Finding Shortest-Path in Weighted Graphs

Shusen Wang

Single-Source Shortest Path in Weighted Graph

Single-Source Shortest Path in Weighted Graph

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	0

Dijkstra's Algorithm

Dijkstra's Algorithm

Edsger W. Dijkstra 1930 – 2002 Won Turing Award in 1972

- Dijkstra's algorithm is for solving the single-source shortest path problem.
- Published in 1959 [1].

Reference

1. E. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*. 1: 269–271, 1959.

 v_3 is the source.

vertex dist

vertex dist

Initial State

vertex	aist	patn
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Initial State

vertex dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Initial State

•	
vertex	dist
VCILCA	aist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Iteration 1

	ــ : ا ــ
vertex	dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Iteration 1

vertex dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	\bigcirc	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	4	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex dist

	• -
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	\bigcirc	0
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	0
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

Iteration 2

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

Iteration 2

•	
vertex	dist
VCILCA	aist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vortov	dist
vertex	uist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 4 + 2 = 6.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 4 + 2 = 6.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	$\bigcirc \infty$	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 4 + 2 = 6.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist
VCILCA	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

	1
vertex	dist
VCILCA	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 4 + 1 = 5.$$

v_6	5
v_2	6
vortov	dict

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 4 + 1 = 5.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 4 + 1 = 5.$$

v_6	5
v_2	6

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

v_6	5
v_2	6

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

v_4	5
v_2	6

vertex	dist
VCILCA	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 2 = 7.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 2 = 7.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

$$d_{\text{new}} = 5 + 2 = 7.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 2 = 7.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 2 = 7.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist
VCILCA	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 8 = 13.$$

v_2	6
v_5	7
	ما:مـــ

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 8 = 13.$$

v_2	6
v_5	7
vertex	dist

	1
vertex	dist
VCILCA	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

v_2	6
v_5	7
	_

verte	v	d١	ist
VELLE	X I	u	151

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 4 = 9.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 4 = 9.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

$$d_{\text{new}} = 5 + 4 = 9.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

	1
vertex	dist
VCILCA	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex dist

Iteration 5(A)

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex dist

Iteration 5(A)

$$d_{\text{new}} = 6 + 3 = 9.$$

v_5	7
v_7	9
	al: a.k

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

Iteration 5(A)

$$d_{\text{new}} = 6 + 3 = 9.$$

Priority Queue: v_5 7 v_7 9

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex dist

vertex	dist
vertex	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist
V C I CCX	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

v_5	7
v_7	9
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

v_7	9
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex

$$d_{\text{new}} = 7 + 1 = 8.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

$$d_{\text{new}} = 7 + 1 = 8.$$

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_4

v_7	9
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

v_7	9
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

Iteration 7

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

Iteration 7

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

$v_1 \xrightarrow{2} v_2$ Priority Queue:

$$d_{\text{new}} = 8 + 1 = 9.$$

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

$$d_{\text{new}} = 8 + 1 = 9.$$

vertex dist

vertex	dist	path	
v_1	4	v_3	
v_2	6	v_1	
v_3	0	0	
v_4	5	v_1	
v_5	7	v_4	
v_6	5	v_3	
v_7	8	v_5	

End of Procedure

vertex	dist	path		
v_1	4	v_3		
v_2	6	v_1		
v_3	0	0		
v_4	5	v_1		
v_5	7	v_4		
v_6	5	v_3		
v_7	8	v_5		

- 1. Initialize an empty priority queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set dist $[v] \leftarrow \infty$.
 - b. Set path[v] $\leftarrow 0$.

vertex	dist	path
v_1	∞	
v_2	∞	
•	•	
v_n	∞	

- 1. Initialize an empty priority queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set dist $[v] \leftarrow \infty$.
 - b. Set path[v] $\leftarrow 0$.

vertex	dist	path
v_1	∞	0
v_2	∞	0
•	•	•
v_n	∞	0

- 1. Initialize an empty priority queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set dist $[v] \leftarrow \infty$.
 - b. Set path $[v] \leftarrow 0$.
- \longrightarrow 3. Set dist[s] \leftarrow 0.
- \longrightarrow 4. enqueue(s, 0).

- 5. While the priority queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{u \mid e_{vu} \in \mathcal{E}\}.$

5. While the priority queue is not empty:

```
a. v \leftarrow \text{dequeue}().
```

b.
$$S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}$$
.

c. For each $u \in S$:

i.
$$d_{\text{new}} \leftarrow \text{dist}[v] + e_{vu}$$
.

- ii. If $d_{\text{new}} < \text{dist}[u]$:
 - Set $dist[u] \leftarrow d_{new}$ and $path[u] \leftarrow v$.
 - enqueue(u, d_{new}).

- 5. While the priority queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}$.
 - c. For each $u \in S$:
 - i. $d_{\text{new}} \leftarrow \text{dist}[v] + e_{vu}$.
 - ii. If $d_{\text{new}} < \text{dist}[u]$:
 - Set $\operatorname{dist}[u] \leftarrow \operatorname{d}_{\operatorname{new}}$ and $\operatorname{path}[u] \leftarrow v$.
 - enqueue(u, d_{new}).

5. While the priority queue is not empty:

```
a. v \leftarrow \text{dequeue}().
```

b.
$$S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}$$
.

c. For each $u \in S$:

i.
$$d_{\text{new}} \leftarrow \text{dist}[v] + e_{vu}$$
.

- ii. If $d_{new} < dist[u]$:
 - Set $\operatorname{dist}[u] \leftarrow \operatorname{d}_{\operatorname{new}}$ and $\operatorname{path}[u] \leftarrow v$.
 - enqueue(u, d_{new}).

- 5. While the priority queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}$.
 - c. For each $u \in S$:
 - i. $d_{\text{new}} \leftarrow \text{dist}[v] + e_{vu}$.
 - ii. If $d_{\text{new}} < \text{dist}[u]$:
 - Set $\operatorname{dist}[u] \leftarrow \operatorname{d}_{\operatorname{new}}$ and $\operatorname{path}[u] \leftarrow v$.
 - enqueue(u, d_{new}).

Outputs: dist[v] and path[v] for all $v \in V$.

Time Complexity

Time Complexity

- Assume all the weights are nonnegative; otherwise, Dijkstra's algorithm does not work.
- Totally $O(|\mathcal{V}| + |\mathcal{E}|)$ enqueue and dequeue operations.
- Enqueue and dequeue operations both have $O(\log |\mathcal{V}|)$ time complexity.
- Thus, the overall time complexity is $O((|\mathcal{V}| + |\mathcal{E}|) \cdot \log |\mathcal{V}|)$.

Thank You!

Queue:

 v_1

Queue:

 v_1

 v_2

Directed Acyclic Graph (DAG)

Definition of DAG

- DAG is a directed graph with no directed cycles.
- There is no way to start at any vertex \boldsymbol{v} and follow a path that eventually loops back to \boldsymbol{v} again.

Directed Acyclic Graph (DAG)

This is not a DAG

Directed Acyclic Graph (DAG)

- If the graph is a DAG, we can use queue instead of priority queue.
 - Topological sorting is required before running Dijkstra's algorithm.
 - Topological sorting has $O(|\mathcal{V}| + |\mathcal{E}|)$ time complexity.
- Enqueue and dequeue for standard queue cost only O(1) time.
- The time complexity is $O(|\mathcal{V}| + |\mathcal{E}|)$. (The same as unweighted graph.)