Linear Algebra 2 – Lecture Notes

Lukas Prokop

summer term 2016

Konversatorium:

Contents

• Contact: gernot.holler@edu.uni-graz.at

1	Linear maps (cont.)	3	• Every Monday, 10:00–10:45, SR 11.33			
	1.1 Addition to chapter 5.2.4	3 3	Topics, wie already discussed:			
	1.3 More general	3	• Vector spaces			
	1.4 Remark and a definition for bilinearity	5	• Linear maps and their equivalence with matrices			
	1.5 Example	5	• We introduced equivalence of matrices $(PAQ = B)$			
	1.6 Example	5	• We defined the following techniques:			
2	Determinants 2.1 Properties of determinants		 Rank Linear equation system Inverse matrices Basis transformation 			
3 Inner products This lecture took place on 29th of Feb 2016 (Prof. Franz Lehner).		43	In this semester, we will discuss:			
Exam: written and orally Tutorial session:			• PAP^{-1} , which is related to eigenvalues and diagonalization, hen $\bigvee_{P}^{?} PAP^{-1} = D$.			
• Every Monday, 18:30-20:00, SR 11.34						

1 Linear maps (cont.)

1.1 Addition to chapter 5.2.4

 $\operatorname{Hom}(V, W)$ in special case $W = \mathbb{K}$. We define,

$$V^* := \operatorname{Hom}(V, \mathbb{K})$$

also denoted V' is called *dual space* of vector space V. The elements $v* \in V*$ are called *linear forms* or *linear functionals*.

We denote,

$$v^*(v) =: \langle v*, v \rangle$$

1.2 Example

$$V = \mathbb{K}^n$$

 $v^*: V \to \mathbb{K}$ is uniquely defined with values $v^*(e_i) =: a_i$.

$$\langle v^*, v \rangle = \left\langle v^*, \sum_{i=1}^n v_i e_i \right\rangle = \sum_{i=1}^n v_i \left\langle v^*, e_i \right\rangle$$

$$v^* \left(\sum_{i=1}^n v_i e_i \right) = \sum_{i=1}^n v_i v^* (e_i) = \sum_{i=1}^n a_i v_i$$

1.3 More general

We know, $\dim \operatorname{Hom}(V, W) = \dim V \cdot \dim W$.

Theorem 1. Let V be a vector space over \mathbb{K} .

• $\dim V =: n < \infty \Rightarrow \dim V^* = n$ More precisely: Let (b_1, \ldots, b_n) be a basis of V. Then

$$b_k^*: b_i \mapsto \delta_{ik} = \begin{cases} 1 & i = k \\ 0 & else \end{cases}$$

is a basis of V^* and is called dual basis.

- For $v^* \in V^*$ it holds that $v^* = \sum_{k=1}^n \langle v^*, b_k \rangle \cdot b_k^*$.
- If dim $V = \infty$, $(b_i)_{i \in I}$ is a basis, then it holds that $(b_k^*)_{k \in I}$ with

$$\langle b_k^*, b_i \rangle = \delta_{ik}$$

is not a basis of V^* .

Proof. • Special case of 5.18

 (b_k^*) is linear independent, hence in $\sum_{i=1}^n \lambda_i b_i^* = 0$ all $\lambda_i = 0$.

$$0 = \left\langle \sum_{i=1}^{n} \lambda_i b_i^*, b_k \right\rangle = \sum_{i=1}^{n} \lambda_i \left\langle \underbrace{b_i^*, b_k}_{\delta_{i,k}} \right\rangle = \lambda_k \forall k$$

• Let $v \in V$ with $v = \sum_{i=1}^{n} v_i b_i$. We need to show

$$\langle v^*, v \rangle \stackrel{!}{=} \left\langle \sum_{k=1}^n \langle v^*, b_w \rangle b_n^*, v \right\rangle$$

$$\left\langle \sum_{k=1}^n \langle v^*, b_k \rangle b_k^*, v \right\rangle = \sum_{k=1}^n \langle v^*, b_k \rangle \left\langle b_k^*, v \right\rangle$$

$$= \sum_{k=1}^n \langle v^*, b_k \rangle \left\langle b_k^*, \sum_{i=1}^n v_i b_i \right\rangle$$

$$= \sum_{k=1}^n \sum_{i=1}^n \langle v^*, b_k \rangle \left\langle b_k^*, b_i \right\rangle \cdot v_i$$

$$= \sum_{k=1}^n \langle v^*, b_k \rangle \left\langle v^*, b_k \right\rangle \cdot v_k$$

$$= \left\langle v^*, \sum_{k=1}^n v_k b_k \right\rangle$$

$$= \left\langle v^*, v \right\rangle$$

• (To be done in the practicals) Consider the functional

$$\langle v^*, b_i \rangle = 1 \Rightarrow v^* \notin L((v_i^*)_{i \in I})$$

1.4 Remark and a definition for bilinearity

The mapping $V^* \times V \to \mathbb{K}$ is linear in v (with fixed v^*) with $(v^*, v) \mapsto \langle v^*, v \rangle$ is linear in v^* (with fixed v). Such a mapping is called *bilinear*.

A mapping $F: V_1 \times ... \times V_n \to W$ is called *multilinear* (n-linear) if it is linear in every component. Formally:

$$F(v_1, \dots, v_{k-1}, \lambda v_k' + \mu v_k'', v_{k+1}, \dots, v_n)$$

$$= \lambda F(v_1, \dots, v_{k-1}, v_k', v_{k+1}, \dots, v_n) + \mu F(v_1, \dots, v_k'', v_{k+1}, \dots, v_n)$$

1.5 Example

 $V = \mathbb{K}[x]$ polynomials

Basis: $\{x^k \mid k \in \mathbb{N}_0\}$ and dim $V = \aleph_0$

Every $v^* \in V^*$ is uniquely defined by $a_k := \langle v^*, x^k \rangle$

$$(a_k)_{k\in\mathbb{N}_0}$$

 $V^* \cong \mathbb{K}[[t]]$ are the formal power series

$$= \left\{ \sum_{k=0}^{\infty} a_k t^k \, \middle| \, a_k \in \mathbb{K} \right\}$$

$$\lambda \sum_{k=0}^{\infty} a_k t^k + \mu \sum_{k=0}^{\infty} b_k t^k = \sum_{k=0}^{\infty} (\lambda a_k + \mu b_k) t^k$$

(Compare with Taylor series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$))

$$\left\langle \sum_{k=0}^{\infty} a_k t^k, \sum_{k=0}^{n} b_k x^k \right\rangle =: \sum_{k=0}^{n} a_k b_k \text{ is well-defined}$$

$$\to \mathbb{K}[x]^* \cong \mathbb{K}[[t]]$$

1.6 Example

C[0,1] continuous functions

Example:

Example 1.

$$x \in [0,1] \qquad \delta_x : C[0,1] \to \mathbb{R}$$

$$f \mapsto f(x)$$

$$\langle \delta_x, f \rangle = f(x)$$

$$\langle \delta_x, f \rangle = f(x)$$

$$I(f) = \int_0^1 f(x) \, dx \text{ is linear}$$

$$\langle I_g, f \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x$$

$$g \in C[0, 1] \text{ is fixed}$$

$$\Rightarrow I_g \in C[0, 1]$$

$$\langle I_g, \lambda f_1 + \mu f_2 \rangle' = \int_0^1 (\lambda f_1(x) + \mu f_2(x))g(x) \, \mathrm{d}x$$

$$= \lambda \int_0^1 f_1(x)g(x) \, \mathrm{d}x + \mu \int_0^1 f_2(x)g(x) \, \mathrm{d}x$$

This also works with non-continuous g (it suffices to have g integratable). (Compare with measure theory and Riesz' theorem)

Does there exist some g such that $f(x) = \langle \delta_x, f \rangle = \int_0^1 f(t)g(t) dt$. (Compare with Dirac's δ function and Schwartz/Sobder theory)

$$V^{**} = (V^*)^* \cong V \text{ if } \dim V < \infty$$

Lemma 1. Let V be a vector space over \mathbb{K} . It requires that dim $V < \infty$ and the Axiom of Choice holds.

•
$$v \in V \setminus \{0\} \Leftrightarrow \bigvee_{v^* \in V^*} \langle v^*, v \rangle \neq 0$$

• $\bigwedge_{v \in V} v = 0 \Leftrightarrow \bigwedge_{v^* \in V^*} \langle v^*, v \rangle = 0$

Proof. Addition v to a basis B of V: Define $v^* \in V^*$ by

$$\langle v^*, b \rangle = \begin{cases} 1 & b = v \\ 0 & b \neq v \end{cases} \text{ for } b \in B$$

Theorem 2. Let V be a vector space over \mathbb{K} .

• The map $\iota: V \to V^{**} := (V^*)^*$ is called bidual space.

$$\langle \iota(v), v^* \rangle \coloneqq \langle v^*, v \rangle$$

is linear and injective.

• if dim $V < \infty$, then isomorphism.

Proof. • Linearity

$$\iota(\lambda v + \mu w) \stackrel{!}{=} \lambda \iota(v) + \mu \iota(w)$$

must hold in every point $v^* \in V^*$:

$$\langle \iota(\lambda v + \mu w), v^* \rangle = \langle v^*, \lambda v + \mu w \rangle$$

$$= \lambda \langle v^*, v \rangle + \mu \langle v^*, w \rangle$$

$$= \lambda \langle \iota(v), v^* \rangle + \mu \langle \iota(w), v^* \rangle$$

$$= \langle \lambda \iota(v) + \mu \iota(w), v^* \rangle$$

Is it injective? Let $v \in \ker \iota$.

$$\langle \iota(v), v^* \rangle = 0 \quad \forall v^* \in V^*$$

 $\Rightarrow \langle v^*, v \rangle = 0 \quad \forall v^* \in V^*$
 $\xrightarrow{\text{Lemma 1}} v = 0$

• Follows immediately, because the dimension is equal.

Definition 1. Let V, W be vector spaces over \mathbb{K} . $f \in \text{Hom}(V, W)$. We define $f^T \in \text{Hom}(W^*, V^*)$ using $f^T(w^*) \in V^*$ via

$$\langle f^T(w^*), v \rangle = \langle w^*, f(v) \rangle = w^*(f(v)) = w^* \circ f(v)$$

 $f^T(w^*) = w^* \circ f \text{ is linear} \Rightarrow f^T(w^*) \in V^*$

V to W (with f) and W to \mathbb{K} (with w^*).

