EEE 108L MICRO-ELECTRONICS 1 LAB 6

Lab Session: Tuesday 3PM - 5:40PM

Student Name: Andrew Robertson

TABLE OF CONTENTS

PRE-LAB Calculations	3
Step 1	3
	3
Step 3	4
SPICE Simulation	5
Step 4	5
Step 5	
Step 6	8
Step 7	8
Experiment Part 1	
Step 8	
Step 9	Error! Bookmark not defined
Step 10	11
	11
Conclusions	
Appendix A	14

PRE-LAB CALCULATIONS

STEP 1.

Step 1)
$$\sqrt{os} > \sqrt{c_{1}s} - \sqrt{\tau_{1}H} \ll stort$$
 $\sqrt{o} - \sqrt{s} > \sqrt{c_{1}} - \sqrt{s} - \sqrt{\tau_{1}H}$
 $\sqrt{o} > \sqrt{c_{1}} - \sqrt{\tau_{1}H}$
 $\sqrt{o} - \sqrt{c_{1}} > - \sqrt{\tau_{1}H}$
 $\sqrt{c_{2} o} < \sqrt{\tau_{1}H} \approx finish$
Other condition: $\sqrt{c_{2}s} \ge \sqrt{\tau_{1}H}$

STEP 2.

Vas	Vos	In	State	V _{th} =1.6V
1	3.6125	295.2m	20toss	K = 0.00082
2	4.38336	131.2m	triode	
4 V	-17.199	4.72 m	saturation	

Showing process for
$$V_{GS} = 1V \cdot (2V \notin 4V \text{ shore some process})$$

$$V_{DS} = V_{DD} - I_D R_D = V_{DD} - R_D (K(V_{GS} - V_{TH}))^2$$

$$for V_{GS} = 1 : 5.612 > 1 - 1.6 \notin 1 \ge 1.6$$

$$2 : 4.38336 > 2 - 1.6 \notin 2 \ge 1.6$$

$$4 : 9$$

$$-17.199 > 4 - 1.6 \notin 4 \ge 1.6$$

STEP 3.

Step 3
$$I_{0} = \frac{mC_{0}x}{2} \cdot \frac{W}{L} \left(V_{GS} - V_{TH} \right)^{2}$$

$$\sqrt{I_{0}} = \sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \left(V_{GS} - V_{TH} \right)^{2}$$

$$\sqrt{I_{0}} = \left(\frac{mC_{0}x}{2} \cdot \frac{W}{L} \right) \left(V_{GS} - V_{TH} \right)^{2}$$

$$5.916 \mid_{m} = \left(\frac{mC_{0}x}{2} \cdot \frac{W}{L} \right) \left(1.46 - V_{TH} \right) \qquad (cose 1)$$

$$\frac{5.916 \mid_{m}}{1.46 - V_{TH}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right) \frac{1.46}{5.916 \mid_{m}} - \frac{V_{TH}}{5.916 \mid_{m}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2}$$

$$\frac{V_{TH}}{5.916 \mid_{m}} = \frac{1.4C}{2 \cdot 10} - \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right) \frac{V_{TH}}{2 \cdot 10} = 1.46 - 5.916 \mid_{m} \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2}$$

$$\frac{20.7364 m}{2.18 - V_{TH}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right) \frac{2.18}{20.7364 m} - \frac{V_{TH}}{20.7364 m} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2}$$

$$\frac{V_{TH}}{20.7364 m} = \frac{2.18}{20.7364 m} - \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2} \right) \frac{V_{TH}}{20.7364 m} = \frac{2.18 - 20.7364 m}{2 \cdot 10} \times \frac{2.18$$

SPICE SIMULATION

STEP 4. Plot of ID

 $I_D = K (V_{GS} - V_{th})^2$ Is accurate for the saturation region of operation when lambda is 0.

Plot of VGS(Green), VGD(Blue), and VTH(Red)

Cutoff occurs to the left of the green cursor, linear between red and green cursors, and forward active to the right of the red cursor.

STEP 5.

Plot of ID

Saturation occurs when VDD becomes and exceeds .4V

Linear:
$$\frac{\Delta \vee 0S}{A \Gamma D} \approx \frac{544.446 \text{ m}}{193.611 \text{ m}} \approx 1.779 \text{ K}$$

compare to: $R_{OS} = \left[\nu C_{ON} \times \left(V_{GS} - V_{IN} \right) \right]^{-1} = \left[\frac{50 \text{ m}}{28.421 \text{ m}} \times \frac{50 \text{ m}}{28.421 \text{$

STEP 6.

There is no step 6

Put R_D back in the circuit

STEP 7.

Plot of ID

Step 7 New VTH = 2.6 V

 $I_D = K (V_{GS} - V_{th})^2$ Is accurate for the saturation region of operation when lambda is 0.

Cutoff occurs to the left of the red cursor, linear between red and green cursors, and forward active to the right of the green cursor.

EXPERIMENT PART 1

STEP 8.

(VDS shown on O scope and ID recorded through the DMM on bottom right corner)

This is pretty much all that was seen for steps 8-11 so I'll avoid clutter by only using one plot

VGS	VOS	I Dad
1.8 2.0 2.5 3.0 4.0 4.27	3.38	.338
	2.32	: 566
	. 830	1.002
	:180	1.033
	.040	1.051
	.085	1.0.54
	082	1.056
4.80	1.081	1.058
	2.0 2.5 3.0 4.0 4.25 4.50	1.8 3.38 2.0 2.32 2.5 .330 3.0 .180 4.0 .090 4.23 .085 4.50082

STEP 10.

