Contents

- Homework 6
- Problem 2.b
- Problem 2.c
- Problem 2.d
- Problem 3.c
- Problem 4.a
- Problem 4.b

Homework 6

Juan Alejandro Ormaza October 6 2021

```
clear all;clc; close all;
format LONG E
```

Problem 2.b

```
P=20;
A=gallery('poisson',P);
b = ones(P^2,1);

% Since both algorithms should be the same, I am going to use norm 2 to
% figure the difference between my_jacobi and my_vector_jacobi.

error = norm(my_jacobi(A,b,100)-my_vector_jacobi(A,b,100),2);
fprintf("the size of the differnce between my_jacobi and my_vector_jacobi is %2.8f\n",error);
```

the size of the differnce between my_jacobi and my_vector_jacobi is 0.00000000

Problem 2.c

```
my vector jacobi takes 0.00596608 seconds
my component-wise jacobi takes 9.96381930 seconds
my vector jacobi is 1670.07721884 times faster than my jacobi
```

Problem 2.d

```
P=[ 10, 20, 40, 80, 160];
error=zeros(size(P,2),1);

for i=1:size(P,2)
    A=gallery('poisson',P(i));
    b = ones(P(i)^2,1);
    xtrue=A\b;
    x=my_vector_jacobi(A,b,100);
    error(i)=norm(xtrue-x,2)/norm(xtrue,2);
end
```

Problem 3.c

```
tot_it = [50, 100, 200, 400, 800, 1600];
error=zeros(size(tot_it,2),3);
for i=1:size(tot_it,2)
   A=gallery('poisson',160);
   b = ones(160^2,1);
   xtrue=A\b;
   x_jacobi=my_vector_jacobi(A,b,tot_it(i));
   x CG=my_CG(A,b,tot_it(i));
   x_gauss=my_gauss_siedel(A,b,tot_it(i));
   error(i,1)=norm(xtrue-x_jacobi,2)/norm(xtrue,2);
   error(i,2)=norm(xtrue-x_gauss,2)/norm(xtrue,2);
   error(i,3)=norm(xtrue-x_CG,2)/norm(xtrue,2);
end
fprintf("Num Iterations\tError Jacobi\tError GS\tError CG\n");
for i=1:size(tot it,2)
fprintf("%4.0f\t\t %2.5f\t\%2.5f\t\n",tot it(i),error(i,1),error(i,2),error(i,3));
end
```

Num Iterations	Error Jacobi	Error GS	Error CG
50	0.99012	0.98039	0.22322
100	0.98039	0.96131	0.00849
200	0.96130	0.92453	0.0000
400	0.92452	0.85577	0.0000
800	0.85574	0.73419	0.0000
1600	0.73415	0.54123	0.0000

Problem 4.a

```
P=10;
A=gallery('poisson',P);
b = ones(P^2,1);
```

```
nonZeros = nnz(A)/size(A,1);
fprintf("The number of nonzeros in A is %3.6f\n", nonZeros);
fprintf("As P increases the number of nonzeros approaches 5.")
```

The number of nonzeros in A is 4.600000 As P increases the number of nonzeros approaches 5.

Problem 4.b

fprintf("see in attached written solutions.\n")

see in attached written solutions.

Published with MATLAB® R2021a