Depicting Independence of Random Variables by Their Distribution Functions

yujie6@sjtu.edu.cn*

April 6, 2020

First we give a definition for distribution for multiple random variables

Definition 1 (Joint distribution function) For n random variables X_1, \dots, X_n , the joint cumulative distribution function F_{X_1, X_2, \dots, X_n} is given by

$$F_{X_1,\dots,X_n} = P\left(X_1 \le x_1,\dots,X_n \le x_n\right).$$

Interpreting the n random variables as a random vector $\boldsymbol{X} = (X_1, \cdots, X_n)^{\top}$ yields a shorter notation

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = P(X_1 \leq x_1, \cdots, X_n \leq x_n).$$

And we also need the lemma for independence of sigma algebra, which is proved in class. Here I give a generalization form of it.

Lemma 1 Suppose A_1, \dots, A_n are independent and each A_i is a π -system, then $\sigma(A_1), \dots, \sigma(A_n)$ are independent.

The essence is the same with the case of 2 sigma algebras.

With the preparation done, we can depict the independence of random variables by their distribution functions as follows

Theorem 1 Random variables X_1, X_2, \dots, X_n are independent, if and only if $\forall \boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$

$$P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n F_i(x_i).$$

^{*}Yujie Lu, ACM class 18, ID is 518030910111

Probability Theory

Assignment

Proof: Using the definition of joint distribution function, the formula above is equivalent with

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \prod_{i=1}^{n} F_{i}(x_{i}).$$

Which is clean and beautiful. First we prove ⇒, the result is obvious by definition. Since

$$\forall i \leq n, B_i := \{X_i | X_i \leq x_i\} \subset \mathcal{B}.$$

By definition, we obtain that

$$P\left(\bigcap_{i\in[n]}B_i\right)=\prod_{i=1}^nP\left(B_i\right).$$

Now we prove \Leftarrow . Consider A_i be the set of form $\{X_i \leq x_i\}$. Hence by

$${X_i \le r} \cap {X_i \le s} = {X_i \le \min(r, s)}.$$

We know that A_i is a π -system plus we can write it as $X^{-1}(\pi(\mathbb{R}))$, and they are independent (from the definition of independence). Moreover by the conclusion (the second half) proved by Ruihang Lai, we have

$$\sigma\left(\mathcal{A}_{i}\right) = \sigma\left(X_{i}^{-1}\left(\pi\left(\mathbb{R}\right)\right)\right) = X_{i}^{-1}\left(\mathcal{B}\right) = \sigma\left(X_{i}\right).$$

It's obvious that the independence of random variables is equivalent with the independence of the sigma algebra they generated. So by **Lemma 1** we know that $\sigma(A_1), \dots, \sigma(A_n)$ are independent, which means $\sigma(X_1), \dots, \sigma(X_n)$ are independent, hence X_1, \dots, X_n are independent.