Тема 2 Линейные дифференциальные уравнения высших порядков

2.1 Линейные однородные дифференциальные уравнения высших порядков

Определение. Линейным однородным дифференциальным уравнением *n*-го порядка называется уравнение вида

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0.$$

Общим решением этого уравнения является функция $y = C_1 y_1 + C_2 y_2 + ... + C_n y_n$, где $y_1, y_2, ..., y_n$ – линейно независимые частные решения уравнения, $C_1, C_2, ..., C_n$ – произвольные постоянные.

Определение. Совокупность n линейно независимых на (a,b) решений уравнения называется его фундаментальной системой решений.

Частным случаем этого уравнения является линейное однородное уравнение *n*-го порядка с постоянными коэффициентами:

$$y^{(n)}+a_{n-1}y^{(n-1)}+a_{n-2}y^{(n-2)}+...+a_1y'+a_0y=0, \qquad \text{где} \qquad a_0,a_1,a_2,...,a_{n-1} \qquad -$$
 действительные числа.

Для нахождения частных решений этого уравнения составляют характеристическое уравнение $\lambda^n + a_{n-1}\lambda^{n-1} + ... + a_1\lambda + a_0 = 0$ путем замены в уравнении производных определенного порядка на соответствующие степени параметра λ : $y^{(k)}$ на λ^k , где k=0,1,...,n.

Замечание. Характеристическое уравнение является следствием подстановки $y = e^{\lambda x}$, которую ввел Эйлер.

Каждому корню характеристического уравнения соответствует определенное частное решение дифференциального уравнения. Вид частного решения зависит от типа алгебраического корня. Возможны следующие четыре случая, которые определяет правило частных решений.

- 1. Если λ_0 действительный корень кратности 1 (простой корень), то ему соответствует решение вида $y = e^{\lambda_0 x}$.
- 2. Если λ_1 действительный корень кратности k, то ему соответствует k частных решений:

$$y_1 = e^{\lambda_1 x}, \ y_2 = xe^{\lambda_1 x}, ..., \ y_k = x^{k-1}e^{\lambda_1 x}.$$

3. Если $\lambda_{2,3} = \alpha \pm i\beta$ — пара комплексно-сопряженных корней, то им соответствует два частных решения:

$$y_1 = e^{\alpha x} \cos \beta x$$
, $y_2 = e^{\alpha x} \sin \beta x$.

4. Если $\lambda_{4,5} = \alpha \pm i\beta$ — пара k-кратных комплексно-сопряженных корней, то им соответствуют 2k частных решения:

$$y_1 = e^{\alpha x} \cos \beta x$$
, $y_2 = xe^{\alpha x} \cos \beta x$, ..., $y_k = x^{k-1}e^{\alpha x} \cos \beta x$, $y_{k+1} = e^{\alpha x} \sin \beta x$, $y_{k+2} = xe^{\alpha x} \sin \beta x$, ..., $y_{2k} = x^{k-1}e^{\alpha x} \sin \beta x$.

Поскольку характеристическое уравнение имеет n корней с учетом кратности, то для дифференциального уравнения по правилу частных решений можно указать п решений $y_1, y_2, ..., y_n$. Эти решения и образуют фундаментальную систему решений.

Тогда общее решение уравнения определяется формулой $y = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x)$, где $C_1, C_2, ..., C_n$ — произвольные постоянные.

Пример. Найти общее решение уравнения:

- 1) y'' 25y = 0;
- 2) y'' 25y' = 0;
- 3) y'' 4y' + 4y = 0; 4) y'' 2y' + 2y = 0.

Решение. 1) Составим характеристическое уравнение: $\lambda^2 - 25 = 0$.

Решив его, получим $\lambda_1 = 5$, $\lambda_2 = -5$ — два действительных простых корня. Им соответствуют частные решения $y_1 = e^{5x}$, $y_2 = e^{-5x}$. Тогда общее решение заданного дифференциального уравнения имеет вид $y = C_1 e^{-5x} + C_2 e^{5x}$, где C_1, C_2 – произвольные постоянные.

2) Составим характеристическое уравнение $\lambda^2 - 25\lambda = 0$.

Решив его, получим $\lambda_1 = 0$, $\lambda_2 = 25$ — два действительных простых корня. Им соответствуют частные решения $y_1 = 1$, $y_2 = e^{25x}$. Тогда общее решение заданного дифференциального уравнения имеет вид $y = C_1 + C_2 e^{25x}$, где C_1, C_2 – произвольные постоянные.

- 3) Характеристическое уравнение имеет вид $\lambda^2 4\lambda + 4 = 0$ или $(\lambda 2)^2 = 0$. Отсюда $\lambda = 2$ — корень кратности 2. Тогда решения $y_1 = e^{2x}$ и $y_2 = xe^{2x}$ образуют фундаментальную систему решений исходного дифференциального уравнения, а общее решение имеет вид $y = C_1 e^{2x} + C_2 x e^{2x}$, где C_1, C_2 — произвольные постоянные.
 - 4) Характеристическое уравнение заданного дифференциального уравнения

 $\lambda^2 - 2\lambda + 2 = 0$. Его корни: $\lambda_1 = 1 + i$, $\lambda_2 = 1 - i$ — простые комплексно-сопряженные. Тогда этой паре корней характеристического уравнения соответствуют два линейно независимых частных решения заданного дифференциального уравнения: $y_1 = e^x \cos x$, $y_2 = e^x \sin x$.

Получаем обшее решение дифференциального исходного уравнения: $y = C_1 e^x \cos x + C_2 e^x \sin x$, где C_1, C_2 — произвольные постоянные.

Пример . Найти общее решение дифференциального уравнения:

1)
$$y''' - 3y'' + 2y' = 0$$
;

2)
$$y''' + 3y'' + 4y' + 2y = 0$$
;

3)
$$y^{IV} - 4y''' + 5y'' = 0;$$

3)
$$y^{IV} - 4y''' + 5y'' = 0;$$
 4) $y^{VI} + 3y^{IV} + 3y'' + y = 0.$

Решение. 1) Запишем характеристическое уравнение заданного дифференциального уравнения: $\lambda^3 - 3\lambda^2 + 2\lambda = 0$. Его корнями будут $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = 2$, т. е. корни характеристического уравнения действительные и различные. Им соответствуют три линейно независимых частных решения: $y_1 = 1$, $y_2 = e^x$, $y_3 = e^{2x}$.

Тогда общее решение заданного дифференциального уравнения имеет вид: $y = C_1 + C_2 e^x + C_3 e^{2x}$, где C_1, C_2, C_3 — произвольные постоянные.

2) Составим характеристическое уравнение заданного дифференциального уравнения: $\lambda^3 + 3\lambda^2 + 4\lambda + 2 = 0$.

Его корни: $\lambda_1 = -1$, $\lambda_2 = -1 + i$, $\lambda_3 = -1 - i$. Им соответствуют три линейно независимых частных решения: $y_1 = e^{-x}$, $y_2 = e^{-x} \cos x$, $y_3 = e^{-x} \sin x$.

Тогда общее решение имеет вид: $y = C_1 e^{-x} + C_2 e^{-x} \cos x + C_3 e^{-x} \sin x$, где C_1, C_2, C_3 произвольные постоянные.

