4 Коммуникационная сложность

Задача 4.1. Приведите пример, когда $L(f) > \chi(f)$.

Задача 4.2. Для $n=2^k$ покажите, что $C(KW_{\oplus_n}) \leq 2k$.

Задача 4.3. Для $n = 2^k$ покажите, что $C(KW_{\vee_n}) = k$.

Задача 4.4. У Алисы имеется n-битная строка x, а у Боба n-битная строка y. Известно, что y получен из x инвертированием одного бита.

- а) Придумайте детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x.
- b) Придумайте однораундовый детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x. (В однораундовом протоколе Алиса посылает некоторое сообщение Бобу, после чего Боб вычисляет результат).

Задача 4.5. Пусть дан граф G без петель. Алиса и Боб получают две вершины данного графа x,y и хотят узнать существует ли ребро (x,y). Докажите, что детерминированная сложность данной задачи не менее $\log \chi(G)$, где $\chi(G)$ — хроматическое число графа G. Подсказка: попробуйте предъявить хорошую раскраску, если есть короткий коммуникационный протокол.

Задача 4.6. Докажите, что $C(\operatorname{CIS}_G) = \mathcal{O}(\log^2 n)$. Где x интерпретируется как характеристическая функция некоторой клики в графе G, а y — как характеристическая функция некоторого независимого множества в графе G. $\operatorname{CIS}_G(x,y) = 1$, если клика и независимое множество имеют общую вершину, обе стороны знают граф G.

Задача 4.7. Постройте детерминированный коммуникационный протокол, который вычисляет функцию GT, передавая в среднем константу битов. Функция $\mathrm{GT}(x,y)$ определена на парах x,y целых чисел в интервале $\{0,\ldots,2^n-1\}$ и принимает значение 1, если x>y, и значение 0, иначе. Говоря о среднем, мы имеем в виду, что x,y выбираются случайно и независимо среди всех чисел указанного интервала с равномерным распределением.

Задача 4.8. Докажите, что коммуникационная сложность IP равна $n - \mathcal{O}(1)$.

Открытая задача 4.9 (очень сложно)

Предлагается улучшить верхнюю оценку из статьи Andrew Chin для отношения $KW_{\text{MOD} p_n}$ для конкретного значения p>2.

- а) Для p = 3 лучше 2.881 $\log_2 n$,
- b) Для p = 5 лучше $3.475 \log_2 n$,
- с) Для p = 11 лучше $4.930 \log_2 n$.

Задача 4.10. Улучшите константу в балансировке протоколов. Доказать, что $C(f) \leq c \log_2 L(f)$ для c < 3.

Задача 4.11. Докажите, что

$$C(f) \leq \mathcal{O}(\log \chi_0(f) \log \chi_1(f)),$$

где $\chi_0(f), \chi_1(f)$ — количество нулевых (единичных) прямоугольников в минимальном разбиении M_f .

Задача 4.12. Докажите, что $C(f) \leq \mathcal{O}(\min(\log^2 \chi_0(f), \log^2 \chi_1(f))).$

Задача 4.13. Докажите, что $\mathrm{rank}(M_{\mathrm{IP}}) \geq 2^n - 1.$

Задача 4.14. Докажите, что $rank(M_{DISJ}) = 2^n$.

Задача 4.15. Пусть Алиса и Боб получают битовые строки длины n и хотят вычислить функцию MAX(x,y). Докажите, что:

- a) $C(MAX) \le \frac{3}{2}n + O(1)$,
- b) $C(MAX) \le n + o(n)$.
- c) $C(MAX) \le n + \mathcal{O}(\log n)$

5 Оракулы

Задача 5.1. Покажите, что $C(f) \ge C^{\text{EQ}}(f)$. Примером лучшего разделения может служить сама же задача EQ, $C^{\text{EQ}}(\text{EQ}) = 1$, $C(\text{EQ}) = \Theta(n)$.

Задача 5.3.
$$C^{\text{EQ}^1}(\text{EHD}_1) = n/2 + \mathcal{O}(1)$$
.

Задача 5.4. Оцените сложность $C^{\mathrm{EQ}^1}(\mathrm{EHD}_k)$ в зависимости от k. (под EQ^1 имеется ввиду оракул, который на вход принимает однобитовые строки)

Открытая задача 5.5 (сложно)

Оцените сложность $C^{EQ}(EHD_k)$ в зависимости от k.

Открытая задача 5.6 (сложно)

Попробуйте улучшить нижнюю оценку на $C^{\mathrm{EHD}_{\ell}}(\mathrm{EHD}_k)$.

Открытая задача 5.7

Попробуйте улучшить верхнюю оценку на $C^{\operatorname{EHD}_\ell}(\operatorname{EHD}_k)$ и $C^{\operatorname{HD}_{\leq \ell}}(\operatorname{HD}_{\leq k})$.

6 Вероятностная коммуникационная сложность

Задача 6.1. Докажите, что $R^{pub}_{\varepsilon}(\mathrm{EQ}) \leq \mathcal{O}(\log \frac{1}{\varepsilon}).$

Задача 6.2. Докажите, что $R_{1/3}^{pub}(\mathrm{GT}) \leq \mathcal{O}(\log n \cdot \log \log n)$.