ShcheniayevDA 11012025-105439

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = -0.4521 - 0.39275i$, $s_{31} = -0.40874 + 0.47051i$.

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -26 дБн 2) -28 дБн 3) -30 дБн 4) -32 дБн 5) -34 дБн 6) -36 дБн 7) -38 дБн
- 8) -40 дБн 9) 0 дБн

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 38 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 115 М Γ μ ?

Варианты ОТВЕТА:

1) 87.8 нГн 2) 141.9 нГн 3) 33.8 нГн 4) 54.5 нГн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 2.7 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 20 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 7.3 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 4.3 дБ 2) 4.9 дБ 3) 5.5 дБ 4) 6.1 дБ 5) 6.7 дБ 6) 7.3 дБ 7) 7.9 дБ
- 8) 8.5 дБ 9) 9.1 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 5?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

- 1) $\{23; -151\}$ 2) $\{13; -41\}$ 3) $\{18; -173\}$ 4) $\{18; -19\}$ 5) $\{28; -129\}$ 6) $\{13; 47\}$
- 7) $\{28; -41\}$ 8) $\{23; -195\}$ 9) $\{28; -195\}$

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 975 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 5 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 227 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3260 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1099 МГц до 1201 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -86 дБм 2) -89 дБм 3) -92 дБм 4) -95 дБм 5) -98 дБм 6) -101 дБм 7) -104 дБм
- 8) -107 дБм 9) -110 дБм

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 141 МГц, частота ПЧ 33 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 282 MΓ_{II}
- 2) 174 MΓ_{II}
- 3) 33 МГц
- 4) 390 MΓ_{II}.