

Laboratory Work 3
Active filter circuits design and simulation

Nikolai Poliakov Arina Arbuzina (polyakov_n_a@itmo.ru) (arbyzina99@gmail.com)

Summary

ітмо

- 1. Filter approximation theory review
- 2. Laboratory work 3: ideal and real amplifier comparison
- 3. Active filter circuits design
- 4. Second Order Filters
- 5. Frequency Transformation
- 6. Step 1: check of scheme gain
- 7. Step 2: time domain simulation
- 8. Step 3: Step response (time domain simulation)
- 9. Step 4: frequency domain simulation)
- 10. Results and conclusions
- 11. Uploading report

Ideal Filter Response Curves

First-order Filter

ITMO

First-order Filter

Band Stop Filter

The Butterworth Approximation

$$G(\Omega) = \frac{H_o}{\sqrt{1 + \beta^2 \Omega^{2N}}}$$

$$G(\Omega_S) = \frac{H_o}{\sqrt{1 + \beta^2 \Omega_S^{2N}}} \le H_S$$

$$N \ge \frac{\log(\frac{(H_o/H_S)^2 - 1}{\beta^2})}{2\log\Omega_S}$$

$$N \ge \frac{\log(\frac{(H_o/H_S)^2 - 1}{\beta^2})}{2\log\Omega_S} \qquad N \ge N_d = \frac{\log(\frac{(H_o/H_S)^2 - 1}{\beta^2})}{2\log\Omega_S}$$

$$n_{f \min} = \frac{\log(\frac{\frac{H_o^2}{H_S^2} - 1}{\frac{H_o^2}{H_C^2} - 1})}{2\log\Omega_S} = \frac{\log(\frac{10^{\frac{a_{\min}}{10}} - 1}{10^{\frac{a_{\max}}{10}} - 1})}{2\log\Omega_S}$$

filter designed with normalized specifications $H_o = 1$, $H_C = 0.95$, $H_S = 0.05$ and $\Omega_S = 2.7$

$$\beta_{\min} = \frac{\sqrt{\frac{H_o^2}{H_S^2} - 1}}{\Omega_S^N} \le \beta \le \sqrt{\frac{H_o^2}{H_C^2} - 1} = \beta_{\max}$$

$$\beta_{\min} = \frac{\sqrt{10^{\frac{\alpha_{\min}}{10}} - 1}}{\Omega_S^N} \le \beta \le \sqrt{10^{\frac{\alpha_{\max}}{10}} - 1} = \beta_{\max}$$

The All-Pole Chebyshev Approximation

$$G_{CH}(\Omega) = \frac{H_o}{\sqrt{1 + \varepsilon^2 C_N^2(\Omega)}}$$

$$\varepsilon \le \sqrt{\frac{H_o^2}{H_c^2} - 1} = \sqrt{10^{\frac{\alpha_{\text{max}}}{10}} - 1} = \varepsilon_{\text{max}}$$

For
$$\varepsilon \leq \varepsilon_{max}$$

$$H_0 \ge G_{CH}(\Omega) \ge \frac{H_0}{\sqrt{1+\varepsilon^2}} \ge H_C$$

For
$$\Omega = 1$$

$$G_{CH}(1) = \frac{H_0}{\sqrt{1 + \varepsilon^2}} \ge H_C$$

The All-Pole Chebyshev Approximation

$$G_{CH}(\Omega_s) = \frac{H_o}{\sqrt{1 + \varepsilon^2 C_N^2(\Omega_s)}} \le H_s$$

$$\Leftrightarrow C_N^2(\Omega_S) \ge \frac{(H_o/H_S)^2 - 1}{\varepsilon^2}$$

$$\Leftrightarrow N \cosh^{-1}(\Omega_S) \ge \cosh^{-1} \sqrt{\frac{(H_o/H_S)^2 - 1}{\varepsilon^2}}$$

for N:
$$N \ge N_d = \frac{\cosh^{-1}(\sqrt{\frac{(H_o/H_S)^2 - 1}{\varepsilon^2}})}{\cosh^{-1}(\Omega_S)}$$

