

KONKURS FIZYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ WOJEWÓDZTWA MAZOWIECKIEGO

ETAP SZKOLNY 4 listopada 2019r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	30	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

UWAGA: W zadaniach o numerach od 1 do 10 spośród podanych propozycji odpowiedzi wybierz i podkreśl ta, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

Dwoma różnymi sposobami zmierzono prawie jednocześnie prędkość samochodu. Otrzymane wyniki obarczone były oczywiście niepewnościami pomiarowymi. Otrzymano następujące wartości: $v = (82,0 \pm 3,0)$ km/h oraz $v = (78,0 \pm 4,0)$ km/h. Przyjmij, że oba pomiary wykonano poprawnie. Wyniki te oznaczają, że rzeczywista prędkość samochodu zawarta jest pomiędzy:

A. (74,0; 85,0) km/h **B**. (79,0; 82,0) km/h **C**. (76,0; 84,0) km/h **D**. (78,0; 82,0) km/h.

Ciało o masie 12,3 g zawieszono na wysokości 5,3 m nad powierzchnią planety, na której przyspieszenie grawitacyjne jest równe 11,42 m/s². Energia potencjalna grawitacji ciała względem powierzchni tej planety wynosi:

A. 0,7444698 J **B**. 0,7 J **C**. 0,74 J **D**. 0,744 J.

Podane są trzy prędkości : $v_1 = 270$ m/min, $v_2 = 15$ km/h i $v_3 = 480$ cm/s. Prędkości te spełniają nierówności:

A.
$$v_1 > v_2 > v_3$$
 B. $v_1 < v_2 < v_3$ **C.** $v_2 > v_1 > v_3$ **D.** $v_2 < v_1 < v_3$.

Samochód w ciągu każdej z kolejnych 5 godzin ruchu prostoliniowego przebywał po 70 km. Na podstawie tej informacji możemy twierdzić, że samochód:

- A. poruszał się ruchem jednostajnym prostoliniowym
- **B**. poruszał się ruchem niejednostajnym prostoliniowym
- C. mógł poruszać się ruchem jednostajnym prostoliniowym
- **D**. nie poruszał się z przyspieszeniem w żadnym momencie.

Zadanie 5. (0 - 1 pkt)

..../1

Magnes o ciężarze Q=0,1 N przywarł do płaskiej, pionowej, stalowej ścianki lodówki i jest w spoczynku. Ścianka przyciąga magnes z siłą F=5 N. Przyjmując, że wartość przyspieszenia grawitacyjnego g=10 m/s², wartość siły tarcia między ścianką a magnesem wynosi:

A. 0,01 N

B. 0.1 N

C. 1 N

D. 5 N.

(Pomiń oddziaływanie innych sił działających w kierunku pionowym na magnes.)

Zadanie 6. (0 - 1 pkt)

..../1

Na ciało długo działała, jako jedyna, stała niezrównoważona siła równoległa do prostej, po której się to ciało poruszało i przeciwna do początkowego kierunku jego ruchu. Na podstawie tej informacji możemy twierdzić, że:

A. ciało poruszało się ruchem jednostajnie opóźnionym

B. ciało poruszało się ruchem jednostajnie przyspieszonym

C. ruch ciała był albo jednostajnie przyspieszony albo jednostajnie opóźniony

D. ciało poruszało się najpierw ruchem jednostajnie opóźnionym, a później jednostajnie przyspieszonym.

..../1

Zadanie 7. (0 - 1pkt)

W skali Fahrenheita, w warunkach normalnych, woda zamarza w temperaturze 32 °F, a wrze w temperaturze 212 °F. Temperatura ciała wzrosła o 100 °F. Oznacza to wzrost temperatury w skali Celsjusza i Kelwina odpowiednio o około:

A. 56 °C i 56 K

B. 38 °C i 38 K

C. 38 °C i 311 K

D. 56 °C i 329 K.

Zadanie 8. (0 - 1 pkt)

..../1

W naczyniu ze słoną wodą pływa kostka lodu z wody z kranu w Twojej szkole. Po całkowitym stopieniu kostki poziom wody w naczyniu:

