

Hypereutectoid alloys

☐ Hypereutectoid steel: has a carbon content greater than the eutectoid

Example: Phase Equilibria

For a 99.6 wt% Fe-0.40 wt% C at a temperature just below the eutectoid, determine the following

- a) composition of Fe_3C and ferrite (α)
- b) the amount of carbide (cementite) in grams that forms per 100 g of steel
- c) the amount of pearlite and proeutectoid ferrite (α)

8

Phase Equilibria a) composition of Fe_3C and ferrite (α) Solution: b) the amount of carbide $C_0 = 0.40 \text{ wt}\% \text{ C}$ $C_{\alpha} = 0.022 \text{ wt% C}$ $C_{\text{Fe}_3\text{C}} = 6.70 \text{ wt% C}$ (cementite) in grams that forms per 100 g of steel $\frac{\text{Fe}_{3}\text{C}}{\text{Fe}_{3}\text{C} + \alpha} = \frac{C_{o} - C_{\alpha}}{C_{\text{Fe}_{3}\text{C}} - C_{\alpha}} \times 100 \quad \text{T(°C)}^{140}$ L (austenite) $=\frac{0.4-0.022}{6.7-0.022}\,x\,100=5.7g$ 1000 $\gamma + Fe_3C$ 800 $Fe_3C = 5.7 g$ 600 α+Fe₃C $\alpha = 94.3 g$ 6 C_{Fe₃C} Co, wt% C

Summary

- Phase diagrams are useful tools to determine:
 - -- the number and types of phases,
 - --the wt% of each phase,
 - --and the composition of each phase for a given *T* and composition of the system.
- Alloying to produce a solid solution usually
 - --increases the tensile strength (TS)
 - --decreases the ductility.
- Binary <u>eutectics</u> and binary <u>eutectoids</u> allow for a range of microstructures.