Final Exam Algebra III

Bennett Rennier bennett@brennier.com

Group I

Ex 1. Prove or disprove: If M is an R-module and N is a submodule of M such that N and M/N are both semi-simple, then M is also semi-simple.

Proof. This is false. Consider $R = k[x]/(x^2)$ for some field k. Then $(x) = Rx \simeq R$ and $R/(x) \simeq R$ are both simple as R-modules (and hence, semi-simple). However, I claim that (x) is the only simple submodule of M, so M cannot be semi-simple. In fact, $\{0\}, (x)$, and R itself are the only submodules of R.

To prove this, let S be a submodule of R such that $S \neq (x)$ and $S \neq \{0\}$. Since (x) is simple and $S \cap (x)$ is a submodule of (x), we have that $S \cap (x) = \{0\}$ or $S \cap (x) = (x)$. If $S \cap (x) = \{0\}$, then S contains a element not in (x); however, all such elements are invertible, so it must be that S = R. If $S \cap (x) = (x)$, then $(x) \subsetneq S$. Again, this means that S contains an element not in (x) and so S = R.

Ex 3.

- a) If I is a two-sided ideal of R such that $J(R/I) = \{0\}$, prove that $J(R) \subseteq I$.
- b) If I is a (proper) maximal two-sided ideal of R, prove that $J(R) \subseteq I$.

Proof.

- a) The conclusion is trivial in the case that I=R so we shall assume that $I\neq R$. Let $x\in J(R)$. This means that 1-rx is invertible for all $r\in R$. As the canonical surjection $R\to R/I$ is a non-zero homomorphism (this is where we need that $I\neq R$), it preserves units. This means $1-rx+I\in R/I$ is invertible as well for all $r\in R$, implying that $x+I\in J(R/I)$. Since the Jacobson radical of J(R/I) is trivial, it must be then that x+I=0+I, proving that $x\in I$. Thus, $J(R)\subseteq I$.
- b) Let I be a (proper) maximal two-sided ideal of R. By the Lattice Correspondence Theorem, the two-sided ideals of R/I are in correspondence with the two-sided ideals of R which contain I. As I is a maximal two-sided ideal of R, this means that R/I only has trivial two-sided ideals. Thus, as the Jacobson radical is a two-sided ideal, we know that $J(R/I) = \{0\}$ or J(R/I) = R/I. It cannot be the latter as 1 is never in the Jacobson radical (the element $1 r \cdot 1$ is not invertible for r = 1). Thus, it must be that $J(R/I) = \{0\}$, and so $J(R) \subseteq I$ as proven in part (a).
- Ex 4. If R is artinian, prove that J(R) is the intersection of all maximal two-sided ideals of R.

Proof. First, we shall prove that for semi-simple rings, the intersection of all maximal two-sided ideals is trivial. Let R be semi-simple. By Artin-Wedderburn, this means that $R \simeq \bigoplus_{i \leq k} M_{n_i}(D_i)$ where each D_i is a skew-field. We recall that skew-fields are simple and that matrix algebras over simple rings are simple. Thus, if k = 1, then the only two-sided maximal ideal of R is $\{0\}$. If k > 1, then $M_{n_1}(D_1) \oplus \{0\}$ and $\{0\} \oplus M_{n_2}(D_2)$ are two-sided ideals of R that have trivial intersection. Thus, in either case, the intersection of all maximal two-sided ideals is $\{0\}$.

Now, to solve the original problem. Let R be an artinian ring. Since R is artinian, so is the quotient R/J(R). Also, as $J(R/J(R)) = J(R)/J(R) = \{0\}$, we know that R/J(R) is semi-simple. By the previous paragraph, we have that the intersection of all maximal two-sided ideals of R/J(R) is trivial. Using the correspondence theorem of maximal ideals between R and R/J(R), we obtain that the intersection of all maximal two-sides ideals containing J(R) is J(R). But by Ex 3, every maximal two-sided ideal contains J(R). Thus, J(R) must be equal to the intersection of all maximal two-sided ideals.

Ex 5. Assume that R is simple as a left R-module. Prove or disprove: R is a skew-field.

