

**OpenClassrooms - Data Analyst** 

2021-2022

**Xiuting LIANG 28.07.2021** 





## Le contexte du projet de data analyse





- L'entreprise française d'agroalimentaire, La poule qui chante ,
- ► Souhaite se développer à l'international.
- Notre mission d'analyse est de proposer une première analyse des groupements de pays que l'on peut cibler pour exporter nos poulets.



▶ On ultilise des données de la FAO(Food and Agriculture Organization) et des données open source avec les critères de l'analyse PEST.



► Pour la partie analyse, on ultilise les méthodes CAH(classification ascendante hiérarchique), k-means pour la classification et également réaliser une ACP afin de visualiser les résultats.

#### Le contexte du projet

#### Préparation des données

- PEST Analyse
- Pivot

#### Normalizer des données

#### La classification ascendante hiérarchique (CAH)

Dendrogramme

#### **KMeans**

- Elbow method
- Silhouette analyse

#### **ACP**

- Explained variance ratio
- Cercle de corrélation
- Visualisation pour CAH
- Visualisation pour Kmeans
- Visualisation avecGeopandas

Partie supplémentaire: Recalculer les clusters après ACP avec CAH et kmeans

Heatmap avec clusters

Teste statistique

Recommandations

### Dans Cette Présentation

## Préparation des données



#### Jeux de données

FAO(Food and Agriculture Organization) et des données open source avec les critères de l'analyse PEST

P

Political\_Stability

] }

PIB par habitant(USD), Prix poulet(1kg/USD)

S

Population(mille personnes)

Т

Distance km

Autre: DisponibiliteAlimentaire\_2017
Disponibilité alimentaire (Kcal/personne/jour),
Disponibilité de protéines en quantité (g/personne/jour),
Importations - Quantité(Milliers de tonnes),
Exportations - Quantité(Milliers de tonnes)



#### df\_alimentaire

source: Données New Food Balances (FAO); données originals d'Openclassrooms.



#### df\_pop

source: Données New Food Balances (FAO); données originals d'Openclassrooms et transfer à version Anglais



#### df\_eco

source: FAO: https://www.fao.org/faostat/en/#data/MK



#### df\_prix

Source: 07/2022 https://www.numbeo.com/cost-of-living/country\_price\_rankings?itemId=19



#### df\_poli

source: Données de P8, Openclassrooms



#### df\_distance

source: https://www.distancefromto.net/distance-from-france-country

- Suprimé les colonnes non pertinents
- ----> Filtrer 'Viande de Volailles'
  - Traitement pour le pivot



- Suprimé les colonnes non pertinents
- ----> Filtrer 2017
  - Suprimé les données doulons
  - Suprimé les colonnes non pertinents
- ---->
   Données FAO: la jointure de 'df\_volailles', 'df\_pop', 'df\_eco'
  - Traiter les valeurs manquants-fillna(0)

---->

- La jointure des données open source
  - Traiter les valeurs manquants-fillna(means)

---->

## Préparation de données

#### **Avant traitement** de pivot

|     | Code zone | Zone        | Valeur | Élément Unité                                |
|-----|-----------|-------------|--------|----------------------------------------------|
| 651 | 2         | Afghanistan | 28.0   | Production(Milliers de tonnes)               |
| 652 | 2         | Afghanistan | 29.0   | Importations - Quantité(Milliers de tonnes)  |
| 653 | 2         | Afghanistan | 0.0    | Variation de stock(Milliers de tonnes)       |
| 654 | 2         | Afghanistan | 57.0   | Disponibilité intérieure(Milliers de tonnes) |
| 655 | 2         | Afghanistan | 2.0    | Pertes(Milliers de tonnes)                   |

