2.23

Calcul des bissectrices issues de A

La formule $\frac{4x+3y+24}{\sqrt{4^2+3^2}} = \pm \frac{3x+4y-12}{\sqrt{3^2+4^2}}$ implique

1)
$$4x + 3y + 24 = 3x + 4y - 12$$
, d'où l'on tire $(b_{A,e}): x - y + 36 = 0$;

2)
$$4x + 3y + 24 = -3x - 4y + 12$$
, d'où suit $(b_{A,i}) : 7x + 7y + 12 = 0$

Calcul des bissectrices issues de B

La formule $\frac{3x-4y}{\sqrt{3^2+(-4)^2}} = \pm \frac{3x+4y-12}{\sqrt{3^2+4^2}}$ délivre

1)
$$3x-4y=3x+4y-12$$
 donne $-8y+12=0$, c'est-à-dire $(b_{\mathrm{B},i}):2y-3=0$;

2)
$$3x - 4y = -3x - 4y + 12$$
 fournit $6x - 12 = 0$, soit $(b_{B,e}): x - 2 = 0$.

Calcul des bissectrices issues de C

La formule $\frac{3x-4y}{\sqrt{3^2+(-4)^2}} = \pm \frac{4x+3y+24}{\sqrt{4^2+3^2}}$ conduit à

1)
$$3x - 4y = 4x + 3y + 24$$
, d'où suit $(b_{C,e}): x + 7y + 24 = 0$;

2)
$$3x - 4y = -4x - 3y - 24$$
, si bien que $(b_{C,i}) : 7x - y + 24 = 0$.

Calcul de l'intersection $b_{A,e} \cap b_{B,i}$

$$\begin{cases} x - y + 36 = 0 \\ 2y - 3 = 0 \end{cases}$$

La seconde équation donne $y=\frac{3}{2}$ que l'on remplace dans la première : $x-\frac{3}{2}+36=0$ fournit $x=-\frac{69}{2}$.

Le point d'intersection des bissectrices $b_{A,e}$ et $b_{B,i}$ est donc $I(-\frac{69}{2};\frac{3}{2})$.

Pour montrer que les trois droites $b_{\mathrm{A},e},\,b_{\mathrm{B},i}$ et $b_{\mathrm{C},e}$ sont concourantes, il suffit de vérifier que I $\in b_{\mathrm{C},e}:-\frac{69}{2}+7\cdot\frac{3}{2}+24=0$.