Язык и порождающие грамматики

РГ	КС	К3	Тип 0
$S \rightarrow 0A$	$S \rightarrow AB$	$S \rightarrow AB$	$S \rightarrow 0AB1$
$A \rightarrow 0A \mid 1B \mid 1$	$A \rightarrow 0A \mid 0$	$A \rightarrow 0A \mid 0$	$A \rightarrow 0A \mid \epsilon$
$B \rightarrow 1B \mid 1$	$B \rightarrow 1B \mid 1$	$0A \rightarrow 00A$	$0A \rightarrow 00A$
		$B \rightarrow 1B \mid 1$	$B \rightarrow 1B \mid \epsilon$

Лемма о накачке для регулярных языков

Если задан регулярный язык L, то существует константа n>0, такая, что если $\alpha\in L$ и $|\alpha|\geq n$, то цепочку α можно записать в виде $\alpha=\beta\gamma^i\delta$, где $0<|\gamma|$, и тогда $\alpha=\beta\gamma^i\delta$, $\alpha\in L$ для всех i>0.

```
Язык L = \{0^m1^n \mid n, m > 0\} — регулярный язык 00^k1111
```

001111 000000001111 0000000000000001111

Лемма о накачке для регулярных языков (2)

Используя лемму о разрастании регулярных языков, докажем, что язык $L = \{a^n b^n \mid n > 0\}$ не является регулярным.

Положим, что L = $\{a^nb^n \mid n > 0\}$ — регулярный язык. Тогда должны существовать три подцепочки β , γ и δ , причем $\gamma \neq \epsilon$, и $\beta \gamma^n \delta \in L$ для всех n > 0. Существуют три возможных варианта подцепочки γ :

- γ состоит только из символов а (хотя бы одного а). Тогда цепочка $\beta \gamma^2 \delta$ будет содержать больше символов а, чем b, и, значит, эта цепочка не принадлежит { $a^nb^n \mid n>0$ }; aabb aaaaabb
- γ состоит только из символов b (хотя бы одного b). Тогда цепочка $\beta \gamma^2 \delta$ будет содержать больше символов b, чем a, и, значит, эта цепочка не принадлежит { $a^nb^n \mid n>0$ }; aaabbb aabbbbb
- $\gamma = a^i b^j$ (i, j > 0), тогда даже цепочка $\beta \gamma^2 \delta$ будет содержать символы b за которыми следуют символы a, что для языка L = $\{a^n b^n \mid n > 0\}$ недопустимо aaabbb aaabbabbbb

Свойства регулярных языков

- Регулярные языки, а язык это множество, замкнуты относительно следующих операций:
- пересечения;
- объединения;
- дополнения;
- разности;
- обращения;
- итерации;
- конкатенации;

Контекстно свободные языки и МП-автоматы

Структурная схема МП-автомата

- PDA = (X, S, s0, F, δ, M, m0), где
- X множество входных символов (входной алфавит);
- S конечное множество состояний МПавтомата;
- s_0 начальное состояние МП-автомата $(s_0 \in S)$;
- F множество допускающих состояний (F ⊆ S);
- М множество символов стека;
- m₀ начальный символ стека (m₀ ∈ M), в начале работы стек содержит этот единственный символ;
- δ функция переходов, δ : (S × (X U { ϵ }) × M) \rightarrow (S × M*).

МП-автомат

- Начальная конфигурация МП-автомата определяется тройкой $(s_0, \omega, m_0);$
- отношение непосредственной смены конфигураций, обозначаемое \vdash , пусть $\delta(s_1, t, m)$, причем $s_1 \in S$, $t \in X$, $m \in M$, содержит пару (s_2, α) $s_2 \in S$, $\alpha \in M^*$, тогда для всех цепочек $\omega \in X^*$ и $\beta \in M^*$ справедливо следующее отношение: $(s_1, t\omega, m\beta) \vdash (s_2, \omega, \alpha\beta)$
- $(s_1, t, m) \vdash (s_2, \alpha)$
- Конечной конфигурацией МП-автомата является тройка (q, ϵ , α) где q \in F, α \in M*
- путь по конфигурациям (s_0 , ω , m_0) $\vdash *$ (q, ϵ , α) для некоторых $q \in F$ и $\alpha \in M^*$

