

Transmission de l'information Rappels

- Les lignes de transmission souffrent de :
 - L'atténuation
 - Atténuation de l'énergie que subit le signal lors de sa propagation, exprimée en db
 - La distorsion temporelle
 - Le bruit
 - Constitué d'énergie parasite provenant de sources autres que l'émetteur.
 - Le bruit thermique est provoqué par le mouvement aléatoire des électrons dans le média.
 - La diaphonie, provoquée par le couplage inductif entre deux câbles proches l'un de l'autre

Transmission Bande de Base

Rappels & limitations (1)

- Quel est le problème de la transmission en bande de base ?
 - Les signaux numériques de par leur forme rectangulaire possèdent un large spectre de fréquences
 - Dégradation du signal très rapide en fonction de la distance parcourue.
 - ⇔ Réseau local <5km.
 - Impossibilité de différencier plusieurs communications sur un même support physique.
 - Utilisation intensives de répéteurs pour des réseaux à longues distances

Répéteurs <=> régénérer régulièrement le signal <=> Coût important

Transmission Bande de Base Rappels & limitations (2)

- Technique non optimale car :
 - Limitation de la bande passante vers les hautes fréquences des supports de transmission (due aux adaptateurs d'impédance, transformateurs d'isolement ...)
 - Composante continue => suite de 0 ou de 1 non distinguable
 - Nécessité de transmettre le rythme d'horloge pour la synchronisation du récepteur qui doit pouvoir reconstituer la séquence des données reçues (ajout d'infos à prévoir)
 - Déformation des signaux transmis augmente avec la largeur de la bande de fréquence utilisée <=> on cherche à réduire la fréquence principale du signal transmis

http://david.bromberg.fr

Transmission Bande de Base

Rappels & limitations (3)

- Le spectre du signal à transmettre doit être compris dans la bande passante du support physique
- On a recours aux techniques de Codage, de Modulation et de Multiplexage pour pallier ces problèmes
 - Adaptation des signaux au support
 - Rentabilisation de l'utilisation du support

http://david.bromberg.fr

Bilan: Transmissions directes de symboles binaires. Bande occupée Bande Passante du Support Objectif Transmission par transposition de fréquence

Transmission modulée

Définitions

- Longues distance = Signal sinusoïdal.
 - Facilement décodable par le récepteur même affaibli.
 - Signal sinusoïdal est obtenu grâce à un modem.
 - Fonctions de modulation et démodulation.
- ⇔ Longues distance => la transformation des données binaires.
- Modulation:
 - Transformation des données numériques en un signal analogique modulant <u>une onde porteuse</u>.

Transmission modulée

Ondes porteuse

- Onde porteuse :
 - Signal adapté au support de transmission.
- Le signal entrant est modulé par une porteuse sinusoïdale de la forme :
 - $S(t) = A \sin (2\pi f_0 t + \phi)$
 - A => Amplitude
 - f₀ => Fréquence
 - Φ => Phase
- Opération de modulation en émission et de démodulation en réception assurer par l'ETCD ~Modem.

Transmission modulée Principaux types de modulation

- Modulation par saut de fréquence.
 - Radiodiffusion stéréophonique, télédiffusion
 - Téléphonie
- Modulation par saut d'amplitude.
 - Radiodiffusion monophonique
 - Téléphonie
- Modulation par saut de phase.
 - Transport des signaux numériques sur circuits téléphoniques
 - Faisceaux hertziens
 - Liaisons satellites
- ⇔ Chaque technique a ses avantages et ses faiblesses.

- La modulation FSK
 - => Toute première utilisée
 - Pas très performante
 - Sur le canal téléphonique (0,3 à 3,2kHz) => débit limité à 1,5 kbit/s
 - => S'étale davantage sur la bande passante
- Comment les modems ont ils atteint plus de 56kbit/s?

- la modulation d'amplitude :
 - Envoie un signal d'amplitude différente suivant la valeur du bit à transmettre.
 - La modulation d'amplitude est la seule utilisable sur fibre optique.
 - Inconvénients:
 - Possibilités de perturbation : orage, lignes électriques...
 - Si un signal de grande amplitude (représentant un 1) est momentanément affaibli le récept l'interprétera à tort en un 0.

