Final Report

LIMITED ENERGY STUDY, POWER DISTRIBUTION

FORT GREELY, ALASKA

Prepared for

U.S. ARMY ENGINEER DISTRICT, MOBILE MOBILE, ALABAMA 36628

Under

U.S. ARMY ENGINEER DISTRICT, MOBILE INDEFINITE DELIVERY A-E CONTRACT Contract No. DACA01-94-D-0033 Delivery Order 003 EMC No. 1406-003

March 1996

By

E M C Engineers, Inc. 2750 S. Wadsworth, Suite C-200 Denver, Colorado 80227 303/988-2951

DTIC QUALITY INSPECTED 8

19971022 144

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

TABLE OF CONTENTS

List of Tables	iv
List of Figures	1v
List of Abbreviations	<i>v</i>
Executive Summary	1
1. INTRODUCTION	1-1
1.1 AUTHORITY FOR STUDY	1-1
1.2 PURPOSE OF STUDY	1-1
1.3 SCOPE OF WORK	1-1
1.4 DEMAND AND ENERGY COSTS	1-2
1.5 CONSTRUCTION COST ESTIMATING	1-2
1.6 LIFE CYCLE COST ANALYSIS METHODOLOGY	1-3
1.7 ORGANIZATION OF DOCUMENT	1-3
2. EXISTING SYSTEM DESCRIPTION AND EVALUATION	2-1
2. EXISTING SYSTEM DESCRIPTION AND EVALUATION	
2.1 GENERAL	2-1
2.1 GENERAL	2-1
2.1 GENERAL	2-1 2-1 2-1
2.1 GENERAL 2.2 DETAILS	2-12-12-12-1
2.1 GENERAL	2-12-12-12-12-12-1
2.1 GENERAL	2-12-12-12-12-12-2
2.1 GENERAL 2.2 DETAILS	2-12-12-12-12-22-22-2
2.1 GENERAL 2.2 DETAILS	2-12-12-12-12-22-22-22-2
2.1 GENERAL 2.2 DETAILS	2-12-12-12-12-22-22-22-22-3
2.1 GENERAL 2.2 DETAILS 2.2.1 Buildings	2-12-12-12-12-22-22-22-32-3
2.1 GENERAL	2-12-12-12-12-22-22-22-32-3
2.1 GENERAL	2-12-12-12-12-22-22-32-32-42-5
2.1 GENERAL 2.2 DETAILS	2-12-12-12-12-22-22-22-32-32-42-52-6
2.1 GENERAL	2-12-12-12-12-22-22-32-42-62-6
2.1 GENERAL 2.2 DETAILS	2-12-12-12-12-12-22-22-22-32-32-42-52-62-62-8
2.1 GENERAL	2-12-12-12-12-12-22-22-22-32-32-42-52-62-82-8
2.1 GENERAL 2.2 DETAILS 2.2.1 Buildings 2.2.2 Transformers 2.2.2.1 Main Transformer (GVEA) 2.2.2.2 Feeder 9 Step-Up Substation Transformer 2.2.2.3 Richardson Step-Up Substation Transformer 2.2.2.4 Building 606 Station Service Transformers 2.2.2.5 Load Transformers 2.2.3 Feeders 2.2.3 Feeders 2.2.3.1 Overhead Feeder Construction 2.2.3.2 Underground Feeder Construction 2.2.4 Generators 2.2.5 Medium Voltage Switchgear 2.2.6 Miscellaneous Equipment 2.2.6.1 Richardson Step-Up Substation Breaker	2-12-12-12-12-12-22-22-22-32-32-42-52-62-62-82-8
2.2 DETAILS 2.2.1 Buildings 2.2.2 Transformers 2.2.2.1 Main Transformer (GVEA) 2.2.2.2 Feeder 9 Step-Up Substation Transformer 2.2.2.3 Richardson Step-Up Substation Transformer 2.2.4 Building 606 Station Service Transformers 2.2.5 Load Transformers 2.2.3 Feeders 2.2.3 Peeders 2.2.3.1 Overhead Feeder Construction 2.2.3.2 Underground Feeder Construction 2.2.4 Generators 2.2.5 Medium Voltage Switchgear 2.2.6 Miscellaneous Equipment 2.2.6.1 Richardson Step-Up Substation Breaker 2.2.6.2 Load Break Air Switches 2.2.6.3 Cutout Switches 2.2.6.4 Protective Relays	
2.1 GENERAL 2.2 DETAILS 2.2.1 Buildings 2.2.2 Transformers 2.2.2.1 Main Transformer (GVEA) 2.2.2.2 Feeder 9 Step-Up Substation Transformer 2.2.2.3 Richardson Step-Up Substation Transformer 2.2.2.4 Building 606 Station Service Transformers 2.2.2.5 Load Transformers 2.2.3 Feeders 2.2.3 Feeders 2.2.3.1 Overhead Feeder Construction 2.2.3.2 Underground Feeder Construction 2.2.4 Generators 2.5 Medium Voltage Switchgear 2.6 Miscellaneous Equipment 2.6.1 Richardson Step-Up Substation Breaker 2.2.6.2 Load Break Air Switches 2.2.6.3 Cutout Switches	

2.3 FIELD INVESTIGATIONS	2-10
2.3.1 Pole Testing	2-10
2.3.1.1 Test Methods	2-10
2.3.1.2 Data	
2.3.1.3 Pole Evaluation	2-13
2.3.2 <u>Interviews</u>	2-13
2.3.3 Overall Evaluation	2-14
3. EXISTING SYSTEM COMPUTER MODELS AND ANALYSIS	3-1
3.1 GENERAL	3-1
3.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL	3-1
3.2.1 Estimated Loads	
3.2.2 Load Factor	
0.2.2 <u>Loud Factor</u>	
3.3 CASE STUDIES	
3.3.1 <u>Case 1</u>	
3.3.2 <u>Case 2</u>	3-3
3.4 CONSTRUCTION COST ESTIMATE	3-3
3.4.1 <u>Transformers</u>	
3.4.1.1 Main Transformer (GVEA)	
3.4.1.2 Feeder 9 Step-Up Substation Transformer	
3.4.1.3 Richardson Step-Up Substation Transformer	
3.4.1.4 Building 606 Station Service Transformers	
3.4.1.5 Load Transformers	
3.4.2 Overhead Feeders	
3.4.2.1 Poles	3-5
3.4.2.2 Sagging	3-6
3.4.2.3 Crossarms	
3.4.2.4 Insulators	3-6
3.4.2.5 Conductors	3-6
3.4.2.6 Guys	
3.4.3 <u>Underground Feeders</u>	
3.4.4 Generators	3-7
3.4.5 Medium Voltage Switchgear	3-7
3.4.6 Miscellaneous Equipment	3-7
3.4.6.1 Richardson Step-Up Substation Breaker	3-7
3.4.6.2 Load Break Air Switches	3-7
3.4.6.3 Cutout Switches	
3.4.6.4 Protective Relays	3-8
3.4.6.5 Reclosers and Sectionalizers	3-8
3.4.6.6 Capacitors and Reactors	
3.5 ECONOMIC MODEL	3-8
3.5.1 Energy Costs	
3.5.2 Economic Life and Discount Factor	3_0
3.5.3 Estimated Energy Savings	
3.5.4 LCCA	3-9

4. REDUCED SYSTEM DESCRIPTION	4-1
4.1 GENERAL	4-1
4.2 DETAILS	4.1
4.2.1 Buildings	
4.2.2 <u>Transformers</u>	4-1
4.2.2.1 Main Transformer (GVEA)	4-1
4.2.2.2 Feeder 9 Step-Up Substation Transformer	4-2 1.7
4.2.2.3 Richardson Step-Up Substation Transformer	4-2
4.2.2.4 Building 606 Station Service Transformers	4-2
4.2.2.5 Load Transformers	4-2
4.2.3 Feeders	4-5
4.2.3.1 Overhead Feeder Construction	4-4-4
4.2.3.2 Underground Feeder Construction	4-5
4.2.4 Generators	4-0 4-0
4.2.5 Medium Voltage Switchgear	4.2
4.2.6 Miscellaneous Equipment.	4-0
4.2.6.1 Richardson Step-Up Substation Breaker	
4.2.6.2 Load Break Air Switches	4.7
4.2.6.3 Cutout Switches	4-7 4-7
4.2.6.4 Protective Relays	
4.2.6.5 Reclosers and Sectionalizers	4-8
	4.0
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA	LYSIS 5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL	LYSIS5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL	LYSIS5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads	LYSIS5-15-15-2
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL	LYSIS5-15-15-2
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES	LYSIS 5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor	LYSIS 5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES	LYSIS 5-1 5-1 5-2 5-3 5-3
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4	LYSIS 5-1 5-1 5-2 5-3 5-3 5-3
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE	LYSIS 5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers	LYSIS 5-1
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA)	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles 5.4.2.2 Sagging	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles 5.4.2.2 Sagging. 5.4.2.3 Crossarms	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles 5.4.2.3 Crossarms 5.4.2.4 Insulators	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles 5.4.2.2 Sagging 5.4.2.3 Crossarms 5.4.2.4 Insulators 5.4.2.5 Conductors	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1 Transformers 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.3 Richardson Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles 5.4.2.2 Sagging 5.4.2.3 Crossarms 5.4.2.4 Insulators 5.4.2.5 Conductors 5.4.2.6 Guys	LYSIS
4.2.6.6 Capacitors and Reactors 5. REDUCED SYSTEM COMPUTER MODELS AND ANA 5.1 GENERAL 5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL 5.2.1 Estimated Loads 5.2.2 Load Factor 5.3 CASE STUDIES 5.3.1 Case 3 5.3.2 Case 4 5.4 CONSTRUCTION COST ESTIMATE 5.4.1.1 Main Transformer (GVEA) 5.4.1.2 Feeder 9 Step-Up Substation Transformer 5.4.1.4 Building 606 Station Service Transformers 5.4.1.5 Load Transformers 5.4.2 Overhead Feeders 5.4.2.1 Poles 5.4.2.2 Sagging 5.4.2.3 Crossarms 5.4.2.4 Insulators 5.4.2.5 Conductors	LYSIS

5.4.5 <u>M</u> e	edium Voltage Switchgear	5-7
5.4.6 <u>Mi</u>	scellaneous Equipment	5-7
5.4.6.	1 Richardson Step-Up Substation Breaker	5-7
5.4.6.2	2 Load Break Air Switches	5-8
5.4.6.3	3 Cutout Switches	5-8
5.4.6.4	4 Protective Relays	5-8
5.4.6.	5 Reclosers and Sectionalizers	5-8
	6 Capacitors and Reactors	
	•	
5.5 ECON	OMIC MODEL	5-8
5.5.1 <u>En</u>	ergy Costs	5-9
5.5.2 <u>Ecc</u>	onomic Life and Discount Factor	5-9
	imated Energy Savings	
	<u>CA</u>	
CONCE	VICTORIC AND DECORATED LETONIC	
b. CONCL	USIONS AND RECOMMENDATIONS	6-1
6.1 LCCA	SUMMARY	6-1
	LUSIONS	
	sting System (1995 to 1997)	
6.2.2 <u>Rec</u>	duced System (Post 2001)	6-2
6.3 RECON	MMENDATIONS	6-3
	APPENDICES	
Α	Scope of Work and Confirmation Notices	
В	Field Survey Notes	
C	Pole Testing Notes	
D	Load Analysis	
\mathbf{E}	Modeling Calculations	
F	Load Flow Analysis - Case 1	
G	Load Flow Analysis - Case 2	
	•	
H	Load Flow Analysis - Case 3	
I	Load Flow Analysis - Case 4	
J	Construction Cost Estimates	
K	LCCA and Economic Analysis	
L	One-Line Diagrams	
L	Offe-Life Diagrams	

LIST OF TABLES

Table 1-1.	LCCA Results	
	Load Transformer Connections	
Table 2-2.	Feeder Description	2-4
Table 2-3.	Characteristics of Engine Generators	2-6
Table 2-4.	Short Circuit Levels Available	2-7
	Protective Devices with Current Sensing	
Table 2-6.	Pole Data	2-12
Table 2-7.	Pole Test Data	2-12
Table 2-8.	Typical Strength Limits (psi)	2-13
Table 3-1.	Existing System Feeder Load	3-2
Table 3-2.	LCCA Results for Existing System	3-10
Table 4-1.	Remaining Load Transformers	4-3
Table 4-2.	Feeder Descriptions	4-4
Table 4-3.	Characteristics of Engine Generators	4-5
Table 4-4	Protective Devices With Current Sensing	4-7
Table 5-1	Feeder Load for Reduced Systems	5-2
Table 5-2	LCCA Results	5-10
Table 6-1.	LCCA Results	6-1
1 O I.		

LIST OF ABBREVIATIONS

A - ampere

ACSR - aluminum conductor steel reinforced
ANSI - American National Standards Institute
ASCE - American Society of Civil Engineers

ASME - American Society of Mechanical Engineers

AWG - American Wire Gauge
BIL - basic insulation level
CNW - condenser water

CNWP - condenser water pump CNWR - condenser water return CNWS - condenser water supply COE - Corps of Engineers

CRTA - Cold Regions Test Activity

CT - current transformer

Δ - (Delta) Greek letter notation for electrical equipment connected in

a "delta" configuration

ECIP - Energy Conservation Investment Program

ECO - Energy Conservation Opportunity

EMC - EMC Engineers, Inc.

EPR - Ethylene Propylene Rubber EPRI - Electric Power Research Institute

F - Fahrenheit

FEMP - Federal Energy Management Program

ft - foot, feet gal - gallons GL - ground line

gpm - gallons per minute

hp - horsepower

hr - hour

IEEE - Institute of Electrical and Electronic Engineers

IL - in-line

kA - one thousand ampere kV - one thousand volts

kW - kilowatt, one thousand watts

kWh - kilowatt-hours, one thousand watt-hours

LCCA - life cycle cost analysis

LF - load factor

lb/hr - pounds per hour

MCACES - Mechanical Cost Accounting Computer Estimating System

MW - megawatt, one-thousand kilowatts
NBS - National Bureau of Standards

NEC - National Electric Code

NESC - National Electrical Safety Code

NIST - National Institute of Standards and Technology

OA/FA - liquid-immersed, self-cooled/forced-air-cooled

OH - overhead

O&M - operation and maintenance

P - perpendicular PF - power factor

φ - (Phi) Greek letter notation for "phase"

φ-N
 shorthand notation for a phase-to-neutral wire connection
 shorthand notation for a phase-to-phase wire connection

psia
 pounds per square inch absolute
 psig
 pounds per square inch gage
 rpm
 revolutions per minute

sec - second

SIR - Savings-to-Investment Ratio

SOW - scope of work sq ft - square foot temp. - temperature UG - underground

V - volt(s)

VAR - volts-ampere reactive XLPE - Cross-Linked Polyethylene

Y - short hand notation for electrical equipment connected in an

"ungrounded wye" configuration

YGRD - short hand notation for electrical equipment connected in a

"grounded wye" configuration

yr - year(s)

at this site. At the very least, gr in previous studies.	round fault detection should be im	plemented as determined
		·

1. INTRODUCTION

1.1 AUTHORITY FOR STUDY

This study was performed and this report prepared under Contract No. DACA01-94-D-0033, Delivery Order No. 003. The Delivery Order was issued by U.S. Army Engineer District, Mobile, to E M C Engineers, Inc. on 28 September 1994.

1.2 PURPOSE OF STUDY

The purpose of this study is to evaluate the Energy Conservation Opportunity (ECO) associated with converting the existing Ft. Greely power distribution system from a 2400 volt, 3-wire, ungrounded delta distribution system to a 4160 volt, 4-wire, grounded wye distribution system.

1.3 SCOPE OF WORK

The Scope of Work (SOW) for this energy study is included in Appendix A of this report. The following services are required by the SOW:

- Perform a limited site survey of the overhead and underground distribution system, the central plant, and other facilities was performed to determine the parameters of the existing system and evaluate its physical condition. The evaluation of the systems physical condition includes insulators, crossarms, poles, wires, connectors and transformers.
- Perform computer modeling of the distribution system to determine the system losses associated with operating at 2400 volts and 4160 volts for both the prerealignment (before 1997) and post-realignment (after 2001) scenarios.
- Determine the construction costs associated with converting the distribution system from a 2400 volt, 3-wire, ungrounded delta to a 4160 volt, 4-wire, grounded wye.
- Determine the cost of providing electrical service to post-realignment buildings directly from the Golden Valley Electric Association (GVEA) distribution system.
 [EMC was instructed not to address this issue.]
- Perform life cycle cost analysis (LCCA) according to Energy Conservation Investment Program (ECIP) and Federal Energy Management Program (FEMP) criteria.

- Provide a comprehensive report presenting field survey data, methods of analysis and recommendations of the study.
- Prepare ECIP/FEMP programming documentation for ECOs which meet government funding criteria.

1.4 DEMAND AND ENERGY COSTS

The demand and energy costs for electricity delivered to Fort Greely from GVEA and Fort Wainwright were taken from data provided by Fort Wainwright personnel. Approximately 83% of the electric energy used at Fort Greely is derived from Fort Wainwright generators and wheeled over GVEA distribution lines for the cost of wheeling. The remaining 17% is purchased directly from GVEA at a cost based on their GS-2 rate schedule. Demand charges are based on the peak kW used per month, regardless of whether it is wheeled or purchased power. In order to simplify the analysis for this study, the energy costs were evaluated over the one year period starting on the first day of September 1993 and ending on the last day of August 1994. The energy costs from the two different suppliers, Fort Wainwright and GVEA, were weighed based upon the percentage used from each source at Fort Greely and summed to obtain an average energy cost. The demand charge remains the same in either case. The electric rates used in this study are as follows:

Electric demand charge: \$6.25/kW/month
Electric energy charge: \$0.0711 per kWh

If the demand charge is incorporated into the energy charge to further simplify the calculations, the electric energy charge will be \$0.832 per kWh.

1.5 CONSTRUCTION COST ESTIMATING

ECO construction costs were taken primarily from the MCACES construction cost estimating database for Fairbanks (1994). When the cost information in this database was inadequate, vendor quotes or the 1995 Means Electrical Cost Data were used. An additional 20% location factor was added to all costs that were not taken from the MCACES database to account for added shipping expenses and other charges associated with Fort Greely's remote location and/or extreme weather. Additional markups used for the LCCA include:

- 15% for contractor's overhead.
- 10% for contractor's profit.
- 3% for contractor's bond.
- 20% for contingency.

- 4% for escalation.
- 5% for SIOH.
- 6% for design costs.

1.6 LIFE CYCLE COST ANALYSIS METHODOLOGY

The Life Cycle Cost Analysis (LCCA) methodology used in this study is a Present Worth analysis. It compares the present worth of the energy cost savings associated with the distribution system improvements over a 20 year period (reflected back into the first year of the period) with the construction cost or investment necessary to implement the distribution system improvements in the first year of the period. The Savings-to-Investment Ratio (SIR) must be greater than 1.25 in order to qualify under the ECIP Program. Thus, the energy cost savings over a 20 year period must be 25% greater than the investment required in the first year. Operation and maintenance (O&M) costs were neglected because there is no significant difference in O&M between 2400 volts and 4160 volts.

Economic analyses were performed in accordance with the January 1994 ECIP guide. Uniform Present Value (UPV) factors are based on a 4.1 percent DOE discount rate (for FEMP projects). The UPV factors were taken from Table A-2 and Ba-4 of the NISTIR 85-3273-10 (Rev. 10/95), Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis 1996, (the current annual supplement to the NIST Handbook 135 and NBS Special Publication 709). The economic and service life of equipment was taken from Appendix B of the ECIP guide. Copies of all the appropriate LCCA factors are found in Appendix J.

The following UPV factors, adjusted for average fuel price escalation, were taken from the NIST 135 Supplement for Industrial Customers.

Life (Years)	Electricity	Natural Gas	Non-Energy
20	14.47	17.32	13.47

1.7 ORGANIZATION OF DOCUMENT

This report is organized as follows:

- Section 2 describes the existing electrical distribution system and the field tests performed to evaluate its physical condition.
- Section 3 discusses in detail the system model and load flow analysis used to determine the system losses for the existing electrical distribution system.

- Section 4 describes the electrical distribution system after realignment has reduced the number of facilities served.
- Section 5 discusses in detail the system model and load flow analysis used to determine the system losses for the reduced electrical distribution system.
- Section 6 summarizes the results of Sections 2 through 5 and recommends a course of action.

2. EXISTING SYSTEM DESCRIPTION AND EVALUATION (1995 TO 1997)

2.1 GENERAL

The existing electric distribution system at Ft. Greely is operated as a 2400 volt (V), 3-phase (ϕ), ungrounded, delta (Δ) system on all feeders except one. Feeder 9 is more than three times the length of the other eight feeders combined, and is operated as a 7200 V, 3 ϕ , ungrounded, Δ system. It feeds the remote facility at Bolio Lake and all of the Ranges.

2.2 DETAILS

Major features of each electric distribution system are described in detail below.

2.2.1 Buildings

There are currently 231 buildings that receive electric power from the Fort Greely electric distribution system. The buildings total 1,699,787 sq ft consisting of schools, offices, housing units, aircraft hangars, fuel stations, construction shops, water and waste treatment facilities, and a power and heating plant. The majority of buildings are located in the cantonment area and the rest are located at the Cold Regions Test Activity (CRTA) at Bolio Lake, and at the Ranges (Arkansas, Beales, Colorado, Georgia, Lampkin, Mississippi, Tennessee and Texas). Generally, the building loads are of high power factor (approximately 95%) and high load factor (approximately 80%). Approximately 81% of the building loads are 3φ, the primary building utilization voltage is 120/208 V, 3φ, grounded wye.

2.2.2 Transformers

The buildings are supplied by a total of 298 transformers from the Fort Greely electric distribution system. Only 288 transformers actually supply building loads, six are step-up substation transformers on Feeder No 9, and four are station service transformers for Building 606, the Power & Heating Plant. The step-up substation transformers are arranged into two 3ϕ , banks. The following describes these transformers in more detail.

2.2.2.1 Main Transformer (GVEA)

The main transformer supplies the base from the GVEA distribution system. It is a 2500/3125 kVA, OA/FA, 24.9/14.4 - 2.4 kV, YGRD- Δ substation class transformer with top mounted primary and secondary bushings. This transformer is located adjacent to Building 606 and is owned and maintained by GVEA. It is not included as part of the 298 transformers described above.

This transformer will need to be replaced if the Fort Greely electric distribution system is upgraded to 4.16 kV. It will be necessary to coordinate with GVEA on the exact winding configuration.

2.2.2.2 Feeder 9 Step-Up Substation Transformer

The Feeder 9 substation consists of three 1ϕ , 500 kVA, OA, 2.4/4.16 - 7.2/12.47 kV polemounting type transformers, connected Δ - Δ , with top mounted primary and secondary bushings. The transformers are mounted on a concrete pad adjacent to Building 606.

These transformers can be rewired as a grounded wye (YGRD) on both the primary and secondary and reused if the system voltage is increased to $4.16~\rm kV$. This will increase the Feeder 9 voltage from $7200~\rm V$ to $12,470~\rm V$.

2.2.2.3 Richardson Step-Up Substation Transformer

The Richardson substation consists of three 1 ϕ , 200 kVA, OA, 2.4 - 7.2 kV pole-mounting type transformers, connected Δ - Δ , with top mounted primary and secondary bushings. The transformers are mounted on a concrete pad near the Richardson Highway in the West Post area.

The nameplate on the transformers does not specifically indicate that the transformers are rated for operation at 4.16 kV and 12.47 kV. However, EMC believes that these transformers can be rewired as a grounded wye (YGRD) on both the primary and secondary, and reused at 4.16 kV and 12.47 kV, respectively. The winding voltage and insulator bushing ratings will not change and the phase-to-phase clearance is adequate. It will be necessary to rewire these transformers to match the Feeder 9 step-up transformer voltage.

2.2.2.4 Building 606 Station Service Transformers

Building 606 is supplied by four station service transformers: SS-1, SS-2, and two SM1As. Transformer SS-1 is a 300 kVA dry type transformer. Transformer SS-2 is a 300 kVA pad mounted transformer. Both SM1A transformers are 500 kVA dry type transformers. All

four transformers are 3ϕ , 2400-480 V, Δ - Δ . They will all need to be replaced if the system voltage is upgraded to 4.16 kV, because they cannot be rewired.

2.2.2.5 Load Transformers

Five of the 288 load supplying transformers are 3ϕ pad-mounted transformers, 207 are connected into sixty-nine 3ϕ transformer banks, and the remaining 76 are 1ϕ transformer banks. The transformer voltages, connections, and quantities are shown in Table 2-1 below.

Voltage Trans./ Mount No. of No. of **Primary** Conn. Secondary Conn. φ Type Banks Bank Trans. 3 2400 120/208 **YGRD** Pole Δ 50 3 150 3 2400 277/480 **YGRD** Pole 6 3 18 Δ 3 7200 120/208 **YGRD** 13 3 Δ Pole 39 3 2400 120/208 **YGRD** Pad 3 1 3 Δ 3 YGRD 7200 Δ 120/208 Pad 2 1 2 1 2400 120/240 Ctr. Tap Pole 56 1 56 ф-ф 1 7200 120/240 Ctr. Tap Pole 20 1 20 ф-ф **Totals** 150 288

Table 2-1. Load Transformer Connections

All of the pad-mounted transformers will need to be replaced if the distribution system voltage is increased to 4.16 kV and 12.47 kV. The 3ϕ , pole-mounted transformer primaries can be rewired to a grounded wye configuration and reused. The 1ϕ , pole mounted transformers can be rewired from ϕ - ϕ to ϕ -N and reused. The winding voltage and insulator bushing ratings will not change.

2.2.3 Feeders

The load transformers are supplied by nine feeders comprised of 31.2 miles of overhead (OH) lines and 10.7 miles of underground (UG) lines. The electric distribution system is operated as an ungrounded delta at 2400 volts, 3ϕ . Table 2-2 below shows the feeder characteristics.

Table 2-2. Feeder Description

Feeder	Length & Size			Voltage	Connec	ted kVA	
No.	OH (ft)	AWG	UG (ft)	AWG	L-L	3 ф	1 φ
1	6250	4/0	0	-	2400	645	580
2	1750	4/0	0	-	2400	1320	0
3	3000	4/0	0		2400	1035.5	45
4	1700	4/0	0	-	2400	1637.5	0
5	16950	4/0	2400	2	2400	1815	115
6	0	Bus	0	-	2400	0	0
7	9450	4/0	0	-	2400	1357.5	212.5
8	4000	4/0	2000	4/0	2400	15	992.5
9	122060	2	52,096	2	7200	1557.5	260.5
Totals	165,160		56,496			9383	2205.5

Approximately 81% of the connected load for the base is three phase. Line maintenance personnel indicated that the single phase loads are well balanced between phases. In general, the feeders supply the following loads and locations:

- Feeder No. 1 Housing in the main base area.
- Feeder No. 2 Offices and shops in the main base area.
- Feeder No. 3 Offices and shops in the main base area.
- Feeder No. 4 Offices and shops in the main base area.
- Feeder No. 5 Old and middle post areas; Allen Air Field.
- Feeder No. 6 Overhead tie.
- Feeder No. 7 Sewage plant and east base area.
- Feeder No. 8 Housing in the main base area.
- Feeder No. 9 Remote sites; Bolio Lakes and the Ranges.

2.2.3.1 Overhead Feeder Construction

Approximately 74% of the electric distribution system, by feeder length, is overhead construction. The original overhead electric distribution system was constructed between 1948 and 1957. The oldest part of the system consists of the old post and middle post at the north end of the base near Allen Air Field. The next oldest line construction was done in the mid-1970s, and the newest line construction was done in the mid-1980s.

The overhead electric distribution system is almost exclusively wooden poles and crossarms. The poles are all 40 to 50 ft in height, Class 2 or 3, and spaced at 100 to 150-ft intervals. The majority of poles are cedar, although some Douglas Fir are used. The treatment method varies from pentachlorophenol (reddish color), to chromated copper arsenate or CCA (greenish color), to creosote oil. Most poles are fully treated, however, some of the older poles are butt treated only. Eight-foot crossarms are standard although

some narrow profile EpoxirodsTM have recently been installed. The EpoxirodsTM comprise a very small percentage of the crossarms in use, however.

Generally, the lines are mounted on pin insulators on an 8-ft crossarm, in a flat, parallel configuration. Two lines are located on one side of the pole and one line is located on the other side. Ridge pins are typically not used, except on some of the EpoxirodTM installations. There is space available on the crossarms to install a new neutral conductor if the distribution system is converted to a grounded wye. Where the crossarms have been modified from typical construction or EpoxirodsTM are used, a new neutral can be installed approximately 40 inches below the crossarm on the pole.

The majority of the base load is supplied by the overhead electric distribution system. The feeders in the high density load areas of the cantonment are #4/0 AWG, ACSR. Conductors in all other areas are #2 AWG, ACSR. Line maintenance personnel have standardized on these two conductor sizes as well as ACSR for overhead lines, although some #2 AWG CU and # 4AWG CU lines still exist in older parts of the system. None of the phase conductors will have to be replaced if the system voltage is upgraded to 4.16 kV and 12.47 kV. The load current will actually be decreased at the higher voltages.

The majority of the 2.4 kV pin insulators have been replaced with 15 kV class insulators over the past ten years. Approximately 15% of these will need have to be replaced. Refer to the Field Investigations below for further discussion on the pin insulators.

2.2.3.2 Underground Feeder Construction

The remaining 26% of the electric distribution system is underground construction. Most of the underground electric distribution system was installed in the mid-1980s using 15 kV, shielded, EPR insulated cable. It was assumed that the insulation level is 133% minimum, since the system is ungrounded with no ground fault indication. Additionally, most of the underground cable was direct buried. In some cases, such as the underground feeder to "the Condos", it was not buried deep enough to avoid the effect of frost heave. In those cases, the cable has been heaved to the surface and damaged resulting in cable splices in several places.

Line maintenance personnel have standardized on 15 kV, shielded, EPR insulation for underground distribution lines and risers, however, some 15 kV, XLPE insulated cable still exists in older parts of the base.

It is not necessary to replace the feeders or add an additional wire for a neutral if the system voltage is upgraded to $4.16~\rm kV$ and $12.47~\rm kV$. All three-phase feeders supply balanced three-phase loads. No single-phase loads were supplied by underground feeders.

2.2.4 Generators

There are five diesel engine generators located in Building 606. Generators 1, 2, and 3 are alike and generators 4 and 5 are alike. Table 2-3 below summarizes the generators characteristics.

Gen. Rated Rated Output No. kVA PF kW Voltage Mfr. rpm φ Ser. No. Connect. 1250 1 0.8 1000 360 3 2400 Elliott Co. 3-S-9691 Y 2 1250 3 0.8 1000 360 2400 Elliott Co. 2-S-9691 Υ 3 1250 0.8 1000 360 3 2400 Elliott Co. 1-S-9691 Υ 4 1563 0.8 1250 360 3 2400/4160 Elliott Co. 4-S-10915 Δ 5 1563 1250 7-S-10915 0.8 360 3 2400/4160 Elliott Co. Δ

Table 2-3. Characteristics of Engine Generators

The generators are usually operated as peak shavers to reduce the load on the GVEA main transformer. The base load can reach 3450 kW and the GVEA transformer is rated at 2500/3125, liquid-immersed, self-cooled/forced-air cooled (OA/FA). Based on the recorded data from July 1, 1994 through July 31, 1995, the generators are usually operated at approximately 1000 kW when the base load reaches 3400 kW.

All of the generators are 6-lead machines. Generators 1, 2, and 3 are connected in an ungrounded Y configuration, meaning that the T1, T2, and T3 leads are connected to phases A, B, and C respectively, and the T4, T5, and T6 leads are tied together at a common neutral bus not bonded to ground. This indicates that the windings are only rated for 1386 V and means that if these generators are to be used on a 4160 V, grounded wye system, they will require a $2.4 - 4.16 \, \mathrm{kV}$, Δ -YGRD step-up transformer.

Generators 4 and 5, on the other hand, are connected in a delta configuration, meaning that the T1 and T3 leads are tied together, the T2 and T4 leads are tied together, and the T3 and T5 leads are tied together. This indicates that the windings are rated for 2400 V and means that these generators can be used on a 4160 V, grounded wye system by reconnecting the leads from a delta configuration to a grounded wye configuration.

2.2.5 Medium Voltage Switchgear

The main switchgear at Building 606 is from two different manufacturers. The gray switchgear, north and south was manufactured by General Electric Company (GE). It is rated for 1200 A and 4.16 kV (4.76 kV maximum). The circuit breakers are GE Magna-blast $^{\text{TM}}$ type. The following data was taken from the nameplate of one breaker:

50 MVA - Interrupting Rating

7,000 A - Interrupting Rating @ Rated Voltage (4160 V)

12,500 A - Maximum Interrupting Rating

20,000 A - Momentary Rating

8 Cycles - Interrupting Time

The orange switchgear (commercial tie with GVEA) was manufactured by Westinghouse Electric Company (Westinghouse). It is rated for 1200 A and 4.16 kV (4.76 kV maximum). No interrupting ratings were listed on the equipment, and no documentation was found that confirmed its ratings. The breakers, however, were Westinghouse De-Ion™ type of the same approximate generation as the GE Magna-blast™ breakers. It was assumed for the purpose of this study that the interrupting and momentary ratings of the Westinghouse De-Ion™ breakers are the same as the GE Magna-blast™ breakers.

Table 2-4 below shows the fault levels available at the GE and Westinghouse busses based on the results of previous fault studies.

4 Generators Utility 5 Generators **Utility &** Bus Only Only Only 5 Generators (kA/MVA) (kA/MVA) (kA/MVA) (kA/MVA) 7.9/33 5.3/22 10.1/42 General Electric 14.3/60 7.9.33 5.3/22 10.0/41.5 Westinghouse 14.3/60

Table 2-4. Short Circuit Levels Available

When the five base generators and the utility are on-line simultaneously (represented by the shaded area in the table above), the first half cycle fault levels available exceed the interrupting rating of the breakers. Two factors mitigate these findings, however. First, the breakers have an 8 cycle interrupting time, which means that by the time the breaker actually interrupts the fault, 4 to 8 cycles after its inception, the fault level has actually decreased significantly. Second, the occurrence of all five base generators and the utility operating simultaneously is rare. It is expected that the simultaneous operation of the all five generators and the utility would only occur for a short period of time in anticipation of a utility outage.

It will not be necessary to replace any of the switchgear if the system voltage is upgraded to 4.16 kV. The existing switchgear is rated for 4.16 kV and the bus ampacities will be more than adequate, since the load current will be reduced to 58% of its present value at the higher voltage. Additionally, the available fault currents will decrease with the increased voltage.

2.2.6 Miscellaneous Equipment

2.2.6.1 Richardson Step-Up Substation Breaker

The oil circuit breaker at this location is an Allis Chalmers Type OX-18 (Serial No. 305756). It is rated for 600 A continuous current, 7.2 kV and 75 kV BIL. It was manufactured in December 1955, and is only rated for 7.2 kV phase-to-phase. It will need to be replaced with a 15 kV phase-to-phase rated switch.

2.2.6.2 Load Break Air Switches

These sectionalizer switches are relatively new additions to the overhead distribution system and are A B Chance, Type D, Catalogue No. CD7HE1CL. They are rated for 600 A continuous current, 40 kA momentary current, 15 kV, and 110 kV BIL. These switches will not have to be replaced if the system voltage is increased to 4.16 and 12.47 kV.

2.2.6.3 Cutout Switches

Each load transformer is protected by an XS Style cutout switch. The rating of the cutouts is not known, however, they have only been available in a 15 kV rating for many years. In addition, a 200 A continuous current rating is commonly used on overhead distribution systems, especially in conjunction with 4/0 ACSR. Therefore, it is assumed that the cutouts are rated at 200 A continuous current, 15 kV, and 110 kV BIL, the standard rating available from most manufacturers. While the cutouts will not have to be replaced, their fuses will all have to be replaced if the voltage is upgraded to 4.16 kV and 12.47 kV. The National Electrical Code (NEC, Table 450-3(a)(1)) requires that the continuous current rating of the primary protection for a transformer not exceed 300% of the rated continuous primary current of the transformer. Since the primary current of the transformer will be reduced to 58% of its original value because of the voltage increase, all of the fuses will be too large.

2.2.6.4 Protective Relays

A Protective Device Coordination Study was recently performed and the protective devices reset to the recommended values. If the system voltage is increased, the load and fault current levels will all change. This will require that any current sensing type protective device be reset in order to maintain coordinated tripping and to ensure proper protection. Table 2-5 below shows the devices with current sensitive tripping that will need to be reset.

Table 2-5. Protective Devices with Current Sensing

Item No.	Bus Equipment		Device Type	Quantity
1	Gray Switchgear South	Generator No. 1	51V	3
2	Gray Switchgear South	Generator No. 2	51V	3
3	Gray Switchgear South	Generator No. 3	51V	3
4	Gray Switchgear South	Feeder No. 1	50/51	3
5	Gray Switchgear South	Feeder No. 2	50/51	3
6	Gray Switchgear South	Feeder No. 3	50/51	3
7	Gray Switchgear South	Feeder No. 4	50/51	3
8	Gray Switchgear South	Feeder No. 5	50/51	3
9	Gray Switchgear South	Station Service No. 1	50/51	3
10	Gray Switchgear South	SM1A Tie	50/51	3
11	Gray Switchgear North	Generator No. 4	51V	3
12	Gray Switchgear North	Generator No. 5	51V	3
13	Orange Switchgear	GVEA Transformer	50/51	3
14	Orange Switchgear	GVEA Transformer	46	1
15	Orange Switchgear	Feeder No. 7	50/51	3
16	Orange Switchgear	Feeder No. 8	50/51	3
17	Orange Switchgear	Feeder No. 9	50/51	3
18	Orange Switchgear	Overhead Tie	50/51	3
19	Orange Switchgear	Station Service No. 2	50/51	3
Total				55

It is believed that the current transformers (CTs) will not have to be replaced with smaller ratio CTs. The range of tap settings available on the protective relays will allow them to be reset to the new current values.

With the system configuration changed to a grounded wye, and the Building 606 and Richardson substation step-up transformers rewired to grounded wye configurations on both the primary and secondary, the 7.2 kV system will have ground fault protection, which it presently does not have.

2.2.6.5 Reclosers and Sectionalizers

There are no reclosers or sectionalizers presently installed on the electrical distribution system. One of the many advantages of a grounded system is that the use of reclosers will be possible. Reclosers would reduce outage times and lineman callouts.

2.2.6.6 Capacitors and Reactors

There are no capacitors or reactors presently installed on the electrical distribution system. The power factor (PF) and load factor (LF) are consistently high on the distribution system, eliminating the need for voltage and VAR corrective devices.

2.3 FIELD INVESTIGATIONS

In order to evaluate the physical condition of the electric distribution system, the poles were tested using standard methods and equipment, and the line maintenance personnel were interviewed.

2.3.1 Pole Testing

A random sampling of seven poles were tested, including some of the oldest poles on the base, in order to gain some knowledge about the general condition of the overhead distribution system. EMC has estimated that 1,318 poles exist on the distribution system. Thus, approximately 0.5% of the poles were tested.

The testing was performed on Wednesday and Thursday, August 30 and 31, 1995. The weather was cold (high 30s to low 40s) and raining on Wednesday morning. The weather continued to improve through Thursday afternoon when it became sunny and warm (high 50s to low 60s). EMC was accompanied and assisted by a lineman from the Public Works Department during all pole testing. The test methods, data, and results are detailed below.

2.3.1.1 Test Methods

Four distinct methods were employed in order to evaluate the physical condition of the existing poles. They are described below.

Visual Inspection

The poles were visually inspected for:

- Checking: Checks are cracks or splits that develop along the longitudinal axis of the
 pole as the wood dries. They occur when the pole is not properly seasoned prior to
 preservative treatment. Checks are a problem because they expose the untreated
 wood at the center of the pole.
- Damage incurred from vehicles: One pole in Test No. 1 had large scars near the butt from snowplows. This pole is located in the middle of a large open parking and maneuvering area which makes it more vulnerable to incidents than others.

• Other abnormalities, such as excessive leaning: None of the poles inspected were leaning excessively.

Butt Drilling

The butts of the poles were drilled down into at a 45° angle starting at approximately 12 inches below the finished grade. A 3/8-inch diameter, 18-inch long ship auger was used with an electric drill. Two determinations are possible using this test method. First, the resistance of the drill as it enters the wood is used to determine if the interior of the pole is rotten. If the drill can be pushed into the wood with little applied force, then there is a strong possibility that the pole interior is rotten. Second, the wood shavings removed from the drill hole reveal the interior composition of the pole. An examination of the wood shavings will indicate the moisture content, and the existence of rot and insects. The drill holes were plugged with a 7/16" diameter, CCA treated, hickory dowel approximately 3 inches long.

Electronic (Sound Wave) Analysis

A Pole Test™ electronic testing device, manufactured by Engineering Data Management, Inc. (EDM) in Fort Collins, Colorado, was used to determine the strength of the pole at the ground line. The device uses sensors on the pole's surface to capture the waveform of a sound wave transmitted through the pole. The sound wave is injected into the pole by striking a metal pin on the pole's surface with a steel ball on a pendulum. The waveform is compared with known waveforms representing specific levels of deterioration of the pole's interior. The digital readout from the device is in psi and represents the strength left in the pole at the test location. The psi value can be compared against the cutoff limit published by EDM for the wood species and construction class of the pole under investigation.

The Pole Test™ unit was developed in conjunction with an Electric Power Research Institute (EPRI) grant to the Colorado State University to study pole failure prediction.

Hammer Strike

The pole was struck several times in several locations with a small sledge hammer. The sound of the strike is also indicative of the pole's condition. A sharp crack or ringing sound indicates a healthy, solid pole. A dull thud or soft sound indicates a rotted pole. The results of this test are more subjective than the first two, but provide additional substantiation to the results of those tests.

2.3.1.2 Data

The seven poles tested were located on the post as follows:

- Test No. 1 Near Building 162 in the old post area.
- Test No. 2 Near Building 400 in the middle post area.
- Test No. 3 Near Building 400 in the middle post area.
- Test No. 4 Near Building 100 in the old post area at Allen Air Field.
- Test No. 5 Near the main gate at Big Delta Ave. and Richardson Highway.
- Test No. 6 On the Bolio Lake line near where the line intersects the main road.
- Test No. 7 ASP lateral feeder off of Feeder 7 near the sewage lagoon.

The pole data in Table 2-6 below was recorded during the testing. The pole ID, height, class and date were recorded directly from the poles when available. The butt diameter was actually measured with a caliper. The species and treatment type were deduced from color, smell, and other physical factors.

Test Height Pole Preservative Diameter No. ID (ft) Class Date **Species** @ GL (in) Treatment 1 F5L71 1948 40 Western Cedar 13.8 Copper 50 2 F531L4 2 1955 Western Cedar 14.3 Copper 3 F5L41 45 2 1985 Douglas Fir 15.2 Creosote 4 F5L88 45 2 1986 Western Cedar 13.0 Copper 5 F9L43 45 2 1957 Douglas Fir 13.6 Penta 6 None 45 3 1975 Western Cedar 13.7 Creosote F7L61 45 3 1977 Douglas Fir 12.3 Unknown

Table 2-6. Pole Data

The Pole Test™ data, presented in Table 2-7 below, was collected at the ground line (GL) and perpendicular (P) to the line in all cases except one. Due to site constraints, Test No. 1 was oriented at 45° to in-line (IL) with the line.

Visual **Butt Drilling** Pole Test™ Hammer Test Insp. Drill **Wood Shavings** Test Accel. Strike No. Checking Moisture Resist. Rot Locate Orient. psi Sound Moderate GL1 Severe Slight No 45° to IL 4500 Sharp 2 Severe Moderate Slight No GLP 4260 Sharp 3 Moderate Slight No P None GL6180 Sharp 4 P Few Moderate Slight No GL4750 Sharp 5 Moderate Strong Slight No GLP 6820 Sharp 6 Moderate Strong Slight No GLP 5140 Sharp P Few Strong Slight No GL6710 Sharp

Table 2-7. Pole Test Data

The typical strength limits for evaluating the psi rating of a pole, based on the results of the Pole Test™ unit, vary with the pole species, the construction grade as defined by the National Electrical Safety Code (NESC), and the location on the pole where the test was made, i.e., ground line (GL) or local to some specific point or feature of the pole. Table 2-8 below defines the acceptable strength limits.

Table 2-8. Typical Strength Limits (psi)

	Dougl	as Fir	Southe	ern Pine	Western Red Cedar		
Grade	GL	Local	GL	Local	GL	Local	
В	3040	3400	4160	3390	2180	1900	
C (Crossings)	2390	2550	2950	2600	1680	1560	
C (Elsewhere)	3770	3960	4550	4110	2560	2450	

It is observed that even for the most severe strength limits, the poles tested with the Pole Test™ unit exceed the ratings by more than 60% (the shaded areas in the tables above.) Pole testing notes recorded in the field are provided in Appendix C.

2.3.1.3 Pole Evaluation

Based on the field testing performed by EMC, the poles in the Fort Greely overhead electric distribution system are in good condition despite their age and the harsh environment.

2.3.2 Interviews

Conversations with the overhead line maintenance personnel from the Public Works Department indicated that there have not been any major problems with pole rot at or near the ground. They believe that the main causes of pole failure are damage from snowplows, carpenter ants (on the Cedar poles), and poles being jacked out of the ground by frost heave. They indicated that crossarm rot is prevalent. They have experimented with narrow profile Epoxirod™ construction, but returned to the 8-ft conventional wooden crossarms because the Epoxirod™ construction does not allow adequate working clearance for linemen between the phases. The line maintenance personnel believe that approximately 5% of the wooden crossarms need to be replaced at this time.

The linemen also stated that some 2.4 kV pin insulators still exist on the overhead distribution system, but most have been replaced with 15 kV class insulators. They estimate that approximately 15% of the pin insulators need to be replaced at this time. The insulators are damaged primarily by shot from bird hunter's shotguns. Some old 2.4 kV insulators still exist.

The main problem with the underground distribution system is the underground feeder from Feeder 9 to "the Condos," near the Texas Range. It is the single longest section of underground feeder. Because it was not originally buried deep enough, it is continually being moved to the surface by frost heave. Once on the surface, it is easily damaged requiring frequent splicing. The linemen believe that it should be replaced by an overhead line. As presently installed, it is difficult to maintain and troubleshoot.

2.3.3 Overall Evaluation

The generators and medium voltage switchgear were built in the mid-1950s and mid-1960s. Because the equipment is no longer in current production, it would be difficult or impossible to obtain replacement parts for it. The equipment has been well maintained throughout its service life and is in good condition. Based on plant records, the equipment has always been operated within the rated safe limits and is very reliable.

The overhead distribution system was built between the mid-1940s and the mid-1980s. Much like the generators and medium voltage switchgear, it has always been well maintained and operated within the rated safe limits. The overhead distribution system has been continually upgraded to the extent that most of it is presently suitable for operation at 4.16 kV. The physical condition of the system itself appears to be excellent. In fact, the least desirable part of the system is that it is operated ungrounded at 2.4 kV. Upgrading the distribution system to 4.16 kV would not substantially increase the mechanical loading on the existing poles, crossarms, or insulators. At worst, the addition of a new neutral conductor will require another guy wire at dead-end structures.

3. EXISTING SYSTEM COMPUTER MODELS AND ANALYSIS (1995 TO 1997)

3.1 GENERAL

The existing electrical distribution system was modeled using the Distribution Analysis for Power Planning and Reporting (DAPPER) Program, V4.5, Rev 1.08, as licensed to EMC Engineers, Inc. by SKM Systems Analysis, Inc. of Manhattan Beach, CA. The DAPPER Program is capable of modeling multi-level voltage power systems of any configuration, including radial design, loop design, or any combination of radial and loop design. The DAPPER Program can perform load flow, voltage drop, motor starting, and short circuit studies.

For the purpose of this study, the existing electrical distribution system was modeled and load flow analyses were performed for two cases: the existing system operated at 2400 V, and the existing system operated at 4160 V. The total system losses for each case were determined and compared to find the difference. The difference represents the reduction in losses attainable by operating the system at the higher voltage. The loss reduction can be easily converted to energy saved by multiplying by the average hours in service during the year.

Once the energy savings were known for the first year, the economic model was used to determine the SIR of operating the system at the higher voltage. The present worth of the energy savings was determined over a twenty year life. The construction costs required to modify the system for operation at the higher voltage were determined using the MCACES Program with the 1994 Fairbanks Database. The present worth of the energy savings was then divided by the construction costs, and the result was compared to the Corps of Engineers (COE) acceptable limits to determine the project's feasibility.

The electrical distribution system model and the economic model are described below in greater detail.

3.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL

Before the electrical distribution system could be modeled accurately, several factors had to be determined. These are detailed in the following sections.

3.2.1 Estimated Loads

In order to estimate the system load accurately, data from the records maintained at Building 606 were analyzed. The monthly summary sheets were used to find the time and

date of the yearly peak between August 1, 1994 and July 31, 1995. Once the time and date of the yearly peak was known, the daily log sheets were used to determine the load on each feeder and the system power factor at the time. The yearly peak was determined to be 3456 kW occurring on December 7, 1994, at 12:00 PST. The system power factor was determined to be 95%. Table 3-1 below shows the loads on each feeder for December 7. Appendix D provides the load data sheets.

Table 3-1. Existing System Feeder Load

Feeder No.	Load (A)
1	125
2	122
3	85
4	100
5	60
6	Overhead Tie Bus
7	112
8	100
9	100
Total	804

Spreadsheets were created to calculate the estimated lumped load at each bus for each feeder, provided in Appendix E. The estimated load at each bus was calculated by multiplying the 3 ϕ equivalent kVA by the estimated demand on the feeder. The estimated demand on the feeder was determined by trial and error, i.e., the demand necessary to produce the feeder ampacity, shown in the table above, in the actual computer model. The estimated lumped load is simply the total of all the transformers at a particular bus modeled as a "lump sum."

Lumping the loads at each bus represents a valid model for determining the system losses, since the voltage on the primary distribution system is the only factor that will be altered to reduce the system losses. The load transformer losses will be the same connected at 4.16 kV, grounded wye, as they are connected at 2.4 kV, delta. The secondary voltage on each load transformer will not change--the losses will remain the same. Consequently, it is not necessary to model the load transformers and the secondary loads in detail. Additionally, the feeder loads are based on measured data from plant records.

3.2.2 Load Factor

The load factor must also be considered in order to make the computer model more realistic. The initial loading of the distribution system was developed from the yearly peak. However, the system does not operate at the yearly peak all the time. The load factor times the yearly peak represents the average yearly loading of the system. The load factor for the Fort Greely electrical distribution system was determined by multiplying the daily peak for

each month by 24 (hours) and dividing the product by the sum of the hourly kW readings from the plant totalizer meter. The results for the twelve months were averaged to determine the yearly load factor, which is approximately 80%. Appendices D and K (Estimated Energy Savings) provide load factor calculations.

3.3 CASE STUDIES

Once the correct lumped loads were entered into the DAPPER Program and verified for each feeder, two load flow studies were performed to determine the system losses for each.

3.3.1 <u>Case 1</u>

Case 1 simulated the existing system operating at 2.4 kV with transformers connected in delta, where applicable. The loads were modeled for the 1995 to 1997 scenario as described above. One standby generator is running at 1000 kW and the remainder of the load is supplied through the GVEA transformer. The lumped loads are modeled as constant impedance loads. This case represents the baseline for the current system.

Appendix F provides for the results of the load flow study. The system losses are shown to be 76.1 kW and 239.2 kVAR.

3.3.2 Case 2

Case 2 simulated the existing system operating at 4.16 kV with transformers connected in grounded wye, where applicable. The loads were modeled for the 1995 to 1997 scenario as described above. One standby generator is running at 1000 kW and the remainder of the load is supplied through the GVEA transformer. An additional transformer has been added in this case to simulate the losses associated with stepping up the voltage at generators 1, 2, or 3 from 2.4 kV to 4.16 kV. The lumped loads were modeled as constant impedance loads. This case represents the reduced loss case for the current system.

Appendix G provides the results of the load flow study. The system losses are shown to be 44.2 kW and 242.8 kVAR.

3.4 CONSTRUCTION COST ESTIMATE

The construction cost estimates were developed based upon the repair, reconnection, replacement or addition of the distribution equipment as specified below. MCACES was used to develop the cost estimate with the 1994 Fairbanks database of material, labor and equipment costs. When cost information was not available in the MCACES database, vendor quotes or the 1995 Means Electrical Cost Data were used with a 20% location factor

added to account for the extra shipping expenses. Additionally, the following were applied to the construction cost estimate to obtain the final cost:

- 15% for contractor's overhead.
- 10% for contractor's profit.
- 3% for contractor's bond.
- 20% for contingency.
- 4% for price escalation.

The total construction cost for converting the electrical distribution system from 2400 V to 4160 V is \$994,468. Appendix J provides detailed construction cost estimates. The equipment described below was included or excluded from the cost estimate.

3.4.1 Transformers

In order to operate the system at 4.16 kV, modifications to the distribution system transformers are required. These modifications are presented below.

3.4.1.1 Main Transformer (GVEA)

The main transformer is 3ϕ , 2500/3125 kVA, OA/FA, 24.9/14.4 - 2.4 kV connected YGRD- Δ and is owned and maintained by GVEA. It will be necessary to replace this transformer with a 3ϕ , 4000 kVA, OA, 24.9/14.4 - 4.16/2.4 kV transformer, connected YGRD-YGRD.

It is assumed for the purpose of this study that this transformer will be replaced by GVEA and the cost of replacement will be amortized over the life of the transformer. Those costs are generally incorporated into a new rate structure. Compared to the other modifications that will be necessary, this cost increase represents an insignificant investment on the part of Fort Greely. No costs have been included in the study for replacement of this transformer.

3.4.1.2 Feeder 9 Step-Up Substation Transformer

Feeder 9 consists of three 1 ϕ , 500 kVA, OA, 2.4/4.16 -7.2/12.47 kV transformers with top mounted primary and secondary bushings, which are presently connected in a Δ - Δ configuration. They can be reconnected in a YGRD-YGRD configuration at minimal expense.

3.4.1.3 Richardson Step-Up Substation Transformer

The Richardson transformer consists of three 1 ϕ , 200 kVA, OA, 2.4-7.2 kV transformers with top-mounted primary and secondary bushings, which are presently connected in a Δ - Δ configuration. They can be reconnected in a YGRD-YGRD configuration at minimal expense.

3.4.1.4 Building 606 Station Service Transformers

All four station service transformers at Building 606 will need to be replaced. They can all be replaced as 3ϕ dry type transformers at their original kVA ratings (2- 300 kVA & 2- 500 kVA) with primary windings of 4.16/2.4 kV connected YGRD, and secondary windings of 480/277 V connected YGRD.

3.4.1.5 Load Transformers

All 69 of the pole type load transformers are suitable for operation at 4.16 kV. The 3 ϕ pole type load transformers are connected in Δ on the primary. They can be reconnected as YGRD at minimal expense. The secondaries will not require modifications.

All 76 1¢ pole type transformers are connected phase-to-phase on the primary. They can be reconnected as phase-to-neutral at minimal expense. The secondaries will not require modifications.

In addition, the five pad-mounted transformers will need to be replaced:

Four at 4160/2400-208/120 V, YGRD-YGRD (two 500 kVA; one 225 kVA; one 112.5 kVA).

One at 12470/7200-208/120, YGRD-YGRD (500 kVA).

3.4.2 Overhead Feeders

The modifications required to the overhead distribution system feeders and structures in order to operate the system at 4.16 kV are described below.

3.4.2.1 Poles

No costs have been included in the construction cost estimate for replacement of poles as a result of upgrading the system voltage to 4.16 kV. The existing poles are in good condition.

3.4.2.2 Sagging

No costs have been included in the construction cost estimate for re-sagging the existing conductors as a result of upgrading the system voltage to 4.16 kV. Since the higher operating voltage will actually reduce the load current on the feeders, the normal operating sag will be reduced. There are some isolated spots where adequate clearance does not presently exist over roadways. These should be addressed with normal maintenance funds.

3.4.2.3 Crossarms

The existing crossarms are 8 ft in length as a minimum and provide adequate clearance for 4.16 kV operations. It is estimated that 5% (66) of the system crossarms need to be replaced at this time. The crossarm replacement is necessitated by normal rot experienced in the Alaska environment and not by the voltage upgrade. Since the cost is negligible, it has been included in the construction cost estimate.

3.4.2.4 Insulators

It is estimated that approximately 15% (594) of the system insulators are the old, 2400 V rated, glass insulators. All of these insulators should be replaced with 15 kV rated insulators. The cost for upgrading the system voltage has been included in the construction cost estimate.

3.4.2.5 Conductors

No costs have been included in the construction cost estimate for replacement of existing phase conductors. A new 4/0 AWG, ACSR neutral conductor and one new insulator per pole will need to be added to the overhead distribution system. The neutral will need to be grounded at 4 poles per mile, minimum. The cost of the new neutral, insulator, and grounds has been included in the construction cost estimate.

3.4.2.6 Guys

With the addition of the new neutral conductor, an additional guy wire may be necessary at dead-end and corner structures. The cost of this work is covered under the contingency.

3.4.3 <u>Underground Feeders</u>

No costs have been included in the construction cost estimate for modifications to any of the underground distribution feeders.

3.4.4 Generators

Generators. 1, 2, and 3 will each require a 3ϕ , 1500 kVA, 2400-4160/2400 V, Δ -YGRD stepup transformer in order to connect to the new grounded, higher voltage distribution system.

Generators 4 and 5 can be reconnected in a grounded wye configuration at their output terminals at minimal expense.

The costs of these modifications have been included in the construction cost estimate for upgrading the system voltage.

3.4.5 Medium Voltage Switchgear

No costs have been included in the construction cost estimate for modifications to the existing medium voltage switchgear.

3.4.6 Miscellaneous Equipment

The modifications required to the miscellaneous system equipment in order to operate the system at $4.16~\rm kV$ are described below.

3.4.6.1 Richardson Step-Up Substation Breaker

This breaker will need to be replaced with a new oil circuit breaker rated for operation at 15 kV. The cost of this new breaker has been included in the construction cost estimate for upgrading the system voltage.

3.4.6.2 Load Break Air Switches

No costs have been included in the construction cost estimate for modifications to the existing load break air switches.

3.4.6.3 Cutout Switches

No costs have been included in the construction cost estimate for modifications to the existing cutout switches. Modifications required to fuse sizes will be covered under the contingency.

3.4.6.4 Protective Relays

A new Protective Device Coordination Study will be necessary and the existing relays will need to be reset. No costs have been included in the construction cost estimate specifically for these modifications. The cost of these modifications will be covered under the contingency.

3.4.6.5 Reclosers and Sectionalizers

No costs have been included in the construction cost estimate for modifications to reclosers or sectionalizers.

3.4.6.6 Capacitors and Reactors

No costs have been included in the construction cost estimate for modifications to capacitors or reactors.

3.5 ECONOMIC MODEL

The economic model used to calculate the Saving-to-Investment Ratio (SIR) was taken from the standard COE Life Cycle Cost Analysis (LCCA) Summary sheet developed for the Energy Conservation Investment Program (ECIP). The energy costs used are defined below. The construction cost estimates were described above.

3.5.1 Energy Costs

The energy costs used to calculate the energy savings were taken from the "Energy Usage and Cost Provided to Ft. Greely by GVEA" table (GVEA table) in Appendix K. The GVEA table was developed from GVEA's monthly billings to Fort Greely for the year beginning on September 1, 1993 and ending on August 31, 1994. The statements are also provided in Appendix K.

Fort Greely's energy costs are based on GVEA's GS-2 Rate Schedule, GVEA's wheeling charges, and the cost of generating electricity at Fort Wainwright. Rate schedules and calculations are provided to justify the numbers used in this study.

The average yearly energy cost for the purpose of this study was calculated as shown in Note 14 of the GVEA table. Approximately 85% of the power used by Fort Greely was generated at Fort Wainwright and wheeled to Fort Greely, and the remaining 15% was

purchased directly from GVEA. The average yearly energy cost was calculated by adding the two energy costs, each weighted by their respective percentages listed above.

The cost of power generated at Fort Wainwright and wheeled to Fort Greely was determined by multiplying the cost of generation at Fort Wainwright (\$0.06/kWh) by the energy wheeled to Fort Greely (13,814,340 kWh) and adding to it the wheeling charge (17.64% of the GS-2 Rate Schedule), and multiplied by the energy wheeled to Fort Greely. The cost of GVEA power was determined by taking the total charges from GVEA (\$528,806), subtracting their wheeling charges (\$185,347), and dividing the difference by the total energy purchased from GVEA (2,503,020 kWh). This incorporates the demand charges into the energy charges over the entire year for convenience.

Based on the above calculation, the average yearly energy cost for Fort Greely is \$0.0832 per kWh.

3.5.2 Economic Life and Discount Factor

The recommended economic life chosen for this project was 20 years based on Type 8, Electrical Energy Systems, from the Energy Conservation Project Types sheet in Appendix K.

The discount factor chosen was 14.47 Table Ba-4. This table is for Census Region 4 which includes Alaska and the DOE Discount Rate used is 4.1 percent as stated on the table.

These are the numbers that will be used in the LCCA.

3.5.3 Estimated Energy Savings

The estimated energy savings were calculated by subtracting the average line losses determined in the Case 2 Load Flow Analysis from the average line losses determined in the Case 1 Load Flow Analysis. In order to convert the peak power (kW) losses on the system to average annual energy (kWh) losses, the peak system losses were multiplied by the system load factor and the number of hours per year.

The average annual energy saved per year by converting the electrical distribution system from 2400 V to 4160 V is 222,330 kWh. Refer to the "Estimated Energy Savings" sheets in Appendix K.

3.5.4 <u>LCCA</u>

The standard COE LCCA was prepared using the numbers defined above. An additional 5.5% for supervision and inspection overhead (SIOH) and 6.0% for design costs were added to the total construction costs in the LCCA. This final sum represents the total investment

required to upgrade the electrical distribution system from a 2400 V, ungrounded delta to a 4160 V grounded wye. The total investment is \$961,414.

The energy savings in dollars per year is \$18,498. This number is calculated by multiplying the average annual energy saved per year at the base by the average yearly energy cost. The number is multiplied by the uniform present value (UPV) discount factor, which represents the total energy savings in dollars over the twenty year life of the project, reflected into the first year. This number calculates to \$267,664.

A summary of the LCCA is shown below.

Table 3-2. LCCA Results for Existing System

Description	Existing System
Annual Energy Savings (kWh)	222,330
Annual Cost Savings (\$)	18,498
Investment Cost (\$)	1,108,832
Simple Payback (yrs)	59.9
SIR	0.24

There are no discernible non-energy savings in this project. The age and voltage (2400 V) of most of the existing equipment that will be replaced renders the salvage value negligible. Likewise, there is no public utility rebate for the improvements under consideration in this report.

The SIR for this project is 0.24. Since this value is less than 1.25, the project does not qualify for implementation under the ECIP Program.

4. REDUCED SYSTEM DESCRIPTION (POST 2001)

4.1 GENERAL

The Department of Defense has targeted Fort Greely for realignment under the Base Realignment and Closure (BRAC) Program. The base realignment will significantly reduce the number of active facilities on the site over a five year period, starting in 1997 and ending in 2001. This reduction in facilities will have a significant impact on the utilization of the electrical distribution system and, consequently, the energy savings achievable.

4.2 DETAILS

The major features of each of the electric distribution systems are described in detail below as they will exist after realignment. The post-realignment system will be referred to as the reduced system.

4.2.1 Buildings

There are currently 231 buildings located on Fort Greely, the majority of which will be "laid-away" under the Layaway Program for disposition or eventual demolition. Twenty-eight buildings have been identified for retention to support the residual force to be left at Fort Greely. These buildings total 245,937 sq ft consisting of the buildings associated with the primary base services, such as fire protection, central power and heating plant, police, headquarters, sewage plant, school, gymnasium, housing, roads and grounds, etc.

Twenty-five of these buildings receive electric service via the base distribution system. Only 16 buildings are located in the cantonment area. The nine remote sites are located in the Bolio Lakes and Ranges area southwest of the base. Three buildings located in the Black Rapids area do not receive electric service via the base distribution system, and were not considered in this study.

4.2.2 <u>Transformers</u>

The residual buildings will be supplied by a total of 66 transformers from the Fort Greely electric distribution system. Of those transformers, 56 actually supply building loads, six are step-up substation transformers on Feeder. 9, and four are station service transformers for Building 606. All remaining transformers are described in detail below.

4.2.2.1 Main Transformer (GVEA)

The main transformer supplies the base from the GVEA distribution system. It is a 2500/3125 kVA, OA/FA, 24.9/14.4 - 2.4 kV, YGRD- Δ substation class transformer with top mounted primary and secondary bushings. This transformer is located adjacent to Building 606, and is owned and maintained by GVEA. It is not included as part of the 66 transformers described above, but will remain after realignment.

This transformer will need to be replaced if the Fort Greely electric distribution system is upgraded to $4.16~\rm kV$, grounded wye. It will be necessary to coordinate with GVEA on the exact winding configuration.

4.2.2.2 Feeder 9 Step-Up Substation Transformer

The Feeder 9 substation consists of 3, 1 ϕ , 500 kVA, OA, 2.4/4.16 - 7.2/12.47 kV polemounting type transformers, connected Δ - Δ , with top mounted primary and secondary bushings. The transformers are mounted on a concrete pad adjacent to Building 606, and will remain after realignment.

These transformers can be rewired as a grounded wye (YGRD) on both the primary and secondary and reused if the system voltage is increased to $4.16~\rm kV$. This will increase the Feeder 9 voltage from 7200 V to $12,\!470~\rm V$.

4.2.2.3 Richardson Step-Up Substation Transformer

The Richardson substation consists of three 1ϕ , 200 kVA, OA, 2.4 - 7.2 kV pole-mounting type transformers, connected Δ - Δ , with top mounted primary and secondary bushings. The transformers are mounted on a concrete pad near the Richardson Highway in the West Post area.

The nameplate on the transformers does not specifically indicate that the transformers are rated for operation at 4.16 kV and 12.47 kV. However, EMC believes that these transformers can be rewired as a grounded wye (YGRD) on both the primary and secondary and reused at 4.16 kV and 12.47 kV respectively. The winding voltage and insulator bushing ratings will not change and the phase-to-phase clearance is adequate. It will be necessary to rewire these transformers to match the Feeder 9 step-up transformer voltage. These transformers will remain after realignment.

4.2.2.4 Building 606 Station Service Transformers

Building 606, is supplied by four station service transformers: SS-1, SS-2, and two SM1As. Transformer SS-1 is a 300 kVA dry type transformer. Transformer SS-2 is a 300 kVA pad

mounted transformer. Both SM1A transformers are 500 kVA dry type transformers. All four transformers are 3ϕ , 2400-480 V, Δ - Δ , and will remain after realignment. They will all need to be replaced if the system voltage is upgraded to 4.16 kV, because they cannot be rewired.

4.2.2.5 Load Transformers

From the 56 load supplying transformers mentioned above, 1 is a 3 ϕ pad mounted transformers, 51 are connected into 17, 3 ϕ transformer banks, and the remaining 4 are 1 ϕ transformer banks. Table 4-1 below shows the transformer voltages, sizes, quantities, and mounting type. All 3 ϕ transformers are connected Δ -YGRD and 1 ϕ transformers are connected ϕ - ϕ on the primary with a center tapped secondary.

Table 4-1. Remaining Load Transformers

(Permanent Activity Facility list as of July 25, 1995)

	(10	rmanent Acuv	No.	Trans.	No. of				
Bldg.	Bldg. Name	Location	Trans.	Bank	Trans./	ф	Mt.	VPRI	VSEC
No.	Stag. Hame		Banks	kVA	Bank	'	Type		
110	POL Monitoring	North Post	1	75	3	3	Pole	2400	208/120
501	Headquarters	Cantonment	1	225	3	3	Pole	2400	208/120
503	Gymnasium	Cantonment	1	225	3	3	Pole	2400	208/120
504	Fire Station	Cantonment	1	112.5	3	3	Pole	2400	208/120
605	Consol. PW	Cantonment	1	300	3	3	Pole	2400	208/120
606	Central Htg. Plant	Cantonment	1	150	3	3	Pole	2400	480/277
607	Heat Plant Annex	Cantonment							
615	Roads & Grounds	Cantonment	1	150	3	3	Pole	2400	208/120
617	POL Operation	Cantonment							
618	POL Operation	Cantonment	1	75	3	3	Pole	7200	208/120
633	Sewage Treat.	Cantonment	1	30	3	3	Pole	2400	208/120
638	Sewage Lagoon	Cantonment	1	75	3	3	Pole	2400	480/277
639	Contact Chamber	Cantonment							
725	State School	Cantonment	1	225	3	3	Pole	2400	208/120
820	Unac. Pers. Hsg.	Cantonment	2	37.5	1	1	Pole	2400	240/120
821	Unac. Pers. Hsg.	Cantonment	1	75	1	1	Pole	2400	240/120
1343	Range	Beales	1	30	3	3	Pole	7200	208/120
1350	Range	Beales	1	75	3	3	Pole	7200	208/120
1352	Range	Beales							
1419	Range	Mississippi	1	112.5	3	3	Pole	7200	208/120
			1	30	3	3	Pole	7200	208/120
1600	Range	Texas] 1	75	3	3	Pole	7200	208/120
1605	Range	Texas	1	15	1	1	Pole	7200	240/120
1606	Range	Texas							
1928	CRTA Complex	Bolio Lake	1	500	1	3	Pad	7200	208/120
1930	CRTA Complex	Bolio Lake	1	150	3	3	Pole	7200	208/120
2013	NWTC Complex	Black Rapids							
2019	NWTC Complex	Black Rapids	Not served from the base distribution system.						
2026	NWTC Complex	Black Rapids	;						

All pad-mounted transformers will need to be replaced if the distribution system voltage is increased to 4.16 kV and 12.47 kV. The 3ϕ , pole-mounted transformer primaries can be

rewired to a grounded wye configuration and reused. The 1ϕ , pole mounted transformers can be rewired from ϕ - ϕ to ϕ -N and reused. The winding voltage and insulator bushing ratings will not change.

4.2.3 Feeders

The load transformers are supplied by six feeders comprised of 23.1 miles of overhead lines and 3.4 miles of underground lines. Feeders 3, 4, and 8 from the original distribution system are no longer required and are taken completely out of service. Several other feeders are reduced in overall length. The electric distribution system is operated as an ungrounded delta at 2400 volts, 3ϕ . Table 4-2 shows the feeder characteristics.

Feeder Length & Size Voltage Connected kVA No. OH (ft) **AWG** UG (ft) **AWG** L-L 3 φ 1 ¢ 1 5050 4/00 2400 225 150 2 1550 4/00 2400 562.5 0 3 4/0 0 0 2400 0 0 4 0 4/00 0 0 2400 5 8400 4/0 2400 2 2400 75 0 6 Bus 2400 0 0 0 0 7 3550 0 4/0 705 2400 0 8 2000 0 4/04/0 2400 0 0 9 25 103,418 13,552 7200 1017.5 2 **Totals** 121,968 17,952 2585 175

Table 4-2. Feeder Descriptions

Approximately 94% of the connected load will be three-phase after realignment. It is assumed that the single-phase loads will remain well balanced between phases. In general, the feeders will supply the same loads and locations as previously described, except the loads that have been eliminated:

- Feeder No. 1 Housing in the main base area.
- Feeder No. 2 Offices and shops in the main base area.
- Feeder No. 3 No load
- Feeder No. 4 No load
- Feeder No. 5 Old and middle post areas; Allen Air Field.
- Feeder No. 6 Overhead tie.
- Feeder No. 7 Sewage plant and east base area.
- Feeder No. 8 No load
- Feeder No. 9 Remote sites; Bolio Lakes and the Ranges.

4.2.3.1 Overhead Feeder Construction

Approximately 87% of the electric distribution system, by feeder length, will be overhead construction after realignment. The overhead electric distribution system construction is the same as previously described in Section 2.

None of the phase conductors will have to be replaced if the system voltage is upgraded to 4.16 kV and 12.47 kV. The load current will actually be decreased at the higher voltages. The previous assumption will be made, that 5% of the crossarms will have to be replaced and 15% of the pin insulators. A new neutral conductor will have to be added as well.

4.2.3.2 Underground Feeder Construction

The remaining 13% of the electric distribution system is underground construction. The underground electric distribution system is constructed as previously described in Section 2.

It is not necessary to replace the feeders or add an additional wire for a neutral if the system voltage is upgraded to 4.16 kV and 12.47 kV. The three-phase feeders supply balanced three-phase loads. No single-phase loads were supplied by underground feeders.

4.2.4 Generators

The five diesel engine generators located in Building 606 will remain after realignment. Generators 1, 2, and 3 are alike and generators 4 and 5 are alike. Table 4-2 is a summary of the generators characteristics.

Gen. No.	Rated kVA	PF	Rated kW	rpm	ф	Voltage	Mfr.	Ser. No.	Output Connect.
1	1250	0.8	1000	360	3	2400	Elliott Co.	3-S-9691	Y
2	1250	0.8	1000	360	3	2400	Elliott Co.	2-S-9691	Y
3	1250	0.8	1000	360	. 3	2400	Elliott Co.	1-S-9691	Y
4	1563	0.8	1250	360	3	2400/4160	Elliott Co.	4-S-10915	Δ
5	1563	0.8	1250	360	3	2400/4160	Elliott Co.	7-S-10915	Δ

Table 4-3. Characteristics of Engine Generators

The generators are usually operated as peak shavers to reduce the load on the GVEA main transformer. The total connected load on the reduced system, counting the load and station service transformers is approximately 4160 kVA. If the traditional operating characteristics of the base load are assumed, i.e., 95% power factor and 25% demand factor, the peak base load will be approximately 988 kW. Hence, the main GVEA transformer will be more than

adequately sized and generators 4 and 5 are each large enough to provide stand-by power to the reduced base with one unit in reserve.

All of the generators are 6-lead machines. Generators 1, 2, and 3 are connected in an ungrounded Y configuration, meaning that the T1, T2, and T3 leads are connected to phases A, B, and C respectively and the T4, T5, and T6 leads are tied together at a common neutral bus is not bonded to ground. This indicates that the windings are only rated for 1386 V. If these generators are to be used on a 4160 V, grounded wye system, they will require a $2.4 - 4.16 \, \text{kV}$, Δ -YGRD step-up transformer.

Generators 4 and 5, on the other hand, are connected in a delta configuration, meaning that the T1 and T3 leads are tied together, the T2 and T4 leads are tied together, and the T3 and T5 leads are tied together. This indicates that the windings are rated for 2400 V and that these generators can be used on a 4160 V, grounded wye system by reconnecting the leads from a delta configuration to a grounded wye configuration.

If generators 4 and 5 alone were kept for stand-by purposes, and generators 1,2 and 3 were laid-away, a considerable savings could be realized when upgrading the system to 4160 V, by not having to install a new transformer at each of generators 1, 2 and 3. The economic impact of this decision is discussed in Section 6.

4.2.5 Medium Voltage Switchgear

The main switchgear at Building 606 will remain the same as previously described after realignment. The equipment ratings will not change and the fault levels will remain substantially the same. As previously described, the high first half cycle fault levels are not expected to be a problem.

It will not be necessary to replace any of the switchgear if the system voltage is upgraded to 4.16 kV. The existing switchgear is rated for 4.16 kV and the bus ampacities will be more than adequate, since the load current will be reduced to 58% of its present value at the higher voltage. Additionally, the available fault currents will decrease with the increased voltage.

4.2.6 Miscellaneous Equipment

4.2.6.1 Richardson Step-Up Substation Breaker

The oil circuit breaker at this location is an Allis Chalmers Type OX-18 (Serial No. 305756). It is rated for 600 A continuous current, 7.2 kV and 75 kV BIL. It was manufactured in December 1955. Since it is only rated for 7.2 kV phase-to-phase, it will have to be replaced with a switch rated for 15 kV phase-to-phase.

4.2.6.2 Load Break Air Switches

These sectionalizer switches are relatively new additions to the overhead distribution system and are A B Chance, Type D, Catalogue No. CD7HE1CL. They are rated for 600 A continuous current, 40 kA momentary current, 15 kV, and 110 kV BIL. These switches will not have to be replaced if the system voltage is increased to 4.16 and 12.47 kV.

4.2.6.3 Cutout Switches

Each load transformer is protected by an XS style cutout switch. The rating of the cutouts is not known, however, they have only been available in a 15 kV rating for many years. In addition, a 200 A continuous current rating is commonly used on overhead distribution systems, especially in conjunction with 4/0 ACSR. Therefore, it is assumed that the cutouts are rated at 200 A continuous current, 15 kV, and 110 kV BIL, the standard rating available from most manufacturers. While the cutouts will not have to be replaced, their fuses will all have to be replaced if the voltage is upgraded to 4.16 kV and 12.47 kV. The National Electrical Code (NEC, Table 450-3(a)(1)) requires that the continuous current rating of the primary protection for a transformer not exceed 300% of the rated continuous primary current of the transformer. Since the primary current of the transformer will be reduced to 58% of its original value because of the voltage increase, all of the fuses will be too large.

4.2.6.4 Protective Relays

A Protective Device Coordination Study was recently performed and the protective devices reset to the recommended values. If the system voltage is increased, the load and fault current levels will all change. This will require that any current sensing type protective device be reset in order to maintain coordinated tripping and to ensure proper protection. Table 4-4 below shows the devices with current sensitive tripping that will need to be reset.

Table 4-4. Protective Devices With Current Sensing

Item No.	Bus	Equipment	Device Type	Quantity
1	Gray Switchgear South	Generator No. 1	51V	3
2	Gray Switchgear South	Generator No. 2	51V	3
3	Gray Switchgear South	Generator No. 3	51V	3
4	Gray Switchgear South	Feeder No. 1	50/51	3
5	Gray Switchgear South	Feeder No. 3	50/51	0
6	Gray Switchgear South	Feeder No. 4	40/51	0
7	Gray Switchgear South	Feeder No. 2	50/51	3
8	Gray Switchgear South	Feeder No. 5	50/51	3
9	Gray Switchgear South	Station Service No. 1	50/51	3
10	Gray Switchgear South	SM1A Tie	50/51	3
11	Gray Switchgear North	Generator No. 4	51V	3

Item No.	Bus	Equipment	Device Type	Quantity		
12	Gray Switchgear North	Generator No. 5	51V	3		
13	Orange Switchgear	GVEA Transformer	GVEA Transformer 50/51			
14	Orange Switchgear	GVEA Transformer	46	1		
15	Orange Switchgear	Feeder No. 7	50/51	3		
16	Orange Switchgear	Feeder No. 8	50/51	0		
17	Orange Switchgear	Feeder No. 9	50/51	3		
18	Orange Switchgear	Overhead Tie	50/51	3		
19	Orange Switchgear	Station Service No. 2	50/51	3		
Total				46		

The quantity to be reset is slightly less than described in Section 2 for the existing system, because three feeders are assumed to be out of service due to the reduced facility. It is believed that the CTs will not need to be replaced with smaller ratio CTs. The range of tap settings available on the protective relays will allow them to be reset to the new current values.

With the system configuration changed to a grounded wye, and the Building 606 and Richardson substation step-up transformers rewired to grounded wye configurations on both the primary and secondary, the 7.2 kV system will have ground fault protection, which it presently does not have.

4.2.6.5 Reclosers and Sectionalizers

There are no reclosers or sectionalizers presently installed on the electrical distribution system. One of the many advantages of a grounded system is that the use of reclosers will be possible. Reclosers would reduce outage times and lineman callouts.

4.2.6.6 Capacitors and Reactors

There are no capacitors or reactors presently installed on the electrical distribution system. The power factor (PF) and load factor (LF) are consistently high on the distribution system, eliminating the need for voltage and VAR corrective devices.

5. REDUCED SYSTEM COMPUTER MODELS AND ANALYSIS (POST 2001)

5.1 GENERAL

The reduced electrical distribution system was modeled in the Distribution Analysis for Power Planning and Reporting (DAPPER) Program, V4.5, Rev 1.08, as licensed to E M C Engineers, Inc. by SKM Systems Analysis, Inc. of Manhattan Beach, CA. The DAPPER Program is capable of modeling multi-level voltage power systems of any configuration, including radial design, loop design, or any combination of radial and loop design. The DAPPER Program can perform load flow, voltage drop, motor starting and short circuit studies.

For the purpose of this study, the reduced electrical distribution system was modeled and load flow analyses were performed for two cases: the reduced system operated at 2400 V, and the reduced system operated at 4160 V. The total system losses for each case were determined and compared to find the difference. The difference represents the reduction in losses attainable by operating the system at the higher voltage. The loss reduction can be easily converted to energy saved by multiplying by the average hours in service during the year.

Once the energy savings were known for the first year, the economic model was used to determine the savings-to-investment ratio (SIR) of operating the system at the higher voltage. The present worth of the energy savings was determined over a twenty year life. The construction costs required to modify the system for operation at the higher voltage were determined using the MCACES Program with the 1994 Fairbanks Database. The present worth of the energy savings was then divided by the construction costs, and the result was compared to the Corps of Engineers (COE) acceptable limits to determine the feasibility of the project.

The electrical distribution system model and the economic model are described below in greater detail.

5.2 ELECTRICAL DISTRIBUTION SYSTEM MODEL

Before the electrical distribution system could be modeled accurately, several factors had to be determined. These are detailed in the following sections.

5.2.1 Estimated Loads

In order to estimate the system load accurately to model the reduced system, the data used in the existing system model from Section 3 was modified as follows:

- Transformers for buildings to be laid-away were taken out of service.
- Feeders with no building loads remaining were taken out of service.
- Estimated demand for each feeder still in service in the reduced system model was assumed to be the same as in the existing system model.
- Power Factor for each feeder still in service in the reduced system model was assumed to be the same as in the existing system model.

The data used in the reduced system model in was developed from the lumped load calculations used for the existing system model. Table 5-1 below shows the feeder loads used in the reduced system computer model. The data sheets are provided in Appendix D.

Feeder No.	Load (A)
1	40
2	55
3	0
4	0
5	2
6	Overhead Tie Bus
7	49
8	0
9	21
Total	167

Table 5-1. Feeder Load for Reduced Systems

Spreadsheets were created to calculate the estimated lumped load at each bus for each feeder, provided in Appendix E as the Lumped Load Calculation Post 2001 Study. The estimated load at each bus was calculated by multiplying the 3 Phase Equivalent kVA by the estimated demand on the feeder. The estimated demand on each feeder was left the same as used in the existing system model. The estimated lumped load is simply the total of all the transformers at a particular bus modeled as a "lump sum."

Lumping the loads at each bus represents a valid model for determining the system losses, since the voltage on the primary distribution system is the only factor that will be altered to reduce the system losses. The load transformer losses will be the same connected at 4.16 kV, grounded wye as they are connected at 2.4 kV, delta. The secondary voltage on each

load transformer will not change, so the losses will remain the same. Consequently, it is not necessary to model the load transformers and the secondary loads in detail. Additionally, the feeder loads are based on measured data from plant records.

5.2.2 Load Factor

The load factor that must be considered in order to make the computer model more realistic, and that is the load factor. The initial loading of the distribution system was developed from the yearly peak. The system does not operate at the yearly peak all the time, however. The load factor times the yearly peak represents the average yearly loading of the system. The load factor for the Fort Greely electrical distribution system was determined by multiplying the daily peak for each month times 24 (hours) and dividing the product by the sum of the hourly kW readings from the plant totalizer meter. The results for the twelve months were averaged to determine the yearly load factor, which is approximately 80%. The assumption was made that the yearly load factor will remain the same after realignment has reduced the base. Load factor calculations are provided in Appendices D and K (Estimated Energy Savings).

5.3 CASE STUDIES

Once the correct lumped loads were entered into the DAPPER Program and verified for each feeder, two load flow studies were performed to determine the system losses for each.

5.3.1 Case 3

Case 3 simulated the reduced system operating at 2.4 kV with transformers connected in delta where applicable. The loads were modeled for the Post 2001 scenario as described above. One standby generator is running at 1000 kW and the remainder of the load is supplied through the GVEA transformer. The lumped loads are modeled as constant impedance loads. This case represents the baseline for the reduced system.

Appendix H provides the results of the load flow study. The system losses are shown to be 13.6 kW and 13.9 kVAR.

5.3.2 Case 4

Case 4 simulated the reduced system operating at 4.16 kV with transformers connected in grounded wye where applicable. The loads were modeled for the Post 2001 scenario as described above. One standby generator is running at 1000 kW and the remainder of the load is supplied through the GVEA transformer. An additional transformer has been added in this case to simulate the losses associated with stepping up the voltage at

generators 1, 2, or 3 from 2.4 kV to 4.16 kV. The lumped loads were modeled as constant impedance loads. This case represents the reduced loss case for the reduced system.

The results of the load flow study are provided in Appendix I. The system losses are shown to be $11.2\,\mathrm{kW}$ and $44.1\,\mathrm{kVAR}$.

5.4 CONSTRUCTION COST ESTIMATE

The construction cost estimates were developed based upon the repair, reconnection, replacement or addition of the distribution equipment as specified below. MCACES was used to develop the cost estimate with the 1994 Fairbanks database of material, labor and equipment costs. When cost information was not available in the MCACES database, vendor quotes or the 1995 Means Electrical Cost Data were used with a 20% location factor added to account for the extra shipping expenses. Additionally, the following adders were applied to the construction cost estimate to obtain the final cost:

- 15% for contractor's overhead.
- 10% for contractor's profit.
- 3% for contractor's bond.
- 20% for contingency.
- 4% for price escalation.

The total construction cost for converting the electrical distribution system from 2400~V to 4160~V is \$714,073.

Detailed construction cost estimates are provided in Appendix J. The equipment described below was included or excluded from the cost estimates.

5.4.1 Transformers

The modifications required to the distribution system transformers in order to operate the system at 4.16 kV are described below.

5.4.1.1 Main Transformer (GVEA)

The main transformer is 3ϕ , 2500/3125 kVA, OA/FA, 24.9/14.4 - 2.4 kV transformer is connected YGRD- Δ and is owned and maintained by GVEA. It will be necessary to replace this transformer with a 3ϕ , 4000 kVA, OA, 24.9/14.4 - 4.16/2.4 kV transformer, connected YGRD-YGRD.

The size of this transformer could be reduced to 2000 kVA due to the reduced load. It was assumed, however, that the facilities that are laid-away could be reactivated in an

emergency, and capacity will need to be available. It is also assumed for the purpose of this study that this transformer will be replaced by GVEA and the cost of replacement will be amortized over the life of the transformer, those costs are generally incorporated into a new rate structure. Compared to the other modifications that will be necessary, this cost increase represents an insignificant investment on the part of Fort Greely. No costs have been included in the study for replacement of this transformer.

5.4.1.2 Feeder 9 Step-Up Substation Transformer

The Feeder 9 transformer will be required in the reduced system. It consists of three 1ϕ , 500 kVA, OA, 2.4/4.16 -7.2/12.47 kV transformers with top mounted primary and secondary bushings, which are presently connected in a Δ - Δ configuration. They can be reconnected in a YGRD-YGRD configuration at minimal expense.

5.4.1.3 Richardson Step-Up Substation Transformer

The Richardson transformer will be required in the reduced system. It consists of three 1 ϕ , 200 kVA, OA, 2.4-7.2 kV transformers with top mounted primary and secondary bushings, which are presently connected in a Δ - Δ configuration. They can be reconnected in a YGRD-YGRD configuration at minimal expense.

5.4.1.4 Building 606 Station Service Transformers

All four station service transformers will be required in the reduced system, but will need to be replaced. They can all be replaced as 3ϕ dry type transformers at their original kVA ratings (2- 300 kVA & 2- 500 kVA) with primary windings of 4.16/2.4 kV connected YGRD, and secondary windings of 480/277 V connected YGRD.

5.4.1.5 Load Transformers

All 51 pole type load transformers are suitable for operation at 4.16 kV. The 3 ϕ pole type load transformers are connected in Δ on the primary. They can be reconnected as YGRD at minimal expense. The secondaries will not require modifications.

Four 1ϕ pole type transformers are connected phase-to-phase on the primary. They can be reconnected as phase-to-neutral at minimal expense. The secondaries will not require modifications.

One pad-mounted transformer will need to be replaced on the 3ϕ , 500 kVA unit at Bolio Lakes.

5.4.2 Overhead Feeders

The modifications required to the overhead distribution system feeders and structures in order to operate the system at 4.16 kV are described below.

5.4.2.1 Poles

No costs have been included in the construction cost estimate for replacement of poles as a result of upgrading the system voltage to 4.16 kV. The existing poles are in good condition.

5.4.2.2 Sagging

No costs have been included in the construction cost estimate for re-sagging the existing conductors as a result of upgrading the system voltage to 4.16 kV. Since the higher operating voltage will actually reduce the load current on the feeders, the normal operating sag will be reduced. There are some isolated spots where adequate clearance does not presently exist over roadways. These should be addressed with normal maintenance funds.

5.4.2.3 Crossarms

The existing crossarms are 8 ft in length as a minimum and provide adequate clearance for 4.16 kV operations. It is estimated that 5% (49) of the system crossarms need to be replaced at this time. The crossarm replacement is necessitated by normal rot experienced in the Alaska environment and not by the voltage upgrade. Since the cost is negligible, it has been included in the construction cost estimate.

5.4.2.4 Insulators

It is estimated that approximately 15% (440) of the system insulators are the old, 2400 V rated, glass insulators. All of these insulators should be replaced with 15~kV rated insulators. The cost for upgrading the system voltage has been included in the construction cost estimate.

5.4.2.5 Conductors

No costs have been included in the construction cost estimate for replacement of existing phase conductors. A new 4/0 AWG, ACSR neutral conductor and one new insulator per pole will need to be added to the overhead distribution system. The neutral will need to be grounded at 4 poles per mile, minimum. The cost of the new neutral, insulator, and grounds has been included in the construction cost estimate.

5.4.2.6 Guys

With the addition of the new neutral conductor, an additional guy wire may be necessary at dead-end and corner structures. The cost of this work is covered under the contingency.

5.4.3 Underground Feeders

No costs have been included in the construction cost estimate for modifications to any of the underground distribution feeders.

5.4.4 Generators

Generators 1, 2, and 3 will each require a 3ϕ , 1500 kVA, 2400-4160/2400 V, Δ -YGRD step-up transformer in order to connect to the new grounded, higher voltage distribution system.

Generators. 4 and 5 can be reconnected in a grounded wye configuration at their output terminals at minimal expense.

The costs of these modifications have been included in the construction cost estimate for upgrading the system voltage. Additional cost savings could be realized by laying-away generators 1, 2 and 3.

5.4.5 Medium Voltage Switchgear

No costs have been included in the construction cost estimate for modifications to the existing medium voltage switchgear.

5.4.6 Miscellaneous Equipment

The modifications required to the miscellaneous system equipment in order to operate the system at 4.16 kV are described below.

5.4.6.1 Richardson Step-Up Substation Breaker

This breaker will need to be replaced with a new oil circuit breaker rated for operation at 15 kV. The cost of this new breaker has been included in the construction cost estimate for upgrading the system voltage.

5.4.6.2 Load Break Air Switches

No costs have been included in the construction cost estimate for modifications to the existing load break air switches.

5.4.6.3 Cutout Switches

No costs have been included in the construction cost estimate for modifications to the existing cutout switches. Modifications required to fuse sizes will be covered under the contingency.

5.4.6.4 Protective Relays

A new Protective Device Coordination Study will be necessary and the existing relays will need to be reset. No costs have been included in the construction cost estimate specifically for these modifications. The cost of these modifications will be covered under the contingency.

5.4.6.5 Reclosers and Sectionalizers

No costs have been included in the construction cost estimate for modifications to reclosers or sectionalizers.

5.4.6.6 Capacitors and Reactors

No costs have been included in the construction cost estimate for modifications to capacitors or reactors.

The total construction cost for converting the electrical distribution system from 2400 V to 4160 V is \$714,073.

5.5 ECONOMIC MODEL

The economic model used to calculate the Saving-To-Investment Ratio (SIR) was taken from the standard COE Life Cycle Cost Analysis (LCCA) Summary sheet developed for the Energy Conservation Investment Program (ECIP). The energy costs used are defined below, and the construction cost estimates were described above.

5.5.1 Energy Costs

The energy costs used to calculate the energy savings were taken from the "Energy Usage and Cost Provided to Ft. Greely by GVEA" table (GVEA table) in Appendix K. The table was developed from GVEA's monthly billings to Fort Greely for the year beginning on September 1, 1993 and ending on August 31, 1994. The statements are provided in Appendix K.

Fort Greely's energy costs are based on GVEA's GS-2 Rate Schedule, GVEA's wheeling charges, and the cost of generating electricity at Fort Wainwright. Rate schedules and calculations are provided to justify the numbers used in this study.

