Normality of secant varieties

Brooke Ullery

Joint Mathematics Meetings

January 6, 2016

Introduction

Let X be a smooth projective variety over \mathbb{C} , and \mathcal{L} a very ample line bundle so that

$$X \subset \mathbb{P}(H^0(\mathcal{L})) = \mathbb{P}^r$$
.

Introduction

Let X be a smooth projective variety over \mathbb{C} , and \mathcal{L} a very ample line bundle so that

$$X\subset \mathbb{P}(H^0(\mathcal{L}))=\mathbb{P}^r.$$

Definition

The **secant variety** of X, $\Sigma(X, \mathcal{L}) = \Sigma \subset \mathbb{P}^r$ is the Zariski closure of the union of lines spanned by two points of X (i.e. secant and tangent lines).

X a curve in \mathbb{P}^2 , $\deg X \geq 2$. Then $\Sigma = \mathbb{P}^2$.

X a curve in \mathbb{P}^2 , deg $X \geq 2$. Then $\Sigma = \mathbb{P}^2$.

ullet Problem: Secant lines intersect away from X.

X a curve in \mathbb{P}^2 , deg $X \geq 2$. Then $\Sigma = \mathbb{P}^2$.

- ullet Problem: Secant lines intersect away from X.
- Solution: Every point in $\Sigma \setminus X$ will lie on exactly one secant or tangent line $\iff \mathcal{L}$ is 3-very ample (i.e. no four points of X lie on a plane).

X a curve in \mathbb{P}^2 , deg $X \geq 2$. Then $\Sigma = \mathbb{P}^2$.

- Problem: Secant lines intersect away from X.
- Solution: Every point in $\Sigma \setminus X$ will lie on exactly one secant or tangent line $\iff \mathcal{L}$ is 3-very ample (i.e. no four points of X lie on a plane).

• As long as $\mathcal L$ is 3-very ample, Σ will be singular precisely along X.

X a curve in \mathbb{P}^2 , deg $X \geq 2$. Then $\Sigma = \mathbb{P}^2$.

- Problem: Secant lines intersect away from X.
- Solution: Every point in $\Sigma \setminus X$ will lie on exactly one secant or tangent line $\iff \mathcal{L}$ is 3-very ample (i.e. no four points of X lie on a plane).

• As long as $\mathcal L$ is 3-very ample, Σ will be singular precisely along X.

Intuition/Motivating question

As $\mathcal L$ becomes more positive, the singularities of Σ should improve. How positive does $\mathcal L$ need to be for Σ to be normal?

Main results

Theorem

Let X be a smooth projective variety, $\mathcal L$ a 3-very ample line bundle on X, and m_x the ideal sheaf of $x \in X$. If for all $x \in X$ and i > 0, the map

is surjective*, then $\Sigma(X,\mathcal{L})$ is a normal variety.

Main results

Theorem

Let X be a smooth projective variety, $\mathcal L$ a 3-very ample line bundle on X, and m_x the ideal sheaf of $x \in X$. If for all $x \in X$ and i > 0, the map

is surjective*, then $\Sigma(X,\mathcal{L})$ is a normal variety.

*Note that the surjectivity of these maps is the same as $\mathrm{bl}_{\times}\mathcal{L}(-2E)$ being normally generated for all blowups at a point, where E is the exceptional divisor.

Corollary 1: curves

If X is a curve, and deg $\mathcal{L} \geq 2g + 3$, then $\Sigma(X, \mathcal{L})$ is normal.

Corollary 1: curves

If X is a curve, and deg $\mathcal{L} \geq 2g + 3$, then $\Sigma(X, \mathcal{L})$ is normal.

Corollary 2: canonical curves

If X is a curve with Clifford index CliffX \geq 3, then $\Sigma(X, \omega_X)$ is normal.

Corollary 1: curves

If X is a curve, and deg $\mathcal{L} \geq 2g + 3$, then $\Sigma(X, \mathcal{L})$ is normal.

Corollary 2: canonical curves

If X is a curve with Clifford index CliffX \geq 3, then $\Sigma(X, \omega_X)$ is normal.

