TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Kristjan Luik 211809IAPM

Metsaraie tuvastamine rakendades nägemise alusmudelit Dinov2

Magistritöö

Juhendaja: Juhan-Peep Ernits

PhD

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt

varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised

seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

Autor: Kristjan Luik

24.04.2025

2

Annotatsioon

Metsavarade jätkusuutlikuks majandamiseks on hädavajalik metsaraiete tuvastamise täpsus ja ajakohasus. Traditsioonilised statistilised meetodid Sentinel-2 multispektraalsete piltide töötlemisel on osutunud tõhusaks, kuid kannatavad sageli piiratud ruumilise eraldusvõime tõttu ja vajavad lisaks palju manuaalset tööd. Käesolev uurimus käsitleb isejuhitud Vision Transformer'i peaahelat DINOv2 väheste õppeandmete põhist semantilist segmentatsiooni lageraie sündmuste tuvastamiseks.

Esmalt loodi andmestik, mis koosneb 100 lageraie polügoonist ja nende ümbritsevatest metsapiirkondadest. Nende põhjal ehitati programm, mis töötleb ja analüüsib metsateatisi, et luua geomeetrilised maskid, mis eristavad okas- ja lehtpuudega alasid. Lisaks sellele laeb programm alla Sentinel-2 taseme 2A satelliidi pildid, et luua andmestik, mis sisaldab nii lageraie maske kui ka nende ümbritsevaid metsapiirkondi.

Tulemuste hindamiseks võrdleme DINOv2-põhist raamistikku *Random Foresti* ja U-Neti segmentatsioonimudelitega, kasutades peamiste kvaliteedimõõdikutena IoU-d ja F1 skoori. Avatud lõpptulemite analüüs võimaldab hinnata tuvastustäpsuse, märgendamistõhususe ja mudeli robustsuse paranemist erinevates metsakoostistes. Edasistes uuringutes käsitletakse ajarealise analüüsi ja täiustatud pilvekatte maskimise (*masking*) strateegiaid.

Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 16 leheküljel, 5 peatükki, 4 joonist, 2 tabelit.

Abstract

Logging detection using the Dinov2 vision model

Monitoring and accurately detecting forest logging activities is essential for sustainable forest management and environmental conservation. Traditional statistical approaches, such as Random Forest models applied to Sentinel-2 imagery, have shown promise but still suffer from limited spatial precision and require extensive manual post-processing. In this thesis, we explore the efficacy of a self-supervised Vision Transformer backbone, DINOv2, for few-shot semantic segmentation of logging events in Sentinel-2 multispectral images.

A smaller dataset comprising 100 clear-cut polygons and their adjacent forest environs was constructed by integrating publicly available metsateatis records from the Estonian Forest Registry with Sentinel-2 Level-2A surface reflectance tiles. Initial geometric masks were refined through manual delineation and K-Means clustering to differentiate coniferous and deciduous strata. The pretrained DINOv2 model was subsequently fine-tuned on this dataset, utilizing the 10 m spatial resolution spectral bands alongside derived vegetation indices to enable pixel-level discrimination of logging areas.

To evaluate performance, we compare the DINOv2-based framework against benchmark Random Forest and U-Net segmentation models, using Intersection over Union (IoU) and F1 score as primary metrics. This open-ended analysis will assess relative improvements in detection accuracy, annotation efficiency, and robustness to varying forest compositions. Further investigation will address temporal sequence incorporation and advanced cloud-masking strategies.

The thesis is in Estonian and contains 16 pages of text, 5 chapters, 4 figures, 2 tables.

Lühendite ja mõistete sõnastik

Ülelennu sagedus (Revisit time) ajavahemik, mis jääb mingi kindla piirkonna satellii-

divaatluste vahele

Lainepikkus (Band) lainepikkuste vahemik elektromagnetkiirguse spektris

peaahel (Backbone) mudeli peamine arhitektuur, mis on eelnevalt treeni-

tud ja millele on lisatud täiendavad kihid, et saavutada soovitud

ülesanne

R2 R-ruut (*R-squared*) regressioonimudeli täpsuse mõõdik, mis näitab

mudeli selgitusvõimet andmete variatsioonis

IoU Ühenduse indeks (Intersection over Union) mõõdik, mis hindab

mudeli täpsust, võrreldes ennustatud ja tegelikke tulemusi

F1 skoor (F1 score) mõõdik, mis ühendab täpsuse ja meeldetuletuse

ja annab tasakaalustatud hinnangu mudeli jõudlusele

NDVI Taimede indeksi (Normalized Difference Vegetation Index) mõõdik,

mis hindab taimekatte tihedust ja elujõudlust, arvutatakse punase

ja lähedase infrapunase lainepikkuse vahekorra põhjal

Sisukord

1	Sis	Sissejuhatus				
2	Val	Valdkonna ülevaade				
	2.1	Metsandus	11			
	2.2	Copernicus ja EstHub	11			
	2.	.2.1 Sentinel	12			
	2.	.2.2 Lainepikkuste spekter	13			
	2.	.2.3 Koordinaatsüsteemid ja CRS	13			
	2.3	Masinõppe meetodite kasutus kaugseires	14			
3	Lal	hendus	16			
	3.1	Töövahendid	16			
	3.2	Andmestiku loomine	17			
	3.	.2.1 Raie piirkonna andmete kogumine	18			
	3.3	Alusmudeli ülevaade	21			
	3.4	Treenimis protsetuurid	22			
4	Tul	lemuste analüüs	23			
	4.1	Tulemuste võrdlus	23			
	4.2	Edasiarendus ja täiustamine	23			
5	Ko	kkuvõte	24			
K	asuta	atud kirjandus	25			
L	isa 1 -	– Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks				
	teg	gemiseks	27			

Jooniste loetelu

Joonis 1.	Sateliidi andmete liikumine andmekeskuste vahel	12
Joonis 2.	Näidis ühe lageraie päringust saadud ümbrus	19
Joonis 3.	KMeans klasterdamise tulemus, 100 raie ümbrust leht- või okaspuudega	20
Joonis 4.	Andmestiku loomise töövoog	21

Tabelite loetelu

Tabel 1.	Sentinel-2 MSI spektriribad ja nende kasutusvaldkonnad	13
Tabel 2.	Kasutatud riistvara	17

1 Sissejuhatus

Antud magistritöö põhieesmärgiks on võrrelda masinõppe meetodeid ja tuua välja täpseim mudel, mis suudaks tuvastada metsaraiet satelliidipiltidelt. Mida aeg edasi seda rohkem on riigid hakanud mõistma kui tähtis on metsamajandus, metsade säilitamine ja hoidmine. Tehnoloogia pideva arenguga on hakatud otsima viise kuidas riik või kogukond saaksid paremat ülevaadet suurtest metsaga kaetud aladest. Metsa seireks kasutatakse peamiselt mehitamata õhusõidukeid (Unmanned Aerial Vechicles), maapealseid sensoreid, satelliidipildi töötlust ja vabatahtlike kaasavaid rakendusi (Crowdsourcing Applications) [1].

Praegusel hetkel kasutatakse Eestis mõni aasta tagasi Keskkonnaagentuuri ja Tartu Ülikooli koostöös väljatöötatud statistika mudelit, mis raie tuvastamiseks kasutab suvasalu (Random forest) algoritmi [2] satellidi piltidelt. Selle mudeli esmased tulemused olid paljulubavad, aga peale mõndaaegset kasutamist pole see ikkagi rahuldavaid tulemusi andnud ja mudeli kasutajad on sunnitud siiski manuaalseid viise kasutama.

Euroopa Liidu kaugseireprogrammt Copernicus võimaldab Eesti riigil koguda satelliidi pilte andmekeskusesse Esthub [3]. Lisaks muule infole, mida hallatakse Copernicus-es ja seeläbi ka Esthub-is, on kasutusel informatsioon, mis tuleb erinevatelt Sentineli nime kandvatelt satelliitidelt [4]. Kuna Sentinel-2 on juba 2015. aastast töös olnud, sisaldab laia valikut valgusribasid ning on tiheda korduskülastus sagedusega [5], siis keskendub käesolev magistritöö peamiselt sellele sateliidi tüübile.

Sellest tulenevalt ona üheks alam eesmärgiks luua Python programm, mis hõlbustaks satelliidi piltide allalaadimist ja töötlemist. Peale andmete kogumist on plaan läbi viia tänapäevaste masinõppe mudelite võrdlus raiete tuvastamiseks. Raiet hinnatakse piksli põhise täpsusega üle pildi. Hiljuti on tehtud mitmeid uuringuid selles valdkonnas, kus kasutatakse ka suvasalu, XGBoost ja U-Net'il põhinevaid mudeli arhitektuure [6], [7]. Mõlemas uurimistöös on ka mudelite võrdlus välja toodud, aga need keskenduvad erinevatele suundadele. Esimese puhul ehitatakse mudelid kasutades rohkem pilte läbi aja, et mudel

saaks paremini tuvastada muutust. Teise puhul keskendutakse erinevate lainepikkuste kombineerimisele, et tabada muutusi.

