Compito Esperimentazioni I

5 Luglio 2007

Esperimentazioni I B e A+B

(1.5)1. La grandezza R è misurata indirettamente, mediante la relazione:

$$R = \frac{sen(2 \alpha + \beta)}{sen(\beta)}$$

 $R=\frac{sen(2~\alpha+\beta)}{sen(\beta)}$ dalle seguenti misure dirette: $\alpha=(29^\circ59'\pm3');~\beta=(60^\circ~2'\pm2')$

Determinare la miglior stima di R e della sua incertezza relativa.

(2.5)2. Un sistema ottico è costituito da una lente sottile avente potere diottrico $P_1 = 2.50 \ diottrie$ e da un specchio sferico concavo di raggio R=80~cm e centro di curvatura sull'asse ottico della lente. La distanza tra la lente e lo specchio è 40 cm.

> Ad una distanza di 80 cm dalla lente sottile e dalla parte opposta dello specchio, viene posta una sorgente luminosa puntiforme.

> Determinare, graficamente e analiticamente, la posizione dell'immagine prodotta dal sistema ottico.

(1.0)3. Descrivere i possibili metodi sperimentali di misura della distanza focale di una lente sottile divergente, evidenziando, e possibilmente quantificando, le corrispondenti incertezze.

Esperimentazioni I A+B

4 Due grandezze fisiche y e x sono fra loro legate dalla relazione $y = \frac{x}{A} + B$. (2.5)I risultati di alcune misure sono i seguenti (l'incertezza relativa sulle misure di x è di $1 \cdot 10^{-3}$):

x(cm)	10.0	5.00	2.50	2.00	1.25
y(g)	38.50	38.70	38.79	38.83	38.86
$\Delta y(\mathbf{g})$	0.03	0.02	0.03	0.01	0.03

Determinare graficamente A e B, dando anche una stima della loro incertezza.

(0.5)5 Determinare le dimensioni fisiche della grandezza y dalla seguente relazione:

$$G = \frac{\rho \ y}{l \ m} \cdot \frac{dz}{dv}$$

con G= modulo di una forza, m= massa, $\frac{dz}{dv}$ = gradiente di una lunghezza rispetto ad una velocità, ρ = densità, l= lunghezza e ricavarne le sue unità di misura nel S.I. e nel C.G.S., determinando anche il fattore di conversione tra le due unità.

(2.0)6 Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di $3. \cdot 10^{-3}$:

$$\frac{1}{(81+x^4)}$$
 in $x = 0.2 \cdot 10^{-2}$; $sen(x)$ in $x = 30^{\circ}30'$; $ln(1+x)^3$ in $x = 0.003$