Chapter 14 Complex Frequency and the Laplace Transform

Motivating Complex Frequency

An exponentially damped sinusoidal function, such as the voltage

$$v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$$

includes as "special cases"

- dc, when $\sigma=\omega=0$: $v(t)=V_m\cos(\theta)=V_0$
- sinusoidal, when $\sigma=0$: $v(t) = V_m \cos(\omega t + \theta)$
- exponential, when $\omega=0$: $v(t)=V_m e^{\sigma t}$

The Complex Frequency

Any function that may be written in the form

$$f(t) = \mathbf{K}e^{\mathbf{S}t}$$

where **K** and **s** are complex constants (independent of time) is characterized by the complex frequency **s**.

The DC Case

A constant voltage

$$v(t) = V_0$$

may be written in the form

$$v(t) = V_0 e^{(0)t}$$

So: the complex frequency of a dc voltage or current is zero (i.e., $\mathbf{s} = \mathbf{0}$).

The Exponential Case

The exponential function

$$v(t) = V_0 e^{\sigma t}$$

is already in the required form.

The complex frequency of this voltage is therefore σ or

$$s = \sigma + j0$$

The Sinusoidal Case

For a sinusoidal voltage

$$v(t) = V_m \cos(\omega t + \theta)$$

we apply Euler's identity:

$$\cos(\omega t + \theta) = \frac{1}{2} [e^{j(\omega t + \theta)} + e^{-j(\omega t + \theta)}]$$

to show that

$$v(t) = \frac{1}{2} V_m [e^{j(\omega t + \theta)} + e^{-j(\omega t + \theta)}]$$

$$= \left(\frac{1}{2} V_m e^{j\theta}\right) e^{j\omega t} + \left(\frac{1}{2} V_m e^{-j\theta}\right) e^{-j\omega t}$$

$$v(t) = \mathbf{K}_1 e^{\mathbf{s}_1 t} + \mathbf{K}_2 e^{\mathbf{s}_2 t}$$

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Exponentially Damped Sinusoidal Case

$$v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$$

= $\frac{1}{2} V_m e^{\sigma t} [e^{j(\omega t + \theta)} + e^{-j(\omega t + \theta)}]$

$$v(t) = \frac{1}{2} V_m e^{j\theta} e^{j(\sigma + j\omega)t} + \frac{1}{2} V_m e^{-j\theta} e^{j(\sigma - j\omega)t}$$

The damped sine has two complex frequencies

$$\mathbf{s}_1 = \sigma + j\omega$$
 and $\mathbf{s}_2 = \sigma - j\omega$

which are complex conjugates of each other.

Example: Forcing Function

If $v(t) = 60e^{-2t}\cos(4t + 10^\circ)$ V, solve for i(t). Method: write $v(t) = Re\{Ve^{st}\}$ with s = -2 + j4

Answer: $5.37e^{-2t}\cos(4t - 106.6^{\circ})$ A

The Laplace Transform

The two-sided Laplace transform of a function f(t) is defined as

$$\mathbf{F}(\mathbf{s}) = \int_{-\infty}^{\infty} e^{-\mathbf{s}t} f(t) \, dt$$

 $\mathbf{F}(\mathbf{s})$ is the frequency-domain representation of the time-domain waveform f(t).

The Laplace Transform

$$\mathbf{F}(\mathbf{s}) = \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} f(t) \, dt$$

$$f(t) = \frac{1}{2\pi j} \int_{\sigma_0 - j\infty}^{\sigma_0 + j\infty} e^{\mathbf{s}t} \mathbf{F}(\mathbf{s}) d\mathbf{s}$$
$$f(t) \Leftrightarrow \mathbf{F}(\mathbf{s})$$

For time functions that do not exist for t < 0, or for those time functions whose behavior for t < 0 is of no interest, the timedomain description can be thought of as v(t)u(t).

This leads to the onesided Laplace Transform, which from now on will be called simply the Laplace Transform.

Example: Laplace Transform

Compute the Laplace transform of the function f(t) = 2u(t - 3).

