A Fiscal Decomposition of Unexpected Inflation: Cross-Country Estimates and Theory

Livio C. Maya

November 2022

Introduction: The Fiscal Sources of Unexpected Inflation

- Connection between fiscal policy and inflation?
- Key Equilibrium Condition: The Valuation Equation of Public Debt

 $\frac{\text{Market Value of Debt (Bond Prices)}}{\text{Price Level}} = \text{Intrinsic Value (Discounting, Surpluses)}.$

- Unexpected inflation must accompany news about:
 - Bond prices
 - Real surpluses
 - Real discounting
- If unexpected inflation exists, it must nowcast/forecast some of these variables
- What are these forecasts? How do they change across countries? How can theory explain them?

Introduction: Exercises, Motivation, Results

- **Motivation.** How to read Debt/Price = Discounted Surpluses?

 - - Fixed country: +1% inflation ⇒ +1% deficit/debt?
 - Cross country: +1% inflation in A relative to B ⇒ +1% deficit/debt in A compared to B?
 - Stylized facts to discipline monetary-fiscal theory
 - Fiscal role to monetary policy?
- This paper
 - Estimate a Bayesian-VAR to measure the decomposition for 25 countries
 - Variance decomposition: "What does 1% unexpected inflation forecast?"
 - Recession decomposition: "What do -0.5% inflation and -1% growth forecast?" (2008 Recession, deficits, etc...)
 - 2. Estimate a New-Keynesian model to reproduce B-VAR decompositions

Introduction: Exercises, Motivation, Results

- Motivation. How to read Debt/Price = Discounted Surpluses?
 - \circ Active monetary: Inflation \Longrightarrow Discounted Surpluses
 - - Fixed country: +1% inflation ⇒ +1% deficit/debt?
 - Cross country: +1% inflation in A relative to B ⇒ +1% deficit/debt in A compared to B?
 - Stylized facts to discipline monetary-fiscal theory
 - Fiscal role to monetary policy?

This paper.

- 1. Estimate a Bayesian-VAR to measure the decomposition for 25 countries
 - Variance decomposition: "What does 1% unexpected inflation forecast?"
 - Recession decomposition: "What do -0.5% inflation and -1% growth forecast?" (2008 Recession, deficits, etc...)
- 2. Estimate a New-Keynesian model to reproduce B-VAR decompositions

Introduction: Preview of Key Results

The variance of unexpected inflation is accounted for by discounted surpluses (all coutries)

$$\operatorname{var} \left[\Delta E \pi \right] = \operatorname{cov} \left[\Delta E \pi, \quad \mathbf{Q} \right] + \operatorname{cov} \left[\Delta E \pi, \quad \left\{ -\mathbf{S} \right\} + \left\{ \mathbf{R} \right\} \right]$$

- Most relevant terms (Surplus-to-GDP, GDP growth and Real discounting) vary
- Monetary policy reduces unexpected inflation variance through bond prices
- Low inflation in recessions: low discounting + higher subsequent surpluses relative to GDP
- Productivity shocks reproduce findings in NK model
 - Policy shocks do not
- Different policy rules explain differences in variance decomposition across countries

Introduction: Related Literature

- Fiscal Theory of the Price Level. Cochrane (2022a) and Cochrane (2022b).
 - Analysis of multiple countries + more general debt instruments
 - NK model estimated to reproduce decompositions + Productivity shocks

Leeper (1991), Sims (1994), Cochrane (1998), Cochrane (2005), Sims (2011), Leeper and Leith (2016), Bassetto and Cui (2018), Cochrane (2022c), Brunnermeier et al. (2022).

- Monetary-Fiscal Interaction.
 - Cagan (1956), Sargent and Wallace (1981), Hall and Sargent (1997), Hall and Sargent (2011), Jiang et al. (2019), Corsetti et al. (2019), Sunder-Plassmann (2020), Du et al. (2020), Akhmadieva (2022)
- Empirical Finance (Decomposition of Returns)
 Campbell and Shiller (1988), Cochrane (1992), Campbell and Ammer (1993), Chen and Zhao (2009).

Fiscal Decomposition: The Valuation Equation

- **Environment with discrete time + single good (price** P_t) + households and government
- One-period nominal public bonds (price Q_t)
- **In the morning**, the government:
 - redeems bonds B_{t-1} for currency
 - announces real taxes s_t (payable in currency)
 - \circ announces sale of B_t new bonds (payable in currency)
- In the afternoon, households trade goods, purchase bonds, pay taxes
- Market clearing + No Money Holding M = 0:

$$B_{t-1} = P_t s_t + Q_t B_t$$

Fiscal Decomposition: The Valuation Equation

$$B_{t-1} = P_t s_t + Q_t B_t$$

- **Ex-post real discounting** $\beta_t = Q_t(P_{t+1}/P_t)$ $\beta_{t,t+k} = \prod_{\tau=t}^{t+k} \beta_{\tau}$
- Iterate law of motion forward:

$$\frac{B_{t-1}}{P_t} = \sum_{k=0}^{p} \beta_{t,t+k-1} s_{t+k} + \beta_{t,t+p} \frac{B_{t+p}}{P_{t+p+1}}$$

- Key Assumption: $\lim_{\tau \to \infty} \beta_{t,\tau} \frac{B_{\tau}}{P_{\tau+1}} = 0$
- Valuation equation of public debt:

$$\frac{B_{t-1}}{P_t} = \sum_{k=0}^{\infty} E_t \left[\beta_{t,t+k-1} S_{t+k} \right]$$

Fiscal Decomposition: In the Simplest Environment

- Nominal rate $1 + i_t = 1/Q_t$ and real interest $r_t = i_t E_t \pi_{t+1}$
- End-of-period real debt v_t

$$\underbrace{\frac{1}{\beta} \underbrace{v_{t-1} + \frac{\mathbf{v}}{\beta} \left(\mathbf{i}_{t-1} - \pi_{t} \right)}_{B_{t-1}/P_{t}} = \mathbf{S}_{t} + \mathbf{v}_{t} \qquad = \sum_{k=0}^{\infty} \beta^{k} E_{t} \mathbf{S}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1} \beta^{k} E_{t} \mathbf{r}_{t+k}}_{t+k}$$

Linearized valuation equation

■ Take innovations $\Delta E_t = E_t - E_{t-1}$

$$\Delta E_t \pi_t \; = \; -\frac{\beta}{v} \, \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} \; + \sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}$$

Fiscal Decomposition: In the Simplest Environment

- Nominal rate $1 + i_t = 1/Q_t$ and real interest $r_t = i_t E_t \pi_{t+1}$
- End-of-period real debt V_t

$$\underbrace{\frac{1}{\beta} \underbrace{v_{t-1} + \frac{\mathbf{v}}{\beta} \left(\mathbf{i}_{t-1} - \pi_t \right)}_{B_{t-1}/P_t} = \mathbf{S}_t + \mathbf{v}_t \qquad = \sum_{k=0}^{\infty} \beta^k \mathbf{E}_t \mathbf{S}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1} \beta^k \mathbf{E}_t \mathbf{r}_{t+k}$$

Linearized valuation equation

■ Take innovations $\Delta E_t = E_t - E_{t-1}$:

$$\Delta E_{t} \pi_{t} = -\frac{\beta}{v} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} s_{t+k} + \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} r_{t+k}$$

Fiscal Decomposition: Generalizing

- Growth
- Nominal, Real and Dollar debt
- Long-term debt

$$\frac{\textbf{Bond Prices} \times \textbf{Bonds}}{\textbf{Price Level}} = \sum_{t} \frac{\textbf{Surplus-to-GDP} \times \textbf{GDP}}{\textbf{Discounting}}$$

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \sum_{j} \delta_{j} \left(\mathbf{r} \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} - \pi_{j,t} \right) = \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{s}_{t+k} + \frac{\mathbf{v}}{\beta} \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{g}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j} \beta^{k} \mathbf{E}_{t} \mathbf{r}_{j,t+k}$$

Details

Fiscal Decomposition of Unexpected Inflation

Ex-post real return $r_{j,t} = rx_{j,t} + i_{j,t-1} + \Delta h_{j,t} - \pi_{j,t}$

$$\Delta E_t \pi_t = \underbrace{\left[\Delta E_t r x_t + \sum_{j \neq N} \frac{\delta_j}{\delta} \Delta E_t r_{j,t}\right]}_{} - \frac{\beta}{\delta v} \underbrace{\left[\sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} + \frac{v}{\beta} \sum_{k=0}^{\infty} \beta^k \Delta E_t g_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_j \beta^k \Delta E_t r_{j,t+k}\right]}_{}$$

Innovation to Bond Prices

Innovation to the Intrinsic Value of Debt

$$\equiv d_1(rx) + d_1(r_0) - d_1(s) - d_1(g) + d_1(r)$$

Variance decomposition.

$$\mathsf{var}\left[\Delta E_t \pi_t\right] = \mathsf{cov}_{\pi}\left[d_1(\mathit{rx})\right] + \mathsf{cov}_{\pi}\left[d_1(\mathit{r_0})\right] - \mathsf{cov}_{\pi}\left[d_1(s)\right] - \mathsf{cov}_{\pi}\left[d_1(g)\right] + \mathsf{cov}_{\pi}\left[d_1(r)\right]$$

Bayesian-VAR: Data and Model

■ Annual data on observables \tilde{x}_t

$$egin{aligned} \textit{x}_t^{ ext{OBS}} = \left[egin{array}{ll} i_t & (ext{Nominal Interest}) \\ \pi_t & (ext{CPI Inflation}) \\ \emph{v}_t^b & (ext{Par-Value Debt-to-GDP}) \\ \emph{g}_t & (ext{GDP growth}) \\ \Delta h_t & (ext{Chg. Real Exchange Rate}) \end{array}
ight] \end{aligned}$$

- 25 countries (samples starting at 1945, 1960, 1975, 1998)
- General VAR

$$X_t = AX_{t-1} + Ke_t$$

■ Decompose $X'_t = [x_t^{OBS'} x_t^{NOT'}]$

$$X_t = \left[\begin{array}{c} x_t^{OBS} \\ x_t^{NOT} \end{array} \right] = \left[\begin{array}{cc} a & 0 \\ b & c \end{array} \right] \left[\begin{array}{c} x_{t-1}^{OBS} \\ x_{t-1}^{NOT} \end{array} \right] + \left[\begin{array}{c} I \\ k \end{array} \right] e_t$$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian-Regression

