

IAS Fachpratikum 2020

Robotersteuerung

Team 3:
Waldemar Repp
Marcel Sauter
Nahed Halouani
Michael Streib
Tim Braun

Projektplan

Prüfer: Prof. Dr.-Ing. Dr. h. c. Michael Weyrich

Betreuer: Hannes Vietz

Start: 26.11.2020 Abgabe: 01.12.2020

Dokument Versionsverwaltung

Version	Autor	QS	Datum	Status	Änderungen
0.1	WaRe		26.11. 2020	veraltet	Erstellung
0.2	WaRe MiSt		28.11. 2020	veraltet	Hinzufügen weiterer Arbeitspakte Überarbeitung der Meilensteine Ergänzungen in Tabelle "Projektorganisation"
0.3	WaRe		28.11. 2020	veraltet	Erstellung von 5 neuen APs, Korrektur von OAP-Nummern, Korrektur von Namen in Proj.org., Korrektur AP-Beschreibungen, Hinzugefügt: Strukturplan Kleine Fehlerkorrekturen
0.4	MiSt	30.11. 2020 (WaRe)	28.11. 2020	veraltet	Kleine Fehlerkorrekturen
0.5	WaRe		30.11. 2020	veraltet	Hinzugefügt: Gantt-Diagramm (Sollplanung)
0.6	WaRe		01.12. 2020	eingereic.	Korrektur Prof. Titel Prüfer, Korrektur Farben Gantt-Diag.

0 Inhaltsverzeichnis

0	INHALTSVERZEICHNIS	3
1	PROJEKTORGANISATION	4
2	PROJEKTSTRUKTURPLAN	4
3	ARBEITSPAKETE	4
4	MEILENSTEINE	6
5	BALKENDIAGRAMM (SOLLPLANUNG)	7
6	BAI KENDIAGRAMM (TATSÄCHI ICHER VERLAUE)	

1 Projektorganisation

Benennung der am Projekt beteiligten Personen und deren Rollen im Projekt.

Name,	Aufgabenbereich	Ort, Telefon, E-Mail
(Geschäftszeichen)		
Prof. Weyrich (MW)	Prüfer	IAS, 685 67301
Hannes Vietz	Betreuer	IAS
Dustin White	Mitbetreuer	IAS
Waldemar Repp	Projektleitung	st101971@stud.uni-stuttgart.de
	Systementwicklung	
Nahed Halouani	Konfigurationsmanagement	
	Qualitätssicherung	
Tim Braun	Systementwicklung	
	Qualitätssicherung	
Marcel Sauter	Systementwicklung	
	Qualitätssicherung	
Michael Streib	Systementwicklung	st161946@stud.uni-stuttgart.de
	Qualitätssicherung	_
Systemverwalter Datensicherung		IAS,
(SysAd)	Rechnerverwaltung	sysad@ias.uni-stuttgart.de

2 Projektstrukturplan

Softwareentwicklung	Proj	rojektbegleitende Tätigkeiten				
AP1-1 (SE): Eclipse Start		AP1-2 (KM): AP1-3 (PM): Infrastruktur Start Projektplan				
AP2 (SE,QS,KM): Systemanalyse			AP5 (PM):			
AP3 (SE,QS,KM,PM): Einarbeitung		Erstellung Zwischenbericht				
Visualisierung		AP19 (PM): Konzept KM/QS				
AP4 (SE,QS): Softwareentwurf		Erstell	AP18 (PM): lung Zwischenpräsentation			
AP7 (SE): Quellcode: Infrarotabstandssensoren		AP6 (QS,PM): Erstellung Prüfspezifikation				
AP8 (SE):	oren		AP16 (QS): Qualität: Infrarotabst.sensoren			
Quellcode: Strateg	ie	AP17 (Fortlaufendes I	AP12 (QS): Qualität: Strategie			
AP9 (SE): Quellcode: Kartogra	ıfie	AP17 (PN endes Ma	AP13 (QS): Qualität: Kartografie			
AP10 (SE): Quellcode: Visualisie	rung	' (PM): s Management	AP14 (QS): Qualität: Visualisierung			
AP11 (SE): Quellcode: Steueru	ng	īŧ	AP20 (QS): Qualität: Steuerung			

