

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2006年5月26日 (26.05.2006)

PCT

(10) 国際公開番号
WO 2006/054676 A1

(51) 国際特許分類:
H02K 19/10 (2006.01) *H02P 25/08* (2006.01)
H02K 1/22 (2006.01)

(21) 国際出願番号: PCT/JP2005/021200

(22) 国際出願日: 2005年11月14日 (14.11.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2004-333527
2004年11月17日 (17.11.2004) JP

(71) 出願人(米国を除く全ての指定国について): トヨタ自動車株式会社 (TOYOTA JIDOSHA KABUSHIKI KAISHA) [JP/JP]; 〒4718571 愛知県豊田市トヨタ町1番地 Aichi (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 神谷 宗宏 (KAMIYA, Munehiro) [JP/JP]; 〒4718571 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内 Aichi (JP).

(74) 代理人: 深見 久郎, 外 (FUKAMI, Hisao et al.); 〒5300005 大阪府大阪市北区中之島二丁目2番7号 中之島セントラルタワー22階 深見特許事務所 Osaka (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR),

/ 続葉有 /

(54) Title: VEHICLE DRIVE SYSTEM AND VEHICLE COMPRISING IT

(54) 発明の名称: 車両駆動システムおよびそれを備える車両

(57) Abstract: A rotary electric machine (1) comprises a stator (2) and a rotor (3). A tip end at the salient pole section of the rotor (3) is cut off asymmetrically in the lateral direction. Consequently, torque ripple is reduced during regenerative operation. Countermeasure against torque ripple is taken by the structure of the rotary electric machine for regenerative operation which is not carried out during low speed traveling but frequently carried out during high speed traveling because the driver is more sensitive to noise than during powering operation. For powering operation where the driver is sensitive to noise during extremely low speed traveling, it is preferable to take countermeasure against torque ripple by supplying a compensation current from a controller. It is possible to provide a small and high output vehicle drive system in which torque ripple is reduced and a vehicle comprising that system.

(57) 要約: 回転電機(1)はステータ(2)と、ロータ(3)とを含む。ロータ(3)の突極部の先端を左右非対称に切り欠きを設ける。切り欠きの効果により、回生運転時のトルクリップルが低減される。運転者が騒音に対して力行運転時よりも敏感で、低速走行時には行なわれず高速走行時によく行なわれる回生運転に対しては、回転電機の構造によりトルクリップルの対策を行なう。好ましくは極低速走行時に運転者が騒音を気にする力行運転に対してはコントローラによって補償電流を流しトルクリップル対策を行なう。小型かつ高出力で、トルクリップルが低減された車両駆動システムおよびそれを備える車両を提供することができる。

WO 2006/054676 A1

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイダンスノート」を参照。

添付公開書類:
— 国際調査報告書

明細書

車両駆動システムおよびそれを備える車両

5 技術分野

この発明は、車両駆動システムおよびそれを備える車両に関し、特に、回転電機を含む車両駆動システムおよびそれを備える車両に関する。

背景技術

10 近年、電気自動車やハイブリッド自動車等の駆動用モータとして、小型で効率の良いモータが求められている。このため、同期リラクタンスマータや埋込磁石同期モータなどさまざまなモータの研究がなされている。

15 しかしながらリラクタンスマータは、比較的大きなトルクリップルを発生し、駆動用のモータとして用いると、騒音や振動が大きいという問題がある。モータの騒音や振動は、トルクリップルと関係があると考えられている。

このようなリラクタンスマータのトルクリップルを低減させる技術が特開2000-152577号公報に開示されている。この技術では、トルクリップルを低減するために、ロータ突極の先端面にアールをつけることで、電機子巻線のインダクタンスの変化を正弦波状にする。

20 しかしながら、特開2000-152577号公報に開示されたように、モータのロータ突極を左右対称構造にしてトルクリップル対策を行なうと、平均トルクが低下してしまう。このため大きなトルクを得るために、ロータ径を大きくせねばならず、モータの小型化の妨げになる。

