(20242Q) 72.27 - Sistemas de Inteligencia Artificial -Comisión: S

Grupo 9

Gazzaneo Lautaro Nicolas Pellegrini Jorge Orlando Sinopluoglu Mustafa(no se pudo contactar)

Encargado de almacén

Designed by Khaled Bentebal Programmed by Farah Soebrata Graphics by Jody Sather

© Copyright 1984 ASC;; Corp.

Representación del estado

Mapa Original

Mapa Símbolo

Representación gráfica del estado

Acciones: siempre puede ejecutarse los 4 input

Simulated annealing

Fuente:Ledesma, S., Ruiz, J., & Garcia, G. (2012). Simulated annealing evolution. Simulated Annealing-Advances, Applications and Hybridizations, 210-218.

Original:
$$P = p_0 e^{\frac{\Delta E}{T}}$$

 ΔE : Variación de la función objetivo

T : *f*(iteraciones)

Se toma un movimiento al azar, se acepta si $\Delta E < 0$ o con una probabilidad P

$$P = p_0 e^{\frac{i}{tau}}$$

Se toma acepta siempre el movimiento que tiene el menor valor de la función objetivo. Con una probabilidad P se acepta el movimiento mas adverso (que mas aumenta la función objetivo o el que menos la disminuye).

Simulated Annealing - Función Objetivo

- -Su minimización o maximización debe cumplir la condición ganadora
- -Es preferible que el sistema refleje el grado de avance en la resolución del problema para que el agente disponga de la información necesaria encontrar la solución.

Función Objetivo

- Distancia manhattan
 Personaje-Caja
- Distancia manhattan Caja-Marca

$$r_i = |x - x_i| + |y - y_i|$$

Si solo se minimiza la función objetivo:

Implementación del método 0.5384 segundos

Intento fallido 0.9474 segundos

Nuevo criterio: diagonal cero

Implementación de diagonal cero

Nuevo mapa

Proceso iterativo

Comparación de diferentes parámetros

	ро	tau	intentos	éxitos	Tasa de éxito	tiempo
Caso 1	0.3	30	5000	353	7%	3m3s
Caso 2	0.3	30	50	4	8%	25
Caso 3	0.1	30	5000	74	1,5%	3m3os

Histograma de éxitos. Caso 1 con diagonal cero

Comparación de diferentes parámetros

	ро	tau	intentos	éxitos	Tasa de éxito	tiempo
Caso 1 con do	0.3	30	5000	353	7%	3m aprox.
Caso 1 sin do	0.3	30	5000	66	1,3%	3m aprox.

Histograma de éxitos. Caso 1 con diagonal cero

Histograma de éxitos. Caso 1 sin diagonal cero

Propuesta. No se implementó

Solución, si se acepta un movimiento incorrecto, que corresponda a mas de un movimiento(se aumenta la energía de la

partícula)

Comparación de diferentes parámetros

	ро	tau	intentos	éxitos	Tasa de éxito	tiempo
Caso 1 con do	0.3	30	5000	353	7%	3m aprox.
Caso 1 con do	0.6	30	5000	135	2,7%	3m aprox.

Histograma de éxitos. Caso 1 con do y po=0.3

Histograma de éxitos. Caso 1 con do y po=0.6

BFS

64 celdas=> 64x63=4032 posibilidades

```
set: visited

(4032 items) {(('/', '/', '/', '/', ...), ('/', 'P', ' ', '
```

Condición ganadora Índices cajas = índices marcas

Estado:

"Matriz símbolo"

No se duplica los estados.

(First In, First Out)

implica que el estado alcanzado primero es el menos costoso

Tiempo: 3 segundos 23 movimientos

Completitud: encuentra solución si existe y el factor de ramificación es finito

Frecuencia de estados visitados en función del costo

Estados expandidos=5395

Estados totales=6760

Estados frontera=1365

DFS

Estructura tipo pila

No garantiza el óptimo

Tiempo: 27 segundos

Movimientos: 1873

Frecuencia de estados visitados en función del costo

Estados expandidos=33.371

Estados totales=34.874

Estados frontera=1503

(DM-PX) Distancia manhattan entre el personaje y la celda adyacente a la caja

$$h_i = |x_{cajai} - x_{personaje}| + |y_{cajai} - y_{personaje}| - 1$$

$$h = 3$$

Costo para acercarse a la caja=3

$$h = 3$$

Costo para acercarse a la caja=5

Costo: cantidad de movimientos tomados

(DM-PM) Distancia manhattan entre la caja y la marca

$$h_i = |x_{caja\,i} - x_{marca\,i}| + |y_{caja\,i} - y_{marca\,i}|$$

$$h_1 = 0$$

$$h_2 = 3$$
Costo = 3

$$h_1 = 0$$

$$h_2 = 3$$

Costo =13

Costo: cantidad de movimientos tomados

(DM-PX-do) Distancia manhattan entre el personaje y la celda circundante a la caja.

$$h = \begin{cases} 0 \\ |x_{caja\ i} - x_{personaje}| + |y_{caja\ i} - y_{personaje}| - 1 \end{cases}$$

$$si |x_{caja\ i} - x_{personaje}| = |y_{caja\ i} - y_{personaje}| = 1$$

en cualquier otro caso

(conteoXM) Cantidad de cajas en la posición incorrecta

h = cantidad de cajas - cantidad de cajas activadas

Costo: cantidad de movimientos tomados

El tiempo de ejecución no es estable

Desvío del tiempo de ejecución de dos algoritmos

							Desvío [s]
Tiempo1 [s]	1.81	0.86	0.75	0.62	0.87	0.60	0.45
Tiempo 2 [s]	2.61	1.57	1.49	2	1.57	1.58	0.43

