SNA Programming Assignment 4

Q: 1. Write functions to Generate Random Graph with (i) N nodes and L edges and (ii) N and p parameter. (Do not use lib function)

The algorithm that was used for this question takes advantage of batch streaming of edge information while generating the graph. If all the edges are stored in the memory at the same time while adding them to the graph, it leads to memory overflow even on platforms like Google Colab. The following are the random graphs generated for different values of N from both functions.

N = 10:

Random Gnm Graph with 10 nodes and 10 edges

Random Gnp Graph with 9 nodes and 11 edges

N = 50: Random Gnm Graph with 50 nodes and 150 edges

Random Gnp Graph with 50 nodes and 297 edges

N=100: Random Gnm Graph with 100 nodes and 300 edges

Random Gnp Graph with 100 nodes and 1231 edges

Details:

The algorithm uses a common function to with an option to keep p static (for G_{np}) or keep increasing p to meet L (for G_{nl}).

The maths behind the second case is as follows:

The total edges covered ratio:

$$T=1-\frac{covered}{\frac{N*(N-1)}{2}}$$

The edges considered to be added to the graph ratio:

$$E=1-\frac{e\,d\,g\,e_c\,o\,u\,n\,t}{L}$$

Dynamically incrementing p:

$$p=1-(T-E)\geq 0$$

i.e. if T - E = 0, then add every edge.

These equations ensure that the algorithm quickly optimizes adding edges over the batch iterations for G_{nl} . The starting probability is 0.5.

Evaluation

Networkx algorithms for random graph generation were used as benchmarks. The dense_gnm_random_graph was used for dense graphs and gnm_random_graph was used for sparse graphs. The implemented algo generate gnl random can be used in both cases.

S. No.	N	L	batch-size-divisor	nx-algo	generate_	gnl_random
1	100	100	1	0.000600	0.001100	
2	100	100	10	0.000600	0.001400	
3	100	100	100	0.000800	0.000900	
4	100	1000	1	0.012500	0.009400	
5	100	1000	10		0.007900	
6	100	1000	100	0.012600	0.010600	
8	1000	1000	1	0.007300	0.010500	
9	1000	1000	10	0.006800	0.009100	
10	1000	1000	100	0.007600	0.009800	
12	1000	10000	1	0.129100	0.101300	
13	1000	10000	10	0.069400	0.077000	
14	1000			0.063900	0.132400	
15	1000	100000	1	1.530700	1.086100	
16		100000		1.451700	0.944500	
17	1000	100000	100	1.482300	0.879800	
18		10000			0.108200	
19	10000	10000	10	0.095000	0.088200	
20	10000	10000	100		0.101000	
23	10000	100000	1	0.907000	1.183700	
24		100000		0.878800	0.892800	
25	10000	100000	100	0.902400	0.832500	
26		100000		1.361500	1.506800	
27		100000			1.227300	
28	100000	100000	100	0.995700	0.781100	

Here batch-size-divisor is the integer used to get batch size.

$$batch_{s}ize = \frac{L}{batch - size - divisor}$$

Out of the experimented results for the same values for the set of N, L and batch-size-divisor, the minimum value was chosen.

Similar evaluation was performed for generate_gnp_random with benchmark algorithms taken as gnp_random_graph and fast_gnp_random_graph. The following results were obtained.

	N	р	nx-algo	generate_gnp_random
0	100	0.000100	0.0001	0.000001
1	100	0.001000	0.0002	0.000001
2	100	0.010000	0.0003	0.000001
3	100	0.100000	0.0014	0.051814
4	1000	0.000100	0.0019	0.000001
5	1000	0.001000	0.0034	4.600649
6	1000	0.010000	0.0197	1.481913
7	1000	0.100000	0.1129	0.811151

For the green values for this algorithm, the generate_gnp_random function skips those pairs of N and p that have no edges.

Q: 2. Generate Random Graph (Using any algorithm) and Scale-Free Graph (using Barabasi-Albert model) of different sizes ranging from N=100 to $10^{5/10}6$ (based on your machine). Plot their degree distributions, both in usual scale and log-log scale. N=100:

N=500:

N=1000:

N=5000:

Q: 3. Do a structural analysis of a Random Graph and a Scale-Free Graph of moderate size.

The structural analysis for random graph of 1000 nodes is as follows:

Graph with 100 nodes and 990 edges

Average Degree: 2e+01

======= Triangles

Tha	numbar	\sim f	+rianglec	\sim +	nadac.	

