Acropolis Institute of Technology and Research, Indore Department of Computer Science and Engineering

CSE-1 III year VI sem
Jan-June 2024

Data Analytics Lab File

Submitted To
Prof. Anurag Punde
CSE Dept.

Submitted By Ashwin Gorle 0827CS211050

Jan-June 2024

Index

S. No.	Name of Experiment	Submission Date	Faculty Sign
1	Thorough Guide to Data Analysis: Foundations, Statistical Analytics, Tests of Hypothesis, Regression, Correlation, and ANOVA		
2	DashBoards		
3	Cookie Data Report		
4	Store Data Report		
5	Car Collection Report		
6	Examining Sales by Sector in the United States		
7	Loan Data Report		
8	Shop Sales Data Report		
9	Sales Data Sample Report		
10	Forecast Analysis of Zoom Stock DataSet		

Thorough Guide to Data Analysis: Foundations, Statistical Analytics, Tests of Hypothesis, Regression, Correlation, and ANOVA

Data Analysis Principles

Introduction to Data Analysis

Examining, purifying, manipulating, and analysing data is just one step in the complex process of data analysis, which aims to derive valuable insights. It is essential to a number of fields, including science, business, healthcare, and finance. Finding patterns, trends, connections, and abnormalities in the data is the main goal of data analysis since it allows one to utilize the information to guide decisions and take appropriate action.

Steps in Data Analysis

- 1. **Data Collection**: The process of gathering raw data from many sources, including databases, surveys, sensor networks, social media platforms, and Internet of Things devices, is known as data collecting. This is the first step in the data analysis process. The importance and Caliber of the data gathered have a big influence on the analysis's conclusions.
- 2. **Data Cleaning**: Data cleaning, also known as data cleansing or data scrubbing, involves identifying and rectifying errors, inconsistencies, and missing values in the dataset. This step ensures data accuracy and reliability for subsequent analysis.
- 3. **Data Preprocessing**: Preparing the dataset for analysis through a variety of procedures is known as data preparation. This covers feature selection, dimensionality reduction, controlling outliers, and data transformation (such as normalization and log transformation). The purpose of preprocessing procedures is to increase data quality and analytical model performance.
- 4. **Data Exploration**: Examining the dataset to learn more about its composition, distribution, and correlations between variables is known as data exploration. Analysts can better comprehend underlying trends and pinpoint possible areas of interest with the aid of exploratory data analysis (EDA) tools like correlation analysis, data visualization (e.g., histograms, scatter plots, and heatmaps), and summary statistics.
- 5. **Data Modeling**: Data modeling entails constructing mathematical models or statistical algorithms to examine datasets and derive meaningful insights. Typical modelling

- techniques encompass regression analysis, classification algorithms such as decision trees and support vector machines, clustering methods like k-means and hierarchical clustering, as well as predictive modeling.
- 6. **Data Evaluation**: Data evaluation assesses the performance and accuracy of the analytical models or hypotheses generated during the modeling phase. Evaluation metrics vary depending on the type of analysis, but commonly include measures such as accuracy, precision, recall, F1-score, and confusion matrix.
- 7. **Data Visualization**: Data visualization involves creating graphical representations of data to enhance comprehension and interpretation. Effective visualization techniques are crucial for conveying insights, trends, and patterns to stakeholders. Tools such as charts, graphs, dashboards, and interactive visualizations allow users to dynamically explore and interact with the data.

Tools and Techniques in Data Analysis

- **Descriptive Statistics**: Descriptive statistics summarize and explain the central tendency, dispersion, and distribution of data. Key measures, including mean, median, mode, variance, standard deviation, skewness, and kurtosis, offer valuable insights into the dataset's characteristics.
- **Inferential Statistics**: Inferential statistics infer or generalize findings from a sample to a population. Techniques such as hypothesis testing, confidence intervals, and regression analysis help make predictions, test hypotheses, and estimate population parameters based on sample data.
- **Data Mining Techniques**: Data mining techniques are designed to uncover hidden patterns, relationships, and trends in large datasets. Common methods include clustering (such as k-means and hierarchical clustering), association rule mining (like the Apriori algorithm), anomaly detection, and text mining.
- Machine Learning Algorithms: Machine learning algorithms enable computers to learn from data and make predictions or decisions without explicit programming. Supervised learning algorithms (e.g., linear regression, logistic regression, decision trees, neural networks) learn from labeled data, while unsupervised learning algorithms (e.g., k-means clustering, principal component analysis) uncover hidden structures in unlabeled data.

Statistical Analytics Concepts

Descriptive Statistics

Descriptive statistics are essential for summarizing and describing the main features of a dataset. They provide valuable insights into the central tendency, variability, and distribution of the data.

- **Measures of Central Tendency**: Measures such as the mean, median, and mode indicate the central or typical value of a dataset. The mean is the arithmetic average, the median is the middle value when the data is ordered, and the mode is the value that appears most frequently.
- **Measures of Dispersion**: Measures such as range, variance, and standard deviation quantify the spread or variability of the data. The range is the difference between the maximum and minimum values, while variance and standard deviation measure the average deviation of data points from the mean.
- **Frequency Distribution**: Frequency distribution illustrates the occurrences of each value or range of values within a dataset, offering insights into its distributional characteristics and aiding in the identification of outliers or unusual patterns..
- **Histograms and Box Plots**: Histograms and box plots are graphical representations that depict the distribution of data. Histograms show the frequency of data values within predefined intervals or bins, while box plots summarize the distribution using quartiles, median, and outliers.

Inferential Statistics

Inferential statistics enable researchers to draw conclusions or make predictions about a population based on sample data. These techniques help generalize findings from a sample to a larger population with a certain level of confidence.

- **Probability Distributions**: Probability distributions describe the likelihood of observing different outcomes in a random experiment. Common probability distributions include the normal distribution, which is symmetric and bell-shaped, and the binomial distribution, which models the number of successes in a fixed number of independent trials.
- Sampling Techniques: Sampling techniques are employed to select representative samples from a population for analysis. Common methods include random sampling, stratified sampling, cluster sampling, and systematic sampling, which help ensure the sample's validity and minimize bias.
- Estimation and Confidence Intervals: Estimation techniques, including point estimation and interval estimation, offer estimates of population parameters like the mean or proportion, derived from sample data. Confidence intervals gauge the

- uncertainty linked with the estimate and furnish a range within which the true population parameter is expected to fall.
- Hypothesis Testing: Hypothesis testing is a pivotal aspect of inferential statistics, enabling researchers to draw conclusions about population parameters from sample data. It encompasses formulating null and alternative hypotheses, determining a significance level, selecting an appropriate test statistic, executing the test, and interpreting the outcomes.

Hypothesis Testing

Introduction to Hypothesis Testing

Hypothesis testing is a methodical procedure employed to draw statistical inferences about population parameters using sample data. It encompasses formulating null and alternative hypotheses, selecting an appropriate test statistic, establishing the significance level, conducting the test, and interpreting the findings..

