Introducción a las Redes de Computadores

Capítulo 5 Capa de Enlace y LANs

Nota acerca de las transparencias del curso:

Estas transparencias están basadas en el sitio web que acompaña el libro y han sido modificadas por los docentes del curso.

All material copyright 1996-2007

J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 4th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Capítulo 5: La Capa de Enlace de Datos

Objetivos:

- □ Entender los principios detrás de los servicios de la capa de enlace de datos:
 - o detección de errores; corrección
 - o compartir un canal de *broadcast*: acceso múltiple
 - o direccionamiento de capa de enlace
 - o transferencia de datos confiable, control de flujo
- Algunas tecnologías de Capa de Enlace

Capa de Enlace: Introducción

Algo de terminología:

- □ hosts y routers son *nodes*
- los canales de comunicación que conectan nodos adyacentes a través de caminos de comunicación son links
 - enlaces cableados
 - o enlaces inalámbricos
 - LANs
- □ la PDU de capa 2 es el *frame*, que encapsula un datagrama

la capa de enlace de datos tiene

la responsabilidad de transferir datagramas desde un nodo a otro nodo <u>adyacente</u>, a través de un *link*

Capa de enlace: contexto

- los datagramas son transferidos por diferentes protocolos de enlace sobre diferentes enlaces:
 - p.e., Ethernet en el primer enlace, Frame Relay en los enlaces intermedios, 802.11 en el último enlace
- cada protocolo de enlace brinda diferentes tipos de servicios
 - p.e., puede o no proveer rdt (reliable data transfer) sobre el enlace

Analogía transporte

- Viaje desde Montevideo a Mar del Plata
 - remise: Montevideo a Carrasco
 - o avión: Carrasco a Aeroparque
 - ómnibus: Aeroparque a Mar del Plata
- □ turista = datagrama
- segmento de transporte = enlace de comunicación
- modo de transporte = protocolo de capa de enlace
- agencia de viaje = algoritmo de enrutamiento

Servicios de Capa de Enlace

- entramado (framing):
 - o encapsulado del datagrama en la trama, agregando encabezado (header) y cola (trailer)
- acceso al enlace:
 - acceso al canal si es un medio compartido (Medium Access Control)
 - o direcciones "MAC" addresses utilizadas en los encabezados de las tramas para identificar el origen y el destino
 - distintas de las direcciones IP
- entrega confiable:
 - o entre nodos adyacentes
 - o iya aprendimos cómo hacer ésto (teo Capa de Transp.)!
 - rara vez utilizados en enlaces de pocos errores (fibra óptica, algunos pares trenzados)
 - o enlaces inalámbricos: alta tasa de error
 - P: ¿Por qué confiabilidad a nivel de enlace y end-end?

Servicios de Capa de Enlace (más)

- control de flujo:
 - acuerdo entre los nodos emisor y receptor (aquí, adyacentes)
 - Recordar: buffers y capacidad de procesamiento
- detección de errores:
 - o errores causados por atenuación de la señal, por ruido.
 - el receptor detecta presencia de errores:
 - señaliza al emisor para una retransmisión o descarta la trama
- □ corrección de errores (FEC: Forward Error Correction):
 - el receptor identifica y corrige el/los error/es en bit/s sin necesidad de retransmisión
- half-duplex and full-duplex:
 - o con *half-duplex*, los nodos en los extremos del enlace pueden transmitir, pero no al mismo tiempo

<u>¿Dónde está implementada la Capa de Enlace?</u>

- En todos los hosts
- En el adaptador de red (Network Interface Card: NIC)
 - Tarjetas Ethernet,PCMCIA, 802.11
 - Implementa las capas de Enlace y Física (como mínimo)
- Incorporadas a los buses del sistema de los hosts
- combinación de hardware, software, firmware

Comunicación de adaptadores

□ lado emisor:

- encapsula el datagrama en una trama
- agrega bits de chequeo de error, rdt, control de flujo, etc.

lado receptor:

- busca por errores, rdt, control de flujo, etc
- extrae el datagrama y lo pasa a las capas superiores

Detección de errores

EDC= Error Detection and Correction bits (redundancia)

D = Datos protegidos por chequeo de errores; puede incluir campos del encabezado

iLa detección de errores no es 100% confiable!

