Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $1 \ / \ 4 \ / \ 1$

Выполнил: студент 102 группы Титушин А. Д.

> Преподаватель: Кулагин А. В.

Содержание

Іостановка задачи		
Математическое обоснование	3	
Результаты экспериментов	5	
Структура программы и спецификация функций 1. Модуль main.c.	6 7	
Сборка программы (Маке-файл) Текст Makefile:	8	
Отладка программы, тестирование функций	9	
Программа на Си и на Ассемблере	10	
Анализ допущенных ошибок	11	
Список цитируемой литературы	12	

Постановка задачи

Требуется реализовать численный метод, позволяющий с заданной точностью $\varepsilon=0.001$ вычислить площадь плоской фигуры, ограниченной тремя кривыми $f_1=2^x+1,\ f_2=x^5,\ f_3=\frac{1-x}{3}.$ В начале необходимо найти точки пересечения кривых комбинированным методом хорд и касательных, предварительно определив отрезки, на которых будут пересечения. Далее требуется реализовать функцию вычисления интеграла при помощи формулы прямоугольников. В результате программа должна печатать площадь найденной области между тремя функциями. Функции нахождения точек пересечения и интеграла должны быть предварительно протестированы.

Математическое обоснование

Выбор отрезков.

Для корректного применения комбинированного метода хорд и касательных для нахождения точек пересечения функций f_1, f_2, f_3 на отрезке [a, b] необходимы и достаточны следующие условия:

- 1) На концах отрезка функция F(x) = f(x) g(x) имеет разные знаки, и на всём отрезке производная функции не меняет знак.
- 2) На данном отрезке первая и вторая производные функции F(x) не меняют свой знак (не обращаются в ноль) [2].

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

$$f_1' = 2^x ln(2); f_2' = 5x^4; f_3' = \frac{-1}{3}; f_1'' = ln(2)^2 2^x; f_2'' = 20x^3; f_3'' = 0$$

Рассмотрим $f(x)=f_1(x),\ g(x)=f_2(x)$ (рис. 1) на отрезке [0,3]. $F(0)=f(0)-g(0)=1+1-0=2\Rightarrow F(0)>0.$ $F(3)=f(3)-g(3)=8+1-32=-23\Rightarrow F(3)<0.$ $F'(x)=f'(x)-g'(x)=2^x*ln(2)-5x^4<0\ \forall x>0$ $F''(x)=ln(2)^22^x-20x^3<0\ \forall x>0$

 \Rightarrow отрезок [0, 3] удовлетворяет всем условиям для применения метода хорд и касательных.

Рассмотрим $f(x) = f_2(x), g(x) = f_3(x)$ (рис. 1) на отрезке [0,3].

$$F(0) = f(0) - g(0) = 0 - 1/3 \Rightarrow F(0) < 0.$$

$$F(3) = f(3) - g(3) = 243 + 2/3 \Rightarrow F(3) > 0.$$

$$F'(x) = f'(x) - g'(x) = 5x^4 + 1/3 > 0 \ \forall x > 0$$

$$F''(x) = 20x^3 > 0 \ \forall x > 0$$

 \Rightarrow отрезок [0, 3] удовлетворяет всем условиям для применения метода хорд и касательных.

Аналогично рассмотрим пару функций $f(x) = f_1(x), g(x) = f_3(x)$. Подходит отрезок [-3, 0].

Интегрирование и выбор точностей вычислений ε_1 , ε_2 .

Требовалось реализовать интегрирование функции на отрезке [a, b] при помощи формулы прямоугольников:

$$I_n = \int_a^b F(x)dx = h(F_0 + F_1 + \dots + F_{n-1}); \ F_i = F(a + (i+0.5)h); \ h = \frac{(b-a)}{n}$$

Для обеспечения требуемой точности ε_1 при приближенном вычислении интеграла F(x) по формуле прямоугольников нужно подобрать соответствующее число п разбиений отрезка интегрирования. Для достижения требуемой точности берется некоторое начальное число разбиений n_0 (в данной программе 20000) и последовательно вычисляются значения I_n при п, равном $2n_0$, $4n_0$, $8n_0$ и т.д. Известно правило Рунге $|I-I_n|\cong \frac{1}{3}|I_n-I_{2n}|$. Согласно этому правилу, когда на очередном шаге величина $\frac{1}{3}|I_n-I_{2n}|$ окажется меньше ε_1 , в качестве приближенного значения для I можно взять I_{2n} [2].

