Because of the variation in tasking, course characteristics, quality of existing course material, and a number of other factors, the productivity rates experienced in the development of each course must be heavily caveated in their interpretation. A particular productivity rate only offers evidence of the general magnitude of effort which will be required for future ISD/IPD work, and the resources used for the development of any given rating should not be the sole basis for making judgments about the efficiency of IPDCs in developing that rating.

The development cost per original contact hour which has been computed for the IPDCs efforts to date may, in some instances, tend to understate the costs which would have been experienced with a full developmental effort. This potential underestimate would result from two considerations. First, the costs are averaged over all of the original contact hours and if a significant amount of material from the existing course was adequate or needed only minimal development it would tend to reduce the average cost per original hour. Second, if the IPDC only addressed certain phases of the ISD model then average cost per original contact hour would be underestimated.

The man-hour and cost accounting data provide a record of the utilization of resources committed to the IPD effort since the establishment of the IPDCs. However, no clear and standardized means for identifying the nature and scope of

the tasking of the IPDCs by CNET exists. Tasking letters from CNET to the IPDCs vary from very cryptic, generalized statements to more specific statements detailing the nature of the work to be accomplished. The establishment of a preanalysis baseline data report at the initiation of each task would provide the basis for ascertaining the nature and scope of the development effort. The resources required, present length of course, throughput, student performance scores, average on board and a number of other data items could be included in this baseline report. At the present time many of these data are not readily available and it is difficult to reconstruct the data to use as a basis for evaluating the present IPD effort.

When a tasking is completed, a postdevelopment report could be prepared which would include data on the new course. Many of the data items would be identical to the preanalysis report. Using these data items, one could determine how the course was changed and what resources were committed to effect those changes. One significant difficulty with the present reporting system is that there seems to be no point in the development process where a course can be identified as completed. Each course developed seems to have transitioned into a maintenance mode with no clear demarcation between development and maintenance. Consequently, data on the length of the new course, instructional methods utilized, and other course characteristics remain ambiguous. The values placed on each data element depend to a large extent on when the data are collected. This ambiguity compounds the problem of attempting to determine if the ISD process resulted in a product worth the expenditure. A CNET instruction establishing a pre and postdevelopment report could eliminate a great deal of the problems encountered in analyzing the benefits and costs resulting from the application of the ISD process.

The major deficiency in attempting to evaluate the efficiency of the entire ISD/IPD effort stems from the lack of any baseline data from which one can determine whether students trained using the new course are able to perform at a higher proficiency level and receive more relevant training than those trained using the old course. Tests are developed in the early stages of the ISD process which reflect current training needs and requirements. These tests could be administered to a sample of students trained using the old curriculum and then later to a sample of students using the new curriculum. Differences could be attributed to the change in curriculum resulting from the IPD effort.

Students trained using the old curriculum may not perform well when measured against a new and updated set of training objectives. For this reason this approach has been criticized as an unfair basis for making a judgment as to the adequacy of training received in the existing schools. Such criticism is based on the unwarranted assumption that it is only the present schools performance which is being judged. The appropriate objective is to determine if the students being trained using the present curriculum are able to perform according to present needs. If the students are performing according to present needs then the curriculum should not be targeted as a high priority course for continued instructional systems development. If they are not performing, then for whatever reason, the curriculum and/or school management needs to be revised and updated. Performance measures obtained from such testing would provide a quantitative and objective basis for judging the effectiveness of any subsequent development.

These performance data could then be used for making judgments as to the relative effectiveness of the newly developed course and for making inferences about the desirability of the current ISD/IPDC approach to curriculum development. Effectiveness of the course is defined here to mean the degree to which the students trained using the new course are able to perform as measured against a current and updated set of training objectives. Since the resources will have already been committed to the development, any possible deterioration or improvement in performance using the new course would serve only for guiding and planning future development. Such performance data are necessary for making long-run decisions about the economic feasibility of the entire ISD/IPDC approach to curriculum development.

PRODUCTIVITY ENHANCEMENT

The large number of courses which require revision, the resource constraints, and the rate of development which the Navy has experienced with the present IPDCs make it apparent that some modification in the way the ISD model has been implemented is necessary, if most of those courses needing attention are to be treated in a reasonable length of time. A move away from a philosophical approach of doing development "for the schools" to one in which development is done "with the schools" would substantially resolve many problems presently encountered. When the course development function was removed from the school and placed in the IPDCs, the opportunity for utilizing any schoolhouse resources for course development was greatly diminished.

An IPD/ISD program which is highly integrated with the school would help to minimize the political difficulties encountered when it becomes necessary to update and develop a course. In addition, resources could be used more efficiently if considerably more effort were devoted to a preanalysis of the existing course. Such an analysis would make explicit any unique problems associated with the course/school. It would also aid in isolating those parts of the course which were in need of development and revision as well as isolating those parts which were adequate.

The greatest benefits from resources applied to ISD can be realized if those resources are applied to courses and modules of courses which have the highest throughput and which are in the worst condition as determined from deficiencies in student performance. Those courses for which student performance is adequate should not be high on the priority list for ISD even though the course material may not meet all criteria of the ISD model.

There was an underlying perception among personnel in the centers that the ISD procedures may be too restrictive and the IPDCs need more latitude to alter the procedures to fit the task. Although difficult to identify explicit incidents, there seems to be a predominant orientation toward the process rather than the product. The "block phenomena" permeates almost every discussion about ISD. This "block" orientation aids in understanding the ISD process but appears to be detrimental and restrictive in applying and implementing the process. The objective of the IPD effort should be to produce quality instructional material and not just to follow the ISD model for its own sake. Application of the ISD model should be viewed as a means to an end and not as an end in itself. In the final analysis, the development of quality curricula is as much an art as a science and the ability to recognize and take acceptable shortcuts

in the application of the ISD process should come with experience. However, with the rapid turnover of personnel, the potential for gaining that corporate experience is severely constrained.

The purpose and use of the ISD model seems to have been placed in perspective for Army schools by a recent communication issued by the Army Training and Doctrine Command (TRADOC). This message states that the interservice procedure for Instructional Systems Development "... is to be used as a guide only. It is not a regulation. Its purpose is to provide to the service schools a general model, one of a number of such models, which describe a set of procedures for the systematic development, implementation, and evaluation of training and training products." 10

If the primary function of the IPDC is to develop instructional material using the ISD process, and if the performance of the center is to be measured in terms of the rate at which instructional material is developed and/or revised and the quality of that material, then the percentage of time devoted to nonIPD and nonidentified tasks must be reduced. The administrative time devoted to direct support of the courses does not seem unreasonable (approximately 20 percent), but the time assigned to the nonIPD and nonidentified tasks is significantly reducing the time available for developing instructional material.

¹⁰TRADOC msg 101000Z Oct 80, subj: Instructional Systems Development (ISD)
Procedures.

SECTION IV

SUMMARY OF FINDINGS

The IPDCs were established in 1976 and since their establishment \$31 million, identified as IPD funds, has been expended. A total of \$7.2 million, or 23 percent of total expenditures, has been in support of the EW rating. (This study does not include a detailed analysis of the ISD effort associated with EW courses since the organization of the EW effort is atypical of the way the IPDCs have operated during the first four years.)

During the period 1976 through September 1980, the development for one rating has been reported to be 100 percent complete. However, the instructional material for at least 12 courses and/or ratings is essentially complete and has been either placed in the school or is in the process of being validated and is nearly ready for implementation.