- · el protocolo puede perder algunos errores
- · un campo de EDC mayor proporciona mejor detección y

Chequeo de paridad

Paridad de un bit:

Detecta errores en 1 bit

Paridad en dos dimensiones:

Detecta *y corrige* errores en 1 bit ¿Detecta errores dobles?

Internet checksum (suma de comprobación)

- Objetivo: detectar "errores" (bits cambiados) en el paquete transmitido (nota: generalmente utilizado en la capa de transporte)
- Recordar lo visto en Capa de Transporte
- En general es un método menos potente que el próximo que veremos

Cyclic Redundancy Check

- códigos CRC o códigos polinómicos
- □ ampliamente utilizado en la práctica (Ethernet, 802.11 WiFi, ATM)
- □ ver a los bits de datos, D, como los coeficientes de un polinomio
 - por ejemplo: 110001 es $x^5 + x^4 + 1$
- Toda la aritmética que se utiliza es módulo 2 sin carry en las operaciones (sumas y restas equivalentes a XOR)
- elegimos un patrón de r+1 bits (polinomio generador), G, de grado r, que conocen el transmisor y el receptor

Cyclic Redundancy Check

- objetivo: determinar r CRC bits, R, tal que
 - <D,R> (concatenado) es divisible exactamente por G
 - D \times 2^r es desplazar hacia la izquierda r bits y agregando Os
 - D x 2^r + R es concatenarlos
 - el receptor divide <D,R> entre G. Si el resto es distinto de cero: ierror detectado!

Ejemplo CRC

☐ El emisor busca R, tal que exista Q que cumpla:

$$D \cdot 2^r XOR R = Q \cdot G$$

Que G divida a D · 2^r - R sin resto

$$D \cdot 2^r XOR R = Q \cdot G$$

$$D \cdot 2^r XOR R XOR R = Q \cdot G XOR R$$

$$D \cdot 2^r = nG + R$$

D · 2": dividendo, G: divisor, Q: cociente,

R: resto

o si dividimos D 2^r por G, buscamos el resto R

$$R = resto \left[\frac{D \cdot 2^r}{G} \right]$$

Protocolos y enlaces de acceso múltiple

Dos tipos de enlaces:

- punto a punto
 - PPP para acceso discado
 - Enlace punto a punto entre switch Ethernet y host
- broadcast (cable o medio compartido)
 - Ethernet "legacy"
 - HFC: Hybrid Fiber Cable
 - o 802.11: LAN inalámbrica

cable compartido (p.e., cable Ethernet)

RF compartida (p.e., 802.11 WiFi)

RF compartido (satélite)

personas en una fiesta (aire compartido)

Protocolos de acceso múltiple

- □ Único canal *broadcast* compartido
- Dos o más transmisiones simultáneas: interferencia
 - Colisión
 - · si un nodo recibe dos o más señales al mismo tiempo
 - simultaneidad en el tiempo y en la frecuencia de dos o más tramas en el mismo medio físico

Protocolo de Acceso Múltiple

- Algoritmo distribuido que determina cómo los nodos comparten el canal, y determina cuándo el nodo puede transmitir
- La comunicación acerca de compartir el canal debe utilizar el mismo canal
 - no canal out-of-band para coordinación

Protocolo de acceso múltiple ideal

Canal Broadcast con velocidad R bps

- cuando un nodo quiere transmitir, lo hará a una velocidad R.
- 2. cuando M nodos quieren transmitir, cada uno enviará a una velocidad promedio de R/M
- 3. completamente descentralizado:
 - o no hay un nodo especial para coordinar las transmisiones
 - o no hay sincronización de relojes, slots
- 4. simple

Protocolos MAC: taxonomía

Tres grandes clases:

- Particionado del canal
 - Protocolos de arbitraje
 - o divide el canal en pequeñas "piezas" (ranuras de tiempo, frequencia, código)
 - o asigna una pieza a un nodo para su uso exclusivo
 - estrategia estática
 - equitativo
- Acceso Randómico
 - el canal no se divide, permite colisiones
 - "recuperación" de colisiones
 - o estrategia dinámica
- "Toma de turnos"
 - Los nodos toman turnos, pero los nodos con más tramas para enviar podrían tomar turnos más largos
 - o estrategia dinámica
 - estrategias de reserva o centralizada

