Отчет о выполнении лабораторной работы 1.3.1

Определение модуля Юнга на основе исследования деформации растяжения и изгиба

Выполнил студент группы Б03-302: Танов Константин

1 Аннотация

Цель работы: Экспериментально получить зависимость между напряжением и деформацией для двух простейших напряженных состояний упругих тел: одностороннего сжатия и чистого изгиба; по результатам эксперимента вычислить модул Юнга. **Оборудование:**в первой части - прибор Лермантова, проволка из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величин прогиба, набор исследуемых стержней, грузы, линйка, штангенциркуль.

2 Определение модуля Юнга по измерения растяжения проволки

2.1 Теоретические сведения

Растяжение проволки соответствует напряженому состоянию вдоль одной оси, которое описывается формулой:

$$\sigma = E\varepsilon, \quad \frac{F}{S} = E\frac{\Delta l}{l}$$
 (1)

Измерения производятся на установке Лермантова. Направим зрительную трубку на зеркальце. Тогда учитывая параксиальность углов, для расчета растяжения проволки справедлива формула:

$$l = n \frac{r}{2h},\tag{2}$$

где h - расстояние от шкалы до зеркальца, r - длина рычага, n - показания шкалы

2.2 Эксперимантельная установка

Для определения модуля Юнга используется прибор Лермонтова, схема которого изображена на рис. 1. Верхний конец проволоки П, изготовленной из исследуемого материала, прикреплен к консоли К, а нижний - к цилиндру, которым оканчивается шарнирный кронштейн Ш. На этот же цилиндр опирается рычаг г, связанный с зеркальцем 3. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца.

Рис. 1: Установка Лермантова и установка

Натяжение проволоки можно менять, перекладывая грузы с площадки M на площадку O и наоборот. Такая система позволяет исключить влияние деформации кронштейна K на точность измерений, так как нагрузка на нем все время остается постоянной.

2.3 Результаты эксперимента и обработка данных

• Сначалаа измерим параметры системы:

$$h = 147 \pm 0.1 \; \text{cm}, \quad r = 2 \; \text{cm}, \quad d_{\text{проволки}} = 0.51 \; \text{мм}$$

• По полученным значениям вычисляем площадь:

$$S = \frac{\pi d^2}{4} = 0.204 \text{ mm}^2$$

- Измеряем длину проволки $l=174\pm0.1$ см.
- Позаботимся о том, чтобы в процессе эксперимента не выйти за пределы области, где удлинение проволки пропорционально ее натяжению. С учетом разрушительного напряжения: $\sigma_{\text{разрушения}} = 900~H\cdot\text{мм}^{-2}$. Рассчитаем предельную массу груза, которую можно подвесить, чтобы не выйти из диапозона рабочих напряжений: $m_{\text{предельная}} = 0.3 \cdot \sigma_{\text{разрушения}} S/g = 5.5~\text{кг}$.
- С учетом полученного выше значения снимаем зависимость удлинения проволки от массы грузов m при увеличении и уменьшении нагрузки. Данные заносим в

таблицу ниже. Расчет Δl производим по формуле, а погрешность измерения Δl оцениваем по формуле:

$$\varepsilon_{\Delta l} = \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2} \approx 0.34\%$$

$N_{\overline{0}}$	m , K Γ	P, H	n, MM	Δl ,mm
1	0.7006	7.006	19.5	0.13
2	0.9463	9.463	21.7	0.15
3	1.1921	11.921	23.6	0.16
4	1.438	14.38	25.4	0.173
5	1.6833	16.833	27.2	0.185

Таблица 1: Измерения величин при повышении нагрузки

Nº	m, кг	P, H	n, MM	Δl ,mm
1	1.6833	16.833	27.1	0.18
2	1.438	14.38	25.6	0.17
3	1.1921	11.921	23.2	0.16
4	0.9463	9.463	21.1	0.14
5	0.7006	7.006	18.8	0.13

Таблица 2: Измерения величин при понижении нагрузки

• По полученным данным строим график зависимости $P(\Delta l)$ методом наименьших квадратов(МНК). Также учтем что в недеформированном состоянии проволка, как правило, изогнута, и при малых нагрузках ее удлинение определяется не растяжением, а выпрямлением. Поэтому исключим начальный участок зависимости из обработки данных.

По формулам МНК находим коэффицент наклона графика для прямой и его случайную погрешность. Для коэффицента наклона графика имеем:

$$k = \frac{\langle P\Delta l \rangle - \langle P \rangle \langle \Delta l \rangle}{\langle \Delta l^2 \rangle - \langle \Delta l \rangle^2} = 182.24 \ H \cdot \text{MM}$$

Для систематической и случайной относительной погрешности имеем:

$$\varepsilon_k^{\text{случ}} = \frac{1}{k\sqrt{N-2}} \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle \Delta l^2 \rangle - \langle \Delta l \rangle^2}} - k^2 = 6.75\%, \quad \varepsilon_k^{\text{сист}} = \sqrt{\varepsilon_P^2 + \varepsilon_{\Delta l}^2} \approx \varepsilon_{\Delta l} = 0.38\%$$

$$\varepsilon_k = \sqrt{\varepsilon_{\text{сист}}^2 + \varepsilon_{\text{случ}}^2} = 6.76\%$$

