Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir

DPP: 4

Ionic Equilibrium

- Q1 The solubility product of a salt having general formula MX_2 , in water is 4×10^{-12} . The concentration of M^{2+} ions in the aqueous solution of the salt is
 - (A) $2.0 \times 10^{-6} M$
 - (B) $1.0 \times 10^{-4} {
 m M}$
 - (C) $1.6 \times 10^{-4} \mathrm{M}$
 - (D) $4.0 \times 10^{-10} M$
- Q2 Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its $K_{\rm sp}$ is;
 - (A) $4x^{3}$
 - (B) $108x^5$
 - (C) $27x^4$
 - (D) 9x
- **Q3** The solubility in water of a sparingly soluble salt AB_2 is $1.0 \times 10^{-5} \ mol L^{-1}$. Its solubility product will be
 - (A) $4 imes 10^{-15}$
 - (B) $4 imes 10^{-10}$
 - (C) 1×10^{-15}
 - (D) 1×10^{-10}
- $\begin{tabular}{ll} \bf Q4 & Solid $BaCO_3$ is gradually dissolved in a \\ & 1.0 \times 10^{-4} M \ Na_2 CO_3$ solution. At what \\ & concentration of Ba^{+2} will a precipitate begin to form? \end{tabular}$

$$({
m K_{sp}} \ {
m for} \ {
m BaCO_3} = 5.1 imes 10^{-9});$$

- (A) $4.1 \times 10^{-5} M$
- (B) $5.1 imes 10^{-5} \mathrm{M}$
- (C) $8.1 \times 10^{-8} M$

(D)
$$8.1 imes 10^{-7} \mathrm{M}$$

- Q5 Which is the **correct** representation of the solubility product constant of Ag_2CrO_4 ?
 - (A) $\left[\mathrm{Ag}^{+}
 ight]^{2}\left[\mathrm{CrO}_{4}^{-2}
 ight]$
 - (B) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{-2}\right]$
 - (C) $\left[2\mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{-2}\right]$
 - (D) $\left[2\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO_{4}^{-2}}\right]$
- Q6 Zirconium phosphate $[\mathrm{Zr_3(PO_4)_4}]$ dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3 . If molar solubility of zirconium phosphate is denoted by S and its solubility product by K_{sp} then which of the following relationship between S and K_{sp} is correct?
 - (A) $m S = \left\{ K_{sp}/(6912)^{1/7}
 ight\}$
 - (B) $S = (K_{\rm sp}/6912)^{1/7}$
 - $\begin{array}{l} \text{(C) } S = \left\{ K_{\rm sp} / 144^{1/7} \right\} \\ \text{(D) } S = \left\{ K_{\rm sp} / (6912)^7 \right\} \end{array}$
- **Q7** K_{sp} of $Mg(OH)_2$ is 4.0×10^{-6} . At what minimum $pH,\,Mg^{2+}$ ions starts precipitating $0.01MgCl_2$

is

- $(A) 2 + \log 2$
- (B) $2 \log 2$
- (C) $12 + \log 2$
- (D) $12 \log 2$

Q8

The pH of an aqueous solution of Ba $(OH)_2$ is 10. If the K_{sp} of Ba (OH) $_2$ is 1×10^{-9} , then the concentration of Ba²⁺ ions in the solution in mol L^{-1} is

- (A) 1×10^{-2}
- (B) 1×10^{-4}
- (C) 1×10^{-1}
- (D) 1×10^{-5}
- **Q9** The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The molar solubility of this compound in water is
 - (A) $\sqrt[2]{1.6 \times 10^{-30}}$
 - (B) $\sqrt[4]{1.6 \times 10^{-30}}$
 - (C) $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$
 - (D) $\frac{1.6 \times 10^{-30}}{27}$
- **Q10** The molar solubility (in mol L^{-1}) of a sparingly soluble salt $M\mathrm{X}_4$ is s . The corresponding solubility product is $K_{\rm sp},\,s$ is given in terms of $\ensuremath{K_{sp}}$ by the relation

$$^{ extsf{(A)}} ext{s} = \left(rac{ ext{K}_{ ext{sp}}}{128}
ight)^{1/4}$$

- $^{ extsf{(B)}} ext{s} = \left(rac{ ext{K}_{ ext{sp}}}{256}
 ight)^{1/5}$
- (C) $s = (256 \text{ K}_{\rm sp})^{1/5}$
- (D) $_{\rm S} = (128~{\rm K_{sp}})^{1/4}$
- **Q11** The solubility of CaF_2 in water at $20^{\circ}C$ is $15.6 \mathrm{mg}$ per dm^3 solution. What will be the solubility product of CaF_2 ?
 - (A) 4.0×10^{-4}
 - (B) 8.0×10^{-8}
 - (C) 32.0×10^{-12}
 - (D) None

