Reproducible Writing

Dynamic APA-formatted manuscripts with papaja

Daniela Palleschi

2024-06-18

Table of contents

Requirements	2
tinytex	2
papaja	2
V riting	3
Rmarkdown	3
APA-formatting with papaja	3
Task	3
Cross-referencing	4
Figures	4
Images	4
Example sentences	5
Tables	6
Table labels	7
Data tables	7
Placing tables and figures	7
Citations	8
BibTex format	8
In-text citations	8
Zotero	9
Output	9
Collaboration	9
Thesis writing	10

Learning objectives

Today we will...

- learn about R markdown for writing
- integrate citations with Bib(La)Tex
- learn how to cross-reference
- create lingiustic example sentences

Resources

- to read more on today's topic, check out the papaja manual (Aust & Barth, 2023)
 - https://frederikaust.com/papaja_man/

Disclaimer

- this is also a *very* quick-and-dirty introduction on getting started with APA-formatted manuscripts in R markdown
 - there are a *lot* of resources (e.g., E-books, blog posts, forum threads, manuals) that will address specific formatting problems or wishes you may have
 - Google is your friend!
- also, these slides were written in Quarto, and are published as HTML
 - much of the syntax I'm presenting doesn't actually work in Quarto/HTML
 - but all the raw code that I show will work in R markdown/PDF

Requirements

- packages:
 - papaja
 - tinytex
- software (optional)
 - Zotero + a Zotero account
- download from the Moodle or GitHub:
 - references.bib

tinytex

- includes helper functions for installing LaTeX distribution
 - i.e., helps create PDF outputs

```
# to install tinytex run these two lines
install.packages("tinytex")
tinytex::install_tinytex()
```

papaja

I want to add a citation

- for APA-formatted scientific manuscripts
 - currently uses APA 6, but we can update it to APA 7

```
# to install tinytex run these two lines
install.packages("papaja")
```

Writing

- writing an article or thesis
 - not a report
- should be kept separate from the actual analyses
 - e.g., in its own folder or even own project
 - if in its own project: make sure you transfer over files needed (e.g., figures, data, saved models)

Rmarkdown

- we can also write PDFs in Quarto
 - but its relatively new, and there's more support for scientific articles in R markdown
- most everything in R markdown is identical to Quarto
 - some important differences: code chunk options (we'll see these later)

APA-formatting with papaja

- a package specifically for writing APA-formatted manuscripts
- File > New File > R markdown > From template > APA-formatted article (papaja)
 - will open a file with a long YAML
 - render it and see how it looks

Task

- in a new papaja script, do the following:
- 1. change the YAML to include your name

Cross-referencing

- e.g., referring to another section
 - in which case, we need number_sections: TRUE in our YAML
- simply provide a label in the same line as a heading, either with {#section_label} or \label{section_label}
 - then provide the label within \ref{}, and the section number will be produced in the output
- the example text below would then be written as *Here is some text in Section 1* (assuming the Introduction is numbered as 1)

```
# Introduction {#section_label}
Here is some text in Section \ref{section_label}.
```

Figures

• or figure, table, example sentence or equation

```
```{r fig-iris, eval = TRUE}
library(ggplot2)
iris |> ggplot() + aes(x = Sepal.Length, y = Sepal.Width) + geom_point()
```
```


- now if we were to write As seen in Figure \ref{fig-iris}, we would get: As seen in Figure 1
- $\bullet\,$ be careful not to use underscores (_) in your figure labels, this causes problems

Images

- You might also include a figure of the trial procedure, or some other visual description of your data
- For example, in Figure Figure 2 we see an overview of the types of iris (flowers) that make up the data from the built-in iris dataset (figure from Mijwil & Abttan, 2021)
- you can then cross-reference to images the same was, by putting the label inside \ref{}

```
knitr::include_graphics(here::here("figures", "iris_photo.png"))
```

Example sentences

• we can write example sentences with latex syntax

Figure 2: Visual depiction of dependent variables from the iris dataset

• first, add this to your YAML

header-includes:

\usepackage{float} \usepackage{gb4e} \noauthomath

• then, you can write an example as follows:

```
\begin{exe}
\ex \label{ex:example} This is an item with just one example.
\end{exe}
```

- (1) This is an item with just one example.
 - and reference it in your text with See example \ref{ex:example}, which will be written as: See example 1

Tables

- e.g., you can give an overview of your stimuli (you could also do this with example sentences)
 - if producing your table with R code, remember to feed it into a function that formats tables
 - e.g., knitr::kable() or papaja::apa_table()

```
library(tidyverse)
tribble(
    ""Item", ~"Condition", ~"Sentence",
    "1", "a", "Example sentence of condition A",
    "1", "b", "Example sentence of condition B",
    "1", "c", "Example sentence of condition C",
    "1", "d", "Example sentence of condition D",
) |>
    papaja::apa_table(caption = "Example stimuli")
```

Table 1: Example stimuli

| Item | Condition | Sentence |
|------|--------------|---------------------------------|
| 1 | a | Example sentence of condition A |
| 1 | b | Example sentence of condition B |
| 1 | \mathbf{c} | Example sentence of condition C |
| 1 | d | Example sentence of condition D |

Table labels

- writing "See Table apa-table for example stimuli" will print:
 - See Table 1 for example stimuli.
- For this to work, you need to provide a label in the code chunk settings: {r apa-table, echo=F, eval=T}. + remember to use \ref{tab:label} and replace label with yours (i.e., don't forget the tab: prefix).

