

Contents

QCM

A miniaturized thermal desorption unit for chemical sensing below odor threshold	1
J. Nieß, T. Hamacher, P.S. Lammers, E. Weber and P. Boeker	
Determination of the ripening state of Emmental cheese via quartz microbalances	6
J. Bargon, S. Braschoß, J. Flörke, U. Herrmann, L. Klein, J.W. Loergen, M. Lopez, S. Maric, A.H. Parham, P. Piacenza, H. Schaeffgen, C.A. Schalley, G. Silva, M. Schlupp, H. Schwierz, F. Vögtle and G. Windscheif	
Borderline applications of QCM-devices: synthetic antibodies for analytes in both nm- and µm-dimensions	20
F. Dickert, O. Hayden, P. Lieberzeit, C. Palfinger, D. Pickert, U. Wolff and G. Scholl	
Suitability of PZT ceramics for mass sensors versus widespread used quartz crystals	25
M.I.S. Veríssimo, P.Q. Mantas, A.M.R. Senos, J.A.B.P. Oliveira and M.T.S.R. Gomes	
High-speed multi-parameter data acquisition and web-based remote access to resonant sensors and sensor arrays	32
J. Auge, K. Dierks, F. Eichelbaum and P. Hauptmann	
Online measurement of odorous gases close to the odour threshold with a QMB sensor system with an integrated preconcentration unit	39
T. Hamacher, J. Niess, P. Schulze Lammers, B. Diekmann and P. Boeker	

Gas

Using the differential principle in chemical micro-sensors	46
M. Liess	
Dynamic analysis of Love waves sensors responses: application to organophosphorus compounds in dry and wet air	51
P. Mazein, C. Zimmermann, D. Rebière, C. Déjous, J. Pistré and R. Planade	
High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification	58
A. Gramm and A. Schütze	
Automotive application of sol-gel TiO ₂ thin film-based sensor for lambda measurement	66
L. Francioso, D.S. Presicce, A.M. Taurino, R. Rella, P. Siciliano and A. Ficarella	
Nanocrystalline undoped ceria oxygen sensor	73
P. Jasinski, T. Suzuki and H.U. Anderson	
Thermal properties of suspended porous silicon micro-hotplates for sensor applications	78
C. Tsamis, A.G. Nassiopoulou and A. Tserepi	
Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors	83
P. Montmeat, J.-C. Marchand, R. Lalauze, J.-P. Viricelle, G. Tournier and C. Pijolat	
Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films	90
G.G ^a . Mandayo, E. Castaño, F.J. Gracia, A. Cirera, A. Cornet and J.R. Morante	
Detection of aromatic hydrocarbons in air and water by using xerogel layers coated on PCS fibers excited by an inclined collimated beam	97
K. Cherif, J. Mrazek, S. Hleli, V. Matejec, A. Abdelghani, M. Chomat, N. Jaffrezic-Renault and I. Kasik	
Relative humidity and alcohol sensors based on mesoporous silica thin films synthesised from block copolymers	107
A. Bearzotti, J. Mio Bertolo, P. Innocenzi, P. Falcaro and E. Traversa	
Detection of dilute nitrogen dioxide and thickness effect of tungsten oxide thin film sensors	111
J. Tamaki, A. Hayashi, Y. Yamamoto and M. Matsuoka	
Distinctive photocurrent chemical images on bare SiO ₂ between continuous metal gates	116
D. Filippini and I. Lundström	
Analysis of dry salami by means of an electronic nose and correlation with microbiological methods	123
A.M. Taurino, D. Dello Monaco, S. Capone, M. Epifani, R. Rella, P. Siciliano, L. Ferrara, G. Maglione, A. Basso and D. Balzarano	
Feature Extraction of chemical sensors in phase space	132
E. Martinelli, C. Falconi, A. D'Amico and C. Di Natale	
Porous silicon-based humidity sensor with interdigital electrodes and internal heaters	140
P. Fürjes, A. Kovács, Cs. Dürös, M. Ádám, B. Müller and U. Mescheder	
Investigation of sol-gel prepared CeO ₂ -TiO ₂ thin films for oxygen gas sensing	145
A. Trinchi, Y.X. Li, W. Włodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini and G. Sberveglieri	
Hand-held unit for simultaneous detection of methane and ethane based on NIR-absorption spectroscopy	151
O. Hennig, R. Strzoda, E. Mágori, E. Chemisky, C. Tump, M. Fleischer, H. Meixner and I. Eisele	
CO sensing properties of W-Mo and tin oxide RGTO multiple layers structures	157
E. Comini, M. Ferroni, V. Guidi, G. Martinelli and G. Sberveglieri	

