Приложение на производните

I. Изпъкналост и вдлъбнатост

Определения:

Нека функцията f(x) е непрекъсната около точка x_0 . В тази точка от графиката да построим допирателна t.

Изпъкнала (гледана отдолу) – Функцията f(x) е изпъкнала в точка x_0 , ако точките от графиката около x_0 са над допирателната (Фиг. 1).

Вдлъбната (гледана отдолу) – Функцията f(x) е вдлъбната в точка x_0 , ако точките от графиката около x_0 са под допирателната (Фиг. 2).

точката $M(x_0, f(x_0))$ се нарича инфлексна точка (Фиг. 3).

Инфлексна точка – Ако функцията f(x) е изпъкнала от едната страна на X_0 , а от другата страна е вдлъбната, то

Теореми:

фиг. 3

Условия за изпъкналост и вольбнатост – Ако функцията f(x) има втора производна навсякъде в интервала [a, b] и

- f''(x) > 0 за $\forall x \in [a, b]$, то f(x) е изпъкнала в интервала [a, b];
- f''(x) < 0 за $\forall x \in [a, b]$, то f(x) е вдлъбната в интервала [a, b].

Условия за инфлексна точка – Ако функцията f(x) е два пъти диференцирана в интервала [a, b] и f''(x) = 0, то точката $M(x_0, f(x_0))$ е инфлексна точка (Фиг. 3).

Зад. 1: Да се изследват относно изпъкналост, вдлъбнатост и инфлексна точка, функциите:

a)
$$f(x) = x^3 - 3x$$
;

б)
$$f(x) = x^4 - 2x$$

Решение: a) Намираме втората производна: $f'=3x^2-3$; f''=6x. При x<0 фун-

кцията е вдлъбната (защото f''(x)<0). При x>0 функцията е изпъкнала (защото f"(x)>0). При x=0 функцията има инфлексна точка (0, 0), защото в тази точка функцията променя знака си.

б) Намираме втората производна: $f' = 4x^3 - 2$; $f'' = 12x^2$. За всяко $x \ne 0$ имаме f" (x) > 0. Следователно дадената функция е само изпъкнала.

Бележка:

При x=0 имаме f''(x)=0, но точката (0,0) не е инфлексна защото f''(x)не променя знака си.

II. Монотонност (растене и намаляване) на функция

Определения:

Растяща – Една функция f(x) е растяща в интервала [a; b], когато за всеки две стойности $x_1 \in \Pi$. М. и $x_2 \in \Pi$. М. за които $x_1 \ge x_2$ е изпълнено $f(x_1) \ge f(x_2)$ (функцията е строго растяща, ако за $x_1 > x_2$ е изпълнено $f(x_1) > f(x_2)$).

Намаляваща – Една функция f(x) е намаляваща в интервала [a; b], когато за всеки две стойности $x_1 \in A$.М. и $x_2 \in A$.М. за които $x_1 \ge x_2$ е изпълнено $f(x_1) \le A$ $f(x_2)$ (функцията е строго намаляваща, ако за $x_1 > x_2$ е изпълнено $f(x_1) < f(x_2)$).

Правило за намиране на интервала на монотонност:

- 1. Нека функцията f(x) е непрекъсната в [a, b]. Намираме Д.М.;
- 2. Функцията f(x) е диференцируема в (a, b) т.е. Намираме първата и производна;
- 3. Определяме интервалите на монотонност: Ако за ∀х∈ (a, b):
 - f'(x) > 0, то функцията f(x) е растяща в [a, b] т.е. решаваме f'(x) > 0;
 - f'(x) < 0, то функцията f(x) е намаляваща в [a, b] т.е. решаваме f'(x) < 0.

Растяща или намаляваща функция се нарича общо монотонна.

Ако за всяка точка от интервала [a; b] производната е равна на нула, то функцията ще бъде едновременно растяща и намаляваща т.е тя ще е константа. Напри**мер:** f(x) = ax + b, където a + b, къде растяща. Когато a<0, функцията f(x) е строго намаляваща. Когато a=0, функцията f(x) не е нито намаляваща, нито растяща (защото в този случай имаме f(x) = const).

обучение по математика, физика, български и английски език, компютър

🕿: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

Бележка:

Свойствата: монотонност, ограниченост, непрекъснатост в интервал, четност и нечетност, периодичност, се отнасят за всички точки от дадено множество. Затова те се наричат глобални свойства.

Свойствата: граница, непрекъснатост в точка, диференцируемост, се отнасят за поведението на функцията в дадена точка. Тези свойства се наричат локални свойства.

Зад. 2: Да се намерят интервалите на растене и намаление на функциите:

a)
$$f(x) = 2x - x^2$$
;

б)
$$f(x) = 3x^3$$

B)
$$f(x) = \frac{1}{x}$$

Решение: а) Д.М.: $\forall x$. Функцията f(x) е непрекъсната и диференцируема за $\forall x \in Д$.М. Намираме първата производна: f'=2-2x=2(1-x). Решаваме $f'(x)>0 \Rightarrow 2(1-x)>0 \Leftrightarrow x<1$. Следователно функцията f(x) е растяща в интервала $(-\infty;1)$. Решаваме $f'(x)<0 \Rightarrow 2(1-x)<0 \Leftrightarrow x>1$. Следователно функцията f(x) е намаляваща в интервала $(1;+\infty)$.

б) Д.М.: $\forall x$. Функцията f(x) е непрекъсната и диференцируема за $\forall x \in Д$.М. и $f'=9x^2$. При x<0 имаме f'(x)>0. Следователно f(x) е растяща в интервала $(-\infty; 0]$. При x>0 имаме също f'(x)>0. Следователно функцията f(x) е растяща в интервала $[0; +\infty)$. Двата интервала имат обща точка и затова можем да кажем, че f(x) е растяща в интервала $(-\infty; +\infty)$.

в) Д.М.: $\forall x \neq 0$. Функцията f(x) е непрекъсната и диференцируема за $\forall x \in$ Д.М. и $f'(x) = -\frac{1}{x^2}$. При x<0 имаме f'(x)<0. Следователно f(x) е намаляваща в интервала

(-∞; 0). При x>0 имаме също f'(x)<0. Следователно функцията f(x) е намаляваща в интервала (0; +∞).

Бележка:

Не можем да направим извода (както при горния пример), че f(x) е намаляваща функция в целия интервал, защото ДМ е множество от два интервала.

