

Dot product

Text: 2.9

Content:

- Dot product of two vectors: definition and properties
- Using dot product to find the angle between two vectors
- Dot product and projecting vectors
- Practice (W2-5 W2-6)

Last Time:

DOT PRODUCT

dot product is positive

• Dot product: an operation that takes **two vectors** and produces a **scalar**:

• Example of a situation when we may want to produce a scalar out of two vectors: Work is a scalar, but it depends on two vectors (force and displacement)

dot product is negative

DOT PRODUCT: Properties

• It has the following properties similar to regular multiplication:

•
$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$
 (commutative)

•
$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$
 (distributive)

•
$$\vec{A} \cdot (a\vec{B}) = a (\vec{A} \cdot \vec{B})$$
 (scalar multiplication)

• The units are the product of the units of the vectors being multiplied.

Unlike regular multiplication it is possible that $\vec{A} \cdot \vec{B} = 0$ when neither \vec{A} nor \vec{B} are zero.

• Q: What is the angle between \vec{A} and \vec{B} in this case?

DOT PRODUCT: Connection to projections

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$= ABB$$

$$= ABA$$

Take the length of \vec{A} that points in the direction of \vec{B} and multiply it by B

or

Take the length of \overrightarrow{B} that points in the direction of \overrightarrow{A} and multiply it by A

DOT PRODUCT: Connection to projections

• We found:

$$\vec{A} \cdot \vec{B} = A B \cos \theta = A_B B$$

(here A_B is the projection of \vec{A} on the direction of \vec{B})

- What will we get if we project \vec{A} onto the unit vector in the direction of \vec{B} ?
- We will simply get A_B !

$$\vec{A} \cdot \vec{u}_B = A \underbrace{u_B} \cos \theta = A \cos \theta = A_B$$

DOT PRODUCT: in Cartesian components

• Since the angle between a vector and its copy is 0:

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$

$$\vec{i} \cdot \vec{j} = \vec{l} \cdot \vec{l} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$
• Since the angle between \vec{l} and \vec{j} , etc., is 90°:

$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{i} = \vec{i} \cdot \vec{k} = \vec{k} \cdot \vec{i} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{j} = 0$$

$$\vec{A} \cdot \vec{B} = (\vec{i} A_x + \vec{j} A_y + \vec{u} A_z) \cdot (\vec{i} B_x + \vec{j} B_y + \vec{u} B_z)$$

• Using these equalities, we can get an important formula for two arbitrary vectors $\vec{A} = \vec{i} A_x + \vec{j} A_v + \vec{k} A_z$ and $\vec{B} = \vec{i} B_x + \vec{j} B_v + \vec{k} B_z$:

W2-5: Prove this equation.

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

DOT PRODUCT: Application #1

Practice: Calculate the angle between these vectors:

$$\vec{A} = \vec{i} - \vec{j} + \vec{k}$$
 and $\vec{B} = 2\vec{i} + 3\vec{j} - \vec{k}$

- A. Between 70° and 80°
- B. Between 80° and 90°
- C. Between 90° and 100°
- D. Between 100° and 110°
- E. Not enough information

$$\overrightarrow{A} \cdot \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z = A \cdot B \cdot \cos \Theta$$

$$\cos \Theta = \cdots$$
 $\Theta = \cos^{\circ}$

DOT PRODUCT: Application #1 (Summary)

$$\vec{A} \cdot \vec{B} = A B \cos \theta$$

$$\vec{A} \cdot \vec{B} = A_{x}B_{x} + A_{y}B_{y} + A_{z}B_{z}$$

• Using these two identities, you can connect the Cartesian components of two vectors, (A_x, A_y, A_z) and (B_x, B_y, B_z) , with the angle θ between these two vectors!

$$\cos \theta = \frac{A_x B_x + A_y B_y + A_z B_z}{A B}$$

...and the magnitudes of the vectors of course are
$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$
, $B = \sqrt{B_x^2 + B_y^2 + B_z^2}$.

DOT PRODUCT: Application #2

- Application #2 allows us to resolve one vector (\vec{A}) into components that are parallel and perpendicular to another vector (\vec{B}) .
 - Reminder: if you know \vec{B} , you also know \vec{u}_B . What is \vec{u}_B ?

$$\vec{u}_{B} = \frac{\vec{B}}{B} = \vec{i} \left(\frac{B_{x}}{B} \right) + \vec{j} \left(\frac{B_{y}}{B} \right) + \vec{u} \left(\frac{Be}{B} \right), \quad B \cdot \sqrt{B_{x}^{2} + B_{y}^{2} + B_{z}^{2}}$$

• What is A_B ?

$$A_{B} = \overrightarrow{A} \cdot \overrightarrow{u_{B}} = A_{x} \cdot \frac{B_{x}}{B} + A_{y} \cdot \frac{B_{y}}{B} + A_{z} \cdot \frac{B_{z}}{B}$$

• What is $\vec{A}_{\parallel \text{ to } \vec{B}}$?

$$\vec{A}_{II + B} = A_B \cdot \vec{u}_B = (\vec{A} \cdot \vec{u}_B) \cdot \vec{u}_B$$

• What is $\vec{A}_{\perp \text{to } \vec{B}}$?

The projection of A onto B.

$$\vec{A} = \vec{A}_{\parallel \vec{A} \cdot \vec{B}} + \vec{A}_{\perp \vec{A} \cdot \vec{B}}$$

DOT PRODUCT: Application #2 (Summary)

• **Application #2** allows us to resolve one vector (\vec{A}) into components that are parallel and perpendicular to another vector (\vec{B}) . To do that, let us define projection of one vector onto another vector:

Here
$$A_B = A \cos \theta = \vec{A} \cdot \vec{u}_B$$
, where \vec{u}_B is a unit vector along \vec{B} .

