MA2101S Homework 2

Qi Ji A0167793L

5th February 2018

Problem 1. Let K be any field, let V be a K-vector space, and let $T:V\to V$ be a K-linear endomorphism. Suppose $v\in V$ and $n\in\mathbb{N}_{>0}$ such that

$$T^n v = 0$$
 but $T^{n-1} V \neq 0$ in V .

Show that the *n* vectors $v, Tv, \ldots, T^{n-1}v$ in *V* are linearly independent over *K*.

Proof. Consider the equation

$$c_1 v + c_2 T v + \dots + c_{n-1} T^{n-1} v = 0$$
(1.1)

where $c_1, c_2, \dots, c_{n-1} \in K$.

Then applying T^{n-1} to both sides, we get, by linearity of T,

$$T^{n-1} \left(c_1 v + c_2 T v + \dots + c_{n-1} T^{n-1} v \right) = T^{n-1} 0$$

$$T^{n-1} (c_1 v) + T^{n-1} (c_2 T v) + \dots + T^{n-1} (c_{n-1} T^{n-1} v) = 0$$

$$c_1 T^{n-1} v + \underbrace{c_2 T^n v + \dots + c_{n-1} T^{2n-2} v}_{0} = 0$$

$$c_1 T^{n-1} v = 0$$

and because $T^{n-1}v \neq 0$, we have $c_1 = 0$. Now rewrite (1.1) and apply T^{n-2} to both sides, again by linearity of T,

$$T^{n-2} (c_2 T v + \dots + c_{n-1} T^{n-1} v) = T^{n-2} 0$$

$$T^{n-2} (c_2 T v) + \dots + T^{n-2} (c_{n-1} T^{n-1} v) = 0$$

$$c_2 T^{n-1} v + \underbrace{c_3 T^n v + \dots + c_{n-1} T^{2n-3} v}_{0} = 0$$

$$c_2 T^{n-1} v = 0$$

we have $c_1 = c_2 = 0$.

The other n-3 cases are analogous. So $c_1=c_2=\cdots=c_{n-1}=0$, linear independence shown.

Problem 2. Let $V := \operatorname{Maps}(\mathbb{R}, \mathbb{R})$ denote the \mathbb{R} -vector space of \mathbb{R} -valued functions on \mathbb{R} . Show that for any $n \in \mathbb{N}$ and for any pairwise distinct real numbers $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the n exponential functions in the variable $t \in \mathbb{R}$ given by

$$e^{\alpha_1 t}, \dots, e^{\alpha_n t} \in V$$

are linearly independent over \mathbb{R} .

Proof. Consider the equation

$$f: t \mapsto c_1 e^{\alpha_1 t} + c_2 e^{\alpha_2 t} + \dots + c_n e^{\alpha_n t} = 0_V$$
 (2.1)

where $c_1, c_2, \ldots, c_n \in \mathbb{R}$. $\alpha_1, \ldots, \alpha_n$ are pairwise distinct. By reordering terms, we can assume $\alpha_1 < \alpha_2 < \cdots < \alpha_n$. Then rewrite as follows

$$\alpha_2 = \alpha_1 + d_2$$

$$\dots$$

$$\alpha_n = \alpha_1 + d_n$$

and because $\alpha_1 < \cdots < \alpha_n$ by assumption, $d_2 < \cdots < d_n$ and they are all strictly positive in \mathbb{R} . Then for any $t \in \mathbb{R}$, from (2.1)

$$c_1 e^{\alpha_1 t} + c_2 e^{\alpha_2 t} + \dots + c_n e^{\alpha_n t} = 0$$

$$c_1 e^{\alpha_1 t} + c_2 e^{(\alpha_1 + d_2)t} + \dots + c_n e^{(\alpha_1 + d_n)t} = 0$$

$$c_1 e^{\alpha_1 t} + c_2 e^{\alpha_1 t} e^{d_2 t} + \dots + c_n e^{\alpha_1 t} e^{d_n t} = 0$$

$$e^{\alpha_1 t} \left(c_1 + c_2 e^{d_2 t} + \dots + c_n e^{d_n t} \right) = 0$$

because $e^t \neq 0$ for all $t \in \mathbb{R}$,

$$c_1 + c_2 e^{d_2 t} + \dots + c_n e^{d_n t} = 0 (2.2)$$

Now take limit as $t \to -\infty$, it is known that $\lim_{t \to -\infty} e^t = 0$,

$$\lim_{t \to -\infty} \left(c_1 + c_2 e^{d_2 t} + \dots + c_n e^{d_n t} \right) = 0$$

$$\lim_{t \to -\infty} c_1 + \lim_{t \to -\infty} \left(c_2 e^{d_2 t} + \dots + c_n e^{d_n t} \right) = 0$$

$$c_1 + 0 = 0$$

so $c_1 = 0$.