 $0 \Leftrightarrow A \sin 2\pi f_0 t$; $1 \Leftrightarrow 2E \sin 2\pi f_0 t$

Transmission modulée

ASK (Amplitude Shift Keying)

- Modulation à 4 états : (4-ASK)
 - ⇔ Utilisation de 4 amplitudes
 - 00⇔E; 01⇔2E; 10⇔3E; 11⇔4^E
 - ou bien 00⇔-3E; 01⇔-E; 10⇔E; 11⇔3E pour réduire la puissance nécessaire
- Cas général :
 - Modulation à 2^k états (2^k-ASK) pour transmettre K bits pendant une période

Transmission modulée

1⇔E sin 2πf₀ť

Modulations & démodulations

- Pour atteindre des débits élevés,
 - Pas possible de simplement augmenter la rapidité de modulation (théorème de Nyquist).
 - Ex: pour une bande passante de 3 000 Hz
 - Les modems modulent à 2 400 fois par seconde
 - Augmentation des débits
 - ⇔ Faire correspondre plusieurs bits par action de modulation

Transmission modulée 4-PSK ou QPSK)

 Plusieurs modulations d'amplitudes et de phases sont combinées pour transmettre plusieurs bits par

baud.

• La modulation par saut de phase à 4 états :

 Associe à un code binaire une valeur de la phase phi de la porteuse sinusoïdale.

Bits à transmettre	00	01	10	11
Phase	0	π/2	π	3π/2
Signal transmis	E sin 2πf ₀ t	E cos 2πf ₀ t	- E sin 2πf ₀ t	-E cos 2πf ₀ t

Transmission modulée

Amplitude et Phase (16-QAM)

• Modulation de l'amplitude et de la phase

Transmission modulée

- Possibilité de moduler un signal suivant plusieurs niveaux.
 - Exemple : 4 fréquences différentes
 - => chaque signal envoyé code 2 bits donc 1 baud = 2bit/s.

Transmission modulée

- Possibilité de transmettre des signaux mêlant les différentes modulations présentées
 - Exemple: modulation à la fois l'amplitude du signal sur 2 niveaux et la phase sur 8 niveaux (0, 45,...,315).
 - =>16 signaux différents possibles à chaque instant
 - ⇒ Transmission simultanée de 4 bits à chaque top d'horloge

(1 baud = 4 bit/s).

- Objectif:
 - Faire transiter en même temps les données de plusieurs utilisateurs sur une liaison partagée.
 - ⇒Solution beaucoup plus économique.
 - ⇒Economie d'échelle fondamentale dans l'industrie des télécommunications

Le multiplexage

Définition :

Multiplexage = faire transiter sur une seule et même ligne de liaison, dite voie haute vitesse, des communications appartenant à plusieurs paires d'équipements émetteurs et récepteurs.

Principes

- Bande passante du support de transmission
 - Supérieure à celle nécessaire au signal
- Consiste à partager la bande passante de la voie de transmission en plusieurs bandes de plus faible largeur
- Chacune de ces sous bandes passante est affectées à un émetteur qui devra donc émettre dans cette bande

Le multiplexage

Principes

- Les signaux de chacune de ces bandes sont transmises par un canal unique,
 - A l'émission, utilisation d'un multiplexeur,
 - A la réception, utilisation d'un démultiplexeur qui sépare les différents signaux par une série de filtre passe
 - Aucun adressage explicite n'est nécessaire puisque chaque émetteur est identifié par la bande de fréquences utilisées.
 - Pour assurer une bonne transmission,
 - une bande de fréquence inutilisées entre chaque sous bande (appelée bande de garde),
 - Empêche des chevauchements entre signaux appartenant à des bandes voisines.

