

Unit 1: Relational Databases

- 1.1. Fundamentals
- 1.2. The Relational Data Model
- 1.3. Interpretation of a Relational Database

Unit 1.1 Fundamentals

- 1. Information system.
- 2. Database and DBMS.
- 3. Database characteristics
- 4. Example.

1 Information system

Computer science (information processing)

A duality between *processing* and *information:* They do not make sense alone!

Processing perspective:

Programming, algorithmic, etc., deal with processing.

Information perspective:

Data representation, knowledge, data access, data storage, etc.

1 Information system

An *information system* (IS) is a collection of elements, which are orderly related to each other following some rules, that provide the entity they serve with the necessary information for the completion of its goals.

Basic functions of an IS:

- Data gathering
- Data processing
- Data storage
- Data elaboration and presentation

Unit 1.1 Fundamentals

- 1. Information system.
- 2. Database and DBMS.
- 3. Database characteristics
- 4. Example.

2 Database and DBMS

Database (DB)

Is a collection of structured data

Database management system (DBMS)

Software tool (collection of programs) that enables users to create, manipulate and maintain a database

2 Database and DBMS

- The way in which reality (entities, relationships, etc.) is represented in the context of databases (data structures, constraints, etc.) is known as a data modelling system or simply a "data model".
- Many different data models have been proposed:
 - Hierarchical, network, relational, object-oriented, multidimensional, etc.
- A DBMS assumes one data model and builds everything upon it.
- A Relational DBMS (RDBMS) is a DBMS which is based on the relational model.

Unit 1.1 Fundamentals

- 1. Information system.
- 2. Database and DBMS.
- 3. Database characteristics
- 4. Example.

3 Database characteristics

- Integrating all the organization's information.
- Data persistence.
- Shared accesibility to several users (or applications).
- Unified data description, independent of the applications.
- Independence between the applications and the physical representation.
- Description of partial views of the data for different users
- Mechanisms to ensure data integrity and security.

3 Database characteristics

DBs pursue a general goal:

Global integration of the system's information in order to avoid_redundancies, with no loss of the different database perspectives by users.

Additionally, the software tools (DBMSs), specifically designed to apply these techniques, must ensure data independence, integrity and security.

Unit 1.1 Fundamentals

- 1. Information system.
- 2. Database and DBMS.
- 3. Database characteristics
- 4. Example.

Information System of a University

Goal:

To handle the daily procedures and administrative tasks in a university

Originally we have different perspectives:

- School administration
- Department
- Students
- Lectures

Keeping these perspectives in a separate way involves redundacy

School administration's perspective

Courses

Computer Science Degree (ITIG)									
Term	Subject	Code	Dep.	Lect.	Lab				
1A	Algoritmos y estructuras de datos I	AD1	DSIC	3	3				
	Análisis matemático I	AM1	DMA	3	3				
	Fundamentos de computadores	FCO	DISCA	4.5	4.5				
	Introducción a la programación	IP	DSIC	1.5	1.5				
	Matemática discreta	MAD	DMA	3	3				
1B	Algoritmos y estructuras de datos II	AD2	DSIC	3	3				

L	'S		
Departament	Code	Name	Tel.
DSIC	LBP	Bos Pérez, Luis	3545
	JCP	Cerdá Pérez, Juan	3222
	PMG	Martí García, Pedro	3412
DISCA	MRC	Ruiz Cantó, María	3675

	Teachir	ng			
Term	Courses	Lec.	Lab.	Lecturers	Credits
		Groups	Groups		
1 ^a	AD1	2	4	Cerdá Perez, Juan	9
				Martí García, Pedro	9
	IP	2	4	Bos Pérez, Luis	9
				Cerdá Perez, Juan	9
	AM1				
1B	AD2				

Department's perspective

Lecturers

Code	Name	Address	Category	Tel	
LBP	Bos Pérez, Luis	Jesús 91	TEU	3545	
JCP	Cerdá Pérez, Juan	Olta 23	TEU	3222	
PMG	Martí García, Pedro	Cuenca 12	TEU	3412	

