Drive assembly for motor vehicles with automatic transmission has electric motor parallel and adjacent engine and acting on second shaft supporting other gearwheels

Patent number:

DE10143289

Publication date:

2003-03-27

Inventor:

HOEHN BERND-ROBERT (DE)

Applicant:

HOEHN BERND-ROBERT (DE)

Classification:

- international:

B60K6/04; F16H3/091; B60K6/00; F16H3/08; (IPC1-7):

B60K6/02

- european:

F16H3/091B; B60K6/04B10; B60K6/04B14;

B60K6/04H4; B60K6/04T4

Application number: DE20011043289 20010904 Priority number(s): DE20011043289 20010904

Report a data error here

Abstract of **DE10143289**

The drive assembly includes a drive engine and a second drive source eg electric motor (20) which acts on a second shaft supporting the other gearwheels. This electric motor acts indirectly through a further drive shaft (23) and transfer means such as gearwheels on the second shaft (16) of the transmission (14). The second drive source (electric motor) is positioned parallel and adjacent the first drive source (10) (combustion engine).

Data supplied from the esp@cenet database - Worldwide

THIS PAGE LEFT BLANK

B 60 K 6/02

(19) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND **MARKENAMT**

(a) Offenlegungsschrift (a) PG CL/6 A ₁₀ DE 101 43 289 A 1

Aktenzeichen:

101 43 289.5

22 Anmeldetag:

4. 9.2001

43 Offenlegungstag:

27. 3.2003

(7) Anmelder:

Höhn, Bernd-Robert, Prof. Dr.-Ing., 81925 München.

(12) Erfinder:

gleich Anmelder

(6) Entgegenhaltungen:

DE

199 60 621 A1 101 36 725 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Automatisiertes Schaltgetriebe
- Die Erfindung betrifft eine Antriebsanordnung, insbesondere für Kraftfahrzeuge, mit einer ersten Antriebsquelle, insbesondere einer Brennkraftmaschine, und einer zweiten Antriebsquelle, insbesondere einem Elektromotor, die auf ein Schaltgetriebe mit mehreren Gang-Zahnradsätzen als Geschwindigkeitswandler wirken, wobei die erste Antriebsquelle auf eine erste, die einen Zahnräder der Gang-Zahnradsätze tragende Welle wirkt, die zweite Antriebsquelle auf eine zweite, die anderen Zahnräder der angeführten Gang-Zahnradsätze tragende Welle wirkt, und eine Abtriebswelle vorgesehen ist, die wahlweise mit der ersten Welle oder der zweiten Welle des Getriebes derart kuppelbar ist, dass der Antriebsmomentenfluß stets von dedr momentan angetriebenen Welle über die zweite Welle auf die Abtriebswelle verläuft, wobei zur Erzielung einer einbaugünstigen und baulich vorteilhaften Konstruktion die zweite Antriebsquelle mittelbar über eine weitere Antriebswelle und Übertragungsmittel (Zahnräder oder Kette) auf die zweite Welle des Wechselgetriebes wirkt.

Beschreibung

[0001] Die Erfindung betrifft eine Antriebsanordnung, insbesondere für Kraftfahrzeuge, gemäß dem Oberbegriff des Patentanspruches 1.

[0002] Eine gattungsgemäße Antriebsanordnung beauf den Anmelder zurückgehende DE 199 31 311 A1, mit einer Brennkraftmaschine als erster Antriebsquelle, einem Elektromotor als zweite Antriebsquelle und einem Schaltgetriebe mit vier Gang-Zahnradsätzen als Geschwindigkeitswandler. Dabei wirkt die Brennkraftmaschine über eine Kupplung auf eine Welle des Getriebes, während der Elektromotor direkt mit der zweiten Welle verbunden ist. Mit dieser Antriebsanordnung kann z. B. über den Elektromotor angefahren und im unteren Geschwindigkeitsbereich gefahren werden. Durch Schließen der brennkraftmaschinenseitigen Kupplung kann die Brennkraftmaschine dann dazugeschaltet und ggf. der Elektromotor als Generator umgeschaltet werden. Das Besondere dieser Antriebsanordnung ist zudem darin zu sehen, dass durch die wahlweise Ankoppelung der separaten Abtriebswelle an die eine oder die andere Welle der Antriebsmomentenfluß über die Gang-Zahnradstufen umkehrbar und damit bei vier Gang-Zahnradsätzen acht Übersetzungen nutzbar sind, Hinsichtlich weiterer Details wird auf die genannte Schrift ver-

