Aufgabe 1 (3 Punkte): Aufgabe 2 (4 Punkte): Aufgabe 3 (2 Punkte): Aufgabe 4 (2 Punkte): Aufgabe 5 (2 Punkte): Aufgabe 6 (1 Punkte): Familienname: Aufgabe 7 (3 Punkte): Aufgabe 8 (1 Punkte): Aufgabe 9 (1 Punkte): Vorname: Aufgabe 10 (2 Punkte): Aufgabe 11 (3 Punkte): Aufgabe 12 (2 Punkte): Aufgabe 13 (5 Punkte): Matrikelnummer: Aufgabe 14 (3 Punkte): Aufgabe 15 (4 Punkte): Aufgabe 16 (2 Punkte): Gesamtpunktzahl:

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM

25. Jänner 2016

Aufgabe 1 (3 Punkte). Was sind die Bestandteile M, e_{\min} , e_{\max} des Gleitkommazahlsystems $\mathbb{F}(2, M, e_{\min}, e_{\max})$? Wie lässt sich jede Gleitkommazahl $x \in \mathbb{F}(2, M, e_{\min}, e_{\max})$ darstellen? Welchen Wert haben die größte und die kleinste positive normalisierte Gleitkommazahl im double-Gleitkommazahlsystem $\mathbb{F}(2, 53, -1021, 1024)$?

Lösung zu Aufgabe 1.

Aufgabe 2 (4 Punkte). Was ist der Shell-Output des folgenden Programms?

```
#include <iostream>
using std::cout;
class dp {
private:
  int x;
  int y;
public:
  dp(int x, int y) {
     this \rightarrow x = x;
     this \rightarrow y = y;
    \mbox{cout} \ <<\ "new: \ x=" \ << \ x \ << \ ", \ y=" \ << \ y \ <<" \ \ \ ";
  ~dp() {
     cout << "old: x=" << x << ", y=" << y <<"\n";
  dp(const dp& input) {
     int a = input.x;
     int b = input.y;
     int c = 0;
     while ( a != b ) {
       if ( a < b ) {
         c = a;
         a = b;
         b = c;
       a = a - b;
       cout << "a=" << a << ", b=" << b << ", c=" << c << "\n";
    x = input.x/a;
    y = input.y/b;
};
int main() {
  dp q(20,45);
  dp\ r\ =\ q\,;
  return 0;
}
```

Lösung zu Aufgabe 2.

Aufgabe 3 (2 Punkte). Der folgende C++ Code hat 4 verschiedene Syntax-Fehler. Markieren Sie diese und erläutern Sie, was warum falsch ist!

```
1#include<iostream>
 2#include<string>
4 using std::cout;
5 using std::string;
7 class Base {
9 private:
    int a;
11 public:
    Base(int init) : a(init) {};
     void printinfo() {
       \mathrm{cout} \, << \, \mathrm{"Base} \, , \  \, \mathrm{a="} \, << \, \mathrm{a} \, << \, \mathrm{endl} \, ;
14
     };
15
    void printinfo(string input) {
16
       \mathrm{cout} \, << \, \mathrm{"Base} \, , \  \, \mathrm{a="} \, << \, \mathrm{a} \, << \, \mathrm{"} \, , \  \, \mathrm{input=} \, \, \mathrm{"} \, << \, \mathrm{input} \, << \, \mathrm{endl} \, ;
17
18
19 };
21 class Derived::public Base {
23 private:
    int b;
25 public:
     Derived(int init1, int init2):Base(init1) {
       b = init2;
27
28
     void printinfo() {
29
       cout << "Derived, a=" << a << ", b = " << b << endl;
     };
31
32 };
33
34 int main() {
     string ah = "Stefan und Michele!";
    Base bs(5);
    Derived gg(5,10);
37
    Derived dp(12,15);
38
    bs.printinfo(ah);
39
    gg.printinfo();
40
    dp. Derived :: printinfo();
     gg.printinfo(ah);
    return 0;
43
44 }
```

Lösung zu Aufgabe 3.

Aufgabe 4 (2 Punkte). Was ist eine rekursive Funktion und was darf dabei nicht fehlen? Erläutern Sie das Konzept anhand eines selbstgewählten Beispiels und geben Sie einen entsprechenden C/C++ Code an!

Lösung zu Aufgabe 4.

Aufgabe 5 (2 Punkte). Eine obere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ ist eine Matrix mit der Eigenschaft $A_{jk} = 0$ für j > k, d.h.

$$A = \begin{pmatrix} A_{00} & A_{01} & A_{02} & \dots & A_{0,n-1} \\ 0 & A_{11} & A_{12} & \dots & A_{1,n-1} \\ 0 & 0 & A_{22} & \dots & A_{2,n-1} \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & A_{n-1,n-1} \end{pmatrix}$$

Zur effizienten Speicherung wird $A \in \mathbb{R}^{n \times n}$ in Form eines Vektors $a \in \mathbb{R}^N$ mit $N = \sum_{j=1}^n j = \frac{n(n+1)}{2}$ abgelegt, d.h. $A_{jk} = a_\ell$ für einen geeigneten Index ℓ , der eindeutig von j und k abhängen muss. Leiten Sie eine Formel für ℓ her (in Abhängigkeit von j und k). Begründen Sie Ihre Formel.

Lösung zu Aufgabe 5.

