

Bandits and Hyper-parameter Optimization: From Practice to Theory

- X. Shang¹, R. de Reide², P. Ménard¹, E. Kaufmann³, M. Valko⁴
 - ¹ Inria Lille, SequeL team
 - ² CWI
 - ³ CNRS, CRIStAL
 - ⁴ Google DeepMind

Inria SequeL

What — Hyper-parameter optimization

Problem

We tackle **hyper-parameter tuning** for *supervised learning* tasks:

What — Hyper-parameter optimization

Problem

We tackle hyper-parameter tuning for supervised learning tasks:

What — Hyper-parameter optimization

Problem

We tackle hyper-parameter tuning for supervised learning tasks:

- $\vdash_{\mathbf{f}} f(\lambda) \triangleq \mathbb{E}\left[\ell\left(\mathbf{Y}, \widehat{g}_{\lambda}^{(n)}(\mathbf{X})\right)\right] \text{ measures the generalization power.}$

How — Best-arm identification

We see the problem as *best-arm identification* in a *stochastic infinitely-armed bandit*: arms' means are drawn from some reservoir distribution ν_0 .

How — Best-arm identification

We see the problem as *best-arm identification* in a *stochastic infinitely-armed bandit*: arms' means are drawn from some reservoir distribution ν_0 .

How — Best-arm identification

We see the problem as best-arm identification in a stochastic infinitely-armed bandit: arms' means are drawn from some reservoir distribution ν_0 .

In each round

- 1. (optional) query a new arm from ν_0 ;
- 2. sample an arm that was previously queried.

goal: output an arm with mean close to μ^* D-TTTS (Dynamic Top-Two Thompson Sampling) \rightsquigarrow a dynamic algorithm built on TTTS.

How — D-TTTS

In this talk...

- ▶ Beta-Bernoulli Bayesian bandit model
- ▶ a uniform prior over the mean of new arms
- 1: **Initialization**: $\mu_1 \sim \nu_0$; $\mathcal{A} = \{\mu_1\}$; m = 1; $\mathcal{S}_1, \mathcal{N}_1 = 0$
- 2: while budget still available do
- 3: $\forall i \in \mathcal{A}, \ \theta_i \sim \mathtt{Beta}(S_i + 1, N_i S_i + 1)$
- 4: $I^{(1)} = \arg\max_{i=0,\dots,m} \theta_i \{ \text{Thompson sampling} \}$
- 5: end while

How — D-TTTS

```
1: Initialization: \mu_1 \sim \nu_0; A = \{\mu_1\}; m = 1; S_1, N_1 = 0
 2: while budget still available do
       \forall i \in \mathcal{A}, \ \theta_i \sim \mathtt{Beta}(S_i + 1, N_i - S_i + 1)
 3:
      I^{(1)} = \arg\max_{i=0,\dots,m} \theta_i \{ \text{Thompson sampling} \}
 5: if U(\sim U([0,1])) > \beta then
            while I^{(2)} \neq I^{(1)} do
               \forall i \in \mathcal{A}, \theta_i' \sim \mathtt{Beta}(S_i + 1, N_i - S_i + 1)
 7:
                I^{(2)} \leftarrow \arg\max_{i=0}^{\infty} \theta_i^i
 8:
 9:
            end while
         I^{(1)} \leftarrow I^{(2)}
10:
        end if{TTTS}
11:
12: end while
```