 $\int_{0}^{T} f^{T}$ is called transposed map.

Example 2. (See practicals) Let dim V = n and dim W = m with $B \subseteq V$ and $C \subseteq W$ as bases and dual bases $B^* \subseteq V^*$ and $C^* \subseteq W^*$

$$\Phi_{B^*}^{C^*}(f^T) = \Phi_C^B(f)^T$$
 transposition of matrices

This lecture took place on 2nd of March 2016 (Franz Lehner).

2 Determinants

Leibnitz 1693 (3 × 3 matrices) Seki Takukazu 1685 (most general version) Gauß 1801 ("determinant") Cayley 1845 (on matrices)

n=2

$$ax + by = e$$

$$cx + dy = f$$

$$a \quad b \mid e$$

$$c \quad d \mid f$$

1. Case 1: $a \neq 0$ (multiply first row $-\frac{a}{b}$ times second row)

$$\begin{array}{ccc}
a & b \\
c & d \\
\hline
a & b \\
0 & d - \frac{bc}{a}
\end{array}$$

Unique solution:

$$d - \frac{bc}{a} \neq 0$$

2. Case 2: $c \neq 0$ (multiple second row $-\frac{a}{c}$ times first row)

$$\begin{array}{ccc}
a & b \\
c & d \\
\hline
0 & b - \frac{ad}{c} \\
c & d
\end{array}$$

Unique solution:

$$b - \frac{ad}{c} \neq 0$$

This gives us

$$ad - bc \neq 0$$

Definition 2.

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

is called determinant of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

2.1 Properties of determinants

• The determinant is bilinear in the columns and rows.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (v, w)$$

where v and w are column vectors of A.

$$\det(\lambda v_1 + \mu v_2, w) = \lambda \det(v_1, w) + \mu \det(v_2, w)$$

$$\det(v, \lambda w_1 + \mu w_2) = \lambda \det(v, w_1) + \mu \det(v, w_2)$$

$$\det(\lambda v_1 + \mu v_2, w) = \begin{vmatrix} \lambda a_1 + \mu a_2 & b \\ \lambda c_1 + \mu c_2 & d \end{vmatrix}$$

$$= (\lambda a_1 + \mu a_2)d - (\lambda c_1 + \mu c_2)b$$

$$= \lambda (a_1 d - c_1 b) + \mu (a_2 d - c_2 b)$$

$$= \lambda \begin{vmatrix} a_1 & b \\ c_1 & d \end{vmatrix} + \mu \begin{vmatrix} a_2 & b \\ c_2 & d \end{vmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

 $\bullet \det(v, v) = 0.$

$$\begin{vmatrix} a & a \\ c & c \end{vmatrix} = ac - ac = 0$$

 $\det\begin{pmatrix}1&0\\0&1\end{pmatrix} = \det(e_1, e_2) = 1$

Theorem 3. The properties 1–3 of determinants (see above) characterize the determinant.

Let $\varphi: \mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}$

- bilinear
- $\bigwedge_{v \in \mathbb{K}^2} \varphi(v, v) = 0$
- $\varphi(e_1, e_2) = 1$. Then it holds that $\varphi = \det$.

Proof. To show: $\varphi(v, w) = \det(v, w) \forall v, w \in \mathbb{K}^2$

$$v = \underbrace{ae_1 + ce_2}_{\begin{pmatrix} a \\ c \end{pmatrix}} \qquad w = \underbrace{be_1 + de_2}_{\begin{pmatrix} b \\ d \end{pmatrix}}$$

$$\varphi(v, w) = \varphi(ae_1 + ce_2, be_1 + de_2)$$

$$= a\varphi(e_1, be_1 + de_2) + c \cdot \varphi(e_2, be_1 + de_2)$$

$$= ad \underbrace{\varphi(e_1, e_2)}_{=1} + \underbrace{ab\varphi(e_1, e_1)}_{=0} + cb\varphi(e_2, e_1) + cd \underbrace{\varphi(e_2, e_2)}_{=0}$$

Lemma 2. From (i) bilinearity and (ii) $\bigwedge_{v \in \mathbb{R}^2} \varphi(v, v) = 0$ it follows that

$$\bigwedge_{v,w \in \mathbb{K}^2} \varphi(v,w) = -\varphi(w,v)$$

$$0 \stackrel{(ii)}{=} \varphi(v+w,v+w) \stackrel{(i)}{=} \varphi(v,v) + \varphi(v,w) + \varphi(w,v) + \varphi(w,w)$$

$$\stackrel{(ii)}{=} \varphi(v,w) + \varphi(w,v)$$

2.2 Geometric interpretation of the determinant

Consider an area with w defining its breath and v its depth (hence the area spanning vectors). Let e_1 and e_2 be the spanning vectors of a rectangle corresponding to the parallelogram. det(v, w) is the surface of the spanned parallelogram. The sign defines the orientation of the pair (v, w).

$$\det(e_1, e_2) = 1$$
 $\det(e_2, e_1) = -1$

There are surfaces where the surface is infinite if you follow a vector in some direction:

- Möbius strip
- Klein's bottle (named after Felix Klein)

$$A = |v| \cdot h$$

Consider Figure 1. h is the length of the projection of w to v^{\perp} .

$$v = \begin{pmatrix} a \\ b \end{pmatrix} \to \vec{n} = \begin{pmatrix} -b \\ a \end{pmatrix}$$

$$\langle \begin{pmatrix} c \\ d \end{pmatrix}, \begin{pmatrix} -b \\ a \end{pmatrix} \rangle = ad - bc$$

Second proof. A(v, w) satisfies properties (i)—(iii).

Figure 1: Parallelogram

- Property (iii) follows immediately (the area of unit vectors in two dimensions is 1).
- Property (ii) follows immediately (the area of two vectors in the same direction is 0).

Property (i) defines the linearity in v

- 1. If v, w are linear dependent, then A(v, w) = 0 (one is a multiple of the other)
- 2. $n \in \mathbb{N}$ with A(nv, w) = nA(v, w)

3. For $\tilde{v} = n \cdot v$:

$$A(\tilde{v}, w) = n \cdot A(\frac{\tilde{v}}{n}, w)$$

$$\Rightarrow A(\frac{\tilde{v}}{n}, w) = \frac{1}{n} A(\tilde{v}, w)$$

$$A(nv, w) = nA(v, w)$$

$$A(\frac{1}{n}v, w) = \frac{1}{n} A(v, w)$$

$$A(\frac{m}{n}v, w) = \frac{m}{n} A(v, w)$$

$$A(-v, w) = -A(v, w)$$

From continuity it follows that $A(\lambda u, w) = \lambda A(v, w)$ for $\lambda \in \mathbb{R}$. Analogously $A(v, \lambda w) = \lambda A(v, w)$.

4. The sum is given with

$$A(v+w,w) = A(v,w)$$

Compare with Figure 2, where area(2) + area(3) = area(2) + area(1).

$$A(\lambda v + \mu w, w) = A(\lambda v + \mu w, \frac{1}{\mu} \mu w)$$
$$= \frac{1}{\mu} A(\lambda v + \mu w, \mu w)$$
$$= \frac{1}{\mu} A(\lambda v, \mu w)$$
$$= A(\lambda v, w)$$

General case: v, w are linear independent and therefore basis of \mathbb{R}^2 . Besides that, v_1 and v_2 are arbitrary.

$$v_1 = \lambda_1 v + \mu_1 w$$
$$v_2 = \lambda_2 v + \mu_2 w$$

Figure 2: Translation of area 1 to area 3.

$$A(v_1 + v_2, w) = A(\lambda_1 v + \mu_1 w + \lambda_2 v + \mu_2 w, w)$$

$$= A((\lambda_1 + \lambda_2) v + (\mu_1 + \mu_2) w, w)$$

$$= A((\lambda_1 + \lambda_2) v, w)$$

$$= (\lambda_1 + \lambda_2) A(v, w)$$

$$= A(\lambda_1 v, w) + A(\lambda_2 v, w)$$

$$A(\lambda_1 v + \mu_1 w, w) + A(\lambda_2 v + \mu_2 w, w) = A(v_1, w) + A(v_2, w)$$

Additivity follows.

Definition 3. Let dim V = n. A determinant form is a map

$$\triangle: V^n \to \mathbb{K}$$

with properties:

1.

$$\bigwedge_{\lambda} \bigwedge_{k} \bigwedge_{a_1, \dots, a_n \in V} \triangle(a_1, \dots, a_{k-1}, \lambda a_k, a_{k+1}, \dots, a_n) = \lambda \triangle(a_1, \dots, a_k, \dots, a_n)$$

2.

$$\bigwedge_{k} \bigwedge_{\substack{a_{1}, \dots, a_{n} \\ a'_{k}, a''_{k}}} \triangle(a_{1}, \dots, a_{k-1}, a'_{k} + a''_{k}, a_{k+1}, \dots, a_{n})$$

$$:= \triangle(a_1, \dots, a_{k-1}, a'_k + a''_k, a_{k+1}, \dots, a_n)$$

3.

$$\triangle(a_1,\ldots,a_n)=0$$

if $\bigvee_{k\neq l} a_k = e_l$ if $\triangle \neq 0$, i.e. \triangle is non-trivial.

Multilinearity is defined by the first two properties. Multilinearity means linearity in a_k if $a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_n$ gets fixed.

Theorem 4.

$$\dim V = n$$

 $\triangle: V^n \to \mathbb{K}$ is determinant form

Then,

4.

$$\bigwedge_{\lambda \in \mathbb{K}} \bigwedge_{i \neq j} \triangle(a_1, \dots, a_{i-1}, a_i + \lambda a_j, a_{i+1}, \dots, a_n) = \triangle(a_1, \dots, a_i, \dots, a_n)$$

"Addition of λa_i to a_i does not change \triangle "

5.

$$\bigwedge_{i>j} \triangle(a_1,\ldots,a_{j-1},a_i,a_{j+1},\ldots,a_{i-1},a_j,a_{i+1},\ldots,a_n)$$

$$= -\triangle(a_1,\ldots,a_j,\ldots,a_i,\ldots,a_n)$$

"Exchanging a_i with a_j inverts the sign"

Proof. 4.

$$\triangle(a_1,\ldots,a_i+\lambda a_j,\ldots,a_n)$$

Without loss of generality: i < j. From properties 1 and 2 it follows that:

$$= \triangle(a_1,\ldots,a_i,a_i,a_n) + \lambda \triangle(a_1,\ldots,a_i,a_i,\ldots,a_k)$$

Oh, a_i occurs twice! Once at index i and once at index j.

$$=0$$

due to property 3.

