

O Sistema Operacional Linux

IoT para Sistemas Embarcados

Departamento de Engenharia de Controle e Automação Instituto de Ciência e Tecnologia – UNESP – Campus Sorocaba

Prof. Dr. Dhiego Fernandes Carvalho

dhiego.fernandes@unesp.br

Objetivos

- 1. Compreender a História e Evolução do Linux
- 2. Entender a importância do Linux em IoT e Sistemas Embarcados.
- 3. Introduzir conceitos de Virtualização e Conteinerização.
- 4. Dominar os comandos básicos do Linux.
- 5. Aplicar comandos de Rede no Linux.

Índice

- 1. História do Linux
- 2. Linux em Sistemas Embarcados
- 3. Virtualização
- 4. Conteinerização
- 5. Principais comandos básicos no Linux
- 6. Comandos de Rede no Linux.
- 7. Conclusões

Finlandês, Linus Torvalds, iniciou um projeto de criação de um Sistema Operacional como hobby, baseado no sistema Minix (mini Unix), desenvolvido por Andrew S. Tanenbaum.

Andrew S. Tanenbaum

História do Linux

- O Linus Torvalds foi responsável pela criação do kernel do sistema operacional.
- Em 1983 foi lançado por Richard Stallman o projeto GNU com o objetivo de criar um SO completamente livre.
- O projeto GNU desenvolveu muitas ferramentas essenciais que são usadas em SO modernos (compilador GCC, emacs, utilitários shells etc).
- Por tais motivos, muitos chamam o Linux de GNU/Linux.

História do Linux

- O Projeto GNU foi fundado com um forte compromisso com os princípios de software livre.
- Para garantir tal liberdade, foi criada a licença GPL (*General Public License*).

 A partir da licença GPL, foi possível criar várias distribuições Linux.

Linux em Sistemas Embarcados

- Os sistemas embarcados mais complexos usam uma arquitetura ARM (Advanced RISC Machine), diferente das x86 usadas nos computadores pessoais e servidores.
- A arquitetura ARM tem como características sua eficiência energética, baixo custo e alta personalização.
- Pode-se dizer que a arquitetura ARM é a arquitetura dos dispositivos IoT.

Linux em Sistemas Embarcados

- O Android é um SO baseado no Kernel do Linux, sendo mantida pela Android Open Source Project (AOSP), encabeçada pelo Google.
- O Android possui um ecossistemas de Aplicativos disponíveis através da Google Play Store.

Linux em Sistemas Embarcados

Nos Raspberry PI, a distribuição Linux mais comum a ser usada é Raspberry PI OS (antigo Raspbian).

Linux em Sistemas Operacionais

- O Armbian é baseado no Debian ou Ubuntu focado para a arquitetura ARM.
- As TVBoxs vêm com um Android TV instalado, mas pode ser substituído por uma versão do Armbian.

Virtualização

• É uma tecnologia que permite executar múltiplos SOs simultaneamente em um único hardware físico, compartilhando seus recursos.

Virtualização

- Benefícios:
 - Menos máquinas físicas.
 - Isolamento e segurança.
 - Flexibilidade e escalabilidade.
 - Desenvolvimento e Teste.
 - Recuperação de Desastres e Continuidade de Negócios.

Virtualização

 No nosso caso, seria a instalação de um Sistema Operacional Linux em uma máquina com Windows.

Cada Máquina Virtual tem seu próprio SO, com hardware virtual próprio (disco, memória, processador etc)

 A conteinerização é um processo de implantação de software que agrupa o código de uma aplicação com todos os arquivos e bibliotecas de que ela precisa para ser executado em qualquer infraestrutura.

 Ao contrário da virtualização tradicional, a conteinerização permite que múltiplos contêineres compartilhem o mesmo kernel do SO do host, reduzindo significativamente o uso de recursos.

- Os contêineres são usados em:
 - Aplicações Web
 - Microserviços
 - Aplicações de Big Data e Análise
 - Aplicações de IA e Machine Learning

- Um ótimo programa para Conteinerização é o Docker.
- No nosso caso, pode ser usado para rodar programas com bibliotecas do Linux em ambiente Windows.


```
Navegação Básica
#Mostrar conteúdo do diretório
usuario@linux:~$ |s
Documentos Downloads Imagens Desktop
#Navegar entre as pastas
usuario@linux:~$ cd Documentos
#Mostrar diretório corrente
usuario@linux:~/Documentos$ pwd
```

/home/usuario/Documentos

Manipulação de Arquivos #Criação de Diretório usuario@linux:~/Documentos\$ mkdir ProjetoloT #Criação de Arquivo usuario@linux:~/Documentos\$ touch ProjetoloT/README.md **#Copiar arquivos** usuario@linux:~/Documentos\$ cp ProjetoloT/README.md ProjetoloT/LEIAME.md **#Mover arquivos** usuario@linux:~/Documentos\$ mv ProjetoloT/LEIAME.md ProjetoloT/LEIA-ME.txt **#Remover Arquivo** usuario@linux:~/Documentos\$ rm ProjetoloT/LEIA-ME.txt **#Remover Diretório** usuario@linux:~/Documentos\$ rmdir ProjetoloT

Gerenciamento de Processos

#Mostrar processos

usuario@linux:~/Documentos\$ ps

PID TTY TIME CMD

1234 pts/1 00:00:00 bash

5678 pts/1 00:00:00 ps

#Matar Processo

usuario@linux:~/Documentos\$ kill -9 5678

Informações do Sistema

usuario@linux:~/Documentos\$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 50G 12G 35G 26%/

usuario@linux:~/Documentos\$ free -m

total used free shared buff/cache available

Mem: 3912 1342 1125 125 1444 2200

Swap: 1023 200 823

<u>Usar o nano para editar arquivos de texto</u>

usuario@linux:~\$ nano meu_arquivo.txt

#Faz alterações no arquivo

##Sair sem salvar

Pressiona: Ctrl + X

Pergunta: Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES)?

