Lecture 6

Comparisons of Several Mean Vectors

DSA 8070 Multivariate Analysis September 26 - September 30, 2022

> Whitney Huang Clemson University

Notes			

Agenda

- Comparisons of Two Mean Vectors
- 2 Multivariate Analysis of Variance

Notes			

Motivating Example: Swiss Bank Notes (Source: PSU stat 505)

Suppose there are two distinct populations for 1000 franc Swiss Bank Notes:

- The first population is the population of Genuine Bank Notes
- The second population is the population of Counterfeit Bank Notes

For both populations the following measurements were taken:

- Length of the note
- Width of the Left-Hand side of the note
- Width of the Right-Hand side of the note
- Width of the Bottom Margin
- Width of the Top Margin
- Diagonal Length of Printed Area

We want to determine if counterfeit notes can be distinguished from the genuine Swiss bank notes

Comparisons of Several Mean Vectors
CLEMS N
Comparisons of Two Mean Vectors

Notes			

Review: Two Sample t-Test

Suppose we have data from a single variable from population 1: $X_{11}, X_{12}, \cdots, X_{1n_1}$ and population 2: $X_{21}, X_{22}, \cdots, X_{2n_2}.$ Here we would like to draw inference about their population means μ_1 and μ_2 .

Assumptions:

- Homoskedasticity: The data from both populations have common variance σ^2
- Independence: The subjects from both populations are independently sampled. Also $\{X_{1i}\}_{i=1}^{n_1}$ and $\{X_{2j}\}_{j=1}^{n_2}$ are independent to each other
- Normality: The data from both populations are normally distributed (not that crucial for "large" sample)

Here we are going to consider testing $H_0: \mu_1 = \mu_2$ against $H_a: \mu_1 \neq \mu_2$

Notes			

Review: Two Sample t-Test

We define the sample means for each population using the following expression:

$$\bar{x}_1 = \frac{\sum_{j=1}^{n_1} x_{1j}}{n_1}, \quad \bar{x}_2 = \frac{\sum_{j=1}^{n_2} x_{2j}}{n_2}.$$

We denote the sample variance
$$s_1^2 = \frac{\sum_{j=1}^{n_1} (x_{1j} - \bar{x}_1)^2}{n_1 - 1}, \quad s_2^2 = \frac{\sum_{j=1}^{n_2} (x_{2j} - \bar{x}_2)^2}{n_2 - 1}.$$

Under the homoskedasticity assumption, we can "pool" two samples to get the pooled sample variance

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \stackrel{H_0}{\sim} t_{n_1 + n_2 - 2}$$

We can use this result to construct confidence intervals and to perform hypothesis tests

Notes			

The Two Sample Problem: The Multivariate Case

Now we would like to use two independent samples $\{X_{11}, \cdots X_{12}, \cdots X_{1n_1}\}$ and $\{X_{21}, \cdots X_{22}, \cdots X_{2n_2}\}$, where

$$m{X}_{ij} = egin{bmatrix} X_{ij1} \ X_{ij2} \ dots \ X_{ijp} \end{bmatrix}$$

to infer the relationship between μ_1 and μ_2 , where

$$\boldsymbol{\mu}_i = \begin{bmatrix} \mu_{i1} \\ \mu_{i2} \\ \vdots \\ \mu_{in} \end{bmatrix}$$

Assumptions

- Both populations have common covariance matrix, i.e., $\Sigma_1 = \Sigma_2$
- Independence: The subjects from both populations are independently sampled
- Normality: Both populations are normally distributed

comparisons of Several Mean Vectors	Notes		
omparisons of vo Mean Vectors			

The Multivariate Two-Sample Problem

Here we are testing

$$H_0:egin{bmatrix} \mu_{11} \ \mu_{12} \ \vdots \ \mu_{1p} \end{bmatrix} = egin{bmatrix} \mu_{21} \ \mu_{22} \ \vdots \ \mu_{2p} \end{bmatrix}, \quad H_a:\mu_{1k}
eq \mu_{2k} ext{ for at least one } k \in \{1,2,\dots,p\} \ ext{Variance},p\}$$

Under the common covariance assumption we have

$$S_p = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2},$$

where

$$S_i = \frac{1}{n_i - 1} \sum_{i=1}^{n_i} (x_{ij} - \bar{x}_i)(x_{ij} - \bar{x}_i)^T, \quad i = 1, 2$$

Sen (p,p)

The Two-Sample Hotelling's T-Square Test Statistic

The two-sample t test is equivalent to

$$t^2 = (\bar{x}_1 - \bar{x}_2)^T \left[s_p^2 (\frac{1}{n_2} + \frac{1}{n_2}) \right]^{-1} (\bar{x}_1 - \bar{x}_2).$$