The average yearly energy cost for the purpose of this study was calculated as shown in Note 14 of the GVEA table. Approximately 85% of the power used by Fort Greely was generated at Fort Wainwright and wheeled to Fort Greely. The remaining 15% was purchased directly from GVEA. The average yearly energy cost was calculated by adding the two energy costs, each weighted by their respective percentages listed above.

The cost of power generated at Fort Wainwright and wheeled to Fort Greely was determined by multiplying the cost of generation at Fort Wainwright (\$0.06/kWh) by the energy wheeled to Fort Greely (13,814,340 kWh) and adding to it the wheeling charge (17.64% of the GS-2 Rate Schedule) times the energy wheeled to Fort Greely. The cost of GVEA power was determined by taking the total charges from GVEA (\$528,806), subtracting their wheeling charges (\$185,347), and dividing the difference by the total energy purchased from GVEA (2,503,020 kWh). This incorporates the demand charges into the energy charges over the entire year for convenience.

Based upon the calculations above, the average yearly energy cost for Fort Greely is \$0.0832 per kWh.

5.5.2 Economic Life and Discount Factor

The recommended economic life chosen for this project was 20 years based on Type 8, Electrical Energy Systems, on the Energy Conservation Project Types sheet in Appendix K.

The discount factor chosen was 14.47 from the "Industrial (Elec)" column and "N=20" row of Table Ba-4, the "FEMP UPV* Discount Factors adjusted for fuel price escalation, by enduse and fuel type" table in Appendix K. This table is for Census Region 4 which includes Alaska, and the DOE Discount Rate used was 4.1 percent as stated on the table.

5.5.3 Estimated Energy Savings

The estimated energy savings were calculated by subtracting the average line losses determined in the Case 4 Load Flow Analysis from the average line losses determined in

the Case 3 Load Flow Analysis. In order to convert the peak power (kW) losses on the system to average annual energy (kWh) losses, the peak system losses were multiplied by the system load factor and the number of hours per year.

The average annual energy saved per year by converting the electrical distribution system from 2400 V to 4160 V is 16,727 kWh. Refer to the "Estimated Energy Savings" sheets in Appendix K.

5.5.4 LCCA

The standard COE LCCA was prepared using the numbers defined above. An additional 5.5% for supervision and inspection overhead (SIOH) and 6.0% for design costs were added to the total construction costs in the LCCA. This final sum represents the total investment required to upgrade the electrical distribution system from a 2400 V, ungrounded delta to a 4160 V grounded wye. The total investment is \$796,191.

The energy savings in dollars per year is \$1,392. This number is calculated by multiplying the average annual energy saved per year at the base by the average yearly energy cost. The number is multiplied by the uniform present value (UPV) discount factor, which represents the total energy savings in dollars over the twenty year life of the project, reflected into the first year. This number calculates to \$20,138.

A summary of the LCCA is shown in Table 5-2 below.

DescriptionReduced SystemAnnual Energy Savings (kWh)16,727Annual Cost Savings (\$)1,392Investment Cost (\$)796,191Simple Payback (yrs)572.1SIR0.03

Table 5-2. LCCA Results

There are no discernible non-energy savings in this project. The age and voltage (2400 V) of most of the existing equipment that will be replaced renders the salvage value negligible. Likewise, there is no public utility rebate for the improvements under consideration in this report.

The a SIR for this project is 0.03. Since this value is less than 1.25, the project does not qualify for implementation under the ECIP Program.

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 LCCA SUMMARY

To qualify for government funcing, ECOs must have a discounted Savings-to-Investment Ratio (SIR) greater than 1.25 and a simple payback less than 10 years. A project with an investment cost greater than \$300,000 will qualify for ECIP funding. Projects with investment costs less than \$300,000 will qualify for the Federal Energy Management Program (FEMP). Table 6-1 below summarizes the results of the LCCA.

Upgrade Electrical Distribution System Reduced System Existing System Description 16,727 Annual Energy Savings (kWh) 222,330 1,392 18,498 Annual Cost Savings (\$) 796,191 1,108,832 Investment Cost (\$) 572.1 59.9 Simple Payback (yrs) 0.03 0.24 SIR

Table 6-1. LCCA Results

6.2 CONCLUSIONS

The conclusions discussed below are based on the results of the LCCAs performed in this study. Other relevant factors are also discussed, however, which should be considered before making a final decision.

6.2.1 Existing System (1995 to 1997)

With an SIR of 0.24, upgrading the existing electric distribution system from 2400 V to 4160 V is clearly unfeasible based upon energy savings alone. The high construction cost to implement the voltage upgrade and the low cost of power at Fort Greely both contribute to the inability to justify the conversion.

Working backwards from the results above, the average yearly cost of electricity would have to be at least \$0.43 per kWh at the present construction cost, or the construction cost would have to be less than \$193,000 at the present average yearly cost of electricity, in order to achieve an SIR of 1.25 or higher. It is EMC's opinion that neither of those numbers will ever be possible.

While upgrading the system voltage from 2400 V to 4160 V will not reduce the system losses enough to justify the construction costs, the conversion from an ungrounded system to a grounded system will dramatically enhance the safety and reliability of the overhead distribution system. With the ungrounded system presently in place, it is unlikely that a ground fault on a feeder will trip the feeders protective relay at Building 606 and take the feeder out of service until the fault can be removed. Approximately 85% of the faults that occur on an overhead distribution system are single-line-to-ground faults, simply referred to as ground faults.

Ground faults can be caused by tree limbs dropping onto the lines under the weight of a snowfall, or an automobile skidding into a pole and knocking it to the ground. The tree limb will lay across the lines or the lines will lay on the ground for an indefinite period of time. Eventually, someone reports the incident before the circuit is cleared by a lineman who must manually open the feeder breaker. In populated areas, not only will many people be without electricity while the line is down, but a line laying on the ground is extremely dangerous to anyone who comes into contact with it. In unpopulated areas, it could take several hours to find the downed line.

In addition, the ground fault acts as the system ground point. The ground fault current that flows through the line is the capacitive charging current of the system, generally only a few amps. If the ground fault is intermittent or allowed to continue, the entire system could be subjected to severe overvoltages which can be as high as six or eight times the phase voltage. The overvoltages are a result of the repetitive charging of the system capacitance or the resonance between the system capacitance and inductance. These overvoltages can puncture insulation and result in additional ground faults. Once the second ground fault occurs, a line-to-line fault occurs, usually arcing, with a current magnitude large enough to damage equipment. But this still may not be large enough to trip the overcurrent protective devices. Ungrounded systems are not standard practice for modern overhead distribution systems.

One final note, the protective relays on Feeder 9 will never see a ground fault on the 7200 V portion of the feeder because of the Δ - Δ step-up transformers at Building 606 and the Richardson Substation. Because of the remote location of this feeder, a line could be down and unmanned facilities without power for a long period of time before the outage is recognized.

6.2.2 Reduced System (Post 2001)

With an SIR of 0.03, upgrading the reduced electric distribution system from $2400\,\mathrm{V}$ to $4160\,\mathrm{V}$ is unjustified based upon energy savings alone. As with the existing system, the high construction cost to implement the voltage upgrade and the low cost of power at Fort Greely both contribute to the inability to justify the conversion. Even with generators 1, 2, and 3 laid away the SIR is not significantly improved.

It's not surprising that the reduced system looks even worse than the existing system because approximately 80% of the load has been eliminated. The system losses are equal to I²R where I is the line or feeder load (current) and R is the line resistance in ohms. The system losses are much more dependent upon the line current because of its squared characteristic than the line resistance which is linearly proportional. Consequently, even though only 25% of the lines have been eliminated, the 80% reduction in load current has the predominant impact on system losses.

The average yearly cost of electricity would have to be greater and the construction cost lower than those defined above for the existing system. It is EMC's opinion that it will be almost impossible to justify upgrading the reduced system to 4160 V based upon energy savings alone. However, a case can be made for upgrading the system voltage based upon safety and reliability as described for the existing system above. Everything stated above with regard to safety and reliability for the existing system is also true for the reduced system.

6.3 RECOMMENDATIONS

EMC recommends that the Fort Greely electrical distribution system not be upgraded from an ungrounded 2400 V system to a grounded 4160 V system at this time. EMC further believes that it will always be difficult to justify this project based upon energy savings and economic considerations. With the continuing consolidation of electric utilities and open transmission access imminent, expectations are that electric rates will decrease over the long term. On the other hand, construction and equipment costs are expected to continue increasing at 3-5% a year for the near term, at least. None of this bodes well for the economic feasibility of this project in the future.

An upgrade to the electrical distribution system to a grounded, 4160 V system is justifiable on the basis of safety and reliability. An ungrounded distribution system is inappropriate at this site. At the very least, ground fault detection should be implemented as determined is previous studies.

APPENDIX A

Scope of Work and Confirmation Notices

DEPARTMENT OF THE ARMY

U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 898 ANCHORAGE, ALASKA 99506-0898

AUG 1 4 1995

Contract Support Group

SUBJECT: Contract No. DACA01-94-D-0033, Indefinite Delivery Architect-Engineer Contract for Energy Engineering Analysis Program (EEAP), North, West, and Midwest Regions

Mr. Dennis Jones EMC Engineers 2750 South Wadsworth Boulevard Suite C-200 Denver, Colorado 80227-3400

Dear Mr. Jones:

The following documents are enclosed for your use to prepare a fee proposal for the work in item a:

- a. A Scope of Work for a modification to Delivery Order No. 0003 entitled, "Limited Energy Study (Power Distribution), Fort Greely, Alaska," is as follows: Add the energy efficiency sutdy for steam, water, and sanitary sewer for the buildings (see active building list) that are to remain in active status.
 - b. Fee proposal forms.

Please furnish a fee proposal (forms enclosed) for this work by <u>August 24, 1995</u>, to the attention of my Contract Support Group. Hourly labor rates and overhead rates are established in the basic contract.

Please contact Mr. Randy Jacobs, Negotiator, at 907/753-5639 if you have any questions.

Sincerely,

Trillis B. Enders

Alternate Contracting

Officer's Representative

True B. E. der

Enclosures

AUG 1995

CENPA-EN-TE-DM

SCOPE OF WORK
ENERGY EFFICIENCY STUDY

FOR

FORT GREELY

ALASKA

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

GENERAL SCOPE OF WORK CONTRACT NO. DACA85-94-C-0033 Delivery Order No. 0003

ENERGY EFFICIENCY STUDY FORT GREELY, AK performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

TABLE OF CONTENTS

- 1.0 BRIEF DESCRIPTION OF WORK
- 2.0 GENERAL
- 3.0 PROJECT MANAGEMENT
- 4.0 SERVICES AND MATERIALS
- 5.0 PROJECT DOCUMENTATION
 - 5.1. ECIP Projects
 - 5.2. Non-ECIP Projects
 - 5.3. Non-Feasible ECOs
- 6.0 DETAILED SCOPE OF WORK
- 7.0 WORK TO BE ACCOMPLISHED
 - 7.1. Review Previous Studies
 - 7.2. Perform a Limited Site Survey
 - 7.3. Revaluate Selected Projects
 - 7.4. Evaluate Selected ECOs
 - 7.5. Combine ECOs Into Recommended Projects
 - 7.6. Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK POWER DISTRIBUTION
- **B EXECUTIVE SUMMARY GUIDELINE**
- C REQUIRED DD FORM 1391 DATA
- D DETAILED SCOPE OF WORK STEAM, WATER, SANITARY SEWER

1.0 BRIEF DESCRIPTION OF WORK: The Architect-Engineer (A/E) shall:

- 1.1. Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
 - 1.2. Provide project documentation for recommended ECOs as detailed herein.
- 1.3. Prepare a comprehensive report to document all work performed, the results and all recommendations.

2.0 GENERAL:

- 2.1. This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in the DETAILED SCOPES OF WORK, Annexes A and D.
- 2.2. The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3. For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4. The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5. The "Energy Conservation Investment Program (ECIP) Guidance", establishes criteria for ECIP projects and shall be used for performing the ecomonic analyses of all ECOs and projects. A computer program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. This program is available commercially from the BLAST Support Office in Urbanna, Illinois. The BLAST Support Office can be contacted at 1-800-842-5278. The latest version of the program should be used. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval prior to use.
- 2.6 Energy conservation opportunites determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP or MCA funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.

3.0 PROJECT MANAGEMENT:

3.1. Project Managers:

- 3.1.1 <u>Project Manager</u>: The A/E shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. This designated individual shall be responsible for coordination of work required under this contract.
- 3.1.2 <u>Design Manager</u>: The Contracting Officer will designate a design manager to serve as the Government's point of contact and liaison for all work required under this contract.
- 3.2. <u>Installation Assistance</u>: The Director of Public Works or authorized representative will designate an individual to assist the A/E in obtaining information and establishing contacts necessary to accomplish the work required under this contract.
- 3.3. <u>Public Disclosures</u>: The A/E shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4. <u>Meetings</u>: Meetings will be scheduled whenever requested by the A/E or the Design Manager for the resolution of questions or problems encountered in the performance of the work. The A/E's project manager and the design manager shall be required to attend and participate in all meetings pertinent to the work required under this contract. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5. <u>Site Visits, Inspections, and Investigations</u>: The A/E shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6. Conferences and Confirmation Notices:

- 3.6.1. The A/E shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the A/E and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. the A/E shall forward to the Design Manager within ten calendar days, a reproducible copy of the records.
- 3.6.2. The A/E shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The A/E shall forward to the Design Manager within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 3.6.3. A review conference will be scheduled approximately 28 days after submittals. Review comments will be provided at this conference. These comments will become part of the conference minutes forwarded to the A-E and annotated with conference action. Review comments provided to the A-E will not necessarily show coordination requirements with other parts of the

submittal. The A-E shall incorporate the review comments into each part of the submittal as necessary.

- 3.7. <u>Interview</u>: The A/E shall conduct entry and exit interviews with the Director of Public Works or designated representative before starting work at the installation and after completion of the field work. The Design Manager shall schedule the interviews at least one week in advance and shall be in attendance.
- 3.7.1. Entry: The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
 - a. Schedules
 - b. Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from the Directorate of Public Works.
- 3.7.2. Exit: The exit interview shall be conducted when the field work is complete and briefly describe the items surveyed and probable areas of energy conservation.
- 4.0 <u>SERVICES AND MATERIALS</u>: All services, materials (except those specifically enumerated to be furnished by the Government), plant, labor, supervision and travel necessary to perform the work and render the data required under this contact are included in the lump sum price of the contract.
- 5.0 <u>PROJECT DOCUMENTATION</u>: All energy conservation opportunities which the A/E has considered shall be included in one of the following categories and presented in the report as such:
- 5.1. ECIP Projects: To qualify as an ECIP Project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000. The overall project and each discrete part of the project shall have an SIR greater than 1.25. Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Saving to Investment Ratio (SIR). Programming documentation shall consist of a DD Form 1391, life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented), and a Project Development Brochure (PDB). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.
- 5.2. NON-ECIP Projects: Projects which do not meet ECIP criteria, but which have an SIR greater than 1.25 shall be documented and ranked in order of highest to lowest SIR. Projects or ECOs shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out; a description of the work to be accomplished; backup data for the LCCA, ie; energy savings calculations and cost estimate(s); and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account there synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:

- a. Regular Military Construction Army (MCA) Program. This program is for projects which have a total cost greater than \$300,000.00 and a simple payback period of ten to twenty-five years. Documentation shall consist of DD Form 1391 and a Project Development Brochure.
- b. <u>Low Cost/No Cost Projects</u>. These are projects which the Directorate of Public Works (DPW) can perform using its resources. Documentation shall be as required by DPW.
- 5.3. Nonfeasible ECOs: All ECOs which the A/E has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 6.0 <u>DETAILED SCOPE OF WORK</u>: The Detailed Scope of Work is contained in Annex A and Annex D.

7.0 WORK TO BE ACCOMPLISHED:

- 7.1. Review Previous Studies: Not Used.
- 7.2. Perform a Limited Site Survey: The A/E shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. The A/E shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrate prior to its use.
 - 7.3. Revaluate Selected Projects: Not Used.
 - 7.4. Evaluate Selected ECOs: As described in Detailed Scope of Work.
- 7.5. Combine ECOs Into Recommended Projects: At the interim review conference, the A/E will be provided direction of the packaging or the combining of ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. Some projects may be a combination of several ECO's, and others may contain only one.
- 7.6. <u>Submittals</u>: The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included.
- 7.6.1. Interim Submittal: An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound separately in a

standard three-ring binder. The A/E shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly.

- 7.6.2. Final Submittal: The A/E shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The A/E shall submit the Scope of Work for the study and any modifications to the scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
 - a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
 - b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
 - c. Documentation for the recommended projects (includes LCCA Summary Sheets).
 - d. Appendices to include as a minimum:
 - 1) Energy cost development and backup data
 - 2) Detailed calculations
 - 3) Cost estimates
 - 4) Computer printouts (where applicable)
 - 5) Scope of Work
- 7.7 <u>Presentation</u>: The A/E shall give a formal presentation of the interim submittal to the installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. The presentation will be conducted the same day as the review conference.

ANNEX A

DETAILED SCOPE OF WORK (REVISED) CONTRACT NO. DACA85-94-D-0033 Delivery Order No. 0003

ENERGY EFFICIENCY STUDY (POWER DISTRIBUTION) FORT GREELY, ALASKA

1.0 General Information:

1.1 The Architect-Engineer (A-E) shall furnish all services, materials, supplies, labor, equipment, investigations, studies, supervision and travel as required in connection with this Statement of Work (SOW), and all furnished and referenced instructions.

1.1.1 This SOW is organized as follows:

Paragraph TOPIC:

- 1.0 General Information
- 2.0 Project Criteria
- 3.0 Cost and Scope Limitations
- 4.0 Delivery Schedule
- 5.0 Architect Engineer Services
- 6.0 Initiation Of Work
- 7.0 Government Review
- 8.0 Travel
- 9.0 Submittals

1.1.3 Project Description: The AE will be required to conduct a limited site survey, evaluate energy savings, construction costs, and the cost to savings ratio associated with converting the existing power distribution system from 2400 volts, 3-wire ungrounded Delta to a 4-wire system. The AE shall investigate the existing system, and prepare a comprehensive report documenting all work performed, the results and recommendations. See Annex D for list of buildings and linear feet of utilities to remain active after base realignment.

The investigation is to include but not limited to: Insulators, crossarm condition, pole condition, wire size, wire material, wire connectors and transformers. Begin at the output of the Golden Valley Electric Association Transformed into the power plant and out through the distribution system. There are approximately 35 miles of overhead distribution system. Single line drawings of the distribution system resulting from a recent short circuit study and feeder and transformer data are at Enclosure 1.

1.1.4 Point of Contact: The Design Manager for this project is Mr. Ron Cothren and the Contracting Officer's Representative is Mr. Claude Vining and the ACOR is Mrs. Trillis Enders. The Point of Contact at Fort Greely is Mr. Mike Murphy.

2.0 Project Criteria:

2.1 Government Furnished Materials and Equipment:

- a. US Army Corps of Engineers, Architectural and Engineering Instructions Design Criteria,
 9 December 1991.
 - b. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994.
 - c. TM5-785, Engineer Weather Data
 - d. AR 420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispensing Systems.
 - e. Tri-Service Military Construction Program (MCP) Index, dated 4 January 1994.
- f. MCACES-Gold cost estimating guidance, program and database, diskettes, and licensing agreement.
 - 2.2.1 Review Previous Studies: Previous EEAP studies do not cover power distribution.

3.0 Cost and Scope Limitations:

3.1 <u>Cost Limitation</u>: The construction cost limitation for this project is undefined. The AE will be responsible for developing the cost based upon the scope constraints for this project.

3.2 Cost Estimate:

- 3.1.2 Cost Estimate Format: Cost estimates shall be prepared using the latest version of Micro Computer Aided Cost Engineering System (MCACES)-GOLD, Version 5.20J or greater, with the appropriate labor equipment and material data bases. MCACES-GOLD will be provided to the A-E by the Cost Engineering Branch of the Alaska District Corps of Engineers at no cost. Upon completion of the contract, the A-E will return all material to the Government. The Alaska District is using a Standardized Work Breakdown Structure (WBS) for all military and civil work cost estimates. Corps format for cost estimates will be made available for use on other cost estimate requirements.
- 4.0 <u>Delivery Schedule</u>: The work, other related data, and services required in accordance with the contract shall be accomplished within the limitation of projects scope. The schedule for delivery of data to the Contracting Officer is in calendar days. Calendar days for each requirement extend from the date of the Notice to Proceed (NTP) or approval for each item, except as otherwise noted.

	<u>Item</u>	Schedule	DeliveryReview/Conference Time/Location
(a)	Start Project: Interviews and Site Survey	30 days following NTP	Not Required
(b)	Interim Submittal	90 days following NTP	28 days / Post
(c)	Final Submittal	21 days following Interim Rev. Conf.	Not required

5.0 Architect-Engineer Services:

- 5.1 Interim Submittal: The interim submittal shall fulfill the requirements of the paragraph 7.6.1 of the General Scope of Work.
- 5.2 <u>Final Submittal</u>: The final submittal shall fulfill the requirements of paragraph of the General Scope of Work. The A-E shall incorporate all interim review conference comments. The Government may back-check all documents which comprise this submittal. The documents, if found incomplete, shall be returned to the A-E for further work which shall be performed at no additional cost to the Government.

6.0 Initiation of Work:

The AE shall not proceed nor initiate any work nor any succeeding design level of the work required under this SOW prior to receipt of award. Any work done without being directed to do so by the Contracting Officer/authorized representative shall be at the AE's own risk.

7.0 Government Review:

- 7.1 Value Engineering: Not Used.
- 7.2 Review: The Contracting Officer or his authorized representative may furnish the AE review comments on the data submitted. The AE shall incorporate all accepted review comments in the development of data for the next submittal. The AE will not be required to incorporate comments that may be categorized as "designer preference." If any review comment requires clarification and/or amplification to assure compliance, the AE shall notify the Contracting Officer or his authorized representative in writing.

8.0 Travel:

Out of town travel is anticipated to Fort Greely at Delta Junction, Alaska.

9.0 Submittals:

All submittals shall be received at the Alaska District Engineer Offices, Design Management Section, Military Technical Engineering Branch in accordance with the design schedule in Section 4.0 above.

- 9.1 A dated submittal letter shall be provided with each submittal to the Contracting Officer with distribution to agencies listed. This letter shall indicate to whom and the number of copies to be mailed to the agencies listed via overnight, hand, or telefax delivery service by the AE.
- 9.2 The A/E shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY	EXECUTIVE SUMMARIES REPORTS CORRESPONDENCE FIELD NOTES				
Commander, 6th Infantry Division (Light) ATTN: APVR-FG-PW (Murphy) P.O. Box 1289, Delta Junction, AK 99737	7	7	1	1*	
Commander, 6th Infantry Division (Light) ATTN: APVR-PW-O (Berg) Building 730, Fort Richardson, AK 99505-5500	3	3	1	-	
Commander, USAED, Mobile ATTN: CESAM-EN-DM (Battaglia) P.O. Box 2288, Mobile, AL 36628-0001	1	1	1	-	
Commander, USAED, Alaska ATTN: CENPA-EN-TE-DM (Piening) P.O. Box 898, Anchorage, AK 99506-0898	7	7	7	1*	
Commander, USAED, Alaska ATTN: CENPA-C0-FR (Shuman) P.O. Box 35066, Fort Wainwright, AK 99703-0066	1	1	1	-	
Commander, North Pacific Division ATTN: CENPD-PE-TE (Pinkham) P.O. Box 2870, Portland, OR 97208-2870	1	1	-	-	
Commander, US Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr. Keath) New Cumberland Army Depot New Cumberland, PA 17070-5007	1	-	-	-	
Commander, US Army Corps of Engineers ATTN: CEMP-ET (Mr. Gentil) 20 Massachussetts Avenue, NW Washington, DC 20314-1000	1	-	-	-	

^{*} Field Notes Submitted in final form at interim submittal

PIENING\re\x1600\ARMY\FTW141\DAVE 4 Aug 94

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- 2. Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - Total Annual Energy Used.
 - Site Energy Consumption.

Electricity - KWH, Dollars, BTU Fuel Oil - GALS, Dollars, BTU Natural Gas - THERMS, Dollars, BTU Propane - GALS, Dollars, BTU Other - QTY, Dollars, BTU

- 4. Energy Conservation Analysis.
 - ECOs Investigated.
 - ECOs Recommended.
 - ECOs Rejected. (Provide economics or reasons).
 - ECIP Projects Developed. (Provide list)*
 - Non-ECIP Projects Developed. (Provide list)*
 - Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- 5. Energy and Cost Savings.
 - Total Potential Energy and Cost Savings resulting from recommended projects in MBTU/yr and \$K/yr.
 - Percentage of Energy Conserved
 - Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

ANNEX C

REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumption, and provide calculations to support dollar and energy savings, and indicate any added costs.
- (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
 - (3) Identify infiltration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operations and future expected efficiency. if full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. AN ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.
- g. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement

attesting that all buildings and retrofit actions will be in active use throughout the amortization period.

- h. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- i. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and 93) an economic analysis supporting the specific retrofit.
- j. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- k. Any requirements required by ECIp guidance dated 4 Nov 1992 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- I. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

ANNEX D

DETAILED SCOPE OF WORK (REVISED) CONTRACT NO. DACA85-94-D-0033 Delivery Order No. 0003

ENERGY EFFICIENCY STUDY (STEAM, WATER, SANITARY SEWER) FORT GREELY, ALASKA

1.0 GENERAL INFORMATION

1.1 The Architect-Engineer (AE) shall furnish all services, materials, supplies, labor, equipment, investigations, studies, supervision and travel as required in connection with this Statement of Work (SOW), and all furnished and referenced instructions.

1.1.1 This SOW is organized as follows:

Paragraph TOPIC:

- 1.0 General Information
- 2.0 Project Criteria
- 3.0 Initiation Of Work
- 4.0 Government Review
- 5.0 Travel
- 6.0 Schedule and Submittal Requirements
- 7.0 Payment Schedule
- 1.1.2 <u>Project Description</u>: The purpose of the Energy Efficiency Study is to identify modifications necessary to provide the most energy efficient configuration of utilities to serve the designated active buildings at Fort Greely following implementation of the base realignment plan. Currently the buildings at Fort Greely are served by a central electric distribution system, central steam system, central potable water system, and a central sewer system. Much of these central systems are near the end of their useful lives. With the abandoning of most buildings, the existing utilities will likely be grossly over sized and operate with poor energy efficiency and high maintenance costs. This study is to evaluate the following configurations for each utility:
 - a. Modification of central systems to serve remaining designated active buildings.
 - Installation of separate utilities to serve each designated active building or group of buildings.

The contractor will be required to evaluate the central steam, potable water, and sanitary sewer systems and determine if the systems are adequate to serve the buildings and associated utilidors designated in the Fort Greely Realignment Plan (see Active Building List below) that are to remain active. In evaluating the present system, the contractor shall complete a energy survey and provide a plan that will provide the greatest energy efficiency.

There are currently 231 buildings located on Fort Greely, consisting of 1,699,787 sq. ft. of space. the majority of which will be "laid-away" under the Layaway Program for disposition or eventual demolition. Of these 231 buildings, the tollowing have been identified for retention to support the residual force to be left at Fort Greely. The following tables are from a draft of the IMPLEMENTATION PLAN FOR REALIGNMENT OF FORT GREELY as provided by Mr. Mike Murphy, Dept. of Public Works, Ft. Greely, Alaska:

Permanent Active Facility List as of 25 JUL 95

Bldg No.	Description	Location	Size (SF)
110	POL Monitoring	North Post	382
501	HQ	Cantonment	19,095
504	Fire Station	Cantonment	6,192
605	Consolidated PW	Cantonment	24,915
606	Central Heat Plant	Cantonment	30,334
607	Heat Plant Annex	Cantonment	999
615	Roads and Grounds	Cantonment	17,351
617	POL Operation	Cantonment	448
618	POL Operation	Cantonment	621
633	Sewage Treatment	Cantonment	2,784
638	Sewage Lagoon	Cantonment	742
639	Contact Chamber	Cantonment	696
820	Unacc Pers Hsg	Cantonment	16,175
821	Unacc Pers Hsg	Cantonment	16,175
503	Gym w/o Pool	Cantonment	22,430
725	State School	Cantonment	0 (Non-Army)
1928 & 1930	CRTA Complex	Bolio Lake	35,061
2013, 2019, 2026	NWTC Complex	Black Rapids	39,218
1600, 1605, 1606	Range	Texas Range	6,211
1343, 1350, 1352	Range	Beales Range	4,968
1419	Range	Mississippi Range	960
		TOTAL	245,937

Real Property Utilities

Category	Before	After
Overhead Electric	31.2 Miles	23.1 Miles
Underground Electric	10.7 Miles	3.4 Miles
Steam/Condensate Lines	57,000 LF	5,700 LF
Water Lines	40,000 LF	5,700 LF
Sewer Lines	45,000 LF	7,700 LF
Utilidors	17,600 LF	5,550 LF

1.1.3 Points of Contact: The Design Manager for this project is Mr. Ron Cothren and the Contracting Officer's Representative is Mr. Claude Vining and the ACOR is Mrs. Trillis Enders. The Point of Contact at Fort Greely is Mr. Mike Murphy.

2.0 PROJECT CRITERIA

2.1 Government Furnished Materials and Equipment:

- a. US Army Corps of Engineers, Architectural and Engineering Instructions Design Criteria, 9 December 1991.
- b. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994.
- c. TM5-785, Engineer Weather Data
- d. AR 420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispensing Systems.
- e. Tri-Service Military Construction Program (MCP) Index, dated 4 January 1994.
- f. MCACES-Gold cost estimating guidance, program and database, diskettes, and licensing agreement.

2.2 Field Investigation

Conduct a survey of the existing central utilities and the buildings to remain under the Fort Greely realignment plan. Data collected for each utility should include, but not be limited to the following:

- a. Present condition and expected life of the existing central distribution systems.
- b. Modifications necessary to restrict central utility service only to designated active building and facilities.
- c. Data necessary to determine costs associated with continued operation of central utility systems including modification costs, energy costs, and operating and maintenance (O & M) costs.
- d. Data necessary to determine utility capacity requirements and energy consumption of each designated active building.
- e. Modifications necessary to install separate utilities in individual buildings or groups of buildings.

2.3 Analysis

- a. Operation of existing central systems with only those essential modifications required to serve the remaining designated active buildings. This option will serve as the baseline for Energy Conservation Oportunity (ECO) analysis.
- b. ECO 1: Operation of existing central systems optimized to serve the remaining designated active buildings.
- c. ECO 2: Installation of separate utilities (where practical) to serve each designated active building or group of buildings.

The A/E should identify the logical configuration of each utility for each of the above options and perform life cycle cost analysis (LCCA) including capital costs of required modifications, energy costs, and O & M costs.

Economic analysis should follow the criteria for the "Energy Conservation Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994.

Computer modeling will be used to determine the annual energy costs for typical buildings. The results of these calculations may be applied to buildings which are similar to the typical buildings. To be considered similar, a building must have the same type of occupancy schedule, the same type of HVAC system, and the same type of construction. Modeling will be performed using a professionally recognized and proven computer program of programs that integrate architectural features with air-conditioning, heating, lighting,, and other energy-producing or consuming systems. These programs will be capable of simulating the features, systems, and thermal loads of the building under study. The simulation programs acceptable for use in this study are listed below. Any substitutes must be submitted and approved by the COR.

- A. Building Loads and System Thermodynamics (BLAST).
- B. DOE 2.1d
- C. Carrier E20 of Hourly Analysis Program (HAP)
- D. Trane Air-Conditioning Economics (TRACE).
- E. Beacon

3.0 INITIATION OF WORK

The AE shall not proceed nor initiate any work nor any succeeding design level of the work required under this SOW prior to receipt of award. Any work done without being directed to do so by the Contracting Officer/authorized representative shall be at the AE's own risk.

4.0 GOVERNMENT REVIEW:

- 4.1 Value Engineering: Not Used.
- 4.2 Review: The Contracting Officer or his authorized representative may furnish the AE review comments on the data submitted. The AE shall incorporate all accepted review comments in the development of data for the next submittal. The AE will not be required to incorporate comments that may be categorized as "designer preference." If any review comment requires clarification and/or amplification to assure compliance, the AE shall notify the Contracting Officer or his authorized representative in writing.

5.0 TRAVEL

Out of town travel is anticipated to Fort Greely at Delta Junction, Alaska.

6.0 SCHEDULE AND SUBMITTAL REQUIREMENTS

Submittal Schedule

Pre-Final Report 120 days from NTP

Review Conference 30 days after Pre-Final submittal Final Report 30 days from review conference

- 6.1 A dated submittal letter shall be provided with each submittal to the Contracting Officer with distribution to agencies listed. This letter shall indicate to whom and the number of copies to be mailed to the agencies listed via overnight, hand, or telefax delivery service by the AE.
- 6.2 The A/E shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY

PIENING\re\x1600\ARMY\FTG058\ANNEXD.FTG

EXECUTIVE SUMMARIES REPORTS CORRESPONDENCE FIELD NOTES

			FI	ELD NOTES
Commander, 6th Infantry Division (Light) ATTN: APVR-FG-PW (Murphy)		_		
P.O. Box 1289, Delta Junction, AK 99737	7	7	1	1*
Commander, 6th Infantry Division (Light) ATTN: APVR-PW-O (Berg) Building 730, Fort Richardson, AK 99505-5500	3	3	1	-
Commander, USAED, Mobile ATTN: CESAM-EN-DM (Battaglia)				
P.O. Box 2288, Mobile, AL 36628-0001	1	1	1	-
Commander, USAED, Alaska ATTN: CENPA-EN-TE-DM (Piening)				
P.O. Box 898, Anchorage, AK 99506-0898	7	7	7	1*
Commander, USAED, Alaska ATTN: CENPA-CO-FR (Shuman) P.O. Box 35066, Fort Wainwright, AK 99703-0066	1	1	1	-
Commander, North Pacific Division ATTN: CENPD-PE-TE (Pinkham) P.O. Box 2870, Portland, OR 97208-2870			1	1
Commander, US Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr. Keath) New Cumberland Army Depot				
New Cumberland, PA 17070-5007	1	-	-	-
Commander, US Army Corps of Engineers ATTN: CEMP-ET (Mr. Gentil) 20 Massachussetts Avenue, NW Washington, DC 20314-1000	1	-	_	- .
* Field Notes submitted in Final Form at interim submittal				

2 Aug 95

ESTIMATE OF ARCHITECT ENGIN		ICES Date	19
Revised	Original		
ject:	-	Location:	
		Sheets of Drawing I	Required:
		DO/MOD NO:	
CONTROL		DO/MOD NO.	
REMARKS:			
tem a. Direct Labor Costs	Hours	Rate	Total
DISCIPLINE			
Disch Divis			
BTOTALS			
		TOTAL DIRECT COST	•
and the second s	diment labor 9/ of Its	TOTAL DIRECT COST	\$
tem b. Overhead charge applicable to tem c. General and Administrative C	o direct labor, % of Ite overhead, % of Item a		\$
tem d. Materials and incidental repro	duction:		-
nom d. Waterland and the control			
			\$
tem f. Profit % of subtota	l of Items a, b, c, d, and e. (attac	h profit computations)	•
			\$
tem g. Subcontracts for this contract	(attach breakdown for each sub-	contract):	
	JC ELEC	····	
	CHOTHER		\$
	% Profit on subconti	acts	\$
tem h. Travel expenses: (No labor	- EXPLAIN)	PER DAY	\$
PER DIEM: GR TRANS:		-	\$
AIR FARE:			\$
PER DIEM:		PER ROUND TRIP	\$
			•
	(round to the neares	dollar) TOTAL FEE	\$
^/E SIGNATURE		DATE	
T SIGNATURE			

AEESTFRM.DOC

PROFIT EVALUATION SHEET Weighted Guideline Method RFP/Contract No. Modification/DO No.

<u>Factor</u>	Rate	Weight	<u>Value</u>	
Degree of Risk	25			
Relative Difficulty of Work	20		100 mg	
Size of Job	15			
Period of Performance	20			
Contractor's Investment	5		***	
Assistance by Government	5			
Subcontracting	10			
TOTAL	100%	PROFIT		
Explanation of Weight Assigned				
Degree of Risk:				
Relative Difficulty of Work:				
Size of Job:				
Period of Performance:				
Contractor's Investment:				
Assistance by Government:				
Subcontracting:				

Based on the circumstances of the procurement action, each of the above factors shall be weighted from .07 to .15 as indicated below. "Value" shall be obtained by multiplying the rate by the weight. The Value column when totaled indicates the fair and reasonable profit percentage under the circumstances of the particular procurement.

Degree of Risk: Where the work involves no risk or the degree of risk is very small, the weighting should be .07; as the degree of risk increases, the weighting should be increased up to a maximum of .15. For construction work, lump sum items shall generally have a higher weight than unit price items; other things to consider include the nature of the work and where it is to be performed, etc. AE contracts with options shall generally have a higher weighted value than contracts without options; other things to consider include nature of design, responsibility for design, amount of principal time required, etc. For all types of contracts consider the portion of the work to be done by subcontractors, amount and type of labor included in costs, whether the negotiation is before or after performance of the work, etc. Modifications settled before the fact have much greater risk than those settled after the fact. A weight of .07 is appropriate for after the fact equitable adjustments and/or settlements.

Relative Difficulty of Design: If the design is most difficult and complex the weighting should be .15 and should be proportionately reduced to .07 on the simplest of jobs. This factor is tied-in to some extent with the degree of risk. Some things to consider are: the nature of the design, by whom it is to be done, i.e. subcontractor, consultants, what is the schedule, etc., and it is rehab or new work.

Size of Job: All work and fees not in excess of \$50,000 shall be weighted at .15. Work estimated between \$50,000 and \$500,000 shall be proportionately weighted from .15 to .09. Work from \$500,000 to \$1,000,000 shall be proportionately weighted from .09 to .07. Work in excess of \$1,000,000 shall be weighted at .07. It should be noted that control of fixed expenses generally improves with increased job magnitude.

Period of Performance: Work in excess of 24 months (180 days actual time) are to be weighted at .15. Work of lesser duration shall be proportionately weighted from .07 to .15 for work not exceeding 60 days.

Contractor's Investment: To be weighted from .07 to .15 on the basis of below average, average, and above average. Things to consider include amount of subcontracting, Government-furnished property or data such as surveys, soil tests, method of making progress payments, etc.

Assistance by Government: To be weighted from .15 to .07 on the basis of average to above average. For construction consider use of Government-owned property, equipment and facilities, expediting assistance, etc. For AEs consider use of as-built drawings, Government surveys, soil exploration, and foundation recommendations.

Subcontracting: To be weighted inversely proportional to the amount of subcontracting. Where 80% or more of the work is to be subcontracting use .07. The weighting should be increased proportionately to .15 where all the work is performed by the contractor's own forces.

2750 South Wadsworth Blvd. • Suite C-200 Denver, Colorado 80227-3400 303/988-2951 • Fax: 303/985-2527

CONFIRMATION NOTICE

Confirmation Notice No. 1

EMC #1406.003

DATE:

11 September 1995

PLACED TO:

Dennis Jones / Fred Jones

RECEIVED FM:

Dave Piening / Gary Creviston

REPRESENTING:

U.S. Army, COE, Alaska District

PHONE:

907/753-5609

PROTECT:

Energy Efficiency Study, Ft. Greely, AK

CONTRACT NO.: DACA01-94-D-0033, Delivery Order No. 003

NOTES

Fred Jones,

PREPARED BY:

E M C Engineers, Inc.

TIME & DATE

10:30 MST

OF TELECON:

11 September 1995

SUBJECT:

Clarifications to SOW dated 1 August 1995

The following is a summary of the items discussed, the comments made, and the decisions made during the telephone conversation.

- EMC will submit a combined report that includes the Energy Efficiency Studies for the Power, Steam, Water, and Sanitary Sewer Distribution Systems.
- 2. EMC will proceed with the study using the list of buildings to remain active as provided in the SOW dated 1 August 1995. If this list is changed significantly before the completion of the report and the results of the study are impacted, a change in the SOW will be issued.
- 3. EMC will use the distribution list from the original SOW dated 1 August 1994. Commander Pinkham will receive one copy of the report.
- 4. EMC will provide 23 copies each of the Pre-Final and Final reports.
- EMC will address the fact that the base will not begin downsizing until 1997 and the downsizing will continue through 2000. The interim period between 1995 and 1997 will be discussed in the power distribution section of the study.

Confirmation Notice No. 1 11 September 1995 Page 2 of 2

- 6. EMC will include the cost of having GVEA provide electric service to the buildings that will remain after the downsizing.
- 7. The submittal schedule will be the same as shown in Section 6.0, Page D-4 of the SOW dated 1 August 1995. For the sake of clarity, that schedule is as follows:

Submittal
Pre-Final Report
Review Conference

Final Report

<u>Schedule</u>

120 days from NTP

30 days after Pre-Final Submittal 30 days from review conference

/oic

Action Required: Issue Notice to Proceed.

cc: Dennis Jones

File

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.

2750 South Wadsworth Blvd. • Suite C-200 Denver, Colorado 80227-3400 303/988-2951 • Fax: 303/985-2527

CONFIRMATION NOTICE

Confirmation Notice No. 2

EMC #1406.003

DATE:

12 September 1995

PLACED TO:

Dennis Jones

RECEIVED FM:

Dave Piening

REPRESENTING:

U.S. Army, COE, Alaska District

PHONE:

907/753-5609

PROJECT:

Energy Efficiency Study, Ft. Greely, AK

CONTRACT NO.:

DACA01-94-D-0033, Delivery Order No. 003

NOTES

Fred Jones,

PREPARED BY:

E M C Engineers, Inc.

TIME & DATE

16:45 MST

OF TELECON:

12 September 1995

SUBJECT:

Clarifications to Confirmation Notice No. 1

The following is a summary of the items discussed, the comments made, and the decisions made during the telephone conversation.

1. EMC will submit two separate reports for the Energy Efficiency Study for Fort Greely Alaska. One report will be entitled "Energy Efficiency Study (Power Distribution), Fort Greely, Alaska. The other report will be entitled "Energy Efficiency Study (Steam, Water, Sanitary Sewer), Fort Greely, Alaska.

/oic

Action Required: Issue Notice to Proceed.

cc: Dennis Jones

Bill Center

File

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.

2750 South Wadsworth Blvd. • Suite C-200 Denver, Colorado 80227-3400 303/988-2951 • Fax: 303/985-2527

CONFIRMATION NOTICE

Confirmation Notice No. 3

EMC #1406.003

DATE:

8 December 1995

PLACED TO:

Dave Piening

RECEIVED FM:

Fred Jones

REPRESENTING:

U.S. Army, COE, Alaska District

PHONE:

907/753-5609

PROJECT:

Energy Efficiency Study, Ft. Greely, AK

CONTRACT NO.:

DACA01-94-D-0033, Delivery Order No. 003

NOTES

Fred Jones,

PREPARED BY:

EMC Engineers, Inc.

TIME & DATE

Approximately 11:00 MST

OF TELECON:

6 December 1995

SUBJECT:

GVEA Letter

The following is a summary of the items discussed, the comments made, and the decisions made during the telephone conversation.

- The letter to GVEA prepared by EMC for the purpose of ascertaining their interest in supplying electricity directly to the remaining buildings at Fort Greely after the realignment, has been forwarded to the appropriate contracts people for disposition. It is likely that an answer on this issue will not be back before the power distribution report submittal is due. If that is the case, the issue will be mentioned in the report only to the extent that it is another avenue that is being investigated.
- 2. It has not been determined yet whether the review meeting will be held in Delta Junction or Anchorage. Will confirm later.

/oic

Action Required: Issue Notice to Proceed.

CC:

Fred Jones
Dennis Jones

Confirmation Notice No. 3 8 December 1995 Page 2 of 2

> Doug Gray File

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.

APPENDIX B

Field Survey Notes

Recorded 8/25 - 9/1 of 1995 in Alaska 1/9 Take recorded nates from H. Greely, AK I. CRTA - Bolie Lake - Bldg 1928 A far South end 3¢ service drap 17200 V A - 150 KVA, 3¢ (1¢ transformers) B Sekind Bldg 1928 . 7200 V A - 208/120 / , 500 KVA, pad mount. .. 4.5% Z @ 500 KUA, 65°C Rise, 9/89 .. S.N. 890/33-A1, OA, 3\$, 60 cg Alum windings, NLTC A 7560 +50/ B 7380 +21/2% C 7200 0 D 7020 -2/2% E 6840 -5% .. sun PCB vil + PSI 7 170 Gal-vil - 1275 lbs MASSAMO Core - 1730 /bs-ceril Tank & Fittings - 1450 lbs . 4455 1/2s total .. Xo on Decendary . Segundary Cable size THE REPORT OF THE PARTY OF THE 3 [(4-750MCM, CU, XHHW) 4"c]

C. far north end 3-50 KVA - 1 & flansformers D. 120/208, 1600 A mani surtel gear 34, 4 ure at Bolio Takes (RTA) ... Plant code 49 mani blegs 1. + 1/2 - 1844979-A Cat No - 0894929-A Drawing No Sg. D' QED Prover Style Suitch Crard ... 2000 A frame MCB 40°C Series 4 - PAF 2036 240 - 65R AIC 50.0 400 - 50R AIC 600 - 4212 AIC IEC 157-1 P1-50 HZ So D certified SUR 380/220 50R 415/240 Type PAL 600 V. for 14 we cred side pales only Cat That PAM 02 PA, PH, PC, PE circuit Creakers Breaker and surtches use feeds a distribution panelleard section panelboard feeds MCC & Lighting Panels Louldn't get en to padmount transformer privarej The line behind the facilities continues on north to cranges

E Ranges are shooting ranges O.H. lives to ranges 3, OP's the same Derigle 8' crassam w/ridge frin design for the most part F. Tap at Bolio Cake line to Texas Range + ari Surtch - Lead Break AB Chance, Type O Cat. # CD 7 HEICL 110 KV BIL, 15KV Class 600 A Centinueres 40 KA Momentary ID# 90320 .. This is the type of sectionalizer surter they use G. OPTA - Single Phase . for heaters & lights mastly H. Texas Range - about the same . This is the end of the feeder line. I. 2400 to 7200 step up transformers at the Power Plant - (3) 16, Oil filled, .500 KUA each, 7200/12470 - 2400/4160 t= 4.55% A) 55°C Temp Rise 2= 4.55 % C) Westingtonse NLTC, Class OA, Subtrature Palarity

.. Serial NO'S C - 6407/87 .. B - 6407186 A - 6407185 J.: 2400-7200 Transformers @ . Richardson Sub. (3) 1\$ G.E. Spira Core MAGO PAZAGAS 4.7% 2 8991102 200 RUA 4,7% Z 8991101 200 KVA 4.7% 7 899 1100 200 RUA 2300 V rated NLTC'S Pos. Centrum SSC Rise 6930 Type HS 6765 2 Additive Polarity 6600 .. 6435 4 6270 5 .. Vil Circuit Breaker . Allis Chalmers Type 0X.18 .. Ser No. 305756 : 600 A , 7.2KV , 75KUBIL .. 12/55 Manufacture

K 7200 V. O.H. lene out of Richardson Sub is (3) #4 ACSR

1 f tap toward Arhansas Range 10 (2) # 6 Salid Copper 2400 V in Sulators, 4' Arms Poles falling over, need to be replaced and also lad shape

L. 7200 V leve to RD Complet down the hill - pales in good stape crassarms & insulators need to be checked & replaced

M. Siberglass arms O.H. to Georgia

Range - could go vertical.

check say - 351 poles to the

ranges - pretty low for transformer

installation - secondary will be very

low

N Chance Fiberglass arms - marrow profile - rating?

0. 7200 V line from front of base on down to Balis Lakes 35/2 35' is kind of low for Alcondary and getting action the highways

6/9 P. Standard O.H. Sizes 4/0 ACSR - around base where loads are heaver #2 ACSR - on long runs where leads density is not quite So large Q. Tap to Beales Range Complex recently taken out of service: #2 CU - 7200 V - 3 p R. Lampkin Range is alandored S. Jine from Richardson Highway for Balis Take is believed to be 1200 V. glass in sulators #2 ACSR : 4 #2 ACSR both sides - pales, glass and crossarms are all wi pretty good slape - only 20 years old from sir break surtch at .. Richardson Highway to Bolio Fake. T. Mention improved Operation 3 Maintenance from a D - try to put some monetary calue on this to help justify it

also address safety as a consideration.

U. Mast damege te einsulators is due te damge by shat from Shotzuns - brish hunting

V. U.G. from Balid Fakes line to . Condas should be rebuilt -.. it was burned too Shallow and is heaved above the ground very after that been patched a lat. .. should be replaced by O.H. if lead at Cendos is still necessary and required. patched as much as 30 times already

W. Because of the reduction in base land, you could probably reduce 9 feeders to 2 feeders

X Line (7200) from au Creak surtches to Mississippy Range was built by the army - the Crasserms are Dery low Tit should be raised and the neutral put 36" - 40" down on the pale - ensulators look like 5KV - Small skert - should de apqueled to 15KU Class

Y. all O.H. on the base proper is 4/4 ACGR B' crassarms - 2 Bhases on one side and

efficient way to add the mentral is to put it on the side of the arm with only one phase on it presently you will need an insulator only

E. Appearinately 15% of the insulators need to be replaced and approximately 5% of the crassures.

AA EG 1 1250 KUA

2400 V, 3 \$

2400 V, 3 \$

60°C Rise Stator

60°C Rise Rotor

1000 RW, 360 RPM 0.8 PF, 60 HZ 101 Amps - 125 Volts - Exciter Ser. No 35.9691 Elliott Co., Ridgeway, Da

EG2

Same as EG1

Sev. No. 2-8-9691

What is sated coltage of armature - 2400 V.

EG3 Same as EG1.

Ser No. 18-85-9691

9/9

. Ea 4 1563 KVA 4160 V, 3\$ 217 Amps 60°C Rise Stater 60°C Rise Rotor 1250 KW, 360 RPM 0.8 PF, 60 HZ 125 Amps, 125 Volts - Exeiter Ser No 4.5-10915 Ellit Company Ridgenay, PA connected & presently EG5 Same as EG 4 Sen No. 7.3-10915 AB Call Ellitt get reactance enformation X' = 26.4 % from power plant-files Xd Xs =

E M C ENGINEERS, INC.

2750 S. Wadsworth Blvd.
Suite C-200
Denver, CO 80227
(303) 988-2951

C ENGINEERS, INC.
9755 Dogwood Rd.
Suite 220
Roswell, GA 30075
(404) 642-1864

JOB		
SHEET NO.	OF	
CALCULATED BY	DATE	-
CHECKED BY	DATE	
SCALE		

Meeting - Kick of	66 - H. Greeley	
name	Company Position	Phone No. 404-642-1864
BILL CENTER	EMC Engeneers	404-642-1864
Hawley ZAchjo Larry Shetler	Lineman	907-873-4494
James Mellit	D. Re. J.	817-873-4592
MIKE MURPHY MB DRAW STUMPE MB MIKE MAIJOUAK	GENERAL ENGINEER Acting OpeRACION + MNt	873-1132 873-4589 873-1145
THOMAS THEISEN	EH+PPOP foun DPW	873-4700
GEORGE PURSTRY 606	OHEPP util From D	PW 373 4700
Fred Jones	ENC Engineers	303-988-2951

Hickoff Meeting 8-25-95 Public Works 10:00AM-11:30 AM Conference Room 1. 7200 V is ung A from 2400 V, A, 34 stepped up 2. base is quite spread out Serve fed from 7200 V, A, 36 3. some locations have primepower Black Rapids Training Site buildings clased will not be alandomed city may pick up the buildings or sense of them utilidors - under general utility tunnels majority of overhead pystem is in Good Condition George Range need work Airet Cresial ar underground feeders to OP's needs to be reduce (ungerground, Air Force wants to spend a church of money to replace some power distribution. Some are metered By not read or out of calibration

realignment about 6 years out 2001 - final alignment phases in between July 1997 and 2001 Laurat completely lay away a facility here in alaska - it will be distroyed in 2 years break study into 2 tenie frames

1. near fature - 1996 3 1997 - before

Case is reduced

2 distant future - 1997-2001 - Carbelle

Core is being reduced

3. after 2001 - after reduction complete

~ 78 lacent quarters 337 fatal quarters

main suitchgear 1953 generation
Westinghame & G.E. - au Crenkers
Magneblast
up grade to vaccum breakers?

GNEA is radial - 25 RV to base.

Carpenter auts- a pale problem no ill on lines; just frast

15 KU glass the new stuff is no tracking no flastovers go to new puritch gen - vaceuum to interrup faults safely - new sub for gens. 5,5 MW of generators diesel 2- 1250 5 3-1000'5 need keep at ranges all buildwas er lest of 21 an runnay lights are GVEA through FAA 6010- heating plant - surtchgen & gens 603 - Public Works Office 603 - Public Works Office 601 - Warhouse 663 - Billetting / Housing 801 - Transient Quarters 873-6227 Rem # 227 Fred Rum # 220 BILL

X" (n 1000 KW 3 1250 KW Generators
26.4% GVEA 758 Illuris St tarbanks, AK 99701 P.O. Box 71249 Failanks AR 99707 { Send coverspind Dave Johnson .. New Service Coordinator . 1-800-770-4832 EXT. 606 1-907-452-1151 . Take Cushman St. from Disport Way zens the Cheva River. It turns Into Emcoln St. GUEA is just down the Street in the left

Friday 9-1-95 - Public Works

1. O.H. distribition is unacceptable to GVEA

as it is as Δ - going to 4160 Y makes

the system more attractive to GVEA

2. Chick with GVEA - fund not if they would

Serve the baser - how would they

do it - would would they charge

to do it.

3. Mike Mandalak 873-1/45

Whe Murphy 873-1/32

FAX 837-1/32

FAX 837-1/32

FAX B37-1/384

Director of Public Works

P.O. Bay 1289

Jestest.

Deta Junction, AK 99737 J. mail.

they always replace insulators & other equip. with 13kV class when they do it. ... Oder poles get rott but bandle.

polis der't pat at the buttle & leak at (3) transferences that go 2400 Ato 7200 A find and 2400 - 7200 for feeder 9

Could use sew anh 3. Standardized to REA standards for Pulle line design for UG circuits So can be switched between the two Dence the transformers (2400 · 7200)

have to be changed out ground - 4 poles/miles They use REA 50-3 Standards for O.H. design-

must damage due to being hit by sumplows replace about 10 % of arm 50 % of glass add a new pin + glass 100 % take an intage to pull in neutral 1. do all lines fint 22. do transformeds second -a feeder at a fine - take vitage only for full new lines surgle phase can - seartch from (newful) one phase to newtral Three phase caus - rewire completely 3 med tuo lanks for a while 2400 A 3 4160 YGRD 4. penuve series street light air crait
... that still newards to wistall
... neutral - series street lighting game 5. replace fiberglan til arms with new crossaum where necessary 10. Most defficult area - right in frant of power plant due to congestion 7 all 34 padrument will have to be charged out completely B-17

8 Change 3 from 240i to 5KV) 30 add I new glass for neutral 3 minutes

9 remove 34 fiberglass fri-arm

add 8' crassarm

land wrie on in sulators

add neutral in sulator

Notes 3 Monday 8.28.95 8:30 ABT.

1. Black Rapides facility 15 not fed from
Et. Greely power system - It has its
own generators and is a stand done
facility.

2. Ser No Engl 9/50/-6/2-13
Changed to 17/-03/-03
Duly 1902+
Additional Electrical Feelers
N3 sheets

75, K34
LA

3 5Kyd 51 7

E M C ENGINEERS, INC. 2750 S. Wadsworth Blvd. Suite C-200 Denver, CO 80227 (303) 988-2951 Possible Proceedings of the company	JOB Ft. Greely ERAP Study SHEET NO. OF 4 CALCULATED BY F. TINKS DATE B-25-95 CHECKED BY DATE SCALE NA
1. GVEA heasformer is 3125 KW recently (add 2 the lead in the is 3400-3500 KW So a g on line to cover t 3 there is enough gen whole base and GUEA goes down.	rater can get up to Benerator is brought Le peak
Freder Breakers AM- Just Bulleton Sum H Just Bulleton Sum H Joo A AKO V GET - 239032 A760 V. may Bey interup SO MUA in 7000 A un 12500 A m 20000 A M	396 A571-3 Magen black Levy time terruphing rating terruphing rating the in a sisted V.

E M C ENGINEERS, INC. 2750 S. Wadsworth Blvd. Suite C-200 Denver, CO 80227 (303) 988-2951 Suite 220 Roswell, GA 30075 (404) 642-1864	SHEET NO. 2 OF 4 CALCULATED BY F. Junes DATE 8-28-95 CHECKED BY DATE
Westinghouse D	E-100 Aci Circuit Bler
4.16 KN	
4.76 Mar KV	
1200 A 60 cy	-
5/1963 manu	facture date
55B6621A30	
50 DH 75	
GUEST hausformer	
2800 KWA	
%2~59S	1
24.94/14.4 Yz	/ 2400A
added fans to g	0 to 3125 RUA
When Brase Load	gets to about 2000 RW, ted and loaded to re the transformer.
a generator is star	ted and loaded to
1000 RW to relein	re the transformer.

E M C ENGINEERS, INC. 2750 S. Wadsworth Blvd. Suite C-200 Denver, CO 80227 (303) 988-2951 Suite 220 Roswell, GA 30075 (404) 642-1864	SHEET NO. 3 OF 4 CALCULATED BY F. Jones DATE 8/25/95 CHECKED BY DATE SCALE
Generalis can be neu from 2400 A 1- Ellert Cren Ridginay, Pa	ried for 4160 Tz 282 6 leads
Len't knew about the looks like only	2 1000'S thoughtout 3 leads broughtout Generators (1-3 - connected
men	Check 2400 V. Y with ungrounded for vaturs 4,5 - connected y with 2400 V. A can be rewired for 4160 Y
	per the manuplate

takes 21 days to get film developed

E M C ENGINEERS, INC. 2750 S. Wadsworth Blvd. Suite C-200 Denver, CO 80227 (303) 988-2951 E M C ENGINEERS, INC. 9755 Dogwood Rd. Suite 220 Roswell, GA 30075 (404) 642-1864	JOB FF. GOVELY EKAP Study SHEET NO. 4 OF 4 CALCULATED BY F. Jakes DATE E/25/95 CHECKED BY DATE SCALE
Sal.	
y go through log Onto	
get peaks Jensew 2 open jo bax of	1000'5
see if they can b	se revered for TZ
4 (60V)	ties out front
3. figure out overhead	
	haus. + machines
3. ga more ward	
Le get capies of dai	year
of get comes of rela	ogs are from.
out where reade	igs åre from.
8. Tape ve cord the	is inameplate data of the usformer in cause photos when I days to get film develope
der't turm ent. T	abes 21 days to get film develope

APPENDIX C

Pole Testing Notes

installed a 1948 Near Bldg 162 - OLD Post - guess 40/2.
(1) Sounded solid to the harrower : good ring Dulling butt - Seamed saft but it was a Cedar pole which is soft anyway shavings were very fine and beemed .. a bit damp to the truck a lot of swere sheeks 3. New Blogs 400 area - Middle Post ques 50/2 pale, installed a 1955 Had sort of a crack sound to the haunser more of a thud with a crack. Drilling butt- seemed soft again in the butt but it is cedar - stainings fine und felt a but mist to the fuch. Brilled a hole about 5 ft up the pole and it felt a bit more resistant than butt drill a lot of severe charks 3) Near Blog 400 area - Middle Post 45/2 installed ~ 1985, Had a good wack when you hit it with the hanner - Gunded veally so is more resistant than 030 above sharings were fine a seemed dry to the touch The lutts of even the old poles are probably in protty good shape compared to the #(3) poll no oblines

1 Near AAF - OLD POST - Blog 100 histalled 1986 45/2 copper sulfate treated few checking Saunded really solid to the hammer good cracking sound - good starp Prilling butt - seemed soft going in got very stiff about 1/2 of dull bit in at a 45° angle - may have hit a knot witially felt about the same as #(3) (5) Near main gate at Richardson Highway installed 1957 45/2 penta freated (reldish) Smuded really solid to the farmer good crack - moderate checking Drilling butt - very dery tough drilling surticled to a lattery dill havever so that difference in torque may have made a difference (b) on Balio Take line 72000, vistalled 1975 45/3 pale - moderate checking Sounded really solid to the hammer - mat hallow Drilling Putt - very very fough drilling would battery drill however so the difference in torque may have been significant

100' scileng open

(Crassain sot is presolent

Damage by suon plans especalent

Carpenter ants on codar poles es

moderately presalent

Meast problems

19 1977 45/3 not sure of treatment.

ASP lateral off of feeler I mean the general legon. few checks

Sounded very salid to the hammer

Prolling butt: very, eary difficient using latery powered drill again

Land to compare with previous drillings:

ASSESS THE STRENGTH OF YOUR WOOD POLES IN ONLY 3 TO 5 MINUTES!!

PoleTest™is a simple-to-use instrument for predicting the bending strength of wood poles.

WHY STRENGTH?

Your system design is based on strength and your maintenance and upgrading decisions should be also.

All wood poles of the same species do not have the same fiber strength. In fact, based on the results of destructive tests, some poles of the same species and class

may be more than three times stronger than others. Older poles may have an even wider range of strength. People working with wood recognize that poles exhibit significant strength variation but no one can distinguish a weak pole from a strong pole based on a visual inspection.

PoleTest™ is the ONLY wood pole test device which directly predicts pole strength. The reliability of the strength prediction using PoleTest™ is unmatched by any other method, technique or instrument.

PoleTest™ is the culmination of research sponsored by EPRI and EDM. PoleTest™ is based on thousands of actual full-scale destructive tests and is not simply a theoretical approach. This extensive data base is available only in PoleTest™.

POLETEST™ USES:

- ng Make upgrade or reconductor decisions ★ ♣ ... □ Sort new poles to optimize use
- Make pole repair/replacement decisions ... Determine code conformance
- Determine the strength of voed poles is the project future maintenance requirements
- Determine line reliability

ENGINEERING DATA MANAGEMENT, INC.

4700 McMurray Ave., Bldg. A Fort Collins, Colorado 80525 Phone: 303/223-0457 Fax: 303/223-0484

PoleTest™ incorporates technology developed for the Electric Power Industry under the sponsorship of the Electric Power Research Institute. (EPRI).

JOIN THE LIST OF POLETEST™ USERS WHO ARE CURRENTLY SAVING MONEY BY MORE EFFECTIVELY MANAGING THEIR WOOD POLES

Pole Strength Assessment:

Destructive testing was conducted for *Tampa Electric Co.* on 24 southern pine poles that had been rejected using conventional inspection methods and 25 poles that were judged acceptable. Results showed that 50% of the <u>rejected</u> poles had adequate strength to remain in service, while 30% of the <u>accepted</u> poles did not have adequate strength.

Result - greater life from the good poles and greater reliability from the lines.

Upgrading and Rebuilding:

United Power Association used PoleTest™to evaluate a line to be upgraded. Several weak poles in the line were identified while the majority of poles were found to have sufficient strength to allow a cost-effective upgrade.

Result - A cost-effective upgrade was possible while retaining the reliability of the line.

Inspection Programs:

Idaho Power Company used PoleTest™to evaluate the strength of an older line that was getting expensive to maintain. The strength information indicated that replacing or repairing a small number of structures would result in the reliability of the line returning to an acceptable level.

Result - The life extension of the line proved to be a cost-effective option.

Montana Power is using PoleTest™ to identify weak poles which require repair or replacement before winter. In addition, maintenance can be planned for the following year to repair structures that were found to be marginal, but not critical this year.

Result - Greater reliability of the lines and better utilization of existing manhours.

Maintenance and Replacement:

The Electric Power Research Institute (EPRI) says: Using present inspection methods, approximately 667 poles of a 10,000-pole line would be replaced annually. If by using the EPRI-developed NDE method to inspect poles, the useful life of only one-third of these 667 poles is extended 5 years, then the potential savings to the utility is on the order of \$1,000,000 per year.

LET EDM SHOW YOU HOW TO COST EFFECTIVELY EXTEND THE LIFE AND INCREASE THE RELIABILITY OF YOUR WOOD POLE LINES.

Chuck Paulien

ax Transmittal Memo	7672	No. of Pages 1 Toda	ys Dane 12/13/95 11:45am MST
		From Chuck Paulier	
Fred Jones		Company	* · · · · · · · · · · · · · · · · · · ·
ocalion		EDM Location	Dept. Charge
	Telephone #	Pax #	Telephone #
303-985-2527 CommentFred, Here is the To	able Joe asked me to be any more questions		Return Call for pickup

PoleTest*
Technical Supplement

Table 7
Typical Strength Limits for Use with PoleTest™

		glas-fir	• • • • • • • • • • • • • • • • • • • •	ern Pine	Western	Redceda
	GL	Local	GL	Local	GL	Local
ade B	3040	3400	4160	3390	2180	1900
ade C Crossings)	2390	2550	2950	2600	1680 .	1560
ade C swhere)	3770	3960	4550	4110	2560	2450
ewhere)	3770	3960	4550	4110	2500	•

But trutte Con Creusoled all the war.

Copper Sucher Listers Accelerometer Spring Ng 4.7 in 1971 Pul 6820 540 んだ 13.6 4 F514 K5189 FA 142 POLETEST SERIAL NO: TE 13.0 DATE INSPECTED: __ INSPECTOR: 10180 4260 18.5P 4500 7 3.8 LINE LOCATION: DIAMETER (IN.) ACCELEROMETER READING (PSI) DIAMETER (IN.) ACCELEROMETER READING (PSI) ORIENTATION ORIENTATION GROUNDLINE GROUNDLINE LOCATION. COMMENTS SPECIES LOCAL LOCAL POLE LINE OWNER: ₽ DIVISION:

SPECIES CODE:

ACCELEBOMETER ORIENTATION CODE;
P - PERPENDICULAR TO LINE

DF - DOUGLAS-FIR SP - SOUTHERN PINE WC - WESTERN REDCEDAR O - OTHER

IL - IN-LINE COPYRIGHT © 1988

EDM, INC.

(303) 223-0457 FORT COLLINS, CO

ENGINEERING DIVISION

O - OTHER, SPECIFY

XA - CROSSARM

LOCATION CODE; GL - GROUNDLINE

XB - X-BRACE

WOOD POLE MANAGEMENT AND CONSULTING SERVICES produce the final product. This classification includes upholstering operations.

N/A-NY 2915 VENEER PRODUCTS MFG. Includes PHRASEOLOGY

veneer manufacturing. State Special: Texas-Veneer Mfg.

CROSS-REF. This classification applies to insureds who manufac-SCOPE ture veneer and further process the veneer into a product. The sawing of logs into bolts, the softening of same in vats of hot water or steam rooms, then either turning, slicing or sawing and the final clipping of the single ply sheets to size and drying are the operations performed in the manufacture of rough veneer. Some rough veneer may be sold as a product.

The operations involved in the manufacture of veneer products will vary depending on the product to be manufactured. Wire stapling machines, wire hoop machines, clippers, table saws and, in some instances, punch presses for making metal parts are utilized in the manufacture of veneer barrels, baskets of woven veneer, wire staple baskets or wire staple fruit hampers of stripped veneer, tacked or wire staple berry boxes of sheet veneer and wire bound fruit crates of stripped veneer with or without turned wood slabs or ends.

In the manufacture of veneer seats, veneer panels, plywood panels and veneer covered furniture cores, wire working machines do not prevail but are supplanted by taping, gluing, clamping or pressing machines which are used to assemble the single ply veneer into two, three, four or more ply products. All veneer products operations, irrespective of character, are readily identified by the presence of a large amount of assembly work.

N/A-CA 2916× VENEER PRODUCTS MFG.-NO PHRASEOLOGY VENEER MFG.

Code 2916 applies to insureds who manufacture SCOPE products made from veneer but do not manufacture the veneer used in such products. "Veneer" has been defined as a thin layer of material, usually made of wood or plastic, which is used to cover the surface of another material. Veneer in most instances will have a superior quality surface when compared to the surface it covers. Refer to Code 2915 for risks which manufacture veneer and further process the veneer into a product. Refer to Code 4250 for risks which engage in the lamination of paper to manufacture paper or paper-like

As veneer-covered products are many and varied, there may be little operational similarity between risks contemplated by Code 2916.

Wire stapling machines, wire hoop machines, clippers, table saws and, in some instances, punch presses for making metal parts are utilized in the manufacture of woven, stripped or wire stapled veneer products such as barrels, baskets, fruit hampers, berry boxes and fruit crates with or without turned wood slabs or ends

Taping, gluing, clamping and/or pressing machines are used to manufacture veneered products such as seats, panels, plywood, kitchen counter tops, desk tops, sink tops, chalkboards, bulletin boards and furniture cores. The manufacture of these products will generally involve the lamination of vinyl or plastic top coverings to particle boards. While the assembly of these products usually consists of the application of a singleply veneer to another surface, processes that involve multi-ply applications are additionally contemplated by Code 2916.

Insureds who cover sheetrock with wallpaper have been assigned to Code 2916; however, wallpapering of walls is not considered a veneering operation and is contemplated by either Code 5474 or 5481.

All veneer product operations, irrespective of character, are readily identified by the presence of a large amount of assembly work involving the combining of two or more surfaces to each other.

2923 PIANO MFG. Includes assembling or PHRASEOLOGY finishing operations, and manufacturing of the piano action.

Also applies to player pianos. Musical Instrument Mfg.--Wood--NOC; Organ CROSS-REF.

Building & Installation.

This is a product classification which includes SCOPE fabrication of metal frames, sounding boards, keyboards, wire and string graduation.

Musical Instrument Manufacturing—Wood—NOC—contemplates the manufacture of instruments made of wood. Case manufacturing and the tarining of skins used in manufacturing wooden drums, tambourines and banjos have been considered incidental to the operations assigned to Code 2923.

Organ Building And Installation—contemplates the manufacture of the complete organ including installation as well as the manufacture of the keyboards, sounding boards, action boards, metal frames, metal organ pipes, switches, relays, magnets, wind chests, wind reservoirs and blower systems.

N/A—CA, MN 2942 PENCIL MFG. PHRASEOLOGY

Crayon Mfg.; Penholder Mfg. CROSS-REF. Applicable to the manufacture of crayons, pen holders, lead, wax copying and colored pencils encased in wood. Operations usually begin with raw logs, or pencil slats which are purchased from pencil stock manufacturers. Equipment involves grinding mills, wood shapers, kilns, extrusion press, punch press and dipping or spraying apparatus. Metal eraser tips are stamped out on presses and fitted with rubber erasers either by the insured or by subcontractors.

2960 WOOD PRESERVING & DRIVERS. PHRASEOLOGY Includes yard or incidental woodworking operations.

CROSS-REF. Tie Yard & Drivers—includes preserving operations. Codes 2960 and 8232—Lumberyard or 2702—Logging or Lumbering shall not be assigned to the same risk unless the operations described by these classifications are conducted as separate and distinct businesses. Pole Yard & Drivers. This cross-reference has the same footnote as Tie Yard & Drivers.

Wood piles, poles, crossties, lumber and items to be SCOPE preserved are delivered at treating plant where the items are peeled, seasoned (air- or kiln-dried) and machined, if necessary, before treating. Preservatives fall into two general classes: oils, such as creosote and petroleum solutions of pentachlorophenol, and waterborne salts applied as water solutions. The preservative may be applied by pressure or superficially by spraying, brushing, dipping and soaking. Treated wood is then inspected, stored and shipped.

APPENDIX D

Load Analysis

Electric Power Plant Operating Log For 5-Jul-95

	DAILY LOAD TREND		1488 2500 [→]	1248	1248	1248	1200 2000+		/ 1382	872		Z064 E		2160	_	2112	2160		2112	2106	1776	1728		0000 0000 0000 0000 0000 0000 0000 0000 0000			
PLANT	<u> </u>	METE	2400		200							900			1200				1600	1700		1900		2100	2200		
	i	TIME	24	-	2	E	4	ς;	9	_	8	5	٤	+	12	13	14	15	16	1,	18	15	20	2	22	23	

TOTAL KWH 41898 PEAK KW 2256 LOAD FACTOR 77.4%

Page 1

Electric Power Plant Operating Log For 23-Jun-95

		2500 T				2 2000 +							ורס	_				+ 009					000 000 000 000 000 000 000 000 000 00	22 12 02 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17		
PLANT	METER	1392	1296	1296	1296	1248	1248	1392	1632	1824	2016	2112	2208	2256	2208	2206	2112	2016	1920	1872	1728	1728	1634	1632	1488	
PLAP																										
	TIME	2400	100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	

TOTAL KWH 41760 PEAK KW 2256 LOAD FACTOR 77.1%

Electric Power Plant Operating Log For 16-Mav-95

PLANT PLANT TOTALIZER 100 1488 100 1392 300 1392 300 1392 400 1344 500 1344 600 1366 1000 2304 1100 2304 1100 2304 1100 2352 1300 2352 1300 2352 1400 2352 1400 2352 1500 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352 1600 2352	2500 -		
TIME 2400 1000 2000 3000 4000 5000 6000 11000 11200 11300 11500 11500 11500 12200 22200 23300 23300	PLAN TOTALI	TOTALIZER METER 1488 1392 1392	PLANT TOTALIZER METER
2500 +			(
2000			(
2000			

TOTAL KWH 45668
PEAK KW 2448
LOAD FACTOR 77.7%

Electric Power Plant Operating Log For 5-Apr-95

L _A	IZER DAILY LOAD TREND	1632	1632	1584	1584	1584	1682		2064 2000 +		2544				2640		2496	2400		2064	2016		0000 0000 0000 0000 0000 0000 0000 0000 0000		1872
PLANT	TOTALIZER																								
	TIME	2400	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300

TOTAL KWH 50738
PEAK KW 2688
LOAD FACTOR 78.6%

Dane 4

Electric Power Plant Operating Log For 14-Mar-95

	DAILY LOAD TREND			(\													062 005 005 005 005 005 005 005 005 005 00	TIME	
	DAIL		3500 ⊥		_	3000 +			2500 🕇		00000		′ M-′	1900 +			1000 +			+ 000			0 0 0 0	08 04 09		
			~ ·		6.1	61	IC1	~	<u>C.</u>				*	m	<u></u>	က	C	2	က	(0)	0	0	2	ဖ	4	4
PLANT	TOTALIZER	METER	2208	2160	2112	2112	2112	2208	2352	2640	3120	3120	326	3168	3120	316	3120	3072	2986	2736	264	2640	2592	2496	2544	2354
		TIME	2400	8	00	300	90	8	900	700	8	006	1000	1100	1200	1300	1400	1500	900	1700	1800	1900	2000	2100	2200	300

TOTAL KWH 64044 PEAK KW 3264 LOAD FACTOR 81.8%

Electric Power Plant Operating Log For 23-Feb-95

PLANT TOTALIZER	METER	2208 3500 T	2160		2112	2112		2350 2500 +	2640		ПΑ	3120	3216 3 1500 +	K	3168	3120 1000 +	3120	2976	2736 500 +	2640	2640		500 100 500 100		2256
P TOT		2400	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300

TOTAL KWH 63934 PEAK KW 3216 LOAD FACTOR 82.8%

Electric Power Plant Operating Log For 27-Jan-95

																				-					
								/	,													T 0	530		
								/														† o	220		
								/														† o	510		
							/.															o	200		
						/	′															o	06 I		
																						0	081		
						1																0	120		
				/																		0	091		
			(o	120		
)																			0	140		
₽			,																			0	130		
DAILY LOAD TREND																						0	150	TIME	
AD																						† o	011	F	
7.50		1																				o	100		
AIL																						f o	06		
			/	\																		f o	08		
						\	\															 0	04		
									\													0	09		
									1													- 0	90		
																						10	40		
																						10	30		
																						† c	500		
																						+ 0	100		
		<u>_</u>			+-			 -		_			+0			+0			0			} (70 0 70		
		3500			3000		Č	2002		2000			1500			1000			200						
										S.	TTA	/M-(ודס	N .		_									
		2304	208	2160	160	2160	2160	257	688	1168	3360	360	408	3408	408	3312	3312	3024	2880	2832	2736	2592	496	2400	2304
L R	~	01	2	2	2	2	2	2	2	က	60	ല	(1)	63	(4)	(,)	(,)	(-)	,	, ,	,	,4		, ,	<u> `</u>
LANT	ETER																								
PLANT	METER	7											!									L			_
PLANT	TIME METER	2400	100	200	300	400	200	009	200	800	006	0001	1100	1200	1300	1400	1500	1600	1700	1800	0061	2000	2100	2200	2300

TOTAL KWH 66097
PEAK KW 3408
LOAD FACTOR 80.8%

Daga 7

Electric Power Plant Operating Log For 7-Dec-94

		DAILY LOAD TREND	100l 3500 T			160 3000 +	112		352 2500 +	\ \ \	S			12 500	Ж	096	1000 +		096	500 +	20	77.2		000 000 000 000 000 000 000 000 000 00			
F144 10	FLAN	TOTALIZER METER	2400	2256	2160	2160	2112	2160	2352	2640	3072	3168	3264	3312	3456	3360	3408	3312	3360	3122	3120	3072	2928	2732	2736	2496	
		TIME	2400	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	

TOTAL KWH 68158
PEAK KW 3456
LOAD FACTOR 82.2%

Electric Power Plant Operating Log For 30-Nov-94

						/														T 0	230		
						/														0	550		
				/	/															† o	210		
				/																0	200		
			1	,																0	06 l		
																				0	081		
		,)																	 0	120		
	1																			† o	091		
																				o	120		
																				f o	140		
																				10	130		
	(10	120	¥	
																				10	011	F	
																				10	100		
	1																			+ 0	06		
		/	\																	to	08		
				\	\															to	10 2		
							\													+ 0	09		
							1	\												+ 0	200		
																				+ 0	10 0		
								1												+	300		
								1												+	500		
].												+	100		
<u>-</u> -			+			 	_/		<u> </u>		+			+			 			÷,	007	z	
350		6	9		250	007								100			ŭ						
			_						TTA	W-(J 112	м											
œ	12	2064	2016	2016	2160	2256	2592	2976	3168	3216	3312	3360	3264	3312	3264	3216	2928	2880	2880	2784	2698	2496	2352
20	121		. 4	``	۱, ۱	` '	•																
2208	21	`							1		1								1				ı
2400 220			300	400	500		200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800		2000		2200	
	3500 ⊤	3500 —	3500	3500 +	3500 +	35000	3500 -	3500 - 2500 -					3500 3000 4 2500								25000 - 15	0000 0000	2500 2500 250 25

TOTAL KWH 65530 PEAK KW 3360 LOAD FACTOR 81.3%

Page 9

Electric Power Plant Operating Log For 27-Oct-94

		DAIL! LOAD INEND				<i>\</i>	\ \	<i>/ ></i>																00000 00000 00000 00000 00000 00000 0000		
			3000			2500 +			CCCC	+ 0007	())	- 1500 -	וורס	ж	1000 +			CCU	+ 000				300 300 400 400	z	
, r-34	PLANT	METER	1872	1824	1680	1728	1632	1776	1920	2256	2592	2736	2640	2640	2640	2640	2544	2544	2456	2352	2256	2400	2286	2112	2064	1920
46-100-17	- (TIME	L	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300

TOTAL KWH 53510
PEAK KW 2736
LOAD FACTOR 81.5%

Electric Power Plant Operating Log For 14-Sep-94

																					-				
								/	,													ŢO	530	:	
							- (10	550	:	
							1															10	510	:	
			_)														+ 0	500	:	
						/																† 0	190		
				/																		10	081		
			(to	02 I		
																						† o	160		
																						† o	120		
			1																			to	140		
	9)																			to	130		
	DAILY LOAD TREND	(`																			10	150	TIME	
	OAD																					† o	011	, -	
																						to	1000		
	DAI		•																			to	06		
				\	\																	† 0	08		
							\	_														10	02		
											\											† 0	09		
																						10	09		
																							400		
																							300		
										1										•			200		
			-																				100		
		2500 ⊤				2000				1500 +	-			1000				200				, (700	2	
		Ñ				7					ΠA	/M-(ורס												
	~	Ю	0	7	4	4	4	œ	0	o l	9	7	2	φ	52	2	4	4	4	2	Q.	2	9	9	22
PLANT	IZEF ER	1440	1440	1392	1344	1344	1344	1488	1920	2160	2256	235	2352	2448	2352	2352	230	2304	230	2112	1920	1680	1776	1776	1632
PLAN	OTALIZE METER																								
-		18	100	200	300	00	200	009	200	00	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	00
	TIME	2400	-	2	3	4	2	9	7	8	တ	5	=	12	13	14	15	16	17	18	19	20	21	22	23
_					_																				

TOTAL KWH 45792
PEAK KW 2448
LOAD FACTOR 77.9%

Electric Power Plant Operating Log For 29-Aug-94

									-																	
										\													T	300	2	
)													+	200	7	
										(+	100	7	
									,														+	000	7	
																							+	006	ı	
								/															+	008	ı	
						/																	+	002	ı	
						(+	009	ı	
																							+	200	i	
					,	/																	+	400	ı	
	9				1																		+	300	ı	
	I REP																						+	500	TIME	į
	AD																						+	100	ŀ	
	Y LO				(+	000	ı	
	DAILY LOAD TREND				\	\																	+	006		
						/	\	_															+	908		
										\	\												+) 02		
											`												+	009		
																							+	200		
																							+	√00¢		
												,											+	300		
												(+	200		
)											+	100		
			⊢ 0				9			-	_/				+				9	-			 	005	Z	
			2500				2000				1500				1000				200							
											S	11,4	//\\	ורס												
F	ZER	2	1488	1392	1392	1248	1248	1344	1392	1584	2064	2160	2256	2208	2256	2256	2160	2112	2160	2064	1872	1776	1632	1680	1584	1632
PLANT	TALIZ	METER	,					-				`	` '	, ,	, 1	` 4	, 4	. 4	. 4			ľ				
	70	2																								
		TIME	2400	100	200	300	400	200	900	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
L		F																				Ĺ	Ĺ			

TOTAL KWH 42960 PEAK KW 2256 LOAD FACTOR 79.3%

Electric Power Plant Operating Log For 21-Jul-94

PLANT TOTALIZER METER METER 1392 1248 1248 1248 1248 1250 1250 1250 1250 1250 1250 1250 1250																		+	500	7	
1900 19							/											+	100	2	İ
1980 1980					/													+	000	7	
TER 1382 1382 1383 1384 1286 1																		+	006	ı	
TER 1382 1382 1383 1384 1					/													+	008	ı	
TER 2500 1246 1																		+	004	ı	
1248																		+	009	ı	
1392 1392 1398 1398 1398 1398 1399 1398 1399 1398 13																		†	200	ı	
1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1200 12																		†	00₺	ı	
TEER 17392 2000 400 800 800 800 800 800 800 800 800	Q.																	†	300	ı	
TEER 17392 2000 400 800 800 800 800 800 800 800 800	TRE																			2	
TER 1296 1296 1248 1248 1248 1248 1248 1248 1248 1200 1392 1400 1400 1500 1632 1632 1728 1728 1720 1	OAL																	1		ı	
TER 1296 1296 1248 1248 1248 1248 1248 1248 1248 1200 1392 1400 1400 1500 1632 1632 1728 1728 1720 1	ILY		·																	l	
TZER 1392 1296 1248 1248 1248 1248 1248 1248 1248 1200 1248 1248 1200 12016 1212	Q																				
1248 1248 1248 1248 1248 1200 1320 1320 1440 1440 1440 1728 1440 1440 1440 1440 1728 1440 1440 1440 1440 1440 1440 1440 144					\																
1248 1248 1248 1248 1248 1248 1248 1248						\	\														
ZER 1392 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1250 1344 1632 1								\setminus													
ZER 1392 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1248 1250 1344 1632 1								1													
ZER 1392 1248 1248 1248 1248 1248 1248 1248 2016 2112 2112 2112 2112 2112 2112 2112 2112 2112 2113 8 1500 1440 1632																					
ZER 1392 1248 1248 1248 1248 1248 1248 2000 1344 1632 2112 2112 2112 2112 2112 2112 2112 2112 2112 2112 2118 8 1500 1632																					
ZER 1392 1392 1248 1248 1248 2000 1344 1632 2112 2																		+,	100		
ZER 1392 1392 1392 1248 1248 1248 200 2112 2112 2112 2112 2112 2112 2112 8 100 8 100 8 100 8 100 1440 1488 1488				+						+				+				<u> </u>	005	z	
ZER 1392 1392 1248 1248 1248 1248 1248 1248 1248 12112 22112 22112 2112		2500		500 700		70								20				_			
				<u></u>			SII	4 ₩-	ורט	м											
	, E	392	248	248	344	632	920	016	112	256	112	112	112	160	112	824	728	632	536	488	440
▐▊▗▐▜▜▜▜	PLANT OTALIZE METER				4-			2	2	2	2	2	2	2	2	1	1	1	1	-	
	PLAN TOTAL																				
TIME 2400 1000 1000 1100 1100 1100 1100 1100	M	100	300	500	900	200		1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
					Ц																

TOTAL KWH 41040 PEAK KW 2256 LOAD FACTOR 75.8%

5300 ⊤

CENTERAL Case Contract Casteranton And Distribution to Contract Casteranton Casteran						ELECTR	CTR	C P	OWE	IC POWER PLANT	AN	0	PERA	OPERATING	Log	.		حُ ا	. \ <u>i</u>	3/11/	20			
The law Low K First	ATION: FORT GRE	ORT GRE		ELY, AL	SKA			LECTR	E ICAL	ENERAT	8 -	D DIST		5				5		אפשכ				
1				GEN	ERA	ORS			1	K		2	TANK .	DEWAND						2			E S	-
1. 1			3,	ON L		בורים סיים	ة 2	E C	90	-		1	SIA	TON SERVICE		\vdash					.¥	KVAR		
1 1 1 1 1 1 1 1 1 1		_	3 8	2 9		S NAS		-	W KVAR			<u>.</u>	-		200		•		\dashv	80	Z	Z	À C	. 1
1	, y				_			1	44/ 02	3.045	1/2	188		7	j		V	Y Y Y	28/	35	8228	3%	12.5	17
174 186 187	000	1	\perp						200	, .	ħ	ξ.	7		<u>'</u>	2	50.5	V V	505		228	398	76/	N.
2.4 (1927) 2.9 (3) 4 (1978, 2.3 (1.2 - 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		\downarrow	1				1	_	UNC 001	3	7	8/4	23 3		<i>'</i>	225	è,	Y	200		8778	3784	13/	CI.
14		+	1				K		30 700	Ş		846	13/6	4	<u>/</u>	5	23	VA IA	735	R	802 803	28.00	77.	NI.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	+	+	\downarrow		T		\vdash	1	100/00/		14	300	23 3		<i>'</i>	235	20.4	V S	25	X	27	201/80	15/	1
1, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		╀	+				\vdash	17.		3/4.4	4			3	;	ऽ ८८	505	U S	77	35	8258	5788		1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	+	+	+			7	Ł	3	200	5	7	1	4		<i>'</i>	5 06	555	U p	1030	9	800	3481	27.	1
14 200 200 20 20 20 20 20		+	+	1	+	1	X	`	8	13	1	.1	4			925		$\overline{}$	15/35	8	8559	3987	134	2
10 10 10 10 10 10 10 10		+	+	\downarrow	+	#	+	×-	\$ 400 W	1	2	930	F			10 5		50		79	9559	3989	13	_
14 200 10 200 20	-	T	+		†	1	+	7	3 8	_	, ,	+	1		Ŀ	1_		2	_	\$	8560	3990	134	$\overline{}$
1940 1940		_	+	1	1	1	+	-	3 8	_	2 -	_	_			1	-	63	_		1958	3950	134	3
10 10 10 10 10 10 10 10		╗		1		1	+		8	_	3	_	, -			4_	-	15	30 65	0,	8562	3990	134	$\overline{}$
14 15 15 15 15 15 15 15			1				4	91-	2 8		9 .	-	7		ľ	4-	7 68	3	100	13	8563	3991	134	7
10 10 10 10 10 10 10 10					+	†	7	3	3	_	Q -	-	+	1		+	8	9	35 50	6.2	8563	359,	13	7
10 10 10 10 10 10 10 10	250 90 SS	7			\downarrow	1	+		3 7		1	-	_	1		4		-	35 55	07	8564	399,	134	
Columbia	8, 8, X	VΙ			1	1	+			3 5	-	-	-				-	_	35 55	72	3265	3991	134	_
Color Colo				+	1	+	+	_	3	3 (o j		1			16		1	1	2	5258	3993	134	abla
### STATE ST	+	1		1	#	1	4		oal can		1		1		V			1/2	18		8526	3992	139	V
10 10 10 10 10 10 10 10	+		1	+	#	1	+	_	2 2	2 2	7	1	1		1	-	1,00		25.55		8567	. 399.2	3	-31
994 GBH SINSVI STASVZ G V E A WAR REDRIN FEDRAL FED	+		$\frac{1}{2}$	+	†	+	A P		0	7 000		190	+	0		8	65	5	5 30	129	8228	3923	3	त्रा
Cobst Cobs	+	- 1	1	1	#	+	4		0000	75.00			+	0	\bigvee	71	-	10	I		8258	390	130	N
CBN CBN SM STASY	+	1	$\frac{1}{2}$	†	1	1	+	+	2 6	7/1/20	1		L	(3	18	5 30	-	8589	3553	R	24
CEN CEN STAN ST	+	- 1			#	1	+		200	3 3	1	_	1	90	\bigvee		25	2	1	22	1928	3994	3	31.
CEN	+		‡	†	#	1	+	1		7	V		-	Į.		\$28	325	.05	5 50	70	22.5%	399	D D	41
43076 1357 0165 957 3554 69457 6163 2612 67497 7899 5449 4495 0252 3 42 557 9 4250 6157 958 6457 6163 61615 958 6457 6459 6457 6163 61615 958 6457 6163 61615 958 6457 6163 61615 958 6457 6163 61615 958 6457 6163 61615 958 6457 6163 61615 958 6457 6163 6163 6163 6163 6163 6163 6163 616	H		ᅪ	╁		674 67/1	24.00	ت ج ا	>	<u> </u>	1			_		FEEDER 1		FEEDER		FEEDER 9		TOTALIZER		Т
430768310160 9969 000 1318 8585 888 68423 61615 2589 1748 7586 5483 4420 000 88 335 66 1 38 16 13 16 13 16 13 16 13 16 15 25 9 1	SEN S	21			1	1	00			150		552	7							10252	7	126		\neg
35 (16 13 16 15 16 13 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	180/9	J-			683	21.0				1	L	18	7-						-	8000	7	37		7
MIDNIGHT OPERATOR MIDNIGHT OPERATOR	9/08/ 34024 15920 0000	:위			3		4	000	6	_		1	1	0/0/	1		٦.	1	_		-	35		
GELLAMET / PARSONS 2		۳,	\perp	1	V	9	-	3	1	5)		+	+		_			L						
Coechant / Parisons Day OPPERATOR		- 1		_				_	-	4	+	\downarrow	$\frac{1}{1}$					racksquare						
							Ī	T.	3		<u> </u>			Be	hart DAVD	PERATOR	5			, ,	AFTERNOC	N OPERATO	ď	
				$\frac{1}{2}$			١	MICHIG	75	5	$\frac{1}{2}$												1	

. ,	39	VITO! GLIVE		134	Ø	25	12	75	<i>₹</i>	7	7-	7	5-	<u>_</u>	<u>_</u>	71			اح		`.T					-	-				,
. 65	厂			1	F		1=	1=	F	\cong	134	134	134	734	₹	137	37	3	Š	134	2	2	2 6	200	124	9	7	4	Q		1
		KVAR	2867	15	13	2000	76 80	33	56-55	25	3896	196	9	17	7	_	-	_	8	$\frac{\infty}{2}$	2			- -	7 5	٦	5	3			
20		-	2	10	3	3	ਹੌ	Ö	8	25	83	3888	$\stackrel{\&}{\otimes}$	3897	3847	5097	38 87	5	36.98	3838	3848	389	3		000	1	1		-		
June	1	35		12	Z	Z	Z	E.	1	ξģ	_	_				П							2 [1	4	Ì				
		X,	3157	12 2 3	6	Š	12	1 -	3	3	8387	B37	8388	8388	386	888	8389	26	837	8327	2367		17170	2000	7000	0	5	عدا	6		1
23						-		-	-	2	ero.	20	00	8	$ \alpha$	<u>æ</u> ,	80	0	\overline{x}	9	Ed.	3	36	å 2	ဂ် ဂ်	0 00	1	13			1
ià	RS		-	-	-	-	-	-	-	-	-	$\left - \right $	-	-	-	-	_	_	_	_ .		_				U C	הג	-	3		Section of the sectio
DATE:	岀	œ.	F	g	10	22	2	=	70		_	_	_	_	4	_		_ _					١				3	3606	5		
9	EDE	7	2		K	1_			7	7 4	140	84	25	12	3	2	7	5	5	5	2	۲۱	3	3 6	1		t		12	-	. 14
	出	-	0	Ţ	2	35	-	120	76	8	33	65	بخ	8	8	5	55	55	9	9	55	o.	9		30 57	9	V	$\sqrt{2}$	1		
İ	Щ	6	上	B	$\frac{1}{2}$	13	4	8	g	67	S	04/00	7	40 00	25 50	30			_		3			20				2	0		
		W	1	1	19	M	5	15	5	0	0)	2	_		2		200			^	~	1	3 3	4	3 5		7	N. S.	-		
		-	3	45	8	3	\$	Q	1	Ω	199	-		_	-			_			_	_		$\overline{o}_{\overline{P}}$	7/4		3	12,			
_		4	6	2	5	V	Ž.	3	3/6	5 0	-	8			_	2	2	डे	2	8	2	8	9	ું	3/2		6	30	<u>-</u>		
3			7	K	I	7	1	7	3	7	8	75	85			2		B	2	20	2	g	3	3 9	_	- 10 2	2	2	7		
5 		15	Ę	K	1	2	7	1/2	5	\leq	0/	9	2	0	2	8	_	0	0	9	0			5 5	_	-1 .		15	Ä	1	
FG	-	S	Ľ	12		亡	ř	1º	50	\mathcal{C}	15	10	115 110	5	2	2	0/80	0	8		. 1		- 0 1	- -					L		Ė
OPERALING LOG		SERVICE	\geq	图	X	X	1>	X	X		4	-			4	ì	Ì	0/10//	à	7	3		¥.	25	38	2	8		} '		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DETRIBUTION		TOTAL STATION SERVI		Γ	Γ	Γ	T	Τ					*	Ŧ	=		=		4	4	4	7	7	7	1	\	_	~ ~	_		٠. ر
18		30	1	1	۵	1	5		2	5	-	-	<u>, </u>	_	-		_	_	_	_	_	_ _	_ _			- 6	חכום /	ું <u>ઉ</u>	~		30
5 13	6 11 15	18	V	10	5	Ø	1	$\sqrt{2}$	7	19	3115		3	=	9	읽	프	₹.	74	4		4	7/	2	3/	_	١	-1 ~			7
		E ST	12	K	S	1	ē	C	35	9	Š	27/100		200 35	အ	8	읬	55	32	3	35	3	3 5			9/2		389	1		•
\$		-	ع	3	CO	2	3	2	1382	1637	1824	ă	2112/45	ğ	1	2008/35	05 30	11138	201432	विषय ५	12/125		2012	120 25	16 BB 07	1	1	10		-	
GENERATION AND I	1	B	5	15	7	9	9	7	9	٥	و	9	٤	4			9	- 1	\Box	,		7	==		\top			×			
- 8	47,60	G. %	20	F	3	28	22	\aleph	75	Ģ	.92	.92	28.	3	<u>e</u>		7	=	7+		0	0	26	210	-	K	1	-			
8		1 E	X	×	Ŕ	28	73	33.0	10	410		0	_	-	00/	16/109/1002/00/	71.001500110017	3000	0	3	101: 100k 008 008/	ر ا ک	MONEY UND BY	5 8	1400 ABO 180 38	u	10	15	7		
3	CINIT NO	D	28	18	Q	8	3	00	800	7	1700 800 415	0	٥	251 002 00	5		딁	1000,000,000	뭐	Ogh Couldo	5	٤		227		Ł	2	3	_		- 1
L GENERA	IN	KW ITUR	8	3	8	S	Region		3	쭤	8	700 Bao	400 200	৪	200 300	<u>چ</u> ا ت	20	ĕ	5	<u> </u>	200			(24) (SC)	Ç		138/17	133	1		
3	F	ž	_	H	91		G		쁵	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	2	Š	3	Ŗ,	2	3	β		S,	200	3			P P	-	_	7			
	-		9	Ħ	7	1	\vec{c}	8	玄	君	2	7.4	77	77	7.4	7.7	7	7 7		7	\{\bar{\chi}{\chi}\}	7,0	- 2		-		1425	5	7		
3		P.F.	1	1	1	7	1		,	/	V	V		3	, 18	ឆាំ	1	1	1	7	1	1	1	35	F		5	35		//	3
ELECTRI	JRS UNIT NO.	A C		Y • J	/		V^-	/	7	71		7	- -	210128 2	7 20 17 12	12.01.2.	+	+	┤-	+	- -	4-	4-	#	17	STASKT STASK.Z	1980	8755	1		
ELECTRI	S	day)	\Box	7	7	7	7	7	-	+	-	-	- -		7 2	ᅺ -	- -	- -	- -	- -	- -	_ _	_	L	L	E	5	Š			
i	TORS	LOAD KW KURR		+	+	-		f	\dashv	-	-	- -		-1-	_L	- -	- -	_ _	_	_	_					35.6	15600	2043	9		2
	H	3	-	-	-	-	-	-	4	_	_ .	_ .		0	3 6	3									Γ	5	Ŏ	Ŏ			
AK A	₹1	ANP % TEM LOND	\vdash	\sqcup	-		\mathcal{A}	4	1	4								T	T		T		T	T		SMIA		2			
- 11	GENERA	0.90					Ц					ا	7		Т	T	T	T	1	T	+	十	┢	╁	-	S		LA3	4		
교	GENE	KW IKYAK ANP				ľ		T	T	T	1	1	7 3	3	+	十	╁	+	╁	╀	╀	+	┝	╀	H	60.4 Gar 5	- 1	42016 13506			
8	뱆			1	7	7	7	7	+	+	十			7-	╀	╁	╀	╀	+	+	1	L	L	L		65		짌	1		
2		LOMD K		-	-	-	- -	- -	- -	- -	- -	- -		-	- -	_	_	_	_	L	_	L				4		2	٦		
191	H	Z X	-	- -	- -	- -	.	- -	_ _	_ _	_ _	200	3	6		L							Γ			8		7			
끺	H	P.F. TEN	\dashv	4	4	4	1	1	1										Τ	\vdash	1	卜	-	-				18016			
ğ		<u>6.9.</u>	_		_ _							3	8	1 =		1	1	\vdash	十	\dagger	╁	┝	┝	\vdash	-	GEN 3		熁			
4	S	2 \$									1	- -	18 Sec. 19	6 (06)	2	: -	-	╟	╢	╢	-	-	_	_	_	N	7	ਰ੍ਹ	٦	•	
.됩	UNI	이		-[-1	1	_ -	-	- -	-1-	- -	700 50	2 2	1	1	1-	-	-	-	-	-	-	_			D		ୡ			
INSTALLATION: FORT GREELY.	13	KW KWE ANT		1	1	-	1	-	- -	+	-			000	_, ,	-	-	-	-	- -	_	-	_	_		Gay 1 12-32 2		ह्य	7		
		_	_	o	히	8	8					6		_	_		1	+	1	\downarrow	_	L	_			3		0000 75 (34 S) DOD			
		TIME	24	000	0200	0300	940	0500	0600	978	080	0060	200		3 8	3 5		1600	9	3 2	00	2300	2130	2200	2300	746	2430	0	146		
									_	-	_	_	-	_	D-1		4		1.	1.5	1 =	10	10	N	N	17	64	Ω	\mathcal{O}		

CVER CVER	WER PLANT, OPERATING ENERGY OF AND DETRICATION SERVICE TOWN CONTROL OF TREATMY SERVICE TOWN CONT
	12 12 12 12 12 12 12 12 12 12 12 12 12 1

1773 BDE FORM 216

	U	つる ノーカーノリー	トスマーの のいろくの		じてしているという			
INSTALLATION: FIRT GREELY, AK	1	77	~	. 4	700 LOC-		DATE: 5 Asr.1	75/
GENERAT	TORS					FEE	EDERS	1
TING	士	100	NO. 6				1	04/14
	KW KWK	AHP 90 KV KW	KW ITURE AMP % TAP	GEN 1 2 SEX	spe 2 5 4	1397	\$ 2 × 2	
		PEN 174 1	1800 115 BOLS	13131	PD11214	15/15/15/15	53 1 1200	13334
		100 THE Y	3	T Trans	1715/15/17	1485 50160	521 120	32,38
•	/	の技士	$\stackrel{\sim}{\sim}$	V V W	1-161514	451212		17.35
		7	717	シーンで記	5710156	F151514	411 1 17069	D3.30
		3 17	シスプス		8H 21 CL -	121109 5 145	421 1 MOZO	12 36
	7	124	3	128,35/14	はアスト	ts	_	n.36
	1-/		ST.	NEW 12 11 4	といる」	6000 160 160 160 160 160 160 160 160 160	1/2/1 1 1/2	12.37
		10 00 V	1 6	15 CM 77 12	10,1159	20	611 1100	1239
		2.02.6500	3	244 38 X	11/2 80 12	25 60 BS	12 1 123	3237
			1	_	30	18909.058/	15 1 12 X	23.38
Control of the contro	-		19	1/2	8	1/055 to 180 to	12071	- 32/38
1 900× 126/20	-			2013810	38	105160170175T	151 17076	323
1205	1	12	2 93 BXP	268 38 /8/	3	531701751	1201 108	3239
1 1950 / 1950 193		12	130	31	38 CF	90 50 1701757	75	3239
900/206		13	T.	SV C 846	308	BS-150 155 TEST	12/2/1 10/2	3239
1 150/19092		Ħ			20 75	157107155 158	1601 1 POS	13279
		17	300	-1	30 75	155 60 167	10801 10801	5340 134
	-	1 2	535 .97	1-	20 8 00	8 54 50 43 8	1801 1081	3240 134
	-	7	13		01 01 29	2 5 56 50 8	12091	3340 1334
	-	2.7 19w 180	 	136 36	1921,0 69	75- 5-45-140 9	951 12331	33411 134
		1 J.4 180 180	-	135/35/3	09 01 05	2 3 45 40 8	\$0 708 3	1341 1134
		J.y 180 80	-	15 1 1/4 1025/	85 10 53	11 24 84 75 186	101 1084	33411 134
		2.4 1800 500	150 .93 5	18 36 34	15/10/53	43	957 70851	32421 134
		a6 a81 4.6	7 150064	1872 36 3	18/10/50	W2 5158 50 68	8 1 170851	3242 134
-9		Ø	. E	KVAR GES	HARES BR	#1 From 3 Pe	Same Bloom	TONTE
	_	85 00 1656 20 58	70	-	1084710637	7	93/5	See
	90,9	3	-	13234 CCCE	Gers 10613	CSBII 174873 1840	1384 STS	17
9	3	1	L	77 X	からなっ	42 41 45	651 111	. 73
				1				
	*			Nut	hul		Benson	
	MID	VICHT OPERATOR		ANG	OPERATOR		AFFERMON OPERATOR	TOR

.

