Teoria kategorii

Weronika Jakimowicz

Lato 2024/25

Spis treści

1	Początek końca		1
	24.02.2025	Podstawowe definicje	1
	1.	Przykłady kategorii	1
	2.	Funktory	2
	25.02.2025	cos	5

Początek końca

W 1945 Eilenberg oraz Mac Lane napisali książkę "General theory of natural equivalences". Jest to powszechnie uznawane jako początek ery abstrakcyjnego nonsenu.

24.02.2025 Podstawowe definicje

1. Przykłady kategorii

Definicja 1.1: kategoria

Kategoria (lokalnie mała) C składa się z:

- obiektów Ob(C)
- oraz zbiorów morfizmów dla wszystkich par $A, B \in \mathsf{Ob}(\mathcal{C})$ oznaczanego $\mathcal{C}(A, B) = \mathsf{Hom}_{\mathcal{C}}(A, B)$, które spełniają:
 - id_X ∈ C(X, X)
 - składają się w dobry sposób, tzn. mamy dobrze określone odwzorowanie

$$\mathcal{C}(A, B) \times \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C)$$
,

które jest łączne.

Powiemy, że kategoria jest mała, jeśli jej obiekty są zbiorem, a nie klasą.

Dla wygody oznaczymy

$$\mathcal{C}_0 := \mathsf{Ob}(\mathcal{C})$$

a jako C_1 będziemy rozumieć wszystkie morfizmy w kategorii C.

Rozważmy kilka prostych przykładów kategorii.

Przykłady

- 1. Kategoria Set, której obiekty Set_0 to wszystkie zbiory, a Set_1 to funkcje między zbiorami z normalnym składaniem funkcji.
- 2. Set_* to kategoria zbazowanych zbiorów, tzn. jej obiektami są pary (X, x_0) , gdzie X to zbiór, a $x_0 \in X$. Morfizmy muszą wtedy zachowywać wyróżniony punkt: $f: (X, x_0) \to (Y, y_0)$, $f(x_0) = y_0$.

- 3. Top to kategoria, której obiekty to przestrzenie topologiczne, a Top_1 to funkcje ciągłe między nimi.
- 4. Toph to kategoria przestrzeni topologicznych, w której morfizmy to klasy homotopii odwzorowań między przestrzeniami. To znaczy, jeśli $X, Y \in Ob(Toph)$ oraz $f_0, f_1: X \to Y$ jest ciągłym odwzorowaniem, dla którego istnieje ciągłe przekształcenie

$$F: X \times [0,1] \rightarrow Y$$

takie, że $F(x,0)=f_0(x)$ oraz $F(x,1)=f_1(x)$, to $f_0=f_1$ jako morfizm w kategorii Toph.

Pozostaje sprawdzić, że jeśli f, f' oraz g, g' to pary homotopijnie równoważnych odwzorowań, to wówczas $f \circ g$ jest homotopijnie równoważne $f' \circ g'$.

- 5. Kategoria *Hask*, której obiekty to typy w Haskelly, a morfizmy to klasy programów.
- 6. Kategoria relacji Rel, w której obiektami Rel_0 są zbiory, a morfizmami są podzbiory produktu, tzn. Rel(X,Y) zawiera wszystkie $S\subseteq X\times Y$. Wówczas składanie $S\subseteq X\times Y$ oraz $R\subseteq Y\times Z$ definiujemy jako zbiór

$$S \circ R = \{(x, z) : (\exists y \in Y) xRy \land ySz\},$$

gdzie xRy oznacza, że $(x,y) \in R$. Złożenie to działa jak połączenie dwóch relacji spójnikiem "i".

- 7. Niech R będzie tranzytywną i zwrotną relacją na zbiorze X. Definiujemy wtedy kategorię $\mathcal C$ o obiektach $\mathcal C_0=X$ będących elementami zbioru X, a morfizmy między $a,b\in X$ to zbiór 1-elementowy $\mathcal C(a,b)=\{\star\}$, gdy xRy jest prawdą lub zbiór pustym w przeciwnym wypadku.
 - Szczególnym przypadkiem tej kategorii jest topologia na przestrzeni topologicznej, gdzie relacja *R* to zawieranie zbiorów otwartych.
- 8. Graf skierowany tworzy kategorię, której obiektami są jego wierzchołki, a morfizmy to zorientowane ścieżki.