Apply:
$$\mathbf{F}(\mathbf{s}) = \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} f(t) dt$$

to show that
$$F(s) = \frac{2}{s}e^{-3s}$$

Laplace Transform of the Unit Step

$$\mathcal{L}\{u(t)\} = \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} u(t) dt = \int_{0}^{\infty} e^{-\mathbf{s}t} dt$$
$$= -\frac{1}{\mathbf{s}} e^{-\mathbf{s}t} \Big|_{0}^{\infty} = \frac{1}{\mathbf{s}}$$

$$u(t) \Leftrightarrow \frac{1}{\mathbf{s}}$$

This is valid for Re(s)>0

The Unit Impulse δ(t)

The unit impulse is defined as $\delta(t) = du(t)/dt$

$$\delta(t - t_0) = 0 \qquad t \neq t_0$$

$$\int_{t_0 - \varepsilon}^{t_0 + \varepsilon} \delta(t - t_0) dt = 1$$

$$\mathcal{L}\{\delta(t-t_0)\} = \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} \delta(t-t_0) dt = e^{-\mathbf{s}t_0}$$
$$\delta(t-t_0) \Leftrightarrow e^{-\mathbf{s}t_0}$$

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Unit Impulse δ(t)

The value of
$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0) dt$$
 is $f(t_0)$

This is the *sifting property* of the unit impulse.

The Laplace Transform pair is simple:

$$\delta(t) \Leftrightarrow 1$$

Other Important Laplace Transforms

The decaying exponential:
$$e^{-\alpha t}u(t) \iff \frac{1}{s+\alpha}$$

The ramp:
$$tu(t) \Leftrightarrow \frac{1}{s^2}$$

The "ramp/exponential":
$$te^{-\alpha t}u(t) \Leftrightarrow \frac{1}{(\mathbf{s} + \alpha)^2}$$

Linearity and Laplace

$$\mathcal{L}\lbrace f_1(t) + f_2(t)\rbrace = \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} [f_1(t) + f_2(t)] dt$$

$$= \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} f_1(t) dt + \int_{0^{-}}^{\infty} e^{-\mathbf{s}t} f_2(t) dt$$

$$= \mathbf{F}_1(\mathbf{s}) + \mathbf{F}_2(\mathbf{s})$$

$$\mathcal{L}\{kv(t)\} = k\mathcal{L}\{v(t)\} \qquad kv(t) \Leftrightarrow k\mathbf{V}(\mathbf{s})$$

Example: Laplace Transform

Calculate the inverse transform of F(s) = 2(s + 2)/s.

Method: Use linearity properties and transform pairs.

Answer: $f(t) = 2\delta(t) + 4u(t)$

Laplace Transform Theorems

Time Differentiation:

$$\frac{dv}{dt} \Leftrightarrow sV(s) - v(0^{-})$$

Time Integration:

$$\int_{0^{-}}^{t} v(x) dx \Leftrightarrow \frac{V(s)}{s}$$

Example: Using LT Theorems

Determine i(t) and v(t) for t > 0 in the series RC circuit shown:

Answer:
$$i(t) = -2e^{-4t}u(t) A$$
, $v(t) = (1 + 8e^{-4t})u(t) V$

Laplace Transform of Sinusoids

$$\cos(\omega t)u(t) \Leftrightarrow \frac{S}{S^2 + \omega^2}$$

$$\sin(\omega t)u(t) \Leftrightarrow \frac{\omega}{s^2 + \omega^2}$$

Laplace Transform Theorems

Initial Value Theorem:

$$\lim_{t\to 0^+} f(t) = \lim_{\mathbf{s}\to\infty} [\mathbf{sF}(\mathbf{s})]$$

Final Value Theorem:

$$\lim_{t \to \infty} f(t) = \lim_{\mathbf{s} \to 0} [\mathbf{sF}(\mathbf{s})]$$

Example: Laplace Transform

Determine the transform of the rectangular pulse

$$v(t) = u(t-2) - u(t-5)$$

Answer:

$$V(s) = \frac{e^{-2s} - e^{-5s}}{s}$$