5.

$$0 \stackrel{\text{property } 3}{=} \triangle(a_1, \dots, a_{i-1}, a_i + a_j, \dots, a_{j-1}, a_i + a_j, \dots, a_n)$$

$$= \triangle(a_1, \dots, a_{i-1}, \mathbf{a_i}, \dots, a_{j-1}, \mathbf{a_i}, \dots, a_n) = \mathbf{0}$$

$$+ \triangle(a_1, \dots, a_{i-1}, \mathbf{a_i}, \dots, a_{j-1}, \mathbf{a_j}, \dots, a_n)$$

$$+ \triangle(a_1, \dots, a_{i-1}, \mathbf{a_j}, \dots, a_{j-1}, \mathbf{a_i}, \dots, a_n)$$

$$+ \triangle(a_1, \dots, a_{i-1}, \mathbf{a_j}, \dots, a_{j-1}, \mathbf{a_j}, \dots, a_n) = \mathbf{0}$$

$$\Rightarrow \delta$$

Definition 4. A permutation of order n is a bijective mapping $\pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$.

$$\sigma_n = set of all permutations$$

Remark 1. Notation: We write the elements in the first row and their images in the second row.

Definition 5. σ_n constitutes (in terms of composition) a group with neutral element id, the so-called symmetric group.

In the previous course (Theorem 1.40) we have proven: Compositions of bijective functions are bijective.

Remark 2. For $n \geq 3$, σ_n is non-commutative

Theorem 5.

$$|\sigma_n| = n!$$

Remark 3. These are "a lot"!

Example 3.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

Definition 6. A transposition is a permutation of the structure

$$\tau = \tau_{ij}: \begin{array}{cc} i \mapsto j \\ j \mapsto i & \text{if } k \notin \{i, j\} \\ k \mapsto h \end{array}$$

Then $\tau_{ij}^{-1} = \tau_{ij}$, hence $\tau_{ij}^{2} = id$.

Theorem 6. σ_n is generated by transpositions. With other words, every permutation π can be represented as composition of transpositions

$$\pi = \tau_1 \circ \ldots \circ \tau_k$$

Proof.

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$$

If $\pi = id$,

$$\pi = \pi \quad \tau := id$$

If $\pi \neq id$,

$$k_1 = \min \left\{ k \, | \, k \neq \pi(k) \right\}$$

1.

2.

$$\tau_1 = \tau_{k_1 \pi(k_1)}$$

$$\pi_1 = \tau_1 \circ \pi = \begin{pmatrix} 1 & \dots & k_{-1} & k_1 & \dots \\ 1 & \dots & k_{-1} & k_1 & \dots \end{pmatrix}$$

Example: Consider $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 4 & 7 & 6 & 2 \end{pmatrix}$.

$$k_1 = 2$$

$$\tau_1 = \tau_{23}$$

$$\pi_1 = \tau_1 \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 5 & 4 & 7 & 6 & 3 \end{pmatrix}$$

 $k_2 = \min\{k \mid k \neq \pi_1(k)\} > k_1$

$$\tau_2 = \tau_{k_2, \pi(k_2)}$$

And so on and so forth. $k_j > k_{j-1}$ ends after $\leq n$ steps.

$$\tau_k \circ \tau_{k-1} \circ \ldots \circ \tau_1 \circ \pi = \mathrm{id}$$

$$\Rightarrow \pi = \tau_1 \circ \tau_2 \circ \ldots \circ \tau_k$$

Regarding the example:

$$k_2 = 3$$

$$\tau_2 = \tau_{35}$$

$$\pi_2 = \tau_2 \circ \pi_1 = \tau_2 \circ \tau_1 \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 7 & 6 & 5 \end{pmatrix}$$

$$k_3 = 5$$
 $\tau_3 = \tau_{57}$

$$\Rightarrow \pi = \tau_{23} \circ \tau_{35} \circ \tau_{57}$$

Definition 7. An inversion of π is a pair (i, j) such that i < j with $\pi(i) > \pi(j)$. Let F_{π} be the set of inversions of π .

$$f_{\pi} := |F_{\pi}|$$
$$\operatorname{sign}(\pi) := (-1)^{f_{\pi}} =: (-1)^{\pi}$$

Example 4.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 4 & 7 & 6 & 2 \end{pmatrix}$$

$$F_{\pi} = \{(2,7), (3,4), (3,7), (4,7), (5,6), (5,7), (6,7)\}$$

$$f_{\pi} = 7 \qquad \operatorname{sign}(\pi) = -1$$

This lecture took place on 7th of March 2016 (Franz Lehner).

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Recall: Determinant form:

1.
$$\triangle(a_1,\ldots,\lambda a_k,\ldots,a_n)=\lambda\triangle(a_1,\ldots,a_n)$$

2.
$$\triangle(a_1, \ldots, a'_k + a''_k, \ldots, a_n) = \triangle(a_1, \ldots, a'_k, \ldots, a_n) + \triangle(a_1, \ldots, a''_k, \ldots, a_n)$$

3.
$$\triangle(a_1, ..., a_k, ..., a_l, ..., a_n) = 0$$
 if $a_k = a_l$

Conclusions:

4.
$$\triangle(a_1,\ldots,a_k+\lambda a_l,\ldots,a_n)=\triangle(a_1,\ldots,a_n)$$
 if $k\neq l$

5.
$$\triangle(a_1,\ldots,a_k,\ldots,a_l,\ldots,a_n) = -\triangle(a_1,\ldots,a_l,\ldots,a_k,\ldots,a_n)$$

$$\triangle(a_{\pi(1)},\ldots,a_{\pi(n)}) = (-1)^k \triangle(a_1,\ldots,a_n)$$

Decompose $\pi = \tau_1 \circ \ldots \circ \tau_k \circ \tau_{12} \circ \tau_{12}$. This decomposition is not distinct (k is distinct mod 2)

$$\pi \in \sigma_n$$
 permutation

$$F_{\pi} = \{(i, j) \mid i < j, \pi(i) > \pi(j), \text{ inversions } \}$$

$$f_{\pi} = |F_{\pi}|$$

$$\text{sign}(\pi) := (-1)^{f_{\pi}} =: (-1)^{\pi}$$

Theorem 7. • $\bigwedge_{\pi \in \sigma_n} \operatorname{sign}(\pi) = \prod_{1 \le i < j \le n} \frac{\pi(j) - \pi(i)}{j - i}$

• For transposition τ it holds that $sign(\tau) = -1$

Proof. • Every pair $\{i, j\}$ occurs in the enumerator exactly once.

$$\frac{\prod_{i < j} \pi(j) - \pi(i)}{\prod_{i < j} (j - i)}$$

Denominator: j > i, positive. Enumerator: positive if $\pi(j) > \pi(i)$, negative if $\pi(i) > \pi(j)$.

$$\tau = \begin{pmatrix} 1 & \dots & k & \dots & l & \dots & n \\ 1 & \dots & l & \dots & k & \dots & n \end{pmatrix}$$

$$F_{\tau}(\underbrace{(k, k+1), (k, k+2), \dots, (k, l-1), (k, l), (k+1, l), \dots, (l-1, l)}_{\text{inversions with } k, l-k \text{ times}})$$

Example:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 2 & 3 & 8 & 5 & 6 & 7 & 4 & 9 & 10
\end{pmatrix}$$

Yields 7 inversions (8 needs to be repositioned with 3 transpositions, 4 needs to be repositions with 4 transpositions).

$$\operatorname{sign}(\pi) = \prod_{i < j} \frac{\pi(j) - \pi(i)}{j - i} \qquad \binom{n}{2} \text{ factors}$$
$$\operatorname{sign}(\tau) = -1$$

Theorem 8. $1. \operatorname{sign}(id) = 1$

2. $sign(\pi \circ \sigma) = sign(\pi) \cdot sign(\sigma)$, hence

$$\operatorname{sign} \sigma_n \to (\{+1, -1\}, \cdot)$$

is a group homomorphism. (In general: A group homomorphism $h: G \to (\mathcal{T}, \cdot)$ is called character)

3. $\operatorname{sign}(\pi^{-1}) = \operatorname{sign}(\pi)$

Remark 4.

$$\mathcal{T} = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

Torus with multiplication is a group.

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2| = 1$$

Proof. 1. trivial

2.

$$\operatorname{sign}(\pi \cdot \sigma) = \prod_{i < j} \frac{\pi \circ \sigma(j) - \pi \circ \sigma(i)}{j - i}$$

$$= \prod_{i < j} \frac{\pi(\sigma(j)) - \pi(\sigma(i))}{\sigma(j) - \sigma(i)} \cdot \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}$$

$$= \sup_{i < j} \prod_{j < j} \frac{\sigma(j) - \sigma(j)}{j - i}$$

3. Group homomorphism!

Corollary 1. • If $\pi = \tau_1 \circ \tau_2 \circ \dots \circ \tau_k$, product of transpositions $\Rightarrow \operatorname{sign}(\pi) = (-1)^k$

• $\mathfrak{a}_n := \ker(\operatorname{sign}) = \{\pi \in \sigma_n \mid \operatorname{sign}(\pi) = 1\}$

"even permutations", "alternating group"

$$|\mathfrak{a}_n| = \frac{n!}{2}$$

Corollary 2.

 $\triangle: V^k \to \mathbb{K} \ determinant \ form$

then it holds that

$$\bigwedge_{\pi \in \sigma_n} \bigwedge_{a_1, \dots, a_n \in V} \triangle(a_{\pi(1)}, \dots, a_{\pi(n)}) = \operatorname{sign}(\pi) \cdot \triangle(a_1, \dots, a_n)$$

Proof. • If $\pi = \tau_{kl}$ transposition $\xrightarrow{\text{Theorem 4}} \triangle(a_{\tau(1)}, \dots, a_{\pi(n)}) = -\triangle(a_1, \dots, a_n) = \text{sign}(\tau_{kl}) \cdot \triangle(a_1, \dots, a_n)$

• If $\pi = \tau_1 \circ \ldots \circ \tau_k = \tau_1 \circ \tilde{\pi}, \tilde{\pi} = \tau_2 \circ \ldots \circ \tau_k$

$$\Delta(a_{\tau_1 \circ \tilde{\pi}(1)}, \dots, a_{\tau_1 \circ \tilde{\pi}(n)})$$

$$= -\Delta(a_{\tilde{\pi}(1)}, \dots, a_{\tilde{\pi}(n)})$$

$$= (-1)^2 \cdot \Delta(a_{\tilde{\pi}(1)}, a_{\tilde{\pi}(n)})$$

$$\rightarrow (-1)^k \cdot \Delta(a_1, \dots, a_n)$$

Theorem 9 (Leibnitz' definition of det(A)). Let $B = (b_1, \ldots, b_n)$ be the basis of V. $a_1, \ldots, a_n \in V$ with coordinates

$$\Phi_B(a_j) = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix}$$

$$A := [a_{ij}]_{i,j=1,...,n} = [\Phi_B(a_1), \Phi_B(a_2), ..., \Phi_B(a_n)]$$

Then it holds that for every determinant form $\triangle: V^k \to \mathbb{K}$:

$$\triangle(a_1,\ldots,a_n) = \det(A) \cdot \triangle(b_1,\ldots,b_n)$$

where

$$\det(A) := \sum_{\pi \in \sigma_n} \operatorname{sign}_{\mathbb{K}} \pi a_{\pi(1),1} a_{\pi(2),2} \dots a_{\pi(n),n}$$

is the determinant of A

Example 5. Example (n = 2):

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

$$\operatorname{sign} \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 1$$

$$\operatorname{sign} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = -1$$

Proof.

$$a_j = \sum_{j=1}^n a_{ij} b_i$$

$$\triangle(a_1, \dots, a_n) = \triangle\left(\sum_{i=1}^n a_{i,1}b_i, \sum_{i_2=1}^n a_{i_2,2}b_i, \dots, \sum_{i_n=1}^n a_{i_n,n}b_i\right)$$

$$= \sum_{i_1=1}^n a_{i,1} \sum_{i_2=1}^n a_{i_2,2} \dots \sum_{i_n=1}^n a_{i_n,n} \underbrace{\triangle(b_i, b_{i_2}, \dots, b_{i_n})}_{=0 \text{ if some } i_k=i_l}$$

So summands with equal indices disappear. It holds that $\sum_{i_1,...,i_n}$ such that $i_1,...,i_n$ are different. Hence every value from $\{1,...,n\}$ occurs exactly once. This is the set of all permutations π $(i_j = \pi(j))$

$$= \sum_{\pi \in \sigma_n} a_{\pi(1)1} a_{\pi(2)2} \dots a_{\pi(n)n} \underbrace{\triangle(b_{\pi(1)}, \dots, b_{\pi(n)})}_{\operatorname{sign}(\pi) \cdot \triangle(b_1, \dots, b_n)}$$

Corollary 3. A determinant form is uniquely defined on a basis (b_1, \ldots, b_n) by the value $\triangle(b_1, \ldots, b_n)$. Especially \triangle is nontrivial,

 $\Leftrightarrow \triangle(b_1,\ldots,b_n) \neq 0$ on some basis.

 $\Leftrightarrow \triangle(b_1,\ldots,b_n) \neq 0 \text{ in every basis } b_1,\ldots,b_n.$

Let $\triangle(b'_1,\ldots,b'_n)=0$ for some other basis, represent b_1,\ldots,b_n in basis b'_1,\ldots,b'_n

$$b_j = \sum a_{ij}b'_i \Rightarrow \triangle(b_1, \dots, b_n) = \det(A) \cdot \triangle(b'_1, \dots, b'_n) = 0$$
$$\triangle(a_1, \dots, a_n) = \det(A) \cdot \triangle(b_1, \dots, b_n)$$

Theorem 10. Let $B = (b_1, \ldots, b_n)$ be a basis of V over \mathbb{K} . $c \in \mathbb{K}$. For $a_1, \ldots, a_n \in V$, let $A = [\Phi_B(a_1), \ldots, \Phi_B(a_n)]$. Then

$$\triangle(a_1,\ldots,a_n)=c\cdot\det(A)$$

defines a determinant form, specifically the unique determinant form with value

$$\triangle(b_1,\ldots,b_n)=c$$

Proof. The 3 properties of a determinant form:

1.

$$\triangle(a_1, \dots, \lambda a_k, \dots, a_n) = c \cdot \det \left[\Phi_B(a_1), \dots, \lambda \cdot \Phi_B(a_k), \dots, \Phi_B(a_n) \right]$$

$$= c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1), 1} a_{\pi(2), 2} \dots \lambda a_{\pi(k), k} \dots a_{\pi(n), n}$$

$$= \lambda \cdot c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1), 1} a_{\pi(2), 2} \dots a_{\pi(n), n}$$

$$= \lambda \cdot \triangle(a_1, \dots, a_n)$$

2.

$$\Delta(a_{1}, \dots, a'_{k} + a''_{k}, \dots, a_{n})
= c \cdot \det \left[\Phi_{B}(a_{1}), \dots, \Phi_{B}(a'_{k}) + \Phi_{B}(a''_{k}), \dots, \Phi_{B}(a_{n}) \right]
= c \cdot \sum_{\pi \in \sigma_{n}} \operatorname{sign} \pi \cdot a_{\pi(1), 1} \cdot a_{\pi(2), 2} \cdot \dots \left(a'_{\pi(k), k} + a''_{\pi(k), k} \right) \cdot \dots \cdot a_{\pi(n), n}
= c \cdot \sum_{\pi \in \sigma_{n}} \operatorname{sign} \pi \cdot a_{\pi(1), 1} \cdot \dots \cdot a'_{\pi(k), k} \dots a_{\pi(n), n}
+ c \cdot \sum_{\pi \in \sigma_{n}} \operatorname{sign}(\pi) a_{\pi(1), 1} \dots a''_{\pi(k), k} \dots a_{\pi(n), n}
= \Delta(a_{1}, \dots, a'_{k}, \dots, a_{n}) + \Delta(a_{1}, \dots, a''_{k}, \dots, a_{n})$$

Linear Algebra II – Lecture Notes

3. Let
$$a_k = a_l$$
 for $k < l$. Show that $\triangle(a_1, \ldots, a_n) = 0$

 τ_{kl} = transposition exchanging k and l

$$\sigma_n = \mathfrak{a}_n \dot{\cup} \left(\mathfrak{a}_n \cdot \tau_{kl} \right)$$

Claim: $\{\pi \mid \text{sign } \pi = -1\} = \{\pi \circ \tau_{kl} \mid \text{sign } \pi = +1\}$

$$\supseteq \operatorname{If} \operatorname{sign} \pi = +1 \Rightarrow \operatorname{sign}(\pi \circ \tau_{kl}) = \underbrace{\operatorname{sign} \pi}_{} \cdot \underbrace{\operatorname{sign} \tau_{kl}}_{} = -1$$

$$\supseteq \text{ If } \operatorname{sign} \pi = +1 \Rightarrow \operatorname{sign}(\pi \circ \tau_{kl}) = \underbrace{\operatorname{sign} \pi}_{+1} \cdot \underbrace{\operatorname{sign} \tau_{kl}}_{-1} = -1$$

$$\subseteq \text{ If } \operatorname{sign} \pi = -1 \Rightarrow \operatorname{sign}(\pi \circ \tau_{kl}) = +1 \Rightarrow \pi = \underbrace{(\pi \circ \tau_{kl})}_{\in \mathfrak{a}_n} \circ \tau_{kl} \in \mathfrak{a}_n \cdot \tau_{kl}$$

$$\triangle(a_1, \dots, a_n) = c \cdot \sum_{\pi \in \sigma_n = \mathfrak{a}_n \cup \mathfrak{a}_n \cdot \tau_{kl}} \operatorname{sign}(\pi) a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= c \cdot \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi \circ \tau_{kl}(1), 1} \dots a_{\pi \circ \tau_{kl}(k), k} \dots a_{\pi \circ \tau_{ul}(l), l} \dots a_{\pi \circ \tau_{kl}(n), n}$$

$$= c \cdot \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= \sum_{\pi \in \mathfrak{a}_n} a_{\pi(n), 1} \dots a_{\pi(n), n}$$

What we did:

- (a) $a_{\pi(l),k} = a_{\pi(l),l}$ and $a_{\pi(k),l} = a_{\pi(k),k}$ because $a_k = a_l$
- (b) exchange factors

$$= c \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1),1} \dots a_{\pi(k),k} \dots a_{\pi(l),l} \dots a_{\pi(n),n}$$
$$- c \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1),1} \dots a_{\pi(k),k} \dots a_{\pi(l),l} \dots a_{\pi(n),n}$$
$$= 0$$

Value for
$$(b_1, \ldots, b_n)$$

$$a_{ij} = \delta_{ij} \Rightarrow A = I$$
$$\det(I) = \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot \delta_{\pi(1),1} \dots \delta_{\pi(n),n} = +1$$

for all $\pi(i) = i$ otherwise 0.

 $\Rightarrow \pi = id$ is the only summand

$$\triangle(b_1,\ldots,b_n)=\det(I)\cdot c=c$$

Remark 5. " \mathfrak{a}_n is the subgroup of index 2" denoted $[\sigma_n : \mathfrak{a}_n] = 2$

You might be familiar with:

$$\mathbb{Z}_n = \mathbb{Z}_{n\mathbb{Z}}$$
$$[\mathbb{Z} : n\mathbb{Z}] = n$$

Theorem 11 (Summary). • The set of determinant forms $\triangle : V^n \to \mathbb{K}$ constructs a one-dimensional vector space, $\Lambda^n V$

• There exists a non-trivial determinant form with $\triangle(b_1,\ldots,b_n)=1$

This lecture took place on 9th of March 2016 (Franz Lehner). Revision:

$$\triangle: V^n \to \mathbb{K}$$

$$\triangle(a_1,\ldots,a_n) = \det A \cdot \triangle(b_1,\ldots,b_n)$$

$$\phi_B(a_j) = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix}$$

$$\det A = \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1),1} \dots a_{\pi(n),n}$$

 $\triangle(v_1,\ldots,v_n)\neq 0 \Leftrightarrow v_1,\ldots,v_n$ linear independent (\Leftrightarrow basis)

Theorem 12.