Peale mudelite treenimist samadelt lähteandmetelt on antud magistritöös välja toodud tulemuste mõõtmine. Piksli tasemel täpsuse mõõtmiseks kasutatakse Intersection over Union - kattuvuse hinnang, Dice Coefficient - meetrika mis on põhimõtteliselt segmenteerimise F1 Score [8], [9]. Nende tulemuste abil saab teha võrdluse erinevate tuvastusmudelite vahel, et leida neist täpseim.

Sellest tulenevalt sai antud magistritöö uurimisküsimusteks:

- Kui täpselt on võimalik tuvastada lageraie sündmusi satelliidi piltidelt kasutades selleks DinoV2 alus mudelit?
- Kas on võimalik luua automatiseeritud programm, mis suudab allalaadida ja töödelda satelliidi pilte?
- Milline andmekogumik on vajalik, et saavutada kõrge täpsus lageraie sündmuste tuvastamiseks?

2 Valdkonna ülevaade

2.1 Metsandus

Metsad omavad olulist rolli nii ühiskonna igapäevaelus kui ka planeedi heaolus. Alates mööblis kasutatavast puidust kuni paberini, millele kirjutame. Lisaks neile nähtavatele toodetele sisaldavad paljud ravimid, kosmeetika ja pesuvahendid metsadest saadud kõrvalsaadusi. Rohkem kui 1,6 miljardit inimest sõltub metsadest toidu ja kütuse saamisest ning umbes 70 miljonit, sealhulgas paljud põlisrahvad, peavad metsi oma koduks [10]. Metsad varustavad meid hapnikuga, pakuvad varjualust, töökohti, puhast vett ja toitu, olles seega inimkonna ellujäämiseks hädavajalikud. Kuna nii paljude inimeste elu sõltub metsadest, on metsade saatus otseselt seotud ka meie endi tulevikuga. [11]

2.2 Copernicus ja EstHub

Eesti metsade kaugseires on oluline roll Copernicuse programmil ja EstHubi keskusel. Copernicus on üks osa Euroopa kosmoseprogrammist (EUS), mis tegeleb planeedi jälgimisega. Copernicus programmi raames, lisaks maa pealse info kogumisele, on loodud mitmeid satelliite, mis koguvad informatsiooni kosmosest. See info on kõigile kättesaadav tasuta. Selle programmiga seotud satelliite kutsutakse **Sentineliks**. [12]

EstHub on Eesti riiklik satelliitandmete keskus, mis kogub ja integreerib mitmekesiseid georuumilisi andmeid automatiseeritud protsesside kaudu. Andmekogumine hõlmab kõrge resolutsiooniga satelliitkaadrite allalaadimist ja standardiseerimist erinevatest allikatest. EstHubi eesmärk on koguda kokku satelliidi andmed mis katavad Eesti territooriumi. [13]

Joonis 1. Sateliidi andmete liikumine andmekeskuste vahel

2.2.1 Sentinel

Kaugseire valdkonnas on vastavalt vajadusele kasutusel erinevatelt satelliitidelt pärinevad andmed. Sentinel-1 on radaripõhine satelliit, mis võimaldab jälgida maapinna vajumist, struktuuride kahjustusi ning looduskatastroofe nagu maavärinad ja maalihked. Samuti on see ideaalne mere- ja Arktika seireks, sealhulgas laevade jälgimiseks ning naftareostuse tuvastamiseks. [14]

Sentinel-2 missioon koosneb kahest identsest satelliidist, Sentinel-2B (käivitatud 2017) ja Sentinel-2C (käivitatud 2024), mis töötavad koos, et pakkuda kõrge eraldusvõimega multispektraalseid pilte Maa pindadest, rannikualadest ja siseveekogudest iga viie päeva järel. Need andmed toetavad rakendusi põllumajanduses, metsanduses ja maakatte klassifitseerimisel. [15]

Sentinel-3 on Euroopa Maa seire satelliitmissioon, mille eesmärk on mõõta merepinna topograafiat, mere ja maa pinnatemperatuure ning ookeani ja maa pinnavärvi suure täpsusega. Neid andmeid kasutatakse ookeani prognoosisüsteemides, keskkonnaseires ja kliimaseires. [16]

Sentinel-5P on esimene Copernicuse missioon, mis on pühendatud atmosfääri seirele. See kannab tipptasemel **Tropomi** instrumenti, mis kaardistab mitmeid gaase nagu lämmastikdioksiid, osoon, formaldehüüd, vääveldioksiid, metaan, vingugaas ja aerosoolid - kõik need mõjutavad meie hingatavat õhku, tervist ja kliimat. [17]

