$$D = \{(x_1, y_1), ..., (x_n, y_n)\}$$

$$g(x) = \omega x + \omega. \qquad J(\omega) = SSE = \sum_{i=1}^{n} (\omega x_i + \omega. - y_i)^2$$

$$g(x) = \omega_1 x + \omega_0$$

$$g(x) = \omega_2 x^2 + \omega_1 x + \omega_0$$

$$= = = = =$$

$$f(x) = \sin x \cos x$$

$$g(x) = \omega_1 x + \omega_0$$

$$(\omega | \zeta \theta)$$

$$g(x) = \omega_4 x^4 + \omega_3 x^3 + \omega_2 x^2 + \omega_1 x + \omega_0$$

$$\Phi(X) = \begin{bmatrix} x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix}$$

$$\frac{\phi(x)}{x^2} = \begin{bmatrix} x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix}$$

$$\omega = \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_4 \end{bmatrix}$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

	M = 0	M = 1	$M = \mathbf{B}$	M = 9	
w_0^{\star}	0.19	0.82	0.31	0.35	
w_1^{\star}		-1.27	7.99	232.37	
w_2^{\star}			-25.43	-5321.83	
w_3^{\star}			17.37	48568.31	
w_4^{\star}				-231639.30	
w_5^{\star}				640042.26	-
w_6^{\star}				-1061800.52	6
w_7^{\star}				1042400.18	•
w_8^{\star}				-557682.99	
w_9^{\star}				125201.43	
	•				

10:1<0:

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M=9 polynomial for N=15 data points (left plot) and N=100 data points (right plot). We see that increasing the size of the data set reduces the over-fitting problem.

$$g(x) = \sum_{i=1}^{M} \omega_i x^i$$

$$\underline{J(\omega)} = \sum_{j=1}^{n} (g(x_j) - y_j)^2$$

$$\|\omega\|_2^2 \leq C$$

$$win \int |w| + |w|^2$$

$$\omega^* = ag min J(\omega) + \lambda ||\omega||_2^2$$

ridge regression

regularization term

 $\omega^* = arg min J(u) + \lambda ||u||_{o}$

$$w^* = arg min J(w) + \lambda ||w||_2$$

$$aw^2 + bw + c$$

$$g(x) = \omega_1 x_1 + \omega_2 x_2$$
 $J(\omega)$

$$J(\omega) = \sum_{i=1}^{n} (\omega_{x}^{i} - \lambda_{i}^{i})^{2}$$

min
$$\sum_{i=1}^{n} (\omega^{T}x_{i} - y_{i})^{2} + \sum_{i=1}^{n} ||\omega||_{1}$$

$$U = \int_{T(\omega)}^{\infty} (\omega^{T}x_{i} - y_{i})^{2} + \sum_{i=1}^{n} ||\omega||_{1}$$

LASSO

Figure 1.7 Plots of M=9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error function (1.4) for two values of the regularization parameter λ corresponding to $\ln \lambda = -18$ and $\ln \lambda = 0$. The case of no regularizer, i.e., $\lambda = 0$, corresponding to $\ln \lambda = -\infty$, is shown at the bottom right of Figure 1.4.

Table 1.2 Table of the coefficients \mathbf{w}^{\star} for M=9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

برن زم منظم از

Figure 1.8 Graph of the root-mean-square error (1.3) versus $\ln \lambda$ for the M=9 polynomial.