III. Рогова точка

Определение:

Точка от графиката, в която функцията има екстремум, но няма първа производна (или първата производна не съществува) се нарича *рогова точка* (Точка Q от Фиг. 4)

В роговата точка се правят изследвания за <u>екстремум</u>. **Например:** Функцията f(x) е дефинирана и непрекъсната в интервала [a, b] (Фиг. 4). Нека първата производна да е f'(x), но тя да не съществува при x = c. Затова точката Q от графиката C координати C (c, C) се нарича рогова точка.

Зад. 3:Да се намери първата производна на:

a)
$$f(x) = |x|$$
.

6)
$$f(x) = \sqrt[3]{(x-2)^2}$$

Решение: а) ДМ: $\forall x$. Дадената функция изглежда по следния начин $f'(x) = \begin{cases} -x, & npu \ x < 0 \end{cases}$. Тогава $f'(x) = \begin{cases} -1, & npu \ x < 0 \end{cases}$, като $f'(x) = \lim_{x \to 0} \frac{|x|}{x}$ не съществува, $f'(x) = \lim_{x \to 0} \frac{|x|}{x}$

защото
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{|x|}{x} = \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{-x}{x} = -1; \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{|x|}{x} = \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{x}{x} = 1, \text{ т.е. лявата и дясната граница при x} \to 0$$

не съвпадат. Казваме, че функцията f(x) = |x|, при x = 0 има лява производна -1 и дясна производна 1, но производна няма. Тогава точката с координати (0;0) се нарича рогова точка (на Фиг. 4 роговата точката Q (0;0) е в центъра на координатната система). В роговата точка графиката има "лява" допирателната с ъглов коефициент -1 и "дясна" допирателна с ъглов коефициент 1, но допирателна няма.

б) ДМ:
$$\forall x$$
. $f'(x) = \left[(x-2)^{\frac{2}{3}} \right]' = \frac{2}{3} (x-2)^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{(x-2)}}$ т.е. можем да намерим пър-

вата производна, но тя не е дефинирана при x = 2. Следователно точката от графиката с абсциса x = 2 е рогова точка.

IV. Критични точки

Точките от ДМ на функция, при които първата производна не съществува (рогова точка) или първата производна е равна на нула (точките с локален екстремум) се наричат критични точки.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

V. Локален екстремум

Нека да имаме функцията f(x), която е дефинирана в интервала [a;b], и нека уравнението f'(x) = 0 да има корени $x_1 = c \in [a;b]$ и $x_2 = d \in [a;b]$. От графиката на Фиг. 5 се вижда, че точките c, d и f разделят графиката на четири интервала:

адрес: гр.София, ж.к. Надежда, бл. 335

- \bullet За $x \in (c; d)$ функцията y = f(x) расте;
- ♦ За $x \in (d; f)$ функцията y = f(x) намалява;
- ♦ За $x \in (f; b]$ функцията y = f(x) расте;

Определения:

Локален min: Функцията f (x), която е дефинирана в интервала [a; b], има локален min в точката $x_1 = c \in [a; b]$, когато може да се намери достатъчно малка околност около т. C (например на Фиг. 5 околността (c−ɛ; c+ɛ), където ε > 0), в която няма стойност на f(x) по-малка от f(c), т.е. имаме f(x) ≥ f(c).

Локален тах: Функцията f (x), която е дефинирана в интервала [a; b], има локален тах в точката $x_1 = d \in [a; b]$, когато може да се намери достатъчно малка околност около т. d (например на Фиг. 5 околността (d−ε; d+ε), където ε > 0), в която няма стойност на f(x) по-малка от f(d), т.е. имаме f(x) ≤ f(d).

Общото название на локален max и min е локален (местен) екстремум. Ако функцията f(x) има локален min се записва f_{min} , ако има локален max – записваме f_{max} .

Бележки:

- ◆ Една функция може да има повече от един локален екстремум (На Фиг. 5 имаме два локални min (в т. М и т. Р) и един локален max (в т. N). Някои функции (например y=sin x) имат безброй локални екстремуми;
- ◆ Една функция може да няма локален екстремум (Например: y=tg x; y=x и т.н.);
- ◆ Локалният екстремум не трябва да се смесва с най-малка и най-голяма стойност на функцията (Например от фиг. 5 най-голямата стойност на функцията е в т. Q, но там няма локален екстремум. Дори точката с локален min може да бъде по-високо от точката с локален max;
- ◆ В точките с локален екстремум производната е равна на нула, т.е. допирателната в съответните точки от графиката е успоредни на оста Ох (ъгловия коефициент k = 0);
- ◆ Една функция може да няма производна в дадена точка, т.е. първата и производна да не е дефинирана в дадена точка, но да има локален екстремум в тази точка. Например: в <u>роговата си точка</u> функцията има локален екстремум, но няма производна.

Отчитайки определенията и теоремите за съществуването на локален екстремум, можем да запишем следните правила за намирането му:

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Правила:

адрес: гр.София, ж.к. Надежда, бл. 335

I правило

(достатъчно условие за съществуване на локален екстремум)

Първа стъпка: Намираме Д. М. и проверяваме за непрекъснатост в тази Д. М. (защото функцията трябва да бъде дефинирана и непрекъсната в даден интервал [a; b], за да има екстремум). Намираме първата производна.

Втора стъпка: Определяме критичните точки:

- точките, в които функцията няма първа производна (знаем, че това са роговите точки);
- точките, в които първата производна се анулира, т.е. решаваме уравнението f'(x) = 0. Нека решенията му са $x_1 = c$ и $x_2 = d$ (фит. 5). Така определяме точките, в които функцията евентуално може да има локален екстремум. Ако уравнението f'(x) = 0 няма решение, то функцията няма екстремум, т.е. f(x) е само растяща (или намаляваща);

Трета стъпка: Ако съществува първата производна (т.е. нямаме рогова точка), намираме втората производна. Ако тя не може да се намери, продължаваме изследването по II правило;

Четвърта стъпка: Изследваме знака на втората производна в точките на екстремум:

- ♦ Ако f''(c)>0, то в тази точка функцията има локален min. За да намерим стойността на функцията в точката на локалният min, заместваме съответния корен (например: C) във функцията, т.е. намираме $y_{min} = f(c)$. На фиг. 5 точката с локален минимум е M(c; f(c));
- ♦ Ако f''(d)<0, то в тази точка функцията има локален max. За да намерим стойността на функцията в точката на локалният max, заместваме съответния корен (например: d) във функцията, т.е. намираме $y_{max} = f(d)$. На фиг. 5 точката с локален максисум е N(d; f(d));

◆ Aко f"(d) = 0, то в тази точка функцията има <u>инфлексия</u>, т.е. това е точка, в която функцията не променя знака си, а само преминава от вдлъбната в изпъкнала (или обратното)

II правило

(необходимо условие за съществуване на локален екстремум)

Първите две стъпки се повтарят от <u>I Правило</u>;

Трета стъпка: Изследваме знака на първата производна във всеки от интервалите, т.е. определяме в кои интервали функцията е растяща (решаваме неравенството f'(x) > 0) или намаляваща (решаваме неравенството f'(x) < 0). Точката, при която функцията от намаляваща преминава в растяща, имаме локален min, а от растяща в намаляваща – локален max.

