МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Сети ЭВМ»

Тема: Настройка маршрутизируемой среды

Студент гр. 1302	 Новиков Г.В.
Студент гр. 1302	 Безруков П.М.
Преподаватель	Горячев А.В.

Санкт-Петербург 2024

Цель работы.

Настройка маршрутизируемой среды.

Задание.

Поработать с маршрутизацией, адресами и несколькими компьютерами в одной сети.

Ход выполнения работы.

1. Подготовим к выполнению работы виртуальную машину SRV1. Для этого до запуска машины добавим к виртуальной машине SRV1 еще один сетевой адаптер. Подключим его к физическому сетевому интерфейсу. В файле конфигурации изменим MAC адрес этого сетевого адаптера, установив две последние цифры в соответствии с номером рабочего места, в нашем случае 01

Рис. 1. SRV1

Рис. 2. SRV2

2. Запустим виртуальные машины и переименуем их, добавив к их текущим именам суффикс, представляющий номер рабочего места

Рис. 3. SRV101

Рис. 4. WS101

Рис. 5. SRV202

Рис. 6. WS202

3. Изменим сетевой адрес на интерфейсе, подключенном к сети учебного класса. Зададим адрес 172.16.0.X, где X — номер рабочего места. Изменим сетевой адрес на интерфейсе, подключенном к внутренней сети. Зададим адрес 192.168.X.1, где X — номер рабочего места. Затем перегрузим SRV

Рис. 7. SRV1 адаптер 1

Рис. 8. SRV2 адаптер 2

🌃 SRV1 (clean - pinging enabled) [Работает] - Oracle VM VirtualBox					
Файл Машина Вид Ввод Устройст	тва Справка				
Internet Protocol Version 4 (TCP/IPv4) Properties					
General					
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.					
Obtain an IP address automatically					
Use the following IP address:					
IP address:	192 . 168 . 1 . 1				
Subnet mask:	255 . 255 . 0 . 0				
Default gateway:					
Obtain DNS server address automatically					
Use the following DNS server add	dresses:				
Preferred DNS server:					
Alternate DNS server:					
Validate settings upon exit	Advanced				
OK Cancel					

Рис. 9. SRV1 адаптер 1

Рис. 10. SRV2 адаптер 2

4. На рабочей станции изменим сетевой адрес на интерфейсе. Зададим адрес 192.168.X.2, где X — номер рабочего места. Установим в качестве шлюза по умолчанию 192.168.X.1. Затем перегрузим рабочую станцию

Рис. 11. WS1

Рис. 12. WS2

5. На рабочей станции проверим таблицу маршрутизации (Route Print), убедимся в наличии маршрутизатора по умолчанию.

Рис. 13. WS1 route print

Рис. 14. WS2 route print

6. Командой Ping проверим доступность сервера

Рис. 15. WS1 ping SRV101

Рис. 16. WS2 ping SRV202

7. Командой Ping проверим доступность сервера коллег (недоступен)

Рис. 17. WS101 ping SRV202

Рис. 18. WS202 ping SRV101

8. С сервера командой Ping проверим доступность сервера коллег (доступен). Проверим таблицу маршрутизации сервера (Route Print)

🌄 SRV1 (2 adapters + wireshark) [Работает] - Oracle VM VirtualBox

Puc. 19. SRV1 ping SRV202

Рис. 20. SRV2 ping SRV101

Рис. 21. SRV1 route print

Pис. 22. SRV2 route print

9. На сервере инициализируем RRAS. Выберем режим только маршрутизации

Рис. 23. Инициализация RRAS

10. На рабочей станции командой ping проверим доступность сервера коллег (доступен)

WS1 (connected to SRV1) [Pаботает] - Oracle VM VirtualBox
Файл Машина Вид Ввод Устройства Справка
C:\Windows\system32\cmd.exe
C:\Users\novik>ping 172.16.0.2
Обмен пакетами с 172.16.0.2 по с 32 байтами данных:
Ответ от 172.16.0.2: число байт=32 время=2мс TTL=127
Статистика Ping для 172.16.0.2:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 2мсек, Максимальное = 2 мсек, Среднее = 2 мсек
C:\Users\novik>