Proof. I claim that R is indeed a skew-field. Since R is simple as a R-module, we have that R is semi-simple as a ring. By Artin-Wedderburn, this implies that $R \simeq \bigoplus_{i \leq k} M_{n_i}(D_i)$ where each D_i is a skew-field. As R is simple as an R-module, it must be that k = 1, otherwise $M_1(D_1)$ is a proper R-submodule. Additionally, if $R \simeq M_n(D)$ and n > 1, then the subset $\{(a_{ij}) \in M_n(D) : a_{ij} = 0 \text{ for } j \neq 1\}$ (i.e. the set of all matrices whose only non-zero entries are in the first column) forms a left ideal and is thus a (left) $M_n(D)$ -submodule, which contradicts the simplicity of R as a R-submodule. Thus, it must be that n = 1, proving that $R \simeq D$ where D is a skew-field.

Group II

Ex 1. Let G_1 and G_2 be two (not necessarily finite) groups and $G = G_1 \times G_2$ be their direct product. Prove that the k-algebras k[G] and $k[G_1] \oplus_k k[G_2]$ are isomorphic.

Proof. We will write the canonical bases of $k[G_1]$, $k[G_2]$, and k[G] as $\{e_g : g \in G_1\}$, $\{e_h : h \in G_2\}$, and $\{e_{(g,h)} : (g,h) \in G_1 \times G_2 = G\}$ respectively. Now let $\phi_1 : k[G_1] \to k[G]$ be the map where $\phi_1(e_g) = e_{(g,1)}$ for all $g \in G_1$. Similarly, let $\phi_2 : k[G_2] \to k[G]$ be the map where $\phi_2(e_h) = e_{(1,h)}$ for all $h \in G_2$. Since G_1 and G_2 commute in $G = G_1 \times G_2$, we see that $e_{(g,1)}e_{(1,h)} = e_{(g,h)} = e_{(1,h)}e_{(1,g)}$. This means that the images of ϕ_1 and ϕ_2 commute, so by the universal property, $\phi : k[G_1] \oplus_k k[G_2] \to k[G]$ where $\phi(e_g \oplus e_h) = \phi_1(e_g)\phi_2(e_h) = e_{(g,1)}e_{(1,h)} = e_{(g,h)}$ is a well-defined k-algebra homomorphism. Additionally, as ϕ sends the basis $\{e_g \otimes e_h : g \in G_1, h \in G_2\}$ to the basis $\{e_{(g,h)} : g \in G_1, h \in G_2\}$, it must be that ϕ is an isomorphism of k-algebras.

Ex 3.

- a) Let D be a finite-dimensional central k-division algebra and a, b elements of D with minimal polynomials $\mu_{a|k}(x)$, $\mu_{b|k}(x) \in k[x]$. If $\mu_{a|k}(x) = \mu_{b|k}(x)$, prove that there exists an element $d \in D^*$ with $b = dad^{-1}$.
- b) Will the claim in (a) remain true if we only assume that D is a central simple finite-dimensional k-algebra? Why or why not?

Proof.

a) We define the k-algebra homomorphisms $\phi: k[a] \to D$ and $\psi: k[b] \to D$ by requiring $\phi(a) = a$ and $\psi(b) = b$ respectively. Since a and b have the same minimal polynomial, then $k[a] \simeq k[b]$ via the map f which sends a to b. This means that ϕ and $\psi \circ f$ are both k-algebra homomorphisms from the simple k-algebra k[a] to the central simple k-algebra D. Thus, by Skolem-Noether, these maps are conjugate, that is $(\psi \circ f)(x) = d\phi(x)d^{-1}$ for some $d \in D^*$. In particular when x = a we obtain that

$$dad^{-1} = d\phi(a)d^{-1} = (\psi \circ f)(a) = \psi(f(a)) = \psi(b) = b$$

as we wanted.

b) Yes, the above proof still works as Skolem-Noether only requires that D be a central simple algebra.

Ex 4. Let D be a finite-dimensional k-division algebra and assume that $\dim_k(D)$ is square-free. Prove that D is a field.

