Datenbanken

Mengenlehre

Thomas Studer

Institut für Informatik Universität Bern

Zwei-sortige Sprache

Objekte sind entweder

- atomare Objekte, d.h. unteilbare Objekte ohne interne Struktur oder
- ② n-Tupel der Form (a_1, a_2, \ldots, a_n) , wobei a_1 bis a_n Objekte sind $(n \ge 1)$.

Die Komponenten eines Tupels sind geordnet.

Zwei-sortige Sprache

Objekte sind entweder

- 1 atomare Objekte, d.h. unteilbare Objekte ohne interne Struktur oder
- ② n-Tupel der Form (a_1, a_2, \ldots, a_n) , wobei a_1 bis a_n Objekte sind $(n \ge 1)$.

Die Komponenten eines Tupels sind geordnet.

```
Beispiel
```

```
atomar Hello, world! (Text)
atomar 12345 (Zahl)
```

- 3-Tupel (999, Max, Muster)
- 2-Tupel (999, (Max, Muster))

Konvention

Konvention

Wir benutzen Kleinbuchstaben a, b, c, \ldots um Objekte zu bezeichnen.

Konvention

Spielt bei einem n-Tupel die Anzahl der Komponenten keine Rolle (oder ist sie klar aus dem Kontext), so sprechen wir einfach von einem Tupel.

Projektion auf Komponenten

Sei $a=(a_1,\ldots,a_i,\ldots,a_n)$ ein n-Tupel, dann nennen wir a_i die i-te Komponente von a.

Wir definieren für $a = (a_1, \ldots, a_n)$ und $1 \le i \le n$:

$$\pi_i(a) := a_i$$
.

Mit Hilfe der Projektionsfunktion $\pi_i(a)$ können wir die i-te Komponente aus einem Tupel a extrahieren.

Seien a, b und c Objekte. Dann sind auch

$$t = (a, a, b)$$
 sowie $s = ((a, a, b), c)$

Objekte.

Beispiel

- **1** $\pi_1(t) = a$
- **2** $\pi_2(t) = a$
- **3** $\pi_3(t) = b$
- \bullet $\pi_1(s) = (a, a, b)$
- \bullet $\pi_2(s) = c$
- **6** $\pi_3(\pi_1(s)) = b$

Gleichheit

Seien
$$a=(a_1,\ldots,a_n)$$
 und $b=(b_1,\ldots,b_n)$ zwei $n ext{-Tupel.}$ Es gilt

$$a = b$$
 g.d.w. $\forall 1 \le i \le n(a_i = b_i)$.

Das heisst, zwei $n ext{-}\mathsf{Tupel}$ sind genau dann gleich, wenn Gleichheit für alle Komponenten gilt.

Beispiel

- $\textcircled{999, \textit{Max}, \textit{Muster})} \neq (\textit{999}, (\textit{Max}, \textit{Muster}))$

Mengen

Eine Menge ist eine ungeordnete Kollektion von Objekten. Falls das Objekt a zu einer Menge M gehört, sagen wir a ist ein $\mathit{Element}$ von M und schreiben $a \in M$.

Eine endliche Menge M kann durch Aufzählen ihrer Elemente beschrieben werden. So besteht beispielsweise die Menge $M=\{a,b,c,d\}$ genau aus den Elementen a,b,c und d.

Bei Mengen geht es ausschliesslich um die Frage, welche Elemente in ihr enthalten sind. Häufigkeit und Reihenfolge der Elemente spielen keine Rolle.

$$\{b, b, a, c, d\}$$
 und $\{a, b, c, d, d, d\}$

beschreiben dieselbe Menge.

Wir verwenden Grossbuchstaben A, B, C, \ldots um Mengen zu bezeichnen.

Objekte und Mengen sind verschieden

Annahme

Die Klasse der Objekte und die Klasse der Mengen sind disjunkt.

Dies bedeutet, dass Mengen keine Objekte sind. Somit kann eine Menge nicht Element einer (anderen) Menge sein.

Für Mengen A und B ist also $A \in B$ nicht möglich.

Wir treffen diese Annahme, damit wir uns nicht um Paradoxien der Mengenlehre kümmern müssen.

Seien a, b, und c Objekte.

