Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer Pavol Safarik **SS 2012**

Gruppenübung

Aufgabe G1

Seien φ und ψ AL-Formeln. Wie kann man das Resolutionsverfahren benutzen, um zu überprüfen, ob

- (a) φ unerfüllbar ist;
- (b) φ erfüllbar ist;
- (c) φ allgemeingültig ist;
- (d) φ nicht allgemeingültig ist;
- (e) $\varphi \models \psi$;
- (f) eine endliche Menge Φ von AL-Formeln unerfüllbar ist;
- (g) eine unendliche Menge Φ von AL-Formeln unerfüllbar ist?

Aufgabe G2

Seien
$$\varphi := (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee \neg q)$$

$$\psi := (p \wedge q) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r).$$

Zeigen Sie mit Hilfe des Resolutionsverfahrens, dass

- (a) φ erfüllbar ist;
- (b) $\varphi \models \psi$ gilt.

Aufgabe G3

Ein *Dominosystem* $\mathcal{D}=(D,H,V)$ besteht aus einer endlichen Menge D von quadratischen Dominosteinen und zwei Relationen $H\subseteq D\times D$ und $V\subseteq D\times D$, so dass

- $(d, e) \in H$ gdw. e rechts neben d passt,
- $(d, e) \in V$ gdw. e über d passt.

Wir betrachten ein festes Dominosystem $\mathcal{D} = (D, H, V)$.

- (a) Geben Sie zu $n \in \mathbb{N}$ eine AL-Formelmenge Φ_n an, welche genau dann erfüllbar ist, wenn man ein Quadrat der Größe $n \times n$ so mit Dominosteinen aus \mathcal{D} belegen kann, dass nebeneinander liegende Steine zueinander passen. (Wir nehmen an, dass es von jedem Dominostein beliebig viele Exemplare gibt.)
- (b) Beweisen Sie mit Hilfe des Kompaktheitssatzes, daß man die gesamte Ebene $\mathbb{N} \times \mathbb{N}$ korrekt mit Dominosteinen belegen kann, vorausgesetzt dies geht für alle endlichen Quadrate $n \times n$.

(c) Beweisen Sie die Aussage aus (b) mit Hilfe des Lemmas von König anstatt des Kompaktheitssatzes.

Aufgabe G4

Für – möglicherweise unendliche – Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

Hausübung

Aufgabe H1 (2+2 Punkte)

(a) Beweisen Sie mit Hilfe von aussagenlogischer Resolution, dass die folgende Formelmenge nicht erfüllbar ist.

$$\neg r, \quad p \vee q \vee r, \quad q \mathop{\rightarrow} \neg p, \quad (q \wedge r) \vee (q \wedge p)$$

(b) Finden Sie das minimale Modell der folgende Horn-Formelmenge.

$$(p \land s) \rightarrow q$$
, r , $q \rightarrow s$, $r \rightarrow p$

Aufgabe H2 (4 Punkte)

Entscheiden Sie mit Hilfe des AL-Sequenzenkalküls \mathcal{SK} , ob die folgenden Sequenz allgemeingültig ist oder nicht.

$$p \rightarrow q, p \rightarrow \neg q \vdash \neg p$$

Falls diese Sequenz nicht allgemeingültig ist, so geben Sie eine nicht erfüllende Belegung an. Hinweis: " \rightarrow " ist hier wie üblich zu ersetzen.