

Applied Cryptography CPEG 472/672 Lecture 11A

Instructor: Nektarios Tsoutsos

Authenticated D-H

- Mitigates MitM attack in anonymous D-H
 - Each party needs a private and public key
 - These are RSA keys for RSA-PSS signatures
 - Each party signs their messages
 - Eve cannot forge a valid signature
- Alice signs A with her private key
- Bob signs B with his private key
- Both verify the received signatures

Authenticated D-H

\odot Eve learns nothing about g^{ab}

Authenticated D-H

- Offers Forward Secrecy
 - \odot A breach may leak private keys but not any previous shared secrets g^{ab}
 - The temporary secrets can't be leaked
- Prevents key control
 - No party can control the shared secret
- Vulnerable to replay attacks
 - Eve records and replays A, sig(A)
 - \odot Key confirmation: $\mathcal{H}(p_A||p_B,g^{ab})$, $\mathcal{H}(p_B||p_A,g^{ab})$

Data leaks in Authenticated D-H

- Attacker learns temp secrets a and b
 - Can impersonate one of the parties
- Example
 - Eve learns a, A, sig(A)
 - Eve can initiate a new execution pretending to be Alice (impersonation)
 - Eve replays A, sig(A) to Bob
 - Bob verifies sig(A) and sends B, sig(B)
 - Both compute g^{ab}

Data leaks in Authenticated D-H

Menezes-Qu-Vanstone (MQV)

- More secure than authenticated D-H
- Approved by NSA for critical assetsDropped later
- Each party sends one value
 - Alice sends A, Bob sends B
- Private expenses
 Private expenses
 Private expenses
 - \odot Private exponent x, public value g^x
- \circ Both compute $g^{(b+yB)(a+xA)}$
 - Shared secret between Alice and Bob

Menezes-Qu-Vanstone (MQV)

- Leaking a, b does not break MQV
 - Shared secret also depends on private keys
 - \odot Breach: if x, y leaked, old shared keys safe

Menezes-Qu-Vanstone (MQV)

- No perfect forward secrecy
 - Eve can perform MitM and replace A with E
 - $\odot E = g^e$ is computed by Eve using her e
 - Bob sends B to Alice and Eve records it
- This attack requires Eve to also steal
 Alice's private key x later
 - Eve can recover the shared secret from an old session
 - Attack not very useful, as Alice can detect she doesn't share the same key with Bob
 - The protocol is aborted immediately

Failures of D-H protocols

- Using the shared secret without hashing
 - The shared secret is not uniformly random
 - Cannot be used directly as a key
 - Need a KDF (e.g., HMAC-based KDF, scrypt)
- Some TLS versions allow anonymous D-H
- Not using safe primes in D-H
 - OpenSSL allowed unsafe primes
 - Allows small subgroups, easier to brute force
 - CVE-2-16-0701 exploit

Hands-on exercises

- Authenticated D-H key exchange
- Menezes-Qu-Vanstone (MQV)
- Bias in shared secret

Reading for next lecture

- Aumasson: Chapter 12 until The ECDLP Problem (inclusive)
 - We will have a short quiz on the material