Excluding those courses which are being developed under contract, the IPDCs, as of September 1980, have scheduled approximately 8,000 original contact hours for development. Most of this development was type "A" courses. The 8,000 hours represent less than 2 percent of the total contact hours which presently exist in the CNET controlled courses and approximately 10 percent of the total of type "A" courses. Because a number of the ratings developed included high throughput courses, the proportion of the total Navy training which will use this new material is considerably higher than the above percentages would imply. Including work in progress (for those ratings which were sufficiently complete to make estimates), it was estimated that 3,200 equivalent hours of original course material has been revised and/or developed. These nearly completed courses represent approximatley 0.5 percent of all contact hours and approximately 4 percent of type "A" contact hours. Generally, these were high throughput courses and ones in need of attention. The benefits are somewhat greater than the latter percentages would imply.

During this period, \$21 million (excluding contracted courses) was expended in support of the IPDCs of which an estimated \$3 million was devoted to supporting existing school programs and not used in direct support for developing the instructional material for courses/ratings assigned to the IPDCs. The average cost of revising the original material for the efforts which were completed or nearing completion was \$4,970 per original hour. The average man-hour requirement to date has been 308 man-hours per original course hour (varying from a low of 111 to a high of 744). The IPDCs did not do all phases of the ISD process for all courses assigned for development. Consequently, the man-hours may tend to be slightly understated when interpreted in terms of labor requirements for a full ISD effort. The distribution of labor among the phases of the ISD process for the ratings nearing completion was as follows: analysis, 13 percent; design and development, 35 percent; other, 15 percent; and indirect support, 37 percent. The other category includes administrative overhead support which could be directly attributed to the course under development.

Excluding the RM and IC ratings, since they were the first ratings developed, there is no evidence to indicate that the rate of productivity has shown any consistent improvement. The resources utilized per hour of material developed/

revised does not appear to be decreasing; on that basis alone one might infer that there has been no improvement in productivity. However, the quality of the instructional material and, ultimately, student performance is as important to productivity measurement as the rate of resource utilization. The paucity of data reflecting changes in instructional material quality and student performance resulting from the ISD process makes judgments about productivity highly tenuous. Sufficient data are not available to reach any definite conclusions about the changes in productivity, aside from the fact that a great deal of disagreement exists on just how one should measure the productivity of the centers.

The one metric available to place in perspective the potential magnitude of developmental work to be done is the number of existing contact hours presently under the cognizance of NAVEDTRACOM. Using original contact hours as a basis of judgment, and considering (1) the rate at which development is being accomplished, (2) the cost of developing, and (3) the amount accomplished to date, one must conclude that the present highly structured IPDCs simply do not provide a realistic capability for developing and maintaining all "A," "C," and "F" CNET-controlled courses.

One basis on which the highly structured ISD/IPDC program was justified was that it would reduce the training time in the courses while at least maintaining the same level of training effectiveness. Since so few courses have been completely developed, it is difficult to determine if the average projected reduction in course length of 10 to 15 percent is going to be realized in the long run. An estimate of the final course lengths for courses presently under revision would indicate that the reduction in hours will be approximately 10 percent. However, these estimates are so tenuous and experience so limited that no reliable conclusions can be made from the experience with the courses presently being developed at the IPDCs.

The assumption that training effectiveness will at least be maintained can be neither objectively supported nor rejected. There simply is no objective data base being developed and maintained from which to make decisions about the relative effectiveness of the newly developed course versus the old course. There is an implicit assumption that any course which has been developed using the ISD process will result in more effective and relevant training. However, except for a few isolated efforts, there is no widespread effort to pre and posttest the students' performance using current and updated training objectives to establish the validity of this assumption.

There is some potential for improving the rate at which curriculum can be developed by more rigid controls on the utilization of manpower at the IPDCs. This would essentially require the IPDCs to commit their manpower only to the IPD assigned tasks. Such constraints on assignment would address the problem of utilization but not the problem of efficiency. It is unclear as to the nature of the unidentified and nonIPD tasks. To the extent that such tasks do in fact play a vital support role to the IPDC, then the potential for improvement in the rate of production would be diminished.

PROBLEM AREAS

Monthly situation summaries have been submitted to CNET by each of the IPDCs since the centers were established. These summaries document problem

areas encountered by the centers. The problems presented in the situation summaries are summarized in table 11. By far, the most difficult problem encountered since the establishment of the IPDCs has been the availability of subject-matter expert (SME) support although there has been a significant decline in the number of incidents reported. There was, however, indications from interviews with IPDC personnel that SME availability continues to be a severe problem and the decline in incidents reported stems from the fact that the reporting of the SME difficulties did not stimulate any relief from the problem. The futility of reporting led to a reduction in the number of incidents reported. Most problems have shown a significant decline in incidents reported since 1977, except personnel acquisition and retention. The acquisition and retention of skilled personnel have been rather severe problems since the establishment of the IPDCs. The largest IPDC, San Diego, has experienced a great deal of personnel turnover at the midmanagement level. A review of personnel actions, as reported in the situation summaries, indicated that 70 individuals were hired at the GS-9 to GS-13 level during July 1976 to September 1980. During that period there were 51 resignations in that same group. The average tenure for those resigning (as computed using those individuals for which a hiring and resignation date were available) was approximately 20 months. The total civilian strength during this period (including all GS grades) varied within an approximate range of 85 to 95 individuals. Many individuals who left the organization were highly skilled technologists, and turnover of those personnel adversely affected the productivity of the center. The high turnover was attributed in a large measure to (1) the fact that higher paying jobs were available to those individuals once they became experienced in the ISD process and (2) the high cost of living in the San Diego area.

The following represents a synthesis of the problem areas identified during interviews with personnel ranging from the commanding officer to working personnel at the IPDCs.

- There was a great deal of criticism of the lack of well defined interfaces among CNET, CNTECHTRA, the schools, and the IPDCs. The role of the CNET IPD management does not appear to be clearly perceived at the IPDCs. Difficulties which occur between the IPDCs and schools when the ISD process is undertaken are often perceived as a result of insufficient ground work at the higher command.
- Interfaces which develop among the participants in the ISD process are too often of an adversary relationship. This tends to reduce significantly the efficiency and effectiveness of the IPDC team in its major function as a curriculum developer. More explicit policy defining the interfaces, responsibility, and accountability, and strict enforcement of that policy, would tend to reduce the ambiguity facing the IPDCs.
- . The IPDCs personnel have expressed considerable concern about the number and frequency of nonIPD related tasks and peripheral duties assigned to the centers. This concern is substantiated by the inordinate amount of time allocated to nonIPD and overhead functions in the manpower accounting data.

TABLE 11. NUMBER OF INCIDENTS REPORTED FOR SELECTED PROBLEM AREAS (1977 to 1980)

Problem Area	1977	1978	1979	1980*
Inadequate SME Support	24	51	11	2
Acquisition of Course Equipment		8	11	6
Validation	10	11	7	6
Command Communication Problems	20	13	8	4
Personnel Acquisition, Retention	6	13	3	13
Task Modifications and Revisions	7	5	2	0
IPDC Support: Facilities & Equipment	4	6	1	0
TOTAL	71	107	43	31

^{*} For 9 months

The future productivity of the IPDCs will be diminished significantly if course maintenance is retained as an IPDC responsibility. An insufficient number of courses have been completed to make any quantitative judgments about the future requirements for maintenance. Estimates indicate that maintenance may take, on a permanent annual basis, 15 to 20 percent of the total resources used in the development of a course. Thus, it becomes readily apparent that future productivity of the IPDCs will quickly decline as they become encumbered with maintenance tasks; their ability to undertake new development will be severely limited and ultimately virtually eliminated.