3) Характеристическое уравнение имеет вид: $\lambda^4 - 4\lambda^3 + 5\lambda^2 = 0$. Его корни: $\lambda_{1,2} = 0$ (корень кратности 2), $\lambda_3 = 2 + i$, $\lambda_4 = 2 - i$. Им соответствуют четыре линейно независимых частных решения вида $y_1 = 1$, $y_2 = x$, $y_3 = e^{2x} \cos x$, $y_4 = e^{2x} \sin x$.

Тогда общее решение имеет вид: $y = C_1 + C_2 x + C_3 e^{2x} \cos x + C_4 e^{2x} \sin x$, где C_1 , C_2 , C_3 , C_4 произвольные постоянные.

Запишем характеристическое уравнение заданного дифференциального уравнения: $\lambda^6 + 3\lambda^4 + 3\lambda^2 + 1 = 0$. Преобразуем это уравнение к виду $(\lambda^2 + 1)^3 = 0$. Отсюда, очевидно, что корни характеристического уравнения $\lambda_1 = i$, $\lambda_2 = -i$ — комплексносопряженные кратности 3. Тогда им соответствуют шесть линейно-независимых частных решений вида $y_1 = \cos x$, $y_2 = \sin x$, $y_3 = x \cos x$, $y_4 = x \sin x$, $y_5 = x^2 \cos x$, $y_6 = x^2 \sin x$.

Тогда общее решение заданного дифференциального уравнения имеет вид: $y = C_1 \cos x + C_2 \sin x + C_3 x \cos x + C_4 x \sin x + C_5 x^2 \cos x + C_6 x^2 \sin x$, где C_1 , C_2 , C_3 , C_4 , C_5 , C_6 — произвольные постоянные.

Пример. Решить задачу Коши: y'' - 6y' + 9y = 0, y(0) = 2, y'(0) = 9.

Решение. Характеристическое уравнение имеет вид: $\lambda^2 - 6\lambda + 9 = 0$ или $(\lambda - 3)^2 = 0$. Его корень $\lambda = 3$ — корень кратности 2. Тогда решения $y_1 = e^{3x}$, $y_2 = xe^{3x}$ образуют фундаментальную систему решений. Тогда общее решение имеет вид: $y = C_1 e^{3x} + C_2 x e^{3x}$.

Чтобы найти константы C_1 и C_2 , дифференцируем найденное общее решение: $y' = 3C_1e^{3x} + C_2e^{3x} + 3C_2xe^{3x}$. Затем подставляем начальные условия в выражения для y и y' и решаем систему уравнений относительно C_1 и C_2 :

$$\begin{cases} 2 = C_1 e^0, \\ 9 = 3C_1 e^0 + C_2 e^0. \end{cases}$$

Получаем $C_1 = 2$, $C_2 = 3$. Тогда решение задачи Коши: $y = 2e^{3x} + 3xe^{3x}$.

2.2 Линейные неоднородные дифференциальные уравнения

Определение. Линейным неоднородным дифференциальным уравнением n-го порядка называется уравнение вида $y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = f(x)$, где $a_0(x), a_1(x), a_2(x), ..., f(x)$ — непрерывные функции на некотором промежутке (a, b).

Если $f(x) \equiv 0$, то получаем соответствующее однородное дифференциальное уравнение $y^{(n)} + a_{n-1}(x)y^{n-1} + ... + a_1(x)y' + a_0(x)y = 0$.

Метод Лагранжа

Решение линейного дифференциального уравнения методом Лагранжа (вариации произвольных постоянных) включает в себя следующие действия.

- 1. Записать соответствующее однородное дифференциальное уравнение.
- 2. Найти фундаментальную систему частных решений $y_1 = y_1(x), \ y_2 = y_2(x), ..., \ y_n = y_n(x)$ соответствующего однородного дифференциального уравнения.
- 3. Найти общее решение однородного уравнения в виде $y = C_1 y_1 + C_2 y_2 + ... + C_n y_n$, где C_1 , C_2 , ..., C_n константы.
- 4. Решение заданного неоднородного дифференциального уравнения искать в найденной форме для однородного уравнения, но считать, что $C_1 = C_1(x)$,

 $C_2 = C_2(x)$, ..., $C_n = C_n(x)$ — функциональные коэффициенты, которые надо определить.

5. Для нахождения коэффициентов $C_k(k=\overline{1,n})$ записать систему уравнений

$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) + \ldots + C_n'(x)y_n(x) = 0, \\ C_1'(x)y_1'(x) + C_2'(x)y_2'(x) + \ldots + C_n'(x)y_n'(x) = 0, \\ \vdots \\ C_1'(x)y_1^{(n-2)}(x) + C_2'(x)y_2^{(n-2)}(x) + \ldots + C_n'(x)y_n^{(n-2)}(x) = 0, \\ C_1'(x)y_1^{(n-1)}(x) + C_2'(x)y_2^{(n-1)}(x) + \ldots + C_n'(x)y_n^{(n-1)}(x) = f(x). \end{cases}$$

- 6. Решить полученную систему относительно $C_1',...,C_n'$ и получить $C_1'(x) = \varphi_1(x),...,C_n'(x) = \varphi_n(x)$.
- 7. Проинтегрировать полученные равенства для $C_k'(x)$, $k = \overline{1,n}$ и найти $C_1(x) = \int \varphi_1(x) dx + C_1$, ..., $C_n(x) = \int \varphi_n(x) dx + C_n$, где $C_1, ..., C_n$ произвольные постоянные.
- 8. Подставить полученные выражения вместо $C_1(x), C_2(x), ..., C_n(x)$ в решение. Это и есть общее решение заданного дифференциального уравнения.

Пример 1. Решить уравнение методом Лагранжа:

1)
$$y'' + y = \frac{1}{\sin x}$$
; 2) $y'' - 4y = 4x$; 3) $y''' + 4y'' + y' - 6y = e^x$.

Решение. 1) Это неоднородное линейное дифференциальное уравнение 2-го порядка. Найдем решение соответствующего однородного уравнения y'' + y = 0.

Его характеристическое уравнение $\lambda^2 + 1 = 0$, корни которого $\lambda_1 = -i$, $\lambda_2 = i$ - комплексно-сопряженные, простые. Тогда общее решение соответствующего однородного уравнения $y_0 = C_1 \cos x + C_2 \sin x$, где C_1 , C_2 - произвольные постоянные.

Общее решение заданного дифференциального уравнения ищем в виде

$$y = C_1 \cos x + C_2 \sin x, \tag{22.68}$$

где $C_1 = C_1(x)$, $C_2 = C_2(x)$ — функции, которые надо найти.

Для нахождения $C_1(x)$, $C_2(x)$ решим систему уравнений

$$\begin{cases} C_1' \cos x + C_2' \sin x = 0, \\ C_1' (\cos x)' + C_2' (\sin x)' = \frac{1}{\sin x}. \end{cases}$$

Используем, например, метод Крамера:

$$\Delta = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1,$$

$$\Delta_1 = \begin{vmatrix} 0 & \sin x \\ \frac{1}{\sin x} & \cos x \end{vmatrix} = -1,$$

$$\Delta_2 = \begin{vmatrix} \cos x & 0 \\ -\sin x & \frac{1}{\sin x} \end{vmatrix} = \frac{\cos x}{\sin x} = \operatorname{ctg} x.$$

Тогда решениями системы будут:

$$\begin{cases} C_1' = \frac{\Delta_1}{\Delta}, \\ C_2' = \frac{\Delta_2}{\Delta} \end{cases}$$
 или
$$\begin{cases} C_1' = -1, \\ C_2' = \operatorname{ctg} x. \end{cases}$$

Интегрируя полученные равенства, получаем:

$$\begin{cases} C_1(x) = -x + C_1, \\ C_2(x) = \ln|\sin x| + C_2, \end{cases}$$

где C_1, C_2 — произвольные постоянные.

