☐ liding256@gmail.com

♦ Mountain View, CA

♦ https://liding.info

RESEARCH SUMMARY

My research focuses on open-ended learning, AI safety, and multimodal generative models, with an emphasis on exploratory and self-supervised optimization. I have developed methods to enhance the safety and creativity of generative models through reinforcement learning from human feedback (RLHF), and to improve the generalization and robustness of AI models.

EDUCATION

University of Massachusetts Amherst

Ph.D. in Computer Science

2020.9 - 2024.7

- Dissertation: "Optimization with intrinsic diversity: Towards generalizable, safe, and openended learning".
- Committee: Lee Spector (Chair), Scott Niekum, Subhransu Maji, Jeff Clune.

Massachusetts Institute of Technology

Graduate Study in EECS (non-degree)

2019.9 - 2020.1

University of Rochester

M.S. in Computational Science

2016.6 - 2017.5

• Advisor: Chenliang Xu

Work

Google

EXPERIENCE

Machine Learning Engineer

2024.7 - present

- Conducted research to enhance the performance and robustness of multimodal LLMs, focusing on parameter-efficient fine-tuning (LoRA) and quantization-aware training (QAT).
- Designed and implemented hardware-accelerated GenAI agents, optimizing performance on edge devices for scalable and reliable deployment.

Massachusetts Institute of Technology

Research Engineer

2017.9 - 2020.6

- Performed research in deep learning for spatiotemporal perception and led the development of the MIT DriveSeg dataset for autonomous driving scene segmentation.
- Developed a multitask learning framework for joint face landmark detection and cognitive state assessment, improving both performance and efficiency.

INTERNSHIP

Google

Research Intern

2023.6 - 2023.9

• Developed a JAX optimizer for efficient neural architecture search of foundation models through knowledge distillation and meta-learning.

CarperAI

Student Researcher

2023.2 - 2023.6

• Proposed novel techniques to enhance the creativity of generative models through learning from human feedback, leading to more diverse and open-ended model behavior.

Meta

Research Scientist Intern

2022.5 - 2022.8

• Developed model architectures and transfer learning methods to optimize vision transformers for AR/VR capabilities.

SELECTED PUBLICATIONS GOOGLE SCHOLAR

- R. Boldi, <u>L. Ding</u>, L. Spector, and S. Niekum, "Pareto-optimal learning from preferences with hidden context," *under review at ICLR*, to appear at NeurIPS: Pluralistic Alignment Workshop., 2024
 - POPL learns Pareto-optimal policies or reward functions in RLHF, addressing diverse group preferences without needing group labels, and offering safe and fair alignment of agents and LLMs.
- L. Ding, J. Zhang, J. Clune, L. Spector, and J. Lehman, "Quality diversity through human feedback: Towards open-ended diversity-driven optimization," in *ICML*, 2024
 - QDHF learns diversity metrics from human feedback and optimizes the discovery of novel solutions, enhancing task-solving capabilities of RL agents and boosting creativity of generative models.
- L. Ding, E. Pantridge, and L. Spector, "Probabilistic lexicase selection," in *GECCO*, 2023
- <u>L. Ding</u>, M. Zoghi, G. Tennenholtz, and M. Karimzadehgan, "Ever evolving evaluator: Towards flexible and reliable meta-optimization for knowledge distillation," in *NeurIPS: RealML Workshop*, 2023
- <u>L. Ding</u>, J. Terwilliger, A. Parab, M. Wang, L. Fridman, B. Mehler, and B. Reimer, "CLERA: A unified model for joint cognitive load and eye region analysis in the wild," *ACM Trans. Computer-Human Interaction (TOCHI)*, 2023
- <u>L. Ding</u> and L. Spector, "Optimizing neural networks with gradient lexicase selection," in *ICLR*, 2022
- <u>L. Ding</u>, J. Terwilliger, R. Sherony, B. Reimer, and L. Fridman, "Value of temporal dynamics information in driving scene segmentation," *IEEE Trans. Intelligent Vehicles (T-IV)*, 2021
- <u>L. Ding</u> and C. Xu, "Weakly-supervised action segmentation with iterative soft boundary assignment," in *CVPR*, 2018

Honors	AND

AWARDS

Google Research Travel Scholarship, Google.

2023

SOAR (Supporting Open Access Research) Fund, *UMass Amherst*. 4th Place (among 150 teams, top 3%), *MIT Miniplaces Challenge*.

2023 2019

Graduate School Scholarship (\$30,000), *University of Rochester*.

Meritorious Winner (top 5%), COMAP's Mathematical Contest In Modeling.

2016

2015

TA for MIT 6.S094: Deep Learning for Self-Driving Cars.

2018 - 2019

TA for MIT 6.S099: Artificial General Intelligence.

2018

Co-instructor (w/ Tom Bertalan) for MIT Robocar Workshop.

2018

COMMUNITY

TEACHING

Reviewer for ICLR, NeurIPS, JMLR, CVPR, ICCV, ECCV, *etc*. Ph.D. Admissions Committee (UMass Amherst CICS).

2020 - present 2024

OPEN SOURCE

PROJECTS

pyribs: an open-source library for diversity-driven optimization.

• Contributed the demo and tutorial for the QDHF work.

mit-deep-learning: MIT Deep Learning open courses (10k+ stars).

• Main contributor for tutorials and coding assignments.

MIT AI Podcast: now the Lex Fridman Podcast, 4M+ subscribers on Youtube.

• Helped find candidates and prepare interview materials.

SKILLS

Python, C++, JavaScript, PyTorch, JAX, Tensorflow, Git, LLM workflows (instruction-tuning, PEFT, RLHF).