Cálculo Diferencial

Juan Cribillero Aching

Abril 23, 2024

- 1 Conjuntos acotados
 - Supremo
 - Ínfimo
- 2 Funciones acotadas
- 3 Teoremas de continuidad
 - Aplicaciones
- 4 Referencias

- 1 Conjuntos acotados
 - Supremo
 - Ínfimo
- 2 Funciones acotadas
- 3 Teoremas de continuidad
 - Aplicaciones
- 4 Referencias

Conjunto acotado superiormente

Un conjunto $A \subset \mathbb{R}$ es acotado superiormente si existe $x_0 \in \mathbb{R}$ tal que $\forall x \in A, x \leq x_0$.

Un x_0 que satisface lo anterior se denomina **cota superior** del conjunto A.

Si la cota superior x_0 está en A, i.e. $x_0 \in A$, entonces decimos que x_0 es el máximo del conjunto A. Denotamos en este caso $x_0 = \max A$.

Continuidad

Ejemplo

- Para el conjunto A = [0, 1], 2 es una cota superior, mientras que 1 es el máximo de A.
- El conjunto $B = [0, +\infty[$ no es acotado superiormente.
- El conjunto C = [0, 1] es acotado superiormente por 1, pero no posee máximo.

Conjunto acotado inferiormente

Un conjunto $A \subset \mathbb{R}$ es acotado inferiormente si existe $x_0 \in \mathbb{R}$ tal que $\forall x \in A, \ x \geq x_0$.

Un x_0 que satisface lo anterior se denomina cota inferior del conjunto A.

Si la cota inferior x_0 está en A, i.e. $x_0 \in A$, entonces decimos que x_0 es el mínimo del conjunto A. Denotamos en este caso $x_0 = \min A$.

- Para el conjunto A = [-1, 0], -2 es una cota inferior, mientras que -1 es el mínimo de A.
- El conjunto $B =]-\infty, 0]$ no es acotado inferiormente.
- El conjunto C =]-1,0] es acotado inferiormente por -1, pero no posee mínimo.

Un conjunto $A \subset \mathbb{R}$ es **acotado** si lo es superior e inferior a la vez.

Supremo

Continuidad

Definición (Supremo)

Dado $A\subset\mathbb{R}$ acotado superiormente, denominamos **supremo** de A a la menor cota superior de A, y la denotamos por $\sup A$, si esta existe.

Observación

Si un conjunto no vacío A posee un máximo, entonces este máximo es la menor cota superior del conjunto. Es decir, si un conjunto no vacío A posee máximo, resulta $\sup A = \max A$.

Supremo

Axioma del Supremo

Todo conjunto no vacío en \mathbb{R} , acotado superiormente, posee supremo en \mathbb{R} .

Supremo

Teorema

Sea A no vacío y $c \in \mathbb{R}$. Se cumple que $c = \sup A$ si y solo si

- $\forall x \in A, \ x \leq c \ (c \text{ es cota superior de } A);$
- $\forall \varepsilon > 0, \ \exists x_0 \in A; \ c \varepsilon < x_0$ (ningún número menor que c es cota superior de A).

Definición (Ínfimo)

Dado $A\subset\mathbb{R}$ acotado inferiormente, denominamos **ínfimo** de A a la mayor cota inferior de A, y la denotamos por $\inf A$, si esta existe.

Observación

Si un conjunto no vacío $\cal A$ posee un mínimo, entonces este mínimo es la mayor cota inferior del conjunto.

Es decir, si un conjunto no vacío A posee mínimo, resulta $\inf A = \min A$.

Teorema

Conjuntos acotados

00000

Sea A no vacío y $d \in \mathbb{R}$. Se cumple que $d = \inf A$ si y solo si

- $\forall x \in A, x \geq d \ (d \text{ es cota inferior de } A);$
- $\forall \varepsilon > 0, \ \exists x_0 \in A; \ x_0 < d + \varepsilon$ (ningún número mayor que d es cota inferior de A).

Ínfimo

Teorema

Todo conjunto no vacío A, acotado inferiormente, posee ínfimo.

Demostración.

No es difícil mostrar que

$$\inf A = -\sup B$$

donde

$$B = -A = \{ -x : x \in A \}.$$

- 1 Conjuntos acotados
 - Supremo
 - Ínfimo
- 2 Funciones acotadas
- 3 Teoremas de continuidad
 - Aplicaciones
- 4 Referencias

Una función $f:A\to\mathbb{R}$ es acotada superiormente en $B\subset A$ si el conjunto

$$f(B) = \{f(x) : x \in B\}$$

es acotada superiormente, lo que significa que existe $M \in \mathbb{R}$ tal que

$$\forall x \in B, f(x) \le M$$

Definición (Función acotada inferiormente)

Una función $f:A\to\mathbb{R}$ es acotada inferiormente en $B\subset A$ si el conjunto

$$f(B) = \{f(x) : x \in B\}$$

es acotada inferiormente, lo que significa que existe $M \in \mathbb{R}$ tal que

$$\forall x \in B, f(x) \ge M$$

Definición (Función acotada)

Una función $f:A\to\mathbb{R}$ es **acotada** en $B\subset A$ si lo es superior e inferiormente en B.