- ullet Die leere Menge $\{\}$ ist eine Menge, sie wird auch mit \emptyset bezeichnet.
- $\{a,b\}$ ist eine Menge.
- $\{a,(b,c)\}$ ist eine Menge.
- $\{a, \{b, c\}\}$ ist *keine* Menge (gemäss unserer Definition).

Gleichheit von Mengen

Zwei Mengen sind *gleich*, falls sie dieselben Elemente enthalten. Formal heisst das

$$A=B$$
 g.d.w. $\forall x(x\in A\Leftrightarrow x\in B)$.

Statt A und B sind gleich sagen wir auch, A und B sind identisch.

Teilmengen

Eine Menge A heisst Teilmenge einer Menge B (wir schreiben dafür $A \subseteq B$), falls jedes Element von A auch ein Element von B ist. Das heisst

$$A\subseteq B \qquad \text{g.d.w.} \qquad \forall x(x\in A \,\Rightarrow\, x\in B) \ .$$

A heisst *echte* Teilmenge von B (in Zeichen $A \subsetneq B$), falls

$$A \subseteq B$$
 und $A \neq B$.

Bemerkung

Für zwei Mengen A und B gilt somit

$$A=B$$
 g.d.w. $A\subseteq B$ und $B\subseteq A$.

Prädikate

Ein Prädikat $\varphi(x)$ beschreibt eine Eigenschaft, welche Objekten zu- oder abgesprochen werden kann.

Der Ausdruck $\varphi(a)$ sagt, dass das Objekt a die durch $\varphi(x)$ beschriebene Eigenschaft hat. Wir sagen dann a erfüllt φ .

Beispiel

- $\varphi(x) = x$ ist eine gerade Zahl
- ullet $\varphi(x)=x$ so, dass $\exists y\in\mathbb{N}$ mit x=2y
- $\bullet \ \varphi(x) = x \text{ ist rot}$

Komprehension

Annahme

Für jedes Prädikat $\varphi(x)$ gibt es eine Menge A, so dass für alle Objekte x gilt

$$x \in A \qquad \text{g.d.w.} \qquad \varphi(x) \ .$$

Wir verwenden folgende Schreibweise, um eine durch Komprehension gebildete Menge zu definieren

$$A := \{x \mid \varphi(x)\}$$

und sagen A ist die Menge von allen x, welche φ erfüllen.

Die Menge

$$A := \{ x \mid \exists y \in \mathbb{N} \text{ mit } x = 2y \}$$

ist die Menge derjenigen x für die es eine natürliche Zahl y gibt mit x=2y.

Das heisst, A ist die Menge der geraden natürlichen Zahlen.

Weniger formal: $A = \{0, 2, 4, 6, 8, 10, \dots\}$

Exkurs: Russels Paradoxon

Barbier-Paradoxon

Man kann einen Barbier als einen definieren, der all jene und nur jene rasiert, die sich nicht selbst rasieren.

Die Frage ist: Rasiert der Barbier sich selbst?

Exkurs: Russels Paradoxon

In der üblichen mathematischen Mengenlehre ist das Schema der (uneingeschränkten) Komprehension nicht zulässig, da es zu Widersprüchen führt, wie zum Beispiel

Russelsche Antinomie

Definiere $R := \{x \mid x \not\in x\}$. Dann gilt

 $R \in R$ genau dann, wenn $R \not \in R$.

In unserem Ansatz ist der Ausdruck $x \notin x$ ist syntaktisch nicht erlaubt.

Die Element-Beziehung kann nur zwischen Objekten und Mengen ausgedrückt werden, aber nicht zwischen zwei Mengen oder zwischen zwei Objekten.

Operationen auf Mengen

 $\mbox{ Vereinigung } x \in A \cup B \quad \mbox{g.d.w.} \quad x \in A \mbox{ oder } x \in B$

 $\mbox{ Differenz } x \in A \setminus B \quad \mbox{g.d.w.} \quad x \in A \mbox{ und } x \not \in B$

Existenz

Bemerkung

Die Vereinigung, die Differenz und der Schnitt zweier Mengen existieren (als neue Mengen), da sie durch das Schema der Komprehension gebildet werden können.

