Introduction

Pau-Choo Chung (Julia)

Electrical Engineering Department of National Cheng Kung University

Electrical Engineering Department of National Cheng Kung University

AlexNet

- 5 convolutional layers and 2 fully connected layers
- Max pooling layer after first, second and fifth layers
- Use ReLU as activation function

- 1.3 million high-resolution images in the LSVRC-2010(ImageNet Large Scale Visual Recognition Competition)
- GPU implementation of convolutional nets

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Source: ImageNet Classification with Deep Convolutional Neural Networks (NIPS 2012)

VGG

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224×224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
	FC-4096						
	FC-4096						
FC-1000							
soft-max							

11, 13, 16 and 19 layers implementation

3*3 and 1*1 kernel sizes for deep model

Using smaller masks
The first using 1*1 kernel size

Simplifying networks to afford deeper

Table 2: Number of parameters (in millions).

rable 2. Number of parameters (in minions).							
Network	A,A-LRN	В	С	D	E		
Number of parameters	133	133	134	138	144	ĺ	

Source: Very Deep Convolutional Networks for Large-Scale Image Recognition (ICLR 2014)

GoogleNet

- Inception
- compute various convolution kernel sizes in same network
- 1*1 convolutions for reducing the number of maps

Source: Going deeper with convolutions (CVPR 2015)

Object detection (Yolo V2)

Segmentation

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

Learning approaches

- Supervised : need labeled ground truth
- Unsupervised: no labels
- Weakly supervised:
 - Incomplete
 - Inexact
 - inaccurate

Perceptron

$$v = \sum_{i=0}^{m} x_i w_i = \vec{w}^T(n) \vec{x}(n)$$
 $y = f(v)$
 $f(v) : non - linear activation function$

$$y = f(v)$$

Multi-layer Perceptron

Gradient-Decent

設目前 w = w(1),請將w加一值

使得 E(w(2)) < E(w(1))

其中
$$w(2) = w(1)$$
 + 此值(Δw)

$$\Rightarrow E'(w(1))$$
 為 $E(\cdot)$ 在 $w(1)$ 之微分

由圖知 E'(w(1)) < 0, 但明顯地 $\Delta w > 0$

因此
$$\Delta w = -\eta E'(w(1)) = -\eta \frac{\partial f(w)}{\partial w}\Big|_{w=w(1)}$$

perceptron

Given
$$E = \sum_{k=1}^{\phi} (e_k(n))^2 >= 0$$

當pattern
$$\vec{x}(n)$$
 代入

若
$$d(n) \neq y(n)$$

→希望改
$$\vec{w}$$
 使 $E(n)$ 小

$$\Delta w = -\eta \frac{\partial E(n)}{\partial w} = +\eta [d(n) - y(n)] \vec{x}(n)$$
 若 $d > 0$ 則 $\Delta w = \eta_1 \vec{x}(n)$ 若 $d < 0$ 則 $\Delta w = -\eta_1 \vec{x}(n)$

Summary

For every pattern

$$\vec{w}^T \vec{x} > 0 \quad \forall \vec{x} \in e_1$$

$$\vec{w}^T \vec{x} < 0 \quad \forall \vec{x} \in e_2$$

- Adapting weights:
 - 1. If correctly classified

$$\vec{w}(n+1) = \vec{w}(n)$$
 if $\vec{w}^T \vec{x} > 0$ and $\vec{x} \in e_1$
 $\vec{w}(n+1) = \vec{w}(n)$ if $\vec{w}^T \vec{x} < 0$ and $\vec{x} \in e_2$

2. If incorrectly classified (also called Hebbian learning)

$$\vec{w}(n+1) = \vec{w}(n) - \eta(n)\vec{x}(n) \quad \text{if} \quad \vec{w}^T \vec{x} > 0 \text{ and } \vec{x} \in \underline{e_2}$$

$$\vec{w}(n+1) = \vec{w}(n) + \eta(n)\vec{x}(n) \quad \text{if} \quad \vec{w}^T \vec{x} < 0 \text{ and } \vec{x} \in \underline{e_1}$$

Summary of Learning

- I. Initialize the weight w(0)=0
- II. at t=n apply the training patterns
 III. Compute the actual responses $y(n) = sign[\vec{w}^T(n)\vec{x}(n)]$

$$y(n) = sign[\vec{w}^T(n)\vec{x}(n)]$$

IV. Update the weight

$$\vec{w}(n+1) = \vec{w}(n) + \eta [d(n) - y(n)] \vec{x}(n)$$

$$\therefore d(n) = \begin{cases} 1 & \text{if } \vec{x} \in e_1 \\ -1 & \text{if } \vec{x} \in e_2 \end{cases}$$

$$\Rightarrow \text{if d(n)} \neq \text{y(n), then} \quad \vec{w}(n+1) = \begin{cases} \vec{w}(n) + \eta \ \vec{x}(n) & \text{if } \vec{x} \in e_1 \\ \vec{w}(n) - \eta \ \vec{x}(n) & \text{if } \vec{x} \in e_2 \end{cases}$$

V. Increment n, go back to II

Learning Rate Annealing Schedules

- 1. $\eta = \eta_0$ for all n
- 2. $\eta(n) = \frac{c}{n}$ stochastic approximation schedule

3.
$$\eta(n) = \frac{\eta_0}{1 + (n/\tau)}$$
 Darken & Moody (1992)

