Chi-square Tests and Measures of Association

Dr Tom Ilvento

Department of Food and Resource Economics

Measures of Association

- Measures of Association summary measures that tell us the presence, direction, and strength of a relationship between two or more variables
- Key criteria of a measure of association
 - What is the range?
 - Is it bounded or either or both ends?
 - Does it show direction?
 - Is it symmetrical?
 - Is it invariant to scale?
 - What are the underlying assumptions?
 - How do I interpret it at the extremes and in the middle

Overview

- This lecture will continue the discussion of Chisquares tests for table data
- We will discuss some Measures of Association relevant to table data
- We will look at more complex tables

2

Chi-square as a Measure of Association

- By now you might have realized that the size of the test statistic gives an immediate sense of a finding – something greater than 2 is significant; something very large is very significant!
- If we think of the numerator of the test statistics as the "effect" (the difference from the null value, or the difference between means), the effect has the most impact on the size of the test statistic.
- The sample size also has an effect by reducing the denominator of the test statistic, thereby making is smaller
- With the chi-square test, the sample size has a very large impact on the size of chi-square
- Thus we don't want to use χ^2 as a measure of association

Look what happens to χ²* when n doubles

 x2* doubles when n doubles, but conditional probabilities and odds ratios would not change

DOUBLED Odds Ratio

 Odds Ratio
 Lower 95%
 Upper 95%

 7.664052
 4.764336
 12.32862

=

5

7

Measures for a 2x2 Table: Odds Ratio

- Odds Ratio θ the ratio of two odds. It is always positive and has no upper bound.
- The formula to the right is a shorthand way and is algebraically identical to the ratio of the two odds
- A value greater than one means the probability for the first group is larger than the probability for the second group
- θ is not a symmetric measure of association - it matters what order.
- But, in a 2x2 Table there is really only one unique odds ratio, but the result is different depending on how the table is organized
- In a general rxc table there may be many odds ratios

$$\theta = \frac{\left(c_{11} * c_{22}\right)}{\left(c_{21} * c_{12}\right)}$$

$$\theta = \frac{(41*143)}{(15*51)} = 7.664$$

The E2FI group is 7.7 times more likely to altered cells compared to the Control group **Table Measures of Association**

General Measures

- x²∗ and cell contributions
- Conditional probabilities

• Specific to a 2x2 Table

- Odds Ratio
- Yule's Q
- Rho
- Adjust to x²*
 - Cramer's V
 - Phi Φ
 - Contingency Coefficient P

		Altered	Not	
		Aiterea	Altered	Row Total
E2	FI	41	51	92
Cor	trol	15	143	158
C	olumn Total	56	194	250

6

Measures for a 2x2 Table: Yules' Q

- Yule's Q variation of the odds ratio for a 2x2 table. It shows direction and strength of a relationship.
- It is like a correlation coefficient, a positive Q means more of variable 1 is associated with more of variable 2.
- Yule's Q bounds the odds ratio to -1 to 1.
 - A value close to 1 indicates a strong positive relationship between the two variables:
 - a value of -1 show a strong negative relationship.
- A value of zero means no relationship
- Another way to express Q = $(\theta-1)/(\theta+1)$
- It is a symmetric measure of association but the sign will change

$$Q = \frac{\left[\left(c_{11} * c_{22} - c_{12} * c_{21} \right) \right]}{\left[\left(c_{11} * c_{22} + c_{12} * c_{21} \right) \right]}$$

$$Q = \frac{\left[\left(41 * 143 - 15 * 51 \right) \right]}{\left[\left(41 * 143 + 15 * 51 \right) \right]} = .769$$

Moving from the E2FI group to the Control group is strongly related to having more Un-Altered cells

8

Measures for a 2x2 Table: Rho, the Correlation Coefficient

- Rho ρ (correlation coefficient) a measure of association that also shows strength and direction.
- Like Yule's Q, it ranges from -1 to 1.
- It assumes that the value in row 2 and column 2 are "more"
- The formula is for a 2x2 table. Notice the denominator is based on row and column marginals: c_{1*} is the row 1 marginal
- Thus the difference in the numerator is made relative to the square root of the product of the marginals in the table
- It is more complicated to calculate in the general rxc table and should only be used when the variables are ordinal.

$$\rho = \frac{\left[\left(c_{11} * c_{22} - c_{12} * c_{21}\right)\right]}{\sqrt{\left(c_{1*} * c_{2*} * c_{*2} * c_{*1}\right)}}$$

$$\rho = \frac{\left[\left(41*143 - 15*51 \right) \right]}{\sqrt{\left(92*158*194*56 \right)}} = .406$$

Moving from the E2FI group to the Control group is positively related to having more Un-Altered cells

9

П

New Example

- Smoking cessestion data
- Let's analyze it using chi-square and some measures of association

		Subject Still Smoking		
		YES	NO	Row Margins
Subject	Nicotine Patch	64	56	120
Treatment	Placebo	96	24	120
	Column Margins	160	80	240

Table Measures of Association that adjust χ^2 *

- Cramer's V a measure of association that ranges from 0 to 1.
 A value closer to 1 indicates stronger association between the two variables.
- Phi another measure based on Chi-square. It ranges from zero to one, although its upper bound may not always be 1 (depending upon marginal distributions).
- Contingency Coefficient Denoted as P, the contingency coefficient is another measure based on chisquare, with a range of zero to one.