Значит, достаточно посчитать интеграл два раза и сравнить $\frac{|I_{2n}-I_n|}{3}$. Итоговая точность должна быть равна 0.001. Рассмотрим, как ε_1 и ε_2 влияют на конечный результат: Итоговый результат вычисляется как $I_1-I_2-I_3$, где I_i это интеграл функции f_i от точки пересечения с f_j до точки пересечения с f_s . Следовательно итоговый результат отличается не более чем на $3\varepsilon_2$. Пусть точки пересечений функци вычисляются с точностью ε_1 , тогда интегралы, вычисленные с точностью ε_2 , будут еще зависеть и от ε_1 . Получаем: $3*\varepsilon_1^2+3*\varepsilon_2<0.001$ \Rightarrow можем взять $\varepsilon_1=\varepsilon_2=0.0001$.

Результаты экспериментов

В результате проведенных вычислений получены координаты точек пересечения кривых f_1, f_2, f_3 (таблица 1) и площадь фигуры $S = \int\limits_{-2.522}^{1.279} f_1(x) dx - \int\limits_{-2.522}^{0.651} f_2(x) dx - \int\limits_{0.651}^{1.279} f_3(x) dx = 7.05082$ - 2.04711 - 0.716892 = 4.2868 (рис. 2).

Кривые	x	y
1 и 2	1.2793	3.427
2 и 3	0.651	0.116
1 и 3	-2.522	1.174

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из 1 модуля на языке С и 1 модуля на Ассемблере NASM.

1. Модуль main.c.

- 1) int main(int argc, char* argv[]) принимает на вход аргументы int argc, char* argv[] из командной строки и обрабатывает их на совпадение с ключами (-help, -iterations, -testintegral, -testroot, -root, -functions).
- 2) void help() функция, вызываемая ключом -help из командной строки, печатает на стандартный поток вывода список ключей для работы с программой.
- 3) void iterations() функция, вызываемая ключом -iterations из командной строки, печатает на стандартный поток вывода координаты точек пересечения функций и количество итераций вычисления.
- 4) void abscissas() функция, вызываемая ключом -root из командной строки, печатает на стандартный поток вывода абсциссы точек пересечения функций.
- 5) void functions () функция, вызываемая ключом -functions из командной строки, печатает на стандартный поток вывода функции f_1, f_2, f_3 .
- 6) double integral(double (*f)(double), double a, double b, double eps) функция подсчета интеграла при помощи формулы прямоугольников. Принимает на вход функцию f, левую и правую границы отрезка, на котором вычисляется интеграл, и требуемую точность вычислений.
- 7) double root(double (*f)(double), double (*g)(double), double (*df) (double), double (*dg)(double), double a, double b, double eps) функция вычисления абсцисс пересечения кривых при помощи комбинированного метода хорд и касательных; принимает на вход две функции, левую и правую границу отрезка, на котором существует точка пересечения, соответствующие производные для функций и требуемую точность вычислений.
- 8) chord_method(double (*f)(double), double (*g)(double), double a, double b, double *A, double *B) функция реализующая метод хорд для поиска точки пересечения функций; принимает на вход две функции, левую и правую границу отрезка, приближаемые к точке пересечения границы, которые изменяются в ходе поисков корня.
- 9) double tangent_method(double (*f)(double), double (*g)(double), double (*df) (double), double (*dg)(double), double a, double b, double *A, double *B) функция реализующая метод касательных для поиска точки пересечения функций; принимает на вход две функции, соотвествующие им производные, левую и правую границу отрезка, приближаемые к точке пересечения границы, которые изменяются в ходе поисков корня.
- 10) int case_choice(double (*f)(double), double (*g)(double), double a, double b) функция, выбирающая случай сближения слева/справа для метода хорд и касательных; принимает на вход две функции, левую и правую границу отрезка.
 - 11) void test_integral(char* function, char* x, char* y, char* eps_c)

- функция, вызываемая ключом -testintegral из командной строки, печатает на стандартный поток вывода значение интеграла от введенной функции на заданном пользователем отрезке. Принимает на вход функцию $f_1/f_2/f_3$, границы отрезка интегрирования и точность вычислений.
- 12) void test_root(char* function_1, char* function_2, char* x, char* y, char* eps_c) функция, вызываемая ключом -testroot из командной строки, печатает на стандартный поток вывода абсциссу точки пересечения введенных функций на заданном пользователем отрезке. Принимает на вход две функции $f_1/f_2/f_3$, границы отрезка для нахождения корня и точность вычислений.

