

Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Amend claims 1, 3, 12 and 13 by replacement as follows:

1. (amended) A compound of the formula (la), (lb) or (lc)

 $Q_1 = X_1$ $Q_1 = X_2 = Q_1$ $Q_1 = X_2 = Q_2$ (Ic) (lb) (la)

in which Q_1 is a benzofuran-2-one of the formula (IIa), and

Q, is a benzoluran-2-one of the formula (IIb)

in which

 R_1 , R_2 , R_3 , R_4 , R_{100} , R_{200} , R_{300} or R_{400} independently of one another are hydrogen, halogen, hydroxyl, cyano, ether, nitro, an amine, amide imine, urethane, sulfonamide, ester, carboxylic acid or sulfonic acid radical or carboxylic salt, sulfonic salt or substituted or unsubstituted C1-C24 alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, C_6 - C_{24} aryloxy, C_6 - C_{24} arylthio, A_5 - A_{18} heteroaryl, A_s - A_{18} heteroaryloxy or A_s - A_{18} heteroarylthio, or

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 or R_{100} and R_{200} , or R_{200} and R_{300} , R_{300} and R_{400} , independently of one another in each case together are divalent, substituted or unsubstituted radicals, such as polycyclic radicals or 1,3-butadien-1,4-ylene or -CH=CH-NH-, the two last radicals forming an additional fused-on 5- or 6-membered ring, and

 X_1 is a hydrazone or imine radical, with the proviso that, if R_1 , R_2 , R_3 and R_4 are hydrogen, or at least one R₁, R₂, R₃ or R₄ is methyl, the hydrazone radical is excluded or, if R₁, R₂, R₃ or R₄ is hydrogen, X_1 is not phenylimine- or 4-dimethylamine-phenylimine, or X₁ is a methylene radical,

MAR -6 2001 TECHNOLOGY CENTER 1700

$$=c^{\circ}$$

Sub 131

in which

is a substituted or unsubstituted primary or secondary amine radical and Q_4 is hydrogen or substituted or unsubstituted C_1 - C_{24} alkyl, -CO- $(C_1$ - C_{24} alkyl), -CO-O- $(C_1$ - C_{24} alkyl), C_1 - C_2 alkyl, -CO- $(C_1$ - C_2 alkylthio,

 C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, -CO- C_6 - C_{24} aryl), -CO- C_6 - C_{24} aryl), C_6 - C_{24} aryloxy, a primary or secondary amine radical, C_6 - C_{12} arylthio, C_7 - C_{25} aralkyl, A_5 - A_{18} heteroaryl, A_5 - A_{18} heteroaryloxy or A_5 - A_{18} heteroarylthio, or

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl barbituric acid, isoindolinone or isoindoline radical, with the proviso that

 Q_4 is not hydrogen and if R_3 is hydrogen, methoxy or hydroxyl and R_1 , R_2 and R_4 are hydrogen, or Q_4 is not hydrogen and Q_3 is not a secondary amine radical if R_1 , R_2 , R_3 and R_4 are hydrogen, and

X, is a tetravalent 5- or 6-membered heterocyclic ring, or is

in which

X₃ is a single bond, unsubstituted or substituted &-C₂₄ arylene, A₅-A₁₈ heteroarylene,

1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene, or a tetravalent polyether, polyimine, polyamine radical, or bi(C_6 - C_{24}) arylene bi(A_5 - A_{18}) heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24}) arylene, bi(A_5 - A_{18}) heteroarylene of C_2 - C_{24} alkenylene can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO $_2$ - or -NR $_{42}$ V, in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl or A_5 - A_{18} heteroaryl with the proviso that if R_1 , R_2 , R_3 , R_4 , R_{100} , R_{200} , R_{300} , R_{400} are all tert-butyl or hydrogen and Q_5 and Q_6 are hydrogen, X_3 is not 1,4-phenylene, and

Q_s and Q₆ independently of one another are hydrogen, C₆-C₂₄aryl, C₆-C₂₄aryloxy, C₁-C₂₄alkyl, C₁-C₂₄ alkoxy, C₁-C₂₄alkylthio, C₂-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₆-

