<u>Exellise</u> Craluate

Evaluati

)
$$\int \frac{\sin 2z}{(z+3)(z+1)^2} dz$$

at $3\pm i$, $-2\pm i$

2)
$$\int \frac{1}{z^4-1} dz$$
 where (i) $C: |z+1|=1$, (ii) $C: |z+3|=1$
(iii) $C: |z-i|=1$, (iv) $C: |z-1|=1$

3)
$$\int_{C} \frac{z^3 - \lambda z}{(z-i)^2} dz \quad \text{where } C: |z| = \lambda$$

4)
$$\int_{C} \frac{e^{z}}{(z+1)^{4}(z-2)} dz \text{ where } C \cdot |z-1|=3$$

5)
$$\frac{z^{2}-1}{z^{2}+1} dz$$
 Where (i) $c:|z|=\frac{1}{2}$
(ii) $c:|z+i|=1$
(iii) $c:|z-i|=1$
(iv) $c:|z-ai|=2$

6) Evaluate
$$\int \frac{z^3 - z}{(z-2)^3} dz$$
 where
(i) $C: |z|=3$ (ii) $C: |z-2|=1$, (iii) $|z|=1$

(i)
$$C: |z|=3$$
 (ii) $|z|=1$ (iii) $|z|=1$

$$f(2) = z^3 - z$$

$$\frac{z^2-z}{(z-2)^3}$$
 is not analytic at $z=2$

(i)
$$C: |z|=3$$
 $z=2$ lies sinde the unde $|z|=3$

$$\int \frac{z^{3}-z}{(z-z)^{3}} dz = \frac{2\pi i}{2!} f^{2}(z) = \pi i (6z) z = 2$$

$$= 12\pi i^{2}$$

(ii)
$$C: |Z-2|=1$$

 $(z^3-z)=12\pi i$

$$C: |Z-2|=1$$

$$\int \frac{z^3-z}{(z-a)^3} dz = 12\pi \hat{z}$$

(iii)
$$c: |z|=1$$
 lies and side the cardelet =1 $z=2$

(i)
$$C: |z-2|=2$$

Z=±i lie outside end Z=±3

lie Inside the circle.

Lie Institut
$$dz = -\frac{1}{60} 2\pi i f(-3)$$

$$\frac{7}{(2+1)(2-9)} dz = -\frac{1}{60} 2\pi i f(3)$$

$$+\frac{1}{60} 2\pi i f(3)$$

$$=\frac{1}{10}\pi i + \frac{1}{10}\pi i = \frac{\pi i}{5}$$

$$\int \frac{z}{z+i} dz = 0$$

$$\int \frac{z}{z-i} dz = 0 \quad \text{by CIT}$$

$$\int \frac{z}{z-i} dz = 0$$

5) Evaluate
$$\int_{C} \frac{\sin^2 z}{(z-11/6)^3} dz, \quad C: |z|=1$$

$$f(z) = \sin^2 z$$

$$\int \frac{\sin^2 z}{(z-\pi)^3} dz = \frac{\sin^2 z}{a!} f(\pi) = \pi^2 (\cos az)$$

$$= \pi^2 (z) = \sin z \cos z = \sin az$$

$$f'(z) = asinz cos z = z$$

$$f'(z) = asinz cos z = z$$

4. Evaluate:
$$\int \frac{z}{(z^2+1)} dz$$
where (i) $c: |z| = 2$, (ii) $c: |z-2| = 2$.
$$\int (z) = z$$

$$\frac{1}{(z^2+1)(z^2-9)} = \frac{1}{(z+i)(z-i)(z+3)(z-3)} = \frac{A}{(z+3)} + \frac{B}{z-3}$$

(1) C: |z|=2

A
$$(z-i)(z^2-1)+b(z+i)(z^2-1)+c(z^2+1)(z-3)+D(z^2+1)(z+3)=1$$
 $z=\lambda=0$ $= \lambda i \times (10)B = 1 = 0$ $= -\frac{1}{20 \cdot i}$
 $z=\lambda=0$ $= \lambda i \times (10)B = 1 = 0$ $= -\frac{1}{20 \cdot i}$
 $z=\lambda=0$ $= \lambda i \times (10) = 0$ $= -\frac{1}{20 \cdot i}$
 $z=\lambda=0$ $= \lambda i \times (10) = 0$ $= -\frac{1}{20 \cdot i}$
 $z=\lambda=0$ $= \lambda i \times (10)$ $= 0$

z= ± î lie inside se circle 12/22 and z=±3

 $\int_{2}^{2} \frac{z}{(z^{2}+1)(z^{2}-q)} dz = \int_{0}^{2} \frac{1}{20i} \Re \pi (f(z) - \frac{1}{20i}) 2\pi (f(-z))$

