Turingovy stroje

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

- pohyb hlavy oběma směry
- možnost zápisu na pásku na aktuální pozici hlavy
- páska je nekonečná

Alan M. Turing, "On Computable Numbers, with an application to the Entscheidungsproblem", *Proceedings of the London Mathematical Society*, 42 (1936), pp. 230–265, Erratum: Ibid., 43 (1937), pp. 544–546.

Definice

Formálně je **Turingův stroj** definován jako šestice $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F)$ kde:

- Q je konečná neprázdná množina stavů
- Γ je konečná neprázdná množina páskových symbolů (pásková abeceda)
- Σ ⊆ Γ je konečná neprázdná množina vstupních symbolů (vstupní abeceda)
- $\delta: (Q F) \times \Gamma \rightarrow Q \times \Gamma \times \{-1, 0, +1\}$ je přechodová funkce
- $q_0 \in Q$ je počáteční stav
- F ⊆ Q je množina koncových stavů

Předpokládáme, že v $\Gamma - \Sigma$ je vždy speciální prvek \square označující prázdný znak (blank).

Konfigurace Turingova stroje

Konfigurace Turingova stroje je dána:

- stavem řídící jednotky
- obsahem pásky
- pozicí hlavy

Konfigurace Turingova stroje

Výpočet Turingova stroje $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F)$ nad slovem $w \in \Sigma^*$, kde $w = a_1 a_2 \cdots a_n$, začíná v **počáteční konfiguraci**:

- stav řídící jednotky je q₀
- na pásce je zapsáno slovo w, zbývající políčka pásky jsou vyplněna prázdnými symboly (□)
- hlava se nachází na prvním symbolu slova w (nebo na symbolu \square , pokud je $w = \varepsilon$)

Jeden krok Turingova stroje:

Předpokládejme, že:

- stav řídící jednotky je q
- na políčku, kde se právě nachází hlava, je zapsán symbol b

Řekněme, že
$$\delta(q, b) = (q', b', d)$$
, kde $d \in \{-1, 0, +1\}$.

Jeden krok Turingova stroje se provede následovně:

- ullet stav řídící jednotky se změní na q'
- na políčko na pozici hlavy se místo symbolu b zapíše symbol b'
- V závislosti na hodnotě *d* se hlava posune:
 - pro d = -1 se posune o jedno políčko doleva
 - pro d = +1 se posune o jedno políčko doprava
 - pro d = 0 se pozice hlavy nezmění

- Turingův stroj provádí kroky tak dlouho, dokud stav řídící jednotky není stav z množiny F.
- Konfigurace, kde stav řídící jednotky patří do množiny F, jsou koncové konfigurace.
- V koncových konfiguracích výpočet končí.
- Výpočet stroje $\mathcal M$ nad slovem w může být nekonečný.

Často volíme množinu koncových stavů $F = \{q_{acc}, q_{rej}\}.$

Můžeme pak pro slovo $w \in \Sigma^*$ definovat, zda ho daný Turingův stroj přijímá:

- Pokud je po skončení výpočtu nad slovem w řídící jednotka ve stavu q_{acc}, stroj slovo w přijímá.
- Pokud je po skončení výpočtu nad slovem w řídící jednotka ve stavu q_{rej}, stroj slovo w nepřijímá.
- Pokud je výpočet nad slovem w nekonečný, stroj slovo w nepřijímá.

Jazyk $\mathcal{L}(\mathcal{M})$ Turingova stroje \mathcal{M} je množina všech slov nad abecedou Σ^* , která stroj \mathcal{M} přijímá.

Jazyk $L \subseteq \Sigma^*$ je Turingovým strojem \mathcal{M} **přijímán** (accepted), jestliže:

• pro každé slovo $w \in \Sigma^*$ platí, že $w \in L$ právě tehdy, když výpočet stroje $\mathcal M$ nad w skončí v koncovém stavu q_{acc} .

(Výpočty nad slovy, která nepatří do L, tedy mohou skončit ve stavu q_{rej} nebo být nekonečné.)

Jazyk $L \subseteq \Sigma^*$ je Turingovým strojem \mathcal{M} rozpoznáván (recognized), jestliže:

- pro každé slovo $w \in L$ výpočet stroje $\mathcal M$ nad w skončí v koncovém stavu q_{acc} .
- pro každé slovo $w \in (\Sigma^* L)$ výpočet stroje \mathcal{M} nad w skončí v koncovém stavu q_{rej} .

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, \mathbf{x}, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3, x, +1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q 4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3, x, +1)$	$(q_2, x, +1)$
q 3	$(q_4,\square,-1)$	$(q_{rej}, \mathtt{a}, 0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q 0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q 4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q 4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1, \mathbf{x}, +1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2, x, +1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, \mathbf{b}, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1, \mathbf{x}, +1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2, x, +1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1, \mathbf{x}, +1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2, x, +1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, \mathbf{x}, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3, x, +1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q 4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q 0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3,x,+1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, \mathbf{x}, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3, x, +1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej}, \mathtt{a}, 0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q 0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3, x, +1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q 0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1, \mathbf{x}, +1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2, x, +1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, \mathbf{x}, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	Ъ	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, \mathbf{x}, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, \mathbf{x}, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej},\mathtt{b},0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q 0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, \mathtt{a}, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2, x, +1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q ₄	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1,x,+1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1	$(q_{rej},\square,0)$	$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej},c,0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3, x, +1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej}, \mathtt{a}, 0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, x, -1)$

Jazyk
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acc}, q_{rej}\}$ $F = \{q_{acc}, q_{rej}\}$
 $\Sigma = \{a, b, c\}$ $\Gamma = \{\Box, a, b, c, x\}$

δ		a	b	С	x
q_0	$(q_{acc}, \square, 0)$	$(q_1, x, +1)$	$(q_{rej}, b, 0)$	$(q_{rej}, c, 0)$	$(q_0, x, +1)$
q_1		$(q_1,\mathtt{a},+1)$	$(q_2,x,+1)$	$(q_{rej}, c, 0)$	$(q_1,x,+1)$
q_2	$(q_{rej},\square,0)$	$(q_{rej},\mathtt{a},0)$	$(q_2, b, +1)$	$(q_3,x,+1)$	$(q_2,x,+1)$
q 3	$(q_4,\square,-1)$	$(q_{rej},\mathtt{a},0)$	$(q_{rej}, b, 0)$	$(q_3, c, +1)$	$(q_3, x, +1)$
q_4	$(q_0,\square,+1)$	$(q_4, a, -1)$	$(q_4, b, -1)$	$(q_4, c, -1)$	$(q_4, \mathbf{x}, -1)$

 q_{acc}

- Turingův stroj nemusí dávat jen odpověď Ano nebo $N_{\rm E}$, ale může realizovat nějakou funkci, která každému slovu ze Σ^* přiřazuje nějaké jiné slovo (z Γ^*).
- Slovo přiřazené slovu w je slovo, které zůstane zapsáno na pásce po výpočtu nad slovem w, když odstraníme všechny znaky □.

