

Overfitting: Classification Example

- Assume:
 - You want to separate 2 classes using 2 features x_1, x_2
 - The true class boundary has a parabola shape
- You can use logistic regression and a decision boundary equal to:
 - A line logit($w_0 + w_1x + w_2y$)
 - Underfit
 - · High bias, low variance
 - A parabola logit($w_0 + w_1x + w_2x^2 + w_3xy + w_4y^2$)
 - Right fit
 - A wiggly decision boundary logit(w_0 + high powers of x_1, x_2)
 - Overfit
 - Low bias, high variance

Under-fitting

Appropirate-fitting

• Bias Variance Analysis

VC Analysis vs Bias-Variance Analysis

- \bullet Both VC analysis and bias-variance analysis are concerned with the hypothesis set ${\mathcal H}$
 - VC analysis:

$$E_{out} \leq E_{in} + \Omega(\mathcal{H})$$

• Bias-variance analysis

$$E_{out} = bias + variance$$

VC Analysis

 $E_{
m out}$ $E_{
m in}$ bias

Number of Data Points, N

Bias-Variance Analysis

Hypothesis Set and Bias-Variance Analysis

- Learning consists in finding $g \in \mathcal{H}$ such that $g \approx f$ where f is an unknown function
- The tradeoff in learning is between:
 - Bias vs variance
 - Overfitting vs underfitting
 - More complex vs less complex \mathcal{H} / h
 - Approximation (in-sample) vs generalization (out-of-sample)

Decomposing Error in Bias-Variance (1/4)

Problem

- Regression set-up: target is a real-valued function
- Hypothesis set $\mathcal{H} = \{h_1(\underline{x}), h_2(\underline{x}), ...h_n(\underline{x})\}$
- Training data \mathcal{D} with N examples
- Squared error $E_o ut = \mathbb{E}[(g(\underline{x}) f(\underline{x}))^2]$
- Choose the best function $g \in \mathcal{H}$ that approximates unknown f
- Question
 - What is the out-of-sample error $E_{out}(g)$ as function of \mathcal{H} for a training set of N examples?

Decomposing Error in Bias-Variance (2/4)

 The final hypothesis g depends on training set D, so make the dependency explicit g^(D):

$$E_{out}(g^{(D)}) \triangleq \mathbb{E}_{\mathbf{x}}[(g^{(D)}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^2]$$

- Interested in:
 - Hypothesis set ${\cal H}$ rather than specific h
 - Training set D of N examples, rather than a specific D
- Remove dependency from D by averaging over all possible training sets D with N examples:

$$E_{out}(\mathcal{H}) \triangleq \mathbb{E}_D[E_{out}(g^{(D)})] = \mathbb{E}_D[\mathbb{E}_{\underline{x}}[(g^{(D)}(\underline{x}) - f(\underline{x}))^2]]$$

Decomposing Error in Bias-Variance (3/4)

Switch the order of the expectations since the quantity is non-negative:

$$E_{out}(\mathcal{H}) = \mathbb{E}_{\underline{\mathbf{x}}}[\mathbb{E}_D[(g^{(D)}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^2]$$

- Focus on $\mathbb{E}_D[(g^{(D)}(\underline{x}) f(\underline{x}))^2]$ which is a function of \underline{x}
- Define the average hypothesis over all training sets as:

$$\overline{g}(\underline{\mathbf{x}}) \triangleq \mathbb{E}_D[g^{(D)}(\underline{\mathbf{x}})]$$

• Add and subtract it inside the \mathbb{E}_D expression:

$$\begin{split} E_{out}(\mathcal{H}) = & \mathbb{E}_{\underline{x}} \left[\mathbb{E}_{D} \left[\left(g^{(D)}(\underline{x}) - f(\underline{x}) \right)^{2} \right] \right] \\ = & \mathbb{E}_{\underline{x}} \mathbb{E}_{D} [\left(g^{(D)} - \overline{g} + \overline{g} - f \right)^{2}] \\ = & \mathbb{E}_{\underline{x}} \mathbb{E}_{D} [\left(g^{(D)} - \overline{g} \right)^{2} + (\overline{g} - f)^{2} + 2 \left(g^{(D)} - \overline{g} \right) (\overline{g} - f)] \\ (\mathbb{E}_{D} \text{ is linear and } (\overline{g} - f) \text{ doesn't depend on } D) \\ = & \mathbb{E}_{\underline{x}} \left[\mathbb{E}_{D} [\left(g^{(D)} - \overline{g} \right)^{2} \right] + (\overline{g} - f)^{2} + 2 \mathbb{E}_{D} [\left(g^{(D)} - \overline{g} \right)] (\overline{g} - f)] \end{split}$$

Decomposing Error in Bias-Variance (4/4)