As $d_2 < \cdots < d_n$, from (2.2) we can repeat the same process and factor out e^{d_2t} , then take the limit as $t \to -\infty$ again to get $c_2 = 0$.

The other n-2 cases are analogous. So $c_1=c_2=\cdots=c_n=0$, linear independence shown.

Problem 3. Let K be a field, and let V and W be K-vector spaces. Let $T, U \in \operatorname{Hom}_K(V, W)$ be K-linear maps $V \to W$. Suppose $\operatorname{Im}(T) \cap \operatorname{Im}(U) = \{0_W\}$ and T, U are non-zero. Show that T and U are linearly independent in $\operatorname{Hom}_K(V, W)$.

Proof. Consider the equation

$$cT + dU = 0_{\text{Hom}_K(V,W)} \tag{3.1}$$

where $c, d \in K$. Suppose for a contradiction T, U are linearly dependent, so c, d nonzero, then take any $v \in V$ where $U(v) \neq 0$,

$$(cT + dU)(v) = 0_{\text{Hom}_K(V,W)}(v)$$

$$cT(v) + dU(v) = 0_W$$

$$T(v) = -c^{-1}dU(v)$$

So we have $-c^{-1}dU(v) \in \text{Im}(T)$, by subspace property of the image of a linear map,

$$(-d^{-1}c)(-c^{-1}dU(v)) \in \operatorname{Im}(T) \implies U(v) \in \operatorname{Im}(T).$$

Clearly $U(v) \in \text{Im}(U)$, this means $U(v) \in \text{Im}(T) \cap \text{Im}(U) \implies U(v) = 0_W$, which is a contradiction.

Problem 4. Let K be a field, and let X be a K-vector space.

(a) Let V and W be finite dimensional K-subspaces of X. Show that

$$\dim_K(V) + \dim_K(W) = \dim_K(V + W) + \dim_K(V \cap W)$$

Proof. Let $\alpha = \{u_1, \dots, u_r\}$ be a basis for $V \cap W$. First expand α to be a basis for V, similar to the proof of existence of basis (for finite-dimensional vector spaces).

Set $\beta := \emptyset$, while span $(\alpha \cup \beta) \neq V$, choose vector $v \in V, v \notin \text{span}(\alpha \cup \beta)$, and set $\beta := \beta \cup \{v\}$. $\alpha \cup \beta$ is now a basis for V.

Set $\gamma := \emptyset$, while span $(\alpha \cup \gamma) \neq W$, choose vector $v \in W, v \notin \text{span}(\alpha \cup \gamma)$, and set $\gamma := \gamma \cup \{v\}$. $\alpha \cup \gamma$ is now a basis for W. The algorithms halt due as V, W are finite-dimensional.

Claim. $\alpha \cup \beta \cup \gamma = \{u_1, \dots, u_r, v_1, \dots, v_m, w_1, \dots, w_n\}$ is a basis for V + W. Take any arbitary vector in $x \in V + W$, by definition, $\exists v \in V, w \in W$. x = v + w. $\alpha \cup \beta$ is a basis for V so $\exists c_1, \dots, c_{r+m} \in K$,

$$v = \sum_{i=1}^{r} c_i u_i + \sum_{i=1}^{m} c_{r+i} v_i.$$

Also, $\alpha \cup \gamma$ is a basis for W so $\exists d_1, \dots, d_{r+n} \in K$,

$$v = \sum_{i=1}^{r} d_i u_i + \sum_{i=1}^{n} d_{r+i} w_i.$$

Then because x = u + w,

$$x = \sum_{i=1}^{r} c_i u_i + \sum_{i=1}^{m} c_{r+i} v_i + \sum_{i=1}^{r} d_i u_i + \sum_{i=1}^{n} d_{r+i} w_i$$
$$= \sum_{i=1}^{r} (c_i + d_i) u_i + \sum_{i=1}^{m} c_{r+i} v_i + \sum_{i=1}^{n} d_{r+i} w_i$$

Therefore $\alpha \cup \beta \cup \gamma$ generates V + W.