5tep 10		VGS	VDD	I IO MA	VDS
	2.06V	0	.0002	-32mV	
	2.000	1	. 1973	56mV	
		2	.390	172mV	
		3	,554	370	
		4	1.633	1.05	
		5	. 644	2.0	
	V	- 6	- 651	2.95	
			7	.657	13.94

STEP 11

	Q V	S ID
step 11	2,8 2.1	37 .557 mA
	3.0 1.6	
	3.0	55 1.015 2
	- 16	7 1.036 mA
	4.0	insima
	5.0	1105404
	3.60	110SSAA
	5.5 .0	1 551 4
	5.8 .0	79 1

CONCLUSIONS

Item 1.

Discuss the variation of the parameter V_{th} What were the low and high values? What is the average? What is the value of the SPICE model parameter?

This question asks whether you understand the "milestone" role the V_{th} plays in solving MOSFET operation – so show understanding.

Item 2.

Discuss the variation of the parameter $K = \frac{\mu C'_{ox}}{2} \frac{W}{L}$

What were the low and high values?

What is the average?

What is the value of the SPICE model parameter?

This question asks whether you understand the physical composition and layout of the MOSFET and then the effects on MOSFET operation – <u>so show</u> understanding.

Item 3.

Discuss on how well your measured values of I_D conform to the equation

$$I_D = \frac{\mu C'_{ox}}{2} \frac{W}{L} (V_{GS} - V_{th})^2.$$

Editing the SPICE model so it has the same V_{th} and KP – compare to the value you calculated for your device under the test of Step 9.

Show simulation results from editing the SPICE model versus your measured raw data from Step 8.

Item 4.

Compare $\frac{\Delta V_{DS}}{\Delta I_D}$ obtained from the simulations of Step 5 to the same value obtained from the laboratory measurements of Step 10

What value of λ is indicated by the measured data?

Item 5.

How does V_{th} change when $V_{SB} = 0V$ is changed to $V_{SB} = -1V$

Vth is shifted up by 1V

APPENDIX A

FIGURE 1

FIGURE 2

Step 3
$$I_{0} = \frac{mC_{0}x}{2} \cdot \frac{W}{L} \left(V_{GS} - V_{TH} \right)^{2}$$

$$\sqrt{I_{0}} = \sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \left(V_{GS} - V_{TH} \right)^{2}$$

$$\sqrt{I_{0}} = \left(\frac{mC_{0}x}{2} \cdot \frac{W}{L} \right) \left(V_{GS} - V_{TH} \right)^{2}$$

$$5.916 |_{m} = \left(\frac{mC_{0}x}{2} \cdot \frac{W}{L} \right) \left(1.46 - V_{TH} \right) \qquad (cose 1)$$

$$\frac{5.916 |_{m}}{1.46 - V_{TH}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right) \frac{1.46}{5.916 |_{m}} - \frac{V_{TH}}{5.916 |_{m}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2}$$

$$\frac{V_{TH}}{5.916 |_{m}} = \frac{1.4L}{2.16 - V_{TH}} - \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right) \frac{V_{TH}}{20.7364 |_{m}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2}$$

$$\frac{20.7364 |_{m}}{2.18 - V_{TH}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right) \frac{2.18}{20.7364 |_{m}} - \frac{V_{TH}}{20.7364 |_{m}} = \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2}$$

$$\frac{V_{TH}}{20.7364 |_{m}} = \frac{2.18}{20.7364 |_{m}} - \left(\sqrt{\frac{mC_{0}x}{2}} \cdot \frac{W}{L} \right)^{2} \right) \frac{V_{TH}}{20.7364 |_{m}} = \frac{2.18}{20.7364 |_{m}} \times \frac{2.18}{20.7$$

FIGURE 3

Step 5) Linear:
$$\frac{\Delta \vee DS}{\Delta ID} \approx \frac{544.446 \text{ m}}{193.61 \text{ m}} \approx 1.779 \text{ K}$$
)

compare to: $Ros = \left[\nu C_{\text{in}} \approx \left(V_{\text{43}} - V_{\text{in}} \right) \right]^{-1}$
 $= \left[\kappa \cos 82 \left(2V - 1.6 \right) \right]^{-1}$
 $\frac{50 \text{ m}}{28.421 \text{ m}} \approx \frac{534.879 \text{ K}}{3.2297 \text{ m}} \approx 534.879 \text{ K}$
 $C_0 = \frac{1}{\lambda I_0}$
 $C_0 = \frac{1}{(204.82)} \text{ K} \left(V_{\text{435}} - V_{\text{in}} \right)^2$
 $C_0 = \frac{1}{(204.82)} \text{ K} \left(V_{\text{435}} - V_{\text{in}} \right)^2$
 $C_0 = 80.3.834 \text{ K}$

Step 7 New $V_{\text{TH}} = 2.6 \text{ V}$

FIGURE 4

Step 8 R = 4.612KIL VDD stays 5V did not calculate ID, put DMM in senies instead	VGS VOS ID mA 1.8 3.38 .338 2.0 2.32 .566 2.5 .330 1.002 3.0 1180 1.033 4.0 .090 1.051 4.25 .085 1.054 4.50 .082 1.056 4.80 .081 1.058
Step 10 VGS = 2.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Step 11	2.8 2.37 .557 mA 3.0 1.04 .850 mA 3.5 .255 1.015 mA 4.0 .167 1.036 mA 4.0 .090 1.051 mA 5.0 .090 1.051 mA 5.25 .088 1.054 mA 5.25 .083 1.058 mA 5.8 .079 1.058 mA