SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-16605-111184

MATEMATICKÝ TRENAŽÉR BAKALÁRSKA PRÁCA

2024 Bence Bodnár

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-16605-111184

MATEMATICKÝ TRENAŽÉR BAKALÁRSKA PRÁCA

Študijný program: Aplikovaná informatika

Názov študijného odboru: Informatika

Školiace pracovisko: Ústav informatiky a matematiky Vedúci záverečnej práce: doc. RNDr. Oľga Nánásiová, PhD.

Bratislava 2024 Bence Bodnár

SÚHRN

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Študijný program: Aplikovaná informatika

Autor: Bence Bodnár

Bakalárska práca: Matematický trenažér

Vedúci záverečnej práce: doc. RNDr. Oľga Nánásiová, PhD.

Miesto a rok predloženia práce: Bratislava 2024

V tejto bakalárskej práci sa zaoberáme vývojom trojvrstvovej webovej aplikácie zameranej na e-learning matematiky, konkrétne pravdepodobnosti a štatistiky. Cieľom práce bolo navrhnút a implementovat užívateľsky orientovaný frontend pomocou Angular frameworku, pričom sú využívané knižnice Bootstrap a Material UI na zabezpečenie intuitívneho rozhrania. Na druhej strane, backend aplikácie bol vyvinutý pomocou Node.js a frameworku Next.js s cieľom poskytnút efektívne spracovanie dát a logiky aplikácie. S PostgreSQL databázou sme pracovali na ukladaní a spracovaní užívateľských dát a obsahu. Celá aplikácia je nakoniec nasadená v Docker kontajneroch, čo umožňuje jednoduchšiu distribúciu a nasadenie aplikácie. Výsledkom je komplexná e-learningová platforma, ktorá umožňuje študentom testovať svoje znalosti prostredníctvom testov, úloh a študijných materiálov, a tiež analyzovať ich pokrok a vývoj. Tento projekt predstavuje dôležitý krok smerom k moderným pedagogickým metódam, ktoré využívajú technologické inovácie na zlepšenie vzdelávania.

Kľúčové slová: Docker, PostgreSQL, Framework, Next. js, Angular, Pravdepodobnost

ABSTRACT

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

Study Programme: Applied Informatics

Author: Bence Bodnár

Bachelor's thesis: Mathematics trainer

Supervisor: doc. RNDr. Oľga Nánásiová, PhD.

Place and year of submission: Bratislava 2024

In this bachelor thesis we are developing a three-layer web application focused for e-learning mathematics, specifically probability and statistics. The aim of the work was to to design and implement a user-oriented frontend using the Angular framework, using the Bootstrap and Material UI libraries to provide an intuitive editing. On the other hand, the backend of the application was developed using Node.js and the framework Next.js framework in order to provide efficient data processing and application logic. With PostgreSQL database, we worked on storing and processing user data and content. The entire apli- Finally, the entire application is deployed in Docker containers, which allows for easier distribution and deployment of the application. The result is a comprehensive e-learning platform that enables learners to test their knowledge through tests, assignments and study materials, and also analyse their progress and development. This project represents an important step towards modern pedagogical methods that use technological innovation to improve education.

Keywords: Docker, PostgreSQL, Framework, Next.js, Angular, Probability

Poďakovanie Poďakovanie patrí mojej školiteľke doc. RNDr. Oľga Nánásiová, PhD. za poskytnutie poznatkov z oblasti, odborné konzultácie a čas, ktorý mi venovala pri vypracovaní mojej záverečnej práce.

Zoznam skratiek

API Rozhranie pre programovanie aplikácií

CSS Kaskádové štýly (Cascading Style Sheets)

HTML Hypertextový značkovací jazyk (HyperText

Markup Language)

HTTPS Zabezpečený hypertextový prenosový protokol

(Hypertext Transfer Protocol Secure)

IDE Integrované vývojové prostredie (Integrated

Development Environment)

JS JavaScript

JSON JavaScriptový objektový zápis (JavaScript Ob-

ject Notation)

LDAP Lightweight Directory Access Protocol

NPM Správca balíkov pre Node.js (Node.js Package

Manager)

OS Operačný systém

SQL Štruktúrovaný dopytovací jazyk (Structured

Query Language)

UI Užívateľské rozhranie (User Interface)

UX Užívateľský zážitok (User Experience)

VCS Systém správy verzií (Version Control System)

