OL Maths T1 MS

Monday, July 28, 2025 3:28 PM

@ |

7(b)(i)	$[P\hat{Q}T=]58$	B1	
	$P\hat{T}Q = 32$ angles in same segment $T\hat{P}Q = 90$ angles in semi-circle $P\hat{Q}T = 58$ angles in triangle	В2	B1 for two reasons Alternative: $T\hat{S}Q = 90$ angles in a semi-circle $T\hat{S}P = 58$ $T\hat{Q}P = 58$ angles in same segment
7(b)(ii)	116	2	B1 for $SQR = 32$ or $QSR = 32$
7(b)(iii)	26	1	

Q2

	1	
(ii) 90 with reason	1	
(iii) Parallel lines established	1	
(b) Convincing argument	3	This must have e.g. $XQ = XY$ justified. If there is no justification, then MAX B2 from B1 for $XQ = XY$ oe And B1 for relating this to the perimeter of PXZ Or B1 for equal (alternate or bisected) angles

1ft

Q3

(b)	(i)	(a)	$Q\hat{O}S = 90 - x$ and conclusion	1
		(b)	$\frac{1}{2}(90+x)$ oe cao	2
	(ii)	(a)	$3 \times \frac{1}{2} (90 - x)$	2

(ii) (a)
$$3 \times \frac{1}{2} (90 - x)$$

= $2 \times \frac{1}{2} (90 + x)$
leading to $180 + 2x$
= $270 - 3x$

(b) 18

2 M1 for
$$\frac{1}{2}$$
 (180 – (90 – x))

2 M1 for $3 \times \frac{1}{2} (90 - x) = 2 \times \text{their } OQS$

4024/21/M/J/11

4 (a) (i) 38
(ii) 38
(iii) 74
(iv) 68
(b)
$$(y =) \frac{1}{2}(90 - x)$$
 oe

© UCLES 2010

4024/21/0/01/10

05

35.2 or 35.16 to 35.24

6 B1 for $\angle ORQ = 90$ soi B1 for $\angle OQR = 20$ or $\angle ROQ = 70$

M2 for [radius =] 12 tan their 20 oe

or
$$[PQ=]\frac{12\sin(theirPRQ)}{\sin 35}$$
 oe

or
$$[PR=]$$
 $\frac{12\sin(their20)}{\sin 35}$ oe

or **M1** for $\tan their 20 = \frac{OR}{12}$ oe

or
$$\frac{\sin(theirPRQ)}{PQ} = \frac{\sin 35}{12}$$
 oe

or
$$\frac{\sin(their20)}{PR} = \frac{\sin 35}{12}$$
 oe

M1 for

$$\frac{1}{2} (theirOR)^2 \sin(180 - their70) + \frac{1}{2} \times 12 \times theirOR$$

or
$$\frac{1}{2} \times 12 \times (theirOQ + theirOP) \sin their20$$
 oe

or
$$\frac{1}{-\times 12 \times their PR \times sin(their PRO)}$$

a6

63.1 or 63.10 to 63.13	5	-
		M2 for $[r=]\frac{360 \times 7.3}{2\pi \times 82}$ oe
		M2 for $[r=]\frac{360 \times 7.3}{2\pi \times 82}$ oe or M1 for $\frac{82}{360} \times 2\pi r = 7.3$ oe
		M2 for $\frac{(360-82)}{360}\pi \times (their 5.10)^2$ oe
		or M1 for $\frac{(360-82)}{360}\pi \times (their 5.10)^2$
		seen
		or for $\frac{82}{360}\pi \times (their 5.10)^2$ oe isw
		If 0 scored, SC1 for $\frac{(360-82)}{360} \times k\pi$ oe

Q7

3(a)(i)	AO and BO are radii, so 2 equal sides	1	
3(a)(ii)	$[B\hat{E}C =] 22^{\circ} \text{ nfww}$		B1 for $\angle BOC = 68^{\circ}$ soi or for $\angle BOA = 112^{\circ}$ soi or $\angle OBC = 56^{\circ}$ soi B1 for $\angle OCE$ or $\angle ACE = 90^{\circ}$ soi