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4 No data on bond returns Geometric Term Structure
 - Geometric maturity structure: $rx_{j,t} + i_{j,t-1} = (\omega_j \beta)q_{j,t} q_{j,t-1}$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a \, x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian-Regression

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - Define surplus from the law of motion: $\mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} i_{i,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure: $rx_{j,t} + i_{j,t-1} = (\omega_j \beta) q_{j,t} q_{j,t-1}$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian-Regression

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - Define surplus from the law of motion: $\mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + rac{v}{\beta} \sum_j \delta_j \left(rx_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure: $rx_{j,t} + i_{j,t-1} = (\omega_j \beta)q_{j,t} q_{j,t-1}$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian-Regression

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - Define surplus from the law of motion: $\mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure: $rx_{j,t} + i_{j,t-1} = (\omega_j \beta) q_{j,t} q_{j,t-1}$

Bayesian-VAR: Variance Decomposition

Proposition. The variance decomposition

$$1 = \frac{\mathsf{cov}_{\pi}\bigg[d_1(rx)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} + \frac{\mathsf{cov}_{\pi}\bigg[d_1(r_0)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} - \frac{\mathsf{cov}_{\pi}\bigg[d_1(s)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} - \frac{\mathsf{cov}_{\pi}\bigg[d_1(g)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} + \frac{\mathsf{cov}_{\pi}\bigg[d_1(r)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]}$$

is equivalent to the innovations decomposition applied to VAR shock $Proj(e \mid \Delta E_t \pi_t = 1)$

$$1 = \Delta E_t \pi_t \equiv d_1(rx) + d_1(r_0) - d_1(s) - d_1(g) + d_1(r)$$

"Given 1% unexpected inflation, how do we change our nowcast/forecast of the surplus, discounting and bond prices?"

Bayesian-VAR: Variance Decomposition

Country	$\Delta E_t \pi_t =$	ΔE_t (Bor	nd Prices)	$-\Delta E_t$ (Discounted Surpluses)			Country	$\Delta E_t \pi_t = $	ΔE_t (Bond Prices)		$-\Delta E_{t}$ (Discounted Surpluses)		
		$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)		İ	$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)
United States	1	* 0.03	* -0.78	0.57	0.23	0.96	1998 Sample		0.26	* 0.22		4.05	400
1960 Sample							- Brazil Chile	1	-0.26 -3.80	* -0.22 -1.33	-1.46 8.95	1.05 -5.71	1.89 2.88
Canada	1	* -0.11	* -1.59	0.62	* 1.22	0.86	Colombia	1	1.51	* -0.96	1.39	-1.09	0.15
Denmark	1	* -0.29	-0.30	0.42	-0.04	1.21	Czech Republic	1	* -0.16	* -0.37	-2.31	2.42	1.42
Japan	1	0	* -0.52	* 1.60	-0.38	0.30	Hungary	1	* -0.57	* -0.93	-0.98	1.60	1.88
Norway	1	* -0.01	* -0.36	0.60	0.47	0.30	India	1	* 0.17	* -0.46	1.54	0.05	-0.30
Sweden	1	-0.15	* -0.93	-0.34	* 0.98	* 1.42	Indonesia	1	* -2.59	* -1.07	1.69	* 2.61	0.35
United Kingdom	1	* 0.52	* -0.73	* 2.89	* 0.97	* -2.65	Israel	1	-0.06	* -0.78	-0.55	* 1.51	0.88
							- Mexico	1	-0.02	* -0.74	1.41	0.03	0.32
1973 Sample		4					Poland	1	* -0.45	* -1.15	0.87	-0.39	* 2.11
Australia	1	* 0.07	* -0.76	* 2.09	0.66	-1.06	Romania	1	-0.40	* -0.96	2.24	0.42	-0.31
New Zealand	1	-0.10	* -0.86	0.40	* 0.87	0.68	South Africa	1	0.36	* -0.51	1.58	0.25	-0.68
South Korea	1	-0.01	* -0.45	* 1.91	0.17	-0.62	Turkey	1	0.37	* -0.37	-1.18	-0.15	* 2.33
Switzerland	1	0	* -0.69	0.90	* 0.91	-0.12	Ukraine	1	0	* -0.77	0.65	0.41	* 0.70

Advanced Markets

Emerging Markets

Decomposition 2

Bayesian-VAR: Variance Decomposition - Takeaways

 Unexpected inflation accounted for by variation in the intrinsic value of debt

- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Fiscal roots of inflation do not imply connection between fiscal policy and unexpected inflation
- Nominal bond price dynamics reduce unexpecte inflation variance 25/25
 - Effects of monetary policy!

Bayesian-VAR: Variance Decomposition - Takeaways

Figure: IRF - Brazil

- Unexpected inflation accounted for by variation in the intrinsic value of debt
- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Fiscal roots of inflation do not imply connection between fiscal policy and unexpected inflation
- Nominal bond price dynamics reduce unexpected inflation variance 25/25
 - Effects of monetary policy!

Bayesian-VAR: "Aggregate Demand" Recession

- "Aggregate demand" recessions (Great Recession in 2008) feature:
 - Low inflation
 - Low growth
 - Fiscal deficits (often)
- Does that deny the fiscal sources of inflation?
- Where does unexpected (dis)inflation come from?
- Scenario:

$$\Delta E_t g_t = -1$$
 $\Delta E_t \pi_t = -0.5$

VAR Shock: Proj($e \mid \Delta E_t g_t = -1, \ \Delta E_t \pi_t = -0.5$)

Bayesian-VAR: "Aggregate Demand" Recession

Country	$\Delta E_t \pi_t =$	ΔE _t (Bon	d Prices)	−ΔE _t (Di	scounted S	urpluses)	Country	$\Delta E_t \pi_t = $	ΔE_t (Bond Prices)		$-\Delta E_{t}$ (Discounted Surpluses)		
	İ	$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)			$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)
United States	-0.5	* 0.03	* 1.00	-0.65	* 1.32	* -2.21	1998 Sample Brazil	-0.5	* 0.37	0.06	1.87	0.13	-2.39
1960 Sample							Chile	-0.5	* 15.78	* 2.94	-30.50	30.54	-19.26
Canada	-0.5	* 0.14	* 2.21	-0.45	0.30	* -2.70	Colombia	-0.5	1.86	* 0.67	-10.90	* 7.57	0.31
Denmark	-0.5	* 0.20	* 0.86	-2.64	* 2.75	-1.67	Czech Republic	-0.5	* 0.37	* 0.61	-0.07	0.25	-1.65
Japan	-0.5	0	* 0.83	* -1.51	* 1.64	* -1.46	Hungary	-0.5	* 0.99	* 0.60	10.82	-5.29	-7.63
Norway	-0.5	0	* 0.63	-1.36	* 1.72	-1.49	India	-0.5	-0.03	0.13	-1.16	0.71	-0.15
Sweden	-0.5	* 0.41	* 1.22	-0.65	0.87	* -2.35	Indonesia	-0.5	* 8.23	-0.55	* -11.24	1.42	1.64
United Kingdom	-0.5	0.11	* 2.54	-2.20	0.73	-1.68	Israel	-0.5	* 1.79	0.37	-3.18	1.17	-0.65
	<u> </u>						Mexico	-0.5	* 1.69	* 0.81	* -4.56	* 1.94	-0.38
1973 Sample							Poland	-0.5	* 0.87	* 1.00	-0.14	1.30	* -3.53
Australia	-0.5	0.06	* 1.54	-1.46	0.66	-1.31	Romania	-0.5	* 2.08	0.21	* -8.16	2.05	3.31
New Zealand	-0.5	* 0.26	* 0.87	-0.84	0.63	-1.42	South Africa	-0.5	-0.10	0.35	* -30.02	* 11.15	* 18.13
South Korea	-0.5	* 0.10	* 0.70	* -3.17	* 1.74	0.14	Turkey	-0.5	* 0.99	* 0.23	0.64	0.52	* -2.88
Switzerland	-0.5	0	* 1.18	* -0.93	-0.07	-0.67	Ukraine	-0.5	0	-0.68	-3.22	* 1.92	1.48

Advanced Markets

Emerging Markets

Bayesian-VAR: "Aggregate Demand" Recession - Takeaways

Figure: IRF - United States

- Lower inflation follows from...
 - lower discounting (monetary policy) in 19/25
 - larger surplus-GDP ratios, current or in the future in 22/25
- COVID: what if governments reacted to a recession by credibly reducing {s} permanently?
- Direction of causality?

Bayesian-VAR: "Aggregate Demand" Recession - Takeaways

Figure: IRF - United States

- Lower inflation follows from...
 - lower discounting (monetary policy) in 19/25
 - larger surplus-GDP ratios, current or in the future in 22/25
- COVID: what if governments reacted to a recession by credibly reducing {s} permanently?
- Direction of causality?

The New-Keynesian Model: Setup

- B-VAR decompositions not structural: all shocks are reduced-form
- Theory: How far do we need to go? Not much!
- Two-country NK mode
 - \circ Home economy with $n \to 0$ households and firms (small and open)
 - \circ Foreign economy with $1-n \to 1$ households and firms (large and "closed")
- The Standard. Intertemporal substitution + Calvo rigidity
- **The New.** Production function $A_t N = \mathcal{T}_t A_t N$ (Home), $A_t^* N = \mathcal{T}_t A_t^* N$ (Foreign)

(Trend component)
$$\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$$

(AR(1) component) $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$
 $a_t^* = \rho_a a_{t-1}^* + \varepsilon_{a,t}^*$

The New-Keynesian Model: Setup

- B-VAR decompositions not structural: all shocks are reduced-form
- Theory: How far do we need to go? Not much!
- Two-country NK model:
 - Home economy with $n \to 0$ households and firms (small and open)
 - ∘ Foreign economy with $1 n \rightarrow 1$ households and firms (large and "closed")
- The Standard. Intertemporal substitution + Calvo rigidity
- **The New.** Production function $A_t N = \mathcal{T}_t A_t N$ (Home), $A_t^* N = \mathcal{T}_t A_t^* N$ (Foreign)

(Trend component)
$$\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$$

(AR(1) component) $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$
 $a_t^* = \rho_a a_{t-1}^* + \varepsilon_{a,t}^*$

