Big Data

Hands on Spark

A definition for Big Data

"Big data exceeds the reach of commonly used hardware environments and software tools to capture, manage, and process it with in a tolerable elapsed time for its user population." - Teradata Magazine article, 2011

"Big data refers to data sets whose size is **beyond the ability of typical** database **software tools** to capture, store, manage and analyze." - *The McKinsey Global Institute*, 2012

"Big data is data sets that are so voluminous and complex that **traditional** data processing application **softwares are inadequate** to deal with them." - Wikipedia

When does data become "Big"?

The four "V's" of Big Data

http://www.ibmbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data.jpg

How do we process Big Data?

Main issues

- Where do we store the data?
- How do we process it?

Big Data greatly exceeds the size of the typical drives

Even if a big drive existed, it would be too slow (at least for now)

Scale up

Adding more processors and RAM, buying expensive and robust server

Pros

- Less power consumption than running multiple servers
- Cooling costs are less than scaling horizontally
- Generally less challenging to implement
- Less licensing costs
- Less networking equipment

Cons

- PRICE
- Greater risk of hardware failure causing bigger outages
- Generally severe vendor lock-in
- Not long-term: limited upgradeability in the future

Scale out

Adding more servers with less processors and RAM

Pros

- Much cheaper than scaling vertically
- New technologies simplify fault-tolerance and systems monitoring
- Easy to upgrade
- Usually cheaper
- Can literally scale infinitely

Cons

- More licensing fees
- Bigger footprint in the Data Center
- Higher utility cost (electricity and cooling)
- Possible need for more networking equipment (switches/routers)

Commodity hardware

You are not tied to expensive, proprietary offerings from a single vendor You can choose standardized, commonly available hardware from a large range of vendors to build your cluster

Commodity ≠ Low-end!

 Cheap components with high failure rate can be a false economy

The answer: cluster computing

100 hard disks? 2 mins to read 1TB

Cluster computing

Compute nodes are stored on racks

- 8–64 compute nodes on a rack
- There can be many racks of compute nodes
- The nodes on a single rack are connected by a network (typically gigabit Ethernet)
- Racks are connected by another level of network (or a switch)
 - The bandwidth of intra-rack communication is usually much greater than that of inter-rack communication

Cluster Computing Architecture

A computer cluster is a group of linked computers (nodes), working together closely so that in many respects they form a single computer

- Typically connected to each other through fast LAN
- Every node is a system on its own, capable of independent operations
 - Unlimited scalability, no vendor lock-in
- Number of nodes in the cluster >> Number of CPUs in a node

Distributed computing: an old idea

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

Risks?

Deadlock and starvation

Parallelization problems arise from:

- Communication between workers (e.g., to exchange state)
- Access to shared resources (e.g., data)

We need synchronization

But...

It is difficult to reason about parallelization

It is even more difficult to reason about concurrency

- At the scale of datacenters (even across datacenters)
- In the presence of failures
- In terms of multiple interacting services

Not to mention debugging...

The reality can be hard

- Lots of one-off solutions, custom code
- Write your own dedicated library, then program with it
- Burden on the programmer to explicitly manage everything

What is the solution?

Hide system-level details from the developers

- No more race conditions, lock contention, etc.
- No need to become hardcore techies

Separate the *what* from the *how*

- Developer specifies the computation that needs to be performed
- Execution framework ("runtime") handles the actual execution

The datacenter IS the computer!

Disambiguation of MapReduce

"MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key."