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

Lemma 3. Let V, W be vector spaces over \mathbb{K} with $\dim V = \dim W = n$.

$$\triangle:W^n\to\mathbb{K}$$

$$f:V\to W$$

$$\Rightarrow f^n: V^n \to W^n \stackrel{\triangle}{\to} \mathbb{K}$$
$$(v_1, \dots, v_n) \mapsto (f(v_1), \dots, f(v_n))$$

Then $\triangle^f: V^n \to \mathbb{K}$

$$\triangle^f(v_1,\ldots,v_n) = \triangle(f(v_1),\ldots,f(v_n))$$

is a determinant form in V.

Proof. 1.

$$\triangle f(v_1, \dots, \lambda v_k, \dots, v_n) = \triangle (f(v_1), \dots, f(\lambda v_k), \dots, f(v_n))$$
$$= \lambda \triangle (f(v_1), \dots, f(v_n))$$
$$= \lambda \cdot \triangle^f (v_1, \dots, v_n)$$

2.

$$= \triangle^{f}(v_{1}, \dots, v'_{k}, +v''_{k}, \dots, v_{n})$$

$$= \triangle(f(v_{1}), \dots, f(v'_{k} + v''_{k}), \dots, f(v_{n}))$$

$$= \triangle(f(v_{1}), \dots, f(v'_{k}) + f(v''_{k}), \dots, f(v_{n}))$$

$$= \triangle(f(v_{1}), \dots, f(v'_{k}), \dots, f(v_{n})) + \triangle(f(v_{1}), \dots, f(v''_{k}), \dots, f(v_{n}))$$

$$= \triangle^{f}(v_{1}, \dots, v'_{k}, \dots, v_{n}) + \triangle^{f}(v_{1}, \dots, v''_{k}, \dots, v_{n})$$

3.

$$\triangle^{f}(v_1, \dots, v_k, \dots, v_l, \dots, v_n) \qquad v_k = v_l \Rightarrow f(v_k) = f(v_l)$$

$$= \triangle(f(v_1), \dots, f(v_k), \dots, f(v_l), \dots, f(v_n))$$

$$= 0$$

26

Corollary 4 (Conclusions for V = W).

$$\triangle: V^n \to \mathbb{K}$$

non-trivial determinant form

$$f: V \to V$$

 $\Rightarrow \triangle^f$ is a determinant form

$$\dim \bigwedge^{n} \bigvee = 1 \Rightarrow \bigvee_{c_f \in \mathbb{K}} \triangle^k = c_f \cdot \triangle$$

 $c_f =: \det f$ is called determinant of f

Corollary 5. Let V, \triangle and f be like above.

1. For every basis $B = (b_1, \ldots, b_n)$ it holds that

$$\triangle^{f}(b_{1}, \dots b_{n}) = \triangle(f(b_{1}), \dots, f(b_{n})) = \det(f) \cdot \triangle(b_{1}, \dots, b_{n})$$
$$\det(f) = \frac{\triangle(f(b_{1}), \dots, f(b_{n}))}{\triangle(b_{1}, \dots, b_{n})}$$

2. with $a_i = f(b_i)$ it holds that

$$\det \Phi_B^B(f) = \det(f)$$

$$A = \Phi_B^B(f)$$

 $a_{ij} = i$ -th coordinate of $f(b_j)$ and $s_j(A) = \Phi_B(f(b_j))$.

Theorem 13. Let $f: V \to V$ be an isomorphism $\Leftrightarrow \det(f) \neq 0$.

Proof. Let f be an isomorphism.

$$\Leftrightarrow (f(b_1), \dots, f(b_n))$$
 is basis
 $\Leftrightarrow \triangle(f(b_1), \dots, f(b_n)) \neq 0$

27

$$\Leftrightarrow \det(f) \cdot \triangle(b_1, \dots, b_n)$$

$$\Leftrightarrow \det(f) \neq 0$$

Theorem 14. Let $f, g: V \to V$ be linear.

$$\Rightarrow \det(f \circ g) = \det(f) \cdot \det(g)$$

Remark 6. We show: $f \circ g$ is isomorphism $\Leftrightarrow f$ and g are isomorphisms. If f, g are invertible, then $f \circ g$ are invertible.

1.

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

2. Attention! This is wrong, if dim = ∞ ! For example: $\delta : (x_1, x_2, ...) \mapsto (0, x_1, x_2, ...)$ over \mathbb{K}^{∞} is injective, but not surjective!

$$S_L:(x_1,x_2,\ldots)=(x_2,x_3,\ldots)$$

is not injective, but surjective.

$$S_L \circ S_R = I$$
$$S_R \circ S_L - I - P_1$$

If $f \circ g$ is bijective, then g is injective and f surjective.

 $\xrightarrow{\dim < \infty} q$ bijective, f bijective

Proof. Case distinction:

$$\det(f \circ g) = 0$$

Theorem 13 $f \circ g$ is not bijective $\Leftrightarrow f$ is not bijective or g not bijective $\Leftrightarrow \det(f) = 0 \lor \det(g) = 0$ $\Leftrightarrow \det(f) \cdot \det(g) = 0$

 $\det(f \circ g) \neq 0$

 $\Leftrightarrow f \circ g$ is bijective $\Rightarrow g$ bijective $\Rightarrow \triangle^g$ non-trivial Let (b_1, \ldots, b_n) be a basis of V, then \triangle is non-trivial determinant.

$$\det(f \circ g) = \frac{\triangle(f \circ g(b_1) \dots, f \circ g(b_n))}{\triangle(b_1, \dots, b_n)}$$

$$= \frac{\triangle(f(g(b_1)), \dots, f(g(b_n)))}{\triangle(g(b_1), \dots, g(b_n))} \cdot \frac{\triangle(g(b_1), \dots, g(b_n))}{\triangle(b_1, \dots, b_n)}$$

$$= \frac{\triangle((b'_1), \dots, f(b'_n))}{\triangle(b'_1, \dots, b'_n)} \cdot \frac{\triangle(g(b_1), \dots, g(b_n))}{\triangle(b_1, \dots, b_n)}$$

$$= \det(f) \cdot \det(g)$$

 $b'_i = g(b_i)$ are also a basis, because g is bijective.

Corollary 6. Let $A, B \in \mathbb{K}^{n \times n}$.

1. $det(A \cdot B) = det(A) \cdot det(B)$

2. A is regular $\Rightarrow \det(A^{-1}) = \frac{1}{\det(A)}$

3. $det(A) = 0 \Leftrightarrow rank(A) < n$

4. $\det(A^t) = \det(A)$

Proof. 1. A first proof follows from Theorem 14. A second proof approach is:

$$A = [s_1, \dots, s_n]$$
 column vectors

$$A \cdot B = \left[\sum_{i_1=1}^n s_{i_1} \cdot b_{i_1,1}, \sum_{i_2=1}^n s_{i_2} b_{i_2,2}, \dots, \sum_{i_n=1}^n s_{i_n} b_{i_n,n} \right]$$

Select determinent form such that $\triangle(e_1,\ldots,e_n)=1$.

$$\det(A \cdot B) = \triangle \left(\sum_{i_1=1}^n s_{i_1} b_{i_1}, \dots, \sum_{i_n=1}^n s_{i_n} b_{i_n,n} \right)$$

From multilinearity it follows that

$$\sum_{i_1=1}^{n} \sum_{i_2=1}^{n} \cdots \sum_{i_n=1}^{n} b_{i_1,1} b_{i_2,2} \cdots b_{i_n,n} \triangle(s_{i_1}, \dots, s_{i_n})$$

If two indices satisfy $i_k = i_l \Rightarrow \triangle = 0$.

$$\Rightarrow \sum_{\text{different indices}} = \sum_{\text{permutations}}$$

$$=\underbrace{\sum_{\pi \in \sigma_n} b_{\pi(1),1} b_{\pi(2),2} \cdots b_{\pi(n),n}}_{\det(B)} \underbrace{\triangle(s_{\pi(1)}, \dots, s_{\pi(n)})}_{\operatorname{sign}(\pi)} \underbrace{\triangle(s_{1}, \dots, s_{n})}_{\det(A)}$$

$$= \det A \cdot \det B$$

Be aware that det(B) also includes $sign(\pi)$ from the right-hand side.

2.

$$A \cdot A^{-1} = I \Leftrightarrow \det(A \cdot A^{-1}) = \det I = 1$$
$$\det(A \cdot A^{-1}) \stackrel{1}{=} \det(A) \cdot \det(A^{-1})$$

3. det(A) = 0 and $det(A) = det(f_A)$.