- **Q12** Given the solubility product A_3 B_2 is $2 imes 10^{-30}$. What will be the solubility in moles/litre?
 - (A) $(1.85 \times 10^{-32})^{1/5}$
 - (B) $\left(\frac{2 \times 10^{-30}}{108}\right)^{1/5}$
 - (C) $\left(\frac{10-28}{5400}\right)^{\frac{1}{5}}$
- **Q13** A salt M_2X_3 dissolves in water such that its solubility is x mole/litre. Its KSP_{SP} is
 - (A) x^5
 - (B) $6x^2$
 - (C) $108x^5$
 - (D) $6x^5$
- **Q14** Solubility product of AgCl is 2.8×10^{-10} at $25^{\circ}\mathrm{C}$. Calculate solubility of the salt in
 - $0.1 \mathrm{MAgNO_3}$ solution
 - (A) $2.8 imes 10^{-9} \; ext{mole/litre}$
 - (B) $2.8 \times 10^{-10} \; \text{mole/litre}$
 - (C) $3.2 imes 10^{-9} \; mole/$ litre
 - (D) $3.2 \times 10^{-12} \text{ mole/litre}$
- **Q15** If s is the molar solubility of Ag_2SO_4 , then
 - $(A) 3 \left[Ag^{+} \right] = s$
 - (B) $\left[\operatorname{Ag}^{+} \right] = \operatorname{s}$
 - (C) $\left\lceil 2\mathrm{Ag}^{+} \right\rceil = \mathrm{s}$
 - (D) $\left[\mathrm{SO}_{4}^{2-} \right] = \mathrm{s}$
- The aqueous solution of which of the following sulphides would contain maximum concentration of S^{2-} ions.
 - (A) MnS $({
 m K_{sp}}=1.1 imes 10^{-21})$
 - (B) ${
 m ZnS} \left({
 m K}_{
 m sp} = 1.1 imes 10^{-23}
 ight)$
 - (C) PbS $(K_{\rm sp}=1.1\times 10^{-35})$ (D) ${\rm CuS}\left(K_{\rm sp}=1.1\times 10^{-30}\right)$
- Which of the following salts has maximum solubility?

- (A) HgS, $K_{\rm sp} = 1.6 \times 10^{-54}$
- (B) ${
 m PbSO_4},~{
 m K_{sp}}=1.3 imes 10^{-8}$
- (C) $\rm ZnS, K_{sp} = 7.0 \times 10^{-26}$
- (D) AgCl, $K_{\rm sp} = 1.7 \times 10^{-10}$
- Q18 The necessary condition for saturated solution is
 - (A) Product of ionic concentrations = Solubility product
 - (B) Product of ionic concentrations < solubility product
 - (C) Product of ionic concentrations > solubility product
 - (D) None of the above
- Q19 Which of the following expressions shows the saturated solution of $PbSO_4$?
 - (A) $K_{sp}(PbSO_4) = \lceil Pb^{2+} \rceil \lceil SO_4^{2-} \rceil$

 - $\begin{array}{l} \text{(B)}\,\mathrm{K_{sp}}\big(\mathrm{PbSO_4}\big) > \left[\mathrm{Pb^{2+}}\right]\left[\mathrm{SO_4^{2-}}\right] \\ \text{(C)}\,\mathrm{K_{sp}}\big(\mathrm{PbSO_4}\big) = 2\left[\mathrm{Pb^{2+}}\right]\left[\mathrm{SO_4^{2-}}\right] \end{array}$
 - (D) $\mathrm{K_{sp}}\!\left(\mathrm{PbSO_4}\right) < \left\lceil \mathrm{Pb^{2+}} \right\rceil \left\lceil \mathrm{SO_4^{2-}} \right\rceil$
- $\textbf{Q20}\quad \text{The correct relation between } K_{sp} \text{ and solubility}$ for the salt $KAl(SO_4)_2$ is:
 - (A) $4 s^3$
 - (B) 4 s^4
 - (C) 27 s^4
 - (D) None
- **Q21** A precipitate of AgCl is formed when equal volumes of the following are mixed. $[\mathrm{K}_{\mathrm{sp}}$ for $AgCl = 10^{-10}$
 - (A) $10^{-4} \mathrm{MAgNO_3}$ and $10^{-7} \mathrm{MHCl}$
 - (B) $10^{-5} \mathrm{MAgNO_3}$ and $10^{-7} \mathrm{MHCl}$
 - (C) $10^{-5} \mathrm{MAgNO_3}$ and $10^{-4} \mathrm{MHCl}$
 - (D) $10^{-6} \mathrm{MAgNO_3}$ and $10^{-6} \mathrm{MHCl}$

Answer Key

Q1	(B)
Q2	(A)
Q3	(A)
Q4	(B)
Q5	(A)
Q6	(B)
Q7	(C)
Q8	(C)
Q9	(C)
Q10	(B)

Q11 (C)

Q12	(D)
Q13	(C)
Q14	(A)
Q15	(D)
Q16	(A)
Q17	(B)
Q18	(A)
Q19	(A)
Q20	(B)
Q21	(C)

Master NCERT with PW Books APP