ISDA 04 Relationale Algebra

Prof. Dr. Volker Markl

mit Folienmaterial von Prof. Dr. Felix Naumann

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

Rückblick

- Das Relationale Modell
- Von ER-Diagrammen zu Relationenschemata
- Konvertierung von Spezialisierung
- Funktionale Abhängigkeiten (FDs)
- Ableitungsregeln für FDs
- Normalformen

Überblick

Einführung

- Basisoperatoren
- Komplexe Ausdrücke
- Abgeleitete Operatoren
- Operatoren auf Multimengen

Einführung

Bisher

 Relationenschemata mit Basisrelationen, die in der Datenbank gespeichert sind

Jetzt

- "Abgeleitete" Relationenschemata mit virtuellen Relationen, die aus den Basisrelationen berechnet werden
- Definiert durch Anfragen
- Basisrelationen bleiben unverändert

Kriterien für Anfragesprachen

- Ad-Hoc-Formulierung
 - Benutzer soll eine Anfrage formulieren können, ohne ein vollständiges Programm schreiben zu müssen
- Deskriptivität
 - Benutzer soll formulieren "Was will ich haben?" und nicht "Wie komme ich an das, was ich haben will?"
 - Deklarativ
- Mengenorientiertheit
 - Operationen auf Mengen von Daten
 - Nicht navigierend nur auf einzelnen Elementen ("tuple-at-atime")
- Abgeschlossenheit
 - Ergebnis ist wieder eine Relation und kann wieder als Eingabe für die nächste Anfrage verwendet werden.

Kriterien für Anfragesprachen

- Adäquatheit
 - Alle Konstrukte des zugrundeliegenden Datenmodells werden unterstützt
- Orthogonalität
 - Sprachkonstrukte sind in ähnlichen Situationen auch ähnlich anwendbar
- Optimierbarkeit
 - Sprache besteht aus wenigen Operationen, für die es Optimierungsregeln gibt
- Effizienz
 - Jede Operation ist effizient ausführbar
 - □ Im relationalen Modell hat jede Operation eine Komplexität $\leq O(n^2)$, n Anzahl der Tupel einer Relation.

Kriterien für Anfragesprachen

- Sicherheit
 - Keine Anfrage, die syntaktisch korrekt ist, darf in eine Endlosschleife geraten oder ein unendliches Ergebnis liefern.
- Eingeschränktheit
 - Anfragesprache darf keine komplette Programmiersprache sein
 - Folgt aus Sicherheit, Optimierbarkeit, Effizienz
- Vollständigkeit
 - Sprache muss mindestens die Anfragen einer Standardsprache (z.B. relationale Algebra) ausdrücken können.

Anfragealgebra

- Mathematik
 - Algebra: Definiert durch Wertebereich und auf diesem definierte Operatoren
 - Operand: Variablen oder Werte aus denen neue Werte konstruiert werden können
 - Operator: Symbole, die Prozeduren repräsentieren, die aus gegebenen Werten neue Werte produzieren
- Für Datenbankanfragen
 - Inhalte der Datenbank (Relationen) sind Operanden
 - Operatoren definieren Funktionen zum Berechnen von Anfrageergebnissen
 - Grundlegenden Dinge, die wir mit Relationen tun wollen.
 - Relationale Algebra (Relationenalgebra, RA)
 - Anfragesprache für das relationale Modell

Mengen vs. Multimenge

- Relation: Menge von Tupeln
- Datenbanktabelle: Multimenge von Tupeln
- Operatoren der relationalen Algebra: Operatoren auf Mengen
- Operatoren auf DBMS: SQL Anfragen
 - Rel. DBMS speichern Multimengen
- Motivation: Effizienzsteigerung
 - Beispiel:
 - Vereinigung als Multimenge
 - Vereinigung als Menge

