第3次作业

- 1. 书上83页,3.1,3.3和3.5
- 要求写出优化函数的含义,原问题和子问题之间 优化函数的关系及递推方程,写出计算过程和备 忘录,并追踪最优解

3.1

用动态规划算法求解下面的组合优化问题:

$$\max g_1(x_1) + g_2(x_2) + g_3(x_3)$$

 $x_1^2 + x_2^2 + x_3^2 \leq 10$
 x_1, x_2, x_3 为非负整数

其中函数 $g_1(x)$, $g_2(x)$, $g_3(x)$ 的值给在表 3.9 中.

表 3.9 函数值

x	$g_1(x)$	$g_2(x)$	$g_3(x)$	x	$g_{\downarrow}(x)$	$g_2(x)$	$g_3(x)$
0	2	5	8	2	7	16	17
1	4	10	12	3	11	20	22

3.1 设 $F_k(y)$ 表示对 x_1, x_2, \cdots, x_k 赋值,且 $x_1^2 + x_2^2 + \cdots + x_k^2 \le y$ 时所得到的目标函数的最大值,递推关系和初值是

$$F_k(y) = \max_{0 \le x_k \le |\sqrt{y}|} \{F_{k-1}(y - x_k^2) + g_k(x_k)\}$$

$$F_1(y) = g_1(\lfloor \sqrt{y} \rfloor)$$

针对给定实例的计算过程如下.

k=1:

$F_1(0)=2$	$x_1 = 0$
$F_1(1) = F_1(2) = F_1(3) = g_1(1) = 4$	$x_1 = 1$
$F_1(4) = F_1(5) = F_1(6) = F_1(7) = F_1(8) = g_1(2) = 7$	$x_1 = 2$
$F_1(9) = F_1(10) = g_1(3) = 11$	$x_1 = 3$
k=2 , which is the state of	
$F_1(0) = \max\{F_1(0) + g_2(0)\} = 7$	$x_{2} = 0$
$F_2(1) = \max\{F_1(1) + g_2(0), F_1(0) + g_2(1)\} = 12$	$x_2 = 1$
$F_2(2) = \max\{F_1(2) + g_2(0), F_1(1) + g_2(1)\} = 14$	$x_2 = 1$
$F_2(3) = \max\{F_1(3) + g_2(0), F_1(2) + g_2(1)\} = 14$	$x_1 = 1$
$F_1(4) = \max\{F_1(4) + g_2(0), F_1(3) + g_2(1), F_1(0) + g_2(2)\} = 18$	$x_2 = 2$
$F_2(5) = \max\{F_1(5) + g_2(0), F_1(4) + g_1(1), F_1(1) + g_2(2)\} = 20$	$x_2 = 2$
$F_1(6) = \max\{F_1(6) + g_1(0), F_1(5) + g_1(1), F_1(2) + g_1(2)\} = 20$	$x_2 = 2$
$F_2(7) = \max\{F_1(7) + g_2(0), F_1(6) + g_2(1), F_1(3) + g_2(2)\} = 20$	$x_2 = 2$
$F_2(8) = \max(F_1(8) + g_2(0), F_1(7) + g_2(1), F_1(4) + g_2(2)) = 23$	$x_2 = 2$
$F_{z}(9) = \max\{F_{1}(9) + g_{2}(0), F_{1}(8) + g_{2}(1), F_{1}(5) + g_{2}(2), F_{1}(0) + g_{2}(3)\} = 23$	$x_2 = 2$
$F_2(10) = \max\{F_1(10) + g_2(0), F_1(9) + g_2(1), F_1(6) + g_2(2), F_1(1) + g_2(3)\} = 24$	$x_1 = 3$

$$k=3:$$

$$F_{3}(0)=\max\{F_{2}(0)+g_{3}(0)\}=15$$

$$F_{3}(1)=\max\{F_{2}(1)+g_{3}(0),F_{2}(0)+g_{3}(1)\}=20$$

$$F_{3}(2)=\max\{F_{2}(2)+g_{3}(0),F_{2}(1)+g_{3}(1)\}=24$$

$$F_{3}(3)=\max\{F_{2}(3)+g_{3}(0),F_{2}(2)+g_{3}(1)\}=26$$

$$F_{3}(4)=\max\{F_{2}(4)+g_{3}(0),F_{2}(2)+g_{3}(1),F_{2}(0)+g_{3}(2)\}=26$$

$$F_{3}(5)=\max\{F_{2}(4)+g_{3}(0),F_{2}(3)+g_{3}(1),F_{2}(0)+g_{3}(2)\}=30$$

$$F_{3}(5)=\max\{F_{2}(5)+g_{3}(0),F_{2}(4)+g_{3}(1),F_{2}(1)+g_{3}(2)\}=30$$

$$F_{3}(6)=\max\{F_{2}(6)+g_{3}(0),F_{2}(5)+g_{3}(1),F_{2}(2)+g_{3}(2)\}=32$$

$$F_{3}(7)=\max\{F_{2}(7)+g_{3}(0),F_{2}(6)+g_{3}(1),F_{2}(3)+g_{3}(2)\}=32$$

$$F_{3}(8)=\max\{F_{2}(8)+g_{3}(0),F_{2}(7)+g_{3}(1),F_{2}(4)+g_{3}(2)\}=35$$

$$F_{3}(9)=\max\{F_{2}(9)+g_{3}(0),F_{2}(8)+g_{3}(1),F_{2}(4)+g_{3}(2),F_{2}(0)+g_{3}(3)\}=37$$

$$x_{3}=2$$

$$F_{3}(10)=\max\{F_{2}(10)+g_{3}(0),F_{2}(9)+g_{3}(1),F_{2}(6)+g_{3}(2),F_{2}(1)+g_{3}(3)\}=37$$

$$x_{3}=2$$

$$\cancel{\xi}$$

$$\cancel{\xi}$$

$$\cancel{\xi}$$

$$\cancel{\xi}$$

表 3.2 备忘录

W Kin Is		=1	k=	2	k:	k=3		
y	F ₁ (y)	x ₁	F ₁ (y)	x_{2}	F, (y)	x3		
0	2	0 /-	7	0	15	0		
1	4	1	12	1	20	0		
2	4	1	14	1	24	1		
3	4	1	14	1	26	1		
4	7	2	18	2	26	1		
5	7	2	20	2	30	1		
6	7	2	20	2	32	1		
7	7	2	20	2	32	1		
8	7	2	23	2	35	2		
9	11	3	23	2	37	2		
10	11	3	24	3	37	2		

从而得到,F,(10)=37,此刻x,=2,于是

$$x_1^2 + x_2^2 \le 10 - 2^2 = 6$$

再查 $F_z(6) = 20$,此刻 $x_z = 2$,于是

$$x_1^2 \leqslant 6 - 2^2 = 2$$

再查 $F_1(2)=4$ 得 $x_1=1$. 问题的解是: 在 $x_1=1, x_2=2, x_3=2$ 时得到 $g_1(x_1)+g_2(x_2)+g_3(x_3)$ 的最大值 37.

3.3

有n个底面为长方形的货柜需要租用库房存放. 如果每个货柜都必须放在地面上,且所有货柜的底面宽度都等于库房的宽度,那么第i个货柜占用库房面积大小只需要用它的底面长度 l_i 来表示,i=1,2,…,n. 设库房总长度是 $D(l_i \leq D$ 且 $\sum_{i=1}^n l_i > D)$. 设第i号货柜的仓储收益是 v_i ,若要求库房出租的收益达到最大,问如何选择放入库房的货柜?若 l_1 , l_2 ,…, l_n ,D都是正整数,设计一个算法求解这个问题,给出算法的伪码描述并估计算法最坏情况下的时间复杂度.

2022/6/14 5

3.3 类似于 0-1 背包问题, 库房的长度相当于背包的重量限制, 每个货柜的收益相当 于物品的价值,于是问题是:

$$\max \sum_{i=1}^n v_i x_i$$

$$\sum_{i=1}^{n} l_i x_i \leqslant D, \quad x_i = 0, 1$$

令 C[k,y]是只允许装前 k 个货柜,库房长度为 y 时的最大收益,那么有

$$C[k,y] = \begin{cases} C[k-1,y] & y < l_k \\ \max\{C[k-1,y], C[k-1,y-l_k] + v_k\} & D \geqslant y \geqslant l_k \end{cases}, k > 1$$

$$C[1,y] = \begin{cases} v_1 & y \geqslant l_1 \\ 0 & y < l_1 \end{cases}$$

算法的伪码是:

Store

输入:数组 L[1..n],V[1..n],D //L 和 V 是货柜长度和价值序列,D 为库房长度

输出:最大的收益 C[n,D]

- 1. for $y \leftarrow 1$ to D
- 2. $C[1,y] \leftarrow V[1]$
- 3. for $k \leftarrow 2$ to n
 - 4. for $y \leftarrow 1$ to D
- 5. $C[k,y] \leftarrow C[k-1,y]$
- 6. $i[k,y] \leftarrow i[k-1,y]$

7. if
$$y \ge L[k]$$
 and $C[k-1, y-L[k]] + V[k] > C[k-1, y]$

8. then
$$C[k,y] \leftarrow C[k-1,y-L[k]] + V[k]$$

9.
$$i[k,y] \leftarrow k$$

算法在第 1 行时间为 O(D),第 3 行和第 4 行的循环进行 O(nD)次,循环内部是常数时间的操作,于是算法最坏情况下的时间复杂度是 O(nD).

