NE 155 Introduction to Numerical Simulations in Radiation Transport

Lecture 34: Geometry and Collisions

R. N. Slaybaugh (well, Richard Vasques!)

April 15, 2016

OUTLINE

- Overview of Monte Carlo for Neutron Transport
- 2 Determining next event location
 - Sampling flight path
 - Distance to boundary
 - Next event selection
- 3 Collision Physics
 - Sampling target nuclide
 - Sampling reaction type
 - Sampling exit direction
 - Sampling exiting particles

Notes derived from Jasmina Vujic and Paul Wilson

LEARNING OBJECTIVES

- 1 Be able to provide MC transport algorithm
- 2 Understand basic tracking of particles through a geometry
 - Understand the steps necessary for tracking particles
 - Understand the use of mean free path
 - Sample the distance to the next physics event
 - Determine next event
- 3 Understand what sampling needs to happen after a collision

MONTE CARLO FOR TRANSPORT

POSSIBLE FUTURES FOR A PARTICLE

After we've gotten to Circle B, we have a neutral particle:

- At point (x_p, y_p, z_p)
- Moving in direction (u, v, w)
- With energy E

What are possible next events?

Possible Futures for a Particle

After we've gotten to Circle B, we have a neutral particle:

- At point (x_p, y_p, z_p)
- Moving in direction (u, v, w)
- With energy E

What are possible next events?

Figure 1: Collision

Possible Futures for a Particle

After we've gotten to Circle B, we have a neutral particle:

- At point (x_p, y_p, z_p)
- Moving in direction (u, v, w)
- With energy E

What are possible next events?

Figure 1: Surface Crossing

SAMPLING DISTANCE TO COLLISION

Collisions are probabilistic

- Note that Σ_t , the total macroscopic cross section, will be a function of space if we have multiple materials
- Along a particular path, the probability of a collision at distance s from the start:

$$p_c(s) = \Sigma_t(s)e^{-\Sigma_t(s)s}ds$$

$$P_c(n) = \int_0^s \Sigma_t(s)e^{-\Sigma_t(s)s'}ds' = -e^{-\Sigma_t(s)s'}|_0^s = 1 - e^{-\Sigma_t(s)s}$$

• The cross section, $\Sigma_t(s)$, is piecewise constant, but changing

SAMPLING DISTANCE TO COLLISION

• Variable transformation: measure distance in units of *mean free path*:

$$n = \Sigma_t(s)s$$
, $dn = \Sigma_t(s)ds$

We'll start with the PDF and integrate to get the CDF

$$p_c(n)dn = e^{-n}dn$$

 $P_c(n) = \int_0^n e^{-n'}dn' = -e^{-n'}|_0^n = 1 - e^{-n}$

• Importantly, this is now independent of the material

SAMPLING DISTANCE TO COLLISION

Randomly sample to determine number of mean free paths until next collision, n_c

- $g(n_c)dn_c = e^{-n_c}dn_c$
- $G(n_c)dn_c = 1 e^{-n_c}$
- Directly invert to get: $n_c = -\ln(1-\xi)$ (note $1-\xi$ is equivalent to ξ)
- In the absence of material boundaries ($\Sigma \neq f(s)$), the distance to a collision, s_c , is

$$s_c = \frac{n_c}{\Sigma_t}$$

CALCULATING DISTANCE TO BOUNDARY

- Usually have more than one material
- Distance to boundary is deterministic
- Algebra to determine distance between point and surface, s_b
- Convert it to units of mean free path for the current cell's material,

$$n_b = s_b \Sigma_t$$

GEOMETRY REPRESENTATIONS

- Combinatorial Surfaces
 - Define surfaces
 - Boolean operations combine surfaces to create cells
- Combinatorial Solids
 - Choose solid objects
 - Boolean operations combine objects to create regions
- B-Rep (Vertex-Edge)
 - Each object is a single set of vertices and edges connecting them

We're skipping how to find n_b , just know that we can find it

OPTION A: COLLISION

$n_b > n_c$:

