Last name	
First name	

LARSON—OPER 731—HOMEWORK WORKSHEET 08 Barycentric Coordinates

Let X^1 , X^2 , and X^3 be non-collinear points in the plane. Let X^* be a point in the triangle formed by these points. There are unique non-negative real numbers λ_1 , λ_2 , λ_3 which sum to 1, where

$$X^* = \lambda_1 X^1 + \lambda_2 X^2 + \lambda_3 X^3.$$

The tuple $(\lambda_1, \lambda_2, \lambda_3)$ is called the *barycentric coordinates* of X^* .

- 1. Let $X^1=(1,1), X^2=(3,2),$ and $X^3=(2,4).$ Find the barycentric coordinates of the point $X^*=(2,3).$
- 2. Prove that the barycentric coordinates of this point are unique.
- 3. Find a formula for the barycentric coordinates of an arbitrary point X^* in the triangle formed by arbitrary non-colinear points X^1 , X^2 , and X^3 in the plane.