Polyhedral Computation

Jayant Apte ASPITRG

Part I

The Three Problems of Polyhedral Computation

- Representation Conversion
 - H-representation of polyhedron

- V-Representation of polyhedron
- Projection

•
$$\{P|P \in R^d\} \to \{P'|P' \in R^{(d-n)}\}$$

- Redundancy Removal
 - Compute the minimal representation of a polyhedron

Outline

Preliminaries

- Representations of convex polyhedra, polyhedral cones
- \bullet Homogenization Converting a general polyhedron in \mathbb{R}^d to a cone in \mathbb{R}^{d+1}
- Polar of a convex cone

• The three problems

- Representation Conversion
 - Review of LRS
 - _ Double Description Method
- Projection of polyhedral sets
 - _ Fourier-Motzkin Elimination
 - Block Elimination
 - _ Convex Hull Method (CHM)
- Redundancy removal
 - Redundancy removal using linear programming

Outline for Part 1

Preliminaries

- Representations of convex polyhedra, polyhedral cones
- Homogenization Converting a general polyhedron in \mathbb{R}^d to a cone in \mathbb{R}^{d+1}
- Polar of a convex cone
- The first problem
 - Representation Conversion
 - Review of LRS
 - Double Description Method

Preliminaries

Convex Polyhedron

- A subset P of \mathbb{R}^d
- The set of solutions to a finite system of linear inequalities
- Called convex polytope if it is a convex polyhedron and bounded

Examples of polyhedra

Bounded-Polytope

Unbounded - polyhedron

H-Representation of a Polyhedron

- The halfspace or inequality representation
- Polyhedron \mathcal{P} is the set $x \in \mathbb{R}^n$ obeying a system of linear inequalities i.e.
- $\bullet \quad \mathcal{P} := \{ x \in \mathbb{R}^n | Hx \le h \}$
- Can be written as P(H,h)
- $H \in \mathbb{R}^{m \times n}, h \in \mathbb{R}^m$ and the inequality is understood to hold elementwise
- Assumption: Polyhedron admits no lines.

V-Representation of a Polyhedron

- $\mathcal{P} = convS + coneT$
- S is the finite set of extreme points, T is the finite set of extreme directions(scaled to unit length).
- In other words, any point $x \in \mathcal{P}$ can be represented as,

$$x = \sum_{j=1}^{J} \beta_j s_j + \sum_{k=1}^{K} \gamma_k t_k$$

• J is the number of extreme points, K is the number of extreme directions, $\alpha_i \in \mathbb{R}, \beta_j \geq 0, \forall j, \sum_{j=1}^J \beta_j = 1, \gamma_k \geq 0.$

Example

$$\begin{aligned}
 x_1 &\leq 1 \\
 x_2 &\leq 1 \\
 -x_1 &\leq 0 \\
 -x_2 &\leq 0 \\
 -x_3 &\leq 0 \\
 x_2 + x_3 &\leq 2 \\
 -x_2 + x_3 &\leq 1 \\
 x_1 + x_3 &\leq 2 \\
 -x_1 + x_3 &\leq 1
 \end{aligned}$$

Switching between the two representations: Representation Conversion Problem

- Methods:
 - Reverse Search, Lexicographic Reverse Search
 - Double-description method
- V-representation
 The Facet Enumeration Problem
- Facet enumeration can be accomplished by using polarity and doing Vertex Enumeration

Polyhedral Cone

• A special polyhedron

- Represented as:
- H representation:

$$C = \{x | \langle a_j, x \rangle \leq 0 \text{ for } j = 1, 2, ..., m\} \text{ i.e.}$$

 $C = C(A, 0)$

• V-representation

$$C = cone(r_1, ...r_n)$$

= $\{x | x = \sum_{i=1}^n \mu_j r_j, \mu_j \ge 0, j = 1, ...n\}$

Homogenization

- Homogenization converts: Any polyhedron in $R^d \to \text{Pointed cone in } R^{(d+1)}$
- This way, we can consider polytopes/polyhedra (bounded/unbounded) to be cones in +1 dimention
- Entire theory henceforth is developed for pointed polyhedral cones

