实验报告 音响放大器的设计

电子信息与通信学院 提高 2301 班 张禹阳 U202314270

2025年5月28日

目录

1	实验名称	3
2	Ç验目的	3
3	实验元器件	4
	实验任务	4
	.1 功能要求	4
	.2 已知条件	4
	.3 技术指标要求	5
	4 测量内容	5

5	实验	实验原理及参考电路									
	5.1	实验电路	5								
	5.2	电路安装与调试技术									
		5.2.1 合理布局,分级装调	6								
		5.2.2 电路调试技术	6								
6	实验	实验过程									
	6.1	放大倍数、额定功率及整机效率	7								
	6.2	输入阻抗	8								
	6.3	频率响应	8								
	6.4	音调控制特性	8								
7	实验	小结	9								

1 实验名称

音响放大器的设计

2 实验目的

- 音响放大器的基本组成
- 音调特性控制方法与实现原理
- 了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法
- 掌握音响放大器的设计方法与电子线路系统的装调技术—综合运用所学知识,进行小型多级电子线路系统的设计与装调

3 实验元器件

名称	型号/参数	数量
作代刊计	LM386	3
集成功放	NE5532	3
	10kΩ	5
	13 k Ω	1
 电阻	30 k Ω	2
+E,PE.	$47\mathrm{k}\Omega$	3
	$75 \mathrm{k}\Omega$	1
	$10\Omega \text{ 2W}$	1
	$0.01 \mu \mathrm{F}$	2
	$0.22\mu\mathrm{F}$	1
	$0.1 \mu F$	1
电容	$1\mu F$	1
	$10\mu F$	8
	220μ F	2
	470μ F	12
电位器	10 k Ω	3
七 世命	470kΩ	2
话筒	输出 5mV	1
音乐播放器	/	1

4 实验任务

设计一个音响

4.1 功能要求

具有话音放大、音调控制、音量控制、卡拉 OK 伴唱等功能(不含电子混响)。

4.2 已知条件

• 集成功放 LM386。

- 话筒 600Ω, 输出信号 5mV。
- 集成运放 NE5532。
- 10Ω/2W 负载电阻 1 只。
- 8Ω/4W 扬声器 1 只。
- 音源 (MP3 or PC)。
- 电源电压 ±9V(双电源)。

4.3 技术指标要求

- 额定功率: $P_o \ge 0.3 \text{W} (\gamma < 3\%)$
- 负载阻抗: $R_L = 10\Omega(2W)$
- 频率响应: $f_L = 50$ Hz, $f_H = 20$ kHz
- 输入阻抗: $R_i \gg 20$ k Ω
- 音调控制特性: 1kHz 处增益为 0dB、125Hz 和 8kHz 处有 12dB 的调节范围, $A_{VL}=A_{VH}$ 20dB(选做)

4.4 测量内容

5 实验原理及参考电路

5.1 实验电路

5.2 电路安装与调试技术

5.2.1 合理布局,分级装调

- 音响放大器是一个小型电路系统,安装前要对整机线路进行合理布局
- 一般按照电路的顺序一级一级地布线
- 功放级应远离输入级
- 每一级的地线尽量接在一起
- 连线尽可能短, 否则很容易产生自激
- 安装前应检查元器件的质量
- 安装时特别要注意功放块、运算放大器、电解电容等主要器件的引脚和极性,不能接错
- 从输入级开始向后级安装,也可以从功放级开始向前逐级安装
- 安装一级调试一级,安装两级要进行级联调试,直到整机安装与调试完成

5.2.2 电路调试技术

- 1. 电路的调试过程一般是先分级调试,再级联调试,最后进行整机调试与性能指标测试。
- 2. 分级调试又分为静态调试与动态调试。

静态调试时,将输入端对地短路,用万用表测该级输出端对地的直流电压。话放、混放、音调电路均由运放组成,若运放是单电源供电,其静态输出直流电压均为 VCC/2,功放级输出 (OTL 电路) 也为 VCC/2,且输出电容 CC 两端充电电压也 应为