The New-Keynesian Model: Setup

- B-VAR decompositions not structural: all shocks are reduced-form
- Theory: How far do we need to go? Not much!
- Two-country NK model:
 - Home economy with $n \to 0$ households and firms (small and open)
 - Foreign economy with $1 n \rightarrow 1$ households and firms (large and "closed")
- The Standard. Intertemporal substitution + Calvo rigidity
- **The New.** Production function $A_t N = \mathcal{T}_t A_t N$ (Home), $A_t^* N = \mathcal{T}_t A_t^* N$ (Foreign)

$$\begin{array}{ll} \text{(Trend component)} & \log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t} \\ \text{(AR(1) component)} & a_t & = \rho_a a_{t-1} + \varepsilon_{a,t} \\ & a_t^* & = \rho_a a_{t-1}^* + \varepsilon_{a,t}^* \end{array}$$

The New-Keynesian Model: The Foreign, Closed Economy

Private Sector

$$y_{t}^{*} = E_{t}y_{t+1}^{*} - \gamma \left[i_{t}^{*} - E_{t}\pi_{t+1}^{*} \right] + E_{t}u_{g,t+1}$$

$$\pi_{t}^{*} = \beta E_{t}\pi_{t+1}^{*} + \kappa y_{t}^{*} - \kappa_{a} a_{t}^{*}$$

$$g_{t}^{*} = y_{t}^{*} - y_{t-1}^{*} + u_{g,t}$$

Why Trend? Growth

- Unexpected inflation indeterminacy? FTPL.
- Monetary and Fiscal Policy

$$\begin{split} & i_{t}^{*} = \phi_{\pi} \; \pi_{t}^{*} + \phi_{g} \; g_{t}^{*} + \varepsilon_{i,t}^{*} \\ & s_{t}^{*} = \rho_{s} \; s_{t-1}^{*} + \tau_{\pi} \; \pi_{t}^{*} + \tau_{g} \; g_{t}^{*} + \varepsilon_{s,t}^{*} \end{split}$$

GMM for US moments

$$\mathsf{Min}_{\Psi} \quad {}_{\alpha_{1}} \| \mathcal{D}_{\mathsf{VAR}} - \mathcal{D}_{\mathsf{NK}}(\Psi) \| + {}_{\alpha_{2}} \| \mathcal{M} - \mathcal{M}_{\mathsf{NK}}(\Psi) \| \qquad \text{s.t. } \Psi \in \Theta$$

Parameters

The New-Keynesian Model: Reproducing the Variance Decomposition

Result. AR(1) productivity shocks $\varepsilon_{a,t}$ alone reproduce the **variance decomposition** with positive contributions from surplus-to-output, growth and real interest terms

Target: United States. Only AR(1) productivity shocks.

The New-Keynesian Model: Reproducing the Variance Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- Key Ingredients
 - Persistent shock: $\rho_a = 0.98$
 - Countercyclical deficits: $\tau_a = 0.7$
 - Strong Taylor: $\phi_{\pi} = 0.8$
- What is the story?
 - Low productivity leads to a recession

Government raises deficit to fight recession

Monetary policy raises nominal interest

Marginal Costs

vs B-VAR IRF

Figure: IRF to $\Delta E_t \pi_t = 1$ ($\varepsilon_{a,t} = -1.15$)

The New-Keynesian Model: Reproducing the Variance Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- Key Ingredients
 - Persistent shock: $\rho_a = 0.98$
 - Countercyclical deficits: $\tau_a = 0.7$
 - Strong Taylor: $\phi_{\pi} = 0.8$
- What is the story?
 - Low productivity leads to a recession

Government raises deficit to fight recession

Monetary policy raises nominal interest

Marginal Costs

vs B-VAR IRF

Figure: IRF to
$$\Delta E_t \pi_t = 1$$
 ($\varepsilon_{a,t} = -1.15$)

$$\Delta E_t g_t = -1$$
 $\Delta E_t \pi_t = -0.5$

- Result. In the absence of trend shocks, NK model fails to replicate the variance and recession decompositions. Policy shocks do not help.
- Result. The model with trend shocks reproduces the recession decomposition without policy shocks.

Target: United States Structural Shocks

$$\Delta E_t g_t = -1$$
 $\Delta E_t \pi_t = -0.5$

- Result. In the absence of trend shocks, NK model fails to replicate the variance and recession decompositions. Policy shocks do not help.
- Result. The model with trend shocks reproduces the recession decomposition without policy shocks.

Target: United States Structural Shocks

$$\Delta E_t q_t = -1$$
 $\Delta E_t \pi_t = -0.5$

- Result. In the absence of trend shocks, NK model fails to replicate the variance and recession decompositions. Policy shocks do not help.
- Result. The model with trend shocks reproduces the recession decomposition without policy shocks.

