ECOLOGIA ANIMAL - BIE 315 - IB/USP Aula Prática

Seleção de Recursos

Estudo de dieta de um predador - a coruja suindara (Aspectos da seleção de presas) Parte II

Na aula anterior foram aplicadas noções básicas de como triar material para estudo de dieta de um predador, incluindo o uso de coleções de referência (museus). Com os dados brutos obtidos, representando a dieta da coruja suindara, incluindo o índice de amplitude de nicho, foi possível ter um primeiro quadro geral da ecologia alimentar desse predador.

Considerando os resultados obtidos na aula anterior sobre a **dieta anual e especificamente** <u>quanto aos pequenos mamíferos</u> (maior parte da dieta em biomassa bruta ingerida), mais os dados de abundância destes no campo (Tabela 1), registrados <u>simultaneamente</u> à coleta das pelotas por meio de <u>armadilhas específicas para pequenos mamíferos colocadas nos locais de caça das corujas</u>, procure analisar se ocorre ou não seleção de espécies de presas.

Questões

1) Em uma análise geral, avaliando os números de pequenos mamíferos na dieta e sua abundância no ambiente (veja Tabela 1), está havendo <u>preferência/rejeição</u> de presas ou <u>não há qualquer preferência alimentar</u>? Justifique sua resposta. **IMPORTANTE:** responda esta questão **ANTES** das demais, **INDEPENDENTEMENTE** dos resultados de testes e índices que serão usados para resolvê-las. **QUALQUER RESPOSTA AQUI É VÁLIDA** e será útil para a discussão final.

Tabela 1. Freqüências absolutas de pequenos mamíferos predados (pelotas, dieta) e no **ambiente (capturas em armadilhas)**. Aos dados da aula anterior <u>foram acrescidos resultados de mais pelotas</u> analisadas pelo professor (aumentando o N amostral – 33 pelotas) para uma análise final mais robusta), <u>além de correção de alguns pequenos erros de identificação</u>. Note que as armadilhas usadas nas áreas de caça das corujas são excelentes para capturar apenas espécies com menos de 100 g de peso. Entre parênteses estão as proporções relativas.

Espécies	No. de indivíduos nas pelotas	Número de capturas no ambiente
Calomys tener	93 (0,63)	141 (0,47)
Necromys lasiurus	26 (0,18)	79 (0,27)
Oligoryzomys nigripes	23 (0,15)	54 (0,18)
Gracilinanus microtarsus	6 (0,04)	24 (0,08)
TOTAL	148 (1,00)	298 (1,00)

2) Agora responda a pergunta colocada na questão anterior por meio do **teste do qui-quadrado** (fórmula em anexo), preenchendo a Tabela 2 para proceder ao cálculo. **(VEJA EXEMPLO DE CÁLCULO EM FOLHA ANEXA)**. No caso de haver seleção de presas é possível discriminar com certeza o que acontece para cada espécie?

Tabela 2. Freqüências absolutas observadas (dieta) e esperadas (ambiente) para o cálculo do teste do 22.

Espécies	Observado (dieta)	Esperado (ambiente)*
Calomys tener	93	
Necromys lasiurus	26	
Oligoryzomys nigripes	23	
Gracilinanus microtarsus	6	
TOTAL	148	148

^{*} pode arredondar para numero inteiro

3) Aplique o índice de **preferência alimentar** α **de Manly** (fórmula em anexo), determinando o valor <u>para cada espécie.</u> Quais presas são preferidas, evitadas, ou nem preferidas e nem evitadas pela coruja? (<u>VEJA EXEMPLO DE CÁLCULO EM FOLHA ANEXA O QUE FACILITARÁ SEU ENTENDIMENTO DA FÓRMULA</u>).

4) Interprete os resultados obtidos da análise de seleção das quatro espécies de pequenos mamíferos, propondo explicações ecologicamente plausíveis para o fato de que determinadas presas são mais, ou menos, exploradas que o esperado (se a situação fosse ao acaso), e considere que: Tyto furcata é espécie noturna, caça em áreas campestres/abertas e captura suas presas principalmente no solo. Considere ainda um conjunto de informações biológicas sobre os pequenos mamíferos predados (veja Tabela 3). Veja nos Anexos deste exercício a explicação sobre bula timpânica.