Klassifikation der Operatoren

- Mengenoperatoren (set operations)
 - Vereinigung, Schnittmenge, Differenz
- Entfernende Operatoren
 - Selektion, Projektion
- Kombinierende Operatoren
 - □ Kartesisches Produkt, Verbund (Join), Joinvarianten
- Umbenennung
 - Verändert nicht Tupel, sondern Schema
- Ausdrücke der relationalen Algebra: "Anfragen" (queries)
- Zunächst: 5+1 Basisoperatoren
- Dann komplexe Ausdrücke, abgeleitete Operatoren und erweiterte Operatoren

Überblick

- Einführung
- Basisoperatoren
- Komplexe Ausdrücle
- Abgeleitete Operatoren
- Operatoren auf Multimengen

Erweiterte Operatoren

Vereinigung (Union, ∪)

- Sammelt Elemente (Tupel) zweier Relationen unter einem gemeinsamen Schema auf.
- $R \cup S := \{ t \mid t \in R \lor t \in S \}$
- Attributmengen beider Relationen müssen identisch sein.
 - Namen, Typen und Reihenfolge
 - Zur Not: Umbenennung
- Ein Element ist nur einmal in $(R \cup S)$ vertreten, auch wenn es jeweils einmal in R und S auftaucht.
 - Duplikatentfernung

Beispiel für Mengenoperatoren

R			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88

S			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

$\mathbf{R} \cup \mathbf{S}$

Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

Differenz (Difference, -, \)

- Differenz R S eliminiert die Tupel aus der ersten Relation, die auch in der zweiten Relation vorkommen.
- $\blacksquare R S := \{ t \mid t \in R \land t \notin S \}$
- Achtung: $R S \neq S R$

Beispiel für Mengenoperatoren

R			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88

S			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

R - S

Name	Adresse	Geschlecht	Geburt
Mark Hamill	456 Oak Rd., Brentwood	М	8/8/88

Schnittmenge (Intersection, ∩)

- Durchschnitt $r1 \cap r2$ ergibt die Tupel, die in beiden Relationen gemeinsam vorkommen.
- $\blacksquare R \cap S := \{ t \mid t \in R \land t \in S \}$
- Anmerkung: Durchschnitt ist kein Basisoperator

$$R \cap S = R - (R - S)$$

Beispiel für Mengenoperatoren

R			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88

S			
Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

$\mathbf{R} \cap \mathbf{S}$

Name	Adresse	Geschlecht	Geburt
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99

Projektion (projection, π)

- Erzeugt neue Relation mit einer Teilmenge der ursprünglichen Attribute
- $\pi_{A1,A2,...,An}(R)$ ist eine Relation
 - □ mit den Attributen A1,A2,...,An
 - Üblicherweise in der aufgelisteten Reihenfolge
- Achtung: Es können Duplikate entstehen, die entfernt werden müssen.

Projektion – Beispiel

Filme					
Titel	Jahr	Länge	inFarbe	Studio	Produzent I D
Total Recall	1990	113	True	Fox	12345
Basic Instinct	1992	127	True	Disney	67890
Dead Man	1995	121	False	Paramount	99999

$\pi_{\text{Titel,Jahr,L\"{a}nge}}\text{(Filme)}$

Titel	Jahr	Länge
Total Recall	1990	113
Basic Instinct	1992	127
Dead Man	1995	121

π_{inFarbe} (Filme)

inFarbe
True
False

Selektion (selection, σ)

- Erzeugt neue Relation mit gleichem Schema aber einer Teilmenge der Tupel.
- Nur Tupel, die der Selektionsbedingung *C* (condition) entsprechen.
 - Selektionsbedingung wie aus Programmiersprachen
 - Operanden der Selektionsbedingung sind nur Konstanten oder Attribute von R.
- Prüfe Bedingung für jedes Tupel

Selektion – Beispiel

Filme						
Titel	Jahr	Länge	inFarbe	Studio	Produzent I D	
Total Recall	1990	113	True	Fox	12345	
Basic Instinct	1992	127	True	Disney	67890	
Dead Man	1995	90	False	Paramount	99999	

$\sigma_{\text{Länge} \geq 100}$ (Filme)

Titel	Jahr	Länge	inFarbe	Studio	Produzent I D
Total Recall	1990	113	True	Fox	12345
Basic Instinct	1992	127	True	Disney	67890

Selektion – Beispiel

Filme						
Titel	Jahr	Länge	inFarbe	Studio	Produzent I D	
Total Recall	1990	113	True	Fox	12345	
Basic Instinct	1992	127	True	Disney	67890	
Dead Man	1995	90	False	Paramount	99999	

σ_{Länge≥100 AND Studio=,Fox} (Filme)

Titel	Jahr	Länge	inFarbe	Studio	Produzent I D
Total Recall	1990	113	True	Fox	12345

Kartesisches Produkt (cartesian product, cross product ×)

Auch: Kreuzprodukt oder Produkt

Auch: R * S statt R × S

- Kreuzprodukt zweier Relationen R und S ist die Menge aller Tupel, die man erhält, wenn man jedes Tupel aus R mit jedem Tupel aus S paart.
- Schema hat ein Attribut für jedes Attribut aus R und S
 - Achtung: Bei Namensgleichheit wird kein Attribut ausgelassen
 - Stattdessen: Umbenennen

Kartesisches Produkt – Beispiel

R A B
1 2
3 4

 $R \times S$

Α	R.B	S.B	С	D
7	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Umbenennung (rename, ρ)

- Motivation: Zur Kontrolle der Schemata und einfacheren Verknüpfungen
 - \Box $\rho_{S(A1,...,An)}(R)$
 - Benennt Relation R in S um
 - Benennt die Attribute der neuen Relation A₁,...,A_n
 - $\rho_{S}(R)$ benennt nur Relation um.
- Durch Umbenennung ermöglicht
 - Joins, wo bisher kartesische Produkte ausgeführt wurde
 - Unterschiedliche Attribute werden gleich benannt.
 - Kartesische Produkte, wo bisher Joins ausgeführt wurden
 - Gleiche Attribute werden unterschiedlich genannt.
 - Mengenoperationen
 - Nur möglich bei gleichen Schemata

Umbenennung - Beispiel

R	
Α	В
1	2
3	4

S		
В	С	D
2	5	6
4	7	8
9	10	11

$$\textbf{R} \times \rho_{\textbf{S}(\textbf{X},\textbf{C},\textbf{D})}(\textbf{S})$$

Α	В	X	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

• Alternativer Ausdruck: $\rho_{S(A,B,X,C,D)}(R \times S)$

Überblick

- Einführung
- Basisoperatoren
- Komplexe Ausdrücke
- Abgeleitete Operatoren
- Operatoren auf Multimengen

Erweiterte Operatoren

Komplexe Ausdrücke

- Idee: Kombination (Schachtelung) von Ausdrücken zur Formulierung komplexer Anfragen.
 - Abgeschlossenheit der relationalen Algebra
 - Output eines Ausdrucks ist immer eine Relation.
 - Darstellung
 - Als geschachtelter Ausdruck mittels Klammerung
 - Als Baum

Komplexe Ausdrücke – Beispiel

Filme

Titel	Jahr	Länge	Тур	StudioName
Total Recall	1990	113	Farbe	Fox
Basic Instinct	1992	127	Farbe	Disney
Dead Man	1995	90	s/w	Paramount

- Gesucht: Titel und Jahr von Filmen, die von Fox produziert wurden und mindestens 100 Minuten lang sind.
 - Suche alle Filme von Fox
 - Suche alle Filme mit mindestens 100 Minuten
 - Bilde die Schnittmenge der beiden Zwischenergebnisse
 - Projiziere die Relation auf die Attribute Titel und Jahr.
 - $\ \ \ \ \ \pi_{Titel,Jahr}(\sigma_{L\ddot{a}nge \geq 100}(Filme) \cap \sigma_{StudioName=,Fox'}(Filme))$

Komplexe Ausdrücke – Beispiel

■ $\pi_{\text{Titel,Jahr}}(\sigma_{\text{Länge} \geq 100}(\text{Filme}) \cap \sigma_{\text{StudioName} = ,\text{Fox'}}(\text{Filme}))$

