Συναρτήσεις Μονοτονία

Κωνσταντίνος. Λόλας

Αντίστροφη

Ορισμός

Έστω συνάρτηση $f: \mathbf{A} \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: \mathbf{B} \to \mathbf{A}$ ορίζεται η συνάρτηση που για κάθε $x \in f(\mathbf{A})$ αντιστοιχεί ένα $y \in \mathbf{A}$ ώστε:

$$f^{-1}(x) = y \iff f(y) = x$$

Αντίστροφη

Ορισμός

Έστω συνάρτηση $f: \mathbf{A} \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: \mathbf{B} \to \mathbf{A}$ ορίζεται η συνάρτηση που για κάθε $x \in f(\mathbf{A})$ αντιστοιχεί ένα $y \in \mathbf{A}$ ώστε:

$$f^{-1}(x) = y \iff f(y) = x$$

Και επειδή συνήθως το x αφορά το D_f

Αντίστροφη

Ορισμός

Έστω συνάρτηση $f: \mathbf{A} \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: \mathbf{B} \to \mathbf{A}$ ορίζεται η συνάρτηση που για κάθε $y \in f(\mathbf{A})$ αντιστοιχεί ένα $x \in \mathbf{A}$ ώστε:

$$f^{-1}(y) = x \iff f(x) = y$$

$$f(x) = x + 3$$

- f(x) = x + 3

- $\blacksquare \ f(x) = x + 3$
- f(x) = 2x
- $\quad \blacksquare \ f(x) = \sqrt{x}$

- f(x) = 2x
- $f(x) = e^x$

- f(x) = x + 3
- f(x) = 2x
- $f(x) = \sqrt{x}$
- $f(x) = e^x$
- $f(x) = x^2!!!$

- f(x) = x + 3
- f(x) = 2x
- $f(x) = \sqrt{x}$
- $f(x) = e^x$
- $f(x) = x^2!!!$
- Πιο σύνθετες?

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

■ Να βρίσκουμε από πού ήρθαμε, το x!

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

$$y = x + 3$$

- y = x + 3
- y = 2x

- y = x + 3
- y = 2x
- $y = \sqrt{x}$

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

Σχεδιάστε γραφικά μια 1-1 συνάρτηση.

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1}

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Άρα:

lacktriangle Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Άρα:

- lacksquare Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- **■** Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Άρα:

- lacksquare Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- **Δ**ν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Βασική Ιδιότητα

Κρατηθείτε!

$$\blacksquare \ f\left(f^{-1}(x)\right)=x$$
, για κάθε $x\in f(D_f)$

Βασική Ιδιότητα

Κρατηθείτε!

- $lacksquare f\left(f^{-1}(x)
 ight)=x$, για κάθε $x\in f(D_f)$
- $lacksquare f^{-1}\left(f(x)
 ight)=x$, για κάθε $x\in D_f$

Δίνεται η συνάρτηση $f(x) = e^x - 1$

1 Να δείξετε ότι είναι 1-1.

Δίνεται η συνάρτηση $f(x) = e^x - 1$

- 1 Να δείξετε ότι είναι 1-1.
- 2 Να δείξετε ότι αντιστρέφεται και να βρείτε την f^{-1}

Δίνεται η συνάρτηση $f(x) = \frac{x+4}{x+1}$.

f 1 Να δείξετε ότι η f είναι συνάρτηση f

Δίνεται η συνάρτηση $f(x) = \frac{x+4}{x+1}$.

- oxdot Να δείξετε ότι η f είναι συνάρτηση 1-1
- $\mathbf{2}$ Να βρείτε την f^{-1}
- 3 Να βρείτε τα κοινά σημεία των C_f και $C_{f^{-1}}$ με τον άξονα συμμετρίας τους.

Δίνεται η συνάρτηση $f(x) = \frac{e^x - 1}{e^x + 1}$.

 $oxed{1}$ Να δείξετε ότι η f αντιστρέφεται

Δίνεται η συνάρτηση $f(x) = \frac{e^x - 1}{e^x + 1}$.

