Севастопольский государственный университет Кафедра «Информационные системы»

Управление данными курс лекций

лектор:

ст. преподаватель кафедры ИС Абрамович А.Ю.

Лекция 5 Жизненный цикл БД. Нормализация. Денормализация

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ БАЗЫ ДАННЫХ

Полный цикл разработки базы данных включает концептуальное, логическое и физическое проектирование.

Логическое проектирование базы данных (БД) — это **процесс создания структуры и организации данных в БД с учетом требований и целей предприятия или организации.** Включает в себя **определение сущностей** (таблиц), **атрибутов** (столбцов) **и связей между ними**, а также **определение правил и ограничений** для хранения и обработки данных.

Цель второй фазы проектирования базы данных состоит в создании эффективной и гибкой структуры данных, которая позволит эффективно хранить, обрабатывать и извлекать информацию. Структура должна удовлетворять требованиям надежности, безопасности и целостности данных.

На этом этапе уже должно быть известно, какая СУБД будет использоваться в качестве целевой - реляционная, сетевая, иерархическая или объектно-ориентированная, **но игнорируются все остальные характеристики выбранной СУБД**, например, любые особенности физической организации ее структур хранения данных и построения индексов.

ПОДХОДЫ И МЕТОДЫ К ЛОГИЧЕСКОМУ ПРОЕКТИРОВАНИЮ БД

TOP-DOWN ПОДХОД

Тор-down подход к логическому проектированию БД начинается с общего представления о системе и постепенно уточняется до более детального уровня. В этом подходе разработчики начинают с определения общих сущностей и связей между ними, а затем постепенно добавляют дополнительные детали и атрибуты. Тор-down подход позволяет разработчикам иметь общее представление о системе и ее структуре, что облегчает понимание и поддержку БД в будущем.

ВОТТОМ-UP ПОДХОД

Воttom-ир подход к логическому проектированию БД начинается с определения конкретных атрибутов и связей между ними, а затем постепенно объединяет их в более общие сущности. В этом подходе разработчики начинают с низкого уровня детализации и постепенно строят более общую структуру БД. Воttom-ир подход позволяет разработчикам сосредоточиться на конкретных деталях и атрибутах, что может быть полезно при работе с большими и сложными БД.

ER-МОДЕЛИРОВАНИЕ

ER-моделирование (Entity-Relationship Modeling) — это метод моделирования, который используется для описания сущностей, атрибутов и связей между ними в БД. ER-моделирование позволяет разработчикам визуализировать структуру БД и легко понять связи между сущностями.

НОРМАЛИЗАЦИЯ БД

Нормализация БД — это процесс разделения таблиц на более мелкие и более связанные таблицы для устранения избыточности данных и обеспечения целостности БД. Нормализация помогает улучшить эффективность и гибкость БД, а также уменьшить объем хранимых данных.

ДЕНОРМАЛИЗАЦИЯ БД

Денормализация БД — это процесс объединения таблиц в одну или несколько таблиц для увеличения производительности и упрощения запросов. Денормализация может быть полезна в случаях, когда требуется быстрый доступ к данным или когда объем данных невелик.

нормализация

Нормализация базы данных - это метод создания таблиц БД путем разделения (или декомпозиции) таблицы большего размера на небольшие логические единицы. В данном методе учитываются требования, предъявляемые к среде БД.

Нормализация базы данных (БД) - это метод проектирования реляционных БД, который помогает правильно структурировать таблицы данных. Процесс направлен на создание системы с четким представлением информации и взаимосвязей, без избыточности и потери данных.

Цель нормализации

Идентифицировать подходящий набор отношений, который будет **адекватно поддерживать требования** к данным некоторой предметной области:

- о минимальное количество атрибутов;
- атрибуты, которые логически тесно связаны, должны находиться в одном отношении;
- о минимальная избыточность, т. е. каждый атрибут должен быть представлен только один раз, за исключением атрибутов внешних ключей.

Зачем нужна нормализация базы данных?

Нормализация - это итеративный процесс. Каждый последующий шаг **разбивает таблицу на более легкую в управлении информацию**, чем **повышается общая логичность системы** и простота работы с ней.