Decimos que la función f es **acotada** si lo es en su dominio A.

- 1 Conjuntos acotados
 - Supremo
 - Ínfimo
- 2 Funciones acotadas
- 3 Teoremas de continuidad
 - Aplicaciones
- 4 Referencias

Teorema

Toda función continua $f:[a,b]\to\mathbb{R}$ es acotada.

Probemos que f es acotada superiormente. Sea

 $X = \{x \in [a, b] : f \text{ es acotada en } [a, x]\}.$

Se tiene que $X \neq \emptyset$ pues $a \in X$, y es claro que X está acotado superiormente por b.

Probaremos que $b \in X$. Sea $c = \sup X$.

Si c < b, siendo f continua en c, existe $\delta > 0$ tal que

$$\forall x \in [a, b], |x - c| < \delta \Longrightarrow |f(x) - f(c)| < 1$$

Tome δ más pequeño, de ser necesario, para que $c + \delta < b$.

Tome $x_0 \in X$ tal que $c - \delta < x_0 \le c$. Luego existe $M \in \mathbb{R}$ tal que

- $\forall x \in [a, x_0], f(x) \leq M;$
- $\forall x \in]c \delta, c + \delta[, f(x) < f(c) + 1.$

Por lo tanto

$$\forall x \in [a, c + \delta/2], \text{ se tiene } f(x) \le \max\{M, f(x) + 1\},\$$

es decir $c + \delta/2 \in X$. Pero esto contradice que $c = \sup X$. De modo que debería ser c = b.

Demostración.

Usando un argumento similar al anterior, tenemos que al ser f continua en b existe $\delta>0$ tal que

$$\forall x \in [a, b], |x - b| < \delta \Longrightarrow |f(x) - f(b)| < 1$$

Otra vez tomamos $x_0 \in X$ tal que $b-\delta < x_0 \leq b$. Luego existe $M \in \mathbb{R}$ tal que

- $\forall x \in [a, x_0], f(x) \le M;$
- $\forall x \in]b \delta, b], f(x) < f(b) + 1.$

Por lo tanto, $\forall x \in [a,b]$, se tiene $f(x) \leq \max\{M,f(c)+1\}$, es decir $b \in X$.

Una función $f:A\to\mathbb{R}$ posee un **máximo** en $B\subset A$ si el conjunto

$$f(B) = \{ f(x) : x \in B \}$$

posee un máximo, lo que significa que existe $x_0 \in B$ tal que

$$\forall x \in B, f(x) \le f(x_0)$$

El número $f(x_0)$ es el **valor máximo** de f en B.

Una función $f:A\to\mathbb{R}$ posee un **mínimo** en $B\subset A$ si el conjunto

$$f(B) = \{f(x) : x \in B\}$$

posee un mínimo, lo que significa que existe $x_0 \in B$ tal que

$$\forall x \in B, f(x) \ge f(x_0)$$

El número $f(x_0)$ es el **valor mínimo** de f en B.

Teorema (Weierstrass)

Toda función continua $f:[a,b]\to\mathbb{R}$ posee un máximo y un mínimo en [a,b].

Sea $M = \sup f([a, b]) = \sup \{f(x) : x \in [a, b]\}.$

Por reducción al absurdo. Si f nunca toma el valor M, entonces la función $g\colon [a,b] \to \mathbb{R}$ definida por $g(x) = \frac{1}{M-f(x)}$ es una

función continua en [a,b] y g(x) > 0.

Del teorema anterior, g es acotada y existe $C = \sup g([a, b]) > 0$.

Luego, para todo
$$x \in [a,b]$$
, $\frac{1}{M-f(x)} \leq C \Rightarrow f(x) \leq M-\frac{1}{C}$.

Esto implica que $M-\frac{1}{C}$ es una cota superior y debería ser mayor o igual a M, lo cual es absurdo.

Por lo tanto, existe $x_0 \in [a,b]$ tal que $M=f(x_0)$.

