5.7
$$m = 0.2$$
 Rg

 $F_{x}(x,y) = 2px^{3}y^{2}$
 $F_{y}(x,y) = x^{9}y$
 $F_{z}(x,y) = 0$

Choose a closed path C , e.g.

Since the face is conscioutive and the path is closed, we have

 $f_{z} = 0$

Explicit calculation gives $(q > 0)$ otherwise diveyons

 $f_{z} = 0$
 $f_{z} = 0$

with
$$p = 1$$
, we find $q = 4$.

$$P = 1 & q = 4$$

$$F_{x} = 2x^{3}y^{2}$$

$$F_{y} = x^{9}y$$

$$F_{z} = 0$$

U(P) = 22

a)
$$U(x) = -\frac{2GMm}{\sqrt{x^2 + a^2}}$$

b)
$$\frac{1}{2}mV_{o}^{2} - \frac{1}{2}mV_{i}^{2} = U(3a) - U(0)$$

$$= -\frac{2}{9}\frac{9Mm}{10a^{2}} + \frac{2}{10}\frac{9Mm}{10a^{2}}$$

$$= \frac{2(\sqrt{10} - 1)}{10a^{2}}\frac{9Mm}{10a^{2}}$$

$$V_o = \sqrt{V_i^2 + \frac{4(\sqrt{10} - 1)}{\sqrt{10}|a|}} gM$$