Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

{v-zeliu1, v-yutlin, yuecao, hanhu, v-yixwe, zhez, stevelin, bainguo}@microsoft.com

Swin Transformer

General-purpose backbone for computer vision.

 Hierachical Transformer whose representation is computed with shifted windows.

Architecture

Patch Merging

Self-attention in non-overlapped windows

$$M \times M (7 \times 7)$$

Propose to compute self-attention within local windows.

$$\Omega(\text{MSA}) = 4hwC^2 + 2(hw)^2C,$$

$$\Omega(\text{W-MSA}) = 4hwC^2 + 2M^2hwC,$$

Shifted window partitioning in successive blocks

The window-based self-attention module lacks connections across windows, which limits its modeling power.

- W-MSA
- SW-MSA

$$\hat{\mathbf{z}}^{l} = \text{W-MSA}\left(\text{LN}\left(\mathbf{z}^{l-1}\right)\right) + \mathbf{z}^{l-1},$$
 $\mathbf{z}^{l} = \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l}\right)\right) + \hat{\mathbf{z}}^{l},$
 $\hat{\mathbf{z}}^{l+1} = \text{SW-MSA}\left(\text{LN}\left(\mathbf{z}^{l}\right)\right) + \mathbf{z}^{l},$
 $\mathbf{z}^{l+1} = \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1},$

Swin Transformer

Efficient batch computation for shifted configuration

- if.. smaller than M x M ??
 - Add padding -> increased computation
 - Cyclic-Shift

Relative position bias

■ Including a relative position bias : $B \in \mathbb{R}^{M^2 \times M^2}$

$$Attention(Q, K, V) = Softmax \left(\frac{QK^{T}}{\sqrt{d}} + B\right)V$$

Swin Transformer

■ We also introduce Swin-T, Swin-S and Swin-L, which are versions of about 0.25x, 0.5x and 2x the model size and computational complexity, respectively.

$$M = 7 / d = 32$$

Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$

Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$

Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$

Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

Experiments - ImageNet

(a) Regular ImageNet-1K trained models								
method	image	#param.	EL ODo	throughput	ImageNet			
memod	size	#param.	FLOPS	(image / s)	top-1 acc.			
RegNetY-4G [47]	224 ²	21M	4.0G	1156.7	80.0			
RegNetY-8G [47]	224^{2}	39M	8.0G	591.6	81.7			
RegNetY-16G [47]	224^{2}	84M	16.0G	334.7	82.9			
EffNet-B3 [57]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [57]	380^{2}	19M	4.2G	349.4	82.9			
EffNet-B5 [57]	456 ²	30M	9.9G	169.1	83.6			
EffNet-B6 [57]	528 ²	43M	19.0G	96.9	84.0			
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [19]	384 ²	86M	55.4G	85.9	77.9			
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	76.5			
DeiT-S [60]	224 ²	22M	4.6G	940.4	79.8			
DeiT-B [60]	224 ²	86M	17.5G	292.3	81.8			
DeiT-B [60]	384 ²	86M	55.4G	85.9	83.1			
Swin-T	224 ²	29M	4.5G	755.2	81.3			
Swin-S	224 ²	50M	8.7G	436.9	83.0			
Swin-B	224 ²	88M	15.4G	278.1	83.3			
Swin-B	384^{2}	88M	47.0G	84.7	84.2			

14.2 million images and 22K classes.

(b) ImageNet-22K pre-trained models

method	image size	#param.	FLOPs	throughput (image / s)	ImageNet top-1 acc.
R-101x3 [37]	384 ²	388M	204.6G	g 22 5	84.4
R-152x4 [37]	480^{2}	937M	840.5G	9 5	85.4
ViT-B/16 [19]	384 ²	86M	55.4G	85.9	84.0
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	85.2
Swin-B	224 ²	88M	15.4G	278.1	85.2
Swin-B	384 ²	88M	47.0G	84.7	86.0
Swin-L	384 ²	197M	103.9G	42.1	86.4

Experiments - Object Detection

(a) Various frameworks										
Method	Backbone	AP ^{box}	AP ₅₀ box	AP ₇₅ ^{box}	#param.	FLOPs	FPS			
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0			
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3			
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3			
AISS	Swin-T	47.2	66.5	51.3	36M	215G	22.3			
RepPointsV2	R-50	46.5	64.6	50.3	42M	274G	13.6			
Reprofitts v 2	Swin-T	50.0	68.5	54.2	45M	283G	12.0			
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0			
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4			

(b) Various backbones w. Cascade Mask R-CNN

	AP ^{box}	AP ₅₀	AP ₇₅ box	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}	param	FLOPs	FPS
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4
						43.4			
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32							1		
Swin-S	2007/10/04/19/29			501 000 0004			100000		
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

(c) System-level Comparison

Method	The state of the s	ni-val AP ^{mask}		-dev AP ^{mask}	#param.	FLOPs
RepPointsV2* [11]	- 4	=	52.1	-	-	-
GCNet* [6]	51.8	44.7	52.3	45.4	-	1041G
RelationNet++* [12]	-	7 -	52.7	7 -	-	3 — 3
SpineNet-190 [20]	52.6	-	52.8	-	164M	1885G
ResNeSt-200* [75]	52.5	e 	53.3	47.1	-	=
EfficientDet-D7 [58]	54.4	32 —	55.1	n=	77M	410G
DetectoRS* [45]	=	-	55.7	48.5	-	-
YOLOv4 P7* [3]	-	· -	55.8	· -	-	
Copy-paste [25]	55.9	47.2	56.0	47.4	185M	1440G
X101-64 (HTC++)	52.3	46.0	=	0=	155M	1033G
Swin-B (HTC++)	56.4	49.1	12	8=	160M	1043G
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	3 = 0

Semantic Segmentation

ADE	ADE20K		test	#param.	FI ODe	EDC
Method	Backbone	mIoU	score	#paraili.	TLOFS	113
DANet [22]	ResNet-101	45.2	12	69M	1119G	15.2
DLab.v3+ [10]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [23]	ResNet-101	45.9	38.5	7-		
DNL [68]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [70]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [66]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [70]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [10]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [10]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [78]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	4	52M	1099G	16.2
UperNet	Swin-T	46.1	1 -	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Ablation Study

	Imag	geNet		OCO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

math a d	MSA	Arch. (FPS)					
method	S1	S2	S3	S4	T	S	В
sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77
sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187
Performer [13]	4.8	2.8	1.8	1.5	638	370	241
window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280
shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236
shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278

		ImageNet		1		ADE20k
	Backbone	top-1	top-5	AP ^{box}	AP ^{mask}	mIoU
sliding window	Swin-T	81.4	95.6	50.2	43.5	45.8
Performer [13]	Swin-T	79.0	94.2	-		: -
shifted window	Swin-T	81.3	95.6	50.5	43.7	46.1

Conclusion

Proposed Swin Transformer which a new vision Transformer.

 Hierarchical feature representation and has linear computational complexity with respect to input image size.

Shifted window based self-attention is shown to be effective and efficient on vision problems.