Подставляем найденные значения функций в (22.68) и получаем общее решение заданного дифференциального уравнения:

$$y = C_1 \cos x + C_2 \sin x - x \cos x + \sin x \ln |\sin x|.$$

2) Это неоднородное линейное дифференциальное уравнение 2-го порядка. Найдем решение соответствующего однородного уравнения: y''-4y=0. Его характеристическое уравнение $\lambda^2-4=0$, корни которого $\lambda_1=2$, $\lambda_2=-2$ — простые, действительные. Тогда общее решение соответствующего однородного уравнения $y_0=C_1e^{2x}+C_2e^{-2x}$, где C_1,C_2 — произвольные постоянные.

Общее решение заданного дифференциального уравнения ищем в виде

$$y = C_1 e^{2x} + C_2 e^{-2x}, (22.69)$$

где $C_1 = C_1(x)$, $C_2 = C_2(x)$ — функции, которые надо найти.

Для нахождения $C_1(x)$, $C_2(x)$ решим систему уравнений

$$\begin{cases} C_1'e^{2x} + C_2'e^{-2x} = 0, \\ C_1'(e^{2x})' + C_2'(e^{-2x})' = 4x. \end{cases}$$

Используем метод Крамера:

$$\Delta = \begin{vmatrix} e^{2x} & e^{-2x} \\ 2e^{2x} & -2e^{-2x} \end{vmatrix} = -2e^0 - 2e^0 = -4,$$

$$\Delta_1 = \begin{vmatrix} 0 & e^{-2x} \\ 4x & -2e^{-2x} \end{vmatrix} = -4xe^{-2x},$$

$$\Delta_2 = \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 4x \end{vmatrix} = 4xe^{2x}.$$

Тогда решение системы:

$$\begin{cases} C_1' = \frac{\Delta_1}{\Lambda}, \\ C_2' = \frac{\Delta_2}{\Lambda} \end{cases}$$
 ИЛИ
$$\begin{cases} C_1' = xe^{-2x}, \\ C_2' = -xe^{2x}. \end{cases}$$

Интегрируем полученные равенства:

$$C_{1}(x) = \int xe^{-2x} dx = \begin{vmatrix} u = x, & du = dx \\ dv = e^{-2x} dx, & v = -\frac{e^{-2x}}{2} \end{vmatrix} = -\frac{xe^{-2x}}{2} + \int \frac{e^{-2x}}{2} dx =$$

$$= -\frac{xe^{-2x}}{2} - \frac{e^{-2x}}{4} + C_{1},$$

$$C_{2}(x) = \int -xe^{2x} dx = \begin{vmatrix} u = x, & du = dx, \\ dv = e^{2x} dx, & v = \frac{e^{2x}}{2} \end{vmatrix} = -\left(\frac{xe^{2x}}{2} - \int \frac{e^{2x}}{2} dx\right) =$$

$$= -\frac{xe^{2x}}{2} + \frac{e^{2x}}{4} + C_{2}.$$

Таким образом,

$$\begin{cases} C_1(x) = -\frac{xe^{-2x}}{2} - \frac{e^{-2x}}{4} + C_1, \\ C_2(x) = -\frac{xe^{2x}}{2} + \frac{e^{2x}}{4} + C_2, \end{cases}$$

где C_1, C_2 — произвольные постоянные. Подставляем найденные значения функций в (22.69) и получаем общее решение заданного дифференциального уравнения:

$$y = \left(-\frac{xe^{-2x}}{2} - \frac{e^{-2x}}{4} + C_1\right)e^{2x} + \left(-\frac{xe^{2x}}{2} + \frac{e^{2x}}{4} + C_2\right)e^{-2x}.$$

После упрощения приходим к ответу:

$$y = C_1 e^{2x} + C_2 e^{-2x} - x.$$

3) Это неоднородное линейное дифференциальное уравнение 3-го порядка. Найдем решение соответствующего однородного уравнения

$$y''' + 4y'' + y' - 6y = 0.$$

Его характеристическое уравнение $\lambda^3 + 4\lambda^2 + \lambda - 6 = 0$, корни которого $\lambda_1 = 1$, $\lambda_2 = -2$, $\lambda_3 = -3$ — действительные, простые. Тогда общее решение соответствующего однородного уравнения $y_0 = C_1 e^x + C_2 e^{-2x} + C_3 e^{-3x}$, где C_1, C_2, C_3 — произвольные постоянные. Общее решение заданного дифференциального уравнения ищем в виде

$$y = C_1 e^x + C_2 e^{-2x} + C_3 e^{-3x}, (22.70)$$

где $C_1 = C_1(x)$, $C_2 = C_2(x)$, $C_3 = C_3(x)$ — функции, которые надо найти. Для нахождения $C_1(x), C_2(x), C_3(x)$ решаем систему уравнений

$$\begin{cases} C_1'e^x + C_2'e^{-2x} + C_3'e^{-3x} = 0, \\ C_1'e^x - 2C_2'e^{-2x} - 3C_3'e^{-3x} = 0, \\ C_1'e^x + 4C_2'e^{-2x} + 9C_3'e^{-3x} = e^x. \end{cases}$$

По методу Крамера:

$$\Delta = \begin{vmatrix} e^{x} & e^{-2x} & e^{-3x} \\ e^{x} & -2e^{-2x} & -3e^{-3x} \\ e^{x} & 4e^{-2x} & 9e^{-3x} \end{vmatrix} = \begin{vmatrix} e^{x} & e^{-2x} & e^{-3x} \\ 0 & -3e^{-2x} & -4e^{-3x} \\ 0 & 3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ 3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ 3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-3x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-2x} \\ -3e^{-2x} & 8e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-2x} \\ -3e^{-2x} & 8e^{-2x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-2x} \\ -3e^{-2x} & 8e^{-2x} \end{vmatrix} = e^{x} \begin{vmatrix} -3e^{-2x} & -4e^{-2x} \\ -3e^{-$$

$$= e^{x}(-24e^{-5x} + 12e^{-5x}) = e^{x}(-12e^{-5x}) = -12e^{-4x},$$

$$\Delta_{1} = \begin{vmatrix} 0 & e^{-2x} & e^{-3x} \\ 0 & -2e^{-2x} & -3e^{-3x} \\ e^{x} & 4e^{-2x} & 9e^{-3x} \end{vmatrix} = e^{x} \begin{vmatrix} e^{-2x} & e^{-3x} \\ -2e^{-2x} & -3e^{-3x} \end{vmatrix} = e^{x} (-3e^{-5x} + 2e^{-5x}) = -e^{-4x},$$

$$\Delta_2 = \begin{vmatrix} e^x & 0 & e^{-3x} \\ e^x & 0 & -3e^{-3x} \\ e^x & e^x & 9e^{-3x} \end{vmatrix} = -e^x \begin{vmatrix} e^x & e^{-3x} \\ e^x & -3e^{-3x} \end{vmatrix} = -e^x (-3e^{-2x} - e^{-2x}) = 4e^{-x},$$

$$\Delta_3 = \begin{vmatrix} e^x & e^{-2x} & 0 \\ e^x & -2e^{-2x} & 0 \\ e^x & 4e^{-2x} & e^x \end{vmatrix} = e^x \begin{vmatrix} e^x & e^{-2x} \\ e^x & -2e^{-2x} \end{vmatrix} = e^x (-2e^{-x} - e^{-x}) = -3.$$

Тогда решение системы:

$$\begin{cases} C_1' = \frac{\Delta_1}{\Delta}, \\ C_2' = \frac{\Delta_2}{\Delta}, \text{ ИЛИ} \end{cases} \begin{cases} C_1' = \frac{1}{12}, \\ C_2' = -\frac{e^{3x}}{3}, \\ C_3' = \frac{\Delta_3}{\Delta} \end{cases}$$

Интегрируя полученные равенства, получаем:

$$\begin{cases} C_1(x) = \frac{x}{12} + C_1, \\ C_2(x) = -\frac{e^{3x}}{9} + C_2, \\ C_3(x) = \frac{e^{4x}}{16} + C_3, \end{cases}$$

где C_1, C_2, C_3 — произвольные постоянные.

