「제1회 원주시 공공데이터 활용 아이디어 공모전」 아이디어 기획 제안서

1. 참가자 정보

아이디	어 명	LLM 기반 클러스터링 취약계층 맞	축형 재난 대응 매누	구얼 생성 시스템
팀	명	안줜주민	공모 분야	아이디어 기획

2. 세부 내용

1. 개요

1-1. 아이디어 기획 핵심내용(요약)

1) LLM 기반 클러스터링 취약계층 맞춤형 재난 대응 매뉴얼 생성 시스템

재난 취약계층의 분포를 기반으로 지역을 클러스터링하고, 대상자 특성에 따라 LLM으로 맞춤형 대응 매뉴얼을 자동 생성·제공하는 서비스

2) 목표

사회적 취약성과 재난 위험도를 통합 분석하여, 취약계층의 지역별 맞춤형 재난 피해를 예 측하고 공공 대응 체계의 효율성과 신속성 향상

3) 개발 기술

- 사회적 취약성 + 재난 위험도 기반 통합 지수 산출 알고리즘
- 지역별 KMeans 클러스터링 모델
- 클러스터별 특성 기반 LLM 연계 대응 매뉴얼 생성 시스템
- 사용자용 챗봇 인터페이스 및 행정용 출력 형식 구조 설계

4) 서비스

- AI 기반 재난 상황별 취약 요인 예측, 메뉴얼 생성
- 기관별 신속 대응 방안 제공
- 실시간 챗봇 맞춤형 정보 제공

1-2. 활용 공공데이터

공공데이터명	출처	관련 링크
재난 취약지역 현황	원주시	https://www.wonju.go.kr/www/selectBbsNttList.do?bbsNo=22 0&key=4959&
자연재해통계지도	통계지리정보서 비스	https://ndsm.kostat.go.kr/ndsm/srv/map/intMap.do?type=IndsId
강원도 원주시_읍면동별 1인가구 현황	공공데이터포털	https://www.data.go.kr/data/15100341/fileData.do
근로소득자(읍면동별)	KOSIS	https://kosis.kr/statHtml/statHtml.do?sso=ok&returnurl=https%3A%2F%2Fkosis.kr/%3A443%2FstatHtml%2FstatHtml.do%3Flist_id%3D213_213 A_705_001_006_002%26obj_var_id%3D%26seqNo%3D%26query%3D읍면동+소득%26tblld%3DDT_705002_A0050%26vw_cd%3DMT_ZTITLE%26language%3Dkor%26orgld%3D705%26conn_path%3DMT_ZTITLE%26itm_id%3D%26lang_mode%3Dko%26
[원주] 장애인 등록현황	강원특별자치도 장애 인종 합정 보망	http://kwrd.or.kr/bbs/board.php?bo_table=sub02_03≀_id=290&sca=장애 인&sfl=wr_subject&stx=원주&sop=and
읍면동별 다문화가구 현황(자료갱신 일: 2025-01-21)	KOSIS	https://kosis.kr/statHtml/statHtml.do?sso=ok&returnurl=https%3A%2F%2Fkosis.kr%3A443%2FstatHtml%2FstatHtml.do%3Fconn_path%3DI2%26tblld%3DDT_110025_A045_A%26orgld%3D110%26
원주시 인구 현황 (2025년 6월말 기준)	원주시	https://www.wonju.go.kr/www/selectBbsNttView.do?key=142&bbsNo=110&nttNo=462237&searchCtgry=&searchCnd=all&searchKrwd=&pageIndex=1&integrDeptCode=

1-3. 제안 배경 및 필요성

[1] 제안 배경

1) 기후 변화 속, 커져가는 재난의 그림자

- ① 세계기상기구(WMO)에 따르면, 지구온난화로 인한 기후 변화로 지난 50년간 기상·기후·수자원 관련 재난이 5배 증가했으며, 이로인해 매일 평균 115명이 사망하고, 2억 200만 달러(약 2,700억원)의 경제적 손실이 발생
- ① 대한민국의 자연재해 피해액은 2023년 4조 4,109억 원으로 역대 최고 수준을 기록했으며, 피해 규모도 지속적으로 증가(자연재해현황, 행정안전부, 2025).