Зад. 4: Намерете локалните екстремуми на функцията $y = x^3 - 3x^2 - 9x + 6$

Решение: Д.М.: $\forall x$. Намираме първата производна: $f' = 3x^2 - 6x - 9$. Определяме критичните точки, като приравним първата производна на нула: $3x^2 - 6x - 9 = 0 \Leftrightarrow x_1 = 3, x_2 = -1$.

<u>Първи начин</u>: Прилагаме третата стъпка на <u>I правило</u>: Намираме втората производна: f'' = 6x - 6. Проверяваме знака на втората производна в точките на екстремум: f''(3) = 6.3 - 6 = 12 > 0. Следователно функцията в тази точка има min. Намираме стойността на този локален минимум, като заместим във функцията, т.е. $y_{min} = f$ $(3) = 3^3 - 3.3^2 - 9.3 + 6 = -21$;

f''(-1) = 6.(-1) - 6 = -12 < 0. Следователно функцията в тази точка има max. Намираме стойността на този локален максимум, като заместим във функцията, т.е. $y_{max} = f(-1) = (-1)^3 - 3.(-1)^2 - 9.(-1) + 6 = 11$.

<u>Втори начин</u>: За да определим вида на локалните екстремуми, изследваме знака на първата производна в критичните точки (трета стъпка <u>II правило</u>) т.е. решаваме неравенството $f'(x) = 3x^2 - 6x - 9 > 0$. Резултатите нанасяме в таблицата:

	_ &	- 1		3		+∞
f' (x)	+	0	_	0	+	
f(x)	#		×		A	

От таблицата виждаме, че при x = -1 имаме локален max, а при x = 3 имаме локален min. Стойността на max и min намираме, като заместим във функцията: $y_{min} = f(3) = 3^3 - 3.3^2 - 9.3 + 6 = -21$ и $y_{max} = f(-1) = (-1)^3 - 3.(-1)^2 - 9.(-1) + 6 = 11$.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Зад. 5: Намерете локалните екстремуми на функцията $y = \frac{5x-3}{x+2}$

 $f' = \frac{\text{Решение: } \text{Д.М.: } \forall \mathbf{x} \neq -2. \text{ Намираме първата производна:}}{(x+2)^2} = \frac{5(x+2) - (5x-3)}{(x+2)^2} = \frac{5x+10-5x+3}{(x+2)^2} = \frac{13}{(x+2)^2} \cdot \text{Точката, в която първата производна}$

не съществува е -2, но тя не принадлежи на Д.М. Следователно x = -2 не е критична точка. Уравнението f' = 0 няма решение. Следователно дадената функция няма екстремум (f'(x) > 0 за $\forall x$ затова функцията е само растяща).

Зад. 6: Намерете локалните екстремуми на функцията $y = |1 - x^2|$.

Решение: Д.М.: ∀х. Използвайки свойствата на модула, дадената функция и нейната производна могат да се запишат по следния начин:

$$y = \begin{cases} -(1-x^2), & npu \ x < -1 \\ 1-x^2, & npu \ x \in [-1;1); \\ -(1-x^2), & npu \ x \ge 1 \end{cases} \qquad f' = \begin{cases} 2x, & npu \ x < -1 \\ -2x, & npu \ x \in (-1;1) \\ 2x, & npu \ x > 1 \end{cases}$$

Критичните точки са: $x = \pm 1$ (точките, в които първата производна не съществува, т.е. това са роговите точки) и x = 0 (точката, при която първата производна е равна на нула и в трите интервала). В тези три точки изследваме функцията за локален екстремум, като определяме знака и в четирите интервала:

			(C)	-	-	5 0
	_ ∞	-1 @	0	200	1	/+∞
f' (x)	_	+	0	+		
f(x)	3	X	L	Y	1	

От таблицата се вижда, че при $x = \pm 1$ функцията има min и той е f(-1) = f(1) = 0, а при x = 0 – има максимум и той е f(0)=1.

Зад. 7: Намерете локалните екстремуми на функцията $y = \frac{1}{2}x - \sin x$ $npu \ x \in (0; 2\pi)$.

Решение: Д.М.:
$$\forall x \in (0; 2\pi)$$
 и $f' = \frac{1}{2} - \cos x$. Уравнението $f' = 0$ има решения $x = \pm \frac{\pi}{3} + 2k\pi$ т.е. $x_1 = \frac{\pi}{3}$; $x_2 = -\frac{\pi}{3}$ са критичните точки при $x \in (0; 2\pi)$. Определяме вида на екстремума: $f'' = \sin x$. Тогава: $f''\left(\frac{\pi}{3}\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} > 0$; $y_{\min} = f\left(\frac{\pi}{3}\right) = \frac{\pi}{6} - \frac{\sqrt{3}}{2}$ и

$$f''\left(-\frac{\pi}{3}\right) = \sin\frac{5\pi}{3} = -\frac{\sqrt{3}}{2} < 0; \quad y_{\text{max}} = f\left(-\frac{\pi}{3}\right) = -\frac{\pi}{6} + \frac{\sqrt{3}}{2}.$$

Зад. 8: Ако $x = \frac{\pi}{3}$, да се определи при кои стойности на параметъра а функци-

ята $y = a \sin x + \frac{1}{3} \sin 3x$ има екстремум и да се определи вида му.

