# Homework 3

## Jon Allen

## September 19, 2014

- 2.6 F. Let a, b be positive real numbers. Set  $x_0 = a$  and  $x_{n+1} = (x_n^{-1} + b)^{-1}$  for  $n \ge 0$ .
  - (a) Prove that  $x_n$  is monotone decreasing.

### proof

If  $x_n$  is monotone decreasing, then  $x_n \ge x_{n+1}$  for all  $n \ge 0$ .

$$x_{n+1} = (x_n^{-1} + b)^{-1} = \frac{1}{\frac{1+bx_n}{x_n}} = \frac{x_n}{1+bx_n}$$

Note that if  $x_n$  and b are positive, then so is  $x_{n+1}$ . Now we are told that  $x_0$  and b are positive, so we know that all  $x_n$  are positive. This means of course that  $1 + bx_n > 1$  which in turn means that  $x_n > \frac{x_n}{1+bx_n} = x_n + 1$ . Indeed it appears that not only is  $x_n$  monotone decreasing, it is strictly monotone decreasing.  $\square$ 

(b) Prove that the limit exists and find it.

#### proof

As we noted in the previous proof,  $x_n$  is positive for all  $n \geq 0$ . This implies that  $x_n > 0$  and is therefore bounded from below. Because  $x_n$  is monotone decreasing and bounded from below, it has a limit.  $\square$ 

#### solution

$$L = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (x_n^{-1} + b)^{-1} = \left( \left( \lim_{n \to \infty} x_n \right)^{-1} + b \right)^{-1} = (L^{-1} + b)^{-1}$$

$$L = \frac{1}{\frac{1}{L} + b}$$

$$1 = 1 + bL$$

$$0 = bL$$

So then  $\lim_{n\to\infty} x_n = 0$ .

G. Let  $a_n = \left(\sum_{k=1}^n 1/k\right) - \log n$  for  $n \ge 1$ . **Euler's constant** is defined as  $\gamma = \lim_{n \to \infty} a_n$ . Show that  $(a_n)_{n=1}^{\infty}$  is decreasing and bounded below by zero, and so this limit exists. HINT: Prove that  $1/(n+1) \le \log(n+1) - \log n \le 1/n$ 

#### argument

Now the trick is to realize that  $\int_b^a \frac{1}{x} dx = \log a - \log b$ . In other words, the area under  $\frac{1}{x}$  where x goes from b to a is  $\log a - \log b$  So then  $\int_1^n \frac{1}{x} dx = \log n$  and  $\int_n^{n+1} \frac{1}{x} dx = \log(n+1) - \log n$ .

Now lets imagine a series of boxes with a base of width one, and height  $\frac{1}{k}$  positioned such that the left edge of the base is at k and the right edge is at k+1. So each of these boxes will have the area of their height, namely  $\frac{1}{k}$ . Further, the sum of the areas of these boxes will be  $\sum_{k=1}^{n} \frac{1}{k}$ . And our sequence then is the area of these boxes, with everything under the continuous line 1/x cut out.



Now we see that when n=1 then we have a  $1 \times 1$  box (area one). For n=2 we add a box of size  $\frac{1}{2}$  and cut out the curved section under  $\frac{1}{x}$  from 1 to 2. Note that this line starts at the top left corner of the box of height 1 and ends at the point where the  $\frac{1}{2}$  height box touches the height 1 box. Notice that we have cut out an area that is larger than  $\frac{1}{2}$  but smaller than 1. Lets generalize this observation a little:

$$a_{n+1} = \left(\sum_{k=1}^{n+1} \frac{1}{k}\right) - \log(n+1)$$

$$= \frac{1}{n+1} + \left(\sum_{k=1}^{n} \frac{1}{k}\right) - \log n - \log\left(1 + \frac{1}{n}\right)$$

$$= \frac{1}{n+1} + a_n - (\log(n+1) - \log n)$$

$$= a_n + \frac{1}{n+1} - \int_n^{n+1} \frac{1}{x} dx$$

Visually, every time we increase n we add a  $\frac{1}{n+1}$  box, but carve out the portion of the  $\frac{1}{n}$  box that is under the line 1/x. Note that the line goes from the top left of the  $\frac{1}{n}$  box to where the  $\frac{1}{n}$  box touches  $\frac{1}{n+1}$ . This means that while we are adding  $\frac{1}{n+1}$ , we are subtracting a number that is bigger than  $\frac{1}{n+1}$  (and less than  $\frac{1}{n}$ ). And so we see that our sequence decreases.

Futhermore, because  $\log(n+1) - \log n$  is less than  $\frac{1}{n}$  we always subtract less in the n+1 element of the sequence than we added in the n element of the sequence. Therefore, every element of the sequence will be greater than zero. Visually the boxes are always above the  $\frac{1}{x}$  line so the area is always more than zero.

M. Suppose that  $(a_n)_{n=1}^{\infty}$  has  $a_n > 0$  for all n. Show that  $\limsup a_n^{-1} = (\liminf a_n)^{-1}$ .

#### proof

First we take a look at when  $a_n$  is unbounded. In this case we have defined  $\liminf a_n = -\infty$ . Naturally in this case ( $\liminf a_n$ )<sup>-1</sup> really has no meaning. We will then focus on the case where  $a_n$  is bounded.

Lets take some i, j such that  $a_i \ge a_j$ . Then if  $a_i \ge a_j$  we know  $\frac{1}{a_j} \ge \frac{1}{a_i}$ . We define  $b_n = \sup\{a_k : k \ge n\}$  for  $n \ge 1$ . Now we know that  $b_n \ge a_k \forall k \ge n$ . This implies that  $b_n^{-1} \le a_k^{-1} \forall k \ge n$ . Another way of saying that is  $b_n^{-1} = \inf_{k \ge n} a_k^{-1}$ . So then

$$\lim_{n \to \infty} b_n^{-1} = \lim_{n \to \infty} \left( \inf_{k \ge n} a_k^{-1} \right)$$
$$\left( \lim_{n \to \infty} b_n \right)^{-1} = \lim \inf_{n \to \infty} a_n^{-1}$$
$$\left( \lim_{n \to \infty} \sup_{k \ge n} a_k \right)^{-1} = \lim \inf_{n \to \infty} a_n^{-1}$$
$$\left( \lim \sup_{n \to \infty} a_k \right)^{-1} = \lim \inf_{n \to \infty} a_n^{-1}$$

Boom.  $\square$