	<pre>plt.figure(figsize=(7, 5)) plt.scatter(time, vals) plt.title('Raw data', fontsize=16) plt.xlabel('Time Index, t', fontsize=14) plt.ylabel('Value, y', fontsize=14) plt.grid() plt.savefig('pictures/q1/raw_data.jpg', bbox_inches='tight') plt.show()</pre>
	75 50 25 4 6 8 10 12 14 Time Index, t
TI pa	This fucntion takes in the matrix Φ corresponding to the number of parameters that the model has and returns a vector of estimate parameters, $\hat{\theta}$ def theta_hat(Phi, targets=vals): """Takes in Phi and y(t), a vector of current and previous regressors and the real outputs, and recurrent value of the parameters """ # The following block of code was implemented as a check to make sure the answers were consistent. # This implements equation 2.9 from the text
Tł	# P = inv(trans(Phi) @ Phi) # row, col = Phi.shape # temp = np.zeros((col, 1)) # for phi, y in zip(Phi, targets): # temp + np.array([trans(phi).reshape(-1,1) @ y]).reshape(-1, 1) # check = P @ temp return (inv(trans(Phi) @ Phi)) @ (trans(Phi) @ targets) # Implementation of equation 2.6 from the The following block of code creates a matrix assuming 5 parameters. For each model, this matrix is sliced and only the columns that correspond to the number of parameters in that model are used
: 	Phi = np.zeros((1,5)) Phi[0][0] = 1 for t in np.arange(1, 15): Phi = np.concatenate((Phi, np.array([t**0, t**1, t**2, t**3, t**4]).reshape(1,5)), axis=0) Model assuming that $\varphi^T = (t^0)$ and $\hat{\theta} = b_0$. Note that the function that is called by model p (theta_hat) takes in $\Phi(k)$ with p colump $e(t^0, t^0, t^0, t^0, t^0, t^0, t^0, t^0, $
N №	Model 1 $ \begin{array}{ll} {\rm Phil} = {\rm Phi[:,\ 0].reshape(-1,\ 1)} & {\rm \#\ Slicing\ only\ the\ first\ column\ of\ Phi\ matrix} \\ {\rm thetal} = {\rm theta_hat(Phil)} \\ \\ {\rm Model\ 2} \\ {\rm Model\ assuming\ that\ } \varphi^T = (t^0\ t^1)\ {\rm and\ } \hat{\theta} = (b_0\ b_1)^T. \end{array} $
N №	Phi2 = Phi[:, 0:2] # Slicing only the first two column of Phi matrix theta2 = theta_hat(Phi2)
N M	Model 4 Model assuming that $\varphi^T=(t^0\ t^1\ t^2\ t^3)$ and $\hat{\theta}=(b_0\ b_1\ b_2\ b_3)^T$. Phi4 = Phi[:, 0:4] # Slicing first four column of Phi matrix theta4 = theta_hat(Phi4) Model 5 Model assuming that $\varphi^T=(t^0\ t^1\ t^2\ t^3\ t^4)$ and $\hat{\theta}=(b_0\ b_1\ b_2\ b_3\ b_4)^T$.
TH	Phi5 = Phi[:, 0:5] # Slicing first five column of Phi matrix theta5 = theta_hat(Phi5) This block below is dedicated strictly to organizing and printing the data. row1 = np.pad(theta1.reshape(-1,), (0, 4), mode='constant') row2 = np.pad(theta2.reshape(-1,), (0, 3), mode='constant') row3 = np.pad(theta3.reshape(-1,), (0, 2), mode='constant') row4 = np.pad(theta4.reshape(-1,), (0, 1), mode='constant')
•	Model 51.435013 0.000000 0.000000 0.000000 0.000000 2 -31.106229 11.791606 0.000000 0.000000 0.000000 3 11.150564 -7.711529 1.393081 0.000000 4 8.137128 -4.576673 0.813574 0.027596 0.000000 5 4.234310 3.497340 -1.992023 0.346007 -0.011372
TI	Q1.2 The "estimates" function uses equation 2.1 to estimate the output of the system. That is, $\hat{y}(k)=\varphi^T(k)\theta(k)$ The "square_error" function returns the square of the residual. $\left(y(k)-\hat{y}(k)\right)^2$
	<pre>def estimates(Phi_func, theta_func): """Takes in the current value of the vector of regressors and the current value of the parameters the estimated output""" # This function takes in the return (Phi_func.reshape(1, -1) @ theta_func).reshape(1,) def square_error(y_func, epsilon): """Takes in the current value of the output and the systems estimate of the output and returns the of the residual""" return np.array([np.square(y func - epsilon)]).reshape(1,)</pre>
