(5) Use same steps as #2

(1000 ops)
$$02R_1+R_2+R_2$$

$$\begin{bmatrix}
2 & 2 & 4 & 4 \\
-4 & -4 & 8 & -16
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 2 & 4 & 4 \\
-4 & -8 & -16
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 2 & 4 \\
0 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 & 4 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 & 4 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 1 & 4 \\
0 & 0 & 1 & 1 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 1 & 4 \\
0 & 0 &$$

This is the answer to #2 with an added constant.

This is the answer to #2 was a line in 3 space going through the origin (0,0,0)

The answer to #5 is parallel to the line from #2 translated

The answer to #5 is parallel to the line from #2 translated

(shifted) by [8]

Otherson

These are 4 vector with Bentries, meaning more columns than rows.

So these columns are Linearly Dependent.

We would-tille to find on h such that the 3rd vector is a linear combination of the first two Vectors, ensuring that the 3 victors are linearly dependent. So, $\begin{bmatrix}
2 & 4 & | & -2 \\
-2 & -6 & | & 2 \\
4 & 7 & | & h
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
-2 & 1 & | & 2 \\
-2 & 1 & | & 2
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -2 & | & 0 \\
0 & -1 & | & | & 1
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -2 & | & 0 \\
0 & -1 & | & | & | & 1
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -2 & | & 0 \\
0 & -1 & | & | & | & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -2 & | & | & | & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -2 & | & | & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -1 & | & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -1 & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -1 & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -1 & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -1 & | & | & |
\end{bmatrix}$ $\begin{bmatrix}
2 & 4 & | & -2 \\
0 & -1 & | & | & |
\end{bmatrix}$

 $\rightarrow 6 = h + 4 = 7 h = -4$ thus 3^{1d} vcctor is $\begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix} = -1 \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$

(9) We want to keep the assumption that Uz is not a linear combination Of \vec{V}_1 and \vec{V}_2 and show that $\{\vec{V}_1,\vec{V}_2,\vec{V}_3\}$ can Still be linearly dependent. So, two options: (a) \vec{V}_1 or \vec{V}_2 is the zero vector $\begin{bmatrix} 0\\0\\0\end{bmatrix} \rightarrow \begin{bmatrix} 1\\0\\0\end{bmatrix}$ or (b) \vec{V}_1 and \vec{V}_2 are multiples of each other.

(10) a) False, trivial Solution is always a solution to a homogeneous system b) False, could have $\vec{X} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (for example)

C) False, $A \vec{x} = \vec{0}$ always has the trivial solution, it needs to be the only

d) True

e) True. Win span { u, v} means w is a limear combo of u and v,

f) True

y) False, one of the vectors is a linear combination of other vectors in the set, thus the set is linearly dependent,