	withing out adjust as inchanged alding it
	General Problem Solving
	i utoma han and just many out a state of
	* Production System: Production System is one
	of the formalisms that helps AI Programs
	to do search process more Conveniently
	in State - Space Penoblems
	two states
	(1) Stant (inihal) State
	(2) Goal (Linal) State
	* Production System Consist no of Production
	Roles - Bull and and Williams
	(1) left Side :-> applicability of role (State)
	(2) Right side ?-> action to be performed it rule is applied (new state)
	(3) with database, where new inpot can be
-	added which changes behaviours of the System
(1)	Water Jug Problèm :-
	10 () () () () () () () () () (
+	Problem Statement: We have two jugs, a 5-gallon
	(5-a) and the other s-gallon (5-g) will
-	measuring marker on them. There is endless
	Supply of water through tap. Over tack
	is to get 4 gallon of widen in the 5-9
	Jug. 12 77051: Lans fue have (onider)
-	1 gallon = \$ 3.18 Litteral la s mag
*	Salution :
-	
-	(1) Stant State (0:0)
-	(2) Groat State (4, N) bon any Value of N53

11cd 21 pol.

* Possible Openation on water Jug projetem

(1) Fill 5-9 jug From the tap and empty the 5-9 jug by throwing water down the drain

(2) Fill 3-9 jog From the tap and empty the 3-9 jug by throwing water down the obrain

(3) Pour Some on 3-g water brom 5-gjug into 3-g jug to make it holl

into the 5-9 jug.

* Production Rules for Water Jug Problem

01.0	. 1 1 1 1	0.	
Role No		Right of role	Discoription
1	(x, y x<5)	(5,4)	fill 5-g jug
2	(x, y (x>0)	(0,7)	1 1 5 9 109
3.	(x, V/14<3)	(x,3)	Empty 5-9 jug
4	(x, y (y > 0)		Fill 3-g jug
. 5	(x,y1x+y < 5Ny>0)	(xio)	Empty 3-9 jug
	(NYINTIES NYSO)		Empty 3-9 into 5-give
6	(X1/1X+1/2 VXXO)	(N+XIO)	Constat No. 1 2.00
11411	(x,4/x+4>5 x4>0)	(5.7-C5-X))	Pour water bram
		11hb1 5-0 11holl	20 10 000
8	(x1/x+1/53vx>0)	(x'-(3-Y),3)	Pour water from
			5-9 jug into 3-9
			jug until 3-9
			6 3 0 0 1

A	Solution	Path
V	301011011	1 Chill

Rule applied	5-9 jug	3-9 jug	Step No
	0 1	anni O	1110019-
	5	O.	diago 1
8	2 11	10 3 3	141 402
4	2 / /	1000 0	3
6	0	2,10	4
land and	5 1011	2,	55
8	2 Yeldis	00 3 min	6
(noal State	10 400	idiago) es	1 17
	8	8 2 4 2 6 0 1 5:11	8 2 3 4 2 0 6 0 2 3 1 5 : 11 2 8 4 3

row applied Genarating new state from Corrent state row applied are the state is not good state.

Procedure is repeated until good state.

Land man & L- Dan M. a.

anin															
Date	1 4	ÿ	*	×	ĸ		×	e	¢	*	ĸ		r		,

(2) Missiphanies and Cannibals Pnoblem

Problem Statement: Three missionaries and three cannibals want to cross a river. There is a boot on their side of the river that can be used by either one on two persons. How should they use this boat to cross the river in such a way that cannibals heven out number missionaries on either side the river?

If the Cannibals even out number themissinaries con either the missionaries will be saten. How can they all cross over without anyone being laten?

Solution: State Space for this problem can be describe

at the set of orders pairs of left and right

banks of the river as (LiR) when each

bank is represented [nm, mc, v).

n-> no of missonaries (3)

B-> Boat (1)

(1) Start State: ([3m, 3c, 1B], [om, oc, oB])

(2) Any state: ([n,m,m,c,-], [n,2m,m,2c,])

• $h_1(\pm 0) \ge m_1 \cdot n_2(\pm 0) \ge m_2 \cdot n_1 + n_2 = 3$

· ([h,m,m,c,-] > means book may be primited

Solution path

	Rule number	([3m,3c,1B],[om,oc,0B)] <- Stant
	L2 °	([2m,2c,0B],[1m,1c,1B])
	R4 :	([3m,2c,1B],[om,1c,0B])
	13:	([3m,0c,0B],[0m,3c,1B])
	R4 °	([3m,10,18], [0m,20,08])
	LI °	([1m,10,0B],[2m,20,1B])
	R2 °	([2m,2c,18],[1m,1c,08])
,	۱۱ :	([om,20,08], [3m,10,18])
	R5 :	([0m,3c,18],[3m,0c,08])
	. 13 %	([0M,10,08],[3M,20,18])
	R5°	([0m,2c,18],[3m,1c,08])
	L3 °	([0 w 10c 10B] 1 [3w 13c 11B])
		2 Goal

state