Steps in Hypothesis Testing

- 1. **Formulating the Hypotheses**: The null hypothesis (H0) represents the default assumption or status quo, while the alternative hypothesis (H1) represents the researcher's claim or alternative viewpoint. These hypotheses are crafted based on the research question and the study's specific objective.
- 2. **Selecting the Significance Level**: The significance level (α) , also known as the level of significance or alpha, determines the probability of rejecting the null hypothesis when it's true. Commonly used significance levels include $\alpha = 0.05$ and $\alpha = 0.01$, representing a 5% and 1% chance of committing a Type I error, respectively.
- 3. Choosing the Test Statistic: The selection of the test statistic depends on the data's nature and the hypotheses under examination. Common test statistics encompass t-tests, z-tests, chi-square tests, F-tests, and ANOVA. Accurately selecting the test statistic is pivotal for assessing the evidence against the null hypothesis.
- 4. Collecting Data and Calculating the Test Statistic: Data is gathered via sampling, and the test statistic is computed using the sample data and the chosen hypothesis test. This statistic quantifies the degree of deviation between the observed data and the null hypothesis, offering evidence for or against the null hypothesis.
- 5. **Making a Decision**: Based on the calculated test statistic and the significance level, a decision is made to either reject or fail to reject the null hypothesis. If the p-value (probability value) associated with the test statistic is less than the significance level,

the null hypothesis is rejected, indicating evidence in favor of the alternative hypothesis. If the p-value is greater than the significance level, the null hypothesis is not rejected.

Types of Hypothesis Tests

- One-Sample t-test: A one-sample t-test is utilized to compare the mean of a single sample to a known value or a hypothesized population mean. It evaluates whether there's a statistically significant difference between the sample mean and the population mean
- **Two-Sample t-test**: The two-sample t-test contrasts the means of two independent samples to ascertain if there's a statistically significant difference between them. It's commonly employed to compare the means of two groups or populations..
- Paired t-test: A paired t-test compares the means of two related samples, such as before and after measurements or paired observations. It determines whether there's a significant difference between the paired observations..
- Chi-Square Test: The chi-square test is a non-parametric test employed to examine the association between categorical variables. It establishes whether there's a significant relationship between the observed frequencies and the expected frequencies in a contingency table.
- ANOVA (Analysis of Variance): ANOVA is used to analyze the differences among group means in a dataset with more than two groups. It assesses whether there are statistically significant differences between the means of multiple groups, considering the within-group variability and the between-group variability.

Regression and its Types

Introduction to Regression Analysis

Regression analysis is a statistical method utilized to model the relationship between one or more independent variables (predictors) and a dependent variable (response). It aids in predicting the value of the dependent variable based on the values of the independent variables. This technique finds extensive application across diverse fields such as economics, finance, healthcare, and social sciences, serving purposes like forecasting, modeling, and hypothesis testing.

Simple Linear Regression

Simple linear regression is the simplest form of regression analysis that involves a single independent variable and a single dependent variable. The relationship between the variables is modeled using a linear equation of the form:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Where:

- *y* is the dependent variable.
- *x* is the independent variable.
- β_0 is the intercept (the value of y when x = 0).
- β_1 is the slope (the change in y for a one-unit change in x).
- ε is the error term representing random variation or unexplained factors.

The coefficients β_0 and β_1 are estimated from the data using the method of least squares, which minimizes the sum of squared differences between the observed and predicted values of y.

Multiple Linear Regression

Multiple linear regression extends simple linear regression to model the relationship between a dependent variable and multiple independent variables. The relationship is expressed by the equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n + \varepsilon$$

Where:

- y is the dependent variable.
- $x_1, x_2, ..., x_n$ are the independent variables.
- β_0 is the intercept.
- $\beta_1, \beta_2, ..., \beta_n$ are the coefficients for the independent variables.
- ε is the error term.

Multiple linear regression allows for modelling complex relationships and capturing the combined effect of multiple predictors on the dependent variable.

Types of Regression Analysis

Regression Type	Description
Simple Linear Regression	Involves one independent variable and one dependent variable.
Multiple Linear Regression	Involves multiple independent variables and one dependent variable.

Polynomial Regression	Fits a nonlinear relationship between the independent and dependent variables using polynomial terms.				
Logistic Regression	Used for predicting the probability of a binary outcome.				
Ridge Regression	Addresses multicollinearity by adding a penalty term to the regression coefficients.				
Lasso Regression	Performs variable selection and regularization to improve the model's accuracy.				

Correlation

Introduction to Correlation

Correlation measures the strength and direction of the linear relationship between two continuous variables. It quantifies how changes in one variable are associated with changes in another variable. Correlation analysis helps identify patterns, dependencies, and associations between variables.

Types of Correlation

- **Positive Correlation**: A positive correlation exists when an increase in one variable is associated with an increase in the other variable, and a decrease in one variable is associated with a decrease in the other variable. The correlation coefficient ranges from 0 to +1, where +1 indicates a perfect positive correlation.
- **Negative Correlation**: A negative correlation exists when an increase in one variable is associated with a decrease in the other variable, and vice versa. The correlation coefficient ranges from -1 to 0, where -1 indicates a perfect negative correlation.
- **Zero Correlation**: Zero correlation indicates no linear relationship between the variables. The correlation coefficient is close to 0, suggesting that changes in one variable are not associated with changes in the other variable.

Pearson Correlation Coefficient

The Pearson correlation coefficient, denoted by rr, measures the strength and direction of the linear relationship between two continuous variables. It is calculated using the formula:

$$r=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum (x_i-ar{x})^2\sum (y_i-ar{y})^2}}$$

Where:

- x_i and y_i are the individual data points.
- \bar{x} and \bar{y} are the means of the variables x and y, respectively.

The Pearson correlation coefficient ranges from -1 to +1, where:

- r=+1: Perfect positive correlation
- r=-1: Perfect negative correlation
- r=0: No correlation

Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient, denoted by ρ (rho), measures the strength and direction of the monotonic relationship between two variables. It is calculated based on the ranks of the data points rather than their actual values, making it suitable for ordinal or nonnormally distributed data.

Spearman's rank correlation coefficient ranges from -1 to +1, where:

- $\rho = +1$: Perfect positive monotonic correlation
- $\rho = -1$: Perfect negative monotonic correlation
- $\rho = 0$: No monotonic correlation

ANOVA (Analysis of Variance)

Introduction to ANOVA

ANOVA, or Analysis of Variance, is a statistical method employed to examine the distinctions among group means within a dataset comprising more than two groups. It juxtaposes the means of multiple groups to ascertain if there exist statistically noteworthy differences among them. ANOVA evaluates both within-group variability and between-group variability to infer whether the disparities in means stem from chance fluctuations or genuine group disparities.

One-Way ANOVA

One-Way ANOVA is the basic form of ANOVA, comprising a single categorical independent variable (factor) with two or more levels (groups) and a continuous dependent variable. It

scrutinizes the null hypothesis asserting that the means of all groups are equal, juxtaposed with the alternative hypothesis indicating that at least one group mean differs.

Hypotheses in One-Way ANOVA

- Null Hypothesis (H0): The means of all groups are equal.
- Alternative Hypothesis (H1): At least one group mean is different.

Calculation of F-Statistic

The F-statistic in ANOVA measures the ratio of between-group variability to within-group variability. It is calculated as the ratio of the mean square between (MSB) to the mean square within (MSW):

$$F = \frac{MSB}{MSW}$$

Where:

- MSB = Sum of squares between (SSB) divided by degrees of freedom between (dfB)
- MSW = Sum of squares within (SSW) divided by degrees of freedom within (dfW)

If the calculated F-statistic is greater than the critical value from the F-distribution at a given significance level (α) , the null hypothesis is rejected, indicating that there are significant differences among the group means.

