(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-4985A) (P2002-4985A) (43)公開日 平成14年1月9日(2002.1.9)

(51) Int. Cl. ⁷	識別記号		FΙ			テーマコード(参考)
* *	11/08		F 0 2 N	11/08	F	3G084
	·				N	3G092
					V	3G093
F 0 2 D	13/02		F 0 2 D	13/02	H	3G301
	•				J	
	審査請求 未請求 請求項の数3	ΟL			(全8頁)	最終頁に続く
(21)出願番号	特願2000-181742(P2000-181	742)	(71)出願人	. 00000628 三菱自動	86 b車工業株式会	会社
(22)出願日	平成12年6月16日(2000.6.16)	東京都港区芝五丁目33番8号			
			(72)発明者 ·	乾 敏男東京都港工業株式	医芝五丁目3	3番8号 三菱自動車
			(72)発明者	上田 克東京都港工業株式	基区芝五丁目3	33番8号 三菱自動車
			(74)代理人		22 長門 侃二	
						最終頁に続く

(54) 【発明の名称】筒内噴射型内燃機関の始動装置

(57) 【要約】

【課題】 通常のクランキングなしで筒内噴射型内燃機 関の始動を確実なものとする。

【解決手段】 始動装置は、エンジン1の停止時にクランク角センサ10およびカム角センサ12からの信号に基づき膨張行程にある気筒を検出し、その気筒内に燃料噴射弁4から所定の燃料を噴射する。エンジン1を始動させるときは、点火栓6に対して点火を指令して膨張気筒に燃焼を生起させ、その燃焼圧だけで始動を行う。始動装置はこのとき、エンジン1の始動が成功していればスタータ14を非作動とすることができ、一方、始動が不完全であればスタータ14を補助的に作動させて始動を完全にするフェールセーフ機能を有している。

20

【特許請求の範囲】

【請求項1】 燃焼室内に直接燃料を噴射可能な筒内噴射型内燃機関において、

前記内燃機関をクランキングさせるための電動機と、 前記内燃機関の運転が停止した状態で膨張行程にある気 筒を検出する気筒検出手段と、

前記検出した膨張行程にある気筒内に燃料を噴射する噴 射制御手段と、

前記膨張行程にある気筒内に燃焼を生起させて前記内燃 機関を始動させる始動手段と、

前記始動手段による前記内燃機関の始動状態に応じて前 記電動機の作動を制御する電動機制御手段とを具備した ことを特徴とする筒内噴射型内燃機関の始動装置。

【請求項2】 車両に搭載されて車両を駆動するとともに、燃焼室内に直接燃料を噴射する機能を有した筒内噴射型内燃機関において、

車両の運転状態を検出する運転状態検出手段と、

前記検出した運転状態に基づき所定の停止条件が成立したとき、前記内燃機関を自動的に停止させる自動停止手 段と、

前記自動停止手段により前記内燃機関の運転が停止されたとき、膨張行程にある気筒を検出してその気筒内に燃料を噴射する噴射制御手段と、

前記自動停止手段による停止後に前記運転状態に基づき 所定の始動条件が成立したとき、前記膨張行程にある気 筒内で燃焼を生起させて前記内燃機関を自動的に始動さ せる始動手段と、

前記内燃機関をクランキングさせるための電動機と、 前記始動手段による前記内燃機関の始動状態に応じて前 記電動機の作動を制御する電動機制御手段とを具備した 30 ことを特徴とする筒内噴射型内燃機関の始動装置。

【請求項3】 前記内燃機関の排気弁の開弁時期を可変とする可変バルプタイミング機構と、

少なくとも前記膨張行程にある気筒について排気弁の開 弁時期を遅らせるべく前記可変バルブタイミング機構の 作動を制御する開弁制御手段とを更に備えたことを特徴 とする請求項1または2に記載の筒内噴射型内燃機関の 始動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、筒内噴射型内燃機 関を始動させるのに適した始動装置に関するものであ る。

[0002]

【従来の技術】この種の筒内噴射型内燃機関の始動に関する技術としては、例えば特開平11-159374号公報に記載された内燃機関のスタート方法が挙げられる。この公知のスタート方法は、内燃機関の始動に際して膨張(作業)行程をとっている燃焼室内に燃料を噴射し、その燃焼エネルギにより内燃機関の始動に必要な動 50

