PID AND PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER CONVERTERS USING MATLAB®/SIMULINK®

PID AND PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER CONVERTERS USING MATLAB®/SIMULINK®

Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng

This edition first published 2015 © 2015 John Wiley & Sons Singapore Pte. Ltd.

Registered office

John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628.

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628, tel: 65-66438000, fax: 65-66438008, email: enquiry@wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

Library of Congress Cataloging-in-Publication Data applied for.

Hardback ISBN: 9781118339442

Typeset in 9/11pt TimesLTStd by Laserwords Private Limited, Chennai, India

1 2015

Contents

About the Authors		xiii	
Prefa	ace		xv
Acknowledgment			xix
List of Symbols and Acronyms		xxi	
1	Model	ing of AC Drives and Power Converter	1
1.1	Space	Phasor Representation	1
	1.1.1	Space Vector for Magnetic Motive Force	1
	1.1.2	Space Vector Representation of Voltage Equation	4
1.2	Model	of Surface Mounted PMSM	5
	1.2.1	Representation in Stationary Reference ($\alpha - \beta$) Frame	5
	1.2.2	Representation in Synchronous Reference $(d-q)$ Frame	7
	1.2.3	Electromagnetic Torque	8
1.3	Model	of Interior Magnets PMSM	10
	1.3.1	Complete Model of PMSM	11
1.4		it Model and PMSM Parameters	11
	1.4.1	Per Unit Model and Physical Parameters	11
	1.4.2	Experimental Validation of PMSM Model	12
1.5	Modeling of Induction Motor		13
	1.5.1	Space Vector Representation of Voltage Equation of Induction Motor	13
	1.5.2	Representation in Stationary $\alpha - \beta$ Reference Frame	17
	1.5.3	Representation in $d-q$ Reference Frame	17
	1.5.4	Electromagnetic Torque of Induction Motor	19
	1.5.5	Model Parameters of Induction Motor and Model Validation	19
1.6		ing of Power Converter	21
	1.6.1	Space Vector Representation of Voltage Equation for Power Converter	22
	1.6.2	Representation in $\alpha - \beta$ Reference Frame	22
	1.6.3	Representation in $d-q$ Reference Frame	23
	1.6.4	Energy Balance Equation	24
1.7	Summ		25
1.8		r Reading	25
Dafa	ronooc		25

vi Contents

2	Contro	ol of Semiconductor Switches via PWM Technologies	27	
2.1	Topolo	ogy of IGBT Inverter	28	
2.2	Six-ste	p Operating Mode	30	
2.3	Carrie	Carrier Based PWM		
	2.3.1	Sinusoidal PWM	31	
	2.3.2	Carrier Based PWM with Zero-sequence Injection	32	
2.4	Space	Vector PWM	35	
2.5	Simula	ation Study of the Effect of PWM	37	
2.6	Summ	ary	40	
2.7	Furthe	r Reading	40	
Refe	rences		40	
3		ontrol System Design for Electrical Drives and Power Converters	41	
3.1	Overvi	ew of PID Control Systems Using Pole-assignment Design Techniques	42	
	3.1.1	PI Controller Design	42	
	3.1.2	Selecting the Desired Closed-loop Performance	43	
	3.1.3	Overshoot in Reference Response	45	
	3.1.4	PID Controller Design	46	
	3.1.5	Cascade PID Control Systems	48	
3.2	Overvi	ew of PID Control of PMSM	49	
	3.2.1	Bridging the Sensor Measurements to Feedback Signals (See the lower part of Figure 3.6)	50	
	3.2.2	Bridging the Control Signals to the Inputs to the PMSM (See the top part of Figure 3.6)	51	
3.3	PI Con	PI Controller Design for Torque Control of PMSM		
	3.3.1	Set-point Signals to the Current Control Loops	52 52	
	3.3.2	Decoupling of the Current Control Systems	53	
	3.3.3	PI Current Controller Design	54	
3.4	Velocit	ty Control of PMSM	55	
	3.4.1	Inner-loop Proportional Control of q-axis Current	55	
	3.4.2	Cascade Feedback Control of Velocity: P Plus PI	57	
	3.4.3	Simulation Example for P Plus PI Control System	59	
	3.4.4	Cascade Feedback Control of Velocity:PI Plus PI	61	
	3.4.5	Simulation Example for PI Plus PI Control System	63	
3.5	PID Co	ontroller Design for Position Control of PMSM	64	
3.6		ew of PID Control of Induction Motor	65	
	3.6.1	Bridging the Sensor Measurements to Feedback Signals	67	
	3.6.2	Bridging the Control Signals to the Inputs to the Induction Motor	67	
3.7	PID Co	ontroller Design for Induction Motor	68	
	3.7.1	PI Control of Electromagnetic Torque of Induction Motor	68	
	3.7.2	Cascade Control of Velocity and Position	70	
	3.7.3	Slip Estimation	73	
3.8	Overvi	ew of PID Control of Power Converter	74	
	3.8.1	Bridging Sensor Measurements to Feedback Signals	75	
	3.8.2	Bridging the Control Signals to the Inputs of the Power Converter	76	
3.9		rent and Voltage Controller Design for Power Converter	76	
	3.9.1	P Control of d-axis Current	76	
	3.9.2	PI Control of q-axis Current	77	
	3.9.3	PI Cascade Control of Output Voltage	79	

