

Control systems

KON-C2004 Mechatronics Basics

Raine Viitala 5.11.2024

Lecture topics & learning outcomes

System modeling and response

Know what system modelling is and analyse responses in simple cases

Open & closed loop control

Understand the difference between open and closed loop control

PID controller

Understand and trial and error tune PID controller

Servo motors

Know what servo motor is

Example

ΛI

Triple inverted pendulum

No actuators in rotational joints, only angle measurement

Triple Pendulum on a Cart

Swing-up and Swing-down

Two-degrees-of-freedom design:

Constrained feedforward & optimal feedback control

Unstable controller

Unstable controller 2

System response

System

Mathematical models of systems

Zero order =time independent

$$Ax_{out} = Bx_{in}$$

$$U = 1.45x$$
 Ideal sensor

First order

$$A_1 \frac{dx_{out}}{dt} + A_0 x_{out} = B_0 x_{in}$$

$$C\frac{dV}{dt} + \frac{V}{R} = 0$$
 RC-circuit

Second order

$$A\frac{d^2 x_{out}}{dt^2} + B\frac{dx_{out}}{dt} + x_{out} = Cx_{in} \qquad m\frac{d^2 x}{dt^2} + b\frac{dx}{dt} + kx = F$$

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F$$

Firsto order system: DC motor in terms of angular velocity

Laplace analysis to solve differential equations in analytical form

Electrical in time domain

 $U = L_A \frac{dI}{dt} + R_A I + K_E \omega$

Mechanical in time domain

$$T = K_T I = (J_R + J_L) \frac{d\omega}{dt} + D\omega + T_f + T_L$$

Laplace transformation to Laplace domain

$$V(s) = LsI + RI + K_e \omega$$

$$K_t I(s) = Js\omega + D\omega$$

Transfer function

$$\frac{\omega(s)}{V(s)} = \frac{K_t}{(Js + D)(Ls + R) + K_t K_e} = \frac{K_t}{Js^2 + (RJ + DL)s + DR + K_t K_e}$$

Step response of a system

This is what we put in

Parameters

Time constant τ – Represents 0-63 % rise time Damping ratio ζ

- Damping ratio for underdamped < 1, critically damped = 1, overdamped > 1
- Unstable when negative

Natural frequency ω_0

- Frequency at which system oscillates without driving or damping force
- Resonance happens when external force excites the system at natural frequency
 - At natural frequency, the energy transfer to the excited system is at its maximum

Resonance

Resonance 2

System damping

Stability

System is stable when bounded input always causes a bounded output

Problems are caused by

- Inherently unstable systems
- Unstable controller
- Delay in control loop
- Too high control gains
- Positive feedback

Control systems

Requirements for a control system

The output of the process follows the desired value with some

- Steady state accuracy
- Transient accuracy
 - Time constant, overshoot
- Stability

And the controller requires reasonable

- Computational effort
- Amount of knowledge of the process
- Effort to tune

Open loop control

Closed loop (feedback) control

Modifying the control signal using information of the current output of the process

Negative feedback stabilizes system

Closed loop (feedback) control

Modifying the control signal using information of the automate output of the process

Negative feedback stabilizes systen

How to make this closed loop??

Feed forward control

Modifying the control signal according to some external parameters

Power steering in a car – speed affects in addition the the position

Bang bang controller

Actuator at full positive or negative power

Very simple and often fastest possible response

In some cases requires a system model for accuracy

Requires hysteresis to limit switching

PID controller

Back to the example

Δ!

PID controller

Proportional, Integral and Derivative terms

PID controller (P term)

Output proportional to error signal Large gain K_p -> fast response, overshoot, oscillation Small gain K_p -> slow response, large steady-state error

PID controller (I term)

Output proportional to time integral of error

Makes steady state error go to zero

Large K_l -> error decreases quickly, overshoot, oscillation Small K_l -> error decreases slowly

PID controller (D term)

Output proportional to change rate of the error

K_d can dampen the response

If signal is noisy K_d may increase the interference

Parameter effects, warning, rough generalizations

	Overshoot	Steady state error	Stability
K _P	+	-	-
K _I	+	-> O	-
K _D	-	-	+/-

Parameter effects

This is what we put in

Lecture task: PID-controller

Discuss in groups of 2-4 the operating principles of a PID-controller. If your colleague does not understand some part of it, teach!