- 1 Να δείξετε ότι η f αντιστρέφεται
- $\mathbf{2}$ Να βρείτε την f^{-1}

Έστω
$$f:[1,+\infty)\to\mathbb{R}$$
 μία συνάρτηση με $f(x)=(x-1)^2+2.$

Να δείξετε ότι η f αντιστρέφεται

Έστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2.$

- **1** Να δείξετε ότι η f αντιστρέφεται
- f 2 Να βρείτε την αντίστροφη της f

Έστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2.$

- 1 Να δείξετε ότι η f αντιστρέφεται
- $oldsymbol{2}$ Να βρείτε την αντίστροφη της f
- 3 Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων

Έστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2.$

- 1 Να δείξετε ότι η f αντιστρέφεται
- $oldsymbol{2}$ Να βρείτε την αντίστροφη της f
- 3 Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων
- 4 Για κάθε $x\geq 1$ θεωρούμε τα σημεία $\mathbf{A}(x,f(x))$ και $\mathbf{B}(f(x),x)$ των C_f και $C_{f^{-1}}$ αντίστοιχα. Να βρείτε την ελάχιστη απόσταση d των σημείων \mathbf{A} και \mathbf{B} .

Δίνεται η συνάρτηση $f(x)=x^3$. Να δείξετε ότι η f αντιστρέφεται και να βρείτε την αντίστροφή της.

Δίνεται η συνάρτηση
$$f(x)=\begin{cases} \frac{1}{x},& x<0\\ x^2,& x\geq 0 \end{cases}$$

Να δείξετε ότι η f αντιστρέφεται και να βρείτε την f^{-1}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り<0</p>

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία ικανοποιεί την σχέση

$$f^3(x)+f(x)-x-1=0$$
, για κάθε $x\in\mathbb{R}$

] Να δείξετε ότι η f αντιστρέφεται και να βρείτε τη συνάρτηση f^{-1}

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία ικανοποιεί την σχέση

$$f^3(x)+f(x)-x-1=0$$
, για κάθε $x\in\mathbb{R}$

- I Na δείξετε ότι η f αντιστρέφεται και να βρείτε τη συνάρτηση f^{-1}
- 2 Να βρείτε τα κοινά σημεία της C_f και της ευθείας y=x

Δίνεται η συνάρτηση $f(x)=x^5+x$, με $f(\mathbb{R})=\mathbb{R}$

1 Να δείξετε ότι η f η f αντιστρέφεται

Δίνεται η συνάρτηση $f(x)=x^5+x$, με $f(\mathbb{R})=\mathbb{R}$

- **1** Να δείξετε ότι η f η f αντιστρέφεται
- f 2 Να βρείτε τα κοινά σημεία των C_f και C_f^{-1}

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1, f(1)=-2.

1 Να δείξετε ότι η f η f αντιστρέφεται

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1, f(1)=-2.

- **1** Να δείξετε ότι η f η f αντιστρέφεται
- f 2 Να βρείτε τις ρίζες και το πρόσημο της f^{-1}

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1, f(1)=-2.

- 1 Να δείξετε ότι η f η f αντιστρέφεται
- f 2 Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
- 3 Να λύσετε την εξίσωση $f(f^{-1}(3x+4)-f^{-1}(-2))=1$

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0) = 1, f(1) = -2.

- 1 Να δείξετε ότι η f η f αντιστρέφεται
- f 2 Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
- 3 Να λύσετε την εξίσωση $f(f^{-1}(3x+4)-f^{-1}(-2))=1$
- 4 Να λύσετε την ανίσωση $f^{-1}(3 + f(\ln x)) > 0$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως αύξουσα.

Να δείξετε ότι η f η f αντιστρέφεται και $f^{-1} \uparrow$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως αύξουσα.

- **1** Να δείξετε ότι η f η f αντιστρέφεται και $f^{-1} \uparrow$
- 2 Αν η f είναι περιττή, να αποδείξετε ότι και η f^{-1} είναι περιττή

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως αύξουσα.

- **1** Να δείξετε ότι η f η f αντιστρέφεται και $f^{-1} \uparrow$
- 2 Αν η f είναι περιττή, να αποδείξετε ότι και η f^{-1} είναι περιττή
- f 3 Αν ισχύει f(x)>x για κάθε $x\in\mathbb{R}$, να δείξετε ότι

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1.

1 Να δείξετε ότι η f η f αντιστρέφεται

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0)=1.

- 1 Να δείξετε ότι η f η f αντιστρέφεται
- 2 Να λύσετε την ανίσωση $f(x) f^{-1}(1-x) < x+1$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση