EZA MIDPTO EM

⑩ 日本国特許庁(J.P)

⑫実用新案公報(Y2)

平1-11550

@Int_Cl_4 B 60 K 17/28

識別記号

庁内监理番号 C - 7721 - 3D

❷❷公告 平成1年(1989)4月5日

(全8頁)

図考案の名称

トラクダーのPTO装置

②実 願 昭60-131169

開 昭62-37525 63公

四出 願 昭60(1985)8月27日 ❷昭62(1987) 3月5日

⑫考 本 秀 介 兵庫県尼崎市猪名寺341番地 株式会社神崎高級工機製作

所内.

の出 願 人 株式会社 神崎高級工 兵庫県尼崎市猪名寺341番地

機製作所

弁理士 矢野 寿一郎 1910 査 官 審

溝 渕

匈実用新案登録請求の範囲

ミツションケース4,5からリアPTO軸1及 びミッドPTO軸3を前後へ突出させたトラクタ ーのPTO装置において、PTOクラツチ装置によ り断接された後の動力により回転駆動されるギア 3 8 と、リアPTO軸1に対し連動連結されたギ ア53と、ミッドPTO軸3に対し連動連結され たギア35とを、同一軸心上に互いに相対回転可 能に遊嵌支持し、該ギア38,53,35の夫々 く同一軸心上に隣接配置し、係止部 37, 35 a の両方及び係止部38aと嚙合する位置と、係止 部37及び係止部38 aに嚙合する位置と、係止 部35a及び係止部38aに嚙合する位置に、選 択的に摺動変位させうるクラッチスライダー36 15 合いが有したものである。 を、係止部38a, 37, 35a上に配置したこ とを特徴とするトラクターのPTO装置。

考案の詳細な説明

(イ) 産業上の利用分野

本考案はモア装置を装着して、芝生等の刈取り 20 を達成する為の構成を説明する。 を行う小型トラクターのPTO動力取出し装置に 関するものである。

特に、ミツドマウント型のモア装置、及び牽引 型のモア装置を使用可能とすべく、リアPTO軸 とミッドPTO軸の両方を具備したトラクターの 25 38と、リアPTO軸1に対し連動連結されたギ PTO軸の配置と、切換装置に関するものである。

(中) 従来技術

従来から、トラクターのリアPTO軸とミッド PTO軸の、配置と切換え装置に関する技術とし ては多くの技術が公知されているのである。

例えば、実公昭51-49694号公報の如くである。 5 17 考案が解決しようとする問題点

しかし、該従来の技術においては、リアPTO 軸とミツドPTOを同時に駆動する場合、リア PTO軸のみを駆動する場合、ミッドPTOのみを 駆動する場合等の切換にさいして、クラツチ部材 より突出した係止部38a,37,35aを同じ 10 と中間ギャーの両者を操作する為に2本のレバー を設ける必要があり、その操作が面倒となってい たのである。

> また該PTO駆動系統が4本の軸に跨がつてお り、簡潔な構成とすることが出来ないという不具

本考案はこれらの不具合いを解消するものであ る。

(二) 問題を解決するための手段

本考案の目的は以上の如くであり、次に該目的

ミツションケース 4, 5 からリアPTO軸 1 及 びミツドPTO軸3を前後へ突出させたトラクタ ーのPTO装置において、PTOクラッチ装置によ り断接された後の動力により回転駆動されるギア ア53と、ミッドPTO軸3に対し連動連結され たギア35とを、同一軸心上に互いに相対回転可

能に遊嵌支持し、該ギア38,53,35の夫々 より突出した係止部38a,37,35aを同じ く同一軸心上に隣接配置し、係止部 37, 35 a の両方及び係止部38aと嚙合する位置と、係止 部37及び係止部38aに嚙合する位置と、係止 部35 a 及び係止部38 a に嚙合する位置に、選 択的に摺動変位させうるクラッチスライダー36 を、係止部38a, 37, 35a上に配置したも のである。

(お) 実施例と作用

本考案の目的・構成は以上の如くであり、次に 添付の図面に示した実施例の構成と、併せて考案 の作用を説明する。

第1図は本考案のトラクターの変速装置の側面 図、第2図は同じく前部ミツションケース4と後 15 を行う。 部ミツシヨンケース5とを分解した状態の側面 図、第3図はミツションケースのPTO駆動系統 の側面断面図、第4図は同じく走行駆動系統の側 面断面図、第5図はリアPTO軸1とミッドPTO 軸3の動力伝達系統のみ取り出した側面断面図、20 第6図は同じく第5図の部分の他の実施例を示す 側面断面図、第7図はミツションケース内の各軸 の配置を示す前面図、第8図は第5図のPTO動 力切換装置を示すスケルトン図、第9図は同じく 第6図の実施例のスケルトン図である。

