Math 623 Fall 2015

Problem Set # 10

- (1) Construct an increasing function on \mathbb{R} whose set of discontinuities is **exactly** \mathbb{Q} .
- (2) Let $f: \mathbb{R} \to \mathbb{R}$ be an absolutely continuous function. Show that if E is a set of measure zero, then f(E) is also a set of measure zero.
- (3) Suppose that ν, ν_1, ν_2 are signed measures on (X, \mathcal{M}) and μ is a positive measure also on (X, (M)). Prove
 - (a) If $\nu_1 \perp \mu$ and $\nu_2 \perp \mu$ then $\nu_1 + \nu_2 \perp \mu$.
 - (b) If $\nu_1 \ll \mu$, $\nu_2 \ll \mu$ then $\nu_1 + \nu_2 \ll \mu$.
 - (c) $\nu_1 \perp \nu_2$ implies $|\nu_1| \perp |\nu_2|$.
 - (d) $\nu << |\nu|$.
 - (e) If $\nu \perp \mu$ and $\nu \ll \mu$ then $\nu = 0$.
- (4) Consider a measure space (X, \mathcal{M}, μ) and a sequence $\{f_k\}_k$ of measurable functions which are finite μ -a.e. in some set $E \in \mathcal{M}$. Given another measurable function f, we say that $f_k \to f$ in measure if for any $\varepsilon > 0$ we have

$$\lim_{k \to \infty} \mu\left(\left\{x \in E \mid |f(x) - f_k(x)| > \varepsilon\right\}\right) = 0$$

Show that if f_k converges to f in measure, then there is a subsequence $\{f_{k_j}\}_j$ such that $f_{k_j} \to f$ μ -a.e. in E as $j \to \infty$.