CE2210, Sec. 3 Homework 3

Evan Wilcox

Due March 6, 2019

1.
$$F = AB + C$$

ABC	F
000	0
001	1
010	0
011	1
100	0
101	1
110	1
111	1

CSOP: $F = (\bar{A}\bar{B}C) + (A\bar{B}\bar{C}) + (A\bar{B}C) + (AB\bar{C}) + (AB\bar{C}) + (AB\bar{C})$ Minterm: $F = \Sigma m(1,3,5,6,7)$

$2. \ F = AB + BC$

ABC	F
000	0
001	0
010	0
011	1
100	0
101	0
110	1
111	1

CPOS: $F = (A+B+C)\cdot(A+B+\bar{C})\cdot(A+\bar{B}+C)\cdot(\bar{A}+B+C)\cdot(\bar{A}+B+\bar{C})$ Maxterm: $F = \Sigma M(0,1,2,4,5)$

3.
$$F = AB + BC + AC$$

 $= AB(C + \bar{C}) + BC(A + \bar{A}) + AC(B + \bar{B})$ (Compliment)
 $= (ABC + AB\bar{C}) + (ABC + \bar{A}BC) + (ABC + A\bar{B}C)$ (Distribute)
 $= ABC + AB\bar{C} + \bar{A}BC + A\bar{B}C$ (Idempotence)

4. AND-OR PLA

5. OR-AND PLA

- 6. (a) $425_{10} = 0100\ 0010\ 0101_{BCD}$
 - (b) $17_{10} = 0001 \ 0111_{BCD}$
 - (c) $2039_{10} = 0010\ 0000\ 0011\ 1001_{BCD}$

7. (a) C function.

		CD				
		00	01	11	10	
AB	00	1		1	0	
	01	1	1	1	1	
	11	-	-	-	-	
	10	1	1	-	-	

 $\begin{aligned} & \text{MSOP: } F = B + \bar{C} + D \\ & \text{MPOS: } F = B + \bar{C} + D \end{aligned}$

(b) D function

$$\begin{split} \text{MSOP: } F &= \bar{B}\bar{D} + B\bar{C}D + \bar{B}C + C\bar{D} \\ \text{MPOS: } F &= (\bar{B} + C + D) \cdot (B + C + \bar{D}) \cdot (\bar{B} + \bar{C} + \bar{D}) \end{split}$$

8. (a)
$$f(x,y,z) = \sum m(0,1,2,3,4,6,7)$$

$$YZ$$

$$00 \quad 01 \quad 11 \quad 10$$

$$X$$

$$1 \quad 1 \quad 0 \quad 1 \quad 1$$

$$\begin{aligned} \text{MSOP: } F &= \bar{X} + \bar{Z} + Y \\ \text{MPOS: } F &= \bar{X} + \bar{Z} + Y \end{aligned}$$

MSOP:
$$F = \bar{W}X\bar{Z} + WZ + \bar{X}Z + YZ$$

MPOS: $F = (\bar{W} + Y + Z) \cdot (X + Y + Z) \cdot (\bar{W} + \bar{Y} + Z) \cdot (X + \bar{y} + Z) \cdot (W + \bar{X} + Y + \bar{Z})$