$$N \ge N_d = \frac{\cosh^{-1}(\sqrt{\frac{(H_o/H_S)^2 - 1}{\varepsilon_{\max}^2}})}{\cosh^{-1}(\Omega_S)} = \frac{\cosh^{-1}(\sqrt{\frac{(H_o/H_S)^2 - 1}{(H_o/H_C)^2 - 1}})}{\cosh^{-1}(\Omega_S)}$$

logarithmic gain specifications
$$N \ge N_d = \frac{\cosh^{-1}(\sqrt{\frac{10^{\frac{\alpha_{\min}}{10}} - 1}{10^{\frac{\alpha_{\max}}{10}} - 1}})}{\cosh^{-1}(\Omega_S)}$$

Comparison of Amplitude Response

Comparison of Step and Impulse Responses

Butterworth **VS** Chebyshev

iTMO

	Butterworth Filter	Chebyshev Filter
Order of Filter	The order of the Butterworth filter is higher than the Chebyshev filter for the same desired specifications.	The order of the Chebyshev filter is less compared to the Butterworth filter for the same desired specifications.
Hardware	It requires more hardware.	It requires less hardware.
Ripple	There is no ripple in passband and stopband of frequency response.	There is either ripple in passband or stopband.
Poles	All poles lie on a circle having a radius of the cutoff frequency.	All poles lie on ellipse having major axis R, ξ , minor axis r.
Transition band	The Butterworth filter has a wider transition band compared to the Chebyshev filter.	The Chebyshev filter has a narrow transition band compared to the Butterworth filter.
Types	It doesn't have any types.	It has two types; type-1 and type-2.
Cutoff Frequency	The cutoff frequency of this filter is not equal to the passband frequency.	The cutoff frequency of this filter is equal to the passband frequency.

Sallen-Key Filter

The main advantages of the Sallen-key filter design are:

- •Simplicity and Understanding of their Basic Design
- •The use of a Non-inverting Amplifier to Increase Voltage Gain
- •First and Second-order Filter Designs can be Easily Cascaded Together
- •Low-pass and High-pass stages can be Cascaded Together
- •Each RC stage can have a different Voltage Gain
- •Replication of RC Components and Amplifiers
- •Second-order Sallen-key Stages have Steep 40dB/decade roll-off than cascaded RC

$$f_C = \frac{1}{2\pi\sqrt{R_A C_A R_B C_B}}$$

Active Band Pass Filter

Multiple Feedback Band Pass Active Filter

infinite-gain multiple-feedback (IGMF) band pass filter

the characteristics of the IGMF filter

$$f_r = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

$$Q = \frac{f_r}{BW_{-3dB}} = \frac{1}{2} \sqrt{\frac{R_2}{R_1}}$$

$$Max \ gain \sim -\frac{R_2}{2R_1} = 2Q^2$$

Sallen-Key Filter VS Multiple Feedback Filter itmo

Sallen-Key	Multiple Feedback
Non-inverting	Inverting
Very precise DC-gain of 1	Any gain is dependent on the resistor precision
Less components for gain = 1	Less components for gain > 1 or < 1
Op-amp input capacitance must possibly be taken into account	Op-amp input capacitance has almost no effect
Resistive load for sources even in high-pass filters	Capacitive loads can become very high for sources in high-pass filters

Type of Transformation	Frequency transform
The Lowpass to Highpass (LP-HP) Frequency Transformation	$s \Leftrightarrow \frac{1}{s}$ $H_{HP}(s) = H_{LP}\left(\frac{1}{s}\right)$
The Lowpass to Bandpass (LP-BP) Frequency Transformation	$s \Leftrightarrow \frac{s^2 + \omega_0^2}{sBW}$ $H_{BP}(s) = H_{LP}\left(\frac{s^2 + \omega_0^2}{sBW}\right)$
The Lowpass to Band-Reject (LP-BR) Frequency Transformation	$s \Leftrightarrow \frac{sBW}{s^2 + \omega_0^2}$ $H_{BR}(s) = H_{LP}\left(\frac{sBW}{s^2 + \omega_0^2}\right)$