2.2.2 Lainepikkuste spekter

Spektriribad on satelliitandmete analüüsimisel üliolulised, sest need võimaldavad eristada maapinna erinevaid omadusi, lähtudes elektromagnetilise spektri konkreetsetest lainepikkustest. Näiteks Sentinel-2 MSI instrumendi 13 spektririba hõlmavad nähtavat valgust, lähedast infrapunat ja lühilaine infrapunat, võimaldades detailset maastiku klassifitseerimist, sealhulgas metsade, veekogude ja muu loodusliku keskkonna eristamist. Iga ribaga seondub kindel lainepikkuse vahemik, mida spetsiifiliste filtrite abil eraldatakse. [18]

Riba	Resolutsioon	Kasutus
B01	$60m px^{-1}$	Aerosool
B02	$10mpx^{-1}$	Sinine
B03	$10mpx^{-1}$	Roheline
B04	$10mpx^{-1}$	Punane
B05	$20mpx^{-1}$	Vegetatsiooni klassifitseerimine
B06	$20mpx^{-1}$	Vegetatsiooni klassifitseerimine
B07	$20mpx^{-1}$	Vegetatsiooni klassifitseerimine
B08	$10mpx^{-1}$	Lähiinfrapunariba on hea rannajoonte ja biomassisisalduse kaardistamiseks
B8A	$20mpx^{-1}$	Kitsam lähedane infrapunane
B09	$60mpx^{-1}$	Veeaur tuvastus
B10	$60mpx^{-1}$	Pilvede tuvastus
B11	$20mpx^{-1}$	Lühilaine infrapunane 1
B12	$20mpx^{-1}$	Lühilaine infrapunane 2

Tabel 1. Sentinel-2 MSI spektriribad ja nende kasutusvaldkonnad

2.2.3 Koordinaatsüsteemid ja CRS

Satelliidilt saadud andmete maapinnaga sidumiseks on vaja kasutatada koordinaatsüsteeme ja koordinaatide viite süsteeme (CRS).

Koordinaatsüsteem on meetod, mille abil määratletakse ja kirjeldatakse punktide asukohti maastikul, kasutades koordinaate. Selles kontekstis eristatakse kahte tüüpi: geograafilised koordinaatsüsteemid, mis kasutavad laiuse ja pikkuse väärtusi, ning projekteeritud koordinaatsüsteemid, mis teisendavad geograafilised koordinaadid lameda kaardi koordinaatideks, kasutades matemaatilisi projektsioone. CRS ehk koordinaatide viite süsteem määratleb reeglid ja parameetrid, mille alusel need koordinaadid seonduvad reaalse maastikuga. [19]

2.3 Masinõppe meetodite kasutus kaugseires

Käsitletava teemaga seotud, kuid teiste piirkondade põhjal loodud, uurimistööde analüüsimisel prooviti välja selgitada, milliseid meetodeid on üldiselt kaugseires kasutatud, sealjuures kas on ehitatud mudeleid nullist või kasutatud valmis mudeleid. Samuti oli oluliseks eesmärgiks, välja selgitada, kas nendel juhtudel on kasutatud süvaõpet või mitte. Lisaks sooviti teada saada, mis satelliidi andmeid on varasemalt kasutatud ja kas eri lainepikkuste sidumine on andnud paremaid tulemusi.

Ukraina teadlaste poolt koostatud 2021. aastal välja antud artiklis "Deep Learning for Regular Change Detection in Ukrainian Forest Ecosystem With Sentinel-2" kasutati Copernicus Sentinel-2 satelliidi pilte, mis sisaldasid kõrge resolutsiooniga (10 m) värvi- ja spektrikanaleid, sealhulgas NDVI ja NDMI indekseid, võimaldades jälgida metsamuutusi kuni 5-päevaste intervallidega. Andmekogum loodi käsitsi Kharkivi piirkonnas, kasutades mitut järjestikust pilti ja põhjalikku märgistust, et tagada täpne deforestsatsioonipiirkondade kaardistamine. Uurijad rakendasid süvaõppe meetodeid, kasutades mitut U-Neti varianti (näiteks UNet-diff, UNet-CH, UNet2D, UNet3D, Siamese U-Netid ja UNet-LSTM), et hinnata nii ajast sõltuvaid kui ka ühekordseid lähenemisviise. Eraldi rõhutati piltidevahelise erinevuse kasutamise eeliseid, mis parandas segmentatsioonitulemusi ning tõstis Dice ja F1 skoore. Lisaks ilmnesid uuringus olulised nüansid, nagu pilvekatte, hooajaliste muutuste ning geograafiliste lahknevuste mõju, mis nõudsid täiendavat andmete eeltöötlust. Huvitav on, et kuigi kõik mudelid näitasid potentsiaali, saavutavad UNet-diff ja UNet-CH kõige kõrgema täpsuse, pakkudes seeläbi tõenduspõhiseid lahendusi metsakatteta ala muutuste regulaarseks jälgimiseks. [6]

