DISCRETE STRUCTURES (co3)

Relation

- 1. If $A=\{1,4,5\}$ and the relation R defined on the set A as aRb if a+b < 6 check whether the relation R is an equivalence relation
- **2.** Define Partial Order relation and check whether R is Partial Order relation. $R = \{(x,y) \text{ if } y = x^r, r \text{ is positive integer and } a,b \in Z\}.$
- 3. Show that the relation $R = \{(a, b) \text{ such that } a b \text{ is divisible by } 5, a, b \in Z\}$ is an equivalence relation hence find all equivalence classes
- 4. Show that the relation $R = \{(a, b) \text{ such that } a b \text{ is divisible by 4}, a, b \in Z\}$ is an equivalence relation hence find all equivalence classes
- 5. Show that the relation $R = \{(a, b) \text{ such that } a b \text{ is divisible by 7 }, a, b \in Z\}$ is an equivalence relation hence find all equivalence classes
- 6. Show that the relation $R = \{(a, b) \text{ such that } 2a + 3b \text{ is divisible by } 5, a, b \in Z\}$ is an equivalence relation
- 7. Show that the relation $R = \{(a, b) \text{ such that } 3a + 4b \text{ is divisible by 7 }, a, b \in Z\}$ is an equivalence relation
- 8. If A={a,b,c,} and find relation R such that (i) R is reflexive, but not symmetric, not transitive (ii) R is reflexive, symmetric, but not transitive.
- 9. If A={a,b,c,} and find relation R such that (i) R is not reflexive, not symmetric, but transitive (ii) R is reflexive, transitive, but not symmetric
- 10. Draw the digraph and find matrix of relation for $R \cup S$ and $R \cap S$ if relations R & S are defined on a set $A = \{1,2,3,4,5,6\}$ as
 - $R = \{(a, b) \text{ such that a devides } b, \forall a, b \in A \}$
 - $S = \{(a, b) \text{ such that } a \text{ is multiple of } b, \forall a, b \in A \}$
- 11. Draw the digraph for $\bar{R} \cup \bar{S}$ and $R^{-1} \cap S^{-1}$ where R & S are defined on a set A
- If $A = \{1,2,3,4\}$ as $R = \{(a,b) \text{ such that } a < b, \ \forall \ x,y \in A \}$
- $S = \{(a, b) \text{ such that } a < b + 1, \forall a, b \in A \}$
- 12. Show that the relation $R = \{(a, b) \text{ such that } 3a + 2b \text{ is divisible by } 5, a, b \in Z\}$ is an equivalence relation
- 13. Show that the relation $R = \{(a, b) \text{ such that } 4a + 3b \text{ is divisible by 7 }, a, b \in Z\}$ is an equivalence relation
- 14. Draw the digraph of R , find matrix of R hence check whether R is reflexive , symmetric , transitive where $A = \{a,b,c,d\}$ and a relation R is defined on A as $R = \{(a,a)(b,b)(c,c)(a,b)(b,a)(a,c)(c,b)(b,c)(d,d)(c,d)(d,c)\}$
- 15. A relation R is defined on set of integers Z as aRb if 8 divides a b Prove that R is an equivalence relation
- 16. If $A=\{2,3,4,5,6\}$ and the relation R defined on the set A as aRb if a+b < 7. (i) Draw the digraph of R (ii) find matrix of R (iii) Check whether R is reflexive, symmetric, transitive?
- 17. If A={1,4,7} then write all possible partitions and corresponding equivalence relations
- 18. If A={a,b,c,d} then write all possible partitions and corresponding equivalence relations.
- 19. if relations If A={a,b,c,d} and find relation R such that (i) R is reflexive, but not symmetric, not transitive (ii) R is reflexive, symmetric, but not transitive
- 20. Determine whether the relation R on a set A is reflexive, symmetric, antisymmetric or transitive. A = set of all positive integers, a R b iff $|a-b| \le 2$
- 21. Determine whether the relation R on a set A={}1,2,3,5} is reflexive, symmetric, antisymmetric or transitive. A = set of all positive integers, a R b iff $|a-b| \le 4$
- 22. let $A = \{1, 2, ..., 8\}$. Let R be the equivalence relation defined by $x \equiv y \mod(4)$ Write R as a set of ordered pairs Find the partition of A induced by R.