The compatibility of the POM and budget cycle with the requirements of the IPDCs was severely criticized. The POM cycle forces the requirements for training equipment and aids to be identified and funding requests to be submitted long before the developers have established the type of equipment needed. This tends to bias the criteria for selection of instructional methods. It also sets unnecessary and unwarranted constraints on the options available to the curriculum developer and and has contributed to untimely deliveries of training equipment. A more appropriate means for maintaining the necessary flexibility in the selection of instructional methods by the developer would be to provide program or block funding to the IPDCs for acquisition of training aids and equipment. Such funding would provide managers and developers the flexibility to direct resources to those courses where the need is determined as the design and development of the course(s) unfolds.

The IPDC personnel were concerned with the ability of the military personnel assigned to the center to contribute to the ISD process. Much of this concern arose from the fact that the military personnel selected for assignment to the IPDCs were often relatively inexperienced in their ratings and often below the rank authorized.

The perceived inability of the military personnel to contribute significantly to the ISD process could be attributed, in part, to their lack of experience and also in part to the lack of an effective ISD training program for newly assigned military personnel. There was also some indication that a few military SMEs were frequently detailed to the IPDCs during periods when they would have normally been off duty. Such personnel management does not contribute to a highly motivated individual.

The military personnel are intended to contribute most to the analysis phase, especially the task analysis effort which provides the basis for the training objectives. If the analysis effort is reduced at the IPDCs, as initiatives currently underway would indicate, then the need for military personnel assigned to the IPDCs, would be further reduced unless utilization patterns in those personnel are changed. Evidence indicates that there is a change underway in how the military are being utilized. For example, at the San Diego site approximately one-third of the military time is now assigned to development functions, and this has shown a steady increase since 1976. In 1980 less than 10 percent of the military time was assigned to analysis. (See table B-8, appendix B.)

RECOMMENDATIONS

Actions which should be considered for improving productivity rates and management of the centers are outlined below.

- Policies and programs should be developed which will insure the maintenance of a more stable work force at the IPDCs.
- . A more thorough preanalysis of existing course material should be done for each course selected for development with the objective of selecting and targeting for development only those parts of the course which are deficient.
- Policy statements should be developed which make explicit the approval requirements, school interfaces, and division of responsibilities between the IPDCs and CNET management.
- Procedures should be developed for determining and measuring the changes in training relevance and effectiveness which any ISD effort has effected. A pre and postISD testing of students, using a test reflecting current training objectives, would aid in isolating those parts or modules of courses which are deficient. Equally important, the results would provide an objective basis for assessing, for planning purposes, whether student performance was sufficiently improved to warrant the IPD expenditure.
- . Improvements should be made in the current resource tracking system with the objective of simplifying and providing more relevant management information.
- A standardized CNET course/curriculum status report should be submitted prior to the start of an ISD task and a similar final report should be submitted at the conclusion of each tasking. These reports would document the resources expended, curriculum materials developed, pre and posttest results, course characteristics, results of the pilot testing and other relevant data.
- An organizational structure should be developed which is sufficiently flexible to provide technical support to any ISD team made up of IPDC personnel, school personnel or any combination of both. The structure of the team would depend on resources available at both the IPDC and school, potential payoff from the course development, and criticality of the course.
- Block or program funding should be provided for the acquisition of training equipment and materials required to support the courses developed/revised at the IPDCs.

1 F NG	20	٠,	. 5			0										~0	•					0
EVAL	с э		⊃	~~	m 🔿 (-03:	5 05	22	0:	⊃ <i>4~</i>	~	25 25 25	₩ ₩ ;	23 25 25	26 19 18	25.5	25.5	ოო			~
₩ U! A	8 22 17	1830 1940 1940 1940 1940 1940 1940 1940 194	<u>, – =</u>	72=	27	27.5	, ~ ~ ;	9,6	25 18 18	<u>-2</u> °	2.5 8.4.0	125	70	58 78 78 78	2 5 2	22 7	223	27	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	588 588 588 588	25 9	10
DVLP	5.00 6.33	504 546	200 200 200		5.00 19.00	92 62 74	9/2	55.5	529	69 69	25.0 20.0 20.0	2005	# M # ;	355	4 W W 0 0 2	623 623	9 4	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	44	4 4 0 0 0	- 12 S. 17 13 S. 15 13 S. 15 15 15 15 15 15 15 15 15 15 15 15 15 1	÷ ÷
DSGN	400	~ - r	- ໝ ກ	c. d	22	שיי נייו עב	თო	ກສາ	0 0) - (0~~	, O	827	•	4~3	0	ω,		- 24	04~	22.25	9 00
ANAL	0-0	5	•		5								2									19
AUMN	26 15 10	~ 2	204	222	<u>, 20</u> 20 ;	<u> </u>	,5 <u>4</u> ;	5 9 %	53 - - - - - - - - -	48.	22 17	53. 163.	<u> </u>	Ø#:	21 00 VO	ው ው ሚ	152	22 10	യസ്	21 15	760°	17
101AL	2383 2283 1772	1728	1535	1045	1512	1209	100.0	723	1196	1196 878	635	637	703 575 426	227 227	624 554 554	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	553 522	502 436	463	732	365 365 365	38228
																						_
TRNG	m-	•	?			ω										۲-						633
EVAL TRNG	29 3	\$	4 2	13	. a O		: ® 2·	4 m u	ਹ ਾ ਕ	m•	28 11	17.88	50 149 108	108	202 444 844 840	122 97 7 89 1	134	86 77 53	16 17			
AL TR	62		Ą	-~	4-	35 16	_						154 72 149 444 108							208 170	29 67 35	79 63
DIA EVAL TR	210 29 522 12 305	407 275	246 219	14.4 14.4 1.5	155	389 32 213 16 57	29	299	266 184	135 195	900	136	154 72 42 42	0.00 0.40	155 125 125	105 35 27	112	240 138 106	206 234		190 29 170 67 194 35	14308 2979 63
P MDIA EVAL TR	210 29 522 12 305	1043 407 1047 275	911 246 4 999 219	500 68 664 143 1	861 155 4 903 106	983 389 32 750 213 16 783 47 17	783 29	584 299 470 72	618 266 627 184	879 135 606 91	435 62 357 90 345 124	337 136	154 72 42 42	0 148 96 45 64	155 125 125	4 201 105 308 35 296 72	246 75 178 112	168 240 170 138 224 106	6 197 206 0 201 234	2 335 294		0 57743 14308 2979 63
M DYLP MDIA EVAL TR	1402 210 29 1228 522 12 1154 305	1043 407 1047 275	911 246 4 999 219	500 68 664 143 1	861 155 4 903 106	983 389 32 750 213 16 783 47 17	783 29	584 299 470 72	618 266 627 184	879 135 606 91	435 62 357 90 345 124	337 136	7 347 154 9 216 72 4 188 44	0 148 96 45 64	3 (92 (06 5 229 155 2 217 127	4 201 105 308 35 296 72	246 75 178 112	168 240 170 138 224 106	6 197 206 0 201 234	2 335 294	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	020 57743 14308 2979 63
NAL DSGM DYLP MDIA EVAL TR	9 98 1402 210 29 38 128 1228 522 12 4 116 1154 305	52 1043 407 28 1047 275 3 110 1047 275	118 911 246 4 90 999 219	50 500 68 99 664 143 1 69 774 158 3	164 861 155 4 72 144 903 106 1	163 983 389 32 47 750 213 16 67 783 57 17	94 783 29 42 780 77 1	58 584 299 62 470 72 33 464 137	26 618 266 2 627 184	8 879 135 15 606 91	46 435 62 15 357 90 14 345 124	337 136 63 346 155	17 69 216 72 34 188 44	30 148 96 45 64	23 192 106 45 229 155 32 217 127	4 201 105 308 35 296 72	246 75	6 168 240 6 170 138 8 224 106	10 201 234	32 335 48 294	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26913 12020 57743 14308 2979 63
N ANAL DSGN DYLP MDIA EVAL TR	537 9 98 1402 210 29 354 38 128 1228 52 12 193 4 116 1154 305	276 52 1043 407 273 275 1047 275	227 90 999 219	12/ 50 500 68 143 1 26 64 143 1 26 64 143 1	284 72 164 861 155 4 134 72 144 903 106 1	181 163 983 389 32 175 47 750 213 16 101 67 283 47 17	103 94 783 29	168 58 584 299 116 62 470 72	277 26 618 266 190 2 627 184	174 8 879 135 163 15 606 91	190 46 435 62 145 15 357 90 104 14 345 124	147 337 136 116 63 346 155	52 17 57 347 154 52 17 69 216 72 54 188 44	10 148 96	51 45 229 155 38 32 217 127	28 4 201 105 49 308 35 27 296 72	126 75 75 75 178 112	94 6 168 240 111 6 170 138 45 8 224 106	38 6 197 206 16 10 201 234	157 32 335 157 32 335 94 48 294	29 190 34 170 61 194 67 169	: 23632 26913 12020 57743 14308 2979 63

