2. Der natürliche Logarithmus

Bisher haben wir Potenzgleichungen gelöst. Zum Beispiel $x^2=4$

Wie lösen wir aber $e^x = 7$?(Exponentialgleichung)

Die Lösung dieser Gleichung wird als Logarithmus von 7 zur Basis e bezeichnet.

Kurz geschrieben: $\log_e(7)$

Den Logarithmus zur Basis e bezeichnet man als **natürlicher Logarithmus** und schreibt kurz: $\ln(7)$

Es gilt somit: $e^{\ln 7} = 7$

Zeichnerische Lösung

```
In [20]: import numpy as np
         import matplotlib.pyplot as plt
         from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatt
         # Defintionsmenge und Funktion
         a= -5.1 # untere x-Intervallgrenze
         b= 5.1 # obere x-Intervallgrenze
         c = -1.1# untere y-Intervallgrenze
         d = 10.1 # obere y-Intervallgrenze
         x = np.linspace(a, b, 1000)
         y1=0*x+7
         y2=np.exp(x)
         # Einstellung des Graphen
         fig=plt.figure(figsize=(8,8))
         ax = fig.add subplot(1,1,1, aspect =1)
         # Definiton der Haupteinheiten, reele Zahlen ohne die 0
         def major_tick(x, pos):
             if x==0:
                 return ""
             return int(x)
         # Achsenskalierung
         ax.xaxis.set_major_locator(MultipleLocator(1))
         ax.xaxis.set_minor_locator(AutoMinorLocator(2))
         ax.yaxis.set_major_locator(MultipleLocator(1))
         ax.yaxis.set_minor_locator(AutoMinorLocator(2))
         ax.xaxis.set_major_formatter(FuncFormatter(major_tick))
         ax.yaxis.set_major_formatter(FuncFormatter(major_tick))
         # Position der Achsen im Schaubild
```

```
ax.spines[['top','right']].set_visible(False)
ax.spines[['bottom','left']].set_position('zero')
# Pfeile für die Achsen
ax.plot((1),(0), ls="", marker= ">", ms=7, color="k", transform=ax.get_yaxis
ax.plot((0),(1), ls="", marker= "^", ms=7, color="k", transform=ax.get_xaxis
# Achsenlänge und Beschriftung
ax.set xlim(a,b)
ax.set_ylim(c, d)
ax.set_xlabel("x", loc="right")
ax.set_ylabel("f(x)", loc="top", rotation=0)
# Kästchen
ax.grid(linestyle="-", which="major", linewidth=0.7, zorder=-10)
ax.grid(linestyle="-", which="minor", linewidth=0.5, zorder=-10)
# Plot der Funktion
ax.plot(x,y1, zorder=10)
ax.plot(x,y2)
#plt.show()
```

Out[20]: [<matplotlib.lines.Line2D at 0x137ed5490>]

$$ln(7) \approx 1,9$$

oder anders aufgeschrieben:

$$e^{1,9} \approx 7$$

Definition:

Für eine positive Zahl b heißt die Lösung x der Exponentialgleichung e x = b der natürliche Logarithmus von b. Man schreibt x = ln(b) Es gilt:

Für eine reelle Zahl b>0 is $x=\ln(b)$ heißt die Lösung der **Exponentialgleichung** $e^x=b$ natürlicher Logarithmus von b

Für $b \in \mathbb{R}^+$ und $c \in \mathbb{R}$ gilt:

$$e^{\ln(b)} = b ext{ und } \ln(e^c) = c$$

Rechnerische Lösung

$$e^x=7 \quad |ln() \ ln(e^x)=ln(7) \ x=ln(7) \ xpprox 1,945910$$

In [21]: np.log(7)

Out[21]: 1.9459101490553132

Logarithmengesetze

Satz: Seien $u>0, u\in\mathbb{R}$ und $v>0, v\in\mathbb{R}$ reele Zahlen.

Es gilt:

$$egin{aligned} &\ln(u\cdot v) = \ln(u) + \ln(v) \ &\ln\left(rac{u}{v}
ight) = \ln(u) - ln(v) \ &\ln\left(u^k
ight) = k\cdot \ln(u) \end{aligned}$$

Lösung allgemeiner Exponentialgleichungen

Problem: Wie lassen sich allgemeine Exponentialgleichungen lösen?

Beipsiel:

$$5^{x} = 2$$

Herleitung:

Sei
$$a>0, a\in\mathbb{R}\setminus\{1\}$$

$$a^x = b \ \Leftrightarrow \quad \ln(a^x) = \ln(b) \ \Leftrightarrow \quad x \cdot \ln(a) = \ln(b) \ \Leftrightarrow \quad x = \frac{\ln(b)}{\ln(a)}$$

Zum Beispiel:

$$5^x=2$$
 $\Leftrightarrow \quad x=\log_5(2)=rac{\ln(2)}{\ln(5)}$ $xpprox 0,43068$

In [22]: np.log(2)/np.log(5)

Out[22]: 0.43067655807339306

Beliebige Exponenatialfunktion als natürliche Exponentialfunktion

Sei
$$f(x)=a^x$$
, mit $a>0, a\in\mathbb{R}$

\$\$

$$f(x) = a^{x}$$

$$= \left(e^{\ln(a)}\right)^{x}$$

$$= e^{\ln(a) \cdot x}$$

$$Pot. Gesetz$$

Potenzgesetze

Satz: Seien $u>0, u\in\mathbb{R}$ und $v>0, v\in\mathbb{R}$ reele Zahlen.

Es gilt:

$$a^r \cdot a^s = a^{r+s}$$
 $rac{a^r}{a^s} = a^{r-s}$ $(a^r)^s = a^{r \cdot s}$