Thick film device for the detection of NO and oxygen in exhaust gases	162
E. Magori, G. Reinhardt, M. Fleischer, R. Mayer and H. Meixner	
Development of an ammonia gas sensor	170
M. Bendahan, P. Lauque, J.-L. Seguin, K. Aguir and P. Knauth	
Dealing with humidity in the qualitative analysis of CO and NO ₂ using a WO ₃ sensor and dynamic signal processing	177
R. Ionescu, E. Llobet, J. Brezmes, X. Vilanova and X. Correig	
Field effect transducers for work function gas measurements: device improvements and comparison of performance	183
M. Burgmair, H.-P. Frerich, M. Zimmer, M. Lehmann and I. Eisele	
Explosion-proof monitoring of hydrocarbons by mechanically stabilised, integrable calorimetric microsensors	189
C. Dürső, M. Ádám, P. Fürjes, M. Hirschfelder, S. Kulinyi and I. Bárszny	
Sensitivity to NO ₂ and cross-sensitivity analysis to NH ₃ , ethanol and humidity of carbon nanotubes thin film prepared by PECVD	195
C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J.M. Kenny and S. Santucci	
Response model for thermally modulated tin oxide-based microhotplate gas sensors	203
R. Ionescu, E. Llobet, S. Al-Khalifa, J.W. Gardner, X. Vilanova, J. Brezmes and X. Correig	
MOS-MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC's emissions from car seat foams	212
M. Morvan, T. Talou and J.-F. Beziau	
Detection of low level carbon monoxide in hydrogen-rich gas streams	224
K.W. Kirby, A.C. Chu and K.C. Fuller	
Design and simulation of a smart ratiometric ASIC chip for VOC monitoring	232
J. García-Guzmán, N. Ulivieri, M. Cole and J.W. Gardner	
Influence of heterogeneous reaction rate on response kinetics of metal oxide gas sensors: application to the recognition of an odour	244
A. Galdikas, Ž. Kancleris, D. Senulienė and A. Šetkus	
In _x O _y N _z films with a Ta ₂ O ₅ promoter for the detection of CO, H ₂ , and CH ₄	252
H. Steffes and E. Obermeier	
Wet process-prepared thick films of WO ₃ for NO ₂ sensing	258
Y.-G. Choi, G. Sakai, K. Shimanoe, N. Miura and N. Yamazoe	
A new CO ₂ gas sensing material	266
A. Marsal, G. Dezanneau, A. Cornet and J.R. Morante	
The influence of interfaces and interlayers on the gas sensitivity in work function type sensors	271
B. Ostrick, M. Fleischer and H. Meixner	
Thermal fatigue modeling of micromachined gas sensors	275
J. Puigcorbé, A. Vilà and J.R. Morante	
Portable automatic BTX measurement system with microfluidic device using mesoporous silicate adsorbent with nano-sized pores	282
Y. Ueno, T. Horiuchi, O. Niwa, H.-S. Zhou, T. Yamada and I. Honma	
Packaging effects of a novel explosion-proof gas sensor	287
A. Norman, F. Stam, A. Morrissey, M. Hirschfelder and D. Enderlein	
Biosensors	
A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides	291
M.J. Schöning, R. Krause, K. Block, M. Musahmeh, A. Mulchandani and J. Wang	
Biosensoric detection of the cysteine sulphoxide alliin	297
M. Keusgen, M. Jünger, I. Krest and M.J. Schöning	
Bioelectronic sniffer with a diaphragm flow-cell for acetaldehyde vapor	303
K. Mitsubayashi, H. Amagai, H. Watanabe and Y. Nakayama	
Development of chemical field effect transistors for the detection of urea	309
W. Sant, M.L. Pourciel, J. Launay, T. Do Conto, A. Martinez and P. Temple-Boyer	
Development of a monoclonal antibody based potentiometric biosensor for terbutylazine detection	315
L. Mosiello, C. Laconi, M. Del Gallo, C. Ercole and A. Lepidi	
Determination of hydroperoxides in nonaqueous solvents or mixed solvents, using a biosensor with two antagonist enzymes operating in parallel	321
L. Campanella, D. Giancola, E. Gregori and M. Tomassetti	
Signal processing of bioimpedance equipment	328
S. Papezova	
Self-assembled multilayer superstructures as immobilization support for bioreceptors	336
B.A. Snopok, Yu.G. Goltsov, E.V. Kostyukevich, L.A. Matkovskaja, Yu.M. Shirshov and E.F. Venger	
Electrically induced gas sensitive state of enzyme–metal contact in ADH-dry-layer based planar structure	344
A. Šetkus, J. Razumienė, A. Galdikas, V. Laurinavičius, R. Meškys and A. Mironas	
Electrochemical Devices	
Portable light-addressable potentiometric sensor (LAPS) for multisensor applications	352
T. Yoshinobu, M.J. Schöning, R. Otto, K. Furuichi, Yu. Mourzina, Yu. Ermolenko and H. Iwasaki	
Langmuir–Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste	357
A. Arrieta, M.L. Rodriguez-Mendez and J.A. de Saja	
Miniaturized sodium-selective sensors based on silicon back-side contact structure with novel self-plasticizing ion-selective membranes	366
K. Wyglądzac, M. Durnaś, P. Parzuchowski, Z. Brzózka and E. Malinowska	
Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring	373
K. Mitsubayashi, Y. Wakabayashi, D. Murotomi, T. Yamada, T. Kawase, S. Iwagaki and I. Karube	