2) "불평등"한 재난

- ① 재난 피해 비율은 65~74세의 52.8%로 19~34세의 37.3%보다 80% 가량 높음 ('국민의 건강수준 제고를 위한 건강형평성 모니터링 및 사업 개발 위험사회에서의 건강불평등', 김동진외, 2023)
- 2020~2024년 6월 전체 화재 피해자 1만888명 중 장애인·노인·어린이는 3958명으로 36.4% 차지

3) 취약계층을 위한 안전 방파제는 없다

- ① 어린이, 노약자, 장애인, 다문화 가정 등 안전취약계층은 경제적, 신체적, 의사소통적 측면에서 각기 다른 형태의 취약성을 보이며, 이는 재난 대응에 어려움을 초래
- ® 행안부, 안전취약계층의 재난 모니터링과 별도의 재난분야 위기관리 매뉴얼은 없다고 밝힘 (화마에 속절없이 희생...노인을 위한 '재난 매뉴얼'은 없다,경향신문,2025)
- ① 다수의 안전취약계층은 현행 안전관리시스템하에서 불의의 재난안전사고에 대한 막연한 불 안감을 크게 느끼는 상황 (안전취약계층 설문조사, 한국행정연구원, 2018)

[결론]

- ① 기후 이변으로 재난 발생과 경제적 손실이 증가하고 있으며, 주요 피해집단은 안전취약계층임에도 현재 재난 관리 시스템은 취약계층에 대한 대응이 전무한 상태
- 특히 원주시는 노인 인구가 6 만 6 천 331 명으로 전체 인구의 18.4%를 차지하는 고령 사회이며, 다문화 가구 비율은 22%로 강원도 내에서 가장 높음. 또한 유동인구가 많아 재난 상황에 취약한 특성을 보임

[2] 공공데이터 적절성

1) 공공데이터 선택의 타당성

이번 프로젝트에서는 '재난 취약지역'을 정의하기 위해 두 가지 핵심 공공데이터를 선정하였다

• 사회적 약자 통계 데이터 (data_sum.csv): 장애인, 노인, 다문화가구, 기초생활수급자 비율

→ 이는 「재난 및 안전관리 기본법」의 제 3 조(정의)에서 규정한 재난취약계층(노약자, 장애인, 저소득층 등)에 해당하며, 이들의 밀집도는 지역의 재난 대응력 및 회복탄력성과 직접적으로

연결됨.

- 지역별 재난 항목별 점수 데이터 (disaster_score.csv): 자연재해(태풍, 가뭄, 지진 등)에 대한 지역 단위 위험 점수
 - → 국립재난안전연구원, 자연재해통계지도, 통계청, 원주시 등에서 정량화한 데이터를 기반으로 하여, 객관적 수치 기반의 위험 분석을 가능하게 함.
 - → 이 두 데이터를 병합함으로써, '사회적 취약성'과 '물리적 재난 위험'을 통합적으로 고려한 지역 위험도 분석이 가능해졌으며, 단일 데이터만으로는 놓칠 수 있는 다차원적 해석을 확보함.

2) 클러스터링 기반 LLM 연계의 실효성

- KMeans 클러스터링을 통해 원주시 내 지역을 위험도 수준에 따라 4개 군집으로 분류함으로써, 데이터 기반의 지역 레벨 의사결정 근거를 확보.
- 이후 각 군집에 대해 LLM 을 활용하여,
 - 클러스터 내 재난 취약 유형 및 대상자 특성을 분석하고,
 - 해당 대상자에게 맞춤형으로 적용 가능한 행동요령·안전매뉴얼 생성 자동화 시스템 구현.
- 예: ooo 지역: 3 클러스터 = 고위험 지역, oo 재난 위험(z_score) = 높음 → ooo 지역 대해 oo 재난 발생 시 대처 방법 방송, 메세지, 앱을 통해 매뉴얼 제공

3) 기획 아이디어에 미친 영향

• 단순 분석을 넘어, 공공데이터를 활용한 클러스터링이 지역 정책 제안, 자동 매뉴얼 생성, 지역 위험 사전 인식 등 실질적 의사결정 지원 시스템의 기반으로 이어짐.

