Vereinbarte Konstanten:

Normaleingriffs- winkelwinkel:	Schrägungswinkel:	Überschlägiger Belastungswert:	Anwendungsfakt
$\alpha_n = 20$ °	β≔20 °	$B_{-1} := 4 \frac{N}{N}$	$K_A \coloneqq 2.0$
		mm^2	A

Druckkraft Schaltdrehzahl: Dauerfestigkeitsschubspannung: vom Boden:

$$F_B = 1500 N$$
 $n_s = 1400 rpm$ $\tau_{Tzul} = 50 \frac{N}{mm^2}$ (42CrMo4)

Antriebsdrehzahl:

$$n_{Antrieb} \coloneqq 2000 \ \frac{1}{min}$$

Übersetzungsverhältnis:

Antriebsmoment:

$$T_{an} = 50 \ N \cdot m$$

Theoretisch benötigte Übersetzungen:

$$\begin{array}{cccc} i_1\coloneqq 3.40 & & i_2\coloneqq 2.95 & & \text{orientiert an TB 21-11} \\ i_{Gesamt}\coloneqq i_1\cdot i_2 & & i_{Gesamt}\equiv 10.03 & & \end{array}$$

Errechnete Übersetzungen (siehe Zahnraddaten):

$$i'_1 := 3.381$$
 $i'_2 := 2.964$ $i'_{Gesamt} := i'_1 \cdot i'_2$ $i'_{Gesamt} = 10.021$

Moment der Vorgelegewelle:

$$T_{Vorgelege} \coloneqq T_{an} \cdot i'_{1}$$
 $T_{Vorgelege} = 169.05 \ N \cdot m$

Abtriebsmoment:

 $T_{ab} := T_{an} \cdot i'_{Gesamt}$

 $T_{ab} = 501.064 \ N \cdot m$

11.04.2022 Seite 1 von 32

ehkraftkupplung:				
N_{FK} := 2	$oldsymbol{F_F}\coloneqq 15~oldsymbol{N}$	$n_s = 1400 \; rac{1}{min}$	$\omega_s = 2 \pi \cdot n_s = 146.608$	8
$r_{FK} = 50 \ mm$	$\mu_0 := 0.9$			
$m_{FK} \coloneqq 1 \; kg$	$\Delta l \coloneqq 2.5 \ mm$			
$d_R = 140 mm$				
Federsteifigkeit:	$C\!\coloneqq\!rac{F_F}{ riangle l}$		$C=6 \frac{N}{mm}$	
Bei Schaltdrehzahl:				
Fliehkraft:	$F_{Flieh} \! := \!$	$m_{FK}\!\cdot\!r_{FK}\!\cdot\!\omega_s{}^2$	$F_{Flieh} = 1.075 \ kN$	
Kontaktkraft:	F_N := $(F$	$F_{Flieh} - 2 ullet F_F ig)$	$F_N = 1.045 \ kN$	
Reibkraft eines Fliehk	örpers: $F_R \coloneqq \mu_0$	$oldsymbol{\cdot} F_N$	$F_R = 940.221 \ N$	
Reib-/Schaltmoment:	$T_R \!\coloneqq\! N_H$	$F_K \cdot F_R \cdot rac{d_R}{2}$	$T_R = 131.631 \ N \cdot m$	

11.04.2022 Seite 2 von 32

Antriebswelle:	Vorgelegewelle:	Abtriebswelle:
$oldsymbol{d_{min1}} \coloneqq \sqrt[3]{rac{\left(16 m{\cdot} T_{an} m{\cdot} K_A ight)}{oldsymbol{\pi} m{\cdot} au_{Tzul}}}$	$d_{min2} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{Vorgelege} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$	$d_{min3} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{ab} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$
$d_{min1} = 21.677 \ mm$	$d_{min2} = 32.535 \ mm$	$d_{min3} = 46.735 \ mm$
Gewählt: $d_{W1} = 25 \ mm$	Gewählt: $d_{W2} = 35 \ mm$	Gewählt: $d_{W3} = 50 m$
ahnraddaten:		
Ritzelzähnezahlen:		
$z_1 = 21$	z_3 := 28	
$z_2 = 71$	$z_4\!\coloneqq\!83$	
$i'_1 := \frac{z_2}{z_1} = 3.381$	$i'_2 := \frac{z_4}{z_3} = 2.964$	
Damit ist $i'_1 \sim i_1$ und $i'_2 \sim i_2$		
orientiert an TB 21-12		
Modul 1,2:		
$m_{n12} \coloneqq \frac{\left(1.8 \cdot d_{W1} \cdot \cos\left(\beta\right)\right)}{z_1 - 2.5}$	$m_{n12} = 2.286 \ mm$	nach Gl. 21-63
Gerundet:	$m_{n12} := 3.0 \; mm$	nach TB 21-1
Teilkreisdurchmesser 1,2:		
$egin{aligned} d_1 &\coloneqq rac{\left(z_1 \cdot m_{n12} ight)}{\cos\left(eta ight)} \ d_2 &\coloneqq rac{\left(z_2 \cdot m_{n12} ight)}{\cos\left(eta ight)} \end{aligned}$	$d_1 = 67.043 \; mm$	nach Gl. 21-38
$d_{a} \coloneqq \frac{\left(z_2 \cdot m_{n12}\right)}{\left(z_2 \cdot m_{n12}\right)}$	$d_2 = 226.67 \ mm$	

Zaharadhraita 1	2.		
Zahnradbreite 1	.,2:		
Zahnrad Z1:	$b_1 \coloneqq rac{\left(2 \cdot T_{an} ight)}{{d_1}^2 \; B_{zul}}$	$b_1 = 5.562 \ mm$	nach Vereinbarung
Gewählt:	$b_1 \coloneqq 15 \ mm$		gewählt nach TB-21-13 a/b.)
	$b_2 := b_1$		
Null-Achsabstan	nd 1,2:		
$a_{d1} \coloneqq \frac{\left(d_1 + d_2\right)}{2}$		$a_{d1} = 146.857 \ mm$	nach Gl. 21-8
Modul 3,4:			
$m_{n34} \coloneqq \frac{\left(2 \cdot a_{d1}\right.}{\left(1 + \right.}$	$egin{array}{c} \cdot \cos{(eta)} \\ oldsymbol{i_2} \cdot z_3 \end{array}$	$m_{n34} = 2.495 \ mm$	nach Gl. 21-64
Gerundet: 1 Teilkreisdurchm	$m_{n34} = 2.5 \ mm$ esser 3.4:		nach TB 21-1
$d_3 \coloneqq \frac{\left(z_3 \cdot m_{n34}\right)}{\cos(\beta)}$		$d_3 = 74.492 \ mm$	
			nach Gl. 21-38
$d_4 = \frac{(z_4 \cdot m_{n34})}{\cos(\beta)}$	<u></u>	$d_4 = 220.817 \ mm$	

Zahnradbreite 3,4:

	/o T		
Zahnrad Z3:	$b_2 \coloneqq \frac{(2 \cdot T_{Vorgelege})}{}$	$b_3 = 15.232 \ mm$	nach Vereinbarung
	d 2 P	3	

Gewählt:
$$b_3 = 25 \ mm$$
 gewählt nach TB-21-13 a/b.)

$$b_4 \coloneqq b_3$$

Null-Achsabstand 3,4:

$$a_{d2} \coloneqq \frac{(d_3 + d_4)}{2}$$
 $a_{d2} = 147.655 \ mm$ $a_{d1} = 146.857 \ mm$ nach Gl. 21-8

$$a_{d1} - a_{d2} = -0.798 \ mm$$

Die Nullachsabstände sind verschieden, a_{d1} wird angeglichen. D.h. eine negative Profilverschiebung wird an den Zahnrädern z_1 und z_2 vorgenommen, damit keine Schwächung des Ritzels entsteht.

