

09/763712

JC02 1st PCT/PTO 26 FEB 2001
PCT/JP99/04552

WO 00/11161

1/17

SEQUENCE LISTING

<110> FUSO PHARMACEUTICAL INDUSTRIES, LTD.

<120> Novel Collectin

<130> 99P147W0

<150> JP 10-237611

<151> 1998-08-24

<160> 29

<210> 1

<211> 2024

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> (670)..(1695)

<400> 1

gtcacgaatc	tgcagcaaga	taccagcgta	ctccaggcca	atctgcagaa	ccaaatgtat	60
tctcataatg	tggtcatcat	gaacctcaac	aacctgaacc	tgaccagggt	gcagcagagg	120
aacctcatca	cgaatctgca	gcggctgttg	gatgacacaa	gccaggctat	ccagcgaatc	180
aagaacgact	ttcaaaatct	gcagcagggtt	tttcttcaag	ccaagaagga	cacggatgg	240
ctgaaggaga	aagtgcagag	cttgcagacg	ctggctgcc	acaactctgc	gttggccaaa	300
gccaacaacg	acacccttgg	ggatatgaac	agccagctca	actcattcac	aggtcagatg	360

2/17

gagaacatca	ccactatctc	tcaagccaac	gaggcagaacc	tgaaagaccc	gcaggactt	420
cacaaagatg	cagagaatag	aacagccatc	aagttaacc	aactggagga	acgccttcag	480
ctctttgaga	cggatattgt	gaacatcatt	agcaatatca	gttacacagc	ccaccacctg	540
cggacgcgta	ccagcaatct	aatgaagtc	aggaccactt	gcacagatac	ccttacccaa	600
cacacagatg	atctgacctc	cttgaataat	accctggcca	acatccgtt	ggattctgtt	660
tctctcagg	atg caa caa	gat ttg atg	agg tcg agg	tta gac act	gaa gta	711
	Met Gln Gln Asp	Leu Met Arg	Ser Arg Leu	Asp Thr Glu	Val	
1	5	10				
gcc aac tta tca	gtt att atg	gaa gaa atg	aag cta gta	gac tcc aag		759
Ala Asn Leu Ser Val Ile	Met Glu Glu	Met Lys Leu Val	Asp Ser Lys			
15	20	25	30			
cat ggt cag ctc atc	aag aat ttt	aca ata cta	caa ggt cca	ccg ggc		807
His Gly Gln Leu Ile	Lys Asn Phe Thr	Ile Leu Gln Gly	Pro Pro Gly			
35	40	45				
ccc agg ggt cca	aga ggt gac	aga gga tcc	cag gga ccc	cct ggc cca		855
Pro Arg Gly Pro Arg	Gly Asp Arg Gly	Ser Gln Gly	Pro Pro Gly			
50	55	60				
act ggc aac aag gga	cag aaa gga	gag aag ggg	gag cct gga	cca cct		903
Thr Gly Asn Lys Gly	Gln Lys Gly	Glu Lys Gly	Glu Pro Gly	Pro Pro		
65	70	75				
ggc cct gcg ggt	gag aga ggc cca	att gga cca	gct ggt ccc	ccc gga		951
Gly Pro Ala Gly	Glu Arg Gly	Pro Ile Gly	Pro Ala Gly	Pro Pro Gly		
80	85	90				
gag cgt ggc ggc	aaa gga tct	aaa ggc tcc	cag ggc ccc	aaa ggc tcc		999
Glu Arg Gly	Gly Lys Gly	Ser Lys Gly	Ser Gln Gly	Pro Lys Gly	Ser	
95	100	105	110			
cgt ggt tcc cct	ggg aag ccc	ggc cct	cag ggc ccc	agt ggg gac	cca	1047
Arg Gly Ser Pro	Gly Lys Pro	Gly Pro Gln	Gly Pro Ser	Gly Asp	Pro	
115	120	125				

