Tutorial 5

Optimisation

(to be covered in 1.5 tutorials)

 Draw the Control Flow Graph for the Jimple-like code snippet in Figure Q1

```
x = 1;
    W = 0;
    z = 3;
10: if z==0 goto 14;
11: y = w;
    if z==3 goto 12;
    y = x-1;
    W = Y+Z;
    goto 13;
12: x = z;
    y = x+1;
13: z = z-1;
    goto 10;
14: return y;
```

Figure Q1

- Which variables are live and which are dead after the node for the instruction at label 11 (node 6)
- Variable x is live because there is a branch where it is read by node 8 and this node is not preceded by any other node that writes x
- It does not matter that x is written by node 10 on the other branch

- Which variables are live and which are dead after the node for the instruction at label 11 (node 6)
- Variable y is dead because it is written without being read on both branches by node 8 and node 11 respectively
- Variable z is live because it is read in the conditional jump in the next node, node 7

- Which variables are live and which are dead after the node for the instruction at label 11 (node 6)
- Although variable w is written by node 9 in one branch, the other branch neither reads nor writes w
- Variable w is live because it is read by node 6 in the next iteration of the loop and it is not previously written by any other node on the path

- The transfer equations for liveness analysis for a Control Flow Graph with 12 nodes are as shown in Figure Q2
- For simplicity, the out_L(n) expressions have been substituted away
- Solve the equations
 iteratively by filling in
 successive columns of Table
 Q2 until there are no further
 changes

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

Figure Q2

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø						
in _L (2)	Ø						
in _L (3)	Ø						
in _L (4)	Ø						
in _L (5)	Ø						
in _L (6)	Ø						
in _L (7)	Ø						
in _L (8)	Ø						
in _L (9)	Ø						
in _L (10)	Ø						
in _L (11)	Ø						
in _L (12)	Ø						

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø					
in _L (2)	Ø	Ø					
in _L (3)	Ø	Ø					
in _L (4)	Ø	X,Z					
in _L (5)	Ø	X					
in _L (6)	Ø	Z					
in _L (7)	Ø	t,z					
in _L (8)	Ø	r,t					
in _L (9)	Ø	r,z					
in _L (10)	Ø	Z					
in _L (11)	Ø	r					
in _L (12)	Ø	Ø					

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø	Ø				
in _L (2)	Ø	Ø	Ø				
in _L (3)	Ø	Ø	Z				
in _L (4)	Ø	X,Z	r,x,z				
in _L (5)	Ø	X	X,Z				
in _L (6)	Ø	Z	Z				
in _L (7)	Ø	t,z	r,t,z				
in _L (8)	Ø	r,t	r,t,z				
in _L (9)	Ø	r,z	r,z				
in _L (10)	Ø	Z	X,Z				
in _L (11)	Ø	r	r				
in _L (12)	Ø	Ø	Ø				

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø	Ø	Ø			
in _L (2)	Ø	Ø	Ø	Ø			
in _L (3)	Ø	Ø	Z	r,z			
in _L (4)	Ø	X,Z	r,x,z	r,x,z			
in _L (5)	Ø	X	X,Z	X,Z			
in _L (6)	Ø	Z	Z	r,z			
in _L (7)	Ø	t,z	r,t,z	r,t,z			
in _L (8)	Ø	r,t	r,t,z	r,t,z			
in _L (9)	Ø	r,z	r,z	r,z			
in _L (10)	Ø	Z	X,Z	r,x,z			
in _L (11)	Ø	r	r	r			
in _L (12)	Ø	Ø	Ø	Ø			

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø	Ø	Ø	Ø		
in _L (2)	Ø	Ø	Ø	Ø	r		
in _L (3)	Ø	Ø	Z	r,z	r,z		
in _L (4)	Ø	X,Z	r,x,z	r,x,z	r,x,z		
in _L (5)	Ø	X	X,Z	X,Z	X,Z		
in _L (6)	Ø	Z	Z	r,z	r,z		
in _L (7)	Ø	t,z	r,t,z	r,t,z	r,t,z		
in _L (8)	Ø	r,t	r,t,z	r,t,z	r,t,z		
in _L (9)	Ø	r,z	r,z	r,z	r,z		
in _L (10)	Ø	Z	X,Z	r,x,z	r,x,z		
in _L (11)	Ø	r	r	r	r		
in _L (12)	Ø	Ø	Ø	Ø	Ø		

$$in_{L}(1) = in_{L}(2)$$

 $in_{L}(2) = in_{L}(3) \setminus \{z\}$
 $in_{L}(3) = in_{L}(4) \setminus \{x\}$
 $in_{L}(4) = in_{L}(11) \cup in_{L}(5) \cup \{x, z\}$
 $in_{L}(5) = in_{L}(6) \setminus \{r\} \cup \{x\}$
 $in_{L}(6) = in_{L}(7) \setminus \{t\} \cup \{z\}$
 $in_{L}(7) = in_{L}(8) \cup in_{L}(9) \cup \{t, z\}$
 $in_{L}(8) = in_{L}(10) \setminus \{x\} \cup \{r, t\}$
 $in_{L}(9) = in_{L}(10) \setminus \{x\} \cup \{r, z\}$
 $in_{L}(10) = in_{L}(4) \cup \{z\}$
 $in_{L}(11) = in_{L}(12) \cup \{r\}$
 $in_{L}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø	Ø	Ø	Ø	r	
in _L (2)	Ø	Ø	Ø	Ø	r	r	
in _L (3)	Ø	Ø	Z	r,z	r,z	r,z	
in _L (4)	Ø	X,Z	r,x,z	r,x,z	r,x,z	r,x,z	
in _L (5)	Ø	X	X,Z	X,Z	X,Z	X,Z	
in _L (6)	Ø	Z	Z	r,z	r,z	r,z	
in _L (7)	Ø	t,z	r,t,z	r,t,z	r,t,z	r,t,z	
in _L (8)	Ø	r,t	r,t,z	r,t,z	r,t,z	r,t,z	
in _L (9)	Ø	r,z	r,z	r,z	r,z	r,z	
in _L (10)	Ø	Z	X,Z	r,x,z	r,x,z	r,x,z	
in _L (11)	Ø	r	r	r	r	r	
in _L (12)	Ø	Ø	Ø	Ø	Ø	Ø	

No further change after iteration 6

$$in_L(1) = in_L(2)$$

$$in_L(2) = in_L(3) \setminus \{z\}$$

$$in_{1}(3) = in_{1}(4) \setminus \{x\}$$

$$in_1(4) = in_1(11) \cup in_1(5) \cup \{x, z\}$$

$$in_1(5) = in_1(6) \setminus \{r\} \cup \{x\}$$

$$in_1(6) = in_1(7) \setminus \{t\} \cup \{z\}$$

$$in_1(7) = in_1(8) \cup in_1(9) \cup \{t, z\}$$

$$in_L(8) = in_L(10) \setminus \{x\} \cup \{r, t\}$$

$$in_1(9) = in_1(10) \setminus \{x\} \cup \{r, z\}$$

$$in_1(10) = in_1(4) \cup \{z\}$$

$$in_L(11) = in_L(12) \cup \{r\}$$

$$in_1(12) = \emptyset$$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø	Ø	Ø	Ø	r	r
in _L (2)	Ø	Ø	Ø	Ø	r	r	r
in _L (3)	Ø	Ø	Z	r,z	r,z	r,z	r,z
in _L (4)	Ø	X,Z	r,x,z	r,x,z	r,x,z	r,x,z	r,x,z
in _L (5)	Ø	X	X,Z	X,Z	X,Z	X,Z	X,Z
in _L (6)	Ø	Z	Z	r,z	r,z	r,z	r,z
in _L (7)	Ø	t,z	r,t,z	r,t,z	r,t,z	r,t,z	r,t,z
in _L (8)	Ø	r,t	r,t,z	r,t,z	r,t,z	r,t,z	r,t,z
in _L (9)	Ø	r,z	r,z	r,z	r,z	r,z	r,z
in _L (10)	Ø	Z	X,Z	r,x,z	r,x,z	r,x,z	r,x,z
in _L (11)	Ø	r	r	r	r	r	r
in _L (12)	Ø	Ø	Ø	Ø	Ø	Ø	Ø

- Consider the Control Flow Graph (CFG) shown in Figure Q3
- Derive the set of transfer functions for available expressions analysis, i.e. the functions for in_A(n) and out_A(n) for each node n in the CFG

Set of all (arithmetic and logical) expressions that occur in the method: $U = \{w*2, x+y, z-1\}$

(1) **ENTRY** 2 W = 2x = z-1z==0 **7** T if z==3x = w*2= z-1y = z-1W = X+Yz = z-1return **EXIT** Figure Q3

Question 3

out_A(n) = in_A(n) \
$$\{e \mid vars(e) \cap def(n) \neq \emptyset\} \cup comp(n)$$

out_A(1) = in_A(1)

out_A(2) = in_A(2) \ { w*2 }

out_A(3) = in_A(3) \ { z-1 } \cup { w*2 }

out_A(4) = in_A(4) \ { x+y } \cup { z-1 }

out_A(5) = in_A(5) \ { x+y } \cup { w*2 }

out_A(6) = in_A(6)

out_A(7) = in_A(7)

(1) **ENTRY** 2 W = 2x = z-1z==0 **7** T z==3x = w*2= z-1y = z-1W = X+Yz = z-1return **EXIT** Figure Q3

Question 3

1 **ENTRY** 2 W = 2x = z-1z==0 **7** T if z==38 x = w*2= z-1y = z-1W = X+Yz = z-1return **EXIT** Figure Q3

Question 3

$$in_A(n) = \bigcap \{ out_A(m) \mid m \in pred(n) \}$$

 $in_A(ENTRY) = \emptyset$

$$in_{\Delta}(1) = \emptyset$$

$$in_A(2) = out_A(1)$$

$$in_{\Delta}(3) = out_{\Delta}(2)$$

$$in_{\Delta}(4) = out_{\Delta}(3) \cap out_{\Delta}(12)$$

$$in_A(5) = out_A(4)$$

$$in_A(6) = out_A(5)$$

$$in_{\Delta}(7) = out_{\Delta}(6)$$

1 **ENTRY** 2 W = 2x = z-1z==0 7 T z==38 x = w*2= z-1y = z-1W = X + Yz = z-1return **EXIT** Figure Q3

Question 3

$$in_A(n) = \bigcap \{ out_A(m) \mid m \in pred(n) \}$$

 $in_A(ENTRY) = \emptyset$

$$in_A(8) = out_A(7)$$

 $in_A(9) = out_A(8)$
 $in_A(10) = out_A(7)$
 $in_A(11) = out_A(10)$
 $in_A(12) = out_A(9) \cap out_A(11)$
 $in_A(13) = out_A(6)$
 $in_A(14) = out_A(13)$

 Use the worklist algorithm shown in Figure Q4 to solve the set of transfer functions derived in Question 3

```
worklist = [ all nodes ]
while worklist != empty do

m = removeFirst(worklist)
recompute out<sub>A</sub>(m)
if out<sub>A</sub>(m) has changed then
    for each successor n of m
        compute in<sub>A</sub>(n)
    if in<sub>A</sub>(n) has changed then put n into worklist
        (if not already in worklist)
```

Figure Q4

- You may assume that the worklist is initialized to the set of all nodes, in increasing order of node number, as shown in Figure Q3
- We initialize the worklist to contain all nodes in the CFG to ensure that each node is evaluated at least once
- As far as possible the nodes should be ordered so that a node is only evaluated after all its predecessors have updated their values (but this can be difficult when the CFG has cycles)
- Note: for all nodes, $\operatorname{out}_A(n)$ and $\operatorname{in}_A(n)$ are initialized to U, the set of all expressions in the method, except $\operatorname{in}_A(1) = \emptyset$

```
worklist = [ all nodes ]
while worklist != empty do
    m = removeFirst(worklist)
    recompute out<sub>A</sub>(m)
    if out<sub>A</sub>(m) has changed then
        for each successor n of m
        compute in<sub>A</sub>(n)
        if in<sub>A</sub>(n) has changed then put n into worklist
```

Worklist $out_{\Delta}(m)$ & $in_{\Delta}(n)$

1, ..., 14 out_{$$\Delta$$}(1) = \emptyset in _{Δ} (2) = \emptyset

2, ..., 14 out_A(2) =
$$\emptyset$$
 in_A(3) = \emptyset


```
worklist = [ all nodes ]
while worklist != empty do
    m = removeFirst(worklist)
    recompute out<sub>A</sub>(m)
    if out<sub>A</sub>(m) has changed then
        for each successor n of m
            compute in<sub>A</sub>(n)
        if in<sub>A</sub>(n) has changed then put n into worklist
```



```
worklist = [ all nodes ]
while worklist != empty do
    m = removeFirst(worklist)
    recompute out<sub>A</sub>(m)
    if out<sub>A</sub>(m) has changed then
        for each successor n of m
            compute in<sub>A</sub>(n)
        if in<sub>A</sub>(n) has changed then put n into worklist
```



```
worklist = [ all nodes ]
while worklist != empty do
    m = removeFirst(worklist)
    recompute out<sub>A</sub>(m)
    if out<sub>A</sub>(m) has changed then
        for each successor n of m
            compute in<sub>A</sub>(n)
        if in<sub>A</sub>(n) has changed then put n into worklist
```

10, ..., 14
$$\operatorname{out}_{A}(10) = \{ w^{*}2, z-1 \}$$

 $\operatorname{in}_{A}(11) = \{ w^{*}2, z-1 \}$
11, ..., 14 $\operatorname{out}_{A}(11) = \{ w^{*}2, z-1 \}$
 $\operatorname{in}_{A}(12) = \{ z-1 \}$
12, ..., 14 $\operatorname{out}_{A}(12) = \emptyset$
 $\operatorname{in}_{A}(4) = \emptyset$ (changed)


```
worklist = [ all nodes ]
while worklist != empty do
    m = removeFirst(worklist)
    recompute out<sub>A</sub>(m)
    if out<sub>A</sub>(m) has changed then
        for each successor n of m
            compute in<sub>A</sub>(n)
        if in<sub>A</sub>(n) has changed then put n into worklist
            (if not already in worklist)
```

13, 14, 4 out_A(13) = { w*2, z-1 } in_A(14) = { w*2, z-1 } out_A(14) = { w*2, z-1 }
$$out_{A}(14) = { w*2, z-1 }$$
 out_A(14) = { z-1 } (changed) in_A(5) = { z-1 } (changed) out_A(5) = { w*2, z-1 } (unchanged)