Tabela 3. Resumo sobre dados biológicos dos pequenos mamíferos consumidos pela suindara - Tyto furcata.

Espécies	Massa Corporal (g)	Razão * Volume bular(mm ³)/ massa corporal(g)	Período atividade	Hábitat	Hábito	Comportamento de defesa
Calomys tener	12-22	2,17	noite	campo	terrícola	passivo
Necromys lasiurus	32-96	3,87	noite/dia	campo	terrícola/ fossorial	agressivo
Oligoryzomys nigripes	14-26	2,31	noite	campo/ mata	terrícola/ arborícola	passivo
Gracilinanus microtarsus	15-22	2,25	noite	mata/ campo	arborícola/ terrícola	passivo

NOTA: quando são citadas duas categorias de período, hábitat e hábito, <u>aquelas em 1º lugar são mais usadas pela espécie</u>. (*) – quanto maior o valor, assumir que maior é a <u>acuidade auditiva</u> da espécie.

5) Compare agora os resultados obtidos com sua resposta original da questão 1. O que você teria a comentar?

ANEXOS

TESTE DO QUI-QUADRADO (χ^2)

$$\chi^2 = \sum \frac{\left(FO - FE\right)^2}{FE}$$
 onde, FO = freqüência absoluta observada FE = freqüência absoluta esperada

nota: graus de liberdade (gl) = (no. de linhas -1)x(no. de colunas - 1)

HIPÓTESES A SEREM TESTADAS

- Hipótese nula (ho): as freqüências absolutas observadas de espécies predadas (dieta) não diferem das freqüências absolutas teoricamente esperadas destas no ambiente (armadilhas) - P > 0,05.
- Hipótese alternativa (h1): as freqüências absolutas observadas de espécies predadas são diferentes das freqüências absolutas esperadas teoricamente no ambiente - P < 0,05

Valores críticos da distribuição do qui-quadrado.

	P	0,90	0,70	0,50	0,30	0,20	0,10	0,05	0,01	0,005	0,001
gl											
1		0,016	0,15	0,455	1,07	1,64	2,076	3,841	6,635	7,879	10,828
2		0,211	0,71	1,386	2,41	3,22	4,605	5,991	9,210	10,597	13,816
3		0,584	1,42	2,366	3,66	4,64	6,251	7,815	11,345	12,838	16,266

ÍNDICE DE PREFERÊNCIA ALIMENTAR DE MANLY (α), para populações de presas constantes ou infinitamente superiores a dos predadores (caso de estudo no campo):

$$\boldsymbol{\alpha}_{i} = \frac{\boldsymbol{r}_{i}}{\boldsymbol{n}_{i}} \begin{bmatrix} \frac{1}{\boldsymbol{n}_{k}} \\ \frac{\boldsymbol{r}_{k}}{\boldsymbol{n}_{k}} \end{bmatrix}$$
 Onde,
$$\boldsymbol{\alpha}_{i} = \text{indice de preferência de Manly para a presa } \boldsymbol{i}, \\ \boldsymbol{r} = \text{proporção das presas } \underline{\boldsymbol{n} \cdot \boldsymbol{a} \cdot \operatorname{dieta}} \boldsymbol{i}, \dots, \boldsymbol{m} \cdot (\boldsymbol{i} = 1, 2, \dots \boldsymbol{m}); \\ \boldsymbol{n} = \operatorname{proporção} \boldsymbol{a} \cdot \boldsymbol{a} \cdot \operatorname{presa no} \underline{\boldsymbol{a} \cdot \boldsymbol{m} \cdot \operatorname{dieta}} \boldsymbol{k}, \dots \boldsymbol{m} \cdot (\boldsymbol{k} = 1, 2, \dots \boldsymbol{m}); \\ \boldsymbol{n} = \operatorname{número total de tipos de presas}.$$

Nota: se α_i = 1/m, não ocorre preferência (alguns autores usam valores de \pm 5 % ao redor do α_i) se $\alpha_i > 1/m$, então presa i é preferida;

se α_i < 1/m, então presa i é "evitada" ou consumida em menor proporção do que seria esperado.

