

Channel Bandwidth: 10 MHz

Channel Bandwidth: 15 MHz

Channel Bandwidth: 20 MHz

Center 1.710 000 GHz #Res BW 390 kHz

Copyright 2000-2006 Agilent Technologies

Freq Offset 0.00000000 Hz

Signal Track

#VBW 1.2 MHz

Span 2 MHz #Sweep 200 ms (601 pts)

Appendix E: Conducted Spurious Emission

Page 183 of 306

Test Graphs

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 3 MHz

(Channel Bandwidth: 3 MHz)_MCH_QPSK_1RB#0

Report No.: EED32I00251306 Page 204 of 306 Agilent 04:07:14 Jul 23, 2015 Freq/Channel Mkr1 90.8 kHz -57.28 dBm Center Freq 79.5000000 kHz ef 13.59 dBm #Atten 10 dB **Start Freq** 9.000000000 kHz DC Couple Stop Freq 150.000000 kHz **CF Step** 14.1000000 kHz <u>Nuto</u> Man Freq Offset 0.00000000 Hz p Arguster Santagen des se suppose en la position de se production de la p Span 141 kHz Sweep 426.3 ms (3000 pts) #VBW 3 kHz Agilent 04:07:48 Jul 23, 2015 Freg/Channel Mkr1 200 kHz -67.96 dBm Center Freq 15.0750000 MHz #Atten 22 dB Start Freq 150.000000 kHz DC Coupled **Stop Freq** 30.0000000 MHz CF Step 2.98500000 MHz Man Freq Offset 0.00000000 Hz Signal Track Span 29.85 MHz Sweep 902.3 ms (3000 pts) #VBW 30 kHz Copyright 2000-2006 Agilent Technologies Agilent 04:07:53 Freq/Channel Center Freq 13.0150000 GHz #Atten 40 dB **Start Freq** 30.0000000 MHz **Stop Freq** 26.0000000 GHz **CF Step** 2.59700000 GHz <u>Auto</u> Man Freq Offset 0.000000000 Hz Signal Track Span 25.97 GHz Sweep 78.57 ms (3000 pts) #VBW 3 MHz Copyright 2000-2006 Agilent Technologies

Report No.: EED32I00251306 Page 207 of 306

Report No.: EED32I00251306 Page 213 of 306

Channel Bandwidth: 5 MHz

Channel Bandwidth: 10 MHz

Channel Bandwidth: 15 MHz

#VBW 3 MHz

Copyright 2000-2006 Agilent Technologies

Span 25.97 GHz Sweep 78.57 ms (3000 pts) Signal Track

Channel Bandwidth: 20 MHz

Report No. : EED32I00251306 Page 282 of 306

Report No.: EED32I00251306 Page 288 of 306

Appendix F: Frequency Stability

Test Result

VL is 3.5V, VN is 3.6V, VH is 3.7V.

Channel Bandwidth: 1.4 MHz

Channel	Bandwid	ith: 1.4 IV					100
				dwidth: 1.4 MHz			
		-	Vo	tage			
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\mathbb{C}})$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
7		VL	TN	1.19	0.000694	± 2.5	PASS
	LCH	VN	TN	1.32	0.000769	± 2.5	PASS
		VH	TN	2.25	0.001313	± 2.5	PASS
	and the second	VL	TN	-0.06	-0.000033	± 2.5	PASS
QPSK	MCH	VN	TN	-0.69	-0.000396	± 2.5	PASS
	`)	VH	TN	0.96	0.000553	± 2.5	PASS
		VL	TN	-4.49	-0.002560	± 2.5	PASS
	HCH	VN	TN	-3.72	-0.002120	± 2.5	PASS
		VH	TN	-4.45	-0.002536	± 2.5	PASS
		VL	TN	1.54	0.000903	± 2.5	PASS
	LCH	VN	TN	1.09	0.000636	± 2.5	PASS
-		VH	TN	1.76	0.001029	± 2.5	PASS
	MCH	VL	TN	1.27	0.000735	± 2.5	PASS
16QAM		VN	TN	0.06	0.000033	± 2.5	PASS
	100	VH	TN	0.30	0.000173	± 2.5	PASS
	N")	VL	TN	-1.93	-0.001101	± 2.5	PASS
	HCH	VN	TN	-3.18	-0.001810	± 2.5	PASS
		VH	TN	-3.00	-0.001712	± 2.5	PASS
			Temp	erature			
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
/		VN	-30	0.92	0.000535	± 2.5	PASS
		VN	-20	1.29	0.000753	± 2.5	PASS
		VN	-10	1.33	0.000778	± 2.5	PASS
	2	VN	0	0.87	0.000510	± 2.5	PASS
	LCH	VN	10	1.50	0.000878	± 2.5	PASS
	/	VN	20	1.67	0.000978	± 2.5	PASS
		VN	30	1.62	0.000945	± 2.5	PASS
		VN	40	2.39	0.001396	± 2.5	PASS
		VN	50	1.72	0.001003	± 2.5	PASS
		VN	-30	-0.83	-0.000479	± 2.5	PASS
QPSK		VN	-20	-0.49	-0.000281	± 2.5	PASS
WLOV.		VN	-10	0.54	0.000314	± 2.5	PASS
		VN	0	-0.09	-0.000050	± 2.5	PASS
	MCH	VN	10	0.84	0.000487	± 2.5	PASS
	(4)	VN	20	-0.57	-0.000330	± 2.5	PASS
		VN	30	-1.24	-0.000718	± 2.5	PASS
		VN	40	0.43	0.000248	± 2.5	PASS
		VN	50	-0.04	-0.000025	± 2.5	PASS
		VN	-30	-7.11	-0.004053	± 2.5	PASS
	НСН	VN	-20	-5.16	-0.002944	± 2.5	PASS
		VN	-10	-3.09	-0.001761	± 2.5	PASS
		VN	0	-2.69	-0.001533	± 2.5	PASS

