2-9 Sorting and Selection

Hengfeng Wei

hfwei@nju.edu.cn

May 28, 2018

Show that · · ·

Show that · · ·

Argue that · · ·

Show that · · ·

Argue that · · ·

= Prove that \cdots

QUICKSORT Invented by Tony Hoare in 1959/1960

QUICKSORT Invented by Tony Hoare in 1959/1960

null pointer

QUICKSORT Invented by Tony Hoare in 1959/1960

null pointer
"I call it my billion-dollar mistake."

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

By substitution.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$
$$T(n) = \Omega(n \log n)$$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

 $\Omega(n \log k)$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

$$\Omega(n \log k)$$
 $O(n \log k)$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

$$\Omega(n \log k)$$
 $O(n \log k)$

$$(k!)^{\frac{n}{k}} \le \underline{L} \le 2^H$$

O(?)

$$O(?)$$
 $\Omega(?)$

$$O(?)$$
 $\Omega(?)$

$$L \ge \left(\underbrace{\frac{n}{k, \dots, k}}\right) = \frac{n!}{(k!)^{\frac{n}{k}}}$$

$$O(?)$$
 $\Omega(?)$

$$L \ge \left(\underbrace{\frac{n}{k, \dots, k}}\right) = \frac{n!}{(k!)^{\frac{n}{k}}} \implies \Omega(n \log(n/k))$$

Sorting $[0, n^3 - 1]$ (Problem 8.3-4)

Sort n integers in $[0, n^3 - 1]$ in ${\cal O}(n)$ time.

Suppose that the n records have keys in the range $\left[0,k\right]\!.$

Modify Counting-Sort to sort them in place O(k) in O(n+k) time.

Suppose that the n records have keys in the range [0,k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n+k) time.

$$C: egin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \ \hline 2 & 0 & 2 & 3 & 0 & 1 \end{bmatrix}$$

Suppose that the n records have keys in the range [0, k]. Modify Counting-Sort to sort them in place (O(k)) in O(n + k) time.

$$C: \begin{array}{|c|c|c|c|c|c|c|c|}\hline 0 & 1 & 2 & 3 & 4 & 5 \\\hline 2 & 0 & 2 & 3 & 0 & 1 \\\hline \end{array}$$

Suppose that the n records have keys in the range [0,k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n+k) time.

	1	2	3	4	5	6	7	8
A:	2	5	3	0	2	3	0	3

$$C: \begin{array}{|c|c|c|c|c|c|c|c|}\hline 0 & 1 & 2 & 3 & 4 & 5 \\\hline C: \hline 2 & 0 & 2 & 3 & 0 & 1 \\\hline \end{array}$$

Suppose that the n records have keys in the range [0,k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n+k) time.

	_	_	-	4	-	-	•	_
A:	2	5	3	0	2	3	0	3

While $(i \ge 1)$:

While $(i \ge 1)$:

Code here

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn