Geneva Graduate Institute (IHEID) Econometrics II (EI062), Spring 2025 Marko Mlikota

Problem Set 3

Due: Sunday, 30 March, 23:59

- Prepare concise answers.
- State clearly any additional assumptions, if needed.
- You are encouraged to collaborate in groups but the final write-up should be individual.
- Submit your solutions, along with any code (if applicable), in a **single pdf file** through **Moodle**. If you choose to write your solutions by hand, please make sure your scanned answers are legible.

• Grading scale:

5.5	default grade
6	absolutely no mistakes and particularly appealing write-up
	(clear and concise answers, decent formatting, etc.)
5	more than a few mistakes,
	or single mistake and particularly long, wordy answers
4	numerous mistakes,
	or clear lack of effort (e.g. parts not solved or not really attempted)
1	no submission by due date

Problem 1

This is a continuation of the last problem set, based on Griliches and Mairesse (1995, NBER Working Paper 5067, "Production Functions: The Search for Identification"). You can download the data from Moodle either in ASCII format GMdata.RAW or in Stata format GMdata.dta. There are nine variables: index (firm ID), sic3 (3 digit SIC), yr (year \in {73,78,83,88}), ldsal (log of deflated sales), lemp (log of employment), ldnpt (log of deflated capital), ldrnd (log of deflated R&D), ldinv (log of deflated investment). Compared to the last exercise, we add time fixed effects:

$$ldsal_{it} = \alpha_i + \beta_1 lemp_{it} + \beta_2 ldnpt_{it} + \beta_3 ldrst_{it} + \sum_{\tau=1}^{T} f_t \mathbf{1} \{t = \tau\} + u_{it}, \qquad (1)$$

where $\mathbf{1}\{t=\tau\}$ for $\tau=1:T$ are time-dummies.

- (a) Compare the modeling of unit- and time-fixed effects in Eq. (1). How does the addition of time-fixed effects relate to the incidental parameters problem (IPP)?
- (b) Construct a balanced panel dataset, and take first differences of Eq. (1). What happens to α_i and the year dummies?
- (c) Suppose for a moment that you added a dummy for the computer industry to the model: $\delta d357_{it}$, where $d357_{it}$ is a dummy variable equal to one if firm i belongs to industry (3-digit SIC code) 357. Does this have an effect on the IPP? How does implied specification for first differences change? Do your conclusions change if we consider time-varying effects of the industry-dummy, $\delta_t d357_{it}$?
- (d) Using the balanced panel, re-compute the FE-W estimator, the RE estimator and the respective standard error estimates.
- (e) Conduct the Hausman test, comparing the RE- and FE-W-estimators. What do you conclude?
 - Hint: note that you need the estimated covariances of the RE- and FE-W-estimators to set up this hypothesis-test.
- (f) Is there support for the null hypothesis of constant returns to scale, $\mathcal{H}_0: \beta_1 + \beta_2 = 1$? Hint: note that you need the estimated covariance of $\hat{\beta}_1$ and $\hat{\beta}_2$ to set up this hypothesis-test.