1-4. 아이디어의 독창성

[1] 유사 제품(서비스) 및 한계점

국가재난정보센터(NDMS)	행정안전부 '안전신문고' 앱	기상청 특보/재난 알림 시스템
전국 단위의 재난 정보 제공	재난 신고 및 공지 기능 중심의	기상 상황 중심의 재난 경고 시
시스템	단방향 서비스	스템
지역별 사회구조나 취약계층	맞춤형 행동요령 생성 기능 없	대상자 특성에 기반한 대응 전
특성을 반영하지 못함	임	략 제시 불가

[2] 제안 아이디어의 독창성과 차별성

1) 기술적 차별성

- 사회적 취약성(인구통계 기반)과 물리적 재난 위험 점수를 통합한 재난 취약지수 산출
- 통합 취약지수를 기반으로 KMeans 클러스터링 수행 → 지역별 위험 수준 구분
- 클러스터 결과에 대해 LLM 기반 자연어 처리 모델을 연계 → 대상자 맞춤형 매뉴얼 자동 생성

- 데이터 분석, 클러스터링, LLM 기반 생성이 하나의 파이프라인으로 자동화되어 구현
- 범용성과 확장성이 높은 구조로 설계됨 (타 지역, 타 재난, 타 언어로의 확장 가능)

2) 소비자 효용 측면의 차별성

- 지역별, 계층별, 재난유형별로 구체적인 대응 요령 제공 가능 EX) 노인 비율이 높은 고위험 지역에 대해 지진 발생 시 대피소 위치, 행동 수칙 등을 자동 제공
- 앱, 문자, 방송 등 다양한 방식으로 매뉴얼을 전달할 수 있는 구조
- 실제 재난 대응력 향상에 기여 가능
- 지자체 입장에서는 행정 계획 수립, 우선 정비 대상 지역 선정 등에 활용 가능

[3] 아이디어 결과물의 창의성 및 구현 가능성

- 단순한 정보 제공이 아닌, LLM을 활용한 자동화된 대응 매뉴얼 시스템으로 구현
- 기존 서비스들과는 달리, 데이터 기반 지역 분류와 자연어 기반 설명이 결합된 형태
- 재난 상황 외에도 복지, 의료, 생활안전 등 다양한 분야로 확장 가능
- 다국어 자동 생성도 가능하여 다문화가정 및 외국인 대상 서비스로도 활용 가능

1-5. 아이디어의 구체성

[1] 지역별 재난 취약도 클러스터링 모델 (Disaster Vulnerability Clustering Model)

요약: 각 지역의 사회적 약자 비율 및 재난 항목별 위험 점수를 바탕으로 지역별 재난 취약지수를 산출하고, 이를 기반으로 KMeans 클러스터링을 수행하여 위험 수준별 지역 군집을 정의.

1-1. 기술 구현

1) 데이터 전처리 및 병합	2) 취약 인구 점수 산출
사용 데이터:	비율 계산:
- data_sum.csv: 사회적 약자 인구(원주시 전체	- 장애인비율, 노인비율, 다문화비율
- 인구, 장애인, 노인, 다문화, 기초생활수급자)	
- disaster_score.csv: 재난 유형별 정량 점수	중치 반영:
	- 인구별 항목 가중치: 장애인(0.8), 노인(1.0),
3	다문화(0.7), 기초생활수급자(2.0)
	- 지역코드 가중치: 읍(1.6), 면(1.4), 동(1.0)
	최종 산식:
	최종 현취. - ((장애인비율×0.8 + 노인비율×1.0 +
	- ((영예년미월×0.8 + 모년미월×1.0 + 다문화비율×0.7 + 기초생활수급자×2.0) ×
	지역코드 가중치)
2) 7 saeve エスカ	
3) Z-score 표준화	4) KMeans 클러스터링
StandardScaler 사용해 취약인구점수 및 재난	클러스터링 입력 피처:_취약지수가 포함된
항목별 점수 를 표준화	재난별 취약지수 + 지역코드가중
│ │ 각 재난 항목별로 아래 산식으로 통합	클러스터 수(k): 4 로 설정(KMeans(n_clusters=4))
취약지수 산출:	
- 취약지수 = (취약인구점수_std × 0.6) +	클러스터 결과 재정렬:
(재난점수_std × 0.4)	- 클러스터별 평균 취약지수 총합 기준으로
(" = = 1 = 1 = 1 = 1 = 1	위험도 재정렬
	- 위험 낮은 순서대로 0(안정) ~ 3(위험)으로
	할당
-	지역
5) 시각화	6) 예측
엘보우 기법을 통해 최적의 클러스터 수 탐색	원주시 내에서 재난 종류 별 취약한 지역 검색
matplotlib 이용해 inertia 시각화	가능


```
호우_취약지수 상위 5 지역:
지역 호우_취약지수
6 흥업면 1.131724
10 원인동 0.803645
0 문막읍 0.751491
9 중앙동 0.686234
19 태장1동 0.675736
```

