SINGAPORE POLYTECHNIC

2021/2022 Semester 2 Mid-Semester Test

No.	SOLUTION
1(a)	For symmetric matrix, $\mathbf{A}_{ij} = \mathbf{A}_{ji}$.
	$\mathbf{A}_{13} = \mathbf{A}_{31}: b = -2$
	$\mathbf{A}_{12} = \mathbf{A}_{21} : 2a + 1 = 5$
	$\Rightarrow a = 2$
	$\mathbf{A}_{23} = \mathbf{A}_{32} : 2c = 3a + 4b$
	2c = 6 - 8 = -2
1(1)	$\Rightarrow c = -1$
1(b)	$\mathbf{E}^T + 3\mathbf{X} = 2\mathbf{F}$
	$3\mathbf{X} = 2\mathbf{F} - \mathbf{E}^T$
	$\mathbf{X} = \frac{1}{3} \left(2\mathbf{F} - \mathbf{E}^T \right)$
	$= \frac{1}{3} \left(2 \begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix} - \begin{bmatrix} 3 & -1 \\ 7 & 4 \end{bmatrix}^T \right) = \frac{1}{3} \left(\begin{bmatrix} 6 & 4 \\ 8 & -2 \end{bmatrix} - \begin{bmatrix} 3 & 7 \\ -1 & 4 \end{bmatrix} \right) = \frac{1}{3} \begin{bmatrix} 3 & -3 \\ 9 & -6 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$
1(c) (i)	$\mathbf{ED} = \begin{bmatrix} 3 & -1 \\ 7 & 4 \end{bmatrix} \begin{bmatrix} -5 & 1 & 3 & -2 \\ 2 & -6 & -1 & 4 \end{bmatrix} = \begin{bmatrix} -17 & 9 & 10 & -10 \\ -27 & -17 & 17 & 2 \end{bmatrix}$
1(c) (ii)	$\mathbf{F}^{T} - 4\mathbf{I}_{2} = \begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}^{T} - 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & -1 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 2 & -5 \end{bmatrix}$
1(d) (i)	$\mathbf{BC} = \begin{bmatrix} 2 & -1 & 1 \\ -5 & 3 & 2 \\ 4 & -3 & 1 \end{bmatrix} \begin{bmatrix} 9 & -2 & -5 \\ 13 & -2 & -9 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$
	$\begin{bmatrix} \mathbf{BC} = \begin{bmatrix} -3 & 3 & 2 \\ 4 & -3 & 1 \end{bmatrix} \begin{bmatrix} 13 & -2 & -3 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 8 \end{bmatrix}$
1(d)	Given $(C+Y)(CY-I_3) = YCY$,
(ii)	$\mathbf{C}^2\mathbf{Y} - \mathbf{C} + \mathbf{Y}\mathbf{C}\mathbf{Y} - \mathbf{Y} = \mathbf{Y}\mathbf{C}\mathbf{Y}$
	$\mathbf{C}^2\mathbf{Y} - \mathbf{C} - \mathbf{Y} = 0$
	$\mathbf{C}^2 \mathbf{Y} \mathbf{Y}^{-1} - \mathbf{C} \mathbf{Y}^{-1} - \mathbf{Y} \mathbf{Y}^{-1} = 0$
	$\mathbf{C}^2 - \mathbf{C}\mathbf{Y}^{-1} - \mathbf{I}_3 = 0$
	$\mathbf{C}^{-1}\mathbf{C}^2 - \mathbf{C}^{-1}\mathbf{C}\mathbf{Y}^{-1} - \mathbf{C}^{-1}\mathbf{I}_3 = 0$
	$\mathbf{C} - \mathbf{Y}^{-1} - \mathbf{C}^{-1} = 0$
	$\mathbf{Y}^{-1} = \mathbf{C} - \mathbf{C}^{-1}$
	From part (i), $\mathbf{BC} = 8\mathbf{I} \Rightarrow \mathbf{C}^{-1} = \frac{1}{8}\mathbf{B}$
	Hence, $\mathbf{Y}^{-1} = \mathbf{C} - \frac{1}{8}\mathbf{B} = \begin{bmatrix} 9 & -2 & -5 \\ 13 & -2 & -9 \\ 3 & 2 & 1 \end{bmatrix} - \frac{1}{8} \begin{bmatrix} 2 & -1 & 1 \\ -5 & 3 & 2 \\ 4 & -3 & 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 70 & -15 & -41 \\ 109 & -19 & -74 \\ 20 & 19 & 7 \end{bmatrix}$

