ЛАБОРАТОРНАЯ РАБОТА 4

ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Теоретический материал к данной теме содержится [1, глава 11].

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) решение поставленной задачи; 5) анализ полученных результатов; 6) графический материал (если необходимо); 7) тексты программ.

Варианты заданий к задачам 4.1-.4.3 даны в ПРИЛОЖЕНИИ 4.А.

ТРЕБОВАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ 4

Задачи 4.1- 4.3 выполняются на Python.

Задача 4.1. В таблице 4.1 приведены данные о численности населения некоторых крупнейших стран мира по годам с 1950 -2000 г.г. Заполнить последние два столбца таблицы (взять сведения из интернета). На основе этих данных для конкретного варианта построить наилучший многочлен по МНК. Найти численность населения страны в 2019 году и сравнить полученное значение с актуальным значением (взять из интернета). Решить ту же задачу на основе интерполяционного многочлена. То есть построить интерполяционный многочлен по значениям с 1950-2020 г.г. Вычислить значение для 2019 года и сравнить с актуальными данными. Составить отчет по задаче.

Задача 4.2. Дана функция y = f(x). Приблизить функцию методом интерполяции, используя многочлен Лагранжа. Степень многочлена N подобрать таким образом, чтобы максимальная величина погрешности на отрезке [a,b] не превышала заданной величины ε Построить графики многочленов и графики погрешностей .Приблизить функцию методом интерполяции, указанным в индивидуальном варианте. Сравнить полученные результаты.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Задать исходный отрезок [a,b], и n число отрезков разбиения (для начала n взять произвольно), функцию f(x).
- 2. Составить таблицу значений функции в $^{(n+1)}$ точке отрезка, то есть задать массивы x и y исходных данных.
- 3. Составить подпрограмму, выполняющую вычисление функции в произвольной точке t отрезка [a,b] с помощью интерполяционного многочлена Лагранжа L(t) и , указанного в индивидуальном варианте, многочлена P(t).
- 4. Построить график функции погрешности RP(t) = |f(t) P(t)| и RL(t) и по графику определить максимальную величину полученной погрешности приближения. Если точность не достигнута, то увеличить число узлов интерполяции. Найти значение n=N, при котором точность достигается.
- 5. На одном чертеже построить графики интерполирующих многочленов и исходной функции .
 - 6. Оформить отчет по задаче.

Задача 4.3. Задана функция f(x), определенная на отрезке [-1;1]. Требуется разложить функцию в ряд Тейлора в окрестности нуля с точностью ε и произвести экономизацию полученного степенного ряда.

порядок решения задачи:

- **1.** Определить функцию $S(x,c) = \sum_{k=0}^{n} c_k x^k$, вычисляющую частичную сумму ряда по коэффициентам $\{c_k\}_{k=0}^{n}$.
- 2. Вычислить коэффициенты разложения и определить требуемое количество слагаемых для достижения требуемой точности, построив график.
- 3. Произвести экономизацию степенного ряда до тех пор, пока сохраняется необходимая точность (см. приложение).
- 4. Построить график погрешности каждого этапа экономизации.

ПРИЛОЖЕНИЕ 4.А.

ВНИМАНИЕ! Номер варианта N для **лабораторных работ** вычисляется по следующей формуле:

- 1) N = I для группы A-5-19;
- 2) N = 10 + I для группы A-13a-19
- 3) N = 20 + I для группы A-136-19
- 4) N = 30 + I для группы A-14-19
- 5) N = 60 I для группы A-16-19

(здесь I — индивидуальный номер студента по журналу).

Таблица к задаче 4.1

N	Страна	1950	1960	1970	1980	1990	2000	2010	2020
4.1.0	Весь мир	2507	3050	3700	4400	5235	6082		
4.1.1	США	153	176	200.5	227	247	277		
4.1.2	Германия	67	72	77	78.5	79	82		
4.1.3	Франция	42	46	50.5	54	56.5	59		
4.1.4	Великобритания	52	55	57	57.5	58	59		
4.1.5	Япония	83	93	104	116.8	123.5	127		
4.1.6	Индия	338	438	556	688	840	1030		
4.1.7	Бразилия	51	70	93.5	121.5	141	174.5		
4.1.8	Пакистан	35	48.5	65	82.5	114	145		
4.1.9	Россия	112	123	132.5	139	150	144		
4.1.10	Бангладеш	42	54	68.5	87	107	131		
4.1.11	Мексика	24	34	47.50	67.50	80	110		
4.1.12	Филиппины	21	29	39	48.5	63	83		
4.1.13	Италия	46.5	50	53	56.5	56.5	58		

