Instituto Tecnológico de Aeronáutica — ITA Controle para Sistemas Computacionais — CMC-12 Tutorial sobre Otimização para Controle

Professor: Marcos Ricardo Omena de Albuquerque Maximo

10 de agosto de 2020

1 Introdução a Otimização

De modo geral, um problema de otimização consiste em encontrar o \mathbf{x} (\mathbf{x} pode ser um vetor) que minimiza (ou maximiza) uma determinada função (ou campo escalar) $J(\mathbf{x})$, a qual dá-se o nome de "função objetivo". Em geral, a convenção adotada é a de minimizar a função de objetivo, caso em que esta recebe o nome de função de custo. Note que convencionar minimização não produz limitação, pois maximizar $J(\mathbf{x})$ consiste em minimizar $-J(\mathbf{x})$. Também é comum adotar-se restrições sobre os valores permitidos para \mathbf{x} . Em notação matemática, um problema de otimização (de mínimo) é escrito da seguinte forma:

minimize
$$J(\mathbf{x})$$

sujeita a $g_i(\mathbf{x}) \leq 0, i = 1, ..., m.$ (1)
 $h_i(\mathbf{x}) = 0, j = 1, ..., p.$

Perceba que a "dificuldade" do problema de otimização depende das expressões da função de custo e das restrições. Em casos mais simples, o problema de otimização pode ser resolvido analiticamente através do conhecido método de derivar e igualar a zero (no caso de haver restrições, usa-se multiplicadores de Lagrange). Porém, em muitos casos a solução analítica não é possível e é necessário o uso de um algoritmo numérico.

Também definem-se várias classes de problemas de otimização, de acordo com as estruturas da função de custo e das restrições. Por exemplo, a classe conhecida como "Programação Linear" assume função de custo linear e restrições lineares. Note que identificar a classe de certo problema de otimização é útil, pois há algoritmos especificamente desenvolvidos para determinadas classes de problemas de otimização. Estes algoritmos se aproveitam da estrutura do problema para resolvê-lo de forma mais eficiente.

Há ainda algoritmos de otimização que não assumem nada sobre $J(\mathbf{x})$, nem mesmo que esta possa ser escrita na forma de equação matemática. Para estes algoritmos, basta que dado um certo \mathbf{x} , seja possível calcular $J(\mathbf{x})$. Assim, o cálculo de $J(\mathbf{x})$ pode consistir até mesmo de um algoritmo computacional complexo ou da realização de um experimento real. Todavia, em problemas com funções de custo que possuem múltiplos mínimos (locais), é comum algoritmos de otimização terem dificuldades para encontrar o verdadeiro mínimo global e convergirem para um mínimo local.

2 Otimização com o MATLAB

No MATLAB, a função fminsearch realiza otimização sem restrições. O algoritmo usado pelo fminsearch é Nelder-Mead. Para uma rápida explicação sobre o Nelder-Mead, assista à videoaula entregue juntamente com esse tutorial (opcional). Este algoritmo não assume nenhuma estrutura para $J(\mathbf{x})$, portanto pode ser usado com praticamente qualquer função de custo, porém costuma enfrentar problemas de convergência para um mínimo local. O Nelder-Mead requer um chute inicial \mathbf{x}_0 que é onde ele começa a busca. Na prática, o algoritmo é muito sensível a este chute inicial e a convergência para o mínimo global é muito mais fácil se o chute inicial estiver próximo deste.

Para problemas de projeto de controlador, que em geral envolvem poucas variáveis, a função fminsearch costuma ser adequada. Uma boa ideia para chute inicial é resolver analiticamente uma versão simplificada do problema e então usar a solução analítica como chute inicial. Por exemplo, no caso de uma função de transferência complicada, pode-se ignorar inicialmente dinâmicas mais rápidas de modo a tornar a função de transferência simples o suficiente para permitir uma solução analítica, então esta solução analítica é usada como chute inicial para o fminsearch, que opera usando a dinâmica completa da planta, sem aproximações.

