Paradigmas de Programación Correspondencia de Curry-Howard

2do cuatrimestre de 2024
Departamento de Computación
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Sistema de tipos para el cálculo Lambda

```
Reglas de tipado
    \Gamma \vdash \mathsf{true} : \mathsf{bool}^{\mathsf{T-TRUE}}
                                                                                                         -T-FALSE

        Γ ⊢ false : bool

    \Gamma \vdash M: bool \Gamma \vdash N : \tau \quad \Gamma \vdash P : \tau
                \Gamma \vdash \text{if } M \text{ then } N \text{ else } P : \tau
                                                            \frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x : \tau \cdot M : \tau \to \sigma}T-ABS
    \overline{\Gamma, x : \tau \vdash x : \tau}T-VAR
    \Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau
                     \Gamma \vdash MN : \tau
```

Sistema de tipos para el cálculo Lambda

Deducción natural

- Ignoremos los términos del lambda cálculo
- Notar que las reglas de tipado se corresponden con reglas de deducción natural:

Correspondencia de Curry

Observación realizada sobre la lógica combinatoria:

Lógica combinatoria

Variante del cálculo lambda que sustituye a las abstracciones por un conjunto limitado de combinadores.

▶ Curry & Feys observaron que si se lee el tipo $\sigma \to \tau$ como una implicación $\sigma \Rightarrow \tau$, luego

la regla de tipado de la aplicación de una función es la regla **modus ponens**

Pruebas y Programas

```
Proposiciones \leftrightarrow Tipos
Pruebas \leftrightarrow Términos
```

Un juicio $\vdash \tau$ es derivable sí y sólo sí el tipo τ está habitado, esto es, existe un término M tal que $\vdash M$: σ es derivable.

Ejemplo

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

Si, por ejemplo:

$$\frac{\overline{\sigma \vdash \sigma}^{\mathsf{ax}}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i}$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{x : \sigma \vdash x : \sigma}^{\text{T-VAR}}}{\vdash \lambda x : \sigma.x : \sigma \to \sigma}^{\text{T-ABS}}$$

El **término** $\lambda x : \sigma.x$ se asocia con la **prueba** de $\sigma \Rightarrow \sigma$ que se muestra en la parte superior

Ejemplo

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\overline{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}^{\mathsf{ax}}}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\overline{\sigma \vdash \sigma}^{\mathsf{ax}}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i}$$

$$\vdash \sigma \Rightarrow \sigma$$

Corresponde al siguiente juicio de tipado:

$$\frac{\frac{}{x:\sigma \to \sigma \vdash x:\sigma \to \sigma}^{\text{T-VAR}}}{\vdash \lambda x:\sigma \to \sigma.x:(\sigma \to \sigma) \to \sigma \to \sigma}^{\text{T-ABS}} \quad \frac{\frac{}{y:\sigma \vdash y:\sigma}^{\text{T-VAR}}}{\vdash \lambda y:\sigma.y:\sigma \to \sigma}^{\text{T-ABS}}}{\vdash (\lambda x:\sigma \to \sigma.x)(\lambda y:\sigma.y):\sigma \to \sigma}^{\text{T-APP}}$$

El **término** $(\lambda x : \sigma \to \sigma.x)(\lambda y : \sigma.y)$ se asocia con la **prueba** que se muestra en la parte superior.

Ejemplo

; Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\frac{\overline{\sigma \vdash \sigma} ax}{\sigma \vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \quad \overline{\sigma \vdash \sigma} ax}{\frac{\sigma \vdash \sigma}{\vdash \sigma \Rightarrow \sigma}} \Rightarrow_{e} = \frac{\overline{\sigma} \vdash \sigma}{} \Rightarrow_{e} = \frac{\overline{\sigma} \vdash$$

$$\frac{\overline{x : \sigma, y : \sigma \vdash y : \sigma}^{\text{T-VAR}}}{x : \sigma \vdash \lambda y : \sigma . y : \sigma \to \sigma}^{\text{T-VAR}} \xrightarrow{x : \sigma \vdash x : \sigma}^{\text{T-VAR}} \xrightarrow{\text{T-APP}}$$

 $\vdash \lambda x : \sigma.(\lambda y : \sigma.y)x : \sigma \to \sigma$

El **término** $\lambda x : \sigma.(\lambda y : \sigma.y)x$ se asocia con la **prueba** que se muestra en la parte superior.

