Problem Set 9

The Poisson Process

Date: Wednesday, 3rd of July, 2019.

Problem 1:

Let $\{N(t), t \in [0, \infty)\}$ be a Poisson process with rate $\lambda = 0.5$.

- (a) Find the probability of no arrivals in (3, 5]
- (b) Find the probability that there is exactly one arrival in each of the following time intervals: (0,1], (1,2], (2,3], and (3,4].

Problem 2:

The number of orders arriving at a service facility can be modeled by a Poisson process with intensity $\lambda = 10$ orders per hour.

- (a) Find the probability that there are no orders between 10:30 and 11.
- (b) Find the probability that there are 3 orders between 10 : 30 and 11 and 7 orders between 11 : 30 and 12

Problem 3:

Let $\{N(t), t \in [0, \infty)\}$ be a Poisson process with rate λ . Find the probability that there are two arrivals in (0, 2] or three arrivals in (4, 7].

Problem 4:

Let N(t) be a Poisson process with rate $\lambda = 2$, and let X_1, X_2, \ldots be the corresponding interarrival times.

- (a) Find the probability that the first arrival occurs after t = 0.5, i.e. $P[X_1 > 0.5]$.
- (b) Given that we have had no arrivals before t = 1, find $P[X_1 > 3]$.
- (c) Given that the third arrival occurred at time t=2, find the probability that the fourth arrival occurs after t=4.
- (d) I start watching the process at t = 10. Let T be the time of the first arrival that I see. In other words, T is the first arrival after t = 10. Find $\mathbb{E}[T]$ and Var[T].
- (e) I start watching the process at time t=10. Let T be the time of the first arrival I see. Find the conditional expectation and the conditional variance of T given that I am informed that the last arrival occurred at time t=9.

Problem 5:

Let $\{N(t), t \in [0, \infty)\}$ be a Poisson Process with rate λ . Find its covariance function

$$C_N(t_1, t_2) = \text{Cov}(N(t_1), N(t_2)), \text{ for } t_1, t_2 \in [0, \infty)$$

Problem 6:

Let $N_1(t)$ and $N_2(t)$ be two independent Poisson processes with rates $\lambda_1=1$ and $\lambda_2=2$ respectively. Let N(t) be the merged process $N(t)=N_1(t)+N_2(t)$.

(a) Find the probability that N(1) = 2 and N(2) = 5.

(b) Given that N(1) = 2, find the probability that $N_1(1) = 1$.

Problem 7:

Use a computer simulation to generate multiple realizations of a Poisson process with $\lambda = 1$. Use the simulation to estimate $P[T_2 \le 1]$. Compare your result to the true value.

Problem 8:

Cars, trucks, and buses arrive at a toll booth as independent Poisson processes with rates $\lambda_c = 1.2 = \text{cars/minute}$, $\lambda_t = 0.9$ trucks/minute, and $\lambda_b = 0.7$ buses/minute. In a 10-minute interval, what is the PMF of N, the number of vehicles (cars, trucks, or buses) that arrive?

Problem 9:

A corporate Web server records hits (requests for HTML documents) as a Poisson process at a rate of 10 hits per second. Each page is either an internal request (with probability 0.7) or an external request (with probability 0.3) from the Internet. Over a 10-minute interval, what is the joint PMF of I, the number of internal requests, and X, the number of external requests?

Problem 10:

Find the probability of 6 arrivals of a Poisson random process in the time interval [7,12] if $\lambda = 1$. Next determine the average number of arrivals for the same time interval.

Problem 11:

For a Poisson random process with an arrival rate of 2 arrivals per second, find the probability of exactly 2 arrivals in 5 successive time intervals of length 1 second each.

Problem 12:

If N(t) is a Poisson counting random process, determine $\mathbb{E}[N(t_2) - N(t_1)]$ and $\text{Var}[N(t_2) - N(t_1)]$.

Problem 13:

A compound Poisson random process X(t) is composed of random variables U_i that can take on the values ± 1 with $P[U_i = 1] = p$. What is the expected value of X(t)?