Lesson 24: Special Integrating Factors - $\mu(xy)$ and Beyond

ODE 1 - Prof. Adi Ditkowski

1 Beyond Simple Integrating Factors

When neither $\mu(x)$ nor $\mu(y)$ exists, we look for integrating factors of special forms:

- $\mu(xy)$ depends on the product xy
- $\mu(x^2 + y^2)$ depends on radial distance
- $\mu = x^a y^b$ power form
- $\mu = 1/(xM + yN)$ for homogeneous equations

Each special form has its own existence test. Master the tests to quickly identify which form to use!

2 Case 3: Integrating Factor $\mu(xy)$

Theorem 1 (Existence of $\mu(xy)$). An integrating factor depending only on z=xy exists if and only if

$$\frac{1}{xN - yM} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = F(xy)$$

where F is a function of xy alone. The integrating factor is:

$$\mu(xy) =$$

 $e^{\int} F(z) dz$ where z = xy

Proof Sketch. If $\mu = \mu(z)$ where z = xy, then:

$$\frac{\partial \mu}{\partial x} = \frac{d\mu}{dz} \cdot y, \quad \frac{\partial \mu}{\partial y} = \frac{d\mu}{dz} \cdot x$$

Substituting into the exactness condition:

$$M \cdot \frac{d\mu}{dz} \cdot x - N \cdot \frac{d\mu}{dz} \cdot y = \mu(N_x - M_y)$$

$$\frac{1}{\mu}\frac{d\mu}{dz} = \frac{M_y - N_x}{xN - yM}$$

This requires the right side to be a function of z = xy only.

Testing for $\mu(xy)$:

- 1. Compute $M_y N_x$ (numerator)
- 2. Compute xN yM (denominator note the pattern!)
- 3. Form the ratio $\frac{M_y N_x}{xN yM}$
- 4. Check if this can be expressed as F(xy)
- 5. If yes, solve $\frac{d\mu}{dz} = \mu \cdot F(z)$ where z = xy

Example 1 ($\mu(xy)$ Application). Solve $(2y^2 + 3xy)dx + (2xy + x^2)dy = 0$

Step 1: Check exactness: $M_y = 4y + 3x$, $N_x = 2y + 2x$. Not exact. Step 2: Test $\mu(x)$: $\frac{M_y - N_x}{N} = \frac{2y + x}{2xy + x^2} = \frac{2y + x}{x(2y + x)} = \frac{1}{x}$ Actually, $\mu(x) = x$ works here! But let's continue for illustration...

Step 3: Test $\mu(xy)$:

$$\frac{M_y - N_x}{xN - yM} = \frac{2y + x}{x(2xy + x^2) - y(2y^2 + 3xy)}$$
$$= \frac{2y + x}{2x^2y + x^3 - 2y^3 - 3xy^2}$$

This expression is complex and not a clear function of xy.

Case 4: Integrating Factor $\mu(x^2 + y^2)$ 3

Theorem 2 (Existence of $\mu(x^2+y^2)$). An integrating factor depending only on $r^2=x^2+y^2$ exists if and only if

$$\frac{1}{xM + yN} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = G(x^2 + y^2)$$

where G is a function of $x^2 + y^2$ alone.

The denominator xM+yN appears naturally in polar coordinate transformations. This test often succeeds for equations with circular symmetry.

Example 2 (Radial Integrating Factor). Consider $(x^2 + y^2 + x)dx + (x^2 + y^2 + y)dy = 0$ Let's test for $\mu(x^2 + y^2)$:

$$M_y - N_x = 2y - 2x$$

$$xM + yN = x(x^2 + y^2 + x) + y(x^2 + y^2 + y) = (x^2 + y^2)(x + y) + x^2 + y^2$$

$$= (x^2 + y^2)(x + y + 1)$$

The ratio doesn't simplify to a function of $x^2 + y^2$ easily, but if we had $(x^2 + y^2)$ as a common factor throughout, it would work.

Case 5: Power Form $\mu = x^a y^b$ 4

Method 1 (Finding $\mu = x^a y^b$). To find an integrating factor of the form $\mu = x^a y^b$:

- 1. Multiply the equation by $x^a y^b$
- 2. Apply the exactness condition
- 3. Compare powers of x and y on both sides
- 4. Solve the resulting system for a and b

Example 3 (Power Form). Find $\mu = x^a y^b$ for ydx + 2xdy = 0

After multiplication: $x^a y^{b+1} dx + 2x^{a+1} y^b dy = 0$

Exactness requires:

$$\frac{\partial}{\partial y}(x^a y^{b+1}) = \frac{\partial}{\partial x}(2x^{a+1}y^b)$$
$$(b+1)x^a y^b = 2(a+1)x^a y^b$$
$$b+1 = 2(a+1)$$

$$b = 2a + 1$$

Choosing a = -1 gives b = -1, so $\mu = \frac{1}{xy}$ works.

5 Case 6: Homogeneous Equations

Theorem 3 (Integrating Factor for Homogeneous Equations). If M(x,y) and N(x,y) are homogeneous functions of the same degree n, then

$$\mu = \frac{1}{xM + yN}$$

is an integrating factor (provided $xM + yN \neq 0$).

Proof Outline. Using Euler's theorem for homogeneous functions of degree n:

$$x\frac{\partial M}{\partial x} + y\frac{\partial M}{\partial y} = nM$$

$$x\frac{\partial N}{\partial x} + y\frac{\partial N}{\partial y} = nN$$

The exactness condition with $\mu = 1/(xM + yN)$ can be verified using these relations.

Quick Recognition of Homogeneous Equations:

- \bullet All terms have the same total degree in x and y
- $M(tx, ty) = t^n M(x, y)$ for some n
- Common forms: rational functions where numerator and denominator have same degree

6 Strategy Flowchart

Complete Integrating Factor Strategy:

- 1. Test for exactness if exact, solve directly
- 2. Test for $\mu(x)$: Is $(M_y N_x)/N$ a function of x only?
- 3. Test for $\mu(y)$: Is $(N_x M_y)/M$ a function of y only?
- 4. Check for homogeneity if yes, use $\mu = 1/(xM + yN)$
- 5. Test for $\mu(xy)$: Is $(M_y N_x)/(xN yM)$ a function of xy?
- 6. Test for $\mu(x^2 + y^2)$: Is $(M_y N_x)/(xM + yN)$ a function of $x^2 + y^2$?
- 7. Try $\mu = x^a y^b$ by comparing powers
- 8. Look for patterns or use inspection

7 Memory Aids and Patterns

Denominator Patterns:

Form	Test Denominator	Mnemonic
$\mu(x)$	N	"N for x"
$\mu(y)$	M	"M for y"
$\mu(xy)$	xN - yM	"Cross product"
$\mu(x^2+y^2)$	xM + yN	"Dot product"
Homogeneous	xM + yN	"Euler's friend"

8 Common Exam Patterns

Prof. Ditkowski often gives hints about the form:

• "Find an integrating factor of the form $x^a y^b$ "

- ullet "Show that the equation has an integrating factor depending on xy"
- "Find μ assuming it depends only on $x^2 + y^2$ "

When you see these hints, skip the testing phase and work directly with the given form!