Задачи на ОДУ

4 сентября 2022 г.

Уравнения с постоянными коэффициентами

См. Филиппов, стр. 49-52.

Как решать линейные диффуры с правой частью

ToDo

ODE-1

$$y'' + y = 4\cos(x) + (x^2 + 1)e^x$$

Решение.

Решаем однородное уравнение y'' + y = 0. Характеристическое уравнение $\lambda^2 + 1 = 0$, его корни $\lambda_{1,2} = \pm i$ – оба кратности 1. Следовательно, общее решение однородного уравнения имеет вид: $y_o(x) = C_1 e^{ix} + C_2 e^{-ix}$, что, в силу рациональности коэффициентов в левой части уравнения, можно переписать в виде $C_1 \cos(x) + C_2 \sin(x)$.

Ищем частное решение уравнения $y'' + y = 4\cos(x)$. Так как $1 \cdot i$ – корень характеристического уравнения кратности 1, то частное решение ищется в виде

$$x^{1} \cdot e^{0x} \cdot ((A)\cos(x) + (B)\sin(x)) = x(A\cos(x) + B\sin(x)).$$

Ищем частное решение уравнения $y'' + y = (x^2 + 1)e^x$. Так как 1 — не корень характеристического уравнения, частное решение имеет следующий вид:

$$y_2(x) = e^x(Cx^2 + Dx + E).$$

Итак, общее решение исходного уравнения:

$$y(x) = C_1 \cos(x) + C_2 \sin(x) + x(A\cos(x) + B\sin(x)) + e^x(Cx^2 + Dx + E).$$

Ответ:
$$y(x) = C_1 \cos(x) + C_2 \sin(x) + x(A \cos(x) + B \sin(x)) + e^x(Cx^2 + Dx + E).$$

ODE-2

$$y''' - y'' - 6y' = e^{3x} - \sin 3x$$

Решение.

Найдём сначала общее решение однородного уравнения y'''-y''-6y'=0. Его характеристический многочлен $\lambda^3-\lambda^2-6\lambda$ имеет три корня (и все они простые): $\lambda_1=0,\,\lambda_2=-2,\,\lambda_3=3$. Таким образом, общее решение имеет вид $y_{\rm oo}=C_1+C_2e^{-2x}+C_3e^{3x}$.

Частное решение неоднородного уравнения будем искать в виде суммы частных решений уравнений $y'''-y''-6y'=e^{3x}$ и $y'''-y''-6y'=-\sin 3x$. Для первого уравнения заметим, что 3 — корень характеристического многочлена кратности 1, а потом частное решение имеет вид Axe^{3x} . Для второго уравнения заметим, что 3i не является корнем характеристического многочлена, а потому частное решение имеет вид $B\sin 3x + D\cos 3x$. Итак, $y_{\text{чн}} = Axe^{3x} + B\sin 3x + D\cos 3x$.

Общее решение неоднородного уравнения, таким образом, имеет вид

$$y = C_1 + C_2 e^{-2x} + C_3 e^{3x} + Axe^{3x} + B\sin 3x + D\cos 3x.$$

Ответ: $y = C_1 + C_2 e^{-2x} + C_3 e^{3x} + Axe^{3x} + B \sin 3x + D \cos 3x$.

ODE-3

$$y''' + y' = -\sin x + e^{2x}\sin 4x$$

Решение. Ищем однородное решение: $\lambda^3 + \lambda = 0$. Корни характеристического уравнения $\lambda_{1,2} = \pm i, \, \lambda_3 = 0$. Это сумма косинусов, синусов и константа. $y_0 = C_1 \cos x + C_2 \sin x + C_3$.

 $-\sin x = e^{0x} \sin x$, а i — это корень хар. уравнения, то первое частное решение можно искать в виде $y_1 = x(A\cos x + B\sin x)$.

Для $e^{2x} \sin 4x$: 2+4i не корень хар. уравнения, то ищем в виде $y_2=e^{2x}(D\cos 4x+E\sin 4x)$.

Итого общее решение неоднородного:

Ответ: $y = C_1 \cos x + C_2 \sin x + C_3 + x(A \cos x + B \sin x) + e^{2x}(D \cos 4x + E \sin 4x)$

ODE-4

$$y'' - 3y' = x + e^{3x}\sin(x)$$

Решение.

