Algebra Review: Evaluating Formulas

Evaluate each expression for the given values of the variables.

 $\frac{1}{2}bh$ when b = 12 and $h = 6\sqrt{3}$

Solution $\frac{1}{2}(12)(6\sqrt{3}) = 36\sqrt{3}$

- 1. Area of a square: s^2 when s = 1.3
- 2. Length of hypotenuse of a right triangle: $\sqrt{a^2 + b^2}$ when a = 15 and b = 20
- 3. Perimeter of parallelogram: 2x + 2y when $x = \frac{5}{2}$ and $y = \frac{3}{2}$
- **4.** Perimeter of triangle: a + b + c when a = 11.5, b = 7.2, and c = 9.9
- 5. Area of a rectangle: lw when $l = 2\sqrt{6}$ and $w = 3\sqrt{3}$
- **6.** Perimeter of isosceles trapezoid: 2r + s + t when $r = \frac{4}{7}$, s = 1, and $t = \frac{13}{7}$
- 7. πr^2 when r = 30 (Use 3.14 for π .)
- 8. lwh when l = 8, $w = 6\frac{1}{4}$, and $h = 3\frac{1}{2}$
- **9.** 2(lw + wh + lh) when l = 4.5, w = 3,
- 10. $\frac{x-3}{y+2}$ when x=3 and y=-4
- 11. $\frac{x+5}{y-2}$ when x = -2 and y = -4
- 12. mx + b when x = -6, $m = \frac{5}{2}$,

13. $6t^2$ when t = 3

- 14. $(6t)^2$ when t = 3
- 15. $\frac{1}{2}h(a+b)$ when h=3, $a=3\sqrt{2}$. and $b = 7\sqrt{2}$
- **16.** $\sqrt{(x-5)^2+(y-3)^2}$ when x=1
- 17. $\frac{1}{3}x^2h$ when $x = 4\sqrt{3}$ and h = 6
- 18. $2s^2 + 4sh$ when $s = \sqrt{6}$ and $h = \frac{5}{2}\sqrt{6}$

Use the given information to rewrite each expression.

Bh when $B = \frac{1}{2}rs$ Example

 $Bh = (\frac{1}{2}rs)h = \frac{1}{2}rsh$ Solution

- **19.** c(x + y) when x + y = d
- **20.** $\frac{1}{3}Bh$ when $B = \pi r^2$
- **21.** $\frac{1}{2}pl$ when $p = 2\pi r$

- **22.** 2(l + w) when l = sand w = s
- 23. $4\pi r^2$ when $r = \frac{1}{2}d$
- **24.** $n(\frac{1}{2}sa)$ when ns = p

Solve each formula for the variable shown in color.

Example y = mx + b

Solution y - b = mx; $x = \frac{y - b}{m}, m \neq 0$

- **25.** ax + by = c **26.** $C = \pi d$
- **27.** S = (n 2)180 **28.** $x^2 + y^2 = r^2$

- **29.** $\frac{x}{h} = \frac{h}{y}$ **30.** $a^2 + b^2 = (a\sqrt{2})^2$ **31.** $A = \frac{1}{2}bh$ **32.** $m = \frac{y+4}{y-2}$