力を得ようとするものである。具体的には、内燃機関の 停止状態で噴射した燃料に点火し、その爆発力だけで始 動を行うことによりスタータモータによるクランキング を完全に省略するか、あるいは、スタータモータによる クランキングを1~3回転程度行った後に燃料を噴射し て点火し、クランキング時間を短縮化して消費電力を低 減しようとするものである。

[0003]

【発明が解決しようとする課題】しかしながら、この種の内燃機関は所定の熱サイクルに従って定常運転が可能であるところ、その運転を停止した状態では、膨張行程にある気筒内の圧力条件は、それ以前の吸気行程および圧縮行程にて行われた一連の吸気仕事および圧縮仕事との関連性を欠いた状態にある。すなわち、内燃機関の運転を停止すると、筒内に充填および圧縮された空気が筒外へ流出し、その筒内圧は低下する。このような状態で膨張行程にある気筒内に燃焼を形成させたとしても、その燃焼から内燃機関の熱サイクルに見合うだけの膨張仕事を得ることは難しい。

【0004】このため、公知のスタート方法により得られる燃焼圧は、通常の無負荷運転で得られる燃焼圧に比較して小さいものとなり、例えば多気筒型の内燃機関にあっては、他の圧縮行程にある気筒の圧縮圧に打ち勝ってピストンを押し下げることができない場合もある。このような状況にあっては、圧縮行程にある気筒でピストンが上死点を超えることができないため、もはや内燃機関の確実な始動を保証し得るものとはいえない。一方、1~3回転程度のクランキングを行ってから燃料を噴射するスタート方法では、内燃機関の停止状態からスタータモータによりクランキングを行っている分、依然として省電力化の余地が大きい。

【0005】そこで本発明は、内燃機関における始動の 確実性を担保するとともに、電力の消費をも最小限に抑 えることができる筒内噴射型内燃機関の始動装置を提供 するものである。

[0006]

【課題を解決するための手段】本発明の筒内噴射型内燃機関の始動装置(請求項1)は、内燃機関の運転が停止した状態で膨張行程にある気筒を検出し、その気筒内に40燃料を噴射して燃焼を生起させることにより内燃機関の始動を行うものであるが、このとき、その始動状態に応じてクランキング用の電動機の作動を制御するものとしている。

【0007】上述したとおり、内燃機関の停止状態で膨張行程にある気筒内に燃焼を生起させた場合、その燃焼圧だけで完爆させることができる場合もあれば、燃焼圧の不足により始動が不完全となる場合も起こり得る。このため、電動機の制御においては始動状態が成功(完爆)であれば特に電動機を作動させる必要はなく、一方、始動状態が不完全である場合は電動機を作動させ、

10

クランキングを付け足すことで始動を確実にするものである。なお、本発明の始動装置によるクランキングは、 燃焼ガスがピストンを押し下げる力を補助するものであるから、その完全な停止状態からのクランキングに比較 して使用電力が極めて小さい。

【0008】また、車両に搭載される筒内噴射型内燃機 関の場合、本発明の始動装置(請求項2)は車両の運転 状態を検出し、その運転状態に基づき所定の停止条件が 成立する場合に自動的に内燃機関の運転を停止する。特 に、本発明の始動装置は自動的に運転を停止させたと き、膨張行程にある気筒を検出してその気筒内に燃料を 噴射しておく。この後、運転状態に基づき所定の始動条 件が成立すると、その膨張行程にある気筒内で燃焼を生 起させて内燃機関を自動的に始動させるとともに、その 始動状態に応じて電動機の作動を制御する。

【0009】上述のように、内燃機関の運転を自動的に停止した場合に膨張行程にある気筒内に燃料を噴射しておけば、この後、始動条件が成立したときに点火を行うだけで速やかな始動が可能となる。この点火による燃焼圧だけで完爆していれば電動機を作動させる必要がなく、燃焼圧だけでは始動状態が不完全となる場合、電動機を作動させてクランキングを付け足すことより確実な始動が可能となる。

【0010】更に、本発明の筒内噴射型内燃機関の始動装置には、排気弁についての可変バルブタイミング機構およびその開弁制御手段を更に含めることができ(請求項3)、その開弁制御手段は、少なくとも膨張行程にある気筒について排気弁の開弁時期を遅らせるべく制御することができる。この場合、膨張行程にある気筒のピストンが下死点に達するまでの間は排気弁の開弁を抑制することで、燃焼ガスの効率的な膨張仕事が促進される。【0011】

