L-1 Regression

Simple linear Regression

There are n experimental units.

On each unit we measure several variables.

One particular variable is of interest (Y): response

Other variables (x_1, \ldots, x_p) are predictors.

e.g.

1. A day = unit

 (Y, x_{1i}, x_{2i}) observed for day i = 1, ..., 20

- Y = Total precipitation.
- $X_1 = \text{Temp at } 10\text{AM}$
- X_2 = Relative Humidity at 10AM.

We are asking for a f^n f that helps us predict the "best" value of Y given (X_1, \ldots, X_p) .

1. This f is completely unknown.

Simple: p = 1

Linear: f is a linear f^n , f(x) = a + bx.

For simple linear regression, Y is continuous. One can have p > 1. (Multiple Regression.)

- 2. Drop Linearity: Non-linear Regression.
- 3. Y can be discrete/categorical data, logistic regression.

Why Regression?

- 1. To predict the value of Y given X_1, \ldots, X_p .
- 2. To study the impact of a predictor on the response.

$$Y = a + bX$$

What is the change in response for unit change in predictor?

3. Estimator of Parameters?

Testing Hypothesis e.g. $\beta > 0$.

e.g.

Y = Salary

 $x_1 =$ education, $x_2 =$ gender, $x_3 =$ experience

Keeping education and experience fixed, does gender affect Salary? (Testing).

How much does salary change for every year of experience? (Estimation)

Model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n$$

- Linear Model Holds
- Non linear: $y_i = \alpha e^{\beta x_i} + \epsilon_i$
- 1. ϵ_i are independent of each other
- 2. ϵ_i are independent of x_i . Often x_i are fixed. Otherwise we condition on x_i .

$$E[\epsilon_i] = 0 \quad \text{Var}(\epsilon_i) = \sigma^2 \text{ (some } \#)$$

 $\epsilon_i \text{ are random, so } Y_i \text{ are also random}$
 $E[Y_i] = \beta_0 + \beta_1 x_i + 0$

Plot of infant mortality (y) on female literacy (x). Roughly my pattern supports linearity assumption.

Goal:

- 1. Estimate Parameter $(\beta_0, \beta_1, \sigma^2)$ (fitting).
- 2. Verify if model assumptions are satisfied. (Diagnostics)
 (Run Diagnostics)If assumptions are not satisfied, we modify the model. We fit a model, get from there. Keep using this until you get a model that satisfies all assumptions.

First step is to draw a scatter plot and ensure linear model is reasonable at least visually. Next estimate the β 's & σ^2 .

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
$$Var(\epsilon_i) = \sigma^2$$

PAGE NO: DATE: /

We want to estimate β_0, β_1 .

Given y_1, \ldots, y_n to predict one value of Y, the most common candidate is \bar{y} .

$$\operatorname*{arg\,min}_{a} \sum_{i=1}^{n} (Y_i - a)^2 = \bar{Y}$$

 \bar{y} minimizes the avg Squared distances from all obs.

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{\beta_0, \beta_1}{\operatorname{arg \, min}} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 x_i)^2$$

Least Squares Estimator

Solution:

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Shift the line around to minimize the sum of squared vertical distance.

- 1. We do not consider perpendicular distances in regression.
- 2. Treats x & y asymmetrically. If we regress x on y:

$$x = \alpha_0 + \alpha_1 y + \epsilon$$

is the model.

$$\hat{\alpha_1} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (y_i - \bar{y})^2}$$

$$\hat{\alpha_0} = \bar{x} - \hat{\alpha_1}\bar{y}$$

This minimizes horizontal distance.

3. Both fitted lines pass through (\bar{x}, \bar{y})

$$y - \bar{y} = \hat{\beta}_1(x - \bar{x})$$

$$x - \bar{x} = \hat{\alpha}_1(y - \bar{y})$$

$$\hat{\beta}_1 \hat{\alpha}_1 = r^2 \quad \text{(r is corr. coeff.)}$$

Regression to the mean

The regression line can be written as:

$$y - \bar{y} = \hat{\beta}_1(x - \bar{x})$$

Standardizing x and y:

$$\frac{y - \bar{y}}{s_y} = r \cdot \frac{x - \bar{x}}{s_x}$$

where r is the correlation coefficient and $|r| \leq 1$.

Galton observed that tall fathers have sons who are not as tall (on average, their height regresses towards the mean). e.g., Scores of 2 tests of the same set of individuals.