- 23. $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}$. Shows that R is an equivalence relation on A hence find partition of A induced by R.
- 24. let $A = \{1, 2, 3, 4\}$. Let R & S be an equivalence relations on A given as $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}$ $S = \{(1, 1), (2, 2), (3, 1), (1, 3), (3, 3), (4, 4)\}$

find partition of A induced by $R^{-1} \cap S^{-1}$, R^{-1} , $R \cap S$

25. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, $C = \{x, y, z\}$ and let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$ be a relation from A to B and $S = \{(b, x), (b, z), (c, y), (d, z)\}$ be a relation from B to C. Write SOR Find Domain Range of SOR

FUNCTION:

- 1. Show that $f: R \{1\} \to R \{2\}$ such that $f(x) = \frac{2x-3}{x-1}$ is bijective
- 2. If $f: R \{3\} \to R \{0\}$ is defined as $(x) = \frac{1}{x-3}$. Show that f(x) is bijective and hence find $f^{-1}(x)$.
- 3. If $f: R \{5\} \to R \{0\}$ is defined as $f(x) = \frac{1}{x-5}$. Show that f(x) is bijective and hence find $f^{-1}(x)$.
- 4. Check whether the function $f: Z \to Z$ such that $f(x) = x^2 + x + 1$ is bijective.
- 5. If the functions f & g are defined as $f: R \to R$ such that f(x) = 2 + 3x and $g: R \to R$ such that g(x) = 4 - 2x. Find f * g(x) & g * f(x)..
- 6. Functions $f: R \to R$, $g: R \to R$ are defined as f(x) = 2x + 3, g(x) = 3x 4. Find g^{-1} . f^{-1}
- 7. Functions $f: R \to R$, $g: R \to R$ are defined as f(x) = 2x 3, g(x) = 4 3xSolve g^{-1} . $f^{-1}(x) = 2$.
- 8. If f: $R \{1\} \to R$ is defined as $f(x) = \frac{3x}{x-1}$. Show that f(x) is bijective and hence find $f^{-1}(x)$.
- 9. Function $f: R \{1\} \to R \{3\}$ is defined as $f(x) = \frac{3x-2}{x-1}$. Prove that f is bijective 10. Functions $f: R \to R$, $g: R \to R$ are defined as f(x) = 5x + 3, g(x) = 1 + 3x
- then find fog, fof, gof & gogof
- 11. Functions $f: R \to R$, $g: R \to R$ are defined as f(x) = 2x 3, g(x) = 3x + 2then Show that f(x), g(x) are bijective and hence find $f^{-1}(x)$, $g^{-1}(x)$, $gof^{-1} \& g^{-1}of$
- 12. Functions $f: R \to R$, $g: R \to R$ are defined as f(x) = x 4, g(x) = 6 + 7x then then Show that f(x), g(x) are bijective and hence find $f^{-1}(x)$, $g^{-1}(x)$, $f^{-1}og$
- 13. If $f, g: R \to R$ are defined as f(x) = 2x, g(x) = x + 4. Show that f(x), g(x) are bijective and hence find $f^{-1}(x), g^{-1}(x)$.
- 14. Functions $f: R \to R$, $g: N \to N$ are defined as $f(x) = x^2$, $g(x) = x^2$ Check whether the functions are injective.
- 15. Give function $g: N \to N$ which is injective ,but not surjective with justification
- 16. Give function $g: N \to N$ which is not injective, but surjective with justification

