

Introduction to Kubernetes

Frédéric Lassabe

What is kubernetes?

- ► Container orchestration system
- Main features
 - Service discovery and load balancing
 - Storage orchestration
 - Deployments automation
 - Automated resource allocation
 - Self-repair
 - Configuration and secret management
 - Batch processing
 - Horizontal scaling
 - IP/IPv6 support
- a.k.a. K8s
- Open source

The control plane Workers Other useful components

Kubernetes deployment

Cluster

- A k8s cluster is
 - a working deployment
 - a group of hosts
 - physical
 - virtual
 - running linux containers
 - Two types of hosts :
 - Control plan
 - Nodes (workers)

Architecture

Private

Public

Hybrid

Physical

Virtual

Workers

- also named Nodes
- have their own Linux environment
- run pods
- pods made of containers

Control plane

- maintaining the cluster state
 - applications running
 - container images used
 - resources allocated
- takes commands from users (usually admins)
- orchestrates tasks on nodes

Cloud-native development

- Requirement : build and maintain
- Fast deployment
- Microservices
 - Scale better
 - Easier to modify
 - Not everything can scale

Production

- Production
 - Applications on multiple containers
 - Across multiple hosts
- Kubernetes
 - Orchestration
 - Management
 - To deploy
 - At scale

With kubernetes

- Build application services
- Spanning multiple containers
- Scale containers
- Monitor containers' health
- Integrates
 - Network
 - Storage
 - Security
 - Telemetry
 - And other features

The need for k8s

- Scaling application
 - Multiple containers
 - Colocated and cooperating
- Containers
 - Efficient and self-contained applications modules
- Microservices
 - Efficient for app development, deployment, maintenance
 - Significant increase of numbers of containers
 - Increased complexity
- k8s attempts to solve complexity

Kubernetes features

The control plane

Workers

Other useful components

Kubernetes deployment

Role

- Cluster control
- Data about cluster state
- Check applications have sufficient
 - Containers
 - Resources
- Monitors nodes constantly
- You set an application
- The control plane guarantees it is executed

kube-apiserver

- API to interact with the cluster
- Control plane's front end
- Both for requests
 - internal
 - external
- Checks request validity
- Then executes it
- Accessible from
 - REST API
 - kubectl
 - kubeadm

kube-scheduler

- In charge of
 - Checking containers health
 - Finding resources for deploying new containers
- Uses various metrics
 - Resources requirements for a pod
 - Health of the cluster
- Schedule pods to appropriate node

kube-controller-manager

- Controllers run the cluster
- Controller manager contains several controller features :
 - Check running pods against scheduler
 - Can restart failed containers
 - Route requests to endpoints
 - Create accounts
 - Manage API access tokens
 - etc.

etcd

- As etc manages your linux host configuration
- etcd is your configuration repository
 - Key-value database
 - Fault tolerant
 - Distributed

The control plane

Workers

Other useful components

Kubernetes deployment

What are nodes?

- Compute resource
- Hosts services via containers inside pods
- Pods run on nodes
- Scheduled from the control plane
- Scaling up :
 - Add more nodes
 - Join them to the cluster

Pod

- Smallest unit in kubernetes object model
- ► One pod = one instance of application
- One pod
 - One container
 - Or tightly coupled containers
 - Options for running the containers
- Pods may have persistent storage

Container runtime engine

- k8s manages containers
- Requires a container runtime
 - docker (with cri-dockerd)
 - CRI-O
 - Containerd
- You shall choose a runtime for any k8s instance
- Used runtime shall support the Open Container Interface standard

kubelet

- Each node has a kubelet
- Application to communicate with the control plane
- Ensures that containers run in pods
- Instructions from control plane executed by kubelet

kube-proxy

- Required in all nodes
- Network proxy
- Supports Kubernetes networking services
- Handles network communications
 - Internal as well as external
 - relying either on
 - OS' packet filtering layer
 - Directly forwarded by kube-proxy

The control plane Workers

Other useful components

Kubernetes deployment

Persistent storage

- Containers run applications
- May need persistent data
- Stateful applications
- Hardware storage mapping on nodes would tie a pod to a node
- Use of network storage
- Transparent for the pod and its container
- Persistent network storage outlives pods

Container registry

- A storage for container images used by kubernetes
- Images for your applications
- Registry owned by the cluster's administrators
- Or a third party registry

Underlying infrastructure

- Cloud infrastructures are not untangible: real hardware
- Kubernetes deploys either on :
 - Bare metal
 - Virtual machines
 - Public cloud providers
 - Hybrid cloud environments
- one or more hosts for control plan, with all its services
 - Redundancy in case of failure
 - Desirable : at least two control plan nodes
- one or more different hosts for workers
 - No colocation of control plan and worker
 - Workers count depends on :
 - available resources
 - Target load

Kubernetes deployment Control plane Nodes

Constraints

- Deployments based on
 - 3 hosts
 - 1 control plane
 - 2 nodes
 - Ubuntu hosts
 - ► In VM
- Based on various documents, mainly
 - kubernetes website
 - devopscube.com
 - Red Hat website

Kubernetes deployment Control plane

Nodes

Steps

- Install a container runtime
- Install kubeadm, kubelet, kubectl
- Initialize
 - Control plane configuration
 - Generate the join command for nodes
- Install a network plugin

Kubernetes deployment

Control plane

Nodes

Steps

- Join the worker to the master node
- Validate all components (check everything is working)

And then?

- Install a metrics server
- ▶ Use the cluster

Kubernetes deployment

Pods

- Pods are the service-level unit
- They contain one or more containers
- Everything in a pod
 - Tightly coupled
 - Described by manifests
 - Orchestrated by kubernetes
- What goes in a pod or another depends on
 - Persistence requirements
 - Application architecture

Best way to understand k8s

- Practice
- Details for the steps are available
 - In online documentation
 - In the lab instructions
- So technical/know-how details aren't in this doc

Thanks!

