Отчет о выполнении лабораторной работы 1.2.2

Экпериментальная проверка закона вращательного движения на крестообразном маятнике

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: Экпериментально получить зависимость углового ускорения от момента прикладываемых к маятнику сил, убедиться, что угловое ускорение зависит линейно от момента сил, определить момент инерции маятника; проанализировать влияние сил трения, дейтвующих на ось вращения

В работе используются: крестообразный маятник, набор перегрузков, секундомер, линейка, штангенциркуль.

2 Теоретические сведения

Основное уравнение вращательного движения тела вокруг закреплённой оси:

$$I\ddot{\varphi} = M,\tag{1}$$

где $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$ — угловое ускорение (ω — угловая скорость), I — полный момент инерции тела относительно оси вращения, M — суммарный момент внешних сил относительно этой оси.

Цель работы: экспериментально проверить уравнение (1), получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

Экспериментальная установка: для экспериментального исследования закона вращательного движения (1) в работе используется крестообразный «маятник» , устройство которого изображено на рис. 1. Маятник состоит из четырёх тонких стержней радиуса a, укреплённых на втулке под прямым углом друг к другу. Втулка и два шкива различных радуисов (r_1 и r_2) насажены на общую ось. Ось закреплена в подшипниках, так что вся система может свободно вращаться вокруг горизонтальной оси. Момент инерции I маятника можно изменять, передвигая грузы $m_i (i=1,\ldots,4)$ вдоль стержней и меняя R_i . На один из шкивов маятника навита тонкая нить. Привязанная к ней лёгкая платформа известной массы m_{π} служит для размещения перегрузков m_{τ} .

Установка оснащена датчиком, позволяющим фиксировать моменты времени прохождения концов стержней через него. Данные с датчика передаются на компьютер для последующей обработки и получения зависимостей угла поворота $\varphi(t)$, угловой скорости $\omega \equiv \dot{\varphi}$ и углового ускорения маятника $\beta \equiv \ddot{\varphi}$ от времени, а также углового ускорения от угловой скорости $\beta(\omega)$.

Вывод уравнения движения маятника: рассмотрим силы, действующие на маятник. Основной вращающий момент поздаётся подвешенным на нити перегрузком. Непосредственно на маятник действует момент силы натяжения нити: $M_{\rm H}=rT$, где r – радиус шкива (r_1 или r_2). Силу T выразим из

Рис. 1: Схема установки

уравнения движения платформы $m_{\rm H}\ddot{y}=m_{\rm H}g-T$, где $m_{\rm H}=m_{\rm H}+m_{\rm r}$ – масса платформы с перегрузком. Ускорение платформы связано с угловым ускорением маятника условием нерастяжимости нити $\ddot{y}=\beta r$. Отсюда момент силы натяжения нити

$$M_{\rm H} = m_{\rm H} r (g - \beta r). \tag{2}$$

Вращению маятника препятствует момент силы трения в оси $M_{\rm Tp}$. Таким образом, с учётом (2) уравнение (1) может быть записано как

$$(I + m_{\scriptscriptstyle H} r^2)\beta = m_{\scriptscriptstyle H} gr - M_{\scriptscriptstyle Tp}. \tag{3}$$

Заметим, что в наших опытах, как правило, $m_{\rm H} r^2 \ll I$, и соответственно $M_{\rm H} \approx m_{\rm H} g r$, то маятник будет раскручиваться с постоянным угловым ускорением $\beta_0 \approx m_{\rm H} g r/I$.

Поскольку зависимость момента силы трения от нагрузки на маятник и скорости его вращения не известна (её исследование — отдельная экспериментальная задача), методика измерения должна быть построена так, чтобы минимизировать или вовсе исключить влияние $M_{\rm Tp}$. Можно высказать следующие качественные соображения о природе и величине $M_{\rm Tp}$. Она может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение в подшипниках), так и составляющую, пропорциональную угловой скорости ω вращения маятника (вязкое трение в подшипниках и сопротивления воздуха). Учитывая, что сила реакции уравновешенного маятника равна $N=m_{\rm M}g+T\approx (m_{\rm M}+m_{\rm H})g\approx m_{\rm M}g$, где $m_{\rm M}$ — масса маятника (как правило, $m_{\rm M}\gg m_{\rm H}$), можно записать

$$M_{\rm TP} \simeq \left(1 + \frac{m_{\rm H}}{m_{\rm M}}\right) M_0 + \eta \omega \approx M_0 + \eta \omega,$$
 (4)

где M_0 — момент сил трения для покоящегося маятника при нулевой массе

подвеса (минимальное значение силы трения), η – некоторый коэффициент, отвечающий за вязкое трение.