[0003] Aufgabe der vorliegenden Erfindung ist es, die gattungsgemäße Antriebsanordnung derart weiterzubilden, dass sowohl bei Längs- oder Quereinbau baulich vorteilhafte und auf die Bauraumverhältnisse in Kraftfahrzeugen 30 besonders abgestimmte Positionierungen der Antriebsquellen erzielbar und hohe Getriebewirkungsgrade erreichbar sind.

[0004] Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind den weiteren Patentansprüchen entnehmbar.

[0005] Durch die erfindungsgemäßen Maßnahmen gemäß Patentanspruch 1 wird der besondere Vorteil erreicht, dass nunmehr die zweite Antriebsquelle unter Beibehaltung der 40 "Mehrfachübersetzungen" relativ frei positionierbar ist.

[0006] So kann beispielsweise bei einem Quereinbau der Antriebsanordnung in Kraftfahrzeugen die zweite Antriebsquelle, im folgenden als Elektromotor bezeichnet, neben die bezeichnet, positioniert werden, wodurch die Antriebsanordnung vorteilhaft kurz baut.

[0007] Bei einem Längseinbau der Antriebsanordnung unter Verwendung einer Hohlwelle und an sich konventioneller Anordnung des Elektromotors axial benachbart zur Brennkraftmaschine spielt die Längserstreckung der Antriebsanordnung eine eher untergeordnete Rolle, jedoch ergibt die räumliche Zusammenlegung mehrerer koaxialer Wellen eine schlanke Konstruktion, die z. B. in einem Bodentunnel des Kraftfahrzeuges günstig unterbringbar ist.

[0008] Hinsichtlich weiterer erfindungswesentlicher Merkmale wird auf die nachfolgende Beschreibung mehrerer Ausführungsbeispiele verwiesen. Die schematische Zeichnung zeigt in

[0009] Fig. 1 eine Antriebsanordnung mit einer Brenn- 60 kraftmaschine, einem Elektromotor und einem Geschwindigkeits-Wechselgetriebe, letzteres mit einer abtreibenden Hohlwelle und einer Abtriebswelle, wobei ferner der Elektromotor über eine weitere Antriebswelle und ein Zahnrad auf das Wechselgetriebe wirkt; und

[0010] Fig. 2 eine weitere Antriebsanordnung, bei der abweichend zur Fig. 1 der Elektromotor axial benachbart zur Brennkraftmaschine angeordnet ist und über eine Hohlwelle und eine Zahnradstufe auf die zweite Welle des Wechselgetriebes wirkt.

[0011] In der Fig. 1 ist mit 10 eine Brennkraftmaschine angedeutet, die über eine reibschlüssige Kupplung L1 mit einer ersten Welle 12 eines Geschwindigkeits-Wechselgetriebes 14 mit vier Gang-Zahnradsätzen Z₁-Z₂, Z₄-Z₅, Z₆-Z₇ und Z₈-Z₉ verbindbar ist, wobei die Zahnräder Z₂, Z₇ und Z₉ fest auf einer zweiten Welle 16 angeordnet sind, während das Zahnrad Z₅ über eine Synchron-Kupplung K₃ mit der Welle 16 kuppelbar ist. Es versteht sich, dass die Wellen in einem nicht dargestellten Getriebegehäuse entsprechend drehbar gelagert sind.

[0012] Ferner sind die Gang-Zahnradsätze bzw. Zahnräder Z6 und Z8 mittels auf der Welle 12 angeordneten, formschlüssig wirkenden Synchron-Kupplungen K₁, K₂ schaltbar, indem jeweils eines der drehbar auf der Welle 12 gelagerten Zahnräder Z₆, Z₈, mit der Welle 12 kuppelbar ist.

