

主項(1)⇒論理関数 φ しないとき,

■論理関数 φ が積項 t を包含し,t の真部分積項を包含しないとき,t を φ の主項という.

例) $\varphi = xy \vee \bar{x}z$ について, xy, $\bar{x}z$, yz は主項

х	у	Z	$xy \vee \bar{x}z$	xy	$\bar{\chi}z$	yz
0	0	0	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	0	0
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	1	0	0
1	1	1	1	1	0	1

6/19/2023

主項(2)

⇒定理:最小積和標準形は主項の論理和で表せる. (逆は成り立たない)

(証明) 略

(ざっくり言うと、最小積和標準形の積項が主項でない場合、その積項が主項になるように変数を減らしていける(より変数の数の少ない積和形に持って行ける)ので、最小積和標準形になり得ない、という感じ)

逆が成り立たない例: $\varphi = xy \lor \bar{x}z \lor yz \ (= xy \lor \bar{x}z)$

6/19/2023

