FLS 6441 - Methods III: Explanation and Causation

Week 1 - Review

Jonathan Phillips

February 2019

Course Objectives

1. temp

Data

1. We work with variables, which VARY!

	Variable
1	0.39
2	1.69
3	-1.05
4	-1.38
5	0.81
6	2.01
7	0.06
8	0.98
9	-0.98
10	-0.39

► Regression identifies the line through the data that minimizes the sum of squared vertical distances

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta X_i + \epsilon_i$

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta X_i + \epsilon_i$

Sum of Squared Residuals = 29.6 22.5 **5**. 20.0 30 17.5 and 15.0 15.0 12.5 10.0 0.5 1.0 1.5 2.0 0.0

coef

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta X_i + \epsilon_i$

Slope = 0.50 X

Sum of Squared Residuals = 21.6 22.5 **5**. 20.0 3nm resid 15.0 12.5 10.0 0.5 1.0 1.5 2.0 0.0

coef

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta X_i + \epsilon_i$

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta X_i + \epsilon_i$

Slope = 1.5

Sum of Squared Residuals =

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta X_i + \epsilon_i$

► Regression is a Conditional Expectation Function

- ► Regression is a **Conditional Expectation Function**
- ► Conditional on *x*, what is our expectation (mean value) of *y*?

- ► Regression is a **Conditional Expectation Function**
- ► Conditional on *x*, what is our expectation (mean value) of *y*?
- ightharpoonup E(y|x)

- ► Regression is a Conditional Expectation Function
- ► Conditional on x, what is our expectation (mean value) of y?
- ightharpoonup E(y|x)
- ► When age is 20 (x = 40), the average salary is R1.000 (y = 1.000)
- ► When age is 40 (x = 40), the average salary is R2.000 (y = 2.000)

▶ Regression is a **Conditional Expectation Function**: E(y|x)

- ► Regression is a **Conditional Expectation Function**: E(y|x)
- ► It predicts the **mean**, not the median, not the minimum, not the maximum

$$\hat{\beta_1} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}$$

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

► Regression with two variables is very similar to calculating correlation

- ► Regression with two variables is very similar to calculating correlation
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$

- ► Regression with two variables is very similar to calculating correlation
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$
- ► It's identical if we standardize both variables first $(\frac{(x-\bar{x})}{\sigma})$

- ► Regression with two variables is very similar to calculating correlation
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$
- ▶ It's identical if we standardize both variables first $(\frac{(x-\bar{x})}{\sigma_y})$

- ► Regression with two variables is very similar to calculating correlation:
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$
- ► It's identical if we standardize both variables first $(\frac{(x-\bar{x})}{\sigma_x})$

► Correlation is 0.781

- ► Regression with two variables is very similar to calculating correlation:
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$
- ► It's identical if we standardize both variables first $(\frac{(x-\bar{x})}{\sigma_x})$

- ► Correlation is 0.781
- ► Regression Results:

-	term	estimate
1	(Intercept)	0.006
2	X	1.008

- ► Regression with two variables is very similar to calculating correlation:
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_Y}$
- ► It's identical if we standardize both variables first $(\frac{(x-\bar{x})}{\sigma_x})$

- ► Correlation is 0.781
- Standardized Regression Results:

	term	estimate
1	(Intercept)	0.000
2	X	0.781

► Regression with **multiple** variables is very similar to calculating **partial** correlation:

- ► Regression with **multiple** variables is very similar to calculating **partial** correlation:
- ► Just a small difference in the denominator (how we standardize the measure)

- ► Regression with **multiple** variables is very similar to calculating **partial** correlation:
- ► Just a small difference in the denominator (how we standardize the measure)

$$\beta_{x_1} = \frac{r_{yx_1} - r_{yx_2}r_{x_1x_2}}{1 - r_{x_1x_2}^2}$$

$$r_{yx_1|x_2} = \frac{r_{yx_1} - r_{yx_2}r_{x_1x_2}}{\sqrt{(1 - r_{yx_2}^2)(1 - r_{x_1x_2}^2)}}$$

► There is no magic in regression, it's just correlation

▶ We **NEVER** know the true value of β

- ▶ We **NEVER** know the true value of β
- \blacktriangleright We estimate a distribution for β

- ▶ We **NEVER** know the true value of β
- \blacktriangleright We **estimate a distribution** for β

- ▶ We **NEVER** know the true value of β
- \blacktriangleright We estimate a distribution for β

- ▶ We **NEVER** know the true value of β
- \blacktriangleright We estimate a distribution for β

- ▶ We **NEVER** know the true value of β
- \blacktriangleright We estimate a distribution for β

Regression Guide

- Choose variables and measures: To test a specific hypothesis
- Choose a Model/Link Function: Should match the data type of your outcome variable
- 3. **Choose Covariates:** To match your strategy of inference
- Choose Fixed Effects: To focus on a specific level of variation
- 5. **Choose Error Structure:** To match known dependencies/clustering in the data
- 6. **Interpret the coefficients:** Depending on the type/scale of the explanatory variable

2. Regression Models

The Regression Model reflects the data type of the outcome variable:

► Continuous -> Ordinary Least Squares

```
zelig(Y X,data=d,model="ls")
```

► Binary -> Logit

```
zelig(Y X,data=d,model="logit")
```

► Unordered categories -> Multinomial logit

```
zelig(Y X,data=d,model="mlogit")
```

► Ordered categories -> Ordered logit

```
zelig(Y X,data=d,model="ologit")
```

► Count -> Poisson

```
zelig(Y X,data=d,model="poisson")
```

6. Interpreting Regression Results

- Difficult! It depends on the scale of the explanatory variable, scale of the outcome, the regression model we used, and the presence of any interaction
- ► Basic OLS:
 - ▶ 1 [unit of explanatory variable] change in the explanatory variable is associated with a β [unit of outcome variable] change in the outcome

Predictions from Regressions

▶ temp

Omitted Variable Bias

27/28

Omitted Variable Bias

0