[0013] Auf der Welle 12 ist zwischen den beiden Gang-Zahnradsätzen Z₁-Z₂, Z₄-Z₅ drehbar eine abtreibende Hohlwelle 21 gelagert, die über eine Synchron-Kupplung K4 mit dem Los-Zahnrad Z₁ des Gang-Zahnradsatzes Z₁-Z₂ und über eine Synchron-Kupplung K5 mit dem Fest-Zahnrad Z4 des Gang-Zahnradsatzes Z4-Z5 kuppelbar ist. Die Hohlwelle 21 trägt als Übertragungsmittel ein Fest-Zahnrad Z₁₀, das 25 mit einem Zahnrad Z₁₁ auf einer Abtriebswelle 22 kämmt. [0014] Auf die zweite Welle 16 des Wechselgetriebes 14 wirkt mittels einer weiteren Antriebswelle 23 und einem Zahnrad Z₃ der Rotor 18 eines Elektromotors 20, der z. B. ein Drehstrommotor sein kann.

[0015] Die Abtriebswelle 22 wirkt z. B. bei einem frontgetriebenem Kraftfahrzeug mit Quereinbau auf ein Vorderachs-Differential. Der Elektromotor 20 ist parallel und benachbart zur Brennkraftmaschine 10 positioniert. Der Elektromotor 20 kann jedoch auch benachbart zum Wechselgetriebe 14 angeordnet sein, wobei er beispielsweise auf der Zeichnung Fig. 1 rechts von dem Zahnrad Z3 liegt; er kann im Sinne der Erfindung auch noch weiter rechts liegen, wenn das Zahnrad Z3 mit dem Zahnrad Z7 oder Z9 in Eingriff gebracht wird.

[0016] Es sei noch bemerkt, dass die Darstellung gemäß Fig. 1 die vorgenannten Wellen in der Zeichnungsebene zeigt; tatsächlich können diese hinsichtlich ihrer räumlichen Gestaltung beliebig auf die Einbauverhältnisse ausgelegt sein, solange die beschriebenen Eingriffsverhältnisse und erste Antriebsquelle, im folgenden als Brennkraftmaschine 45 Positionierungen aufrechterhalten sind. Dabei können in Abwandlung zum Ausführungsbeispiel die Zahnradstufen Z_3 - Z_2 oder Z_{10} - Z_{11} auch als Kettentriebe ausgebildet sein. Es versteht sich, dass dann das Zahnrad Z₂ nicht gleichzeitig als Gangzahnrad dienen kann, sondern ein separates Ketten-Zahnrad erforderlich ist.

[0017] Beim Antrieb des Fahrzeugs durch den Elektromotor 20 wird die Leistung von Z_3 auf Z_2 - Z_1 , Z_5 auf Z_4 , Z_7 auf Z₆ und Z₉ auf Z₈ übertragen. Durch die Ausgestaltung der Zahnräder sind die antreibenden Räder Z2, Z5, Z7, Z9 kleiner als die korrespondierenden angetriebenen Räder und das Moment an der angetriebenen Welle 12 bzw. 21, 22 ist grö-Ber als an der antreibenden Welle 16. Damit wird das Drehmoment, das im Vergleich zu dem Moment der Verbrennungskraftmaschine klein ist, vergrößert und der schwächere E-Motor in die Lage versetzt, große Raddrehmomente zu erzeugen und das Fahrzeug jede gewünschte Steigung fahren zu lassen.

[0018] Beim Antrieb durch die Brennkraftmaschine 10 wird die Leistung von der Welle 12 über die jetzt antreiben-65 den Zahnräder Z4, Z6 oder Z8 auf die angetriebenen Zahnräder Z₅, Z₇ oder Z₉ übertragen, bevor die Leistung über die Zahnradstufe Z2-Z1 auf die zur Welle 12 konzentrische Hohlwelle 21 übertragen wird, dessen Zahnrad Z₁₀ mit dem

55

Zahnrad Z₁₁ der Abtriebswelle 22 kämmt.