Target: United States Structural Shocks

$$-0.5 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- Kev Ingredients
 - Quiet monetary shocks: $\sigma_i = 0.05$
 - Trend + AR(1) shocks: $\sigma_0 = 2.6$, $\sigma_0 = 1.4$
 - Strong Taylor: $\phi_{\pi} = 0.93$
- Intuition
 - AR(1) shocks reproduce variance decomposition
 - Monetary policy shocks generate wrong d(rx)
- Recession ($\varepsilon_a = 0.5$, $\varepsilon_a = -1.3$)
 - Recession and lower interest

$$d(g)>0 \qquad d(rx)>0$$

- Low detrended marginal costs: $\pi_t < E_t \pi_{t+1}$
- Low/increasing inflation + Taylor guarantee low real interest

$$r_t = i_t - E_t \pi_{t+1} \approx \pi_t - E_t \pi_{t+1} < 0$$

Figure: IRF to
$$\Delta E_t g_t = -$$
1, $\Delta E_t \pi_t = -$ 0.5

Marginal Costs vs B-VAR IRF

The New-Keynesian Model: The Open Economy

$$y_{t} = E_{t}y_{t+1} - \gamma \left[i_{t} - E_{t}\pi_{t+1} + \alpha \bar{\omega} E_{t}\Delta z_{t+1}\right] + E_{t}u_{g,t+1}$$

$$\pi_{H,t} = \beta E_{t}\pi_{H,t+1} + \kappa y_{t} - \kappa_{a} a_{t} - \kappa_{z} z_{t}$$

$$y_{t} = y_{t}^{*} + \gamma_{\alpha} z_{t}$$

$$h_{t} = (1 - \alpha) z_{t}$$

$$\pi_{t} = \pi_{H,t} + \alpha \Delta z_{t}$$

- Home: Open trade; Complete markets
- Same parameters of the US estimation
- Same combination of Home productivity shocks:
 - Variance decomposition ✓
 - Recession decomposition ✓

Foreign Policy Shocks

New Zealand Decomp

Figure: Productivity Shock in Home Foreign

The New-Keynesian Model: The Open Economy

$$y_t = E_t y_{t+1} - \gamma \left[i_t - E_t \pi_{t+1} + \alpha \bar{\omega} E_t \Delta z_{t+1} \right] + E_t u_{g,t+1}$$

$$\pi_{H,t} = \beta E_t \pi_{H,t+1} + \kappa y_t - \kappa_a a_t - \kappa_z z_t$$

$$y_t = y_t^* + \gamma_\alpha z_t$$

$$h_t = (1 - \alpha) z_t$$

$$\pi_t = \pi_{H,t} + \alpha \Delta z_t$$

- **Home**: Open trade: Complete markets
- Same parameters of the US estimation
- Same combination of Home productivity shocks:
 - Variance decomposition ✓
 - Recession decomposition ✓

Foreign Policy Shocks

New Zealand Decomp

Figure: Productivity Shock in Home Foreign

The New-Keynesian Model: The Open Economy

$$y_t = E_t y_{t+1} - \gamma \left[i_t - E_t \pi_{t+1} + \alpha \bar{\omega} E_t \Delta z_{t+1} \right] + E_t u_{g,t+1}$$

$$\pi_{H,t} = \beta E_t \pi_{H,t+1} + \kappa y_t - \kappa_a a_t - \kappa_z z_t$$

$$y_t = y_t^* + \gamma_\alpha z_t$$

$$h_t = (1 - \alpha) z_t$$

$$\pi_t = \pi_{H,t} + \alpha \Delta z_t$$

- **Home**: Open trade: Complete markets
- Same parameters of the US estimation
- Same combination of Home productivity shocks:
 - Variance decomposition ✓
 - Recession decomposition ✓

Foreign Policy Shocks New Zealand Decomp

Figure: Productivity Shock in Home Foreign

The New-Keynesian Model: Variance Decomposition and Policy Rules

$$1 = \Delta E_t \pi_t = d(BP) - d(s) - d(g) + d(r)$$

- Can we match variance decomposition of different countries?
- Vary policy parameters
- Keep other structural parameters constant

$$i_t = \phi_\pi \ \pi_t + \phi_g \ g_t + \varepsilon_{i,t}$$

 $S_t = \rho_S \ S_{t-1} + \tau_\pi \ \pi_t + \tau_g \ g_t + \varepsilon_{s,t}$

	N	6		A
Parameters	New Zealand	Sweden	Denmark	Australia
A. Variance De	composition - Val	ue of Debt Contri	bution	
-d(s)	0.40 (0.66)	-0.34 (0.04)		2.09 (2.04)
-d(g)	0.87 (0.63)	0.98 (1.03)		0.66 (0.97)
d(r)	0.68 (0.90)	1.42 (1.10)	1.21 (1.17)	-1.06 (-0.52)
B. Estimated F	arameters			
ρa	0.84			
ρg	0.27			
ϕ_{π}	0.93	0.99	0.96	0.91
$\phi oldsymbol{g}$	0.61	0.63	0.71	1
ρ_{S}	0	0.26	0.61	0.05
τ_{π}	0.25	0.01	-0.02	-0.03
τ_g	0.15	-0.10	-0.13	0.25
σ_i	0.05	0	0	0.51
σ_{S}	0.08	0	0.12	0.50
σa	1.41			
σg	2.62			
C. Productivity	Shocks Projected	by $\Delta E_t \pi_t = 1$		
εa.t	-0.35	-0.48	0.12	-0.74
$arepsilon^{arepsilon}_{arepsilon^*_{m{a},m{t}}}$	-0.77	-0.82	-0.06	-0.08
εa,t	-0.61	-0.76	-1.49	-0.16

Variance Decomps and Policy Rules

Conclusion

- lacktriangle Valuation equation of public debt \Longrightarrow decomposition of unexpected inflation
- B-VAR based estimation of two versions of the decomposition
- In most countries:
 - Variance of unexpected inflation stems from discounted surpluses (all of its components)
 - Recessions: low inflation follow from low discounting and "not so expansionary" fiscal policy
- Stylized New-Keynesian models reproduce VAR decompositions
 - Relevance of productivity shocks
 - Relevance of policy rules

References

Economic Dynamics and Control, 89:5-22.