Упрощение КС грамматик

- Пусть G = (VT, VN, P, S) КС-грамматика.
- Нетерминальный символ $A \in VN$ называется непроизводящим, если множество терминальных цепочек, выводимых из него, пусто, обозначается $\{\alpha \mid \alpha \in VT^*, A \Rightarrow *\alpha\} = \emptyset$.
- Символ, принадлежащий словарю грамматики V, называется недостижимым, если он не может быть получен ни в одной из сентенциальных форм.
- Непроизводящие и недостижимые символы называются бесполезными.
- Грамматика называется приведенной, если из неё удалены все правила, содержащие бесполезные символы.

Удаление непроизводящих символов

 $G = ({a, b}, {A, B, C, D, E, F, S}, P, S).$

Исходное	Формирование	Результирующая
множество правил Р	множества VN'	грамматика

S
$$\rightarrow$$
 AC | BS | B
 VN'₀ = {Ø}
 G' = (VT, VN', P', S)

 A \rightarrow aA | aF
 VN'₁ = {B, F}
 VT = {a, b}

 B \rightarrow CF | b
 VN'₂ = {B, F, A, S}
 VN' = {A, B, E, F, S}

 C \rightarrow cC | D
 VN'₃ = {B, F, A, S, E}
 P' = {S \rightarrow BS | B

 D \rightarrow aD | BD | C
 VN'₄ = {B, F, A, S, E}
 A \rightarrow aA | aF

 E \rightarrow aA | BSA
 VN'₄ = VN'₃
 B \rightarrow b

 F \rightarrow bB | b
 FINISH
 E \rightarrow aA | BSA

 F \rightarrow bB | b}

Удаление недостижимых символов

Исходное множество правил	Формирование множеств VT' и VN'	Результирующая грамматика
$S \rightarrow BS \mid B$ $A \rightarrow aA \mid aF$ $B \rightarrow b$ $E \rightarrow aA \mid BSA$	$VN'_0 = \{S\} VT'_0 = \emptyset$ $VN'_1 = \{S, B\} VT'_1 = \{b\}$ $VN'_2 = \{S, B\} VT'_2 = \{b\}$ $VN'_2 = VN'_1$	G' = (VT', VN', P', S) VT' = {b} VN' = {A, B, E, F, S}
$F \rightarrow bB \mid b$	FINISH	$P' = \{S \rightarrow BS \mid B \\ B \rightarrow b\}$

Удаление ε-правил

- Контекстно-свободная грамматика G = (VT, VN, P, S) называется расширенной КС грамматикой, если в множестве правил Р содержится одно или более ε-правила (правила вида A → ε).
- Грамматика называется S-расширенной КС грамматикой (VT, VN, P, S), если множество P содержит правило S \rightarrow ϵ .
- Для любой расширенной КС грамматики G, такой что ε ∉ L(G), существует эквивалентная КС грамматика G' без ε-правил.
- Для любой расширенной КС грамматики G, такой что ε ∈ L(G), существует эквивалентная S-расширенная грамматика G'.

Удаление ε-правил (2)

 Для заданной КС грамматики G нетерминальный символ A называется nullable, если A ⇒* є, иначе говоря, из A выводима пустая цепочка. Множество Nullable для грамматики G включает в себя все нетерминалы, из которых выводимы пустые цепочки.

```
\{S \rightarrow ACA
A \rightarrow aAa \mid B \mid C
B \rightarrow bB \mid b
C \rightarrow cC \mid \epsilon\}
```

МножествоNullable

```
Ø {C} {A, C} {A, C, S} {A, C, S}
```

Удаление ε-правил (3)

```
S 	othe ACA Исходный набор правил Р' A 	othe aAa \mid B \mid C S 	othe \epsilon \mid ACA B 	othe bB \mid b A 	othe aAa \mid B \mid C B 	othe bB \mid b C 	othe cC
```

Результирующий набор правил Р'
 S → ε | ACA | AA | AC | CA | A | C
 A → aAa | aa | B | C
 B → bB | b
 C → cC | c

Удаление цепных правил.