■ Alternative: $\pi_{Titel,Jahr}(\sigma_{L\ddot{a}nge \geq 100 \text{ AND StudioName}=,Fox'}(Filme))$

Überblick

- Einführung
- Basisoperatoren
- Komplexe Ausdrücke
- Abgeleitete Operatoren
- Operatoren auf Multimengen
- Erweiterte Operat

Abgeleitete Operatoren

32

- Aus den 5+1 Basisoperatoren $(\sigma, \pi, \cup, \times, -, \rho)$ können weitere wichtige Operatoren abgeleitet werden
- Beispiele
 - \Box Vereinigung (\cup) bzw. Schnitt (\cap) (bereits besprochen)
 - □ Natürlicher Join (⋈)
 - □ Theta-Join (⋈)
 - Division (/)

Natürlicher Join (natural Join, ⋈)

- Motivation: Statt im Kreuzprodukt alle Paare zu bilden, sollen nur die Tupelpaare gebildet werden, deren Tupel irgendwie übereinstimmen.
 - Auch: "Verbund"
 - Beim natürlichen Join: Übereinstimmung in allen gemeinsamen Attributen.
 - Gegebenenfalls Umbenennung
 - Schema: Vereinigung der beiden Attributmengen

 Anmerkung: Dies war der Join zur Wiederherstellung nach Dekomposition

Natürlicher Join – Beispiel

R A B1 23 4

S B C D2 5 64 7 8

10

11

 $\mathbf{R}\bowtie\mathbf{S}$

 A
 B
 C
 D

 1
 2
 5
 6

 3
 4
 7
 8

R×5

A	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Natürlicher Join – Beispiel

R א SABCD12356781097810

- Anmerkungen
 - Mehr als ein gemeinsames Attribut
 - □ Tupel werden mit mehr als einem Partner verknüpft

Theta-Join (theta-join, \bowtie_{θ})

- Verallgemeinerung des natürlichen Joins
- Verknüpfungsbedingung kann selbst gestaltet werden.
- Konstruktion des Ergebnisses:
 - Bilde Kreuzprodukt
 - Selektiere mittels der Joinbedingung
 - \square Also: $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$
- Schema: Wie beim Kreuzprodukt
- Natural Join ist ein Spezialfall des Theta-Joins
 - □ Aber: Schema des Ergebnisses sieht anders aus.

Theta-Join – Beispiel

R	Α	В	С
	1	2	3
	6	7	8
	9	7	8

S	В	С	D
	2	5	6
	2	3	5
	7	8	10

R ⋈ _{A<d< sub=""> S</d<>}					
Α	R.B	R.C	S.B	S.C	D
1	2	3	2	5	6
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

$$R \bowtie_{A < D \text{ AND } R.B \neq S.B} S$$

Α	R.B	R.C	S.B	S.C	D
1	2	3	7	8	10

Division (division, /)

- Nicht als primitiver Operator unterstützt.
- Finde alle Segler, die alle Segelboote reserviert haben.
- Relation R(x,y), Relation S(y)
 - $\square R/S = \{ t \mid \exists x, y \in R \forall y \in S \}$
 - R/S enthält alle x-Tupel (Segler), so dass es für jedes y-Tupel (Boot) in S ein xy-Tupel in R gibt.
 - Andersherum: Falls die Menge der y-Werte (Boote), die mit einem x-Wert (Segler) assoziiert sind, alle y-Werte in S enthält, so ist der x-Wert in R/S.

Folie und Beispiel aus: Ramakrishnan, Gehrke "Database Management Systems"

Division – Beispiel

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

F	4	
_	-	

pno	
p2	
	_

В1

sno s1s2s3s4

A/B1

pno

*B*2

sno s1s4

pno	
p1	
p2	
p4	

В3

sno s1

Division ausdrücken

- Division ist kein essentieller Operator, nur nützliche Abkürzung.
 - Ebenso wie Joins, aber Joins sind so üblich, dass Systeme sie speziell unterstützen.
 - Idee: Um R/S zu berechnen, berechne alle x-Werte, die nicht durch einen y-Wert in S "disqualifiziert" werden.
 - x-Wert ist disqualifiziert, falls man durch Anfügen eines y-Wertes ein xy-Tupel erhält, das nicht in R ist.
 - □ Disqualifizierte x-Werte: π_x (($\pi_x(R) \times S$) R)
 - \square R/S: π_{x} (R) alle disqualifizierten Tupel
 - \square Also formal: R/S = $\pi_x(R)$ $\pi_x((\pi_x(R)\times S)$ R)

Komplexe Ausdrücke – Beispiel

Filme1

Titel	Jahr	Länge	Тур	StudioName
Total Recall	1990	113	Farbe	Fox
Basic Instinct	1992	127	Farbe	Disney
Dead Man	1995	121	s/w	Paramount

Filme2

Titel	Jahr	SchauspName
Total Recall	1990	Sharon Stone
Basic Instinct	1992	Sharon Stone
Total Recall	1990	Arnold
Dead Man	1995	Johnny Depp

- Gesucht: Namen der Stars, die in Filmen spielten, die mindestens 100 Minuten lang sind.
 - Verjoine beide Relationen (natürlicher Join)
 - Selektiere Filme, die mindestens 100 Minuten lang sind.
 - □ $\pi_{SchauspName}(\sigma_{Länge \ge 100}(Filme1 \bowtie Filme2))$

Unabhängigkeit und Vollständigkeit

- Minimale Relationenalgebra:
 - \square Π , σ , \times , ρ , \cup und -
- Unabhängig:
 - Kein Operator kann weggelassen werden ohne Vollständigkeit zu verlieren.
- Natural Join, Join, Division und Schnittmenge sind redundant

$$\square$$
 $R \cap S = R - (R - S)$

$$\square$$
 R \bowtie_C S = σ_C (R \times S)

$$\square$$
 R \bowtie S = $\pi_L(\sigma_{R,A1=S,A1 \text{ AND ... AND }R,An=S,An}(R \times S))$

$$\square R/S = \pi_{X}(R) - \pi_{X}((\pi_{X}(R) \times S) - R)$$

Vorschau zu Algebraischer Optimierung

- Beispiele für algebraische Regeln zur Transformation
 - \square R \bowtie S = S \bowtie R
 - $\square (R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
 - $\square \ \pi_{\mathsf{Y}}(\pi_{\mathsf{X}}(\mathsf{R})) = \pi_{\mathsf{Y}}(\mathsf{R})$
 - $\Box \ \sigma_{A=a}(\sigma_{B=b}(R)) = \sigma_{B=b}(\sigma_{A=a}(R)) [= \sigma_{B=b \land A=a}(R)]$
 - $\square \ \pi_{X}(\sigma_{A=a}(R)) = \sigma_{A=a}(\pi_{X}(R))$
 - $\Box \ \sigma_{A=a}(R \cup S) = \sigma_{A=a}(R) \cup \sigma_{A=a}(S)$
- Jeweils Frage: Welche Seite ist besser?

Create your Own Exam: Relationale Algebra

- Bitte erstellen Sie eine Multiple Choice Aufgabe zum Thema Relationale Algebra
 - Formulieren Sie eine Frage und 3 Antworten (A, B, C)
 - Davon sollte mindestens eine Antwort richtig und mindestens eine Antwort falsch sein
- Geben Sie die Aufgabe an Ihren rechten Nachbarn. Diskutieren Sie gemeinsam und markieren Sie die richtigen Lösungen
- Geben Sie am Ende der Vorlesung Ihre Aufgabe bei mir ab

5 min

The bar exam after the bar exam.

