Reinforcement Learning

CSCI 4511/6511

Joe Goldfrank

Announcements

- Extra Credit HW: Due 4 Dec
- Project Proposals
- Final Exam: 4 Dec
- Project Deadline: 13 Dec

Multi-Armed Bandits

- Slot machine with more than one arm
- Each pull has a cost
- Each pull has a payout
- Probability of payouts unknown
- Goal: maximize reward
 - Time horizon?

Solving Multi-Armed Bandits

Confidence Bounds

- Expected value of reward per arm
 - Confidence interval of reward per arm
- Select arm based on upper confidence bound

- How do we estimate rewards?
 - Explore vs. exploit

Bandit as MDP?

Bandit Strategies

- ullet Gittins Index: $\lambda = \max_{T>0} rac{E[\sum^{T-1} \gamma^t R_t]}{E[\sum^{T-1} \gamma^t]}$
- Upper Confidence Bound for arm M_i :
 - ullet $UCB(M_i) = \mu_i + rac{g(N)}{\sqrt{N_i}}$
 - g(N) is the "regret"
- Thompson Sampling
 - Sample arm based on probability of being optimal

Tree Search

- Forget DFS, BFS, Dijkstra, A*
 - State space too large
 - Stochastic expansion
- Impossible to search entire tree
- Can simulate problem forward in time from starting state

- Randomly simulate trajectories through tree
 - Complete trajectory
 - No heuristic needed¹
 - Need a model
- Better than exhaustive search?

Selection Policy

- Focus search on "important" parts of tree
 - Similar to alpha-beta pruning
- Explore vs. exploit
 - Simulation
 - Not actually exploiting the problem
 - Exploiting the search

- Choose a node
 - Explore/exploit
 - Choose a successor
 - Continue to leaf of search tree
- Expand leaf node
- Simulate result until completion
- Back-propagate results to tree

Selection/Search

Expansion

Simulation/Rollout

Back-Propagation

Upper Confidence Bounds for Trees (UCT)

- MDP: Maximize $Q(s,a) + c\sqrt{\frac{\log N(s)}{N(s,a)}}$
 - lacksquare Q for state s and action a
- POMDP: Maximize $Q(h,a) + c\sqrt{\frac{\log N(h)}{N(h,a)}}$
 - Q for history h and action a
 - History: action/observation sequence
- c is exploration bonus

UCT Search - Algorithm

Algorithm 4.9 Monte Carlo tree search

```
1: function SelectAction(s, d)
          loop
 2:
               SIMULATE(s, d, \pi_0)
 3:
          return arg max<sub>a</sub> Q(s,a)
 4:
 5: function Simulate(s, d, \pi_0)
          if d = 0
 6:
               return 0
 7:
          if s \notin T
 8:
               for a \in A(s)
 9:
                    (N(s,a), Q(s,a)) \leftarrow (N_0(s,a), Q_0(s,a))
10:
               T = T \cup \{s\}
11:
               return Rollout(s, d, \pi_0)
12:
          a \leftarrow \arg\max_{a \in A(s)} \left[ Q(s, a) + c \sqrt{\frac{\log N(s)}{N(s, a)}} \right]
13:
          (s',r) \sim G(s,a)
14:
          q \leftarrow r + \gamma \text{Simulate}(s', d - 1, \pi_0)
15:
          N(s,a) \leftarrow N(s,a) + 1
16:
          Q(s,a) \leftarrow Q(s,a) + \frac{q - Q(s,a)}{N(s,a)}
17:
18:
          return q
```

Algorithm 4.10 Rollout evaluation

```
1: function ROLLOUT(s, d, \pi_0)

2: if d = 0

3: return 0

4: a \sim \pi_0(s)

5: (s', r) \sim G(s, a)

6: return r + \gamma \text{ROLLOUT}(s', d - 1, \pi_0)
```

Mykal Kochenderfer. Decision Making Under

Uncertainty, MIT Press 2015

Monte Carlo Tree Search - Search

- ullet If current state $\in T$ (tree states):
 - Maximize:

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}}$$

• Update Q(s, a) during search

Monte Carlo Tree Search - Expansion

- ullet State otin T
 - Initialize N(s,a) and Q(s,a)
 - Add state to *T*

Monte Carlo Tree Search - Rollout

- Policy π_0 is "rollout" policy
 - Usually stochastic
 - States *not* tracked

Model Uncertainty

Erstwhile

- States
- Actions
- Transition model between states, based on actions
- *Known* rewards

Model Uncertainty

- No model of transition dynamics
- No initial knowledge of rewards

We can *learn* these things!

