PURDUE UNIVERSITY

CS 699

Spring 2016

Research Thesis

Author: Hai NGUYEN $Instructor: \\ Prof. \ Hemanta \ Maji$

February 14, 2016

Chapter 1

Fourier Basics

1.1 The vector space of functions on boolean cube

Definition 1.1 (Inner Product). Consider the 2^n -dimensional vector space of all functions $f: \{0,1\}^n \to \mathbb{R}$. We define an inner product on this space by

$$\langle f, g \rangle := \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x) = \mathbb{E}[f \cdot g].$$

1.2 The characteristic function

Definition 1.2 (Characteristic function). For each $S \subset [n] = \{1, 2, ..., n\}$, we define the characteristic function of S as

$$\chi_S(x) = (-1)^{S \cdot x}$$
, where $Sx = \sum_{i=1}^n S_i x_i = \sum_{i \in S} x_i$.

Lemma 1.3. For every $S \subset [n]$,

$$\sum_{x \in \{0,1\}^n} \chi_S(x) = \begin{cases} 2^n & \text{if } S = \emptyset \\ 0 & \text{if } S \neq \emptyset \end{cases}$$

Proof. If $S = \emptyset$, then $S \cdot x = 0$. So $\sum_{x \in \{0,1\}^n} \chi_S(x) = \sum_{x \in \{0,1\}^n} 1 = 2^n$.

If $S \neq \emptyset$, then there exists k such that $S_k \neq 0$. Hence,

$$\sum_{x \in \{0,1\}^n} \chi_S(x) = \sum_{x \in \{0,1\}^n} (-1)^{\sum_{i \in S} x_i}$$

$$= \sum_{x \in \{0,1\}^n} [(-1)^{x_k} \cdot (-1)^{\sum_{i \in S \setminus \{k\}} x_i}]$$

$$= \sum_{x_k \in \{0,1\}^n} (-1)^{x_k} \cdot \sum_{x \setminus x_k \in \{0,1\}^{n-1}} (-1)^{\sum_{i \in S \setminus \{k\}} x_i}$$

$$= (-1)^0 \sum_{x \setminus x_k \in \{0,1\}^{n-1}} (-1)^{\sum_{i \in S \setminus \{k\}} x_i} + (-1)^1 \cdot \sum_{x \setminus x_k \in \{0,1\}^{n-1}} (-1)^{\sum_{i \in S \setminus \{k\}} x_i}$$

$$= 0$$

Theorem 1.4. For every $S, T \subset [n]$,

$$\langle \chi_S, \chi_T \rangle = \begin{cases} 1 & \text{if } S = T \\ 0 & \text{if } S \neq T \end{cases}$$

Proof.

$$\langle \chi_S, \chi_T \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{S \cdot x + T \cdot x} = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{(S \vee T) \cdot x}$$

where ∇ is the symmetric different between two sets S and T.

If S = T, then $S \nabla T = \emptyset$, otherwise $S \nabla T \neq \emptyset$. Hence, our goals follow immediately from lemma 1.3.

1.3 The Fourier basis

Theorem 1.5. The set of all χ_S is an orthonormal basis for the space of all real-valued function on $\{0,1\}^n$

Proof. From theorem 1.4, it suffices to show that the set of all χ_S is a basis. Suppose $\sum_{S \subset [n]} a_S \chi_S = \mathbf{0}$. We will show that X_S are linearly independent by proving $a_S = 0$ for every

S. Let S be a subset of [n], then

$$0 = \chi_S \sum_{T \subset [n]} a_T \chi_T = \sum_{T \subset [n]} a_T \langle \chi_S, \chi_T \rangle$$
$$= a_S \langle \chi_S, \chi_S \rangle + \sum_{T \subset [n], T \neq S} a_T \langle \chi_S, \chi_T \rangle = a_S$$

Also, there are 2^n different X_S . Hence, the set of all χ_S is a basis for the space of all real-valued function on $\{0,1\}^n$

The set of all χ_S is called the *the Fourier basis*.

1.4 The Fourier transform

Definition 1.6 (Fourier transform function). For each $S \subset [n]$, we define the Fourier transform of f as following:

$$\hat{f}(S) = \langle f, \chi_S \rangle = \mathbb{E}[f \cdot \chi_S]$$

Theorem 1.7. The mapping $\mathcal{F}: f \to \hat{f}$ is linear.

Proof. This follows from the properties of inner product.

$$\langle af + bg, \chi_S \rangle = \langle af, \chi_S \rangle + \langle bg, \chi_S \rangle = a\langle f, \chi_S \rangle + b\langle g, \chi_s \rangle = a\hat{f} + b\hat{g}$$

The linear map $\mathcal{F}: f \to \hat{f}$ is called the Fourier transform.

Theorem 1.8. The linear map \mathcal{F} is a bijection.

Proof. Since the set of χ_S forms an orthonormal basis,

$$f = \sum_{S} \hat{f}(S)\chi_{S}. \tag{1.1}$$

Suppose $\mathcal{F}(f_1) = \mathcal{F}(f_2)$, i.e, $\hat{f}_1(S) = \hat{f}_2(S)$ for every S, then it is followed from equation (1.1) that $f_1 = f_2$. So \mathcal{F} is injective.

