# 北京理工大学

## 自然语言理解课程报告

## 中文分词技术研究

Research on Chinese word segmentation technology

| 学  | 院:  | 计算机学院      |
|----|-----|------------|
| 专  | 业:  | 计算机科学与技术   |
| 学生 | 姓名: | 赖昱行        |
| 学  | 号:  | 1120192236 |
| 指导 | 教师: | 宋大为        |

2021 年 12 月 27 日

## 中文分词技术研究

## 摘 要

本文基于课程所学内容的向外拓展,选取了中文自然语言处理中的基础问题,对中文分词领域的近期研究热点和技术方法进行了研究。本文以近两年内的 3 篇顶会文章为例进行具体说明,分别讨论了文章关注的问题重点,使用的方法,实验内容,并将它们进行横向比较。

## Improving Chinese Word Segmentation with Wordhood Memory Networks [1]

## Improving Chinese Word Segmentation with Wordhood Memory Networks

Yuanhe Tian \*, Yan Song †, Fei Xia \*, Tong Zhang †, Yonggang Wang †

University of Washington, †Sinovation Ventures

†The Hong Kong University of Science and Technology

{yhtian, fxia}@uw.edu †clksong@gmail.com

†tongzhang@ust.hk \*wangyonggang@chuangxin.com

#### 图表 1 文章一

#### 1.1 问题描述

中文语言因其特殊性,在分词时面临着以下两个主要难点。

- 一是歧义问题,由于中文存在大量歧义,一般的分词工具在切分句子时可能会出错。例如,"部分居民生活水平",其正确的切分应为"部分/居民/生活/水平",但存在"分居"、"民生"等歧义词。"他从小学电脑技术",正确的分词是:他/从小/学/电脑技术,但也存在"小学"这种歧义词。
- 二是00V(out of vocabulary)问题,即未登录词问题。未登录词指的是不在词表,或者是模型在训练的过程中没有遇见过的词。例如经济、医疗、科技等科学领域的专业术语或者社交媒体上的新词,或者是人名。这类问题在跨领域分词任务中尤其明显。

这篇文章站在前人的肩膀上进一步解决了上述两个问题,在发表时的2020年达到了中文分词的SOTA(state-of-the-art)水平。

#### 1.2 模型介绍

文章提出的模型采用了中文分词的经典方案,把分词看成对token的序列化标注任务,并采用了Encoder-Decoder的传统NER模型。这里的Encoder可以是BERT或者LSTM,Decoder可以是Softmax或者CRF等。文章的创新点在于,作者在Encoder和Decoder间加入了Wordhood Memory Networks。模型的整体形式可以写成:

$$\hat{y} = \mathop{argmax}\limits_{y \in au^l} p(y|X, M(X, N))$$



图表 2 WMSEG 的结构

总体来说,该模型利用n-gram提供的每个字的构词能力,通过加(降)权重实现特定语境下的歧义消解。并通过非监督方法构建词表,实现对特定领域的未标注文本的利用,进而提升对未登录词的识别。

#### 1. 2. 1 Lexcion 的构建

文章中利用了一种Accesor Variety<sup>[2]</sup>的方法构建了一个n-gram词表,该词表中包含了句子中所有可能的n-gram。以"部分居民生活水平"分词为例,构建的Lexcion如下:

{"部", "民", "平", "部分", "分居", "居民", "民生", "生活", "水平", "居民生活"}

#### 1.2.2 Wordhood Memory Networks

这一部分是这篇文章的重点内容,该部分使用key-Value记忆网络通过键和值之间的转换来对这种成对的知识建模。

Key Addressing: 这里的Key就是n-gram,对每一个汉字,首先对该句子构建Lexicon,有可能存在很多包含该汉字的n-gram。比如上面的句子中的第四个字"民"构建Lexicon,可以表示为:

 $K_i = \{ \text{"R"}, \text{"ER"}, \text{"RE"}, \text{"ERE"} \}$ 

将这些n-gram输入embedding层之后与Encoder的输出 $h_i$ 相乘,再经过softmax即可得到概率分布,概率大小即表明相关程度。

$$p_{i,j} = rac{exp(h_i \cdot e^k_{i,j})}{\sum_{j=1}^{m_i} exp(h_i.e^k_{i,j})}$$

Value Reading: 先将每个 $k_{ij}$ 映射到一个值V上去,因为每个字在不同的n-gram中的位置不同,所以需要映射的值也不同,文章使用经典的BIES标记法: (B:begin,I:inside,E:end,S:single),还是上面的例子,与 $K_i$  对应的value集合为:

$$V_i = \{V_S, V_E, V_B, V_I\}$$

同样的,将每个value送入embedding层中,将输出与Key Addressing中的概率输出再累加来计算每个字的wordhood memory值

$$o_i = \sum_{i=1}^{m_i} p_{i,j} e^v_{i,j}$$

之后,将 $o_i$ 与 $h_i$ 相加接入全连接层,然后再经过Decoder解码即可得到序列标注结果,即分词结果。

#### 1.3 实验描述

数据集:公开数据集SIGHAN 2005 Bakeoff(包含MSR、PKU、AS、CITYU)。

#### 1.3.1 消融实验

对比模型:在目前主流的Encoder-Decoder分词模型中分别加入Wordhood Memory Networks进行实验并对比。

| Confi   | G  | M                     | SR                    | PI                    | KU                    | A                     | S                     | Ci                    | ΓYU                   | CT                    | <b>B6</b>              |
|---------|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
| En-Dn   | WM | F                     | $R_{OOV}$             | F                     | $R_{OOV}$             | F                     | $R_{OOV}$             | F                     | $R_{OOV}$             | F                     | Roov                   |
| BL-SM   | ×  | 95.53<br><b>95.61</b> | 62.96<br><b>63.94</b> | 91.85<br><b>91.97</b> | 48.84<br><b>49.00</b> | 94.52<br>94.70        | 62.21<br><b>64.18</b> | 93.79<br><b>93.88</b> | 67.26<br><b>69.20</b> | 93.56<br>93.70        | 67.39<br><b>68.52</b>  |
| BL-CRF  | ×  | 95.80<br><b>95.98</b> | 66.17<br><b>68.75</b> | 92.35<br><b>92.43</b> | 52.04<br><b>56.80</b> | 94.39<br><b>95.07</b> | 61.59<br><b>68.17</b> | 93.96<br><b>94.20</b> | 67.84<br><b>69.91</b> | 93.84<br><b>94.03</b> | 70.81<br><b>71.88</b>  |
| BT-SM   | ×  | 97.84<br><b>98.16</b> | 86.32<br><b>86.50</b> | 96.20<br><b>96.47</b> | 84.43<br><b>86.34</b> | 96.33<br><b>96.52</b> | 77.86<br><b>78.67</b> | 97.51<br><b>97.77</b> | <b>86.69</b> 86.62    | 96.90<br><b>97.13</b> | <b>88.46</b> 88.30     |
| BT-CRF  | ×  | 97.98<br><b>98.28</b> | 85.52<br><b>86.67</b> | 96.32<br><b>96.51</b> | 85.04<br><b>86.76</b> | 96.34<br><b>96.58</b> | 77.75<br><b>78.48</b> | 97.63<br><b>97.80</b> | 86.66<br><b>87.57</b> | 96.98<br><b>97.16</b> | 87.43<br><b>88.0</b> 0 |
| ZEN-SM  | ×  | 98.35<br>98.36        | <b>85.78</b> 85.30    | 96.27<br><b>96.49</b> | 84.50<br><b>84.95</b> | 96.38<br><b>96.55</b> | 77.62<br><b>78.02</b> | 97.78<br><b>97.86</b> | 90.69<br><b>90.89</b> | 97.08<br><b>97.22</b> | 86.20<br><b>86.83</b>  |
| ZEN-CRF | ×  | 98.36<br><b>98.40</b> | <b>86.82</b> 84.87    | 96.36<br><b>96.53</b> | 84.81<br><b>85.36</b> | 96.39<br><b>96.62</b> | 77.81<br><b>79.64</b> | 97.81<br><b>97.93</b> | <b>91.78</b> 90.15    | 97.13<br><b>97.25</b> | 87.08<br><b>88.46</b>  |

