Source code if (b == 0) a = b; (character stream)

Source code (character stream)

Formalism

- Language vs. grammar
 - Language: A set (generally infinite) of strings over some alphabet.
 - Grammar: A finite generative description of a language.
 - Given a grammar G, L(G) is the language that it generates.

Formalism

- Language vs. grammar
 - Language: A set (generally infinite) of strings over some alphabet.
 - Grammar: A finite generative description of a language.
 - Given a grammar G, L(G) is the language that it generates.
- Context-Free Grammar G = (N, T, P, S), where
 - *N* is a set of non-terminals;
 - *T* is a set of terminals (aka tokens);
 - P is a finite set of productions (rewrite rules) of the form $A \to \alpha$, where $A \in N$ and α is a sentential form;
 - $S \in N$ is the start symbol.

Formalism

- Language vs. grammar
 - Language: A set (generally infinite) of strings over some alphabet.
 - Grammar: A finite generative description of a language.
 - Given a grammar G, L(G) is the language that it generates.
- Context-Free Grammar G = (N, T, P, S), where
 - N is a set of non-terminals;
 - T is a set of terminals (aka tokens);
 - P is a finite set of productions (rewrite rules) of the form $A \to \alpha$, where $A \in N$ and α is a sentential form;
 - $S \in N$ is the start symbol.
- Sentential forms and sentences
 - Sentential form: A string that can be obtained by starting with S
 and using productions as rewrite rules to rewrite non-terminals.
 - Sentence: A sentential form without non-terminals, i.e., a word in the language L(G).

Recognition vs. Parsing

- Given a grammar G and a sentence s
 - Recognition is a decision problem: $s \in L(G)$?
 - Parsing is a construction problem: Show a derivation (proof) that $s \in L(G)$.

Recognition vs. Parsing

- Given a grammar G and a sentence s
 - Recognition is a decision problem: $s \in L(G)$?
 - Parsing is a construction problem: Show a derivation (proof) that $s \in L(G)$.
- Derivation of string using grammar
 - Start from S and repeatedly re-write one non-terminal at a time using the productions of the grammar, until there are no nonterminals left to re-write.
 - Leftmost/rightmost derivation: A derivation in which the leftmost/rightmost non-terminal of the current sentential form is rewritten at each step.

Example: Simple Expression Grammar

Consider

```
Grammar: E \rightarrow (E + E) \mid \mathbf{num}
```

String: (2 + 3)

Example: Simple Expression Grammar

Consider

```
Grammar: E \rightarrow (E + E) \mid num
String: (2 + 3)
```

- Leftmost derivation
 - $E \Longrightarrow (E + E) \Longrightarrow (2 + E) \Longrightarrow (2 + 3)$
- Rightmost derivation
 - $E \Longrightarrow (E + E) \Longrightarrow (E + 3) \Longrightarrow (2 + 3)$

Ambiguity in Grammars

- Ambiguous grammar
 - A grammar in which there are two or more leftmost derivations for some sentence $s \in L(G)$.
- Consider

Grammar: $E \rightarrow E + E \mid E * E \mid (E) \mid num$

- The string 2 + 3 * 5 has two distinct leftmost derivations.
 - $E \Rightarrow E + E \Rightarrow 2 + E \Rightarrow 2 + E * E \Rightarrow 2 + 3 * E \Rightarrow 2 + 3 * 5$
 - $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow 2 + E * E \Rightarrow 2 + 3 * E \Rightarrow 2 + 3 * 5$
- However, the strings (2 + 3) * 5 and 2 + (3 * 5) do have unique leftmost derivations.
 - $E \Longrightarrow E * E \Longrightarrow (E) * E \Longrightarrow (E + E) * E \Longrightarrow \cdots \Longrightarrow (2 + 3) * 5$
 - $E \Longrightarrow E + E \Longrightarrow E + (E) \Longrightarrow E + (E * E) \Longrightarrow \cdots \Longrightarrow 2 + (3 * 5)$