-- Dean J., Ghemawat S. (Google)

Hadoop MapReduce is an open-source implementation of the MapReduce programming model

Limitations of Map Reduce

Designed for batch processing

Not suitable for iterative algorithms or interactive data mining

Strict paradigm

- Everything has to fit into Map and Reduce
- Complex algorithms will take multiple jobs and passes on hard disk

New hardware capabilities are not exploited

Too much pressure on disk; RAM and multicore not adequately exploited

Too much complex

Limitations of Map Reduce

Spark

It is a fast and general-purpose execution engine

- In-memory data storage for very fast iterative queries
- Easy interactive data analysis
- Combines different processing models (machine learning, SQL, streaming, graph computation)
- Provides (not only) a MapReduce-like engine...
- ... but it's up to 100x faster than Hadoop MapReduce

Compatible with Hadoop's storage APIs

- Can run on top of a Hadoop cluster
- Can read/write to any database and any Hadoop-supported system, including HDFS, HBase, Parquet, etc.

What does Spark offer?

In-memory data caching

HDD is scanned once, then data is written to/read from RAM

Lazy computations

The job is optimized before its execution

Efficient pipelining

Writing to HDD is avoided as much as possible

Spark pillars

Two main abstractions of Spark

RDD – Resilient Distributed Dataset

- An RDD is a collection of data items
- It is split into partitions
- It is stored in memory on the worker nodes of the cluster

DAG – Direct Acyclic Graph

- A DAG is a sequence of computations performed on data
- Each node is an RDD
- Each edge is a transformation of one RDD into another

RDD

RDDs are immutable distributed collection of objects

- Resilient: automatically rebuild on failure
- Distributed: the objects belonging to a given collection are split into partitions and spread across the nodes
 - RDDs can contain any type of Python, Java, or Scala objects
 - Distribution allows for scalability and locality-aware scheduling
 - Partitioning allows to control parallel processing

Fundamental characteristics (mostly from *pure functional programming*)

- Immutable: once created, it can't be modified
- Lazily evaluated: optimization before execution
- Cacheable: can persist in memory, spill to disk if necessary
- Type inference: data types are not declared but inferred (≠ dynamic typing)

RDD operations

RDDs offer two types of operations: transformations and actions

Transformations construct a new RDD from a previous one

- E.g.: map, flatMap, reduceByKey, filtering, etc.
- https://spark.apache.org/docs/latest/programming-guide.html#transformations

Actions compute a result that is either returned to the driver program or saved to an external storage system (e.g., HDFS)

- E.g.: saveAsTextFile, count, collect, etc.
- https://spark.apache.org/docs/latest/programming-guide.html#actions

RDD operations

RDDs are **lazily evaluated**, i.e., they are computed when they are used in an action

Until no action is fired, the data to be processed is not even accessed

Example (in Python)

```
sc = new SparkContext
rddLines = sc.textFile("myFile.txt")
rddLines2 = rddLines.filter (lambda line: "some text" in line)
rddLines2.first()
Action
```

There is no need to compute and store everything

In the example, Spark simply scans the file until it finds the first matching line

DAG

Based on the user application and on the lineage graphs, Spark computes a logical execution plan in the form of a DAG

Which is later transformed into a physical execution plan

The DAG (Directed Acyclic Graph) is a sequence of computations performed on data

- Nodes are RDDs
- Edges are operations on RDDs
- The graph is Directed: transformations from a partition A to a partition B
- The graph is Acyclic: transformations cannot return an old partition

Application decomposition

Application

 Single instance of SparkContext that stores data processing logic and schedules series of jobs, sequentially or in parallel

Job

 Complete set of transformations on RDD that finishes with action or data saving, triggered by the driver application

Stage

Set of transformations that can be pipelined and executed by a single independent worker

Task

Basic unit of scheduling: executes the stage on a single data partition

Application decomposition

Word count in Scala textFile = sc.textFile("hdfs://...")