Подставляем найденные значения функций в (22.70) и получаем общее решение заданного дифференциального уравнения:

$$y = \left(\frac{x}{12} + C_1\right)e^x + \left(-\frac{e^{3x}}{9} + C_2\right) e^{-2x} + \left(\frac{e^{4x}}{16} + C_3\right) e^{-3x}.$$

После упрощения приходим к ответу:

$$y = C_1 e^x + C_2 e^{-2x} + C_3 e^{-3x} + \left(\frac{x}{12} - \frac{7}{144}\right) e^x.$$

Пример 2. Решить задачу Коши:

1)
$$y'' + 9y = \operatorname{ctg} 3x$$
, $y\left(\frac{\pi}{6}\right) = 0$, $y'\left(\frac{\pi}{6}\right) = -\frac{8}{3}$;

2)
$$y''' + 4y' = x^2$$
, $y(0) = 2$, $y'(0) = \frac{15}{8}$, $y''(0) = 4$.

Решение. 1) Это линейное неоднородное дифференциальное уравнение 2-го порядка. Найдем общее решение соответствующего однородного уравнения y'' + 9y = 0. Его характеристическое уравнение $\lambda^2 + 9 = 0$, корни которого $\lambda_1 = 3i$, $\lambda_2 = -3i$ — комплексносопряженные, простые. Тогда общее решение соответствующего однородного уравнения $y_0 = C_1 \cos 3x + C_2 \sin 3x$, C_1 , $C_2 = const$. Общее решение заданного дифференциального уравнения ищем в виде

$$y = C_1 \cos 3x + C_2 \sin 3x,$$

где $C_1 = C_1(x)$, $C_2 = C_2(x)$ — функции, для нахождения которых составляем систему

$$\begin{cases} C_1' \cos 3x + C_2' \sin 3x = 0, \\ -3C_1' \sin 3x + 3C_2' \cos 3x = \text{ctg} 3x. \end{cases}$$

Решаем ее методом Крамера:

$$\Delta = \begin{vmatrix} \cos 3x & \sin 3x \\ -3\sin 3x & 3\cos 3x \end{vmatrix} = 3,$$

$$\Delta_1 = \begin{vmatrix} 0 & \sin 3x \\ \cot 3x & 3\cos 3x \end{vmatrix} = -\cos 3x,$$

$$\Delta_2 = \begin{vmatrix} \cos 3x & 0 \\ -3\sin 3x & \cot 3x \end{vmatrix} = \frac{\cos^2 3x}{\sin 3x}.$$

Получаем решение системы:

$$\begin{cases} C_1' = -\frac{\cos 3x}{3}, \\ C_2' = \frac{\cos^2 3x}{3\sin 3x}. \end{cases}$$

Интегрируем полученные равенства:

$$C_1(x) = \int -\frac{\cos 3x}{3} dx = -\frac{\sin 3x}{9} + C_1,$$

$$C_2(x) = \int \frac{\cos^2 3x}{3\sin 3x} dx = \frac{1}{3} \int \frac{1 - \sin^2 3x}{\sin 3x} dx =$$

$$= \frac{1}{3} \int \frac{dx}{\sin 3x} - \frac{1}{3} \int \sin 3x dx = \frac{1}{9} \ln \left| \operatorname{tg} \frac{3x}{2} \right| + \frac{\cos 3x}{9} + C_2,$$

где C_1, C_2 — произвольные постоянные.

Тогда общее решение заданного дифференциального уравнения:

$$y = \left(C_1 - \frac{\sin 3x}{9}\right)\cos 3x + \left(\frac{1}{9}\ln\left|\log\frac{3x}{2}\right| + \frac{\cos 3x}{9} + C_2\right)\sin 3x.$$

После упрощения получаем:

$$y = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{9} \ln \left| \lg \frac{3x}{2} \right| \sin 3x.$$

Далее решаем задачу Коши. Дифференцируем полученное общее решение:

$$y' = -3C_1 \sin 3x + 3C_2 \cos 3x +$$

$$+\frac{1}{9}\left(\frac{1}{\left|\lg\frac{3x}{2}\right|}\cdot\frac{1}{\cos^2\frac{3x}{2}}\cdot\frac{3}{2}\sin 3x + \ln\left|\lg\frac{3x}{2}\right|\cdot 3\cos 3x\right).$$

Подставляем начальные условия $y\left(\frac{\pi}{6}\right) = 0$, $y'\left(\frac{\pi}{6}\right) = -\frac{8}{3}$ в выражения для y и y' и определяем константы C_1 и C_2 :

$$0 = C_1 \cos \frac{3\pi}{6} + C_2 \sin \frac{3\pi}{6} + \frac{1}{9} \ln \left| \lg \frac{3\pi}{12} \right| \sin \frac{3\pi}{6},$$

$$-\frac{8}{3} = -3C_1 \sin \frac{3\pi}{6} + 3C_2 \cos \frac{3\pi}{6} +$$

$$+\frac{1}{9}\left(\frac{1}{\left|\lg\frac{3\pi}{12}\right|}\cdot\frac{1}{\cos^2\frac{3\pi}{12}}\cdot\frac{3}{2}\sin\frac{3\pi}{6}+\ln\left|\lg\frac{3\pi}{12}\right|\cdot3\cos\frac{3\pi}{6}\right).$$

Отсюда имеем:

$$\begin{cases} C_1 = 1, \\ C_2 = 0. \end{cases}$$

Получаем решение задачи Коши:

$$y = \cos 3x + \frac{1}{9} \ln \left| \operatorname{tg} \frac{3x}{2} \right| \sin 3x.$$

2) Это линейное неоднородное дифференциальное уравнение 3-го порядка. Найдем его общее решение методом Лагранжа. Соответствующее однородное уравнение имеет вид: y'''+4y'=0. Его характеристическое уравнение $\lambda^3+4\lambda=0$, где $\lambda_1=0$, $\lambda_2=2i$, $\lambda_3=-2i$ — корни. Тогда общее решение однородного дифференциального уравнения: $y_0=C_1+C_2\cos 2x+C_3\sin 2x$.

Общее решение заданного дифференциального уравнения ищем в виде

$$y = C_1 + C_2 \cos 2x + C_3 \sin 2x,$$

где $C_1 = C_1(x)$, $C_2 = C_2(x)$, $C_3 = C_3(x)$ — искомые функциональные коэффициенты.