Akhmadieva, V. (2022). Fiscal adjustment in a panel of countries 1870–2016. *Journal of Comparative Economics*, 50(2):555–568.

Bassetto, M. and Cui, W. (2018). The fiscal theory of the price level in a world of low interest rates. *Journal of*

Brunnermeier, M. K., Merkel, S., and Sannikov, Y. (2022). The Fiscal Theory of the Price Level With a Bubble. Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In *Studies in the Quantity Theory of Money*, pages 25–117. University of Chicago Press, milton friedman edition.

Campbell, J. Y. and Ammer, J. (1993). What Moves the Stock and Bond Markets? A Variance Decomposition for

Long-Term Asset Returns. *The Journal of Finance*, 48(1):3–37.

Campbell, J. Y. and Shiller, R. J. (1988). The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. *The Review of Financial Studies*. 1(3):195–228.

Chen, L. and Zhao, X. (2009). Return Decomposition. *Review of Financial Studies*, 22(12):5213–5249.

Cochrane, J. H. (1992). Explaining the Variance of Price–Dividend Ratios. *The Review of Financial Studies*, 5(2):243–280.

Cochrane, J. H. (1998). A Frictionless View of U.S. Inflation. *NBER Macroeconomics Annual*. 13:323–384.

Cochrane, J. H. (2005). Money as stock. *Journal of Monetary Economics*, 52(3):501–528.

Cochrane, J. H. (2022a). The fiscal roots of inflation. *Review of Economic Dynamics*, 45:22–40.

Cochrane, J. H. (2022b). A fiscal theory of monetary policy with partially-repaid long-term debt. *Review of Economic Dynamics*, 45:1–21.

Cochrane, J. H. (2022c). The Fiscal Theory of the Price Level.

Appendix: Debt Instruments and Growth

Return

- **Real market value** debt-to-GDP v_t , surplus-to-GDP s_t and GDP growth q_t (stationarity!)
- Bonds (j, n) promisses one unit of currency j after n periods
 - Nominal bonds
 - Real bonds (currency denomination = final goods)
 - US Dollar bonds

Constant structure $\{\delta_i\}$, $\{\omega_i^n\}$

- Bond price $Q_{j,t}^n$, excess return $rx_{j,t}$ 1+ return_{j,t} = 1 + $rx_{j,t} + i_{j,t-1} = \frac{\sum_n Q_{j,t}^{n-1} B_{j,t-1}^n}{\sum_n Q_{j,t-1}^n B_{j,t-1}^n}$ (one-period bonds $\implies rx = 0$)
- Debt law of motion:

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \left[-\mathbf{g}_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta h_{j,t} - \pi_{j,t} \right) \right] = \mathbf{v}_t + \mathbf{s}_t$$

Appendix: Public Debt Currency Denomination

Symbol	Description	Nominal Debt	Real Debt	Dollar Debt
j	Index Symbol	N	R	D
	Notation	δ , ω	$\delta_{\it R}$, $\omega_{\it R}$	$\delta_{ extsf{D}}$, $\omega_{ extsf{D}}$
——————————————————————————————————————	Price per Good	Р	1	P _t ^{US}
$\dot{\mathcal{E}_{i}}$	Nominal Exchange Rate	1	Р	Dollar NER
H_j	Real Exchange Rate	1	1	Dollar RER
π_{i}	Log Variation in Price	π	0	$\pi_t^{\sf US}$
Δh_j	Log Real Depreciation	0	0	Δh_t

Table: Public Debt Denomination

Appendix: Public Finances Model

Appendix: Geometric Term Structure

Return Decomposition 2

■ To each currency portfolio j, fixed geometric maturity structure:

$$B_{j,t}^n = \omega_j B_{j,t}^{n-1}$$

■ Total return on currency-*j* portfolio:

$$1+r\mathsf{x}_{j,t}+\mathsf{i}_{j,t-1}=\frac{1+\omega_jQ_{j,t}}{Q_{i,t-1}}\qquad\Longrightarrow\qquad \boxed{\mathsf{rx}_{j,t}+\mathsf{i}_{j,t-1}=(\omega_j\beta)q_{j,t}-q_{j,t-1}}$$

Assume constant risk premia $E_t r x_{i,t+1} = 0$

$$\boxed{\mathbf{q}_{j,t} = (\omega_j \beta) E_t q_{j,t+1} - i_{j,t}} = -\sum_{k=0}^{\infty} (\omega_j \beta)^k E_t i_{j,t+k}$$

Appendix: Second Decomposition

Return

■ From geometric maturity structure Geometric Term Structure

$$\Delta E_t r x_{j,t} = -\sum_{i=0}^{\infty} (\omega_j \beta)^k \left[\Delta E_t r_{j,t+k} + \Delta E_t \pi_{j,t+k} - \Delta E_t \Delta h_{j,t+k} \right]$$

