БИНАРНЫЕ ФОРМАТЫ AIWLIB

Содержание

1	Введение	1
2	Традиционные однородные регулярные сетки	2
3	Однородные регулярные сетки на основе Z-кривой Мортона	3
4	Сферическая сетка на основе рекурсивного разбиения пентакисдодекаэдра	3
5	Неструктурированная двумерная сетка — поверхность аппроксимированная треугольниками	3
6	ZAMR	3
7	Магнетики	3
8	Ансамбль сферических частиц	3

1 Введение

Все бинарные форматы aiwlib построены по общему принципу. В один файл может быть последовательно записано несколько независимых фреймов, содержащих данные в т.ч. для разнотипных контейнеров. Исключение составляет только формат для магнетиков, в котором первым фреймом записываются координаты магнитных моментов, а затем следуют фреймы с ориентациями магнитных моментов.

За исключением магнетиков, форматы ориентированы на хранения данных вида «array of structure». Тип ячейки задается пользователем но не хранится¹, сохраняется только размер ячейки в байтах.

Каждый фрейм предваряется заголовком. В свою очередьЮ заголовок состояит из текстового заголовка вида длина заголовка (4 байта) и текста. Затем следует четырехбайтовове служебное поле определяющее тип фрейма, затем идет несколько служебных полей с размером ячейки и размерами сетки. После заголовка следуют сами бинарные данные (ячейки сетки).

Некоторые форматы являются расширяемыми, дополнительные данные записываются в конец текстового заголовка и являются необязательными. Вьювер im3D корректно читает такой формат игнорируя дополнительные данные.

В большинстве случаев общая длина текстового заголовка и служебных полей в начале фрейма выбираются так, что бы данные фрейма были выравнены на 64 байта.

¹Механизм описания структуры ячейки разработан и реализован, но в настоящий момент не используется, в частности потому что нет выюверов которые могли бы его поддерживать

2 Традиционные однородные регулярные сетки

Самая распространенная струкутра данных численного моделирования. B aiwlib peaлизованы в виде класса Mesh<typename T, int D>.

величина	длина,	ТИП	описание величины			
	байт					
заголовок						
h_sz	4	uin32_t	длина текстового заголовка			
h	h_sz*4	char*	текстовый заголовок			
D	4	uint32_t	размерность сетки			
szT	4	uint32_t	размер ячейки сетки в байтах			
box	D*4	uint32_t[D]	размеры сетки в ячейках			
данные						
data	szT*N	пользовательский	ось x самая быстрая			

Опционально, в **текстовый** заголовок могут быть записаны следующие данные (размещаются после первого нулевого байта h)

величина	длина,	тип	описание величины
	байт		
axis	_	char*[D]	имена осей сетки, записываются последова-
			тельно, каждая ось состоит из длины (четы-
			рехбайтовое целое) и собственно имени
typeinfo	_	aiw::TypeInfo	описание структуры ячейки сетки, в настоя-
			щий момент не поддерживается
out_value	szT	пользовательский	значение на бесконечности (за пределами сет-
			ки)
align	_	_	некоторое количество нулей, необходимое
			для выравнивания данных сетки на 64 бай-
			та
bmin	D*8	double[D]	координаты левого нижнего угла сетки
bmax	D*8	double[D]	координаты правого верхнего угла сетки
mask	4	uint32_t	битовая маска

Битовая маска содержит:

- 31-й бит флаг наличия имен осей;
- 30-й бит флаг наличия структуры TypeInfo;
- младшие биты флаги логарифмического масштаба по соответствующим осям.

- 3 Однородные регулярные сетки на основе Z-кривой Мортона
- 4 Сферическая сетка на основе рекурсивного разбиения пентакисдодекаэдра
- 5 Неструктурированная двумерная сетка— поверхность аппроксимированная треугольниками

6 ZAMR

7 Магнетики

величина	длина,	тип	описание величины	
	байт			
заголовок				
F	4	int	флаг формата, равен нулю	
N	4	int	число магнитных моментов	
r	12*N	vctr<3, float>*	координаты магнитных моментов в конфигура-	
			ционном прострастве	
кадр с данными				
time	8	double	время кадра	
data	12*N	vctr<3, float>	массив значений магнитных моментов	

8 Ансамбль сферических частиц