

Towards Zero Change Incidents

Intuit's Strategy for Implementing Al-Driven Progressive Delivery

Avik Basu, Staff Data Scientist Saravanan Balasubramanian, Senior Staff Software Engineer

Technology @ Intuit

Intuit is leading the way in building an Al-native development platform using cloud native open source technology. We're committed to building tools that scale and giving back to the open source community.

97M

customers

(22)

107B

tax refunds

\$2T+

invoices managed

18M

workers paid via QB payroll

88B

requests during peak season

Al-native development platform

Al-powered
App Experiences

Al-assisted development: coding, testing, debugging

Al-powered app centric runtime

Smart Operations using AlOps

į

810M

Al-driven customer interactions last year

8x

Developer velocity increase in past four years

65B

Machine learning predictions per day

40M+

AlOps inferences/day

We believe in open source and open collaboration

Recipient of the End User Award in 2019 & 2022

Created, open-sourced, used, and maintained by Intuit

bit.ly/intuit-oss

What is Progressive Delivery?

Progressive Delivery

- Gradual release of new version
- Reduces the risk of bugs or failures
- Quick rollbacks
- e.g. Blue Green, Canary, Feature Flags
- Argo Rollouts
 - Progressive delivery for Kubernetes

Why is there a need for AIOps based Progressive Delivery?

Change-Induced Incidents

- 1/3rd of P0/P1 incidents at Intuit were caused by changes
- Changes can be
 - New features
 - Bug fixes
 - Simple dependency updates
- Can be avoided/reduction of impact if detected & resolved early

Static Thresholding based rollbacks

- Set a hard threshold for every metric, e.g.
 - 4% error rate
 - 400 ms of latency
- If any of the metric templates fail, then rollback

Argo Rollout Example

```
apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: success-rate
spec:
  args:
  - name: service-name
  - name: prometheus-port
    value: 9090
  metrics:
  - name: success-rate
    successCondition: result[0] >= 0.95
    provider:
      prometheus:
        address: "http://prometheus.example.com:{{args.prometheus-port}}"
        query: |
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.ser
          )) /
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.se
```


Drawbacks of Static Thresholding

- Not all anomalies are Global
- Many time series metrics are seasonal
 - Daily and/or weekly
 - Contextual anomalies
- Multiple metrics collectively determine system health
 - Collective anomalies
 - Different weightage of each metric
- Every service is unique
 - Different thresholds
 - Different metrics that makes sense
 - Non operational metrics

AlOps journey at Intuit

2022

Univariate anomaly detection on error rate

2023

Introduced static thresholding based ensemble score

2024

Multivariate anomaly detection

Multivariate Anomaly Detection

Machine Learning Requirements

- Completely unsupervised
- Able to handle multiple features
- Understand the underlying structure of the timeseries
- Fairly quick to train
- Need not more than 8 days worth of data for training
- Interpretable anomaly scores
- Auto Model Life Cycle management

Engineering Requirements

- Stream data processing system
- Support custom sources and sinks
- Sliding window aggregation support
- Lightweight pipeline
- Easy to deploy to multiple clusters
- Right tool for progressive delivery

Concept

Multivariate Metrics

During Progressive Delivery

Input Data Processing

- Assume a window size of 3
- Assume 2 multivariate metrics to be processed
- Stable and Canary come in different payloads

-X(t-w, .., t)-

Sliding window

reducer

Normalize Data

Preprocess

· Smoothen spikes

- Raw output from the model
- Same model does predictions for the stable and canary payloads

- Threshold the data for classification
- Normalize the score output
- Scores for individual metrics
- Single scalar value score for each window

Model Details

- CNN, RNN based autoencoder networks
- Quick to train even without GPUs
- Robust to anomalies in the training data
- Feature/Metric weighting capability
- Interpretable anomaly scores
 - Unified
 - Per Metric

Output example

```
"app": "some-service",
"uuid": "c19d0bb770b2469eb1d8bbfe05f311a4-s",
"role": "stable",
"start_ts": 1729194630,
"end_ts": 1729194690,
"feature_scores": {
    "latency": 4.36, // 40%
    "cpu": 1.53, // 10%
    "error_rate": 0.0, // 30%
    "memory": 1.23 // 20%
"unified_score": 2.14, // weighted_average(ML_scores)
```


How Intuit
Implemented
Al-driven Progressive
Delivery?

Architecture

numaflow

K8s native, serverless platform for running scalable and reliable event processing

K8s native event processing

K8s native lightweight event processing with fully featured stream processing semantics

Versatile and can seamlessly operate on the edge, on-prem or in the cloud

Language agnostic framework

SDKs in Java, Python, Golang, Rust.

In-built source/sink connectors. Easy to write sources, functions and sinks

Scalable and Cost efficient

Automatically scales from 0 to X, handling backpressure, while being lightweight and cost-efficient.

Capable of running on edge with a low resource footprint

Demo

INTUIT

Thank You

Numalogic Team

- Avik Basu
- Saravanan Balasubramanian
- Kushal Batra
- Nandita Koppisetty

Stay in the loop

INTUIT

Intuit Open Source

Don't miss on exciting OSS events, activities & news

Scan or visit bit.ly/intuit-oss

Visit our Booth

Get some exciting OSS swag - while supplies last

Let's keep the conversation going

Check out

Numalogic

https://github.com/numaproj/numalogic