Exercise 1 - TMA4300 Computer Intensive Statistical Methods

Problem A

Question 1

We first want to write an R function that generates samples from a exponential distribution with rate parameter λ . We know that the cumulative exponential distribution takes the form

$$F(x;\lambda) = 1 - \lambda e^{-\lambda x}, \quad x \ge 0$$

Computing the inverse cumulative function exploiting the uniform distribution $U \sim Unif(0,1)$ we can get

$$X = F^{-1}(u) = -ln(u)/\lambda, \quad 0 \le u \le 1$$

We now want to show that this is true using simulation from the inverse cumulative distribution

```
# n: number of samples to generate
# rate: the rate
# expdist returns a vector with generated random numbers from exponential distribution
expdist <- function(rate, n) {</pre>
   u <- runif(n)
   x \leftarrow -\log((1/rate)*(1 - u))/rate
   list = list(x, u)
   return(list)
}
n <- 60000
lambda <- 1
outval <- expdist(lambda, n)</pre>
x = outval[[1]]
y = outval[[2]]
library(ggplot2)
ggplot(data.frame(x=x))+geom_histogram(aes(x=x, y = ..density..), bins = 50)+geom_line(data = data.fram
## Warning: Removed 420 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).
## Warning: Removed 420 row(s) containing missing values (geom_path).
```


From the plot one can see that the exponential distribution that we generated and the exponential distribution in R closely follow each other, which means that our implementation is correct.

Question 2 a

Let us consider a new example where the PDF has the form

$$g(x) = \begin{cases} cx^{\alpha - 1}, & 0 < x < 1\\ ce^{-x}, & x \ge 1 \end{cases}$$

The cumulative function can be computed with integration

$$G(x) = \begin{cases} \frac{c}{\alpha}x^{\alpha}, & 0 < x < 1\\ 1 - ce^{-x}, & x \ge 1\\ 0, & \text{otherwise} \end{cases}$$

And similarly with the inverse cumulative function

$$G^{-1}(u) = \begin{cases} \left(\frac{u\alpha}{c}\right)^{\frac{1}{\alpha}}, & 0 < u < c/\alpha\\ -ln\left(\frac{1-u}{c}\right), & u \ge c/\alpha\\ 0, & \text{otherwise} \end{cases}$$

with c as $\frac{e\alpha}{e+\alpha}$ in all the expressions, which is found by using that the density integrated over the whole space must be 1.

Question 2 b

This distribution can be plotted by using the inverse cumulative distribution as before.

```
# ca: normalizing constant
ca <- function(alpha) {</pre>
  return(exp(1)*alpha/(exp(1)+alpha))
# alpha: parameter alpha
# n: number of samples to generate
\# dist1 returns a vector of random numbers from the distribution g
dist1 <- function(alpha, n) {</pre>
  u <- runif(n)
  L = u < ca(alpha)/alpha
   res = c(1:n)*0
   res[L] = (u[L]*alpha/ca(alpha))^(1/alpha)
   res[!L] = -log((1-u[!L])/ca(alpha))
   return(list(res,u))
}
g_test = function(alpha, x) {
  res = c(1:length(x))*0
  L = x<1&x>0
 res[L] = ca(alpha)*x[L]^(alpha-1)
 res[!L] = ca(alpha)*exp(-x[!L])
  return (res)
n <- 60000
alpha \leftarrow 0.5
outval1 <- dist1(alpha, n)</pre>
x <- outval1[[1]]</pre>
y <- outval1[[2]]</pre>
hist(x, breaks = 50, freq = FALSE, main = bquote("Histogram of samples when "~alpha == .(alpha)))
curve(g_test(alpha, x), col = "red", lwd = 2, add=TRUE)
```

Histogram of samples when $\alpha = 0.5$

Question 3 a The normalizing constant is found by using that a PDF must integrate to 1, and therefore we get $c = \alpha$.

