Feature-Label-Ordering a pre-registered Bayesian replication using MTurk

Fabian Dablander & Marcel Bechtold

University of Tübingen

February 12, 2015

Gregory: "Is there any other point to which you would wish to draw my attention?"

Holmes: "To the curious incident of the dog in the nighttime."

Gregoy: "The dog did nothing in the nighttime."

Holmes: "That was the curious incident."

Error-driven learning

$$V_{ij}^{t+1} = V_{ij}^t + \triangle V_{ij}^t$$

$$\triangle V_{ij}^t = \begin{cases} 0, & \text{if ABSENT}(C_i, \, \mathbf{t}) \\ \alpha_i \beta_1(\lambda - \sum_{\mathsf{present}(C_j, \, \mathbf{t})} V_{ij}), & \text{if PRESENT}(C_j, \, \mathbf{t}) \& \mathsf{PRESENT}(0, \, \mathbf{t}) \\ \alpha_i \beta_2(0 - \sum_{\mathsf{present}(C_j, \, \mathbf{t})} V_{ij}), & \text{if PRESENT}(C_j, \, \mathbf{t}) \& \mathsf{ABSENT}(0, \, \mathbf{t}) \end{cases}$$

FL-learning vs. LF-learning¹

cue competition - associative and dissociative learning

¹all images from Ramscar et al. (2010)

FL-learning vs. LF-learning

no cue competition - conditional probability learning

No representation without taxation (Ramscar and Dye, 2009)

Example Trial²

M. Ramscar et al./Cognitive Science 34 (2010)

Fig. 10. The temporal (predictive) structure of the training trials in Experiment 1.

²great image databases: here

 All subjects were tested on a category verification and recognition task.

- All subjects were tested on a category verification and recognition task.
- A 2(learning) x 2(task) ANOVA found that training using FL-examples lead to better performance on the category verification task.

- All subjects were tested on a category verification and recognition task.
- A 2(learning) x 2(task) ANOVA found that training using FL-examples lead to better performance on the category verification task.
- Conversely, when trained on LF-examples, they scored higher on the recognition task.

- All subjects were tested on a category verification and recognition task.
- A 2(learning) x 2(task) ANOVA found that training using FL-examples lead to better performance on the category verification task.
- Conversely, when trained on LF-examples, they scored higher on the recognition task.
- shows that improved response-discrimination leads to the original input being less accurately represented

Our Goal

We want to replicate those results using an Amazon Mechanical Turk sample and using different statistical techniques.

Bayesian Signal Detection Theory

```
library('rjags')
ms <- '
model {
  hits ~ dbin(theta h, signal)
  falarms ~ dbin(theta f, noise)
  theta h \leftarrow phi(d/2-c)
  theta f <- phi(-d/2-c)
  d \sim dnorm(0, .5)
  c \sim dnorm(0, 2)
# see also Lee & Wagenmakers (2013, pp.156)
```

Example

```
library('ggmcmc')
params <- c('d', 'c', 'theta_h', 'theta_f')</pre>
data <- list('hits' = 70, 'falarms' = 50,
              'signal' = 70 + 30, 'noise' = 50 + 50)
model <- jags.model(textConnection(ms), data = data,</pre>
                     n.chains = 2, quiet = TRUE)
samples <- coda.samples(model, n.iter = 10000,</pre>
                          variable.names = params)
```

Example

```
ggs_density(ggs(samples[, 1:2]))
```


Mixed Logit Models

Following Jaeger (2008), Baayen, Davidson, and Bates (2008), and Judd, Westfall, and Kenny (2012), we want to analyze the gathered data using a Mixed Logit Model with *participant* and *stimulus* as random factors.

```
library('lme4')
# example data
head(data, 3)
##
    id resp present cor alien learning
                                           task
                        wug FL recognition
## 2 2 0
               1 0 niz FL verification
## 3 3 1
                        mob
                                 LF recognition
# example model
fit <- glmer(cor ~ learning*task + (1|id) + (1|alien),
                 data, binomial)
```

• pre-register replication on the Open Science Framework

- pre-register replication on the Open Science Framework
- implement experiment in JavaScript, run it on Mechanical Turk

- pre-register replication on the Open Science Framework
- implement experiment in JavaScript, run it on Mechanical Turk
- implement Rescorla-Wagner simulations in R (Julia?)

- pre-register replication on the Open Science Framework
- implement experiment in JavaScript, run it on Mechanical Turk
- implement Rescorla-Wagner simulations in R (Julia?)
- analyze data using Bayesian SDT and Mixed Logit Models