Obsah

Ú	vod			
1	Ana	ılýza		
	1.1	Brillia	nt.org	
	1.2	Khan	Academy	
	1.3	Vieme	e matiku	
	1.4	Zhodn	notenie	
2	Pou	ıžité te	echnológie a knižnice	
	2.1	Fronte	end	
		2.1.1	HTML	
		2.1.2	CSS	
		2.1.3	SCSS	
		2.1.4	JavaScript	
		2.1.5	TypeScript	
	2.2	Backe	nd	
		2.2.1	Node.js	
		2.2.2	Express.js	
		2.2.3	CORS	
	2.3	Datab	pázové systémy	
		2.3.1	PostgreSQL	
		2.3.2	DBDiagram	
	2.4	Frame	ework	
		2.4.1	Frontendové frameworky	
		2.4.2	Backendové frameworky	
	2.5	UI a U		
		2.5.1	Bootstrap	
		2.5.2	Material UI	
		2.5.3	Angular	
	2.6	Gamif	fikácia	
		2.6.1	Gamifikácia v e-learningu	
	2.7	Server	·	
		2.7.1	Kontejnerizácia	
		2.7.2	Docker	

	2.7.3	NO	JINX				 				 						 		Ę	5
2.8	GIT						 					•			•		 		Ę	5
Záver																			6	3
Zoznar	n pou	žite	ilite	rati	úry	V													7	7

Zoznam obrázkov a tabuliek

Tabuľka 1 Vzdelávacie platformy	. 4
---------------------------------	-----

Zoznam algoritmov

Zoznam výpisov

Úvod

Štúdium matematickej štatistiky a pravdepodobnosti je kritické pre porozumenie a analyzovanie náhodných javov a dát v rôznych oblastiach, ako napríklad v ekonómii, vedeckom výskume alebo medicíne. Tieto oblasti matematiky zahŕňajú širokú škálu tém, vrátane modusu, mediánu, stredovej hodnoty, náhodných premenných, kombinatoriky a podmienenej pravdepodobnosti. Každá z týchto tém poskytuje unikátne nástroje na kvantifikáciu a analýzu dátových súborov, čo je kľúčové pre predpovedanie a porozumenie rôznym javom a trendom. S cieľom podporiť systematické vzdelávanie v týchto dôležitých oblastiach sme sa rozhodli vyvinúť trojvrstvovú webovú aplikáciu. Táto aplikácia, využívajúca moderné technológie ako Angular framework s knižnicami Bootstrap a Material UI pre frontend, a Node.js s frameworkom Next.js pre backend, sa zameriava na poskytovanie interaktívnych učebných materiálov, testov a študijných materiálov v týchto matematických témach. Cieľom tejto práce je nielen uľahčiť proces učenia sa matematickej štatistiky a pravdepodobnosti, ale aj zlepšiť zrozumiteľnosť a prístupnosť týchto konceptov pre študentov. Naša aplikácia má ambíciu prispieť k zvýšeniu efektivity vzdelávacieho procesu v tejto dôležitej matematickej oblasti a poskytnúť študentom moderný a efektívny nástroj na zlepšenie ich matematických schopností a analytického myslenia.

1 Analýza

V tejto kapitole sa venujeme rozboru dostupných platforiem pre e-learning matematiky. Cieľom je identifikovať platformy, porovnať ich funkcie a odhaliť medzery, ktoré naša webová aplikácia môže vyplniť. Na trhu existuje široká škála platforiem pre e-learning rôzných matematických tém, z ktorých každá ponúka rôzne riešenia, funkcie a zameriava sa na odlišné cieľové skupiny.

1.1 Brilliant.org

Brilliant.org je online vzdelávacia platforma zameraná na interaktívne kurzy v oblastiach matematiky, vedy a počítačovej vedy. Je navrhnutá tak, aby podporovala aktívne učenie prostredníctvom riešenia problémov a interaktívnych výziev, čím pomáha študentom rozvíjať kritické myslenie a logické schopnosti. Platforma ponúka viac ako 60 kurzov, ktoré sú prispôsobené rôznym úrovniam znalostí, od začiatočníkov po pokročilých.

Medzi jej hlavné výhody patria interaktívne lekcie, ktoré sú navrhnuté tak, aby boli pútavé a vyžadovali aktívnu účasť študentov, čím zvyšujú efektivitu učenia. Umožňuje tiež flexibilné a samostatné štúdium, čo je ideálne pre individuálne potreby. Platforma ponúka denné výzvy na rôzne témy, ktoré pomáhajú udržiavať študentov motivovaných a neustále zapojených do procesu učenia. Nevýhodou je, že táto platforma je platená a dostupná len v anglickom jazyku, čo môže predstavovať prekážku pre niektorých študentov. [1]

1.2 Khan Academy

Táto platforma ponúka bezplatné videokurzy a interaktívne cvičenia z rôznych oblastí matematiky, vrátane vysokoškolskej štatistiky a pravdepodobnosti. Je vhodná pre študentov základných aj vysokých škôl. Medzi jej výhody patrí široká škála obsahu, jednoduché použitie a dostupnosť pre rôzne úrovne znalostí. Dostupné zdroje k daným témam sú prehľadné a dobre štruktúrované. Taktiež ponúka možnosť sledovania pokroku, získavania bodov a odznakov za splnené kapitoly, čím motivuje študentov k učeniu prostredníctvom gamifikácie. Nevýhodou je, že je dostupná len v anglickom jazyku, čo môže byť pre niektorých študentov prekážkou. Používateľské rozhranie môže byť z dôvodu množstva obsahu pre niektorých používateľov neprehľadné, najmä ak sa na platforme nachádzajú prvýkrát. Napriek týmto nedostatkom je platforma považovaná za jeden z najlepších nástrojov na online vzdelávanie a sebarozvoj. [2]

