P425/1 PURE MATHEMATICS PAPER 1 June/July. 2023 3 hours

ACEITEKA JOINT MOCK EXAMINATIONS, 2023

Uganda Advanced Certificate of Education

Pure Mathematics
Paper 1
Time: 3 Hours

NAMIE:INDEA NO	••••
INSTRUCTIONS TO CANDIDATES:	
Answer all the eight questions in section A and only five questions in section B.	
Indicate the five questions attempted in section B in the table aside.	
Additional question(s) answered will not be marked.	
All working must be shown clearly.	
Graph paper is provided.	
Silent, non-programmable scientific calculators and mathematical tables with a list formulae may be used.	

SECTION A (40 MARKS)

Answer all the questions in this section.

Qn 1: Solve the inequality
$$\frac{x+3}{x-2} \ge \frac{x+1}{x-2}$$
.

[5 Marks]

Qn 2: Find the angle $\alpha = \angle BAC$ of the triangle ABC whose vertices are A(1,0,1), B(2,-1,1) and C(-2,1,0).

[5 Marks]

Qn 3: The roots p and q of a quadratic equation are such that $p^3 + q^3 = 4$

and $pq = \frac{1}{2}(p^3 + q^3) + 1$. Find a quadratic equation with integral coefficients

whose roots are p^{-6} and q^{-6} .

[5Marks]

Qn 4: Use method of small changes to find the value of $\frac{1}{\sqrt{0.97}}$ correct to 3 decimal

places.

[5 Marks]

Qn 5: Points S and S' are the foci of the ellipse $\frac{x^2}{36} + \frac{y}{16} = 1$.

Find the coordinates of S and S'.

[5 Marks]

Qn 6: Evaluate:
$$\int_{0}^{1} \frac{8x-8}{(x+1)^{3}(x-3)^{3}} dx.$$

[5 Marks]

Qn 7: Given the function, $f(x) = \frac{3}{13 + 6\sin x - 5\cos x}$.

Use the substitution $t = \tan\left(\frac{x}{2}\right)$, to show that f(x) can be written

in the form:
$$\frac{3(1+t^2)}{2(3t+1)^2+6}$$
.

[5 Marks]

Qn 8: Given that
$$y = \frac{\sin x}{x}$$
, show that $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$.

[5 Marks]

SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks. Question 9:

(a). Prove by induction that for all positive integer $\sum_{r=1}^{n} (3r+1)(r+2) = n(n+2)(n+3)$

[6 Marks]

(b). Prove by induction that for all positive **odd** integers, n, $f(n) = 4^n + 5^n + 6^n$ is divisible by 15.

[6 Marks]

Question 10:

A circle that passes through the points A(3,4) and B(6,1) and the equation of the tangent to this circle at A is the line 2y = x + 5. Find:

(i). the coordinates of the centre of circle. [9 Marks]

(ii). the radius of the circle. [2 Marks]

(ii). the equation of the circle. [1 Mark]

Question 11:

(a). Given that $f(x) = \frac{64x^4 - 148x + 78}{(4x - 5)^3}$. Express f(x) into partial fractions.

(b). Hence evaluate $\int_{4}^{6} f(x) dx$. [12 Marks]

Question 12:

(a). Use de Moivre's theorem to prove that: $\sin 50 = 5\sin 0 - 20\sin^2 0 + 16\sin^5 0$.

(b). Hence or otherwise, find the distinct roots of the equation $2+10x-40x^3+32x^5=0$ giving your answer to 3 decimal places where appropriate. [12 Marks]

Question 13:

The planes P_1 and P_2 are respectively given by the equations:

 $r = 2i + 4j - k + \lambda(i + 2j - 3k) + \mu(-i + 2j + k)$ and

r.(2i-j+3k)=5; where λ and μ are scalar parameters. Find:

(i). the Cartesian equation for plane, P₁.

(ii). to the nearest degree, the acute angle between P_1 and P_2 .

(iii). the coordinates of the point of intersection of the plane, P1, and the line

$$\frac{x-1}{5} = \frac{y-3}{-3} = \frac{z+2}{4}.$$

[12 Marks]

Question 14:

(a). Show that the volume of the solid generated by rotating the area enclosed by the curve $y = 2^x$, the lines x = 0 and y = 2 about the x - axis is

 $\frac{\pi}{\ln 4} (4 \ln 4 - 3) . [8 \text{ Marks}]$

(b). Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{4}{1 + \cos 2x} dx.$

[4 Marks]

Question 15:

- (a). Given that $\cot^2 \theta + 3\csc^2 \theta = 7$, show that $\tan \theta = \pm 1$. [4 Marks]
- (b). (i). Express the function $y = 3\cos x \sqrt{3}\sin x$ in the form $R\cos(x + a)$ where R is a constant and $0 \le a \le 2\pi$.

 Hence find the coordinates of the minimum point of y.
- (ii). State the values of x at which the curve cuts the x axis . [8 Marks] Question 16:

A sample of bacteria in a sealed container is being studied.

The number of bacteria, p, in thousands, is given by the differential equation:

$$(1+t)\frac{dp}{dt} + p = (1+t)\sqrt{t}$$

where t is the time in hours after the start of the study.

Initially, there are exactly 5,000 bacteria in the container.

- (a). Determine, according to the differential equation, the number of bacteria in the container 8 hours after the start of the study.
- (b). Find, according to the differential equation, the rate of change of the number of bacteria in the container 4 hours after the start of the study.

[12 Marks]

END