[0019] Ein weiterer Vorteil der konzentrisch zur Welle 12 liegenden Hohlwelle 21 (sie entspricht der Abtriebswelle 22 in dem vorgenanntem Stand der Technik DE 199 31 311 A1) ist die jetzt mögliche Reduzierung der Anzahl der Kupplungen. Gegenüber dem Stand der Technik mit insgesamt sechs synchronisierten Kupplungen sind hier nur noch fünf Synchron-Kupplungen K₁ bis K₅ erforderlich. Auch die Anzahl der nötigen Zahnräder ist niedriger, wie ein Vergleich mit der genannten Schrift ohne weiteres ergibt.

[0020] Folgende Antriebsfälle lassen sich nun unterscheiden:

- 1. Gang: E-Motor 20 treibt an, K₁ und K₅ sind eingeschaltet
- 2. Gang: E-Motor 20 treibt an, K₂ und K₅ sind eingeschaltet.
- 3. Gang: E-Motor 20 treibt an, K₃ und K₅ sind eingeschaltet
 4. Gang: E-Motor 20 treibt an, K₄ und K₅ sind eingeschaltet
- [0021] K_5 ist jetzt lastlos, die Drehmomente des Elektromotors 20 werden nur über K_4 zum Abtrieb übertragen. K_5 muss aber eingeschaltet bleiben, damit jetzt über die Kupplung L_1 die Brennkraftmaschine 10 angelassen werden 20 kann. Läuft die Brennkraftmaschine 10, so können beide Motoren das Fahrzeug antreiben (Boosten), der Elektromotor 20 kann aber auch generatorisch betrieben werden und Bordnetz und Speicher mit Energie versorgen.
- 5. Gang: Brennkraftmaschine 10 treibt an: K₅ und K₄ sind 25 eingeschaltet *
- 6. Gang: Brennkraftmaschine 10 treibt an: K₃ und K₄ sind eingeschaltet
- 7. Gang: Brennkraftmaschine 10 treibt an: K₂ und K₄ sind eingeschaltet
- 8. Gang: Brennkraftmaschine 10 treibt an: K_1 und K_4 sind eingeschaltet
- *(Besonderheit: nur die Kupplung K₅ überträgt die Leistung der Brennkraftmaschine 10!)

[0022] In der Fig. 2 ist eine alternative Ausgestaltung der 35 Antriebsanordnung gemäß Fig. 1 dargestellt. Funktionell gleiche Teile sind mit gleichen Bezugszeichen versehen.

[0023] Abweichend zur Fig. 1 ist der Elektromotor 20' über eine den Rotor 18 tragende Hohlwelle 24 konzentrisch zur Welle 12' des Wechselgetriebes 14' bzw. zur Kurbelwelle 40 25 der Brennkraftmaschine 10 angeordnet, sitzt also axial unmittelbar benachbart der Schwungradseite der Brennkraftmaschine 10 mit der Reibungskupplung L_1 . Die Hohlwelle 24 des Elektromotors 20', die auf der Welle 12' drehbar gelagert ist, ist mit dem Zahnrad 21 des ersten Gang- 45 Zahnradsatzes Z_1 - Z_2 fest verbunden.

[0024] Ferner ist koaxial zur Welle 12' des Wechselgetriebes 14' eine abtreibende Welle 21' vorgesehen, die über Kupplungen K_5 oder K_6 mit der ersten Welle 12' oder der zweiten Welle 16' kuppelbar ist.

[0025] Obwohl diese Zwischenwelle 21' bereits die Abtriebswelle (22) bilden könnte, ist mittels einer Zahnradstufe Z_{11} - Z_{12} eine separate Abtriebswelle 22' dargestellt, die aus baulichen Gründen und auch zur Beeinflussung des Endübersetzungsverhältnisses angebracht sein kann.