Proof. Let K = Z(D), which is a field. This means that D is a central, simple K-algebra. If we let \overline{K} be the algebraic closure of K, then $D_K = \overline{K} \otimes_K D$ is also simple and so $D_{\overline{K}} \simeq M_n(\overline{K})$ by Artin-Wedderburn. This means that

$$\dim_k(D) = [k:K] \dim_K(D) = [k:K] \dim_{\overline{K}}(D_K) = [k:K] \dim_{\overline{K}}(M_n(\overline{K})) = [k:K] n^2.$$

But $\dim_k(D)$ is square-free, so it must be that n=1. This implies that $\dim_K(D)=1$ and so D=K, a field.

Ex 5.

- a) Construct two inequivalent irreducible complex representations of degree 2 of D_{10} , the dihedral group of order 10.
- b) Write down $\mathbb{C}[D_{10}]$ as a product of simple \mathbb{C} -algebras. Give arguments for your answer.

Proof.

a) We see that we can represent $D_{10} = \langle s, r : r^5 = s^2 = (sr)^2 = e \rangle$ as $\phi : D_{10} \to M_2(\mathbb{C})$ where

$$r \mapsto \begin{bmatrix} e^{2\pi i/5} & 0 \\ 0 & e^{-2\pi i/5} \end{bmatrix} \quad ; \quad s \mapsto \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

We can also represent D_{10} as $\psi: D_{10} \to M_2(\mathbb{C})$ where

$$r \mapsto \begin{bmatrix} e^{4\pi i/5} & 0 \\ 0 & e^{-4\pi i/5} \end{bmatrix} \quad ; \quad s \mapsto \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

These are indeed representations as $\phi(r)^5 = \phi(s)^2 = \phi(sr) = \mathrm{Id}_n$ and $\psi(r)^5 = \psi(s)^2 = \psi(sr) = \mathrm{Id}_n$. Since $\phi(r)$ is a rotation by an angle that is not $k\pi$ for some integer k, it has no invariant subspaces. This proves that ϕ and ψ are both irreducible.

Suppose ϕ and ψ are equivalent. That is, suppose there's an invertible matrix $M: \mathbb{C}^2 \to \mathbb{C}^2$ such that $M\phi(r) = \psi(r)M$ and $M\phi(s) = \psi(s)M$. If we let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then we see that

$$\begin{bmatrix} ae^{2\pi i/5} & be^{-2\pi i/5} \\ ce^{2\pi i/5} & de^{-2\pi i/5} \end{bmatrix} = M\phi(r) = \psi(r)M = \begin{bmatrix} ae^{4\pi i/5} & be^{4\pi i/5} \\ ce^{-4\pi i/5} & de^{-4\pi i/5} \end{bmatrix}.$$

However, this implies that $a=ae^{2\pi i/5}$, $b=be^{\pi i/5}$, $c=ce^{-\pi i/5}$, and $d=de^{-2\pi i/5}$. Since the only complex number that is preserved under a non-identity rotation is 0, we can conclude that a=b=c=d=0. This is a contradiction to our assumption that M was invertible. Thus, ϕ and ψ must be inequivalent representations.

b) As $|D_{10}| = 10$ and $\operatorname{char}(\mathbb{C}) = 0$, $\mathbb{C}[D_{10}]$ is semi-simple by Maschke's Theorem. By Artin-Wedderburn, it follows that $\mathbb{C}[D_{10}] \simeq \bigoplus_{i \leq \ell} M_{n_i}(D_i)$, where each D_i is a \mathbb{C} -division algebra. However, as \mathbb{C} is algebraically-closed, it must be that $D_i = \mathbb{C}$ for every $i \leq \ell$. Additionally, each of these simple $\mathbb{C}[D_{10}]$ -modules corresponds to an irreducible complex representation of D_{10} . Since there are two representations of degree two, it must be that two of the direct summands are $M_2(\mathbb{C})$. As $\mathbb{C}[D_{10}]$ has dimension 10, our only option is that that $\ell = 4$ and that $n_3 = n_4 = 1$, i.e.

$$\mathbb{C}[D_{10}] \simeq M_2(\mathbb{C}) \oplus M_2(\mathbb{C}) \oplus \mathbb{C}^2.$$