

Sorting Algorithms

Fundamentals

- Sorting is the process of arranging data in a specific order.
- The most common sorting algorithms are as follows:
 - Bubble Sort Every pair of adjacent items is compared and items are swapped until they are in order.

31	12	25	8	-	12	31	25	8
12	31	25	8	-	12	25	31	8
12	25	31	8	-	12	25	8	31
12	25	8	31	-	12	25	8	31
12	25	8	31	-	12		25	31
12	8	25	31		12	8	25	31
12	8	25	31	-	8	12	25	31

 Selection Sort – The smallest unsorted item is chosen and then swapped with the item in the next position to be filled.

then swapped with the item in the next position to be mied:												
31	12	25	8	33	17	-	8	12	25	31	33	17
8	12	25	31	33	17		8	12	25	31	33	17
8	12	25	31	33	17	→	8	12	17	31	33	25
8	12	17	31	33	25	→	8	12	17	25	33	31
8	12	17	25	33	31		8	12	17	25	31	33

 Insertion Sort – The comparison applies to adjacent items and previously scanned items.

providucity edulined items.										
31	12	25	8	17	-	12	31	25	8	17
12	31	25	8	17	-	12	25	31	8	17
12	25	31	8	17		12	25	8	31	17
						12	25	8	31	17
						12	8	25	31	17
						8	12	25	31	17
8	12	25	31	17	-	8	12	25	17	31
						8	12	25	17	31
						8	12	17	25	31

Shell Sort – Items at a specific interval are sorted. The interval between the items is gradually decreasing based on a sequence. The most common sequence is the original sequence by Donald Shell, the inventor of this algorithm, which is N/2, N/4, ..., 1, where N is the number of items. Insertion sort is applied when the interval reaches 1.

Intervals: N/2 = 6/2 = 3

 Merge Sort – The list is divided into sorted sub-lists then combined into a single sorted list.

Easiest way to sort in Java and Python:

Java: ArrayList values = new ArrayList();
 Collections.addAll(values, 1, 3, 2);
 Collections.sort(values);

Python: values = [1, 3, 2]
values.sort()

Reference:

Koffman, E. & Wolfgang, P. (2016). Data structures: Abstraction and design using Java. Hoboken: John Wiley & Sons, Inc.

 $\label{eq:condition} Oracle \qquad Docs \qquad (n.d.). \qquad \textit{Citing} \qquad \textit{sources}. \qquad \text{Retrieved} \qquad \text{from https://docs.oracle.com/javase/8/docs/apii/java/util/package-summary.html}$