To show linear independence, consider the equation

$$\sum_{i=1}^{r} c_i u_i + \sum_{i=1}^{m} d_i v_i + \sum_{i=1}^{n} e_i w_i = 0$$
(4.1)

where $c_1, \ldots, c_r, d_1, \ldots, d_m, e_1, \ldots, e_n \in K$. Then

$$\sum_{i=1}^{r} c_i u_i + \sum_{i=1}^{m} d_i v_i = -\sum_{i=1}^{n} e_i w_i$$

$$\underbrace{\sum_{i=1}^{r} c_i u_i + \sum_{i=1}^{m} d_i v_i}_{\text{in } W}$$

$$(4.2)$$

so $-\sum_{i=1}^n e_i w_i \in V \cap W$, since $V \cap W$ has basis α , exist scalars b_1, \ldots, b_r such that

$$-\sum_{i=1}^{n} e_i w_i = \sum_{i=1}^{r} b_i u_i$$
$$0 = \sum_{i=1}^{r} b_i u_i + \sum_{i=1}^{n} e_i w_i$$

from linear independence of $\alpha \cup \gamma$, $b_1 = \cdots = b_r = e_1 = \cdots = e_n = 0$. Then RHS of (4.2) is zero, and by linear independence of $\alpha \cup \beta$, we have $c_1 = \cdots = c_r = d_1 = \cdots = d_m = 0$. This completes the proof of the claim.

Then by counting the sizes of α, β, γ , we get

$$\begin{aligned} \dim_K(V) + \dim_K(W) &= |\alpha \cup \beta| + |\alpha \cup \gamma| \\ &= r + m + r + n = r + m + n + r \\ &= |\alpha \cup \beta \cup \gamma| + |\alpha| \\ &= \dim_K(V + W) + \dim_K(V \cap W) \end{aligned}$$

which completes the proof.

(b) Let U, V and W be finite dimensional K-subspaces of X. Show that

$$\dim_K(U) + \dim_K(V) + \dim_K(W) - \dim_K(U + V + W)$$

$$\geqslant \max(\dim_K(U \cap V), \dim_K(V \cap W), \dim_K(W \cap U))$$

Proof. Firstly, subspace addition is commutative and associative, a property inherited from vector addition. Then by applying result of part (a), compute $\dim_K(U+V+W)$ in 3 different ways. Firstly,

$$\begin{aligned} &\dim_K(U+V+W)\\ &=\dim_K((U+V)+W)\\ &=\dim_K(U+V)+\dim_K(W)-\dim_K((U+V)\cap W)\\ &=\dim_K(U)+\dim_K(V)-\dim_K(U\cap V)+\dim_K(W)-\dim_K((U+V)\cap W) \end{aligned}$$

Rearranging terms,

$$\dim_K(U) + \dim_K(V) + \dim_K(W) - \dim_K(U + V + W)$$

=
$$\dim_K(U \cap V) + \dim_K((U + V) \cap W).$$

In particular, $\dim_K((U+V)\cap W)\geqslant 0$, so

$$\dim_K(U) + \dim_K(V) + \dim_K(W) - \dim_K(U + V + W) \geqslant \dim_K(U \cap V). \tag{4.3}$$

Similarly,

$$\dim_{K}(U+V+W) = \dim_{K}(U+(V+W))$$

$$= \dim_{K}(U) + \dim_{K}(V+W) - \dim_{K}(U\cap(V+W))$$

$$\dim_{K}(U+V+W) \leqslant \dim_{K}(U) + \dim_{K}(V+W)$$

$$\dim_{K}(U+V+W) \leqslant \dim_{K}(U) + \dim_{K}(V) + \dim_{K}(W) - \dim_{K}(V\cap W)$$

$$\dim_{K}(V\cap W) \leqslant \dim_{K}(U) + \dim_{K}(V) + \dim_{K}(W) - \dim_{K}(U+V+W) \quad (4.4)$$

