Topologie des espaces normés

Feuille d'exercices #11

⊗ Partie A – Bestiaire topologique

Exercice 1 — Soient A et B deux parties non vides d'un espace vectoriel normé E. On pose $A + B = \{a + b \mid a \in A, b \in B\}$. Montrer que :

- 1. si A est ouvert, alors A + B est ouvert;
- 2. si A et B sont bornés, alors A + B est borné.
- 3. si A et B sont fermés, alors A+B n'est pas nécessairement fermé. On pourra considérer $A=\{(x,y)\in\mathbb{R}^2\mid xy=1\}$ et $B=\{(x,0)\mid x\in\mathbb{R}\}$.

Exercice 2 — Soient A et B deux parties d'un espace vectoriel normé E. Comparer $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$ puis $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$.

Exercice 3 — Soient *E* un espace vectoriel normé et *F* un s.e.v. de *E*.

- 1. Montrer que \overline{F} est un sous-espace vectoriel de E.
- 2. En déduire que tout hyperplan de E est soit fermé, soit dense dans E.

Exercice 4 — Soient E un \mathbb{R} -espace vectoriel normé, A une partie non vide de E.

- 1. a) Donner la caractérisation séquentielle de \overline{A} .
 - b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. On pose pour tout $x \in E$, $d_A(x) = \inf_{a \in A} ||x a||$.
 - a) Soit $x \in E$. Prouver que $d_A(x) = 0 \Longrightarrow x \in \overline{A}$.
 - b) On suppose que A est fermée et que :

$$\forall (x, y) \in E^2, \quad \forall t \in [0, 1], \quad d_A(tx + (1 - t)y) \le t d_A(x) + (1 - t) d_A(y)$$

Prouver que A est convexe.

Exercice 5 — Montrer que l'ensemble des matrices de projecteurs est un fermé non borné de $\mathcal{M}_n(\mathbb{K})$ d'intérieur vide.

Exercice 6 — Densité des matrices diagonalisables

- 1. Soit P un polynôme réel non nul unitaire de degré n. Montrer que P est scindé sur \mathbb{R} si, et seulement si, pour tout $z \in \mathbb{C}$, $|P(z)| \ge |\operatorname{Im}(z)|^n$.
- 2. Établir la continuité sur $\mathcal{M}_n(\mathbb{R})$ de $M \mapsto \chi_M$.
- 3. On note \mathcal{T}_n (resp. \mathcal{D}_n) l'ensemble des matrice de $\mathcal{M}_n(\mathbb{R})$ trigonalisables (resp. diagonalisables). On note enfin \mathcal{D}_n^1 l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ possédant n valeurs propres simples. Montrer que $\mathcal{T}_n = \overline{\mathcal{D}_n} = \overline{\mathcal{D}_n^1}$.

Exercice 7 — Classe de similitude d'une matrice

Si $A \in \mathcal{M}_n(\mathbb{C})$, on appelle classe de similitude de A l'ensemble cl(A) des matrices de $\mathcal{M}_n(\mathbb{C})$ semblables à A. On note μ_A le polynôme minimal de A.

- 1. Montrer que l'application $\Phi: \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathbb{C}_n[X]$ est continue. $A \longmapsto \chi_A$
- 2. Soit *A* une matrice diagonalisable. Établir que pour tout $B \in \mathcal{M}_n(\mathbb{C})$,

$$B \in \operatorname{cl}(A) \iff \begin{cases} \chi_A = \chi_B \\ \mu_A(B) = 0 \end{cases}$$

En déduire alors que sa classe de similitude est un fermé de $\mathcal{M}_n(\mathbb{C})$.

- 3. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose cette fois-ci que $\mathrm{cl}(A)$ est un fermé de $\mathcal{M}_n(\mathbb{C})$.
 - a) Montrer que cl(A) contient au moins une matrice triangulaire supérieure B.
 - b) On note φ_B l'endomorphisme de \mathbb{C}^n canoniquement associé à B et (e_1,\ldots,e_n) la base canonique de \mathbb{C}^n . Donner la matrice de φ_B dans la base $\left(\frac{1}{k}e_1,\frac{1}{k^2}e_2,\ldots,\frac{1}{k^n}e_n\right)$ pour $k\in\mathbb{N}^*$.
 - c) En déduire que A est diagonalisable.

Exercice 8 — Soient $(E, \|\cdot\|)$ un espace vectoriel normé de dimension n et (e_1, \ldots, e_n) une base de E.

- 1. Montrer que l'application $N: u \mapsto \sum_{i=1}^{n} \|u(e_i)\|$ est une norme sur $\mathcal{L}(E)$.
- 2. Soit $(u_k)_{k\in\mathbb{N}}$ une suite d'endomorphismes de E. Prouver que la suite $(u_k)_{k\in\mathbb{N}}$ converge dans $\mathscr{L}(E)$ si, et seulement si, pour tout $x\in E$, la suite $(u_k(x))_{k\in\mathbb{N}}$ converge dans E.