Bula timpânica é uma estrutura óssea oca, repleta de tecido nervoso relacionado a audição. Foi comprovado que quanto mais volumosa for esta estrutura relativamente ao tamanho corporal, maior será a capacidade auditiva do roedor.

EXEMPLOS DE CÁLCULOS (MUITO IMPORTANTE ESTUDAREM AS APLICAÇÕES ABAIXO):

Exemplo de dois tipos de predadores para o estudo de seleção de presas

Exemplo de dois tipos de predadores para o estudo de seleção de presas					
Presas	Dieta	Dieta	Abundância de		
	Raposa	Gato-do-mato	presas no ambiente		
	No. (proporção)	No. (proporção)	No. (proporção)		
Α	30 (0,33)	45 (0,50)	50 (0,29)		
В	45 (0,50)	30 (0,33)	100 (0,59)		
С	15 (0,17)	15 (0,17)	20 (0,12)		
Total	90 (1,00)	90 (1,00)	170 (1,00)		

Tabela montada para cálculo do qui-quadrado - Dieta da raposa

	abola momada para calculo do qui quadidao	2.01a aa 1apooa
Presas	Observado (dieta)	Esperado (seg. abundância no ambiente)
Α	30	26,1
В	45	53,1
С	15	10,8
Total	90	90

$$\chi^2$$
 raposa = $\frac{(30-26,1)^2}{26,1} + \frac{(45-53,1)^2}{53,1} + \frac{(15-10,8)^2}{0,8} =$

$$\chi^2$$
 raposa = 0,58 + 1,24 + 1,63 = **3,45**

$$gl = (3-1).(2-1) = 2;$$

Conferindo na tabela c/ valores críticos do χ²

P > 0,10

aceita-se ho (não há diferença entre o observado e o esperado),

OU SEJA, NÃO HÁ SELEÇÃO DE PRESAS

Para o gato procede-se da mesma maneira, resultando em:

$$\chi^2$$
 gato = 25,37

$$gl = 2$$

P < 0.001

rejeita-se h₀ e aceita-se h₁ (pois <u>há diferença</u> entre o observado e o esperado),

OU SEJA, ESTÁ HAVENDO SELEÇÃO DE PRESAS

Assim, no caso do gato aplica-se um índice de preferência para saber como está sendo o consumo de cada espécie de presa de uma maneira mais objetiva.

Aplicação do Índice de Preferência Alimentar α de Manly

Exemplo para as presas do gato-do-mato, já que neste caso há seleção indicada pelo teste do χ²

$$\alpha_{A} = \frac{0,50}{0,29} \left[\frac{1}{\left(\frac{0,50}{0,29}\right) + \left(\frac{0,33}{0,59}\right) + \left(\frac{0,17}{0,12}\right)} \right] = 1,72 \left(\frac{1}{1,72 + 0,56 + 1,42}\right) = 1,72 \left(\frac{1}{3,7}\right) = 0,46$$

$$\boldsymbol{\alpha}_{B} = \frac{0.33}{0.59} \left[\frac{1}{\left(\frac{0.50}{0.29}\right) + \left(\frac{0.33}{0.59}\right) + \left(\frac{0.17}{0.12}\right)} \right] = 0.56 \left(\frac{1}{3.7}\right) = 0.15 \qquad \boldsymbol{\alpha}_{C} = \frac{0.17}{0.12} \left[\frac{1}{\left(\frac{0.50}{0.29}\right) + \left(\frac{0.33}{0.59}\right) + \left(\frac{0.17}{0.12}\right)} \right] = 1.42 \left(\frac{1}{3.7}\right) = 0.38$$

m=3

se α = 1/m = 0,33 (com aceitação de ±5%, ou seja 0,313 a 0,346), presa não é preferida nem evitada se α > 1/m há preferência

se α < 1/m a presa é evitada ou consumida em quantidade menor que aquela disponível