LOAN PREDICTION BASED ON CUSTOMER BEHAVIOUR

WIN GAMES GROUP (kelompok 4)

Business Understanding

Understand the problem to solve, define what success looks like for solving the problem.

EDA (Exploratory Data Analysis)

Analyze and investigate data sets and get the insights.

Data PreProcessing

Handles null, duplicate and 'weird' data. Choose which features to use to minimize errors

Modeling & Evaluation

Select and develop the algorithm model to be used, and evaluate the results of the model.

Role & Problem Statement

Role

Win Games Group merupakan tim Data Scientist di PT. Pinjamkan bertugas untuk mencari **solusi** dalam mengatasi masalah melalui dataset nasabah yang tersedia.

Persentase Kelompok Nasabah

Problem Statement

PT. Pinjamkan memberikan pinjaman uang

12,3% nasabah gagal mengembalikan pinjaman

Jika nasabah yang berisiko bertambah maka dapat menyebabkan kerugian

Perusahan perlu mendeteksi nasabah mana yang mungkin berisiko

Goal & Business Metrics

Objective & Goal

- **Membuat predictive model** yang mampu memprediksi nasabah yang memiliki kemungkinan gagal membayar pinjaman, dan mengetahui fitur-fitur penting dalam memprediksi *risk customer*
- **Mengoptimalkan laba bisnis,** dengan cara mengklasifikasikan nasabah yang berisiko berdasarkan dataset yang ada untuk meminimalkan kerugian.

Business Metrics

- Default rate (persentase pelanggan yang tidak dapat mengembalikan pinjaman).
- 2. **Revenue, Profit, dan Cost** perusahaan berdasarkan sebelum dan sesudah hasil model.

Loan Dataset

12 Features in dataset

5 Numerical

- Income
- Age
- Experience
- Current job years
- Current house years

7 Categorical

- Profession
- Married/Single
- House Ownership
- Car Ownership
- City
- State
- Risk Flag

252000 rows

0 null

0 duplicates

Peta Situasi Area Kajian Negara India

1:18.000.000

Proyeksi : World Mecrator Sistem Grid : Grid Geografi

Sphereoid: WGS 1984 World Mecrator

Sumber data : GADM database (www.gadm.org)

Keterangan:

Batas Area Kajian

DATA VISUALIZATION

20

DATA VISUALIZATION

Marital Status

89,7% dari Total Customer berstatus Single

Own House

92,02% dari Total Customer masih **menyewa rumah**

Own Car

69,84% dari Total Customer tidak memiliki mobil

Distribusi risk customers berdasarkan marital status

Distribusi risk customers berdasarkan house ownership

Distribusi risk customers berdasarkan car ownership

Rasio *risk customers* berdasarkan marital status, house ownership, dan car ownership cukup seimbang, hal ini berbeda dengan distribusi data secara keseluruhan

	Income				
Mean	4,997,116				
Min	10,310				
Max	9,999,938				

Pendapatan Rata-Rata dari Total Customer adalah **5 Juta**

Distribusi risk customers berdasarkan usia

Rasio tertinggi **risk customers** terdapat
pada kelompok usia **Young Adult** (21-35 th)

	Experience
Mean	10
Min	0
Max	20

Rata-Rata Nasabah memiliki **experience** selama **10 Tahun**

State rank:

5 State **teratas** (berdasarkan *risk customers*)

Peta Negara Bagian India Berdasarkan Rasio Customer yang Beresiko Gagal Bayar

1:18.000.000

0	130 2	260	520	780	1.040
Р	royeksi	: V	Vorld Med	rator	
c	istam C	vial . C	vid Casa	wast:	

Sphereoid: WGS 1984 World Mecrator

Sumber data: GADM database (www.gadm.org)

Keterangan:

Nilai Rasio (fraksi desimal) High: 0,215548

Low : 0

State Ratio(%)

Manipur 21,55

Tripura 16,81

Kerala 16,70

Jammu Kashmir

Madya

Pradesh

15,89

15,43

Semakin tinggi

persentase resiko

suatu state maka

warnanya akan

cenderung merah.