Рис. 24. WS101 ping 172.16.0.2 (SRV202)

```
🎇 WS1 (ір configured) [Работает] - Oracle VM VirtualBox
                   Ввод Устройства
     Машина
              Вид
                                   Справка
 C:\Windows\system32\cmd.exe
C:\Users\novik>ping 172.16.0.1
Обмен пакетами с 172.16.0.1 по с 32 байтами данных:
Ответ от 172.16.0.1: число байт=32 время=5мс TTL=127
Ответ от 172.16.0.1: число байт=32 время=2мс TTL=127
Ответ от 172.16.0.1: число байт=32 время=2мс TTL=127
Ответ от 172.16.0.1: число байт=32 время=2мс TTL=127
Статистика Ping для 172.16.0.1:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0
    (0% потерь)
Приблизительное время приема-передачи в мс:
    Минимальное = 2мсек, Максимальное = 5 мсек, Среднее = 2 мсек
C:\Users\novik>
```

Рис. 25. WS202 ping 172.16.0.1 (SRV101)

Рис. 26. SRV101 внутренний интерфейс (192.168.1.1)

Рис. 27. SRV202 внутренний интерфейс (192.168.2.1)

Рис. 28. SRV101 внешний интерфейс (172.16.0.1)

Рис. 29. SRV202 внешний интерфейс (172.16.0.2)

11. На рабочей станции командой Ping проверим доступность рабочей станции коллег (недоступна). В анализаторе пакетов видно, что хост с указанным адресом не был найден

₩S1 (connected to SRV1) [Работает] - Oracle VM VirtualBox

Файл Машина Вид Ввод Устройства Справка

C:\Windows\system32\cmd.exe

C:\Users\novik>ping 192.168.2.2

Обмен пакетами с 192.168.2.2 по с 32 байтами данных:
Ответ от 192.168.1.2: Заданный узел недоступен.

Статистика Рing для 192.168.2.2:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

C:\Users\novik>

Рис. 30. WS101 ping 192.168.2.2 (WS202)

Рис. 31. SRV101 внутренний интерфейс (192.168.1.1)

Рис. 32. SRV101 внешний интерфейс (172.16.0.1)

12. На сервере добавим в таблицу маршрутизации строку, указывающую путь к рабочей станции в сети коллег (строка с метрикой 11)

Рис. 33. SRV101 Route add 192.168.2.2

13. С сервера командой Ping проверим доступность рабочей станции коллег (доступна)

Рис. 34. SRV101 ping 192.168.2.2

Рис. 35. Таблица маршрутизации SRV101

	SRV1 (Can ping other server from WS101) [Pa6otaet] - Oracle VM VirtualBox - \square ×							
Фай	Файл Машина Вид Ввод Устройства Справка							
				*Etheri	net 2			
<u>F</u> ile	Edit <u>V</u> iew <u>G</u> o	Capture Analyze Statist	ics Telephon <u>y W</u> ireles	s <u>T</u> ools <u>H</u> e	elp			
	<u> </u>							
					X → ▼			
No.	Time	Source	Destination	Protocol	Length Info			
	6 2.138453	172.16.0.1	192.168.2.2	ICMP	74 Echo (ping) request id=0x0001, seq=51/13056, ttl=128 (reply			
	7 2.140883	192.168.2.2	172.16.0.1	ICMP	74 Echo (ping) reply id=0x0001, seq=51/13056, ttl=127 (reque			
	8 2.541054	TP-Link_a4:2a:7b	Broadcast	ARP	60 Who has 192.168.1.101? Tell 192.168.1.1			
	9 2.541080	TP-Link_a4:2a:7b	Broadcast	ARP	60 Who has 192.168.1.100? Tell 192.168.1.1			
	10 2.708786	192.168.1.101	192.168.1.255	UDP	82 57621 → 57621 Len=40			
	11 3.156217	172.16.0.1	192.168.2.2	ICMP	74 Echo (ping) request id=0x0001, seq=52/13312, ttl=128 (reply			
	12 3.158607	192.168.2.2	172.16.0.1	ICMP	74 Echo (ping) reply id=0x0001, seq=52/13312, ttl=127 (reque			
	13 3.541035	TP-Link_a4:2a:7b	Broadcast	ARP	60 Who has 192.168.1.103? Tell 192.168.1.1			
	14 3.541071	TP-Link_a4:2a:7b	Broadcast	ARP	60 Who has 192.168.1.101? Tell 192.168.1.1			
	15 4.172684	172.16.0.1	192.168.2.2	ICMP	74 Echo (ping) request id=0x0001, seq=53/13568, ttl=128 (reply			
	16 4.175318	192.168.2.2	172.16.0.1	ICMP	74 Echo (ping) reply id=0x0001, seq=53/13568, ttl=127 (reque			
	17 4.541050	TP-Link_a4:2a:7b	Broadcast	ARP	60 Who has 192.168.1.103? Tell 192.168.1.1			
	18 5.187692	172.16.0.1	192.168.2.2	ICMP	74 Echo (ping) request id=0x0001, seq=54/13824, ttl=128 (reply			
	19 5.190303	192.168.2.2	172.16.0.1	ICMP	74 Echo (ping) reply id=0x0001, seq=54/13824, ttl=127 (reque			
	20 5 541020	TD 13-1, -4-27h	Maradana.	ADD	CO Ul- 1 103 100 1 103 T-11 103 100 1 1			

