ZhdanovDS 29112024-140940

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 31 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 4.8 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 6.2 дБ 2) 6.8 дБ 3) 7.4 дБ 4) 8 дБ 5) 8.6 дБ 6) 9.2 дБ 7) 9.8 дБ
- 8) 10.4 дБ 9) 11 дБ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 4485 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 8 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 1037 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 14600 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 5419 МГц до 5521 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -86 дБм 2) -89 дБм 3) -92 дБм 4) -95 дБм 5) -98 дБм 6) -101 дБм 7) -104 дБм
- 8) -107 дБм 9) -110 дБм

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 358 МГц, частота ПЧ 32 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 326 MΓ_{II}
- 32 MΓ_{II}
- 2148 MΓι
- 1042 MΓη.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Pi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 3? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГ Π .)

Рисунок 3 – Экран анализатора спектра

- 1) $\{12; -115\}$ 2) $\{9; 39\}$ 3) $\{18; -17\}$ 4) $\{12; -45\}$ 5) $\{9; 11\}$ 6) $\{18; -129\}$
- 7) $\{6; -73\}$ 8) $\{18; -31\}$ 9) $\{18; -3\}$

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 16 градусов.

Чему равна индуктивность компонента фазовращателя, если частота Π Ч равна 65 M Γ $_{\Pi}$?

Варианты ОТВЕТА:

1) 92.3 н Γ н 2) 117.7 н Γ н 3) 128.9 н Γ н 4) 162.5 н Γ н

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.20465 + 0.24151i, \ s_{31} = -0.24273 + 0.20568i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -42 дБн 2) -44 дБн 3) -46 дБн 4) -48 дБн 5) -50 дБн 6) -52 дБн 7) -54 дБн
- 8) -56 дБн 9) 0 дБн