Uus-Meremaal läbi viidud ja 2024. aastal välja antud uurimistöös "Developing a forest description from remote sensing: Insights from New Zealand" kasutati kõrglahutusega lennufotosid ning regionaalseid ALS-andmeid radiata männi metsade täpseks kaardistamiseks Uus-Meremaal. Analüüs tugines sügavõppepõhisel semantilise segmentatsiooni mudelil, mis kasutab DeepLabv3+ arhitektuuri koos ResNext-101 peaahelana (backbone), saavutades IoU väärtused 0,94, täpsuse 0,96 ja meeldetuletuse 0,98. Keeruliseks osutus aga noorte istikute tuvastamine, mille puhul *juvenile* klass (noored istutatud metsapiirkonnad) liideti *radiata* (küpsemad männi alad) klassiga. Lisaks sügavõppemudelile kasutati mitmemuutujalisi regressioonimudeleid metsade keskmise kõrguse, kogumahte ja vanuse

hindamiseks, saavutades kõrged R2 väärtused. [20]

3 Lahendus

3.1 Töövahendid

Python

Python on üldotstarbeline programmeerimiskeel, mida kasutatakse laialdaselt andmeteaduse, masinõppe ja ruumiandmete analüüsi ülesanneteks oma lihtsuse ja mitmekülgsuse tõttu.

Jupyter Notebookid

Jupyter Notebookid pakuvad interaktiivset keskkonda, kus saab koodi kirjutada, käivitada ja dokumenteerida ühes kohas. Need võimaldavad dünaamilist andmeanalüüsi ja tulemuste visuaalset esitlust, muutes uurimisprotsessi läbipaistvaks ja korduvaks.

Pandas

Pandas on andmetöötluse teek, mis pakub paindlikke ja efektiivseid andmestruktuure tabelipõhise andmetöötluse jaoks. See lihtsustab andmete puhastamist, analüüsi ja manipuleerimist.

GeoPandas

GeoPandas laiendab Pandase võimalusi, lisades tuge georuumilistele andmetele. See võimaldab lugeda, analüüsida ja visualiseerida ruumiandmeid ning teostada geomeetrilisi operatsioone nagu lõikumine ja ühendamine.

Rasterio

Rasterio on Pythoni teek, mis keskendub rasterandmete lugemisele ja töötlemisele tuginedes GDAL-ile. See võimaldab ruumiandmete analüüsi ning laseb rasterfailidega töötada efektiivselt ja intuitiivselt.

QGIS

QGIS on tasuta ja avatud lähtekoodiga töölaua GIS-tarkvara, mis võimaldab kasutajatel andmeid visuaalselt analüüsida, redigeerida ja kaardistada. See toetab mitmeid andmeformaate ja pakub laialdasi geoprotsessimise võimalusi, olles populaarne nii akadeemilises kui ka professionaalses keskkonnas.

PostGIS

PostGIS on PostgreSQL andmebaasi laiendus, mis lisab ruumiandmete töötlemise funktsionaalsuse. See võimaldab keerukaid ruumi operatsioone ja on oluline tööriist suurte ruumiandmete kogude haldamisel ning analüüsil.

Riistvara

Uurimistöö läbiviimisel kasutati ülikooli AI-labori ressursse. Labor koosneb ühest peasõlmest, mis haldab teisi masinaid, ning alamsõlmedest, mis teostavad töid. Autor kasutas ai-lab-07 sõlme CPU-intensiivsete ülesannete, nagu andmekogumi koostamine, piltide töötlemine ja kompressioon, ning mitte sügav närvivõrkude mudelite treenimiseks nagu *Random Foresti*. Samas süvaõppe eksperimentide teostamiseks kasutati ai-lab-04 sõlme, mille GPU ja mälumaht võimaldasid keerukamate mudelite treenimist. Selline ressursside jaotus aitas töövoogu optimeerida ja tagada tööde sujuva teostuse vastavalt konkreetsetele arvutusvajadustele.

Sõlm	Protsessor	Mälu	GPU	GPU mälu
ai-lab-07	3960X 24-cores/48-threads	128 GB	NVidia 2080Ti	11 GB
ai-lab-04	3970X 32-cores/64-threads	128 GB	NVidia 3090	24 GB

Tabel 2. Kasutatud riistvara

3.2 Andmestiku loomine

Selles peatükis käsitletakse andmestiku loomise protsessi, sealhulgas andmete kogumist, töötlemist ja maskimist. Andmestiku loomine on oluline samm igasuguste andmete analüüsimisel ja seda ka masinõppe projektide puhul. Andmete kvaliteet ja sobivus mõjutavad otseselt mudeli täpsust ja usaldusväärsust. Nagu muudes valdkondades kehtib ka informaatikas Pareto printsiip, mille kohaselt 80% probleemidest tuleneb 20% põhjustest. Seega on andmestiku loomine ja töötlemine äärmiselt oluline etapp, mis võib määrata kogu

projekti edasise käigu.