Question 3 b By integrating the PDF from $-\inf$ to x, we find the CDF:

$$F(x) = \frac{-1}{1 + e^{\alpha x}} + 1$$

and the inverse of F is found by solving for x (where F(x) is y:

$$F^{-1}(x) = \frac{1}{\alpha} ln(\frac{-y}{y-1})$$

Question 3 c We want to use the inversion method to generate random samples from the distribution in question 3b, and compare them with the theoretical values.

```
# alpha: the parameter alpha
# n: number of samples to be generated
# dist3 gives a vector of random variables from the distribution in question 3b
dist3 <- function(alpha, n) {
    u <- runif(n)
    x <- 1/alpha*log(-u/(u-1))
    list = list(x, u)
    return(list)
}
# checkfunc3 gives values from the theoretical function that we want to check with
x <- seq(from = -10, to = 10, length.out = 100)
checkfunc3 <- function(alpha, x) {
    return(alpha*exp(alpha*x)/(1+exp(alpha*x))^2)
}
outval3 <- dist3(alpha, n)</pre>
```

```
ggplot(data.frame(x = outval3[[1]], y = outval3[[2]]))+
geom_histogram(aes(x=x, y=..density..),alpha=0.2)+geom_line(data = data.frame(x=x,y=checkfunc3(alpha,
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

From the plot we see that our simulation follows the theoretical values, although it could be better.

Question 4 We want to sample from the univariate normal distribution using the Box-Müller algorithm. We compare it to the normal distribution implemented in R.

```
# n: number of samples to generate
# mynormal samples from box-muller algorithm
mynormal <- function(n) {
    u1=runif(n)
    u2=runif(n)
    return (sqrt(-2*log(u1))*sin(2*pi*u2))
}
n = 100000
mynormalout <- mynormal(n)
std_normal_data <- data.frame(x=mynormalout)
x <- seq(-4, 4, length=100)
ggplot(std_normal_data)+
    geom_histogram(aes(x=x, y=..density..),bins=50)+geom_line(data = data.frame(x=x,y=dnorm(x)), aes(x=x,y=x)</pre>
```


Question 5

We want to sample from a d-variate normal distribution with mean μ and covariance matrix Σ . We use the function mynormal with the Box-Muller algorithm to construct a vector with values of μ and a positive definite matrix $\Sigma = MM^T$, where M is a d by d matrix from a normal distribution. As we don't have given values of μ and Σ , we just choose a μ and Σ such that Σ is positive definite by the Cholesky factorization. Note that in the code, sigma $= \mu^T \mu$ because of how the Cholesky function is implemented in R.

```
# mu: mean of the multivariate normal distribution
# sigma: covariance matrix of the multivariate normal distribution
dim = 2
mu <- c(1,2)
M=chol(matrix(c(2,1,1,3),dim,dim))
sigma <- t(M)%*%M</pre>
```

To simulate from a d-variate normal distribution, we use that $y = \mu + Mx$, where $\Sigma = MM^T$. We simulate n realisations from the multivariate normal distribution below. Note that the code uses $y = \mu + M^Tx$ because of how the Cholesky function is implemented in R.

```
# y: matrix to store the realisations of the multivariate normal distribution
n = 100000
y = matrix(0, dim, n)
for (i in 1:n) {
    y[,i] = mu + t(M)%*%mynormal(dim)
}
# means: vector with the mean of the simulated values
means=numeric(dim)
for (i in 1:dim){
```

```
means[i]=mean(y[i,])
# covmatrix: matrix with the covariances of the simulated values
covmatrix = cov(t(y))
print("The chosen mean vector is: ")
## [1] "The chosen mean vector is: "
print(mu)
## [1] 1 2
print("The simulated mean vector is: ")
## [1] "The simulated mean vector is: "
print(means)
## [1] 0.9977595 1.9917726
print("The chosen covariance matrix is: ")
## [1] "The chosen covariance matrix is: "
print(sigma)
##
        [,1] [,2]
## [1,]
           2
                1
## [2,]
           1
                3
print("The simulated covariance vector is: ")
## [1] "The simulated covariance vector is: "
print(covmatrix)
##
                       [,2]
             [,1]
## [1,] 1.9873350 0.9956799
## [2,] 0.9956799 2.9925140
```

We see that the chosen mean and covariance is almost equal to the simulated values, which shows that the implementation is correct.

Task B1

Task B1a

The acceptance probability has the form

-!>