LITAO3 SUBSTRATE WITH POLARIZATION INVERSION LAYER AND **DEVICE USING SAME**

Patent Number:

JP3101280

Publication date:

1991-04-26

Inventor(s):

SHIMIZU HIROSHI; others: 02

Applicant(s):

HIROSHI SHIMIZU

Requested Patent:

JP3101280

Application Number: JP19890239067 19890914

Priority Number(s): IPC Classification:

H01L41/18; H01L41/24; H03H9/25

EC Classification:

Equivalents:

JP2516817B2

Abstract

PURPOSE:To improve temperature characteristics by selecting the value of h so that the value of k and h may fit into a specific range for maintaining an electromechanical coupling coefficient to be a large value and by reducing a temperature coefficient of delay time and propagation attenuation of a wave motion when the depth of a polarization inversion layer is set to h and the wave number of an SH type elastic surface wave which propagates on the surface of the polarization inversion layer is set to k. CONSTITUTION:kh (k; wave number of SH type elastic surface wave with a wavelength of lambda to be excited, h; thickness of polarization inversion layer) ranges from 1.0 to 6.0 for an LiTaO3 rotary Y plate with a rotary angle of 30 to 40 degrees, thus achieving an improved temperature characteristics, reducing propagation attenuation of wave energy in this range, and forming a region where electromechanical coupling coefficient shows a larger value to some extent.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2516817号

(45)発行日 平成8年(1996)7月24日

(24)登録日 平成8年(1996)4月30日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
HO1L	11/22			H01L	41/22	Z	
H03H	9/25		7259 – 5 J	H03H	9/25		

請求項の数3(全 5 頁)

(21)出願番号	特願平1-239067	(73)特許権者	999999999
			清水 郁子
(22)出顧日	平成1年(1989)9月14日		宮城県仙台市太白区八木山本町1丁目22
			番地一12
(65)公開番号	特開平3-101280	(72)発明者	清水 洋
(43)公開日	平成3年(1991)4月26日	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	東京都調布市小島町1丁目1番1号 R
(,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		C—510
特許法第30条第1]	項適用申請有り 平成元年3月14日社	(72)発明者	中村(僖良
	会発行の「日本音響学会平成元年度春	(15/26/14	宮城県仙台市泉区南中山3丁目18番2号
	論文集▲ⅠⅠ▼」に発表	(72)発明者	艾莉
TWITCACE	過入完量11▼」(こ元次	(12/元列省	宮城県仙台市青葉区南参上町19の1 A
			一名(13) 一名(13) 1
		(m s) them t	
		(74)代理人	弁理士 鈴木 均
		-tendente	m
		審査官	岡 和久

(54) 【発明の名称】 分極反転層を有するLiTaO▲下3▼基板及びこれを用いたデバイス

1

(57)【特許請求の範囲】

【請求項1】一主表面に分極反転層を形成したカット角30度乃至40度LiTaO,基板回転Y板に於いて、前記分極反転層の深さをh,前記分極反転層表面を伝搬するSHタイプ弾性表面波の波数をk(=2π/λ,λは波長)とした場合,khの値が1.0乃至6.0となるよう前記hの値を選ぶことによって電気機械結合係数を大なる値に保ちつつ遅延時間温度係数及び励起した波動の伝搬減衰を小ならしめたことを特徴とする分極反転層を有するLiTaO,基板に於いて、その分極反転層表面にインタディジタル・トランスジューサ(IDT)電極を形成することによってSHタイプ弾性表面波の励起或は受信を行うようにしたことを特徴とする分極反転層を有するLiTaO,基板を用いたデバイス。【請求項3】SHタイプ弾性表面波の伝搬路であって,IDT

2

電極前後の基板表面部分を全面メタライズすることによって該部に於ける遅延時間温度係数を一層小なわしめたことを特徴とする請求項(2)記載の分極反転層を有するLiTaO。基板を用いたデバイス。

【発明の詳細な説明】

(産業上の利用分野)

本発明は所定の厚さの分極反転層を一主表面に形成することによって該主表面を伝搬するSHタイプ弾性表面波についての温度特性、伝搬減衰特性を向上せしめたLiTa 0、基板及びこれを利用したデバイスに関する。