Page 291 of 306

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32I00251306 Page 292 of 306

Roportivo		21002010	.00			3.3 /	ı uş
		VN	10	-4.41	-0.002512	± 2.5	PASS
		VN	20	-3.06	-0.001745	± 2.5	PASS
		VN	30	-3.25	-0.001851	± 2.5	PASS
	10	VN	40	-2.95	-0.001680	± 2.5	PASS
(c)	r_{x}	VN	50	-3.03	-0.001729	± 2.5	PASS
16		VN	-30	1.27	0.000744	± 2.5	PASS
		VN	-20	1.65	0.000962	± 2.5	PASS
		VN	-10	0.20	0.000117	± 2.5	PASS
N .		VN	0	1.22	0.000711	± 2.5	PASS
°)	LCH	VN	10	1.13	0.000661	± 2.5	PASS
/		VN	20	0.77	0.000452	± 2.5	PASS
		VN	30	1.79	0.001045	± 2.5	PASS
		VN	40	1.26	0.000736	± 2.5	PASS
-	200	VN	50	1.65	0.000962	± 2.5	PASS
(2)	(2)	VN	-30	0.96	0.000553	± 2.5	PASS
100		VN	-20	0.41	0.000239	± 2.5	PASS
		VN	-10	-0.26	-0.000149	± 2.5	PASS
		VN	0	-0.89	-0.000512	± 2.5	PASS
16QAM	MCH	VN	10	0.64	0.000372	± 2.5	PASS
6)		VN	20	-0.04	-0.000025	± 2.5	PASS
/		VN	30	-0.23	-0.000132	± 2.5	PASS
		VN	40	0.40	0.000231	± 2.5	PASS
		VN	50	1.69	0.000974	± 2.5	PASS
-	7	VN	-30	-2.50	-0.001427	± 2.5	PASS
(4	(8)	VN	-20	-3.35	-0.001908	± 2.5	PASS
10	7	VN	-10	-3.53	-0.002014	± 2.5	PASS
		VN	0	-3.98	-0.002267	± 2.5	PASS
	HCH	VN	10	-2.35	-0.001337	± 2.5	PASS
		VN	20	-2.83	-0.001615	± 2.5	PASS
1		VN	30	-2.57	-0.001468	± 2.5	PASS
		VN	40	-3.05	-0.001737	± 2.5	PASS
		VN	50	-3.19	-0.001818	± 2.5	PASS

Channel Bandwidth: 3 MHz

Charine	Dandwid	iti i. O ivii	IZ / A		7 234 7 23			
			Channel Ban	dwidth: 3 MHz				
16			Vol	tage				
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict	
		VL	TN	1.63	0.000953	± 2.5	PASS	
	LCH	VN	TN	-0.03	-0.000017	± 2.5	PASS	
		VH	TN	1.67	0.000978	± 2.5	PASS	
	МСН	VL	TN	-0.87	-0.000504	± 2.5	PASS	
QPSK		VN	TN	0.33	0.000190	± 2.5	PASS	
		VH	TN	0.93	0.000537	± 2.5	PASS	
	(0)	VL	TN	0.76	0.000432	± 2.5	PASS	
	HCH	VN	TN	-0.11	-0.000065	± 2.5	PASS	
		VH	TN	-0.37	-0.000212	± 2.5	PASS	
		VL	TN	-0.16	-0.000092	± 2.5	PASS	
16QAM	LCH	VN	TN	-0.69	-0.000401	± 2.5	PASS	
		VH	TN	-0.57	-0.000334	± 2.5	PASS	
	MCH	VL	TN	0.96	0.000553	± 2.5	PASS	

