MATH 6280 Assignment 1
DUE TBD SKOUFRANIS

Question 1. Let μ be a measure on $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ and define the function $F: \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \mu((-\infty, x])$$

for all $x \in \mathbb{R}$. The function F is called the *cumulative distribution function* of μ .

- a) Show that if μ is finite, then F is non-decreasing, right continuous, $\lim_{x\to-\infty} F(x)=0$, and $\lim_{x\to\infty} F(x)=\mu(\mathbb{R})$.
- b) Show that if μ is finite and if μ has no atoms (that is, $\mu(\{x\}) = 0$ for all $x \in \mathbb{R}$), then F is continuous.

Question 2. Let $\mathbb{N} = \{1, 2, 3, ...\}$, let

$$\mathcal{F} = \{\emptyset, \mathbb{N}\} \cup \{\{2k - 1, 2k\} \mid k \in \mathbb{N}\}$$

and define $\ell: \mathcal{F} \to [0, \infty]$ by $\ell(\emptyset) = 0$, $\ell(\{2k - 1, 2k\}) = 1$ for all $k \in \mathbb{N}$, and $\ell(\mathbb{N}) = \infty$. If μ_{ℓ}^* denotes the outer measure associated to ℓ , describe the σ -algebra \mathcal{A} of all μ_{ℓ}^* -measurable sets. Justify your answer.

Question 3. Let $A \subseteq \mathbb{R}$. Prove the following are equivalent:

- 1. $A \in \mathcal{M}(\mathbb{R})$.
- 2. For all $\epsilon > 0$ there exists an open subset $U \subseteq \mathbb{R}$ such that $A \subseteq U$ and $\lambda^*(U \setminus A) < \epsilon$.
- 3. For all $\epsilon > 0$ there exists a closed subset $F \subseteq \mathbb{R}$ such that $F \subseteq A$ and $\lambda^*(A \setminus F) < \epsilon$.
- 4. There exists a G_{δ} set $G \subseteq \mathbb{R}$ such that $A \subseteq G$ and $\lambda^*(G \setminus A) = 0$.
- 5. There exists an F_{σ} set $F \subseteq \mathbb{R}$ such that $F \subseteq A$ and $\lambda^*(A \setminus F) = 0$.

(Recall a set is G_{δ} if it is the countable intersection of open sets and a set is F_{σ} if it is the countable union of closed sets).

Question 4. Let $A \in \mathcal{M}(\mathbb{R})$. Prove that

- a) $\lambda(A) = \inf\{\lambda(U) \mid U \subseteq \mathbb{R} \text{ is an open set such that } A \subseteq U\}.$
- b) $\lambda(A) = \sup \{\lambda(K) \mid K \subseteq \mathbb{R} \text{ is a compact set such that } K \subseteq A\}.$

Question 5. Let (X, \mathcal{A}, μ) be a measure space and let

$$\overline{\mathcal{A}} = \{ E \subseteq X \mid \text{ there exists } A, B \in \mathcal{A} \text{ such that } A \subseteq E \subseteq B \text{ and } \mu(B \setminus A) = 0 \}.$$

Define $\overline{\mu}: \overline{\mathcal{A}} \to [0,\infty]$ by $\overline{\mu}(E) = \mu(A)$ where $E \in \overline{\mathcal{A}}$ and $A, B \in \mathcal{A}$ are such that $A \subseteq E \subseteq B$ and $\mu(B \setminus A) = 0$.

- a) Show that $A \subseteq \overline{A}$, $\overline{\mu}$ is well-defined, and $\overline{\mu}(A) = \mu(A)$ for all $A \in A$.
- b) Show that \overline{A} is a σ -algebra, $\overline{\mu}$ is a measure on (X, \overline{A}) , and that $\overline{\mu}$ is complete

Question 6. Prove that if $A \subseteq \mathbb{R}$ is such that $\lambda^*(A) > 0$, then there exists a subset $B \subseteq A$ such that B is not Lebesgue measurable.

(Hint: Reduce to the case that A is bounded and use the same technique from class to construct a non-measurable subset.)