• С учетом формул выше получаем, как выражается модуль Юнга через коэффицент наклона графика, и выражение для его погрешности:

$$E = \frac{kl}{S} = 155.4$$
 ΓΠα

Рис. 2: График зависимости $P(\Delta l)$ от Δl

$$\varepsilon_E = \sqrt{\varepsilon_S^2 + \varepsilon_k^2 + \varepsilon_l^2} \approx \varepsilon_k = 6.76\%, \quad \sigma_E = \varepsilon \cdot E = 10.5 \ \Gamma\Pi a$$

По итогу получаем значение для модуля Юнга проволки: $E=155.4\pm10.5$ ГПа и относительной погрешность $\varepsilon_E=6.76\%$

3 Определение модуля Юнга по измерению изгиба балки

3.1 Теоретические сведения

Модуль Юнга материала стержня E связан со стрелой прогиба y_{max} как:

$$E = \frac{Pl^3}{4ab^3 y_{max}} \tag{3}$$

где P - нагрузка на стержень, l - расстояние меду точками опоры, a - ширина балки ,b - высота балки

3.2 Экспериментальная установка

Экспериментальная установка состоит из прочной стойки с опорнымми призмами А и Б (рис. 2). На ребра призм опирается исследуемый стержень (балка) В. В середине стержня на призме Д подвешена площадка П с грузами. Измерять стрелу прогиба можно с помощью индикатара И, укрепляемого на отдельной штанге. Полный

Рис. 3: Установка Лермантова и установка

оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

3.3 Результаты эксперимента и обработка данных

- ullet Измерим расстояние между опорами $l=50.4\pm0.05$ см, $arepsilon_l=0.1\%$
- Измерим высоту d и ширину a балок из различных материалов и занесем данные в таблицу.

<i>N</i> 1,дерево	1	2	3	4	5
a, cm	2.05	2	2.03	2	2.05
<i>b</i> , см	1.05	1.05	1.03	1.03	1.05
<i>N</i> 2,сталь	1	2	3	4	5
a, cm	2.13	2.15	2.15	2.15	2.16
<i>b</i> , см	0.4	0.43	0.4	0.4	0.4

За истинное значение примим среднее по всей выборке. Погрешности измерений оцениваем по формулам:

$$\sigma_{\text{случ}}^{a} = \sqrt{\sum_{i} (a_{i} - \langle a \rangle)^{2} / N(N - 1)}, \quad \sigma_{\text{сист}}^{a} = \Delta a$$
$$\sigma_{a} = \sqrt{\sigma_{\text{случ}}^{2} + \sigma_{\text{сист}}^{2}}$$

Получаем значения для дерева: $a_{\text{дер}}=2.026\pm0.09$ см, $b_{\text{дер}}=1.042\pm0.05$ см и для относительных погрешностей имеем: $\varepsilon_{a_{\text{дер}}}=4.4\%,\ \varepsilon_{b_{\text{дер}}}=4.8\%$ Получаем значения для стали: $a_{\text{сталь}}=2.148\pm0.1$ см, $b_{\text{сталь}}=0.406\pm0.07$ см и для относительных погрешностей имеем: $\varepsilon_{a_{\text{сталь}}}=4.7\%,\ \varepsilon_{b_{\text{сталь}}}=17.2\%$

• Кладем исследуемую балку на стойку. Устанавливаем индикатор в центре балки и снимаем зависимость стрелы прогиба Δy_{max} от величины нагрузкиP. Проделываем эти измерения при возрастающей и убывающей нагрузки, заносим данные в таблицу. Заносим эти данные в таблицу и строим по этим точкам график методом намименьших квадратов (МНК).

m, гр	$\Delta_{y_{\mathrm{max}}}$ \uparrow ,cm	P, H	y_{max} , cm	т, гр	$\Delta_{y_{\max}} \downarrow$,cm	P, H	y_{max} , cm
461.8	0.061	4.618	0.061	2437.1	-0.077	24.371	0.349
925.4	0.065	9.254	0.126	1928.4	-0.075	19.284	0.272
1428.4	0.071	14.284	0.197	1428.4	-0.07	14.284	0.197
1928.4	0.075	19.284	0.272	925.4	0.069	9.254	0.127
2437.1	0.077	24.371	0.349	461.8	0.073	4.618	0.058

Таблица 3: Величина прогиба в зависимости от массы при повышении ↑ и при понижении массы ↓ для деревянной балки

Рис. 4: График зависимости $P(y_{max})$ от y_{max} для деревянной балки при прямом и обратном ходе

Как видно точки первой и второй функции графика лежат практически на одной

прямой, коэффиценты наклона находим по формулам:

$$k = \frac{\langle P\Delta y_{max} \rangle - \langle P \rangle \langle \Delta y_{max} \rangle}{\langle y_{max}^2 \rangle - \langle y_{max} \rangle^2}$$

