Assignment 16

Sri Harsha CH

Abstract—This document explains the conditions for two vector spaces to be isomorphic.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment16 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment16

1 Problem

Let V and W be finite-dimensional vector spaces over the field F. Prove that V and W are isomorphic if and only if $\dim V = \dim W$

2 Explanation

If **V** and **W** are vector spaces over the field **F**, any one to one linear transformation T of **V** onto **W** is called an isomorphism of **V** onto **W**.

Let $T: V \to W$ be an isomorphism and let $\{v_1, v_2, \dots, v_n\}$ be a basis for V. Since it is isomorphic we know that T is one to one and onto. We need to show that $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for W so that $\dim V = n = \dim W$.

Therefore from equation (2.0.4) and (2.0.7) in Table 0, $\{T(\mathbf{v_1}), T(\mathbf{v_2}), \cdots, T(\mathbf{v_n})\}$ are linearly independent and span \mathbf{W} .

$$\implies$$
 dim $\mathbf{W} = \mathbf{n} = \text{dim } \mathbf{V}$

3 SOLUTION

V and W are isomorphic if and only if dim $V = \dim W$

1

	$V = \{v_1, v_2, \dots, v_n\}$ $W = \{T(v_1), T(v_2), \dots, T(v_n)\}$
Property Used	Derivation
T is one-one	Linear combination of vectors in W
	$\sum_{k=1}^{n} \alpha_k T(\mathbf{v_k}) = 0 \tag{2.0.1}$
	$\sum_{k=1}^{n} T(\alpha_k \mathbf{v_k}) = 0 $ (2.0.2)
	$\implies \sum_{k=1}^{n} \alpha_k \mathbf{v_k} = 0 \tag{2.0.3}$
	$\implies \alpha_1 = \alpha_2 = \dots = \alpha_n = 0 \tag{2.0.4}$
	From equation (2.0.1) and (2.0.4), the set of vectors $\{T(\mathbf{v_1}), T(\mathbf{v_2}), \cdots, T(\mathbf{v_n})\}$ are linearly independent
T is onto	For any $y \in W$ there exists an $x \in V$ such that $T(x) = y$.
	$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{v_k} \tag{2.0.5}$
	$T(\mathbf{x}) = T(\sum_{k=1}^{n} \alpha_k \mathbf{v_k}) = \mathbf{y} $ (2.0.6)
	$\sum_{k=1}^{n} \alpha_k T(\mathbf{v_k}) = \mathbf{y} $ (2.0.7)
	From equation (2.0.7), any vector in W can be represented as linear combination of $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$. That is it spans W .

TABLE 0: Derivation