Hinweis. In den folgenden Aufgaben seien die oberen Dreiecksmatrizen $A \in \mathbb{R}^{n \times n}$ in Objekten der C++ Klasse TriMatrix gespeichert, die unten definiert ist. Neben Konstruktor (mit optionalem Initialisierungswert), Kopierkonstruktor, Destruktor und Zuweisungsoperator gibt es eine Methode, um die Dimension n auszulesen (size). Der Koeffizientenvektor coeff speichert nur die $\frac{n(n+1)}{2}$ nicht-trivialen Einträge A_{jk} mit $j \leq k$, auf die mittels A(j,k) lesend und schreibend zugegriffen wird:

Aufgabe 6 (1 Punkt). Erläutern Sie die Bedeutung der beiden const in Zeile 11 der Klassendefinition.

Lösung zu Aufgabe 6.

Aufgabe 7 (3 Punkte). Schreiben Sie den Konstruktor der Klasse TriMatrix. Stellen Sie mittels assert sicher, dass $n \ge 0$ ist, wobei für n = 0 eine leere Matrix angelegt werde. Hinweis. Beachten Sie, dass coeff ein Vektor der Länge $\frac{n(n+1)}{2}$ ist.

Lösung zu Aufgabe 7.

Aufgabe 8 (1 Punkt). Schreiben Sie den Destruktor der Klasse TriMatrix.

Lösung zu Aufgabe 8.

Aufgabe 11 (3 Punkte). Schreiben Sie den Zuweisungsoperator der Klasse TriMatrix.Lösung zu Aufgabe 11.

Aufgabe 12 (2 Punkte). Beweisen Sie mathematisch, dass das Produkt $C = AB \in \mathbb{R}^{n \times n}$ zweier oberer Dreiecksmatrizen $A, B \in \mathbb{R}^{n \times n}$ wieder eine obere Dreiecksmatrix ist, indem Sie die Laufindizes der Summe des allgemeinen Matrizenprodukts

$$C_{j\ell} = \sum_{k=0}^{n-1} A_{jk} B_{k\ell} \quad \text{für } j, \ell = 0, \dots, n-1$$

mithilfe der Dreiecksstruktur von A und B vereinfachen.

Hinweis: Eine obere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ ist durch $A_{jk} = 0$ für j > k charakterisiert.

Lösung zu Aufgabe 12.

Aufgabe 13 (5 Punkte). Überladen Sie den * Operator so, dass er das Produkt $C = AB \in \mathbb{R}^{n \times n}$ zweier oberer Dreiecksmatrizen $A, B \in \mathbb{R}^{n \times n}$ berechnet. Stellen Sie mittels assert sicher, dass A und B dieselbe Dimension haben.

Hinweis. Beachten Sie, dass die Funktion nur Koeffizienten C_{jk} für $0 \le j \le k \le n-1$ berechnen soll und auch nur auf entsprechende Koeffizienten von A und B zugreifen darf. Verwenden Sie dazu Ihre Erkenntnisse aus Aufgabe 12.

Lösung zu Aufgabe 13.

Hinweis. In den folgenden Aufgaben seien Vektoren $x \in \mathbb{R}^n$ in Objekten der C++ Klasse Vector gespeichert, die unten definiert ist. Neben Konstruktor, Kopierkonstruktor, Destruktor und Zuweisungsoperator gibt es eine Methode, um die Dimension n auszulesen (size). Auf die Koeffizienten x_j des Vektors kann mittels x(j) für $0 \le j \le n-1$ zugegriffen werden. Sie müssen keine der genannten Methoden implementieren!

```
class Vector {
private:
   int n;
   double* coeff;
public:
   Vector(int n=0, double init=0);
   Vector(const Vector&);
   ~Vector();
   Vector& operator=(const Vector&);
   int size() const;
   const double& operator()(int j) const;
   double& operator()(int j);
};
```

Aufgabe 14 (3 Punkte). Leiten Sie für gegebenes $b \in \mathbb{R}^n$ eine Formel her, um für eine obere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ mit $A_{jj} \neq 0$ für alle $j = 0, \ldots, n-1$ die Lösung $x \in \mathbb{R}^n$ von Ax = b zu berechnen, indem Sie die Formel des Matrix-Vektor-Produkts

$$b_j = (Ax)_j = \sum_{k=0}^{n-1} A_{jk} x_k$$

mithilfe der Dreiecksstruktur von ${\cal A}$ vereinfachen.

Hinweis: Eine obere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ ist durch $A_{jk} = 0$ für j > k charakterisiert.

Lösung zu Aufgabe 14.

Aufgabe 15 (4 Punkte). Überladen Sie den | Operator so, dass $x = A \mid b$ für eine obere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ (vom Typ TriMatrix) und einen Vektor $b \in \mathbb{R}^n$ (vom Typ Vector) die Lösung $x \in \mathbb{R}^n$ von Ax = b (als Objekt vom Typ Vector) berechnet. Stellen Sie mittels assert sicher, dass A und b passende Dimension haben.

Lösung zu Aufgabe 15.

Aufgabe 16 (2 Punkte). Bestimmen Sie den Aufwand Ihrer Funktion aus Aufgabe 15. Falls die Funktion für $n=10^3$ eine Laufzeit von 3 Sekunden hat, welche Laufzeit erwarten Sie aufgrund des Aufwands für $n=10^4$? Begründen Sie Ihre Antwort!

Lösung zu Aufgabe 16.