Profilverschiebung:

Stirneingriffswinkel:

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right)$$
 $\alpha_t = 21.173$ ° nach Gl. 21-35

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{d1}}{a_{d2}}\right) \cdot \frac{360}{2 \cdot \pi}$$
 $\alpha_{wt} = 21.959$ nach Gl. 21-21

Summe Profilverschiebungsfaktoren:

$$invlpha_{wt} \coloneqq an(lpha_{wt}) - lpha_{wt} \cdot rac{2 \cdot \pi}{360^{\circ}}$$
 $invlpha_{t} \coloneqq an(lpha_{t}) - lpha_{t} \cdot rac{2 \cdot \pi}{360^{\circ}}$

$$inv\alpha_{wt} = 0.02$$
 $inv\alpha_t = 0.018$

$$\Sigma x \coloneqq \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot (z_1 + z_2)$$
 nach Gl. 21-56

$$\Sigma x = 0.271$$

Ersatzzähnezahlen:

$\beta_b := a\cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right)$	$\beta_b = 18.747$ °	nach Gl. 21-36
$\cos^2\left(\boldsymbol{\beta}_b\right)\coloneqq\frac{1}{2}\left(1+\cos\left(2\boldsymbol{\cdot}\boldsymbol{\beta}_b\right)\right)$	$\cos^2\left(\beta_b\right) = 0.897$	Additionstheorem
$z_{n1} \coloneqq \frac{z_1}{\cos^2(\beta_b) \cdot \cos(\beta)}$ $z_{n1} = 24.922$	$z_{n2} \coloneqq \frac{z_2}{\cos^2(eta_b) \cdot \cos(eta)}$ $z_{n2} = 84.26$	nach Gl. 21-47
Sinnvolle Wahl von $oldsymbol{x}_1$ nach Gl. 21.33 i		
$\boldsymbol{x}_1 \coloneqq \frac{\boldsymbol{\Sigma}\boldsymbol{x}}{2} + \left(0.5 - \frac{\boldsymbol{\Sigma}\boldsymbol{x}}{2}\right) \cdot \frac{\log\left(\frac{\boldsymbol{z}_2}{\boldsymbol{z}_1}\right)}{\log\left(\frac{\boldsymbol{z}_{n1} \cdot \boldsymbol{z}_{n2}}{100}\right)}$		nach Gl. 21-33
$x_1 = 0.281$		
$x_2 \coloneqq \Sigma x - x_1$		
$x_2 = -0.01$		
Verschiebungen:		
$V_1\!\coloneqq\! x_1\!\cdot\! m_{n12}$	$V_1 = 0.844 \ mm$	nach Gl. 21-49
$V_2 \coloneqq x_2 \cdot m_{n12}$	$V_2 = -0.031 \ mm$	
$egin{aligned} V_3 &\coloneqq 0 \ mm \ V_4 &\coloneqq 0 \ mm \end{aligned}$		

11.04.2022 Seite 6 von 32

Kopfhöhenänderung:		
$k \coloneqq a_{d2} - a_{d1} - m_{n12} \cdot (x_1 + x_2)$	$k = -0.014 \ mm$	nach Gl. 21-23
Kopfspiel (Soll):		
$c_{12} \coloneqq 0.25 \cdot m_{n12}$	$c_{12}\!=\!0.75~{\it mm}$	nach S.769
$c_{34} \coloneqq 0.25 \cdot m_{n34}$	$c_{34} = 0.625 \ mm$	Hacii 3.709
Kopfkreisdurchmesser nach Profilver	schiebung:	
$d_{a1} \coloneqq d_1 + 2 \cdot m_{n12} + 2 \cdot V_1 + 2 \cdot k$	$d_{a1} = 74.702 \ mm$	nach Gl. 21-24
$d_{a2} := d_2 + 2 \cdot m_{n12} + 2 \cdot V_2 + 2 \cdot k$	$d_{a2} = 232.578 \ mm$	
$d_{a3} \coloneqq d_3 + 2 \cdot m_{n34}$	$d_{a3} = 79.492 \ mm$	nach Gl. 21-40
$d_{a4} \coloneqq d_4 + 2 \cdot m_{n34}$	d _{a4} = 225.817 mm	
Fußkreisdurchmesser nach Profilvers	schiebung:	
$d_{f1} \coloneqq d_1 - 2 \cdot ig(ig(m_{n12} + c_{12}ig) - V_1ig)$	$d_{f1} = 61.231 \; mm$	nach Gl. 21-25
$d_{f2}\!:=\!d_2\!-\!2m{\cdot}ig(ig(m_{n12}\!+\!c_{12}ig)\!-\!V_2ig)$	$d_{f2} = 219.107 \ mm$	
$d_{f3} \coloneqq d_3 - 2.5 \cdot m_{n34}$	$d_{f3} = 68.242 \; mm$	nach Gl. 21-41
$d_{f4} \coloneqq d_4 - 2.5 \cdot m_{n34}$	$d_{f4} = 214.567 \ mm$	
Kopfspiel nach Profilverschiebung:		
$c \coloneqq a_{d2} - 0.5 \cdot \left(d_{a1} + d_{f2}\right)$	c=0.75 mm	nach Gl. 21-22c

11.04.2022 Seite 7 von 32

tangentiales Modul:	$m_{t12} \coloneqq \frac{m_{n12}}{\cos\left(eta ight)}$	
min. Kopfdicke des Zahnes:	$s_{a12min} \coloneqq 0.2 \cdot m_{n12}$	nach S.791
	$s_{a12min} = 0.6 mm$	
Stirnteilung:	$p_{t12} \coloneqq m_{t12} \boldsymbol{\cdot} \pi$	nach Gl. 21-34
Stirnzahndicke:	$s_{t1} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_1 \cdot \tan(\alpha_t)$	nach Gl. 21-51
		1,000
Profilwinkel am Kopfkreis: o	$ \alpha_{at1} \coloneqq \operatorname{acos}\left(\frac{d_1 \cdot \cos\left(\alpha_t\right)}{d_{a1}}\right) $	nach S.806 " $lpha_{at1}$ " entspricht
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	" $lpha_{at1}$ " entspricht $lpha_{yt1}$ " aus Roloff Matek
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	" $lpha_{at1}$ " entspricht
Profilwinkel am Kopfkreis: a $invlpha_{at1}:= an\left(lpha_{at1} ight)-lpha_{at1}\cdotrac{2}{36}$ Kopfdicke des Zahnes an den $a_{a1}:=d_{a1}\cdot\left(rac{s_{t1}}{d_1}+invlpha_t-invlpha_t ight)$	•π 60° gewählten Zahnrädern (nach	" $lpha_{at1}$ " entspricht " $lpha_{yt1}$ " aus Roloff Matek aus Vorlesung Profilverschiebung):

Stirnzahndicke:
$$s_{t2} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_2 \cdot an(lpha_t)$$

Profilwinkel am Kopfkreis: $lpha_{at2} \coloneqq cos\left(rac{d_2 \cdot \cos\left(lpha_t
ight)}{d_{a2}}
ight)$

$$inv\alpha_{at2} \coloneqq \tan\left(\alpha_{at2}\right) - \alpha_{at2} \cdot \frac{2 \cdot \pi}{360}$$

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a2} \coloneqq d_{a2} \cdot \left(rac{s_{t2}}{d_2} + invlpha_t - invlpha_{at2}
ight) \hspace{1cm} s_{a2} = 2.583 \hspace{0.1cm} mm$$

Sowohl s_{a1} als auch s_{a2} sind > s_{a12min} . Die Zahndicke am Kopfkreis ist damit ausreichend. Zusätzliche Prüfung über TB 21-8 R/M führt zum gleichen Ergebnis.

Grundkreisdurchmesser db:

(Der Durchmesser welcher von der Normalen N-N, die durch den Berührpunkt der Zahnflanken geht, tangiert wird - Bild 21.3)

	$d_{b1} = 62.517 \ mm$	
$\boldsymbol{d_{b2}} \coloneqq \boldsymbol{d_2} \cdot \cos\left(\alpha_t\right)$	$d_{b2} = 211.369 \ mm$	nach Gl. 21-2
$\boldsymbol{d_{b3}} \coloneqq \boldsymbol{d_3} \cdot \cos\left(\boldsymbol{\alpha_t}\right)$	$d_{b3} = 69.464 \ mm$	Hach Gl. 21-2
$d_{b4} \coloneqq d_4 \cdot \cos\left(lpha_t ight)$	$d_{b4} = 205.911 \ mm$	

Profilüberdeckung:

Profilüberdeckung des ersten Zahnradpaares:

$$\varepsilon_{\alpha 1 2} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{z_2}{|z_2|} \cdot \sqrt{d_{a2}^2 - d_{b2}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)} \quad \text{nach Gl. 21-57}$$

$$\varepsilon_{\alpha 12} = 1.47$$

$$\varepsilon_{\beta12}\coloneqq\frac{b_1\cdot\tan\left(\beta\right)}{p_{t12}} \qquad \qquad \varepsilon_{\beta12}=0.544 \qquad \qquad \text{nach Gl. 21-44}$$

$$\varepsilon_{\gamma 12}\!\coloneqq\!\varepsilon_{\alpha 12}\!+\!\varepsilon_{\beta 12} \hspace{1.5cm} \text{nach Gl. 21-46}$$