Schnitt als Differenz

Lemma

Seien A und B zwei Mengen. Dann gilt

$$A \cap B = A \setminus (A \setminus B) .$$

Beweis. Die folgenden Aussagen sind äquivalent:

$$x \in A \cap B$$

$$x \in A \text{ und } x \in B$$

$$x \in A \text{ und } (x \notin A \text{ oder } x \in B)$$

$$x \in A \text{ und nicht } (x \in A \text{ und } x \notin B)$$

$$x \in A \text{ und nicht } x \in (A \setminus B)$$

$$x \in A \text{ und } x \notin (A \setminus B)$$

$$x \in A \setminus (A \setminus B)$$

Damit gilt $A \cap B = A \setminus (A \setminus B)$.

Relationen

Eine Menge R heisst n-stellige (oder n-äre) Relation über Mengen A_1, \ldots, A_n , falls

$$R \subseteq \{(x_1, \dots, x_n) \mid x_1 \in A_1 \text{ und } \dots \text{ und } x_n \in A_n\}$$
.

Für eine n-stellige Relation R über Mengen A_1,\ldots,A_n gilt somit: Jedes Element von R ist ein n-Tupel (x_1,\ldots,x_n) mit $x_i\in A_i$ für alle $1\leq i\leq n$.

Seien a, b und c atomare Objekte.

- $\{a, b, c\}$ ist keine Relation.
- $\{(a),(b),(c)\}$ ist eine Relation.
- $\{(a,a,a),(b,c,a),(b,c,c)\}$ ist eine Relation.
- $\{(a,a),(a,b,c),(c,c)\}$ ist keine Relation.

Kartesisches Produkt

Für eine m-stellige Relation R und eine n-stellige Relation S definieren wir das $kartesische\ Produkt\ R\times S$ als (m+n)-stellige Relation durch

$$R \times S := \big\{ (x_1, \dots, x_{m+n}) \mid (x_1, \dots, x_m) \in R \text{ und } \\ (x_{m+1}, \dots, x_{m+n}) \in S \big\} \ .$$

Das kartesische Produkt von R und S besteht aus allen möglichen Kombinationen von Elementen aus R mit Elementen aus S.

Sei

- R die 1-stellige Relation $R = \{(a), (b), (c)\}$ und
- $\bullet \ S \ {\rm die} \ 2\hbox{-stellige Relation} \ S=\{(1,5),(2,6)\}.$

Dann ist $R \times S$ die 3-stellige Relation

$$R \times S = \{(a, 1, 5), (a, 2, 6), (b, 1, 5), (b, 2, 6), (c, 1, 5), (c, 2, 6)\}$$

Bemerkungen

Bemerkung (Flaches Produkt)

Unsere Definition nennt man auch flaches kartesisches Produkt. Das bedeutet, dass das kartesische Produkt einer m-stelligen mit einer n-stelligen Relation eine (m+n)-stellige Relation ist.

Bemerkung

Besteht R aus h-vielen Elementen und S aus k-vielen Elementen, so enthält das kartesische Produkt $(h\cdot k)$ -viele Elemente.

Assoziativität

Lemma

Seien R, S und T Relationen. Es gilt

$$(R\times S)\times T=R\times (S\times T)$$
 .

Diese Eigenschaft erlaubt es uns, die Klammern wegzulassen und einfach $R \times S \times T$ zu schreiben.

Flaches Produkt vs. übliche mathematische Definition

Üblicherweise wird in der mathematischen Mengenlehre das kartesische Produkt anders definiert, nämlich durch

$$R \times S := \{(a,b) \mid a \in R \text{ und } b \in S\} . \tag{1}$$

Damit ist $R \times S$ immer eine 2-stellige Relation.

Im Gegensatz zu unserem kartesischen Produkt erfüllt das Produkt aus (1) das Assoziativgesetzt nicht.

Für R uns S aus dem vorherigen Beispiel finden wir dann

$$R \times S := \{((a), (1,5)), ((a), (2,6)), ((b), (1,5)), ((b), (2,6)), ((c), (1,5)), ((c), (2,6))\}$$
.

Die Elemente aus $R \times S$ sind 2-Tupel (Paare) bestehend aus einem 1-Tupel und einem 2-Tupel.