Pruebas vs términos

- Una fórmula puede tener muchas pruebas distintas.
- Distintas pruebas corresponden a distintos juicios de tipado, es decir distintos términos.
- Notar que algunas pruebas de la misma proposición son mas complejas que otras:

Correspondencia de Curry-Howard

- William Alvin Howard extiende la correspondencia:
 - Tratando los restantes conectivos lógicos.
 - Usando el cálculo lambda en lugar de la lógica combinatoria.
 - Mostrando una correspondencia entre la simplificación de pruebas y la computación.

Simplificación de pruebas

Corte (Cut)

Un corte es una afirmación intermedia (un lema) que probamos a pesar de que no es una subfórmula de la afirmación final (el teorema)

σ es un corte

Caracterizado por el uso de \Rightarrow_i seguido por \Rightarrow_e

Simplificación de pruebas

Eliminación de Corte (Cut)

Reescribir una prueba de manera tal que no tenga cortes:

▶ Eliminamos σ reemplazando cada uso σ en la prueba de ρ por una copia de la prueba de σ .

$$\frac{\frac{\vdots}{\Gamma, \sigma \vdash \rho}}{\frac{\Gamma \vdash \sigma \Rightarrow \rho}{\Gamma \vdash \rho}} \Rightarrow_{i} \frac{\vdots}{\Gamma \vdash \sigma} \Rightarrow_{e}$$

Eliminación de corte : Ejemplo

Eliminación de corte
$$\frac{\begin{cases} }{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma} ax \\ \hline{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \\ \vdash \sigma \Rightarrow \sigma \end{cases} \xrightarrow{\sigma \vdash \sigma} ax \end{cases} \Psi$$

$$\frac{}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \xrightarrow{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \\ \vdash \sigma \Rightarrow \sigma \Rightarrow_{e} \xrightarrow{} \Rightarrow_{e}$$

Computación como simplificación de pruebas

Eliminación de corte y reducción β

Un paso de reducción β (esto es, aplicar $\operatorname{E-APPABS})$ se corresponde con una eliminación de corte.

$$\frac{\vdots}{\Gamma, \sigma \vdash M : \rho} \qquad \qquad \vdots \qquad \qquad \frac{\vdots}{\Gamma \vdash N : \sigma} \\
\frac{\Gamma \vdash \lambda x : \sigma . M : \sigma \to \rho}{\Gamma \vdash (\lambda x : \sigma . M) N : \rho} \qquad \qquad \frac{\Gamma \vdash N : \sigma}{\Gamma \vdash M \{x := N\} : \rho}$$

Normalización

Forma normal

Una prueba está en forma normal si no posee cortes.

Theorem (Normalización de pruebas)

Toda prueba puede ser "normalizada" mediante la eliminación sucesiva de cortes.

Conjunción

Extendemos la sintaxis

$$\sigma, \tau, \dots ::= \dots \mid \sigma \times \tau$$

 $M, N, \dots ::= \dots \mid \langle M, N \rangle \mid \text{fst } M \mid \text{snd } N$

$$\frac{\Gamma \vdash \sigma \quad \Gamma \vdash \tau}{\sigma \vdash \sigma \land \tau} \land_{i}$$

$$\frac{\Gamma \vdash \sigma \land \tau}{\Gamma \vdash \sigma} \land_{e_{1}} \frac{\Gamma \vdash \sigma \land \tau}{\Gamma \vdash \tau} \land_{e_{2}}$$

Producto

Extendemos la sintaxis

$$\begin{array}{lll} \sigma, \tau, \ldots & ::= \ldots \mid \sigma \times \tau \\ M, N, \ldots & ::= \ldots \mid \langle M, N \rangle \mid \text{fst } M \mid \text{snd } N \end{array}$$

$$\frac{\Gamma \vdash M : \sigma \qquad \Gamma \vdash N : \tau}{\sigma \vdash \langle M, N \rangle : \sigma \times \tau}$$

$$\frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \mathsf{fst} \ M : \sigma} \qquad \frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \mathsf{snd} \ M : \tau}$$

Conjunción : Corte

Conjunción: Eliminación de corte

Producto: Reducción

$$\begin{array}{c|c} \vdots & \vdots \\ \hline {\Gamma \vdash M : \sigma} & \overline{\Gamma \vdash N : \tau} \\ \hline {\Gamma \vdash \langle M, N \rangle : \sigma \times \tau} \\ \hline {\Gamma \vdash \operatorname{fst} \langle M, N \rangle : \sigma} \\ \hline \vdots & \vdots \\ \hline {\Gamma \vdash M : \sigma} & \overline{\Gamma \vdash N : \tau} \\ \hline {\Gamma \vdash \langle M, N \rangle : \sigma \times \tau} \\ \hline {\Gamma \vdash \operatorname{snd} \langle M, N \rangle : \tau} \\ \hline \end{array} \rightarrow \begin{array}{c} \vdots \\ \hline {\Gamma \vdash N : \tau} \\ \hline \end{array}$$