ggc ccc ccg ggc cca cca ggc aaa gag gga ctc ccc ggc cct cag ggc	1095		
Gly Pro Pro Gly Pro Pro Gly Lys Glu Gly Leu Pro Gly Pro Gln Gly			
130	135	140	
cct cct ggc ttc cag gga ctt cag ggc acc gtt ggg gag cct ggg gtg	1143		
Pro Pro Gly Phe Gln Gly Leu Gln Gly Thr Val Gly Glu Pro Gly Val			
145	150	155	
cct gga cct cggtt gga ctg cca ggc ttg cct ggg gta cca ggc atg cca	1191		
Pro Gly Pro Arg Gly Leu Pro Gly Leu Pro Gly Val Pro Gly Met Pro			
160	165	170	
ggc ccc aag ggc ccc ccc ggc cct cct ggc cca tca gga gcg gtg gtg	1239		
Gly Pro Lys Gly Pro Pro Gly Pro Pro Gly Pro Ser Gly Ala Val Val			
175	180	185	190
ccc ctg gcc ctg cag aat gag cca acc ccg gca ccg gag gac aat ggc	1287		
Pro Leu Ala Leu Gln Asn Glu Pro Thr Pro Ala Pro Glu Asp Asn Gly			
195	200	205	
tgc ccg cct cac tgg aag aac ttc aca gac aaa tgc tac tat ttt tca	1335		
Cys Pro Pro His Trp Lys Asn Phe Thr Asp Lys Cys Tyr Tyr Phe Ser			
210	215	220	
gtt gag aaa gaa att ttt gag gat gca aag ctt ttc tgt gaa gac aag	1383		
Val Glu Lys Glu Ile Phe Glu Asp Ala Lys Leu Phe Cys Glu Asp Lys			
225	230	235	
tct tca cat ctt gtt ttc ata aac act aga gag gaa cag caa tgg ata	1431		
Ser Ser His Leu Val Phe Ile Asn Thr Arg Glu Glu Gln Gln Trp Ile			
240	245	250	
aaa aaa cag atg gta ggg aga gag agc cac tgg atc ggc ctc aca gac	1479		
Lys Lys Gln Met Val Gly Arg Glu Ser His Trp Ile Gly Leu Thr Asp			
255	260	265	270
tca gag cgt gaa aat gaa tgg aag tgg ctg gat ggg aca tct cca gac	1527		
Ser Glu Arg Glu Asn Glu Trp Lys Trp Leu Asp Gly Thr Ser Pro Asp			

4/17

275	280	285	
tac aaa aat tgg aaa gct gga cag ccg gat aac tgg ggt cat ggc cat			1575
Tyr Lys Asn Trp Lys Ala Gly Gln Pro Asp Asn Trp Gly His Gly His			
290	295	300	
ggg cca gga gaa gac tgt gct ggg ttg att tat gct ggg cag tgg aac			1623
Gly Pro Gly Glu Asp Cys Ala Gly Leu Ile Tyr Ala Gly Gln Trp Asn			
305	310	315	
gat ttc caa tgt gaa gac gtc aat aac ttc att tgc gaa aaa gac agg			1671
Asp Phe Gln Cys Glu Asp Val Asn Asn Phe Ile Cys Glu Lys Asp Arg			
320	325	330	
gag aca gta ctg tca tct gca tta taacggactg tcatggatc acatgagcaa			1725
Glu Thr Val Leu Ser Ser Ala Leu			
335	340		
atttttagct ctcaaaggca aaggacactc ctttctaatt gcatcacctt ctcatcagat			1785
tgaaaaaaaaaaa aaaagcactg aaaaccaatt actgaaaaaaaaa aattgacagc tagtgtttt			1845
taccatccgt cattacccaa agacitggaa actaaaaatgt tccccagggt gataatgtga			1905
ttttcattgt gcacatggac tgaatcacat agattctcct ccgtcagtaa ccgtgcgatt			1965
atacaaattt atgtttccaa agtatggaac actccaatca gaaaaaggaa atcatcccg			2024

<210> 2

<211> 547

<212> PRT

<213> Homo Sapiens

<220>

<223> Deduced Amino Acid Sequence of Novel Collectin from Nucleotide Sequence.

