BDMI-课程编号-01510243

大数据与机器智能

机器智能-深度学习1

清华大学iCenter

CC BY-NC-SA

目录

- 人工神经元 (带权重的函数)
- 单个人工神经元能力-模拟布尔运算
- · 多个人工神经元能力-解决XOR问题

人工神经元

(带权重的函数)

人工神经元

- •单个人工神经元(Artificial Neuron):
 - •一组输入的线性加权叠加
 - 经过一个非线性变换进行输出

激活函数(activation function)

- 激活函数有sigmoid函数, tanh函数, ReLU函数等
- Sigmoid函数,又称为逻辑斯提函数(logistic function)或S形函数。数学表达式为:

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

• tanh函数或th函数,双曲正切函数,其数学表 达式如下:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• ReLU函数 (rectified linear units) , 又称为整 流线性单元, 数学表达式如下:

ReLU(x)=max(x, 0)

http://wiki.icenter.tsinghua.edu.cn/icenterwiki/index.php/Python_TensorFlow_Basics

想一想,练一练

- 用Python函数,描述一下逻辑斯提(logistic function)激活函数,请 将带代码投稿:
- (1) Sigmoid函数

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

练习代码: numpy activation function.ipynb

想一想,练一练

- •用Python函数,描述一下tanh()激活函数,请将带代码投稿:
- (1) tanh函数或th函数

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

想一想,练一练

- •用Python函数,描述一下ReLU激活函数,请将带代码投稿:
- (1) ReLU函数

练习代码: numpy_activation_function.ipynb

人工神经元1-ReLU单元-具体建模

- 神经元被建模为一个函数F(w, x), 其中w是权重, x是输入
 - 输入的线性加权叠加
 - 一个非线性函数F作用, 进行输出, F称为激活函数
 - 激活函数模拟神经元的触发激活特性

The Neuron

$$y = F\left(\sum_{i} w_{i}x_{i}\right)$$
 w_{1}
 w_{2}
 w_{n}
 w_{n}

人工神经元1-ReLU单元(整流线性单元)

F(w, x)函数通过调节权重w, 改变输出结果

- 所有输入加权叠加
- 经过一个非线性函数 (激活函数)

想一想,练一练

- Python使用Numpy描述一个完整的人工神经元: ReLU单元
- 输入[1,0,1], 权重[-0.21,0.3,0.7]
- 提示:可以用Numpy包
- •请发投稿:

人工神经元2-逻辑斯提回归单元

所有输入线性加权叠加, 经过一个非线性函数(激活函数)输出

- 逻辑斯提回归单元(Logistic Regression Unit)是最简单人工神经元结构之一。
- 逻辑斯提回归单元的激活函数采用sigmoid函数或逻辑斯提函数

想一想,练一练

- Python使用函数,描述一个完整的人工神经元: 逻辑思提单元
- 提示: 可以用Numpy包
- 输入[1,0,1],权重[-0.21,0.3,0.7]
- 请发投稿:

单个人工神经元的能力

模拟布尔运算

布尔运算

- 布尔运算是现代计算机的基础能力
 - 与运算(AND)、或运算(OR)、非运算(NOT)
 - 与非 (NAND) 、异或 (XOR)
- 如何用逻辑斯提回归单元模拟布尔运算?
- 提示sigmoid函数的特点。
 - $\sigma(5)\sim1.0$, $\sigma(-5)\sim0.0$

AND运算

• 输入: X1, X2 {0, 1}

• 输出: X1 AND X2

AND	X2=0	X2=1
X1=0	0	0
X1=1	0	1

AND	X2=0	X2=1
X1=0	σ(-30)	σ(-10)
X1=1	σ(-10)	σ(10)

想一想,练一练

- •用Python函数,描述一下AND门,请将带代码投稿:
- 提示,可以用Numpy包

OR运算

• 输入: X1, X2 {0, 1}

• 输出: X1 OR X2

OR	X2=0	X2=1
X1=0	0	1
X1=1	1	1

OR	X2=0	X2=1
X1=0	σ(-10)	σ(10)
X1=1	σ(10)	σ(30)

想一想,练一练

- •用Python函数,描述一下OR门,请将带代码投稿:
- 提示,可以用Numpy包

NOT运算

•输入: X {0, 1}

• 输出: NOT X

NOT		
X=0	1	
X=1	0	

• 容易实现

NOT	
X=0	σ(10)
X=1	σ(-10)

想一想,练一练

- •用Python函数,描述一下NOT门,请将带代码投稿:
- 提示,可以用Numpy包

NAND

NAND	X2=0	X2=1
X1=0	1	1
X1=1	1	0

NAND	X2=0	X2=1
X1=0	σ(30)	σ(10)
X1=1	σ(10)	σ(-10)

NAND(x1, x2)=(not x1) or (not x2)

想一想,练一练

- •用Python函数,描述一下NAND门,请将带代码投稿:
- 提示,可以用Numpy包

多个神经元的能力

XOR问题的解法--二层网络

XOR运算

•输入: X1, X2 {0, 1}

•输出: X1 XOR X2

• 不是个线性分类问题,无法用单个神经元解决。

XOR	X2=0	X2=1
X1=0	0	1
X1=1	1	0

想一想,练一练

- 如何解决异或问题?
- (提示) 进行复合的布尔运算

XOR运算

X1	X2	XOR
0	0	0
1	0	1
0	1	1
1	1	0

- X1 XOR X2
- 其中:
 - Y1=X1 OR X2
 - Y2=NAND{X1,X2}
 - Y3=(NOT X1) OR (NOT X2)

X1	X2	Y1	Y2	XOR
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

- 实现1={X1 OR X2} AND { NAND {X1, X2} }=Y1 AND Y2
- 实现2= {X1 OR X2} AND { (NOT X1) OR (NOT X2)}=Y1 AND Y3

XOR运算-实现1

- X1 XOR X2 = {X1 OR X2} AND {NAND{X1,X2}}
- 两层网络

XOR运算-实现2

- X1 XOR X2 = {X1 OR X2} AND{ (NOT X1) OR (NOT X2)}
- XOR运算可以由AND运算; NOT运算; OR运算组合完成;

想一想

- ·如何用ReLU单元解决XOR问题?
- 3个ReLU单元是否足够?

	0	1
0	0	1
1	1	0

XOR运算

XOR运算-实现1

想一想,练一练?

- (判断性别) -简单分类
- 请每个同学(匿名)给出自身数据(身高、体重、性别)
- 设计一个分类器, 进行分类?

扩展思考-理论如何落实到实践。

- 布尔运算构建了计算的体系, 实际中用布尔门电路实现
 - 什么是计算?
 - 布尔门电路, 可以由晶体管电路实现
- 理论上讲, 用人工神经元作为基本的计算单元, 能力不逊于计算机。
 - 问题1: 实际中有用人工神经元电路的方式来实现吗?
 - 问题2: 你认为这种方法的最大的挑战是什么呢?
- (请大家投稿一下)

谢谢指正!