Überblick

- Einführung
- Basisoperatoren
- Komplexe Ausdrücke
- Abgeleitete Operatoren
- Operatoren auf Multimengen

Erweiterte Operatoren

Motivation

- Mengen sind ein natürliches Konstrukt
 - Keine Duplikate
- Kommerzielle DBMS basieren fast nie nur auf Mengen
 - Sondern erlauben Multimengen
 - D.h. Duplikate sind erlaubt
- Multimenge
 - □ bag, multiset

Effizienz durch Multimengen

- Bei Vereinigung
 - Direkt "aneinanderhängen"

Projektion auf	
(A,B)	

Α	В	С
1	2	5
3	4	6
1	2	7
1	2	8

- Bei Projektion
 - Einfach Attributwerte "abschneiden"
- Nach Duplikaten suchen
 - Jedes Tupel im Ergebnis mit jedem anderen vergleichen
- Effizienter nach Duplikaten suchen
 - Nach allen Attributen zugleich sortieren
- Bei Aggregation
 - Duplikateliminierung schädlich
 - \square AVG(A) = ?

Vereinigung auf Multimengen

- Sei R eine Multimenge
 - □ Tupel *t* erscheine *n*-mal in R.
- Sei S eine Multimenge
 - □ Tupel *t* erscheine *m*-mal in S.
- Tupel t erscheint in R ∪ S
 - \square (n+m) mal.

R	Α	В
	1	2
	3	4
	1	2
	1	2

Α	В
1	2
3	4
3	4
5	6

\cup S	Α	В
	1	2
	3	4
	1	2
	1	2
	1	2
	3	4
	3	4
	5	6

R

Schnittmenge auf Multimengen

- Sei R eine Multimenge
 - □ Tupel *t* erscheine *n*-mal in R.
- Sei S eine Multimenge
 - Tupel t erscheine m-mal in S.
- Tupel t erscheint in R ∩ S
 - \square min(n,m) mal.

R	Α	В
	1	2
	3	4
	1	2
	3	4
	1	2

В
2
4
4

 $\mathsf{R} \cap \mathsf{S}$

Differenz auf Multimengen

- Sei R eine Multimenge
 - □ Tupel *t* erscheine *n*-mal in R.
- Sei S eine Multimenge
 - Tupel t erscheine m-mal in S.

S

- Tupel t erscheint in R S
 - \square max(0,n-m) mal.
 - □ Falls *t* öfters in R als in S vorkommt, bleiben *n-m t* übrig.
 - □ Falls t öfters in S als in R vorkommt, bleibt kein t übrig.
 - Jedes Vorkommen von t in S eliminiert ein t in R.

R	Α	В
	1	2
	3	4
	1	2
	1	2

AB12343456

R - S A B 1 2 1 2

S - R **A B**3 4
5 6

Projektion und Selektion auf Multimengen

- Projektion
 - Bei der Projektion können neue Duplikate entstehen.
 - Diese werden nicht entfernt

Α	В	С
1	2	5
3	4	6
1	2	7
1	2	7

-		
$\pi_{A,B}(R)$	Α	В
	1	2
	3	4
	1	2
	1	2

- Selektion
 - Selektionsbedingung auf jedes Tupel einzeln und unabhängig anwenden
 - □ Schon vorhandene Duplikate bleiben erhalten
 - Sofern sie beide selektiert bleiben

Α	В	С
3	4	6
1	2	7
1	2	7

Kreuzprodukt auf Multimengen

- Sei R eine Multimenge
 - □ Tupel *t* erscheine *n*-mal in R.
- Sei S eine Multimenge
 - □ Tupel *u* erscheine *m*-mal in S.
- Das Tupel tu erscheint in R × S n·m-mal.

R A B 1 2 1 2

 $R \times S$

Α	R.B	S.B	С
1	2	2	3
1	2	2	3
1	2	4	5
1	2	4	5
1	2	4	5
1	2	4	5

Joins auf Multimengen

Keine Überraschungen

R	Α	В
	1	2
	1	2

S	В	С
	2	3
	4	5
	4	5

$$R{\bowtie}_{\mathsf{R}.\mathsf{B}<\mathsf{S}.\mathsf{B}}\mathsf{S}$$

Α	R.B	S.B	С
1	2	4	5
1	2	4	5
1	2	4	5
1	2	4	5

Überblick

- Einführung
- Basisoperatoren
- Komplexe Ausdrücke
- Abgeleitete Operatoren
- Operatoren auf Multimengen