How — D-TTTS

```
1: Initialization: \mu_1 \sim \nu_0; A = \{\mu_1\}; m = 1; S_1, N_1 = 0
 2: while budget still available do
         \mu_{m+1} \sim \nu_0: \mathcal{A} \leftarrow \mathcal{A} \cup \{\mu_{m+1}\}
 3:
       S_{m+1}, N_{m+1} \leftarrow 0; m \leftarrow m+1
 5:
      \forall i \in \mathcal{A}, \ \theta_i \sim \text{Beta}(S_i + 1, N_i - S_i + 1)
 6: I^{(1)} = \arg\max_{i=0,\dots,m} \theta_i \{ \text{Thompson sampling} \}
 7: if U(\sim \mathcal{U}([0,1])) > \beta then
             while I^{(2)} \neq I^{(1)} do
 8:
                 \forall i \in \mathcal{A}, \theta_i' \sim \mathtt{Beta}(S_i + 1, N_i - S_i + 1)
 9:
                 I^{(2)} \leftarrow \arg\max_{i=0} \ m \theta'_i
10:
             end while
11:
            I^{(1)} \leftarrow I^{(2)}
12:
13:
         end if{TTTS}
      Y \leftarrow \text{evaluate arm } I^{(1)}; X \sim \text{Ber}(Y)
14:
         S_{I^{(1)}} \leftarrow S_{I^{(1)}} + X; N_{I^{(1)}} \leftarrow N_{I^{(1)}} + 1
15:
16: end while
```

How — D-TTTS c'td

D-TTTS in summary...

In each round, query a new arm endowed with a Beta(1,1) prior, without sampling it, and run TTTS on the new set of arms.

How — D-TTTS c'td

Order statistic trick

With \mathcal{L}_{t-1} the list of arms that have been effectively sampled at time t, we run TTTS on the set $\mathcal{L}_{t-1} \cup \{\mu_0\}$ where μ_0 is a pseudo-arm with posterior Beta $(t - |\mathcal{L}_{t-1}|, 1)$.

Figure: Posterior distributions of 4 arms and the pseudo-arm

Why

- 1. TTTS is anytime for finitely-armed bandits;
- 2. the flexibility of this Bayesian algorithm allows to propose a **dynamic** version for the infinite BAI;
- unlike previous approaches (for infinite-armed bandits or HPO), D-TTTS does not need to fix the number of arms queried in advance, and naturally adapts to the difficulty of the task.

Why

- 1. TTTS is anytime for finitely-armed bandits;
- the flexibility of this Bayesian algorithm allows to propose a dynamic version for the infinite BAI;

SiRI as an example for infinite-armed bandits

- choose a problem-dependent number of arms
- pull arms optimistically

Why

- 1. TTTS is anytime for finitely-armed bandits;
- the flexibility of this Bayesian algorithm allows to propose a dynamic version for the infinite BAI;

Hyperband as an example for HPO

- equally divide the budget B into m brackets
- run sequential halving (Karnin et al. 2013) over a fixed number *n* of configurations in each bracket
- ightharpoonup trade-off between B/mn and n

HPO as a BAI problem

BAI	HPO		
query $ u_0$	pick a new configuration $oldsymbol{\lambda}$		
sample an arm	train the classifier g_{λ}		
reward	cross-validation loss		

Experiments — Setting

Classifier	Hyper-parameter	Туре	Bounds
SVM	С	\mathbb{R}^+	$ \begin{bmatrix} 10^{-5}, 10^{5} \\ 10^{-5}, 10^{5} \end{bmatrix} $
	γ	\mathbb{R}^+	$\left[10^{-5}, 10^{5}\right]$

Table: hyper-parameters to be tuned for UCI experiments.

Classifier	assifier Hyper-parameter		Bounds
	hidden_layer_size alpha learning_rate_init		$ \begin{bmatrix} 5,50 \\ [0,0.9] \\ [10^{-5},10^{-1}] \end{bmatrix} $

Table: hyper-parameters to be tuned for MNIST experiments.

Experiments — Some results

What now?

Extend to the non-stochastic setting;

What now?

- Extend to the non-stochastic setting;
- ► Theoretical guarantee?
 - Analysis of D-TTTS extremely difficult due to the dynamic nature;
 - How about take a step back to TTTS first?

More details on D-TTTS

Check out [Shang, Kaufmann, et al. 2019].

