中山大学本科生期中考试

考试科目:《计算机组成原理》

学年学期:	2023 学年第一学期	姓	名:	
学 院/系:	计算机学院	学		
考试方式:	闭卷	年级专	专业:	
考试时长:	120 分钟	班		
警示《哈	中山大学授予学士学位工作细则》	第八条:	长:"考试作弊者,不授予学士等	学
D	J下为试题区域,总分 100 分,考生	请在答点	· · · · · · · · · · · · · · · · · · ·	
一、填空				
1. 10101;	2 除以 112, 商	1010 <u></u>	_余数是 <u>1</u> .	
	实现有符号数除法运算,要求余数			生
	直得到不同结果。			
3. 在计算	机浮点数运算中 x + (y+ z) =(x + y) +	+ z 等式_	戊(成立,不成立)。	
4. 运算器	的两个主要功能是: 算术运算		,逻辑运算。	
5. 两个二	进制表示的无符号数进行乘法运算	拿10011 (1010 X 01110111,用移位加("sl	hift
	d") 和布斯算法(Booth's Algorithm),		•	
	器,标准移位加乘法器需要进行_			
	布斯算法,实际进行加法运算_2			
7,17,147,14			, , , , , , , , , , , , , , , , , , ,	
二、数据和	表示 (20 points)			
1.用6位二	进制补码算法进行两个数的加法	<u> </u>	+ (-10). 填下表空白处: (i) 每	个数
的二进制	补码表示 (ii) 它们的和,以及	(iii) 结县	景转化为10进制.	

Decima	Action	6-bit Binary
1		
-9	Convert to binary	
-10	Convert to binary	
	Sum in binary	
	Convert to decimal	

Decima	Actio	6-bit Binary
-9	Convert to binary	110111

-10	Convert to binary	110110
	Sum in binary	101101
-19	Convert to decimal	

- 2. 如果内存容量是 3 TiB ,以字节编址,需要多少位地址? **3 Points** T-2^40, 3 需要 2 位,一共需要 42 位
- 3. 计算机可以表示的 4 位二进制数的最小有符号数整数是多少? 3 Points -8
- 4.8 位二进制数 b10001000 如果表示的是无符号数,它所表示的 10 进制数是 多少?如果表示的是有符号数,它所表示的数是多少? 6 Points

136

-120

5. 写一个数(或范围),与 8 位计算机表示的有符号数 0b00010101 相加造成溢出. 3 Points

大于96的数

三. 浮点数 (20 Points)

1.把下面的计算机单精度浮点表示的数转化成10进制它的真值. (10 Points)

)

Value of number: $-1.101_{two} \times 2^{(135-127)} = -1.625 \times 2^{8} = -416$

2. IEEE 754 standard单精度浮点数特殊数的表示如下表.

Special Value	Exponent	Significand
+/- 0	0000 0000	0
Denormalized number	0000 0000	Nonzero
NaN	1111 1111	Nonzero
+/- infinity	1111 1111	0

1. 能使用单精度浮点数存储的最大正数是多少? 5 Points

 $0x7F7FFFFF = (2 - 2^{-23}) \times 2^{127}$

2. 能使用单精度浮点数存储的最小正数,规格化表示和非规格化表示? **5 Points** 1.0000000...0*2^-126 0x00000001 = 2^-23 x 2^-126

 Ξ 、.CPU Performance (15 Points)

1) 测量处理器性能,数据传送、立即数、分支指令需要更多的周期数(lw, addi, lui, sw, beq, etc.) ,如下表所示:

Instruction Type	Clock Cycles
Data Transfer / Immediate / Branch	2
All Other	1

当运行benchmark program P, 它执行10 Million 条指令显示这些指令30% 是表格中第一种传送类等的指令,70% 是其它类型指令.

(a) 运行P 程序需要多少时钟周期数? (5 Points)

Clock Cycles = 0.7×10^6 instr.X 1 cycle/instr+ $0.3 * 10^6$ instr.X 2 cycle/instr= **13 X 10^6 clock cycles**

(b) 时钟频率500MHz, 程序P执行时间多少? (5 Points)

Exec. Time = 13×10^6 cycles / 500×10^6 cycles/sec= 0.026 sec

2). 假设编译器有两个选择,5条或6条指令,如下表所示:

Class	Α	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

每个选择的 CPI 是多少? 哪个更好? (Same computer) (5 Points)

Sequence 1: IC = 5

- Clock Cycles= $2 \times 1 + 1 \times 2 + 2 \times 3 = 10$
- Avg. CPI = 10/5 = 2.0

Sequence 2: IC = 6

- Clock Cycles= $4 \times 1 + 1 \times 2 + 1 \times 3 = 9$
- Avg. CPI = 9/6 = 1.5

Sequence 2 的周期数较小,同一计算机,时钟周期相同,它所化时间较少,故更好.