3.2.1 Raie piirkonna andmete kogumine

Metsateatis on dokument, mille kaudu metsaomanik esitab Keskkonnaametile kavandatavate raietööde või oluliste metsakahjustuste kohta teabe. Keskkonnaamet kontrollib esitatud teatiste nõuetekohasust ning veendub, et kavandatav raie vastab kehtivatele õigusaktidele. Metsateatised menetletakse ja säilitatakse riiklikus metsaregistris. Peale edukat menetlemist võib raietöödega alustada 10 päeva peale otsust ja kuni 24 kuu jooksul. [21] Metsateatised on avalikud ja neid saab vaadata riiklikus metsaregistris.

Metsade inventeerimise ja registrisse kandmise protsess algab metsaeraldiste täpse kaardistamisega, kasutades L-EST97 ristkoordinaatide süsteemi, Eesti põhikaarti, katastriüksuse plaane ning vajadusel kaugseire andmeid eraldiste piiritlemiseks ja võimalike situatsioonielementide täpsustamiseks. Kaardistamise tulemusena koostatakse geoinfosüsteemi metsaeraldiste kiht, kus iga eraldis on nummerdatud ning selle pindala, arvutatuna piiripunktide koordinaatide alusel, esitatakse hektarites vähemalt kümnendkohani ning täpsusega 10 meetrit — see loob aluse usaldusväärsele pindalaarvestusele ja edaspidistele takseerimistoimingutele. [22]

Koostöös Keskkonnaametiga (Envir) saadi andmed metsateatistest, mis sisaldavad teavet nii metsateatise esitamise kuupäeva, metsateatise menetlemise kuupäeva, metsateatise kehtivuse alguskuupäeva kui ka metsateatise kehtivuse lõppkuupäeva kohta. Kuna riigimetsade teatised on täpsemas seisukorras, siis võeti need raieteatised selle uurimustöö aluseks. Seoses sellega et ühe lõigu peal võib olla väga väike kogus metsa, sai teatiste pärimine ümber ehitatud sedasi, et ühe metsa raie ümber kogutakse peale raie toimumist kokku ka kõik teiste raiete raadiuses asuvad piirkonnad, millel on teada, kas on mets või raieala. Piirkonniti pärimine sai teostatud kasutades PostGISi liidest Postgresi andmebaasiga. Iga raie sisaldab ka endas geomeetria veergu, mis esitab polügooni kujul selle asukohta.

Polügoon on geomeetriline kujund, mis määratleb kindla ala, ühendades üksteisega punktid, et moodustada suletud piirjoon. Andmetöötluse ja ruumiandmete analüüsi kontekstis kasutatakse polügoone, et täpselt määratleda geograafilisi alasid. [23]

Joonis 2. Näidis ühe lageraie päringust saadud ümbrus

Magistritöö peamiseks uurimisküsimuseks on, kas ja kuidas on võimalik kasutada väheste näidete (*Few-Shot*) põhist alusmudelit. Selleks on aga vaja täpseid andmeid millelt õppida. Nagu eelnevalt mainitud siis metsaregistrist saadud andmed ei ole piisavalt täpsed, et neid otse kasutada. Seetõttu on vajalikud andmete täiendavat töötlemise ja maskimise etapid, kus andmed käiakse käsitsi läbi, kasutades registri andmeid maski põhjana. Ajalise piirangu tõttu pidi tegema alamvalimi. Et saada Eesti metsade kohta üldisemaid näiteid kasutati selleks KMeans klasterdamise meetodit, et jagada metsad omakorda kahte erinevasse klassi okas- ja lehtpuud. Eesmärgiks oli koguda kokku 100 raiet ja nende ümbrust, et luua piisavalt andmeid, mille pealt mudelit treenida.

