

Proiect SCIA

-Amplificator neinversor -Filtru KHN Low-Pass -PGA neinversor RF paralel -Redresor bialternanta

Profesori îndrumători: Gheorghe Eduard Vladu Madalina Daniela Farcas Raul Ciprian Onet

Realizat de: Melnic Anastasia Grupa 2133

Specificatii proiect

		Etajul 1			
Sursa Semnal	Amplitudine minima (pt castig maxim PGA)	Amplitudine maxima (pt castig minim PGA)	unitate masura	Tip Etaj1	Castig (liniar)
1	40mV	159mV	V (single ended)	1	10

Etajul 2					
Tip etaj 2	H0 castig liniar in banda de trecere	Rintrare minim	Banda	Q	
5	1	2kOhm	1kHz	0.707	

		Etaju	ıl 3		
Tip etaj 3	Castig minim [dB]	Rezolutie [dB]	Nr pasi	Castig maxim [dB]	Rintrare minim
4	8	3	5	20	

Etajul 4	AO	
	Castig	
tip Etaj 4	(liniar)	Tip AO
4	1	LT6234

Etaj1: Amplificator neinversor V-V

Schema Circuitului

Dimensionare

$$A = 1 + \frac{R2}{R1}$$

Avand in vedere ca A=10, raportul R2/R1=9. Aleg R1=10k Ω si R2=90k Ω . Pentru compensarea curentilor de polarizare, voi alege R3=R1||R2=9k Ω .

Compensare VoutEroare

Din cauza curentului de offset si a tensiunii de offset, la iesire apare o tensiune de eroare. Pentru a o masura, am conectat intrarea AO-ului la masa si am facut o simulare DCOP. Am obtinut V(out-err)=-11.2uV. Deci Vout-compensare ar trebui sa fie 11,12uV.

Rc1<<R1 si Rc2>>Rc1, aleg Rc1=1 Ω si Rc2=100k Ω .

$$Voutcomp = -Vcomp * \frac{R2}{R1}$$
$$Vcomp = -Voutcomp * \frac{R2}{R2}$$

In urma calculului, am obtinut Vcomp=-1.236uV.

Din LTSpice, v-=v+=-13.5mV.

$$I3 = -\frac{Vcomp}{Rc1}$$

$$I4 = \frac{Vcomp - v^{-}}{R1}$$

$$I2 = I4 - I3$$

$$I2 = \frac{Vcomp - v^{-}}{R1} + \frac{Vcomp}{Rc1} = 114nA$$

$$Vp = Vcomp + I2 * Rc2 = 11.4mV$$

$$a = \frac{Vcc - Vp}{2Vcc} = 0.49886$$

Daca mai ajustez a=0.49883, obtin la iesire Vout_compensat=-5.34nV.

DCOP: Punct static de functionare

* C:\Users\EMELNIAP8\AppData\Local\LTspice\AC.asc

O	perating Point	
V(vcc):	5	voltage
V(-vcc):	-5	voltage
V(out):	-5.33691e-09	voltage
V(n002):	-0.0134948	voltage
V(n001):	-0.0134955	voltage
V(vcomp):	-1.23527e-06	voltage
V(in):	0	voltage
V(vp):	0.0114146	voltage
I(R1):	-1.34942e-06	device_current
I(R2):	1.4995e-07	device current
I(R3):	-1.49943e-06	device current
I(Rc1):	1.23527e-06	device current
I(Rc2):	-1.14158e-07	device_current
I(Rp1):	-0.00100006	device_current
I(Rp2):	-0.000999943	device current
I(Vcc):	-0.00204048	device_current
I (-vcc) :	-0.00204321	device_current
I(V1):	-1.49943e-06	device_current
Ix (u2:1):	1.49943e-06	subckt_current
Ix(u2:2):	1.49937e-06	subckt_current
Ix(u2:3):	-1.49949e-07	subckt_current
Ix(u2:4):	0.00104042	subckt_current
Ix(u2:5):	-0.00104327	subckt_current

Castig la joasa frecventa

Din simularea de mai sus se observa ca castigul la joasa frecventa este de 20dB=10V/V, conform specificatiilor.

Banda

BW=4.4MHz>1kHz(banda filtrului).

CMRR

CMRR-ul (factorul de rejectie a modului comun) este variatia tensiunii de dezechilibru datorita modificarii tensiunii de intrare de mod comun.

$$CMRR[dB] = 20lg \frac{a_{dif}}{a_{mc}} = 20lg \frac{\frac{Voutdif}{Vid}}{\frac{Voutmc}{Vimc}}$$

Pentru a determina CMRR-ul am facut 2 circuite, unul in care am doar tensiune de intrare diferentiala:

si altul in care am doar tensiune intrare de mod comun:

La joasa frecventa am obtinut CMRR=19dB:

PSRR

PSRR (factorul de rejectie a variatiilor tensiunii de alimentare) este variatia tensiunii de dezechilibru datorita modificarii tensiunii de alimentare.

$$PSRR[dB] = 20lg \frac{a_{dif}}{a_{ps}}$$

Am utilizat 2 circuite, unul pentru a calcula a_{dif} :

si altul pentru a_{ps} :

In acest circuit am setat AC 1 pentru alimentarea pozitiva.