Word count in Scala

textFile = sc.textFile("hdfs://...")
counts = textFile
 .flatMap(line => line.split(" "))

Word count in Scala

```
textFile = sc.textFile("hdfs://...")
counts = textFile
    .flatMap(line => line.split(" "))
    .map(lambda word: (word, 1))
```


Word count in Scala

```
textFile = sc.textFile("hdfs://...")
counts = textFile
.flatMap(line => line.split(" "))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

textFile flatMap map reduce
ByKey
```

Word count in Scala

```
textFile = sc.textFile("hdfs://...")
counts = textFile
    .flatMap(line => line.split(" "))
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")
```


Conceptual representation

DataFrame and DataSet

RDDs are immutable distributed collection of objects

DataFrames and DataSets are immutable distributed collection of records organized into named columns (i.e., a table)

- Simply put, RDDs with a schema attached
- Support both relational and procedural processing (e.g., SQL, Scala)
- Support complex data types (struct, array, etc.) and user defined types
- Cached using columnar storage

Can be built from many different sources

DBMSs, files, other tools (e.g., Hive), RDDs

Type conformity is checked

At compile time for DataSets; at runtime for DataFrames

DataFrame and DataSet

Still lazily evaluated...

...but supports under-the-hood optimizations and code generation

- Catalyst optimizer creates optimized execution plans
 - IO optimizations such as skipping blocks in parquet files
 - Logic push-down of selection predicates
- JVM code generation for all supported languages
 - Even non-native JVM languages; e.g., Python

Spark structured

Why structure?

Cons

- Structure imposes some limits
 - RDDs enable any computation through user defined functions

Pros

- The most common computations are supported
- Language simplicity
- Opens the room to optimizations
 - Hard to optimize a user defined function

Catalyst

Logical and Physical Plan

Based on rules

• A rule is a function that can be applied on a portion of the logical plan

Implemented as Scala functions

```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```

Several types of rules

- Constant folding: resolve constant expressions at compile time
- Predicate pushdown: push selection predicates close to the sources
- Column pruning: project only the required column
- Join reordering: change the order of join operations

Applied recursively and iteratively until the plan reaches a *fixed point*

What determines the cost?

Catalyst only considers the size and the cardinality of tables

Other important factors

- Network throughput
- Disk throughput
- Allocation of resources
 - Number of Executors
 - Number of Cores per Executor
- Allocation of tasks
 - Data locality probability

Research work: defining a more accurate, probabilistic cost model

- Baldacci, L., & Golfarelli, M. (2018). A cost model for Spark SQL. IEEE Transactions on Knowledge and Data Engineering, 31(5), 819-832.
- Gallinucci, E., & Golfarelli, M. (2019). SparkTune: tuning Spark SQL through query cost modeling. EDBT 2019: 546-549.

Spark architecture

Spark uses a *master/slave architecture* with one central coordinator (*driver*) and many distributed workers (*executors*)

- The driver and each executor are independent Java processes
- Together they form a Spark application

The architecture is independent of the cluster manager that Spark runs on

Spark architecture

Executor: a process responsible for executing the received tasks

- Each spark application can have (and usually has) multiple executors, and each worker node can host many executors
- Typically runs for the entire duration of the application
- Stores (caches) RDD data in JVM heap
- Tasks are the smallest unit of work and are carried out by executors

Spark architecture

Driver Program (a.k.a. Spark Driver, or simply Driver)

- Each spark application can only have one driver (entry point of Spark Shell)
- Converts user program into tasks
 - Creates the SparkContext, i.e., the object that handles communications
 - Computes the logical DAG of operations and converts it into a physical execution plan
- Schedules tasks on executors
 - Has a complete view of the available executors and schedules tasks on them
 - Stores metadata about RDDs and their partitions
- Executor Launches a webUl tasks and data Task Task Driver resources request resources data Cluster Manager **SparkContext** assignment shuffling Executor tasks and data Task Task

In action!

Word count

rdd

```
.map(s => (s, 1))
.reduceByKey((a, b) => a + b)
.sortBy(x => x._2) tuples
.collect()
```


Foodmart

foodmartDataset

```
.groupBy("category")
```

- .sum("unit sales")
- .orderBy("sum(unit sales)")
- .show()

Spark

Suggested reading and resources

