

Transportation, Assignment, and Network Models

To accompany *Quantitative Analysis for Management, Twelfth Edition*,
by Render, Stair, Hanna and Hale
Power Point slides created by Jeff Heyl

LEARNING OBJECTIVES

After completing this chapter, students will be able to:

- 1. Structure LP problems for the transportation, transshipment, and assignment models.
- 2. Solve facility location and other application problems with transportation models.
- 3. Use LP to model shortest-route and maximal-flow problems.
- 4. Solve minimal-spanning tree problems.

CHAPTER OUTLINE

- 9.1 Introduction
- 9.2 The Transportation Problem
- 9.3 The Assignment Problem
- 9.4 The Transshipment Problem
- 9.5 Maximal-Flow Problem
- 9.6 Shortest-Route Problem
- 9.7 Minimal-Spanning Tree Problem

Introduction

- LP problems modeled as networks
 - Helps visualize and understand problems
 - Transportation problem
 - Transshipment problem
 - Assignment problem
 - Maximal-flow problem
 - Shortest-route problem
 - Minimal-spanning tree problem
 - Specialized algorithms available

Introduction

- Common terminology for network models
 - Points on the network are referred to as nodes
 - Typically circles
 - Lines on the network that connect nodes are called arcs

The Transportation Problem

- Deals with the distribution of goods from several points of supply (sources) to a number of points of demand (destinations)
 - Usually given the capacity of goods at each source and the requirements at each destination
 - Typically objective is to minimize total transportation and production costs

- Executive Furniture Corporation transportation problem
 - Minimize transportation cost
 - Meet demand
 - Not exceed supply

Let X_{ij} = number of units shipped from source i to destination j

Where

```
i = 1, 2, 3, with 1 = Des Moines, 2 = Evansville, and 3 = Fort Lauderdale
```

```
j = 1, 2, 3, with 1 = Albuquerque, 2 = Boston, and <math>3 = Cleveland
```

Minimize total cost =
$$5X_{11} + 4X_{12} + 3X_{13} + 8X_{21} + 4X_{22} + 3X_{23} + 9X_{31} + 7X_{32} + 5X_{33}$$

Subject to:

$$X_{11} + X_{12} + X_{13} \le 100$$
 (Des Moines supply)
 $X_{21} + X_{22} + X_{23} \le 300$ (Evansville supply)
 $X_{31} + X_{32} + X_{33} \le 300$ (Fort Lauderdale supply)
 $X_{11} + X_{21} + X_{31} = 300$ (Albuquerque demand)
 $X_{12} + X_{22} + X_{32} = 200$ (Boston demand)
 $X_{13} + X_{23} + X_{33} = 200$ (Cleveland demand)
 $X_{ii} \ge 0$ for all i and j

Optimal solution

100 units from Des Moines to Albuquerque

200 units from Evansville to Boston

100 units from Evansville to Cleveland

200 units from Ft. Lauderdale to Albuquerque

100 units from Ft. Lauderdale to Cleveland

Total cost = \$3,900

FIGURE 9.1 – Network Representation of a Transportation Problem

Using Excel QM

PROGRAM 9.1 – Executive Furniture Corporation Solution in Excel 2013 Using Excel QM

1 2 3 4 5 6 7	(Alphabetical or By Chapter). Select Transportation from the drop-down menu, and then input 3 Origins (sources) and 3 Destination.								
9	COSTS	Albuquerque	Boston	Cleveland	Supply				
10	Des Moines	5	4	3	100				
11	Evansville	8	4	3	300				
12	Ft. Lauderdale	9	7	5	300				
13	Demand	300	200	200	700 \ 700				
14 15	Chinmonto				Fill in t	he tabl	e with the costs,		
16	Shipments Shipments	Albuquerque	Boston	Cleveland	supplies, and demands.		demands.		
17	Des Moines	100	DOSTOII	cieveiaiiu	100				
18	Evansville	100	200	100	300				
19	Ft. Lauderdale	200	200	100	300				
20	Column Total	300	200	200	700 \ 700		The solution		
21	Column Total	300	200	200	700 (700		is shown here.		
22	Total Cost	3900							