(a	The for loop in the block below loops through all values of k and calculates all the estimates, $\hat{y}(k)$, and squares of the residuals, $(y(k) - \hat{y}(k))^2$. Following the for loop, the loss function is found using equation 2.2 from the textbook, $V(\hat{\theta}, k) = \frac{1}{2} \sum_{i=1}^t \left(y(k) - \hat{y}(k) \right)^2$
	<pre>y1_lse, y2_lse, y3_lse, y4_lse, y5_lse = (0, 0, 0, 0, 0) for t, y in zip(time, vals): if t == 0: y1 = estimates(Phi[int(t), 0:1], theta1) y2 = estimates(Phi[int(t), 0:2], theta2) y3 = estimates(Phi[int(t), 0:3], theta3) y4 = estimates(Phi[int(t), 0:4], theta4) y5 = estimates(Phi[int(t), 0:5], theta5)</pre> else: y1 = np.concatenate((y1, estimates(Phi[int(t), 0:1], theta1)), axis=0) y2 = np.concatenate((y2, estimates(Phi[int(t), 0:2], theta2)), axis=0)
	<pre>y2 = np.concatenate((y2, estimates(Phi[int(t), 0:2], theta2)), axis=0) y3 = np.concatenate((y3, estimates(Phi[int(t), 0:3], theta3)), axis=0) y4 = np.concatenate((y4, estimates(Phi[int(t), 0:4], theta4)), axis=0) y5 = np.concatenate((y5, estimates(Phi[int(t), 0:5], theta5)), axis=0) y1_lse += square_error(y, estimates(Phi[int(t), 0:1], theta1)) y2_lse += square_error(y, estimates(Phi[int(t), 0:2], theta2)) y3_lse += square_error(y, estimates(Phi[int(t), 0:3], theta3)) y4_lse += square_error(y, estimates(Phi[int(t), 0:4], theta4)) y5_lse += square_error(y, estimates(Phi[int(t), 0:5], theta5))</pre> loss = (1/2*np.array([y1_lse, y2_lse, y3_lse, y4_lse, y5_lse])).reshape(-1,)
	<pre>loss = (1/2*np.array([y1_lse, y2_lse, y3_lse, y4_lse, y5_lse])).reshape(-1,) data_1['V'] = pd.Series(data=loss, index=data_1.index)</pre>
it	2 -31.106229 11.791606 0.000000 0.000000 0.000000 4637.216740 3 11.150564 -7.711529 1.393081 0.000000 0.000000 634.251379 4 8.137128 -4.576673 0.813574 0.027596 0.000000 612.440363 5 4.234310 3.497340 -1.992023 0.346007 -0.011372 563.290183 From the table above we see that model 4 is the first new model that doesn't have at least an order of magnitude imporvement. Alt is tempting to suppose that model 5 performs best, the reduced loss function is likely a result of the model learning the noise and the trend. With this in mind, the optimal number of parameters to learn the model without introducing overfitting is 3. The model is $\hat{y}(k) = \varphi^T(k)(11.150564 - 7.711529 1.393081)^T + e(k)$
(e	t should be noted that the theory dictates a choise of parameters that minimize the loss function, but with noise added to this systems especially with the large standard deviation) too many parameters leads to overfitting. This block is dedicated to printing the different estimated outputs overlayn on eachother for comparison. plt.figure(figsize=(9, 6)) plt.scatter(time, vals) plt.plot(time, y1) plt.plot(time, y2)
	<pre>plt.plot(time, y2) plt.plot(time, y3) plt.plot(time, y4) plt.plot(time, y5) plt.xlabel('time, t (s)', fontsize=14) plt.ylabel('Value, y', fontsize=14) plt.title('Overlay of all 5 estimated models and the raw data', fontsize=16) plt.legend(['model 1',</pre>
	Plt.grid() plt.show() Overlay of all 5 estimated models and the raw data model 1 model 2 model 3 model 4 model 5 Raw Data
: 1:100	Value, y
	The plot of model 3 and the raw data is shown below plt.figure(figsize=(9, 6)) plt.scatter(time, vals) plt.plot(time, y3) plt.xlabel('time, t (s)', fontsize=14) plt.ylabel('Value, y', fontsize=14) plt.title('Overlay of all 5 estimated models and the raw data', fontsize=16)