-> Profilüberdeckung des ersten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Profilüberdeckung des zweiten Zahnradpaares:

$$\varepsilon_{\alpha 3 4} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)}$$

$$\varepsilon_{\alpha 34} = 1.119$$

$$arepsilon_{eta34} \coloneqq rac{oldsymbol{b}_3 \cdot an(oldsymbol{eta})}{oldsymbol{p}_{t12}} \qquad \qquad arepsilon_{eta34} = 0.907$$

$$\varepsilon_{\gamma 34}\!:=\!\varepsilon_{\alpha 34}\!+\!\varepsilon_{\beta 34}\qquad \qquad \varepsilon_{\gamma 34}\!=\!2.026$$

-> Profilüberdeckung des zweiten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

11.04.2022 Seite 9 von 32

etriebswälzkreisdur	cnmesser:	
$d_{w1} \coloneqq \frac{d_1 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{wt}\right)}$	$d_{w1}\!=\!67.408\; mm$	nach Gl. 21-22a
$d_{w2} \coloneqq \frac{d_2 \cdot \cos\left(lpha_t ight)}{\cos\left(lpha_{wt} ight)}$	d_{w2} = 227.902 mm	nach Gl. 21-22b
$d_{w3}\!\coloneqq\!d_3$	$d_{w3} = 74.492 \; mm$	
$d_{w4}\!\coloneqq\!oldsymbol{d_4}$	$d_{w4} = 220.817$ mm	

Kontrolle Achsabstand:

$$a := \frac{d_{w1} + d_{w2}}{2} = 147.655$$
 mm

identisch mit:

 $a_{d2} = 147.655 \ mm$

$$a := \frac{d_{w3} + d_{w4}}{2} = 147.655$$
 mm

Zusammenfassung:

$d_1 = 67.043 \ mm$	$d_{b1} = 62.517 \ mm$	$d_{a1} = 74.702 \ mm$	$d_{f1} = 61.231 \ mm$
$d_2 = 226.67 \ mm$	$d_{b2} = 211.369 \ mm$	$d_{a2} = 232.578 \ mm$	$d_{f2} = 219.107 \ mm$
$d_3 = 74.492 \ mm$	$d_{b3} = 69.464 \ mm$	$d_{a3} = 79.492 \ mm$	$d_{f3} = 68.242 \ mm$
$d_4 = 220.817 \ mm$	$d_{b4} = 205.911 \ mm$	$d_{a4} = 225.817 \ mm$	$d_{f4} = 214.567 \ mm$
b ₁ =15 mm	d_{w1} =67.408 mm	$z_1 = 21$	$m_{n12} = 3 mm$
$b_2 = 15$ mm	$d_{w2}\!=\!227.902\; mm$	$z_2 = 71$	
$b_3 = 25$ mm	$d_{w3}\!=\!74.492\;m{mm}$	$z_3 = 28$	$m_{n34} = 2.5 \ mm$
$b_4 = 25 \ mm$	$d_{w4}\!=\!220.817\; mm$	$z_4 = 83$	
$V_1 = 0.844 \ mm$	$\varepsilon_{\circ 12} = 1.47$	$\varepsilon_{\sim 24} = 1.119$	$x_1 = 0.281$

11.04.2022 Seite 10 von 32

1	-α12	αυ4	
$V_2 = -0.031 \ mm$	$arepsilon_{eta12}\!=\!0.544$	$arepsilon_{eta34} = 0.907$ x	$_{2} = -0.01$
$V_3 = 0 mm$	$arepsilon_{\gamma 12} \!=\! 2.015$	$arepsilon_{\gamma 34} \!=\! 2.026$	
$V_4 = 0$ mm			
ssfederberechnung			
Werkstoff Passfeder E	295 GC		
9 11	D 400 N	Re	N N
$S_F = 1.1$ nach TB 12-1b	$Re := 420 {mm^2}$	p_{fzul} := $rac{Re}{S_F}$ p_{fzul} = 3	$\frac{1}{mm^2}$
$arphi\!\coloneqq\!1$ für r	$=1$ $n_{Pass} \coloneqq 1$	$K_{\lambda} \coloneqq 1$ $K_{A} = 2$	
Antriebswelle - Fliehkr		D 6 DIN 600E A0 7	
für Wellendurch	messer 25mm: -	Passfeder DIN 6885 - A8x7x	28
$h_{Pass} \coloneqq 7$ mm	$l_{Pass} = 28 \ \textit{mm}$	<i>h</i> := 3.0 <i>mm</i>	
b_{Pass} :=8 mm	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1}\coloneqq 25$ mm	
$2 \cdot K_A \cdot T_{an}$	$\cdot K_{\lambda}$	N	
$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{an}}{d_{Kritisch1} \cdot h \cdot l'_{Pas}}$	$= 133.333$ $s \cdot n_{Pass} \cdot \varphi$	$\overline{m{mm}^2} p_m < p_{fzul}$	nach Gl. 12-1
Werkstoff Passfeder E	295 GC		
	D 400 N	Re	N N
$S_F = 1.1$ nach TB 12-1b	$\mathbf{Re} \coloneqq 420 \ \frac{\mathbf{N}}{\mathbf{mm}^2}$	p_{fzul} := $rac{Re}{S_F}$ p_{fzul} = 3	$81.818 \frac{N}{mm^2}$
$arphi\!\coloneqq\!1$ für r	$=$ 1 n_{Pass} :=1	$K_{\lambda} \coloneqq 1$ $K_{A} = 2$	
Abtriebswelle - Rutsch für Wellendurch		Passfeder DIN 6885 - A14x9	×70
h_{Pass} :=9 $m{mm}$	$l_{Pass} = 70 \ \textit{mm}$	<i>h</i> := 3.5 <i>mm</i>	
$b_{Pass} \coloneqq 14 \; mm$	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1} \coloneqq 50 mm$	

11.04.2022 Seite 11 von 32

$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{ab} \cdot K_{\lambda}}{1 \cdot 1 \cdot 1} = 204.516$. N		
$d_{\mathit{Kritisch1}} \cdot h \cdot l'_{\mathit{Pass}} \cdot n_{\mathit{Pass}} \cdot arphi$	$m{mm}^2$	$p_m < p_{fzul}$	nach Gl. 12-1
		1 111 1 Jzat	

Vorauswahl der Lagergröß (Vorauswahl erfolgte durch Lagerung erfolgte nach Er	n Schätzung de			ungen, A	npassung der
Festlager Abtriebswelle					
		$_{eb} = (2 \cdot 10^3$) 1		
$P \coloneqq 6 \ kN$ $p \coloneqq$	= 3	Andrick	mın		
	$n \coloneqq \frac{1}{i'}$	Antirieo	$L_{10h} \coloneqq 10000$	hr	
$oldsymbol{C_{erf}} \coloneqq oldsymbol{P} \cdot \sqrt[p]{rac{n \cdot L_1}{10^6}}$	10h	Gesamt Gl. 14.1			
$C_{erf} = P \cdot \sqrt{\frac{10^6}{10^6}}$	(Fakto		$C_{erf} = 29.574$	F KIN	
	(. 5	elassen			
	wege	n den			
Festlager Antriebswelle	: Einhe	iten)			
D. O. T. LAY	2				T 10000 hm
$P \coloneqq 2.5 \ kN$	$p \coloneqq 3$		$n \coloneqq n_{Antrieb}$		$L_{10h} \coloneqq 10000 \ hr$
$C_{erf} \!\coloneqq\! P \! \cdot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	• <i>L</i> _{10h}		C_{erf} $=$ 26.5	566 kN	
Festlager Vorgelegewel	le:				
$P := 4 \; kN$	$p \coloneqq 3$		$n \coloneqq rac{n_{Antrieb}}{i'_1}$	7	$L_{10h} := 10000 \ hr$
1 + 64	<i>p</i> .=3		i'_1		710h 10000 7t7
$C_{erf}\!\coloneqq\! P\!\cdot\!\sqrt[p]{rac{n}{}}$	$rac{oldsymbol{L_{10h}}}{10^6}$ na	ch Gl. 14.1	C_{erf} = 28.3	321 kN	
Loslager An-/Abtriebsw	elle:				
<i>P</i> := 6 <i>kN</i>	p := 3	eig.: n :	n_{\perp}	Antrieb	$L_{10h} := 10000 \ hr$
F 0 kIV	-	3,3333	$= n_{Antrieb} - \frac{n_{Antrieb}}{i'_{a}}$	Gesamt	$L_{10h} = 10000 Rr$
$C_{erf} \! \coloneqq \! P \! \cdot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	10^6		C_{erf} $=$ 61.5	564 <i>kN</i>	

