MATH455 - Analysis 4

Based on lectures from Winter 2025 by Prof. Jessica Lin. Notes by Louis Meunier

Contents

1 Abstract Metric and Topological Spaces	2
1.1 Review of Metric Spaces	2
1.2 Compactness, Separability	3

§1 Abstract Metric and Topological Spaces

§1.1 Review of Metric Spaces

Throughout fix *X* a nonempty set.

 \hookrightarrow **Definition 1.1** (Metric): ρ : X × X → \mathbb{R} is called a *metric*, and thus (X, ρ) a *metric space*, if for all $x, y, z \in X$,

- $\rho(x,y) \geq 0$,
- $\rho(x,y) = 0 \Leftrightarrow x = y$,
- $\rho(x, y) = \rho(y, x)$, and
- $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Definition 1.2 (Norm): Let *X* a linear space. A function $\| \cdot \| : X \to [0, \infty)$ is called a *norm* if for all *u*, *v* ∈ *X* and *α* ∈ \mathbb{R} ,

- $||u|| = 0 \Leftrightarrow u = 0$,
- $||u + v|| \le ||u|| + ||v||$, and
- $\|\alpha u\| = |\alpha| \|u\|$.

Remark 1.1: A norm induces a metric by $\rho(x, y) := ||x - y||$.

Definition 1.3: Given two metrics ρ , σ on X, we say they are *equivalent* if $\exists C > 0$ such that $\frac{1}{C}\sigma(x,y) \le \rho(x,y) \le C\sigma(x,y)$ for every $x,y \in X$. A similar definition follows for equivalence of norms.

Given a metric space (X, ρ) , then, we have the notion of

- open balls $B(x,r) = \{ y \in X : \rho(x,y) < r \}$,
- open sets (subsets of X with the property that for every $x \in X$, there is a constant r > 0 such that $B(x,r) \subseteq X$), closed sets, closures, and
- convergence.

```
\hookrightarrow Definition 1.4 (Convergence): {x<sub>n</sub>} ⊆ X converges to x ∈ X if \lim_{n\to\infty} \rho(x_n, x) = 0.
```

We have several (equivalent) notions, then, of continuity; via sequences, $\varepsilon - \delta$ definition, and by pullbacks (inverse images of open sets are open).

1.1 Review of Metric Spaces

 \hookrightarrow **Definition 1.5** (Uniform Continuity): $f:(X,\rho) \to (Y,\sigma)$ uniformly continuous if f has a "modulus of continuity", i.e. there is a continuous function $\omega:[0,\infty) \to [0,\infty)$ such that $\sigma(f(x_1),f(x_2)) \le \omega(\rho(x_1,x_2))$

for every $x_1, x_2 \in X$.

Remark 1.2: For instance, we say f Lipschitz continuous if there is a constant C > 0 such that $\omega(\cdot) = C(\cdot)$. Let $\alpha \in (0,1)$. We say f α -Holder continuous if $\omega(\cdot) = C(\cdot)^{\alpha}$ for some constant C.

 \hookrightarrow **Definition 1.6** (Completeness): We say (X, ρ) *complete* if every cauchy sequence in (X, ρ) converges to a point in X.

Remark 1.3: If (X, ρ) complete and $E \subseteq X$, then (E, ρ) is complete iff E closed in X.

§1.2 Compactness, Separability

Definition 1.7 (Open Cover, Compactness): $\{X_{\lambda}\}_{{\lambda} \in \Lambda} \subseteq 2^{X}$, where X_{λ} open in X and Λ an arbitrary index set, an *open cover* of X if for every $x \in X$, $\exists \lambda \in \Lambda$ such that $x \in X_{\lambda}$.

X is *compact* if every open cover of *X* admits a compact subcover. We say $E \subseteq X$ compact if (E, ρ) compact.

Definition 1.8 (Totally Bounded, *ε*-nets): (X, ρ) *totally bounded* if $\forall ε > 0$, there is a finite cover of X of balls of radius ε. If E ⊆ X, an ε-net of E is a collection $\{B(x_i, ε)\}_{i=1}^N$ such that $E ⊆ \bigcup_{i=1}^N B(x_i, ε)$ and $x_i ∈ X$ (note that x_i need not be in E).