What we know about TTTS... (Reminder)

```
1: Input: \beta
 2: for n = 1, 2, ... do
 3: \forall i \in \mathcal{A}, \ \theta_i \sim \Pi_n
     I^{(1)} = \operatorname{arg\,max}_{i=0} \quad {}_m \theta_i
 5: if U(\sim \mathcal{U}([0,1])) > \beta then
             while I^{(2)} \neq I^{(1)} do
                 \forall i \in \mathcal{A}, \ \theta'_i \sim \Pi_n
 7:
                  I^{(2)} \leftarrow \operatorname{arg\,max}_{i=0} \quad {}_{m} \theta'_{i}
 8:
         end while
 9.
             I^{(1)} \leftarrow I^{(2)}
10:
11: end if
12: evaluate arm I^{(1)}
13:
          update \Pi_n
14: end for
```

What we know about TTTS... (Posterior convergence)

Theorem (Russo 2016)

Under TTTS, for **bounded** 1-dimensional exponential family priors, it holds almost surely that

$$\lim_{n\to\infty} -\frac{1}{n}\log(1-\alpha_{n,I^*}) = \Gamma_{\beta}^*,$$

where

$$\alpha_{n,i} \triangleq \Pi_n(\theta_i > \max_{j \neq i} \theta_j).$$

What we know about TTTS... (Complexity)

Definition

Let
$$\Sigma_K = \{ \boldsymbol{\omega} : \sum_{k=1}^K \omega_k = 1, \omega_k \geq 0 \}$$
 and define for all $i \neq I^*$

$$C_i(\omega, \omega') \triangleq \min_{x \in \mathcal{I}} \ \omega d(\mu_{I^*}; x) + \omega' d(\mu_i; x),$$

where $d(\mu, \mu')$ is the KL-divergence. We define

$$\Gamma_{\beta}^{\star} \triangleq \max_{\substack{\omega \in \Sigma_K \\ \omega_{I^{\star}} = \beta}} \min_{i \neq I^{\star}} C_i(\omega_{I^{\star}}, \omega_i).$$

What we know about TTTS... (Complexity)

Definition

Let
$$\Sigma_K = \{ \boldsymbol{\omega} : \sum_{k=1}^K \omega_k = 1, \omega_k \geq 0 \}$$
 and define for all $i \neq I^*$

$$C_i(\omega, \omega') \triangleq \min_{x \in \mathcal{I}} \ \omega d(\mu_{I^*}; x) + \omega' d(\mu_i; x),$$

where $d(\mu, \mu')$ is the KL-divergence. We define

$$\Gamma_{\beta}^{\star} \triangleq \max_{\substack{\omega \in \Sigma_{K} \ i \neq I^{\star} \\ \omega_{I^{\star}} = \beta}} \min_{i \neq I^{\star}} C_{i}(\omega_{I^{\star}}, \omega_{i}).$$

In particular, for Gaussian bandits...

$$\Gamma_{\beta}^{\star} = \max_{\boldsymbol{\omega}: \omega_{I^{\star}} = \beta} \min_{i \neq I^{\star}} \frac{(\mu_{I^{\star}} - \mu_{i})^{2}}{2\sigma^{2}(1/\omega_{i} + 1/\beta)}.$$

▶ Can we remove the *boudedness* assumption of the prior?

- ▶ Can we remove the *boudedness* assumption of the prior?
- What can we say about the sample complexity in the fixed-confidence setting?

- ▶ Can we remove the *boudedness* assumption of the prior?
- ► What can we say about the sample complexity in the fixed-confidence setting?

Lower bound

Under any δ -correct strategy satisfying $T_{n,I^*}/n \to \beta$,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}\left[\tau_{\delta}\right]}{\ln(1/\delta)} \geq \frac{1}{\Gamma_{\beta}^{\star}}.$$

- Can we remove the boudedness assumption of the prior?
- ▶ What can we say about the sample complexity in the fixed-confidence setting?
- ► Can we have finite-time guarantees?

