

Aula 01

Cristiane Loesch crisloesch@gmail.com

Brasília 2025

Introdução

Ementa:

Indução Matemática

Teoria dos Números

Divisibilidade

Números Primos

Aritmética Modular

Congruência

Grupos, Anéis e Corpos (introdução)

Avaliações

Atividades:

poderão ser aplicadas, caso o professor julgue necessário; sem aviso prévio

Algoritmos → linguagem C

- → em sala de aula
- → ONECOMPILER

Avaliações

GRUPOS G1 E G2 (seleção aleatória)

Não é permitida troca de grupo

Avaliações com mesmo nível de dificuldade

Questões: Múltipla escolha, V ou F, Dissertativa

Avaliações

Alunos ausentes

nas atividades (caso haja) → não terão direito à substituta nas avaliações → com atestado(segundo definição por lei) terão direito à substitutiva.

*Atenção: Atestados não abonam faltas

*Envio do atestado: e-mail crisloesch@gmail.com Nome, matrícula, turma → enviar no dia da ausência

Alunos com direito legal à tempo extra

*Enviar e-mail crisloesch@gmail.com

Nome, matrícula, turma → até 15 dias antes da data da prova

Alunos com postura inadequada durante as avaliações

Se identificados pela professora, ou um de seus monitores acessando materiais como caderno, livros e/ou anotações bem como aparelhos eletrônicos e outros colegas durante a aplicação da avaliação terão sua avaliação anulada! Nota ZERO e sem direito à avaliação substitutiva.

Avaliações e Nota Final

Avaliações (datas previstas)

```
P1: 05/05 (G1) e 07/05 (G2)
P2: 02/06 (G2) e 04/06 (G1)
P3: 30/06 (G1) e 02/07 (G2)
Substitutiva (única): 09/07
```

$$N = \frac{\left(P_1 + P_2 + P_3\right)}{3}$$

Estruturas Discretas vs. Contínuas

EXEMPLOS:

ESTRUTURAS CONTÍNUAS:

→ Números reais

Conjunto de todos os números com infinitas casas decimais

→ Espaços Euclidianos Plano cartesiano

ESTRUTURAS DISCRETAS:

→ Conjuntos
 Conjunto dos números inteiros;
 Conjunto das letras do alfabeto.

→ Relações Relação de equivalência; Relação de parentesco em uma árvore genealógica

→ Sequências Sequência de DNA;

→ Funções contínuas

→ Campos Vetoriais

Sequência de números

→ Grafos

Grafo social de uma rede de amigos;
Grafo de estradas em uma cidade;
Grafo de conexões em uma rede de computadores

A matemática, para a área de computação, deve ser vista como uma ferramenta a ser usada na definição formal de conceitos computacionais (linguagens, autômatos, métodos, etc). Os modelos formais permitem definir suas propriedades e dimensionar suas instâncias, dadas suas condições de contorno.

Considerando que a maioria dos conceitos computacionais pertencem ao domínio do discreto, a **matemática discreta** (ou também chamada álgebra abstrata) é fortemente empregada.

O QUE ESTUDA?

 Ramo da matemática que estuda conjuntos, finitos ou infinitos, contáveis, ou seja, conjuntos enumeráveis ou sequenciáveis segundo algum critério.

EXEMPLO:

Conjunto contável → Conjunto dos números Naturais

Conjunto não contável → Conjunto dos números Reais

DISCRETO x CONTÍNUO

- Discreto
 - feito de partes distintas
 - trata objetos separados e desconectados geometricamente uns dos outros
 - conjuntos numeráveis

Exemplos: conjunto dos números naturais; matemática discreta, etc..

- Contínuo
 - sem interrupção, sem mudança brusca
 - conjuntos não enumeráveis e com representações contínuas do ponto de vista geométrico

Exemplos: cálculo diferencial e integral; equações diferenciais, etc..

Ilustração Gráfica de Contínuo vs Discreto

Figure 1. Continuous temperature profile versus discrete meshed representation on computer

Ilustração Gráfica de Contínuo vs Discreto

Figure 3. Continous vs discrete time signal

POR QUE ESTUDAR?

• Importante no estudo e descrição de objetos e problemas em ramos da ciência da computação;

Exemplos:

- Algoritmos;
- Linguagem de programação;
- Criptografia;
- Desenvolvimento de software;
- Etc.

Se meu aniversário este ano (18/10) será numa sexta-feira, em que dia da semana comemorei meu aniversário no ano 1989? Que dia da semana vou comemorar meu aniversário no ano de 2051?

Se meu aniversário este ano (18/10) será numa sexta-feira, em que dia da semana comemorei meu aniversário no ano 1989? Que dia da semana vou comemorar meu aniversário no ano de 2051?

1989 → quarta-feira 2051 → quarta-feira

Se hoje é segunda, que dia da semana será daqui 103 dias?

8310110697109 98101109 11810511010011111533

8310110697109 98101109 11810511010011111533

SEJAM BEM VINDOS!

MD1

- → Argumentos válidos
- → Lógica
- → Demonstrações e Inferências
- → Hipótese => Tese

Exemplo: Se a é ímpar, então a² é ímpar.

SOLUÇÃO DE PROBLEMAS

- → APLICAÇÕES
 - algoritmos
 - grafos e árvores
 - identidades
 - inequações, etc

→ técnica de demonstração extremamente importante que pode ser utilizada para apresentar declarações deste tipo

IDEIA:

→ EFEITO DOMINÓ

Demonstrar que uma propriedade vale para todos os números inteiros positivos, por exemplo, provando-se que vale para o primeiro (inteiro positivo) e para um outro x qualquer (inteiro positivo) logo, valerá para o seu próximo.

Logo, demonstra-se a validade da propriedade para todos os números inteiros positivos, sem precisar demonstrar por exaustão (um a um)

PRIMEIRO PRINCÍPIO DE INDUÇÃO MATEMÁTICA

Se P(1) é verdade e V k \in N*: P(k) é verdade \rightarrow P(k+1) verdadeiro. Logo, P(n) é verdadeiro para todos os números inteiros n \geq 1.

PASSOS:

- 1) Passo Básico: mostrar P(1)
- 2) Hipótese de indução: Supõe P(k) verdadeiro
- 3) Passo indutivo: mostrar se P(k+1) é verdadeiro

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

EXERCÍCIOS:

a)
$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

b)
$$\sum_{i=1}^{n} 2i-1=1+3+5+7+...+(2n-1)=n^2$$
, $n \in \mathbb{N}$

c)
$$\sum_{i=0}^{n} 5i - 1 = 9 + 14 + 19 + \dots + (5n-1) = n^2 + 5$$
, $n \in \mathbb{N}, n > 1$

EXERCÍCIOS:

d)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{2n+1}}$$

e)
$$\prod_{i=2}^{n} \left(1 - \frac{1}{i}\right) = \frac{1}{n}$$

EXERCÍCIOS:

d)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{2n+1}}$$

e)
$$\prod_{i=2}^{n} \left(1 - \frac{1}{i}\right) = \frac{1}{n} \longrightarrow \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) ... \left(1 - \frac{1}{n}\right) = \frac{1}{n}$$

EXEMPLO: Suponha a sequência

$$3,2,18,...,3a_{n-1}+4a_{n-2}$$
 $n\in\mathbb{Z}_{+},n\geq 0$

É possível demonstrar que

$$a_n = 4^n + 2(-1)^n$$
?

SEGUNDO PRINCÍPIO DE INDUÇÃO MATEMÁTICA

Se P(1) é verdade e V k \in N*: P(k) é verdade para todo r, $1 \le r \le k \to P(k+1)$ verdadeiro. Logo, P(n) é verdadeiro para todos os números inteiros n ≥ 1 .

EXEMPLO:

* demonstração em aula

EXEMPLO: Suponha a sequência

$$3,2,18,...,3a_{n-1}+4a_{n-2}$$
 $n\in\mathbb{Z}_{+},n\geq 0$

É possível demonstrar que

$$a_n = 4^n + 2(-1)^n$$
?

EXERCÍCIO: Prove que

$$u_n = 2^n + (-1)^n$$

dado

$$u_n = 1, 5, ..., u_{n-1} + 2u_{(n-2)}$$
 , $n > 2$

$$u_n = 2^n + (-1)^n$$

$$u_n = 1, 5, ..., u_{n-1} + 2u_{(n-2)}$$
 , $n > 2$

$$2+4+6+8+...+2n=n(n+1)$$
 , $\forall n \in \mathbb{N}$

$$2^n > n^2$$
 , $\forall n \ge 5$, $n \in \mathbb{N}$

```
EXERCÍCIO:

4) Seja 12,29,...,5g_{n-1}-6g_{n-2} \forall n \ge 0 Mostre que g_n=5\cdot 3^n+7\cdot 2^n
```

EXERCÍCIO:

5) Prove que qualquer quantia em selos maior ou igual a 8 centavos por ser obtida usando-se apenas selos de 3 e 5 centavos.

EXERCÍCIO:

5) Prove que qualquer quantia em selos maior ou igual a 8 centavos por ser obtida usando-se apenas selos de 3 e 5 centavos.

RESOLUÇÃO - UNIVESP

Dem: Seja n=8, temos 8 = 3 + 5

Suponha que para n=r com 8≤r≤k seja válido

P(r): 3a+5b inteiro e 8≤r≤k Válido!!!

Note que 9= 3•3+5(0) e 10=3.(0)+5.(2)

EXERCÍCIO:

5) Prove que qualquer quantia em selos maior ou igual a 8 centavos por ser obtida usando-se apenas selos de 3 e 5 centavos.

RESOLUÇÃO – UNIVESP

Suponha n=k+1 centavos e retire 3 centavos.

Teremos n-3=k+1-3=k-2 com 8≤k-2<k.