[0026] Diese Anordnung ist besonders vorteilhaft für Fahrzeuge mit Standardantrieb (Motor längs eingebaut, Hinterachse angetrieben). Hier ist auf Grund der Fahrzeugrandbedingungen nicht die Länge des Getriebes kritisch, sondern der Durchmesser wegen der begrenzten Tunnel- 60 größe.

[0027] Beim Antrieb durch den Elektromotor 20' wird die Leistung zunächst über die Zahnradstufe Z_1 - Z_2 auf die Getriebewelle 16' übertragen und dann je nach Gangwahl von Z_4 auf Z_3 , von Z_6 auf Z_5 oder von Z_8 auf Z_7 und damit auf 65 die Welle 12' des Getriebes 14', die über die Kupplung K5 mit der Zwischenwelle 21' gekuppelt ist.

[0028] Beim Antrieb durch die Brennkraftmaschine 10

wird die Leistung über die gleichen Zahnradstufen jetzt aber von Zahnrad Z_3 auf Z_4 , von Z_5 auf Z_6 oder von Z_7 auf Z_8 (also in umgekehrter Momentenflußrichtung) übertragen und treibt von dort über die Zahnradstufe Z_{10} - Z_9 und die jetzt eingeschaltete Kupplung K_6 auf die Zwischenwelle 21' bzw. über die weitere Zahnradstufe Z_{11} - Z_{12} auf die Abtriebswelle 22'.

[0029] Folgende Antriebsfälle lassen sich wiederum unterscheiden:

- 10 1. Gang: Elektromotor 20' treibt an; K₄ und K₅ sind eingeschaltet
 - 2. Gang: Elektromotor 20' treibt an; K₃ und K₅ sind eingeschaltet
 - 3. Gang: Elektromotor 20' treibt an; K₂ und K₅ sind eingeschaltet
 - 4. Gang: Elektromotor 20' treibt an; K₁ und K₅ sind eingeschaltet

[0030] Jetzt kann K_6 ohne Probleme dazugeschaltet werden, weil die Übersetzungen der Zahnradstufen Z_1 - Z_2 und Z_9 - Z_{10} identisch sind. Wenn K_6 eingeschaltet ist, kann K_5 entriegelt werden, ohne dass eine Drehmomentunterbrechung am Abtrieb auftritt (es steht immer positive Beschleunigung zur Verfügung). Die Leistung des Elektromotors 20' wird über die Zahnradstufe Z_1 - Z_2 und Z_{10} - Z_9 über K_6 auf den Abtrieb 22' übertragen.

[0031] Nun kann über die Kupplung L₁ die Brennkraftmaschine 10 gestartet werden. Nach dem Einkuppeln der Kupplung L₁ kann das Fahrzeug jetzt von beiden Maschinen 10, 20' angetrieben werden (Booster-Effekt) oder es treibt die Brennkraftmaschine 10 allein an, während der mitlaufende Elektromotor 20' als Generator geschaltet ist und das Bordnetz des Kraftfahrzeuges versorgt und/oder vorhandene Batterien oder Kondensatoren lädt.

[0032] Die weiteren Antriebsfälle sind dann:

- 35 5. Gang: Die BKM 10 treibt an: K₁ und K₆ sind eingeschaltet
 - 6. Gang: Die BKM 10 treibt an: K_2 und K_6 sind eingeschaltet
- Gang: Die BKM 10 treibt an: K₃ und K₆ sind eingeschaltet
- 8. Gang: Die BKM 10 treibt an: K₄ und K₆ sind eingeschaltet

[0033] Beim Wechsel der Synchron-Kupplungen von beispielsweise K_1 auf K_2 überbrückt der Elektromotor 20' die Lastunterbrechung der Brennkraftmaschine 10, indem er während der kurzen Schaltpause kurzfristig ein hohes Drehmoment auf die Getriebewelle 16' gibt, die ja über K_6 mit der Zwischenwelle 21' bzw. der Abtriebswelle 22' verbunden ist. D. h., die Bedienungsperson spürt keine Lastunterbrechung und fährt (je nach Auslegung des Elektromotors 20') ohne Drehmomentveränderung am Abtrieb, also praktisch stufenlos und das mit Wirkungsgraden von Schaltgetrieben.