[2] 서비스 구현

요약: 지역별 재난 취약도 클러스터링 결과를 기반으로, 사회적 취약계층에게 맞춤형 대응 지침을 제공하는 LLM 기반 재난 대응 지원 시스템

2-1. (재난 발생 전) AI 기반 재난 상황별 취약 요인 예측, 메뉴얼 생성

- 시스템은 재난 발생 시 각 취약계층(노인, 어린이, 장애인, 저소득층, 다문화 가정 등)의 위험 요인(기저 질환, 이동 불편, 언어 장벽, 경제적 어려움 등)을 AI 분석하여 예측
- 각 취약계층에 맞춰 대피 방법, 건강 관리, 안전 확보 방법 등을 포함한 맞춤형 매뉴얼을 자동 생성
- Ex) 폭염 발생시 고 위험군인 지체 장애인 식별, 맞춤형 대피 장소, 건강 관리, 안전 확보 방법 등을 포함한 맞춤형 매뉴얼을 자동 생성

* 기술 구현 과정은 참고 자료에 기입

2-2. (재난 발생 시) 기관 신속 대응 지원

- AI 분석 결과를 바탕으로 재난 발생 지역과 상황에 맞는 취약계층별 대응 방안을 대시보드 형태로 제공, 문자 및 경보 시스템에 활용 될 텍스트를 생성
- 신속하게 해당 지역의 위험이 높은 계층을 확인하고 우선 대응 대상을 결정할 수 있도록 지원 EX) 폭우 경보 발령 시, "○○동 지역의 65세 이상 노인 500명 이상 거주, 침수 위험이 크므로 즉시 대피소로 안내 및 지원이 필요합니다"라는 경고와 함께, 해당 경보 시스템에 제공될 수 있는 안내 문자 제공

* 기술 구현 과정은 참고 자료에 기입

2-3. 실시간 챗봇 맞춤형 정보 제공

- 시민은 스마트폰, 웹 포털, 챗봇 등을 통해 맞춤형 대응 방법을 실시간으로 확인
- 각 계층의 위험 요소(예: 이동 불편, 건강 상태 등)를 지도상에 시각화하여 취약계층이 거주하는 지역과 특성 파악

• 해당 지역에서 가장 안전한 대피소와 대피 경로를 자동으로 계산하고 안내

Ex) "노인과 함께 거주하는 장애인입니다. 폭염 시 어떻게 대처해야 하나요?"라는 질문에 자동으로 맞춤형 폭염 대응 방법 제공

2. 사업화

2-1. 아이디어의 발전가능성

[1] 시장 가능성

정부 및 지자체의 수요 증가

- 최근 정부와 지방자치단체는 재난 대응 및 예방 시스템의 고도화 필요성을 강하게 인식, 재난안전산업은 2021년 기준 약 52조 원 규모로 성장
- 2025년 4월부터 행정안전부의 주도로 어린이, 노인, 장애인, 저소득층 등 안전취약계층의 재난·사고 피해 실태조사와 통계 구축이 본격적으로 시작

[2] BM

- 보험 상품 개발 및 위험 관리와 연계하여, 민간 기업들이 사업화할 수 있는 비즈니스 기회를 창출
- 재난 관련 서비스 제공업체, 스마트 시티 솔루션 구축 기업과의 협업

2-2. 아이디어의 실현에 따른 파급효과(사회적가치 창출)

1. 다수가 아닌, 모두가 안전한 도시 원주시

- 원주시는 고령자 친화적 미니 신도시 계획에 맞춰 최초로 AI 기반의 노인 안전 체계를 구축
- 고령 사회의 선도 모델로 자리매김, 원주인의 긍정적인 이미지와 파급 효과를 창출