Logo, k-2=3a+5b pela hipótese de indução

Voltando os 3 centavo, temos:

$$k-2+3 = 3a+5b+3 = 3(a+1)+5b=3a + 5b$$

 $k+1=3a+5b$

EXEMPLO: Suponha a sequência

$$3,2,18,...,3a_{n-1}+4a_{n-2}$$
 $n\in\mathbb{Z}_{+},n\geq 0$

É possível demonstrar que

$$a_n = 4^n + 2(-1)^n$$
?

$$P.B=D$$
 $n=0$ $0 = 3$ $4+2(-1)=3$
 $n=1$ $0 = 2$ $4^{1}+2(-1)^{1}=2$
 $M=1$ $0 = 2$ $0 = 3$
 $M=1$ $M=1$ $M=1$

P.
$$T \Rightarrow G_{K+1} = 4^{K+1} + 2(-1)^{K+1}$$
 $n = K+1$

Soberdo-se que

 $a_{K} = 4^{K} + 2(-1)^{K}$
 $a_{K-1} = 4^{K-1} + 2(-1)^{K-1}$
 $a_{K-1} = 4^{K-1} + 2(-1)^{K-1}$
 $a_{K-1} = 3a_{K-1} + 4a_{K-1}$
 $a_{K+1} = 3a_{K} + 4a_{K-1}$
 $a_{K+1} = 3(4^{K} + 2(-1)^{K}) + 4(4^{K-1} + 2(-1)^{K-1})$
 $a_{K+1} = 3(4^{K} + 2(-1)^{K}) + 4(4^{K-1} + 2(-1)^{K-1})$
 $a_{K+1} = 3(4^{K} + 2(-1)^{K}) + 4(4^{K-1} + 2(-1)^{K-1})$

$$= 3.4^{K} + 6(-1)^{K} + 4.4^{K} \cdot 4^{K} \cdot 4^{K} + 8(-1)^{K-1}$$

$$= 3.4^{K} + 4^{K} + 6(-1)^{K} + 8(-1)^{K-1}$$

$$= 4.4^{K} + 6(-1)^{K} \cdot (-1)^{K} + 8(-1)^{K-1}$$

$$= 4^{K+L} + 6(-1)^{K} \cdot (-1)^{-1} \cdot (-1)^{1} + 8(-1)^{K-1}$$

$$= 4^{K+L} - 6(-1)^{K-1} + 8(-1)^{K-1}$$

$$= 4^{K+1} + (-6+8) \cdot (-1)^{K-1}$$

$$= 4^{K+1} + 2(-1)^{K-1} \cdot (-1)^{2}$$

$$= 4^{K+1} + 2(-1)^{K-1} \cdot (-1)^{2}$$

$$= 4^{K+1} + 2(-1)^{K-1} \cdot (-1)^{2}$$

$$= 4^{K+1} + 2(-1)^{K+1} \cdot (-1)^{2}$$

EXERCÍCIO: Prove que

$$u_n = 2^n + (-1)^n$$

dado

$$u_n = 1, 5, ..., u_{n-1} + 2u_{(n-2)}$$
 , $n > 2$

P. B
$$\Rightarrow$$
 n=2
 $\mathcal{U}(1) = 1$ $2^{1} + (-1)^{1} = 1$
 $\mathcal{U}(2) = 5$ $2^{2} + (-1)^{2} = 5$
Hip Ind $\Rightarrow 2 \le n \le K$
 $\mathcal{U}(n) = 2^{n} + (-1)^{n}$

P. Ind
$$\Rightarrow n = k+1$$
 $u_{k+1} = u_{k+1-1} + 2u_{k+1-2}$
 $u_{k+1} = u_{k+2}u_{k-1}$
 $= [2^k + (-1)^k] + 2[2^k + (-1)^{k-1}]$
 $= 2^k + 2 \cdot 2^k \cdot 2^k + (-1)^k + 2(-1)^{k-1}$
 $= 2^k + 2 \cdot 2^k \cdot 2^k + (-1)^k + 2(-1)^{k-1}$
 $= 2^k + 2^k \cdot 2^k \cdot 2^k + (-1)^k + 2(-1)^{k-1}$

$$= 2 \cdot 2^{k} + (-1)^{k-1} (-1)^{k-1}$$

$$= 2 \cdot 2^{k} + (-1)^{k-1} (-1)^{k-1}$$

$$= 2 \cdot 2^{k} + 1 \cdot (-1)^{k-1}$$

$$= 2 \cdot 2^{k} + (-1)^{k-1} (-1)$$

$$= 2 \cdot 2^{k} + (-1)^{k-1} (-1)$$

$$= 2^{k+1} + (-1)^{k+1}$$

$$= 2^{k+1} + (-1)^{k+1}$$

$$= 2^{k+1} + (-1)^{k+1}$$

EXERCÍCIOS EXTRAS

1) Prove que

$$2+4+6+8+...+2n=n(n+1)$$
 , $\forall n \in \mathbb{N}$

2) Pesquise como provar a inducão

$$2^n > n^2$$
 , $\forall n \ge 5$, $n \in \mathbb{N}$