Introductiona aux nombres complexes

MAT3

1 - Nombres Complexes

Résumé du document

Table des matières

. Kappel	4
1.1. Série / suite géométrique infinie	2
1.2. Tableau cercle trigonométrique	2
. Nomenclature	3
. Forme cartésienne	
3.1. Addition	
3.2. Soustraction	4
3.3. Multiplication	4
. Conjugé complexes	5
4.1. Propriétés	
4.2. Utilisation du discriminant	

1. Rappel

1.1. Série / suite géométrique infinie

La formule pour calculer la valeur d'une série géométrique infinie est:

$$S(\infty) = \frac{\text{terme initial}}{1 - \text{raison}}$$

1.2. Tableau cercle trigonométrique

	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$rac{\pi}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	non défini

2. Nomenclature

Pour pouvoir résoudre la fonction:

$$x^2 + 1 = 0$$

nous avons du créer la valeur suivante:

$$j^2=-1$$

Nous aurons la formule suivante:

$$z = a + bj$$

a =Partie réelle et notée Re(z)

b = Partie imaginaire et notée Im(z)

3. Forme cartésienne

Très pratique pour l'addition et la soustraction.

3.1. Addition

$$(a + bj) + (c + dj) = (a + c) + (b + d)j$$

3.2. Soustraction

$$(a + bj) - (c + dj) = (a - c) + (b - d)j$$

3.3. Multiplication

$$(a+\mathrm{bj})*(c+\mathrm{dj}) = (\mathrm{ac}-\mathrm{bd}) + (\mathrm{ad}+\mathrm{bc})j$$

4. Conjugé complexes

Le conjugué d'un nombre complexe est obtenu en changeant le signe de la partie imaginaire. Il est noté: \overline{s} . De ce fait on peut dire que :

$$z * z^* = a^2 + b^2$$

cela signifie que nous pouvons obtenir un nombre réel en multipliant un nombre complexe par son conjugué.

4.1. Propriétés

1.
$$z \cdot z^* = a^2 + b^2$$
, (si $z = a + bj$),

$$2. (z^*)^* = z,$$

3.
$$(z+w)^* = z^* + w^*$$
,

4.
$$(z-w)^* = z^* - w^*$$
,

5.
$$(zw)^* = z^*w^*$$

6. Si
$$w \neq 0$$
, alors $\left(\frac{z}{w}\right)^* = \frac{z^*}{w^*}$.

Module
$$1 = a^2 + b^2 = 1$$

Soit z un nombre compelxe, alors:

z~est un nombre réel si et seulement si $z=z^{\ast}$

$$\operatorname{Re}(z) = \frac{z + z^*}{2}$$

$$\operatorname{Im}(z) = \frac{z - z^*}{2i}$$

4.2. Utilisation du discriminant

Regardons maintenant une application aux racines d'un polynôme à coefficients réels d'ordre 2.

$$\Delta = b^2 - 4ac$$

On considère uniquement les cas ou $\Delta < 0$. Le polymôme est donc irreductible sur R mais est réductible sur C. Ses racines sont des nombres comlexes valant:

$$z_1 = \frac{-b+j*\sqrt{-\Delta}}{2a} \ \text{ et } z_2 = \frac{-b-j*\sqrt{-\Delta}}{2a}$$

La décomposition de P(x) sur les complexes donne:

$$P(x) = (z - z_1)(z - z_2)$$