Math 624: Homework 2

- 1. Exercise 1, p.312.
- 2. Exercise 2, p.312.
- 3. Exercise 3, p.312.
- 4. Let μ_{\star} be an outer measure. Show that if E is Carathéodory measurable and if A is an arbitrary subset of X we have

$$\mu_{\star}(E \cup A) + \mu_{\star}(E \cap A) = \mu_{\star}(E) + \mu_{\star}(A).$$

5. A set function μ defined on a σ -algebra \mathcal{M} of subsets of X is called a *finitely additive measure* if $\mu(\emptyset) = 0$ and if for any finite collection of pairwise disjoint sets E_1, \dots, E_n in \mathcal{M} we have $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$.

Suppose $\mu(X) < \infty$. Show that a finitely additive measure μ is a measure (i.e., it is countable additive) if and only if μ is "continuous at \emptyset ", that is for any decreasing sequence of sets $A_1 \supset A_2 \supset \cdots$ with $A_i \in \mathcal{M}$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$ one has $\lim_{n\to\infty} \mu(A_n) = 0$.

Hint: To show that the continuity at \emptyset is sufficient, set $F = \bigcup_i E_i$ and $A_n = F \setminus \bigcup_{i=1}^{n-1} E_i$.

6. Let (X, \mathcal{M}, μ) be a measure space. For any set $E \subset X$ let us define

$$\mu_{\star}(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n); A_n \in \mathcal{M}, E \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

Show

- (a) μ_{\star} is an outer measure.
- (b) For any $A \in \mathcal{M}$, $\mu_{\star}(A) = \mu(A)$.