Python Project Mall

May 5, 2023

```
[1]: import pandas as pd # Data manipulation
     import seaborn as sns # Statistical visualization library
     import matplotlib.pyplot as plt # Another visualization library
     from sklearn.cluster import KMeans # For create clusters
     import warnings
     warnings.filterwarnings("ignore")
[2]: df = pd.read_csv("C:/Users/Drac_/OneDrive/Desktop/Python_Project_Data/
      ⇔Mall_Customers.csv")
[3]: df.head()
[3]:
       CustomerID Gender
                                 Annual Income (k$)
                                                     Spending Score (1-100)
                            Age
                 1
                      Male
                             19
                                                 15
                                                                          39
     0
                      Male
     1
                             21
                                                 15
                                                                          81
                 3 Female
                             20
                                                 16
                                                                          6
     3
                 4 Female
                             23
                                                 16
                                                                          77
                 5 Female
                                                                          40
                             31
                                                 17
        Univariate Analysis
```

```
[4]: df.describe()
```

[4]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
С	count	200.000000	200.000000	200.000000	200.000000
m	nean	100.500000	38.850000	60.560000	50.200000
s	std	57.879185	13.969007	26.264721	25.823522
m	nin	1.000000	18.000000	15.000000	1.000000
2	25%	50.750000	28.750000	41.500000	34.750000
5	50%	100.500000	36.000000	61.500000	50.000000
7	75%	150.250000	49.000000	78.000000	73.000000
m	nax	200.000000	70.000000	137.000000	99.000000

- [5]: sns.displot(df["Annual Income (k\$)"])
- [5]: <seaborn.axisgrid.FacetGrid at 0x2146169b0a0>

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>


```
[8]: sns.kdeplot(x=df["Annual Income (k$)"], shade=True, hue=df["Gender"]);
```



```
[9]: columns = ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
for i in columns:
    plt.figure()
    sns.kdeplot(x=df[i],shade=True,hue=df["Gender"]);
```



```
[10]: columns = ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
for i in columns:
    plt.figure()
    sns.boxplot(data=df,x="Gender",y=df[i]);
```



```
[11]: df["Gender"].value_counts(normalize=True)
```

[11]: Female 0.56 Male 0.44

Name: Gender, dtype: float64

2 Bivariate Analysis

```
[12]: sns.scatterplot(data=df, x="Annual Income (k$)", y='Spending Score (1-100)')
```

[12]: <Axes: xlabel='Annual Income (k\$)', ylabel='Spending Score (1-100)'>


```
[13]: #df=df.drop("CustomerID",axis=1) <- Don't need to run this again sns.pairplot(df, hue="Gender")
```

[13]: <seaborn.axisgrid.PairGrid at 0x21462f8e620>


```
[14]: df.groupby(["Gender"])["Age", "Annual Income (k$)",
             "Spending Score (1-100)"].mean()
[14]:
                         Annual Income (k$) Spending Score (1-100)
                    Age
      Gender
      Female
              38.098214
                                   59.250000
                                                            51.526786
                                   62.227273
      Male
              39.806818
                                                            48.511364
[15]: df.corr() # <- Correlation function</pre>
[15]:
                                                Age Annual Income (k$)
                               CustomerID
      CustomerID
                                 1.000000 -0.026763
                                                                0.977548
                                -0.026763 1.000000
                                                               -0.012398
      Age
      Annual Income (k$)
                                                                1.000000
                                 0.977548 -0.012398
      Spending Score (1-100)
                                0.013835 -0.327227
                                                                0.009903
```

```
Spending Score (1-100)
CustomerID 0.013835
Age -0.327227
Annual Income (k$) 0.009903
Spending Score (1-100) 1.000000
```

```
[16]: sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
```

