

201635820 신민오 201635831 이민수 201635840 이정명

Objective -Brief description

Data

- Curation
- Inspection
- Preprocesssing
- Analysis
- Evaluation

Among the mortality rates by cause in Korea, stroke is second only to cancer, and it is 70.3 per 100,000 population. This accounts for 13.9% of all deaths.

We try to identify the cause and prevent stroke through data analysis.

Source of data citation

https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

Data format

```
smoking_status stroke
              Male
                                    formerly smoked
            Female 61.0 ...
                                      never smoked
              Male 80.0 ...
                                      never smoked
            Female 49.0 ... 34.4
                                            smokes
            Female 79.0 ...
      1665
                                      never smoked
5105
            Female 80.0 ...
                                      never smoked
            Female 81.0 ... 40.0
                                      never smoked
            Female 35.0 ... 30.6
                                      never smoked
     37544
              Male 51.0 ... 25.6 formerly smoked
     44679 Female 44.0 ... 26.2
                                           Unknown
[5110 rows x 12 columns]
```

Category

Data.head()

```
bmi
                                       smoking_status stroke
          gender
      id
                    age
    9046
            Male
                   67.0
                               36.6
                                      formerly smoked
0
   51676
          Female
                   61.0
                                NaN
                                         never smoked
                               32.5
   31112
            Male
                   80.0
                                         never smoked
   60182
          Female
                   49.0
                               34.4
                                               smokes
    1665
          Female
                   79.0
                               24.0
                                         never smoked
```

Data.describe()

```
id
                                                            stroke
                                                  bmi
                               age
        5110.000000
                                         4909.000000
                      5110.000000
                                                       5110.000000
count
                        43.226614
                                                          0.048728
       36517.829354
                                           28.893237
mean
       21161.721625
                        22.612647
                                            7.854067
                                                          0.215320
std
min
          67.000000
                         0.080000
                                           10.300000
                                                          0.000000
       17741.250000
25%
                        25.000000
                                           23.500000
                                                          0.000000
50%
       36932.000000
                        45.000000
                                           28.100000
                                                          0.000000
75%
       54682.000000
                        61.000000
                                           33.100000
                                                          0.000000
       72940.000000
                        82.000000
                                           97.600000
                                                          1.000000
max
```


Data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):
 #
    Column
                      Non-Null Count Dtype
                      5110 non-null int64
 0
                    5110 non-null object
    gender
                                     float64
 2
    age
                     5110 non-null
    hypertension
                     5110 non-null
                                     int64
    heart_disease
                     5110 non-null
                                     int64
    ever_married
                     5110 non-null
                                     object
 6
    work_type
                   5110 non-null
                                     object
    Residence_type
                    5110 non-null
                                     object
    avg_glucose_level 5110 non-null float64
 8
    bmi
                                     float64
                      4909 non-null
    smoking_status
                     5110 non-null
                                     object
10
11
    stroke
                      5110 non-null
                                     int64
dtypes: float64(3), int64(4), object(5)
memory usage: 479.2+ KB
```

Data.isNull()

id	0
gender	0
age	0
hypertension	0
heart_disease	0
ever_married	0
work_type	0
Residence_type	0
avg_glucose_level	0
bmi	201
smoking_status	0
stroke	0
dtype: int64	

age	hypertens	heart_dise	ever_marr	work_type	Residence	avg_gluco	bmi	smoking_stroke	
67	0	1	Yes	Private	Urban	228.69	36.6	formerly s	1
61	0	0	Yes	Self-empl	Rural	202.2	N/A	ever smc	1
80	0	1	Yes	Private	Rural	105.92	32.5	never smc	1
49	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
79	1	0	Yes	Self-empl	Rural	174.12	24	never smc	1
81	0	0	Yes	Private	Urban	186.21	29	formerly s	1
74	1	1	Yes	Private	Rural	70.09	27.4	never smc	1
69	0	0	No	Private	Urban	94.3	22.8	never smc	1
59	0	0	Yes	Private	Rural	76.1	N/A	Inknown	1
78	0	0	Yes	Private	Urban	58.57	24.2	Unknown	1
81	1	0	Yes	Private	Rural	80.43	29.7	never smc	1
61	0	1	Yes	Govt_job	Rural	120.46	36.8	smokes	1
54	0	0	Yes	Private	Urban	104.5	27.3	smokes .	1
78	0	1	Yes	Private	Urban	219.8	N/A	Inknown	1

Rate of stroke

Rate of gender

								1.0
age	1	0.27	0.26	0.24	0.33	0.23	П	
hypertension	0.27	1	0.12	0.18	0.17	0.14		0.8
heart_disease	0.26	0.12	1	0.15	0.041	0.14		0.0
avg_glucose_level	0.24	0.18	0.15	1	0.18	0.14		0.4
bmi	0.33	0.17	0.041	0.18	1	0.042		
stroke	0.23	0.14	0.14	0.14	0.042	1		0.:
	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke		

####FeatureScore####						
	feature	Score				
0	age	279.980918				
1	hypertension	101.729361				
3	avg_glucose_level	96.585072				
2	heart_disease	95.175560				
8	ever_married_No	54.796734				
9	ever_married_Yes	54.796734				
14	work_type_children	32.384214				
17	smoking_status_Unknown	27.769605				
18	smoking_status_formerly smoked	16.175335				
13	work_type_Self-employed	15.082497				
4	bmi	8.826500				
20	smoking_status_smokes	2.275740				
12	work_type_Private	1.094600				
11	work_type_Never_worked	0.982498				
19	smoking_status_never smoked	0.564306				
6	gender_Male	0.236267				
5	gender_Female	0.230321				
15	Residence_type_Rural	0.178514				
16	Residence_type_Urban	0.178514				
10	work_type_Govt_job	0.061951				
7	gender_Other	0.044459				