<u>Protocolos MAC de particionado del canal:</u> TDMA

TDMA: Time Division Multiple Access

- acceso al canal rotativo
- cada estación tiene un slot de longitud fija (longitud = tiempo de transm. de la trama) en cada vuelta
- □ los *slots* sin usar quedan libres
- □ ejemplo: LAN con 6 estaciones, 1,3 y 4 tiene trama; los slots 2,5 y 6 quedan libres

<u>Protocolos MAC de particionado del canal:</u> FDMA

FDMA: Frequency Division Multiple Access

- 🗖 el espectro del canal se divide en bandas de frecuencia
- 🗖 a cada estación se le asigna una banda de frecuencia fija
- el tiempo de transmisión no utilizado en las bandas de frecuencia queda libre
- ejemplo: LAN con 6 estaciones, 1,3 y 4 tienen trama; las bandas de frequencia 2,5 y 6 están libres

Protocolos de acceso randómico

- cuando un nodo tiene un paquete para enviar
 - o transmite a la velocidad total del canal, R
 - o no existe *a priori* coordinación entre nodos
- □ dos o más nodos transmitiendo □ "colisión"
- protocolos MAC de acceso randómico especifican:
 - o cómo detectar colisiones (directa o indirecta)
 - cómo recuperarse de las colisiones (p.e., a través de retransmisiones retrasadas)
- ejemplos de protocolos MAC de acceso randómico:
 - ALOHA ranurado, ALOHA
 - CSMA, CSMA/CD, CSMA/CA
 - También se les conoce como sistemas de contención o sistemas de contienda

CSMA (Carrier Sense Multiple Access)

CSMA: escuchar antes de transmitir

- Si el canal está libre: transmitir la trama entera
- □ Si el canal está ocupado: diferir la transmisión
 - o volver a escuchar después de un tiempo
 - o seguir escuchando hasta que quede libre y transmitir
 - \circ seguir escuchando hasta que quede libre y transmitir con probabilidad ${f p}$
- Analogía humana: ino interrumpir a los otros!

CSMA/CD (Collision Detection)

- □ CSMA/CD: si hay presencia de portadora, se difiere la transmisión, como en CSMA
 - las transmisiones que colisionan son abortadas, reduciendo el desperdicio de canal
 - o colisión = desperdicio del canal
- detección de colisión:
 - o relativamente fácil en LANs cableadas
 - o dificil en LANs inalámbricas

Protocolos MAC "Toma de turnos"

protocolos MAC de particionado del canal:

- compartir el canal justa y eficiente a alta carga
- ineficiente a baja carga: retardo en el acceso al canal, ancho de banda 1/N asignado aún si hay un sólo nodo activo

protocolos MAC de acceso randómico

- eficiente a baja carga: un único nodo puede utilizar completamente el canal
- · alta carga: overhead por colisión

protocolos de "toma de turnos"

busca lo mejor de los dos mundos

Protocolos MAC "Tomando turnos"

Polling.

- el nodo master "invita" a los nodos slaves a transmitir en turnos
- □ típicamente utilizado con dispositivos *slaves* "tontos"
- sin colisiones
- determinístico
- involucra:
 - overhead por polling
 - latencia
 - único punto de falla (master)
- ejemplo
 - Bluetooth
 - IEEE 802.15
 - Un modo de operación de 802.11 (Wi Fi)

slaves

Resumen de protocolos MAC

- particionado de canal, en tiempo, frequencia
 - o división en el tiempo, división en la frecuencia
- acceso randómico (dinámico),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - Escucha de portadora: fácil en algunas tecnologías (cableadas), dificil en otras (inalámbricas)
 - CSMA/CD utilizado en Ethernet
 - CSMA/CA (Colission Avoidance) utilizado en 802.11
- □ toma de turnos
 - o polling desde un sitio central, pasaje de token
 - Bluetooth, Token Ring

<u>LAN</u>

- □ Recordar que LAN (Local Area Network) es una red concentrada en un área geográfica concreta que podemos asimilarla a una oficina, un piso, un edificio, un campus.
- □ Recordar además:
 - PAN
 - MAN, WAN
- Velocidades típicas actuales: 10 Mbps, 100 Mbps, 1 Gbps.
- ☐ Ya es una realidad: 10 Gbps en cobre.