Am obtinut PSRR=153 dB la 1Hz.

THD

Pentru a determina liniaritatea circuitului, am realizat o analiza transient si apoi am deschis Spice Error Log.

```
Partial Harmonic Distortion: 0.100353%
Total Harmonic Distortion: 0.112898%
```

THD=0.11%<1% pentru amplitudinea semnalului de intrare=amplitudine_max*castig=159mV*10=1.59V.

Slew-Rate

Slew-Rate-ul este viteza maxima de variatie a semnalului de iesire. Pentru a-l masura, am pus la intrare o sursa de tensiune de tip PULSE si am facut o analiza transient.

SR=12.8V/us

Specificatii vs Masuratori

Castig	_	Banda		THD	
Specificatii	Masuratori	Specificatii	Masuratori	Specificatii	Masuratori
20 dB	20dB	>1kHz	4.4MHz	<1%	0.11%

Din tabelul de mai sus se poate observa ca circuitul satisface toate cerintele.

Etaj 2:Filtru KHN V-V Low-Pass

Schema circuitului

Dimensionare

Set R1=R2=R3=...=R7=R
$$\Rightarrow H_0 = 1$$
; $\omega_0 = \frac{1}{R\sqrt{C_1C_2}}$; $Q = \frac{2}{3}\sqrt{\frac{C_1}{C_2}}$

$$C_1 = \frac{3Q}{2\omega_0 R}$$
; $C_2 = \frac{4C_1}{9Q^2} = \frac{2}{3Q\omega_0 R}$.

$$\omega 0 = 2 * \pi * f0 = 6280 \, rad/s$$

Aleg R=12k Ω , iar sin formulele de mai sus rezulta:

$$C1 = \frac{3Q}{2\omega 0 * R} = 14nF$$

$$C2 = \frac{2}{3Q * \omega 0 * R} = 12.5nF$$

Punct static de functionare

```
* C:\Users\EMELNIAP8\AppData\Local\LTspice\Etaj2.asc
       --- Operating Point ---
V(out):
                -3.22478e-06
                              voltage
V(-vcc):
                -5
                              voltage
V(vcc):
                5
                              voltage
V(n004):
                -6.38984e-07
                              voltage
V(n003):
                0.0179999
                              voltage
V(n002):
                -6.55349e-07
                              voltage
V(n005):
                0.0179999
                              voltage
V(n006):
                -6.37899e-07
                              voltage
V(n001):
                -1.29325e-06
                              voltage
V(in):
                              voltage
I(C1):
                2.52008e-22
                              device current
I(C2):
               -3.23225e-26
                              device current
               -1.50005e-06
I(R4):
                              device current
I(R5):
               -1.50005e-06
                              device current
               1.50005e-06
I(R7):
                              device current
                -1.07771e-10
                              device current
I(R1):
I(R3):
                -1.60961e-10
                              device current
I(R6):
                -5.31582e-11
                              device_current
I(R2):
                1.5001e-06
                              device current
I(V1):
                -1.07771e-10
                              device current
I(V2):
                -0.00312404
                              device current
                0.00312704
I(V3):
                              device current
Ix(u1:1):
                1.5001e-06
                               subckt current
Ix(u1:2):
                1.50005e-06
                              subckt current
Ix(u1:3):
                1.60961e-10
                               subckt current
Ix(u1:4):
                0.00104035
                               subckt current
                -0.00104335
                               subckt current
Ix(u1:5):
Ix(u2:1):
                1.5001e-06
                               subckt current
```

Castig in banda de trecere

H0=0dB=1V/V (conform specification)

Banda

BW=1kHz (conform specificatiilor)

THD

THD-ul masoara distorsiunea introdusa de circuit. Pentru a-l masura, am facut o analiza transient si am deschis Spice Error Log.

In conformitate cu specificatiile generale, am masurat THD-ul la frecventa f_in_max/10, adica la 1kHz/10=100Hz si la amplit_in*castig_etaj = 159mV* *1=159mV.

Total Harmonic Distortion: 1.801574%

Specificatii vs Masuratori

Castig		Banda		THD	
Specificatii	Masuratori	Specificatii	Masuratori	Specificatii	Masuratori
0 dB	0dB	1kHz	1kHz	<1%	1.8%

Din tabelul de mai sus se poate observa ca circuitul satisface toate cerintele.

