

PB331转UART评估板

描述:		连接/参考器件	
EV331_TTL 和 EV331_485均为采用POWERBUS [™] 技术的从站评估板。 EV331_TTL适合直接连接MCU的UART进行通讯调试。或使用UART TO USB转接电脑进行通讯测试。	PB620	采用POWERBUS 技术的增强型主站控制芯片	
	EV620	PB620 核心电路评估板	
	PB331	采用POWERBUS 技术的从站通讯芯片	

POWERBUS从站评估板

评估和设计支持

电路评估板

POWERBUS从站PB331转UART评估板 EV331_TTL POWERBUS从站PB331转RS485评估板 EV331_485

设计和集成文件

原理图、布局文件、物料清单

电路功能与优势

所示电路是一款POWERBUS从站接收电路。该电路将透传来主站UART信号,可兼容3.3V和5V的TTL通讯电平。

EV331_TTL评估板可直接连接从站MCU的UART串口进行设备通讯测试。也可以使用UART转USB模块,连接电脑进行发回码测试。

EV331_TTL评估板可提供最大1A的功率输出,可降压至设备所需电压为设备供电。也可以带假负载进行带载通讯测试。

特性

- ♦ 兼容3.3V和5V TTL通讯电平
- ◇ 隔离的串口通讯,兼容额外供电系统
- ◇ 可为子站或负载提供最大1A供电功率
- ◇ 支持最大总线电平48V
- ◇ 最远通讯距离3000m
- ◇ 无特殊线缆要求
- ◇ 低成本的解决方案

1 快速开始

所需设备

- ◆ EV331_TTL 评估板
- ◆ MCU UART串口或UART TO USB串口调试器
- ◆ PowerBUS总线主机

步骤

本评估板适用于具有UART接口的从站测试。请遵循以下步骤使用本板。

注意:确保正确连接完成之前不要打开电源

- 1) 将目标通讯MCU或者TTL TO USB模块正确连接到图中TTL接口①上。并选择MCU相同的TTL通讯电平,连接到MCU_3V3或MCU_5V输入为评估板隔离侧供电。
- 2) 将EV331_TTL评估板DC OUT功率输出接口②连接到目标负载。
- 3) 连接评估板上PowerBus LINE IN接口③到PowerBUS二总线上。
- 4) 开启上层总线。进行通讯测试。

2 EV331_TTL 使用注意事项

2.1 功率输出

EV331_TTL可以输出最大1A电流。可为目标设备提供供电。

也可以使用假负载,如功率电阻,来测试带载通讯。

【注】注意从站板上GND不得与其他系统GND 共地,例如其他电源,接大地。测试功 率带载请使用无源负载电阻,否则可能 导致偶发性通讯误码。

www.powerbus.com.cr

2.2 输出电流

EV331_TTL可输出最大1A电流。板上F1为900mA可恢复保险丝。若长时间超过900mA工作时会被F1限制电流。

2.3 TTL通讯调试

EV331_TTL提供适用于3.3V和5V的TTL通讯接口。 请注意将通讯的MCU供电连接至评估板相同接口,为 通讯隔离侧供电。进行从站设备通讯测试。 也可以将EV331_TTL连接至UART TO USB模块,使用串口 助手进行通讯测试。

2.4 总线电压

EV331_TTL总线输入电压不能超过50V, TVS1为48V瞬态抑制二极管,用于保护线上浪涌和限制输入电压。

3 设计要点

3.1 UART通讯

EV331_TTL评估板使用了磁隔离TTL设计。 这样做的目的是:

- 1) 为了同时兼容3.3V和5V通讯电平。
- 2) UART接口可以与其他有源系统共地。便于使用TTL TO USB转接器接回计算机,使用串口助手进行调试。

从站设计时,如果从站系统没有其他的接地电源系统, 使用PowerBUS总线为从站供电。则无需隔离,直接相连 UART与MCU。

如果从站使用220V供电,仅用PowerBUS总线通讯,可使用光耦隔离UART。PowerBUS总线可为PB331和总线隔离侧供电。无需隔离电源,大幅度节省成本。

3.2 器件的选择

3.2.1 C6的选择

C6为电源储能电容,请结合负载电流和纹波冗余度,设置此电容即可。详见PB331手册

3.2.2 TVS1的选择

TVS1为双向瞬间电流抑制二极管,抑制来自线上浪涌。请根据所用电压选择。非必须组件,可省略。

3.2.3 F1的作用

评估板上F1为900mA可恢复保险丝。

若从站由于意外发生短路。F1将会限制从设备最大 电流,保护器件。

F1也可以使用电阻,若从站因任何原因发生损坏而变为短路,此电阻值则会烧大,进而断开此从站而不影响总线。此时上位机便可通过巡检轻易查明故障从站。请根据从站电流和允许压降设置此电阻。

注: F1非必须

4.1 EV331_TTL 原理图

www.powerbus.com.cn

4.2 Board Layout

Top Layer

Bottom Layer

www.powerbus.com.cr

5 Bill of Materials

Bill of Materials - EV331_TTL

标号	型号	封装	描述	
R1	39k	0805	一级线性稳压组件	
R2	270K	0805	PB331组件	
R3	20K	0805	PB331组件	
R4	100	0805	PB331组件	
R5	1K	0805	PB331组件	
R6	5.1K	0805	LED限流电阻	
R7	5.1K	0805	LED限流电阻	
R8	5.1K	0805	LED限流电阻	
R16	5.1K	0805	隔离悬浮输入电阻	
R17	220R	0805	隔离输出限流电阻	
C1	104	0805	一级线性稳压组件	
C2	105	0805	一级线性稳压组件	
C3	105	0805	HT7150外围组件	
C4	30P	0805	EMC抑制电容,详见PB331手册	
C5	30P	0805	EMC抑制电容,详见PB331手册	
C6	220uF/50V	C10X10	从站负载储能电容。详见PB331手册	
C13	105	0805	隔离侧电源输入稳压电容	
D1	MMBZX84C12	SOT-23	一级线性稳压组件	
D2	M7	SMA	整流桥。请使用M7(1N4007)或者MB6S。不可使用肖特基	
D3	M7	SMA	整流桥。请使用M7(1N4007)或者MB6S。不可使用肖特基	
D4	M7	SMA	整流桥。请使用M7(1N4007)或者MB6S。不可使用肖特基	
D5	M7	SMA	整流桥。请使用M7(1N4007)或者MB6S。不可使用肖特基	
D6	US1M	SMA	PB331组件,不要改变型号	
D12	1N4148S	SOT23	输入防反二极管	
T1	MMBTA05	SOT-23	PB331组件, SOT23三极管即可	
Q1	BCX56	SOT-89	一级线性稳压组件	
TVS1	SMBJ48CA	SMB	瞬态抑制二极管,用于防范线上浪涌	
U1	HT7150	SOT-89	为PB331和磁隔离提供供电	
U2	PB331	SO-8		
U6	ADUM1201	SO-8	磁隔离芯片,原设计为光耦。	
J1	CON2	DZ_CHABA_2PIN	功率输出端口,最大可输出1A电流	
J2	CON2	DZ_CHABA_2PIN	PowerBUS总线接口	
J3	CON6	sip6-2.54	TTL输出接口,详见快速开始章节	
F1	REX090	PTC-5	900mA可恢复保险丝,请根据站电流选择	
VCC	RED	0805	输入正常指示灯	
RX	GRE	0805	RX信号指示灯	
TX	GRE	0805	TX信号指示灯	