Attendance check

https://forms.yandex.com/cloud/63548180c417f37fd24e9ec2/

https://clck.ru/32Sksd

- 1. Sarma M. S. Introduction to electrical engineering. New York: Oxford University Press, 2001. C. 715-716.
- Boylestad, Robert L. Electronic devices and circuit theory / Robert L. Boylestad, Louis Nashelsky.—11th ed.
- ISBN 978-0-13-262226-4Scherz P., Monk S. Practical electronics for inventors.
 McGraw-Hill Education, 2016.
- 4. Horowitz, Paul, and Winfield Hill. "The Art of Electronics. 3rd." *New York, NY, USA: University of Cambridge* (2015).
- 5. All about circuits (https://www.allaboutcircuits.com/)
- 6. https://www.electronics-tutorials.ws/
- 7. https://en.wikipedia.org/

Laboratory Work 3 Active filter circuits design and simulation

Nikolay Nikolaev Nikolai Poliakov Roman Olekhnovich (nanikolaev@itmo.ru)
(polyakov_n_a@itmo.ru)
(r.o.olekhnovich@mail.ru)

Second Order Filters

Nikolay Nikolaev Nikolai Poliakov Roman Olekhnovich (nanikolaev@itmo.ru)
(polyakov_n_a@itmo.ru)
(r.o.olekhnovich@mail.ru)

If Resistor and Capacitor values are different: $f_{C} = \frac{1}{2\pi \sqrt{R_1 R_2 C_1 C_2}}$

If Resistor and Capacitor values are the same: $f_{\rm C} = \frac{1}{2\pi \; {\rm RC}}$

Second Order High Pass Filter

ITMO

If Resistor and Capacitor values are different:

$$f_{\rm C} = \frac{1}{2\pi \sqrt{R_1 R_2 C_1 C_2}}$$

If Resistor and Capacitor values are the same:

$$f_{\rm C} = \frac{1}{2\pi \, {\rm RC}}$$

Sallen-Key Filter VS Multiple Feedback Filter

Sallen-Key	Multiple Feedback
Non-inverting	Inverting
Very precise DC-gain of 1	Any gain is dependent on the resistor precision
Less components for gain = 1	Less components for gain > 1 or < 1
Op-amp input capacitance must possibly be taken into account	Op-amp input capacitance has almost no effect
Resistive load for sources even in high-pass filters	Capacitive loads can become very high for sources in high-pass filters

Frequency Transformation

Nikolay Nikolaev Nikolai Poliakov Roman Olekhnovich (nanikolaev@itmo.ru)
(polyakov_n_a@itmo.ru)
(r.o.olekhnovich@mail.ru)

Typical values of low-pass filter parameters

$$H_{LP}(f) := \frac{K}{b_1 \cdot \left[\left(\frac{2 \cdot \mathbf{n} \cdot f \cdot \mathbf{i}}{\omega_p} \right)^2 \right] + a_1 \cdot \frac{\left(2 \cdot \mathbf{n} \cdot f \cdot \mathbf{i} \right)}{\omega_p} + 1}$$

