Universidade do Minho - Departamento de Electrónica Industrial

Mestrado Integrado em Engenharia Electrónica Industrial e Computadores

Sistemas Digitais A - Laboratórios

Circuitos Combinacionais

Duração máxima: 3 aulas.

Todos os esquemáticos entregues neste e nos próximos trabalhos devem indicar os integrados utilizados e a numeração dos pinos, como no exemplo da Fig. 1.

Antes de realizar o trabalho, os alunos devem ter estudado os seguintes tópicos:

- 1) Preenchimento de tabelas de verdade;
- 2) Construção de diagramas lógicos;
- 3) Funcionamento de componentes lógicos discretos;
- 4) Tipos de portas lógicas;
- 5) Álgebra de Boole;
- 6) Mapas de Karnaugh.

Durante a realização do trabalho, os alunos devem:

- 1) Realizar as montagens indicadas no guia;
- 2) Registar no logbook todos os valores calculados e medidos.

Depois de realizar o trabalho na totalidade, os alunos devem:

- 1) Ter verificado experimentalmente os tópicos anteriores;
- 2) Saber consultar e construir documentação sobre circuitos lógicos;
- 3) Ter adquirido experiência de análise de circuitos lógicos combinacionais;
- 4) Ter adquirido experiência de projecto de circuitos lógicos combinacionais.

Elementos de estudo:

- 1) Acetatos de Sistemas Digitais A.
- 2) John F. Wakerly, "Digital Design, Principles and Practices", Prentice Hall, 2000.

Desenho de Diagramas Lógicos

Há algumas regras de bom senso que devem ser utilizadas quando se desenham circuitos lógicos. Um bom desenho de circuito não só facilita a leitura, mas também e acima de tudo, facilita a depuração de erros, ou detecção de problemas de funcionamento, já que fornece toda a informação necessária quando se torna necessário inspeccionar partes do circuito.

Deverá para seu próprio benefício seguir o conjunto de recomendações aqui apresentado, e que se ilustra no diagrama lógico exemplo da Fig.1.

Fig.1

Repare que:

- Os circuitos integrados utilizados estão numerados (IC1, IC2).
- Além da numeração, todos os circuitos integrados estão devidamente identificados, através da sua referência standard.
- Todos os pinos de entrada e saída estão igualmente identificados. Desta forma nunca se confundirá o pino 1 de IC1 (um 7400 QUAD 2-input NAND gate), com o pino 1 de IC2 (um 7420 Dual 4-input NAND gate).

Procedimento

1 - *Implemente as funções NOT, AND e OR utilizando apenas portas NAND.* Monte e teste os circuitos.

- 2 Um tribunal é constituído por 4 juízes (**A**, **B**, **C** e **D**). Para a decisão sobre um réu ser culpado ou inocente, cada juiz pode votar sim ou não. O réu só é considerado culpado se o juiz **A** e pelo menos um dos outros juízes votam sim, ou se os juízes **B**, **C** e **D** votam sim.
- a. Construa uma tabela de verdade em que cada juiz corresponde a uma entrada, e a saída indica a decisão: culpado ou inocente.
- b. Obtenha a expressão lógica minimizada para a saída, em função das quatro entradas, representando-a na forma de soma de produtos.
- c. Considere que tem à disposição somente portas NOT e portas AND e OR de duas entradas. Manipule a expressão lógica obtida na alínea b de forma a minimizar o número de portas lógicas necessárias. Desenhe o diagrama esquemático tendo em consideração as recomendações apresentadas na página 2.
- d. Monte e teste o circuito lógico correspondente ao diagrama lógico obtido na alínea c.
- e. Forneça uma solução (expressão lógica e correspondente diagrama esquemático) que utilize somente portas **NAND de 2 entradas** e que minimize o número de portas lógicas necessárias.
- 3 Implemente um circuito lógico que receba como entrada a posição de um dígito de um número decimal de dez dígitos e forneça como saída o dígito correspondente (a posição do dígito mais à esquerda é 1 e do mais à direita é 10). Tanto a posição (entrada) como o valor do dígito (saída) devem ser representados em binário. Além disso, o circuito deve apresentar na saída o valor 9 para a entrada 15.

O número de dez dígitos é único para cada grupo, sendo formado pela concatenação dos números mecanográficos (A e B, nesta ordem) dos dois elementos do grupo, com A < B, por exemplo, se os números mecanográficos fossem 79453 e 81760, o número de 10 dígitos seria 7945381760.

Sendo A1 e B1 os dígitos mais à esquerda dos números mecanográficos, a correspondência entre as entradas e saídas que devem ser fornecidas pelo circuito é a seguinte:

$$1\rightarrow A1, 2\rightarrow A2, 3\rightarrow A3, 4\rightarrow A4, 5\rightarrow A5, 6\rightarrow B1, 7\rightarrow B2, 8\rightarrow B3, 9\rightarrow B4, 10\rightarrow B5, 15\rightarrow 9$$

- a. Construa a tabela de verdade para este problema.
- b. Obtenha expressões lógicas minimizadas para as saídas com recurso a mapas de Karnaugh.
- c. Construa o diagrama lógico do circuito, seguindo as recomendações fornecidas, procurando minimizar o número de circuitos integrados utilizados.
- d. Monte e teste o circuito.

OBS1: As combinações de entrada que não são referidas no problema não interessam.

OBS2: Procure reaproveitar os mesmos agrupamentos das diferentes saídas nos mapas de Karnaugh, pois isso permite reduzir o número de portas lógicas necessárias.

OBS3: Caso o grupo tenha apenas um elemento, o número A é a parte inteira de B/2, em que B é o número mecanográfico do aluno.