- Boundary is further away than collision
- Collision occurs

OPTION A: COLLISION

$\underline{n_b > n_c}$:

- Boundary is further away than collision
- Collision occurs
- Using physics models and/or cross-sections
 - Sample target nuclide
 - Sample reaction type
 - Sample new direction
 - Sample new energy
 - Sample exiting particles
- Some of these may depend on each other

OPTION A: COLLISION

$\underline{n_b > n_c}$:

- Boundary is further away than collision
- Collision occurs
- Using physics models and/or cross-sections
 - Sample target nuclide
 - Sample reaction type
 - Sample new direction
 - Sample new energy
 - Sample exiting particles
- Some of these may depend on each other
- Repeat
 - Sample new n_c following collision
 - Calculate new n_b in new direction

OPTION B: CELL BOUNDARY

$n_b < n_c$:

- Boundary is closer than collision
- Boundary crossing occurs

OPTION B: CELL BOUNDARY

$n_b < n_c$:

- Boundary is closer than collision
- Boundary crossing occurs
- Move particle along ray
 - Update $n_c = n_c n_b$
- **DO NOT SAMPLE** for new *n*_c

OPTION B: CELL BOUNDARY

$n_b < n_c$:

- Boundary is closer than collision
- Boundary crossing occurs
- Move particle along ray
 - Update $n_c = n_c n_b$
- **DO NOT SAMPLE** for new *n_c*
- Calculate new n_b in new cell
 - New set of boundaries
 - New value of Σ_t

So You HAD A COLLISION?

• Sample **target nuclide** for a mixture with *J* nuclides

$$\Sigma_t = \sum_{j=1}^J N_j \sigma_{t,j}$$

• Discrete PDF to determine which nuclide is hit

$$p_i = \frac{\Sigma_{t,j}}{\Sigma_t}$$

So You HAD A COLLISION?

• Sample **target nuclide** for a mixture with *J* nuclides

$$\Sigma_t = \sum_{j=1}^J N_j \sigma_{t,j}$$

• Discrete PDF to determine which nuclide is hit

$$p_i = \frac{\Sigma_{t,j}}{\Sigma_t}$$

• Sample reaction type for an nuclide with R types of reactions

$$\Sigma_{t,j} = \sum_{x=1}^{R} \Sigma_{x,j}$$

• Discrete PDF to determine which reaction occurs

$$p_x = \frac{\Sigma_{x,j}}{\Sigma_{t,j}}$$

OUTCOME OF REACTION

- Particle maybe absorbed
- Particle may continue its history in a different direction and with a different energy
- Energy-angle distributions are tabulated in different formats
 - Scattering laws have analytic forms with parameters in data tables (Direct inversion or rejection sampling)
 - Tabulated data that describes a piecewise analytic interpolation (Hybrid sampling; we skipped this)

USING A SCATTERING ANGLE

Scattering angles are defined relative to the original direction (considered as the z-axis)

- Polar angle, ϕ , determined by sampling from data
- Azimuthal angle, θ , determined by sampling isotropically
- The new direction is $(\sin(\phi)\cos(\theta),\sin(\phi)\sin(\theta),\cos(\theta))$

$$= \left(\sqrt{1-\mu^2}\cos(\theta), \sqrt{1-\mu^2}\sin(\theta), \mu\right)$$

SUMMARY

We've developed a general sense of using MC for neutron transport

• Basic Algorithm

SUMMARY

We've developed a general sense of using MC for neutron transport

- Basic Algorithm
- We can determine if particles have collisions or cross boundaries
- *After a collisions* we need to determine many things associated with the collisions (target, reaction, direction, energy)
- Repeat analysis for collisions/crossing until particle terminates

SUMMARY

We've developed a general sense of using MC for neutron transport

- Basic Algorithm
- We can determine if particles have collisions or cross boundaries
- *After a collisions* we need to determine many things associated with the collisions (target, reaction, direction, energy)
- Repeat analysis for collisions/crossing until particle terminates
- Next time: tallying results