Notater til forelesning 9 – Prissamarbeid og kartell

Samarbeid eller avvik?

Etterspørsel: P = 150 - Q Marginalkostnader: c = 30

	Samarbeid	Avvik
Samarbeid	1800, 1800	0,3600
Avvik	3600,0	0,0

Bertrand modell

Ved avoil vil den bedritter som velger à avoile betjeine hele marhedit alere og oppnà monopolprotitt Ved samarbeid vil bedriftere dele monopolprofetter.

$$Q^{M} = \frac{A - c}{2} = \frac{150 - 30}{a} = 60$$

$$P^{M} = \frac{A + c}{a} = \frac{150 + 30}{a} = 90$$

$$\Pi^{M} = (90 - 30) \cdot 60 = 3600$$

Nash like vent LAvvik Avvik)

Samarbeid eller avvik?

Etterspørsel: P = A - BQ Marginalkostnader = c

	Samarbeid	Avvik
Samarbeid	1800,1800	1350,2025
Avvik	2025 (135 0	1600, 1600

Cournot modell

$$9^{c} = \frac{A-c}{3B} = \frac{150-30}{3} = 40$$
 $7^{c} = \frac{A+2c}{3} = \frac{150+2\cdot30}{3} = 70$
 $3 = 70$
 $3 = 70$

Tilpasning noir bedrit a velger à avoive fra Samarbeid

Bedrifte | produseror
$$\frac{Q^N}{2} = 30$$

Bedrift a: $Rf_2 = 0$ $\frac{2}{3} = 60 - \frac{30}{3} = 45$
 $P^1 = 150 - 30 - 45 = 75$
 $T_1 = (75 - 30) 30 = 1350$
 $T_2 = (75 - 30) 45 = 2025$

Nash likevelet (Avrik, Avvik)

Når vil det lønne seg med samarbeid?

Nåverdien av samarbeid > nåverdien ved avvik

Cournot
$$\frac{\pi^{M}}{1-pR} > \pi^{D} + \frac{pR\pi^{N}}{1-pR}$$
modele
$$\frac{1800}{1-pR} > 2025 + \frac{pR \cdot 1600}{1-pR}$$

$$PR = \frac{9}{17} \approx 0.529$$

$$P=1 \implies R = \frac{1}{1+r} > 0.529$$

 $\implies r < 0.89$

$$P = 0.6 = 0$$
 0.6R > 0.529
 $R = \frac{1}{1+r} > 0.882$
 $r < 0.134$

Når vil det lønne seg med samarbeid?

Nåverdien av samarbeid > nåverdien ved avvik

$$\frac{\pi^{M}}{1 - pR} > \pi^{D} + \frac{pR\pi^{N}}{1 - pR}$$
 =D $\frac{1800}{1 - pR}$ 3600

Individuelt rasjonelt å opprettholde samarbeid dersom: $pR > \frac{\pi^D - \pi^M}{\pi^D - \pi^N}$

Bertrand-modell:
$$PR > \frac{3600 - 1800}{3600 - 0} = 0.5$$

$$P=1 \implies R = \frac{1}{1+r} > 0.5$$