$$V = \sqrt{\frac{\chi^2}{n * \min(r - 1, c - 1)}} \quad \mathbf{V} = .406$$

$$\phi = \sqrt{\frac{\chi^2}{n}} \qquad \qquad \phi = .406$$

$$P = \sqrt{\frac{\chi^2}{\left(\chi^2 + n\right)}} \qquad \mathbf{P} = .376$$

10

Smoking Data

Notice that I expressed the table as Not Smoking to Smoking

- χ^2 = 19.20, p < .0001
 - V = SQRT(19.20/240*1) = .283
 - $\phi = SQRT(19.20/240) = .283$
 - P = SQRT(19.20/(19.20+240)) = .272
- Odds Ratio is 3.5: nicotine patch users 3.5 times more likely to not smoke after 8 weeks
 - Test for $ln(\theta)$; $z^* = 4.28$, p < .001
- Yules Q = (3.5-1)/3.5+1 = .5565
- $\rho = (56*96 24*64)/SQRT(80*120*160*120) = .283$
- There is a significant moderate relationship between using a nicotine patch and not smoking after 8 weeks

CHISQ.xls

• I have an Excel file that solves for 2x2 tables - Chisq.xls

Observed Fred	uencies					
		Smoking	Not Smoking	Row Total		
	Nicotine	64	56	120		
	Placebo	96	24	120		
Column Total		160	80	240		
Expected Freq	uencies l	Jnder Inde	pendence			
		Smoking	Not Smoking	Row Total		
Nicotine		80.000	40.000	120.0		Nicotine
Placebo		80.000	40.000	120.0		Placebo
Column Total		160.0	80.0	240.0		
Chi Square Te	st	19,200				
d.f.		1				
p-value		0.000	Conclusion: I	Reject Independe	ence	
Critical Value		3.841				
G Likihood Ra	tio	19.609				
Odds of						Inverse
	Nicotine	Smoking	to	Not Smoking	1.143	0.875
	Placebo	Smoking	to	Not Smoking	4.000	0.250
Odds Ratio					0.286	3.500
Log Odds					-1.253	1.253
Yules Q		-0.556				
Rho		-0.283				
Phi		0.080	0.283			
Kramers V		0.0800	0.283			
Contingenecy	Coef	0.0741	0.272			

JMP Output

• The degrees of freedom is $(3-1)^*(3-1) = 4$ d.f.

• χ^2 = 282.506, p < .0001

- The Critical value of χ^2 for $\alpha = .01$ and 4 d.f. is 13.277
- Our value is certainly further than that in the tail of the distribution
- V = .38; $\varphi = .54$; P = .472
- What's going on?
 - 70.9% of Republicans Approve
 - 9.87% of Democrats Approve
 - 27.08% of Independents Approve

C	ontingency	Table			
			APPROVAL		
	Count Row % Expected Cell Chi^2	Approve	Disapprove	Not Sure	
	Democrat	31 9.87 107.648 54.5753	274 87.26 189.422 37.7644	16.9298	314
PARTY	Independent	104 27.08 131.646 5.8057	253 65.89 231.65 1.9677	27 7.03 20.704 1.9146	384
	Rebublican	202 70.88 97.706 111.326	171.928	5.96 15.3662	285
		337	593		983
Te	ests				
	N	DF -L	ogLike RS	quare (U)	
	983		.06894	0.1804	
т.	st	ChiSquai	re Prob>Cl		
Lik	kelihood Ratio arson		38 <.00	001*	

13

What about a Larger Table?

- 3x3 table: Do you approve or disapprove of the way George W. Bush is handling his job as president? Broken down by party affiliation.
- How many degrees of freedom?

	Approve	Disapprove	Unsure	
Rebublican	202	66	17	285
Democrat	31	274	9	314
Independent	104	253	27	384
	337	593	53	983

The approach is the same:

- I. Generate expected frequencies under a Model of Independence
- 2. Calculate chi-square to test if the association is due to chance
- 3. If you can reject the Null Hypothesis, investigate further to understand the nature of the relationships

14

Adding other variables to the analysis

- It is possible to break down our table by a third or even fourth variable
- Example: who does the housework, men or women?
 - We start with a breakdown of how much housework by men and women
 - Then we break this table down by a third variable, whether they are married or not
- This type of analysis can be sensitive to the sample size
 - Let n = 400
 - For a 4x2 table, we would have an average of 400/8 = 50.0 per cell (though the actual distribution might be different)
 - If we add a third variable, which has 2 levels, we now need to fill 16 cells, 400/16 = 25.0

16

What about empty cells?

- Here's some data from a survey of students in the College of Agriculture and Natural Resources
- The focus was on student evaluations of their advisors, which tend to be positive
- JMP warns that 20% of cells have expected counts less than 5
- We can see that few of the students Strongly disagreed that their advisor "knows me," and few rated their advisor as "poor."
- One strategy is to collapse the data across some categories

C	ontingency Tal	ole					
				Overall			
	Count Row % Expected	Excellent	Good	Neutral	Fair	Poor	
e	Strongly Agree	94 64.38 63.61		4.11	7 4.79 12.722		146
	Agree	10 18.87 23.0913	45.28	20.75		3.77 3.29876	53
	Neutral	5.56 7.84232				16.67 1.12033	18
2	Disagree	0.00 6.09959				21.43 0.87137	14
	Strongly Disagree	0.00 4.35685		2 20.00 1.12033			10
		105	73	27	21	15	241
Т	ests						
	N DF 241 16		Like RSc 4480	o.2040			
il	est C kelihood Ratio arson	hiSquare 133.209 157.249	Prob>Ch <.00 <.00	01°			
	rning: 20% of cells Square suspect.	have expe	ected coun	t less than	5,		

17

Summary

- We established a way to test for a relationship in categorical (or ordinal) data in tables using the chisquare goodness of fitness test
- It is based on a model of independence as if there is no relationship between the two variables
- Once we establish a relationship, we can move to explore the exact nature of that relationship with various measures of association
- The chi-square test is a very general test used in many ways in statistics
- There are many other ways in which modeling can be done in contingency tables

18