四. MIPS 指令 (20 Points)

1. 假设数组 $int* arr = \{1,2,3,4,5,6,0\}$.让数组首地址 arr 是 4 的倍数存在寄存器 \$s0 里.下列程序做什么?(5 pts)

a) lw \$t0, 12(\$s0)	d) addiu \$t0, \$0, 12
add \$t1, \$t0, \$s0	sw \$t0, 6(\$s0) alignment error;
sw \$t0, 4(\$t1) arr[2] <- 4;	e) addiu \$t0, \$0, 8
b) addiu \$s1, \$s0, 27	sw \$t0, -4(\$s0) out of bounds;
Ih \$t0, -3(\$s1) \$t0 <- 0;	f) addiu \$s1, \$s0, 10

c) addiu \$s1, \$s0, 24 addiu \$t0, \$0, 6
Ih \$t0\$, -3(\$s1) alignment error; sw \$t0, 2(\$s1) arr[3] <- 6;

2. 下列汇编程序读无符号32位数从数组,计算结果放到 \$v0 返回. 这个程序至少包含一条伪指令,它可能转化成多条真正指令.

main: la \$t0, 0x40000 # t0 = base address of array

lw \$v0, 0(\$t0) # initialize v0

loop: lw \$t1,0(\$t0)

beq \$t1, \$zero, done slt \$t2, \$t1, \$v0 beq \$t2, \$zero, endl

add \$v0, \$t1, \$zero

endl: addi \$t0, \$t0, 4

j loop

done: # end of program

数组的首地址是 . 下图是数组(及它附近)在内存存储内容:

Memory Address (hexadecimal)

这个程序在汇编后将占多少内存空间,以字为单位(32-bit memory words)? (Be careful!)(5 分)

地址	数据
0x0003FFFC	3
0x00040000	10
0x00040004	4
0x00040008	-1
0x0004000C	0

2 instructions for la + 8 instructions = 10 words

1. 这个程序 LOOP 执行多少次? (5 分)

The program enters the loop 4 times, but exits the last iteration immediately after the "lw" at loop:

2. 填空 每次循环后\$t0-t2 和 \$v0 的值,以十进制或十六进制表示.(10分)

loop1	\$t0=	\$t2=
	\$t1=	\$v0=
loop2	\$t0=	\$t2=
	\$t1=	\$v0=

loop3	\$t0=	\$t2=
	\$t1=	\$v0=
loop4	\$t0=	\$t2=
	\$t1=	\$v0=

五、单周期 CPU(20 points total)

假设数据通路上各个部件的延迟时间如下:

l-Mem	Add	Mux	ALU	Regs	D-Mem	Sign-Extend	Shift-Left-2
200ps	60ps	20ps	80ps	80ps	250ps	15ps	10ps

- 1. 如果下图数据通路只实现一条无条件相对跳转指令: unconditional PC-relative branch. 那么最小的时钟周期可以是多少?(*5 points*)
- 2. .如果上面的指令改成有条件跳转指令 PC-relative branches.,那么最小的时钟周期可以是多少? (*5 points*)
- 3. 如果下面数据通路支持 LW 指令,那么时钟周期又是多少? (5 points)

Answer:

1) 200 ps + 15 ps + 10 ps + 60 ps + 20 ps = 305 ps

2) Conditional branches they have a longlatency path that goes through I-memory, Registers, Mux, and ALU to compute the PCSrc condition. Mux. The critical path is the longer of the two, and the path through PCSrc is longer for these latencies:

- 3) 200ps +20ps+ 80 ps + 250ps + 80 ps + 20 ps = 650 ps
- 4.单周期非流水线Mips 数据通路如下图所示,给出每条指令的控制信号取值 (10points total)
- {0, 1, "don't care", "X" signifies "don't care."}.

ALUFN<2:0>	ALU Operation
000	Add
001	Subtract
100	And
101	0r
010	Subtract (set-on-

less-than)

	WDSEL	WERF	SEXT	ASEL	BSEL	ALUFN	Wr	WASEL	PCSEL
add rd, rs, rt	1	1	<u>x</u>	0	0	000	0	0	0
ori rt, rs,			0					1	0
imm									
beq rs, rt,	х,				0		0		
lable									
lw rt,					1			1	0
imm(rs)									
sw rt,	х	x		0	1				
imm(rs)									
Slt rd,rs,rt					0			0	0

	WDSEL	WERF	SEXT	ASEL	BSEL	ALUFN	Wr	WASEL	PCSEL
add rd, rs, rt	1	1	<u>x</u>	0	0	000	0	0	0
ori rt, rs,	1	1	0	0	1	101	0	1	0
imm									

■中山大学本科生期末考试试卷

beq rs, rt,	х,	х,	1	0	0	001	0	х	1
lable									
lw rt,	2	1	1	0	1	000	0	1	0
imm(rs)									
sw rt,	х	х,	1	0	1	000	1	х	0
imm(rs)									
Slt rd,rs,rt	1	1	<u>X</u>	0	0	010	0	0	0

下表给出不同指令的在程序中占比

Table 1: Instruction mix

ALU	Load	Store	Branch	Jump
25%	22%	8%	25%	20%

- 1. 使用数据存储器的指令占比多少?
- 2. 如果是多周期CPU,它的平均CPI是多少?

Answer:

Only Loadand Storeuse data memory.
 30%

2.0.25*4+0.22*5+0.08*4+(**0.25+0.2**)*3=4.77