Under $H_0,\,t^2\sim F_{1,n_1+n_2-2}.$ We can use this result to perform a hypothesis test

We can extend this to the multivariate situation:

$$T^2 = (\bar{x}_1 - \bar{x}_2)^T \left[S_p \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right]^{-1} (\bar{x}_1 - \bar{x}_2)$$

Under H_0 , we have

$$F = \frac{n_1 + n_2 - p - 1}{p(n_1 + n_2 - 2)} T^2 \sim F_{p, n_1 + n_2 - p - 1}$$

We can use this result to perform inferences for multivariate cases

Comparisons of Several Mean Vectors

CLEMS#N

Comparisons of Two Mean Vectors

Multivariate

...

Notes

Notes

Two-Sample Test for Swiss Bank Notes

> (xbar1 <- colMeans(dat[real, -1]))
V2 V3 V4 V5 V6 V7
214.969 129.943 129.720 8.305 10.168 141.517
<pre>> (xbar2 <- colMeans(dat[fake, -1]))</pre>
V2 V3 V4 V5 V6 V7
214.823 130.300 130.193 10.530 11.133 139.450
<pre>> Sigma1 <- cov(dat[real, -1])</pre>
<pre>> Sigma2 <- cov(dat[fake, -1])</pre>
> n1 <- length(real); n2 <- length(fake); p <- dim(dat[, -1])[2]
> Sp <- ((n1 - 1) * Sigma1 + (n2 - 1) *Sigma2) / (n1 + n2 - 2)
> # Test statistic
> T.squared <- as.numeric(t(xbar1 - xbar2) %*% solve(Sp * (1 / n1 + 1
/ n2)) %*% (xbar1 - xbar2))
> Fobs $<-$ T.squared * ((n1 + n2 - p - 1) / ((n1 + n2 - 2) * p))
> # p-value
> pf(Fobs, p, n1 + n2 - p - 1, lower.tail = F)
[1] 3.378887e-105

Conclusion

The counterfeit notes can be distinguished from the genuine notes on at least one of the measurements \Rightarrow which ones?

Several Mean Vectors	
CLEMS N	
Comparisons of	

Comparisons of Two Mean Vectors
Multivariate

Notes			

Simultaneous Confidence Intervals

 $\bar{x}_{1k} - \bar{x}_{2k} \pm \sqrt{\frac{p(n_1 + n_2 - 2)}{n_1 + n_2 - p - 1}} F_{p,n_1 + n_2 - p - 1,\alpha} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{k,p}^2},$

where $s_{k,p}^2$ is the pooled variance for the variable \boldsymbol{k}

Variable	95% CI
Length of the note	(-0.04, 0.34)
Width of the Left-Hand note	(-0.52, -0.20)
Width of the Right-Hand note	(-0.64, -0.30)
Width of the Bottom Margin	(-2.70, -1.75)
Width of the Top Margin	(-1.30, -0.63)
Diagonal Length of Printed Area	(1.81, 2.33)

Comparisons of Two Mean Vectors

Multivariate

6.10

Checking Model Assumptions

Assumptions:

• Homoskedasticity: The data from both populations have common covariance matrix Σ

Will return to this in next slide

• Independence:

This assumption may be violated if we have clustered, time-series, or spatial data

Normality:

Multivariate QQplot, univariate histograms, bivariate scatter plots

Notes

Notes

6 11

Testing for Equality of Mean Vectors when $\Sigma_1 \neq \Sigma_2$

- \bullet Bartlett's test can be used to test if $\Sigma_1=\Sigma_2$ but this test is sensitive to departures from normality
- As as crude rule of thumb: if $s_{1,k}^2>4s_{2,k}^2$ or $s_{2,k}^2>4s_{1,k}^2$ for some $k\in\{1,2,\cdots,p\}$, then it is likely that $\mathbf{\Sigma}_1\neq\mathbf{\Sigma}_2$
- Life gets difficult if we cannot assume that $\Sigma_1 = \Sigma_2$ However, if both n_1 and n_2 are "large", we can use the following approximation to conduct inferences:

$$T^2 = (\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2)^T \left[\frac{1}{n_1} \boldsymbol{S}_1 + \frac{1}{n_2} \boldsymbol{S}_2 \right]^{-1} (\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2) \overset{H_0}{\sim} \chi_p^2$$

Several Mean Vectors
CLEMS N
Comparisons of Two Mean Vectors

Notes			

Comparing More Than Two Populations: Romano-British Pottery Example (source: PSU stat 505)

