Applications

Tutor: Lisette Espín-Noboa

Overview

Time: 15:30 - 16:30

15:30 - 16:05 Representative samples

■ Sampling bias & properties preserved

□ On synthetic networks

□ On real networks

16:05 - 16:40 Ranking inequalities

- Inequality
- Inequity
- Disparity

Literature

Non-exhaustive list of material covered in this section.

- Espín-Noboa, L., Wagner, C., Strohmaier, M., & Karimi, F. (2022). Inequality and inequity in network-based ranking and recommendation algorithms. Scientific reports, 12(1), 1-14.
- 2. Karimi, F., Génois, M., Wagner, C., Singer, P. & Strohmaier, M. Homophily influences ranking of minorities in social networks. Sci. Rep.8 (2018).
- 3. Stoica, A.-A., Riederer, C. & Chaintreau, A. Algorithmic glass ceiling in social networks: The effects of social recommendations on network diversity. In Proceedings of the 2018 World Wide Web Conference, 923–932 (2018).
- 4. Fabbri, F., Bonchi, F., Boratto, L. & Castillo, C. The effect of homophily on disparate visibility of minorities in people recommender systems. In Proceedings of the International AAAI Conference on Web and Social Media 14, 165–175 (2020).

Biases in sampling

Biases in sampling

(people with attributes)

(very big or proprietary)

Covered in this tutorial

Use case 1

Try multiple sampling methods and identify how representative that sample is compared to the whole network.

Use case 2

Identify the minimum sample size required per sampling method and type of network to achieve at most 20% error in classification.

Exercise

Open 3_exercise.ipynb

Alternatively, you can open the notebook from Google Colab (you need a Google account): bit.ly/snma2023-notebooks

- 1. Create 3 DPAH graphs
 - a. Make sure all of them have the same number of nodes n, edge density d, fraction of minority f_m, activities plo_M and plo m, and random seed seed.
 - b. Make sure they have the same level of homophily within the majority group (e.g., h_MM=0.5) and vary only the homophily within the minority group, for example:
 - i. Graph 1: h MM=0.5 and h mm=0.1
 - ii. Graph 2: h MM=0.5 and h mm=0.5
 - ii. **Graph 3**: h MM=0.5 **and** h mm=0.9
- 2. Make 6 random samples using the sampling techniques from netin.sampling.*
 - a. Make sure they all have the same pseeds (sample size)
- 3. Analysis:
 - a. Plot the graphs and the samples.
 - b. Plot the representation of groups for each sample
 - c. The CDF of the in_degree distribution and the CCDF of the pagerank distribution.
 - d. Which sample looks closest to the full data? Does it depend on h?

BONUS exercise

Open 3_exercise.ipynb

Alternatively, you can open the notebook from Google Colab (you need a Google account): bit.ly/snma2023-notebooks

(30 min)

- 1. Load the fb_friends network, and make sure it is a netin graph.
- 2. Get to know the data (.info())
- 3. Fit the PA, PAH, and the PATC models to the graph.
- 4. Visualize the graphs.
- 5. Compare their degree and pagerank distributions (plot the pdf and cdf).
- 6. Choose four sampling techniques and extract a sample for each network using a same sample size. What properties were preserved?

Ranking inequalities

Espín-Noboa, L., Wagner, C., Strohmaier, M., & Karimi, F. (2022). Inequality and inequity in network-based ranking and recommendation algorithms. *Scientific reports*, *12*(1), 1-14.

Measure:

0.06

n

0.37

0.37

25% (0.00)

(0.06)

Global

100%

Inequality vs. Inequity

Regions of disparity

Espín-Noboa et al. 2022

VIII

High inequality (skewed)

Low inequality (equality)

Inequality vs. Inequity in PageRank

As a function of Homophily and Fraction of minorities

1. In balanced networks, both groups are well represented if hmm = hMM

- 2. In unbalanced networks, minorities are well represented when majority is neutral and the minority is not too homophilic.
- 3. In unbalanced and homophilic networks, minorities are well represented when hmm > hMM.

Espín-Noboa et al. 2022

Inequality, Inequity, and disparity

Ranking inequalities

(people with attributes)

Ranking / RecSys. (PageRank or WTF)

Espín-Noboa, L., Wagner, C., Strohmaier, M., & Karimi, F. (2022). Inequality and inequity in network-based ranking and recommendation algorithms. *Scientific reports*, *12*(1), 1-14.

