ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ : Τ.Μ.Η/Υ.Π

ΕΠΩΝΥΜΟ : ΤΡΙΑΝΤΗΣ

 $\underline{ONOMA}: ΠΑΝΑΓΙΩΤΗΣ$

<u>A.M</u>: 5442

ΨΗΦΙΑΚΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

ΕΡΩΤΗΜΑ 2

Κωδικοποίηση ΡCΜ

Αρχικά παρουσιάζονται οι συναρτήσεις που ζητούνται για τον ομοιόμορφο κβαντιστή και για τον ανομοιόμορφο.

```
%% my quantizer : synarthsh tou omoiomorfou kbantisth
% input x, N, min value, max value
% output xq, centers
function [xq,centers] = my_quantizer( x,N,min_value,max_value )
%Ypologizoume tis apodektes times toy shmatos me vash tis akraies tou
%shmatos eisodou
x(x>max value)=max value; %vriskw th max timh tou input
x(x<min_value)=min_value; %vriskw th min timh tou input</pre>
%Ypologizoume to vhma kvantismou
D=(\max_{value-min_value})/2^{(N)};
%Ypologizw ta akra twn diasthmatwn a(1)-a(N+1)
a(1)=min value;
for i=2:2^{(N)}+1
a(i) = a(i-1) + D;
end
%Ypologizw ta kentra twn diasthmatwn
for i=1:2^N
centers (i) = (a(i)+a(i+1))/2;
end
%Antoistixizw kathe deigma sthn perioxh pou anhkei
%kai katalhqw sthn eksodo xq.To
%dianusma auto periexei enan akeraio pou apotelei deikth sto dianusma
%twn kentrwn kai leei poio kentro (apo ta 2^N)
%antistoixizetai to sugkekrimeno deigma
xlen=max(size(x,1),size(x,2));
%Arxikopoiw to dianusma twn lusewn
xq=zeros(xlen,1);
for i=1:xlen
flag=true;
k=1;
while(flag)
if(x(i) \le a(k+1))
xq(i)=k;
flag=false;
else
k=k+1;
end
end
end
centers=centers';
εnd
%% Lloyd Max : h synarthsh gia ton anomoiomorfo kbantisth
% input x, N, min value, max value, Kmax
% output xq,centers,D
function [xq,centers,D] = Lloyd Max(x,N,min value,max value,Kmax)
n = 2 ^ N;
%arxikopoihsh metablhtwn
x1=zeros(size(x));
xq=zeros(size(x));
centers=zeros(n,1);
centers1=zeros(n,1);
T=zeros(n-1,1);
D = zeros(Kmax, 1);
```

```
%tropopoihsh tou x wste efarmozei sta oria
for i=1:size(x),
if (x(i) > max value)
x1(i) = max value;
elseif (x(i) < min value)
x1(i) = min value;
else
x1(i) = x(i);
end
end
%arxikopoihsh tou T
for i = 1 : (n-1),
T(i) = i*(max value - min value) / n;
end
T=flipud(T); %ton anapodogyrizoume
%arxikopoihsh kentrwn
%an yparxoun x pou anhkoun sto anwtato diasthma vres to kentroeides
if numel(x1(x1<=max value & x1>T(1))) > 0
centers1(1) = mean(x1(x1 \le max value \& x1 > T(1)));
%an den uparxoun vale to prwto kentroeides sto meso ths prwths zwnhs
else
centers1(1) = (T(1) + max value)/2;
end
%an yparxoun x pou anhkoun sto katwtato diasthma vres to kentroeides
if numel(x1(x1 \le T(n-1) \& x1 \ge min value))
centers1(n) = mean(x1(x1<=T(n-1) & x1>=min value));
%an den uparxoun vale to prwto kentroeides sto meso ths
%teleutaias zwnhs
else
centers1(n) = (T(n-1)+min value)/2;
%gia oles tis upoloipes zwnes kanw to idio
for i = 2 : (n-1)
if numel(x1(x1 \le T(i-1) \& x1 > T(i))) > 0
centers1(i) = mean(x1(x1<=T(i-1) & x1>T(i)));
centers1(i) = (T(i-1)+T(i))/2;
end
end
k=2;
D(1) = 0;
D(2) = 1;
%oso h diafora tou distortion apo auto the prohyoumenou iteration
%den exei
%pesei katw apo ena katw orio = 10^-9, epanelave ta vhmata tou
%Llovd-Max
while k < Kmax \&\& norm(D(k) - D(k-1)) >= 10^-7
k = k + 1;
centers=centers1;
%epanaupologismos twn akrwn twn zwnwn
for i = 1 : (n-1),
T(i) = (centers(i) + centers(i+1)) / 2;
end
%calc xq
xq(x1 \le max value & x1 > T(1)) = 1;
xq(x1 \le T(n-1) \& x1 \ge min value) = n;
for i = 2 : (n-1),
xq(x1 \le T(i-1) \& x1 > T(i)) = i;
end
%ypologismos paramorfwshs
D(k) = mean((x1 - centers(xq)).^2);
```

```
%% update to akrwtato kentroeides
if numel(x1(x1 \le max value & x1 > T(1))) > 0
centers1(1) = mean(x1(x1 \le max value & x1 > T(1)));
else
centers1(1) = centers(1);
end
%gia to katw akrwtato
if numel(x1(x1 \le T(n-1) \& x1 \ge min value))
centers1(n) = mean(x1(x1<=T(n-1) & x1>=min value));
centers1(n) = centers(n);
end
%gia ola ta alla
for i = 2 : (n-1),
if numel(x1(x1<=T(i-1) & x1>T(i))) > 0
centers1(i) = mean(x1(x1<=T(i-1) & x1>T(i)));
else
% centers1(i) = centers(i);
end
end
end
D = D';
```

