

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

AGENDA

01	Logistic Regression: Formulation
02	Logistic Regression: Learning
03	Logistic Regression: Interpretation
04	Classification Performance Evaluation
05	R Exercise

- Estimating the coefficients
 - ✓ Assume that we have two different logistic models, each of which makes the predictions for the same dataset as below, which model is better?

Model A Model B

Glass	Label	P(Y=I)	P(Y=0)
I	I	0.908	0.092
2	0	0.201	0.799
3	I	0.708	0.292
4	0	0.214	0.786
5		0.955	0.045
6	0	0.017	0.983
7	I	0.807	0.193
8	0	0.126	0.874
9	Ī	0.937	0.063
10	0	0.068	0.932

Glass	Label	P(Y=I)	P(Y=0)
I	I	0.557	0.443
2	0	0.425	0.575
3	l	0.604	0.396
4	0	0.387	0.613
5		0.615	0.385
6	0	0.356	0.644
7	I	0.406	0.594
8	0	0.508	0.492
9	Ī	0.704	0.296
10	0	0.325	0.675

✓ Model A is better than Model B because Model A generates higher probabilities for

the actual labels

- Estimating the coefficients
 - ✓ Likelihood function
 - Likelihood for an individual object is <u>its predicted</u>
 <u>probability being classified as the correct class</u>
 - Likelihood of Glass 1 is 0.908
 - Likelihood of Glass 2 is 0.799
 - If the objects are assumed to be generated independently, the likelihood of the entire dataset is the product of every object's likelihood
 - Generally the likelihood of a dataset is very small (values between 0 and 1 are compounded), loglikelihood is commonly used

Model A

Glass	Label	P(Y=I)	P(Y=0)	
I		0.908	0.092	
2	0	0.201	0.799	
3	I	0.708	0.292	
4	0	0.214	0.786	
5	I	0.955	0.045	
6	0	0.017	0.983	
7	I	0.807	0.193	
8	0	0.126	0.874	
9	I	0.937	0.063	
10	0	0.068	0.932	

- Estimating the coefficients
 - ✓ Likelihood function

Model A

Glass	Label	P(Y=I)	P(Y=0)	우도	로그 우도
I	I	0.908	0.092	0.908	-0.0965
2	0	0.201	0.799	0.799	-0.2244
3	I	0.708	0.292	0.708	-0.3453
4	0	0.214	0.786	0.786	-0.2408
5	l	0.955	0.045	0.955	-0.0460
6	0	0.017	0.983	0.983	-0.0171
7	l	0.807	0.193	0.807	-0.2144
8	0	0.126	0.874	0.874	-0.1347
9	I	0.937	0.063	0.937	-0.0651
10	0	0.068	0.932	0.932	-0.0704
				0.233446	-0.1455

Model B

Glass	Label	P(Y=I)	P(Y=0)	우도	로그 우도
I	I	0.557	0.443	0.557	-0.5852
2	0	0.425	0.575	0.575	-0.5534
3	I	0.604	0.396	0.604	-0.5042
4	0	0.387	0.613	0.613	-0.4894
5	I	0.615	0.385	0.615	-0.4861
6	0	0.356	0.644	0.644	-0.4401
7		0.406	0.594	0.406	-0.9014
8	0	0.508	0.492	0.492	-0.7093
9		0.704	0.296	0.704	-0.3510
10	0	0.325	0.675	0.675	-0.3930
				0.004458	-0.5413

- √ Model A's (log) likelihood is greater than that of Model B
- ✓ Model A can explain the dataset better than Model A

- Maximum likelihood estimation (MLE)
 - ✓ Find the coefficients that maximizes the likelihood of the dataset
 - ✓ Likelihood of the object i

$$P(\mathbf{x}_i, y_i | \boldsymbol{\beta}) = \begin{cases} \sigma(\mathbf{x}_i | \boldsymbol{\beta}), & if \ y_i = 1\\ 1 - \sigma(\mathbf{x}_i | \boldsymbol{\beta}), & if \ y_i = 0 \end{cases}$$

 \checkmark Since the y_i is either 0 or 1, we can rewrite the above probability as follows:

$$P(\mathbf{x}_i, y_i | \boldsymbol{\beta}) = \sigma(\mathbf{x}_i | \boldsymbol{\beta})^{y_i} (1 - \sigma(\mathbf{x}_i | \boldsymbol{\beta}))^{1 - y_i}$$

