Subject . Year . Month . Date . ()	Kimia Noorbakhsh
Homework I	IGIIII A NOOYBARASA
1.1) ECIECXIYJJ E IECXJ	
Proof: IECIECXIYJ] = 500 IE	EXIY=y) fyydy
$=\int_{-\infty}^{\infty}\int$	of figures and figuredy
$(f_{x_1y}(x_1y_1), f_{y_1}(y_1) = f_{x_1y_1}(x_1y_1)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$	inf _{x,y} (n,y) dndy
(take noutside) = $\int_{-\infty}^{\infty} n$	$\int_{-\infty}^{\infty} f_{x,y}(n,y) dy dx = E[x] $
(mavyinalized	$f_{\chi}(n)$
Var(x) = IE(Var(x1y)) + Va	r(E[XIY])
Proof: by definition: Va	$Y(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
from the problem above	$= \frac{1}{2}(\frac{1}{1}(x^2 Y)) - \frac{1}{2}(\frac{1}{1}(x Y))^2$
$Var(X Y) = IE(X^2 Y) - IE(X Y)^2$ = IE	(Var(x1Y) + 1E(x1Y)2) - 1E(E(X1Y))2
conditional definition of variance/	/WK(XIX)) + IE(IE(XIY)) _ IE(IE(XIY))
	by definition: = Var(IE(XIY))
= IE(v	ar(x1Y)) + Var((E(X1Y))
P4PCO	of the second second

```
Month
                 Let x1, X2, ..., X iid f, Folf, Colf
    pdf of min(x_1, x_n = ? \rightarrow Y_2 = min(x_1, x_n)
                   \Rightarrow F_{Y_2}(Y_2) = P(Y_2 \langle Y_2 \rangle = 1 - P(Y_2 \rangle Y_2)
(because Yzismin)
                                 = 1 - P(X_1)J_2, X_2)J_2, --, X_1)J_2
    independant
                                  = 1 - P(X_1 > J_2) P(X_2 > J_2) - P(X_n > J_2)
                                  = 1 - P(X_1 > y_2)^n = 1 - (1 - F(y_2))^n
              pdfofY2 = fy2(y2) = d Fyy2) = n(1-Fx(y2)) - f(y2)
                             = 3 \int_{2}^{4} (y_{2}) = \Omega \left( 1 - \frac{F}{x} (y_{2}) \right)^{n-1} X f(y_{2})
     pdf of max (X_1, X_1) = ? Y_1 = \max(X_1, X_1)
                    F_{Y_{1}}(y_{1}) = P(Y_{1} \leqslant y_{1}) = P(X_{1} \leqslant y_{1}, X_{2} \leqslant y_{1}, ..., X_{n} \leqslant y_{n})
  independant
                              = P(X_1 \leqslant Y_1) - P(X_1 \leqslant Y_1)
                              = P(x, \langle y, \rangle^{\circ} = F_{x}(y, y))
   iid
                PdP \circ PY_{1} = f_{Y_{1}}(y_{1}) = \frac{1}{dy_{1}} F_{Y_{1}}(y_{1}) = nF_{X_{1}}(y_{1}) \times f(y_{1})
                           => fy (y,)= n Fx (y,) x f(y,) 1
```

Year, Month, Date, ()
1.41 0.55: we design the procedure as follows:
consider all kinds of tossing the coin 5 times in arow. We know
that we have 32 conditions name these conditions C_1, C_2, C_3
consider c1, c2, -, C11 as win states and consider C12, C13,-
, c as lose states and consider c 1, c 23, , c as
try again state. Therefore the probability to win is
Equal to $P(win) = \frac{11}{32} + \frac{12}{32} \times \frac{11}{32} + (\frac{12}{32})^2 \times \frac{11}{32} + \cdots$
win first try again win 2 try again then win
$= \frac{11}{32} \left(\begin{array}{c} 1 + \frac{12}{32} + \left(\frac{12}{32} \right)^2 + \dots \right) = \frac{11}{32} \times \frac{1}{\frac{2\sigma}{32}}$
$= \frac{11}{32} \times \frac{32}{20} = \frac{11}{20} = 0.55$
3: like the above procedure, concider all kinds of tossing
the coin 2 times in arow: HH, (H,T), (T,H),(T,T)
consider (H,H) awin, (H,T)and (T,H) a lose and (T,T) - try
$\begin{array}{c} \text{no } \omega : \text{p(win)} \stackrel{\text{Same}}{=} \begin{array}{c} 1 + 1 \times 1 + 1 \times 1 \\ \text{as above} \end{array} \stackrel{\text{dgc}}{=} \begin{array}{c} \frac{1}{4} \\ \frac{1}{3} \end{array} \stackrel{\text{Now}}{=} \begin{array}{c} \frac{1}{3} \\ \frac{1}{3} \end{array}$