Ζητούμενα Ερωτήματος 2

1) για τη διεκπεραίωση του ερωτήματος δημιουργήθηκαν οι συναρτήσεις:

```
%% SQNR THEWR H sunarthsh auth upologizei th 8ewrhtikh timh gia to
SQNR
% sthn e3odo tou kvantisth kai epistrefei thn timh auth se db
% OUTPUTS
% sqnr thewr: H 8ewrhtikh timh tou SQNR sthn e3odo tou kvantisth
function [sqnr thewr] = sqnr thewrhtiko(
N, centers, min value, max value )
svms x;
P=eval(int(x^2*exp(-x), x, min value, max value));
P2=eval(int(x^2*exp(-x),x,max value,inf));
P=P+P2;
Nq=0;
for i=1:2^N-1
res=int((x-centers(i))^2*exp(-x), min value+(i-1)*((max value-
min value) /2^{(N)}, min value+(i) *((max value-min value) /2^{(N)});
Nq=Nq+eval(res);
temp=eval(int((x-centers(length(centers)))^2*exp(-
x),x,max value,inf));
Nq=Nq+temp;
sqnr thewr=10*log10(P/Nq);
end
%% SQNR THEWR H sunarthsh auth upologizei th peiramatikh timh gia to
SONR
% sthn e3odo tou kvantisth kai epistrefei thn timh auth se db
% OUTPUTS
% sqnr_peir: H peiramatikh timh tou SQNR sthn e3odo tou kvantisth
function [sqnr peir] = sqnr peiramatiko(x,xq,centers)
P = mean(x.^2);
xquan = centers(xq); %to kvantismeno shma
Nq = mean((x-xq).^2);
%upologismos tou sqnr se db
```

```
sqnr_peir = 10*log10(P/Nq);
end
```

