Homework for Analogue Electronics

Xiping Hu

http://thehxp.tech/

February 25, 2020

2,

E1-10 有一电动势 E 为 230 V ,内阻为 R_0 的直流电源,经两根电阻为 R_1 的供电线对负载供电,如题图 E1-10 所示。求:

- (1) 当接入 R_{L1} 时,负载电流 $I_L=2$ A,电源端电压 $U_1=228$ V,负载端电压 $U_2=224$ V,求 R_0 , R_1 和 R_{L1} 的值;
- (2) 当电路又接入负载 R_{L2} 后,负载电流 $I_L=10$ A。试求 U_1 , U_2 , I_{L1} , I_{L2} , R_{L2} 各为多少?

Solution for question 1 When S_1 is closed

$$U_1 - I_L(2R_1) - U_2 = 0$$

 $E + I_L R_0 = U_1$
 $U_2 = I_L R_{L1}$
 $R_1 = 1 \Omega$
 $R_0 = 1 \Omega$
 $R_{L1} = 112 \Omega$

Solution for question 2 The parallel resistance of R_{L1} and R_{L2} is

$$R = \frac{R_{L1}R_{L2}}{R_{L1} + R_{L2}}$$

From the Kirchhoffs Voltage Law

$$E - I_L R_0 = U_1$$

$$I_L R = U_2$$

$$E - I_L (R_0 + 2R_1 + R) = 0$$

From which we can get

$$R = 20 \Omega$$

$$U_1 = 220 \text{ V}$$

$$U_2 = 200 \text{ V}$$

$$I_{L1} = \frac{U_2}{R_{L1}} = 1.79 \text{ A}$$

$$I_{L2} = I_L - I_{L1} = 8.21 \text{ A}$$

$$R_{L2} = \frac{U_2}{I_{L2}} = 24.36 \Omega$$