

Varianta 87

Subjectul I.

$$\mathbf{a)} \quad \left| \sqrt{2} + \sqrt{3}i \right| = \sqrt{5} \ .$$

b)
$$\frac{5\sqrt{14}}{7}$$
.

- c) Ecuația tangentei căutate este x+2y-6=0.
- **d**) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.

e)
$$V_{ABCD} = \frac{1}{3}$$
.

f)
$$a = \frac{23}{41}$$
, $b = \frac{2}{41}$.

Subjectul II.

1

a)
$$a_{20} = 2^{19}$$
.

- **b**) Probabilitatea căutată este $p = \frac{2}{5}$.
- c) g(0)+g(-31)=-3.
- **d**) $x \in \{-2, 2\}.$

e)
$$x_1^2 + x_2^2 + x_3^2 = 2$$
.

2.

a)
$$f'(x) = \cos x - \sin x$$
, $x \in \mathbb{R}$.

b)
$$\int_{0}^{\pi} f(x) dx = (-\cos x + \sin x) \Big|_{0}^{\pi} = 2$$
.

c)
$$f''(x) < 0$$
, $\forall x \in \left(0, \frac{\pi}{2}\right)$, deci f este concavă pe $\left(0, \frac{\pi}{2}\right)$.

d)
$$\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = \cos 1 - \sin 1$$
.

e)
$$\int_{0}^{1} \frac{x^2}{x^3 + 1} dx = \frac{1}{3} \cdot \ln 2$$
.

Subjectul III.

a)
$$\det(A)=1$$
.

- **b**) rang (A) = 2.
- c) Calcul direct.

d)
$$\det(A) = 1 \neq 0$$
, deci A este inversabilă și $A^{-1} = \begin{pmatrix} -1 & -3 \\ 1 & 2 \end{pmatrix}$.

e) " \supseteq " Considerăm $M \in J(A)$, $M = aA + bI_2$, cu $a, b \in \mathbb{Q}$ şi polinomul $g \in \mathbb{Q}[X], g(X) = aX + b$. Avem că g(A) = M, deci $M \in I(A)$.

 \subseteq "Considerăm $M \in I(A)$, deci există $g \in \mathbb{Q}[X]$ astfel încât g(A) = M.

Din teorema împărțirii cu rest, există și sunt unice $q \in \mathbb{Q}[X]$ și $a, b \in \mathbb{Q}$ astfel încât $g = (X^2 - X + 1) \cdot q + aX + b$. Obtinem $M = g(A) = aA + b \cdot I_2 \in J(A)$

- f) Se demonstrează prin reducere la absurd.
- **g**) Observăm că pentru $a, b \in \mathbf{Q}$, avem $aA + bI_2 = O_2 \iff a = b = 0$.

Se consideră $M \in J(A)$, $M = aA + bI_2$, cu $a, b \in \mathbb{Q}$, astfel ca $M \neq O_2$, deci astfel ca $a \neq 0$ sau $b \neq 0$ și se demonstrează că există $N \in J(A)$, $N = cA + dI_2$, cu $c, d \in \mathbf{Q}$, astfel încât $c \neq 0$ sau $d \neq 0$ și $MN = NM = I_2$.

Subjectul IV.

a)
$$f(0)=1$$
 și $F(0)=0$.

- **b**) Funcția $F: \mathbf{R} \to \mathbf{R}$, $F(x) = \int f(t) dt$ este primitiva funcției f pentru care
- F(0) = 0. Rezultă că $F'(x) = f(x), \forall x \in \mathbf{R}$.
- c) $F'(x) = e^{-x^2} > 0$, $\forall x \in \mathbf{R}$, deci F este strict crescătoare pe \mathbf{R} .
- **d**) Evident, tinând cont de semnul functiei F''.
- e) Considerăm funcția $g: \mathbf{R} \to \mathbf{R}$, $g(x) = e^x x 1$, derivabilă pe \mathbf{R} , cu $g'(x) = e^x - 1$. Avem $g'(x) \ge 0 \iff x \in [0, \infty)$.

Rezultă că x = 0 este un punct de minim global pentru g.

Aşadar $g(x) \ge g(0) = 0$, $\forall x \in \mathbf{R}$, rezultând inegalitatea cerută.

f) Din **e**) obținem că
$$\forall x \in \mathbf{R}$$
, $f(x) = e^{-x^2} = \frac{1}{e^{x^2}} \le \frac{1}{x^2 + 1}$, $\forall x \in \mathbf{R}$.

g) Deoarece F este strict crescătoare pe $(0, \infty)$, există $\lim F(x)$.

Considerăm
$$x > 1$$
. $F(x) = \int_0^1 f(t) dt + \int_1^x f(t) dt = \alpha + \int_1^x f(t) dt$.

Din **f**) avem că
$$f(t) \le \frac{1}{t^2 + 1}, \forall t \in \mathbf{R}$$
 (1)

Se integrează (1) pe intervalul [0,1] și pe intervalul [1,x] și se deduce concluzia.