Para exemplificar o uso do fminsearch, iremos resolver um problema de otimização simples. Considere a seguinte função de duas variáveis:

$$J(x_1, x_2) = (x_1 - 1)^2 + (x_2 - 2)^2$$
(2)

O mínimo desta função pode ser determinado trivialmente como (1,2). Resolvendo o problema no MATLAB, obtemos:

Opcionalmente, podemos usar uma função defina em um .m. Por exemplo, no problema acima, pode-se definir funcaoCusto.m da seguinte forma:

```
1 function J = funcaoCusto(x)
2 
3 J = (x(1) - 1)^2 + (x(2) - 2)^2;
4 
5 end
```

Desse modo, para resolver o problema, escreve-se:

```
>> f = @(x) funcaoCusto(x);
>> x0 = [0; 0];
>> opcoes = optimset('Display', 'iter'); % para acompanhar a otimizacao
>> xMin = fminsearch(f, x0, opcoes)

Iteration Func-count min f(x) Procedure
0 1 5
```

0	1 4	2	4 000	::+:-1	ı
8 9	1	3	4.999	initial simplex	
	2	5	4.99775	expand	
10	3	7	4.99613	expand	
11	4	9	4.99282	expand	
12	5	11	4.98791	expand	
13	6	13	4.97885	expand	
14	7	15	4.96455	expand	
15	8	17	4.93934	expand	
16	9	19	4.89835	expand	
17	10	21	4.82804	expand	
18	11	23	4.71266	expand	
19	12	25	4.51924	expand	
20	13	27	4.20589	expand	
21	14	29	3.70209	expand	
22	15	31	2.93729	expand	
23	16	33	1.86901	expand	
24	17	35	0.72356	expand	
25	18	37	0.421353	reflect	
26	19	38	0.421353	reflect	
27	20	40	0.421353	contract inside	
28	21	42	0.39397	contract inside	
29	22	43	0.39397	reflect	
30	23	45	0.381766	contract inside	
31	24	46	0.381766	reflect	
32	25	48	0.381766	contract inside	
33	26	50	0.381432	reflect	
34	27	52	0.374318	expand	
35	28	53	0.374318	reflect	
36	29	55	0.364366	expand	
37	30	57	0.364366	contract inside	
38	31	59	0.349134	expand	
39	32	61	0.342406	expand	
40	33	63	0.301371	expand	
41	34	64	0.301371	reflect	
42	35	66	0.238672	expand	
43	36	68	0.20157	expand	
44	37	70	0.0821063	expand	
45	38	72	0.0780134	expand	
46	39	74	0.0158599	reflect	
47	40	76	0.0158599	contract inside	
48	41	78	0.00306375	reflect	
49	42	80	0.00306375	contract inside	
50	43	82	0.00306375	contract inside	
51	44	84	0.00124684	contract outside	
52	45	86	0.000127141	contract inside	
53	46	88	0.000127141	contract inside	
54	47	89	0.000127141	reflect	
55	48	91	0.000127141	contract inside	
56	49	93	0.000100509	contract outside	
57	50	95	1.24708e-05	contract inside	
58	51	97	1.24708e-05	contract inside	
59	52	99	4.77714e-06	contract outside	
60	53	101	4.77714e-06	contract inside	
61	54	103	1.05322e-06	contract inside	
62	55	105	1.05322e-06	contract inside	

63	56	107	9.02411e-07	contract inside	
64	57	109	3.21827e-07	contract inside	
65	58	111	5.77616e-08	contract inside	
66	59	113	5.77616e-08	contract inside	
67	60	115	5.21748e-08	reflect	
68	61	117	4.08498e-08	contract inside	
69	62	119	2.92757e-09	contract inside	
70	63	121	2.92757e-09	contract inside	
71	64	123	2.92757e-09	contract inside	
72	65	125	2.92757e-09	contract inside	
73	66	127	1.86918e-09	contract inside	
74					
75	Optimization	terminate	d:		
76	the current	x satisfic	es the termination	criteria using OPTIONS.TolX of 1.000000e-04	
77	and F(X) sa	tisfies the	e convergence crit	eria using OPTIONS.TolFun of 1.000000e-04	
78					
79					
80	xMin =				
81					
82	1.0000				
83	2.0000				1
					1

Perceba que o algoritmo Nelder-Mead convergiu para a solução ótima (1,2) em 66 iterações. Além disso, atingiu um custo de apenas $1.86918 \cdot 10^{-9}$. O MATLAB também mostra qual operação do Nelder-Mead foi executada em cada iteração.

3 Projeto de Controlador Usando Otimização

Considere um motor elétrico com os seguintes parâmetros:

- Momento de inércia do rotor: $J = 0,01 \ kgm^2$.
- Constante de atrito viscoso: $b = 0, 1 \ Nms$.
- Constante de torque do motor: $K_t = 0,01 \ NmA^{-1}$.
- Resistência elétrica: $R = 1 \Omega$.
- Indutância elétrica: $L = 0, 5 \cdot 10^{-3} \ mH$.