25 発明の開示

この発明は、小型かつ高出力で、トルクリップルが低減された車両駆動システムおよびそれを備える車両を提供することを目的とする。

この発明は、要約すると、車両駆動システムであって、出力軸の回転方向として順方向とトルクリップルが順方向より小さな逆方向とを有する構造の回転電機と、

出力軸の順方向の回転に応じて車両を前進させる方向に回転する回転軸とを備える。

好ましくは、回転電機は、ステータと、順方向回転よりも逆方向回転ではトルクリップルが小さい形状を有するロータとを含む。

5 より好ましくは、ロータは、複数の突極部を有し、複数の突極部の各先端部は、順方向側の角と比較して逆方向側の角により大きな欠損部を有する。

好ましくは、車両駆動システムは、直流電源と、直流電源と回転電機との間の電流授受経路上に配置されるインバータと、回転電機から回転情報を得てインバータを制御する制御装置とをさらに備える。制御装置は、加速指示に応じてロータに順方向のトルクが発生し回転電機が力行運転を行ない、減速指示に応じてロータに逆方向のトルクが発生し回転電機が回生運転を行なうようにインバータを制御する。
10

好ましくは、車両駆動システムは、直流電源と、直流電源と回転電機との間の電流授受経路上に配置されるインバータと、回転電機から回転情報を得てインバータを制御する制御装置とをさらに備える。制御装置は、回転電機に力行運転をさせて車両を前進させる場合の一部の回転域において回転電機のトルクリップルを減じるように回転情報に応じた補償電流を流すようにインバータに指示する。
15

より好ましくは、一部の回転域は、車両のクリープ走行域に対応する回転域である。

20 この発明の他の局面に従うと、車両であって、上記いずれかの車両駆動システムと、回転軸に接続された車輪とを備える。

本発明によれば、運転者が特に気になる回生運転時の騒音をトルクリップルを減じることで低減できる。

また、好ましくは補償電流制御と組合せることで力行運転を行なったときのトルクリップルも低減できる。
25

図面の簡単な説明

図1は、本発明の車両駆動システムに用いられる回転電機1の形状を示す断面図である。

図 2 は、図 1 における破線で囲った部分 5 付近を拡大して示した図である。

図 3 は、図 2 におけるロータの突極部 1 2 を拡大して示した図である。

図 4 は、突極と励磁されたステータのコイルの位置関係を示した図である。

図 5 は、ロータに発生するトルクの大きさを説明するための図である。

5 図 6 は、本発明に用いられる回転電機の最大出力制御を行なった場合の運転特性を示した図である。

図 7 は、突極に切欠きを設けた場合のトルクリップルの改善を説明するための図である。

10 図 8 は、先端部に切欠きを設ける前後におけるトルクリップル率の変化を示した図である。

図 9 は、本発明の車両駆動システムの騒音レベルの実測例を示した図である。

図 10 は、本発明の車両駆動システム 100 の構成を示す図である。

図 11 は、コントローラ 40 が行なうトルクリップルの低減対策を説明するための図である。

15 図 12 は、本発明の車両駆動システムのトルクリップル対策を説明するための図である。

発明を実施するための最良の形態

以下、本発明の実施の形態について図面を参照しながら詳しく説明する。なお、
20 図中同一または相当部分には同一符号を付してその説明は繰返さない。

図 1 は、本発明の車両駆動システムに用いられる回転電機 1 の形状を示す断面図である。

図 1 を参照して、回転電機 1 はステータ 2 と、ロータ 3 とを含む。

ステータ 2 およびロータ 3 の各々は、積層された電磁鋼板で形成されている。

25 ロータ 3 の中心部分には、電磁鋼板の中心を貫通する回転軸 4 が設けられている。回転電機 1 は、車両を駆動する力行運転をする時にはモータとして動作し、回生運転をして車両に制動をかけるときには発電機として動作する。