#### Après traitement de pivot

|              | Élément<br>Unité | Alimentation pour<br>touristes(Milliers<br>de tonnes) | Aliments pour<br>animaux(Milliers<br>de tonnes) |     | Disponibilité<br>alimentaire<br>(Kcal/personne/jour)<br>(Kcal/personne/jour) | quantité<br>(kg/personne/an) | Disponibilité de<br>matière grasse en<br>quantité<br>(g/personne/jour)<br>(g/personne/jour) | protéines en<br>quantité<br>(g/personne/jour) | Disponibilité<br>intérieure(Milliers<br>de tonnes) | Exportations -<br>Quantité(Milliers<br>de tonnes) |
|--------------|------------------|-------------------------------------------------------|-------------------------------------------------|-----|------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| Code<br>zone | Zone             |                                                       |                                                 |     |                                                                              |                              |                                                                                             |                                               |                                                    |                                                   |
| 1            | Arménie          | NaN                                                   | NaN                                             | NaN | 54.0                                                                         | 16.06                        | 3.39                                                                                        | 5.44                                          | 47.0                                               | 0.0                                               |
| 2            | Afghanistan      | NaN                                                   | NaN                                             | NaN | 5.0                                                                          | 1.53                         | 0.33                                                                                        | 0.54                                          | 57.0                                               | NaN                                               |
| 3            | Albanie          | NaN                                                   | NaN                                             | NaN | 85.0                                                                         | 16.36                        | 6.45                                                                                        | 6.26                                          | 47.0                                               | 0.0                                               |
| 4            | Algérie          | 0.0                                                   | NaN                                             | NaN | 22.0                                                                         | 6.38                         | 1.50                                                                                        | 1.97                                          | 277.0                                              | 0.0                                               |
| 7            | Angola           | 0.0                                                   | NaN                                             | NaN | 35.0                                                                         | 10.56                        | 2 22                                                                                        | 3.60                                          | 319.0                                              | 0.0                                               |

## Avant normalisation



le centrage et la réduction



# La classification ascendante hiérarchique (CAH) et le dendrogramme

L'approche ascendante-- clustering agglomératif :

- Chaque point est un cluster. Chercher les deux clusters les plus proches.
- Agglomèrer les 2 clusters en un seul cluster.
- Répète les étapes ci-dessus jusqu'à ce que tous les points soient regroupés en un seul grand cluster.



## Dendrogrammes

#### **Choisir 4 comme le nombre de clusters**



### Interprétation des 4 groupes par CAH





#### Groupe1: Pays sous-développé

Les pays avec la moindre de population, PIB est en bas, stabilité politique est unstable. Il y a le moindre de disponibilité alimentaire et le moindre de disponibilité de protéines.

#### **Groupe2: Grands pays**

Les 4 grands pays avec beaucoup de population, ils sont très différents des autres.

#### **Groupe3: Les pays moyennes**

Ils sont les pays avec situation 'moyenne' pour tous les variable. Ils sont moyenne pour la disponibilité alimentaire, PIB par habitant, exportation, importation, stabilité politique, etc.

#### **Groupe4: Les pays/région riches**

Ils sont les pays riches, bien développés avec PIB par habitant les plus hautes, les prix de poulet les plus haute. Ils sont les pays/regions les plus proches avec stabilité politique stable.

#### Kmeans

- Placer les centroïdes aléatoirement dans l'espace
- Prendre chaque point du nuage et lui associee le cluster du centroïde dont il est le plus proche. On obtient donc K groupes.
- Recalculer les centroïdes de chaque groupe quand les centroïdes bougent jusqu'à ce qu'ils ne bougent pas.



### La méthode Elbow

On ne peut pas juger combien de groupes qu'on doit choisir par cette méthode.



## Silhouette analyse

#### Choisir 4 comme le nombre de clusters



## Présenter les centroîds



### Interprétation de les 4 groupes par kmeans



#### Groupe Pays sous-développé

Pour cette partie de pays; le PIB par habitant est en bas, stabilité politique est unstable. Il y a le moindre de disponibilité alimentaire et le moindre de disponibilité de protéines. Le prix de poulet est en bas mais la population est en haute.

#### **Groupe Puissance agricole**

Les pays avec disponibilité alimentaire et disponibilité de protéines en haute, ils exportent beaucoup de poulet aux autres pays. Ils ne sont pas notre cibles parce qu'il y a longs distances aussi.

#### **Groupe Les pays moyennes**

Ils sont les pays avec les moindre de population (pas grands pays). Ils sont moyenne pour la disponibilité alimentaire, PIB par habitant, exportation, importation, stabilité politique, etc.

#### **Groupe Les pays/région riches**

Ils sont les pays riches, bien développés avec PIB par habitant les plus hautes, les prix de poulet les plus haute. Ils sont les pays/regions les plus proches avec stabilité politique stable. La grande partie des pays sont en Euroupe. Il y a aussi les grandes avec beaucoup des populations et les grands marchés.

L'ordres des groups peut changer à cause de la récalculation.

### ACP

#### Analyse en composantes principales:

- Transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres.
- Elle permet au statisticien de résumer l'information en réduisant le nombre de variables.



