pB. 甜甜圈星球

Description

在長得很像甜甜圈的甜甜圈星球上住著一個螞蟻王國,N隻螞蟻在星球表面巡邏著,維護螞蟻王國的安全。

甜甜圈的表面可以展開成平面,我們用一個 $L \times L$ 的棋盤格來表示甜甜圈星球上的座標,其中每一列從上到下編號是 1 到 L,每一行從左到右編號是 1 到 L,第 i 列第 j 行的方格以座標 (i,j) 表示。螞蟻在一個方格上可以往上下左右的相鄰方格移動,而因為甜甜圈星球是甜甜圈星球,棋盤格的上下邊界和左右邊界是相連的,所以如果螞蟻移動後超出 $L \times L$ 的範圍,他會出現在棋盤格另一邊的邊界,也就是說:

- 如果螞蟻在方格 (1,y) 往上方移動,他會移動到方格 (L,y)
- 如果螞蟻在方格 (L,y) 往下方移動,他會移動到方格 (1,y)
- 如果螞蟻在方格 (x,1) 往左方移動,他會移動到方格 (x,L)
- 如果螞蟻在方格 (x, L) 往右方移動,他會移動到方格 (x, 1)

某天清晨,N 隻螞蟻們會各自選一個不同的位置站好,並從上下左右四個選項裡決定一個方向,接下來這隻螞蟻將會往這個方向每秒移動一格。具體來說,第i 隻螞蟻的初始位置在方格 (x_i,y_i) ,移動方向可以用 $d_i \in \{U,D,L,R\}$ 表示,分別代表這隻螞蟻會往上、下、左、或是右方移動。

如果以下兩件事情的其中之一發生了,我們說兩隻螞蟻彼此「相遇」:

- 兩隻螞蟻想要移動到相同的格子
- 兩隻螞蟻在不同的格子,一秒後互相移動到對方所在的格子

雖然螞蟻們都有巡邏任務在身,但路上遇到同事時難免還是要寒暄幾句。作為蟻后的你為了評估衛兵們工作時有多摸魚,決定統計在接下來的 K 秒內,所有螞蟻們總共會相遇幾次。

Input

輸入的第一行是三個以空白分隔的整數 N,L,K。接下來有 N 行,第 i 行是以空白分隔的 d_i,x_i,y_i 。

- $0 \le N \le 2 \times 10^5$
- $3 \le L \le 10^9$
- $0 \le K \le 10^9$

- $d_i \in \{\mathtt{U},\mathtt{D},\mathtt{L},\mathtt{R}\}$
- $1 \le x_i, y_i \le L$
- 對所有 $i \neq j$, $(x_i, y_i) \neq (x_j, y_j)$

Output

輸出一行一個整數,代表所有螞蟻們在接下來的 K 秒內總共相遇幾次(含第 K 秒)。

Sample 1

Input	Output
8 5 1	3
R 2 1	
D 1 2	
R 3 4	
U 2 5	
R 4 1	
L 4 3	
L 5 1	
R 5 5	

每一隻螞蟻的初始位置如下圖所示,箭頭方向代表一隻螞蟻的移動方向。

		行				
		1	2	3	4	5
	1		+			
	2	\rightarrow				↑
列	3				\rightarrow	
	4	\rightarrow		\leftarrow		
	5	\leftarrow				\rightarrow

Sample 2

Input	Output
3 3 1	3
R 2 1	
D 1 2	
L 2 3	

每一對螞蟻之間的相遇次數請分開計算。

Sample 3

Input	Output
3 3 1	2
R 2 1	
L 2 2	
D 1 2	

Sample 4

Input	Output
4 3 7	8
D 1 3	
D 1 2	
R 2 1	
L 2 2	

Sample 5

Input	Output
4 3 0	0
D 1 3	
D 1 2	
R 2 1	
L 2 2	

Sample 6

Input	Output
9 3 7	12
R 3 3	
D 1 3	
L 2 3	
U 3 1	
R 1 1	
U 2 1	
L 3 2	
U 1 2	
D 2 2	

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	0%	範例測試資料
2	15%	$N, L, K \le 500$
3	40%	$N, K \le 500$
4	40%	$N, K \le 2000$
5	4%	$N \le 2000$
6	1%	無特別限制

Hint 1

本題測試資料量大,建議使用 scanf 進行輸入。若使用 std::cin 輸入,請在 main 函式第一行加上 ios_base::sync_with_stdio(0); cin.tie(0);,且請勿跟 scanf 混用,以免造成 Time Limit Exceeded。

Hint 2

本題實做上推薦使用 C++ 內建的資料結構 std::set 和 std::map。