

CS 115 Functional Programming

Lecture 19: May 17, 2016

State Monads

(part 1)

Previously

- Error-handling monads
- Functional dependencies
- Existential types

Today

- State monads
- The State datatype
- (State s) as a monad
- The runState function

- We have seen that we can use the IO monad to write imperative computations in Haskell
 - Io is not just for input and output!
- We can use IORefs where mutable variables are used in imperative languages
- We can use IOArrays where mutable arrays are used in imperative languages
- All this power comes with a major price tag, though
 - What is it?

- Using the IO monad for imperative programming is a one-way trip!
- Once your code enters the IO monad, it never exits it!
- It would be good if there was a way of doing imperative (or imperative-like) computations without being forced to stay in the IO monad

- We have four options to do imperative-like computations without having to stay in the IO monad:
- Option 1: Do them in the IO monad, but use unsafePerformIO
 - almost never a good idea!
 - need to be able to prove that this doesn't break referential transparency, or the code will not behave properly

- Option 2: do computations in the ST monad
 - ST is an IO-like monad that allows you to exit back into normal functional code
 - allows you to use STRef and STArray (analogous to IORef and IOArray)
 - However, you can't do input and output in the ST monad
 - "Under the hood", ST is actually using the IO monad to run its computations and (safely) uses unsafePerformIO

- Option 3: manually thread state variables in each function that needs them
 - Use helper functions with extra state variables and change the state variables when calling helper functions (often recursively)
 - A purely functional approach (no IO or ST monads)
 - This approach covered in CS 4 in detail
 - Perfectly OK to do this if the number of state variables is small (1 or 2)
 - With more state variables, this gets very cumbersome

- Option 4: do computations in a state monad
 - State monads are a purely functional way to encapsulate state and pass it around in computations that use that state
 - State monads are completely unconnected from the IO or ST monads
 - State monads allow us to simulate both local and global state variables in a purely functional setting
 - It's easy to break out of a state monad whenever you want

State monads vs ST monad

- Why use state monads instead of the ST monad?
- ST monad is preferable when you have an unbounded number of stateful items you want to work with (e.g. large numbers of STRefs or STArrays) or where efficiency is essential
- When the number of stateful items is small, and many functions share the same state, state monads are a more natural fit
- You can combine state monads with the IO monad using monad transformers (advanced topic!), but ST and IO cannot be combined

- Recall, once again; monads are used to model different "notions of computation" in Haskell
- Here, the "notion" is: computations that interact with state (local or global)
- Conceptually, we can draw the type signature of the characteristic functions of this monad as:
- a ---[access/modify state variables]--> b
- Such functions take in a value of type a, possibly interact with (access/modify) some state variables, and output a value of type b

- We need to take this schematic diagram
- a ---[access/modify state variables]--> b
- and convert it into something Haskell can use
- Let's assume that we have a datatype representing all the state variables in our computations (as a tuple or a record)
- If this datatype is called s we can rewrite the type signature as:

```
(a, s) -> (b, s)
```


- $(a, s) \rightarrow (b, s)$
- This is the type signature of a pure function which passes a state value of type s into the input and retrieves it from the output
- Computations of this form are said to "thread the state" through the computation
- We can write all state-handling functions we want in this manner, but doing so will be very tedious
 - like using Maybe or (Either e) types without monads

 Ultimately, we want to be able to write monadic functions with a type signature like this:

$$a \rightarrow m b$$

 We will have to do a few transformations to convert the "natural" type for state-passing functions:

$$(a, s) \rightarrow (b, s)$$

into the monadic form

- We will start by noting that any function with the type
 (a, b) -> c
- can be curried to give an equivalent function of type

Applying this to functions of type

$$(a, s) -> (b, s)$$

gives functions of type

$$a \rightarrow s \rightarrow (b, s)$$

 These functions can represent exactly the same computations as ones of type (a, s) -> (b, s)

