Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	<u> </u>	
1.	$(\lg 100 - \lg 40) \cdot \frac{1}{(\lg 5 - \lg 2)(\lg 5 + \lg 2)} =$	2p
	$= \lg \frac{100}{40} \cdot \frac{1}{\lg \frac{5}{2} \cdot \lg 10} = \lg \frac{5}{2} \cdot \frac{1}{\lg \frac{5}{2}} = 1$	3 p
2.	$2x = m^2 - 1 \Leftrightarrow x = \frac{m^2 - 1}{2}$	2p
	Soluția ecuației este un număr real strict mai mic decât $0 \Leftrightarrow m^2 - 1 < 0$, deci $m \in (-1,1)$	3p
3.	$2^{x^2+x} = 2^{4x} \Leftrightarrow x^2 + x = 4x \Leftrightarrow x^2 - 3x = 0$	3p
	x = 0 sau $x = 3$	2p
4.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea numerelor naturale de o cifră care verifică inegalitatea $(n+1)!-n! \le n+2$ sunt 0, 1 și 2, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{10}$	1p
5.	$\overrightarrow{AO} = 6\vec{i} - 6\vec{j}$ şi $\overrightarrow{BC} = x_C \vec{i} + (y_C - 2)\vec{j}$, deci $6\vec{i} - 6\vec{j} = 2x_C \vec{i} + 2(y_C - 2)\vec{j}$	3p
	Coordonatele punctului C sunt $x_C = 3$, $y_C = -1$	2p
6.	Triunghiul este dreptunghic, deci $a^2 + 1 = 2(a+2)$, de unde obţinem $a^2 - 2a - 3 = 0$	3p
	a = -1 sau $a = 3$, care convin	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(4) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(4)) = \begin{vmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \end{vmatrix} = $ $= 0 + 2 + 0 - 0 - 1 - 0 = 1$	2p 3p
b)	$A(a) \cdot A(1) - A(a+1) = \begin{pmatrix} 1 + \sqrt{a} & \sqrt{a} & 1 + \sqrt{a} \\ 2 & 1 & 2 \\ a+2 & 1 & a+2 \end{pmatrix} - \begin{pmatrix} 1 & 0 & \sqrt{a+1} \\ 1 & 0 & 1 \\ a+1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \sqrt{a} & \sqrt{a} & 1 + \sqrt{a} - \sqrt{a+1} \\ 1 & 1 & 1 \\ 1 & 0 & a+1 \end{pmatrix},$ pentru orice $a \in (0, +\infty)$	-
	$\det(A(a) \cdot A(1) - A(a+1)) = \begin{vmatrix} \sqrt{a} & \sqrt{a} & 1 + \sqrt{a} - \sqrt{a+1} \\ 1 & 1 & 1 \\ 1 & 0 & a+1 \end{vmatrix} = \sqrt{a+1} - 1 > 0, \text{ pentru orice } a \in (0, +\infty)$	2p

