2023 代组第七次作业

2000013058 杨仕博

2023年4月18日

53

由于 $|\phi(H)|$ |H| (因为 $\phi(H)$ 同构于 H 的某个商群), $|\phi(H)|$ $|G_2|$ (因为 $\phi(H)$ 是 G_2 的子群),

故 $|\phi(H)|$ $(|H|,|G_2|) \Rightarrow |\phi(H)|=1 \Rightarrow \phi(H)=\{e_2\}$ (其中 e_2 是 G_2 中的单位元)

故 $H \subseteq ker(\phi)$

61

首先,若 ϕ 是自同构,那么 $\forall x,y \in G, xy = \phi(x^{-1})\phi(y^{-1}) = \phi(x^{-1}y^{-1}) = yx$,故 G 是交换群

其次, 若 G 是交换群, 那么,

 $\forall x, y \in G, \phi(x) = \phi(y) \Rightarrow x^{-1} = y^{-1} \Rightarrow x = y$,故 ϕ 是单射 $\forall x \in G, \phi(x^{-1}) = x$,故 ϕ 是满射,

 $\forall x,y \in G, \phi(xy) = y^{-1}x^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y), \text{ if } \phi \text{ } \text{$\not$$} \text{$\not$$} \text{\not} \text$

因而, φ 是自同构

62

(1)

记 $I = \{0, 1, ..., n-1\}$

 $\forall i, j \in I, \phi_t(a^i a^j) = a^{t(i+j)} = a^{ti} a^{tj} = \phi_t(a^i) \phi_t(a_i)$

故 ϕ_t 是 G 的自同态

(2)

若 ϕ_t 是自同构,那么 $\exists i \in I, s.t.$ $\phi(a^i) = a \Rightarrow \exists i \in I, s.t.$ $it \mod n = 1 \Rightarrow (n,t) = 1$

若 (n,t)=1, 由裴蜀定理, $\exists i_0 \in I, s.t. \ i_0 t \mod n=1$

因为 $\forall i, j \in I, \phi_t(a^i) = \phi_t(a^j) \Leftrightarrow a^{it} = a^{jt} \Leftrightarrow it \equiv jt \pmod{n} \Leftrightarrow ii_0t \equiv ji_0t \pmod{n} \Leftrightarrow j \equiv i \pmod{n} \Leftrightarrow a^i = a^j, 故 \phi_t$ 为单射

又因为 $\forall i \in I, \phi_t(a^{ii_0}) = a^{ii_0t} = a^i$,故 ϕ_t 为满射。

因此, ϕ_t 是自同构。

考察如下函数:

$$f: G \to G/H \times G/K, \forall x \in G, f(x) = (xH, xK)$$

我们证明这是一个单射 + 同态映射,这样,G 即和 $f(G)(G/H \times G/K)$ 的子群) 同构。

由于 $\forall x, y \in G, f(x) = f(y) \Rightarrow (xH, xK) = (yH, yK) \Rightarrow y^{-1}x \in H \land y^{-1}x \in K \Rightarrow y^{-1}x \in H \cap K \Rightarrow y^{-1}x = e \Rightarrow x = y$,因而 f 是单射

又 $\forall x,y \in G, f(xy) = (xyH,xyK) = (xH,xK) \times (yH,yK) = f(x)f(y)$ 因而 f 是同态映射

故命题得证。

5

我们先证明 (2):

$$a + a = a + a + a + a + a + (-a) + (-a) = a^2 + aa + aa + a^2 + (-a) + (-a) = (a + a)^2 + (-a) + (-a) = a + a + (-a) + (-a) = 0$$

接下来我们证明 (1):

$$x+y=(x+y)^2=x^2+xy+yx+y^2=x+xy+yx+y\Rightarrow xy+yx=0$$
又 $xy+xy=0$, 故 $xy=yx$

最后我们证明 (3):

反设 R 是整环,由于 |R|>3,R 中必然有和零元与幺元不同的元素,设为 x,由上有 $x(x-1)=x^2-x=x-x=0$,故 $x=0\lor x-1=0\Rightarrow x=0\lor x=1$,与 x 不为零元或幺元矛盾

故命题得证

7

(1)

由于 n 不是素数,可以设 $n=pq, p \neq 1 \land q \neq 1$,这样 1 < p, q < n,又 pq=qp=0,故而 Z_n 中有零因子

(2)

若 $(r,n)=d\neq 1$,则 $r\times (n/d)=n\times (r/d)=0, (n/d)\times r=0$,故 r 为零因子

故 r 不是零因子 \Rightarrow (r,n) = 1

若 (r,n)=1,由裴蜀定理知 $\exists s\in Z, s.t.\ rs\equiv 1(\mod n)$,若此时有 $\exists t\in Z, s.t.\ rt=0$,则 t=srt=0,故 r 不为左零因子,同理 r 不为右零因子,故 r 不为零因子

命题得证

(3)

由 (2), Z_{18} 中的全部零因子为 2,3,4,6,8,9,10,12,14,15,16

12

首先证明 n 为素数。若 n 不为素数,则可设 $n = pq, p, q \neq 1$,有 0 = ne = (pe)(qe),与 F 没有零因子矛盾!

之后,由于 $\forall s \in \{1,2,...,n-1\}C_n^s = (n/s)C_{n-1}^{s-1}$,该式展开分母中没有 n 的倍数 (因为所有数都比 n 小),分子中有 n,故 $n|C_n^s$,故 $(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i} = a^n + b^n$