الدورة العادية 2008	امتحانات الشهادة الثانوية العامة الفرع : اجتماع و اقتصاد	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل: أربع

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

Le tableau suivant donne la tension artérielle y_i en fonction du poids x_i , d'un groupe de femmes.

Poids en $kg x_i$	55	58	60	64	65	70
Tension y_i	13,2	13,5	13,8	14,6	15,2	15,8

- 1) Calculer les moyennes \bar{x} et \bar{y} des deux séries statistiques x_i et y_i .
- 2) Représenter le nuage de points $(x_i; y_i)$ ainsi que le point moyen $G(\bar{x}; \bar{y})$ dans un repère orthogonal.
- 3) Ecrire une équation de la droite de régression $D_{y/x}$ de y en x et tracer cette droite dans le repère précédent.
- 4) Si ce modèle est valable pour des poids de femmes entre 45 et 75 kg, estimer la tension artérielle d'une femme de 72 kg.
- 5) Les médecins estiment que la tension normale appartient à l'intervalle [12 ; 13]. Estimer un intervalle auquel doit appartenir le poids d'une femme pour que sa tension soit normale.

II- (4 points)

Une personne loue un appartement au début de l'année 2000. Le loyer annuel en l'année 2000 était de 4 000 000 LL avec une augmentation de 10% chaque année. Soit U_0 = 4 000 000 et on désigne par U_n le loyer annuel en LL en l'année (2 000 + n).

- 1) Calculer U₁ et U₂.
- 2) a- Démontrer que (U_n) est une suite géométrique dont on déterminera la raison. b- Calculer U_n en fonction de n et déduire U_{n+1} en fonction de n.
- 3) Soit $S_n = U_0 + U_1 + \dots + U_n$. a- Montrer que $1,1 \times S_n = U_1 + U_2 + \dots + U_{n+1}$. b- Déduire que $1,1 \times S_n = S_n + U_{n+1} - U_0$ et que $S_n = 40\ 000\ 000\ [(1,1)^{n+1} - 1]$.
- 4) Cette personne a loué l'appartement pour 6 années consécutives à partir du début de l'année 2 000 jusqu' à la fin de l'année 2005. Calculer la somme totale payée par cette personne pour le loyer de cet appartement durant cette période.

III- (4 points)

Les 40 élèves du club de basket-ball dans une école sont distribués comme le montre le tableau suivant :

	Garçons	Filles
1 ^{ère} année secondaire	8	6
2 ^{ème} année secondaire	7	4
3 ^{ème} année secondaire	8	7

Un groupe de 3 élèves de ce club est choisi simultanément et au hasard.

- 1) On considère les événements suivants:
 - A: « Les trois élèves choisis sont tous de la 3^{ème} année secondaire ».
 - B: « Les trois élèves choisis sont des filles de trois années différentes ».
 - C: « Les trois élèves choisis sont de la même année secondaire »

Vérifier que la probabilité P(A) est égale à $\frac{7}{152}$ et calculer P(B) et P(C).

- 2) Le groupe choisi est composé de trois garçons, quelle est la probabilité qu'ils soient de la même année secondaire?
- 3) Dans cette partie on choisit au hasard et successivement trois élèves de ce club.
 - a- Quelle est la probabilité que le premier soit de la 1^{ère} année, le second de la 2^{ème} année et le troisième de la 3^{ème} année.
 - b- Quelle est la probabilité qu'au moins l'un d'eux soit de la 1 ère année.

IV- (8 points)

A- La courbe (C) ci-contre est la représentation graphique, dans un repère orthonormé, de la fonction f définie, sur $[0; +\infty[$ par $f(x) = ae^x + b$, où a et b sont des réels.

La courbe (C) admet en O une tangente (T) d'équation $y = \frac{x}{8}$.

- B- Soit g la fonction définie, sur $[0; +\infty[$, par $g(x) = \frac{120}{e^x + 15}$ et soit (G) sa courbe représentative.
 - 1) Déterminer $\lim_{x\to +\infty} g(x)$ et déduire une asymptote à (G).
 - 2) Montrer que g'(x) < 0 pour tout $x \ge 0$.
 - 3) Dresser le tableau de variations de g.
 - 4) Reproduire (C) et tracer (G) dans un même repère orthonormé.
 - 5) On suppose que f et g sont respectivement les fonctions d'offre et de demande d'un certain objet en fonction du prix unitaire x. (x est exprimé en millions de LL, f(x) et g(x) en centaines d'objets).
 - a- Estimer le nombre d'objets demandés pour un prix unitaire de 5 000 000 LL.
 - b- Montrer que l'équation f(x) = g(x) a une solution unique α et vérifier que $\alpha = \ln (25)$.
 - c- Calculer $g(\alpha)$ et donner une interprétation économique aux valeurs de α et de $g(\alpha)$.