H-polyhedra

- If P = P(A, z) is and \mathcal{H} -polyhedron, we define:
- $C(P) := P\left(\begin{pmatrix} 0 & -1 \\ A & -z \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right)$ which is an \mathcal{H} -polyhedron(a cone) in \mathbb{R}^{d+1}
- If P is defined as $a_i x \leq z_i$, C(P) is defined by inequalities $a_i x z_i x_{d+1} \leq 0$ and $x_{d+1} \geq 0$.
- And $P = \{x \in R^d : \begin{pmatrix} x \\ 1 \end{pmatrix} \in C(P)\}$
- Conversely, if P = P(B, 0) is an \mathcal{H} -polyhedron in \mathbb{R}^{d+1} , then $\{x \in \mathbb{R}^d : \begin{pmatrix} x \\ 1 \end{pmatrix} \in P\}$ is an \mathcal{H} -polyhedron as well

Example(d=2,d+1=3)

$$x_1 + x_2 \le 18$$

$$x_1 - x_2 \le 6$$

$$x_2 \le 8$$

$$-x_1 + x_2 \le 0$$

$$-x_1 - x_2 \le -12$$

$$-x_2 \le -4$$

$$\downarrow \downarrow$$

$$x_{1} + x_{2} - 18x_{3} \leq 0$$

$$x_{1} - x_{2} - 6x_{3} \leq 0$$

$$x_{2} - 8x_{3} \leq 0$$

$$-x_{1} + x_{2} \leq 0$$

$$-x_{1} - x_{2} + 12x_{3} \leq 0$$

$$-x_{2} + 4x_{3} \leq 0$$

$$-x_{3} \leq 0$$

V-polyhedra

- If P = conv(V) + cone(Y) is and \mathcal{V} -polyhedron, we define:
- $C(P) := cone\begin{pmatrix} V & Y \\ 1 & 0 \end{pmatrix}$ which is a $\mathcal{V} - polyhedron$ in \mathbb{R}^{d+1}
- Conversely, if C = cone(W) is any cone in R^{d+1} generated by vectors w_i with $w_{i(d+1)} \ge 0$, then $\{x \in R^d : {x \choose 1} \in C\}$ is a \mathcal{V} -polyhedron

Polar of a convex cone

- One notion of duality.
- If $\{r_i|i\in I\}$ are extreme rays of a closed convex cone C, then C consists of all non-negative combinations x of the r_i 's and,

$$C^{\circ} = \{y | \forall i \in I, \langle r_i, y \rangle \leq 0\}$$
 is called polar of C

 \bullet $C^{\circ \circ} = C$

Polar of a convex cone

- One notion of duality.
- If $\{r_i|i\in I\}$ are extreme rays of C, then C consists of all non-negative combinations x of the r_i 's then, $C^\circ=\{y|\forall i\in I, \langle r_i,y\rangle\leq 0\}$ Looks like an H-representation!!! is called polar of C
- $C^{\circ \circ} = C$ Our ticket back to the original cone!!!

Indicator Function

• For a convex set in \mathbb{R}^n the indicator function $\delta(.|C)$ of C is given as:

$$\delta(x|C) = \begin{cases} 0, & \text{if } x \in C. \\ +\infty, & \text{if } x \notin C. \end{cases}$$

Positive Homogenoeus Function

• A function f on R^n is said to be positive homogeneous(of degree 1) if for every x one has $f(\lambda x) = \lambda f(x)$ $0 < \lambda < \infty$

Conjugate of a convex function defined over \mathbb{R}^n

• It is defined as:

$$f^*(y) = \sup_{x \in R^n} \langle y, x \rangle - f(x)$$

 \bullet For the indicator function of the convex set C defined above, it is given as,

$$\delta^*(y) = \sup_{x \in C} \langle y, x \rangle$$

- In first case if we find $\langle y, x \rangle > 0$ for some $x \in C$, we can always scale x to get higher value of the inner product because, for a cone, if $x \in C$, then, $\alpha x \in C$, $\alpha \geq 0$
- In second case 0 is the obvious supremum.

The set $C^{\circ} = \{y | \forall x \in C, \langle y, x \rangle \leq 0\}$ so obtained is called the polar of C

Every closed convex cone has a positive homogeneous indicator function associated with it

The conjugate of this indicator function is also a positive homogeneous indicator function

The set associated with it is also a cone and is called polar of C and denoted as C°

Use of Polar

- Representation Conversion
 - No need to have two different algorithms i.e. for $H \to V$ and $V \to H$.
- Redundancy removal
 - No need to have two different algorithms for removing redundancies from H-representation and V-representation
- Safely assume that input is always an Hrepresentation for both these problems

(Plotting in same space as the original cone)

Problem #1 Representation Conversion

Review of Lexicographic Reverse Search

30

Reverse Search: High Level Idea

- Start with dictionary corresponding to the optimal vertex
- Ask yourself 'What pivot would have landed me at this dictionary if i was running simplex?'
- Go to that dictionary by applying reverse pivot to current dictionary
- Ask the same question again
- Generate the so-called 'reverse search tree'

Reverse Search on a Cube

- (a) The "simplex tree" induced by the objective $(-\sum x_i)$.
- (b) The corresponding reverse search tree.

Ref.David Avis, Irs: A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm

Double Description Method

First introduced in:

"Motzkin, T. S.; Raiffa, H.; Thompson, G. L.; Thrall, R. M. (1953). "The double description method". *Contributions to the theory of games. Annals of Mathematics Studies*. Princeton, N. J.: Princeton University Press. pp. 51–73"

- The primitive algorithm in this paper is very inefficient.
 (How? We will see later)
- Several authors came up with their own efficient implementation(viz. Fukuda, Padberg)
- Fukuda's implementation is called cdd

Some Terminology

- A pair (A, R) is said to be a double description pair (DD pair) if the relationship:
- $Ax \ge 0$ iff $x = R\lambda$ for some $\lambda \ge 0$ holds
- Column size of A = Row Size of R = d
- Provides two different descriptions of the same object: A *Polyhedral Cone*, formally defined as:
- A set P(A) represented by A as: $P(A) = \{x \in \mathbb{R}^d : Ax \ge 0\}$ and is simulateneously represented by R as: $\{x \in \mathbb{R}^d : x = R\lambda \text{ for some } \lambda \ge 0\}$
- A is called the representation matrix, while R is called the generator matrix.

Double Description Method: The High Level Idea

- An Incremental Algorithm
- Starts with certain subset of rows of H-representation of a cone $Ax \ge 0$ to form initial H-representation
- Adds rest of the inequalities one by one constructing the corresponding V-representation every iteration
- Thus, constructing the V-representation incrementally.

How it works?

Initialization:

- Let $K \subset \{1, ...m\}$ i.e. the row indices of A
- Let A_K denote the submatrix of A consisting of rows indexed by K
- Suppose we have already found a generating matrix R of $P(A_K)$ i.e. (A_K, R) is a DD pair

Iteration:

• Given a DD pair (A_K, R) , select any row index $i \notin K$ and construct a DD pair (A_{K+i}, R') using the DD pair (A_K, R)

Termination:

• If $A = A_K$, we are done.

How it works?

Initialization:

- Let $K \subset \{1, ...m\}$ i.e. the row indices of A
- Let A_K denote the submatrix of A consisting of rows indexed by K
- Suppose we have already found a generating matrix R of $P(A_K)$ i.e. (A_K, R) is a DD pair

Iteration:

• Given a DD pair (A_K, R) , select any row index $i \notin K$ and construct a DD pair (A_{K+i}, R') using the DD pair (A_K, R)

Termination:

• If $A = A_K$, we are done.

Initialization

- method 1: Find a DD pair (A_K, R) when |K| = 1.
- method 2:

Select a maximal submatrix A_K of A consisting of linearly independent rows of A.