	plt.legend(['model 3',
	125 > 100 9 75 50 25
To	Q1.3 To find the unbiased estimate of the standard deviation for each model we take the square root of (iii) from Theorem 2.2 in the text This is done as follows:
	$\hat{\sigma} = \sqrt{\frac{2V(\hat{\theta},k)}{t-n}}$ N = np.arange(1, 6) sigma_hat = [] for n, _2V in zip(N, 2*loss): sigma_hat.append(np.sqrt(_2V/(len(time) - n))) sigma_hat = np.array(sigma_hat).reshape(-1,)
	data_1['std. dev.'] = pd.Series (data=sigma_hat, index=data_1.index) b0 b1 b2 b3 b4 V std. dev. Model 1 51.435013 0.000000 0.000000 0.000000 24103.092840 58.679630 2 -31.106229 11.791606 0.000000 0.000000 4637.216740 26.709885 3 11.150564 -7.711529 1.393081 0.000000 0.000000 634.251379 10.281467
cl	4 8.137128 -4.576673 0.813574 0.027596 0.000000 612.440363 10.552383 5 4.234310 3.497340 -1.992023 0.346007 -0.011372 563.290183 10.614049 These results represent the unbiased estimation of the standard devaition of the signals. The expected value of this estimation shower that the standard deviation of the signals from the true function, which is given at $\sigma = 11$. Given this, we choose model 5 as it closest to the true value of the standard deviation associated with the data. Question 2
	<pre>import matplotlib.pyplot as plt import pandas as pd import numpy as np from numpy import transpose as trans from numpy.random import normal from numpy.linalg import inv from numpy import cos, sin</pre>
TI	This block is an initialization block that is used to define the inputs, true values and all the constants used for the code. al_true, a2_true, b0_true, bl_true, std_dev = 1.3, 0.75, 1.1, -0.35, 0.65 recursion_length = 1500 time = np.arange(2*recursion_length + 1) # Delayed Kronecker delta input delta = np.zeros(time.shape) delta[np.where(time == 100)] = 1
•	100 This function recursively executes the equations in Theorem 2.3 performing the following calculations
TI	
: TI	This function recursively executes the equations in Theorem 2.3 performing the following calculations $\hat{\theta}(t) = \hat{\theta}(t-1) + K(t) \big(y(t) - \phi^T(t) \hat{\theta}(t-1)\big)$ $K(t) = P(t-1) \phi(t) \big(I + \phi^T(t) P(t-1) \phi(t)\big)^{-1}$ $P(t) = \big(I - K(t) \phi^T(t)\big) P(t-1)$ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. $\text{def } \text{rls (theta}_{n}, \text{P}_{n}, \text{al=al_true, a2} = \text{a2_true, b0=b0_true, b1=b1_true, sig=std_dev):}$ """This function takes in the previous values of theta and P and recursively finds the next values in accordance with Theorem 2.3 in the textbook. """ global idx, N, y, u, a1_hat, a2_hat, b0_hat, b1_hat, Phi $y[\text{idx}] = -\text{a1*y}[\text{idx} - 1] -\text{a2*y}[\text{idx} - 2] + \text{b0*u}[\text{idx} - 1] + \text{b1*u}[\text{idx} - 2] + \text{normal (scale=sig)}$
TI	This function recursively executes the equations in Theorem 2.3 performing the following calculations $\hat{\theta}(t) = \hat{\theta}(t-1) + K(t) \big(y(t) - \phi^T(t) \hat{\theta}(t-1)\big)$ $K(t) = P(t-1) \phi(t) \big(I + \phi^T(t) P(t-1) \phi(t)\big)^{-1}$ $P(t) = \big(I - K(t) \phi^T(t)\big) P(t-1)$ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. $\text{def } \text{rls} \text{ (theta_ml, P_ml, al=al_true, a2 = a2_true, b0=b0_true, b1=b1_true, sig=std_dev):}$ """This function takes in the previous values of theta and P and recursively finds the next values in accordance with Theorem 2.3 in the textbook. """ global idx, N, y, u, a1_hat, a2_hat, b0_hat, b1_hat, Phi
