Blind Image Deblurring Using Dark Channel Prior

Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang

Their Work

- Dark channel prior
- Theoretical analysis
- Applications

Dark channel [He et al., CVPR 2009]

$$D(I)(x) = \min_{y \in N(x)} \left(\sum_{c \in \{r,g,b\}} I^{c}(y) \right)$$

• Compute the minimum intensity in a patch of an image

Our model

Add the dark channel prior into standard deblurring model

$$\min_{I,k} \|I * k - B\|_{2}^{2} + \gamma \|k\|_{2}^{2} + \mu \|\nabla I\|_{0} + \lambda \|D(I)\|_{0}$$

- How to solve?
 - L0 norm and non-linear min operator

Algorithm skeleton

$$\min_{k} || I * k - B ||_{2}^{2} + \gamma || k ||_{2}^{2}$$

$$\min_{I} || I * k - B ||_{2}^{2} + \mu || \nabla I ||_{0} + \lambda || D(I) ||_{0}$$

- L0 norm
 - Half-quadratic splitting method
- Non-linear min operator
 - Linear approximation

Optimization

Update latent image I:

$$\min_{I} || I * k - B ||_{2}^{2} + \mu || \nabla I ||_{0} + \lambda || D(I) ||_{0}$$

Half-quadratic splitting [Xu et al., SIGGRAPH Asia 2011, Pan et al., CVPR 2014]

$$\min_{I,u,g} \|I * k - B\|_{2}^{2} + \alpha \|\nabla I - g\|_{2}^{2} + \beta \|D(I) - u\|_{2}^{2} + \mu \|g\|_{0} + \lambda \|u\|_{0}$$

- Update latent image I:
 - -I sub-problem

$$\min_{I} \|I*k - B\|_{2}^{2} + \beta \|D(I) - u\|^{2} + \mu \|\nabla I - g\|^{2}$$

Our observation

$$D(I)=MI$$

• Let $y = \operatorname{argmin}_{z \in N(x)} I(z)$, we have

$$M(x, z) = \begin{cases} 1, & z = y, \\ 0, & \text{otherwise.} \end{cases}$$

Experimental Results

- Natural image deblurring
- Specific scenes
 - Text images
 - Face images
 - Low-light images
- Non-uniform image deblurring

- Quantitative evaluation
 - Levin et al., CVPR 2009
 - Köhler et al. ECCV 2012
 - Sun et al., ICCP 2013

Quantitative evaluations on the dataset by Levin et al., CVPR 2009

Quantitative evaluations on the dataset by Köhler et al. ECCV 2012

Quantitative evaluations on the dataset by Sun et al. ICCP 2013

Text Image Deblurring Results

	Average PSNRs	
Cho and Lee	23.80	Natural image debluring methods
Xu and Jia	26.21	
Krishnan et al.	20.86	
Levin et al.	24.90	
Xu et al.	26.21	
Pan et al.	28.80	
Ours	27.94	

Quantitative evaluations on the text image dataset by Pan et al., CVPR 2014

Text Image Deblurring Results

Blurred image

Xu et al., CVPR 2013

Pan et al., CVPR 2014

Ours

Blurred image

Xu et al., CVPR 2013

Pan et al., CVPR 2014

Ours

Face Image Deblurring Results

Non-Uniform Deblurring

Analysis and Discussions

Effectiveness of dark channel prior

Results on the dataset by Köhler et al. ECCV 2012

Results on the dataset by Levin et al. CVPR 2009

 The dark channel of clear image does not contain zero-elements

$$||D(B)||_0 = ||D(I)||_0$$

- Property 2 does not hold
- Dark channel prior has no effect on image deblurring

 The dark channel of clear image does not contain zero-elements

Images containing noise

Blurred image

Images containing noise

Without D(I)

Images containing noise

With D(I)

Thank You!