Report No. : EED32I00251306 Page 293 of 306

ivehou inc	J EEDS.	21002513	06	100	1	60 /	Pag
		VN	TN	-1.16	-0.000669	± 2.5	PASS
		VH	TN	-0.13	-0.000074	± 2.5	PASS
		VL	TN	-0.54	-0.000310	± 2.5	PASS
	HCH	VN	TN	-0.70	-0.000400	± 2.5	PASS
(6	(**)	VH	TN	-0.09	-0.000049	± 2.5	PASS
19		•	Temp	erature			6
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
7		VN	-30	-0.33	-0.000192	± 2.5	PASS
		VN	-20	-0.50	-0.000293	± 2.5	PASS
		VN	-10	0.96	0.000560	± 2.5	PASS
		VN	0	1.49	0.000869	± 2.5	PASS
	LCH	VN	10	-0.39	-0.000226	± 2.5	PASS
	200	VN	20	0.92	0.000535	± 2.5	PASS
	(2)	VN	30	0.33	0.000192	± 2.5	PASS
		VN	40	0.51	0.000301	± 2.5	PASS
		VN	50	-0.17	-0.000100	± 2.5	PASS
		VN	-30	-0.23	-0.000132	± 2.5	PASS
		VN	-20	-0.23	-0.000132	± 2.5	PASS
		VN	-10	-2.88	-0.001660	± 2.5	PASS
		VN	0	0.66	0.000380	± 2.5	PASS
QPSK	мсн	VN	10	0.50	0.000289	± 2.5	PASS
		VN	20	1.33	0.000768	± 2.5	PASS
		VN	30	0.84	0.000487	± 2.5	PASS
		VN	40	0.19	0.000107	± 2.5	PASS
		VN	50	-0.86	-0.000495	± 2.5	PASS
		VN	-30	-1.00	-0.000571	± 2.5	PASS
		VN	-20	0.21	0.000122	± 2.5	PASS
		VN	-10	-0.21	-0.000122	± 2.5	PASS
		VN	0	0.37	0.000212	± 2.5	PASS
	нсн	VN	10	1.13	0.000644	± 2.5	PASS
		VN	20	-1.13	-0.000644	± 2.5	PASS
		VN	30	0.70	0.000400	± 2.5	PASS
		VN	40	0.10	0.000057	± 2.5	PASS
		VN	50	-0.50	-0.000286	± 2.5	PASS
(¢	(V)	VN	-30	-0.40	-0.000234	± 2.5	PASS
		VN	-20	0.01	0.000008	± 2.5	PASS
		VN	-10	0.51	0.000301	± 2.5	PASS
		VN	0	0.36	0.000209	± 2.5	PASS
	LCH	VN	10	0.77	0.000451	± 2.5	PASS
		VN	20	0.17	0.000100	± 2.5	PASS
		VN	30	-3.35	-0.001956	± 2.5	PASS
		VN	40	-3.62	-0.002115	± 2.5	PASS
16QAM		VN	50	-0.06	-0.000033	± 2.5	PASS
	200	VN	-30	0.13	0.000074	± 2.5	PASS
	100	VN	-20	0.51	0.000297	± 2.5	PASS
		VN	-10	0.07	0.000041	± 2.5	PASS
		VN	0	0.39	0.000223	± 2.5	PASS
	MCH	VN	10	-0.01	-0.000008	± 2.5	PASS
		VN	20	-0.66	-0.000380	± 2.5	PASS
		VN	30	0.04	0.000360	± 2.5	PASS
		VN	40	0.70	0.000405	± 2.5	PASS

Report No.: EED32I00251306 Page 294 of 306

	VN	50	0.06	0.000033	± 2.5	PASS
	VN	-30	-0.62	-0.000351	± 2.5	PASS
	VN	-20	-0.20	-0.000114	± 2.5	PASS
	VN	-10	0.20	0.000114	± 2.5	PASS
(63%)	VN	0	-0.10	-0.000057	± 2.5	PASS
нсн	VN	10	0.56	0.000318	± 2.5	PASS
	VN	20	0.37	0.000212	± 2.5	PASS
	VN	30	1.23	0.000702	± 2.5	PASS
	VN	40	-0.94	-0.000538	± 2.5	PASS
(*)	VN	50	-0.80	-0.000457	± 2.5	PASS

			Channel Ban	dwidth: 5 MHz			
12	(9)		Vo	ltage	(3)		12
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VL	TN	2.02	0.001178	± 2.5	PASS
	LCH	VN	TN	0.24	0.000142	± 2.5	PASS
		VH	TN	2.13	0.001245	± 2.5	PASS
		VL	TN	-0.49	-0.000281	± 2.5	PASS
QPSK	MCH	VN	TN	1.24	0.000718	± 2.5	PASS
		VH	TN	0.13	0.000074	± 2.5	PASS
		VL	TN	-4.72	-0.002694	± 2.5	PASS
	нсн	VN	TN	-2.80	-0.001600	± 2.5	PASS
(6)		VH	TN	-5.11	-0.002914	± 2.5	PASS
	LCH	VL	TN	-2.98	-0.001737	± 2.5	PASS
		VN	TN	-0.66	-0.000384	± 2.5	PASS
		VH	TN	-1.57	-0.000919	± 2.5	PASS
		VL	TN	-2.93	-0.001693	± 2.5	PASS
16QAM	мсн	VN	TN	-2.78	-0.001602	± 2.5	PASS
		VH	TN	-2.73	-0.001577	± 2.5	PASS
		VL	TN	-5.54	-0.003159	± 2.5	PASS
	нсн	VN	TN	-2.59	-0.001477	± 2.5	PASS
	100	VH	TN	-5.32	-0.003037	± 2.5	PASS
(8)	(5)		Temp	erature	(6.5)		(63)
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VN	-30	-0.96	-0.000560	± 2.5	PASS
		VN	-20	-0.70	-0.000409	± 2.5	PASS
		VN	-10	-0.79	-0.000459	± 2.5	PASS
		VN	0	1.83	0.001069	± 2.5	PASS
	LCH	VN	10	2.17	0.001270	± 2.5	PASS
		VN	20	3.03	0.001771	± 2.5	PASS
0.00	200	VN	30	1.50	0.000877	± 2.5	PASS
QPSK	(2)	VN	40	1.82	0.001061	± 2.5	PASS
		VN	50	3.03	0.001771	± 2.5	PASS
		VN	-30	1.03	0.000594	± 2.5	PASS
		VN	-20	0.86	0.000495	± 2.5	PASS
	мсн	VN	-10	0.27	0.000157	± 2.5	PASS
		VN	0	1.39	0.000801	± 2.5	PASS
		VN	10	0.39	0.000223	± 2.5	PASS

