Lucas Abdalah

Professors: André Lima e Henrique Goulart

Table of Contents

- Problem 1
- Problem 2
- Problem 3

Problem 1

For randomly generated ${\bf A}$ and ${\bf B} \in \mathbb{C}^{N \times N}$, create an algorithm to compute the Hadamard Product ${\bf A} \odot {\bf B}$. Then, compare the run time of your algorithm with the operator A.*B of the software Octave/Matlab $^{\textcircled{B}}$. Plot the run time curve as a function of the number of rows/columns $N \in \{2,4,8,16,32,64,128\}$.

Results

Simulation setup

- 500 Monte Carlo Runs;
- ullet Each Monte Carlo iteration uses a new matrix initialization from a Normal distribution $\mathcal{N}(0,\,1)$;
- Compute the mean for each value, for $N=\{2,4,6,8,16,32,64,128\}$.

Discussion

We can see that for all values of N, Matlab's method outperforms the Author's. For small values of N, the gap between them, \$6 \times 10^{-5}\\$s vs \$6 \times 10^{-6}\\$s, approximately ten times faster. However as the N increases, that performance gap becomes more subtle.

Problem 1 script

Problem 2

For randomly generated \mathbf{A} and $\mathbf{B} \in \mathbb{C}^{N \times N}$, create an algorithm to compute the Kronecker Product $\mathbf{A} \otimes \mathbf{B}$. Then, compare the run time of your algorithm with the operator kron(A, B) of the software Octave/Matlab $^{\textcircled{B}}$. Plot the run time curve as a function of the number of rows/columns $N \in \{2,4,8,16,32,64,128\}$.

Results

Simulation setup

- 500 Monte Carlo Runs;
- Each Monte Carlo iteration uses a new matrix initialization from a Normal distribution $\mathcal{N}(0,\,1)$;
- Compute the mean for each value, for $N=\{2,4,6,8,16,32,64,128\}$.

Discussion

We can see that for all values of N, Matlab's method outperforms the author's. There's a narrow performance gap between them, up to three times faster. The difference varies very little regardless the value of N increase.

Problem 2 script

Problem 3

For randomly generated \mathbf{A} and $\mathbf{B} \in \mathbb{C}^{N \times N}$, create an algorithm to compute the Khatri-Rao Product $\mathbf{A} \diamond \mathbf{B}$ according with the following prototype function:

$$R=kr(A,B).$$

Results

Simulation setup

- 500 Monte Carlo Runs;
- ullet Each Monte Carlo iteration uses a new matrix initialization from a Normal distribution $\mathcal{N}(0,\,1)$;
- Compute the mean for each value, for $N=\{2,4,6,8,16,32,64,128\}.$

Discussion

The method developed by the author present similar behavior to Kronnecker product and a predictable trend for all values of N.

Problem 3 script

