- 1 a を自然数とする.O を原点とする座標平面上で行列 $A=\begin{pmatrix} a & -1 \\ 1 & a \end{pmatrix}$ の表す 1 次変換を f とする.
- $(1) \quad r>0 \ \text{および} \ 0 \leqq \theta < 2\pi \ \text{を用いて} \ A = \begin{pmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{pmatrix} \ \text{と表すとき , } r \ ,$ $\cos\theta$, $\sin\theta \ \text{を} \ a \ \text{で表せ} \ .$
- (2) 点 Q(1,0) に対し,点 Q_n $(n=1,2,3,\cdots)$ を $Q_1=Q$, $Q_{n+1}=f(Q_n)$ で定める. $\triangle OQ_nQ_{n+1}$ の面積 S(n) を a と n を用いて表せ.
- f によって点 (2,7) に移されるもとの点 P の x 座標の少数第一位を四捨五入して得られる近似値が 2 であるという.自然数 a の値を求めよ.またこのとき $S(n)>10^{10}$ となる最小の n を求めよ.ただし $0.3<\log_{10}2<0.31$ を用いてよい.