Código realizado en:

Heurística manhattan CM

Comparación de los modelos

	Costo	Costo Nodos expandidos		tiempo
BFS	17	1642	242	1.245
DFS	131	2508	122	4.58 s
Greedy	19	1009	54	1.34 S
Greedy con duplicado		Se usa toda la RAM d	lisponible	
A*	17	679	209	o.58 s
SA con do	6o 5o intentos		os	o.8 s
	Media 42, min 31	5000 intentos(0.5%	efectividad)	3 min

Frecuencia de estados visitados en función del costo

	Costo	Nodos expandidos	Nodos frontera	tiempo
A* DM-CM	17	679	209	o.58 s
A* DM-PC	17	963	329	1.04 S
Nodos expandido	os en común		589	

		Costo	Nodos expandidos	Nodos frontera	Tiempo
Caso 1	A* DM-CM	17	679	209	o.58 s
Caso 2	A* DM-PC	17	963	329	1.04 S
Caso 3	A* DM-CM+PC	17	406	237	1.2

Nodos expandidos en común h1-h3: 406 -> h3 domina a h1 Nodos expandidos en común h2-h3: 406 -> h3 domina a h2

		Costo	Nodos expandidos	Nodos frontera	Tiempo
Caso 3	A* DM- CM+PC	17	406	240	1.2 \$
Caso 4	Caso 3 con diagonal cero	17	406	240	0.39 s

Nodos expandidos en común h4-h3: 406

		Costo	Nodos expandidos	Nodos frontera	Nodos totales	tiempo
Caso 3	A* DM-CM+PC	25	741	287	1028	1.2 \$
Caso 4	Caso 3 con diagonal cero	25	740	288	1028	2 S

resultado = [a - b for a, b in zip(frecuencias_values_A4, frecuencias_values_A3)]
print(resultado)

[0, 0, 0, -1, -1, 0, 0, 0, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Nodos en común h3 y h4: 740 h4 domina a h3

Greedy

Problemas de memoria si se cuenta los duplicados

Comparación de heurísticas

	Modelo	Costo	Nodos expandidos	Nodos frontera	tiempo
Heurística 1 Caja-Marca	A*	17	679	209	o.58 s
Heurística 2 Caja-Personaje	A*	17	963	329	1.045
Heurística 3 : Heurística 1+2	A*	17	406	237	1.2

Comparación de heurísticas

	Modelo	Costo	Nodos expandidos	Nodos frontera	tiempo
Heurística 1 Caja-Marca	Greedy	19	1009	54	o.6 s
Heurística 2 Caja-Personaje	Greedy	19	393	319	0.33 s
Heurística 3 : Heurística 1+2	Greedy	19	291	193	0.4

Problemas de memoria

Problemas de +1 caja

Comparación de los modelos

	Costo	Nodos expandidos	Nodos frontera	tiempo
BFS	31	54914	6618	41 S
A* conteo cajas incorrectas	31	48510	6487	39 s

Propuesta para Simulated Annealing multicaja

FO: L1.L2 + M1.M2

Cuando una caja se activa su termino vale cero. Se puede Priorizar una caja añadiendo un factor

FO: k(L1.L2) + M1.M2

Heurísticas no admisibles

Planteo, no se implementaron.

Penalizar si el personaje se mueve para una dirección, no se mueve una caja y su siguiente movimiento es la dirección contraria.

Puede solucionar el problema del Greedy

Heurísticas no admisibles

Planteo, no se implementaron.

Penalizar si la caja está rodeada por n paredes.

Problema: ¿el agente es mas inteligente?

Pero si:

Ejercicio 1

tablero inicial:

5	7	3
8	2	
1	6	4

tablero solución:

1	2	3
8		4
7	6	5

Estructura de datos:

-Matriz, el espacio vacío se le asigna un valor

-Adyacencia:

$$Ad_1 = [5,7]$$
 $Ad_5 = [7,8]$

$$Ad_2 = [6,7,8,10]$$
 $Ad_6 = [1,2,4]$

$$Ad_3 = [7,10]$$
 $Ad_7 = [2,3,5]$

$$Ad_4 = [6,10]$$
 $Ad_8 = [1,2,5]$

Ejercicio 1

tablero inicial:

5	7	3
8	2	
1	6	4

tablero solución:

1	2	3
8		4
7	6	5

Heurísticas:

-Distancia manhattan numero tablero actual(ta) y solución(ts)

$$h_i = |x_{ita} - x_{its}| + |y_{ita} - y_{its}|$$

 $con i \in \{1,2,3,4,5,6,7,8\}$

-Contar las fichas en las posiciones incorrectas.

-Distancia Euclidiana

$$h_i = \sqrt{(x_{ita} - x_{its})^2 + (y_{ita} - y_{its})^2}$$
$$con i \in \{1, 2, 3, 4, 5, 6, 7, 8\}$$

Ejercicio 1

Métodos de búsqueda

¿Es simple?

Gracias por su atención