Τα ερωτήματα 1α και 1β απαντιούνται με το εξής script της matlab :

```
%% script pou dhmioyrgei thn phqh A, xrhsimopoiwntas ton omoiomorfo
kbantisth
% kwdikopoiei thn phqh kai ypologizei to SQNR kai oti zhteitai sto 1a
% 1b erwthma
close all; clear all; clc
M = 1e4;
t = (randn(M, 1) + sqrt(-1) * randn(M, 1)) / sqrt(2);
x= abs(t) .^2;
% arxikopoihsh pinakwn qia thn apo8hkeush apotelesmatwn
sqnr peir = zeros(2,1);
sqnr thewr = zeros(2,1);
D = zeros(2,1);
% dianysma pou periexei ta diafora N (bits) pou 8eloume na kanoyme th
% kwdikopoihsh ths phghs
K = [4 6];
for i = 1:length(K)
    N = K(i);
    [xq,centers] = my_quantizer(x,N,0,4);
    [sqnr peir(i)] = sqnr peiramatiko( x,xq,centers );
    display(sqnr_peir)
    [sqnr thewr(i)] = sqnr thewrhtiko(N,centers,0,4);
    display(sqnr thewr)
    D(i) = mean(x-centers(xq)).^2;
    display(D(i))
    figure(i)
    subplot(2,1,1)
    plot(x)
    subplot(2,1,2)
    plot(centers(xq))
end
% arxikopoiw enan counter o opoios metraei poia stoixeia einai ektos
apo ta
% oria 0 kai 4 pou exoume (min value - max value)
counter = 0;
for y = 1: length(x)
    if x(y) < 0 \mid | x(y) > 4
        counter = counter + 1;
end
% edw ypologizetai h peiramatikh pi8anothta yperfortwshs me xrhsh tou
counter
pi8anothta yperfortwshs peir = counter/length(x)
```

τα αποτελέσματα που παίρνουμε για κωδικοποίηση σε 4 και 6 bits αντιστοιχα είναι τα εξης :

Η πιθανότητα που ζητείται (πειραματική) για το distortion overload είναι :

```
pi8anothta_yperfortwshs_peir =
    0.0161
```

Εδώ παρατίθενται 2 γραφικές παραστάσεις που δείχνουν το κανονικό σήμα σε σχέση με το κβαντισμένο

N = 4 bits

N = 6 bits

Αν παρατηρήσουμε το σήμα μετά τη κωδικοποίησή του τότε μπορούμε να δούμε ότι για 6 bits είναι καλύτερα κωδικοποιημένο αφού περιλαμβάνει στοιχεία που

είναι ανάμεσα στις τιμές 0-4 και δε τα περιέχει το σήμα που κωδικοποιήθηκε για 4 bits.

2) για το (α) έχουμε τη γραφική

Για το (β) έχουμε τη γραφική που συγκρίνει τα SQNR των δύο κβαντιστών


```
N =
                                   N =
                  N =
     2
                                         6
sxq =
                  sxq =
                                   sxa =
    2.5227
                                     -23.6411
                    -10.9848
ll_sxq =
                                   ll sxq =
                  11 sxq =
   -7.4784
                                     -13.7630
                     -9.2141
```

Όπου sxq είναι το 10log10(var(x-centers(xq)) & II_sxq είναι το 10log10(x-Lloyd_centers(Lloyd_xq)). Δηλαδή η διασπορά των διαφορων των κβαντισμενων σημάτων από το αρχικό προς τη διασπορά του αρχικού σήματος. Ετσι βλέπουμε κατά πόσο «χάνει» από το αρχικό σημα. Για 2 bits κωδικοποίηση ο ομοιόμορφος κωδικοποιητής κωδικοποιεί ικανοποιητικά ενώ μετά πιο ικανοποιητική είναι η κωδικοποίηση του μη ομοιόμορφου κωδικοποιητή.