Überblick über Erweiterungen

- Duplikateliminierung
- Aggregation
- Gruppierung
- Sortierung
- Erweiterte Projektion
- Outer Join
- Outer Union
- Semijoin

Duplikateliminierung (duplicate elimination, δ)

- Wandelt eine Multimenge in eine Menge um.
 - Durch Löschen aller Kopien von Tupeln
 - \Box $\delta(R)$

Α	В	
1	2	
3	4	
1	2	
1	2	

R

S(R)	Α	В
	1	2
	3	4

Aggregation

- Aggregation fasst Werte einer Spalte zusammen.
 - Operation auf einer Menge oder Multimenge atomarer Werte (nicht Tupel)
 - Summe (SUM)
 - Durchschnitt (AVG)
 - Minimum (MIN) und Maximum (MAX)
 - Lexikographisch für nichtnumerische Werte
 - Anzahl (COUNT)
 - Doppelte Werte gehen auch doppelt ein.
 - Angewandt auf ein beliebiges Attribut ergibt dies die Anzahl der Tupel in der Relation.

Α	В
1	2
3	4
1	2
1	2

■ SUM(B) = 10

R

- AVG(A) = 1.5
- \blacksquare MIN(A) = 1
- \blacksquare MAX(B) = 4
- \blacksquare COUNT(A) = 4

Gruppierung

- Partitionierung der Tupel einer Relation gemäß ihrer Werte in einem oder mehr Attributen.
 - Hauptzweck: Aggregation auf Teilen einer Relation (Gruppen)
 - Gegeben
 - Filme(Titel, Jahr, Länge, inFarbe, StudioName, ProduzentID)
 - Gesucht: Gesamtminuten pro Studio
 - Gesamtminuten(StudioName, SummeMinuten)
 - Verfahren:
 - Gruppiere nach StudioName
 - Summiere in jeder Gruppe die Länge der Filme

Gruppierung (grouping, γ)

- γ_L(R) wobei L eine Menge von Attributen ist. Ein Element in L ist entweder
 - Ein Gruppierungsattribut nach dem gruppiert wird
 - Oder ein Aggregationsoperator auf ein Attribut von R (inkl. Neuen Namen für das aggregierte Attribut)
- Ergebnis wird wie folgt konstruiert:
 - Partitioniere R in Gruppen, wobei jede Gruppe gleiche Werte im Gruppierungsoperator hat
 - Falls kein Gruppierungsoperator angegeben: Ganz R ist die Gruppe
 - □ Für jede Gruppe erzeuge ein Tupel mit
 - Wert der Gruppierungsattribute
 - Aggregierte Werte über alle Tupel der Gruppe

Gruppierung – Beispiel

- Gegeben: SpieltIn(Titel, Jahr, SchauspName)
- Gesucht: Für jeden Schauspieler, der in mindestens 3 Filmen spielte, das Jahr des ersten Filmes.
- Idee
 - Gruppierung nach SchauspName
 - Minimum vom Jahr und Count von Titeln
 - □ Selektion nach Anzahl der Filme
 - Projektion auf Schauspielername und Jahr
- $= \pi_{SchauspName,MinJahr}(\sigma_{AnzahlTitel \ge 3}(\gamma_{SchauspName,MIN(Jahr) \rightarrow MinJahr,COUNT(Titel) \rightarrow AnzahlTitel}(SpieltIn)))$

Erweiterte Projektion

- Motivation: Mehr Fähigkeiten in den Projektionsoperator geben.
 - \Box Vorher: $\pi_L(R)$ wobei L eine Attributliste ist
 - Nun: Ein Element von L ist eines dieser drei Dinge
 - Ein Attribut von R (wie vorher)
 - Ein Ausdruck X→Y wobei X ein Attribut in R ist und Y ein neuer Name ist.
 - Ein Ausdruck E→Z, wobei E ein Ausdruck mit Konstanten, arithmetischen Operatoren, Attributen von R und String-Operationen ist und Z ein neuer Name ist.
 - » $A1+A2 \rightarrow Summe$
 - » Vorname || Nachname → Name