3 Arbeitspakete

AP1-1: Eclipse Start: (SE)

Einarbeitung in die Softwareumgebung in der der Quellcode der Software geschrieben wird. Erstellung einer Präsentation zur Einführung in die Nutzung von Eclipse (IDE) für alle Teammitglieder und Vortrag dieser. Dies umfasst den kompletten Prozess ab der Installation der nötigen Bestandteile über die effiziente Nutzung der IDE bis hin zum Ausführen eines ersten Testprojekts, einem simplen Code der durch Nutzung des Simulators (gestellt vom IAS) getestet wird.

AP1-2: Infrastruktur Start: (KM)

Einrichtung eines GIT Repository, einer Jira Instanz sowie Einordnung der bisher erstellten Dokumente in die entsprechenden Systeme. Erstellung einer Präsentation zur Einführung in beide Systeme für alle Teammitglieder und Vortrag dieser. Dies umfasst alle nötigen Schritte von der Einrichtung über das Finden von ausstehenden Aufgaben bis zum Einreichen von Änderungen in der Software.

AP1-3: Projektplan: (PM)

Erstellungen eines übersichtlichen Plans von der derzeitigen Situation bis zum Ende des Projekts. Dies umfasst unter anderem das Aufteilen des Projektes in Meilensteine, Arbeitspakete und eine zeitliche Unterteilung der Arbeitsabschnitte unter Berücksichtigung des V-Modells als Entwicklungsmodell und der Zeit der Teammitglieder. Nach Fertigstellung: Erstellung einer Präsentation für das Team um über finalen Ablauf zu informieren.

AP2: Systemanalyse: (SE, QS, KM)

Durchführung der Systemanalyse in Vorbereitung zum Design der Software im folgenden Schritt, dem Softwareentwurf.

AP3: Einarbeitung Visualisierung (SE, QS, KM, PM)

Einarbeitung in die Visualisierung der relevanten Daten sowie Erstellung einer Präsentation zur Einführung des Teams in die Visualisierung.

AP4: Softwareentwurf: (SE, QS)

Entwurf des Aufbaus der Software mit ihren Bestandteilen und der Interaktion zwischen diesen. Dies umfasst die Konzeptionierung, Spezifizierung und letztliche Festlegung in Dokumenten.

AP5: Erstellung Zwischenpräsentation (PM)

Erstellung der Zwischenpräsentation für Di. 08.12.20.

AP6: Erstellung der Prüfspezifikation (PM, QS)

AP7: Infrarotabstandssensoren (SE)

Das Verhalten der Infrarotabstandssensoren analysieren, um deren Rückgabewerte korrekt für die Ermittlung des Abstands zu den Hindernissen interpretieren zu können.

AP8: Quellcode: Strategie (SE)

Umfasst die Erstellung des Codes für die Wegfindung und damit zusammenhängende Programmteile. Ziel ist die Sicherstellung der Anforderungen im Zusammenhang mit dem Erreichen des Ziels und lediglich dieser.

AP9: Quellcode: Kartografie (SE)

Umfasst die Erstellung des Codes welcher die Daten der Sensoren erfasst, verarbeitet und in Kartendaten umsetzt. Ziel ist die Erstellung einer Karte unter Beachtung der entsprechenden Anforderungen.

AP10: Quellcode: Visualisierung (SE)

Umfasst die Erstellung des Codes zur Visualisierung der relevanten Daten unter Beachtung der Anforderungen. Ziel ist die Erfüllung der Anforderungen im Bezug auf Benutzerschnittstelle und Visualisierung.

AP11: Quellcode: Steuerung (SE)

Umfasst die Erstellung des Codes der Benutzerschnittstelle. Ziel ist eine stabile und leicht verständliche Benutzerschnittstelle nach Anforderungen.

AP12: Qualität: Strategie (QS)

Umfasst das Testen der Strategie der Software. Erstellung von Prüfprotokollen.

AP13: Qualität: Kartografie (QS)

Umfasst das Testen der Kartografie. Erstellung von Prüfprotokollen.

