Pumping-Lemma

Zeigen oder widerlegen Sie: Die folgenden Sprachen über dem Alphabet $\Sigma = \{a,b,c\}$ sind regulär. 1

$$L_1 = \{ww | w \in \{a, b\}\}$$

Angenommen L_1 sei regulär, dann müsste L_1 die Bedingungen der stärkeren Variante des Pumping-Lemmas erfüllen.

Beweis durch Widerspruch:

Sei $j \in \mathbb{N}$ die Konstante aus dem Pumping-Lemma und $\omega = a^j b a^j b$ ein Wort aus L_1 ($|\omega| > j$ gilt offensichtlich).

Dann müsste ω nach dem Pumping-Lemma zerlegbar sein in $\omega=uvw$ mit $|v|\geq 1$ und |uv|< j. uv kann wegen |uv|< j kein b enthalten und liegt komplett im ersten a^j . Also:

$$a^{j}ba^{j}b = uvw$$
 mit $u = a^{x}$, $v = a^{y}$, $w = a^{n-x-y}ba^{j}b(n \ge x + y, x > 0)$

Dann gilt

$$uv^0w = a^xa^{j-x-y}ba^jb = a^{j-y}ba^jb \notin L_1$$

Wir haben gezeigt, dass es keine gültige Zerlegung für ω gibt. Also gilt für L_1 die stärkere Variante des Pumping-Lemmas nicht. Somit kann L_1 nicht regulär sein.

 $^{^{1}} https://userpages.uni-koblenz.de/~dpeuter/teaching/17ss_gti/blatt04_loesung.pdf$