Interpreting Gene Lists

- The analysis produced 1000 hits-> Now what?
- Genome-Scale Analysis (Omics)
 - Genomics, Proteomics
- What's interesting about these genes
 - Are they enriched in known pathways, complexes, functions

Pathway and Network Analysis

- Any type of analysis that involves pathway or network information
- Most commonly applied to help interpret lists of genes
- Most popular type is pathway enrichment analysis, but many others are useful
- Helps gain mechanistic insight into 'omics data

Correlation to Causation

- GWAS: find genetic markers correlated with disease – powerful approach, but:
 - genomics reduces statistical power (>multiple testing correction with >SNPs)
 - rare variants = more samples
- Associate pathways to increase power
 - Fewer pathways, organize many rare variants (damaging the system causes the disease)
- Use pathway knowledge to identify potential disease causes

Before Analysis

- ✓ Normalization
- ✓ Background adjustment
- ✓ Quality control (garbage in, garbage out)

- ✓ Use statistics that will increase signal and reduce noise specifically for your experiment
- ✓ Other analyses you may want to use to evaluate changes
- ✓ Make sure your gene IDs are compatible with software

Where Do Gene Lists Come From?

- Molecular profiling e.g. mRNA, protein
 - Identification → Gene list
 - Quantification → Gene list + values
 - Ranking, Clustering (biostatistics)
- Interactions: Protein interactions, microRNA targets, transcription factor binding sites (ChIP)
- Genetic screen e.g. of knock out library
- Association studies (Genome-wide)
 - Single nucleotide polymorphisms (SNPs)
 - Copy number variants (CNVs)

What Do Gene Lists Mean?

- Biological system: complex, pathway, physical interactors
- Similar gene function e.g. protein kinase
- Similar cell or tissue location
- Chromosomal location (linkage, CNVs)

Biological Questions

- Step 1: What do you want to accomplish with your list
 - Summarize biological processes or other aspects of gene function
 - Perform differential analysis what pathways are different between samples?
 - Find a controller for a process (TF, miRNA)
 - Find new pathways or new pathway members
 - Discover new gene function
 - Correlate with a disease or phenotype (candidate gene prioritization)

Biological Answers

- Computational analysis methods we will cover
 - Regulatory network analysis: find controllers
 - Pathway enrichment analysis: summarize and compare
 - Network analysis: predict gene function, find new pathway members, identify functional modules (new pathways)

Pathway Enrichment Analysis

Annotation Expression Phenotypes

DAVID, GSEA, g:Profiler

- Gene identifiers
- Gene attributes/annotation
 - Gene Ontology
 - Ontology Structure
 - Annotation
 - BioMart + other sources

Gene and Protein Identifiers

- Identifiers (IDs) are ideally unique, stable names or numbers that help track database records
 - E.g. Social Insurance Number, Entrez Gene ID 41232
- Gene and protein information stored in many databases
 - − → Genes have many IDs
- Records for: Gene, DNA, RNA, Protein
 - Important to recognize the correct record type
 - E.g. Entrez Gene records don't store sequence.
 They link to DNA regions, RNA transcripts and proteins e.g. in RefSeq, which stores sequence.

GNAQ GNAS DGK7 GUCY1A3 PDF4B PDF4D ΔΤΡ2Δ2 ATP2A3 NOS1 CNN1 GST01 NOS3 CNN2 MYI K2 CALD1 ACTA1 MYL2

Common Identifiers

Gene

Ensembl ENSG00000139618

Entrez Gene 675

Unigene Hs.34012

RNA transcript

GenBank BC026160.1

RefSeq NM 000059

Ensembl ENST00000380152

Protein

Ensembl ENSP00000369497

RefSeq NP 000050.2

UniProt BRCA2_HUMAN or

A1YBP1 HUMAN

IPI IPI00412408.1

EMBL AF309413

PDB 1MIU

Species-specific

HUGO HGNC BRCA2

MGI MGI:109337

RGD 2219

ZFIN ZDB-GENE-060510-3

FlyBase CG9097

WormBase WBGene00002299 or ZK1067.1

SGD S000002187 or YDL029W

Annotations

InterPro IPR015252

OMIM 600185

Pfam PF09104

Gene Ontology GO:0000724

SNPs rs28897757

Experimental Platform

Affymetrix 208368 3p s at

Agilent A_23_P99452

CodeLink GE60169

Illumina GI 4502450-S

<u>Red</u> =

Recommended

Identifier Mapping

- So many IDs!
 - Software tools recognize only a handful
 - May need to map from your gene list IDs to standard IDs
- Four main uses
 - Searching for a favorite gene name
 - Link to related resources
 - Identifier translation
 - E.g. Proteins to genes, Affy ID to Entrez Gene
 - Merging data from different sources
 - Find equivalent records

What is the Gene Ontology (GO)?