Corollary 3: arbitrary dimension

If X is a variety of dimension n, \mathcal{A} is very ample, \mathcal{B} is nef, and

$$\mathcal{L}=K_X+2(n+1)\mathcal{A}+\mathcal{B},$$

then $\Sigma(X, \mathcal{L})$ is normal.

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ。

Recent progress

Theorem (Chou, Song 2015)

With hypotheses from Corollary 3,

- ullet $\Sigma(X,\mathcal{L})$ has Du Bois singularities, and
- **2** $\Sigma(X,\mathcal{L})$ has rational singularities $\iff H^i(\mathcal{O}_X) = 0$ for i > 0.

Setup:

• $X^{[2]}$ = Hilbert scheme of length two subschemes on X.

Setup:

- $X^{[2]}$ = Hilbert scheme of length two subschemes on X.
- Let \mathcal{L} be a 3-very ample line bundle, and $X \hookrightarrow \mathbb{P}(H^0(\mathcal{L})) = \mathbb{P}^r$ the corresponding embedding.

Setup:

- $X^{[2]}$ = Hilbert scheme of length two subschemes on X.
- Let \mathcal{L} be a 3-very ample line bundle, and $X \hookrightarrow \mathbb{P}(H^0(\mathcal{L})) = \mathbb{P}^r$ the corresponding embedding.

Recall: $X^{[2]}$ is smooth, and its universal subscheme is the incidence variety

$$\Phi = \{(x, Z) \in X \times X^{[2]} : x \in Z\} \cong bl_{\Delta}(X \times X).$$

Setup:

- $X^{[2]}$ = Hilbert scheme of length two subschemes on X.
- Let \mathcal{L} be a 3-very ample line bundle, and $X \hookrightarrow \mathbb{P}(H^0(\mathcal{L})) = \mathbb{P}^r$ the corresponding embedding.

Recall: $X^{[2]}$ is smooth, and its universal subscheme is the incidence variety

$$\Phi = \{(x, Z) \in X \times X^{[2]} : x \in Z\} \cong bI_{\Delta}(X \times X).$$

Define the two projections

- **(ロ)(即)(き)(き)** - 第 - 夕へで

8 / 11

• $\mathcal{E}_{\mathcal{L}}$ is a rank two vector bundle, and the fiber over $Z \in X^{[2]}$ is $H^0(X, \mathcal{L}|_Z)$.

- $\mathcal{E}_{\mathcal{L}}$ is a rank two vector bundle, and the fiber over $Z \in X^{[2]}$ is $H^0(X, \mathcal{L}|_Z)$.
- The natural evaluation map $H^0(X,\mathcal{L})\otimes \mathcal{O}_{X^{[2]}} o \mathcal{E}_{\mathcal{L}}$ induces a morphism

$$f: \mathbb{P}(\mathcal{E}_{\mathcal{L}}) \to \mathbb{P}(H^0(\mathcal{L})) = \mathbb{P}^r,$$

- $\mathcal{E}_{\mathcal{L}}$ is a rank two vector bundle, and the fiber over $Z \in X^{[2]}$ is $H^0(X, \mathcal{L}|_Z)$.
- The natural evaluation map $H^0(X,\mathcal{L})\otimes \mathcal{O}_{X^{[2]}} o \mathcal{E}_{\mathcal{L}}$ induces a morphism

$$f: \mathbb{P}(\mathcal{E}_{\mathcal{L}}) \to \mathbb{P}(H^0(\mathcal{L})) = \mathbb{P}^r,$$

which sends

$$\left(Z,H^0(\mathcal{L}|_Z)\twoheadrightarrow Q\right)\mapsto \left(H^0(\mathcal{L})\twoheadrightarrow Q\right),$$

where Q is some one-dimensional quotient.

• The image of f is Σ ,

• The image of f is Σ , since the surjections $(H^0(\mathcal{L}) \twoheadrightarrow Q)$ in the image are precisely those that factor through $H^0(\mathcal{L}|_Z)$ for some $Z \in X^{[2]}$; i.e. they lie on the line determined by Z.