TI	This function recursively executes the equations in Theorem 2.3 performing the following calculations $\hat{\theta}(t) = \hat{\theta}(t-1) + K(t) \big(y(t) - \phi^T(t) \hat{\theta}(t-1)\big)$ $K(t) = P(t-1)\phi(t) \big(I + \phi^T(t)P(t-1)\phi(t)\big)^{-1}$ $P(t) = \big(I - K(t)\phi^T(t)\big)P(t-1)$ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in the previous values of theta and $P(t)$ and recursively finds the next values in accordance with Theorem 2.3 in the textbook. The previous values of the previous values
TI	This function recursively executes the equations in Theorem 2.3 performing the following calculations $\hat{\theta}(t) = \hat{\theta}(t-1) + K(t) (y(t) - \phi^T(t) \hat{\theta}(t-1))$ $K(t) = P(t-1) \phi(t) (1 + \phi^T(t) P(t-1) \phi(t))^{-1}$ $P(t) = (I - K(t) \phi^T(t)) P(t-1)$ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. def ris (theta mi, P_mi, al=al_true, a2 = a2_true, b0=b0_true, bl=bl_true, sig=std_dev); """This function takes in the previous values of theta and P and recursively finds the next values in accordance with Theorem 2.3 in the textbook. """ global idx, N, y, u, al_hat, a2_hat, b0_hat, bl_hat, Phi y(idx) = -ai*y(idx - 1] -a2*y(idx - 2) + b0*u(idx - 1) + b1*u(idx - 2) + normal(scale=sig) phi = ng.array([(-y\dot idx - 1]),
TI P	This function recursively executes the equations in Theorem 2.3 performing the following calculations $\hat{\theta}(t) = \hat{\theta}(t-1) - K(t)(y(t) - \phi^T(t)\hat{\theta}(t-1))$ $K(t) = P(t-1)\phi(t)(t+\phi^T(t)P(t-1)\phi(t))^{-1}$ $P(t) = (1 - K(t)\phi^T(t))P(t-1)$ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. def which the part $y \in [t-1]$ and $y \in [t-1]$ and returns $\hat{\theta}(t)$ and $y \in [t-1]$ and $y \in [t-1]$ and returns $\hat{\theta}(t)$ and $y \in [t-1]$ and $y \in$
TI TI W	This function recursively executes the equations in Theorem 2.3 performing the following calculations $ \hat{\theta}(t) = \hat{\theta}(t-1) + K(t)(y(t) - \phi^T(t))\hat{\theta}(t-1)) $ $ K(t) = P(t-1)\phi(t)(1+\phi^T(t))P(t-1)\phi(t))^{-1} $ $ P(t) = (I-K(t)\phi^T(t))P(t-1) $ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and $P(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and $P(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t)$ and $P(t)$ and $P(t)$. definicion takes in $\hat{\theta}(t-1)$ and $P(t)$ and $P(t$
	this function recursively executes the equations in Theorem 23 performing the following calculations $ \frac{\hat{\theta}(t) = \hat{\theta}(t-1) + K(t)[g(t) - \sigma^2(t)\hat{\theta}(t-1)]}{K(t) - P(t-1)\hat{\theta}(t)[t] + \sigma^2(t)P(t-1)\hat{\theta}(t)]^{-1}} $ $ K(t) = P(t-1)\hat{\theta}(t)[t] + \sigma^2(t)P(t-1)\hat{\theta}(t)]^{-1} $ $ P(t) = (t-K(t)\sigma^2(t))P(t-1) $ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and returns $\hat{\theta}(t)$ and $P(t)$. The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and $P(t-1)$ and $P(t)$
	this function recordingly executes the equations in Theorem 2.5 performing the following calculations: $\frac{\hat{\sigma}(t) - \hat{\sigma}(t-1) + K(t)(y(t) - \hat{\sigma}^T(t)\hat{\sigma}(t-1))}{K(t) - P(t-1)\sigma(t)(t + \hat{\sigma}^T(t)P(t-1)\sigma(t))^T}$ $P(t) = (T - K(y(t)^T(t)^T(t-1)\sigma(t))^T$ $P(t) = (T - K(y(t)^T(t-1)\sigma(t))^T$ $P(t) =$
