



# Initiation HPC cluster

www.southgreen.fr

https://southgreenplatform.github.io/trainings















### Présentation i-Trop











Emmanuelle Beyne 20% ETP

Aurore COMTE 20% ETP

Bruno GRANOUILLAC 50% ETP Valérie NOEL 25% ETP

Julie ORJUELA-BOUNIOL 25% ETP Ndomassi TANDO 100% ETP Christine TRANCHANT-DUBREUIL 20% ETP



### Présentation i-Trop



Partie cluster en cours de certification

Mise à disposition de ressources de calcul et logicielles

ISO 9001

Développement de logiciels d'analyse et de SI

Plateau bioinformatique

Assistance et support aux équipes

Formations au Sud et au Nord



### **Demandes/incidents/Howtos**

Formulaires de demandes

https://itrop-glpi.ird.fr/plugins/formcreator/front/formlist.php

- Comptes
- Installation logiciels
- Projets



- Incidents: contacter <u>bioinfo@ird.fr</u>
- Howtos:

https://southgreenplatform.github.io/tutorials/cluster
-itrop/hpchowto/

Tutorials Slurm:

https://southgreenplatform.github.io/tutorials//clusteritrop/Slurm/



## **ARCHITECTURE**

## Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources



## Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources





## Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources









## Composants d'un cluster



- Noeud maître
   Gère les ressources et les priorités des jobs
- Noeuds de calcul Ressources (CPU ou mémoire RAM)





## Composants d'un cluster



- Noeud maître
   Gère les ressources et les priorités
   des jobs
- Noeuds de calcul Ressources (CPU ou mémoire RAM)



Serveur(s) NAS Stockage



#### 1 Noeud Maître



bioinfo-master.ird.fr

#### Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion:

ssh login@bioinfo-master.ird.fr



#### 1 Noeud Maître



bioinfo-master.ird.fr

#### Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion:

ssh login@bioinfo-master.ird.fr

#### 27 Noeuds de Calcul



nodeX X: 0..26

#### Rôle:

- Utilisés par le maître pour exécuter les jobs/calculs
- Pas accessibles depuis Internet
- node0 à node26



#### 1 Noeud Maître



bioinfo-master.ird.fr

91,203,34,148

#### Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion :

ssh login@bioinfo-master.ird.fr

#### 27 Noeuds de Calcul



nodeX X: 0..26

#### Rôle:

- Utilisés par le maître pour exécuter les jobs/calculs
- Pas accessibles depuis Internet
- node0 à node26



### Noeud interactif (node6)

- Accessible de l'extérieur bioinfo-inter.ird.fr
- Connexion: ssh login@bioinfo-inter.ird.fr

## **Practice**

**Etape 1: Connexion, srun** 

Aller sur le Practice 1 du github



### **Etapes d'une analyse sur le cluster**

Connexion à bioinfo-mas ter.ird.fr et réservation de ressources





| Partitions | Utilisation                                                 | Caractéristiques<br>RAM noeuds | Caractéristiques coeurs noeuds |
|------------|-------------------------------------------------------------|--------------------------------|--------------------------------|
| short      | Jobs courts < 1 jour (priorité plus haute, jobs intéractif) | 48 à 64 Go                     | 12 coeurs                      |
| normal     | Jobs courts max 7 jours                                     | 64 Go à 96 Go                  | 12 à 24 coeurs                 |
| r900       | Jobs courts max 7 jours                                     | 32Go                           | 16 coeurs /scratch<br>117Go    |
| long       | 45 jours >Jobs longs<br>> 7 jours                           | 48 Go                          | 12 à 24 coeurs                 |
| highmem    | Jobs avec besoin de plus de mémoire                         | 144 Go                         | 12 à 24 coeurs                 |
| supermem   | Jobs avec besoin de<br>beaucoup de<br>mémoire               | 1To                            | 40 coeurs                      |
| gpu        | Besoin d'analyses<br>sur des gpus                           | 192Go                          | 24 cpus et 8 coeurs<br>GPUs    |

### Cas particulier: partition gpu

- Partition pour effectuer des travaux sur des processeurs GPUs: basecalling,
   MiniOn etc..
- Accès restreint au groupe gpu\_account
- Demande d'accès avec argumentaire à faire sur

https://itrop-glpi.ird.fr/plugins/formcreator/front/formlist.php



















## outh Green Quelle partition choisir?













#### 1 Noeud Maître



bioinfo-master.ird.fr

91.203.34.148

#### Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet

#### 27 Noeuds de Calcul



nodeX

X: 0..26



#### Rôle:

- Utilisés par le maître pour exécuter les jobs/calculs
- Pas accessibles depuis Internet

#### 3 serveurs NAS



bioinfo-nas.ird.fr (nas)

bioinfo-nas2.ird.fr (nas2)

bioinfo-nas3.ird.fr (nas3)

#### Rôle:

- Stocker les données utilisateurs
- Accessibles depuis Internet
- Pour transférer les données : via filezilla ou scp



