

ВИКОРИСТАННЯ МЕТОДІВ ЯДЕРНОЇ ФІЗИКИ ДЛЯ ДЕТЕКТУВАННЯ ВИБУХОНЕБЕЗПЕЧНИХ ТА ТОКСИЧНИХ РЕЧОВИН

МАГІСТЕРСЬКА РОБОТА СТУДЕНТА 2 РОКУ НАВЧАННЯ ТРОФІМЮКА ОЛЕГА ВАЛЕНТИНОВИЧА

> НАУКОВИЙ КЕРІВНИК КАНД. ФІЗ.-МАТ. НАУК, ДОЦЕНТ. **БЕЗШИЙКО ОЛЕГ АНАТОЛІЙОВИЧ**

План

- •Актуальність роботи
- •Огляд методів
- •Постановка задачі (Проект SABAT)
- •Моделювання геометрії
- •Результати
- •Висновки

Актуальність

- •Порядку 58-ми країн рахуються зараженими мінами
- •Більшість зафіксованих жертв мін були цивільними (87%)
- •Гостро стоїть питання токсичного зараження водойм військовими відходами
- •Загрозу становить як забруднення (Через отруєння водойми, риби, тощо), так і безпосередньо боєприпаси
- •Важливим є питання саме неінвазивного детектування і в подальшому цивільного розмінування

Методи ядерної фізики для вирішення проблеми

- •Зворотне розсіяння
 - «Образ» зворотного розсіювання залежить від властивості матеріалу
 - Добре підходить для зображення органічного матеріалу
 - Метод дозволяє виявити форму об'єкту
 - Не дає інформації про склад
- •Ядерний квадрупольний резонанс
 - Сигнали доволі слабкі
 - Використання методу займає чимало часу
 - Чутливий до впливу довкілля
 - Потребує автоматизованих систем
 - Дає інформацію про склад кристалічних структур

Нейтронно активаційний аналіз(НАА)

- •Взаємодія нейтронів з матеріалом (Пружне розсіяння, непружне розсіяння, захоплення)
- •Отримання спектру гамма-квантів
- •Аналіз спектру
- •Побудова бази *стехіометричних величин

D+Т реакція генерує нейтрони енергії 14.1 MeV

^{*}Стехіометрична величина – параметр-відношення площі під піком лінії інтересу до площі певної «референсної» лінії

Проект SABAT(Stoichiometry Analysis By Activation Techniques)

- •Цілі проекту
 - Конструювання детекторної системи для пошуку небезпечних матеріалів у водоймах
 - Неінвазивний метод (НАА)
 - Побудова моделювання (MCNP, GEANT4)
 - Створення бази стехіометричних величин

Дані для побудови геометрії та аналізу

Склад піщаного дна

Element	Mass ratio (%)	Element	Mass ratio (%)
Н	3.30144%	Fe	1.00237%
10B	0.00001%	Co	0.00050%
11B	000002%	Ni	0.00100%
C	0.35344%	Cu	0.00100%
O	61.99990%	Zn	0.00200%
F	0.00001%	As	0.00080%
Na	1.34864%	79Br	0.00019%
Mg	0.00734%	81Br	0.00019%
Al	2.59482%	84Sr	0.00001%
Si	27.53650%	86Sr	0.00010%
Si	0.00517%	87Sr	0.00007%
35Cl	0.08376%	88Sr	0.00086%
35Cl	0.02679%	Cd	0.00010%
K	0.87891%	Ba	0.00250%
Ca	0.84806%	Hg	0.000002%
V	0.00100%	Pb	0.00150%
Cr	0.00100%		

Типові лінії елементів-складових

Energy (MeV)	Nucleus	Reaction type
0.79	Cl	Neutron capture
1.17	Cl	Neutron capture
1.78	Si	Inelastic scattering
1.94	Cl	Neutron capture
2.12	Cl	Inelastic scattering
2.23	H	Neutron capture
2.23	S	Inelastic scattering
4.44	C	Inelastic scattering
6.12	Cl	Neutron capture
6.13	O	Inelastic scattering
7.64	Fe	Neutron capture
7.79	Cl	Neutron capture
8.58	Cl	Neutron capture
9.30	Fe	Neutron capture

Геометрія (GEANT4)

Змодельована геометрія системи SABAT. Підводний човен (фіолетовий прямокутник) з нейтроном генератором P385 D-T (червоне коло) та детектором гамма-квантів (коричневий квадрат). Нейтронні та ү-квант направляючі (фіолетовий та зелений відповідно). Опромінений матеріал розміщується на дно моря (жовтий прямокутник) у сталевому контейнері (зеленого кольору).