10.1002/9781118339499 finater, Downloaded from https://onlinehbmay.wiley.com/wid/10.1002/9781118339499 finater by Hely Angel University, Wiley Online Library on [25.03.2025]. See the Ferms and Conditions (https://onlinehbmay.wiley.com/mitmethon.) on Wiley Online Library on (25.03.2025). The conditions of the propriet of the common file of the common fil

Contents

	204		0.0
	3.9.4	Simulation Example	80
2 10	3.9.5	Phase Locked Loop	80
3.10	Summ		82
3.11		r Reading	83
Refer	ences		83
4		ontrol System Implementation	87
4.1	P and l	PI Controller Implementation in Current Control Systems	87
	4.1.1	Voltage Operational Limits in Current Control Systems	87
	4.1.2	Discretization of Current Controllers	90
	4.1.3	Anti-windup Mechanisms	92
4.2	_	nentation of Current Controllers for PMSM	93
4.3	_	nentation of Current Controllers for Induction Motors	95
	4.3.1	Estimation of ω_s and θ_s	95
	4.3.2	Estimation of ψ_{rd}	96
4 4	4.3.3	The Implementation Steps	97
4.4	4.4.1	t Controller Implementation for Power Converter Constraints on the Control Variables	97 97
15			98
4.5	4.5.1	nentation of Outer-loop PI Control System Constraints in the Outer-loop	98
	4.5.2	Over Current Protection for AC Machines	99
	4.5.3	Implementation of Outer-loop PI Control of Velocity	100
	4.5.4	Over Current Protection for Power Converters	100
4.6		AB Tutorial on Implementation of PI Controller	100
4.7	Summ	-	102
4.8		r Reading	103
Refer			103
5	Tuning	g PID Control Systems with Experimental Validations	105
5.1		vity Functions in Feedback Control Systems	105
J.1	5.1.1	Two-degrees of Freedom Control System Structure	105
	5.1.2	Sensitivity Functions	109
	5.1.3	Disturbance Rejection and Noise Attenuation	110
5.2		g Current-loop q -axis Proportional Controller (PMSM)	111
	5.2.1	Performance Factor and Proportional Gain	112
	5.2.2	Complementary Sensitivity Function	112
	5.2.3	Sensitivity and Input Sensitivity Functions	114
	5.2.4	Effect of PWM Noise on Current Proportional Control System	114
	5.2.5	Effect of Current Sensor Noise and Bias	116
	5.2.6	Experimental Case Study of Current Sensor Bias Using P Control	118
	5.2.7	Experimental Case Study of Current Loop Noise	119
5.3	Tuning	g Current-loop PI Controller (PMSM)	123
	5.3.1	PI Controller Parameters in Relation to Performance Parameter γ	123
	5.3.2	Sensitivity in Relation to Performance Parameter γ	124
	5.3.3	Effect of PWM Error in Relation to γ	126
	5.3.4	Experimental Case Study of Current Loop Noise Using PI Control	126
5.4		mance Robustness in Outer-loop Controllers	128
	5.4.1	Sensitivity Functions for Outer-loop Control System	131
	5.4.2	Input Sensitivity Functions for the Outer-loop System	135