A General LP Model for Transportation Problems

Let

```
X_{ij} = number of units shipped from source i to destination j
c_{ij} = cost of one unit from source i to destination j
s_i = supply at source i
d_i = demand at destination j
```

A General LP Model for Transportation Problems

Minimize cost =
$$\sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} x_{ij}$$

Subject to:

$$\sum_{j=1}^{n} x_{ij} \leq s_i \qquad i=1,2,...,m$$

$$\sum_{j=1}^{m} x_{ij} = d \qquad i=1,2,...,m$$

$$\sum_{i=1} x_{ij} = d_j$$
 $j = 1,2...,n$

$$x_{ij} \ge 0$$
 for all i and j

- Transportation method especially useful
- New location is major financial importance
- Several alternative locations evaluated
- Subjective factors are considered
- Final decision also involves minimizing total shipping and production costs
- Alternative facility locations analyzed within the framework of one overall distribution system

- Hardgrave Machine Company produces computer components in Cincinnati, Salt Lake City, and Pittsburgh
- Four warehouses in Detroit, Dallas, New York, and Los Angeles
- Two new plant sites being considered Seattle and Birmingham
- Which of the new locations will yield the lowest cost for the firm in combination with the existing plants and warehouses?

TABLE 9.1 – Hardgrave's Demand and Supply Data

WAREHOUSE	MONTHLY DEMAND (UNITS)	PRODUCTION PLANT	MONTHLY SUPPLY	COST TO PRODUCE ONE UNIT (\$)
Detroit	10,000	Cincinnati	15,000	48
Dallas	12,000	Salt Lake City	6,000	50
New York	15,000	Pittsburgh	14,000	52
Los Angeles	9,000		35,000	•
•	46,000	_		

Supply needed from a new plant = 46,000 - 35,000 = 11,000 units per month

ESTIMATED PRODUCTION COST PER UNIT AT PROPOSED PLANTS				
Seattle	\$53			
Birmingham	\$49			

TABLE 9.2 – Hardgrave's Shipping Costs

TO FROM	DETROIT	DALLAS	NEW YORK	LOS ANGELES	
CINCINNATI	\$25	\$55	\$40	\$60	
SALT LAKE CITY	35	30	50	40	
PITTSBURGH	36	45	26	66	
SEATTLE	60	38	65	27	
BIRMINGHAM	35	30	41	50	

Solve two transportation problems

one for each combination

 X_{ij} = number of units shipped from source i to destination j

Where

```
i = 1, 2, 3, 4 with 1 = Cincinnati, 2 = Salt Lake City, 3 = Pittsburgh, and 4 = Seattle
j = 1, 2, 3, 4 with 1 = Detroit, 2 = Dallas, 3 = New York, and 4 = Los Angeles
```

Minimize total cost =
$$73X_{11} + 103X_{12} + 88X_{13} + 108X_{14} + 85X_{21} + 80X_{22} + 100X_{23} + 90X_{24} + 88X_{31} + 97X_{32} + 78X_{33} + 118X_{34} + 113X_{41} + 91X_{42} + 118X_{43} + 80X_{44}$$

Subject to:

$$X_{11} + X_{21} + X_{31} + X_{41} = 10,000$$
 Detroit demand $X_{12} + X_{22} + X_{32} + X_{42} = 12,000$ Dallas demand $X_{13} + X_{23} + X_{33} + X_{43} = 15,000$ New York demand $X_{14} + X_{24} + X_{34} + X_{44} = 9,000$ Los Angeles demand $X_{11} + X_{12} + X_{13} + X_{14} \le 15,000$ Cincinnati supply $X_{21} + X_{22} + X_{23} + X_{24} \le 6,000$ Salt Lake City supply $X_{31} + X_{32} + X_{33} + X_{34} \le 14,000$ Pittsburgh supply $X_{41} + X_{42} + X_{43} + X_{44} \le 11,000$ Seattle supply All variables $X_{ij} \ge 0$

Facility Lo

The total cost for the Seattle alternative = \$3,704,000

Minimize total cost =
$$73X_{11} + 100X_{12} + 00X_{13} + 100X_{14} + 00X_{21} + 00X_{22} + 100X_{23} + 90X_{24} + 88X_{31} + 97X_{32} + 78X_{33} + 118X_{34} + 113X_{41} + 91X_{42} + 118X_{43} + 80X_{44}$$