Model Uncertainty

Action-value function:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a)U(s')$$

we don't know T:

$$egin{align} U^\pi(s) &= E_\pi \left[r_t + \gamma r_{t+1} + \gamma r_{t+2} + \gamma r_{t+3} + \ldots | s
ight] \ Q(s,a) &= E_\pi \left[r_t + \gamma r_{t+1} + \gamma r_{t+2} + \gamma r_{t+3} + \ldots | s, a
ight] \end{aligned}$$

Temporal Difference (TD) Learning

• Take action from state, observe new state, reward

$$U(s) \leftarrow U(s) + \alpha \left[r + \gamma U(s') - U(s)\right]$$

• Update immediately given (s, a, r, s')

- TD Error: $[r + \gamma U(s') U(s)]$
 - Measurement: $r + \gamma U(s')$
 - Old Estimate: U(s)

TD Learning - Example

Q-Learning

- U^{π} gives us utility
- Solving for U^{π} allows us to pick a new policy

State-action value function: Q(s, a)

- $\max_a Q(s, a)$ provides optimal policy
- Goal: Learn Q(s, a)

Q-Learning

Iteratively update Q:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[R + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

- Current state s and action a
- Next state s', next action(s) a'
- Reward R
- Discount rate γ
- Learning rate α

Q-Learning Algorithm

Algorithm 5.3 Q-learning

```
1: function QLEARNING
        t \leftarrow 0
2:
   s_0 \leftarrow \text{initial state}
3:
   Initialize Q
4:
        loop
5:
             Choose action a_t based on Q and some exploration strategy
6:
             Observe new state s_{t+1} and reward r_t
7:
             Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))
8:
             t \leftarrow t + 1
9:
```

Q-Learning Example

Sarsa

Q-Learning:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[R + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

Sarsa:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R + \gamma Q(s',a') - Q(s,a) \right]$$

Differences?

Sarsa Example

Q-Learning vs. Sarsa

- Sarsa is "on-policy"
 - Evaluates state-action pairs *taken*
 - Updates policy every step
- Q-learning is "off-policy"
 - Evaluates "optimal" actions for future states
 - Updates policy every step

Exploration vs. Exploitation

- Consider only the goal of learning the optimal policy
 - Always picking "optimal" policy does not search
 - Picking randomly does not check "best" actions
- ϵ -greedy:
 - With probability ϵ , choose random action
 - With probability 1ϵ , choose 'best' action
 - \bullet need not be fixed

Eligibility Traces

- Q-learning and Sarsa both propagate Q-values slowly
 - Only updates individual state
- Recall MCTS:
 - (Also recall that MCTS needs a generative model)

Recall MCTS

Algorithm 4.9 Monte Carlo tree search

```
1: function SelectAction(s, d)
 2:
          loop
               SIMULATE(s, d, \pi_0)
  3:
          return arg max<sub>a</sub> Q(s,a)
 4:
 5: function Simulate(s, d, \pi_0)
          if d = 0
               return 0
          if s \notin T
 8:
               for a \in A(s)
 9:
                    (N(s,a),Q(s,a)) \leftarrow (N_0(s,a),Q_0(s,a))
10:
               T = T \cup \{s\}
11:
               return Rollout(s, d, \pi_0)
12:
         a \leftarrow \arg\max_{a \in A(s)} \left[ Q(s, a) + c \sqrt{\frac{\log N(s)}{N(s, a)}} \right]
13:
          (s',r) \sim G(s,a)
14:
          q \leftarrow r + \gamma \text{Simulate}(s', d - 1, \pi_0)
15:
          N(s,a) \leftarrow N(s,a) + 1
16:
          Q(s,a) \leftarrow Q(s,a) + \frac{q - Q(s,a)}{N(s,a)}
17:
18:
          return q
```

