Wprowadzenie do RL 4

Zadanie 1

Rozważmy ciągły MDP przedstawiony na poniższym rysunku:

Rozważmy dwie deterministyczne polityki π_{RIGHT} i π_{LEFT} określające wybór w stanie 1. Jaka polityka jest <u>optymalna</u> dla: $\gamma = 0$, $\gamma = 0.9$, $\gamma = 0.5$?

UWAGA: Przed przystąpieniem do zadań 2 i 3 zapoznaj się z zawartością pliku COLAB_instrukcja.pdf.

Zadanie 2

Zapoznaj się z notatnikiem FrozenLake_1.ipynb (otwórz go w Colab) i wykonaj polecenia 1, 2 i 3 widoczne w spisie treści notatnika:

Table of contents FrozenLake 1 Wprowadzenie Dynamika Polecenie 1 (do uzupełnienia) Poruszanie i wizualizacja Polecenie 2 (do uzupełnienia) Ruch agenta w pętli Polecenie 3 (do uzupełnienia)

Zadanie 3

Zapoznaj się dokładnie z notatnikiem **FrozenLake_2.ipynb**. Jeżeli to konieczne wróć do notatnika **FrozenLake_1.ipynb**. Jeżeli czegoś nie będziesz rozumiał – zapytaj w czasie zajęć!!!

Wykonaj 2 polecenia z notatnika FrozenLake_2.ipynb oraz napisz program implementujący poniższy algorytm iteracyjnego obliczenia polityki dla środowiska FrozenLake w celu znalezienia wartości oczekiwanych zwrotu V(s) dla każdego stanu s przy zadanej polityce π .

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop: \Delta \leftarrow 0 Loop for each s \in \mathbb{S}: v \leftarrow V(s) V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \Delta \leftarrow \max(\Delta, |v - V(s)|) until \Delta < \theta
```

Przyjmij, że **polityka stochastyczna** π określa jednakowe prawdopodobieństwo dla każdej akcji: $\forall a \ \pi(a|s) = 1/4$. Przetestuj program dla różnych wartości parametru γ np. 1, 0.9, 0.5.

Wskazówki do programu znajdziesz w notatniku FrozenLake_2.ipynb.