2. 취약계층 안전망 구축

- 장애별, 언어별로 각기 다른 형태의 취약성을 겪는 사람들의 경우를 파악하여, 취약계층 보호를 위한 맞춤형 재난 대응 방안을 제공, 소외된 약자층에 대한 안전망 구축

3. 데이터 확장성

- 기존에 존재하지 않았던 취약계층 데이터를 지속적으로 쌓아가며 점차 정교화, 대응 효과를 높임
- 헬스케어 분야로 확장 가능, 이를 바탕으로 전방위적 안전 관리 체계를 구축할 수 있습니다.

4. 시민들과 함께하는 안전한 원주

- 스마트폰과 웹 포털을 통해 원주시 **맞춤형 대응 방법**을 실시간으로 확인
- 추후 지역별 안전 문제를 수집하고 매핑할 수 있는 기능을 구축하여, 시민들의 적극적인 재난 대응 참여와 안전 의식 증진을 유도

2-3. 참고 자료

[1] 기술 구현 과정 및 결과물

클러스터링기반 재난취약지역 대응지 침 생성 LLM

2-1. Al 기반 재난 상황별 취약 요인 예측하고 메뉴얼 제공

- 시스템은 재난 발생 시 각 취약계층(노인, 어린이, 장애인, 저소득층, 다문화 가정 등)의 위 험 요인(기저 질환, 이동 불편, 언어 장벽, 경제적 어려움 등)을 AI 분석하여 예측
- 예를 들어, 폭염 발생 시 노인의 열사병 위험을 예측하고, 장애인은 이동 경로의 장애물에 대한 대피 정보를 우선 제공
- 맞춤형 대응 매뉴얼 생성:
 - 각 취약계층에 맞춰 대피 방법, 건강 관리, 안전 확보 방법 등을 포함한 맞춤형 매뉴얼을 자동 생성