Loslager V	orgelegew	elle:					
<i>P</i> :=6.5 <i>k</i> /		p := 3	eig.: 3,3333	$n \coloneqq \frac{\tau}{\tau}$	$i_{Antrieb}^{\prime}$		$L_{10h} \coloneqq 10000 \ hr$
C_{erf}	$:= \mathbf{P} \cdot \sqrt[p]{\frac{n \cdot n}{1}}$	L_{10h} 10^6		C_{ϵ}	erf = 46	021 kN	
mittlung de	er Lagerkrä	fte aus Frei	schnitt:				
igerkräfte a	n der Antri	ebswelle:					
Antriebsm	oment	$T_{an} = 50$	$N \cdot m$				
Wälzkreisc	lurchmesse	er $d_{w1} = 67$.	408 <i>mm</i>				
Wirkabstäi	nde	$X_1 := 45.$	3 <i>mm</i>			$X_2 \coloneqq 52$.5 <i>mm</i>
Zahnrad Z	$1 F_{tZ1} \coloneqq$	$rac{2 \cdot T_{an}}{d_{w1}}$	Umfa	ngskraft	nach (Gl. 21.70	$F_{tZ1} = 1.484$ kN
	F_{aZ1} :=	$F_{tZ1} \cdot an($	ß) Ax	ialkraft	nach (Gl. 21.72	F_{aZ1} =0.54 kN
	${F}_{rZ1} \coloneqq$	$\frac{(F_{tZ1} \cdot \tan}{\cos(\beta)}$	$(lpha_n)$ Ra	dialkraft	nach (Gl. 21.71	$F_{rZ1} \! = \! 0.575 \; {\it kN}$
Loslager							$F_{L1y} = 0.796 \; kT$
	F_{L1z} :=	$F_{aZ1} \cdot \frac{d_{w1}}{2} + X_1 + X_2$	$F_{rZ1} \cdot X_1$ X_2				$F_{L1z} = 0.08 \; kN$
Festlager	$F_{F1x} \coloneqq F_a$	Z1					F_{F1x} $=$ 0.54 kN
	$F_{F1y} \coloneqq F_t$	$_{Z1}\!-\!F_{L1y}$					$F_{F1y}\!=\!0.687$ kM
	$F_{F1z} \coloneqq F_r$	$_{Z1}\!-\!F_{L1z}$					$F_{F1z} = 0.495$ kN
gerkräfte a	n der Vora	elegewelle:					

11.04.2022 Seite 13 von 32

Wälzkreisdurchmesser	d_{w2} =	227.902	mm			d_{w3} =	74.492 mm	
Wirkabstände	X_3 :=	48.5 mn	ı	$X_4 := 10$	04.15 n	nm	$X_5 = 49.85 n$	m
Zahnrad Z2	F_{aZ2}	$=-F_{aZ1}$		F_{tZ2} :=	$-F_{tZ1}$		$F_{rZ2} \coloneqq -F$	rZ1
Zahnrad Z3	F.	$=rac{2m{\cdot T_{Vor}}}{d_w}$	gelege			F .	=4.539 kN	
						1 tZ3	_ 4.00 <i>9 M</i> / V	
	F_{aZ3}	$=F_{tZ3}$ • ta	$\operatorname{an}(\boldsymbol{\beta})$			F_{aZ3}	=1.652 kN	
	F_{rZ3}	$=\frac{F_{tZ3} \cdot tz}{\cos}$	$\frac{\operatorname{an}\left(\boldsymbol{\alpha}_{n}\right)}{\left(\boldsymbol{\beta}\right)}$			F_{rZ3}	=1.758 kN	
		F	Y + F	/V -	V \			
Loslager	F_{L2y}	$=-\frac{\Gamma_{tZ2}}{}$	$X_3 + Y_{t2}$ $X_3 + X$	$X_3 \cdot (X_3 + X_5)$	(A_4)	F_{I2a}	=-3.066 <i>kN</i>	
		$-F_{rZ2}$ •	$X_3 + F_{as}$	d_{w2} - $\frac{d_{w2}}{2}$ -	$+F_{rZ3} ullet$	$(X_3 +$	X_4) + F_{aZ3} • $\frac{d_a}{d_a}$	w3
	F_{L2z} :	=			$+X_4+2$		4	2
						F_{L2z} :	=1.463 kN	
Festlager	F_{F2x}	$=F_{aZ3}+$	F_{aZ2}			F_{F2x}	=1.112 <i>kN</i>	
	F_{F2y}	$:= -F_{tZ2}$	$-F_{tZ3}-I$	F_{L2y}		F_{F2y}	=0.011 <i>kN</i>	
	F_{F2z}	$=F_{rZ2}-1$	$F_{rZ3} + F_I$.2z		F_{F2z} :	=-0.87 kN	
Die Lagerkräfte herum orientiert an weitere Berechnung daher folgt:	genon	nmen, ďa	raus res	ultiert ih	r negat	iver V		
$F_{L2y}\!\coloneqq\!4.707~{\it kN} \ F_{F2y}\!\coloneqq\!0.051~{\it kN} \ F_{F2z}\!\coloneqq\!1.303~{\it kN}$								

11.04.2022 Seite 14 von 32

Bodenkraft	$F_B \coloneqq 1.5 \ \textbf{kN}$	
Abtriebsmoment	$T_{ab} = 501.064 \ N \cdot m$	
Wälzkreisdurchmess	er d_{w4} =220.817 mm	
Wirkabstände	$X_6 \coloneqq 49.35 \ \textit{mm}$	$X_7 \coloneqq 51.65 \ \textit{mm}$
Zahnrad Z4	$F_{aZ4} \coloneqq -F_{aZ3}$ $F_{tZ4} \coloneqq -F_{tZ}$	$F_{rZ4} = -F_{rZ3}$
	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$F_{tZ4} = 4.538 \ kN$
	$F_{aZ4} \coloneqq F_{tZ3} \cdot an(oldsymbol{eta})$	$F_{aZ4} = 1.652 \ kN$
	$F_{rZ4} \coloneqq \frac{F_{tZ4} \cdot an\left(oldsymbol{lpha_n} ight)}{\cos\left(oldsymbol{eta} ight)}$	$F_{rZ4} = 1.758 \; kN$
Loslager	$F_{L3y} \coloneqq \frac{-F_{tZ4} \cdot X_7}{X_6 + X_7} \\ -F_{rZ4} \cdot X_7 - F_{aZ4} \cdot \frac{d_{w4}}{2} \\ F_{L3z} \coloneqq \frac{1}{X_6 + X_7}$	$F_{L3y} = -2.321 \ kN$
	$F_{L3z} \coloneqq \frac{-F_{rZ4} \cdot X_7 - F_{aZ4} \cdot \frac{\cdot}{2}}{X_6 + X_7}$	$F_{L3z} = -2.705 \ kN$
Festlager	$F_{F3x}\!\coloneqq\!-F_{aZ4}\!+\!F_B$	$F_{F3x} = -0.152 \ kN$
	$F_{F3y}\!\coloneqq\!-F_{tZ4}\!-\!F_{L3y}$	$F_{F3y} = -2.217 \; kN$
	$F_{F3z}\!\coloneqq\!-F_{rZ4}\!-\!F_{L3z}$	F_{F3z} = 0.947 kN
herum orientiert and	F_{L3y} , F_{L3z} und F_{F3y} wurd genommen, daraus resultiert ihr negat wird die Orientierung der Kraftvektor	tiver Wert. Für die
$F_{L3y} = 3.564 \text{ kN}$ $F_{L3z} = 3.176 \text{ kN}$ $F_{F3y} = 3.406 \text{ kN}$		

