

(wendo el interruptor esta abierto:

(vego
$$I = \frac{V_{I} - V_{I}/2}{2R} = \frac{V_{I}/2}{2R} = \frac{V_{I}}{4R}$$
 V $i_{c} = I = \frac{V_{I}}{4R}$

wande d'interpeptor esta cerrado:

$$V' = V' = \frac{V_{\pm}}{2} y$$
 $T = \frac{V_{\pm}}{4R}$; prom $ic = T - T' = \frac{V_{\pm}}{4R} - \frac{V}{R} = \frac{V_{\pm}/2}{4R} - \frac{V_{\pm}/2}{R}$

$$= V_{\pm} \left(\frac{1}{4R} \right) = -\frac{V_{\pm}}{4R}$$

con lo que el capacitor se carga y descarga a corrente constante y la tensión en sus terminales crece deforma lineal.

el comparador de histeresis trabaja digunos a $V_{TH} \neq V_{TL}$ con $V_{TL} \approx 0$; asi wando $V_{T} \approx V_{TL}$ el comparador connuta y abre el nterruptor; con lo que el capacitor carga con corriente $\frac{V_{\pm}}{4R}$; luego $\Delta t = C\Delta V$

$$\Rightarrow \Delta t = \frac{C(V_{TH}-V_{TL})}{V_{Z}/4R}$$
; wando V_{T} alcanza V_{TH} ; la convente cambia a $\frac{-V_{Z}}{4R}$ y el Δt es el mismo luego se tiene:

 $F = \frac{1}{2\Delta t} = \frac{1}{2CAR(V_{TH} - V_{TL})} = \frac{V_{I}}{8RC(V_{TH} - V_{TL})}$

total

yourself to all In

= 7 1 = 4 = 7

7 --

F

go y chescarge a committee consider

eate V= Lucys Ate

li II abasa Itu la