Math 525, Spring 2018. Homework 10 Due: Thursday, April 19, 2018

- (1) a) Show that a homeomorphism $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ extends to a homeomorphism \widetilde{f} of the one-point compactification \mathbb{S}^n . Thus we may define $\deg(f)$ as $\deg(\widetilde{f})$.
 - b) Using this notion, fill in the details of the following argument of R. Fokkink which shows that \mathbb{R}^n is not homeomorphic to a product $X \times X$ if n is odd:
 - Assume $\mathbb{R}^n = X \times X$ consider the homeomorphism f of $\mathbb{R}^n \times \mathbb{R}^n$ that cyclically permutes the factors, $f(x_1, x_2, x_3, x_4) = (x_2, x_3, x_4, x_5)$. On the one hand, since f is a homeomorphism, show that $\deg(f^2) = 1$, on the other hand, since f^2 switches the two factors of $\mathbb{R}^n \times \mathbb{R}^n$ and n is odd, show that f^2 has degree -1.
- (2) Let $\mathbb{S}^n \longrightarrow \mathbb{RP}^n$ be the quotient map, and consider the cell complex structure on \mathbb{S}^n obtained by lifting the cell complex structure on \mathbb{RP}^n (so, e.g., there are two *i*-cells for each $i \leq n$). Compute the resulting cellular chain complex and verify that it has the correct homology groups.
- (3) Hatcher §2.2 exercise 29
- (4) Hatcher §2.2 exercise 34 (removed by Hatcher)
- (5) Hatcher §2.2 exercise 35