

CT3 Set D Answer key

Database Security And Privacy (SRM Institute of Science and Technology)

SRM Institute of Science and Technology

College of Engineering and Technology

School of Computing

SETD

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022 -2023 (ODD)

Test : CLAT-3 Date : 07/11/2022

Course Code & Title : 18CSE455T & DATABASE SECURITY AND PRIVACY

Duration : 2 periods

Year & Sem : IV Year & VII Semester Max. Marks : 50 Marks

Course Articulation Matrix:

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	Н														
CO2	Н	Н													
CO3	Н														
CO4	Н	Н													
CO5	Н			Н											
CO6	Н														

	Part - A									
	(10*1 = 10 Marks)Answer all Questions.									
Q.	Question	Marks	BL	CO	PO	PI Code				
No										
1		1	2	5	1	2.1.2				
	Utility event in SQL Server events?									
	 A) BACKUP / RESTORE/ B) BULL INSERT / BCP (Bulk Copies) / C) DBCC (Database Consistency Checker) D) All the above 									

2		1	2	5	1	2.1.3
	The Oracle Log is another method of					
	auditing database activities.					
	A) ALEDT					
	A) ALERT					
	B) REVOKE					
	C) COMMIT					
	D) CHECK					
3	The audit final report should include, at a minimum, the	1	1	5	1	2.2.2
	following: (choose the one NOT required.)					
	A) Type of audit conducted					
	B) Characteristics of audit					
	C) Identification of involved parties: auditor, auditee, and					
	third party					
	D) Audit team members		4	_	4	222
4	Point out the wrong statement.	1	1	5	4	2.2.3
	A) Users with the ALTER ROLE permission can create					
	server audit specifications and bind them to any audit					
	B) SQL Server audit uses Extended Events to help create					
	an audit					
	C) You can have multiple audits per SQL Server instance					
5	D) You can create one server audit specification per audit An audit which is compulsory by the law is	1	2	5	4	2.2.3
	A. Government Audit					
	B. Internal Audit					
	C. Cost Audit					
	D. Statutory Audit					
6		1	1	6	4	1.3.1
	kind of partitioning is used for the data sets across					
	multiple entities which same set of attributes?					
	1					
	A) Key					
	B) Horizontal					
	C) Vertical					

	D) Hash					
7		1	2	6	4	2.1.3
	The model was designed to bondle some					
	The model was designed to handle some					
	weaknesses in the k-anonymity model					
	A) t-closeness					
	B) 1-diversity					
	C) Incognito					
	D) data swapping,					
8	The Method for compromising the privacy of genomic	1	1	6	1	3.4.2
	data					
	A) and no identification					
	A) trail re-identification					
	B) Prediction					
	C) Masking					
9	D) Decoding	1	2	6	1	2.2.2
	The values across different records are swapped in order					
	to perform the privacy-preservation is					
	A) Data Engraption					
	A) Data Encryption					
	B) Data Swapping					
	C) Data Hiding					
10	D) Data masking Methods are used prevent disclosure of sensitive	1	1	6	4	2.2.3
	information	-	-		-	
	A) k-anonymity,					
	B) 1-diversity					
	C) t-closeness					
	D) all the above					
	Part B (4*5=20Marks) Answer a			1		
11	Describe the activities of Oracle alert log and explain with	5	3	5	1	1.6.1
	example in detail.					
	The alert log file (also referred to as the ALERT.LOG) is					
	a chronological log of messages and errors written out by					
	an Oracle Database. Typical messages found in this file is:					

database startup, shutdown, log switches, space errors,					
etc. This file should constantly be monitored to detect					
unexpected messages and corruptions.					
Location of the ALERT.LOG file					
Oracle will write the alert.log file to the directory as					
specified by the BACKGROUND DUMP DEST					
parameter. If this parameter is not set, the alert.log will be					
created in a directory below the value of the					
DIAGNOSTIC DEST parameter:					
DIAGNOSTIC DEST/diag/rdbms/DB NAME/ORACLE					
SID/trace. If this later parameter is not set, the alert.log					
file is created in the ORACLE HOME/rdbms/trace					
directory.					
SQL> show parameter BACKGROUND DUMP DEST					
NAME TYPE VALUE					
background_dump_dest string					
/app/oracle/diag/rdbms/o11gr1/o11gr1/trace					
Writing to the ALERT.LOG file					
Users can write messages to the alert.log file. Example:					
Write message to alert.log					
exec dbms_system.ksdwrt(2, 'Look Ma, I can write to the					
alert.log file!');					
PL/SQL procedure successfully completed.					
Flush the buffer					
exec dbms_system.ksdfls;					
PL/SQL procedure successfully completed.					
Describe about audit command syntax along with	5	3	5	4	2.2.3
diagram.					
Audit command syntax					
AUDIT					
{					
{ { statement_option ALL }					
[,{statement_option ALL }]					
,{syetem_privilege ALL PRIVILEGES }					

```
[BY { proxy [,proxy].....
             user [,user].....
       1
 {Object option [, object option ] ...... | ALL }
 ON { [schema.] object
      DIRECTORY directory_name
      |DEFAULT
     }
 }
   [ BY {SESSION | ACCESS } }
   [WHENEVER [NOT] SUCESSFUL];
       Where:
Statement option – Tells ORACLE to audit the specified
DDL or DCL statement
DDL – CREATE, ALTER, DROP and TRUNCATE
DCL – GRANT, REVOKE
System privilege – Tell ORACLE to audit the specified
privilege such as SELECT, CREATE ANY, or ALTER
ANY
Object option - Specifies the type of privileges for the
specified object to be audited
BY SESSION – Tells ORACLE to record audit data once
per session even if the audited statement issued multiple
times in session
BY ACCESS - Tells ORACLE to record audit data every
time audited statement is issued.
WHENEVER SUCCESSFUL - Tells ORACLE to
capture audit data only when the audited command is
successful
WHENEVER NOT SUCCESSFUL- Tells ORACLE to
capture audit data only when the audited command fails
```