n	i	a_i	b_i	$f_{\rm gi}/f_{\rm g}$	Q_i	n	i	a_i	b_i	$f_{\mathrm{g}i}/f_{\mathrm{g}}$	Q_i	n	i	a_i	b_i	$f_{\mathrm{gi}}/f_{\mathrm{g}}$	Q_i
Rutte	rworth					Cheb	yshev					Besse	:				
1	1	1,0000	0,0000	1,000	-	1	1	1,0000	0,0000	1,000	_	1	1	1,0000	0,0000	1,000	-
2	1	1,4142	1,0000	1,000	0,71	2	1	1,0650	1,9305	1,000	1,30	2	1	1,3617	0,6180	1,000	0,58
3	1	1,0000	0,0000	1,000	-	3	1	3,3496	0,0000	0,299	-	3	1	0,7560	0,0000	1,323	-
	2	1,0000	1,0000	1,272	1,00		2	0,3559	1,1923	1,396	3,07		2	0,9996	0,4772	1,414	0,69
4	1	1.8478	1,0000	0,719	0,54	4	1	2,1853	5,5339	0,557	1,08	4	1	1,3397	0,4889	0,978	0,52
	2	0,7654	1,0000	1,390	1,31		2	0,1964	1,2009	1,410	5,58		2	0,7743	0,3890	1,797	0,81
5	1	1,0000	0,0000	1,000	_	5	1	5,6334	0,0000	0,178	-	5	1	0,6656	0,0000	1,502	_
	2	1,6180	1,0000	0,859	0,62		2	0,7620	2,6530	0,917	2,14		2	1,1402	0,4128	1,184	0,56
	3	0,6180	1,0000	1,448	1,62		3	0,1172	1,0686	1,500	8,82		3	0,6216	0,3245	2,138	0,92
6	1	1,9319	1,0000	0.676	0,52	6	1	3,2721	11,6773	0,379	1,04	6	1	1,2217	0,3887	1.063	0,51
	2	1,4142	1,0000	1,000	0.71		2	0,4077	1,9873	1,086	3,46		2	0,9686	0,3505	1,431	0,61
	3	0,5176	1,0000	1,479	1,93		3	0,0815	1,0861	1,489	12,78		3	0,5131	0,2756	2,447	1,02
7	1	1,0000	0,0000	1,000	-	7	1	7,9064	0,0000	0,126	-	7	1	0,5937	0,0000	1,684	_
	2	1,8019	1,0000	0,745	0,55		2	1,1159	4,8963	0,670	1,98		2	1,0944	0,3395	1,207	0,53
	3	1,2470	1,0000	1,117	0,80		3	0,2515	1,5944	1,222	5,02		3	0,8304	0,3011	1,695	0,66
	4	0,4450	1,0000	1,499	2,25		4	0,0582	1,0348	1,527	17,46		4	0,4332	0,2381	2,731	1,13
8	1	1,9616	1,0000	0,661	0,51	8	1	4,3583	20,2948	0,286	1,03	8	1	1,1112	0,3162	1,164	0,51
	2	1,6629	1,0000	0,829	0.60		2	0,5791	3,1808	0,855	3,08		2	0,9754	0,2979	1,381	0,56
	3	1,1111	1,0000	1,206	0,90		3	0,1765	1,4507	1,285	6,83		3	0,7202	0,2621	1,963	0,71
	4	0,3902	1,0000	1,512	2,56		4	0,0448	1,0478	1,517	22,87		4	0,3728	0,2087	2,992	1,23
9	1	1,0000	0,0000	1,000	-	9	1	10,1759	0,0000	0,098	-	9	1	0,5386	0,0000	1.857	_
	2	1,8794	1,0000	0,703	0,53		2	1,4585	7,8971	0,526	1,93		2	1,0244	0,2834	1,277	0,52
	3	1,5321	1,0000	0,917	0,65		3	0,3561	2,3651	1,001	4,32		3	0,8710	0,2636	1,574	0,59
	4	1,0000	1,0000	1,272	1,00		4	0,1294	1,3165	1,351	8,87		4	0,6320	0,2311	2,226	0,76
	5	0,3473	1,0000	1,521	2,88		5	0,0348	1,0210	1,537	29,00		5	0,3257	0,1854	3,237	1,32
10	1	1,9754	1,0000	0,655	0,51	10	1	5,4449	31,3788	0,230	1,03	10	1	1,0215	0,2650	1,264	0,50
	2	1,7820	1,0000	0,756	0,56		2	0,7414	4,7363	0,699	2,94		2	0,9393	0,2549	1,412	0,54
	3	1,4142	1,0000	1,000	0,71		3	0,2479	1,9952	1,094	5,70		3	0,7815	0,2351	1,780	0,62
	4	0,9080	1,0000	1,322	1,10		4	0,1008 0,0283	1,2638	1,380	11,15 35,85		4	0,5604	0,2059	2,479	0,81
	5	0,3129	1,0000	1,527	3,20		Э	0,0283	1,0304	1,530	əə,oə		5	0,2883	0,1665	3,466	1,42