The vectors r_j 's are obtained by solving the system:

$$A_K R = I$$
 where I is $|K| \times |K|$

$$A_K x \ge 0 \leftrightarrow \mathbf{x} = \mathbf{A}_K^{-1} \lambda, \lambda \ge 0$$

Initialization

Very trivial and inefficient

- method 1: \angle Find a DD pair (A_K, R) when |K| = 1.
- method 2:

Select a maximal submatrix A_K of A consisting of linearly independent rows of A.

The vectors r_j 's are obtained by solving the system:

$$A_K R = I$$
 where I is $|K| \times |K|$

$$A_K x \ge 0 \leftrightarrow \mathbf{x} = \mathbf{A}_K^{-1} \lambda, \lambda \ge 0$$

Example: Initialization

Consider the problem of performing vertex enumeration on the polyhedron represented as follows:

$$-x_{1} - x_{2} + 18x_{3} \ge 0$$

$$-x_{1} + x_{2} + 6x_{3} \ge 0$$

$$x_{1} - x_{2} + 8x_{3} \ge 0$$

$$x_{1} - x_{2} \ge 0$$

$$x_{1} + x_{2} - 12x_{3} \ge 0$$

$$x_{2} - 4x_{3} \ge 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

October 3, 2012

Example: Initialization

An Example:

Consider the problem of performing vertex enumeration on the polyhedron represented as follows:

$$-x_{1} - x_{2} + 18x_{3} \ge 0$$

$$-x_{1} + x_{2} + 6x_{3} \ge 0$$

$$x_{1} - x_{2} + 8x_{3} \ge 0$$

$$x_{1} - x_{2} \ge 0$$

$$x_{1} + x_{2} - 12x_{3} \ge 0$$

$$x_{2} - 4x_{3} \ge 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

Example: Initialization

$$A_{\{1,4,6\}}^{-1} = R = egin{array}{cccccc} A & B & C \\ 4.0000 & 14.0000 & 9.0000 \\ 4.0000 & 4.0000 & 9.0000 \\ 1.0000 & 1.0000 & 1.0000 \\ \end{array}$$

How it works?

Initialization:

- Let $K \subset \{1, ...m\}$ i.e. the row indices of A
- Let A_K denote the submatrix of A consisting of rows indexed by K
- Suppose we have already found a generating matrix R of $P(A_K)$ i.e. (A_K, R) is a DD pair

Iteration:

• Given a DD pair (A_K, R) , select any row index $i \notin K$ and construct a DD pair (A_{K+i}, R') using the DD pair (A_K, R)

Termination:

• If $A = A_K$, we are done.

Iteration: Insert a new constraint

• The newly inserted inequality $A_i x \geq 0$ partitions the space \mathbb{R}^d into three parts:

$$H_i^+ = \{x \in \mathbb{R}^d : A_i x > 0\}$$

$$H_i^0 = \{x \in \mathbb{R}^d : A_i x = 0\}$$

$$H_i^- = \{x \in \mathbb{R}^d : A_i x < 0\}$$

• Let J be the set of column indices of R. The rays $r_j (j \in J)$ are accordingly partitioned as:

$$J^{+} = \{ j \in J : r_{j} \in H_{i}^{+} \}$$
$$J^{0} = \{ j \in J : r_{j} \in H_{i}^{0} \}$$
$$J^{-} = \{ j \in J : r_{j} \in H_{i}^{-} \}$$

Iteration 1: Insert a new constraint

Iteration 1: Insert a new constraint

Main Lemma for DD Method

Let (A_K, R) be a DD pair and let i be the new row index of A not in K. Then the pair (A_{K+i}, R') is a DD pair, where R' is the $d \times |J'|$ matrix with column vectors $r_j (j \in J')$ defined by,

$$J' = J^+ \cup J^0 \cup (J^+ \times J^-)$$
, and

$$r_{jj'} = (A_i r_j) r_{j'} - (A_i r_{j'}) r_j$$
 for each $(j, j') \in J^+ \times J^-$