2. Funktory

Definicja 1.2: funktor

Funktor F między kategoriamii C a D

- każdemu obiektowi X kategorii \mathcal{C} przypisuje obiekt F(X) kategorii \mathcal{D}
- każdemu morfizmowi $\varphi\in\mathcal{C}(X,Y)$ przypisuje morfizm $F(\varphi):F(X)\to F(Y)$ w kategorii $\mathcal D$ taki, że

-
$$F(id_X) = id_{F(X)}$$

Przykład

koneser kategorii

 $Ab: Gr \to Ab$ to funktor między kategorią wszystkich grup a kategorią grup abelowych, który grupie G przypisuje jej abelianizację $Ab(G) = G/[G, G] = G^{ab}$.

Definicja 1.3: kategoria odwrotna

Przez **kategorię odwrotną** do kategorii C rozumiemy kategorię C^{op} , której

- obiekty to obiekty oryginalnej kategorii: $\mathsf{Ob}(\mathcal{C}^{\mathsf{op}}) = \mathsf{Ob}(\mathcal{C})$
- morfizmy C(X, Y) "odwracają się" $C^{op}(Y, X)$.

Mówimy, że funktor $F: \mathcal{C} \to \mathcal{D}$ jest **kowariantny**, a funktor $F: \mathcal{C} \to \mathcal{D}^{op}$ kontrawariantny.

Zdefiniujmy teraz **kategorię funktorów** między kategoriami \mathcal{C} a \mathcal{D} , $Fun(\mathcal{C}, \mathcal{D})$, której obiekty to wszystkie funktory $F: \mathcal{C} \to \mathcal{D}$, a morfizmy to φ takie, że dla dowolnych $X, Y \in \mathsf{Ob}\,\mathcal{C}$ oraz $f: X \to Y$ komutuje diagram

$$F(X) \xrightarrow{\varphi_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\varphi_Y} G(Y)$$

Zbiór morfizmów w tej kategorii oznaczymy Nat(F, G) - **naturalne przekształcenia** funktora F w funktor G.

Przykład

Cup product na kohomologiach $\cup: H^m(X) \otimes H^n(X) \to H^{m+n}(X)$ jest naturalnym przekształceniem między funktorami $H^m(-) \otimes H^n(-)$ i $H^{m+n}(-)$.

Definicja 1.4: równoważność kategorii

Powiemy, że kategorie \mathcal{C} i \mathcal{D} są **równoważne**, jeśli istnieją funktory $F:\mathcal{C}\to\mathcal{D}$ oraz $G:\mathcal{D}\to\mathcal{C}$ takie, że złożenie $F\circ G$ jest naturalnie izomorficzne do $Id_{\mathcal{D}}$, a $G\circ F$ - do $Id_{\mathcal{C}}$.

Przykład

Kategoria skończenie wymiarowych przestrzeni wektorowych nad ciałem k, $Vect_k^{fin}$, jest równoważna kategorii skończenie wymiarowych macierzy nad ciałem k, $Mat^{fin}(k)$.

25.02.2025 cos

Definicja 1.5: obiekt początkowy i końcowy

Powiemy, że obiekt $C \in C_0$ jest **początkowy**, jeśli dla każdego $D \in C_0$ istnieje dokładnie jeden morfizm $C \to D$, |C(C, D)| = 1. Analogicznie definiujemy **obiekt końcowy** C: $\forall D \in C_0 |C(D, C)| = 1$.

Przykłady

- 1. W kategorii, której obiektami jest odcinek $C_0 = [0, 1]$, a morfizmy to relacja \leq obiektem początkowym jest 0, a końcowym 1.
- 2. W kategorii zbiorów obiektem początkowym jest \emptyset , a obiektem końcowym jest singleton.
- 3. W Gr grupa trywialna jest zarówno obiektem początkowym jak i końcowym.
- 4. Kategoria, która ma dwa obiekty bez morfizmów między nimi nie ma obiektu końcowego ani początkowego.

Niech $F:\mathcal{I}\to\mathcal{C}$ będzie funktorem, gdzie o kategorii \mathcal{I} myślimy jako o kategorii indeksów. Przez $\mathcal{C}^{\mathcal{I}}$ oznaczmy kategorię wszystkich takich funktorów. Istnieje stały funktor, tzn. taki, że C(i)=C dla każdego $i\in\mathcal{I}_0$ oraz $C(f)=id_C$ dla każdego morfizmu.