Direcciones MAC

- □ Direcciones IP de 32 bits:
 - o direcciones de la capa de red
 - o utilizada para llevar el datagrama a la subred IP destino
- □ Dirección MAC (o LAN o física o hardware o del adaptador o "Ethernet"):
 - función: llevar la trama de una interfaz a otra interfaz físicamente conectada (misma red)
 - O Direcciones MAC de 48 bits (en la mayoría de las redes LAN)
 - grabada en la ROM de la NIC; en algunos casos (cada vez más) configurable por software

Direcciones MAC

- □ asignación de direcciones MAC administrada por IEEE
- □ los fabricantes compran porciones del espacio de direcciones MAC (para asegurar unicidad)
 - OUI (Organizationally Unique Identifier): 3 primeros octetos, asignados a las companías (company_id)
 - http://standards.ieee.org/regauth/oui/index.shtml
 - Restantes 3 octetos (NIC Specific): administrados por cada companía
- □ Dirección MAC plana → portable
 - o puedo mover la tarjeta de una LAN a otra
- □ Dirección IP jerárquica → no portable
 - la dirección depende de la subred IP a la que el nodo está conectado

<u>Direcciones MAC</u>

Cada adaptador en la LAN tiene una dirección LAN única

ARP: Address Resolution Protocol

<u>Pregunta:</u> ¿Cómo determinamos la dirección MAC de B, conociendo la dirección IP de B?

- Cada nodo IP (host, router) en la LAN tiene una tabla ARP
- □ Tabla ARP: mapeo de direcciones IP/MAC para algunos nodos de la LAN
 - < dirección IP; dirección MAC;</p>
 TTL>
 - TTL (*Time To Live*):
 tiempo después del cual
 el mapeo de direcciones
 debe ser olvidado (por
 ejemplo, 20 min)

<u>Direccionamiento: routing hacia otra</u> LAN

datagrama desde A hasta B, vía R

asumimos que A conoce la dirección IP de B

dos tablas ARP en el router R, una para cada red IP (LAN)

Ethernet

Tecnología LAN cableada dominante:

- □ Creada "en los 70" (Metcalfe & Boggs)
- NICs baratas (USD 5) y switches baratos
- Primera tecnología LAN ampliamente utilizada
- Más simple y barata que token LANs y ATM
- □ Velocidades: 10 Mbps 10 Gbps

Diagrama de Ethernet de Robert Metcalfe

Topología en estrella

- □ la topología en <u>bus</u> fue popular hasta mediados de los 90
 - o todos los nodos en el mismo <u>dominio de colisión</u> (pueden colisionar con cualquiera de los otros)
- □ hoy: prevalece la topología *estrella*
 - o switch activo en el centro (desde "fines de los 90")
 - o cada "spoke" corre el protocolo Ethernet (los nodos no pueden colisionar con los otros)

<u>Estructura de la trama</u> <u>Ethernet</u>

 El adaptador del emisor encapsula el datagrama IP (u otro paquete de protocolo de capa de red) en una trama Ethernet

Preamble:

- □ siete bytes con el patrón 10101010 seguido por un byte con el patrón 10101011
- utilizado para despertar al receptor y sincronizar los relojes de emisor y receptor

Estructura de la trama Ethernet (más)

- Direcciones: 6 bytes cada una
 - si el adaptador recibe una trama con dirección destino la suya o la dirección de broadcast, (ej. paquete ARP), pasa los datos en la trama al protocolo de capa de red
 - o en otro caso, el adaptador descarta la trama
- □ Type: 2 bytes
 - multiplexación
 - indica el protocolo de la capa superior (casi siempre IP pero otros es posible, p.e., IPX, AppleTalk)

Estructura de la trama Ethernet (más)

- □ Data: de 46 a 1500 bytes
- □ CRC: 4 bytes
 - CRC-32
 - chequeado en el receptor, si un error es detectado, la trama es descartada
 - Para calcularlo se utiliza todo menos el "Preamble"