ロータ 3 は 2 対の突極が形成された 4 極のロータである。各突極の先端は左右非対称な形状となっており、片側のみ切欠き、つまり欠損部が設けられている。

この切欠きの効果により、モータとして回転するときにはトルクリップルの大きい回転方向R1とトルクリップルの小さい回転方向R2とが生ずる。

本発明においては、トルクリップルの大きい回転方向R1にモータを回転させると車両が前進するように回転電機1を車両に設置する。

5 図2は、図1における破線で囲った部分5付近を拡大して示した図である。

図2を参照して、ロータ3には突極部12が設けられる。ステータ2は、ステータヨーク13と、ステータヨーク13に接続されているステータコア14, 16と、ステータコア14に巻回されているコイル18と、ステータコア16に巻回されているコイル20と

10 を含む。

図3は、図2におけるロータの突極部12を拡大して示した図である。

図2を参照して、車両前進時のロータ回転方向と逆側の突極部12の角に切欠きを設けている。切欠きは、突極部の側壁を長さdだけ中心に向かった点から側壁に対して θ_k の角度で切欠いている。突極部12の中心軸すなわちロータの回転中心から突極部12の先端の中央を結ぶ軸に対して、突極部12は左右非対称な形状となっている。

図4は、突極と励磁されたステータのコイルの位置関係を示した図である。

図5は、ロータに発生するトルクの大きさを説明するための図である。

図4、図5を参照して、d軸からq軸に向かう電気角 θ とトルクTとの関係は、20 左右対称の突極形状のロータの場合は波形W2となるが、図4に示すような非対称の突極の場合は波形W1のようにd軸寄りにずれる。突極の切欠いた部分を引き付ける力と隣接する突極の切欠きが無い部分を引き付ける力のバランスが変化するからである。

一方ロータに切欠きを設けると、励磁された磁極に引き付けられる鉄心が切欠きの分減るためトルク自身は低下すると考えられる。したがって切欠きを設けるとトルクは低下するがトルクリップルは改善される。

図6は、本発明に用いられる回転電機の最大出力制御を行なった場合の運転特性を示した図である。

図6を参照して、第I象限は回転数が正でかつトルクも正の運転状態、第II

象限は回転数が負でトルクが正の運転状態、第 I II 象限は回転数が負でかつトルクも負の運転状態、第 I V 象限は回転数は正でトルクが負の運転状態である。

つまり、第 I 象限は車両前進時の力行運転を示し、第 I II 象限は車両後退時の力行運転を示し、第 I III 象限は車両後退時の回生運転を示し、第 I V 象限は車両前進時の回生運転を示す。ロータの回転は互いに逆であるがロータに生ずるトルクの向きは同じであることから第 I 象限と第 I III 象限とは対称な形であり、同様に第 I II 象限と第 I V 象限とは対称な形である。

なお回転数は、図 1 における R 1 方向を正とし、R 2 方向は負としている。図 6において、第 I 象限すなわち力行運転時には、トルクリップルは大きいが、トルクの最大出力曲線は回生時よりも増大する。

一方、第 I V 象限ではトルクリップルが小さくなつて改善されているが、その分トルクは小さくなってしまう。

図 7 は、突極に切欠きを設けた場合のトルクリップルの改善を説明するための図である。

図 7 を参照して、切欠きを設けないと、破線で示した波形 W 5 のようにトルクリップルが大きいが、先端部に切欠きを設けるとトルクリップルは波形 W 6 に示すように小さくなる。図 6 の第 I I , 第 I V 象限においては切欠きを設けた効果によりトルクリップルが低減される。

図 8 は、先端部に切欠きを設ける前後におけるトルクリップル率の変化を示した図である。

図 8 に示すように、トルクリップル対策前すなわちロータの突極先端部に切欠きがない場合においては、トルクリップル率は回生正転および力行正転とともに 6.7 % であったが、ロータ突極の先端部の片側に図 3 に示す切欠きを設けた場合には、トルクリップル率は回生正転すなわち図 6 の第 I 象限の場合は 2.3 % と低下する。