	This function reconsively secules the equations in Theorem 2.3 performing the following calculations $ \frac{\theta(t) = \hat{\theta}(t-1) + K(t)(y(t) - \sigma^2(t)\hat{\theta}(t-1))}{k(t) + g^2(t)P(t-1)g(t)t^2} $ $ F(t) = \hat{\theta}(t-1) + K(t)(y(t) - \sigma^2(t)\hat{\theta}(t-1))$ $ F(t) = (t - K(t)g^2(t)P(t-1)) $ $ F(t) = (t - K(t)g^2(t)P(t-1)) $ The function takes in $\hat{\theta}(t-1)$ and $P(t-1)$ and reconsist $\hat{\theta}(t)$ and $P(t)$. $ \text{def is interequency with Theorem } f(t) = (t - K(t)g^2(t)P(t-1)) $ $ \text{def is interequency with Theorem } f(t) = (t - K(t)g^2(t)P(t-1)) $ $ \text{def is interequency with Theorem } f(t) = t in the reconsist of cases and P(t). The reconsist of the property of th$
	This function reconsively executes the equations in Theorem 23 performing the following catabalations $\hat{\theta}(t) = \theta(t-1) + K(t)[g(t) - \theta^*(t)\hat{\theta}(t-1))$ $K(t) = P(t-1)g(t)(t+\theta^*(t)P(t-1)) and P(t-1)$ $P(t) = (T-K(t)\theta^*(t)P(t-1))$ the function takes in $\theta(t-1)$ and $P(t-1)$ and $P(t-1)$ and $P(t)$. The function takes in $\theta(t-1)$ and $P(t-1)$ and $P(t-1)$ and the function takes in $\theta(t-1)$ and $P(t-1)$ and
	The Australian Processes the squarters in Processed approforming the following collections $S(O_1 = 0(n-1) + N(O_1(G_1) - n^2(O_1(G_1) - 1)) \\ S(O_1 = D(n-1)) + N(O_1(G_1) - n^2(O_1(G_1) - 1)) \\ S(O_1 = D(n-1)) + N(O_1(G_1) - n^2(O_1(G_1) - 1)) \\ S(O_1 = D(n-1)) + N(O_1(G_1) - n^2(O_1(G_1) - 1)) \\ S(O_1 = D(n-1)) + N(O_1(G_1) - 1) + N(O_1(G_1) - 1) \\ S(O_1 = D(n-1)) + N(O_1(G_1) - 1) + N(O_1(G_1) - 1) \\ S(O_1(G_1) - 1) + N(O_1(G_1) - 1) + N(O_1(G_1) - 1) \\ S(O_1(G_1) - 1) + N(O_1(G_1) - 1) + N(O_1(G_1) - 1) \\ S(O_1(G_1) - 1) + N(O_1(G_1) - 1) + N(O_1(G_1) - 1) \\ S(O_1(G_1) - 1) + N(O_1(G_1) - 1) \\ $
	Parameter Estimation with Delayed Kronecker Delta Input Parameter Estimation With Delayed Kronecker Delta I
	The function recognises securities the equations in Theorem 23 performing the Industry contractions $\frac{d(p) - d(p) - 1}{d(p) - 2} - 10d((p) - 2)^2(p)(p) - 1)$ $\frac{d(p) - d(p) - 1}{d(p) - 2} - 10d((p) - 2)^2(p)(p) - 10$ The function table in the property of the function of o
	The contact recorded personal to equation in Theorem 2 per termina the bits and quantitative $\frac{(x_1 - x_1)^2}{(x_1 - x_2)^2} \frac{(x_1 - x_1)^2}{(x_1 - x_2)^2} \frac{(x_1 - x_1)^2}{(x_1 - x_1)^2} $
	The control works above accounts to equations in Too or 23 across may the solver grandations $\frac{(a_1 - a_2)}{(a_1 - a_2)} = (a_1 + a_2)(a_2) = (a_1 + a_2)(a_2) = (a_2 + a_2) = (a_2 + a_2)(a_2 - a_2)(a_2 - a_2)(a_2 - a_2) = (a_2 + a_2)(a_2 - a_2)(a_2 - a_2)(a_2 - a_2) = (a_2 + a_2)(a_2 - a_2)(a_2 -$
	The control control and control of the control of proteins, the UNIVANIA collabors of the control of the contro
	Apply of the Colon of
	For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Konnecker Debta Input For example of Estimation with Debug of Estimation of Esti
	The contraction of the protect for the contract of the contrac
	Parameter Estimation with Delayed Knonecker Dela Input Parameter Estimation with Dela
	State of the control
	Parameter of the Delayed Introduced to Delay Flore the Parameter of the Delay Flore the Parameter of the Delayed Introduced to Delayed Introduced Introduc
	### Comparison of Comparison Comp
	Parameter Estimation with Delayed Konscier Delta Input Serior Control of the Con
	Parameter Estimation with Delayed Konscient Delta Input The Control of State of Sta
	The second secon
	The second and pure and the control of the control
	Company Comp
	Company Comp
	The content and property and
	Companies Comp
	The content of the co

