# Sequential Logic

### Pat Hanrahan

CS448H: Agile Hardware Design Winter 2017

# Combinational Logic

Combinational logic is an expression involving (combination of) logic gates

- 1. All inputs connected to exactly one output
- 2. No cycles

Expression: Fixed topology and fixed data widths

Pure and total function of inputs

Executes continuously and in parallel

```
// Truth table for Mux2
S A B O
0000
0 0 1 0
0 1 0 1
0 1 1 1
1000
1 0 1 1
1 1 0 0
1 1 1 1
```

```
// Truth table for Mux2 - Don't Care
SABO
0 0 X 0
0 0 X 0
0 1 X 1
0 1 X 1
1 X 0 0
1 X 1 1
1 X 0 0
1 X 1 1
```

```
// Truth table for Mux2 - Don't care
S A B O
0 0 X 0
0 1 X 1
1 X 0 0
1 X 1 1
```

### Add2.circ



#### **Shared Block-Level Controls**



iceadd4.v

#### HalfAdder.circ





### Assuming each gate has the same delay T

http://dls.makingartstudios.com/tags/adders/index.html

#### FullAdder.circ



#### **Glitches!**

http://dls.makingartstudios.com/tags/adders/index.html



http://dls.makingartstudios.com/tags/adders/index.html

**Glitches!** 



### **Propagation Delay**

Need to wait for circuit to stabilize Critical path determines how long Timing analysis iceaddn.v timing analysis

## SR Flip Flop



# D Flip Flop



#### D Flip Flop (DFF)

Q

1

0

CK

Q

1



- Has an input D, outputs Q and /Q, and internal state
- CLK (rising) and CE (clock enable)
- RESET and SET (synchronous/asynchronous)

### **Sequential Logic**



#### **Finite State Machine**

# Sequential Logic

All flip flops share a global, synchronous clock

All Flip flops change state simultaneously on the rising edge of the clock

Flip flops can be conditionally updated based on the clock enable

The new value is a combination function of the inputs and the values currently stored in the flip flop

Outputs are combinational functions of the flip flops and the inputs

# T (toggle) Flip Flop



## **TFF**



tff.v

#### **Table of Contents**

| Register Primitives | 6  |
|---------------------|----|
| SB_DFF              | 6  |
| SB_DFFE             |    |
| SB_DFFSR            | 10 |
| SB_DFFR             | 12 |
| SB_DFFSS            | 14 |
| SB_DFFS             | 16 |
| SB_DFFESR           | 18 |
| SB_DFFER            | 20 |
| SB_DFFESS           | 22 |
| SB_DFFES            | 24 |
| SB_DFFN             | 26 |
| SB_DFFNE            | 28 |
| SB_DFFNSR           | 30 |
| SB_DFFNR            | 32 |
| SB_DFFNSS           | 34 |
| SB_DFFNS            | 36 |
| SB_DFFNESR          | 38 |
| SB_DFFNER           | 40 |
| SB_DFFNESS          | 42 |
| SB_DFFNES           | 44 |

#### D Flip-Flop

Data: D is loaded into the flip-flop during a rising clock edge transition.



| Inputs         |   | Output |   |
|----------------|---|--------|---|
|                | D | С      | Q |
|                | 0 | 1      | 0 |
|                | 1 | 1      | 1 |
| Power on State | Х | X      | 0 |

Key

✓ Rising Edge

1 High logic level

0 Low logic level

X Don't care

? Unknown

#### **HDL** use

This register is inferred during synthesis and can also be explicitly instantiated.

#### **Verilog Instantiation**

counter.v

## **Shift Register**



### Johnson or Twisted Ring Counter





# Assignment 1

#### Hardware

**■ Icestick** 

#### Software

- **■** yosys
- arachne
- **■** icestorm

Due Fri Jan 27th at 12 midnight