Patentansprüche

1. Antriebsanordnung, insbesondere für Kraftfahrzeuge, mit einer ersten Antriebsquelle, insbesondere einer Brennkraftmaschine, und einer zweiten Antriebsquelle, insbesondere einem Elektromotor, die auf ein Wechselgetriebe mit mehreren Gang-Zahnradsätzen als Geschwindigkeitswandler wirken, wobei die erste Antriebsquelle auf eine erste, die einen Zahnräder der Gang-Zahnradsätze tragende Welle wirkt, die zweite Antriebsquelle auf eine zweite, die anderen Zahnräder der angeführten Gang-Zahnradsätze tragende Welle wirkt, und eine Abtriebswelle vorgesehen ist, die wahlweise mit der ersten Welle oder der zweiten Weile des

Getriebes derart kuppelbar ist, dass der Antriebsmomentenfluß von der momentan angetriebenen Welle über die zweite Welle auf die Abtriebswelle verläuft, dadurch gekennzeichnet, dass die zweite Antriebsquelle (20; 20') mittelbar über eine weitere Antriebswelle (23; 24) und Übertragungsmittel (Zahnräder Z₃; Z₁ oder eine Kette) auf die zweite Welle (16; 16') des Getriebes (14; 14') wirkt.

- 2. Antriebsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Antriebsquelle (20) mit 10 einem Zahnrad (Z_3) auf der weiteren Antriebswelle (23) auf ein Zahnrad (Z_2) eines der Gang-Zahnradsätze wirkt.
- 3. Antriebsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Antriebsquelle 15 (20) parallel und benachbart zur ersten Antriebsquelle (10) positioniert ist.
- Antriebsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Antriebsquelle
 (20) parallel und benachbart zum Wechselgetriebe (14) 20 angeordnet ist.
- 5. Antriebsanordnung nach einem oder mehreren der Ansprüche 1–4, dadurch gekennzeichnet, dass die Abtriebswelle (22) mit einer auf einer der Wellen (12) des Getriebes (14) gelagerten, ein Abtriebsmittel (Zahnrad 25 Z₁₀ oder Kette) aufweisenden Hohlwelle (21) zusammenwirkt, die mit der tragenden Welle (12) kuppelbar ist.
- 6. Antriebsanordnung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, 30 dass die Hohlwelle (21) zwischen zwei Gang-Zahnradsätzen (Z₁, Z₂-Z₄, Z₅) auf der ersten Welle (12) angeordnet ist und mittels zweier Kupplungen (K₄, K₅) mit einem Los-Zahnrad (Z₁) des einen Gang-Zahnradsatzes und mit einem Fest-Zahnrad (Z₄) des anderen 35 Gang-Zahnradsatzes verbindbar ist.
- 7. Antriebsanordnung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Antriebsquelle (20) koaxial mittels einer Hohlwelle (24) benachbart zur ersten Antriebsquelle (10) auf der ersten Welle (12') des Getriebes (14') gelagert ist und über eine Zahnradstufe (Z_1 , Z_2) auf die zweite Welle (16') wirkt.
- 8. Antriebsanordnung nach Anspruch 7, dadurch gekennzeichnet, dass die zweite Antriebsquelle (20) mittels einer Kupplung (K_1) auch mit der ersten Welle (12') des Getriebes (14) kuppelbar ist.
- 9. Antriebsanordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass koaxial zur ersten Welle (12') eine mit der ersten oder der zweiten Welle (12' 50 oder 16') über Kupplungen (K₅, K₆) kuppelbare, abtreibende Welle (21') vorgesehen ist.
- 10. Antriebsanordnung nach Anspruch 9, dadurch gekennzeichnet, dass die abtreibende Welle eine Zwischenwelle (21') ist, die über Übertragungsmittel 55 (Zahnräder Z₁₁, Z₁₂ oder eine Kette) mit der Abtriebswelle (22') verbunden ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 101 43 289 A1 B 60 K 6/0227. März 2003