<400> 2

5/17

Met Tyr Ser His Asn Val Val Ile Met Asn Leu Asn Asn Leu Asn Leu
1 5 10 15

Thr Gln Val Gln Gln Arg Asn Leu Ile Thr Asn Leu Gln Arg Ser Val
20 25 30

Asp Asp Thr Ser Gln Ala Ile Gln Arg Ile Lys Asn Asp Phe Gln Asn
35 40 45

Leu Gln Gln Val Phe Leu Gln Ala Lys Lys Asp Thr Asp Trp Leu Lys
50 55 60

Glu Lys Val Gln Ser Leu Gln Thr Leu Ala Ala Asn Asn Ser Ala Leu
65 70 75 80

Ala Lys Ala Asn Asn Asp Thr Leu Glu Asp Met Asn Ser Gln Leu Asn
85 90 95

Ser Phe Thr Gly Gln Met Glu Asn Ile Thr Thr Ile Ser Gln Ala Asn
100 105 110

Glu Gln Asn Leu Lys Asp Leu Gln Asp Leu His Lys Asp Ala Glu Asn
115 120 125

Arg Thr Ala Ile Lys Phe Asn Gln Leu Glu Arg Phe Gln Leu Phe
130 135 140

Glu Thr Asp Ile Val Asn Ile Ile Ser Asn Ile Ser Tyr Thr Ala His
145 150 155 160

His Leu Arg Thr Leu Thr Ser Asn Leu Asn Glu Val Arg Thr Thr Cys
165 170 175

Thr Asp Thr Leu Thr Lys His Thr Asp Asp Leu Thr Ser Leu Asn Asn
180 185 190

Thr Leu Ala Asn Ile Arg Leu Asp Ser Val Ser Leu Arg Met Gln Gln
195 200 205

Asp Leu Met Arg Ser Arg Leu Asp Thr Glu Val Ala Asn Leu Ser Val
210 215 220

Ile Met Glu Glu Met Lys Leu Val Asp Ser Lys His Gly Gln Leu Ile

6/17

225 230 235 240
Lys Asn Phe Thr Ile Leu Gln Gly Pro Pro Gly Pro Arg Gly Pro Arg
245 250 255
Gly Asp Arg Gly Ser Gln Gly Pro Pro Gly Pro Thr Gly Asn Lys Gly
260 265 270
Gln Lys Gly Glu Lys Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Glu
275 280 285
Arg Gly Pro Ile Gly Pro Ala Gly Pro Pro Gly Glu Arg Gly Gly Lys
290 295 300
Gly Ser Lys Gly Ser Gln Gly Pro Lys Gly Ser Arg Gly Ser Pro Gly
305 310 315 320
Lys Pro Gly Pro Gln Gly Pro Ser Gly Asp Pro Gly Pro Pro Gly Pro
325 330 335
Pro Gly Lys Glu Gly Leu Pro Gly Pro Gln Gly Pro Pro Gly Phe Gln
340 345 350
Gly Leu Gln Gly Thr Val Gly Glu Pro Gly Val Pro Gly Pro Arg Gly
355 360 365
Leu Pro Gly Leu Pro Gly Val Pro Gly Met Pro Gly Pro Lys Gly Pro
370 375 380
Pro Gly Pro Pro Gly Pro Ser Gly Ala Val Val Pro Leu Ala Leu Gln
385 390 395 400
Asn Glu Pro Thr Pro Ala Pro Glu Asp Asn Gly Cys Pro Pro His Trp
405 410 415
Lys Asn Phe Thr Asp Lys Cys Tyr Tyr Phe Ser Val Glu Lys Glu Ile
420 425 430
Phe Glu Asp Ala Lys Leu Phe Cys Glu Asp Lys Ser Ser His Leu Val
435 440 445
Phe Ile Asn Thr Arg Glu Glu Gln Gln Trp Ile Lys Lys Gln Met Val
450 455 460

7/17

Gly Arg Glu Ser His Trp Ile Gly Leu Thr Asp Ser Glu Arg Glu Asn

465 470 475 480

Glu Trp Lys Trp Leu Asp Gly Thr Ser Pro Asp Tyr Lys Asn Trp Lys

485 490 495

Ala Gly Gln Pro Asp Asn Trp Gly His Gly His Gly Pro Gly Glu Asp

500 505 510

Cys Ala Gly Leu Ile Tyr Ala Gly Gln Trp Asn Asp Phe Gln Cys Glu

515 520 525

Asp Val Asn Asn Phe Ile Cys Glu Lys Asp Arg Glu Thr Val Leu Ser

530 535 540

Ser Ala Leu

545

<210> 3

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Modified Consensus Sequence of collectins Hybridizable with Novel Collectin.