### Partitions disques sur le cluster i-Trop





### **Etapes d'une analyse sur le cluster**



Etape 1 Etape 2 mkdir

## **Practice**

**Etape 2:srun, partition** 

Aller sur le Practice2 du github



personnel

## Transferts de données sur le cluster itrop





### Transferts de données sur le cluster itrop

#### /home and/or /teams or /data2

bioinfo-nas.ird.fr

Hostname:

Login: cluster account

bioinfo-nas.ird.fr 91.203.34.157

Password: cluster

password Port : 22

/data



bioinfo-nas2.ird

91.203.34.160

.fr

Hostname: bioinfo-nas2.ird.fr

Login: cluster account

Password: cluster password

Port : 22

/data3



Hostname: bioinfo-nas3.ird.fr

Login: cluster account

91.203.34.180

Password: bioinfo-nas3.ird.cluster password

Port : 22





### Etapes d'une analyse sur le cluster





Copier les données depuis son ordinateur personnel vers les serveurs nas si les données à analyser ne sont pas sur le cluster

## **Practice**

**Etape3: filezilla** 

Aller sur le Practice3 du github

### La copie avec scp

Copie entre 2 serveurs distants :

scp -r source destination

Syntaxe si la source est distante :

scp -r nom\_serveur:/chemin/fichier\_a\_copier répertoire\_local

• Syntaxe si la destination est distante :

scp -r /chemin/fichier\_a\_copier nomserveur:/chemin/répertoire\_distant

Ex: scp -r nas:/home/tando/repertoire /scratch/tando/



### Etapes d'une analyse sur le cluster



## **Practice**

**Etape4:** scp vers noeuds

Aller sur le Practice4 du github



### **Module Environment**

- Permet de choisir la version du logiciel que l'on veut utiliser
- 2 types de logiciels :

bioinfo : désigne les logiciels de bioinformatique (exemple BEAST)

system : désigne tous les logiciels systèmes(exemple JAVA)

Surpassent les variables d'environnement



#### **Module Environment**

- 5 types de commandes :
- Voir les modules disponibles :

module avail

• Obtenir une info sur un module en particulier :

module whatis + module name

• Charger un module :

module load + modulename

Lister les modules chargés :

module list

Décharger un module :

module unload + modulename

Décharger tous les modules :

module purge



### Etapes d'une analyse sur le cluster



Charger ses logiciels avec modules environment

Etape 5 module

## **Practice**

**Etape5: module environment** 

Aller sur le <u>Practice5</u> du github



### Etapes d'une analyse sur le cluster





Etape 5 Etape 6



# South Green Principales commandes Slurm

| Commande                            | Description                                                        | Exemple                                                    |
|-------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| sruntime=0X:00pty bash -i           | Se connecter de manière interactive à un noeud pendant X minutes   | sruntime=02:00:00pty bash -i<br>Connexion pendant 2 heures |
| salloctime=0X:00                    | S'allouer un ou plusieurs<br>noeuds pour une<br>utilisation future | salloc -N 2p shorttime=05:00                               |
| sbatch                              | Lancer une analyse via script en arrière plan                      | sbatch script.sh                                           |
| sinfo                               | Informations sur les partitions                                    | sinfo                                                      |
| scancel                             | Supression des jobs <job_id></job_id>                              | scancel 1029                                               |
| squeue                              | Infos sur tous les jobs                                            | squeue -u tando                                            |
| scontrol show job <job_id></job_id> | Infos sur le job actif <job_id></job_id>                           | scontrol show job 1029                                     |

Plus d'infos sur Slurm ici: <a href="https://southgreenplatform.github.io/tutorials//cluster-itrop/Slurm/#part-2">https://southgreenplatform.github.io/tutorials//cluster-itrop/Slurm/#part-2</a>



# South Green Options des commandes sbatch, srun, salloc

| Options                                  | Description                                                                                    | Exemple                                   |
|------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|
| job-name= <name></name>                  | Donner un nom au job                                                                           | sbatchjob-name=tando_blast                |
| -p <partition></partition>               | Choisir une partition                                                                          | sbatch -p highmem                         |
| nodelist= <nodex></nodex>                | Choisir un noeud en particulier                                                                | sbatch -p normalnodelist=node14           |
| -n <nbre_taches></nbre_taches>           | Lancer plusieurs instance d'une commande                                                       | srun -n 4 hostname                        |
| -c <nb_cpu_par_tache></nb_cpu_par_tache> | Allouer le nombre de cpus<br>par tâche                                                         | srun -n 4 -c 2 hostname                   |
| mail-user= <emailaddress></emailaddress> | Envoyer un mail                                                                                | sbatchmail-user=ndomassi@ird.fr           |
| mail-type= <event></event>               | Envoyer un mail quand:<br>END: fin du job<br>FAIL: abandon<br>BEGIN: début du job<br>ALL: tout | sbatchmail-type=BEGIN                     |
| workdir=[dir_name]                       | Préciser le répertoire de<br>travail                                                           | sbatchworkdir=/scratch/tando<br>script.sh |