Nedeterministické Turingovy stroje

Můžeme uvažovat i **nedeterministické Turingovy stroje**, kde pro každý stav q a symbol b přechodová funkce $\delta(q,b)$ určuje více různých trojic (q',b',d).

Stroj si může vybrat libovolnou z nich.

Stroj přijímá slovo w, jestliže existuje alespoň jeden jeho výpočet vedoucí k přijetí slova w.

Poznámka: Ke každému nedeterministickému Turingovu stroji je možné sestrojit ekvivalentní deterministický Turingův stroj.

Nedeterministické Turingovy stroje

Formálně se v definici deterministického a nedeterministického Turingova stroje $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F)$ liší pouze definice přechodové funkce δ :

• Deterministický Turingův stroj:

$$\delta: (Q - F) \times \Gamma \rightarrow Q \times \Gamma \times \{-1, 0, +1\}$$

• Nedeterministický Turingův stroj:

$$\delta: (Q - F) \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{-1, 0, +1\})$$

Poznámka: U nedeterministických Turingových strojů také nedává příliš smysl jiná množina koncových stavů než $F = \{q_{acc}, q_{rej}\}.$

- Dříve uvedená definice Turingova stroje je jen jednou z mnoha možných variant.
- Uvedeme několik příkladů toho, v čem se mohou některé jiné varianty Turingových strojů lišit.
- Prakticky všechny tyto varianty Turingových strojů jsou schopny přijímat či rozpoznávat tytéž jazyky a počítat tytéž funkce.
- Co se týká doby výpočtu a množství použité paměti, mezi různými variantami mohou, ale nemusí být významné rozdíly.
- Všechny níže uvedené varianty můžeme uvažovat v deterministické i nedeterministické verzi.

Jednostranně či oboustranně nekonečná páska:

- V předchozí definici jsme uvažovali pásku, která je nekonečná jak směrem doleva, tak směrem doprava.
- Místo toho se někdy v definici Turingova stroje uvažuje páska, která je nekonečná jen směrem doprava.

Je třeba nějak definovat, co má stát, když se hlava nachází na nejlevějším políčku pásky a má se posunout doleva.

Dvě nejběžnější možnosti:

Nastane "chybový" stav, kdy se výpočet (neúspěšně) ukončí:

• Na levém konci pásky je "zarážka" reprezentovaná speciálním symbolem $\vdash \in (\Gamma - \Sigma)$.

Tuto zarážku není možné přepsat a není na ní možný pohyb směrem doleva, tj. pro každé $q \in Q$ platí, že pokud $\delta(q, \vdash) = (q', b, d)$, tak $b = \vdash a \ d \in \{0, +1\}$.

Poznámka: S možností, že výpočet může skončit neúspěšně, protože nastane nějaká chyba, kdy z dané konfigurace není možné pokračovat, ale přitom to není koncová konfigurace, se setkáme i u řady dalších strojů, kterými se budeme zabývat.

Obecně mohou při výpočtu libovolného stroje nastat následující případy:

- Výpočet skončí úspěšně v koncové konfiguraci, která odpovídá korektnímu zastavení.
- Výpočet skončí neúspěšně v konfiguraci, která není koncová, ale není v ní možné pokračovat ve výpočtu — toto chápeme tak, že výpočet skončil chybou.
- Výpočet se nikdy nezastaví.

Často se také uvažují vícepáskové Turingovy stroje.

V případě vícepáskového stroje:

- Každá z k pásek má svou vlastní páskovou abecedu, tj. máme páskové abecedy Γ₁, Γ₂, ..., Γ_k.
- Přechodová funkce δ je typu

$$(Q-F)\times \Gamma_1\times \cdots \times \Gamma_k \ \to \ Q\times \Gamma_1\times \{-1,0,+1\}\times \cdots \times \Gamma_k\times \{-1,0,+1\}$$

Příklad:

$$\delta(q_5, \mathbf{a}, 1, \square) = (q_{12}, \mathbf{a}, -1, \mathbf{x}, 0, 1, +1)$$

Příklad:

$$\delta(q_5, a, 1, \Box) = (q_{12}, a, -1, x, 0, 1, +1)$$

Příklad:

$$\delta(q_5, a, 1, \Box) = (q_{12}, a, -1, x, 0, 1, +1)$$

Příklad: Stroj provádějící sčítání dvou binárně zapsaných čísel ohraničených znaky # (např. čísla 6 a 11 budou zapsaná jako slova "#110#" a "#1011#").

Vícepáskové stroje mají často jednu z pásek vyčleněnu jako vstupní pásku a jednu z pásek jako výstupní pásku. Ostatní pásky pak používají jako pracovní:

- Vstupní páska obsahuje vstupní slovo, není možné na ni zapisovat (je read-only), není nekonečná
- Pracovní pásky je možné z nich číst i na ně zapisovat (jsou typu read/write), na začátku výpočtu jsou prázdné (obsahují pouze symboly
- Výstupní páska je na ni možné pouze zapisovat (je write-only), není z ní možné číst, na začátku výpočtu je prázdná, pohyb hlavy je možný jen zleva doprava

Pokud má stroj vyčleněnou speciální vstupní pásku (která je read-only), používají se typicky dvě následující varianty:

- Na této vstupní pásce je možný pohyb hlavy doleva i doprava.
 Vstupní slovo w ∈ Σ* je v takovém případě ohraničeno zleva a zprava pomocí "zarážek", tj. speciálních symbolů ⊢, ⊢∈ (Γ − Σ).
- Na vstupní pásce je možný pohyb hlavy pouze zleva doprava.