 $\Leftrightarrow f_A$ is not bijective $\Leftrightarrow \operatorname{rank}(A) < n$

4.

$$\det(A^T) = \sum_{\pi \in \sigma_n} \operatorname{sign}(\pi) a_{\pi(1),1}^T \dots a_{\pi(n),n}^T$$

$$= \sum_{\pi \in \sigma_n} \operatorname{sign}(\pi) a_{1,\pi(1)} \dots a_{n,\pi(n)}$$

$$= \sum_{\pi \in \sigma_n} \operatorname{sign} \pi a_{\pi^{-1}(1),1} \dots a_{\pi^{-1}(n),1}$$

$$= \sum_{\rho} \operatorname{sign} \rho^{-1} a \qquad \rho = \pi^1$$

For fixed π :

$$\prod_{j=1}^{n} a_{j,\pi(j)} = \prod_{k=1}^{n} a_{\pi^{-1}(k),k}$$
$$\pi(j) = 1 \Leftrightarrow j = \pi'(1)$$

$$\pi(j) = k \Leftrightarrow j = \pi'(k)$$

$$\sum_{\pi} \operatorname{sign} \pi a_{\pi^{-1}(1),1} \dots a_{\pi^{-1}(n),n}$$

$$= \sum_{\rho} \operatorname{sign}(\rho^{-1}) a_{\rho(1),1} \dots a_{\rho(n),n} = \sum_{\rho} \operatorname{sign}(\rho) a_{\rho(1),1} \dots a_{\rho(n),n} = \det A$$

Remark:

$$\sigma_n \to \sigma_n$$
 is bijective

$$\pi \mapsto \pi^{-1}$$

$$\operatorname{sign}(\rho) = (-1)^k \text{ where } \rho = \tau_1, \dots, \tau_k$$

$$\Rightarrow \rho^{-1} = \tau_k \circ \dots \circ \tau_n$$

$$\operatorname{sign} \rho^{-1} = (-1)^k$$

Remark 7 (Determination of determinants). dim ≤ 3

For n=2:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

For n = 3:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \sum_{\pi \in \sigma_3} \operatorname{sign}(\pi) a_{\pi(1),1} a_{\pi(2),2} a_{\pi(3),3}$$

General linear group:

$$\begin{split} \operatorname{GL}(n,\mathbb{K}) &= \operatorname{group} \ \operatorname{of} \ \operatorname{invertible} \ \operatorname{matrices} \\ &= \left\{ A \in \mathbb{K}^{n \times n} \ \middle| \ \operatorname{det}(A) \neq 0 \right\} \\ \operatorname{SL}(n,\mathbb{K}) &= \operatorname{special} \ \operatorname{linear} \ \operatorname{group} \\ &= \left\{ A \in \mathbb{K}^{n \times n} \ \middle| \ \operatorname{det}(A) = 1 \right\} \end{split}$$

 σ_3 is a coxeter group.

$$\sigma_3 = \langle \tau_{12}, \tau_{23} \rangle$$

Is created by two transpositions.

Figure 3: Sign of a permutation

 $= a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{21}a_{12}a_{33} - a_{11}a_{32}a_{23} - a_{31}a_{22}a_{13}$ corresponding to (1) + (2) + (3) + (4) + (5) + (6) in Figure 3.

Remark 8 (Rule of Sarrus). Compare with Figure 4.

You write the first two columns next to right side of the matrix. You add up all 3 diagonals (the product of their values) from top left diagonally to the right bottom and subtract all 3 diagonals from left bottom to the top right.

Figure 4: Rule of Sarrus visualized

The rule of Sarrus does not hold for n = 4!

Example 6.

$$\det \begin{vmatrix} 1 & 2 & 5 \\ 2 & 5 & 14 \\ 5 & 14 & 42 \end{vmatrix} = 1 \cdot 5 \cdot 42 + 2 \cdot 14 \cdot 5 + 5 \cdot 2 \cdot 14 - 5 \cdot 5 \cdot 5 - 14 \cdot 14 \cdot 1 - 2 \cdot 2 \cdot 42$$
$$= 14(1 \cdot 5 \cdot 3 + 2 \cdot 5 + 5 \cdot 2 - 14 - 2 \cdot 2 \cdot 3) - 125 = 14 \cdot 9 - 125 = 1$$

It turns out, if we use Catalan numbers, we always end up with determinant 1.

Lemma 4. Let A be an upper triangular matrix, hence $a_{ij} = 0 \forall i > j$. Then it holds that det $A = a_{11}a_{22} \dots a_{nn}$.

Proof.

$$\det A = \sum_{\pi \in \sigma_n} \operatorname{sign} \pi a_{\pi(1),1} \dots a_{\pi(n),n}$$

it must hold that

$$\pi(j) \le j \quad \forall j$$

$$\Rightarrow \pi(1) = 1, \pi(2) = 2, \dots, \pi(n) = n$$

The only permutation which contributes something is the identity. And sign id = 1, hence

$$=1\cdot a_{11}a_{22}\dots a_{nn}$$

Lemma 5 (Elementary row and column transformations).

$$A = [a_{ij}] \in \mathbb{K}^{n \times n}$$

1.

$$s_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{bmatrix} column \ vectors$$

$$\Rightarrow \det[as_1, \dots, s_i + \lambda s_j, \dots, s_n] = \det(A) \qquad i \neq j$$

2. Let $z_i = [a_{i_1}, \dots, a_{i_n}]$ rows of A.

$$\det \begin{bmatrix} z_1 \\ \vdots \\ z_i + \lambda z_j \\ \vdots \\ z_n = \end{bmatrix} = \det A \qquad \text{for } i \neq j$$

Proof. 1. compare with determinant form

2. $\det A = \det A^T$

Example 7.

$$\begin{vmatrix} 1 & 2 & 5 \\ 2 & 5 & 14 \\ 5 & 14 & 42 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 0 & 1 & 4 \\ 0 & 4 & 17 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot 1 \cdot 1 = 1$$

This lecture took place on 14th of March 2016 (Franz Lehner).

Lemma 6. Recall: The following operations do not change the determinant:

- $\triangle(s_1, \ldots, s_i + \lambda s_j, \ldots, s_n) = \triangle(s_1, \ldots, s_n)$ Addition of a multiple of a column (or row) to another
- Gauss-Jordan operations (elementary row/column transformations)

Example 8.

$$\begin{vmatrix} 1 & 0 & 3 & -2 \\ 2 & 6 & 4 & 1 \\ 3 & 3 & -1 & -1 \\ -1 & 2 & 4 & 1 \end{vmatrix} \longrightarrow \begin{vmatrix} 1 & 0 & 3 & -2 \\ 0 & 6 & -2 & 5 \\ 0 & 3 & -10 & 5 \\ 0 & 2 & 7 & -1 \end{vmatrix} \longrightarrow \frac{1}{3} \frac{1}{2} \begin{vmatrix} 1 & 0 & 3 & -2 \\ 0 & 6 & -2 & 5 \\ 0 & 6 & -20 & 10 \\ 0 & 6 & 21 & -3 \end{vmatrix}$$

We multiplied the third row times 2 and the fourth row times 3. Be aware that this way we avoided fractions in the matrix.

$$\Rightarrow \frac{1}{6} \begin{vmatrix} 1 & 0 & 3 & -2 \\ 0 & 6 & -2 & 5 \\ 0 & 0 & -18 & 5 \\ 0 & 0 & 23 & -8 \end{vmatrix} \cdot \frac{23}{18} = \frac{1}{6} \begin{vmatrix} 1 & 0 & 3 & -2 \\ 0 & 6 & -2 & 5 \\ 0 & 0 & -8 & 5 \\ 0 & 0 & 0 & -8 + 5\frac{23}{18} \end{vmatrix}$$

Even though we have a fraction $\frac{1}{6}$ at the front, our result will remain to be integral (i.e. without decimal points).

Triangular matrix:

$$\frac{1}{6} \cdot 1 \cdot 6 \cdot (-18) \cdot \left(-8 + \frac{5 \cdot 23}{18}\right)$$

$$= -(-18 \cdot 8 + 5 \cdot 23) = -(-144 + 115) = 29$$

Lemma 7. 1.

a_{11}	*		*	
0				1.5
:		B		$= a_{11} \cdot \det B$
0				

2.

$$\begin{bmatrix} B & 0 \\ 0 \\ \vdots \\ * \dots * a_{nn} \end{bmatrix} = \det B \cdot a_{nn}$$

Proof.

$$\det A = \sum_{\pi \in \sigma_n} (-1)^{\pi} a_{\pi(1),1} \dots a_{\pi(2),2}$$

2.

$$a_{\pi(n),n} = 0 \text{ except when } \pi(n) = n$$

$$= \sum_{\pi \in \sigma_n} (-1)^{\pi} a_{\pi(1),1} \dots a_{\pi(n),n}$$

$$= \sum_{\rho \in \sigma_{n-1}} (-1)^{\rho} a_{\rho(1),1} \dots a_{\rho(n-1),n-1} a_{\rho(n),n} = \det B \cdot a_{nn}$$

 $\begin{vmatrix} a_{1,1} & \dots & a_{1,l-1} & a_{1,l+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,l-1} & a_{2,l+1} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{k-1,1} & \dots & a_{k-1,l-1} & a_{k-1,l+1} & \dots & a_{k-1,n} \\ a_{k+1,1} & \dots & a_{k+1,l-1} & a_{k+1,l+1} & \dots & a_{k+1,n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,l-1} & a_{n,l+1} & \dots & a_{n,n} \end{vmatrix}$

Theorem 15 (Generative theorem of Laplace (dt. Entwicklungssatz von Laplace)). Let $A \in K^{n \times n}$, then it holds that

$$\det(A) = \sum_{k=1}^{n} a_{k,l} \cdot (-1)^{k+l} \cdot \det A_{k,l}$$

Generation to l-th column.

$$\det A = \sum_{l=1}^{n} a_{k,l} \cdot (-1)^{k+l} \cdot \det A_{k,l}$$

Generation to k-th row.

Definition 8. Let $A \in \mathbb{K}^{n \times n}$.

$$1 \le k, l \le n$$

 $A_{k,l}$ (dimension $(n-1) \times (n-1)$) which is generated by A if you cancel out row k and column l.

$$a_l = \sum_{k=1}^n a_{kl} e_k$$

where 1 is given on the k-th row and the l-th column which is e_k .

We exchange the l-th column with the (l-1)-th, then (l-2)-th and so on and so forth ... This requires (l-1) transpositions.

$$\sum_{k=1}^{n} a_{kl} (-1)^{l-1} \begin{vmatrix} 0 & a_{11} & \dots & a_{1,l-1} & a_{1,l-1} & \dots & a_{1,n} \\ \vdots & a_{21} & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n1} & \dots & a_{n,l-1} & a_{n,l-1} & \dots & a_{n,n} \end{vmatrix}$$

where 1 is given on the k-th row.

Exchange k-th and (k-1)-th row, then (k-2)-th and so on and so forth . . . This requires k-1 transpositions.