【発明の実施の形態】本発明の一実施形態として、車両に搭載される筒内噴射型内燃機関の始動装置について説明する。ただし、本発明が適用される内燃機関の用途は車両用だけに限定されるものではない。図1を参照すると、筒内噴射型の内燃機関であるエンジン1はその筒内、つまり、燃焼室2内に直接燃料を噴射することができる燃料噴射弁4を備えている。またエンジン1は例えば、クランク角でみて180°CA毎に等間隔で爆発する直列4気筒型のレイアウトを有しており、その個々の気筒に燃料噴射弁4および点火栓6が設けられている。【0012】個々の気筒に対する燃料噴射および点火の時期は電子制御ユニット(ECU)8により電子制御ユニット(ECU)8により電子制御されており、具体的には、上述した燃料噴射弁4および点火栓6は、ECU8から出力される噴射パルス信号または点火信号に基づいて作動される。エンジン1にはクラ

ンク角センサ10およびカム角センサ12が取り付けら

れており、ECU8は噴射および点火時期を適正に判断

するため、クランク角センサ10から入力されるクラン 50

ク角信号を用いて演算処理を行うことができる。またE CU8はクランク角信号に加えて、カム角センサ12から入力されるカム角信号を用いて特定の行程にある気筒を判別することができ、例えば、圧縮行程で燃料を噴射する運転モードでは、圧縮行程にある気筒を判別して燃料噴射および点火時期を制御する。

【0013】更にECU8は上述した気筒判別の機能を用いて、例えばエンジン1が運転を停止した時に膨張行程にある気筒を検出することができ、その検出した気筒を記憶しておくことができる(気筒検出手段)。エンジン1にはクランキング用のスタータ(電動機)14が付設されており、例えばこのスタータ14はピニオン16をフライホイール18の外周に形成されたリングギヤに噛み合わせて駆動し、エンジン1をクランキングさせることができる。なお、ピニオン16はリングギヤと常時噛み合うタイプであってもよい。

【0014】また、フライホイール18の外周には、その周方向に等角度幅のベーン(図示しない)が一定角度の間隔で形成されており、これらベーンの角度幅とその20 取付間隔は等しく(例えば30°)、その半分の角度(例えば15°)だけ互いに位相をずらして2つのピストンポジションセンサ20が配置されている。これらピストンポジションセンサ20は個々のベーンの通過に伴い、オンまたはオフの信号を形成してECU8に入力することができる。

【0015】エンジン1が運転を停止するとき、その直前にECU8はオン/オフ信号の立ち上がりおよび立ち下がりをカウントすることで、各気筒毎にピストン22がクランク角でみてどの位置(*ATDC,*BTDC)に停止したかを検出することができる。なお、本発明の発明者等が行った観測によれば、通常4気筒型のエンジン1では圧縮気筒と膨張気筒との筒内圧のつり合いから、例えば膨張行程にある気筒のピストン22は100ATDC近傍の位置に停止する頻度が高いという特性が明らかとなっている。

【0016】エンジン1はその他に、例えば排気弁24の開弁時期を変更可能とする可変バルブタイミング機構26を備えている。この可変バルブタイミング機構26は、例えば油圧式アクチュエータを用いてカム軸(何れも図示していない)の位相を変位させ、所定の範囲内で開弁時期を遅角または進角させることができる。可変バルブタイミング機構26の油圧式アクチュエータには、オイルコントロールバルブ28を通じて作動油圧の給排路が接続されており、オイルコントロールバルブ28は油圧式アクチュエータに対する作動油圧の給排方向を切り換えてその遅角方向または進角方向への作動を行わせることができる。また、オイルコントロールバルブ28の具体的な作動は、例えばソレノイドを用いたスプール位置の切り換え制御により実現することができ、ECU8はそのソレノイドに対して制御デューティ率を出力す

ることで、具体的に開弁時期の遅角または進角制御を行 う機能を有している。

【0017】またECU8は、車両の運転状態を検出す るため各種のセンサ類から情報を収集することができ、 例えば、車速センサから入力される車速信号、シフト位 置センサから入力されるシフト位置信号、クラッチ位置 センサから入力されるクラッチペダルの踏み込みまたは 解除を表すクラッチ位置信号等の情報がECU8に入力 可能となっている(運転状態検出手段)。

ジン1に適用した場合の一実施形態であるが、本発明の 始動装置は更に、ECU8の制御機能に関してその他の 構成を有している。

[0019]