Report No. : EED32I00251306 Page 295 of 306

Report No.	: EED32	21002513	306	160	1	3 /	Page
		VN	20	-0.01	-0.000008	± 2.5	PASS
		VN	30	0.13	0.000074	± 2.5	PASS
		VN	40	1.95	0.001123	± 2.5	PASS
(3)		VN	50	0.64	0.000372	± 2.5	PASS
(6)	~)	VN	-30	-4.45	-0.002539	± 2.5	PASS
6		VN	-20	-2.42	-0.001379	± 2.5	PASS
		VN	-10	-2.55	-0.001453	± 2.5	PASS
		VN	0	-1.43	-0.000816	± 2.5	PASS
30	HCH	VN	10	-1.46	-0.000833	± 2.5	PASS
(5.2)		VN	20	-2.99	-0.001706	± 2.5	PASS
		VN	30	-1.90	-0.001086	± 2.5	PASS
		VN	40	-3.20	-0.001828	± 2.5	PASS
		VN	50	-2.62	-0.001494	± 2.5	PASS
	8	VN	-30	1.06	0.000618	± 2.5	PASS
(24)	(8)	VN	-20	0.74	0.000434	± 2.5	PASS
(0)	/	VN	-10	0.50	0.000292	± 2.5	PASS
		VN	0	2.45	0.001428	± 2.5	PASS
	LCH	VN	10	2.15	0.001253	± 2.5	PASS
		VN	20	-1.90	-0.001111	± 2.5	PASS
(2)		VN	30	-1.02	-0.000593	± 2.5	PASS
		VN	40	-2.75	-0.001604	± 2.5	PASS
		VN	50	-1.70	-0.000994	± 2.5	PASS
		VN	-30	-0.70	-0.000405	± 2.5	PASS
		VN	-20	-0.04	-0.000025	± 2.5	PASS
(4)	10	VN	-10	0.87	0.000504	± 2.5	PASS
(6))	VN	0	0.06	0.000033	± 2.5	PASS
16QAM	MCH	VN	10	-1.87	-0.001082	± 2.5	PASS
		VN	20	0.37	0.000215	± 2.5	PASS
		VN	30	-0.70	-0.000405	± 2.5	PASS
(4)		VN	40	-0.43	-0.000248	± 2.5	PASS
17		VN	50	-2.40	-0.001387	± 2.5	PASS
		VN	-30	-2.78	-0.001584	± 2.5	PASS
		VN	-20	-2.95	-0.001682	± 2.5	PASS
		VN	-10	-2.36	-0.001347	± 2.5	PASS
	0	VN	0	-3.60	-0.002057	± 2.5	PASS
(6)	HCH	VN	10	-2.98	-0.001698	± 2.5	PASS
		VN	20	-3.33	-0.001902	± 2.5	PASS
		VN	30	-3.16	-0.001804	± 2.5	PASS
		VN	40	-2.46	-0.001404	± 2.5	PASS
6		VN	50	-3.36	-0.001918	± 2.5	PASS

Channel Bandwidth: 10 MHz

			Hz Channel Band	width: 10 MHz			
				age			
Modulation	Channel	Voltage	Temperature	Deviation	Deviation	Limit	Verdict
10.		[Vdc]	(℃)	(Hz)	(ppm)	(ppm)	100
		VL	TN	-3.09	-0.001802	± 2.5	PASS
	LCH	VN	TN	-2.73	-0.001593	± 2.5	PASS
		VH	TN	-2.88	-0.001677	± 2.5	PASS
		VL	TN	0.64	0.000372	± 2.5	PASS
QPSK	MCH	VN	TN	0.83	0.000479	± 2.5	PASS
		VH	TN	1.27	0.000735	± 2.5	PASS
		VL	TN	1.36	0.000777	± 2.5	PASS
	HCH	VN	TN	1.13	0.000646	± 2.5	PASS
	10	VH	TN	1.20	0.000687	± 2.5	PASS
	`)	VL	TN	-2.70	-0.001576	± 2.5	PASS
	LCH	VN	TN	-2.15	-0.001251	± 2.5	PASS
		VH	TN	-3.96	-0.002311	± 2.5	PASS
		VL	TN	-0.23	-0.000132	± 2.5	PASS
16QAM	MCH	VN	TN	0.00	0.000000	± 2.5	PASS
	i i	VH	TN	0.11	0.000066	± 2.5	PASS
		VL	TN	1.36	0.000777	± 2.5	PASS
	HCH	VN	TN	1.75	0.000997	± 2.5	PASS
		VH	TN	2.20	0.001259	± 2.5	PASS
	10		Tempe	erature	13	•	13
Modulation	Channel	Voltage [Vdc]	Temperature (°ℂ)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VN	-30	-1.32	-0.000767	± 2.5	PASS
		VN	-20	-2.20	-0.001285	± 2.5	PASS
		VN	-10	-2.27	-0.001326	± 2.5	PASS
		VN	0	-2.16	-0.001260	± 2.5	PASS
	LCH	VN	10	-1.06	-0.000617	± 2.5	PASS
		VN	20	-2.32	-0.001351	± 2.5	PASS
		VN	30	-2.90	-0.001693	± 2.5	PASS
		VN	40	-3.38	-0.001969	± 2.5	PASS
	10	VN	50	-2.52	-0.001468	± 2.5	PASS
	7	VN	-30	0.64	0.000372	± 2.5	PASS
		VN	-20	0.37	0.000215	± 2.5	PASS
		VN	-10	1.09	0.000628	± 2.5	PASS
		VN	0	0.89	0.000512	± 2.5	PASS
16QAM	MCH	VN	10	-0.37	-0.000215	± 2.5	PASS
	1011	VN	20	-0.17	-0.000099	± 2.5	PASS
		VN	30	-0.16	-0.000091	± 2.5	PASS
		VN	40	0.01	0.000091	± 2.5	PASS
		VN	50	0.83	0.000479	± 2.5	PASS
	10	VN		2.32		_	PASS
	N")		-30		0.001324	± 2.5	
	/	VN	-20	2.13	0.001218	± 2.5	PASS
		VN	-10	1.47	0.000842	± 2.5	PASS
	НСН	VN	0	0.99	0.000564	± 2.5	PASS
		VN	10	1.82	0.001038	± 2.5	PASS
		VN	20	2.50	0.001431	± 2.5	PASS
		VN	30	0.92	0.000523	± 2.5	PASS
	1	VN	40	2.56	0.001463	± 2.5	PASS

