EEL7030 - Microprocessadores

Prof. Raimes Moraes

GpqCom – EEL

UFSC

- Região da memória RAM utilizada pelo programador e processador;
- Pelo programador: armazenar dados temporários;
- Pelo processador: armazenar endereços e flags qdo da alteração do fluxo de execução do programa (subrotina e interrupção);

Registradores do 8051

- Em microprocessadores, programador deve informar o processador sobre área de memória RAM disponível para a pilha, inicializando o registrador *Stack Pointer* [SP ponteiro de pilha]*.
- No 8051, ao ser resetado, o SP é inicializado com o valor 07H

*OBS: Qdo o processador executa sistema operacional, este gerencia a pilha.

[Exemplo de utilização da pilha pelo programador]

Supondo: [A] = CAH; [SP]=07H

END.	Mnemônico
010E	PUSH ACC
0200	MOV A,#3
0202	ADD A,R0

PILHA	END.	DADO
SP	07	
SP+1	08	CA

Eventos durante execução

$$[SP] \leftarrow [SP] + 1$$

 $\{[SP]\} \leftarrow [A]$

PUSH ACC

[] => conteúdo; {}=> endereço de memória apontado por

[Exemplo de utilização da pilha pelo programador]

END.	Mnemônico
010E	PUSH ACC
0200	MOV A,#3
0202	ADD A,R0
0203	MOV R0,A
0204	POP ACC

	PILHA	END.	DADO
	SP	07	
POP ACC	SP-1	08	CA

Eventos durante execução

$$[A] \leftarrow \{[SP]\}$$
$$[SP] \leftarrow [SP] -1$$

SUBROTINA

• Conjunto de instruções para o qual o fluxo de execução do programa é desviado pela instrução:

CALL [endereço]

• A instrução RET faz com que o microprocessador retorne à executar instrução que se segue à chamada da subrotina.

Mnemônicos para SUBROTINA (2 cycles)

LCALL: Especifica endereço de 16 bits. A instrução possui 3 bytes (opcode + 16 bits de endereço). Endereço de destino em qualquer lugar da memória (64 kiB).

ACALL: Especifica endereço de 11 bits. A instrução possui 2 bytes (opcode + 11 bits de endereço). Endereço de destino distante em até 2k (2^11).

SUBROTINA

- 1 8051 lê código de 3 bytes de LCALL e atualiza o valor do PC (de 000AH para 000DH)
- 2 Salva atual PC (000DH) na pilha.
- 3 Sobrescreve PC com endereço da subrotina; ([PC] = 2028H)
- 1 Executa subrotina;
- 5 Retorna à instrução que se segue ao LCALL no programa principal (instrução RET).

END.	Mnemônico	CÓDIGO
000A	LCALL 2028H	12 20 28
000D	MOV A,B	E5 F0

PILHA	END.	DADO
SP inicial	07	
SP+1	08	0DH [PC LSB]
SP+1	09	00H [PC MSB]

SUBROTINA

1 8051 lê código de 3 bytes do LCALL e atualiza o valor do PC (de 000AH para 000DH)

END.	Mnemônico	CÓDIGO [Hex]
000A	LCALL 2028H	12 20 28
000D	MOV A,B	E5 F0

- 2 Salva atual PC (000DH) na pilha.
- 3 Sobrescreve PC com endereço da subrotina; ([PC] = 2028H)
- 1 Executa subrotina;
- 5 Retorna à instrução que se segue ao LCALL no programa principal (instrução RET).

END.	Mnemônico	CÓDIGO [Hex]
2028	INC B	05 F0
202A	RET	22

Subrotina modifica registrador cujo conteúdo se quer preservar?

```
PUSH (endereço direto)
[SP] ← [SP] + 1
{[SP]} ← [endereço direto]
```

PUSH B LCALL 32C4H POP B

$$[B] = 32H$$
$$[SP] = 2FH;$$

[Exemplo de utilização da pilha pelo programador e processador]

Supondo: [B] = 32h;		
END.	Mnemônico	
010E	PUSH B	
0200	LCALL 34C2H	
0203	•••	

[SP]=2Fh		PILHA	END.	DADO	
			SP	2F	
1	PUSH I	3	SP+1	30	32
		L C A	SP+1	31	03

Eventos durante execução

[SP] ← [SP] + 1 {[SP]}← [B] [PC] ← [PC] + 3 [SP] ← [SP] + 1 {[SP]} ← [PC7-0] [SP] ← [SP] + 1 {[SP]}← [PC15-8] [PC] ← 34C2

L C A L	SP+1	31	03
L 34 C2	SP+1	32	02

[Exemplo de utilização da pilha pelo programador e processador]

END.	Mnemônico
343F	RET
	••••
0203	POP B

		PILITA	END.	DADO
		SP	2F	
POP B		SP-1	30	32
	R E T	SP-1	31	03
		SP-1	32	02

ΡΙΙ ΗΔ

FND

DADO

Eventos durante execução

 $[PC15-8] \leftarrow \{[SP]\}$ $[SP] \leftarrow [SP] - 1$

 $[PC7-0] \leftarrow \{[SP]\}$

 $[SP] \leftarrow [SP] - 1$

 $[\mathsf{B}] \leftarrow \{[\mathsf{SP}]\}$

[SP] ← [SP] -1

Ao se utilizar a mesma, ter em mente a localização do banco 1 de registradores.

Exemplo

ORG 0H

SETB RS0; ; se utiliza banco 1...

MOV SP,#1Fh; aloque pilha em outro lugar

VOLTA: CALL ATRASO

.....; trecho de programa

CALL ATRASO

.....; trecho de programa

JMP VOLTA

ATRASO: MOV R0, #50; código da subrotina

AGUARDA: DJNZ R0, AGUARDA

RET