1 Formalization of a CESK* machine with basic Scheme features.

But the Store is globalized, so CEK* with a global store.

```
\varsigma \in \Sigma = \operatorname{Exp} \times \operatorname{Env} \times \operatorname{Kont} op \in \operatorname{Primitive} \qquad \operatorname{The \ set \ of \ primitive} \psi \in \operatorname{PrimStore} = Var \rightharpoonup \operatorname{Primitive} v \in \operatorname{Val} ::= (\lambda \ (x \ ...) \ e) \ | \ op \ | \ \#t \ | \ \#f \ | \ 0 \ | \ 1 \ ... x \in \operatorname{Var} \qquad \text{A \ set \ of \ identifiers} e \in \operatorname{Exp} ::= x \ | \ v \ | \ (\text{if \ } e \ e \ e) \ | \ (let \ (x \ e) \ e) \ | \ (e \ e \ ...) \text{a,b,c} \in \operatorname{Addr} \qquad \text{A \ set \ of \ addresses} \rho \in \operatorname{Env} = \operatorname{Var} \rightharpoonup \operatorname{Addr} \sigma \in \operatorname{Store} = \operatorname{Addr} \rightharpoonup (\operatorname{Val} \times \operatorname{Env}) done = \operatorname{list \ of \ Val} todo = \operatorname{list \ of \ Exp} \kappa \in \operatorname{Kont} = \operatorname{mt} \ | \ \operatorname{appf}(done, todo, \rho, a) | \ \operatorname{iff}(e, e, \rho, a) | \ \operatorname{letf}(x, e, \rho, a)
```

 $alloc(\varsigma) = a$ new address

Our transition function is of type

$$(\Sigma \times \mathsf{Store}) \to (\Sigma \times \mathsf{Store})$$

$(\varsigma \times \sigma) \to (\varsigma' \times \sigma)$, where $\kappa = \sigma(a), b = alloc(\varsigma)$ proceed by matching on ς

proceed by matching on ς	
$\overline{\langle x, \rho, a \rangle}$	$\langle v, \rho', a \rangle$
	where $(v, \rho') = \sigma(\rho(x))$ $\langle op, \rho, a \rangle$
$\langle x, \rho, a \rangle$	$\langle op, \rho, a \rangle$
	where $x \notin \rho$ and $op = \psi(x)$
$\overline{\langle (e_0 \ e_z), \rho, a \rangle}$	$\langle e_0, \rho, b \rangle$
	$\sigma = \sigma[b \longmapsto \mathbf{appf}([\], e_z, \rho, a)]$
$\overline{\langle (\text{if } e_c \ e_t \ e_f), \rho, a \rangle}$	$\langle e_c, \rho, b \rangle$
	$\sigma = \sigma[b \longmapsto \mathbf{iff}(e_t, e_f, \rho, a)]$
$\overline{\langle (\text{let } (x e_0) e_1), \rho, a \rangle}$	$\langle e_0, \rho, b \rangle$
	$\sigma = \sigma[b \longmapsto \mathbf{letf}(x, e_1, \rho, a)]$
$\langle v, \rho, a \rangle$	
match on κ below	
mt	ς
$\mathbf{appf}((op :: (vs), [], \rho', c))$	$\langle v', \rho', c \rangle$
	v' = op applied to $(vs + [v])$
$\mathbf{appf}((\lambda(xs)e) :: (vs), [], \rho', c)$	$\langle e, \rho'[xs_0 \longmapsto b_0xs_i \longmapsto b_i], c \rangle$
	vs = vs + [v]
	$\sigma = \sigma[b_0 \mapsto (vs_0, \rho)b_i \mapsto (vs_i, \rho)]$
$\mathbf{appf}(dn,h::(t),\rho',c)$	$\langle h, \rho', b \rangle$
	$\sigma = \sigma[b \longmapsto \mathbf{appf}(dn + [v], t, \rho', c)]$
$\mathbf{iff}(e_t,e_f, ho',c)$	$\langle e_f, \rho', c \rangle$
if $v = \#f$	
$\mathbf{iff}(e_t,e_f, ho',c)$	$\langle e_t, \rho', c \rangle$
if $v \neq \#f$	
$\mathbf{letf}(x, e, \rho', c)$	$\langle e, \rho'[x \longmapsto b], c \rangle$
	$\sigma = \sigma[b \longmapsto (v, \rho)]$