L-2

Simple Linear Regression

- Assumptions
- Model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ where ϵ_i has mean 0, variance σ^2 .
- Parameters: $\beta_0, \beta_1, \sigma^2$.
- Least Squares Criterion

Goals: Estimate $\beta_0, \beta_1, \sigma^2$.

If ϵ_i are normally distributed, then the least squares estimator is the Maximum Likelihood Estimator (MLE). The least squares criterion is general and does not need a distributional assumption.

Another possible criterion is **Least Absolute Deviation**: $\min \sum |y_i - \beta_0 - \beta_1 x_i|$.

How to estimate σ^2 ?

The residuals are $\hat{\epsilon}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$. An unbiased estimator for σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\epsilon}_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

The factor n-2 is a correction factor to make the estimator unbiased. For a simple model $y_i = a + \epsilon_i$, the estimate for variance is $\frac{1}{n-1} \sum (y_i - \bar{y})^2$.

Is x useful in predicting y?

If there was no predictor, the error in predicting y would be measured by the **Total Sum of Squares (SST)**:

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

The Residual Sum of Squares (SSR) after fitting the model is:

$$SSR = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

If the regression exercise is useful, then SSR < SST. The larger the difference (SST - SSR), the more useful(better) is the model.

Decomposition of Variance

Claim A: SST > SSR.

Let
$$S_{xy} = \sum (\bar{x}_i - \bar{x})(y_i - \bar{y})$$
, $S_{xx} = \sum (\bar{x}_i - \bar{x})^2$, $S_{yy} = \sum (y_i - \bar{y})^2$. Recall $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ and $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$.

$$SSR = \sum (y_i - (\bar{y} - \hat{\beta}_1 \bar{x}) - \hat{\beta}_1 x_i)^2 = \sum [(y_i - \bar{y}) - \hat{\beta}_1 (x_i - \bar{x})]^2$$

$$= \sum (y_i - \bar{y})^2 - 2\hat{\beta}_1 \sum (x_i - \bar{x})(y_i - \bar{y}) + \hat{\beta}_1^2 \sum (x_i - \bar{x})^2$$

$$= S_{yy} - 2\hat{\beta}_1 S_{xy} + \hat{\beta}_1^2 S_{xx}$$

$$= S_{yy} - 2\frac{S_{xy}}{S_{xx}} S_{xy} + \left(\frac{S_{xy}}{S_{xx}}\right)^2 S_{xx} = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

So, $SSR = SST - \frac{S_{xy}^2}{S_{xx}}$, which implies $SSR \leq SST$. The amount by which the sum of squares is being reduced due to regression is the **Regres**sion Sum of Squares (SSReg).

$$SSReg = SST - SSR = \frac{S_{xy}^2}{S_{xx}}$$

Coefficient of Determination (R^2)

The ratio of SS explained by regression to the total SS of y is denoted by R^2 .

$$R^{2} = \frac{SSReg}{SST} = \frac{S_{xy}^{2}/S_{xx}}{S_{yy}} = \frac{S_{xy}^{2}}{S_{xx}S_{yy}} = r^{2}$$

where r is the correlation coefficient between x and y. R^2 is called the coefficient of determination. This is true in general, even with multiple predictors.

Analysis of Variance Table (ANOVA)

Source	SS	df	MS (Mean Square)	\mathbf{F}
Regression	SSReg	1	$MSReg = \frac{SSReg}{1}$	$\frac{MSReg}{MSR}$
Residual	SSR	n-2	$MSR = \frac{SSR}{n-2}$	
Total	SST	n-1		

- Each SS has chi-square (χ^2) distribution with corresponding degrees of freedom (df).
- Larger values of R^2 are better.
- \bullet R^2 measures the proportion of variability of y that can be explained by linear regression on x.
- A larger F-statistic is associated with a larger R^2 .
- The ratio of two independent chi-square (χ^2) distributions (divided by their df) gives an F-distribution.
- So we can do a Hypothesis Test (under normality conditions).

Hypothesis Test for Significance of Regression

• H_0 : Regression is not significant ($\beta_1 = 0$).

• H_a : Regression is significant $(\beta_1 \neq 0)$.

The F-statistic can be written in terms of \mathbb{R}^2 :

$$F = \frac{MSReg}{MSR} = \frac{SSReg/1}{SSR/(n-2)} = \frac{R^2 \cdot SST}{(1-R^2)SST/(n-2)} = \frac{R^2}{1-R^2}(n-2)$$