ЭКЗАМЕН

Линейная алгебра и аналитическая геометрия (1 семестр)

Дата и начало экзамена по расписанию сессии.

- ✓ Обязательно принести на экзамен
- 1) Зачетка!!!
- 2) Чистая тетрадь (12 листов) + ручка!

Калькулятором пользоваться нельзя!

На обложке тетради:

ФИО, группа

Экзамен по предмету «Линейная алгебра и аналитическая геометрия»

KP 1	KP 2

Номер экзаменационного билета

На первой странице тетради:

Таблица для ответов

$N_{\overline{0}}$	Ответ	+/-
1		
2		
3		
4		
5		
6		
7		
8		
9		

Кафедра BM-3 Горшунова Т.А.

В экзаменационном билете 9 заданий.

Экзамен письменный. Время выполнения работы – 80 мин (1ч 20 мин).

Критерии промежуточной аттестации (экзамен)

Оценка	Критерий	
	 9 правильных ответов в билете 	
Отлично	■ 8 правильных ответов в билете и <i>одна</i>	010
	зачтенная <i>контрольная работа</i>	ЭНС
	■ 7 правильных ответов в билете и <i>две</i>	верного
	зачтенные <i>контрольные работы</i>	
	 ■ 8 или 7 правильных ответов в билете 	наличии решения!
Хорошо	■ 6 правильных ответов в билете и <i>одна</i>	aлк
	зачтенная <i>контрольная работа</i>	
	■ 5 правильных ответов в билете и <i>две</i>	При
	зачтенные <i>контрольные работы</i>	
Удовлетворительно	 6 или 5 правильных ответов в билете 	
Неудовлетворительно	• 4 и <i>менее</i> правильных ответов в билете	1

Полезные ссылки:

Учебный портал РТУ МИРЭА: https://online-edu.mirea.ru

Сайт лектора: https://linal-it-19.mozellosite.com

Структура экзаменационного билета

Задача 1. Действия над матрицами, транспонирование матриц, нахождение обратной матрицы, решение матричных уравнений.

Задача 2. Скалярное, векторное и смешанное произведения векторов: определение, свойства и приложения (нахождение углов в треугольнике, углов между плоскостями, между прямыми, между прямой и плоскостью, нахождение площадей треугольника и параллелограмма, объемов параллелепипеда и пирамиды, нахождение высоты).

Задача 3. Прямая и плоскость в пространстве: канонические, параметрические и общие уравнения прямой, уравнение плоскости (по точке и вектору нормали, по трем точкам).

Задача 4. Кривые второго порядка: эллипс, гипербола и парабола: определение, канонические уравнения, основные характеристики.

- *Задача 5.* Теория (выбрать верные или ошибочные утверждения из нескольких предложенных).
- *Задача 6.* Теория (найти значения параметра исходя из определения и свойств определителя, ранга и вырожденности матрицы).
- Задача 7. Исследование систем линейных алгебраических уравнений (СЛАУ) с помощью теоремы Кронекера-Капелли: совместная/несовместная, определенная/неопределенная (нахождение ранга матрицы, общего решения методом Гаусса, выделение ФСР и частного решения).
- Задача 8. Комплексные числа, действия над комплексными числами. Алгебраическая, тригонометрическая и показательная формы комплексного числа. Возведение в степень и вычисление корня.
- Задача 9. Аналитическая геометрия в пространстве (исследование взаимного расположения двух прямых в пространстве, нахождение точки пересечения двух прямых, расстояния между прямыми, не лежащими в одной плоскости,

нахождение расстояния от точки до прямой, координат точки, симметричной заданной относительно прямой или плоскости, составление уравнения плоскости, содержащей две прямые, поверхности второго порядка: приведение уравнения поверхности к каноническому виду, определение ее вида, нахождение сечения поверхности плоскостями, параллельными координатным плоскостям, нахождение точек пересечения прямой с поверхностью, исследование положения точек относительно поверхности).

Образец экзаменационного билета

Билет № 0

Задача 1. Решить матричное уравнений
$$AX = B$$
, где $A = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 4 & -1 \\ 1 & 6 & 0 \end{pmatrix}$.

или 1. Решить матричное уравнение
$$XA = B$$
, где $A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -4 \\ 4 & 1 \\ 2 & -6 \end{pmatrix}$.

или 1. Даны две матрицы
$$A = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 4 & -5 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & -1 \\ -2 & 3 \\ 3 & 2 \end{pmatrix}$. Найти $C = B^{\mathsf{T}} \cdot A^{\mathsf{T}}$.