viii Contents

5.5	Analys	is of Time-delay Effects	136
	5.5.1	PI Control of q-axis Current	137
	5.5.2	P Control of q-axis Current	137
5.6	Tuning	Cascade PI Control Systems for Induction Motor	138
	5.6.1	Robustness of Cascade PI Control System	140
	5.6.2	Robustness Study Using Nyquist Plot	143
5.7	Tuning	PI Control Systems for Power Converter	147
	5.7.1	Overview of the Designs	147
	5.7.2	Tuning the Current Controllers	149
	5.7.3	Tuning Voltage Controller	150
	5.7.4	Experimental Evaluations	154
5.8	Tuning	P Plus PI Controllers for Power Converter	157
	5.8.1	Design and Sensitivity Functions	157
	5.8.2	Experimental Results	158
5.9	Robust	ness of Power Converter Control System Using PI Current Controllers	159
	5.9.1	Variation of Inductance Using PI Current Controllers	160
	5.9.2	Variation of Capacitance on Closed-loop Performance	163
5.10	Summa	ıry	167
	5.10.1	Current Controllers	167
	5.10.2	Velocity, Position and Voltage Controllers	168
	5.10.3	Choice between P Current Control and PI Current Control	169
5.11	Further	Reading	169
Refer	ences		169
6		redictive Control in $d-q$ Reference Frame	171
6.1		of IGBT Inverter and the Operational Constraints	172
6.2		edictive Control of PMSM	175
6.3		AB Tutorial on Real-time Implementation of FCS-MPC	177
	6.3.1	Simulation Results	179
	6.3.2	Experimental Results of FCS Control	181
6.4	-	is of FCS-MPC System	182
	6.4.1	Optimal Control System	182
	6.4.2	Feedback Controller Gain	184
	6.4.3	Constrained Optimal Control	185
6.5		ew of FCS-MPC with Integral Action	187
6.6		ion of I-FCS Predictive Control Algorithm	191
	6.6.1	Optimal Control without Constraints	191
	6.6.2	I-FCS Predictive Controller with Constraints	194
	6.6.3	Implementation of I-FCS-MPC Algorithm	196
6.7		AB Tutorial on Implementation of I-FCS Predictive Controller	197
	6.7.1	Simulation Results	198
6.8	I-FCS I	Predictive Control of Induction Motor	201
	6.8.1	The Control Algorithm for an Induction Motor	202
	6.8.2	Simulation Results	204
	6.8.3	Experimental Results	205
6.9	I-FCS I	Predictive Control of Power Converter	209
	6.9.1	I-FCS Predictive Control of a Power Converter	209
	6.9.2	Simulation Results	211
	6.9.3	Experimental Results	214

6.10	Evaluat	tion of Robustness of I-FCS-MPC via Monte-Carlo Simulations	215
	6.10.1	Discussion on Mean Square Errors	216
6.11	Velocit	y and Position Control of PMSM Using I-FCS-MPC	218
	6.11.1	Choice of Sampling Rate for the Outer-loop Control System	219
	6.11.2	Velocity and Position Controller Design	223
6.12	Velocit	y and Position Control of Induction Motor Using I-FCS-MPC	224
	6.12.1	I-FCS Cascade Velocity Control of Induction Motor	225
	6.12.2	I-FCS-MPC Cascade Position Control of Induction Motor	226
	6.12.3	Experimental Evaluation of Velocity Control	228
6.13	Summa	ury	232
	6.13.1	Selection of sampling interval Δt	233
	6.13.2	Selection of the Integral Gain	233
6.14	Further	Reading	234
Refer	ences		234
7	FCS P	redictive Control in $\alpha - \beta$ Reference Frame	237
7.1	FCS Pr	edictive Current Control of PMSM	237
	7.1.1	Predictive Control Using One-step-ahead Prediction	238
	7.1.2	FCS Current Control in $\alpha - \beta$ Reference Frame	239
	7.1.3	Generating Current Reference Signals in $\alpha - \beta$ Frame	240
7.2	Resona	nt FCS Predictive Current Control	241
	7.2.1	Control System Configuration	241
	7.2.2	Outer-loop Controller Design	242
	7.2.3	Resonant FCS Predictive Control System	243
7.3	Resona	nt FCS Current Control of Induction Motor	247
	7.3.1	The Original FCS Current Control of Induction Motor	247
	7.3.2	Resonant FCS Predictive Current Control of Induction Motor	250
	7.3.3	Experimental Evaluations of Resonant FCS Predictive Control	252
7.4	Resona	nt FCS Predictive Power Converter Control	255
	7.4.1	FCS Predictive Current Control of Power Converter	255
	7.4.2	Experimental Results of Resonant FCS Predictive Control	260
7.5	Summa	ury	261
7.6	Further	Reading	262
Refer	ences		262
8	Discret	e-time Model Predictive Control (DMPC) of Electrical Drives	
	and Po	wer Converter	265
8.1	Linear	Discrete-time Model for PMSM	266
	8.1.1	Linear Model for PMSM	266
	8.1.2	Discretization of the Continuous-time Model	267
8.2	Discret	e-time MPC Design with Constraints	268
	8.2.1	Augmented Model	269
	8.2.2	Design without Constraints	270
	8.2.3	Formulation of the Constraints	272
	8.2.4	On-line Solution for Constrained MPC	272
8.3	Experi	mental Evaluation of DMPC of PMSM	274
	8.3.1	The MPC Parameters	274
	8.3.2	Constraints	275