Si la función $f:[a,b] \to \mathbb{R}$ es continua y f(a) < c < f(b) (o f(b) < c < f(a)), entonces existe $x_0 \in]a,b[$ tal que $f(x_0) = c.$

Continuidad

Lema

Sea $A \subset \mathbb{R}, f : A \to \mathbb{R}$ continua en x_0 y $k \in \mathbb{R}$.

lacksquare Si $f(x_0) < K$, entonces existe $\delta > 0$ tal que

$$\forall x \in A \cap]x_0 - \delta, x_0 + \delta[, f(x) < K .$$

■ Si $f(x_0) > K$, entonces existe $\delta > 0$ tal que

$$\forall x \in A \cap]x_0 - \delta, x_0 + \delta[, f(x) > K].$$

Sea c tal que f(a) < c < f(b). Defina

$$X = \{x \in [a, b] : f(x) < c\}.$$

Se tiene que $a \in X$ y X está acotado superiormente por b. Sea $x_0 = \sup X$.

- Por el resultado anterior, existe $\delta > 0$ tal que $[a, a + \delta] \subset X$, de modo que $x_0 > a$.
- Por lo mismo, existe $\delta > 0$ tal que $]b \delta, b] \cap X = \emptyset$, de modo que $x_0 < b$.

Demostración.

- Ahora que $a < x_0 < b$, si $f(x_0) < c$, entonces existe $\delta > 0$ tal que $]x_0 \delta, x_0 + \delta[\subset X]$, lo que hace que $x_0 + \delta/2 \in X$, que contradice que $x_0 = \sup X$.
- Si $f(x_0) > c$, del mismo modo existe $\delta > 0$ de modo que $]x_0 \delta, x_0 + \delta[\cap X = \emptyset]$, lo que nuevamente contradice la definición de supremo.

Concluimos que $f(x_0) = c$.

Teorema (Bolzano (Teorema del cero))

Si $f:[a,b]\to\mathbb{R}$ es continua y $f(a)\cdot f(b)<0$, entonces existe $c\in]a,b[$ tal que f(c)=0.

Observación

1. Si una función f es continua en [a,b] y, por ejemplo, f(a)<0 y f(b)>0, entonces para pasar del punto (a,f(a)) al punto (b,f(b)) la gráfica de f debe, **necesariamente** cortar al eje X.

Continuidad

Observación

2. Para una función f discontinua en un intervalo el hecho de que tenga signo distinto en los extremos del mismo no permite asegurar nada respecto de la existencia de ceros.

Observación

3. Este teorema facilita la detección de ceros de una función y resulta particularmente útil cuando las fórmulas o métodos de cálculo que conocemos a este efecto (resolverte de la ecuación de 2do grado, Ruffini para ceros de polinomios, etc), no pueden ser aplicadas.

Ejemplo

Demuestre que para cada $d \in]3,5[$ existe $c \in]0,1[$ tal que

$$c^8 + c^5 - c^4 + c + 3 = d$$

Teorema (Punto fijo)

Si $f:[a,b] \to [a,b]$ es continua, entonces existe $c \in]a,b[$ tal que f(c)=c.

Continuidad

Ejemplo

Demuestre en cada item que existe un x>0 para el cual se cumple la igualdad.

- a) $\ln(3-x) + \sqrt{x} = 1 + x$.
- b) $5x^3 + \cos x = 2$.

Teorema

Sean $f:[a,b] \to \mathbb{R}$ y $g:[a,b] \to \mathbb{R}$ dos funciones continuas. Si f(a) < g(a) y g(b) < f(b) (intercambian de lugar en los extremos), entonces existe (<u>al menos</u>) un $c \in]a,b[$ donde

f(c) = g(c).

Ejemplo

Demuestre que existe un numero real x cumpliendo con

$$\tan(x) - \sin(x) = 1 - 4x, \quad 0 < x < \frac{\pi}{2}$$

Ejemplo

La función $f:]-\frac{\pi}{2},\frac{\pi}{2}[-\{0\}
ightarrow \mathbb{R}$ está dada por

$$f(x) = \frac{\tan(x) - \sin(x)}{x^3}$$

- a) Defina una extensión continua $g:]-\frac{\pi}{2},\frac{\pi}{2}[\to\mathbb{R}$ de la función f.
- b) ¿Es posible definir una extensión continua $h:[-\frac{\pi}{2},\frac{\pi}{2}]\to\mathbb{R}$ de la función f?

Ejemplo

Si $f: \mathbb{R} \to \mathbb{R}$ es dada por

$$f(x) = \begin{cases} \beta x - 2, & \text{si } x \le 1, \\ \frac{\alpha x^2 - 2}{x - 3}, & \text{si } 1 < x < 2, \\ \beta \sqrt{x - 1} - 6, & \text{si } x \ge 2 \end{cases}$$

halle los valores de α y β para que f sea continua.

- 1 Conjuntos acotados
 - Supremo
 - Ínfimo
- 2 Funciones acotadas
- 3 Teoremas de continuidad
 - Aplicaciones
- 4 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