Составляем систему

$$\begin{cases} C_1' + C_2' \cos 2x + C_3' \sin 2x = 0, \\ -2C_2' \sin 2x + 2C_3' \cos 2x = 0, \\ -4C_2' \cos 2x - 4C_3' \sin 2x = x^2. \end{cases}$$

Решаем ее методом Крамера:

$$\Delta = \begin{vmatrix} 1 & \cos 2x & \sin 2x \\ 0 & -2\sin 2x & 2\cos 2x \\ 0 & -4\cos 2x & -4\sin 2x \end{vmatrix} = 8\sin^2 2x + 8\cos^2 2x = 8,$$

$$\Delta_{1} = \begin{vmatrix} 0 & \cos 2x & \sin 2x \\ 0 & -2\sin 2x & 2\cos 2x \\ x^{2} & -4\cos 2x & -4\sin 2x \end{vmatrix} = x^{2}(2\cos^{2}2x + 2\sin^{2}2x) = 2x^{2},$$

$$\Delta_2 = \begin{vmatrix} 1 & 0 & \sin 2x \\ 0 & 0 & 2\cos 2x \\ 0 & x^2 & -4\sin 2x \end{vmatrix} = -2x^2\cos 2x,$$

$$\Delta_3 = \begin{vmatrix} 1 & \cos 2x & 0 \\ 0 & -2\sin 2x & 0 \\ 0 & -4\cos 2x & x^2 \end{vmatrix} = -2x^2\sin 2x.$$

Тогда решение системы:

$$\begin{cases} C_1' = \frac{2x^2}{8}, \\ C_2' = -\frac{x^2 \cos 2x}{4}, \\ C_3' = -\frac{x^2 \sin 2x}{4}. \end{cases}$$

Интегрируем эти равенства:

$$C_1(x) = \frac{x^3}{12} + C_1,$$

$$C_2(x) = \int -\frac{x^2 \cos 2x}{4} dx = \frac{\sin 2x}{16} - \frac{x \cos 2x}{8} - \frac{x^2 \sin 2x}{8} + C_2,$$

$$C_3(x) = \int -\frac{x^2 \sin 2x}{4} dx = \frac{x^2 \cos 2x}{8} - \frac{x \sin 2x}{8} - \frac{\cos 2x}{16} + C_3,$$

где C_1, C_2, C_3 — произвольные постоянные (при интегрировании C_2' и C_3' применялся метод интегрирования по частям).

Подставляя выражения для C_1, C_2, C_3 в общее решение, получаем:

$$y = \frac{x^3}{12} + C_1 + \left(\frac{\sin 2x}{16} - \frac{x\cos 2x}{8} - \frac{x^2\sin 2x}{8} + C_2\right)\cos 2x + \left(\frac{x^2\cos 2x}{8} - \frac{x\sin 2x}{8} - \frac{\cos 2x}{16} + C_3\right)\sin 2x$$

или после упрощения:

$$y = C_1 + C_2 \cos 2x + C_3 \sin 2x - \frac{x}{8} + \frac{x^3}{12}$$
.

Дифференцируем полученное общее решение дважды:

$$y' = -2C_2 \sin 2x + 2C_3 \cos 2x - \frac{1}{8} + \frac{x^2}{4},$$

$$y'' = -4C_2\cos 2x - 4C_3\sin 2x + \frac{x}{2}.$$

Подставляем в выражения для y, y', y'' заданные начальные условия и находим C_1, C_2, C_3 :

$$\begin{cases} 2 = C_1 + C_2, \\ \frac{15}{8} = 2C_3 - \frac{1}{8}, \\ 4 = -4C_2. \end{cases}$$

Отсюда $C_1 = 3$, $C_2 = -1$, $C_3 = 1$.

Получили решение задачи Коши:

$$y = 3 - \cos 2x + \sin 2x - \frac{x}{8} + \frac{x^3}{12}$$
.

Структура общего решения неоднородного линейного уравнения определяется формулой $y = y_0 + y_u$, где y_0 – общее решение соответствующего однородного уравнения, y_u – частное решение неоднородного уравнения. Это свойство используется в методе Эйлера, алгоритм реализации которого излагается ниже.

Метод неопределенных коэффициентов

Для решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами и правой частью f(x) специального вида используют метод Эйлера (метод неопределенных коэффициентов). Этот метод применим, если функция f(x) имеет вид: $f(x) = e^{\alpha x} \left(P_n(x) \cos \beta x + Q_m(x) \sin \beta x \right)$, где $\alpha, \beta \in \mathbf{R}$, $P_n(x)$, $Q_m(x)$ — многочлены степени n и m соответственно.

Для реализации метода необходимо выполнить следующие действия.

1. Решить соответствующее однородное дифференциальное уравнение, используя характеристическое уравнение $\lambda^n + a_{n-1}\lambda^{n-1} + ... + a_1\lambda + a_0 = 0$.

Общее решение однородного уравнения записать в виде $y_0 = C_1 y_1 + C_2 y_2 + ... + C_n y_n$, где $y_1, y_2, ..., y_n$ — его частные решения, полученные в соответствии с типом корней характеристического уравнения.

2. Записать контрольное число $\sigma = \alpha + \beta i$, где α, β — числа, которые заданы исходным уравнением. Определить, имеется ли число σ среди корней характеристического уравнения. Если имеется, то определить кратность k этого корня.

3. Если $\sigma = \alpha + \beta i$ не содержится среди корней характеристического уравнения, то записать искомое частное решение y_q дифференциального уравнения в виде $y_q = e^{\alpha x} (\overline{P}_r(x) \cos \beta x + \overline{Q}_r(x) \sin \beta x)$.

Если среди корней характеристического уравнения имеется корень $\sigma = \alpha + \beta i$, кратность которого k, то искомое частное решение y_q дифференциального уравнения записать в виде $y_q = x^k e^{\alpha x} (\bar{P}_r(x) \cos \beta x + \bar{Q}_r(x) \sin \beta x)$, где в равенствах $\bar{P}_r(x)$, $\bar{Q}_r(x)$ — многочлены степени r, $r = \max(n,m)$ — большая степень многочленов из правой части заданного уравнения. Многочлены $\bar{P}_r(x)$ и $\bar{Q}_r(x)$ необходимо записать в стандартном виде с буквенными коэффициентами.

- 4. Коэффициенты многочленов $\bar{P}_r(x)$, $\bar{Q}_r(x)$ найти методом неопределенных коэффициентов. Для этого необходимо вычислить производные y'_q , y''_q , ..., $y^{(n)}_q$ и подставить в левую часть уравнения заданного уравнения. Далее надо привести подобные относительно $\cos \beta x$ и $\sin \beta x$, а затем приравнять многочлены при одноименных тригонометрических функциях. Используя равенство многочленов, записывают систему уравнений относительно искомых числовых коэффициентов.
- 5. Найденные значения числовых коэффициентов необходимо подставить в многочлены \bar{P}_r и \bar{Q}_r частного решения y_u
 - 6. Записать общее решение заданного дифференциального уравнения.

