## Sheet 10 solutions

July 3, 2017

## **Exercise 1: Bearing-only SLAM**

Bearing-only SLAM refers to the SLAM problem when the sensors can only measure the bearing of a landmark but not its range. One problem in bearing only SLAM with EKFs concerns the initialization of landmark location estimates, even if the correspondences are known. Discuss why, and devise a technique for initializing the landmark location estimates (means and covariances) that can be applied in bearing only SLAM.

A single bearing measurement in 2D gives mostly information about the angle  $\alpha$  of the landmark in the robot frame. The distance is only known to lie somewhere between zero and the maximum range reading  $d_{\max}$  of the detector.

For the EKF framework we will require the possible position of the landmark to be described by a 2D Gaussian ellipse. This assumption is certainly not well met in reality with a single bearing measurement. However, it will be ok once a second measurement is made from a different location.

One can choose the mean position of the landmark to be at the center between the robot and the maximum range reading with  $d = d_{\text{max}}/2$ :

$$\left(\begin{array}{c} x_l \\ y_l \end{array}\right) = d \left(\begin{array}{c} \cos \alpha \\ \sin \alpha \end{array}\right)$$

The uncertainty of the landmark position is described by a 2D Gaussian ellipse with axes  $a_1$  and  $a_1$ . The covariance matrix is then given in the landmark frame ( $\vec{x}$  pointing to the robot) as

$$E = \left(\begin{array}{cc} a_1^2 & 0\\ 0 & a_2^2 \end{array}\right)$$

The larger axis  $a_1$  corresponds to the uncertainty of the landmark distance, which can be chosen e.g. as  $a_1 = d$ . The angular uncertainty is given by  $a_2 = d \sin \sigma_{\alpha} \approx d \sigma_{\alpha}$ .

The covariance in the robot frame is  $C_2 = RER^T$ , where  $R(\alpha)$  is the usual 2D rotation matrix. This is illustrated in the following figure, which can be found along more details in: A. Costa, G. Kantor, H. Choset, "Bearing-only Landmark Initialization with Unknown Data Association", ICRA proceedings, 2004.



Once a new measurement from a different location is available, the landmark position distribution is described by the multiplication of two lengthy ellipses at different angles, resulting in a more circular distribution (corresponding to the overlap of the ellipses).

## **Exercise 2: Data Association**

Features extracted from an observation can be interpreted as either matches with existing features in a map, previously unobserved features, or false alarms (noise). Consider two features  $z_t^1$  and  $z_t^2$  extracted from an observation  $z_t$ , and a map  $m_t = \{l_1, l_2\}$  with two landmarks. Each observed feature  $z_t^i$  is either assigned to an existing or a new landmark, or it is marked as a false alarm.

(a) Write down all possible assignments for the two observed features  $z_t^1$  and  $z_t^2$ . Note that each feature can be associated to at most one landmark and vice versa.

At maximum one observation  $z_t^{1,2}$  is assigned to each landmark  $l_{1,2}$ . A new landmark  $l_3$  is initialized if one observation cannot be assigned, and a second new landmark  $l_4$  is initialized only if both observations cannot be assigned. The possible solutions are (fa is false alarm):

