Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Állománynév: aramkorok_10log_alapok01.pdf

Irodalom: Tankönyv: Haizmann J., Varga S. és Zoltai J., "Elektronikus áramkörök,"

Tankönyvkiadó, Budapest, 1992 (javasolt, pp. 295-340, 347-358) Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

5th Edition (kevésbé ajánlott).

10. Logikai alapáramkörök és logikai áramkörcsaládok. Digitális áramkörökben mért jelalakok jellemzése

Oktatási célkitűzés:

Bevezetés a logikai áramkörök használatába, logikai rendszerek blokkdiagram szintű kezelésének bemutatása

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 1. oldal

Az áramköri és blokkdiagram szintű tervezés megközelítése

TRF6900A SoC adó-vevő

Tervezési szintek:

- ullet Áramköri szint $C_{32}-C_7-L_2-C_6$ bemeneti illesztő áramkör
- Blokkdiagram szint "Serial Interface" és "Direct Digital Synthesizer and Power-Down Logic"

Blokkdiagram szint:

- Belső felépítés irreleváns
- Fontos a funkció
- Kellenek az interface adatok (pl. jelalakok, terhelések)

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 2. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

aramkorok_10log_alapok01.pdf: 3. oldal

A TRF6900A SOC áramkör vezérlése

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A vezérlő szavak soros beléptetése

Félvezető eszközök kapcsoló üzemű működése

Az ideális kapcsoló állapotai és karakterisztikái

A valóságos kapcsoló karakterisztikái és helyettesítő képei

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 5. oldal

Félvezető dióda kapcsoló üzemű viselkedése

Vedd észre: • Bekapcsolt állapot: Kb. 0,7–0,8 V esik rajta, egy feszültségforás és egy ellenállás soros kapcsolásával helyettesíthető

• Kikapcsolt állapot: Szakadással helyettesíthető

Schottky dióda: • Fém-félvezető átmenet

- Jóval kisebb nyitóírányú feszültség, típikusan 0,15–0,45 V
- Jóval rövidebb kapcsolási idők

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 6. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Bipoláris tranzisztor kapcsoló üzemű viselkedése

Vedd észre: Logikai szempontból a fenti áramkör egy **invertert** valósít meg

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

MOS tranzisztor kapcsoló üzemű viselkedése

Vedd észre: Logikai szempontból a fenti áramkör egy **invertert** valósít meg

Kapcsolási rajza

Helyettesítő képe

MOS tranzisztoros inverter

Jelalakjai

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 9. oldal

Egyszerű kapuk áramköri felépítése

Pázmány Péter Katolikus Egyetem

Diódás **ÉS** kapu és annak igazságtáblája

A	B	Y
L	L	L
L	H	L
H	L	L
Н	H	Н

• Pozitív logika: H szint pozitívabb mint a L szint

• Negatív logika: H szint negatívabb mint a L szint

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 10. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

TTL LS NAND kapu és annak igazságtáblája

A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

CMOS NAND kapu és annak igazságtáblája

A	В	Y	R_{ki}
L	L	Н	$R_p/2$
L	Н	Н	R_p
Н	L	Н	R_p
Н	Н	L	$2R_n$

 R_n , R_p = a vezető n- ill. p-csatornás tranzisztor csatornaellenállása

CMOS inverter átkapcsolási folyamata és áramfelvétele

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 13. oldal

Logikai rendszerek tervezésének alapelvei

Példa: Egy 4-bites shiftregiszter logikai kapcsolása

Interface adatok: 1. Komparálási szint, H és L logikai szintek

2. Terhelhetőség: Fan-out és fan-in

3. AC jellemzők: Késleltetés, jelszélesség, stb

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 14. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