Post Hoc Tests

When the null hypothesis in ANOVA is rejected, post hoc tests are employed to determine which specific groups exhibit significant differences from each other. Common post hoc tests include Tukey's HSD (Honestly Significant Difference), Bonferroni correction, Scheffe's method, and Dunnett's test. These tests help to pinpoint the specific group or groups that contribute to the observed differences identified by ANOVA.

Two-Way ANOVA

Two-Way ANOVA expands the analysis to encompass two categorical independent variables (factors) and their potential interaction effect on a continuous dependent variable. It evaluates not only the main effects of each factor but also their interaction effect. This allows for a more comprehensive understanding of how the two factors influence the dependent variable and whether their combined effect differs from what would be expected based solely on their individual effects.

Interaction Effects

Interaction effects occur when the effect of one independent variable on the dependent variable depends on the level of another independent variable. Two-Way ANOVA allows for the examination of interaction effects between factors.

Interpretation of Results

In ANOVA, if the null hypothesis is rejected, it indicates that there are significant differences among the group means. Post hoc tests help identify which specific groups differ from each other. If the null hypothesis is not rejected, it suggests that there are no significant differences among the group means.

Cookie Data Report

Store Data Report

Car Collection Report

Examining Sales by Sector in the United States

Loan Data Report

Shop Sales Data Report

Sales Data Samples Report

Cookie Data Report

Introduction:-

The purpose of this report is to analyse the sales data of various cookie types across different countries for the years 2019 and 2020. The dataset provides insights into revenue, profit, quantity sold, and pricing information for each cookie type and country. Through this analysis, we aim to understand the performance of different cookie types, identify trends across countries, and draw conclusions regarding the factors influencing sales and profitability.

Questionnaire:-

- 1. Compare the profit earn by all cookie types in US, Malaysia and India.
- 2. What is the average revenue generated by different types of cookies?
- 3. Which country sold most Fortune and sugar cookies in 2019 and in 2020?
- 4. Compare the performance of all the countries for the year 2019 to 2020. Which country perform in each of these years?
- 5. Which cookie category sold on the highest price, country wise and how much profit is earned by that category overall?

Analytics:-

1. Compare the profit earn by all cookie types in US, Malaysia and India.

Ans: In these countries, the profit from chocolate chip cookies is greater than that of other cookies like fortune cookies, oatmeal raisin, and white chocolate macadamia.

2. What is the average revenue generated by different types of cookies?

Ans: According to the above figure, oatmeal is the cookie that generates the second-highest revenue among all the cookies, with white chocolate macadamia nuts generating the greatest average revenue..

3. Which country sold most Fortune and sugar cookies in 2019 and in 2020?

Ans: According to the graph above, in 2020 India sold the most sugar and fortune cookies, followed by the United States in second position, and in 2019 the United Kingdom and the Philippines..

4. Compare the performance of all the countries for the year 2019 to 2020. Which country perform in each of these years?

Ans: According to the graph above, in 2020 India sold the most sugar and fortune cookies, followed by the United States in second position, and in 2019 the United Kingdom and the Philippines.

5. Which cookie category sold on the highest price, country wise and how much profit is earned by that category overall?

Ans: India was leading at position 22%, while chocolate chip cookies sold for the highest price of 23% total in the United States for the biggest profit made.

Conclusion and Reviews: -

In summary, analyzing cookie sales data has provided invaluable insights into consumer preferences, industry trends, and profitability across many countries and cookie types. We had a complete understanding of the factors affecting sales success thanks to the examination of data on revenue, profit, quantity sold, and pricing. Thanks to this analysis, we have been able to increase profitability and better satisfy customer requests by finding growth potential, refining product offers, and adjusting marketing strategies. Future study and adaptation based on these insights will be necessary to keep a competitive edge in the rapidly changing cookie market. Taking everything into account, the meticulous examination of sales data has proven essential in directing strategic decisions and ensuring the long-term sustainability of our cookie

Regression:

The regression model, with a significant p-value (p < 0.001), indicates a strong positive relationship between units sold and the outcome variable. The model's predictive accuracy is supported by its high R-squared value of 0.688, suggesting that approximately 68.8% of the variability in the outcome variable can be explained by the predictor variable, units sold.

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.829304				
R Square	0.687746				
Adjusted R					
Square	0.687298				
Standard Error					
	1462.76				
Observations	700				

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	3.29E+09	3.29E+09	1537.356	1.4E-178
Residual	698	1.49E+09	2139668		
Total	699	4.78E+09			

	Standard					Upper	Lower	Upper
-	Coefficients	Error	t Stat	P-value	Lower 95%	_95%	95.0%	95.0%
Intercept	-74.4103	116.5304	-0.63855	0.523326	-303.202	 154.3817	-303.202	154.3817
Units Sold	2.500792	0.063781	39.20914	1.4E-178	2.375567	2.626017	2.375567	2.626017

Co-relation:

The correlation coefficient between units sold and revenue is 0.796, indicating a strong positive correlation between the two variables.

	Units Sold	Revenue
Units		
Sold	1	0.796298
Revenue	0.796298	1

Anova (Single Factor):

The AN VA results indicate a significant difference between the two groups (p < 0.001), with 1 degree of freedom. The within-group error is 7681356717, and the total R-squared value is 0.06, suggesting that the model explains 6% of the variability in the data.

SUMMARY

Groups	Count	Sum	Average	Variance
3450	699	1923505	2751.795	4154648
5175	699	2758189	3945.908	6850161

ANOVA

Source of						
Variation	SS	Df	MS	F	<u>P-value</u>	_F crit
					7.53E-	
Between Groups	4.98E+08	1	4.98E+08	90.57022	21	3.848129
Within Groups	7.68E+09	1396	5502405			
Total	8.18E+09	1397				

Anova two factor without Replication:

The AN VA results reveal significant variation among rows and columns (p < 0.001), with degrees of freedom (df) values of 48 and 3, respectively. The error term has a degree of freedom of 144.

ANOVA

Source	of					
Variation	SS	Df	MS	F	P-value	F crit
					8.54E-	
Rows	8.21E+08	48	17108242	5.848894	17	1.445925
					3.8E-	
Columns	5.65E+10	3	1.88E+10	6435.486	153	2.667443
Error	4.21E+08	144	2925039			
Takal	F 77F . 40	105				
Total	5.77E+10	195				

Anova two factor with Replication:

The AN VA results show that there is a significant difference among the samples, columns, and their interaction, with p-values less than 0.001. The degrees of freedom for the samples, columns, and interaction are 49, 3, and 147, respectively.

Furthermore, the total error within the model is 0, indicating a perfect fit. The total R-squared value is 1, suggesting that the model explains all the variability in the data.

ANOVA

Source	of						
Variation		SS	df	MS	F	<u>P-value</u>	_F crit
Sample		8.55E+08	49	17443674	65535	#NUM!	#NUM!
Columns		5.78E+10	3	1.93E+10	65535	#NUM!	#NUM!
Interaction		4.39E+08	147	2983765	65535	#NUM!	#NUM!
Within		0	0	65535			
Total		5.91E+10	199				

Descriptive Statistics:

The data presents considerable variation across variables, with means ranging from 1608.15 to 43949.81. Notably, the largest values span from 4493 to 44166, while the smallest values range from 200 to 43709.