Методика эксперимента: малость величины трения $M_{\rm TP}$ в работе обеспечивается за счёт использования в креплении подшипников качения. Однако учёт трения всё же оказывается необходим, поскольку оно существенно влияет на результаты опыта как при малых массах перегрузков (когда $m_{\rm r} \sim M_0/gr$), так и при больших, поскольку при увеличении $m_{\rm H}$ возрастает сила реакции в оси и угловая скорость вращения маятника, а с ней и вязкое трение.

Влияние вязкой составляющей трения можно исключить следующим образом. Экспериментальная установка позволяет измерять зависимость углового ускорения от угловой скорости $\beta(\omega)$. Если верны предположения о малости величины силы трения, то угловое ускорение должно быть линейной функцией угловой скорости:

$$\beta(\omega) = \beta_0 + k\omega \tag{5}$$

3 Ход работы

Величины, характерные для используемого маятника:

Радиус малого шкива $r_{\scriptscriptstyle \rm M}$, см	0.9
Радиус большого шкива r_6 , см	1.5
$Macca$ платформы m_{π} , г	6.17

Таблица 1: Характеристики маятника

- 1. Расположим грузы на расстоянии $R=3.1\ {\rm cm}$ и проведём балансировку маятника.
- 2. Оценим момент силы трения в подшипниках. Маятник начинает двигаться, когда на плотформе находится груз массой $m_{\rm rp}=6.45$ граммов. Измерение проводится на малом шкиве. Тогда момент силы трения:

$$M_{\text{\tiny TP}} = (m_{\text{\tiny FP}} + m_{\text{\tiny H}})g \cdot r_{\text{\tiny M}} \approx 1.11 \cdot 10^{-3} (\text{H} \cdot \text{M})$$

3. При фиксированной массе перегрузка и моменте инерции маятника проведём измерения для вычисления случайной погрешности измерения β_0 . Данные представлены в таблице 2.

$$\beta_{0\text{сред}} \approx 0.4800 (\text{рад/c}^2)$$

$$\sigma_{ ext{c,луч}} = \sqrt{rac{\sum\limits_{i=1}^{n}(eta_{0 ext{cpeg}}-eta_{0n})^2}{n(n-1)}} pprox 0.01 \quad ext{pag}/c^2$$

k, 1/c	$eta_0,\mathrm{pag}/c^2$	$(\beta_{0\text{сред}} - \beta_{0i})^2, \text{рад}^2/c^4$
-0.0078 ± 0.0058	0.5126 ± 0.0012	0.0015
-0.0079 ± 0.0045	0.4388 ± 0.0018	0.0012
-0.0085 ± 0.0070	0.4737 ± 0.0016	0.0001
-0.0084 ± 0.0015	0.4999 ± 0.0014	0.0007
$-0,0088 \pm 0.0049$	0.4749 ± 0.0039	0.0001

Таблица 2: Оценка случайной погрешности β_0

$m_{\scriptscriptstyle \Gamma}$, $_{\scriptscriptstyle \Gamma}$	k, 1/c	$\beta_0, \operatorname{pag}/c^2$	Радиус шкива $r_{6,M}, cM$	M_T , м $H \cdot м$
62.9	-0.0113 ± 0.0021	0.669 ± 0.002	1.78	12.0
100	-0.0123 ± 0.0022	1.067 ± 0.007	1.78	18.5
200	-0.0253 ± 0.0041	2.300 ± 0.008	1.78	36.0
100	-0.0200 ± 0.0076	0.6034 ± 0.0048	0.90	9.4
62.9	-0.0161 ± 0.0053	0.3482 ± 0.0019	0.90	6.1

Таблица 3: Измерения k и β_0 для разных масс грузов

4. Проведём опыт для разных масс грузов. Вычислим моменты силы натяжения нити $M_{\rm T} = (m_{\rm r} + m_{\rm n}) g r_{\rm 6,m}$. Полученные данные занесём в таблицу 3. Построим график зависимости $\beta_0(M_T)$:

Мы видим, что зависимость линейная, значит:

$$\beta_0 = a + b \cdot M_T$$

Вычислим коэффициенты а и b по методу наименьших квадратов:

$$a = -0.068$$
 рад/ c^2
 $b = 64.95$ $1/кг \cdot м^2$

При пересечении с осью абсцисс:

$$M_T = -\frac{a}{b} \approx 1.05 \cdot 10^{-3}$$
 H·M

Момент инерции:

$$I = \frac{1}{b} \approx 15.0 \cdot 10^{-3} \quad \text{kg} \cdot \text{m}^2$$

Погрешность вычисления момента инерции:

$$\varepsilon_b = \varepsilon_I$$

$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \beta_0^2 \rangle - \langle \beta_0 \rangle^2}{\langle M_{\rm T}^2 \rangle - \langle M_{\rm T} \rangle^2} - b^2} \approx 1.98 \quad (1/\text{kg} \cdot \text{m}^2)$$

$$\varepsilon_b = \frac{\sigma_b}{b} \approx 0.03$$

$$\sigma_I = \varepsilon_I I = \varepsilon_b I \approx 0.46 \cdot 10^{-3}$$

Окончательно:

$$I = (15.0 \pm 0.46) \cdot 10^{-3} \text{ Kg} \cdot \text{m}^2$$

Рис. 2: Линейная зависимость $\beta_0(M_T)$

5. Определим зависимость углового ускорения от момента инерции системы, данные занесём в таблицу. Из формулы (5) вычислим

$$I = \frac{m_{\rm \scriptscriptstyle H} gr - M_{\rm \scriptscriptstyle TP}}{\beta} - m_{\rm \scriptscriptstyle H} r^2 \approx \frac{m_{\rm \scriptscriptstyle H} gr - M_{\rm \scriptscriptstyle TP}}{\beta}, \quad I \gg m_{\rm \scriptscriptstyle H} r^2$$

R, cm	k, 1/c	β , рад/ c^2	I , kg·m ² · 10^{-3}
3	-0.379	1.192	7.00
5	-0.307	0.987	8.51
8	-0.319	0.715	11.64

Таблица 4: Зависимость углового ускорения от момента инерции системы

Построим график зависимости $I(R^2)$:

Зависимость линейная, значит

$$I = a + bR^2$$

Методом наименьших квадратов вычислим коэффициенты а и b:

$$a = 0.0063$$
 kg·m²

$$b = 0.8360$$
 кг

Рис. 3: Линейная зависимость $I(R^2)$

$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle R^4 \rangle - \langle R^2 \rangle^2} - b^2} \approx 0.018 \quad \text{кг}$$

$$\sigma_a = \sigma_b \sqrt{\langle R^4 \rangle - \langle R^2 \rangle^2} \approx 3.2 \cdot 10^{-5} \quad \text{кг} \cdot \text{м}^2$$

Момент инерции можно вычислить по формуле

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2),$$

где I_0 – момент инерции маятника без дополнительных грузов, m_i – масса этого дополнительного груза, I_i – его момент инерции относительно центра масс системы.

Тогда

$$I_0 = a = (6.3 \pm 0.03) \cdot 10^{-3}$$
 kg·m²

6. Найдём I_0 , измеряя коэффициент β_0 для маятника без дополнительных грузов на маленьком шкиве. Занесём данные в таблицу.

$$I_0 = \frac{(m_{\rm m} + m_{\rm r})gr_{\rm M} - M_0}{\beta_0}$$

$$\langle I_0 \rangle = 6.17 \cdot 10^{-3} \quad \text{kg} \cdot \text{m}^2$$

$m_{\scriptscriptstyle \Gamma}$, г	k, 1/c	β_0 , рад/ c^2	I_0 KГ·м ² · 10^{-3}
100	-0.0452 ± 0.0031	1.328 ± 0.006	6.27
100	-0.0407 ± 0.0056	1.389 ± 0.009	5.99
100	-0.0839 ± 0.001	1.331 ± 0.008	6.25

Таблица 5: Измерение I_0

4 Вывод

В ходе работы была получена зависимость углового ускорения маятника от его момента инерции и момента прикладываемых сил. Угловое ускорение прямо пропорционально моменту сил и обратно пропорционально моменту инерции. Был оценён вклад силы трения в оси вращения в общий момент прикладываемых сил, а также погрешности вычислений. Двумя разными способами был вычислен момент инерции маятника без грузов и оба метода дали приблизительно одинаковый результат, что доказывает справедливость использованных в работе теоретически полученных зависимостей.