Etaj 3:PGA neinversor cu RF paralel

Schema circuitului

Dimensionare

Conform cerintelor, castigul minim trebuie sa fie de 8dB, iar cel maxim-20dB, cu o rezolutie de 3dB. Avem 5 pasi:

H01=8dB=2.51V/V

H02=11dB=3.55V/V

H03=14dB=5.01V/V

H04=17dB=7.08V/V

H05=20dB=10V/V

Deoarece este amplificator neinversor: $H0 = 1 + \frac{Rfi}{Rg}$

Rfi = Rg(H0 - 1), cand este on doar switch-ul i, celelalte-off.

Aleg Rg= $1k\Omega$ si obtin:

Rf1=1.5k Ω

Rf2=2.55k Ω

Rf3= $4k\Omega$

 $Rf4=6.1k\Omega$

Rf5=9k Ω

Switch-urile in LTSpice le-am implementat cu ADG5412.

Punct static de functionare

(Operating Point	
V(vcc):	5	voltage
V(n001):	3.3015e-07	voltage
V(n003):	0.212439	voltage
V(-vcc):	-5	voltage
V(s4):	0	voltage
V(n004):	0.200381	voltage
V(s3):	0	voltage
V(n005):	0.183232	voltage
V(s2):	0	voltage
V(n006):	3.50769e-05	voltage
V(s1):	5	voltage
V(out):	0.00228566	voltage
V(in):	0	voltage
V(n002):	0.220594	voltage
V(s5):	0	voltage
I(Rf4):	-3.44513e-05	device_current
I(Rf3):	-4.95238e-05	device_current
I(Rf2):	-7.09594e-05	device_current
I(Rf1):	1.50039e-06	device_current
I(Rf5):	-2.42565e-05	device_current
I (Rg) :	3.3015e-10	device_current
I(V1):	-1.50006e-06	device_current
I(V2):	-0.000952514	device_current
I (V3):	0.00113321	device_current
I(S1):	-1.75e-23	device_current
I(S2):	0	device_current
I(S3):	0	device_current
I(S4):	0	device current

Castig si Banda

H01=8dB

H02=11dB

H03=14dB

H04=17dB

H05=20dB

Dupa cum se poate observa in graficele de mai sus, pentru fiecare pas banda este de peste 1MHz, ceea ce satisface conditia ca banda sa fie mai mare decat banda filtrului (1kHz).

THD<1%

Conform specificatiilor, circuitul nu trebuie sa introduca distorsiuni la fin_max=1kHz pentru ampl_in_min*castig_max_PGA si pentru ampl_in_max*castig_min_PGA.

Pentru primul caz, setez semnalul de intrare ca fiind un sinus cu amplitudinea de 40mV si frecventa de 1kHz. De asemenea, las pe "on" doar switssch-ul 5 (pentru castig maxim PGA).

Total Harmonic Distortion: 0.040301%

Pentru al doilea caz, setez amplitudinea semnalului de intrare egala cu 159mV si las pe "on" doar switch-ul 1(pentru castig minim PGA).

Total Harmonic Distortion: 0.047963%

4. Redresor bialternanta

Schema circuitului

Dimensionare

R1=R2=R4=R5=R R3=R/2Aleg $R=1k\Omega$ si $R3=0.5k\Omega$

Punct static de functionare

Operating Point				
V(in):	0	voltage		
V(v+):	5	voltage		
V(v-):	-5	voltage		
V(out):	0.00149705	voltage		
V(n002):	-6.47191e-07	voltage		
V(n001):	-6.5532e-07	voltage		
V(n003):	1.86076e-07	voltage		
V(vo):	0.289551	voltage		
I(D3):	-2.51606e-09	device current		
I(D4):	1.49857e-06	device current		
I(Rl):	1.49705e-06	device current		
I(R1):	-6.47191e-10	device current		
I(R4):	-6.5532e-10	device current		
I(R3):	-1.68279e-09	device current		
I(R5):	1.49771e-06	device current		
I(R2):	8.33267e-10	device current		
I(V1):	-1.30251e-09	device current		
I(V2):	-0.00208294	device current		
I(V3):	0.00208444	device current		
Ix(u1:1):	1.5001e-06	subckt current		
Ix(u1:2):	1.50005e-06	subckt current		
Ix(u1:3):	-1.50108e-06	subckt current		
Ix(u1:4):	0.0010411	subckt current		
Ix(u1:5):	-0.0010426	subckt_current		
Ix(u2:1):	1.5001e-06	subckt_current		
Ix(u2:2):	1.50005e-06	subckt current		
Ix(u2:3):	-2.99476e-06	subckt_current		
Ix (u2:4):	0.00104184	subckt current		

Castig

H0=0dB=1V/V(conform specificatiilor)

Implementare functie de circuit

Bibliografie

- 1.M.Neag, Notite de curs Sisteme cu circuite integrate analogice
- 2.Laboratoare SCIA