Introduction à la Conjecture d'Alexandru

Rappelons quelques résultats de Bernstein, Gelfand, Gelfand, Delorme, Beilinson, Guinzburg et Soergel. Soient $\mathfrak g$ une algèbre de Lie semisimple complexe, $\mathfrak b$ une sous-algèbre de Borel et $\mathfrak h$ une sous-algèbre de Cartan contenue dans $\mathfrak b$. Soient $\mathcal O$ la catégorie associée à ces données par BGG et $\mathcal O_\rho$ la sous-catégorie pleine de $\mathcal O$ dont les objets ont le caractère infinitésimal généralisé du module trivial. Notons ρ la demi-somme des racines positives et W le groupe de Weyl, muni de sa fonction longueur ℓ et de son ordre de Bruhat. À $w \in W$ attachons le module de Verma M_w de plus haut poids $-w\rho - \rho$; rappelons que M_w a un unique sous-module maximal; notons L_w le quotient correspondant. Soit P_w un revètement projectif de L_w ; posons $P := \bigoplus_w P_w$, $A := (\operatorname{End}_{\mathfrak g} P)^{op}$; notons A-df la catégorie des A-modules de dimension finie et E l'équivalence $\operatorname{Hom}_{\mathfrak g}(P,-)$ de $\mathcal O_\rho$ sur A-df. Par abus notons encore M_w et L_w les images de ces objets par E, et désignons par M_w et L_w leurs classes respectives dans le groupe de Grothendieck. Notons $e_w \in A$ la projection sur P_w .

Théorème 1. On a
$$M_w \simeq Ae_w / \sum_{x \leqslant w} Ae_x Ae_w = Ae_w / \sum_{x>w} Ae_x Ae_w$$
.

Théorème 2. On a $\operatorname{End}_A(M_w) = \mathbb{C}$.

Considérons les polynômes de Delorme $a_{x,y}:=SP$ $\operatorname{Ext}_A^{\bullet}(M_x,L_y)$ où SP signifie «série de Poincaré».

Théorème 3. On a $L_y = \sum_x a_{x,y}(-1) M_x$.

Théorème 4. Il existe des polynômes $P_{x,y}$ tels que

(1)
$$a_{x,y} = t^{\ell(y) - \ell(x)} P_{x,y}(t^{-2}),$$

(2)
$$P_{x,y} \neq 0 \iff x \leqslant y \iff P_{x,y}(0) = 1$$
,

(3)
$$P_{x,x} = 1$$
,

(4)
$$\deg P_{x,y} < \frac{\ell(y) - \ell(x)}{2} \text{ si } x < y.$$

Théorème 5. On a SP $\operatorname{Ext}_A^{\bullet}(L_x, L_y) = \sum_z a_{z,x} a_{z,y}$

Voici des analogues conjecturaux des ces énoncés pour les modules de Harish-Chandra.

Soient G un groupe de Lie semi-simple connexe à centre fini, K un sous-groupe compact maximal, \mathcal{H} la catégorie des modules de Harish-Chandra associée à ces données et \mathcal{H}_{ρ} la sous-catégorie pleine de \mathcal{H} dont les objets ont le caractère infinitésimal généralisé du module trivial. Notons r le rang (réel) de G et Z l'algèbre $\mathbb{C}[[z_1,\ldots,z_r]]$. Soit A une Z-algèbre telle que $\mathcal{H}_{\rho} \simeq A$ -df, A est de type fini sur Z, A est commutative modulo son radical R et A est R-adiquement complète. (De telles algèbres existent et sont isomorphes en tant que \mathbb{C} -algèbres.) Choisissons une sous-algèbre A_0 de A relevant A/R et notons $\{e_i \mid i \in I\}$ l'ensemble (fini) des idempotents minimaux de A_0 . Soit L_i le A-module simple associé à $i \in I$, soit $\ell(i)$ la dimension projective de L_i et \leq le plus petit ordre sur I satisfaisant $i \leq j$ chaque fois que

$$\ell(j) = \ell(i) + 1$$
 et $\operatorname{Ext}_A^1(L_j, L_i) \neq 0$.

Utilisons librement les analogues évidents des notations introduites dans le cadre de la catégorie \mathcal{O} .

Conjecture 1. On a
$$Ae_i / \sum_{j \leq i} Ae_j Ae_i = Ae_i / \sum_{j>i} Ae_j Ae_i$$
.

Notons ce module M_i et posons

$$\overline{M}_i := M_i / \operatorname{rad}(\operatorname{End}_A M_i) M_i$$
.

Cet objet ne coïncide pas toujours avec le module de Langlands correspondant.

Conjecture 2. On a $\operatorname{End}_A(\overline{M}_i) = \mathbb{C}$.

Considérons les polynômes de Delorme $a_{ij} := SP \operatorname{Ext}_A^{\bullet}(M_i, L_j)$.

Conjecture 3. On a $L_j = \sum_i a_{ij}(-1) \overline{M}_i$.

Conjecture 4. Il existe des polynômes p_{ij} satisfaisant $(1), \ldots, (4)$.

Conjecture 5. Il existe des polynômes d_k tels que

$$SP \operatorname{Ext}_A^{\bullet}(L_i, L_j) = \sum_k d_k a_{ki} a_{kj}.$$

Le principal inconvénient de cette approche des modules de Harish-Chandra est que, contrairement à ce qui se passe pour les modules de BGG, rien de tout cela n'est calculable! Voici un remède à la fois partiel et conjectural à ce mal. Supposons que G et K ont même rang. Dans la classification de Langlands L_i apparaît comme l'unique quotient simple d'un module induit à partir d'un sous-groupe parabolique P_i ; soit $\mathfrak{p}_i = \mathfrak{m}_i \oplus \mathfrak{a}_i \oplus \mathfrak{n}_i$ la décomposition de Langlands de Lie (P_i) ; posons

$$\widetilde{d}_i := \left(1 - t^2\right)^{\dim \mathfrak{d}_i} \; ;$$

soit $\widetilde{\ell}(i)$ la dimension de la $K_{\mathbb{C}}$ -orbite attachée à i et (\widetilde{p}_{ij}) la famille des polynômes de Kazhdan-Lusztig-Vogan ; posons

$$\widetilde{a}_{ij}(t) = t^{\widetilde{\ell}(j) - \widetilde{\ell}(i)} \ \widetilde{p}_{ij}(t^{-2}) \ .$$

Conjecture 5'. On a SP $\operatorname{Ext}_{A}^{\bullet}(L_{i}, L_{j}) = \sum_{k} \widetilde{d}_{k} \widetilde{a}_{ki} \widetilde{a}_{kj}$.

This text and others are available at http://www.iecn.u-nancy.fr/~gaillard

Last update: July 22, 2009