

# WHY

- In many real case scenarios we may have to work with low resolution images:
  - Cheap camera sensor
  - Subject is distant from capturing device
  - Typical in video surveillance
- Recognizing low-res faces is hard











George Clooney

- Can we help face recognition by increasing image resolution?
- **Task**: transform low-resolution image to high-resolution
- Tries to synthetize new details



# 01 - System Architecture

#### **Face Localization**

Localizes and crops the face in the image

#### **Super-Resolution**

- Increases image resolution
- In our case  $32 \times 32 \rightarrow 128 \times 128$

#### **Face Recognition**

- Extracts feature vector
- Match it with another template

# 02 - Face Localization

#### OpenCV Haar Cascade Classifier

- Frontal images only, others ignored
- We took highest score
- Very fast, many false positives

# Multi-Task Cascaded CNN (MTCNN)

- Frontal and profile images
- Outputs face landmarks too
- We took highest score
- Not so fast, more robust

# 02 - Face Localization

#### OpenCV Haar Cascade Classifier

- Frontal images only, others ignored
- We took highest score
- Very fast, many false positives

# Multi-Task Cascaded CNN (MTCNN)

- Frontal and profile images
- Outputs face landmarks too
- We took highest score
- Not so fast, more robust

# 02 - Face Localization

# **COMPARISON AND ERRORS**

- a) Similar performance most of the time
- b) Correct face but lower confidence score
- c) Wrong detection since profile picture
- d) Accessories problems
- e) Error even if image is normal



# 03 - Face Recognition

- Extracts feature vector and predicts identity
- Deep Learning model based on ResNet-50 with fine tuning from ImageNet
- Trained for 10 epochs with 1.000 identities of CASIA-WebFace (~73.000 high-res images)
- 62% Accuracy on validation set
  - Model fixed for different super-resolution techniques



#### **OpenCV Resize**

- Bilinear interpolation
- Fastest

#### **SRGAN**

- GAN based on ResNet
- Perceptual loss based on VGG features map

#### **EDSR**

- ResNet without BatchNorm
- 2x, 3x, 4x input resolution
- Very slow (~30s for one image)

#### **ESRGAN**

- Improved SRGAN
- Changes in architecture, discriminator and loss



However... they are all general purpose,

"Why not train with just face images?"

#### **Initial model**

- GAN based on SRGAN architecture
- Trained for 100 epochs with 5.000 high quality images selected from CASIA-WebFace
  - Threshold-based method on sharpness







**Initial** model



Initial model



**Initial model** 



True High-res



Lack of sharpness in details...

What can we do about it?

**MULTI-TASK LEARNING!** 

#### Canny model





**Generator** 



Fake High-res



Fake Canny High-res









True High-res



True Canny High-res

**Discriminator** 



True/Fake



<sup>\*</sup> intended for hi-res images

- Evaluation Dataset: LFW
- Two evaluation methodology:
  - All-Against-All

Standard LFW Evaluation



#### All-Against-All (AAA)

- Open-Set Identification
- In turns, each template as probe
- Rest is gallery set
- Simulate impostor attempts
- Several thresholds

#### Standard LFW Evaluation

- Test set is given
- Pairs of face images
- System needs to recognize if same identity
- Results are averaged over 10 different folds



# **SR Comparison**





# **SOTA Comparison**







All-Against-All

Recognition Rate

Standard LFW

Accuracy

# THANKS FOR THE ATTENTION!