Нормализация позволяет разработчику БД оптимально распределять атрибуты по таблицам. Данная методика **избавляет от:**

- о атрибутов с несколькими значениями;
- задвоения или повторяющихся атрибутов;
- атрибутов, не поддающихся классификации;
- атрибутов с избыточной информацией;
- атрибутов, созданных из других признаков.

Необязательно выполнять *полную нормализацию БД*. Но она гарантирует **полноценно** функционирующую информационную среду. Этот метод:

- о позволяет создать структуру базы данных, подходящую для общих запросов;
- сводит к минимуму избыточность данных, что повышает эффективность использования памяти на сервере БД;
- о гарантирует максимальную целостность данных, устраняя аномалий вставки, обновления и удаления.

Избыточность баз данных и аномалии

Избыточность подразумевает **наличие нескольких копий одних и тех же данных в базе данных.** Эта проблема возникает, когда база данных не нормализована.

Student_ID	Имя	Контакты	Университет	Интситут
100	Петров Пётр	897654335	СевГУ	иит
101	Иванов Иван	987544679	СевГУ	гпи
102	Сидоров Семён	987554356	СевГУ	иит
103	Сидорова Симона	987643246	СевГУ	иит

Проблемы, вызванные избыточностью, следующие:

- о аномалия вставки;
- о аномалия удаления;
- о аномалия обновления.

Для устранения подобных аномалий используется нормализация базы данных.

Книга	Студент
Книга 1	Иванов
Книга 2	Петров
Книга 3	Иванов

Данные **дублированные**, но **не избыточные**

Книга	Студент	Телефон
Книга 1	Иванов	9631440779
Книга 2	Петров	9170550011
Книга 3	Иванов	9631440779

Данные **избыточные**

Все уровни нормализации считаются накопительными. Прежде чем перейти к следующему этапу, выполняются все требования к текущей форме.

Первая нормальная форма (1НФ)

Схема отношения **R находится в 1НФ**, если **для любого атрибута A** из схемы R **значения являются атомарными.**

Каждый атрибут отношения должен хранить одно-единственное значение и не являться ни списком, ни множеством значений.

Приведение отношения к 1НФ – довольно простая операция. Необходимо просмотреть схему отношения и разделить составные атрибуты на различные строки/столбцы. Возможно, эту операцию придется повторить несколько раз до тех пор, пока каждый из атрибутов не станет атомарным.

Отношение, находящееся в 1НФ, должно удовлетворять следующим свойствам:

- в отношении нет одинаковых кортежей;
- кортежи не упорядочены;
- атрибуты не упорядочены и различаются по наименованию;
- все значения атрибутов атомарны (когда на пересечении любого столбца и любой записи находится атомарное значение).

Наименование	Город	Адрес	Вид	Контактные лица
Поршневой з-д	Владимир	ул. 2-я Кольцевая <i>,</i> 17	Поставщик	Иванов И.И., зам. дир., тел (3254)76-15-95
				Петров П.П., нач. отд. сбыта, тел (3254)76- 15-35
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент	Сидоров С.С., директор, тел. (7634)66-65-38
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент	Васильев В.В., директор, тел (3254)74-57-45

Очевидно, что **атрибут «контактные лица» не является атомарным**, поскольку в нем попадаются списки из нескольких лиц.

Наименование	Город	Адрес	Вид	Контактные лица
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	Иванов И.И., зам. дир., тел (3254)76-15-95
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	Петров П.П., нач. отд. сбыта, тел (3254)76-15-35
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент	Сидоров С.С., директор, тел. (7634)66-65-38
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент	Васильев В.В., директор, тел (3254)74-57-45

Наименование	Город	Адрес	Вид	Контактные лица
Поршневой з-д		· "		Иванов И.И., зам. дир., тел (3254)76-15-95
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	Петров П.П., нач. отд. сбыта, тел (3254)76-15-35
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент	Сидоров С.С., директор, тел. (7634)66-65-38
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент	Васильев В.В., директор, тел (3254)74-57-45
и чт Альфа	рладимир	ул. Пушкинская, 37	Миспі	расильев в.в., директор, тел (3234)74-37-43

Атрибут **«контактные лица» не может быть назван атомарным,** поскольку содержит разнородные данные, хотя и об одном лице.

