FACULTAD DE CIENCIAS GRUPO ESTUDIANTIL DE MATEMÁTICA

Problemas de Teoría de Números

Jimmy Espinoza

05 de Marzo del 2018

- 1. Probar que 5 es un resto cuadrático de un primo impar $p \neq 5$ si y sólo si $p \equiv \pm 1 \pmod{10}$.
- 2. Sea p un primo impar. Asumimos que el conjunto $\{1, 2, \ldots, p-1\}$ puede ser expresado como la unión de dos subconjuntos no vacíos S y T, $S \neq T$, tal que el producto $(mod\ p)$ de cualesquiera dos elementos en el mismo subconjunto pertenece a S y el producto $(mod\ p)$ de cualquier elemento de S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento de los restos no cuadráticos S con cualquier elemento elemen
- 3. Probar que si n es un entero positivo impar, entonces cada factor primo de 2^n-1 es de la forma $8k\pm 1$ para algún $k\in\mathbb{N}$.
- 4. Probar que para todo primo p existen enteros x y y tales que: $x^2 + y^2 + 1 \equiv 0 \pmod{p}$.
- 5. Sean m y n enteros positivos. Probar que 4mn m n nunca puede ser un cuadrado perfecto.
- 6. Sea a el menor resto no cuadrático $(mod\ p)$ (entre $\{0,1,\ldots,p-1\}$). Demostrar que:

$$a < 1 + \sqrt{p}$$

7. Demostrar que:

$$\sum_{i=1}^{p-2} \left(\frac{i(i+1)}{p} \right) = -1$$

8. Probar que 16 es una octava potencia perfecta módulo p para cualquier primo p.