

ΕΡΓΑΣΤΗΡΙΟ 3

ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ

Περιεχόμενα

... συνέχεια των αριθμητικών κυκλωμάτων

- Πολλαπλασιαστής 2×2 bit
- Πολλαπλασιαστής 4×2 bit

Συγκριτής - Αποκωδικοποιητής - Πολυπλέκτης Comparator - Decoder (DEC) - Multiplexer (MUX)

- Συγκριτής 1 bit
- Συγκριτής 2 bit
- Αποκωδικοποιητής 2 × 4
- Αποκωδικοποιητής 3 × 8
- Πολυπλέκτης 2 σε 1
- Πολυπλέκτης 4 σε 1

Δυαδικός Πολλαπλασιαστής 2×2

- Να σχεδιαστεί το κύκλωμα του δυαδικού πολλαπλασιαστή 2x2.
- Ποια στρατηγική/λογική ακολουθούμε;

Δυαδικός Πολλαπλασιαστής 2×2

- Ποιος ο ρόλος των πυλών AND;
- Πως επιτυγχάνεται η μετατόπιση;
- Οι έξοδοι έχουν την έννοια του κρατούμενου;
- Θα μπορούσαμε και με 2 Full-adders;;;

Δυαδικός Πολλαπλασιαστής 4×2

- Να σχεδιαστή το κύκλωμα του δυαδικού πολλαπλασιαστή 4χ2
- Πόσες εξόδους θα έχουμε;
 Τι πύλες ή υποκυκλώματα θα χρησιμοποιήσουμε;

Βοηθητικά παραθέτω το κύκλωμα του 2x2 Multiplier

Δυαδικός Πολλαπλασιαστής 4×2

- Πως επιτυγχάνεται η μετατόπιση πριν την πρόσθεση;
- Για ποιο λόγο υπάρχει μια είσοδος μηδέν στον 4-bit adder;

Περιεχόμενα

Συγκριτής - Αποκωδικοποιητής - Πολυπλέκτης Comparator - Decoder (DEC) - Multiplexer (MUX)

- ο Πολλαπλασιαστής 2×2 bit
- ο Πολλαπλασιαστής 4×2 bit
- Συγκριτής *1 bit*
- Συγκριτής 2 bit
- Αποκωδικοποιητής 2 × 4
- Αποκωδικοποιητής 3 × 8
- Πολυπλέκτης 2 σε 1
- Πολυπλέκτης 4 σε 1

- Να σχεδιάσετε το κύκλωμα του 1-bit συγκριτή.
- Πόσες εισόδους και εξόδους θα έχουμε;
- Ποιες από τις βασικές πύλες να χρησιμοποιήσουμε;
- Η αποκλειστική διάζευξη θα μπορούσε να χρησιμεύσει; Αν ναι σε τι;

- Προσπαθείς να υλοποιήσεις την αποκλειστική διάζευξη ώστε να διαχωρίσεις τις ισότητες από τις ανισότητες.
- 2. Έπειτα προσπαθείς να διαχωρίσεις τις ανισότητες μεταξύ τους.

- Προσπαθείς να υλοποιήσεις την αποκλειστική διάζευξη ώστε να διαχωρίσεις τις ισότητες από τις ανισότητες.
- 2. Έπειτα προσπαθείς να διαχωρίσεις τις ανισότητες μεταξύ τους.

- Προσπαθείς να υλοποιήσεις την αποκλειστική διάζευξη ώστε να διαχωρίσεις τις ισότητες από τις ανισότητες.
- 2. Έπειτα προσπαθείς να διαχωρίσεις τις ανισότητες μεταξύ τους.

- Να σχεδιαστεί το κύκλωμα του 2-bit συγκριτή.
- Χρησιμοποιήστε την ίδια λογική που χρησιμοποιούμε και στους δεκαδικούς...

- Να σχεδιαστεί το κύκλωμα του 2-bit συγκριτή.
- Χρησιμοποιήστε την ίδια λογική που χρησιμοποιούμε και στους δεκαδικούς...

- > Να σχεδιαστεί το κύκλωμα του 2-bit συγκριτή.
- Χρησιμοποιήστε την ίδια λογική που χρησιμοποιούμε και στους δεκαδικούς...

Περιεχόμενα

Συγκριτής - Αποκωδικοποιητής - Πολυπλέκτης Comparator - Decoder (DEC) - Multiplexer (MUX)

- ο Πολλαπλασιαστής 2×2 bit
- Πολλαπλασιαστής 4×2 bit
- Συγκριτής 1 bit
- Συγκριτής 2 bit
- Αποκωδικοποιητής 2 × 4
- Αποκωδικοποιήτής 3 × 8
- Πολυπλέκτης 2 σε 1
- Πολυπλέκτης 4 σε 1

Κύκλωμα αποκωδικοποιητή

Να σχεδιάσετε το κύκλωμα αποκωδικοποιητή 3 σε 8 με είσοδο επίτρεψης

- Να βρεθούν οι λογικές συναρτήσεις του κυκλώματος και να σχεδιαστή το κύκλωμα
- □ Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργεία του