(

suppose that a and x are nx1 vectors and A is axa matrix suppose that a = and x = 2 and $A = \begin{bmatrix} \alpha_1, \dots, \alpha_{1n} \\ \vdots \\ \alpha_{n-1} = \alpha_n \end{bmatrix}$ $\frac{d}{dx} \alpha^{T} x \stackrel{?}{=} \alpha^{T} : \frac{d}{dx} \alpha^{T} x = \frac{d}{dx} [\alpha_{1} \dots \alpha_{n}] \begin{bmatrix} x_{1} \\ x_{n} \end{bmatrix} = \frac{d}{dx} (\alpha_{1} x_{1} + \dots + \alpha_{n} x_{n})$ $= \left[\frac{1}{dx_1} (\alpha_1 x_{1+-} + \alpha_n x_n) \dots \frac{1}{dx_n} (\alpha_1 x_{1+-} + \alpha_n x_n) \right]$ $= [a_1 a_2 ... a_n] = a^T$ $\frac{d}{dx} x^{2} A x^{2} = x^{2} A + A^{2} = x^{2} A x = [x_{1}...x_{n}] \begin{bmatrix} a_{11} & ... & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ a_{n2} & \vdots & \vdots \\ a_{nn} & \vdots & \vdots \\ a_$ $= \left[(\alpha_{11} \times_{1} + \dots + \alpha_{N_{1}} \times_{N_{1}}) \dots (\alpha_{1N} \times_{1} + \dots + \alpha_{N_{N}} \times_{N_{1}}) \right] \begin{bmatrix} x_{1} \\ \vdots \\ x_{N} \end{bmatrix}$ $= \left[\begin{array}{ccc} \sum_{i=1}^{n} \alpha_{i_1} x_i & \dots & \sum_{i=1}^{n} \alpha_{i_n} x_i \\ \vdots & \vdots & \ddots & \vdots \\ x_n \end{array}\right] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \sum_{i=1}^{n} \alpha_{i_1} x_{i+1} + x_n \sum_{i=1}^{n} \alpha_{i_n} x_i$ $= \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{ij} x_{i} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_{i} x_{j}$ =) $\frac{d}{dx} x^T A x = \left[\frac{d}{dx} (x^T A x) \dots \frac{d}{dx} (x^T A x) \right]$ $\frac{d}{dx_{K}}(x_{A}x_{A}) = \frac{d}{dx_{K}}\left(\sum_{j=1}^{L}\sum_{i=1}^{L}\alpha_{ij}x_{i}x_{i}\right)$

0

Subject.

Year. Month. Date.

2.1-continued

$$= 3 \frac{d}{dx_{K}} (x_{1} \sum_{i=1}^{n} \alpha_{i_{1}} x_{i_{1}} + \dots + x_{K} \sum_{i=1}^{n} \alpha_{i_{K}} x_{i_{1}} + \dots + x_{N} \sum_{i=1}^{n} \alpha_{i_{N}} x_{i_{1}})$$

$$= x_{1} \alpha_{K_{1}} + x_{2} \alpha_{K_{2}} + \dots + (\sum_{i=1}^{n} \alpha_{i_{K}} x_{i_{1}} + x_{K_{N}} \alpha_{K_{N}}) + \dots$$

$$= \sum_{j=1}^{n} \alpha_{K_{j}} x_{j} + \sum_{i=1}^{n} \alpha_{i_{K}} x_{i}$$

$$= \sum_{j=1}^{n} \alpha_{K_{j}} x_{j} + \sum_{j=1}^{n} \alpha_{i_{K}} x_{i}$$

$$= \sum_{j=1}^{n} \alpha_{K_{j}} x_{j} + \sum_{j=1}^{n} \alpha_{i_{K}} x_{i}$$

$$= \sum_{j=1}^{n} \alpha_{K_{j}} x_{j} + \sum_{j=1}^{n} \alpha_{i_{K}} x_{j}$$

$$= \sum_{j=1}^{n} \alpha_{K_{j}} x_{j} + \sum_{j=1}^{n} \alpha_{i_{K_{j}}} x_{j} +$$

