2022.02.22 AstroRead @ NTHU Astronomy Club

Why do we care about radiative processes?

為什麼我們要學輻射過程?

illustrisTNG | NASA, ESA, K. Kuntz, F. Bresolin, J. Trauger, J. Mould, Y.-H. Chu, Canada-France-Hawaii Telescope/J.-C. Cuillandre/Coelum, and G. Jacoby, B. Bohannan, and M. Hanna/NOAO/AURA/NSF

Why do we care about radiative processes?

為什麼我們要學輻射過程?

How to define the **Intensity** of light?

描述光的強度

「亮」的天體到底是什麼意思?

In physical sciences [edit]

Physics [edit]

- Intensity (physics), power per unit area (W/m²)
- Field strength of electric, magnetic, or electromagnetic fields (V/m, T, etc.)
- Intensity (heat transfer), radiant heat flux per unit area per unit solid angle (W·m⁻²·sr⁻¹)
- Electric current, whose value is sometimes called *current intensity* in older books

Optics [edit]

- Radiant intensity, power per unit solid angle (W/sr)
- Luminous intensity, luminous flux per unit solid angle (lm/sr or cd)
- Irradiance, power per unit area (W/m²)

Astronomy [edit]

• Radiance, power per unit solid angle per unit projected source area (W·sr⁻¹·m⁻²)

Seismology [edit]

- Mercalli intensity scale, a measure of earthquake impact
- Japan Meteorological Agency seismic intensity scale, a measure of earthquake impact
- Peak ground acceleration, a measure of earthquake acceleration (g or m/s²)

Acoustics [edit]

• Sound intensity, sound power per unit area

國際單位制的輻射量單位

BB.		<u>-</u> △		Li
핅	٠	TITLE	۰	A

物理量	符號	國際單位制	單位符號	注釋
輻射出射度(Radiant exitance)	M _e	瓦特每平方公尺	W·m ^{−2}	表面出射的輻射通量
輻射度(Radiosity)	J _e or J _{eλ}	瓦特每平方公尺	W⋅m ⁻²	表面出射及反射的輻射通量總和
輻射率(Radiance)	L _e	瓦特每立弳每平方公尺	W·sr ⁻¹ ·m ⁻²	每單位立體角每單位投射表面的輻射通量。
輻射能(Radiant energy)	Q _e	焦耳	J	能量。
輻射能量密度(Radiant energy density)	ω_{e}	焦耳每立方公尺	J⋅m ⁻³	
輻射強度(Radiant intensity)	l _e	瓦特每立弳	W·sr ⁻¹	每單位立體角的輻射通量。
輻射曝光量(Radiant exposure)	H _e	焦耳每平方公尺	J·m ^{−2}	
輻射通量(Radiant flux)	Фе	瓦特	W	每單位時間的輻射能量,亦作「輻射功率」。
輻照度 (Irradiance)	E _e	瓦特每平方公尺	W·m ^{−2}	入射表面的輻射通量。
光譜輻射出射度(Spectral radiant emittance)	M _{eλ} 或 M _{ev}	瓦特每立方公尺 <i>或</i> 瓦特每平方公尺每赫茲	W·m ⁻³ or W·m ⁻² ·Hz ⁻¹	表面出射的輻射通量的波長或頻率的分布
光譜輻射率(Spectral radiance)	L _{eλ} 或 L _{ev}	瓦特每立弳每立方公尺 或 瓦特每立弳每平方公尺每赫茲	W·sr ⁻¹ ·m ⁻³ 或 W·sr ⁻¹ ·m ⁻² ·Hz ⁻¹	常用W·sr ⁻¹ ·m ⁻² ·nm ⁻¹
光譜輻照度(Spectral irradiance)	E _λ 或 E _v	瓦特每立方公尺 <i>或</i> 瓦特每平方公尺每赫茲	W·m ⁻³ 或 W·m ⁻² ·Hz ⁻¹	通常測量單位為 W·m ⁻² ·nm ⁻¹
光譜功率(Spectral power)	$oldsymbol{\phi}_{e\lambda}$	瓦特每米	W·m ^{−1}	輻射通量的波長分布
光譜強度(Spectral intensity)	l _{eλ}	瓦特每立弳每米	W·sr ⁻¹ ·m ⁻¹	輻射強度的波長分布

How to define the **Intensity** of light?

描述光的強度・續

回歸本質,天體的亮應當用哪個物理量衡量?

又有什麼因素會影響天體的「亮度」?

$$\frac{dE}{\cos\theta \, dt dA d\Omega d\nu} = I_{\nu}$$

Specific Intensity

描述光的強度・再

- 1. Energy Received (E),單位 [erg]
- 2. Total Flux (F),單位 [erg s-1]
- 3. Flux (f),單位 [erg cm⁻² s⁻¹]
- 4. Total Intensity (I),單位 [erg cm-2 sr-1 s-1],又叫 Surface Brightness
- 5. Specific Intensity (I_v) ,單位 [erg cm $^{-2}$ sr $^{-1}$ s $^{-1}$ Hz $^{-1}$]

The names are not important. What you should care about is the units.

 I_v is convenient because it is an **intrinsic** property of the source.