Poznámka: Varianta s možným pohybem hlavy na obě strany a se zarážkami je obvyklejší.

Pokud nebude řečeno jinak, budeme uvažovat tuto variantu.

Místo více pásek je možné též uvažovat více hlav na jedné pásce:

V případě více hlav na jedné pásce, je třeba specifikovat:

- Zda se může více hlav nacházet současně na jednom políčku pásky.
- A pokud ano, jak je definováno chování daného stroje v případě, že hlavy nacházející se na stejném políčku budou chtít na toto políčko zapsat rozdílné symboly.
- Zda je daný stroj schopen detekovat to, že se dvě nebo více hlav nacházejí současně na témže políčku.

Poznámka: Samozřejmě obecně můžeme uvažovat stroje s více páskami, kde každá z těchto pásek může být vybavena více hlavami.

Uvažujme stroj s více páskami a s libovolným počtem hlav na každé pásce.

Místo toho, aby stroj pracoval v každém kroku zároveň se všemi hlavami, můžeme jeho činnost popisovat jako "program" skládající se z jednodušších instrukcí následujících typů:

- posunout danou hlavu o jedno políčko doleva
- posunout danou hlavu o jedno políčko doprava
- zapsat na pozici dané hlavy daný specifikovaný symbol
- přečíst z pozice dané hlavy jeden symbol a provést větvení programu (tj. jít do různých stavů řídící jednotky) v závislosti na tom, o jaký symbol se jedná

Zatím jsme uvažovali jen lineární (jednorozměrné) pásky.

Místo jednorozměrné pásky může mít paměť s políčky (kde každé políčko obsahuje jeden znak z nějaké dané abecedy) nějakou jinou strukturu.

Například:

- dvourozměrná čtverečková rovina
 - pohyb hlavy do čtyř směrů: doleva, doprava, nahoru, dolů
- d-rozměrná paměť pro nějaké d = 3,4,... (třírozměrná, čtyřrozměrná, atd.)
- paměť organizovaná ve formě (nekonečného) stromu
- ...

Lineárně omezený automat

Lineárně omezený automat (LBA — linear bounded automaton):

- Nedeterministický Turingův stroj, který může využívat jen úsek pásky, kde je zapsáno vstupní slovo.
- Políčka pásky, která na začátku obsahují symboly vstupního slova, je možné během výpočtu libovolně přepisovat.
- Levá a pravá zarážka kolem slova. Tyto zarážky nemohou být přepsány.
- Z levé zarážky je možný pohyb jen vpravo, z pravé zarážky jen vlevo.

Lineárně omezený automat

- Lineárně omezené automaty je možné uvažovat v deterministické i nedeterministické verzi.
- Jako standardní (tj. pokud není uvedeno jinak) se bere nedeterministická verze.
- Otázka, zda je možné jakýkoli jazyk, který je rozpoznáván nedeterministickým LBA, rozpoznávat také deterministickým LBA, je otevřeným problémem.

Poznámka: Z hlediska jazyků, jaké jsou schopné přijímat nebo rozpoznávat, a z hlediska funkcí, jaké jsou schopné počítat, jsou lineárně omezené automaty výrazně slabší než Turingovy stroje, které mají k dispozici neomezeně velkou paměť (ve formě nekonečné pásky).

Chomského hierarchie

Generativní gramatiky

Definice

Generativní gramatika je dána čtveřicí parametrů $G = (\Pi, \Sigma, S, P)$, kde

- Π je konečná množina neterminálů
- Σ je konečná množina terminálů, $\Pi \cap \Sigma = \emptyset$
- $S \in \Pi$ je počáteční neterminál
- P je konečná množina pravidel typu $\alpha \to \beta$, kde $\alpha \in (\Pi \cup \Sigma)^*\Pi(\Pi \cup \Sigma)^*$ a $\beta \in (\Pi \cup \Sigma)^*$.

Příklad pravidla:

Poznámka: Tento druh gramatik bývá též označován jako gramatiky **typu 0**, **neomezené** gramatiky či **obecné** gramatiky.

Generativní gramatiky

Předpokládejme, že máme dánu generativní gramatiku $G = (\Pi, \Sigma, S, P)$.

Relace
$$\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$$
:

• $\mu_1 \alpha \mu_2 \implies \mu_1 \beta \mu_2$ pokud $\alpha \rightarrow \beta$ je pravidlo v P

Příklad: Jestliže ($BcE \rightarrow DDaBb$) $\in P$, pak

CaBCBcEAccABb ⇒ CaBCDDaBbAccABb

Jazyk $\mathcal{L}(\mathcal{G})$ generovaný gramatikou $\mathcal{G} = (\Pi, \Sigma, S, P)$ je množina všech slov v abecedě Σ , která lze odvodit nějakou derivací z počátečního neterminálu S pomocí pravidel z P, tj.

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

Generativní gramatiky

Předpokládejme, že máme dánu generativní gramatiku $G = (\Pi, \Sigma, S, P)$.

Relace
$$\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$$
:

• $\mu_1 \alpha \mu_2 \implies \mu_1 \beta \mu_2$ pokud $\alpha \rightarrow \beta$ je pravidlo v P

Příklad: Jestliže ($BcE \rightarrow DDaBb$) $\in P$, pak

CaBC \underline{BcE} $AccABb \Rightarrow CaBC$ \underline{DDaBb} AccABb

Jazyk $\mathcal{L}(\mathcal{G})$ generovaný gramatikou $\mathcal{G} = (\Pi, \Sigma, S, P)$ je množina všech slov v abecedě Σ , která lze odvodit nějakou derivací z počátečního neterminálu S pomocí pravidel z P, tj.