【実施例】以下に具体的な実施例を挙げて、本発明の始 動装置を用いたエンジン1の始動について詳細に説明す る。また以下の説明を通して、本発明の始動装置に係る その他の具体的な構成もまた明らかとなる。図2は、E CU8が実行するべき始動制御ルーチンのフローチャー トを示し、ECU8はこのフローに沿った手順でエンジ 20 ン1の始動制御を実行する。図2のフローは、エンジン 1の運転が停止された後のメイン制御ルーチンとして位 置付けられ、そのステップの途中に2つのサブルーチン R 1. R 2を含む。

【0020】本実施例では、ECU8に自動アイドル停 止・始動システムが組み込まれており、ECU8は上述 した車両の運転状態に基づいて所定の停止条件および始 動条件の成立を判定することができる。例えば、車速が 0で、シフト位置がニュートラルにあり、かつ、クラッ チペダルの踏み込みが解除されている場合、ECU8は 30 停止条件の成立と判定する。ECU8は停止条件が成立 したとき、燃料噴射および点火を停止してエンジン1を 自動的に停止させる。なお、検出するべきパラメータを 追加変更し、これらを停止条件の判定に用いることも可 能である。

【0021】ECU8は更に、エンジン1の運転を停止 するとき上述した可変バルブタイミング機構26を作動 させて排気弁24の開弁時期を遅角側にセットしておく (開弁制御手段)。なお、油圧式アクチュエータが確実 に作動できる場合はエンジン1の停止後に行ってもよ い。このようなエンジン1の自動停止が行われた場合、 または、運転者がイグニションスイッチをオフにした場 合、ECU8は図2の始動制御ルーチンの実行を開始す る。

【0022】先ず、ECU8はステップS1においてエ ンジン1の回転速度が所定値Neo(例えば30rpm, mi n-1) 以下となったか否かを判定し、この判定が成立す る場合(Yes)はエンジン1が停止したものとみなし てステップS2に進む。ステップS2では、ECU8は 所定の停止後タイマがカウントを停止 (=0) している 50

か否かを判断し、停止している場合はステップS3に進 んで停止後タイマの作動を開始する。なお、この停止後 タイマおよび後述する各種のタイマは、例えばECU8 内に組み込むことができ、その起動とともに経過時間を カウントすることができる。

【0023】次のステップS4では、ECU8は所定の 噴射後タイマがカウントを停止(=0)しているか否か を判断する。エンジン1の運転を停止した後は、この噴 射後タイマは未だ作動していないため、ECU8は次の 【0018】以上は、本発明の始動装置を車両用のエン 10 ステップS5に進んで始動条件の成立を判断する。この 始動条件としては、上述した自動停止を行った後の自動 始動条件や、イグニションスイッチのオン信号の入力が 想定される。なお、自動アイドル停止・始動制御の場合 の始動条件は、例えばシフト位置がニュートラルにある ことを前提として、この状態でクラッチペダルが踏み込 まれた場合に成立する。

> 【0024】この時点で始動条件の成立が判定される場 合 (Yes)、エンジン1を早急に始動させる必要があ ると考えられることから、ECU8はサブルーチンR1 を迂回してステップS11に進み、直ちにスタータ14 を作動させてクランキングを開始する。これはエンジン 1の停止後に素早い始動要求を満足するためである。こ れに対し、ステップS5で早急な始動条件が成立してい なければ (No)、停止後処理のためのサブルーチンR 1に進む。

> 【0025】図3は、上述したサブルーチンR1、R2 の詳細を示している。ECU8は、メインルーチンのス テップS5からサブルーチンR1に進むと、ステップS 6 でエンジン 1 の停止後から所定時間が経過したか否か を判断する。この判断は上述した停止後タイマのカウン トから行うことができ、所定時間が経過していなければ (N_0) ECU8はメインルーチンをリターンして、そ の経過までの間は上記の処理(ステップS1~S6)を 繰り返す。なお、停止後タイマは既に作動しているた め、繰り返しの場合はステップS3を迂回する。

【0026】ステップS6にて所定時間の経過が認めら れると(Yes)、ECU8はステップS7に進んで膨 張行程で停止している気筒に対して燃料噴射を指令し、 そして、ステップS8で噴射後タイマの作動を開始す 40 る。なお、この時点で既にECU8は膨張行程にある気 筒を検出しているので、その気筒に対応する燃料噴射弁 4 に噴射信号を供給して実際に燃料を噴射する(噴射制 御手段)。より好ましくは、ECU8は検出したピスト ン位置から筒内の空気量を正確に求め、その噴射するべ き燃料を適切に調量することができる。

