# Nanophotonic Computational Design

Jesse Lu

February 25, 2013

## Goal: Show you how to design any linear nanophotonic device



### Goal: Show you how to design any linear nanophotonic device



### • Physics Advisory:

#### CONTAINS INVOLVED MATHEMATICAL CONTENT

Goal: Show you how to design any linear nanophotonic device



- Physics Advisory:
  - CONTAINS INVOLVED MATHEMATICAL CONTENT
- Math Advisory:
  - CONTAINS INVOLVED NANOPHOTONIC CONTENT

## Given a field, can we find its structure?



## Given a field, can we find its structure?



ullet Equivalently, find  $\epsilon$  (structure) given E (field)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

## Given a field, can we find its structure?



• Equivalently, find  $\epsilon$  (structure) given E (field)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

• If possible, we can design *any* nanophotonic/optical component!

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$
$$\omega^2 \epsilon E = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$
 
$$\omega^2 \epsilon E = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$
 
$$\omega^2 E \epsilon = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$
 
$$\omega^2 \epsilon E = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$
 
$$\omega^2 E \epsilon = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$
 
$$\epsilon = (\nabla \times \mu_0^{-1} \nabla \times E + i\omega J)/\omega^2 E$$