Contents

	8.3.3	Response to Load Disturbances	275
	8.3.4	Response to a Staircase Reference	277
	8.3.5	Tuning of the MPC controller	278
8.4	Power	Converter Control Using DMPC with Experimental Validation	280
8.5	Summ	ary	281
8.6	Further	r Reading	282
Refer	ences		283
9	Contir	nuous-time Model Predictive Control (CMPC) of Electrical Drives and Power	
	Conve	rter	285
9.1	Contin	uous-time MPC Design	286
	9.1.1	Augmented Model	286
	9.1.2	Description of the Control Trajectories Using Laguerre Functions	287
	9.1.3	Continuous-time Predictive Control without Constraints	289
	9.1.4	Tuning of CMPC Control System Using Exponential Data Weighting and	
		Prescribed Degree of Stability	292
9.2	CMPC	with Nonlinear Constraints	294
	9.2.1	Approximation of Nonlinear Constraint Using Four Linear Constraints	294
	9.2.2	Approximation of Nonlinear Constraint Using Sixteen Linear Constraints	294
	9.2.3	State Feedback Observer	297
9.3	Simula	tion and Experimental Evaluation of CMPC of Induction Motor	298
	9.3.1	Simulation Results	298
	9.3.2	Experimental Results	300
9.4	Contin	uous-time Model Predictive Control of Power Converter	301
	9.4.1	Use of Prescribed Degree of Stability in the Design	302
	9.4.2	Experimental Results for Rectification Mode	303
	9.4.3	Experimental Results for Regeneration Mode	303
	9.4.4	Experimental Results for Disturbance Rejection	304
9.5	Gain S	cheduled Predictive Controller	305
	9.5.1	The Weighting Parameters	305
	9.5.2	Gain Scheduled Predictive Control Law	307
9.6	Experi	mental Results of Gain Scheduled Predictive Control of Induction Motor	309
	9.6.1	The First Set of Experimental Results	309
	9.6.2	The Second Set of Experimental Results	311
	9.6.3	The Third Set of Experimental Results	312
9.7	Summ	ary	312
9.8	Further	r Reading	313
Refer	ences		313
10	MATI	AB®/Simulink® Tutorials on Physical Modeling and Test-bed Setup	315
10.1	Buildi	ng Embedded Functions for Park-Clarke Transformation	315
	10.1.1	Park-Clarke Transformation for Current Measurements	316
	10.1.2	Inverse Park-Clarke Transformation for Voltage Actuation	317
10.2	Buildi	ng Simulation Model for PMSM	318
10.3		ng Simulation Model for Induction Motor	320
10.4		ng Simulation Model for Power Converter	325
	10.4.1	Embedded MATLAB Function for Phase Locked Loop (PLL)	325
	10.4.2	Physical Simulation Model for Grid Connected Voltage Source Converter	328
10.5	PMSM	I Experimental Setup	332

10.1002/9781118339499 finater, Downloaded from https://onlinehbmay.wiley.com/wid/10.1002/9781118339499 finater by Hely Angel University, Wiley Online Library on [25.03.2025]. See the Ferms and Conditions (https://onlinehbmay.wiley.com/mitmethon.) on Wiley Online Library on (25.03.2025). The conditions of the propriet of the common file of the common fil

X

Index			339
Refere	ences		337
10.9	Further	Reading	337
10.8	Summa	ary	337
	10.7.3	Sensors	336
	10.7.2	Inverter	336
	10.7.1	Controller	335
10.7	Grid Connected Power Converter Experimental Setup		335
	10.6.5	Induction Motor and Sensors	335
	10.6.4	Mechanical Load	335
	10.6.3	Inverter	335
	10.6.2	Power Supply	334
	10.6.1	Controller	334
10.6	Induction Motor Experimental Setup		334

About the Authors

Liuping Wang received her PhD in 1989 from the University of Sheffield, UK; subsequently, she was an Adjunct Associate Professor in the Department of Chemical Engineering at the University of Toronto, Canada. From 1998 to 2002, she was a Senior Lecturer and Research Coordinator at the Center for Integrated Dynamics and Control, University of Newcastle, Australia before joining RMIT University where she has been Professor of Control Engineering since 2006. She is the author of three books, joint editor of two books, and has published over 180 papers. Liuping Wang has successfully applied PID control and predictive control technologies to many industrial processes. She is a Fellow of Institution of Engineers, Australia.

Shan Chai was born in Shandong, China, in 1981. He received his B.Eng. degree in Electronics Engineering from Shandong University, China in 2004 and his M.Eng. in Electrical Engineering from RMIT University, Australia in 2007. Since 2009 he has been working toward the PhD degree at RMIT that he was awarded in 2013. Dr Shan Chai works in the electrical drives industry.

Dae Yoo received his B.Eng, MSc, and PhD in Electrical Engineering from the RMIT University, Melbourne, Australia in 2003, 2006 and 2013 respectively. From 2006 to 2007, he worked as an embedded software engineer at Orbital Engine Company, WA, Australia, where he was involved in various research oriented automotive projects for developing internal combustion engine control software. During 2008–2009 and since 2012, he has been at the Toyota Technical Center, Melbourne, Australia, where he is a control/software engineer developing advanced control algorithms for motor control units in Toyota's hybrid system.