Pressiona: N

##Salvar e sair

Pressiona: Ctrl + X

Pergunta: Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES)?

Pressiona: Y

Inserir usuário no sudoers

usuario@linux:~\$ su

Senha:

root@linux:/home/usuario\$ usermod -aG sudo usuario

root@linux:/home/usuario\$ exit

logout

usuario@linux:~\$

```
Manipulação de Usuários
#Adicionar Usuário
usuario@linux:~$ sudo adduser novo usuário
#Deletar Usuário
usuario@linux:~$ sudo deluser novo usuário
#Entrar e Sair do mesmo usuário
usuario@linux:~$ su novo usuário
Senha:
novo usuario@linux:~$ exit
logout
```

Instalação de Programas

#Atualização

usuario@linux:~\$ sudo apt update

#Instalar programas

usuario@linux:~\$ sudo apt install net-tools

```
Mostrar interfaces de Redes
usuario@linux:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
  link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
  inet 127.0.0.1/8 scope host lo
   valid Ift forever preferred Ift forever
  inet6 ::1/128 scope host
   valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default glen 1000
  link/ether 01:23:45:67:89:ab brd ff:ff:ff:ff:ff
  inet 192.168.1.2/24 brd 192.168.1.255 scope global dynamic noprefixroute eth0
   valid Ift 86398sec preferred Ift 86398sec
  inet6 fe80::a00:27ff:fe4e:66a1/64 scope link
   valid_lft forever preferred_lft forever
```

```
Mostrar portas abertas e os serviços rodando nelas
usuario@linux:~$ netstat -tuln
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address
                                       Foreign Address
                                                            State
           0 0.0.0.0:22
                              0.0.0.0:*
                                               LISTEN
tcp
tcp6
                                          LISTEN
        0
            0 :::80
                               0.0.0.0:*
udp
        0
            0 0.0.0.0:68
            0 0.0.0.0:123
                                0.0.0.0:*
udp
        0
udp6
        0
             0 :::123
```

Comando PING – Verificar se Máquina está ativa na rede usuario@linux:~\$ ping google.com PING google.com (172.217.17.78) 56(84) bytes of data. 64 bytes from ams15s29-in-f14.1e100.net (172.217.17.78): icmp_seq=1 ttl=115 time=14.8 ms 64 bytes from ams15s29-in-f14.1e100.net (172.217.17.78): icmp_seq=2 ttl=115 time=13.7 ms 64 bytes from ams15s29-in-f14.1e100.net (172.217.17.78): icmp_seq=3 ttl=115 time=14.1 ms 64 bytes from ams15s29-in-f14.1e100.net (172.217.17.78): icmp_seq=4 ttl=115 time=13.8 ms ٧C --- google.com ping statistics ---4 packets transmitted, 4 received, 0% packet loss, time 3004ms rtt min/avg/max/mdev = 13.714/14.125/14.815/0.433 ms

Requisição de Endereço IP

usuario@linux:~\$ sudo dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5

Copyright 2004-2016 Internet Systems Consortium.

All rights reserved.

Listening on LPF/eth0/00:1a:2b:3c:4d:5e

Sending on LPF/eth0/00:1a:2b:3c:4d:5e

Sending on Socket/fallback

DHCPRELEASE on eth0 to 192.168.1.1 port 67

DHCPDISCOVER on eth0 to 255.255.255 port 67 interval 3

DHCPOFFER from 192.168.1.1

DHCPREQUEST on eth0 to 255.255.255.255 port 67

DHCPACK from 192.168.1.1

bound to 192.168.1.2 -- renewal in 21600 seconds.

Acesso Remoto via SSH

usuario@local:~\$ ssh joao@192.168.1.100

The authenticity of host '192.168.1.100 (192.168.1.100)' can't be established.

ECDSA key fingerprint is SHA256:xh3H...g8w2.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.1.100' (ECDSA) to the list of known hosts.

joao@192.168.1.100's password:

joao@remote:~\$

```
Varredura de Portas Remotas
usuario@linux:~$ nmap 192.168.1.1
Starting Nmap 7.80 (https://nmap.org) at 2023-01-01 12:00 EST
Nmap scan report for 192.168.1.1
Host is up (0.0010s latency).
Not shown: 995 closed ports
PORT
        STATE SERVICE
22/tcp open ssh
80/tcp open http
443/tcp open https
3306/tcp open mysql
8080/tcp open http-proxy
Nmap done: 1 IP address (1 host up) scanned in 6.76 seconds
```

Conclusões

- Nessa aula foi visto a história do Sistema Operacional GNU/Linux, sua filosofia e como ele é usado em sistemas embarcados (arquitetura ARM).
- Foi ensinado o que são Virtualização e Conteinerização, assim como suas diferenças.
- Foi explicado os principais comandos básicos e de rede do Linux.
- A partir dessa aula, é possível o aluno instalar e manusear o Linux.

DÚVIDAS?

Exercícios

- Baixe o <u>VirtualBox</u> e instale no seu computador.
- Baixe a última versão do <u>Debian</u>.
- Crie uma Máquina Virtual Linux no Virtualbox e em seguida instale o Debian nela.
- Depois da instalação do Debian, pratique os principais comandos do Linux ensinados nesta aula.