CODE No.:16BT30202 SVEC-16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-16) Regular/Supplementary Examinations November - 2018 ELECTROMAGNETIC FIELDS

[Electrical and Electronics Engineering]

Max. Marks: 70

Time: 3 hours

Answer One Question from each Unit				
All questions carry equal marks				
		UNIT-I		
1	a) b)	State and explain Coulomb's law. Obtain an expression in vector form. Point charges of 50nC each are located at $A(1, 0, 0)$, $B(-1, 0, 0)$, $C(0,1,0)$ and $D(0,-1,0)$ in free space. Find the total force on the charge at A . (OR)	CO1 CO4	7 Marks 7 Marks
2	a)	Calculate the potential at a point $(0, 0, h)$ due to a circular disc of radius 'a' having a surface charge density of ρ_s C/m ² with its centre at the origin. Calculate the field at point P $(0, 0, z)$.	CO4	7 Marks
	b)	A 2 μ C point charge is located at $A(4, 3, 5)$ in free space. Find E_{ρ} , E_{φ} and	CO4	7 Marks
		E_z at $P(8, 12, 2)$.		
UNIT-II				
3	a)	What are electric boundary conditions? Derive them for the case dielectric—dielectric boundary with neat sketch.	CO3	8 Marks
	b)	Derive the Ohm's law in point form from fundamentals.	CO3	6 Marks
4	۵)	(OR)	CO1	7 Marilea
4	a) b)	Derive current continuity equation. For the current density $J=10z\sin^2\phi a_\rho A/m^2$, find the current through the	CO1 CO3	7 Marks 7 Marks
	o,	cylindrical surface $\rho = 2$, $1 \le z \le 5m$.	003	/ IVIAINS
(UNIT-III)				
5	a)	Derive an expression for magnetic field strength H due to a finite filamentary conductor carrying a current I and placed along z-axis at a point P on y-axis. Hence deduce the magnetic field strength for the length of a conductor extending from -infinite to +infinite.	CO4	7 Marks
	b)	Give Maxwell's equation for static magnetic fields in integral and differential form and explain.	CO2	7 Marks
6	a)	(OR) Derive an expression for magnetic field strength H due to infinitely long	CO4	8 Marks
U	a)	coaxial transmission line. Find H everywhere.	CO4	o marks
	b)	Short notes on scalar and vector magnetic potential.	CO1	6 Marks
		UNIT-IV		
7	a)	Derive the expression for energy stored in static magnetic field.	CO1	7 Marks
	b)	A point charge of 10C moves with a uniform velocity of $2a_x$ - $4a_z$ m/s in an	CO3	7 Marks
		EM field having $E = \mathbf{a_x} - 3\mathbf{a_y} + 8\mathbf{a_z} V/m$ and $B = 0.3\mathbf{a_x} + 0.1\mathbf{a_y} Wb/m^2$. Find the total force on the charge.		
(OR)				
8	a)	Derive an expression of force between two straight long and parallel current carrying conductors.	CO3	8 Marks
	b)	Give and explain Lorenz force equation.	CO2	6 Marks

UNIT-V

- 9 a) A parallel-plate capacitor with plate area of 5cm^2 and plate separation of CO3 6 Marks 3mm has a voltage $50\text{sin}10^3\text{t V}$ to its plates. Calculate the displacement current assuming $\epsilon = 2 \epsilon_0$.
 - b) Give Maxwell's equations for time varying fields in both differential and CO2 8 Marks integral form. Explain each.

(OR)

10 a) Derive Poynting theorem and Poynting vector. CO5 8 Marks

b) In free space $E(z, t) = 1.0\sin(wt-\beta z) a_x V/m$. show that the average power CO2 6 Marks crossing a circular disc of radius 15.5m in a z = constant plane is 1W.

& & &