Lu Gan, was born in Anhui Province of China, in 1987. He received his B.Eng. degree in Electrical Engineering from RMIT University, Australia, in 2009. Since then he has been working at RMIT towards the PhD degree that he received in 2014. Dr Lu Gan aspires to work in the electrical drives industry.

Ki Ng was born in Hong Kong, in 1986. He received his B.Eng. degree in Electrical Engineering from RMIT University, Australia, in 2009. He is currently working toward a PhD degree at RMIT University, Melbourne, Australia.

Preface

About This Book

Electrical drives play a critical role in electromechanical energy conversions. They are seen everywhere in our daily life from the cooling fans, washing machines to computers. They are the fundamental building blocks in manufacturing, transportation, mineral processing, wind energy and many other industries. For the last several decades, the advances of electronically switched semiconductors in the form of power electronics have made AC motor drives gain more prominence over the DC machines in industries since they allow a direct connection to power grids via grid connected power converters and have a more reliable physical structure. The grid connected three phase power converter has wide applications in renewable energy generation.

This book gives an introduction to the automatic control of electrical drives and grid connected three phase power converters, and to recent developments in design and implementation. When they are combined together as one unit, it will provide a direct connection for the electrical drives to the power grid for electromechanical energy conversions and renewable wind energy applications. In the context of control system design, electrical drives and grid connected three phase power converters share similar characteristics in their dynamic models and use the same type of semiconductors as actuators in the implementation of control systems. Therefore, in this book, electrical drives and power converters will be studied as individual components of the larger system and examined in the same framework.

As electrical drives and power converters have restricted operations imposed by electronically switched semiconductors, their operational constraints are paramount in the design and implementation of the control systems. In this regard, model predictive control has an established reputation in successfully handling the operational constraints in an optimal manner. Two chapters of this book will be devoted to seeking new predictive control technologies that address the specific needs of controlling electrical drives and power converters, and an additional two chapters will apply the existing predictive control technologies to these systems. Since PID control systems are used in the majority of industrial electrical drives and power converters, understanding these control systems and having the capability to design and implement them are important to a control engineer. There are three chapters in the book that will systematically cover PID control system design, PID control system implementation with anti-windup mechanisms and tuning of PID control systems. All control systems presented in this book have been experimentally validated using self-built test-beds with industrial sized motors. To assist the reader, tutorials about the real-time control system implementation and the physical model based simulators are presented in this book.

This book is intended for readers who have completed or are about to complete four years engineering studies with some basic knowledge in electrical and control systems. The targeted readers are students, practitioners, instructors and researchers who wish to learn electrical motor control and power converter control. The book is self-contained with MATLAB/Simulink tutorials and supported with simulation and experimental results. It is worth mentioning that the material contained in the first five chapters is aimed at readers who are working or are going to work in the relevant engineering field.

xvi Preface

Outline of This Book

The structure of the book is illustrated by the block diagram as shown in Figure 0.1. There are ten chapters in this book, covering the topics of mathematical modeling, control of semiconductor switches, PID control system design, implementation and tuning, Finite Control Set (FCS)-predictive control in both d-q and $\alpha-\beta$ reference frames, traditional predictive control in both continuous-time and discrete-time. PID controllers (see Chapters 3–5) are implemented using Pulse-Width-Modulation (PWM) technologies introduced in Chapter 2. The traditional model predictive controllers (see Chapters 8–9) use this technology too. However, FCS-predictive controllers (see Chapters 6–7) are implemented without PWM mechanisms by directly optimizing the switching patterns of semiconductors. Hence, this has significantly simplified the implementation procedure of control systems.

This book begins by discussing the physical models of electrical drives and grid connected three phase power converter since mathematical modeling is the first step toward the design and implementation of control systems. In Chapter 1, the mathematical models of machine drives and power converter are derived in a unified way that firstly uses space vector description of physical variables such as voltage, current and flux, and secondly converts the space vector based model to various reference frames. By adopting this unified framework, it is hoped that through the derivations in a similar process, the dynamic models of drives and power converters can be easily understood by a reader who does not have extensive background in *AC* machines and power converters. It must be emphasized, due to the efforts of generations of electrical engineers (see for example Park (1929), Duesterhoeft *et al.* (1951), Vas (1992), Leonhard (2001), Drury (2009), Hughes and Drury (2013), Quang and Dittrich (2008)), that the dynamics models are highly structured and have incredibly high fidelity, which forms the solid basis for control system designs introduced in the book.

From a control engineer's perspective, the next natural question following from mathematical modeling is how to realize manipulated control variables in applications. It has been well established that control of semiconductor switches is the most efficient and convenient means to achieve control of AC

Figure 0.1 Book structure diagram

Preface xvii

machine drives and power converters. It is shown in Chapter 2 that they act as actuators in the implementation of control systems where the manipulated control inputs in the form of three phase voltage signals are realized by turning on and off semiconductor switches. Also, the PWM implementation of control systems dictates the operational limits termed linear modulation range, which, in later chapters, will be translated into constraints imposed in the PID and predictive controllers using PWM mechanisms for implementation.

The next three chapters of this book will see the developments of PID control systems for electrical drives and power converter (see Chapters 3–5). In Chapter 3, for AC motor control systems, electromechanical torque control is achieved using PI control of currents in the d-q reference frame, followed by achieving further requirements of controlling angular velocity and position via a cascade control system architecture. Identical control strategies are deployed to control the currents of a three phase power converter and its DC voltage in a grid connected environment. In all PID controller designs presented in the book, the pole-assignment control method is used. The reasons for this choice of design method is that it is perhaps among the simplest control system design methods and vet offers an effective means of selecting desired closed-loop performance in terms of response to reference signals and to disturbance rejection. In Chapter 4, PI controller implementation is discussed for both current controllers as inner-loop controllers, and velocity and DC voltage controllers as outer-loop controllers. In particular, continuous-time controllers are discretized for digital implementation, and operational constraints imposed by PWM operations are taken into consideration in the implementation of PI controllers. In order to avoid integrator wind-up in the presence of control signal reaching saturation limits, anti-windup mechanisms are proposed together with digital implementation, which leads to the so-called velocity form that has naturally embedded anti-windup mechanisms and is convenient for implementation. A MATLAB tutorial is introduced in this chapter to show how an embedded function can be created for the PI controller with its anti-windup mechanism, which has been directly used in the experimental validation. In Chapter 5, sensitivity functions in feedback control systems are introduced to measure the closed-loop control system performance against set-point following, disturbance rejection and noise attenuation in the frequency domain. Current control systems are analyzed for the effects of current sensor errors and harmonics caused by the voltage source inverter used in implementation of the control system. When velocity control, position control or DC voltage control is required in a cascade control structure, performance robustness in the outer-loop control system is considered where a weighting function is introduced to quantify the difference between the desired closed-loop performance and the actual closed-loop performance. Parameter variations are also studied using Nyquist plots. A large number of experiments are conducted in this chapter to demonstrate tuning procedures of the PI cascade control systems.

There are two approaches used in this book to generate the gate signal for the semiconductor switches. The first approach uses Pulse Width Modulation (PWM) based on which PID controllers (see Chapters 3–5) and traditional model predictive controllers are implemented (see Chapters 8–9). In control applications, the control signals calculated are the three phase voltage signals that are obtained from one of the controller designs using the model either in the d-q reference frame or $\alpha-\beta$ reference frame. The role of the voltage source inverter with power electronics devices is to realize three phase voltage control signals as closely as possible. Namely, the sinusoidal phase voltage signals created by turning on-off each power switch with PWM technologies are aimed to be closely matched with three phase voltage control signals. The second methodology features a much simpler approach in the implementation of control systems that generates such a gate signal by direct optimization of an error function between the desired control signals and those that can be achieved by semiconductor switches (see Chapters 6–7). In the second approach, there is no need to use the PWM technology; therefore it significantly reduces the complexity of controlling semiconductor switches.

In Chapter 6, in the d-q reference frame, finite control set (FCS) predictive controllers are used to directly optimize inverter states; as a result, PWMs are not required in the implementation of control systems, which simplifies the implementation procedure. The original FCS predictive control systems did not include integrators in their design and implementation. Consequently, there are steady-state errors

xviii Preface

within control systems. The existence of steady-state errors affects closed-loop performance, particularly when there are parameter uncertainties in the system, which is the main reason why the majority of practical control systems have integrator in the controller structure. By analyzing the original FCS predictive control system without constraints, the discrete-time feedback controller gain and locations of closed-loop eigenvalues are revealed. To embed integrators in the FCS predictive controller, a cascade control system structure is proposed where the inner-loop system is controlled with the original FCS predictive controller and the outer-loop is by an integrated feedback control. There are perhaps many ways to include integrators in the FCS predictive control system; however, the proposed approach has kept the spirit of the original FCS predictive control system and maintained its simplicity both conceptually and computationally. Because the FCS predictive control systems are designed for current control, this chapter will also show how to design velocity and position control for *AC* drives when current controllers are FCS predictive controllers.

In Chapter 7, under investigation is the finite control set (FCS) predictive current control in the $\alpha-\beta$ reference frame (or stationary frame). In the $\alpha-\beta$ reference frame, the currents $i_{\alpha}(t)$ and $i_{\beta}(t)$ are linear combinations of three phase currents $i_{\alpha}(t)$, $i_{b}(t)$ and $i_{c}(t)$. Thus, they are sinusoidal functions. So are the voltage variables $v_{\alpha}(t)$ and $v_{\beta}(t)$. The current reference signals to FCS predictive control systems are sinusoidal signals, which differentiates current control systems in the $\alpha-\beta$ reference frame from those in the d-q reference frame. It will be shown in this chapter that the original FCS predictive controllers are single-input and single-output controllers in exceptionally simple forms. However, in order to track sinusoidal current reference signals without steady-state errors, a controller with resonant characteristic is required in the $\alpha-\beta$ reference frame. Extensive simulation and experimental results have been presented in these two chapters to show the outstanding closed-loop control performance of FCS predictive control systems.

The next two chapters of this book (see Chapters 8–9) apply the traditional model predictive control algorithms to *AC* machine drives and power converters. These predictive control algorithms were derived for general applications without those restrictions imposed on system dynamics. The MATLAB programs used in applications were given in Wang (2009). Although the traditional predictive control algorithms could be applied to current control, their advantages are perhaps lost to the simpler and more effective FCS predictive control approaches, also to simpler PI controllers. Therefore, in Chapters 8 and 9, velocity control in *AC* drives and *DC* voltage control in power converters are considered, and for these cases, traditional model predictive controllers offer the advantages of designing the control systems using multi-input and multi-output approaches in the presence of constraints.

The final chapter of this book will discuss the test beds used in the experimental evaluations of control systems. For those who wish to know how to perform real-time simulations using the physical models of drives and power converter, Simulink tutorials are given to show the model building process in a step-by-step manner.

References

Drury B 2009 The Control Techniques Drives and Controls Handbook 2nd edn. IET.

Duesterhoeft W, Schulz MW and Clarke E 1951 Determination of instantaneous currents and voltages by means of alpha, beta, and zero components. *Transactions of the American Institute of Electrical Engineers* **70**(2), 1248–1255. Hughes A and Drury B 2013 *Electric Motors and Drives: Fundamentals, Types and Applications* 4th edn. Elsevier. Leonhard W 2001 *Control of Electrical Drives* 3rd edn. Springer.

Park RH 1929 Two-reaction theory of synchronous machines - part I. AIEE Transations 48(2), 716-739.

Quang NP and Dittrich JA 2008 Vector Control of Three-Phase AC Machines 1st edn. Springer.

Vas P 1992 Electrical Machines and Drives – A Space-Vector Theory Approach. Oxford University Press, New York, USA.

Wang L 2009 Model Predictive Control System Design and Implementation Using MATLAB 1st edn. Springer, London.

Acknowledgment

We wish to thank the Australian Manufacturing Cooperative Research Center (AMCRC) for financial support over the projects of Control Systems and Regenerative Machine Stop. We gratefully acknowledge the help and support of Mr Pat Borland, the owner of ANCA Pty, who gave us the first opportunity to work in the field of AC drive control and shared with us many of his valuable experiences in the industry.

We wish to thank Professor Mike Johnson from the University of Strathclyde, UK for carefully reading the manuscript and giving us feedback.

On suggestions and feedback, our thanks go to Professor Stephen Boyd and Dr Nicholas Moehle at Stanford University, USA, Professor Jose Rodriguez and Ms Margarita Norambuena at Santa Maria, Chile, Dr Craig Buhr at MathWorks, USA, and Mr Gerardo Medrano who works in the Australian wind energy industry.

Asking for Feedback

We would like to ask our readers to contact us about any errors or suggestions for future improvement of our book.

Liuping Wang, Shan Chai, Dae Yoo, Lu Gan, Ki Ng Melbourne, Australia

List of Symbols and Acronyms

Symbols

arg min	Minimizing argument
A	State matrix of state-space model
B	Input-to-state matrix of state-space model
C	State-to-output matrix of state-space model
D	Direct feed-through matrix of state-space model
(A, B, C, D)	State-space realization
ΔU	Parameter vector for the control sequence in discrete time MPC
$\Delta u(k)$	Incremental control at sample k
F_x, Φ	Pair of matrices used in the prediction equation $X = F_x x(k_i) + \Phi \Delta U$
B_{v}	Viscous friction coefficient in PMSM
f_d	Viscous friction coefficient in induction motor model
G(s)	Transfer function model
γ	Tuning parameter for PI controllers
i_{α},i_{β}	Currents of PMSM and power converter in $\alpha - \beta$ reference frame
i_d, i_q	Currents of PMSM and power converter in $d - q$ reference frame
i_{sd}, i_{sq}	Stator currents of induction motor in $d-q$ reference frame
$i_{s\alpha}, i_{s\beta}$	Stator currents of induction motor in $\alpha - \beta$ reference frame
$I_{a \times a}$	Identity matrix with appropriate dimensions
$I_{q imes q}\ J$	Performance index for optimization
J_m	Moment of inertia $(kg \cdot m^2)$
K_c^m	Proportional control gain
K_{lqr}	Feedback control gain using LQR
K_{mpc}	Feedback control gain using MPC
K_{fcs}	Feedback control gain using FCS predictive control in $d-q$ reference frame
K_{fcs} $k_{fcs}^{lpha}, k_{fcs}^{eta}$ K_{ob}	Feedback control gain using FCS predictive control in $\alpha - \beta$ reference frame
fcs' fcs K	Observer gain vector
$l_i(t)$	The <i>i</i> th continuous-time Laguerre function
L(t)	Continuous-time Laguerre functions in vector form
L_{s}	Inductance of power converter and PMSM
L_r, L_s	Inductance of stator / rotor winding of induction motor
$L_h^{r_r}$ s	Machine mutual inductance of induction motor
λ	Lagrange multiplier
$\lambda_i(A)$	The <i>i</i> th eigenvalue of matrix <i>A</i>
l` /	5

 $\lambda^{l}, \lambda^{m}, \lambda^{h}$ Scheduling parameters μ Disturbance vector

Number of terms used in Laguerre function expansion in continuous time

 N_c Control horizon N_p Prediction horizon

 Ω_{mnc} , Ψ_{mnc} Pair of matrices in the cost of predictive control in either the continuous-time or

discrete-time design, $J = \eta^T \Omega_{mpc} \eta + 2 \eta^T \Psi_{mpc} x(t) + cons$

 η Parameter vector in the Laguerre expansion

p Scaling factor for continuous-time Laguerre functions

Q, R Pair of weight matrices in the cost function of predictive control

 R_s Resistance of stator in PMSM and induction motor, also grid resistance in power

converter

 R_r Resistance of rotor winding.

 $r(\cdot)$ Set-point signal

 q^{-i} Backward shift operator, $q^{-i}[f(k)] = f(k-i)$

S(s) Sensitivity function $S^i(s)$ Input sensitivity function S_i Switching state of inverter

 S_d , S_d Normalized voltage variables of converter's d-axis voltage v_d and q-axis voltage v_d

T(s) Complementary sensitivity function T_e Electromagnetic torque $(N \cdot m)$

 T_L Load torque (N · m)

 T_p Prediction horizon in continuous-time τ_D Derivative control time constant τ_f Derivative control filter time constant Integral control time constant

 $\begin{array}{ll} \theta_r & \text{Mechanical position of motor shaft (radian)} \\ \theta_e & \text{Electrical position of motor shaft (radian)} \\ \theta_s & \text{Position of synchronous flux (radian)} \\ \psi_s & \text{Stator flux of induction motor (Wb)} \\ \psi_{rd}, \psi_{rq} & \text{Rotor flux of induction motor (Wb)} \end{array}$

 $u(\cdot)$ Control signal

 $\begin{array}{ll} u_{s\alpha},\,u_{s\beta} & \text{Stator voltages of induction motor (V) in }\alpha-\beta \text{ reference frame} \\ u_{sd},\,u_{sq} & \text{Stator voltages of induction motor (V) in }d-q \text{ reference frame} \\ v_{\alpha},\,v_{\beta} & \text{Voltages of PMSM and power converter (V) in }\alpha-\beta \text{ reference frame} \\ v_{d},\,v_{q} & \text{Voltages of PMSM and power converter (V) in }d-q \text{ reference frame} \\ \end{array}$

 ω_e Electrical motor speed (rad/s) (or RPM) ω_m (or ω_r) Mechanical motor speed (rad/s) (or RPM) ω_s Speed of synchronous flux (rad/s) (or RPM)

 $\begin{array}{ll} \omega_{\rm g} & {\rm Grid\ frequency\ (rad/s)}. \\ \omega_{\rm slip} & {\rm Slip\ in\ induction\ motor} \end{array}$

 u^{min} , u^{max} Minimum and maximum limits for u

 w_n Bandwidth or natural frequency in PI controller design (rad/s)

 $x(\cdot)$ State vector

 $x(t_i + \tau | t_i)$ Predicted state vector at time τ given current state vector $x(t_i)$

 $\hat{x}(t)$ Estimated state vector in continuous-time ξ Damping coefficient in PI controller design

Y Predicted output data vector Z_p Number of pole pairs

Acronyms

CMPC Continuous-time model predictive control DMPC Discrete-time model predictive control

MMF Magnetic motive force

PMSM Permanent magnetic synchronous machine

PLL Phase-locked loop

PID Proportional, integral and derivative

FCS Finite control set

FCS-MPC Finite control set predictive control

I-FCS-MPC Integral finite control set predictive control