.

10L 86

																				I					
<u></u>	INSTALLATION: FORT GREELY.	ATION:	Fiper (REEL	χ, Α	AK.	급	ELECTRIC ELECTR	SE SE	. PO	POWER PI	1	PLANT	4	OPERATING	WI IN	U N	907			Ad	DATE: _/	14 Mar	757	
				GENER		ATORS	SRS													丑	Ш	RS			
	UNIT	Ø	7	MIT	4		TIM!	-		S	UNITNO.	GVEA		KILOWAT		DEMAND				_				-	F
L.	Kw KWK	ANP 7. TEN	(C) 37	KW KYNG AND % TOWN	2. 2. T.	1	KW KWR	5 5	g. 9.	\$ E	KW TURK A	ARP 79.F.	200	S 1 1 NES		STATE	25	4	1 3	3 9	7 8	-	 3,≨	KVAR	5 20 1 17 100 1 17 100 1
2400							-	L		_	2,00 90c K	56 BY	2	2500	18 18	ļ.,	36 38	0 3.0	3009		24 (10)		143	13839	
00 00 00				$\left \cdot \right $			\vdash		3	2.7 Sovel ga	90 53		L	36V3F	10	L,	つとして	0 60	14.9	133	100 DC	-	16604	3040	3
0200		1	-	\dashv		_	\vdash		63	2.4 2000 90U	Jew 1.09	56. 0	0 0	319136	× / 8		aspec	090	\ <u>\</u> _\	18	ड्यस्ट	+	PCd 4	BOH	₹/ K
0300				-		-	\vdash	/	3	2,4 2000	05	29.	7	211236	1911	L,	50 150	29/10	5 69	12	100 39	- 6	190-77	12040	1 15
040		1				-	H		7,0,4		95 CS CS CS	C6.15	9	ری	<i>√</i>	L,	28/5/	600	53	1867 7	60100	_ ~	16607	3041	1/30
0050		1		+			-		2.00	-	3 000	29.93	-2	7 5 MOCE	161	L	8 2 7	20	<u>(</u> र्	185	7516C	7	1660.51	1705	1 13
0090		1				-	_		25	J. 4.300 / CO.	100 100	_	8	352.37	8		>000 M	ŝ	<u> </u>	レジレ	102159		16000	(504a)	1 13.
0400				\dashv			Н		2.4	4770	4711/10 630	Ŀ	8	36 38 20	00		22 5518	τ	85 76	01	8/08		6610	304	134
0800		1	0001	360	30		-		2.0	12,50	orsan,	%	1	300 45400	300		12055	8	22 62	09	9000	_	1/991	30%	139
0060		1	Can	67/2	Ś	-	-		16 -	and,	60 530	_	1	34013/470	20		18 T	**	4 80	100/00	08/20	_	6613	308	136
000			108	\$70	199.	-	_		4.6	1322	C2500/	980	72 73	32	R		ST 155	3	800	1001	100/00/70	_		EXE	139
00	-	-	race	3099	136	\vdash	_		i,	1/10/2	2/10/100 SO	98	P	3	20		4555	100/	3065	3	100/10		16/13	30%	2
1200	-		000	20	186	-	_		2.4	12/D/100	025 00	-	4	_	8		122/20	3	120 GS	3	190170	_	1661	306	150
1300	-	1	1000	320	25	-	_		7/2/-	(sec)	220/100/546	36	8918 /	3/3/6/8	122	1		5	2 65	90 19	RO ROTE	_	661	30/3	134
-]	_		1800	18	100	-			5,6	330	3701/10 550	\$ 95.		3/402 120	8		25	100	28155 VOST 120170	20	Settle	_	16616	3044	138
1500		-	2001	2363	75		_	-	72.0	7	2/d/1008/0	25	4 33	37336 20	R		12853	1/00/	100/00/70FU	ROBS	15912	-	19917	30/11	134
1600	-	+	1000	30	8.	-			the	2000/	200/600/540	136	4 MR	# 35t	351/8 Li	'	05/22	106	10263	19019	16 21	_	1991	304	13
1700	-	+	88	S.	8	-	_	-	2.4	100/	05400	な	ZZ +		1 0	9	18150	88	35 40	85	651821	_	15/91	1384ST	134
1800	-	1	-			-		 	- 24) psz	1000/240	18.			12/-	2	15/36	80			60120	_	16619	3045	18
19:00	-	+	-	1	+	-		-	2.4	120 mg	_	Z	8	38	118	8	90152	73/		30/8217	120/102	-	1600	3045	134
530	-	-	- - - -	1	+	\dashv		-	124	230/100	20/640	8/26	352 8	213618	1	5	125105	50	26 25	1906	25790651/0ST		1421	324/	1/3/1
63		-	- -		+	4		-	- 3.1	200/00/00/00	2630	18	SE 8	13/16	119	83	82150	1602		20185160111C	01/10	-	1422	304	R
8	-	+	- -		+	4		-	24	-12300 MOCLOS	2000	18.	7 254	136/0	10	80	86150160		20/02	108101	10 80162105	-	1624	3047	134
2230	-\ -\	-	-		-	_		-	- 24	12/10/1/00/5001.94	0850	18.	7 235	23543571/	1-10/	7	99105186		0/102	180	0810	-	1625	3047	13
745	Gay 1 Kan 2		G2V 3 GBV 4 GBV 5	3	5 SMIA		TA SKT	STA SKILLS SK. Z		>		E	45	KVAR	1000	3000	MA SIMBA	diene 1		×31-	FROM 3 FROM 7 Frank B	18 m	. 19 seen	1 8 200	SALINE.
2400	240 X436 91860	_	7437 40812 13357	11335	_	330 9434 961	436	3/0%	K402	2/0/18	19	\$ 126%	YAN	18705	EU/29	1209	1600K		hibises!	74620	27500	nsa	9//8	,0	008
0000	25436 91 Spv	50 17937	7 4362	1337	-	830 GHB	64	7/96	5389	<u> </u>	_	6603	7		65067	5404	86651	N 15/19	5	9 HOHL	874/2059	7	8605	£00	T to
10.24	0 0	0	0	8			10/	0	1	3	-		X294.	3	125	4	3	L	-	18	بور	159	15/	1000	60
									C	-		-					`								
									A.	4				Ch.	14/	J	1					"	Inta		
					_		\$	MIDNIGHT	₹ 5	TATOR TOTAL		Т			DAY	DAY OPERATOR	TOR	3	_		15	TERMOD!	AFTERNOON OPERATOR	TOR	
308 CT.:	GIT MIND BUE COT								PREVIC	PREVIOUS EDITION IS DESOLET	IN IS ORS	E												11100	

Color Colo	INSTALLATION: FORT GREELY, AK.	ELECTRICAL	TON AND DE	OPERALING LUG STRIBUTION LOG	DATE	23 746 95	5
## 1000 NG SVEST NO. NO. ST. N	\vdash \vdash				EEDER	(0	1
\$\text{Kin Limit him \text{The least 12} \text{Subset} \times \text{5} \text{4} \text{Kin Limit him \text{The least 2} \text{2} \text{4} \text{Limit him \text{The least 2} \text{2} \text{2} \text{3} \text{4} \text{4} \text{2} \t	15.	P.F.	NE TON	1	,	17/0	
Comparison Com	7	% KV	1 N=9 m %	o V	7	*/	_
1.4 200	+	CEE 1047	50 4 1208 37		10 20 60	692	2867 134
1.4 200 100 201	⊨	24 240 100	93 4 2110 30		37 98 07	673	
24 200 100 200 200 200 200 200 200 200 200	-	2.4 200 200	40 A. 210 26		7, 60	4174	1
7.4 200 200 33 6 2354 50 - 7 23 50 50 50 50 50 50 50 5	+-	30.00	50 4 200 29	3	2000	16/2	1
- 24 220 100 100 135 2354 ft D - 189 25 25 25 25 25 25 25 25	-	214. 177	92 5 200	3/	79280	0/10/	28/28/13/24
24 120	_	24	92 6 220 4	3 5	29.8	1,97	1
3 4 26 8 6 8 1 8 5 3 2 3 4 4 1 3 1	-	2.4	S 200 20	100	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100	*
		12	m 16/8 > 1/9	0 6	00/00/		
13 4 234 720 620 596 596 120		24,800	C/7 5/15 170	000	70 100		
2 4 8 6 10 10 10 10 10 10 10 10 10 10 10 10 10		234 700	1 5 T / 2 O T	× .	C× 100		0
	1	_	79 5 300 73	00/100	a7/ at		37/ /3%
Not be a series Not be a s	1	7,01/02	18 July 20 18	201	30/100/20		871 13
Collection Col		-	165 32873	200	65 200 90		871 135
1.34 1.36		-	565 368	100	00/		872 13
N. 4 (308) 26 5 (30442420 12015 57 1015 1015 120	-	83ca 800	966 340	90%	208/22	4	72 1/2
Att Now Now No. No. No. No. No. No. No. No. No. No.		200	96 -5 3204	10018	65 1851	ਚ	72 13
All Booling Con Ct 200 14 Col Sc 17 10 40 10 11 12 19 10 10 10 10 10 10 10	1	po cont	7718 2 25	150 EP F	27.2		721 18-1
At Declear Co Sep 94 8	/	4 700 70	17.7. V V6.	120 125	100	-	181 1 ac
St. Deallow Gr. Gr. Gr. Gr. Gr. Gr. Gr. Gr. Gr. Gr.		00 00 T	27 200170	1/20	ġ		12 184
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		IC DO I	12/05/05 8	320	60	1	72 104
175.62 6 V E C 2014 3717 9050 5917 15178 76162 5721 1572 15178 76162 5721 1572			S DKIMIN O	1	2 7		1
At Application Sold Spirit Spirit Sp	П	f Booling Co	1		100000000000000000000000000000000000000		٠ ٢
12/42 6 V E	ı	At Bollow Sto	1990	ガカ	30 8	4	200
- 4416 - 4214 7876 60518 9519 6475 74243 6371 8849 - 53 - 22 287 60836019 9496 6475 7424 9208 6344 8833 - 22 3 9 35 19 29 31 19 76 27 16 00010000 0PERATOR 3001000 0PERATOR 3001000 0PERATOR		525x21 6 1 V F		FORDER 4 Pare 1	Free 3 Garage 7 Trans		100
20chGO 20chGO	0330 9	- 4416 -	328	18/9/9/18/8/	-	8849	6706
2004G0 70 23 - 22 9 35 19 29 31 19 76 27 16 10 10 NIONIGHT OPERATOR AFFERDOR OPERATOR	0825 9	9621 4363 2188	2267	1019 9490 1475		8833	9007
AFERNON OPERATOR	_	- 53 -	2 9	29	L	16	62
THEREOF OPERATOR							
APERATOR OPERATOR		Locker	2.7	200	<i>۔</i>	7	
	- 1	MIDNIGHT OPERATOR	AKG	OPERATOR	AFFERICE	ON OPERATOR	

. --- .

The part	• .	INSTALLA	INSTALLATION: FORT GREELY, AK	PT GRE	7.71	X		ELECTR	TRICAL	P0	OWER PLAN	אסע,		- 74	OPERATING LOG	LING	0 TO	္		:	DATE	- 1	27 Jan	25/2	1	
Color Colo		TING	NO	GE!	N E R	ATC	2RS	2	+	11414	i		\$	TTA'A	AMPE	53.				Ⅱ	EDE	35				4.
Control Cont	TIME		C RF TE		A. C. F.	E.	Ku Ku	5 3		- 1	J < 2	or. %	S C		SENT		_	-		-		-	3,	KVK		ノ・フト いル
Control Cont	240		_		-		-				-		1234		29 82		'[√	10	- `	-1	+>	+	* 17			31 ''
Companies Comp	800	_		-	-		-	ľ	ci	3/100/	_	1	4	1		50	4,	1.3	٦.	(હ	1.7.	+	31.	51.5	70	M 1.
Comparison Com	0200			-	_				53	June 1			~~	1		1	1/7		ं त	404	5 6 7	+		6	Ω :	ΔEr
Color Colo	0300						-		ند	4177		000	-	1		1		; Y	5	8	. ~	\mid	1000	2 7		111
Control Cont	040				$ \cdot $		H		-	2	-	3	173	1	0/10	15:	_	T		15	4-	+	3 to	0 00	t	100
Control Cont	0200				-		_		2	2300	3	503	5 2/3	1		1	C	127	1	┱	1_	\vdash	37.2	100	J 7	
1000 250 37 37 37 37 37 37 37 3	0090				/	/	Cas	1	17		_	1.73	1225	1	1/2/7	19,	000	7	10	T	١,	-	12/20	200	1	10.
100 250 37 14 250 70 15 15 15 15 15 15 15 1	0700	-	/	_		//	1000		13.5	10:01	-	1	2/2/6		10 /2	3	1			16	16	+	1000	10/2		" , A
180 340 342 344 345	080		7			1/6	100	_	1	2300		76'			20 30	12	3		+-		0 (30	-	1575	15.5	1	1 6
190 150	0060		7			1/	a	-	_	240	-	%				13	12	-	布	L	200	-	0.0	3/2		~ r:
740 180 18 180 190	1000		7	-		110	0	_	-		-	76.				2 5	207	+	17	12	27.02	-	2:10	2675	1	
The 180 35 100 250 35 35 35 35 35 35 35	1100		7	Z	_	10				360		x				18	3	\ —	_	10/10		-	77.74	27.72		1 4
The 180 18 14 120 250 250 25 25 123 25 25 123 25 25 25 25 25 25 25	1200		7	Z	_	Y		_	Y 24	26,005	8 400		3 3305			132	40	1-	67	8		-	57.3.6	27.32	1	
70 180 94 100 357 350 95 350 95 123 125 57 95 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 95 125 57 95 125 57 95 125 57 95 125 57 95 125 57 95 57 95 125 57 95 95 125 57 95 95 125 57 95 95 125 57 95 95 125 57 95 95 125 57 95 95 125 57 95 95 125 57 95 95 95 57 95 95 95 95 95 95 95 95 95 95 95 95 95	1300		1	V	1	7	V		12.4	2605		76			7 20	13		1.	ñ	36	3 86		43.6	2637		12
20 180 34 180 240 110 120 120 110	004			V		Z				_		26	9 332		25 8	17		1	3		37		4311	7677	1	-12
Second S	1500			7	-	A	Z	250	15/2,4	2500	_		1 3312		32	125	-	$\overline{}$	7	$ \overline{} $			763.4	2438	+	12
10 10 10 10 10 10 10 10	1600		1	+	7	7	A	7	7	900	2	76	786	·) C	-	1	-		_	F	2000	100 A	1	7.7
12 Card Gard Gard S Sall Strategies (1, 0) X 25 35 10 10 10 10 10 10 10 1	28		1	1	7		2	9	100	Pr-16	_	1 95	1 DFK	X	9:15	0	CSE	71114	15/71	_	-	_	ラン			1
12 (22) 3 (24) 1 (25) 1	1800			+		<u>-</u> 9	7	72	京	-		٠ ١		X	9123	10.	G		7	1	۰ اردرا	_	682	5	12	10
12 G=N-3 GGV4 GGN 5 SMIA STASKT STAKE CON GC CV 1 DAN X VV C V 1 DAN X CV C C C C C C C C C C C C C C C C C	0000	- - - -	- - - - -	+	#		7	<u>に</u>	7.13.7	100.16	~	_	П.		1.5	\mathbb{G}_{3}	0		-	Fc 7	196		PK	15677	Ę,	>-1
12 C=3 3 G34 A G30 5 SMIA STASKY STAS	3	-		-	+	+	- -		7/2	100	٠.	5.5	7.57	1	2	C-) <u>†</u>	7	7.70	300	55		1117	2674i	134	71
12 CZU 3 GRU 4 GRU 5 SMIA STASKY STAN	2200	-	<u> </u>	+	+	+	1	//	7	2475	\simeq	7 7 7	3	₹ 	13.	区	ণ্ড	ρ (γ)	4	3000	9	1	75.2	9,72	_	71
12 G=N-3 GAV GEN 5 SMIA STASKT	2300		+	-	#	+	1	///	2	200	-1-	. -	-	4	1 L	7	Ž	7	2	3/2	-	7	2	257	=	7-1
1.4 — 42100 — — 9043 — 3051 — 5745 2703 59770 878 4024 7382 747 4305 8414 20 779 876 2637	7.00			420	1,		CT 6.00	13	4) Col	<u>§</u> .	+	Ž,	7	2 7	-	£	7 (8:	_ ['	3	ア	<u></u>	552	75.97	3	~■
30 17937 44 75/134531 0853 9034 3657 5505 2155 5605 12653 65000 878 1 655757586 7407 4234 8448 11 12 11 13 - 45 - 20 18 35 20 27 31 20 70 81 16 16 16 16 16 16 16 16 16 16 16 16 16	2,6		1	42 100	,		9.43	1		1'	1	L	1		THE V	100	THE P	1			R. Fran	A 10	522	ÖZ,	BANK	7/10
34 - 1/3 = -9 - 48 - 20 \ 8 \ 35 \ 20 \ 27 \ 31 \ 16 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		10-	12001	(1)(); (F)	+		2017	362	+-	(+-	2/		10	25/03	27.70	8783	100			1/4	000	100	1	200	_
MIDNIGHT OPERATOR DAY OPERATOR		1			+		6	1	4	6	_	10	X .	8	35	2007	ગ	1 Cd K		12/2/2	7		2 :	>	100	. 1
MIDNIGHT OPERATOR DAY OPERATOR					-				<	-	1		-	2		3	4	,		2	_		9 -	1	7	1
MIDNIGHT OPERATOR					~ *		'		EJ-	A				,	The state of the s	13						ノ`	7	L		
					-		\$	DING	T OPE	RATOR					DAY	OPERA	TOR				100	N CONSE	OPERA	OR		١.

	NSI PLEASE SOLVE S	ELY, AK	1	ELECTRICAL	L GENERALION	THE PARK	1	W. The William	104						
	GE	a	RS		î						FE	EDERS	40		4
	P.F. TEN	LOND AC P.F. TEM L	040	AC P.P. KV	CATA CANTA	AC P.F. DR	THOWAT	OWATT DEMAND STATION SERVICE 1 2 SOON	2 5	1 4	2	7 8	3 */	KVAR	FIND NT 10'V
0010			+		Carl Post	186.00		81	1	15 50	1519198	18 PS	1433	cue	2
	_			ナジ	23 Pes	3 6%	334 told	1	80150	8 6	15/3017	701601	1533	13215	
0220				19,4	2100 /100	93 5	and tolk		16 ISD	62 65	70901	20 60	737	19616	2
0300			_	10,7	200 100	7 86	8 194 1918	7	138/30	40 00	M SST	155 0	14834	13179	3
0840	_		-	46.	Sas	.93 3	8104 18118	7	78 50	63 68	1579017	10/65	145337	3179	137
02500			_	13.4	all and out	.94 5		7	184 84	12 2 1	25 Just 66	6 555	415/36	2130	134
0090			-	13.4	Just with	9 45.	31/1/1200	7	92 50	120 66	30 15/18/71	2 1/1	1,527	2516	13.4
0700	1084	1/2. 5/6		12.7	Jet 125 1475	1.95 3	3410 40 30	6	15.5	1 28 06	45-1 58 90	0 76	145.38	18:8	13.
0800	1050	245 935	-		2000 700	198 4	8/ 1/ 1/8		120 55	92 113	501 001 09	5 84	4534	7/81	8
0060		36" 362	-	2.4	2200 30	198 5	2/18/40 1/8			20/	65 105 93		19540	13181	13
0001	1056	1 56 OF		13.0	240 800	7 76	369 92 24	1	-	_	81 100 110	86 011	1484	2181	/34
00:-		1 / 26 / 212	-	2.4	2500 800	4	312 39 113	1	-	801	8/	92 105	14542	1282	139
_	10501 / 12, local/	1 Jr. 1896	-			7 50	1	1	3	75/	001 211 001 58	100/	4543	1282	/34
	12001/25/10001	250 15	-	124	·-	4 4.	1-	3	8	112	74 103 95 100	00/	4593	182	130
1400	1900/ 196/1000	186. 185		124	1506500 360	4 36'	3408 44 1/8	-	158		70 195 166		145401	2183	134
1500	0001	255 198			asslow much	18 5	35/2/38/24	1	122 55 16	103 110 7	7 100 15	94	1445	2183	32
1600	1000	176. 175		95'A	08 08 mc	716	3363401/8	1	60	0//	70/100/90	1/10	1257	183	134
1700	/ Jones	18/18/25	-	7	Con Our love	270	ンではまだ			15/	03/8/19	1/1/5/	14.54	15812	13
1800	4 100/1	136 35	- - -	3	CHES CHILL CAME	17 70	111 CH 1218		170	3/54/08	JUS18916	1/201	KASA	2124	134
00:5:	- car	25/93	-	15-1	12 July 12 14	35.	11/18/1/05		90 K-31%	3 121 5	176217965	JVVIT 1	Ktoh	100th	13.4
2300	1,000	2551.95	-	16.4	公からいりん	hó	たとえる		かといい	3/1/2	١ ١	アイシア -	67.34	7/3/4	2
2:00			-	みごくし	573//rc//30	318	2716	\ \ !	S15.1	20 1.08 4	K 190 185	12/2	#S2.2	7,0,7	128
2230		-	_	7	250 inappos	外しが	31 to 18	7	90150B	-1	218212	37/15	122	17.851	77
2300		-		+ 52.4	23cd/80c/2col94	16	42640114	/	257526	2	めること	Ž	£	10/6	など
1 VED 34-1	G-1 1 G-3 2 G-3 3 G-3 4 1G	600 4 Ges 5 5MIA			-	E.	KVAR IF	16-19-2 CHANGE		Care 4 6	1 100x 3 100g	7	Spens 9	STATE OF	P. CA
wr:	-		PX 25/9639 10	639 10433	5756 45515 10	S	21566717	JU12 5894		1086	775 NYPCC 128011547	20024	1757/ 6	7//	7
2000 O4778 9123	9234 17937 40% 3111439	tress BEA1	6433	-	85/85/208	33	1217 63137			24651250012040	36/25/60	52/0150	7674	45.5	W
ויישארן			٠ ٢	ES 1-	- 1) (mentiother	0	40		31	77	58 5	00	9	4
ast t m				_)	(0		
			T.	Jan Ben	5		D. A.	Server /				_	12	\mathcal{A}	
			MID	NICHT OPER	PERATOR			DAY OPE	OPERATOR			A Frederic	AFERICO N OPERA	OR	
CTT BDE FORM TIE	ġ:			PREVIOL	PREVIOUS EDITION IS OBSOLETE.	OLETE									

101.

				1																	۱							
<u> </u>	A L	OFNERA.			U Z	A	10	GENERATORS						ž.	KIOWATT	_	AMPERES					丑	EEDE	DERS			Ϊ	39X
1	FINIT	NO.		INI	2			AIIT	10.		DNITNO		GVEA	ä	DEMANO		NOLL	Ц		l		\prod	-				94.7	Т
13		AC P.F. TON		LOAD AC P.F. TOWL	₹.	P.F. T	3.	LOAB	AC P.	٧. نه	_		7.6	THP TO	CHANT		SERVICE 1 2 SM	S	10	4 1	B	9	78			35	7 2	
2	NW.	7 /4		KWK DH		4	4		¥	+-	-		-	5 220	70	39	~	68	116	62 67	200	80	70 63	52		4385	\$118	25
1	1	-	1	+	I	1	+	1	+		2 4	_	: -:	4		140	0.5	2/2	8H	29 19	3 20	35	72 57	~		4380	नार	*
-1	†	-		+	1	+	+		1	1	_	_	-			32	6	74	34	61 63	30	80	7, 57	7		1381	217	3
١	1	+	1	+	I	+	+		0	1		_	+	2		7,00	-	72	9 84	57 09	5 15	75	63 5	55		4382	213	5
١	1	-	1	+	1	\dagger	+	1	+	_	å		4 2	1	2) 7/2	15	0	%	┼	62 62	2 20	8.8	61 53	3		4383	2/19	3
1	†	+		+	1	十	+		t	1		-	-			140	6	7	3	71 67	7 20	85	75 52	~		4384	2117	*
-	+	-		+		\dagger	+	1	+	\top	356	-	-	Т	37.7	1,00	0	84	1,	73 17	20	06	13 65	2		4385	2120	3
١	1	-	†	+	1	7	+		+	Т		-	+-	,		1	01	83	50	81 73	84 6	38	71 72	_,		43rc	2130	3)
- 1	1	-	1	+	1	1	c	1		275	3 5		+-	13	7	+-		1/2	172	150	250	130	85,90	10	1	4387	212	3
- 1	1	-		-	1	+		1	0.00	علة	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		777	12	1	3	8.2	15	3	07.76	77/20	36/17	3	1	7	18884	21211	12
				-	1	1	COL		10 W	À	040		40	7	3		3 5	3	र्जा.	~	7	0	7770	1	7	257	15/2/	134
	_	-		-		+	7 75	1	33	7	12 12 12	-	+	1	12		8:	00	4	1	18	-11	-	1		33	2123	13
١	- -			-		7	W//W		37.0%		3	85 84	2,5	7	77	-1:	21	3		7	-	4 :	2000	- 51		1007	2/2	(h)
	_			_		/	110		280 12	4 54	2	DES OFC	977	4	299	107	8	0	X	4	N N		17	6 4		200	1000	13
1		-		_		_	11:00	7	12013	124	1-140 /	200 510	2/	43	*	391	9,	9	050	2			\$	2/2		100	1007	10
1	-	-		L		f	1/20		15/10/2	1,45	C Me Duo	3	195	483	1. 10	395	8	130	V	0		3	R	5 / 2		122	3	5/3
1	-			_			C3// >	7	1. 0%6	30.4	1 Court	15 37	9,95T	がナ	324 145	18/2°	ング	130	13	1/40	9	8	7			77. 20.77) = 1 2 = 1 2 = 1	1/2
1	-			-		/	1	V	56153C	76	-	3	1951	4 13	3316	105	5	g	S	9		3		0	7	7.75	707	실
1	-			-		1	3	abla	25125	73	13 W 18-16)94 cos	35/	4 33	STOR X	HPHD	્	(১১	Q	<u>=</u> ال	7	3	3	d.	7	1257	77.7	45
١	1	-		-		1	1	Λ	177.15.3	1	12 60	7 7	1 55	7	XTX	3	-3	7	\overline{l}		ă	3	12	$\overline{\Sigma}$		73.63	77.79	¥
1	-	-		-		1	18	Ν	MACICA	4	Rock	7	5	J.	Xux	E	7	3		E	7	27.70	13	=		25.00	7 8 7	7/2
1	-	_		-		-	الأر		[POF]	14	1/2016	14 P3	3:8	Ó	N N N N N N N N N N N N N N N N N N N	7	ū	앗	ए	<u>ا</u>	7	3	式	5	4	7.7.7.7	7	13
1	-	-	_	-		$\sqrt{}$	100		15/0/5	立っ	1600	330	75.	7	Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa S	7	7	3	CON		27	72	30	1/2	7	2707		1
	- -	_		_				_	1	4		Se Co	75.5	SE V	N E N	7	7	वि	CS/	Q (2)	7	20	3	يو		70077	3 7	1/2
	_			-			H		+	75	Day K	Se Se	9 5d	<u>ت</u> ع	ă		-5	>	5	10		5/2	2 6	0	1.0	000		180 100
18	GEN 1 (GEN 2		E 425	634	5000		SMIA	STASKT	5242	216	1	-	W	4	KVAR	4	74	FEED S	THE STATE OF	#		al.		0	7	765	3	422 8
18	8/57/40 mrc			40263	1	-	-	8522	9640	0068		3	101		2126	7	-	-+-	22.4	7	_	7282/	7 2	359/		2568	X	4163
77.	$\overline{}$	91120 17	17937	576 34	11212	-	1 4540	\$512	46.41		7 2158		4380	X	7118	٦	1913 58	58792	7141	17579		ior.	100	1	+	:	-	12
	33	-		86	_	-	-	0/	7	51	\vdash	, 1	77	١	~		36	20	33	4	35	20	11	4	ا ﴿	9	1	3
1				٠												-1	7									<u>ئ</u> ير ئ	1	
									San San San San San San San San San San	A LANGE	T OPERATOR		T			1	7 50	OPERATOR	TOR					E S	Seven A	AFTERNOON OPERATOR	7.5°	
								ĺ					•					-			-							

·		ATION	E	INSTALLATION: FORT GREELY, AK	ZIZ.	AK.	i	67EC	CIRIC	187	ELECTRICAL GENERATION AND	28110	NV V		DETRIBUTION	MODI	STRIBUTION LOG	y				PA	DATE:	F/ OC/		ıŀ
				GE	GENERATORS	3A7	OR	S						KIOWATT	- 1	AMPERES					田	EDE	RS			1
	COAD	AC 8.F.	TE	LOAD AC P.F. ITEM	12 ×	F. TB		ONE AC	P.F	_	CAL	95		CHART		SERVICE	,	-	1	1	0	0		3	K	37170 37170
	KW KYKK	KW KYKE ANP %		LIN KINK	AMA	<u></u>	KW KWE	54	94	Ž Ž	KW TURE AHP		Ž.			2		n	_	-	+		1	// Kr	9	_
2400					_				9	2.4 1800	900	145	.91 5	1674	11/42	•	80	न्द	_+	-	-	-1	1	3635	1/17	1
0010									b	2.4 1600	800	435	70 4	1824	134	9	7	-	+	+	-+	-		56.56	(1)	
0020	_					_			9	2.4 1600	o Sec	420	90 4	14.0 (C	(2)33	7	2	25	46 5	53 5	-	-	1	3657	1815	
0300	-					-		-	6	2.4 1600	300	6 514	40 06	2	33	7	62	30	\$ 2	56 5	65	45 45		3657	1815	
0040	F	-				-		-	ł	2.4 160	6.9	415 9	4 06	(C)	33	7	18	3.	13 611	5	60	50 44		3659	1818	15%
800	F	_		F	L	-		-	4	+-	906	╁	90 5	1≃	55		5	2	5, 52	7 5	(5)	11 12		3659	1816	3
0000						-		1	4	-	202	┞-	12 5	\cong	(E)	7.	5,5	30	55 58	5	75	95 15	_	36.59	1817	130
00,20		-				\vdash		17	1		1000	1	-	1	1 .	6	2	30	62 5	35 18	25	4.2 08		3998	181	
0000		-				-		\vdash	1	75	d	1	0 70	G	2	17.	<u>ا</u>	2	7/16	103 62	136	56150		13661	11817	- -
000	-	-	Ē	X	13767	X		-	1	_	1	0 6	10	100	6	1	100	-	37/10	10863	803	7		166	D 10	~ Z
000	-	-		×	15. SY	12		1	1	1		5	- d	350	Č	2	C	77	77 112	061	125	65 27		B66	1912	\simeq
001	-			X	15/21	X		1	1	7	S		75.	TV(7	20		10/7	23 111	263	12/5/	8 45		13664	1818	7
8		F		X	3	1		1	1			13	_	900	QC :	Q	0	$\mathbf{\mu}$	FILE	000				1970	12 18	7
300				\succ	150 ST	~	1	7	1	7		カラント	٠,	1 P/OC	~	70	=	35	7819	7 60	75			b/6	11915	<u>₹</u>
004		-	2	\geq	15050	×	+	/	1	7		48 94	77	34	4	9	U.	30	79 P	100/66	7	20 62		13 C 60	1819	
1500	_	_		×	SR	X		_	/	보	13	15 B	4	34HC	\sim	જ	[]]	170	C)	6067	B.	7 65		370	1819	
1600	_					_		-		17.77	2000	7.4.0%	11	1 150	£4	1 00	112	30	300		22	77 72		37.78	1320	_
-700	_	_				-		-		1.2		50.00	3 7	14	1428	35	92	٠ <u>٠</u>	26 82	4	K	25/3		522	18.2	
008:			-	_			_		-	00	12/1/6.	<u> </u>	1 7	73.2	132	23	2	2	<u>(i)</u>	131	<u>.</u>	20/10		5,7,2	1,12	
00.61	_	-	-	-				-		4507.	17/12	(,;)	6 20	130	12.5	Š	DO.	30/40	2.		্	57.5	_	77.77		
000	_	-		_		_	_	-	-	11/1	200	5:19	72	133	13/	۲۲.	G.	-	53.00	17/10	<u>ج</u>	シジン	_	24.72	7	+
2100		_		_		-				24 235		59.10	, 7	212		Ų	27.140	_	5282	27.	3	453.5	-	37.72	7	1
2200	_	_	_	_			_		,	24/20	125/9C	26 325	2 6	7/4/	133	×	26	13	50 80	Ň	Ş	32	-	36/1	\neg	7
2300	-	-	_	_			_	_	1	14 17%	27/12/2	1,5 1 0,3	151	1.2%	148		\$	13:15	3/2	\sim	10010	2012	_ [36.75	183°	3
TIME G	Gen 1 Gen 2	ır	6343	G34 1G3 5	500	JWS.		STA SYCT STASKE	1275	Ġ	>	3	*		KVAR KE	KEROZ R	HERY S FEBRA 4 REPORT 1	3354	1 General			Frank 7 France	ω,	GARZ 9	,	CALER-
2400	/				11067		3715	_	16 # 96	8328		3675	1	1823		60909 5	28286	6394	61412	_	4	+	1089	7154		10/2
_	6 4412 9	90747 17	17743	18204	11012	6230	3.336		7650 3	282	2158	3655	`	11814		60875 5		6371	61385		72.45	_	70\$0	18/		23.36
JAWA.					55		_	6		46	1	०त	0	_{-{	-	34	7	3		-6	22	20	6 7	/3		
						<u></u>							L			6		/								
						~		. 1	2000	}						t)	Ti	A						Pacher	ζ.	1
								N S	MIDNIGHT OPERATOR	OPERA	TOR		_			DAY	OPERATOR	TOR		_		•	1 FTERMO	AFFERMON OPERATOR	ATOR	

D-24

	INSTALLATION: HOPT CREELY.	711		ELECTR	1601 21	TVE COUL	ICAL SENERATION AND	S DETRIBUTION	NOTIFIC					OALC:		
	GE		ATORS									"	FEEDE	DERS		1
COAD AC P.F. TEN		LOND AC P.F. TBW		AC P.F.		7	F	TOTAL STATION SERVICE	STATION SERVICE	0 0 1	4	u	27 2		KE.	KVAR
- '- '-	_	1 July 7 c	KW KWR AMP			1	-	MEN OCH IN	3		15 N	1 40	43	2	287	3001
+	-		+		24 ME AC	\$ K	V	100	1			-	04 38		2879	1901
-	-				7.4 120 Kil	18	375	2/2	7	73 15	30 8	\checkmark	40 35 38		37	9001
-						17	\sigma_\gamma_\g	12	7	8/18	3050	55	0 22 3U		288C	1947
-				-		× ×	イント	1_/	7	16/5	3:48	15/2	5 32 32		28.80	1047
-	-	-	-	-	-	12	12/2	15		さん		5-135	コシニ%	-	1881	KM1
-			-	`	4	+-	7 75	1418 12:13		2178	50 54	1000	32108	_	2381 V	1448
	_			1	12	3	9/15		1.5	3.	26/25	1	2 50 62		12882	1448
-	_		_		-	Ě	53 7 6	2160 32 5		1700	16 69	04 04	1 45175T	_	2883	18441
-	 -		_	7		15	14	2256 76 10			16 7	53 45		_		1446
101.24	-		_		2,4 /300 500 315	-		2142 35 18		2	201 SE	-	19 99 3		1295	444
280 . 100	-		-	7	2,4 /300 400	_	~	21 27 18		-	85 105	1 55 40	50 1 70		12885	1449
1216 1.91	_	F	-	7	_	320	3	-		20	24 98	04 86	50 63	_	7887	1449
_	183	220 .43	-	7	_	390	~	330 44 15		20	86 29	53 45	1 48 48		2886	1450
_	875	112. 255	-		1-	-	7	3%		23	80 91	53 40		_	1887 1	
-	Barly	_	-	-	4	_	3	2304 36 1/3		119 25	80 88	53 40	द	_	2897	1450 134
_	_				17.	-	8	11/10/10			36/26	16018	15,16	_	2868	151
-	 - -			_	4200	3	17.72	12 12 2		106/01/	2 8	X	14-120	_	1000	1/27/
- -	_				0.7		7 0	ロリング	_	10/10	7200	10115	1577	_	1600	V
_	_		- -	-	_		7	ロフスラコ	, /	11/1	02107	5 17	_		1 1122	t : 7
	-		_ -	-	(4) John 1 :	iţ,	1 1/2	ジーンで		いてんじる	55/52	1/2			7	たぎ
_	_	_	_	-	1. 1. KOR.	3	1 00%	ニグニ	/	55.700 5	3 8	1. 1.	3013		7	17.77
_	_		_	~	1. 1/20 Co		7 7 1	10/8/20		2T/01	3000	3	307	_		10 Y
_	-		_	7	11/2189			17195487	Ĭ	0/103	30 651	5 35	ころげんら	_	1/265	431
Gay 1 16-34 2 16-34 3	3 634 4 GOV 5 SMIA	2 5 VS	ſ	STA SKM 1972 SV. 21	> - 5	W.		KVAR IMPOZIMASIMA 4	92-15.6°	Sleener.	410001		SOR 7	Town Brown	29	THE
Pc.7<15	14063			7 31/6 B	7516 m	らいらか		55 -1/2	25/45/ (2015)	Hrs M	1600	40616	21704 9372	7 100	255	0530
_	-	873/50	8684 4187	9/11/1. (1.0	0/1	158 287	Ÿ	1001		37 5458		2119c	43	4	1797	0487
1 I				ì	3.8	_			_	9 21	7	7	ζ.	35	٥	7
		-												£ .,		
		-		S	Zachgo				Benen	/ SHAMKLE	KIE			2	1	
		-		BOT GER STATE	402.4		Т			ŀ			•	DOT LITTON CONTRACTOR	CTCTTO	

	INSTALLATION: TOPT CREELY.	OPT GREEL	x. AK.	4	ELECTRICAL	1	\sim	ON ANIE	DISTRI	ON AND DISTRIBUTION LO	707			3	DATE: _	29 Aug	46	
		GENERATORS	ERAT											FEED	DERS		'	4
	UNIT NO	TINC	0612	INC	NO.	1	97		KILOWA		q		-	H	1		9 17 17	Т
- IME	KW KYKE AMP 7.	KW KYN	AHP 9.	KW KWP AND	ATO P.T.	×	CAD ACK	7. % T. %	1 - VEB	2 SEVIE	125	4	3	0 7	8	3 ×	KVAK 18	IVE
_			_)	7.7		5/13.	1488/33	3	83 15	S S	1/50	20 Bil	18.7	1951	15/1	2
000		-			_	2.4 /to 180)		1, 1,	125,023	3	80 15	₹ 3 ₹ ₹	5	35/45/40	5	7/92	13/11	7
0200	-	_ 				र्द	7.0 3.00	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1393x31	3 /:	3 63	126-	5	25 30 35	こ	13115	13/기	2
0300	_ _ _			_	_	Cott		12	100 840	,	176 5	-125 S	17	25/20/30	63	2615	1317	13.6
8		_				2.4 12m Ke	_	1	ららがな	1	93	385	35	275213	ー て	12616	1312	2
0200		_				1201		V	15.5 PVE	1	8	12 X	3	311013	.ر ا –	12(1/1)	1313	4-
0090	_	_			/	1400	+-	V	1	1 3	3	(1)	0.1/1	4108176	77/	10/4	13/5	13
0700	-			_	1	-	+	5	1/11/12		※	606	65/100	163120	100	12181	13/3	136
0080	-	-		_	1	0 UDC	č	0.0	∜≅	10(1010	100	જ	30406	67	UC191	17181	꼂
0060	-	 - -			1		10	0		1 2 1	1_	2	7		ا کرنی	16:20	15 11	134
000		_		1		Z	e	4	Mary 14		12	Bloo	1-	2 12 10	1 20	H630	13 13	15%
00								, u	1, con		100	155	100	2012		NGA!	17 15	134
	_				1	d		-0				23	11,43	2015/15	31 1	12021	1/3 1/1	134
8 2 -26	_ _ _		j		1	200	Ş	9012	1	=	2	121 6	15/1	2151Z	کرا ا	1203	13/61	134
-		·	-	- 		5	ट	7 [=	1	2	749.	151151	-	1204	13 161	134
1500			-	<u>-</u>	7	II	75	7	SILE (1)	===	0100	27 27	4	301515	7	DE 2.2	13/6	25
160C	_			- -	4	7	515	9	4 26 32 4	12.	-	21 12	50	20 52 65		136261	13171	35
1700				_	9	3	1 25	5	2067 21 4	1	01 1001	12 19	18 34	20 45 70	_	136.26	1317	36
008:	_			_	9	7 1700 RDO	74.5	2	-	(E)		58 75	5	15 33 84		124.9%	1317	35
1900		_		_	4	1636	3 5	5	4		92 10	57 73	5	10 30 70	-	84.3%	1313	\$
2000	_			- -	4	1 1600	426	2	I —	8:1	21 15	45 67	2	20 30 12	-	16:36	13181	134
2100				_	191	1600	Soo 415 .90	5	1	<u>3</u>)	15 15	43 64	کر	10 30 83		3629	13181	3
2200				_	+	00 7/	60 420 90	5	4 31 12	_	83 15	18 69	50	न्त		26301	1319	34
2300		-		_	4	-	0 385 1.89	8		<u> </u>	81 15	12 84	5 30	125 56	_	9631	1319	*
-3 mc	Gay 1 1631 2 1631 3	5 NEW 7 NEW 2	5 SMIA	STASKT SPECK Z	15×21	V 1 8		1	KVAR FEETS 2		HAND SIAM	FRA 415-18 1		3 Pena 7	Games &	P Trees	TOWNER	A.
2100 04	04374 90724 17647 40634 WAIC	140634 10915	C1801	NE. 3 41.72	25 22 1/2	12 (5	18 3631	0 /	5 6181		13 5170	10/00/36	61512 93	49486	5645	10470	75.5	7
3000 DF	743749073417647	12647 40634109154021	10817	56987036	(3 EC9	93	4192 2	/	1/×/	40CC> 0605	シャリな	4/00/	60114 9150h	7e+8 9	5367	6485	166	8
JANC.	0 0 0	0	Э	\bar{\bar{\chi}{\chi}}	0	411 0	17	()	8	.33	9	3	त	3 40	100	5	7	1
			•		~	4				<i>(</i>								
			****		N.	J. S.	<u> </u>			く)	X				1/2	Las		7
			_	× io	NITT O	FRATOR				DAY OPER	FLATOR				AFTERNOO N	M OPERATOR	OR	7
CE HOUSE FORM THE	ORM :: 6				,	ITICI SUOIVI	PREVIOUS EDITION IS DESCLETE.	Į,										

D-26

C C C C C C C C C C			T.	-(40EE)	AK	ELECTRI	ELECTRICAL	•	N	ANT	OPERATING LOG	NT ING	907 9 707			DATE: -	3150	July 9.4	
1001 1001		INSTALLA	101	A TI C	TAR	Sac				-						EDERS			35
Color Colo		ı۱				L		PINITA				Subsid						-	븬
		A CAU	TE	COMD. AC	P.F. TEN	1 1	P. P.	+-	VC	E .	STATION	-	15	1		œ	7, 3,≨	KVAR IS	(INC)
A A A A A A A A A A		KW KWE AH		W KYPK AMP	6	×	2	-	AN C	= -	10	T	+-	7 3/2	771001	23	10031	100/	13
Manual Control of the Control of t	2400			_		1	7	_	_	3	XXX	1	なった。		1/1/2	11.39	1631	1000	13
A	000		-	- -	·	1	/ /	900	X	2	100	1	北北		インイン	12.	0.30	100	
Color Colo	2		_			-	35 /	1 No. 100	0	元し	1	+	本へ	1		2	12 C	752	14
Control Cont	3 3			_		_	\ \}		_	を	7 2 1 3 1	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	いる	24	<u>-1-</u>	1			2 =
Color Colo	38	-	- -			1	7 7	1	1335 35	SYN P	9613X	4	オンファ	180	1 65 36	3 2	25.27	300	17
March Marc	3	-	- -		1	1	卷上	Dolle	33, 87	151 Buch	3/112/2	X	7	(197)			3 8	300	2 2
10 10 10 10 10 10 10 10	2000	-				1	私人	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	38 78	5 1244	72131	\\ \ \	U)	27	-1-		32	1	2
10 10 10 10 10 10 10 10	9090	+				-	7	12.72	4	J	2012	2	レファ	2,0	ঘ		Co.C.	+	+
10 10 10 10 10 10 10 10	9	+	-				13	9	ķ	7 182	~		15	-	-	137	1258	1000	134
10 10 10 10 10 10 10 10	0800	1		 -		- -	13.	_	5 6	40	3	211	1,	56	_	100	2036	1007	134
12 13 14 15 15 15 15 15 15 15	0060	-	\ 			- -	1	4		.†-	,	1	1 9	199	-	147	2037	1001	134
12 13 14 15 15 15 15 15 15 15	1000	I	5:			-	1	£	?	T	- -	100	+-	08	35	109	12037	1007	134
190 11 1 1 1 1 1 1 1 1	1.00	7		-			12		3	Т		<u> </u>	+	2	7	175	138	6001	134
10 10 10 10 10 10 10 10	1200	016	1.1	-		-	7	_		1			9	1	3 12	-	2050	1001	/34
CONTROL OF THE CONTRO	1300	7	16.				727		-	2/2/12		8//	0	1	3 3	5	0250	000/	
CONTRICTOR LOSS 192 9 3 3 3 4	400		19/2			-	72.4	80 08	X	क्र	-1	8//	0	9 5	5 /		3050	188	
CONTROL CONTRO	1500	_		_		-		38 at	53	7	~I.	18	0	5 6	3/3	100	1200	1808	15.7
CONTRICATE CON 3 6904 CON 3 FM STATES CON 10	1600	- -				_	7 2	CD/18/20	19		32.3 4.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1			250	5001	15
CONTROL CONTRO	13	-				<u> </u>	2.4	Buskero	10	_	32/18/		2	12	7	1 2	11.00	15.5	1
CONTROL CON 3 600 4 CON 5 SMIA STASSMITTEN 20 1	3	- -			-	- -	7	(LACIO)	(E)	1	-	193			7		10/10	1000	3 3
CSU (CONT)		-	-	_		- -	7	Un. 19.17	6-7	15:00	SES 17	7	7		2 2 2 2		17.50	7.77	
CENTIFENZ CON 3 GAV A CON 5 SMIN STASY STATE OF SMIN STASY STATE OF SMIN STASY STATE OF SMIN STASY STATE OF SMIN STASY STATE OF SMIN STASY STATE OF SMIN STASY STATE OF SMIN STASY SMIN SMIN SMIN SMIN SMIN SMIN SMIN SMIN	230	-		_		- -	12.	7	_	7 /1534	201181	V V	1		3.0		1 1 1	7/2/	1
CENTICENZ CENZ GENA CENS STANDA STASKATION 2 TO STANDA STASKATION STASKATION TO STANDA STASKATION TO STANDA STASKATION TO STANDA STASKATION TO STANDA STASKATION TO STANDA	2100	-				_	5	1 hory		6 150	2/10/	6	U	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	31		1000	2/5/	1
CONTIGOR TO SET SMIN STASSMINGS OF THE CONTIGOR STASSMINGS OF STATES OF THE CONTIGOR STASSMINGS OF THE CONTIGOR STASSMINGS OF STASSMINGS OF THE CONTIGOR STANDS	228	-	_				15.7			5 1488	S 13 V	N N		5	30	6 2	8 7	10101	15
(2) 1 (2) 2 (2) 3 (4) 4 (2) 5 (8) 1 (14) 4 - 3.45 (14) 4 - 3.45 (14) 4 - 3.45 (14) 4 (14) 4 - 3.45 (14) 4 (14) 4 (15) 4 (14) 4 (15) 4 (2300		_	-		_	457	130 820		5 144NS	-	2	0		1001 01	10	D I	1//07	2 8
24349Co724 (7626 10874 0674 7567 6910 7567 6910 692 6945 6910 692 6949 6950 1002 6949 6950 6949 6950 1002 6949 6950 6949 6950 6949 6950 6949 6950 6949 6950 6950 6949 6950 6950 6950 6940 6950 6950 6950 6950 6950 6950 6950 695	_	201 1 16-3V 6	2 Gav 3 16		5 SMIA		Sv21 6			N V		_	FER 4	-	STATE OF THE PARTY	D 2007/2	197	20.0	77.07
4344 Co 24 17628 4056 6937 Gin 7587 976 438 2631 2004 5738 5746 44/6 5756 110/2 37 - 6 - 1 4 7 34 7 34 51 10 13 320, 2017 MIONIGHT OPERATOR	_				N N		17	7 hc	1264C	1		3	_1	J	_ [`	100	2/1/2	. E.	13/72
11 35 - 14 71 - 14 71 MIDNIGHT OPERATOR		STANICO 2	120717	_		(7	9	1631	\exists	53	5		_		777	<u>i</u>		100
MIDNIGHT OPERATOR		,						- 52	7		71.	<u> </u>	170	3	7	70			,
MIDNIGHT OPERATOR					_		(The state of the s	1	
MIDNIGHT OPERATOR	t 1				<u>. </u>			1	,		Ų,						My	J.	
						AID	1.	RATOR			ò	47 OPERA	TOR	$\lceil floor$		AFTERN	AFFERMON OPERATOR	TOR	
1.2.D BDE AND 3.06	28 6	9 a					PREV	IOUS EDITION	IS ORSOLETE										

							0050	ATORS	
;		CTDI		POSITION	12	0.011.57			4 12 CHICT
•:		CTRI		NGINES		SHIFT	- NH	NES I	HES SHIFT
•	C?	ERATING LO	G	NOINES	72	805	7716	52	1153
	711	y 9		2	8		77	849	5835
	UUL	1-0		3	8	2043	77	002	6547.4
	BAY	_ MONTH	.19	4	7 7	125	1 46	188 787	3870.6
		:	<u>:</u>		THERES	637,		7 - 0 5	
	TIME (Hour)				ENTRIES	14	1	DERS	
ENG	WE KW				No		PRES	1	DIFF
MULT	TRESENT	HENIOUS .	DIFF	IOTAL			67870		100
1 × 100	05665	05665	0	0	2	106	69202	68328	_
2 X 100	92060	92046	14	1400	3	106	76163	2586C	30300
3 X 100	18024	180/9	5	500	4	100	3123	2522	60100
4 X 1 14.3	3 43164	43096	68	7.772.4	5	100	61796	161591	20500
5X 114.3	13546	13527	19	2,171.7	7		6275	5297	
ENGINE		PREVIOUS	Cud	STORY	8		583/	4222	1 / /
A			RUN	744	9				
	72805	72805	0		55/		0479	0212	1 ,
2	83684	83682	2,,	742	1/1/		0304	0140	16,400
3	86043	5 86043	0/2	744	35/2		9545	9564	
#00RS	55735.4	55722.5	12.9	731.1	TE	100	0002	0002	0
¥ 5	50657,6	50653.7	3.9	740.1	SM	300	0831	0831	0
METERS	PRESENT	PREVICUS	DFF	TOTAL	MAL	1000	5685	4612	1073000
SVET POLEX 1	4093	3857	236	566,400				•	
KWHr d>	8951	8502	449	1.077,600					
WHY TA	0	0	. ()	0					
	4199	3956	243	583,200					
Wal - A		0/30	0	0		nn	ESENT	20 = 11	AUG IICE
Kyar Bohrom	7000	CON	107/		FUEL	- 1		PREVIO	
(J. 1000	0977	9901	1076	1076,000	1-2-		36963	9866	
A POULT SOL	2158	2158		0	4-5	3	17310	3/637	
						<u> </u>		TOTAL	1,222
MAX	KW	TIME	DATE						
POST	2256	1500	5 506	4 1995		B	161NE	014 6	ISED
GNEA	2200	1500	5 JU	H 199	5	11	1213	2: 1	5 TOTAL
1-AK	KW DEN	IAND IN	.91 XZ4	100 = 218	4	气气	2 1		1 4 GAL
boco	J. C. C.	0	01-	Tu Or		EN	FINE	DAYS	PUN
#3 15	15- POLY	ir Kepair	S CAPC	10:4 15			2 4	471	3 1701
	1:						1 ~,	-+-'-	- 1 1 10
	_ :					H CA "	DAL	FGRF	DAVE I
	:						TINO D		
	•				{	JI-C	KA LUE	GIB	
	77:77 = .	n o est o n toppe del datas. - 	Americand mu	iai ail errors.	}	TE VIEWE	u -signatur	c of Superm	gen i e Parge

								OPERA	ATORS	•
		FIF	CTRI	C	POSITION	12-	SHIFT	8-4	SHIFT	4-12 SHIFT
		11	ERATING LO		engines	1		TOH	HES	HRS SINCE
_	1	-			-5	72		177	52	5833
		()()	JE 7	3	3		043	1 11	002	9041
		DAY	_MONTH	.19	4	22	723.5	49	188	65345
	1	711.0	T		_5		653.7	710	181	3866.7
	DATE	TIME (Hour)		1		ENTRIES	44	^	DER	1 -
	ENG	NE KW	METERS	-		No	Mus	PRES	PREV	DIFF
	MULT	TRESENT	+ REVIOUS	DIFF	TOTAL		100	67431		46300
	XIO	05665	05634	31	3100	2	100	68328	67444	88,400
2	X 100	92046	92022	24	2400	3	100	75860	75540	32,000
3	X 100	18019	18003	6	600	4	100	2522	1185	133,700
4	X114,3	43096	43076	20	22860	6	100	61591	61381	20400
5	X1143	13527	13478	49	5600.7	7	100	5297	4287	101.000
H	JGINE		PREVIOUS	RUN	STDBY	8	100	4222		159100
1	1	72805		4	7/6	9	100	0212		24700
	2	83682	7	-	7,5	55/	100	0140	9966	17400
X	_3	86043	83677	3	7,3	35/				-1700
HOURS		55722.5	86040	3	7,7	왞	100	9564	958/	0
7	4		W-1110			35	100	0002	0002	
*	_5		50647.2	6.5	7/3.5	JA	300	0831		0
MET			PREVIOUS	DIFF		TOTAL	1000	\$612	3521	1091000
3	DYEX T	3857	3632	205	492,000					
WHI	a2	8502	8045	457	1,096,800		•			
wHr	<u>r, 4</u>	0	0	0	0					<u>:</u>
Wr	40	3956	3115	241	578,400					
var ,	Son al	0	0	0	0	FUEL	PRE	SENT	PREVIO	ius use
	XIOO	9901	8806	1095	1095,000	1-2-3	3 98	6681	986080	601
V BOS	X1000 1000 1000	2158	2158	0	Ó	4-5		6370	3/602	0 350
									TOTAL	> 951
1	MAX_	KW	TIME	DATE						
	OST	2256	1200	1	6/23		H	GUNE	OIL L	ISED
G	VEA	2200	1400	6/28			1/	1213	2 4	5 TOTAL
يرم	DV L	III Da	AND IN		400 = 237	1	1	10	5 1 7	D 361L
		W DO			100 0.07		11/1	INE	DAYS	
ſ	i						12	TI I		
		!					1~	3 7	1119	2 14 MYS
		i				1	1 170	7112 54	7 2000	> × 016
	: [· · · · · · · · · · · · · · · · · · ·		1 BAC	WE D		DAY 246
=							DPE	VALOR		BSON
			in the most factor, "	inn out on total	tial ad errors.	пE	VIEWED	Signature	of Supervis	or a slivery

							OPERA	TODE	
	FIL	TTRIC		POSITION	12-8	SHIFT		SHIFT	4-12 SHIFT '
:		PERATING LO		ENGENES		Sent		Hours	Hr. Since of
	1	$h \vee Q$	· -	1 2	72	801	7710	52	1149
•	10(N7 7	9	3		677 640	77	307	5828 9038
	DAY	MONTH	.0	7	55	719.5	149	188	6532
4				<u> </u>	506	47.2		184	3860
STAG	TIME : Hour)		•		ENTRIES	+	EEDI	= RS	
EN AME		ETERS			*	tum.	Pres.	PREV	total
mult	PRESENT	t Previous	DIFF	- Total	. \	100		GG358	
1 X100	05634	05634	0	0	2	100		66532	
2 X100	92022	42912	38	3800	3	100		75185	
3 x100	18003	17931	66	6600	4	100	1185	1181	400
4 ×114.3	43076	43021	55	6286.5	2	100		61191	19600
5 1143	13506	13418	28	3200,4	7	, 1	4287	3089	
ENGine	0.5	Previou.	RUN	1 '.	, 0	100	2631	1	
\	72801	72801	N.W.IV	1 . /	0	4		9669	180,400
2	83677	83 673	- 4	744	551	100			1
3 3	86040		7	740	23/2	100		9187	17,900
2				737	4	100		9697	11600
4		55710.3	9.2	734.8	S'A			0002	
7	50647.2 OREC 1	10	A-0	738.4	Smit	300		0831	0
Green Polexi	PRESIN	Previous	D' Et	To+41	tot	1000	3521	7363	1228000
kwHr d	3632	3393	239	573600	1				. ,
	8045		5-12	1228800	: •				
KHURO	22	Q	182	Q					•
kvar d re	3715	3458	257	616800					<u> </u>
Kvar R X	. &	Q	Ø	Q	Fuel	. the	esent.	Previo	us used
G Xlopa	8806	7578	1228	1,228,000	1,23	980	080	9852	61 819
V x1000	2158	2158	0	6	4 4 5	316	020	3153.	
		,			7	7	1	TOTA	0.01
max	kw	time K	ate						
Past	2448	A+ 16 MAY	Hiran	1300		·En	Gine	oil 4	Sed
GVET	2400	47 16 may	Hrs on	1060		1	1 7		Ttotal
Reakky!	Demand in	ر ۹۹ ×		- 2376		a	3 2		a ggal
			100		-				1 97
						F	NGI	N/F O	AYS RAN
Cul Vo	ales Quit	1 tubes - a	2014				11 021	10 2 2	HAY WAN
1	The Chair	1 1000 1				7	2	- 2	2 /-
Noto	£306	Stantal	15Mh	1/	W 244	7	115	. (7	
1. 1000	"OTT = Vais	e all entries in inh. Li	ne out and in	al all crrors	REVA REV	VIEWED	Sig Ovure	NILON	CARN
	The parent	— Ions r a quirina (moi) ni	imper daily ent			**	legi	ce Da	TOT OF
	.**	· · · · · · · · · · · · · · · · · · ·	• • • • • • •	D-30					,

D-30

ſ			įį.				JPERA	TORS	
				POSITION	12-8	SHIFT	8-4 5	HIFT	4-12 04 ===
	OP	ERATING LOG	-		77	801	7710	52	1149_
<i>!</i>	nn	RILA	ر ل		13	613	777	749	5824
ļ	DR	MTT 2	5		F6	033	770	188	9031 6522
	DAY	_ MONTH19	·			दंपा. द		787	3851.b
DATE1	TIME (Hour)			EN	ITRIES				
		<u> </u>		. :				: ·	
		\.	3.		,	100	66358	G5721	63,600
	05634	05519	55	5,500		100		65646	88,600
	91984	91977	7	700		100	75185	74825	36,000
	17931	14937	0	0		100	1811	0523	65,800
	43021	42946	75	8,5725		100	4.	60199	39,300
	13478	13441	31	35433	r.	100	3089	1636	145,300
						100	0827	8993	183,400
	72801	72794	7	i		100	9669		32,700
	83673	83071	2			100	9787	9582	20,500
	86c33	86033	0	P/L		100	9691	9609	8,800
		55697.3	13			100		0002	0
		50637.4	4		÷	300		0831	8
				:.		1000		10,000	1,293,000
	3393	3170	223	. 223				. 9	,,,
	7533	6992	541	1,298,400					
	0	82	O	6					:
	3458	3200	258	619,200					
·	0	0	0	0					
	7578	C585	1296	1,296,000		:98	52.61	98458	9 672
	2158	21.58	0	0		31	5320	31431	
								TOTAL	1682
				•		,			
	2688	1200	5	Apr 95	•		•		
	2592	1000		Arr 95				•	
		087/10	82?)	i -		14	3300 D	41	333.5
		C				EN	GINE	Dars	•
						11	21:	3 1 4 1	5
						3	O G	- 13	1
#2N	Soilcha	R 8367	76 611			H	to De	anea!	aux 78
140	L CLIPTEVA		- PUR				7	Parla	5
<u>'</u>			ne out and ini		P	EVIEWED	/Signature	of Superview	or in Charge)

NOTE-Make all entries in ink. Line out and initial all errors.

For operations requiring small number daily entries use one sheet for saveral days and insert dates in this column.

		ayer.					- OPERA	TORS	
				POSITION	12-8	SHIFT	8-4 S	HIFT	4-12 SHIFT
! ·	OP	ERATING LO	3	M Spark	75	704	77/4	67	WHY
	MI	GRCH 9	5		83	671	778	19	5822
-	////	10.7			86	233	770	02	9031
	DAY	MONTH1	9	·-÷	55	697	491	88	G509 9850
DATE	TICAE II	i			J @	63/	70/6	2/	100
DATE	TIME (Hour)			E1	NTRIES	F	n - 1	V 0 (
14.1	1				14	10.1	PRES	PREV	0 1
	2 6000	71 -71	1.10				65722	64921	80100
	055 19	05436	143	14300			65646		98200
·	91977	91860	111	11700		,	74825	74342	48300
	17937	17937	A DIT	407	4		0523	9655	913200
	42946	12685	261	298323		, , , ,	60799	60306	49300
	13 447	13262	185	21145.5	1	133	1636	9681	804500
		1 / 1 / 1	. 24	B. F	,	- 11	8993	6751	224200
	72794	72777	17	727	i.	1.7.5	9342	8922	42000
. !	83671	83655	16	728	1/5		9582	9308	27400
	86033	86033	014	7012			9609	9619	1000
5' 4	556973	55657.7	39.6	704.4			0002	002	D
	\$6 437.4	50607.2	30.2		1314	199	083]	0830	300
		0000112					1000	9343	8343000
	3170	2937	233	559200					03 13000
	6992	6321	Gyl	1610400					
	8	8	Ø	Q				*	
	3200	2920	280	G12000					
	0	Ø	0	0	Pur.	1.			
	6282	4612	1610	1610000		agr	SEG	98267	1 1915
	2158	2158	4	Ø		216	12 10	31005	0 41260
				٠- ٢		: 3 1	13 10	Sico	(175
		. :						<u> </u>	
	22///	10'00	14.	mar 95 /		•			
	31/00	In Or			NAL			- 1/2 W	
	2900	119	, 10	00//	# DE 1 PA	12	2 0/	126	4 34/gg/s
		10		9026		1	- 1 7	2:-0!	1 940
			· · · · · · · · · · · · · · · · · · ·	⊕		121	210) EI	41
				0		اط	410	1121	
		- 0							273
								0-1	1
1	i							Gerh	ar.

-			į	OPERATORS
) 	FLECTRIC		POCITION	12-8 SHIFT - 3-4 SHIFT 12 SHIFT
·		FN	GINES	THE WALLS IN SALES
	OPERATING LOG		!	72777 11652 1125
	FEB		3	9/033 77MZ 9031
		92	4	55457.7 49188 6469 50407 46787 3820
; 1	5A110NTH1	12	5	3000
	7114F . (7.114)		٤	NTRIES FEEDERS
	TIME (Hour)			# MULT PRES PREV. TOTAL
ENGINE	KW METERS	5 -		1 100 64921 64135 78600
MULT	PRESENT PREVIOUS		TOTAL	2 120 64614 63820 84400
1 X 100	05436 0524	195	19500	E TIM GIERT
2 8 100	91860 91614	246	24400	7/7/
= Y 1 X).	17937 17937	0	0	7 100 10012
+ XII4.3	42685 42182	503	57492.9	5 111) 60366 59841 46500
5X1113	132/02 12714	548	626364	7 100 9681 7756 192560
2111	1300	KUN	CHANDEY	8 100 6751 4626 212500
ENGINE		23	149	9, 100 8922 8251 67100
	72777 72754	29	643	5/1 100 9368 9079 22900
2 =	83655 83626		- 41	4/2 100 9619 9626 700
N S	86033 86033	6	BUL	11 100 0002 0002 0
4	55657.7 55595,2	62.5	609.5	TIE 100 000 0000 140
5	50607.2 50536.6	70.6	661.4	177/1 30 10 10 10 10 10 10 10 10 10 10 10 10 10
METER	PRESENT HELVINS	DIFF	TOTAL	DT 1000 9343 7792 1551000
1 1 1 X	2937 2723	214	513600	
10	6321 5731	590	1416000	
Color F.	8 8	0	0	
SIN ST		244	585600	
Hert Z	\$ 001P	8	1	THE HALSON PRIVILE TOTAL
Texe vit	1172 2050	1414	1414000	2 202/11/ 2001/11/ 2001
- X1110	4672 3258	0	6	1 - 310050 300,380 9670
کنیالا ۷	2158 2158	1	1 0	1 4 Jan 12999
		<i>-</i>		TO SELLE TO
M.X	KW SIME	DATE	0 1 00	- ENFINE OIL USED
HIZT	3216 1 1100 N	ES ON 23		
(+VIA	2784 + 0800H	KS ON 7	700 95	1 2 3 + 5 MAL
- A KIN	MAND IN 1.18	X 4(Y) =	2832	1 3 33 10 10 10 1
V this	Tillen IN A	X Taker)	9	ENGINEDAYS KAN
11/2- 11/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x 240) t	9	3.4.0.6.6.19
TANK THE	ANSHO DUT D	X 2-100	0	
TAN VI	11 000 (1)1	1		DE-REE DINIO 1701
				Dacker : Packgo
		Time and the	tiol all errors	REVIEWED (Signature of Supervisor in Charge)
	ye mij—Al dhe ad americs in oak	me out an a i nt	(110114	

					1	.06			OPERAT	ORS	
		ELEC	TRIC.		4	SITION	12-8 5	SHIFT	8-4 SI		4-12 SH:FT
					Alli	NES	PRES				RS STREET
;		CPE	RATING LOG			<u>i </u>	727	754	7/6	52	5777
3		To	N			2	8/0/	333	770	02	9031
!				95		<i>3</i>	555	95.2	2 491	65	3749.6
		DAY	MONTH19	12		5	505	36.6	d 467	57	
-	DATE	TIME : Hour)				EN	TRIES		FEE	DERS	
	EINE	- KN	METER	2.5			#	MULT	RES	PREV.	IOTAL
	Mine	1).	PREVIOUS	DIFF	: 17	ZTAL		100	64135	63234	90100
1	X loc	KEELT	C5C43	148		14800	2	100	63820	62842	92800
9	1	05241		84		8400	3	100	73891	73351	54000
2	X 160	91614	91530			0	4	100	8892	8067	82500
3)	X 166	17931	17437	890			7	100	59841	59328	51300
4	X143	42182	4/272			8/107	7	100			224800
5	X114.3	12714	11897	815		3383	0		1756		240800
E	VAINE	RESENT	HREVOUS	KUN	_ \^	TANDEY	8	100	4626	2218	45600
	1.	72754	72737	17		727	9,	100	852/	8065	
to	2	83426	83615	11		733	171	100	9079	8812	26700
and the state of t	3	86633	86033	0		D/L	1/2	100	9626		800
X	4	55595.2	554853	109.	9	634.1	HE	100	0002		0
	.5		50440.9	95.	.7	648.3	SMA	300	0828	0826	600
M	TED	PRESENT	PREVIOUS	DIFF	. 7	DTAL	TOT	1000	17792	6028	1,764,00
(15)	LEXI	2723	2454	239		239				`	
GEAL	10	5731	5075	650		574,400					
Swar	2	C	6	0		0					
KUNK	ゴカ	2676	2405	27	/	650,400					•
Kyar	-X	0	C	0		0	FIE	PA	ESENT	PREVIO	US TOTAL
KEY	COMPOIA	3258	1685		3/	573000	12	3 9	79345	9717	21 1624
6	DARDOL		7500	13	- 1	0	17	7 3	300380	2849	50 15430
. 1	XIOO	2158	2136				1		GRANI	TOM-	→17054
4	1/4>	VIIC	5T.44=	DATE					CRAN	7-11-0	
ľ	YAX_	KW	PIME	DAIE		Tail		E	= NGINE	- BIL	USED
	HOST	3408	1200 N	RSON	27	JAN			2	3 4	5 TOTAL
126	VB /	2900 (A 0800 H	RS ON		JAN 200		2	51.5	1/2 /08	11 83
協	KKW	DEMANO	IN 1./2	X.Z40		3688		12.	ACA CALE	DAYS	RAN
Yak	KVAR.	LEMAND	IN O	X 140	Ď -	<u>e-</u>		E	IGINE	0110	
PAK	KW.	DEMANO	OUT &	X 240		7		ريخ	1	10	8.22
PEN	KKW	DEMMO	OUT &	X 240	10 €	-		n-		Davie	1921
1	12 Du	in for wa	ter leak	16 cm	<u> </u>		Λ	NE	-REE	UAYS:	100
#	+3 Dm	uh Por ay	linder pristor	hrepes	4-		OP	ERA	TOR:		ngo
		NOTE-M	ake all entries in ink.	Line out an	d initial	all errors.		REVIEWE	(Signatu	re of Supervi	isor in Charge
		1			ilu americ	w use one shee	t for				

For operations requiring small number daily entries use one sheet for several days and insert dates in this column.

								OPERAT	เอลร	
		FIF(CTRIC		POSITION	12-3	SHIFT	8-4 \$	HIFT	4-12-03-17
: i			ERATING LOG		VGINES	PRES	BNT			IRS SINCE Q+
			IMATING 100	· —	2	83	615	778	5 <u>2</u> 49	5,766
			EC		3	86	033	770		9,031
		DAYYAG	MONTH1	944	5	554 504	85,3	14/10	7	3,653.9
		T1945 ///		!		NTRIES		EDE	FRS	
r	DATE	TIME (Hour)				1 01		PREV	PRES.	TOTAL
	HEINE	1	TERS	D -=	H2	77	100	1-1-6	62354	98000
	MULT	PRESENT	PREVIOUS	DIFF	TOTAL	2	100	62892	61949	94300
	X100	05093	04648	445	445-00	3	100	73351	72821	53000
2	X 100	91530	91120	410	41000	4		8067	7224	84300
3)	(100	17937	17937	0	0	5	100	59328	58812	51600
4)	(114.3	41292	40863	429	79256	7	100	5508	3156	235200
57	V14.3	11897	11212	685	78295.5	8		2213	9676	253700
EX	EINE	KESENT	HREVOUS	RIN	STANDEY	9	100	8065	7605	46000
, r		72737	72686	51	693	55/	100	8812	8522	29000
is it	2	83615	83569	46	698	4/2	100			600
J.	3	86033	86033	-O-	-0-	dit.	100	9634	9640	-0-
X,	4	55485.3	554313	5,40	690	TIE	100	0002	0002	600
	5	50440.9	503575	83.4	660.6	SMA	300	0826		1800000
Gya K	TER	PRESENT	MEVICES	DIFF	TOTAL	70T	1000	6038	4228	1805,000
GiA K	YEX	2484	2244	240	240					
Kuhr		5075	4401	674	1617600	 				
Suhr	上子	0	0	0	0	 				•
yar	d ?	2405	2126	279	669,600	1-	0.		0	
KEY	Line	0	0	0	0	TE		SOUT	PREVIO	
G.	X100	1685	0068	1617	1617,000	13		7721	97104	
A _P	XIOO	2158	2158	0	0	175	28	4950	1493	10020
		7.0		6				ERAND	TOTAL	7 16701
M	AX	KWC	SIME	DATE					- 611	120
H	bs T	3456 €	1200 H		Dec. 7		, E	NEINE		USED
G	VEA.	2832 6	1 1800	rs on d	ec. 13	_	1/		3 4	5 TOTAL
CEAK	KW	DEMAND	14 19	X 2460 =	_2858	<u> </u>	50	8.5	2 4	11 73.5
Pak	KVAR	PHAND	IN NA	X240	0					
HAK	KW	DEMAND O	UT O	X 2400	0					
PON	4 KVOR	DEMMO	ULTO	X 2460	8		n .		N	0100
	#3	Down for	Noisy Cyl	inder are	ea	^	DER	-REE	UAYS	OLAX.
		J				OP	RAT	OR S	J. Ben	
		NOTE =Ma	the ell entries in ink.	Line out and init	iai all errors.	f	REVIEWE	D (Signatur	e'aj Supervi	sor in Claric

all a productions requiring regal number liably entries use one sheet for

-								OPERA	TORS	
1		EI E(TRIC		POSITION	12-8	SHIFT		HIFT	4-12 SHIFT
i j				il-	NGINES	-3	<i>(i</i> : 1)	1/5	rant h	in the
!!		OP F	RATING LOC	3			686	7/65	52	5720
	1	N	OV		2	86	633	770	2	9031
:				94	4	55		3 4918	38,0	6243.3
1 1		DAYYAC	MONTH	3	5	50	357.5		87.0	3570.5
	DATE ¹	TIME (Hour)			E	NTRIES		EDE		
EM	INE	KWI HET	でたら			μĹ	MILLI	KILIM	FORVILLE	Ton
j	HET	•	でしがから	VIFE	TOTAL		1 17		61512	84200
1 7	10)	04648	04465	183	18300	2	131	6949	61022	92700
2	120	91120	90747	373	37300	3	1.89	72821	72322	49900
	, ,	17937	17743	194	19400	4	197	7224	6485	73900
۾ ام	110.5	40863	40737	126	14401.8	5	1.10	58812	58338	47400
* 1	11.5	112/2	11067	145	16573.5		190	3156	1288	186800
	-INE			KUN	PARKEY	1	1 10	9676		230000
100	3	111 July 1	70014	22	698	1	1.17	1 -		41900
	1	72686	72664		676	/;	130	8522		26900
2			83525	44		-3/2	1:33	9440	9649	900
	<u>ئ</u>	84033	1	22		14	100	0002	,	6
Š.	<i>‡</i>	55431.3		14.				0824	0822	600
	5	50357.5	50337.6	19.0		11/5	1			16260
1/8	TILK	RICHA	At MINDS	1)115	TOTAL	121	11999	4228	2602	16260
1-1-1-1	1: 1	2244	2017	227		-				
Whe	12	4401	3756	645	1548500					
nitr	r .	0	0	0	.0	#				
1.45	1.1	2126	1859	247	640800	-				
4.1	C X	0	.0	8	0	110	74	2171	, 1 . J.	200
(K (3)	6668	8519	1549	1549000	1,5	3 9	71040	965,K	53 5887
7	1037 AF	2/58	2158	0	0	1	5 27	74930	279,67	70 2260
					•				7) AL.	7 8147
19	ri X	KN	MME	DAIE	•					
	6.5	3360	1 1200	: :A)	NOV 30th		L	NITINE		1200
	IIA	2880	1800	14 11	NOW 22 MA		11	121	3 4	SMAL
12	I K	1718/10	N 1.07	× 24/11	= 2568		82.	5 5 1	,5 3.5	3 35,590
Salarit S	KIRK	11 44 5 4	IN NA	x 240	- 0		-	: '	,	
4	1 Knl	1 1 1 1 1 1 1	1110	× 240	= 0					
; (, A)	Kilok	Dillan	11:0	X 40	- 0					10.10
	F	20 -	DIACED -	14.na			Dist	FREL	Unys	: 1940
*	1 D D	1 20 1	by C. A	bint		$\overline{\langle \cdot \rangle}_L$	F 14 /1	OR:	1.2	achego.
1-	1000	NOTE-VI	ake all critries in ink	Line out and	l initial all errors.		REVIEW	ED (Signatu	re of Superv	isor in Charg
	•	1.021.1.11			y entries use one she	et for				

Ter operations requiring small number daily entries use one sheet for a minimum and intert dates in this column.

								OPERAT	CRS	
		FIF	CTRIC		POSITION	12-3	SHIFT	1 , 3-4.5		4-12 SHIFT
				E	NGINES		UTHRS			RS SINCE OF
		A	ERATING LOG	1	2	724	194 125		52 349	5676
	:	U	CT	-4	3	860			2002	5676 9009
		10.47	_ MONTH1	94	4	554, 503.		4918	18,0 37,0	6228.9 3550.6
•		TIME (Hour)			Fi	TRIES	1	EDE		
1-1	JAYE	1			1	11	MULT		PREVIUS	TOTAL
		KW ME		0.55	TOTAL	1	100		60,779	73300
	MULT		HREVIOUS 04388	DIFF 11		2	100	61022		93300
_	X 100	04465		2	200	3	100	72322	71905	41700
	X100	90747	90145	47	4900	4	100	6485		
	X 100	46737	17696	74	8458,2	5	100	58338	57987	35100
	X114.3		40663	96	10972.8	7	100	1288	9733	155500
	114.3	11667	10971		STANDEY	8	100	7378	5299	207700
Eλ	GINE		TREVIOUS	RUN	734	9	100	7186	6821	36500
10	1	72664	72654	10	744	55/1	100	8253	8002	
\$	2	83525	1	<i>-</i> €	739	5/2	100	9449	9660	
Age of the second	3_	86011	55,407.1	9.8	734.2	SIE	100	0002		
1.				12.3		SMIA		0822	1	
	5	1	50,325.3	DIFF		701	1000	2602		
	ETER	PRESENT 2017	PREVIOUS 1784	233		W = '	HUV	240	1 110-	1
	Farx I		3166	590	1414000					
Whr	23	375/c	0/66	4	8					
whr	17	1859	1589	270						
var	-X	7057	1001	0	B	FUE	PR	ESENT	PREVIO	NS USED
wr	BUALDIA	0-0	7109	1410		1	3 9/	5,153	964.10	100
5	BUNKAUI	3519		0	770000	4	-	12,670	2713	10 1360
٧	× 1000 _	2/58	2158			11 /		-,-	DIN	72346
٨	1AX	KIAL	TIME	DATE						i
•	DICT	9736	of oroc H	es AN	27 Cet94	•	· E	NGINE	OIL F	ISED
6	VIFA	3736	at 1200 h	Me en	310194		1/	2:	34	5 TOTAL
A	AK KW	DEMAND	IN 1.15	X 2400	= 2760		10	50	1 2	1 4.5
h.	K KVAI	R DEMAND	Ne	X 2400	= 0		•		<u>'</u>	•
12	K KN	DOWNO	OUT &	X 240)= 0					
Æ	AK KUMR	DEMAND	our 0	X 240	2-0		N.			13.37
•			•				1)===	DEE	DAVE	10.7/

OTE: The calle trees in ian, like out and initial all errors.

REVIEWED (Signature of Supervisor to Caury)

		FIF	CTOIC	,	POSITION			OPERAT	TORS	
		ELE	CTRIC				SHIFT		HIFT	4-12 SHIFT
	To the second se	C 05	PERATING LOG	9	NGINES	PRESE	WTHR.	GH H	ours 16	IRS SINCE OF
			9		2	₽35	25	1998	349	5676
	<u> </u>	00		911	.3	860	06	770	DOZ	9004
		DAY	_ MONTH1	9/7	4	55, 407		4918	8,0	6219.1 3538.3
			1			50, 325		701		3230.3
	DATE.	TIME (Hour)			E	NTRIES	1	EDI		 -
		KW ME				#	MULT	RESERV	PREMIOS	OTAL
	MUT		PREVIOUS	DIFF	TOTAL	1	100	60779	60179	60,000
	X 100	04388	04374	14	1,400	2	100	60089	59190	89,900
2,	X100	90745	90724	21	2.100	3	100	71905	71546	35,900
	X 100	17696	17647	49	4,900	4	100	5802	5212	
	X1143	40663	40634	29	3314.7	5	100	57987	57732	
	41143	10971	10915	56	6400.8	7	100	9733	8544	118,900
		PRESENT	PREVIOUS	RUN	SANDBY	8	100	5299	3533	
	1	72654	72653	1	719	9,	100	6821	6511	31,000
4	2,	83525	83522	3	717	55/1	100	8002	7821	18,100
A STANDER	3	86006	86000	6	714	5/2	100	9660	9671	_ 1,100
\$	4	55, 407.1	55403.0	4.1	715.9	9/E	100	0002	000Z	0
	5	50, 315.3	50317.8	7.5	712.5	SMHA	300	0820	0817	900
M	ETER	PRESENT		DIFF	TOTAL	Tot	1000	1182	9984	
	POEK!	1784	1561	223	223		7000		, ,,,	
whr	do	3166	2666	500	1,200,000					
whr	r 3	0	0	0	0					•
war.	du	1589	1336	253	607,200					
br	r×	. 0	0	0	0	FUEL	. PRI	56VT	PREVIO	NS USED
G	BONKOIN X 1000	7109	5910	1199	1,199,000	12		4.167	9635	1 4 11
V	PONRIOUT X 1000	2158	2158	0	0	45	,	1,310	27063	
						, ,-			DIAL.	
K	ta×	KW	TIME !	DATE						
	POST	2448	1		SEPT		· E	NGINE	OIL U	ISED
G	VEA	2400	at 1200 he	on 26			1/	12 3		5 TOTAL
PA	K KW	DEMAND	IN- 1.01		2424					36 38 GAL.
ASI	< KVAR		IN O	X 24M=				1 1	1	•
12	K KW		OUT O	£ 2400=	7					1
Per	KKYAR	11.11		X 210-						
						1)E61	REE I	AYSS	673
								ORSE		
٤						DE	WEWER			

NOTE=Make cil entries in inh. Line out and initial all errors.