Замечание. 1. Если правая часть неоднородного линейного уравнения есть сумма различных функций специального вида, то для нахождения y_{q} используют теорему о наложении решений: если в уравнении правая часть имеет вид: $f(x) = f_{1}(x) + f_{2}(x) + ... + f_{k}(x)$, где $k \in \mathbb{N}$, а $y_{\frac{1}{2}}, y_{\frac{1}{2}}, ..., y_{\frac{1}{2}}$ — частные решения уравнений

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_0(x)y = f_1(x),$$

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_0(x)y = f_2(x),$$

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_0(x)y = f_k(x),$$

соответственно, то функция $y_{i_1} = y_{i_1} + y_{i_2} + ... + y_{i_k}$ является решением заданного уравнения.

2. Если в правой части f(x) линейного неоднородного уравнения присутствует только одно слагаемое с тригонометрической функцией (т. е. $P_n \cos \beta x$ или $Q_m \sin \beta x$), то общее решение и в этом случае записывают в общем виде, т. е. с двумя тригонометрическими функциями.

Пример. Решить уравнение методом Эйлера:

1)
$$y'' - 3y' = e^{-3x}(x+2)^2$$
; 2) $y^{IV} + 2y'' + y = 2\cos x + 3\sin x$;

3)
$$y''' + y'' + 4y' + 4y = e^{-x}(\cos 2x + x \sin 2x)$$
.

Решение. 1) Это линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами и правой частью специального вида. Для его решения используем метод Эйлера.

Рассмотрим соответствующее однородное уравнение y''-3y'=0. Его характеристическое уравнение — $\lambda^2-3\lambda=0 \Rightarrow \lambda(\lambda-3)=0$ — имеет простые действительные корни $\lambda_1=0,\ \lambda_2=3$. Тогда общее решение однородного уравнения — $y_0=C_1+C_2e^{3x}$, где C_1,C_2 — произвольные постоянные.

Запишем контрольное число $\sigma = -3$ (так как $\alpha = -3$, $\beta = 0$). Контрольное число не содержится среди корней характеристического уравнения. Тогда искомое частное решение заданного дифференциального уравнения имеет вид $y_q = e^{-3x}(Ax^2 + Bx + C)$, где A, B, C — неопределенные коэффициенты, которые надо найти. Для этого вычислим производные y_q', y_q'' :

$$y_{q}' = -3e^{-3x}(Ax^{2} + Bx + C) + e^{-3x}(2Ax + B),$$

$$y_{q}'' = 9e^{-3x}(Ax^{2} + Bx + C) - 3e^{-3x}(2Ax + B) - 3e^{-3x}(2Ax + B) + 2Ae^{-3x}.$$

Подставляем полученные выражения y'_{u} и y''_{u} в заданное дифференциальное уравнение:

$$9e^{-3x}(Ax^2 + Bx + C) - 6e^{-3x}(2Ax + B) + 2Ae^{-3x} -$$

$$-3(-3e^{-3x}(Ax^2 + Bx + C) + e^{-3x}(2Ax + B)) = e^{-3x}(x + 2)^2.$$

Сокращаем на e^{-3x} и группируем относительно степеней x:

$$(9A+9A)x^2 + (9B-12A+9B-6A)x + 9C-6B+2A+9C-3B = x^2+4x+4.$$

Приравниваем коэффициенты при одинаковых степенях х:

$$x^{2}:\begin{cases} 18A = 1, \\ x^{1}: \\ 18B - 18A = 4, \\ x^{0}: \\ 18C - 9B + 2A = 4. \end{cases}$$

Решаем полученную систему уравнений и находим A, B, C: $A = \frac{1}{18}$, $B = \frac{5}{18}$, $C = \frac{115}{324}$.

Подставляем найденные коэффициенты в частное решение:

$$y_{y} = e^{-3x} \left(\frac{1}{18} x^2 + \frac{5}{18} x + \frac{115}{324} \right)$$
 ИЛИ $y_{y} = \frac{e^{-3x}}{18} \left(x^2 + 5x + \frac{115}{18} \right).$

Тогда общее решение заданного дифференциального уравнения имеет вид:

$$y = C_1 + C_2 e^{3x} + \frac{e^{-3x}}{18} \left(x^2 + 5x + \frac{115}{18} \right).$$

2) Это линейное неоднородное дифференциальное уравнение 4-го порядка с постоянными коэффициентами и правой частью специального вида. Используем метод Эйлера для нахождения его общего решения. Соответствующее однородное уравнение — $y^{IV} + 2y'' + y = 0$. Его характеристическое уравнение — $\lambda^4 + 2\lambda^2 + 1 = 0$ или $(\lambda^2 + 1)^2 = 0$ — имеет корни $\lambda_{1,2} = \pm i$ кратности 2 (комплексно-сопряженные).

Тогда общее решение соответствующего однородного уравнения – $y_0 = C_1 \cos x + C_2 x \cos x + C_3 \sin x + C_4 x \sin x$, где c_1, c_2, c_3, c_4 – произвольные постоянные.

Запишем контрольное число $\sigma = i$, так как $\alpha = 0$, $\beta = 1$. Контрольное число σ содержится среди корней характеристического уравнения кратности 2. Поэтому искомое частное решение заданного дифференциального уравнения ищем в виде $y_q = x^2 (A\cos x + B\sin x)$, где A, B — коэффициенты, которые надо найти.

Дифференцируем у, дважды:

$$y'_{q} = 2x(A\cos x + B\sin x) + x^{2}(-A\sin x + B\cos x),$$

$$y''_{q} = 2(A\cos x + B\sin x) + 2x(-A\sin x + B\cos x) +$$

$$+2x(-A\sin x + B\cos x) + x^{2}(-A\cos x - B\sin x).$$

Упростим $y_{y}'': y_{y}'' = (2-x^{2})(A\cos x + B\sin x) + 4x(-A\sin x + B\cos x).$

Далее получим:

$$y_{q}^{""} = -2x(A\cos x + B\sin x) + (2 - x^{2})(-A\sin x + B\cos x) +$$

$$+4(-A\sin x + B\cos x) + 4x(-A\cos x - B\sin x).$$

Упростим это выражение: $y_y''' = -6x(A\cos x + B\sin x) + (6-x^2)(-A\sin x + B\cos x)$.

Дифференцируем последний раз:

$$y_{q}^{IV} = -6(A\cos x + B\sin x) - 6x(-A\sin x + B\cos x) - 2x(-A\sin x + B\cos x) + (6-x^{2})(-A\cos x - B\sin x).$$

Упрощаем полученное выражение: $y_q^{IV} = (x^2 - 12)(A\cos x + B\sin x) - 8x(-A\sin x + B\cos x)$.

$$(x^{2}-12)(A\cos x + B\sin x) - 8x(-A\sin x + B\cos x) +$$

$$+2(2-x^{2})(A\cos x + B\sin x) + 8x(-A\sin x + B\cos x) +$$

$$+x^{2}(A\cos x + B\sin x) = 2\cos x + 3\sin x.$$

Группируем относительно $\cos x$ и $\sin x$:

$$(Ax^2 - 12A - 8Bx + 4A - 2Ax^2 + 8Bx + Ax^2)\cos x +$$

$$+(Bx^2-12B+8Ax+4B-2Bx^2-8Ax+Bx^2)\sin x = 2\cos x + 3\sin x.$$

После преобразований в скобках получим: $-8A\cos x - 8B\sin x = 2\cos x + 3\sin x$.

Приравниваем коэффициенты при одноименных тригонометрических функциях и получаем систему

$$\cos x : \begin{cases} -8A = 2, \\ \sin x : \end{cases} -8B = 3,$$

решение которой: $A = -\frac{1}{4}$, $B = -\frac{3}{8}$.