1725		8625		3450		5175
Mean	1608.153	Mean	6697.702	Mean	2751.795	Mean
Standard Error	32.83303	Standard Error	174.9955	Standard Error	77.09541	Standard Error
Median	1540	Median	5868	Median	2422.2	Median
Mode	727	Mode	8715	Mode	3486	Mode
Standard Deviation	868.0597	Standard Deviation	4626.638	Standard Deviation	2038.295	Standard Deviation
Sample Variance	753527.6	Sample Variance	21405775	Sample Variance	4154648	Sample Variance
Kurtosis	-0.31828	Kurtosis	0.463405	Kurtosis	0.807696	Kurtosis
Skewness	0.436551	Skewness	0.869254	Skewness	0.931429	Skewness
Range	4293	Range	23788	Range	10954.5	Range
Minimum	200	Minimum	200	Minimum	40	Minimum
Maximum	4493	Maximum	23988	Maximum	10994.5	Maximum
Sum	1124099	Sum	4681694	Sum	1923505	Sum
Count	699	Count	699	Count	699	Count
Largest(1)	4493	Largest(1)	23988	Largest(1)	10994.5	Largest(1)
Smallest(1)	200	Smallest(1)	200	Smallest(1)	40	Smallest(1)
Confidence		Confidence		Confidence		Confidence
Level(95.0%)	64.46334	Level(95.0%)	343.5807	Level(95.0%)	151.3667	Level(95.0%)

Store Data Report

Introduction:

This dataset encompasses sales data from a retail store, featuring a range of attributes including customer demographics (Gender, Age Group), transaction details (Order ID, Status), product specifics (Category, SKU), and shipping information. With a focus on understanding customer behaviour and product trends, our analysis aims to uncover patterns, preferences, and correlations within the data. By leveraging these insights, businesses can optimize marketing efforts, enhance inventory management, and improve customer satisfaction.

Questionnaire:

- 1. which of the channel performed better than all other channels in compare men & women?
- 2. Compare category. Find out most sold category above 23 years of age for any gender.
- 3. Compare Maharashtra, Rajasthan and Tamil Nadu on the basis of quantity, most items purchased by men and women and profit earn.
- 4. Which city sold most of following categories:
 - a. Kurta
 - b. Set
 - c. Western wears
- 5. In which month most items sold in any of the state on the basis of category.

Analytics:

1. which of the channel performed better than all other channels in compare men & women?

Ans: The regression model shows a strong positive association between units sold and the outcome variable, with a significant p-value (p < 0.001). The high R-squared value of 0.688 for the model indicates that it has a high predictive accuracy; almost 68.8% of the variability in the outcome variable can be explained by the predictor variable, units sold.

2. Compare category. Find out most sold category above 23 years of age for any gender.

Item	Men	Women	Grand Total
Blouse	6	190	196
Bottom	40	28	68
Ethnic Dress	150	77	227
kurta	156	8820	8976
Saree	261	941	1202
Set	4365	6204	10569
Тор	45	1825	1870
Western Dress	3078	380	3458
Grand Total	8101	18465	26566

The graph is as follows:

<u>Ans</u>: With 8820 items sold in the age range over 23, kurta is the most popular category in the women's division. In both the men's and women's sections, sets are the most and second, respectively, in terms of unit sales, with 4365 sold.

Below is a table of the things sold:

3. Compare Maharashtra, Rajasthan and Tamil Nadu on the basis of quantity, most items purchased by men and women and profit earn.

State	Men	Women	Grand Total
MAHARASHTRA	1390	3144	4534
RAJASTHAN	212	543	755
TAMIL NADU	686	2023	2709
Grand Total	2288	5710	7998

Ans: Maharashtra, sales for men are 1390, and sales for women are 3144.

Sales for men in Tamil Nadu are 686, while sales for women are 2023. In Rajasthan, there are 21 sales for males and 543 sales for women.

- 4. Which city sold most of following categories
 - a. Kurta
 - b. Set
 - c. Western wears

<u>Ans</u>: The cities that sell the most kurtas, sets, and western clothing include Bengaluru, Chennai, Hyderabad, Mumbai, and New Delhi..

5. In which month most items sold in any of the state on the basis of category.

Ans: The graph for most items sold in any of stats on basis of category is as above:

792

3383

142

1358

1413

8000

479

3259

NEW DELHI

Grand Total

Set

Top

Western Dress

Conclusion and Review:

It is clear from a detailed examination of the shop data that there are noteworthy trends and insights to be discovered. Key performance indicators (KPIs) including units sold, state-specific analytics, regional, and sales across various stats and products can be examined to get important insights into sales, market demand, and overall profitability. With this thorough knowledge, future store sales endeavors can make well-informed decisions to target particular audiences, maximize earnings, and optimize resources..

Car Collection Report

Introduction:-

This report provides an in-depth analysis of a dataset containing information on various makes and models of used vehicles. The data encompasses details such as the make, model, color, mileage, listing price, and estimated cost for 24 different vehicles spanning popular brands like Honda, Toyota, Nissan, Ford, Chevrolet, and Dodge. By examining factors like mileage, pricing trends, and the relationship between listing prices and estimated costs, the report aims to equip readers with valuable knowledge to navigate the used car marketplace effectively. The scope of this analysis covers a diverse range of vehicle types, including sedans (e.g., Honda Accord, Toyota Camry), compact cars (Honda Civic, Toyota Corolla), trucks (Ford F-150, Chevrolet Silverado), and sports cars (Ford Mustang, Dodge Charger). This comprehensive approach ensures that the findings are relevant to individuals with varying automotive preferences and budgetary constraints.

Questionnaire:-

- 1. Compare the mileage of Chevrolet Impala to Toyota Corolla. Which of the two is giving best mileage?
- 2. Justify, Buying of any Ford car is better than Honda.
- 3. Among all the cars which car color is the most popular and is least popular?
- 4. Compare all the cars which are of silver color to the green color in terms of Mileage.
- 5. Find out all the cars, and their total cost which is more than \$2000?

Analytics:-

1. Compare the mileage of Chevrolet Impala to Toyota Corolla. Which of the two is giving best mileage?

Ans: Compared to the Toyota Corolla (92,377 miles), the average mileage of the Chevrolet Impala is greater at 114,243 miles.

2. Justify, Buying of any Ford car is better than Honda.

Ans: Purchasing a Honda over a Ford is preferable since the former offers a larger price-cost differential (\$693.6 vs. \$551.6), indicating superior value.

3. Among all the cars which car color is the most popular and is least popular?

Ans: Least popular color: Blue, Green, Red, and White (all 3 cars each) Silver and black are the most popular colors (both 6 automobiles). The four least common automotive colors are white, red, blue, and green..

4. Compare all the cars which are of silver color to the green color in terms of Mileage.

Ans: Green cars have an average mileage of 78,103.67 miles, whereas silver cars have an average mileage of 63,797.33 miles. This indicates that green cars generally have a higher average mileage compared to silver cars.

5. Find out all the cars, and their total cost which is more than \$2000?

Ans: Least popular color: Blue, Green, Red, and White (all 3 cars each) Chevrolet Impala (\$5500), Chevrolet Malibu (\$3000), Chevrolet Silverado (\$4500), Ford Escape (\$6950), Ford F-150 (\$3000), Ford Mustang (\$3100), Honda Accord (\$6500), Honda CRV (\$4100), Nissan Altima (\$5500), and Toyota Corolla (\$6300) are among the vehicles with a total cost over \$2,000..

Conclusion and Reviews:-

The analysis of the used vehicle dataset has provided several insights that directly address the posed questions. Regarding the mileage comparison between Chevrolet Impala and Toyota Corolla, the data indicates that Toyota Corolla models generally have higher mileage than Chevrolet Impala models, suggesting better fuel efficiency for the Corolla.