Budujemy kategorię, której

• obiekty to wszystkie naturalne przekształcenia funktora F w funktory stałe C, $\varphi: F \implies C$, czyli komutujące diagramy (kostożki)

- a morfizmy to strzałki C o D takie, że diagram

komutuje.

Diagram wyżej można rozpisać jako:

Definicja 1.6: kogranica funktora

Kogranicą (*granica prosta*) funktora F, $\varinjlim F$, nazywamy obiekt początkowy w wyżej zdefiniowanej kategorii naturalnych przekształceń.

Diagram wyżej możemy zdualizować i zamiast rozpatrywać naturalne przekształcenia $\varphi: F \implies C$ możemy rozważyć naturalne przekształcenia $\varphi: C \implies F$, czyli diagramy (stożki)

z morfizmami definiowanymi analogicznie.

Definicja 1.7: granica funktora –

Granica (granica odwrotna) to obiekt końcowy powyższej kategorii stożków, lim F.

Rozważmy kategorię \mathcal{I} , która ma dwa obiekty $\mathcal{I}_0=\{0,1\}$. Niech $F:\mathcal{I}\to Set$ będzie funktorem, dla którego F(0)=A, a F(1)=B. Niech φ oraz ψ będzie parą naturalnych przekształceń, dla których

gdzie pionowa strzałka istnieje i jest jedyna, bo $\varinjlim F$ to obiekt końcowy. Podobnie zachowuje się $A \oplus B$:

Przykłady

1.

2. Rozważmy kategorię grup.

3. Niech $F: \mathcal{I} \to (P, \leq)$ z dwuobiektowej kategorii \mathcal{I} w zbiór uporządkowany.

kategoria nieskończenie wiele elementów, ale bez strzałek (jako \mathcal{I})

Niech C oraz C' będą granicami tego samego funktora. Z definicji mamy

tutaj liczby p-adyczne

ekwalizator, koekwalizator

Definicja 1.8: surjekcja, epimorfizm

Jeśli kategoria ma obiekt początkowy równy obiektowi końcowemu...

Monoid $(M, \star, 1)$ to struktura algebraiczna z binarną operacją oraz elementem neutralnym. Dodatkowo, komutować ma diagram

$$\begin{matrix} \mathsf{M}^3 & \xrightarrow{\star \times \mathsf{id}} & \mathsf{M}^2 \\ \mathsf{id} \times \star \downarrow & & \downarrow \star \\ & \mathsf{M}^2 & \xrightarrow{\star} & \mathsf{M} \end{matrix}$$

co znaczy, że działanie jest łączne.

Definicja 1.9: obiekt monoidalny, kategoria monoidalna

Niech $\mathcal C$ będzie kategorią z produktem i elementem początkowym. Niech $M\in\mathcal C$ będzie obiektem, dla którego mamy $\mu:M^2\to M$ oraz $\varepsilon:\{1\}\to M$ takie, że komutują diagramy

$$\begin{array}{c|c}
M^3 & \xrightarrow{\mu \times id} & M^2 \\
id \times \mu \downarrow & & \downarrow \mu \\
M^2 & \xrightarrow{\mu} & M \\
M & \xrightarrow{\varepsilon \times id} & M^2 \\
id \times \varepsilon \downarrow & \xrightarrow{\mu} & M \\
M^2 & \xrightarrow{\mu} & M
\end{array}$$

Wtedy M jest obiektem monoidalnym.

Obiekt monoidalny w kategorii Cat nazywa się kategorią monoidalną.

Przykłady

- 1. Dowolna kategoria ${\mathcal C}$ z koproduktem i elementem końcowym jest kategorią monoidalna.
- 2. Kategoria endofunktorów ma strukturę monoidalną. To znaczy, jeśli mamy dwa endofunktory $F, G \in End(\mathcal{C})$, to potrafimy je złożyć w dobry sposób. Funktor $T \in Func(\mathcal{C})$ oraz dwa naturalne przekształcenia $\mu: T^2 \to T$, $\varepsilon: Id \to T$, nazywa się monadą.

Czy $S^n \vee S^n$ to produkt czy produkt w kategorii $Toph_{\star}$. tutaj jakies zdjecie