Feuille 3,

Courbes algébriques

Ensembles Algébriques Affines, Dimension, Singularités

Exercice 1 Montrer qu'une variété affine est de dimension 0 si et seulement si elle est un point.

Exercice 2 Pour chaque entier $d \in \{0, 1, 2, 3\}$, trouver $F_1, F_2, F_3 \in \mathsf{k}[X, Y, Z]$ tels que $V(F_1, F_2, F_3)$ soit une variété affine de dimension d.

Exercice 3 Dans les cas suivants, calculer une base de transcendence de k(V)sur k. En déduire la dimension de V.

- 1. $V_1 = V(X Y) \subseteq \mathbb{A}^2$.
- 1. $V_1 V(X Y) \subseteq \mathbb{A}^3$. 2. $V_1 = V(X Y) \subseteq \mathbb{A}^3$. 3. $V_1 = V(X Y, X + Y) \subseteq \mathbb{A}^2$. 4. $V_1 = V(X Y, Z) \subseteq \mathbb{A}^3$. 5. $V_1 = V(X^2 Y^5) \subseteq \mathbb{A}^2$.

Exercice 4 Soient $V=V(X^2-Y^3,Y^2-Z^3)\subseteq \mathbb{A}^3$ et $a=(0,0,0)\in V$. Calculer la dimension sur k de l'espace vectoriel $\mathfrak{m}_a/\mathfrak{m}_a^2$.

Exercice 5 Trouver les points singuliers des variétés affines suivantes.

- 1. $V = V(X^2 + Y^2 1) \subseteq \mathbb{A}^2$. 2. $V = V(X^2 Y^4) \subseteq \mathbb{A}^2$.
- 3. $V = V(Y^4) \subseteq \mathbb{A}^2$.
- $\begin{array}{l} 4. \ V = V(X YZ, Y^2 XZ, Z^2 Y) \subseteq \mathbb{A}^3. \\ 5. \ V = \{(t, t^2, t^3) \mid t \in \mathbb{k} \ \} \subseteq \mathbb{A}^3. \end{array}$

Exercice 6 Montrer que deux variétés affines isomorphes ont la même dimension. En déduire que $V(X-Y) \subseteq \mathbb{A}^2$ et $V(X-Y) \subseteq \mathbb{A}^3$ ne sont pas isomorphes.

Exercice 7 Montrer que l'ensemble algébrique $V(X^2 - Y, Y^2 - Z) \subseteq \mathbb{A}^3$ est une courbe lisse de deux facons

Exercice 8 Soit k un corps algébriquement clos de caractéristique différente de 2. Soit $F \in \mathsf{k}[X_1,\ldots,X_n]$ un polynôme homogène non nul de degré 2.

1. Montrer qu'à un changement de variables près, il existe $1 \leq r \leq n$ tel que

$$F = X_1^2 + \ldots + X_r^2$$
.

- 2. Montrer que V(F) est irréductible si et seulement si $r \geq 3$.
- 3. Déterminer le lieu singulier de V(F) pour $F=X_1^2+\ldots+X_r^2.$

Exercice 9 Soient $V \subseteq \mathbb{A}^n$ et $W \subseteq \mathbb{A}^m$ deux variétés affines.

- 1. Montrer que $V \times W \subseteq \mathbb{A}^{n+m}$ est une variété affine.
- 2. Montrer que $k[V \times W]$ est isomorphe á $k[V] \otimes_k k[W]$.
- 3. Déduire que si k est un corps algébriquement clos et A et B sont des k-algèbres de type fini, alors $A \otimes_k B$ est une k-algèbre de type fini.
 - 4. Montrer que $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ n'est pas un domaine intégre.

Exercice 10 Donner un exemple de fermé de $\mathbb{A}^2 = \mathbb{A}^1 \times \mathbb{A}^1$ qui n'est pas le produit d'un fermé de \mathbb{A}^1 par un fermé de \mathbb{A}^1 .

Exercice 11 Soit $\varphi: V \to W$ un morphisme d'ensembles algébriques. Montrer que φ est continue par rapport à la topologie de Zariski de V et W.

Exercice 12 Soit $E \subseteq \mathbb{A}^n$ un sous-ensemble quelconque. Montrer que tout ensemble algébrique Y de \mathbb{A}^n tel que $E \subseteq Y$ contient V(I(E)). Conclure que l'adhérence \overline{E} de E dans \mathbb{A}^n est V(I(E)).