

1. Scenario: Fraud Detection in Banking

Question: You are working for a bank that wants to build a fraud detection system. You have imbalanced data (99% non-fraud, 1% fraud). How would you handle this and build a robust model?

Dealing with imbalanced data in fraud detection is a common challenge. Since the majority class dominates, a model trained directly on such data would tend to predict non-fraud most of the time, leading to poor recall for fraud cases. Here's a structured approach:

1. Data Resampling Techniques

- Oversampling Minority Class: Use SMOTE (Synthetic Minority Oversampling Technique) to synthetically generate fraud cases.
- Undersampling Majority Class: Reduce the number of non-fraud cases to balance the dataset.
- o **Hybrid Sampling:** A combination of oversampling and undersampling.

2. Use Anomaly Detection Methods

 Fraud cases are rare, making it suitable for anomaly detection algorithms like Isolation Forests, One-Class SVM, or Autoencoders.

3. Adjust Model's Loss Function

 Use weighted loss function in models like Random Forest, XGBoost, or Neural Networks to penalize misclassification of fraud cases more.

4. Evaluation Metrics

 Use Precision-Recall Curve, F1-score, and AUC-ROC rather than accuracy, as accuracy would be misleading in imbalanced settings.

5. Feature Engineering

 Aggregate transaction history, frequency of high-value transactions, and customer behavior features for better fraud identification.

2. Scenario: Predicting House Prices with Limited Data

Question: A real estate company wants to predict house prices but only has 500 samples. How would you build an effective model?

With limited data, the risk of overfitting is high. Here's a strategic approach:

1. Data Augmentation

o **Generate Synthetic Data:** Use techniques like **bootstrapping** or synthetic data generation via GANs.

2. Feature Engineering

 Use domain knowledge to create better features, such as price per square foot, distance to major roads, crime rates, etc.

3. Use Simpler Models

 Instead of complex models, opt for Regularized Regression (Ridge/Lasso) or Decision Trees with Pruning.

4. Leverage Pre-trained Models

o If open-source datasets exist, fine-tune a pre-trained model instead of training from scratch.

5. Cross-validation

• Use **K-Fold cross-validation** to maximize model performance with limited data.

3. Scenario: Preventing Overfitting in a CNN Model

Question: You are training a CNN for image classification, but your training accuracy is 99% while test accuracy is only 75%. What would you do?

This is a classic case of **overfitting**. Solutions include:

1. Data Augmentation

 Use rotation, flipping, scaling, cropping, color jittering to generate more training samples.

2. Regularization Techniques

- Dropout Layers: Randomly drop neurons to prevent reliance on specific features.
- L2 Regularization (Weight Decay): Adds a penalty to large weights to reduce overfitting.

3. Batch Normalization

o Helps in stabilizing learning and reducing overfitting.

4. Early Stopping

o Monitor validation loss and stop training when it starts increasing.

5. Use Transfer Learning

If the dataset is small, fine-tune a **pre-trained model** (like ResNet, EfficientNet) instead of training from scratch.

4. Scenario: Face Recognition in Low Light Conditions

Question: You are building a facial recognition system, but images taken in low light have poor performance. How do you improve it?

1. Enhancing Image Quality

- Use histogram equalization or CLAHE (Contrast Limited Adaptive Histogram Equalization) to improve contrast.
- Apply GANs (Pix2Pix, CycleGAN) to generate clearer versions of low-light images.

2. Data Augmentation

o Train on images with artificial **brightness variations** to improve generalization.

3. Use Robust Features

• Extract Edge-based Features (SIFT, ORB, HOG) instead of pixel intensities.

4. Use IR/Depth Data

 Combine Infrared (IR) and Depth cameras to detect facial structures even in darkness.

5. Scenario: Sentiment Analysis with Sarcasm Detection

Question: Your sentiment analysis model misclassifies sarcastic tweets. How would you fix it?

1. Use Context-Aware Embeddings

 Word2Vec and TF-IDF fail for sarcasm. Use BERT, RoBERTa, or GPT-based models.

2. Add Contextual Features

 Extract emoji usage, sentence polarity shifts, and user intent for better detection.

3. Multi-Task Learning

o Train sentiment analysis along with sarcasm detection using **multi-head models**.