11.04.2022 Seite 15 von 32

estlager Antriebswelle:			
$C_0 \coloneqq 14.3 \ \textit{kN}$		aus WLK	
$F_a \coloneqq F_{F1x} = 0.54 \text{ kN}$		aus Freischnitt	
$F_r := \sqrt[2]{F_{F1y}^2 + F_{F1z}^2} = 0.$	847 <i>kN</i>		
F		daraus ergibt sich nach	ТВ
$\frac{F_a}{C_0} = 0.038$ $\frac{F_a}{F_r} = 0.638$	nach Seite 538	14-3a X und Y zu:	$X \coloneqq 1$
			Y = 0.55
e := 1.14		aus TB14-3a	
$P \coloneqq X \cdot F_r + Y \cdot F_a = 1.144$	kN nach Gl. 14	1.6	
p = 3 für Kugellager	nach Seite		
$C \coloneqq 21.6 \ kN$	nach WLK		
$L_{10h} \coloneqq \frac{10^6}{n_{Antrieb}} \cdot \left(\frac{C}{P}\right)^p = 5$ oslager Antriebswelle:	6154 hr nach Gl. weggela Einheite	14.5a (Faktor 60 assen wegen den n)	
Joing Control of the			
$F_a = 0$ kN aus Freischnit	t		
$F_r \coloneqq \sqrt[2]{\left(F_{L1y} + F_{L1z}\right)^2} = 0$.876 <i>kN</i>		
$P := F_r = 0.876 \ kN$	Seite 538		
$p \coloneqq \frac{10}{3}$	für Rollenlager		
$C \coloneqq 14 \ \textit{kN}$	aus WLK		
106	$(C)^p$	Die Drehzahl am Loslager	ergibt sich
L_{10h} :=	$\cdot \left \frac{C}{P} \right = 95023 \ hr$	durch die gleiche Drehrich	
$L_{10h} \coloneqq rac{10^6}{n_{Antrieb} - rac{n_{Antrieb}}{i'_{Gesamt}}}$		zu: $n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1$	$8 \cdot 10^3 \frac{1}{min}$
$mit i'_{Gesamt} = 10.0$			

Festlager Vorgelegewelle:

 $C_0 = 28 \text{ kN}$

aus WLK

$$F_a \coloneqq \left| F_{F2x} \right| = 1.112 \ \emph{kN}$$
 aus Freischnitt

$$F_r := \sqrt[2]{F_{F2y}^2 + F_{F2z}^2} = 1.304 \text{ kN}$$

$$\frac{F_a}{C_0} = 0.04$$
 $\frac{F_a}{F_r} = 0.853$

weil 0.02< $\frac{F_a}{C_0}$ <=0.5 ergibt sich e zu:

$$e\coloneqq 0.51 \cdot \left(\frac{F_a}{C_0}\right)^{0.233} = 0.241$$
 aus TB14-3a Fußnote

daraus ergibt sich nach TB 14-3a X und Y zu: (weil Fa/Fr > e ist, siehe Fußnote)

X = 0.56

$$Y = 0.866 \left(\frac{F_a}{C_0}\right)^{-0.229} = 1.813$$

$$P \coloneqq X \cdot F_r + Y \cdot F_a = 2.746 \text{ kN}$$

p = 3

für Kugellager

 $C \coloneqq 40 \ kN$ aus WLK

$$L_{10h} \coloneqq \frac{10^6}{\frac{n_{Antrieb}}{i'_1}} \cdot \left(\frac{C}{P}\right)^p = 87072 \; hr$$

mit $i'_1 = 3.381$

$$n_{Antrieb} = \left(2 \cdot 10^3\right) \, rac{1}{min}$$

Loslager Vorgelegewelle:

$$F_a \coloneqq 0 \ \mathbf{kN}$$

aus Freischnitt

$$F_r = \sqrt[2]{F_{L2y}^2 + F_{L2z}^2} = 4.929 \text{ kN}$$

$$P := F_r = 4.929 \ kN$$

$$p = \frac{10}{3}$$

für Zylinderrollenlager

$$C = 35.8 \text{ kN}$$

aus WLK

Festlager Abtriebswelle:

$C_0 := 47.5 \ kN$	aus WLK
$F_a := F_{F3x} = 0.152 \ kN$	aus Freischnitt
$F_r := \sqrt[2]{\left(F_{L1y} + F_{L3y}\right)^2 + \left(F_{L1z} + F_{L3z}\right)^2} = 5.442 \text{ kN}$	

$$\frac{F_a}{C_0} = 0.003 \qquad \frac{F_a}{F_r} = 0.028 \qquad \text{Seite 538} \qquad \begin{array}{c} \text{daraus ergibt sich nach TB} & X \coloneqq 1 \\ 14\text{-3a X und Y zu:} & \\ Y \coloneqq 0.55 \end{array}$$

nach Gl. 14.6

$$e\coloneqq 1.14$$
 aus TB14-3a

$$p \coloneqq 3$$
 für Kugellager nach Seite 563

$$C \coloneqq 60 \text{ kN}$$
 nach WLK

 $P \coloneqq X \cdot F_r + Y \cdot F_a = 5.526 \ kN$

$$L_{10h} \coloneqq \frac{10^6}{n_{Abtrieb}} \cdot \left(\frac{C}{P}\right)^p = 106924 \ \frac{hr}{hr} \qquad \text{mit} \quad n_{Abtrieb} \coloneqq \frac{n_{Antrieb}}{i'_{Gesamt}}$$
 nach Gl. 14.5a

Loslager Abtriebswelle:

 $F_a\coloneqq 0$ kN aus Freischnitt $F_r\coloneqq \sqrt[2]{F_{L3y}^2+F_{L3z}^2}=4.774$ kN $P\coloneqq F_r=4.774$ kN Seite 538 $p\coloneqq 3$ für Kugellager $C\coloneqq 69.5$ kN aus WLK

	6	(-1) m
L_{10h} :=—	106	$-\cdot \left(\frac{C}{L}\right)^p = 28565 \ hr$
	$n_{Antrieb}$	(P)
16,	$rac{1}{i'_{Gesamt}}$	
	Gesaine	

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1.8 \cdot 10^3) \frac{1}{min}$$

mit $i'_{Gesamt} = 10.021$

Zusammenfassung Lebensdauern:

Antriebswelle - Loslager	$L_{10h} \coloneqq 21221 \; hr$
Antriebswelle - Festlager	$L_{10h} \coloneqq 19374 \; \pmb{hr}$
Vorgelegewelle - Loslager	$L_{10h} := 15981 \; m{hr}$
Vorgelegewelle - Festlager	$L_{10h} := 36486 \; hr$
Abtriebswelle - Loslager	$L_{10h}\!:=\!28568\; \pmb{hr}$
Abtriebswelle - Festlager	$L_{10h} = 80256 \; hr$

Festigkeitsnachweis der Wellen:

Antriebswelle:

Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:
Schnitt entlang s_1 ((positives Schnittufer) $s_{1max} = 45.3 \cdot r$	$m{mm} s_{1min} \coloneqq 0 \cdot m{mm}$
$Mt\left(s_{1}\right) \coloneqq 0$	N_x := 0	$N_x = 0$
	$Q_y(s_1) \coloneqq -F_{L1y} = -0.796 \text{ kN}$	$Q_z(s_1) \coloneqq -F_{L1z} = -0.08 \text{ k}$
	$Mb_zig(s_1ig)\coloneqq -F_{L1y}ullet s_1$	$Mb_yig(s_1ig)\!\coloneqq\!-F_{L1z}\!ullet\!s_1$
	$Mb_z\left(s_{1max}\right) = -36.075 \ \boldsymbol{N \cdot m}$	$Mb_y\left(s_{1max}\right) = -3.627 \ N \cdot$
	$Mb_z(s_{1min}) = 0 \ m{N} \cdot m{m}$	$Mb_y\left(s_{1min} ight) = 0 \; oldsymbol{N} ullet oldsymbol{m}$