Probă scrisă la matematică M_st -nat

Barem de evaluare și de notare

c)	$B(n) = \begin{pmatrix} 1+1+\ldots+1 & 0 & 1+2+\ldots+n \\ 1+1+\ldots+1 & 0 & 1+1+\ldots+1 \\ 1^2+2^2+\ldots+n^2 & 1+1+\ldots+1 & 1+1+\ldots+1 \end{pmatrix} = \begin{pmatrix} n & 0 & \frac{n(n+1)}{2} \\ n & 0 & n \\ \frac{n(n+1)(2n+1)}{6} & n & n \end{pmatrix}, \text{ pentru}$ orice număr natural n	2 p
	Pentru orice număr natural n , $n \ge 2$, $\det(B(n)) = \frac{n^3(n-1)}{2} \ne 0$, deci matricea $B(n)$ este inversabilă, pentru orice număr natural n , $n \ge 2$	3 p
2.a)	$\sqrt{3} \circ 2 = \sqrt{3} \left(\sqrt{3} \cdot 2 + 4 \right) - 3 \left(\sqrt{3} + 2 \right) =$	2p
	$=6+4\sqrt{3}-3\sqrt{3}-6=\sqrt{3}$	3 p
b)	$x \circ y = \sqrt{3}xy - 3x - 3y + 4\sqrt{3} = \sqrt{3}xy - 3x - 3y + 3\sqrt{3} + \sqrt{3} =$	2p
	$= \sqrt{3}x(y-\sqrt{3})-3(y-\sqrt{3})+\sqrt{3}=\sqrt{3}(x-\sqrt{3})(y-\sqrt{3})+\sqrt{3}, \text{ pentru orice numere reale } x \text{ și } y$	3 p
c)	$x \circ \sqrt{3} = \sqrt{3}$, $\sqrt{3} \circ y = \sqrt{3}$, pentru orice numere reale $x \neq y$	2p
	$3^{1} \circ 3^{\frac{1}{2}} \circ 3^{\frac{1}{3}} \circ \dots \circ 3^{\frac{1}{2021}} = \left(3^{1} \circ \sqrt{3}\right) \circ 3^{\frac{1}{3}} \circ \dots \circ 3^{\frac{1}{2021}} = \sqrt{3} \circ \left(3^{\frac{1}{3}} \circ \dots \circ 3^{\frac{1}{2021}}\right) = \sqrt{3}$	3 p

(30 de puncte) **SUBIECTUL al III-lea**

	` 1	,
1.a)	Cum $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (x - \arctan x) = 0$, $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{5x}{x^2 + x + 4} = 0$ şi $f(0) = 0$, obţinem $\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = f(0)$, deci f este continuă în $x = 0$	3р
	Cum f este continuă pe $(-\infty,0)$ și pe $(0,+\infty)$, obținem că f este continuă pe $\mathbb R$	2p
b)	$f(x) = x - \arctan x \Rightarrow f'(x) = \frac{x^2}{x^2 + 1}, \text{ pentru orice } x \in (-\infty, 0)$	3 p
	$f'(x) > 0$, pentru orice $x \in (-\infty, 0)$, deci funcția f este crescătoare pe $(-\infty, 0)$	2p
c)	f este crescătoare pe $(-\infty,0)$ și continuă în $x=0$, deci $f(x) \le f(0)$ și, cum $f(0)=0$, obținem $f(x) \le 0$, pentru orice $x \in (-\infty,0)$	2p
	Pentru orice $x \in [0, +\infty)$, $f(x) \le 1 \Leftrightarrow \frac{5x}{x^2 + x + 4} \le 1 \Leftrightarrow x^2 - 4x + 4 \ge 0 \Leftrightarrow (x - 2)^2 \ge 0$, deci $f(x) \le 1$, pentru orice număr real $x \in [0, +\infty) \Rightarrow f(x) \le 1$, pentru orice număr real $x \in [0, +\infty)$	3 p
2.a)	$\int_{1}^{5} x(x+2) f(x) dx = \int_{1}^{5} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{1}^{5} =$	3p
	$=\frac{25}{2}+5-\left(\frac{1}{2}+1\right)=16$	2p
b)	$\int_{1}^{3} f(x) dx = \frac{1}{2} \int_{1}^{3} \frac{2x+2}{x^{2}+2x} dx = \frac{1}{2} \ln \left(x^{2} + 2x \right) \Big _{1}^{3} =$	3p
	$= \frac{1}{2} (\ln 15 - \ln 3) = \frac{1}{2} \ln 5$	2p

c)	$F'(x) = f(x), \ x \in (0, +\infty) \Rightarrow F''(x) = \frac{x^2 + 2x - (x+1)(2x+2)}{\left(x^2 + 2x\right)^2} = -\frac{x^2 + 2x + 2}{\left(x^2 + 2x\right)^2}, \ x \in (0, +\infty)$	3р
	$F''(x) < 0$, pentru orice $x \in (0, +\infty)$, deci F este concavă	2p