Main result — Posterior convergence

Theorem (Shang, Heide, et al. 2020)

Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost surely that

$$\lim_{n\to\infty} -\frac{1}{n}\log(1-\alpha_{n,I^*}) = \Gamma_{\beta}^*.$$

Theorem (Shang, Heide, et al. 2020)

Under TTTS, for Bernoulli bandits and uniform priors, it holds almost surely that

$$\lim_{n\to\infty} -\frac{1}{n}\log(1-\alpha_{n,I^*}) = \Gamma_{\beta}^*.$$

Main result — Sample complexity

Theorem (Shang, Heide, et al. 2020)

The TTTS sampling rule coupled with the Chernoff stopping rule form a δ -correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}\left[\tau_{\delta}\right]}{\log(1/\delta)} \leq \frac{1}{\Gamma_{\beta}^{\star}}.$$

Main result — Sample complexity

Theorem (Shang, Heide, et al. 2020)

The TTTS sampling rule coupled with the Chernoff stopping rule form a δ -correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

$$\limsup_{\delta o 0} rac{\mathbb{E}\left[au_{\delta}
ight]}{\log(1/\delta)} \leq rac{1}{\Gamma_{eta}^{\star}}.$$

Recall (Lower bound)

$$\liminf_{\delta \to 0} \frac{\mathbb{E}\left[\tau_{\delta}\right]}{\ln(1/\delta)} \geq \frac{1}{\Gamma_{\beta}^{\star}}.$$

Stopping rule

$$au_{\delta}^{\mathsf{Ch.}} \triangleq \inf \left\{ n \in \mathbb{N} : \max_{i \in \mathcal{A}} \min_{j \in \mathcal{A} \setminus \{i\}} W_n(i,j) > d_{n,\delta} \right\}.$$
 (1)

Stopping rule

$$au_{\delta}^{\mathsf{Ch.}} \triangleq \inf \left\{ n \in \mathbb{N} : \max_{i \in \mathcal{A}} \min_{j \in \mathcal{A} \setminus \{i\}} W_n(i,j) > d_{n,\delta} \right\}.$$
 (1)

Transportation cost

Let $\mu_{n,i,j} \triangleq (T_{n,i}\mu_{n,i} + T_{n,j}\mu_{n,j})/(T_{n,i} + T_{n,j})$, then we define

$$W_n(i,j) \triangleq \begin{cases} 0 & \text{if } \mu_{n,j} \ge \mu_{n,i}, \\ W_{n,i,j} + W_{n,j,i} & \text{otherwise,} \end{cases}$$
 (2)

where $W_{n,i,j} \triangleq T_{n,i}d(\mu_{n,i},\mu_{n,i,j})$ for any i,j.

Stopping rule

$$au_{\delta}^{\mathsf{Ch.}} \triangleq \inf \left\{ n \in \mathbb{N} : \max_{i \in \mathcal{A}} \min_{j \in \mathcal{A} \setminus \{i\}} W_n(i,j) > d_{n,\delta} \right\}.$$
 (1)

In particular, for Gaussian bandits...

$$W_n(i,j) = \frac{(\mu_{n,i} - \mu_{n,j})^2}{2\sigma^2(1/T_{n,i} + 1/T_{n,j})} \mathbb{1}\{\mu_{n,j} < \mu_{n,i}\}.$$

Stopping rule

$$au_{\delta}^{\mathsf{Ch.}} \triangleq \inf \left\{ n \in \mathbb{N} : \max_{i \in \mathcal{A}} \min_{j \in \mathcal{A} \setminus \{i\}} W_n(i,j) > d_{n,\delta} \right\}.$$
 (1)

Theorem (Shang, Heide, et al. 2020)

The TTTS sampling rule coupled with the Chernoff stopping rule (1) with a threshold $d_{n,\delta}$ derived from Kaufmann and Koolen 2018 and the recommendation rule $J_t = \arg\max_i \mu_{n,i}$, form a δ -correct BAI strategy.

