MTH207M (2023-24, ODD SEMESTER) PROBLEM SET 1

- 1. Show that $\rho(A) = \operatorname{tr}(GA)$ if *G* is a *g*-inverse of *A*.
- 2. Let *A* be an $m \times n$ matrix. Show that an $n \times m$ matrix *G* is a *g*-inverse of *A* iff $\rho(I GA) = n \rho(A)$.
- 3. For a *g*-inverse *G* of *A*, $\mathcal{R}(C) \subseteq \mathcal{R}(A)$ iff CGA = C.
- 4. Show that B^-A^- need not, in general, be a *g*-inverse of *AB*. However, if $\rho(AB) = \rho(A)$, show that $B(AB)^-$ is a *g*-inverse of *A* and that $B^-B(AB)^-$ is a *g*-inverse of *AB*.
- 5. Let *G* be a *g*-inverse of *A*. Then prove that

$${G + (I - GA)U + V(I - AG) \mid U, V \text{ arbitrary }}$$

is the class of all *g*-inverses of *A*. (Hint: If *H* is a *g*-inverse of *A*, take U = H - G.)

- 6. Let B be an $m \times n$ matrix and G an $n \times m$ matrix. Then, for any $r \times m$ full column rank matrix A and $n \times p$ full row rank matrix C, G is a generalized inverse of ABC if and only if CGA = H for some generalized inverse H of B.
- 7. Show that if G is a g-inverse of X^TX , then
 - (a) G^T is a *g*-inverse of X^TX , and
 - (b) GX^T is a *g*-inverse of X.
- 8. Let $\rho(A+B) = \rho(A) + \rho(B)$. Then, show that

- (a) $C(A) \subseteq C(A+B)$ and $C(B) \subseteq C(A+B)$, and
- (b) for every g-inverse G of A + B, show that AGA = A and AGB = 0.
- 9. Let *A* and *B* be two matrices such that *AB* exists. Then, show that
 - (a) B^-A^- is a *g*-inverse of AB iff A^-ABB^- is idempotent.
 - (b) If A has full column rank and B has full row rank, then B^-A^- is a g-inverse of AB.