SR No: 06-18-01-10-12-24-1-25223

Email ID: aneeshp@iisc.ac.in

Date: November 19, 2024

Assignment No: Assignment 3 **Course Code:** E0230

Course Code: E0230
Course Name: Computational Methods of Optimization

Term: AUG 2024

Systems of Linear Equations

Solution 1

Given matrices are as follows,

$$A = \begin{bmatrix} 2 & -4 & 2 & -14 \\ -1 & 2 & -2 & 11 \\ -1 & 2 & -1 & 7 \end{bmatrix}_{3\times 4} \quad \text{and,} \quad b = \begin{bmatrix} 10 \\ -6 \\ -5 \end{bmatrix}_{3\times 1}$$

Hence, the solution to system Ax = b will be of dimension 4×1 i.e. Number of variables, n = 4.

$$Rank(A) = Rank \left(\begin{bmatrix} 2 & -4 & 2 & -14 \\ -1 & 2 & -2 & 11 \\ -1 & 2 & -1 & 7 \end{bmatrix} \right) = Rank \left(\begin{bmatrix} 1 & -2 & 1 & -7 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) = 2$$

$$Rank([A|b]) = Rank \left(\begin{bmatrix} 2 & -4 & 2 & -14 & 10 \\ -1 & 2 & -2 & 11 & -6 \\ -1 & 2 & -1 & 7 & -5 \end{bmatrix} \right) = Rank \left(\begin{bmatrix} 1 & -2 & 1 & -7 & 5 \\ 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \right) = 2$$

As, it is clear from above that Rank(A) = Rank([A|b]) < n.

Hence, the given system of equations has an infinite number of solutions.

Hence, proved.

Solution 2

ConvProb can be written as follows,

ConvProb:
$$\min_{x} \frac{1}{2} ||x||_2^2$$
 s.t. $Ax = b$

Constraint Ax = b is linear function of x. As we know all the linear functions are convex in nature. Hence, **constraint is convex**.

Objective function is,

$$\frac{1}{2}||x||_2^2 = \frac{1}{2}x^T x$$

Hessian of objective function is,

$$H(x) = I > 0$$
, for all values of x

. Hence, **objective function is strongly convex** in nature.

Solution 3

Lagrangian for ConvProb is given by,

$$\mathcal{L}(x,\lambda) = \frac{1}{2}x^T x - \lambda^T (Ax - b)$$

Karush-Kuhn-Tucker (KKT) conditions are given by,

- 1. Primal Feasibility: $Ax^* = b$
- 2. Dual Feasibility: $\lambda \geq 0$
- 3. Stationary: $\nabla_x \mathcal{L}(x^*, \lambda^*) = x^* A^T \lambda^* = 0$
- 4. Complementary Slackness: every element of $\lambda^T(Ax^* b) = 0$ (obvious from Primal Feasibility)

From Stationary condition and Primal feasibility condition we get,

$$x^* = A^T \lambda^*$$

$$Ax^* = b$$

Substitute value of x^* we get,

$$(AA^T)\lambda^* = b$$

SR No: 06-18-01-10-12-24-1-25223

Email ID: aneeshp@iisc.ac.in

November 19, 2024 Date:

Assignment No: Assignment 3

Course Code: E0230

Course Name: Computational Methods of Optimization

AUG 2024 Term:

$$\lambda^* = (AA^T)^{\dagger}b$$

where, $(AA^T)^{\dagger}$ is the pseudo-inverse of AA^T because AA^T is rank deficient matrix, hence we can't calculate its inverse directly. Substituting value of λ^* in stationary condition, we get,

$$x^* = A^T (AA^T)^{\dagger} b$$

Value of x^* obtained using python code is,

$$x^* = \begin{bmatrix} 0.59574468 & -1.19148936 & -0.36170213 & -0.34042553 \end{bmatrix}$$

Solution 4

Let projection of z on constraint set (Ax = b) be given by x. Therefore we have,

$$P_c(z) = \arg\min_{x} \frac{1}{2} ||x - z||_2^2$$
 s.t. $Ax = b$

Lagrangian of the problem is given by,

$$\mathcal{L}(x,\lambda) = \frac{1}{2}(x-z)^T(x-z) - \lambda^T(Ax-b)$$

Now, applying KKT conditions (stationary condition) we get,

$$\nabla_x \mathcal{L}(x^*, \lambda^*) = (x^* - z) - A^T \lambda^* = 0$$
$$x^* = z + A^T \lambda^*$$

Hence, now applying Primal Feasibility condition we get,

$$Ax^* = b$$

$$A(z + A^T \lambda^*) = b$$

$$\lambda^* = (AA^T)^{\dagger} (b - Az)$$

Hence, substituting value of λ^* in stationary condition. We finally get,

$$P_c(z) = x^* = (I - A^T (AA^T)^{\dagger} A)z + A^T (AA^T)^{\dagger} b$$

which is required projection.