Report No. : EED32I00251306 Page 297 of 306

Troport Tro LLL	02.0020.0	,00				. 49
	VN	50	2.20	0.001259	± 2.5	PASS
	VN	-30	-2.09	-0.001218	± 2.5	PASS
	VN	-20	-2.76	-0.001610	± 2.5	PASS
	VN	-10	-2.79	-0.001627	± 2.5	PASS
(83%)	VN	0	-1.62	-0.000943	± 2.5	PASS
LCH	VN	10	-2.85	-0.001660	± 2.5	PASS
	VN	20	-2.92	-0.001702	± 2.5	PASS
	VN	30	-3.76	-0.002194	± 2.5	PASS
	VN	40	-2.89	-0.001685	± 2.5	PASS
°)	VN	50	-2.65	-0.001543	± 2.5	PASS
	VN	-30	0.46	0.000264	± 2.5	PASS
	VN	-20	0.69	0.000396	± 2.5	PASS
	VN	-10	-0.04	-0.000025	± 2.5	PASS
	VN	0	1.40	0.000809	± 2.5	PASS
QPSK MCH	VN	10	0.54	0.000314	± 2.5	PASS
	VN	20	0.57	0.000330	± 2.5	PASS
	VN	30	-2.50	-0.001445	± 2.5	PASS
	VN	40	-2.50	-0.001445	± 2.5	PASS
	VN	50	-2.36	-0.001362	± 2.5	PASS
•]	VN	-30	1.39	0.000793	± 2.5	PASS
/	VN	-20	3.28	0.001872	± 2.5	PASS
	VN	-10	2.80	0.001602	± 2.5	PASS
	VN	0	2.82	0.001610	± 2.5	PASS
нсн	VN	10	1.76	0.001005	± 2.5	PASS
(45)	VN	20	1.89	0.001079	± 2.5	PASS
(0)	VN	30	2.37	0.001357	± 2.5	PASS
	VN	40	1.69	0.000965	± 2.5	PASS
	VN	50	0.62	0.000351	± 2.5	PASS

Channel Bandwidth: 15 MHz

Charine				width: 15 MHz		30.3 /.	
				age			
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
(8)	67)	VL	TN	-0.01	-0.000008	± 2.5	PASS
	LCH	VN	TN	-0.01	-0.000008	± 2.5	PASS
		VH	TN	0.10	0.000058	± 2.5	PASS
		VL	TN	-2.06	-0.001189	± 2.5	PASS
QPSK	MCH	VN	TN	-1.54	-0.000892	± 2.5	PASS
		VH	TN	-2.35	-0.001354	± 2.5	PASS
	нсн	VL	TN	0.63	0.000360	± 2.5	PASS
		VN	TN	0.33	0.000188	± 2.5	PASS
		VH	TN	-0.43	-0.000246	± 2.5	PASS
	2/	VL	TN	-0.56	-0.000325	± 2.5	PASS
	LCH	VN	TN	-0.51	-0.000300	± 2.5	PASS
		VH	TN	-0.21	-0.000125	± 2.5	PASS
400414		VL	TN	0.10	0.000058	± 2.5	PASS
16QAM	MCH	VN	TN	0.23	0.000132	± 2.5	PASS
		VH	TN	0.10	0.000058	± 2.5	PASS
	ЦСЦ	VL	TN	0.06	0.000033	± 2.5	PASS
	HCH	VN	TN	0.43	0.000246	± 2.5	PASS