 Since the -> in type signatures associates to the right, it is legitimate to rewrite the type signature

```
a \rightarrow s \rightarrow (b, s)
```

as:

$$a \rightarrow (s \rightarrow (b, s))$$

- Objects that have the type (s -> (b, s)) will be referred to henceforth as "state transformers"
- They are functions that take in a state value of type s, and return a value of type b, along with a (possibly different) state value of type s

 We can create a new datatype to wrap around the return type of functions with this type:

```
a \rightarrow (s \rightarrow (b, s))
```

We'll call it State, and define it as:

```
data State s = State (s -> (a, s))
```

- State is a binary type constructor like Either with the kind * -> * -> *
- We use the name State as the name of the (only) value constructor as well as the type constructor's name (this is legal in Haskell)

- Using State, we can rewrite our state-passing functions so that they have the type signature:
- a -> State s b -- or: a -> (State s) b
- Comparing this to the characteristic type signature of a monadic function:
- $a \rightarrow m b$
- We see that our monad is going to have to be
 (State s) which will be a unary type constructor
 (i.e. which will have the kind * -> *)
- We will refer to this as "the" State monad

State monads

 Notice that the monadic values of the State monad:

State s a

- are actually functions of type (s -> (a, s))
- We have talked about monadic values as being "actions" or "undercover functions" (especially with respect to the IO monad)
- Here is a monad where the monadic values actually are functions!

State monads

- Our job now is to write the Monad instance definition for the State s monad
- We will fill in this code:

```
instance Monad (State s) where
  return x = {- to be filled in -}
  mv >>= f = {- to be filled in -}
```

 As before, we will define >>= based on what we want the monad to achieve

 Let's start by assuming we have two functions in the State s monad with these type signatures:

```
f :: a -> State s b g :: b -> State s c
```

 and we would like to compose them to give a function with the type signature:

```
h :: a -> State s c
```

 Let's rewrite these type signatures in a non-monadic form so we can better see what's going on

 Non-monadic versions of f, g, and h might have the type signatures:

```
f' :: (a, s) -> (b, s)
g' :: (b, s) -> (c, s)
h' :: (a, s) -> (c, s)
```

- Now what composing f' and g' to give h' means is clear:
 - the state output of f' (type s) is the state input to g'
 - the value output of f' (type b) is the value input to g'
- The monad's job will be to handle the state-passing for us

We can easily define h' in terms of f' and g':

```
h' :: (a, s) -> (c, s)
h' (x, st) =
  let (y, st') = f' (x, st)
        (z, st'') = g' (y, st')
        -- initial state of g' = final state of f'
  in (z, st'')
```

This could be simplified all the way down to:

```
h' = g' \cdot f'
```

but we'll stick to the expanded form for clarity

Going back to the original functions f, g, and h, we have

$$h = f >=> q$$

which is equivalent to:

$$h x = f x >>= g$$

which is equivalent to:

$$h x = f x >>= \y -> g y$$

which is equivalent to:

$$h x = do y < - f x$$
 $g y$

The interpretation of:

```
h x = do y < - f x
g y
```

- goes like this:
 - We compute f x (possibly using/changing the state) to get the value y
 - 2. We compute **g y** (possibly using/changing the state) to get the final result
- The state is handled "under the surface" by the monad so we can just concentrate on the values x and y (the state is there whenever we need it)

Let's go back to f' and g':

```
f' :: (a, s) -> (b, s)
g' :: (b, s) -> (c, s)
```

 and write curried versions of them with these type signatures:

```
f'' :: a -> s -> (b, s)
g'' :: b -> s -> (c, s)
```

in terms of f' and g'

• We have:

```
f'' :: a -> s -> (b, s)
f'' x st = f' (x, st)
g'' :: b -> s -> (c, s)
g'' y st = g' (y, st)
• Or, written slightly differently:
f'' x = \st -> f' (x, st)
```

```
f'' x = \st -> f' (x, st)
g'' y = \st -> g' (y, st)
```


If we wrap the right-hand sides of f' and g' in a state constructor, we have the definitions of f and g in terms of f' and g':

```
f :: a -> State s b
f x = State (\st -> f' (x, st))
g :: b -> State s c
g y = State (\st -> g' (y, st))
```