⊗ Partie B – Applications continues

Exercice 9 — *E* et *F* désignent deux espaces vectoriels normés.

Soient $f: E \to F$ et $a \in E$.

Montrer que f est continue en a si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $\lim_{n\to+\infty}x_n=a$, alors $\lim_{n\to+\infty}f(x_n)=f(a)$.

Exercice 10 — Soit $E = \mathcal{M}_n(\mathbb{C})$.

1. Montrer que les applications suivantes sont continues sur *E* :

$$M \mapsto \operatorname{Tr}(M)$$
; $M \mapsto \det(M)$; $M \mapsto \chi_M$; $M \mapsto M^{-1} \operatorname{sur} \operatorname{GL}_n(\mathbb{K})$

Pour la dernière application, on pourra utiliser la comatrice.

2. Montrer que les applications suivantes ne sont pas continues sur *E* :

$$M \mapsto \operatorname{rg}(M)$$
; $M \mapsto \pi_M$

On pourra considérer une matrice nilpotente.

3. Montrer que $(M, N) \mapsto MN$ est continue sur E^2 .

Exercice 11 — Soit $E = \mathbb{R}[X]$ muni de la norme $\|\cdot\|$ définie par :

$$||P|| = \sup_{n \in \mathbb{N}} |a_n|$$
 pour $P = \sum_{n=0}^{+\infty} a_n X^n$

Étudier la continuité des applications suivantes :

$$P \mapsto XP$$
; $P \mapsto P \cdot Q$; $P \mapsto P'$; $P \mapsto \int_0^X P$; $P \mapsto \int_0^1 P$; $P \mapsto P(\alpha)$

Exercice 12 — On munit $E = \mathcal{C}([0,1];\mathbb{R})$ de la norme $\|\cdot\|_2$. Soit $g \in E$. On pose :

$$\forall f \in E, \quad T_g(f) = \int_0^1 f(t)g(t) dt$$

Montrer que T_g est une forme linéaire continue et déterminer $|||T_g|||$.

Exercice 13 — Soient $E = \mathbb{C}_n[X]$, $F = \mathbb{C}[X]$ et $\varphi_z : P \mapsto P(z)$ pour $z \in \mathbb{C}$.

On pose, pour $P = \sum_{k=0}^{+\infty} a_k X^k \in F$, $||P|| = \max|a_k|$.

- 1. Justifier la continuité sur E de φ_z pour tout $z \in \mathbb{C}$ et calculer $|||\varphi_z|||$
- 2. Étudier la continuité de φ sur F et calculer, pour |z| < 1, $||\varphi_z||$.

Exercice 14 — Pour $n \in \mathbb{N}^*$, on définit sur $\mathbb{R}_n[X]$ l'application $D: P \mapsto P'$.

- 1. a) Établir la continuité de *D*.
 - b) Calculer $\exp(D)$. Cette dernière application est-elle continue?
- 2. Faire de même avec, cette fois-ci, $E = \mathbb{R}[X]$ et $\|P\| = \sup_{x \in [0,1]} |P(x)|$ pour $P \in E$.

Exercice 15 — Soient $E = \mathcal{C}([0,1],\mathbb{R})$ et $\varphi \in \mathcal{C}([0,1],[0,1])$ continue et bijective. On définit alors T_{φ} par $T_{\varphi}(f) = f \circ \varphi$.

- 1. Montrer que T_{φ} est un endomorphisme continu de $(E, \|\cdot\|_{\infty})$.
- 2. On munit désormais E de la norme $\|\cdot\|_1$.
 - a) Montrer que si φ^{-1} est de classe \mathscr{C}^1 , alors T_{φ} est continu.
 - b) Montrer que pour $\varphi: x \mapsto x^2$, T_{ω} n'est pas continu.
 - c) Montrer que T_{φ} est continu si, et seulement si φ^{-1} est lipschitzienne.

Exercice 16 — Soit E l'ensemble des suite $(a_n)_{n\in\mathbb{N}}$ de \mathbb{C} telles que la série $\sum |a_n|$ converge. Pour $a\in E$, on pose $||a||=\sum_{n=0}^{+\infty}|a_n|$.

- 1. Montrer que $\|\cdot\|$ est une norme sur E.
- 2. Justifier l'existence et la continuité de la forme linéaire $\varphi:(a_n)\mapsto \sum_{n=0}^{+\infty}a_n$.
- 3. Soit $F = \left\{ a \in E \mid \sum_{n=0}^{+\infty} a_n = 1 \right\}$. L'ensemble F est-il fermé? borné? ouvert?

Exercice 17 — Soient φ une forme linéaire sur E non nulle et $H = \text{Ker}(\varphi)$.

- 1. a) Montrer que *H* est soit fermé, soit dense dans *E*.
 - b) Montrer que φ est continue si et seulement si H est un fermé de E.
- 2. On prend ici $E=\mathscr{C}([0,1],\mathbb{R})$ et $H=\{f\in E\mid f(0)=0\}$. Trouver deux normes pour lesquelles H est fermé ou dense.

