Codificação aritmética

É uma extensão directa da codificação de Shannon-Fano-Elias onde, em vez de atribuir palavras de código a símbolos individuais, se atribui uma única palavra à mensagem inteira.

Ideia:

Substituir cada sequência de n símbolos por um único número no intervalo [0,1[. O número tem tanto mais casas decimais quanto menos provável é o bloco a codificar (=Shannon-Fano-Elias). Calcular de forma eficiente a probabilidade conjunta do bloco $p(x^n)$ e a acumulada $F(x^n)$ que permite determinar o código.

Vantagens:

- Não é necessário construir/manipular árvores.
- Desempenho muito bom (melhor que o Huffman) uma vez que não necessita de um número inteiro de bits para codificar cada símbolo individualmente.

Considere-se duas strings binárias x^n e y^n de comprimento n. Define-se uma ordem tal que $x^n > y^n$ se $0.x^n > 0.y^n$.

Podemos colocar as strings como folhas de uma árvore com n níveis. Se $x^n > y^n$ então x^n está à direita de y^n .

Assim, $F(x^n)$ é a soma das probabilidades de todos os blocos à esquerda de x^n .

 $F(x^n)$ pode ser calculado eficientemente somando as probabilidades das árvores à esquerda de **0110**.

Codifica-se o bloco x^n com a parte decimal de um número no intervalo [$F(x^n)$ - $p(x^n)$, $F(x^n)$ [truncado a $l(x^n)$ casas decimais com

$$l(x^n) = \left[-\log p(x^n)\right] + 1$$

Exemplo: Fonte binária i.i.d. $com x \sim Bern(0.15)$.

A fonte gera a string 1110111111101011111111. Para codificar esta mensagem é necessário calcular $F(x^n)$ e $p(x^n)$.

 $C(x^n) = 01110001110100$, $L(C) \cong 0.6667$ bits, $H(X) \cong 0.6098$ bits

À medida que se vai actualizando o valor $F(x^n)$ são necessárias progressivemente mais casas decimais.

A utilização da unidade de vírgula flutuante dos CPUs actuais está fora de causa, uma vez que tem uma precisão muito limitada (52 bits).

A dificuldade deste algoritmo está em escrever rotinas em aritmética inteira que efectuem os cálculos com a precisão necessária. Actualmente estas rotinas já existem.