Report No. : EED32I00251306 Page 298 of 306

Report No	o. : EED3	21002513	06	(0)		100	Pag
		VH	TN	0.09	0.000049	± 2.5	PASS
			Temp	erature			
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
(6)	(-)	VN	-30	-0.19	-0.000108	± 2.5	PASS
	/	VN	-20	1.16	0.000675	± 2.5	PASS
		VN	-10	0.93	0.000541	± 2.5	PASS
		VN	0	0.92	0.000533	± 2.5	PASS
	LCH	VN	10	-1.79	-0.001041	± 2.5	PASS
		VN	20	0.27	0.000158	± 2.5	PASS
		VN	30	-0.43	-0.000250	± 2.5	PASS
		VN	40	-0.19	-0.000108	± 2.5	PASS
		VN	50	0.19	0.000108	± 2.5	PASS
	×	VN	-30	0.59	0.000339	± 2.5	PASS
	(4)	VN	-20	-0.23	-0.000132	± 2.5	PASS
		VN	-10	1.42	0.000817	± 2.5	PASS
		VN	0	-0.24	-0.000140	± 2.5	PASS
QPSK	MCH	VN	10	0.10	0.000058	± 2.5	PASS
		VN	20	-2.02	-0.001164	± 2.5	PASS
		VN	30	-2.22	-0.001280	± 2.5	PASS
		VN	40	-2.69	-0.001552	± 2.5	PASS
		VN	50	-1.95	-0.001123	± 2.5	PASS
		VN	-30	-0.46	-0.000262	± 2.5	PASS
		VN	-20	0.09	0.000049	± 2.5	PASS
	10	VN	-10	-0.27	-0.000156	± 2.5	PASS
)	VN	0	0.72	0.000409	± 2.5	PASS
	нсн	VN	10	0.56	0.000319	± 2.5	PASS
	1.011	VN	20	-0.14	-0.000082	± 2.5	PASS
		VN	30	0.53	0.000303	± 2.5	PASS
		VN	40	-1.97	-0.001130	± 2.5	PASS
		VN	50	-1.76	-0.001007	± 2.5	PASS
		VN	-30	-0.59	-0.000341	± 2.5	PASS
		VN	-20	-0.33	-0.000192	± 2.5	PASS
		VN	-10	-0.80	-0.000466	± 2.5	PASS
	10	VN	0	0.34	0.000200	± 2.5	PASS
	LCH	VN	10	-0.46	-0.000267	± 2.5	PASS
	20	VN	20	-0.16	-0.000092	± 2.5	PASS
		VN	30	-0.50	-0.000292	± 2.5	PASS
		VN	40	-0.19	-0.000108	± 2.5	PASS
		VN	50	0.60	0.000350	± 2.5	PASS
		VN	-30	-0.09	-0.000050	± 2.5	PASS
16QAM		VN	-20	1.37	0.000793	± 2.5	PASS
. 5 50, 1111		VN	-10	0.01	0.000733	± 2.5	PASS
		VN	0	1.24	0.000718	± 2.5	PASS
	МСН	VN	10	0.17	0.000099	± 2.5	PASS
	1,1011	VN	20	0.17	0.000099	± 2.5	PASS
		VN	30	-0.16	-0.000200	± 2.5	PASS
		VN	40	0.11	0.000066	± 2.5	PASS
		VN	50	0.11	0.000000	± 2.5	PASS
		VN	-30	-0.41			PASS
	HCH	VN	-30	0.17	-0.000237 0.000098	± 2.5 ± 2.5	PASS
	11011	VN	-20 -10	0.17	0.000098	± 2.5	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32I00251306 Page 299 of 306

	VN	0	-0.66	-0.000377	± 2.5	PASS
	VN	10	-2.05	-0.001171	± 2.5	PASS
	VN	20	-0.69	-0.000393	± 2.5	PASS
	VN	30	-0.03	-0.000016	± 2.5	PASS
(6,5)	VN	40	0.26	0.000147	± 2.5	PASS
	VN	50	0.17	0.000098	± 2.5	PASS

			Channel Band	width: 20 MHz			
/		6	Volt	tage	1/4		
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VL	TN	0.70	0.000408	± 2.5	PASS
	LCH	VN	TN	1.80	0.001048	± 2.5	PASS
		VH	TN	1.53	0.000890	± 2.5	PASS
		VL	TN	0.24	0.000140	± 2.5	PASS
QPSK	MCH	VN	TN	0.13	0.000074	± 2.5	PASS
		VH	TN	0.31	0.000182	± 2.5	PASS
		VL	TN	-3.71	-0.002123	± 2.5	PASS
	HCH	VN	TN	-2.83	-0.001623	± 2.5	PASS
		VH	TN	-3.66	-0.002099	± 2.5	PASS
		VL	TN	1.54	0.000898	± 2.5	PASS
	LCH	VN	TN	1.34	0.000782	± 2.5	PASS
		VH	TN	1.22	0.000707	± 2.5	PASS
	")	VL	TN	-0.04	-0.000025	± 2.5	PASS
16QAM	MCH	VN	TN	-1.80	-0.001040	± 2.5	PASS
<u> </u>		VH	TN	0.30	0.000173	± 2.5	PASS
		VL	TN	-5.35	-0.003066	± 2.5	PASS
	HCH	VN	TN	-5.11	-0.002927	± 2.5	PASS
		VH	TN	-5.31	-0.003041	± 2.5	PASS
			Tempe	erature			
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\mathbb{C}})$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
	0	VN	-30	1.90	0.001106	± 2.5	PASS
	N")	VN	-20	0.57	0.000333	± 2.5	PASS
		VN	-10	1.24	0.000724	± 2.5	PASS
		VN	0	1.39	0.000807	± 2.5	PASS
	LCH	VN	10	1.42	0.000823	± 2.5	PASS
		VN	20	1.20	0.000699	± 2.5	PASS
		VN	30	1.26	0.000732	± 2.5	PASS
		VN	40	1.52	0.000882	± 2.5	PASS
ODOK		VN	50	1.27	0.000740	± 2.5	PASS
QPSK		VN	-30	0.37	0.000215	± 2.5	PASS
		VN	-20	0.73	0.000421	± 2.5	PASS
	(0)	VN	-10	0.67	0.000388	± 2.5	PASS
		VN	0	-0.06	-0.000033	± 2.5	PASS
	MCH	VN	10	-0.57	-0.000330	± 2.5	PASS
		VN	20	0.23	0.000132	± 2.5	PASS
		VN	30	0.93	0.000537	± 2.5	PASS
		VN	40	-0.23	-0.000132	± 2.5	PASS
		VN	50	0.74	0.000429	± 2.5	PASS

