

Gradiance Online Accelerated Learning

2020-02-11 14:06:47 PST (GMT - 8:00)

0.0

514395

DH728513

Ankit Arvind

• Home Page

· Assignments Due

· Progress Report

Handouts

· Tutorials

· Homeworks

· Lab Projects

• Log Out

Number of questions: 7
Positive points per question: 15.0

Your score: 90

- Help
- 1. Which of the following relations is in BoyceCodd Normal Form (BCNF)?
 - a) R(LMNO) FD's: $M \rightarrow L$; $LO \rightarrow N$; $L \rightarrow O$; $L \rightarrow N$
 - b) R(LMNOP) FD's: LM \rightarrow P; N \rightarrow O; MP \rightarrow N
 - c) R(LMNO) FD's: LMN \rightarrow O; LNO \rightarrow M; MNO \rightarrow L; L \rightarrow O
 - d) R(LMNOP) FD's: $M \rightarrow NO$; $NO \rightarrow L$; $L \rightarrow MP$

Answer submitted: d)

Submission number:

Submission time:

Submission certificate:

Negative points per question:

You have answered the question correctly.

2. Suppose relation R(A,B,C,D) has the tuples:

A	В	С	D
a	1	4	e
b	2	10	e
c	7	6	f
a	3	19	e

And the relation S(F, G, H) has tuples:

F	G	Н
b	15	21
b	4	5
c	7	2
b	5	4
a	20	11
d	6	3
b	17	12

Which of the following tuples is in the theta-join of R and S with the condition A = F AND C < G AND (D = 'e' OR D = 'f') AND (A = 'a' OR A = 'b') AND G > H?

1 of 3

- a) (a, 1, 4, e, c, 7,2)
- b) (a, 3, 19, e, b, 4, 5)
- c) (a, 1, 4, e, b, 17, 12)
- d) (a, 3, 19, e, a, 20, 11)

Answer submitted: **d)**

You have answered the question correctly.

- 3. Which of the following relations is in Third Normal Form (3NF)?
 - a) R(VWXY) FD's: $WXY \rightarrow V$; $VW \rightarrow X$; $Y \rightarrow V$; $W \rightarrow X$
 - b) $R(VWXYZ) FD's: WX \rightarrow V; Y \rightarrow WX; V \rightarrow YZ; Z \rightarrow X$
 - c) R(VWXYZ) FD's: $XY \rightarrow Z$; $W \rightarrow XY$; $Z \rightarrow VW$; $X \rightarrow V$
 - d) R(VWXY) FD's: $V \rightarrow W$; $V \rightarrow X$; $WX \rightarrow Y$

Answer submitted: b)

You have answered the question correctly.

- **4.** Determine the keys and superkeys of the relation R(MNOPST) with FD's: NS → T, MNO → P, NO → T, MPST → N Then, demonstrate your knowledge by selecting the true statement from the list below. Each statement must include all the possible values.
 - a) Superkeys that are not keys: MNOPST, MNOPS, MNOST
 - b) Keys: MNOPS
 - c) Superkeys: NOPS, NPST, OST, MNOP
 - d) Superkeys: MNOP, NST, MOPT

Answer submitted: a)

You have answered the question correctly.

- **5.** Which of the following relations is correctly decomposed into the minimal number of relations that are collectively in BCNF (BoyceCodd Normal Form)?
 - a) R(ABCD) FD's: $A \rightarrow BD$; $D \rightarrow C$ into R1(ABD), R2(CD)
 - b) R(ABCD) FD's: AB \rightarrow D; D \rightarrow C into R1(CD), R2(ABC)
 - c) R(ABCDE) FD's: B \rightarrow CD; A \rightarrow E into R1(ABCDE), R2(AE)
 - d) R(ABCDE) FD's: $E \rightarrow A$; $D \rightarrow E$; $BC \rightarrow D$ into R1(BCD), R2(DEA)

Answer submitted: a)

You have answered the question correctly.

6. Let the relation A(MNOPQRST) satisfy the following functional dependencies: N → P, MO → Q, RS → T, Q → S, OP → M, PT → R. Which of the following FD's is also guaranteed to be satisfied by A? Recall that an FD of the form X → BC, where X is a set of attributes and where each of B and C is an attribute, is actually two FDs X → B and X → C. We

2 of 3

say that an FD $X \to BC$ is guaranteed to be satisfied by a relation schema if and only if each of $X \to B$ and $X \to C$ is guaranteed to be satisfied by this relation schema.

- a) $NRS \rightarrow PT$
- b) $RST \rightarrow MP$
- c) $ORS \rightarrow TQ$
- d) $NQS \rightarrow PT$

Answer submitted: a)

You have answered the question correctly.

- 7. A basis for a set of FD's F is any set G of FD's whose closure is the same as the closure of F. That is, exactly the same FD's follow from F as from G. In addition, a basis must consist of a minimal set of nontrivial FD's. Suppose we have a relation R(W, M,X, Y, Z) with FD's W → M, M → X, X → Y, Y → Z, Z → W. Suppose we project R onto attributes WMXY. Describe all the bases for the set of FD's that hold in WMXY. Given a set of FD's, select statements that correctly explain if the set is a basis or not.
 - a) $W \rightarrow M, M \rightarrow X, X \rightarrow W, X \rightarrow Y, Y \rightarrow X$: NOT a basis
 - b) $Y \rightarrow W, W \rightarrow X$: a basis
 - c) $W \rightarrow M, M \rightarrow Y, X \rightarrow Y, Y \rightarrow W, Y \rightarrow X$: a basis
 - d) $W \rightarrow M, M \rightarrow X, X \rightarrow Y, Y \rightarrow W$: NOT a basis

Answer submitted: a)

Your answer is incorrect.

Copyright © 2007-2015 Gradiance Corporation.