Subject to:

$$X_{11} + X_{21} + X_{31} + X_{41} = 10,000$$
 Detroit demand $X_{12} + X_{22} + X_{32} + X_{42} = 12,000$ Dallas demand $X_{13} + X_{23} + X_{33} + X_{43} = 15,000$ New York demand $X_{14} + X_{24} + X_{34} + X_{44} = 9,000$ Los Angeles demand $X_{11} + X_{12} + X_{13} + X_{14} \le 15,000$ Cincinnati supply $X_{21} + X_{22} + X_{23} + X_{24} \le 6,000$ Salt Lake City supply $X_{31} + X_{32} + X_{33} + X_{34} \le 14,000$ Pittsburgh supply $X_{41} + X_{42} + X_{43} + X_{44} \le 11,000$ Seattle supply All variables $X_{ij} \ge 0$

Facility Lo

The total cost for the Seattle alternative = \$3,704,000

Subject to:

$$X_{11} + X_{21} + X_{31} + X_{41} = 10$$

$$X_{12} + X_{22} + X_{32} + X_{42}$$

$$X_{13} + X_{23} + X_{33} + X_{43}$$

$$X_{14} + X_{24} + X_{34} + X_{44}$$

Minimize total cost =
$$73X_{11} + 100X_{12} + 00X_{13} + 100X_{14} + 00X_{21} + 00X_{22}$$

Reformulating the problem for the Birmingham alternative and solving, the total cost = \$3,741,000

$$= 9,000$$

Los Angeles demand

$$X_{11} + X_{12} + X_{13} + X_{14} \le 15{,}000$$
 Cincinnati supply

$$X_{21} + X_{22} + X_{23} + X_{24}$$

Salt Lake City supply

$$X_{31} + X_{32} + X_{33} + X_{34}$$

$$X_{41} + X_{42} + X_{43} + X_{44}$$

All variables $X_{ii} \ge 0$

Using Excel QM

PROGRAM 9.2 – Facility Location (Seattle) Solution in Excel 2013 Using Excel QM

2	Select Transportation from the drop- down menu, and then input 4 Enter the Analysis of Solver in the Data Origins (sources) and 4 Destination. Origins (sources) and 4 Destination.							
8	Data							
9	COSTS	Detroit	Dallas	New York	Los Angeles	Supply		
10	Cincinnati	73	103	88	108	15000		
11	Salt Lake City	85	80	100	90	6000		
12	Pittsburgh	88	97	78	118	14000		
13	Seattle	113	91	118	80	11000		
14	Demand	10000	12000	15000	9000	46000 \ 46000		
15								
16	Shipments				Fi Fi	ll in the table	e with th	ne costs, 🔪
17	Shipments	Detroit	Dallas	New York	Los Ana SU	pplies, and	demand	s.
18	Cincinnati	10000	4000	1000		13000		
19	Salt Lake City		6000			6000		
20	Pittsburgh			14000		14000		
21	Seattle		2000		9000	11000		
22	Column Total	10000	12000	45000	9000	46000 \ 46000		
23			The	cost is he	are			
24	Total Cost	3704000	1116	CO30 13 110				

Using Excel QM

PROGRAM 9.3 – Facility Location (Birmingham) Solution in Excel 2013 Using Excel QM

4	Α	В	С	D	Е	F	G	Н	
1	Hardgrave Ma	chine							
2									
3	Transportation								
4 5 6 7	Analysis Group	Enter the transportation data in the shaded area. Then go to the DATA Tab on the ribbon, click on Solver in the Data Analysis Group and then click SOLVE. If SOLVER is not on the Data Tab then please see the Help file (Solver) for instructions.							
8	Data								
9	COSTS	Detroit	Dallas	New York	Los Angeles	Supply			
10	Cincinnati	73	103	88	108	15000			
11	Salt Lake City	85	80	100	90	6000			
12	Pittsburgh	88	97	78	118	14000			
13	Birmingham	84	79	90	99	11000			
14	Demand	10000	12000	15000	9000	46000 \ 46000			
15									
16	Shipments								
17	Shipments	Detroit	Dallas	New York	Los Angeles	Row Total			
18	Cincinnati	10000		1000	4000	15000			
19	Salt Lake City		1000		5000	6000			
20	Pittsburgh			14000		14000			
21	Birmingham		11000			11000			
22	Column Total	10000	12000	45000	9000	46000 \ 46000			
23			The	cost is he	re				
24	Total Cost	3741000						<u> </u>	