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

Derivace slova aaaaabbbbbccccc:

S

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$
$$\Rightarrow aaSQQ$$

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$
$$\Rightarrow aaSQQ$$
$$\Rightarrow aaaSQQQ$$

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaabcQQQQ$$

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabcQQQQ$$

$$\Rightarrow aaaaabCQQQQ$$

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

```
S \Rightarrow aSQ
\Rightarrow aaSQQ
\Rightarrow aaaSQQQ
\Rightarrow aaaaSQQQQ
\Rightarrow aaaaabcQQQQ
\Rightarrow aaaaabQcQQQ
\Rightarrow aaaaabbccQQQ
```

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

```
S \Rightarrow aSQ
\Rightarrow aaSQQ
\Rightarrow aaaSQQQ
\Rightarrow aaaaSQQQQ
\Rightarrow aaaaabcQQQQ
\Rightarrow aaaaabQcQQQ
\Rightarrow aaaaabbccQQQQ
\Rightarrow aaaaabbccQQQQ
\Rightarrow aaaaabbcQCQQQ
```

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

Derivace slova aaaaabbbbbccccc:

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabcQQQQ$$

$$\Rightarrow aaaaabQcQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

⇒ aaaaabbQccQQ

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaabcQQQQ$$

$$\Rightarrow aaaaabQcQQQ$$

$$\Rightarrow aaaaabbccQQQ$$

$$\Rightarrow aaaaabbccQQQ$$

$$\Rightarrow aaaaabbccQQQ$$

- *⇒ aaaaabbQccQQ*
- ⇒ aaaaabbbcccQQ

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabcQQQQ$$

$$\Rightarrow aaaaabQcQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabcQQQQ$$

$$\Rightarrow aaaaabQcQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQQ$$

$$\Rightarrow aaaSQQQQ$$

$$\Rightarrow aaaaSQQQQQ$$

$$\Rightarrow aaaaabcQQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

$$\Rightarrow aaaaabbccQQQQ$$

Příklad: Gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabcQQQQ$$

$$\Rightarrow aaaaabQcQQQ$$

$$\Rightarrow aaaaabbccQQQ$$

$$\Rightarrow aaaaabbccQQQ$$

$$\Rightarrow aaaaabbcQCQQ$$

$$\Rightarrow aaaaabbQccQQ$$

$$\Rightarrow aaaaabbbccQcQ$$

$$\Rightarrow aaaaabbbcQccQ$$

$$\Rightarrow aaaaabbbcQccQ$$

$$\Rightarrow aaaaabbbQcccQ$$

$$\Rightarrow aaaaabbbbccccQ$$

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

$S \Rightarrow$	aSQ	\Rightarrow	aaaaabbQccQQ
\Rightarrow	aaSQQ	\Rightarrow	aaaaabbbcccQQ
\Rightarrow	aaaSQQQ	\Rightarrow	aaaaabbbccQcQ
\Rightarrow	aaaaSQQQQ	\Rightarrow	aaaaabbbcQccQ
\Rightarrow	aaaaabcQQQQ	\Rightarrow	aaaaabbbQcccQ
\Rightarrow	aaaaabQcQQQ	\Rightarrow	aaaaabbbbccccQ
\Rightarrow	aaaaabbccQQQ	\Rightarrow	aaaaabbbbcccQc
\Rightarrow	aaaaabbcQcQQ	\Rightarrow	aaaaabbbbccQcc

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

- ⇒ aaaaabbQccQQ ⇒ aaaaabbbcccQQ
- ⇒ aaaaabbbccQcQ
- ⇒ aaaaabbbcQccQ
- ⇒ aaaaabbbQcccQ
- ⇒ aaaaabbbbccccQ
- ⇒ aaaaabbbbcccQc
- ⇒ aaaaabbbbccQcc

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

- ⇒ aaaaabbbbcQccc
- ⇒ aaaaabbbbQcccc

- ⇒ aaaaabbQccQQ
- ⇒ aaaaabbbcccQQ
- ⇒ aaaaabbbccQcQ
- ⇒ aaaaabbbcQccQ
- ⇒ aaaaabbbQcccQ
- ⇒ aaaaabbbbccccQ
- ⇒ aaaaabbbbcccQc
- ⇒ aaaaabbbbccQcc

Příklad: Gramatika generující jazyk
$$L = \{a^n b^n c^n \mid n \ge 1\}$$

$$S \rightarrow aSQ$$

$$S \rightarrow abc$$

$$cQ \rightarrow Qc$$

$$bQc \rightarrow bbcc$$

- ⇒ aaaaabbbbcQccc
- ⇒ aaaaabbbbQcccc
- ⇒ aaaaabbbbbbccccc

- ⇒ aaaaabbQccQQ
- ⇒ aaaaabbbcccQQ
- *⇒ aaaaabbbccQcQ*
- ⇒ aaaaabbbcQccQ
- $\Rightarrow aaaaabbbQcccQ$
- ⇒ aaaaabbbbccccQ
- ⇒ aaaaabbbbcccQc
- *⇒* aaaaabbbbccQcc

Kontextové gramatiky, označované též jako gramatiky **typu 1**, jsou speciálním případem generativních gramatik.

Gramatika $\mathcal{G} = (\Pi, \Sigma, S, P)$ se nazývá **kontextová**, jestliže všechna její pravidla (s jednou níže uvedenou výjimkou) jsou tvaru

$$\alpha X\beta \rightarrow \alpha \gamma \beta$$

kde $X \in \Pi$, $\alpha, \beta, \gamma \in (\Pi \cup \Sigma)^*$, přičemž $|\gamma| \ge 1$.

Jedinou výjimkou je, že gramatika $\mathcal G$ může obsahovat pravidlo $S \to \varepsilon$.

Pokud toto pravidlo obsahuje, nesmí se počáteční nerminál S vyskytovat na pravé straně žádného pravidla.

Příklad pravidla:

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

S

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

$$S \Rightarrow aSQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$
$$\Rightarrow aaSQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

$$S \Rightarrow aSQ$$
$$\Rightarrow aaSQQ$$
$$\Rightarrow aaaSQQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabCQQQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