Решаем однородное уравнение y'' - 3y' = 0. Характеристическое уравнение $\lambda^2 - 3\lambda = 0$, его корни $\lambda_1 = 3$, $\lambda_2 = 0$ – оба кратности 1. Следовательно, общее решение однородного уравнения имеет вид: $y_o(x) = C_1 e^{0x} + C_2 e^{3x}$.

Ищем частное решение уравнения y'' - 3y' = x. Так как $x = xe^{0x}$, и 0 – корень характеристического уравнения кратности 1, то частное решение ищется в виде $y_1(x) = (Ax + B)xe^{0x}$.

Теперь найдём частное решение уравнения $y'' - 3y' = e^{3x} \sin(x)$. 3 + i -не корень характеристического уравнения, поэтому частное решение таково: $y_2(x) = De^{3x} \sin(x) + Ee^{3x} \cos(x)$.

Итак, общее решение исходного уравнения $y(x)=y_1(x)+y_2(x)+y_o(x)$, т.е. $y(x)=Ax^2+Bx+De^{3x}\sin(x)+Ee^{3x}\cos(x)+C_1+C_2e^{3x}$.

Ответ: $y(x) = Ax^2 + Bx + De^{3x}\sin(x) + Ee^{3x}\cos(x) + C_1 + C_2e^{3x}$.

ODE-5

$$y'' + 4y = x\sin(2x) - x^2$$

Решение.

Характеристическое уравнение таково: $\lambda^2+4=0$, его корни $\lambda_1=2i,\ \lambda_2=-2i$ – оба кратности 1. Тогда общее решение однородного уравнения $y_o(x)=C_1e^{0x}\cos(2x)+C_2e^{0x}\sin(2x)$.

Ищем частное решение уравнения $y'' + 4y = x \sin(2x)$. Имеем: $x \sin(2x) = xe^{0x} \sin(2x)$, 0 + 2i — корень характеристического уравнения кратности 1, поэтому частное решение будет таким: $y_1(x) = x((Ax+B)e^{0x}\sin(2x) + (Dx+E)e^{0x}\cos(2x))$.

Теперь находим частное решение уравнения $y'' + 4y = -x^2$. Так как $-x^2 = -x^2e^{0x}$ и 0 – не корень характеристического уравнения, то частное решение имеет вид: $y_2(x) = (Fx^2 + Gx + H)e^{0x}$.

Общее решение исходного уравнения $y(x) = y_1(x) + y_2(x) + y_o(x)$, т.е. $y(x) = C_1 \cos(2x) + C_2 \sin(2x) + (Ax^2 + Bx) \sin(2x) + (Dx^2 + Ex) \cos(2x) + Fx^2 + Gx + H$. **Ответ:** $y(x) = C_1 \cos(2x) + C_2 \sin(2x) + (Ax^2 + Bx) \sin(2x) + (Dx^2 + Ex) \cos(2x) + Fx^2 + Gx + H$.

ODE-6

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' - 4y' + 3y = xe^x + \cos 2x$$

Решение.

Характеристическое уравнение: $\lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1)$. Значит, общее решение имеет вид

$$y = C_1 e^x + C_2 e^{3x},$$

а частное (совпал корень $\lambda=1,$ а $\lambda=2i$ – нет) –

$$y = xe^x(Ax + B) + D\cos 2x + E\sin 2x.$$

Ответ: $y = C_1 e^x + C_2 e^{3x} + x(Ax + B)e^x + D \cos 2x + E \sin 2x$

ODE-7

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' + 2y' + 5y = 2xe^{-x} - x^2 \cos x.$$

Решение.

Характеристическое уравнение $\lambda^2+2\lambda+5=0$ имеет корни $-1\pm 2i.$ Общее решение однородного уравнения:

$$y_0 = C_1 e^{-x} \cos 2x + C_2 e^{-x} \sin 2x.$$

Частные решения:

• $2xe^{-x}$.

Частное решение имеет вид: $x^s Q_m(x) e^{-x}$. Кратность корня -1: s = 0, deg $Q_m = 1$. Следовательно, частное решение имеет вид

$$y_1 = (Ax + B) e^{-x}.$$

 \bullet $-x^2 \cos x$.

