Analysis I

Thomas Fleming

November 23, 2021

Contents

- 1 Seperability and Bounded Linear Functionals
- 2 Bounded Linear Functionals 3

Lecture 24

Tue 23 Nov 2021 14:02

1

Definition 0.1 (Signum Function). We define the **sign function** to bf

$$\operatorname{sgn} \overline{\mathbb{R}} \longrightarrow \{-1, 0, 1\}$$

$$\operatorname{sgn}(x) \longmapsto \operatorname{sgn}(\operatorname{sgn}(x)) = \chi_{(0, \infty]}(x) - \chi_{[-\infty, 0)}(x).$$

Note, if g is measurable, sgn(g) is measurable.

Remark. If $g:S\to \overline{\mathbb{R}}$ is measurable, then $\mathrm{sgn}\,(g^*)$ is simple. Moreover, $g\,\mathrm{sgn}\,(g)=|g|.$

Theorem 0.1. Let $S \subseteq \mathbb{R}$ be measurable with $1 \le p \le \infty$, and q being p's conjugate. For $g \in L^q(S)$, define the map

$$\varphi: L^{p}(S) \longrightarrow \mathbb{R}$$

$$f \longmapsto \varphi(f) = \int_{S} fg.$$

Then φ is a bounded linear functional on $L^p(S)$ with norm $\|\varphi\| = \|g\|_q$. In particular $\varphi(f) = 0$ for all $f \in L^p(S)$ if and only if g = 0 almost everywhere.

1 Seperability and Bounded Linear Functionals

Lecture 23: Separability of L^p spaces

Thu 18 Nov 2021 13:57

Definition 1.1 (Step-Function). A step function, $\psi : \mathbb{R} \to \mathbb{R}$ is a simple function of the form

$$x \mapsto \sum_{k=1}^{m} a_k \chi_{J_k} (x)$$

where every set J_k is a bounded interval.

Theorem 1.1. (22.4).

Proof. 1. For the case $p = \infty$, we have f bounded almost everywhere. By splitting f into functions f^+ , f^- we can assume $f \geq 0$. Then, we see a sequence of simple functions (s_n) converging uniformly to f almost everywhere.

For $1 \leq p < \infty$ we find a sequence of simple functions (s_n) converging pointwise to f so that $|s_n| \leq |f|$. Consequently, we see

$$|f - s_n|^p \le (|f| + |s|)^p \le (2|f|)^p = 2^p |f|^p$$
.

So, we see dominated convergence implies

$$\int |f - s_n|^p = 0.$$

2. Assuming the case 1, we see we can assume f simple. Moreover, we can assume $f = \chi_S$, a characteristic function in $L^p(\mathbb{R})$. Then, we see S is measurable with $\int \chi_S = m(S) < \infty$, hence $\int \chi_S^p < \infty$

Then, we see S is measurable with $\int \chi_S = m(S) < \infty$, hence $\int \chi_S < \infty$. Applying littlewoods first princple and finxing $\varepsilon > 0$ we find a finite disjoint collection of open intervals $\{J_k : 1 \le k \le n\}$ so that for $U = \bigcup_{k=1}^m J_k$, we find $m(S \triangle U) < \varepsilon^p$.

Then, we see

$$\int |\chi_S - \chi_U|^p = \int \chi_{S \triangle U}^p$$

$$= m (S \triangle U)$$

$$< \varepsilon^p.$$

Since $m(U \setminus S) < \infty$, we see each interval J_k must be bounded (else U would be of infinite measure), so χ_U is a step function on the interval $[a,b] \supseteq U$ satisfying the required conditions.

