

PHD STUDENT IN COMPUTER ARCHITECTUR

© (+1) 917 691-5910 | ■ axelf@csail.mit.edu | ★ feldmann.nyc

Academic/Research _____

Massachusetts Institute of Technology - CSAIL

Cambridge, MA

2019-

PhD in Computer Science - Computer Architecture

- Advisor: Prof. Daniel Sanchez
- Working on F1, a flexible hardware accelerator for Fully Homomorphic Encryption (FHE)
 Worked on designing the system architecture
 Developed scheduling algorithms for mapping FHE computations onto F1's hardware
 - Evaluated F1 on a variety of benchmarks showing gmean 5, $400 \times$ speedups over CPU-based FHE implementations
- GPA 5.0/5.0

Carnegie Mellon University - School of Computer Science

Pittsburgh, PA

2015-2019

B.Sc. IN COMPUTER SCIENCE

Research: worked on Livia, a system architecture for data centric computing throughout the memory hierarchy
Worked in Prof. Nathan Beckmann's group
Developed zsim based simulation infrastructure to evaluate our proposed architecture
Designed Livia's hardware-software interface

- Served as a teaching assistant for Operating Systems (15-410) and Introduction to Computer Systems (15-213)
- GPA 3.9/4.00

Industry Experience _____

NVIDIA Santa Clara, CA

SOFTWARE ENGINEERING INTERN

Summer 2018

- Worked on improving kernel display drivers for Tegra SoCs
- Optimized the drivers for new SoC architectures
- Reduced kernel test time by 30% via improved thread synchronization

Yahoo – Flurry Analytics Sunnyvale, CA

SOFTWARE ENGINEERING INTERN

Summer 2017

- Created webapp to help users design metrics API queries
- Re-engineered User Acquisition Analysis (UAA) features on the Flurry data platform

Publications _

- [1] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. Livia: Data-centric computing throughout the memory hierarchy. In *Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems*, 2020.
- [2] Axel Feldmann*, Nikola Samardzic*, Aleksandar Krastev, Srini Devadas, Ron Dreslinski, Chris Peikert, and Daniel Sanchez. F1: A fast and programmable accelerator for fully homomorphic encryption. In 2021 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2021.
- \ast authors contributed equally

Relevant Skills _____

Programming C++, C, Python, Rust, Java, x86/64 assembly

Tools Unix, Intel Pin, PyTorch, LLVM