Profession rank:

5 Profesi **teratas** (berdasarkan risk customer masing-masing profesi)

CORRELATION

DATA CLEANSING


```
train['STATE'].unique()
```

Terdapat beberapa value yang 'aneh' atau berbeda dari value yang lain pada kolom STATE dan CITY

DATA CLEANSING

FEATURE TRANSFORMATION

Age Income Experience Current house years

FEATURE ENCODING

FEATURE ENGINEERING

FEATURE SELECTION

FEATURE EXTRACTION

Nasabah yang telah menikah, memiliki rumah dan mobil akan diberikan nilai 1, sedangkan lainnya diberi nilai 0. Nasabah dengan karakteristik tersebut cenderung memiliki peningkatan resiko gagal membayar.

MODELLING

87.7%

rasio **87:13** (252.000)

2. Handle Class Imbalance, rasio **66 : 33** (265.203)

3. Split Data,

rasio **70:30** (265.203)

Dataset awal

Total 252.000, customer beresiko (30.996) dan customer non resiko (221.0004)

Handle Class Imbalance

SMOTE (0,4) & Under Sampling (0,5), customer beresiko (**88.401**) dan customer non resiko (**176.802**)

Split Train & Test

Sampling strategy 70:30 (**185.642**: **79.561**)

MODELLING

7 Features

- Income_norm
- Age_norm
- Experience_norm
- House year_norm
- State Rank
- Profession Rank
- Married_own_carhouse

Target

Risk Flag

Model

- Logistic
- K-Nearest Neighbour
- Decision Tree
- Random Forest
- XGBoost
- AdaBoost

MODELLING

MODEL EVALUATION

Model	Accuracy (%)	Precision (%)	Recall (%)	AUC (%)	F1 (%)
Logistic Regression	66,41	48,67	0,21	50,05	0,41
K-Nearest Neighbor	87,80	78,72 87,28		87,68	82,78
Decision Tree	88,65	78,67	90,84	89,19	84,32
Random Forest	90,77	83,56	90,29	90,66	86,80
XGB	85,47	85,61	68,20	81,20	75,92
AdaBoost	67,71	90,13	4,34	52,05	82,83

TUNING HYPERPARAMETERS

```
# list dari hyperparameter
#n estimators = [int(x) for x in np.linspace(100, 800, num = 8)]
# mengumpulkan semua hyperparameter pada dictionary
hyperparameters = dict(
                    n estimators = [int(x) for x in np.linspace(100, 1000, num=10)],
                    criterion = ['gini', 'entropy'],
                    max depth = [int(x) for x in np.linspace(100, 1000, num=10)],
                    min samples split = [int(x) for x in np.linspace(2, 10, num=5)],
                   min samples leaf = [int(x) for x in np.linspace(1, 5, num=5)],
                    max features = ['auto', 'sqrt', 'log2']
# Fit model
model = RandomForestClassifier(random state=42)
tune clf = RandomizedSearchCV(model, hyperparameters, cv=5, scoring='recall')
```


BEST MODEL

TUNING HYPERPARAMETERS

Hasil tuning model RANDOM FOREST meningkatkan nilai metrik model cukup baik, terutama pada bagian precision.

Metrics	Before Tuning (%)	After Tuning (%)	Perbedaan (%)
Accuracy	90,77	90,85	0,08
Precision	83,56	83,73	0,17
Recall	90,29	90,30	0,01
AUC	90,66	90,71	0,05
F1	86,80	86,89	0,09

BEST PARAMETERS

```
# Iterasi model berdasarkan best parameter dan feature selection
best model = RandomForestClassifier(bootstrap=True,
                                    ccp alpha=0.0,
                                    class weight=None,
                                    criterion='entropy',
                                    max depth=200,
                                    max features='auto',
                                    max leaf nodes=None,
                                    max samples=None,
                                    min impurity decrease=0.0,
                                    min samples leaf=1,
                                    min samples split=2,
                                    min weight fraction leaf=0.0,
                                    n estimators=300,
                                    n jobs=None,
                                    oob score=False,
                                    random state=42,
                                    verbose=0,
                                    warm start=False)
check scoring(best model)
```


FEATURE IMPORTANCE

FEATURE IMPORTANCE

- Income merupakan feature terpenting dalam model.
- Risk behaviour / married_own_car house memiliki pengaruh paling rendah (tidak mencapai 0.01).

FEATURE SELECTION

Feature **Risk Behaviour (married_own_carhouse)** di **drop**, kemudian iterasi model dengan best parameter model.

