Linear models

Samraat Pawar

Department of Life Sciences (Silwood Park)

Imperial College London

LECTURE OUTLINE

- What is a linear model?
- How do we deal with variation?
- Is a linear model appropriate for the data?
- How well does a linear model explain the data?

Concepts:

- Types of variable: continuous versus categorical
- Terms and coefficients of a model
- Model residuals
- Significance testing

WHAT PREDICTS THE WEIGHTS (W) OF LECTURERS?

Use our *hypotheses* to identify the *variables* we collect...

- Height (h) in metres
- Exercise per week (e) in hours
- Gender (g)
- Distance from home to nearest Greggs bakery (d) in metres
- Ownership of a games console (c)

... and build a mathematical model:

$$w = \beta_1 + \beta_2 h + \beta_3 e + \beta_4 g_m + \beta_5 d + \beta_6 c_s + \beta_7 c_a + \varepsilon$$

Samraat Linear models 3 / 47

A COMBINATION OF FOUR COMPONENTS

- A response variable (w)
- A set of explanatory variables (h, e, g, d, c)
- A set of coefficients $(\beta_1 \beta_7)$
- A set of residuals (ε)

DIFFERENT TYPES OF VARIABLES

- The response variable is always continuous.
- The explanatory variables can be a mix of:
 - Continuous variables: height, exercise and distance.
 - Categorical variables: gender and console ownership.
- Categorical variables or factors have a number of levels:
 - Gender has two levels (Male / Female)
 - Console has three levels (None / Sofa-based / Active)

TERMS AND COEFFICIENTS

- Each explanatory variable is a term in the model
- Each term has at least one coefficient
- Continuous terms always have one coefficient
- Categorical Factors have N − 1 coefficients, where N is the number of levels (where are the missing coefficients??)

WAIT! WHY N-1? WHAT IS β_1 ?

$$w = \beta_1 + \beta_2 h + \beta_3 e + \beta_4 g_m + \beta_5 d + \beta_6 c_s + \beta_7 c_a + \varepsilon$$

- Two ways of thinking about β_1 :
 - Continuous variables: the y intercept
 - Factors: the baseline or reference value
- This baseline is the value for the first levels of each factor
- All response values start at this baseline
- All the other coefficients measure differences from β_1 :
 - along a continuous slope
 - as an offset to a different level

LINEAR MODELS ARE JUST A SUM

$$w = \beta_1 + \beta_2 h + \beta_3 e + \beta_4 g_m + \beta_5 d + \beta_6 c_s + \beta_7 c_a + \varepsilon$$

- Find the baseline value for women with no games console (β_1)
- The model tells us how much to add to this...
 - for a height of 1.82 metres?
 - for doing 150 minutes of exercise a week?
 - for being male?
 - for living 2416 metres from a Greggs?
 - for owning an Xbox?