Replace on the original fiscal decomposition

Innovation to Nominal Variables

$$\Delta E_{t}\pi_{t} = \boxed{-\sum_{k=1}^{\infty} (\omega\beta)^{k} \Delta E_{t}\pi_{t+k} - \frac{\delta_{D}}{\delta} \sum_{k=0}^{\infty} (\omega_{D}\beta)^{k} \Delta E_{t}\pi_{t+k}^{US}} \\ - \frac{\beta}{\delta v} \boxed{\sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}S_{t+k} + \frac{v}{\beta} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}g_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j}\beta^{k} (1 - \omega^{k}) \Delta E_{t}r_{j,t+k} - \frac{\delta_{D}v}{\beta} \sum_{k=0}^{\infty} (\omega_{D}\beta)^{k} \Delta E_{t}\Delta h_{t+k}} }$$
Innovation to Real Variables
$$\equiv -d_{2}(\pi) - d_{2}(\pi^{US}) - d_{2}(s) - d_{2}(a) + d_{2}(r) + d_{2}(\Delta h)$$

Appendix: Second Decomposition

Return

Country	$\Delta E_t \pi_t =$		$-\Delta E_t$ (Futi	ire Inflation)			$\pm \Delta E_t$ (Real	Variables)				
			$-d_2(\pi)$	$-d_2(\pi^{US})$	I	$-d_2(s)$	$-d_2(g)$	$d_2(r)$	$d_2(\Delta h)$			
United States	1		*-1.12		ı	0.57	0.23	*1.32	0			
Advanced - 1960 Sample												
Canada	1	1	*-1.53	*-0.07		0.62	*1.22	0.78	-0.03			
Denmark	1		*-0.49	*-0.20		0.42	-0.04	1.23	0.08			
Japan	1		*-1.14	0		*1.60	-0.38	*0.91	(
Norway	1	1	*-0.70	0		0.60	0.47	0.64	0			
Sweden	1	1	*-1.02	-0.10		-0.34	*0.98	*1.54	-0.07			
United Kingdom	1		*-2.34	0		*2.89	*0.97	-0.52	(
Advanced - 1973 Sample												
Australia	1	1	*-1.47	0		*2.09	*0.66	-0.27	(
New Zealand	1		*-1.02	*-0.08	1	0.40	*0.87	1.04	-0.21			
South Korea	1		*-0.74	*-0.03	1	*1.91	0.17	-0.33	0.01			
Switzerland	1	1	*-0.79	0		0.90	*0.91	-0.02	0			

Country	$\Delta E_t \pi_t =$	$-\Delta E_t$ (Futt	are Inflation)			$\pm \Delta E_t$ (Real	Variables)			
		$-d_2(\pi)$	$-d_2(\pi^{US})$	1	$-d_2(s)$	$-d_{2}(g)$	$d_2(g)$ $d_2(r)$ $d_3(r)$	$d_2(\Delta h)$		
Emerging - 1998 Sample										
Brazil	1	*-0.11	0	- 1	-1.46	1.05	1.46	0.07		
Chile	1	-0.76	-2.75		8.95	-5.71	-0.35	1.62		
Colombia	1	*-0.61	-0.04		1.39	-1.09	0.02	1.34		
Czech Republic	1	-0.02	-0.05		-2.31	2.42	0.98	-0.03		
Hungary	1	*-0.69	*-0.15		-0.98	1.60	1.83	*-0.61		
India	1	*-1.05	*0.09		1.54	0.05	0.41	-0.04		
Indonesia	1	*-0.79	*-1.33		1.69	*2.61	0.26	-1.45		
Israel	1	*-0.54	0.10		-0.55	*1.51	0.61	-0.12		
Mexico	1	*-0.60	0.17		1.41	0.03	0.52	-0.52		
Poland	1	*-0.59	*-0.21		0.87	-0.39	*1.43	-0.11		
Romania	1	*-1.14	*-0.53		2.24	0.42	-0.54	0.55		
South Africa	1	0.05	-0.01		1.58	0.25	-0.79	-0.07		
Turkey	1	*-0.76	*-0.40		-1.18	-0.15	*3.35	0.14		
Ukraine	1	-0.29	0		0.65	*0.41	0.23	0		

(a) Advanced Economies

(b) Emerging Economies

Appendix: NK Model Parameters

Appendix: Why Trend Shocks? The Growth Component

Appendix: Estimated Moments

NK Simple NK Full

Appendix: Simple Model - US Data vs Model

Appendix: Marginal Costs

NK Simple

- AR(1) Productivity Shock
 - High marginal costs + strong Taylor rule ($\phi_{\pi} \approx$ 1):

$$i_t \approx \underbrace{\pi_t > E_t \pi_{t+1}}_{m_{t+2}} \implies r_t = i_t - E_t \pi_{t+1} > 0$$

(b) $-a_t$ or Mg. Cost at fixed wages

Appendix: NK Open - Foreign Policy Shocks

Appendix: NK Open - New Zealand Decomposition

Data: New Zealand - Variance Recession

Appendix: NK Open - New Zealand Decomposition

Data: New Zealand - Variance Recession