# Quantitative Variables

Ryan Miller



## Motivation

► Shown below are the quantitative variables in the "Tips" dataset, but how useful is this information?

| total_bill | tip  | size |
|------------|------|------|
| 12.69      | 2.00 | 2    |
| 17.29      | 2.71 | 2    |
| 7.51       | 2.00 | 2    |
| 11.35      | 2.50 | 2    |
| 10.07      | 1.25 | 2    |
| 14.00      | 3.00 | 2    |
| 10.33      | 2.00 | 2    |
| 11.17      | 1.50 | 2    |
| 24.52      | 3.48 | 3    |
| 27.05      | 5.00 | 6    |
| 20.27      | 2.83 | 2    |
| 12.03      | 1.50 | 2    |
| 44.30      | 2.50 | 3    |
| 13.27      | 2.50 | 2    |

## Summarization

- Raw data is difficult to make sense of
- ► **Summarization** is way to condense raw data into a more interpretable form
  - ▶ Ideally we can summarize a variable using one number, or a small set of numbers, in order to make informed judgements

## Summarization

- **Raw data** is difficult to make sense of
- Summarization is way to condense raw data into a more interpretable form
  - Ideally we can summarize a variable using one number, or a small set of numbers, in order to make informed judgements
- ► Today we'll focus on **univariate summaries**, or those involving only a single variable
  - Soon we'll start dealing with more interesting stuff involving multiple variables

### **Distributions**

- Before getting into summarization, we should touch on distributions
- ► A variable's **distribution** describes values that are possible and how frequently they occur

### **Distributions**

- Before getting into summarization, we should touch on distributions
- A variable's distribution describes values that are possible and how frequently they occur
- Below is a histogram, one way of showing a distribution of a quantitative variable



## Histograms

- A histogram works by dividing the quantitative variable of interest into bins, or equal length intervals
  - ► The number of cases that belong to each bin are graphed on the y-axis
- ▶ Notice how \$2-3 tips are most common, larger tips of \$5+ do occasionally occur, tips over \$10 almost never occur



### The Mean

- Distributions aren't a summary, but they can help us understand summarization
- ► The **mean**, or arithmetic average, is way of describing the center of a distribution
  - The mean can provide us a sense of what is typical for a quantitative variable

$$\mathsf{Mean} = \frac{\mathsf{Sum\ across\ all\ cases}}{\mathsf{Number\ of\ cases}}$$

### The Median

- Another way approach to describing the center of a distribution is the median, or the midpoint if the variable's values were arranged from smallest to largest
- ► The histogram below shows the mean tip (blue) and the median tip (red)
  - ▶ Why is the mean larger?



## Mean vs. Median

- ▶ The median is considered a *robust* measure of the center of a distribution because it is not heavily influenced by extreme values
  - ▶ The table below shows the impact of adding a 100-dollar tip to our prior data

|                | Mean | Median |
|----------------|------|--------|
| Original       | 3.00 | 2.9    |
| With \$100 tip | 3.39 | 2.9    |

## Other Summaries

- Sometimes we aren't exclusively interested in the center of a variable's distribution
- ► The **minimum** and **maximum** are self-explanatory summaries of a variables most extreme values

## Other Summaries

- Sometimes we aren't exclusively interested in the center of a variable's distribution
- ► The **minimum** and **maximum** are self-explanatory summaries of a variables most extreme values
- ▶ **Percentiles** describe a cutoff value for which *P* data falls below
  - ▶ The median is the  $50^{th}$  percentile
  - ► The 25<sup>th</sup> and 75<sup>th</sup> percentiles are called the **first quartile**, or Q1, and the **third quartile**, or Q3

## **Boxplots**

► The summary measures presented on the previous slide can be used to construct a visualization known as a **boxplot** 



## Spread

- ▶ The mean and median summarize the *center* of a distribution
- ▶ It is also useful to summarize the *spread*, or how the data values tend to vary around the center

## Spread

- The mean and median summarize the center of a distribution
- ▶ It is also useful to summarize the *spread*, or how the data values tend to vary around the center
  - The range is the difference between the minimum and maximum
  - ► The **interquartile range**, or **IQR**, is the difference between the third and first quartiles (Q1 and Q3)

### Standard Deviation

- ► The most widely used measure of spread is the **standard** deviation, which roughly corresponds to the average distance of each data-point from the mean
- For bell-shaped distributions, the standard deviation is related to the percentage of cases within a certain distance from the mean



## Standard Deviation vs. IQR

Similar to how the median is more robust to extreme values than the mean, the IQR is more robust than the standard deviation

|                | Mean | Median | StDev | IQR  |
|----------------|------|--------|-------|------|
| Original       | 3.00 | 2.9    | 1.38  | 1.56 |
| With \$100 tip | 3.37 | 2.9    | 6.35  | 1.56 |

#### Practice

Using the graph below, answer the following: 1) What is the name of this graph? 2) How many bins are displayed? 3) Which color line marks the mean and which marks the median?



## Practice (solution)

- 1) Histogram
- 2) 8 bins (note that one of them has zero cases in it)
- 3) green = median, orange/yellow = mean