Частное решение имеет вид: $x^s e^{0x} (P_m(x) \cos x + Q_m(x) \sin x)$. Кратность корня i: s = 0, deg $P_m = \deg Q_m = 2$. Следовательно, частное решение имеет вид

$$y_2 = (Cx^2 + Dx + E)\cos x + (Fx^2 + Gx + H)\sin x.$$

Общее решение:

$$y = y_0 + y_1 + y_2 =$$

 $C_1 e^{-x} \cos 2x + C_2 e^{-x} \sin 2x + (Ax + B) e^{-x} + (Cx^2 + Dx + E) \cos x + (Fx^2 + Gx + H) \sin x.$

Ответ:

$$y = C_1 e^{-x} \cos 2x + C_2 e^{-x} \sin 2x +$$

 $(Ax + B) e^{-x} + (Cx^2 + Dx + E) \cos x + (Fx^2 + Gx + H) \sin x.$

ODE-8

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' + 2y' + 2y = e^{-x}\cos x + x^3 - 2x^2 + 10$$

Решение.

Характеристическое уравнение: $\lambda^2 + 2\lambda + 2 = 0.$ корни: $-1 \pm i$

Значит, общее решение однородного уравнения имеет вид $C_1e^{-x}\cos x + C_2e^{-x}\sin x$ а частное —

$$xe^{-x}(A\cos x + B\sin x) + (Dx^3 + Ex^2 + Fx + G)$$

первое слагаемое такое из-за того, что -1+i корень характеристического уравнения степени 1, а второе слагаемое такое потому что $(x^3-2x^2+10)=(x^3-2x^2+10)e^{0x}$, а 0 не корень характеристического уравнения.

Ответ: $C_1 e^{-x} \cos x + C_2 e^{-x} \sin x + x e^{-x} (A \cos x + B \sin x) + (Dx^3 + Ex^2 + Fx + G)$

ODE-9

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' - 3y' + 2y = \cos 2x + x^3 e^{2x}$$

Решение.

Характеристическое уравнение: $\lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2) = 0$. Значит, общее решение однородного уравнения имеет вид

$$y = C_1 e^x + C_2 e^{2x},$$

а частное —

$$(A\cos 2x + B\sin 2x) + x(Dx^3 + Ex^2 + Fx + G)e^{2x}$$

(первое слагаемое такое из-за того, что 2i — не корень характеристического уравнения; а второе слагаемое такое, потому что 2 — корень характеристического уравнения кратности 1).

Ответ: $C_1 e^x + C_2 e^{2x} + A \cos 2x + B \sin 2x + x(Dx^3 + Ex^2 + Fx + G)e^{2x}$

ODE-10

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y''' + 4y'' = x - 1 + \cos 4x$$

Решение.

Характеристическое уравнение: $\lambda^3+4\lambda^2=\lambda^2(\lambda+4)=0$. Значит, общее решение однородного уравнения имеет вид

$$y = C_1 + C_2 x + C_3 e^{-4x},$$

а частное —

$$y = x^2(Ax + B) + (D\cos 4x + E\sin 4x)$$

(первое слагаемое такое, потому что 0 — корень характеристического уравнения кратности 2; а второе слагаемое такое из-за того, что 4i — не корень характеристического уравнения).

Ответ:
$$C_1 + C_2 x + C_3 e^{-4x} + x^2 (Ax + B) + D \cos 4x + E \sin 4x$$

ODE-11

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' - 3y' = x + \cos 2x$$

Решение.

Характеристическое уравнение: $\lambda^2 - 3\lambda = \lambda(\lambda - 3)$. Значит, общее решение однородного уравнения имеет вид

$$y = C_1 + C_2 e^{3x},$$

а частное –

$$y = x(Ax + B) + D\cos 4x + E\sin 4x$$

Ответ: $y = C_1 + C_2 e^{3x} + x(Ax + B) + D \cos 4x + E \sin 4x$

ODE-13

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' + 3y' - 4y = e^{-4x} + xe^{-x} \sin 2x$$

Решение. Характеристическое уравнение: $\lambda^2 + 3\lambda - 4 = 0$. Его корни $\lambda_1 = 1$, $\lambda_2 = -4$. Значит общее решение однородного уравнения имеет вид

$$y_0 = C_1 e^x + C_2 e^{-4x}$$

Найдем общий вид частного решения. Сначала подберем для e^{-4x} . Т.к. -4 — корень характеристического уравнения кратности один, то частное решение надо искать в виде

$$Axe^{-4x}$$
.