38

$$= \sum_{k=1}^{n} a_{kl} (-1)^{k-1+l-1} \begin{vmatrix} 1 & & & \\ 0 & & \vdots & & \\ \vdots & & & A_{k,l} \\ \vdots & & & \\ 0 & & & \end{vmatrix} = \sum_{l=1}^{n} a_{k,l} (-1)^{k+l} \det A_{k,l}$$

Example 9.

$$\begin{vmatrix} 1 & 2 & 5 \\ 2 & 5 & 14 \\ 5 & 14 & 42 \end{vmatrix} = 1 \cdot \begin{vmatrix} 5 & 14 \\ 14 & 42 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 14 \\ 5 & 42 \end{vmatrix} + 5 \cdot \begin{vmatrix} 2 & 5 \\ 5 & 4 \end{vmatrix}$$
$$\begin{vmatrix} + \begin{vmatrix} - \end{vmatrix} + \begin{vmatrix}$$

where the top right + refers to the third summand (submatrix) and the top middle - refers to the second summand (submatrix).

$$= (5 \cdot 42 - 14 \cdot 14) - 2 \cdot (2 \cdot 42 - 5 \cdot 14) + 5 \cdot (2 \cdot 14 - 5 \cdot 5) = 14 - 2 \cdot 14 + 5 \cdot 3 = 1$$

Theorem 16. A is invertible iff $\det A \neq 0$.

Let $A \in K^{n \times n}$, $\hat{A} := [\hat{a}_{kl}]_{k,l=1,\dots,n}$ is the complementary matrix or adjoint matrix.

$$\hat{a}_{kl} = (-1)^{k+l} \det A_{lk}$$

Then

$$A^{-1} = \frac{1}{\det A} \cdot \hat{A}$$

Proof. Show that $B := \hat{A} \cdot A = \det A \cdot I$.

$$b_{k,l} = \sum_{i=1}^{n} \hat{a}_{kj} a_{jl} = \sum_{i=1}^{n} (-1)^{k+j} \det A_{jk} a_{jl}$$

39

Case k = l

 $b_{kk} = \sum_{j=1}^{n} (-1)^{k+j} a_{jk} \det A_{jk} = \det A$ (Laplace generation to k-th column)

Case $k \neq l$ Without loss of generality k < l.

$$0 = \det \begin{bmatrix} a_{11} & \dots & a_{1l} & \dots & a_{1l} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nl} & \dots & a_{nl} & \dots & a_{nn} \end{bmatrix}$$

We replace the k-th column (left column with a_{1l} in the middle) by the l-th column (right column with a_{1l} in the middle).

Laplace generation by k-th column:

Similar to Laplace:

$$= \sum_{j=1}^{n} a_{jl} (-1)^{j+l} \det A_{jk} = \sum_{j=1}^{n} a_{jl} \hat{a}_{kj} = b_{kl}$$

Example 10 (Cayley 1855). Cayley considered it as partial derivations:

$$\frac{1}{\nabla} \begin{vmatrix} \partial_a \nabla & \partial_c \nabla \\ \partial_b \nabla & \partial_d \nabla \end{vmatrix}$$

Consider n = 2:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Consider n = 3:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{-1} = \frac{1}{\det A} \begin{bmatrix} \begin{vmatrix} a_{22} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \\ - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} & - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} & - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Example 11.

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 5 & 14 \\ 5 & 14 & 42 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} 5 & 14 \\ 14 & 42 \end{vmatrix} & - \begin{vmatrix} 2 & 5 \\ 14 & 42 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 5 & 14 \end{vmatrix} \\ - \begin{vmatrix} 2 & 14 \\ 5 & 42 \end{vmatrix} & \begin{vmatrix} 1 & 5 \\ 5 & 42 \end{vmatrix} & - \begin{vmatrix} 1 & 5 \\ 2 & 14 \end{vmatrix} \\ \begin{vmatrix} 2 & 5 \\ 5 & 14 \end{vmatrix} & - \begin{vmatrix} 1 & 2 \\ 5 & 14 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} \\ \begin{vmatrix} 5 & 14 \end{vmatrix} & - \begin{vmatrix} 1 & 2 \\ 5 & 14 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} 14 & -14 & 3 \\ -14 & 17 & -4 \\ 3 & -4 & 1 \end{bmatrix}$$
$$\begin{vmatrix} 5 & 14 \\ 14 & 42 \end{vmatrix} = 5 \cdot 3 \cdot 14 - 14 \cdot 14 = 14$$
$$\begin{vmatrix} 2 & 5 \\ 14 & 42 \end{vmatrix} = 2 \cdot 3 \cdot 14 - 5 \cdot 14 = 14$$

Theorem 17 (Arnold's hypothesis). "No theorem in mathematics is named after it's original author"

Proof. No proof provided here.

Theorem 18 (Cramer's rule). Originally by McLansin (1748) based on work by Leibniz (1678) and reformulated by G. Cramer (1750).

A regular $n \times n$ matrix with column vectors $a_1, \ldots, a_n \in \mathbb{K}^n$.

Then the unique solution to the equation system Ax = b is given by

$$x_i := \frac{\triangle(a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n)}{\triangle(a_1, \dots, a_n)} = \frac{\det(a_1, \dots, b, \dots, a_n)}{\det A}$$

Its complexity is given by n+1 determinants!

Proof.

$$b = \sum_{j=1}^{n} b_{j} e_{j}$$

$$x = A^{-1}b - \frac{1}{\det A} \hat{A} \cdot b$$

$$x_{i} = \frac{1}{\det A} \sum_{j=1}^{n} \hat{a}_{ij} b_{j} = \frac{1}{\det A} \sum_{j=1}^{n} (-1)^{i+j} \det (A_{j}) b_{j}$$

$$= \frac{1}{\det A} \sum_{j=1}^{n} \triangle (a_{1}, \dots, a_{i-1}, \dots, a_{j-1}, e_{j}, a_{j+1}, \dots, a_{n}) \cdot b_{j}$$

$$= \frac{1}{\det A} \triangle (a_{1}, \dots, a_{i-1}, \sum_{j=1}^{n} b_{j} e_{j}, \dots, a_{n})$$

Example 12.

$$2x_1 + 2x_2 = 7$$

$$x_1 - 3x_2 = 0$$

$$A = \begin{bmatrix} 2 & 2 \\ 1 & -3 \end{bmatrix} \qquad b = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$$

$$\det A = -8 \qquad x_1 = \frac{\begin{vmatrix} 7 & 2 \\ 0 & -3 \end{vmatrix}}{-8} = \frac{21}{8} \qquad x_2 = \frac{\begin{vmatrix} 2 & 7 \\ 1 & 0 \end{vmatrix}}{-8} = \frac{7}{8}$$

Remark 9. • in higher dimensions $(n \ge 4)$ Cramer's rule is disallowed.

- 1. too computationally intense
- 2. numerically unstable (small errors have large effects)
- Anyways, still useful for theoretical considerations
 - 1. the map $A \mapsto \det A$ is C^{∞} (polynomial!) (this denotes infinite differentiability)

- 2. The set of invertible matrices in $\mathbb{R}^{n \times n}$ is open, because if $\det A \neq 0$, then also $\det \tilde{A} \neq 0$ as long as $|a_{ij} \tilde{a}_{ij}| < \delta$.
- 3. The solution of the equation system Ax = b, for invertible A, depends continuously and differentiable on A and b:

$$x_i = \underbrace{\frac{1}{\det A}}_{continuous as \ long \ as \ \det A \neq 0} \underbrace{\hat{A}b}_{polynomial}$$

4. The map $GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$

$$A \mapsto A^{-1}$$

is continuous.

$$A^{-1} = \frac{1}{\det A} \cdot \hat{A}$$

So $GL(n, \mathbb{R})$ is a Lie group.

This lecture took place on 16th of March 2016 (Franz Lehner).

3 Inner products

Descartes introduced "La Géometrie" (1637).

Definition 9. The length of a vector in $\mathbb{R}^2/\mathbb{R}^3$ is:

$$\left\| \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

Definition 10 (Scalar product).

$$\cos\theta = \cos(2\pi - \theta)$$

The scalar product is defined as

$$\langle a, b \rangle = ||a|| \cdot ||b|| \cdot \cos \theta$$

Figure 5: Pythagorian proof of $c^2 = a^2 + b^2$

Theorem 19. The following properties hold:

- $\bullet \|\lambda \cdot a\| = |\lambda| \cdot \|a\|$
- $||a+b|| \le ||a|| + ||b||$ (triangle inequality)
- $\bullet \ \langle a, a \rangle = \|a\|^2 \ge 0$
- $\langle a, a \rangle = 0 \Leftrightarrow a = 0$
- $\langle a, b \rangle = 0 \Leftrightarrow a = 0 \lor b = 0$

 $\langle a,b\rangle > 0 \Leftrightarrow acute \ angle$

 $\langle a,b \rangle < 0 \Leftrightarrow obtuse \ angle$

Theorem 20.

$$\langle a, b \rangle = \langle b, a \rangle \tag{1}$$

$$\langle \lambda a, b \rangle = \lambda \langle a, b \rangle \tag{2}$$

$$\langle a+b,c\rangle = \langle a,c\rangle + \langle b,c\rangle \tag{3}$$

So it actually describes a bilinear map.

Proof. • immediate

• $\lambda > 0$ immediate

 $\lambda < 0$ Angle θ becomes $\pi - \theta$.

$$\cos(\pi - \theta) = -\cos\theta$$

$$\langle \lambda a, b \rangle = |\lambda| \cdot ||a|| \cdot ||b|| \cos(\pi - \theta) = -|\lambda| \cdot ||a|| \cdot ||b|| \cdot \cos \theta = \lambda \langle a, b \rangle$$

• Let b = e, ||e|| = 1.

$$\langle a, e \rangle = ||a|| \cdot \cos \theta$$

$$\langle a+b,c\rangle = \|c\| \left\langle a+b,\frac{c}{\|c\|} \right\rangle - \|c\| \left(\left\langle a,\frac{c}{\|c\|} \right\rangle + \left\langle b,\frac{c}{\|c\|} \right\rangle \right) = \langle a,c\rangle + \langle b,c\rangle$$

Compare with Figure 6.