【0027】次のステップS9では、ECU8は点火後 に所定時間が経過したか否かを判断するが、この時点で は未だ点火を行っていないため(No)、そのままメイ ンルーチンをリターンする。この後、ECU8がメイン ルーチンに戻ると、噴射タイマが既に作動しているため

ステップS4からステップS12に進む。ステップS12では再度、始動条件が成立しているか否かを判断し、 始動条件が成立するまで上記のステップS1~ステップ S12(S1, S2, S4, S12)までのループを単 に繰り返す。

【0028】この後、始動条件が成立してはじめて、E CU8は始動処理のためのサブルーチンR2に進む。サブルーチンR2では、ECU8はステップS13で燃料の噴射後に所定時間が経過したか否かを判断する。この所定時間は例えば、燃料の噴射後、その気化を確実にす 10 るための所要時間として設定することができる。この所定時間が経過していない場合(No)、ECU8はサブルーチンR2を終了してメインルーチンのステップS11に進み、スタータ14によるクランキングを行う。このようなステップS13での判断は、燃料の気化時間を見込んで失火を未然に防止するためのものである。

【0029】ステップS13で所定時間が経過していると認められる場合(Yes)はステップS14に進み、点火が行われたか否かを点火後タイマのカウント値から判断する。この時点ではカウント値=0であって点火前20と判断できるから、ECU8はステップS15に進んで点火を指令する。この指令は、既に燃料を噴射した膨張行程にある気筒に対してなされ、具体的には点火栓6に対して点火信号が出力される。なお、運転の停止により筒内圧が低下していることを考慮すれば、このとき着火に充分な熱エネルギを確保するため多重点火を行うことが好ましい。

【0030】次に、ECU8はステップS16で点火後タイマの作動を開始し、ステップS9に進んで点火後に所定時間が経過したか否かを判断する。この所定時間が30経過するまでは(No)、ECU8はメインルーチンをリターンして再度ステップS12からサブルーチンR2に入り、ステップS15,S16を迂回してステップS9の判断を繰り返す(ステップS14=No)。

【0031】点火後に所定時間が経過したと判断すると、ECU8はステップS10でエンジン回転速度が所定値Nesを超えているか否かを判断する。この所定値Nesは、例えばエンジン1の始動が成功したか否かを判定するための閾値として設定されており、ECU8はエンジン1の回転速度がこの所定値Nesを超えていれ40ば始動状態が成功であるものとして判定し、一方、所定値Nes以下であれば始動状態が不完全であるものとして判定することができる。

【0032】なお、図2のフローチャートには明示されていないが、ECU8はステップS15で点火後にピストン22が動き出すと、そのとき圧縮行程にある気筒についても噴射を指令し、更にその上死点で点火を指令する。これにより、エンジン1の停止時に圧縮行程にあった気筒で完爆が起こり、通常のクランキングを行うことなくエンジン1が始動する。

【0033】始動状態を判定した結果、不完全であった場合(No)はサブルーチンR2を終了してメインルーチンに戻り、ECU8はステップS11に進んでスタータ14を作動させる。これに対し、判定結果が成功であった場合(Yes)、ECU8はメインルーチンをリターンするのでスタータ14は作動されない。上記の何れの場合にあっても、エンジン1が始動して回転速度が所定値Nesを超えたときは、ECU8はメインルーチンのステップS1からステップS17に移行して上述した各種のタイマをそれぞれリセットし、始動制御ルーチンの実行を終了する。

【0034】上述した始動制御ルーチンを実行することにより、ECU8はエンジン1の始動を行うときは膨張行程にある気筒内に燃焼を生起させてエンジン1を始動させる(始動手段)。このとき、ECU8はステップS11での判定結果、つまり、エンジン1の始動状態に応じてスタータ14の作動を制御する(電動機制御手段)。

【0035】従って、本実施例の始動装置によれば、膨張行程にある気筒内の燃焼圧だけで始動に成功した場合、スタータ14を作動させることなくエンジン1の始動が行われる。一方、気筒内の燃焼圧だけでは始動が不完全となった場合、スタータ14によるクランキングを例えば補助的に付加することができ、最小限の使用電力だけでエンジン1の始動が可能となる。この補助は、例えば圧縮行程にある気筒が上死点を超える程度に行うだけで足り、通常の停止状態で行うクランキングのような過大なトルクを要しない。なお、一実施例ではエンジン回転速度から始動状態を判断しているが、その他の検出パラメータを用いて判断するものであってもよい。