Metrics	Tuned Random Forest (%)
Accuracy	90,85
Precision	83,73
Recall	90,30
AUC	90,71
F1	86,89

EXTERNAL SOURCE

- Menurut situs BankBazaar, pinjaman di India digolongkan menjadi 2 yakni pinjaman tanpa jaminan (biaya murni untuk pribadi) dan pinjaman dengan jaminan (biaya lainnya).
- Jumlah pinjaman personal yang dapat diberikan oleh Bank di India minimum
 sebesar 1 lakh (1 lakh = 10.000 rupee; 1 rupee = Rp. 189,21).
- Diasumsikan setiap orang diberikan pinjaman 10.000 rupee, kemudian dengan menggunakan data test sebanyak 79,561 nasabah akan dilakukan perhitungan Default Rate, Cost, Revenue, dan Profit sebagai berikut:

Metrics	Tuned Random Forest (%)
Accuracy	90,85
Precision	83,73
Recall	90,30

	Kondisi	Cost	Revenue	Profit	Net Profit Margin	Return of Investment	Default Rate	
	Ideal	INR 795,610,000	INR 875,171,000	INR 79,561,000	9.09%	10.00%	0.00%	
	Aktual	INR 795,610,000	INR 581,240,000	-INR 214,370,000	-36.88%	-26.94%	33.59%	
To	Prediksi Model	INR 507,460,000	INR 529,683,000	INR 22,223,000	4.20%	4.38%	5.11%	

١	Kondisi	Nasabah		Jumlah	Pinjaman	Bunga	Cost	Expected Revenue	Revenue Realization	Expected Profit	Profit Realization	Net Profit Margin	Default Rate		
	a	١	b	c	d	•	f=cxd	g=fx(1+e)	h	i=g-f	j=h-f	k=j/h	1		
	Ideal	Ser	nua	79,561	10,000	10%	INR 795,610,00 0	INR 875,171,000	INR 875,171,000	INR 79,561,000	INR 79,561,000	9.09%	0%		
	Tidak berisiko		erisiko	52,840	10,000	10%	INR 528,400,00 0	INR 581,240,000	INR 581,240,000	INR 52,840,000	INR 52,840,000				
	Aktual	Berisiko		26,721	10,000	10%	INR 267,210,00 0	INR 293,931,000	-	INR 26,721,000	- INR 267,210,000				
		Total		79,561	10,000	10%	INR 795,610,00 0	INR 875,171,000	INR 581,240,000	INR 79,561,000	- INR 214,370,000	-38,88%	33.59%		
		Tidak	Tidak berisiko	48,153	10,000	10%	INR 481,530,00 0	INR 529,683,000	INR 529,683,000	INR 48,153,000	INR 48,153,000				
	Prediksi	berisiko 50,746	Berisiko	2,593	10,000	10%	INR 25,930,000	INR 28,523,000	-	INR 2,593,000	- INR 25,930,000		5,11%		
ļ			Berisiko (tolak)	Tidak berisiko	4,687	0	10%	-	-	-	-	-			
		28,815	Berisiko	24,128	0	10%	-	-	-	-	-				
		Total		79,561	10,000	10%	INR 507,460,00 0	INR 558,206,000	INR 529,683,000	INR 50,746,000	INR 22,223,000	4,20%	5,11%		

5 Profesi **teratas**(berdasarkan
profesi terhadap
jumlah customer
pada false negative)

16	Profession	prediction
0	Police_officer	164
1	Software_Developer	159
2	Physician	140
3	Surveyor	139
4	Technical_writer	134

BUSINESS RECOMMENDATION

- 1. Berdasarkan karakteristik dataset, perusahaan dapat **menawarkan program pinjaman modal** untuk **menikah**, **membeli rumah**, ataupun **cicilan mobil** kepada nasabah.
- 2. Perusahaan dapat **mengimplementasikan model** ini dalam **prediksi** nasabah tergolong dalam status beresiko atau non resiko.
- 3. Perusahaan perlu **menambah informasi finansial nasabah** agar dapat menambah feature lebih banyak dalam mengembangkan model.
- 4. Perusahaan dapat lebih **memperketat syarat pinjaman** bagi nasabah, terutama yang **profesinya** termasuk dalam lima peringkat teratas nasabah gagal bayar. (Sebagai contoh pada nasabah yang terklasifikasi False Negative, 5 profesi terbanyak adalah polisi, software developer, fisikawan, surveyor, dan penulis teknik).

Stop Video

Mute

Record