```
bestfeature = SelectKBest(f_classif, k='all')
fit = bestfeature.fit(x, y)

dfcolumns = pd.DataFrame(x.columns)
dfscores = pd.DataFrame(fit.scores_)

featureScores = pd.concat([dfcolumns, dfscores], axis=1)
featureScores.columns = ['feature', 'Score']

print("###FeatureScore###")
print(featureScores.nlargest(60, 'Score'))
```


Find Outlier


```
# find outlier
fig, ax = plt.subplots(1, 2, figsize=(16, 4))
ax[0].boxplot(dataset['age'])
ax[0].set_title("age")
ax[1].boxplot(dataset['avg_glucose_level'])
ax[1].set_title("avg_glucose_level")
plt.show()
```

Drop null data

```
dataset.dropna(inplace=True)
print("")
print("####After drop null###")
print(dataset.isnull().sum())
```

```
####After drop null###
id 0
gender 0
age 0
hypertension 0
heart_disease 0
ever_married 0
work_type 0
Residence_type 0
avg_glucose_level 0
bmi 0
smoking_status 0
stroke 0
dtype: int64
```

Drop unnecessary column(ID)

```
dataset = dataset.drop(['id'], axis=1)
print("")
print("####After drop unnecessary columns###")
print(dataset.head())
```

```
####After drop unnecessary columns####
          age hypertension ... bmi
                                       smoking_status stroke
  gender
    Male 67.0
                         0 ... 36.6 formerly smoked
    Male 80.0
                         0 ... 32.5
                                         never smoked
                         0 ... 34.4
  Female 49.0
                                              smokes
                         1 ... 24.0
  Female 79.0
                                        never smoked
                         0 ... 29.0 formerly smoked
    Male 81.0
```


Drop wrong value(gender)

Our team's function

-> A function that compares the accuracy to find the optimal encoding and scaling

3 Encoder

Label encoder Ordinal encoder OneHot encoder

4 Scaler

Standard scaler Robust scaler MaxAbs scaler MinMax scaler

12 Types

```
# function make preprocessing combination
# input dataframe
def makeCombination(x, y):
    listObj=['gender', 'ever_married', 'work_type', 'Residence_type', 'smoking_status']
    encoder = [lblEncoding(listObj, x), ordEncoding(listObj, x), ohEncoding(x)]
    nameEnc=['Label encoder', 'Ordinal encoder', 'OneHot encoder']
    scaler = [preprocessing.StandardScaler(), preprocessing.RobustScaler(), preprocessing.MaxAbsScaler(), preprocessing.MinMaxScaler()]
    nameSc=['Standard scaler', 'Robust scaler', 'MaxAbs scaler', 'MinMax scaler']
    listDf=[]
    listBestDf=[]
    listClassifier=[DecisionTreeClassifier(), RandomForestClassifier(), KNeighborsClassifier()]
```


Our team's function

-> A function that compares the accuracy to find the optimal encoding and scaling

```
for i in range(len(listClassifier)):
    classifer=listClassifier[i]
    scoreMax=0
    indexMax=0
    print(classifer)
    for j in range(len(listDf)):
       trainSetX, testSetX, trainSetY, testSetY = train_test_split(listDf[j], y, test_size=0.2, shuffle=False, random_state=1)
        classifer.fit(trainSetX, trainSetY)
        score=classifer.score(testSetX, testSetY)
        print(score)
        if(scoreMax<=score):</pre>
            scoreMax=score
    listBestDf.append(listDf[indexMax])
    encBest=nameEnc[(int)(indexMax/4)]
    scBest=nameSc[indexMax%4]
    print("####Function result###")
    print("Best accuracy :", scoreMax)
```

```
####Function result####
Best accuracy : 0.9985974754558204
Best combination : Encoding -> Label encoder Scaling -> Standard scaler
```


Encoding(Label encoder)

```
# Function to encode column within the data frame

def OneHotEncoding(data_frame, column):
    label_encoder = OneHotEncoder()
    return label_encoder.fit_transform(data_frame.loc[:, column].values)

# Label encoding for Categorical values (Sex: 'M'= 1, 'F'= 0)

dataset['gender'] = OneHotEncoding(dataset, 'gender')

