

LEDs

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

LEDs et circuits d'émission

Caractéristiques électriques d'une LED

Forward Voltage(V)
FORWARD CURRENT Vs.
FORWARD VOLTAGE

Kingbright

High Efficiency Red

L-53ID

Caractéristiques électriques d'une LED

Idéalement : source de courant

Absolute Maximum Ratings at T_A=25°C

Parameter	High Efficiency Red				
Power dissipation	105	mW			
DC Forward Current	30				
Peak Forward Current [1]	160	mA			
Reverse Voltage	5				
Operating/Storage Temperature	-40°C To +85°C				
Lead Solder Temperature [2]	260°C For 5 Seconds				

Notes:

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.

L-53ID

Kingbright

High Efficiency Red

Photodétection

Opto-Electronique / Semestre 5
Institut d'Optique

Julien VILLEMEJANE

Photodiode, une diode mais...

 $I_{photo} = S_{\lambda} \cdot \eta \cdot \Phi_{photo}$ Sensibilité spectrale

Rendement quantique

https://www.youtube.com/watch?v=KgKcbW77txY

https://www.youtube.com/watch?v=rNoHLOumplk

Photodiode, une diode mais...

Photocurrent/Open-Circuit Voltage

$$I_{P} (V_{R} = 5 V) / V_{O} = f (E_{v})$$

Photodétection

Montage simple

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Montage de photodétection

Montage de photodétection

Etude expérimentale

Modélisation

Bande passante réduite (à cause du système de mesure)

Modélisation

Bande passante réduite (à cause du système de mesure)

Amélioration / Montage Suiveur

Photodétection

Montage transimpédance

Opto-Electronique / Semestre 5
Institut d'Optique

Julien VILLEMEJANE

Montage transimpédance

Flux

lumineux

Rendement quantique

Sensibilité

spectrale

$$V_{S} = -R_{PhD} \cdot I_{photo}$$

Etude expérimentale

$$V_{S} = -R_{PhD} \cdot I_{photo}$$

Modélisation

DC BW BC BW A DC BW G 1.50Vpp 0mv

ALI / Passe-bas

Figure 6-41. Maximum Peak Output Voltage vs Frequency

INPUT CAPACITANCE								
Z _{ID}	Differential			100 2		MΩ pF		
Z _{ICM}	Common-mode			6 1		TΩ pF		
OPEN-LOOP GAIN								
A _{OL}	Open-loop voltage gain	V _S = 40 V, V _{CM} = V _S / 2, (V _{CC} -) + 0.3 V < V _O < (V _{CC} +) - 0.3 V	118	125		dB		
A _{OL}	Open-loop voltage gain	$V_S = 40 \text{ V}, V_{CM} = V_S / 2, R_L = 2 \text{ k}\Omega, (V_{CC-}) + 1.2 \text{ V} < V_O < (V_{CC+}) - 1.2 \text{ V}$	115	120		dB		
FREQUENCY RESPONSE								
GBW	Gain-bandwidth product			5.25		MHz		
SR	Slew rate	V _S = 40 V, G = +1, C _L = 20 pF		20		V/µs		

ALI asservi / Modélisation

Figure 6-41. Maximum Peak Output Voltage vs Frequency

$$A(j\omega) = \frac{A_{MAX}}{1 + j\frac{\omega}{\omega_c}}$$

$$V_S = \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} V_E$$

Transimpédance / Modélisation

$$\frac{\boldsymbol{V}_{S}}{\boldsymbol{I}_{Phd}} = \frac{\boldsymbol{R}_{T} \cdot \boldsymbol{A}_{0}}{(1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\omega_{0}}) \cdot (1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\omega_{c}}) + \boldsymbol{A}_{0}}$$

$$V_S = \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} V_E$$