Manjushree Manchhindra Kolhe

Task 1

Supervised Machine Learning Algorithm

Objective :- To predict the score in exam if student study for 9.25 hours in a day

Simple Liner Regression

In this regression task we will predict the scores of student based on number of hours they study Here predict variable is score and responce variable is hours of study

In [1]:

```
import numpy as np #import Libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

```
path="http://bit.ly/w-data" # import data
data=pd.read_csv(path)
data.head()
```

Out[2]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

Basic Statistic of Dataset

In [3]:

```
print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
    Column Non-Null Count Dtype
            -----
                            ____
0
            25 non-null
                            float64
    Hours
 1
    Scores 25 non-null
                            int64
dtypes: float64(1), int64(1)
memory usage: 528.0 bytes
None
```

Interpretation: - Given data set contain 25 data entry and there is no any null value present in data

In [4]:

```
print(data.describe()) # description of data
```

```
Hours
                    Scores
count 25.000000 25.000000
       5.012000
                 51.480000
mean
                 25.286887
std
       2.525094
       1.100000 17.000000
min
25%
       2.700000
                 30.000000
50%
       4.800000 47.000000
75%
       7.400000 75.000000
       9.200000 95.000000
max
```

Visualization

In [5]:

```
sns.relplot(x='Hours',y='Scores',data=data) # Visualisation of data
plt.title("Hours V/s Score")
plt.show()
```


From above scatter plot we see that there is stright line relationship between Hours as Scores

In [6]:

```
sns.catplot("Hours",data=data,kind='box')
sns.catplot("Scores",data=data,kind='box')
```

Out[6]:

<seaborn.axisgrid.FacetGrid at 0x54219d0>

There is no any outlier present in data set so we can do analysis

In [7]:

```
cor=data.corr() #correlation of data
cor
```

Out[7]:

	Hours	Scores
Hours	1.000000	0.976191
Scores	0.976191	1.000000

In [8]:

```
sns.heatmap(cor,annot=True)
plt.show()
```


From above heatmap and cor table we clearly see that the is strong positive correlation between Hours as Score

In [9]:

sns.distplot(data['Scores'],hist=False) # plotting the distributin of score of the data

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0xb34f700>

From above kde plot we can see that Score distributed normally

Preparing the Data

```
In [10]:
x=data.iloc[:,:-1].values
y=data.iloc[:,1].values
```

Train Test Split

```
In [11]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
```

In [12]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
model=reg.fit(x_train,y_train)
```

In [13]:

```
print(model.coef_),print(model.intercept_)
```

```
[9.91065648]
2.018160041434683
Out[13]:
(None, None)
```

The best fit of line is

Score = 2.018 + 9.912 * Hours

In [15]:

```
line=model.intercept_+model.coef_*x #plotting the regression line
plt.scatter(x,y,color='black')
plt.plot(x,line,color='red')
plt.show()
```


Prediction

```
In [16]:
```

```
y_pred=model.predict(x_test)
y_pred
```

Out[16]:

array([16.88414476, 33.73226078, 75.357018 , 26.79480124, 60.49103328])

In [17]:

```
pd.DataFrame({'Actual':y_test,'Predict':y_pred}) #comparing actual versus predicted
```

Out[17]:

	Actual	Predict
0	20	16.884145
1	27	33.732261
2	69	75.357018
3	30	26.794801
4	62	60.491033

In [18]:

```
Hours=9.25
Predict_Score=model.predict([[Hours]])
Predict_Score
print('Number of Hours=9.25')
print("Predict Score=",format(Predict_Score[0]))
```

Number of Hours=9.25 Predict Score= 93.69173248737538

In [19]:

```
from sklearn import metrics #mean square error
print('Mean Absolute Error:',round(metrics.mean_absolute_error(y_test,y_pred)),3)
print('Mean Squared Error:',round(metrics.mean_squared_error(y_test,y_pred)),3)
print('Root Mean Squared Error:',round(np.sqrt(metrics.mean_squared_error(y_test,y_pred)),3
```

Mean Absolute Error: 4.0 3 Mean Squared Error: 22.0 3 Root Mean Squared Error: 4.647

The value of root mean Squared error is 4.647 which is less than 10% of the mean of percentage of all the student (51.48)

In [20]:

```
from scipy import stats # R- squared value
slope,inter,r,p,std=stats.linregress(y_test,y_pred)
print('R-Squared Value:',r)
```

R-Squared Value: 0.9806835759589493

Here R-Squared = 0.9806 means the model explain 98.06% of variability in the dependent variable (Score) by independent Variable(Hours)

Thank you