Iteration 1: Insert a new constraint

Iteration 1: Get the new DD pair

Iteration 2: Insert new constraint

Iteration 2: Insert new constraint

Get the new DD pair

$$R_{\{1,2,3,4,6\}} = \begin{pmatrix} r_{AD} & r_{BD} & r_{CD} & r_{A} & r_{B} & r_{C} \\ 9.2000 & 10.0000 & 8.0000 & 10.0000 & 12.0000 & 4.0000 \\ 8.0000 & 8.0000 & 8.0000 & 4.0000 & 6.0000 & 4.0000 \\ 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \end{pmatrix}$$

Get the new DD pair

$$A_{\{1,2,3,4,5,6\}}$$

	$R_{\{1,2,3,4,5,6\}}$								
Α	В	С	D	E	F	G	Н	I	J
6.2609	6.4000	6.0000	8.0000	7.2000	9.2000	10.0000	8.0000	10.0000	12.0000
5.7391	5.6000	6.0000	4.0000	4.8000	8.0000	8.0000	8.0000	4.0000	6.0000
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Efficiency Issues

 Is the implementation I just described good enough?

Efficiency Issues

 Is the implementation I just described good enough?

Hell no!

The implementation just described suffers from profusion of redundancy

Efficiency Issues

- In worst case an iteration can start with n extreme rays and end with $(\frac{n}{2})^2$ extreme rays.
- Hence, the number extreme rays can very soon grow out of hand.
- A straightforward implementation is quite useless.
- Redundancy removal for n extreme rays is equivalent to solving n linear programs which is also not a very exciting prospect.
- Hence, we focus on **Not letting redundant extreme** rays to be created in first place
- Fukuda's main contributions are in that direction

The Primitive DD method

```
procedure DoubleDescriptionMethod(A);
begin
   Obtain any initial DD pair (A_K, R)
   while K \neq \{1, 2, ..., m\} do
   begin
        Select any index i from \{1, 2, ..., m\};
        Construct a DD pair (A_{K+i}, R') from (A_K, R);
        R := R'; K := K + i
   end
   Output R
begin
```

What to do?

- Add some more structure
- Strengthen the Main Lemma

Add some more structure

Some definitions

ray of P

- r is said to be a ray of P if $r \neq 0$ and $\alpha r \in P \forall \alpha > 0$
- If r and r' are such that $r = \alpha r'$ for some positive number α , we say $r \simeq r'$

zero set/active set

• For any vector $x \in P$, we define the zero set or active set Z(x) as the set of inequality indices i such that $A_i x = 0$

Proposition 4. (Fukuda)

• Let r be a ray of $P, F := \{x : A_{Z(r)}x = 0\}, F := F \cap P$ and $rank(A_{Z(r)}) = d - k$ then

- (a) $rank(A_{Z(r)\cup\{i\}}) = d k + 1 \forall i \neq Z(r);$
- (b) F contains k linearly independent rays;
- (c) If $k \geq 2$ then r is a non-negative combination of two distinct rays r_1 and r_2 with $rank(A(Z(r_i))) > d k, i = 1, 2$

Proposition 7. (Fukuda)

- Let r and r' be distinct rays of P. Then the following statements are equivalent:
 - (a) r and r' are adjacent extreme rays;
 - (b) r and r' are extreme rays and rank of the matrix $A_{Z(r)(r')}$ is d-2
 - (c) if r'' is a ray with $Z(r'') \supset Z(r) \cap Z(r')$ then either $r'' \simeq r$ or $r'' \simeq r'$;

Proposition 7. (Fukuda)

- Let r and r' be distinct rays of P. Then the following statements are equivalent:
 - (a) r and r' are adjacent extreme rays;
 - (b) r and r' are extreme rays and rank of the matrix

 $A_{Z(r)(r')}$ is d-2

(c) if r'' is a ray with $Z(r'') \supset Z(r) \cap Z(r')$ then either $r'' \simeq r$ or $r'' \simeq r'$;

Algebraic Characterization of adjacency

Proposition 7. (Fukuda)

- Let r and r' be distinct rays of P. Then the following statements are equivalent:
 - (a) r and r' are adjacent extreme rays;
 - (b) r and r' are extreme rays and rank of the matrix

 $A_{Z(r)(r')}$ is d-2

(c) if r'' is a ray with $Z(r'') \supset Z(r) \cap Z(r')$ then either $r'' \simeq r$ or $r'' \simeq r'$;

Combinatorial Characterization of adjacency (Combinatorial Oracle)

Example: Combinatorial Adjacency

Example: Combinatorial Adjacency

Strengthened Main Lemma for DD Method

Let (A_K, R) be a DD pair and let i be the new row index of A not in K. Then the pair (A_{K+i}, R') is a DD pair, where R' is the $d \times |J'|$ matrix with column vectors $r_j (j \in J')$ defined by,

$$J' = J^+ \cup J^0 \cup Adj$$
,
 $Adj = \{(j, j') \in J^+ \times J^- : r_j \text{ and } r_{j'} \text{ are adjacent}$
in $P(A_K)$, and

$$r_{jj'} = (A_i r_j) r_{j'} - (A_i r_{j'}) r_j$$
 for each $(j, j') \in Adj$

Furthermore, if R is minimal generating matrix for $P(A_K)$ then R' is a minimal generating matrix for $P(A_{K+i})$

Procedural Description

```
procedure DDMethodStandard(A);
begin
   Obtain any initial DD pair (A_K, R)
   while K \neq \{1, 2, ..., m\} do
   begin
        Select any index i from \{1, 2, ..., m\};
        Construct a DD pair (A_{K+i}, R') from (A_K, R);
          /*by using Strengthened Main Lemma */
        R := R'; K := K + i
   end
   Output R
begin
```

Part 2

- Projection of polyhedral sets
 - Fourier-Motzkin Elimination
 - Block Elimination
 - Convex Hull Method (CHM)
- Redundancy removal
 - Redundancy removal using linear programming

Projection of a Polyhedra

- Consider an \mathcal{H} -polyhedron $P = P(A, z) \subseteq \mathbb{R}^d$
- We want to project to $\{x \in R^d : x_k = 0\} \equiv R^{d-1}$ along the x_k axis
- We define:

$$proj_k(P) := \{x - x_k e_k : x \in P\}$$
 (1)
= $\{x \in R^d : x_k = 0, \exists y \in R : x + y e_k \in P\}$ (2)

- This is projection of P in the direction of e_k
- The set $proj_k(P)$ is contained in the hyperplane $H_k = \{x \in R^d : x_k = 0\}$ October 3, 2012 $\{x \in R^d : x_k = 0\}$ Jayant Apte. ASPITRG

Fourier-Motzkin Elimination

 Named after Joseph Fourier and Theodore Motzkin

How it works?

- We start with an \mathcal{H} -polyhedron $P = P(A, z) \subseteq \mathbb{R}^d$
- Suppose we want to eliminate the variable x_k
- Consider coefficients of x_k in our system of inequalities, and assume that $a_{ik} > 0$ and $a_{jk} < 0$
- Then the respective inequalities can be written as, $a_i x \leq z_i \rightarrow a_{ik} x_k \leq a_{ik} x_k - a_i x + z_i$ and $a_j x \leq z_j \rightarrow (-a_{jk} x_k) \geq -a_{jk} x_k + a_j x - z_j$

How it works? Contd...

• Multiply these equations by $-a_{jk}$ and a_{ik} respectively $-a_{jk}a_{ik}x_k \leq -a_{jk}a_{ik}x_k - a_{ik}x_k - a_{jk}z_i$ and $-a_{jk}a_{ik}x_k \geq -a_{jk}a_{ik}x_k + a_{j}a_{ik}x - a_{ik}z_j$

• These equations form upper bound and lower bound respectively on $-a_{jk}a_{ik}x_k$

• Combining the two we get, $a_{ik}a_j + (-a_{jk}a_j)x \le a_{ik}z_j + (-a_{jk})z_j$

Efficiency of FM algorithm

- The number of inequalities goes beyond tractable limits within few elimination steps
- IF a has m rows, then $A^{\setminus k}$ may have as many as $\lfloor \frac{m^2}{4} \rfloor$ rows
- FM-elimination creates $O(m^2)$ new inequalities
- Useful only as a simple and elegant method that is easy to understand
- There have been efforts to introduce heuristics, as discussed in the paper by Lassez et al.

