Лабораторная работа №9.

Колебания груза, подвешенного на пружине (пружинный маятник).

Цель: исследование колебаний пружинного маятника.

Оборудование: набор грузов; две разных спиральных пружины; штатив; ученическая линейка; секундомер.

Содержание и метод выполнения работы.

Груз, подвешенный на стальной пружине и выведенный из состояния равновесия, совершает под действием силы тяжести и силы упругости пружины гармонические колебания. Период колебаний такого пружинного маятника определяется выражением

$$T_{meop} = 2\pi \sqrt{\frac{m}{k}} ,$$

 Γ де k — жёсткость пружины, m — масса груза.

Чтобы вычислить T_{TEOP} , надо определить жёсткость применяемой пружины и знать массу груза.

Подвесив груз массой m на пружине, следует экспериментально проверить полученный теоретически результат.

Порядок выполнения работы.

- 1. Для определения коэффициента жёсткости пружин 1 и 2 (рис 1.) нужно сначала подвесить одну гирю, чтобы пружина выпрямилась. Отметьте на закреплённой линейке начальное положение груза.
- 2. Подвесьте к пружине ещё два таких же груза и измерьте удлинение Δx пружины, вызванное действием силы $F \approx 2H$. По измеренному

удлинению Δx и известной силе F вычислите жёсткость пружины: $k_1 = F / \Delta x$.

- 3. Таким же способом определите жёсткость второй пружины k₂.
- 4. На основе измеренных k_1 и k_2 , рассчитайте эквивалентные жесткости k_3 и k_4 для систем, изображенных на рисунках 3 и 4.
- 5. Подвесьте к одной из пружин две гири. Определите период колебаний этой колебательной системы (рис 2). $T_1 = t_1/n$, где t_1 время в секундах, n число колебаний . Число колебаний должно быть не менее 30, амплитуда 1-2 см.
- 6. Определите период колебаний T_2 другой пружины с двумя грузами.
- 7. Определите периоды колебаний систем из двух пружин с двумя грузами, изображенных на рисунках 3 и 4.

8. По полученным периодам рассчитайте жесткости k_{19} , k_{29} , k_{39} и k_{49} , сравните эти коэффициенты с полученными в пунктах 1-4.

схема	n	t, c	T, c	т, кг	k₃, Н/м	к, Н/м
$2, k_1$						
$2, k_2$						
3						
4						