<u>Решение:</u> За да има екстремум, дадената функция трябва първата и производна да е равна на нула в тази точка, т.е

$$f' = a \cos x + \frac{1}{3} \cdot 3\cos 3x = a \cos x + \cos 3x; \quad f'\left(\frac{\pi}{3}\right) = a \cos\frac{\pi}{3} + \cos\left(3 \cdot \frac{\pi}{3}\right) = \frac{a}{2} - 1 = 0 \Rightarrow a = 2 \cdot 3a$$

да намерим какъв е екстремума, с така намерената стойност на параметъра заместваме в първата производна $f' = 2\cos x + \cos 3x$ и изследваме втората производна:

$$f'' = -2\sin x - 3\sin 3x; = f''\left(\frac{\pi}{3}\right) = -2\sin\frac{\pi}{3} - 3\sin\pi = -2\frac{\sqrt{3}}{2} = -\sqrt{3} < 0$$
. Следователно да-

дената функция при а = 2 има тах, като стойността на този максимум е $y_{\max} = f\left(\frac{\pi}{3}\right) = 2\frac{\sqrt{3}}{2} + 3\sin\pi = \sqrt{3} \cdot$

VI. Най-голяма и най-малка стойност

Най-голямата (НГС) и най-малка стойност (НМС) на функция в затворен интервал наричаме още абсолютен (глобален) екстремум. Нека при $x = c \in [a, b]$ функцията получава най-малката си стойност, а при $x = d \in [a, b]$ получава най-голямата си стойност. Това се записва: $\min_{x \in [a;b]} f(x) = f(c)$ и $\max_{x \in [a;b]} f(x) = f(d)$. Очевидно е

тогава, че имаме неравенството $f(c) \le f(x) \le f(d)$ и стойностите, които може да заема функцията принадлежат на интервала [f (c); f (d)].

Нека да имаме функцията y = f(x), която е дефинирана и непрекъсната за всяко $x \in [a; b]$. В зависимост от вида на интервала са възможни следните случаи:

- Функцията няма локален екстремум в този интервал − Тя е или растяща, или намаляваща
 - Ако интервалът е отворен от двете страни, то функцията няма найголяма и най-малка стойност;
 - о Ако интервалът е затворен, намираме f(a) и f(b). Ако f(a) < f(b), то $\max_{x \in [a;\,b]} f(x) = f(b); \quad \min_{x \in [a;\,b]} f(x) = f(a)$

адрес: гр.София, ж.к. Надежда, бл. 335

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

- ♦ Функцията има един локален екстремум в този интервал:
 - о Ако този екстремум е max, то той е и най-голямата стойност, т.е. $\max_{x \in [a;b]} f(x) = y_{\max} .$ Най-малката стойност се определя от интервала: Ако той е отворен, функцията няма HMC, ако той е затворен от двете страни намираме f(a) и f(b). Ако f(a) < f(b), то $\min_{x \in [a;b]} f(x) = f(a)$;
 - О Ако този екстремум е min, то той е и най-малката стойност, т.е. $\min_{x \in [a;b]} f(x) = y_{\min} .$ Най-голямата стойност се определя от интервала: Ако той е отворен, функцията няма НГС, ако той е затворен от двете страни намираме f(a) и f(b). Ако f(a) < f(b), то $\max_{x \in [a;b]} f(x) = f(b)$;
- ♦ Функцията има повече от един екстремум в този интервал:
 - о Ако интервальт е отворен, то $\max_{x \in (a, b)} f(x) = y_{\max}; \quad \min_{x \in (a, b)} f(x) = y_{\min};$
 - о Ако интервалът е затворен от двете страни, намираме y_{max} , y_{min} , f(a), f(b) и по-голямото от тези числа е НГС, а по-малкото HMC.

Може да се разгледат следните начини за намиране на НГС и НМС:

Бележка:

Условието на всички следващи задачи е: Намерете най-малката и най-голяма стойност на функциите в зададения интервал.

1. Метод на производните

Зад. 10:
$$y = 3x^3 - 9x^2 + 2$$
 a) $x \in [-1; 1]$; б) $x \in [-1; 3]$.

Решение: а) Намираме първата производна $f' = 9x^2 - 18x$. Намираме критичните точки $9x^2 - 18x = 0 \Leftrightarrow 9x(x-2) = 0$; $x_1 = 0$, $x_2 = 2$. Второто решение не принадлежи на разглеждания интервал [−1; 1], затова функцията евентуално може да има екстремум при $x_1 = 0$. Намираме вида на този екстремум като изследваме знака на втората производна f'' = 18x - 18; $f''(0) = 18.0 - 18 = -18 \Rightarrow f''(0) < 0$ т.е. при $x_1 = 0$ функцията има локален максимум. Намираме стойността на този максимум $y_{\text{max}} = f(0) = 3.0 - 9.0 + 2 = 2$. Щом имаме само един локален екстремум, то той е и найголямата стойност в този интервал, т.е. $\max_{x \in [-1:1]} y = f(0) = 2$. За да намерим НМС, намираме стойността на функцията в краищата на затворения интервал $f(-1) = 3.(-1)^3 - 18x + 18x$

$$9.(-1)^2 + 2 = -10$$
; $f(1) = 3.1^3 - 9.1^2 + 2 = -4 \Rightarrow \min_{y \in [1:1]} y = f(-1) = -10$

б) $f'=9x^2-18x=0$; $x_1=0$, $x_2=2$. И двете решения принадлежат на интервала [-1; 3]. Намираме втората производна f''=18x-18 и изследваме знака и в двете точки: $f''(0)=18.0-18=-18\Rightarrow f''(0)<0$, т.е. при $x_1=0$ функцията има локален максимум. Намираме стойността му $y_{max}=f(0)=3.0-9.0+2=2$.; $f''(2)=18.2-18=18\Rightarrow f''(2)>0$, т.е. при $x_1=2$ функцията има локален минимум. Намираме стойността на този минимум $y_{min}=f(2)=3.2^3-9.2^2+2=24-36+2=-10$. Намираме стойността на функцията в краищата на интервала $f(-1)=3.(-1)^3-9.(-1)^2+2=-10$; $f(3)=3.3^3-9.3^2+2=2$. Най-малкото от числата y_{max} , y_{min} , f(-1) и f(3) е НМС, а най-голямото - НГС: $\max_{x\in[-1:1]}y=f(3)=f(0)=2$; $\min_{x\in[-1:2]}y=f(-1)=f(-1)=f(-1)=10$

Бележка:

Ако в Зад. 11 изследвахме в отворен интервал отдясно, т.е $x \in [-2; 3)$, то функцията у няма да има най-голяма стойност, тъй като има стойности, произволно близки до 18

Зад. 13:
$$y = (1 + \cos x) \sin x$$
; $x \in [0; \pi]$

<u>Решение:</u> $f' = \cos x \ (1 + \cos x) - \sin^2 x = \cos x + \cos^2 x - \sin^2 x = \cos x + \cos^2 x - (1 - \cos^2 x) = \cos x + \cos^2 x - 1 + \cos^2 x = 2\cos^2 x + \cos x - 1 = 0$. Пол. $\cos x = t$; $2t^2 + t - 1 = 0$; $t_1 = -1$, $t_2 = 0.5$. Тогава:

A)
$$\cos x = -1 \Leftrightarrow x = \pi + 2k\pi$$
. Разглеждаме интервала [0; π] затова $x_1 = \pi$.
B) $\cos x = \frac{1}{2} \to \alpha = \frac{\pi}{3}$; $x = \pm \frac{\pi}{3} + 2k\pi$. Разглеждаме интервала [0; π] затова $x_2 = \frac{\pi}{3}$

 $f'' = -4\cos x.\sin x - \sin x.$ $f''(\pi) = -4.1.0 - 0 = 0$, т.е. точката $x_1 = \pi$ от графиката на дадената функция е инфлексна и няма екстремум, а графиката само преминава от вдлъбната в изпъкнала (или обратно). Изследваме в другата точка

$$f''\left(\frac{\pi}{3}\right) = -4\cos\frac{\pi}{3}\sin\frac{\pi}{3} - \sin\frac{\pi}{3} = -4.\frac{1}{2}.\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = -\frac{3\sqrt{3}}{2} < 0$$
 следователно при $x = \frac{\pi}{3}$ функ-

цията има max.
$$y_{\text{max}} = f\left(\frac{\pi}{3}\right) = \left(1 + \cos\frac{\pi}{3}\right) \sin\frac{\pi}{3} = \left(1 + \frac{1}{2}\right) \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4}; \quad f(\pi) = f(0) = 0 \cdot \text{Сле-}$$

дователно
$$\max_{x \in [0, \pi]} y = y_{\text{max}} = \frac{3\sqrt{3}}{4}; \quad \min_{x \in [0, \pi]} y = f(0) = 0$$

2. Метод на растяща и намаляваща функция

Зад. 15:
$$y = \left(\frac{1}{5}\right)^{2x-x^2-2}$$

<u>Решение:</u> Д.М.: $\forall x$ следователно изследваме функцията у в този интервал. Полагаме $g(x) = 2x - x^2 - 2$. Дадената задача изглежда така: $y = \left(\frac{1}{5}\right)^{g(x)}$. Щом основата

е по-малка от 1, то функцията у е намаляваща. Прилагаме Свойство 3 (2) на показа-

телна функция и получаваме
$$\begin{cases} \max_{\forall x} y = \left(\frac{1}{5}\right)^{\min_{\forall x} g(x)} \\ \min_{\forall x} y = \left(\frac{1}{5}\right)^{\max_{\forall x} g(x)} \end{cases}.$$
 Следователно първо трябва да на-

мерим най-голямата и най-малка стойност на функцията g(x) за $\forall x.$ g'=2-2x=0 $\Leftrightarrow x=1$. В тази точка функцията g(x) има екстремум. За да определим вида на екстремума, намираме втората производна g''=-2<0. Следователно в точката x=1 функцията g(x) има max, като $g_{max}=g(1)=2.1-1^2-2=-1$, тогава $\min_{\forall x} y = \left(\frac{1}{5}\right)^{\max_{x} g(x)} = \left(\frac{1}{5}\right)^{-1} = 5$. Функцията у няма най-голяма стойност.

3. Метод на субституцията (въвеждане на ново неизвестно)

Зад. 17:
$$y = \cos 4x + 2\sin 2x + 3$$
; $x \in \left[0; \frac{\pi}{3}\right]$

<u>Решение:</u> Преобразуваме условието с помощта на формула (34) от Тригонометрични формули. $y = 1 - 2\sin^2 2x + 2\sin 2x + 3 = -2\sin^2 2x + 2\sin 2x + 4$. Полагаме $g(t) = \sin 2x = t$ и получаваме нова функция $f(t) = -2t^2 + y$

2t + 4. За да намерим интервала, в който се променя t, т.е. Д.М., трябва да изследваме за най-голяма стойност и най-

малка стойност на функцията g(t) при $x \in \left[0; \frac{\pi}{3}\right]$:

съответните ъгли:

$$g' = 2\cos 2x = 0 \Rightarrow 2x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{4} + \frac{1}{2}k\pi$$
. Намираме

При
$$k=2$$
 имаме $(A_2) \rightarrow x = \frac{5\pi}{4}$; При $k=3$ имаме $(A_3) \rightarrow x = \frac{7\pi}{4}$.

гонометричната окръжност (Фиг. 7). В дадения интервал $x \in \left[0; \frac{\pi}{3}\right]$ са само решения-

При k = 0 имаме $(A_0) \to x = \frac{\pi}{4}$; При k = 1 имаме $(A_1) \to x = \frac{3\pi}{4}$; и ги нанасяме върху три-

та А₀. Определяме екстремума в тази точка

$$g'' = -4\sin 2x;$$
 $g''\left(\frac{\pi}{4}\right) = -4.\sin \frac{2\pi}{4} = -4.1 < 0 \Rightarrow g_{\text{max}} = g\left(\frac{\pi}{4}\right) = \sin \frac{2\pi}{4} = 1;$ $g(0) = 0;$

$$g\left(\frac{\pi}{3}\right) = \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2} \quad \Rightarrow \max_{x \in \left[0; \frac{\pi}{3}\right]} g = g\left(\frac{\pi}{4}\right) = 1; \quad \min_{x \in \left[0; \frac{\pi}{3}\right]} g = g(0) = 0 \quad \Rightarrow t \in \left[0; 1\right]$$

Сега намираме най-голямата и най-малката стойност на функцията f(t) в интервала $t \in [0; 1]$.

$$f'(t) = -4t + 2 = 0 \Rightarrow t = \frac{1}{2}; \quad f''(t) = -4 < 0 \Rightarrow f_{\text{max}}(t) = f\left(\frac{1}{2}\right) = -2.\left(\frac{1}{2}\right)^2 + 2.\left(\frac{1}{2}\right) + 4 = \frac{9}{2}$$

$$f(0) = -2.0^2 + 2.0 + 4 = 4; \quad f(1) = -2.1^2 + 2.1 + 4 = 4 \Rightarrow \max_{t \in [0;1]} f(t) = f_{\max} = f\left(\frac{1}{2}\right) = \frac{9}{2};$$

$$\min_{t \in [0;1]} f(t) = f(0) = f(1) = 4 \Rightarrow \max_{x \in \left[0; \frac{\pi}{3}\right]} y = \max_{t \in [0;1]} f(t) = \frac{9}{2}; \quad \min_{x \in \left[0; \frac{\pi}{3}\right]} y = \min_{t \in [0;1]} f(t) = 4$$