The Assignment Problem

- This class of problem determines the most efficient assignment of people or equipment to particular tasks
- Objective is typically to minimize total cost or total task time

- The Fix-it Shop has just received three new repair projects that must be repaired quickly
 - 1. A radio
 - 2. A toaster oven
 - 3. A coffee table
- Three workers with different talents are able to do the jobs
- Owner estimates wage cost for workers on projects
- Objective minimize total cost

FIGURE 9.2 – Assignment Problem in a Transportation Network Format

Let

$$X_{ij} = \begin{cases} 1 \text{ if person } i \text{ is assigned to project } j \\ 0 \text{ otherwise} \end{cases}$$

where

```
    i = 1, 2, 3, with 1 = Adams, 2 = Brown, and 3 = Cooper
    j = 1, 2, 3, with 1 = Project 1, 2 = Project 2, and 3 = Project 3
```

Minimize total cost =
$$11X_{11} + 14X_{12} + 6X_{13} + 8X_{21} + 10X_{22} + 11X_{23} + 9X_{31} + 12X_{32} + 7X_{33}$$

subject to

$$X_{11} + X_{12} + X_{13} = 1$$

 $X_{21} + X_{22} + X_{23} = 1$
 $X_{31} + X_{32} + X_{33} = 1$
 $X_{11} + X_{21} + X_{31} = 1$
 $X_{12} + X_{22} + X_{32} = 1$
 $X_{13} + X_{23} + X_{33} = 1$
 $X_{ij} = 0$ or 1 for all i and j

Minimize total cost =
$$11X_{11} + 14X_{12} + 6X_{13} + 8X_{21} + 10X_{22} + 11X_{23} + 9X_{31} + 12X_{32} + 7X_{33}$$

subject to

Solution

 X_{13} = 1, Adams assigned to Project 3

 X_{22} = 1, Brown assigned to Project 2

 X_{31} = 1, Cooper is assigned to Project 1

Total cost = \$25

Using Excel QM

PROGRAM 9.4 – Mr. Fix-It Shop Assignment Solution in Excel 2013 Using Excel QM

- Items are being moved from a source to a destination through an intermediate point (a transshipment point)
- Transshipment problem

- Frosty Machines manufactures snow blowers in Toronto and Detroit
- Shipped to regional distribution centers in Chicago and Buffalo
- Then shipped to supply houses in New York, Philadelphia, and St. Louis
- Shipping costs vary by location and destination
- Snow blowers cannot be shipped directly from the factories to the supply houses

FIGURE 9.3 – Network Representation of Transshipment Example

TABLE 9.3 – Frosty Machine Transshipment Data

	ТО						
FROM	CHICAGO	BUFFALO	NEW YORK CITY	PHILADELPHIA	ST. LOUIS	SUPPLY	
Toronto	\$4	\$7	_	_	_	800	
Detroit	\$5	\$7	_	_	_	700	
Chicago	_	_	\$6	\$4	\$5	_	
Buffalo	_	_	\$2	\$3	\$4	_	
Demand	_	_	450	350	300		

Minimize transportation costs associated with shipping snow blowers subject to demands and supplies

- Minimize cost subject to
 - 1. The number of units shipped from Toronto is not more than 800
 - 2. The number of units shipped from Detroit is not more than 700
 - 3. The number of units shipped to New York is 450
 - 4. The number of units shipped to Philadelphia is 350
 - 5. The number of units shipped to St. Louis is 300
 - 6. The number of units shipped out of Chicago is equal to the number of units shipped into Chicago
 - 7. The number of units shipped out of Buffalo is equal to the number of units shipped into Buffalo