图表 3 WMSEG 在 SIGHAN 上的实验结果

仔细观察不难发现,在6种模型组合上分别加入Wordhood Memory Networks,5个数据集上均有提升;即使baseline的表现已经足够好,加入Wordhood Memory Networks后仍然有较大提升;在使用ZEN<sup>[3]</sup>作为Encoder时提升并不大,因为ZEN在预训练时就已经使用了n-gram的关系信息。

#### 1.3.2 对比往年 SOTA

|                           | M     | SR        | PI    | KU        | A     | S                 | CITYU |           | CT    | <b>B6</b> |
|---------------------------|-------|-----------|-------|-----------|-------|-------------------|-------|-----------|-------|-----------|
|                           | F     | $R_{OOV}$ | F     | $R_{OOV}$ | F     | $R_{OOV}$         | F     | $R_{OOV}$ | F     | Roov      |
| ZHANG ET AL. (2013)       | 97.5  | G.        | 96.1  | 73.1      | -     | ( <del>a</del> ): | -     | 180       | -     | -         |
| PEI ET AL. (2014)         | 97.2  | <u>~</u>  | 95.2  | 4         | -     | 120               | -     | -3        | -     | 20        |
| MA AND HINRICHS (2015)    | 96.6  | 87.2      | 95.1  | 76.0      | -     | -                 | -     | -         | -     | -         |
| CHEN ET AL. (2015)        | 97.4  | -         | 96.5  | -         | -     | 17.0              | 1     | -         | 96.0  | 950       |
| Xu and Sun (2016)         | 96.3  | =         | 96.1  | -         | -     | l <u>a</u> g      | -     | 20        | 95.8  | -         |
| ZHANG ET AL. (2016)       | 97.7  |           | 95.7  |           | -     | 170               | -     | -         | 95.95 | -         |
| CHEN ET AL. (2017)        | 96.04 | 71.60     | 94.32 | 72.64     | 94.75 | 75.34             | 95.55 | 81.40     | -     | 20        |
| WANG AND Xu (2017)        | 98.0  | <u> </u>  | 96.5  | -         | -     | (4)               | -     | -         | -     | (=)       |
| ZHOU ET AL. (2017)        | 97.8  | -         | 96.0  | 7         | -     | -                 | -     | 7         | 96.2  | 70        |
| Ma et al. (2018)          | 98.1  | 80.0      | 96.1  | 78.8      | 96.2  | 70.7              | 97.2  | 87.5      | 96.7  | 85.4      |
| GONG ET AL. (2019)        | 97.78 | 64.20     | 96.15 | 69.88     | 95.22 | 77.33             | 96.22 | 73.58     | -     | -         |
| HIGASHIYAMA ET AL. (2019) | 97.8  | 2         | -     | 2         |       | 120               | -     |           | 96.4  | 923)      |
| QIU ET AL. (2019)         | 98.05 | 78.92     | 96.41 | 78.91     | 96.44 | 76.39             | 96.91 | 86.91     | -     | (#)       |
| WMSEG (BERT-CRF)          | 98.28 | 86.67     | 96.51 | 86.76     | 96.58 | 78.48             | 97.80 | 87.57     | 97.16 | 88.00     |
| WMSEG (ZEN-CRF)           | 98.40 | 84.87     | 96.53 | 85.36     | 96.62 | 79.64             | 97.93 | 90.15     | 97.25 | 88.46     |

图表 4 WMSEG 的比较实验(F-score)