Ethernet: servicio no confiable, no orientado a conexión

- □ No orientado a conexión: No hay handshaking entre las NICs de emisor y receptor
- No confiable: la NIC que recibe no envía ACKs o NAKs a la NIC emisora
 - el flujo de datagramas pasados a la capa de red puede tener huecos (datagramas perdidos)
 - o los huecos serán llenados si la aplicación utiliza TCP
 - o en otro caso, la aplicación verá los huecos
- □ Protocolo MAC de Ethernet: CSMA/CD
- La detección de colisiones es un servicio de Capa Física

802.3 Ethernet Standards: Capas de Enlace y Física

- varios diferentes estándares Ethernet
 - o protocolo MAC y formato de trama único
 - diferentes velocidades: 2 Mbps, 10 Mbps, 100
 Mbps, 1 Gbps, 10 Gbps
 - o diferentes medios físicos: fibra óptica, cable

Codificación Manchester

- Utilizado en 10BaseT
- Cada bit tiene una transición
- Permite que los relojes de los nodos emisores y receptores siempre estén sincronizados entre sí
 - O No se requiere un reloj centralizado, global

Hubs

- ... repetidores de Capa Física ("tonto"):
 - los bits que llegan en un link salen por todos los otros links a la misma velocidad
 - todos los nodos conectados al hub pueden colisionar con los otros
 - o no existe *buffering* de tramas
 - o no hay CSMA/CD <u>en el hub</u>: la NIC del host detecta las colisiones

Switch

- dispositivo de Capa de Enlace: más "inteligente" que los hubs, tienen un rol activo
 - o almacenamiento, envío de tramas Ethernet
 - examina la dirección MAC destino de la trama entrante, realiza un envío selectivo de la trama a uno o más links de salida; cuando la trama será enviada en un segmento, utiliza CSMA/CD para acceder al segmento
- □ transparente
 - o los *hosts* no se "enteran" de la presencia de los *switches*
- plug-and-play, self-learning
 - los switches no necesitan ser configurados (para su operación básica)

Switch: permite múltiples transmisiones simultáneas

- Los hosts tienen conexiones dedicadas, directas al switch
- Los switches hacen buffer de las tramas
- □ El protocolo Ethernet es utilizado en *cada* link entrante, pero no hay colisiones; *full duplex*
 - cada link es su propio dominio de colisión
- switching: A-to-A' and B-to-B' simultáneamente, sin colisiones
 - o no posible con *hub*

switch con seis interfaces (1,2,3,4,5,6)

Switch: self-learning

- el switch aprende qué hosts puede ser alcanzado a través de qué interfaces
 - cuando una trama es recibida, el switch "aprende" la ubicación del emisor: el segmento LAN de entrada
 - registra el par emisor/ubicación en la tabla del switch

Dir. MAC	interfaz	TTL
A	1	60

Tabla del switch (inicialmente vacía)

Origen: A
Destino: A'

Switch: filtering/forwarding de tramas

Cuando una trama es recibida:

- 1. registra el link asociado con el host que envía
- 2. busca en la *switch table* utilizando la dirección MAC destino
- 3. if encuentra una entrada para el destino
 then {

if destino en segmento de donde arribó la trama then descartar la trama

else forward de la trama en la interfaz indicada

```
else flood forward en todas las interfaces menos en la que arribó
```

Técnicas de conmutación de tramas

- Técnicas utilizadas por los switches para pasar la trama desde el puerto de entrada hasta el puerto de salida
- □ Se decide en función de la DA
- Dos grandes familias
 - Cut-through
 - Sólo espera la Destination Address
 - No realiza FCS (Frame-Check-Sequence)
 - Store & Forward
 - Espera toda la trama
 - · Realiza FCS

Switches vs. Routers

- ambos son dispositivos store-and-forward
 - routers: dispositivos de capa de red (examina encabezados de capa de red)
 - o switches: dispositivos de capa de enlace
- los routers mantienen tablas de routing;
 implementan algoritmos de routing
- □ los switches mantienen <u>tablas de switch</u>, implementan filtrado, algoritmos de aprendizaje

Segmentando redes LAN...