Improvement of screen-printed carbon electrodes by modification with ferrocene derivative	378
J. Razumienė, V. Gurevičienė, A. Vilkanauskytė, L. Marcinkevičienė, I. Bachmatova, R. Meškys and V. Laurinavičius	
Chemical sensor as physical sensor: ISFET-based flow-velocity, flow-direction and diffusion-coefficient sensor	384
A. Poghossian, L. Berndsen and M.J. Schöning	
Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem	391
L. Lvova, A. Legin, Y. Vlasov, G.S. Cha and H. Nam	
Porphyrin-based array of cross-selective electrodes for analysis of liquid samples	400
R. Paolesse, C.D. Natale, M. Burgio, E. Martinelli, E. Mazzone, G. Palleschi and A. D'Amico	
 Microfluidics	
A micro-fluidic galvanic cell as an on-chip power source	406
A.M. Cardenas-Valencia, V.R. Challa, D. Fries, L. Langebrake, R.F. Benson and S. Bhansali	
Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies	414
S.H. Wong, P. Bryant, M. Ward and C. Wharton	
A silicon microfluidic ultrasonic separator	425
N.R. Harris, M. Hill, S. Beeby, Y. Shen, N.M. White, J.J. Hawkes and W.T. Coakley	
 <i>Conference Calendar</i>	
435	
 <i>List of SNB conferences</i>	436
 <i>Author Index of Volume B 95</i>	438
 <i>Subject Index of Volume B 95</i>	440

Full text of this journal is available, on-line from **ScienceDirect**. Visit www.sciencedirect.com for more information.

The publisher encourages the submission of articles in electronic form thus saving time and avoiding rekeying errors. A leaflet describing our requirements is available from the publisher upon request. Please refer to the online version of the Guide to Authors at <http://www.elsevier.com/locate/sensorb>

This journal is part of **ContentsDirect**, the *free* alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for **ContentsDirect** online at: <http://contentsdirect.elsevier.com>