$$\frac{1}{(z+2i)(z-2i)} = \frac{A}{z+2i} + \frac{B}{z-2i}$$

$$A(z-2i) + B(z+2i) = 1$$

$$z = ai = 0 \quad 4i \quad B-1 = 0 \quad B = \frac{1}{4i}$$

$$z = -ai = 0 \quad -4i \quad A=1 = 0 \quad A = -\frac{1}{4i}$$

$$\frac{z^2}{z^2+4} dz = \int \frac{z^2}{4i(z-2i)} dz - \int \frac{z^2}{4i(z+2i)} dz$$

$$= \frac{1}{4i} \left[2\pi i + (2\pi i) - 2\pi i + (2\pi i)^2 \right]$$

$$= \frac{1}{4i} \left[-8\pi i + 8\pi i \right] = 0$$

$$= \frac{1}{4i} \left[-8\pi i + 8\pi i \right] = 0$$

2) Evaluate
$$\int \frac{\sin(z^{2} + \cos(z^{2}))}{(z-1)(z-2)} dz \quad \text{where } C: |z| = 3$$

$$f(z) = \sin(z^{2} + \cos(z^{2}))$$

$$\frac{1}{(z-1)(z-2)} = \frac{h}{z-1} + \frac{B}{z-2}$$

$$A(z-2) + B(z-1) = 1$$

$$z=1 = y - A = 1 = y A = -1$$

$$z=2 = y B = 1$$

$$\int \frac{\sin(z^{2} + \cos(z^{2}))}{(z-1)(z-2)} dz = \int \frac{\sin(z^{2} + \cos(z^{2}))}{z-2} dz - \int \frac{\sin(z^{2} + \cos(z^{2}))}{z-1} dz$$

$$= 2\pi i + (2) - 2\pi i + (3) = 4\pi i$$

$$= 2\pi i - (-2\pi i) = 4\pi i$$
with Verticus $\pm 2 \pm 4i$.
$$f(z) = z^{2}$$

$$\frac{z^{2}}{z^{2} + 4} = \frac{z^{2}}{(z+2i)(z-2i)}$$
is not $z = \pm 3i$ in side to analytic at $z = \pm 3i$ in side to a sectangle.

Examply

1) Evaluate
$$\int \frac{z^2+1}{z(az+1)} dz$$
 where C: $|z|=1$.

 $\frac{z^2+1}{z(az+1)}$ is not analytic at $z=0$ and $-\frac{1}{2}$.

 $\frac{z^2+1}{z(az+1)}$ be inside the unde $|z|=1$.

 $\frac{1}{z(az+1)} = \frac{A}{z} + \frac{B}{az+1}$
 $\frac{1}{z(az+1)} = \frac{A}{z} + \frac{B}{az+1}$
 $\frac{1}{z(az+1)} = \frac{1}{z} - \frac{1}{a}B=1 = 3B=-2$
 $\frac{1}{z(az+1)} = \frac{1}{z} - \frac{a}{az+1} = \frac{1}{z} - \frac{1}{z+\frac{1}{2}}$
 $\frac{z^2+1}{z(az+1)} dz = \int \frac{z^2+1}{z} dz - \int \frac{z^2+1}{z+\frac{1}{2}} dz$
 $\frac{z^2+1}{z(az+1)} dz = \int \frac{z^2+1}{z} dz - \int \frac{z^2+1}{z+\frac{1}{2}} dz$
 $\frac{z^2+1}{z(az+1)} dz = \int \frac{z^2+1}{z} dz - \int \frac{z^2+1}{z+\frac{1}{2}} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$
 $\frac{z^2+1}{z^2+1} dz = \int \frac{z^2+1}{z^2+1} dz - \int \frac{z^2+1}{z^2+1} dz$

$$\int_{C} \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

Derivative of analytic functions

If a function f(z) is analytic in a simply connected domain D, when its derivative at any point z=a of D is also analytic and in given by

$$f'(q) = \frac{1}{2\pi i} \int \frac{f(z)}{(z-q)^2} dz$$

$$\int_{C} \frac{f(z)}{(z-a)^{2}} dz = 2\pi i f'(a)$$

$$\int_{C} \frac{f(z)}{(z-a)^{2}} dz = 2\pi i f'(a)$$

In general,
$$\int_{C} \frac{f(z)}{(z-a)^{n+1}} dz = \frac{\partial \pi}{n!} f(a)$$

Cauchy's integral formula det f(z) be analytic in a simply connected domain D. Let C be any simple closed evere in D enclosing any point Zo in D Then $\oint_C f(z) = dz = \lambda \pi i f(z)$ Pf!- Consider the function $\frac{f(z)}{z-z_0}$ within c $z-z_0$ within c $z-z_0$ within c $z-z_0$ within c $z-z_0$ at $z=z_0$. Will z as centre and radius zdraw a small circle C, lying entirely bothin C. Now $\frac{f(z)}{7-72}$ being analytic in the region enclosed by c and G we have by cauchy's integral theorem for multiply connected domains Ci. 12-20 = t $\frac{2\pi}{5} f(z_0 + re^{i\alpha}) d0$ $\frac{2\pi}{5} f(z_0) d0 = 2\pi i f(z_0)$