Ο κώδικας που χρησιμοποιήθηκε για το 2α κ 2β είναι :

```
%% script gia th phgh B kai kalyptei ta erwthmata 2a - 2b
close all; clear all; clc
% arxikopoihsh pinakwn gia thn apo8hkeush apotelesmatwn
sqnr omoiomorfou peir = zeros(3,1);
Lloyd sqnr peir = zeros(3,5);
apodosh_om = zeros(3,1);
apodosh anom = zeros(3,1);
apd ws pros arxiko = zeros(3,1);
apd ws pros arxiko Lloyd = zeros(3,1);
% xrhsimopoioume thn audioread epeidh etsi epideiknyei h matlab
[x,fs] = audioread('speech.wav');
% dianysma pou periexei ta diafora N (bits) pou 8eloume na kanoyme th
% kwdikopoihsh ths phqhs
K = [2 \ 4 \ 6];
for i = 1:length(K)
    N = K(i);
    [xq,centers] = my quantizer(x,N,-1,1);
    sqnr omoiomorfou peir(i,1) = sqnr peiramatiko(x, xq, centers);
    kmax = 5:5:25;
    for j = 1:length(kmax)
        [Lloyd xq,Lloyd centers,D] = Lloyd Max(x,N,-1,1,kmax(j));
        Lloyd_sqnr_peir(i,j) =
sqnr_peiramatiko(x,Lloyd_xq,Lloyd_centers);
    end
    display(N)
    sxq = 10*log10(var(x-centers(xq))/var(x))
    apd_ws_pros_arxiko(i) = sxq;
    11 \text{ sxq} = 10 \cdot \log 10 (\text{var}(x-\text{Lloyd centers}(\text{Lloyd xq}))/\text{var}(x))
    apd ws pros arxiko Lloyd(i) = ll sxq;
end
figure(1)
plot(kmax,Lloyd_sqnr_peir(1,:),'r-*')
hold on
```

```
plot(kmax,Lloyd sqnr peir(2,:),'b-o')
hold on
plot(kmax,Lloyd sqnr peir(3,:),'k-x')
hold off
legend('N=2','N=4','N=6')
title('Metabolh SQNR')
xlabel('plh8os epanalhpsewn')
ylabel('SQNR(dB)')
figure(2)
N = 2:2:6;
plot(N,Lloyd sqnr peir(:,5),'r-*')
plot(N,sqnr omoiomorfou peir(:,:),'b-o')
hold off
legend('Lloyd','omoiomorfos')
title('Diafores SQNR')
xlabel('N(bits)')
ylabel('SQNR(dB)')
2γ) η συνάρτηση που ζητείται είναι η :
%% ypologismos entropias kai pi9anothtas emfanishs ka8e epipedou
kbantishs
% input x,xq,centers
% x : arxiko shma, xq : kbantismeno shma, centers : ypologismena
kentra
% output level entropy, level prob, entropy
% level_entropy : entropia ka8e epipedou kbantishs
% level prob : pithanothta emfanishs ka8e epipedou
% entropy : h synolikh entropia
function [level entropy,level prob,entropy] =
erotima 2c(x,xq,centers)
y = unique(centers(xq));
count = zeros(length(y), 1);
for i = 2:length(y)
    counter = 0;
    for j = 1: length(x)
        if y(i-1,1) \le x(j) \&\& x(j) \le y(i,1)
            counter = counter + 1;
        count(i-1) = counter;
        if i == length(y)
            count(i) = counter;
        end
    end
end
level prob = count./sum(count);
entropy = 0;
for i = 1:length(level prob)
    if level_prob(i)~=0
    entropy = entropy + (-level_prob(i)*log2(level_prob(i)));
end
level entropy = zeros(length(y),1);
for i = 1:length(level prob)
    if level prob(i)~=0
    level_entropy(i) = -level_prob(i)*log2(level_prob(i));
```

```
end
end
end
```

```
και το script που απανταει στο ερωτημα αυτό είναι :
```

```
%% script poy apantaei sto erotima 2c
% ypologizetai h pi8anothta emfanishs ka8e epipedou kai apo8hkeuetai
se
% cell, akomh ypologizetai h entropia ka8e epipedou kbantishs kai
% apo8hkeutai se cell kai ypologizw kai thn entropia gia N = 2:2:6
gia ka8e
% kbantismeno shma dhladh kai apo to shma pou bgazei san e3odo o
% omoiomorfos kbantisths kai o anomoiomorfos
close all; clear all; clc
sqnr omoiomorfou peir = zeros(3,1);
Lloyd sqnr peir = zeros(3,5);
[x,fs] = audioread('speech.wav');
level entropy omoio = cell([3,1]);
level prob omoio = cell([3,1]);
level_entropy_anomoio = cell([3,1]);
level prob anomoio = cell([3,1]);
entropy omoio = zeros(3,1);
entropy anomoio = zeros(3,1);
K = [2 \ 4 \ 6];
for i = 1:length(K)
    N = K(i);
    [xq,centers] = my_quantizer(x,N,-1,1);
    sqnr_omoiomorfou_peir(i,1) = sqnr_peiramatiko(x,xq,centers);
    [level_entropy_om,level_prob_om,entropy_om] =
erotima 2c(x,xq,centers);
    level entropy omoio{i,1} = level entropy om;
    level prob omoio{i,1} = level prob om;
    entropy_omoio(i,1) = entropy_om;
    kmax = 5:5:25;
    for j = 1:length(kmax)
        [Lloyd_xq,Lloyd_centers,D] = Lloyd_Max(x,N,-1,1,kmax(j));
        Lloyd_sqnr_peir(i,j) =
sqnr_peiramatiko(x,Lloyd_xq,Lloyd_centers);
        [level_entropy_anom,level_prob_anom,entropy_anom] =
erotima_2c(x,Lloyd_xq,Lloyd_centers);
        level entropy anomoio{i,1} = level entropy anom;
        level prob anomoio{i,1}= level prob anom;
        entropy anomoio(i,1) = entropy anom;
    end
end
for i = 1:3
    figure(i)
    plot(level prob omoio{i,1},'b-*')
    hold on
    plot(level prob anomoio{i,1},'r->')
    hold off
end
```