Also, equation (1.1) implies that for every \hat{f} , there exists a function $f = \sum_{S} \hat{f}(S)\chi_{S}$ such

that $\mathcal{F}(f) = \hat{f}$, which means that \mathcal{F} is surjective.

Thus,
$$\mathcal{F}$$
 is a bijection as derived

1.5 The dual space

Definition 1.9 (Dual space). Let V be a subspace of $\{0,1\}^n$. We define the dual of V as $V^{\perp} = \{x \in \{0,1\}^n | x \cdot v = 0 \ \forall v \in V\}$.

Theorem 1.10. V^{\perp} is a subspace of $\{0,1\}^n$.

Proof. For any
$$x, y \in V^{\perp}$$
, $a \in \{0, 1\}$, $(a \cdot x + y) \cdot v = a \cdot (x \cdot v) + y \cdot v = 0 + 0 = 0$.

Lemma 1.11.
$$\sum_{i:\text{even}}^{t} \binom{n}{i} = \sum_{i:\text{odd}}^{t} \binom{n}{i} = 2^{t-1}$$
.

Theorem 1.12. For any subspace V of dimension k of $\{0,1\}^n$, there exists a unique dual space V^{\perp} of dimension n-k.

Proof. We will show that $|V^{\perp}| = 2^{n-k}$ by induction on k.

If k = 0, then $V = \{0\}$. Clearly, $V^{\perp} = \{0, 1\}^n$.

If k = 1, let $V = \{\vec{0}, v\}$. Suppose the number of $v_i = 1$ is t, then the number of x such that $x \cdot v = 0$ is $\sum_{t-i \text{ even}} \binom{n}{i} 2^{n-t} = 2^{t-1} \cdot 2^{n-t} = 2^{n-1}$ by lemma 1.11.

Suppose that there exists a unique orthogonal subspace $V \perp$ of dimension n - k + 1 for any subspace V of $\{0,1\}^n$, where $k \geq 2$.

Let $V = \langle v_1, v_2, ..., v_k \rangle$, $S_1 = \overline{\langle v_1, v_2, ..., v_{k-1} \rangle}$, and $S_2 = \langle v_k \rangle$. By induction hypothesis, $|S_1^{\perp}| = 2^{n-k+1}$ and $|S_2^{\perp}| = 2^{n-1}$.

Claim 1.13. $V^{\perp} = S_1^{\perp} \cap S_2^{\perp}$ has a basis of size n - k.

Suppose V^{\perp} has a basis of size t, then $|S_1^{\perp} \cap S_2^{\perp}| = 2^t$. If $t \leq n - k - 1$, then there are at least $2^{n-k+1} - 2^t \geq 2^{n-k}$ vectors in $S_1^{\perp} \setminus V^{\perp}$, which implies that we need at least n-k-t additional vectors, which are independent with t vectors above, for $S_1^{\perp} - V^{\perp}$. Similarly, and there are at least $2^{n-1} - 2^t \geq 2^{n-2}$ vectors in $S_1^{\perp} - V^{\perp}$, which implies that we need at least n-2-t for $S_2^{\perp} - V^{\perp}$. Hence, there are at least t + (n - k - t) + (n - 2 - t) = 2n - t - 2 > n independent vectors for every $t \le n - 3$,

If $t \geq n-k+1$, then $S_1^{\perp} \subset S_2^{\perp}$, this is impossible since v_k is independent from $v_1, v_2, ..., v_{k-1}$. Thus, t = n-k. So $|V^{\perp}| = 2^{n-k}$.

Theorem 1.14. Let V be a subspace of dimension k of $\{0,1\}^n$ and let V^{\perp} be the dual of V. Define

$$f(x) = \begin{cases} \frac{1}{2^k} & if \ x \in V \\ 0 & otherwise. \end{cases}$$

$$Then \ \hat{f}(S) = \begin{cases} \frac{1}{N} & if \ S \in V^{\perp} \\ 0 & otherwise. \end{cases}$$

Proof. Suppose $v_1, v_2, ..., v_k$ is a basis of V.

Claim 1.15. $V = \langle v_1 \rangle \oplus \langle v_2 \rangle \oplus ... \oplus \langle v_k \rangle$

Claim 1.16.
$$\langle v_1 \rangle^{\perp} \cap ... \cap \langle v_k \rangle^{\perp} = \langle v_1, ..., v_k \rangle^{\perp} = V^{\perp}$$

Let
$$f_i = \begin{cases} \frac{1}{2} & \text{if } S \in \langle v_i \rangle \\ 0 & \text{otherwise} \end{cases}$$
, then $\hat{f}_i = \begin{cases} \frac{1}{N} & \text{if } S \in \langle v_i \rangle^{\perp} \\ 0 & \text{otherwise.} \end{cases}$.

Claim 1.17. $f = f_1 \oplus f_2 \oplus ... \oplus f_k$

Proof. This is immediate from claims 1.15 and 1.16.