Convex Hull Method(CHM)

- First appears in "C. Lassez and J.-L. Lassez, Quantifier elimination for conjunctions of linear constraints via aconvex hull algorithm, *IBM Research Report*, T.J. Watson Research Center (1991)"
- Found to be better than most other existing algorithms when dimension of projection is small
- Cited by Weidong Xu, Jia Wang, Jun Sun in their ISIT 2008 paper "A Projection Method for Derivation of Non-Shannon-Type Information Inequalities"

Moral of the story

- We can make decisions about $\pi(P)$ without actually having its H-representation.
- It suffices to have P, the original polyhedron
- We run linear programs on P to make these decisions

Example

$$-16 + 0x_1 + 2x_2 + 1x_3 \ge 0$$

$$-72 + 4x_1 + 4x_2 + 3x_3 \ge 0$$

$$0 + 0x_1 + 2x_2 - 1x_3 \ge 0$$

$$-24 + 4x_1 + 4x_2 - 3x_3 \ge 0$$

$$3D \rightarrow 2D$$

$$48 - 4x_1 + 4x_2 - 3x_3 \ge 0$$

$$48 - 4x_1 - 4x_2 + 3x_3 \ge 0$$

$$8 + 0x_1 - 2x_2 + 1x_3 \ge 0$$

$$24 + 4x_1 - 4x_2 + 3x_3 \ge 0$$

$$24 + 0x_1 - 2x_2 - 1x_3 \ge 0$$

$$24 + 0x_1 - 2x_2 - 1x_3 \ge 0$$

$$24 + 4x_1 - 4x_2 - 3x_3 \ge 0$$

$$10)$$

$$24 + 4x_1 - 4x_2 - 3x_3 \ge 0$$

$$11)$$

$$96 - 4x_1 - 4x_2 - 3x_3 \ge 0$$

$$12)$$

Example

How to get the extreme points of initial approximation?

- We need d + 1 points to have full dimentional convex hull
- Get first two points by maximizing and minimizing x_1
- Get rest of the points by running linear programs on initial set of constraints

Example: Get the first two points

Example: Get the first two points

Get rest of the points so you have a total of d+1 points

Get the rest of the points so you

Get the rest of the points so you have a total d+1 points

How to get the initial facets of the projection?

```
procedure initial\_hull(E);
begin
    Let CH = \phi
    for each p \in E do
          Compute \sum_{i=1}^{d} \alpha_i x_i = \alpha the equation of the
          hyperplane defined by E - \{p\}
          Let h = \sum_{j=1}^{d} \alpha_j x_j
          If h(p) > \alpha
             then CH = CH \cup \{-h \le -\alpha\}
             else CH = CH \cup \{h \leq \alpha\}
          end
```

end

How to get the initial facets of the projection?

October 3, 2012 Jayant Apte. ASPITRG 106

Incremental refinement

- Find a facet in current approximation of that is not actually the facet of $\pi(P)$
- How to do that?

```
given \{h_i \leq \alpha_i\},

Maximize h_i over P

If Max(h_i) = \alpha_i

Then Label \{h_i \leq \alpha_i\} as terminal

else Move it outward to find a new extreme point
```

Incremental refinement

Incremental refinement

How to update the H-representation to accommodate new point?

procedure update_convex_hull(new_pt);
begin

```
for each C \in CH s.t. p \notin C\mathbf{do}
       Generate all subsets SE of d-1 extreme points in C
       for each SE do
           If SE \cup \{p\} determines a unique hyperplane \sum_i \alpha_i x_i = 0
               then let h = \sum_i \alpha_i x_i
           If \forall q \in E, h(q) \leq \alpha_0
              then C = \sum_{i} \alpha_i x_i \le \alpha_0
           else if \forall q \in E, h(q) \geq \alpha_0
               then C = -\sum_i \alpha_i x_i \leq -\alpha_0
           else C = \phi
           Let CH = CH \cup \{C\}
       end
\forall C \in CH \text{ If } p \notin C \text{ then } CH = CH - \{C\}
end
```