	AUDIT (sql_statement_clause) schema_object_clause)					
	BY ACCESS WHENEVER SUCCESSFUL					
13	List out the mining Association rules under privacy	5	2	6	4	2.2.3
	constraints.					
	✓ association rule mining is one of the important					
	problems in data mining					
	✓ There are two aspects to the privacy preserving					
	association rule mining problem					
	1. When the input to the data is perturbed, it					
	is a challenging problem to accurately					
	determine the association rules on the					
	perturbed data.					
	2. A different issue is that of output					
	association rule privacy.					
	o In this case, to ensure that none of the					
	association rules in the					
	 output result in leakage of sensitive data. 					
	.					
	• This problem is referred to as association					
	rule hiding by the					
	o database community, and that of					
	•					
	contingency table privacy-preservation by the statistical community.					
	o preservation by the statistical community.					
14	Elaborate Rule hiding?	5	3	6	1	2.2.2
	• Association rule hiding refers to the process of					
	modifying the original database in such a way					
	that certain sensitive association rules disappear					
	without seriously affecting the data and the non-					
	sensitive rules.					
	• The association rule hiding technique is to					
	remove the sensitive rules from the transactional					
	database during association rule mining.					
	ARH technique protects sensitive data items by					
	concealing the sensitive rules from miners and					
	conceaning the sensitive rules from inniers and					

		i		1	1	
	discloses all the non-sensitive rules to the miners.					
	 Data perturbation is used by Privacy Preserving 					
	Data Mining (PPDM) approach takes single-level					
	trust on data miners.					
	• The technique establishes the ambiguity					
	regarding individual values than the data released					
	to the third parties for data mining purposes. In					
	single trust level assumption, a data owner creates					
	disturbed copy of its data with an amount of					
	uncertainty.					
	This assumption is restricted in many functions					
	where a data owner trusts the data miners at					
	various level					
	Part C (2*10=20 Marks) (Aı		- 			· · · · · · · · · · · · · · · · · · ·
15	Explain curse dimensionality. What are the ways by		2	6	1	1.6.1
	which the curse is cured? Especially in distributed					
	environment					
	✓ Many privacy-preserving data-mining methods					
	are inherently limited by the curse of					
	dimensionality in the presence of public					
	information.					
	\checkmark For example, the technique in analyzes the k -					
	anonymity method in the presence of increasing					
	dimensionality.					
	✓ The curse of dimensionality becomes especially					
	important when adversaries may have					
	considerable background information, as a result					
	of which the boundary between pseudo-identifiers					
	and sensitive attributes may become blurred.					
	✓ This is generally true, since adversaries may be					
	familiar with the subject of interest and may have					
	greater information about them than what is					
	publicly available.					
	✓ This is also the motivation for techniques such as					
	*					
	<i>l</i> -diversity in which background knowledge can					
	be used to make further privacy attacks.					
16	Describe the distributed algorithm for k-anonymity.	10	3	6	1	1.7.1
	✓ In many applications, the data records are					
	made available by simply removing key					

	identifiers such as the name and social- security numbers from personal records. ✓ other kinds of attributes (known as pseudo- identifiers) can be used in order to accurately identify the records. ■ For example, attributes such as age, zip-code and sex are available in public records such as census rolls. ■ When these attributes are also available in a given data set, they can be used to infer the identity of the corresponding individual. A combination of these attributes can be very powerful, since they can be used to narrow down the possibilities to a small number of individuals ✓ k-anonymity approach can be formalized as follows:					
	■ Each release of the data must be such that every combination of values of quasi-identifiers (are pieces of information that are not of themselves unique identifiers) can be indistinguishably matched to at least k respondents. ■ The first algorithm for k-anonymity approach uses domain generalization hierarchies of the quasi-identifiers in order to build k-anonymous tables. The concept of k-minimal generalization has been proposed in order to limit the level of generalization for maintaining as much data precision as possible for a given level of anonymity.					
17	Explain how oracle database auditing activities are performed using DDL triggers. ✓ ORACLE provides the mechanism for auditing everything: ■ From tracking who is creating and modifying the structure ■ Who is granting privileges to whom ✓ The activities are divided into two types based on the type of SQL command statement used: ■ Activities defined by DDL (Data Definition Language) Activities defined by DCL (Data Control Language Auditing DDL Activities ✓ ORACLE uses a SQL-based audit command The following figure presents the audit syntax diagram (ORACLE 10g)	10	4	5	4	1.7.1

DDL activities Example:

- ✓ Suppose you want to audit a table named CUSTOMER every time it is altered or every time a record from a table deleted.
- ✓ The following steps show you how to do this.
- ✓ Before perform , drop are disable all triggers associated with CUSTOMER table.

Step 1 : Use any user other than SYS or SYSTEM to create the CUSTOMER

Step 2 : Add three rows into the CUSTOMER table and commit changes

Step 3: Log on as SYS or SYSTEM to enable auditing, as specified in this example

the first statement for ALTER and the next is for DELETE

Step 4: Login as the owner of CUSTOMER table, DBSEC delete a row and modify

the structure of the table, as specified in the following code

In this step you will see the audit records stored in the auditing tables caused by the DELETE and ALTER statements issued in step 4.

Step 5 : Login in as SYSTEM and view the DBA AUDIT TRAIL

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Question Paper Setter

Approved by the Audit Professor/Course Coordinator