Dimostrazione della Complessità del Problema SUPPLY

Definizione del Problema

SUPPLY = $\{(S_1,...,S_n,k) \mid \text{ esiste una fornitura valida T di dimensione } |T| = k\}$

Dove:

- Ogni fornitore i fornisce un insieme $S_i \subseteq \{1,...,m\}$ di ingredienti
- Una fornitura valida T è un insieme di fornitori tale che $\bigcup_i \in T$ $S_i = \{1,...,m\}$

(a) Dimostrazione che SUPPLY ∈ NP

Teorema: SUPPLY ∈ NP

Dimostrazione: Per dimostrare che SUPPLY ∈ NP, costruiamo un algoritmo di verifica polinomiale.

Certificato: Un insieme $T \subseteq \{1,...,n\}$ di fornitori

Algoritmo di Verifica:

```
Input: (S_1,...,S_n,k), certificato T

1. Verifica che |T|=k  // O(1)

2. Inizializza copertura = \emptyset  // O(1)

3. Per ogni i \in T:  // O(k)
  copertura = copertura \cup S_i  // O(m)

4. Verifica che copertura = \{1,...,m\}  // O(m)

5. Restituisci ACCETTA se tutti i controlli passano
```

Complessità: O(k·m) = polinomiale nell'input

Correttezza:

- L'algoritmo accetta ⇔ T è una fornitura valida di dimensione k
- Quindi SUPPLY ∈ NP □

(b) Dimostrazione che SUPPLY è NP-hard

Teorema: SUPPLY è NP-hard

Dimostrazione: Riduzione polinomiale da VERTEX-COVER a SUPPLY

VERTEX-COVER = {(G,k) | G ha una copertura di vertici di dimensione k}

Costruzione della Riduzione

Input: Istanza (G,k) di VERTEX-COVER con G = (V,E)

- $V = \{v_1, ..., v_n\}$ (vertici)
- $E = \{e_1,...,e_m\}$ (archi)

Output: Istanza (S₁,...,S_n,k) di SUPPLY

Mapping:

- Ogni vertice $v_i \in V \leftrightarrow$ fornitore i
- Ogni arco e_i ∈ E ↔ ingrediente j
- $S_i = \{j \mid e_j \text{ è incidente al vertice } v_i\}$

Correttezza della Riduzione

Lemma: $(G,k) \in VERTEX-COVER \iff (S_1,...,S_n,k) \in SUPPLY$

Dimostrazione (\Rightarrow): Sia T \subseteq V una copertura di vertici per G con |T| = k.

- Per definizione di copertura: $\forall e_i \in E$, $\exists v_i \in T$ tale che e_i è incidente a v_i
- Per costruzione: $\forall j \in \{1,...,m\}, \exists i \in T \text{ tale che } j \in S_i$
- Quindi: $U_i \in T S_i = \{1,...,m\}$
- T è una fornitura valida di dimensione k per SUPPLY

Dimostrazione (\Leftarrow): Sia T \subseteq {1,...,n} una fornitura valida per SUPPLY con |T| = k.

- Per definizione: $U_i \in T$ $S_i = \{1,...,m\}$
- Per costruzione: $\forall j \in \{1,...,m\}$, $\exists i \in T$ tale che $j \in S_i$
- Questo significa: $\forall e_j \in E$, $\exists v_i$ corrispondente a $i \in T$ tale che e_j è incidente a v_i
- Quindi T (interpretato come insieme di vertici) è una copertura di dimensione k per G

Complessità della Riduzione

La costruzione di $(S_1,...,S_n,k)$ da (G,k) richiede:

- O(|V| + |E|) per enumerare vertici e archi
- O(|E|) per costruire ogni S_i
- Totale: O(|V| + |E|) = polinomiale

Conclusione: VERTEX-COVER ≤_p SUPPLY, quindi SUPPLY è NP-hard □

Risultato Finale

Teorema: SUPPLY è NP-completo

Dimostrazione:

- SUPPLY \in NP (parte a)
- SUPPLY è NP-hard (parte b)
- Quindi SUPPLY \in NP-completo \square