A função de transferência da planta é

$$\frac{\dot{\Theta}(s)}{V(s)} = \frac{K_t}{(Js+b)(Ls+R) + K_t^2} \tag{3}$$

Deseja-se erro nulo em regime para entrada degrau. Assim, vamos usar um controlador PI com ganhos K_p e K_i , a função de transferência em malha fechada do sistema fica:

$$G_f(s) = \frac{K_p K_t s + K_i K_t}{JLs^3 + (JR + Lb) s^2 + (Rb + K_t^2 + K_p K_t) s + K_i K_t}$$
(4)

Considere os seguintes requisitos para o sistema:

- Banda passante (de ganho) $\omega_{b,req} = 3 \ rad/s$: frequência no diagrama de Bode de ganho em que há uma queda de $-3 \ dB \ (\approx \sqrt{2}/2)$.
- Pico de ressonância $M_{r,req} = 0.3546 \ dB$: pico no diagrama de Bode.

Como o sistema é de terceira ordem e há um zero devido ao uso de PI, é complicado determinar K_p e K_i analiticamente, portanto usa-se um algoritmo de otimização através da função fminsearch do MATLAB. Seja $\omega_{b,req}$ e $M_{r,req}$ os requisitos de banda passante e de pico de ressonância, respectivamente, pode-se definir a função de custo como

$$J([K_p, K_i]^T) = \left(\omega_{b,req} - \omega_b([K_p, K_i]^T)\right)^2 + \left(M_{r,req} - M_r([K_p, K_i]^T)\right)^2$$
 (5)

em que $\omega_b\left(\left[K_p,K_i\right]^T\right)$ e $M_r\left(\left[K_p,K_i\right]^T\right)$ são a banda passante e o pico de ressonância do sistema, respectivamente, calculados numericamente através do diagrama de Bode de $G_f(s)$ para o valor de $\left[K_p,K_i\right]^T$ em questão.

Para o chute inicial, resolve-se uma versão simplificada do problema. Inicialmente, considere que a dinâmica da corrente é muito rápida e pode ser desprezada, i.e. $L\approx 0$. Com isso, a função de transferência em malha fechada é simplificada para

$$G_{f,aprox}(s) = \frac{K_p K_t s + K_i K_t}{JRs^2 + (Rb + K_t^2 + K_p K_t) s + K_i K_t}$$
(6)

Ignorando a presença do zero, tem-se um sistema de segunda ordem padrão, de modo que

$$\omega_n^2 = \frac{K_i K_t}{JR},\tag{7}$$

$$2\xi\omega_n = \frac{Rb + K_t^2 + K_p K_t}{JR}. (8)$$

Portanto:

$$K_p = \frac{2\xi\omega_n JR - Rb - K_t^2}{K_t},\tag{9}$$

$$K_i = \frac{JR\omega_n^2}{K_t}. (10)$$

Além disso, como tem-se um sistema de segunda ordem padrão, pode-se usar as seguintes fórmulas para determinar ω_n e ξ a partir dos requisitos:

$$\omega_b = \omega_n \sqrt{1 - 2\xi^2 + \sqrt{2 - 4\xi^2 + 4\xi^4}} \Rightarrow \omega_n = \frac{\omega_b}{\sqrt{1 - 2\xi^2 + \sqrt{2 - 4\xi^2 + 4\xi^4}}},$$
 (11)

$$M_r = \frac{1}{2\xi\sqrt{1-\xi^2}} \Rightarrow \xi = \sqrt{\frac{1}{2}\left(1 - \frac{\sqrt{M_r^2 - 1}}{M_r}\right)}.$$
 (12)

Finalmente, mostra-se como implementar o método de projeto de controlador no MA-TLAB. A função projetarControladorPIMotor (vide Listagem 1) projeta o controlador conforme o método descrito, enquanto o script rodarOtimizacao.m (vide Listagem 2) resolve o problema com os parâmetros considerados no início desta seção. Durante a otimização, o MATLAB mostra resultados obtidos em cada iteração para que se verifique que o algoritmo está convergindo (vide Listagem 3). Além disso, perceba que ao descomentar a linha 44 da função projetarControladorPIMotor, o algoritmo converge para uma solução ruim, o que mostra como o chute inicial usando a solução analítica é importante. A Figura 1 apresenta o diagrama de Bode em malha fechada do sistema projetado para comprovar atendimento aos requisitos. Perceba como o sistema projetado por otimização atende perfeitamente aos requisitos!

