CSCE 411 Sahil Palnitkar

16-1.3)

For selecting the activity of least duration from among those that are compatible with previously selected activities:

ii	1	2	3
Si	0	2	3
Fi	3	4	6
Time	3	2	3

We get activity 2. But the optimal solution chooses activity 1, activity 3

For selecting the compatible activity that overlaps the fewest other remaining activities:

ii	1	2	3	4	5	6	7	8	9	10	11
Si	0	1	1	1	2	3	4	5	5	5	6
Fi	2	3	3	3	4	5	6	7	7	7	8
Overlap	3	4	4	4	4	2	4	4	4	4	3

Activity 6 gets selected first. After that, each choice is only two other activities -> one from activity(1,2,3,4) and one from activity(8,9,10,11). Optimal solution gives us activity(1,5,7,11)

For choosing the compatible remaining activity with the earliest start time:

0 1	0		
ii	1	2	3
Si	0	2	4
Fi	20	4	8

The max is activity 2 and activity 3. But the earliest time is activity 1.

16.3-3)

h:0
g:10
f:110
e:1110
d:11110
c:111110
b:1111110
a:11111110

This tree has n leaves. This will follow for the first n Fibonacci numbers.

Using 1,1,2,3 we have a basis for the first few Fibonacci numbers. Assuming this holds for all Fibonacci numbers smaller than F_{n+2},

To prove for
$$F_{n+2}$$
:
$$F_{n+2} = F_{n+1} + F_n = {}^{n-1} \sum_{i=0}^{n} F_i + 1 + F_n = {}^n \sum_{i=0}^{n} F_i + 1$$

Therefore, $F_{n+2} < {}^{n}\sum_{i=0}^{n} F_i + 1$ and clearly $F_{n+2} < F_{n+1}$ so F_{n+2} is chosen after all smaller Fibonacci numbers have been merged.

Therefore this follows for F_{n+2}

 c_q = floor(n/25), This is the largest number of quarters that can be used to make change for n cents.

 $n_q = n - 25c_q$. This is the amount remaining after using c_q quarters

 c_d = floor($n_0/10c$) This is the largest number of dimes that can be used to make change for n cents.

 $n_d = n_q - 10c_d$ This is the amount remaining after using c_q quarters.

 $c_n = floor(n_d/5c)$

 $c_p = n_p = n_d - 5c_n$.

Therefore, the solution uses c_q quarters, c_d dimes, c_n nickels and c_p pennies.

Proof: Assume Greedy solution G is not optimal. Let O be an optimal solution using o_q quarters, o_d dimes, o_n nickels and o_p pennies. If $o_p \ge 5$ we can replace every 5 pennies with one nickel, reducing the number of coins used, so we can assume $o_p < 5$. If $o_d \ge 3$, replace every three dimes with 1 quarter and 1 nickel without increasing the number of coins. Assume $o_d \le 2$.

If $o_n \ge 2$ replace every 2 nickels with one dime, reducing the number of coins used, so we can assume on ≤ 1 .

Suppose that $10o_d + 5o_n + o_p \ge 25$. The only way that this can happen is if $o_d = 2$ and $o_n = 1$. We replace the two dimes and one nickel with one quarter, reducing the number of coins used, contradicting optimality of O. So this is impossible. This means that $10o_d + 5o_n + o_p < 25$. Since $n = 25o_q + 10o_d + 5o_n + o_p$ we have just shown that $c_q = floor(n/25c) = o_q$. After greedy takes off the $c_q = o_q$ quarters what remains is $n' = n - 25o_q = 10o_d + 5o_n + o_p$.

From $o_n \le 1$ and $o_p \le 4$, we see that $5o_n + o_p < 10$ so we choose $c_d = o_d$ dimes and then $c_n o_n$ nickels and then $c_p = o_p$ pennies. Therefore this greedy solution is optimal in O(1) time.