SINGAPORE POLYTECHNIC 2021/2022 Semester 2 Mid-Semester Test

 $(2) \quad U = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$

(i) $A = \{1, 2, 3, 4, 5, 6\}$

 $B = \{-3, 0, 3, 6\}$

 $C = \{-4, -2, 0, 2, 6\}$

2(a) $A \cap \overline{B} = \{1, 2, 4, 5\}$

(ii) $\bar{A} \cup C = \{-4, -3, -2, -1, 0, 2, 6, 7, 8\}$

2(a)

(iii)

 $2(b) \mid X \cap \overline{P} = \emptyset \Rightarrow X \subset P \Rightarrow X \subset \{1, 2, 3, 4, 5\}$

$$X \cup (P-Q) = X \Rightarrow (P-Q) \subset X \Rightarrow \{1,2,3\} \subset X$$

This means that set X must contain elements 1, 2 and 3, but must not contain any other elements in addition to 1, 2, 3, 4 and 5.

Therefore, $X = \{1, 2, 3\}$ or $\{1, 2, 3, 4\}$ or $\{1, 2, 3, 5\}$ or $\{1, 2, 3, 4, 5\}$.

SINGAPORE POLYTECHNIC 2021/2022 Semester 2 Mid-Semester Test

3(a)	Integral part:			
	2	718		
	2	359	0	
	2	179	1	
	2	89	1	
	2	44	1	
	2	22	0	
	2	11	0	
	2	5	1	
	2	2	1	
	2	1	0	
		0	1	

Fractional part:				
2	0.65			
2	0.3	1		
2	0.6	0		
2	0.2	1		
2	0.4	0		
2	0.8	0		
2	0.6	1		
2	0.2	1		
2	0.4	0		
2	0.8	0		
2	0.6 (rep)	1		

 $\therefore 718.65_{10} = 1011001110.10\overline{1001}_{2}$ $= 2CE.A\overline{6}_{16}$

- 3(b) Truncation error = $0.65_{10} 0.1010_2$ = $0.65_{10} - 0.625_{10}$ = 0.025_{10}
- 3(c) Convert to base-4: $0.625_{10} = 0.22_4$ and $0.875_{10} = 0.32_4$ Count in base-4 with 2 fractional digits: $0.23_4, 0.30_4, 0.31_4$ Convert back to decimal: $0.23_4 = 0.6875_{10}$, $0.30_4 = 0.75_{10}$, $0.31_4 = 0.8125_{10}$ $\therefore 0.6875_{10}, 0.75_{10}, 0.8125_{10}$

SINGAPORE POLYTECHNIC 2021/2022 Semester 2 Mid-Semester Test

$$\begin{vmatrix} 4(a) \\ (iii) \end{vmatrix} \mathbf{P}' = \mathbf{CP} = \begin{bmatrix} 2 & 0 & 4 \\ -1 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ -1 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 8 & 12 \\ -5 & -2 & -6 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} \mathbf{T}_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & -2 \\ \frac{1}{2} & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

4(b) T_a : Rotation 45° clockwise about the origin

(i) T_b : Scaling in the y-direction by a factor of $\frac{1}{2}$ relative to the origin

 $\mathbf{T}_{\!\scriptscriptstyle c}$: Rotation 45° anticlockwise about the origin

$$\mathbf{T}_{a} = \begin{bmatrix} \cos\left(-45^{\circ}\right) & -\sin\left(-45^{\circ}\right) & 0\\ \sin\left(-45^{\circ}\right) & \cos\left(-45^{\circ}\right) & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} \; ; \; \mathbf{T}_{b} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{c} = \begin{bmatrix} \cos(45^{\circ}) & -\sin(45^{\circ}) & 0\\ \sin(45^{\circ}) & \cos(45^{\circ}) & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{U}' = \mathbf{T}\mathbf{U} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 4 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 4 & 1 \\ 0 & 1 & 4 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 (verified)