Typical values of low-pass filter parameters

Lowpass Filter

Highpass Filter

Sallen-Key
$$\frac{H_{HP_SK}(f) := \frac{K}{1}}{\frac{1}{(2 \cdot \mathbf{n} \cdot f \cdot \mathbf{i})^2 \cdot R_{1HP} \cdot R_{2HP} \cdot C_{1HP} \cdot C_{2HP}} + \frac{R_{2HP} \cdot \left(C_{1HP} + C_{2HP}\right) + \left(1 - K\right) \cdot R_{1HP} \cdot C_{2HP}}{R_{1HP} \cdot R_{2HP} \cdot C_{1HP} \cdot C_{2HP} \cdot 2 \cdot \mathbf{n} \cdot f \cdot \mathbf{i}} + 1$$

$$H_{HP_MF}(f) := \frac{\left(2 \cdot \mathbf{\pi} \cdot f \cdot \mathbf{i}\right)^2 \cdot R_{1HP} \cdot R_{2HP} \cdot C_{1HP} \cdot C_{3HP}}{\left(2 \cdot \mathbf{\pi} \cdot f \cdot \mathbf{i}\right)^2 \cdot R_{1HP} \cdot R_{2HP} \cdot C_{2HP} \cdot C_{3HP} + R_{2HP} \cdot \left(C_{1HP} + C_{2HP} + C_{3HP}\right) \cdot \left(2 \cdot \mathbf{\pi} \cdot f \cdot \mathbf{i}\right) + C_{2HP} \cdot C$$

Frequency Transformation

Type of Transformation	Frequency transform
The Lowpass to Highpass (LP-HP) Frequency Transformation	$s \Leftrightarrow \frac{1}{s}$ $H_{HP}(s) = H_{LP}\left(\frac{1}{s}\right)$
The Lowpass to Bandpass (LP-BP) Frequency Transformation	$s \Leftrightarrow \frac{s^2 + \omega_0^2}{sBW}$ $H_{BP}(s) = H_{LP}\left(\frac{s^2 + \omega_0^2}{sBW}\right)$
The Lowpass to Band-Reject (LP-BR) Frequency Transformation	$s \Leftrightarrow \frac{sBW}{s^2 + \omega_0^2}$ $H_{BR}(s) = H_{LP}\left(\frac{sBW}{s^2 + \omega_0^2}\right)$

Typical values of High-pass filter parameters

$$H_{HP}\left(f\right) := \frac{K}{\left[\left(\frac{2 \cdot \mathbf{\pi} \cdot f \cdot \mathbf{i}}{\omega_{p}}\right)^{2}\right] + \frac{a_{1}}{\left(2 \cdot \mathbf{\pi} \cdot f \cdot \mathbf{i}\right)} + 1}$$