• The cross term:

$$\mathbb{E}_D[(g^{(D)}-\overline{g})](\overline{g}-f)$$

disappears since applying the expectation on D, it is equal to:

$$(g^{(D)} - \mathbb{E}_D[\overline{g}])(\overline{g} - f) = 0 \cdot (\overline{g} - f) = 0 \cdot \text{constant}$$

• Finally:

$$\begin{split} E_{out}(\mathcal{H}) &= \mathbb{E}_{\underline{x}}[\mathbb{E}_D[(g^{(D)} - \overline{g})^2] + (\overline{g}(\underline{x}) - f(\underline{x}))^2] \\ &= \mathbb{E}_{\underline{x}}[\mathbb{E}_D[(g^{(D)} - \overline{g})^2]] + \mathbb{E}_{\underline{x}}[(\overline{g} - f)^2] \quad (\mathbb{E}_{\underline{x}} \text{ is linear}) \\ &= \mathbb{E}_{\underline{x}}[\text{var}(\underline{x})] + \mathbb{E}_{\underline{x}}[\text{bias}(\underline{x})^2] \\ &= \text{variance} + \text{bias} \end{split}$$

Interpretation of Average Hypothesis

The average hypothesis over all training sets

$$\overline{g}(\underline{\mathbf{x}}) \triangleq \mathbb{E}_D[g^{(D)}(\underline{\mathbf{x}})]$$

can be interpreted as the "best" hypothesis from $\mathcal H$ training on N samples

- Note: \overline{g} is not necessarily $\in \mathcal{H}$
- In fact it's like ensemble learning:
 - Consider all the possible data sets D with N samples
 - Learn g from each D
 - Average all the hypotheses

Interpretation of Variance and Bias Terms

• The out-of-sample error can be decomposed as:

$$E_{out}(\mathcal{H}) = bias^2 + variance$$

Bias term

$$\mathsf{bias}^2 = \mathbb{E}_{\mathbf{x}}[(\overline{g}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^2]$$

- Does not depend on learning as it is not a function of the data set D
- Measures how limited H is
 - I.e., the ability of ${\mathcal H}$ to approximate the target with infinite training sets
- Variance term

$$\mathsf{variance} = \mathbb{E}_{\underline{\mathbf{x}}} \mathbb{E}_D[(g^{(D)}(\underline{\mathbf{x}}) - \overline{g}(\underline{\mathbf{x}}))^2]$$

- Measures variability of the learned hypothesis from D for any x
 - With infinite training sets, we could focus on the "best" g, which is \overline{g}
 - But we have only one data set D at a time, incurring a cost

Optimal fit

→ Model complexity

Variance and Bias Term Varying Cardinality of ${\cal H}$

• If hypothesis set has a single function:

$$\mathcal{H} = \{h \neq f\}$$

- Large bias
 - h might be far from f
- Variance = 0
 - No cost in choosing hypothesis

$$\mathcal{H} = \{\text{many hypotheses } h\}$$

- Bias can be 0
 - E.g., if $f \in \mathcal{H}$
- Large variance
 - Depending on data set D, end up far from f
 - Larger \mathcal{H} , farther g from f

Bias-Variance Trade-Off: Numerical Example

Machine learning problem:

- Target function $f(x) = \sin(\pi x), x \in [-1, 1]$
- Noiseless target
- You have $f(\underline{x})$ for N=2 points
- Two hypotheses sets \mathcal{H} :
 - Constant model: $\mathcal{H}_0: h(x) = b$
 - Linear model: $\mathcal{H}_1: h(x) = ax + b$
- Which model is best?
 - Depends on the perspective!
 - Best for approximation: minimal error approximating the sinusoid
 - Best for *learning*: learn the unknown function with minimal error from 2 points

Bias-Variance Trade-Off: Numerical Example

Approximation

- $E_{out}(g_0) = 0.5$
 - g₀ is a constant and approximates the sinusoid poorly (higher bias)
- $E_{out}(g_1) = 0.2$
 - g₁ is a line and has more degrees of freedom (lower bias)
- The line model approximates better than the constant model

Learning

- Algorithm:
 - Pick 2 points as training set D
 - Learn g from D
 - Different D gives different g
 - Compute $\mathbb{E}_D[E_{out}(g)]$
- Average over all data sets D:

$$E_{out} = bias^2 + variance$$

- $E_{out}(g_0) = 0.5 + 0.25 = 0.75$
 - g₀ is more stable from the data set (lower variance)
- $E_{out}(g_1) = 0.2 + 1.69 = 1.9$
 - g₁ heavily depends on the training set (higher variance)

Bias-Variance Curves

- Bias-variance curve are plots of E_{out} increasing the complexity of the model
 - Can diagnose bias-variance problem
- Typical form of bias-variance curves
- E_{in} and E_{out} start from the same point
- E_{in}
 - Is decreasing with increasing model complexity
 - Can even go to 0
 - Is shaped like an hyperbole
- E_{out}
 - Is always larger than E_{in}
 - Is the sum of bias and variance
 - Has a bowl shape
 - Reaches a minimum for optimal fit
 - Before the minimum there is a