3. Assuming 2 we see it suffices to show case for the step function $f = \chi_{[c,d]}$ with $c \leq d$. Then, fixing $\varepsilon > 0$ and considering the function

$$x\mapsto g\left(x\right)=\chi_{\left[c,d\right]}+\left(1+\varepsilon^{-p}\left(x-c\right)\right)\chi_{\left(c-\frac{\varepsilon^{p}}{3},\right),c}+\left(1-e^{-p}\left(x-d\right)\right)\chi\left(d,d+\frac{\varepsilon^{p}}{3}\right).$$

We see this functions is continuous as it is simply piecewise linear, being 1 on [c,d] and a linear interpolation between 1 and 0 in a small interval either side of [c,d]. Importantly, $\int_{(c-\frac{1}{3}\varepsilon^p)} |g| \leq \frac{1}{3}\varepsilon^p$, the length of the

interval.

Hence, we find

$$\int \left| \chi_{[c,d]} - g \right|^p \le \left(\frac{2}{3} \varepsilon^p \right)^p < \varepsilon^p.$$

This completes the proof.

Note that this proof essentially showed simple functions, step functions, and continuous functions are dense in $L^p(\mathbb{R})$ (given $1 \leq p < \infty$ for the last 2).

Definition 1.2 (Density). Let $(X, \|\cdot\|)$ be a normed linear space. If $S \subseteq T \subseteq X$, then S is **dense** in T if for all $v \in T, \varepsilon > 0$ we find a vector $u \in S$ so that $\|v - u\| < \varepsilon$.

Definition 1.3 (Seperability). A normed linear space $(X, \| \cdot \|)$ is **seperable** if it contains a countable, dense subset.

Theorem 1.2. For $1 \leq p < \infty$, $L^p(\mathbb{R})$ is separable.

Proof. If $\varphi = c\chi_{[a,b]}$ with $a,b,c \in R$, then for any $\varepsilon > 0$ we find an interval $I = [c,d] \subseteq [a,b]$ with $c,d \in \mathbb{Q}$ and an $r \in \mathbb{Q}$ so that $\int |\varphi - r\chi_I|^p < \varepsilon^p$ (the function vanishes except on an arbitrarily small interval). Letting Ψ be the collection of all such step functions of the form $\psi = \sum_{i=1}^n c_k \chi_{I_k}$ with $c_k \in \mathbb{Q}$ and I_k having rational endpoints, then linearity combined with the preceding lemmas guarantees Ψ to be a countable dense subset, so $L^p(\mathbb{R})$ is separable. \square

2 Bounded Linear Functionals

Definition 2.1 (Functionals). • A function $\varphi : X \to \mathbb{R}$ on a linear space X is called a **linear functional** if the laws of linearity holds for φ .

- A linear functional $\varphi: X \to \mathbb{R}$ on a normed linear space $(X, \|\cdot\|)$ is called **bounded** if there is $M \ge 0$ so that $|\varphi(x)| \le M\|x\|$ for all $x \in X$.
- If φ is a bounded linear functional, the quantity

$$\|\varphi\| = \inf\{M \ge 0 : |\varphi(x)| \le M\|x\| \ \forall \ x \in X\}$$

is called the **norm** of φ .

Proposition 2.1. Let $\varphi: X \to \mathbb{R}$ be a bounded linear functional on a normed linear space $(X, \|\cdot\|)$. Then,

$$\|\varphi\| = \sup\{|\varphi(x)| : x \in X, \|x\| \le 1\}.$$

Definition 2.2 (Continuity). A linear functional $\varphi: X \to \mathbb{R}$ on $(X, \|\cdot\|)$ is **continuous at** x_0 if for every $\varepsilon > 0$ we find a $\delta > 0$ so that $|\varphi(x) - \varphi(x_0)| < \varepsilon$ if $||x - x_0|| < \delta$.

If φ is continuous for all $x \in X$, then φ is **continuous.**

Proposition 2.2. Let $\varphi:X\to\mathbb{R}$ be a linear functional on $(X,\|\cdot\|)$. Then, the following are equivalent

- φ is continuous,
- φ is continuous at some $x_0 \in X$,
- φ is bounded.