Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 2

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level
- Storage is limited by available memory
 - Easier to configure, augment

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level
- Storage is limited by available memory
 - Easier to configure, augment
- Typically, we focus on time rather than space

- Running time depends on input size
 - Larger arrays will take longer to sort

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

Example 1 SIM cards vs Aadhaar cards

 $n \approx 10^9$ — number of cards

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

Example 1 SIM cards vs Aadhaar cards

- $n \approx 10^9$ number of cards
- Naive algorithm: $t(n) \approx n^2$

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size n
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

Example 1 SIM cards vs Aadhaar cards

- $n \approx 10^9$ number of cards
- Naive algorithm: $t(n) \approx n^2$
- Clever algorithm: $t(n) \approx n \log_2 n$
 - log₂ *n* number of times you need to divide *n* by 2 to reach 1

Example 2 Video game

Several objects on screen

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million
- Suppose we have $100,000 = 1 \times 10^5$ objects

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million
- Suppose we have $100,000 = 1 \times 10^5$ objects
- Naive algorithm takes 10¹⁰ steps
 - 1000 seconds, or 16.7 minutes in Python
 - Unacceptable response time!

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million
- Suppose we have $100,000 = 1 \times 10^5$ objects
- Naive algorithm takes 10¹⁰ steps
 - 1000 seconds, or 16.7 minutes in Python
 - Unacceptable response time!
- $\log_2 100,000$ is under 20, so $n \log_2 n$ takes a fraction of a second

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)
- Asymptotic complexity
 - What happens in the limit, as n becomes large

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)
- Asymptotic complexity
 - What happens in the limit, as *n* becomes large
- Typical growth functions
 - Is t(n) proportional to $\log n, \ldots, n^2, n^3, \ldots, 2^n$?
 - Note: $\log n$ means $\log_2 n$ by default
 - Logarithmic, polynomial, exponential, ...

Input size	Values of $t(n)$						
	log n	n	$n \log n$	n^2	n^3	2 ⁿ	<i>n</i> !
10	3.3	10	33	100	1000	1000	10^{6}
100	6.6	100	66	10 ⁴	10^{6}	10^{30}	10^{157}
1000	10	1000	10 ⁴	10^{6}	10 ⁹		
10 ⁴	13	10 ⁴	10 ⁵	10 ⁸	10^{12}		
10 ⁵	17	10^{5}	10^{6}	10^{10}			
10 ⁶	20	10^{6}	10 ⁷	10^{12}			
10 ⁷	23	10 ⁷	10 ⁸				
108	27	10 ⁸	10^{9}				
10 ⁹	30	10 ⁹	10^{10}				
10 ¹⁰	33	10^{10}	10^{11}				

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable
- Exchange a pair of values?

$$(x,y) = (y,x)$$
 $t = x$
 $x = y$
 $y = t$

- If we ignore constants, focus on orders of magnitude, both are within a factor of 3
- Need not be very precise about defining basic operations

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - Magnitude of *n* is not the correct measure

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - Magnitude of *n* is not the correct measure
 - Arithmetic operations are performed digit by digit
 - Addition with carry, subtraction with borrow, multiplication, long division . . .

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - \blacksquare Magnitude of n is not the correct measure
 - Arithmetic operations are performed digit by digit
 - Addition with carry, subtraction with borrow, multiplication, long division . . .
 - Number of digits is a natural measure of input size
 - Same as $\log_b n$, when we write n in base b

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements
 - Pessimistic worst case may be rare

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements
 - Pessimistic worst case may be rare
 - Upper bound for worst case guarantees good performance

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - \blacksquare Asymptotic complexity, as n becomes large

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - \blacksquare Asymptotic complexity, as n becomes large
- From running time, we can estimate feasible input sizes

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - \blacksquare Asymptotic complexity, as n becomes large
- From running time, we can estimate feasible input sizes
- We focus on worst case inputs
 - Pessimistic, but easier to calculate than average case
 - Upper bound on worst case gives us an overall guarantee on performance