Subject : Year . Month .	Date. ()
2.2 1 deter	minant is the product of the eigen values:
if A is n	are roots of the characteristic polynomial:
=) 1/3,	are roots of the characteristic polynomial:
	det (A-AI) = characteristic polynomial
	$= (-1)^{n} (\lambda_{-}\lambda_{1}) (\lambda_{-}\lambda_{2}) \dots (\lambda_{-}\lambda_{n})$ $= (\lambda_{1-}\lambda_{1}) (\lambda_{2-}\lambda_{2}) \dots (\lambda_{n-}\lambda_{n})$
	$= (\lambda_1 - \lambda) (\lambda_2 - \lambda) \dots (\lambda_n - \lambda)$
set 1 =0 =>	$det(A) = \lambda_1 \lambda_2 \lambda_n $
trace	e is sum of eigen values:
	$(A - \lambda I) = \begin{bmatrix} \alpha_{11} - \lambda & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} - \lambda & \dots & \alpha_{2n} \end{bmatrix}$
- Control of the cont	$\lfloor o_{n_1} a_{n_2} - a_{n_r} - \lambda \rfloor$
using Cofactor = 1 Expression	$(a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) + b_1 \lambda^{n-2} + b_2 \lambda^{n-3} + b_n$
<u>expansion</u>	$= (-\lambda)^{n} + (-\lambda)^{n-1} [a_{n+1} + a_{n+1}] + \dots$
) ded (A_ AI) = (-1) (\(\lambda - \lambda - (Tr A) +)
) det $(A - \lambda I) = (-1)^n (\lambda^n - \lambda^{n-1} (Tr A) +)$ (hom above) = $(\lambda_1 - \lambda) (\lambda_2 - \lambda) (\lambda_n - \lambda)$
\rightarrow	by equality of coefficients => 1++1n=TrA
	g(AT): we know that det(A) = det(AT)
Iλ-A): won) = AT_NIT = AT_NI => det(A_NI) = det(AT_NI) => A, AT have some characteristic polinomials
P4PCO	=) A, AT have some characteristic polinomials => cia(A) = eig(AT) /

2.2 continued: 2 AEL(V) -V = null (A) & vange (A) proof: N, N2, -, N, - basis of V with respect to A (diagnal) => for every 1 kikn -> 3 &; EF : AN; = A; N; * without loss of generality, suppose that { \lambdaj=0 \forall 1\lambdaj\kint m \lambdaj\kint => V = span (V,, , , Vm) + span (Vm,, ..., Vn) claim: span (), , , , , , , = null (A) and vange (A) = { vm+1, , , , , } proof of claim: span {V,, , N, is the eigenspace of A with respect to 0 => Y N; E {N,, ..., Vm} -> AV; =0 also for any NENUII(A) - AN=0 V is a eigenvector of A with respect to 0 => NE SN, -N ? (A) = {\mathready, \tau \mathready, \ta we know that AV: = \(\lambda_i \nabla_i \righta_i \right => Span [vm+1, -, vn] c range (A) (B) also for every verange (A) _, v= A(v'), v'eV because V_i s are basis we have : $V' = \sum \alpha_i V_i$, α_i s $\in F$ $=) \mathcal{V} = A \mathcal{V}' = A (a_i \mathcal{V}_{i+} \rightarrow a_n \mathcal{V}_n) =$

1

Subject Year. Month. 2.2 continued 2 $\Rightarrow \sqrt{=AV'} = A(\alpha_1N_1 + \alpha_1N_1) = \alpha_1.AN_1 + \cdots + \alpha_n.AN_n$ (AV, -, AVm=0) = a N N N E Span IV N -, 2 } Av; = 2; v; m+1 < i < n =) range (A) C Span from , ~, ~ ? 3,0 => range (A) = Span {Vm+1, -, ~, } (A) + range (A) suppose A=UIVT → QR=UIVT Q orthogonal = Q = Q T xQ R=Q UEVT → R = Q^TU ∑ V T now notice that: $(Q^TU)^TQ^TU = U^TQ Q^TU = U^TU = I$ =)QTu is orthogonal too. R=(QU) I VT is a SVD decomposition for R. SameasA different from A Some as A

