NEURAL NETWORK AUTOREGRESSIVE MODELS

Dr. Aric LaBarr
Institute for Advanced Analytics

NEURAL NETWORK STRUCTURE

- Neural network models are models based on mathematical models of how the brain functions.
- They are organized in a network of neurons through layers.
- The input variables are considered the neurons on the bottom layer.
- The output variable is considered the neuron on the top layer.
- The layers in between, called hidden layers, transform the input variables through non-linear methods to try and best model the output variable.

All of the nonlinearities and complication of the variables get added to the model here.

AUTOREGRESSIVE NEURAL NETWORKS

Autoregressive Terms

 Neural network models used for forecasting in time series, just have lags of Y in the bottom layer (inputs) along with (or in place of) other X variables.

Autoregressive Terms

Autoregressive Terms

Number of Autoregressive Lags

- Explore with correlation plots or automatic selection techniques.
- Focus primarily on the AR components of the model.
- For **seasonal data** we typically include all lags up through one season unless correlation plots say you only need specific ones.
- STILL WANT TO MAKE DATA STATIONARY FIRST!

```
NN.Model <- nnetar(diff(training, 12), p = 2, P = 3)
NN.Forecast <- forecast::forecast(NN.Model, h = 12)
plot(NN.Forecast)</pre>
```

Forecasts from NNAR(2,3,3)[12]

Neural Network Forecasts

```
Pass.Forecast <- rep(NA, 12)
for(i in 1:12){
  Pass.Forecast[i] <- Passenger[length(Passenger) - 12 + i] +
  forecast::forecast(NN.Model, h = 24)$mean[i]
Pass.Forecast \leftarrow ts(Pass.Forecast, start = c(2007, 4), frequency = 12)
plot(training, main = "US Airline Passengers ARIMA Model Forecasts",
               xlab = "Date", ylab = "Passengers (Thousands)",
               xlim = c(1990, 2009), ylim = c(30000, 80000))
lines(Pass.Forecast, col = "blue")
abline(v = 2007.25, col = "red", lty = "dashed")
NN.error <- test - Pass.Forecast
NN.MAE <- mean(abs(NN.error))</pre>
NN.MAPE <- mean(abs(NN.error)/abs(test))*100
```

Neural Network Forecasts

US Airline Passengers ARIMA Model Forecasts

Model Evaluation on Test Data

Model	MAE	MAPE
HW Exponential Smoothing	1134.58	1.76%
Seasonal ARIMA	1229.21	1.89%
Dynamic Regression ARIMA	1180.99	1.80%
Prophet	1449.85	2.25%
Neural Network AR	1087.85	1.67%