$Mt(s_2) \coloneqq 50 \ \boldsymbol{N \cdot m}$	$N_x = -F_{F1x} = -0.54$	KIV	$N_x = -F_{F1x} = -0.54$	KIN
	$Q_y(s_2) := F_{F1y} = 0.68$	87 kN	$Q_z\left(s_2\right) \coloneqq F_{F1z} = 0.49$	5 kN
	$Mb_zig(s_2ig)\coloneqq -F_{F1y}ullet s_2$		$Mb_y(s_2) \coloneqq -F_{F1z} \cdot s_2$	
	$Mb_z \left(s_{2max} \right) = -36.0$	75 N·m	$Mb_y \left(s_{2max} \right) = -25.96$	33 N
	$Mb_z\left(s_{2min}\right) = 0 \ \boldsymbol{N \cdot n}$	n	$Mb_y\left(s_{2min}\right) = 0 \; oldsymbol{N \cdot n}$	ı
atischer & dynamischer I	- estigkeitsnachweis An	triebswelle:		
$Rz = 6.3 \ \mu m$	$l_{Kritisch1} \coloneqq 25$ mm	Rm = 110	$0 rac{N}{mm^2}$	
$Wb_1 \coloneqq \frac{\pi}{32} \cdot \left(d_{Kritisch1}\right)^3 \coloneqq$	= 1533.98 <i>mm</i> ³	$W_{t1} \coloneqq \frac{\pi}{16}$	$ \cdot \left(d_{Kritisch1}\right)^3 = 3067.9 $	6 <i>mm</i>
	Flächenträgheitsmo	ment aus TB1	1-3	
$Mb_{res1} \coloneqq \sqrt{Mb_z \left(s_{2max}\right)^2}$	$+Mb_y \left(s_{2max} ight)^2$	T_{max} := T_a	n da das Anfahren Anlaufkupplung e	
$R_{p0.2N} = 900 \frac{N}{100000000000000000000000000000000000$		$K_t \coloneqq 1 - 0$	$.34 \cdot \log \left(\frac{d_{Kritisch1}}{16 \ mm} \right) = 0$	0.934
nach TB 1-1			(16 <i>mm</i>) ach TB 3-11	
Biegung:		Torsion:		
$\sigma_{bmax} \coloneqq \frac{Mb_{res1}}{Wb_1} = 28.978$	$5\frac{N}{mm^2}$	$ au_{tmax} \coloneqq rac{T}{T}$	$\frac{m}{N_{t1}} = 16.297 \frac{N}{mm^2}$	
	nach Bild 3-2	W	<i>mm</i> ²	
$\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res1}}{Wb_1} = 57.9$	49 N	$ au_{A} := K_{A}$	$\frac{T_{an}}{T_{t1}} = 32.595 \frac{N}{mm^2}$	
$Wb_1 = 31.6$	mm ²	W	t_1 mm^2	
$\sigma_{bF} \coloneqq 1.2 \boldsymbol{\cdot} R_{p0.2N} \boldsymbol{\cdot} K_t \! = \! 1$	$008.829 \frac{N}{mm^2}$	$ au_{tF} \coloneqq rac{1.2 \cdot }{}$	$\frac{R_{p0.2N} \cdot K_t}{\sqrt{3}} = 582.448$	$rac{ extbf{ extbf{ extit{N}}}}{ extbf{ extit{mm}}^2}$

11.04.2022 Seite 20 von 32

$$\sigma_{bWN} \coloneqq 550 \frac{N}{mm^2} \qquad \text{aus TB 1-1}$$

$$\beta_{kb} \coloneqq 2.5 \qquad \beta_{kt} \coloneqq 2.2$$

$$\text{aus TB 3-8 mit Rm} = 1100N/\text{mm}^2 2, \text{ wegen Passfeder}$$

$$K_g \coloneqq 1 - 0.2 \cdot \frac{\log \left(\frac{d_{Kritisch1}}{7.5 \text{ mm}}\right)}{\log (20)} = 0.92 \qquad \text{aus TB 3-11c}$$

$$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{Rz}{\mu m}\right) \cdot \left(\log \left(\frac{Rm}{20 \frac{N}{mm^2}}\right) - 1\right) = 0.87 \qquad \text{aus TB 3-10}$$

$$\text{aus TB 3-10} \qquad K_{0\tau} \coloneqq 0.575 \cdot K_{0\tau} + 0.425 = 0.925$$

$$K_V \coloneqq 1 \qquad \text{aus TB 3-12}$$

$$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.868 \qquad K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473$$

$$\text{aus Bild 3-27} \qquad \text{nach Gl. 3-16}$$

$$\sigma_{bCW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 179.121 \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tGW}}{K_{Dt}} = 124.637 \frac{N}{mm^2}$$

$$\text{nach Gl. 3-17} \qquad T_{tGW} \coloneqq K_t \cdot \frac{\tau_{tGW}}{K_{Dt}} = 124.637 \frac{N}{mm^2}$$

$$\text{nach Gl. 3-17} \qquad \text{nach Bild 3-30}$$

$$S_P \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{box}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tox}}{\tau_{tGW}}\right)^2}} = 2.4 \qquad \text{nach Bild 3-31}$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{box}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tox}}{\tau_{tGW}}\right)^2}} = 2.4 \qquad \text{nach Bild 3-31}$$

$$\text{Ergebnis: Die Antriebswelle ist dauerfest.}$$

11.04.2022 Seite 21 von 32

orgelegewelle:				
Kraft- und Y-Z-Ebene:	d Momentenverläufe X-Y-Ebene:	(siehe auch Isome X-Z-Ebene		elegewelle):
/ \	s_3 (positives Schnittu $N_x = 0$	fer) $s_{3max} = 49$	$.85 \cdot mm$ $N_x = 0$	$s_{3min} \coloneqq 0 \cdot mm$
	$Q_y\left(s_3\right)\coloneqq -F_{L2y}$	=-4.707 kN	$Q_z(s_3) \coloneqq$	$F_{L2z} = 1.463 kN$
	$Mb_z(s_3) \coloneqq -F_{L2}$	$_{2y}$ • s_3	$Mb_{y}\left(s_{3} ight)$::	$=F_{L2z}ullet s_3$
	$Mb_z\left(s_{3max}\right) = -1$	234.644 N·m	$Mb_y ig(s_{3ma}$	$(x) = 72.922 \mathbf{N} \cdot \mathbf{m}$
	$Mb_z\left(s_{3min}\right) = 0$	$N \cdot m$	$Mb_yig(s_{3mi}$	$(n) = 0 \; \boldsymbol{N \cdot m}$
Schnitt entlang s_4 ($N_x \coloneqq -F_{aZ3} = -1.6$	positives Schnittufer 52 <i>kN</i>) $s_{4max} = 10$ $N_x = -F_{aZ3} = -1$		$s_{4min}\!\coloneqq\!0$ • mm
$Q_y\left(s_4\right)\coloneqq -F_{L2y}+I$	$F_{tZ3} = -0.168 \ kN$	$Q_z\big(s_4\big)\!:=\!F_{L2z}-$	$F_{rZ3} = -0.295$	kN
$Mb_z\left(s_4 ight)\coloneqq -F_{L2y}$ •	$(s_{3max} + s_4) + F_{tZ3} \cdot s_4$	$Mb_y\left(s_4 ight)\coloneqq F_{L2z}$	$-\left(s_{3max}+s_4\right)-$	$F_{rZ3} \cdot s_4 - F_{aZ3} \cdot \frac{d}{d}$
$Mb_z\left(s_{4max}\right) = -252$	2.171 N·m	$Mb_y\left(s_{4max}\right) = -1$	19.346 N·m	
$Mb_z\left(s_{4min}\right) = -234$	l.644 N∙m Y-Z-Eb	$Mb_y\left(s_{4min}\right) = 11$.393 N∙m	
		$r_{orgelege} = 169.05 \ \Lambda$	√· m	
Schnitt entlang $Mt(s_5) = 0$	s_5 (negatives Schnittu $N_x \!\coloneqq\! -F_{F2x} \!\equiv\! -$		$.5 \cdot mm$ $N_x \coloneqq -F_F$	$s_{5min} \coloneqq 0 \cdot mm$ $c_{2x} = -1.112 \text{ kN}$
	$Q_y\left(s_5\right)\coloneqq -F_{F2y}$	$=-0.051 \ kN$	$Q_z(s_5) \coloneqq$	$-F_{F2z} = -1.303 \mathbf{k}$
	$Mb_z\left(s_5\right) \coloneqq -F_{F_2}$	$_{2y}$ • s_5	$Mb_{y}\left(s_{5} ight)$::	$=F_{F2z}\!ullet s_5$
	$Mb_z\left(s_{5max}\right) = -$	2.474 N·m	$Mb_yig(s_{5ma}$	$(x) = 63.196 \ N \cdot m$
	$Mb_z\left(s_{5min}\right) = 0$	$N \cdot m$	$Mb_yig(s_{5mi}$	$(n) = 0 \; \boldsymbol{N} \cdot \boldsymbol{m}$