Theorem 21.

$$\left\langle \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \right\rangle = a_1b_1 + a_2b_2 + a_3b_3$$

Proof.

$$\langle a, b \rangle = \langle a_1 e_1 + a_2 e_2 + a_3 e_3, b \rangle$$

$$= a_1 \langle e_1, b \rangle + a_2 \langle e_2, b \rangle + a_3 \langle e_3, b \rangle$$

$$= a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\langle e_i, b \rangle = \langle e_i, b_1 e_1 + b_2 e_2 + b_3 e_3 \rangle$$

$$= b_1 \langle e_i, e_1 \rangle + b_2 \langle e_i, e_2 \rangle + b_3 \langle e_i, e_3 \rangle$$

$$= b_1 \delta_{i1} + b_2 \delta_{i2} + b_3 \delta_{i3}$$

$$= b_i$$

Figure 6:
$$\langle a+b,c\rangle = \langle a,c\rangle + \langle b,c\rangle$$

with dim $\langle e_i, e_j \rangle = \delta_{ij}$.

Example 13 (Law of cosines).

$$a^2 + b^2 = c^2 + 2ab\cos\gamma$$

Compare with Figure 7.

$$||c||^{2} = \langle a - b, a - b \rangle$$

$$= \langle a, a \rangle - \langle a, b \rangle - \langle b, a \rangle + \langle b, b \rangle$$

$$= ||a||^{2} - 2 \cdot ||a|| ||b|| \cos \gamma + ||b||^{2}$$

Figure 7: Law of cosines

Theorem 22. Theorem by Thales TODO: image

$$\langle a - b, -a - b \rangle = ||a - b|| ||a + b|| \cos \theta$$

$$\langle a - b, -a - b \rangle = -\langle a - b, a + b \rangle$$

$$= -(\langle a, a \rangle - \langle b, a \rangle + \langle a, b \rangle - \langle b, b \rangle)$$

$$= -(||a||^2 - ||b||^2)$$

$$= 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

Remark 10. How do we find the normal vector?

$$\vec{n} = \begin{pmatrix} a_2 \\ -a_1 \end{pmatrix}$$

$$\left\langle \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} a_2 \\ -a_1 \end{pmatrix} \right\rangle = a_1 a_2 - a_2 a_1 = 0$$

Definition 11 (Outer product). "Outer product", "cross product" or "vector product"

TODO: image missing

This is only available in \mathbb{R}^3 .

Let $a, b \in \mathbb{R}^3$, then $a \times b$ is the vector with properties:

• $||a \times b|| = ||a|| \cdot ||b|| \cdot \sin \theta$ This corresponds to the are of a parallelogram.

$$||b|| \cdot \sin \theta = heigh \ of \ a \ parallelogram$$

• $a \times b \perp a, b$

$$\langle a \times b, a \rangle = 0$$

 $\langle a \times b, b \rangle = 0$

 $\bullet \ (a,b,a\times b) \ are \ clockwise \ (consider \ a \ screw \ coming \ out \ of \ Figure)$

$$a \times b = 0 \Leftrightarrow a = 0 \lor b = 0 \lor a, b \text{ are linear dependent}$$

Theorem 23. 1. $b \times a = -a \times b$ (counter-clockwise)

2.
$$(\lambda a) \times b = \lambda \cdot a \times b = a \times (\lambda b)$$

3.
$$(a+b) \times c = a \times c + b \times c$$

So it is bilinear in $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$

Proof.

$$a \times c, b \times c, (a+b) \times c \in E$$

Let a', b', (a + b)' be the projection of a, b and a + b in the plane.

TODO: image missing

Figure 8: Theorem 23, third statement

1.

$$(a+b)' = a' + b'$$

Projection of the sum = sum of projections.

2.

$$a \times c = a' \times c$$

 $\|a' \times c\| = \|a'\| \cdot \|c\|$

$$||a \times c|| = ||a|| \cdot ||c|| \cdot \sin \theta$$
$$= ||a'|| \cdot ||c||$$

$$||a'|| = ||c|| \cdot \sin \theta$$

and they have the same direction.

TODO: image missing

3.

$$(a' + b') \times c = c' \times c + b' \times c$$

From above:

TODO: image missing

$$||a' \times c|| = ||c|| \cdot ||a'||$$

So this operation is linear.

$$(a+b) \times c \stackrel{?}{=} (a+b)' \times c$$
$$\stackrel{1}{=} (a'+b') \times c$$
$$\stackrel{3}{=} (a' \times c + b' \times c)$$
$$\stackrel{?}{=} a \times c + b \times c$$

Corollary 7. The cross product is a map $x : \mathbb{R}^3 \to \mathbb{R}^3$ with properties:

- bilinear
- anti-symmetric
- "chiral", namely

$$e_1 \times e_2 = e_3$$

$$e_2 \times e_3 = e_1$$

$$e_3 \times e_1 = e_2$$

Corollary 8.

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \\ -\begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \\ \begin{vmatrix} a_2 & b_2 \\ a_2 & b_2 \end{vmatrix} \end{bmatrix}$$

$$\stackrel{Laplace}{=} \begin{vmatrix} a_1 & b_1 & e_1 \\ a_2 & b_2 & e_2 \\ a_3 & b_3 & e_3 \end{vmatrix}$$

Formally, matrices in a vector of values are disallowed, but as far as it boils down to addition, this is fine.

Proof.

$$(a_1e_1 + a_2e_2 + a_3e_3) \times (b_1e_1 + b_2e_2 + b_3e_3)$$

$$= a_1b_1e_1 \times e_1 + a_1b_2e_1 \times e_2 + a_1b_3e_1 \times e_3$$

$$+ a_2b_1e_2 \times e_1 + a_2b_2e_2 \times e_2 + a_2b_3e_3 \times e_3$$

$$+ a_3b_1e_3 \times e_1 + a_3b_2e_3 \times e_2 + a_3b_3e_3 \times e_3$$

$$= a_1b_2e_3 + a_1b_3(-e_2) + a_2b_1(-e_3) + a_2b_3e_1 + a_3b_1e_2 + a_3b_2(-e_1)$$

$$= (a_2b_3 - a_3b_2)e_1 + (a_3b_1 - a_1b_3)e_2 + (a_1b_2 - a_2b_1)e_3$$

Theorem 24 (Scalar triple product). The three-dimensional parallelogram is called "Spat" in German (compare with Figure 9).

$$\langle a \times b, c \rangle = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = volume \ of \ spanned \ 3\text{-dimensional parallelogram}$$

 $\|a \times b\|$ is the area of the parallelogram. $\langle a \times b, c \rangle = \|a \times b\| \cdot \|c\| \cdot \cos \theta$ where

Figure 9: Three-dimensional parallelogram

 $||c|| \cdot \cos \theta$ is the height of the 3-dimensional parallelogram.

$$\langle a \times b, c \rangle = \left\langle \left(egin{array}{c|c} \begin{vmatrix} a_1 & b_2 \\ a_3 & b_3 \\ -\begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \\ \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \end{array} \right), \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \right
angle$$

 $\begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \cdot c_1 - \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix} \cdot c_2 + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \cdot c_3 = Laplace \ generated \ by \ third \ column$

Example 14. Given a plane in parameter representation:

$$E = \{ v_0 + \lambda a + \mu b \, | \, \lambda, \mu \in \mathbb{R} \}$$

Find $\alpha_1, \alpha_2, \alpha_3$ and β with ("implicit representation")

$$E = \{x \mid \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \beta\}$$

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = a \times b$$

TODO: image missing

$$\beta = \langle v_0, a \times b \rangle$$

In the following chapters we always consider $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

Definition 12. An inner product over a vector space in \mathbb{R} or \mathbb{C} is a map $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{K}$ with properties:

- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \quad \forall x, y, z \in V$
- $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \forall x, y \in V \forall \lambda \in \mathbb{K}$
- $\langle y, x \rangle = \overline{\langle x, y \rangle} \quad \forall x, y \in V$

where $\overline{\langle x,y\rangle}$ denotes the complex conjugate. Especially $\langle x,x\rangle\in\mathbb{R}\forall x\in V$. An inner product is called

positive semidefinite if $\langle x, x \rangle \geq 0 \quad \forall x$

positive definite if $\langle x, x \rangle > 0 \quad \forall x \neq 0$

negative semidefinite if $\langle x, x \rangle \leq 0 \quad \forall x$

negative definite if $\langle x, x \rangle < 0 \quad \forall x \neq 0$

indefinite if $\exists x : \langle x, x \rangle > 0 \land \exists y : \langle y, y \rangle < 0$

Definition 13. Scalar product if $\mathbb{K} = \mathbb{R}$

Hermitian product (or unitary product) if $\mathbb{K} = \mathbb{C}$

Quadratic form if $\mathbb{K} = \mathbb{R}$ Hermitian form if $\mathbb{K} = \mathbb{C}$

Lemma 8. • $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

- $\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$
- $\langle x, 0 \rangle = 0$

Linear in x and anti-linear in y!

Swsquilinear

German keywords

```
Adjunkte Matrix, 39
Bidualraum, 7
Bilineare Abbildung, 5
Charakter, 19
Coxetergruppe, 31
Definites inneres Produkt, 53
Determinantenform, 13
Determinante, 9
Dualbasis eines Vektorraums, 3
Dualraum des Vektorraums, 3
Entwicklungssatz von Laplace, 37
Fehlstand (Permutation), 17
Indefinites inneres Produkt, 53
Inneres Produkt, 53
Komplementärmatrix, 39
Lineare Funktionale, 3
Linearformen, 3
Multilineare Abbildung, 5
Multilinearität, 13
Negatives definites inneres Produkt, 53
Negatives semi-definites inneres Produkt, 53
Positives definites inneres Produkt, 53
Positives semi-definites inneres Produkt, 53
Semi-definites inneres Produkt, 53
Transponierte Abbildung, 7
Vertauschung, 17
```

English keywords

```
Adjoint matrix, 39
Bidual space, 7
Bilinear map, 5
Character, 19
Complementary matrix, 39
Coxeter group, 31
Definite inner product, 53
Determinant, 9
determinant form, 13
Dual basis of a vector space, 3
Dual space of a vector space, 3
Generative theorem of Laplace, 37
Indefinite inner product, 53
Inner product, 53
Inversion, 17
Linear forms, 3
Linear functionals, 3
Multilinear map, 5
Multilinearity, 13
Negative definite inner product, 53
Negative Semi-definite inner product, 53
Positive definite inner product, 53
Positive Semi-definite inner product, 53
Semi-definite inner product, 53
Transposed map, 7
transposition, 17
```