

PTA Observing Strategies for Gravitational-wave Detection

Sam Finn Penn State

Work in collaboration with Andrea Lommen, Joe Simon, Ryan Anella

What is Strategy?

- A plan of action to achieve a vision
- What is the vision?
- What actions can you take to realize it?
- Deploy resources to enable actions that achieve your vision

Goals, Actions & Resources

Goals

- Greatest expected number of sources?
- Greatest ability to localize sources detected?
- Greatest ability to measure wave polarization?
- Actions
 - Timing existing pulsars
 - Searching for new timers
- Resources
 - Pulsars
 - Telescopes
 - Observing time

If we're going to prioritize, we're going to need some priorities.

Identify Your Resources

- Pulsars
 - Which should we time?
- Observing time
 - How should we allocate it among pulsars?
- Telescopes
 - Are there advantages to timing particular pulsars with particular telescopes?

Goal: Greatest expected *number* of sources?

- Antenna patterns add in quadrature
 - If sources are homogeneously and isotropically distributed, greatest number of sources corresponds to greatest volume of space observable
 - Conclusion: want all pulsars are in same direction ...
 - But, what is sources are not isotropically distributed . . .

Goal: Greatest ability to localize observed sources?

- Ability to localize associated with change in response when wave propagation direction changes
 - Large change in response: greatest ability to localize
 - Occurs when angle between pulsar line of sight and wave propagation direction is 90 deg.
- Conclusions:
 - pulsar distribution that maximizes number has poor localization capability
 - Want pulsars orthogonal to each other on sky

Goal: Greatest ability to measure observed source polarization

- Polarization tells us about source
 - Axisymmetric or non-axisymmetric;
 orientation; internal dynamics
- Stokes parameters describe polarization in terms of measured field intensities
 - Why intensities? Intensities explain interference phenomena that fields cannot
- For transverse (traceless) fields, four intensities and four Stokes parameters
 - I: Specific intensity
 - Q, U: linear polarization
 - V: Circular polarization

Analytic signal: strip off
$$\mathcal{E}_{+,\times} = -rac{1}{2}\ddot{h}_{+,\times}$$
 negative frequencies $\tilde{\mathcal{E}}_T = \int_0^T e^{2\pi i f t} \mathcal{E} \, dt$
$$\begin{pmatrix} I_f \\ Q_f \\ U_f \\ V_f \end{pmatrix} = rac{1}{8\pi \left(2\pi f\right)^2 T} \begin{pmatrix} \left|\tilde{\mathcal{E}}_+\right|^2 + \left|\tilde{\mathcal{E}}_\times\right|^2 \\ \left|\tilde{\mathcal{E}}_+\right|^2 - \left|\tilde{\mathcal{E}}_\times\right|^2 \\ 2\Re \left(\tilde{\mathcal{E}}_+\tilde{\mathcal{E}}_\times^\dagger\right) \end{pmatrix}$$

Polarization and the Poincare Sphere

- Fully-polarized radiation: I²=Q²+U²+V²
 - Q, U, V represent points on radius I *Poincare* Sphere
- Polarization described by two angles: χ and ψ
 - χ measures circular polarization
 - ullet ψ measures linear polarization angle

Mean Power SNR as function sky location for fixed Stokes I wave

All 17 NANOGrav PSRs

Median Poincare sphere error-box volume for fixed S₁ wave

Median error in measured S_V for fixed S_I wave

All 17 NANOGrav PSRs

Median error in measured linear polarization angle for fixed S_I wave

All 17 NANOGrav PSRs

Median error in Stokes S₁ for fixed S₁ wave

Which pulsars should we time?

- Mean contribution of a pulsar to (power) signal-to-noise in a PTA observation is proportional to $\tau_{\rm n}^{-2}$
 - At present, on average 84% of SNR contributed by 1713 & 1909
 - Add next two most important (1855 & 0030) and you have 90% of SNR!
- Conclusion: need more 1713's, 1909's
 - Improve timing of existing PSRs and/or find new ones

Pulsar	% SNR
J0030+0451	2.14
J0613-0200	1.48
J1012+5307	0.62
J1455-3330	0.08
J1600-3053	1.77
J1640+2224	0.28
J1643-1224	0.02
J1713+0747	52.19
J1744-1134	1.20
J1853+1308	0.72
B1855+09	3.81
J1909-3744	32.53
J1910+1256	0.09
J1918-0642	1.14
B1953+29	0.02
J2145-0750	1.15
J2317+1439	0.75

How should we allocate observing time?

- Timing noise involves a component that can be averaged down and a component that is intrinsic
 - Longer integrations can improve timing noise, up to a point ...
- Allocate observing time to
 - Increase number of pulsars with residuals within factor few of best pulsar
 - Observe only pulsars with residuals with factor few of pulsar

Lessons:

- 1. It matters what you want
- 2. It matters where you look (for new pulsars)
- 3. It matters who you time
- 4. It matters how you time