Listagem 1: Função projetarControladorPIMotor.

```
function [Kp, Ki] = projetarControladorPIMotor(requisitos, planta)
1
2 | % [Kp, Ki] projeta um controlador PI para um motor eletrico.
3 % A struct requisitos eh dada por:
4 | % requisitos.wb: requisito de banda passante.
5 % requisitos.Mr: requisito de pico de ressonancia (em dB).
6 | % A struct planta tem os seguintes parametros:
7
   % planta.J: inercia.
8
   % planta.b: constante de atrito viscoso.
9 | % planta.Kt: constante de torque.
10 | % planta.R: resistencia.
   % planta.L: indutancia.
11
12
   % As saidas sao:
13
   % Kp: ganho proporcional do controlador.
   % Ki: ganho integrativo do controlador.
14
15
16
   %% Coletando parametros
17
18
   J = planta.J;
19
   b = planta.b;
20
   Kt = planta.Kt;
21
   R = planta.R;
22
23
   %% Convertendo os requisitos para wn e xi
24
25
   wbReq = requisitos.wb;
26
   MrReq = requisitos.Mr;
27
   MrReq = 10^(MrReq/20); % pois MrReq esta em dB
28
29
   xiReq = sqrt((1 / 2) * (1 - sqrt(MrReq^2 - 1) / MrReq));
30
   wnReq = wbReq / sqrt(1 - 2 * xiReq^2 + sqrt(2 - 4 * xiReq^2 + 4 * xiReq^4));
31
32
   %% Resolvendo problema simplificado (chute inicial)
33
34
   Kp0 = (2 * xiReq * wnReq * J * R - R * b - Kt^2) / Kt;
35
   Ki0 = J * R * wnReq^2 / Kt;
36
37
   x0 = [Kp0, Ki0];
38
   % Resolvendo problema de otimizacao
39
40
```

```
opcoes = optimset('Display', 'iter'); % para imprimir informacoes da iteracao
42
43
         J = @(x) funcaoCusto(requisitos, planta, x);
         % x0 = [40; 40];
44
         x0timo = fminsearch(J, x0, opcoes);
45
         Kp = xOtimo(1);
46
47
        Ki = xOtimo(2);
48
49
        end
50
51
       function J = funcaoCusto(requisitos, planta, parametros)
        % J = funcaoCusto(requisitos, planta, parametros) calcula o custo associado
52
53 |% a um vetor de parametros [Kp; Ki]. A struct requisitos eh dada por:
54 | % requisitos.wb: requisito de banda passante.
55 | % requisitos.Mr: requisito de pico de ressonancia (em dB).
56 | % A struct planta tem os seguintes parametros:
57 % planta.J: inercia.
58 % planta.b: constante de atrito viscoso.
59
       % planta.Kt: constante de torque.
        % planta.R: resistencia.
60
61
        % planta.L: indutancia.
62
63
       %% Coletando parametros
64
65 \mid \text{Kp} = \text{parametros}(1);
66 | Ki = parametros(2);
67
68 \mid J = planta.J;
69 \mid b = planta.b;
70 | Kt = planta.Kt;
        R = planta.R;
71
72
        L = planta.L;
73
74
         wbReq = requisitos.wb;
75
        MrReq = requisitos.Mr;
76
77
         %% Definindo funcao de transferencia de malha fechada
78
79
         s = tf('s');
80
        Gf = (Kp * Kt * s + Ki * Kt) / (J * L * s^3 + (J * R + L * b) * s^2 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + Kt^2 + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (R * b + L * b) * s^3 + (
81
                  Kp * Kt) * s + Ki * Kt);
82
83
         w = 1e-2:1e-2:1000;
84
         mag = bode(Gf, w);
85
         mag = mag(:);
        magdB = 20 * log10(mag);
87
88
89
         wb = interp1(magdB, w, -3);
90
       Mr = 20 * log10(max(mag));
91
92
         J = (wbReq - wb)^2 + (MrReq - Mr)^2;
93
94
         end
```