Наименование	Город	Адрес	Вид	Должность	Ф.И.О.	Код города	Телефон
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	зам. дир.	Иванов И.И.	3254	76-15-95
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	нач. отд. сбыта	Петров П.П.	3254	76-15-35
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент	директор	Сидоров С.С.	7634	66-65-38
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент	директор	Васильев В.В.	3254	74-57-45

Вторая нормальная форма (2НФ)

Схема отношения **R находится во 2НФ** относительно множества функциональных зависимостей **F**, если она **находится в 1НФ и каждый неключевой атрибут полностью зависит от каждого ключа для R**.

Отношение находится во 2НФ, если оно находится в 1НФ, и при этом все неключевые атрибуты зависят только от ключа целиком, а не от какой-то его части.

Атрибут В отношения функционально зависит от атрибута А того же отношения (атрибуты могут быть составными) в том и только в том случае, когда в любой заданный момент времени для каждого из различных значений атрибута А обязательно существует только одно из различных значений атрибута В.

Атрибут В находится в полной функциональной зависимости от составного атрибута А, если он функционально зависит от А и не зависит функционально от любого подмножества атрибута А.

Диаграмма функциональной зависимости (или схема Ф3)

При постановке задачи заказчик сообщил, что в пределах каждого города наименование предприятия является уникальным, но в разных городах названия могут совпадать. Таким образом, предприятие характеризуется составным ключом «наименование + город».

Очевидно, что телефонный код города зависит исключительно от самого города и никак не связан с названием предприятия. Отсюда и один из источников избыточных данных. Чтобы устранить эту избыточность, придется разбить отношение на несколько.

Наименование	<u>Город</u>	Адрес	Вид	Должность	Ф.И.О.	Телефон
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	зам. дир.	Иванов И.И.	76-15-95
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	нач. отд. сбыта	Петров П.П.	76-15-35
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент	директор	Сидоров С.С.	66-65-38
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент	директор	Васильев В.В.	74-57-45

<u>Город</u>	<u>Код города</u>		
Владимир	3254		
Курск	7634		

ОТНОШЕНИЕ С ПРОСТЫМ, ИЛИ АТОМАРНЫМ, КЛЮЧОМ, ПРИВЕДЕННОЕ К 1НФ, НАХОДИТСЯ ВО 2НФ ПО ОПРЕДЕЛЕНИЮ И В ДАННОМ ЭТАПЕ НОРМАЛИЗАЦИИ НЕ НУЖДАЕТСЯ.

Третья нормальная форма (ЗНФ)

Схема отношения **R** находится в **3НФ** относительно множества функциональных зависимостей **F**, если **она находится в 2НФ** и ни **один из непервичных атрибутов в R не является транзитивно зависимым от ключа для R**.

Чтобы привести отношение к ЗНФ, необходимо устранить функциональные зависимости между неключевыми атрибутами отношения. То есть, факты, хранимые в таблице, должны зависеть только от ключа.

Атрибут В отношения **транзитивно функционально зависит** от атрибута А того же отношения (атрибуты могут быть составными) в том и только в том случае, **если существует такой атрибут С, что имеются функциональные зависимости между атрибутами А и С, а также между В и С.**

Теорема Хита дает возможность выполнить декомпозицию отношений без потерь информации:

- исходное отношение с Ф3 преобразуется в другие отношения, в каждом из которых атрибуты минимально зависят от первичного ключа;
- \circ атрибут C минимально зависит от атрибута A, если выполняется минимальная слева Ф3 $B \rightarrow C$.

Если $A \rightarrow B$ и $B \rightarrow C$, но $B \not \to A$ (В не является ключом), то $A \rightarrow C$. В этом случае C транзитивно зависит от A. Преобразование в ЗНФ состоит в декомпозиции исходного отношения на два отношения.

Наименование	Город	Адрес	Вид	Должность	Ф.И.О.	Телефон
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	зам. дир.	Иванов И.И.	76-15-95
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик	нач. отд. сбыта	Петров П.П.	76-15-35
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент	директор	Сидоров С.С.	66-65-38
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент	директор	Васильев В.В.	74-57-45

<u>Наименование</u>	<u>Город</u>	Адрес	Вид
Поршневой з-д	Владимир	ул. 2-я Кольцевая, 17	Поставщик
ООО Вымпел	Курск	ул. Гоголя, 25	Клиент
ИЧП Альфа	Владимир	ул. Пушкинская, 37	Клиент