или 1. Даны две матрицы
$$A = \begin{pmatrix} 2 & 3 \\ -4 & -2 \\ 2 & 2 \end{pmatrix}$$
 и $B = \begin{pmatrix} -2 & -2 & -2 \\ -1 & -3 & 3 \end{pmatrix}$. Найти $C = A^{\mathsf{T}} \cdot B^{\mathsf{T}}$.

Задача 2. Даны координаты точек A(0;2;1), B(-3;2;4), C(-1;0;2). Найти косинус угла C треугольника ABC.

или 2. Найти площадь треугольника ABC, если даны координаты его вершин: A(1; 2; 3), B(3; 4; 5), C(2; 4; 7).

или 2. Даны координаты точек A(5;1;-4), B(1;2;-1), C(3;3;-4), D(2;2;2). Проверить на компланарность векторы \overrightarrow{AB} , \overrightarrow{AC} и \overrightarrow{AD} .

или 2. Найти угол между прямыми
$$l_1$$
: $\frac{x-1}{-2} = \frac{y+5}{-1} = \frac{z-7}{1}$ и l_2 : $\begin{cases} x = 3t+2, \\ y = 4t-1, \\ z = -5t+6. \end{cases}$

или 2. Найти угол между плоскостями α и β , если α : -x + 2y - 2z = 0, β : x + 4y - z - 4 = 0 (ответ записать в градусах).

или 2. Найти угол между прямой l и плоскостью α , заданными уравнениями:

$$l: \frac{x+4}{2} = \frac{y-1}{-2} = \frac{z-3}{0}$$
 и α : $4x - 4z + 11 = 0$. Ответ дать в градусах.

или 2. Найти объем тетраэдра ABCD с вершинами: A(5; 1; -4), B(1; 2; -1), C(3; 3; -4), D(2; 2; 2).

- *Задача 3.* Составить уравнение плоскости, проходящей через точку A(-3; 1; 1), перпендикулярно вектору \overrightarrow{BC} , если B(0; 2; 1), C(-3; 2; 4).
- *или 3*. Составить уравнение плоскости, проходящей через точку $M_0(-4;3;1)$ перпендикулярно прямой: $\frac{x-5}{2} = \frac{y}{-5} = \frac{z+1}{7}$.
 - *или* 3. Составить уравнения прямой, проходящей через точку A(-7; -3; 2) перпендикулярно плоскости: x 4y 5z + 8 = 0.
 - *или* 3. Составить уравнения прямой, проходящей через точку M(-1;2;-5) параллельно прямой l: $\frac{x+3}{1} = \frac{y-2}{-5} = \frac{z-1}{3}$.
- *или* 3. Составить уравнения прямой, проходящей через точки A(-1;2;3) и B(5;-2;1).
 - *или 3.* Составить уравнение плоскости, проходящей через три точки: A(1; -3; 4), B(0; -2; -1) и C(1; 1; -1))
- **Задача 4.** Составить каноническое уравнение гиперболы с фокусами в точках $F_1(0;3)$ и $F_2(0;-3)$ и мнимой полуосью, равной 2.

или 4. Составить каноническое уравнение эллипса с большой полуосью, равной 10 и фокусами $F_1(-8;0)$ и $F_2(8;0)$.

или 4. Составить каноническое уравнение параболы с фокусом в точке F(-7;0) и директрисой x-7=0.

или 4. Привести уравнение $5x^2 + y^2 - 20 = 0$ к каноническому виду, определить тип кривой и найти расстояние между фокусами (в случае параболы, найти расстояние между фокусом и директрисой).

Задача 5. Укажите номера верных утверждений:

- 1) Система линейных алгебраических уравнений называется несовместной, если она имеет бесконечно много решений.
- 2) При векторном умножении ортов координатных осей выполняется равенство: $\vec{l} \times \vec{l} = -\vec{k}$.
- 3) Параметрические уравнения прямой, проходящей через точку $M_0(x_0; y_0; z_0)$ параллельно вектору $\vec{s} = (m; n; p)$ имеют вид: $\begin{cases} x = mt x_0 \\ y = nt y_0 \\ z = pt z_0 \end{cases}$

или 5. Указать номера *ошибочных* утверждений.

1) Матрица называется невырожденной, если её ранг отличен от нуля.