2. Модуль functions.asm.

- 1) f_1 функция, принимающая на вход координату double x, вычисляет в ней значение функции $f_1(x) = 2^x + 1$.
- 2) f_2 функция, принимающая на вход координату double x, вычисляет в ней значение функции $f_2(x) = x^5$.
- 3) f_3 функция, принимающая на вход координату double x, вычисляет в ней значение функции $f_3(x) = (1-x)/3$.
- 4) df_1 функция, принимающая на вход координату double x, вычисляет в ней значение производной функции $f'_1(x) = ln(2)2^x$.
- 5) df_2 функция, принимающая на вход координату double x, вычисляет в ней значение производной функции $f_2'(x) = 5x^4$.
- 6) df_3 функция, принимающая на вход координату double x, вычисляет в ней значение производной функции $f_3'(x) = -1/3$.

Рис. 3: Работа программы

Сборка программы (Маке-файл)

Makefile собирает модули в файл program. Сборка осуществляется по ключу all, а удаление промежуточных файлов — по ключу clean.

Текст Makefile:

```
all: main.o functions.o
    @gcc -m32 -o program main.o functions.o -lm
main.o: main.c
    @gcc -m32 -std=c99 -c -o main.o main.c
functions.o: functions.asm
    @nasm -f elf32 -o functions.o functions.asm
clean:
    rm -rf *.o
```


Рис. 4: Зависимость между модулями

Рис. 5: Работа программы

Отладка программы, тестирование функций

Программа была протестирована, проведена проверка корректности работы функций f_1 , f_2 , f_3 , df_1 , df_2 , df_3 , а также функций нахождения корня и интеграла. Результаты тестирования представлены в таблицах 2, 3, 4.

Функции	Результат работы функции root	Точное значение
f_1, f_2	1.279347	1.27935
f_2, f_3	0.650503	0.65052
f_1, f_3	-2.522223	-2.52222

Таблица 2: Тестирование функции root

Функция	Отрезок	Результат функции integral	Точное значение
$f_1 = 2^x + 1$	[-10.98, 15.67]	75243.400407	75243.40045
$f_2 = x^5$	[0.5, 8]	43690.664033	43690.66406
$f_3 = \frac{(1-x)}{3}$	[-8, 5]	10.83333	10.83333

Таблица 3: Тестирование функции integral

Функция	координата х	Результат работы функций	Точное значение
f_1	5	33	33
f_1	-4.67	1.03928	1.03928
df_1	5	22.18071	22.18071
df_1	-4.67	0.027228	0.027228
f_2	2.89	201,59939	201,59939
f_2	-9.8	-90392.07968	-90392.07968
df_2	2.89	348,78787	348,78787
df_2	-9.8	46118,408	46118,408
f_{-3}	0.05	0.316666	0.316
$f_{-}3$	-98	33	33
df_3	0.05	-0.3333	-0.3333
df_3	-98	-0.3333	-0.3333

Таблица 4: Тестирование функций f 1, f 2, f 3, df 1, df 2, df 3

Для тестирования программы предусмотрены ключи командной строки:

- 1) Для тестирования функции нахождения точек пересечения -testroot <первая функция> <вторая функция> <левая граница отрезка> <правая граница отрезка> <точность вычислений>.
- 2) Для тестирования функции нахождения интеграла -testintegral <функция> <левая граница интегрирования> <правая граница интегрирования> <точность вычислений>.

Программа на Си и на Ассемблере

Тексты программ находятся в архиве titushin_report.zip, приложенном к отчёту.

Анализ допущенных ошибок

В процессе выполнения работы ошибок допущено не было.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Трифонов Н.П., Пильщиков В.Н. Задания практикума на ЭВМ. Москва: Издательский отдел факультета вычислительной математики и кибернетики МГУ им. М.В.Ломоносова, 2001.