In terms of determining whether buying a Ford car is preferable to a Honda, the dataset lacks sufficient information for a definitive comparison. Factors such as vehicle condition, maintenance history, and additional features significantly impact the overall value, which the current dataset does not cover.

The analysis of vehicle colors showed that black is the most popular color among the listed cars, while green is the least popular. This information could be useful for consumers considering the resale value and demand for certain color options.

When comparing the mileage of silver and green cars, the data suggests that green cars, such as the Nissan Altima and Chevrolet Silverado, tend to have higher mileage than silver cars like the Honda Accord and Dodge Charger. However, it is important to note that mileage can vary widely based on individual driving habits and maintenance practices.

Finally, several models were identified with a total cost exceeding \$2,000, including the Honda Accord, Nissan Altima, Toyota Corolla, Chevrolet Silverado, Chevrolet Impala, Chevrolet Malibu, Ford Escape, Ford Mustang, Honda CR-V, Dodge Charger, and Ford Fusion.

Regression

The regression analysis indicates a moderate positive relationship between the predictor variable and the response variable, with a correlation coefficient of about 0.40. The model accounts for roughly 16% of the variance in the response variable, as shown by the R Square value. The coefficient estimates reveal that each unit increase in the predictor variable corresponds to a decrease of approximately 16.66 in the response variable. With a p-value of 0.056, this effect is considered marginally significant.

	TPUT						
Regression	Statistics						
Multiple R	0.40404555						
R Square Adjusted R	0.1632528						
Square Standard	0.1234077						
Error	33099.5397						
Observations	23						
ANOVA	df	ss	MS	F	Significance F		
ANOVA Regression	<u>df</u> 1	<i>SS</i> 4488793099	<i>MS</i> 4488793099	<i>F</i> 4.09718598			
	200				F		
Regression	1	4488793099	4488793099		F		
Regression Residual	1 21	4488793099 2.3007E+10	4488793099		F	Lower 95.0%	<i>Upper</i> 95.0%
Regression Residual	1 21 22	4488793099 2.3007E+10 2.7496E+10 Standard	4488793099 1095579531	4.09718598	F 0.05586127		

Co-relational

The correlation matrix indicates a moderate negative correlation (-0.411) between Mileage and Price. This suggests that as Mileage increases, Price tends to decrease, and vice versa.

	Mileage	Price
Mileage	1	
Price	-0.4110586	1

Anova: Single Factor

The ANOVA results indicate significant differences between the groups based on Mileage, Price, and Cost. The F-statistic is large (128.88), with a very low p-value (5.00264E-24), suggesting

that the variation between groups is significant compared to the variation within groups. This implies that at least one of the variables (Mileage, Price, or Cost) has a significant effect on the outcome being measured. In simpler terms, there are statistically significant differences in the means of Mileage, Price, and Cost across the groups, indicating that these variables play a significant role in influencing the outcome being analyzed.

Anova: Single

Factor

SUMMARY

·				
Groups	Count	Sum	Average	Variance
Mileage	24	2011267	83802.7917	1214155660
Price	24	78108	3254.5	837024.087
Cost	24	66150	2756.25	705502.717

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1.0445E+11	2	5.2227E+10	128.882161	5.0026E-24	3.12964398
Within Groups	2.7961E+10	69	405232729			
<u>Total</u>	1.3242E+11	71				

Anova: Two-Factor Without replication

The two-factor ANOVA results indicate significant differences among the levels or categories within each factor ("Rows" and "Columns"). Both factors exhibit strong influence on the outcome variable being analyzed, as evidenced by the low p-values and large F-statistics. This suggests that variations in both factors contribute significantly to the overall variability in the data.

Anova: Two-Factor without

replication

ANOVA

Source of						
Variation	SS	df	MS	F	P-value	F crit
Rows	34749383.3	23	1510842.75	47.6846408	2.2236E-14	2.01442484
Columns	2979036.75	1	2979036.75	94.023218	1.3629E-09	4.27934431

Error	728733.25	23	31684.0543
Total	38457153.3	47	

Descriptive Statistics

The provided descriptive statistics outline the characteristics of three variables: Mileage, Price, and Cost. Looking at Mileage, it appears that the vehicles in the dataset span a considerable range, from around 34,853 miles to 140,811 miles, with an average mileage of approximately 83,803 miles. Price and Cost exhibit similar trends, with prices ranging from \$2,000 to \$4,959 and costs from \$1,500 to \$4,500, respectively. The means and standard deviations provide insights into the central tendencies and variability within each variable. Overall, these statistics offer a comprehensive overview of the dataset, allowing for a better understanding of the distribution and characteristics of the data.

Mileage		Price		Cost	
Mean	83802.7917	Mean	3254.5	Mean	2756.25
Standard Error	7112.65205	Standard Error	186.751181	Standard Error	171.452462
Median	81142	Median	3083	Median	2750
Mode	#N/A	Mode	#N/A	Mode	3000
Standard Deviation	n	Standard Deviation	n	Standard Deviation	n
	34844.7365		914.890205		839.942092
Sample Variance	1214155660	Sample Variance	837024.087	Sample Variance	705502.717
Kurtosis	-1.0971827	Kurtosis	-1.2029138	Kurtosis	-0.8126576
Skewness	0.38652215	Skewness	0.27201913	Skewness	0.47339238
Range	105958	Range	2959	Range	3000
Minimum	34853	Minimum	2000	Minimum	1500
Maximum	140811	Maximum	4959	Maximum	4500
Sum	2011267	Sum	78108	Sum	66150
Count	24	Count	24	Count	24
Largest(1)	140811	Largest(1)	4959	Largest(1)	4500
Smallest(1)	34853	Smallest(1)	2000	Smallest(1)	1500

Examining Sales by Sector in the United States

Introduction:

Our dataset comprises a plethora of variables, each offering unique insights into the multifaceted nature of different category sales. From fundamental transactional details such as Date, Time, sales, states to more nuanced factors like Customer Type, Demographics, category and sub category, every facet has been meticulously documented.

Key Attributes:

- 1. ID: A unique identifier for each sales transaction, facilitating traceability and analysis.
- 2. City, State: The geographical location of the data allowing for regional comparisons and trend identification.
- 3. Product Line (furniture, Electronic Accessories, appliances, Home and Lifestyle): Categorization of products facilitating analysis of sales trends across different product categories.
- 4. Unit Price, Net sales Fundamental transactional details crucial for revenue assessment and pricing strategies.
- 5. Net sales of different category, category performing well in different states: Performance metrics
- 6. Rating: different product performing well in different state
- 7. States (California, Texas and Washington): Regional segmentation enabling geographical analysis and market segmentation.

Questionnaire:

- 1. Compare all the US states in terms of Segment and Sales. Which Segment performed well in all the states?
- 2. Find out top performing category in all the states?
- 3. Which segment has most sales in US, California, Texas, and Washington?
- 4. Compare total and average sales for all different segment?
- 5. Compare average sales of different category and sub category of all the states.
- 6. Find out state wise mode for Customer and Segment. California, Illinois, New York, Texas, Waashington

Analytics:

Q1. Compare all the US states in terms of Segment and Sales. Which Segment performed well in all the states?

- After comparing all the states in terms of segment and sales, California emerged as the state with the highest amount of sales
- Consumer segment performed well in all the states

Ans. Office Supplies is the top performing category in all the states

Ans. Consumer segment has the most sales in US, California, Texas, and Washington

Q4. Compare total and average sales for all different segment?