- Set of biological phrases (terms) which are applied to genes:
 - protein kinase
 - apoptosis
 - membrane
- Dictionary: term definitions
- Ontology: A formal system for describing knowledge
- www.geneontology.org

GO Structure

- Terms are related within a hierarchy
 - is-a
 - part-of
- Describes multiple levels of detail of gene function
- Terms can have more than one parent or child

What GO Covers?

- GO terms divided into three aspects:
 - cellular component
 - molecular function
 - biological process

fructose-6-phosphate

Inner

glucose-6-phosphate isomerase activity

β-D-glucose-6-phosphate

Cell division

Part 1/2: Terms

- Where do GO terms come from?
 - GO terms are added by editors at EBI and gene annotation database groups
 - Terms added by request
 - Experts help with major development
 - 37104 terms, with definitions
 - 23074 biological_process
 - 2994 cellular component
 - 9392 molecular_function
 - As of June 2012

Part 2/2: Annotations

- Genes are linked, or associated, with GO terms by trained curators at genome databases
 - Known as 'gene associations' or GO annotations
 - Multiple annotations per gene
- Some GO annotations created automatically (without human review)

Species Coverage

- All major eukaryotic model organism species and human
- Several bacterial and parasite species through TIGR and GeneDB at Sanger
- New species annotations in development
- Current list:
 - http://www.geneontology.org/GO.downloads.annot ations.shtml

Gene Attributes

- Function annotation
 - Biological process, molecular function, cell location
- Chromosome position
- Disease association
- DNA properties
 - TF binding sites, gene structure (intron/exon), SNPs
- Transcript properties
 - Splicing, 3' UTR, microRNA binding sites
- Protein properties
 - Domains, secondary and tertiary structure, PTM sites
- Interactions with other genes

Sources of Gene Attributes

- Ensembl BioMart (general)
 - http://www.ensembl.org
- Entrez Gene (general)
 - http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
- Model organism databases
 - E.g. SGD: http://www.yeastgenome.org/
- Many others.....

Ensembl BioMart

Convenient access to gene list annotation

Enrichment analysis

- Introduction to enrichment analysis
- Hypergeometric Test, Fisher's Exact Test
- GSEA enrichment analysis for ranked lists.
- Multiple test corrections:
- Bonferroni correction
- False Discovery Rate computation using Benjamini-Hochberg procedure

The "result"

Probe Set ID	log.ratio	pvalue	adj.p
73554_at	1.4971	0.0000	0.0004
91279_at	0.8667	0.0000	0.0017
74099_at	1.0787	0.0000	0.0104
83118_at	-1.2142	0.0000	0.0139
81647_at	1.0362	0.0000	0.0139
84412_at	1.3124	0.0000	0.0222
90585_at	1.9859	0.0000	0.0258
84618_at	-1.6713	0.0000	0.0258
91790_at	1.7293	0.0000	0.0350
80755_at	1.5238	0.0000	0.0351
85539_at	0.9303	0.0000	0.0351
90749_at	1.7093	0.0000	0.0351
74038_at	-1.6451	0.0000	0.0351
79299_at	1.7156	0.0000	0.0351
72962_at	2.1059	0.0000	0.0351
88719_at	-3.1829	0.0000	0.0351
72943_at	-2.0520	0.0000	0.0351
91797_at	1.4676	0.0000	0.0351
78356_at	2.1140	0.0001	0.0359

What about the Biology???