1.3 Vieme matiku

Najpopularnejším slovenským portálom pre e-learning matematiky je Vieme matiku. Táto platforma ponúka rôzne kurzy a cvičenia z matematiky pre žiakov základných a stredných škôl. Medzi jej výhody patrí dostupnosť pre slovenských žiakov, široký výber tém, rôzné formy precvičovania, do ktorých patrí grafické znázornenie úloh a možnosť sledovania pokroku. Ponúka taktiež hravé prvky, ako sú grafické a zvukové efekty, ktoré môžu zvýšiť motiváciu žiakov. Vyznačuje sa taktiež jednoduchým použitím a prehľadným rozhraním. Nevýhodou je, že nie je dostupná pre študentov mimo Slovenska, je podporovaná len v slovenčine. Platforma služi na precvičovanie matematických úloh, ale neponúka zdroje pre samostatné štúdium alebo nápovedy. Zároveň, v prípade, že by sme chceli naplno využiť všetky jej funkcie, by bolo potrebné si zakúpiť licenciu. [3]

1.4 Zhodnotenie

Počas analýzy existujúcich vzdelávacích platforiem sme zistili, že na trhu chýbajú lokalizované a cenovo dostupné e-learningové riešenia pre stredoškolských a vysokoškolských študentov, ktoré by efektívne kombinovali gamifikáciu, interaktivitu a prehľadné rozhranie. Existujúce platformy, ako Brilliant.org a Khan Academy, ponúkajú kvalitné vzdelávacie materiály, ale ich dostupnosť je limitovaná anglickým jazykom a v prípade Brilliant.org aj plateným modelom. Vieme Matiku síce poskytuje lokalizovaný obsah, ale nezohľadňuje pokročilé potreby samostatného štúdia a je obmedzená na úzky okruh používateľov.

Analyzované platformy ukázali širokú škálu prístupov, pričom mnohé sa zameriavajú na riešenie komplexných úloh alebo tradičné formy vzdelávania. Tieto prístupy však často nekladú dôraz na intuitívne osvojovanie matematických konceptov a podporu samostatného učenia. Tieto poznatky nám umožňujú identifikovať medzery a formulovať jasné požiadavky na vývoj novej aplikácie, ktorá by ponúkala lokalizovaný obsah, interaktívne učenie a dostupnosť pre rôzne cieľové skupiny.

Tabuľka 1: Vzdelávacie platformy

Platforma	Funkcie	Cieľová skupina	Cena					
Khan Academy	Videokurzy, cviče-	Všetky úrovne	Bezplatná					
	nia							
Brilliant.org	Gamifikované kurzy	Stredné a vysoké	Platená					
		školy						
Vieme Matiku	Online kurzy mate-	Základné a Stredné	Čiastočne bezplatná					
	matiky	školy						

2 Použité technológie a knižnice

V tejto kapitole sa podrobne venujeme technológiám a knižniciam, ktoré plánujeme použiť na vývoj webovej aplikácie pre e-learning matematickej štatistiky a pravdepodobnosti. Výber technológií je založený na princípoch flexibility, kompatibility, bezpečnosti a aktívnej komunity vývojárov.

- 2.1 Frontend
 - 2.1.1 HTML
 - 2.1.2 CSS
 - 2.1.3 SCSS
 - 2.1.4 JavaScript
- 2.1.5 TypeScript
- 2.2 Backend
- 2.2.1 Node.js
- 2.2.2 Express.js
- 2.2.3 CORS
- 2.3 Databázové systémy
- 2.3.1 PostgreSQL
- 2.3.2 DBDiagram
- 2.4 Framework
- 2.4.1 Frontendové frameworky
- 2.4.2 Backendové frameworky
- 2.5 UI a UIX
- 2.5.1 Bootstrap
- 2.5.2 Material UI
- **2.5.3** Angular
- 2.6 Gamifikácia
- 2.6.1 Gamifikácia v e-learningu
- 2.7 Server
 - 2.7.1 Kontejnerizácia
 - 2.7.2 Docker
- 2.7.3 NGINX
- 2.8 GIT

Záver

Conclusion is going to be where? Here.

Zoznam použitej literatúry

- 1. Brilliant [online]. Brilliant. [cit. 2024-12-08]. Dostupné z : https://www.brilliant.org/.
- 2. Khan Academy [online]. Khan Academy. [cit. 2024-12-08]. Dostupné z:https://www.khanacademy.org/.
- 3. Vieme matiku [online]. Vieme to. [cit. 2024-12-08]. Dostupné z: https://www.vieme to.org/zhrnutie-projektu.