AP14: Qualität: Visualisierung (QS)

Umfasst das Testen der Visualisierung. Erstellung von Prüfprotokollen.

AP15: Qualität: Steuerung (QS)

Umfasst das Testen der Benutzerschnittstelle. Erstellung von Prüfprotokollen.

AP16: Qualität: Infrarotabstandssensoren (QS)

Umfasst das Testen und Kalibrieren der Infrarotabstandssensoren und der damit verbundenen Software.

AP17: Fortlaufendes Management (PM):

Beschreibt das kontinuierliche Erfassen des derzeitigen Entwicklungsstands und Zeitbudgets, eventuelles Anpassen der genutzten Methoden und Koordinierung des Teams.

AP18: Erstellung Zwischenpräsentation (PM):

Erstellung einer Zwischenpräsentation um den bisherigen Fortschritts des Teams am 22.12.2020 vorstellen zu können.

AP19: Konzept KM/QS des Quellcodes (KM/QS):

Erstellung eines Konzepts welches Beschreibt wie der Quellcode unter Nutzung von GIT und Jira zu behandeln ist und wie QS hier vorzugehen hat. Unterscheidung zwischen Reviews und Tests ist zu beachten.

AP20: Qualität: Steuerung (QS)

Umfasst das Reviewen und Testen der Steuerung. Erstellung von Prüfprotokollen.

Optionale Arbeitspakete (OAP)

Die nachfolgenden Arbeitspakete sind optional bzw. niedrig priorisiert, weil sie nicht zwingend für die Funktionsfähigkeit des Systems erforderlich sind.

OAP1: NDS-Sensor einbinden (SE, QS)

Arbeitspaket besteht darin, den NDS Sensor anzusteuern und dessen Daten auszulesen sowie verarbeiten, um sie für eine bessere Kartographie der Hindernisse zu nutzen.

OAP2: Bodensensoren auswerten (SE, QS)

Umfasst die Auswertung der Bodensensoren, um die Klebebandstreifen in der Robo-Arena zu detektieren und als Referenzpunkte für die Positionsbestimmung des Roboters zu nutzen.

4 Meilensteine

Meilensteine werden als MS abgekürzt:

MS0: Infrastruktur und Entwicklungstools

- → Entwicklungsumgebung und Orgware sind eingerichtet und einsatzbereit
- → Konfigurationsmanagement funktioniert reibungslos

MS1: Systemanalyse vollständig abgeschlossen

- → Zu lösende Problemstellung ist erfasst
- → Erarbeitetes Systemmodell definiert erwünschtes Systemverhalten konsistent und vollständig und ist gleichzeitig realisierbar
- → Grundlage für ersten Softwareentwurf geschaffen

MS2: Erste Fahrt des Roboters erfolgreich

- → Nur Geradeausfahrt, Stopp bei Hindernis, Positionserfassung per Kameras
- → Infrastruktur vollständig und funktional

MS3: Grundlegende Wegfindung funktional

- → Wegfindung auf Basis der Infrarotabstandssensoren
- → Zielfindung erfolgreich in Großteil der Versuche (Geschwindigkeit irrelevant)
- → Arbeitsablauf geregelt und stabil

MS4: Kartografie

→ Software erstellt Karte durch Nutzung der Infrarotabstandssensoren

MS5: Erweiterte Wegfindung

- → Algorithmus zur Wegfindung ist zeitlich optimiert
- → Optional kann die erstellte Karte für die Planung des schnellsten Wegs genutzt werden

MS6: Visualisierung

- → Die Anforderungen des Pflichtenhefts an die Visualisierung werden erfüllt
- → Visualisierung erlaubt Optimierungen und Fehlersuche mit höherer Iterationsgeschwindigkeit

MS7: Anforderungen erfüllt

- → Alle Anforderungen des Pflichtenhefts werden von der Software erfüllt.
- → Ab jetzt nur noch optionale Verbesserungen

5 Balkendiagramm (Sollplanung)

Farben stellen Phasen dar.

6 Balkendiagramm (tatsächlicher Verlauf)

Hier ist am Ende des Projekts dessen tatsächlicher Verlauf einzutragen.