第1図、第2図において、全体的な構成を説明 する。

ミツションケースは前部ミツションケース4 と、後部ミツションケース5により構成されてお り、前部ミツションケース4の内部に主として走 30 行変速経路を内装し、後部ミツションケース 5 内 にPTO伝動経路を構成している。

また前部ミツションケース 4 の前部にHST式 変速装置Aが固設されている。該HST式変速装 されているのである。 2 は前輪動力取出軸であ り、1はリアPTO軸、3はミッドPTO軸であ る。

次に第4図により、走行動力伝達経路を説明す

HST式変速装置Aのモーター軸7より変速後 の回転が前部ミツションケース 4 内に伝えられ る。モーター軸7の後端の固設歯車19が変速軸 8上の固設歯車20と嚙合しており、変速軸8上

の他の固設歯車21,22が駆動されている。該 固設歯車21,22はピニオン軸9上の遊嵌歯車 24, 25と嚙合しており、変速スライダー23 の前後動により変速を行つている。ピニオン軸9 の回転はピニオン9aにより、デフギア装置のデ フリングギア16に嚙合している。

デフギア装置により左右の差動回転がデフサイ ドギアに伝えられ、車軸17,17を駆動してい る。26はデフロツクシフターである。

また、ピニオン軸9の前端にはスプラインが刻 10 設され、前輪駆動が必要な場合には該スプライン 上に歯車を固設し、該固設歯車が前輪動力取出軸 2上に遊嵌歯車と嚙合し、クラッチスライダーの 前後動により、前輪動力取出軸2への動力の断接

そして前輪動力取出軸2の位置は第7図に示す 如くピニオン軸 9 の側方で、進行方向に向かつて 右側にはミツドPTO軸3が配置され、左側には 前輪動力取出軸2が配置されているのである。

次に第3図、第5図、第6図により、PTO駅 動系統について説明すると。

HST式変速装置Aよりポンプ軸 6 をそのまま 突出して、クラツチ駆動軸12にカツブリングに より動力を伝達している。該クラッチ駆動軸12 25 とクラッチ従動軸14の前端に固設されたクラッ チハウジング51の間にPTOクラッチ板47が 介装されている。またクラッチハウジング51の 外周と、前部ミツションケース 4 の間にPTO制 動板 4 6 が介装されている。

そして、PTOスライダー44を前後動するこ とにより、PTOクラツチ押圧レバー45を押し て、PTOクラッチの断接と連れ回り回転の制動 を行うのである。

クラツチ従動軸14の端部の固設歯車33がカ 置Aのポンプ軸 6 に、エンジンEより動力が伝達 35 ウンター軸 1.3 の歯車 3 4 と嚙合して、該歯車 3 4がPTO切換軸11上の歯車38に回転を伝え ている。切換スライダー36の前後動により、遊 嵌歯車35に動力を伝える場合と√PTO切換軸 11の固設歯車53よりリアPTO軸1の固設歯 40 車39に動力を伝える場合とに切換えられるので ある。遊嵌歯車35はミッドPTO軸3上の固設 歯車42と嚙合しており、ミツドPTO軸3を駆 動するのである<u>。</u>

40はPTOスライダー**44**の操作を行うPTO

56

クラツチレバー、41は急敵なクラツチの断接を 緩衝する緩衝装置である。

第5図のPTO切換装置は、第3図の構成から PTO駆動部分のみを取り出した場合であり、該 実施例においては、PTO切換軸 1 1 は短くして、 デフギア装置の前で切断して、該部分の上方まで 延設されたリアPTO軸1の前端の歯車39に、 PTO切換軸 1 1 の後端の固設歯車 5 3 を嚙合さ せて、動力を伝達しているのである。

またPTO切換軸11の上の歯車の配置も、リ アPTO軸 1 用の固設歯車 5 3 と、ミッドPTO軸 3 用の遊嵌歯車 3 5 の間にPT⊙動力の入力用遊 嵌歯車38を介装しており、固設歯車53の前端 に係止部37を設け、また該係止部37に併置し て、遊嵌歯車38の係止部38aと遊嵌歯車35 の係止部 3 5 a を設け、これら 3 枚の係止部の上 を切換スライダー36を摺動させて、リアPTO 軸1への動力と、ミッドPTO軸3への動力との 切換えを行うのである。