This definition of projection means that it is a scalar (other definitions are also possible)

The projection of A onto B.

• Now we can split vector
$$\vec{A}$$
 into the component parallel to \vec{B} and the component perpendicular to \vec{B} :

$$\vec{A} = \vec{A}_{\parallel \text{ to } \vec{B}} + \vec{A}_{\perp \text{ to } \vec{B}}$$

$$\vec{A}_{\parallel \text{ to } \vec{B}} = A_B \vec{u}_B = (\vec{A} \cdot \vec{u}_B) \vec{u}_B$$

$$\vec{A}_{\perp \text{ to } \vec{B}} = \vec{A} - \vec{A}_{\parallel \text{ to } \vec{B}} = \vec{A} - (\vec{A} \cdot \vec{u}_B) \vec{u}_B$$

• Pythagoras theorem:

$$A_{\parallel \, \text{to} \, \vec{B}}^2 + A_{\perp \, \text{to} \, \vec{B}}^2 = A^2$$

W2-6. Two cables exert forces on the pipe as shown.

- a) Determine the projected component of \vec{F}_1 along the line of action of \vec{F}_2 .
- b) Determine the angle between the two cables.

Copyright ©2016 Pearson Education, All Rights Reserved

W2-6. Two cables exert forces on the pipe as shown.

- a) Determine the projected component of \vec{F}_1 along the line of action of \vec{F}_2 .
- b) Determine the angle between the two cables.

• What is projection of
$$F_1$$
 on F_2 ?

$$F_{1 \text{ on } 2} = F_1 \cos \theta = \overrightarrow{F_1} \cdot \overrightarrow{u_2}$$

1)
$$\vec{F_1} = \vec{i} \left(F_1 \cos 30^{\circ} \cdot \sin 30^{\circ} \right) + \vec{j} \left(F_1 \cos 30^{\circ} \cdot \cos 30^{\circ} \right) + \vec{i} \left(-F_1 \sin 30^{\circ} \right)$$

$$\vec{u}_{d} = \vec{i} \cos d_{2} + \vec{j} \cos \beta_{2} + \vec{u} \cos \delta_{2} =$$

$$= \vec{i} \cos d_{2} + \vec{j} \cos 60^{\circ} + \vec{u} \cos 60^{\circ}$$

$$- \frac{1}{12} \qquad \frac{1}{2} \qquad \frac{$$

$$\cos^2 d_2 + \cos^2 \beta_2 + \cos^2 \theta_2 = 1$$
 $\cos^2 d_2 = \frac{1}{2}$

Copyright ©2016 Pearson Education, All Rights Reserved

$$F'_{1,x} = F'_{1} \cdot \sin 30^{\circ}$$

W2-6. Two cables exert forces on the pipe as shown.

- a) Determine the projected component of \vec{F}_1 along the line of action of \vec{F}_2 .
- b) Determine the angle between the two cables.
- What is the projection of \vec{F}_1 on \vec{F}_2 ?

$$F_{1on2} = F_1 \cos \theta = \vec{F}_1 \cdot \vec{u}_2$$

$$\vec{F}_1 = \vec{i} (30\cos 30^o \sin 30^o) + \vec{j} (30\cos 30^o \cos 30^o) + \vec{k}(-30\sin 30^o)$$

$$\vec{u}_2 = \vec{i} \left(-\frac{1}{\sqrt{2}} \right) + \vec{j} \left(\frac{1}{2} \right) + \vec{k} \left(\frac{1}{2} \right)$$

$$F_{1002} = F_{1x} \cdot u_{2x} + F_{1y} \cdot u_{2y} + F_{1z} \cdot u_{2z} = -5.4356 \rightarrow$$

dir: opposite to F

magn:

5.44 16

• What is θ ?

$$\cos \theta = \frac{F_{lon2}}{F_l} = \frac{-5.436}{30}$$

$$\theta = arccos(...) = 100°$$

IMPORTANT EQUATIONS: Summary

• Unit vector expressed in terms of direction angles:

$$\vec{u}_A = \vec{i} \cos \alpha + \vec{j} \cos \beta + \vec{k} \cos \gamma = \vec{i} \frac{A_x}{A} + \vec{j} \frac{A_y}{A} + \vec{k} \frac{A_z}{A}$$

Since \vec{u}_A is a unit vector, we have: $\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1$

• Displacement vector pointing **from** point A **to** point B:

$$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A = \vec{i} (x_B - x_A) + \vec{j} (y_B - y_A) + \vec{k} (z_B - z_A)$$

$$r_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
 -- its magnitude

- Force pointing in the direction from point A to point B: $\vec{F} = F \ \vec{u}_{AB} = F \ \frac{\vec{r}_{AB}}{r_{AB}} = F \ \frac{\vec{i} \ (x_B x_A) + \vec{j} \ (y_B y_A) + \vec{k} (z_B z_A)}{\sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}}$
- Four forms of the dot product: $\vec{A} \cdot \vec{B} = AB \cos \theta = A_x B_x + A_y B_y + A_z B_z = A_B B = AB_A$
- Resolving vector \vec{A} into components parallel and perpendicular to vector \vec{B} :

$$\vec{A}_{\parallel \text{ to } \vec{B}} = A_B \vec{u}_B = (\vec{A} \cdot \vec{u}_B) \vec{u}_B$$

$$\vec{A}_{\perp \text{ to } \vec{B}} = \vec{A} - \vec{A}_{\parallel \text{ to } \vec{B}} = \vec{A} - (\vec{A} \cdot \vec{u}_B) \vec{u}_B$$

$$\vec{A} = \vec{A}_{\parallel \text{ to } \vec{B}} + \vec{A}_{\perp \text{ to } \vec{B}}$$