

King Saud University

College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Lab Project

Due Date: Sunday, Jun 4

Project Description: The aim of this project is to design an 8-bit Function Unit Combining Arithmetic Logic Unit (ALU) and a Shifter that can perform the operations given in table 1 below.

- 1. Use X and Y as 8 bits input and G as 8 bits output as shown in Figure 1.
- 2. S0, S1, S2 and S3 represent the selection code of the operations.
- 3. Three statue bits V (overflow), C (carry), N (negative) are related to arithmetic operations and statue bit Z (zero) is related to both arithmetic and logic operation.
- 4. Use constant inputs when needed.
- 5. Test your designed Function Unit with necessary tables.

Marking: Total marks for the project is five (5).

Groups:

- 1. Each group should contain 2 students only. The maximum group size is 2 students.
- 2. Members of the group must belong to the same section.
- 3. Only one of the group members is responsible to submit the project.
- 4. Late submissions will NOT be accepted.

Figure 1: Block diagram of 5-bit Function Unit

Table1: Set of operations

S3	S2	S1	S0	Operation
0	0	0	0	G=X+Y
0	0	0	1	G=X+Y+1
0	0	1	0	G=X+Y'
0	0	1	1	G=X-Y
0	1	0	0	G=2X
0	1	0	1	G=2X+1
0	1	1	0	G=X
0	1	1	1	G=X+1
1	0	0	0	G=X AND Y'
1	0	0	1	G= X OR Y'
1	0	1	0	G=X XOR Y
1	0	1	1	G= X'
1	1	0	0	G=Y
1	1	0	1	G= Switch Tail Right Y
1	1	1	0	G= Arithmetic Shift Right Y
1	1	1	1	G= Logical Shift Left Y

Submission: (Upload your project on LMS before **Sunday, Jun 4**- 11:59 PM)

You need to submit the following:

- 1. Your circuit in Logisim file. (.circ).
- 2. A **PDF** file contains: a screenshot of your circuit and test cases for each operation. In each case you need to specify the value of S, X and Y with the corresponding output as following:

Input				Operation	Inp	out	Expected output				
S ₃	S ₂	S ₁	S ₀		X	У	G	C	٧	2	Z
0	0	0	0	G=X+Y	0000 0011	0000 0010	0000 0101	0	0	0	0

Note:

- 1. Use the same values of X and Y as in the table above for all the test cases.
- 2. Use **X** in case you don't care what the value of inputs or status bits.
- 3. One screenshot of your circuit is enough.

Submission instructions:

- 1. Put your files (circuit + PDF) in one folder.
- 2. Name the folder with Your names.
- 3. Compress the folder and upload it on LMS.
- 4. Only one of the group members is responsible to submit the project (one submission per group).