EXAMPLES - ONE CONTINUOUS VARIABLE

$$y = \beta_1 x$$

$$\mathbf{4}=\mathbf{4}\times\mathbf{1}$$

$$8 = 4 \times 2$$

$$12=4\times3$$

$$16 = 4 \times 4$$

$$\beta_1 = 4$$

EXAMPLES - ONE CONTINUOUS VARIABLE

$$y = \beta_1 + \beta_2 x$$

$$9=5+4\times 1$$

$$13 = 5 + 4 \times 2$$

$$17 = 5 + 4 \times 3$$

 $21 = 5 + 4 \times 4$

$$\beta_1 = 5; \beta_2 = 4$$

EXAMPLES - ONE FACTOR

$$y = \beta_1 + \beta_2 g_m$$

$$2=2+3\times 0$$

$$2=2+3\times 0$$

$$2=2+3\times 0$$

$$\mathbf{5} = \mathbf{2} + \mathbf{3} \times \mathbf{1}$$

$$5 = 2 + 3 \times 1$$

$$\mathbf{5} = \mathbf{2} + \mathbf{3} \times \mathbf{1}$$

$$\beta_1 = 2; \beta_2 = 3$$

EXAMPLES - ONE CONTINUOUS VARIABLE AND ONE FACTOR

$$y = \beta_1 + \beta_2 x + \beta_3 g_m$$

$$3=1+2\times 1+3\times 0$$

$$5=1+2\times 2+3\times 0$$

$$7=1+2\times 3+3\times 0$$

$$6 = 1 + 2 \times 1 + 3 \times 1$$

$$8=1+2\times 2+3\times 1$$

$$10 = 1 + 2 \times 3 + 3 \times 1$$

$$\beta_1 = 1; \beta_2 = 2; \beta_3 = 3$$

Samraat Linear models 12 / 47

EXAMPLES - ONE CONTINUOUS VARIABLE AND ONE FACTOR

$$y = \beta_1 + \beta_2 x + \beta_3 g_m$$

$$3=1+2\times 1+3\times 0$$

$$5=1+2\times 2+3\times 0$$

$$7=1+2\times 3+3\times 0$$

$$6 = 1 + 2 \times 1 + 3 \times 1$$

$$8 = 1 + 2 \times 2 + 3 \times 1$$

$$10=1+2\times 3+3\times 1$$

$$\beta_1 = 1; \beta_2 = 2; \beta_3 = 3$$

Samraat Linear models 13 / 47

RESIDUALS: VARIATION IS EVERYWHERE

Rizzuto et al. 2017. Nat Ecol Evol

- Data always shows variation from a perfect model (deviations)
 - Missing variables (age, lab vs. field biology, time of day)
 - Measurement error
 - Stochastic variation

Samraat Linear models 14 / 47

RESIDUALS - VARIATION IS EVERYWHERE

$$y = \beta_1 + \beta_2 x$$

$$9.50 = ? + ? \times 1$$
 $11.00 = ? + ? \times 2$
 $19.58 = ? + ? \times 3$
 $20.00 = ? + ? \times 4$

No unique line through the points unless we impose some other constraint or condition

RESIDUALS - GUESS 1

$$y = \beta_1 + \beta_2 x + \varepsilon$$

$$9.50 = 12.52 + 1 \times 1 - 4.02$$
 $11.00 = 12.52 + 1 \times 2 - 3.52$
 $19.58 = 12.52 + 1 \times 3 + 4.06$
 $20.00 = 12.52 + 1 \times 4 + 3.48$

$$\beta_1 = 12.52; \beta_2 = 1$$

16 / 47

Samraat Linear models

RESIDUALS - GUESS 2

$$y = \beta_1 + \beta_2 x + \varepsilon$$

$$9.50 = -2.48 + 7 \times 1 + 4.98$$
 $11.00 = -2.48 + 7 \times 2 - 0.52$
 $19.58 = -2.48 + 7 \times 3 + 1.06$
 $20.00 = -2.48 + 7 \times 4 - 5.52$

$$\beta_1 = -2.48; \beta_2 = 7$$

Samraat Linear models 17 / 47

RESIDUALS: (ORDINARY) LEAST SQUARES SOLUTION

Minimize the *sum* of the *squared* residuals

WHY GUESS?: THE (ORDINARY) LEAST SQUARES SOLUTION

$$y = \beta_1 + \beta_2 x + \varepsilon$$

$$9.50 = 5 + 4 \times 1 + 0.50$$

 $11.00 = 5 + 4 \times 2 - 2.00$

$$19.58 = 5 + 4 \times 3 + 2.58$$

$$20.00 = 5 + 4 \times 4 - 1.00$$

$$\beta_1 = 5; \beta_2 = 4$$

Samraat Linear models 19 / 47

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 Observed values
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$
 Model matrix Residuals

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 Given these ... find the set of these...
$$\begin{bmatrix} 9.50 \\ 11.00 \\ 19.58 \\ 20.00 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} + \begin{bmatrix} 0.50 \\ -2.00 \\ 2.58 \\ -1.00 \end{bmatrix}$$
 ... that minimize the sum of the squares of these.

MODEL AS A MATRIX - PREDICTIONS

PREDICTED VALUES

$$\hat{\mathbf{y}} = \beta_1 + \beta_2 \mathbf{x}$$

$$9=5+4\times 1$$

$$13 = 5 + 4 \times 2$$

 $17 = 5 + 4 \times 3$

$$21 = 5 + 4 \times 4$$

ASSUMPTIONS

- Linear models have the following assumptions:
 - No measurement error in explanatory variables
 - The explanatory variables are not very highly correlated
 - The model is linear
 - The model has constant normal variance
- If these assumptions are not met, the model can be very wrong

ASSUMPTIONS

- Linear models have the following assumptions:
 - No measurement error in explanatory variables
 - The explanatory variables are not very highly correlated
 - The model is linear
 - The model has constant normal variance
- If these assumptions are not met, the model can be very wrong
- The last two need some further explanation

'THE MODEL IS LINEAR'

- These are *all* good linear models.
- Linear models can include curved relationships (e.g. polynomials)
- The data can be modelled as a sum of components
- A linear combination of variables and coefficients

the model

The data has a similar spread

around any predicted point in

- The residuals are normal
- Points should be spaced equally in the area under the curve
- Expect mostly small but a few larger residuals

- Three good models
 - Is the spread the same for all fitted values?
 - Do the residuals match the normal expectation?