Hence,

$$\hat{f}(S) = \widehat{f_1 \oplus ... \oplus f_k(S)}$$

$$= N\widehat{f_1(S)} \cdot \widehat{f_2 \oplus ... \oplus f_k(S)}$$

$$...$$

$$= N^{k-1}\widehat{f_1(S)}...\widehat{f_k(S)}$$

If $S \in V^{\perp}$, then $S \in \langle v_i \rangle^{\perp}$ for every i, so $\hat{f}(S) = N^{k-1} \cdot (\frac{1}{N})^k = \frac{1}{N}$. If $S \notin V^{\perp}$, then there exits some i such that $S \notin \langle v_i \rangle^{\perp}$, which implies $\hat{f}_i(S) = 0$. Hence, $\hat{f}(S) = 0$

1.6 Parseval's Identity

Because the χ_S form an orthonormal basis, we have the following equality:

$$\langle f, g \rangle = \sum_{S} \hat{f}(S)\hat{g}(S)$$
 (1.2)

In particular, when f=g we get Parseval's identity:

$$||f||_2^2 = \sum_{S} \hat{f}(S)^2 \tag{1.3}$$

This also implies:

$$||f - g||_2^2 = \sum_{S} (\hat{f}(S) - \hat{g}(S))^2$$
(1.4)

Chapter 2

Min Entropy

Let $X = (x_0, x_1, ..., x_{N-1})$ be a distribution function of a random variable over $\{0, 1\}^n$, where $N := 2^n$.

Definition 2.1 (Min entropy). We define the min entropy of X as follow.

$$H_{\infty}(X) := \max_{i} (-\log x_i)$$

Theorem 2.2. For every k, $H_{\infty}(X) \geq k$ if and only if $x_i \leq \frac{1}{2^k}$ for every $0 \leq i \leq N-1$

Theorem 2.3 (Collision Probability). If we sample X twice, then the probability we get the same result, denoted Col(X), is $\sum_{i=0}^{N-1} x_i^2 = ||X||_2^2$.

Definition 2.4. A probability distribution function $f: \{0,1\}^n \to (0,1)$ is a T-flat if there $\exists S \subset \{0,1\}^n$ such that |S| = T and $f(x) = \begin{cases} \frac{1}{T} & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$

Theorem 2.5. For every integer $k \geq 0$, if $H_{\infty}(X) \geq k$, then $X = \sum \alpha_i X_i$, where each X_i is a 2^k -flat, $\sum \alpha_i = 1$, and $\alpha_i \in [0, 1]$ for every i.

Theorem 2.6. If $H_{\infty}(X) \geq k$, then $Col(X) \leq \frac{1}{2^k}$.

Proof. By theorem 2.5, we can write X as $X = \sum \alpha_i X_i$, where each X_i is a 2^k -flat $\sum \alpha_i = 1$, and $\alpha_i \in [0, 1]$ for every i. It is obvious that $Col(X_i) = ||X_i||_2^2 = \frac{1}{2^k}$.

By Cauchy-Sachwarz inequality,

$$||X||_2^2 = ||\sum \alpha_i X_i||_2^2 \le |\sum \alpha_i| \cdot |\sum \alpha_i X_i^2| = \sum \alpha_i ||X_i||_2^2 = \sum \alpha_i \frac{1}{2^k}$$

Theorem 2.7. If
$$H_{\infty}(X) \geq k$$
, then $\sum_{S} \widehat{X}(S)^2 \leq \frac{1}{2^k}$.

Proof. This follow immediately from the Parseval's identity.

Definition 2.8. Let \mathcal{D} be a probability distribution function over $\{0,1\}^n$. We say that \mathcal{D} is α^* -bias if it fools all linear tests.

Fools all linear test means that if for any test s, a sample of \mathcal{D} , it returns 0 with probability $\frac{1}{2} + \alpha$ and returns 1 with probability $\frac{1}{2} - \alpha$, where $\alpha \leq \alpha^*$

Theorem 2.9. If \mathcal{D} is a α^* -bias, then $\hat{\mathcal{D}}(S) \leq \frac{2\alpha^*}{N}$ for all S.

Proof.
$$\hat{\mathcal{D}}(S) = \frac{1}{N} \sum_{x} \mathcal{D}(x)(-1)^{Sx} = \frac{1}{N}((\frac{1}{2} + \alpha) - (\frac{1}{2} - \alpha)) = \frac{2\alpha}{N} \le \frac{2\alpha^*}{N}$$

Definition 2.10. We define the statistical different between A and B as follow.

$$SD(A, B) = \frac{1}{2} \sum_{i} |a_i - b_i|$$

Theorem 2.11. Let \mathcal{D} be a small bias distribution with $\hat{\mathcal{D}} \leq \frac{\alpha}{N}$ for all S, let M be a min entropy source, and let \mathcal{U} be the uniform distribution. Then $SD(\mathcal{D} \oplus M, \mathcal{U}) \leq \frac{\alpha}{2}$

Proof. \Box