4. Метод на използване апарата на квадратното уравнение

3ад. 18:
$$y = \frac{x^2 - x + 1}{x^2 + x + 1}$$

<u>Решение:</u> Не е даден интервала, в който ще изследваме, затова изследваме в Д.М. на дадената функция. Д.М._у: $x^2 + x + 1 \neq 0$; D < 0 следователно изследваме функцията у за $\forall x$. Приемаме у за параметър и търсим за кои стойности на параметъра полученото параметрично уравнение има реални корени. Привеждаме уравнението под общ знаменател и преобразуваме: $y(x^2 + x + 1) = x^2 - x + 1 \Leftrightarrow yx^2 + yx + y - x^2 + x - 1 = 0 \Leftrightarrow f(x) = (y - 1)x^2 + (y + 1)x + y - 1 = 0$. Това уравнение има реални корени ако:

A) $y-1=0 \Leftrightarrow y=1$. Тогава $f(x)=0x^2+(1+1)x+1-1=0 \Leftrightarrow x=0 \in Д.М._x$ (което е $\forall x$). Следователно y=1 е решение.

В) у – 1 \neq 0 \Leftrightarrow у \neq 1. Тогава f(x) е квадратно уравнение, което има реални корени,

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

ако дискриминантата му е по-голяма или равна на 0, т.е. $D = (y+1)^2 - 4(y-1)(y-1) = y^2 + 2y + 1 - 4y^2 + 8y - 4 = -3y^2 + 10y - 3 \ge 0 \mid .(-1) \Leftrightarrow 3y^2 - 10y + 3 \le 0 \Leftrightarrow y \in \left[\frac{1}{3}; 3\right]$. Но разглеждаме случая, когато $y \ne 1$, тогава $y \in \left[\frac{1}{3}; 1\right] \cup (1; 3]$ От A) и B) следва, че $y \in \left[\frac{1}{3}; 3\right] \Rightarrow \max_{\forall x} y = 3; \quad \min_{\forall x} y = \frac{1}{3}$.

5. Метод на сбор от неотрицателни числа

Определение:

Средно аритметично на две неотрицателни числа $a \ge 0$ и $b \ge 0$ е поголямо или равно на средно геометричното им, т.е. $\frac{a+b}{2} \ge \sqrt{ab}$ (1)

като равенството се постига при a = b.

адрес: гр.София, ж.к. Надежда, бл. 335

Аналогично неравенство е вярно и за краен брои неотрицателни числа

$$a_1, a_2, ..., a_n, \text{ r.e. } \frac{a_1 + a_2 + ... + a_n}{n} \ge \sqrt[n]{a_1 a_2 ... a_n}$$
 (2)

където равенството се достига при $a_1 = a_2 = ... = a_n$.

Неравенствата (1) и (2) се наричат неравенство на Коши. Те могат да се използват за намиране на най-голяма и най-малка стойност на функция, която е сбор от неотрицателни числа. Това става по следните начини:

- 1) Ако а≥0 и b≥0 са променливи неотрицателни числа, но тяхната сума не се променя (т.е. a + b = k = const), тогава от (1) следва $\frac{1}{4}(a+b)^2 \ge ab$, т.е произведението a.b има най-голяма стойност $\frac{1}{4}k^2$, която се получава при a = b.
- 2) Ако а≥0 и b≥0 са променливи неотрицателни числа, но тяхното произведение не се променя (т.е. a.b = k = const), тогава от (1) следва $a+b \ge 2\sqrt{a.b}$ т.е сумата a + b има най-малка стойност $2\sqrt{k}$, която се получава при a = b.

Бележка:

Аналогични на горните разсъждения са в сила и за произволен брои неотрицателни числа.

Произведението a.b.c има най-голяма стойност $\left(\frac{k}{3}\right)^3$ при a = b = c.

Сборът на **a+b+c** има най-малка стойност $3\sqrt[3]{k}$ при **a = b = c**.

Произведението a.b.c.d има най-голяма стойност $\left(\frac{k}{4}\right)^4$ при a = b = c = d.

Сборът на a+b+c+d има най-малка стойност $4\sqrt[4]{k}$ при a = b = c = d.

Зад. 19:
$$y = 3^{x-1} + 3^{-x-1}$$

<u>Решение:</u> Д.М.: $\forall x$. Преобразуваме $y = 3^x 3^{-1} + 3^{-x} 3^{-1} = \frac{3^x}{3} + \frac{1}{3 \cdot 3^x} = \frac{1}{3} \left(3^x + \frac{1}{3^x} \right)$. По-

лагаме $3^x = t > 0$ и получаваме $y(t) = \frac{1}{3} \left(t + \frac{1}{t} \right)$. Функцията y(t) е сбор от две неотрица-

телни числа $\mathbf{a} = \mathbf{t}$ и $b = \frac{1}{t}$. Затова можем да използваме неравенството на Коши (1).

$$a+b \ge 2\sqrt{ab} \Rightarrow t+\frac{1}{t} \ge 2\sqrt{t\cdot\frac{1}{t}} \Leftrightarrow t+\frac{1}{t} \ge 2\sqrt{1} \Leftrightarrow t+\frac{1}{t} \ge 2; \quad y(t) = \frac{1}{3}\left(t+\frac{1}{t}\right) \ge \frac{2}{3}$$
. От Определе-

нието следва, че най-малката стойност на у е $\frac{2}{3}$ и тя се постига при a = b, т.е.

$$t = \frac{1}{t} \Leftrightarrow t^2 = 1 \Rightarrow t_1 = -1 \notin \mathcal{A}.M.$$
, $t_2 = 1 \in \mathcal{A}.M.$, Следователно $\min_{\forall x} y = y(1) = \frac{2}{3}$, а няма най-голяма стойност.

Бележка:

Ако при търсенето на абсолютни екстремуми на някаква функция f(x), която е дефинирана в интервала [a;b] с използване на неравенството на Коши, сме получили, че равенството се постига при $x = c \notin [a;b]$, това показва, че първата производна не се анулира в интервала [a;b], т.е. функцията f(x) е или растяща, или намаляваща в този интервал. Тогава най-малката и най-голямата стойност на f(x) се получават в краищата на интервала, т.е. при x = a и x = b.

VII. Доказване на неравенства

адрес: гр.София, ж.к. Надежда, бл. 335

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Зад. 20: Дадени са функциите $f(x) = 2x + 3\sqrt[3]{(3-x)^2} - 2$; $g(x) = \left(\frac{1}{2}\right)^{3x^2 - 18x + 25}$.