Подставляем найденные коэффициенты в частное решение $y_q: y_q = x^2 \left(-\frac{1}{4} \cos x - \frac{3}{8} \sin x \right)$.

Тогда общее решение заданного дифференциального уравнения:

$$y = C_1 \cos x + C_2 x \cos x + C_3 \sin x + C_4 x \sin x + x^2 \left(-\frac{1}{4} \cos x - \frac{3}{8} \sin x \right)$$

$$y = \left(C_1 + C_2 x - \frac{x^2}{4} \right) \cos x + \left(C_3 + C_4 x - \frac{3x^2}{8} \right) \sin x.$$
ИЛИ

3) Это линейное неоднородное дифференциальное уравнение 3-го порядка с постоянными коэффициентами и специальной правой частью. Соответствующее однородное уравнение — y''' + y'' + 4y' + 4y = 0. Его характеристическое уравнение — $\lambda^3 + \lambda^2 + 4\lambda + 4 = 0$ или $(\lambda + 1)(\lambda^2 + 4) = 0$. Получаем корни характеристического уравнения: $\lambda_1 = -1$, $\lambda_{2,3} = \pm 2i$. Тогда общее решение соответствующего однородного уравнения имеет вид: $y_0 = C_1 e^{-x} + C_2 \cos 2x + C_3 \sin 2x$, где C_1, C_2, C_3 — произвольные постоянные.

Запишем контрольное число $\sigma = -1 + 2i$, так как $\alpha = -1$, $\beta = 2$. Контрольное число не содержится среди корней характеристического уравнения. Тогда искомое частное решение заданного дифференциального уравнения ищем в виде $y_q = e^{-x}((Ax + B)\cos 2x + (Cx + D)\sin 2x)$, где A, B, C, D — коэффициенты, которые надо найти. Дифференцируем трижды y_q :

$$y'_{q} = -e^{-x}((Ax+B)\cos 2x + (Cx+D)\sin 2x) +$$

$$+e^{-x}(A\cos 2x - 2(Ax+B)\sin 2x + C\sin 2x + 2(Cx+D)\cos 2x).$$

Упростим это выражение: $y'_{q} = e^{-x}((-Ax + 2Cx - B + A + 2D)\cos 2x + (-Cx - 2Ax - D - 2B + C)\sin 2x)$. Далее дифференцируем:

$$y_{q}'' = -e^{-x}((-Ax + 2Cx - B + A + 2D)\cos 2x + (-Cx - 2Ax - D - 2B + C)\sin 2x) + e^{-x}((-A + 2C)\cos 2x - 2(-Ax + 2Cx - B + A + 2D)\sin 2x + (-C - 2A)\sin 2x + 2(-Cx - 2Ax - D - 2B + C)\cos 2x).$$

Упростим это выражение:

$$y_{q}'' = e^{-x}((-3Ax - 4Cx - 2A - 3B + 4C - 4D)\cos 2x + (4Ax - 3Cx - 4A + 4B - 2C - 3D)\sin 2x.$$

$$y_{q}''' = -e^{-x}((-3Ax - 4Cx - 2A - 3B + 4C - 4D)\cos 2x + (4Ax - 3Cx - 4A + 4B - 2C - 3D)\sin 2x) + e^{-x}((-3A - 4C)\cos 2x - 2(-3Ax - 4Cx - 2A - 4B - 4C - 4D)\sin 2x + (4A - 3C)\sin 2x + 2(4Ax - 3Cx - 4A + 4B - 2C - 3D)\cos 2x).$$

Упростим это выражение:

$$y_{q}^{"'} = e^{-x} ((11Ax - 2Cx - 9A + 11B - 12C - 2D)\cos 2x + (2Ax + 11Cx + 12A + 2B - 9C + 11D)\sin 2x).$$

Подставляя выражения для y_q , y_q'' , y_q''' , y_q''' в заданное дифференциальное уравнение, группируем и, приравнивая коэффициенты при одноименных тригонометрических функциях, имеем:

$$x\cos 2x: \begin{cases} 11A - 2C - 3A - 4C - 4A + 8C + 4A = 0, \\ x\sin 2x: \end{cases} \begin{cases} 2A + 11C + 4A - 3C - 8A - 4C + 4C = 1, \\ -9A + 11B - 12C - 2D - 2A - 3B + 4C - 4D - 4B + 4A + 8D + 4B = 1, \\ \sin 2x: \end{cases} \begin{cases} 12A + 2B - 9C + 11D - 4A + 4B - 2C - 3D - 4D - 8B + 4C + 4D = 0. \end{cases}$$

Упрощая выражения, получаем систему уравнений

$$\begin{cases} 8A + 2C = 0, \\ -2A + 8C = 1, \\ -7A + 8B - 8C + 2D = 1, \\ 8A - 2B - 7C + 8D = 0. \end{cases}$$

Решаем ее и находим: $A = -\frac{1}{34}$, $C = \frac{4}{34}$, $B = \frac{50}{289}$, $D = \frac{203}{1156}$.

Подставляем найденные коэффициенты в y_{\pm} : $y_{q} = e^{-x} \left(\left(\frac{50}{289} - \frac{x}{34} \right) \cos 2x + \left(\frac{4x}{34} + \frac{203}{1156} \right) \sin 2x \right)$.

Тогда общее решение заданного дифференциального уравнения:

$$y = C_1 e^{-x} + C_2 \cos 2x + C_3 \sin 2x +$$

$$+ e^{-x} \left(\left(\frac{50}{289} - \frac{x}{34} \right) \cos 2x + \left(\frac{4x}{34} + \frac{203}{1156} \right) \sin 2x \right).$$

Пример. Решить уравнения:

1)
$$y'' - 2y' - 3y = e^{2x}$$
; 2) $y'' + 25y = \cos 5x$; 3) $y'' - y = 2x + e^x$.

Решение. 1) Это линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами и специальной правой частью вида $f(x) = e^{2x}(0 \cdot \cos 0x + b \cdot \sin 0x)$, где b — число, $\alpha = 2$, $\beta = 0$.

Соответствующее однородное уравнение: y''-2y'-3y=0. Его характеристическое

уравнение — $\lambda^2 - 2\lambda - 3 = 0$ — имеет действительные простые корни $\lambda_1 = -1$, $\lambda_2 = 3$. Тогда общее решение соответствующего однородного дифференциального уравнения — $y_0 = C_1 e^{-x} + C_2 e^{3x}$.

Запишем контрольное число σ =2. Оно не является корнем характеристического уравнения. Тогда частное решение заданного дифференциального уравнения ищем в виде $y_q = Ae^{2x}$, где A — коэффициент, который надо найти.

Дифференцируем у, дважды:

$$y'_u = 2Ae^{2x}, \quad y''_u = 4Ae^{2x}.$$

Подставляем y_q, y_q', y_q'' в заданное дифференциальное уравнение:

$$4Ae^{2x}-2\cdot 2Ae^{2x}-3Ae^{2x}=e^{2x}$$
, получаем $A=-\frac{1}{3}$.

Затем подставляем этот коэффициент в выражение для y_{i} : $y_{i} = -\frac{e^{2x}}{3}$.

Общее решение заданного дифференциального уравнения запишем в виде

$$y = C_1 e^{-x} + C_2 e^{3x} - \frac{e^{2x}}{3}.$$

2) Это линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами и специальной правой частью вида

$$f(x) = e^{0x}(1 \cdot \cos 5x + 0 \cdot \sin 5x)$$
, ГДе $\alpha = 0$, $\beta = 5$.