⊗ Partie C – Parties compactes

Exercice 18 — Soient E un espace vectoriel normé de dimension finie et $(u_n)_{n \in \mathbb{N}}$ une suite convergente de limite ℓ . Montrer que $K = \{u_n, n \in \mathbb{N}\} \cup \{\ell\}$ est compacte.

Exercice 19 — Soient $(E, \|\cdot\|)$ un e.v.n. et $(A_n)_{n\in\mathbb{N}}$ une suite décroissante de compacts non vides. Montrer que $A = \bigcap_{n\in\mathbb{N}} A_n$ est un compact non vide.

Exercice 20 — Soient A et B deux parties non vides d'un espace vectoriel normé E. On pose $A + B = \{a + b \mid a \in A, b \in B\}$. Montrer que :

- 1. si A est fermé et B compact, alors A + B est fermé;
- 2. si A et B sont compacts, alors A + B est compact.

Exercice 21 — Soient $(E, \|\cdot\|)$ un e.v.n. et F un s.e.v. de dimension finie.

- 1. Montrer que pour tout $x \in E$, il existe $y \in F$ tel que d(x, F) = ||x y||.
- 2. Montrer que si $F \neq E$, il existe $z \in E$ tel que d(z, F) = ||z|| = 1.
- 3. Montrer que *E* est de dim. finie ssi la boule unité fermée est compacte.

Exercice 22 — Application presque contractante

Soient K une partie compacte d'un espace vectoriel normé E et $f: K \to K$ telle que pour tous $x, y \in E$ distincts, ||f(x) - f(y)|| < ||x - y||.

- 1. Établir à l'aide de l'application $\varphi: x \mapsto ||f(x) x||$ l'existence et l'unicité d'un point fixe pour f, noté a.
- 2. On considère une suite définie par $x_0 \in K$ et $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$.
 - a) Prouver que $||x_n a||$ admet une limite, notée ℓ .
 - b) Soit b est une valeur d'adhérence de la suite $(x_n)_{n\in\mathbb{N}}$. Montrer que $\|b-a\|=\ell$ et que f(b) est une valeur d'adhérence de la suite $(x_n)_{n\in\mathbb{N}}$.
 - c) Conclure.

Exercice 23 — Soient $(E, \|\cdot\|)$ un espace vectoriel normé de dimension finie n et K un compact d'intérieur non vide. On note alors $\mathscr{L}_K = \{u \in \mathscr{L}(E) \mid u(K) \subset K\}$.

- 1. Rappeler la définition d'un compact. Le choix de la norme importe-t-il?
- 2. Montrer que \mathcal{L}_K est compacte.
- 3. Montrer que pour tout $u \in \mathcal{L}_K$, $|\det(u)| \le 1$.

Exercice 24 — Théorème de d'Alembert-Gauss

On note $\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}$ et $B = \{z \in \mathbb{C}, |z| \le 1\}$ et pour $P \in \mathbb{C}[X]$, $||P|| = \max_{z \in \mathbb{U}} |P(z)|$.

- 1. Montrer que $\|\cdot\|$ est une norme sur $\mathbb{C}[X]$.
- 2. Montrer que pour tout $P \in \mathbb{C}[X]$, $|P(0)| \leq ||P||$.
- 3. Soient $P \in \mathbb{C}[X]$ de degré supérieur à 1, $z_0 \in \mathbb{C}$ et $\theta \in \mathbb{R}$. Établir l'existence de $\alpha \in \mathbb{C}$, $n \in \mathbb{N}$ tels que :

$$P(z_0 + re^{i\theta}) - P(z_0) \underset{r \to 0}{\sim} \alpha r^n e^{in\theta}$$

- 4. Montrer que pour tout $P \in \mathbb{C}[X]$, $||P|| = \sup_{z \in B} |P(z)|$.
- 5. En déduire le théorème de d'Alembert-Gauss.

⊗ Partie D – Parties connexes par arcs

Exercice 25 — Soit E un espace vectoriel normé de dimension $n \ge 2$. Montrer que la sphère unité est connexe par arcs.

Exercice 26 — Montrer que l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ est une partie étoilée.

Exercice 27 — Soient *E* un e.v.n. et *A*, *B* deux parties connexes par arcs de *E*.

- 1. L'intérieur et l'adhérence de *A* sont-ils connexes par arcs?
- 2. Montrer que $A \times B$ et A + B sont connexes par arcs.

- 1. Montrer que $U = \mathbb{C} \setminus \{a_1, ..., a_p\}$ est connexe par arcs.
- 2. En considérant l'application $z \mapsto \det(zA + (1-z)B)$ pour $A, B \in GL_n(\mathbb{C})$, montrer que $GL_n(\mathbb{C})$ est connexe par arcs.
- 3. Montrer que $GL_n(\mathbb{R})$ n'est pas connexe par arcs.