Αποκωδικοποιητής 3 × 8 (=2³)

	Inputs					Out	puts			
X	y	z	D ₀	D ₁	D ₂	D_3	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Να σχεδιάσετε το κύκλωμα αποκωδικοποιητή 2 σε 4 με είσοδο επίτρεψης

- Να βρεθούν οι λογικές συναρτήσεις του κυκλώματος και να σχεδιαστή το κύκλωμα
- □ Να σχεδιαστή το κύκλωμα χρησιμοποιώντας πύλες NOR και NAND
- Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργεία του
- □ Να υλοποιηθεί το κύκλωμα ως υποκύκλωμα

a	b	0	1	2	3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

με είσοδο επίτρεψης (enable line)

	Inputs			Out	puts	
EN	Α	В	Y ₃	Y ₂	Y ₁	Yo
0	×	×	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Κανονικός νε Συμπληρωματικός με είσοδο επίτρεψης

	Inputs		Outputs				
EN	Α	В	Y ₃	Y ₂	Y ₁	Y ₀	
0	×	×	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

\boldsymbol{E}	\boldsymbol{A}	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	1

Κανονικός vs Συμπληρωματικός με είσοδο επίτρεψης

Inputs			Outputs				
EN	Α	В	Y ₃	Y ₂	Y ₁	Y ₀	
0	×	×	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

\boldsymbol{E}	\boldsymbol{A}	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	1

Βρες την υλοποίηση με NAND και NOR

	Inputs			Outputs				
EN	Α	В	Y ₃	Y ₂	Y ₁	Yo		
0	×	×	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

Πολυπλέκτης 2 σε 1

Χρήσιμες ισοδυναμίες για μετατροπή σε υλοποιήσεις με NAND και NOR

In electrical and computer engineering, De Morgan's laws are commonly written as:

$$\overline{A \cdot B} \equiv \overline{A} + \overline{B}$$

and

$$\overline{A+B} \equiv \overline{A} \cdot \overline{B}$$
,

where:

- · is the logical AND,
- + is the logical OR,

Υλοποιημένος με NAND (συμπληρωματικός)

Αποκωδικοποιητής 2 × 4 Υλοποιημένος με NOR

	Inputs			Outputs				
EN	Α	В	Y ₃	Y ₂	Υ ₁	Y ₀		
0	×	×	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

Συμπληρωματικός

Ε	A	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Περιεχόμενα

Συγκριτής - Αποκωδικοποιητής - Πολυπλέκτης Comparator - Decoder (DEC) - Multiplexer (MUX)

- ο Πολλαπλασιαστής 2×2 bit
- Πολλαπλασιαστής 4×2 bit
- Συγκριτής 1 bit
- Συγκριτής 2 bit
- Αποκωδικοποιητής 2 × 4
- Αποκωδικοποιητής 3 × 8
- Πολυπλέκτης 2 σε 1
- Πολυπλέκτης 4 σε 1

Πολυπλέκτης 2 σε 1

Πολυπλέκτης 4 σε 1

Να υλοποιηθεί το κύκλωμα πολυπλέκτη 4 σε 1

- Να βρεθεί η λογική συνάρτηση του κυκλώματος και να σχεδιαστεί το κύκλωμα
- Να σχεδιαστή το κύκλωμα χρησιμοποιώντας πύλες NOR.
- Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να επαληθευτεί η λειτουργία του
- Να υλοποιηθεί το κύκλωμα ως υποκύκλωμα (chip)

Πολυπλέκτης 4 σε 1

Αντιπαράθεση με αποκωδικοποιητή 2×4

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Πολυπλέκτης 4 σε 1 με NOR

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Πολυπλέκτης 2 σε 1

Χρήσιμες ισοδυναμίες για μετατροπή σε υλοποιήσεις με NAND και NOR

Ασκήσεις για υποβολή Παραδοτέα 2 αρχεία: 1. αρχείο κειμένου με σχήματα ο εργαστήριο

(κατά προτίμηση .pdf) 2. αρχείο .circ

Να σχεδιάσετε και να υλοποιήσετε στον εξομοιωτή τα παρακάτω κυκλώματα:

- Να σχεδιαστή κύκλωμα δυαδικού πολλαπλασιαστή 4x4.
- Να σχεδιαστεί κύκλωμα δυαδικού συγκριτής 4x4.
- > Να σχεδιάσετε και να υλοποιήσετε κύκλωμα πολυπλέκτη 2 σε 1 με είσοδο επίτρεψης, όπου κάθε μια από τις εισόδους/εξόδους θα είναι των 8 bit .
 - *(σε κανονική λειτουργία το σύστημα είναι απενεργοποιημένο οπότε για Ε=1, όλες οι έξοδοι 0)
- Να σχεδιάσετε και να υλοποιήσετε στον προσομοιωτή έναν 4×16 αποκωδικοποιητή χρησιμοποιώντας δυο 3×8 αποκωδικοποιητές.

Υποχρεωτική υποβολή με αξιολόγηση

ΤΕΛΟΣ

3ου εργαστηρίου

Ερωτήσεις;