- The image of f is Σ , since the surjections $(H^0(\mathcal{L}) \twoheadrightarrow Q)$ in the image are precisely those that factor through $H^0(\mathcal{L}|_Z)$ for some $Z \in X^{[2]}$; i.e. they lie on the line determined by Z.
- f is injective away from $f^{-1}(X)$:

- The image of f is Σ, since the surjections (H⁰(L) → Q) in the image are precisely those that factor through H⁰(L|_Z) for some Z ∈ X^[2]; i.e. they lie on the line determined by Z.
- f is injective away from $f^{-1}(X)$: The \mathbb{P}^1 over each Z maps to the secant line determined by Z, and two secant lines only meet along X.

- The image of f is Σ, since the surjections (H⁰(L) → Q) in the image are precisely those that factor through H⁰(L|_Z) for some Z ∈ X^[2]; i.e. they lie on the line determined by Z.
- f is injective away from $f^{-1}(X)$: The \mathbb{P}^1 over each Z maps to the secant line determined by Z, and two secant lines only meet along X.

In fact...

- The image of f is Σ , since the surjections $(H^0(\mathcal{L}) \twoheadrightarrow Q)$ in the image are precisely those that factor through $H^0(\mathcal{L}|_Z)$ for some $Z \in X^{[2]}$; i.e. they lie on the line determined by Z.
- f is injective away from $f^{-1}(X)$: The \mathbb{P}^1 over each Z maps to the secant line determined by Z, and two secant lines only meet along X.

In fact...

Lemma (Bertram (curves), Vermeire (higher dim))

Let $t : \mathbb{P}(\mathcal{E}_{\mathcal{L}}) \to \Sigma$ be f with its target restricted. Then t is an isomorphism away from $t^{-1}(X)$. In particular, t is a resolution of singularities.

Geometry of the resolution

• Pre-image of X?

$$t^{-1}(X) = \{ \left(Z, H^0(\mathcal{L}|_Z) \to H^0(\mathcal{L}|_x) \middle| x \in Z \} \cong \Phi.$$

(i.e. a choice of a subscheme and a point of that subscheme)

Geometry of the resolution

• Pre-image of X?

$$t^{-1}(X) = \{ \left(Z, H^0(\mathcal{L}|_Z) \to H^0(\mathcal{L}|_x) \middle| x \in Z \} \cong \Phi.$$

(i.e. a choice of a subscheme and a point of that subscheme)

• Pre-image of *x*?

$$t^{-1}(x) \cong \mathrm{bl}_x X.$$

(i.e. all subschemes containing x)

Geometry of the resolution

• Pre-image of X?

$$t^{-1}(X) = \{ \left(Z, H^0(\mathcal{L}|_Z) \to H^0(\mathcal{L}|_x) \middle| x \in Z \} \cong \Phi.$$

(i.e. a choice of a subscheme and a point of that subscheme)

• Pre-image of x?

$$t^{-1}(x) \cong \mathrm{bl}_x X.$$

(i.e. all subschemes containing x)

To summarize:

$$bl_{x}X \longrightarrow \Phi \longrightarrow \mathbb{P}(\mathcal{E}_{\mathcal{L}})$$

$$\downarrow \qquad \qquad \downarrow t \qquad \qquad f$$

$$\{x\} \longrightarrow X \longrightarrow \Sigma(X, \mathcal{L}) \longrightarrow \mathbb{P}^{r}$$

Strategy for proof of main theorem: Show that $t_*\mathcal{O}_{\mathbb{P}(\mathcal{E}_{\mathcal{L}})} = \mathcal{O}_{\Sigma}$ by checking on the completion at $x \in X$ (i.e. at the singular points).

Strategy for proof of main theorem: Show that $t_*\mathcal{O}_{\mathbb{P}(\mathcal{E}_{\mathcal{L}})} = \mathcal{O}_{\Sigma}$ by checking on the completion at $x \in X$ (i.e. at the singular points).

Conjecture

If X is a smooth projective curve of genus g, and $\mathcal L$ a line bundle such that

$$\deg \mathcal{L} \geq 2g + 2k + 1,$$

then $\Sigma_k(X,\mathcal{L})$ is normal.