This partitions required small aumber quity entries use one sheet for

			0.40.10						OPERAT	rors	
		FLE	CTRIC	-		POSITION		SHIFT		HIFT	4-12 SHIFT
		OP	ERATING LOG		EN(JUES !		11 MES	T		LS SIGGE U/H.
		0.	_	'		2	7265		718	52 49	1001 5673
		H	16,	Cul		3	8600		1770	02	8998
		DAY	_ MONTH1	.74		7	55,40				6215
		DA1	- MONTHT			5	50, 31				3530.8
	DATE ¹	TIME (Hour)				EI	NTRIES	1-1	EED	EKS	
Z	LYSINE	KWME	TENS				#	MULT	PRESON	PREVIOUS	TOTAL
	MULT.	PRESENT	PRIEVIOUS	DIFF		TOTAL	1	100	60179	59670	50,900
	× 100	04374	04347	2		2,700	2	10.0	59190	58 219	97,100
2	x 100	90724	90724	(0	3	100	71546	71188	35,800
3	×100	17647	17628	19		1,900	4	100	5212	4626	58,600
4	114.3	40634	40593	41		4686.3	5	100	57732	57513	1
1	114.3	10915	10874	.41		46 86.3	7	100	8544	7424	112,000
		PRESENT	PREVIOUS	RUN		STKIND BY	8	100	3533	1919	161,400
	1	72653	72649	4		740	9	100	6511	6261	25,000
Maries	2	83522	83522	0		744	53/1	100	7821	7650	17,100
10	3	86000	25998	2		742	55/2	100	9671	9695	4 - 1
*	4	55,4030	55397.7	5.3		738.7	SIE.	100	-	0002	1
	5	50,311.8	50311.5	6.3		737.7	SMI	300	0817	0317	0
1	Toras	PRESENT	PRLVIUUS	DIFF	-	TOTAL	TOT	1000	9984		1,132,000
VEX	PUL-X1	1561	1326	235		235					
1WHK	•	2666	2192	474		1,137,600					
LWHL		0	0	0		0					•
VAILH	1 -7	1336	1090	246		590,400					
UNICH		. 0	0	0		0	FUL	2 pm	ESEINT	PREVI	JUS USED
- 1	BURAUIN	5910	4775	1135		1,135,000	1,3	3 9	63534	9632	52 282
	X 100 3 SUNCO 113 X 100 0	2158	2/58	0		0	4.5		70630		
	7000	5129								TOTAL	→ 722
	1AX	hw	TIME	DATE							
	P)5T	2256		SON		L9 AUG.		· E	NGINE	OILL	ISED
	VEA			15017		8 Aug		17		3 4	5 10116
		DEMIND		× 240				1		1/2	1/2
- 1		N DEMAND		X 2 400							
- 1		DEMAND		x 340							
A 11		DEMAND	0010	X240							
		,,,,,,		T-1				DEG	RUE	DATS	273
							DPE.	KRIC	or: L	3. Goo.	INO
	الـــــا										

NOTE—Make all entries in ink. Line out and initial all errors.

For operations requiring small number daily entries use one sheet for per erect days and insert dates in this column.

D-39

		Ela	CTRIC			POSITION			OPERAT			
					FA	GINES	12-8 S		8-4 SH		4-12 S H1 5 SJ	NCE OH
		OP	ERATING LOG			1	726-	+9		52	99	7
		7	V 1(1			2	835	22 98	718	79	899	3
		DAY_	_ MONTH19	94		7	553	97.7	4918	38.0	620	
			_ MONTA18			5	503	11.5	1 467	87.0	352	4.5
	DATE ¹	TIME (Hour)				EN	ITRIES	FL	EED	ENS	3	
4	ENGINE	KWMI	YERS				#	MULT	PRESENT	PREVIOU	s To	TAL
	MULT.		PREVIOUS	DIFF		TOTAL	1	160	59670	5921		5,500
1	X 100	04347	04347	0		0	2	100	58219	5128		500
2	X 100	90724	90724	0		0	3	100	71188	7090		5,800
3	x 100	17628	17628	0	1	0	4	100	4626	403	7 58	900
4	× 114.3	40593	40548	45	>	5/43.5	5	100	52513	573		02,00
5	X114.3	10874	10837	3	7_	4229.1	7	100	7424	635		6900
EL	GINE	PRUSENT	PREVIOUS	RUN		STAND BY	8	100	1919	0.34	6 15	7300
	1	72649	72649	0		744	9	100	6261	601	1 24	1400
200	2	83522	83522	0		744	SS/I	100	7650	747	3 17	200
Male	3	85998	85998	0		744	55/2	100	9695	973	11 -3	3600
1/4	4	553927	55391.6	6.1		737.9	97	100	0002	0002	2 0	3
	5	50311.5	30.306.7	4.8		739.2	SMH	300	0817	081		
M	TENS	PRESERT	PRIDIOUS	DIFF	-	TOTAL	101	1000	8852	7768	1066	200
AZA	POLUZ !	1326	1097	22	7	229					,	
WAK	do	2192	1736	456	2	1,094,400						
WAC	ro	0	0	0	And and and and	0						
VAIL	nd a	1090	844	246	,	590400						
JACK		0	.0	0		Ó	1	PAL	SERT	PREV	1005	USED
6	BOARDIN	4775	3684	1091		1091,000	1		3252	9632	1	2
V	BOMA IN	2158	2158	0		Ó	45		0190	2695		690
							· //		,	TOTAL	->	692
<i>\</i>	YAX	nw	TIME	DATE								
	POST	2256	at 1200 HM	(S DA)	2	I JULY 9	4	EL	16/NE	OIL	USE	0
A	UEA	2100				JULY 9		17	2 3		1	16114
- 1	1 (1	DEMARO		× 2400		2184		0	21	12.	12	5
*		NDEMAND	. 1	X2400		0		-				
-) DEMARD		x 240c		0						
- 1		DEMAND		X 2400								
							/	DEC	REE L	1145	13	33
						/	PEX			618		
ū									/-			

NOTE-Make all entries in ink, Line out and initial all errors.

For operations requiring small number daily entries use one sheet for several days and insert dates in this column.

APPENDIX E Modelling Calculations

The following are definitions of terms and descriptions of calculations used in the the lumped load calculations on the spreadsheets contained in this section.

<u>Estimated Demand</u> - This value is entered by the user. It is used to calculate the "Estimated Load Each" from the "3 Ph. Eq. KVA". It represents the percent of connected KVA to which the transformer is actually loaded.

<u>Power Factor</u> - All transformers are assumed to operating at a 95% power factor based upon the yearly peak load data from December 7, 1994 at 12:00 hours, AST. Since the majority of the loads on the base are lighting loads and other high power factor loads this assumption is reasonable.

Voltage - The feeder voltage.

<u>Feeder Ampacity</u> - The feeder ampacity is taken form the "Electric Plant Operating Log" for December 7, 1994 at 1200 hours, AST. This is the peak post load for the year and is selected because it represents the worst case loading.

<u>Bus No.</u> - This column contains the bus numbers served by a feeder and referenced to the one-line diagrams.

 $\underline{\text{Trans No.}}$ - This column contains the transformer number as it referenced on the one-line diagram.

 $\underline{1 \text{ Ph, KVA}}$ - This column contains the KVA rating of the single phase transformers in the bank.

<u>Trans. Phase</u> - This column indicates weather the transformers in the bank are connected single phase or three phase.

<u>3 Ph. Eq. KVA</u> - This column contains the three phase equivalent kVA for the transformer bank depending upon it's connection. This column is necessary since the DAPPER Program cannot model single phase loads. For the purpose of this study the line currents are of most importance since they are directly responsible for the magnitude of the line losses. This column contains the "1 Ph. KVA" column times $\sqrt{3}$ for single phase transformers to simulate the single phase current that the transformer would normally draw on one phase, only on all three phases. This column contains the "1 Ph. KVA" column times 3 for the three phase transformers.

<u>Estimated Load Each/KVA</u> - This column contains the product of the "Estimated Demand" and the "3 Ph. Eq. KVA" columns.

<u>Estimated Load Each/KW</u> - This column contains the product of the "Estimated Load Each/KVA" column and the "Power Factor".

<u>Estimated Load Each/KVAR</u> - This column contains the square-root of the "Estimated Load Each/KVA" squared minus the "Estimated Load Each/KW" squared.

<u>Est. Lumped Load/KW</u> - This column contains the sum of the "Estimated Load Each/KW"s for the "Bus No." shown in the far left column. These values are entered into the DAPPER Program as special loads for the bus.

<u>Est. Lumped Load/KVAR</u> - This column contains the sum of the "Estimated Load Each/KVAR'"s for the "Bus No." shown in the far left column. These values are entered into the DAPPER Program as special loads for the bus.

Feeder Totals - This row contains the sum of columns:

- 1 Ph. KVA
- 3 Ph. Eq. KVA
- Estimated Load Each/KVA
- Estimated Load Each/KW
- Estimated Load Each/KVAR
- Est. Lumped Load/KW
- Est. Lumped Load/KVAR

<u>Feeder Ampacity Total</u> - This cell contains the calculated demand amps based on the sum of the "Estimated Load Each/KVA". It is not used for any other calculations nor is it entered into the DAPPER Program. It is simply used as reference compared to the Feeder Ampacity above.

Estimate of Poles 1995 - 1997 Study

Pole Spacing

125 ft

Overhead Electric Lines

31.2 mi

Total Number of Poles

1318 = Overhead Electric Lines * 5280

Pole Spacing

Percent Bad Cross-Arms

5%

Total number of cross arms to be replaced

66 = Total Number of Poles * Percent Bad Cross-Arms

Total number of insulators

3954 = Total Number Poles * 3

Percent Bad Insulators

15%

Total number on insulators

to be replaced

594 = Total Number of Insulators * Percent Bad Insulators

No. of Grounded poles

4

per mile

Total grounded Poles:

329 = Miles * 5280"

Pole Spacing * # of GND. Poles/mile

#4 Ground Wire per pole

50 ft

Total length of ground

16.47 mft

conductor

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

35%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected				Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estim	ated Load	Each	Est. Lun	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
105	1-1	15	1	25.98	8.96	8.52	2.80	9	3
110	1-2	37.5	1	64.95	22.41	21.29	7.00	21	7
115	1-3	25	3	75.00	25.88	24.58	8.08	25	8
120	1-4	50	3	150.00	51.75	49.16	16.16	222	73
	1-5	50	3	150.00	51.75	49.16	16.16		
	1-6	100	1	173.21	59.76	56.77	18.66		
	1-7	75	1	129.90	44.82	42.58	13.99		
	1-8	37.5	1	64.95	22.41	21.29	7.00		
121	1-9	10	1	17.32	5.98	5.68	1.87	62	21
	1-10	25	1	43.30	14.94	14.19	4.66		
	1-11	37.5	1	64.95	22.41	21.29	7.00		
	1-12	37.5	1	64.95	22.41	21.29	7.00		
122	1-13	25	1	43.30	14.94	14.19	4.66	98	32
	1-14	10	3	30.00	10.35	9.83	3.23		
	1-15	75	3	225.00	77.63	73.74	24.24		
125	1-16	25	1	43.30	14.94	14.19	4.66	62	20
	1-17	50	1	86.60	29.88	28.38	9.33		
	1-18	5	3	15.00	5.18	4.92	1.62		
	1-19	25	1	43.30	14.94	14.19	4.66		
130	1-20	50	1	86.60	29.88	28.38	9.33	31	10
	1-21	5	1	8.66	2.99	2.84	0.93		
135	1-22	25	1	43.30	14.94	14.19	4.66	14	5
eeder To	otals	1225		1,649.59	569.11	540.65	177.70	544	179
eeder A					136.91				

Feeder 2

LUMPED LOAD CALCULATIONS

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

41%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	1			Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estin	ated Load	Each	Est. Lum	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
		45		45.00	40.45	47.50	5.76	69	22
205	2-1	15	3	45.00	18.45	17.53		69	
	2-2	37.5	3	112.50	46.13	43.82	14.40		
210	2-3	75	3	225.00	92.25	87.64	28.81	88	29
215	2-4	75	3	225.00	92.25	87.64	28.81	88	29
220	2-5	50	3	150.00	61.50	58.43	19.20	58	19
235	2-6	37.5	3	112.50	46.13	43.82	14.40	44	14
236	2-7	75	3	225.00	92.25	87.64	28.81	88	29
240	2-8	75	3	225.00	92.25	87.64	28.81	88	29
Feeder To	otals	1320		1,320.00	541.20	514.14	168.99	522	171
Feeder A	mpacity				130.19				

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

34%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	1			Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estim	ated Load	Each	Est. Lum	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
301	3-1	30	1	51.96	17.64	16.76	5.51	186	61
301	3-2	50	3	150.00	50.93	48.38	15.90		
	3-3	50	3	150.00	50.93	48.38	15.90		
	3-4	75	3	225.00	76.39	72.57	23.85		
305	3-5	15	3	45.00	15.28	14.51	4.77	15	5
310	3-6	15	3	45.00	15.28	14.51	4.77	162	54
	3-7	15	3	45.00	15.28	14.51	4.77		
	3-8	50	3	150.00	50.93	48.38	15.90		
	3-9	0	0	0.00	0.00	0.00	0.00		
	3-10	37.5	3	112.50	38.19	36.28	11.93		
	3-11	37.5	3	112.50	38.19	36.28	11.93		
	3-12	15	1	25.98	8.82	8.38	2.75		
eeder To	otals	840		1,112.94	377.84	358.95	117.98	363	120
eeder A					90.90				

Feeder 4

LUMPED LOAD CALCULATIONS

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

26%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected				Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estin	nated Load	Each	Est. Lum	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
401	4-1	100	3	300.00	78.75	74.81	24.59	75	25
403	4-2	166.67	3	500.01	131.25	124.69	40.98	125	41
405	4-3	50	3	150.00	39.38	37.41	12.29	65	22
	4-4	37.5	3	112.50	29.53	28.05	9.22		
410	4-5	25	3	75.00	19.69	18.70	6.15	143	47
	4-6	166.67	3	500.01	131.25	124.69	40.98		
eeder To	tals	1637.52		1,637.52	429.85	408.36	134.22	408	134
eeder Ar	npacity				103.41				

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

11%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	d			Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estin	nated Load	Each	Est. Lun	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
510	5-1	100	3	300.00	33.00	31.35	10.30	31	10
512	5-2	15	1	25.98	2.86	2.71	0.89	14	5
312	5-3	37.5	3	112.50	12.38	11.76	3.86	- '4	
514	5-5	15	3	45.00	4.95	4.70	1.55	5	2
515	5-4	25	3	75.00	8.25	7.84	2.58	8	3
520	5-6	15	3	45.00	4.95	4.70	1.55	5	2
525	5-7	15	3	45.00	4.95	4.70	1.55	8	3
020	5-8	10	3	30.00	3.30	3.14	1.03		-
530	5-9	10	1	17.32	1.91	1.81	0.59	5	1
	5-10	15	1	25.98	2.86	2.71	0.89		<u> </u>
	5-11	0	Ö	0.00	0.00	0.00	0.00		
531	5-12	50	3	150.00	16.50	15.68	5.15	16	5
535	5-13	25	1	43.30	4.76	4.52	1.49	5	1
540	5-14	10	1	17.32	1.91	1.81	0.59	2	1
545	5-16	37.5	3	112.50	12.38	11.76	3.86	12	4
550	5-15	10	1	17.32	1.91	1.81	0.59	2	1
565	5-17	15	3	45.00	4.95	4.70	1.55	5	2
570	5-18	25	3	75.00	8.25	7.84	2.58	8	3
575	5-19	5	3	15.00	1.65	1.57	0.52	2	1
580	5-20	25	3	75.00	8.25	7.84	2.58	8	3
585	5-21	75	3	225.00	24.75	23.51	7.73	24	8
590	5-22	37.5	3	112.50	12.38	11.76	3.86	41	17
	5-23	15	3	45.00	4.95	4.70	1.55		
	5-24	37.5	3	112.50	12.38	11.76	3.86		
595	5-25	15	3	45.00	4.95	4.70	1.55	33	10
	5-26	50	3	150.00	16.50	15.68	5.15		
	5-27	15	1	25.98	2.86	2.71	0.89		
	5-28	· 15	1	25.98	2.86	2.71	0.89		
eeder To	tals	637.5		2,014.19	221.56	210.48	69.18	230	78
eeder Ar	npacity				53.30				

Feeder 7

LUMPED LOAD CALCULATIONS

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

29%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	d .		Computer Model					
Bus No.	Trans.	1 Ph.	Trans.	3 Ph.	Estir	nated Load	Est. Lumped Load			
	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR	
705	7.4	- 50		450.00	40.50	11.00	10.50			
	7-1	50	3	150.00	43.50	41.33	13.58	41	14	
709	7-2	100	3	300.00	87.00	82.65	27.17	83	27	
710	7-3	25	3	75.00	21.75	20.66	6.79	84	28	
	7-4	25	3	75.00	21.75	20.66	6.79			
	7-5	37.5	1	64.95	18.84	17.89	5.88			
	7-6	5	3	15.00	4.35	4.13	1.36			
	7-7	25	3	75.00	21.75	20.66	6.79			
715	7-8	25	3	75.00	21.75	20.66	6.79	21	7	
720	7-9	37.5	3	112.50	32.63	30.99	10.19	31	10	
725	7-10	15	3	45.00	13.05	12.40	4.07	93	30	
	7-11	25	3	75.00	21.75	20.66	6.79			
	7-12	25	1	43.30	12.56	11.93	3.92			
	7-13	75	1	129.90	37.67	35.79	11.76	·		
	7-15	25	1	43.30	12.56	11.93	3.92			
730	7-16	15	3	45.00	13.05	12.40	4.07	12	4	
735	7-14	25	3	75.00	21.75	20.66	6.79	21	7	
740	7-17	10	3	30.00	8.70	8.27	2.72	17	5	
	7-19	10	3	30.00	8.70	8.27	2.72			
750	7-18	25	3	75.00	21.75	20.66	6.79	21	7	
755	7-20	15	1	25.98	7.53	7.16	2.35	7	2	
760	7-21	25	1	43.30	12.56	11.93	3.92	12	4	
765	7-22	25	3	75.00	21.75	20.66	6.79	21	7	
770	7-23	10	1	17.32	5.02	4.77	1.57	5	2	
775	7-24	10	3	30.00	8.70	8.27	2.72	12	4	
eeder To	tals	727.5		1,725.56	500.41	475.39	156.25	479	158	
eeder An	npacity				120.38					

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand 26% Voltage 2,400
Power Factor 95% Feeder Ampacity 100

		Connected	i		Computer Model					
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estin	nated Load	Each	Est. Lumped Load		
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR	
				122.22			10.55			
805	8-1	75	1	129.90	33.77	32.09	10.55	32	11	
810	8-2	15	1	25.98	6.75	6.42	2.11	77	25	
	8-3	37.5	1	64.95	16.89	16.04	5.27	ł		
	8-4	15	1	25.98	6.75	6.42	2.11			
	8-5	37.5	1	64.95	16.89	16.04	5.27			
	8-6	75	1	129.90	33.77	32.09	10.55			
815	8-7	10	1	17.32	4.50	4.28	1.41	4	1	
817	8-8	15	1	25.98	6.75	6.42	2.11	48	16	
	8-9	50	1	86.60	22.52	21.39	7.03			
	8-10	37.5	1	64.95	16.89	16.04	5.27			
	8-11	5	3	15.00	3.90	3.71	1.22			
820	8-12	75	1	129.90	33.77	32.09	10.55	123	40	
	8-13	37.5	1	64.95	16.89	16.04	5.27			
	8-14	75	1	129.90	33.77	32.09	10.55			
	8-15	75	1	129.90	33.77	32.09	10.55			
	8-16	25	1	43.30	11.26	10.70	3.52			
825	8-17	75	1	129.90	33.77	32.09	10.55	144	47	
	8-19	75	1	129.90	33.77	32.09	10.55			
	8-18	37.5	1	64.95	16.89	16.04	5.27			
	8-20	75	1	129.90	33.77	32.09	10.55			
	8-21	37.5	1	64.95	16.89	16.04	5.27			
	8-22	37.5	1	64.95	16.89	16.04	5.27			
eeder To	tals	265		1,734.06	450.86	428.31	140.78	428	141	
eeder An	npacity				108.46					

Feeder 9

LUMPED LOAD CALCULATIONS

1995 to 1997 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

25%

Voltage

7,200

Power Factor

95%

Feeder Ampacity

100

(@ 2400 V)

		Connected			Computer Model					
Bus	Trans.	1 Ph.	Trans.	3 Ph. Eq. KVA	Estir	nated Load	Est. Lumped Load			
No.	No.	KVA	Phase		KVA	KW	KVAR	KW	KVAR	
910	9-1	25	3	75.00	18.75	17.81	5.85	18	6	
915	9-2	15	1	25.98	6.50	6.17	2.03	60	20	
	9-3	37.5	3	112.50	28.13	26.72	8.78			
	9-4	37.5	3	112.50	28.13	26.72	8.78			
920	9-5	15	1	25.98	6.50	6.17	2.03	10	3	
	9-6	10	1	17.32	4.33	4.11	1.35		1	
935	9-8	25	1	43.30	10.83	10.28	3.38	10	3	
940	9-9	37.5	1	64.95	16.24	15.43	5.07	15	5	
945	9-7	3	1	5.20	1.30	1.23	0.41	5	2	
	9-10	10	1	17.32	4.33	4.11	1.35			
950	9-12	10	1	17.32	4.33	4.11	1.35	4	1	
955	9-11	10	1	17.32	4.33	4.11	1.35	4	1	
960	9-13	25	3	75.00	18.75	17.81	5.85	18	6	
963	9-14	25	3	75.00	18.75	17.81	5.85	18	6	
966	9-15	5	1	8.66	2.17	2.06	0.68	2	1	
977	9-16	10	1	17.32	4.33	4.11	1.35	16	5	
	9-17	10	1	17.32	4.33	4.11	1.35			
	9-18	10	1	17.32	4.33	4.11	1.35			
	9-19	10	1	17.32	4.33	4.11	1.35			
982	9-20	15	1	25.98	6.50	6.17	2.03	6	2	
	9-21	0	0	0.00	0.00	0.00	0.00			
983	9-22	5	1	8.66	2.17	2.06	0.68	163	53	
	9-23	15	1	25.98	6.50	6.17	2.03			
	9-24	50	3	150.00	37.50	35.63	11.71			
	9-25	166.67	3	500.01	125.00	118.75	39.03			
985	9-34	15	3	45.00	11.25	10.69	3.51	11	4	
990	9-26	10	3	30.00	7.50	7.13	2.34	46	15	
	9-27	37.5	3	112.50	28.13	26.72	8.78			
	9-28	15	1	25.98	6.50	6.17	2.03			
	9-29	15	1	25.98	6.50	6.17	2.03			
995	9-30	50	3	150.00	37.50	35.63	11.71	46	15	
	9-31	15	3	45.00	11.25	10.69	3.51		-	
997	9-32	25	3	75.00	18.75	17.81	5.85	24	8	
	9-33	15	1	25.98	6.50	6.17	2.03			
Feeder To	tals	365		2,008.71	502.18	477.07	156.80	477	157	
Feeder Am	pacity				40.27	(@ 7200 V				

Estimate of Poles Post 2001 Study

Pole Spacing

125 ft

Overhead Electric Lines

23.1 mi

Total Number of Poles

976 = Overhead Electric Lines * 5280
Pole Spacing

Percent Bad Cross-Arms

5%

Total number of cross arms to be replaced

49 =Total Number of Poles * Percent Bad Cross-Arms

Total number of insulators

2928 = Total Number Poles * 3

Percent Bad Insulators

15%

Total number on insulators

to be replaced

440 = Total Number of Insulators * Percent Bad Insulators

No. of Grounded poles

per mile

4

Total grounded Poles:

244 = Miles * 5280"

Pole Spacing * # of GND. Poles/mile

#4 Ground Wire per pole

50 ft

Total length of ground

conductor

12.20 mft

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

35%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected		3 Ph.	Computer Model					
Bus	Trans.	1 Ph.	Trans.		Estimated Load Each			Est. Lumped Load		
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR	
105	1-1	15	1	25.98	0.00	0.00	0.00	0	0	
110	1-2	37.5	1	64.95	0.00	0.00	0.00	0	0	
115	1-3	25	3	75.00	0.00	0.00	0.00	0	0	
120	1-4	50	3	150.00	0.00	0.00	0.00	43	14	
120	1-5	50	3	150.00	0.00	0.00	0.00			
	1-6	100	1	173.21	0.00	0.00	0.00			
	1-7	75	1	129.90	44.82	42.58	13.99			
	1-8	37.5	1	64.95	0.00	0.00	0.00			
121	1-9	10	1	17.32	0.00	0.00	0.00	43	14	
121	1-10	25	1	43.30	0.00	0.00	0.00			
	1-11	37.5	1	64.95	22.41	21.29	7.00			
	1-12	37.5	1	64.95	22.41	21.29	7.00			
122	1-13	25	1	43.30	0.00	0.00	0.00	74	24	
122	1-14	10	3	30.00	0.00	0.00	0.00			
	1-15	75	3	225.00	77.63	73.74	24.24			
125	1-16	25	1	43.30	0.00	0.00	0.00	0	0	
	1-17	50	1	86.60	0.00	0.00	0.00			
 	1-18	5	3	15.00	0.00	0.00	0.00			
	1-19	25	1	43.30	0.00	0.00	0.00			
130	1-20	50	1	86.60	0.00	0.00	0.00	0	0	
	1-21	5	1	8.66	0.00	0.00	0.00			
135	1-22	25	1	43.30	0.00	0.00	0.00	0	0	
eeder To	otals	1225		1,649.59	167.26	158.90	52.23	159	52	
Feeder A					40.24					

Feeder 2

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

41%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

	Connected				Computer Model					
Bus	Trans. No.	1 Ph. KVA	Trans. Phase	3 Ph. Eq. KVA	Estimated Load Each			Est. Lumped Load		
No.					KVA	KW	KVAR	KW	KVAR	
205	2-1	15	3	45.00	0.00	0.00	0.00	0	0	
	2-2	37.5	3	112.50	0.00	0.00	0.00			
210	2-3	75	3	225.00	0.00	0.00	0.00	0	0	
215	2-4	75	3	225.00	0.00	0.00	0.00	0	0	
220	2-5	50	3	150.00	0.00	0.00	0.00	0	0	
235	2-6	37.5	3	112.50	46.13	43.82	14.40	44	14	
236	2-7	75	3	225.00	92.25	87.64	28.81	88	29	
240	2-8	75	3	225.00	92.25	87.64	28.81	88	29	
Feeder To	Feeder Totals			1,320.00	230.63	219.09	72.01	219	72	
Feeder A	mpacity				55.48					

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

0%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	i			Co	omputer Mo	odel	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estimated Load Each			Est. Lumped Load	
No.	No.	No. KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
301	3-1	30	1	51.96	0.00	0.00	0.00	0	0
	3-2	50	3	150.00	0.00	0.00	0.00	U	U
	3-3	50	3	150.00	0.00	0.00	0.00		
	3-4	75	3	225.00	0.00	0.00	0.00		
305	3-5	15	3	45.00	0.00	0.00	0.00	0	0
310	3-6	15	3	45.00	0.00	0.00	0.00	0	0
	3-7	15	3	45.00	0.00	0.00	0.00		
	3-8	50	3	150.00	0.00	0.00	0.00		
	3-9	0	0	0.00	0.00	0.00	0.00		
	3-10	37.5	3	112.50	0.00	0.00	0.00		
	3-11	37.5	3	112.50	0.00	0.00	0.00		
	3-12	15	1	25.98	0.00	0.00	0.00		
eeder To	tals	840		1,112.94	0.00	0.00	0.00	0	0
eeder An	npacity				0.00				

Feeder 4

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

0%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected			Computer Model					
Bus	Trans.	1 Ph. KVA	Trans. Phase	3 Ph.	Estimated Load Each			Est. Lumped Load		
No.	No.			Eq. KVA	KVA	KW	KVAR	KW	KVAR	
401	4-1	100	3	300.00	0.00	0.00	0.00	0	0	
403	4-2	166.67	3	500.01	0.00	0.00	0.00	0	0	
405	4-3	50	3	150.00	0.00	0.00	0.00	0	0	
	4-4	37.5	3	112.50	0.00	0.00	0.00		 	
410	4-5	25	3	75.00	0.00	0.00	0.00	0	0	
	4-6	166.67	3	500.01	0.00	0.00	0.00			
eeder To	otals	1637.52		1,637.52	0.00	0.00	0.00	0	0	
eeder Ar	npacity				0.00					

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

11%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected				Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estim	ated Load	Each	Est. Lum	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
				000.00	0.00	0.00	0.00	0	0
510	5-1	100	3	300.00	0.00		0.00	0	0
512	5-2	15	1	25.98	0.00	0.00		U	U
	5-3	37.5	3	112.50	0.00	0.00	0.00		
514	5-5	15	3	45.00	0.00	0.00	0.00	0	0
515	5-4	25	3	75.00	0.00	0.00	0.00	0	0
520	5-6	15	3	45.00	0.00	0.00	0.00	0	0
525	5-7	15	3	45.00	0.00	0.00	0.00	0	0
	5-8	10	3	30.00	0.00	0.00	0.00		
530	5-9	10	1	17.32	0.00	0.00	0.00	0	0
	5-10	15	1	25.98	0.00	0.00	0.00		
	5-11	0	0	0.00	0.00	0.00	0.00	<u> </u>	
531	5-12	50	3	150.00	0.00	0.00	0.00	0	0
535	5-13	25	1	43.30	0.00	0.00	0.00	0	0
540	5-14	10	1	17.32	0.00	0.00	0.00	0	0
545	5-16	37.5	3	112.50	0.00	0.00	0.00	0	0
550	5-15	10	1	17.32	0.00	0.00	0.00	0	0
565	5-17	15	3	45.00	0.00	0.00	0.00	0	0
570	5-18	25	3	75.00	0.00	0.00	0.00	0	0
575	5-19	5	3	15.00	0.00	0.00	0.00	0	0
580	5-20	25	3	75.00	8.25	7.84	2.58	8	3
585	5-21	75	3	225.00	0.00	0.00	0.00	0	0
590	5-22	37.5	3	112.50	0.00	0.00	0.00	0	0
	5-23	15	3	45.00	0.00	0.00	0.00		
	5-24	37.5	3	112.50	0.00	0.00	0.00		
595	5-25	15	3	45.00	0.00	0.00	0.00	0	0
	5-26	50	3	150.00	0.00	0.00	0.00		
	5-27	15	1	25.98	0.00	0.00	0.00		
	5-28	15	1	25.98	0.00	0.00	0.00		
eeder To	otals	637.5		2,014.19	8.25	7.84	2.58	8	3
eeder A					1.98				

Feeder 7

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

29%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	1			Co	mputer Mo	odel	-
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estir	nated Load	Each	Est. Lun	nped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
705	7-1	50	3	150.00	43.50	41.33	13.58	41	14
709	7-2	100	3	300.00	87.00	82.65	27.17	83	27
710	7-3	25	3	75.00	0.00	0.00	0.00	21	7
	7-4	25	3	75.00	0.00	0.00	0.00		
	7-5	37.5	1	64.95	0.00	0.00	0.00		
	7-6	5	3	15.00	0.00	0.00	0.00		
	7-7	25	3	75.00	21.75	20.66	6.79		
715	7-8	25	3	75.00	21.75	20.66	6.79	21	7
720	7-9	37.5	3	112.50	0.00	0.00	0.00	0	0
725	7-10	15	3	45.00	0.00	0.00	0.00	0	0
	7-11	25	3	75.00	0.00	0.00	0.00		
	7-12	25	1	43.30	0.00	0.00	0.00		
	7-13	75	1	129.90	0.00	0.00	0.00		
	7-15	25	1	43.30	0.00	0.00	0.00		
730	7-16	15	3	45.00	0.00	0.00	0.00	0	0
735	7-14	25	3	75.00	0.00	0.00	0.00	0	0
740	7-17	10	3	30.00	0.00	0.00	0.00	8	3
	7-19	10	3	30.00	8.70	8.27	2.72		
750	7-18	25	3	75.00	21.75	20.66	6.79	21	7
755	7-20	15	1	25.98	0.00	0.00	0.00	0	0
760	7-21	25	1	43.30	0.00	0.00	0.00	0	0
765	7-22	25	3	75.00	0.00	0.00	0.00	0	0
770	7-23	10	1	17.32	0.00	0.00	0.00	0	0
775	7-24	10	3	30.00	0.00	0.00	0.00	0	0
eeder To		727.5		1,725.56	204.45	194.23	63.84	194	64
eeder An	npacity				49.18			10 10 11	

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

0%

Voltage

2,400

Power Factor

95%

Feeder Ampacity

		Connected	ſ			Co	mputer Mo	del	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Estin	nated Load	Each	Est. Lun	ped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
805	8-1	75	1	129.90	0.00	0.00	0.00	0	0
810	8-2	15	1	25.98	0.00	0.00	0.00	0	0
	8-3	37.5	1	64.95	0.00	0.00	0.00		
	8-4	15	1	25.98	0.00	0.00	0.00		
************	8-5	37.5	1	64.95	0.00	0.00	0.00		
	8-6	75	1	129.90	0.00	0.00	0.00		
815	8-7	10	1	17.32	0.00	0.00	0.00	0	0
817	8-8	15	1	25.98	0.00	0.00	0.00	0	0
	8-9	50	1	86.60	0.00	0.00	0.00		
	8-10	37.5	1	64.95	0.00	0.00	0.00		
***	8-11	5	3	15.00	0.00	0.00	0.00		
820	8-12	75	1	129.90	0.00	0.00	0.00	0	0
	8-13	37.5	1	64.95	0.00	0.00	0.00		
**	8-14	75	1	129.90	0.00	0.00	0.00		
	8-15	75	1	129.90	0.00	0.00	0.00		
	8-16	25	1	43.30	0.00	0.00	0.00		
825	8-17	75	1	129.90	0.00	0.00	0.00	0	0
	8-19	75	1	129.90	0.00	0.00	0.00		
	8-18	37.5	1	64.95	0.00	0.00	0.00		
	8-20	75	1	129.90	0.00	0.00	0.00		
	8-21	37.5	1	64.95	0.00	0.00	0.00		
	8-22	37.5	1	64.95	0.00	0.00	0.00		
eder To	tals	265		1,734.06	0.00	0.00	0.00	0	0
eder Ar	npacity				0.00				

LUMPED LOAD CALCULATIONS

Post 2001 Study

Estimates based on actual feeder data from December 7, 1994 at 1200 AST

Estimated Demand

25%

Voltage

7,200

Power Factor 95%

Feeder Ampacity

100

(@ 2400 V)

_		Connected				С	omputer Mo	odel	
Bus	Trans.	1 Ph.	Trans.	3 Ph.	Est	imated Loa	d Each	Est. Lun	nped Load
No.	No.	KVA	Phase	Eq. KVA	KVA	KW	KVAR	KW	KVAR
910	9-1	25	3	75.00	18.75	17.81	5.85	18	6
915	9-2	15	1	25.98	0.00	0.00	0.00	0	0
	9-3	37.5	3	112.50	0.00	0.00	0.00		1
	9-4	37.5	3	112.50	0.00	0.00	0.00		
920	9-5	15	1	25.98	0.00	0.00	0.00	0	0
	9-6	10	1	17.32	0.00	0.00	0.00		
935	9-8	25	1	43.30	0.00	0.00	0.00	0	0
940	9-9	37.5	1	64.95	0.00	0.00	0.00	0	0
945	9-7	3	1	5.20	0.00	0.00	0.00	4	1
	9-10	10	1	17.32	4.33	4.11	1.35	-	<u>'</u>
950	9-12	10	1	17.32	0.00	0.00	0.00	0	0
955	9-11	10	1	17.32	0.00	0.00	0.00	0	0
960	9-13	25	3	75.00	0.00	0.00	0.00	0	0
963	9-14	25	3	75.00	18.75	17.81	5.85	18	6
966	9-15	5	1	8.66	0.00	0.00	0.00	0	0
977	9-16	10	1	17.32	0.00	0.00	0.00	0	0
	9-17	10	1	17.32	0.00	0.00	0.00		
	9-18	10	1	17.32	0.00	0.00	0.00		
	9-19	10	1	17.32	0.00	0.00	0.00		
982	9-20	15	1	25.98	0.00	0.00	0.00	0	0
	9-21	0	0	0.00	0.00	0.00	0.00		
983	9-22	5	1	8.66	0.00	0.00	0.00	157	51
	9-23	15	1	25.98	0.00	0.00	0.00		
	9-24	50	3	150.00	37.50	37.76	12.41		
	9-25	166.67	3	500.01	125.00	118.75	39.03		
985	9-34	15	3	45.00	0.00	0.00	0.00	0	0
990	9-26	10	3	30.00	7.50	7.13	2.34	34	11
	9-27	37.5	3	112.50	28.13	26.72	8.78		
	9-28	15	1	25.98	0.00	0.00	0.00		
	9-29	15	1	25.98	0.00	0.00	0.00		
995	9-30	50	3	150.00	0.00	0.00	0.00	0	0
	9-31	15	3	45.00	0.00	0.00	0.00		
997	9-32	25	3	75.00	18.75	17.81	5.85	24	8
	9-33	15	1	25.98	6.50	6.17	2.03	-	
eder Tot	als	365		2,008.71	265.20	254.08	83.51	254	0.4
eder Am				_,	21.27	(@ 7200 V)	03.31	254	84
					21.21	(W / 200 V)			

APPENDIX F Load Flow Analysis - Case 1

CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

DATE: 20 NOV 95 TIME: 4 50 PM

ALL INFORMATION PRESENTED IS FOR REVIEW, APPROVAL INTERPRETATION AND APPLICATION BY A REGISTERED ENGINEER ONLY

DAPPER (LOAD FLOW AND VOLTAGE DROP MINI/MICRO VERSION 4.5 LEVEL 1.0) COPYRIGHT SKM SYSTEMS ANALYSIS, INC. 1983

DATE:20 NOV 95 TIME: 4 50 PM PAGE 2
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

SWING GENERATORS
BUS NO ID STAT VOLTAGE ANGLE
80 6 1 1.000 .000

				P	V GENERA	TORS		
BUS	NO	ID	STAT	VOLTAGE	kW	KVARMIN	kvarmax	PARTICIPATION
===	======	==:	====	=======	======	=======	=======	==========
	10	1	1	1.000	1000.	0.	0.	1.000
	20	2	1	1.000	0.	0.	o.	1.000
	30	3	1	1.000	0.	0.	O.	1.000
	40	4	1	1.000	0.	0.	0.	1.000
	50	5	1	1.000	0.	0.	O.	1.000
NOTICE:	BRANCH	9	20 F	940	TO 925	()	IS OUT	OF SERVICE

DATE:20 NOV 95 TIME: 4 50 PM PAGE

CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER FROM NO NAME	FEEDER TO NO NAME	QTY VOLTS LEN	NGTH F S12	EEDER DE	SCRIPTION UCT INSUL
		1 2400. 5 0526 OHMS/M FEET			
		1 2400. 5 0526 OHMS/M FEET			
		1 2400. 5 0526 OHMS/M FEET			
		1 2400. 5 0526 OHMS/M FEET			
50 GEN G5	70 SWGR N	1 2400. 5 0526 OHMS/M FEET	0. FT 500) с	M XLP
60 SWGR S	66 SM1A BLUE	1 2400. 5	iO. FT 500	C	M XLP
IMPEDANCE:	.0300 + J .09	0526 OHMS/M FEET		STATUS: I	Existing
60 SWGR S	70 SWGR N	1 2400.	5. FT 500	C	M XLP
IMPEDANCE:	.0300 + J .05	0526 OHMS/M FEET		STATUS: I	Existing
60 SWGR S	100 FDR 1	1 2400. 5	iO. FT 4/0	A	N XLP
IMPEDANCE:	_1050 + J _04	0410 OHMS/M FEET		STATUS: 1	Existing
		1 2400. 5 0410 OHMS/M FEET			
60 SWGR S	300 FDR 3	1 2400. 5	iO. FT 4/0	A	N XLP
IMPEDANCE:	.1050 + J .04	0410 OHMS/M FEET		STATUS: I	Existing
60 SWGR S	400 FDR 4	1 2400. 5	iO. FT 4/0	A	N XLP
IMPEDANCE:	.1050 + J .04	0410 OHMS/M FEET		STATUS: 1	Existing
60 SWGR S	500 FDR 5	1 2400. 5	iO. FT 4/0	A	N XLP
IMPEDANCE:	.1050 + J .04	0410 OHMS/M FEET		STATUS: I	Existing
62 SS-1 SEC	64 MCC 4&5	1 480. 5	iO. FT 500	C	M XLP
IMPEDANCE:	.0300 + J .05	0526 OHMS/M FEET		STATUS: I	Existing
64 MCC 485	68 BLUE SSS	1 480. 5	iO. FT 500	C	M XLP
IMPEDANCE:	.0300 + J .09	0526 OHMS/M FEET		STATUS: I	Existing
70 SWGR N	90 SWGR 0	1 2400. 1	iO. FT 500	A	M XLP
IMPEDANCE:	.0453 + J .04	0444 OHMS/M FEET		STATUS: I	Existing

DATE:20 NOV 95 TIME: 4 50 PM PAGE 4
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

====					=======		=========
FEED	ER FROM NAME	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH	FEEDER E	DESCRIPTION DUCT INSUL
			-=====				
85	T1 SEC IMPEDANCE:	90 SWGR 0 .0453 + J	.0444 0	2400. DHMS/M FE	10. FT ET	500 A STATUS:	M XLP EXISTING
90	SWGR O IMPEDANCE:	600 O/H BUS .1050 + J	.0410 c	2400. DHMS/M FEI	50. FT ET	4/0 A STATUS:	N XLP EXISTING
90	SWGR O IMPEDANCE:	700 FDR 7 _1050 + J	.0410 c	2400. DHMS/M FEI	50. FT	4/0 A STATUS:	N XLP EXISTING
90	SWGR O IMPEDANCE:	800 FDR 8 .1050 + J	.0410 C	2400. DHMS/M FEE	50. FT	4/0 A STATUS:	N XLP EXISTING
90	SWGR O IMPEDANCE:	900 FDR 9 .1050 + J	.0410 C	2400. DHMS/M FEE	50. FT	4/0 A STATUS:	N XLP Existing
100	FDR 1 IMPEDANCE:	105 F1F12 14 .0900 + J	.1200 d	2400. DHMS/M FEE	1500. FT	4/0 A STATUS:	B OH-2 Existing
105	F1F12 14 IMPEDANCE:	110 F1 L14 .0900 + J	.1200 0	2400. DHMS/M FEE	200. FT	4/0 A STATUS:	B OH-2 Existing
110	F1 L14 IMPEDANCE:	115 F1 L15 .0900 + J	.1200 o	2400. HMS/M FEE	300. FT	4/0 A STATUS:	B OH-2 Existing
110	F1 L14 IMPEDANCE:	120 F1 L31 .0900 + J	1 .1200 o	2400. HMS/M FEE	400. FT	4/0 A STATUS:	B OH-2 Existing
		121 F1 L63 .0900 + J					
		122 F1 L64 .0900 + J					
121	F1 L63 IMPEDANCE:	125 F1 L67 .0900 + J	.1200 o	2400. HMS/M FEE	200. FT	4/0 A STATUS:	B OH-2 Existing
125	F1 L67 IMPEDANCE:	130 F1 L613 .0900 + J	1 .1200 o	2400. HMS/M FEE	700. FT	4/0 A STATUS:	B OH-2 EXISTING
125	F1 L67 IMPEDANCE:	135 F1 L68 .0900 + J	1 .1200 o	2400. HMS/M FEE	300. FT	4/0 A STATUS:	B OH-2 Existing
200	FDR 2 IMPEDANCE:	205 .0900 + J	1 .1200 o	2400. HMS/M FEE	600. FT	4/0 A STATUS:	B OH-2 Existing

DATE:20 NOV 95 TIME: 4 50 PM PAGE 5
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER FROM	FEEDER TO	QTY VOLTS LENGTH	FEEDER DESCRIPTION SIZE TYPE DUCT INSUL
E222222222	=========	=======================================	
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
210 2-3 PRI	215 2-4 PRI	1 2400. 50. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
215 2-4 PRI	220 2-5 PRI	1 2400. 200. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
235 F5 F29	236 F2 F211	1 2400. 250. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
236 F2 F211	240 F1 F213	1 2400. 250. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
300 FDR 3	301 F8 F311	1 2400. 400. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
301 F8 F311	303 F713	1 2400. 200. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
303 F713	305 F8 F311	1 2400. 400. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
305 F8 F311	310 F3 19	1 2400. 1200. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
400 FDR 4	401 4-1 PRI	1 2400. 250. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
403 F1 F45	405 F4 10	1 2400. 500. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/N FEET	STATUS: EXISTING
405 F4 10	410 F417 UF	1 1 2400. 1000. F	T 4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING

DATE:20 NOV 95 TIME: 4 50 PM PAGE
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

	=========		=========		
FEEDER FROM NO NAME	FEEDER TO NO NAME	QTY VOLT	S LENGTH	FEEDER SIZE TYPE	DESCRIPTION
505 F4 F5 F6UF	510 5-1 PRI	1 240	0. 25 0. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS	: EXISTING
505 F4 F5 F6UF	512 5-3 PRI	1 240	0. 1600. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS	: Existing
512 5-3 PRI	514 5-5 PRI	1 240	0. 700. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS	: Existing
512 5-3 PRI	515 F5 L24	1 2400	0. 1200. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS	: EXISTING
515 F5 L24	520 5-6 PRI	1 2400	0. 600. FT	6 A	B OH-2
IMPEDANCE:	.6900 + J	.1440 OHMS/N	FEET	STATUS	: EXISTING
515 F5 L24	525 F5 L31	1 2400). 200. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS	EXISTING
525 F5 L31	530 F5 L39	1 2400). 1500. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS:	EXISTING
525 F5 L31	531 F3 L41	1 2400). 500. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS:	EXISTING
525 F5 L31	535 F537 L5	1 2400	. 1400. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M	FEET	STATUS:	EXISTING
531 F3 L41 IMPEDANCE:					
535 F537 L5	540 F5 L5 UF	1 1 2400	. 150. FT	4/0 A	B OH-2
IMPEDANCE:		.1200 OHMS/M	FEET	STATUS:	Existing
535 F537 L5	555	1 2400	. 800. FT	2/0 A	B OH-2
IMPEDANCE:	.1410 + J	.1250 OHMS/M	FEET	STATUS:	EXISTING
540 F5 L5 UF1	545 F5 L56 U	F1 1 2400	. 2100. FT	2 A	B OH-2
IMPEDANCE:	.2760 + J	.1320 OHMS/M	FEET	STATUS:	Existing
540 F5 L5 UF1 IMPEDANCE:	550 F5 L55	1 2400	. 1000. FT	4/0 A	B OH-2
	.0900 + J	.1200 OHMS/M	FEET	STATUS:	EXISTING
555	560 RICH SUB	1 2400	. 3200. FT	2/0 A	B OH-2
IMPEDANCE:	.1410 + J	.1250 OHMS/M	FEET	STATUS:	EXISTING

DATE:20 NOV 95 TIME: 4 50 PM PAGE 7
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

	FEEDER DATA	
FEEDER FROM	FEEDER TO QTY VOLTS LENGTH NO NAME /PH L-L	FEEDER DESCRIPTION SIZE TYPE DUCT INSUL
	565 5-17 PRI 1 2400. 800. FT .1410 + J .1250 OHMS/M FEET	
562 RS SEC IMPEDANCE:	930 RICH SUB 1 7200. 5. FT .4360 + J .1380 OHMS/M FEET	4 A B OH-2 STATUS: EXISTING
565 5-17 PRI IMPEDANCE:	570 5-18 PRI 1 2400. 400. FT .1410 + J .1250 OHMS/M FEET	2/0 A 8 OH-2 STATUS: EXISTING
	575 F5 51 1 2400. 300. FT .1410 + J .1250 OHMS/N FEET	
	580 F5 L85 1 2400. 600. FT .1410 + J .1250 OHMS/M FEET	
	585 F5 L87 UF1 1 2400. 350. FT .1410 + J .1250 OHMS/M FEET	
580 F5 L85 IMPEDANCE:	590 F5 L8911 1 2400. 250. FT .4360 + J [1380 OHMS/M FEET	4 A B OH-2 STATUS: EXISTING
	595 F5 L8 25 1 2400. 1150. FT .4360 + J .1380 OHMS/M FEET	
700 FDR 7 IMPEDANCE:	705 WELL9 POL 1 2400. 50. FT .0900 + J .1200 OHMS/M FEET	4/0 A B OH-2 STATUS: EXISTING
705 WELL9 POL IMPEDANCE:	709 F9 F73 1 2400. 200. FT .0900 + J .1200 OHMS/M FEET	4/0 A B OH-2 STATUS: EXISTING
709 F9 F73 IMPEDANCE:	710 F7 L11 1 2400. 1000. FT .0900 + J .1200 OHMS/M FEET	4/0 A B OH-2 STATUS: EXISTING
710 F7 L11 IMPEDANCE:	715 F7 L13 1 2400. 500. FT .0900 + J .1200 OHMS/M FEET	4/0 A B OH-2 STATUS: EXISTING
710 F7 L11 IMPEDANCE:	720 F713 1 2400. 500. FT .0900 + J .1200 OHMS/M FEET	4/0 A B OH-2 STATUS: EXISTING
	725 7-15 PRI 1 2400. 1200. FT .0900 + J .1200 OHMS/M FEET	
	730 F7 L43 1 2400. 600. FT .0900 + J .1200 OHMS/M FEET	

DATE:20 NOV 95 TIME: 4 50 PM PAGE 8
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

			==========	=======================================	
FEEDER FROM NO NAME	FEEDER TO	QTY VOLTS	LENGTH	FEEDER DE	SCRIPTION
***************************************	#0 KANE				
725 7-15 PRI	735 F7 L54	1 2400.	350. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	Existing
735 F7 L54 IMPEDANCE:					
735 F7 L54	745	1 2400.	625. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	EXISTING
745 IMPEDANCE:	750 F7 L72	1 2400.	525. FT	4/0 A	B OH-2
	.0900 + J	.1200 OHMS/M F	EET	STATUS:	EXISTING
745 IMPEDANCE:					
750 F7 L72	755 F7-33	1 2400.	8 00. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	Existing
760 7-21 PRI	765 7-22 PRI	1 2400.	600. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	Existing
765 7-22 PRI IMPEDANCE:					
770 7-23 PRI IMPEDANCE:					
800 FDR 8 IMPEDANCE:					
805 F8 L11 IMPEDANCE:					
810 F8 L23	815 F8 L25	1 2400.	7 00. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	Existing
810 F8 L23	817 F8 22	1 2400.	200. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	EXISTING
817 F8 22	820 F8 30 UF	1 1 2400.	1100. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	EXISTING
820 F8 30 UF1	825 8-22 PRI	1 2400.	1700. FT	4/0 A	B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M F	EET	STATUS:	Existing

DATE: 20 NOV 95 TIME: 4 50 PM PAGE 9
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

====						======		=====	
FEED	ER FROM NAME	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH	SIZ	EEDER D	ESCRIP DUCT	TION
		910 F 96 .0900 + J							
910	F 96 IMPEDANCE:	915 F910 .0900 + J	1 .1200 o	7200. HMS/M FE	800. ET	FT 4/0	A STATUS:	B EXIST	OH-2 Ing
		920 F940 .0900 + J							
920	F940 IMPEDANCE:	945 F949 L1 .0900 + J	.1200 o	7200. HMS/M FE	800.	FT 4/0	A STATUS:	B EXIST	OH-2 ING
925	() IMPEDANCE:	930 RICH SUB .4360 + J	. 1 .1380 0	7200. HMS/M FEI	1500. I	FT 4	A STATUS:	B EXIST	OH-2
		935 9-8 PRI .6900 + J							
935	9-8 PRI IMPEDANCE:	940 9-9 PRI .6900 + J	1 .1440 O	7200. HMS/M FEI	5000. (FT 6	A STATUS:	B EXIST	OH-2 Ing
945	F949 L1 IMPEDANCE:	950 9-12 PRI .6900 + J	.1440 o	7200. HMS/M FEI	2100. I	FT 6	A STATUS:	B EXIST	OH-2 Ing
		960 9-13 PRI .2760 + J							
9 50	9-12 PRI IMPEDANCE:	955 9-11 PRI .6900 + J	1 .1440 O	7200. HMS/M FEE	1800. i	FT 6	A STATUS:	B EXIST	OH-2 ING
960	9-13 PRI IMPEDANCE:	963 9-14 PRI .2760 + J	1 .1320 o	7200. HMS/M FEE	7600. I	FT 2	A STATUS:	B EXIST	OH-2 ING
		966 9-15 PRI .2760 + J							
966	9-15 PRI IMPEDANCE:	969 SW UP .2760 + J	1 .1320 o	7200. HMS/M FEE	600. F	FT 2	A STATUS:	B EXIST	OH-2 ING
969	SW UP IMPEDANCE:	972 SW DOWN .0300 + J	1 .0526 O	7200. HMS/M FEE	5. F	T 500	C STATUS:	M EXIST	XLP ING
		975 9-16 PRI .2760 + J							

DATE: 20 NOV 95 TIME: 4 50 PM PAGE 10 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

NO NAME	NU NAME	/PH	L-L		SI	FEEDER DESCRIP	INCH
		======	======		====	=======================================	====
975 9-16 PRI IMPEDANCE:	977 9-19 PRI .2760 + J	1 .1320 o	7200. HMS/M FE	10000. FT ET	2	A B STATUS: EXIST	OH-
975 9-16 PRI IMPEDANCE:	980 .2760 + J	1 .1320 ol	7200. HMS/M FE	3500. FT ET	2	A B STATUS: EXIST	OH-
980 IMPEDANCE:	982 9-20 PRI .2760 + J	1 .1320 O	7200. IMS/M FE	2000. FT ET	2	A B STATUS: EXIST	OH-
980 IMPEDANCE:	983 9-25 PRI .2760 + J	1 .1320 OI	7200. IMS/M FE	6000. FT	2	A B STATUS: EXIST	OH-
983 9-25 PRI IMPEDANCE:	985 9-34 PRI .2760 + J	1 .1320 OF	7200. IMS/M FE	2000. FT	2	A B STATUS: EXIST	OH- ING
985 9-34 PRI IMPEDANCE:	987 .2760 + J	1 .1320 OH	7200. MS/M FE	6400. FT	2	A B STATUS: EXIST	OH-
987 IMPEDANCE:							
987 IMPEDANCE:	992 .2760 + J .	1 .1320 OH	7200. MS/M FE	27000. FT ET	2	A B STATUS: EXIST	OH- ING
P92 IMPEDANCE:	995 9-30 PRI .3350 + J .	1 .0500 он	7200. MS/M FE	25000. FT ET	2	A N STATUS: EXIST	XLP ING
792 IMPEDANCE:	997 9-32 PRI .2760 + J .	1 1320 OH	7200. MS/M FE	5000. FT ET	2	A B STATUS: EXIST	OH- ING

DATE:20 NOV 95 TIME: 4 50 PM PAGE 11
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

TRANSFORMER DATA

			KMEK UNI/			
PRIMARY RECORD NO NAME	VOLTS L-L	PRI FLA	* SECONDARY RECORD NO NAME	VOLTS L-L	SEC FLA	NOMINAL KVA
60 SWGR S IMPEDANCE:	2400. .7816 + J	72. 4.5331	62 SS-1 SEC PERCENT	480.	361.	300.0
66 SM1A BLUE IMPEDANCE:	2400. .8156 + J	120. 4.7302	68 BLUE SSS PERCENT	480.	601.	500.0
80 UTILITY IMPEDANCE:	24900. .5546 + J	58. 5.9341	85 T1 SEC PERCENT TRANS	2400. SFORMER FIXE	601. D TAP:	2500.0 -5.0 %
90 SWGR O IMPEDANCE:	2400. .5709 + J	72. 3.3111	64 MCC 4&5 PERCENT	480.	361.	300.0
			225 2-3 SEC PERCENT		271.	225.0
215 2-4 PRI IMPEDANCE:	2400. .9345 + J	54. 5.4200	230 2-4 SEC PERCENT	208.	625.	225.0
410 F417 UF1 IMPEDANCE:	2400. .9345 + J	120. 5.4200	415 4-6 SEC PERCENT	208.	1388.	500.0
545 F5 L56 UF1 IMPEDANCE:	2400. .9345 + J	27. 5.4200	547 5-16 SEC PERCENT	208.	312.	112.5
560 RICH SUB IMPEDANCE:	2400. .9345 + J	144. 5.4200	562 RS SEC PERCENT	7200.	48.	600.0
590 F5 L8911 IMPEDANCE:	2400. .9345 + J	12. 5.4200	591 5-23 SEC PERCENT	208.	139.	50.0
590 F5 L8911 IMPEDANCE:	2400. .9345 + J	27. 5.4200	593 5-24 SEC PERCENT	208.	312.	112.5
705 WELL9 POL IMPEDANCE:	2400. .9345 + J	36. 5.4200	707 7-1 SEC PERCENT	480.	180.	150.0
900 FDR 9 IMPEDANCE:	2400. .7816 + J	361. 4.5331	905 STEP SEC PERCENT	7200.	120.	1500.0
983 9-25 PRI IMPEDANCE:	7200. .9345 + J	40. 5.4200	984 9-25 SEC PERCENT	208.	1388.	500.0

DATE:20 NOV 95 TIME: 4 50 PM PAGE 12 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BUS SPECIAL STUDY DATA

=======================================			========	===		
* NO * NAME	* KW *	KVAR	* LOAD TYP	PΕ		
=======================================			========	===	======	=======================================
105 F1F12 14	9.	3.	CONSTANT	z	LOAD	
110 F1 L14 115 F1 L15 120 F1 L31	21.	7.	CONSTANT	Z	LOAD	
115 F1 L15	25.	8.	CONSTANT	Z	LOAD	
120 F1 L31	222.	73.	CONSTANT	Z	LOAD	
121 F1 L63	62.	21.	CONSTANT	Z	LOAD	
121 F1 L63 122 F1 L64	9 8.	32.	CONSTANT	Z	LOAD	
125 F1 L67	62.	20.	CONSTANT	Z	LOAD	
130 F1 L613	31.	10.	CONSTANT	Z	LOAD	
135 F1 L68	14.	5.	CONSTANT	Z	LOAD	
205	69.	22.	CONSTANT	Z	LOAD	
130 F1 L613 135 F1 L68 205 210 2-3 PRI	88.	29.	CONSTANT	Z	LOAD	
215 2-4 PRI	88.	29.	CONSTANT	Z	LOAD	
220 2-5 PRI	58.	19.	CONSTANT	Z	LOAD	
235 F5 F29	44.	14.	CONSTANT	Z	LOAD	
236 F2 F211	88.	29.	CONSTANT	Z	LOAD	
215 2-4 PRI 220 2-5 PRI 235 F5 F29 236 F2 F211 240 F1 F213	88.	29.	CONSTANT	Z	LOAD	
301 F8 F311 305 F8 F311 310 F3 19 401 4-1 PRI 403 F1 F45	40/			_		
301 FO F311	180.	61.	CONSTANT	Z	LOAD	
303 FO F311	12.	٥.	CONSTANT	Z	LOAD	
401 4-1 ppr	75	25	CONSTANT	2	LOAD	
403 F1 F45	125	41	CONSTANT	N/A	LOAD	
405 11 145	125.	41.	CONSTANT	KVA	LUAD	
405 F4 10	65.	22.	CONSTANT	7	LOAD	
410 F417 UF1	143.	47.	CONSTANT	z	LOAD	
510 5-1 PRI	31.	10.	CONSTANT	ž	LOAD	
512 5-3 PRI	14.	5.	CONSTANT	Z	LOAD	
405 F4 10 410 F417 UF1 510 5-1 PRI 512 5-3 PRI 514 5-5 PRI	5.	2.	CONSTANT	Z	LOAD	
515 F5 L24	8.	3.	CONSTANT	Z	LOAD	
520 5-6 PRI	5.	2.	CONSTANT	Z	LOAD	
525 F5 L31	8.	3.	CONSTANT	Z	LOAD	
515 F5 L24 520 5-6 PRI 525 F5 L31 530 F5 L39	5.	2.	CONSTANT	Z	LOAD	
231 F3 E41	10.	ο.	CONSTANT		LOAD	
E75 -577 +5	-					
535 F537 L5	5.	2.	CONSTANT	Z	LOAD	
5/5 FE 15/ 11/4	2.	1.	CONSTANT	Z	LOAD	
545 F5 L56 UF1	12.	4.	CONSTANT	Z	LOAD	
565 5-17 DDT	۷.	1.	CONSTANT	2	LOAD	
535 F537 L5 540 F5 L5 UF1 545 F5 L56 UF1 550 F5 L55 565 5-17 PRI	5.	۷.	CONSTANT	Z	LOAD	
570 5-18 PRI 575 F5 51	2.	1	CONSTANT	7	LOAD	
			COUSTMAI	2.	LUAD	

DATE:20 NOV 95 TIME: 4 50 PM PAGE 13
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS SPECIAL STUDY DATA

							זעטו			
								:::::::	=====	
			* KW *							
								======	=====	=========
580	F5	L85	8.	3.	CONSTANT	Z	LOAD			
585	E5	187 HF1	24. 41. 33. 41. 83.	8	CONSTANT	7	LOAD			
500	75	19011	41	11	CONSTANT	7	LOAD			
270	77	LOYII	41.	40	CONSTANT	-	LOAD			
כעכ	10	L8 25	33.	10.	CONSTANT	-	LUAD			
705	WEI	L9 POL	41.	14.	CONSTANT	Z	LOAD			
709	F9	F73	83.	27.	CONSTANT	Z	LOAD			
710	F7	L11	84. 21. 31. 92. 12.	28.	CONSTANT	Z	LOAD			
715	F7	1.13	21.	7.	CONSTANT	Z	LOAD			
720	E74	13	31	10	CONSTANT	7	LOAD			
725	7	IE DDI	02	70	CONSTANT	7	LOAD			
725		15 PKI	72.	30.	CONSTANT	-	LOAD			
730	11	L43	12.	4.	CONSTANT	2	LOAD			
	_			_		_				
735	F7	L54	21.	7.	CONSTANT	Z	LOAD			
740	7-1	I7 PRI	17.	5.	CONSTANT	Z	LOAD			
750	F7	L72	21.	7.	CONSTANT	Z	LOAD			
755	F7-	-33	7.	2.	CONSTANT	Z	LOAD			
760	7-2	1 PRI	21. 17. 21. 7. 12.	4.	CONSTANT	Z	LOAD			
745	7-2	22 DD I	21. 5. 12. 30. 73.	7	CONSTANT	7	CAO			
770	7-3	27 DD1		,.	CONSTANT	7	LOAD			
770	4-5	S PKI	42.	7.	CONSTANT	-	LOAD			
(1)	1-6	4 PKI	12.	4.	CONSTANT	-	LOAD			
805	FB	LII	<u>5</u> 0.	10.	CONSTANT	Z	LUAD			
810	F8	L23	73.	24.	CONSTANT	Z	LOAD			
815	F8	L25	4.	1.	CONSTANT	Z	LOAD			
817	F8	22	44.	15.	CONSTANT	Z	LOAD			
820	F8	30 UF1	116.	38.	CONSTANT	Z	LOAD			
825	8-2	22 PRI	136.	45.	CONSTANT	KVA	LOAD			
910	F	26	4. 44. 116. 136. 18.	6.	CONSTANT	7	LOAD			
015	ros	10	60. 10. 10. 15. 5.	20	CONSTANT	7	1000			
913	FY		40.	20.	CONSTANT	2	LOAD			
920	FY4	•0	10.	3.	CONSTANT		LUAD			
935	9-8	PRI	10.	5.	CONSTANT	Z	LOAD			
940	9-9	PRI	15.	5.	CONSTANT	Z	LOAD			
945	F94	9 L1	5.	2.	CONSTANT	Z	LOAD			
950	9-1	12 PRI	4.	1.	CONSTANT	Z	LOAD			
955	9-1	11 PRI	4.	1.	CONSTANT	Z	LOAD			
960	9-1	3 PRI	18.	6.	CONSTANT	Z	LOAD			
200	Ó-1	LA PPI	18.	6.	CONSTANT	7	LOAD			
964	0-4	S DD1	2	1	CONSTANT	7	LOAD			
300	7-	IJ PKI	4. 4. 18. 18. 2.		CONSTANT	2	LUND			
977	y-1	PRI	16.	2.	CONSTANT	7	LUAD			
982	9-2	20 PRI	6.	2.	CONSTANT	Z	LOAD			

DATE:20 NOV 95 TIME: 4 50 PM PAGE 14
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS SPECIAL STUDY DATA

									Ξ.				
*	NO	*	NA	ME	*	KW	*	KVAR	*	LOAD	TYPE		
98	83	9-2	5	PRI		163.		53.		CONST	ANT	Z	LOAD
98	B 5	9-3	4 1	PRI		11.		4.		CONST	ANT	z	LOAD
9	90	9-2	6 1	PRI		46.		15.		CONST	ANT	Z	LOAD
99	95	9-3	0 1	PRI		46.		15.	,	CONST	ANT	Z	LOAD
99	97	9-3	2 1	PRI		21.		7.		CONST	ANT	Z	LOAD

DATE:20 NOV 95 TIME: 4 50 PM PAGE 15
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*** SOLUTION COMMENTS ***

SOLUTION PARAMETERS

BRANCH VOLTAGE CRITERIA : 4.00 %
BUS VOLTAGE CRITERIA : 5.00 %
ACCELERATION FACTOR FOR 'PV' GENERATORS : 1.00
ACCELERATION FACTOR FOR CONSTANT KVA LOADS: 1.00
EXACT(ITERATIVE) SOLUTION : YES

<<PERCENT VOLTAGE DROPS ARE BASED ON NOMINAL DESIGN VOLTAGES>>

TOF SIZE: 463

LARGEST LOAD:	1000.00 KVA	•
CONVERGENCE CRITERIA:	.050 KVA	•
LARGEST BUS MISMATCH	10 GEN G1	36.344 KVA
LARGEST BUS MISMATCH	10 GEN G1	.878 KVA
LARGEST BUS MISMATCH	10 GEN G1	.013 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 16
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (SWING GENERATORS)

****	*****	*****	*****	*****	*****	******	
BUS	VOLTS(PU)	ANGLE	KW	KVAR	VD%	R + JX (PU)	
80	1.000	.00	2480.4	1361.5	.0		

DATE:20 NOV 95 TIME: 4 50 PM PAGE 17
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (PV GENERATOR SCHEDULE REPORT)

		VOLTAGE	-KVAR L	IMITS-	ACTUAL		
BUS NAME	ID	SCHED. ACTUAL	MIN	MAX	KW	KVAR	
10 GEN G1	1	1.000 1.018	.0	.0	1000.0	.0	
20 GEN G2	2	1.000 1.018	0	.0	.0	.0	
30 GEN G3	3	1.000 1.018	.0	.0	.0	.0	
40 GEN G4	4	1.000 1.018	.0	.0	.0	.0	
50 GEN G5	-	1.000 1.018	.0	.0	.0	.0	

DATE:20 NOV 95 TIME: 4 50 PM PAGE 18
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 60 SWGR S FEEDER AMPS: 236 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 1000.0 KW .0 KVAR 1000.0 KVA PF:1.00 UNITY LOSSES THRU FEEDER: .3 KW .4 KVAR .5 KVA

LOAD FROM: 10 GEN G1 FEEDER AMPS: 236 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 999.7 KW -.4 KVAR 999.7 KVA PF:1.00 UNITY LOSSES THRU FEEDER: .3 KW .4 KVAR .5 KVA

LOAD FROM: 20 GEN G2 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 50 PM PAGE 19
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E N C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 30 GEN G3 FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVA .0 KVA .0 KVA .0 KVA .0 KVA

LOAD FROM: 62 SS-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: .2 KW .4 KVAR .5 KVA PF: .45 LAGGING
LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 66 SM1A BLUE FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .3 KW .7 KVAR .7 KVA PF: .47 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 70 SWGR N FEEDER AMPS: 317 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 1130.1 KW 724.2 KVAR 1342.2 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD TO: 100 FDR 1 FEEDER AMPS: 136 VOLTAGE DROP: 1. XVD: .1
PROJECTED POWER FLOW: 545.0 KW 189.7 KVAR 577.1 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD TO: 200 FDR 2 FEEDER AMPS: 133 VOLTAGE DROP: 1. %VD: .1
PROJECTED POWER FLOW: 535.5 KW 178.7 KVAR 564.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD TO: 300 FDR 3 FEEDER AMPS: 93 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 372.8 KW 125.1 KVAR 393.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 400 FDR 4 FEEDER AMPS: 104 VOLTAGE DROP: 1. XVD: .0
PROJECTED POWER FLOW: 415.9 KW 139.6 KVAR 438.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 500 FDR 5 FEEDER AMPS: 65 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 261.2 KW 91.7 KVAR 276.8 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 20 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 62 SS-1 SEC DESIGN VOLTAGE: 480 BUS VOLTAGE: 488 XVD: -1.8 ANGLE: -3.0 DEGREES

LOAD TO: 60 SWGR S TRANSF AMPS: 1 VOLTAGE DROP: 0. 2VD: .0 PROJECTED POWER FLOW: .2 KW .4 KVAR .5 KVA PF: .45 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 64 MCC 485 FEEDER AMPS: 1 VOLTAGE DROP: 0. 2VD: .0 PROJECTED POWER FLOW: .2 KW .4 KVAR .5 KVA PF: .45 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 64 MCC 4&5 DESIGN VOLTAGE: 480 BUS VOLTAGE: 488 XVD: -1.8 ANGLE: -3.0 DEGREES

LOAD TO: 62 SS-1 SEC FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .2 KW .4 KVAR .5 KVA PF: .45 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 68 BLUE SSS FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .3 KW .7 KVAR .7 KVA PF: .47 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 90 SWGR 0 TRANSF AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .6 KW 1.1 KVAR 1.2 KVA PF: .46 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

==== BUS: 66 SM1A BLUE DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2442 XVD: -1.8

LOAD TO: 60 SWGR S FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .3 KW .7 KVAR .7 KVA PF: .47 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 68 BLUE SSS TRANSF AMPS: VOLTAGE DROP: 0. 2VD: .0 PROJECTED POWER FLOW: .3 KW .7 KVAR .7 KVA PF: .47 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

******************* VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 68 BLUE SSS DESIGN VOLTAGE: 480 BUS VOLTAGE: 488 XVD: -1.8 ANGLE: -3.0 DEGREES EDDETERDED PU BUS VOLTAGE: 1.018

FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 LOAD FROM: 64 MCC 4&5 PROJECTED POWER FLOW: .3 KW .7 KVAR .7 KVA PF: .47 LAGGING .0 KW .0 KVAR .0 KVA .0 KW LOSSES THRU FEEDER:

LOAD TO: 66 SM1A BLUE TRANSF AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .3 KW .7 KVAR .7 KVA PF: .47 LAGGING .0 KW .0 KVAR .0 KVA LOSSES THRU TRANSF:

==== BUS: 70 SWGR N DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2442 XVD: -1.8 ANGLE: -3.0 DEGREES

LOAD FROM: 40 GEN G4 FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVA .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0
.0 KW .0 KVAR .0 KVA PF: .00 LEADING
.0 KW .0 KVAR .0 KVA LOAD FROM: 50 GEN G5 PROJECTED POWER FLOW: LOSSES THRU FEEDER:

LOAD TO: 60 SWGR S FEEDER AMPS: 317 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 1130.1 KW 724.2 KVAR 1342.3 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

FEEDER AMPS: 317 VOLTAGE DROP: 0. XVD: .0 LOAD FROM: 90 SWGR O PROJECTED POWER FLOW: 1130.1 KW 724.2 KVAR 1342.3 KVA PF: .84 LAGGING .1 KVAR .1 KW .2 KVA LOSSES THRU FEEDER:

==== BUS: 80 UTILITY DESIGN VOLTAGE: 24900 BUS VOLTAGE: 24900 XVD: .0 2480.4 KW 1361.5 KVAR *** SWING GENERATOR: 6

LOAD TO: 85 T1 SEC TRANSF AMPS: 66 VOLTAGE DROP: -450. XVD: -1.8 PROJECTED POWER FLOW: 2480.4 KW 1361.5 KVAR 2829.5 KVA PF: .88 LAGGING LOSSES THRU TRANSF: 16.0 KW 171.5 KVAR 172.3 KVA **XFMR TAPS -5.0%**

DATE:20 NOV 95 TIME: 4 50 PM PAGE 22
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 85 T1 SEC DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2443 XVD: -1.8

LOAD FROM: 80 UTILITY TRANSF AMPS: 647 VOLTAGE DROP: -43. %VD: -1.8 PROJECTED POWER FLOW: 2464.4 KW 1190.0 KVAR 2736.6 KVA PF: .90 LAGGING LOSSES THRU TRANSF: 16.0 KW 171.5 KVAR 172.3 KVA **XFMR TAPS -5.0%**

LOAD TO: 90 SWGR O FEEDER AMPS: 647 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 2464.4 KW 1190.0 KVAR 2736.6 KVA PF: .90 LAGGING LOSSES THRU FEEDER: .6 KW .6 KVAR .8 KVA

==== BUS: 90 SWGR 0 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2443 %VD: -1.8

LOAD TO: 64 MCC 4&5
PROJECTED POWER FLOW:
LOSSES THRU TRANSF:

TRANSF AMPS:
VOLTAGE DROP:
0. %VD: .0
FROJECTED POWER FLOW:
.6 KW
1.1 KVAR
1.2 KVA
PF: .46 LAGGING
LOSSES THRU TRANSF:
.0 KW
.0 KVAR
.0 KVAR

LOAD TO: 70 SWGR N FEEDER AMPS: 317 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 1130.3 KW 724.4 KVAR 1342.5 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

LOAD FROM: 85 T1 SEC FEEDER AMPS: 647 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 2463.8 KW 1189.4 KVAR 2735.9 KVA PF: .90 LAGGING LOSSES THRU FEEDER: .6 KW .6 KVAR .8 KVA

LOAD FROM: 600 O/H BUS FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 700 FDR 7 FEEDER AMPS: 122 VOLTAGE DROP: 1. %VD: .0
PROJECTED POWER FLOW: 489.1 KW 165.9 KVAR 516.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .3 KVA

LOAD TO: 800 FDR 8 FEEDER AMPS: 102 VOLTAGE DROP: 1. %VD: .0
PROJECTED POWER FLOW: 407.6 KW 144.5 KVAR 432.5 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 900 FDR 9 FEEDER AMPS: 109 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 436.2 KW 153.6 KVAR 462.5 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 23
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

E=== BUS: 100 FDR 1 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2441 XVD: -1.7

LOAD FROM: 60 SWGR S FEEDER AMPS: 136 VOLTAGE DROP: 1. XVD: .1
PROJECTED POWER FLOW: 544.7 KW 189.6 KVAR 576.8 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD TO: 105 F1F12 14 FEEDER AMPS: 136 VOLTAGE DROP: 44. XVD: 1.8 PROJECTED POWER FLOW: 544.7 KW 189.6 KVAR 576.8 KVA PF: .94 LAGGING LOSSES THRU FEEDER: 7.5 KW 10.1 KVAR 12.6 KVA

LOAD FROM: 100 FDR 1 FEEDER AMPS: 136 VOLTAGE DROP: 44. XVD: 1.8 PROJECTED POWER FLOW: 537.2 KW 179.6 KVAR 566.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 7.5 KW 10.1 KVAR 12.6 KVA

LOAD TO: 110 F1 L14 FEEDER ANPS: 134 VOLTAGE DROP: 6. XVD: .2
PROJECTED POWER FLOW: 528.2 KW 177.1 KVAR 557.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.0 KW 1.3 KVAR 1.6 KVA

LOAD FROM: 105 F1F12 14 FEEDER AMPS: 134 VOLTAGE DROP: 6. %VD: .2
PROJECTED POWER FLOW: 527.2 KW 175.8 KVAR 555.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.0 KW 1.3 KVAR 1.6 KVA

LOAD TO: 115 F1 L15 FEEDER AMPS: 6 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 24.8 KW 7.9 KVAR 26.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 120 F1 L31 FEEDER AMPS: 123 VOLTAGE DROP: 10. XVD: .4 PROJECTED POWER FLOW: 481.6 KW 160.9 KVAR 507.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.6 KW 2.2 KVAR 2.7 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 24
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 110 F1 L14 FEEDER AMPS: 6 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 24.8 KW 7.9 KVAR 26.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 110 F1 L14 FEEDER AMPS: 123 VOLTAGE DROP: 10. %VD: .4
PROJECTED POWER FLOW: 480.0 KW 158.7 KVAR 505.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.6 KW 2.2 KVAR 2.7 KVA

LOAD TO: 121 F1 L63 FEEDER AMPS: 67 VOLTAGE DROP: 6. %VD: .3
PROJECTED POWER FLOW: 261.5 KW 86.9 KVAR 275.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .7 KVAR .9 KVA

LOAD TO: 122 F1 L64 FEEDER AMPS: 24 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 95.6 KW 31.3 KVAR 100.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD TO: 125 F1 L67 FEEDER AMPS: 27 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 104.6 KW 34.3 KVAR 110.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

DATE: 20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 122 F1 L64 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2373 XVD: 1.1 PROJECTED SPECIAL BUS LOAD: 95.6 KW 31.3 KVAR

LOAD FROM: 121 F1 L63 FEEDER AMPS: 24 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 95.6 KW 31.3 KVAR 100.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

==== BUS: 125 F1 L67 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2373 XVD: 1.1 PROJECTED SPECIAL BUS LOAD: 60.6 KW 19.6 KVAR

FEEDER AMPS: 27 VOLTAGE DROP: LOAD FROM: 121 F1 L63 1. XVD: .0 PROJECTED POWER FLOW: 104.6 KW 34.2 KVAR 110.1 KVA PF: .95 LAGGING .0 KW .1 KVAR .1 KVA LOSSES THRU FEEDER:

8 VOLTAGE DROP: 1. XVD: .0 LOAD TO: 130 F1 L613 FEEDER AMPS: PROJECTED POWER FLOW: 30.3 KW 9.8 KVAR 31.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

FEEDER AMPS: 4 VOLTAGE DROP: LOAD TO: 135 F1 L68 0. XVD: .0 PROJECTED POWER FLOW: 13.7 KW 4.9 KVAR 14.5 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 130 F1 L613 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2372 XVD: 1.2 PROJECTED SPECIAL BUS LOAD: 30.3 KW 9.8 KVAR

FEEDER AMPS: 8 VOLTAGE DROP: LOAD FROM: 125 F1 L67 1. XVD: .0 PROJECTED POWER FLOW: 30.3 KW 9.8 KVAR 31.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 135 F1 L68 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2373 %VD: 1.1 .989 ANGLE: -4.1 DEGREES 13.7 KW 4.9 KVAR PROJECTED SPECIAL BUS LOAD: 13.7 kg

FEEDER AMPS: 4 VOLTAGE DROP: LOAD FROM: 125 F1 L67 0. %VD: PROJECTED POWER FLOW: 13.7 KW 4.9 KVAR 14.5 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA DATE:20 NOV 95 TIME: 4 50 PM PAGE 26
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 200 FDR 2 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2441 %VD: -1.7

LOAD FROM: 60 SWGR S
PROJECTED POWER FLOW: 535.2 KW 178.6 KVAR 564.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD TO: 205 FEEDER AMPS: 133 VOLTAGE DROP: 17. XVD: .7
PROJECTED POWER FLOW: 535.2 KW 178.6 KVAR 564.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.9 KW 3.8 KVAR 4.8 KVA

LOAD FROM: 200 FDR 2 FEEDER AMPS: 133 VOLTAGE DROP: 17. %VD: .7
PROJECTED POWER FLOW: 532.3 KW 174.7 KVAR 560.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.9 KW 3.8 KVAR 4.8 KVA

LOAD TO: 210 2-3 PRI FEEDER AMPS: 60 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 238.4 KW 78.6 KVAR 251.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 235 F5 F29 FEEDER AMPS: 56 VOLTAGE DROP: 5. %VD: .2
PROJECTED POWER FLOW: 223.6 KW 73.7 KVAR 235.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .5 KVAR .6 KVA

LOAD FROM: 205 FEEDER AMPS: 60 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 238.2 KW 78.4 KVAR 250.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 215 2-4 PRI FEEDER AMPS: 37 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 148.6 KW 48.9 KVAR 156.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 27
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FRON: 225 2-3 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 210 2-3 PRI FEEDER AMPS: 37 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 148.6 KW 48.9 KVAR 156.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 220 2-5 PRI FEEDER AMPS: 15 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 59.0 KW 19.3 KVAR 62.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 230 2-4 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 215 2-4 PRI FEEDER AMPS: 15 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 59.0 KW 19.3 KVAR 62.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

NO LOAD SPECIFIED

DATE: 20 NOV 95 TIME: 4 50 PM PAGE 28
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 205 FEEDER AMPS: 56 VOLTAGE DROP: 5. XVD: .2
PROJECTED POWER FLOW: 223.2 KW 73.2 KVAR 234.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .5 KVAR .6 KVA

LOAD TO: 236 F2 F211 FEEDER AMPS: 45 VOLTAGE DROP: 2. XVD: .1
PROJECTED POWER FLOW: 178.5 KW 59.0 KVAR 188.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 235 F5 F29
PROJECTED POWER FLOW: 178.4 KW 58.8 KVAR 187.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 236 F2 F211 FEEDER AMPS: 22 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 89.1 KW 29.4 KVAR 93.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

==== BUS: 300 FDR 3 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2441 XVD: -1.7

LOAD FROM: 60 SWGR S
PROJECTED POWER FLOW: 372.7 KW 125.0 KVAR 393.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 29
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 301 F8 F311 FEEDER AMPS: 93 VOLTAGE DROP: 8. XVD: .3
PROJECTED POWER FLOW: 372.7 KW 125.0 KVAR 393.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .9 KW 1.2 KVAR 1.6 KVA

LOAD FROM: 300 FDR 3

PROJECTED POWER FLOW: 371.7 KW 123.8 KVAR 391.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .9 KW 1.2 KVAR 1.6 KVA

LOAD TO: 303 F713 FEEDER AMPS: 45 VOLTAGE DROP: 2. 2VD: .1
PROJECTED POWER FLOW: 180.5 KW 61.1 KVAR 190.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

==== BUS: 303 F713 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2431 XVD: -1.3

LOAD TO: 305 F8 F311 FEEDER AMPS: 45 VOLTAGE DROP: 4. XVD: .2
PROJECTED POWER FLOW: 180.4 KW 60.9 KVAR 190.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD FROM: 303 F713 FEEDER AMPS: 45 VOLTAGE DROP: 4. XVD: .2
PROJECTED POWER FLOW: 180.2 KW 60.6 KVAR 190.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD TO: 310 F3 19 FEEDER AMPS: 41 VOLTAGE DROP: 11. 2VD: .4
PROJECTED POWER FLOW: 164.8 KW 55.5 KVAR 173.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .6 KW .7 KVAR .9 KVA

DATE:20 NOV 95 TIME: 4 50 PN PAGE 30 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 400 FDR 4 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2441 XVD: -1.7

LOAD FROM: 60 SWGR S
PROJECTED POWER FLOW: 415.7 KW 139.5 KVAR 438.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 401 4-1 PRI FEEDER AMPS: 104 VOLTAGE DROP: 6. XVD: .2 PROJECTED POWER FLOW: 415.7 KW 139.5 KVAR 438.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .7 KW 1.0 KVAR 1.2 KVA

LOAD FROM: 400 FDR 4
PROJECTED POWER FLOW: 415.0 KW 138.5 KVAR 437.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .7 KW 1.0 KVAR 1.2 KVA

LOAD TO: 403 F1 F45
PROJECTED POWER FLOW: 337.7 KW 112.8 KVAR 356.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .6 KVAR .8 KVA

LOAD FROM: 401 4-1 PRI FEEDER AMPS: 84 VOLTAGE DROP: 5. XVD: .2
PROJECTED POWER FLOW: 337.2 KW 112.2 KVAR 355.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .6 KVAR .8 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 31
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 405 F4 10 FEEDER AMPS: 53 VOLTAGE DROP: 6. %VD: .2 PROJECTED POWER FLOW: 212.2 KW 71.2 KVAR 223.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .4 KW .5 KVAR .6 KVA

LOAD FROM: 403 F1 F45
PROJECTED POWER FLOW: 211.9 KW 70.6 KVAR 223.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .4 KW .5 KVAR .6 KVA

LOAD TO: 410 F417 UF1 FEEDER AMPS: 36 VOLTAGE DROP: 8. XVD: .3 PROJECTED POWER FLOW: 145.5 KW 48.2 KVAR 153.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .4 KW .5 KVAR .6 KVA

LOAD FROM: 405 F4 10 FEEDER AMPS: 36 VOLTAGE DROP: 8. XVD: .3
PROJECTED POWER FLOW: 145.1 KW 47.7 KVAR 152.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .4 KW .5 KVAR .6 KVA

LOAD TO: 415 4-6 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

==== BUS: 500 FDR 5 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2442 XVD: -1.7

LOAD FROM: 60 SWGR S FEEDER AMPS: 65 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 261.1 KW 91.7 KVAR 276.8 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 32 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 505 F4 F5 F6UF FEEDER AMPS: 65 VOLTAGE DROP: 9. %VD: .4 PROJECTED POWER FLOW: 261.1 KW 91.7 KVAR 276.8 KVA PF: .94 LAGGING

LOSSES THRU FEEDER: .7 KW 1.0 KVAR 1.2 KVA

==== BUS: 505 F4 F5 F6UF DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2433 XVD: -1.4

LOAD FROM: 500 FDR 5 FEEDER AMPS: 65 VOLTAGE DROP: 9. %VD: .4
PROJECTED POWER FLOW: 260.4 KW 90.7 KVAR 275.8 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .7 KW 1.0 KVAR 1.2 KVA

LOAD TO: 510 5-1 PRI FEEDER AMPS: 8 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 31.8 KW 10.3 KVAR 33.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 512 5-3 PRI FEEDER AMPS: 58 VOLTAGE DROP: 20. %VD: .8
PROJECTED POWER FLOW: 228.6 KW 80.5 KVAR 242.3 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: 1.4 KW 1.9 KVAR 2.4 KVA

LOAD FROM: 505 F4 F5 F6UF FEEDER AMPS: 8 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 31.8 KW 10.3 KVAR 33.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 505 F4 F5 F6UF FEEDER AMPS: 58 VOLTAGE DROP: 20. %VD: .8 PROJECTED POWER FLOW: 227.1 KW 78.5 KVAR 240.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.4 KW 1.9 KVAR 2.4 KVA

LOAD TO: 514 5-5 PRI FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 5.1 KW 2.0 KVAR 5.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 33
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 515 F5 L24 FEEDER AMPS: 53 VOLTAGE DROP: 14. XVD: .6
PROJECTED POWER FLOW: 207.9 KW 71.5 KVAR 219.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .9 KW 1.2 KVAR 1.5 KVA

LOAD FROM: 512 5-3 PRI FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 5.1 KW 2.0 KVAR 5.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 512 5-3 PRI FEEDER AMPS: 53 VOLTAGE DROP: 14. XVD: .6
PROJECTED POWER FLOW: 207.0 KW 70.3 KVAR 218.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .9 KW 1.2 KVAR 1.5 KVA

LOAD TO: 520 5-6 PRI FEEDER AMPS: 1 VOLTAGE DROP: 1. XVD: .0
PROJECTED POWER FLOW: 5.0 KW 2.0 KVAR 5.4 KVA PF: .93 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 525 F5 L31 FEEDER AMPS: 49 VOLTAGE DROP: 2. XVD: .1
PROJECTED POWER FLOW: 194.0 KW 65.0 KVAR 204.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 515 F5 L24 FEEDER AMPS: 1 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 5.0 KW 2.0 KVAR 5.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 34
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 515 F5 L24 FEEDER AMPS: 49 VOLTAGE DROP: 2. XVD: .1 PROJECTED POWER FLOW: 193.9 KW 64.9 KVAR 204.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 530 F5 L39 FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 5.0 KW 1.9 KVAR 5.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 531 F3 L41 FEEDER AMPS: 24 VOLTAGE DROP: 3. XVD: .1
PROJECTED POWER FLOW: 95.6 KW 31.5 KVAR 100.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 535 F537 L5 FEEDER AMPS: 22 VOLTAGE DROP: 6. XVD: .3
PROJECTED POWER FLOW: 85.3 KW 28.2 KVAR 89.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD FROM: 525 F5 L31 FEEDER AMPS: 1 VOLTAGE DROP: 0. 2VD: .0 PROJECTED POWER FLOW: 5.0 kW 1.9 KVAR 5.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 525 F5 L31 FEEDER AMPS: 24 VOLTAGE DROP: 3. %VD: .1 PROJECTED POWER FLOW: 95.5 KW 31.3 KVAR 100.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 535 F537 L5 FEEDER AMPS: 20 VOLTAGE DROP: 4. %VD: .2 PROJECTED POWER FLOW: 79.6 KW 26.4 KVAR 83.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

DATE: 20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS *****

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

BUS: 535 F537 L5 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2391 XVD: .4

LOAD FROM: 525 F5 L31 FEEDER AMPS: 22 VOLTAGE DROF: 0. 415.

