Herbst 15 Themennummer 1 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $A:\mathbb{R}\to\mathbb{R}^{n\times n}$ eine stetige, matrixwertige Funktion. Betrachten Sie die zugehörige Differentialgleichung

$$\dot{x} = A(t)x. \tag{1}$$

- a) Es seien $x_1(t), \ldots, x_n(t), t \in \mathbb{R}$ Lösungen von (1). Ferner seien für ein $t_0 \in \mathbb{R}$ die Vektoren $x_1(t_0), \ldots, x_n(t_0)$ im \mathbb{R}^n linear unabhängig. Zeigen Sie, dass dann für alle $t_1 \in \mathbb{R}$ die Vektoren $x_1(t_1), \ldots, x_n(t_1)$ linear unabhängig sind. Hinweis: Benutzen Sie das Superpositionsprinzip für lineare homogene Differentialgleichungen oder benutzen Sie die Differentialgleichung für Wronski-Determinanten.
- b) Erklären Sie die Begriffe Fundamentalmatrix und Übergangsmatrix (auch Transitionsmatrix oder Hauptfundamentalmatrix genannt). Wie erhält man aus (a) eine Fundamentalmatrix und wie lässt sich die Lösung von (1) mit Anfangswert $x(t_0) = x_0 \in \mathbb{R}^n, t_0 \in \mathbb{R}$, mithilfe der Übergangsmatrix ausdrücken?
- c) Zeigen Sie: Sind $\Phi_1(t), \Phi_2(t), t \in \mathbb{R}$, Fundamentalmatrizen, so existiert eine Matrix $C \in \mathbb{R}^{n \times n}$ mit

$$\Phi_1(t) = \Phi_2(t)C, t \in \mathbb{R}.$$

Lösungsvorschlag:

- a) Seien $\lambda_i \in \mathbb{R}$ mit $\sum_{i=1}^n \lambda_i x_i(t_1) = 0$, dann ist die Funktion $x : \mathbb{R} \ni t \mapsto \sum_{i=1}^n \lambda_i x_i(t)$ eine Lösung der Differentialgleichung zur Anfangsbedingung $x(t_1) = 0$ und demnach bereits die Nullfunktion, weil Lösungen für lineare Differentialgleichungen stets eindeutig bestimmt und global existent sind. Daraus folgt insbesondere $0 = x(t_0) = \sum_{i=1}^n \lambda_i x_i(t_0)$. Weil $x_1(t_0), \dots, x_n(t_0)$ linear unabhängig sein sollen, folgt $\lambda_i = 0$ für $1 \le i \le n$ und demnach sind auch die Vektoren $x_1(t_1), \dots, x_n(t_1)$ linear unabhängig.
- b) Eine Fundamentalsystem ist ein System von n linear unabhängigen Lösungen $x_1(t), \ldots, x_n(t)$ der Differentialgleichung (1). Schreibt man diese Funktionen als Spalten in eine Matrix so erhält man eine invertierbare $(n \times n)$ -Matrix, die man als Fundamentalmatrix bezeichnet. Sind $x_1(t), \ldots, x_n(t)$ Lösungen und gibt es ein $t_0 \in \mathbb{R}$, sodass die Vektoren $x_1(t_0), \ldots, x_n(t_0)$
 - linear unabhängig sind, so bilden die Lösungen ein Fundamentalsystem und durch Eintragung in eine Matrix erhält man eine Fundamentalmatrix.

 Die Standardbasis e_1, \ldots, e_n definiert n linear unabhängige Vektoren im \mathbb{R}^n . Für $t_0 \in$
 - Bezeichnet man diejenige Fundamentalmatrix, deren *i*-te Spalte die Lösung der Differentialgleichung (1) zur Anfangsbedingung $x(0) = e_i$ ist, als Übergangsmatrix. Ist $\Phi(t)$ die Übergangsmatrix zur Startzeit, so lautet die Lösung des angegebene Problems $x(t) = \Phi(t t_0)x_0$.
- c) Seien $\Phi_1(t), \Phi_2(t)$ Fundamentalmatrizen, dann sind die Matrizen invertierbar und die Funktionen $t \mapsto \Phi_1(t)\Phi(t_0)^{-1}x_0$ und $t \mapsto \Phi_2(t)\Phi_2(t_0)^{-1}x_0$ sind Lösungen von (1) zur Anfangsbedingung $x(t_0) = x_0$, wobei $t_0 \in \mathbb{R}, x_0 \in \mathbb{R}^n$ fest aber beliebig gewählt

sind. Mit der Eindeutigkeit der Lösungen folgt die Gleichheit der beiden Ausdrücke für alle $t \in \mathbb{R}$. Wir wählen jetzt $t_0 = 0$ und $x_0 = (\Phi_1(t_0))_i$, also die *i*-te Spalte der Matrix, dann ist $\Phi_1(t)\Phi(0)^{-1}x_0 = (\Phi_1(t))_i$ und daher $\Phi_2(t)\Phi_2(t_0)^{-1}x_0 = (\Phi_1(t))_i$. Wählt man nun die Matrix M deren *i*-te Spalte gerade $(\Phi_1(t))_i$ ist, so folgt mit $C = \Phi_2(t_0)^{-1}M$ die Aussage.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$