The following muon table is from the Particle Data Group.¹

μ MEAN LIFE τ

Measurements with an error $> 0.001 \times 10^{-6} \, \text{s}$ have been omitted.

VALUE (10 ⁻⁶ s)	DOCUMENT ID		TECN	CHG	COMMENT
2.1969811±0.0000022 OUR AVERAGE					
$2.1969803 \pm 0.0000021 \pm 0.0000007$	^L TISHCHENKO	13	CNTR	+	Surface μ^+ at PSI
$2.197083 \pm 0.000032 \pm 0.000015$	BARCZYK				Muons from π^+ decay at rest
$2.197013 \pm 0.000021 \pm 0.000011$	CHITWOOD	07	CNTR	+	Surface μ^+ at PSI
2.197078 ± 0.000073	BARDIN	84	CNTR	+	
2.197025 ± 0.000155	BARDIN	84	CNTR	_	
2.19695 ± 0.00006	GIOVANETTI	84	CNTR	+	
2.19711 ± 0.00008	BALANDIN	74	CNTR	+	
2.1973 ± 0.0003	DUCLOS	73	CNTR	+	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
2.1969803 ± 0.0000022	WEBBER	11	CNTR	+	Surface μ^+ at PSI
1=1011011511101101101111111111111111111					

 $^{^1}$ TISHCHENKO 13 uses $1.6 \times 10^{12}~\mu^+$ events and supersedes WEBBER 11.

Let us compute muon decay time from theory and compare it to the average measured value of 2.1969811 microseconds.

The result from QED theory is the following formula for muon mean life τ .

$$\tau = \frac{96\pi^2 h}{G_F^2 \left(m_\mu c^2\right)^5}$$

 G_F is Fermi coupling constant, m_{μ} is muon rest mass.

From NIST² we have

$$G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}$$

 $m_{\mu} = 1.883531627 \times 10^{-28} \text{ kilogram}$
 $h = 6.62607015 \times 10^{-34} \text{ joule second (exact)}$
 $c = 299792458 \text{ meter second}^{-1} \text{ (exact)}$
 $1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ joule (exact)}$

Hence

$$\tau = 2.18735 \times 10^{-6} \, \text{second}$$

The result is a bit smaller than the measured value.

$$\frac{\tau}{2.1969811 \times 10^{-6} \; \mathrm{second}} = 0.9956$$

¹https://pdg.lbl.gov/2020/listings/rpp2020-list-muon.pdf

²https://physics.nist.gov/cuu/Constants/index.html