实验比对了在SIGHAN上的F-score,结果表明,该文章提出的模型刷新了中文分词的记录,并且在00V召回率上的提升非常明显。

## Attention Is All You Need for Chinese Word Segmentation [4]

#### **Attention Is All You Need for Chinese Word Segmentation**

Sufeng Duan<sup>1,2,3</sup>, Hai Zhao<sup>1,2,3</sup>\*

<sup>1</sup>Department of Computer Science and Engineering, Shanghai Jiao Tong University <sup>2</sup>Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China <sup>3</sup>MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University 1140339019dsf@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn

#### 图表 5 文章二

传统的中文分词模型算法根据其原理和特点可以大致分为两类——基于词典的 匹配方法和基于统计的分词方法。

#### 2.1 问题描述

这篇文章和第一篇的不同点在于,并不是基于目前中文分词领域的某一个难点问题提出针对性的改进,而是创新性地提出了一种新型的Transformer变体——高斯掩码定向Transformer编码器(Gaussian-masked Directional Transformer encoder,GD)。并基于GD Transformer设计了一种新的中文分词模型,在其内部堆叠了注意力机制模块。作者希望用这种方式适应中文词语内部的语义联系。

作者对比了之前的工作,更多的研究人员愿意寻求多任务标注的联合模型,结合词典知识的学习方法,使用预训练模型的方法,从训练集中抽取更多信息等。但只有少数研究把重点放在增强模型本身的结构上。这部分研究提供了更高效的学习方法,可以用更少的计算复杂度从简单的数据集中训练出好的效果。

## 2.2 模型介绍

#### 2.2.1 高斯掩码定向 Transformer

作者提出的GD Transformer与原版的Transformer<sup>[5]</sup>相比,做了两大改进,一是用三种平行的Encoder代替了原Transformer中的Encoder,二是采用高斯掩码定向注意力机制代替了标准的多头自注意力机制。



图表 6 基于 GD Transformer 的模型结构

如图6所示,Encoder部分每层共有三个彼此平行的编码器:前向编码器、中心编码器、后向编码器。前、后向编码器分别用于捕捉gap前边、后边的信息,中心编码器与原Transformer中的编码器一样,可以同时捕捉gap前后文的信息。作者还提到了一些技术上的细节来优化模型效果。

在Transformer中, Attention的计算公式如下:

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d\iota}})V$$

而在GD Transformer中,对应的GD Attention的计算公式被改进为:

$$g_{ij} = \Phi(dis_{ij}) = \sqrt{\frac{2}{\sigma^2 \pi}} \int_{-\infty}^{-dis_{ij}} exp(-\frac{x^2}{2\sigma^2}) dx$$
$$AG(Q, K, V) = softmax(\frac{QK^T * G}{\sqrt{d_L}})V$$

其中,高斯权重矩阵 $G = g_{ij}$ 表示位置i和位置j的两个字符之间的关系。这样使得一个字符对其相邻字符的影响大于对不相邻字符的影响。

值得注意的是,由于作者采用了三种编码器并行,因此在把高斯权重融入注意力的时候也需要分三步进行,即针对前后向编码和中心编码采用不同的掩码矩阵,前向编码模块中,位置i应当能够见到它前方的字符序列信息,看不到它后边的信息:后

向编码则完全相反。

#### 2.2.2 Biaffine Attention Scorer

这篇文章利用Biaffine Attention Scorer [6]来标记词间gap是否为单词边界。



图表 7 Biaffine Attention Scorer

用 $s_{ij}$ 表示字符i和字符j之间是否应该分词,计算公式如下:

$$s_{ij} = BiaffinalScorer(v_i^f, v_j^b)$$
$$= (v_i^f)^T W v_j^b + U(v_i^f \oplus v_j^b) + b$$

如图7所示,"天"的位置为i,"是"的位置为j,通过三个编码器得到 $v_i^f = v_j^b$ ,再由模型计算即可得到 $s_{ij}$ ,判断字符i与字符j是否应该进行分词操作。