			2,50E-05	
			0,0002	
			0,0001	
			0,00048	
			0,00055	
			0,00058	0,01621
			0,0009	0,01338
			0,00083	0,01078
			0,00145	0,00815
			0,00133	0,00535
			0,0017	0,0035
			0,00175	0,00318
			0,00205	0,00308
			0,00333	0,0021
	0.001577		0,00675	0,00148
	0,001577		0,01063	0,001
	0,004231		0,01541	0,00098
	0,00746		0,02066	0,00043
	0,044212		0,02659	0,00083
	0,131734		0,03324	0,00035
	0,57493		0,03795	0,00025
	0,152463		0,04905	0,00015
	0,055603		0,07419	0,00018
	0,017349		0,21524	0,00018
	0,006609		0,2236	5,00E-05
	-		0,06436	0,00015
	0,002153		0,04635	0,00015
	0,000626		0,03737	0,00013
	0,000526		0,02719	0,00013
N=4	0,000526	N=6	0,02389	0,00013

πιθανοτητες ανομοιομορφου

0,025237 0,883142 0,04581

N = 2 0,04581

			0.00416
			0,08416
			0,15746
			0,3182
			0,22544
			0,07343
			0,04425
			0,02784
			0,01841
			0,01354
			0,01035
			0,00682
			0,00454
			0,00317
			0,00287
			0,00246
			0,00188
			0,00109
			0,00099
			0,00053
			0,00066
			0,00041
			0,00025
	0,29947		0,0002
	0,48498		0,00018
	0,12249		0,00015
	0,05763		5,07E-05
	0,02342		0,00015
	0,00816		0,00013
	0,00227		0,00015
	0,00079		0,00013
N=4	0,00079	N=6	0,00013

Οι εντροπιες για N = 2:2:6 για τον ομοιομορφο και τον ανομοιομορφο είναι :

N(bits)	Εντροπία ομοιόμορφου	Εντροπία ανομοιόμορφου		
2	0.6998	1.6530		
4	1.9760	1.8553		
6	3.8264	2.8388		

Και σε γραφικες για τις πιθανοτητες παιρνουμε

0,36818 0,46063 0,0856

N = 2 0,0856

2δ) Για να παρουμε την τιμη του mse

$$\overline{MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}$$

Χρησιμοποιήσαμε με βάση τον τύπο τον κώδικα:

(ο κώδικας αυτός προστέθηκε στο **erotima 2c script.m στο loop της for και βγαζει στο command window σε κάθε loop το αποτέλεσμα του mse κάθε φορά και πήραμε τα αποτελέσματα)**

N(bits)	mse(omoiomorfou)	Mse(Lloyd)
2	0.0362	0.0033
4	0.0016	0.0022
6	7.9168e-05	7.8513e-04