【0036】また上述のように、予め排気弁24の開弁時期を遅角側にセットしておけば、膨張行程でピストン22が押し下げられている間は排気弁24を閉弁しておくことができ、その膨張行程中での燃焼圧の急な低下が防止される。これにより、燃焼ガスの効率的な膨張仕事を促進して、燃焼圧だけによる始動の成功に寄与することができる。

【0037】上述の実施例ではアイドルストップ車両を 用いているが、自動的にエンジンを停止・始動させる車 両(例えばハイブリッド車両)であってもよい。また、 車両の自動アイドル停止・始動制御システムの作動を合 わせて説明しているが、本発明の始動装置は車両用のエ ンジン1に関して、このような制御システムとの協調を 必ずしも要しない。従って、例えば車両の運転者がエン ジン1を停止させた後に再始動させる場合は上述した始 動制御ルーチンを単独で実行し、エンジン1の始動を行 うことができる。

【0038】本発明の実施形態は一例として挙げたエンジン1に限られず、その他のシリンダレイアウトを有し 50 ていてもよいし、単気筒型であってもよい。また本発明 a

の実施形態に関し、その他の好ましい態様で具体的な部 材や部品の構成を適宜に置き換え可能であることはいう までもない。

[0039]

【発明の効果】本発明の筒内噴射型内燃機関の始動装置 (請求項1)は、短時間で内燃機関の始動を確実なもの とする。また、始動フェールセーフのためだけに電動機 を使用していることで、大幅な省電力が可能となる。ま た、本発明の筒内噴射型内燃機関の始動装置(請求項 2)は、始動の迅速性や確実性を保証することから車両 10 に搭載される内燃機関の自動停止・始動制御と好適に協 調することができ、その燃費低減の目的達成にも大きく 貢献する。

【0040】更に、本発明の始動装置が開弁制御に関する構成を含むものであれば(請求項3)、その働きにより内燃機関の始動を合理的に補助することができる。

【図面の簡単な説明】

【図1】

10 【図1】本発明の始動装置に関する一実施形態を表す概略的な構成図である。

【図2】本発明の始動装置により一実施例として実行される始動制御ルーチンのフローチャートである。

【図3】図2のフローチャート中、サブルーチンの内容。 を具体的に示したフローチャートである。

【符号の説明】

- 1 エンジン
- 2 燃焼室
- 4 燃料噴射弁
 - 6 点火栓
 - 8 電子制御ユニット (ECU)
 - 10 クランク角センサ
 - 12 カム角センサ
 - 14 スタータ (電動機)
 - 2 4 排気弁
 - 26 可変バルブタイミング機構

【図2】

【図3】

フロントページの続き											
(51) Int. Cl. 7		識別記 号	F I		テーマコード(参考)						
F 0 2 D	17/00		F 0 2 D	17/00	Q						
	29/02	3 2 1		29/02	3 2 1 A						
•	41/06	3 8 5		41/06	3 8 5 Z						
	41/38			41/38	D						
	41/40			41/40	F						
	43/00	3 0 1		43/00	3 0 1 J						
					3 0 1 V						
					3 0 1 Z						
					3 0 1 A						
	45/00	3 1 0		45/00	3 1 0 B						
		3 6 0			3 6 0 Z						
		3 6 2			3 6 2 E						
F 0 2 N	15/00		F 0 2 N	15/00	E						

Fターム(参考) 3G084 BA15 BA17 BA23 BA28 CA01

CA07 DA09 EA07 EA11 EB11

EC01 FA00 FA05 FA06 FA33

FA38 FA39

3G092 AA01 AA06 AC03 BA08 BB01

DA02 DA09 DE03S DF04

DF09 DG05 EA04 EA09 EA11

EA17 FA24 FA31 GA01 HA13Z

HB01X HC08X HE03Z HE05Z

HF05X HF12Z HF15Z HF19Z

HF21Z

3G093 AA01 AA07 AB00 BA19 BA21

BA22 CA00 CA01 CB01 DA00

DA01 DB01 DB05 DB06 DB10

DB11 DB23 EA03 EA05 EA15

EB00

3G301 HA04 JA00 JA02 KA01 KA28

KB00 LA07 LB04 MA18 NA08

PEOOA PEO3A PEO5A PEO9A

PE10A PF01A PF06A PF07A