INDHIRESH S- EE25BTECH11027

Question. Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point **P** moves so that at any time t the position vector \overrightarrow{OP} (where **O** is the origin) is given by $\hat{\mathbf{a}} \cos t + \hat{\mathbf{b}} \sin t$. When **P** is farthest from origin **O**, let M be the length of \overrightarrow{OP} and $\hat{\mathbf{u}}$ be the unit vector along \overrightarrow{OP} . Then,

1)
$$\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$$
 and $M = (1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{\frac{1}{2}}$

2) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} - \hat{\mathbf{b}}}{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}$ and $M = (1 + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{\frac{1}{2}}$

3) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$ and $M = (1 + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{\frac{1}{2}}$

4) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} - \hat{\mathbf{b}}}{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}$ and $M = (1 + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{\frac{1}{2}}$

Solution:

Let us solve the given equation theoretically and then verify the solution computationally. Given equation:

$$\mathbf{P} = \mathbf{a}\cos t + \mathbf{b}\sin t \tag{1}$$

Which can be written as:

$$\mathbf{P} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \tag{2}$$

From given if P is farthest from origin , then length of P is given as M.From this we can say that

$$M = \max ||\mathbf{P}|| \tag{3}$$

Now,

$$\|\mathbf{P}\| = \sqrt{(\mathbf{P})^T(\mathbf{P})} \tag{4}$$

$$\|\mathbf{P}\| = \sqrt{\left(\left(\mathbf{a} - \mathbf{b}\right)\begin{pmatrix}\cos t\\\sin t\end{pmatrix}\right)^T \left(\left(\mathbf{a} - \mathbf{b}\right)\begin{pmatrix}\cos t\\\sin t\end{pmatrix}\right)}$$
 (5)

$$\|\mathbf{P}\| = \sqrt{\begin{pmatrix} \cos t \\ \sin t \end{pmatrix}^T \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix}^T \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}}$$
 (6)

$$\|\mathbf{P}\| = \sqrt{\|\mathbf{a}\|^2 \cos^2 t + \|\mathbf{b}\|^2 \sin^2 t + 2(\mathbf{a})^T(\mathbf{b})(\cos t)(\sin t)}$$
 (7)

$$\|\mathbf{P}\|^2 = \begin{pmatrix} cost & sint \end{pmatrix} \begin{pmatrix} 1 & (\mathbf{a})^T(\mathbf{b}) \\ (\mathbf{a})^T(\mathbf{b}) & 1 \end{pmatrix} \begin{pmatrix} cost \\ sint \end{pmatrix}$$
(8)

1

Let

$$\mathbf{x} = \begin{pmatrix} cost \\ sint \end{pmatrix} \quad and \quad \mathbf{G} = \begin{pmatrix} 1 & (\mathbf{a})^T(\mathbf{b}) \\ (\mathbf{a})^T(\mathbf{b}) & 1 \end{pmatrix} \tag{9}$$

Then,

$$\|\mathbf{P}\|^2 = \mathbf{x}^T \mathbf{G} \mathbf{x} \tag{10}$$

Now we should find the maximum value of x^TGx such that ||x|| = 1

By **Rayleigh-Ritz theorem**, the maximum value of the quadratic form if \mathbf{x} is a unit vector will be the largest eigenvalue (λ_{max}) of the matrix \mathbf{G} . So,

$$max \|\mathbf{P}\| = \sqrt{\lambda_{max}} \tag{11}$$

Now we will calculate the Eigen value for the matrix G:

$$|G - \lambda I| = 0 \tag{12}$$

$$\begin{vmatrix} 1 - \lambda & (\mathbf{a})^T(\mathbf{b}) \\ (\mathbf{a})^T(\mathbf{b}) & 1 - \lambda \end{vmatrix} = 0$$
 (13)

$$(1 - \lambda)^2 - ((\mathbf{a})^T(\mathbf{b}))^2 = 0$$
 (14)

$$1 - \lambda = (\mathbf{a})^T(\mathbf{b}) \quad or \quad 1 - \lambda = -(\mathbf{a})^T(\mathbf{b})$$
 (15)

$$\lambda = 1 + (\mathbf{a})^T(\mathbf{b}) \quad or \quad \lambda = 1 - (\mathbf{a})^T(\mathbf{b}) \tag{16}$$

It is already given that $(\mathbf{a})^T(\mathbf{b}) > 0(\mathbf{a} \text{ and } \mathbf{b} \text{ form an acute angle})$. so,

$$\lambda_{max} = 1 + (\mathbf{a})^T (\mathbf{b}) \tag{17}$$

From Eq.9

$$max \|\mathbf{P}\| = \sqrt{1 + (\mathbf{a})^T(\mathbf{b})}$$
 (18)

The above equation can be written as

$$max \|\mathbf{P}\| = \sqrt{1 + \mathbf{a.b}} \tag{19}$$

From Eq.2:

$$M = \sqrt{1 + \mathbf{a.b}} \tag{20}$$

Now let us find the value of t for which $\|\mathbf{P}\|$ is max

With eigenvalue equation, We'll use matrix G and largest eigenvalue λ_{max} such that,

$$(G - \lambda I)x = 0 (21)$$

$$\begin{pmatrix} -(\mathbf{a})^T(\mathbf{b}) & (\mathbf{a})^T(\mathbf{b}) \\ (\mathbf{a})^T(\mathbf{b}) & -(\mathbf{a})^T(\mathbf{b}) \end{pmatrix} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (22)

By solving this we'll get

$$cost = sint$$
 (23)

We already know that:

$$\sin^2 t + \cos^2 t = 1 \tag{24}$$

So,

$$sint = \frac{1}{\sqrt{2}} \quad and \quad cost = \frac{1}{\sqrt{2}} \tag{25}$$

From above result

$$t = \frac{\pi}{4} \tag{26}$$

Now unit vector **u** along **P** is given by:

$$\mathbf{u} = \frac{\mathbf{P}}{\|\mathbf{P}\|} \tag{27}$$

$$\mathbf{u} = \frac{\mathbf{a}\cos t + \mathbf{b}\sin t}{\|\mathbf{a}\cos t + \mathbf{b}\sin t\|}$$
(28)

Now subtituiting the value of t in above equation:

$$\mathbf{u} = \frac{\mathbf{a} \frac{1}{\sqrt{2}} + \mathbf{b} \frac{1}{\sqrt{2}}}{\left\| \mathbf{a} \frac{1}{\sqrt{2}} + \mathbf{b} \frac{1}{\sqrt{2}} \right\|}$$
(29)

$$\mathbf{u} = \frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} \tag{30}$$

From Eq.18 and Eq.28 (a) is correct

From the figure it is clearly verified that the theoretical solution matches with the computational solution.

