STAT 4100 Lecture Note

Week Ten (Nov 14, 16, & 18, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Nov/19 01:30:20

Important inequalities

Markov's inequality (CB Lemma 3.8.3 & HMC Thm 1.10.2)

• If $Pr(X \ge 0) = 1$ and EX^k exists, then, for all r, k > 0,

$$\Pr(X \ge r) \le \mathrm{E}X^k/r^k$$
.

Chebyshev's inequality (CB Thm 3.6.1 & Example 3.6.2 & HMC Thm 1.10.3)

- A corollary of Markov's inequality
- Let $X \sim (\mu_X, \sigma_X^2)$. Then, for each r > 0,

$$\Pr\{|X - \mu_X| \ge r\sigma_X\} = \Pr\{(X - \mu_X)^2 / \sigma_X^2 \ge r^2\} \le r^{-2}.$$

Cauchy-Schwarz inequality (CB Thm 4.7.3)

- X and Y are both r.v.s. Then $|E(XY)| \le E|XY| \le \sqrt{EX^2}\sqrt{EY^2}$.
 - Because

$$\frac{X^2}{\mathbf{E}X^2} + \frac{Y^2}{\mathbf{E}Y^2} \geq \frac{2|XY|}{\sqrt{\mathbf{E}X^2}\sqrt{\mathbf{E}Y^2}}$$

Convexity and concavity

- Convex set: for any two points in the set, the whole line segment that joins them is also in the set
- Let \mathcal{D} be a convex set. Then real-valued function $f: \mathcal{D} \to \mathbb{R}$ is convex $\iff f(\lambda x_1 + (1-\lambda)x_2) \le$ $\lambda f(x_1) + (1 - \lambda)f(x_2)$ for all $x_1, x_2 \in \mathcal{D}$ and all $\lambda \in [0, 1]$.
 - If f is twice-differentiable, then f is convex (on \mathcal{D}) $\iff f''(x) \geq 0$ for each $x \in \mathcal{D}$.
- f is concave \iff -f is convex.

Example Lec17.1

- Check the convexity/concavity of following functions.
 - a. $f(x) = \exp(x), x \in \mathbb{R}$.
 - b. $f(x) = \ln x, x \in \mathbb{R}^+$.

 - c. $f(x) = x^2, x \in \mathbb{R}$. d. $f(x) = x^{-1}, x \in \mathbb{R} \setminus \{0\}$.
 - e. $f(x) = x^{-2}, x \in \mathbb{R} \setminus \{0\}.$

Jensen's inequality (CB Thm 4.7.7 & HMC Thm 1.10.5)

• If f is convex on (a, b) and $EX \in (a, b)$, then

$$E\{f(X)\} \ge f(EX).$$

Example Lec17.2

• Let X be a positive random variable, i.e., $\Pr(X > 0) = 1$. Argue that a. $E(-\ln X) \ge \ln(1/EX)$; b. $EX^3 \ge (EX)^3$.

Convergence of random variables

Definitions

• Convergence in probability (CB Def 5.5.1), say $X_n \xrightarrow{p} X$: for each $\varepsilon > 0$,

$$\lim_{n \to \infty} \Pr(|X_n - X| < \varepsilon) = 1, \quad \text{or equivalently,} \quad \lim_{n \to \infty} \Pr(|X_n - X| > \varepsilon) = 0.$$

• Almost sure convergence (CB Def 5.5.6), say $X_n \xrightarrow{\text{a.s.}} X$:

$$\Pr(\lim_{n\to\infty} X_n = X) = 1$$

or equivalently, for each $\varepsilon > 0$,

$$\Pr(\lim_{n\to\infty} |X_n - X| < \varepsilon) = 1$$

• Convergence in distribution (CB Def 5.5.10), say $X_n \xrightarrow{d} X$: for each x with $\Pr(X = x) = 0$,

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x);$$

or equivalently (and optionally), for each $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{E}\{\exp(itX_n)\} = \mathbb{E}\{\exp(itX)\};$$

or equivalently (and optionally), for each f continuous and bounded within supp(X),

$$\lim_{n \to \infty} \mathrm{E}\{f(X_n)\} = \mathrm{E}\{f(X)\}.$$

- For the third equivalent statement, the boundedness of f is essential. Hence the convergence in distribution doesn't imply the convergence of moments; see CB Example 10.1.10.

Example Lec18.1 (optional)

• Assume that X(s) = 0 for all $s \in [0,1]$ and

$$X_n(s) = \begin{cases} 1, & s \in \left[\frac{n}{2\lfloor \log_2 n \rfloor} - 1, \frac{n+1}{2\lfloor \log_2 n \rfloor} - 1\right] \\ 0, & \text{elsewhere.} \end{cases}$$

Then the convergence of X_n to X is in probability but NOT almost surely.