n	i	a_i	b_i	$f_{\mathrm{gi}}/f_{\mathrm{g}}$	Q_i	n	i	a_i	b_i	f_{gi}/f_{g}	Q_i	_1	n	i	a_{i}	b_i	$f_{\rm gi}/f_{\rm g}$	Q_i
Butte	rworth					Cheb	yshev					E	Bessel					
1	1	1,0000	0,0000	1,000	-	1	1	1,0000	0,0000	1,000	-		1	1	1,0000	0,0000	1,000	-
2	1	1,4142	1,0000	1,000	0,71	2	1	1,0650	1,9305	1,000	1,30		2	1	1,3617	0,6180	1,000	0,58
3	1	1,0000	0,0000	1,000	22	3	1	3,3496	0,0000	0,299	-	;	3	1	0,7560	0,0000	1,323	-
	2	1,0000	1,0000	1,272	1,00		2	0,3559	1,1923	1,396	3,07			2	0,9996	0,4772	1,414	0,69
4	1	1.8478	1,0000	0,719	0,54	4	1	2,1853	5,5339	0,557	1,08	4	4	1	1,3397	0,4889	0,978	0,52
	2	0,7654	1,0000	1,390	1,31		2	0,1964	1,2009	1,410	5,58			2	0,7743	0,3890	1,797	0,81
5	1	1,0000	0,0000	1,000	_	5	1	5,6334	0,0000	0,178	-		5	1	0,6656	0,0000	1,502	_
	2	1,6180	1,0000	0,859	0,62		2	0,7620	2,6530	0,917	2,14			2	1,1402	0,4128	1,184	0,56
	3	0,6180	1,0000	1,448	1,62		3	0,1172	1,0686	1,500	8,82			3	0,6216	0,3245	2,138	0,92
6	1	1,9319	1,0000	0,676	0,52	6	1	3,2721	11,6773	0,379	1,04		6	1	1,2217	0,3887	1,063	0,51
	2	1,4142	1,0000	1,000	0,71		2	0,4077	1,9873	1,086	3,46			2	0,9686	0,3505	1,431	0,61
	3	0,5176	1,0000	1,479	1,93		3	0,0815	1,0861	1,489	12,78			3	0,5131	0,2756	2,447	1,02
7	1	1,0000	0,0000	1,000	-	7	1	7,9064	0,0000	0,126	-		7	1	0,5937	0,0000	1,684	_
	2	1,8019	1,0000	0,745	0,55		2	1,1159	4,8963	0,670	1,98			2	1,0944	0,3395	1,207	0,53
	3	1,2470	1,0000	1,117	0,80		3	0,2515	1,5944	1,222	5,02			3	0,8304	0,3011	1,695	0,66
	4	0,4450	1,0000	1,499	2,25		4	0,0582	1,0348	1,527	17,46			4	0,4332	0,2381	2,731	1,13
8	1	1,9616	1,0000	0,661	0,51	8	1	4,3583	20,2948	0,286	1,03		8	1	1,1112	0,3162	1,164	0,51
	2	1,6629	1,0000	0,829	0,60		2	0,5791	3,1808	0,855	3,08			2	0,9754	0,2979	1,381	0,56
	3	1,1111	1,0000	1,206	0,90		3	0,1765	1,4507	1,285	6,83			3	0,7202	0,2621	1,963	0,71
	4	0,3902	1,0000	1,512	2,56		4	0,0448	1,0478	1,517	22,87			4	0,3728	0,2087	2,992	1,23
9	1	1,0000	0,0000	1,000	-	9	1	10,1759	0,0000	0,098	-		9	1	0,5386	0,0000	1,857	_
	2	1,8794	1,0000	0,703	0,53		2	1,4585	7,8971	0,526 1,001	1,93			2	1,0244	0,2834	1,277	0,52
	3	1,5321	1,0000	0,917	0,65		3	0,3561 0,1294	2,3651 1,3165	1,001	4,32 8,87			3	0,8710	0,2636	1,574	0,59
	4	1,0000	1,0000	1,272	1,00		5	0,1294	1,0210	1,537	29,00			4	0,6320	0,2311	2,226	0,76
	5	0,3473	1,0000	1,521	2,88									5	0,3257	0,1854	3,237	1,32
10	1	1,9754	1,0000	0,655	0,51	10	1	5,4449	31,3788	0,230	1,03		10	1	1,0215	0,2650	1,264	0,50
	2	1,7820	1,0000	0,756	0,56		2	0,7414	4,7363	0,699	2,94 5,70			2	0,9393	0,2549	1,412	0,54
	3	1,4142	1,0000	1,000	0,71		3	0,2479 0,1008	1,9952 1,2638	1,094 1,380	5,70 11,15			3	0,7815	0,2351	1,780	0,62
	4	0,9080	1,0000	1,322	1,10		4 5	0,1008	1,2638	1,530	35,85			4	0,5604	0,2059	2,479	0,81
	5	0,3129	1,0000	1,527	3,20		5	0,0203	1,0504	1,550	33,03			5	0,2883	0,1665	3,466	1,42