(従来技術)

従来から本願発明者等はLiTaO,,LiNbO,基板表面に対し熱処理を施すことにより或はプロトン交換を行った後熱処理を行うことにより基板表面に分極反転層を形成する方法及び斯る分極反転層を有する圧電基板の特性,工

業上の利用法について研究した結果を開示して来た(特 願昭61-197905,同61-205506,同61-205508及び同62-160792参照)。

一方、通常のLiTaO。35度回転Y板に於いては、結晶のX軸方向に伝搬するSHタイプ弾性表面波の遅延時間温度係数TCXは基板表面が自由表面の場合には45ppm/Cで良好とはいえないが短絡表面〔例えばインタディジタル・トランスジューサ(IDT)電極の如き導電物質を密に付着した表面〕の場合にはTCXは32ppm/Cと若干良好となる為、上記の基板はSAW共振子等に利用されている。

上述した如き短絡表面を有するLiTaO。回転Y板のSHタイプ弾性表面液に対する温度特性が自由表面の場合のそれに比して向上する理由を検討するに、SHタイプ弾性表面液に対する圧電基板の実効弾性定数Cは、基板表面を短絡した場合には電束密度Dが一定の場合のX軸方向伝搬の速い横波に対応する弾性定数Cよりも電界強度Eが一定の場合のそれでに近い値となる為であると考えられるが、での温度係数の方がCのそれよりも小さいという性質があるので、表面を短絡した圧電基板のSHタイプ表面波に対する温度特性は自由表面のそれより良好になる20解釈されている。

ところで前述した分極反転層を有するLiTaQ。基板はその極性が反転する反転分域境界で一種の電界短絡効果を有すると考えられるから、斯る分極反転層を有するLiTaQ。基板の温度特性は通常のそれに比し良好な温度特性を有する可能性がある。

(発明の目的)

本発明は上述した如き従来本願発明者が研究を続けてきた分極反転層を有するLiTaO,基板に於ける温度特性改善の可能性を追求しその条件を見出し、それを弾性表面 30 波デバイスに利用せんとするものである。

(発明の概要)

数値解析の結果、回転角30度乃至40度のLiTaO。回転Y板についてkh(kは励起する波長 λ なるSHタイプ弾性表面波の波数、即ち $2\pi/\lambda$,kは分極反転層の厚さ)が1.0乃至6.0の範囲が良好な温度特性を有し更にこの範囲で波動エネルギの伝搬減衰を極めて小さくなし得ることが判明すると共に、これは電気機械結合係数もある程度大きな値を示す領域であることが明らかとなったので、斯る条件の基板を各種表面波デバイスに利用せんとするも40のである。

(実施例)

以下本発明をその理論解析による最適条件導出の過程 説明と上記最適条件の下での基板を用いたデバイスの実 施例とに基づいて詳細に説明する。

[|] 温度特性の解析

本発明の主題たる分極反転層を有するLiTaQ,基板を伝搬するSHタイプ弾性表面波(Leaky板)に対する温度特性及び伝搬減衰特性の解析について説明する。

- (a) LiTaO₃の基板温度25℃に於ける材料定数(弾性 定数,圧電定数,誘電率,線膨張係数)及びその温度係 10 数の値としてはスミス(Smith)等の示したそれを用い ス
 - (b) 温度による材料定数Xの変化は3次以上の項は 無視して.

$$X = X * * (1 + \sum_{n=1}^{2} a_n (\triangle T)^n)$$

a,はn次の温度係数,△Tは25°Cからの温度変化 …… (1)

で与える。

20 (c) 弾性表面波についての遅延時間温度係数TCDは,

TCD= $\partial \tau / \tau \partial T = \partial 1/1 \partial T - \partial \upsilon / \upsilon \partial T$ = n - TCV

では遅延時間,1は伝搬方向の長さ、υは波の位相速度、 πは線膨張係数,TCVは位相速度の温度係数(2)

(d) 伝搬方向(X軸方向)のnは

$$\eta = \partial 1/1 \partial T = \alpha x = 1.61 \times 10^{-6}$$
 (3)

(LiTaO,のX軸方向の線膨張係数)

