Confidentiality using Symmetric Encryption

Confidentiality using Symmetric Encryption

 traditionally symmetric encryption is used to provide message confidentiality

Points of vulnerability

- Snooping from another workstation
- Reprogram switches or router to capture data from the network
- Use dial in to LAN or server to snoop
- Physically tap lines in wiring closet
- External router links to enter or snoop
- In wireless links risk of eavesdropping is greater

have two major placement alternatives

link encryption

- encryption occurs independently on every link
- implies must decrypt traffic between links
- requires many devices, but paired keys

end-to-end encryption

- encryption occurs between original source and final destination
- need devices at each end with shared keys

- when using end-to-end encryption must leave headers in clear
 - so network can correctly route information
- hence although contents protected, traffic pattern flows are not
- ideally want both at once
 - end-to-end protects data contents over entire path and provides authentication
 - link protects traffic flows from monitoring

- can place encryption function at various layers in OSI Reference Model
 - -link encryption occurs at layers 1 or 2
 - end-to-end can occur at layers 3, 4, 6, 7
 - as move higher less information is encrypted but it is more secure though more complex with more entities and keys

Encryption vs Protocol Level

ink-H Net-H IP-H TCP-H	Data	Link-T	1
------------------------	------	--------	---

(a) Application-Level Encryption (on links and at routers and gateways)

In gateways

(b) TCP-Level Encryption

Link-H	Net-H	IP-H	TCP-H	Data Link		
On links						
Link-H	Net-H	IP-H	TCP-H	Data	Link-T	

In routers and gateways

(c) Link-Level Encryption

Shading indicates encryption.

TCP-H = TCP header
IP-H = IP header
Net-H = Network-level header(e.g., X.25 packetheader,LLC header)
Link-H = Data link control protocolheader
Link-T = Data link control protocoltrailer

Traffic Analysis

- is monitoring of communications flows between parties
 - useful both in military & commercial spheres
 - can also be used to create a covert channel
- link encryption obscures header details
 - but overall traffic volumes in networks and at endpoints is still visible
- traffic padding can further obscure flows
 - but at cost of continuous traffic

Key Distribution

- symmetric schemes require both parties to share a common secret key
- issue is how to securely distribute this key
- often secure system failure due to a break in the key distribution scheme

Key Distribution

- given parties A and B have various key distribution alternatives:
 - 1. A can select key and physically deliver to B
 - third party can select & deliver key to A & B
 - if A & B have communicated previously can use previous key to encrypt a new key
 - 4. if A & B have secure communications with a third party C, C can relay key between A & B

Key Hierarchy

- typically have a hierarchy of keys
- session key
 - temporary key
 - used for encryption of data between users
 - for one logical session then discarded
- master key
 - used to encrypt session keys
 - shared by user & key distribution center

Key Distribution Scenario

Key Distribution Issues

- hierarchies of KDC's required for large networks, but must trust each other
- session key lifetimes should be limited for greater security
- use of automatic key distribution on behalf of users, but must trust system
- use of decentralized key distribution
- controlling key usage

Public-Key Cryptography – General Characteristics

- public-key/two-key/asymmetric cryptography
 - A concept, there are several such cryptosystems
- uses 2 keys
 - public-key
 - may be known by anybody, and can be used to encrypt messages, and verify signatures
 - private-key
 - known only to the recipient, used to decrypt messages, and sign (create) signatures
- keys are related to each other but it is not feasible to find out private key from the public one

Public-Key Cryptography – General Characteristics

- Keys are related to each other but it is not feasible to find out private key from the public one
- It is computationally easy to en/decrypt messages when the relevant keys are known
- Trap-door one-way function

```
Y=f_{ku}(X) easy, if ku and X are known X=f_{kr}^{-1}(Y) easy, if kr and Y are known, but infeasible if Y is known but kr is not known
```

ku: public-key, kr: private key

Public-Key Cryptography – General Characteristics

- based on number theoretic hard problems
 - rather than substitutions and permutations
- 3 misconceptions about PKC
 - it replaces symmetric crypto
 - PKC rather complements private key crypto
 - PKC is more secure
 - no evidence for that, security mostly depends on the key size in both schemes
 - key distribution is trivial in PKC since public keys are public
 - making something public is not easy. How can you make sure that a public key belongs to the intended person?
 - key distribution is easier, but not trivial

Public-Key Cryptography - Encryption

Public-Key Cryptography - Authentication

Why Public-Key Cryptography?

- Initially developed to address two key issues:
 - key distribution
 - symmetric crypto requires a trusted Key Distribution Center (KDC)
 - in PKC you do not need a KDC to distribute and know secret keys, but you need trusted third parties
 - digital signatures (non-repudiation)
 - not possible with symmetric crypto

Public-Key Cryptosystems

Figure 9.4 Public-Key Cryptosystem: Secrecy and Authentication

KU_a	A's Public Key	KU_b	B's Public Key
KR_a	A's Private Key	KR_b	B's Private Key

Public-Key Applications

- 3 categories
 - -encryption/decryption
 - to provide secrecy
 - digital signatures
 - to provide authentication and nonrepudiation
 - key exchange
 - to agree on a session key
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force attack is always theoretically possible
 - use large keys
 - consider the security / performance tradeoff
- due to public key / private key relationships number of bits in the key should be much larger than symmetric crypto keys
 - to do the hard problem really hard
 - 80-bit symmetric key and 1024-bit RSA key has comparable resistance to cryptanalysis
- a consequence of use of large keys is having slower encryption and decryption as compared to private key schemes
 - thus, PKC is not a proper method for bulk encryption

Summary

- have considered:
 - the AES selection process
 - the details of Rijndael the AES cipher
 - Confidentiality through symmetric encryption
 - Traffic analysis
 - Key distribution centre
 - Introduction to Public key cryptography