Disjunción

Extendemos la sintaxis

$$\begin{array}{lll} \sigma, \tau, \dots & ::= & \dots & \mid \sigma + \tau \\ M, N, P, \dots & ::= & \dots & \mid \mathsf{left}^\sigma \; M \mid \mathsf{right}^\sigma \; M \\ & \mid \mathsf{case} \; M \; \mathsf{with} \{\mathsf{left} \; x \to N, \mathsf{right} \; x \to P\} \end{array}$$

Suma

Extendemos la sintaxis

```
\begin{array}{lll} \sigma, \tau, \dots & & ::= & \dots & \mid \sigma + \tau \\ M, N, P, \dots & ::= & \dots & \mid \mathsf{left}^\sigma \; M \mid \mathsf{right}^\sigma \; M \\ & & \mid \mathsf{case} \; M \; \mathsf{with} \{\mathsf{left} \; x \to N, \mathsf{right} \; x \to P\} \end{array}
```

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \mathsf{left}^{\tau} \; M : \sigma + \tau} \qquad \frac{\Gamma \vdash M : \tau}{\Gamma \vdash \mathsf{right}^{\sigma} \; M : \sigma + \tau}$$

$$\frac{\Gamma \vdash M : \sigma + \tau \qquad \Gamma, x : \sigma \vdash M : \rho \qquad \Gamma, x : \sigma \vdash N : \rho}{\Gamma \vdash \mathsf{case} \; M \; \mathsf{with} \{\mathsf{left} \; x \to N, \mathsf{right} \; x \to P\} : \rho}$$

Disjunción : Corte

```
\forall_{i_1} seguido de \forall_e es un corte
\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \mathsf{left}^{\tau} \ M : \sigma + \tau} \lor_{i_1} \qquad \frac{\Gamma, x : \sigma \vdash N : \rho}{\Gamma, x : \tau \vdash P : \rho} \lor_{e}
            \Gamma \vdash \mathsf{case} \; \mathsf{left}^{\tau} \; M \; \mathsf{with} \{ \mathsf{left} \; x \to N, \; \mathsf{right} \; x \to P \} : \rho
                                                                                                                                              \bigvee_{i_2} seguido de \bigvee_e es un corte
\frac{\Gamma \vdash \mathsf{right}^{\sigma} \ M : \sigma + \tau}{\Gamma \vdash \mathsf{right}^{\sigma} \ M : \sigma + \tau} \vee_{i_{2}} \qquad \frac{\Gamma, x : \sigma \vdash N : \rho}{\Gamma, x : \tau \vdash P : \rho} \vee_{e}
             \Gamma \vdash \mathsf{case} \ \mathsf{right}^{\tau} \ M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} : \rho
```

Suma: Reducción (1)

```
 \begin{array}{c|cccc} \overline{\Gamma \vdash M : \sigma} & \vdots & \vdots \\ \hline \overline{\Gamma \vdash \mathsf{left}^{\tau} \ M : \sigma + \tau}^{\bigvee_{i_1}} & \overline{\Gamma, x : \sigma \vdash N : \rho} & \overline{\Gamma, x : \tau \vdash P : \rho} \\ \hline \Gamma \vdash \mathsf{case} \ \mathsf{left}^{\tau} \ M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} : \rho \end{array} \\ \vee_e 
                                                                                                                                                                                                                                                                                                              \Gamma \vdash N\{x := M\} : \rho
```

Suma: Reducción (2)

```
\frac{\overline{\Gamma \vdash M : \tau}}{\Gamma \vdash \mathsf{right}^{\sigma} \ M : \sigma + \tau} \bigvee_{i_2} \quad \frac{\vdots}{\Gamma, x : \sigma \vdash N : \rho} \quad \frac{\vdots}{\Gamma, x : \tau \vdash P : \rho} \bigvee_{e}
             \Gamma \vdash \mathsf{case} \; \mathsf{right}^{\tau} \; M \; \mathsf{with} \{\mathsf{left} \; x \to N, \mathsf{right} \; x \to P\} : \rho
                                                                                                                                                                            \Gamma \vdash M : \sigma
                                                                                                                                                              \Gamma \vdash P\{x := M\} : \rho
```

Absurdo

Extendemos la sintaxis

$$\sigma, \tau, \dots$$
 ::= ... | \bot
 M, N, P, \dots ::= ... | case M with $\{\}$

$$\frac{\Gamma \vdash \qquad \bot}{\Gamma \vdash \qquad \qquad \sigma} \bot_{e}$$

Absurdo

Extendemos la sintaxis

```
\sigma, \tau, \dots ::= ... | \bot

M, N, P, \dots ::= ... | case M with\{\}
```

```
\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case}\ M\ \mathsf{with}\{\} : \sigma} \bot_{\mathsf{e}}
```

- ▶ Notar que no hay constructores para el tipo \bot .
- ► El tipo ⊥ (Void) es el tipo vacío.
- Se puede definir como un tipo de dato algebraico sin constructores.

