Lista de exercícios No. 1 - Processamento de Imagens

Gustavo Lopes Rodrigues

30 de março de 2022

Questão 1.

- Aquisição adquirir imagens, transformando a imagem analógica em uma imagem digital.
- **Pré-Processamento** passar a imagem por algoritmos que melhore a qualidade da imagem para os futuros passos
- Segmentação dividir a imagem em objetos de interesse
- Extração de características extrair dados das imagens resultantes da segmentação
- Reconhecimento e interpretação processo de atribuição de um rótulo a um objeto baseado nas características traduzidas.

Questão 2.

A amostragem é o processo de converter a imagem analógica em uma matriz MxN pontos, onde cada ponto é um pixel. Já a quantitização é o processo onde cada um dos pixels da imagem, assumam um valor inteiro entre 0 a $2^n - 1$. O valor \mathbf{n} representa o número de níveis de cinza presentes na imagem digitalizada.

Questão 3.

A segmentação é considerado um problema sem solução geral, pois não existe um único algoritmo que solucione todos os casos, necessitando de diferentes algoritmos, técnicas de segmentação e pré-processamentos.

Questão 4.

	1 1 0 0 0	1 0 0 0 1	0 0 1 0 0
a)	0 1 1 0 0	1111110	0 0 1 1 1
	0 0 1 1 0	0 0 1 1 1	1 1 1 0 0
	0 0 0 0 0	1 0 0 1 1	0 0 0 1 1
	0 0 0 0 0	1 1 0 0 0	0 0 0 1 1
	1 1 0 0 0	10001	0 0 1 0 0
b)	0 1 1 0 0	1 1 1 1 0	0 0 1 1 1
	0 0 1 1 0	0 0 1 1 1	1 1 1 0 0
	0 0 0 0 0	1 0 0 1 1	0 0 0 1 1
	0 0 0 0 0	1 1 0 0 0	0 0 0 1 1
	3 5 2 1 1	5 1 2 1 8	1 1 9 1 1
c)	1 4 6 2 1	6 6 5 6 1	1 1 9 8 7
	1 1 5 6 2	2 1 8 7 7	9 9 9 2 1
	1 1 1 1 1	 	
		6 1 2 8 8	
	1 2 2 2 1	7 8 2 1 1	1 2 2 8 9

- \mathbf{d})
- $\mathbf{e})$
- \mathbf{f}

Questão 5.

A segmentação por contorno pertence a uma classe de problemas, onde queremos achar um subconjunto de pixels que separa um objeto do fundo da imagem. Este é um algoritmo ótimo, porém, sua eficácia depende do grupo de dados obtidos, então isso pode resultar em problemas se a imagem contém furos, ou, se as bordas não formam uma figura fechada.