EXAMINATION DATA SHEET FOR TECHNICAL SCIENCES

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Standard pressure	p^{θ}	1,01 × 10 ⁵ Pa
Standard temperature	T ⁰	273 K
Speed of light in a vacuum	С	$3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Planck's constant	h	$6,63 \times 10^{-34} \text{ J} \cdot \text{s}$

TABLE 2 WAVES, SOUND AND LIGHT

$v = f\lambda$	$T = \frac{1}{f}$
$E = hf \text{ or } E = h\frac{c}{\lambda}$	

TABLE 3 FORMULAE

$$\begin{split} E_{\text{cell}}^{\theta} &= E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} \end{split}$$

IEB Copyright © 2020 PLEASE TURN OVER

TABLE 4 PERIODIC TABLE OF ELEMENTS

	1	2	3	4	5	6	7 KEY	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H					tomic umber	1	2,1	Electr symb	ronega ol	ntivity							He
2	3 1,0 Li 7	Be 9					1 relativ	/e					5 2,0 B 10,8	C	N	O	F 19	Ne 20
3	11 0,9 Na 23	Mg 24,3			atomic		T			T	T		13 1,5 Al 27	Si 28	15 2,1 P 31	S	Cℓ 35,5	Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga 70	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb 85,5	1	39 1,2 Y 89			42 1,8 Mo 96		44 2,2 Ru 101			47 1,9 Ag			50 1,8 Sn 119			53 2,5 I 127	
6	55 0,7 Cs	56 0,9 Ba 137,3		72 1,6 Hf 178,5		74 W 184	75 Re 186	76 Os	77 Ir	78 Pt	79 Au 197	80 Hg 200,6	81 1,8 T£ 204,4		83 1,9 Bi 209			
7	87 0,7 Fr	88 0,9 Ra		170,0	101	104	100	130	102	133	137	1200,0	204,4	201	203			<u> </u>
				J	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er 167	69 Tm	70 Yb	71 Lu
					90 Th 232	91 Pa	92 U 238	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	169 101 Md	173 102 No	175 103 Lr

TABLE 5A STANDARD REDUCTION POTENTIALS

		На	If-reaction	ons	E ^θ (V)	
		F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87	
		Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81	
		$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+ 1,77	
		MnO + 8H ⁻ + 5e ⁻		_	+ 1,51	
		$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cl ⁻	+ 1,36	
		$Cr_2O + 14H^+ + 6e^-$		2Cr ³⁺ + 7H ₂ O	+ 1,33	
		$O_2(g) + 4H^+ + 4e^-$			+ 1,23	
		$MnO_2 + 4H^+ + 2e^-$		_	+ 1,23	
		Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20	
\uparrow		$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07	
		NO + 4H ⁺ + 3e ⁻	-	$NO(g) + 2H_2O$	+ 0,96	
		Hg ²⁺ + 2e ⁻	-	$Hg(\ell)$	+ 0,85	
		Ag ⁺ + e ⁻	=	Ag	+ 0,80	≥
		NO + 2H ⁺ + e ⁻	`	$NO_2(g) + H_2O$	+ 0,80	∰
↑	`	Fe ³⁺ + e ⁻	÷	Fe ²⁺	+ 0,77	ab
		$O_2(g) + 2H^+ + 2e^-$		H_2O_2	+ 0,68	bu
		$I_2 + 2e^-$	÷	2I ⁻	+ 0,54	ig
		Cu ⁺ + e ⁻	+	Cu	+ 0,52	gr
		$SO_2 + 4H^+ + 4e^-$		S + 2H ₂ O	+ 0,45	9.1
	ity	2H ₂ O + O ₂ + 4e ⁻	+	40H ⁻	+ 0,40	Increasing reducing ability
	bil	Cu ²⁺ + 2e ⁻	+	Cu	+ 0,34	asi
	Increasing oxidising ability	SO + 4H ⁺ + 2e ⁻	+	$SO_2(g) + 2H_2O$	+ 0,17	<u> </u>
	ing	Cu ²⁺ + e ⁻	+	Cu ⁺	+ 0,17	<u>일</u>
	dis	Sn ⁴⁺ + 2e ⁻	+	Sn ²⁺	+ 0,15	
	×ic	S + 2H ⁺ + 2e ⁻	+	$H_2S(g)$	+ 0,13	
	o 6	2H ⁺ + 2e ⁻	-		0,00	
	in	Fe ³⁺ + 3e ⁻	← ≠	H₂(g) Fe	- 0,06	
	as	Pb ²⁺ + 2e ⁻	+	Pb	- 0,00 - 0,13	
	cre	Sn ²⁺ + 2e ⁻	← ≠	Sn		
	<u>2</u>	Ni ²⁺ + 2e ⁻		Ni	- 0,14	
		Co ²⁺ + 2e ⁻	/		- 0,27	
		Cd + 2e Cd ²⁺ + 2e ⁻	,	Co	- 0,28	
		Cd + 2e Cr ³⁺ + e ⁻	=	Cd Cr ²⁺	- 0,40	▼
		Fe ²⁺ + 2e ⁻	,		- 0,41	
		Fe + 2e Cr ³⁺ + 3e ⁻	=	Fe	- 0,44	
		Zn ²⁺ + 2e ⁻	,	Cr Zn	- 0,74	
			=	Zn	- 0,76	
		2H ₂ O + 2e ⁻	=	H2(g) + 2OH ⁻	- 0,83	
		Cr ²⁺ + 2e ⁻	=	Cr	- 0,91	
		$Mn^{2+} + 2e^{-}$	=	Mn	- 1,81	
		$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	- 1,66	
		Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36	
		Na ⁺ + e ⁻	=	Na	- 2,71	
		Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87	
		Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89	
		Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	- 2,90	
		Cs ⁺ + e ⁻	\rightleftharpoons	Cs	- 2,92	
		K ⁺ + e ⁻	\rightleftharpoons	K	- 2,93	
		Li ⁺ + e ⁻	\rightleftharpoons	Li	- 3,05	