Ans. By Analysis of the given data set we can found that in all the three segments the total sales were greater than the average sales.

Q5. Compare average sales of different category and sub category of all the states.

Ans. The analysis of the given Order Sales dataset showed that average sales in the Technology category were significantly higher compared to the other categories.

Regression and ANOVA:

SUMMARY OUTPU	Т			
Regression Statistics				
Multiple R	0.008850713			
R Square	7.83351E-05			
Adjusted R Square	-0.000924595			
Standard Error	596.4161586			
Observations	999			
ANOVA				
	Df	SS	MS	F
Regression	1	27783.3433	27783.3433	0.078106235
Residual	997	354645097.6	355712.2343	
Total	998	354672880.9		
	Coefficients	Standard Error	t Stat	P-value
Intercept	232.3779806	37.2042048	6.246013907	6.22491E-10
Postal Code	0.000167458	0.000599189	0.279474927	0.779938343

This regression analysis aims to examine the relationship between two variables: an independent variable represented by "Postal Code" and a dependent variable (not explicitly mentioned in the output). Here's an explanation of the key components:

1. Regression Equation:

The regression equation is of the form: Y

= 232.38 + 0.000167458* (Postal Code)

where Y represents the dependent variable (Sales), and "Postal Code" is the independent variable.

2. Interpretation of Coefficients:

The intercept coefficient (232.38) suggests that when the "Postal Code" variable is zero, the estimated value of the dependent variable is 232.38. However, the interpretation of this intercept may not be meaningful since postal codes are unlikely to be zero.

The coefficient for "Postal Code" (0.000167458) suggests that for every one-unit increase in the postal code, the estimated value of the dependent variable increases by approximately 0.000167458 units. However, this coefficient is very small, indicating a negligible effect of postal code on the dependent variable.

3. Statistical Significance:

The p-value associated with the coefficient for "Postal Code" is 0.779938343, indicating that it is not statistically significant at conventional levels of significance (alpha = 0.05). This suggests that the "Postal Code" variable does not have a significant impact on the dependent variable, given the available data.

4. Goodness of Fit:

- The R-squared value (0.0000783351) is extremely small, indicating that the "Postal Code" variable explains very little of the variance in the dependent variable.
- The Adjusted R-squared value (-0.000924595) is negative, which can happen when the model is over fit or when the independent variable is not relevant. In this case, it suggests that the model may not be useful for predicting the dependent variable.

5. ANOVA:

- The ANOVA table indicates that the regression model as a whole is not statistically significant, as the p-value associated with the F-statistic is 0.779938343.

6. Standard Error:

- The standard error (596.4161586) provides an estimate of the variability of the observed dependent variable values around the regression line.

7. Observations:

- The analysis is based on a sample of 999 observations.

In summary, this regression analysis suggests that the "Postal Code" variable is not statistically significant and does not have a meaningful relationship with the dependent variable. Therefore, this model may not be useful for predicting the dependent variable based on postal codes alone.

Correlation:

The absolute value of the correlation coefficient (0.024067424) is close to zero. This suggests a very weak linear relationship between the two variables.

Descriptive Statistics:

Sales	
Mean	230.7691
Standard Error	6.33014
Median	54.49
Mode	12.96
Standard	
Deviation	626.6519
Sample Variance	392692.6
Kurtosis	304.4451
Skewness	12.98348
Range	22638.04
Minimum	0.444
Maximum	22638.48
Sum	2261537
Count	9800

4. CONCLUSION:

Our comprehensive analysis of the provided dataset using various data visualization techniques has yielded valuable insights. By creating bar graphs, pie charts, and other visual representations, we have uncovered patterns, trends, and relationships within the data that might have otherwise remained hidden.

This deep dive into the dataset has not only enhanced our understanding of the underlying information but also empowered us to make informed decisions based on the insights gained. Visual depictions of the data have allowed us to communicate complex findings in a clear and accessible manner, facilitating better comprehension and actionable strategies.

Additionally, this process has highlighted the importance of data visualization as a powerful tool for extracting meaningful information from raw data. By leveraging the visual nature of graphs and charts, we have transformed numbers and statistics into compelling narratives that drive understanding and inform decision-making.

Loan Data Report

Introduction:

Dataset Overview:

Our dataset encompasses a diverse range of variables, each shedding light on the intricate dynamics of loan applications. From fundamental applicant details such as Gender, Marital Status, and Education to more nuanced factors like Employment Status, Loan Amount, and Residential Type, every aspect has been meticulously recorded.

Key Attributes:

- 1. Gender: A demographic identifier providing insights into the gender distribution among loan applicants.
- 2. Marital Status (Married, Not Married): Categorization based on marital status aiding in demographic segmentation.
- 3. Education (Graduate, Non-graduate): Classification based on educational background for further analysis.
- 4. Employment Status (Employed, Unemployed): Distinction between employed and unemployed applicants, crucial for risk assessment.
- 5. Loan Amount: The principal amount applied for, providing a measure of financial need and capacity.
- 6. Residential Type (Urban, Semi-urban, Rural): Geographic classification enabling analysis across different residential areas.

Questionnaire:

- Q1. How many male graduates who are not married applied for Loan? What was the highest amount?
- Q2. How many female graduates who are not married applied for Loan? What was the highest amount?
- Q3. How many male non-graduates who are not married applied for Loan? What was the highest amount?
- Q4. How many female graduates who are married applied for Loan? What was the highest amount?
- Q5. How many male and female who are not married applied for Loan? Compare Urban, Semiurban and rular on the basis of amount.

Analytics:

Q1. How many male graduates who are not married applied for Loan? What was the highest amount?

Ans. Indeed. The technology category had much greater average sales than the other categories, according to the analysis of the provided Order Sales statistics.

Q2. How many female graduates who are not married applied for Loan? What was the highest amount?

Ans. Thirty-five unmarried female graduates sought for the loan. The maximum sum they requested was \$300.

Q3. How many male non-graduates who are not married applied for Loan? What was the highest amount

Ans. 16 male non-graduates are not married applied for the loan. The highest amount they applied for was \$199.

Q4. How many female graduates who are married applied for Loan? What was the highest amount?

Ans. There were 55 female graduates who are married applied for the loan. The highest amount they applied for was \$460.

Q5. How many male and female who are not married applied for Loan? Compare Urban, Semi-urban and rular on the basis of amount.

Ans. There are 7 unmarried male and 3 unmarried female loan applicants. Urban areas have the highest total loan amount (15308), followed by rural (5167) and semi-urban (4976).

Conclusion:

Our investigation, employing a range of visualization tools, offered insightful information that enhanced comprehension and decision-making. Data visualization facilitated the comprehension of complex discoveries and facilitated actionable solutions. This underscores the pivotal role data visualization plays in deriving meaningful conclusions and effectively steering decision-making processes.

Regression: The results of the regression analysis suggest a statistically significant positive association between the independent variable ('5720') and the dependent variable. It is expected that the dependent variable will increase by approximately 0.0059 units for every unit increase in '5720'. However, it's important to note that the model only partially explains the variance in the dependent variable, accounting for approximately 21.1% of the overall variance.

