The minimum sum is ${\bf 1}+{\bf 3}+{\bf 5}+{\bf 7}={\bf 16}$ and the maximum sum is

3+5+7+9=24. The function prints

16 24

Function Description

Complete the miniMaxSum function in the editor below.

miniMaxSum has the following parameter(s):

• arr: an array of **5** integers

Print

Leaderboard

Print two space-separated integers on one line: the minimum sum and the maximum sum of $\bf 4$ of $\bf 5$ elements.

Input Format

A single line of five space-separated integers.

Constraints

 $1 \leq arr[i] \leq 10^9$

Output Format

Print two space-separated long integers denoting the respective minimum and maximum values that can be calculated by summing exactly four of the five integers. (The output can be greater than a 32 bit integer.)

Sample Input

1 2 3 4 5

Sample Output

10 14

Explanation

The numbers are ${\bf 1}, {\bf 2}, {\bf 3}, {\bf 4}$, and ${\bf 5}$. Calculate the following sums using four of the five integers:

- 1. Sum everything except ${f 1}$, the sum is ${f 2+3+4+5=14}$.
- 2. Sum everything except $\mathbf{2}$, the sum is $\mathbf{1} + \mathbf{3} + \mathbf{4} + \mathbf{5} = \mathbf{13}$.
- 3. Sum everything except ${f 3}$, the sum is ${f 1+2+4+5=12}$.
- 4. Sum everything except ${f 4}$, the sum is ${f 1+2+3+5=11}$.
- 5. Sum everything except ${\bf 5}$, the sum is ${\bf 1}+{\bf 2}+{\bf 3}+{\bf 4}={\bf 10}$.

Hints: Beware of integer overflow! Use 64-bit Integer.

Need help to get started? Try the Solve Me First problem