一方で、力行正転すなわち図 6 の第 I V 象限ではトルクリップル率は 8.0 % と増大している。

図 9 は、本発明の車両駆動システムの騒音レベルの実測例を示した図である。

図 9 を参照して、ロータ突極を非対称にすることで、力行正転を行なった場合の騒音レベルを示すのがグラフ X 1 であり、回生正転を行なったときの騒音レベ

ルを示すのがグラフ X 2 である。騒音レベルは、トルクリップルが大きいほど大きくなり、トルクリップルが小さいほど騒音レベルは小さくなると考えられる。

図 9 からわかるように、グラフ X 1 よりグラフ X 2 のほうが騒音レベルが下になっている。特に回転数が 2500～3000 r p m の領域はよく回生制動に使用される領域であり、この部分の騒音は特に運転者が気になる騒音であったので騒音の低下が期待できる。つまり、車両の運転中では、図 9 の C で示す領域が回生制動時に使用される。

図 10 は、本発明の車両駆動システム 100 の構成を示す図である。

図 10 を参照して、車両駆動システム 100 は、バッテリ 38 と、バッテリ 38 から力行運転時にはエネルギーを受けまた回生運転時にはバッテリにエネルギーを戻す三相インバータ 36 と、三相インバータ 36 によって U 相、 V 相、 W 相のコイルに対する電流電圧の制御が行なわれる回転電機 1 とを含む。三相インバータ 36 は、図示しないが IGBT 等のパワー半導体素子を含む。

車両駆動システム 100 は、さらに、運転者のアクセル位置を検出するアクセルポジションセンサ 41 と、モータから回転情報 P を受けアクセルポジションセンサ 41 の出力に応じて三相インバータ 36 を制御するコントローラ 40 とを含む。コントローラ 40 は、図示しないが、 CPU 、 ROM 、 RAM 等を含む。

車両駆動システム 100 は、さらに、モータの出力軸 44 に接続される減速機 34 と、減速機 34 の出力軸 42 に接続される車輪 32 とを含む。

図 11 は、コントローラ 40 が行なうトルクリップルの低減対策を説明するための図である。

図 10 、図 11 を参照して、コントローラ 40 は、回転電機 1 から与えられる回転情報 P を受けてトルクリップルが発生する位相に対応して三相インバータ 36 に対して補償電流を流すように指示する。これによりトルクの山と谷はそれぞれ補償電流により平均化され、トルクリップルが生じている波形 W3 が波形 W4 のように改善される。

しかしながら、コントローラ 40 の能力は有限であるため、このような補償電流によるトルクリップル対策は、高速走行時には行なうことが困難である。

図 12 は、本発明の車両駆動システムのトルクリップル対策を説明するための図

である。

図12を参照して、領域Aは、力行運転をしている場合の極低速でのクリープ走行時に振動が問題となる領域である。

この領域Aでは、モータ回転数は少なく、すなわち車両の速度は低い。補償電流を制御するコントローラの能力は車速が低い場合には余裕があるので、トルク補償電流を流すことでトルクリップルを低減させることができる。図1～図3に示したロータの構造は領域Aでのトルクリップルを多少増大させるかも知れないが、増大分もトルク補償電流による対策で解消できる。したがって、力行運転ではロータ構造による平均トルクの低減をおこさずにトルクリップル対策を行なうことができる。

力行運転をしている場合であってもモータ回転数が大きくなり、車速が大きくなると車両の重量に働く慣性によってトルクリップルは運転者にとってさほど気にならなくなる。

一方、極低速時にはモータの回生制動よりも摩擦ブレーキにより車両に制動がかけられるので、モータの回生運転が行なわれる領域は回転数でいえば図9で説明したようにおよそ2500～3000 rpmの領域である。この領域では慣性力が働くので低速時よりもトルクリップルは知覚されにくいが、運転者は加速をしようとする力行運転時よりも減速をしようとする回生運転時のほうが騒音に敏感である。

