Universtié d'Ottawa

Faculté de génie

Departement de génie civil

University of Ottawa Faculty of Engineering

Civil engineering Department

Time: 3 hrs

Page 1 of 2

GNG 1105 ENGINEERING MECHANICS

Final examination 13 December 2010 Profs. Skaff, Van Blaeren and Flores-Vera

Closed Book Exam. Programmable calculators are not allowed.

Free-body diagrams must be drawn where appropriate.

Problem 1 (16/60)

Mast ABC is being supported by a ball-and-socket joint at base A and by three cables BE, BG and CD as shown.

- a) Draw the free-body diagram for mast ABC
- b) Write the tensions in cables BE, BG and CD in vector form.
- c) If the tension in cable CD is 500 N, determine the tensions in cables BE and BG.

Problem 2 (11/60)

For the truss shown and assuming all joints are pinned,

- a) Calculate the reactions at supports A & E.
- b) Determine the forces in members CD, GD and GF using the method of sections. State whether each member is in tension or compression.

Problem 3 (11/60)

Two boxes are hanging from the frame to the right. The mass of each of the boxes is 30 Kg.

- a) Determine the reactions at the supports A and E.
- b) Determine all the forces acting on member ABC.

Problem 4 (11/60)

To level a wood deck, wood wedges A&B are placed under a corner of the deck. Wedge B rests on a wood board as shown, and a bar clamp is used to apply equal an opposite forces to the wedges. Knowing that θ =18° and that the coefficient of static friction between all wood surfaces is 0.35 and between the board and the ground is 0.6, determine the magnitude of **P** of the clamping forces for which upward motion of the deck is impending.

Problem 5 (11/60)

A projectile is fired from point A, located at $h_0 = 2m$ above the ground, with an initial velocity v_0 and at an angle $\alpha=50^{\circ}$.

- (a) What should be the minimum value of v_0 for the projectile to clear the wall if its height is H=5 m?
- (b) For the value of v₀ obtained in part (a), determine the distance L that separates point A and the wall.

Answers

Problem 1:

 $T_{BE} = (T_{BE}/4.5) (1.5i -3.0j +3.0k)$ $T_{BG} = (T_{BG}/4.5) (1.5i -3.0j -3.0k)$ $T_{CD} = (T_{CD}/6.5) (-1.5i -6.0j +2.0k)$ $T_{BG} = 576.25N$ $T_{BE} = 113.75N$

Problem 2:

Ax=-10kN; Ay = 15kN; Ey=15kN FgF=15kN (T); FcD=7.07kN (C); FDG=FgD=0

Problem 3:

Ex=588.6N; Ax=-588.6N; Ay=588.6N FbD=-1177.2N; Cx=588.6N; Cy=882.9N

Problem 4:

P=8.89kN

Problem 5:

 ν o=10 m/s ; t=0.78s L=7.8m