#### 2.2.2 Highway Connections via Hidden Layer

作者为了充分利用GD Transformer隐层状态的信息,不仅仅使用了最后一层的输出,还将每一层编码器的输出信息都进行了提取,将所有层的 $s_{ij}$ 汇总得到了最终的输出。

### 2.3 实验描述

数据集:公开数据集SIGHAN 2005 Bakeoff (包含MSR、PKU、AS、CITYU)。

#### 2.3.1 封闭测试结果

本文所提出的模型在保证了F-score高于baseline的情况下,在训练时长和测试时长上都体现出了较大的优势。

|                      |       | PKU     |        |                | MSR     |        |                | AS      |        |                | CITYU   |        |
|----------------------|-------|---------|--------|----------------|---------|--------|----------------|---------|--------|----------------|---------|--------|
| M 11                 |       |         | TD -   |                |         | TD :   |                |         | T .    |                |         | TD .   |
| Models               | $F_1$ | Tr.     | Test   | F <sub>1</sub> | Tr.     | Test   | F <sub>1</sub> | Tr.     | Test   | F <sub>1</sub> | Tr.     | Test   |
|                      | 11    | (hours) | (sec.) | 1 1            | (hours) | (sec.) | 1 1            | (hours) | (sec.) | 11             | (hours) | (sec.) |
| (Chen et al., 2015)  | 95.7  | 58      | 105    | 96.4           | 117     | 120    | -              | -       | -      | -              | -       | -      |
| (Cai and Zhao, 2016) | 95.2  | 48      | 95     | 96.4           | 96      | 105    | -              | -       | -      | -              | -       | -      |
| (Cai et al., 2017)   | 95.4  | 3       | 25     | 97.0           | 6       | 30     | 95.2           | -       | -      | 95.4           | -       | -      |
| (Zhou et al., 2017)  | 95.0  | -       | -      | 97.2           | -       | -      | -              | -       | -      | -              | -       | -      |
| (Ma et al., 2018)    | 95.4  | -       | -      | 97.5           | -       | -      | 95.5           | -       | -      | 95.7           | -       | -      |
| (Wang et al., 2019a) | 95.7  | -       | -      | 97.4           | -       | -      | 95.6           | -       | -      | 95.9           | -       | -      |
| Our results          | 95.5  | 33      | 4      | 97.6           | 15      | 4      | 95.7           | 67      | 10     | 95.4           | 17      | 1.5    |

图表 8 GD Transformer 在 SIGHAN 上的封闭测试结果

#### 2.3.2 开放测试结果

同时,在开放集合的测试中,模型取得的F-score也保持了和SOTA相一致的水平。

|                      | PKU  | MSR  | AS   | CITYU |
|----------------------|------|------|------|-------|
| (Cai et al., 2017)   | 95.8 | 97.1 | 95.3 | 95.6  |
| (Chen et al., 2017)  | 94.3 | 96.0 | 94.6 | 95.6  |
| (Wang and Xu, 2017)  | 95.7 | 97.3 | -    | -     |
| (Zhou et al., 2017)  | 96.0 | 97.8 | -    | -     |
| (Ma et al., 2018)    | 96.1 | 98.1 | 96.2 | 97.2  |
| (Wang et al., 2019a) | 96.1 | 97.5 | -    | -     |
| (Huang et al., 2019) | 96.6 | 97.9 | 96.6 | 97.6  |
| Our Method           | 95.5 | 97.7 | 95.7 | 96.4  |

图表 9 GD Transformer 在 SIGHAN 上的开放测试结果

#### 2.3.3 消融实验

这篇文章同样研究了去掉模型中的创新结构对结果的影响,验证了结构的合理 性。

|                   | PKU       | MSR       |
|-------------------|-----------|-----------|
| GD-Transformer    | 95.4      | 97.6      |
| -Gaussian mask    | 94.6 -0.8 | 97.1 -0.5 |
| -Directional mask | 95.1 -0.3 | 97.4 -0.2 |
| Transformer       | 94.1 -1.3 | 96.5 -1.1 |