TABLE 5B STANDARD REDUCTION POTENTIALS

	На	ılf-reactio	ons	Ε ^θ (V)
	Li ⁺ + e ⁻	=====================================	Li	-3,05
	K ⁺ + e ⁻	≠	K	-2,93
	Cs ⁺ + e ⁻	/	Cs	-2,92
	Ba ²⁺ + 2e ⁻		Ba	-2,92 -2,90
	Sr ²⁺ + 2e ⁻	=	Sr	
	Ca ²⁺ + 2e ⁻	_		-2,89
		=	Ca	-2,87
	Na ⁺ + e ⁻	=	Na	-2,71
	$Mg^{2+} + 2e^{-}$	=	Mg	-2,36
	$A\ell^{3-} + 3e^{-}$	\rightleftharpoons	Αl	-1,66
	Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
	Cr ²⁺ + 2e ⁻	=	Cr	-0,91
	2H ₂ O + 2e ⁻	\rightleftharpoons	H ₂ (g) + 2OH ⁻	-0,83
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
	Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	-0,41
I	Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
	Co ²⁺ + 2e ⁻	=	Со	-0,28
>	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,27
≝	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
ab	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
JG	Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,06
<u>:</u>	2H ⁺ + 2e ⁻	=	$H_2(g)$	0,00
ncreasing oxidising ability	S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
ô	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
ng	Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺	+0,16
asi	SO + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
ĕ	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
2	$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
, –	$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+0,45
	Cu ⁺ + e ⁻	\rightleftharpoons	Cu	+ 0,52
	l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
	Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
	NO + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80
	Ag ⁺ + e ⁻	\rightleftharpoons	Ag	+0,80
	Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\ell)$	+0,85
	NO + 4H ⁺ + 3e ⁻	\rightleftharpoons	NO(g) + 2H2O	+0,96
	$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+1,07
	Pt ²⁺ + e ⁻	\rightleftharpoons	Pt	+1,20
	$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,23
	$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	$2H_2O$	+1,23
	$Cr_2O + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33
	$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+1,36
	MnO + 8H+ + 5e-	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+1,51
	$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1,77
	Co ³⁺ + e ⁻	\rightleftharpoons	Co ² +	+1,81
	F ₂ (g) + 2e ⁻	\rightleftharpoons	2F ⁻	+2,87

Increasing reducing ability