4.1.14	Колумбия	11	15	20.5	28.5	32	43.5	
4.1.15	Таиланд	24	31	38.5	47	55	62.5	
4.1.16	Канада	15	18	21	24.6	28.5	31	
4.1.17	Австралия	8.2	10	13	14.7	17	19.5	
4.1.18	Аргентина	16.5	20	24	28	33	37	
4.1.19	Чили	6	7.5	9.5	11	13	16	
4.1.20	Перу	8	10.5	14	17.5	22	25	
4.1.21	Индонезия	77	98.5	124	148.5	184	228	
4.1.22	Тайвань	11.5	13.5	16	18	21	23.5	
4.1.23	Южная Африка	155	210	285	375	510	650	
4.1.24	Вост. Европа	89	98	106	117	119	122	
4.1.25	Австрия	6.8	7	7.4	7.6	8	8	
4.1.26	Бельгия	8.4	8.7	9.2	9.8	10.1	10.2	
4.1.27	Нидерланды	9.7	11	12.5	14.2	14.5	16.4	
4.1.28	Швеция	7.2	7.7	8.2	8.3	8.8	8.9	
4.1.29	Швейцария	5.3	5.7	6.2	6.3	7	7.1	
4.1.30	Латин. Америка	156	208.5	275.5	358	426	520	
4.1.31	Польша	25.5	29.5	35.6	38.1	38.6	38.4	
4.1.32	Украина	36.5	42.4	47.1	49.9	51.6	49.1	
4.1.33	Чехия	8.9	9.6	9.9	10.3	10.4	10.3	
4.1.34	Словакия	3.5	4.0	4.6	4.9	5.3	5.4	
4.1.35	Беларусь	7.7	8.1	8.9	9.6	10.2	10.0	
4.1.36	Казахстан	6.8	10.2	13.0	14.8	16.7	14.9	
4.1.37	Грузия	3.5	4.1	4.7	5.0	5.4	4.4	
4.1.38	Литва	2.6	2.8	3.1	3.4	3.7	3.5	
4.1.39	Латвия	1.9	2.1	2.4	2.5	2.7	2.4	
4.1.40	Эстония	1.1	1.2	1.4	1.5	1.6	1.4	
4.1.41	Болгария	7.28	7.83	8.47	8.85	8.85	8.03	
4.1.42	Турция	21.5	27.2	34.4	43.4	53.5	62.8	
4.1.43	Марокко	9.1	12.1	15.9	19.8	24.7	28.8	
4.1.44	Польша	25.5	29.5	32.7	35.6	38.1	38.5	
4.1.45	Танзания	7.7	9.9	13.4	18.4	25.1	33.6	
4.1.46	Испания	28.3	30.3	33.7	37.6	39.2	40.6	
4.1.47	Египет	21.6	26.7	34.4	42.8	55.7	67.7	
4.1.48	Эфиопия	18.6	21.9	28	34.9	47.2	65.5	
4.1.49	Непал	8.6	10	11.9	14.7	18.5	23.5	
4.1.50	Мьянма	17.7	21.3	26.8	34.1	41.7	47.4	
4.1.51	Китай	551.5	639.5	798	971	1145	1266	
4.1.52	Ангола	4.5	5.2	6.2	8.1	11	14.8	
4.1.53	Малайзия	6.2	8	10.8	13.7	18	23.2	
4.1.54	Кения	6.2	8	11.1	16	23.1	30.7	
4.1.55	Мадагаскар	4.1	5	6.5	8.6	11.4	15.5	
1.1.33	тадагаскар		<u> </u>	0.5	0.0	±±.→	10.0	

4.1.56	Шри-Ланка	8.1	9.8	12.4	14.9	17.2	18.7	
4.1.57	Португалия	8.5	8.7	8.7	9.7	9.9	10.3	
4.1.58	Румыния	16.4	18.5	20.4	22.5	23.5	22.2	
4.1.59	Гонконг	2	3	3.9	5	5.8	6.7	
4.1.60	Греция	7.6	8.3	8.8	9.6	10.1	10.9	