3.5

设有 n 种不同面值的硬币,第 i 种硬币的币值是 v_k (其中 v_1 = 1),重量是 w_i ,i = 1, 2,…,n 且现在购买总价值为 y 的某些商品,需要用这些硬币付款,如果每种钱币使用的个数不限,问如何选择付款的方法使得付出钱币的总重量最轻?设计一个求解该问题的算法,给出算法的伪码描述并分析算法的时间复杂度.假设问题的输入实例是:

$$v_1 = 1$$
, $v_2 = 4$, $v_3 = 6$, $v_4 = 8$
 $w_1 = 1$, $w_2 = 2$, $w_3 = 4$, $w_4 = 6$
 $y = 12$

给出算法在该实例上计算的备忘录表和标记函数表,并说明付钱的方法.

3.5 设 x_i 表示第i 种硬币使用的个数, $i=1,2,\cdots,n$. 该问题的描述为

$$\min \sum_{i=1}^n w_i x_i$$

$$\sum_{i=1}^{n} v_i x_i = y \quad x_i$$
 为非负整数

令 $F_k(x)$ 表示只允许使用前 k 种钱,总付款为 x 时所使用零钱的最轻重量,则

$$F_k(x) = \min\{F_{k-1}(x), F_k(x-v_k) + w_k\}, \quad k > 1, \ 0 < x \le y$$

$$F_1(x) = w_1 \left\lfloor \frac{x}{v_1} \right\rfloor = w_1 x$$

$$F_k(0) = 0$$

$$F_k(0) = 0$$

$$F_k(x) = +\infty, \quad x < 0$$

设立标记函数 $t_k(y)$ 记录 $F_k(y)$ 取得最小值时最大币值的标号是否为 k.

$$t_k(x) = \begin{cases} k & F_k(x - v_k) + w_k \leqslant F_{k-1}(x) \\ t_{k-1}(x) & 否则 \end{cases}$$
 , $k > 1$, $0 < x \leqslant y$

$$t_1(x) = 1$$
, $0 < x \leqslant y$

$$t_k(0) = 0, \quad k = 1, 2, \dots, n$$

算法的伪码是:

11. return 二维数组 F,t

```
Coin
```

```
输入:w[1..n], v[1..n], y //w, v 分别为硬币的重量和币值数组,y 是付款数输出:F[i,j], t[i,j] i=1,2,\cdots, n, j=1,2,\cdots, y
1. for j \leftarrow 1 to y do
2. F[1,j] \leftarrow j * w[1]
3. t[1,j] \leftarrow 1
4. for i \leftarrow 2 to n do
5. for j \leftarrow 1 to y do
6. F[i,j] \leftarrow F[i-1,j]
7. t[i,j] \leftarrow t[i-1,j]
8. if F[i,j-v[i]]+w[i] \leqslant F[i-1,j]
9. then F[i,j] \leftarrow F[i,j-v[i]]+w[i]
```

算法的时间复杂度主要取决于第 4 行和第 5 行的 for 循环,内部工作量是常数时间,算法的时间是 O(ny). 通过数组 t 追踪解的过程比较简单,时间不超过 O(ny). 于是算法最坏情况下的时间复杂度是 O(ny).

针对给定实例,算法的备忘录如表 3.5 和表 3.6 所示.

表:	3.	5	F_k (x)
----	----	---	---------	----

k x	1	2	3	4	5	6	7	8	9	10	11	12
1	-1	2	3	4	5	6	7	8	. 9	10	11	12
2	1	12	3	2	3	4	5	4	- 5	6	7	6
3	1	2	3	2	3	4	5	4	5	6	7	6
4	1	2	3	2	3	4	5	4	\ 5	6	7	6

表 3.6 $t_k(x)$

x k	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2	2	2	2	2	2
3	1	1	1	2	2	3	3	- 2	2	3	3	2
4	1	1	1	2	2	3	3	2	2	3	-3	2

问题实例的解是: 最轻重量是 6,由 $t_4(12)=2$ 知道 $x_4=0,x_3=0,x_2\geqslant 1$,再由

$$t_2(12-4) = t_2(8) = 2 \Rightarrow x_2 \geqslant 2$$

$$t_2(8-4) = t_2(4) = 2 \Rightarrow x_2 \geqslant 3$$

$$t_2(4-4) = t_2(0) = 0 \Rightarrow x_2 = 3, \quad x_1 = 0$$

从而得到 $x_1 = x_3 = x_4 = 0$, $x_2 = 3$, 只用了 3 枚币值为 4 的硬币.