

Modelling worskshop

What is computational modelling?

DATA

Initial height (y_0) Initial angle (θ_0) Initial speed (v_0)

MODELS

Observable variables → Future data

$$x_t = v_0 cos\theta_0 \cdot t$$
$$y_t = v_0 sin\theta_0 \cdot t - \frac{1}{2}gt^2$$

What is computational modelling? (in psychology)

You have probably done modelling before

DATA

Dependent and independent variables

MODELS

$$y = \beta_0 + \beta_1 x + \epsilon$$

Here we will deal with reinforcement learning models (RL)

The n-armed bandit task

How often do they give a reward?

The 2-armed bandit task

Let's learn how to model!

The Rescorla-Wagner model

 $oldsymbol{Q}$ value

lpha LEARNING RATE

$$\delta_t = R_t - Q_t$$

$$Q_{t+1} = Q_t + \alpha * \delta_t$$

Choice rule

Q VALUES

$$oldsymbol{eta}$$
 inverse temperature

$$p(a^{1}) = \frac{1}{1 + e^{\beta * (Q(a^{2}) - Q(a^{1}))}}$$

Our data

OUTCOMES

Probability of data

$$p_{total} = 0.5 * 0.3 * 0.7 = 0.105$$

Probability of data

$$p_{total} = 0.5 * 0.3 * 0.7 * \cdots = 0.000000000 \dots$$

$$\log(p_{total}) = \log(0.5 * 0.3 * 0.7 * \cdots) = \log(0.5) + \log(0.3) + \log(0.7) + \cdots = -1020$$

Thank you!