Typical values of low-pass filter parameters

4																	
'				1	1	Source		1	1	1				1			
1			J	Required absolute	Source	voltage	Source	1	1	1			1	1			
!		Voltage sou		gain of amplifier		frequency	voltage	Source voltage	Load	1			1	1			
1		supp		(sign of the gain is		, '	frequency,		resistance,	Fi ⁷	ilter resistance	.e,	1	1	Filter	capacitance,	. /
Filter scheme	Filter type	[V		not considered)	[Hz]	[Hz]	[Hz]	[V]	[Ω]	1	[Ω]		1	<u> </u>		[Ω]	
Sallen-Key Multiple Feedback	Lowpass Highpass	Vcc	Vee	$ K_{NI} $	$f_{\mathit{test_l}}$	f_{test_2}	$f_{\mathit{test_3}}$	V _{testAC=} V _{test}	R_{Load}	R_{I}	R_2	R_3	Resistor tolerance	C_{I}	C 2	C 3	Capacitor tolerance
Sallen-Key	Lowpass	6 -6		1,000	50	1000	100000	2,000	1000000	8200	15000		5%	1e-9	2,20E-09	-	20%
Multiple Feedback	Highpass	6	-6	1,000	60	1200	120000	2,000	1000000	3300	820		5%	1,50E-08	1,50E-08	2,20E-08	20%
	Low	pass	s Fil	ter							H	ighr	oass l	Filte	·r		

Feedback

Sallen-Key Feedback

Define the filter approximation

Filter scheme	Filter type	Voltage son sup [\	ply	Required absolute gain of amplifier (sign of the gain is not considered)	voltage	Source voltage frequency , [Hz]	Source voltage frequency, [Hz]	Source voltage amplitude, [V]	Load resistance, [Ω]	Fi	ter resistance	,			Filter	capacitance,	
Sallen-Key Multiple Feedback	Lowpass Highpass	Vcc	Vee	$ K_{NI} $	$f_{\mathit{test_l}}$	$f_{\it test_2}$	$f_{\it test_3}$	$V_{testAC} = V_{test}$	R_{Load}	R_I	R_2	R_3	Resistor tolerance	C_1	C ₂	C_3	Capacitor tolerance
Sallen-Key	Lowpass	6	-6	1,000	50	1000	100000	2,000	1000000	8200	15000	-	5%	1e-9	2,20E-09	-	20%
Multiple Feedback	Highpass	6	-6	1,000	60	1200	120000	2,000	1000000	3300	820	-	5%	1,50E-08	1,50E-08	2,20E-08	20%

Define the filter approximation

Filter scheme	Filter type	Voltage son sup [\	urce power	Required absolute gain of amplifier (sign of the gain is not considered)	voltage	Source voltage frequency , [Hz]	Source voltage frequency, [Hz]	Source voltage amplitude, [V]	Load resistance, [Ω]	Fil	lter resistance [Ω]	,			Filter	capacitance,	
Sallen-Key Multiple Feedback	Lowpass Highpass	Vcc	Vee	$ K_{NI} $	$f_{\mathit{test_1}}$	$f_{\it test_2}$	$f_{\it test_3}$	$V_{testAC} = V_{test}$	R_{Load}	R_{I}	R_2	R_3	Resistor tolerance		C ₂	C 3	Capacitor tolerance
Sallen-Key	Lowpass	6	-6	1,000	50	1000	100000	2,000	1000000	8200	15000	-	5%	1e-9	2,20E-09	-	20%
Multiple Feedback	Highpass	6	-6	1,000	60	1200	120000	2,000	1000000	3300	820	-	5%	1,50E-08	1,50E-08	2,20E-08	20%

Define the filter approximation

Filter scheme	Filter type	Voltage son sup [\	urce power	Required absolute gain of amplifier (sign of the gain is not considered)	voltage	Source voltage frequency , [Hz]	Source voltage frequency, [Hz]	Source voltage amplitude, [V]	Load resistance, [Ω]	Fil	lter resistance [Ω]	,			Filter	capacitance,	
Sallen-Key Multiple Feedback	Lowpass Highpass	Vcc	Vee	$ K_{NI} $	$f_{\mathit{test_1}}$	$f_{\it test_2}$	$f_{\it test_3}$	$V_{testAC} = V_{test}$	R_{Load}	R_{I}	R_2	R_3	Resistor tolerance		C ₂	C 3	Capacitor tolerance
Sallen-Key	Lowpass	6	-6	1,000	50	1000	100000	2,000	1000000	8200	15000	-	5%	1e-9	2,20E-09	-	20%
Multiple Feedback	Highpass	6	-6	1,000	60	1200	120000	2,000	1000000	3300	820	-	5%	1,50E-08	1,50E-08	2,20E-08	20%

Define the step response

Filter scheme	Filter type	Voltage son sup	urce power ply	Required absolute gain of amplifier (sign of the gain is not considered)	voltage	Source voltage frequency , [Hz]	Source voltage frequency, [Hz]	Source voltage amplitude, [V]	Load resistance, [Ω]	Fi	lter resistance [Ω]	a			Filter	capacitance,	
Sallen-Key Multiple Feedback	Lowpass Highpass	Vcc	Vee	$ K_{NI} $	$f_{\it test_l}$	$f_{\it test_2}$	$f_{\mathit{test_3}}$	$V_{testAC} = V_{test}$	R_{Load}	R_1	R_2	R_3	Resistor tolerance	C_1	C ₂	C 3	Capacitor tolerance
Sallen-Key	Lowpass	6	-6	1,000	50	1000	100000	2,000	1000000	8200	15000	-	5%	1e-9	2,20E-09	-	20%
Multiple Feedback	Highpass	6	-6	1,000	60	1200	120000	2,000	1000000	3300	820	-	5%	1,50E-08	1,50E-08	2,20E-08	20%

Conclusions

Filter scheme	Filter type	Voltage sou sup [\	ply	Required absolute gain of amplifier (sign of the gain is not considered)	voltage	Source voltage frequency , [Hz]	Source voltage frequency, [Hz]	Source voltage amplitude, [V]	Load resistance, [Ω]	Fi	ter resistance [Ω]	,			Filter	capacitance,	
Sallen-Key Multiple Feedback	Lowpass Highpass	Vcc	Vee	$ K_{NI} $	$f_{\mathit{test_l}}$	$f_{\it test_2}$	$f_{\it test_3}$	$V_{testAC} = V_{test}$	R_{Load}	R_I	R_2	R_3	Resistor tolerance	C_1	C ₂	C 3	Capacitor tolerance
Sallen-Key	Lowpass	6	-6	1,000	50	1000	100000	2,000	1000000	8200	15000	-	5%	1e-9	2,20E-09	-	20%
Multiple Feedback	Highpass	6	-6	1,000	60	1200	120000	2,000	1000000	3300	820	-	5%	1,50E-08	1,50E-08	2,20E-08	20%

Conclusions should contain:

- Which filter type were used?
- What was the bandwidth?
- What was the maximum/minimum gain relation in the passband?

https://forms.yandex.com/cloud/637a65df5d2 a068973e26fba/

https://clck.ru/32jqcy

1st deadline: 11.11.2024 10:00 (GMT +8)

Task	Deadline #1 (extra score)	Deadline #2 (No extra score)	Deadline #3 (No extra score)			
			The results will be published			
	The results will be published	The results will be published	with the results of the final test			
	before 15.11.2024	before 20.11.2024	(final scores)			
Lab 1, Practice 1	28.10.24 10:00	11.11.24 10:00	20.11.24 10:00			
Practice 2	28.10.24 22:00	11.11.24 10:00	20.11.24 10:00			
Lab 2	04.11.24 10:00	11.11.24 10:00	20.11.24 10:00			
Practice 3	04.11.24 10:00	11.11.24 10:00	20.11.24 10:00			
Lab 3	11.11.24 10:00	15.11.24 10:00	20.11.24 10:00			
Practice 4	11.11.24 10:00	15.11.24 10:00	20.11.24 10:00			