6. Scenario: Hallucination in a LLM Chatbot

Question: Your chatbot generates false but confident-sounding responses. How do you prevent this?

1. Reinforcement Learning with Human Feedback (RLHF)

o Fine-tune responses based on **human feedback**.

2. Fact-Checking Mechanisms

o Integrate a **retrieval-augmented generation (RAG)** pipeline with external databases.

3. Reduce Temperature in Sampling

o Lowering **temperature** during inference reduces randomness.

7. Scenario: Bias in a Generative AI Model

Question: Your text generation model exhibits racial or gender bias. What would you do?

- 1. Bias Detection & Debiasing Techniques
 - Use **SHAP**, **LIME** for interpretability.
 - o Train on fair and diverse datasets.
- 2. Fairness-Aware Training
 - o Use adversarial debiasing models like **FairGAN**.

8. Scenario: Real-time Object Detection

Question: Your self-driving car needs real-time pedestrian detection. Which model and techniques would you use?

- 1. Use Lightweight Models
 - o YOLOv8, MobileNet SSD for fast inference.
- 2. Edge Computing
 - o Deploy on **Nvidia Jetson** or **Coral Edge TPU**.

9. Scenario: Zero-shot Learning for Image Classification

Question: How would you classify images of unseen categories?

- 1. Use CLIP (Contrastive Language-Image Pretraining)
 - o Maps images and text into a shared latent space.

10. Scenario: Personalizing Recommendations using Gen AI

Question: How would you build a recommendation system using Gen AI?

- 1. Fine-tune Transformer Models
 - o Use **LLMs like GPT-4** to generate personalized responses.
- 2. Use Reinforcement Learning
 - o Multi-armed bandit algorithms optimize recommendations.

11. ML Scenario: Loan Approval System (Overfitting & Regularization)

Scenario:

You are building a **loan approval system** using machine learning. After training, your model performs **extremely well on training data (98% accuracy)** but drops to **75% on test data.** What is happening, and how can you fix it?

Your model is likely **overfitting**, meaning it has memorized the training data instead of learning **generalizable patterns**. To fix this:

- 1. **Regularization (L1/L2)**: Apply **L2 regularization (Ridge regression)** to prevent large weight values.
- 2. **Reduce Complexity**: Use feature selection, PCA, or a simpler model (e.g., logistic regression instead of deep networks).
- 3. **Increase Training Data**: Collect more diverse data to help the model generalize better.
- 4. **Cross-validation**: Implement **k-fold cross-validation** to ensure consistent performance.

12. DL Scenario: Self-Driving Cars (Vanishing Gradient Problem)

Scenario:

You are developing a **deep learning model for a self-driving car** that uses a CNN-based architecture to recognize road signs. During training, deeper layers of the network **fail to update their weights** properly. What could be the issue?

This sounds like the **vanishing gradient problem**, where gradients become **too small** as they propagate backward, preventing effective weight updates.

Solutions:

- 1. **Use ReLU instead of Sigmoid/Tanh**: ReLU prevents gradient shrinkage by keeping non-zero gradients.
- 2. **Batch Normalization**: Normalizes activations to ensure stable gradients.
- 3. **Residual Connections (ResNets)**: Helps gradients flow smoothly across deep layers.

13. CV Scenario: Detecting Fake Images (GANs & Deepfakes)

Scenario:

You work in cybersecurity, and your task is to build a system that detects **AI-generated fake images (deepfakes).** How would you approach this?

- 1. **Train a Discriminator Network**: Use a pre-trained CNN (ResNet or EfficientNet) to classify real vs. fake images.
- 2. **Analyze Artifacts**: AI-generated images often have inconsistencies in lighting, unnatural textures, or blurry edges.
- 3. **Use Frequency Analysis**: GANs struggle to generate fine-grained high-frequency details. A Fourier Transform can detect these discrepancies.
- 4. **Train on GAN-Generated Data**: Expose the model to various GAN-generated images to improve robustness.

14. NLP Scenario: Sentiment Analysis (Imbalanced Data Issue)

Scenario:

You are working on a **customer review sentiment analysis** model. Your dataset is **highly imbalanced** (95% positive, 5% negative reviews). How do you handle this?