W

Sub Bl

 C_{24} aryl, C_6 - C_{24} aryloxy, C_6 - C_{24} arylthio or A_5 - A_{18} heteroaryl, A_5 - A_{18} heteroaryloxy, A_5 - A_{18} heteroarylthio,

$$X_2$$
 is Q_7 Q_8 Q_8 Q_8

in which

 Q_7 and Q_8 independently of one another are Q_5 or Q_6 , and

 X_4 is C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, a polymethylidene or divalent polyether, polyimine, polyamine radical, or bi(C_6 - C_{24}) arylene, bi(A_5 - A_{18}) heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24}) arylene, bi(A_5 - A_{18}) heteroarylene or C_2 - C_{24} alkenylene can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or NR₄₂-,

or
$$X_{2} \text{ is } = N-NH-X_{4}-HN-N \text{ or } = N-N \text{ or }$$

3. (amended) A compound according to any one of claims 1 and 2, of the formula (XVII)

$$R_{112}$$
 R_{113}
 R_{63}
 R_{64}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

12

in which,

if n is 1

R₆₄ independently of R₆₃ is a radical as defined under R₆₃ or is hydrogen, and

 R_{63} is substituted or unsubstituted $C_1 - C_{12}$ alkyl, $C_5 - C_{12}$ cycloalkyl, $C_2 - C_6$ alkenyl,

 C_6 - C_{12} aryl, C_7 - C_{13} aralkyl, or A_5 - A_{12} heteroaryl, and

if n is 2

 R_{63} is unsubstituted or substituted C_6 - C_{18} arylene, A_5 - A_{18} heteroarylene, C_5 - C_6 cycloalkyl or a divalent polymethylidene, polyether, polyimine, polyamine radical, or bi(C_6 - C_{24}) arylene,

bi (A_s-A_{18}) heteroarylene, C_2-C_{24} alkenylene, in which

 $bi(C_6-C_{24})$ arylene, $bi(A_5-A_{18})$ heteroarylene or C_2-C_{24} alkenylene can be interrupted and/or connected

to one another by a direct bond or by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-, with the proviso that if R₁₂, R₁₃, R₁₁₂ and R₁₁₃ are hydrogen or at least one R₁₂, R₁₃, R₁₁₂ and R₁₁₃ is methyl, the hydrazone radical is excluded,

or

a compound of the formula (XXIV)

$$\begin{bmatrix}
R_{13} & R_{113} & R_{77} \\
R_{112} & R_{12}
\end{bmatrix}$$
(XXIV)

in which, if n is 1,

 R_{77} is substituted or unsubstituted C_1 - C_{12} alkyl, C_5 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_6 - C_{12} aryl, C_7 - C_{13} aralkyl or A_5 - A_{12} heteroaryl, with the proviso that in formula (XXIV), if R_{12} , R_{112} , R_{13} or R_{113} are hydrogen, R_{77} is not unsubstituted phenylimine or 4-dimethylaminephenylimine,

a compound of the formula (XXV)

$$R_{113}$$
 R_{113}
 R_{79}
 R_{79}
 R_{79}
 R_{79}
 R_{79}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}

in which

if n is 1

 R_{78} , R_{78} , and R_{79} independently of one another are hydrogen or substituted or unsubstituted C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkylthio, C_5 - C_6 cycloalkoxy,

 C_s - C_ϵ cycloalkylthio, C_ϵ - C_{24} aryloxy, C_ϵ - C_{24} arylthio or A_s - A_{12} heteroaryloxy, A_s - A_{12} heteroarylthio, C_s - C_ϵ cycloalkyl, C_2 - C_{12} alkenyl, C_ϵ - C_{12} aryl, C_7 - C_{13} aralkyl, or A_s - A_{12} heteroaryl, or dependently of one another are hydrogen, and

if n is 2

 R_{78} and R_{79} are as defined above when n is 1, and

 R_{78} is a direct bond or substituted or unsubstituted C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, C_5 -