$\frac{dE}{\cos\theta \ dt dA d\Omega d\nu} = I_{\nu}$

直覺法:

[1]

- E = 100hv
- F = 100hv/t
- f = 100hv/At
- $I = 100hv/At\Omega$
- $I_{\nu} = 100h\nu/At\Omega\Delta\nu$

[2]

- E = 25hv
- F = 25hv/t
- f = 25hv/At
- $I = 25h\nu/At\left(\frac{\Omega}{4}\right)$

•
$$I_{\nu} = \frac{25h\nu}{At(\frac{\Omega}{4})\Delta\nu}$$

[3]

- E = 100hv
- F = 100hv/t
- f = 100hv/(4A)t

•
$$I = \frac{100h\nu}{(4A)t(\frac{\Omega}{4})}$$

$$I_{\nu} = \frac{100h\nu}{4At\left(\frac{\Omega}{4}\right)\Delta\nu}$$

Exercise

感光元件的 Count 對應的物理量是?

Credit: 許淵明

目標大小 $\Omega_{
m s}$ $[rad^2]$

‡ 像素大小 ℓ

[*cm*]

導出參數

像素數量: $n = (L/\ell)^2$

焦比:f = F/D

視野: $FOV = (L/F)^2$

單像素視野(空間解析度)

$$\Omega_p = (\ell/F)^2 = FOV/n$$

$$N = \int_{T} \int_{A} \int_{\Omega} I d\Omega dA dt = I \Omega AT = I \left(\frac{\ell}{F}\right)^{2} D^{2}T = I \left(\frac{D}{F}\right)^{2} \ell^{2}T$$

光的強度變化:輻射轉移

What will change the intensity of light?

Emission, Absorption and Scattering.

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}$$

輻射轉移・續

More on absorption coefficient:

$$\alpha_{\nu} = n\sigma_{\nu} = \rho \kappa_{\nu}$$

With **no emission**, the radiation transfer equation reduce to:

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu}$$

Solving this ODE we see

$$I_{\nu}(s) = I_{\nu}(0) \exp\left(-\int_{0}^{s} \alpha_{\nu}(s) ds\right) \equiv I_{\nu}(0) e^{-\tau_{\nu}}, \qquad d\tau_{\nu} = \alpha_{\nu} ds$$

We define **optical depth** accordingly.

輻射轉移・再

On the other hand, if there is no absorption, we have

$$\frac{dI_{\nu}}{ds} = j_{\nu} \Rightarrow I_{\nu}(s) = I_{\nu}(0) + \int_{0}^{s} j_{\nu} ds$$

Which is kind of trivial. :p

輻射轉移·改

For some reason, people often use another form of radiative transfer equ.

We define the **Source Function**:

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}$$

Plug it back into the R.T.E we get

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

輻射轉移・改二

For some reason, people often use another form of radiative transfer equ.

We define the **Source Function**:

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}$$

Plug it back into the R.T.E, and use tau as spatial coordinate, we get

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

輻射轉移・改三

In this form, there is an exact solution

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

$$I_
u(au_
u) = I_
u(0)e^{- au_
u} + \int_0^{ au_
u} S_
uig(au_
u'ig)e^{-(au_
u- au_
u')} \mathrm{d} au_
u'$$

$$\tau_{\nu} = 0$$
 $\tau_{\nu} = {\tau_{\nu}}'$ $\tau_{\nu} = \tau_{\nu}$

輻射轉移·改四

$$I_
u(au_
u) = I_
u(0) e^{- au_
u} + \int_0^{ au_
u} S_
uig(au_
u'ig) e^{-(au_
u - au_
u')} \mathrm{d} au_
u'$$

When the source function and absorption is constant, the solution is

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

In some extreme cases:

•
$$\tau_{\nu} \to \infty \Rightarrow I_{\nu} \to S_{\nu}$$

•
$$\tau_{\nu} \rightarrow 0 \Rightarrow I_{\nu} \rightarrow I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}\tau_{\nu}$$

You can verify this by expanding $e^{-\tau_{\nu}}$ and take the first term.

Examples

Limb darkening

Examples

Dust Extinction

Dust would extinguish photos.

This can be important in e.g. measuring distance.

The original distance modulus is:

$$m - M = 5 \log D - 5$$

But when there is dust, we should use

$$m - M = 5 \log D - 5 + A$$

Examples

Dust Extinction

More importantly, extinction strength changes with wavelength.

In optical, the short wavelength light usually suffers stronger extinction, creating the **reddening effect**.

The wavelength dependence of extinction is called **extinction curve**.

Nightmare

Scattering

In reality, photons can be scattered back into the line of sight, which fu*k up everything.

With scattering, our problem is no longer 1 dimensional.

Now, we have to consider the

complicated geometry of our target. \leftarrow Red light $x / 2\pi = r / \lambda$ Blue light—

Scattering is not only wavelength dependent, but also anisotropic.

Different wavelength / grain size, creates different scattering pattern.

This is very hard to model analytically.

Computer go brrrrrrrrr

Numerical Radiative transfer

Utilizing Monte-Carlo method and Ray Tracing to solve RTE.

Summary

- In astrophysics, we often use **specific intensity** [erg cm⁻² sr⁻¹ s⁻¹ Hz⁻¹] to describe the strength of light.
- Specific intensity is an **intrinsic property** of the source.
- Specific intensity is changed by **absorption**, **scattering** and **emission**, described by **radiative transfer equation**.
- · Radiative transfer effects are often discussed using optical depth.
- Complicated radiative transfer problems can usually solved numerically.