- (f) $TCV = \Delta \upsilon / \upsilon_z, \Delta T$ (4)
- 0 (g) とこで25℃を中心とする2つの温度T, ℃とT, ℃での位相速度をυτ, ,υτ, とすると,TCDは上記(2),
 (3)式及び(4)式より

TCD= 1.61×10⁻⁶

$$- (1/v_{1},) \{ (v_{7}, -v_{7}) / (T_{2} - T_{1}) \} \dots$$
(5)

と表わすことができるから、これよりTCDを求めることができる。

次に前記(5)式に於ける υτ の値を数値解析によって求める方法について説明する。

10 (h) 第3図を勘案して運動方程式と電荷方程式は以下の如く表わされる。

6

運動方程式

$$C'_{ijk\ell}(\partial^{2}U_{k}/\partial\chi_{\ell}\partial\chi_{i}) + e'_{kij}(\partial^{2}\phi/\partial\chi_{ik})$$
$$\partial\chi_{i}) = \rho(\partial^{2}U_{j}/\partial\chi_{ik}^{2})$$

Uは変位,øは電位,cは弾性定数,eは 圧電定数、8 は誘電率、C'の如き表示は略 標変換後の値であることを示す

(6)

(i) さて第3図に於いて回転Y板上をx,方向に伝搬 * に於いて以下の如く表わすことができる。 する弾性表面波を与える方程式(6)の一般解は領域A*

$$\begin{cases} U_{Ai} = \sum_{n=1}^{4} \beta_{in} A_{n} \exp(-\alpha_{n} k X_{2}) \cdot \exp(jk \{v_{1} - (1-j\delta)X_{1}\}) \\ \phi_{A} = \sum_{n=1}^{4} \beta_{4n} A_{n} \exp(-\alpha_{n} k X_{2}) \cdot \exp(jk \{v_{1} - (1-j\delta)X_{1}\}) \\ j\delta)X_{1}\} \end{cases}$$

$$(\chi_{1} > 0) \cdots (7)$$

一方B領域(分極反転層内)に於いては表面から込方 ※るので一般解は以下の如く表わされる。 向に減衰する波と、境界から-X方向に減衰する波があ※

$$U_{Bi} = \sum_{n=1}^{4} \{\beta'_{in}A'_{n} \exp(-\alpha_{n}kx_{2}) + \beta''_{in}A''_{n}$$

$$\exp(\alpha_{n}kx_{2})\} \cdot \exp(jk\{vt - (1-j\delta)x_{1}\})$$

$$\phi_{B} = \sum_{n=1}^{4} \{\beta'_{4n}A'_{n} \exp(-\alpha_{n}kx_{2}) + \beta''_{4n}A''_{n} \exp(-\alpha_{n}kx_{2}) + \beta''_{$$

但し(7), (8)式に於いてりは伝搬する波の位相 速度 kは波数 $2\pi/\lambda$, δ k は伝搬方向の減衰定数, α kは深さ方向(X,方向)の減衰定数である。又、β, , , β´ , , , β ″ , , は α 。 に対応して求まる値であり , A , , A ´ "A"。は未定々数である。

(j) 基板表面(X = -h)と分極反転の境界X = 0 50

に於ける機械的、電気的境界条件は、

変位
$$X_a = 0$$
 $X_a = h$ 変位 $U_{A_1} = U_{B_1}$ $-$ 応力 $(F_{Z_1})_{A_1} = (F_{Z_1})_{B_1}$ $(F_{Z_1})_{B_1} = 0$ 電位 $\phi_{A_1} = \phi_{B_2}$ $\phi_{B_1} = 0$ (短絡表面の場合)

 $(D_2)_A = (D_2)_B$

 $(D_2)_B = (D_2)_0$ (自由表面の場合)

と与えらえる。

但し、応力F2+=C'z+k1 ðUk/ðX1+e'k2+ð Φ/

*電東密度D₂ = e' $_{1k1} \partial U_{k} / \partial X_{1} - \epsilon'$ $_{1k} \partial \phi / \partial X_{k}$ である。

(k) そこで(9)式に(7)式及び(8)式を代入 すると次の12元同次連立方程式が得られる。

」が0でなければならないのでこれを満足するようなッ とるを解けばよいが、近似的には |M|が最小となる v 及 びるを求めることによって解が得られる。

斯くすることによって温度T,,T,及び25℃に於ける位 相速度υを求めれば前記(5)式により遅延時間温度係 数TCDが求められるが、波動の位相速度υは又分極反転 層の厚さ h と伝搬定数 k との積khの関数でもあるからTC Dもkhの関数、即ちTCD=f(kh)として数値解析により 求めることができる。同時に波動の伝搬減衰もkhの関数 として求め得ることは云うまでもない。

〔II〕 数値解析の結果

(a) 上述した如き手法を用いて数値解析を行い分極 反転層を有するLiTaO, 基板に於ける反転層の厚さと遅延 時間係数TCDとの関係を調べたところ第1図に示す如き 結果を得た。これは35°回転Y板についての結果である が、回転角θが30度乃至40度の間ではTODのkh依存性は 殆んど変化がなく、第1図と実質的に同様であることも 確認された。

即ち、LiTaO。の30°乃至40°回転Y板表面に厚さhの 分極反転層を形成しkhの値を1.0乃至6.0の間の適当な値 50 θが33度乃至35度のLiTaO,基板表面にkhが1.5乃至3.5の

方程式(10)が解を有する為には係数行列の行列式 | M 30 に選ぶことにより、従来一般の分極反転層を設けない Li TaO。基板のTDCが表面短絡の場合32ppm/C程度であった ものが最小14ppm/C程度まで大幅に向上することが理解 されよう。

> (b) 又, 第2図(a)及び(b)は伝搬する表面波 のバルク波放射に基づく伝搬減衰のkh依存性を調べた結 果を示す図であって、圧電デバイスとしての利用価値が ある短絡表面についてkhが1.0乃至6.0の間に伝搬減衰が 実質上零、即ち完全な表面波となる領域の存在すること が判る。

一方、本願発明者等は既に分極反転層を有する (c) LiTaO,基板を伝搬するSHタイプ弾性表面波についての電 気機械結合係数K'のkh依存性について解析しており、K' はkhが0.7付近で零となり、khが増大するとパも再び増大 することを見い出している。

この結果を併せ勘案するにkhの値を1.0乃至6.0の間の 適当な値に選べばK',TOD及び伝搬減衰のいずれをも同時 に満足することが可能であろう。

〔III〕 圧電デバイスへの応用

以上[I]の結果を勘案するに回転カット角

10

適当な深さに分極反転層を形成すれば、従来VTR用共振 子等に用いられていたXカット112度Y方向伝搬のLiTaO ,基板を用いたものより温度特性、電気機械結合係数共 に良好な小型の共振子を得ることができる。

因みにカット角35度回転YのLiTaO, 基板の電気機械結合係数ピが最高の値を示すkh値は本願発明者による従前の解析によれば概ね3でありその際のピ値は4%程度であってkh値1.0乃至6.0の範囲ではピが著しく劣化するわけでもないことに注目されたい。

又,本発明に係るLiTaO,基板はその温度特性及びにの 10 値を勘案するに中帯域幅の共振子及びフィルタへの応用が最適であろう。

更に、温度特性にや、不満はあるものの遅延線に用いてもよい。この場合には波の送受用IDTの間の伝搬路表面には全面メタライズ膜を施こすのがよい。

* (発明の効果)

本発明は以上説明した如き条件をLiTaO,基板に付与することによってその温度特性を従来のそれよりも大幅に向上せしめたものであるから、LiTaO。を利用した表面波共振器或はフィルタ等のデバイスの温度特性を改善する上で著しい効果がある。

【図面の簡単な説明】

第1図は本発明に係るLiTaO,基板に於ける温度特性と分極反転層の深さとの関係を示す図、第2図(a)及び(b)は夫々励起した波動の伝搬減衰と分極反転層の深さとの関係を示す図であり、前者は自由表面について、後者は短絡表面についての図、第3図は本発明をなすに至った理論解析の基礎となるLiTaO,基板の諸パラメータを示す図である。

【第2図】

【第1図】

ACHICLE MILLS &

【第3図】