Теперь подберем для $xe^{-x}\sin 2x$. Т.к. -1+2i не является корнем характеристического уравнения, то частное решение надо искать в виде

$$e^{-x}((B+Cx)\cos 2x + (D+Ex)\sin 2x)$$

Окончательно получаем

Ответ:
$$y = C_1 e^x + C_2 e^{-4x} + Axe^{-4x} + e^{-x}((B+Cx)\cos 2x + (D+Ex)\sin 2x)$$

ODE-16

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' + y = \sin(x) - 2e^{-x}$$

Решение.

Характеристическое уравнение: $\lambda^2+1=(\lambda-i)(\lambda+i)$. Значит, общее решение имеет вид

$$y_0(x) = C_1 \cos x + C_2 \sin x$$

Ищем частное решение уравнения $y'' + y = \sin(x)$. Так как i – корень характеристического уравнения кратности 1, то частное решение ищется в виде $y_1(x) = x(A\sin(x) + B\cos(x))$.

Теперь найдём частное решение уравнения $y'' + y = 2e^{-x}$. -1 — не корень характеристического уравнения, поэтому частное решение таково: $y_2(x) = De^{-x}$.

Итак, общее решение исходного уравнения $y(x)=y_1(x)+y_2(x)+y_o(x)$, т.е. $y(x)=Ax\,\sin(x)+Bx\,\cos(x)+De^{-x}+C_1\,\cos\,x+C_2\,\sin\,x.$

Ответ: $y(x) = Ax \sin(x) + Bx \cos(x) + De^{-x} + C_1 \cos x + C_2 \sin x$

ODE-18

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' + 6y + 10y = 3xe^{-3x} - 2e^{-3x}\cos x$$

Решение.

Характеристическое уравнение: $\lambda^2 + 6\lambda + 10 = (\lambda + 3 - i)(\lambda + 3 + i)$. Значит, общее решение однородного уравнения имеет вид

$$y_0(x) = C_1 e^{-3x} \cos x + C_2 e^{-3x} \sin x$$

Ищем частное решение уравнения $y'' + 6y + 10y = 3xe^{-3x}$. Так как -3 – не корень характеристического уравнения, то частное решение ищется в виде $y_1(x) = x^0(Ax + B)e^{-3x} = (Ax + B)e^{-3x}$.

Теперь найдём частное решение уравнения $y'' + 6y + 10y = -2e^{-3x}\cos x$. -3 + i – корень кратности 1 характеристического уравнения, поэтому частное решение таково: $y_2(x) = x^1 e^{-3x} (C \cos x + D \sin x)$.

Итак, общее решение исходного уравнения $y(x) = y_1(x) + y_2(x) + y_o(x)$, т.е. $y(x) = C_1 e^{-3x} \cos x + C_2 e^{-3x} \sin x + (Ax+B)e^{-3x} + xe^{-3x}(C\cos x + D\sin x)$. **Ответ:** $y(x) = C_1 e^{-3x} \cos x + C_2 e^{-3x} \sin x + (Ax+B)e^{-3x} + xe^{-3x}(C\cos x + D\sin x)$

ODE-20

Найти вид общего решения линейного неоднородного дифференциального уравнения (не вычисляя коэффициентов частных решений):

$$y'' - 2y' + 5y = e^x \cos 2x - x^2$$

Решение.

Характеристическое уравнение: $\lambda^2 - 2\lambda + 5 = (\lambda - (1+2i))(\lambda - (1-2i))$. Значит, общее решение имеет вид

$$y = e^x (C_1 \cos 2x + C_2 \sin 2x),$$

а частное (совпал корень $\lambda = 1 + 2i,$ а $\lambda = 0$ – нет) –

$$y = xe^{x}(A\cos 2x + B\sin 2x) + Dx^{2} + Ex + F.$$

Ответ: $y = e^x(C_1 \cos 2x + C_2 \sin 2x) + xe^x(A \cos 2x + B \sin 2x) + Dx^2 + Ex + F$