[16]: <Axes: >

3 Clustering - Univariate, Bivariate, Multivariate

```
[68]: clustering1 = KMeans(n_clusters=3)
[69]: clustering1.fit(df[["Annual Income (k$)"]])
[69]: KMeans(n_clusters=3)
```

```
[70]: clustering1.labels_
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2])
[71]: df["Income Cluster"] = clustering1.labels
   df.head()
[71]:
     CustomerID Gender
                Age
                   Annual Income (k$)
                               Spending Score (1-100)
             Male
                 19
                             15
                                           39
          2
             Male
   1
                 21
                             15
                                           81
   2
          3 Female
                 20
                             16
                                            6
          4 Female
                                           77
   3
                 23
                             16
          5 Female
                 31
                             17
                                           40
     Income Cluster
   0
   1
            1
   2
            1
   3
            1
            1
[72]: df["Income Cluster"].value_counts()
[72]: 0
      90
   1
      74
   2
      36
   Name: Income Cluster, dtype: int64
[73]: clustering1.inertia_ #Inertia represents is the distance between centroids
[73]: 23517.33093093093
[74]: intertia_scores=[]
   for i in range(1,11):
     kmeans = KMeans(n_clusters=i)
     kmeans.fit(df[["Annual Income (k$)"]])
     intertia_scores.append(kmeans.inertia_)
[75]: intertia_scores
```

```
[75]: [137277.280000000003,
48660.88888888888,
23517.33093093093,
13278.112713472487,
8481.496190476191,
5050.9047619047615,
3976.358363858364,
2822.499694749695,
2173.287445887446,
1859.0235042735042]
```

[76]: plt.plot(range(1,11),intertia_scores)

[76]: [<matplotlib.lines.Line2D at 0x2146930a800>]


```
[78]: df.groupby("Income Cluster")['Age', 'Annual Income (k$)', 'Spending Score
       [78]:
                           Age Annual Income (k$) Spending Score (1-100)
      Income Cluster
                      38.722222
                                          67.088889
                                                                  50.000000
                      39.500000
      1
                                          33.486486
                                                                  50.229730
      2
                     37.833333
                                          99.888889
                                                                  50.638889
[79]: #Bivariate Clustering
[84]: clustering2 = KMeans(n_clusters=5)
      clustering2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
      df["Spending and Income Cluster"] = clustering2.labels_
      df.head()
[84]:
        CustomerID Gender
                            Age
                                Annual Income (k$)
                                                     Spending Score (1-100) \
                      Male
                  1
                             19
                                                  15
                      Male
      1
                 2
                             21
                                                  15
                                                                          81
      2
                 3 Female
                              20
                                                  16
                                                                           6
                 4 Female
      3
                             23
                                                  16
                                                                          77
                 5 Female
                             31
                                                  17
                                                                          40
        Income Cluster Spending and Income Cluster
      0
      1
                      1
                                                   1
      2
                                                   3
                      1
      3
                      1
                                                   1
                      1
                                                   3
[85]: intertia_scores2=[]
      for i in range(1,11):
         kmeans2 = KMeans(n_clusters=i)
         kmeans2.fit(df[["Annual Income (k$)", "Spending Score (1-100)"]])
          intertia_scores2.append(kmeans2.inertia_)
      plt.plot(range(1,11),intertia_scores2)
```