11.04.2022 Seite 22 von 32

$Rz = 6.3 \ \mu m$ d_{K}	$r_{ritisch2} = 35 mm$	Rm := 1100)	
	Tritiscn2	Rm = 1100	mm^2	
$Wb_2\!\coloneqq\!rac{\pi}{32}\!\cdot\!\left(d_{Kritisch2} ight)^3$	=4209.24 <i>mm</i> ³	$W_{t2} \coloneqq \frac{\pi}{16} \cdot$	$\left(d_{Kritisch2}\right)^3 = 8$	418.49 mm
$Mb_{res2} \coloneqq \sqrt{Mb_z \left(s_{3max}\right)}$	$^{2}+Mb_{y}\left(s_{3max} ight) ^{2}$			
$R_{p0.2N} \coloneqq 900 \; \frac{N}{mm^2}$	nach TB 1-1	$K_t \coloneqq 1 - 0.3$	$34 \cdot \log \left(rac{d_{Kritisch}}{16 \; mn} ight)$	$\left(\frac{n^2}{n}\right) = 0.884$
Biegung		Torsion		
$\sigma_{bmax} \coloneqq \frac{Mb_{res2}}{Wb_2} = 15.44$	13 N	$ au_{tmax} \coloneqq rac{T_V}{T_V}$	$\frac{V_{orgelege}}{W_{t2}} = 20.08$	1 N
$\sigma_{ba} \coloneqq rac{oldsymbol{K_A \cdot Mb_{res2}}}{oldsymbol{Wb_2}} = 30.$			$\frac{T_{Vorgelege}}{W_{t2}} = 40.1$	
Wb_2	mm ²	' ta	W_{t2}	mm^2
$\sigma_{bF}\!\coloneqq\!1.2\!\bullet\!R_{p0.2N}\!\bullet\!K_t\!=\!$	$955.171 \frac{N}{mm^2}$	$ au_{tF} \coloneqq \frac{1.2 \cdot 1}{2}$	$\frac{R_{p0.2N} \cdot K_t}{\sqrt{3}} = 55$	$1.468 \frac{N}{mm^2}$
$\sigma_{bWN} \coloneqq 550 \; \frac{N}{mm^2}$		$ au_{tWN} = 330$	$\frac{N}{mm^2}$	
110110				
$eta_{kb}\!\coloneqq\!2.8$		$eta_{kt} \coloneqq 2.6$	aus TB 3-8 mi Rm =1100N/n Sicherungsring	nm^2, wege
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(rac{d_{Kris}}{7.5} ight)}{\log(2)}$	$\frac{mm}{0} = 0.897$		au	s TB 3-11c
$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{Rz}{\mu m} \right)$	$\left(\frac{Rm}{n}\right) \cdot \left(\log\left(\frac{Rm}{20\frac{N}{mm^2}}\right)\right)$	-1)=0.87	au	s TB 3-10
K_V := 1	aus TB 3-12	$K_{0 au} \coloneqq 0.57$	$5 \cdot K_{0\sigma} + 0.425$ =	= 0.925
$K_{Db} := \left(\frac{\beta_{kb}}{K_a} + \frac{1}{K_{0\sigma}}\right)$	$1) \cdot \frac{1}{K_V} = 3.271$	$K_{Dt} \coloneqq \left(rac{eta_{kt}}{K_a} ight)$	$+rac{1}{K_{0 au}}-1$) $\cdotrac{1}{K_{0}}$	-=2.979

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 148.726 \ \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 97.973 \ \frac{N}{mm^2}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 25.1$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.176$$
 Ergebnis: Die Vorgelegewelle ist dauerfest.

Abtriebswelle:		
Kraft- und	Momentenverläufe (siehe auch Is	sometrie der Abtriebswelle):
Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:
Schnitt entlang s_6 (p	ositives Schnittufer)	
$Mt\left(s_{6} ight)\coloneqq-oldsymbol{T_{ab}}$	$N_x = -F_B = -1.5 \text{ kN}$	$N_x = -F_B = -1.5 \text{ kN}$
	$Q_y\left(s_6 ight) \coloneqq 0$	$Q_z\left(s_6\right) \coloneqq 0$
	$Mb_z\left(s_6 ight)\coloneqq 0$	$Mb_y\left(s_6 ight)\coloneqq 0$
Schnitt entlang s_7 (p	oositives Schnittufer) $s_{7max} = 5$	$s_{1.65} \cdot mm s_{7min} \coloneqq 0 \cdot mm$
$Mt\left(s_{7}\right)\coloneqq-oldsymbol{T_{ab}}$	$N_x = -F_B - F_{F3x} = -1.348 \text{ kM}$	$N N_x = -F_B - F_{F3x} = -1.348 \text{ kN}$
	$Q_y(s_7) := F_{F3y} = 3.406 \ kN$	$Q_z(s_7) \coloneqq -F_{F3z} = -0.947 \text{ kN}$
	$Mb_zig(s_7ig)\!\coloneqq\! F_{F3y}\!ullet\! s_7$	$Mb_y\left(s_7 ight)\!\coloneqq\!F_{F3z}\!ullets_7$
	$Mb_z\left(s_{7max}\right) = 175.92 \ \boldsymbol{N \cdot m}$	$Mb_y\left(s_{7max}\right) = 48.91 \; \boldsymbol{N\cdot m}$
	$Mb_z\left(s_{7min}\right) = 0 \; oldsymbol{N} ullet oldsymbol{m}$	$Mb_y\left(s_{7min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
Schnitt entlange (n	eqatives Schnittufer) $s_{\circ} = 4$	9.35.mm s. $-0.mm$

Seite 25 von 32

$Mt(s_8) \coloneqq 0$	N_x :=0	$N_x = 0$
	$Q_y(s_8) := -F_{L3y} = -3.564$	kN $Q_z(s_8) := -F_{L3z} = -3.176 \ kN$
	$Mb_zig(s_8ig)\!\coloneqq\!F_{L3y}\!ullet\!s_8$	$Mb_{y}\left(s_{8} ight)\coloneqq-F_{L3z}\!ullet\!s_{8}$
	$Mb_z\left(s_{8max}\right) = 175.883 \ N \cdot$	$m{m}$ $Mb_y\left(s_{8max}\right) = -156.736 \ m{N} \cdot m{r}$
	$Mb_z\left(s_{8min}\right) = 0 \; m{N} \cdot m{m}$	$Mb_y\left(s_{8min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
atischer & dyna	mischer Festigkeitsnachwei	s Abtriebswelle:
$Rz = 6.3 \ \mu m$	$d_{Kritisch3} \coloneqq 55$ mm	
		$egin{aligned} m{mm}^3 & & & & & & & & & & & & & & & & & & &$
$Mb_{res3} := \sqrt{Mb_z} \left(s \right)$	$\left(s_{8max} ight)^{2}+Mb_{y}\left(s_{8max} ight)^{2}$	
	nach TB 1-1	$K_t \coloneqq 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch3}}{16 \ \textit{mm}} \right) = 0.818$
$R_{p0.2N} = 900 \frac{N}{mn}$	ι^2	(16 <i>mm</i>)
$R_{p0.2N} = 900 \ rac{N}{mm}$ Biegung	1 ²	Torsion

$$\sigma_{bF}\coloneqq 1.2\cdot R_{p0.2N}\cdot K_t = 883.092 \ \frac{N}{mm^2} \qquad \qquad \tau_{tF}\coloneqq \frac{1.2\cdot R_{p0.2N}\cdot K_t}{\sqrt{3}} = 509.853 \ \frac{N}{mm^2}$$

$$\sigma_{bWN}\coloneqq 440 \ \frac{N}{mm^2} \qquad \qquad \tau_{tWN}\coloneqq 330 \ \frac{N}{mm^2}$$
 aus TB 3-9b mit Rm =1100N/mm²
$$\beta_{bb}\coloneqq 2.3 \qquad \qquad \beta_{bb}\coloneqq 1.55 \qquad \text{weaen Pressverband}$$

$$K_g \coloneqq 1 - 0.2 \cdot \frac{\log \left(\frac{d_{Kritisch3}}{7.5 \text{ mm}}\right)}{\log(20)} = 0.867$$
 aus TB 3-11c
$$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{R^2}{\mu m}\right) \cdot \left(\log \left(\frac{Rm}{20 \frac{N}{mm^2}}\right) - 1\right) = 0.87$$

$$K_{V} \coloneqq 1 \qquad \text{aus TB 3-12}$$

$$K_{Db} \coloneqq \left(\frac{\beta_{bb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2.803 \qquad K_{Db} \coloneqq \left(\frac{\beta_{bt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 1.869$$

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 128.375 \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 144.394 \frac{N}{mm^3}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tGW}}\right)^2}} = 19.279$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.134$$
 Ergebnis: Die Abtriebswelle ist dauerfest.