Slightly more informative results

Probe Set ID	Gene Symbo	Gene Title	go biological process term	go molecular function term	log.ratio	pvalue	adj.p
73554_at	CCDC80	coiled-coil domain contain	I 	 11	1.4971	0.0000	0.0004
91279_at	C1QTNF5 ///	C1q and tumor necrosis fa	visual perception /// embr	y	0.8667	0.0000	0.0017
74099_at			_		1.0787	0.0000	0.0104
83118_at	RNF125	ring finger protein 125	immune response /// mod	i protein binding /// zinc ion	-1.2142	0.0000	0.0139
81647_at			<u></u>	_	1.0362	0.0000	0.0139
84412_at	SYNPO2	synaptopodin 2		actin binding /// protein bir	1.3124	0.0000	0.0222
90585_at	C15orf59	chromosome 15 open read	: 	<u> </u>	1.9859	0.0000	0.0258
84618_at	C12orf39	chromosome 12 open read	; 		-1.6713	0.0000	0.0258
91790_at	MYEOV	myeloma overexpressed (<u> </u>		1.7293	0.0000	0.0350
80755_at	MYOF	myoferlin	muscle contraction /// block	protein binding	1.5238	0.0000	0.0351
85539_at	PLEKHH1	pleckstrin homology doma	l	binding	0.9303	0.0000	0.0351
90749_at	SERPINB9	serpin peptidase inhibitor,	anti-apoptosis /// signal tra	endopeptidase inhibitor ac	1.7093	0.0000	0.0351
74038_at					-1.6451	0.0000	0.0351
79299_at				_	1.7156	0.0000	0.0351
72962_at	BCAT1	branched chain aminotrans	G1/S transition of mitotic	catalytic activity /// branch	2.1059	0.0000	0.0351
88719_at	C12orf39	chromosome 12 open read	; 	-	-3.1829	0.0000	0.0351
72943_at	// //				-2.0520	0.0000	0.0351
91797_at	LRRC16A	leucine rich repeat contain	1 	_	1.4676	0.0000	0.0351
78356_at	TRDN	triadin	muscle contraction	receptor binding	2.1140	0.0001	0.0359

If we are lucky, some of the top genes mean something to us

But what if they don't?

And how what are the results for other genes with similar biological functions

Apply some methods to incorporate biological knowledge into microarray analysis

The type of knowledge to deal with is rather simple: We know groups/sets of genes that for example

- Belong to the same pathway
- Have a similar function
- •Are located on the same chromosome, etc...

We will assume these groupings to be given, i.e we will not discuss methods how to detect pathways, networks, gene clusters

What is a pathway?

- No clear definition
 - Wikipedia: "In biochemistry, metabolic pathways are series of chemical reactions occurring within a cell. In each pathway, a principal chemical is modified by chemical reactions."
 - These pathways describe enzymes and metabolites
- But often the word "pathway" is also used to describe gene regulatory networks or protein interaction networks
- In all cases a pathway describes a biological function very specifically

What is a Gene Set?

- •All genes involved in a pathway are an example of a Gene Set
- •All genes corresponding to a Gene Ontology term are a Gene Set
- •All genes mentioned in a paper of Smith et al might form a Gene Set

A Gene Set is a much more general and less specific concept than a pathway

What is Gene Set/Pathway analysis?

The aim is to give one number (score, p-value) to a Gene Set/Pathway to answer questions like:

- •Are many genes in the pathway differentially expressed (up-regulated/downregulated)?
- •Can we give a number (p-value) to the probability of observing these changes just by chance?

Pathway and Gene Set data resources

The Gene Ontology (GO) database

http://www.geneontology.org/

GO offers a relational/hierarchical database

- Parent nodes: more general terms
- Child nodes: more specific terms

At the end of the hierarchy there are genes/proteins

At the top there are 3 parent nodes: biological process, molecular function and cellular component

Example: we search the database for the term "inflammation"

Term Lineage

Switch to viewing term parents, siblings and children

The genes on our array that code for one of the 44 gene products would form the corresponding "inflammation" gene set

KEGG pathway database

KEGG = Kyoto Encyclopedia of Genes and Genomes

http://www.genome.jp/kegg/pathway.html

The pathway database gives far more detailed information than GO

Relationships between genes and gene products

But: this detailed information is only available for selected organisms and processes

Types of enrichment analysis

- Gene list (e.g. expression change > 2-fold)
 - Answers the question: Are any gene sets surprisingly enriched (or depleted) in my gene list?
 - Statistical test: Fisher's Exact Test (Hypergeometric test)
- Ranked list (e.g. by differential expression)
 - Answers the question: Are any gene set ranked surprisingly high or low in my ranked list of genes?
 - Statistical test: GSEA

Gene list enrichment analysis

- Given:
 - 1. Gene list: e.g. RRP6, MRD1, RRP7, RRP43, RRP42 (yeast)
 - 2. Gene sets or annotations: e.g. Gene ontology, transcription factor binding sites in promoter
- Question: Are any of the gene annotations <u>surprisingly</u> enriched in the gene list?

Two-class design for gene lists Selection by

Expression Matrix

Class-1 Class-2

by Differential Statistic

E.g.:

- Fold change
- Log (ratio)
- t-test
- Significance analysis of microarrays

Threshold

UP

DOW

N

Recipe for gene list enrichment test

- Step 1: Rank your gene list,
- Step 2: Select your gene sets to test for enrichment,
- Step 3: Run enrichment tests and correct for multiple testing, if necessary,
- Step 4: Interpret your enrichments
- Step 5: Make conclusions

Theory component

- Hypergeometric test for calculating enrichment P-values for gene lists
- GSEA for computing enrichment Pvalues for ranked lists
- Multiple test corrections:
 - Bonferroni
 - Benjamini-Hochberg FDR

Important details

- To test for under-enrichment of "black", test for over-enrichment of "red".
- Need to choose "background population" appropriately, e.g., if only portion of the total gene complement is queried (or available for annotation), only use that population as background.
- To test for enrichment of more than one independent types of annotation (red vs black and circle vs square), apply Fisher's exact test separately for each type.