Таблица к задаче 4.2

	N		N	N		
f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]	
	ε		ε		ε	
	4.2.1	4	1.2.2	4.2	2.3	
$x\cos(2x)$	$\begin{bmatrix} -1.3, 2.3 \end{bmatrix}$ $\varepsilon = 0.05$	$5\sqrt{x}\cdot\cos(2x)$	$\begin{bmatrix} 1,3 \end{bmatrix}$ $\varepsilon = 0.05$	$x \cdot \sin 3x$	[2.5,4.5] $\varepsilon = 0.005$	
	4.2.4	4	1.2.5	4.2	2.6	
$x^3 \sin(2x)$	$[-2,2]$ $\varepsilon = 0.05$	$x\sin(x^2)$	$[-1,3]$ $\varepsilon = 0.05$	$\cos(x^2 + x^3)$	$[-2.5, -1]$ $\varepsilon = 0.01$	
	4.2.7	4	4.2.8	4.2	2.9	
$x^2 - \sin x^3$	$[-2, -1]$ $\varepsilon = 0.0001$	sin ⁵ x	[0.5, 2.5] $\varepsilon = 0.005$	$\cos(4x)/\sqrt{x}$	$[1,3]$ $\varepsilon = 0.05$	
4	1.2.10	4	.2.11	4.2.12		
$\sin(x^2)/x$	$ \begin{bmatrix} 1,4] \\ \varepsilon = 0.001 \end{bmatrix} $	$x^2 \cos x$	$\left[\frac{\pi}{2}, \pi\right]$ $\varepsilon = 0.01$	$x\sin x^2$	$\left[0, \frac{\pi}{2}\right]$ $\varepsilon = 0.001$	
4	1.2.13	4	.2.14	4.2.15		
$(x)^3\cos(2x)$	$[3,6]$ $\varepsilon = 0.01$	$\sin(3x)/x^2$	$[1,3]$ $\varepsilon = 0.0001$	$e^x \cos(x^2)$	$[0.5, 1.5]$ $\varepsilon = 0.01$	
4	.2.16	4	.2.17	4.2.18		
6sin(6 <i>x</i>)	$[-2.5,-1.5]$ $\varepsilon = 0.005$	$8e^x \cos x^2$	$[1,3.75]$ $\varepsilon = 0.05$	$5\sin x^2$	$ \begin{bmatrix} 0.4 \\ \varepsilon = 0.01 \end{bmatrix} $	
4	1.2.19	4	.2.20	4.2.21		
$9\cos(e^x)$	$[1,1.28]$ $\varepsilon = 0.001$	$x^2 \cos x$	$\varepsilon = 0.00001$	$\frac{6\sin x}{x}$	$[5,15]$ $\varepsilon = 0.001$	
4	4.2.22		4.2.23		.24	
$x\sin(x^2)$	$[0,5]$ $\varepsilon = 0.000001$	$\cos(3x)/x$	$ \begin{aligned} &[2,4]\\ \varepsilon &= 0.005 \end{aligned} $	$e^x \sin 5x$	$[0,2]$ $\varepsilon = 0.01$	
4	1.2.25	4.2.26		4.2.27		
$\frac{11\sin(x^3)}{x}$	[1,2.75] $\varepsilon = 0.001$	$\frac{10\cos(x^3)}{x}$	$[1,2.75]$ $\varepsilon = 0.005$	$3\sin(x^3)$	$[1,2.5]$ $\varepsilon = 0.001$	
4	1.2.28	4	.2.29	4.2.30		