- Three bad models
 - Is the spread the same for all fitted values?
 - Do the residuals match the normal expectation?

IS A LINEAR MODEL APPROPRIATE?

Plot the data! Plot the residuals!

HOW EXPLANATORY IS THE MODEL?

- Back to F and t tests! (Woohoo!)
- Terms: analysis of variance
 - Does the model explain enough variation?
 - Does each term explain enough variation?
- Coefficients: t tests
 - Are the coefficients different from zero?

NULL VS. OVER-SPECIFIED MODELS: TWO ENDPOINTS

- Total sum of squares (TSS): Sum of the squared difference between the observed dependent variable (y) and the mean of y (\bar{y}) , or, TSS = $\sum_{i=1}^{n} (y_i \bar{y})^2$ TSS tells us how much variation there is in the dependent variable
- Explained sum of squares (ESS): Sum of the squared differences between the predicted $y(\hat{y})$ and \bar{y} , or, ESS = $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ ESS tells us how much of the variation in the dependent variable our model was able to explain
- Residual sum of squares (RSS): Sum of the squared differences between the observed y and the predicted \hat{y} , or, RSS = $\sum_{i=1}^{n} (\hat{y}_i y_i)^2$ RSS tells us how much of the variation in the dependent variable our model could not explain
- Of course, TSS = ESS + RSS

◆ロト ◆回 ト ◆ 差 ト ◆ 差 ・ り へ

NULL VS. OVER-SPECIFIED MODELS: TWO ENDPOINTS

- The null model (H₀)
- Nothing is going on
- Biggest possible residuals
- Residual sum of squares (RSS) is as big as it can be

- The saturated model
- One coefficient per data point
- RSS is zero all the sums of squares are now explained (ESS)

Samraat Linear models 34 / 47

MORE INTERESTING MODELS

- Added a term with three levels
- Some but not all of the residual sums of squares are explained
- Is this enough to be interesting?

THE F STATISTIC

F VALUES BY CHANCE

- What is the distribution of F if nothing is going on?
- Simulate 10,000 datasets where nothing is going on (H_0 is true)
- Calculate F for each random dataset under H₁
- Mostly H₁ has a low F but sometimes it is high by chance

37 / 47

DISTRIBUTION OF F

• In our possibly interesting model, F = 4.52

DISTRIBUTION OF F

- In our possibly interesting model, F = 4.52
- 95% of the random data sets have $F \le 5.5$
- ullet A model this good is found by chance 1 in 16 times (p=0.063)
- Not quite interesting enough!

ARE COEFFICIENTS DIFFERENT FROM ZERO?

- The value of a coefficient in a model is an effect size
- How much does changing this variable change the response?
- A standard error estimates how precisely we know the value

Samraat Linear models 39 / 47

VARIATION IN EFFECT SIZE AND PRECISION

t VALUES BY CHANCE

- What is the distribution of t if nothing is going on?
- Simulate 10,000 datasets where nothing is going on (H_0 is true)
- Calculate t for each random dataset under H₁
- Mostly H_1 has a t near zero but can be positive or negative

DISTRIBUTION OF t

- 95% of the random data sets have $t < \pm 2.09$
- Only the two higher precision models are expected to occur less than 1 time in 20 by chance.

SUMMARY

- Linear models predict a continuous response variable
- A sum based on the effect size of explanatory variables
- Estimate the model using least squares residuals
- Need to check if the model is appropriate
- Then check if the model is explanatory

WHAT ABOUT ANALYSIS OF VARIANCE (ANOVA)?

- The null hypothesis (H_0): Nothing is going on
- The residuals have to get smaller as we include terms.
- How much shorter?

Samraat Linear models 44 / 47

EXAMPLES: ONE CONTINUOUS TERM

- An alternative model (H₁) using x
- Added one term (x) to the model to give (H_1)
- Do we reject H_0 and accept this new model?

EXAMPLES: ADDING A FACTOR

- Another model (H_2) using x and a factor f with three levels
- The sum of squares gets smaller again
- We've added one term (f) but two coefficients $(f_b$ and $f_c)$
- Is this even better than H_1 ?

CHANGE IN VARIANCE

		Model A	Model B	Model C
H_0	Unexplained SS	241.97	185.02	259.80
	Explained SS	0	0	0
H_1	Unexplained SS	241.97	173.21	62.95
	Explained SS	0.00	11.81	196.85
H_2	Unexplained SS	238.07	123.75	25.05
	Explained SS	3.9	61.27	234.75