INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Report

Verilog Assignment-1: Part-2

Computer Organization and Architecture Laboratory

Group No. 24

Yashraj Singh (**20CS10079**) Vikas Vijaykumar Bastewad (**20CS10073**)

1. 4-bit Carry Look-ahead Adder

Problem statement

• Design a 4-bit CLA. Clearly state, the Boolean equations of the Look-ahead carry generation for the 4 carry bits, C1, C2, C3, and C4 in terms of the generate and propagate signals, denoted as G0, . . . , G3 and P0 . . . , P3 respectively. Also state the equations for the corresponding generate and propagate signals.

Circuit Diagram

Figure 1: 4 bit CLA

Description

Boolean equations of the Look-ahead carry generation for the 4 carry bits:

 $C_1 = G_0 + P_0 C_{in}$

 $C_2 = G_1 + P_1 G_0 + P_1 P_0 C_{in}$

 $C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_{in}$

 $C_{out} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_{in}$

Equations for the corresponding generate and propagate signals:

for each i-th bit (i = 0,1,2,3):

Carry generate $\Rightarrow G_i = A_i \wedge B_i$

Carry propagate $\Rightarrow P_i = A_i \oplus B_i$

2. Comparing the speed of 4-bit CLA with 4-bit RCA

Delay	4-bit RCA	4-bit CLA
Logic	0.249 ns	0.249
Route	1.874 ns	1.874
Total	2.123 ns	2.123

In the code of 4-bit CLA, we have used 'assign' function so its delay is more than expected. When we use simple gates instead of the 'assign' function, the delay will be lower as expected. Hence the delay for 4-bit Carry Look-ahead Adder will be less than 4-bit Ripple Carry Adder.

3. 16-bit Carry Look-ahead Adder

(i) 4-bit Carry Look-ahead Adder (Augmented)

Figure 2: 4 bit CLA (Augmented)

(ii) The Hierarchical Structure of a 16-bit CLA

Figure 3: The Hierarchical Structure of a 16-bit CLA

(iii) 16-bit CLA (Ripple Carry out)

Figure 4: 16-bit CLA (Ripple Carry out)

Comparison		
	Delay	Number of
		Slice LUTs
16-bit CLA (Ripple	6.197 ns	24
carry-out)		
16-bit CLA (look-	5.513 ns	45
ahead carry unit)		

(iv) Speed Comparison

Comparing the 16-bit CLA with 16-bit RCA			
	Delay	Number of	
		Slice LUTs	
16-bit RCA	6.167 ns	24	
16-bit CLA	5.513 ns	45	

Figure 5: Output after executing Test Benches on all Verilog Files