$40\cos(x^3)$	$[3,3.5]$ $\varepsilon = 0.001$	$7e^x\sin(x^2)$	$ \begin{bmatrix} 0,4\\ \varepsilon = 0.05 \end{bmatrix} $	$\sin x^2$	$[-\pi, \pi]$ $\varepsilon = 0.05$	
4.	2.31	4.2.	32	4.2.33		
$\frac{\sin(x^2)}{\ln(\sqrt{x})}$	$\begin{bmatrix} 2.8, 5.8 \end{bmatrix}$ $\varepsilon = 0.01$	$5\sqrt{x}\cdot\cos(2x)$	$\begin{bmatrix} 2,4 \end{bmatrix}$ $\varepsilon = 0.05$	$x\sin(2-x)$	$[1,4]$ $\varepsilon = 0.001$	
4.	2.34	4.2.	35	4.2	2.36	
$3\sqrt{x}\sin(4x)$	$[5,7]$ $\varepsilon = 0.05$	$\frac{10\sin(x^2)}{x^2}$	$[2,4]$ $\varepsilon = 0.02$	$\cos(x^2 + x^3)$	$[1,1.8]$ $\varepsilon = 0.001$	
4.	2.37	4.2.	38	4.2	2.39	
$x^2 + \sin(x^3)$	$[-2, -1]$ $\varepsilon = 0.001$	$\sin^4 x$ ε	[0.5, 2.5] = 0.001	$\frac{40\cos(x^2)}{x+1}$	$[3,5]$ $\varepsilon = 0.05$	
4.	2.40	4.2.	41	4.2	2.42	
$\cos(x)/x^2$	$[-3, -1]$ $\varepsilon = 0.05$	$x^2 \cos 2x$	$\left[\frac{\pi}{2}, \pi\right]$ $\varepsilon = 0.01$	$4x\sin(x^2)$	$\left[0, \frac{\pi}{2}\right]$ $\varepsilon = 0.001$	
4.	.2.43	4.2.	44	4.2.45		
$(x-1.5)^3\sin(x^2)$	$[2,4]$ $\varepsilon = 0.001$	$\sin(3x)/x^2$	$[3,5]$ $\varepsilon = 0.01$	$\frac{3\sin(x^3)}{x^2}$	$[1,3]$ $\varepsilon = 0.5$	
4.	2.46	4.2.	47	4.2.48		
$2\sin(e^x-2)$	$ \begin{bmatrix} -1,1 \\ \varepsilon = 0.01 \end{bmatrix} $	$8e^x\cos(x^2)$	$[1,3.75]$ $\varepsilon = 0.05$	$5\sin(x^2)$	$\varepsilon = 0.005$	
4.	2.49	4.2.	50	4.2.51		
$6\cos(e^x + x)$	$ \begin{bmatrix} -1,2\\ \varepsilon = 0.001 \end{bmatrix} $	$x^2 \cos x$	$ \begin{bmatrix} 0,5]\\ \varepsilon = 0.001 \end{bmatrix} $	$\frac{6\sin x}{x+1}$	$[0,5]$ $\varepsilon = 0.001$	
4.	.2.52	4.2.53		4.2.54		
$\sin(x^2)/x$	$[1,4]$ $\varepsilon = 0.001$	$x^2 \cos x$	$\begin{bmatrix} \frac{\pi}{2}, \pi \end{bmatrix}$ $\varepsilon = 0.01$	$x\sin x^2$	$\left[0, \frac{\pi}{2}\right]$ $\varepsilon = 0.001$	
4.2.55		4.2.	56	4.2.57		
$(x)^3\cos(2x)$	$[3,6]$ $\varepsilon = 0.01$	$\sin(3x)/x^2$	$[1,3]$ $\varepsilon = 0.0001$	$e^x \cos(x^2)$	$[0.5, 1.5]$ $\varepsilon = 0.01$	
4.	.2.58	4.2.	59	4.2.60		
6sin(6x)	[-2.5,-1.5] $\varepsilon = 0.005$	$8e^x \cos x^2$	$[1,3.75]$ $\varepsilon = 0.05$	$5\sin x^2$	$ \begin{bmatrix} 0.4 \\ \varepsilon = 0.01 \end{bmatrix} $	

Таблица к задаче 4.2

Варианты	Метод решения
N = 1, 11, 21, 31, 41, 51	Линейный сплайн
N = 2, 12, 22, 32, 42, 52	Многочлен Ньютона с конечными разностями

N = 3, 13, 23, 33, 43,53	Квадратичный сплайн с дополнительным условием $y'(a) = f'(a)$
N = 4,1 4, 24, 34, 44,54	Многочлен Ньютона с разделенными разностями
N = 5, 15, 25, 35, 45, 55	Фундаментальный сплайн
N = 6, 16, 26, 36, 46,56	Естественный сплайн
N = 7,17,27, 37, 47,57	Сплайн с отсутствием узла
N= 8, 18, 28,38, 48, 58	Кубический сплайн дефекта 2
N = 9, 19, 29, 39, 49, 59	Многочлен Эрмита
N = 10 , 20 , 30 , 40 , 50 , 60	Кубический сплайн дефекта 1

Таблица к задаче 4.3.

