

Band Usage

- AMPS (Advanced Mobile Phone System)
 - 832 duplex channels (practical 45 per BTS)
 - 824-849MHz (upload), 869-894MHz(download), 30KHz wide
- TDMA (Time Division Multiple Access)
 - 3-6 Users per channel
 - 1850-1910MHz (upload), 1930-1990MHz (download), 30KHz wide
- GSM (Global System for Mobile communications)
 - 8 Users per channel
 - 992 channels
 - 200KHz wide
- CDMA (Code Division Multiple Access)
 - 1.25MHz wide

GSM Fakten

- Anfang: European Conference of Posts and Telecommunications Administrations (CEPT) – 1982;
- Groupe Spéciale Mobile -> Global System for Mobile Communications;
- 105 Länder;
- 32 Millionen Benutzern;
- 139 Netzwerken;
- 25% Handys Weltmarkt;

Eigenschaften:

- VerschlusselteBenutzerinformation
- International Standard (einfachere Switching);
- Wenig Veränderung an existierende Festnetz;
- 2 Blockfrequenz in der 900MHz Bereich (890-915MHz und 935-960 MHz);
- Maximum Flexibilität für andere Dienste, wie ISDN;
- Möglichste geringe Kosten bei der Design von Handsets;

GSM Eigenschaften

- ◆ Qualität: digital: klar & deutliche Tone
- Sicherheit: Authentifizieren & Verschlusselt key distribution
- ◆ Bequemlichkeit: Batterie & Congestion
- ◆ Roaming: abhängig von Vertrag zwischen Operators

Internet Sicherheit/SS05/GSM Sicherheit

GSM Security Design Requirements

- The security mechanism
 - MUST NOT
 - Add significant overhead on call set up
 - Increase bandwidth of the channel
 - Increase error rate
 - Add expensive complexity to the system
 - MUST
 - Cost effective scheme
 - Define security procedures
 - Generation and distribution of keys
 - Exchange information between operators
 - Confidentiality of algorithms

GSM Security Features

- Key management is independent of equipment
- Subscriber identity protection (Anonymity)

 not easy to identify the user of the system intercepting a user data
 - Temporary identifiers
- Detection of compromised equipment
 - · Detection mechanism whether a mobile device was compromised or
- Subscriber authentication
 - The operator knows for billing purposes who is using the system
 - 128-bit (RAND) + Ki/A3 => SRES-32bits
- Signaling and user data protection
 - Signaling and data channels are protected over the radio path
 - A8 (SIM Card)

Internet Sicherheit/SS05/GSM Sicherheit

GSM Mobile Station

Mobile Station

- Mobile Equipment (ME)
 - Physical mobile device
 - - IMEI International Mobile Equipment Identity
- Subscriber Identity Module (SIM)
 - Smart Card containing keys, identifiers and algorithms
 - Identifiers
 - **K**_i Subscriber Authentication Key

 - TMSI Temporary Mobile Subscriber Identity
 MSISDN Mobile Station International Service
 - Digital Network
 - PIN Personal Identity Number protecting a SIM
 - · LAI location area identity

Detection of Compromised Equipment

- International Mobile Equipment Identifier (IMEI)
 - Identifier allowing to identify mobiles
 - IMEI is independent of SIM
 - Used to identify stolen or compromised equipment
- Equipment Identity Register (EIR)
 - Black list stolen or non-type mobiles
 - White list valid mobiles
 - Gray list local tracking mobiles
- Central Equipment Identity Register (CEIR)
 - Approved mobile type (type approval authorities)
 - Consolidated black list (posted by operators)

Authentication

- Authentication Goals
 - Subscriber (SIM holder) authentication
 - Protection of the network against unauthorized use
 - Create a session key
- Authentication Scheme
 - Subscriber identification: IMSI or TMSI
 - Challenge-Response authentication of the subscriber by the operator

Logical Implementation of A3 and A8

- Both A3 and A8 algorithms are implemented on the SIM
 - Operator can decide, which algorithm to use.
 - Algorithms implementation is independent of hardware manufacturers and network operators.
 - A8 Specification was never made public.

Internet Sicherheit/SS05/GSM Sicherheit

Logical Implementation of A3 and A8 • COMP128 is used for both A3 and A8 in most GSM networks. • COMP128 is a keyed hash function RAND (128 bit) COMP128 128 bit output SRES 32 bit and K_c 54 bit Internet Sicherheit/SS05/GSM Sicherheit

A5 – Encryption Algorithm

- · A5 is a stream cipher
 - Implemented very efficiently on hardware
 - Design was never made public
 - Leaked to Ross Anderson and Bruce Schneier
- Variants
 - A5/0 no encryption
 - A5/1 the strong version
 - A5/2 the weak version
 - A5/3
 - GSM Association Security Group and 3GPP design
 - Based on Kasumi algorithm used in 3G mobile systems

Internet Sicherheit/SS05/GSM Sicherheit

Authentication

- AuC Authentication Center
 - Provides parameters for authentication and encryption functions (RAND, SRES, $K_{\rm c}$)
- HLR Home Location Register
 - Provides MSC (Mobile Switching Center) with triples (RAND, SRES, K_c)
 - · Handles MS location
- VLR Visitor Location Register
 - Stores generated triples by the HLR when a subscriber is not in his home network
 - One operator doesn't have access to subscriber keys of the another operator.

Security Flaws

- Security by obscurity
- Data is just ciphered on the air (not after being received by the BTS)
- ◆ A5/2 is weaker than A5/1
- Upgrade problems

Internet Sicherheit/SS05/GSM Sicherheit

Attack Categories

- SIM Attacks
- Radio-link interception attacks
- Operator network attacks
 - GSM does not protect an operator's network
 - Fake BTS

Attack History 1991 First GSM implementation. April 1998 The Smartcard Developer Association (SDA) together with U.C. Berkeley researches cracked the COMP128 algorithm stored in SIM and succeeded to get K₁ within several hours. They discovered that Kc uses only 54 bits. August 1999 The weak A5/2 was cracked using a single PC within seconds. December 1999 Alex Biryukov, Adi Shamir and David Wagner have published the scheme breaking the strong A5/1 algorithm. Within two minutes of intercepted call the attack time was only 1 second. May 2002 The IBM Research group discovered a new way to quickly extract the COMP128 keys using side channels.

Partitioning Attack on COMP128

- Attack Goal
 - K_i stored on SIM card
 - Knowing K_i it's possible to clone SIM
- Cardinal Principle
 - Relevant bits of all intermediate cycles and their values should be statistically independent of the inputs, outputs, and sensitive information.
- Attack Idea
 - Find a violation of the *Cardinal Principle*, i.e. side channels with signals does depend on input, outputs and sensitive information
 - Try to exploit the statistical dependency in signals to extract a sensitive information

Abuses

- Eavesdropping/Location
- Cloning
 - Over-the-Air
 - Vendor
- Technical Fraud (Call Sales Offices)
 - Call Forwarding
 - Conference Call
 - · Unauthorized handset activation
- ◆ Procedural Fraud
 - Stolen Handset

Internet Sicherheit/SS05/GSM Sicherheit

Solutions

- PGPPhone, SpeakFreely
- A5/3
- Customer profiling
- 3G (UMTS, CDMA2000)

