Assignment 1: Linear Algebra and Probability

Submission: Tueday August 16th Maximum 2 students per group

Prof. Fabio A. González

Machine Learning - 2011-II

Maestría en Ing. de Sistemas y Computación

- 1. Let $D = \{d_1, \ldots, d_n\}$ be a set of documents and $T = \{t_1, \ldots, t_m\}$ a set of terms (words). Let $TD = (TD_{i,j})_{i=1,\ldots m,j=1,\ldots n}$ be a matrix such that $TD_{i,j}$ corresponds to the number of times the term t_i appears in the document d_j . Assume a process where a document d_j is randomly choosen with uniform probability and then a term t_i , present in d_j , is randomly choosen with a probability proportional to the frequency of t_i in d_j .
 - (a) How do you transform the matrix TD to obtain a matrix P(T, D), such that $P(T, D)_{i,j} = P(t_i, d_j)$ (the joint probability of term t_i and document d_j).
 - (b) How do you obtain the P(T|D) matrix?
 - (c) How do you obtain the P(D|T) matrix?
- 2. Let l_i be the length, number of characters, of term t_i , and let $L = (l_1, \ldots, l_m)$ be a column vector.
 - (a) Calculate E[l], the expected value of the random variable l corresponding to the length of a randomly choosen term.
 - (b) Calculate Var(l), the variance of l.
 - (c) Show that $Var(al + b) = a^2 Var(l)$, where a and b are arbitrary constants.
- 3. Find an expression for P(T|D) that exclusively uses P(D|T), P(T,D) and, optionally, constant matrices/vectors.
- 4. Find an expression for the matrix $COV = (Cov(t_i, t_j))_{i,j=1...m}$, the covariance of the random variables corresponding to terms.
- 5. (optional) What is the meaning of the Eigenvector of *COV* corresponding to the largest Eigenvalue?

Note: In all the cases use standard matrix and scalar operations: transposition, matrix multiplication (*), matrix elementwise operations (+, -, .*, ./), matrix-scalar operations, etc.