The Transshipment Problem

Decision variables

 X_{ij} = number of units shipped from location (node) i to location (node) j

where

$$i = 1, 2, 3, 4$$

 $j = 3, 4, 5, 6, 7$

The Transshipment Problem

Minimize cost =
$$4X_{13} + 7X_{14} + 5X_{23} + 7X_{24} + 6X_{35} + 4X_{36} + 5X_{37} + 2X_{45} + 3X_{46} + 4X_{47}$$

subject to
$$X_{13} + X_{14} \leq 800 \qquad \text{(Supply at Toronto [node 1])}$$

$$X_{23} + X_{24} \leq 700 \qquad \text{(Supply at Detroit [node 2])}$$

$$X_{35} + X_{45} = 450 \qquad \text{(Demand at New York [node 5])}$$

$$X_{36} + X_{46} = 350 \qquad \text{(Demand at Philadelphia [node 6])}$$

$$X_{37} + X_{47} = 300 \qquad \text{(Demand at St. Louis [node 7])}$$

$$X_{13} + X_{23} = X_{35} + X_{36} + X_{37} \text{ (Shipping through Chicago [node 3])}$$

$$X_{14} + X_{24} = X_{45} + X_{46} + X_{47} \text{ (Shipping through Buffalo [node 4])}$$

$$X_{ii} \geq 0 \text{ for all } i \text{ and } j \text{ (nonnegativity)}$$

The Transshipment Problem

Minimize cost =
$$4X_{13} + 7X_{14} + 5X_{23} + 7X_{24} + 6X_{35} + 4X_{36} + 5X_{37} + 2X_{45} + 3X_{46} + 4X_{47}$$

subject to

$$X_{13} + X_{14} \le 800$$

 $X_{23} + X_{24} \le 700$
 $X_{35} + X_{45} = 450$
 $X_{36} + X_{46} = 350$
 $X_{37} + X_{47} = 300$
 $X_{13} + X_{23} = X_{35}$
 $X_{14} + X_{24} = X_{45}$
 $X_{ij} \ge 0$ for

(Supply at Toronto [node 1])

(Cupply of Datroit Inada 21)

Ship 650 units from Toronto to Chicago Ship 150 units from Toronto to Buffalo Ship 300 units from Detroit to Buffalo Ship 350 units from Chicago to Philadelphia Ship 300 units form Chicago to St. Louis Ship 450 units from Buffalo to New York

Total cost = \$9,550

Using Excel QM

PROGRAM 9.5 – Excel QM Solution to Frosty Machine Transshipment Problem

- Determining the maximum amount of material that can flow from one point (the source) to another (the sink) in a network
- Two common methods
 - Linear programming
 - Maximal-flow technique

 Determine maximum number of cars from east to west for Waukesha WI road system

FIGURE 9.4 – Road Network for Waukesha Maximal-Flow Example

Variables

 X_{ij} = flow from node *i* to node *j*

where

$$i = 1, 2, 3, 4, 5, 6$$

 $j = 1, 2, 3, 4, 5, 6$

Constraints necessary for

- Capacity of each arc
- Equal flows into and out of each arc

Maximize flow = X_{61} subject to

Using Excel QM

PROGRAM 9.6 – Waukesha Maximal-Flow Solution

- Find the shortest distance from one location to another
- Can be modeled as
 - A linear programming problem with 0-1 variables
 - A special type of transshipment problem
 - Using specialized algorithm

- Ray Design transports beds, chairs, and other furniture items from the factory to the warehouse
 - Travel through several cities
 - No direct interstate highways
- Find the route with the shortest distance

FIGURE 9.5 – Roads from Ray's Plant to Warehouse

Variables

 X_{ij} = 1 if arc from node *i* to node *j* is selected and X_{ij} = 0 otherwise

where

$$i = 1, 2, 3, 4, 5$$

 $j = 2, 3, 4, 5, 6$

Constraints specify the number of units going into a node must equal the number of units going out of the node

Origin point must ship one unit

$$X_{12} + X_{13} = 1$$

Final destination must have one unit shipped into it

$$X_{46} + X_{56} = 1$$

Intermediate nodes must have same amounts entering and leaving

$$X_{12} + X_{32} = X_{23} + X_{24} + X_{25}$$

or

$$X_{12} + X_{32} - X_{23} - X_{24} - X_{25} = 0$$

Minimize distance =
$$100X_{12} + 200X_{13} + 50X_{23} + 50X_{32}$$

+ $200X_{24} + 200X_{42} + 100X_{25}$
+ $100X_{52} + 40X_{35} + 40X_{53} + 150X_{45}$
+ $150X_{54} + 100X_{46} + 100X_{56}$

subject to

$$X_{12} + X_{13} = 1$$
 Node 1
 $X_{12} + X_{32} - X_{23} - X_{24} - X_{25} = 0$ Node 2
 $X_{13} + X_{23} - X_{32} - X_{35} = 0$ Node 3
 $X_{24} + X_{54} - X_{42} - X_{45} - X_{46} = 0$ Node 4
 $X_{25} + X_{35} + X_{45} - X_{52} - X_{53} - X_{54} - X_{56} = 0$ Node 5
 $X_{46} + X_{56} = 1$ Node 6
All variables = 0 or 1

Using Excel QM

PROGRAM 9.7 – Ray Designs, Inc. Solution

Using Excel QM

PROGRAM 9.7 – Ray Designs, Inc. Solution

Solution

$$X_{12} = X_{23} = X_{35} = X_{56} = 1$$

Route is City 1 to City 2 to City 3 to City 5 to City 6

Total distance traveled = 290 miles

	Jean 2,1 1111311 2									
18										
19	Flows									
20	From\to	City 1	City 2	City 3	City 4	City 5	City 6	Outflow		
21	City 1		1					1		
22	City 2			1				1		
23	City 3					1		1		
24	City 4									
25	City 5						1	1		
26	City 6									
27	Inflow		1	1		1	1			
28	Outflow	1	After entering the data, click							
29	Net Outflow	1	the Data tab and select Solver.							
30			Then click Solve.							
31	Minimum distance	290	THEIT CITCK Solve.							

- Connecting all points of a network together while minimizing the total distance of the connections
- Linear programming can be used but is complex
- Minimal-spanning tree technique is quite easy

Steps for the Minimal-Spanning Tree Technique

- 1. Select any node in the network.
- 2. Connect this node to the nearest node that minimizes the total distance.
- 3. Considering all of the nodes that are now connected, find and connect the nearest node that is not connected. If there is a tie for the nearest node, select one arbitrarily. A tie suggests there may be more than one optimal solution.
- 4. Repeat the third step until all nodes are connected.

- Lauderdale Construction
 - Housing project in Panama City Beach
 - Determine the least expensive way to provide water and power to each house

FIGURE 9.6 – Network for Lauderdale Construction

Step 1 – Arbitrarily select node 1

FIGURE 9.7 – First Iteration

Step 2 – Connect node 1

to node 3 (nearest)

Step 3 – Connect next nearest unconnected node, node 4

Continue for other unconnected nodes

FIGURE 9.8 – Second and Third Iterations

- Here the algorithm is not complete since we only go to the next node with minimum weight that does not form a cycle. Check the compete algorithm and its implementation at the following link
- https://www.geeksforgeeks.org/kruskalsminimum-spanning-tree-algorithmgreedy-algo-2/

Step 4 – Repeat the process

FIGURE 9.9 – Last Four Iterations

Step 4 – Repeat the process

FIGURE 9.9 – Last Four Iterations

TABLE 9.4 – Summary of Steps in Lauderdale Construction Minimal-Spanning Tree Problem

STEP	CONNECTED NODES	UNCONNECTED NODES	CLOSE UNCONNECTED NODES	ARC SELECTED	ARC LENGTH	TOTAL DISTANCE
1	1	2, 3, 4, 5, 6, 7, 8	3	1–3	2	2
2	1, 3	2, 4, 5, 6, 7, 8	4	3–4	2	4
3	1, 3, 4	2, 5, 6, 7, 8	2 or 6	3–2	3	7
4	1, 2, 3, 4	5, 6, 7, 8	5 or 6	2–5	3	10
5	1, 2, 3, 4, 5	6, 7, 8	6	3–6	3	13
6	1, 2, 3, 4, 5, 6	7, 8	8	6–8	1	14
7	1, 2, 3, 4, 5, 6, 8	7	7	8–7	2	16

Using Excel QM

PROGRAM 9.8 – Lauderdale Construction Minimal-Spanning Tree Example

Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.