Listagem 2: Script rodarOtimizacao.m.

```
%% Definindo parametros
  1
  2
  3
        requisitos.wb = 3;
  4
        requisitos.Mr = 0.3546;
        planta.J = 0.01;
  5
  6
         planta.b = 0.01;
  7
         planta.Kt = 0.01;
        planta.R = 1;
  8
  9
         planta.L = 0.5 * 10^-3;
10
        %% Projetando o controlador por otimizacao
11
12
         [Kp, Ki] = projetarControladorPIMotor(requisitos, planta);
13
14
15
         %% Reconstruindo o sistema para verificacao de atendimento aos requisitos
16
17
         s = tf('s');
18
19 J = planta.J;
20 \mid b = planta.b;
21 | Kt = planta.Kt;
22 \mid R = planta.R;
23
        L = planta.L;
24
        Gf = (Kp * Kt * s + Ki * Kt) / (J * L * s^3 + (J * R + L * b) * s^2 + (R * b + Kt^2 + Kt^2 + Kt^3 
25
                  Kp * Kt) * s + Ki * Kt);
26
27
        %% Tracando graficos
28
29
         t = 0:1e-2:5;
30
        y = step(Gf, t);
        plot(t, y, 'LineWidth', 2);
31
32 | xlabel('Tempo (s)', 'FontSize', 14);
33 | ylabel('Velocidade (rad/s)', 'FontSize', 14);
34 set(gca, 'Fontsize', 14)
35 | title('Resposta ao Degrau', 'FontSize', 14);
36
         grid on;
37
         % print -depsc2 degrau_otimizacao.eps
38
39
       figure;
40 \mid w = 1e-2:1e-2:10;
41
       mag = bode(Gf, w);
42 \mid mag = mag(:);
43
        magdB = 20 * log10(mag);
44
         semilogx(w, magdB, 'LineWidth', 2);
45
         wb = interp1(magdB, w, -3);
46
        |Mr = 20 * log10(max(mag));
47
        xlabel('Frequencia (rad/s)', 'FontSize', 14);
48
        ylabel('Magnitude (dB)', 'FontSize', 14);
49
        title(sprintf('Diagrama de Bode\nBanda = %.2f, Pico de Res. = %.2f', wb, Mr));
50 | set(gca, 'FontSize', 14);
51
         grid on;
52
         % print -depsc2 bode_otimizacao.eps
```

Listagem 3: Execução da otimização no MATLAB.

			em 5. Execução	o da otimização no MATLAB.
1	>> rodarOtim	nizacao		
2				
3	Iteration	Func-count	$\min f(x)$	Procedure
4	0	1	2.00476	
5	1	3	1.84367	initial simplex
6	2	5	1.07211	expand
7	3	7	0.72653	expand
8	4	9	0.148222	expand
9	5	10	0.148222	reflect
10	6	12	0.141555	reflect
11	7	13	0.141555	reflect
12	8	15	0.136615	contract inside
13	9	16	0.136615	reflect
14	10	18	0.125895	contract inside
15	11	19	0.125895	reflect
16	12	21	0.125895	contract inside
17	13	23	0.125895	contract inside
18	14	25	0.125837	contract inside
19	15	27	0.125783	contract inside
20	16	29	0.125768	contract outside
21	17	31	0.125768	contract inside
22	18	33	0.125745	expand
23	19	35	0.106726	expand
24	20	37	0.0209237	expand
25	21	39	0.00825353	reflect
26	22	41	0.00825353	contract inside
27	23	43	0.00825353	contract outside
28	24	45	0.00825353	contract inside
29	25	47	0.00717266	contract inside
30	26	49	0.00695314	contract inside
31	27	51	0.00681084	reflect
32	28	53	0.00669511	contract inside
33	29	55	0.00598008	expand
34	30	56	0.00598008	reflect
35	31	58	0.00492038	expand
36	32	59	0.00492038	reflect
37	33	61	0.00283692	expand
38	34	62	0.00283692	reflect
39	35	64	0.000839829	expand
40	36	66	0.000455462	expand
41	37	67	0.000455462	reflect
42	38	69	4.37565e-05	contract inside
43	39	71	4.37565e-05	contract inside
44	40	73	4.37565e-05	contract inside
45	41	75	3.43872e-05	contract inside
46	42	77	2.60827e-05	contract outside
47	43	79	7.95516e-06	contract inside
48	44	81	1.81955e-06	contract inside
49	45	83	1.68201e-06	contract outside
50	46	85	8.1323e-07	contract inside
51	47	87	3.44222e-07	contract inside
52	48	89	3.44222e-07	contract inside
53	49	91	6.58326e-08	contract inside
54	50	92	6.58326e-08	reflect

55	51	94	6.58326e-08	contract inside
56	52	96	3.83338e-08	contract inside
57	53	98	9.04479e-09	contract inside
58	54	100	7.5517e-09	contract inside
59	55	102	3.18526e-09	contract outside
60	56	104	3.8587e-10	contract inside
61	57	106	3.8587e-10	contract outside
62	58	108	3.8587e-10	contract inside
63				
64	Optimization	n terminated	:	
65	the curren	t x satisfie	s the termination	n criteria using OPTIONS.TolX of 1.000000e-04
66	and F(X) s	atisfies the	convergence cri	teria using OPTIONS.TolFun of 1.000000e-04

Figura 1: Diagrama de Bode de malha fechada do sistema projetado com otimização.