| Solution    | $l_1$                                                                                                        | $\frac{l_2}{z_t^2}$                                            | $l_3$                                                                                                                                                                         | $l_4$                         | fa                                                                                                   | fa      |
|-------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|---------|
| 1           | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                                | $z_t^2$                                                        |                                                                                                                                                                               |                               |                                                                                                      |         |
| 2           | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                                |                                                                | $z_t^2$                                                                                                                                                                       |                               |                                                                                                      |         |
| 2<br>3      | $\begin{array}{c c} l_1 \\ \mathbf{Z_t^1} \\ \mathbf{Z_t^1} \\ \mathbf{Z_t^1} \\ \mathbf{Z_t^2} \end{array}$ |                                                                |                                                                                                                                                                               |                               | $z_t^2$                                                                                              |         |
| 4           | $z_t^2$                                                                                                      | $\mathbf{z}_{\mathrm{t}}^{1}$                                  |                                                                                                                                                                               |                               |                                                                                                      |         |
| 4<br>5<br>6 |                                                                                                              | $\mathbf{z}_{\mathrm{t}}^{1}$                                  | $z_t^2$                                                                                                                                                                       |                               |                                                                                                      |         |
| 6           |                                                                                                              | $\mathbf{z}_{t}^{1}$ $\mathbf{z}_{t}^{1}$ $\mathbf{z}_{t}^{1}$ |                                                                                                                                                                               |                               | $z_t^2$                                                                                              |         |
| 7           | $z_t^2$                                                                                                      |                                                                | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                                                                                                 |                               |                                                                                                      |         |
| 7<br>8<br>9 |                                                                                                              | $z_t^2$                                                        | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                                                                                                 |                               |                                                                                                      |         |
| 9           |                                                                                                              |                                                                | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                                                                                                 | $z_t^2$                       |                                                                                                      |         |
| 10          |                                                                                                              |                                                                | $\begin{bmatrix} \mathbf{z}_{\mathbf{t}}^1 \\ \mathbf{z}_{\mathbf{t}}^1 \\ \mathbf{z}_{\mathbf{t}}^1 \\ \mathbf{z}_{\mathbf{t}}^1 \\ \mathbf{z}_{\mathbf{t}}^1 \end{bmatrix}$ |                               | $z_t^2$                                                                                              |         |
| 11          |                                                                                                              |                                                                | $z_t^2$                                                                                                                                                                       | $\mathbf{z}_{\mathrm{t}}^{1}$ |                                                                                                      |         |
| 12          | $z_t^2$                                                                                                      |                                                                |                                                                                                                                                                               |                               | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                        |         |
| 13          |                                                                                                              | $z_t^2$                                                        |                                                                                                                                                                               |                               | $\mathbf{z_t^1}$                                                                                     |         |
| 14          |                                                                                                              |                                                                | $z_t^2$                                                                                                                                                                       |                               | $\mathbf{z}_{\mathrm{t}}^{1}$                                                                        |         |
| 15          |                                                                                                              |                                                                |                                                                                                                                                                               |                               | $\begin{bmatrix} \mathbf{z}_t^1 \\ \mathbf{z}_t^1 \\ \mathbf{z}_t^1 \\ \mathbf{z}_t^1 \end{bmatrix}$ | $z_t^2$ |

In total 15 possible solutions can be found. The solutions 9 and 11 are equivalent if the order of new assignments is fixed, such that only 14 solutions remain.

- (b) Now consider an update of the map to obtain  $m_{t+1}$ . Here, every new feature is added to the map as a new landmark, and every existing landmark without a match is removed. Suppose no false alarm is detected. How many solutions for the assignments remain? Are there any two solutions that will result in the same map?
  - If no false alarms is detected, seven solutions remain in the table above. Each of the solutions results in a map with two landmarks (corresponding to the two observed features). Some solutions result in the same landmarks indices (e.g. solution 5 and 8 will both result in  $m_{t+1} = \{l_2, l_3\}$ ). However, the resulting maps can still differ, since the landmark positions are updated with different observed feature positions.
- (c) How many new assignments can be generated from this set of maps in total if at time t+1 a single feature  $z_{t+1}^1$  is observed?

Seven possible maps remain from the previous time step, each with two landmarks  $l_{a,b}$ . For each of these maps, exactly four new assignments can be made:

$$z_{t+1}^1 \to l_a \qquad z_{t+1}^1 \to l_b \qquad z_{t+1}^1 \to l_{\text{new}} \qquad z_{t+1}^1 \to fa$$

in total  $7 \cdot 4 = 28$  possible assignments are found.