In Exercises 1 and 2, find the least-squares line y = f(x) = Ax + B for the data and calculate $E_2(f)$

1. (a)

x_k	y_k	$f(x_k)$
-2	1	1.2
-1	2	1.9
0	3	2.6
1	3	3.3
2	4	4.0

(b)

x_k	Уk	$f(x_k)$
- 6	7	7.0
-2	5	4.6
0	3	3.4
2	2	2.2
6	0	-0.2

分别计算 $\sum_{k=1}^N x_k^2$, $\sum_{k=1}^N x_k$, $\sum_{k=1}^N x_k y_k$,N, $\sum_{k=1}^N y_k$:

```
%a1.m
X = [-2; -1; 0; 1; 2];
Y = [1; 2; 3; 3; 4];
F = [1.2; 1.9; 2.6; 3.3; 4.0];
sum_X_2 = sum(X.^2)
sum_X = sum(X)
sum_XY = sum(X .* Y)
N = size(X, 1)
sum_Y = sum(Y)
```

得:

```
>> a1

sum_X_2 =

10

sum_X =

0

sum_XY =

7

N =

5

sum_Y =

13
```

求解方程组:

$$egin{cases} \left\{ (\sum_{k=1}^{N} x_k^2) A + (\sum_{k=1}^{N} x_k) B = \sum_{k=1}^{N} x_k y_k \ (\sum_{k=1}^{N} x_k) A + N B = \sum_{k=1}^{N} y_k \end{cases}$$

代入

$$egin{cases} \sum_{k=1}^{N} x_k^2 = sum_X_2 \ \sum_{k=1}^{N} x_k = sum_X \ \sum_{k=1}^{N} x_k y_k = sum_XY \ N = N \ \sum_{k=1}^{N} y_k = sum_Y \end{cases}$$

得:

$$\begin{cases} 10A = 7 \\ 5B = 13 \end{cases}$$

得:

$$\begin{cases} A = 0.7 \\ B = 2.6 \end{cases}$$

求
$$E_2(f) = (rac{1}{N}\sum_{k=1}^N |f(x_k) - y_k|^2)^{1/2}$$
 :

$$E2 = sqrt(1 / N * sum((F - Y).^2))$$

得:

E2 =

0.2449

所以, $E_2(f) = 0.2449$

8. Find the power fits $y = Ax^2$ and $y = Bx^3$ for the following data and use $E_2(f)$ to determine which curve fits best.

(a)	x_k	Уk
	2.0	5.1
	2.3	7.5
	2.6	10.6
	2.9	14.4
	3.2	19.0

(b)	x_k	Уk		
	2.0	5.9		
	2.3	8.3		
	2.6	10.7		
	2.9	13.7		
	3.2	17.0		

分别计算 $A=(\sum_{k=1}^N \overline{x_k^2 y_k})/(\sum_{k=1}^N x_k^{2\cdot 2})$, $B=(\sum_{k=1}^N x_k^3 y_k)/(\sum_{k=1}^N x_k^{2\cdot 3})$

```
%a8.m

X = [2.0; 2.3; 2.6; 2.9; 3.2];

Y = [5.1; 7.5; 10.6; 14.4; 19.0];

A = sum(X.^2 .* Y) / sum(X.^(2 * 2))

B = sum(X.^3 .* Y) / sum(X.^(2 * 3))
```

>> a8

A =

1.6866

В :

0.5902

所以, A = 1.6866, B = 0.5902

计算E2:

```
E2A = sqrt(1 / N * sum((A .* X.^2 - Y).^2))

E2B = sqrt(1 / N * sum((B .* X.^3 - Y).^2))
```

E2A =

1.2971

E2B =

0.2870

(a)

%a2.m

X = [-2; -1; 0; 1; 2];

Y = [-5.8; 1.1; 3.8; 3.3; -1.5];

