Grundbegriffe der Informatik Aufgabenblatt 9

Nachname: Vorname:	
TT () NT 1 TT (
Tutorium: Nr. Name des Tutors:	
Ausgabe: 17. Dezember 2008	
Abgabe: 9. Januar 2009, 13:00 Uhr	
im Briefkasten im Untergeschoss	
von Gebäude 50.34	
Lösungen werden nur korrigiert, wenn sie	
• rechtzeitig,	
• in Ihrer eigenen Handschrift,	
mit dieser Seite als Deckblatt und	
• in der oberen linken Ecke zusammengeheftet	
abgegeben werden.	
Vom Tutor auszufüllen:	
erreichte Punkte	
Blatt 9: / 17	
,	

Aufgabe 9.1 (2+1 Punkte)

Gegeben sei das folgende Programm:

$$\begin{aligned} p &\leftarrow 0 \\ \mathbf{for} \ i &\leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{for} \ j &\leftarrow 1 \ \mathbf{to} \ i^2 \ \mathbf{do} \\ p &\leftarrow p + 2j - 1 \\ p &\leftarrow p \ \mathbf{div} \ i^3 \end{aligned}$$

- a) Geben Sie eine möglichst einfache Funktion f(n) (ohne Summenzeichen) an, für die die Anzahl der Ausführungen des innersten Schleifenrumpfes $p \leftarrow p + 2j 1$ in $\Theta(f)$ liegt.
- b) Geben Sie eine möglichst einfache Funktion g(n) (Ohne Summenzeichen) an, für die der Wert von p nach Ablauf des Programms in $\Theta(g)$ liegt.

Aufgabe 9.2 (2+2 Punkte)

- a) Gegeben sei eine Funktion $f \in O(n)$. Zeigen Sie: $(\sum_{k=0}^n f(k)) \in O(n^2)$.
- b) Die Funktion $g:\mathbb{N}_0 \to \mathbb{R}_0^+$ sei gegeben durch

$$g(n) = \begin{cases} 1 & \text{falls } n = 1\\ \frac{3}{4}n^2 & \text{falls } \exists k \in \mathbb{N}^+ : n = 2^k\\ 0 & \text{sonst.} \end{cases}$$

Zeigen Sie, dass $\sum_{k=0}^{n} g(k)$ in $O(n^2)$ liegt, aber g(n) nicht in O(n).

Aufgabe 9.3 (2+2 Punkte)

- a) Finden Sie zwei monoton steigende Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ und $g: \mathbb{N}_0 \to \mathbb{R}_0^+$, für die weder $f \in O(g)$ noch $g \in O(f)$ gilt. (Hinweis: Überlegen Sie sich Funktionen f und g, so dass für gerade $n \in \mathbb{N}_0$ $f(n) \geq ng(n)$ und für ungerade $n \in \mathbb{N}_0$ gilt $g(n) \geq nf(n)$ gilt.)
- b) Beweisen Sie, dass für Ihre Funktionen aus Teilaufgabe a) sowohl $f \notin O(g)$ als auch $g \notin O(f)$ gilt.

Aufgabe 9.4 (1+2+2+1 Punkte)

Gegeben Sei die Funktion $T:\{2^k\mid k\in\mathbb{N}_0\}\to\mathbb{R}_0^+$ durch

- T(1)=0 und $\forall n\in\{2^k\mid k\in\mathbb{N}^+\}: T(n)=T(\frac{n}{2})+n$
- a) Berechnen Sie T(2), T(4), T(8), T(16).
- b) Stellen Sie eine geschlossene Formel für $T(2^k)$ auf.
- c) Beweisen Sie durch vollständige Induktion, dass Ihre Formel aus Teilaufgabe b) korrekt ist.
- d) Stellen Sie eine Formel für T(n) in Abhängigkeit von n auf.