TAEG Report No. 103

IRNG	-	∿4	2.5												0			~		-
EVAL	-627	2 ® 2 @	- 20		· 52 ?	407	- 00 -2	700		01 /;	30-	22	2===	- ~		ব ব	28	- 62 - 62 - 62 - 62	<u>0</u>	9
MD1A	42791	284	<u> </u>	O4.	n- νι	. 	2-			20))	n • • •	rn c	0 N M	๛๛๛	~ 5.	44	_= 4,	0-4	18
OVLP	<u> </u>	<u> </u>	95.2°	24 8 2 4 5 2 6 7	6227	0 10 10 4 4 10 4	9.50	3,5	3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55		2.02.4 2.02.1	4	4 K	4 4 ~ ~ ~ ~	400 404	5.4 4.4 1.0	22.5	388	4.0.0 8.00	31
USGN	92 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 4	W4 2	2 2 2 2 3 2 3	<u> </u>	n	12.5	<u> </u>	2 - 8 - 4	वक (₽ ₹ 4	•	.20	-22	₹ <u>0</u> 22	202	້ອຕ	- v 4 i	n-0	20
ANAL	4 0 5 2 2	49-	2.5		ć	>	42	2012	2243	528	62	, (5045	<u>-</u>		<	•	о м:	- 6	7
ADMN	ቆ ሚພພዊ ያመພዊ-	- mm-	23 15 37	35 30 30	967	22-20-20-20-20-20-20-20-20-20-20-20-20-2	20 10 10	25.	254 254	2202	7 8 %	34	32.6	322	39 149 25	339	. e o ;	-45.	28	24
101AL	44740 23084 75084	44.06 27.08 40.80	423 592 571	812 815 815	620 717	9000 9000 9000 9000 9000	396 455	574 470	4 4 6 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	493	ტ (M) დ ტ (ტ) (458 71	486 7.20 7.20 7.20	487 440	642 569 620	8 1 8 4 8 3	533	200 200 200 200 200 200	/64 656 757	16156
																				_
TRNG	œ	24 24	73												2			12		1381
EVAL TRNG	9 128 138 102			0.	ი დ. დ. გ. ფ. დ. (20 m m	235	47	m m oo oo oo o	34 80 4 80 4 80 8 4 80	108 108	4.8 4.8	77 58 37). 	8 51 12 2	36 25	150	151 121 198 12	122 7 6	7823 1381 1
<u>.</u>	-	~ 8 3 4 3 6 7 4	257	ਚ ਚਾ	~ 6v9 (20 88 78 53 78 59	າທ	44	25 g		_	_	_					188	_	~
DIA EVAL TR	9.9.88 9.9 9.9	132 132 63 85 89 65	49 52 52 53 11	4 4 F	<u> 69</u> 6	0 8 8 5 2 8 8 5 2 8 8 5	າເ			2. 44.	4 W .	28 78 78	5 -	12	36 8 33 51 30 12	4 6 5 5 5 6	352 219	30 46 121 25 198	- 38 38	8 7823 1
P MUJA EVAL TR	19 96 12 96 97 128 80 38 72 102	79 132 79 132 79 63 88 838 84 85	29 49 7 93 52 5 115 11 2	104 265 299 34	324 9 324 9 448 16	0 8 8 5 2 8 8 5 2 8 8 5	38 5 160	275	182 115 158	232 54	193	226 28 234 31	263 19	223 12 200 17	36 8 33 51 30 12	465 45 274 62 166 419	213 352 80 219	116 46 121 116 25 198	369 48 1 447 11 502 34	20978 7823 1
N DVIP MDIA EVAL TR	86 12 96 96 96 96 96 96 96 96 96 96 96 96 96	79 132 79 132 79 63 88 838 84 85	148 29 49 7 262 93 52 5 198 115 11 2	104 265 299 34	36 448 16	361 98 361 98 321 78	7 70 38 5 0 71 160	3 49 152	4 39 182 2 97 115 5 67 158	232 54	9 31 149 4 16 193 3 1	226 28 226 28 2 238 31 1	263 19	2 26 124 85 223 12 79 200 17	283 36 8 340 33 51 339 30 12	465 45 274 62 166 419	213 352 80 219	116 46 121 116 25 198	25 369 48 1 12 447 11 1 502 34	55 36466 20978 7823 1
NAL DSGN DVIP MDIA EVAL TR	5 55 80 19 9 3 61 26 12 96 3 55 8 97 128 3 75 8 97 128 3 83 26 72 102	73 69 48 97 19 20 79 132 38 91 23 89 4 158 34 45 65	92 148 29 49 7 17 262 93 52 5 198 115 11 2	233 104 108 265 4 226 299 34	72 381 67 324 9 36 448 16	4 21 394 20 9 361 98 36 321 78	167 70 38 5 120 71 160	62 65 275 103 49 152	64 39 182 112 97 115 95 67 158	82 19 143 54 92 24 232 4	109 31 149 4 16 193 3 1 70 60 305 47	72 28 234 47	72 35 263 19 23 25 25 18 23 25 25 181 25 25 25 181 3	85 223 12 85 223 12 79 200 17	60 283 36 8 60 340 33 51 78 339 30 12	110 465 45 62 274 62 100 166 418	30 80 219 1	38 24 116 46 121 20 25 160 25 198 1	88 25 369 48 1 64 12 447 11 1 502 34	225 11255 36466 20978 7823 1
N ANAL DSGN DVIP MDIA EVAL TR	226 66 55 80 19 9 9 17 26 12 96 19 9 19 9 17 26 12 96 12 96 12 96 12 96 17 17 17 17 17 17 17 17 17 17 17 17 17	73 69 48 97 19 20 79 132 38 91 23 89 4 158 34 45 65	98 92 148 29 49 7 90 17 262 93 52 5 213 198 115 11 2	135 233 104 207 108 265 4 246 226 299 34	113 // 381 6/ 189 36 448 16	165 4 21 394 20 165 9 361 98 88 36 321 78	81 167 70 38 5 77 120 71 160	62 65 275 103 49 152	64 39 182 112 97 115 95 67 158	82 19 143 54 92 24 232 4	109 31 149 4 16 193 3 1 70 60 305 47	72 28 234 47	72 35 263 19 23 25 25 18 23 25 25 181 25 25 25 181 3	85 223 12 85 223 12 79 200 17	60 283 36 8 60 340 33 51 78 339 30 12	110 465 45 62 274 62 100 166 418	30 80 219 1	38 24 116 46 121 20 25 160 25 198 1	88 25 369 48 1 64 12 447 11 1 502 34	9028 9225 11255 36466 20978 7823 1