- Pottery shards are collected from four sites in the British Isles:
 - Llanedyrn (L)
 - Caldicot (C)
 - Isle Thorns (I)
 - Ashley Rails (A)
- The concentrations of five different chemicals were be used
 - ullet Aluminum (Al)
 - Iron (Fe)
 - $\bullet \ \, \mathsf{Magnesium} \,\, (Mg)$
 - Calcium (Ca)
 - $\bullet \; \operatorname{Sodium} \; (Na)$
- Objective: to determine whether the chemical content of the pottery depends on the site where the pottery was obtained

Notes

Review: Analysis of Variance (ANOVA)

 $\begin{array}{l} \bullet \ \, H_0: \mu_1 = \mu_2 = \cdots = \mu_g \\ H_a: \text{At least one mean is different} \end{array}$

- • Test Statistic: $F^* = \frac{\text{MSTr}}{\text{MSE}}$. Under H_0 , $F^* \sim F_{df_1=g-1, df_2=N-g}$
- Assumptions:
 - The distribution of each group is normal with equal variance (i.e. $\sigma_1^2=\sigma_2^2=\cdots=\sigma_g^2$)
 - Responses for a given group are independent to each other

Notes

...

One-way Multivariate Analysis of Variance (One-way MANOVA)

Source: PSU stat 505

- **Notation:** Y_{ij} is the vector of variables for subject j in group i; n_i is the sample size in group i; $N = n_1 + n_2 + \cdots + n_g$ the total sample size
- Assumptions: 1) common covariance matrix Σ; 2)
 Independence; 3) Normality

Comparisons of Several Mean Vectors
CLEMS N
Multivariate Analysis of Variance

Notes			

Test Statistics for MANOVA

• We are interested in testing the null hypothesis that the group mean vectors are all equal

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \cdots = \boldsymbol{\mu}_q.$$

The alternative hypothesis:

 $H_a: \mu_{ik}
eq \mu_{jk}$ for at least one $i \neq j$ and at least one variable k

- Mean vectors:
 - Sample Mean Vector: $\bar{\boldsymbol{y}}_{i.} = \frac{1}{n_i} \boldsymbol{Y}_{ij}, \quad i = 1, \cdots, g$
 - Grand Mean Vector: $\bar{y}_{..} = \frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_i} Y_{ij}$
- Total Sum of Squares:

$$T = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - \bar{y}_{..})(Y_{ij} - \bar{y}_{..})^T$$

Notes

-			

MANOVA Decomposition and MANOVA Table

$$\begin{split} T &= \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \boldsymbol{y}_{..}) (Y_{ij} - \bar{\boldsymbol{y}})^T \\ &= \sum_{i=1}^g \sum_{j=1}^{n_i} \left[(Y_{ij} - \bar{\boldsymbol{y}}_{i.}) + (\bar{\boldsymbol{y}}_{i.} - \bar{\boldsymbol{y}}_{..}) \right] \left[(Y_{ij} - \bar{\boldsymbol{y}}_{i.}) + (\bar{\boldsymbol{y}}_{i.} - \bar{\boldsymbol{y}}_{..}) \right]^T \\ &= \underbrace{\sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{\boldsymbol{y}}_{i.}) (Y_{ij} - \bar{\boldsymbol{y}}_{i.})^T}_{E} + \underbrace{\sum_{i=1}^g n_i (\bar{\boldsymbol{y}}_{i.} - \bar{\boldsymbol{y}}_{..}) (\bar{\boldsymbol{y}}_{i.} - \bar{\boldsymbol{y}}_{..})^T}_{H} \end{split}$$

MANOVA Table

Source df SS Treatment g-1 \boldsymbol{H} Error Total

Reject $H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \dots = \boldsymbol{\mu}_g$ if the matrix \boldsymbol{H} is "large" relative to the matrix $oldsymbol{E}$

Test Statistics for MANOVA

There are several different test statistics for conducting the hypothesis test:

Wilks Lambda

$$\Lambda^* = \frac{|\boldsymbol{E}|}{|\boldsymbol{H} + \boldsymbol{E}|}$$

Reject H_0 if Λ^* is "small"

Hotelling-Lawley Trace

$$T_0^2 = \operatorname{trace}(\boldsymbol{H}\boldsymbol{E}^{-1})$$

Reject H_0 if T_0^2 is "large"

Pillai Trace

$$V = \operatorname{trace}(\boldsymbol{H}(\boldsymbol{H} + \boldsymbol{E})^{-1})$$

Reject H_0 if V is "large"

Notes

Notes

Romano-British Pottery Example

Notes			
Notes			
Notes			
_		 	