Twitter US Airline Sentiment

Shukai Wang Xi'an Shiyou University

January 16, 2021

Table of content

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

Problem

Description

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Pro	blei	n
_		

Description

Data

Date Analysis

Data Processing

Modeling

Conclusion

Problem

Description

Problem

Description

Data

Date Analysis

Data Processing

Modeling

Conclusion

Description

Sentiment analysis work on the issues of each major US airline. Twitter counted the tweets related to airlines since February 2015, and analyzed whether the sentiments contained in these tweets were positive, neutral or negative.

■ Analyze how travelers in February 2015 expressed their feelings on Twitter.

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

Data

Basic Information of Data

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

	Table 1: Train	
Attribute	Explanation	
airline_sentiment About the attitude of airlines.		
text	The text content of the tweet.	
airline	The name of the airline.	
retweet_count	The number of reposts of the	
	tweet.	
tweet_created	The time the tweet was gener-	
	ated.	

It also includes attributes such as tweet_id, airline_sentiment_confidence, negativereason, negativereason_confidence, airline_sentiment_gold, name, negativereason_gold, tweet_coord, tweet_location, user_timezone, etc.

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

Date Analysis

Sentiment

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

Positive, negative and neutral emotions accounted for the number and proportion of the total number of people respectively. Among them, the number of negative attitudes is the largest and the number of positive attitudes is the least.

Airline

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

■ The percentage of each airline in all airlines.

Figure 3: Airline Map

Figure 4: Airline Dist

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

Distribution of attitudes of different airlines.

Figure 5: Airline Attitude

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude
Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

■ The individual attitude distribution of each airline.

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

negative Word Cloud

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

Words with negative emotions involve flight, canceled, hour, etc.

Figure 12: Negative Words

Positive Word Cloud

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

Words with negative emotions include thanks, great, etc.

Figure 13: Positive Words

Neutral Word Cloud

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Figure 14: Neutral Words

Negative Reason

Problem

Data

Date Analysis

Sentiment

Airline Attitude

Airline Attitude

Airline Attitude

negative Word Cloud

Positive Word Cloud

Neutral Word Cloud

Negative Reason

Data Processing

Modeling

Conclusion

Perform statistical tactics on the causes of negative attitudes.

Figure 15: Total Negative Reasons

Problem
Data
Date Analysis
Data Processing
Modeling

Data Processing

Data Processing

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

- Processing data independent of results.
 - For example:tweet_id,name,tweet_location,tweet_coord etc
- Normalization of training data and test data.
 - ◆ For example:airline_sentiment,airline etc
- Split train and test data.

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

Modeling

Model

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

- Random Forest
- Gradient Boosting
- LSTM RNN

Table 2: Comparative Results

Model	Accuracy
Random Forest	0.8135245901639344
Gradient Boosting	0.8265027322404371
LSTM RNN	0.8865852952003479

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

Conclusion

Problem

Data

Date Analysis

Data Processing

Modeling

Conclusion

- On this issue, the new model is better than the traditional machine learning model.
- Pay attention to the adjustment of parameters when training the model.
- Other models can be used to further improve accuracy.