PROJECTED POWER FLOW: 85.2 KW 28.0 KVAR 89.7 KVA PF: .95 LAGGING .2 KW

PROJECTED POWER FLOW: 79.5 KW 26.2 KVAR 83.7 KVA PF: .95 LAGGING .1 KW

LOAD TO: 540 F5 L5 UF1 FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 15.9 KW 6.0 KVAR 16.9 KVA PF: .94 LAGGING .0 KVA .0 KVAR LOSSES THRU FEEDER: .0 KW

FEEDER AMPS: 36 VOLTAGE DROP: 9. XVD: .4 LOAD TO: 555 143.8 KW 46.4 KVAR 151.1 KVA PF: .95 LAGGING .5 KW .4 KVAR .6 KVA PROJECTED POWER FLOW: .5 KW LOSSES THRU FEEDER:

BUS: 540 F5 L5 UF1 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2391 XVD: .4

EXECUTED SPECIAL BUS LOAD: 2.0 KW 1.0 KVAR

LOAD FROM: 535 F537 L5 FEEDER AMPS: 4 VOLTAGE DRUP: U. AVD. ...
PROJECTED POWER FLOW: 15.9 KW 5.9 KVAR 16.9 KVA PF: .94 LAGGING
LOSSES THRII FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 545 F5 L56 UF1 FEEDER AMPS: 3 VOLTAGE DROP: 3. XVD: .1 PROJECTED POWER FLOW: 11.9 KW 4.0 KVAR 12.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA .0 KW LOSSES THRU FEEDER:

1 VOLTAGE DROP: 0. %VD: _0 FEEDER AMPS: LOAD TO: 550 F5 L55 PROJECTED POWER FLOW: 2.0 KW 1.0 KVAR 2.2 KVA PF: .89 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA DATE:20 NOV 95 TIME: 4 50 PM PAGE 36 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 540 F5 L5 UF1 FEEDER AMPS: 3 VOLTAGE DROP: 3. XVD: .1
PROJECTED POWER FLOW: 11.9 KW 4.0 KVAR 12.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 547 5-16 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 540 F5 L5 UF1 FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 2.0 KW 1.0 KVAR 2.2 KVA PF: .89 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 535 F537 L5 FEEDER AMPS: 36 VOLTAGE DROP: 9. XVD: .4
PROJECTED POWER FLOW: 143.4 KW 46.0 KVAR 150.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .4 KVAR .6 KVA

LOAD TO: 560 RICH SUB FEEDER AMPS: 6 VOLTAGE DROP: 6. %VD: .3
PROJECTED POWER FLOW: 25.2 KW 8.4 KVAR 26.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 565 5-17 PRI FEEDER AMPS: 30 VOLTAGE DROP: 7. %VD: .3 PROJECTED POWER FLOW: 118.2 KW 37.7 KVAR 124.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .3 KVAR .4 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 37
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 560 RICH SUB DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2376 XVD: 1.0

LOAD FROM: 555 FEEDER AMPS: 6 VOLTAGE DROP: 6. XVD: .3
PROJECTED POWER FLOW: 25.1 KW 8.3 KVAR 26.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 562 RS SEC TRANSF AMPS: 6 VOLTAGE DROP: 3. XVD: .1
PROJECTED POWER FLOW: 25.1 KW 8.3 KVAR 26.5 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

==== BUS: 562 RS SEC DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7119 %VD: 1.1

LOAD FROM: 560 RICH SUB TRANSF AMPS: 2 VOLTAGE DROP: 8. 2VD: .1
PROJECTED POWER FLOW: 25.1 KW 8.2 KVAR 26.4 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

LOAD TO: 930 RICH SUB FEEDER AMPS: 2 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 25.1 KW 8.2 KVAR 26.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 555 FEEDER AMPS: 30 VOLTAGE DROP: 7. %VD: .3
PROJECTED POWER FLOW: 117.9 KW 37.4 KVAR 123.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .3 KVAR .4 KVA

LOAD TO: 570 5-18 PRI FEEDER AMPS: 2 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 7.8 KW 3.2 KVAR 8.5 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 575 F5 51 FEEDER AMPS: 27 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 105.2 kW 32.2 KVAR 110.0 KVA PF: .96 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 570 5-18 PRI DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2375 XVD: 1.1 PROJECTED SPECIAL BUS LOAD: 7.8 KW 3.2 KVAR

LOAD FROM: 565 5-17 PRI FEEDER AMPS: 2 VOLTAGE DROP: 0. XVD: PROJECTED POWER FLOW: 7.8 KW 3.2 KVAR 8.5 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

PROJECTED SPECIAL BUS LOAD: 2.0 KW .6 KVAR

LOAD FROM: 565 5-17 PRI FEEDER AMPS: 27 VOLTAGE DROP: 2. XVD: .1 PROJECTED POWER FLOW: 105.1 KW 32.2 KVAR 109.9 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR

LOAD TO: 580 F5 L85 FEEDER AMPS: 26 VOLTAGE DROP: 5. XVD: .2
PROJECTED POWER FLOW: 103.1 KW 31.5 KVAR 107.8 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .2 KVA

LOAD FROM: 575 F5 51 FEEDER AMPS: 26 VOLTAGE DROP: 5. %VD: PROJECTED POWER FLOW: 103.0 KW 31.4 KVAR 107.6 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .2 KVA

LOAD TO: 585 F5 L87 UF1 FEEDER AMPS: 6 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 23.4 KW 7.8 KVAR 24.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .0 KVA

LOAD TO: 590 F5 L8911 FEEDER AMPS: 18 VOLTAGE DROP: 4. XVD: .2 PROJECTED POWER FLOW: 71.8 KW 20.4 KVAR 74.7 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .1 KW .O KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 50 PM

CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER. COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 585 F5 L87 UF1 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2367 %VD: 1.4

PROJECTED SPECIAL BUS LOAD: 23.3 KW 7.8 KVAR

LOAD FROM: 580 F5 L85
PROJECTED POWER FLOW: 23.3 KW 7.8 KVAR 24.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

PROJECTED SPECIAL BUS LOAD: 2400 BUS VOLTAGE: 2364 XVD: 1.5

PROJECTED SPECIAL BUS LOAD: 39.8 KW 10.7 KVAR

LOAD FROM: 580 F5 L85
PROJECTED POWER FLOW: 71.7 KW 20.3 KVAR 74.5 KVA PF: .96 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 591 5-23 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POMER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LAGGING .0 KVA

LOAD FROM: 593 5-24 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LAGGING

LOAD TO: 595 F5 L8 25 FEEDER AMPS: 8 VOLTAGE DROP: 7. XVD: .3
PROJECTED POWER FLOW: 31.9 KW 9.7 KVAR 33.4 KVA PF: .96 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

==== BUS: 591 5-23 SEC DESIGN VOLTAGE: 208 BUS VOLTAGE: 205 XVD: 1.5
**** NO LOAD SPECIFIED ****

208 BUS VOLTAGE: 205 XVD: 1.5

ANGLE: -4.1 DEGREES

DATE:20 NOV 95 TIME: 4 50 PM PAGE 40
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 590 F5 L8911 FEEDER AMPS: 8 VOLTAGE DROP: 7. %VD: .3
PROJECTED POWER FLOW: 31.8 KW 9.6 KVAR 33.3 KVA PF: .96 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

==== BUS: 700 FDR 7 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2442 XVD: -1.7

LOAD FROM: 90 SWGR O FEEDER AMPS: 122 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 488.8 KW 165.8 KVAR 516.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .3 KVA

LOAD TO: 705 WELL9 POL FEEDER AMPS: 122 VOLTAGE DROP: 1. %VD: .1
PROJECTED POWER FLOW: 488.8 KW 165.8 KVAR 516.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .3 KVA

LOAD FROM: 700 FDR 7 FEEDER AMPS: 122 VOLTAGE DROP: 1. XVD: .1 PROJECTED POWER FLOW: 488.6 KW 165.5 KVAR 515.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .3 KVA .3 KVA

LOAD FROM: 707 7-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING
LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 709 F9 F73 FEEDER AMPS: 111 VOLTAGE DROP: 5. %VD: .2 PROJECTED POWER FLOW: 446.3 KW 151.1 KVAR 471.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .7 KW .9 KVAR 1.1 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 41
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 705 WELL9 POL FEEDER AMPS: 111 VOLTAGE DROP: 5. XVD: .2
PROJECTED POWER FLOW: 445.6 KW 150.2 KVAR 470.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .7 KW .9 KVAR 1.1 KVA

LOAD TO: 710 F7 L11 FEEDER AMPS: 90 VOLTAGE DROP: 19. XVD: .8
PROJECTED POWER FLOW: 360.1 KW 122.4 KVAR 380.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.2 KW 2.9 KVAR 3.7 KVA

BUS: 710 F7 L11 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2416 XVD: -.7

PROJECTED SPECIAL BUS LOAD: 85.1 KW 28.4 KVAR

LOAD FROM: 709 F9 F73

PROJECTED POWER FLOW: 357.9 KW 119.4 KVAR 377.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 2.2 KW 2.9 KVAR 3.7 KVA

LOAD TO: 715 F7 L13 FEEDER AMPS: 5 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 21.3 KW 7.1 KVAR 22.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

LOAD TO: 720 F713 FEEDER AMPS: 63 VOLTAGE DROP: 7. %VD: .3
PROJECTED POWER FLOW: 251.5 KW 84.0 KVAR 265.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .7 KVAR .9 KVA

BUS: 715 F7 L13 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2416 XVD: -.6

PROJECTED SPECIAL BUS LOAD: 21.3 KW 7.1 KVAR

LOAD FROM: 710 F7 L11 FEEDER AMPS: 5 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 21.3 KW 7.1 KVAR 22.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 720 F713 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2409 XVD: -.4 PROJECTED SPECIAL BUS LOAD: 31.2 KW 10.1 KVAR

LOAD FROM: 710 F7 L11 FEEDER AMPS: 63 VOLTAGE DROP: 7. XVD: .3 PROJECTED POWER FLOW: 251.0 KW 83.2 KVAR 264.4 KVA PF: .95 LAGGING .5 KW LOSSES THRU FEEDER: .7 KVAR .9 KVA

LOAD TO: 725 7-15 PRI FEEDER AMPS: 55 VOLTAGE DROP: 14. XVD: .6 PROJECTED POWER FLOW: 219.7 KW 73.2 KVAR 231.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.0 KW 1.3 KVAR 1.7 KVA

==== BUS: 725 7-15 PRI DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2395 XVD: PROJECTED SPECIAL BUS LOAD: 91.6 KW 29.9 KVAR

FEEDER AMPS: 55 VOLTAGE DROP: 14. XVD: .6 LOAD FROM: 720 F713 PROJECTED POWER FLOW: 218.7 KW 71.8 KVAR 230.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.0 KW 1.3 KVAR 1.7 KVA

LOAD TO: 730 F7 L43
PROJECTED POWER FLOW: FEEDER AMPS: 3 VOLTAGE DROP: 0. XVD: .0 11.9 KW 4.0 KVAR 12.6 KVA PF: .95 LAGGING .0 KW . .0 KVAR .0 KVA LOSSES THRU FEEDER:

LOAD TO: 735 F7 L54 FEEDER AMPS: 29 VOLTAGE DROP: 2. XVD: .1 PROJECTED POWER FLOW: 115.2 KW 38.0 KVAR 121.2 KVA PF: .95 LAGGING .1 KVA .1 KVA LOSSES THRU FEEDER:

==== BUS: 730 F7 L43 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2395 XVD: PU BUS VOLTAGE: .998 ANGLE: -3.8 DEGREES PROJECTED SPECIAL BUS LOAD: 11.9 KW 4.0 KVAR

LOAD FROM: 725 7-15 PRI FEEDER AMPS: 3 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 11.9 KW 4.0 KVAR 12.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 43
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 725 7-15 PRI FEEDER AMPS: 29 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 115.1 KW 37.9 KVAR 121.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 740 7-17 PRI FEEDER AMPS: 4 VOLTAGE DROP: 1. 2VD: .0 PROJECTED POWER FLOW: 16.9 KW 5.0 KVAR 17.6 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 745

PROJECTED POWER FLOW: 77.3 KW 25.9 KVAR 81.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 735 F7 L54

PROJECTED POWER FLOW: 16.9 KW 5.0 KVAR 17.6 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 735 F7 L54

PROJECTED POWER FLOW: 77.2 KW 25.8 KVAR 81.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 750 F7 L72
PROJECTED POWER FLOW: 27.8 KW 8.9 KVAR 29.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 760 7-21 PRI FEEDER AMPS: 13 VOLTAGE DROP: 4. %VD: .2 PROJECTED POWER FLOW: 49.5 KW 16.9 KVAR 52.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 45
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 770 7-23 PRI FEEDER AMPS: 4 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 16.8 KW 5.9 KVAR 17.8 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 765 7-22 PRI FEEDER AMPS: 4 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 16.8 KW 5.9 KVAR 17.8 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 775 7-24 PRI FEEDER AMPS: 3 VOLTAGE DROP: 0. 2VD: .0 PROJECTED POWER FLOW: 11.8 KW 3.9 KVAR 12.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 770 7-23 PRI FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 11.8 KW 3.9 KVAR 12.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 800 FDR 8 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2442 XVD: -1.7

LOAD FROM: 90 SWGR O FEEDER AMPS: 102 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 407.5 KW 144.4 KVAR 432.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 805 F8 L11 FEEDER AMPS: 102 VOLTAGE DROP: 40. %VD: 1.7 PROJECTED POWER FLOW: 407.5 KW 144.4 KVAR 432.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: 5.1 KW 6.8 KVAR 8.5 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 46
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 800 FDR 8 FEEDER AMPS: 102 VOLTAGE DROP: 40. 2VD: 1.7
PROJECTED POWER FLOW: 402.4 KW 137.6 KVAR 425.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 5.1 KW 6.8 KVAR 8.5 KVA

LOAD TO: 810 F8 L23 FEEDER AMPS: 95 VOLTAGE DROP: 20. 2VD: .8
PROJECTED POWER FLOW: 372.3 KW 127.6 KVAR 393.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.4 KW 3.2 KVAR 4.0 KVA

LOAD FRON: 805 F8 L11
PROJECTED POWER FLOW: 369.9 KW 124.4 KVAR 390.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 2.4 KW 3.2 KVAR 4.0 KVA

LOAD TO: 815 F8 L25

PROJECTED POWER FLOW:
LOSSES THRU FEEDER:

FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0

4.2 KW 1.4 KVAR 4.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 817 F8 22 FEEDER AMPS: 75 VOLTAGE DROP: 3. 2VD: .1
PROJECTED POWER FLOW: 293.8 KW 99.4 KVAR 310.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .4 KVAR .5 KVA

LOAD FROM: 810 F8 L23

PROJECTED POWER FLOW:
LOSSES THRU FEEDER:

FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0

4.2 KW 1.4 KVAR 4.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 48
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

PATHURED AND LINE DUAL TOWN LEDM WAVELED

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 905 STEP SEC TRANSF AMPS: 109 VOLTAGE DROP: 16. %VD: .7
PROJECTED POWER FLOW: 436.1 KW 153.5 KVAR 462.3 KVA PF: .94 LAGGING
LOSSES THRU TRANSF: 1.1 KW 6.2 KVAR 6.3 KVA

LOAD FROM: 900 FDR 9

TRANSF AMPS: 36 VOLTAGE DROP: 48. XVD: .7

PROJECTED POWER FLOW: 435.0 KW 147.3 KVAR 459.2 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: 1.1 KW 6.2 KVAR 6.3 KVA

LOAD TO: 910 F 96 FEEDER AMPS: 36 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 435.0 KW 147.3 KVAR 459.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD FROM: 905 STEP SEC FEEDER AMPS: 36 VOLTAGE DROP: 5. XVD: .1
PROJECTED POWER FLOW: 434.8 KW 147.0 KVAR 458.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD TO: 915 F910 FEEDER AMPS: 35 VOLTAGE DROP: 6. XVD: .1
PROJECTED POWER FLOW: 416.6 KW 141.0 KVAR 439.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .4 KVAR .4 KVA

LOAD FROM: 910 F 96

PROJECTED POWER FLOW: 416.3 KW 140.7 KVAR 439.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .4 KVAR .4 KVA

LOAD TO: 920 F940 FEEDER AMPS: 30 VOLTAGE DROP: 29. XVD: .4
PROJECTED POWER FLOW: 355.6 KW 120.7 KVAR 375.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.1 KW 1.4 KVAR 1.8 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 49
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

BUS: 920 F940 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7237 XVD: -.5

PROJECTED SPECIAL BUS LOAD: 10.4 KW 3.4 KVAR

LOAD FROM: 915 F910

PROJECTED POWER FLOW: 354.5 KW 119.3 KVAR 374.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.1 KW 1.4 KVAR 1.8 KVA

LOAD TO: 945 F949 L1 FEEDER AMPS: 29 VOLTAGE DROP: 5. XVD: .1
PROJECTED POWER FLOW: 344.2 KW 115.9 KVAR 363.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

BUS: 925 () DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7117 XVD: 1.2

PU BUS VOLTAGE: .988 ANGLE: -4.1 DEGREES

LOAD FROM: 930 RICH SUB FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 25.1 KW 8.2 KVAR 26.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 935 9-8 PRI FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POMER FLOW: 25.1 KW 8.2 KVAR 26.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

BUS: 930 RICH SUB DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7119 XVD: 1.1

LOAD FROM: 562 RS SEC FEEDER AMPS: 2 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 25.1 KW 8.2 KVAR 26.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 925 ()

PROJECTED POWER FLOW:
LOSSES THRU FEEDER:

FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0

8.2 KVAR 26.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 50 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 925 () FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 25.1 KW 8.2 KVAR 26.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 940 9-9 PRI FEEDER AMPS: 1 VOLTAGE DROP: 8. XVD: .1
PROJECTED POWER FLOW: 15.0 KW 4.9 KVAR 15.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 935 9-8 PRI FEEDER AMPS: 1 VOLTAGE DROP: 8. XVD: .1 PROJECTED POWER FLOW: 15.0 KW 4.9 KVAR 15.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 920 F940 FEEDER AMPS: 29 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 344.0 KW 115.6 KVAR 362.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD TO: 950 9-12 PRI FEEDER AMPS: 1 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 8.3 KW 2.7 KVAR 8.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 960 9-13 PRI FEEDER AMPS: 28 VOLTAGE DROP: 32. %VD: .4 PROJECTED POWER FLOW: 330.3 KW 111.1 KVAR 348.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.4 KW .7 KVAR 1.6 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 51
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 945 F949 L1 FEEDER AMPS: 1 VOLTAGE DROP: 2. XVD: .0 PROJECTED POWER FLOW: 8.3 KW 2.7 KVAR 8.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 955 9-11 PRI FEEDER AMPS: VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 4.1 KW 1.4 KVAR 4.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 950 9-12 PRI FEEDER AMPS: VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 4.1 KW 1.4 KVAR 4.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 945 F949 L1 FEEDER AMPS: 28 VOLTAGE DROP: 32. %VD: .4
PROJECTED POWER FLOW: 328.9 KW 110.5 KVAR 346.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.4 KW .7 KVAR 1.6 KVA

LOAD TO: 963 9-14 PRI FEEDER AMPS: 26 VOLTAGE DROP: 105. XVD: 1.5 PROJECTED POWER FLOW: 311.1 KW 104.6 KVAR 328.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 4.4 KW 2.1 KVAR 4.8 KVA

LOAD FROM: 960 9-13 PRI FEEDER AMPS: 26 VOLTAGE DROP: 105. %VD: 1.5 PROJECTED POWER FLOW: 306.7 KW 102.5 KVAR 323.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 4.4 KW 2.1 KVAR 4.8 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 52 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 966 9-15 PRI FEEDER AMPS: 25 VOLTAGE DROP: 29. %VD: .4
PROJECTED POWER FLOW: 289.4 KW 96.8 KVAR 305.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.1 KW .5 KVAR 1.2 KVA

LOAD FROM: 963 9-14 PRI FEEDER AMPS: 25 VOLTAGE DROP: 29. %VD: .4
PROJECTED POWER FLOW: 288.3 KW 96.3 KVAR 304.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.1 KW .5 KVAR 1.2 KVA

LOAD TO: 969 SW UP FEEDER AMPS: 25 VOLTAGE DROP: 8. XVD: .1 PROJECTED POWER FLOW: 286.3 KW 95.6 KVAR 301.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD FROM: 966 9-15 PRI FEEDER AMPS: 25 VOLTAGE DROP: 8. XVD: .1
PROJECTED POWER FLOW: 286.0 KW 95.5 KVAR 301.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD TO: 972 SW DOWN FEEDER AMPS: 25 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 286.0 KW 95.5 KVAR 301.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 969 SW UP FEEDER AMPS: 25 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 286.0 KW 95.5 KVAR 301.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 975 9-16 PRI FEEDER AMPS: 25 VOLTAGE DROP: 109. XVD: 1.5 PROJECTED POWER FLOW: 286.0 KW 95.5 KVAR 301.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 4.2 KW 2.0 KVAR 4.7 KVA

DATE:20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 975 9-16 PRI DESIGN VOLTAGE: 7200 BUS VOLTAGE: 6949 XVD: 3.5 .965 ANGLE: -4.2 DEGREES

FEEDER AMPS: 25 VOLTAGE DROP: 109. XVD: 1.5 LOAD FROM: 972 SW DOWN PROJECTED POWER FLOW: 281.8 KW 93.5 KVAR 296.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 4.2 KW 2.0 KVAR 4.7 KVA

LOAD TO: 977 9-19 PRI FEEDER AMPS: 1 VOLTAGE DROP: 7. XVD: .1 PROJECTED POWER FLOW: 15.3 KW 5.0 KVAR 16.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA

LOAD TO: 980 FEEDER AMPS: 23 VOLTAGE DROP: 43. XVD: .6 PROJECTED POWER FLOW: 266.5 KW 88.4 KVAR 280.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.6 KW .8 KVAR 1.7 KVA

ETTE BUS: 977 9-19 PRI DESIGN VOLTAGE: 7200 BUS VOLTAGE: 6942 XVD: 3.6 PROJECTED SPECIAL BUS LOAD: 15.3 KW 5.0 KVAR

FEEDER AMPS: 1 VOLTAGE DROP: LOAD FROM: 975 9-16 PRI 7. XVD: PROJECTED POWER FLOW: 15.3 KW 5.0 KVAR 16.1 KVA PF: .95 LAGGING .0 KVAR LOSSES THRU FEEDER: .0 KW .O KVA

==== BUS: 980 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 6906 XVD: 4.1 ANGLE: -4.3 DEGREES

LOAD FROM: 975 9-16 PRI LOAD FROM: 975 9-16 PRI FEEDER AMPS: 23 VOLTAGE DROP: 43. %VD: .6
PROJECTED POWER FLOW: 264.9 KW 87.7 KVAR 279.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.6 KW .8 KVAR 1.7 KVA

LOAD TO: 982 9-20 PRI PROJECTED POWER FLOW: FEEDER AMPS: VOLTAGE DROP: 1. XVD: .0 5.7 KW 1.9 KVAR 6.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .0 KVA

LOAD TO: 983 9-25 PRI FEEDER AMPS: 23 VOLTAGE DROP: 72. XVD: 1.0 PROJECTED POWER FLOW: 259.2 KW 85.8 KVAR 273.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 2.6 KW 1.2 KVAR 2.9 KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 54
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 980 FEEDER AMPS: VOLTAGE DROP: 1. XVD: .0
PROJECTED POWER FLOW: 5.7 KW 1.9 KVAR 6.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

 LOAD FROM:
 980
 FEEDER AMPS:
 23 VOLTAGE DROP:
 72. %VD:
 1.0

 PROJECTED POWER FLOW:
 256.6 KW
 84.6 KVAR
 270.2 KVA
 PF:
 .95 LAGGING

 LOSSES THRU FEEDER:
 2.6 KW
 1.2 KVAR
 2.9 KVA

LOAD TO: 984 9-25 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 985 9-34 PRI FEEDER AMPS: 10 VOLTAGE DROP: 10. %VD: .1 PROJECTED POWER FLOW: 110.1 KW 36.4 KVAR 116.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD FROM: 983 9-25 PRI FEEDER AMPS: 10 VOLTAGE DROP: 10. XVD: .1 PROJECTED POWER FLOW: 110.0 KW 36.3 KVAR 115.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 987 FEEDER AMPS: 9 VOLTAGE DROP: 30. %VD: .4
PROJECTED POWER FLOW: 100.4 KW 33.2 KVAR 105.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .4 KW .2 KVAR .5 KVA

PAGE 55 DATE: 20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

=== BUS: 987 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 6794 %VD: 5.6\$ ERERESEE PU BUS VOLTAGE: .944 ANGLE: -4.4 DEGREES

9 VOLTAGE DROP: 30. XVD: LOAD FROM: 985 9-34 PRI FEEDER AMPS: 9 VOLTAGE DROP: 30. 2VD: .4
PROJECTED POWER FLOW: 99.9 KW 33.0 KVAR 105.2 KVA PF: .95 LAGGING FEEDER AMPS: .4 KW .5 KVA LOSSES THRU FEEDER: .2 KVAR

LOAD TO: 990 9-26 PRI FEEDER AMPS: 4 VOLTAGE DROP: 19. XVD: .3 PROJECTED POWER FLOW: 41.0 KW 13.5 KVAR 43.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

5 VOLTAGE DROP: 75. %VD: 1.0 FEEDER AMPS: LOAD TO: 992 PROJECTED POWER FLOW: 58.9 KW 19.5 KVAR 62.1 KVA PF: .95 LAGGING .3, KVAR .7 KVA .6 KW LOSSES THRU FEEDER:

FEEDER AMPS: 4 VOLTAGE DROP: 19. XVD: .3 LOAD FROM: 987 40.9 KW 13.4 KVAR 43.0 KVA PF: .95 LAGGING .1 KW .1 KVAR .1 KVA PROJECTED POWER FLOW: LOSSES THRU FEEDER:

DESIGN VOLTAGE: 7200 BUS VOLTAGE: 6719 XVD: 6.7\$ ==== BUS: 992 ANGLE: -4.5 DEGREES

FEEDER AMPS: 5 VOLTAGE DROP: 75. XVD: 1.0 LOAD FROM: 987 PROJECTED POWER FLOW: 58.3 KW 19.2 KVAR 61.4 KVA PF: .95 LAGGING .7 KVA LOSSES THRU FEEDER: .6 KW .3 KVAR

FEEDER AMPS: 4 VOLTAGE DROP: 52. %VD: TO: 995 9-30 PRI PROJECTED POWER FLOW: 40.0 KW 13.1 KVAR 42.1 KVA PF: .95 LAGGING .0 KVAR .3 KVA .3 KW LOSSES THRU FEEDER:

LOAD TO: 997 9-32 PRI FEEDER AMPS: 2 VOLTAGE DROP: 4. XVD: .1 PROJECTED POWER FLOW: 18.3 KW 6.1 KVAR 19.3 KVA PF: .95 LAGGING .O KVAR .0 KW .O KVA LOSSES THRU FEEDER:

DATE:20 NOV 95 TIME: 4 50 PM CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS *****

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 992 FEEDER AMPS: 4 VOLTAGE DROP: 52. XVD: .7 39.7 KW 13.0 KVAR 41.8 KVA PF: .95 LAGGING PROJECTED POWER FLOW: LOSSES THRU FEEDER: .3 KW .O KVAR .3 KVA

LOAD FROM: 992 FEEDER AMPS: 2 VOLTAGE DROP: 4. XVD: .1 PROJECTED POWER FLOW: 18.3 KW 6.1 KVAR 19.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA

DATE:20 NOV 95 TIME: 4 50 PM PAGE 57
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS#	NAME	BASE VOLT	PU VOLT	BUS#	NAME	BASE VOLT	PU VOLT
10	GEN G1	2400.00	.1.018	20	GEN G2	2400.00	1.018
30	GEN G3	2400.00	1.018	40	GEN G4	2400.00	1.018
50	GEN G5	2400.00	1.018	60	SWGR S	2400.00	1.018
62	SS-1 SEC	480.00	1.018	64	MCC 4&5	480.00	1.018
66	SM1A BLUE	2400.00	1.018	68	BLUE SSS	480.00	1.018
70	SWGR N	2400.00	1.018	80	UTILITY	24900.00	1.000
85	T1 SEC	2400.00	1.018	90	SWGR O	2400.00	1.018
100	FDR 1	2400.00	1.017	105	F1F12 14	2400.00	.999
110	F1 L14	2400.00	.996	115	F1 L15	2400.00	.9 96
120	F1 L31	2400.00	.992	121	F1 L63	2400.00	.989
122	F1 L64	2400.00	.989	125	F1 L67	2400.00	-989
130	F1 L613	2400.00	.988	135	F1 L68	2400.00	.989
200	FDR 2	2400.00	1.017	205		2400.00	1.010
210	2-3 PRI	2400.00	1.009	215	2-4 PRI	2400.00	1.009
220	2-5 PRI	2400.00	1.009	225	2-3 SEC	480.00	1.009
230	2-4 SEC	208.00	1.009	235	F5 F29	2400.00	1.008
236	F2 F211	2400.00	1.007	240	F1 F213	2400.00	1.006
300	FDR 3	2400.00	1.017	301	F8 F311	2400.00	1.014
303	F713	2400.00	1.013	305	F8 F311	2400.00	1.011
310	F3 19	2400.00	1.007	400	FDR 4	2400.00	1.017
401	4-1 PRI	2400.00	1.015	403	F1 F45	2400.00	1.013
405	F4 10	2400.00	1.011	410	F417 UF1	2400.00	1.007
415	4-6 SEC	208.00	1.007	500	FDR 5	2400.00	1.017
505	F4 F5 F6UF	2400.00	1.014	510	5-1 PRI	2400.00	1.013
512	5-3 PRI	2400.00	1.005	514	5-5 PRI	2400.00	1.005
515	F5 L24	2400.00	1.000	520	5-6 PRI	2400.00	.999
525	F5 L31	2400.00	.999	530	F5 L39	2400.00	.999
531	F3 L41	2400.00	.998	535	F537 L5	2400.00	.996
540	F5 L5 UF1	2400.00	.99 6	545	F5 L56 UF1	2400.00	.995
547	5-16 SEC	208.00	.995	550	F5 L55	2400.00	.996
555		2400.00	.993	560	RICH SUB	2400.00	.990
562	RS SEC	7200.00	.989	565	5-17 PRI	2400.00	.99 0
570	5-18 PRI	2400.00	.989	575	F5 51	2400.00	.989
580	F5 L85	2400.00	.987	585	F5 L87 UF1	2400.00	.986
59 0	F5 L8911	2400.00	.985	591	5-23 SEC	208.00	.985
593	5-24 SEC	208.00	.985	59 5	F5 L8 25	2400.00	.982
600	O/H BUS	2400.00	1.018	700	FDR 7	2400.00	1.017
705	WELL9 POL	2400.00	1.017	707	7-1 SEC	480.00	1.017
709	F9 F73	2400.00	1.015	710	F7 L11	2400.00	1.007
715	F7 L13	2400.00	1.006	720	F713	2400.00	1.004

DATE:20 NOV 95 TIME: 4 50 PM PAGE 58
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW BUS DATA SUMMARY

BUS#	NAME	BASE VOLT	PU VOLT	BUS#	NAME	BASE VOLT	PU VOLT
725	7-15 PRI	2400.00	.998	730	F7 L43	2400.00	.998
735	F7 L54	2400.00	.9 97	740	7-17 PRI	2400.00	.997
745		2400.00	.996	750	F7 L72	2400.00	.996
75 5	F7-33	2400.00	.99 6	760	7-21 PRI	2400.00	.994
765	7-22 PRI	2400.00	.994	770	7-23 PRI	2400.00	-994
775	7-24 PRI	2400.00	.9 93	800	FDR 8	2400.00	1.017
8 05	F8 L11	2400.00	1.001	810	F8 L23	2400.00	.9 92
815	F8 L25	2400.00	.99 2	817	F8 22	2400.00	.991
820	F8 30 UF1	2400.00	.98 5	825	8-22 PRI	2400.00	.979
900	FDR 9	2400.00	1.017	905	STEP SEC	7200.00	1.011
910	F 96	7200.00	1.010	915	F910	7200.00	1.009
920	F940	7200.00	1.005	925	()	7200.00	.988
930	RICH SUB	7200.00	.98 9	935	9-8 PRI	7200.00	.988
940	9-9 PRI	7200.00	.9 87	945	F949 L1	7200.00	1.004
950	9-12 PRI	7200.00	1.004	955	9-11 PRI	7200.00	1.004
960	9-13 PRI	7200.00	1.000	963	9-14 PRI	7200.00	.985
966	9-15 PRI	7200.00	.981	969	SW UP	7200.00	.98 0
972	SW DOWN	7200.00	.98 0	975	9-16 PRI	7200.00	.9 65
977	9-19 PRI	7200.00	.9 64	980		7200.00	.9 59
982	9-20 PRI	7200.00	.9 59	983	9-25 PRI	7200.00	.949
984	9-25 SEC	208.00	.949	985	9-34 PRI	7200.00	.948
987		7200.00	.9 44	990	9-26 PRI	7200.00	.941
992		7200.00	.933	995	9-30 PRI	7200.00	.926
997	9-32 PRI	7200.00	.933				

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
10	GEN G1	60	SWGR S	FDR	.03	236.34	1000.00	50.83
20	GEN G2	60	SWGR S	FDR	.00	-00	.00	.00
30	GEN G3	60	SWGR S	FDR	.00	.00	.00	.00
40	GEN G4	70	SWGR N	FDR	.00	.00	-00	.00
50	GEN G5	70	SWGR N	FDR	.00	.00	.00	-00
60	SWGR S	10	GEN G1	FDR	.03	236.34	999.75	50.83
60	SWGR S	20	GEN G2	FDR	.00	.00	.00	.00
60	SWGR S	30	GEN G3	FDR	.00	-00	.00	-00
60	SWGR S	62	SS-1 SEC	TX2	.01	-11	.48	UNKNOW
60	SWGR S	66	SM1A BLUE	FDR	.00	.17	.74	-04
60	SWGR S	70	SWGR N	FDR	-01	317.30	1342.21	68.24
60	SWGR S	100	FDR 1	FDR	.06	136.43	577-11	59.32
60	SWGR S	200	FDR 2	FDR	.05	133.46	564.54	58.03

DATE:20 NOV 95 TIME: 4 50 PM PAGE 59
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
60	SWGR S	300	FDR 3	FDR	.04	92.96	393.22	40.42
60	SWGR S	400	FDR 4	FDR	.04	103.70	438.67	45.09
60	SWGR S	500	FDR 5	FDR	.03	65.44	276.83	28.45
62	SS-1 SEC	60	SWGR S	TX2	.01	.57	.48	UNKNOW
62	SS-1 SEC	64	MCC 4&5	FDR	.00	.57	.48	.12
64	NCC 485	62	SS-1 SEC	FDR	.00	.57	.48	.12
64	MCC 4&5	68	BLUE SSS	FDR	.00	.87	.74	.19
64	MCC 4&5	90	SWGR O	TX2	.01	1.44	1.22	UNKNOW
66	SM1A BLUE	60	SWGR S	FDR	.00	.17	.74	.04
66	SM1A BLUE	68	BLUE SSS	TX2	.01	.17	.74	UNKNOW
68	BLUE SSS	64	MCC 4&5	FDR	.00	.87	.74	.19
68	BLUE SSS	66	SHIA BLUE	TX2	.01	.87	.74	UNKNOW
70	SWGR N	40	GEN G4	FDR	.00	.00	.00	.00
70	SWGR N	50	GEN G5	FDR	.00	.00	.00	.00
70	SWGR N	60	SWGR S	FDR	.01	317.30	1342.29	68.24
70	SWGR N	90	SWGR O	FDR	.01	317.30	1342.29	85.76
80	UTILITY	85	T1 SEC	TX2	-1.81	65.61	2829.48	UNKNOW
85	T1 SEC	80	UTILITY	TX2	-1.81	646.64	2736.62	UNKNOW
85	T1 SEC	90	SWGR O	FDR	.03	646.64	2736.62	174.77
90	SWGR O	64	MCC 4&5	TX2	.01	.29	1.22	UNKNOW
90	SWGR O	70	SWGR N	FDR	.01	317.30	1342.48	85.76
90	SWGR O	85	T1 SEC	FDR	.03	646.64	2735.86	174.77
90	SWGR O	600	O/H BUS	FDR	.00	00	.00	.00
90	SWGR O	700	FDR 7	FDR	.05	122.07	516.45	53.07
90	SWGR O	800	FDR 8	FDR	.04	102.22	432.47	44.44
90	SWGR O	900	FDR 9	FDR	.04	109.31	462.49	47.53
100	FDR 1	60	SWGR S	FDR	.06	136.43	576.79	59.32
100	FDR 1	105	F1F12 14	FDR	1.83	136.43	576.79	38.22
105	F1F12 14	100	FDR 1	FDR	1.83	136.43	566.41	38.22
105	F1F12 14	110	F1 L14	FDR	.24	134.19	557.11	37.59
110	F1 L14	105	F1F12 14	FDR	.24	134.19	555.77	37.59
110	F1 L14	115	F1 L15	FDR	.02	6.29	26.05	1.76
110	F1 L14	120	F1 L31	FDR	-44	122.59	507.75	34.34
115	F1 L15	110	F1 L14	FDR	.02	6.29	26.05	1.76
120	F1 L31	110	F1 L14	FDR	.44	122.59	505.52	34.34
120	F1 L31	121	F1 L63	FDR	.27	66.83	275.56	18.72
121	F1 L63	120	F1 L31	FDR	.27	66.83	274.82	18.72
121	F1 L63	122	F1 L64	FDR	.04	24.47	100.64	6.85
121	F1 L63	125	F1 L67	FDR	.05	26.78	110.11	7.50
122	F1 L64	121	F1 L63	FDR	.04	24.47	100.60	6.85

DATE:20 NOV 95 TIME: 4 50 PM PAGE 60 CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	то	NAME	TYPE	VD%	AMPS	KVA	RATING%
125	F1 L67	121	F1 L63	FDR	.05	26.78	110.06	7.50
125	F1 L67	130	F1 L613	FDR	.05	7.74	31.83	2.17
125	F1 L67	135	F1 L68	FDR	.01	3.54	14.53	.99
130	F1 L613	125	F1 L67	FDR	.05	7.74	31.82	2.17
135	F1 L68	125	F1 L67	FDR	.01	3.54	14.53	.99
200	FDR 2	60	SWGR S	FDR	.05	133.46	564.24	58.03
200	FDR 2	205		FDR	.71	133.46	564.24	37.38
205		200	FDR 2	FDR	.71	133.46	560.29	37.38
205		210	2-3 PRI	FDR	.08	59.79	251.02	16.75
205		235	F5 F29	FDR	.20	56.07	235.40	15.71
210	2-3 PRI	205		FDR	.08	59.79	250.82	16.75
210	2-3 PRI	215	2-4 PRI	FDR	.02	37.30	156.47	10.45
210	2-3 PRI	225	2-3 SEC	TX2	.00	.00	-00	UNKNOW
215	2-4 PRI	210	2-3 PRI	FDR	.02	37.30	156.44	10.45
215	2-4 PRI	. 220	2-5 PRI	FDR	.03	14.81	62.12	4.15
215	2-4 PRI	230	2-4 SEC	TX2	.00	.00	-00	UNKNOW
220	2-5 PRI	215	2-4 PRI	FDR	.03	14.81	62.10	4.15
225	2-3 SEC	210	2-3 PRI	TX2	.00	.00	.00	UNKNOW
230	2-4 SEC	215	2-4 PRI	TX2	.00	.00	.00	UNKNOW
235	F5 F29	205		FDR	.20	56.07	234.94	15.71
235	F5 F29	236	F2 F211	FDR	.10	44.88	188.03	12.57
236	F2 F211	235	F5 F29	FDR	.10	44.88	187.85	12.57
236	F2 F211	240	F1 F213	FDR	.05	22.43	93.90	6.28
240	F1 F213	236	F2 F211	FDR	.05	22.43	93.85	6.28
300	FDR 3	60	SWGR S	FDR	.04	92.96	393.08	40.42
300	FDR 3	301	F8 F311	FDR	.33	92.96	393.08	26.04
301	F8 F311	300	FDR 3	FDR	.33	92.96	391.80	26.04
301	F8 F311	303	F713	FDR	.08	45.22	190.57	12.67
303	F713	301	F8 F311	FDR	.08	45.22	190.42	12.67
303	F713	305	F8 F311	FDR	.16	45.22	190.42	12.67
305	F8 F311	303	F713	FDR	.16	45.22	190.12	12.67
305	FB F311	310	F3 19	FDR	.44	41.37	173.94	11.59
310	F3 19	305	F8 F311	FDR	-44	41.37	173.18	11.59
400	FDR 4	60	SWGR S	FDR	.04	103.70	438.48	45.09
400	FDR 4	401	4-1 PRI	FDR	.23	103.70	438.48	29.05
401	4-1 PRI	400	FDR 4	FDR	.23	103.70	437.49	29.05
401	4-1 PRI	403	F1 F45	FDR	.19	84.40	356.06	23.64
403	F1 F45	401	4-1 PRI	FDR	-19	84.40	355.40	23.64
403	F1 F45	405	F4 10	FDR	.24	53.16	223.85	14.89
405	F4 10	403	F1 F45	FDR	.24	53.16	223.33	14.89

DATE: 20 NOV 95 TIME: 4 50 PM PAGE 61
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
405	F4 10	410	F417 UF1	FDR	.32	36.48	153.25	10.22
410	F417 UF1	405	F4 10	FDR	.32	36.48	152.75	10.22
410	F417 UF1	415	4-6 SEC	TX2	.00	.00	_00	UNKNOW
415	4-6 SEC	410	F417 UF1	TX2	.00	.00	.00	UNKNOW
500	FDR 5	60	SWGR S	FDR	.03	65.44	276.76	28.45
500	FDR 5	505	F4 F5 F6UF	FDR	.37	65.44	276.76	18.33
505	F4 F5 F6UF	500	FDR 5	FDR	.37	65.44	275.76	18.33
505	F4 F5 F6UF	510	5-1 PRI	FDR	.02	7.94	33.46	2.22
505	F4 F5 F6UF	512	5-3 PRI	FDR	.83	57.51	242.31	16.11
510	5-1 PRI	505	F4 F5 F6UF	FDR	.02	7.94	33.46	2.22
512	5-3 PRI	505	F4 F5 F6UF	FDR	.83	57.51	240.33	16.11
512	5-3 PRI	514	5-5 PRI	FDR	.01	1.30	5.44	.36
512	5-3 PRI	515	F5 L24	FDR	.56	52.61	219.87	14.74
514	5-5 PRI	512	5-3 PRI	FDR	.01	1.30	5.44	.36
515	F5 L24	512	5-3 PRI	FDR	.56	52.61	218.63	14.74
515	F5 L24	520	5-6 PRI	FDR	.04	1.29	5.37	1.23
515	F5 L24	525	F5 L31	FDR	.09	49.24	204.65	13.79
520	5-6 PRI	515	F5 L24	FDR	.04	1.29	5.37	1.23
525	F5 L31	515	F5 L24	FDR	.09	49.24	204.47	13.79
525	F5 L31	530	F5 L39	FDR	.02	1.28	5.33	.36
525	F5 L31	531	F3 L41	FDR	.11	24.24	100.64	6.79
525	F5 L31	535	F537 L5	FDR	.27	21.65	89.90	6.06
530	F5 L39	525	F5 L31	FDR	.02	1.28	5.33	.36
531	F3 L41	525	F5 L31	FDR	.11	24.24	100.53	6.79
531	F3 L41	535	F537 L5	FDR	.16	20.21	83.84	5.66
535	F537 L5	525	F5 L31	FDR	.27	21.65	89.66	6.06
535	F537 L5	531	F3 L41	FDR	.16	20.21	83.71	5.66
53 5	F537 L5	540	F5 L5 UF1	FDR	.01	4.09	16.94	1.15
535	F537 L5	555		FDR	.36	36.5 0	151.14	13.22
540	F5 L5 UF1	535	F537 L5	FDR	.01	4.09	16.94	1.15
540	F5 L5 UF1	545	F5 L56 UF1	FDR	.14	3.03	12.53	1.65
540	F5 L5 UF1	550	F5 L55	FDR	.01	.54	2.22	.15
545	F5 L56 UF1	540	F5 L5 UF1	FDR	.14	3.03	12.52	1.65
545	F5 L56 UF1	547	5-16 SEC	TX2	.00	.00	.00	UNKNOW
547	5-16 SEC	545	F5 L56 UF1	TX2	.00	.00	.00	UNKNOW
550	F5 L55	540	F5 L5 UF1	FDR	.01	.54	2.22	.15
5 55		53 5	F537 L5	FDR	.36	36.50	150.59	13.22
555		560	RICH SUB	FDR	.26	6.43	26.52	2.33
555		565	5-17 PRI	FDR	.30	30.07	124.07	10.90
560	RICH SUB	555		FDR	.26	6.43	26.45	2.33

DATE:20 NOV 95 TIME: 4 50 PM PAGE 62
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
560	RICH SUB	562	RS SEC	TX2	.12	6.43	26.45	UNKNOW
562	RS SEC	560	RICH SUB	TX2	.12	2.14	26.42	UNKNOW
562	RS SEC	930	RICH SUB	FDR	.00	2.14	26.42	1.53
565	5-17 PRI	5 55		FDR	.30	30.07	123.69	10.90
565	5-17 PRI	570	5-18 PRI	FDR	.01	2.06	8.47	.75
565	5-17 PRI	575	F5 51	FDR	.10	26.74	110.01	9.69
570	5-18 PRI	565	5-17 PRI	FDR	.01	2.06	8.46	.75
575	F5 51	565	5-17 PRI	FDR	.10	26.74	109.90	9.69
575	F5 51	580	F5 L85	FDR	.19	26.24	107.84	9.51
580	F5 L85	575	F5 51	FDR	.19	26.24	107.63	9.51
580	F5 L85	585	F5 L87 UF1	FDR	.03	6.00	24.62	2.17
580	F5 L85	590	F5 L8911	FDR	.15	18.20	74.65	13.00
585	F5 L87 UF1	580	F5 L85	FDR	.03	6.00	24.61	2.17
590	F5 L8911	580	F5 L85	FDR	.15	18.20	74.54	13.00
590	F5 L8911	591	5-23 SEC	TX2	.00	.00	.00	UNKNOW
590	F5 L8911	593	5-24 SEC	TX2	.00	.00	.00	UNKNOW
590	F5 L8911	595	F5 L8 25	FDR	.31	8.15	33.36	5.82
591	5-23 SEC	59 0	F5 L8911	TX2	.00	.00	.00	UNKNOW
593	5-24 SEC	590	F5 L8911	TX2	.00	.00	.00	UNKNOW
595	F5 L8 25	590	F5 L8911	FDR	.31	8.15	33.25	5.82
600	O/H BUS	90	SWGR O	FDR	.00	.00	.00	.00
700	FDR 7	90	SWGR O	FDR	.05	122.07	516.19	53.07
700	FDR 7	705	WELL9 POL	FDR	.05	122.07	516.19	34.19
7 05	WELL9 POL	700	FDR 7	FDR	.05	122.07	515.92	34.19
705	WELL9 POL	707	7-1 SEC	TX2	.00	.00	.00	UNKNOW
705	WELLS POL	709	F9 F73	FDR	.20	111.47	471.13	31.22
707	7-1 SEC	705	WELL9 POL	TX2	.00	.00	.00	UNKNOW
709	F9 F73	705	WELL9 POL	FDR	.20	111.47	470.21 380.34	31.22 25.26
709	F9 F73	710 709	F7 L11 F9 F73	FDR	. 8 0	90.16 90.16	377.32	25.26
710	F7 L11		F7 L13	FDR FDR	.02	5.36	22.43	1.50
710	F7 L11	715 720	F7 L13	FDR	.28	63.36	265.15	17.75
710	F7 L11	710	F7 L11	FDR	.02	5.36	22.42	1.50
715	F7 L13	710	F7 L11	FDR	.02	63.36	264.41	17.75
720	F713	725	7-15 PRI	FDR	.59	55.49	231.59	15.54
720	F713	720	F713 PK1	FDR	.59	55.49	230.22	15.54
725	7-15 PRI		F7 L43	FDR	.02	3.04	12.60	.85
725	7-15 PRI	730			.02	29.23	121.25	8.19
725	7-15 PRI	73 5	F7 L54	FDR	.02	3.04	12.59	.85
730	F7 L43	725	7-15 PRI	FDR				8.19
735	F7 L54	725	7-15 PRI	FDR	.09	29.23	121.14	0.19

DATE:20 NOV 95 TIME: 4 50 PM PAGE 63
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
735	F7 L54	740	7-17 PRI	FDR	.03	4.25	17.61	1.19
735	F7 L54	745		FDR	.11	19.67	81.53	5.51
740	7-17 PRI	735	F7 L54	FDR	.03	4.25	17.61	1.19
745		735	F7 L54	FDR	.11	19.67	81.44	5.51
745		750	F7 L72	FDR	.03	7.04	29.16	1.97
745		760	7-21 PRI	FDR	.16	12.63	52.28	3.54
750	F7 L72	745		FDR	.03	7.04	29.16	1.97
750	F7 L72	755	F7-33	FDR	.01	1.74	7.22	.49
755	F7-33	750	F7 L72	FDR	.01	1.74	7.22	.49
760	7-21 PRI	745		FDR	.16	12.63	52.19	3.54
760	7-21 PRI	765	7-22 PRI	FDR	.05	9.60	39.69	2.69
765	7-22 PRI	760	7-21 PRI	FDR	.05	9.60	39.67	2.69
765	7-22 PRI	770	7-23 PRI	FDR	.03	4.31	17.80	1.21
770	7-23 PRI	765	7-22 PRI	FDR	.03	4.31	17.80	1.21
770	7-23 PRI	775	7-24 PRI	FDR	.02	3.02	12.49	.8 5
775	7-24 PRI	770	7-23 PRI	FDR	.02	3.02	12.48	.8 5
800	FDR 8	90	SHIGR O	FDR	.04	102.22	432.30	44.44
800	FDR 8	805	F8 L11	FDR	1.65	102.22	432.30	28.63
805	F8 L11	800	FDR 8	FDR	1.65	102.22	425.27	28.63
805	F8 L11	810	F8 L23	FDR	.85	94.60	393.60	26.50
810	F8 L23	805	F8 L11	FDR	.85	94.60	390.27	26.50
810	F8 L23	815	F8 L25	FDR	.01	1.08	4.44	.30
810	F8 L23	817	F8 22	FDR	.13	75.18	310.16	21.06
815	FB L25	810	F8 L23	FDR	.01	1.08	4.44	.30
817	FB 22	810	F8 L23	FDR	.13	75.18	309.74	21.06
817	F8 22	820	F8 30 UF1	FDR	.63	64.10	264.08	17.96
820	F8 30 UF1	817	F8 22	FDR	.63	64.10	262.41	17.96
820	F8 30 UF1	825	8-22 PRI	FDR	.53	35.18	144.03	9.86
82 5 90 0	8-22 PRI	820 90	F8 30 UF1	FDR	.53	35.18	143.25	9.86
900	FDR 9 FDR 9	905	SWGR 0 STEP SEC	FDR	.04 .67	109.31	462.29	47.53
905	STEP SEC	900	FDR 9	TX2		109.31	462.29	UNKNOW
905	STEP SEC	910	F 96	TX2 FDR	.67 .07	36.44	459.23	UNKNOW
910	F 96	905	STEP SEC	FDR	.07	36.44 36.44	459.23 458.94	10.21 10.21
910	F 96	915	F910	FDR	.08	34.92	439.82	9.78
915	F910	910	F 96	FDR	.08	34.92	439.62	9.78
915	F910	920	F940	FDR	.40	29.84	375.56	8.36
920	F940	915	F910	FDR	.40	29.84	374.07	8.36
920	F940	945	F949 L1	FDR	.07	28.97	363.14	8.11
925	()	930	RICH SUB	FDR	.04	2.14	26.41	1.53
,,,	**	730	KICH SOD	I DK	.04	2.14	20.41	1.73

DATE:20 NOV 95 TIME: 4 50 PM PAGE 64
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*****	****	*****	*****	****		*****		******
FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
925	O	935	9-8 PRI	FDR	.04	2.14	26.41	2.04
930	RICH SUB	562	RS SEC	FDR	.00	2.14	26.42	1.53
930	RICH SUB	925	O	FDR	.04	2.14	26.42	1.53
935	9-8 PRI	925	ö	FDR	.04	2.14	26.40	2.04
935	9-8 PRI	940	9-9 PRI	FDR	.11	1.29	15.84	1.22
940	9-9 PRI	935	9-8 PRI	FDR	.11	1.29	15.82	1.22
945	F949 L1	920	F940	FDR	.07	28.97	362.89	8.11
945	F949 L1	950	9-12 PRI	FDR	.02	.70	8.73	.66
945	F949 L1	960	9-13 PRI	FDR	.45	27.82	348.48	15.12
950	9-12 PRI	945	F949 L1	FDR	.02	.70	8.72	.6 6
950	9-12 PRI	955	9-11 PRI	FDR	.01	.35	4.36	.33
955	9-11 PRI	950	9-12 PRI	FDR	.01	.35	4.36	.33
960	9-13 PRI	945	F949 L1	FDR	.45	27.82	346.93	15.12
960	9-13 PRI	963	9-14 PRI	FDR	1.46	26.32	328.18	14.30
963	9-14 PRI	960	9-13 PRI	FDR	1.46	26.32	323.39	14.30
963	9-14 PRI	966	9-15 PRI	FDR	.40	24.84	305.19	13.50
966	9-15 PRI	963	9-14 PRI	FDR	.40	24.84	303.95	13.50
966	9-15 PRI	969	SW UP	FDR	.11	24.66	301.86	13.40
969	SW UP	966	9-15 PRI	FDR	.11	24.66	301.53	13.40
969	SW UP	972	SW DOWN	FDR	.00	24.66	301.53	5.30
972	SW DOWN	969	SW UP	FDR	.00	24.66	301.53	5.30
972	SW DOWN	975	9-16 PRI	FDR	1.51	24.66	301.53	13.40
975	9-16 PRI	972	SW DOWN	FDR	1.51	24.66	296.88	13.40
975	9-16 PRI	977	9-19 PRI	FDR	.10	1.34	16.12	.73
975	9-16 PRI	980		FDR	-60	23.33	280.76	12.68
977	9-19 PRI	975	9-16 PRI	FDR	.10	1.34	16.10	.73
980		975	9-16 PRI	FDR	.60	23.33	279.03	12.68
98 0		982	9-20 PRI	FDR	.01	.50	5.98	.27
980		983	9-25 PRI	FDR	1.00	22.83	273.05	12.41
9 82	9-20 PRI	980		FDR	.01	.50	5.98	.27
983	9-25 PRI	980		FDR	1.00	22.83	270.20	12.41
983	9-25 PRI	984	9-25 SEC	TX2	.00	.00	.00	UNKNOW
983	9-25 PRI	985	9-34 PRI	FDR	-14	9.80	115.98	5.32
984	9-25 SEC	983	9-25 PRI	TX2	.00	.00	.00	UNKNOW
9 85	9-34 PRI	983	9-25 PRI	FDR	-14	9.80	115.81	5.32
985	9-34 PRI	987		FDR	-42	8.94	105.70	4.86
987		985	9-34 PRI	FDR	.42	8.94	105.23	4.86
987		990	9-26 PRI	FDR	.26	3.67	43.16	1.99
987		992		FDR	1.04	5.27	62.07	2.87
9 90	9-26 PRI	987		FDR	.26	3.67	43.04	1.99

DATE:20 NOV 95 TIME: 4 50 PM PAGE 65
CASE 1 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW BRANCH DATA SUMMARY

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
992		987		FDR	1.04	5.27	61.39	2.87
992		995	9-30 PRI	FDR	.73	3.62	42.12	3.02
992		997	9-32 PRI	FDR	.06	1.66	19.27	.90
995	9-30 PRI	992		FDR	.73	3.62	41.79	3.02
997	9-32 PRI	992		FDR	.06	1.66	19.25	.90

NOTE: FOR FEEDERS, RATINGX = LOAD FLOW AMPS / FLA.

FLA = LIBRARY FLA EXCLUDING DUCT BANK AND TEMP. DERATING FOR CABLES.

FLA = BRANCH RECORD INPUT FLA FOR IMPEDANCE DATA.

NOTE: FOR TRANSFORMERS, RATING% = LOAD FLOW KVA / TRANSFORMER FULL LOAD KVA.

- 127 BUSES

*** TOTAL SYSTEM LOSSES ***
76.1 KW 239.2 KVAR

WARNING STUDY CONTAINS 8 VOLTAGE CRITERIA VIOLATIONS VIOLATIONS DENOTED BY (\$) AT BUS AND BRANCH XVD LOCATIONS

APPENDIX G

Load Flow Analysis - Case 2

CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

DATE: 20 NOV 95 TIME: 4 52 PM

ALL INFORMATION PRESENTED IS FOR REVIEW, APPROVAL INTERPRETATION AND APPLICATION BY A REGISTERED ENGINEER ONLY

DAPPER (LOAD FLOW AND VOLTAGE DROP MINI/MICRO VERSION 4.5 LEVEL 1.0)
COPYRIGHT SKM SYSTEMS ANALYSIS, INC. 1983

DATE:20 NOV 95 TIME: 4 52 PM PAGE 2
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

SWING GENERATORS
BUS NO ID STAT VOLTAGE ANGLE

80 6 1 1.000 .000

				P	V GENERA	TORS		
BUS	NO	ID	STAT	VOLTAGE	kW	kVARMIN	kvarmax	PARTICIPATION
===	=====	==:	====		======	=======	=======	
	10	1	1	1.000	1000.	0.	0.	1.000
	20	2	1	1.000	0.	0.	0.	1.000
	30	3	1	1.000	0.	0.	0.	1.000
	40	4	1	1.000	0.	0.	0.	1.000
	50	5	1	1.000	0.	0.	0.	1.000
NOTICE:	BRANCH	9	220 F	940	TO 925	()	IS OUT	

DATE:20 NOV 95 TIME: 4 52 PM PAGE 3
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

====			======	=======	=======		
FEED NO	ER FROM	FEEDER TO NO NAME	QTY /PH	VOLTS L	ENGTH	FEEDER D	ESCRIPTION DUCT INSUL
		15 G1 STEP-U					
20	GEN G2 IMPEDANCE:	25 G2 STEP-U .0300 + J .	JP 1 .0526 O	2400. HMS/N FEET	50. FT	500 C STATUS:	M XLP Existing
30	GEN G3 IMPEDANCE:	35 G3 STEP-U	IP 1 .0526 0	2400. HMS/M FEET	50. FT	500 C STATUS:	M XLP EXISTING
40	GEN G4 IMPEDANCE:	70 SWGR N .0300 + J .	1 0526 O	4160. HMS/M FEET	50. FT	500 C STATUS:	M XLP Existing
50	CEN CE	70 SWGR N .0300 + J .		/140	EO FT	500 0	M NEB
60		66 SM1A BLUE					
60	SWGR S IMPEDANCE:	70 SWGR N .0300 + J .	1 0526 OI	4160. HMS/M FEET	5. FT	500 C STATUS:	M XLP Existing
60	SWGR S IMPEDANCE:	100 FDR 1 .1050 + J .	1 0410 OI	4160. HMS/M FEET	50. FT	4/0 A STATUS:	N XLP Existing
60	SWGR S IMPEDANCE:	200 FDR 2 .1050 + J .	1 0410 OI	4160. HMS/M FEET	50. FT	4/0 A STATUS:	N XLP Existing
60	SWGR S IMPEDANCE:	300 FDR 3 .1050 + J .	1 0410 OI	4160. HMS/M FEET	50. FT	4/0 A STATUS:	N XLP Existing
60	SWGR S IMPEDANCE:	400 FDR 4 .1050 + J .	1 0410 OH	4160. HMS/M FEET	50. FT	4/0 A STATUS:	N XLP Existing
60	SWGR S IMPEDANCE:	500 FDR 5 .1050 + J .	1 0410 OH	4160. HMS/M FEET	50. FT	4/0 A STATUS:	N XLP Existing
62	SS-1 SEC	64 MCC 4&5	1	480.	50. FT	500 C	M XIP
64	MCC 4&5 IMPEDANCE:	68 BLUE SSS .0300 + J .0	1 0526 OH	480. MS/M FEET	50. FT	500 C STATUS:	M XLP Existing
70	SWGR N IMPEDANCE:	90 SWGR 0 .0453 + J .0	1 0444 OH	4160. MS/M FEET	10. FT	500 A STATUS:	M XLP Existing

DATE:20 NOV 95 TIME: 4 52 PM PAGE 4
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

===:		=========	=======	=======	-======	=====	======		
FEED	DER FROM D NAME	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH	SIZ	EEDER D	ESCRII DUCT	PTION INSUL
85	T1 SEC IMPEDANCE:	90 SWGR 0 .0453 + J	1 .0444 OH	4160. MS/M FEE	10. FT	500	A STATUS:	M EXIST	XLP TING
90	SWGR O IMPEDANCE:	.1050 + J	1 .0410 OH	4160. MS/M FEE	50. FT	4/0	A STATUS:	N EXIST	XLP ING
90	SWGR O IMPEDANCE:	700 FDR 7 .1050 + J	1 .0410 OH	4160. MS/M FEE	50. FT	4/0	A STATUS:	N EXIST	XLP ING
90	SWGR O IMPEDANCE:	800 FDR 8 .1050 + J	.0410 OH	4160. MS/M FEE	50. FT	4/0	A STATUS:	N EXIST	XLP ING
90	SWGR O IMPEDANCE:	900 FDR 9 .1050 + J	1 .0410 OH	4160. MS/M FEE	50. FT	4/0	A STATUS:	N EXIST	XLP ING
100	FDR 1 IMPEDANCE:	105 F1F12 14	1200 онг	4160. MS/M FEE	1500. FT T	4/0	A STATUS:	B EXIST	OH-2 ING
105	F1F12 14 IMPEDANCE:	110 F1 L14 .0900 + J	1 .1200 OH	4160. MS/M FEE	200. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
110	F1 L14 IMPEDANCE:	115 F1 L15 .0900 + J	1 .1200 OH	4160. 4S/M FEE	300. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
110	F1 L14 IMPEDANCE:	120 F1 L31 .0900 + J	1 .1200 OHM	4160. 4S/M FEET	400. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
120	F1 L31 IMPEDANCE:	121 F1 L63 .0900 + J	1 .1200 ОНМ	4160. IS/M FEET	450. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
121	F1 L63 IMPEDANCE:	122 F1 L64 .0900 + J	1 .1200 OHM	4160. IS/M FEET	200. FT	4/0	A STATUS:	B EXIST	OH-2 ING
121	F1 L63 IMPEDANCE:	125 F1 L67 .0900 + J	1 .1200 ОНМ	4160. IS/M FEET	200. FT	4/0	A Status:	B EXIST	OH-2 Ing
125	F1 L67 IMPEDANCE:	130 F1 L613 .0900 + J	1 .1200 OHM	4160. S/M FEET	700. FT	4/0	A Status:	B Existi	OH-2
125	F1 L67 IMPEDANCE:	135 F1 L68 .0900 + J	1 .1200 OHM	4160. S/M FEET	300. FT	4/0	A STATUS:	B EXISTI	OH-2
200	FDR 2 IMPEDANCE:	205 .0900 + J	1 . 1200 OHM	4160. S/M FEET	600. FT	4/0	A STATUS:	B Existi	OH-2 Ng

DATE:20 NOV 95 TIME: 4 52 PM PAGE
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

5

		FEEDER TO								
NO	NAME	FEEDER TO NO NAME	/PI	H L-L			SIZE	TYPE	DUCT	INSUL
		210 2-3 PRI .0900 + J								
		235 F5 F29 .0900 + J								
210	2-3 PRI	215 2-4 PRI .0900 + J	1	4160.	50.	FT	4/0	A	В	OH-2
		220 2-5 PRI .0900 + J								
235	F5 F29 IMPEDANCE:	236 F2 F211 .0900 + J	.1200	4160. OHMS/M F	250. EET	FT	4/0	A STATUS:	EXI2.	OH-2 FING
236	F2 F211 IMPEDANCE:	240 F1 F213 .0900 + J	.1200	4160. OHMS/M F	2 50. EET	FT	4/0	A STATUS:	EXIS	OH-2 TING
	IMPEDANCE:	301 F8 F311 .0900 + J	.1200	OHMS/M F	EET		:	STATUS:	EXIS	TING
301	F8 F311 IMPEDANCE:	303 F713 .0900 + J	.1200	4160. OHMS/M F	200. EET	FT	4/0	A STATUS:	EXIS	OH-2
303	F713	305 F8 F311 .0900 + J	1	4160.	400.	FT	4/0	A	В	OH-2
305	F8 F311 IMPEDANCE:	310 F3 19 .0900 + J	.1200	4160. OHMS/M F	1200. EET	FT	4/0	A STATUS:	EXIST	OH-2
400	FDR 4 IMPEDANCE:	401 4-1 PRI .0900 + J	.1200	4160. OHMS/M F	250. EET	FT	4/0	A STATUS:	B EXIST	OH-2
		403 F1 F45 .0900 + J								
403	F1 F45 IMPEDANCE:	405 F4 10 .0900 + J	.1200	4160. OHMS/M F	500. EET	FT	4/0	A STATUS:	B EXIST	OH-2
405	F4 10 IMPEDANCE:	410 F417 UF1 .0900 + J	.1200	4160. OHMS/M F	1000. EET	FT	4/0	A STATUS:	B EXIST	OH-2
500	FDR 5 IMPEDANCE:	505 F4 F5 F6 .0900 + J	UF 1 .1200	4160. OHMS/M FI	625. EET	FT	4/0	Ā STATUS:	B EXIST	OH-2

DATE:20 NOV 95 TIME: 4 52 PM PAGE 6
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

====	=========		======	======	=======	=====	======	=====	
FEED	ER FROM NAME	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH	S12	EEDER C	ESCRIF DUCT	PTION INSUL
						=====	=======	=====	
505	F4 F5 F6UF IMPEDANCE:	510 5-1 PRI .0900 + J	.1200 o	4160. HMS/M FE	250. F1 ET	4/0	A STATUS:	B EXIST	OH-2
505	F4 F5 F6UF IMPEDANCE:	512 5-3 PRI .0900 + J	1 .1200 o	4160. HMS/M FE	1600. FT ET	4/0	A STATUS:	B EXIST	OH-2
512	5-3 PRI	514 5-5 PRI .0900 + J	1	4160	700 ET	4.00			AU 3
512	5-3 PRI IMPEDANCE:	515 F5 L24 .0900 + J	1 .1200 OI	4160. HMS/M FE	1200. FT ET	4/0	A STATUS:	B EXIST	OH-2
515	F5 L24 IMPEDANCE:	520 5-6 PRI .6900 + J	1 .1440 O	4160. HMS/M FE	600. FT	6	A STATUS:	B EXIST	OH-2
515	F5 L24 IMPEDANCE:	525 F5 L31 .0900 + J	1 .1200 OH	4160. HMS/M FE	200. FT ET	4/0	A STATUS:	B EXIST	OH-2
525	F5 L31 IMPEDANCE:	530 F5 L39 .0900 + J	1 .1200 OH	4160. MS/M FEI	1500. F T	4/0	A STATUS:	B EXIST	OH-2
525	F5 L31 IMPEDANCE:	.0900 + J	.1200 OH	4160. IMS/M FEI	500. FT ET	4/0	A STATUS:	B EXIST	OH-2 ING
525	F5 L31 IMPEDANCE:	535 F537 L5 .0900 + J	.1200 OH	4160. IMS/M FEI	1400. FT ET	4/0	A STATUS:	B EXIST	OH-2 Ing
531	F3 L41 IMPEDANCE:	535 F537 L5 .0900 + J	1 .1200 OH	4160. IMS/M FEE	900. FT T	4/0	A STATUS:	B EXIST	OH-2 Ing
535	F537 L5 IMPEDANCE:	540 F5 L5 UF .0900 + J	1 1 .1200 он	4160. MS/M FEE	150. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
535	F537 L5 IMPEDANCE:	555 .1410 + J	1 .1250 OH	4160. MS/M FEE	8 00. FT	2/0	A STATUS:	B EXIST	OH-2 Ing
540	F5 L5 UF1 IMPEDANCE:	.2760 + J	F1 1 .1320 он	4160. MS/M FEE	2100. FT	2	A STATUS:	B EXIST	OH-2 Ing
540	F5 L5 UF1 IMPEDANCE:	550 F5 L55	1 .1200 OH	4160. MS/M FEE	1000. FT	4/0	A STATUS:	B	OH-2
555	IMPEDANCE:	560 RICH SUB	1 .1250 OH	4160. MS/M FEE	3200. FT	2/0	A STATUS:	B EXISTI	OH-2

DATE:20 NOV 95 TIME: 4 52 PM PAGE 7
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

====	========			======		=====	:======		
FEED	ER FROM NAME	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH	\$12	EEDER D	ESCRII DUCT	PTION INSUL
555	IMPEDANCE:	565 5-17 PRI .1410 + J	1 .1250 0	4160. HMS/M FE	8 00. FT	2/0	A STATUS:	B EXIST	OH-2 Fing
562	RS SEC IMPEDANCE:	930 RICH SUB .4360 + J	.1380 o	13200. HMS/M FE	5. FT	4	A STATUS:	B EXIST	OH-3
565	5-17 PRI IMPEDANCE:	570 5-18 PRI .1410 + J	.1250 o	4160. HMS/M FE	400. FT	2/0	A STATUS:	B EXIST	OH-2
565	5-17 PRI IMPEDANCE:	575 F5 51 .1410 + J	1 .1250 O	4160. HMS/M FE	300. FT ET	2/0	A STATUS:	B EXIST	OH-2
575	F5 51 IMPEDANCE:	580 F5 L85 .1410 + J	1 .1250 O	4160. H MS/M FE	600. FT ET	2/0	A STATUS:	B EXIST	OH-2
580	F5 L85 IMPEDANCE:	585 F5 L87 U	F1 1 .1250 O	4160. HMS/M FE	3 50. FT ET	2/0	A STATUS:	B EXIST	OH-2
		590 F5 L8911 .4360 + J							
590	F5 L8911 IMPEDANCE:	595 F5 L8 25 .4360 + J	1 .1380 OH	4160. HMS/M FE	1150. FT ET	4	A STATUS:	B EXIST	OH-2
700	FDR 7 IMPEDANCE:	705 WELL9 PO	L 1 .1200 OH	4160. MS/M FE	50. FT ET	4/0	A STATUS:	B EXIST	OH-2
7 05	WELL9 POL IMPEDANCE:	709 F9 F73 .0900 + J	1 .1200 OH	4160. IMS/M FE	200. FT ET	4/0	A STATUS:	B EXIST	OH-2 ING
709	F9 F73 IMPEDANCE:	710 F7 L11 .0900 + J	1 .1200 OH	4160. MS/M FE	1000. FT ET	4/0	A STATUS:	B EXIST	OH-2 ING
710	F7 L11 IMPEDANCE:	715 F7 L13	1 .1200 OH	4160. MS/M FEI	500. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
710	F7 L11 IMPEDANCE:	720 F713 .0900 + J .	1 .1200 ОН	4160. MS/M FEI	500. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
720	F713 IMPEDANCE:	725 7-15 PRI .0900 + J .	1 .1200 ОН	4160. MS/M FE	1200. FT T	4/0	A STATUS:	B EXIST:	OH-2 ING
725	7-15 PRI IMPEDANCE:	730 F7 L43 .0900 + J .	1 .1200 OH	4160. MS/M FEE	600. FT	4/0	A STATUS:	B EXIST	OH-2 I n g

DATE:20 NOV 95 TIME: 4 52 PM PAGE 8
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

=======	======	, :==========		K DA	i A				
FEEDER F	ROM E	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH	517	EEDER E	ESCRI	PTION
		735 F7 L54 .0900 + J							
735 F7 IMP	L54 Edance:	740 7-17 P .0900 + J	RI 1 .1200 c	4160. DHMS/M FE	700. F ET	T 4/0	A STATUS:	B EXIST	OH-2
735 F7	L54 Edance:	745 .0900 + J	.1200 c	4160. DHMS/M FE	625. F	r 4/0	A STATUS:	B EXIST	OH-2
745 IMPI	EDANCE:	750 F7 L72 .0900 + J	.1200 o	4160. HMS/M FE	525. F	r 4/0	A STATUS:	B EXIST	OH-2 ING
745 IMPI	EDANCE:	760 7-21 P	RI 1 .1200 o	4160. HMS/M FE	1400. F	4/0	A STATUS:	B EXIST	OH-2
750 F7 I	.72 DANCE:	755 F7-33 .0900 + J	.1200 o	4160. HMS/M FE	80 0. F1 ET	4/0	A STATUS:	B EXIST	OH-2 Ing
IMPE	DANCE:	.0900 + J	.1200 o	4160. HMS/M FEI	600. F1	4/0	A STATUS:	B EXIST	OH-2
765 7-22 IMPE	PRI DANCE:	770 7-23 Pi .0900 + J	1 1 .1200 o	4160. HMS/M FEE	700. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
770 7-23 IMPE	PRI DANCE:	775 7-24 PF	1 .1200 o	4160. HMS/M FEE	70 0. FT	4/0	A STATUS:	B EXIST	OH-2 Ing
800 FDR IMPE	8 DANCE:	805 F8 L11 .0900 + J	.1200 o	4160. HMS/M FEE	1800. FT	4/0	A STATUS:	B EXIST	OH-2 ING
805 F8 L IMPE	11 DANCE:	810 F8 L23 .0900 + J	1 .1200 OI	4160. HMS/M FEE	10 00. FT	4/0	A STATUS:	B EXIST	OH-2 ING
IMPE	DANCE:	.0900 + J	.1200 OI	4160. HMS/M FEE	700. FT	4/0	A STATUS:	B EXIST	OH-2 ING
810 F8 L IMPE	23 Dance:	817 F8 22 .0900 + J	1 .1200 OF	4160. HMS/M FEE	200. FT T	4/0	A STATUS:	B EXIST:	OH-2
817 F8 2 IMPE	2 DANCE:	820 F8 30 U .0900 + J	F1 1 -1200 OH	4160. IMS/M FEE	110 0. FT T	4/0	A Status:	B EXIST:	OH-2
820 F8 3	0 UF1 DANCE:	825 8-22 PR .0900 + J	I 1 .1200 ОН	4160. IMS/M FEE	1700. FT T	4/0	A STATUS:	B Existi	OH-2

DATE:20 NOV 95 TIME: 4 52 PM PAGE
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

	7 E E V		
FEEDER FROM	FEEDER TO Q1	Y VOLTS LENGTH	FEEDER DESCRIPTION SIZE TYPE DUCT INSUL
	=======================================	:======================================	
			4/0 A B OH-3 STATUS: EXISTING
910 F 96	915 F910 1	13200. 800. FT	4/0 A B OH-3
IMPEDANCE:	.0900 + J .1200	OHMS/M FEET	STATUS: EXISTING
915 F910	920 F940 1	13200. 4500. FT	4/0 A B OH-3
IMPEDANCE:	.0900 + J .1200	OHMS/M FEET	STATUS: EXISTING
020 50/0	0/5 50/0 11	13200 800 FT	4/0 A B OH-3 STATUS: EXISTING
925 ()	930 RICH SUB (13200. 1500. FT	4 A B OH-3
IMPEDANCE:		O OHMS/M FEET	STATUS: EXISTING
			6 A B OH-3 STATUS: EXISTING
			6 A B OH-3 STATUS: EXISTING
945 F949 L1	950 9-12 PRI	1 13200. 2100. FT	6 A B OH-3
IMPEDANCE:	.6900 + J .1440	D OHMS/M FEET	STATUS: EXISTING
945 F949 L1	960 9-13 PRI	1 13200. 2200. FT	2 A B OH-3
IMPEDANCE:	.2760 + J .132	O OHMS/M FEET	STATUS: EXISTING
950 9-12 PRI	955 9-11 PRI	1 13200. 1800. FT	6 A B OH-3
IMPEDANCE:	.6900 + J .144	O OHMS/M FEET	STATUS: EXISTING
960 9-13 PRI	963 9-14 PRI	1 13200. 7600. FT	2 A B OH-3
IMPEDANCE:	.2760 + J .132	O OHMS/M FEET	STATUS: EXISTING
963 9-14 PRI	966 9-15 PRI	1 13200. 2200. FT	2 A B OH-3
IMPEDANCE:	.2760 + J .132	O OHMS/M FEET	STATUS: EXISTING
			2 A B OH-3 STATUS: EXISTING
			500 C M XLP STATUS: EXISTING
972 SW DOWN	975 9-16 PRI	1 13200. 8400. FT	2 A B OH-3
IMPEDANCE:	.2760 + J .132	0 OHMS/M FEET	STATUS: EXISTING

DATE:20 NOV 95 TIME: 4 52 PM PAGE 10
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

=======================================	========		=======		=======	
FEEDER FROM	FEEDER TO	QTY	VOLTS	LENGTH	FEEDE	R DESCRIPTION
NO NAME	NO NAME	/PH	L-L		SIZE TY	PE DUCT INSUL
075 0-16 DDI	077 0-10	DDT 1	13200	10000 ET	,	А В ОН-З
IMPERANCE.	2740 +	1 1730	OUNC /N E	10000. FT	CTA	THE EVICTING
IMPEDANCE:	.2/00 +	3 .1320	Onmo/m rt	EI	SIA	TUS: EXISTING
07E 0 4/ DD1	000		47200	7500 57	2	n n 011 7
7/2 9-10 PKI	980		13200.	3300. F1	2	A B OH-3
IMPEDANCE:	.2/60 +	J .1520	OHMS/M FE	ET	STA	TUS: EXISTING
					_	
980	982 9-20	PRI 1	13200.	2000. FT	2	A B OH-3
IMPEDANCE:	.2760 +	J .1320	OHMS/M FE	EET	STA	TUS: EXISTING
98 0	983 9-25	PRI 1	13200.	6000. FT	2	A B OH-3 TUS: EXISTING
IMPEDANCE:	.2760 +	J .1320	OHMS/M FE	ET	STA	US: EXISTING
983 9-25 PRI	985 9-34	PRI 1	13200.	2000. FT	2	A B OH-3
IMPEDANCE -	2760 +	.1 1320	OHMS/M FE	FT	STA	TUS: EXISTING
THE EDMINGET	.2.00		011110711111		017	OU. EXIOTING
095 0-3/ pp1	087	1	13200	4/00 ET	2	N P 04-3
THDEDANCE.	2740 +	1 1720	OUNC (N E	CT	CTA	A B OH-3 TUS: EXISTING
IMPEDANCE:	.2/60 +	3 .1320	Onmo/m rt		SIA	US: EXISTING
007	000 0 3/	201	47300	0000	2	
987	990 9-26	PRI I	13200.	9800. FI	2	A B OH-3
IMPEDANCE:	.2760 +	J .1320	OHMS/M FE	ET	STA	TUS: EXISTING
					_	
987	992	1	13200.	27000. FT	2 /	A B OH-3
IMPEDANCE:	.2760 +	J .1320	OHMS/M FE	EET	STA	TUS: EXISTING
					_	
992	995 9-30	PRI 1	13200.	25000. FT	2	A N XLP
IMPEDANCE:	.3350 +	J .0500	OHMS/M FE	ET	STA	TUS: EXISTING
992	997 9-32	PRI 1	13200.	5000. FT	2	4 B OH-3
IMPEDANCE:	.2760 +	J .1320	OHMS/M FE	ET	STA	A 8 OH-3 TUS: EXISTING

DATE:20 NOV 95 TIME: 4 52 PM PAGE 11
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

TRANSFORMER DATA

			K M E K				
PRIMARY RECORD NO NAME	VOLTS L-L	PRI FLA	* SECONDARY NO NAME	RECORD	VOLTS L-L	SEC FLA	NOMINAL KVA
15 G1 STEP-UP IMPEDANCE:							
25 G2 STEP-UP IMPEDANCE:	2400. 1.0000 + J	361. 5.6623	60 SWGR PERCENT	s	4160.	208.	1500.0
35 G3 STEP-UP IMPEDANCE:	2400. 1.0000 + J	361. 5.6623	60 SWGR PERCENT	s	4160.	208.	1500.0
60 SWGR S IMPEDANCE:	4160. .7816 + J	42. 4.5331	62 SS-1 PERCENT	SEC	480.	361.	300.0
66 SM1A BLUE IMPEDANCE:	4160. .8156 + J	69. 4.7302	68 BLUE PERCENT	SSS	480.	601.	500.0
80 UTILITY IMPEDANCE:	24900. .5546 + J	58. 5.9341	85 T1 SE PERCENT	C Transf	4160. ORMER FIXED	347. TAP:	2500.0 -5.0 %
90 SWGR O IMPEDANCE:	4160. .5709 + J	42. 3.3111	64 MCC 4 PERCENT	& 5	480.	361.	300.0
210 2-3 PRI IMPEDANCE:	4160. .9345 + J	31. 5.4200	225 2-3 S PERCENT	EC	480.	271.	225.0
215 2-4 PRI IMPEDANCE:	4160. .9345 + J	31. 5.4200	230 2-4 S PERCENT	EC	208.	625.	225.0
410 F417 UF1 IMPEDANCE:	4160. .9345 + J	69. 5.4200	415 4-6 S PERCENT	EC	208.	1388.	500.0
545 F5 L56 UF1 IMPEDANCE:	4160. .9345 + J	16. 5.4200	547 5-16 PERCENT	SEC	208.	312.	112.5
560 RICH SUB IMPEDANCE:	4160. .9345 + J	83. 5.4200	562 RS SE PERCENT	С	13200.	26.	600.0
590 F5 L8911 IMPEDANCE:	4160. .9345 + J	7. 5.4200	591 5-23 PERCENT	SEC	208.	139.	50.0
590 F5 L8911 IMPEDANCE:	4160. .9345 + J	16. 5.4200	593 5-24 PERCENT	SEC	208.	312.	112.5
705 WELL9 POL IMPEDANCE:	4160. .9345 + J	21. 5.4200	707 7-1 S PERCENT	EC	480.	180.	150.0

DATE:20 NOV 95 TIME: 4 52 PM PAGE 12
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

TRANSFORMER DATA

PRIMARY RECORD NO NAME	VOLTS L-L	PRI FLA	* SECONDARY NO NAME		VOLTS L-L	SEC FLA	NOM I NAL KVA
900 FDR 9 IMPEDANCE:	4160. .7816 + J	208. 4.5331	, , , , , , ,	SEC	13200.	66.	1500.0
983 9-25 PRI IMPEDANCE:	13200. .9345 + J	22. 5.4200	, , , , ,	SEC	208.	1388.	500.0

DATE:20 NOV 95 TIME: 4 52 PM PAGE 13
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

	BUS	SPE	CIAL	S 1	YGUT	DATA
	* KW *	KVAK *	LOAD TYPE	:		=======================================
			CONSTANT			
105 F1F12 14	у.	٥.	CONSTANT	2	LOAD	
440 54 14/	21.	7	CONSTANT	7	LOAD	
110 F1 L14 115 F1 L15	25.		CONSTANT			
120 F1 L31	222.	73	CONSTANT	7	LOAD	
121 F1 L63			CONSTANT			
121 F1 L63	98.		CONSTANT			
122 11 104	70.	32.		-		
125 F1 L67	62.	20.	CONSTANT	Z	LOAD	
130 F1 L613			CONSTANT			
135 F1 L68	14.	5.	CONSTANT	Z	LOAD	
205	69.	22.	CONSTANT	Z	LOAD	
210 2-3 PRI	88.	29.	CONSTANT	Z	LOAD	
210 2 3 181	.	•		_		
215 2-4 PRI	88.	29.	CONSTANT	Z	LOAD	
220 2-5 PRI	58.	19.	CONSTANT	Z	LOAD	
235 F5 F29	44.	14.	CONSTANT	Z	LOAD	
236 F2 F211	88.	29.	CONSTANT	Z	LOAD	
240 F1 F213	88.		CONSTANT			
301 F8 F311	186.	61.	CONSTANT	Z	LOAD	
305 F8 F311	15. 162.	5.	CONSTANT	Z	LOAD	
310 F3 19	162.	54.	CONSTANT	Z	LOAD	
401 4-1 PRI 403 F1 F45	75. 125.	25.	CONSTANT			
			CONSTANT			
405 F4 10 410 F417 UF1 510 5-1 PRI 512 5-3 PRI 514 5-5 PRI 515 F5 L24				_		
405 F4 10	65.	22.	CONSTANT	2	LOAD	
410 F417 UF1	145.	47.	CONSTANT	2	LUAD	
510 5-1 PRI	31.	10.	CONSTANT	2	LUAD	
512 5-3 PRI	14.	2.	CONSTANT	2	LOAD	
514 5-5 PRI	۶.	۷.	CONSTANT	2	LUAU	
515 F5 L24	Ω	7	CONSTANT	7	LOAD	
510 F2 L24	8. 5. 8.	3.	CONSTANT	7	LOAD	
520 5-6 PRI 525 F5 L31	a.	3	CONSTANT	7	LOAD	
530 F5 L39	5.	5.	CONSTANT	7	LOAD	
531 F3 L41	16	5.	CONSTANT	7	LOAD	
J31 F3 C41	10.		00110171111	-	20/10	
535 F537 L5	5.	2.	CONSTANT	Z	LOAD	
540 F5 L5 UF1		1.	CONSTANT	Z	LOAD	
545 F5 L56 UF1		4.	CONSTANT	Z	LOAD	
550 F5 L55	2.	1.	CONSTANT	Z	LOAD	
565 5-17 PRI	2. 5.	2.	CONSTANT	Z	LOAD	
570 5-18 PRI	8. 2.	3.	CONSTANT	Z	LOAD	
575 F5 51	2.	1.	CONSTANT	Z	LOAD	

DATE:20 NOV 95 TIME: 4 52 PM PAG CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO PAGE 14

BUS SPECIAL STUDY DATA

======		=======	======	=======	====	=====	
* NO *				LOAD TYP			
=======						=====	=======================================
580 F5	L85	8.	3.	CONSTANT	7	LOAD	
585 F5	L87 UF1 L8911 L8 25 LL9 POL F73	24.	8.	CONSTANT	2	LOAD	
590 F5	L8911	41.	11.	CONSTANT	Z	LOAD	
595 F5	L8 25	33.	10.	CONSTANT	7	LOAD	
705 WE	LL9 POL	41.	14.	CONSTANT	2	LOAD	
709 F9	F73	83.	27.	CONSTANT	Z	LOAD	
					_		
710 F7	L11 L13 13 15 PRI L43	84.	28.	CONSTANT	Z	LOAD	
715 F7	L13	21.	7.	CONSTANT	Z	LOAD	
720 F7	13	31.	10.	CONSTANT	Z	LOAD	
725 7-	15 PRI	92.	30.	CONSTANT	Z	LOAD	
730 F7	L43	12.	4.	CONSTANT	Z	LOAD	
							•
735 F7	L54	21.	7.	CONSTANT	Z	LOAD	
740 7-	17 PRI	17.	5.	CONSTANT	Z	LOAD	
750 F7	L72	21.	7.	CONSTANT	Z	LOAD	
755 F7	-33	7.	2.	CONSTANT	Z	LOAD	
760 7-2	L54 17 PRI L72 -33 21 PRI	12.	4.	CONSTANT	Z	LOAD	
765 7-2	22 PRI	21.	7.	CONSTANT	Z	LOAD	
770 7-2	23 PRI	5.	2.	CONSTANT	Z	LOAD	
775 7-2	24 PRI	12.	4.	CONSTANT	Z	LOAD	
805 F8	L11	30.	10.	CONSTANT	Z	LOAD	
810 F8	22 PRI 23 PRI 24 PRI L11 L23	73.	24.	CONSTANT	Z	LOAD	
015 50	1.25	,			_		
015 F8	L25	4.	1.	CONSTANT	Z	LOAD	
920 59	70 1151	44.	70	CONSTANT	2	LOAD	
925 P-1	30 OF I	176		CONSTANT	2	LOAD	
010 6	26 PKI	130.	45.	CONSTANT	KVA	LOAD	
710 F 3	L25 22 30 UF1 22 PRI	10.	٥.	CONSTANT	2	LUAD	
915 F91	O O O PRI	60	20	CONSTANT	7	LOAD	
920 F94	.0	10	3	CONSTANT	7	LOAD	
935 9-8	PRI	10.	₹.	CONSTANT	7	LOAD	
940 9-9	PRI	15	5	CONSTANT	7	LOAD	
945 F94	9 L1	5.	2.	CONSTANT	7	LOAD	
950 9-1	2 PRI	4.	1.	CONSTANT	2	LOAD	
955 9-1	1 PRI	4.	1.	CONSTANT	7	LOAD	
960 9-1	3 PRI	18.	6.	CONSTANT	ž	LOAD	
963 9-1	4 PRI	18.	6.	CONSTANT	Ž	LOAD	
966 9-1	2 PRI 1 PRI 3 PRI 4 PRI 5 PRI	2.	1.	CONSTANT	Z	LOAD	
977 9-1	9 PRI	16.	5.	CONSTANT	Z	LOAD	
982 9-2	9 PRI 20 PRI	6.	2.	CONSTANT	Z	LOAD	

DATE:20 NOV 95 TIME: 4 52 PM PAGE 15
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS SPECIAL STUDY DATA

* NO	*	NAME	*		*	KVAR	*	LOAD	TYPE	===	
=====	====	=====	=====		===:	====:	==:	=====		===	
983	9-2	5 PRI		163.		53.		CONST	ANT	Z	LOAD
985	9-3	4 PRI		11.		4.		CONST	ANT	Z	LOAD
990	9-2	6 PRI		46.		15.		CONST	TANT	Z	LOAD
995	9-3	O PRI		46.		15.		CONST	TANT	Z	LOAD
997	9-3	2 PRI		21.		7.		CONST	ANT	Z	LOAD

DATE:20 NOV 95 TIME: 4 52 PM PAGE 16
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*** SOLUTION COMMENTS ***

SOLUTION PARAMETERS

BRANCH VOLTAGE CRITERIA : 4.00 %
BUS VOLTAGE CRITERIA : 5.00 %
ACCELERATION FACTOR FOR 'PV' GENERATORS : 1.00
ACCELERATION FACTOR FOR CONSTANT KVA LOADS: 1.00
EXACT(ITERATIVE) SOLUTION : YES

<<PERCENT VOLTAGE DROPS ARE BASED ON NOMINAL DESIGN VOLTAGES>>

TOF SIZE: 472

LARGEST LOAD:	1000.00 KVA	
CONVERGENCE CRITERIA:	.050 KVA	
LARGEST BUS MISMATCH	10 GEN G1	47.552 KVA
LARGEST BUS MISMATCH	10 GEN G1	2.699 KVA
LARGEST BUS MISMATCH	10 GEN G1	.155 KVA
LARGEST BUS MISMATCH	10 GEN G1	.009 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 17
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (SWING GENERATORS)

BUS VOLTS(PU) ANGLE KW KVAR VD% R + JX (PU)

80 1.000 .00 2533.1 1392.9 .0

DATE:20 NOV 95 TIME: 4 52 PM PAGE
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (PV GENERATOR SCHEDULE REPORT)

BUS NAME	ID	VOLTAGE SCHED. ACTUAL	-KVAR L	IMITS-	ACTUAL			
			MIN	MAX	KW	KVAR		
10 GEN G1	1	1.000 1.023	.0	.0	1000.0	.0		
20 GEN G2	2	1.000 1.017	.0	.0	.0	.0		
30 GEN G3	3	1.000 1.017	.0	.0	.0	.0		
40 GEN G4	4	1.000 1.017	.0	.0	.0	.0		
50 GEN G5	5	1.000 1.017	.0	.0	-0	.0		

DATE:20 NOV 95 TIME: 4 52 PM PAGE 19
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON COADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 15 G1 STEP-UP FEEDER AMPS: 235 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 1000.0 KW .0 KVAR 1000.0 KVA PF:1.00 UNITY LOSSES THRU FEEDER: .2 KW .4 KVAR .5 KVA

LOAD FRON: 10 GEN G1 FEEDER AMPS: 235 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 999.8 KW -.4 KVAR 999.8 KVA PF:1.00 UNITY LOSSES THRU FEEDER: .2 KW .4 KVAR .5 KVA

LOAD TO: 60 SWGR S TRANSF AMPS: 235 VOLTAGE DROP: 14. XVD: .6
PROJECTED POWER FLOW: 999.8 KW -.4 KVAR 999.8 KVA PF:1.00 UNITY
LOSSES THRU TRANSF: 6.4 KW 36.1 KVAR 36.6 KVA

==== BUS: 20 GEN G2 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2441 XVD: -1.7

PV TYPE GENERATOR: 2 .0 KW .0 KVAR

DATE:20 NOV 95 TIME: 4 52 PM PAGE 20 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 60 SWGR S DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 XVD: -1.7 EXECUTE: 4231 XVD: -1.7 EXECUTE: 4231 XVD: -1.7

LOAD FROM: 15 G1 STEP-UP TRANSF AMPS: 136 VOLTAGE DROP: 24. %VD: .6
PROJECTED POWER FLOW: 993.4 KW -36.5 KVAR 994.1 KVA PF:1.00 UNITY
LOSSES THRU TRANSF: 6.4 KW 36.1 KVAR 36.6 KVA

LOAD FROM: 25 G2 STEP-UP TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 35 G3 STEP-UP TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 62 SS-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .1 KVAR .2 KVA PF: .45 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 66 SM1A BLUE FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .2 KVAR .3 KVA PF: .46 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 70 SWGR N FEEDER AMPS: 189 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 1159.6 KW 753.7 KVAR 1383.0 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 21
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 100 FDR 1 FEEDER AMPS: 80 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 556.5 KW 186.4 KVAR 586.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 200 FDR 2 FEEDER AMPS: 77 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 539.1 KW 177.5 KVAR 567.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 300 FDR 3 FEEDER AMPS: 54 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 374.5 KW 124.4 KVAR 394.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 400 FDR 4 FEEDER AMPS: 60 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 417.1 KW 138.7 KVAR 439.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 500 FDR 5 FEEDER AMPS: 38 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 266.0 KW 90.6 KVAR 281.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 62 SS-1 SEC FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: .1 KW .1 KVAR .2 KVA PF: .45 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 68 BLUE SSS FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .2 KVAR .3 KVA PF: .46 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 90 SWGR 0 TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .2 KW .4 KVAR .4 KVA PF: .45 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 22
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 66 SM1A BLUE DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 %VD: -1.7

LOAD TO: 60 SWGR S FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .2 KVAR .3 KVA PF: .46 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 68 BLUE SSS TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .2 KVAR .3 KVA PF: .46 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 64 MCC 4&5 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .2 KVAR .3 KVA PF: .46 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 66 SM1A BLUE TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .2 KVAR .3 KVA PF: .46 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 40 GEN G4 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 50 GEN G5 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 60 SWGR S FEEDER AMPS: 189 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 1159.6 KW 753.7 KVAR 1383.0 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 90 SWGR 0 FEEDER AMPS: 189 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 1159.6 KW 753.7 KVAR 1383.0 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 23
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 85 T1 SEC TRANSF AMPS: 67 VOLTAGE DROP: -431. %VD: -1.7 PROJECTED POWER FLOW: 2533.1 KW 1392.9 KVAR 2890.8 KVA PF: .88 LAGGING LOSSES THRU TRANSF: 16.7 KW 179.0 KVAR 179.8 KVA **XFMR TAPS -5.0%**

==== BUS: 85 T1 SEC DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4232 XVD: -1.7

LOAD FROM: 80 UTILITY TRANSF AMPS: 381 VOLTAGE DROP: -72. %VD: -1.7 PROJECTED POWER FLOW: 2516.3 KW 1213.9 KVAR 2793.8 KVA PF: .90 LAGGING LOSSES THRU TRANSF: 16.7 KW 179.0 KVAR 179.8 KVA **XFMR TAPS -5.0%**

LOAD TO: 90 SWGR 0 FEEDER AMPS: 381 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 2516.3 KW 1213.9 KVAR 2793.8 KVA PF: .90 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

==== BUS: 90 SWGR 0 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4232 %VD: -1.7

LOAD TO: 64 MCC 485 TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .2 KW .4 KVAR .4 KVA PF: .45 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 70 SWGR N FEEDER AMPS: 189 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 1159.7 KW 753.7 KVAR 1383.1 KVA PF: .84 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD FROM: 85 T1 SEC FEEDER AMPS: 381 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 2516.1 KW 1213.7 KVAR 2793.6 KVA PF: .90 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD TO: 600 O/H BUS FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 700 FDR 7 FEEDER AMPS: 71 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 493.9 KW 164.3 KVAR 520.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 800 FDR 8 FEEDER AMPS: 59 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 410.8 KW 139.1 KVAR 433.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 900 FDR 9
PROJECTED POWER FLOW: 451.6 KW 156.2 KVAR 477.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

==== BUS: 100 FDR 1 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 %VD: -1.7

LOAD FROM: 60 SWGR S FEEDER AMPS: 80 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 556.4 KW 186.4 KVAR 586.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 105 F1F12 14 FEEDER AMPS: 80 VOLTAGE DROP: 26. %VD: .6
PROJECTED POWER FLOW: 556.4 KW 186.4 KVAR 586.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.6 KW 3.5 KVAR 4.3 KVA

LOAD FROM: 100 FDR 1 FEEDER AMPS: 80 VOLTAGE DROP: 26. %VD: .6 PROJECTED POWER FLOW: 553.8 KW 182.9 KVAR 583.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 2.6 KW 3.5 KVAR 4.3 KVA

LOAD TO: 110 F1 L14 FEEDER AMPS: 79 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 544.6 KW 180.3 KVAR 573.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .4 KVAR .6 KVA

LOAD FROM: 105 F1F12 14 FEEDER AMPS: 79 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 544.3 KW 179.9 KVAR 573.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .4 KVAR .6 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 25 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: .0 LOAD TO: 115 F1 L15 PROJECTED POWER FLOW: 25.5 KW 8.2 KVAR 26.8 KVA PF: .95 LAGGING .0 KW .O KVA LOSSES THRU FEEDER: .O KVAR

LOAD TO: 120 F1 L31 FEEDER AMPS: 72 VOLTAGE DROP: 6. %VD: .1
PROJECTED POWER FLOW: 497.3 KW 164.6 KVAR 523.9 KVA PF: .95 LAGGING .9 KVA .6 KW .7 KVAR LOSSES THRU FEEDER:

LOAD FROM: 110 F1 L14 FEEDER AMPS: 4 VOLTAGE DKUP: 0. 200. ...
PROJECTED POWER FLOW: 25.5 KW 8.2 KVAR 26.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 120 F1 L31 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4195 XVD: -.9 PROJECTED SPECIAL BUS LOAD: 225.8 KW 74.2 KVAR

LOAD FROM: 110 F1 L14 FEEDER AMPS: 72 VOLTAGE DROP: 6. XVD: PROJECTED POWER FLOW: 496.8 KW 163.9 KVAR 523.1 KVA PF: .95 LAGGING .6 KW LOSSES THRU FEEDER: .7 KVAR -9 KVA

LOAD TO: 121 F1 L63 FEEDER AMPS: 39 VOLTAGE DROP: 4. XVD: .1 PROJECTED POWER FLOW: 271.0 KW 89.6 KVAR 285.4 KVA PF: .95 LAGGING .2 KVAR .2 KW LOSSES THRU FEEDER: .3 KVA

==== BUS: 121 F1 L63 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4192 XVD: -.8 PROJECTED SPECIAL BUS LOAD: 62.9 KW 21.3 KVAR

LOAD FROM: 120 F1 L31 FEEDER AMPS: 39 VOLTAGE DROP: 4. %VD: PROJECTED POWER FLOW: 270.8 KW 89.4 KVAR 285.2 KVA PF: .95 LAGGING .2 KW .2 KVAR LOSSES THRU FEEDER:

LOAD TO: 122 F1 L64 FEEDER AMPS: 14 VOLTAGE DRUP: 1. 200.

