练习5.1

1. 求下列矩阵的特征值和特征向量:

$$\begin{pmatrix}
-1 & 1 & 0 \\
-4 & 3 & 0 \\
1 & 0 & 2
\end{pmatrix} \qquad (3) \quad
\begin{pmatrix}
-2 & 1 & 1 \\
0 & 2 & 0 \\
-4 & 1 & 3
\end{pmatrix}$$

解 (2)矩阵的特征多项式为:

$$\begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda - 1)^2,$$

故特征值为 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 1$.

当 $\lambda_1 = 2$ 时,解 $(\lambda E - A)x = 0$,

$$\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得特征向量为 $k_1(0,0,1)^T$, $k_1 \neq 0$ 为任意实数.

当 $\lambda_2 = \lambda_3 = 1$ 时,解 $(\lambda \pmb{E} - \pmb{A}) \pmb{x} = \pmb{0}$,

$$\begin{pmatrix} 2 & -1 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix},$$

得特征向量为 $k_2(-1,-2,1)^{T}$, $k_2 \neq 0$ 为任意实数.

(3)矩阵的特征多项式为:

$$\begin{vmatrix} \lambda + 2 & -1 & -1 \\ 0 & \lambda - 2 & 0 \\ 4 & -1 & \lambda - 3 \end{vmatrix} = (\lambda + 1)(\lambda - 2)^2,$$

故特征值为 $\lambda_2 = \lambda_3 = 2$, $\lambda_1 = -1$.

当
$$\lambda_1 = -1$$
时,解 $(\lambda E - A)x = 0$,

$$\begin{pmatrix}
1 & -1 & -1 \\
0 & -3 & 0 \\
4 & -1 & -4
\end{pmatrix}
\xrightarrow{r}
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix},$$

得特征向量为 $k_3(1,0,1)^{\mathrm{T}}$, k_3 不为 0.

当
$$\lambda_2 = \lambda_3 = 2$$
 时,解 $(\lambda \pmb{E} - \pmb{A}) \pmb{x} = \pmb{0}$,

$$\begin{pmatrix} 4 & -1 & -1 \\ 0 & 0 & 0 \\ 4 & -1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 4 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得特征向量为 $k_1(1,4,0)^{\mathrm{T}}+k_2(1,0,4)^{\mathrm{T}}$, k_1,k_2 不同时为 0.

2. 设方阵 \boldsymbol{A} 的特征值 $\lambda_1 \neq \lambda_2$,对应的特征向量分别为 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$,证明:

- (1) $\boldsymbol{\xi}_1 \boldsymbol{\xi}_2$ 不是 \boldsymbol{A} 的特征向量;
- (2) $\xi_1, \xi_1 \xi_2$ 线性无关.
- \overline{u} (1) (反证法) 若 $\xi_1 \xi_2$ 是 A 的特征向量,它所对应的特征值为 λ ,则由定义有:

$$A(\xi_1 - \xi_2) = \lambda(\xi_1 - \xi_2)$$
.

由已知又有 $A(\xi_1 - \xi_2) = A\xi_1 - A\xi_2 = \lambda_1 \xi_1 - \lambda_2 \xi_2$.

两式相减得 $(\lambda - \lambda_1)\xi_1 + (\lambda - \lambda_2)\xi_2 = 0$.

由 $\lambda_1 \neq \lambda_2$,知 $\lambda - \lambda_1$, $\lambda - \lambda_2$ 不全为 0,于是 ξ_1, ξ_2 线性相关,这与不同特征值的特征向量线性无关相矛 盾. 所以, $\xi_1 - \xi_2$ 不是A的特征向量.

(2) 设存在 k_1, k_2 , 使得 $k_1 \boldsymbol{\xi}_1 + k_2 (\boldsymbol{\xi}_1 - \boldsymbol{\xi}_2) = \boldsymbol{0}$, 则有

$$k_1, k_2$$
,使得 $k_1 \xi_1 + k_2 (\xi_1 - \xi_2) = \mathbf{0}$,则有
$$\mathbf{A} \left(k_1 \xi_1 + k_2 (\xi_1 - \xi_2) \right) = \mathbf{A} (k_1 + k_2) \xi_1 - \mathbf{A} (k_2 \xi_2) = (k_1 + k_2) \lambda_1 \xi_1 - k_2 \lambda_2 \xi_2 = \mathbf{0}$$
, ξ ,故 $(k_1 + k_2) \lambda_1 = \mathbf{0}$, $k_2 \lambda_2 = \mathbf{0}$.

因 ξ_1, ξ_2 线性无关,故 $(k_1 + k_2)\lambda_1 = 0$, $k_2\lambda_2 = 0$.

因 $\lambda_1 \neq \lambda_2$,故两者中至少有一个不为零. 若 $\lambda_2 \neq 0$,则 $k_2 = 0$,从而由 $k_1 \xi_1 + k_2 (\xi_1 - \xi_2) = 0$ 且 $\xi_1 \neq 0$ 知 $k_1=0$. 若 $\lambda_1 \neq 0$,则 $k_1+k_2=0$,代入 $k_1 {m \xi}_1 + k_2 ({m \xi}_1 - {m \xi}_2) = {m o}$ 得 $k_2 {m \xi}_2 = {m o}$,从而得 $k_2=0$ 进而知 $k_1=0$. 故 $k_1 = 0$, $k_2 = 0$. $\xi_1, \xi_1 - \xi_2$ 线性无关.

 \mathbf{L} 设 \mathbf{A} 的特征值为 λ ,对应的特征向量为 \mathbf{x} ,则 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$,从而有

$$(A^2 - 3A + 2E)x = (\lambda^2 - 3\lambda + 2)x = 0$$
,

因特征向量x不为零向量,故 $\lambda^2 - 3\lambda + 2 = 0$,从而A的特征值只能取1或2.

