EKSAMEN DATABLAD VIR DIE FISIESE WETENSKAPPE (FISIKA)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Versnelling as gevolg van gravitasie op aarde	g	9,8 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \; \text{m} \cdot \text{s}^{-1}$
Universele gravitasiekonstante	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb se konstante	k	$9.0 \times 10^9 \ \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Grootte van lading op 'n elektron	е	$1,6 \times 10^{-19}\mathrm{C}$
Massa van 'n electron	m _e	9,1 × 10 ⁻³¹ kg
Planck se konstante	h	6,6 × 10 ^{−34} J⋅s
1 elektronvolt	eV	1,6 × 10 ⁻¹⁹ J

TABEL 2 FISIKAFORMULES

BEWEGING

$V = u + at$ of $V_i = V_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t of \Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$
$v^2 = u^2 + 2as$ of $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2} at^2$ of $\Delta x = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$

KRAG EN MOMENTUM

F _{net} = ma	$F_{net} = rac{\Delta p}{\Delta t}$ of $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ of $J = \Delta p = mv_f - mv_i$	
p = mv	$F_g = mg$	$F_{fs}^{maks} = \mu_s F_N$ $F_{fk} = \mu_k F_N$	

WERK, ENERGIE EN DRYWING

	$W = Fs$ of $W = F\Delta x$ of $W = F\Delta x \cos\theta$		$P = \frac{W}{t}$	P = Fv
$E_p = mgh$	E _K =	$\frac{1}{2}$ mv ²	$W_{net} = \Delta E_K$	% effektief = $\frac{drywing_{uit}}{drywing_{in}} \times 100$

IEB Copyright © 2023 BLAAI ASSEBLIEF OM

GRAVITASIE EN ELEKTRIESE VELDE

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G \frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = k \frac{Q}{r^2}$

ELEKTRIESE STROOMBANE

ELEKTRIESE STROUMBANE			
$I = \frac{q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emk = I(R_{eks} + r)$ of $emk = V_{eksterne weerstand} + V_{interne weerstand}$		
$R_S = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$		
$P = \frac{W}{t}$ of $W = Pt$			
W = VIt of $W =$	$= I^2 R t \qquad \text{of} \qquad W = \frac{V^2}{R} t$		
P = VI of $P = VI$	$= f^2 R \qquad \text{of} \qquad P = \frac{V^2}{R}$		

ELEKTRODINAMIKA

$\Phi = BA\cos\theta$	emk= $-N \frac{\Delta \Phi}{\Delta t}$	$F = IB\ell \sin\theta$	
$V_{\rho}I_{\rho}=V_{s}I_{s}$		$\frac{N_s}{N_p} = \frac{V_s}{V_p}$	

FOTONE EN ELEKTRONE

$c = f \lambda$	E = .	hf of	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{K(maks)}$	$W_0 = hf_0$	$E_{K\{maks}$	$s_{s}=\frac{1}{2} m v_{\{maks\}}^2$