Chapitre 40

Arithmétique dans \mathbb{Z} .

Sommaire.

1	Div	isibilité dans $\mathbb Z$	1
	1.1	Définition et propriétés élémentaires	1
	1.2	Division euclidienne.	1
	1.3	PPCM de deux entiers	2
	1.4	PGCD de deux entiers	2

Les propositions marquées de \star sont au programme de colles.

1 Divisibilité dans \mathbb{Z}

1.1 Définition et propriétés élémentaires.

Définition 1

Soit $(a, b) \in \mathbb{Z}^2$. On dit que b divise a $(b \mid a)$ s'il existe $k \in \mathbb{Z}$ tel que a = kb.

On dit aussi que b est **diviseur** de a, ou que a est **multiple** de b.

Notations pour les ensembles de diviseurs et multiples de $a \in \mathbb{Z}$:

$$\mathcal{D}(a) = \{b \in \mathbb{Z} : b \mid a\}$$
 et $a\mathbb{Z} = \{ak, k \in \mathbb{Z}\}.$

Proposition 2: Faits immédiats.

Tous les entiers divisent 0 et 1 divise tous les entiers. Ajoutons que pour $(a, b, c) \in \mathbb{Z}^3$,

- 1. Si b est diviseur de a et si $a \neq 0$, alors $|b| \leq |a|$.
- $2. \ b \mid a \iff a\mathbb{Z} \subset b\mathbb{Z}.$
- 3. Si $c \mid a$ et $c \mid b$, alors $c \mid au + bv$, pour tous u et v dans \mathbb{Z} .

Preuve:

- 1. Supposons que $b \mid a$ et $a \neq 0$, alors $\exists k \in \mathbb{Z} \mid a = bk$ et |a| = |b||k|.
- De plus, $k \neq 0$ car $a \neq 0$, donc $|k| \geq 1$ et $|kb| \geq |b|$, on obtient bien $|a| \geq |b|$.
- 2. Supposons que $b \mid a$, alors $\exists k \in \mathbb{Z} \mid a = bk$, soit $m \in a\mathbb{Z} : \exists k' \in \mathbb{Z} \mid m = ak' \text{ donc } m = bkk' \text{ donc } m \in b\mathbb{Z}$. Supposons $a\mathbb{Z} \subset b\mathbb{Z}$, on a $a \in a\mathbb{Z}$ donc $a \in b\mathbb{Z}$ donc $b \mid a$.
- 3. Supposons que $c \mid a$ et $c \mid b : \exists k, k' \in \mathbb{Z} \mid a = kc, b = k'c$. Soient $u, v \in \mathbb{Z}$.
- On a alors au + bv = kuc + k'vc = (ku + k'v)c avec $ku + k'v \in \mathbb{Z}$, donc $c \mid au + bv$.

Proposition 3: Plus une relation d'ordre!

Sur \mathbb{Z} , la relation divise est réflexive, transitive, mais pas antisymétrique. On a

$$\forall (a,b) \in \mathbb{Z}^2 \quad (a \mid b \text{ et } b \mid a) \iff (a = b \text{ ou } a = -b).$$

Dans le cas où $(a \mid b)$ et $(b \mid a)$, ont dit que a et b sont associés.

Preuve :

← Trivial

 \implies Supposons que $a \mid b$ et $b \mid a$. Alors $\exists k, k' \in \mathbb{Z} \mid a = kb$ et b = k'a.

On a alors b = bkk'. Si b = 0, alors a = 0 donc a = b. Sinon, kk' = 1 donc $k = \pm 1$ et $a = \pm b$.

1.2 Division euclidienne.

Théorème 4

Soit $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$. Il existe un unique couple $(q,r) \in \mathbb{Z}^2$ tel que

$$a = bq + r$$
 et $0 \le r < b$.

Les entiers q et r sont appelés **quotient** et **reste** dans la division euclidienne de a par b.

Preuve:

Unicité:

Soit $(q, r) \in \mathbb{Z}^2$ et $(q', r') \in \mathbb{Z}^2$ avec $0 \le r, r' < b$ tels que a = bq + r et a = bq' + r'.

On a bq' + r' = bq + r donc b(q' - q) = r - r'. De plus, $0 \le r, r' < b$ donc $-b < -r' \le 0$.

Ainsi, $-b < r - r' < b \text{ donc } -b < b(q' - q) < b \text{ donc } -1 < q' - q < 1 \text{ donc } q' = q \text{ car } q - q' \in \mathbb{Z}.$

Donc $r - r' = b \cdot 0 = 0$ donc (q, r) = (q', r').

Existence:

On pose $q = \lfloor \frac{a}{b} \rfloor$ et r = a - bq. On a bien a = bq + r.

On a $\lfloor \frac{a}{b} \rfloor \leq \frac{a}{b} < \lfloor \frac{a}{b} \rfloor + 1$ donc $q \leq \frac{a}{b} < q + 1$ donc $qb \leq a < qb + b$ donc $0 \leq a - bq < b$ donc $0 \leq r < b$.

Proposition 5

Soient a et b deux entiers relatifs.

L'entier b divise a si et seulement si le reste de la division euclidienne de a par |b| est nul.

Preuve:

← Trivial.

⇒ Par unicité du reste.