THE HUMBET	or criangles	at Houes.		
0 :	38 1 :	48 2 :	14 3 :	57 4 :
45				
5:	57 6 :	27 7 :	32 8 :	40 9 :
23				
10 :	4611 :	3612 :	4013 :	3114 :
50				
15 :	1516 :	6817 :	1418 :	2519 :
38				

The diameter of the graph		omponents	
Component 1 Length: Total connected components Size of largest connected	==== 100 in the graph: 1 component: 100 ==== Clustering (·	
The clustering coefficient 0: 0.20 1: 0.17	of node:	3 : 0.19	4 : 0.21
5 : 0.21 6 : 0.18	7 : 0.24	8 : 0.19	9:0.19
10 : 0.22	12 : 0.17	13 : 0.23	14 : 0.20
15 : 0.19	17 : 0.18	18 : 0.16	19 : 0.20
The average clustering coe	==== Degree Cent		
0:0.20 1:0.24		3 : 0.25	4 : 0.21
5 : 0.24 6 : 0.18	7 : 0.17	8 : 0.21	9 : 0.16
10 : 0.21	12 : 0.22	13 : 0.17	14 : 0.23
15 : 0.13	17 : 0.13	18 : 0.18	19 : 0.20
		entrality	
0: 0.55 1: 0.57		3 : 0.57	4 : 0.56
5 : 0.57 6 : 0.55	7 : 0.54	8:0.56	9:0.54
10:0.55 11:0.56	12 : 0.56	13 : 0.54	14 : 0.56
15 : 0.53	17 : 0.52	18 : 0.55	19 : 0.56
	==== Betweenness	Centrality	
0:0.02 1:0.01	2 : 0.00	3 : 0.01	4 : 0.01
5 : 0.01 6 : 0.00	7 : 0.00	8 : 0.00	9:0.00
10:0.01 11:0.01	12 : 0.01	13 : 0.00	14 : 0.01
15 : 0.00 16 : 0.01	17 : 0.00	18 : 0.00	19 : 0.01

====== Eigenvector Centrality

0	:	0.10	1	: 6	9.12	2	:	0.06	3	:	0.12	4	:	0.10
5	:	0.12	6	: 6	9.09	7	:	0.08	8	:	0.10	9	:	0.08
10	:	0.10	11	: 6	9.10	12	:	0.11	13	:	0.09	14	:	0.11
15	:	0.07	16	: 6	9.14	17	:	0.06	18	:	0.08	19	:	0.10

Structural analysis for scale-free network:

Graph with 100 nodes and 819 edges

Average Degree: 1.6e+01

======= Triangles

The number	of triangles	at nodes:
0:	291 1 :	80 2 :
46		
5:	24 6 :	55 7 :
56		

25911 :

10:

68: 67 9 : 20512 : 15413 : 16014:

34 3 :

129 4 :

159 14016: 13217 : 8918: 15: 11119 : 100

The diameter of the graph is		
Component 1 Length: 10 Total connected components i Size of largest connected co	me== no n	
The clustering coefficient o 0: 0.24 1: 0.23	f node:	4 : 0.34
5: 0.36 6: 0.36	7: 0.40 8: 0.35	9 : 0.27
10 : 0.21	12: 0.24 13: 0.27	14 : 0.25
15 : 0.20	17 : 0.27 18 : 0.27	19 : 0.25
The average clustering coeff	== Degree Centrality	6
0 : 0.51 1 : 0.27		4 : 0.17
5 : 0.12 6 : 0.18	7:0.06 8:0.20	9 : 0.21
10 : 0.51	12: 0.36 13: 0.35	14 : 0.36
15 : 0.38	17 : 0.26 18 : 0.29	19 : 0.29
	-	
0: 0.67 1: 0.58		4 : 0.54
5 : 0.52 6 : 0.55	7:0.47 8:0.56	9:0.55
10: 0.67	12: 0.61 13: 0.61	14 : 0.61
15 : 0.62	17: 0.57 18: 0.59	19 : 0.59
=======================================	== Betweenness Centrality	
0:0.05 1:0.03	2:0.01 3:0.01	4 : 0.00
5 : 0.01 6 : 0.00	7:0.00 8:0.00	9:0.03
10:0.08 11:0.10	12 : 0.02	14 : 0.03
15 : 0.06	17 : 0.01 18 : 0.01	19 : 0.03

====== Eigenvector Centrality

0:0.26	1 : 0.14	2:0.09	3 : 0.17	4 : 0.11
5 : 0.07	6 : 0.11	7 : 0.04	8 : 0.13	9 : 0.12
10 : 0.25	11 : 0.22	12 : 0.19	13 : 0.19	14 : 0.19
15 : 0.18	16 : 0.18	17 : 0.14	18 : 0.16	19 : 0.15