Рис. 36. Пакеты на внешнем интерфейсе SRV101

Рис. 37. Пакеты на внешнем интерфейсе SRV202

Рис. 38. Пакеты на внутреннем интерфейсе SRV202

14. С рабочей станции командой Ping проверим доступность рабочей станции коллег. Она оказалась недоступна. WS101 пытается найти хост с адресом 192.168.2.2, но запросы ARP не проходят дальше внутренней сети. Мы постарались исправить недоступность узла, но он так и остался недоступен

```
WS1 (connected to SRV1) [Работает] - Oracle VM VirtualBox

Файл Машина Вид Ввод Устройства Справка

□ C:\Windows\system32\cmd.exe

C:\Users\novik>ping 192.168.2.2

Обмен пакетами с 192.168.2.2 по с 32 байтами данных:
Ответ от 192.168.1.2: Заданный узел недоступен.
Статистика Ping для 192.168.2.2:
Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)
```

Рис. 39. WS101 ping 192.168.2.2 (WS202)

Рис. 40. Пакеты на внутреннем интерфейсе SRV101

Рис. 41. Пакеты на внешнем интерфейсе SRV101 (нет пакетов от WS101)

15. Удалим из таблицы маршрутизации ссылку в сеть коллег

Рис. 42. Route delete

16. Подключим и настроим протокол RIP на обоих серверах. RIP добавил сеть коллег в таблицу маршрутизации на обоих серверах

Рис. 43. RIP настроен на интерфейс внешней сети

Рис. 44. Таблица маршрутизации SRV101

SRV1 (Can ping other server from WS202) [Работает] - Oracle VM VirtualBox

Рис. 45. Таблица маршрутизации SRV202

17. Убедимся в возможности доступа к рабочим станциям коллег. С рабочей станции подключиться также не удалось, пакеты не идут дальше внутренней сети. С сервера доступ есть

Рис. 46. SRV101 ping 192.168.2.2

Рис. 47. Интерфейс внешней сети SRV101

Рис. 48. Интерфейс внешней сети SRV202

Рис. 49. Интерфейс внутренней сети SRV202

Выводы.

В ходе выполнения данной работы мы ознакомились с маршрутизируемой средой. Рабочие станции были подключены к внутренним сетям, в качестве шлюзов были выбраны адреса серверов. Каждый сервер был подключен к 2 сетям — внутренней с рабочими станциями и внешней, соединяющей сервера.

Взаимодействие серверов и рабочих станций происходило с помощью команды Ping. Проверка таблицы маршрутизации осуществлялась с помощью

команды Route Print, которая выводит список интерфейсов, активные и постоянные маршруты. При передаче пакеты были зафиксированы с помощью анализатора пакетов Wireshark.

До инициализации RRAS рабочая станция WS1 не может связаться ни с сервером SRV2, ни с рабочей станцией WS2, из-за того, что она находится во внутренней сети сервера SRV1. SRV1 может связываться с SRV2, так как они находятся в одной сети. После инициализации RRAS (при инициализации был выбран режим «маршрутизация локальной сети») рабочая станция WS1 может передавать пакеты SRV2, а рабочая станция WS2 также осталась недоступной. После чего был добавлен статический маршрут на сервере, который может быть добавлен с помощью Route Add или с помощью интерфейса RRAS. Это должно было сделать доступным рабочую станцию WS2 с SRV1, но у нас не получилось сделать ее доступной. При работе на втором устройстве с машинами WS2 и SRV2 были проведены те же действия, что и с машинами WS1 и SRV1. Также был подключен RIP, с помощью которого мы добились того же результата, что и со статическим маршрутом, но без явного добавления маршрута.