Finally,

$$\dim_{K}(U+V+W) = \dim_{K}(V+(U+W))$$

$$= \dim_{K}(V) + \dim_{K}(U+W) - \dim_{K}(V\cap(U+W))$$

$$\dim_{K}(U+V+W) \leqslant \dim_{K}(V) + \dim_{K}(U+W)$$

$$\dim_{K}(U+V+W) \leqslant \dim_{K}(U) + \dim_{K}(V) + \dim_{K}(W) - \dim_{K}(U\cap W)$$

$$\dim_{K}(U\cap W) \leqslant \dim_{K}(U) + \dim_{K}(V) + \dim_{K}(W) - \dim_{K}(U+V+W)$$

$$(4.5)$$

(4.3), (4.4) and (4.5) all hold true, therefore combining inequalities,

$$\dim_K(U) + \dim_K(V) + \dim_K(W) - \dim_K(U + V + W)$$

$$\geqslant \max(\dim_K(U \cap V), \dim_K(V \cap W), \dim_K(W \cap U))$$

Problem 5. Let $V := \operatorname{Maps}(\mathbb{N}, \mathbb{R})$ denote the \mathbb{R} -vector space of all sequences in \mathbb{R} indexed by \mathbb{N} , and let $W \subseteq V$ denote the subset of sequences $(x_0, x_1, \dots, x_n, \dots) \in V$ satisfying

$$x_n = x_{n-1} + x_{n-2}$$
 for all $n \in \mathbb{N}_{\geqslant 2}$.

Notation. Let $K_0 : \mathbb{N} \to \mathbb{R}$ denote the zero sequence, where $\forall n \in \mathbb{N}$. $K_0(n) = 0_{\mathbb{R}}$. Also throughout Questions 5 and 6, functional notation instead of subscripts will be used to access members of a sequence.

(a) Show that W is an \mathbb{R} -subspace of V.

Proof. $0_V \in V$ is the zero sequence, K_0 . For any $n \in \mathbb{N}_{\geq 2}$, $K_0(n) = 0$ and $K_0(n-1) + K_0(n-2) = 0 + 0 = 0$. Therefore $0_V \in W$.

To show closure under vector addition, take any $f, g \in W$, then for any $n \in \mathbb{N}_{\geq 2}$,

$$(f+g)(n) = f(n) + g(n)$$

$$= f(n-1) + f(n-2) + g(n-1) + g(n-2)$$

$$= f(n-1) + g(n-1) + f(n-2) + g(n-2)$$

$$= (f+g)(n-1) + (f+g)(n-2)$$

so $f + g \in W$. To show closure under scalar multiplication, take any $f \in W, x \in \mathbb{R}$, and for any $n \in \mathbb{N}_{\geq 2}$,

$$(xf)(n) = x \cdot f(n) = x \cdot (f(n-1) + f(n-2)) = x \cdot f(n-1) + x \cdot f(n-2) = (xf)(n-1) + (xf)(n-2)$$

so $xf \in W$. Therefore W is a subspace of V.

(b) Show that an \mathbb{R} -basis of W is given by the two sequences

$$(a_0, a_1, \dots)$$
 and (a_1, a_2, \dots)

where a_0, a_1, a_2, \ldots are the *Fibonacci numbers* defined inductively by:

$$a_0 := 0$$
, $a_1 := 1$, $a_n := a_{n-1} + a_{n-2}$ for all $n \in \mathbb{N}_{\geq 2}$.

Exercise 5.1. The map $T:W\to\mathbb{R}^2$ as defined by $f\mapsto (f(0),f(1))$ is a \mathbb{R} -linear isomorphism.

Proof. To show linearity, for any $f, g \in W$, $a, b \in \mathbb{R}$. Consider T(af + bg),

$$T(af + bg) = ((af + bg)(0), (af + bg)(1))$$

$$= (af(0) + bg(0), af(1) + bg(1))$$

$$= (af(0), af(1)) + (bg(0), bg(1))$$

$$= a(f(0), f(1)) + b(g(0), g(1))$$

$$= aT(f) + bT(g)$$

Next, consider the kernel of T, so suppose $f \in W$, $T(f) = (0,0) \in \mathbb{R}^2$, then from definition of T, f(0) = 0 and f(1) = 0, using characterising property of W, it means f has to be the zero sequence K_0 , therefore T has a trivial kernel (T injects). Now consider the range of T, for any $(x_0, x_1) \in \mathbb{R}^2$, define a sequence $f : \mathbb{N} \to \mathbb{R}$ inductively as follows,

$$f(0) := x_0, \quad f(1) := x_1, \quad f(n) = f(n-1) + f(n-2) \quad \text{for all } n \in \mathbb{N}_{\geq 2}.$$

By construction, $f \in W$, and it is clear that $T(f) = (x_0, x_1)$, therefore T maps onto \mathbb{R}^2 . Hence T is an \mathbb{R} -linear isomorphism.