 \hookrightarrow **Definition 1.9** (Sequentially Compact): (*X*, *ρ*) *sequentially compact* if every sequence in *X* has a convergence subsequence whose limit is in *X*.

 \hookrightarrow **Definition 1.10** (Relatively/Pre-Compact): *E* ⊆ *X relatively compact* if \overline{E} compact.

→Theorem 1.1: TFAE:

- *X* complete and totally bounded;
- *X* compact;
- *X* sequentially compact.

Remark 1.4: $E \subseteq X$ relatively compact if every sequence in E has a convergent subsequence.

Let $f:(X,\rho)\to (Y,\sigma)$ continuous with (X,ρ) compact. Then,

- f(X) compact in Y;
- if $Y = \mathbb{R}$, the max and min of f over X are achieved;
- *f* is uniformly continuous.

Let $C(X) := \{f : X \to \mathbb{R} \mid f \text{ continuous}\}$ and $||f||_{\infty} := \max_{x \in X} |f(x)|$ the sup (max, in this case) norm. Then,

Theorem 1.2: Let (*X*, *ρ*) compact. Then, $(C(X), ||\cdot||_{\infty})$ is complete.

PROOF. Let $\{f_n\} \subseteq C(X)$ Cauchy with respect to $\|\cdot\|_{\infty}$. Then, there exists a subsequence $\{f_{n_k}\}$ such that for each $k \ge 1$, $\|f_{n_{k+1}} - f_{n_k}\|_{\infty} \le 2^{-k}$.

Let $j \in \mathbb{N}$. Then, for any $k \ge 1$,

$$\|f_{n_{k+j}} - f_{n_k}\|_{\infty} \leq \sum_{\ell=k}^{k+j-1} \|f_{n_{\ell+1}} - f_{n_{\ell}}\|_{\infty} \leq \sum_{\ell} 2^{-\ell}$$

and hence for each $x \in X$, with $c_k := f_{n_k}(x)$,

$$|c_{k+j} - c_k| \le \sum_{\ell=k}^{\infty} 2^{-\ell}.$$

The RHS is the tail of a converging series, and thus $|c_{k+j} - c_k| \to 0$ as $k \to \infty$ i.e. $\{c_k\}$ a Cauchy sequence, in \mathbb{R} . $(\mathbb{R}, |\cdot|)$ complete, so $\lim_{k\to\infty} c_k =: f(x)$ exists for each $x \in X$. So, for each $x \in X$, we find

$$|f_{n_k}(x) - f(x)| \le \sum_{\ell=k}^{\infty} 2^{-\ell},$$

and since the RHS is independent of x, we may pass to the sup norm, and find

$$||f_{n_k} - f||_{\infty} \le \sum_{\ell=k}^{\infty} 2^{-\ell},$$

with the RHS $\to 0$ as $k \to \infty$. Hence, $f_{n_k} \to f$ in C(X) as $k \to \infty$. In other words, we have uniform convergence of $\{f_{n_k}\}$. Each $\{f_{n_k}\}$ continuous, and thus f also continuous, and thus $f \in C(X)$.

It remains to show convergence along the whole sequence. Suppose otherwise. Then, there is some $\alpha > 0$ and a subsequence $\left\{ f_{n_j} \right\} \subseteq \left\{ f_n \right\}$ such that $\|f_{n_j} - f\|_{\infty} > \alpha > 0$ for every $j \geq 1$. Then, let k be sufficiently large such that $\|f - f_{n_k}\|_{\infty} \leq \frac{\alpha}{2}$. Then, for every $j \geq 1$ and k sufficiently large,

$$\begin{split} \|f_{n_j} - f_{n_k}\|_{\infty} &\geq \|f_{n_j} - f\|_{\infty} - \|f - f_{n_k}\|_{\infty} \\ &> \alpha - \frac{\alpha}{2} > 0, \end{split}$$

which contradicts the Cauchy-ness of $\{f_n\}$, completing the proof.	
--	--