- □ "Teoría de Darwin de las redes LAN" ②:
 - o la evolución del hub al switch
 - o existió un dispositivo intermedio que vivió poco: el bridge
- □ Hub
 - Capa Física
 - 1 dominio de colisión y 1 dominio de broadcast
- □ Bridge
 - Capa de Enlace de Datos
 - 1 dominio de colisión en cada puerta y 1 dominio de broadcast
- Switch
 - Capa de Enlace de Datos
 - 1 dominio de colisión en cada puerta y 1 dominio de broadcast
 - Pero además, mayor
 - cantidad de puertas que un bridge
 - · capacidad de conmutación de tramas que un bridge Int. Redes de Computadores Capa de Enlace

Red "switcheada"

- Redundancia
 - Confiabilidad, disponibilidad
 - Costos
 - Pero quizás también, inestabilidad
 - Por ejemplo, un simple ARP request puede generar una tormenta de broadcast y afectar la performance de los switches de toda la red
 - Algo similar puede ocasionar un unicast
 - Precisamos una solución que evite los loops pero sin perder las bondades de la redundancia
 - En capa de enlace no existe el concepto de TTL
- Spanning-Tree Protocol (STP): Protocolo de gestión de capa de enlace que pone a disposición la redundancia de caminos pero previene de posibles loops en la red de switches (posible origen de duplicación de mensajes)

Protocolo Spanning-Tree (STP)

- □ El objetivo es que en cada instante exista un solo camino activo entre dos switches
 - Que existan loops físicos pero no lógicos
- Se define un árbol a través del cual se alcanza a todos los switches pero el árbol se "poda" de tal forma que algunos puertos quedan bloqueados a la espera de algún cambio topológico y los restantes puertos están en estado forwarding
- Algunos comentarios
 - Protocolo transparente a los usuarios
 - Radia Perlman -> IEEE 802.1D
 - "Protocolo de árbol de expansión"
 - Referencias en la bibliografía
 - Secciones 4.4 o 4.7 "del Tanenbaum"
 - Sección 5.6 "del Kurose & Ross"

VLAN: Virtual LAN

- □ Empresa con *k* departamentos
 - 1 red LAN por departamento
 - Agrupar lógicamente usuarios de la red y recursos conectados a puertos definidos administrativamente
 - Broadcast
 - · Seguridad
 - · Carga
- □ En los 90's: k redes LAN independientes significaba instalar k hubs (como mínimo)
- □ Luego, se incorporaron los *switches*
- □ Ahora: *k* redes LAN, técnicamente puede significar simplemente instalar 1 switch

VLAN: Virtual LAN (más)

- □ IEEE 802.1Q
- □ Permite crear "switches virtuales" en uno o más switches y de esa forma separar dominios de broadcast (más pequeños)
- □ Se debe definir:
 - Cantidad
 - Nombre de cada una ("color")
 - Miembros de cada una
- En cada puerto del switch, una sóla VLAN posible, salvo en los trunks

Enlace de Datos Punto a Punto

- un emisor, un receptor, un enlace: más fácil que un enlace broadcast:
 - ono se requiere Medium Access Control
 - o no se necesita direccionamiento MAC explícito
 - o p.e., enlace discado
- protocolos point-to-point más populares:
 - OPPP: Point-to-Point Protocol
 - O HDLC: High level Data Link Control

PPP (RFC 1547, 1661, 1962, 2153)

- □ Requerimientos de diseño de PPP: RFC 1547
 - simple
 - entramado de paquete: encapsulado del datagrama de capa de red en una trama de capa de enlace
 - transparencia: debe poder llevar cualquier patrón de bit en el campo de datos (incluso los vinculados al framing)
 - multiplexación: porta datos de capa de red de cualquier protocolo (no solamente IP) al mismo tiempo
 - posibilidad de demultiplexar
 - detección de error (no corrección)
 - estado de la conexión: detectar y señalizar a la capa de red sobre falla en el link
 - negociación de la dirección de la capa de red: un endpoint puede configurar la dirección de red del otro
 - posibilidad de negociación de opciones
 - o posibilidad de compresión de datos

No requerimientos de PPP

- corrección/recuperación de errores
- control de flujo
- 🗖 entrega de tramas en orden (secuenciamiento)
- no hay necesidad de soporte de enlaces multipunto (p.e., polling)

Recuperación de errores, control de flujo, reordenamiento de datos son relegados a las capas superiores