

k-Means Clustering

개요

- Clustering
- ❖ k-means clustering
- Example code

K-MENAS CLUSTERING

참조:

Data Mining: Concepts and Techniques, 3rd Edition, Han et al.

Introduction to Data Mining, 2nd Edition, Tan et al.

Example of K-means Clustering

Example of K-means Clustering

K-Means Clustering

- Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- Number of clusters, k, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- ❖ The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

K-Means Clustering

- Simple iterative algorithm.
 - Choose initial centroids;
 - repeat {assign each point to a nearest centroid; re-compute cluster centroids}
 - until centroids stop changing.
- Initial centroids are often chosen randomly.
 - Clusters produced can vary from one run to another
- The centroid is (typically) the mean of the points in the cluster, but other definitions are possible
- K-means will converge for common proximity measures with appropriately defined centroid
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

K-means Objective Function

- ❖ A common objective function (used with Euclidean distance measure) is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster center
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the centroid (mean) for cluster C_i
- SSE improves in each iteration of K-means until it reaches a local or global minima.

Two different K-means Clusterings

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Limitation of k-means

* K-means has problems when clusters are of differing size, densities, non-globular shapes

Limitation of k-means

❖ One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.

Issues with k-means method

- K-means clustering often terminates at a local optimal
 - Initialization can be important to find high-quality clusters
- Need to specify K, the number of clusters, in advance
 - There are ways to automatically determine the "best" K
 - In practice, one often runs a range of values and selected the "best" K value
- Sensitive to noisy data and outliers
 - Variations: Using K-medians, K-medoids, etc.
- K-means is applicable only to objects in a continuous n-dimensional space
 - Using the K-modes for categorical data
- Not suitable to discover clusters with non-convex shapes
 - Using density-based clustering, kernel K-means, etc.
- Variations of k-means
 - Choosing better initial centroid estimates: k-means++, intelligent k-means, generic k-means
 - Choosing different representative prototypes for the clusters: k-medoids, k-medians, k-modes
 - Applying feature transformation techniques: weighted k-means, kernel k-means

Finding best k

Elbow method: using SSE to determine k

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes buy_computer = no		Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- **Classifier accuracy,** or recognition rate
 - Percentage of test set tuples that a re correctly classified

$$Accuracy = (TP + TN)/AII$$

❖ Error rate: *1 − accuracy,* or

Class imbalance problem

- One class may be rare
 - E.g., fraud, or HIV-positive
- Significant majority of the negative class
 and minority of the positive class
- Measures handle the class imbalance problem
 - Sensitivity (recall):
 True positive recognition rate
 - Sensitivity = TP/P
 - **Specificity**: True negative recognition rate

– Specificity = TN/N

Precision: Exactness: what % of tuples that the classifier labeled as positive are actually positive?

$$P = Precision = \frac{TP}{TP + FP}$$

* Recall: Completeness: what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN}$$

- Range: [0, 1]
- **F measure** (or *F*-score): harmonic mean of precision and recall
 - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Assigning β times as much weig ht to recall as to precision)

■ F1-measure (balanced F-measure)

» That is, when
$$\beta = 1$$
, $F_1 = \frac{2PR}{P+R}$

$$F_1 = \frac{2PR}{P + R}$$

Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (accuracy)

- Sensitivity = TP/P = 90/300 = 30%
- Specificity = TN/N = 9560/9700 = 98.56%
- Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
- Error rate = (FP + FN)/AII = (140 + 210)/10000 = 3.50%
- Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%
- Recall = TP/(TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
- $F1 = 2 P \times R / (P + R) = 2 \times 39.13\% \times 30.00\% / (39.13\% + 30\%) = 33.96\%$

Evaluation: Clustering

- Supervised (external evaluation): used to measure the extent to which cluster labels match externally supplied class labels.
 - Jaccard index = TP/(TP+FN+FP)
 - Rand index = (TP + TN)/N
- Unsupervised (internal evaluation): used to measure the goodness of a clustering structure without
 - Sum of Squared Error (SSE)
 - Sum of squares between (SSB)

respect to external information.

Silhouette coefficient

separation

Unsupervised Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
- ***** Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$SSE = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$SSB = \sum_{i} |C_i| (m - m_i)^2$$

Where $|C_i|$ is the size of cluster i

Unsupervised Measures: Cohesion and Separation

***** Example: SSE

■ SSB + SSE = constant

K=1 cluster:
$$SSE = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$

 $SSB = 4 \times (3-3)^2 = 0$
 $Total = 10 + 0 = 10$

K=2 clusters:
$$SSE = (1 - 1.5)^2 + (2 - 1.5)^2 + (4 - 4.5)^2 + (5 - 4.5)^2 = 1$$

 $SSB = 2 \times (3 - 1.5)^2 + 2 \times (4.5 - 3)^2 = 9$
 $Total = 1 + 9 = 10$

Unsupervised Measures: Silhouette Coefficient

- Silhouette coefficient combines ideas of both cohesion and separation, but for individual points, as well a s clusters and clusterings
- ❖ For an individual point, *i*
 - Calculate α = average distance of i to the points in its cluster
 - Calculate $b = \min$ (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = (b - a) / max(a,b)$$

- Value can vary between -1 and 1
- Typically ranges between 0 and 1.
- The closer to 1 the better.

EXAMPLE CODES

참조:

Data Mining: Concepts and Techniques, 3rd Edition, Han et al.

Introduction to Data Mining, 2nd Edition, Tan et al.