Pathway and Network Analysis of – omics Data

Classes of Gene Set Analysis

Khatri et al. PLOS Comp Bio. 8:1 2012

Limitations of Gene Set Enrichment Analysis

- Many possible gene sets diseases, molecular function, biological process, cellular compartment, pathways...
- Gene sets are heavily overlapping; need to sort through lists of enriched gene sets!
- "Bags of genes" obscure regulatory relationships among them.

Pathway Databases

- Advantages:
 - Usually curated.
 - Biochemical view of biological processes.
 - Cause and effect captured.
 - Human-interpretable visualizations.
- Disadvantages:
 - Sparse coverage of genome.
 - Different databases disagree on boundaries of pathways.

Reactome

NCAM1 mediated intracellular signal transduction is represented in the figure below. The Ig domains in NCAM1 are represented in orange ovals and Fn domains in green squares. The tyrosine residues susceptible to phosphorylation are represented in red circles and their positions are numbered. Phosphorylation is represented by red arrows and dephosphorylation by yellow. Ig, Immunoglobulin domain; Fn, Fibronectin domain; Fyn, Proto-oncogene tyrosine-protein kinase Fyn; FAK, focal adhesion kinase; RPTPalpha, Receptor-type tyrosine-protein phosphatase; Grb2, Growth factor receptor-bound protein 2; SOS, Son of sevenless homolog; Raf, RAF proto-oncogene serine/threonine-protein kinase; MEK, MAPK and ERK kinase; ERK, Extracellular signal-regulated kinase; MSK1, Mitogen and stress activated protein kinase 1; CREB, Cyclic AMP-responsive element-binding protein; CRE, cAMP response elements. [Ditlevsen et al 2008]

Pathway Colorization

- Main feature offered by all pathway databases.
- Upload a gene list
- Database calculates an enrichment score on each pathway and displays ranked list.
- Browse into pathways of interest; download colorized pictures.

Networks

 Pathways capture only the "well understood" portion of biology.

Networks cover less well understood

relationships:

- Genetic interactions

- Physical interaction
- Coexpression
- GO term sharing
- Adjacency in pathways

Networks

- E.g. Protein-protein interaction networks
- Useful if we don't know pathways
 - Could discover new pathways

Mapping Biology to a Network

- A simple mapping: Protein-protein interactions
 - one protein/node, one interaction/edge
- Edges can represent other relationships
 - Physical e.g. protein-protein interaction
 - Regulatory e.g. kinase activates target
 - Genetic e.g. epistasis
 - Similarity e.g. protein sequence similarity
- Critical: understand the mapping for network analysis

Network Analysis Workflow

- A specific example of this workflow:
 - Cline, et al. "Integration of biological networks and gene expression data using Cytoscape", Nature Protocols, 2,

Networks

- Represent relationships
 - Physical, regulatory, genetic, functional interactions
- Useful for discovering relationships in large data sets
 - Better than tables in Excel
- Visualize multiple data types together
 - See interesting patterns
- Network analysis

Summary

- Networks are useful for seeing relationships in large data sets
- Important to understand what the nodes and edges mean
- Important to define the biological question know what you want to do with your gene list or network
- Many methods available for gene list and network analysis
 - Good to determine your question and search for a solution
 - Or get to know many methods and see how they can be applied to your data

Visual Features

- Node and edge attributes
 - Text (string), integer, float,
 Boolean, list
 - E.g. represent gene, interaction attributes
- Visual attributes
 - Node, edge visual properties
 - Colour, shape, size, borders, opacity...

Select New Value

Visually Interpreting a Network

Network Analysis using Cytoscape

Active Community

http://www.cytoscape.org

- 10,000s users, >5000 downloads/month
- Help
 - Documentation, data sets
 - Mailing lists
 - http://tutorials.cytoscape.org
- Cline MS et al. Integration of biological networks and gene expression data using Cytoscape Nat Protoc. 2007;2(10):2366-82
- Annual Conference: TBD, North America 2014
- >200 Apps Extend Functionality
 - Build your own, requires programming

- Cytoscape is a useful, free software tool for network visualization and analysis
- Provides basic network manipulation features
- Apps are available to extend the functionality

Gene List and Network Analysis Overview