# Label encoding for Categorical values ('Unknow' : 0, 'formerly smoked' : 1, 'never smoke' : 2, 'smoke' : 3)

dataset['smoking_status'] = OneHotEncoding(dataset, 'smoking_status')
```

####A	fter enc	oding				
	gender	age	hypertension	bmi	smoking_status	stroke
0	1	67.0	0	36.6	1	1
2	1	80.0	0	32.5	2	1
3	0	49.0	0	34.4	3	1
4	0	79.0	1	24.0	2	1
5	1	81.0	0	29.0	1	1
5104	0	13.0	0	18.6	0	0
5106	0	81.0	0	40.0	2	0
5107	0	35.0	0	30.6	2	0
5108	1	51.0	0	25.6	1	0
5109	0	44.0	0	26.2	0	0

Scaling(Standard scaling)

```
scaler = StandardScaler()
dataset = scaler.fit_transform(dataset)
print("####After scaling####")
print(dataset)
```


Data split

```
X = dataset.drop(['stroke'], axis=1)
y = dataset.pop('stroke')

# data split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=1)
print("####Check train, test data shape.###")
print('Number transations x_train df', X_train.shape)
print('Number transations x_test df', X_test.shape)
print('Number transations y_train df', y_train.shape)
print('Number transations y_test df', y_test.shape)
```

####Check train, test data shape.###
Number transations x_train df (3435, 10)
Number transations x_test df (1473, 10)
Number transations y_train df (3435,)
Number transations y_test df (1473,)

Decision Tree

```
# grid rf
trainSetX, testSetX, trainSetY, testSetY = train_test_split(listBestDf[1], y2, test_size=0.2, shuffle=True, random_state=1)
param_grid = [{'max_features': np.arange(1, len(testSetX.columns)), 'max_depth': np.arange(1, 10)}]
rf_gscv = GridSearchCV(listClassifier[1], param_grid, cv=2, n_jobs=2)
rf_gscv.fit(trainSetX, trainSetY)
print(rf_gscv.best_params_)
print('Best score :', rf_gscv.best_score_)

dt = DecisionTreeClassifier(max_depth=3, max_features=8)
```

Accuracy

Accuracy on test set : 0.9032586558044806

Random Forest

```
# grid rf
trainSetX, testSetX, trainSetY, testSetY = train_test_split(listBestDf[1], y2, test_size=0.2, shuffle=True, random_state=1)
param_grid = [{'max_features': np.arange(1, len(testSetX.columns)), 'max_depth': np.arange(1, 10)}]
rf_gscv = GridSearchCV(listClassifier[1], param_grid, cv=2, n_jobs=2)
rf_gscv.fit(trainSetX, trainSetY)
print(rf_gscv.best_params_)
print('Best score :', rf_gscv.best_score_)

rf = RandomForestClassifier(max_depth=9) max_features=8)
```

Accuracy

Accuracy on test set : 0.9470468431771895

KNN

```
# grid rf
trainSetX, testSetX, trainSetY, testSetY = train_test_split(listBestDf[1], y2, test_size=0.2, shuffle=True, random_state=1)
param_grid = [{'max_features': np.arange(1, len(testSetX.columns)), 'max_depth': np.arange(1, 10)}]
rf_gscv = GridSearchCV(listClassifier[1], param_grid, cv=2, n_jobs=2)
rf_gscv.fit(trainSetX, trainSetY)
print(rf_gscv.best_params_)
print('Best score :', rf_gscv.best_score_)
knn = KNeighborsClassifier(n_neighbors=6)
```

Accuracy

Accuracy on test set : 0.9490835030549898

K-fold cross validation

Confusion Matrix & Report

Decision Tree Random Forest KNN

Confusion metrics

Precision: 0.9494623655913978 Recall: 0.9484425349087003 F1 score: 0.9489521762493284

Classification	n report			
	precision	recall	f1-score	support
0	0.95	0.95	0.95	931
	0.08	0.08	0.08	51
accuracy			0.90	982
macro avg	0.51	0.51	0.51	982
weighted avg	0.90	0.90	0.90	982

[51 0]]

Confusion metrics

Precision : 0.9480122324159022 Recall: 0.9989258861439313 F1 score : 0.9728033472803348

Classification	report

Classific	cation	report			
		precision	recall	f1-score	support
	0	0.95	1.00	0.97	931
		0.00	0.00	0.00	51
асси	racy			0.95	982
macro	avg	0.47	0.50	0.49	982
weighted	avg	0.90	0.95	0.92	982

[50 1]]

Confusion metrics

Precision: 0.9490316004077471

Recall : 1.0

F1 score : 0.9738493723849372

Classification	report			
	precision	recall	f1-score	support
0	0.95	1.00	0.97	931
	1.00	0.02	0.04	51
accuracy			0.95	982
macro avg	0.97	0.51	0.51	982

Curation
Inspection
Preprocessing
Analysis
Evaluation

We are going to work on it all together.

Thank You