領域Bは、回生運転をする場合に制動時に回転電機からの騒音が問題となる領域である。この領域Bでは、モータ回転が高速であるのでトルク補償電流を流そうとするとコントローラが制御可能な周期より高速に処理が必要とされる。したがって、コントローラの能力に照らすとトルク補償電流によるトルクリップル低減が困難であるので、領域Bではロータの構造によりトルクリップルを対策する。

すなわち、本発明では、低速走行時には行なわれず高速走行時によく行なわれる回生運転に対しては、回転電機の構造によりトルクリップルの対策を行なう。一方、極低速走行時に運転者が騒音を気にする力行運転に対してはコントローラによって補償電流を流しトルクリップル対策を行なう。以上により、領域A、B両方の騒音、振動を低減させることが可能となる。

なお、本実施の形態では、突極が4極である場合について例を挙げて説明したが突極は4極には限定されず、4極より少なくとも良く、また4極よりもさらに多数の場合でもよい。

また、本実施の形態では、リラクタンスマータについて例を挙げて説明したが、
5 本願発明はロータまたはステータに永久磁石を埋め込んだ永久磁石式モータにも好適に適用することができる。永久磁石の埋め込み位置等を工夫することで、図3に示した切欠きを突極も設ける場合と同様な効果を得ることができ、そのモータに対して図12の領域Aに対しては補償電流によるトルクリップル対策を施せばよい。

10 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

請求の範囲

1. 出力軸の回転方向として順方向とトルクリップルが前記順方向より小さな逆方向とを有する構造の回転電機（1）と、
 - 5 前記出力軸の順方向の回転に応じて車両を前進させる方向に回転する回転軸（4）とを備える、車両駆動システム。
 2. 前記回転電機（1）は、
 - ステータ（2）と、
前記順方向回転よりも前記逆方向回転ではトルクリップルが小さい形状を有するロータ（3）とを含む、請求項1に記載の車両駆動システム。
 - 10 3. 前記ロータ（3）は、複数の突極部（12）を有し、
前記複数の突極部（12）の各先端部は、前記順方向側の角と比較して逆方向側の角により大きな欠損部を有する、請求項2に記載の車両駆動システム。
 4. 直流電源（38）と、
 - 15 前記直流電源（38）と前記回転電機（1）との間の電流授受経路上に配置されるインバータ（36）と、
前記回転電機（1）から回転情報を得て前記インバータ（36）を制御する制御装置（40）とをさらに備え、
前記制御装置（40）は、加速指示に応じて前記ロータに前記順方向のトルクが発生し前記回転電機（1）が力行運転を行ない、減速指示に応じて前記ロータ（3）に前記逆方向のトルクが発生し前記回転電機（1）が回生運転を行なうように前記インバータ（36）を制御する、請求項1に記載の車両駆動システム。
 - 20 5. 直流電源（38）と、
前記直流電源（38）と前記回転電機（1）との間の電流授受経路上に配置されるインバータ（36）と、
前記回転電機（1）から回転情報を得て前記インバータ（36）を制御する制御装置（40）とをさらに備え、
前記制御装置（40）は、前記回転電機（1）に力行運転をさせて車両を前進させる場合の一部の回転域において前記回転電機（1）のトルクリップルを減じる