Appointed courses

Degree	School	Term	Course	Code	Lec	Lab
ITIG	E.I.	1A	Algoritmos y estructuras de datos I	AD1	3	3
			Introducción a la programación	IP	1.5	1.5
		1B	Algoritmos y estructuras de datos II	AD2	3	3

Teaching arrangement by subject

Term	Degree	School	Course	LecG	LabG	Lecturers	Credits
A	ITIG	E.I.	AD1	2	4	Cerdá Perez, Juan	9
						Martí García, Pedro 9	
			IP	2	4	Bos Pérez, Luis	9
						Cerdá Perez, Juan	9
В	ITIG	E.I.	AD2				

Teaching arrangement by lecturer

Lecturer	Subject Degree		School	Term	Credits
Bos Pérez, Luis	IP	ITIG	E.I.	A	9
Cerdá Pérez, Juan	AD1	ITIG	E.I.	A	9
	IP	ITIG	E.I.	A	9
Martí García, Pedro	AD1	ITIG	E.I.	A	9

We have duplicate information.

Is this a problem?

- Storage space is not optimised
- Higher update cost.
- Inconsistencies can appear.

For instance, the credits for the same course could differ depending on the view.

We can integrate everything into the same "logical" schema.

Logical schema

Relational Database

Department Relation

Code	Name	Head	Tel
DSIC	Sistemas Informáticos y Computación	Juan García	3570
DFA	Física Aplicada	José Ruíz	3540

Degree Relation

Code	Name	School
ITIG	Ingeniero Técnico en Informática de Gestión	E.I.
ITIS	Ingeniero Técnico en Informática de Sistemas	E.I.
II	Ingeniero Informático	FI

Relational Database

School Relation

Code	Name	Head	Tel
E.I.	Escuela Universitaria de Informática	Pedro Ruiz	3578
FI	Facultad de Informática	José Esteban	3776

Lecturer Relation

Code	Name	Address	Tel	Category	Dep
JCP	Juan Cerdá Pérez	Olta 23	3222	TEU	DSIC
LBP	Luis Bos Pérez	Jesús 91	3545	TU	DSIC
PMG	Pedro Martí García	Cuenca 12	3412	CU	DSIC

Relational Database

Course Relation

Code	Name	Sem	Lec	Lab	LecG	LabG	Degree	Dep
AD1	Algoritmos y estructuras de datos I	1A	3	3	2	4	ITIG	DSIC
IP	Introducción a la programación	1A	1.5	1.5	2	4	ITIG	DSIC
AD2	Algoritmos y estructuras de datos II	1B	3	3	1	1	ITIG	DSIC

Teaching Relation

lecturer_id	course_id	credits
JCP	AD1	9
JCP	IP	9
LBP	IP	9
PMG	AD1	9

Redundancy has been eliminated

What about the partial views of the data for different users?

Partial views of the logical schema

External schema (views)

Logical schema

External schema for DSIC

Lecturer

Code	Name	Address	Tel	Category	Dep
	•••				•••

SELECT rows WHERE Dep = 'DSIC'

Lecturers from DSIC

Code	Name	Address	Tel	Cat
	•••			

Course

Code	Name	Sem	Lec	Lab	LecG	LabG	Degree	Dep
	•••							

Code	Name	Sem	Lec	Lab	LecG	LabG	Degree
•••	•••	•••	•••	•••	•••	•••	•••

Teaching

SELECT rows in *teaching* which correspond to courses assigned to DSIC

The whole relation is included

Teaching from DSIC

Courses from DSIC

lecturer_id	course_id	credits
•••	•••	•••

Course

Code	Name	Sem	Lec	Lab	LecG	LabG	Degree	Dep
•••						•••		•••

Degree

Code	Name	School
•••	•••	•••

Degrees from DSIC

Code	Name	School