- Différents types de multiplexages :
 - le multiplexage fréquentiel
 - le multiplexage temporel
 - partage dans le temps de l'utilisation de la voie haute vitesse en l'attribuant successivement aux différentes voies basse vitesse même si celles-ci n'ont rien à émettre.
 - le multiplexage statistique
 - améliore le multiplexage temporel en n'attribuant la voie haute vitesse qu'aux voies basse vitesse qui ont effectivement quelque chose à transmettre.

le multiplexage fréquentiel

 La transmission en bande de base occupe la totalité de la bande passante du canal, interdisant ainsi l'utilisation du multiplexage fréquentiel.

le multiplexage fréquentiel

- FDM (Frequency Division Multiplexing)
 - Technique de multiplexage par répartition de fréquence (MRF).
 - Utilisé pour accroître les débits sur paires torsadées et plus particulièrement des lignes téléphoniques.
- Le multiplexage fréquentiel = bande de fréquence diviser en canaux ou sous-bandes plus étroits.

Le multiplexage

- Le multiplexage TDM (Time Division Multiplexing)
 - Consiste à affecter à un utilisateur unique la totalité de la bande passante pendant un court instant et à tour de rôle pour chaque utilisateur.
 - => MRT (Multiplexage à répartition dans le temps)

le multiplexage temporel

- Le multiplexage TDM permet de regrouper plusieurs canaux de communications à bas débits sur un seul canal à débit plus élevé.
- Cas d'utilisation
 - Les canaux T1 aux Etats-Unis
 - Regroupent par multiplexage temporel 24 voies à 64 kbit/s en une voie à 1,544 Mbit/s
 - Les canaux E1 en Europe
 - Regroupent 30 voies analogiques en une voie à 2,048 Mbit/s.

Le multiplexage

- Les canaux T1 ou E1 peuvent être multiplexés entre eux pour former des canaux à plus hauts débits.
- Cette hiérarchie des débits est appelée hiérarchie numérique plésiochrone ou PDH (Plesiochronous Digital Hierarchy).

- Inconvénient de la PDH.
 - L'accès ou l'insertion d'une information dans un canal E4 oblige à démultiplexer l'ensemble du train numérique.
- => L'apparition d'une hiérarchie standard plus souple SONET
- Le multiplexage TDM peut être utilisé indifféremment sur paire torsadée ou fibre optique, il est indépendant du média de transmission.

le multiplexage temporel SONET

- SDH normalisé par l'UIT-T ⇔ SONET
 - Utilisés dans les réseaux hauts débits comme ATM pour les transmissions point à point.
 - Permettent des débits hiérarchisés de quelques centaines de Mb/s à plusieurs Gbit/s.

Le multiplexage

PDH	Lin	Line Capacity Mbit/second		
Level	North America	Europe	Japan	
1	1.544	2.048	1.544	
2	6.312	8.448	6.312	
3	44.376	34.368	32.064	
4	-	139.264	97.728	

SONET (ANSI)	Mbit/sec	SDH (ITU-T)
STS-1	51.84	
STS-3	155.52	STM-1
STS-12	622.08	STM-4
STS-24	1244.16	
STS-48	2488.32	STM-16
STS-192	9953.28	STM-64

le multiplexage temporel

- Les données sont transportées dans des trames synchrones et empaquetées dans des conteneurs virtuels.
- Les trames sont émises toutes les 125 microsecondes.

Multiplexage WDM

- A l'inverse de la technologie TDM qui n'utilise qu'une seule longueur d'onde par fibre optique, la technologie WDM (Wavelength Division Multiplexing) met en œuvre un multiplexage de longueurs d'onde.
- L'idée est d'injecter simultanément dans une fibre optique plusieurs trains de signaux numériques sur des longueurs d'ondes distinctes.

ADSL

ADSL

- Asymetric bit rate Digital Subscriber = Line ou ligne numérique d'abonnés à débits asymétriques
- Technique qui utilise, sur de courtes distances, les lignes téléphoniques classiques mais avec un débit très supérieur à celui des normes plus classiques (V34 ou V90).

ADSL

- Full duplex
 - Grâce à un multiplexage fréquentiel
 - Transmission simultanée
 - De signaux montant
 - •De signaux descendant
 - Des signaux portant la voix téléphonique.

