SOLUTION

Problem 5. The incidence of a rare disease seems to be decreasing. In successive years, the number of new cases is y_1, \ldots, y_n . We assume that y_1, \ldots, y_n are independent random variables from Poisson distributions with means $\theta, \theta^2, \ldots, \theta^n$ respectively.

- a) Forumlate a likelihood ratio test for testing H_0 : $\theta = 1$ versus H_a : $\theta < 1$. For $(y_1, y_2) = (2, 0)$, would such test with size 0.20 test accept or reject H_0 ?
- b) Describe a procedure for forming a level 0.95 one-sided confidence interval of the form $(0, \theta_u)$ [you do not need to come up with a closed form expression and can express that you would need to calculate the quantiles of certain distributions and do a numerical search to form the confidence interval]. Use your procedure to find (approximately) a realized confidence interval of the form $(0, \theta_u)$ for the sample $(y_1, y_2) = (2, 0)$ (you may want to write a computer program for this).

Solution.

a) The likelihood function of (y_1, y_2) is

$$L(\theta) = \frac{\theta^{y_1 + 2y_2} \exp(-\theta - \theta^2)}{y_1! y_2!}.$$

For $\theta_0 = 1$, and any $\theta_1 < 1$, the likelihood ratio is

$$\frac{L(\theta_1)}{L(\theta_0)} = \left(\frac{\theta_1}{\theta_0}\right)^{y_1 + 2y_2} \exp(-\theta_1 - \theta_1^2 + \theta_0 + \theta_0^2),$$

which is a strictly decreasing function of $y_1 + 2y_2$. We reject H_0 if $L(\theta_1)/L(\theta_0)$ is large, or equivalently when $y_1 + 2y_2 \le y$.

Let $Y = Y_1 + 2Y_2$. Under $H_0, Y_1, Y_2 \sim \text{Poisson}(1)$ i.i.d.. We have

$$P(Y=0) = P(Y_1=0, Y_2=0) = 0.1353$$

$$P(Y=1) = P(Y_1=1, Y_2=0) = 0.1353$$

Therefore,

$$P(Y \le 0 \mid H_0) = 0.1353 < 0.2, \quad P(Y \le 1 \mid H_0) = 0.2706 > 0.2.$$

The size 0.20 test will reject H_0 when y = 0, i.e. $y_1 = y_2 = 0$. When $(y_1, y_2) = (2, 0)$, we do not reject H_0 .

b) To find the 95% upper bound for θ , we first do hypothesis test H_0 : $\theta = \theta_0 \ vs. \ H_1$: $\theta = \theta_1 < \theta_0$, and find the largest θ_0 so that H_0 is not rejected at the level 0.05 with the observation $(y_1, y_2) = (2, 0)$.

By a), we know that we will reject H_0 only if $Y = Y_1 + 2Y_2$ is small. When $\theta = \theta_0$,

$$\begin{split} \mathbf{P}(Y=0) &= \mathbf{P}(Y_1=0, Y_2=0) = \exp(-\theta_0 - \theta_0^2) \\ \mathbf{P}(Y=1) &= \mathbf{P}(Y_1=1, Y_2=0) = \theta_0 \exp(-\theta_0 - \theta_0^2) \\ \mathbf{P}(Y=2) &= \mathbf{P}(Y_1=2, Y_2=0) + \mathbf{P}(Y_1=0, Y_2=1) = 3\theta_0^2 \exp(-\theta_0 - \theta_0^2)/2 \end{split}$$

We need to find the largest θ_0 so that $P(Y \le 2) \le 0.05$. Let

$$f(\theta_0) = (1 + \theta_0 + 3\theta_0/2) \exp(-\theta_0 - \theta_0^2)$$

It is easy to see that $f'(\theta_0) < 0$. Therefore, $f(\theta_0)$ is a monotone decreasing function. Equivalently, we set $f(\theta_0) = 0.05$ and find the root $\theta_0 = 1.80$ (by R function *uniroot*).

Therefore, the 0.95 one-sided CI of θ is (0, 1.80).

1 The Duarity between Confidence Interval and Hypothesis Testing

Example. Suppose X_1, \ldots, X_n i.i.d. $\sim N(\mu, 1)$. We would like to test

$$H_0: \mu = \mu_0, vs. H_1: \mu \neq \mu_0$$

with type I error α .

In last semester, we learnt that we can use the following test:

$$T = \sqrt{n}(\bar{X} - \mu_0)$$

and reject H₀ when $|T| > z_{1-\alpha/2}$, where $z_{1-\alpha/2}$ is the $1 - \alpha/2$ -th quantile of the standard normal density.

On the other hand, after we observe X_1, \ldots, X_n , we can build up a $(1-\alpha)$ confidence interval of μ :

$$(\bar{X} - z_{1-\alpha/2}/\sqrt{n}, \ \bar{X} + z_{1-\alpha/2}/\sqrt{n}).$$

Now suppose $\bar{X} = 1$, n = 10, and $\alpha = 0.05$. The 95% CI of μ is (0.38, 1.62). How does this link to hypothesis testing?

Now consider H_0 : $\mu_0 = 0.38$ and H_1 : $\mu_1 \neq 0.38$. Then T = 1.96. It is on the rejection cutoff boundary. If H_0 : $\mu_0 = 0.39$, then T = 1.93 < 1.96, we do not reject H_0 . And if H_0 : $\mu = 0.37$, then T = 1.99 > 1.96, and we reject H_0 . This is to say that $\mu_0 = 0.38$ is the smallest μ_0 so that H_0 : $\mu = \mu_0$ is not rejected at the level of 0.05. Similarly, we can show that $\mu_0 = 1.61$ is the largest μ_0 so that H_0 is not rejected at the same level.

This builds up a link between hypothesis testing and confidence interval. To find $1 - \alpha$ two sideded confidence interval of μ , we only need to find the smallest and largest μ_0 such that

$$H_0: \mu = \mu_0, vs. H_1: \mu \neq \mu_0$$

is not rejected under the level of α .

Example. How about one-sided confidence interval? Following the above example, we know that the one-sided lower confidence interval for μ is

$$(-\infty, \bar{X} + z_{1-\alpha}/\sqrt{n}) = (-\infty, 1.52)$$

Consider

$$H_0: \mu = \mu_0, vs. H_1: \mu < \mu_0$$

To control type I error at level α , we reject H₀ when T < -1.64.

Now let $\mu_0 = 1.52$, then T = -1.64, which is on the rejection boundary. When $\mu_0 = 1.51$, then T = -1.61, and therefore we do not reject H₀. And when $\mu_0 = 1.53$, then T = -1.67, and therefore we reject H₀. Therefore, $\mu_0 = 1.52$ is the largest μ_0 such that the one sided test

$$H_0: \mu = \mu_0, \quad vs. \quad H_1: \mu < \mu_0$$

is not rejected.