구현

클러스터링기반 제난취약지역 대용지칭 생성 LLN

3. cluster_zscore_sorted.csv 에서 지역의 클러스터, z-score 조회

मान	dutter		가용_취약지수	28,11550	पद्भाप	du ne	선사택,학	시킨,학생	89.0%	48,0%	411,010	世祖,科学	요무,취병-	SHRW.	용사,학생자의
875		1	0.790677816	0.613143926	0.662061	0.885514	1,095677	1.165017	0.226664	0.804395	0.347529	0.569172	0.753818	0.515719	-0.05583
57.52		3	0.155706857	-0.00798423	0.056283	0.299542	0.520432	0.585572	0.458768	0.819686	0.074356	-0.23855	0.450635	0.242536	0.079236
호제안		3	1,205017127	0.679538736	1.076401	0.981085	0.905894	0.966813	0.641000	0.930068	0.438456	0.71625	0.356457	0.930059	1.175008
科智學		1	-0.230604948	-0.07403914	-0.05582	-0.17877	-0.2874	-0.21805	-0.35348	-0.28	-0.36869	-0.27938	-0.35869	-0.86735	0.194095
53.V		3	0.392623899	0.576877912	0.2982	0.848247	0.451288	1.128771	0.190397	0.768128	0.311278	0.532905	0.176416	0.479453	0.316154
246		3	0.852655832	0.86127914	0.654847	0.585705	0.495806	0.252664	0.462145	0.504585	0.371153	0.538624	0.183442	0.21591	0.052611
227		3	1.7188852	1.54135131	1,590269	1.176145	1.721829	1.480681	1.490159	1,443927	0.992324	1.497379	1.140892	1.443927	1,280628
pvo		1	0.563047648	0.38939656	0.465663	0.700923	1.229874	0.992952	0.560861	1.227267	0.481797	0.435108	0.617449	0.649917	0.894866
0/9/9		1	0.779045175	0.239743982	0.621254	0.512114	0.420216	0.179073	0.388552	0.430995	0.297563	-0.11675	-0.16072	0.14232	-0.02098
RHS		1	0.723680103	0.894093714	0.262469	0.816516	0.728418	0.485476	0.694954	0.448722	0.602965	0.765435	0.686821	0.448722	0.265422
PISS		1	0.12304081	0.321197025	1.050614	0.941472	0.848575	0.606431	0.817909	0.571677	1.090943	0.625129	0.809776	0.571677	0.816426
400		2	-0.009314797	-0.173007885	-0.44134	-0.30906	-0.24871	-0.19202	0.056101	-0.21116	0.232755	0.335226	0.045044	0.077512	-0.08579
B#18		1	-0.896671198	-0.350630483	-0.63431	-0.38705	-0.47222	-0.4113	0.065621	-0.15938	-0.29281	-0.12754	0.060611	-0.44805	-0.20311
mazn		1	-0.866925122	-0.254999104	0.155225	0.071696	-0.28681	-0.23433	-0.21622	0.23587	-0.47355	-5.13959	-0.21212	0.541478	-0.23007
0.28		0	-0.746243484	-1.257879072	-0.84547	1,24599	-1.2877	+1.23522	-1.21611	-1.23676	-0.82759	-1.14348	-0.42152	-0.65941	-0.62271
PC5		1	-0.09731525	-0.27484914	-0.22599	-0.32127	-0.39644	433552	-0.39368	-0.37227	-0.21708	-0.05156	-0.13417	-0.37227	-0.12732
608		2	-0.023048867	-0.186729955	-0.45507	-6304	-0.24245	-0.20575	0.577656	0.06278	0.542465	0.451795	0.572446	0.06378	-0.09452
0.46		0	-0.9000044054	-1.04993294	-0.97532	-1.00804	-1.07976	-1.02728	+1.00817	+1.02662	-0.94307	-0.93254	-1.02507	-0.45147	-1.02302
유선동		1	-0.345410036	0.172949075	-0.14145	-0.25057	-0.84453	-0.27739	-0.37914	-0.33169	-0.1417	-0.29965	-0.8A227	-0.62097	-0.37542
4818		2	0.085305463	-0.075385604	0.318476	0.222141	0.450031	0.208888	0.486011	-0.11854	0.650801	0.790109	0.6808	0.172134	0.008835
41728		3	0.43285777	0.588225578	0.607454	0.454505	0.375879	0.44524	0.042114	0.375272	0.274588	0.181897	0.554568	-0.20408	0.857368
808		î	-0.630401611	-0.004393895	-0.70062	-0.44857	-0.50801	-0.45131	0.332091	-0.18179	0.796881	-0.29559	0.056314	-0.18179	-0.34500
458		0	-1.029625697	+1.192516784	-1.46085	-1.20679	11.26822	-1.21752	-1.4567	-1.51905	-1.11018	-1.42307	-1.5158	-0.942	-0.69705
0.6r8		0	-1.071530712	-0.525489997	-0.80917	1,20949	-12912	11.19872	11.17961	1.20024	0.79109	-1.12398	-1.19652	0.62291	0.79621
2501		0	-1.174051345	(1.17595713	-1.11169	-1 51301	11.75166	-1 50125	11.46714	-1.50279	11.74546	-1.45651	-1.49904	-0.92544	-1.08824

4. build_prompt() 로 프롬프트 생성 (내부 작동 기능 보이지 않음)

1. app.py : Flask 메인 로직

주요 변수

- USE LLM : LLM 사용여부를 제어하는 Boolean 플래그
- Disaster_response.csv : 재난 유형 + 상태별 기본 지침을 저장한 파일
- cluster_tacore_sorted.cov : 지역의 클러스터 분류와 재난 z-score 위험도 수치를 저장한 파일 (지역별 재난 취약도 클러스터링 모델에서 출력된 결과)

내부 처리 순서

1. JSON으로부터 재난 유형, 재난 상태, 현재 위치, 사용자 특성 추출

재난 대응 도우미

한제 위치 (지역): 날만을 보지는 종류: 대용 보기에 생용한 '발명 보기에 보기에 막혀 해당없을 그는 반인 집 다음과 가장 그 생애 유형 (매당 시 선택): 그런 때란으로 보존되었을 때 보다는 보다는 말 등 보다는 말 을 보다는 말 을 보다는 말 을