图表 10 Gaussian mask 和标准 mask 的对比实验

|                   | PKU       | MSR       |
|-------------------|-----------|-----------|
| Our full model    | 95.5      | 97.6      |
| -Forward encoder  | 95.3 -0.2 | 97.4 -0.1 |
| -Center encoder   | 95.3 -0.2 | 97.5 -0.1 |
| -Backward encoder | 95.4 -0.1 | 97.5 -0.2 |

图表 11 去掉一种 Encoder 的对比实验

## Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter [7]

#### Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter

Wei Liu<sup>1</sup>, Xiyan Fu<sup>2</sup>, Yue Zhang<sup>3</sup>, Wenming Xiao<sup>1</sup>

<sup>1</sup>DAMO Academy, Alibaba Group, China

<sup>2</sup>College of Computer Science, Nankai University, China

<sup>3</sup>School of Engineering, Westlake University, China

<sup>3</sup>Institute of Advanced Technology, Westlake Institute for Advanced Study

hezan.lw@alibaba-inc.com, fuxiyan@mail.nankai.edu.cn,
yue.zhang@wias.org.cn, wenming.xiaowm@alibaba-inc.com

#### 图表 12 文章三

#### 3.1 问题描述



## (a) Model-level Fusion

## (b) BERT-level Fusion

图表 13 模型层面融合和 BERT 内部融合的

词典信息和经过训练的模型(例如BERT)由于其各自的优势而经常被组合用于探索中文序列标记任务。但是,现有方法仅通过浅层和随机初始化的序列层融合词汇特征,而没有将其集成到BERT的底层。在本文中,我们提出了用于中文序列标签的Lexicon增强BERT(LEBERT),它通过Lexicon适配器层将外部词典知识直接集成到BERT层中。与己有的方法相比,我们的模型在ERT的较低层促进了深度词汇知识融合。在命名实体识别、分词和词性标注三个任务的十个中文数据集上进行实验,结果表明,LEBERT取得了最好的结果。

#### 3.2 模型介绍

#### 3.2.1 主要架构

与BERT相比,LBERT有两个主要的不同之处。首先,在将中文句子转换为字词对序列的情况下,LBERT将汉字特征和词典特征都作为输入。其次,在转换器层之间附加一个词典适配器,使得词典知识能够有效地集成到BERT中。



图表 14 LEBERT 的结构

#### 3. 2. 2 Char-Words Pair Sequence

类似文章一中的做法,根据已有词典,我们可以将一个句子分成很多词,给定一个句子'美国人民',根据词典,我们可以得到'美国','美国人','国人','人民'这几个词,然后将这些词和对应的字配对起来。〈PAD〉用于填充矩阵空缺。



图表 15 Char-Words Pair Sequence

#### 3.2.3 Lexicon Adapter



图表 16 Lexicon Adapter

句子中的每个位置由两类信息组成,即字级特征和词级特征。与现有的混合模型一致,作者的目标是将词典功能与BERT相结合。

如图16所示结构, $h_i^c$ 是模型的字向量,为BERT模型中某一层的输出, $x_i^{ws}$ 中的每一个元素都是一个词向量,词向量需要经过一个非线性转换,非线性转换为两层的线性层加上tanh激活函数。经转换后的词向量矩阵为 $V_i = (v_{i1}^w, \cdots, v_{im}^w)$ ,通过双线性注意力层得到每个词向量对应的Attention score, $a_i$  ,然后讲注意力权重和词向量相乘累加得到 $z_i^w$ ,然后将词信息与字信息融合可得输出 $\widetilde{h}_i$ 。

### 3.3 实验描述

这篇文章对多个中文序列化标注的任务进行了测试,其中对于中文分词任务而言,采用了SIGHAN 2005 Bakeoff中的PKU和MSR数据集,以及CTB6数据集。

