2024 Google ML Training Programme (Phase III)

Session 1.2

Types of Machine Learning and Algorithms
June 24, 2024

Godfrey A. Mills

Email: gmills@ug.edu.gh
Phone: 020-549-6944

Types of Machine Learning

- Types of learning rules or styles used in neural networks are:
 - **Supervised** (or predictive) learning >> task of learning a mapping function from an input to an output based on given labelled set of input-output pairs.
 - **Unsupervised** (or descriptive) learning >> learning task that discovers patterns or inferences from dataset that consists of input data without labeled responses or teacher.
 - **Semi-supervised** learning >> learning mechanism where the training data usually includes a few desired outputs
 - **Reinforcement**/hybrid learning >> learning task based on self (rewards for correct actions) to achieve given goals

- Supervised type of learning involves an external teacher.
 - In supervised learning we consider systems that applies a function f(.) to input items x to return an output y = f(x)
 - Item \mathbf{x} (or instance) is drawn from an input space \mathbf{X} and output \mathbf{y} (or label) is drawn from an output space \mathbf{Y} .
 - Output function y = f(x) is the target function and the output y = g(x) is the learned model
 - In supervised learning, we deal with systems or processes whose function $f(\mathbf{x})$ is learned from examples.
 - We typically use machine learning when the function $f(\mathbf{x})$ we want the system to apply is unknown to us.

Cont'd....

• Supervised learning process can be described by a feedback system where knowledge is represented by a set of labeled training data that is given to the learning algorithm to return a learned model g(x)

- >> Dtrain = $\{x_1, y_1\}$, $\{x_2, y_2\}$,, $\{x_n, y_n\}$
- Learning is the adjustment of parameters of the model under the influence of training examples.
 - Model g(.) is applied with test samples to return predicted output labels which is compared with test labels
 - >> Dtest = $\{x^*_1, y^*_1\}$, $\{x^*_2, y^*_2\}$,, $\{x^*_n, y^*_n\}$

- Cont'd....
- Supervised learning techniques are very good for handling the following nature of problems or tasks :
 - Binary class classification >> dividing output response or data into two classes >> 2 possible labels, $f(x) = \{-1, +1\}$
 - Multiclass classification >> choosing between more than two types of outputs >> k possible labels, $f(x) = \{1, 2, ..., 2, .$
 - Regression modelling >> predicting continuous values >> numerical (labels are continuous valued, linear/polynomial
 - Ensemble model >> combining the output predictions or response of multiple ML models (or base learners)

- Cont'd....
- Standard supervised learning algorithms:
 - Naïve Bayes (NB)
 - K-Nearest Neighbour (KNN)
 - Decision Tree (DT)
 - Support Vector Machine (SVM)
 - Random Forest (RF)
 - Linear Regression (LG)***

- Unsupervised learning (also called knowledge discovery) is a type of learning performed without any external guidance to discover hidden statistical patterns in data and cluster them.
 - the kinds of patterns to look for is not given.
 - there is no metric to use (unlike supervised learning where the predicted labels can be compared with observed output)
- In unsupervised learning, some form of self organization is done to produce desired outputs >> degree of similarity used
- Unsupervised learning problem types are of two forms:
 - >> clustering;
 - >> association;

- Cont'd....
- Unsupervised learning techniques are very good for handling the following nature of problems or tasks:
 - Clustering >> splitting dataset into groups based on the level or degree of similarity.
 - Anomaly detection >> identifying unusual data points in a data set.
 - Association mining >> identifying sets of items in a data set that frequently occur together.
 - Dimensionality reduction >> reducing the number of variables in a data set.

- Cont'd....
- Standard unsupervised learning algorithms often used are:
 - K-Means >> clustering
 - Principal Component Analysis (PCA) >> data dimension reduction
 - Self-Organizing Map (SOM) Neural Network >> clustering
 - Isolation Forest >> clustering

Reinforcement learning protocol

- This is a type of learning with limited guidance >> it lies between the supervised learning and unsupervised learning.
 - Learning algorithm is only provided with a grade/score as a critic or agent which dictates the network performance
 - Learning of an input-output mapping is performed through continuous interaction with environment with objective to minimize a cost function based on cumulative actions taken
 - Reinforcement learning consists of 3 primary components:
 - agents (learning agent)
 - environment (agent interacts with environment)
 - actions (agents can take actions).

