

Mathematical Foundations of Computer Science

Lecture 6: Set Theory, Relations, and functions

Announcements

- Homework 1 is due tomorrow (Oct. 4) at 11:59 P.M.
- Question 3: Prove that for any real number $x \ge 0$ and any integer n > 0 one has

$$(1+3x)^{2n} > \frac{2n}{2n+1} + 6nx.$$

• Homework 2: Will be posted tomorrow. Is due Tuesday Oct. 11 at 11:59 P.M.

Review of Contradiction

Proof by Contradiction

Proposition. If R, then Q.

Proof: Assume R is true but Q is false. Arrive at a contradiction. I.e. show R true but Q false is not possible. Conclude $R \Rightarrow Q$.

Thm: If P() is a predicate on \mathbb{N} and (a) P(0) is true and (b) $P(k) \Rightarrow P(k+1)$ for all $k \in \mathbb{N}$, then for all $k \in \mathbb{N}$, predicate P(k) is true.

- Here R is the statement: P() is a predicate on N and (a) P(0) is true and (b) $P(k) \Rightarrow P(k+1)$
- Q is the statement: for all $k \in \mathbb{N}$, predicate P(k) is true.
- Not Q is: There exists an $m \in \mathbb{N}$ such that P(m) is not true.

A Quick Review of Sets (Read Chapter 2.6 in LLM)

Basic Set Theory [Cantor]

A **set** is an unordered collection of objects, where each *element* of the set is considered to included only once.

Roster Notation

$$\{o, s, c, a, r\} = \{r, a, s, c, o\}$$

 $\{NY, ME, MA, NH, VT, PA\}$

Set Builder Notation

Builder Notation

square

$$\{x^2 \mid x \in \mathbb{Z}\} = \{\text{set of squares af integes}\}$$
 $\{x^2 \mid x \in \mathbb{Z}\} = \{\text{set of squares af integes}\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq \mathbb{Z} \land 0 \notin S\}$
 $\{x \mid S \subseteq S\}$

Common Logical Symbols

∀: for all

∃: there exists

∈ : element of / belongs to

∉ : not an element of

⊆: subset of

 Λ : and

V:or

or s.t.: such that

∀:\forall

∃:\exists

€ : \in

∉:\notin

⊆:\subseteq

∧:\wedge

V:\vee

An example replace a with 26 for a cleaner

 $\{a \mid \exists b \in \mathbb{Z} \text{ s.t. } \widetilde{a} = 2b\}$ { a s.t. three exists an integer b such that a=26} = {2,6,...? = {even integers} 2.1 3.2 = $\{2b \mid b \in \mathbb{Z} \}$ $\{a \mid a < 0 \land \exists b \in \mathbb{R} \text{ s. t. } a = b^2\}$ = { a st. a is negative and a=b² for some bEIR} = $\{b^2 | b^2 < 0 \text{ and } b \in |R\} = \{\} = \emptyset$ 7 {-62 | BEIRE

5= {1,2,3? P(5) = {{1}},{2},{3}, {1,2}, {2,3}, {1,3}, {1,2,3}, \$4

Common Sets

Empty Set: $\emptyset = \{\}$ Power set: $\mathcal{P}(S) = \{A \mid A \subseteq S\}$ Cartesian product: $S_1 \times S_2 = \{(u, v) \mid u \in S_1, v \in S_2\}$ Natural Numbers: $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$ Integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ Rational numbers: $\mathbb{Q} = \{\dots, 0, 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, -\frac{447}{440}, \dots\}$ Real Numbers: $\mathbb{R} = \{\dots, 0, 1, \frac{1}{2}, -\frac{447}{440}, \sqrt{2}, \pi, e^{\frac{1+\sqrt{5}}{2}} - 20, \dots\}$ Counting sets: $[n] = \{1, 2, 3, \dots, n\}$ Open range: $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ Closed range: $[a,b] = \{x \in \mathbb{R} \mid a < x < b\}$

Common Set Operations

Term	Description	In symbols
Empty set	The set with nothing in it	ϕ
Universe	The set with everything in it	${oldsymbol {oldsymbol {\cal U}}}$
Containment	x is an element of S	XES
Non-containment	x is not an element of S	×# S
Union	The set of objects in S_1 or S_2	5,052
Intersection	The set of objects in S_1 and S_2	5,05,
Set difference	The set of objects in S_1 but not S_2	5, \52
Complement	The set of objects not in S	5° U\5
Subset	All of S_1 is contained inside S_2	5, 5 52
Superset	S_1 contains all of the elements of S_2	5, 2 52

Some simple laws for union and intersection

Commutativity:

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 and $A \cap (B \cap C) = (A \cap B) \cap C$

Hence you can skip the parentheses in $A \cup B \cup C$

Distributivity:

(i)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(ii)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

See also laws for set complement in Chapter 4.6.

Alb is those elements Cardinality/ Size of sets of A which are not in B Cardinality/ Size of sets

Finite sets: number of elements in set (more subtle if infinite)

For set S, denoted by |S|

Size of the union

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$AUB = A B U B A U A B$$

$$|AUB| = |A B| + |B A| + |A B|$$

Proof Templates for Set Properties

How do I prove that a set is empty / universal?

$$S = \emptyset \text{ iff } \forall x \in U, x \notin S$$
 $S = U \text{ iff } \forall x \in U, x \in S$

How do I prove that one set is a subset of another?

$$S_1 \subseteq S_2 \text{ iff } \forall x \in S_1, x \in S_2$$

How do I prove that two sets are equal? Not equal?

If
$$S_1 \subseteq S_2$$
 And $S_2 \subseteq S_1$, then $S_1 = S_2$
Not equal; Show either S_2 net a subset of S_1
or S_1 net a subset of S_2

Relations

Binary Relations

Binary relation $R: A \to B$ associates elements of A with B xRy or $x\sim_R y$ or $(x,y) \in R$ means x related to y

Range is the image of the relation $\{x,y,2\}$ i.e. the subset of co-domain that the domain is related to.

Relations

Captures connections and relations betweens entities.

Common Properties of Relations

Consider a relation $R: A \to A$ (relating elements within A)

Reflexivity:

not symmetric, not trans); aRa for every element a in the domain. E.g., R="has heard of"

Symmetric:

Reflexive, not transitive E.g., R="shared the same class as" $aRb \iff bRa$

Transitivity:

For any a, b, c, if aRb and bRc, then aRc

Equivalence Relation

- Any relation that is reflexive, symmetric and transitive. A very special kind of relation.
- e.g., R="lives in the same city/town as" over set of people
- R="leaves same remainder when divided by 2" over N

Thm. Any equivalence relation R on domain A partitions the elements of A into disjoint classes $A_1, A_2, ..., A_k, ...$ called *equivalence classes*, in which for any two elements aRb iff they belong to the same class.