- Maximum likelihood estimation (MLE)
 - ✓ Assume that the objects are independently generated, the likelihood of the entire dataset is expressed as follows:

$$L(\mathbf{X}, \mathbf{y}|\boldsymbol{\beta}) = \prod_{i=1}^{N} P(\mathbf{x}_i, y_i|\boldsymbol{\beta}) = \prod_{i=1}^{N} \sigma(\mathbf{x}_i|\boldsymbol{\beta})^{y_i} (1 - \sigma(\mathbf{x}_i|\boldsymbol{\beta}))^{1-y_i}$$

✓ Take a log for the both sides,

$$logL(\mathbf{X}, \mathbf{y}|\boldsymbol{\beta}) = \sum_{i=1}^{N} y_i \sigma(\mathbf{x}_i|\boldsymbol{\beta}) + (1 - y_i)(1 - \sigma(\mathbf{x}_i|\boldsymbol{\beta}))$$

- \checkmark (Log) likelihood is non-linear with β , there is no explicit solution as in MLR
 - Find the solution with an optimization algorithm such as Gradient Descent

• Gradient Descent

Gradient Descent

- Gradient Descent Algorithm
 - ✓ Blue line: the objective function to be minimized
 - ✓ Black circle: the current solution
 - ✓ Direction of the arrows: the direction that the current solution should move to improve the quality of solution

Gradient Descent Algorithm

- Take the first derivative of the cost function w.r.t the current weight w
 - ✓ Is the gradient 0?
 - Yes: Current weights are the optimum! → end of learning
 - No: Current weights can be improved → learn more
 - ✓ How can we improve the current weights if the gradient is not 0?
 - Move the current weight toward to the opposite direction of the gradient
 - ✓ How much should the weights be moved?
 - Not sure
 - Move them a little and compute the gradient again
 - It will converge

- Theoretical Background (Optional)
 - √ Taylor expansion

$$f(w + \Delta w) = f(w) + \frac{f'(w)}{1!} \Delta w + \frac{f''(w)}{2!} (\Delta w)^2 + \cdots$$

✓ If the first derivative is not zero, we can decrease the function value by moving x toward the opposite direction of its first derivative

$$w_{new} = w_{old} - \alpha f'(w), \text{ where } 0 < \alpha < 1.$$

How far should we move?

 \checkmark Then the function value of the new x is always smaller than that of the old x

$$f(w_{new}) = f(w_{old} - \alpha f'(w_{old})) \cong f(w_{old}) - \alpha |f'(w)|^2 < f(w_{old})$$

• Illustrative example

Gradient descent with two input variables

$$h = \sum_{i=0}^{2} w_i x_i$$

$$y = \frac{1}{1 + exp(-h)}$$

- Let's define the squared loss function for simplicity $L=\frac{1}{2}(t-y)^2$
- How to find the gradient w.r.t. w or x?

Use chain rule

$$\frac{\partial L}{\partial y} = y - t$$

$$\frac{\partial y}{\partial h} = \frac{exp(-h)}{(1 + exp(-h))^2} = \frac{1}{1 + exp(-h)} \cdot \frac{exp(-h)}{1 + exp(-h)} = y(1 - y)$$

$$\frac{\partial h}{\partial w_i} = x_i$$

Gradients for w and x

$$\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w_i} = (y - t) \cdot y(1 - y) \cdot x_i$$

Update w

$$w_{new} = w_{old} - \alpha \times \frac{L}{\partial w_i} = w_{old} - \alpha \times (y - t) \cdot y(1 - y) \cdot x_i$$

Weight update by Gradient Descent

$$w_i^{new} = w_i^{old} - \alpha \times (y - t) \cdot 1 \cdot h(1 - h) \cdot x_i$$

Update the coefficient more if the current output y is very different from the target t

Update the coefficients more if the value of corresponding input variable is large

• The Effect of learning rate lpha

학습률 설정:	=	0.20	
한 단계 실행:	단계 22		
그래프 재설정:	재설정		

Logistic Regression: Prediction

Success probability

√ When a set of predictors (independent variables) are given, we can estimate the
probability of the success.

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d)}}$$

For Classification Task

- In real cases...
 - √ The probability may follow a certain type of curve rather than a straight line.

Logistic Regression: Cut-off

• Determine the cut-off for the binary classification

- ✓ 0.50 is popular initial choice
- ✓ Additional considerations: max. classification accuracy, max. sensitivity (subject to min. level of specificity), min. false positives (subject to max. false negative rate), min. expected cost of misclassification (need to specify costs)