Reinforcement learning

Cont'd....

- An agent learns from the environment by interacting with it and it receives *rewards* and *penalty* for performing actions
- The agent selects and performs actions in a sequence of time steps and receives rewards for performing correctly and penalties for performing incorrectly.
- Unlike unsupervised learning, the goal for reinforcement learning is to find a suitable action model or cost function that would lead to minimized *total cumulative cost of actions taken by the agent* over a sequence of time steps instead of the immediate cost >> i.e., *maximize rewards of actions taken by the agent*

Reinforcement learning

- Cont'd....
- Reinforcement learning techniques are very good for handling the following nature of problems or tasks:
 - Robotics >> train robots to learn and perform tasks of the physical world.
 - Video gameplay >> training bots to learn how to play many video games.
 - Resource management >> given finite resources and a defined goal, the algorithm can help enterprises to plan out how to allocate resources.

Semi-Supervised learning

- **Semi-supervised** learning >> learning mechanism where the training data usually includes a few desired outputs
 - In this type of learning, a mixture of the two learning methods (supervised and unsupervised) is used.
 - Algorithm is usually fed with a small amount of labelled training dataset, and from this, the algorithm learns the dimensions of the data set which it then applies on new unlabeled data.
 - Algorithm is usually free to explore the data on its own and develop its own understanding of the data set.

Semi-Supervised learning

- Cont'd....
- Semi-supervised learning techniques are very good for handling the following nature of problems or tasks :
 - Machine translation >> training algorithms to translate language based on less than a full dictionary words.
 - Fraud detection >> identifying cases of fraud when only few positive examples are available.
 - Labelling data >> training algorithms on small data sets to learn and apply the data labels created to larger sets automatically.

- **Ensemble** learning >> a composite learning mechanism that combines several machine learning algorithms into a single predictive model to create improved performance.
 - In this type of learning, individual machine learning algorithm votes and the final prediction label returned is one that performs majority voting.
 - All machine learning algorithms in ensemble are trained separately with same training and testing dataset.

- Cont'd....
- On basis of type of base learners, ensemble learning can be divided into two groups:
 - Homogeneous ensemble method >> uses the same type of learner in each iteration >> all supervised or all unsupervised learning models.
 - Heterogeneous ensemble method >> uses different type of base learner in each iteration >> hybrid of supervised and unsupervised learning models.

- Cont'd....
- Commonly used ensemble learning methods:
 - Bagging >> learning technique that combines multiple learners in a way to reduce the variance estimates
 - Example, Random Forest trains M Decision Trees on different random subset of data and perform voting for final prediction.
 - Boosting >> learning technique that uses a set of low accuracy (weak) classifier to create high accuracy (strong) classifier >> algorithm tracks the model that fails the accurate prediction.

- Cont'd....
- Three popular boosting algorithms used in ML model developments:
 - AdaBoost (adaptive boosting)
 - Gradient Tree Boosting
 - XGBoost
- **Stacking** >> learning technique that combines multiple base classification models predictions into a new data set >> this new data are treated as input data for another classifier which is employed to solve problem.

ML Tasks for Model Development

- Machine learning can be used to perform different tasks, but the most common tasks performed by machine learning are :
 - *Classification* algorithms >> problem of predicting which class (predict discrete values) a new observation should be placed, based on a training set of instances or observations.
 - *2-class* system (binary classification) >> where the class labels can be linearly separated into two disjointed classes.
 - *K-class* system (multiclass classification) >> class labels are not mutually exclusive and give multiple binary class.
 - Classification algorithms for classification tasks:
 - Naïve Bayes, Logistic regression, KNN, DT, RF, SVM.

ML Tasks for Model Development

• Cont'd....

- *Regression* tasks >> problem of predicting continuous real values or labels given a new observation and a function that is based on a training set of instances or observations.
- Unlike classification, regression involves finding correlations between dependent and independent variables.
 - Regression tries to find the best fit line that can predict
 the output more accurately, while classification finds the
 decision boundary that can divide the dataset into classes.
- Why use regression and not classification ?? and vice versa
- How different is regression and from classification?