 C_{12} cycloalkyl or bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene can be interrupted by a direct bond or by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -SO-, -SO₂- or -NR $_{42}$ -, in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl, or

a compound of the formula (XXVI)

$$\begin{bmatrix} R_{13} & R_{81} \\ R_{12} & O & O \end{bmatrix} R_{82}$$

$$(XXVI)$$

2

in which

if n is 1

 R_{81} is a substituted or unsubstituted primary or secondary amine radical and R_{82} is hydrogen or unsubstituted or substituted C_1 - C_{12} alkyl, -CO- $(C_1$ - C_{24} alkyl), -CO- $(C_1$ - C_{24} alkyl), C_6 - C_{12} aryloxy, C_1 - C_{12} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_2 - C_{12} alkenyl, a primary or secondary amine radical, C_6 - C_{18} aryl, -CO- $(C_6$ - C_{24} aryl), -CO- $(C_6$ - C_{24} aryl), C_6 - C_{18} aryloxy, C_6 - C_{18} arylthio or A_5 - A_{12} heteroaryl, A_5 - A_{12} heteroaryloxy, A_5 - A_{12} heteroarylthio, or R_{81} and R_{82} together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical,

with the proviso that R_{82} is not hydrogen and R_{81} is not a primary or secondary amine radical if R_{13} is hydrogen, methoxy or hydroxyl and R_{12} , R_{112} and R_{113} are hydrogen, or R_{82} is not hydrogen and R_{81} is not a secondary amine radical if R_{12} , R_{112} , R_{13} and R_{113} are hydrogen, and

if n is 2

 R_{82} is a single bond, an unsubstituted or substituted C_6 - C_{18} arylene, especially 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene or (A_5-A_{18}) heteroarylene or bi (C_6-C_{24}) arylene, especially biphenylene, bi (A_5-A_{18}) heteroarylene, C_2-C_{24} alkenylene, in which bi (C_6-C_{24}) arylene, bi (A_5-A_{18}) heteroarylene or C_2-C_{24} alkenylene, can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -SO-, -SO₂- or -NR₄₂-, in which

09/518,464 - 6 - HW/P-21988/A

a2

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl with the proviso that if R_{12} , R_{112} , R_{13} , R_{113} and R_{81} are hydrogen, R_{82} is not 1,4-phenylene.

12. (amended) A composition consisting of from 2 to 10, preferably 2 or 3, compounds of the formulae (Ia), (Ib) and/or (Ic) according to claim 1, and/or (XLIa) and/or (XLIb) according to claim 9, and/or dimeric benzofuran-2-ones of the formulae (XLIIa) and/or (XLIIb)

$$R_3$$
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_3
 R_4
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7

A3

or

$$R_{3}$$
 R_{2}
 R_{100}
 R_{200}
 R_{100}
 R_{200}
 R_{100}
 R_{200}
 R_{200}

in which

 X_2 is (C_6-C_{24}) arylene, (A_5-A_{18}) heteroarylene or a divalent polymethylidene, polyether, polyimine, polyamine radical, or bi (C_6-C_{24}) arylene or bi (A_5-A_{18}) heteroarylene, the bi (C_6-C_{24}) arylene or bi (A_5-A_{18}) heteroarylene radical being attached directly or via a substituted or unsubstituted carbon, nitrogen, oxygen or (-N=N-)-diradical, with the proviso that if R_1 , R_2 , R_3 , R_4 , R_{100} , R_{200} , R_{300} and R_{400} are hydrogen, X_2 is not CH- (C_6H_4) -CH.

13. (amended) A composition of matter comprising a high molecular weight organic material and a compound of the formula (la) according to claim 1 in which

 X_1 is X_{10} , where X_{10} is a substituted or unsubstituted hydrazone or imine radical, or

is a methylene radical

$$=c^{Q_3}_{Q_2}$$

in which

or

13

Q₃ and Q₄ are Q₆ and Q₇ and independently of one another are hydrogen or substituted or unsubstituted C₁-C₂₄alkyl, -CO-(C₁-C₂₄alkyl), -CO-O-(C₁-C₂₄alkyl), C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, a primary or secondary amine radical, C₆-C₂₄aryl, -CO-O-(C₆-C₂₄aryl), -CO-(C₆-C₂₄aryl), C₆-C₂₄aryloxy, C₆-C₁₂arylthio, C₇-C₂₅aralkyl or A₅-A₁₈heteroaryl, or

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical,

a composition according to claim 12, (XLIa) or (XLIb) according to claim 9, in a colouringly effective amount.