Erweiterte Projektion – Beispiel

R	Α	В	С
	0	1	2
	0	1	2
	3	4	5

Neue Duplikate können entstehen

Generalisierte Projektion

- Die Kombination von Gruppierung und Aggregation wird auch als generalsierte Projektion angesehen
 - Duplikatelimierung während Gruppierung
 - Aggregation der eliminierten Werte
- Generalisierte Projektion auf G mit Aggregation Agg von Attribut A:
 - $\square \quad \pi_{G,Agg(A)} = \pi_{G,A}((\gamma_{G,Agg(A)\to A}(R)))$

Sortierung (sorting, τ)

- \bullet $\tau_L(R)$ wobei L eine Attributliste aus R ist.
 - □ Falls L = $(A_1, A_2, ..., A_n)$ wir zuerst nach A_1 , bei gleichen A_1 nach A_2 usw. sortiert.
- Wichtig: Ergebnis der Sortierung ist keine Menge, sondern eine Liste.
 - Deshalb: Sortierung ist letzter Operator eines Ausdrucks.
 Ansonsten würden wieder Mengen entstehen und die Sortierung wäre verloren.
 - Trotzdem: Es macht manchmal auch Sinn zwischendurch zu sortieren.

Semi-Join (⋈)

Formal

$$\square$$
 R(A), S(B)

$$\square R \ltimes S := \pi_{A}(R \bowtie_{F} S)$$

$$= \pi_{A}(R) \bowtie_{F} \pi_{A \cap B}(S)$$

$$= R \bowtie_{F} \pi_{A \cap B}(S)$$

$$i.d.R. = R \bowtie_{F} \pi_{F}(S)$$

- In Worten: Join über R und S, aber nur die Attribute von R sind interessant.
- Nicht symmetrisch!

Outer Joins (Äußere Verbünde, |⋈|)

- Übernahme von "dangling tuples" in das Ergebnis und Auffüllen mit Nullwerten (padding)
- Full outer join
 - Übernimmt alle Tupel beider Operanden
 - \square $R/\bowtie \mid S$
- Left outer join (right outer join)
 - Übernimmt alle Tupel des linken (rechten) Operanden
 - \square $R \bowtie S$ (bzw. $R \bowtie S$)
- Andere Schreibweisen:
 - □ Herkömmlicher Join = "Inner join"

Outer Joins

- R ⋈ S
- R | ⋈ S
- R ⋈ | S
- R | ⋈ | S

Outer Joins

LINKS	Α	В
•	1	2
	2	3

RECHTS	В	С
	3	4
	4	5

Outer Joins und Informationsintegration

- Ziel: Möglichst viele Informationen
 - Viele Tupel
 - Viele Attribute
- Problem
 - Überlappende Attribute erkennen
 - = Schema Matching
 - Überlappende Tupel erkennen
 - = Duplikaterkennung

Schema Matching

 \emptyset_1 S_1 U_1 f_{12} j_1 j_2 \emptyset_2 U_2 *S*₂

Outer Union (⊎)

- Wie Vereinigung, aber auch mit inkompatiblen Schemata
 - Schema ist Vereinigung der Attributmengen
 - Fehlende Werte werden mit Nullwerten ergänzt.

R	Α	В	С
	1	2	3
	6	7	8
	9	7	8

R ⊌ S

Zusammenfassung und Ausblick

- Einführung
- Basisoperatoren
 - Selektion (σ)
 - \Box Projektion (π)
 - □ Vereinigung (∪)
 - □ Differenz (\ oder -)
 - Cartesisches Produkt (x)
 - Umbenennung (ρ)
- Komplexe Ausdrücke
- Abgeleitete Operatoren
 - □ Join (⋈)
 - □ Schnitt (∩)
 - Division (/)
- Operatoren auf Multimengen
- Erweiterte Operatoren
 - Duplikateliminierung
 - Generalisierte Projektion (Gruppierung und Aggregation)
 - Outer-Joins und Semi-Joins
 - Sortierung

In der nächsten Veranstaltung:

SQL (Kapitel 6 des Lehrbuches)