	18 NG			-	~mm) -:	>~	2-2		nm ~	00	0 1
$\bar{}$	EVAL						9	202	Э	-00	62[33855927 33855944 338559	
FUN	MDIA		0 :	>	- <u>-</u>	202	50 53	25 21 29 29	- 0 4	446	36.73	-28950055888	22-22-26-25-25-25-25-25-25-25-25-25-25-25-25-25-
URS BY	DVLP		25.5	32.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	2275	464	320	. 6	233	36 36 36 36	34 34	33333333333333333333333333333333333333	22.0 33.0 23.7 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20
	DSGN	•	3 4 4 4 A	278	2 = 2	9 2 3	, co, co, r	~ 64 ω	4 400	กสเทพร์		ev@00425	
**	ANAL		80000 80000 80000	28.0°	<u> </u>	i o v r	***	v-0~	0-00	5		က	222
	ADMN	00041	9 <u>75</u> 8	52.6	20~5	282	23.2	588 587 587 587 587	25 24 16 4	50 50 50 50 50 50 50 50 50 50 50 50 50 5	30.24		00000000000000000000000000000000000000
- MA N.	HOUR TOTAL	30 71 381 909 155	858 1134	1182	5020	900	333	9 9 9 9 9 9 9	969	3802 3802 2447 250	7440	0048786777	90000000000000000000000000000000000000
	TRNG	388	16	24	24 16	96.	044	28 33 28 9	64 64 102	136 78	7.4.4 0.4.0	चंच	8 5
z	EVAL						4	13 20 8	56	55	190 190 180	227 262 265 265 265 347 347 347	001 001 001 001 001 001 001 001 001 001
UNC T101	MOIA		9 1		50 67 8	299 418	44. 0000	503 503 698	821 1045 1795	1690 1690 667	5405 52405		3262 3362 3362 355 367 367
S BY F	DVLP		24 45 144	307	2000 2000 2000 2000 2000	798	333	- 0.4%	4 ~ ms	2000	- @ 0. 0	~~00000awaa	- mm.c.vo.vo.m~
													2555888324 84386588 8436688 8336668
IN-HOUR	DSGN		45 127 351 351										200 113 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MAN-HOUR	20.		894 45 607 127 288 405 417 351	366 366 366 366 366 366	26.98 26.98	299	961	108	1127	24.8 28.2 28.2 2			
Z	NAL DSG	204 760 672	809 2007 410 807	336 336 366 366	188 188 52 69 134	109 257	105 78 196	38 171 1 7 108 1 60 102	24 112 39 166 1	2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	221 221 78 93	32 78 78 78 78 78 78 78 101 101	2 114 2 114 2 106 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

APPENDIX B

MANPOWER UTILIZATION

TABLE A-6. INSTRUCTIONAL SYSTEMS DEVELOPMENT EXPENDITURES BY RATING FOR THE PERIOD 1976 TO SEPTEMBER 1980 (\$1,000)

_	Military Labor	Civilian Labor	Material	Contract	Other	<u>Overhead</u>	Total
RM \$	48.4	\$ 838.0	\$ 65.0	\$ 157.9	\$101.7	\$ 870.7	\$2,081.7
DS	38.4	161.9	1.7	0.1	3.6	151.2	356.9
IC	212.3	1,388.8	85.4	267.9	86.8	1,156.1	3,197.3
ST	126.7	536.1	22.7	2.0	14.6	408.9	1,111.0
ET	189.8	560.0	244.4	458.2	83.0	609.5	2,144.9
HT	62.7	258.1	16.1	0.8	33.5	209.9	581.1
EM	19.1	273.3	3.6	870.3	1.9	355.2	1,523.4
FA	37.2	431.5	97.3	126.9	69.3	781.5	1,543.7
lE0	95.7	101.8	0.1	0.0	0.1	138.1	335.8
CM .	19.5	13.1	0.1	0.0	0.0	28.5	61.2
UT	24.6	35.2	0.0	0.0	0.0	43.2	103.0
EΑ	8.9	10.4	0.1	0.0	0.1	15.0	34.5
BU	10.7	4.6	0.0	0.0	0.0	13.3	28.6
SW	7.2	4.0	0.0	0.0	0.0	8.9	20.1
CE	5.6	2.6	0.0	0.0	0.0	6.5	14.7
DP	180.8	315.0	35.2	6.2	6.1	353.7	897.0
SA	55. 3	325.4	124.8	2.7	89.1	234.0	831.3
AA	47.2	340.7	83.5	0.0	25.0	229.2	725.6
FT	4.2	41.4	14.2	0.0	0.0	21.5	81.3
BE&E	0	126.2	34.0	0.0	50.0	56.4	266.6
EW	666.9	842.6	373.3	4,010.6	24.5	1,257.1	7,175.0
CT	64.8	34.2	19.7	1,902.9	8.9	91.4	2,121.9
IT	91.4	181.3	0.1	700.2	26.1	186.0	1,185.9
RT	11.1	22.9	0.0	0.0	0.0	20.1	54.1
MM	0.0	2.7	0.0	0.0	0.0	1.2	3.9
ВТ	0.0	3.6	0.0	0.0	0.0	1.6	5.2
PE	22.1	65.7	0.0	0.0	0.0	45.2	133.0
GM	6.4	4.6	0.0	0.0	0.0	6.6	17.6
RM (Maint	32.6	307.5	9.2	1.9	65.8	218.6	635.6
Existing						_	
Programs	0.0	144.1	1,658.6	542.7	619.4	0.0	2,964.8
Other	38.9	368.9	60.5	62.2	97.5	289.1	917.1
TOTAL 2	,128.5	7,746.2	2,949.6	9,113.5	1,407.0	7,809.0	31,153.8

* NC = Not complete ** ID = Insufficient data

TABLE A-4. RELATIONSHIP OF COURSES AND CONTACT HOURS TO THE PERCENT OF TRAINING DAYS FOR TYPE "F" NAVEDTRACOM COURSES

Number of Courses	Training Days (1,000)	Percent of Total Training Days	Cumulative Contact Hrs.	Percent of Total Hrs.
2	86	5	14	0.03
4	174	10	40	0.07
9	347	20	172	0.33
14	521	30	244	0.47
24	695	40	572	1.10
53	868	50	1,355	2.61
101	1,042	60	2,959	5.70
161	1,216	70	5,674	10.93
267	1,389	80	10,350	19.94
465	1,563	90	19,540	37.65
1,146	1,737	100	51,900	100.00

TABLE A-2. RELATIONSHIP OF COURSES AND CONTACT HOURS TO THE PERCENT OF TOTAL TRAINING DAYS FOR TYPE "A" NAVEDTRACOM COURSES

Number of Courses	Training Days (1,000)	Percent of Total Training Days	Cumulative Contact Hrs.	Percent of Total Hrs.
1	470	5	139	0.18
4	942	10	38 8	0.50
8	1,885	20	1,307	1.70
10	2,827	30	1,307	1.70
18	3,770	40	2,833	3.68
29	4,712	50	5,474	7.10
43	5,655	60	9,509	12.34
54	6,597	70	14,628	18.98
70	7,540	80	21,092	27.36
104	8,482	90	33,494	43.45
233	9,425	100	77,087	100.00

TABLE A-3. RELATIONSHIP OF COURSES AND CONTACT HOURS TO THE PERCENT OF TOTAL TRAINING DAYS FOR TYPE "C" NAVEDTRACOM COURSES

Number of Courses	Training Days (1,000)	Percent of Total Training Days	Cumulative Contact Hrs.	Percent of Total Hrs.
4	242	5	372	0.09
7	485	10	668	0.16
20	969	20	2,030	0.50
41	1,454	30	7,646	1.88
78	1,939	40	15,967	3.93
125	2,424	50	27,950	6.88
220	2,908	60	47,760	11.76
308	3,393	70	73,990	18.22
458	3,878	80	109,301	26.92
636	4,362	90	161,731	39.83
1,510	4,847	100	406,095	100.00
1				

TAEG Report No. 103

ST-53 ST-26 0.1 ST-23 SA ₹ Course/Module 딥 占 2.5 ₹ FA Ξ BE&E Type Material (Hours) Revised Develop-New Development Instruction Hours Validation Only Average Student Completion Time (Hours) Group-Paced**
(Percent) Self-Paced**
(Percent) Audio-Visual Type Delivery TOTAL Category Other Tests Labs

SUMMARY OF OUTPUT DATA FOR SELECTED COURSES AND/OR COURSE MODULES

TABLE A-1.

Missing Data

^{**} Estimated

APPENDIX A

SUMMARY COST AND PRODUCTIVITY DATA

BIBLIOGRAPHY (continued)

- DECISION MEMORANDUM FOR RECORD NO. 2 (Revised), 20 January 1977, Establishment of the Instructional Progam Development Centers, VADM James B. Wilson.
- Hodak, G. W., Middleton, M. G., and Rankin, W. C. <u>Institutionalization of Instructional System Development (ISD) in the Naval Education and Training Command: An Organizational Analysis</u>. TAEG Report No. 70, May 1979. Training Analysis and Evaluation Group, Orlando, FL. 32813
- MEMORANDUM OF UNDERSTANDING, 16 June 1976, NAVEDTRACOM Instructional System Development (ISD) Responsibilities.
- MEMORDANDUM FOR THE RECORD, 28 July 1978, Implementation of the IPD "Blue Book" Plans.
- NAVEDTRA 106A, 1 August 1975, Interservice Procedures for Instructional Systems Development.
- NAVEDTRA 110, 12 July 1978, Procedures for Instructional Systems Development.

BIBLIOGRAPHY

- CNET Instruction 1550.1A, of 6 January 1976, subj: Instructional System Development.
- CNET Instruction 1550.3, of 19 November 1973, subj: Design Standards for Curriculum Outlines and Instructor Guides.
- CNET Instruction 1550.5, of 11 March 1974, subj: Instructional Systems Development; Policy and Doctrine for.
- CNET Instruction 1550.12, of 29 August 1977, subj: Validation Standards for Instructional Program Development (IPD).
- CNET Instruction 1550.13A, of 25 July 1978, subj: Instructional Program Development Responsibilities and Approval Procedures.
- CNET Instruction 1552.1, of 9 April 1973, subj: Development of Training Materials.
- CNET SUPPORT Notice 1550, of 28 October 1976, subj: Introduction to Instructional System Development, Calendar Year 1977 Course Schedule.
- CNET SUPPORT Instruction 1550.5, of 2 February 1978, subj: IPD Management Planning, Reporting, and Program Evaluation System; Guidelines and Procedures for Administration and Management of.
- CNET SUPPORT Instruction 1550.6, of 19 January 1978, subj: Instructional Program Development; Policies and Guidance Concerning.
- CNET SUPPORT Instruction 5450.6B, of 20 September 1976, subj: Naval Education and Training Support Center Pacific: Mission and Functions.
- CNET SUPPORT Instruction 5450.10C, of 12 January 1978, subj: Naval Education and Training Program Development Center, Pensacola, Florida; Mission and Function of.
- CNET SUPPORT Instruction 5450.11A, of 30 June 1978, subj: Naval Education and Training Support Center Atlantic; Mission and Functions.
- CNET SUPPORT Instruction 5450.14A, of 13 April 1978, subj: Management Information and Instructional System Activity; Mission and Functions.
- CNET SUPPORT Instruction 7400.1, of 27 June 1978, subj: Man-Hour Accounting for IPD; Policy and Procedure for.
- CNET Notice 1500, of 12 May 1978, subj: Process (Internal) Evaluation of ISD.
- DECISION MEMORANDUM FOR RECORD NO.1, 12 December 1974, Centralized Management of Instructional Development, VADM James B. Wilson.
- DECISION MEMORANDUM FOR RECORD NO. 2, 27 April 1976, Establishment of Instructional Program Development Centers, VADM James B. Wilson.

TAEG Report No. 103

DISTRIBUTION OF LABOR AMONG THE ISD FUNCTIONS FOR EACH PAY PERIOD (1976 to 1980) FOR THE DEVELOPMENT OF THE ST RATING (continued) TABLE B-3.

TRNG		ς γ	၁	9	ກ ⊃	5	>	VC	99)		?	0								0	,		c	0
EVAL							4-		100	==	99	78	30	-0			5	-	ć		- > ^	. — o	, 00	02	œ	₹
MDIA		5	o m			r	√ 4 √	ا ي	242	33	7	0 🖺	90	∞4.	<u>~</u> @~	·~-	~ 4 ;	<u> </u>	229	<u>~≅</u>	- 60	16 16	. 2 /	=-	സ സ പ	^
DVLP	2	2			20	25	c – 4	92	- 99 20 20	614	- 4 3	~ €	22	15	. 15 30	244	555	290	675	40	Q 44 4	20.5	42	22	20 20 2	52
DSGN	025	-	52	8 8 9 9	7,7	5.4	900	36.	-00	~ 0	00		22	4	350	26 27 27	223	≘ •••	m 0 -	-00	o~~	<u></u>		15	21. 2.7. 18.	7
ANAL	9.88 E.88	8 6 5	34	13	m <	5.5	20	~				75	37	,	<u>-2</u> "	n d	29.	- 0	0	25	<u>-</u> 0-		333	30	844 484	32
ADMN	~94	15 21	24 9	<i>-</i> 2 <i>-</i>	9/1	2:	- 65 4	200	250	15	ຸຂ	<u>-6</u>	33	53 53 73 73 73 73 73 73 73 73 73 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74	21 21 21 21	500	522	220	25 20 20 20 20 20	225	212	25.0	200	15	20 5	: 91
TOTAL	346 464 777	529 617	743 594	740 291 738	. 38 2. 4 3. 8 5. 8 5. 8	740	700	988	1000	795	686 651	527 557	1016	854 520	720	7.55 486 865	834 971	8 8 8 9 9 9 9 9 9 9 9 9	1253	875 875	1031	1173	880 1331	1075	963 1100 1272	59156
TRNG		59		2	76		7	23	25		m		10	S								,			vc	828
EVAL TRNG				2	76		ao a	-5		m	33	412	25 1	സ				₹	•	4	- 8°	17	, , ,	103		2415 228
-				5	76		38	12 2	222	7 12 9 93	7 78 8 4 33	2 41	9 125 1	6 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		20 6	18 41	333 4	9 ~ (- 	- c		- 1010	9.0	0	5 2415 2
A EVAL T	12		3.5	2	1	ć	36 38	98 12 2	127 22 127 22 250 53	367 12 89 93	87 78 48 433	77 26	29 125 1	74 13 25 5		2	~ 4 ;	<u> </u>	137	166	203	233	286	128	80	971 4345 2415 2
P MDIA EVAL T	13 12	16 1 5	9 2 1 23	564 237 686	8 7	4	132 23 86 36 38	648 98 12 2	524 449 34 1 667 127 22 584 250 57	496 367 12 489 89 93	296 87 78 91 48 433	20 77 26	29 125 1	153 74 13 78 25 5		348 206 206	392	539	765 126 848 137	404 166	487 203	457 233 1	378 26 459 235	30 317 128 87 224 15 10	53 42 54	01 14971 4345 2415 2
N DVLP MDIA EVAL T	318 3 410 13 1	43.2 7 16 1 5	546 203 313 1 23	117 564 38 6237	30 643 8 7	217 401 44	6 52 28 38 38 38	15 21 648 98 12 2	45	40 496 367 12 3 489 89 93	4 296 87 78 2 91 48 433	11 40 2 41 88 20 77 26	10 94 86 29 125 1 386 233 7 50	406 153 74 13 40 250 78 25 5	135 238 62 13 94 294 112 6 24 220 235 2	29 203 348 2 29 136 206	101 112 392 1 59 124 540 4	16 86 449 il	38 765 126 4 12 848 137	120 3 404 166	144 / 408 124 1	81 204 457 233 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	207 85 378 26 431 459 235	331 130 317 128 292 187 224 15 10	328 153 149 53 80 532 187 113 42 653 233 72 54	19048 8301 14971 4345 2415 2
NAL OSGN DVLP MDIA EVAL T	318 3 410 13 1	43.2 7 16 1 5	546 9 2 203 313 1 23	117 564 38 6237	30 643 8 7	217 401 44	6 52 28 38 38 38 38	15 21 648 98 12 2	45	40 496 367 12 3 489 89 93	4 296 87 78 2 91 48 433	11 40 2 41 88 20 77 26	10 94 86 29 125 1 386 233 7 50	406 153 74 13 40 250 78 25 5	135 238 62 13 94 294 112 6 24 220 235 2	29 203 348 2 29 136 206	101 112 392 1 59 124 540 4	16 86 449 il	38 765 126 4 12 848 137	120 3 404 166	144 / 408 124 1	81 204 457 233 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	207 85 378 26 431 459 235	331 130 317 128 292 187 224 15 10	28 153 149 53 80 32 187 113 42 53 233 72 54	19048 8301 14971 4345 2415 2
DMN ANAL OSGN DVLP MOTA EVAL T	25 318 3 29 410 13 1	134 4032	: 185 546 9 2 : 54 203 313 1 23	57 117 564 16 38 237	71 30 643 8	78 217 401 44	102 121 487 132 23 72 6 552 86 36 38	101 15 91 648 98 12 2	106 145 524 147 534 147	83 40 496 367 12 121 3 489 89 93	218 4 296 87 78 37 2 91 48 433	62 11 40 2 41 1 106 88 20 77 26	. 61 10 94 86 29 125 1 340 386 233 7 50	203 406 153 74 13 122 40 250 78 25 5	209 135 238 62 13 156 94 294 112 6	155 29 203 348 2 115 23 136 206	207 59 124 540 4	171 16 86 449 11 201 2 39 539 3	252 4 12 848 137	181 120 3 404 166	344 144	181 81 204 457 233 1 247 160 150 404 01 11	178 207 85 378 26 201 431 459 235	164 331 130 317 128 158 292 187 224 15 10	328 153 149 53 80 532 187 113 42 653 233 72 54	9848 19048 8301 14971 4345 2415 2

DISTRIBUTION OF LABOR AMONG THE ISD FUNCTIONS FOR EACH PAY PERIOD (1976 to 1980) FOR THE DEVELOPMENT OF THE HT RATING TABLE B-4.

TAEG Report No. 103

LABOR AMONG THE ISD FUNCTIONS FOR EACH PAY 1980) FOR THE DEVELOPMENT OF THE HT RATING (continued) DISTRIBUTION OF PERIOD (1976 to TABLE 8-4.

TRAG	~	_	þ	o o
EVAL			0 3- 4 40	O-W4W4 O -
MOIA		Э	0 2000KYUURAUUR-YUSY	39 23 20 20 10 10
OVLP	<u>ผลบัต</u> จะเล	2 2 2 3 3 4 0 9	こうみきご ーごきらみらぬみらうららみごうまき ロップ・ラウィ ロック・クリング ロック・スタック ロック・スタック ロック・スタック ロック・スタック ロック・スタック ロック・スタック ロック・スタック ロック・スタック アン・スタック ロック・スタック アン・スタック アン・スクログ アン・スタック アン・スタック アン・スタック アン・	6 4 4 6 6 6 5 7 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
DSGN	æ	2 6	N MW-NW - N4WW - N4WW - N4WW - N6WW - N6WBNDN4- 4M04MMN	22722
ANAL	99997 2087 2087 2087	0~~~ 5040004000 0~~~ 5040000044~6	. 6444www. . 000000ww.n	33
ADMN	ม ล ∽ณฑัลตนั		00 00 00 00 00 00 00 00 00 00 00 00 00	2-2 2-8-5 8-6-9-8-8-0
OTAL	2336 3395 3395 3313 4436 666 666 666 666 666 666 666 666 6	1 8 4 8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8		979 588 568 567 472 657 654 732
-				
TRNG T	=	v	₹	23 3
EVAL TRNG T	2	w	7	4 4 4 6 2 3 4 5 6 6 5 3 4 5 6 6 5 3 5 6 6 6 5 3 6 6 6 5 3 6 6 6 6
-	=	.	5 144 2210 163 163 163 163 163 173 173 173 173 173 173 173 173 173 17	49/7/2002 49/7/2002 49/8/4/2002
A EVAL T	14 28 54 64 11	55 53 79 88 1 5		384 32 32 32 52 52 112 112 148 4 335 426
MOIA EVAL T	23	24 65. 5.3 7.7 7.7 8 1 5	44143-1851 44143-1851 5 04088-1851 888-1851 888-1851 888-1851	2930 384 295 32 4 343 1 7 308 13 2 411 148 28 496 148 4 10581 3356 426
DVLP MOJA EVAL T	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		152 888 125 125 125 125 125 125 125 125 125 125	216 230 384 127 295 32 185 343 32 108 308 13 20 96 382 52 24 9 441 148 28 496 112 33 504 148 4
. DSGN DVLP MOIA EVAL T	2008 320 320 320 320 320 320 320 320 320 320	280 280 280 280 280 897 377 881 881 881 881 881 881 881 881 881 8	152 188 188 181 181 188 188 188 188 188 18	19 216 230 384 5 187 295 32 4 114 308 13 77 102 303 13 20 9 8 382 52 24 9 411 148 28 9 46 112 3 504 148 4

TABLE B-5.