- 17. If $G = \{z \text{ such that } z = e^{i\theta}\}$ Prove that G is an abelian group under usual multiplication of complex numbers.
- 18. Prove that $G = \{1, -1, i, -i\}$ is a group under usual multiplication of complex numbers.
- 19. If G is set of all nonzero real numbers and binary operation * is defined as $a * b = \frac{ab}{3}$, a, b. Show that (G,*) is an abelian group.
- 20. Prove that the set $\{Z,*\}$ is a group where * is defined as $\alpha*b=\alpha+b+2$ 21. Prove that the set of matrices $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ where α is real, forms a group under usual matrix multiplication.
- 22. Prove that the set Z_5 is a group under addition
- 23. Prove that the set Z_4 is a group under addition
- 24. Prove that third roots of unity forms a group under usual multiplication
- 25. If $G = \{x \mid x = 2^n \text{ , } n \text{ is an integer}\}$ Prove that G is an abelian group under usual multiplication of real numbers Prove that $\{\begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$, m is an integer $\}$ forms a group under usual matrix multiplication
- 26. Find zero divisors and unit elements of Z_6 .
- 27. Find zero divisors and unit elements of Z_8 .
- 28. Find zero divisors and unit elements of Z_7 .
- 29. If G is set of all real numbers then Show that $(G \{-3\},*)$ is an abelian group where binary operation * is defined as $a * b = a + b + \frac{ab}{3}$
- 30. If G is set of all real numbers then Show that $(G \{-2\},*)$ is an abelian group where binary operation * is defined as $a * b = a + b + \frac{ab}{2}$.
- 31. Prove that $\left\{\begin{bmatrix} a & a \\ a & a \end{bmatrix}$, a is non zero real number forms group under usual matrix multiplication
 - 32. Prove that the set $\{Z,*\}$ is a group where * is defined as a*b=a+b-5
 - 33. Prove that $\begin{bmatrix} a & a \\ a & a \end{bmatrix}$, a is real number forms group under usual matrix addition
 - 34. Prove that set Z_5 - $\{\overline{0}\}$ is a abelian group under multiplication
 - 35. Prove that set \mathbb{Z}_{7} - $\{\overline{0}\}$ is a abelian group under multiplication
 - 36. Prove that the set $\{Z,*\}$ is a abelian group where * is defined as a*b=a+b-3
 - 37. Prove that the set $\{Z,*\}$ is a abelian group where * is defined as a*b=a+b-1
 - 38. Prove that the set $\{R \{-1\}, *\}$ is a abelian group where * is defined as a * b = a + b + ab
 - 39. Prove that set $\{\bar{0}, \bar{2}, \bar{4}, \bar{6}, \bar{8}\}\$ is a abelian group under addition modulo 10.
 - 59 Prove that set $\{\bar{1}, \bar{3}, \bar{7}, \bar{9}\}\$ is a abelian group under multiplication modulo 10
 - 60 Prove that set $\{\bar{2}, \bar{4}, \bar{6}, \bar{8}\}\$ is a abelian group under multiplication modulo 10.

Pigeonhole Principle

- 1. If 5 points are to be chosen in an equilateral triangle of side one unit then show that there are atleast 2 points at a distant less than half unit.
- 2. If 10 points are to be chosen in an equilateral triangle of side 3 units then show that there are atleast 2 points at a distant less than one unit.
- 3. If 7 points are to be chosen in a regular hexagon of side one unit then show that there are at least 2 points at a distant less than one unit.
- 4. If 5 points are to be chosen in a square of side 2 units then show that there are at least 2 points at a distant less than $\sqrt{2}$ units.
- 5. If 7 positive integers with distinct unit places are chosen then show that there are 2 positive integers whose sum is divisible by 10.

- 6. If 101 integers are chosen from integers 1 to 200, then show that there are 2 integers such that one divides other.
- 7. If 11 integers are chosen from integers 1 to 20, then show that there are 2 integers such that one divides other.
- 8. If 51 integers are chosen from integers 1 to 100, then show that there are 2 integers such that one divides other.
- 9. In a group of 6 persons in which any 2 persons are either friends or enemies, then show that there are 3 persons who are either mutual friends or mutually enemies.
- 10. If n+1 integers are chosen from first 2n integers, then show that there are 2 integers with greatest common divisor 1