TAiO - projekt

Jakub Gocławski, Janusz Lewandowski, Michał Wójcik

Moduł 1

Generowanie zbiorów danych: zbioru uczącego i zbioru testowego.

Generowane dane o rozkładzie normalnym z ustalonym odchyleniem standardowym. Zbiory powinny być zapisywane do formatu CSV. Dane należy wczytać i znormalizować. Następnie przekształcić dane numeryczne do postaci symbolicznej (liczby -> litery).

Potrzebne struktury danych

Zbiór danych: macierz o N wierszach i (C + 1) kolumnach, gdzie: N - liczba elementów w zbiorze, C - liczba cech.

Klasa	Cecha 1	Cecha	Cecha C
"7"	a	•••	d
"1"	b	•••	u
	•••	•••	

Potrzebne dwa zbiory: zbiór uczący i zbiór testowy.

Moduł 2

Generowanie automatu deterministycznego

Zakładając, że automat ma rozpoznawać *C* cech (każda o *P* wartościach symbolicznych) oraz *K* klas, należy wygenerować automat deterministyczny mający *K* stanów akceptujących oraz *P* przejść. Stanom odpowiadają klasy, do których ma zostać zaklasyfikowany element. Przejściom natomiast odpowiadają litery opisujące cechy elementów.

Potrzebne struktury danych

Automat: *P* macierzy *K* x *K* opisujących przejścia automatu - macierze te służą do ustalania przejścia pomiędzy dwoma stanami. Stany reprezentowane jako wektor długości *K*.

Początkowo automat należy zainicjalizować losowo tak, aby w każdej kolumnie każdej macierzy była tylko jedna wartość 1. Dzięki temu automat będzie deterministyczny.

Moduł 3

Poprawianie automatu za pomocą PSO

Iteracyjnie należy uruchamiać automat (klasyfikator) na zbiorze testowym i sprawdzać jego "błąd" - czyli stosunek poprawnie rozpoznanych elementów do liczby wszystkich elementów. W celu "poprawiania" automatu, należy wykorzystać funkcję PSO, która powinna zwrócić inne macierze przejść (inny automat), optymalizując funkcję błędu.