VCC/2。若是双电源供电,直流电压均为 0。动态调试是指输入端接入规定的信号,用示波器观测该级输出波形,并测量各项性能指标是否满足题目要求,如果相差很大,应检查电路是否接错,元器件数值是否合乎要求,否则是不会出现很大偏差的。

3. 级联调试

单级电路调试时的技术指标较容易达到,但级联后级间相互影响,可能使单级的技术指标发生很大变化,甚至两级不能进行级联。产生的主要原因:一是布线不太合理,形成级间交叉耦合,应考虑重新布线;二是级联后各级电流都要流经电源内阻,内阻压降对某一级可能形成正反馈,应接 RC 去耦滤波电路。R 一般取几十欧姆,

C 一般用几百微法大电容与 0.1F 小电容相并联。由于功放输出信号较大,易对前级产生影响,引起自激。集成块内部电路多极点引起的正反馈易产生高频自激,常见高频自激现象如图所示。

可以加强外部电路的负反馈予以抵消,如功放级 脚与 之间接入几百皮法的电容,形成电压并联负反馈,可消除叠加的高频毛刺。

6 实验过程

6.1 放大倍数、额定功率及整机效率

 $A_{\rm v}=536$

 $R_{\rm L} = 9.812\Omega \ V_{\rm o} = 2.68 \rm V$

 $P_{\rm o} = V_{\rm o}^2 / R_{\rm L} = 0.72 {\rm W}$

整机效率 $\eta = \frac{P_o}{P_c} \times 100\% = 45.98\%$

6.2 输入阻抗

图 1: 输入阻抗实验电路图

采用在输入回路串入已知电阻的方法测量输入电阻,其局部连接示意图如上图所示。 R 取值尽量与 R_i 接近(此处取 R=100k Ω)。用示波器一通道始终监视輸出 v_i 波形,用 另一个通道先后測量 R 接入和不接入时的输出电压 V_{01} (测量值为 5.280V) 和 V_{02} (测量值为 2.540V) 则输入电阻为 $R_i = V_{02}*R/V_{01} - V_{02} = 68.3$ k Ω 满足输入阻抗要求

6.3 频率响应

音响放大器的输入端接 v_i , RP_1 和 RP_2 置于中间位置,调整信号发生器的频率,测出负载上对应的输出电压测量数据如下:

f/Hz	20	40	50	500	100	200	500	600	800
$V_{\rm O}/{ m mV}$	4.120	4.880	5.040	5.200	5.280	5.280	5.360	5.280	5.360
f/Hz	1K	5k	10k	20k	30k	40k	45k	50k	100k
$V_{\rm o}/{ m V}$	3.201	5.280	5.160	5.160	5.040	5.120	5.120	5.080	4.960

由测量数据可知, $f_L \approx 40Hz$, $f_H > 100kHz$

6.4 音调控制特性

输入信号 $v_i(100\text{mV})$ 从音调控制级输入端的耦合电容加入,输出信号 v_o 从输出端的耦合电容引出。分别测量低音频提升-高音频衰减和低音频衰减-高音频提升这两条曲

f/Hz	20	50	125	500	1k	2k	8k	20k	50k
v_o/mV	707	460	248	110	101	83	42	20	13
A_{v}/dB	16.99	13.26	7.89	0.83	0.09	-1.62	-7.54	-13.98	-17.72
v_o/mV	11	21	47	94	113	158	470	832	1025
A_{v}/dB	-19.17	-13.56	-6.56	-0.54	1.06	3.97	13.44	18.39	20.21

线测量方法如下:将 RP_1 的滑臂置于最左端, RP_2 的滑臂置于最右端,当频率从 20Hz 至 50kHz 变化时记下对应的电压增益

再将 RP_1 的滑臂置于最右端, RP_2 的滑臂置于最左端,当频率从 $20\mathrm{Hz}$ 至 $50\mathrm{kHz}$ 变化时记下对应的电压增益

测量数据如下:

绘制得到的音调控制特性曲线如下:

7 实验小结

本次实验规模较大,虽然搭建较快,但是调试耗费了非常多的时间。总体来说整个过程非常艰辛,但尝试多次后还是得到了最终结果。本次实验中我更加深入理解了运算放大电路的级联,各级之间保持怎么样的输出输出,分别实现怎么样的功效等。