⇒ aaaaabQCQQQ

Derivace slova aaaaabbbbbccccc:

$$S \Rightarrow aSQ$$

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

Z. Sawa (VŠB-TUO)

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

$$S \Rightarrow aSQ$$

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

$$S \Rightarrow aSQ$$

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

$$S \Rightarrow aSQ$$

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

$$S \Rightarrow aSQ$$

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$
$$\Rightarrow aaSQQ$$
$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaabXQQQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabCQQQQ$$

$$\Rightarrow aaaaabXQQQQ$$

$$\Rightarrow aaaaabXYQQQ$$

$$\Rightarrow aaaaabXYQQQ$$

$$\Rightarrow aaaaabQYQQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

$$S \Rightarrow aSQ$$

$$\Rightarrow aaSQQ$$

$$\Rightarrow aaaSQQQ$$

$$\Rightarrow aaaaSQQQQ$$

$$\Rightarrow aaaaabCQQQQ$$

$$\Rightarrow aaaaabXQQQQ$$

$$\Rightarrow aaaaabXYQQQ$$

$$\Rightarrow aaaaabXYQQQ$$

$$\Rightarrow aaaaabQYQQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

$$\Rightarrow aaaaabQCQQQ$$

$$\Rightarrow aaaaabbCCQQQ$$

$$\Rightarrow aaaaabbCXYQQ$$

$$\Rightarrow aaaaabbCXYQQ$$

$$\Rightarrow aaaaabbCQYQQ$$

$$\Rightarrow aaaaabbCQCQQ$$

$$\Rightarrow aaaaabbXQCQQ$$

$$\Rightarrow aaaaabbXYCQQ$$

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ

- ⇒ aaaaabQCQQQ
- ⇒ aaaaabbCCQQQ
- *⇒ aaaaabbCXQQQ*
- *⇒* aaaaabbCXYQQ
- ⇒ aaaaabbCQYQQ
- ⇒ aaaaabbCQCQQ
- *⇒* aaaaabbXQCQQ
- ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
- ⇒ aaaaabbbCCCQQ

- ⇒ aaaaabQCQQQ
- ⇒ aaaaabbCCQQQ
- ⇒ aaaaabbCXQQQ
- *⇒* aaaaabbCXYQQ
- ⇒ aaaaabbCQYQQ
- ⇒ aaaaabbCQCQQ
- *⇒* aaaaabbXQCQQ
- ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- *⇒ aaaaabbQCCQQ*
- *⇒* aaaaabbbCCCQQ
- ⇒ aaaaabbbCCXQQ

- ⇒ aaaaabQCQQQ
- ⇒ aaaaabbCCQQQ
- ⇒ aaaaabbCXQQQ
- ⇒ aaaaabbCXYQQ
- ⇒ aaaaabbCQYQQ
- ⇒ aaaaabbCQCQQ
- ⇒ aaaaabbXQCQQ
- ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
- ⇒ aaaaabbbCCCQQ
- *⇒* aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ

- ⇒ aaaaabQCQQQ
- ⇒ aaaaabbCCQQQ
- ⇒ aaaaabbCXQQQ
- ⇒ aaaaabbCXYQQ
- ⇒ aaaaabbCQYQQ
- ⇒ aaaaabbCQCQQ
- *⇒* aaaaabbXQCQQ
- ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
 ⇒ aaaaabbbCCCQQ
- ⇒ aaaaabbbccccQQ
 ⇒ aaaaabbbcccXQQ
- ⇒ aaaaabbbccXQQ
 ⇒ aaaaabbbCCXYQ
- \Rightarrow aaaaaabbbccxrQ
- *⇒ aaaaabbbCCQYQ*

- ⇒ aaaaabQCQQQ
- ⇒ aaaaabbCCQQQ
- ⇒ aaaaabbCXQQQ
- ⇒ aaaaabbCXYQQ
- *⇒ aaaaabbCQYQQ*
- ⇒ aaaaabbCQCQQ
- *⇒* aaaaabbXQCQQ
- ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbQYCQQ
 ⇒ aaaaabbQCCQQ
 ⇒ aaaaabbbCCCQQ
 ⇒ aaaaabbbCCXQQ
 ⇒ aaaaabbbCCXYQ
 ⇒ aaaaabbbCCQYQ
 ⇒ aaaaabbbCCQCQ

⇒ aaaaabQCQQQ
 ⇒ aaaaabbCCQQQ
 ⇒ aaaaabbCXQQQ
 ⇒ aaaaabbCXYQQ
 ⇒ aaaaabbCQYQQ
 ⇒ aaaaabbCQCQQ
 ⇒ aaaaabbXQCQQ
 ⇒ aaaaabbXYCQQ
 ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$
 $CQ \rightarrow XQ$
 $S \rightarrow abC$ $XQ \rightarrow XY$
 $bQC \rightarrow bbCC$ $XY \rightarrow QY$
 $C \rightarrow c$ $QY \rightarrow QC$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbQYCQQ ⇒ aaaaabQCQQQ ⇒ aaaaabbQCCQQ ⇒ aaaaabbCCQQQ ⇒ aaaaabbbCCCQQ ⇒ aaaaabbCXQQQ ⇒ aaaaabbbCCXQQ ⇒ aaaaabbCXYQQ ⇒ aaaaabbbCCXYQ ⇒ aaaaabbCQYQQ ⇒ aaaaabbbCCQYQ ⇒ aaaaabbCQCQQ ⇒ aaaaabbbCCQCQ ⇒ aaaaabbXQCQQ ⇒ aaaaabbbCXQCQ ⇒ aaaaabbXYCQQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

⇒ aaaaabbbCXYCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
- ⇒ aaaaabbbCCCQQ
- ⇒ aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ
- ⇒ aaaaabbbCCQYQ
- ⇒ aaaaabbbCCQCQ
- ⇒ aaaaabbbCXQCQ

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
- ⇒ aaaaabbbCCCQQ
- ⇒ aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ
- ⇒ aaaaabbbCCQYQ
- ⇒ aaaaabbbCCQCQ
- ⇒ aaaaabbbCXQCQ

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- *⇒ aaaaabbQCCQQ*
- ⇒ aaaaabbbCCCQQ
- *⇒* aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ
- ⇒ aaaaabbbCCQYQ
- ⇒ aaaaabbbCCQCQ
- ⇒ aaaaabbbCXQCQ

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- *⇒ aaaaabbbCQCCQ*
- *⇒* aaaaabbbXQCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
- *⇒* aaaaabbbCCCQQ
- *⇒* aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ
- ⇒ aaaaabbbCCQYQ
- ⇒ aaaaabbbCCQCQ
- ⇒ aaaaabbbCXQCQ

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- *⇒* aaaaabbbXQCCQ
- *⇒* aaaaabbbXYCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbQYCQQ
- ⇒ aaaaabbQCCQQ
- *⇒* aaaaabbbCCCQQ
- *⇒* aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ
- ⇒ aaaaabbbCCQYQ
- ⇒ aaaaabbbCCQCQ
- ⇒ aaaaabbbCXQCQ