Correspondencia de Curry-Howard

Theorem (Correspondencia de Curry-Howard)

 $A_1, \ldots, A_n \vdash \sigma$ es derivable en NJ ssi existe un término M donde $fv(M) \subseteq \{x_1, \ldots, x_n\}$ tal que $x_1 : A_1, \ldots, x_n : A_n \vdash M : \sigma$.

Consistencia de la lógica

La relación entre reducción y pruebas permite concluir que la lógica es consistente.

Corollary

 $\forall \perp$ (en NJ).

Se obtiene a partir del siguiente razonamiento:

- ▶ Debe existir M, tal que $\vdash M : \bot$.
- Por terminación y preservación de tipos, debería existir un valor V, tal que ⊢ V : ⊥. Por analisis de casos en los posibles valores, se puede concluir que no existe.

Sobre la negación

La negación se puede codificar como:

$$\neg \sigma \equiv \sigma \rightarrow \bot$$

- Notar que la regla:
 - ightharpoonup \neg_i corresponde $a \Rightarrow_i$
 - ightharpoonup \neg_e corresponde $a \Rightarrow_e$
- De esta manera no hay necesidad de extender al sistema de tipos

Tipo Unit

- Se puede considerar que la lógica está extendida con la fórmula ⊤ (fórmula válida).
- Se considera NJ extendido con la siguiente regla:

$$\overline{\Gamma \vdash \top}^{\top_i}$$

► En el cálculo lambda extendemos la sintaxis con el tipo ⊤ que tiene un único elemento.

$$\sigma, \tau, \dots$$
 ::= ... | \top M, N, P, \dots ::= ... | \top

▶ Una única regla de tipado (que se corresponde con \top_i)

$$\overline{\Gamma \vdash \top : \top}^{\text{T-UNIT}}$$

ightharpoonup El tipo op es un tipo algebraico con un único constructor op.

Sobre los booleanos

Los ignoramos porque se pueden codificar.

Booleanos como sumas

```
\begin{aligned} \mathsf{Bool} &\equiv \top + \top \\ \mathsf{true} &\equiv \mathsf{left}^\top \\ \mathsf{false} &\equiv \mathsf{right}^\top \\ \mathsf{if} \ \mathit{M} \ \mathsf{then} \ \mathit{N} \ \mathsf{else} \ \mathit{P} &\equiv \mathsf{case} \ \mathit{M} \ \mathsf{with} \{ \mathsf{left}^\top \ \_ \to \mathit{N}, \mathsf{right}^\top \ \_ \to \mathit{P} \} \end{aligned}
```

 Existen codificaciones en el fragmento implicativo (booleanos de Church)

Recursión

Extendemos la sintaxis con un nuevo operador

$$M ::= \dots \mid \text{fix } M$$

No se precisan nuevos tipos pero sí una regla de tipado.

$$\frac{\Gamma \vdash M : \sigma \to \sigma}{\Gamma \vdash \mathsf{fix} \ M : \sigma} \mathsf{T\text{-}FIX}$$

Semántica operacional small-step

No hay valores nuevos pero sí reglas de evaluación nuevas.

$$\frac{M \to M'}{\text{fix } M \to \text{fix } M'} \text{E-FIX}$$

$$\overline{\text{fix } (\lambda x : \sigma.M)} \rightarrow M\{x := \text{fix } (\lambda x : \sigma.M)\}$$
 E-FIXBETA

Ejemplos

```
Sea M el término
```

```
\lambda f: \mathsf{nat} \to \mathsf{nat}.

\lambda x: \mathsf{nat}.

if \mathsf{iszero}(x) then \underline{1} else x * f(\mathsf{pred}(x))
```

en

fix $M \underline{3}$

Ejemplos

Ahora podemos definir funciones parciales:

fix
$$(\lambda x : \sigma.x)$$

- Notar que \vdash fix $(\lambda x : \sigma.x) : \sigma$ para cualquier σ .
- ▶ En particular, vale para $\sigma = \bot$.
- \blacktriangleright En consecuencia, si se extiende NJ con un operador fix , la lógica sería inconsistente ($\vdash \bot$ sería derivable)