SUMMARY OUTPUT

Multiple R	0.45908096	Regression Statistics
R Square	0.21075532	
Adjusted R		
Square	0.20858707	
Standard Error	56.0766111	
Observations	366	_

ANOVA

	df	SS	MS	F	Significance F
Regression	1	305655.205	305655.205	97.2004502	1.7676E-20
Residual	364	1144629.42	3144.58631		
Total	365	1450284.62			

Standard					
 <u>Coefficients</u> Error	t Stat	P-value	Lower 95%	Upper 95%	95.0%

98.014396

Intercept 106.07753 4.10024098 25.8710478 1.7585E-84 98.014396 114.140665 <u>5720 0.0058851 0.00059692</u> 9.85902887 1.7676E-20 0.00471125 0.00705895 0.004711

Co-Relation:

The data shows weak negative correlation between Applicant-Income and Co-applicant-Income (-0.11), and moderate positive correlation between Applicant-Income and Loan-Amount (0.46), and weaker positive correlation between Co-applicant-Income and Loan-Amount (0.14).

ApplicantIncome CoapplicantIncome LoanAmount

ApplicantIncome

CoapplicantIncome -0.110334799 1 LoanAmount 0.458768926

0.144787815 1

Anova (Single Factor):

The dataset encompasses 367 observations, detailing applicant and co-applicant incomes alongside loan amounts. On average, applicants possess a higher income, averaging around \$4805.60, compared to co-applicants whose average income is approximately \$1569.58. Loan amounts vary widely, averaging \$134.28. ANOVA analysis underscores significant distinctions between the income and loan amounts across the groups, implying diverse financial profiles among applicants and co-applicants.

Groups	Count	Sum	Average	Variance
		176365	4805.59945	24114831.0
ApplicantIncome	367	5	5	9

CoapplicantIncom			1569.57765	5448639.49	SUMMARY
e	367	576035	7	1	
			134.277929	3964.14112	
<u>LoanAmount</u>	<u>367</u>	<u>49280</u>	2	4	

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
				213.200984	5.87569E-	3.00392057
Between Groups	4202537452	2	2101268726	1	79	7
	1082168110		9855811.57			
Within Groups	7	1098	3			
Total	<u>1502421856</u>	1100				

Anova two factor without Replication:

The ANOVA results indicate significant variation both within rows (p = 0.441) and between columns (p < 0.001). This suggests that there are meaningful differences among the row categories and column categories in the dataset, warranting further investigation into the factors influencing these variations.

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	1004340909	365	2751618.93	1.015674698	0.440986529	1.1881716
Columns	379216841.8	1	379216841.8	139.9761235	1.47092E-27	3.867061668
Error	988841123.7	365	2709153.763			
Total	2372398875	731				

Descriptive Statistics:

The dataset includes information on Applicant-Income, Co-applicant-Income, and LoanAmount. The largest Applicant-Income recorded is \$72,529, while the smallest is \$0. For Coapplicant-Income, the largest value is \$24,000, and the smallest is \$0. Additionally, the LoanAmount ranges from a maximum of \$550 to a minimum of \$0. Confidence levels for these variables at a 95.0% level are also provided, indicating the precision of the measurements within the dataset.

Largest(1)	72529	Largest(1)	24000	Largest(1)	550
Smallest(1)	0	Smallest(1)	0	Smallest(1)	0

 Confidence
 504.0756
 Confidence
 239.6059
 Confidence
 6.462910

 Level(95.0%)
 067
 Level(95.0%)
 543
 Level(95.0%)
 219

Shop Sales Data Report

Introduction:

This dataset encapsulates a wealth of information regarding sales transactions, providing valuable insights into the dynamics of retail operations. With columns meticulously crafted to capture key facets of each transaction, including Date, Salesman, Item Name, Company, Quantity, and Amount, analysts and businesses alike gain access to a treasure trove of actionable data.

Whether it's uncovering trends, optimizing inventory management, or refining sales strategies, this dataset serves as an invaluable resource for driving informed decision-making and unlocking new avenues for growth.

Questionnaire:

- 1. Compare all the salesmen on the basis of profit earn.
- 2. Find out most sold product over the period of May-September.
- 3. Find out which of the two product sold the most over the year Computer or Laptop?
- 4. Which item yield most average profit?
- 5. Find out average sales of all the products and compare them.

Analytics:

1. Compare all the salesmen on the basis of profit earn.

Ans:- The comparison of all the salesmen on the basis of profit earned is given above

2. Find out most sold product over the period of May-September.

Ans:- To determine the most sold product from May to September, we'll analyze the sales data within this timeframe. By aggregating the quantity sold for each product across all transactions during this period and then identifying the product with the highest total quantity sold, we can pinpoint the most popular item.

3. Find out which of the two product sold the most over the year Computer or Laptop?

Ans:- The two product sold the most over the year between computer or laptop:

4. Which item yield most average profit?

Ans:- The item that yields the most profit between laptop, computer and mobile is above

5. Find out average sales of all the products and compare them.

Ans:- The average sales of all the products with their respective comparison is below:

Conclusion and Review:

The shop sales dataset provides valuable insights into sales trends, salesman performance, item popularity, and company performance. Analyzing this data can drive strategic decisions and enhance sales strategies. The dataset is well-structured and offers comprehensive information on sales transactions, enabling various analyses. However, it could benefit from additional variables to uncover deeper insights. Nonetheless, it remains a valuable resource for understanding sales dynamics and informing business decisions.

Regression:

The regression model, with a significant p-value indicates a strong positive relationship between Amount and the profit earned and the outcome variable. The model's predictive accuracy is supported by its high R-squared value of 0.660.

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.812617							
R Square	0.660347							
Adjusted R								
Square	0.629469							
Standard Error	1215.119							
Observations	13							

		SS	MS	_ <u>F</u>	Significance F 0.000753
ANOVA		C	df		
Regression	1	31576697	31576697	21.38598	
Residual	11	16241653	14776514		
Total	12	47818350			

	<u>Coefficients</u>	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	244.7062	754.0557	0.32452	0.751632	-1414.96	1904.372
X Variable	0.190729	0.041243	4.624498	0.000735	0.099954	0.281505

Co-relation:

The correlation coefficient between units sold and revenue is 0.796, indicating a strong positive correlation between the two variables.

	Qty	Amount
Column		
1	1	

Column

2 #DIV/0! 1

Anova (Single Factor):

The ANOVA results indicate a significant difference between the two groups , with 1 degree of freedom.

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	15	78.56643	5.237762	2.766871
Column 2	15	50419.05	3361.27	3416099

ANNOVA						
Source	of SS	df	MS	F	P-Value	F crit
Variance						
Between	84472135	1	84472135	49.45528	1.2E-07	4.195972
Group						
Without	47825420	28	170851			
Group						
Total	1.32E+08	29				

Anova two factor with Replication:

The ANOVA results reveal significant variation among rows and columns (p < 0.001), with degrees of freedom (df) values of 10 respectively. The error term has a degree of freedom of 0

ANOVA

Source	of					
Variation	SS	df	MS	F	P-value	F crit
Rows	841600745	10	4160074	65535	#NUM!	#NUM!
Columns	0	0	65535	65535	#NUM!	#NUM!
Error	0	0	65535			
Total	41600745	10				

Anova two factor without Replication:

Summary	Count	Sum	Average	Variance	
4	1	7800	7800	#DIV/0!	
5	1	3000	3000	#DIV/0!	

