Exercise session notes - Week 13

Log-Log convexity + Geometric Programs

First we reviewed the theory behind log- and log-log-convexity.

Definition. A function $f: X \to \mathbb{R}$ is called <u>log-convex</u> if f(x) > 0 and log f is convex. A function $f: X \to \mathbb{R}$ is called **log-concave** if 1/f is log-convex.

Proposition. A function f is log-convex iff f > 0 and

$$f(tx+(1-t)y) \le f(x)^t \cdot f(y)^{1-t} \quad \forall x, y, t$$

Remark.

- If f is log-convex then f is convex
- Sum $f_1 + f_2$, product αf , product $f_1 \cdot f_2$ of log-convex functions are log-convex
- Affine $a^{\top}x + b$ is log-concave
- Powers x^a is log-convex for $a \leq 0$ and log-concave for $a \geq 0$
- Exponentials e^{ax} is log-affine
- Determinant det(X) is log-concave

Definition. A function $f: X \to \mathbb{R}$ is log-log-convex if f > 0 and $\log f(e^{x_1}, \dots, e^{x_n})$ is convex.

Proposition. A function f is log-log-convex iff f > 0 and

$$f\left(x^{t} \circ y^{1-t}\right) \le f(x)^{t} \cdot f(y)^{1-t}$$

where the product and the powers on the left are pointwise, i.e.

$$x^t \circ y^{1-t} = \begin{pmatrix} x_1^t \cdot y_1^{1-t} \\ \vdots \\ x_n^t \cdot y_n^{1-t} \end{pmatrix}$$

Proposition. A function f is log-log-convex iff the log-log epigraph

$$\log \operatorname{epi} f = \{(\log x, \log t) \mid f(x) \le t\}$$

is a convex set.

Remark.

- Posynomials are log-log-convex
- Maximum $\max\{x_i\}$ is log-log-convex
- L_p -Norms are log-log-convex

Convex Optimization Jonathan Schnell

Now we are able to define a Geometric Program. A monomial is a function defined as

$$\mathbf{x} \mapsto c \cdot x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

with c > 0 and $\alpha_i \in \mathbb{R}$. A **posynomial** is a function of the form

$$\mathbf{x} \mapsto \sum_{j} c_j \cdot x_1^{\alpha_1^j} \cdots x_n^{\alpha_n^j}$$

with $c_j > 0$ and $\alpha_i^j \in \mathbb{R}$, so a posynomial is just any sum of monomials. Finally a Geometric program has the form

$$\begin{aligned} & \min & & f(x) \\ & \text{s.t.} & & g_i(x) \leq 1 & & \forall i \\ & & h_j(x) = 1 & & \forall j \end{aligned}$$

where f, g_i are posynomials and h_j are monomials. An important property of GPs is the following

Proposition. Any Geometric Program can be casted into an equivalent convex program by a change of variables.

Exercise 11.2 (Model Wheel Chair Ramp)

Finally we solved together Ex.11.2 (Model Wheel Chair Ramp) from the Exercise Sheet. We formulated the problem as a the following GP.

min
$$C_m w \ell + \frac{C_w}{2} w dh$$

s.t. $5hd^{-1} \le 1$
 $\ell w^{-1} \le 1$
 $d^2 \ell^{-2} + h^2 \ell^{-2} \le 1$
 $h \in [0.15, 1.5]$
 $w \in (0, 1.5]$
 $d \in (0, 1.5]$

Recall that we relaxed the last constraint with the following

Claim. Any optimal solution of (GP) is an optimal solution for the problem (it satisfies the constraint with equality)

Proof of Claim. Assume we have a optimal solution (w, h, d, ℓ) . If $d^2 + h^2 = \ell^2$ then we are done. Otherwise we let

$$\tilde{\ell}^2 := d^2 + h^2 < \ell^2$$

Then $(w, h, d, \tilde{\ell})$ is still a feasible solution with cost

$$C_m w \tilde{\ell} + \frac{C_w}{2} w dh < C_m w \ell + \frac{C_w}{2} w dh$$

Therefore (w, h, d, ℓ) is not optimal. 4

Convex Optimization Jonathan Schnell

Finally we can apply the log-log transformation to the objective and constraints and we obtain the following equivalent convex problem

$$\begin{aligned} & \min & & \log(C_m e^{W+L} + \frac{C_w}{2} e^{W+D+H}) \\ & \text{s.t.} & & \log(5e^{H-D}) \leq 0 \\ & & & \log(e^{L-W}) \leq 0 \\ & & & \log(e^{2D-2L} + e^{2H-2L}) \leq 0 \\ & & & & H \in [\log(0.15), \log(1.5)] \\ & & & W \in (-\infty, \log(1.5)] \\ & & & D \in (-\infty, \log(1.5)] \end{aligned}$$

(Recall that log-sum-exp is a convex function). After that we can return to the original variables by

$$w = e^W, \quad d = e^D, \quad \ell = e^L, \quad h = e^H$$