### Lancer une commande depuis le prompt

- Charger la version du logiciel à lancer
- Lancer l'analyse des données

\$~ commande <options> <arguments>

Avec commande: la commande à lancer



### Lancer un job en ligne de commande

- Exécuter une commande bash via srun
- Lance la commande sur un noeud
- On utilise la commande:

Avec commande: la commande à lancer

## **Practice**

**Etape6: lancer l'analyse** 

Aller sur le <u>Practice6</u> du github

#### Le transfert des résultats vers les nas

Copie entre 2 serveurs distants :

scp -r source destination

Syntaxe si la source est distante :

scp -r nom\_serveur:/chemin/fichier\_a\_copier répertoire\_local

• Syntaxe si la destination est distante :

scp -r /chemin/fichier\_a\_copier nomserveur:/chemin/répertoire\_distant



### Etapes d'une analyse sur le cluster





Etape 5 Etape 6 Etape 7

## **Practice**

**Etape7: Récupérer les résultats** 

Aller sur le <u>Practice7</u> du github



### Supprimer les résultats des scratchs

- Scratch= espaces temporaires
- Vérifier la copie des résultats avant
- Utiliser la commande rm

```
cd /scratch
rm -rf nom_rep
```



### Etapes d'une analyse sur le cluster



Etape 7 Etape 8

## **Practice**

**Etape8: suppression des données** 

Aller sur le Practice8 du github



# Scripts pour visualiser/supprimer données temporaires

- Emplacement des scripts: /opt/scripts/scratch-scripts
- Visualiser ses données sur les scratchs: scratch\_use.sh

sh /opt/scripts/scratch-scripts/scratch\_use.sh

Supprimer ses données sur les scratchs: clean\_scratch.sh

sh /opt/scripts/scratch-scripts/clean\_scratch.sh



# **BONUS**



### LANCER UN JOB



### **Avantages**

- Le scheduler choisit les ressources automatiquement
- Lancer des jobs utilisant jusqu'à 24 coeurs
- Possibilité de paramétrer ce choix
- Jobs lancés en arrière plan
  - → possibilité d'éteindre son ordinateur
  - → récupération des résultats automatique



### Lancer un job en mode batch

- C'est le fait d'exécuter un script bash via slurm
- On utilise la commande:

\$~ sbatch script.sh

Avec script.sh: le nom du script



# South Green Options des commandes sbatch, srun, salloc

| Options                                  | Description                                                                                    | Exemple                                   |
|------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|
| job-name= <name></name>                  | Donner un nom au job                                                                           | sbatchjob-name=tando_blast                |
| -p <partition></partition>               | Choisir une partition                                                                          | sbatch -p highmem                         |
| nodelist= <nodex></nodex>                | Choisir un noeud en particulier                                                                | sbatch -p normalnodelist=node14           |
| -n <nbre_taches></nbre_taches>           | Lancer plusieurs instance d'une commande                                                       | srun -n 4 hostname                        |
| -c <nb_cpu_par_tache></nb_cpu_par_tache> | Allouer le nombre de cpus<br>par tâche                                                         | srun -n 4 -c 2 hostname                   |
| mail-user= <emailaddress></emailaddress> | Envoyer un mail                                                                                | sbatchmail-user=ndomassi@ird.fr           |
| mail-type= <event></event>               | Envoyer un mail quand:<br>END: fin du job<br>FAIL: abandon<br>BEGIN: début du job<br>ALL: tout | sbatchmail-type=BEGIN                     |
| workdir=[dir_name]                       | Préciser le répertoire de<br>travail                                                           | sbatchworkdir=/scratch/tando<br>script.sh |



### Syntaxe des scripts bash

Dans la première partie du script on renseigne les options d'exécution de slurm avec le mot clé #SBATCH (partie en vert)

```
#!/bin/bash
## On définit le nom du job
#SBATCH --job-name=test
## On définit le nom du fichier de sortie
#SBATCH --output=res.txt
## On définit le nombre de tâches
#SBATCH --ntasks=1
## On définit le temps limite d'éxécution
#SBATCH --time=10:00
```



### Syntaxe des scripts bash

#### Dans la 2e partie du script on renseigne les actions à effectuer

sleep 30 hostname

## **Practice**

#### Lancer un script avec qsub

Aller sur le <u>Practice9</u> du github

### Enquête de satisfaction

Merci de compléter l'enquête à cette adresse:

https://itrop-survey.ird.fr/index.php/562934?lang=fr

#### Citations

Si vous utilisez les ressources du plateau i-Trop.

Merci de nous citer avec:

"The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD montpellier

for providing HPC resources that have contributed to the research results reported within this paper.

URL: https://bioinfo.ird.fr/- http://www.southgreen.fr"

### **Projets**

 Pensez à inclure un budget ressources de calcul dans vos réponses à projets

 Besoin en disques dur, renouvellement de machines etc...

Devis disponibles

 Contactez <u>bioinfo@ird.fr</u>: aide, définition de besoins, devis...



# Merci pour votre attention!



Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/