Algorytmy numeryczne

Zadanie 3: Grzybobranie

1. Wstęp

Celem zadania była implementacja zadanej gry w grzybobranie, która wymagała przeprowadzenia operacji na macierzach przy użyciu:

- języka C++ i biblioteki Eigen3 wspierającej operacje na macierzach,
- implementacji niezbędnych funkcji w wybranym języku programowania (tu C#).

2. Materialy i metody

Testy zostały przeprowadzone dla dwóch rodzajów danych wejściowych - z kostką symetryczną, o równomiernym rozkładzie prawdopodobieństwa oraz dowolną. Obliczenia generowane w C# zostały zestawione z wynikami generowanymi w C++ Eigen.

3. Wyniki i wnioski

Wyniki obliczeń zostały uśrednione z 5 próbek na każdy rozmiar macierzy. Taka ilość wystarczała, aby zauważyć tendencje zmian.

3.1. Implementacja metod iteracyjnych

Rozmiar macierzy	Wynik Monte Carlo	Wynik Gaussa partial bez optymalizacji	Wynik Gaussa partial z optymalizacją	Wynik Jacobi	Wynik Gauss-Seidel
1624	0,727665	0,727559231817524	0,727559231817524	0,727559231817522	0,727559231817521
3272	0,626816	0,626955397543633	0,626955397543633	0,626955397543631	0,626955397543632

Tabela 1: Zestawienie wyników poszczególnych metod, w tym iteracyjnych, służących do rozwiązywania układów równań liniowych (wykorzystano dane dotycząe przebiegu gry przy kostce symentrycznej).

Wyniki metod porównano z wynikami Monte Carlo; wynik tego porównania implikuje poprawność implementacji metod iteracyjnych. Wynik metody Monte Carlo był obliczany każdorazowo dla miliona próbek.

3.2. Optymalna ilość iteracji, użycie normy wektora

W celu zmienjszenia czasu potrzebnego do uzyskania wyniku metodami iteracyjnymi warto wykorzystać algorytm, który liczy średnią różnicę sum wektora otrzymanego w poprzedniej oraz obecnej iteracji, następnie sprawdza, czy różnica ta jest mniejsza od zadanego ε i jeśli jest, nie pozwala na dalsze iterowanie. [1] Pozwala nam to jednoznacznie ustalić wymaganą ilość iteracji oraz iterować do jej osiągnięcia, co pozwoli nam uniknąć dalszych, zbędnych obliczeń.

3.3. Optymalny dobór metody

Porównanie wyników i czasu działania następujących metod:

- -metoda Gaussa z częściowym wyborem elementu podstawowego,
- -metoda Gaussa z częściowym wyborem elementu podstawowego z optymalizacją dla macierzy rzadkich,
- -metoda iteracyjna Gaussa-Seidela,
- -metoda iteracyjna Jacobiego,
- -metoda z biblioteki Eigen3: partialPivLu, z częściowym wyborem elemntu podstawowego,
- -metoda z biblioteki Eigen3: SparseLU, z częściowym wyborem elementu podstawowego z optymalizacją dla macierzy rzadkich.

3.3.1. Testy przeprowadzone dla kostki symetrycznej

Rozmiar planszy (minimalny - zadany)	llość grzybów	Wartości na kostce
7	4	-4 ,-3, -2, -1, 0, 1, 2, 3, 4
Pozycje graczy	Miejsca występowania grzybów	Prawdopodobieństwo wartości kostki
3, 4	1, 2, 5, 6	1, 1, 1, 1, 1, 1, 1, 1

J.J.Z. IESIV DIZEDIOWAUZUHE UIA KUSIKI UUWUHIA	3.3.2. Testv	przeprowadzone	dla kostki	dowol	lnei
--	---------------------	----------------	------------	-------	------

Rozmiar planszy (minimalny - zadany)	llość grzybów	Wartości na kostce
7	4	3, 4, 5, 2, 7, 9, 1, 8, 6
Pozycje graczy	Miejsca występowania grzybów	Prawdopodobieństwo wartości kostki
3, 4	1, 2, 5, 6	8, 3, 1, 23, 4, 5, 6, 7, 69

Czas potrzebny do uzyskania wyniku

Czas potrzebny do uzyskania wyniku

3.4. Wnioski

Powższe wykresy prezentują ilości iteracji oraz czasy potrzebne do uzyskania wyniku daną metodą. Rozmiar macierzy zależny jest od liości wygenerowanych stanów, co zależy od rozmiaru mapy (7-15 pól) oraz od ilości grzybów (stała, 4).

A. Ilość iteracji

Dla danego typu kostki metoda iteracyjna Gaussa-Siedela potrzebuje około 2 razy mniej iteracji (a co za tym idzie – około dwa razy mniej czasu) w porównaniu z metodą iteracyjną Jacobiego.

Dodatkowo, jak można jednak zauważyć, rozpatrując kostkę dowolną, ilość iteracji potrzebna dla macierzy o danym rozmiarze jest niższa niż ilość iteracji potrzebna do obsługi macierzy tej samej wielkości powstałej przez zadanie kostki symetrycznej.

B. Czas

Funkcja z biblioteki Eigen3, SparseLU charakteryzuje się najkrótyszym czasem działania. Dzieję się tak m.in. dlatego, że jako jedną za składowych dostaje wektor z informacją o ilościach niezerowych wartości w kolumnach macierzy.

C. Dokładność wyniku

We wszystkich metodach wyniki pokrywały się prawie idealnie – błędy pojawiały się na 15 miejscu po przecinku; warto zauważyć, że w metodach iteracyjnych miało to związek z zadanym $\varepsilon = 1,00\text{E}-15$. Wysoka prezycja wyniku jest związana z bardzo małą iloscią wartości niezerowych w macierzach, co zmniejsza ryzyko błędu w precyzji obliczeń.

4. Szczegóły wykonania zadania

Podział obowiązków		
Barzowska Monika	Bienias Jan	
Pobieranie z C# i generowanie wyników w Eigen3	Implementacja Monte Carlo	
Implementacja metod iteracyjnych	Optymalizacja metod iteracyjnych i Gaussa	
Ustalenie algorytmu generacji stanów gry		
Generacja stanów gry		
Testy i generowanie wyników	Generacja układu równań	
Obróbka wyników, wykresy i opracowanie	Napisanie skryptów do generowania wyników	

5. Źródła

[1] http://web.cecs.pdx.edu/~gerry/class/ME448/notes 2012/pdf/stoppingCriteria.pdf