TAEG Report No. 103

DISTRIBUTION OF LABOR AMONG THE ISD FUNCTIONS FOR EACH PAY PERIOD (1976 to 1980) FOR THE DEVELOPMENT OF THE EO RATING (continued) TRAG MDIA DVLP CSGN TOTAL TRNG EVAL MDIA DVLP DSGN 2608 B-5. TABLE

TAEG Report No. 103

ADMN ANAL DSGN DVLP MDIA EVAL TRNG DISTRIBUTION OF LABOP AMONG THE ISD FUNCTIONS FOR EACH PAY PERIOD (1976 to 1980) FOR THE DEVELOPMENT OF THE DP RATING 2002220312 2002220313 3002223 3002223 4471 ADMN ANAL DSGN DYLP MDIA EVAL TRNG 32 MAN-HOURS BY FUNCTION TABLE 8-6. 2 WEEK PERIOD

1 R N G		₩	೦ಕ್ರಾಂ	- E	9922	2 500	mmo ~	2
EVAL		5	occ	10	0	-200	0 >~	, 6 –
MDIA		O ff	9	:	o o~		22 2 	*O v
DVLP	00	√ 0 4 €	- 8 8 5 4 W 4	· ~ ~	-0 2°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	004 004 005 007 007	@ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3. E
DSGN		⊃_e	227-001	32	<u>~~4</u> ~~~ ~~4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~		90 . 00.04.00.00	6
ANAL	0007 78 80 80 80 80 80 80 80 80 80 80 80 80 80	2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000424 000537	72860 700044	32.04- 30.0825-	3C6CC9C	0	89
ADMR	2552 Q T BE 25	877.93	2525 2525 253 253 253 253 253 253 253 25	225422	7 <u>40</u> m7mm5	ಹರಿತಪ್ಪೂಡ	ಀಀೣೱಙಀಁಀಀ೨ಀಀಌಀೲೲ	<u> </u>
TUTAL	9828 9828 7987 7635 1126 126 126 126 126 126 126 126 126 12	8886 858 858 858 858 858 858 858 858 858	902 902 768 753	751 772 772 563	~ & & & & & & & & & & & & & & & & & & &	7.85 7.37 7.37 9.85 9.95	0900 0000 0000 0000 0000 0000 0000 000	849 49853
TRNG		36	25 44	10	40 142 154 733	16 21 21 4	44 B	1017
EVAL TRNG			044 20 E 1	. 6 10 27	2 1840 1840 784			
			20 TE A A CO CE	•	1544	23.55		8 16
EVAL		30	,		2 5888 8487 7	28 50 36 36 13 12 12 12 12 13 12 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	ഗ~ഗ~~ ജ ፈ⊷യെസുകയപാസ	2651 816
P MDIA EVAL	2.5 1	12 137 120 30 72 50	9 0-0-7	61	12 5 5 14 4 4 13 2 18 2 15 18 2 15 15 15 15 15 15 15 15 15 15 15 15 15	472 28 3945 30 13 5 684 36 12 3 2 6 685 12 3 2 6 685 12 3 2 6 685 12 3 2 2 6 685 12 3 3 2 6 685 12 3 3 2 6 685 12 3 3 2 6 685 12 3 3 2 6 685 12 3 3 2 6 685 12 3 3 2 6 685 12 3 3 3 2 6 685 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2860 23 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	634 2 168 478 2651 816 .
DVLP MDIA EVAL	383 511 360 721 721 721 693 693 1000 1000 1000 1000 1000 1000 1000 10	12 100 137 100 120 137 150 150 150 150 150 150 150 150 150 150	202 33 80 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	203 203 301 74	41 12 5 94 13 6 279 13 2 4 432 27 2 14 435 282 18 15 141 367 8 2 7	152 472 28 212 472 28 118 395 52 1105 544 36 13 42 686 113 29 5 65 695 121 2	634 633 8 636 636 636 636 636 636 636 636 6	634 2 168 15478 2651 816
L OSGN DVLP MDIA EVAL	383 360 721 721 721 721 721 731 731	465 91 137 1 420 100 120 30 510 68 72 5	538 98 88 83 88 88 88 88 88 88 88 88 88 88 88	544 14 57 335 263 301 34 355 34 365 34 34	815 161 12 5 4 12 5 4 4 12 5 4 4 12 5 5 4 4 1 12 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	68 152 472 28 45 212 245 22 70 188 395 50 64 105 544 36 13 74 102 647 97 29 5 62 45 686 121 2	634 633 8 636 636 636 636 636 636 636 636 6	634 2 168 634 2 168 19059 4809 15478 2651 816
N ANAL DSGN DVLP MDIA EVAL	383 360 721 721 721 721 721 731 731	465 91 137 1 420 100 120 30 510 68 72 5	538 98 88 83 88 88 88 88 88 88 88 88 88 88 88	544 14 57 335 263 301 34 355 34 365 34 34	815 161 12 5 4 12 5 4 4 12 5 4 4 12 5 5 4 4 1 12 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	68 152 472 28 45 212 245 22 70 188 395 50 64 105 544 36 13 74 102 647 97 29 5 62 45 686 121 2	5 63 63 63 63 63 63 63 63 63 63 63 63 63	5 634 7 168 3 19059 4809 15478 2651 816

DISTRIBUTION OF LABOR AMONG THE ISD FUNCTIONS FOR EACH PAY PERIOD (1976 to 1980) FOR THE DEVELOPMENT OF THE SA RATING TABLE B-7.

DISTRIBUTION OF LABOR AMONG THE ISD FUNCTIONS FOR EACH PAY PERIOD (1976 to 1980) FOR THE DEVELOPMENT OF THE SA RATING (continued) TABLE 8-7.

1.8	د ع م م م م م م م م م م م م م م م م م م	0
EVAL	2-m233577rm327rm-0m7.59-795052350m2 2 m28	٥
MUIA		20
UVLP		47
DSGN	ลลีอีตผนีมี∠ตอดอ o ∟ ผพนิพนีขุ v −v พี่	S
ANAL	\$ ##\$ ### ### ### ### ### ### ### #### ######	•
ADMN	8224411 4087411000-1-100000000000000000000000000000	15
IOTAL		32100
TRNG	8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	961
EVAL	7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	2155
MDIA EVAL	- 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6437 2155
DVLP MOIA EV	69 440.99 69 40.30	437 2
P MOIA EV	69 944 943 943 943 943 943 943 943 943 943	263 6437 2
DVLP MOIA EV	64 64 69 69 69 69 69 69 69 69 69 69 69 69 69	15263 6437 2
L DSGN DVLP MDIA EV	5.9	97 1651 15263 6437 2

TAEG Report No. 103

TABLE B-8. PERCENT OF CIVILIAN AND MILITARY LABOR DEVOTED TO EACH ISD FUNCTIONAL AREA--SAN DIEGO (1976 to 1980)

Year	Ade	Admin	Ana	Analysis	Design	ign	Development	pment	Mec	Media	0tl	Other
	Civ	Mil	Civ	Mil	Civ	Mil	Civ	Mi1	Civ	Mil	Civ	Mil
9761	19	53	15	45	4	0	7	0	_	0	12	2
1977	19	20	10	43	4	*	12	က	æ	2	4	
1978	57	49	12	39	4	*	17	9	4	~	ည	2
1979	09	46	∞	27	2	10	17	14	9		4	2
1980	99	43	က	6	2	∞	25	33	7	4	4	က
Avg.	59	47	6	30	2	2	17	13	9	2	S.	က

r < 1 nercent

DISTRIBUTION LIST

CNET (N-9 (10 copies), 02 (2 copies), 022 (2 copies))

END

FILMED

5-85

DTIC