Solution 5

Projected Gradient Descent is given by,

$$x^{(k+1)} = P_c(x^{(k)} - \alpha \nabla f(x^{(k)})) = P_c(x^{(k)} - \alpha x^{(k)})$$

Assumed Parameters are as follows,

- 1. $\alpha = [0.5, 0.25, 0.1, 0.075, 0.05, 0.025]$
- 2. $x^{(0)} = [1, 1, 1, 1]^T$
- 3. Thresold on $||.||_2 = 1e 10$
- 4. Max Iterations = 1000

Step Size	Final Solution	Final Error $ x_f - x^* _2$	Number of Iterations
0.5	[0.59574, -1.19149, -0.3617, -0.34043]	1.95834×10^{-10}	34
0.25	[0.59574, -1.19149, -0.3617, -0.34043]	1.27597×10^{-10}	82
0.1	[0.59574, -1.19149, -0.3617, -0.34043]	1.05186×10^{-10}	224
0.075	[0.59574, -1.19149, -0.3617, -0.34043]	1.00157×10^{-10}	303
0.05	[0.59574, -1.19149, -0.3617, -0.34043]	1.00234×10^{-10}	460
0.025	[0.59574, -1.19149, -0.3617, -0.34043]	1.00040×10^{-10}	931

SR No: 06-18-01-10-12-24-1-25223

Email ID: aneeshp@iisc.ac.in

Date: November 19, 2024

Assignment No: Assignment 3

Course Code: E0230

Course Name: Computational Methods of Optimization

Term: AUG 2024

Figure 1: Convergence of Projected Gradient Descent using $\|.\|_2$

Support Vector Machines

Solution 1

Primal Function is given by,

$$w^*, b^* = \arg\min \frac{1}{2} ||w||_2^2$$
 s.t. $y_i(w^T x_i + b) \ge 1 \quad \forall i = 1, 2, ..., N$

For "Data.csv" and "Labels.csv", using CVXPY library in python, the primal solution turns out to be,

$$w^* = [1.1547, -2.0000]$$
 $b^* = 1.0000$

And the primal objective function value is,

$$p^* = 2.666666052505867$$

Solution 2

Given primal problem is,

$$w^*, b^* = \arg\min \frac{1}{2} ||w||_2^2$$
 s.t. $y_i(w^T x_i + b) \ge 1 \quad \forall i = 1, 2, \dots, N$

Hence, the Lagrangian of the primal is given by,

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{N} \lambda_{i} \left(y_{i} \left(w^{T} x_{i} + b \right) - 1 \right)$$

Then the KKT conditions for the primal problem are,

1. Stationary:

$$\nabla_{w} \mathcal{L}(w, b, \lambda) = w - \sum_{i=1}^{N} \lambda_{i} y_{i} x_{i} = 0 \implies w = \sum_{i=1}^{N} \lambda_{i} y_{i} x_{i}$$
$$\nabla_{b} \mathcal{L}(w, b, \lambda) = \sum_{i=1}^{N} \lambda_{i} y_{i} = 0$$

Aneesh Panchal Name:

SR No: 06-18-01-10-12-24-1-25223

Course Code: E0230 **Email ID:** aneeshp@iisc.ac.in Course Name: Computational Methods of Optimization

Date: November 19, 2024 Term: **AUG 2024**

2. Complementary Slackness:

$$\lambda_i (y_i (w^T x_i + b) - 1) = 0 \quad \forall i = 1, 2, \dots, N$$

Assignment No:

Assignment 3

3. Primal Feasibility:

$$y_i\left(w^Tx_i+b\right) \ge 1 \quad \forall i=1,2,\ldots,N$$

4. Dual Feasibility:

$$\lambda_i \geq 0 \quad \forall i = 1, 2, \dots, N$$

Substituting values into Lagrangian of the primal problem we get,

$$\mathcal{L}(w,b,\lambda) = \frac{1}{2} \left(\sum_{i=1}^{N} \lambda_i y_i x_i \right)^T \left(\sum_{j=1}^{N} \lambda_j y_j x_j \right) - \sum_{i=1}^{N} \lambda_i y_i \left(\left(\sum_{j=1}^{N} \lambda_j y_j x_j \right)^T x_i + b \right) + \sum_{i=1}^{N} \lambda_i y_i \left(\left(\sum_{j=1}^{N} \lambda_j y_j x_j \right)^T x_i + b \right) \right)$$

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_i \left(x_i^T x_j \right) - \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_i \left(x_i^T x_j \right) - \sum_{i=1}^{N} \lambda_i y_i b + \sum_{i=1}^$$

$$\mathcal{L}(w, b, \lambda) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_i \left(x_i^T x_j \right) + \sum_{i=1}^{N} \lambda_i$$