## Explained variance ratio

```
pca.explained_variance_ratio_.round(2)
```

array([0.33, 0.18, 0.15, 0.1 , 0.09, 0.07, 0.05, 0.03, 0. ])

```
[53] pca.explained_variance_ratio_.cumsum()
```

array([0.33140626, 0.5089476 , 0.65737281, 0.75265492, 0.84449873, 0.91267085, 0.96751197, 0.99766941, 1. ])



Choisir 4 comme le nombre de composantes principaux parce qu'il presente presque 80% de information (basé sur la loi de Pareto)

## PC1, PC2

- Comprendre les liens entre les variables
- Choisir les PC1 et PC2, qui sont les 2 PC les plus importants et pertinentes





# Résultats et visualisation avec ACP



## Comparer CAH, Kmeans



## CAH avec centroîds Second Principal Component -3-2-13 First principal component

#### **Kmeans**



## Comparer CAH, Kmeans 3D



#### **Kmeans**



## Comparer CAH, Kmeans

**CAH** Kmeans





+ Partie supplémentaire:

Recalculer les clusters après ACP avec CAH et kmeans



## Partie supplémentaire: Recalculation après ACP-- CAH

**Avant ACP** 





## Partie supplémentaire: Recalculation après ACP-- CAH

#### **Avant ACP**





## Partie supplémentaire: Recalculation après ACP-- Kmeans

**Avant ACP** 





## Partie supplémentaire: Recalculation après ACP-- Kmeans

#### **Avant ACP**





## Heatmap



## Heatmap avec clusters



# Triangle Correlation Heatmap avec clusters



# Triangle Correlation Heatmap avec clusters



Teste statistique





#### Teste loi normalité

- Q-Q plot
- Shapiro-Wilk Test



#### Teste homoscédasticité

 Teste levene pour disponibilité de protéines



 Teste levene pour disponibilité alimentaire



▼ Shapiro-Wilk Test

▼ Teste homoscédasticité - Teste levene pour disponibilité de protéines

#### Question: Les disponibilités de protéines sont-ils toujour pareils entre les classes differents ?

- 1. H0: Les disponibilités de protéines sont **pareils** entre les classes differents.
- 2. HA: Les disponibilités de protéines sont differents entre les classes differents.

```
[98] # grouper les samples
group_km0 = df[df['kmeans_cluster3'] = 0]['Disponibilité de protéines']
group_km1 = df[df['kmeans_cluster3'] = 1]['Disponibilité de protéines']
group_km2 = df[df['kmeans_cluster3'] = 2]['Disponibilité de protéines']
group_km3 = df[df['kmeans_cluster3'] = 3]['Disponibilité de protéines']

# calculer le p-value
F_group_km, p_value_group_km = stats.levene(group_km0, group_km1, group_km2, group_km3)
```

```
print('Statistics=%.3f, p=%.3f' % (F_group_km, p_value_group_km))

print("*P-value < 0.05, on rejette HO et accept " +

"HA: Les disponibilités de protéines sont differents entre les classes differents. " +

"\nIl y a une corrélation entre les disponibilité de protéines et les clusters.")
```

Statistics=4.597, p=0.004

\*P-value < 0.05, on rejette HO et accept HA: Les disponibilités de protéines sont differents entre les classes differents.

Il y a une corrélation entre les disponibilité de protéines et les clusters.

```
print ("*P-value < 0.05, on rejette HO et accept " +

"HA: Les Disponibilité alimentaire sont differents entre les classes differents. " +

"\nIl y a une corrélation entre les disponibilité alimentaire et les classes.")
```

Statistics=17.001, p=0.000
\*P-value < 0.05, on rejette HO et accept HA: Les Disponibilité alimentaire sont differents entre les classes differents.
Il y a une corrélation entre les disponibilité alimentaire et les classes.

## Recommandations



# Recommandations sans tenir compte d'autres facteurs (22 pays)

#### **Groupe4- CAH-Rouge**

Les pays/région riches Ils sont les pays riches, bien développés avec PIB par habitant les plus hautes, les prix de poulet les plus haute. Ils sont les pays/regions les plus proches avec stabilité politique stable.



## Recommandations prioritaires (7 pays):

classes

- 1. Pas de longue distance
- 2. Beaucoup d'importation

les 3 derniers classes

3. Bon prix -- "pays riche"



United Kingdom of Great Britain and Northern I...

Germany

Belgium

Netherlands

Saudi Arabia

## IXIER CI