How to Measure the Model Complexity

- Number of features
- Parameters for model form / degrees of freedom, e.g.,
 - VC dimension d_{VC}
 - Degree of polynomials
 - k in KNN
 - ν in NuSVM
- Regularization param λ
- Training epochs for neural network

Bias-Variance Curves and Regularization

- We can use a complex model together with regularization to learn at the same time:
 - The model coefficients w
 - \bullet The model "complexity" (e.g., VC dimension), which is related to the regularization parameter λ
- For each different values of $\lambda = \{10^{-1}, 1.0, 10\}$ we optimize:

$$\underline{\boldsymbol{w}}\lambda = \operatorname{argmin}_{\boldsymbol{w}} E_{\operatorname{aug}}(\underline{\boldsymbol{w}}) = E_{\operatorname{in}}(\underline{\boldsymbol{w}}) + \Omega(\lambda)$$

- $\underline{\mathbf{w}}(\lambda)$ is the optimal model as function of λ
- Then estimate E_{out} using $\underline{\boldsymbol{w}}(\lambda)$ and λ
 - Small λ means
 - · Complex model (with respect to data)
 - Low bias
 - High variance
 - Large λ means
 - Simple model
 - High bias
 - Low variance
- There will be an intermediate value of λ that optimizes the trade-off

Bias-Variance Decomposition with a Noisy Target

• We can extend the bias-variance decomposition to the noisy target

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}} + \varepsilon$$

With similar hypothesis and a similar analysis we conclude that:

$$\begin{split} E_{out}(\mathcal{H}) &= \mathbb{E}_{D,\underline{x}} \left[(g^{(D)} - \overline{g})^2 \right] + \mathbb{E}_{\underline{x}} \left[(\overline{g} - f)^2 \right] + \mathbb{E}_{\varepsilon,\underline{x}} \left[(f - y)^2 \right] \\ &= \text{variance} + \text{bias} \left(= \text{deterministic noise} \right) + \text{stochastic noise} \end{split}$$

- Interpretation:
 - The error is the sum of 3 contributions
 - 1. Variance: from the set of hypotheses to the centroid of the hypothesis set
 - 2. Bias: from the centroid of the hypothesis set to the noiseless function
 - 3. Noise: from the noiseless function to the real function

Bias as Deterministic Noise

- The bias term can be interpreted as "deterministic noise"
 - Bias is the part of the target function that our hypothesis set cannot capture:

$$h^*(\underline{x}) - f(\underline{x})$$

where

- $h^*()$ is the best approximation of $f(\underline{x})$ in the hypothesis set \mathcal{H}
- E.g., $\overline{g}(x)$
- ullet The hypothesis set ${\cal H}$ cannot learn the deterministic noise since it is outside of its ability, and thus it behaves like noise

Deterministic vs Stochastic Noise in Practice

- In bias-variance analysis, the error for a noisy target is decomposed into:
 - Bias (deterministic noise)
 - Variance
 - Stochastic noise
- Deterministic noise:
 - Fixed for a particular x
 - ullet Depends on ${\cal H}$
 - Independent of ε or D
- Stochastic noise:
 - Not fixed for x
 - Independent of D or \mathcal{H}
- In an actual machine learning problem, there's no difference between stochastic and deterministic noise, since \mathcal{H} and D are fixed
 - E.g., from the training set alone, we cannot tell if the data is from a noiseless complex target or a noisy simple target

Deterministic vs Stochastic Noise Example

- 2 targets:
 - Noisy low-order target (5-th order polynomial)
 - Noiseless high-order target (50-th order polynomial)
 - Generate N = 15 data points from them
- 2 models:
 - \mathcal{H}_2 low-order hypothesis (2nd order polynomial)
 - \mathcal{H}_{10} high-order hypothesis (10-th order polynomial)
- When learning a model there is no difference between deterministic and stochastic noise
- In fact the learning algorithm only sees the samples in the training set and one cannot distinguish the two different sources
- For noisy low-order target: going from fitting the 2nd order to the 10-th order polynomial we see that $\downarrow E_{in}$ (we have more degrees of freedoms) and $\uparrow \uparrow E_{out}$ (since the 10-th polynomial fits the noise)
- For noiseless high-order target: exactly the same phenomenon!
- SCIENCE ACAKABAWing that the target is a 10-th order polynomial, one can think that $_{
 m 21/22}$

Amount of Data and Model Complexity

- The lesson learned from bias-variance analysis is that one must match the model complexity:
 - To the data resources
 - To the signal to noise ratio
 - Not to the target complexity
- The rule of thumb is:

 $d_{VC}(\text{degrees of freedom of the model}) = N(\text{number of data points})/10$

- In other words, 10 data points needed to fit a degree of freedom
- If the data is noisy, you need even more data