Example

Example: New candidate facets

How to update the H-representation to accommodate new point?

```
procedure update\_convex\_hull(new\_pt);

begin

for each C \in CH s.t. p \notin Cdo

Generate all subsets SE of d-1 extreme points in C

for each SE do

If SE \cup \{p\} determines a unique hyperplane \sum_i \alpha_i x_i = 0

then let h = \sum_i \alpha_i x_i
```

```
If \forall q \in E, h(q) \leq \alpha_0

then C = \sum_i \alpha_i x_i \leq \alpha_0

else if \forall q \in E, h(q) \geq \alpha_0

then C = -\sum_i \alpha_i x_i \leq -\alpha_0

else C = \phi

Let CH = CH \cup \{C\}

end
```

Determine validity of The candidate facet And also its sign

 $\forall C \in CH \text{ If } p \notin C \text{ then } CH = CH - \{C\}$ end

end

How to update the H-representation to accommodate new point?

```
procedure update_convex_hull(new_pt);
begin
    for each C \in CH s.t. p \notin C\mathbf{do}
           Generate all subsets SE of d-1 extreme points in C
          for each SE do
               If SE \cup \{p\} determines a unique hyperplane \sum_i \alpha_i x_i = 0
                  then let h = \sum_i \alpha_i x_i
               If \forall q \in E, h(q) \leq \alpha_0
                  then C = \sum_{i} \alpha_i x_i \leq \alpha_0
               else if \forall q \in E, h(q) \geq \alpha_0
                  then C = -\sum_i \alpha_i x_i \leq -\alpha_0
               else C = \phi
               Let CH = CH \cup \{C\}
```

CIId

 $\forall C \in CH \text{ If } p \notin C \text{ then } CH = CH - \{C\}$

ena

end

Example

,

4th iteration: Done!!!

Comparison of Projection Algorithms

- Fourier Motzkin Elimination and Block Elimination doesn't work well when used on big problems
- CHM works very well when the dimension of projection is relatively small as compared to the dimention of original polyhedron.
- Weidong Xu, Jia Wang, Jun Sun have already used CHM to get non-Shannon inequalities.

Computation of minimal representation/Redundancy Removal

Definitions

Definition A linear inequality $A_i x \leq b_i$ (for some $i \in \{1, ..., m\}$) of a polyhedron P is redundant if it is implied by the other inequalities of P

Definition An extreme point v of polytope P is said to be redundant if it can be represented as convex combination of any other extreme points in the polytope

References

- K. Fukuda and A. Prodon. Double description method revisited. Technical report, Department of Mathematics, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1995
- G. Ziegler, Lectures on Polytopes, Springer, 1994, revised 1998. Graduate Texts in Mathematics.
- Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. *Practical issues on the projection of polyhedral sets*. Annals of mathematics and artificial intelligence, November 1992
- Catherine Lassez and Jean-Louis Lassez. *Quantifier elimination for conjunctions of linear constraints via a convex hull algorithm*. In Bruce Donald, Deepak Kapur, and Joseph Mundy, editors, Symbolic and Numerical Computation for Artificial Intelligence. Academic Press, 1992.
- R. T. Rockafellar. *Convex Analysis* (Princeton Mathematical Series). Princeton Univ Pr.
- W. Xu, J. Wang, J. Sun. *A projection method for derivation of non-Shannon-type information inequalities*. In IEEE International Symposiumon Information Theory (ISIT), pp. 2116 2120, 2008.

Minkowski's Theorem for Polyhedral Cones

- For any $m \times d$ real matrix A, \exists some $d \times n$ real matrix R s.t. (A, R) is a DD pair, or in other words, the cone P(A) is generated by R.
- Emphasis on finiteness of columns of R

Weyl's Theorem for Polyhedral Cones

- For any $d \times n$ real matrix R, \exists some $m \times d$ matrix A s.t. (A, R) is a DD pair, or inother words, the set generated by R is the $cone\ P(A)$
- It is the converse of Monkowski's Theorem
- Together they form the Representation theorem of Polyhedral Cones