[85]: [<matplotlib.lines.Line2D at 0x214694793f0>]


```
[104]: pd.crosstab(df["Spending and Income Cluster"],df["Gender"], normalize="index")
[104]: Gender
                                       Female
                                                   Male
       Spending and Income Cluster
                                     0.457143
                                               0.542857
                                     0.590909
       1
                                               0.409091
       2
                                     0.538462
                                               0.461538
       3
                                     0.608696
                                               0.391304
       4
                                     0.592593
                                               0.407407
[105]: df.groupby("Spending and Income Cluster")["Age", "Annual Income (k$)",
              "Spending Score (1-100)"].mean()
[105]:
                                           Age
                                                Annual Income (k$)
       Spending and Income Cluster
       0
                                     41.114286
                                                          88.200000
                                     25.272727
                                                          25.727273
       1
       2
                                     32.692308
                                                          86.538462
       3
                                     45.217391
                                                          26.304348
```

```
Spending Score (1-100)
       Spending and Income Cluster
                                                     17.114286
       1
                                                     79.363636
       2
                                                     82.128205
       3
                                                     20.913043
       4
                                                     49.518519
[106]: #multivariate clustering
       from sklearn.preprocessing import StandardScaler
[107]: scale = StandardScaler()
[108]: df.head()
[108]:
          CustomerID
                       Gender
                                Age
                                      Annual Income (k$)
                                                           Spending Score (1-100)
                                                       15
       0
                         Male
                                 19
                    1
                                                                                 39
                         Male
       1
                    2
                                 21
                                                       15
                                                                                 81
                                                                                  6
       2
                    3 Female
                                 20
                                                       16
       3
                    4 Female
                                 23
                                                       16
                                                                                 77
       4
                    5 Female
                                 31
                                                       17
                                                                                 40
          Income Cluster Spending and Income Cluster
       0
                         1
       1
                         1
                                                        1
       2
                         1
                                                        3
       3
                         1
                                                        1
       4
                         1
                                                        3
[109]: \#dff = pd.qet\_dummies(df) \leftarrow return\ values\ from\ female\ and\ male,\ but\ just\ we_{\bot}
        ⇔need one value, use drop for that
       dff = pd.get_dummies(df,drop_first=True)
       dff.head()
[109]:
          CustomerID
                            Annual Income (k$)
                                                   Spending Score (1-100)
                       Age
                    1
                         19
                                                                        39
       0
                                              15
                    2
       1
                        21
                                              15
                                                                        81
       2
                    3
                        20
                                              16
                                                                          6
                    4
                                                                        77
       3
                         23
                                              16
       4
                         31
                                              17
                                                                        40
          Income Cluster Spending and Income Cluster Gender_Male
       0
                         1
                                                        3
                                                                      1
                         1
                                                        1
                                                                      1
       1
       2
                                                        3
                                                                      0
                         1
```

42.716049

55.296296

```
3
                       1
                                                     1
                                                                  0
       4
                                                     3
                                                                  0
[110]: dff.columns
[110]: Index(['CustomerID', 'Age', 'Annual Income (k$)', 'Spending Score (1-100)',
              'Income Cluster', 'Spending and Income Cluster', 'Gender_Male'],
             dtype='object')
[111]: dff = dff[['Age', 'Annual Income (k$)', 'Spending Score (1-100)', 'Gender_Male']]
       dff.head()
[111]:
               Annual Income (k$) Spending Score (1-100)
          Age
                                                            Gender_Male
       0
           19
                                15
                                                        39
           21
                                15
       1
                                                        81
                                                                       1
       2
           20
                                16
                                                         6
       3
           23
                                                        77
                                                                       0
                                16
           31
                                17
                                                                       0
[112]: dff = pd.DataFrame(scale.fit_transform(dff))
       dff.head()
[112]:
                                      2
                                                3
                 0
                           1
       0 -1.424569 -1.738999 -0.434801 1.128152
       1 -1.281035 -1.738999 1.195704 1.128152
       2 -1.352802 -1.700830 -1.715913 -0.886405
       3 -1.137502 -1.700830 1.040418 -0.886405
       4 -0.563369 -1.662660 -0.395980 -0.886405
[113]: intertia_scores3=[]
       for i in range(1,11):
           kmeans3 = KMeans(n_clusters=i)
           kmeans3.fit(dff)
           intertia_scores3.append(kmeans3.inertia_)
       plt.plot(range(1,11),intertia_scores3)
```

[113]: [<matplotlib.lines.Line2D at 0x2146bb31a50>]

15]:	df					
15]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100) \
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
		•••			•••	***
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83
		Income Clus	ter Spe	nding	and Income Cluster	
	0		1	Ü	3	
1			1		1	
	2		1		3	
	3		1		1	
	4		1		3	

195	2	2
196	2	0
197	2	2
198	2	0
199	2	2

[200 rows x 7 columns]

```
[117]: df.to_csv("Clustering.csv")
[ ]:
```