Proposition. An \mathbb{R} -basis of W is given by the two sequences

$$f := (a_0, a_1, \dots)$$
 and $g := (a_1, a_2, \dots)$

where a_i denotes the *i*-th Fibonacci number.

Proof. T(f) = (0,1) and T(g) = (1,1). From MA1101R, an easy computation gives us that $\{(0,1),(1,1)\}$ is a basis for \mathbb{R}^2 . Therefore as isomorphisms preserve structure, $\{T^{-1}(0,1),T^{-1}(1,1)\}=\{f,g\}$ is a basis for W.

Problem 6. Preserving the notation as in the previous question.

(a) Determine (distinct) real numbers $\alpha, \beta \in \mathbb{R}$ such that the two sequences

$$(\alpha^0, \alpha^1, \alpha^2, \dots)$$
 and $(\beta^0, \beta^1, \beta^2, \dots)$

also form an \mathbb{R} -basis of W.

Solution. Firstly, the two sequences must be in W. So we have to solve for a geometric sequence $f = (x^0, x^1, x^2, \dots)$ satisfying the property that for all $n \in \mathbb{N}_{\geq 2}$,

$$x^n = x^{n-1} + x^{n-2}. (6.1)$$

Since we want f to be part of an \mathbb{R} -basis of W, f should not be the zero sequence, so take $x \neq 0$. Then (6.1) reduces to the following

$$x^{2} = x^{0} + x^{1}$$

$$x^{2} - x - 1 = 0$$
(6.2)

Solving for roots in (6.2), we can see that setting

$$\alpha = \frac{1+\sqrt{5}}{2}, \quad \beta = \frac{1-\sqrt{5}}{2}$$

we obtain the only two nonzero values for $\alpha, \beta \in \mathbb{R}$ such that the sequences $(\alpha^0, \alpha^1, \alpha^2, \dots)$ and $(\beta^0, \beta^1, \beta^2, \dots)$ lie in W.

Claim. The sequences form a \mathbb{R} -basis for W.

Proof. By Exercise 5.1, it suffices to check if $\{(\alpha^0, \alpha^1), (\beta^0, \beta^1)\}$ form a basis for \mathbb{R}^2 ,

$$\begin{bmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{bmatrix} \xrightarrow{\text{Gaussian}} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

and we're done. \Box

(b) Show that the Fibonacci numbers are given by the closed formula

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Proof. Define $a, f, g \in W$ as

$$a = (a_0, a_1, \dots)$$

$$f = (\alpha^0, \alpha^1, \alpha^2, \dots)$$

$$g = (\beta^0, \beta^1, \beta^2, \dots)$$

where again a_i denotes the *i*-th Fibonacci number, keeping α, β from part (a). Let T be the isomorphism $W \to \mathbb{R}^2$ defined in 5.1.

Since $a \in W$ and $\{f, g\}$ is a basis for W (part (a)), then there exists unique $c, d \in \mathbb{R}$ where a = cf + dg, so solving for c, d.

$$a = cf + dg$$

$$T(a) = T(cf + dg)$$

$$T(a) = cT(f) + dT(g)$$

$$(0,1) = c(1,\alpha) + d(1,\beta)$$

$$\begin{bmatrix} 1 & 1 & 0 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} & 1 \end{bmatrix} \xrightarrow{\text{Gauss-Jordan} \\ \text{Elimination}} \begin{bmatrix} 1 & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

$$c = \frac{1}{\sqrt{5}}, \quad d = -\frac{1}{\sqrt{5}}.$$

Since a = cf + dg, applying this equation pointwise, for any $n \in \mathbb{N}$,

$$a(n) = cf(n) + dg(n)$$

$$a_n = \frac{1}{\sqrt{5}}\alpha^n - \frac{1}{\sqrt{5}}\beta^n$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

obtaining the closed formula for the Fibonacci numbers.