Joonis 3. KMeans klasterdamise tulemus, 100 raie ümbrust leht- või okaspuudega

Joonis 4. Andmestiku loomise töövoog

3.3 Alusmudeli ülevaade

Alustemudelid (*Foundation models*) on suuremahulistel andmekogudel ennastjuhendavalt treenitud sügavad närvivõrgud, mis toimivad üldotstarbelise baasina mitmesuguste masinõppeülesannete lahendamiseks. Erinevalt traditsioonilistest mudelitest, mis on välja töötatud konkreetse ülesande jaoks ja nõuavad eraldi treeningut, on alusmudelid eelnevalt ettevalmistatud laia valiku ülesannete sooritamiseks — alates loomulikust keele töötle-

misest ja tekstigeneratsioonist kuni pildiklassifitseerimise ja vastuste genereerimiseni — ilma täiendava märgendatud õppematerjalita. Nende mudelite kohanemisvõime tuleneb nii suurest parameetrite hulgast kui ka enesekontrollil põhinevast õppestrateegiast, mis võimaldab neid hõlpsasti peenhäälestada konkreetsete rakenduste jaoks, vähendades oluliselt arendusaja ja arvutusressursside vajadust võimaldades keskenduda pigem mudeli peenhäälestusele kui treenimisele nullist. [24]

DINO v2 on Meta AI poolt loodud isejuhendatud (self-supervised) mudelite kogum, mille eesmärk on õppida üldotstarbelisi visuaalseid omadusi ilma märgendatud andmeteta. Mudel põhineb Vision Transformer (ViT) arhitektuuril, mille erinevad variandid (nt ViT-S/14, ViT-B/14, ViT-L/14 ja ViT-g/14) on eelõpetatud suurel, mitmekesise sisuga ja kureeritud pildikogumil. Mudeli struktuuri põhjaks on õpetaja—õpilase skeem, kus õpilasmudeli parameetreid koheldakse tavalise ViT-võrguna, aga õpetajamudeli kaale uuendatakse õpilase kaalude eksponentsiaalse libiseva keskmise kaudu. Treeningprotsessi stabiliseerimiseks ja tunnusruumi hajutamiseks on lisatud Kozachenko—Leonenko (KoLeo) regulaarija, mis soodustab tunnuste ühtlast jaotust. Õppetöö lõpus suurendatakse sisendpiltide resolutsiooni ajutiselt 518×518 pikslile, et parandada piksli tasemel ülesannete, näiteks semantilise segmenteerimise ja objektituvastuse ennustuse täpsust. Praktikas saavutab DINO v2 tänu optimeeritud FlashAttention-i ja PyTorch Full-Sharded Data Parallel (FSDP) meetodile kuni kahekordse kiiruse ning vajab kuni kolm korda vähem mälumahtu, võrreldes varasemate SSL-mudelitega. [25]

3.4 Treenimis protsetuurid

- 4 Tulemuste analüüs
- 4.1 Tulemuste võrdlus
- 4.2 Edasiarendus ja täiustamine

5 Kokkuvõte

kokkuvõte

Kasutatud kirjandus

- [1] Loretta Cheung, Jonathan Mason ja Meaghan Parker-Forney. "Perimeter Defense: 4 Technologies for Detecting and Preventing Illegal Logging" (Fri, 11/06/2015 11:16). URL: https://www.wri.org/insights/perimeter-defense-4-technologies-detecting-and-preventing-illegal-logging (vaadatud 01.03.2025).
- [2] Tartu Ülikooli teadlased töötasid välja statistilised meetodid Eesti metsaressursi hindamiseks kaugseireandmete põhjal | Tartu Ülikool. R, 11.09.2020 11:05. URL: https://ut.ee/et/sisu/tartu-ulikooli-teadlased-tootasid-valja-statistilised-meetodid-eesti-metsaressursi-hindamiseks (vaadatud 11.01.2025).
- [3] Maa-amet. *Riiklik satelliidiandmete keskus ESTHub*. URL: https://geoportaal.maaamet.ee/est/ruumiandmed/riiklik-satelliidiandmete-keskus-esthub-p443.html (vaadatud 26.02.2025).
- [4] Infrastructure Overview | Copernicus. url: https://www.copernicus.eu/en/about-copernicus/infrastructure-overview (vaadatud 01.03.2025).
- [5] Sentinel-2 an Overview | ScienceDirect Topics. URL: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sentinel-2 (vaadatud 01.03.2025).
- [6] K. Isaienkov *et al.* "Deep Learning for Regular Change Detection in Ukrainian Forest Ecosystem with Sentinel-2". *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 14 (2021), lk. 364–376. DOI: 10.1109/JSTARS.2020.3034186.
- [7] N.S. Podoprigorova *et al.* "Recognition of Forest Damage from Sentinel-2 Satellite Images Using U-Net, RandomForest and XGBoost". Teoses: Proceedings of the 2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2024. 2024. DOI: 10.1109/REEPE60449.2024.10479810.
- [8] Intersection over Union (IoU): Definition, Calculation, Code. url: https://www.v7labs.com/blog/intersection-over-union-guide (vaadatud 26.02.2025).
- [9] Understanding DICE COEFFICIENT. URL: https://kaggle.com/code/yerramvarun/understanding-dice-coefficient (vaadatud 26.02.2025).
- [10] A. Karsenty. "Underlying Causes of the Rapid Expansion of Illegal Exploitation of Tropical Timber". *International Forestry Review* 5.3 (1. september 2003), lk. 236–239. ISSN: 1465-5489. DOI: 10.1505/IFOR.5.3.236.19136. URL: http://www.ingentaconnect.com/content/10.1505/IFOR.5.3.236.19136 (vaadatud 04.03.2025).
- [11] WWF The Importance of Forests. URL: https://wwf.panda.org/discover/our_focus/forests_practice/importance_forests/(vaadatud 04.03.2025).

