Nama: Rizki Hidayat

NIM: 1103202131

Laporan

1. Pendahuluan

Laporan teknis ini memberikan gambaran dan detail teknis dari kode Dasar-Dasar PyTorch. Kode ini mencakup konsep-konsep penting dalam PyTorch, termasuk pembuatan tensor, manipulasi, operasi dasar, perkalian matriks, penanganan kesalahan, agregasi, indeksing, penggunaan GPU, dan reproduktibilitas.

2. Penjelasan Kode

2.1. Mengimpor PyTorch dan Pemeriksaan Versi

Kode dimulai dengan mengimpor perpustakaan PyTorch dan memeriksa versi PyTorch saat ini.

2.2. Membuat Tensor

Skrip ini menunjukkan pembuatan berbagai tensor, seperti scalar, vector, matriks, dan tensor berdimensi tinggi. Ini menggambarkan dimensi dan bentuk yang berbeda terkait dengan setiap jenis tensor.

2.3. Tensor Acak

Tensor acak dihasilkan menggunakan 'torch.rand()' dengan ukuran yang berbeda untuk menunjukkan pembuatan tensor dengan nilai acak.

2.4. Nol dan Satu

Skrip menciptakan tensor yang diisi dengan nol dan satu menggunakan `torch.zeros()` dan `torch.ones()`.

2.5. Membuat Range dan Tensor Serupa

Penggunaan 'torch.arange()' dan 'torch.zeros_like()' untuk membuat tensor dengan rentang tertentu dan tensor serupa dengan tensor lainnya.

2.6. Tipe Data Tensor

Ini menunjukkan cara menentukan tipe data tensor menggunakan parameter 'dtype' saat membuat tensor.

2.7. Mendapatkan Informasi dari Tensor

Kode memberikan metode untuk mengekstrak informasi dari tensor, termasuk bentuk, tipe data, dan perangkat tempat tensor disimpan.

2.8. Memanipulasi Tensor (Operasi Tensor)

Operasi dasar pada tensor, seperti penambahan, perkalian, dan perkalian elemen-wise, diilustrasikan menggunakan operator dan fungsi PyTorch.

2.9. Perkalian Matriks

Kode ini menggambarkan perkalian matriks menggunakan 'torch.matmul()' dan simbol '@'.

2.10. Kesalahan Umum dalam Deep Learning (Kesalahan Bentuk)

Introduksi skenario kesalahan umum dalam deep learning – ketidakcocokan bentuk selama perkalian matriks – dan cara mengatasinya.

2.11. Agregasi (Mencari Min, Max, Rata-rata, Jumlah, dll.)

Kode melibatkan operasi agregasi pada tensor, termasuk menemukan nilai minimum, maksimum, rata-rata, dan jumlah.

2.12. Min/Max Posisi

Menggambarkan cara mendapatkan indeks nilai minimum dan maksimum dalam suatu tensor.

2.13. Mengubah Tipe Data Tensor

Menunjukkan cara mengubah tipe data tensor menggunakan metode 'type()'.

2.14. Pengubahan Bentuk, Stacking, Squeezing, dan Unsqueezing

Skrip memberikan contoh operasi pengubahan bentuk, stacking, squeezing, dan unsqueezing pada tensor.

2.15. Indexing (Memilih Data dari Tensor)

Menunjukkan berbagai operasi indeksing untuk memilih elemen data tertentu dari tensor.

2.16. PyTorch Tensors & NumPy

Mencakup konversi antara tensor PyTorch dan array NumPy, termasuk membuat tensor dari array NumPy dan sebaliknya.

2.17. Reproduktibilitas (Menetapkan Seed Acak)

Membahas pentingnya menetapkan seed acak untuk reproduktibilitas dalam eksperimen deep learning.

2.18. Menjalankan Tensor di GPU

Menggambarkan pemeriksaan ketersediaan GPU, menetapkan tipe perangkat, dan memindahkan tensor ke GPU jika tersedia.

2.19. Memindahkan Tensor Kembali ke CPU

Menunjukkan memindahkan tensor kembali ke CPU setelah diproses di GPU.