 Similarly, we can define the monadic composition of f and g (h) in terms of the composition of f' and g' (h') as follows:

```
h :: a \rightarrow State s b

h x = State (\st \rightarrow h' (x, st))
```

 Now we are ready to derive the >>= operator for the (State s) monad

Recall:

$$h = f >=> g$$

which is equivalent to:

$$h x = f x >>= g$$

Reversing this equation, we have:

$$f x >>= g = h x$$

• Expanding h x, we have:

$$f x >>= g = State (\st -> h' (x, st))$$

Let us calculate:

Continuing:

```
f x >>= q
 = State (\st ->
      let (y, st') = f'(x, st) in
        g' (y, st'))
-- Recall:
-- f x = State (\st -> f' (x, st))
 = State (\st ->
      let (State ff) = f x -- unpack (f x)
          -- ff = \st -> f' (x, st)
          (y, st') = ff st
      in g' (y, st'))
```


 Notice that this definition is no longer dependent on f' but only on f:

Let's eliminate g' in favor of g the same way

Continuing:

Substitute mv for f x to get:

- This is the correct definition of >>= for the (State s) monad
- It may seem unintuitive, but it's just a translation of the way f' and g' compose to get h'

• We can also write it like this:

Deriving the return method

- We still need to derive the return method
- Usually we do this using the monad laws
- Here, there is a much easier way!
- Recall: the return method for a particular monad is the monadic version of the identity function
- Monadic functions in the (State s) monad have type signatures of the form:
- a -> State s b

Deriving the return method

 The non-monadic state-passing functions have type signatures of the form:

```
(a, s) -> (b, s)
```

The identity function in this form would be:

```
id_state (x, st) = (x, st)
id_state' x st = (x, st) -- curried
id_state' x = \st -> (x, st) -- written differently
```

 Written as a function in the (State s) monad, this becomes:

```
id_state_monad :: a -> State s a
id_state_monad x = State (\st -> (x, st))
```


Deriving the return method

```
id_state_monad :: a -> State s a
id_state_monad x = State (\st -> (x, st))
```

- This is the identity function in the (State s) monad
- Therefore, it is also the return method:

```
return :: a -> State s a
return x = State (\st -> (x, st))
```

 What return does is to take a value and output a state transformer which takes a state, doesn't change it and returns the original value

The Monad instance

 Putting this all together, we get the Monad instance for the (State s) monad:

```
instance Monad (State s) where
  return x = State (\st -> (x, st))
 mv >>= q
    = State (\st ->
        let (State ff) = mv
            (y, st') = ff st
            (State gg) = g y
        in gg st')
```


Validating the Monad instance

- Once we have a putative Monad instance, we must use the monad laws to validate it
- Unfortunately, for state monads this is pretty grungy even for monad laws 1 and 2
 - and really ugly for monad law 3!
- I will refer you to a detailed derivation on my blog:

http://mvanier.livejournal.com/5406.html

Upshot: this Monad instance does in fact obey the monad laws

Getting out of the monad

- We said that, unlike the IO monad, the (State s) monad allows us to break out of the monad at any time
- This is actually trivial!
- A monadic value in the (State s) monad has the type State s a, which is equivalent to a function of type (\s -> (s, a)) wrapped up in a State constructor
- To extract the (state, value) pair, we must unpack the function from the State constructor and apply it to an initial state value

Getting out of the monad

 We saw a library function called runState which does this; we can rewrite it as:

```
runState :: State s a -> s -> (a, s)
runState (State f) init_st = f init_st
```

- (The actual definition may be different from this, but it will be equivalent)
- A computation in the (State s) monad can be "run" by passing it, and an initial state, to runState, which will return the final state and the final result value

Using state monads

- State monads are found in the Haskell module called Control. Monad. State
- This module also defines runState as well as the MonadState type class (subject of next lecture)

Next time

- More on state monads
- The MonadState type class
 - the get and put methods to retrieve/change values in the state being passed around
- Examples using state monads