4	1	2300	2300	#DIV/0!	
3	1	7000	7000	#DIV/0!	
3	1	1200	1200	#DIV/0!	
4	1	2506.667	2506.667	#DIV/0!	
5	1	2618.095	2618.095	#DIV/0!	
6	1	2729.524	2729.524	#DIV/0!	
7	1	2840.952	2840.952	#DIV/0!	
6	1	4500	4500	#DIV/0!	
7	1	3063.81	3063.81	#DIV/0!	
1000		39559.05	3596.277	4160074	

Descriptive Statistics:

Column1	
Mean	
	1000
Standard Error	0
Median	1000
Mode	#N/A
Standard	
Deviation	#DIV/0!
Sample Variance	#DIV/0!
Kurtosis	#DIV/0!
Skewness	#DIV/0!
Range	0
Minimum	1000
Maximum	1000
Sum	1000
Count	1

Sales Data Samples Report

Introduction:

In the realm of business analytics, a dataset encompassing sales transactions emerges as a vital asset for deriving actionable insights. With columns detailing ORDERNUMBER, QUANTITYORDERED, PRICEEACH, and more, it offers a comprehensive view of sales dynamics. From tracking individual orders to analysing product performance and customer behaviour, this dataset provides a rich source of information essential for strategic decisionmaking and operational optimization in today's competitive landscape.

Questionnaire:

- 1. Compare the sale of Vintage cars and Classic cars for all the countries.
- 2. Find out average sales of all the products? which product yield most sale?
- 3. Which country yields most of the profit for Motorcycles, Trucks and buses?
- 4. Compare sales of all the items for the years of 2004, 2005.
- 5. Compare all the countries based on deal size.

Analytics:

1. Compare the sale of Vintage cars and Classic cars for all the countries.

Ans:-The comparsion of sale of Vintage cars and Classic cars for all the countries is given below:-

2. Find out average sales of all the products? which product yield most sale?

Ans: From the above graph the production of trains is higher.

3. Which country yields most of the profit for Motorcycles, Trucks and buses?

Ans: The country Australia yields most of the profit for Motorcycles, Trucks and buses

SUMMARY OUTPUT						
Regressio	n Statistics					
Multiple R	0.657840928					
R Square	0.432754687					
Adjusted R Square	0.432553607					
Standard Error	1387.45926					
Observations	2823					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	4142995200	4142995200	2152.157001	0	
Residual	2821	5430546866	1925043.199			
Total	2822	9573542065				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	- 1470.590019	111.4099971	13.19980305	1.20143E-38	1689.043329	-1252.13671
PRICE EACH	60.05936566	1.294624334	46.39134619	0	57.52085944	62.59787188

4. Compare sales of all the items for the years of 2004, 2005.

 \mathbf{Ans} : - The following is the sales of all the ite s for the years of $\ \ , \ \$ an $\ \$ as graph represents the sales has grown.

5. Compare all the countries based on deal size.

Ans. The comparison of all the countries based on deal size are:

Regression and Anova

This regression analysis appears to be examining the relationship between two variables: "PRICE EACH" and another variable (not specified in the provided output). Here are the results:

- 1. **Regression Equation:** The regression equation can be written as: Y=-1470.59 (PRICE EACH)+60.06where:
 - Y represents the dependent variable Quantity.
 - X represents the independent variable "PRICE EACH".

2. Interpretation of Coefficients:

- The intercept coefficient (-1470.59) suggests that when the "PRICE EACH" variable is zero, the estimated value of the dependent variable is -1470.59. However, depending on the context, this interpretation might not make sense practically.
- The coefficient for "PRICE EACH" (60.06) suggests that for every one-unit increase in "PRICE EACH", the estimated value of the dependent variable increases by 60.06 units.

3. Statistical Significance:

- The p-value associated with the coefficient for "PRICE EACH" is 00, indicating that the coefficient is statistically significant at conventional levels of significance (typically = 0.05α =0.05).
- The intercept also appears to be statistically significant, with a very low p-value.

4. Goodness of Fit:

- The R-squared value (0.433) indicates that approximately 43.3% of the variance in the dependent variable is explained by the independent variable "PRICE EACH".
- The adjusted R-squared value (0.433) adjusts the R-squared value for the number of predictors in the model.

5. ANOVA:

• The ANOVA table indicates that the regression model as a whole is statistically significant, as the p-value associated with the F-statistic is 00.

6. Standard Error:

• The standard error (1387.46) gives an estimate of the variability of the observed dependent variable values around the regression line.

7. Observations:

• The analysis is based on a sample of 2823 observations.

These results suggest that there is a statistically significant positive relationship between "PRICE EACH" and the dependent variable, as indicated by the coefficient and its associated p-value. However, it's important to consider the context of the analysis and the specific variables involved for a more complete interpretation.

CORELATION:

The correlation coefficient you calculated (0.657840928) represents the strength. It indicates a moderate positive linear relationship between the price per unit and the quantity sold. This means that as the price per unit tends to increase, the quantity sold also tends to increase, but the relationship is not perfect.

Descriptive Statistics:

SALES					
Mean	3553.889072				
Standard Error	34.66589212				
Median	3184.8				
Mode	3003				
Standard Deviation	1841.865106				
Sample Variance	3392467.068				
Kurtosis	1.792676469				
Skewness	1.161076001				
Range	13600.67				
Minimum	482.13				
Maximum	14082.8				
Sum	10032628.85				
Count	2823				

Conclusion and Review:

In summary, the analysis of the provided sales dataset provides valuable insights into the complexities of business operations, revealing customer preferences, product performance, and market trends. Leveraging these insights, businesses can make informed decisions, streamline processes, and fuel growth. As the field of data analytics evolves, harnessing the power of such datasets remains crucial for staying competitive and responsive to the dynamic market demands..

Forecast Analysis of Zoom Stock DataSet

Introduction: -

The Zoom stock dataset from Kaggle offers a comprehensive collection of historical stock data for Zoom, a leading global professional services company. This dataset is an invaluable resource for financial analysts, data scientists, and researchers interested in examining the stock performance of Zoom over a specified period.

In my analysis of the Zoom stock dataset, I aim to uncover patterns and insights into the company's stock performance. By employing various data analysis techniques, I will explore trends, identify significant fluctuations, and assess the impact of external factors on stock prices.

	02-05-	02-05-			
	2019	2019			
Γ	03-05-	03-05-			
	2019	2019			
	04-05-	04-05-			
	2019	2019			
Γ	05-05-	05-05-			
	2019	2019			
	06-05-	06-05-			
	2019	2019			
Γ	07-05-	07-05-			
	2019	2019			
	08-05-	08-05-			
	2019	2019			
	09-05-	09-05-			
	2019	2019			
	10-05-	10-05-			
	2019	2019			
	11-05-	11-05-			
	2019	2019			
	12-05-	12-05-			
	2019	2019			
	13-05-	13-05-			
	2019	2019			
	14-05-	14-05-			
	2019	2019			
	15-05-	15-05-			
	2019	2019			
	16-05-	16-05-			
	2019	2019			
	17-05-	17-05-	17-05-		
	2019	2019	2019	17-05-2019	17-05-2019
	18-05-		18-05-		
	2019		2019	18-05-2019	18-05-2019

19-05-	19-05-		
2019	2019	19-05-2019	19-05-2019
20-05-	20-05-		
2019	2019	20-05-2019	20-05-2019
21-05-	21-05-		
2019	2019	21-05-2019	21-05-2019

Conclusion: -

The forecasted table for Zoom's stock from May 2, 2001, to May 21, 2001, shows a consistent upward trend in open prices. The narrow confidence bounds indicate a high level of accuracy and stability in the forecasts, suggesting minimal volatility. This positive trend reflects strong market sentiment and provides valuable insights for investors, highlighting potential investment opportunities with manageable risk. The data underscores a favorable outlook for Zoom's stock during the forecasted period.