Рассмотрим следующие правила

Цепное

правило

Замена правой части правила A → В на все возможные правые части правил с В в левой части правила

$$A \rightarrow aA \mid a \mid B$$

$$A \rightarrow B$$

$$A \rightarrow aA \mid a \mid bB \mid b \mid C$$

$$B \rightarrow bB \mid b \mid C$$

$$B \rightarrow bB \mid b \mid C$$

Удаление цепных правил (2)

```
Действие
                                             Множество Р'
P' = P - \{(A \rightarrow \alpha) \in P\}
                                S \rightarrow ACA \mid AA \mid AC \mid CA
                                             A \rightarrow aAa \mid aa
для всех \alpha \notin VN
                                             B \rightarrow bB \mid b
                                             C \rightarrow cC \mid c
                                             S \rightarrow ACA \mid AA \mid AC \mid CA \mid aAa \mid aa \mid bB \mid b \mid cC \mid c
Chain(S) = {S, A, C, B}
Добавляем правила
                                     A \rightarrow aAa \mid aa
                                             B \rightarrow bB \mid b
S \rightarrow aAa \mid aa
S \rightarrow bB \mid b
                                             C \rightarrow cC \mid c
S \rightarrow cC \mid c
Chain(A) = \{A, C, B\}
                                             S \rightarrow ACA \mid AA \mid AC \mid CA \mid aAa \mid aa \mid bB \mid b \mid cC \mid c
                                             A \rightarrow aAa \mid aa \mid bB \mid b \mid cC \mid c
Добавляем правила
A \rightarrow bB \mid b
                                             B \rightarrow bB \mid b
A \rightarrow cC \mid c
                                             C \rightarrow cC \mid c
Chain(B) = \{B\}
                                             Без изменений
Chain(C) = \{C\}
                                              Без изменений
```

Удаление цепных правил (3).

```
• Было

S → ACA | AA | AC | CA | A | C

A → aAa | aa | B | C

B → bB | b

C → cC | c }
```

```
• Стало

S → ACA | AA | AC | CA | aAa | aa |
bB | b | cC | c

A → aAa | aa | bB | b | cC | c

B → bB | b

C → cC | c
```

Синтаксические деревья

- Процесс вывода сентенциальной формы для КС-грамматики G = (VT, VN, P, S) может быть наглядно представлен с помощью синтаксического дерева, или иначе дерева разбора. Синтаксическое дерево, соответствующее сентенциальной форме, это связный ацикличный граф такой, что:
- корень дерева вершина с нулевой степенью захода помечается начальным символом грамматики S;

Синтаксические деревья

- узлы дерева помечаются нетерминальными символами грамматики; если узел дерева помечен символом A, A \in VN, и все исходящие из этого узла дуги связаны с вершинами, помеченными v_1 , v_2 , ... v_n , причем n>0; $v_i \in$ VN \cup VT \cup { ε }; то в грамматике должно существовать правило $A \rightarrow v_1 v_2$... $v_n \in$ P.
- листья дерева (терминальные узлы) для общего случая сентенциальной формы помечаются символами из множества VN U VT U {ε}; если сентенциальная форма является предложением языка, то терминальные узлы помечаются символами из множества VT U {ε}.
- При обходе листьев дерева слева направо получается цепочка символов, соответствующая сентенциальной форме, вывод которой иллюстрирует синтаксическое дерево.

Синтаксические деревья

$$= (\{a, b, +\}, \{S, A\}, \{S \rightarrow A \mid A+S; A \rightarrow a \mid b\}, S).$$
 $a+b+b$

 $S \Rightarrow +a+b+S$

$$S \Rightarrow + a + S$$

$$S \Rightarrow + a + S$$

$$A \Rightarrow S \Rightarrow + A \Rightarrow S \Rightarrow A$$

$$b \Rightarrow A$$

 $S \Rightarrow +a+b+A$