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- *⇒ aaaaabbbXQCCQ*
- ⇒ aaaaabbbXYCCQ
- ⇒ aaaaabbbQYCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

- ⇒ aaaaabbQYCQQ
 ⇒ aaaaabbQCCQQ
- \Rightarrow aaaaaabbQCCQQ
- ⇒ aaaaabbbCCCQQ
- ⇒ aaaaabbbCCXQQ
- ⇒ aaaaabbbCCXYQ
- ⇒ aaaaabbbCCQYQ
- *⇒ aaaaabbbCCQCQ*
 - ⇒ aaaaabbbCXQCQ

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- *⇒ aaaaabbbXQCCQ*
- ⇒ aaaaabbbXYCCQ
- ⇒ aaaaabbbQYCCQ
- ⇒ aaaaabbbQCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbQYCQQ
 ⇒ aaaaabbQCCQQ
 ⇒ aaaaabbbCCCQQ
 ⇒ aaaaabbbCCXQQ
 ⇒ aaaaabbbCCXYQ
 ⇒ aaaaabbbCCQYQ
 ⇒ aaaaabbbCCQCQ
 ⇒ aaaaabbbCCQCQ
 ⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ
 ⇒ aaaaabbbCQYCQ
 ⇒ aaaaabbbXQCCQ
 ⇒ aaaaabbbXYCCQ
 ⇒ aaaaabbbXYCCQ
 ⇒ aaaaabbbQYCCQ
 ⇒ aaaaabbbQCCCQ
 ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbCXYCQ
 ⇒ aaaaabbbCQYCQ
 ⇒ aaaaabbbCQCCQ
 ⇒ aaaaabbbXQCCQ
 ⇒ aaaaabbbXYCCQ
 ⇒ aaaaabbbQYCCQ
 ⇒ aaaaabbbQCCCQ
 ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- ⇒ aaaaabbbXQCCQ
- ⇒ aaaaabbbXYCCQ
- ⇒ aaaaabbbQYCCQ
- ⇒ aaaaabbbQCCCQ
- → aaaaabbbQCCCQ
- ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbCCCQY

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- *⇒* aaaaabbbXQCCQ
- ⇒ aaaaabbbXYCCQ
- ⇒ aaaaabbbQYCCQ
- ⇒ aaaaabbbQCCCQ
- ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbCCCQY
- ⇒ aaaaabbbbCCCQC

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- *⇒ aaaaabbbXQCCQ*
- *⇒ aaaaabbbXYCCQ*
- ⇒ aaaaabbbQYCCQ
- ⇒ aaaaabbbQCCCQ
- ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- *⇒ aaaaabbbbCCCXY*
- ⇒ aaaaabbbbCCCQY
- ⇒ aaaaabbbbCCCQC
- ⇒ aaaaabbbbCCXQC

- ⇒ aaaaabbbCXYCQ
- ⇒ aaaaabbbCQYCQ
- ⇒ aaaaabbbCQCCQ
- ⇒ aaaaabbbXQCCQ
- ⇒ aaaaabbbXYCCQ
- ⇒ aaaaabbbQYCCQ
- ⇒ aaaaabbbQCCCQ
- ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbbCCCXQ
 ⇒ aaaaabbbbCCCXY
 ⇒ aaaaabbbbCCCQY
 ⇒ aaaaabbbbCCCQC
 ⇒ aaaaabbbbCCXQC
 ⇒ aaaaabbbbCCXYC

⇒ aaaaabbbCXYCQ
 ⇒ aaaaabbbCQYCQ
 ⇒ aaaaabbbCQCCQ
 ⇒ aaaaabbbXQCCQ
 ⇒ aaaaabbbXYCCQ
 ⇒ aaaaabbbQYCCQ
 ⇒ aaaaabbbQCCCQ
 ⇒ aaaaabbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbbCCCXQ
 ⇒ aaaaabbbbCCCXY
 ⇒ aaaaabbbbCCCQY
 ⇒ aaaaabbbbCCCQC
 ⇒ aaaaabbbbCCXQC
 ⇒ aaaaabbbbCCXYC
 ⇒ aaaaabbbbCCQYC

⇒ aaaaabbbCXYCQ
 ⇒ aaaaabbbCQYCQ
 ⇒ aaaaabbbCQCCQ
 ⇒ aaaaabbbXQCCQ
 ⇒ aaaaabbbXYCCQ
 ⇒ aaaaabbbQYCCQ
 ⇒ aaaaabbbQCCCQ
 ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$\begin{array}{ccc} S \rightarrow aSQ & CQ \rightarrow XQ \\ S \rightarrow abC & XQ \rightarrow XY \\ bQC \rightarrow bbCC & XY \rightarrow QY \\ C \rightarrow c & QY \rightarrow QC \end{array}$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbbCCCXQ ⇒ aaaaabbbCXYCQ ⇒ aaaaabbbbCCCXY ⇒ aaaaabbbCQYCQ ⇒ aaaaabbbbCCCQY ⇒ aaaaabbbCQCCQ ⇒ aaaaabbbbCCCQC ⇒ aaaaabbbXQCCQ ⇒ aaaaabbbbCCXQC ⇒ aaaaabbbXYCCQ ⇒ aaaaabbbbCCXYC ⇒ aaaaabbbQYCCQ ⇒ aaaaabbbbCCQYC ⇒ aaaaabbbQCCCQ ⇒ aaaaabbbbCCQCC ⇒ aaaaabbbbCCCCQ

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

⇒ aaaaabbbbCXQCC

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

Z. Sawa (VŠB-TUO)

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbbCCCQY
- *⇒ aaaaabbbbCCCQC*
- ⇒ aaaaabbbbCCXQC
- ⇒ aaaaabbbbCCXYC
- ⇒ aaaaabbbbCCQYC
- ⇒ aaaaabbbbCCQCC

- ⇒ aaaaabbbbCXQCC
- ⇒ aaaaabbbbCXYCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbbCCCQY
- ⇒ aaaaabbbbCCCQC
- ⇒ aaaaabbbbCCXQC
- ⇒ aaaaabbbbCCXYC
- ⇒ aaaaabbbbCCQYC
- ⇒ aaaaabbbbCCQCC