Report No. : EED32I00251306 Page 300 of 306

кероп по.	. : EED3.	21002513	306	163	1	(a)	Page
		VN	-30	-3.63	-0.002082	± 2.5	PASS
		VN	-20	-3.66	-0.002099	± 2.5	PASS
		VN	-10	-2.78	-0.001590	± 2.5	PASS
	10	VN	0	-2.47	-0.001418	± 2.5	PASS
(6)	HCH	VN	10	-3.32	-0.001902	± 2.5	PASS
100	/	VN	20	-5.91	-0.003386	± 2.5	PASS
		VN	30	-5.25	-0.003009	± 2.5	PASS
		VN	40	-5.34	-0.003058	± 2.5	PASS
		VN	50	-4.52	-0.002590	± 2.5	PASS
-)		VN	-30	2.73	0.001589	± 2.5	PASS
/		VN	-20	-1.42	-0.000823	± 2.5	PASS
		VN	-10	-1.69	-0.000981	± 2.5	PASS
		VN	0	-1.62	-0.000940	± 2.5	PASS
1	LCH	VN	10	-1.39	-0.000807	± 2.5	PASS
(2)	(2)	VN	20	2.10	0.001223	± 2.5	PASS
100		VN	30	-2.17	-0.001264	± 2.5	PASS
		VN	40	-1.72	-0.000998	± 2.5	PASS
		VN	50	-1.43	-0.000832	± 2.5	PASS
		VN	-30	-0.70	-0.000405	± 2.5	PASS
1		VN	-20	0.03	0.000017	± 2.5	PASS
/		VN	-10	0.23	0.000132	± 2.5	PASS
		VN	0	0.50	0.000289	± 2.5	PASS
16QAM	MCH	VN	10	0.53	0.000306	± 2.5	PASS
-		VN	20	0.04	0.000025	± 2.5	PASS
(4		VN	30	0.46	0.000264	± 2.5	PASS
10	7	VN	40	-0.11	-0.000066	± 2.5	PASS
		VN	50	0.47	0.000272	± 2.5	PASS
Ī		VN	-30	-2.16	-0.001238	± 2.5	PASS
		VN	-20	-2.13	-0.001221	± 2.5	PASS
9)		VN	-10	-2.65	-0.001517	± 2.5	PASS
/		VN	0	-3.56	-0.002041	± 2.5	PASS
	HCH	VN	10	-2.68	-0.001533	± 2.5	PASS
		VN	20	-4.79	-0.002746	± 2.5	PASS
		VN	30	-5.18	-0.002968	± 2.5	PASS
	10	VN	40	-4.95	-0.002836	± 2.5	PASS
(C)	`)	VN	50	-5.35	-0.003066	± 2.5	PASS

Appendix G): Field strength of spurious radiation

Page 301 of 306

Receiver Setup	: Freque	ncy	Detector	RBW	VBW	Remark	
	0.009MHz-	30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1	IGHz	Peak	120kHz	300kHz	Peak]
	Above 1	GHz	Peak	1MHz	3MHz	Peak	
Measurement Procedure:	1. Scan up to 2. The technic antenna su actual ERP. Test procedure 1) The EUT was Anechoic Colength. moon frequency of the EUT was interference antenna towns. 3) The disturbation raising and 360° the turn measurement of the antenna towns. 4) Steps 1) towns and horizor 5) The transmathe antenna the antenna the antenna of the antenna of the actual transpolarized, the reading at the measured for the output the steps 6) and 9) Calculate processes of the EIRP (distinct the EIRP (distinct the EIRP) is the great the reading at the processes of the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the control of the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP). The radiation of the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP) is the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP) is the great the EIRP (distinct the EIRP) is the EIRP (distinct the EIRP) is the great the EIRP (distinct the EI	10th harmor que used to betitution my/EIRP emissions as below: as powered thamber. The dulation moof the transmass set 3 me exerceiving a wer. ance of the lowering from table. After the disturbation was appropriately polarization was appropriately was appropriately was appropriately was the disturbation was appropriately was appropriately with both the receive at the disturbation of the disturbation was appropriately with both the receive at the disturbation was appropriately with the disturbation of the test received at 7) were received at 7) were received at 7) were received at 7) were received at 7 and 10 an	Dic, find the margine, find the Spurious ethod. Substitution levels of the Andrews of the Substitution. It is a substitution of the Substitution o	ximum radia us Emission methodo ne EUT. d on a 1.5m ne transmitto as uring receit. GHz the dist was mount as maximized and low of the signal antenna was the antenna was the antenna was the antenna was the antenna was (dB) + anten and the substitution and the signal antenna was (dB) + anten and the signal antenna was the antenna wa	hight table er was exterior shall be ance is 1 m ance is 1 m and in was maximal the receive are wered to obal generator of for this seas then means then again (tenna gain) attion antenna tenna gain (tenna gain) attion antenna gain (tenna gain)	ency to measure at a 3 meter anded to its made tuned to the neter) away from portaining the imized, a field antenna in both and the neter of the transportation and the neter of the neter o	the mine the fully aximum e om the le-height blay by brough strength th vertical e center of a non-ontally um d until the s.
	12) Repeat abo		und the X axis res until all fred				
Limit:	Attenuated at le	•	480	-	(3)		(20
	(2019)				163		1000

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ C$

Test Data: **Above 1GHz QPSK**

/3		Band 4	19957 channel/BV	V1.4(lowes	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1115.673	149	5	-57.35	-13.00	-44.35	Pass	Н
1439.090	150	200	-56.42	-13.00	-43.42	Pass	H /
3316.617	150	36	-51.05	-13.00	-38.05	Pass	н 🕝
4760.776	156	78	-50.24	-13.00	-37.24	Pass	Н
6283.164	149	200	-45.71	-13.00	-32.71	Pass	Н
8063.403	149	151	-47.31	-13.00	-34.31	Pass	Н
1198.095	150	47	-56.92	-13.00	-43.92	Pass	V
3258.042	150	90	-51.93	-13.00	-38.93	Pass	V
3757.208	152	210	-49.93	-13.00	-36.93	Pass	V
5177.971	150	22	-50.27	-13.00	-37.27	Pass	V
6445.156	150	67	-46.73	-13.00	-33.73	Pass	V
8637.084	151	20	-47.46	-13.00	-34.46	Pass	V