Eligibility Traces

- Keep track of what state-action pairs agent has seen
- Include future rewards in past Q-values
- *Very* useful for sparse rewards
 - Can be more efficient for non-sparse rewards

Eligibility Traces

- Keep N(s, a): "number of times visited"
- Take action a_t from state s_t :
 - $lacksquare N(s_t, a_t) \leftarrow N(s_t, a_t) + 1$
- Every time step:¹
 - $\bullet \ \delta = R + \gamma Q(s',a') Q(s,a)$
 - $Q(s,a) \leftarrow \alpha \delta N(s,a)$
 - $N(s,a) \leftarrow \gamma \lambda N(s,a)$
 - \circ Discount factor γ
 - \circ Time decay λ

Sarsa- λ

Sarsa:

•
$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R + \gamma Q(s',a') - Q(s,a)\right]$$

Sarsa- λ :

•
$$\delta = R + \gamma Q(s', a') - Q(s, a)$$

•
$$Q(s,a) \leftarrow \alpha \delta N(s,a)$$

Sarsa- λ

Algorithm 5.4 Sarsa(λ)-learning

```
1: function SarsaLambdaLearning(\lambda)
          Initialize Q and N
 2:
          t \leftarrow 0
 3:
          s_0, a_0 \leftarrow initial state and action
 4:
         loop
 5:
               Observe reward r_t and new state s_{t+1}
 6:
               Choose action a_{t+1} based on some exploration strategy
 7:
               N(s_t, a_t) \leftarrow N(s_t, a_t) + 1
 8:
              \delta \leftarrow r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)
 9:
               for s \in S
10:
                    for a \in A
11:
                         Q(s,a) \leftarrow Q(s,a) + \alpha \delta N(s,a)
12:
                         N(s,a) \leftarrow \gamma \lambda N(s,a)
13:
               t \leftarrow t + 1
14:
```

Sarsa- λ Example

$Q-\lambda$?

Q-Learning:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[R + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

Sarsa:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R + \gamma Q(s',a') - Q(s,a) \right]$$

Sarsa-\lambda:

$$\delta = R + \gamma Q(s', a') - Q(s, a) \ Q(s, a) \leftarrow \alpha \delta N(s, a)$$

Watkins Q- λ

Idea: only keep states in N(s,a) that policy would have visited

- Some actions are greedy: $\max_a Q(s, a')$
- Some are random
- On random action, reset N(s, a)
- Why the difference from Sarsa?

Approximation Methods

- Large problems:
 - Continuous state spaces
 - Very large discrete state spaces
 - Learning algorithms can't visit all states
- Assumption: "close" states \rightarrow similar state-action values

Local Approximation

- Store Q(s, a) for a limited number of states: $\theta(s, a)$
- Weighting function β
 - Maps true states to states in θ

$$Q(s,a) = heta^T eta(s,a)$$

Update step:

$$heta \leftarrow heta + lpha \left[R + \gamma heta^T eta(s', a') - heta^T eta(s, a)
ight] eta(s, a)$$

Linear Approximation Q-Learning

Algorithm 5.5 Linear approximation Q-learning

```
1: function LinearApproximationQLearning
```

- 2: $t \leftarrow 0$
- 3: $s_0 \leftarrow \text{initial state}$
- 4: Initialize θ
- 5: **loop**
- 6: Choose action a_t based on $\theta_a^{\top} \beta(s_t)$ and some exploration strategy
- 7: Observe new state s_{t+1} and reward r_t
- 8: $\theta \leftarrow \theta + \alpha (r_t + \gamma \max_a \theta^\top \beta(s_{t+1}, a) \theta^\top \beta(s_t, a_t)) \beta(s_t, a_t)$
- 9: $t \leftarrow t + 1$

Mykal Kochenderfer. Decision Making Under Uncertainty, MIT Press 2015

Example: Grid Interpolations

End.

References

- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. 2nd Edition, 2018.
- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making*. 1st Edition, 2022.

David Silver and Joel Veness, Monte-Carlo Planning in Large POMDPs, Advances in Neural Information Processing Systems 23 (NIPS 2010)

- Stanford CS234 (Emma Brunskill)
- Stanford CS228 (Mykal Kochenderfer)