Sample complexity sketch — Sufficient condition for β -optimality

Lemma

Let $\delta, \beta \in (0,1)$. For any sampling rule which satisfies $\mathbb{E}\left[T_{\beta}^{\varepsilon}\right] < \infty$ for all $\varepsilon > 0$, we have

$$\limsup_{\delta \to 0} \frac{\mathbb{E}\left[\tau_{\delta}\right]}{\log(1/\delta)} \leq \frac{1}{\Gamma_{\beta}^{\star}},$$

if the sampling rule is coupled with stopping rule (1),

Sample complexity sketch - Core theorem

Theorem (Shang, Heide, et al. 2020) Under TTTS, $\mathbb{E}\left[T_{\beta}^{\varepsilon}\right] < +\infty$.

Alleviate the computational burden?

```
1: Input: \beta
 2: for n = 1, 2, \dots do
 3: \forall i \in \mathcal{A}, \ \theta_i \sim \Pi_n
 4: I^{(1)} = \operatorname{arg\,max}_{i=0} \quad {}_{m} \theta_{i}
 5: if U(\sim \mathcal{U}([0,1])) > \beta then
 6: while I^{(2)} \neq I^{(1)} do
                \forall i \in \mathcal{A}, \; \theta'_i \sim \Pi_n
 7:
                 I^{(2)} \leftarrow \arg\max_{i=0} \min_{m} \theta'_{i} \{ \text{Re-sampling phase} \}
 8:
             end while
 9.
            I^{(1)} \leftarrow I^{(2)}
10:
11: end if
12: evaluate arm I^{(1)}
         update \Pi_n
13:
14: end for
```

Alleviate the computational burden?

```
1: Input: \beta
 2: for n = 1, 2, ... do
     \forall i \in \mathcal{A}, \ \theta_i \sim \Pi_n
 4: I^{(1)} = \arg\max_{i=0,\dots,m} \theta_i
 5: if U(\sim \mathcal{U}([0,1])) > \beta then
            I^{(2)} \leftarrow \arg\min_{i \neq I^{(1)}} W_n(I^{(1)}, i) \{ \text{T3C} \}
 6:
            I^{(1)} \leftarrow I^{(2)}
 7:
      end if
 8:
 9: evaluate arm I^{(1)}
         update \Pi_n
10:
11: end for
```

Main result — Sample complexity T3C

Theorem (Shang, Heide, et al. 2020)

The T3C sampling rule coupled with the Chernoff stopping rule form a δ -correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}\left[\tau_{\delta}\right]}{\log(1/\delta)} \leq \frac{1}{\Gamma_{\beta}^{\star}}.$$

Some illustrations — Time consumption

Sampling rule	T3C	TTTS	Uniform
Execution time (s)	1.6×10^{-5}	2.3×10^{-4}	6×10^{-6}

Table: average execution time in seconds for different sampling rules.

Some illustrations — Average stopping time

Still far from the Holy Grail...

► Finite-time analysis (fixed-budget setting?)

Conclusion

More details on TTTS and T3C Check out [Shang, Heide, et al. 2020].

References

Thank you!

Zohar Karnin, Tomer Koren, and Oren Somekh. "Almost optimal exploration in multi-armed bandits". In: 30th ICML, 2013.

Emilie Kaufmann and Wouter Koolen. "Mixture martingales revisited with applications to sequential tests and confidence intervals". In: 2018.

Daniel Russo. "Simple Bayesian algorithms for best arm identification". In: 29th Col.T. 2016.

Xuedong Shang, Rianne de Heide, Pierre Ménard, Emilie Kaufmann, and Michal Valko. "Fixed-confidence guarantees for Bayesian best-arm identification". In: 23rd AlStats. 2020.

Xuedong Shang, Emilie Kaufmann, and Michal Valko. "A simple dynamic bandit algorithm for hyper-parameter optimization". In: 6th ICML Workshop on AutoML. 2019.