- ⇒ aaaaabbbbCXQCC
- ⇒ aaaaabbbbCXYCC
- ⇒ aaaaabbbbCQYCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbbCCCQY
- ⇒ aaaaabbbbCCCQC
- ⇒ aaaaabbbbCCXQC
- ⇒ aaaaabbbbCCXYC
- ⇒ aaaaabbbbCCQYC
- ⇒ aaaaabbbbCCQCC

- ⇒ aaaaabbbbCXQCC
- *⇒ aaaaabbbbCXYCC*
- ⇒ aaaaabbbbCQYCC
- ⇒ aaaaabbbbCQCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbCCCQY
- ⇒ aaaaabbbbCCCQC
- ⇒ aaaaabbbbCCXQC
- ⇒ aaaaabbbbCCXYC
- ⇒ aaaaabbbbCCQYC
- ⇒ aaaaabbbbCCQCC

- ⇒ aaaaabbbbCXQCC
- ⇒ aaaaabbbbCXYCC
- ⇒ aaaaabbbbCQYCC
- *⇒ aaaaabbbbCQCCC*
- *⇒* aaaaabbbbXQCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
- ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbCCCQY
- *⇒* aaaaabbbbCCCQC
- ⇒ aaaaabbbbCCXQC
- ⇒ aaaaabbbbCCXYC
- *⇒* aaaaabbbbCCQYC
- ⇒ aaaaabbbbCCQCC

- ⇒ aaaaabbbbCXQCC
- ⇒ aaaaabbbbCXYCC
- ⇒ aaaaabbbbCQYCC
- ⇒ aaaaabbbbCQCCC
- ⇒ aaaaabbbbXQCCC
- ⇒ aaaaabbbbXYCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to aSQ$$

$$S \to abC$$

$$bQC \to bbCC$$

$$C \to c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbCCCXQ
 ⇒ aaaaabbbbCCCXY
- ⇒ aaaaabbbbbCCCQY
- *⇒* aaaaabbbbCCCQC
- *⇒ aaaaabbbbCCXQC*
- ⇒ aaaaabbbbCCXYC
- ⇒ aaaaabbbbCCQYC
- ⇒ aaaaabbbbCCQCC

- ⇒ aaaaabbbbCXQCC
- *⇒ aaaaabbbbCXYCC*
- ⇒ aaaaabbbbbCQYCC
- ⇒ aaaaabbbbCQCCC
- *⇒ aaaaabbbbXQCCC*
- ⇒ aaaaabbbbXYCCC
- ⇒ aaaaabbbbQYCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbbCCCXQ
 ⇒ aaaaabbbbCCCXY
 ⇒ aaaaabbbbCCCQY
 ⇒ aaaaabbbbCCCQC
 ⇒ aaaaabbbbCCXQC
 ⇒ aaaaabbbbCCXYC
 ⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC
 ⇒ aaaaabbbbCXYCC
 ⇒ aaaaabbbbCQCCC
 ⇒ aaaaabbbbXQCCC
 ⇒ aaaaabbbbXYCCC
 ⇒ aaaaabbbbQYCCC
 ⇒ aaaaabbbbQCCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

Derivace slova aaaaabbbbbccccc:

⇒ aaaaabbbbCXQCC
 ⇒ aaaaabbbbCXYCC
 ⇒ aaaaabbbbCQYCC
 ⇒ aaaaabbbbCQCCC
 ⇒ aaaaabbbbXQCCC
 ⇒ aaaaabbbbXYCCC
 ⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbbbccccc
- ⇒ aaaaabbbbbcCCCC

- ⇒ aaaaabbbbCXQCC
- ⇒ aaaaabbbbCXYCC
- ⇒ aaaaabbbbCQYCC
- *⇒* aaaaabbbbCQCCC
- ⇒ aaaaabbbbXQCCC
- *⇒ aaaaabbbbXYCCC*
- ⇒ aaaaabbbbQYCCC
- ⇒ aaaaabbbbQCCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \rightarrow XQ$$

$$XQ \rightarrow XY$$

$$XY \rightarrow QY$$

$$QY \rightarrow QC$$

- \Rightarrow aaaaabbbbbbccccc
- ⇒ aaaaabbbbbcCCCC
- ⇒ aaaaabbbbbbccCCC

- ⇒ aaaaabbbbCXQCC
- *⇒ aaaaabbbbCXYCC*
- *⇒ aaaaabbbbCQYCC*
- *⇒ aaaaabbbbCQCCC*
- ⇒ aaaaabbbbXQCCC
- *⇒ aaaaabbbbXYCCC*
- ⇒ aaaaabbbbQYCCC
- ⇒ aaaaabbbbQCCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- *⇒* aaaaabbbbbCCCCC
- ⇒ aaaaabbbbbcCCCC
- ⇒ aaaaabbbbbccCCC
- ⇒ aaaaabbbbbcccCC

- ⇒ aaaaabbbbCXQCC
- *⇒ aaaaabbbbCXYCC*
- ⇒ aaaaabbbbCQYCC
- *⇒ aaaaabbbbCQCCC*
- ⇒ aaaaabbbbXQCCC
- *⇒ aaaaabbbbXYCCC*
- ⇒ aaaaabbbbQYCCC
- ⇒ aaaaabbbbQCCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- *⇒* aaaaabbbbbCCCCC
- ⇒ aaaaabbbbbcCCCC
- ⇒ aaaaabbbbbccCCC
- ⇒ aaaaabbbbbcccCC
- ⇒ aaaaabbbbbccccC

- ⇒ aaaaabbbbCXQCC
- *⇒ aaaaabbbbCXYCC*
- *⇒ aaaaabbbbCQYCC*
- ⇒ aaaaabbbbCQCCC
- ⇒ aaaaabbbbXQCCC
- ⇒ aaaaabbbbXYCCC
- ⇒ aaaaabbbbQYCCC
- ⇒ aaaaabbbbQCCCC

Příklad: Kontextová gramatika generující jazyk $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow aSQ$$

$$S \rightarrow abC$$

$$bQC \rightarrow bbCC$$

$$C \rightarrow c$$

$$CQ \to XQ$$

$$XQ \to XY$$

$$XY \to QY$$

$$QY \to QC$$

- ⇒ aaaaabbbbbbCCCCC
- ⇒ aaaaabbbbbcCCCC
- ⇒ aaaaabbbbbbccCCC
- ⇒ aaaaaabbbbbcccCC
- ⇒ aaaaabbbbbbccccC
- ⇒ aaaaabbbbbccccc

- ⇒ aaaaabbbbCXQCC
- *⇒ aaaaabbbbCXYCC*
- *⇒ aaaaabbbbCQYCC*
- ⇒ aaaaabbbbCQCCC
- *⇒ aaaaabbbbXQCCC*
- ⇒ aaaaabbbbXYCCC
- ⇒ aaaaabbbbQYCCC
- ⇒ aaaaabbbbQCCCC

Bezkontextové gramatiky

Dalším speciálním typem generativních gramatik jsou **bezkontextové gramatiky**.

