암호인재 인력양성 2차 교육

정보컴퓨터공학과 권혁동

Contents

블록암호 안전성

블록암호 운용모드

- 일반적인 블록 암호의 경우
 - 기밀성 제공 외에도 다양한 용도로 사용
 - MAC, 난수 발생기, 키 유도 함수
 - 따라서 최대한의 안전성을 보장해야 함
- 일부 블록 암호 (특히 경량 암호)
 - 열악한 구현 환경
 - 구현 환경 상, 일부 공격은 효과적이지 않으므로 모든 공격을 고려하지 않음

- 이론적 안전성 (가정)
 - 키가 고정된 블록 암호는 랜덤 함수와 구별이 어려워야 함
 - 블록 길이와 키 길이가 같은 블록 암호들 중에서 랜덤하게 선택됨
- 실용적 안전성 (실제)
 - 키 전수 조사보다 효과적인 공격이 성립하지 않아야 함
 - 블록 암호를 대상으로 하는 각종 공격에 대한 안전성 제공
 - 차분 공격, 선형 공격, Intgegral 공격, 연관키 공격 등...

- 공격 분류 기준 1: 공격자의 데이터 수집 능력
 - 암호문 단독 공격(ciphertext only): 암호문 만을 사용한 공격
 - 알려진 평문 공격(known plaintext): 주어진 평문과 그에 관한 암호문으로 공격
 - 선택 평문/암호문 공격(chosen plaintext/ciphertext): 공격자가 선택한 평문과 그에 관한 암호문으로 공격
 - 능동 선택 평문/암호문 공격(adaptive chosen plaintext/ciphertext): 공격자가 선택한 평문에 대한 암호문을 획득

- 공격 분류 기준 2: 공격자의 공격 목표
 - 구별 공격(distinguishing): 주어진 값이 공격 대상 블록 암호인지 무작위 수열 인지 구별하는 공격
 - 키 복구 공격(key recovery): 공격자가 보유한 평문/암호문 쌍을 생성하는데 사용된 비밀키를 찾아내는 공격
 - 평문 복구 공격(plaintext recovery): 암호문에 대한 평문을 찾아내는 공격

- 공격 분류 기준 3: 키에 대한 가정
 - 비밀키 공격(secret-key): 키를 비밀 요소로 가정한 공격
 - 단일키 공격(single-key): 하나의 키에서 얻은 평문/암호문을 사용
 - 연관키 공격(related-key): 둘 이상의 연관된 키를 사용하여 획득한 평문/암호문을 이용한 공격
 - 알려진 키 공격(known-key): 공격자가 키를 알고 있다고 가정한 공격
 - 선택 키 공격(chosen-key): 공격자가 키를 선택하여 공격

- 공격 분류 기준 4: 공격에 이용되는 특성
 - 차분을 이용한 공격
 - 차분공격, 부정차분공격, 불능차분공격, 고계차분공격, 포화공격, 부메랑공격 등
 - 선형근차를 이용한 공격
 - 선형공격, 다중선형공격, 제로 상관관계 공격, 차분-선형공격 등
 - 기타 특성을 이용한 공격
 - 로테이션 공격, 슬라이드 공격, 대수적 공격, 큐브 공격, 중간일치공격, 바이클릭 공격
 - 특성의 확률 분포
 - 0과 1사이의 확률을 가지는 특성 활용
 - 0 또는 1의 확률을 가지는 특성 활용

- 공격 복잡도
 - 시간 복잡도
 - 공격에 소요되는 공격자의 계산량
 - 알고리즘의 가동에 소요되는 시간은 제외
 - 데이터 복잡도
 - 공격에 필요한 평문/암호문 쌍의 수
 - 알고리즘 가동 횟수와 동일
 - 메모리 복잡도
 - 공격에 필요한 메모리의 양

블록 암호 운용모드

- 운용모드(Mode of Operation)
 - 블록 암호를 사용하여 임의 길이의 평문을 암호화하기 위해 필요
 - 부가기능
 - 메시지 무결성을 제공할 수 있는 운용모드(CBC-MAC)
 - 인증과 암호화를 동시에 제공하는 운용모드(OCB, GCM)
- 운용모드 사용 원칙
 - 블록 암호를 이용할 때, 평문, Ⅳ, 비밀키가 필요
 - 같은 평문에서 같은 암호문이 생성되지 않아야 함
 - 동일한 키를 사용한다면, 다른 IV를 사용하도록 설계
 - 비밀키는 수시로 변경되어야 함

블록 암호 운용모드

- 5대 기밀성 운용 모드
 - ECB, CBC, CFB, OFB, CTR
- 인증암호화 운용 모드
 - OCB 1.0/2.0/3.0, GCM, CCM
- 저장매체 암호화 모드
 - LRW, XEX, CMC, EME, XTS
- 키랩 운용 모드
 - AES-KW, AES-SIV
- 형태보존 암호화 운용 모드
 - FF1, FF3

블록 암호 운용모드: ECB 모드

- 같은 키를 사용한다면, 같은 평문은 같은 암호문으로 변환
- 암호문 오류가 전파되지 않음
- 평문 크기가 1블록 크기 보다 큰 경우 -> 평문 패턴 노출 위험
 - 따라서, 일반적인 경우는 ECB를 사용하지 않음
- 1블록으로 표현 가능한 평문 -> ECB 사용 가능

블록 암호 운용모드: CBC 모드

- 암호문 1비트 에러 -> 다음 평문 1블록 에러 전파
- IV 사용에 주의
 - 재사용 시, 평문 정보 일부 노출
 - IV 조작 = M1 조작
- 암호화에는 병렬처리가 안되지만, **복호화 때는 병렬처리 가능**
- 파일 암호화에 주로 사용

블록 암호 운용모드: CFB 모드

- 스트림모드, 복호화만 병렬화 가능
- IV 재사용시 평문 정보 일부 노출
- 자가동기 기능
 - 암호문 블록이 소실 되어도, 2번째 이후 평문 블록 복구 가능
- 데이터 유실 등 동기 이탈이 발생할 가능성이 높을 때 사용

블록 암호 운용모드: CTR 모드

- 스트림모드, 병렬화 가능, 사전연산 가능
- IV 재사용시, 동일한 키 수열이 재사용되므로 매우 위험
 - IV를 매번 바꿔주어야 함
- 암호화, 복호화 모두 병렬처리 가능

블록 암호 운용모드: OFB 모드

- 스트림모드
- IV 재사용시 동일한 난수열 발생
 - IV를 매번 다른 값으로 사용해야 함
- 암호화, 복호화 모두 병렬화 불가능

블록 암호 운용모드

모드	MB / sec	Cycles / Byte
AES-ECB	99	17.7
AES-CTR	96	18.1
AES-OFB	83	21.1
AES-CFB	69	25.3
AES-CBC	84	20.9

- Crypto++ 5.5 벤치마크
 - Intel Core 2 1.83 Ghz processor
 - 128비트 키