Hence, Dual problem is defined as,

$$\max_{\Lambda \geq 0} \quad g(\Lambda) = \Lambda^T b + \frac{1}{2} \Lambda^T A \Lambda \qquad \text{s.t. } \Lambda^T Y = 0$$

where notations are as follows,

$$\Lambda = [\lambda_1, \lambda_2, \dots, \lambda_N]^T$$
 here, $k = N$
$$Y = [y_1, y_2, \dots, y_N]^T$$

$$A_{i,j} = -y_i y_j \left(x_i^T x_j\right)$$

$$b_i = 1$$

Hence, final required values are as follows,

- 1. $A_{i,j} = -y_i y_j (x_i^T x_j)$
- 2. $b_i = 1$
- 3. k = N

Solution 3

From Stationary condition we get,

$$\sum_{i=1}^{N} \lambda_i y_i = 0$$

As we are given y_i can be +1 or, -1. Hence, we get,

$$\sum_{i:y_i=+1} \lambda_i y_i + \sum_{i:y_i=-1} \lambda_i y_i = 0 \qquad \Longrightarrow \qquad \sum_{i:y_i=+1} \lambda_i - \sum_{i:y_i=-1} \lambda_i = 0$$

$$\sum_{i:y_i=+1} \lambda_i y_i + \sum_{i:y_i=-1} \lambda_i y_i = 0$$

$$\sum_{i:y_i=+1} \lambda_i = \sum_{i:y_i=-1} \lambda_i = \gamma \text{ (say)}$$

For the given problem we have,

$$\sum_{i:y_i=+1} \lambda_i = 2.64776300458798$$

$$\sum_{i: i: i=-1} \lambda_i = 2.64705986447346$$

Hence, approximately, $\gamma = 2.6474114345307243$

SR No: 06-18-01-10-12-24-1-25223

Email ID: aneeshp@iisc.ac.in Course Name: Computational Methods of Optimization

Assignment No:

Course Code:

Assignment 3

E0230

Date: November 19, 2024 **Term:** AUG 2024

Solution 4

Dual problem is defined as,

$$\min_{\Lambda>0} \quad g(\Lambda) = \Lambda^T b + \frac{1}{2} \Lambda^T A \Lambda \qquad \text{s.t. } \Lambda^T Y = 0$$

where notations are as follows,

$$egin{aligned} \Lambda &= \left[\lambda_1, \lambda_2, \dots, \lambda_N
ight]^T & ext{here, } k = N \ Y &= \left[y_1, y_2, \dots, y_N
ight]^T \ A_{i,j} &= y_i y_j \left(x_i^T x_j
ight) \ b_i &= -1 \end{aligned}$$

Solving the problem using Projected Gradient Descent we get, Assumptions,

- 1. Tolerance, $\|\lambda^{(t+1)} \lambda^{(t)}\|_2 = 1e 16$
- 2. Max Iterations = 100000
- 3. $\alpha = 1e 4$
- 4. $\lambda_0 = [1, 1, \dots, 1]^T$

Dual Objective Function Value at optimal point is,

$$d^* = 2.6672119866655404$$

which is equal to Primal objective function value (value may vary a little due to choice of α in Projected Gradient Descent method). This is due to the reason that Primal objective function and constraints are convex in nature and hence, **Strong Duality holds TRUE** here due to which $p^* = d^*$.

Optimal values of Dual variables are,

$$\Lambda = [\lambda_1, \lambda_2, \dots, \lambda_{10}]^T = [1.80590286, 0.84186015, 0, 0, 0, 0, 2.43665503, 0, 0, 0.21040484]^T$$

And using these values of Λ we get, $w^* = [1.14988582, -1.98317533]^T$ and $b^* = 1$

Solution 5

It is clear from Solution 4 that, $\lambda_1, \lambda_2, \lambda_7$ and λ_{10} are not 0 and their values are,

$$\lambda_1 = 1.80590286 \neq 0$$

$$\lambda_2 = 0.84186015 \neq 0$$

$$\lambda_7 = 2.43665503 \neq 0$$

$$\lambda_{10} = 0.21040484 \neq 0$$

Hence, from Complementary Slackness of primal problem we get to know that for i = 1, 2, 7 and 10, we have,

$$y_i \left(w^T x_i + b \right) - 1 = 0$$

Therefore, Primal Constraints 1, 2, 7 and 10 are Active and rest are Inactive, i.e. simply we can say that,

$$y_1 (w^T x_1 + b) = 1$$

$$y_2\left(w^Tx_2+b\right)=1$$

$$y_7 \left(w^T x_7 + b \right) = 1$$

$$y_{10} \left(w^T x_{10} + b \right) = 1$$

SR No: 06-18-01-10-12-24-1-25223

Email ID: aneeshp@iisc.ac.in
Date: November 19, 2024

Assignment No: Assignment 3 **Course Code:** E0230

Course Name: Computational Methods of Optimization

Term: AUG 2024

Solution 6

Figure 2: SVM for classification of data "Data.csv" and "Labels.csv"

Figure 3: Explained SVM representation with separating hyperplane and decision space