1.3 PPCM de deux entiers.

Définition 6

Soient a, b deux entiers relatifs.

- 1. Si a et b sont non nuls, on appelle **Plus Petit Commun Multiple** de a et b, note $a \lor b$, ou encore $\operatorname{PPCM}(a,b)$, le plus petit élément strictement positif de $a\mathbb{Z} \cap b\mathbb{Z}$.
- 2. Si a ou b vaut 0, on pose $a \lor b = 0$.

Proposition 7

Soit $(a,b) \in \mathbb{Z}^2$. Leur PPCM $a \vee b$ est l'unique entier positif m tel que

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}.$$

Preuve:

Unicité:

Soient $m, m' \in \mathbb{N}$ tels que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$ et $a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}$.

Alors $m\mathbb{Z} = m'\mathbb{Z}$ donc m et m' sont associés (et positifs) donc m = m'.

Existence

On a $a\mathbb{Z}$ sous-groupe de $(\mathbb{Z}, +)$, $b\mathbb{Z}$ aussi, par intersection de groupes, $a\mathbb{Z} \cap b\mathbb{Z}$ l'est aussi.

Or les sous-groupes de \mathbb{Z} sont de la forme $m\mathbb{Z}$ avec $m \in \mathbb{N}$. Donc il existe un unique $m \in \mathbb{N}$ tel que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$.

Vérifions que m = PPCM(a, b). Clair: m est multiple commun de a et b.

De plus, $a\mathbb{Z} \cap b\mathbb{Z} \cap \mathbb{N} = m\mathbb{Z} \cap \mathbb{N} = \{0, m, 2m, ...\}.$

Donc si m = 0, PPCM(a, b) = 0, sinon PPCM(a, b) = m.

Théorème 8

Soient a et b deux entier relatifs. Leur PPCM $a \vee b$ est l'unique entier positif m tel que

- 1. $a \mid m \text{ et } b \mid m$, le PPCM est un multiple commun.
- 2. $\forall \mu \in \mathbb{Z}, (a \mid \mu \text{ et } b \mid \mu) \Longrightarrow m \mid \mu, \text{ tout multiple commun est multiple du PPCM.}$

Preuve:

Unicité: Soient m, m' satisfaisant 1. et 2.

On a $m \mid m'$ et $m' \mid m$, par antisymétrie sur \mathbb{N} , m = m'.

Existence: Posons m = PPCM(a, b).

Il satisfait 1. par définition. Soit $\mu \in \mathbb{Z}$ un multiple commun, alors $\mu \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, donc $m \mid \mu$.

1.4 PGCD de deux entiers.

Définition 9

Soient a, b deux entiers relatifs.

- 1. Si a et b sont non nuls, on appelle **Plus Grand Commun Diviseur** de a et b, note $a \wedge b$, ou encore $\operatorname{PGCD}(a,b)$, le plus grand élément positif de $\mathcal{D}(a) \cap \mathcal{D}(b)$.
- 2. Si a = b = 0, on pose $a \wedge b = 0$.

Proposition 10

$$\forall (a,b) \in \mathbb{Z}^2 \quad a \wedge b = |a| \wedge |b|$$

Preuve:

On a:

$$\mathcal{D}(a)\cap\mathcal{D}(b)=\mathcal{D}(|a|)\cap\mathcal{D}(|b|).$$

On n'a plus qu'à passer au max.

Proposition 11

Soient a, b, c, d quatre entiers relatifs. Si a = bc + d, alors on a $a \wedge b = b \wedge d$.

Preuve:

Méthode

Ce lemme est l'idée principale de l'algorithme d'Euclide, vu dans le "petit" cours d'arithmétique. Si $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, on peut appliquer cet algorithme à |a| et |b| pour calculer $a \wedge b$.

Proposition 12

Soit $(a,b) \in \mathbb{Z}^2$. Notons $a\mathbb{Z} + b\mathbb{Z} = \{au + bv, \ (u,v) \in \mathbb{Z}^2\}$. C'est un sous-groupe de \mathbb{Z} .

Le PGCD $a \wedge b$ est l'unique entier positif d tel que

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}.$$

En particulier, il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que d = au + bv (relation de Bézout).

Méthode : Écriture effective d'une relation de Bézout.

En remontant les divisions euclidiennes écrites lors de l'exécution de l'algorithme d'Euclide.

Proposition 13

$$\forall (a,b) \in \mathbb{Z}^2, \quad \forall k \in \mathbb{Z}, \quad \text{PGCD}(ka,kb) = |k| \cdot \text{PGCD}(a,b).$$

Théorème 14

Soient a et b ddeux entiers relatifs. Leur PGCD $a \wedge b$ est l'unique entier positif d tel que

- 1. $d \in \mathcal{D}(a) \cap \mathcal{D}(b)$, (le PGCD est un diviseur commun).
- 2. $\forall \delta \in \mathcal{D}(a) \cap \mathcal{D}(b)$ $\delta \mid d$ (tous les diviseurs communs divisent le PGCD).

Corrolaire 15

$$\forall (a,b) \in \mathbb{Z}^2 \quad \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a \wedge b).$$

Proposition 16

$$\forall (a,b) \in \mathbb{Z}^2, \quad \text{PGCD}(a,b) \cdot \text{PPCM}(a,b) = |ab|.$$