- 1. **Data Augmentation**: Generate synthetic negative reviews using back-translation (translating to another language and back).
- 2. **Resampling**: Use **oversampling** (**SMOTE**) for minority class or **undersampling** the majority class.
- 3. Weighted Loss Function: Penalize misclassifications of negative reviews more heavily.
- 4. **F1-Score Over Accuracy**: Since accuracy is misleading in imbalanced datasets, use **F1-score**, **precision-recall curves**.

15. GenAI Scenario: AI Art Generation (Bias in AI Models)

Scenario:

You built a **DALL**•**E-like image generation model**, but users report that the model generates **stereotypical or biased outputs** when given prompts about people. How do you address this?

- 1. **Dataset Curation**: Remove biased data and ensure diverse representation.
- 2. **Fairness Constraints**: Implement fairness-aware training by adjusting loss functions to balance different demographics.

- 3. **Human-in-the-Loop (HITL) Moderation**: Add user feedback mechanisms to detect and correct biases.
- 4. **Post-Processing Filtering**: Apply **content moderation** to filter biased outputs.

16. ML Scenario: Fraud Detection System (Class Imbalance & Cost-Sensitive Learning)

Scenario:

You are designing a **fraud detection model for a bank**, but fraud cases are **extremely rare** (0.1%). How would you ensure the model detects fraud effectively?

- 1. **Anomaly Detection:** Use **Isolation Forests or Autoencoders** to detect outliers.
- 2. **Cost-Sensitive Learning**: Assign higher penalties to misclassified fraud cases.
- 3. Hybrid Models: Combine supervised learning with unsupervised anomaly detection.
- 4. **Resampling Techniques**: Use **SMOTE** to generate synthetic fraud cases.

17. DL Scenario: Training Chatbots (Seq2Seq & Attention Mechanisms)

Scenario:

You are building a **customer support chatbot**, but it often forgets the conversation context. What improvements can you make?

- 1. **Use Transformers (BERT/GPT)**: Unlike RNNs, transformers maintain long-range dependencies.
- 2. **Implement Attention Mechanism**: Ensures the model focuses on relevant parts of the conversation.
- 3. **Fine-tune on Context-Rich Data**: Train on real conversations where user context persists.

18. CV Scenario: Medical Image Diagnosis (Explainability & AI Bias)

Scenario:

Your AI model predicts lung cancer from CT scans, but doctors **distrust the model's decision-making process.** How do you improve explainability?

- 1. Use SHAP/LIME: Visualize which pixels influenced predictions.
- 2. **Grad-CAM**: Highlights important image regions the model focused on.
- 3. **Model Transparency**: Use ensemble models with interpretable architectures.

19. NLP Scenario: Document Summarization (Extractive vs. Abstractive Summarization)

Scenario:

You are tasked with **automatically summarizing news articles.** Should you use an **extractive or abstractive** approach?

- Extractive Summarization selects key sentences verbatim (e.g., TextRank).
- **Abstractive Summarization** generates new text (e.g., BART, T5).
- **Best Choice**: Abstractive is ideal for human-like summaries but needs large training data.

20. GenAI Scenario: Music Generation AI (Evaluating AI Creativity)

Scenario:

Your team developed an AI that generates music. How do you evaluate the **quality of generated music?**

- 1. **Human Evaluations**: Conduct listening tests.
- 2. Quantitative Metrics: Use tonal stability, rhythm coherence, and chord progression validity.
- 3. **Diversity & Novelty Metrics**: Ensure it doesn't just copy training data.

21-15: Quick Scenarios & Answers

- 11. **ML Recommender Systems**: How do you handle the **cold start problem** in a new recommendation system?
- Use **content-based filtering** for new users & items.
- 12. **DL Autonomous Drones**: Why does your **drone navigation model fail in foggy conditions?**

- It was trained on clear-weather data only \rightarrow use data augmentation.
- 13. **CV Object Detection Failures**: Your self-driving car model misclassifies **pedestrians** at night. Why?
- Model lacks night-time training data → **collect more diverse datasets**.
- 14. **NLP Spam Detection**: Your spam filter incorrectly flags business emails as spam. How do you fix it?
- Train on more diverse email samples & use context-aware embeddings.
- 15. **GenAI AI Story Writing**: How do you prevent a **text generator from producing repetitive outputs?**
- Use top-k sampling & temperature scaling to ensure diverse responses.