Data tables

• You can of course also present tables of your data or models

Table 2: Mean values for iris measures

| Species | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|------------|--------------|-------------|--------------|-------------|
| setosa | 5.006 | 3.428 | 1.462 | 0.246 |
| versicolor | 5.936 | 2.770 | 4.260 | 1.326 |

| | virginica | 6.588 | 2.974 | 5.552 | 2.026 |
|--|-----------|-------|-------|-------|-------|
|--|-----------|-------|-------|-------|-------|

- cross-referencing works the same:
 - you write: Mean values are given in Table \ref{tab:iris-table}.
 - R markdown prints: Mean values are given in Table 2.

Placing tables and figures

- To allow figures and tables to appear in-text (i.e., not at the end of the document), change floatsintext: in the YAML to yes (it will be no by default)
 - otherwise papaja pushes all tables and figures to the very end of the document

floatsintext : yes # CHANGE TO YES to allow figures and tables to float in text

Citations

- the most straightforward way to include citations is by manually adding BibTex citations into your .bib file
 - you can define which .bib file to use in your YAML (we currently have bibliography: r-references.bib)
- you can easily get the BibTex formatted citation via Google Scholar
 - although I suggest using Zotero with the Better BibTex plug in, which stores them locally

BibTex format

- below is an example of a BibTex formatted citation
 - the first info after the opening curly bracked is the reference key (knuth1984literate)
- add this reference to your .bib file

```
@article{knuth1984literate,
   title={Literate programming},
   author={Knuth, Donald Ervin},
   journal={The computer journal},
   volume={27},
   number={2},
   pages={97--111},
   year={1984},
   publisher={Oxford University Press}
}
```

In-text citations

- to then include a reference in-text, include the BibTeX reference key preceded @
- so if we write @knuth1984literate we should get a formatted citation: Knuth (1984)
 - and the full citation should be added to our references section
- if we were to write [@knuth1984literate] we would get the reference in brackets (Knuth, 1984)
 - to learn more about how to control the formatting of in-text references check out Section 3.2 (Citations) in the papaja manual

Zotero

- this process can be streamlined by using Zotero + Better BibTex (BBT)
 - there are several walk-throughs of how to do this online, e.g.,
- the benefit: using Zotero keeps a record of your PDFs/readings
 - Zotero Desktop is a nice way to annotate readings and take notes
 - direct integration of BBT with RStudio is possible
- check out this blogpost to learn more

Output

- PDF: tex file is generated in the process
- keep_tex: true
 - will keep the .tex file produced

- if you want to move the document to Overleaf or LaTeX, I recommend:
- 1. Add keep_tex: true to your YAML
- 2. Render your document
- 3. Go find the .tex output in the folder
- 4. Upload this tex file to an Overleaf project
- 5. Make sure to also copy over any figures created in the output

Collaboration

- unfortunately, there's no elegant method for collaborative writing in R mark-down/Rstudio
 - the only real option is to use a remote git repository (e.g., GitHub or GitLab)
 - but this has a steep learning curve and is prone to problems when collaborators aren't familiar with git
 - track changes are also not as elegant as in Overleaf, Google Docs, Word documents,
 etc. (e.g., with accept/reject buttons or pop-up comments)
- if you have co-authors, consider they may or may not be R (markdown) or LaTeX or R-savvy
- you could send collaborators a PDF that they annotate and then you make the changes back in your R markdown script(s)
 - but this is quite labour intensive on your side
- alternatively, you can also output your first draft as a Word document and then use that as a starting point for collaborative writing
 - keep in mind that any changes to the analyses will then need to be done in Rmarkdown and imported to the edited Word document
- there is also the trackdown package which integrates R markdown scripts with Google Docs
 - but there are obvious data protection/ethical concerns with doing so
- currently, I prefer to move the first draft to Overleaf
 - I can always re-run my analyses, re-write up my results section, and just replace the LaTeX code for that section

Thesis writing

- there are also ways to write books in R markdown
 - a lot of web-books are written with bookdown, see the website for more: https://bookdown.org/
 - I personally prefer Quarto books for web books, for more info: https://quarto.org/docs/books/
- to write your thesis, there's the oxforddown template
 - https://ulyngs.github.io/oxforddown/
- with these options, each chapter is in a self-contained .Rmd script
 - a 'parent' document contains the metadata to knit all chapters into a book

References

Aust, F., & Barth, M. (2023). papaja: Prepare reproducible APA journal articles with R Markdown. https://github.com/crsh/papaja

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111.

Mijwil, M., & Abttan, R. (2021). Utilizing the Genetic Algorithm to Pruning the C4.5 Decision Tree Algorithm. Asian Journal of Applied Sciences, 9, 45–52. https://doi.org/10.24203/ajas.v9i1.6503