高雄中學 106 學年度第二學期高三第二、三類組數學科期末考試題

範圍:第四章(全)

(請將答案寫在答案卷上,請小心計算,Good Luck!!)

一、 單選題: (每題5分共計10分)

說明:第1題至第2題,每題5個選項,其中只有1個是最適當的選項,畫記在答案卷之「答案欄」。各題答對得5分,未作 答、答錯、或畫記多於1個選項者,該題以零分計算。

1. *m* 為下列何值,可使不等式 $3x^4 - 4mx^3 + 2m^3 + m^2 - 2m \le 0$ 無實數解?

$$(1)\frac{1}{2}$$
 $(2)\frac{3}{2}$ $(3)\frac{5}{2}$ $(4)\frac{7}{2}$ $(5)\frac{9}{2}$

2. 設 $f(x) = (x^{2017} + 5x^{2019} - 3x^{2021})^{2015} + x^{2018}$,若導函數 f'(x) 奇次項係數和為k,則k 值為

$$(1)2015$$
 $(2)2016$ $(3)2017$ $(4)2018$ $(5)2019$

二、 多選題: (每題 5 分共計 10 分)

說明:第3題至第4題,每題有5個選項,其中至少有1個是正確的選項。選出正確選項,畫記在答案卷之「答案欄」。各題 之選項獨立判定,所有選項均答對者,得5分,答錯1個選項者,得3分,所有選項均未作答或答錯多於1個選項者,該題 以 0 分計算。

- 3. 下列各敘述何者正確?
- (1)若 f'(a) 存在,則 f(x) 在 x = a處連續。
- (2)若 f(x), g(x) 為 R 上可微分函數且對任意實數 x 滿足 $f(x) \le g(x)$,則 $f'(x) \le g'(x)$ 均成立,對任 意實數x.
- (3)若函數 f(x) 在區間 (a,b) 內嚴格遞增,則函數 f(x) 在區間 (a,b) 內的導數恆為正數。
- (4)若 f'(a) = 0 , 則 f(a) 必為函數 f(x) 局部極值。
- (5)存在可微分函數 f(x) 使得 f'(x) = [x] ,對任意實數 x . (其中[·] 為高斯符號)
- 4. 已知三次函數 $f(x)=ax^3+bx^2+cx+4$ 有兩個極值,分別在 x=-1 與 x=1 處,且方程式 f(x)=0 有三個相異實根。下列哪些選 項是正確的?

- (1) f(x) 的反曲點為(0,4) (2) b=0 (3) 方程式 f(x)-8=0 必定有三個相異實根
- (4) 無論 x 之值為何, f(-x)+f(x) 之值必定等於 8 (5) $f(\sqrt{3})$ 之值必大於 0

三、 填充題: (共計 70 分)

5. 若函數
$$f(x) = (x^3 - 2x + 1)^{2018} + \frac{x}{x^2 + 1}$$
, 求 $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \underline{\qquad (A)}$

7. 求極限
$$\lim_{n\to\infty} \frac{1}{n^4} \Big[(4n+1)^3 + (4n+2)^3 + (4n+3)^3 + \dots + (4n+n)^3 \Big] = \underline{\qquad (C)}$$

- 8. 設 $f(x) = x^3 + ax^2 + bx + c$,已知當切點座標為(3,1) 時之切線斜率最小,此時切線通過座標(4,1) ,求函數 f(x) 在 x = 1 之法線方 程式為____(D)____
- 9. 求曲線 $y = x(x-2)^2 + 2018$ 與 y = x(x-2) + 2018 所圍成區域面積為 (E)

10. 設曲線 $y=x^3+ax^2+bx+c$ 之圖形如右,且與x軸在原點相切,若此切線與曲線所圍的區域的面積為 $\frac{4}{3}$,求此區域繞x軸旋轉

所得旋轉體體積為____(F)____

- 12. 若函數 f(x) 满足 $\int_{1}^{x^3} f(t)dt = 2x^9 3x^6 + a$,求 f(x) 的圖形和 x 軸所圍的區域面積為 (H)
- 13. 定義兩函數 $f(x) = \int_0^x g(t)dt + 1$, $g(x) = 3x^2 2x + \int_0^1 [f(t) + g'(t)]dt$,則 $f(x) = \underline{\hspace{1cm}}$

四、計算題: (共計 10 分)

- 1. 若函數 $f(x) = \int_{1}^{x} 3(t+1)(t-2)dt$, $\forall x \in \mathbb{R}$, 試回答下列問題:
 - (1)判斷 f(x) 遞增遞減開區間、相對極值、凹性開區間與反曲點並畫出 f(x) 圖形。(7%)
 - (2)試討論方程式 f(x) = k 的實根個數與 k 範圍關係。(3%)