1. Logikai szintek, zavarvédettség

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

TTL áramkörcsaládok jellemző paraméterei

Áramköri jellemzők		TTL Áramkörcsalád						Dimenzió	
		74	74S	74F	74LS	74AS	74ALS	Difficizio	
	Jelterj. idő	t _{pd}	10 10	3 20	3 4	10 2	4 8	1,7	ns mW
tipikus	Disszipáció H szint	P_D U_H	3,4	3,4	3,4	3,4	3,4	3,4	V
ti	Komp. szint L szint	$U_{K} \ U_{L}$	1,4 0,2	1,25 0,35	1,4 0,3	1,1 0,35	1,4 0,35	1,4 0,35	V V
worst-case		U _{OH min}	2,4	2,7	2,7	2,7	$(U_{cc}-2)$	$(U_{cc}-2)$	v
	Logikai szintek	$U_{IH\ min}$ $U_{OL\ max}$	2,0 0,4	2,0 0,5	2,0 0,5	2,0 0,5	2,0 0,5	2,0 0,5	v v
		U _{IL max}	0,8	0,8	0,8	0,8	0,8	0,8	V
	Bemenet terhelése	$I_{IH\ max}$ $I_{IL\ max}$	40 -1,6	50 - 2	20 -0,6	20 -0,4	20 -0,5	20 -0,1	μA mA
	Kimenet terhel- hetősége	I _{OH max} I _{OL max}	-0,4 16	- 1 20	-1 20	-0,4 8	-2 20	-0,4 8	mA mA

2.(a). Egységterhelés (Unit Load, UL) definíciója

1 TTL Unit Load (U.L.) = 40 μA in the HIGH state (Logic "1")

1 TTL Unit Load (U.L.) = 1.6 mA in the LOW state (Logic "0")

2.(b). TTL logikai áramkörcsaládok terhelhetősége és terhelései

FAMILY	INPUT	LOAD	OUTPUT DRIVE			
	HIGH	LOW	HIGH	LOW		
74LS00	0.5 U.L.	0.25 U.L.	10 U.L.	5 U.L.		
7400	1 U.L.	1 U.L.	20 U.L.	10 U.L.		
9000	1 U.L.	1 U.L.	20 U.L.	10 U.L.		
74H00	1.25 U.L.	1.25 U.L.	25 U.L.	12.5 U.L.		
74S00	1.25 U.L	1.25 U.L.	25 U.L.	12.5 U.L.		
74 ALS	0.5 U.L	0.0625 U.L	10 U.L.	5 U.L.		

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 17. oldal

3. AC jellemzők

Késleltetési idők definíciója

Fel- és lefutási idők definíciója

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_10log_alapok01.pdf: 18. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Pulzus szélességének definíciója

Set-up (előkészítési) és hold (tartási) idők definíciója

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Logikai kapuk rajzjelei

CMOS logikai áramkörcsalád adatai

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic		Symbol	Vnn	- 55°C		25°C			125°C		
			Vdc	Min	Max	Min	Typ (3)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	Vol	5.0 10 15	Ξ	0.05 0.05 0.05	Ξ	0 0 0	0.05 0.05 0.05	Ξ	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VoH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	Ξ	4.95 9.95 14.95	Ξ	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15	Ξ	1.5 3.0 4.0	Ξ	2.25 4.50 6.75	1.5 3.0 4.0	Ξ	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	Ξ	3.5 7.0 11	2.75 5.50 8.25	Ξ	3.5 7.0 11	=	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	Іон	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	1111	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdi
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	loL	5.0 10 15	0.64 1.6 4.2	-	0.51 1.3 3.4	0.88 2.25 8.8	Ξ	0.36 0.9 2.4	Ξ	mAd
Input Current		l _{in}	15		± 0.1	-	±0.00001	± 0.1		± 1.0	µAdı
Input Capacitance (V _{in} = 0)		Cin	-		-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		loo	5.0 10 15	Ξ	0.25 0.5 1.0	=	0.0005 0.0010 0.0015	0.25 0.5 1.0	Ξ	7.5 15 30	μAdı
Total Supply Current (4) (5) (Dynamic plus Quiesco Per Gate, C _L = 50 pF)		ΙΤ	5.0 10 15			$I_T = (0,$	3 μA/kHz) f - 6 μA/kHz) f - 9 μA/kHz) f -	IDD/N			μAdo

Vedd észre: Komparálási szint $\frac{V_{DD}}{2}$

aramkorok_10log_alapok01.pdf: 21. oldal

KOLUMBÁN Géza — Információs Technológiai Kar

Data labelled "Typ" is not to be used for design purposes but is intend.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk

where: I_T is in µA (per package). C_L in pF, V = (V_{DO} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised gates per package.