<400> 3

Glu Lys Cys Val Glu Met Tyr Thr Asp Gly Lys Trp Asn Asp Arg Asn

1 5 10 15

Cys Leu Gln Ser Arg Leu Ala Ile Cys Glu Phe

20 25

<210> 4

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Reverse Primer for Screening a Novel Collectin.

<400> 4

caatctgatg agaaggatgat g

21

<210> 5

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Forward Primer for Screening a Novel Collectin.

<400> 5

acgaggggctt ggatgggaca t

21

<210> 6

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Consensus sequence of three collectins which were reported heretofore.

<400> 6

Glu Asp Cys Val Leu Leu Leu Lys Asn Gly Gln Trp Asn Asp Val Pro
1 5 10 15
Cys Ser Thr Ser His Leu Ala Val Cys Glu Phe
20 25

<210> 7

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> M13 Universal Primer Sequence for Sequencing.

<400> 7

cgacgttgta aaacgacggc cagt 24

<210> 8

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> M13 Reverse Primer Sequence for Sequencing.

<400> 8

caggaaaca gctatgac 17

10/17

<210> 9

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a λgt11 Reverse Primer for Sequencing.

<400> 9

ttgacaccag accaactgg t aatg

24

<210> 10

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a λgt11 Forward Primer for Sequencing.

<400> 10

gg tggcgacg act cctggag cccg

24

<210> 11

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Primer for Screening a Novel Collectin.

<400> 11

cgtgaaaatg aatggaaatg g

21

<210> 12

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Primer for Screening a Novel Collectin.

<400> 12

ttttatccat tgctgttcct c

21

<210> 13

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Primer for Sequencing a Novel Collectin.

<400> 13

ctggcagtcc ccgaggccca g

21

<210> 14

<211> 21

<212> DNA

12/17

<213> Artificial Sequence

<220>

<223> Sequence of a Primer for Sequencing a Novel Collectin.

<400> 14

gctggtcccc ccggagagcg t

21

<210> 15

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a 1RC2 Primer for Cap Site Sequencing.

<400> 15

caaggtaacgc cacagcgtat g

21

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Synthetic TGPI Primer for Cap Site Sequencing.

<400> 16

tcttcagttt ccctaattcc

20

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a 2RC2 Primer for Cap Site Sequencing.

<400> 17

gtacgccaca gcgtatgatg c

21

<210> 18

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Synthetic TGP2 Primer for Cap Site Sequencing.

<400> 18

cattcttgac aaacttcata g

21

<210> 19

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Primer for Screening a Novel Collectin.

<400> 19

gaagacaagt cttcaactct tg

22

<210> 20

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Primer for Screening a Novel Collectin.

<400> 20

ctctgagtc t gtgaggccga tc

22

<210> 21

<211> 111

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Probe for Screening a Novel Collectin.

<400> 21

gaagacaagt ctccacatct tgttttcata aacactagag aggaacagca atggataaaa 60
aaacagatgg tagggagaga gagccactgg atcgccctca cagactcaga g 111

<210> 22

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Forward Primer for Screening a Novel Collectin.

<400> 22

gtgccccctgg ccctgcagaa tg

22

<210> 23

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Reverse Primer for Screening a Novel Collectin.

<400> 23

gcatatcacc ctggggaaca ttttag

26

<210> 24

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Sense Primer for Screening β -Actin.

<400> 24

caagaga~~t~~gg ccacggctgc t

21

<210> 25

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of an Antisense Primer for Screening β -Actin.

<400> 25

tccttctgca tcctgtcggc a

21

<210> 26

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Sense Primer for Amplifying the Novel Collectin.

<400> 26

aaggaaaaaa gcggccgcat gcaacaagat ttgatgagg

39

<210> 27

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Reverse Primer for Amplifying the Novel Collectin.

<400> 27

gctcttagatt ataatgcaga tgacagttac

29

<210> 28

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Sense Primer for Amplifying the Nockout Gene.

<400> 28

atgcaacaag atttgatgag g

21

<210> 29

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Sense Primer for Amplifying the Nockout Gene.

<400> 29

cctaccgggt agaatttggacc

20