Subject. North. Date. (1)

3.
$$\pi_1, \pi_2, ..., \pi_n$$
 is $N(M, S^2)$

Repect North. Date. (1)

Subject. North. Date. (1)

 $\pi_1, \pi_2, ..., \pi_n$ is $N(M, S^2)$

Repect North. Date. (1)

Repect North. Date. (1)

Repect North. Date. (1)

 $\pi_1, \pi_2, ..., \pi_n$ is $N(M, S^2)$

Repect North. Date. (1)

Re

3 000	tinued
	=> frome we have:
	$\left(\frac{n}{\sqrt{1}}, \frac{1}{\sqrt{2\pi6}} e^{2x} P\left(\frac{(x_i - y_i)^2}{26^2}\right)\right) \frac{1}{\sqrt{2\pi\beta^2}} e^{2x} P\left(\frac{(y_i - y_i)^2}{2\beta^2}\right)$
- morrows - keer w	
osterioi-	$= P(x_1, -x_n) = \frac{P(x_1, -x_n) = const}{}$
	1 CAD TAN 1 E CONS
	0 2
=> ley	$(\text{posterior}) = \left(\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi \kappa^2}}\right) - \frac{(\pi i - M)^2}{26^2}\right) + \log \left(\frac{1}{2\pi B^2}\right) - \frac{(M-\nu)^2}{2B^2}$
	V2762 26 / 0 21p 2p
^	> (T xi-H) M-V
	$\frac{\partial}{\partial \mu} \text{ log(posterior)} = \left(\sum_{i=1}^{n} \frac{\pi_{i} - \mu}{\sigma^{2}} \right) - \frac{\mu - \nu}{\beta^{2}}$
***************************************	1
Sé	$\frac{1}{2} \frac{1}{2} = 0 = 0 \qquad \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) - \frac{1}{2} \frac{1}{2} = 0$
	$\Rightarrow \frac{\mathcal{N} - \mathcal{N}}{B^2} = \frac{\sum_{i=1}^{N} x_i}{G^2} - \frac{\mathcal{N}}{G^2}$
	1 62
	$\Rightarrow \frac{M}{B^2} + \frac{nM}{\sigma^2} = \frac{\sum x_i}{\sigma^2} + \frac{V}{B^2}$
	,
	$\mathcal{M}\left(\frac{\sigma^2 + n\beta^2}{\sigma^2 \beta^2}\right) = \frac{\beta^2 \sum_{\lambda_i} + \lambda \sigma^2}{\sigma^2 \beta^2}$
	ор 6-8-
	$\lambda = \delta^2 v_+ \beta^2 \sum_{i=1}^{n} \chi_{i}$
	$\frac{1}{\beta} \hat{\mathcal{M}} = \frac{\sigma^2 v + \beta^2 \sum_{i=1}^{n} \chi_i}{\sigma^2 \cdot \rho \beta^2}$
	T 1
· N→	80
	1 \ 2 \ 2 \ \ 2 \ \ B \ \ \ \ \ \ \ \ \ \
note th	of $\hat{N} = \frac{\sigma^2 v + \beta^2 \sum_{x_i}}{\sigma^2 + n\beta^2} = \frac{\sigma^2 v}{\sigma^2 + n\beta^2} + \frac{\beta^2 \sum_{x_i}}{\sigma^2 + n\beta^2}$

ADCO.	$= \frac{\sigma^2 \gamma}{\sigma^2 + n\beta^2} + \frac{\frac{1}{n} \sum ni}{1 + \frac{\sigma^2}{n\beta^2}}$
APCO	continued

Subject: Year. Month. Date. ()

3 continued

$$\Rightarrow \widehat{M}_{LE} = \frac{\sigma^2 v}{n \beta^2 + \sigma^2} + \frac{1}{n} \frac{\sum \pi_i}{1 + \frac{\sigma^2}{n \beta^2}}$$

50 when $n \to \infty \Rightarrow \frac{\sigma^2}{n \beta^2} \to \frac{\sigma^2 v}{n \beta^2 + \sigma^2} \to \frac{\sum \pi_i}{n \beta^2} = \widehat{M}_{Map} = \widehat{M}_{LE}$

So when $n \to \infty$ if $m \to \infty$ if