PROJECTED POWER FLOW: 99.2 KW 32.5 KVAR 104.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 26 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 125 F1 L67 FEEDER AMPS: 16 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 108.6 KW 35.5 KVAR 114.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 121 F1 L63

PROJECTED POWER FLOW: 108.6 KW 35.5 KVAR 114.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 135 F1 L68 FEEDER AMPS: 2 VOLTAGE DROP: 0. 2VD: .0
PROJECTED POWER FLOW: 14.2 KW 5.1 KVAR 15.1 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 125 F1 L67

PROJECTED POWER FLOW: 31.5 KW 10.1 KVAR 33.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 27 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 125 F1 L67
PROJECTED POWER FLOW: 14.2 KW 5.1 KVAR 15.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

==== BUS: 200 FDR 2 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 %VD: -1.7

LOAD FROM: 60 SMGR S
PROJECTED POWER FLOW: 539.0 KW 177.4 KVAR 567.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 205 FEEDER AMPS: 77 VOLTAGE DROP: 10. %VD: .2
PROJECTED POWER FLOW: 539.0 KW 177.4 KVAR 567.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.0 KW 1.3 KVAR 1.6 KVA

LOAD FROM: 200 FDR 2 FEEDER AMPS: 77 VOLTAGE DROP: 10. 2VD: .2 PROJECTED POWER FLOW: 538.0 KW 176.1 KVAR 566.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.0 KW 1.3 KVAR 1.6 KVA

LOAD TO: 210 2-3 PRI FEEDER AMPS: 35 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 240.8 KW 79.3 KVAR 253.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD TO: 235 F5 F29
PROJECTED POWER FLOW: 226.2 KW 74.2 KVAR 238.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 28
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 205

PROJECTED POWER FLOW: 240.7 KW 79.2 KVAR 253.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD TO: 215 2-4 PRI FEEDER AMPS: 22 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 150.2 KW 49.4 KVAR 158.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 225 2-3 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 210 2-3 PRI FEEDER AMPS: 22 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 150.2 KW 49.4 KVAR 158.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 220 2-5 PRI FEEDER AMPS: 9 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 59.7 KW 19.5 KVAR 62.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 230 2-4 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 215 2-4 PRI FEEDER AMPS: 9 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 59.7 KW 19.5 KVAR 62.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 29
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 205 FEEDER AMPS: 33 VOLTAGE DROP: 3. XVD: .1
PROJECTED POWER FLOW: 226.1 KW 74.0 KVAR 237.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 236 F2 F211 FEEDER AMPS: 26 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 180.8 KW 59.7 KVAR 190.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD FROM: 235 F5 F29 FEEDER AMPS: 26 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 180.8 KW 59.6 KVAR 190.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD FROM: 236 F2 F211 FEEDER AMPS: 13 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 90.4 KW 29.8 KVAR 95.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 52 PM CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM PAGE 30 FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 300 FDR 3 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 XVD: -1.7 ANGLE: -3.1 DEGREES

LOAD FROM: 60 SWGR S FEEDER AMPS: 54 VOLTAGE DROP: PROJECTED POWER FLOW: 374.5 KW 124.4 KVAR 394.6 KVA PF: .95 LAGGING .0 KW -0 KVAR .O KVA

LOAD TO: 301 F8 F311 FEEDER AMPS: 54 VOLTAGE DROP: 5. XVD: .1 PROJECTED POWER FLOW: 374.5 KW 124.4 KVAR 394.6 KVA PF: .95 LAGGING .3 KW .4 KVAR .5 KVA

==== BUS: 301 F8 F311 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4226 %VD: -1.6 PU BUS VOLTAGE: 1.016 ANGLE: -3.1 DEGREES PROJECTED SPECIAL BUS LOAD: 192.0 KW 63.0 KVAR

LOAD FROM: 300 FDR 3 FEEDER AMPS: 54 VOLTAGE DROP: 5. %VD: .1 374.2 KW 124.0 KVAR 394.2 KVA PF: .95 LAGGING PROJECTED POWER FLOW: LOSSES THRU FEEDER: .3 KW -4 KVAR .5 KVA

LOAD TO: 303 F713 FEEDER AMPS: 26 VOLTAGE DROP: 1. XVD: PROJECTED POWER FLOW: 182.2 KW 61.0 KVAR 192.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .O KVAR .1 KVA

LOAD FROM: 301 F8 F311 FEEDER AMPS: 26 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 182.2 KW 61.0 KVAR 192.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR -1 KVA

LOAD TO: 305 F8 F311 FEEDER AMPS: 26 VOLTAGE DROP: 2. %VD: PROJECTED POWER FLOW: 182.2 KW 61.0 KVAR 192.1 KVA PF: .95 LAGGING .1 KW -1 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 31
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 310 F3 19

PROJECTED POWER FLOW: 166.6 KW 55.7 KVAR 175.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

==== BUS: 400 FDR 4 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 XVD: -1.7

LOAD FROM: 60 SWGR S
PROJECTED POWER FLOW: 417.0 KW 138.6 KVAR 439.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 401 4-1 PRI FEEDER AMPS: 60 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 417.0 KW 138.6 KVAR 439.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD FROM: 400 FDR 4
PROJECTED POWER FLOW: 416.8 KW 138.3 KVAR 439.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 32 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 403 F1 F45
PROJECTED POWER FLOW: 339.3 KW 112.5 KVAR 357.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD FROM: 401 4-1 PRI FEEDER AMPS: 49 VOLTAGE DROP: 3. %VD: .1 PROJECTED POWER FLOW: 339.1 KW 112.3 KVAR 357.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD TO: 405 F4 10 FEEDER AMPS: 31 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 214.1 KW 71.3 KVAR 225.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 410 F417 UF1 FEEDER AMPS: 21 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 147.1 KW 48.5 KVAR 154.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 405 F4 10 FEEDER AMPS: 21 VOLTAGE DROP: 5. %VD: _1
PROJECTED POWER FLOW: 147.0 KW 48.3 KVAR 154.7 KVA PF: _95 LAGGING
LOSSES THRU FEEDER: __1 KW __2 KVAR __2 KVA

LOAD TO: 415 4-6 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 33
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 500 FDR 5 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 XVD: -1.7

LOAD FROM: 60 SWGR S FEEDER AMPS: 38 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 266.0 KW 90.6 KVAR 281.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 505 F4 F5 F6UF FEEDER AMPS: 38 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 266.0 KW 90.6 KVAR 281.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD FROM: 500 FDR 5 FEEDER AMPS: 38 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 265.8 KW 90.2 KVAR 280.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD TO: 510 5-1 PRI FEEDER AMPS: 5 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 32.0 KW 10.3 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 512 5-3 PRI FEEDER AMPS: 34 VOLTAGE DROP: 12. %VD: .3 PROJECTED POWER FLOW: 233.8 KW 79.9 KVAR 247.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .5 KW .7 KVAR .8 KVA

LOAD FROM: 505 F4 F5 F6UF FEEDER AMPS: 5 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 32.0 KW 10.3 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 34
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 505 F4 F5 F6UF FEEDER AMPS: 34 VOLTAGE DROP: 12. %VD: .3 PROJECTED POWER FLOW: 233.3 KW 79.3 KVAR 246.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .5 KW .7 KVAR .8 KVA

LOAD TO: 514 5-5 PRI FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 5.1 KW 2.1 KVAR 5.5 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 515 F5 L24 FEEDER AMPS: 31 VOLTAGE DROP: 8. XVD: .2
PROJECTED POWER FLOW: 213.8 KW 72.1 KVAR 225.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .4 KVAR .5 KVA

LOAD FROM: 512 5-3 PRI FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 5.1 KW 2.1 KVAR 5.5 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 512 5-3 PRI FEEDER AMPS: 31 VOLTAGE DROP: 8. %VD: .2 PROJECTED POWER FLOW: 213.5 KW 71.7 KVAR 225.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .4 KVAR .5 KVA

LOAD TO: 520 5-6 PRI FEEDER AMPS: 1 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 5.1 KW 2.0 KVAR 5.5 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 525 F5 L31 FEEDER AMPS: 29 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 200.2 KW 66.3 KVAR 210.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 35
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 515 F5 L24 FEEDER AMPS: 1 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 5.1 KW 2.0 KVAR 5.5 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 515 F5 L24 FEEDER AMPS: 29 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 200.2 KW 66.2 KVAR 210.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD TO: 530 F5 L39 FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 5.1 KW 1.9 KVAR 5.5 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 531 F3 L41 FEEDER AMPS: 14 VOLTAGE DROP: 2. XVD: .0
PROJECTED POWER FLOW: 98.7 KW 32.1 KVAR 103.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 535 F537 L5 FEEDER AMPS: 13 VOLTAGE DROP: 4. %VD: .1 PROJECTED POWER FLOW: 88.2 KW 28.8 KVAR 92.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 525 F5 L31 FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 5.1 KW 1.9 KVAR 5.5 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 36 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 525 F5 L31 FEEDER AMPS: 14 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 98.7 KW 32.1 KVAR 103.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 535 F537 L5 FEEDER AMPS: 12 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 82.3 KW 27.0 KVAR 86.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD FROM: 525 F5 L31
PROJECTED POWER FLOW: 88.1 KW 28.8 KVAR 92.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 531 F3 L41 FEEDER AMPS: 12 VOLTAGE DROP: 2. %VD: .1 PROJECTED POWER FLOW: 82.3 KW 26.9 KVAR 86.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD TO: 540 F5 L5 UF1 FEEDER AMPS: 2 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 16.3 KW 6.1 KVAR 17.4 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 555

FEEDER AMPS: 21 VOLTAGE DROP: 5. %VD: .1

PROJECTED POWER FLOW: 149.0 KW 47.6 KVAR 156.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD FROM: 535 F537 L5 FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 16.3 KW 6.1 KVAR 17.4 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 37 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 545 F5 L56 UF1 FEEDER AMPS: 2 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 12.2 KW 4.1 KVAR 12.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 550 F5 L55 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 2.0 KW 1.0 KVAR 2.3 KVA PF: .89 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 540 F5 L5 UF1 FEEDER AMPS: 2 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 12.2 KW 4.1 KVAR 12.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 547 5-16 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 540 F5 L5 UF1 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 2.0 KW 1.0 KVAR 2.3 KVA PF: .89 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

==== BUS: 555 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4196 %VD: -.9
====== BUS: 555 DESIGN VOLTAGE: 1.009 ANGLE: -3.4 DEGREES

LOAD FROM: 535 F537 L5 FEEDER AMPS: 21 VOLTAGE DROP: 5. %VD: .1 PROJECTED POWER FLOW: 148.8 KW 47.5 KVAR 156.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 38
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 560 RICH SUB FEEDER AMPS: 4 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 26.1 KW 8.6 KVAR 27.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 565 5-17 PRI FEEDER AMPS: 18 VOLTAGE DROP: 4. XVD: .1 PROJECTED POWER FLOW: 122.8 KW 38.9 KVAR 128.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

==== BUS: 560 RICH SUB DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4192 XVD: -.8

LOAD FROM: 555

FEEDER AMPS: 4 VOLTAGE DROP: 4. XVD: .1

PROJECTED POWER FLOW: 26.1 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 562 RS SEC TRANSF AMPS: 4 VOLTAGE DROP: 5. XVD: .1
PROJECTED POWER FLOW: 26.1 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

==== BUS: 562 RS SEC DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13288 %VD: -.7

LOAD FROM: 560 RICH SUB TRANSF AMPS: 1 VOLTAGE DROP: 15. %VD: .1
PROJECTED POWER FLOW: 26.0 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVAR

LOAD TO: 930 RICH SUB FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 26.0 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 555

FEEDER AMPS: 18 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 122.7 KW 38.8 KVAR 128.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 39
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 570 5-18 PRI FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 8.1 KW 3.3 KVAR 8.8 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 575 F5 51 FEEDER AMPS: 16 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 109.5 KW 33.4 KVAR 114.5 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 565 5-17 PRI FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 8.1 KW 3.3 KVAR 8.8 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 565 5-17 PRI FEEDER AMPS: 16 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 109.4 KW 33.4 KVAR 114.4 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 580 F5 L85 FEEDER AMPS: 15 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 107.4 KW 32.7 KVAR 112.3 KVA PF: .96 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 575 F5 51

PROJECTED POWER FLOW: 107.3 KW 32.7 KVAR 112.2 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 585 F5 L87 UF1 FEEDER AMPS: 4 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 24.3 KW 8.1 KVAR 25.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 40 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 590 F5 L8911 FEEDER AMPS: 11 VOLTAGE DROP: 2. %VD: .1 PROJECTED POWER FLOW: 74.9 KW 21.3 KVAR 77.9 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 580 F5 L85

PROJECTED POWER FLOW: 24.3 KW 8.1 KVAR 25.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 580 F5 L85

PROJECTED POWER FLOW: 74.9 KW 21.2 KVAR 77.8 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 591 5-23 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 593 5-24 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 595 F5 L8 25 FEEDER AMPS: 5 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 33.4 KW 10.1 KVAR 34.9 KVA PF: .96 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

E=== BUS: 593 5-24 SEC DESIGN VOLTAGE: 208 BUS VOLTAGE: 209 %VD: -.6

**** NO LOAD SPECIFIED ****

==== BUS: 595 F5 L8 25 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4181 XVD: -.5 PROJECTED SPECIAL BUS LOAD: 33.3 KW 10.1 KVAR

PROJECTED SPECIAL BUS LOAD:

FEEDER AMPS: 5 VOLTAGE DROP: 4. 2VD: LOAD FROM: 590 F5 L8911 PROJECTED POWER FLOW: 33.3 KW 10.1 KVAR 34.8 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA LOSSES THRU FEEDER:

==== BUS: 600 O/H BUS DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4232 %VD: -1.7 **** NO LOAD SPECIFIED ****

==== BUS: 700 FDR 7 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 %VD: -1.7 ANGLE: -3.1 DEGREES

LOAD FROM: 90 SWGR O FEEDER AMPS: 71 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 493.8 KW 164.2 KVAR 520.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 705 WELL9 POL FEEDER AMPS: 71 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 493.8 KW 164.2 KVAR 520.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

==== BUS: 705 WELL9 POL DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4230 %VD: -1.7 PROJECTED SPECIAL BUS LOAD: 42.4 KW 14.5 KVAR

FEEDER AMPS: 71 VOLTAGE DROP: 1. %VD: .0 LOAD FROM: 700 FDR 7 PROJECTED POWER FLOW: 493.8 KW 164.1 KVAR 520.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 707 7-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 42
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 709 F9 F73 FEEDER AMPS: 65 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 451.4 KW 149.7 KVAR 475.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD FROM: 705 WELL9 POL FEEDER AMPS: 65 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 451.2 KW 149.4 KVAR 475.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD TO: 710 F7 L11 FEEDER AMPS: 53 VOLTAGE DROP: 11. %VD: .3
PROJECTED POWER FLOW: 365.4 KW 121.5 KVAR 385.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .7 KW 1.0 KVAR 1.2 KVA

LOAD TO: 715 F7 L13 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 21.6 KW 7.2 KVAR 22.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

LOAD TO: 720 F713 FEEDER AMPS: 37 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 256.8 KW 84.5 KVAR 270.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 43
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 710 F7 L11 FEEDER AMPS: 3 VOLTAGE DROP: 0. 2VD: .0 PROJECTED POWER FLOW: 21.6 KW 7.2 KVAR 22.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

LOAD FROM: 710 F7 L11 FEEDER AMPS: 37 VOLTAGE DROP: 4. XVD: .1
PROJECTED POWER FLOW: 256.7 KW 84.3 KVAR 270.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD TO: 725 7-15 PRI FEEDER AMPS: 32 VOLTAGE DROP: 8. %VD: .2 PROJECTED POWER FLOW: 224.9 KW 74.0 KVAR 236.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .5 KVAR .6 KVA

LOAD TO: 730 F7 L43

PROJECTED POWER FLOW:
LOSSES THRU FEEDER:

FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0

4.1 KVAR 12.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 735 F7 L54 FEEDER AMPS: 17 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 118.3 KW 38.8 KVAR 124.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 45
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 750 F7 L72 FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 28.6 KW 9.2 KVAR 30.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 760 7-21 PRI FEEDER AMPS: 7 VOLTAGE DROP: 2. XVD: .1
PROJECTED POWER FLOW: 50.9 KW 17.3 KVAR 53.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

LOAD FROM: 745

PROJECTED POWER FLOW: 28.5 KW 9.2 KVAR 30.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 755 F7-33 FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 7.1 KW 2.0 KVAR 7.4 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 750 F7 L72
PROJECTED POWER FLOW: 7.1 KW 2.0 KVAR 7.4 KVA PF: .96 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 745 FEEDER AMPS: 7 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 50.9 KW 17.3 KVAR 53.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 765 7-22 PRI FEEDER AMPS: 6 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 38.7 KW 13.2 KVAR 40.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 46
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 760 7-21 PRI FEEDER AMPS: 6 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 38.7 KW 13.2 KVAR 40.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 770 7-23 PRI FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 17.3 KW 6.1 KVAR 18.4 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 765 7-22 PRI FEEDER AMPS: 3 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 17.3 KW 6.1 KVAR 18.4 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 775 7-24 PRI FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 12.2 KW 4.1 KVAR 12.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 770 7-23 PRI FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 12.2 KW 4.1 KVAR 12.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 800 FDR 8 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 XVD: -1.7

LOAD FROM: 90 SWGR O FEEDER AMPS: 59 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 410.7 KW 139.1 KVAR 433.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 48
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 810 F8 L23 FEEDER AMPS: 43 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 298.8 KW 99.5 KVAR 314.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

LOAD TO: 820 F8 30 UF1 FEEDER AMPS: 37 VOLTAGE DROP: 9. %VD: .2 PROJECTED POWER FLOW: 254.0 KW 84.3 KVAR 267.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .4 KW .5 KVAR .7 KVA

LOAD FROM: 817 F8 22 FEEDER AMPS: 37 VOLTAGE DROP: 9. %VD: .2 PROJECTED POWER FLOW: 253.6 KW 83.7 KVAR 267.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .4 KW .5 KVAR .7 KVA

LOAD TO: 825 8-22 PRI FEEDER AMPS: 20 VOLTAGE DROP: 7. %VD: .2 PROJECTED POWER FLOW: 136.2 KW 45.2 KVAR 143.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD FROM: 820 F8 30 UF1 FEEDER AMPS: 20 VOLTAGE DROP: 7. %VD: .2 PROJECTED POWER FLOW: 136.0 KW 45.0 KVAR 143.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

==== BUS: 900 FDR 9 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4231 %VD: -1.7

LOAD FROM: 90 SWGR 0 FEEDER AMPS: 65 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 451.5 KW 156.2 KVAR 477.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 49
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 905 STEP SEC TRANSF AMPS: 65 VOLTAGE DROP: 29. XVD: .7 PROJECTED POWER FLOW: 451.5 KW 156.2 KVAR 477.8 KVA PF: .95 LAGGING LOSSES THRU TRANSF: 1.1 KW 6.7 KVAR 6.8 KVA

==== BUS: 905 STEP SEC DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13334 %VD: -1.0

LOAD FROM: 900 FDR 9

TRANSF AMPS: 21 VOLTAGE DROP: 91. XVD: .7

PROJECTED POWER FLOW: 450.4 KW 149.5 KVAR 474.5 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: 1.1 KW 6.7 KVAR 6.8 KVA

LOAD TO: 910 F 96 FEEDER AMPS: 21 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 450.4 KW 149.5 KVAR 474.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 905 STEP SEC FEEDER AMPS: 21 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 450.3 KW 149.4 KVAR 474.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 915 F910 FEEDER AMPS: 20 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 432.1 KW 143.4 KVAR 455.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 910 F 96 FEEDER AMPS: 20 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 432.0 KW 143.3 KVAR 455.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 920 F940 FEEDER AMPS: 17 VOLTAGE DROP: 16. %VD: .1
PROJECTED POWER FLOW: 371.3 KW 123.4 KVAR 391.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .5 KVAR .6 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 50 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

LOAD FROM: 915 F910 FEEDER AMPS: 17 VOLTAGE DROP: 16. XVD: .1
PROJECTED POWER FLOW: 370.9 KW 122.9 KVAR 390.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .5 KVAR .6 KVA

LOAD TO: 945 F949 L1 FEEDER AMPS: 16 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 360.5 KW 119.5 KVAR 379.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

==== BUS: 925 () DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13286 XVD: -.7

LOAD FROM: 930 RICH SUB FEEDER AMPS: 1 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 26.0 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 930 RICH SUB DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13288 %VD: -.7

LOAD FROM: 562 RS SEC FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 26.0 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 925 () FEEDER AMPS: 1 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 26.0 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 51
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 925 () FEEDER AMPS: 1 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 26.0 KW 8.6 KVAR 27.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 940 9-9 PRI FEEDER AMPS: 1 VOLTAGE DROP: 4. XVD: .0 PROJECTED POWER FLOW: 15.6 KW 5.1 KVAR 16.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 935 9-8 PRI FEEDER AMPS: 1 VOLTAGE DROP: 4. XVD: .0 PROJECTED POWER FLOW: 15.6 KW 5.1 KVAR 16.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 950 9-12 PRI FEEDER AMPS: VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 8.4 KW 2.7 KVAR 8.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 960 9-13 PRI FEEDER AMPS: 16 VOLTAGE DROP: 18. %VD: .1
PROJECTED POWER FLOW: 346.6 KW 114.8 KVAR 365.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .2 KVAR .5 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 945 F949 L1 FEEDER AMPS: VOLTAGE DROP: 1. 2VD: .0 PROJECTED POWER FLOW: 8.4 KW 2.7 KVAR 8.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 955 9-11 PRI FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 4.2 KW 1.4 KVAR 4.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 950 9-12 PRI FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 4.2 KW 1.4 KVAR 4.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 945 F949 L1 FEEDER AMPS: 16 VOLTAGE DROP: 18. XVD: .1
PROJECTED POWER FLOW: 346.2 KW 114.6 KVAR 364.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .2 KVAR .5 KVA

LOAD TO: 963 9-14 PRI FEEDER AMPS: 15 VOLTAGE DROP: 60. %VD: .5 PROJECTED POWER FLOW: 328.1 KW 108.7 KVAR 345.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.4 KW .7 KVAR 1.6 KVA

LOAD FROM: 960 9-13 PRI FEEDER AMPS: 15 VOLTAGE DROP: 60. %VD: .5 PROJECTED POWER FLOW: 326.7 KW 108.0 KVAR 344.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.4 KW .7 KVAR 1.6 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 53
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 966 9-15 PRI FEEDER AMPS: 14 VOLTAGE DROP: 16. %VD: .1 PROJECTED POWER FLOW: 308.8 KW 102.1 KVAR 325.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .4 KW .2 KVAR .4 KVA

LOAD FROM: 963 9-14 PRI FEEDER AMPS: 14 VOLTAGE DROP: 16. XVD: .1
PROJECTED POWER FLOW: 308.4 KW 102.0 KVAR 324.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .4 KW .2 KVAR .4 KVA

LOAD TO: 969 SW UP FEEDER AMPS: 14 VOLTAGE DROP: 4. %VD: .0 PROJECTED POWER FLOW: 306.4 KW 101.3 KVAR 322.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

==== BUS: 969 SW UP DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13210 %VD: -.1

LOAD FROM: 966 9-15 PRI FEEDER AMPS: 14 VOLTAGE DROP: 4. %VD: .0 PROJECTED POWER FLOW: 306.3 KW 101.2 KVAR 322.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 972 SW DOWN FEEDER AMPS: 14 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 306.3 KW 101.2 KVAR 322.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 972 SW DOWN DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13210 %VD: -.1

LOAD FROM: 969 SW UP
PROJECTED POWER FLOW: 306.3 KW 101.2 KVAR 322.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 975 9-16 PRI FEEDER AMPS: 14 VOLTAGE DROP: 62. %VD: .5
PROJECTED POWER FLOW: 306.3 KW 101.2 KVAR 322.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.4 KW .7 KVAR 1.5 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 54 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 975 9-16 PRI DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13148 %VD: .4 ANGLE: -3.9 DEGREES

LOAD FROM: 972 SW DOWN FEEDER AMPS: 14 VOLTAGE DRUP: 02. AVD. ...
PROJECTED POWER FLOW: 304.9 KW 100.6 KVAR 321.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.4 KW .7 KVAR 1.5 KVA

LOAD TO: 977 9-19 PRI FEEDER AMPS: 1 VOLTAGE DROP: 4. XVD: .0 PROJECTED POWER FLOW: 16.3 KW 5.4 KVAR 17.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA .0 KW

FEEDER AMPS: 13 VOLTAGE DROP: 25. %VD: .2 LOAD TO: 980 PROJECTED POWER FLOW: 288.6 KW 95.2 KVAR 303.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .5 KW .2 KVAR .6 KVA

==== BUS: 977 9-19 PRI DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13144 XVD: PROJECTED SPECIAL BUS LOAD: 16.3 KW 5.4 KVAR

LOAD FROM: 975 9-16 PRI FEEDER AMPS: 1 VOLTAGE DROP: 4. %VD: .0 PROJECTED POWER FLOW: 16.3 KW 5.4 KVAR 17.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13123 %VD: .6 ==== BUS: 980 ======== PU BUS VOLTAGE: .994 ANGLE: -3.9 DEGREES

LOAD FROM: 975 9-16 PRI FEEDER AMPS: 13 VOLTAGE DROP: 25. %VD: .2 PROJECTED POWER FLOW: 288.0 KW 95.0 KVAR 303.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .5 KW .2 KVAR .6 KVA

LOAD TO: 982 9-20 PRI FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 6.1 KW 2.0 KVAR 6.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 983 9-25 PRI FEEDER AMPS: 13 VOLTAGE DROP: 41. %VD: .3 PROJECTED POWER FLOW: 281.9 KW 93.0 KVAR 296.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .8 KW .4 KVAR .9 KVA DATE:20 NOV 95 TIME: 4 52 PM PAGE 55
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 980 FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 6.1 KW 2.0 KVAR 6.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 980 FEEDER AMPS: 13 VOLTAGE DROP: 41. XVD: .3
PROJECTED POWER FLOW: 281.1 KW 92.5 KVAR 295.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .8 KW .4 KVAR .9 KVA

LOAD TO: 984 9-25 SEC TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 985 9-34 PRI FEEDER AMPS: 6 VOLTAGE DROP: 6. %VD: .0 PROJECTED POWER FLOW: 121.4 KW 40.0 KVAR 127.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD FROM: 983 9-25 PRI FEEDER AMPS: 6 VOLTAGE DROP: 6. %VD: .0 PROJECTED POWER FLOW: 121.3 KW 40.0 KVAR 127.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 987 FEEDER AMPS: 5 VOLTAGE DROP: 17. %VD: .1
PROJECTED POWER FLOW: 110.8 KW 36.6 KVAR 116.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 56
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 987 DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13059 %VD: 1.1

LOAD FROM: 985 9-34 PRI FEEDER AMPS: 5 VOLTAGE DROP: 17. %VD: .1 PROJECTED POWER FLOW: 110.7 KW 36.5 KVAR 116.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

LOAD TO: 990 9-26 PRI FEEDER AMPS: 2 VOLTAGE DROP: 11. %VD: .1 PROJECTED POWER FLOW: 45.2 KW 14.8 KVAR 47.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 992

PROJECTED POWER FLOW: 65.5 KW 21.6 KVAR 69.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD FROM: 987

PROJECTED POWER FLOW: 45.1 KW 14.8 KVAR 47.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 992 DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13016 %VD: 1.4

LOAD FROM: 987

PROJECTED POWER FLOW: 65.3 KW 21.6 KVAR 68.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 995 9-30 PRI FEEDER AMPS: 2 VOLTAGE DROP: 30. %VD: .2 PROJECTED POWER FLOW: 44.9 KW 14.7 KVAR 47.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 997 9-32 PRI FEEDER AMPS: 1 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 20.4 KW 6.8 KVAR 21.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:20 NOV 95 TIME: 4 52 PM PAGE 57
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 992 FEEDER AMPS: 2 VOLTAGE DROP: 30. XVD: .2
PROJECTED POWER FLOW: 44.8 KW 14.7 KVAR 47.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD FROM: 992 FEEDER AMPS: 1 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 20.4 KW 6.8 KVAR 21.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 20 NOV 95 TIME: 4 52 PM PAGE 58
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS#	NAME	BASE VOLT	PU VOLT	BUS#	NAME	BASE VOLT	PU VOLT
10	GEN G1	2400.00	1.023	15	G1 STEP-UP	2400.00	1.023
20	GEN G2	2400.00	1.017	25	G2 STEP-UP	2400.00	1.017
30	GEN G3	2400.00	1.017	35	G3 STEP-UP	2400.00	1.017
40	GEN G4	4160.00	1.017	50	GEN G5	4160.00	1.017
60	SWGR S	4160.00	1.017	62	SS-1 SEC	480.00	1.017
64	MCC 4&5	480.00	1.017	66	SM1A BLUE	4160.00	1.017
68	BLUE SSS	480.00	1.017	70	SWGR N	4160.00	1.017
80	UTILITY	24900.00	1.000	85	T1 SEC	4160.00	1.017
90	SWGR O	4160.00	1.017	100	FDR 1	4160.00	1.017
105	F1F12 14	4160.00	1.011	110	F1 L14	4160.00	1.010
115	F1 L15	4160.00	1.010	120	F1 L31	4160.00	1.009
121	F1 L63	4160.00	1.008	122	F1 L64	4160.00	1.007
125	F1 L67	4160.00	1.007	130	F1 L613	4160.00	1.007
135	F1 L68	4160.00	1.007	200	FDR 2	4160.00	1.017
205		4160.00	1.015	210	2-3 PRI	4160.00	1.014
215	2-4 PRI	4160.00	1.014	220	2-5 PRI	4160.00	1.014
225	2-3 SEC	480.00	1.014	230	2-4 SEC	208.00	1.014
235	F5 F29	4160.00	1.014	236	F2 F211	4160.00	1.014
240	F1 F213	4160.00	1.013	300	FDR 3	4160.00	1.017
301	F8 F311	4160.00	1.016	3 03	F713	4160.00	1.016
305	F8 F311	4160.00	1.015	310	F3 19	4160.00	1.014
400	FDR 4	4160.00	1.017	401	4-1 PRI	4160.00	1.016
403	F1 F45	4160.00	1.016	405	F4 10	4160.00	1.015
410	F417 UF1	4160.00	1.014	415	4-6 SEC	208.00	1.014
500 510	FDR 5 5-1 PRI	4160.00	1.017	505	F4 F5 F6UF	4160.00	1.016
514	5-1 PKI 5-5 PRI	4160.00	1.016	512	5-3 PRI	4160.00	1.013
520	5-6 PRI	4160.00	1.013	515	F5 L24	4160.00	1.011
530	F5 L39	4160.00	1.011	525	F5 L31	4160.00	1.011
535	F537 L5	4160.00 4160.00	1.011 1.010	531 540	F3 L41	4160.00	1.010
545	F5 L56 UF1	4160.00			F5 L5 UF1	4160.00	1.010
550	F5 L55	4160.00	1.009	547	5-16 SEC	208.00	1.009
560	RICH SUB		1.010	555		4160.00	1.009
565		4160.00	1.008	562	RS SEC	13200.00	1.007
575	5-17 PRI F5 51	4160.00	1.008	570	5-18 PRI	4160.00	1.008
	F5 L87 UF1	4160.00	1.007	580	F5 L85	4160.00	1.007
585 591	5-23 SEC	4160.00	1.007	590	F5 L8911	4160.00	1.006
		208.00	1.006	593	5-24 SEC	208.00	1.006
595 700	F5 L8 25	4160.00	1.005	600	O/H BUS	4160.00	1.017
700	FDR 7	4160.00	1.017	705	WELLS POL	4160.00	1.017
7 07	7-1 SEC	480.00	1.017	709	F9 F73	4160.00	1.016

DATE:20 NOV 95 TIME: 4 52 PM PAGE 59
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW BUS DATA SUMMARY

BUS#	NAME	BASE VOLT	PU VOLT	BUS#	NAME	BASE VOLT	PU VOLT
710	F7 L11	4160.00	1.013	715	F7 L13	4160.00	1.013
720	F713	4160.00	1.013	725	7-15 PRI	4160.00	1.011
73 0	F7 L43	4160.00	1.011	735	F7 L54	4160.00	1.010
740	7-17 PRI	4160.00	1.010	745		4160.00	1.010
750	F7 L72	4160.00	1.010	755	F7-33	4160.00	1.010
760	7-21 PRI	4160.00	1.009	765	7-22 PRI	4160.00	1.009
770	7-23 PRI	4160.00	1.009	775	7-24 PRI	4160.00	1.009
800	FDR 8	4160.00	1.017	805	F8 L11	4160.00	1.012
810	F8 L23	4160.00	1.009	815	F8 L25	4160.00	1.009
817	F8 22	4160.00	1.008	820	F8 30 UF1	4160.00	1.006
825	8-22 PRI	4160.00	1.005	900	FDR 9	4160.00	1.017
905	STEP SEC	13200.00	1.010	910	F 96	13200.00	1.010
915	F910	13200.00	1.010	920	F940	13200.00	1.008
9 25	()	13200.00	1.007	930	RICH SUB	13200.00	1.007
935	9-8 PRI	13200.00	1.006	940	9-9 PRI	13200.00	1.006
945	F949 L1	13200.00	1.008	950	9-12 PRI	13200.00	1.008
955	9-11 PRI	13200.00	1.008	960	9-13 PRI	13200.00	1.007
963	9-14 PRI	13200.00	1.002	966	9-15 PRI	13200.00	1.001
9 69	SW UP	13200.00	1.001	972	SW DOWN	13200.00	1.001
975	9-16 PRI	13200.00	.9 96	977	9-19 PRI	13200.00	.996
980		13200.00	.99 4	982	9-20 PRI	13200.00	.994
983	9-25 PRI	13200.00	.9 91	984	9-25 SEC	208.00	.991
985	9-34 PRI	13200.00	.991	987		13200.00	.989
990	9-26 PRI	13200.00	.98 8	992		13200.00	.986
995	9-30 PRI	13200.00	.984	997	9-32 PRI	13200.00	.986

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
10	GEN G1	15	G1 STEP-UP	FDR	.03	235.10	1000.00	50.56
15	G1 STEP-UP	10	GEN G1	FDR	.03	235.10	999.75	50.56
15	G1 STEP-UP	60	SWGR S	TX2	.58	235.10	999.75	UNKNOW
20	GEN G2	25	G2 STEP-UP	FDR	.00	.00	.00	.00
25	G2 STEP-UP	20	GEN G2	FDR	.00	.00	.00	.00
25	G2 STEP-UP	60	SWGR S	TX2	.00	.00	.00	UNKNOW
30	GEN G3	35	G3 STEP-UP	FDR	.00	.00	.00	.00
35	G3 STEP-UP	30	GEN G3	FDR	.00	.00	.00	.00
35	G3 STEP-UP	60	SWGR S	TX2	.00	.00	.00	UNKNOW
40	GEN G4	70	SWGR N	FDR	.00	.00	.00	.00
50	GEN G5	70	SWGR N	FDR	.00	.00	.00	.00

DATE:20 NOV 95 TIME: 4 52 PM PAGE
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO PAGE 60

****	*********	*****	*****	*****	*****	*****	*****	*****
FROM	NAME	то	NAME	TYPE	VD%	AMPS	KVA	RATING%
60	SWGR S	15	G1 STEP-UP	TX2	.58			
60	SWGR S	25	G2 STEP-UP	TX2	.00	.00		UNKNOW
60	SWGR S	35	G3 STEP-UP	TX2	.00	.00	.00	UNKNOW
60	SWGR S	62	SS-1 SEC	TX2	.00	.02	.17	UNKNOW
60	SWGR S	66	SM1A BLUE	FDR	.00	.03	.25	.01
60	SWGR S	70	SWGR N	FDR	.00	188.71	1382.99	40.58
60	SWGR S	100	FDR 1	FDR	.02	80.08	586.87	34.82
60	SWGR S	200	FDR 2	FDR	.02	77.44	567.52	33.67
60	SWGR S	300	FDR 3	FDR	.01	53.85	394.65	23.41
60	SWGR S	400	FDR 4	FDR	.01	59.97	439.51	26.07
60	SWGR S	500	FDR 5	FDR	.01	38.35	281.04	16.67
62	SS-1 SEC	60	SWGR S	TX2	.00			UNKNOW
62	SS-1 SEC	64	MCC 4&5	FDR	.00		.17	
64	MCC 4&5	62	SS-1 SEC	FDR	.00	.20	.17	.04
64	MCC 4&5	68	BLUE SSS	FDR	.00	.30	.25	.06
64	MCC 4&5	90	SWGR O	TX2	.00	.49	.42	UNKNOW
66	SM1A BLUE	60	SWGR S	FDR	.00	.03	.25	.01
66	SM1A BLUE	68	BLUE SSS	TX2	.00		.25	
68	BLUE SSS	64		FDR	.00	.30	.25	
68	BLUE SSS	66	SM1A BLUE	TX2	.00	.30	-25	UNKNOW
70	SWGR N	40	GEN G4	FDR	.00	.00	.00	.0 0
70	SWGR N	50	GEN G5	FDR	.00	.00		
70	SWGR N	60	SWGR S	FDR	.00		1383.02	
70	SWGR N	90	SWGR O	FDR		188.71	1383.02	
80	UTILITY	85	T1 SEC	TX2		67.03	2890.77	
85 85	T1 SEC	80 90	UTILITY SWGR O	TX2 FDR	-1.73		2793.82	UNKNOW
90	SWGR O	64	MCC 4&5	TX2	.01 .00	381.15 .06	2793.82	103.01
90	SWGR O	70	SWGR N	FDR	.00	188.71	.42 1383.09	UNKNOW 51.00
90	SWGR O	85	T1 SEC	FDR	.01	381.15	2793.56	
90	SWGR O	600	O/H BUS	FDR	.00	.00	.00	
90	SWGR O	700	FDR 7	FDR		71.02	520.52	
90	SWGR O	800	FDR 8	FDR	.01	59.17	433.70	25.73
90	SWGR O	900	FDR 9	FDR	.02	65.19	477.84	28.35
100	FDR 1	60	SWGR S	FDR	.02	80.08	586.77	34.82
100	FDR 1	105	F1F12 14	FDR	.62	80.08	586.77	22.43
105	F1F12 14	100	FDR 1	FDR	.62	80.08	583.21	22.43
105	F1F12 14	110	F1 L14	FDR	.08		573.67	22.43
110	F1 L14	105	F1F12 14	FDR	.08			22.06
110	F1 L14	115	F1 L15	FDR			26.77	1.03
				IDK	.01	3.00	20.11	1.03

DATE:20 NOV 95 TIME: 4 52 PM PAGE 61
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*****	*****	****	********	**********				
FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
110	F1 L14	120	F1 L31	FDR	.15	71.99	523.86	20.16
115	F1 L15	110	F1 L14	FDR	.01	3.68	26.77	1.03
120	F1 L31	110	F1 L14	FDR	.15	71.99	523.10	20.16
120	F1 L31	121	F1 L63	FDR	.09	39.28	285.41	11.00
121	F1 L63	120	F1 L31	FDR	.09	39.28	285.16	11.00
121	F1 L63	122	F1 L64	FDR	.01	14.38	104.43	4.03
121	F1 L63	125	F1 L67	FDR	.02	15.74	114.27	4.41
122	F1 L64	121	F1 L63	FDR	.01	14.38	104.41	4.03
125	F1 L67	121	F1 L63	FDR	.02	15.74	114.25	4.41
125	F1 L67	130	F1 L613	FDR	.02	4.55	33.0 5	1.28
125	F1 L67	135	F1 L68	FDR	.00	2.08	15.09	.58
130	F1 L613	125	F1 L67	FDR	.02	4.55	33.05	1.28
135	F1 L68	125	F1 L67	FDR	.00	2.08	15.09	.58
200	FDR 2	60	SWGR S	FDR	.02	77.44	567.42	33.67
200	FDR 2	205		FDR	.24	77.44	567.42	21.69
205		200	FDR 2	FDR	.24	77.44	566.09	21.69
205		210	2-3 PRI	FDR	.03	34.68		9.71
205		235	F5 F29	FDR	.07	32.56	238.05	9.12
210	2-3 PRI	205		FDR	.03	34.68	253.43	9.71
210	2-3 PRI	215	2-4 PRI	FDR	.01	21.63	158.11	6.06
210	2-3 PRI	225	2-3 SEC	TX2	.00	.00	.00	UNKNOW
215	2-4 PRI	210	2-3 PRI	FDR	.01	21.63	158.10	6.06
215	2-4 PRI	220	2-5 PRI	FDR	.01	8.59	62.78	2.41
215	2-4 PRI	230	2-4 SEC	TX2	.00	.00	.00	UNKNOW
220	2-5 PRI	215	2-4 PRI	FDR	.01	8.59	62.77	2.41
225	2-3 SEC	210	2-3 PRI	TX2	.00	.00	.00	UNKNOW
230	2-4 SEC	215	2-4 PRI	TX2	.00	.00	.00	UNKNOW
235	F5 F29	205		FDR	.07	32.56	237.89	9.12 7.30
235	F5 F29	236	F2 F211	FDR	.03	26.07	190.42 190.36	
236	F2 F211	235	F5 F29	FDR	.03	26.07	95.17	
236	F2 F211	240	F1 F213	FDR	.02	13.03 13.03	95.16	3.65
240	F1 F213	236	F2 F211	FDR	.02	53.85	394.60	23.41
300	FDR 3	60	SWGR S	FDR	.01		394.60	15.08
300	FDR 3	301	F8 F311	FDR	.11	53.85 53.85	394.00	15.08
301	F8 F311	300	FDR 3	FDR	.11		192.15	7.35
301	F8 F311	303	F713	FDR	.03	26.25 26.25	192.10	
303	F713	301	F8 F311	FDR	.05	26.25	192.10	
303	F713	305	F8 F311	FDR	.05	26.25	191.99	
305	FB F311	303	F713	FDR			175.70	6.73
3 05	F8 F311	310	F3 19	FDR	.15	24.02	1/5./0	0.73

DATE:20 NOV 95 TIME: 4 52 PM PAGE 62 CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
310	F3 19	305	F8 F311	FDR	.15	24.02	175.45	6.73
400	FDR 4	60	SWGR S	FDR	.01	59.97	439.44	26.07
400	FDR 4	401	4-1 PRI	FDR	.08	59.97	439.44	16.80
401	4-1 PRI	400	FDR 4	FDR	.08	59.97	439.11	16.80
401	4-1 PRI	403	F1 F45	FDR	.06	48.82	357.47	13.67
403	F1 F45	401	4-1 PRI	FDR	.06	48.82	357.25	13.67
403	F1 F45	405	F4 10	FDR	.08	30.84	225.70	8.64
405	F4 10	403	F1 F45	FDR	.08	30.84	225.52	8.64
405	F4 10	410	F417 UF1	FDR	.11	21.18	154.85	5.93
410	F417 UF1	405	F4 10	FDR	.11	21.18	154.69	5.93
410	F417 UF1	415	4-6 SEC	TX2	.00	.00	.00	UNKNOW
415	4-6 SEC	410	F417 UF1	TX2	.00	.00	.00	UNKNOW
500	FDR 5	60	SWGR S	FDR	.01	38.35	281.02	16.67
500	FDR 5	505	F4 F5 F6UF	FDR	.12	38.35	281.02	10.74
505	F4 F5 F6UF	500	FDR 5	FDR	.12	38.35	280.68	10.74
505	F4 F5 F6UF	510	5-1 PRI	FDR	.01	4.59	33.61	1.29
5 05	F4 F5 F6UF	512	5-3 PRI	FDR	.28	33.76	247.07	9.46
510	5-1 PRI	505	F4 F5 F6UF	FDR	.01	4.59	33.61	1.29
512	5-3 PRI	5 05	F4 F5 F6UF	FDR	.28	33.76	246.39	9.46
512	5-3 PRI	514	5-5 PRI	FDR	.00	.76	5.53	.21
512	5-3 PRI	515	F5 L24	FDR	. 19	30.91	225.62	8.66
514	5-5 PRI	512	5-3 PRI	FDR	.00	.76	5.53	.21
515	F5 L24	512	5-3 PRI	FDR	-19	30.91	225.20	8.66
515	F5 L24	520	5-6 PRI	FDR	.01	.75	5.49	.72
515	F5 L24	525	F5 L31	FDR	.03	28.95	210.89	8.11
520	5-6 PRI	515	F5 L24	FDR	.01	.75	5.49	.72
525	F5 L31	515	F5 L24	FDR	.03	28.95	210.83	8.11
525	F5 L31	530	F5 L39	FDR	.01	.75	5.46	.21
525	F5 L31	531	F3 L41	FDR	.04	14.25	103.78	3.99
525	F5 L31	535	F537 L5	FDR	.09	12.74	92.78	3.57
530	F5 L39	525	F5 L31	FDR	.01	.75	5.46	.21
531	F3 L41	525	F5 L31	FDR	.04	14.25	103.75	3.99
531 535	F3 L41	535	F537 L5	FDR	.05	11.90	86.63	3.33
535 535	F537 L5 F537 L5	525 531	F5 L31	FDR	.09	12.74	92.69	3.57
535	F537 L5	540	F3 L41	FDR	.05	11.90	86.59	3.33
535 535	F537 L5	555	F5 L5 UF1	FDR	.00	2.39	17.42	.67
540	F5 L5 UF1	535	FE77 : E	FDR	.12	21.50	156.43	7.79
540 540	F5 L5 UF1	545	F537 L5 F5 L56 UF1	FDR	.00	2.39	17.42	.67
540 540	F5 L5 UF1	550		FDR	.05	1.77	12.89	.96
240	L) [] OLI	フンリ	F5 L55	FDR	.00	.31	2.28	.09

*****	*****	*****	****	*****	*****	*****	*****	****
FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
545	F5 L56 UF1	540	F5 L5 UF1	FDR	.05	1.77	12.89	.96
545	F5 L56 UF1	547	5-16 SEC	TX2	.00	.00	.00	UNKNOW
547	5-16 SEC	545	F5 L56 UF1	TX2	.00	.00	.00	UNKNOW
550	F5 L55	540	F5 L5 UF1	FDR	.00	.31	2.28	.09
555		535	F537 L5	FDR	.12	21.50	156.24	7.79
555		560	RICH SUB	FDR	.09	3.78	27.47	1.37
555		565	5-17 PRI	FDR	.10	17.72	128.77	6.42
560	RICH SUB	555		FDR	.09	3.78	27.44	1.37
560	RICH SUB	562	RS SEC	TX2	.12	3.78	27.44	UNKNOW
562	RS SEC	560	RICH SUB	TX2	.12	1.19	27.41	UNKNOW
562	RS SEC	930	RICH SUB	FDR	.00	1.19	27.41	.85
565	5-17 PRI	555		FDR	.10	17.72	128.64	6.42
565	5-17 PRI	570	5-18 PRI	FDR	.00	1.21	8.78	-44
565	5-17 PRI	575	F5 51	FDR	.03	15.76	114.46	5.71
570	5-18 PRI	565	5-17 PRI	FDR	.00	1.21	8.78	.44
575	F5 51	565	5-17 PRI	FDR	.03	15.76	114.42	5.71
575	F5 51	580	F5 L85	FDR	.07	15.47	112.28	5.61
580	F5 L85	575	F5 51	FDR	.07	15.47	112.21	5.61
580	F5 L85	585	F5 L87 UF1	FDR	.01	3.53	25.63	1.28
580	F5 L85	590	F5 L8911	FDR	.05	10.74	77.87	7.67
585	F5 L87 UF1	580	F5 L85	FDR	.01	3.53	25.63	1.28
590	F5 L8911	580	F5 L85	FDR	.05	10.74	77.83	7.67
590	F5 L8911	591	5-23 SEC	TX2	.00	.00	.00	UNKNOW
590	F5 L8911	593	5-24 SEC	TX2	.00	.00	.00	UNKNOW
590	F5 L8911	595	F5 L8 25	FDR	.11	4.81	34.87	3.44
591	5-23 SEC	590	F5 L8911	TX2	.00	.00	.00	UNKNOW
593	5-24 SEC	590	F5 L8911	TX2	.00	.00	.00	UNKNOW
595	F5 L8 25	590	F5 L8911	FDR	.11	4.81	34.83	3.44
600	O/H BUS	90	SWGR O	FDR	-00	.00	.00	.00
700	FDR 7	90	SWGR O	FDR	.02	71.02	520.43	30.88
700	FDR 7	705	WELL9 POL	FDR	.02	71.02	520.43	19.89
705	WELL9 POL	700	FDR 7	FDR	.02	71.02	520.34	19.89
705	WELL9 POL	707	7-1 SEC	TX2	.00	.00	.00	UNKNOW
705	WELL9 POL	709	F9 F73	FDR	.07	64.90	475.55	18.18
707	7-1 SEC	705	WELL9 POL	TX2	.00	.00	.00	UNKNOW
709	F9 F73	705	WELL9 POL	FDR	.07	64.90	475.23	18.18
709	F9 F73	710	F7 L11	FDR	.27	52.60	385.10	14.73
710	F7 L11	709	F9 F73	FDR	.27	52.60	384.08	14.73
710	F7 L11	715	F7 L13	FDR	-01	3.11	22.74	.87
710	F7 L11	720	F713	FDR	.09	37.03	270.40	10.37

DATE:20 NOV 95 TIME: 4 52 PM PAGE 64 DATE: 20 NOV 95 11ME: 4 52 PM

CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM FORT GREELY, ALASKA - 1995 TO 1997 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
715	F7 L13	710	F7 L11	FDR	.01	3.11	22.73	.87
720	F713	710	F7 L11	FDR	.09	37.03	270.14	10.37
720	F713	725	7-15 PRI	FDR	.20	32.45	236.75	9.09
725	7-15 PRI	720	F713	FDR	.20	32.45	236.28	9.09
725	7-15 PRI	730	F7 L43	FDR	.01	1.77	12.92	.50
725	7-15 PRI	735	F7 L54	FDR	.03	17.10	124.54	4.79
730	F7 L43	725	7-15 PRI	FDR	.01	1.77	12.92	.50
735	F7 L54	725	7-15 PRI	FDR	.03	17.10	124.51	4.79
735	F7 L54	740	7-17 PRI	FDR	.01	2.48	18.08	.70
735	F7 L54	745		FDR	.04	11.52	83.84	3.23
740	7-17 PRI	735	F7 L54	FDR	.01	2.48	18.08	.70
745	, ,, ,,,,	735	F7 L54	FDR	.04	11.52	83.81	3.23
745		750	F7 L72	FDR	.01	4.12	29.99	1.15
745		760	7-21 PRI	FDR	.05	7.40	53.82	2.07
750	F7 L72	745		FDR	.01	4.12	29.99	1.15
750	F7 L72	755	F7-33	FDR	.00	1.02	7.42	.29
755	F7-33	750	F7 L72	FDR	.00	1.02	7.42	.29
760	7-21 PRI	745		FDR	.05	7.40	53.79	2.07
760	7-21 PRI	765	7-22 PRI	FDR	.02	5.62	40.91	1.58
765	7-22 PRI	760	7-21 PRI	FDR	.02	5.62	40.90	1.58
765	7-22 PRI	770	7-23 PRI	FDR	.01	2.52	18.36	.71
770	7-23 PRI	765	7-22 PRI	FDR	.01	2.52	18.36	.71
770	7-23 PRI	775	7-24 PRI	FDR	.01	1.77	12.88	.50
775	7-24 PRI	770	7-23 PRI	FDR	.01	1.77	12.88	.50
800	FDR 8	90	SWGR O	FDR	.01	59.17	433.64	25.73
800	FDR 8	805	F8 L11	FDR	.55	59.17	433.64	16.58
805	F8 L11	800	FDR 8	FDR	.55	59.17	431.30	16.58
805	F8 L11	810	F8 L23	FDR	.28	54.73	398.94	15.33
810	F8 L23	805	F8 L11	FDR	.28	54.73	397.83	15.33
810	F8 L23	815	F8 L25	FDR	.00	.63	4.59	.18
810	F8 L23	817	F8 22	FDR	.04	43.34	315.05	12.14
815	F8 L25	810	F8 L23	FDR	.00	.63	4.59	.18
817	F8 22	810	F8 L23	FDR	.04	43.34	314.91	12.14
817	F8 22	820	F8 30 UF1	FDR	.21	36.84	267.65	10.32
820	F8 30 UF1	817	F8 22	FDR	.21	36.84	267.10	10.32
820	F8 30 UF1	825	8-22 PRI	FDR	.17	19.79	143.50	5.54
825	8-22 PRI	820	F8 30 UF1	FDR	.17	19.79	143.25	5.54
900	FDR 9	90	SWGR O	FDR	.02	65.19	477.76	28.35
900	FDR 9	905	STEP SEC	TX2	-69	65.19	477.76	UNKNOW
9 05	STEP SEC	900	FDR 9	TX2	-69	20.55	474.53	UNKNOW

DATE:20 NOV 95 TIME: 4 52 PM PAGE 65
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*****	BALANCED	VOLTAG	E DROP AND	LOAD FLOW	BRANCH E	DATA SUMP	IAKY *******	*****
FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
905	STEP SEC	910	F 96	FDR	.02	20.55		5.76
910	F 96	905	STEP SEC	FDR	.02	20.55	474.44	5.76
910	F 96	915	F910	FDR	.03	19.72	455.32	
915	F910	910	F 96	FDR	.03	19.72	455.20	5.52
915	F910	920	F940	FDR	.12	16.95	391.23	4.75
920	F940	915	F910	FDR	.12	16.95	390.75	4.75
920	F940	945	F949 L1	FDR	.02	16.47	379.75	4.61
925	O	930	RICH SUB	FDR	.01	1.19	27.41	.85
925	ö	935	9-8 PRI	FDR	.01	1.19	27.41	1.13
930	RICH SUB	562	RS SEC	FDR	.00	1.19	27.41	.85
930	RICH SUB	925	()	FDR	.01	1.19	27.41	.85
935	9-8 PRI	925	ö	FDR	.01	1.19	27.41	
935	9-8 PRI	940	9-9 PRI	FDR	.03	.71	16.45	.68
940	9-9 PRI		9-8 PRI	FDR	.03	.71	16.44	.68
945	F949 L1	920	F940	FDR		16.47		
945	F949 L1	950	9-12 PRI	FDR	.01	.38	8.80	.36
945	F949 L1		9-13 PRI	FDR	.14	15.84	365.15	8.61
950	9-12 PRI		F949 L1	FDR	.01	.38	8.79	.36
950		955	9-11 PRI	FDR	.00	.19	4.40	
955	9-11 PRI	950	9-12 PRI	FDR	.00	.19	4.40	
960		945	F949 L1	FDR	.14	15.84		
960		963	9-14 PRI	FDR	.45	15.01		
963	9-14 PRI	960	9-13 PRI	FDR	.45	15.01		
963	9-14 PRI	966	9-15 PRI	FDR	.12	14.19		
966		963	9-14 PRI	FDR	.12	14.19		
966	9-15 PRI	969	SW UP	FDR	.03	14.10	322.67	7.66
969	SW UP	966	9-15 PRI	FDR	.03	14.10		
969	SW UP	972	SW DOWN	FDR	.00	14.10		
972	SW DOWN	969	SW UP	FDR	.00	14.10		
972	SW DOWN	975	9-16 PRI		.47	14.10		
975		972		FDR	.47	14.10		
975	9-16 PRI	977	9-19 PRI	FDR	.03	.75	17.18	.41
975		980		FDR	.19	13.34		7.25
977	9-19 PRI	975		FDR	.03	.75	17.17	
98 0		975	9-16 PRI	FDR	.19	13.34		
98 0		982	9-20 PRI	FDR	.00	.28	6.42	
980		983	9-25 PRI	FDR	.31	13.06		
982	9-20 PRI	980		FDR	-00	.28	6.42	
983	9-25 PRI	980		FDR	.31	13.06		
983	9-25 PRI	984	9-25 SEC	TX2	.00	.00	.00	UNKNOW

DATE:20 NOV 95 TIME: 4 52 PM PAGE 66
CASE 2 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSEM
FORT GREELY, ALASKA - 1995 TO 1997 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW BRANCH DATA SUMMARY

NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%	
9-25 PRI	985	9-34 PRI	FDR	.04	5.64	127.82	3.07	
9-25 SEC	983	9-25 PRI	TX2	.00	.00	.00	UNKNOW	
9-34 PRI	983	9-25 PRI	FDR	.04	5.64	127.76	3.07	
9-34 PRI	987		FDR	.13	5.15	116.72	2.80	
	985	9-34 PRI	FDR	.13	5.15	116.57	2.80	
	990	9-26 PRI	FDR	.08	2.10	47.54	1.14	
	992		FDR	.33	3.05	69.03	1.66	
9-26 PRI	987		FDR	.08	2.10	47.50	1.14	
	987		FDR	.33	3.05	68.80	1.66	
	99 5	9-30 PRI	FDR	.23	2.10	47.28	1.75	
	997	9-32 PRI	FDR	.02	.95	21.52	.52	
9-30 PRI	992		FDR	.23	2.10	47.17	1.75	
9-32 PRI	992		FDR	.02	.95	21.51	.52	
	9-25 PRI 9-25 SEC 9-34 PRI 9-34 PRI 9-26 PRI	9-25 PRI 985 9-25 SEC 983 9-34 PRI 987 985 990 992 9-26 PRI 987 987 987 997 9-30 PRI 992	9-25 PRI 985 9-34 PRI 9-25 SEC 983 9-25 PRI 9-34 PRI 983 9-25 PRI 9-34 PRI 987 985 9-34 PRI 990 9-26 PRI 992 9-26 PRI 987 987 995 9-30 PRI 997 9-30 PRI 992	9-25 PRI 985 9-34 PRI FDR 9-25 SEC 983 9-25 PRI TX2 9-34 PRI 983 9-25 PRI FDR 9-34 PRI 987 FDR 985 9-34 PRI FDR 990 9-26 PRI FDR 992 FDR 992 FDR 987 FDR 987 FDR 995 9-30 PRI FDR 997 9-30 PRI FDR	9-25 PRI 985 9-34 PRI FDR .04 9-25 SEC 983 9-25 PRI TX2 .00 9-34 PRI 983 9-25 PRI FDR .04 9-34 PRI 987 FDR .13 985 9-34 PRI FDR .13 990 9-26 PRI FDR .08 992 FDR .33 9-26 PRI 987 FDR .33 995 9-30 PRI FDR .23 997 9-32 PRI FDR .02 9-30 PRI 992 FDR .23	9-25 PRI 985 9-34 PRI FDR .04 5.64 9-25 SEC 983 9-25 PRI TX2 .00 .00 9-34 PRI 983 9-25 PRI FDR .04 5.64 9-34 PRI 987 FDR .13 5.15 985 9-34 PRI FDR .13 5.15 990 9-26 PRI FDR .08 2.10 992 FDR .33 3.05 9-26 PRI 987 FDR .33 3.05 995 9-30 PRI FDR .23 2.10 997 9-32 PRI FDR .02 .95 9-30 PRI 992 FDR .23 2.10	9-25 PRI 985 9-34 PRI FDR .04 5.64 127.82 9-25 SEC 983 9-25 PRI TX2 .00 .00 .00 9-34 PRI 983 9-25 PRI FDR .04 5.64 127.76 9-34 PRI 987 FDR .13 5.15 116.72 985 9-34 PRI FDR .13 5.15 116.57 990 9-26 PRI FDR .08 2.10 47.54 992 FDR .33 3.05 69.03 9-26 PRI 987 FDR .08 2.10 47.50 987 FDR .33 3.05 68.80 995 9-30 PRI FDR .23 2.10 47.28 997 9-32 PRI FDR .02 .95 21.52 9-30 PRI 992 FDR .23 2.10 47.17	9-25 PRI 985 9-34 PRI FDR .04 5.64 127.82 3.07 9-25 SEC 983 9-25 PRI TX2 .00 .00 .00 UNKNOW 9-34 PRI 983 9-25 PRI FDR .04 5.64 127.76 3.07 9-34 PRI 987 FDR .13 5.15 116.72 2.80 985 9-34 PRI FDR .13 5.15 116.57 2.80 990 9-26 PRI FDR .08 2.10 47.54 1.14 992 FDR .33 3.05 69.03 1.66 995 9-30 PRI FDR .33 3.05 68.80 1.66 995 9-30 PRI FDR .23 2.10 47.28 1.75 997 9-32 PRI FDR .02 .95 21.52 .52 9-30 PRI 992 FDR .23 2.10 47.17 1.75

NOTE: FOR FEEDERS, RATING% = LOAD FLOW AMPS / FLA.

FLA = LIBRARY FLA EXCLUDING DUCT BANK AND TEMP. DERATING FOR CABLES.

FLA = BRANCH RECORD INPUT FLA FOR IMPEDANCE DATA.

NOTE: FOR TRANSFORMERS, RATING% = LOAD FLOW KVA / TRANSFORMER FULL LOAD KVA.

130 BUSES

*** T O T A L S Y S T E M L O S S E S *** 44.2 KW 242.8 KVAR

APPENDIX H

Load Flow Analysis - Case 3

CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

DATE: 27 NOV 95 TIME: 9 10 AM

ALL INFORMATION PRESENTED IS FOR REVIEW, APPROVAL INTERPRETATION AND APPLICATION BY A REGISTERED ENGINEER ONLY

DAPPER (LOAD FLOW AND VOLTAGE DROP MINI/MICRO VERSION 4.5 LEVEL 1.0)

............

COPYRIGHT SKM SYSTEMS ANALYSIS, INC. 1983

DATE:27 NOV 95 TIME: 9 10 AM PAGE
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

SWING GENERATORS
BUS NO ID STAT VOLTAGE ANGLE

BUS NO	i ID STAT VOLTAGE	PV GENERA kw		LVADMAN	DARTICIPATION
	ID SIMI VOLIMUE			kvarmax	PARTICIPATION
10	1 1 1.000	1000.	0.	0.	1.000
20	2 1 1.000	0.	o.	Õ.	1.000
30	3 1 1.000	O.	o.	0.	1.000
40	4 1 1.000	Õ.	o.	0.	1.000
50	5 1 1.000	0.	0.	0.	1.000
NOTICE: BRANCH	725 7-15 PRI		F7 L43		OF SERVICE
NOTICE: BRANCH	735 F7 L54		7-17 PRI		OF SERVICE
NOTICE: BRANCH	750 F7 L72		F7-33		OF SERVICE
NOTICE: BRANCH	745	TO 760			OF SERVICE
NOTICE: BRANCH	760 7-21 PRI	TO 765		IS OUT	
NOTICE: BRANCH	765 7-22 PRI		7-23 PRI		OF SERVICE
NOTICE: BRANCH	770 7-23 PRI	TO 775	7-24 PRI		OF SERVICE
NOTICE: BRANCH	800 FDR 8	TO 805	F8 L11		OF SERVICE
NOTICE: BRANCH	805 F8 L11	TO 810	F8 L23		OF SERVICE
NOTICE: BRANCH	810 F8 L23	TO 815	F8 L25	IS OUT	OF SERVICE
NOTICE: BRANCH	810 F8 L23	TO 817	F8 22	IS OUT	OF SERVICE
NOTICE: BRANCH	820 F8 30 UF1	TO 825	8-22 PRI	IS OUT	OF SERVICE
NOTICE: BRANCH	920 F940	TO 925	()	IS OUT	OF SERVICE
NOTICE: BRANCH	945 F949 L1		9-12 PRI	IS OUT	OF SERVICE
NOTICE: BRANCH	950 9-12 PRI		9-11 PRI	IS OUT	OF SERVICE
NOTICE: BRANCH	975 9-16 PRI		9-19 PRI	IS OUT	
NOTICE: BRANCH	980		9-20 PRI	IS OUT	
NOTICE: BRANCH	992		9-30 PRI		OF SERVICE
NOTICE: BRANCH	121 F1 L63		F1 L67		OF SERVICE
NOTICE: BRANCH	125 F1 L67		F1 L613		OF SERVICE
NOTICE: BRANCH	125 F1 L67		F1 L68	IS OUT	
NOTICE: BRANCH NOTICE: BRANCH	205 400 FDR 4		2-3 PRI		OF SERVICE
NOTICE: BRANCH	305 F8 F311		4-1 PRI		OF SERVICE
NOTICE: BRANCH	405 F4 10		F3 19 F417 UF1		OF SERVICE
NOTICE: BRANCH	505 F4 F5 F6UF		5-1 PRI		OF SERVICE
NOTICE: BRANCH	515 F5 L24		5-6 PRI		OF SERVICE
NOTICE: BRANCH	525 F5 L31		F5 L39	IS OUT	OF SERVICE
NOTICE: BRANCH	535 F537 L5		F5 L5 UF1		OF SERVICE OF SERVICE
NOTICE: BRANCH	540 F5 L5 UF1	TO 545	F5 L56 UF		
NOTICE: BRANCH	540 F5 L5 UF1	TO 550	F5 L55	IS OUT	
NOTICE: BRANCH	565 5-17 PRI		5-18 PRI		OF SERVICE
NOTICE: BRANCH	580 F5 L85	TO 585	F5 L87 UF1		
NOTICE: BRANCH	580 F5 L85	TO 590	F5 L8911	IS OUT	
NOTICE: BRANCH	590 F5 L8911		F5 L8 25		OF SERVICE
	2.3 13 20/11	.0 373	,, 20 25	.5 001	OI SEKATOE

DATE:27 NOV 95 TIME: 9 10 AM PAGE 3
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

NOTICE:	BRANCH	303 F713	TO	305 F8 F311	IS OUT OF SERVICE
NOTICE:	BRANCH	817 F8 22	TO	820 F8 30 UF1	IS OUT OF SERVICE
NOTICE:	BRANCH	210 2-3 PRI	TO	215 2-4 PRI	IS OUT OF SERVICE
NOTICE:	BRANCH	215 2-4 PRI	TO	220 2-5 PRI	IS OUT OF SERVICE
NOTICE:	BRANCH	512 5-3 PRI	TO	514 5-5 PRI	IS OUT OF SERVICE
NOTICE:	BRANCH	210 2-3 PRI	TO	225 2-3 SEC	IS OUT OF SERVICE
NOTICE:	BRANCH	215 2-4 PRI	TO	230 2-4 SEC	IS OUT OF SERVICE
NOTICE:	BRANCH	410 F417 UF1	TO	415 4-6 SEC	IS OUT OF SERVICE
NOTICE:	BRANCH	545 F5 L56 UF1	TO	547 5-16 SEC	IS OUT OF SERVICE
NOTICE:	BRANCH	590 F5 L8911	TO	591 5-23 SEC	IS OUT OF SERVICE
NOTICE:	BRANCH	590 F5 L8911	TO	593 5-24 SEC	IS OUT OF SERVICE
NOTICE:	BRANCH	300 FDR 3	TO	301 F8 F311	IS OUT OF SERVICE
NOTICE:	BRANCH	301 F8 F311	TO	303 F713	IS OUT OF SERVICE
NOTICE:	BRANCH	401 4-1 PRI	TO	403 F1 F45	IS OUT OF SERVICE
MOTICE:	BRANCH	403 F1 F45	TO	405 F4 10	IS OUT OF SERVICE

DATE:27 NOV 95 TIME: 9 10 AM PAGE 4
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

====				=========	` =======		.=========
FEEDE NO	R FROM NAME	FEEDER TO NO NAME	QTY /PH	VOLTS LI	ENGTH	FEEDER D	DUCT INSUL
		60 SWGR S .0300 + J					
		60 SWGR S .0300 + J					
		60 SWGR S .0300 + J					
40	GEN G4	70 SWGR N .0300 + J	1	2400.	50. FT	500 C	M XLP
		70 SWGR N .0300 + J					
60	SWGR S	66 SM1A BLU	JE 1	2400.	50. FT	500 C	M XLP
		70 SWGR N .0300 + J					
		100 FDR 1 .1050 + J					
60	SWGR S IMPEDANCE:	200 FDR 2 .1050 + J	.0410	2400. OHMS/M FEET	50. FT	4/0 A STATUS:	N XLP EXISTING
60	SWGR S IMPEDANCE:	300 FDR 3 .1050 + J	.0410	2400. OHMS/M FEET	50. FT	4/0 A STATUS:	N XLP EXISTING
60	SWGR S IMPEDANCE:	400 FDR 4 .1050 + J	.0410	2400. OHMS/M FEET	50. FT	4/0 A STATUS	N XLP EXISTING
60	SWGR S IMPEDANCE:	500 FDR 5 .1050 + J	.0410	2400. OHMS/M FEET	50. FT	4/0 A STATUS:	N XLP : EXISTING
62	SS-1 SEC IMPEDANCE:	64 MCC 4&5	.0526	480. OHMS/M FEET	50. FT	500 C STATUS	M XLP EXISTING
64	MCC 4&5 IMPEDANCE:	68 BLUE SSS .0300 + J	.0526	480. OHMS/M FEET	50. FT	500 C STATUS	M XLP EXISTING
70	SWGR N IMPEDANCE:	90 SWGR 0 .0453 + J	.0444	2400. OHMS/M FEET	10. FT	500 A STATUS	M XLP EXISTING

DATE:27 NOV 95 TIME: 9 10 AM PAGE 5
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER FROM	FEEDER TO	QTY VOLTS LENGTH /PH L-L	FEEDER DESCRIPTION
*************		771	312E 117E DOC1 1830E
85 T1 SEC	90 SWGR 0	1 2400. 10. FT .0444 OHMS/M FEET	500 A M XLP
IMPEDANCE:	.0453 + J		STATUS: EXISTING
90 SWGR O	600 O/H BUS	1 2400. 50. FT .0410 OHMS/M FEET	4/0 A N XLP
IMPEDANCE:	.1050 + J		STATUS: EXISTING
		1 2400. 50. FT .0410 OHMS/M FEET	
90 SWGR O	800 FDR 8	1 2400. 50. FT .0410 OHMS/M FEET	4/0 A N XLP
IMPEDANCE:	.1050 + J		STATUS: EXISTING
90 SWGR O	900 FDR 9	1 2400. 50. FT .0410 OHMS/M FEET	4/0 A N XLP
IMPEDANCE:	.1050 + J		STATUS: EXISTING
100 FDR 1	105 F1F12 14	4 1 2400. 1500. FT .1200 OHMS/M FEET	4/0 A B OH-2
IMPEDANCE:	.0900 + J		STATUS: EXISTING
105 F1F12 14	110 F1 L14	1 2400. 200. FT .1200 OHMS/M FEET	4/0 A B OH-2
IMPEDANCE:	.0900 + J		STATUS: EXISTING
110 F1 L14	115 F1 L15	1 2400. 300. FT	4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
110 F1 L14	120 F1 L31	1 2400. 400. FT .1200 OHMS/M FEET	4/0 A B OH-2
IMPEDANCE:	.0900 + J		STATUS: EXISTING
		1 2400. 450. FT .1200 OHMS/M FEET	
121 F1 L63	122 F1 L64	1 2400. 200. FT .1200 OHMS/M FEET	4/0 A B OH-2
IMPEDANCE:	.0900 + J		STATUS: EXISTING
200 FDR 2	205	1 2400. 600. FT	4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
205	235 F5 F29	1 2400. 400. FT	4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING
		1 2400. 250. FT .1200 OHMS/M FEET	
236 F2 F211	240 F1 F213	1 2400. 250. FT	4/0 A B OH-2
IMPEDANCE:	.0900 + J	.1200 OHMS/M FEET	STATUS: EXISTING

DATE:27 NOV 95 TIME: 9 10 AM PAGE 6
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER FROM NO NAME	FEEDER TO NO NAME	QTY VOLTS LENGTH	FEEDER DESCRIPTION SIZE TYPE DUCT INSUL
500 FDR 5 IMPEDANCE:	505 F4 F5 F6UF : .0900 + J .12	1 2400. 625. FT	4/0 A B OH-2 STATUS: EXISTING
505 F4 F5 F6UI	512 5-3 PRI : .0900 + J .12	1 2400. 1600. FT	4/0 A B OH-2 STATUS: EXISTING
512 5-3 PRI IMPEDANCE:	515 F5 L24 : .0900 + J .12	1 2400. 1200. FT	4/0 A B OH-2 STATUS: EXISTING
			4/0 A B OH-2 STATUS: EXISTING
			4/0 A B OH-2 STATUS: EXISTING
525 F5 L31	535 F537 L5	1 2400. 1400. FT	4/0 A B OH-2 STATUS: EXISTING
531 F3 L41	535 F537 L5	1 2400. 900. FT	4/0 A B OH-2 STATUS: EXISTING
535 F537 L5 IMPEDANCE	555 : .1410 + J .12	1 2400. 800. FT 250 OHMS/M FEET	2/0 A B OH-2 STATUS: EXISTING
555	560 RICH SUR	1 2400 3200 FT	2/0 A B OH-2 STATUS: EXISTING
555	565 5-17 PRI	1 2400 800 FT	2/0 A B OH-2 STATUS: EXISTING
			4 A B OH-2 STATUS: EXISTING
			2/0 A B OH-2 STATUS: EXISTING
			2/0 A B OH-2 STATUS: EXISTING
			4/0 A B OH-2 STATUS: EXISTING
			4/0 A B OH-2 STATUS: EXISTING

DATE:27 NOV 95 TIME: 9 10 AM PAGE 7
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER FROM NO NAME	FEEDER TO	QTY VOLTS LENGTH /PH L-L	FEEDER DESCRIPTION SIZE TYPE DUCT INSUL
709 F9 F73 IMPEDANCE:	710 F7 L11 .0900 + J	1 2400. 1000. F	T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
725 7-15 PRI IMPEDANCE:	735 F7 L54 .0900 + J	1 2400. 350. F	T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
905 STEP SEC IMPEDANCE:	910 F 96 .0900 + J	1 7200. 600. F	T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 STATUS: EXISTING
			T 4/0 A B OH-2 Status: Existing
920 F940 IMPEDANCE:	945 F949 L1 .0900 + J	1 7200. 800. F	T 4/0 A B OH-2 STATUS: EXISTING
			T 4 A B OH-2 STATUS: EXISTING
			T 6 A B OH-2 STATUS: EXISTING
935 9-8 PRI IMPEDANCE:	940 9-9 PRI .6900 + J	1 7200. 5000. F	T 6 A B OH-2 STATUS: EXISTING
			T 2 A B OH-2 STATUS: EXISTING

DATE:27 NOV 95 TIME: 9 10 AM PAGE 8
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER DATA

FEEDER FROM No Name	NO NAME	QTY /PH	VOLTS L-L	LENGT	Н	F SIZ	EEDER D	ESCRI	MOIT
	=========			======	====	====	======	=====	1000
960 9-13 PRI IMPEDANCE:	963 9-14 PR .2760 + J	1 1 .1320 d	7 200. DHMS/M FI	76 00. EET	FT	2	A STATUS:	B EXIST	OH-2
963 9-14 PRI IMPEDANCE:	966 9-15 PR .2760 + J	I 1	7200. DHMS/M FE	2200. ET	FT	2	A STATUS:	B EXIST	OH-2
966 9-15 PRI IMPEDANCE:	969 SW UP .2760 + J	1 .1320 c	7200. DHMS/M FE	600. ET	FT	2	A STATUS:	B EXIST	OH-2
969 SW UP IMPEDANCE:	972 SW DOWN .0300 + J	.0526 0	7200. HMS/M FE	5. ET	FT	500	C STATUS:	M EXIST	XLP ING
972 SW DOWN IMPEDANCE:	975 9-16 PR .2760 + J	I 1 .1320 0	7200. HMS/M FE	84 00. ET	FT	2	A STATUS:	B EXIST	OH-2 Ing
975 9-16 PRI IMPEDANCE:	980 .2760 + J	1 .1320 o	7200. HMS/M FE	3500. ET	FT	2	A STATUS:	B EXIST	OH-2 ING
980 IMPEDANCE:	983 9-25 PR	1 1 .1320 o	7 200. HMS/M FE	6000. ET	FT	2	A STATUS:	B EXIST	OH-2 Ing
983 9-25 PRI IMPEDANCE:	985 9-34 PR	. 1 .1320 o	7200. HMS/M FE	2000. ET	FT	2	A STATUS:	B EXIST	OH-2 Ing
985 9-34 PRI IMPEDANCE:	987 .2760 + J	1 .1320 o	7200. HMS/M FE	6400. ET	FT	2	A STATUS:	B EXIST	OH-2 ING
987 IMPEDANCE:	990 9-26 PR1 .2760 + J	. 1 .1320 O	7200. HMS/M FE	9800. ET	FT	2	A STATUS:	B EXIST	OH-2 Ing
987 IMPEDANCE:	992 .2760 + J	1 .1320 o	7200. :	270 00. ET	FT	2	A STATUS:	B EXIST:	OH-2 ING
992 IMPEDANCE:									

DATE:27 NOV 95 TIME: 9 10 AM PAGE 9
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

TRANSFORMER DATA

NO NAME	L-L FLA	* SECONDARY RECORD NO NAME	L-L	FLA	KVA
60 SWGR S IMPEDANCE:	2400. 72. .7816 + J 4.5331	. 62 SS-1 SEC PERCENT	480.	361.	300.0
66 SM1A BLUE IMPEDANCE:	2400. 120. .8156 + J 4.7302	. 68 BLUE SSS PERCENT	480.	601.	500.0
80 UTILITY IMPEDANCE:	24900. 58. .5546 + J 5.9341	. 85 T1 SEC I PERCENT TRANS	2400. FORMER FIXED	601. TAP:	2500.0 -5.0 %
90 SWGR O IMPEDANCE:	2400. 72. .5709 + J 3.3111	. 64 MCC 4&5 PERCENT	480.	3 61.	300.0
560 RICH SUB IMPEDANCE:	2400. 144. .9345 + J 5.4200	. 562 RS SEC PERCENT	7200.	48.	600.0
705 WELL9 POL IMPEDANCE:	2400. 36. .9345 + J 5.4200	. 707 7-1 SEC PERCENT	480.	180.	150.0
	2400. 361. .7816 + J 4.5331	. 905 STEP SEC	7200.	120.	1500.0
	7200. 40. .9345 + J 5.4200	. 984 9-25 SEC	208.	1388.	500.0

DATE:27 NOV 95 TIME: 9 10 AM PAGE 10
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS SPECIAL STUDY DATA

=======================================		======	=======	===	
* NO * NAME	* KW *	KVAR *	LOAD TYPE		
		======	=======	===	
120 F1 L31	43.	14.	CONSTANT	Z	LOAD
121 F1 L63	43.	14.	CONSTANT	Z	LOAD
122 F1 L64	74.	24.	CONSTANT	Z	LOAD
235 F5 F29	44.	14.	CONSTANT	Z	LOAD
236 F2 F211	88.	29.	CONSTANT	Z	LOAD
240 F1 F213	8 8.	29.	CONSTANT	Z	LOAD
525 F5 L31	8.	3.	CONSTANT	Z	LOAD
565 5-17 PRI	5.	2.	CONSTANT	Z	LOAD
580 F5 L85	8.	3.	CONSTANT	Z	LOAD
705 WELL9 POL	41.	14.	CONSTANT	Z	LOAD
709 F9 F73	83.	27.	CONSTANT	Z	LOAD
710 F7 L11	21.	7.	CONSTANT	Z	LOAD
715 F7-L13	21.	7.	CONSTANT	Z	LOAD
735 F7 L54	8.	3.	CONSTANT	Z	LOAD
750 F7 L72	21.	7.	CONSTANT	Z	LOAD
910 F 96	18.	6.	CONSTANT	Z	LOAD
935 9-8 PRI	10.	3.	CONSTANT	Z	LOAD
940 9-9 PRI	15.	5.	CONSTANT	Z	LOAD
945 F949 L1	4.	1.	CONSTANT	Z	LOAD
963 9-14 PRI	18.	6.	CONSTANT	Z	LOAD
983 9-25 PRI	157.	51.	CONSTANT	Z	LOAD
990 9-26 PRI	34.				LOAD
997 9-32 PRI	24.	8.	CONSTANT	Z	LOAD

DATE:27 NOV 95 TIME: 9 10 AM PAGE 11
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*** SOLUTION COMMENTS ***

SOLUTION PARAMETERS

BRANCH VOLTAGE CRITERIA : 4.00 %
BUS VOLTAGE CRITERIA : 5.00 %
ACCELERATION FACTOR FOR 'PV' GENERATORS : 1.00
ACCELERATION FACTOR FOR CONSTANT KVA LOADS: 1.00
EXACT(ITERATIVE) SOLUTION : YES

<<PERCENT VOLTAGE DROPS ARE BASED ON NOMINAL DESIGN VOLTAGES>>

TOF SIZE: 292

 LARGEST LOAD:
 1000.00 KVA

 CONVERGENCE CRITERIA:
 .050 KVA

 LARGEST BUS MISMATCH
 10 GEN G1
 94.178 KVA

 LARGEST BUS MISMATCH
 10 GEN G1
 2.094 KVA

 LARGEST BUS MISMATCH
 10 GEN G1
 .047 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 12 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (SWING GENERATORS)

BUS VOLTS(PU) ANGLE KW KVAR VD% R + JX (PU)

80 1.000 .00 -61.0 320.0 .0

DATE:27 NOV 95 TIME: 9 10 AM PAGE 13 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (PV GENERATOR SCHEDULE REPORT)

		VOLTAGE	-KVAR LII	MITS-	ACTUAL	
- BUS NAME	ID	SCHED. ACTUAL	MIN	MAX	KW	KVAR
10 GEN G1	1	1.000 1.046	.0	.0	1000.0	.0
20 GEN G2	2	1.000 1.046	.0	.0	.0	.0
30 GEN G3	3	1.000 1.046	-0	.0	.0	.0
40 GEN G4	4	1.000 1.046	.0	.0	.0	.0
50 CEN C5	5	1 000 1 046	n	n	n	0

DATE:27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM PAGE 14 FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00 ==== BUS: 10 GEN G1 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2510 %VD: -4.6 PU BUS VOLTAGE: 1.046 ANGLE: .1 DEGREES ** PV TYPE GENERATOR: 1 1000.0 KW LOAD TO: 60 SWGR S FEEDER AMPS: 230 VOLTAGE DROP: 1. XVD: ...
PROJECTED POWER FLOW: 1000.0 KW .0 KVAR 1000.0 KVA PF:1.00 UNITY
LOSSES THRU FEEDER: .2 KW .4 KVAR .5 KVA FEEDER AMPS: 230 VOLTAGE DROP: 1. XVD: .0 ==== BUS: 20 GEN G2 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6 ** PV TYPE GENERATOR: 2 .0 KW .0 KVAR **** NO LOAD SPECIFIED **** ==== BUS: 30 GEN G3 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 XVD: -4.6 ## PV TYPE GENERATOR: 3 .0 KW .0 KVAR ==== BUS: 40 GEN G4 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6 ** PV TYPE GENERATOR: 4 .0 KW .0 KVAR **** NO LOAD SPECIFIED **** ==== BUS: 50 GEN G5 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6

PV TYPE GENERATOR: 5 .0 KW .0 KVAR **** NO LOAD SPECIFIED **** LOAD FROM: 10 GEN G1 FEEDER AMPS: 230 VOLTAGE DROP: 1. %VD: .0
PROJECTED POWER FLOW: 999.8 KW --4 KVAR 999.8 KVA PF:1.00 UNITY
LOSSES THRU FEEDER: .2 KW .4 KVAR .5 KVA 1. %VD: .0 LOAD FROM: 20 GEN G2 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

PAGE 15 DATE: 27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

.0 KW

LOSSES THRU TRANSF:

LOSSES THRU FEEDER:

FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 LOAD FROM: 30 GEN G3 .0 KW .0 KVAR .0 KVA PF: .00 LEADING .0 KW .0 KVAR .0 KVA PROJECTED POWER FLOW: LOSSES THRU FEEDER: VOLTAGE DROP: 0. XVD: LOAD TO: 62 SS-1 SEC TRANSF AMPS: .2 KW .0 KVAR .2 KVA PF: .97 LAGGING
KW .0 KVAR .0 KVA PROJECTED POWER FLOW:

LOAD TO: 66 SM1A BLUE FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .3 KW .1 KVAR .3 KVA PF: .97 LAGGING .O KVAR .O KVA .0 KW

FEEDER AMPS: 129 VOLTAGE DROP: 0. XVD: .0 LOAD TO: 70 SWGR N PROJECTED POWER FLOW: 538.1 KW -156.0 KVAR 560.3 KVA PF: .96 LEADING .0 KVA .0 KW .O KVAR LOSSES THRU FEEDER:

FEEDER AMPS: 42 VOLTAGE DROP: 0. XVD: .0 LOAD TO: 100 FDR 1 PROJECTED POWER FLOW: 171.9 KW 57.6 KVAR 181.3 KVA PF: .95 LAGGING .0 KVA .O KVAR LOSSES THRU FEEDER: .0 KW

FEEDER AMPS: 58 VOLTAGE DROP: 1. XVD: .0 LOAD TO: 200 FDR 2 238.7 KW 79.2 KVAR 251.5 KVA PF: .95 LAGGING PROJECTED POWER FLOW: .1 KVA .1 KW .0 KVAR LOSSES THRU FEEDER:

FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 LOAD FROM: 300 FDR 3 .O KVAR .O KVA PF: .OO LEADING .0 KM PROJECTED POWER FLOW: _O KVA .0 KW .O KVAR LOSSES THRU FEEDER:

VOLTAGE DROP: 0. %VD: .0 LOAD FROM: 400 FDR 4 FEEDER AMPS: .0 KW .0 KVAR .0 KVA PF: .00 LEADING .0 KW .0 KVAR .0 KVA PROJECTED POWER FLOW: LOSSES THRU FEEDER:

12 VOLTAGE DROP: 0. XVD: .0 50.6 KW 18.7 KVAR 53.9 KVA PF: .94 LAGGING .0 KW .0 KVAR _0 KVA FEEDER AMPS: LOAD TO: 500 FDR 5 PROJECTED POWER FLOW: LOSSES THRU FEEDER:

DATE:27 NOV 95 TIME: 9 10 AM PAGE 16
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 64 MCC 4&5 DESIGN VOLTAGE: 480 BUS VOLTAGE: 502 XVD: -4.6

LOAD FROM: 62 SS-1 SEC FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .2 KW .0 KVAR .2 KVA PF: .97 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 68 BLUE SSS FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .3 KW .1 KVAR .3 KVA PF: .97 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 90 SWGR 0 TRANSF AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .5 KW .1 KVAR .5 KVA PF: .97 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

BUS: 66 SM1A BLUE DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 XVD: -4.6

BUS: 66 SM1A BLUE DESIGN VOLTAGE: 1.046 BUS VOLTAGE: 2509 XVD: -4.6

BUS: 66 SM1A BLUE DESIGN VOLTAGE: 1.046 BUS VOLTAGE: 1 DEGREES

LOAD FROM: 60 SWGR S
PROJECTED POWER FLOW:
LOSSES THRU FEEDER:

FEEDER AMPS:
VOLTAGE DROP:
0. %VD: .0
KVA
.1 KVAR
.3 KVA PF: .97 LAGGING

LOAD TO: 68 BLUE SSS TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .3 KW .1 KVAR .3 KVA PF: .97 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 64 MCC 4&5 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .3 KW .1 KVAR .3 KVA PF: .97 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 66 SM1A BLUE TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .3 KW .1 KVAR .3 KVA PF: .97 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 17
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

=== BUS: 70 SWGR N DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6

LOAD FROM: 40 GEN G4 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 50 GEN G5 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 60 SWGR S FEEDER AMPS: 129 VOLTAGE DROP: 0. XVD: .0 - PROJECTED POWER FLOW: 538.1 KW -156.1 KVAR 560.3 KVA PF: .96 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 90 SWGR O FEEDER AMPS: 129 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 538.1 KW -156.1 KVAR 560.3 KVA PF: .96 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 85 T1 SEC TRANSF AMPS: 8 VOLTAGE DROP: 1134. %VD: 4.6\$
PROJECTED POWER FLOW: 61.0 KW -320.0 KVAR 325.8 KVA PF: .19 LEADING
LOSSES THRU TRANSF: .2 KW 2.3 KVAR 2.3 KVA **XFMR TAPS -5.0%**

LOAD TO: 80 UTILITY TRANSF AMPS: 74 VOLTAGE DROP: 109. %VD: 4.6\$
PROJECTED POWER FLOW: 61.2 KW -317.7 KVAR 323.6 KVA PF: .19 LEADING
LOSSES THRU TRANSF: .2 KW 2.3 KVAR 2.3 KVA **XFMR TAPS -5.0%**

LOAD FROM: 90 SWGR O FEEDER AMPS: 74 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 61.2 KW -317.7 KVAR 323.6 KVA PF: .19 LEADING LOSSES THRU FEEDER: .0 KW .0 KVA

DATE: 27 NOV 95 TIME: 9 10 AM PAGE 18
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

LOAD TO: 105 F1F12 14

LOSSES THRU FEEDER:

