Math 214 Homework 7

Keshav Balwant Deoskar

March 21, 2024

Q7-2. Let G be a Lie Group.

(a) Let $m: G \times G \to G$ denote the multiplication map. Using proposition 3.14 to identify $T_{(e,e)}(G \times G)$ with $T_eG \oplus T_eG$, show that the differential $dm_{(e,e)}: T_eG \oplus T_eG \to T_eG$ is given by

$$dm_{(e,e)}(X,Y) = X + Y$$

(b) Let $i: G \to G$ denote the inversion map. Show that $di_e: T_eG \to T_eG$ is given by $di_e(X) = -X$.

Proof:

(a)

Q7-4. Let det : $GL(n,\mathbb{R}) \to \mathbb{R}$ denote the determinant function. Use Corollary 3.25 to compute the differential of det, as follows.

(a) For any $A \in M(n, \mathbb{R})$, show that

$$\left. \frac{d}{dt} \right|_{t=0} \det(I_n + tA) = \operatorname{tr} A$$

, where tr $(A_i^i) = \sum_i A_i^i$ is the trace of A.

(b) For $X \in GL(n,\mathbb{R})$ and $B \in T_XGL(n,\mathbb{R}) \cong M(n,\mathbb{R})$, show that

$$d(\det)_X(B) = (\det X)\operatorname{tr}(X^{-1}B)$$

Proof:

Q7-6. Suppose G is a Lie Group and U is any neighborhood of the identity. Show that there exists a neighborhood V of the identity such that $V \subseteq U$ and $gh^{-1} \in U$ whenever $g, h \in V$.

Proof:

Q7-11. Repeat Problem 7-9 for $GL(n+1,\mathbb{C})$ and \mathbb{CP}^n .

Proof:

Q7-22.

- (a) Show that quaternionic multiplication is associative but not commutative.
- (b) Show that $(pq)^* = q^*p^*$ for all $p, \in \mathbb{H}$
- (c) Show that $\langle p, q \rangle = \frac{1}{2} (p^*q + q^*p)$ is an iner product on \mathbb{H} , whose associated norm satisfies |pq| = |p||q|.
- (d) Show that every nonzero quaternion has a two-sided multiplicative inverse given by $p^{-1} = |p|^{-2}p^*$.
- (e) Show that the se $t\mathbb{H}^*$ of nonzero quaternions is a Lie group under quaternionic multiplication.

Proof:

Q7-23. Let \mathbb{H}^* be the Lie Group of nonzero quaternions and let $\mathcal{S} \subseteq \mathbb{H}^*$ be the set of unit quaternions. Show that \mathcal{S} is a properly embedded Lie subgroup of \mathbb{H}^* , isomorphic to SU(2).

Proof: