

Primer exámen Opcional - Matemáticas discretas II Duración 3 horas

Carlos Andres Delgado S, Msc *

12 de Julio de 2019

Importante: Debe explicar el procedimiento realizado en cada uno de los puntos, no se considera válido únicamente mostrar la respuesta.

- 1. [20 puntos] De las cadenas hexadecimales (0 F) de tamaño 20 indique:
 - ¿Cuantas exactamente tienen cinco dígitos F?
 - ¿Cuantas tienen al menos cuatro dígitos 4?
 - ¿Cuantas sólo tienen dígitos pares?. **Pista**: Los pares son 0,2,4,6,8,A,C,E.
- 2. [10 puntos] Un colegio desea conocer cuantas calificaciones puede impartir, para garantizar que al menos tres estudiantes de un grupo de 60 saquen la misma nota.
- 3. [20 puntos] Indique el número de cadenas de longitud de 8,9 y 10 que se pueden formar con las letras de:

CUCARACHON

Muestre su solución claramente.

4. [20 puntos] Resuelva la R.R $T(n) = 2T(n-1) - T(n-2) + n + 3 + 3 \cdot 2^n, T(0) = 4, T(1) = 16$

- 5. [20 puntos] Resuelva la R.R $T(n) = 4T(\frac{n}{2}) 4T(\frac{n}{4}) + 5n 2$ y explique si su solución es $O(n\log(n))$
- 6. [10 puntos] Resuelva la R.R $T(n) = 4T(\frac{n}{2}) + 2n^2$ con el método del maestro.

Ayudas

Conceptos básicos

Ecuación cuadrática de $ax^2 + bx + c$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Principio de Palomar

$$\left\lceil \frac{N}{k} \right\rceil$$

Tenemos N palomas para k nidos.

Combinatoria y permutación

Permutación:

$$P(n,r) = \frac{n!}{(n-r)!} \tag{2}$$

Combinatoria:

$$C(n,r) = \frac{n!}{r!(n-r)!} \tag{3}$$

^{*}carlos.andres.delgado@correounivalle.edu.co

Permutación con objetos indistinguibles:

$$P_n^{a,b,c} = \frac{n!}{a!b!c!} \tag{4}$$

Combinatoria con repetición:

$$C(n+r-1,r) (5)$$

Forma solución particular

F(n)	$a_n^{(p)}$
C_1	A
$\mid n \mid$	$A_1n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
$n^t, t \in Z^+$	$A_t n^t + A_{t-1} n^{t-1} + \ldots + A_1 n + A_0$
$r^n, r \in R$	Ar^n
$\sin(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$\cos(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$n^t r^n, t \in Z^+, r \in R$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \ldots + A_{1}n + A_{0})$
$r^n \sin(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$
$r^n \cos(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$

Cuadro 1: Forma de la solución particular dado f(n)

Método del maestro

$$T(n) = aT(n/b) + cn^d$$

Siempre que $n=b^k$, donde k es un entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números reales tales que c>0 y $d\geq 0$, Entonces,

$$T(n) \quad es \left\{ \begin{array}{ll} O(n^d) & \text{si } a < b^d \\ O(n^d \log n) & \text{si } a = b^d \\ O(n^{\log_b a}) & \text{si } a > b^d \end{array} \right\}$$