A. pozostał bez zmian

B. wzrósł

C. obniżył się

D. zmienił się w sposób, którego nie da się ustalić.

Konkurs fizyczny – szkoła podstawowa. 2019/2020. Etap szkolny

Do izolowanego cieplnie od otoczenia bardzo dużego naczynia, wypełnionego niemal całkowicie mieszaniną wody z lodem (masy wody i lodu są takie same) o temperaturze 0 °C, wrzucono niewielką kostkę lodu o temperaturze -10 °C. Po ustaleniu się jednolitej temperatury układu *t* wyniosła ona:

A. -5 °C **B**. -10 °C **C**. 0 °C **D**. -1 °C >
$$t > 0$$
 °C.

Janek zważył się, jak codziennie rano, w łazience, w kąpielówkach na sprawnej i dobrze wyregulowanej wadze. Okazało się, że waży 56,5 kg. Zaczął się zastanawiać nad objętością swojego ciała. Doszedł do wniosku, że jest ona zbliżona do:

A. $0,056 \text{ m}^3$ **B.** $0,112 \text{ m}^3$ **C.** $0,028 \text{ m}^3$ **D.** $0,0112 \text{ m}^3$.

Zadanie 11. (0 - 5 pkt)
W chwili, gdy wyczerpał się akumulator, samochód elektryczny poruszał się z prędkością $v=16$ m/s. Wskutek działania oporów ruchu zaczął się on poruszać ruchem jednostajnie opóźnionym z przyspieszeniem (zwanym w tym przypadku opóźnieniem) o wartości $a=2$ m/s²
W chwili rozpoczęcia hamowania samochód znajdował się w odległości $L=80~\mathrm{m}$ od znako
drogowego. Oblicz odległość S samochodu od tego znaku drogowego po czasie $t_I=10~\mathrm{s}$ od chwil
rozpoczęcia hamowania.

Zadanie 12. (0 - 5 pkt)	/3
Pod poziomym stalowym blatem umieszczono mały magnes o ciężarze $Q =$	0,5 N.
Współczynnik tarcia kinetycznego magnesu o blat równy jest $f = 0,2$. (Współczynnikier	n tarcia
kinetycznego nazywa się stosunek siły tarcia działającej na ślizgające się po powierzchr	ni ciało,
do siły, z jaką ono naciska na tę powierzchnię.) Pod wpływem stałej poziomej siły o w	vartości
F = 2.0 N magnes przesuwa się pod blatem ruchem jednostajnym. Oblicz wartość siły	, z jaką
magnes jest przyciągany przez blat. (Uwaga! Magnesy są przyciągane m.in. prze	z ciała
wykonane ze stali.)	
	• •
	• •
	• •

Zadanie 13 (0 - 5 pkt)	/5
Pod wpływem stałej poziomej siły $F = 1.0$ N samochodzik o masie $m = 1000$ g,	będący
początkowo w spoczynku, rozpędza się na poziomej podłodze na odcinku o długości	
d=600 cm. Opory ruchu pochłonęły 25% wykonanej przez siłę F pracy. Oblicz	wartoś
prędkości końcowej samochodziku.	

Zadanie 14 (0 - 5 pkt)	/5
Gładki metalowy krążek o polu powierzchni podstawy $S = 20 \text{ cm}^2$ i wysokości $H = 10$	1,0 cm,
mający ciężar $Q = 3$ N przylega ściśle podstawą do gładkiego poziomego dna naczynia	z wodą
tak, że woda nie dostała się pomiędzy dno a krążek. Wysokość słupa wody nad	
powierzchnią krążka wynosi $h = 0.5$ m. Oblicz siłę nacisku krążka na dno naczynia. Zar	niedbaj
wpływ ciśnienia atmosferycznego oraz przyjmij, że gęstość wody $d = 10^3 \mathrm{kg/m^3}$,	
a przyspieszenie grawitacyjne $g = 10 \text{ m/s}^2$.	

Brudnopis