1. True or False (10 points) Check the box in front of a correct answer.

 \square The operation + is an associative law of composition on \mathbb{N} .

☐ The cancelation law holds on any set with an associative law of composition.

 \square The set (\mathbb{Z}, \times) is a group with 1 as unit.

 \square Any abelian group is cyclic.

 \square { $\pm 1, 0$ } is a subgroup of $(\mathbb{Z}, +)$.

 \Box $GL(2,\mathbb{R})$ is a group with infinitely many elements.

 \square ($\mathbb{Z}/(5)$, +) is a group with five elements.

 \Box The set $\{e^{2k\pi i/5}|0\leq k\leq 4\}$, under the usual multiplication of complex numbers, is a cyclic group.

 \square The numbers 6 and 13 are coprime.

 \square The usual less than "<" on $\mathbb Z$ is an equivalence relation.

2. Compute the order of the following elements (6 points).

$$\leq$$
 $\leq S$

$$\overline{2} \in \mathbb{Z}/(6)$$

$$\overline{2} \in \mathbb{Z}/(6)$$

$$\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} \in GL(2, \mathbb{R})$$

3. Prove the following statement (4 points). The set G of matrices,

$$G := \left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) \middle| a \in \mathbb{Z} \right\}$$

under the usual matrix multiplication, is a subgroup of $GL(2,\mathbb{R})$.