- [12] About Copernicus | Copernicus. URL: https://www.copernicus.eu/en/about-copernicus (vaadatud 04.03.2025).
- [13] Maa-amet. National Satellite Data Centre ESTHub. url: https://geoportaal.maaamet.ee/eng/spatial-data/national-satellite-data-centre-esthub-p654.html (vaadatud 10.03.2025).
- [14] S1 Applications. URL: https://sentiwiki.copernicus.eu/web/s1-applications (vaadatud 04.03.2025).
- [15] S2 Applications. URL: https://sentiwiki.copernicus.eu/web/s2-applications (vaadatud 04.03.2025).
- [16] S3 Mission. URL: https://sentiwiki.copernicus.eu/web/s3-mission (vaadatud 04.03.2025).
- [17] S5P Applications. URL: https://sentiwiki.copernicus.eu/web/s5p-applications (vaadatud 04.03.2025).
- [18] S2 Mission. URL: https://sentiwiki.copernicus.eu/web/s2-mission (vaadatud 25.03.2025).
- [19] 8. Coordinate Reference Systems QGIS Documentation Documentation. URL: https://docs.qgis.org/3.40/en/docs/gentle_gis_introduction/coordinate_reference_systems.html (vaadatud 26.03.2025).
- [20] Grant D. Pearse *et al.* "Developing a Forest Description from Remote Sensing: Insights from New Zealand". *Science of Remote Sensing* 11 (1. juuni 2025), lk. 100183. ISSN: 2666-0172. DOI: 10.1016/j.srs.2024.100183. URL: https://www.sciencedirect.com/science/article/pii/S2666017224000671 (vaadatud 06.04.2025).
- [21] Metsateatis ja metsaregister | Keskkonnaamet. URL: https://keskkonnaamet.ee/elusloodus-looduskaitse/metsandus/metsateatis-ja-metsaregister(vaadatud 02.04.2025).
- [22] Metsa Korraldamise Juhend-Riigi Teataja. URL: https://www.riigiteataja.ee/akt/13124148?leiaKehtiv (vaadatud 20.04.2025).
- [23] What Is a Location Polygon? url: https://www.narrative.io/knowledge-base/concepts/data-terms/what-is-a-location-polygon (vaadatud 02.04.2025).
- [24] What Are Foundation Models? Foundation Models in Generative AI Explained AWS. Amazon Web Services, Inc. url: https://aws.amazon.com/what-is/foundation-models/(vaadatud 19.04.2025).
- [25] Maxime Oquab et al. DINOv2: Learning Robust Visual Features without Supervision.

 2. veebruar 2024. DOI: 10.48550/arXiv.2304.07193. arXiv: 2304.07193 [cs]. URL: http://arxiv.org/abs/2304.07193 (vaadatud 19.04.2025). Eelnevalt avaldatud.

Lisa 1 – Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks¹

Mina, Kristjan Luik

- Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose "Metsaraie tuvastamine rakendades nägemise alusmudelit Dinov2", mille juhendaja on Juhan-Peep Ernits
 - 1.1. reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil, sh Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja lõppemiseni;
 - 1.2. üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.
- 2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles ka autorile.
- 3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.

24.04.2025

¹Lihtlitsents ei kehti juurdepääsupiirangu kehtivuse ajal vastavalt üliõpilase taotlusele lõputööle juurdepääsupiirangu kehtestamiseks, mis on allkirjastatud teaduskonna dekaani poolt, välja arvatud ülikooli õigus lõputööd reprodutseerida üksnes säilitamise eesmärgil. Kui lõputöö on loonud kaks või enam isikut oma ühise loomingulise tegevusega ning lõputöö kaas- või ühisautor(id) ei ole andnud lõputööd kaitsvale üliõpilasele kindlaksmääratud tähtajaks nõusolekut lõputöö reprodutseerimiseks ja avalikustamiseks vastavalt lihtlitsentsi punktidele 1.1. ja 1.2, siis lihtlitsents nimetatud tähtaja jooksul ei kehti.