

C. IMO

Název úlohy	IMO		
Časový limit	6 sekund		
Paměťový limit	1 gigabajt		

Mezinárodní matematická olympiáda (IMO) je každoročně pořádaná matematická soutěž pro studenty středních škol. Letošní ročník IMO se koná současně s EGOI. V době, kdy toto čtete, již skončily oba soutěžní dny IMO a hodnocení je pravděpodobně téměř hotové. Na rozdíl od programátorských soutěží, jako je EGOI, se hodnocení provádí ručně, což je pro Calábka zdlouhavý a namáhavý proces.

Letos měl IMO celkem M úloh (číslovaných od 0 do M-1) a každá úloha je nejvýše za K bodů. i-tý soutěžící získal v úloze j počet bodů $a_{i,j}$, kde $a_{i,j}$ je celé číslo mezi 0 a K včetně. Soutěže se celkem účastnilo N soutěžících. Výsledné pořadí soutěžícího je určeno celkovým počtem získaných bodů, které zvládl za soutěž získat, s remízami rozhodnutými podle čísel soutěžících. Formálněji řečeno, soutěžící číslo x se umístil lépe než soutěžící číslo y, pokud:

- je celkový počet bodů soutěžícího x vyšší než celkový počet bodů soutěžícího y,
- nebo je jejich počet bodů stejný a x < y.

Aby bylo možné zveřejnit konečné pořadí, musí organizátoři zveřejnit některá ohodnocení $a_{i,j}$. Pokud je ohodnocení nepublikované, je známo pouze to, že se jedná o celé číslo mezi 0 a K včetně.

Organizátoři chtějí zveřejnit co nejméně hodnot $a_{i,j}$. Zároveň se musí ujistit, že všichni znají správné konečné pořadí soutěžících. Jinými slovy, musí odhalit soubor hodnot tak, aby jediné pořadí, které z něj plyne, bylo to správné.

Najděte nejmenší S takové, aby bylo možné zveřejnit S hodnot $a_{i,j}$ způsobem, který jednoznačně určí celkové pořadí soutěžících.

Vstup

První řádek obsahuje tři celá čísla N, M a K.

Následujících N řádků obsahuje čísla $a_{i,j}$. První z nich obsahuje $a_{0,0}, a_{0,1}, \ldots, a_{0,M-1}$, druhý obsahuje $a_{1,0}, a_{1,1}, \ldots, a_{1,M-1}$, a tak dále.

Výstup

Vypište jedno celé číslo, odpovídající minimálnímu počtu ohodocení S, která lze zveřejnit, aby konečné pořadí bylo určeno jednoznačně.

Omezení a bodování

- 2 < N < 20000.
- $1 \le M \le 100$.
- $1 \le K \le 100$.
- $0 \leq a_{i,j} \leq K$ pro každou dvojici i,j kde $0 \leq i \leq N-1$ a $0 \leq j \leq M-1$.

Vaše řešení bude testováno na sadách testů, z nichž za každou lze získat nějaký počet bodů. Každá sada obsahuje několik testů. Abyste získali body za konkrétní sadu, musíte vyřešit všechny její testy.

Sada	Body	Omezení
1	10	N=M=2 a $K=1$
2	13	N=2
3	10	$N \cdot M \le 16$
4	18	K = 1
5	21	$N \leq 10000$ a $M,K \leq 10$
6	28	Žádná další omezení

Ukázkové příklady

V prvním příkladu stačí odhalit těchto 20 ohodnocení:

7	7	0	•	7	?
7	3	0	7	2	1
•	0	0	•	0	0
7	7	7	7	7	1

Ze zveřejněných ohodnocení plyne, že je celkový počet bodů třetího soutěžícího mezi 0 a 14, což je v každém případě nižší než celkový počet bodů kteréhokoliv jiného soutěžícího. Lze ukázat, že nelze odhalit méně než 20 ohodnocení. Pokud bychom například skryli jednu z nul třetího soutěžícího, pak by tento soutěžící mohl mít až 21 bodů. To je problém, protože má soutěžící 2 bodů 20 a mělo by být přitom zaručeno, že se umístí výše než soutěžící 3.

První příklad splňuje omezení sad 5 a 6.

Ve druhém příkladu můžeme buď odhalit pouze ohodnocení jediné úlohy prvního soutěžícího, nebo pouze ohodnocení jediné úlohy druhého soutěžícího. Pokud odhalíme pouze první ohodnocení, pak víme že soutěžící 1 má 1 bod. To znamená, že i kdyby měl soutěžící 2 má také 1 bod, soutěžící 1 se umístí výše, protože jeho index je nižší. Podobně, pokud odhalíme pouze skóre soutěžícího 2, víme že má nula bodů, což znamená, že soutěžící 1 se umístí výše bez ohledu na jeho počet bodů.

Druhý příklad splňuje omezení sad 2, 3, 4, 5 a 6.

Třetí příklad splňuje omezení sad 2, 3, 5 a 6.

Čtvrtý příklad splňuje omezení všech sad.

Vstup	Výstup
4 6 7 7 7 0 2 7 0 7 3 0 7 2 1 7 0 0 7 0 0 7 7 7 7 7 1	20
2 1 1 1 0	1
2 2 7 7 4 7 0	2
2 2 1 0 1 1 0	2