<u>Ф.И.О.</u>	Наименование	Город	Должность	Телефон
Иванов И.И.	Поршневой з-д	Владимир	зам. дир.	76-15-95
Петров П.П.	Поршневой з-д	Владимир	нач. отд. сбыта	76-15-35
Сидоров С.С.	ООО Вымпел	Курск	директор	66-65-38
Васильев В.В.	ИЧП Альфа	Владимир	директор	74-57-45

Нормальная форма Бойса-Кодда (НФБК)

Нормальная форма Бойса-Кодда считается уточнением ЗНФ. Она учитывает все потенциальные ключи, которые входят в отношения. Если отношение имеет единственный потенциальный ключ, то ЗНФ и НФБК — эквивалентны. Считается, что отношение, находящееся в НФБК, если каждый его детерминант является потенциальным ключом. Чтобы убедиться, что отношение находится в НФБК необходимо отыскать все его детерминанты и убедиться, что они являются потенциальными ключами.

Детерминантом является один атрибут или группа атрибутов, от которой полностью функционально зависит другой атрибут.

Нарушение требований НФБК происходит:

- если имеются два или более составных ключа;
- о если **перекрывается потенциальный ключ**, т.е. если какой-то атрибут входит в несколько ключей.

Для отношений, имеющих один потенциальный ключ (первичный), НФБК является ЗНФ.

Пример БКНФ. Пусть есть отношение вида:

Служащие-Проекты(Н_служащего, Имя_служащего, Н_проекта, Работа_Служащего).

Возможными ключами отношения являются следующие пары атрибутов:

H_служащего, H_проекта; Имя_служащего, H_проекта.

Предполагается, что Имя_служащего так же уникально, как и Н_служащего. Видно, что отношение Служащие-Проекты находится в ЗНФ.

В отношении есть следующие функциональные зависимости:

```
Н_служащего → Имя_служащего;
Н_служащего → Н_проекта;
Имя_служащего → Н_служащего;
Имя_служащего → Н_проекта;
Н_служащего, Н_проекта → Работа_Служащего;
Имя_служащего, Н_проекта → Работа_Служащего.
```

Тот факт, что имеются функциональные зависимости атрибутов отношения от атрибута, являющегося частью первичного ключа, приводит к аномалиям.

Если вынести связь H_служащего → Имя_Служащего в отдельное отношение, то получится два отношения:

1.Служащие(Н_Служащего, Имя_служащего).

Возможные ключи:

Н_Служащего,

Имя_служащего.

Зависимости:

Н_Служащего → Имя_служащего;

Имя_служащего → Н_Служащего.

2.Служащие_Проекты(Н_служащего, Н_проекта, Работа_Служащего).

Возможный ключ: Н_служащего, Н_проекта.

Зависимости: (H_служащего, H_проекта) → Работа_Служащего.

Такая схема находится в БКНФ.

Четвертая нормальная форма (4НФ)

Отношение находится в 4НФ, если оно удовлетворяет НФБК и не содержит многозначных нетривиальных зависимостей.

В ходе проектирования БД выявлен один тип зависимости — **многозначная зависимость**. В данном отношении имеются многозначные зависимости типа «один ко многим» (1:N).

N_отдела	ФИО_сотрудника	ФИО_клиента
011	Кот	Чижик
012	Пёс	Лебедев
011	Кот	Гусев
012	Пёс	Тупик

Если для каждого атрибута A имеется набор атрибутов B и C. Хотя атрибут B и C не зависят друг от друга. Многозначная зависимость $A \rightarrow B$ и $A \rightarrow C$.

Многозначная зависимость подразделяется на тривиальную и не тривиальную зависимости. Многозначная зависимость A и B, определенных на некотором отношении R, называется тривиальной, если атрибут B является подмножеством атрибута A. В противном случае тривиальная зависимость является не тривиальной.

Приведение базы данных к 4НФ сокращает дублирование данных, но появление новых отношений усложняет схему базы данных.

Пятая нормальная форма (5НФ)

Зависимость соединения — это свойство декомпозиции, которая вызывает генерацию ложных строк при обратном соединении декомпозированных отношений. **Чтобы не возникало зависимостей соединения, необходимо отношение приводить к 5НФ.**

Отношение в 5НФ — это отношение без зависимостей соединения.