Bezkontextové gramatiky jsou označovány též jako gramatiky typu 2.

Gramatika $\mathcal{G} = (\Pi, \Sigma, S, P)$ se nazývá **bezkontextová**, jestliže všechna její pravidla jsou tvaru

$$X \rightarrow \gamma$$

kde $X \in \Pi$, $\gamma \in (\Pi \cup \Sigma)^*$.

Příklad pravidla:

$$C \rightarrow DaBBc$$

Bezkontextové gramatiky

Poznámka: Ne každá bezkontextová gramatika je kontextová, protože bezkontextová gramatika může obsahovat i jiná ε -pravidla (tj. pravidla tvaru $X \to \varepsilon$) než $S \to \varepsilon$.

Libovolná bezkontextová gramatika bez ε -pravidel (resp. nanejvýš s jedním ε -pravidlem $S \to \varepsilon$, přičemž se neterminál S nenachází na pravé straně žádného pravidla) je speciálním případem kontextové gramatiky.

Ke každé bezkontextové gramatice $\mathcal G$ je možné sestrojit ekvivalentní bezkontextovou gramatiku bez ε -pravidel.

Ke každé bezkontextové gramatice tedy existuje ekvivalentní kontextová gramatika.

Regulární gramatiky

Připomeňme, že gramatika je **pravá** (resp. **levá**) **regulární** gramatika, jestliže všechna její pravidla jsou následujících dvou tvarů:

- $A \rightarrow wB$ (resp. $A \rightarrow Bw$)
- \bullet $A \rightarrow w$

kde $A, B \in \Pi, w \in \Sigma^*$.

Gramatika je **regulární**, jestliže se jedná o pravou nebo levou regulární gramatiku.

Regularní gramatiky jsou označovány jako gramatiky typu 3.

Je zjevné, že regulární gramatiky jsou speciálním případem bezkontextových gramatik.

Podle tvaru pravidel, která jsou v gramatice povolena, je tedy možné rozdělit gramatiky na následující čtyři typy:

- Typ 0 obecné generativní gramatiky pravidla bez omezení
- Typ 1 kontextové gramatiky pravidla tvaru $\alpha X \beta \to \alpha \gamma \beta$, kde $|\gamma| \ge 1$ (Výjimka $S \to \varepsilon$, ale S pak není na pravé straně žádného pravidla.)
- Typ 2 bezkontextové gramatiky pravidla tvaru X → γ
- Typ 3 regulární gramatiky pravidla tvaru $X \to wY$ (resp. $X \to Yw$) nebo $X \to w$

kde $\alpha, \beta, \gamma \in (\Pi \cup \Sigma)^*$, $X \in \Pi$ a $w \in \Sigma^*$

Jednotlivým typům gramatik odpovídají jednotlivé typy jazyků:

- Typ 0: Jazyk L je rekurzivně spočetný (či typu 0),
 jestliže existuje generativní gramatika, která tento jazyk generuje.
- Typ 1: Jazyk L je kontextový (či typu 1), jestliže existuje kontextová gramatika, která tento jazyk generuje.
- Typ 2: Jazyk L je bezkontextový (či typu 2), jestliže existuje bezkontextová gramatika, která tento jazyk generuje.
- Typ 3: Jazyk L je regulární (či typu 3), jestliže existuje regulární gramatika, která tento jazyk generuje.

Třídy jazyků:

• Příklad jazyka, který je bezkontextový, ale není regulární:

$$\{a^nb^n\mid n\geq 1\}$$

Příklad jazyka, který je kontextový, ale není bezkontextový:

$$\{a^nb^nc^n\mid n\geq 1\}$$

- Příklady jazyků, které jsou typu 0, ale nejsou kontextové:
 - Jazyk tvořený slovy, která reprezentují logicky platné formule predikátové logiky.
 - Jazyk tvořený slovy, která reprezentují kódy těch Turingových strojů, které při výpočtu nad prázdným slovem po konečném počtu kroků zastaví.
- Příklady jazyků, které nejsou typu 0:
 - Jazyk tvořený slovy, která reprezentují právě ty formule predikátové logiky, které nejsou logicky platné.
 - Jazyk tvořený slovy, která reprezentují kódy těch Turingových strojů, které při výpočtu nad prázdným slovem nikdy nezastaví.
 - Jazyk tvořený slovy, která reprezentují kódy těch Turingových strojů, které při výpočtu nad libovolným slovem vždy po konečném počtu kroků zastaví.

- Další možné charakterizace regulárních jazyků:
 - jazyky přijímané konečnými automaty (deterministickými, nedeterministickými, zobecněnými nedeterministickými)
 - jazyky, které je možné popsat pomocí regulárních výrazů
- Další možná charakterizace bezkontextových jazyků:
 - jazyky přijímané nedeterministickými zásobníkovými automaty
- Další možná charakterizace kontextových jazyků:
 - jazyky přijímané nedeterministickými lineárně omezenými automaty
- Další možná charakterizace jazyků typu 0:
 - jazyky přijímané (deterministickými či nedeterministickými)
 Turingovými stroji

Chomského hierarchie — shrnutí:

- Typ 0 rekurzivně spočetné jazyky:
 - obecné generativní gramatiky
 - Turingovy stroje (deterministické, nedeterministické)
- Typ 1 kontextové jazyky:
 - kontextové gramatiky
 - nedeterministické lineárně omezené automaty
- Typ 2 bezkontextové jazyky:
 - bezkontextové gramatiky
 - nedeterministické zásobníkové automaty
- Typ 3 regulární jazyky:
 - regulární gramatiky
 - konečné automaty (deterministické, nedeterministické)
 - regulární výrazy