CB Example 5.5.11

• (Limiting distribution of the maximum of uniforms) if iid X_1, \ldots, X_n follow Unif(0,1), then $n(1 - X_{(n)}) \stackrel{d}{\to} \text{exponential}(1)$.

Connections

• The chain of implications

$$\xrightarrow{\text{a.s.}} \Rightarrow \xrightarrow{p} \Rightarrow \xrightarrow{d}$$

- (Continuous mapping theorem, CMT) $h(\cdot)$ is continuous and $X_n \xrightarrow{\text{a.s.}/p/d} X \Rightarrow h(X_n) \xrightarrow{\text{a.s.}/p/d} h(X)$.
- (CB Thm 5.5.13 and Exercise 5.41) $X_n \xrightarrow{d}$ constant $c \Rightarrow X_n \xrightarrow{p} c$.
- $X_n \xrightarrow{\text{a.s.}/p} X$ and $Y_n \xrightarrow{\text{a.s.}/p} Y \Rightarrow$
- (Slutsky's theorem, CB Thm 5.5.17) $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d}$ constant $c \Rightarrow$
 - $-aX_n + bY_n \xrightarrow{d} aX + bc$
 - * The requirement that $Y_n \xrightarrow{d}$ constant c is important. Otherwise, consider the following counterexample: assuming $X_n, X, Y \sim \text{Unif}(-1,1)$ and $Y_n = -X_n$, one may find that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ but $X_n + Y_n$ does not converge to X + Y in distribution. $-X_nY_n \xrightarrow{d} cX$

CB Exercise 5.43

• $\sqrt{n}(X_n - c) \xrightarrow{d} \mathcal{N}(0, \sigma^2) \Rightarrow X_n \xrightarrow{p} c$.

Laws of large numbers (LLN, CB Thm 5.5.2 & 5.5.9)

- If X_1, X_2, \ldots are iid with finite mean μ , then
 - (Weak law of large numbers, WLLN) $\bar{X}_n \stackrel{p}{\to} \mu$;
 - * Proof using Chebyshev's inequality (if assuming finite variance as well)
 - (Strong law of large numbers, SLLN) $\bar{X}_n \xrightarrow{\text{a.s.}} \mu$.

Central limit theorem (CLT)

• (CB Thm 5.5.15) if X_1, \ldots, X_n are iid with finite mean μ and finite variance σ^2 , then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0, 1).$$

- A generic approximation to the distribution of \bar{X}_n
- (CB Example 5.5.18) assuming conditions for CLT and that $T_n \xrightarrow{d} \sigma > 0$,

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{T_n} \xrightarrow{d} \mathcal{N}(0, 1).$$

3

- by the CMT, CLT and Slutsky's theorem

CB Exercise 5.35 (optional)

• Derive the Stirling's formula: $n! \approx n^{n+1/2} \exp(-n) \sqrt{2\pi}$.

Asymptotic properties of MLE

Consistency (or consistence, CB Sec 10.1.1)

• $T_n = T_n(X_1, \dots, X_n)$ is consistent for θ iff $T_n \stackrel{p}{\to} \theta$ as $n \to \infty$ - A sufficient condition for consistency: $\mathrm{E}(T_n \mid \theta) \to \theta$ and $\mathrm{var}(T_n \mid \theta) \to 0$ as $n \to \infty$

CB Example 5.5.3

• Suppose that iid $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Prove that $-S_n^2 = (n-1)^{-1} \sum_i (X_i - \bar{X}_n)^2 \text{ is consistent for } \sigma^2;$ $-\widehat{\sigma^2}_{\text{ML}} = n^{-1} \sum_i (X_i - \bar{X}_n)^2 \text{ is consistent for } \sigma^2 \text{ too.}$

Consistency of MLE (univariate case, CB Thm 10.1.6)

- $\hat{\theta}_{\rm ML} \xrightarrow{p} \theta$ under regularity conditions (CB Sec 10.6.2):
 - $-X_1,\ldots,X_n$ are iid;
 - If $\theta_1 \neq \theta_2$, then $f_X(x \mid \theta_1) \neq f_X(x \mid \theta_2)$;
 - $f_X(x \mid \theta)$ has a common support for each $\theta \in \Theta$ and is differentiable with respect to θ ; * Violated by, e.g., Unif $(0, \theta)$;
 - true θ is an interior point of parameter space Θ .

Example of inconsistent MLE

There are independent $X_{i1}, X_{i2} \sim \mathcal{N}(\mu_i, \sigma^2), i = 1, \dots, n$. Then $\widehat{\sigma^2}_{ML}$ is NOT consistent for σ^2 .

Examples of consistent MLE even when the regularity conditions are violated

- iid $X_1, \ldots, X_n \sim \text{Ber}(1)$
- iid $X_1, \ldots, X_n \sim \text{Unif}(0, \theta)$

Take-home exercises (NOT to be submitted; to be potentially covered in labs)