ように前記回転情報に応じた補償電流を流すように前記インバータ（36）に指示する、請求項1に記載の車両駆動システム。

6. 前記一部の回転域は、前記車両のクリープ走行域に対応する回転域である、請求項5に記載の車両駆動システム。

5 7. 車両駆動システムを備え、

前記車両駆動システムは、

出力軸の回転方向として順方向とトルクリップルが前記順方向より小さな逆方向とを有する構造の回転電機（1）と、

10 前記出力軸の順方向の回転に応じて車両を前進させる方向に回転する回転軸（4）とを含み、

前記回転軸（4）に接続された車輪（32）をさらに備える車両。

8. 前記回転電機（1）は、

ステータ（2）と、

15 前記順方向回転よりも前記逆方向回転ではトルクリップルが小さい形状を有するロータ（3）とを含む、請求項7に記載の車両。

9. 前記ロータ（3）は、複数の突極部（12）を有し、

前記複数の突極部（12）の各先端部は、前記順方向側の角と比較して逆方向側の角により大きな欠損部を有する、請求項8に記載の車両。

10. 前記車両駆動システムは、

20 直流電源（38）と、

前記直流電源（38）と前記回転電機（1）との間の電流授受経路上に配置されるインバータ（36）と、

前記回転電機（1）から回転情報を得て前記インバータ（36）を制御する制御装置（40）とをさらに含み、

25 前記制御装置（40）は、加速指示に応じて前記ロータに前記順方向のトルクが発生し前記回転電機（1）が力行運転を行ない、減速指示に応じて前記ロータ（3）に前記逆方向のトルクが発生し前記回転電機（1）が回生運転を行なうように前記インバータ（36）を制御する、請求項7に記載の車両。

11. 前記車両駆動システムは、

直流電源（38）と、

前記直流電源（38）と前記回転電機（1）との間の電流授受経路上に配置されるインバータ（36）と、

前記回転電機（1）から回転情報を得て前記インバータ（36）を制御する制御装置（40）とをさらに含み、

前記制御装置（40）は、前記回転電機（1）に力行運転をさせて車両を前進させる場合の一部の回転域において前記回転電機（1）のトルクリップルを減じるように前記回転情報に応じた補償電流を流すように前記インバータ（36）に指示する、請求項7に記載の車両。

10 12. 前記一部の回転域は、前記車両のクリープ走行域に対応する回転域である、請求項11に記載の車両。

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

	トルクリップ率	
	回生正転	力行正転
トルクリップ対策前 (先端部切吹きなし)		67%
トルクリップ対策後	23%	80%

FIG.9

FIG.10

100

FIG.11

FIG.12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/021200

A. CLASSIFICATION OF SUBJECT MATTER***H02K19/10* (2006.01), *H02K1/22* (2006.01), *H02P25/08* (2006.01)**

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

***H02K19/10* (2006.01), *H02K1/22* (2006.01), *H02P25/08* (2006.01)**

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2000-350310 A (Toyota Motor Corp.), 15 December, 2000 (15.12.00), Fig. 1 (Family: none)	1-12
A	JP 62-260587 A (Kan'ichiro SUGANO), 12 November, 1987 (12.11.87), Fig. 1 (Family: none)	1-12
A	JP 2001-238417 A (Matsushita Electric Industrial Co., Ltd.), 31 August, 2001 (31.08.01), Fig. 1 (Family: none)	1-12

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 21 December, 2005 (21.12.05)	Date of mailing of the international search report 10 January, 2006 (10.01.06)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/JP2005/021200

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2001-128400 A (Mitsubishi Heavy Industries, Ltd.), 11 May, 2001 (11.05.01), Fig. 1 (Family: none)	1-12
A	JP 2001-112200 A (Aichi-Emason Denki Kabushiki Kaisha), 20 April, 2001 (20.04.01), Fig. 1 (Family: none)	1-12

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. H02K19/10 (2006.01), H02K1/22 (2006.01), H02P25/08 (2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. H02K19/10 (2006.01), H02K1/22 (2006.01), H02P25/08 (2006.01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2000-350310 A (トヨタ自動車株式会社) 15. 12. 2000、図1、(ファミリーなし)	1-12
A	JP 62-260587 A (菅野寛一郎) 12. 11. 1987、図1、(ファミリーなし)	1-12
A	JP 2001-238417 A (松下電器産業株式会社) 31. 08. 2001、図1、(ファミリーなし)	1-12
A	JP 2001-128400 A (三菱重工業株式会社) 11. 05. 2001、図1、(ファミリーなし)	1-12
A	JP 2001-112200 A (アイチーエマソン電機株式	1-12

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

21. 12. 2005

国際調査報告の発送日

10. 01. 2006

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

川端 修

3V 8718

電話番号 03-3581-1101 内線 3358

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	会社) 20. 04. 2001、図1、(ファミリーなし)	