HT Homework 0

1 Probability and Statistics

1. (combinatorics)

Let C(N, K) = 1 for K = 0 or K = N, and C(N, K) = C(N - 1, K) + C(N - 1, K - 1) for $N \ge 1$. Prove that $C(N, K) = \frac{N!}{K!(N-K)!}$ for $N \ge 1$ and $0 \le K \le N$.

2. (counting)

What is the probability of getting exactly 4 heads when flipping 10 fair coins?

What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of a deck of 52 cards?

3. (conditional probability)

If your friend flipped a fair coin three times, and tell you that one of the tosses resulted in head, what is the probability that all three tosses resulted in heads?

4. (Bayes theorem)

A program selects a random integer X like this: a random bit is first generated uniformly. If the bit is 0, X is drawn uniformly from $\{0,1,\ldots,7\}$; otherwise, X is drawn uniformly from $\{0,-1,-2,-3\}$. If we get an X from the program with |X|=1, what is the probability that X is negative?

5. (union/intersection)

If
$$P(A) = 0.3$$
 and $P(B) = 0.4$,

what is the maximum possible value of $P(A \cap B)$?

what is the minimum possible value of $P(A \cap B)$?

what is the maximum possible value of $P(A \cup B)$?

what is the minimum possible value of $P(A \cup B)$?

6. (mean/variance)

Let mean $\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$ and variance $\sigma_X^2 = \frac{1}{N-1} \sum_{n=1}^{N} (X_n - \bar{X})^2$.

Prove that

$$\sigma_X^2 = \frac{N}{N-1} \left(\frac{1}{N} \sum_{n=1}^N X_n^2 - \bar{X}^2 \right).$$

7. (Gaussian distribution)

If X_1 and X_2 are independent random variables, where $p(X_1)$ is Gaussian with mean 2 and variance 1, $p(X_2)$ is Gaussian with mean -3 and variance 4. Let $Z = X_1 + X_2$. Prove p(Z) is Gaussian, and determine its mean and variance.

2 Linear Algebra

- 1. (rank) What is the rank of $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2 \end{pmatrix}$?
- 2. (inverse) What is the inverse of $\begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix}$?
- 3. (eigenvalues/eigenvectors) What are the eigenvalues and eigenvectors of $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$?
- 4. (singular value decomposition)
 - (a) For a real matrix M , let $M = U\Sigma V^T$ be its singular value decomposition. Define $\mathrm{M}^\dagger = \mathrm{V}^\dagger \mathrm{U}^T$, where $\Sigma^\dagger[i][j] = \frac{1}{\Sigma[i][j]}$ when $\Sigma[i][j]$ is nonzero, and 0 otherwise. Prove that $\mathrm{MM}^\dagger \mathrm{M} = \mathrm{M}$.
 - (b) If M is invertible, prove that $M^{\dagger} = M^{-1}$.
- 5. (PD/PSD) A symmetric real matrix A is positive definite (PD) $iff\mathbf{x}^T A\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$, and positive semidefinite (PSD) if " > " is changed to " \geq ". Prove:
 - (a) For any real matrix Z, ZZ^T is PSD.
 - (b) A symmetric A is PD iff all eigenvalues of A are strictly positive.
- 6. (inner product) Consider $\mathbf{x} \in R^d$ and some $\mathbf{u} \in R^d$ with $\|\mathbf{u}\| = 1$. What is the maximum value of $\mathbf{u}^T\mathbf{x}$? What \mathbf{u} results in the maximum value? What is the minimum value of $\|\mathbf{u}^T\mathbf{x}\|$? What \mathbf{u} results in the minimum value? What is the minimum value of $\|\mathbf{u}^T\mathbf{x}\|$? What \mathbf{u} results in the minimum value?
- 7. (distance) Consider two parallel hyperplanes in \mathbb{R}^d :

$$H_1: \mathbf{w}^T \mathbf{x} = +3,$$

 $H_2: \mathbf{w}^T \mathbf{x} = -2,$

where **w** is the norm vector. What is the distance between H_1 and H_2 ?

3 Calculus

1. (differential and partial differential) Let $f(x) = \ln(1 + e^{-2x})$. What is $\frac{df(x)}{dx}$? Let $g(x,y) = e^x + e^{2y} + e^{3xy^2}$. What is $\frac{\partial g(x,y)}{\partial y}$?

 2

- 2. (chain rule) Let $f(x,y) = xy, x(u,v) = \cos(u+v), y(u,v) = \sin(u-v)$. What is $\frac{\partial f}{\partial v}$?
- 3. (integral) What is $\int_5^{10} \frac{2}{x-3} dx$?

4. (gradient and Hessian)

Let $E(u,v) = (ue^v - 2ve^{-u})^2$. Calculate the gradient ∇E and the Hessian $\nabla^2 E$ at u=1 and v=1.

5. (Taylor's expansion)

Let $E(u, v) = (ue^v - 2ve^{-u})^2$. Write down the second-order Taylor's expansion of E around u = 1 and v = 1.

6. (optimization)

For some given A > 0, B > 0, solve

$$\min_{\alpha} Ae^{\alpha} + Be^{-2\alpha}.$$

7. (vector calculus)

Let **w** be a vector in R^d and $E(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T A \mathbf{w} + \mathbf{b}^T \mathbf{w}$ for some symmetric matrix A and vector **b**. Prove that the gradient $\nabla E(w) = A \mathbf{w} + b$ and the Hessian $\nabla 2E(\mathbf{w}) = A$.

8. (quadratic programming)

Following the previous question, if A is not only symmetric but also positive definite (PD), prove that the solution of $\operatorname{argmin}_{\mathbf{w}} E(\mathbf{w})$ is $-A^{-1}\mathbf{b}$.

9. (optimization with linear constraint)

Consider

$$\min_{w_1, w_2, w_3} \frac{1}{2} (w_1^2 + 2w_2^2 + 3w_3^2)$$
 subject to $w_1 + w_2 + w_3 = 11$.

Refresh your memory on "Lagrange multipliers" and show that the optimal solution must happen on $w_1 = \lambda$, $2w_2 = \lambda$, $3w_3 = \lambda$ Use the property to solve the problem.

10. (optimization with linear constraints)

Let wbe a vector in \mathbb{R}^d and $E(\mathbf{w})$ be a convex differentiable function of \mathbf{w} . Prove that the optimal solution to

$$\min_{w} E(\mathbf{w})$$
 subject to $A\mathbf{w} + b = 0$.

must happen at $\nabla E(\mathbf{w}) + \lambda^T A = 0$ for some vector λ . (Hint: If not, let u be the residual when projecting $\nabla E(\mathbf{w})$ to the span of the rows of A. Show that for some very small $\eta, w - \eta u$ is a feasible solution that improves E.)