Соответствующее однородное уравнение имеет вид: y'' + 25y = 0. Его характеристическое уравнение — $\lambda^2 + 25 = 0$, — имеет простые комплексно-сопряженные корни $\lambda_{1,2} = \pm 5i$. Тогда общее решение однородного уравнения — $y_0 = C_1 \cos 5x + C_2 \sin 5x$.

Контрольное число $\sigma = 5i$ совпадает с одним из корней характеристического уравнения, кратности 1. Поэтому частное решение заданного дифференциального уравнения ищем в виде $y_q = x(A\cos 5x + B\sin 5x)$, где A, B — коэффициенты, которые надо найти.

Дифференцируем у, дважды:

$$y'_{tt} = (A\cos 5x + B\sin 5x) + x(-5A\sin 5x + 5B\cos 5x),$$

$$y''_{tt} = -5A\sin 5x + 5B\cos 5x - 5A\sin 5x + 5B\cos 5x +$$

$$+x(-25A\cos 5x - 25B\sin 5x).$$

Упрощаем y_{ij} : y_{ij} = $-10A\sin 5x + 10B\cos 5x + x(-25A\cos 5x - 25B\sin 5x)$.

Подставляем $y_u^{"}$, y_u в заданное дифференциальное уравнение:

 $-10A\sin 5x + 10B\cos 5x + x(-25A\cos 5x - 25B\sin 5x) +$ $+25x(A\cos 5x + B\sin 5x) = \cos 5x.$

Группируя относительно $\sin 5x$, а также $\cos 5x$ и приравнивая коэффициенты при одноименных тригонометрических функциях, получим систему

$$\begin{cases} 10B = 1, \\ -10A = 0, \end{cases}$$

из которой находим A=0, $B=\frac{1}{10}$. Тогда частное решение: $y_4=\frac{x}{10}\sin 5x$, а общее решение заданного дифференциального уравнения — $y=C_1\cos 5x+C_2\sin 5x+\frac{x}{10}\sin 5x$ или

$$y = C_1 \cos 5x + \left(C_2 + \frac{x}{10}\right) \sin 5x.$$

3) Это линейное неоднородное дифференциальное уравнение с постоянными коэффициентами и специальной правой частью вида $f_1(x) + f_2(x) = 2x + e^x$. Для нахождения его общего решения воспользуемся методом Эйлера и теоремой о наложении решений.

Соответствующее однородное уравнение для заданного дифференциального уравнения — y''-y=0. Его характеристическое уравнение — $\lambda^2-1=0$, имеет простые действительные корни $\lambda_{1,2}=\pm 1$. Значит, общее решение однородного уравнения — $y_0=C_1e^{-x}+C_2e^x$.

Частное решение заданного дифференциального уравнения будем искать в виде $y_{i_1} = y_{i_1} + y_{i_2}$, где y_{i_1} — частное решение дифференциального уравнения y'' - y = 2x; y_{i_2} — частное решение дифференциального уравнения $y'' - y = e^x$.

Контрольные числа этих дифференциальных уравнений $\sigma_1 = 0$ и $\sigma_2 = 1$, соответственно. Поскольку $\sigma_1 = 0$ не является корнем характеристического уравнения, то частное решение y_{ι_l} ищем в виде $y_{\iota_l} = Ax + B$, где A, B — коэффициенты, которые надо найти.

Дифференцируем $y_{u_1}: y'_{u_1} = A$, $y''_{u_1} = 0$. Подставляя в первое из дифференциальных уравнений y''_{u_1} и y_{u_1} , получим -Ax - B = 2x, откуда находим A = -2, B = 0. Тогда $y_{u_1} = -2x$.

Поскольку σ_2 = 1 — простой корень характеристического уравнения, то частное решение второго из дифференциальных уравнений ищем в виде $y_{u_2} = Axe^x$, где A — коэффициент, который надо найти.

Дифференцируем y_{u_2} : $y'_{u_2} = Ae^x + Axe^x$, $y''_{u_2} = 2Ae^x + Axe^x$. Подставляем y''_{u_2} и y_{u_2} в уравнение: $2Ae^x + Axe^x - Axe^x = e^x$ или $2Ae^x = e^x$. Отсюда получаем, что $A = \frac{1}{2}$. Тогда $y_{u_2} = \frac{xe^x}{2}$.

Записываем частное решение заданного дифференциального уравнения: $y_{q} = -2x + \frac{xe^{x}}{2}.$ Тогда его общее решение имеет вид: $y = C_{1}e^{-x} + C_{2}e^{x} - 2x + \frac{xe^{x}}{2}.$

Пример. Решить задачу Коши:

$$y''' - y' = \sin x$$
, $y(0) = 2.5$, $y'(0) = 0$, $y''(0) = 1.5$.

Решение. Это линейное неоднородное дифференциальное уравнение с постоянными коэффициентами и специальной правой частью вида $f(x) = e^{0x}(0 \cdot \cos x + 1 \cdot \sin x)$, где $\alpha = 0$, $\beta = 1$, P(x) = 0, Q(x) = 1. Соответствующее однородное дифференциальное уравнение — y''' - y' = 0. Его характеристическое уравнение — $\lambda^3 - \lambda = 0$, с корнями $\lambda_1 = 0$, $\lambda_{2,3} = \pm 1$. Тогда общее решение однородного уравнения — $y_0 = C_1 + C_2 e^{-x} + C_3 e^x$.

Контрольное число $\sigma = i$ не является корнем характеристического уравнения. Поэтому частное решение заданного дифференциального уравнения ищем в виде $y_q = A\cos x + B\sin x$, где A, B — неизвестные коэффициенты.

Дифференцируем y_q трижды: $y_q' = -A\sin x + B\cos x$, $y_q'' = -A\cos x - B\sin x$, $y_q''' = A\sin x - B\cos x$.

Подставляем $y_{q}^{\prime\prime\prime}$ и y_{q}^{\prime} в заданное дифференциальное уравнение:

 $A\sin x - B\cos x - (-A\sin x + B\cos x) = \sin x.$

Приравниваем коэффициенты при одноименных тригонометрических функциях, получаем систему

$$\begin{cases} 2A=1, \\ -2B=0, \end{cases}$$
 из которой находим $A=\frac{1}{2}, \ B=0.$

Тогда получаем: $y_{ij} = \frac{\cos x}{2}$.

Общее решение заданного дифференциального уравнения:

$$y = C_1 + C_2 e^{-x} + C_3 e^x + \frac{\cos x}{2}.$$

Дифференцируем общее решение:

$$\begin{cases} y' = -C_2 e^{-x} + C_3 e^x - \frac{\sin x}{2}, \\ y'' = C_2 e^{-x} + C_3 e^x - \frac{\cos x}{2}. \end{cases}$$

Подставляем заданные начальные условия:

$$\begin{cases} \frac{5}{2} = C_1 + C_2 + C_3 + \frac{1}{2}, \\ 0 = -C_2 + C_3, \\ \frac{3}{2} = C_2 + C_3 - \frac{1}{2}. \end{cases}$$

Из полученной системы находим $C_1 = 0$, $C_2 = 1$, $C_3 = 1$.

Решением задачи Коши является $y = e^{-x} + e^{x} + \frac{\cos x}{2}$.