		Band 4	20175 channel/BV	V1.4(middle	e channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1112.837	150	201	-57.19	-13.00	-44.19	Pass	Н
3249.760	151	20	-51.63	-13.00	-38.63	Pass	Н
3757.208	150	36	-50.05	-13.00	-37.05	Pass	H
4797.271	151	78	-50.51	-13.00	-37.51	Pass	н
6445.156	149	225	-45.94	-13.00	-32.94	Pass	Н
7981.717	149	56	-46.49	-13.00	-33.49	Pass	Н
1147.354	150	151	-56.95	-13.00	-43.95	Pass	V
3143.979	152	31	-50.89	-13.00	-37.89	Pass	V
3747.656	150	207	-50.00	-13.00	-37.00	Pass	V
4809.499	151	89	-50.28	-13.00	-37.28	Pass	V
6412.427	150	60	-45.60	-13.00	-32.60	Pass	V
8022.456	149	3	-46.49	-13.00	-33.49	Pass	V

		Band 4	20393 channel/BW	/1.4(highes	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1098.763	151	49	-57.54	-13.00	-44.54	Pass	Н
1573.189	151	215	-57.82	-13.00	-44.82	Pass	Н
3507.652	150	286	-44.94	-13.00	-31.94	Pass	H
5271.063	149	300	-42.52	-13.00	-29.52	Pass	Н (с.
6445.156	155	58	-46.69	-13.00	-33.69	Pass	Н
7941.185	152	300	-47.18	-13.00	-34.18	Pass	Н
1033.646	153	161	-57.68	-13.00	-44.68	Pass	V
1346.929	150	20	-57.72	-13.00	-44.72	Pass	V
3507.652	149	79	-48.42	-13.00	-35.42	Pass	V
5271.063	152	36	-41.05	-13.00	-28.05	Pass	V
6544.350	150	360	-45.96	-13.00	-32.96	Pass	V
7941.185	150	354	-47.20	-13.00	-34.20	Pass	V

		Band 4	19957 channel/BV	V1.4(lowest	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1195.049	151	120	-56.89	-13.00	-43.89	Pass	Н
3738.129	150	74	-50.12	-13.00	-37.12	Pass	Н
5271.063	150	85	-49.10	-13.00	-36.10	Pass	Н
6594.518	153	228	-45.71	-13.00	-32.71	Pass	H G
7920.996	150	30	-47.24	-13.00	-34.24	Pass	Н
9660.722	150	161	-47.01	-13.00	-34.01	Pass	Н
1082.109	149	20	-57.63	-13.00	-44.63	Pass	V
1326.513	151	100	-58.37	-13.00	-45.37	Pass	V
3308.185	150	78	-50.94	-13.00	-37.94	Pass	V
3747.656	151	360	-50.29	-13.00	-37.29	Pass	V
5257.662	152	43	-50.45	-13.00	-37.45	Pass	V
6251.257	150	336	-47.27	-13.00	-34.27	Pass	V

Page	304	of 306	
------	-----	--------	--

		Band 4	20175 channel/BV	V1.4(middle	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1112.837	150	55	-58.36	-13.00	-45.36	Pass	Н
1340.089	149	355	-57.46	-13.00	-44.46	Pass	Н
3291.385	152	151	-51.42	-13.00	-38.42	Pass	H
4772.910	150	24	-49.81	-13.00	-36.81	Pass	н (А
6412.427	150	20	-46.35	-13.00	-33.35	Pass	н
7900.858	149	11	-47.02	-13.00	-34.02	Pass	Н
1079.357	150	33	-57.10	-13.00	-44.10	Pass	V
1340.089	151	247	-57.46	-13.00	-44.46	Pass	V
3747.656	151	229	-49.27	-13.00	-36.27	Pass	V
4772.910	153	20	-49.81	-13.00	-36.81	Pass	V
6445.156	149	100	-45.27	-13.00	-32.27	Pass	V
8615.126	150	80	-46.08	-13.00	-33.08	Pass	V

		Band 4	20393 channel/BW	/1.4(highes	st channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1062.998	151	55	-56.92	-13.00	-43.92	Pass) Н
1357.254	149	360	-56.58	-13.00	-43.58	Pass	Н
3507.652	150	227	-46.47	-13.00	-33.47	Pass	Н
5271.063	152	10	-40.83	-13.00	-27.83	Pass	H /
6544.350	151	50	-45.66	-13.00	-32.66	Pass	H (C)
8996.121	149	99	-46.28	-13.00	-33.28	Pass	Н
1104.371	152	36	-57.33	-13.00	-44.33	Pass	V
1329.894	150	227	-58.16	-13.00	-45.16	Pass	V
3507.652	150	261	-47.07	-13.00	-34.07	Pass	V
5271.063	151	20	-40.44	-13.00	-27.44	Pass	V
6544.350	150	100	-46.11	-13.00	-33.11	Pass	V
7920.996	151	35	-46.85	-13.00	-33.85	Pass	V

Note:

- 1) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz are attenuated more than 20 dB below the applicable limit and not required to be reported, the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) Tested with all kind of bandwidth,RB Size and RB Offset, Found the 1.4MHz with full RB were the worst case; and then Only the worst case is recorded in the report.

Report No. : EED32100251306

PHOTOGRAPHS OF TEST SETUP

Page 305 of 306

Test model No.: BW-X07HD

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 306 of 306

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32I00251301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

