A Short Note on Reinforcement Learning

Tianyu Du

November 25, 2019

1 Notations

- Y^X : The space of all functions $f: X \to Y$.
- $f(\cdot)$: functions.
- $F[\cdot]$: Functionals.
- $\Delta(X)$: The space of all probability distributions over X.

2 Setup

Definition 2.1. A Markov decision process is a tuple (S, A, P, R, γ) .

- Space of states S;
- Space of actions A, A is assumed to be finite;
- Transition probability: $\mathcal{P}: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$;
- Immediate reward distribution: $R_t(S_t, S_{t+1}, A) \sim \mathcal{R} : \mathcal{S} \times \mathcal{S} \times \mathcal{A} \to \Delta(\mathbb{R})$
- Discount factor: $\gamma \in [0, 1]$.

Definition 2.2. A **policy** π is a mapping from \mathcal{S} to \mathcal{A} (pure strategies) or $\Delta(\mathcal{A})$ (mixed strategies). Let $\Pi \equiv \Delta(\mathcal{A})^{\mathcal{S}}$ denote the collection of all policies.

3 Value Functions

Definition 3.1. The value function $V[\cdot]:\Pi\to\mathbb{R}^{\mathcal{S}}$ is defined as

$$V[\pi](s) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} | S_t = s \right]$$
 (1)

Assumption 3.1. Assume \mathcal{R} is deterministic and depends on (S_t, A_t) only:

$$\mathbb{P}[\mathcal{R}(s, S_{t+1}, a) = r(s, a)] = 1 \ \forall S_{t+1} \in \mathcal{S}$$
(2)

Assumption 3.2 (Markov property). The future depends on the past only through the current state. That is,

$$\mathcal{P}(S_t, A_t) \perp A_t \tag{3}$$

Apply the law of total expectation (LTE),

$$V[\pi](s) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s \right]$$

$$\tag{4}$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, A_t = a \right]$$
(LTE)

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \int_{\mathcal{S}} \mathcal{P}(s'|s, a) \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, A_t = a, S_{t+1} = s' \right] ds' \text{ (LTE)}$$
 (6)

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \int_{\mathcal{S}} \mathcal{P}(s'|s, a) \mathbb{E}_{\pi} \left[r(s, a) + \sum_{k=1}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, A_t = a, S_{t+1} = s' \right] ds'$$
 (7)

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \int_{\mathcal{S}} \mathcal{P}(s'|s, a) \mathbb{E}_{\pi} \left[r(s, a) + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \middle| S_{t+1} = s' \right] ds'$$
 (8)

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \int_{\mathcal{S}} \mathcal{P}(s'|s,a) \left\{ r(s,a) + \gamma \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \middle| S_{t+1} = s' \right] \right\} ds'$$
 (9)

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \left[r(s,a) + \gamma \int_{\mathcal{S}} \mathcal{P}(s'|s,a) V[\pi](s') ds' \right]$$
(10)

Similarly, conditioning $V[\pi](s)$ on $A_t = a$ gives

$$Q[\pi](s,a) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k} \middle| S_{t} = s, A_{t} = a \right]$$
(11)

$$= \int_{\mathcal{S}} \mathcal{P}(s'|s, a) \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, A_t = a, S_{t+1} = s' \right] ds' \text{ (LTE)}$$

$$(12)$$

$$= \int_{\mathcal{S}} \mathcal{P}(s'|s, a) \mathbb{E}_{\pi} \left[r(s, a) + \gamma \sum_{k=1}^{\infty} \gamma^{k} R_{t+1+k} \middle| S_{t} = s, A_{t} = a, S_{t+1} = s' \right] ds'$$
 (13)

$$= \int_{\mathcal{S}} \mathcal{P}(s'|s,a) \left\{ r(s,a) + \gamma \mathbb{E}_{\pi} \left[\sum_{k=1}^{\infty} \gamma^{k} R_{t+1+k} \middle| S_{t+1} = s', A_{t+1} = \pi(s') \right] \right\} ds'$$
 (14)

$$= \int_{S} \mathcal{P}(s'|s,a) \left\{ r(s,a) + \gamma Q[\pi](s',\pi(s')) \right\} ds' \tag{15}$$

$$= r(s,a) + \gamma \int_{\mathcal{S}} \mathcal{P}(s'|s,a)Q[\pi](s',\pi(s'))ds'$$
(16)

4 Bellman Operators

Definition 4.1. Define the **Bellman operator** $T[Q, \theta] : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ where $Q \in \mathbb{R}^{\mathcal{S} \times \mathcal{A}}$ and $\theta \in \Pi \equiv \Delta(\mathcal{A})^{\mathcal{S}}$ as

$$T[Q,\theta](s,a) := r(s,a) + \gamma \int_{\mathcal{S}} \mathcal{P}(s'|s,a)Q(s',\theta(s'))ds'$$

$$\tag{17}$$

Definition 4.2. Define the optimal (pure) policy $\pi^*(\cdot)$ as

$$\forall s \in \mathcal{S}, \ \pi^*(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$
 (18)

Definition 4.3. Define the **Bellman optimality operator** $T^*[Q]$ as

$$T^*[Q] := T[Q, \pi^*] \tag{19}$$

$$= r(s,a) + \gamma \int_{\mathcal{S}} \mathcal{P}(s'|s,a)Q(s',\pi^*(s'))ds'$$
(20)

$$= r(s, a) + \gamma \int_{\mathcal{S}} \mathcal{P}(s'|s, a) \max_{a' \in \mathcal{A}} Q(s', a') ds'$$
(21)

Proposition 4.1. For every $\pi \in \Delta(\mathcal{A})^{\mathcal{S}}$,

$$T[Q[\pi](\cdot); \pi](s, a) = Q[\pi](s, a) \ \forall (s, a) \in \mathcal{S} \times \mathcal{A}$$
(22)

That is, given each π , $Q[\pi]$ is the fixed point for the corresponding Bellman operator $T[\ \cdot\ ;\pi]$.

Proof. Follows the definition of Bellman operator.

Theorem 4.1. For every $\pi \in \Delta(\mathcal{A})^{\mathcal{S}}$, the fixed point of the corresponding Bellman operator is unique.

Corollary 4.1. In particular, take $\pi = \pi^*$, then $Q[\pi^*]$ is the unique fixed point for Bellman optimality operator.

Consequently, finding the unique $Q[\pi^*]$ from $T^*[\cdot]$ would provide sufficient evidence to identify the optimal policy π^* .

Theorem 4.2. For every π , the corresponding Bellman operator is a contraction mapping.

5 Value Iteration

6 Q-Learning: Exploration vs. Exploitation