Digital Systems Design and Laboratory [14. Derivation of State Graphs and Tables]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - Derive flip-flop input equations and output equations (Unit 12)

- **☐** Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

"101" Detector (1/5)

- □ Output "1" if detecting "101"
- Example
 - > Input X 0011011001010100
 - > Output Z 00000<u>1</u>00000<u>1</u>00
- ☐ State graph (Mealy)
 - > S₀: initial, S₁: get "1", S₂: get "10"

"101" Detector (2/5)

☐ State table

Present	Next	State	Present Output			
State	X = 0	X = 1	X = 0	X = 1		
S ₀	S ₀	S ₁	0	0		
S_1	S_2	S_1	0	0		
S ₂	S_0	S_1	0	1		

"101" Detector (3/5)

☐ State maps

	-		_		AB	0	1	AB	0	1	AB	0	1
ΛD	A ⁺ B ⁺		-	Z	00	0	0	00	0	1	00	0	0
AB	X = 0	X = 1	X = 0	X = 1	00	0	U	00	0	1	00	0	
00	00	01	0	0	□ 01	1	0	01	0	1	01	0	0
01	10	01	0	0									
10	00	01	0	1	11	Х	X	11	X	X	11	X	X
11	XX	XX	Х	Χ		^							
					10	0	0	10	0	1	10	0	1
					10	U					10		
						$A^+ = X'B$		$B^+ = X$			Z = XA		

"101" Detector (4/5)

☐ Realize it

- \rightarrow A⁺ = X'B
- \triangleright B⁺ = X
- \geq Z = XA

"101" Detector (5/5)

- Some variants
 - ➤ Moore machine?
 - One more state

"010" and "1001" Detector

0/0

☐ A more complicated machine

- > S₀: reset
- > S₁: "0" (but not 10 nor 100)
- > S₂: "01"
- > S₃: "10"
- $> S_4$: "1" (but not 01)
- > S₅: "100"

- ☐ Design of a Sequence Detector
- **☐** Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

Guidelines for Construction of State Graphs

■ Steps

- > Construct sample sequences to help you understand the problem
- > Determine under what conditions it should reset
- ➤ If only one or two sequences lead to a nonzero output, construct a partial state graph
 - Another way, determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly
- Each time you add an arrow to the state graph, determine whether it can go to one of the previously defined states or whether a new state must added
- ➤ Check your graph to make sure there is one and only one path leaving each state for each combination of values of the input variables
- ➤ When your graph is complete, verify it by applying the input sequences formulated in step 1

- ☐ Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- **☐** Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

Serial Data Transmission

Mealy Machine

 S_0

- Output depends on
 - Current state (synchronous)
 - Input (maybe asynchronous)
- State changes at a falling edge

Glitch

0

Fewer states

NRZ (X)

Clock2

State

Z (Actual)

Manchester (Ideal)

14

Moore Machine

- Output only depends on
 - Current state (synchronous)
- ☐ State changes at a falling edge
- ☐ More states (in general)
- ☐ 1 clock period delay

- ☐ Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- **☐** Alphanumeric State Graph Notation

Alphanumeric State Graph Notation

- ☐ When a sequential circuit has several inputs, label the state graph arcs with <u>alphanumeric</u> input variable names instead of 0's and 1's
 - > Example
 - 2 inputs: F for "forward" and R for "reverse"

Completely Specified State Graph

Properties

- ➤ <u>OR</u> together all input labels on arcs emanating from a state, the result can reduce to 1
 - Cover all conditions: F + F'R +F'R' = F + F' = 1
- ➤ <u>AND</u> together any pair of input labels on arcs emanating from a state, the result can reduce to 0
 - Only one arc is valid: $F \cdot F'R = 0$, $F \cdot F'R' = 0$, $F'R \cdot F'R' = 0$

Q&A