$$D_F \coloneqq 61 \ mm \qquad l_F \coloneqq 40 \ mm \qquad \mu \coloneqq 0.18 \qquad S_H \coloneqq 2 \qquad D_{Aa} \coloneqq 139.914 \ mm$$

$$F_t \coloneqq 2524 \ N \qquad F_t \coloneqq 6970 \ N$$

$$F_{res} \coloneqq \sqrt{F_t^2 + F_t^2} = 7.413 \ kN$$

$$F_{Bres} \coloneqq S_H \cdot F_{res} = 14.826 \ kN \qquad A_F \coloneqq D_F \cdot l_F \cdot \pi$$

$$p_{Fk} \coloneqq \frac{F_{Bres}}{D_{Aa}} = 10.745 \ \frac{N}{mm^2} \qquad \text{Erforderliche kleinste Fugenpressung}$$

$$Q_A \coloneqq \frac{D_F}{D_{Aa}} = 0.436 \qquad R_e \coloneqq 900 \ \frac{N}{mm^2} \quad \text{Für 42CrMo4} \qquad S_F \coloneqq 1.5$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A} = 26.534 \ \frac{N}{mm^2} \qquad \frac{2}{\sqrt{3}} \cdot \frac{R_e}{S_F} = 692.82 \ \frac{N}{mm^2}$$

$$26.534 \ \frac{N}{mm^2} \le 692.82 \ \frac{N}{mm^2} \qquad \text{Werkstoff geeignet}$$

$$Kleinstes \ \text{Haftma6}:$$

$$E_A \coloneqq 210000 \ \frac{N}{mm^2} \quad \text{Aus TB 1-1} \qquad K \coloneqq 2.5 \quad \text{Aus TB 12-7}$$

$$Z_k \coloneqq \frac{p_{Fk} \cdot D_F}{E_A} \cdot K = 7.803 \ \mu\text{m}$$

$$R_{ZAi} \coloneqq 6.3 \ \mu\text{m} \qquad R_{ZIa} \coloneqq 4 \ \mu\text{m} \qquad \text{Aus TB 2-12}$$

$$G \coloneqq 0.8 \cdot (R_{ZAi} + R_{ZIa}) = 8.24 \ \mu\text{m}$$

$$\mathring{U}_u \coloneqq Z_k + G = 16.043 \ \mu\text{m} \qquad \text{Messbares kleinstes zulässiges Überma6}$$

$p_{Fg} \coloneqq \frac{\kappa_e}{S_F} \cdot \frac{1 - Q_A}{\sqrt{3}} = 280.564 \frac{N}{mm^2}$ Größte zul. Flächenpressung des Zahnrads
$p_{FgI} \coloneqq \frac{R_e}{S_F} \cdot \frac{2}{\sqrt{3}} = 692.82 \; \frac{N}{mm^2}$ Größte zul. Flächenpressung der Welle
$Z_G \coloneqq rac{p_{Fg} \cdot D_F}{E_A} \cdot K = 203.743 \; \mu m$ Größtes zulässiges Haftmaß
$\ddot{U}_{ozul}\!:=\!Z_G\!+\!G\!=\!211.983~\mu m$ Messbares größtes zulässiges Übermaß
$\ddot{U}_{uzul}\!\coloneqq\!Z_k\!+\!G\!=\!16.043~\mu m$ Messbares kleinstes zulässiges Übermaß
Für Passung H8/u8 für D=61mm:
$EI := 0 \ \mu m$ $ei := 87 \ \mu m$ $es := 133 \ \mu m$
$\ddot{U}_u\!\coloneqq\!ei\!-\!ES\!=\!41~\mu m$ muss größer sein als $\ddot{U}_{uzul}\!=\!16.043~\mu m$
$\ddot{U}_o \coloneqq es - EI = 133~\mu m$ muss kleiner sein als $\ddot{U}_{ozul} = 211.983~\mu m$
Die Passung H8/u8 ist geeignet!

11.04.2022 Seite 28 von 32

Berechnung der Presspassung des Zahnrads der Vorgelegewelle:

$$D_F\coloneqq 37$$
 mm $l_F\coloneqq 40$ mm $\mu\coloneqq 0.18$ $S_H\coloneqq 2$ $D_{Aa}\coloneqq 138.424$ mm

$$S_H = 2$$

$$D_{Aa} := 138.424 \ mm$$

$$F_l = 793 \, N$$
 $F_t = 2179 \, N$

$$F_t \coloneqq 2179 \ N$$

$$F_{res} = \sqrt{F_l^2 + F_t^2} = 2.319 \text{ kN}$$

nach Seite 432 f.

$$F_{Rres} := S_H \cdot F_{res} = 4.638 \ kN$$
 $A_F := D_F \cdot l_F \cdot \pi$

$$A_F \coloneqq D_F \cdot l_F \cdot \boldsymbol{\pi}$$

$$p_{Fk} \coloneqq \frac{F_{Rres}}{A_F \cdot \mu} = 5.541 \frac{N}{mm^2}$$
 Erforderliche kleinste Fugenpressung nach Gl. 12.10

$$Q_A := \frac{D_F}{D_A} = 0.267$$

$$Q_A \coloneqq \frac{D_F}{D_{Aa}} = 0.267$$
 $R_e \coloneqq 900 \frac{N}{mm^2}$ Für 42CrMo4 $S_F \coloneqq 1.5$

$$S_F\!\coloneqq\!1.5$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A^2} = 11.935 \frac{N}{mm^2}$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A^2} = 11.935 \frac{N}{mm^2} \frac{2}{\sqrt{3}} \cdot \frac{R_e}{S_F} = 692.82 \frac{N}{mm^2}$$

$$11.935 \frac{N}{mm^2} \le 692.82 \frac{N}{mm^2}$$
 Werkstoff geeignet

Kleinstes Haftmaß:

$$E_A = 210000 \frac{N}{mm^2}$$
 Aus TB 1-1 $K = 2.1$ Aus TB 12-7

$$K = 2.1$$
 Aus TB 12-7

$$Z_k \coloneqq \frac{p_{Fk} \cdot D_F}{E_A} \cdot K = 2.05 \ \mu m$$

$$R_{ZAi} = 6.3 \ \mu m$$
 $R_{ZIa} = 4 \ \mu m$ Aus TB 2-12

$$R_{ZIa} = 4 \mu m$$

$$G \coloneqq 0.8 \cdot \left(R_{ZAi} + R_{ZIa} \right) = 8.24 \ \mu m$$

$$\ddot{U}_u := Z_k + G = 10.29 \ \mu m$$

 $\ddot{U}_u \coloneqq Z_k + G = 10.29 \ \mu m$ Messbares kleinstes zulässiges Übermaß

$$p_{E_0} \coloneqq \frac{R_e}{1 - Q_A^2} = 321.66$$
 — Größte zul. Flächenbressung des Zahnrads

S_{I}	$\sqrt{3}$	$m{mm}^2$
$p_{FgI} \coloneqq \frac{R}{S}$	$\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = 692.82$	$\frac{N}{mm^2}$ Größte zul. Flächenpressung der Welle
$Z_G \coloneqq rac{p_F}{r}$	$\frac{g \cdot D_F}{E_A} \cdot K = 119.01$	14 μm Größtes zulässiges Haftmaß
$\ddot{U}_{ozul}\!\coloneqq\!2$	$Z_G + G = 127.254$	μm Messbares größtes zulässiges Übermaß
$\ddot{U}_{uzul} \coloneqq Z$	$Z_k + G = 10.29 \; \mu m$	n Messbares kleinstes zulässiges Übermaß
Für Passun	g H8/u8 für D=37	7mm:
	·	:= 60 μm := 99 μm
\ddot{U}_u :=	$ei-ES=21$ μm	muss größer sein als $\ddot{U}_{uzul}\!=\!10.29~\mu m$
$\ddot{U}_o \coloneqq \dot{u}$	$es-EI=99 \mu m$	muss kleiner sein als $\ddot{U}_{ozul} \! = \! 127.254~\mu m$
Die P	assung H8/u8 ist	geeignet!

11.04.2022 Seite 30 von 32

Schmierstoffberechnung

Für Auslegung eines Schmierstoffes für das Getriebe muss zuerst die benötigte kinematische Nennviskosität des Schmieröles bestimmt werden. Diese erhalten wir über TB 20-7 a) mit Hilfe des Kraft-Geschwindigkeits-Faktors $\frac{k_s}{v}$. Es wird die Umfangsgeschwindigkeit und Durchmesser von Zahnrad 4 gewählt.

$$u \coloneqq \frac{z_4}{z_3}$$
 $n_{Abtrieb} \coloneqq \frac{n_{Antrieb}}{i'_{Gesomt}}$

$$\underline{k_s} \coloneqq \left(3 \cdot \frac{F_{tZ4}}{b_4 \cdot d_4} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{\pi \cdot d_4 \cdot n_{Abtrieb}} = 1.429 \frac{s}{m} \cdot MPa$$

Durch das Ablesen von TB 20-7 a) ergibt sich ca. ein Wert von: $\nu_{40} = 2.3 \cdot 10^2 \cdot \frac{mm^2}{s}$

Gewähltes Schmieröl:

DIN 51517 - CLP 220: Umlaufschmieröl auf Basis eines Mineralöls (C) mit Zusatzstoffen für erhöhten Korrosionsschutz, Alterungsbeständigkeit (L), sowie Herabsetzung der Reibung und des

11.04.2022 Seite 31 von 32

11.04.2022 Seite 32 von 32