AP CALCULUS

Determining Values of $g(x) = \int_{-1}^{x} f(t)dt$ from the Graph of y = f(t)

Let $g(x) = \int_{-1}^{x} f(t) dt$. The graph of y = f(t) is given below.

Fill in the values of the table. Note that the lower limit is -1.

x	g(x)
-3	
-2	
-1	
0	
1	
2	
3	
4	
5	
6	
7	

Using the graph below, plot the points from the table to help you graph y = g(x). Be sure to indicate all relative extrema and points of inflection.

Notes:

Use your graph as an aide to answer the following questions.

- **1.** On what interval(s) is the graph of y = g(x) increasing?
- **2.** On what interval(s) is the graph of y = g(x) decreasing?
- **3.** On what interval(s) is the graph of y = g(x) concave up?
- **4.** On what interval(s) is the graph of y = g(x) concave down?
- **5.** How can you use the graph of *f* to determine where y = g(x) has a local minimum?

6. How can you use the graph of *f* to determine where y = g(x) has a local maximum?

7. How can you use the graph of f to determine where y = g(x) has a point of inflection?

CollegeBoard

Selecting Graphs of f Given a Description of g

You are presented with 12 graphs of y = f(t). Each graph is continuous on the interval [0, 4] and differentiable on the interval (0, 4). Let $g(x) = \int_0^x f(t)dt$. For the questions that follow, list <u>all</u> the graphs that would make each statement true. Then state what condition or feature is present in the graphs of f. Recall the relationship between the functions f and g. The first question is done for you.

- **1. Example:** The graph of y = g(x) is increasing on (0, 4).
 - Which graphs, if any, would make this statement true?
 Answer: E, G, J, K
 - If applicable: What condition or feature is present in the graphs of f?
 Answer: These graphs of f are all positive on (0, 4).
- **2.** The graph of y = g(x) is decreasing on (0, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **3.** The graph of y = g(x) is constant on (0, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **4.** The graph of y = g(x) is concave up on (0, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **5.** The graph of y = g(x) is concave down on (0, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **6.** The graph of y has a local maximum at x = 2.
 - Which graphs, if any, would make this statement true?

- If applicable: What condition or feature is present in the graphs of f?
- **7.** The graph of y = g(x) has a local minimum at x = 2.
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **8.** The graph of y = g(x) has a point of inflection at x = 2.
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **9.** The graph of y = g(x) is increasing on (0, 2) and decreasing on (2, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **10.** The graph of y = g(x) is concave up on (0, 2) and concave down on (2, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?
- **11.** The graph of y = g(x) has no local extrema on (0, 4).
 - Which graphs, if any, would make this statement true?
 - If applicable: What condition or feature is present in the graphs of f?

- **12.** The graph of y = g(x) has no points of inflection on (0, 4).
 - Which graphs, if any, would make this statement true?

If applicable: What condition or feature is present in the graphs of f?

Check your understanding

Determine whether each statement is true or false. It the statement is false, explain why it is false or edit the statement to make it a true statement.

If
$$g(x) = \int_0^x f(t)dt$$
, then $g'(x) = f(x)$.

If $g(x) = \int_{0}^{x} f(t)dt$, and f is increasing on (0, 2), then g is increasing on (0, 2).

If
$$g(x) = \int_{0}^{x} f(t)dt$$
, and f is positive on (0, 4), then g is concave up on (0, 4).

If $g(x) = \int_{0}^{x} f(t)dt$, and f changes sign from positive to negative at x = 3, then g has a point of inflection at x = 3.

If $g(x) = \int_{0}^{x} f(t)dt$, and f has a local minimum at x = 5, then g has a point of inflection at x = 5.

If $g(x) = \int_{0}^{x} f(t)dt$, and g is negative on (0, 4), then f must be decreasing on (0, 4).

Apply Your Understanding of Functions Defined by Integrals

Part I: Let $g(x) = \int_{-4}^{x} f(t) dt$. The graph of y = f(t) is given below.

Fill in each statement with the interval(s) and reason. The first one is done for you.

- **1.** The graph of y = g(x) is increasing on (-4, 7) and (9, 10) because this is where g'(x) = f(x) is positive.
- **2.** The graph of y = g(x) is decreasing on _____ and ____ because ____
- 3. The graph of y = g(x) is concave up on ______ because
- **4.** The graph of y = g(x) is concave down on ______ because _____

AP CALCULUS

Part II: Let $g(x) = \int_0^x f(t)dt$. The graph of y = f(t) is given above where f is continuous on the interval [0, 12]. Finish each statement and provide a reason for your answer. Remember that f = g'.

1. $(x) = \int_0^x f(t)dt$ is increasing on the following intervals:

This is because:

2. $g(x) = \int_0^x f(t)dt$ is decreasing on the following intervals:

This is because:

3. $g(x) = \int_0^x f(t)dt$ is concave up on the following intervals:

This is because:

4. $g(x) = \int_0^x f(t)dt$ is concave down on the following intervals:

This is because:

5. $g(x) = \int_0^x f(t)dt$ has a local maximum at the following x values:

This is because:

6. $g(x) = \int_0^x f(t)dt$ has a local minimum at the following x values:

This is because:

7. $g(x) = \int_0^x f(t)dt$ has a point of inflection at the following x values:

This is because:

♦ CollegeBoard

© 2017 College Board

AP CALCULUS

Check your understanding

Complete each statement choosing from the terms: increasing, decreasing, positive, negative, zero, changes sign, has a local extrema, has a point of inflection, concave up, or concave down. (Note: Not all terms will be used.)

$$g(x) = \int_{0}^{x} f(t)dt$$
 is increasing whenever the graph of f is:

$$g(x) = \int_{0}^{x} f(t)dt$$
 is decreasing whenever the graph of f is:

$$g(x) = \int_{0}^{x} f(t)dt$$
 is concave up whenever the graph of f is:

$$g(x) = \int_{0}^{x} f(t)dt$$
 is concave down whenever the graph of f is:

$$g(x) = \int_{0}^{x} f(t)dt$$
 has a local extrema whenever the graph of f .

$$g(x) = \int_{0}^{x} f(t)dt$$
 has a point of inflection whenever the graph of f .