- а) Да се докаже, че g(x)≤4 за всяка реална стойност на x.
- б) Да се намери най-голямата и най-малка стойност на f(x) за x∈[1; 4].
- в) Да се реши уравнението f(x) = g(x) за $x \in [1; 4]$. (ЛТУ, 2001)

Решение: а) За да докажем неравенството g(x)≤4, трябва да докажем, че функцията g(x)има най-голяма стойност 4. За целта полагаме $\varphi(x) = 3x^2 - 18x + 25$ и получаваме $g(x) = \left(\frac{1}{2}\right)^{\varphi(x)}$. Тази показателна функция е намаляваща (защото основата и е

по-малка от 1). От Свойство 3 (2) можем да запишем
$$\max_{\forall x} g = \left(\frac{1}{2}\right)^{\min \varphi(x)}$$
, т.е дос

татъчно е да намерим най-малката стойност на $\phi(x)$. Функцията $\phi(x)$ е квадратна и параболата и е с върха надолу (защото коефициента пред най-високата степен на неизвестното е положителен). Знаем, че в такъв случай min е в точка $x = -\frac{b}{2a}$. В

нашия случай това е x = 3. Тогава $\phi_{min} = \phi(3) = 3.3^2 - 18.3 + 25 = -2$ т.е. $\min_{\forall x} \varphi = \varphi_{min} = \varphi(3) = -2 \cdot \text{И сега } \max_{\forall x} g = \left(\frac{1}{2}\right)^{-2} = 2^2 = 4 \cdot \text{С това доказахме, че } g(x) \le 4 \text{ за}$

всяка стойност на х.

б) Д.М.: $\forall x$. Представяме корена като степен и намираме първа производна $f' = 2 + 3 \cdot \frac{2}{3} \cdot (3 - x)^{\frac{2}{3} - 1} \cdot (-1) = 2 - \frac{2}{\sqrt[3]{3 - x}}$. Тази производна не е дефинирана при x = 3

(рогова точка). Това е едната критична точка. Решавайки неравенството $f'(x) \ge 0$ обединяваме стъпките за намиране на интервалите, в които функцията расте и точките, в които тя има локален екстремум

$$2 - \frac{2}{\sqrt{3 - x}} \ge 0 \mid .2 \Leftrightarrow 1 - \frac{1}{\sqrt[3]{3 - x}} \ge 0 \Leftrightarrow \frac{\sqrt[3]{3 - x} - 1}{\sqrt[3]{3 - x}} \ge 0$$

$$A) \begin{vmatrix} \sqrt[3]{3 - x} > 0 \\ \sqrt[3]{3 - x} - 1 \ge 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 3 - x > 0 \\ \sqrt[3]{3 - x} \ge 1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x < 3 \\ 3 - x \ge 1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x < 3 \\ x \le 2 \end{vmatrix} \Leftrightarrow x \le 2$$

$$B) \begin{vmatrix} \sqrt[3]{3 - x} < 0 \\ \sqrt[3]{3 - x} - 1 \le 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x > 3 \\ x \ge 2 \Leftrightarrow x > 3 \end{vmatrix}$$

Но ние изследваме в интервала x∈ [1; 4], следователно функцията f(x) расте

при $x \in [1; 2] \cup (3; 4]$, а при $x \in (2; 3)$ функцията f(x) намалява. Резултатите от това изследване показваме в долната таблица.

	1	2		3	4
f' (x)	+	0	_	+	
f(x)	×		×	A	

От таблицата се вижда, че функцията f(x) има тах при x=2 (при x=3 няма min защото f'(x) не е дефинирана). Намираме стойността на функцията в двете критични точки и в краищата на интервала

$$f(1) = 2.1 + 3\sqrt[3]{(3-1)^2} - 2 = 3\sqrt[3]{4}$$
; $f(2) = 2.2 + 3\sqrt[3]{(3-2)^2} - 2 = 5$

$$f(3) = 2.3 + 3\sqrt[3]{(3-3)^2} - 2 = 4;$$
 $f(4) = 2.4 + 3\sqrt[3]{(3-4)^2} - 2 = 9$

Тогава $\max_{x \in \mathcal{X}} f = f(4) = 9$; $\min_{x \in \mathcal{X}} f = f(3) = 4$

в) Решаваме уравнението f(x) = g(x) графично. В б) доказахме, че най-малката стойност на f(x) е 4 т.е. $f(x) \ge 4$, а в а) доказахме, че най-голямата стойност на g(x) е също 4 т.е. $g(x) \le 4$. Затова можем да запишем $g(x) \le 4 \le f(x)$ за всяко x. Знаем, че f(x) достига най-малката си стойност 4 при x = 3. Очевидно при x = 3 имаме f(3) = g(3) = 4, а при $x \ne 3$ получаваме g(x) < 4 < f(x). Тогава уравнението f(x) = g(x) има едно единствено решение x = 3.

VIII. Графично решаване на уравнение

Зад. 22: Дадени са функцията $f(x) = x^2 + 2x + \sqrt{3x^2 + 6x + 7} + \sqrt{5x^2 + 10x + 14}$.

а) Да се реши уравнението $f(x) = \sqrt{7} + \sqrt{14}$. (СУ, 2003)

Решение: а) Уравнението преобразуваме по следния начин $x^2 + 2x + \sqrt{3(x^2 + 2x)} + 7 + \sqrt{5(x^2 + 2x)} + 14 = \sqrt{7} + \sqrt{14}$ (A). Полагаме $y = x^2 + 2x$ (B). и получаваме уравнението $y + \sqrt{3y + 7} + \sqrt{5y + 14} = \sqrt{7} + \sqrt{14}$ (C). Очевидно дясната страна на това уравнение е число, а лявата страна означаваме с $g(y) = y + \sqrt{3y + 7} + \sqrt{5y + 14}$. За да решим уравнение (C), трябва да намерим точката, в която функцията g(y) се пресича с числото $\sqrt{7} + \sqrt{14}$. Изследваме (B), за да намерим най-малката и най-голямата стойност на y. Намираме $y' = 2x + 2 = 0 \Rightarrow x = -1$; y'' = 2 > 0 следователно при y = 2 = 1 имаме min и y = 2 = 1. Сега изследваме функцията y = 1 = 1 имаме min и y = 1 = 1 = 1. Второто и третото

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

число са положителни (защото коренът в знаменателя е винаги положителен). Затова можем да запишем g' > 0 за $\forall y$, т.е. функцията g(y) в интервала $y \in [-1; +\infty]$ е само растяща. Следователно уравнение (C) ще има само едно решение. С непосредствена проверка се вижда, че единственото решение е y = 0. Заместваме в (B) $x^2 + 2x = 0 \Leftrightarrow x_1 = 0$, $x_2 = -2$. Това са и решенията на уравнение (A), т.е. на даденото уравнение.

