

Лекция 7 Классификация текстов и Naive Bayes

Николай Анохин

3 ноября 2015 г.

План занятия

Обработка текстов

Naive Bayes

Обработка текстов

Data Mining vs Text Mining

Data Mining: извлечение неочевидной информации

Text Mining: извлечение *очевидной* информации

Трудности

- ▶ Огромные объемы
- ▶ Отстутсвие структуры

Задачи Text Mining

- Суммаризация текста агрегация новостей
- ► Классификация и кластеризация документов категоризация, антиспам, sentiment analysis, opinion mining
- Извлечение метаданных определение языка, автора, тегирование
- ▶ Выделение сущностей места, люди, компании, почтовые адреса

Этапы (простой) обработки текста

Декодирование

Def.

перевод последовательности байт в последовательность символов

- ► Pаспаковка plain/.zip/.gz/...
- ► Кодировка ASCII/utf-8/Windows-1251/...
- Формат csv/xml/json/doc...

Кроме того: что такое документ?

Разбиение на токены

Def.

разбиение последовательности символов на части (токены), возможно, исключая из рассмотрения некоторые символы

Наивный подход: разделить строку пробелами и выкинуть знаки препинания

Трисия любила **Нью-Йорк**, поскольку любовь к Нью-Йорку могла положительно повлиять на ее карьеру.

Проблемы:

- n.anokhin@corp.mail.ru, 127.0.0.1
- ► C++, C#
- ► York University vs New York University
- ▶ Зависимость от языка ("Lebensversicherungsgesellschaftsangestellter", "l'amour")

Альтернатива: п-граммы

Разбиение на токены

```
>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer = RegexpTokenizer('\w+|[^\w\s]+')
>>> s = u'Трисия любила Нью-Йорк, поскольку любовь \
... к Нью-Йорку могла положительно повлиять на ее карьеру.
>>> for t in tokenizer.tokenize(s)[:7]: print t + " ::",
Трисия :: любила :: Нью :: - :: Йорк :: , :: поскольку ::
```

Стоп-слова

Def.

Наиболее частые слова в языке, не содержащие никакой информации о содержании текста

```
>>> from nltk.corpus import stopwords
>>> for sw in stopwords.words('russian')[1:20]: print sw,
...
в во не что он на я с со как а то все она так его но да ты
```

Проблема: "To be or not to be"

Нормализация

Def.

Приведение токенов к единому виду для того, чтобы избавиться от поверхностной разницы в написании

Подходы

▶ сформулировать набор правил, по которым преобразуется токен

$$extit{Hью-Йорк} o extit{нью-йорк} o extit{нью-йорк} o extit{нью-йорк}$$

▶ явно хранить связи между токенами (WordNet – Princeton)

машина ightarrow автомобиль, Windows ightarrow window

Нормализация

```
>>> s = u'Нью-Йорк'
>>> s1 = s.lower()
>>> print s1
нью-йорк
>>> s2 = re.sub(ur"\W", "", s1, flags=re.U)
>>> print s2
ньюйорк
>>> s3 = re.sub(ur"\"\", u"\"\", s2, flags=re.U)
>>> print s3
ньюиорк
```

Стемминг и Лемматизация

Def.

Приведение грамматических форм слова и однокоренных слов к единой основе (lemma):

- ▶ Stemming с помощью простых эвристических правил
 - Porter (Cambridge 1980)
 5 этапов, на каждом применяется набор правил, таких как

$$sses \rightarrow ss$$
 (caresses \rightarrow caress)
 $ies \rightarrow i$ (ponies \rightarrow poni)

- ► Lovins (1968)
- ▶ Paice (1990)
- ▶ еще 100500
- ▶ Lemmatization с использованием словарей и морфологического анализа

Стемминг

```
>>> from nltk.stem.snowball import PorterStemmer
>>> s = PorterStemmer()
>>> print s.stem('tokenization'); print s.stem('stemming')
stem
>>> from nltk.stem.snowball import RussianStemmer
>>> r = RussianStemmer()
>>> print r.stem(u'Авиация'); print r.stem(u'национальный')
авиац
национальн
```

Наблюдение

для сложных языков лучше подходит лемматизация

Heap's law

$$M=kT^{eta},\; M$$
 — размер словаря, $\;T\;$ — количество слов в корпусе $30\leq k\leq 100,\; bpprox 0.5$

Представление документов

Boolean Model. Присутствие или отсутствие слова в документе

Bag of Words. Порядок токенов не важен

Погода была ужасная, принцесса была прекрасная. Или все было наоборот?

Координаты

- Мультиномиальные: количество токенов в документе
- Числовые: взвешенное количество токенов в документе

Zipf's law

 t_1, \dots, t_N — токены, отранжированные по убыванию частоты f_1, \dots, f_N — соответствующие частоты

Закон Ципфа

$$f_i=\frac{c}{i^k}$$

Что еще? Посещаемость сайтов, количество друзей, население городов...

