(2) Prove that

$$||A^{-1}||_{\infty} \le \delta^{-1}$$
.

Hint. Prove that

$$\sup_{v \neq 0} \frac{\|A^{-1}v\|_{\infty}}{\|v\|_{\infty}} = \sup_{w \neq 0} \frac{\|w\|_{\infty}}{\|Aw\|_{\infty}}.$$

Problem 9.5. Let A be any invertible complex $n \times n$ matrix.

(1) For any vector norm $\| \|$ on \mathbb{C}^n , prove that the function $\| \|_A : \mathbb{C}^n \to \mathbb{R}$ given by

$$\|x\|_A = \|Ax\| \quad \text{for all} \quad x \in \mathbb{C}^n,$$

is a vector norm.

(2) Prove that the operator norm induced by $\| \|_A$, also denoted by $\| \|_A$, is given by

$$||B||_A = ||ABA^{-1}||$$
 for every $n \times n$ matrix B ,

where $||ABA^{-1}||$ uses the operator norm induced by || ||.

Problem 9.6. Give an example of a norm on \mathbb{C}^n and of a *real* matrix A such that

$$||A||_{\mathbb{R}} < ||A||,$$

where $\|-\|_{\mathbb{R}}$ and $\|-\|$ are the operator norms associated with the vector norm $\|-\|$. Hint. This can already be done for n=2.

Problem 9.7. Let $\| \|$ be any operator norm. Given an invertible $n \times n$ matrix A, if $c = 1/(2\|A^{-1}\|)$, then for every $n \times n$ matrix H, if $\|H\| \le c$, then A + H is invertible. Furthermore, show that if $\|H\| \le c$, then $\|(A + H)^{-1}\| \le 1/c$.

Problem 9.8. Let A be any $m \times n$ matrix and let $\lambda \in \mathbb{R}$ be any positive real number $\lambda > 0$.

- (1) Prove that $A^{\top}A + \lambda I_n$ and $AA^{\top} + \lambda I_m$ are invertible.
- (2) Prove that

$$A^{\top} (AA^{\top} + \lambda I_m)^{-1} = (A^{\top} A + \lambda I_n)^{-1} A^{\top}.$$

Remark: The expressions above correspond to the matrix for which the function

$$\Phi(x) = (Ax - b)^{\top} (Ax - b) + \lambda x^{\top} x$$

achieves a minimum. It shows up in machine learning (kernel methods).

Problem 9.9. Let Z be a $q \times p$ real matrix. Prove that if $I_p - Z^{\top}Z$ is positive definite, then the $(p+q) \times (p+q)$ matrix

$$S = \begin{pmatrix} I_p & Z^\top \\ Z & I_q \end{pmatrix}$$

is symmetric positive definite.