1. Identify network structure

Fraction min. fm=0.3

Node activity yM = ym = 3

Density d=0.0015

Homophily Maj. H_{MM}=0.8

Homophily min. H_{mm}=0.4

(Inequity is driven by homophily and fraction of minorities)

2. Identify inequality and inequity in ranking

OPEN Inequality and inequity in network-based ranking and recommendation algorithms

Lisette Espín-Noboa^{1,2,3}, Claudia Wagner^{⊙1,4,5}, Markus Strohmaier^{1,4,6} & Fariba Karimi^{1⊠}

On average minorities are under-represented in top-k's (Interventions needed)

Empirical Networks

Model selection (best fit)

Exercise

Open 4_exercise.ipynb

Alternatively, you can open the notebook from Google Colab (you need a Google account): bit.ly/snma2023-notebooks

(30 min)

Comparing the effect of homophily in ranking by pagerank

- 1. Create 9 DPAH graphs
 - a. Make sure all of them have the same number of nodes n, edge density d, fraction of minority f_m, activities plo M=plo m, and random seed seed.
 - b. Make sure they have different values of homophily h_MM and h mm as follows:
 - i. Graphs 1-3: h_MM=0.1 and h_mm \in {0.1, 0.5, 0.9}
 - i. Graphs 4-6: h_MM=0.5 and h_mm \in {0.1, 0.5, 0.9}
 - iii. Graphs 7-9: h_MM=0.9 and h_mm \in {0.1,
 0.5, 0.9}
- 2. Analysis:
 - a. Plot the edge-type counts
 - b. Plot the probability density function of their pagerank distributions
 - c. Plot the inequality of the pagerank
 - d. Plot the inequity of the pagerank
 - e. Plot the disparity of the pagerank.

Bonus exercise

Open 4_exercise.ipynb

Alternatively, you can open the notebook from Google Colab (you need a Google account): bit.ly/snma2023-notebooks

(30 min)

Comparing the effect of preferential attachment and homophily in ranking by pagerank

- 1. Generate 3 directed graphs; one for each model: DPA, DH, and DPAH
- 2. Make sure all of them have the same number of nodes n, edge density d, fraction of minority f_m, activities plo_M=plo_m, homophily h_MM and h_mm, and random seed seed, if applicable.
- 3. Plot the disparity of their pagerank.

Classification

(not covered today)

Network structure vs. Classification performance

- 1. Neutral networks (H=0.5) cannot be classified better than a random classifier.
- 2. Homophilic networks (H>0.5) achieve lower performance than heterophilic networks when samples are small.
- 3. **Denser networks** achieve higher performance compared to sparse networks.
- 4. Network size mainly affects ROCAUC variance. Larger networks produce more stable results. (not shown here)

Espín-Noboa et al. 2021

Not covered today.

Algorithmic bias

Biases in relational classification

Real-world social network

(people with attributes)

1. Identify network structure

Inference in OSNs via Lightweight Partial Crawls

Konstantin Avrachenkov INRIA Sophia Antipolis,France k.avrachenkov@inria.fr Bruno Ribeiro
Dept. of Computer Science
Purdue University
West Lafayette, IN, USA
ribeiro@cs.purdue.edu

Jithin K. Sreedharan INRIA Sophia Antipolis,France iithin.sreedharan@inria.fr

Class balance B=0.3 Homophily H=0.8

2. Identify ROCAUC range for that network

RESEARCH

Explaining Classification Performance and Bias via Network Structure and Sampling Technique

Lisette Espin-Noboa, Fariba Karimi, Bruno Ribeiro, Kristina Lerman and Claudia Wagner

Closing remarks Challenges & open questions

Tutor: Lisette Espín-Noboa

We need more realistic models!

We need more realistic models!

Stadfeld, Christoph, and Viviana Amati. "Network mechanisms and network models." Research Handbook on Analytical Sociology. Edward Elgar Publishing, 2021

http://networksciencebook.com/chapter/2#summary2

Do synthetic networks solve privacy issues for data sharing?

We appreciate your feedback. Thank you very much!

bit.ly/snma2023-survey