Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 01

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	r = 4 - 1 = 3	2p
	$a_4 = 1 + 3 \cdot 3 = 10$	3 p
2.	$f(1) = a \Rightarrow 1^2 + 4 = a$	3 p
	a = 5	2p
3.	$3^{2(x-2)} = 3^{2-x} \Leftrightarrow 2x - 4 = 2 - x$	3 p
	x = 2	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 21 de numere naturale de două cifre care sunt mai mici sau egale cu 30, deci sunt 21 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{21}{90} = \frac{7}{30}$	2p
5.	$y-3=1\cdot (x-0)$	3 p
	y = x + 3	2p
6.	$AD = 8$, unde $AD \perp BC$, $D \in BC$	2p
	$\sin B = \frac{AD}{AB} = \frac{4}{5}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ $\begin{vmatrix} 0 & 1 & 1 \end{vmatrix}$	
	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	2p
	=0+1+1-0-0-0=2	3 p
b)	$\det(A(m)) = \begin{vmatrix} -m & 1 & 1 \\ 1 & -m & 1 \\ 1 & 1 & -m \end{vmatrix} = (2-m)(m+1)^{2}$	3p
	Pentru orice număr real m , $m \neq -1$ și $m \neq 2$, obținem $\det(A(m)) \neq 0$, deci matricea $A(m)$ este inversabilă	2p
c)	Pentru $m=2$, sistemul este compatibil nedeterminat și soluțiile sistemului sunt de forma $(1+\alpha,1+\alpha,\alpha)$, unde $\alpha\in\mathbb{R}$	3p
	Cum $x_0 + 2y_0 + 3z_0 = 9 \Leftrightarrow 1 + \alpha + 2(1 + \alpha) + 3\alpha = 9 \Leftrightarrow \alpha = 1$, soluția sistemului care verifică relația este $(2,2,1)$	2 p
2.a)	x * y = -2xy + 10x + 10y - 50 + 5 =	2p
	=-2x(y-5)+10(y-5)+5=-2(x-5)(y-5)+5, pentru orice numere reale x și y	3 p

b)	x*5=5*y=5, pentru x și y numere reale	2p
	((1*2*3*4)*5)*6*7*8*9*10 = 5*(6*7*8*9*10) = 5	3 p
c)	$-2(m-5)(n-5)+5=27 \Leftrightarrow (m-5)(n-5)=-11$	2p
	Cum $m \neq n$ sunt numere naturale, obținem $m = 4$, $n = 16$ sau $m = 16$, $n = 4$	3 p

SUBIECTUL al III-lea (30 de puncte)

	· -	
1.a)	$f'(x) = 2x - \frac{8}{x} =$	2p
	$= \frac{2x^2 - 8}{x} = \frac{2(x - 2)(x + 2)}{x}, \ x \in (0, +\infty)$ Cum $x \in (0, +\infty), \ f'(x) = 0 \Leftrightarrow x = 2$	3 p
b)	Cum $x \in (0, +\infty)$, $f'(x) = 0 \Leftrightarrow x = 2$	1p
	$x \in (0,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,2]$	2p
	$x \in [2, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2, +\infty)$	2 p
c)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(x^2 - 8\ln x\right) = +\infty , \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \left(1 - \frac{8\ln x}{x^2}\right) = +\infty$	2p
	Cum $f(2) < 0$, ecuația $f(x) = 0$ are două soluții reale distincte	3 p
2.a)	$\int_{5}^{10} (x-4) f(x) dx = \int_{5}^{10} \frac{1}{x} dx = \ln x \Big _{5}^{10} =$	3p
	$= \ln 10 - \ln 5 = \ln 2$	2 p
b)	$g(x) = \frac{1}{x-4}$, deci $V = \pi \int_{5}^{6} g^{2}(x) dx = \pi \int_{5}^{6} \frac{1}{(x-4)^{2}} dx =$	2p
	$=\pi\left(-\frac{1}{x-4}\right)\Big _{5}^{6}=\frac{\pi}{2}$	3 p
c)	Pentru $n > 4$, $\int_{n}^{n+1} f(x) dx = \int_{n}^{n+1} \frac{1}{x(x-4)} dx = \frac{1}{4} \int_{n}^{n+1} \left(\frac{1}{x-4} - \frac{1}{x} \right) dx = \frac{1}{4} \ln \frac{n^2 - 3n}{n^2 - 3n - 4}$	2p
	$\lim_{n \to +\infty} \left(n^2 \int_{n}^{n+1} f(x) dx \right) = \lim_{n \to +\infty} \ln \left(\left(1 + \frac{4}{n^2 - 3n - 4} \right)^{\frac{n^2 - 3n - 4}{4}} \right)^{\frac{4n^2}{4(n^2 - 3n - 4)}} = \ln e = 1$	3р