N_объекта	Мебель	N_поставщика
31	Стол	P1
31	Стул	P2
52	Стул	P3
52	Кровать	P1

Для того, чтобы отношение удовлетворяло 5-ой НФ, необходимо его разбить на следующие отношения:

Объект – Мебель (N_объекта, Мебель)

Поставщик – Мебель (N_поставщика, Мебель)

Объекта - Поставщик (N_объекта, N_поставщика)

СТАДИЯ АНОМАЛИИ ИЗБЫТОЧНОСТИ

НЕНОРМАЛИЗОВАННАЯ (НУЛЕВАЯ) ФОРМА (UNF) Это состояние перед любой нормализацией. В таблице **присутствуют избыточные и сложные значения**

ПЕРВАЯ НОРМАЛЬНАЯ ФОРМА (1NF)

Разбиваются **повторяющиеся и сложные значения**; все экземпляры становятся **атомарными**

ВТОРАЯ НОРМАЛЬНАЯ ФОРМА (2NF)

Частичные зависимости разделяются на новые таблицы. Все строки функционально зависимы от первичного ключа

ТРЕТЬЯ НОРМАЛЬНАЯ ФОРМА (3NF)

Транзитивные зависимости разбиваются на новые таблицы. Не ключевые атрибуты зависят от первичного ключа

НОРМАЛЬНАЯ ФОРМА БОЙСА-КОДА (BCNF)

Транзитивные и частичные функциональные зависимости для всех потенциальных ключей разбиваются на новые таблицы

ЧЕТВЕРТАЯ НОРМАЛЬНАЯ ФОРМА (4NF)

Удаляются многозначные зависимости

ПЯТАЯ НОРМАЛЬНАЯ ФОРМА (5NF)

Удаляются ЈОІN-зависимости (зависимости соединения)

ЭТАПЫ НОРМАЛИЗАЦИИ БАЗЫ ДАННЫХ

Шаг 1 (приведение к 1НФ). Задается одно или несколько отношений, отображающих понятия предметной области. По модели предметной области (не по внешнему виду полученных отношений!) выписываются обнаруженные функциональные зависимости. Все отношения автоматически находятся в 1НФ.

Шаг 2 (приведение к 2НФ). Если в некоторых отношениях обнаружена зависимость атрибутов от части сложного ключа, то проводим декомпозицию этих отношений на несколько отношений согласно процедуре приведения ко 2НФ.

Шаг 3 (приведение к 3НФ). Если в некоторых отношениях обнаружена зависимость некоторых неключевых атрибутов других неключевых атрибутов, то проводим декомпозицию этих отношений согласно процедуре приведения к 3НФ.

ДЕНОРМАЛИЗАЦИЯ ОТНОШЕНИЙ

Нормализация — это не процесс целенаправленного приведения базы данных к какой-то определенной нормальной форме, нормализация — это набор принципов, зная и следуя которым, можно спроектировать базу данных, структура которой будет гарантировать отсутствие определенного рода аномалий.

Таким образом, нет требования, которое обязывало бы приводить базу данных к максимально возможной нормальной форме, например, к 5 или 6, и не нужно нормализовать базу данных только для того, чтобы она была нормализована. Максимально нормализованная база данных — это плохая база данных.

Денормализация — намеренное приведение структуры базы данных в состояние, не удовлетворяющее требованиям нормализации.

Денормализация обычно проводится путем добавления избыточных данных в таблицу, т.е. тех данных, которые по требованиям той или иной нормальной формы должны выноситься в отдельную таблицу.

Преимущества денормализации:

Ускорение чтения данных. Дублирование и объединение данных позволяет избежать дорогостоящих операций объединения таблиц и значительно ускорить выполнение запросов.

Упрощение запросов. За счет денормализации данные становятся доступными в одной таблице, что упрощает написание запросов и снижает сложность разработки.

Улучшение производительности системы. Более быстрое выполнение запросов позволяет обрабатывать большее количество запросов в течение определенного времени, что повышает производительность системы.

Недостатки денормализации:

Увеличение объема данных. Дублирование данных приводит к увеличению объема хранимых данных, что требует больше места на диске.

Потеря целостности данных. Дублирование данных может привести к потере целостности, если необходимые обновления не выполняются правильно.

Повышенное время выполнения записи. Обновление дублированных записей требует дополнительного времени и ресурсов, поэтому время выполнения операций записи может увеличиться.