Геометрія (GEANT4)

- Підводний човен (фіолетовий прямокутник) розмірами $300 \times 300 \times 200$ см³, виготовлений з нержавіючої сталі 3 мм товщиною.
- 14 МеВ-не джерело нейтронів (червоне кільце)
- γ -детектор циліндричної форми 2 "× 2" виготовлений з LaBr₃:Се (коричневий), розміщений за 50 см від цілі.
- Направляючі нейтроннів та γ-квантів (фіолетова та зелена відповідно) імітуються як 20 см у діаметрі × 10 см у висоту циліндр і паралелепіпед довжиною 35 см та з площею верхньої та нижньої поверхні 20 × 20 см² відповідно.
- Направляючі також виготовлені з нержавіючої сталі товщиною 3 мм.
- Ємність з речовиною являє собою сталеву коробку (буро-зелений прямокутник) розмірами 194 × 50 × 50 см³, товщиною в 3 мм. Її розміщують на морському дні, представленому сірим прямокутником (400 × 400 × 100 см³).

Моделювання (Гірчичний газ - C₄H₈Cl₂S)

Моделювання

Результати отримані за допомогою моделювання GEANT

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
CI/O	2.12/6.13	Гірчичний газ	0.55 ± 0.07	0.36 ± 0.12
S/O	2.23/6.13	Гірчичний газ	0.57 ± 0.07	0.29 ± 0.03
C/O	4.44/6.13	Гірчичний газ	0.29 ± 0.04	0.18 ± 0.07

Результати отримані за допомогою моделювання МСNР

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
CI/O	2.12/6.13	Гірчичний газ	0.54 ± 0.06	0.38 ± 0.10
S/O	2.23/6.13	Гірчичний газ	0.55 ± 0.06	0.28 ± 0.02
C/O	4.44/6.13	Гірчичний газ	0.31 ± 0.03	0.18 ± 0.05

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
CI/H	6.12/2.23	Гірчичний газ	0.082 ± 0.004	0.013 ± 0.003

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
CI/O	2.12/6.13	Фосген	0.46± 0.09	0.36 ± 0.12
C/O	4.44/6.13	Фосген	0.21 ± 0.05	0.18 ± 0.07

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
N/O	10.83/6.13	Тротил	0.018± 0.009	0.011± 0.002
C/O	4.44/6.13	Тротил	0.39 ± 0.06	0.18 ± 0.07

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
C/O	4.44/6.13	Зоман	0.25 ± 0.04	0.18 ± 0.07
F/O	6.601/6.13	Зоман	0.16 ± 0.03	0.10 ± 0.02

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
N/O	10.83/6.13	Табун	0.014 ± 0.007	0.011 ± 0.02
C/O	4.44/6.13	Табун	0.28 ± 0.05	0.18 ± 0.07

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
C/O	4.44/6.13	Зарин	0.23 ± 0.03	0.18 ± 0.07
F/O	6.601/6.13	Зарин	0.22 ± 0.05	0.10± 0.02

Інтенсивність піку	Енергія(МеВ)	Матеріал	Сигнал	Фон
F/O	6.601/6.13	VX	0.16 ± 0.03	0.10 ± 0.02
S/O	2.23/6.13	VX	0.44 ± 0.05	0.29 ± 0.03
C/O	4.44/6.13	VX	0.25 ± 0.04	0.18 ± 0.07

Висновки

- •Тож, в результаті роботи було змодельовано підводну субмарину з генератором нейтронів на борту та детектором гамма квантів
- •Отримано моделювання різноманітних речовин, на морському дні
- •Побудовано таблицю стехіометричних величин
- •Вихідні результати порівняно з аналогічними отриманими за допомогою моделювання в MCNP

В майбутньому єдина база стехіометричних речовин дозволить з легкістю детектувати вибухонебезпечні та токсичні матеріали. Також метод, в цілому, є універсальним і можливий його розвиток для надземного детектування мін та імплементації в системи цивільного розмінування. Геометрія для подібних систем вже змодельована і найближчим часом будуть проведені моделювання нейтронної актвиації.

Подяка

Dr Michal Silarski - Jagiellonian University | UJ · Faculty of Physics, Astronomy and Applied Computer Science

Dr Sushil K. Sharma - Jagiellonian University | UJ · Institute of physics

Дякую за увагу