IX. Определяне броя на корените и разположението им върху числовата ос

В зад. 22 показахме, че ако една функция f(x) е растяща в даден интервал, тя има само един корен. Може да се изведе правило за определяне броя на корените на уравнение f(x) = 0.

Правило:

- Разделяме Д.М. на интервали, в които функцията f(x) е монотонна.
- ◆ Определяме знака на f(x) в краищата на всеки интервал, в който тя е монотонна. Ако интервалът е отворен, пресмятаме границата в краищата на интервала.
- Определяме броя на корените във всеки от разглежданите интервали:
 - о ако знаците в края на интервала са еднакви, в него уравнението няма корени;
 - ако знаците са различни, то уравнението има точно един корен в този интервал.

Зад. 23: Да се определят броят и разположението на корените на уравнението:

a)
$$2x^3 - 9x^2 + 12x - 6 = 0$$
;
b) $x^4 - 6x^3 + 12x^2 - 12x + 7 = 0$

Решение: а) Означаваме лявата страна с функцията $f(x) = 2x^3 - 9x^2 + 12x - 6$ 1) Разделяме ДМ на интервали, в които f(x) е монотонна, т.е. решаваме уравнението $f'(x) = 6x^2 - 18x + 12 = 0 \Leftrightarrow x_1 = 2, x_2 = 1$. Тези точки разделят ДМ на интервалите $(-\infty; 1), (1; 2), (2; +\infty)$, в които f'(x) има постоянен знак, т.е. f(x) е монотонна. 2) Определяме знака на f(x) в краищата на всеки от горните интервали.

За интервала (– ∞; 1) имаме

$$\lim_{x \to -\infty} \left(2x^3 - 9x^2 + 12x - 6 \right) = \lim_{x \to -\infty} x^3 \cdot \lim_{x \to -\infty} \left(2 - \frac{9}{x} + \frac{12}{x^2} - \frac{6}{x^3} \right) = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = 2.1^3 - 9.1^2 + 12x - 6 = -\infty \cdot 2 = -\infty \text{ if } (1) = -\infty \cdot 2$$

12.1 − 6 = − 1, следователно в краищата на интервала ($-\infty$; 1) функцията има еднакви знаци т.е. уравнението f(x) = 0 няма корени в този интервал.

За интервала (1; 2) имаме $f(1) = 2.1^3 - 9.1^2 + 12.1 - 6 = -1$ и $f(2) = 2.2^3 - 9.2^2 + 12.2 - 6 = -2$, следователно в краищата на интервала (1; 2) функцията има еднакви знаци т.е. уравнението f(x) = 0 няма корени в този интервал.

За интервала (2; +∞) имаме f(2) = -2 и

$$\lim_{x \to \infty} \left(2x^3 - 9x^2 + 12x - 6\right) = \lim_{x \to \infty} x^3 \cdot \lim_{x \to \infty} \left(2 - \frac{9}{x} + \frac{12}{x^2} - \frac{6}{x^3}\right) = \infty.2 = \infty,$$
 следователно в краищата на

интервала (2; $+\infty$) функцията има различни знаци, т.е. уравнението f(x) = 0 има точно един корен в този интервал.

Окончателно получаваме, че уравнението $f(x) = 2x^3 - 9x^2 + 12x - 6 = 0$ има един корен x_0 . Можем да определим дори между кои цели числа е този корен. Знаем, че f(2) = -2 < 0. Намираме f(3) = 3 > 0. Затова корена на даденото уравнение се намира между числата 2 и 3 т.е. $2 < x_0 < 3$.

б) Означаваме лявата страна с функцията $f(x) = x^4 - 6x^3 + 12x^2 - 12x + 7$ 1) Намираме първата производна $f'(x) = 4x^3 - 18x^2 + 24x - 12 = 2(2x^3 - 9x^2 + 12x - 6) = 0$. Не можем директно да решим това уравнение. Затова израза в скобите означаваме с функцията $g(x) = 2x^3 - 9x^2 + 12x - 6$. Тогава можем да запишем f'(x) = 2g(x) = 0. В а) доказахме, че функцията g(x) има един корен, следователно уравнението f'(x) = 2g(x) = 0 ще има само един корен. Нека този корен да означим с x_0 . Щом производната f'(x) се нулира при x_0 , то в интервалите $(-\infty; x_0)$ и $(x_0; +\infty)$ функцията f(x) е монотонна.

2) Определяме какъв е знакът на функцията f(x) в краищата на всеки интервал $\lim_{x \to \pm \infty} \left(x^4 - 6x^3 + 12x^2 - 12x + 7 \right) = \lim_{x \to \pm \infty} x^4 \cdot \lim_{x \to \pm \infty} \left(1 - \frac{6}{x} + \frac{12}{x^2} - \frac{12}{x^3} + \frac{7}{x^4} \right) = +\infty.1 = +\infty \cdot 3$ наем от а),

че корена x_0 се намира между $2 < x_0 < 3$. Затова намираме $f(2) = 2^4 - 6.2^3 + 12.2^2 - 12.2 + 7 = -1 < 0$ и $f(3) = 3^4 - 6.3^3 + 12.3^2 - 12.3 + 7 = -2 < 0$, т.е. показахме, че в краищата на двата интервала $(-\infty; x_0)$ и $(x_0; +\infty)$ функцията f(x) има различни знаци. Затова даденото уравнение има по едно решение във всеки интервал, т.е. уравнението има два корена $x_1 \in (-\infty; x_0)$ и $x_2 \in (x_0; +\infty)$. Можем да определим дори между кои цели числа са тези корени, като изчислим f(1) = 2, f(2) = -1, f(3) = -1, f(4) = 23. Тогава записваме $x_1 \in (1; 2)$ и $x_2 \in (3; 4)$.

Задачи за упражнение:

Следват задачи групирани по сложност. Част от тях са давани на конкурсни изпити или на матури.

За съжаление те са авторски и не се разпространяват свободно. Използват се за подготовка на кандидатстуденти с учител от Учебен

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

център "СОЛЕМА".

Учебен център "СОЛЕМА" подготвя ученици за кандидатстване във всички университети, а така също и за кандидатстване след 7 клас.

За цените и всичко свързано с подготовката на кандидатстудентите и учениците кандидатстващи след 7 клас по математика и физика, виж www.solemabg.com раздел "За нас".