4. 已知 $\mathbf{A} = \begin{bmatrix} a & 1 & b \\ 2 & 3 & 4 \\ -1 & 1 & -1 \end{bmatrix}$ 的特征值之和是 3,特征值之积为 -24,求 a,b.

解 由特征值的性质,有 $|\mathbf{A}| = -24$,a+3-1=3,又 $|\mathbf{A}| = -7a+5b-2$,可得a=1,b=-3.

5. 已知n阶方阵 \mathbf{A} 的特征值为 $2,4,\cdots,2n$,求行列式 $|\mathbf{A}-3\mathbf{E}|$ 的值.

依题设,若 λ 为A的特征值,则 $\lambda-3$ 为A-3E的特征值,从而A-3E的特征值有: $-1,1,3,5,\cdots,2n-3$, 故

$$|\mathbf{A} - 3\mathbf{E}| = (-1) \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n - 3) = -(2n - 3)!!$$

6. 已知 $\mathbf{A} = (a_{ii})_{4\times 4}$,且 $\lambda = 1$ 是 \mathbf{A} 的二重特征值, $\lambda = -2$ 是 \mathbf{A} 的单特征值,求 \mathbf{A} 的特征多项式.

因 ${m A}$ 为 4 阶方阵,故可设第 4 个特征值为 ${m \lambda}_4$,则有 $1+1-2+{m \lambda}_4=\sum_{i=1}^4 a_{ii}$,得 ${m \lambda}_4=\sum_{i=1}^4 a_{ii}$,故 ${m A}$

的特征多项式为:

$$\left|\lambda \pmb{E} - \pmb{A}\right| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)(\lambda - \lambda_4) = (\lambda - 1)^2(\lambda + 2) \left(\lambda - \sum_{i=1}^4 a_{ii}\right).$$

7. 设 3 阶方阵 A 的特征值为 1,-1,2 , 试求:

- (1) \mathbf{A}^{-1} , \mathbf{A}^* 的特征值; (2) $\left| \mathbf{A}^2 2\mathbf{E} \right|$, $\left| \mathbf{A}^{-1} 2\mathbf{A}^* \right|$ 的值.
- 解 设 λ 为 $m{A}$ 的特征值. 依题设,有 $|m{A}|=1\cdot(-1)\cdot 2=-2$,从而
- (1) $\frac{1}{\lambda}$ 为 \boldsymbol{A}^{-1} 的特征值,即为 $1,-1,\frac{1}{2}$; $\boldsymbol{A}^* = |\boldsymbol{A}| \boldsymbol{A}^{-1}$, 从而 $\frac{|\boldsymbol{A}|}{\lambda}$ 为 \boldsymbol{A}^* 的特征值,即为 -2,2,-1.
- (2) $\lambda^2 2$ 为 $\boldsymbol{A}^2 2\boldsymbol{E}$ 的特征值,从而 -1, -1, 2 为 $\boldsymbol{A}^2 2\boldsymbol{E}$ 的特征值,得

$$|\mathbf{A}^2 - 2\mathbf{E}| = (-1) \cdot (-1) \cdot 2 = 2;$$

 $(1-2|\mathbf{A}|)\cdot\frac{1}{\lambda}$ 为 $\mathbf{A}^{-1}-2\mathbf{A}^*$ 的特征值,即 $5,-5,\frac{5}{2}$,从而有:

$$|\mathbf{A}^{-1} - 2\mathbf{A}^*| = 5 \cdot (-5) \cdot \frac{5}{2} = -\frac{125}{2}.$$

- **8.** 证明 n 阶矩阵 A 是奇异矩阵的充分必要条件是 A 有一个特征值为零.
 - 证 若A是奇异矩阵,即|A|=0,从而 $|0\cdot E-A|=0$,即0为A的一个特征值.

反之,若 0 为 A 的一个特征值,则存在非零向量 x 为其特征向量,即 Ax=0x,从而 Ax=0 有非零解,得 |A|=0,故 A 是奇异矩阵.

- 9. 判断下列命题是否正确:
- (1) 方阵 A 的任一特征值一定存在无穷多个特征向量;
- (2) 由于方阵 \mathbf{A} 和 \mathbf{A}^{T} 有相同的特征值,故它们也有相同的特征向量;
- (3) 若n 阶方阵 \mathbf{A} 的n 个特征值全为0,则 $\mathbf{A} = \mathbf{O}$;
- (4) 若 3 阶矩阵 \boldsymbol{A} 的特征值为 $\boldsymbol{0}$, ± 1 , 则 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系仅一个向量.

解 (1) 正确. 若 x 是特征值 λ 对应的特征向量,即 $Ax = \lambda x$,则 $A(kx) = \lambda(kx)$,故 kx ($k \neq 0$)也是特征值 λ 对应的特征向量.

(2)错误. 虽然 $|\lambda E - A| = |\lambda E - A^{T}|$, 但无法由 $Ax = \lambda x$ 推导出 $A^{T}x = \lambda x$, 故该结论不一定成立,

可以通过举例说明该命题错误,如: $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 是 $\lambda = 1$ 对应的特征向量,但 $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 不是

$$A^{\mathrm{T}} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
的 $\lambda = 1$ 对应的特征向量.

- (3)错误. 仅能得到 $|\mathbf{A}| = 0$,无法得到 $\mathbf{A} = \mathbf{O}$. 例如: $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- (4) 正确. 由题设可得 $R(\mathbf{A}) = 2$, 故 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的基础解系仅一个向量.