これに対し、第6図の実施例においては、20 PTO切換軸11を長く伸ばして、デフギア装置 を越えさせており、リアPTO軸1の方を短く構 成しているのである。また固設歯車35と遊嵌歯 車38とを後部に併設して、前端に入力用の遊嵌 5,38の各係止部38a,35a,37を順に 並べてこの上を切換スライダー36を摺動して、 リアPTO軸1への動力と、ミッドPTO軸3への 動力の切換えを行うのである。

動経路がスケルトン図により開示されているので ある。

次に第7図により、走行系とPTO系の各軸の 配置構成を説明すると。

最上段にポンプ軸6とクラッチ駆動軸12とク ラッチ従動軸14の同一軸芯が配置され、進行方 向へ向かつて右下にカウンター軸 13 が配置され ている。カウンター軸 13の直下にPTO切換軸 11が配置され、該PTO切換軸11上の切換装 置により切換えた後の回転が、斜め上のリア 40 PTO軸1と斜め下のミッドPTO軸3に伝えられ るのである。即ち、リアPTO軸 1 はミッション ケース5のやや上方の略左右中心に近く配置され ており、ミツドPTO軸3はミツションケースの

前面の、前輪動力取出軸2と逆の側の、ピニオン 軸9の側方に配置されているのである。

そして、リアPTO軸1とミッドPTO軸3の略 中間の位置で、変速軸 8 の側方にPTO切換軸 1 1が配置されているのである。

従来は走行系動力伝達経路のピニオン軸 9 とデ フギア装置の周囲には、PTO系動力伝達経路は 配置されていながったのであるが、本考案におい ては、第3図の如くデフギア装置とPTO系を重 10 復して配置しているのである。これにより、ミッ ションケースの長さを短く構成しているのであ る。第7図に示す如く、HST式変速装置Aのモ ーター軸 7 は、リアPTO軸 1 の略同心上に位置 しており、前後に配置されている。

モーター軸7の下に変速軸8が配置され、さら にその下にピニオン軸9が配置されている。前輪 駆動が必要な場合には、ピニオン軸9の斜め上に 前輪動力取出軸2が配置されるのである。

(イ) 考案の効果

本考案は以上の如く構成したので、次のような 効果を奏するものである。

第1に、クラッチスライダー36の1個の摺動 選択によりリアPTO軸とミッドPTO軸の両方を 駆動、リアPTO軸のみの駆動、ミツドPTO軸の 歯車38を配置している。3枚の歯車53,325みの駆動と3通りのPTO駆動が得られ、誤操作 もなくなつたのである。

第2に、ミッションケースの正面視において、 その略中央に位置すべきリアPTO軸と、ミツシ ョンケースの下方に位置すべきミッドPTO軸と 第8図、第9図には該第5図と第6図の動力伝 30 の間には大きな隔たりがあるが、このリアPTO 軸とミツドPTO軸とを結ぶ間に、PTOクラツチ 装置からの動力をギア38にて入力し、ギア5 3,35より振り分けてリアPTO軸方向、ミツ ドPTO軸方向に向けて出力するだけなので、動 35 力伝達構成が簡単になりミツションケース内をコ ンパクトにまとめることができたものである。

> 第3に、ギア38,53,35を一側に、クラ ツチスライダー36を他側に配置する構成なので クラツチスライダー36のシフターフオークを動 力伝達部外に配置でき、他部材との干渉を防ぐこ とが出来たものである。

図面の簡単な説明

第1図は本考案のトラクターの変速装置の側面 図、第2図は同じく前部ミツションケース4と後

部ミツションケース5とを分解した状態の側面 図、第3図はミツションケースのPTO駆動系統 の側面断面図、第4図は同じく走行駆動系統の側 面断面図、第5図はリアPTO軸1とミッドPTO 第6図は同じく第5図の部分の他の実施例を示す 側面断面図、第7図はミツションケース内の各軸 の配置図、第8図は第5図のPTO動力切換装置 を示すスケルトン図、第9図は同じく第6図の実

施例のスケルトン図である。

A······HST式変速装置、1······リアPTO軸、 3……ミッドPTO軸、4……前部ミッションケ ース、5……後部ミツションケース、9……ピニ 軸 3 の動力伝達系統のみ取り出した側面断面図、 5 オン軸、 1 1 ······PTO切換軸、 3 5 ·····・ミッド PTO軸用の遊嵌歯車、36……PTO切換え用ス ライダー、38……PTO入力用の遊嵌歯車、5 3······リアPTO軸用の固設歯車。

第1図

第8図

第9図

