Минимальные остовные деревья

Minimum spanning trees

Определения

Дан неориентированный граф G=(V,E) с весовой функцией на ребрах $w:E o\mathbb{R}$

Опр. Если подграф $G'\subset G$ содержит все вершины графа G, то такой подграф называется *остовным*.

Опр. *Минимальное остовное дерево* - остовный подграф-дерево, который имеет наименьший вес (сумму весов ребер) среди всех остовных деревьев.

Зеленый подграф является остовным деревом, но не минимальным.

Определения

Пусть G'=(V',E') - подграф некоторого MST T графа G=(V,E).

Опр. Ребро $vu \in E \setminus E'$ называется *безопасным*, если при его добавлении в граф G' он останется подграфом некоторого (возможно другого) MST T' графа G.

Для зеленого подграфа безопасными являются ребра ad и ce.

Поиск MST: план

Будем стартовать с пустого графа, а затем последовательно добавлять безопасные ребра пока не построим минимальное остовное дерево.

Поиск MST: лемма о безопасном ребре

Опр. *Разрезом* графа называется разбиение вершин графа на два непересекающихся множества

Опр. Ребро vu пересекает разрез (S,U), если $v\in S$, а $u\in U$.

Теорема (лемма о безопасном ребре).

Пусть G' - подграф некоторого MST T графа G, а (S,U) - разрез графа G такой, что ребра G' не пересекают его. Тогда ребро минимального веса среди пересекающих разрез будет безопасным для G'.

Теорема (лемма о безопасном ребре).

Пусть G' - подграф некоторого MST T графа G, а (S,U) - разрез графа G такой, что ребра G' не пересекают его. Тогда ребро минимального веса среди пересекающих разрез будет безопасным для G'.

Доказательство.

Пусть e=(v,u) - минимальное ребро пересекающее разрез. Рассмотрим путь из v в u в дереве T. Он пересечет разрез по некоторому ребру e'. По условию $w(e) \leq w(e')$. Заменим ребро e' на e, связность графа сохранится. Так как T минимальное, то это значит, что w(e) = w(e'). То есть e=e', либо e' спокойно можно заменить на e. В любом случае e принадлежит некоторому MST. \blacksquare

Алгоритм Прима

Алгоритм Прима (Prim, 1957)

- 0. Инициализируем разрез (S,U): $S=\{0\}$, $U=V\setminus\{0\}$.
- 1. Ищем минимальное ребро среди пересекающих разрез (S,U)
- 2. Добавляем ребро в MST, а конец ребра переносим из U в S.
- 3. Повторяем 1-2 пока S
 eq V

Алгоритм Прима: реализация с пирамидой

```
def Prim(G):
  dist = [0, inf ..., inf] # мин. вес ребра, ведущего в данную вершину
  prev = [None, ..., None] # начало минимального ребра
  heap.insert(..., (dist[v], v), ...) # Все вершины из U в пирамиде
  while heap is not empty:
   v = heap.ExtractMin()
    if prev[v] is not None:
     AddToMst(prev[v], v)
    for (v, u) in G.neighbors(v):
      if u in heap and w(v, u) < dist[u]:
        prev[u] = v
        dist[u] = w(v, u)
        heap.DecreaseKey(u, w(v, u))
```

При использовании бинарной пирамиды $O(E \log V)$ При использовании фибоначчиевой пирамиды $O(E + V \log V)$

Алгоритм Прима: реализация с массивом

```
def Prim(G):
  dist = [0, inf ..., inf] # мин. вес ребра, ведущего в данную вершину
  prev = [None, ..., None] # начало минимального ребра
 S = \{\}
 while |S| != |V|:
   v = argmin(dist)
    S.insert(v)
    dist[v] = inf # вершина больше не понадобится
    if prev[v] is not None:
     AddToMst(prev[v], v)
    for (v, u) in G.neighbors(v):
      if u not in S and w(v, u) < dist[u]:
        prev[u] = v
        dist[u] = w(v, u)
```

Сложность: $O(E+V^2)$

Алгоритм Прима: сравнение реализаций

Граф/Алгоритм	Бинарная пирамида	Фибоначчиева пирамида	Массив
Разреженый ($E \sim V$)	$O(V \log V)$	$O(V \log V)$	$O(V^2)$
Плотный ($E\sim V^2$)	$O(V^2 \log V)$	$O(V^2)$	$O(V^2)$

Вывод: для разреженных графов лучше выбирать бинарную пирамиду, для плотных - массив.

Фибоначчиева пирамида на практике никогда не лучше (большая константа).

Алгоритм Краскала

Алгоритм Краскала (Kruskal, 1956)

- 1. Сортируем ребра по весу. $O(E \log E) = O(E \log V)$
- 2. Последовательно проходимся по ребрам, если ребро не образует цикл (соединяет вершины из разных компонент), то добавляем в ответ. O(E)

Алгоритм Краскала

```
def Kruskal(G):
   sorted_edges = Sort(G.E, key=w)
   dsu = DSU(G.V) # V одноэлементных множеств
   for (v, u) in sorted_edges:
      if (dsu.FindSet(v) != dsu.FindSet(u)):
        dsu.Union(v, u)
        AddToMst((v, u))
```

Формально, $O(E \log E)$, но $E \lesssim V^2$, поэтому $O(E \log V)$

Алгоритм Борувки

Алгоритм Борувки (Borůvka, 1926)

- 0. Инициализируем множество деревьев $T = \{\{0\}, \{1\}, ..., \{V-1\}\}$ (V одноэлементных дерева)
- 1. Для каждого дерева из T ищем минимальное ребро, связывающее это дерево с другим.
- 2. Добавляем найденные ребра, обновляем деревья.
- 3. Повторяем 1-2 пока |T|>1

Алгоритм Борувки

```
def Boruvka(G):
  dsu = DSU(G.V) # V одноэлементных множеств
  while dsu.SetCount() > 1:
    min_edge = [None, ... None]
    for (v, u) in G.E:
      component_v = dsu.FindSet(v)
      component_u = dsu.FindSet(u)
      if component_v != component_u:
        if w(v, u) < w(min_edge[component_v]):</pre>
          min_edge[component_v] = (v, u)
          if w(v, u) < w(min_edge[component_u]):</pre>
            min_edge[component_u] = (v, u)
    for (v, u) in min_edge:
      if (v, u) is None: continue
      AddToMst(v, u)
      dsu.Union(v, u)
```

Минимум среди ребер ищем суммарно за E, всего итераций $\leq \log V$, так как число компонент на каждом шаге уменьшается минимум вдвое. Итог $O(E\log V)$