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 90 SWGR 0 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6 ANGLE: .1 DEGREES LOAD FROM: 64 MCC 4&5 TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 .5 KW .1 KVAR .5 KVA PF: .97 LAGGING PROJECTED POWER FLOW: LOSSES THRU TRANSF: .0 KW LOAD FROM: 70 SWGR N FEEDER AMPS: 129 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 538.1 KW -156.1 KVAR 560.3 KVA PF: .96 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .O KVA LOAD TO: 85 T1 SEC FEEDER AMPS: 74 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 61.2 KW -317.7 KVAR 323.6 KVA PF: .19 LEADING .O KVAR LOSSES THRU FEEDER: .0 KW .0 KVA FEEDER AMPS: VOLTAGE DROP: LOAD FROM: 600 O/H BUS 0. %VD: .0 .0 KVA PF: .00 LEADING PROJECTED POWER FLOW: LOSSES THRIL FEEDER-.0 KM .O KVAR _O KVA FEEDER AMPS: 52 VOLTAGE DROP: TO: 700 FDR 7 1. %VD: .0 212.6 KW 70.6 KVAR 224.0 KVA PF: .95 LAGGING PROJECTED POWER FLOW: LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA VOLTAGE DROP: 0. %VD: LOAD FROM: 800 FDR 8 FEEDER AMPS: PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KM .O KVAR .D KVA LOAD TO: 900 FDR 9 FEEDER AMPS: 64 VOLTAGE DROP: 1. %VD: .0 264.8 KW 91.1 KVAR 280.0 KVA PF: .95 LAGGING PROJECTED POWER FLOW: LOSSES THRU FEEDER: .1 KW .O KVAR .1 KVA ==== BUS: 100 FDR 1 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.5 LOAD FROM: 60 SWGR S FEEDER AMPS: 42 VOLTAGE DROP: 0. %VD: .0 171.8 KW 57.6 KVAR 181.2 KVA PF: .95 LAGGING PROJECTED POWER FLOW: .O KVAR LOSSES THRU FEEDER: .0 KW .O KVA

PROJECTED POWER FLOW: 171.8 KW 57.6 KVAR 181.2 KVA PF: .95 LAGGING

.7 KW

.9 KVAR

FEEDER AMPS: 42 VOLTAGE DROP: 13. %VD: .6

1.2 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 19
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 105 F1F12 14 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2496 XVD: -4.0

LOAD TO: 110 F1 L14 FEEDER AMPS: 42 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 171.1 KW 56.7 KVAR 180.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

==== BUS: 110 F1 L14 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2494 %VD: -3.9

LOAD FROM: 105 F1F12 14 FEEDER AMPS: 42 VOLTAGE DROP: 2. 2VD: .1
PROJECTED POWER FLOW: 171.0 KW 56.5 KVAR 180.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

LOAD FROM: 115 F1 L15

PROJECTED POWER FLOW:
LOSSES THRU FEEDER:

FEEDER AMPS:

VOLTAGE DROP:

0. %VD:
0 KVA

0 KVA

0 KVA

0 KVA

0 KVA

LOAD TO: 120 F1 L31 FEEDER AMPS: 42 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 171.0 KW 56.5 KVAR 180.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .3 KVAR .3 KVA

LOAD FROM: 110 F1 L14

PROJECTED POWER FLOW: 170.9 KW 56.3 KVAR 179.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .3 KVAR .3 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 20 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 121 F1 L63 FEEDER AMPS: 31 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 125.0 KW 41.2 KVAR 131.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 120 F1 L31 FEEDER AMPS: 31 VOLTAGE DROP: 3. XVD: .1
PROJECTED POWER FLOW: 124.9 KW 41.1 KVAR 131.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 122 F1 L64 FEEDER AMPS: 19 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 79.2 KW 26.0 KVAR 83.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 121 F1 L63

PROJECTED POWER FLOW: 79.1 KW 26.0 KVAR 83.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 200 FDR 2 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 XVD: -4.5

LOAD FROM: 60 SWGR S FEEDER AMPS: 58 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 238.6 KW 79.2 KVAR 251.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 205 FEEDER AMPS: 58 VOLTAGE DROP: 7. %VD: .3
PROJECTED POWER FLOW: 238.6 KW 79.2 KVAR 251.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .7 KVAR .9 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 21
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 205 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2501 %VD: -4.2

LOAD FROM: 200 FDR 2 FEEDER AMPS: 58 VOLTAGE DROP: 7. %VD: .3
PROJECTED POWER FLOW: 238.1 KW 78.5 KVAR 250.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .7 KVAR .9 KVA

LOAD TO: 235 F5 F29 FEEDER AMPS: 58 VOLTAGE DROP: 5. %VD: .2
PROJECTED POWER FLOW: 238.1 KW 78.5 KVAR 250.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .4 KW .5 KVAR .6 KVA

LOAD FROM: 205 FEEDER AMPS: 58 VOLTAGE DROP: 5. %VD: .2
PROJECTED POWER FLOW: 237.7 KW 78.0 KVAR 250.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .4 KW .5 KVAR .6 KVA

LOAD TO: 236 F2 F211 FEEDER AMPS: 46 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 190.1 KW 62.8 KVAR 200.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 235 F5 F29 FEEDER AMPS: 46 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 190.0 KW 62.6 KVAR 200.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 240 F1 F213 FEEDER AMPS: 23 VOLTAGE DROP: 1. %VD: .1
PROJECTED POWER FLOW: 95.0 KW 31.3 KVAR 100.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 22 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 60 SWGR S FEEDER AMPS: 12 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 50.6 KW 18.7 KVAR 53.9 KVA PF: .94 LAGGING 10SSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 505 F4 F5 F6UF FEEDER AMPS: 12 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 50.6 KW 18.7 KVAR 53.9 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 505 F4 F5 F6UF DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2508 %VD: -4.5

LOAD FROM: 500 FDR 5 FEEDER AMPS: 12 VOLTAGE DROP: 2. %VD: .1 PROJECTED POWER FLOW: 50.5 KW 18.6 KVAR 53.9 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 512 5-3 PRI FEEDER AMPS: 12 VOLTAGE DROP: 4. %VD: .2 PROJECTED POWER FLOW: 50.5 KW 18.6 KVAR 53.9 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

PAGE 23 DATE: 27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 512 5-3 PRI DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2503 %VD: -4.3

LOAD FROM: 505 F4 F5 F6UF FEEDER AMPS: 12 VOLTAGE DROP: 4. XVD: PROJECTED POWER FLOW: 50.5 KW 18.5 KVAR 53.8 KVA PF: .94 LAGGING .1 KVAR .1 KVA .1 KW LOSSES THRU FEEDER:

LOAD TO: 515 F5 L24 FEEDER AMPS: 12 VOLTAGE DROP: 3. %VD: .1 PROJECTED POWER FLOW: 50.5 KW 18.5 KVAR 53.8 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

==== BUS: 515 F5 L24 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2500 %VD: -4.2 ANGLE: .0 DEGREES

FEEDER AMPS: 12 VOLTAGE DROP: 3. %VD: .1 LOAD FROM: 512 5-3 PRI 50.4 KW 18.5 KVAR 53.7 KVA PF: .94 LAGGING .0 KW .1 KVAR .1 KVA PROJECTED POWER FLOW: .0 KW LOSSES THRU FEEDER:

FEEDER AMPS: 12 VOLTAGE DROP: 1. XVD: .0 LOAD TO: 525 F5 L31 50.4 KW 18.5 KVAR 53.7 KVA PF: .94 LAGGING PROJECTED POWER FLOW: .0 KW .O KVAR LOSSES THRU FEEDER:

FEEDER AMPS: 12 VOLTAGE DROP: 1. %VD: .0 LOAD FROM: 515 F5 L24 18.5 KVAR 53.7 KVA PF: .94 LAGGING PROJECTED POWER FLOW: 50.4 KW .0 KW .O KVA .O KVAR LOSSES THRU FEEDER:

FEEDER AMPS: 5 VOLTAGE DROP: 1. %VD: .0 LOAD TO: 531 F3 L41 20.9 KW 7.5 KVAR 22.2 KVA PF: .94 LAGGING PROJECTED POWER FLOW: .O KVA LOSSES THRU FEEDER: .0 KW .0 KVAR

FEEDER AMPS: 5 VOLTAGE DROP: 2. %VD: .1 LOAD TO: 535 F537 L5 20.9 KW 7.5 KVAR 22.2 KVA PF: .94 LAGGING .0 KW .0 KVAR .0 KVA PROJECTED POWER FLOW: .0 KW LOSSES THRU FEEDER:

DATE: 27 NOV 95 TIME: 9 10 AM PAGE 24
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 531 F3 L41 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2499 %VD: -4.1

LOAD FROM: 525 F5 L31 FEEDER AMPS: 5 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 20.9 KW 7.4 KVAR 22.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 535 F537 L5 FEEDER AMPS: 5 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 20.9 KW 7.4 KVAR 22.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 535 F537 L5 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2498 XVD: -4.1 PU BUS VOLTAGE: 1.041 ANGLE: -.1 DEGREES

LOAD FROM: 525 F5 L31 FEEDER AMPS: 5 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 20.9 KW 7.4 KVAR 22.1 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 531 F3 L41 FEEDER AMPS: 5 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 20.9 KW 7.4 KVAR 22.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 555 FEEDER AMPS: 10 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 41.7 KW 14.9 KVAR 44.3 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 560 RICH SUB FEEDER AMPS: 7 VOLTAGE DROP: 6. XVD: .3
PROJECTED POWER FLOW: 27.6 KW 9.2 KVAR 29.1 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 565 5-17 PRI FEEDER AMPS: 4 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 14.0 KW 5.7 KVAR 15.1 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

************ VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 560 RICH SUB DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2489 %VD: -3.7 ANGLE: -.1 DEGREES

FEEDER AMPS: 7 VOLTAGE DROP: 6. %VD: LOAD FROM: 555 27.6 KW 9.1 KVAR 29.0 KVA PF: .95 LAGGING .1 KW .1 KVAR .1 KVA PROJECTED POWER FLOW: LOSSES THRU FEEDER:

LOAD TO: 562 RS SEC TRANSF AMPS: 7 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 27.6 KW 9.1 KVAR 29.0 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

LOAD FROM: 560 RICH SUB TRANSF AMPS: 2 VOLTAGE DROP: 9. %VD: .1
PROJECTED POWER FLOW: 27.5 KW 9.1 KVAR 29.0 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

FEEDER AMPS: 2 VOLTAGE DROP: 0. XVD: .0 LOAD TO: 930 RICH SUB PROJECTED POWER FLOW: 27.5 KW 9.1 KVAR 29.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 565 5-17 PRI DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2495 XVD: -3.9 PROJECTED SPECIAL BUS LOAD: 5.4 KW 2.1 KVAR

LOAD FROM: 555 FEEDER AMPS: 4 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 14.0 KW 5.7 KVAR 15.1 KVA PF: .93 LAGGING .O KVA LOSSES THRU FEEDER: .0 KW .O KVAR

2 VOLTAGE DROP: 0. %VD: .0 LOAD TO: 575 F5 51 FEEDER AMPS: PROJECTED POWER FLOW: 8.6 KW 3.5 KVAR 9.3 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA DATE: 27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 565 5-17 PRI FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 8.6 KW 3.5 KVAR 9.3 KVA PF: .93 LAGGING .O KVA LOSSES THRU FEEDER: .0 KW .O KVAR

LOAD TO: 580 F5 L85 FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 8.6 KW 3.5 KVAR 9.3 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 580 F5 L85 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2494 XVD: -3.9 PROJECTED SPECIAL BUS LOAD: 8.6 KW 3.5 KVAR

FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 LOAD FROM: 575 F5 51 PROJECTED POWER FLOW: 8.6 KW
LOSSES THRU FEEDER: .0 KW 8.6 KW 3.5 KVAR 9.3 KVA PF: .93 LAGGING .0 KW .0 KVAR .0 KVA

==== BUS: 600 O/H BUS DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6 **** NO LOAD SPECIFIED ****

==== BUS: 700 FDR 7 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.5 ENERGY PROPERTY NAME

BUS VOLTAGE: 1.045 ANGLE: .1 DEGREES

FEEDER AMPS: 52 VOLTAGE DROP: 1. %VD: .0 LOAD FROM: 90 SWGR O PROJECTED POWER FLOW: 212.6 KW 70.6 KVAR 224.0 KVA PF: .95 LAGGING .0 KW .O KVAR .O KVA LOSSES THRU FEEDER:

LOAD TO: 705 WELL9 POL FEEDER AMPS: 52 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 212.6 KW 70.6 KVAR 224.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA DATE:27 NOV 95 TIME: 9 10 AM PAGE 27 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 700 FDR 7

PROJECTED POWER FLOW: 212.5 KW 70.6 KVAR 223.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD FROM: 707 7-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 709 F9 F73 FEEDER AMPS: 41 VOLTAGE DROP: 2. %VD: .1
PROJECTED POWER FLOW: 167.8 KW 55.3 KVAR 176.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 705 WELL9 POL FEEDER AMPS: 41 VOLTAGE DROP: 2. %VD: .1 PROJECTED POWER FLOW: 167.7 KW 55.2 KVAR 176.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 710 F7 L11 FEEDER AMPS: 19 VOLTAGE DROP: 4. %VD: .2 PROJECTED POWER FLOW: 77.1 KW 25.7 KVAR 81.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

LOAD FROM: 709 F9 F73

PROJECTED POWER FLOW: 77.0 KW 25.6 KVAR 81.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .2 KVA

DATE: 27 NOV 95 TIME: 9 10 AM PAGE 28 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 715 F7 L13 FEEDER AMPS: 6 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING .0 KW LOSSES THRU FEEDER: .O KVAR _O KVA

LOAD TO: 720 F713 FEEDER AMPS: 8 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 31.8 KW 10.6 KVAR 33.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .O KVA

==== BUS: 715 F7 L13 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2502 XVD: -4.2 PROJECTED SPECIAL BUS LOAD: 22.8 KW 7.6 KVAR

LOAD FROM: 710 F7 L11 FEEDER AMPS: 6 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KVA .0 KW .O KVAR

==== BUS: 720 F713 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2502 XVD: -4.2 ==== BUS: 720 F713 ANGLE: .0 DEGREES

FEEDER AMPS: 8 VOLTAGE DROP: 1. XVD: LOAD FROM: 710 F7 L11 PROJECTED POWER FLOW: 31.7 KW 10.6 KVAR 33.5 KVA PF: .95 LAGGING .0 KW LOSSES THRU FEEDER: .O KVAR .O KVA

LOAD TO: 725 7-15 PRI FEEDER AMPS: 8 VOLTAGE DROP: 2. XVD: .1 PROJECTED POWER FLOW: 31.7 KW 10.6 KVAR 33.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 725 7-15 PRI DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2500 XVD: -4.2 ANGLE:

LOAD FROM: 720 F713 FEEDER AMPS: 8 VOLTAGE DROP: PROJECTED POWER FLOW: 31.7 KW 10.6 KVAR 33.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW _O KVAR -O KVA

LOAD TO: 735 F7 L54 FEEDER AMPS: 8 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 31.7 KW 10.6 KVAR 33.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA

PAGE 29 DATE: 27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS ***************

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 735 F7 L54 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2499 XVD: -4.1 PROJECTED SPECIAL BUS LOAD: 9.0 KW 2.9 KVAR

FEEDER AMPS: 8 VOLTAGE DROP: LOAD FROM: 725 7-15 PRI 1. XVD: .0 PROJECTED POWER FLOW: 31.7 KW 10.5 KVAR 33.4 KVA PF: .95 LAGGING .0 KW .O KVA LOSSES THRU FEEDER: .O KVAR

FEEDER AMPS: 6 VOLTAGE DROP: 1. XVD: .0 LOAD TO: 745 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 745 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2498 %VD: -4.1

FEEDER AMPS: 6 VOLTAGE DROP: 1. XVD: .0 LOAD FROM: 735 F7 L54 24.0 KVA PF: .95 LAGGING PROJECTED POWER FLOW: 22.7 KW 7.6 KVAR .0 KW .0 KVAR LOSSES THRU FEEDER: .0 KVA

LOAD TO: 750 F7 L72 FEEDER AMPS: 6 VOLTAGE DRUM: 1. AVD. ...
PROJECTED POWER FLOW: 22.7 KW 7.6 KVAR 24.0 KVA PF: .95 LAGGING
.0 KVA .0 KVAR .0 KVA

FEEDER AMPS: 6 VOLTAGE DROP: 1. %VD: .0 LOAD FROM: 745 22.7 KW 7.6 KVAR 24.0 KVA PF: .95 LAGGING PROJECTED POWER FLOW: .0 KVAR .0 KW .O KVA LOSSES THRU FEEDER:

==== BUS: 800 FDR 8 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.6 EXECUTE: 2 PU BUS VOLTAGE: 1.046 ANGLE: .1 DEGREES **** NO LOAD SPECIFIED ****

DATE:27 NOV 95 TIME: 9 10 AM PAGE 30 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 900 FDR 9 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2509 %VD: -4.5

LOAD FROM: 90 SWGR O FEEDER AMPS: 64 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 264.7 KW 91.1 KVAR 280.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 905 STEP SEC TRANSF AMPS: 64 VOLTAGE DROP: 9. XVD: .4
PROJECTED POWER FLOW: 264.7 KW 91.1 KVAR 280.0 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .4 KW 2.2 KVAR 2.2 KVA

==== BUS: 905 STEP SEC DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7498 XVD: -4.1 PU BUS VOLTAGE: 1.041 ANGLE: -.3 DEGREES

LOAD FROM: 900 FDR 9

PROJECTED POWER FLOW: 264.3 KW 88.9 KVAR 278.9 KVA PF: .95 LAGGING LOSSES THRU TRANSF: .4 KW 2.2 KVAR 2.2 KVA

LOAD TO: 910 F 96 FEEDER AMPS: 21 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 264.3 KW 88.9 KVAR 278.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 905 STEP SEC FEEDER AMPS: 21 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 264.3 KW 88.8 KVAR 278.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 915 F910 FEEDER AMPS: 20 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 245.0 KW 82.5 KVAR 258.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 31
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
F M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 915 F910 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7491 %VD: -4.0

LOAD FROM: 910 F 96 FEEDER AMPS: 20 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 244.9 KW 82.4 KVAR 258.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 920 F940 FEEDER AMPS: 20 VOLTAGE DROP: 19. %VD: .3
PROJECTED POWER FLOW: 244.9 KW 82.4 KVAR 258.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .6 KVAR .8 KVA

==== BUS: 920 F940 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7472 %VD: -3.8

LOAD FROM: 915 F910 FEEDER AMPS: 20 VOLTAGE DROP: 19. %VD: .3
PROJECTED POWER FLOW: 244.4 KW 81.7 KVAR 257.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .5 KW .6 KVAR .8 KVA

LOAD TO: 945 F949 L1 FEEDER AMPS: 20 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 244.4 KW 81.7 KVAR 257.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

=== BUS: 925 () DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7455 %VD: -3.5

LOAD FROM: 930 RICH SUB FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 27.5 KW 9.0 KVAR 29.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 935 9-8 PRI FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 27.5 KW 9.0 KVAR 29.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 930 RICH SUB DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7458 %VD: -3.6

LOAD FROM: 562 RS SEC FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 27.5 KW 9.1 KVAR 29.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 27 NOV 95 TIME: 9 10 AM PAGE 32 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 925 () FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 27.5 KW 9.1 KVAR 29.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 925 () FEEDER AMPS: 2 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 27.5 KW 9.0 KVAR 29.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 940 9-9 PRI FEEDER AMPS: 1 VOLTAGE DROP: 8. 2VD: .1
PROJECTED POWER FLOW: 16.5 KW 5.4 KVAR 17.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 935 9-8 PRI FEEDER AMPS: 1 VOLTAGE DROP: 8. %VD: .1
PROJECTED POWER FLOW: 16.5 KW 5.4 KVAR 17.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 960 9-13 PRI FEEDER AMPS: 20 VOLTAGE DROP: 23. %VD: .3 PROJECTED POWER FLOW: 239.6 KW 80.1 KVAR 252.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .7 KW .3 KVAR .8 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 33
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 960 9-13 PRI DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7446 %VD: -3.4

LOAD FROM: 945 F949 L1 FEEDER AMPS: 20 VOLTAGE DROP: 23. %VD: .3
PROJECTED POWER FLOW: 238.9 KW 79.8 KVAR 251.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .7 KW .3 KVAR .8 KVA

LOAD TO: 963 9-14 PRI FEEDER AMPS: 20 VOLTAGE DROP: 78. %VD: 1.1
PROJECTED POWER FLOW: 238.9 KW 79.8 KVAR 251.9 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.4 KW 1.1 KVAR 2.7 KVA

LOAD FROM: 960 9-13 PRI FEEDER AMPS: 20 VOLTAGE DROP: 78. XVD: 1.1
PROJECTED POWER FLOW: 236.5 KW 78.6 KVAR 249.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 2.4 KW 1.1 KVAR 2.7 KVA

LOAD TO: 966 9-15 PRI FEEDER AMPS: 18 VOLTAGE DROP: 21. %VD: .3
PROJECTED POWER FLOW: 217.9 KW 72.5 KVAR 229.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .6 KW .3 KVAR .7 KVA

==== BUS: 966 9-15 PRI DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7347 %VD: -2.0

LOAD FROM: 963 9-14 PRI FEEDER AMPS: 18 VOLTAGE DROP: 21. %VD: .3
PROJECTED POWER FLOW: 217.3 KW 72.2 KVAR 229.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .6 KW .3 KVAR .7 KVA

LOAD TO: 969 SW UP FEEDER AMPS: 18 VOLTAGE DROP: 6. %VD: .1
PROJECTED POWER FLOW: 217.3 KW 72.2 KVAR 229.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

DATE: 27 NOV 95 TIME: 9 10 AM CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 969 SW UP DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7342 %VD: -2.0 =================== PU BUS VOLTAGE: 1.020 ANGLE: -.6 DEGREES

FEEDER AMPS: 18 VOLTAGE DROP: 6. XVD: .1 LOAD FROM: 966 9-15 PRI PROJECTED POWER FLOW: 217.1 KW 72.1 KVAR 228.8 KVA PF: .95 LAGGING .2 KW .1 KVAR .2 KVA LOSSES THRU FEEDER:

LOAD TO: 972 SW DOWN FEEDER AMPS: 18 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 217.1 KW 72.1 KVAR 228.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR _O KVA

==== BUS: 972 SW DOWN DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7342 %VD: -2.0 ANGLE: -.6 DEGREES

LOAD FROM: 969 SW UP FEEDER AMPS: 18 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 217.1 KW 72.1 KVAR 228.8 KVA PF: .95 LAGGING .0 KW LOSSES THRU FEEDER: .O KVAR _O KVA

LOAD TO: 975 9-16 PRI FEEDER AMPS: 18 VOLTAGE DROP: 79. %VD: 1.1 PROJECTED POWER FLOW: 217.1 KW 72.1 KVAR 228.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 2.3 KW 1.1 KVAR 2.5 KVA

==== BUS: 975 9-16 PRI DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7262 %VD: -.9 ANGLE: -.6 DEGREES

LOAD FROM: 972 SW DOWN FEEDER AMPS: 18 VOLTAGE DROP: 79. %VD: 1.1 PROJECTED POWER FLOW: 214.9 KW 71.0 KVAR 226.3 KVA PF: .95 LAGGING 2.3 KW LOSSES THRU FEEDER: 1.1 KVAR 2.5 KVA

FEEDER AMPS: 18 VOLTAGE DROP: 33. %VD: .5 LOAD TO: 980 PROJECTED POWER FLOW: 214.9 KW 71.0 KVAR 226.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .9 KW .4 KVAR 1.0 KVA

==== BUS: 980 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7229 %VD: -.4 ANGLE: -.7 DEGREES

LOAD FROM: 975 9-16 PRI FEEDER AMPS: 18 VOLTAGE DROP: 33. %VD: .5 PROJECTED POWER FLOW: 213.9 KW 70.6 KVAR 225.3 KVA PF: .95 LAGGING .9 KW .4 KVAR LOSSES THRU FEEDER: 1.0 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 35 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 983 9-25 PRI FEEDER AMPS: 18 VOLTAGE DROP: 57. %VD: .8 PROJECTED POWER FLOW: 213.9 KW 70.6 KVAR 225.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: 1.6 KW .8 KVAR 1.8 KVA

LOAD FROM: 980

FEEDER AMPS: 18 VOLTAGE DROP: 57. %VD: .8

PROJECTED POWER FLOW: 212.3 KW 69.8 KVAR 223.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: 1.6 KW .8 KVAR 1.8 KVA

LOAD TO: 985 9-34 PRI FEEDER AMPS: 5 VOLTAGE DROP: 5. XVD: .1 PROJECTED POWER FLOW: 57.0 KW 18.8 KVAR 60.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

==== BUS: 985 9-34 PRI DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7167 %VD: .5

LOAD FROM: 983 9-25 PRI FEEDER AMPS: 5 VOLTAGE DROP: 5. XVD: .1 PROJECTED POWER FLOW: 57.0 KW 18.8 KVAR 60.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 987 FEEDER AMPS: 5 VOLTAGE DROP: 16. %VD: .2 PROJECTED POWER FLOW: 57.0 KW 18.8 KVAR 60.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 36 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 987 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7151 %VD: .7

LOAD FROM: 985 9-34 PRI FEEDER AMPS: 5 VOLTAGE DROP: 16. %VD: .2 PROJECTED POWER FLOW: 56.8 KW 18.7 KVAR 59.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD TO: 990 9-26 PRI FEEDER AMPS: 3 VOLTAGE DROP: 15. %VD: .2 PROJECTED POWER FLOW: 33.3 KW 11.0 KVAR 35.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 992 FEEDER AMPS: 2 VOLTAGE DROP: 28. %VD: .4
PROJECTED POWER FLOW: 23.5 KW 7.8 KVAR 24.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD FROM: 987 FEEDER AMPS: 3 VOLTAGE DROP: 15. %VD: .2 PROJECTED POWER FLOW: 33.2 KW 10.9 KVAR 35.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

==== BUS: 992 DESIGN VOLTAGE: 7200 BUS VOLTAGE: 7123 %VD: 1.1

LOAD FROM: 987 FEEDER AMPS: 2 VOLTAGE DROP: 28. %VD: .4
PROJECTED POWER FLOW: 23.4 KW 7.7 KVAR 24.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 997 9-32 PRI FEEDER AMPS: 2 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 23.4 KW 7.7 KVAR 24.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 37 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 992 FEEDER AMPS: 2 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 23.4 KW 7.7 KVAR 24.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:27 NOV 95 TIME: 9 10 AM PAGE 38
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS#	NAME	BASE VOLT	PU VOLT	BUS#	NAME	BASE VOLT	PU VOLT
10	GEN G1	2400.00	1.046	20	GEN G2	2400.00	1.046
30	GEN G3	2400.00	1.046	40	GEN G4	2400.00	1.046
50	GEN G5	2400.00	1.046	60	SWGR S	2400.00	1.046
62	SS-1 SEC	480.00	1.046	64	MCC 4&5	480.00	1.046
66	SM1A BLUE	2400.00	1.046	68	BLUE SSS	480.00	1.046
70	SWGR N	2400.00	1.046	80	UTILITY	24900.00	1.000
85	T1 SEC	2400.00	1.046	90	SWGR O	2400.00	1.046
100	FDR 1	2400.00	1.045	105	F1F12 14	2400.00	1.040
110	F1 L14	2400.00	1.039	115	F1 L15	2400.00	1.039
120	F1 L31	2400.00	1.038	121	F1 L63	2400.00	1.036
122	F1 L64	2400.00	1.036	200	FDR 2	2400.00	1.045
205		2400.00	1.042	235	F5 F29	2400.00	1.040
236	F2 F211	2400.00	1.039	240	F1 F213	2400.00	1.039
300	FDR 3	2400.00	1.046	400	FDR 4	2400.00	1.046
500	FDR 5	2400.00	1.046	505	F4 F5 F6UF	2400.00	1.045
512	5-3 PRI	2400.00	1.043	515	F5 L24	2400.00	1.042
525	F5 L31	2400.00	1.041	531	F3 L41	2400.00	1.041
535	F537 L5	2400.00	1.041	555		2400.00	1.040
560	RICH SUB	2400.00	1.037	562	RS SEC	7200.00	1.036
565	5-17 PRI	2400.00	1.039	575	F5 51	2400.00	1.039
580	F5 L85	2400.00	1.039	600	O/H BUS	2400.00	1.046
700	FDR 7	2400.00	1.045	7 05	WELL9 POL	2400.00	1.045
707	7-1 SEC	480.00	1.045	709	F9 F73	2400.00	1.044
710	F7 L11	2400.00	1.043	715	F7 L13	2400.00	1.042
720 735	F713	2400.00	1.042	725	7-15 PRI	2400.00	1.042
750	F7 L54	2400.00	1.041	745		2400.00	1.041
900	F7 L72 FDR 9	2400.00	1.041	800	FDR 8	2400.00	1.046
910	F 96	2400.00	1.045	905	STEP SEC	7200.00	1.041
920	F940	7200.00 7200.00	1.041	915	F910	7200.00	1.040
930	RICH SUB	7200.00	1.038 1.036	925	()	7200.00	1.035
940	9-9 PRI	7200.00	1.036	935	9-8 PRI	7200.00	1.035
960	9-13 PRI	7200.00	1.034	945 963	F949 L1	7200.00	1.037
966	9-15 PRI	7200.00	1.020	969	9-14 PRI	7200.00	1.023
972	SW DOWN	7200.00	1.020	969 975	SW UP	7200.00	1.020
980	on boun	7200.00	1.004	975 983	9-16 PRI	7200.00	1.009
984	9-25 SEC	208.00	.996	985 985	9-25 PRI	7200.00	.996
987	, 1, 010	7200.00	.993	990	9-34 PRI	7200.00	.995
992		7200.00	.989	990 997	9-26 PRI	7200.00	.991
		. 200.00	. 707	77/	9-32 PRI	7200.00	.98 9

DATE:27 NOV 95 TIME: 9 10 AM PAGE 39
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
10	GEN G1	60	SWGR S	FDR	.02	230.03	1000.00	49.47
20	GEN G2	60	SWGR S	FDR	.00	.00	.00	.00
30	GEN G3	60	SWGR S	FDR	.00	.00	.00	.00
40	GEN G4	70	SWGR N	FDR	.00	.00	.00	.00
50	GEN G5	70	SWGR N	FDR	.00	.00	.00	.00
60	SWGR S	10	GEN G1	FDR	.02	230.03	999.76	49.47
60	SWGR S	20	GEN G2	FDR	.00	.00	.00	.00
60	SWGR S	30	GEN G3	FDR	.00	.00	.00	.00
60	SWGR S	62	SS-1 SEC	TX2	.00	.05	.20	UNKNOW
60	SWGR S	66	SM1A BLUE	FDR	.00	.07	.31	.02
60	SWGR S	70	SWGR N	FDR	.00	128.92	560.31	27.72
60	SWGR S	100	FDR 1	FDR	.02	41.71	181.27	18.13
60	SWGR S	200	FDR 2	FDR	.02	57.87	251.50	25.16
60	SWGR S	300	FDR 3	FDR	.00	.00	.00	.00
60	SWGR S	400	FDR 4	FDR	.00	.00	.00	.00
60	SWGR S	500	FDR 5	FDR	.01	12.40	53.89	5.39
62	SS-1 SEC	60	SWGR S	TX2	.00	.23	.20	UNKNOW
62	SS-1 SEC	64	MCC 4&5	FDR	.00	.23	.20	.05
64	MCC 4&5	62	SS-1 SEC	FDR	.00	.23	.20	.05
64	MCC 4&5	68	BLUE SSS	FDR	.00	.35	.31	.08
64	MCC 4&5	90	SWGR O	TX2	.00	.59	.51	UNKNOW
66	SM1A BLUE	60	SWGR S	FDR	.00	.07	.31	.02
66	SM1A BLUE	68	BLUE SSS	TX2	.00	.07	.31	UNKNOW
68	BLUE SSS	64	MCC 4&5	FDR	.00	.35	.31	.08
68	BLUE SSS	66	SM1A BLUE	TX2	.00	.35	.31	UNKNOW
70	SWGR N	40	GEN G4	FDR	.00	.00	.00	.00
70	SWGR N	50	GEN G5	FDR	.00	.00	.00	.00
70	SWGR N	60	SWGR S	FDR	.00	128.92	560.31	27.72
70	SWGR N	90	SWGR O	FDR	.00	128.92	560.31	34.84
80	UTILITY	85	T1 SEC	TX2	4.55	7.55	325.76	UNKNOW
85	T1 SEC	80	UTILITY	TX2	4.55	74.45	323.57	UNKNOW
85	T1 SEC	90	SWGR O	FDR	.00	74.45	323.57	20.12
90	SWGR O	64	MCC 4&5	TX2	.00	.12	.51	UNKNOW
90	SWGR O	70	SWGR N	FDR	.00	128.92	560.29	34.84
90	SWGR O	85	T1 SEC	FDR	.00	74.45	323.56	20.12
90	SWGR O	600	O/H BUS	FDR	.00	.00	00.	.00
90	SWGR O	700	FDR 7	FDR	.02	51.55	224.03	22.41
90	SWGR O	800	FDR 8	FDR	.00	.00	.00	.00
90	SWGR O	900	FDR 9	FDR	.03	64.43	280.02	28.01
100	FDR 1	60	SWGR S	FDR	.02	41.71	181.24	18.13

DATE:27 NOV 95 TIME: 9 10 AM PAGE 40 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

	BALANCED \		E DROP AND LO				AKT	*****
*****	*****							
FROM	NAME	то	NAME	TYPE	VD%	AMPS	KVA	RATING%
100	FDR 1	105		FDR	.56	41.71	181.24	11.68
105	F1F12 14	100	FDR 1	FDR	.56	41.71	180.28	
105	F1F12 14	110	F1 L14	FDR		41.71	180.28	11.68
110	F1 L14	105		FDR	.07	41.71	180.15	11.68
110	F1 L14	115	F1 L15	FDR	.00	.00	.00	.00
110	F1 L14	120	F1 L31	FDR	.15	41.71		
115	F1 L15	110	F1 L14	FDR	.00	.00	.00	.00
120	F1 L31	110	F1 L14	FDR	.15	41.71		
120	F1 L31	121		FDR	.12	30.52	131.64	8.55
121	F1 L63	120	F1 L31	FDR	.12	30.52		
121	F1 L63	122	F1 L64	FDR	.03	19.35	83.34	5.42
122	F1 L64	121	F1 L63	FDR	.03	19.35	83.32	5.42
200	FDR 2	60	SWGR S	FDR	.02	57.87	251.44	25.16
200	FDR 2	205	Owak C	FDR	.31	57.87	251.44	
205	TOR Z	200	FDR 2	FDR	.31	57.87		
205		235	F5 F29	FDR	.21	57.87	250.70	
235	F5 F29	205	15 127	FDR	.21	57.87		16.21
235	F5 F29	236	F2 F211	FDR	.10	46.31	200.25	
236	F2 F211	235	F5 F29	FDR	.10	46.31	200.05	12.97
236	F2 F211	240	F1 F213	FDR		23.15		6.48
240		236		FDR	.05			6.48
300	FDR 3		SWGR S	FDR	.00	-00	.00	-00
400	FDR 4	60 60	SWGR S	FDR	.00	.00	.00	.00
500	FDR 5	60	SWGR S	FDR	.01	12.40	53.89	5.39
500	FDR 5	505	F4 F5 F6UF		.07	12.40		
505	F4 F5 F6UF		FDR 5	FDR		12.40	53.8 5	
505	F4 F5 F6UF	512		FDR	.18	12.40	53.85	
512	5-3 PRI	505	F4 F5 F6UF		.18	12.40	53.76	
512	5-3 PRI	515	F5_L24	FDR	-14	12.40	53.76	
515	F5 L24	512	5-3 PRI	FDR	-14	12.40	53.69	3.47
515	F5 L24	525	F5 L31	FDR	.02	12.40	53.69 53.68	3.47 3.47
525	F5 L31	515	F5 L24	FDR	.02 .02	12.40 5.12	22.15	
525	F5 L31	531	F3 L41	FDR	.06	5.12	22.15	
525	F5 L31	535	F537 L5	FDR		5.12	22.15	
531	F3 L41	525	F5 L31	FDR	.02 .04	5.12	22.15	
531	F3 L41	535	F537 L5	FDR	.06	5.12	22.13	
535	F537 L5	525	F5 L31	FDR	.06		22.14	
535	F537 L5	531	F3 L41	FDR		10.23		
535	F537 L5	555	F537 L5	FDR	.10 .10	10.23	44.24	
5 55		535	F33/ L3	FUK	. 10	10.23	44.24	3.71

DATE:27 NOV 95 TIME: 9 10 AM PAGE 41
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
555		560	RICH SUB	FDR	.27	6.73	29.11	2.44
555		565	5-17 PRI	FDR	.04	3.50	15.15	1.27
560	RICH SUB	555		FDR	.27	6.73	29.03	2.44
560	RICH SUB	562	RS SEC	TX2	.12	6.73	29.03	UNKNOW
562	RS SEC	560	RICH SUB	TX2	.12	2.24	29.00	UNKNOW
562	RS SEC	930	RICH SUB	FDR	.00	2.24	29.00	1.60
565	5-17 PRI	555		FDR	.04	3.50	15.14	1.27
565	5-17 PRI	575	F5 51	FDR	.01	2.16	9.34	.78
575	F5 51	565	5-17 PRI	FDR	.01	2.16	9.34	.78
575	F5 51	580	F5 L85	FDR	.02	2.16	9.34	.78
580	F5 L85	575	F5 51	FDR	.02	2.16	9.34	.78
600	O/H BUS	90	SWGR O	FDR	.00	.00	.00	.00
700	FDR 7	90	SWGR O	FDR	.02	51.55	223.99	22.41
700	FDR 7	705	WELL9 POL	FDR	.02	51.55	223.99	14.44
705	WELL9 POL	700	FDR 7	FDR	.02	51.55	223.94	14.44
705	WELL9 POL	707	7-1 SEC	TX2	.00	.00	.00	UNKNOW
705	WELL9 POL	709	F9 F73	FDR	.07	40.66	176.62	11.39
707	7-1 SEC	705	WELL9 POL	TX2	.00	.00	.00	UNKNOW
709	F9 F73	705	WELL9 POL	FDR	.07	40.66	176.50	11.39
709	F9 F73	710	F7 L11	FDR	.17	18.73	81.31	5.25
710	F7 L11	709	F9 F73	FDR	.17	18.73	81.18	5.25
710	F7 L11	715	F7 L13	FDR	.02	5.55	24.06	1.55
710	F7 L11	720	F713	FDR	.03	7.72	33.47	2.16
715	F7 L13	710	F7 L11	FDR	.02	5.55	24.05	1.55
720	F713	710	F7 L11	FDR	.03	7.72	33.46	2.16
720	F713	725	7-15 PRI	FDR	.08	7.72	33.46	2.16
725	7-15 PRI	720	F713	FDR	.08	7.72	33.44	2.16
725	7-15 PRI	735	F7 L54	FDR	.02	7.72	33.44	2.16
735	F7 L54	725	7-15 PRI	FDR	.02	7.72	33.43	2.16
73 5	F7 L54	745		FDR	.03	5.54	23.99	1.55
745		735	F7 L54	FDR	.03	5.54	23.98	1.55
745		750	F7 L72	FDR	.03	5.54	23.98	1.55
7 50	F7 L72	745		FDR	.03	5.54	23.98	1.55
800	FDR 8	90	SWGR O	FDR	.00	.00	.00	.00
900	FDR 9	90	SWGR O	FDR	.03	64.43	279.95	28.01
900	FDR 9	905	STEP SEC	TX2	.39	64.43	279.95	UNKNOW
905	STEP SEC	900	FDR 9	TX2	.39	21.48	278.90	UNKNOW
905	STEP SEC	910	F 96	FDR	.04	21.48	278.90	6.02
910	F 96	905	STEP SEC	FDR	-04	21.48	278.80	6.02
910	F 96	915	F910	FDR	.05	19.91	258.48	5.58

DATE:27 NOV 95 TIME: 9 10 AM PAGE 42
CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*****	*****	*****	*****	*****	*****	*****	*****	*****
FROM	NAME	то	NAME	TYPE	VD%	ANDO	1075	DATTHON
915	F910	910	F 96	FDR	.05	AMPS 19.91	KVA 258.37	RATING% 5.58
915	F910	920	F940	FDR	.27	19.91	258.37	5.58
920	F940	915	F910	FDR	.27	19.91	257.70	5.58
920	F940	945	F949 L1	FDR	.05	19.91	257.70	
925	()	930	RICH SUB	FDR	.03	2.24	28.99	5.58
925	ö	935	9-8 PRI		.04			1.60
930	RICH SUB	562	RS SEC	FDR		2.24	28.99	2.14
930	RICH SUB	925		FDR	.00	2.24	29.00	1.60
935	9-8 PRI	925	()	FDR	-04	2.24	29.00	1.60
935 935	9-8 PRI		()	FDR	.04	2.24	28.98	2.14
		940	9-9 PRI	FDR	.11	1.35	17.38	1.28
940	9-9 PRI	935	9-8 PRI	FDR	.11	1.35	17.36	1.28
945	F949 L1	920	F940	FDR	.05	19.91	257.59	5.58
945	F949 L1	960	9-13 PRI	FDR	.31	19.53	252.65	10.61
960	9-13 PRI	945	F949 L1	FDR	.31	19.53	251.89	10.61
960	9-13 PRI	963	9-14 PRI	FDR	1.08	19.53	251.89	10.61
963	9-14 PRI	960	9-13 PRI	FDR	1.08	19.53	249.25	10.61
963	9-14 PRI	966	9-15 PRI	FDR	.29	17.99	229.61	9.78
966	9-15 PRI	963	9-14 PRI	FDR	.29	17.99	228.96	9.78
966	9-15 PRI	969	SW UP	FDR	.08	17.99	228.96	9.78
969	SW UP	966	9-15 PRI	FDR	.08	17.99	228.79	9.78
969	SW UP	972	SW DOWN	FDR	.00	17.99	228.79	3.87
972 972	SW DOWN	969	SW UP	FDR	.00	17.99	228.79	3.87
		975	9-16 PRI	FDR	1.10	17.99	228.79	9.78
975 975	9-16 PRI	972 980	SW DOWN	FDR	1.10	17.99	226.31	9.78
980	9-16 PRI		0.44 001	FDR	.46	17.99	226.31	9.78
980		975 983	9-16 PRI	FDR	.46	17.99	225.28	9.78
983	9-25 PRI	980	9-25 PRI	FDR	.79	17.99	225.28	9.78
983	9-25 PRI 9-25 PRI	984	0.35.656	FDR	.79	17.99	223.51	9.78
983	9-25 PRI 9-25 PRI	985	9-25 SEC 9-34 PRI	TX2	.00	-00	.00	UNKNOW
984	9-25 PKI 9-25 SEC	983	9-34 PKI 9-25 PRI	FDR TX2	.07	4.83	60.03	2.63
985	9-34 PRI	983	9-25 PRI		.00	.00	.00	UNKNOW
985	9-34 PRI	987	9-23 PKI	FDR FDR	.07	4.83	59.98	2.63
987	9-34 PKI	985	9-34 PRI	FDR	.23 .23	4.83 4.83	59.98	2.63
987		990	9-34 PRI	FDR			59.85	2.63
987		992	7"20 PKI	FDR FDR	.20 .39	2.83 2.00	35.07	1.54
990	9-26 PRI	992 987		FDR	.20	2.83	24.78 34.99	1.09
992	, LO FRI	987		FDR	.39			1.54
992		997	9-32 PRI	FDR	.07	2.00	24.68	1.09
	9-32 PRI	992	7-36 PKI	FDR	.07	2.00 2.00	24.68	1.09
771) JE FRI	776		FUK	.07	2.00	24.67	1.09

DATE:27 NOV 95 TIME: 9 10 AM PAGE 43 CASE 3 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING EXISTING SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

NOTE: FOR FEEDERS, RATINGX = LOAD FLOW AMPS / FLA.

FLA = LIBRARY FLA EXCLUDING DUCT BANK AND TEMP. DERATING FOR CABLES.

FLA = BRANCH RECORD INPUT FLA FOR IMPEDANCE DATA.

NOTE: FOR TRANSFORMERS, RATING% = LOAD FLOW KVA / TRANSFORMER FULL LOAD KVA.

78 BUSES

*** TOTAL SYSTEM LOSSES ***
13.6 KW 13.9 KVAR

WARNING STUDY CONTAINS 2 VOLTAGE CRITERIA VIOLATIONS VIOLATIONS DENOTED BY (\$) AT BUS AND BRANCH 2VD LOCATIONS

APPENDIX I

Load Flow Analysis - Case 4

CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

DATE: 27 NOV 95
TIME: 9 12 AM

ALL INFORMATION PRESENTED IS FOR REVIEW, APPROVAL
INTERPRETATION AND APPLICATION BY A REGISTERED
ENGINEER ONLY

DAPPER (LOAD FLOW AND VOLTAGE DROP MINI/MICRO VERSION 4.5 LEVEL 1.0)

COPYRIGHT SKM SYSTEMS ANALYSIS, INC. 1983

DATE:27 NOV 95 TIME: 9 12 AM PAGE 2
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

PV GENERATORS RUS NO ID STAT VOLTAGE KW KVARMIN KVARMAX PARTICIPATION 10 1 1 1.000 1000. 0. 0. 1.000 2 1 0. 20 1.000 0. 0. 1.000 30 3 1 1.000 0. 0. 0. 1.000 4 1 1.000 5 1 1.000 0. 0. 40 1.000 0. 0. 50 0. 0. 1.000 NOTICE: BRANCH 725 7-15 PRI TO 730 F7 L43 IS OUT OF SERVICE NOTICE: BRANCH 735 F7 L54 TO 740 7-17 PRI IS OUT OF SERVICE NOTICE: BRANCH 750 F7 L72 TO 755 F7-33 IS OUT OF SERVICE NOTICE: BRANCH 745 TO 760 7-21 PRI IS OUT OF SERVICE NOTICE: BRANCH 760 7-21 PRI TO 765 7-22 PRI IS OUT OF SERVICE NOTICE: BRANCH 765 7-22 PRI TO 770 7-23 PRI IS OUT OF SERVICE NOTICE: BRANCH 770 7-23 PRI IS OUT OF SERVICE TO 775 7-24 PRI NOTICE: BRANCH 800 FDR 8 TO 805 F8 L11 IS OUT OF SERVICE NOTICE: BRANCH 805 F8 L11 TO 810 F8 L23 IS OUT OF SERVICE NOTICE: BRANCH 810 F8 L23 TO 815 F8 L25 IS OUT OF SERVICE NOTICE: BRANCH 810 F8 L23 TO 817 F8 22 IS OUT OF SERVICE NOTICE: BRANCH 820 F8 30 UF1 TO 825 8-22 PRI IS OUT OF SERVICE NOTICE: BRANCH 920 F940 TO 925 () IS OUT OF SERVICE NOTICE: BRANCH 945 F949 L1 TO 950 9-12 PRI IS OUT OF SERVICE NOTICE: BRANCH 950 9-12 PRI TO 955 9-11 PRI IS OUT OF SERVICE NOTICE: BRANCH 975 9-16 PRI TO 977 9-19 PRI IS OUT OF SERVICE NOTICE: BRANCH 980 TO 982 9-20 PRI IS OUT OF SERVICE NOTICE: BRANCH 992 TO 995 9-30 PRI IS OUT OF SERVICE NOTICE: BRANCH 121 F1 L63 TO 125 F1 L67 IS OUT OF SERVICE NOTICE: BRANCH 125 F1 L67 TO 130 F1 L613 IS OUT OF SERVICE NOTICE: BRANCH TO 135 F1 L68 125 F1 L67 IS OUT OF SERVICE NOTICE: BRANCH 205 TO 210 2-3 PRI IS OUT OF SERVICE NOTICE: BRANCH 400 FDR 4 TO 401 4-1 PRI IS OUT OF SERVICE NOTICE: BRANCH 305 F8 F311 TO 310 F3 19 IS OUT OF SERVICE NOTICE: BRANCH 405 F4 10 TO 410 F417 UF1 IS OUT OF SERVICE NOTICE: BRANCH 505 F4 F5 F6UF TO 510 5-1 PRI IS OUT OF SERVICE NOTICE: BRANCH 515 F5 L24 TO 520 5-6 PRI IS OUT OF SERVICE NOTICE: BRANCH 525 F5 L31 TO 530 F5 L39 IS OUT OF SERVICE TO 540 F5 L5 UF1 IS OUT OF SERVICE NOTICE: BRANCH 535 F537 L5 NOTICE: BRANCH 540 F5 L5 UF1 TO 545 F5 L56 UF1 IS OUT OF SERVICE NOTICE: BRANCH 540 F5 L5 UF1 TO 550 F5 L55 IS OUT OF SERVICE NOTICE: BRANCH 565 5-17 PRI TO 570 5-18 PRI IS OUT OF SERVICE NOTICE: BRANCH 580 F5 L85 TO 585 F5 L87 UF1 IS OUT OF SERVICE TO 590 F5 L8911 IS OUT OF SERVICE NOTICE: BRANCH 580 F5 L85 NOTICE: BRANCH 590 F5 L8911 TO 595 F5 L8 25 IS OUT OF SERVICE

DATE:27 NOV 95 TIME: 9 12 AM PAGE 3
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

NOTICE:	BRANCH	303	F713	TO	305 F8 F311	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	817	F8 22	TO	820 F8 30 UF1	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	210	2-3 PRI	TO	215 2-4 PRI	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	215	2-4 PRI	TO	220 2-5 PRI	IS	OUT	OF	SERVICE
NOTICE:	BRANCH .	512	5-3 PRI	TO	514 5-5 PRI	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	210	2-3 PRI	TO	225 2-3 SEC	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	215	2-4 PRI	TO	230 2-4 SEC	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	410	F417 UF1	TO	415 4-6 SEC	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	545	F5 L56 UF1	TO	547 5-16 SEC	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	590	F5 L8911	TO	591 5-23 SEC	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	590	F5 L8911	TO	593 5-24 SEC	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	300	FDR 3	TO	301 F8 F311	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	301	F8 F311	TO	303 F713	IS	OUT	OF	SERVICE
NOTICE:	BRANCH	401	4-1 PRI	TO	403 F1 F45				SERVICE
NOTICE:	BRANCH	403	F1 F45	TO	405 F4 10	18	OUT	OF	SERVICE

DATE:27 NOV 95 TIME: 9 12 AM PAGE 4
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FEEDER FROM NO NAME	FEEDER TO NO NAME	QTY VOLTS LE	ENGTH	FEEDER DESCRIPTION SIZE TYPE DUCT INSUL
10 GEN G1	15 G1 STEP-UP	1 2400.	50. FT	500 C M XLP
IMPEDANO	E: .0300 + J .05	26 OHMS/M FEET		STATUS: EXISTING
				500 C M XLP STATUS: EXISTING
30 GEN G3	35 G3 STEP-UP	1 2400.	50. FT	500 C M XLP STATUS: EXISTING
				500 C M XLP STATUS: EXISTING
				500 C M XLP STATUS: EXISTING
				500 C M XLP STATUS: EXISTING
60 SWGR S	70 SWGR N	1 4160.	5. FT	500 C M XLP
IMPEDANO	E: .0300 + J .05	26 OHMS/M FEET		STATUS: EXISTING
				4/0 A N XLP STATUS: EXISTING
60 SWGR S	200 FDR 2	1 4160.	50. FT	4/0 A N XLP
IMPEDANO	E: .1050 + J .04	10 OHMS/M FEET		STATUS: EXISTING
60 SWGR S	300 FDR 3	1 4160.	50. FT	4/0 A N XLP
IMPEDANO	E: .1050 + J .04	10 OHMS/M FEET		STATUS: EXISTING
60 SWGR S	400 FDR 4	1 4160.	50. FT	4/0 A N XLP
IMPEDANO	E: .1050 + J .04	10 OHMS/M FEET		STATUS: EXISTING
60 SWGR S	500 FDR 5	1 4160.	50. FT	4/0 A N XLP
IMPEDANO	E: .1050 + J .04	10 OHMS/M FEET		STATUS: EXISTING
62 SS-1 SEC	64 MCC 4&5	1 480.	50. FT	500 C M XLP
IMPEDANC	E: .0300 + J .05	26 OHMS/M FEET		STATUS: EXISTING
64 MCC 4&5	68 BLUE SSS	1 480.	50. FT	500 C M XLP
IMPEDANO	E: .0300 + J .05	26 OHMS/M FEET		STATUS: EXISTING
70 SWGR N IMPEDANO	90 SWGR 0	1 4160. 44 OHMS/M FEET	10. FT	500 A M XLP STATUS: EXISTING

DATE:27 NOV 95 TIME: 9 12 AM PAGE 5
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

		, , :===========		=======	======	====	====	======	=====	======
FEEDE	R FROM	FEEDER TO NO NAME	QTY /PH	VOLTS L-L	LENGTH		FE S1ZE	EDER DE	SCRII	PTION INSUL
		90 SWGR 0 .0453 + J								
		600 O/H BUS .1050 + J								
		700 FDR 7 .1050 + J								
90	euce n	800 FDR 8 .1050 + J	1	4160	50.	FT	4/0	A	N	XLP
90		900 FDR 9 .1050 + J								
		105 F1F12 14								
		110 F1 L14 .0900 + J								
110	F1 L14 IMPEDANCE:	115 F1 L15 .0900 + J	.1200	4160. OHMS/M FE	3 00. ET	FT	4/0	A STATUS:	B	OH-2 TING
		120 F1 L31 _0900 + J								
		121 F1 L63 .0900 + J								
		122 F1 L64 .0900 + J								
200	FDR 2 IMPEDANCE:	205 _0900 + J	.1200	4160. OHMS/M FE	600. ET	FT	4/0	A STATUS:	B EXIS	OH-2
		235 F5 F29 .0900 + J								
		236 F2 F211 .0900 + J								
		240 F1 F213 .0900 + J								

DATE:27 NOV 95 TIME: 9 12 AM PAGE 6
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

			========	
FEEDER FROM NO NAME	FEEDER TO QT	Y VOLTS LENGTH H L-L	FEEDER SIZE TYP	DESCRIPTION E DUCT INSUL
500 FDR 5	505 F4 F5 F6UF 1 .0900 + J .1200	4160. 625.	FT 4/0 A	в он-2
	512 5-3 PRI 1 .0900 + J .1200			
512 5-3 PRI IMPEDANCE:	515 F5 L24 1 .0900 + J .1200	4160. 1200. OHMS/M FEET	FT 4/0 A Stat	B OH-2 US: EXISTING
515 F5 L24 IMPEDANCE:	525 F5 L31 1 .0900 + J .1200	4160. 200. OHMS/M FEET	FT 4/0 A Stat	B OH-2 US: EXISTING
	531 F3 L41 1 .0900 + J .1200			
	535 F537 L5 1 .0900 + J .1200			
531 F3 L41 IMPEDANCE:	535 F537 L5 1 .0900 + J .1200	4160. 900. OHMS/M FEET	FT 4/0 A Stat	B OH-2
535 F537 L5 IMPEDANCE:	555 1 .1410 + J .1250	4160. 800. OHMS/M FEET	FT 2/0 A Stat	B OH-2
	560 RICH SUB 1 .1410 + J .1250			
	565 5-17 PRI 1			
562 RS SEC IMPEDANCE:	930 RICH SUB 1 .4360 + J .1380	13200. 5. OHMS/M FEET	FT 4 A	B OH-3
565 5-17 PRI	575 F5 51 1 .1410 + J .1250	4160. 300.	FT 2/0 A	B 0H-2
575 F5 51 IMPEDANCE:	580 F5 L85 1 .1410 + J .1250	4160. 600. OHMS/M FEET	FT 2/0 A STAT	B OH-2
700 FDR 7 IMPEDANCE:	705 WELL9 POL 1 .0900 + J .1200	4160. 50. OHMS/M FEET	FT 4/0 A	B OH-2
	709 F9 F73 1 .0900 + J .1200			

DATE:27 NOV 95 TIME: 9 12 AM PAGE
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO PAGE 7

EEED	ED FROM	FEEDER TO	======================================	I ENGTH	EEENED F	SECRIPTION
NO	NAME	NO NAME	QTY VOLTS /PH L-L	LENGIN	SIZE TYPE	DUCT INSUL
====						
709	F9 F73 IMPEDANCE:	710 F7 L11 .0900 + J	1 4160. .1200 OHMS/M F	1000. FT	4/0 A STATUS:	B OH-2 EXISTING
710	F7 L11 IMPEDANCE:	715 F7 L13	1 4160. .1200 OHMS/M F	500. FT	4/0 A STATUS:	B OH-2 EXISTING
			1 4160. .1200 OHMS/M F			
			1 4160. .1200 OHMS/M F			
725	7-15 PRI	735 F7 154	1 4160. .1200 OHMS/M F	350 FT	470 A	B 0N-2
735			1 4160. .1200 OHMS/M F			
			1 4160. .1200 OHMS/M F			
905	STEP SEC IMPEDANCE:	910 F 96 .0900 + J	1 13200. .1200 OHMS/M F	600. FT EET	4/0 A STATUS:	B OH-3 EXISTING
			1 13200. .1200 OHMS/M F			
915	F910 IMPEDANCE:	920 F940 .0900 + J	1 13200. .1200 OHMS/M F	4500. FT EET	4/0 A STATUS:	B OH-3 EXISTING
			1 13200. .1200 OHMS/M F			
925	() IMPEDANCE:	930 RICH SUB .4360 + J	1 13200. .1380 OHMS/M F	1500. FT EET	4 A STATUS:	B OH-3 EXISTING
925	() IMPEDANCE:	935 9-8 PRI .6900 + J	1 13200. .1440 OHMS/M FI	1000. FT EET	6 A STATUS:	B OH-3 EXISTING
935	9-8 PRI IMPEDANCE:	940 9-9 PRI .6900 + J	1 13200. .1440 OHMS/M FI	5000. FT EET	6 A STATUS:	B OH-3 EXISTING
			1 13200. .1320 OHMS/M FE			

DATE:27 NOV 95 TIME: 9 12 AM PAGE
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

=======================================	=========	<i>-</i>	~	A				
FEEDER FROM NO NAME	FEEDER TO NO NAME	QTY /PH	VOLTS I - I	LENGTH	21	FEEDER D	ESCRI	PTION
=======================================	==========	======	======	======	=====	=======	=====	======
960 9-13 PRI	963 9-14 PRI : .2760 + J	1	13200.	7600.	FT 2	Δ	R	กม-3
963 9-14 PRI IMPEDANCE	966 9-15 PRI : .2760 + J	.1320 o	13200. HMS/M FE	2200. i	FT 2	A STATUS:	B EXIST	OH-3
966 9-15 PRI IMPEDANCE	969 SW UP : .2760 + J	1 .1320 oi	13200. HMS/M FE	600. I	FT 2	A STATUS:	B EXIST	OH-3
969 SW UP IMPEDANCE:	972 SW DOWN : _0300 + J	1 .0526 O	13200. HMS/M FE	5. I	FT 50	O C STATUS:	M EXIST	XLP
972 SW DOWN IMPEDANCE:	975 9-16 PRI : .2760 + J	1 .1320 OH	13200. HMS/M FEI	8400. I	FT 2	A STATUS:	B EXIST	OH-3
975 9-16 PRI IMPEDANCE:	980 .2760 + J	1 .1320 OH	13200. HMS/M FE	3500. I	T 2	A Status:	B EXIST	OH-3
980 IMPEDANCE:	983 9-25 PRI .2760 + J	1 .1320 OH	13200. IMS/M FEE	6000. F	T 2	A STATUS:	B EXIST	OH-3
983 9-25 PRI IMPEDANCE:	985 9-34 PRI .2760 + J	1 .1320 OH	13200. IMS/M FEE	2000. F	T 2	A STATUS:	B EXIST	OH-3
985 9-34 PRI IMPEDANCE:	987 .2760 + J	1 .1320 он	13200. IMS/M FEE	6400. F	T 2	A STATUS:	B EXIST	OH-3 ING
987 IMPEDANCE:	990 9-26 PRI .2760 + J	1 .1320 ОН	13200. MS/M FEE	9800. F	T 2	A STATUS:	B EXIST	OH-3 Ing
987 IMPEDANCE:	992 .2760 + J	1 .1320 OH	13200. 2 MS/M FEE	7000. F	Т 2	A STATUS:	B EXIST	OH-3 Ing
992 IMPEDANCE:								
=======================================		=======	======	======	=====	======	=====	=====

DATE:27 NOV 95 TIME: 9 12 AM PAGE
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

TRANSFORMER DATA

		=====		======	=========		
PRIMARY RECORD NO NAME	L-L	FLA	NO NAME		L-L	FLA	KVA
15 G1 STEP-UP IMPEDANCE:	2400. 1.0000 + J 5			S	4160.	208.	1500.0
25 G2 STEP-UP IMPEDANCE:	2400. 1.0000 + J 5	361. 5.6623	60 SWGR PERCENT	s	4160.	208.	1500.0
35 G3 STEP-UP IMPEDANCE:	2400. 1.0000 + J 5	361. 5.6623	60 SWGR PERCENT	s	4160.	208.	1500.0
60 SWGR S IMPEDANCE:	4160. .7816 + J 4	42. 4.5331	62 SS-1 PERCENT	SEC	480.	361.	300.0
66 SM1A BLUE IMPEDANCE:	4160. .8156 + J 4	69. .7302	68 BLUE PERCENT	SSS	480.	601.	500.0
80 UTILITY IMPEDANCE:	24900. .5546 + J 5	58. 5.9341	85 T1 SE PERCENT	C TRANSF	4160. ORMER FIXED	347. TAP:	2500.0 -5.0 %
90 SWGR O IMPEDANCE:	4160. .5709 + J 3	42. 3.3111	64 MCC 4 PERCENT	& 5	480.	361.	300.0
560 RICH SUB IMPEDANCE:	4160. .9345 + J 5	83. 6.4200	562 RS SE PERCENT	С	13200.	26.	600.0
705 WELL9 POL IMPEDANCE:	4160. .9345 + J 5	21. 3.4200	707 7-1 S PERCENT	EC	480.	180.	150.0
900 FDR 9 IMPEDANCE:	4160. .7816 + J 4	208. 5.5331	905 STEP PERCENT	SEC	13200.	66.	1500.0
983 9-25 PRI IMPEDANCE:	13200. .9345 + J 5	22. 3.4200	984 9-25 PERCENT	SEC	208.	1388.	500.0

DATE:27 NOV 95 TIME: 9 12 AM PAGE 10
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS SPECIAL STUDY DATA

				ВО	<u> </u>	5 P E	LIA	L	5	ו טטו	 , A	. A	 	
* NO	*	NAME	*	KW	*	KVAR *	LOAD				 		 	
120	F1 (L31		43.	===:	14.	CONST			LOAD	 		 	
121	F1 1	L63		43.		14.	CONST	ANT	z	LOAD				
122	F1 1	L64		74.		24.	CONST	ANT	Z	LOAD				
235	F5 1	F29		44.		14.	CONST	ANT	Z	LOAD				
236	F2 1	F211		88.		29.	CONST	ANT	Z	LOAD				
240	F1	F213		88.		29.	CONST	ANT	Z	LOAD				
525	F5 1	L31		8.		3.	CONST	ANT	z	LOAD				
565	5-1	7 PRI		5.		2.	CONST	ANT	Z	LOAD				
580	F5 1	L85		8.		3.	CONST	ANT	Z	LOAD				
705	WEL	L9 POL		41.		14.	CONST	ANT	Z	LOAD				
709	F9	F73		83.		27.	CONST	ANT	Z	LOAD				
710	F7	L11		21.		7.	CONST	ANT	z	LOAD				
715	F7	L13		21.		7.	CONST	ANT	Z	LOAD				
735	F7	L54		8.		3.	CONST	ANT	Z	LOAD				
750	F7	L72		21.		7.	CONST	ANT	Z	LOAD				
910	F 9	6		18.		6.	CONST	ANT	Z	LOAD				
935	9-8	PRI		10.		3.	CONST	ANT	Z	LOAD				
940	9-9	PRI		15.		5.	CONST	ANT	Z	LOAD				
945	F94	9 L1		4.		1.	CONST	ANT	Z	LOAD				
960	9-1	3 PRI		18.		6.	CONST	ANT	Z	LOAD				
963	9-1	4 PRI		18.		6.	CONST	ANT	Z	LOAD				
983	9-2	5 PRI		157.		51.	CONST	ANT	z	LOAD				
990	9-2	6 PRI		34.		11.	CONST	ANT	Z	LOAD				
997	9-3	2 PRI		24.		8.	CONST	ANT	Z	LOAD				

DATE:27 NOV 95 TIME: 9 12 AM PAGE 11
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

*** SOLUTION COMMENTS ***

SOLUTION PARAMETERS

BRANCH VOLTAGE CRITERIA : 4.00 %
BUS VOLTAGE CRITERIA : 5.00 %
ACCELERATION FACTOR FOR 'PV' GENERATORS : 1.00
ACCELERATION FACTOR FOR CONSTANT KVA LOADS: 1.00
EXACT(ITERATIVE) SOLUTION : YES

<<PERCENT VOLTAGE DROPS ARE BASED ON NOMINAL DESIGN VOLTAGES>>

TOF SIZE: 301

LARGEST LOAD:	1000.00 KVA	
CONVERGENCE CRITERIA:	.050 KVA	
LARGEST BUS MISMATCH	10 GEN G1	104.765 KVA
LARGEST BUS MISMATCH	10 GEN G1	5.926 KVA
LARGEST BUS MISMATCH	10 GEN G1	.336 KVA
LARGEST BUS MISMATCH	10 GEN G1	.019 KVA
LARGEST BUS MISMATCH	10 GEN G1	.336 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 12
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (SWING GENERATORS)

****	*****	*****	*****	*****	*****	******	******	***
BUS	VOLTS(PU)	ANGLE	KW	KVAR		R + JX		
80	1.000	.00	-26.7	361.2	.0			

DATE:27 NOV 95 TIME: 9 12 AM PAGE 13 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS (PV GENERATOR SCHEDULE REPORT)

			VOLTAGE	KVAR L	IMITS-	ACTUAL		
	BUS NAME	ID	SCHED. ACT	UAL MIN	MAX	KW	KVAR	
	10 GEN G1	1	1.000 1.05	0.0	.0	1000.0	.0	
	20 GEN G2	2	1.000 1.04	5 .0	.0	.0	.0	
	30 GEN G3	3	1.000 1.04	5 .0	.0	.0	.0	
	40 GEN G4	4	1.000 1.04	5 .0	.0	.0	.0	
	50 GEN G5	5	1.000 1.04	5 .0	.0	.0	.0	

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 14
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 15 G1 STEP-UP FEEDER AMPS: 229 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 1000.0 KW .0 KVAR 1000.0 KVA PF:1.00 UNITY LOSSES THRU FEEDER: .2 KW .4 KVAR .5 KVA

==== BUS: 15 G1 STEP-UP DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2521 %VD: -5.0

LOAD FROM: 10 GEN G1 FEEDER AMPS: 229 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 999.8 KW -.4 KVAR 999.8 KVA PF:1.00 UNITY LOSSES THRU FEEDER: .2 KW .4 KVAR .5 KVA

LOAD TO: 60 SWGR S TRANSF AMPS: 229 VOLTAGE DROP: 14. XVD: .6
PROJECTED POWER FLOW: 999.8 KW -.4 KVAR 999.8 KVA PF:1.00 UNITY
LOSSES THRU TRANSF: 6.0 KW 34.2 KVAR 34.7 KVA

==== BUS: 20 GEN G2 DESIGN VOLTAGE: 2400 BUS VOLTAGE: 2507 %VD: -4.5

** PV TYPE GENERATOR: 2 .0 KW .0 KVAR

**** NO LOAD SPECIFIED ****

DATE:27 NOV 95 TIME: 9 12 AM PAGE 15
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

=== BUS: 60 SWGR S DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 %VD: -4.5

LOAD FROM: 15 G1 STEP-UP TRANSF AMPS: 132 VOLTAGE DROP: 24. %VD: .6 PROJECTED POWER FLOW: 993.7 KW -34.6 KVAR 994.3 KVA PF:1.00 UNITY LOSSES THRU TRANSF: 6.0 KW 34.2 KVAR 34.7 KVA

LOAD FROM: 25 G2 STEP-UP TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD FROM: 35 G3 STEP-UP TRANSF AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 62 SS-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .0 KVAR .1 KVA PF: .98 LAGGING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 66 SM1A BLUE FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .1 KW .0 KVAR .1 KVA PF: .98 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 70 SWGR N FEEDER AMPS: 75 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 530.6 KW -189.1 KVAR 563.3 KVA PF: .94 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 16
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 100 FDR 1 FEEDER AMPS: 24 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 172.8 KW 57.2 KVAR 182.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 200 FDR 2 FEEDER AMPS: 33 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 239.4 KW 78.7 KVAR 252.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 300 FDR 3 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 400 FDR 4 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 500 FDR 5 FEEDER AMPS: 7 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 50.8 KW 18.6 KVAR 54.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 17
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 40 GEN G4 FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 50 GEN G5 FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 60 SWGR S

PROJECTED POWER FLOW: 530.6 KW -189.1 KVAR 563.3 KVA PF: .94 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 90 SWGR 0 FEEDER AMPS: 75 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 530.6 KW -189.1 KVAR 563.3 KVA PF: .94 LEADING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

==== BUS: 85 T1 SEC DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 XVD: -4.5

LOAD TO: 80 UTILITY TRANSF AMPS: 48 VOLTAGE DROP: 185. XVD: 4.5\$
PROJECTED POWER FLOW: 27.0 KW -358.4 KVAR 359.4 KVA PF: .08 LEADING
LOSSES THRU TRANSF: .3 KW 2.8 KVAR 2.8 KVA **XFMR TAPS -5.0%**

LOAD FROM: 90 SWGR 0 FEEDER AMPS: 48 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 27.0 KW -358.4 KVAR 359.4 KVA PF: .08 LEADING LOSSES THRU FEEDER: .0 KW .0 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 18
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 90 SWGR O DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 %VD: -4.5

LOAD FROM: 64 MCC 4&5

PROJECTED POWER FLOW: .2 KW .0 KVAR .2 KVA PF: .98 LAGGING
LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVAR

LOAD FROM: 70 SWGR N FEEDER AMPS: 75 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 530.6 KW -189.1 KVAR 563.3 KVA PF: .94 LEADING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 85 T1 SEC FEEDER AMPS: 48 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 27.0 KW -358.4 KVAR 359.4 KVA PF: .08 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 600 O/H BUS FEEDER AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 700 FDR 7 FEEDER AMPS: 30 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 212.5 KW 70.4 KVAR 223.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 900 FDR 9 FEEDER AMPS: 41 VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: 291.3 KW 98.9 KVAR 307.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 60 SWGR S FEEDER AMPS: 24 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 172.7 KW 57.2 KVAR 182.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 105 F1F12 14 FEEDER AMPS: 24 VOLTAGE DROP: 8. %VD: .2 PROJECTED POWER FLOW: 172.7 KW 57.2 KVAR 182.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 19
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 105 F1F12 14 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4337 %VD: -4.3

LOAD FROM: 100 FDR 1 FEEDER AMPS: 24 VOLTAGE DROP: 8. %VD: .2 PROJECTED POWER FLOW: 172.5 KW 56.8 KVAR 181.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .2 KW .3 KVAR .4 KVA

LOAD TO: 110 F1 L14 FEEDER AMPS: 24 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 172.5 KW 56.8 KVAR 181.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

=== BUS: 110 F1 L14 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4336 XVD: -4.2

LOAD FROM: 105 F1F12 14 FEEDER AMPS: 24 VOLTAGE DROP: 1. 2VD: .0 PROJECTED POWER FLOW: 172.5 KW 56.8 KVAR 181.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD TO: 115 F1 L15 FEEDER AMPS: VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 120 F1 L31 FEEDER AMPS: 24 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 172.5 KW 56.8 KVAR 181.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

LOAD FROM: 110 F1 L14 FEEDER AMPS: 24 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 172.4 KW 56.7 KVAR 181.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .1 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 20 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 121 F1 L63 FEEDER AMPS: 18 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 126.2 KW 41.5 KVAR 132.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD FROM: 120 F1 L31 FEEDER AMPS: 18 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 126.2 KW 41.5 KVAR 132.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD TO: 122 F1 L64 FEEDER AMPS: 11 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 80.0 KW 26.3 KVAR 84.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 121 F1 L63
PROJECTED POWER FLOW: 80.0 KW 26.3 KVAR 84.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 200 FDR 2 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 %VD: -4.4 ETT.
===== BUS: 200 FDR 2 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 %VD: -4.4 ANGLE: .1 DEGREES

LOAD FROM: 60 SWGR S FEEDER AMPS: 33 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 239.4 KW 78.7 KVAR 252.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 205 FEEDER AMPS: 33 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 239.4 KW 78.7 KVAR 252.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 21
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 205 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4341 %VD: -4.3

LOAD FROM: 200 FDR 2 FEEDER AMPS: 33 VOLTAGE DROP: 4. %VD: .1
PROJECTED POWER FLOW: 239.2 KW 78.5 KVAR 251.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD TO: 235 F5 F29 FEEDER AMPS: 33 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 239.2 KW 78.5 KVAR 251.8 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD FROM: 205 FEEDER AMPS: 33 VOLTAGE DROP: 3. %VD: .1
PROJECTED POWER FLOW: 239.1 KW 78.3 KVAR 251.6 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .1 KW .2 KVAR .2 KVA

LOAD TO: 236 F2 F211 FEEDER AMPS: 27 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 191.3 KW 63.1 KVAR 201.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD FROM: 235 F5 F29 FEEDER AMPS: 27 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 191.2 KW 63.0 KVAR 201.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .1 KVAR .1 KVA

LOAD TO: 240 F1 F213 FEEDER AMPS: 13 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 95.6 KW 31.5 KVAR 100.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 22 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

=== BUS: 500 FDR 5 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 %VD: -4.5

LOAD FROM: 60 SWGR S FEEDER AMPS: 7 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 50.8 KW 18.6 KVAR 54.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 505 F4 F5 F6UF FEEDER AMPS: 7 VOLTAGE DROP: 1. 2VD: .0 PROJECTED POWER FLOW: 50.8 KW 18.6 KVAR 54.1 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 505 F4 F5 F6UF DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4344 %VD: -4.4

LOAD FROM: 500 FDR 5 FEEDER AMPS: 7 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 50.7 KW 18.6 KVAR 54.0 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 512 5-3 PRI FEEDER AMPS: 7 VOLTAGE DROP: 3. %VD: .1 PROJECTED POWER FLOW: 50.7 KW 18.6 KVAR 54.0 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 23 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 512 5-3 PRI DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4342 %VD: -4.4

LOAD FROM: 505 F4 F5 F6UF FEEDER AMPS: 7 VOLTAGE DROP: 3. %VD: .1 PROJECTED POWER FLOW: 50.7 KW 18.6 KVAR 54.0 KVA PF: .94 LAGGING .0 KW .0 KVAR LOSSES THRU FEEDER: .O KVA

LOAD TO: 515 F5 L24 FEEDER AMPS: 7 VOLTAGE DRUP: 2. 200. ...

PROJECTED POWER FLOW: 50.7 KW 18.6 KVAR 54.0 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

FEEDER AMPS: 7 VOLTAGE DROP: LOAD FROM: 512 5-3 PRI 2. %VD: .0 50.7 KW 18.5 KVAR 54.0 KVA PF: .94 LAGGING PROJECTED POWER FLOW: .O KVAR LOSSES THRU FEEDER: .0 KW .O KVA

LOAD TO: 525 F5 L31 FEEDER AMPS: 7 VOLTAGE DROP: 0. %VD: .0 50.7 KW 18.5 KVAR .0 KW .0 KVAR PROJECTED POWER FLOW: 54.0 KVA PF: .94 LAGGING .0 KW LOSSES THRU FEEDER: .O KVA

==== BUS: 525 F5 L31 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4339 %VD: -4.3 PROJECTED SPECIAL BUS LOAD: 8.7 KW 3.6 KVAR

FEEDER AMPS: 7 VOLTAGE DROP: 0. XVD: .0 LOAD FROM: 515 F5 L24 PROJECTED POWER FLOW: 50.7 KW 18.5 KVAR 54.0 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .0 KVA

LOAD TO: 531 F3 L41 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 21.0 KW 7.5 KVAR 22.3 KVA PF: .94 LAGGING PROJECTED POWER FLOW: .0 KW LOSSES THRU FEEDER: .0 KVAR .0 KVA

FEEDER AMPS: 3 VOLTAGE DROP: 1. %VD: LOAD TO: 535 F537 L5 21.0 KW 7.5 KVAR 22.3 KVA PF: .94 LAGGING PROJECTED POWER FLOW: LOSSES THRU FEEDER: .0 KW .O KVAR .0 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 531 F3 L41 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4339 %VD: -4.3

LOAD FROM: 525 F5 L31 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 21.0 KW 7.5 KVAR 22.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 535 F537 L5 FEEDER AMPS: 3 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 21.0 KW 7.5 KVAR 22.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 535 F537 L5 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4339 %VD: -4.3

LOAD FROM: 525 F5 L31 FEEDER AMPS: 3 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 21.0 KW 7.5 KVAR 22.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 531 F3 L41
PROJECTED POWER FLOW: 21.0 KW 7.5 KVAR 22.3 KVA PF: .94 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 555

FEEDER AMPS: 6 VOLTAGE DROP: 1. %VD: .0

PROJECTED POWER FLOW: 42.0 KW 14.9 KVAR 44.6 KVA PF: .94 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 555 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4337 %VD: -4.3 PU BUS VOLTAGE: 1.043 ANGLE: .0 DEGREES

LOAD TO: 560 RICH SUB FEEDER AMPS: 4 VOLTAGE DROP: 4. %VD: .1 PROJECTED POWER FLOW: 27.9 KW 9.2 KVAR 29.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 565 5-17 PRI FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 14.1 KW 5.7 KVAR 15.2 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 25
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 555

FEEDER AMPS: 4 VOLTAGE DROP: 4. %VD: .1

PROJECTED POWER FLOW: 27.8 KW 9.2 KVAR 29.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 562 RS SEC TRANSF AMPS: 4 VOLTAGE DROP: 5. %VD: .1
PROJECTED POWER FLOW: 27.8 KW 9.2 KVAR 29.3 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

LOAD FROM: 560 RICH SUB TRANSF AMPS: 1 VOLTAGE DROP: 16. %VD: .1
PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .0 KW .1 KVAR .1 KVA

LOAD TO: 930 RICH SUB FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 555 FEEDER AMPS: 2 VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: 14.1 KW 5.7 KVAR 15.2 KVA PF: .93 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 575 F5 51 FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 8.7 KW 3.6 KVAR 9.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 26 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 565 5-17 PRI FEEDER AMPS: 1 VOLTAGE DROP: U. AVD: ... PROJECTED POWER FLOW: 8.7 KW 3.6 KVAR 9.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD TO: 580 F5 L85 FEEDER AMPS: 1 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 8.7 KW 3.6 KVAR 9.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

==== BUS: 580 F5 L85 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4336 %VD: -4.2 PROJECTED SPECIAL BUS LOAD: 8.7 KW 3.6 KVAR

LOAD FROM: 575 F5 51 FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 8.7 KW 3.6 KVAR 9.4 KVA PF: .93 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA

==== BUS: 600 O/H BUS DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 XVD: -4.5 PU BUS VOLTAGE: 1.045 ANGLE: .1 DEGREES **** NO LOAD SPECIFIED ****

==== BUS: 700 FDR 7 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 XVD: -4.4 ANGLE: .1 DEGREES

FEEDER AMPS: 30 VOLTAGE DROP: LOAD FROM: 90 SWGR O 0. %VD: PROJECTED POWER FLOW: 212.5 KW 70.4 KVAR 223.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR _O KVA

LOAD TO: 705 WELL9 POL FEEDER AMPS: 30 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 212.5 KW 70.4 KVAR 223.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA DATE:27 NOV 95 TIME: 9 12 AM PAGE 27
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 700 FDR 7 FEEDER AMPS: 30 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 212.5 KW 70.4 KVAR 223.8 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

LOAD FROM: 707 7-1 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 709 F9 F73 FEEDER AMPS: 23 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 167.8 KW 55.1 KVAR 176.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

LOAD FROM: 705 WELL9 POL FEEDER AMPS: 23 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 167.7 KW 55.1 KVAR 176.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 710 F7 L11 FEEDER AMPS: 11 VOLTAGE DROP: 2. %VD: .1 PROJECTED POWER FLOW: 77.3 KW 25.7 KVAR 81.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 28 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 LOAD TO: 715 F7 L13 PROJECTED POWER FLOW: 22.9 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 720 F713 FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 31.9 KW 10.6 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .O KVAR .0 KW .0 KVA

==== BUS: 715 F7 L13 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4341 %VD: -4.3 ANGLE: .0 DEGREES PROJECTED SPECIAL BUS LOAD: 22.9 KW

LOAD FROM: 710 F7 L11 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 22.9 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .O KVA

==== BUS: 720 F713 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4341 XVD: -4.3 PU BUS VOLTAGE: 1.043 ANGLE: .0 DEGREES

LOAD FROM: 710 F7 L11 FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: PROJECTED POWER FLOW: 31.9 KW 10.6 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA

LOAD TO: 725 7-15 PRI FEEDER AMPS: 4 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 31.9 KW 10.6 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW _O KVAR .0 KVA

==== BUS: 725 7-15 PRI DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4340 XVD: -4.3 ANGLE: .0 DEGREES

LOAD FROM: 720 F713 FEEDER AMPS: 4 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 31.8 KW 10.6 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KVA .0 KW .O KVAR

LOAD TO: 735 F7 L54 FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 31.8 KW 10.6 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .O KVAR .O KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 29
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 725 7-15 PRI FEEDER AMPS: 4 VOLTAGE DROP: 0. XVD: .0 PROJECTED POWER FLOW: 31.8 KW 10.6 KVAR 33.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 745 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 745 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4339 %VD: -4.3 ====== PU BUS VOLTAGE: 1.043 ANGLE: .0 DEGREES

LOAD FROM: 735 F7 L54 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 750 F7 L72 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA .0 KVA

LOAD FROM: 745 FEEDER AMPS: 3 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 22.8 KW 7.6 KVAR 24.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 30 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

=== BUS: 900 FDR 9 DESIGN VOLTAGE: 4160 BUS VOLTAGE: 4345 %VD: -4.4

LOAD FROM: 90 SWGR O FEEDER AMPS: 41 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 291.3 KW 98.9 KVAR 307.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 905 STEP SEC TRANSF AMPS: 41 VOLTAGE DROP: 18. %VD: .4 PROJECTED POWER FLOW: 291.3 KW 98.9 KVAR 307.6 KVA PF: .95 LAGGING LOSSES THRU TRANSF: .5 KW 2.6 KVAR 2.7 KVA

LOAD FROM: 900 FDR 9 TRANSF AMPS: 13 VOLTAGE DROP: 57. %VD: .4
PROJECTED POWER FLOW: 290.8 KW 96.3 KVAR 306.3 KVA PF: .95 LAGGING
LOSSES THRU TRANSF: .5 KW 2.6 KVAR 2.7 KVA

LOAD TO: 910 F 96 FEEDER AMPS: 13 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 290.8 KW 96.3 KVAR 306.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 905 STEP SEC FEEDER AMPS: 13 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 290.8 KW 96.2 KVAR 306.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 915 F910 FEEDER AMPS: 12 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 271.5 KW 89.9 KVAR 286.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 31
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 915 F910 DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13726 %VD: -4.0

LOAD FROM: 910 F 96 FEEDER AMPS: 12 VOLTAGE DROP: 2. %VD: .0 PROJECTED POWER FLOW: 271.5 KW 89.8 KVAR 286.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

LOAD TO: 920 F940 FEEDER AMPS: 12 VOLTAGE DROP: 12. %VD: .1
PROJECTED POWER FLOW: 271.5 KW 89.8 KVAR 286.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD FROM: 915 F910 FEEDER AMPS: 12 VOLTAGE DROP: 12. XVD: .1
PROJECTED POWER FLOW: 271.3 KW 89.6 KVAR 285.7 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .2 KVAR .3 KVA

LOAD TO: 945 F949 L1 FEEDER AMPS: 12 VOLTAGE DROP: 2. XVD: .0 PROJECTED POWER FLOW: 271.3 KW 89.6 KVAR 285.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .1 KVA

==== BUS: 925 () DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13733 %VD: -4.0

LOAD FROM: 930 RICH SUB FEEDER AMPS: 1 VOLTAGE DROP: 1. XVD: .0 PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 935 9-8 PRI FEEDER AMPS: 1 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 930 RICH SUB DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13734 %VD: -4.0

LOAD FROM: 562 RS SEC FEEDER AMPS: 1 VOLTAGE DROP: 0. %VD: .0
PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 32 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 925 () FEEDER AMPS: 1 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 925 () FEEDER AMPS: 1 VOLTAGE DROP: 1. %VD: .0 PROJECTED POWER FLOW: 27.8 KW 9.1 KVAR 29.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 940 9-9 PRI FEEDER AMPS: 1 VOLTAGE DROP: 4. 2VD: .0 PROJECTED POWER FLOW: 16.7 KW 5.5 KVAR 17.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 935 9-8 PRI FEEDER AMPS: 1 VOLTAGE DROP: 4. %VD: .0 PROJECTED POWER FLOW: 16.7 KW 5.5 KVAR 17.6 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 960 9-13 PRI FEEDER AMPS: 12 VOLTAGE DROP: 14. %VD: .1 PROJECTED POWER FLOW: 266.6 KW 88.0 KVAR 280.7 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 33
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 945 F949 L1 FEEDER AMPS: 12 VOLTAGE DROP: 14. %VD: .1
PROJECTED POWER FLOW: 266.3 KW 87.9 KVAR 280.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

LOAD TO: 963 9-14 PRI FEEDER AMPS: 11 VOLTAGE DROP: 44. %VD: .3 PROJECTED POWER FLOW: 247.1 KW 81.6 KVAR 260.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .8 KW .4 KVAR .8 KVA

LOAD FROM: 960 9-13 PRI FEEDER AMPS: 11 VOLTAGE DROP: 44. XVD: .3
PROJECTED POWER FLOW: 246.4 KW 81.2 KVAR 259.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .8 KW .4 KVAR .8 KVA

LOAD TO: 966 9-15 PRI FEEDER AMPS: 10 VOLTAGE DROP: 12. XVD: .1
PROJECTED POWER FLOW: 227.3 KW 75.0 KVAR 239.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

==== BUS: 966 9-15 PRI DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13643 %VD: -3.4

LOAD FROM: 963 9-14 PRI FEEDER AMPS: 10 VOLTAGE DROP: 12. %VD: .1
PROJECTED POWER FLOW: 227.1 KW 74.9 KVAR 239.2 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .2 KW .1 KVAR .2 KVA

LOAD TO: 969 SW UP FEEDER AMPS: 10 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 227.1 KW 74.9 KVAR 239.2 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

DATE:27 NOV 95 TIME: 9 12 AM PAGE 34
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 966 9-15 PRI FEEDER AMPS: 10 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 227.1 KW 74.9 KVAR 239.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .1 KW .0 KVAR .1 KVA

LOAD TO: 972 SW DOWN FEEDER AMPS: 10 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 227.1 KW 74.9 KVAR 239.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVA

=== BUS: 972 SW DOWN DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13640 %VD: -3.3

LOAD FROM: 969 SW UP FEEDER AMPS: 10 VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: 227.1 KW 74.9 KVAR 239.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 975 9-16 PRI FEEDER AMPS: 10 VOLTAGE DROP: 45. %VD: .3 PROJECTED POWER FLOW: 227.1 KW 74.9 KVAR 239.1 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .7 KW .3 KVAR .8 KVA

LOAD FROM: 972 SW DOWN FEEDER AMPS: 10 VOLTAGE DROP: 45. %VD: .3 PROJECTED POWER FLOW: 226.4 KW 74.5 KVAR 238.3 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .7 KW .3 KVAR .8 KVA

LOAD TO: 980 FEEDER AMPS: 10 VOLTAGE DROP: 19. %VD: .1
PROJECTED POWER FLOW: 226.4 KW 74.5 KVAR 238.3 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

=== BUS: 980 DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13577 %VD: -2.9

LOAD FROM: 975 9-16 PRI FEEDER AMPS: 10 VOLTAGE DROP: 19. %VD: .1 PROJECTED POWER FLOW: 226.1 KW 74.4 KVAR 238.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .3 KW .1 KVAR .3 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 35
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED
VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD TO: 983 9-25 PRI FEEDER AMPS: 10 VOLTAGE DROP: 32. %VD: .2 PROJECTED POWER FLOW: 226.1 KW 74.4 KVAR 238.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .5 KW .2 KVAR .6 KVA

LOAD FROM: 980 FEEDER AMPS: 10 VOLTAGE DROP: 32. %VD: .2 PROJECTED POWER FLOW: 225.6 KW 74.1 KVAR 237.4 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .5 KW .2 KVAR .6 KVA

LOAD TO: 984 9-25 SEC TRANSF AMPS: VOLTAGE DROP: 0. %VD: .0 PROJECTED POWER FLOW: .0 KW .0 KVAR .0 KVA PF: .00 LEADING LOSSES THRU TRANSF: .0 KW .0 KVAR .0 KVA

LOAD TO: 985 9-34 PRI FEEDER AMPS: 3 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 60.8 KW 20.0 KVAR 64.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

==== BUS: 985 9-34 PRI DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13542 XVD: -2.6 ANGLE: -.5 DEGREES

LOAD FROM: 983 9-25 PRI FEEDER AMPS: 3 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 60.8 KW 20.0 KVAR 64.0 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 987 FEEDER AMPS: 3 VOLTAGE DROP: 9. XVD: .1
PROJECTED POWER FLOW: 60.8 KW 20.0 KVAR 64.0 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

DATE: 27 NOV 95 TIME: 9 12 AM PAGE 36
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED

VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

LOAD FROM: 985 9-34 PRI FEEDER AMPS: 3 VOLTAGE DROP: 9. %VD: .1
PROJECTED POWER FLOW: 60.7 KW 20.0 KVAR 63.9 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 990 9-26 PRI FEEDER AMPS: 2 VOLTAGE DROP: 8. %VD: .1
PROJECTED POWER FLOW: 35.5 KW 11.7 KVAR 37.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 992 FEEDER AMPS: 1 VOLTAGE DROP: 16. %VD: .1
PROJECTED POWER FLOW: 25.2 KW 8.3 KVAR 26.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 987 FEEDER AMPS: 2 VOLTAGE DROP: 8. %VD: .1
PROJECTED POWER FLOW: 35.5 KW 11.7 KVAR 37.4 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD FROM: 987 FEEDER AMPS: 1 VOLTAGE DROP: 16. %VD: .1
PROJECTED POWER FLOW: 25.1 KW 8.3 KVAR 26.5 KVA PF: .95 LAGGING
LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

LOAD TO: 997 9-32 PRI FEEDER AMPS: 1 VOLTAGE DROP: 3. %VD: .0 PROJECTED POWER FLOW: 25.1 KW 8.3 KVAR 26.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

PAGE 37 DATE:27 NOV 95 TIME: 9 12 AM CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

BALANCED VOLTAGE DROP AND LOAD FLOW ANALYSIS

VOLTAGE EFFECT ON LOADS MODELED VOLTAGE DROP CRITERIA: BRANCH = 4.00 % BUS = 5.00

==== BUS: 997 9-32 PRI DESIGN VOLTAGE: 13200 BUS VOLTAGE: 13514 %VD: -2.4 PROJECTED SPECIAL BUS LOAD: 25.1 KW 8.3 KVAR

FEEDER AMPS: 1 VOLTAGE DROP: 3. XVD: .0 LOAD FROM: 992 PROJECTED POWER FLOW: 25.1 KW 8.3 KVAR 26.5 KVA PF: .95 LAGGING LOSSES THRU FEEDER: .0 KW .0 KVAR .0 KVA

.0 KW

DATE:27 NOV 95 TIME: 9 12 AM PAGE
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