	F(x)	N	F(x)	N	F(x)
N					
4.3.1	xe^x	4.3.11	$x\cos(x)$	4.3. 21	$x^2(1-\cos(x))$
4.3.31		4.3.41		4.3.51	
4.3.2	$\sin(x)$	4.3.12	$x^2(e^x-x-1)$	4.3.22	$x\sin(x)$
4.3.32		4.3.42		4.3.52	
4.3.3	$e^{2x}-1$	4.3.13	$x\cos(x^2)$	4.3.23	x^2e^{-x}
4.3.33		4.3.43		4.3.53	
4.3.4	$\sin(x^2)$	4.3.14	$\sin(2x)$	4.3.24	$(1-\cos(x))/x$
4.3.34		4.3.34		4.3.54	
4.3.5	$x(e^x-1)$	4.3.15	$\sin(x)/x$	4.3.25	e^x-1
4.3.35		4.3.45		4.3.55	
4.3.6	$\cos(x)$	4.3.16	$(e^x - x - 1)/x$	4.3.26	$1-\cos(x)$
4.3.36		4.3.46		4.3.56	
43.7	$x(1-\cos(x))$	4.3.17	$3xe^x$	4.3.27	$x - \cos(x)$
4.3.37		4.3.47		4.3.57	
4.3.8	$(e^x-1)/x$	4.3.18	$x(e^x-x-1)$	4.3.28	$\cos(x^2)$
4.3.38		4.3.48		4.3.58	(/

4.3.9	$x^2\cos(x)$	4.3.19	$x^2 \sin(x)$	4.3.29	$x\sin(2x)$
4.3.39		4.3.49		4.3.59	
4.3.10	$e^{-x}+1$	4.3.20	$x\cos(x^2)$	4.3.30	x^2e^{-x}
4.3.40		4.3.50		4.3.60	

ПРИЛОЖЕНИЕ 4.В.

Задача 4.3. Для экономизации степенного ряда необходимо воспользоваться многочленами Чебышёва и формулами экономизации степенного ряда.

Многочлены Чебышёва $T_n(x)$ могут быть определены с помощью рекуррентного соотношения $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

Формулы экономизации степенного ряда:

$$x = T_1, \ x^2 = \frac{1}{2}(1+T_2), \ x^3 = \frac{1}{4}(3x+T_3), \ x^4 = \frac{1}{8}(8x^2-1+T_4), \ x^5 = \frac{1}{16}(20x^3-5x+T_5)$$

$$x^6 = \frac{1}{32}(48x^4-18x^2+1+T_6), \ x^7 = \frac{1}{64}(112x^5-56x^3+7x+T_7), \ x^8 = \frac{1}{128}(256x^6-160x^4+32x^2-1+T_8)$$

$$x^9 = \frac{1}{256}(576x^7-432x^5+120x^3-9x+T_9), \ x^{10} = \frac{1}{512}(1280x^8-1120x^6+400x^4-50x^2+1+T_{10})$$

$$x^{11} = \frac{1}{1024} (2816x^9 - 2816x^7 + 1232x^5 - 220x^3 + 11x + T_{11})$$

Рассмотрим конкретный пример. Разложим в окрестности нуля функцию $f(x) = e^x \approx S_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. Несложно проверить, что для вычисления e^x на отрезке [-1,1] с точностью ε^{-8} необходимо разложение до n=11: $|e^x - S_{11}(x)| < 10^{-8}$, $x \in [-1,1]$.

Попробуем уменьшить количество слагаемых используя формулы экономизации так, чтобы точность сохранилась. Подставим $x^{11}=\frac{1}{1024}(2816x^9-2816x^7+1232x^5-220x^3+11x+T_{11})$ в $S_{11}(x)$ и после группирования слагаемых получим $S_{11}(x)=\tilde{S}_{10}(x)+\frac{1}{1024\times11!}T_{11}$. Отбрасывая $\frac{1}{1024\times11!}T_{11}$ мы приходим к новому приближению e^x с меньшим количеством слагаемых и дающее требуемую точность: $|e^x-\tilde{S}_{10}(x)|<10^{-8}, \quad x\in[-1,1]$. Повторяя аналогично с x^{10} и т.д. мы приходим к тому, что ряд можно сократить до $\tilde{S}_{9}(x)$ и сохранить необходимую точность.

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.