#### 3.3.1 Overall Results

与以往中文分词的SOTA模型结果作比较,实验结果中,LEBERT表现出了优秀的效果,成功取得了中文分词领域新的SOTA。

| Model                          | PKU   | MSR   | CTB6  |
|--------------------------------|-------|-------|-------|
| Yang et al. (2017)             | 95.00 | 96.80 | 95.40 |
| Ma et al. (2018)               | 96.10 | 97.40 | 96.70 |
| Yang et al. (2019)             | 95.80 | 97.80 | 96.10 |
| Qiu et al. (2020)              | 96.41 | 98.05 | 96.99 |
| Tian et al. (2020c)(with BERT) | 96.51 | 98.28 | 97.16 |
| Tian et al. (2020c)(with ZEN)  | 96.53 | 98.40 | 97.25 |
| BERT                           | 96.25 | 97.94 | 96.98 |
| BERT+Word                      | 96.55 | 98.41 | 97.25 |
| ERINE                          | 96.33 | 98.17 | 97.02 |
| ZEN                            | 96.36 | 98.36 | 97.13 |
| LEBERT                         | 96.91 | 98.69 | 97.52 |

图表 17 LEBERT 在中文分词中的实验结果

#### 3.3.2 Model-level Fusion 和 BERT-level Fusion 的对比实验

作者将模型层面之间的知识融合与BERT内部的知识融合进行了对比,结果显示 LEBERT比前者更加优越。



图表 18 F1-value 的对比

### 分析和对比

#### 4.1 数据集

三篇论文所使用的数据集均包括SIGHAN 2005 Bakeoff (MSR、PKU、AS、CITYU), 其中文章三中还使用了CTB6。

#### 4.2 验证指标

三篇论文均使用了F-score作为验证指标。同时,训练时长和测试时长作为文章 二的研究要点,也被纳入了实验评价中。

#### 4.3 横向比较

中文分词作为中文自然语言处理中较为成熟的领域,近期的论文基本都采用了序列化标注的方法作为基础。而后,正如文章二中所提到的,现在的研究重点在于多任务标注的联合模型,融合词典知识的学习方法,使用预训练模型的方法,从训练集中抽取更多信息的方法等,同时也有少部分如文章二直接对模型进行改进,提出新型模型。

在这三篇论文中,文章一和文章三都是想把词典知识融合到模型中。不同之处在于,文章一的融合更为浅层,是在Encoder-Decoder模型的模块间添加了一个模块;而文章三利用了预训练模型,并将融合知识的模块嵌入到了BERT中,使得知识能更充分地被模型所学习。

文章二则是利用了中文分词任务的序列化特点,以及词距与词间联系的相关性,对Transformer进行了创新性的改进,使其测试效果能在比拟SOTA的同时,大幅优化了训练时长和测试时长。

目前来看效果最好,潜力最大的应该是文章三的模型。它给了我们一种思考,能不能将多任务的联合模型,或者知识的融合,嵌入到预训练模型的过程中去?对于文章二,给我们的启发是,能不能针对特定任务的特点,对已有的基准模型进行针对性的改进?或者,上述思考也能放在同一个方法中被实现。

## 参考文献

- [1] Tian Y, Song Y, Xia F, et al. Improving Chinese word segmentation with wordhood memory networks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 8274-8285.
- [2] Feng H, Chen K, Deng X, et al. Accessor variety criteria for Chinese word extraction[J]. Computational Lingus, 2004, 30(1): p. 75-93.
- [3] Diao S , Bai J , Y Song, et al. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations[J]. 2019.
- [4] Duan S, Zhao H. Attention Is All You Need for Chinese Word Segmentation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020: 3862-3872.
- [5] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.
- [6] Dozat T, Manning C D. Deep biaffine attention for neural dependency parsing[J]. arXiv preprint arXiv:1611.01734, 2016.
- [7] Liu W, Fu X, Zhang Y, et al. Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter[J]. arXiv preprint arXiv:2105.07148, 2021.