2. Disaster_response.csv 에서 기본 지침 추출

플러스터링기면 제단취약지역 대용지원 생성 LLM

THE REPORT OF THE PROPERTY OF

5. USE_LLM 가 True Prompt를 기반으로 LLM을 활용하여 결과 제작

6. 결과출력


```
- 위험도 클러스터: {cluster} ({cluster_text})
- '(disaster)'에 대한 지역 위험지수: {formatted_risk} → {risk_text}

    ★ 재난 상황:
    - 재난 유형: (disaster)
    - 재난 상태: (phase)
    - CSV 기반 기본 지침: (csv_content)

   9 대상자 정보:""
  if not inputs:
prompt += "\n- 추가 정보 없음"
     for key, value in inputs.items():
prompt += f"\n- {key}: {value}"
   prompt += "\n\n위 내용을 바탕으로 대상자에게 적절한 조치를 안내해
    return prompt
```

templates/index.html : 사용자 입력 폼

- 지역 재난 종류, 상황, 사회적 약자 여부 입력
- extrainputs 로 추가 속성 필드 수동 입력 가능
- 결과는 영역에 표시

4. static/css/style.css : 기본 스타일링

간단한 폼 스타일 (폰트, 간격, 박스 등)

5. static/js/script.js : 프론트엔드 스크립트

◀ 대피가 필요하다면 • 즉시 동사무소 또는 지역 대피소 위치 확인 • 노약자는 혼자 이동하지 않고 반드시 도움을 받아 이동 • 비나 강풍이 약할 때, 가까운 안전지대로 신속히 이동 현재 태풍은 매우 위험한 상태입니다. 문학을 받으면 내가 되었다. 문학을 진 고위점 지역이므로, 지금 이 순간부터 생명을 지키는 행동이 가장 중요합니다. 안전한 장소에 마물며, 절대 방심하지 마세요.

utils/prompt_builder.py : 프롬프트 생성기

핵심 함수 1: build_prompt(...)

- GPT에게 보낼 정보를 정돈하여 생성하는 함수.
 - 。 위치, 클러스터 해석 (interpret_cluster)
 - o z-score 해석 (interpret_risk_level)
 - 사용자 입력 (노인, 장애인 등)을 항목별 정리
 - 최종적으로 GPT가 이해할 수 있도록 자연어 프롬프트 구성

def build_prompt(disaster, phase, csv_content, inputs, location=No cluster_text = interpret_cluster(cluster)
risk_text = interpret_risk_level(risk_level)
formatted_risk = f*{risk_level:.2f}* if isinstance(risk_level, (float, prompt = f^{***} 당신은 재난 대응 전문가입니다. 아래 정보를 바탕으로 맞춤형 재난 대응 ↑ 지역 정보:
 - 현재 위치: (location if location else '알 수 없음')

불러스터링기반 재난취약지역 대용자침 생성 LLM

주요 기능

- 사용자 인력 값 수진 (select_checkhox_input 등)
- fetch("/generate", ...) 로 Flask 서버에 POST 요청
- 응답 결과를 결과 영역(pre#result)에 출력
- addFleld() 로 사용자 정의 속성 추가 가능

6. data/ 폴더

- Disaster_response.csv
- (재난종류), (단계) → 대용지침 데스트 매핑
- cluster zscore sorted.csv : (지역), cluster, (재난별 z-score) 정보 포함

2-2. 공무원 및 시민 대상 신속 대응 지원

1. app.py (Flask 서버 메인 엔트리)

- 。 라우틴
 - 🕧 : 기본 index 페이지 (일반 사용자용 또는 미노출)
- /admin : 공무원 전용 대시보드 HTML 렌더링

- /generate : 메시지 생성 API (POST)
- /risk-data : 지역별 위험도 CSV 데이터 반환 API (GET)
- 。 주요 로직
 - ■ generate(): 요청으로 전달된 지역명, 재난 유형, 재난 단계, 취약계층 정보, 메시지

클러스터링기에 제너취망지역 대응지원 생성 LLM 클리스터링기만 재난취약지역 대용지칭 생성 LLM

[2] 안전 취약 계층별 재난 위험도 우선순위 도출 (보고서 중 전문가 측정 지수 발췌)

재난 및 안전 취약계층의 목소리는 무엇으로 측정하는가?

- 재난 및 안전 취약계층의 수요 분석을 위한 지표 연구

https://koreashe.org/wp-content/uploads/2024/11/풀씨연구회-4기_공허한메아리_결과보고서.pdf