Задача

Дана коллекция, содержащая 10^6 (не уникальных) токенов. Предполагая, что частоты слов распределены по закону

$$f_i=\frac{c}{(i+10)^2},$$

оцените

- ▶ количество вхождений наиболее часто встречающегося слова
- количество слов, котоые встречаются минимум дважды

Подсказка: $\sum_{i=11}^{\infty} \frac{1}{i^2} pprox 0.095$

BoW & TF-IDF

Количество вхождений слова t в документе d

$$TF_{t,d} = term-frequency(t,d)$$

Количество документов из N возможных, где встречается t

$$DF_t = document-fequency(t)$$

$$IDF_t = inverse_document_frequency(t) = log \frac{N}{DF_t}$$

TF-IDF

$$TF-IDF_{t,d} = TF_{t,d} \times IDF_t$$

Naive Bayes

Байесовский классификатор

Дано $\mathbf{x} \in X$ — описание документа d из коллекции D $C_k \in C, \ k=1,\ldots,K$ — целевая переменная

Теорема Байеса

$$P(C_k \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_k)p(C_k)}{p(\mathbf{x})} \propto p(\mathbf{x} \mid C_k)p(C_k)$$

Принцип Maximum A-Posteriori

$$C_{MAP} = \arg\max_{k} p(C_k|\mathbf{x})$$

Naive Bayes

 x_j – слово на j-м месте в документе ${f x}$, $w^i \in V$ – слово из словаря V

Предположения

1. conditional independence

$$p(x_i = w^s, x_j = w^r | C_k) = p(x_i = w^s | C_k) p(x_j = w^r | C_k)$$

2. positional independence

$$P(x_i = w^s | C_k) = P(x_j = w^s | C_k) = P(x = w^s | C_k)$$

Получаем

$$p(\mathbf{x}|C_k) = p(x_1 = w^{s_1}, \dots, x_{|\mathbf{x}|} = w^{s_{|\mathbf{x}|}}|C_k) = \prod_{i=1}^{|\mathbf{x}|} p(x = w^{s_i}|C_k)$$

Почему NB хорошо работает?

Корректная оценка дает правильное предсказание, но правильное предсказание *не требует* корректной оценки

Варианты NB

MAP

$$C_{MAP} = \arg\max_{k} \prod_{i=1}^{|\mathbf{x}|} p(x = w^{s_i} | C_k) p(C_k) =$$

$$= \arg\max_{k} \left[\log p(C_k) + \sum_{i=1}^{|\mathbf{x}|} \log p(x = w^{s_i} | C_k) \right]$$

Априорные вероятности

$$p(C_k) = N_{C_k}/N$$

Likelihood $p(x = w^{s_i}|C_k)$

- ightharpoonup BernoulliNB $p(x=w^{s_i}|C_k)=D_{w^{s_i},C_k}/D_{C_k}$, D кол-во документов
- ▶ MultinomialNB $p(x = w^{s_i}|C_k) = T_{w^{s_i},C_k}/T_{C_k}$, T кол-во токенов
- ▶ GaussianNB $p(x=w^{s_i}|C_k)=\mathcal{N}(\mu_k,\sigma_k^2)$, параметры из MLE

Обучение NB

9

```
function nb_train(D,C):
       V = dictionary of tokens
3
       N = number of documents
4
       for Ck in C: # iterate over all classes
           N Ck = number of documents in class Ck
6
           p(Ck) = N_Ck / N # Class prior
           D Ck = Documents in class Ck
           for w i in V:
                # multinomial, bernoulli, gaussian
10
                p(w_i|Ck) = count_likelihood(...)
11
       return V, p(Ck), p(w_i|Ck)
```

Алгоритмическая сложность: $O(|D|\langle |\mathbf{x}| \rangle + |C||V|)$

Применение MultinomialNB

```
function nb_apply(d, C, V, p(Ck), p(w_i|Ck)):
    x = tokenize(d) # somehow

for Ck in C: # iterate over all classes
    score(Ck|x) = log p(Ck) # use class prior

# use likelihoods

for i in 1..|x|:
    score(Ck|x) += log p(x_i|Ck)

return arg max score(Ck|x)
```

Алгоритмическая сложность: $O(|C||\mathbf{x}|)$

Задача

d	Текст	Класс
1	котики такие мокрые	МИМИМИ
2	пушистые котики няшки	МИМИМИ
3	морские котики	не мимими
4	мокрые морские свинки	не мимими
5	котики мокрые	???

C помощью алгоритма MultinomialNB вычислить p(мимими $|d_5)$

Сглаживание

Проблема: p(свинки|мимими) = 0

Решение:

$$p(x = w_{s_i}|C_k) = \frac{T_{w_{s_i},C_k} + \alpha}{T_{C_k} + \alpha|V|}$$

если $lpha \geq 1$ – сглаживание Лапласа, если $0 \leq lpha \leq 1$ – Лидстоуна

Упражнение

С учетом сглаживания вычислить

p(пушистые|не мимими), p(пушистые|мимими).

Генеративная модель

Байесовские сети

Итоги

- + Генеративная модель
- + (Удивительно) неплохо работает
- + Стабилен при смещении выборки (aka concept drift)
- + Оптимальный по производительности
- Наивные предположения
- Требует отбора признаков

Вопросы