- 2) Эллипсом называется множество всех точек плоскости, равноудаленных от данной точки F, называемой фокусом, и данной прямой d, называемой директрисой $F \notin d$.
- 3) Геометрически модуль комплексного числа z = x + iy является расстоянием от начала координат (0; 0) до точки с координатами ($Re\ z$; $Im\ z$).

или 5. Укажите номера *верных* утверждений:

- 1) Каноническое уравнение эллипсоида имеет вид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 2) На плоскости расстояние от точки $M_0(x_0; y_0)$ до прямой Ax + By + C = 0 определяется по формуле: $\rho = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$.
- 3) Если два комплексных числа расположены в комплексной плоскости симметрично относительно мнимой оси, то их произведение лежит на мнимой оси.

Задача 6. При каком значении параметра \boldsymbol{a} ранг матрицы $\begin{pmatrix} 1 & 2 & 0 & 10 \\ 0 & 4 & 1 & 12 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & -1 & 2+a \end{pmatrix}$ равен 3?

или 6. При каком значении параметра \boldsymbol{a} матрица $\begin{pmatrix} 0 & 0 & a-1 & 10 \\ 0 & 0 & 4 & 5 \\ 0 & 14 & 2 & -1 \\ 3 & -1 & -4 & 12 \end{pmatrix}$ будет вырожденной?

или 6. При каком значении параметра *а* определитель матрицы

$$\begin{pmatrix}
5-a & -12 & 8 & 10 & -1 \\
0 & -1 & 11 & -5 & 2 \\
0 & 0 & 2 & 9 & 3 \\
0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 3
\end{pmatrix}$$
 pabet 30?

Задача 7. Исследовать систему линейных алгебраических уравнений:

$$\begin{cases} x_1 + x_2 + x_3 = -1, \\ 2x_1 + 3x_2 + 4x_3 = -5, \\ x_1 + 3x_2 + 5x_3 = -7. \end{cases}$$

В ответе указать ранг расширенной матрицы и вид СЛАУ (совместная/несовместная, определенная/неопределенная).

или 7. Найти общее решение системы линейных уравнений, сделать проверку, выделить частное решение неоднородной системы: $\begin{cases} x_1 + 2x_2 - 3x_3 = 1, \\ 3x_1 + 7x_2 - 2x_3 = 4, \\ 3x_1 + 8x_2 + 5x_3 = 5. \end{cases}$

Задача 8. Вычислить $(3-\sqrt{3}i)^{16}$. Ответ представить в алгебраической форме и изобразить на комплексной плоскости.

или 8. Вычислить $\frac{17}{1+4i}$ – (3-4i)(-2+i)+11i. Ответ записать в алгебраической форме.

или 8. Решить уравнение $z^4 + 16 = 0$. Результат изобразить на комплексной плоскости.

или 8. Вычислить $\frac{(-2-3i)(5+i)}{1-5i} + 2i$. Ответ записать в алгебраической форме.

Задача 9. Найти точку, симметричную точке M (1; 2; 1) относительно прямой l:

$$\frac{x}{2} = \frac{y-3}{-1} = \frac{z+2}{1}.$$

или 9. Найти точку, симметричную точке P(5; 2; -1) относительно плоскости: 2x - y + 3z + 23 = 0.

или 9. Показать, что прямые $l_1: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z}{-2}$ и $l_2: \frac{x+1}{1} = \frac{y+11}{2} = \frac{z+6}{1}$ лежат в одной плоскости, найти уравнение этой плоскости и если прямые не параллельны, то найти точку пересечения.

или 9. Исследовать взаимное расположение прямых $l_1: \frac{x}{2} = \frac{y-1}{1} = \frac{z+2}{0}$ и $l_2: \frac{x+1}{2} = \frac{y+1}{2} = \frac{z-2}{1}$. Если они не пересекаются, найти расстояние между ними.

или 9. Вычислить расстояние от точки M(0; 1; 2) до прямой $l: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$.

или 9. Привести уравнение $4x^2 + y^2 - z^2 - 2y = 0$ к каноническому виду, определить вид поверхности и найти координаты центра канонической системы координат. Найти общие точки поверхности и прямой: $\frac{x}{0} = \frac{y+4}{3} = \frac{z-2}{-1}$.

или 9. Уравнение поверхности: $9x^2 + 4y^2 - z^2 - 18x + 16y - 11 = 0$ привести к каноническому виду. Определить тип поверхности и сделать чертеж. Установить по одну или по разные стороны от поверхности находятся точки A(5; 1; 0) и B(1; 0; 9)?