BUS#		BASE VOLT	PU VOLT	BUS#	NAME	BASE VOLT	PU VOLT
10		2400.00	1.050	15	G1 STEP-UP	2400.00	1.050
20	GEN G2	2400.00	1.045	25	G2 STEP-UP	2400.00	1.045
30	GEN G3	2400.00	1.045	35	G3 STEP-UP	2400.00	1.045
40	GEN G4	4160.00	1.045	50	GEN G5	4160.00	1.045
60	SWGR S	4160.00	1.045	62	SS-1 SEC	480.00	1.045
64	MCC 4&5	480.00	1.045	66	SM1A BLUE	4160.00	1.045
68	BLUE SSS	480.00	1.045	70	SWGR N	4160.00	1.045
80	UTILITY	24900.00	1.000	85	T1 SEC	4160.00	1.045
90	SWGR O	4160.00	1.045	100	FDR 1	4160.00	1.043
105	F1F12 14	4160.00	1.043	110	F1 L14	4160.00	1.044
115	F1 L15	4160.00	1.042	120	F1 L31	4160.00	1.042
121	F1 L63	4160.00	1.041	122	F1 L64	4160.00	1.042
200	FDR 2	4160.00	1.044	205	11 204	4160.00	1.041
235	F5 F29	4160.00	1.043	236	F2 F211	4160.00	
240	F1 F213	4160.00	1.042	300	FDR 3	4160.00	1.042 1.045
400	FDR 4	4160.00	1.045	500	FDR 5	4160.00	1.045
505	F4 F5 F6UF	4160.00	1.044	512	5-3 PRI	4160.00	1.045
515	F5 L24	4160.00	1.043	525	F5 L31	4160.00	1.044
531	F3 L41	4160.00	1.043	535	F537 L5	4160.00	1.043
555		4160.00	1.043	560	RICH SUB	4160.00	1.043
562	RS SEC	13200.00	1.040	565	5-17 PRI	4160.00	1.042
575	F5 51	4160.00	1.042	580	F5 L85	4160.00	1.042
600	O/H BUS	4160.00	1.045	700	FDR 7	4160.00	1.044
705	WELL9 POL	4160.00	1.044	707	7-1 SEC	480.00	1.044
709	F9 F73	4160.00	1.044	710	F7 L11	4160.00	1.044
715	F7 L13	4160.00	1.043	720	F713	4160.00	1.043
725 745	7-15 PRI	4160.00	1.043	735	F7 L54	4160.00	1.043
800	FDR 8	4160.00	1.043	750	F7 L72	4160.00	1.043
905		4160.00	1.045	900	FDR 9	4160.00	1.044
915	STEP SEC F910	13200.00	1.040	910	F 96	13200.00	1.040
925	()	13200.00	1.040	920	F940	13200.00	1.039
935	9-8 PRI	13200.00	1.040	930	RICH SUB	13200.00	1.040
945	F949 L1	13200.00	1.040	940	9-9 PRI	13200.00	1.040
963	9-14 PRI	13200.00	1.039	960	9-13 PRI	13200.00	1.038
969	SW UP	13200.00 13200.00	1.034	966	9-15 PRI	13200.00	1.034
975	9-16 PRI	13200.00	1.033	972	SW DOWN	13200.00	1.033
983	9-25 PRI	13200.00	1.030	980		13200.00	1.029
985	9-34 PRI	13200.00	1.026 1.026	984	9-25 SEC	208.00	1.026
990	9-26 PRI	13200.00		987		13200.00	1.025
997	9-32 PRI	13200.00	1.025	992		13200.00	1.024
	, ar ini	13200.00	1.024				

DATE:27 NOV 95 TIME: 9 12 AM PAGE 39
CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM
FORT GREELY, ALASKA - POST 2001 CASE
E M C ENGINEERS, INC. - DENVER, COLORADO

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
10	GEN G1	15	G1 STEP-UP	FDR	.02	229.00	1000.00	49.25
15	G1 STEP-UP	10	GEN G1	FDR	.02	229.00	999.77	49.25
15	G1 STEP-UP	60	SWGR S	TX2	.57	229.00	999.77	UNKNOW
20	GEN G2	25	G2 STEP-UP	FDR	.00	.00	.00	.00
25	G2 STEP-UP	20	GEN G2	FDR	.00	.00	.00	.00
25	G2 STEP-UP	60	SWGR S	TX2	.00	.00	.00	UNKNOW
30	GEN G3	35	G3 STEP-UP	FDR	.00	.00	.00	.00
35	G3 STEP-UP	30	GEN G3	FDR	.00	00	.00	.00
35	G3 STEP-UP	60	SWGR S	TX2	.00	.00	.00	UNKNOW
40	GEN G4	70	SWGR N	FDR	.00	.00	.00	.00
50	GEN G5	70	SWGR N	FDR	.00	.00	.00	.00
60	SWGR S	15	G1 STEP-UP	TX2	.57	132.12	994.33	UNKNOW
60	SWGR S	25	G2 STEP-UP	TX2	.00	.00	.00	UNKNOW
60	SWGR S	35	G3 STEP-UP	TX2	.00	.00	.00	UNKNOW
60	SWGR S	62	SS-1 SEC	TX2	.00	.01	.07	UNKNOW
60	SWGR S	66	SM1A BLUE	FDR	.00	.01	.10	.00
60	SWGR S	70	SWGR N	FDR	.00	74.85	563.32	16.10
60	SWGR S	100	FDR 1	FDR	.01	24.18	181.96	10.51
60	SWGR S	200	FDR 2	FDR	.01	33.49	252.04	14.56
60	SWGR S	300	FDR 3	FDR	.00	.00	.00	.00
60	SWGR S	400	FDR 4	FDR	.00	.00	.00	.00
60	SWGR S	500	FDR 5	FDR	.00	7.18	54.06	3.12
62	SS-1 SEC	60	SWGR S	TX2	.00	.08	.07	UNKNOW
62	SS-1 SEC	64	MCC 4&5	FDR	.00	.08	.07	.02
64	MCC 4&5	62	SS-1 SEC	FDR	.00	.08	.07	.02
64	MCC 4&5	68	BLUE SSS	FDR	.00	.12	.10	.03
64	MCC 4&5	90	SWGR O	TX2	.00	.20	.17	UNKNOW
66	SM1A BLUE	60	SWGR S	FDR	.00	.01	.10	.00
66	SM1A BLUE	68	BLUE SSS	TX2	.00	.01	.10	UNKNOW
68	BLUE SSS	64	MCC 4&5	FDR	.00	.12	.10	.03
68	BLUE SSS	66	SM1A BLUE	TX2	.00	.12	.10	UNKNOW
70	SWGR N	40	GEN G4	FDR	.00	.00	.00	.00
70	SWGR N	50	GEN G5	FDR	.00	.00	.00	.00
70	SWGR N	60	SWGR S	FDR	.00	74.85	563.32	16.10
70	SWGR N	90	SWGR O	FDR	.00	74.85	563.32	20.23
80	UTILITY	85	T1 SEC	TX2	4.45	8.40	362.22	UNKNOW
85	T1 SEC	80	UTILITY	TX2	4.45	47.76	359.44	UNKNOW
85	T1 SEC	90	SWGR O	FDR	.00	47.76	359.44	12.91
90	SWGR O	64	MCC 4&5	TX2	.00	.02	.17	UNKNOW
90	SWGR O	70	SWGR N	FDR	.00	74.85	563.31	20.23

						*****	****	****
FROM	NAME	то	NAME	TYPE	VD%	AMPS	KVA	RATING%
90	SWGR O	85	T1 SEC	FDR	.00	47.76	359.43	12.91
90	SWGR O	600	O/H BUS	FDR	.00	.00	.00	.00
90	SWGR O	700	FDR 7	FDR	.01	29.75	223.88	12.93
90	SWGR O	800	FDR 8	FDR	.00	.00	.00	.00
90	SWGR O	900	FDR 9	FDR	.01	40.87	307.61	17.77
100	FDR 1	60	SWGR S	FDR	.01	24.18	181.95	10.51
100	FDR 1	105	F1F12 14	FDR	.19	24.18	181.95	6.77
105	F1F12 14	100	FDR 1	FDR	.19	24.18	181.63	6.77
105	F1F12 14	110	F1 L14	FDR	.02	24.18	181.63	6.77
110	F1 L14	105	F1F12 14	FDR	.02	24.18	181.59	6.77
110	F1 L14	115	F1 L15	FDR	.00	.00	.00	.00
110	F1 L14	120	F1 L31	FDR	.05	24.18	181.59	6.77
115	F1 L15	110	F1 L14	FDR	.00	.00	.00	.00
120	F1 L31	110	F1 L14	FDR	.05	24.18	181.50	6.77
120	F1 L31	121	F1 L63	FDR	.04	17.70	132.85	4.96
121	F1 L63	120	F1 L31	FDR	.04	17.70	132.80	4.96
121	F1 L63	122	F1 L64	FDR	.01	11.22	84.18	3.14
122	F1 L64	121	F1 L63	FDR	.01	11.22	84.17	3.14
200	FDR 2	60	SWGR S	FDR	.01	33.49	252.02	14.56
200	FDR 2	205		FDR	.10	33.49	252.02	9.38
205		200	FDR 2	FDR	.10	33.49	251.77	9.38
205	22 220	235	F5 F29	FDR	.07	33.49	251.77	9.38
235	F5 F29	205	50 5044	FDR	.07	33.49	251.60	9.38
235	F5 F29	236	F2 F211	FDR	.03	26.81	201.40	7.51
236	F2 F211	235	F5 F29	FDR	.03	26.81	201.34	7.51
236 240	F2 F211 F1 F213	240 236	F1 F213	FDR	.02	13.40	100.66	3.75
300	FDR 3	60	F2 F211 SWGR S	FDR	.02	13.40	100.64	3.75
400	FDR 4	60	SWGR S	FDR FDR	.00	.00	.00	.00
500	FDR 5	60	SWGR S	FDR	.00	.00 7.18	.00	.00
500	FDR 5	505	F4 F5 F6UF	FDR	.02	7.18	54.06 54.06	3.12 2.01
505	F4 F5 F6UF	500	FDR 5	FDR	.02	7.18	54.04	2.01
505	F4 F5 F6UF	512	5-3 PRI	FDR	.06	7.18	54.04	2.01
512	5-3 PRI	505	F4 F5 F6UF	FDR	.06	7.18	54.01	2.01
512	5-3 PRI	515	F5 L24	FDR	.05	7.18	54.01	2.01
515	F5 L24	512	5-3 PRI	FDR	.05	7.18	53.99	2.01
515	F5 L24	525	F5 L31	FDR	.01	7.18	53.99	2.01
525	F5 L31	515	F5 L24	FDR	.01	7.18	53.99	2.01
525	F5 L31	531	F3 L41	FDR	.01	2.97	22.29	.83
525	F5 L31	535	F537 L5	FDR	.02	2.97	22.29	.83
							/	.00

****	******	****	******					
FROM	NAME	то	NAME	TYPE	VD%	AMPS	KVA	RATING%
531	F3 L41	525	F5 L31	FDR	.01	2.97	22.29	.83
531	F3 L41	535	F537 L5	FDR	.01	2.97	22.29	.83
535	F537 L5	525	F5 L31	FDR	.02	2.97	22.29	.83
535	F537 L5	531	F3 L41	FDR	.01	2.97	22.29	.83
535	F537 L5	555		FDR	.03	5.93	44.58	2.15
555	133. 23	535	F537 L5	FDR	.03	5.93	44.56	2.15
555		560	RICH SUB	FDR	.09	3.91	29.35	1.42
555		565	5-17 PRI	FDR	.01	2.03	15.24	.73
560	RICH SUB	555		FDR	.09	3.91	29.32	1.42
560	RICH SUB	562	RS SEC	TX2	.12	3.91	29.32	UNKNOW
562	RS SEC	560	RICH SUB	TX2	.12	1.23	29.29	UNKNOW
562	RS SEC	930	RICH SUB	FDR	.00	1.23	29.29	.88
565	5-17 PRI	555		FDR	.01	2.03	15.24	.73
565	5-17 PRI	575	F5 51	FDR	.00	1.25	9.40	.45
575	F5 51	565	5-17 PRI	FDR	.00	1.25	9.40	.45
575	F5 51	580	F5 L85	FDR	.01	1.25	9.40	.45
580	F5 L85	575	F5 51	FDR	.01	1.25	9.39	.45
600	O/H BUS	90	SWGR O	FDR	.00	.00	.00	.00
700	FDR 7	90	SWGR O	FDR	.01	29.75	223.86	12.93
700	FDR 7	705	WELL9 POL	FDR	.01	29.75	223.86	8.33
705	WELL9 POL	700	FDR 7	FDR	.01	29. <i>7</i> 5	223.85	8.33
705	WELL9 POL	707	7-1 SEC	TX2	.00	.00	.00	
705	WELL9 POL	709	F9 F73	FDR	.02	23.47		
707	7-1 SEC	705	WELL9 POL	TX2	.00	.00		
709	F9 F73	705	WELL9 POL	FDR	.02	23.47		6.57
709	F9 F73	710	F7 L11	FDR	.06	10.82	81.40	3.03
710	F7 L11	709	F9 F73	FDR	.06	10.82	81.36	
710	F7 L11	715	F7 L13	FDR	.01	3.21	24.11	
710	F7 L11	720	F713	FDR	.01	4.46	33.57	1.25
715	F7 L13	710	F7 L11	FDR	.01	3.21	24.10	
720	F713	710	F7 L11	FDR	-01	4.46	33.56	
720	F713	725	7-15 PRI	FDR	.03	4.46	33.56	
725	7-15 PRI	720	F713	FDR	.03	4.46	33.56	1.25 1.25
725	7-15 PRI	735	F7 L54	FDR	.01	4.46	33.56	
735	F7 L54	725	7-15 PRI	FDR	.01	4.46	33.55	1.25
735	F7 L54	745	-7 . 5 /	FDR	.01	3.20 3.20	24.08 24.08	
745		735	F7 L54	FDR	.01	3.20	24.08	
745		750	F7 L72	FDR	.01	3.20 3.20	24.08	
750	F7 L72	745	01100 0	FDR	-01	.00	.00	.00
800	FDR 8	90	SWGR O	FDR	.00	.00	.00	.00

								~~~~~
FROM	NAME	то	NAME	TYPE	VD%	AMPS	KVA	RATING%
900	FDR 9	90	SWGR O	FDR	.01	40.87	307.58	17.77
900	FDR 9	905	STEP SEC	TX2	.43	40.87	307.58	UNKNOW
905	STEP SEC	900	FDR 9	TX2	.43	12.88	306.32	UNKNOW
905	STEP SEC	910	F 96	FDR	.01	12.88	306.32	3.61
910	F 96	905	STEP SEC	FDR	.01	12.88	306.28	3.61
910	F 96	915	F910	FDR	.02	12.03	286.00	3.37
915	F910	910	F 96	FDR	.02	12.03	285.96	3.37
915	F910	920	F940	FDR	.09	12.03	285.96	3.37
920	F940	915	F910	FDR	.09	12.03	285.72	3.37
920	F940	945	F949 L1	FDR	.02	12.03	285.72	3.37
925	()	930	RICH SUB	FDR	.01	1.23	29.28	.88
925	()	935	9-8 PRI	FDR	.01	1.23	29.28	1.17
930	RICH SUB	562	RS SEC	FDR	.00	1.23	29.29	.88
930	RICH SUB	925	()	FDR	.01	1.23	29.29	.88
935	9-8 PRI	925	()	FDR	.01	1.23	29.28	1.17
935	9-8 PRI	940	9-9 PRI	FDR	.03	.74	17.57	.70
940	9-9 PRI	935	9-8 PRI	FDR	.03	.74	17.56	.70
945	F949 L1	920	F940	FDR	.02	12.03	285.68	3.37
945	F949 L1	960	9-13 PRI	FDR	.10	11.82	280.73	6.42
960	9-13 PRI	945	F949 L1	FDR	.10	11.82	280.45	6.42
960	9-13 PRI	963	9-14 PRI	FDR	.33	10.97	260.26	5.96
963	9-14 PRI	960	9-13 PRI	FDR	.33	10.97	259.42	5.96
963	9-14 PRI	966	9-15 PRI	FDR	.09	10.12	239.36	5.50
966	9-15 PRI	963	9-14 PRI	FDR	.09	10.12	239.16	5.50
966	9-15 PRI	969	SW UP	FDR	.02	10.12	239.16	5.50
969	SW UP	966	9-15 PRI	FDR	.02	10.12	239.10	5.50
969	SW UP	972	SW DOWN	FDR	.00	10.12	239.10	2.18
972	SM DOWN	969	SW UP	FDR	.00	10.12	239.10	2.18
972	SW DOWN	975	9-16 PRI	FDR	.34	10.12	239.10	5.50
975	9-16 PRI	972	SW DOWN	FDR	.34	10.12	238.32	5.50
975	9-16 PRI	980	0.44.000	FDR	-14	10.12	238.32	5.50
980		975	9-16 PRI	FDR	-14	10.12	237.99	5.50
980 983	0.35.001	983	9-25 PRI	FDR	.24	10.12	237.99	5.50
	9-25 PRI	980		FDR	.24	10.12	237.43	5.50
983	9-25 PRI	984	9-25 SEC	TX2	.00	.00	.00	UNKNOW
983	9-25 PRI	985	9-34 PRI	FDR	.02	2.73	63.97	1.48
984	9-25 SEC	983	9-25 PRI	TX2	.00	.00	.00	UNKNOW
985	9-34 PRI	983	9-25 PRI	FDR	.02	2.73	63.95	1.48
985 987	9-34 PRI	987	0.7/ 00*	FDR	.07	2.73	63.95	1.48
901		985	9-34 PRI	FDR	.07	2.73	63.91	1.48

DATE:27 NOV 95 TIME: 9 12 AM PAGE 43 CASE 4 LOAD FLOW STUDY - UTILITY AND ONE GENERATOR RUNNING 4160V SYSTEM FORT GREELY, ALASKA - POST 2001 CASE E M C ENGINEERS, INC. - DENVER, COLORADO

#### BALANCED VOLTAGE DROP AND LOAD FLOW BRANCH DATA SUMMARY

FROM	NAME	TO	NAME	TYPE	VD%	AMPS	KVA	RATING%
987		990	9-26 PRI	FDR	.06	1.60	37.42	.87
987		992		FDR	.12	1.13	26.49	.61
990	9-26 PRI	987		FDR	.06	1.60	37.39	.87
992		987		FDR	.12	1.13	26.46	.61
992		997	9-32 PRI	FDR	.02	1.13	26.46	-61
997	9-32 PRI	992		FDR	.02	1.13	26.46	.61

NOTE: FOR FEEDERS, RATING% = LOAD FLOW AMPS / FLA.

FLA = LIBRARY FLA EXCLUDING DUCT BANK AND TEMP. DERATING FOR CABLES.

FLA = BRANCH RECORD INPUT FLA FOR IMPEDANCE DATA.

NOTE: FOR TRANSFORMERS, RATING% = LOAD FLOW KVA / TRANSFORMER FULL LOAD KVA.

81 BUSES

*** T O T A L S Y S T E M L O S S E S ***
11.2 KW 43.1 KVAR

***WARNING*** STUDY CONTAINS 2 VOLTAGE CRITERIA VIOLATIONS VIOLATIONS DENOTED BY (\$) AT BUS AND BRANCH XVD LOCATIONS

#### APPENDIX J

#### **Construction Cost Estimates**

Mon 08 Jan 1996 Eff. Date 01/08/96

U.S. Army Corps of Engineers Fort Greely, AK(1995-1997 Study) - Energy Efficiency Study Ft. Greely Electrical Study (1995-1997) PROJECT GRLY-1:

TIME 15:01:32

TITLE PAGE

Fort Greely, AK(1995-1997 Study)
Energy Efficiency Study
Power Distribution
1995-1997 Study

Designed By: DM Estimated By: Prepared By: TCP

Preparation Date: 01/08/96 Effective Date of Pricing: 01/08/96

0.00 Sales Tax: This report is not copyrighted, but the information contained herein is For Official Use Only.

M C A C E S G O L D E D I T I O N Composer GOLD Software Copyright (c) 1985-1994 by Building Systems Design, Inc. Release 5.30

Currency in DOLLARS

EQUIP ID: ALASKA LABOR ID: FRBK94

CREW ID: FRBK94 UPB ID: ANCH94

## U.S. Army Corps of Engineers Fort Greely, AK(1995-1997 Study) - Energy Efficiency Study Ft. Greely Electrical Study (1995-1997) PROJECT GRLY-1:

CONTENTS PAGE

TIME 15:01:32

PROJECT DIRECT SUMMARY - Scope	SUMMARY PAGE
DETAILED ESTIMATE	DETAIL PAGE
20. Site Electrical Utilities	

No Backup Reports...

* * * END TABLE OF CONTENTS

U.S. Army Corps of Engineers Fort Greely, AK(1995-1997 Study) - Energy Efficiency Study Ft. Greely Electrical Study (1995-1997) ** PROJECT DIRECT SUMMARY - Scope ** PROJECT GRLY-1:

TIME 15:01:32

SUMMARY PAGE 1

	QUANTITY UOM MATERIAL	MATERIAL	MANHRS	LABOR	BOUIDMNT	LABOR BOUIPMINT TOTAL COST UNIT COST	UNIT COST
	6 6 7 7 7 1 1	6 6 7 1 1 4 3			# 6 6 6 9 9	1 1 1 1 1 1 1	
20 Site Electrical Utilities	1.00 EA	280,796	1.00 EA 280,796 7,038 293,802 36,975	293,802	36,975		611,573 611573.10
TOTAL Fort Greely, AK(1995-1997 Study)	1.00 EA	280,796	7,038	7,038 293,802	36,975	611,573	611,573 611573.10
Contractor's Overhead						91,736	
SUBTOTAL Contractor's Profit						703,309	
SUBTOTAL						773,640	
Contractor's Bond						23,209	
TOTAL INCL INDIRECTS Escalation						796,849	
SUBTOTAL Contingency						828,723	·
TOTAL INCL OWNER COSTS						994,468	

CREW ID: FRBK94 UPB ID: ANCH94

Mon 08 Jan 1996 Eff. Date 01/08/96 DETAILED ESTIMATE

U.S. Army Corps of Engineers
Fort Greely, AK(1995-1997 Study) - Energy Efficiency Study
Ft. Greely Electrical Study (1995-1997)
20. Site Electrical Utilities PROJECT GRLY-1:

TIME 15:01:32

DETAIL PAGE

20.02. Exterior Electrical Distribution		QUANTY UOM MATERIAL	MATERIAL	MANHRS	LABOR 1	LABOR EQUIPMNT	TOTAL COST
20. Site Electrical Utilities		# 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 6 8 9 1 1 1 6 1	4 4 5 6 1 1 1 1	: : : : : :		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20.02. Exterior Electrical Distribution							
20.02.01. Transformers							
	M MIL AA <16121 1207 > #4/0AWG Compr Lugs,1Hole,Wrapped Low Voltage - To 600 Volts Reconnect 1 single phase transformer.	ed 76.00 EA	311	67	2,923	6	3,243
	<16121 1207 >	yed 207.00 EA	847	182	7,962	24	8,833
	M MIL AA <16330 4122 > 112.5KVA, Pri4160GrdX/-13800V, Sec 2087/120.3 Ph.01 Xfrmt Bad Mrd	lec 1.00 EA	7,837	27	1,197	29	9,063
	M MIL AA <16330 4124 > 225 KVA, PY4160GrdY, ASSOV, Sec 208Y/120, 3 Ph.011 Kfrmr. Pad Mid	1.00 EA	10,519	46	1,996	8	12,563
	M MIL AA <16330 4126 > 500 KVA, Pri4160GrdY/-13800V, Sec 208Y/120,3 Ph,Oil Xfrmr, Pad Mtd	3.00 EA	47,521	246	10,777	261	58,559
J-4	TOTAL Transformers		67,034	567	24,856	372	92,261
20.02.04. Towers, Poles, Crossarms & Insulators							
	M MIL AA <16413 2102 > 3-1/2*x 4-1/2*x 8'0*, Single Arm Wood Crossarm W/Hardware &Braces	m 66.00 EA	1,356	113	4,673	831	6,859
	M MIL AA <16413 4101 > 5KV Class 55-3, Pin Insul w/Pin M MIL AA <16413 4101 > 5KV Class 55-3, Pin Insul w/Pin	594.00 EA	3,962	759	31,258	5,559	40,779
	6008 >	163.70	•	2,858	117,122	15,071	217,718
	USR AA < > Step-up Transformer for Gen #1 Material price taken from Means Electrical Cost Data 1995, labor price taken from Richardson Cost Guide for	1.00 EA	23,300	87	3,168	465	26,933
	USR AA < > Step-up Transformer for Gen #2 Material price taken from Means Electrical Cost Data 1995, labor rate taken from Richardson Cost Guide for Fairbanks.	1.00 EA	23,300	87	3,168	<b>4</b> 6 5	26,933
	USR AA < > Step-up Transformer for Gen #3 Material cost taken from Means Electrical Cost Data 1995, labor rates taken from Richardson Cost Guide for Farrbanks, AK.	1.00 EA	23,300	87	3,168	4 2	26,933
		1.00 EA	100	16	583	0	683
LABOR ID: FRBK9	of and one of			1			

LABOR ID: FRBK9

EQUIP ID: ALASKA

Currency in

CREW ID: FRBK94 UPB IN

Mon 08 Jan 1996 Eff. Date 01/08/96 DETAILED ESTIMATE

20.02. Exterior Electrical Distribution

U.S. Army Corps of Engineers Fort Greely, AK(1995-1997 Study) - Energy Efficiency Study Ft. Greely Electrical Study (1995-1997) 20. Site Electrical Utilities PROJECT GRLY-1:

TIMB 15:01:32 DETAIL PAGE

~

1.00 BA
de, Cu-clad
<16453 1001 > 1/2*, Ground Rod Clamp 329.00 EA
7105 > #4 AWG 1/c Bare Strd Cu Cable 16.47 MLP Installed on Poles
1.00 EA
,
TOTAL TOWERS, Poles, Crossarms &
TOTAL Exterior Electrical Distribution
TOTAL Site Blectrical Utilities
TOTAL Fort Greely, AK(1995-1997 Study)

U.S. Army Coxps of Engineers Fort Greely, AK(Post 2001 Study) - Energy Efficiency Study Ft. Greely Electrical Study (Post 2001) PROJECT GRLY-2:

Mon 08 Jan 1996 Eff. Date 01/08/96

TITLE PAGE

Fort Greely, AK(Post 2001 Study)
Energy Efficiency Study
Power Distribution
Post 2001 Study

Σ

Designed By: Estimated By:

TCP Prepared By: Preparation Date: Effective Date of Pricing:

01/08/96 01/08/96

0.00% Sales Tax: This report is not copyrighted, but the information contained herein is For Official Use Only.

M C A C E S G O L D E D I T I O N
Composer GOLD Software Copyright (c) 1985-1994
by Building Systems Design, Inc.
Release 5.30

Currency in DOLLARS

CREW ID: FRBK94 UPB ID: ANCH94

LABOR ID: FRBK94

EQUIP ID: ALASKA

U.S. Army Corps of Engineers
PROJECT GRLY-2: Fort Greely, AK(Post 2001 Study) - Energy Efficiency Study
Ft. Greely Electrical Study (Post 2001)

TIME 15:04:14

CONTENTS PAGE

No Backup Reports...

END TABLE OF CONTENTS

* * *

U.S. Army Corps of Engineers
Fort Greely, AK(Post 2001 Study) - Energy Efficiency Study
Ft. Greely Electrical Study (Post 2001)
** PROJECT DIRECT SUMMARY - Scope ** PROJECT GRLY-2:

SUMMARY PAGE 1

TIME 15:04:14

QUANTITY UOM MATERIAL MANHRS LABOR BQUIPMNT TOTAL COST UNIT COST	QUANTITY UOM MATERIAL	MATERIAL	MANHRS	LABOR	BQUI PMNT	LABOR RQUIPMNT TOTAL COST UNIT COST	UNIT COST
20 Site Electrical Utilities 1.00 EA 201,734 5,035 209,758 27,646 439,137 439137,36	1.00 BA	201,734	5,035	209,758	5,035 209,758 27,646	439,137	439,137 439137.36
TOTAL Fort Greely, AK(Post 2001 Study)	1.00 EA	201,734	5,035	5,035 209,758 27,646	27,646	201,734 5,035 209,758 27,646 439,137	439,137 439137.36
Contractor's Overhead						65,871	
SUBTOTAL Contractor's Profit						505,008	
SUBTOTAL Contractor's Bond						555,509	
TOTAL INCL INDIRECTS Escalation						572,174	
SUBTOTAL Contingency						595,061	
TOTAL INCL OWNER COSTS						714,073	

U.S. Army Corps of Engineers
PROJECT GRLY-2: Fort Greely, AK(Post 2001 Study) - Energy Efficiency Study
Ft. Greely Electrical Study (Post 2001)
20. Site Electrical Utilities

TIME 15:04:14

DETAIL PAGE

20.02. Exterior Electrical Distribution		QUANTY UOM MATERIAL	ATERIAL	MANHRS	LABOR	LABOR EQUIPMNT	TOTAL COST
	USR AA < > Convert G4 to Mye	1.00 EA	100	16	583	c	683
		1.00 EA	100	16	583	0	683
	16452 1001 > 1/2"Diaxi0'b Ground Rods, Cu-Clad	244.00 EA	2,721	313	13,717	42	16,480
	MII AN AIGHTS TOUT & L/Z", Ground Rod Clamp	244.00 EA	195	102	4,458	14	5,033
	The Am Stole (105 > #4 Awg 1/C Bare Strd Cu Cable There) and on boles	12.20 MLF	3,410	153	6,256	805	10,471
	iker	1.00 EA	35,000	0	2,915	250	38,165
	TOTAL Towers, Poles, Crossarms &	1 "	185,668	4,872	185,668 4,872 202,857	27,552	416,077
		;		-			
	TOTAL Exterior Electrical Distribution		201,734	5,035	5,035 209,758	27,646	439,137
	TOTAL Site Electrical Utilities	, «	201,734	5,035	5,035 209,758	27,646 439,137	439,137
	TOTAL Fort Greely, AK(Post 2001 Study)	1 44	201,734	5,035	5,035 209,758	27,646	439,137

Mon 08 Jan 1996 Eff. Date 01/08/96 DETAILED ESTIMATE

U.S. Army Corps of Engineers
Fort Greely, AK(Post 2001 Study) - Energy Efficiency Study
Ft. Greely Electrical Study (Post 2001)
20. Site Electrical Utilities PROJECT GRLY-2:

TIME 15:04:14

DETAIL PAGE

	QUANTY UOM MATERIAL MANHRS LABOR EQUIDMNT TOTAL COST	1000
	OM MATER	1 1 2 1 1
	UANTY UC	
20.02. Exterior Blectrical Distribution		************************************

1	**			COANTI COM MATERIAL	MATERIAL	MANHRS	LABOR	LABOR EQUIPMNT	TOTAL COST
20	20. Site Electrical Utilities					1 1 6 6 6 7			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	20.02. Exterior Electrical Distribution								
	20.02.01. Transformers								
			<pre>&lt;16121 1207 &gt; #4/0AMG Compr Lugs,1Hole,Wrapped Low Voltage - To 600 Volts Reconnect 1 single phase transformer.</pre>	4.00 EA	16	4	154	0	171
		M MIL AA <16121 1207	> #4/OANG Compt Luge, 1Hole, Wrapped Low Voltage - To 600 Volts Represents (17) 3-phase transformers made up of 3	51.00 EA	209	45	1,962	ψ	2,176
		<16330 4126	> 500 KVA, Pri4160Grdy/-13800v, Sec 208Y/120, 3 Ph, Oil Xfrmr. Pad Mrd	1.00 EA	15,840	83	3,629	88	19,557
J-10		USR AA <	> Disconnect Existing Transformer Assume 15 min/transformer at labor rate taken from Richardson Cost Estimating Guide for Fairbanks.	127.00 EA	0	32	1,157	0	1,157
0		TOTA	TOTAL Transformers		16,065	163	6,901	94	23,061
	20.02.04. Towers, Poles, Crossarms & Insulators								
		M MIL AA <16413 2102 ;	3-1/2"x 4-1/2"x 8'0", Single Arm	49.00 EA	1,006	84	3,469	617	5,092
		M MIL AA <16413 4101 3		440.00 EA	2,935	562	23,154	4,118	30.207
		<16120 6008	> 54 / Cames 55-3, Pin Insul w/Pin > #4/0 AWG ACRS Cable Penguin 6/1	976.00 EA 121.40 MLF	6,510 63,425	1,246 2,119	51,360	9,135	67,004
		USR AA <	instailed on Poles, Aluminum Cabl > Step-up Transformer for Gen #1 Material price taken from Means	1.00 EA	23,300	87	3,168	465	26,933
			Electrical Cost Data 1995, labor price taken from Rtchardson Cost Guide for Fairbanka						
		USR AA <	Step-up Tra Material pr Electrical	1.00 EA	23,300	87	3,168	465	26,933
			labor rate taken from Richardson Cost Guide for Fairbanks.						
		USR AA <		1.00 BA	23,300	8.4	3,168	465	26,933
			Richardson Cost Guide for Fairbanks, AK.						

J-10

EQUIP ID: ALASKA

LABOR ID: FRBK94

Currency in Dou

### APPENDIX K LCCA and Economic Analysis

# ENERGY USAGE AND COST PROVIDED TO FT. GREELY BY GVEA

	1 (FGR)	2 (FWO)	3 (WE)	4 (PE)	5 (EC)	6 (WC)	(a) L	8 (DC)	9 (MC)	10 (TC)
	TOTAL KWh	Ft. Wain.	Ft. Wain.	Ft. Greely	Cost of	Cost of				
	Received	Output	Wheeled to	kWh Rec'd.	Electricity	Wheeling	Demand	Demand	Misc.	Resulting
Month	@ Ft. Greely	to GVEA	Ft. Greely	from GVEA	from GVEA	to Ft. Greely	κW	Charge		Billing
Sep-93	1,249,440	1,411,310	1,254,655	(5,215)	0\$	\$16,829	2,424	\$15,150	\$55	\$32,034
Oct-93	1,396,800	1,493,260	1,327,508	69,292	\$5,552	\$17,803	2,736	\$17,100	(\$1,323)	\$39,132
Nov-93	1,531,680	1,168,380	1,038,690	492,990	\$32,668	\$13,941	2,904	\$18,150	(\$9,748)	\$60,011
Dec-93	1,591,680	1,145,270	1,018,145	573,535	\$43,773	\$13,667	2,904	\$18,150	(\$10,825)	\$64,765
Jan-94	1,563,840	1,843,700	1,639,049	(75,209)	\$0	\$21,969	2,976	\$18,600	\$55	\$40,624
Feb-94	1,483,920	1,423,250	1,265,269	218,651	\$16,873	\$16,971	2,904	\$18,150	(\$4,103)	\$47,891
Mar-94	1,572,000	1,322,760	1,175,934	396,066	\$30,321	\$15,776	2,784	\$17,400	(\$7,134)	\$56,363
Apr-94	1,365,600	1,201,590	1,068,214	297,386	\$22,841	\$14,336	2,688	\$16,800	(\$6,317)	\$47,660
May-94	1,214,400	1,326,000	1,178,814	35,586	\$2,997	\$15,815	2,544	\$15,900	(\$1,514)	\$33,198
Jun-94	1,116,000	984,850	875,532	240,468	\$18,527	\$11,760	2,256	\$14,100	(\$5,279)	\$39,107
Jul-94	1,092,000	069'296	860,223	231,777	\$17,868	\$11,555	2,184	\$13,650	(\$4,963)	\$38,110
Aug-94	1,140,000	1,251,190	1,112,308	27,692	\$2,398	\$14,926	2,280	\$14,250	(\$1,663)	\$29,911
TOTAL	16,317,360	16,317,360 15,539,190	13,814,340	2,503,020	\$198,818	\$185,347	31,584	31,584 \$197,400 (\$52,759)	(\$52,759)	\$528,806

Total kWhs into Ft. Greely read at the Ft. Greely meter = FGR

kWh output from Ft. Wainwright Power Plant to GVEA measured at the Ft. Wainwright meter = FWO

Amount of electricity wheeled to Ft. Greely from Ft. Wainwright less 11.1% line losses = WE = FWO X 0.889

4. Ft. Greely purchased electricity from GVEA = PE = FGR - WE

Cost of electricity purchased from GVEA based on the GVEA GS-2 rate schedule = EC = 500 X .1136 + 4500 X .099 + 10000 X .0934 + (PE - 15000) X .0758. If PE < 0, then EC = 0.

Cost of wheeling electricity from Ft. Wainwright to Ft. Greely at 17.64% of the GVEA GS-2 rate schedule = WC = (500 X .1136 + 4500 X .099 + 10000 X .0934 + (WE - 15000) X .0758) X .1764 ဖ

Peak monthly demand recorded at Ft. Greely meter.

8. Demand charge = DC = D X 6.25

9. Miscellaneous adjustments account for customer charge, power adjustment, late charges, & regulatory charges.

10. Total billing is the sum of all charges = TC= EC + WC + DC + MC

1 of 2

\$0.0584 per kWh \$ 6.25 per kW-month \$0.1372 pe kWh	\$0.0134 per kWh	\$0.0600 per kWh	\$0.0734 per kWh	\$0.0711 per kWh	\$ 6.25 per kW-month	\$0.0832 per kWh
Energy Only = Demand Only = Demand & Energy =	Wheeling Cost =	Generation Cost =	Total Cost =	Energy Only =	Demand Only =	Demand & Energy =
<ul> <li>11.Cost electric of power from GVEA:</li> <li>= (EC + MC) / PE</li> <li>12.Cost of electric power from GVEA:</li> <li>(with demand charge incorporated into the energy rate)</li> <li>= (TC - WC) / PE</li> </ul>	13.Cost of electric power wheeled	from Fort Wainwright:	= WC / WE + 0.06	14. Weighted cost of electric power:	(considering both sources)	= (PE / FGR) X (#11 or #12) + (WE / FGR) X (#13)

1/5/96 12:57 PM

. 758 KLINOIS STREET - BOX 71249 FAIRBANKS, ALASKA

80	OLD TO:
RE	GARDIN
81	LLING PE
_	METER
	10 - 11.1 RT GREE
FO	RT WAIN
PU	<b>MCHASE</b>
~	ST OF P
	WER WH MAND
LAT	TE CHAR
	L AND DI
20	RCHARG
co	NNECTIA
PEI	NALTY TO

Facilities Engineers

Utilities Engineers P.O. Box 3016

I CERTIFY THAT THE ABOVE BILL IS CORRECT AND JUST AND that payment therefor has not been received

Ft Greely AK 99703

DATE

GOLDEN VALLEY ELECTRIC ASSOCIATION, INC.

OCTOBER 7, 1993

ACCOUNT NO: 010-4410-00

REGARDING	FL Greely in	from GVEA									
NEGALDING.											
BILLING PERIOD	SEPTEMBE	R 1993									
							TRU CALC				
METER NO.	MULT.	PRES. READ	PREV. READ	BASE CONS	TRUE CALC COMS	DEM. READ	DEMAND	DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTOTAL
7178	2400	7909.7	7989.1		\$20.6			1,249,440	•		
	DEMAND				(1.01	)		2,424			
70197	10	871,983	790,832	)	141,131			1,411,310			
FWO - 11.1% - WE	Ē	156,655						1,254,655	•		
FORT GREELY KWH	RECEIVED							1,249,440			
FORT WAINWRIGHT	ADJUSTED	OUTPUT						1,254,655			
PURCHASED ELECT	TRICITY				•			(5,215)	1		
1	POWER PUF	RCHASE COST	8								
		CUSTOMER CH	ARGE					. 40.00			
	01	KWH @	0.1136					0.00			
	01	KWH @	0.0000					0.00			
k	01	CWH @	0.0034					0.00			
,	01	CWH @	0.0758					0.00			
COST OF POWER A	DJUSTMEN	r	0.02027	PER/KWH				0.00			
POWER WHEELED			at g					16,826.93	•		
DEMAND	2424	(W @ \$6.25						15,150.00	•		
LATE CHARGE								15.00			
REGULATORY CHAP	RGES 😭	0.000626	ENT8/KWH					0.00			
			•	TOTAL B	L	**************	****************	<b>32,033.9</b> 3			
			77113	HYOXCH D	UE AND PAYABLE	20 DAYS 6	TOM ABOY	E DATE			
BILL AND DEMAND	TOTAL	•	3								
SURCHARGE OR DE	SCOUNT		}								
			•								
CONNECTING CHAP	RGE DETAIL		;								
						NET TOTAL		\$32,033.93	•		
									•		
PENALTY TOTAL		;			Į.	ADD TAX					
ADD TAX		;			4	ARREARS		\$66,872.94	>		
PENALTY AMOUNT	DUE \$	;				NET AMOUN	ITDUE	\$98,906.87			

758 ILLINOIS STREET — BOX 71249 FAIRBANKS, ALASKA

SOLD TO:

Facilities Engineers

Utilities Engineers

P.O. Box 3016

hat payment therefor has not been received

DATE OCTOBER 7, 1993

ACCOUNT NO: 010-4410-00

REGARDING

FL Greely in from GVEA

Ft Greely AK 99703

			•				TRU CALC				
METER NO.	MULT.	PRES. READ	PREV. READ	BASE CONS	TRUE CALC. CONS	DEM. READ	DEMAND	DEMAND TOTAL	BILL TOTAL	SITE TOTAL	TAXTOTA
7178	2400	8491.7	7900.7		582			1,396,800			
	DEMAND				1.14			2,736			
70197	10	1,021,269	871,963		149,326			1,493,260			
WO - 11.1% - WE		105,752				-		1,827,508			
ORT GREELY KWH	RECEIVED							1,396,600			
ORT WAINWRIGHT	ADJUSTED	OUTPUT						1,327,508			
URCHASED ELEC	RICITY							60,292			
1	POWER PUF	RCHASE COST	8								
	•	CUSTOMER C	HARGE					40.00			
	500	KWH @	0.1136					56.80			
		KWH 📦	0.0990					445.50			
	10,000		0.0034					934.00			
	64,292		0.0758					4,115.32			
OST OF POWER A	DJUSTMEN	T	0.02027	PER/KWH				(1,404.55)	1		
OWER WHEELED			54					17,803.07			
EMAND	2736 1	KW <b>@ \$</b> 6.25						15.00			
ATE CHARGE								26.75			
EGULATORY CHAI	IGES 🚭	0.000386	CENTB/WH								
			000000000000000000000000000000000000000	TOTAL BI	UE AND PAYABLE	20 DAYS E	OM ABOY	80,131.60 E DATE			
ELL AND DEMAND	TOTAL		•								
URCHARGE OR DI	SCOUNT	4	•								
ONNECTING CHAI	RGE DETAIL	•	•								
						NET TOTAL		\$39,131.89			
ENALTY TOTAL		:				ADD TAX					
		i				ARREARS	•	\$95,905.87			
DD TAX											
DD TAX ENALTY AMOUNT I	DUE 6	i			İ	NET AMOUN	ITOUE	\$135,038.76			

768 ILLINOIS STREET — BOX 71249 FAIRBANKS, ALASKA

SOLD TO:

Facilities Engineers

Utilities Engineers

P.O. Box 3016

Ft. Greely AK 99703

DATE

**DECEMBER 7,1993** 

ACCOUNT NO: 010-4410-00

REGARDING

FL Greely in from GVEA

THAT PAYMENT THEREPOR HAS NOT BEEN RECEIVED

						1	RU CALC				
METER NO.	MULT.	PRES. READ	PREV. READ	BASE COME	TRUE CALC. CONS	DEM. READ	DEMAND	DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTOT
7176	2400	9129.9	8491.7		• 638.2			1,531,680			
	DEMAND				1.21			2,904			
70197	10	156,127	21,269		116,838			1,168,360			
WO - 11.1% - WE		129,000						1,038,690			
ORT GREELY KWH								1,531,680			
ORT WAINWRIGHT		OUTPUT						1,036,690 492,990			
URCHASED ELEC			•					482,860			
. '	•	RCHASE COST CUSTOMER CI						40.00			
								\$6.80			
		KWH @	0.1136					445.50			
	10,000 1		0.0034					934.00			
	477,990 1		0.0758					36,231,66			
OST OF POWER A				PER/KWH				(9,992.91)			
OWER WHEELED	DOOD THE LIV	•	•					13,941.24			
EMAND	2904 1	KW @ \$6.25			•			18,150.00	•		
ATE CHARGE			•					15.00			
EGULATORY CHAP	RGES @	0.000386	ENTS/KWH					190.29			
				TOTAL BI				60,011.58			
			THIS	NYOKE O	JE AND PAYABLE	20 DAYS FRO	IM ABDY	EOAJE			
ILL AND DEMAND	IOTAL		•								
URCHARGE OR DI	COUNT		1								
Drioration on Dri	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•									
ONNECTING CHAP	RGE DETAIL		i								
						NET TOTAL		\$60,011.58			
ENALTY TOTAL	•	•			•	ANT DO					
DD TAX	•	<b>;</b>				NRREARS		\$39,131.69			
								444 444 44			
ENALTY AMOUNT I	DUE \$	•				NET AMOUNT	DUE	\$99,143.47			

#### 758 ILLINOIS STREET - BOX 71249 FAIRBANKS, ALASKA

SOLD TO:

Facilities Engineers

Utilities Engineers

P.O. Box 3016

Ft. Greely AK 99703

DATE

**JANUARY 7, 1994** 

ACCOUNT NO: 010-4410-00

REGARDING

FL Greely in from GVEA

DH I MUZ DEDIAD	DECEMBED	4000	

METER NO.	MULT.	PRES. READ	PREV.READ	BASE CONS	TRUE CALC. CONS	DEM. READ	TRU CALC.	DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTOTA
. 7176	2400	9793.1	0129.0		063.2			1,501,660			
	DEMAND				1,21			2,904			
70197	10	252,654	138,127		114,527			1,145,270			
FWO - 11.1% = WE		127,125						1,018,145			
FORT GREELY KWH	RECEIVED							1,591,680			
FORT WAINWRIGHT	ADJUSTED	OUTPUT						1,018,145			
PURCHASED ELEC	TRICITY							673,635			
	POWER PU	CHASE COST	s								
		CUSTOMER CH	HARGE					40.00			
	500	KWH @	0.1136					66.80			
	4500 1	KWH @	0.0000					445.50			
	10,000	KWH @	0.0034					934.00			
	558,535	CWH @	0.0758					42,338.95			
OST OF POWER A	DJUSTMEN	r	0.01933	PER/KWH				(11,086.43)			
POWER WHEELED				•				13,666.54			
DEMAND	2904 (	(W <b>@</b> \$6.25						, 18,150.00			
LATE CHARGE			•					0.00			
REGULATORY CHAI	RGES 😨	0.000386	ENTS/KWH					221.38			
			******************	TOTAL BI	L	36/36/86/86/86/86/86/96/96	000000000000000000000000000000000000000	64,764.74			
			THIS	HYDICE D	UE AND PAYABLE	ZB DAYS F	GM ASIDY	EOATE			

BILL AND DEMAND TOTA	NL.	
----------------------	-----	--

**SURCHARGE OR DISCOUNT** 

CONNECTING CHARGE DETAIL

NET TOTAL

\$64,764.74

PENALTY TOTAL

ADD TAX

ADD TAX

ARREARS

\$0.00

**PENALTY AMOUNT DUE** 

(See contract for possity information)

NET AMOUNT DUE

\$64,764.74

1 CERTIFY THAT THE ABOVE BILL IS CORRECT AND JUST AND

THAT PAYMENT THEREPOR HAS NOT BEEN RECEIVED

GOLDEN VALLEY ELECTRIC ASSOCIATION, INC.

756 ILLINOIS STREET — BOX 71240 FARBANKS, ALASKA TOI

20 pg 1 90 pg

SOLD TO:

Facilities Engineers

Utilities Engineers

P.O. Box 3016

THAT PAYMENT THEREPOR HAS NOT BEEN RECEIVED

PL Greety AK 99703

DATE

FEBRUARY 2, 1994

ACCOUNT NO: 010-4410-00

note : e

REGARDING

FL Greely in from GVEA

						1 1	RU CALC.			
METER HO.	MULT.	PRES. READ	PREV.READ	Base Cone	TRUE CALC. CONS	DEM. READ	DEMAND	DEMAND TOTAL		SITE TOTAL TAX T
7176	2400	10444.7	6793.1		<b>661.6</b>			1,663,640		DEMA
	DEMAND				1.24			2,076		
70197	10	437,024	262,854		184,370			1,843,700		
WO - 11.1% = WE	1	. 204,651						1,630,040		• *
DRT GREELY KWH	RECEIVED						•	1,662,840		1 :
ORT WAINWRIGHT	ADJUSTED	OUTPUT						1,639,049		ب بر ا
UNCHASED ELECT	RICITY							(76,200)	)	1
	POWER PUP	CHASE COST	18							
	. (	CUSTOMER C	HARGE					40,00		
	10	KWH 🍎	0.1136					0.00		
	01	KWH	0.0000					0.00		
	01	KWH @	0.0034					0.00		
•	10	KWH @	0.0758					0.00		
OST OF POWER A	DJUSTMEN	r	0.01933	PER/KWH				0.00		
OWER WHEELED			•	•				21,968.72		
EMAND	2976 t	KW @ \$6.25	<b>44</b>					18,000.00		
TE CHARGE			•					15.00		<b>\</b>
EGULATORY CHAP	1GE8 @	0.000386	CENTRAWH					0.00		
				TOTAL BI	**********************		******	40,623.72		
			DIES	BOYCKERID	(E) AND PAYABLE	20 DAYS FRO	OM ABDY	E(O/A)(E		1996
			<b>.</b>							
LL AND DEMAND	TOTAL	•	•							
LL AND DEMAND	TOTAL	1								
LL AND DEMAND										
	SCOUNT		•							
URCHARGE OR DI	SCOUNT									
URCHARGE OR DI	SCOUNT		•			NET TOTAL		\$40,623.72		
URCHARGE OR DI	SCOUNT					NET TOTAL		\$40,623.72		
URCHARGE OR DI	SCOUNT		•			NET TOTAL ADD TAX		\$40,623.72		unio.
URCHARGE OR DE	SCOUNT		•							. سخد .
URCHARGE OR DE	SCOUNT							\$40,623.72 \$84,764.74		سقد .
URCHARGE OR DI	SCOUNT TO SECOUNT					ADD TAX				i. 20-
URCHARGE OR DI	SCOUNT RGE DETAIL					ADD TAX	T DUE			

758 ILLINOIS STREET — SOX 71249 FAIRBANKS, ALASKA

SOLD TO:

Facilities Engineers

**Utilities Engineers** 

P.O. Box 3016

Ft Greely AK 99703

DATE

MARCH 8,1904

ACCOUNT NO: 010-4410-00

REGARDING

Ft. Greely in from GVEA

						l I	TRU CALC.				1
METER NO.	MULT.	PRES. READ	PREV.READ	BASE CONS.	TRUE CALC. CONS	DEM. READ	DEMAND	DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTOT
717	5 2400	1063	444.7		618.8			1,483,920	-		
	DEMAND				1.21			2,904	.=		
7010	7 10	579,940	457,024		142,825			1,423,250			
WO - 11.1% = V	WE	157,981						1,265,269			
ORT GREELY KV	VH RECEIVED							1,463,920	_		
ORT WAINWRIG		OUTPUT						1,265,260			
PURCHASED ELE								218,651			
		RCHASE COST									
		CUSTOMER C						40.00			
		KWH @	0.1136					56.80			•
	10,000	KWH ©	0.0990					445.50			
	203,651	_	0.0234					934.00 15.436.73			
COST OF POWER				PERVKWH				(4,226.52)			
OWER WHEELED		•		LINKWIII				16,970.86			
DEMAND		(W <b>⊚</b> \$6.25						16,150.00			
LATE CHARGE			•					0.00			
MEGULATORY CH	ARGES 😜	0.000386 (	CENTS/KWH					84.40			
			ī	TOTAL BI	u			47,801.77			
		1	THES	NVOKE D	E AND PAYABLE	an DAYS FR	OM ABDÝ	COATE			
BILL AND DEMAN	TOTAL		•								
SURCHARGE OR D	DISCOUNT	•	•								
BURCHARGE OR D	DISCOUNT	•	<b>;</b>								
		•	• •			·					
		•	• •	·							
		•	•	٠	•	ET TOTAL		\$47,891.77			
CONNECTING CH	ARGE DETAIL	•	•	-				\$47,891.77	•		
CONNECTING CH		•	; ;			NET TOTAL		\$47,891.77			
CONNECTING CHA	ARGE DETAIL		•		,	DD TAX					
CONNECTING CH	ARGE DETAIL				,			\$47,891.77 \$0.00	,		
CONNECTING CHA	ARGE DETAIL			·		DD TAX					

I CERTIFY THAT THE ABOVE BILL IS CORRECT AND JUST AND

that payment therefor has not been received

GOLDEN VALLEY ELECTRIC ASSOCIATION, INC.

BY____

756 ILLINOIS STREET — BOX 71249 FAIRBANKS, ALASKA



SOLD TO:

Facilities Engineers

Utilities Engineers P.O. Box 3016

Ft Greely AK 99703

DATE

APRIL 6, 1994

ACCOUNT NO: 010-4410-00

REGARDING

FL Greety in from GVEA

CERTIFY THAT THE ABOVE BILL IS CORRECT AND JUST AND THAT PAYMENT THEREFOR HAS NOT BEEN RECEIVED

							TRU CALC				
METER NO.	MULT.	PRES. READ		BASE CONS.	TRUE CALC. CONS	DEM. READ	DEMAND	DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTO
7176	2400	1822	1003	1	460			1,101,600			
70976	2400	196	- 0	motor change	196	/		470,400			
	DEMAND		/		1.16			2,784 1,822,700			
70197	10	711,625	679,949		132,276	·		1,175,034			
WO - 11.1% = WE		146,826						1,572,000			
DAT GREELY KWH							-	1,175,934			
ORT WAINWRIGHT		OUTPUT				••.		396,066			
URCHASED ELEC								330,000			
		RCHASE COST						40.00			
		CUSTOMER C						56.80			
		KWH @	0.1136					445.50			
	10,000		0.0034					934.00			
	361,006	_	0.0758					26.884.63			
OST OF POWER A			•	PER/KWH /				(7,827.23)			
OWER WHEELED	LOUG I MEN	•						15,776.35			
EMAND	9784	KW @ \$6.25						17,400.00			
ATE CHARGE		MI						0.00			
EGULATORY CHA	RGES @	0.000386	CENTS/KWH					152.88			
			•	TOTAL B	ш			66,963.13			
			THES	ENVOICE D	UE AND PAYABLE	26 DAYS F	ROM ABDY	E DATE		_	
			£								
HELL AND DEMAND	TOTAL		•								
HLL AND DEMAND	TOTAL		•								
ULL AND DEMAND			•								
			•								
	SCOUNT	1	•								
BURCHARGE OR DI	SCOUNT	1	•								
BURCHARGE OR DI	SCOUNT	1	•			NET TOTAL		\$56,363.13			
BURCHARGE OR DI	SCOUNT	1	•			NET TOTAL		\$56,363.13			
BURCHARGE OR DI	SCOUNT RGE DETAIL	1	•			NET TOTAL ADD TAX		\$56,363.13			
SURCHARGE OR DI	SCOUNT RGE DETAIL		•					\$56,363.13			
SURCHARGE OR DI	SCOUNT RGE DETAIL		•		ı			\$56,363.13 \$0.00			
SURCHARGE OR DI	SCOUNT RGE DETAIL		•		ı	ADD TAX					

K-9

GOLDEN VALLEY ELECTRIC ASSOCIATION, INC.

#### 756 ILLINOIS STREET — BOX 71249 FAIRBANKS, ALASKA

SOLD TO:

Facilities Engineers

Utilities Engineers

P.O. Box 3016

DATE

MAY 4, 1994

ACCOUNT NO: 010-4410-00

Ft Greely AK 99703

REGARDING

Ft. Greely in from GVEA

THAT PAYMENT THEREFOR HAS NOT BEEN RECEIVED

							RU CALC.				
METER NO. 70976	MULT. 2400	PRES.READ	PREV.READ	BASE CONE	TRUE CALC CONS	DEM. READ	DEMAND	DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTOTA
	DEMAND				1.12			2,688			
70197	10	831,764	711,625		120,150	1	.201,590				
FWO > 120% OF FT	. GREELY D						43,855	1,157,735			
FWO - 11.1% = WE	•	128,509						1,029,226			
FORT GREELY KWH	RECEIVED							1,965,600			
FORT WAINWRIGHT	ADJUSTED	OUTPUT						1,029,226			
PURCHASED ELECT	TRICITY							336,374			
	POWER PUR	CHASE COST	s								
	. (	CUSTOMER CH	ARGE		•			40.00			
	500	CWH @	0.1136					56.80			
	4500 F	WH @	0.0090					445.50			
	10,000	WH @	0.0934					934.00			
	321,374 H	_	0.0758					24,360.12			
COST OF POWER A	DJUSTMENT		0.01933 [	PER/KWH	•			(6,502.10)			
OWER WHEELED								13,814.71			
DEMAND		W <b>@</b> \$6.25	•			•		16,800.00			
ATE CHARGE	7							15.00			
REGULATORY CHAR	IGES @	0.000386 C	ENTS/KWH		_			129.84			
		. 2	00000000000000000000000000000000000000	OTAL BI	>>>>>		***********	50,093.55			
·			THIS	NYDICE DI	E AND PAYABLE	DAYS FRO	M ABOVE	DATE			
ILL AND DEMAND T	OTAL										
URCHARGE OR DIS	COUNT	•									
	GE DETAIL										
CONNECTING CHAR											
CONNECTING CHAR						ET TOTAL		\$50,093,86			
	•					ET TOTAL		\$50,093.88			
ENALTY TOTAL	\$ \$				(A)			\$50,093.86 \$56,362.83			
ENALTY TOTAL  DO TAX  ENALTY AMOUNT D	•				Al	DD TAX	OUE				

#### 758 ILLINOIS STREET — BOX 71249 FARBANKS, ALASKA

SOLD TO:

Facilities Engineers

**Utilities Engineers** 

P.O. Box 3016

Ft Greely AK 99703

DATE JUNE 6, 1994

ACCOUNT NO: 010-4410-00

REGARDING

FL Greely in from GVEA

BILLING PERIOD	MAY 1994										
				ľ			TRUCALC.		<b>.</b>		
METER NO.	MULT.	PRES. READ	PREV. READ	BASE CONS.	TRUECALC.CONS	DEM READ	DEMAND			SITETOTAL	TAXTOTAL
70076	2400	1271	/ 765	1	\$06		_	1,214,400	✓.		
	DEMAND				1.08			2,544			
70197	10	964,364	<b>631,784</b>	1	132,600		1,326,000		•		
FWO > 120% OF FT	. GREELY D						63,163	1,131,561	•		
FWO - 11.1% = WE		141,266						1,214,400			
FORT GREELY KWH								1,131,561	*		
FORT WAINWRIGHT	•	OUTPUT						82,839			
PURCHASED ELEC	TRICITY				•			. 02,030			
		RCHASE COST		•				40.00			
		CUSTOMER C	HARGE					56.80			
	500	KWH 🗨	0.1136					445.80			
	4500	KWH 😝	0.0000					894,00			
<i>(</i>	10,000	KWH @	0.0934								
	67,830	KWH	0.0758					5,142.20			
COST OF POWER A	DJUSTMEN	Т	0.01933	PER/KWH				(1,601.26			
POWER WHEELED								15,183.03		•	
DEMAND	2544	KW <b>@ \$</b> 6.25						15,900.00	•		
LATE CHARGE								15.00			
REGULATORY CHA	RGES 🗨	0.000386	CENT8/KWH					\$1.96			
				TOTAL B	www.coccossssssssssssssssssssss		************	86,147.23	8		
		· · · · · · · · · · · · · · · · · · ·	THI8	INVOICE	UE AND PAYABLE	20 DAYS F	ROM ABOY	E DATE			
BILL AND DEMAND	TOTAL		•								
	-										
SURCHARGE OR D	SCOUNT		•								
CONNECTING CHA	RGE DETAIL	L	•							•	
						NET TOTAL		\$36,147.23			
PENALTY TOTAL		•		•		ADD TAX					
ADD TAX		•		•		ARREARS		\$50,093.57	,		
	2015					NET AMOU	NT DUE	\$85,240.80	)		
PENALTY AMOUNT		•									
the measurest for preasity laters	parties)										

I CERTIFY THAT THE ABOVE BILL IS CORRECT AND JUST AND THAT PAYMENT THEREFOR HAS NOT BEEN RECEIVED

GOLDEN VALLEY ELECTRIC ASSOCIATION, INC.
BY_____

#### 758 ILLINOIS STREET - BOX 71249

FAIRBANKS, ALASKA

SOLD TO:

-Facilities Engineers

**Utilities Engineers** 

P.O. Box 3016

LAT PAYMENT THEREFOR HAS NOT BEEN RECEIVED

Ft. Greely AK 99703

ACCOUNT NO: 010-4410-00

JULY 5, 1994

DATE

REGARDING

PL Greely in from GVEA

				T				NUMBER: DAHC7		1	1
						1	TRU CALC.				
METER NO.	MULT.	PRES. READ		BASE CONS.	TRUE CALC. CONS	DEM. READ	DEMAND	DEMAND TOTAL	BILLTOTAL	BITETOTA	TAXTO
70076	2400	1736	1271		465			1,116,000			
	DEMAND				0.04		224 252	2,256			
70197 WO > 120% OF FT	10 GREELY D	1,062,860 EMAND	964,384		96,485		984,850 40,020	944,830			
WO - 1L1% = WE		104,876					,	830,954			
ORT GREELY KWH	RECEIVED							1,116,000			
ORT WAINWRIGHT	ADJUSTED	OUTPUT						630,954			
"UNCHASED ELECT	TRICITY							276,046			
	POWER PUF	RCHASE COST	8								
		CUSTOMER C	ARGE					40.00			
	500 (	KWH @	0.1136					56.80			
	4500 1	KWH @	0.0000					445.50			
	10,000 (	KWH @	0.0034				-	934.00			
	261,0461	KWH @	0.0758					19,787.30		•	
OST OF POWER A	DJUSTMEN	T	0.01971	PER/KWH				(5,440.87)			
OWER WHEELED			•	•				11,283.92	)		
DEMAND	2256 1	KW @ \$6.25	- A					14,100.00			
ATE CHARGE								18.00			
ATE CHARGE LEGULATORY CHAR	RGE8 ●	0.000388 0	ENTS/KWH			,		18.00 108.65			
	AGES ●	0.000388 0		TOTAL BI	LL SE AND PAYABLE	Zi DÂYE FR	gn aboy	106.65 41,328.20			
EGULATORY CHAR			THIS	***************	*********************	20 DAYEST	GM ABOM	106.65 41,328.20			٠
		0.000388 0	THIS	***************	*********************	ZU PAYE FI	ON ABOVE	106.65 41,328.20			
IEGULATORY CHAR	FOTAL		THIS	***************	*********************	23DA(183)	COME ABOVE	106.65 41,328.20			
EGULATORY CHAR	FOTAL SCOUNT		THIS	***************	*********************	20 DAYS FR	CIN ABOV	106.65 41,328.20			
IEGULATORY CHAR	FOTAL SCOUNT		THIS	**************	SE AND PAYABLE	ZU DAYE FF	ON ABOVE	106.65 41,328.20		•	
EGULATORY CHAR	FOTAL SCOUNT		THIS	**************	E AND PAYABLE		CIN ABOM	108.55 41,528.20 • DATE			
EGULATORY CHAR	FOTAL SCOUNT RGE DETAIL		THIS	**************	E AND PAYABLE	ET TOTAL	au Aeole	108.55 41,528.20 • DATE			
EGULATORY CHAR	FOTAL SCOUNT RGE DETAIL		THIS	**************	E AND PAYABLE	ET TOTAL		106.55 41,528.20 DATE			

756 ILLINOIS STREET — BOX 71240 FAIRBANKS, ALASKA

SOLD TO:

DIRECTORATE OF PUBLIC WORKS

1060 GAFFNEY BLVD.#6500 ATTN: APVR - FW - PW - 0

**POWER PLANT** 

FT. WAINWRIGHT, AK 99703-6500

DATE August 4,1994

ACCOUNT NO: 010-4410-00

REGARDING

Ft. Greely in from GVEA

BILLING PERIOD	JULY 1994				r		CONTRACT	NUMBER: DAHC	76-92-C-00	000	
METER NO.	MULT.	PRINCELEAD	2024 2245				TRU CALC.				
70076	2400		1736		TRUE CALC. CONS	DEM. READ	DEMAND	DEDLAND TOTAL		SITE TOTAL	TAXTO
	DEMAND		,		0.01	/		1,092,000 2,164			
70197	10	150,632	62,800		96,763	•	967,630	2,104			
FWO > 120% OF FT.	GREELYD	EMAND			33,133		81,968	936,202			
FWO - 11.1% = WE		103,925						692,937			
FORT GREELY KWH								1,002,000			
FORT WAINWRIGHT		OUTPUT						832,337			
PUNCHASED ELECT	RICITY							250,863			
P	OWER PUF	CHASE COSTS	3								
	•	CUSTOMER CH	ARGE					40.00			
	<b>600</b> I	CWH @	0.1136					\$6.60			
	4500 1	CMH &	0.0000					445.50			
	10,000 P	(WH @	0.0934					934.00			
	244,865 (		0.0758					16,545.46			
OST OF POWER AD	JUSTMENT	r	0.01971T	ERIKWH				(5,117.96)			
OWER WHEELED			· .	•				11,182.07			
EMAND	2164 K	₩ <b>@ \$</b> 6.25						18,650.00			
ATE CHARGE	•							16.00			
EGULATORY CHARG	ES 😜	0.000386 CI	ENTS/KWH					100.23			
			T	OTAL BIL	L			39.851.11			
			THIS	HYDICE DU	E AND PAYABLE :	U DAYS FRO	M ABOVE	DATE			
ILL AND DEMAND TO	TAL	*									
URCHARGE OR DISC	THUCK										
			•								
ONNECTING CHARG	E DETAIL										
						•					
•					N	ET TOTAL		\$30,851.11			
									•		
ENALTY TOTAL					A	D TAX		•			
DD TAX		•			AF	REARS		\$50,093.57			
NAITY AMOUNT OF											
NALTY AMOUNT DU					NE	TAMOUNT	UE	\$89,944.68			
والمساحات والمبدر سأ المساعدة											

756 ILLINOIS STREET - BOX 71249 FAIRBANKS, ALASKA

SOLD TO:

Facilities Engineers

**Utilities Engineers** 

P.O. Box 3016

Ft Greely AK 99703

ACCOUNT NO: 010-4410-00

REGARDING Ft. Greely in from GVEA

	}						TRU CALC.				
METER NO.	MULT.	PRES. READ	PREV. READ	BASE CONS.	TRUE CALC. CONS	DEM. READ		DEMAND TOTAL	BILLTOTAL	SITE TOTAL	TAXTO
70976	2400	2606	2191		475			1,140,000			
	DEMAND		-		0.95			2,260			
70197 WO > 120% OF FT	10 GREELY D	264,751 EMANO	150,632		125,119		1,251,190 68,863	1,182,327			
WO - 11.1% = WE	E	131,238						1,051,069			
ORT GREELY KWH	RECEIVED							1,140,000			
ORT WAINWRIGHT	ADJUSTE	OUTPUT		-	•			1,051,089			
URCHASED ELEC	TRICITY			-				88,911			
	POWER PU	RCHASE COST	'S								
		CUSTOMER C	HARGE					40.00			
	500	KWH @	0.1136					\$6.80			
	4500	KWH @	0.0000					445.60			
	10,000	KWH @	0.0934					934.00			
	73,911	KWH @	0.0758					5,602.48			
OST OF POWER A	DJUSTMEN	Т	0.01971	PERKWH				(1,752.44)			
OWER WHEELED			•	•				14,107.03			
EMAND	2260	KW <b>@ \$</b> 5.25	.64					14,250.00			
			•					15.00			
ATE CHARGE	RGES @	0.000366 (	ENTS/KWH					15.00 84.82			
ATE CHARGE	RGES 😜	0.000386 0		FOTAL BI	щ						
ATE CHARGE EGULATORY CHAR	RGES 😝	0.000386 (	1	************ <b>*</b>	LL Æ AND PAYABLE	20 DAYS FF	OM ABOVE	\$4.82 \$3,732.66			
ATE CHARGE	RGES •	0.000366 (	1	************ <b>*</b>	······································	20 DAYS FF	OM ABOYE	\$4.82 \$3,732.66			
ATE CHARGE EGULATORY CHAR		0.000386 0	THIS	************ <b>*</b>	······································	20 DAYS FR	ам авоус	\$4.82 \$3,732.66			
ATE CHARGE EGULATORY CHAR			THIS	************ <b>*</b>	······································	20 DAYS FF	ом авоуб	\$4.82 \$3,732.66			,,,
ATE CHARGE EGULATORY CHAR  ILL AND DEMAND 1	FOTAL		THIS	************ <b>*</b>	······································	20 DAYS FF	ОМ АВОУЛ	\$4.82 \$3,732.66			, , , , , , , , , , , , , , , , , , ,
ATE CHARGE EGULATORY CHAR  ILL AND DEMAND 1	FOTAL	**	THIS	************ <b>*</b>	······································	go DAYS FR	OM ABOYE	\$4.82 \$3,732.66			
ATE CHARGE EGULATORY CHAR  LL AND DEMAND T	FOTAL	**	THIS	**********	······································	20 DAYS FF	OM ABOYE	\$4.82 \$3,732.66			
ATE CHARGE EGULATORY CHAP  ILL AND DEMAND T  URCHARGE OR DIS	FOTAL	*	THIS	**********	······································	20 DAYS F.F	ом авоус	\$4.82 \$3,732.66			
ATE CHARGE EGULATORY CHAP  LL AND DEMAND T  URCHARGE OR DIS	FOTAL	*	THIS	**********	Æ AHD PAYABLE		OM ABOYS	34.32 33,732.66 DATE			
ATE CHARGE EGULATORY CHAP  RLL AND DEMAND T  URCHARGE OR DIS	FOTAL	*	THIS	**********	Æ AHD PAYABLE	SO DAYS FR	ом авоул	\$4.82 \$3,732.66			
ATE CHARGE EGULATORY CHAP  ILL AND DEMAND T  URCHARGE OR DIS	FOTAL	\$ \$ \$	THIS	**********	Æ AND PAYABLE	RET TOTAL	CM ABOYE	34.32 33,732.66 DATE			
ATE CHARGE EGULATORY CHAP  ILL AND DEMAND T  URCHARGE OR DIS	FOTAL SCOUNT	\$ \$ \$	THIS	**********	Æ AND PAYABLE		OM ABOYS	34.32 33,732.66 DATE			
ATE CHARGE EGULATORY CHAR  BLL AND DEMAND T  URCHARGE OR DIS  ONNECTING CHAR	FOTAL SCOUNT RGE DETAIL	\$ \$	THIS	**********	Æ AND PAYABLE	NET TOTAL	OM ABOYS	\$4.32 33,732.66 DATE			
ATE CHARGE EGULATORY CHAR  BLL AND DEMAND T  URCHARGE OR DIS  ONNECTING CHAR	FOTAL SCOUNT	\$ \$	THIS	**********	Æ AND PAYABLE	RET TOTAL	OM ABOYS	34.32 33,732.66 DATE			
ATE CHARGE EGULATORY CHAP  BLL AND DEMAND T  URCHARGE OR DIS  ONNECTING CHAR  ENALTY TOTAL	SCOUNT RGE DETAIL	\$ \$	THIS	**********	Æ AND PAYABLE	NET TOTAL NDD TAX NREARS		\$4.32 33,732.66 DATE \$33,732.68			
ATE CHARGE EGULATORY CHAR  BLL AND DEMAND T  URCHARGE OR DIS  ONNECTING CHAR  ENALTY TOTAL  OD TAX  ENALTY AMOUNT D	FOTAL SCOUNT RIGE DETAIL S S S S DUE \$	\$ \$	THIS	**********	Æ AND PAYABLE	NET TOTAL		\$4.32 33,732.66 DATE			
ATE CHARGE EGULATORY CHAP  ELL AND DEMAND T  URCHARGE OR DIS  DINNECTING CHAR  ENALTY TOTAL	FOTAL SCOUNT RGE DETAIL S S S S S S S S S S S S S S S S S S S	*	THIS	**********	Æ AND PAYABLE	NET TOTAL  NDD TAX  NRREARS  NREARS	<b>T DUE</b>	\$4.32 33,732.66 DATE \$33,732.68			

# **GVEA Electric Rate Schedules**

These rates have been in effect since October 1982.

Residential	Customer Charge	\$10.00
-------------	-----------------	---------

Energy Charge

First 500 kwh \$ .1125/kwh

Over 500 kwh

.095/kwh

GS-1 **Customer Charge** \$20.00

(General Service-1) **Energy Charge** 

\$.150/kwh First 500 kwh .111/kwh Next 4,500 kwh .095/kwh Over 5,000 kwh

GS-2 Customer Charge

**Demand Charge** (General Service-2) 88625/kw All kw

**Energy Charge** 

First 500 kwh \$.1136/kwh .099/kwh Next 4,500 kwh .0934/kwh Next 10,000 kwh .0758/kwh Over 15,000 kwh

How to Calculate Your Monthly Bill

This example shows how the total due was calculated for a sample residential bill for 874 kilowatt-hours.

Monthly customer charge	\$10.00
First 500 kwh x \$0.1125	56.25
Remaining 374 kwh x \$0.095	35.53
	\$101.78

Less fuel adjustment 874 kwh x \$.02042*

Regulatory Cost Charge 874 kwh x \$.000412** .36 \$84.29 TOTAL DUE

*CPA effective 12/6/94 (calculated quarterly)

**RCC effective 11/1/94

(Includes fuel adjustment reduction.) \$.09208/kwh \$ .07458/kwh \$.12958/kwh \$.09058/kwh \$.07458/kwh

Effective Rates



**Golden Valley Electric Association** 

"Owned By Those We Serve."

(\$17.85)

### E M C ENGINEERS, INC.

2750 S. Wadsworth Blvd. 9755 Dogwood Rd. Suite C-200 Denver, CO 80227 (303) 988-2951

Suite 220 Roswell, GA 30075 (404) 642-1864

JOB FT. WAYLURICHT	TRISLE STUDY	
SHEET NO.	or	
CALCULATED BY BR	DATE 11/21/94	
CHECKED BY	DATE	_6
<b>SCALE</b>		

### ESTIMATED ENERGY GOST FOR FT. WAINWHIGHT

FROM FIELD OBSERVATIONS AT BEISTHO TO-5., STEALGHT CONDENSIBLE,

POWEL OUT PUT = BZOO KW

STEM FLOW (AVE) = 40,000 LEYNE

ACTUM STRAM PARE = 40,000 USINE = 12.53 FR TW . 3200 KW

Z. ENTIMILY OF STEAM AT 40 PSUS MAS 16504 = H= 1336 BT/LB

EMOUST BEOLIRED FOR PRODUCTION STEAM PATE =

1336 P/B (12.5" TR KW) = :16,700 B/K KW

3. HOWTHE NAWE OF COAL = 7800 PSTYLE (FROM PLAT PORSONEL) 80% BOWN BIFICIENCY; PEOURED COAL =

> 16,700 BR KW = 2.68 (0,8) (780 BAYLES)

4. COST of COOL = \$45/ TON ( FROM PLANT PORSONEL)

6. COST POR KWH = 2.68 TWH (200 LB) = 0.06/KWH

MOREES WITH GOVERNMENT PROMOED RATES

## ENERGY CONSERVATION PROJECT TYPES (Recommended Economic Analysis Life)

Categor	<u>Title</u>	Description
1.	EMCS or HVAC Controls (10 years)	Projects which centrally control energy systems with the ability to automatically adjust temperature, shed electrical loads, control motor speeds or adjust lighting intensities.
2.	Steam and Condensate Systems (15 years)	Projects to install condensate lines, cross connect lines, distribution system loops, repair or install insulation and steam flow meters and controls.
3.	Boiler Plant Modifications (20 years)	Projects to upgrade or replace central boilers or ancillary equipment to improve overall efficiency. This includes fuel switching of dual fuel conversions.
4.	Heating, Ventilating, Air-Conditioning (HVAC) (20 years)	Projects to install more energy efficient heating, cooling, ventilation or hot water heating equipment. This includes the HVAC distribution systems (ducts, pipes, etc).
5.	Weatherization (20 years)	Projects improving the thermal envelope of a building. This includes building insulation (wall, roof, foundation), insulated doors, windows, vestibules, earth berming, shading, etc).
6.	Lighting Systems (15 years)	Projects to install replacement lighting systems and controls. This would include daylighting, new fixtures, lamps, ballasts, photocells, motion sensors, IR sensors, light wells, highly reflective painting, etc.
7.	Energy Recovery Systems (20 years)	Projects to install heat exchangers, regenerators, heat reclaim units or recapture energy lost to the environment.
8.	Electrical Energy Systems (20 years)	Projects that will increase the energy efficiency of an electrical device or system or reduce cost by reducing peak demand.
9.	Renewable Energy Systems (20 years)	Any project utilizing renewable energy. This includes active solar heating, cooling, hot water, industrial process heat, photovoltaic, wind, biomass, geothermal, and passive solar applications.
10.	Facility Energy Improvements (20 years)	Multiple category projects or those that do not fall into any other category.

Table Ba-4. FEMP UPV* Discount Factors adjusted for fuel price escalation, by end-use sector and fuel type. Discount Rate = 4.1 percent (DOE)

Census Region 4 (Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming)

	z	1	-	2	က	ಶ	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	22	56	27	<u>28</u>	8,8
TRANSPORT	GASLN	1 1 1	1.01	2.01	3.00	3.96	4.89	5.78	6.65	7.49	8.30	9.08	9.83	10.55	11.25	11.92	12.57	13.20	13.80	14.39	14.95	15.50	16.02	16.53	17.03	17.50	17.96	18.40	18.83	19.24	20.02
	COAL	1 1	0.98	1.91	2.80	3.66	4.48	5.29	90.9	6.81	7.53	8.22	8.89	9.53	10.15	10.77	11.36	11.93	12.49	13.02	13.54	14.04	14.52	14.99	15.44	15.88	16.30	16.70	17.09	17.47	17.84 18.19
٩٢	NTGAS	1 1 1	0.95	1.85	2.73	3.58	4.43	5.29	6.19	7.11	8.06	9.01	96.6	10.91	11.82	12.69	13.53	14.34	15.12	15.88	16.61	17.32	18.01	18.68	19.32	19.94	20.54	21.13	21.69	22.24	23.28
INDUSTRIA	RESID	1 1 1	0.99	1.97	2.95	3.91	4.86	5.80	6.72	7.63	8.52	9.39	10.24	11.08	11.90	12.72	13.51	14.29	15.05	15.79	16.52	17.23	17.92	18.59	19.25	19.89	20.52	21.12	21.71	22.28	23.37
	DIST	1 1 1 1 1 1	1.02	2.04	3.05	4.04	5.00	5.95	6.88	7.78	8.67	9.53	10.37	11.19	11.98	12.76	13.53	14.26	14.98	15.68	16.35	17.01	17.65	18.26	18.86	19.44	20.00	20.55	21.07	21.58	22.55
	ELEC																														18.72
	COAL	* * * * * * * * * * * * * * * * * * * *	0.97	1.89	2.76	3.61	4.43	5.22	5.98	6.71	7.42	8.10	8.76	9.39	10.01	10.60	11.17	11.73	12.26	12.78	13.28	13.75	14.22	14.66	15.09	15.50	15.90	16.29	16.66	17.01	17.69
	NTGAS	1 1 1 1	0.95	1.85	2.72	3.56	4.38	5.20	6.05	6.85	7.69	8.51	9.32	10.11	10.88	11.60	12.30	12.97	13.62	14.25	14.85	15.44	16.00	16.55	17.08	17.59	18.08	18.56	19.02	19.46	20.31
COMMERCIAL	RESID	3 2 3 3	0.99	1.97	2.93	3.88	4.82	5.75	6.65	7.54	8.45	9.27	10.11	10.92	11.73	12.52	13.29	14.05	14.79	15.51	16.21	16.90	17.57	18.22	18.86	19.48	20.08	20.66	21.23	21.78	22.83
SO	DIST	1 1 1	1.02	2.02	3.08	4.08	90.9	6.05	96.9	7.88	8.79	6.67	10.52	11.36	12.18	12.98	13.76	14.52	15.26	15.98	16.67	17.35	18.01	18.65	19.26	19.86	20.44	21.00	21.55	22.07	23.07
	ELEC		96.0	1.88	2.77	3.64	4.48	5.30	6.11	6.91	7.68	8.42	9.15	9.86	10.55	11.23	11.88	12.51	13.11	13.70	14.27	14.82	15.35	15.86	16.35	16.83	17.29	17.74	18.17	18.59	19.38
	NTGAS		0.95	1.85	2.72	3.56	4.37	5.18	5.98	6.79	7.59	8.38	9.15	9.91	10.64	11.33	11.99	12.63	13.25	13.85	14.42	14.98	15.51	16.03	16.53	17.01	17.48	17.93	18.36	18.78	19.58
IAL	LPG	1 1 1 1 1	0.98	1.94	2.89	3.81	4.70	5.57	6.40	7.22	8.03	8.85	9.59	10.35	11.08	11.79	12.49	13.16	13.81	14.44	15.05	15.64	16.20	16.75	17.28	17.79	18.28	18.75	19.21	19.65	20.48
RESIDENTIAL	DIST																														21.17
	ELEC	1	0.96	1.88	2.77	3.64	4.47	5.28	6.08	6.85	7.61	8.33	9.04	9.73	10.40	11.05	11.67	12.28	12.86	13.42	13.97	14.49	15.00	15.49	15.97	16.43	16.87	17.30	17.71	18.12	18.88
:	Z	ì	<b></b> 1	2	က	4	ഹ	9	/	∞	6	10		12	13	14	15	9[	17	18	19	50 50	21	22	23	24	25	26/a	27/a	28/a 20/a	30/a

* UPV* factors are reported for years 26-30 to accommodate a planning/construction period of up to 5 years. (See p. 6 for instructions on use.)

#### **Estimated Energy Savings**

1995 - 1997 Study

Load Factor - The load factor is defined as the ratio of the total kilowatt-hours measured to the peak kilowatts measured times the hours in the measurement period. For the purpose of this study the daily load factor is calculated for the day on which the peak load for the base occurred during each month for the months July 1994 through July 1995.

The load factor is calculated by summing the hourly kilowatt readings on the day of each month when the monthly peak occurred and dividing the sum by the daily peak kilowatt measurement times twenty-four hours. All values used are taken from the electric power plant operating log under the column heading "TOTAL GEN". This column is read off the plant totalizer meter by operating personnel every hour and provides the most accurate data for calculation of the load factor. The attached sheets show a plot of the daily load for each day used in the study.

Date	Daily Load Factor	Date	Daily Load Factor
5-Jul-95	77.4%	7-Dec-94	82.2%
23-Jun-95	77.1%	30-Nov-94	81.3%
16-May-95	77.7%	27-Oct-94	81.5%
5-Apr-95	78.6%	14-Sep-94	77.9%
14-Mar-95	81.8%	29-Aug-94	79.3%
23-Feb-95	82.8%	21-Jul-94	75.8%
27-Jan-95	80.8%		

The average daily load factor as defined for this study is the average of the sample daily load factors.

Average Load Factor = 79.6%

The average load factor is applied to the calculated line losses to approximate the daily average:

	Total Peak	Average
	Line	Line
Study Title	Losses	Losses
Case 1 Load Flow Study - Existing 2400 volt ungrounded delta system	76.1 KW	60.5 KW
Case 2 Load Flow Study - New 4160 volt grounded wye system	44.2 KW	35.2 KW

(Refer to appendix B for line loss calculations)

The KW savings is computed by subtracting the average losses of Case 2 from the average losses of Case 1: KW Savings: 25.4 KW

The annual energy savings is the KW savings times the hours per year

KWH savings per year: 222329.7 KWH

ECON1997.XLS Prepared by: D Morris 1/10/96

Checked by: F. Jones

I. COMPONENT		MILITARY CONSTRU	CTION PROJECT DA	ATA	2. DATE
INIOTALL ATION A	ARMY				Dec-95
. INSTALLATION AI					
PPO JECT TITLE	Fort Greely, Alaska				
. PROJECT TITLE	1995 to 1997 Stud	dy, Power Distribution			CT NUMBER
	1995 (0 1997 5(0)				94-D-0033
			CLE COST ANALYSIS SU		
		ENERGY CONSE	RVATION INVESTMENT	PROGRAM (ECIP)	
	LOCATION:	Fort Greely, Alaska		REGION: 4 PROJECT N	O: 1406.003
	PROJECT TITLE:	ECIP: Limited Energy Study		FISCAL YEA	
	DISCRETE PORTION N		, rovor biotribution	TIOCAL TEA	in. 1995
	ANALYSIS DATE:	01/10/96	ECONOMIC LIFE:	20 PREPARED E	Y: D Morris
				THE AREA	1. D WIGHTS
INVESTME	NT				
A.	CONSTRUCTION COS	T = =		\$994,46	8
В.	SIOH COST	(5.5% of 1A) =	:	\$54,69	
C.	DESIGN COST	(6.0% of 1A) =		\$59,66	
D.	TOTAL COST	(1A + 1B + 1C) =		\$1,108,83	
Ε.	SALVAGE VALUE OF	EXISTING EQUIPMENT =		Ţ., 100,00	-
F.	PUBLIC UTILITY COM	PANY REBATE =			
G.	TOTAL INVESTMENT	(1D -1E -1F) =	=		> \$1,108,8
ENERGY S	AVINGS (+) OR COST (-)	:			
DATE OF I	ISTIR 85-3273-10 USED	FOR DISCOUNT FACTORS:		OCT '95	
	ENERGY	FUEL COST SAVINGS	S ANNUAL \$	DISCOUNT DISCOUNTE	D
	SOURCE	\$/kWh (1) kWh (2		FACTOR (4) SAVINGS (	
A.	ELECTRICITY	\$0.0832 222,330	\$18,498	14.47 \$267,66	
В.	DIST				
C.	NAT GAS				
D.	REFUS				
E.	COAL				
F.	OTHER				
G.	OTHER				
н.	TOTAL	222,330	\$18,498	#04uvunu	> \$267,6
NON-ENER	GY SAVINGS (+) OR COS	ST (-)			
Α.	ANNUAL RECURRING				
	1 DISCOUNT FACTOR	• • •	(From Table A) =		
	2 DISCOUNTED SAVI		(3A x 3A1) =		
В.	NON-RECURRING (+/-	1			
	ITEM	SAVINGS (+)	YEAR OF	DISCOUNT DISCOUNTE	D
		COST(-) (1)	OCCURRENCE (2)	FACTOR (3) SAVINGS/C	
		0031(-7 (17	OCCONNENCE (2)	(TABLE B)	051 (4)
	a.			(IABLE B)	
	b.				
	c.				
	d. TOTAL				
C.	TOTAL NON-ENERGY	DISCOUNTED SAVINGS (+) OR	COST (-)	(3A2 + 3Bd4) =	
	R DOLLAR SAVINGS (+)	, ,		H3+3A+(3Bd1/Economic Life))	\$18,4
		MUST BE < 10 YEARS TO QUAL	JFY)	(1G/4) =	59.9
100 44	DISCOUNTED SAVINGS	APART DATE OF	t v v v v	(2H5 + 3C) =	\$267,66
DISCOUNT	ED SAVINGS-TO-INVESTA	MENT HATIO (SIR)		(6/1G) =	0.2

#### Energy

#### **Estimated Energy Savings**

Post 2001 Study

Load Factor - The load factor is defined as the ratio of the total kilowatt-hours measured to the peak kilowatts measured times the hours in the measurement period. For the purpose of this study the daily load factor is calculated for the day on which the peak load for the base occurred during each month for the months July 1994 through July 1995.

The load factor is calculated by summing the hourly kilowatt readings on the day of each month when the monthly peak occurred and dividing the sum by the daily peak kilowatt measurement times twenty-four hours. All values used are taken from the electric power plant operating log under the column heading "TOTAL GEN". This column is read off the plant totalizer meter by operating personnel every hour and provides the most accurate data for calculation of the load factor. The attached sheets show a plot of the daily load for each day used in the study.

Daily Load Factor	Date	Daily Load Factor
77.4%	7-Dec-94	82.2%
77.1%	30-Nov-94	81.3%
77.7%	27-Oct-94	81.5%
78.6%	14-Sep-94	77.9%
81.8%	29-Aug-94	79.3%
82.8%	21-Jul-94	75.8%
80.8%		
	77.1% 77.7% 78.6% 81.8% 82.8%	77.4% 7-Dec-94 77.1% 30-Nov-94 77.7% 27-Oct-94 78.6% 14-Sep-94 81.8% 29-Aug-94 82.8% 21-Jul-94

The average daily load factor as defined for this study is the average of the sample daily load factors.

Average Load Factor = 79.6%

The average load factor is applied to the calculated line losses to approximate the daily average:

	Total Peak	Average
	Line	Line
Study Title	Losses	Losses
Case 3 Load Flow Study - Existing 2400 volt ungrounded delta system	13.6 KW	10.8 KW
Case 4 Load Flow Study - New 4160 volt grounded wye system	11.2 KW	8.9 KW

(Refer to appendix B for line loss calculations)

The KW savings is computed by subtracting the average losses of Case 4 from the average losses of Case 3:

KW Savings:

1.9 KW

The annual energy savings is the KW savings times the hours per year

KWH savings per year:

16727.0 KWH

ECON2001.XLS Prepared by: D Morris 1/10/96

Checked by: F. Jones

COMPONENT		MILITARY C	ONSTRUCT	ON PROJECT DAT	A		2. DATE
	ARMY						Dec-95
INSTALLATION	AND LOCATION						
DDO IFCT TITLE	Fort Greely, Alask		tion			5. PROJECT	NUMBE
PROJECT TITLE	<del>-</del> ·	udy, Power Distribu	tion			DACA01-94	
	Post 2001 Study				111 DV	DACAOT-0-	F-D-0000
				COST ANALYSIS SUM			
		ENE	RGY CONSERV	ATION INVESTMENT PR	OGRAM (ECIP)		
				D.F.	CION: 4	PRO JECT NO.	1406 002
	LOCATION:	Fort Greely, Ala			GION: 4	PROJECT NO:	
	PROJECT TITLE:			ower Distribution		FISCAL YEAR:	1995
	DISCRETE PORTION		OTAL			DDEDARED DV	D.Massis
	ANALYSIS DATE:	01/10/96	E	CONOMIC LIFE:	20	PREPARED BY:	D Morris
INVEST	MENT						
INVEST A.	CONSTRUCTION CO	OST =	=			\$714,073	
В.	SIOH COST		5% of 1A) =			\$39,274	
Б. С.	DESIGN COST		0% of 1A) =			\$42,844	
C. D.	TOTAL COST	·	+ 1B + 1C) =			\$796,191	
		F EXISTING EQUIPMEN				7,00,101	
E.			• •				
F.	PUBLIC UTILITY CO		D .1E .1E) =			>	\$796,19
G.	TOTAL INVESTMEN	, (1	D -1E -1F) =				¥,50,1:
ENERG'	SAVINGS (+) OR COST	(-):					
DATE C	F NISTIR 85-3273-10 US	ED FOR DISCOUNT FA	CTORS:		OCT '95		
	ENERGY	FUEL COST	SAVINGS	ANNUAL \$	DISCO	OUNT ISCOUNTED	
	SOURCE	\$/kWh (1)	kWh (2)	SAVINGS (3)	FACTO	R (4) SAVINGS (5)	
Α.	ELECTRICITY	\$0.0832	16,727	\$1,392	1	4.47 \$20,138	
В.	DIST						
C.	NAT GAS						
D.	REFUS						
E.	COAL						
F.	OTHER						
G.	OTHER						
н.	TOTAL		16,727	\$1,392		>	\$20,13
NON-E	IERGY SAVINGS (+) OR C	COST (-)					
Α.	ANNUAL RECURRIN	IG (+/-)					
	1 DISCOUNT FACT	OR		(From Table A) =			
	2 DISCOUNTED SA	VINGS (+) / COST (-)		$(3A \times 3A1) =$			
	NON RECURRING /	. / )					
В.	NON-RECURRING (-		SAVINGS (+)	YEAR OF	DISC	OUNT DISCOUNTED	)
	HEM		COST(-) (1)	OCCURRENCE (2)		OR (3) SAVINGS/CO	
		,	.031(-) (1)	OCCONNEIVEE (2)	(TABL		701 (4)
					(IABL	,	
	a. L						
	b.						
	c.						
	d. TOTAL	V DISCOURTED SAVE	NCC / LL OD O	057 (1)	1343 1 30	44) -	
C.	TOTAL NON-ENERG	Y DISCOUNTED SAVI	NGS (+) OH C	US1 (-)	(3A2 + 3Bc	J+) =	
FIRST	EAR DOLLAR SAVINGS (	+) / COSTS (-)		(2)	H3 + 3A + (3Bd1/Eco	onomic Life))	\$1,3
SIMPLE	PAYBACK (SPB) IN YEAR	S (MUST BE < 10 YE	ARS TO QUALIF	Y)	(1G	<b>/4)</b> =	572.
TOTAL	NET DISCOUNTED SAVIN	GS			(2H5 + 3	BC) =	\$20,1
TOTAL							

## APPENDIX L

One-Line Diagrams

















2/

















19













**LEGEND** 

OUT OF SERVICE











			Couper no	
INTRILATION FT. GREELEY, ALASKA, MOLETING 1100 0003 CHAMBO NO. 1111	POST - 2001 STILDY	PROJECT TITLE	DIRECTIONATE OF PUBLIC WORKS  TON BEAUTY DIRECT (LINE)  FORT RICHARDSAN, ALBRA BESO-3500	

(2)