- Why PID is cool and nice in many engineering applications?
- Negative feedback
- Proportional part
- Integral part
- Derivative part

If there is something unclear, write it down, and I will try to answer

PID controller tuning

How to find the right gains?

Experimenting with a real system – might be dangerous

Apply input and observe

Experimenting with a system model – might be tedious

Simulink model – curves – adjust gains

Iterative optimization with a system model – requires cost function

For example a Simulink model with Matlab optimization functions

Analytical optimization with mathematical system model – might be difficult

Transfer function – calculus

Example: Microcontroller code for PI controller

```
if(PID_on){
        reference = read_adc(0)/4;
                                                                         //Read reference from a potentiometer
        error = reference-speed;
                                                                         //Calculate error
        proportional = P*error;
                                                                         //Proportional part of control
        integral = integral + I*error;
                                                                         //Integral part of control
              control = proportional+integral;
                                                                         //Controller output
        if(control<0){direction = 1;}else{direction = 0;}</pre>
                                                                         //Choose motor direction
PORTB.3 = direction;
                                                                         //Write to direction register
OCR1A = control;
                                                                         //Write to PWM register
```


Actuator range and rate limitations

Real actuators have range and speed limitations
Actuator saturates -> modify control law
Anti-windup compensator

Limits integral growth

Analog vs digital controllers

Controllers implemented with digital devices do not work continuously

Analog controller can be implemented with operational amps

- High frequency, integration differentiation, summing etc
- Most controllers digital, some vefy fast control loops analog

Results slightly different in analog and digital controllers Slightly different analysis methods

Control rate

In digital technology, not even time is continuous All tasks are done at certain intervals

- Measurements are either averaged or momentary
- Control algorithm calculated at constant and small enough control intervals

Control rate depends on time constant of the system

- Rise time from one state to another minimum 5-10 control loops
 - For a motor for example every 10 ms is often enough

PID position control demo

This is a physical demonstration of a PID controller controlling the angular position of the shaft of a DC motor. It was designed as a teaching tool to show the effects of proportional, integral, and derivative control schemes as well as the effect of saturation, anti-windup, and controller update rate on stability, overshoot, and steady state error. Enjoy!

Gregory Holst
December 2015
http://gregoryholst.com

Other controllers

Model-based control

Using a model of the system to predict its behaviour

Adaptive control

Modifying controller parameters according to output

Optimal control

Optimizing a controller to minimize a cost function

Robust control

Designing a controller that works with disturbances

Fuzzy control

Intuitive rule based controllers

Servo motors

Servo

The origin of the word is believed to come from the French "*Le Servomoteur*" or the slavemotor, first used by J. J. L. Farcot in 1868 to describe hydraulic and steam engines for use in ship steering.

Latin servus = slave

Servomotor control system

Goal:

- Motor that spins at the required speed regardless of load or disturbances
 - Velocity feedback
- Actuator that keeps at or goes to the required position regardless of load or disturbances
 - Position feedback

Cascade control

Control loop inside a control loop

- Outer loop for speed control
- Inner for torque (current)

Sensors for a servo motor

Encoders

- Incremental or absolute
- Optical, magnetic etc.

Resolvers & Synchros

Rotating transformers which measure position

Tachogenerators

"Inverse motor", measures rotating speed

Potentiometers

· Variable voltage divider

Motors for servo systems

DC (brushed or brushless)
AC (synchronous or asynchronous)
Integrated feedback sensors
Ability to tolerate short term overloads
Low inductance

Small electric time constant

Low rotor inertial mass

Small mechanical time constant

Example: RC-servo

Built in components:

- Motor
- Reduction gear
- Potentiometer
- Control circuit
- Driver circuit

Application examples

Industrial robots

- E.g. ABB IRB 7600
- Payload up to 630 kg
- Positioning accuracy 0.1 mm

Machining centers

- Rotation to linear motion with ball screws
- Positioning accuracy 0.005 mm

Summary

A controller increases the performance of a system Feedback control is used to reject disturbances Feedback control can stabilize unstable systems

Feedback control can also destabilize stable systems

A PID controller is easy to implement

Every mechatronic engineer should understand it

Servomotor is a feedback controlled motor

Servomotor is not a motor type