Учтем, что $\varepsilon_{\Delta_{y_{\mathrm{max}}}} \approx 14.3\%$, а $\varepsilon_m \approx 0.01\%$

Для оценики систематической и случайной относительной погрешности пользуемся формулами получаем:

$$\varepsilon_k^{\text{случ}} = \frac{1}{k\sqrt{N-2}} \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle y_{max}^2 \rangle - \langle y_{max} \rangle^2} - k^2} = 1.05\%, \quad \varepsilon_k^{\text{сист}} = \sqrt{\varepsilon_P^2 + \varepsilon_{y_{max}}^2} \approx \varepsilon_{y_{max}} = 14.3\%$$

$$\varepsilon_k = \sqrt{\varepsilon_{\text{сист}}^2 + \varepsilon_{\text{случ}}^2} \approx \varepsilon_{y_{max}} = 14.3\%$$

Для итоговых значений коэффицентов наклона имеем:

$$k_{\text{пер}} = 68.57 \pm 9.8 \text{ H/cm},$$

• Теперь посчитаем модуль Юнга по формуле 3:

$$E_{\text{дер}} = \frac{kl^3}{4ab^3} = 9.57 \text{ }\Gamma\Pi\text{a}, \quad \varepsilon_E = \sqrt{\varepsilon_k^2 + 9\varepsilon_l^2} = 14.3\%$$

По итогу получаем значение: $E_{\rm дер} = 9.57 \pm 1.37~\Gamma {\rm na}.$

• Кладем исследуемую балку на стойку. Устанавливаем индикатор в центре балки и снимаем зависимость стрелы прогиба Δy_{max} от величины нагрузкиP. Проделываем эти измерения при возрастающей и убывающей нагрузки, заносим данные в таблицу. Заносим эти данные в таблицу и строим по этим точкам график методом намименьших квадратов (МНК).

m, гр	$\Delta_{y_{\mathrm{max}}}$ \uparrow ,cm	<i>P</i> , H	y_{max} , cm	т, гр	$\Delta_{y_{\max}} \downarrow$,cm	<i>P</i> , H	y_{max} , cm
461.8	0.109	4.618	0.109	2437.1	-0.126	24.371	0.592
925.4	0.111	9.254	0.22	1928.4	-0.124	19.284	0.466
1428.4	0.12	14.284	0.34	1428.4	-0.122	14.284	0.342
1928.4	0.125	19.284	0.465	925.4	-0.12	9.254	0.222
2437.1	0.127	24.371	0.592	461.8	-0.115	4.618	0.107

Таблица 4: Величина прогиба в зависимости от массы при повышении ↑ и при понижении массы ↓ для деревянной балки

Как видно точки первой и второй функции графика лежат практически на одной прямой, коэффиценты наклона находим по формулам:

$$k = \frac{\langle P\Delta y_{max} \rangle - \langle P \rangle \langle \Delta y_{max} \rangle}{\langle y_{max}^2 \rangle - \langle y_{max} \rangle^2}$$

Рис. 5: График зависимости $P(y_{max})$ от y_{max} для стальной балки при прямом и обратном ходе

Учтем, что $\varepsilon_{\Delta_{y_{\mathrm{max}}}} \approx 8.45\%$, а $\varepsilon_m \approx 0.01\%$

Для оценики систематической и случайной относительной погрешности пользуемся формулами получаем:

$$\varepsilon_k^{\text{случ}} = \frac{1}{k\sqrt{N-2}} \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle y_{max}^2 \rangle - \langle y_{max} \rangle^2} - k^2} = 0.66\%, \quad \varepsilon_k^{\text{сист}} = \sqrt{\varepsilon_P^2 + \varepsilon_{y_{max}}^2} \approx \varepsilon_{y_{max}} = 8.45\%$$

$$\varepsilon_k = \sqrt{\varepsilon_{\text{сист}}^2 + \varepsilon_{\text{случ}}^2} \approx \varepsilon_{y_{max}} = 8.45\%$$

Для итоговых значений коэффицентов наклона имеем:

$$k_{\text{сталь}} = 40.89 \pm 3.46 \text{ H/cm},$$

• Теперь посчитаем модуль Юнга по формуле 3:

$$E_{\text{сталь}} = \frac{kl^3}{4ab^3} = 91 \text{ }\Gamma\Pi\text{a}, \quad \varepsilon_E = \sqrt{\varepsilon_k^2 + 9\varepsilon_l^2} = 8.45\%$$

По итогу получаем значение: $E_{\text{сталь}} = 91.0 \pm 7.7 \; \Gamma$ па.

4 Выводы

В результате выполнения работы было поддтверждено несколько теоретических зависимостей. Получены ожидаемые линейные зависимости между стрелой прогиба

и весом нагрузки.

В первой части работы были получено значение модуля Юнга проволки: $E=155.4\pm10.5$ Гпа которое в пределах погрешности совпадает с табличным значением для стали и железа.

Во второй части работы получены значения для модулей Юнга стали $E_{\text{сталь}}=91.0\pm7.7$ Гпа и дерева $E_{\text{дер}}=9.57\pm1.37$ Гпа соответственно, которые совпадают с табличными значениями в пределах погрешности.