所以M=2时,E2=1.2971,M=3时,E2=0.2870

2. Find the least-squares parabola $f(x) = Ax^2 + Bx + C$ for each set of data.

) :			(b)			(c)		
•)	x_k	y_k		x_k	y_k		x_k	Уk
	-2	-5.8		-2	2.8		-2	10
	-1	1.1		-1	2.1		-1	1
	0	3.8		0	3.25		0	0
	1	3.3		1	6.0		1	2
	2	-1.5		2	11.5		2	9

分别计算 $\sum_{k=1}^N x_k^4$, $\sum_{k=1}^N x_k^3$, $\sum_{k=1}^N x_k^2$, $\sum_{k=1}^N y_k x_k^2$, $\sum_{k=1}^N x_k$, $\sum_{k=1}^N y_k x_k$,N, $\sum_{k=1}^N y_k$ 。

```
sum_X_4 = sum(X.^4)
sum_X_3 = sum(X.^3)
sum_X_2 = sum(X.^2)
sum_{Y_X_2} = sum(Y_* * X_*^2)
sum_X = sum(X)
sum_Y_X = sum(Y .* X)
N = size(X, 1)
sum_Y = sum(Y)
>> a2
sum_X_4 =
    34
sum_X_3 =
     0
sum_X_2 =
    10
sum_Y_X_2 =
  -24.8000
sum_X =
     0
sum_Y_X =
   10.8000
N =
     5
sum_Y =
```

高斯消元法解方程组:

0.9000

```
%solve.m
function [solution] = solve(UV)
    solution = zeros(size(UV, 1), 1);
    for i = 1:size(UV, 1) - 1
        for j = i + 1:size(UV, 1)
            UV(j, :) = UV(j, :) - UV(j, i) / UV(i, i) * UV(i, :);
        end
    end
    for i = size(UV, 1):-1:1
        UV(i, :) = UV(i, :) / UV(i, i);
        solution(i) = UV(i, size(UV, 2));
        for j = 1:i - 1
            UV(j, :) = UV(j, :) - UV(j, i) / UV(i, i) * UV(i, :);
        end
    end
end
```

```
solve([sum_X_4, sum_X_3, sum_X_2, sum_Y_X_2;
    sum_X_3, sum_X_2, sum_X, sum_Y_X;
    sum_X_2, sum_X, N, sum_Y])
```

```
ans =
-1.9000
1.0800
3.9800
```

所以A = -1.9, B = 1.08, C = 3.98

- **3.** For the given set of data, find the least-squares curve:
 - (a) $f(x) = Ce^{Ax}$, by using the change of variables X = x, $Y = \ln(y)$, and $C = e^{B}$, from Table 5.6, to linearize the data points.
 - (b) $f(x) = Cx^A$, by using the change of variables $X = \ln(x)$, $Y = \ln(y)$, and $C = e^B$, from Table 5.6, to linearize the data points.
 - (c) Use $E_2(f)$ to determine which curve gives the best fit.

x_k	Уk
1	0.6
2	1.9
3	4.3
4	7.6
5	12.6

因为 $y=Ce^{Ax}$ 带入X=x, Y=ln(y), $C=e^{B}$ 得, Y=AX+B

分别计算 $\sum_{k=1}^{N}X_k^2$, $\sum_{k=1}^{N}X_k$, $\sum_{k=1}^{N}X_kY_k$, N, $\sum_{k=1}^{N}Y_k$, 使用高斯消元法求解方程组:

```
x = [1; 2; 3; 4; 5];
y = [0.6; 1.9; 4.3; 7.6; 12.6];
X = x;
Y = log(y);
sum_X_2 = sum(X.^2);
sum_X = sum(X);
sum_XY = sum(X .* Y);
N = size(X, 1);
sum_Y = sum(Y);
[A; B] = solve([sum_X_2, sum_X, sum_XY; sum_X, N, sum_Y])
```

.

>> a3

0.7475

B =

-1.0123

所以A = 0.7475,B = 1.2303 计算C:

C =

0.3634

所以 $f(x) = 0.3634e^{0.7475x}$