CG1111: Engineering Principles and Practice I

Summary of Key Points for Week 6 to 11

Principles of AC Circuits

Sinusoidal waveform

$$v(t) = V_m \cos(\omega t \pm \emptyset) \qquad \emptyset = \frac{\Delta T}{T} \times 360^{\circ}$$

 V_m : Amplitude (or peak)

 ω : Angular frequency in rad/s

Ø: Phase angle

'+' if leading
$$\omega = 2\pi f$$
'-' if lagging $\tau = \frac{1}{2\pi f}$

Root-Mean-Square (RMS)

- Significance of rms value:
 - -They are the equivalent values of the DC voltage & current that would have the <u>same average power</u> <u>dissipation</u> in a <u>resistive load</u>
 - -So that you can apply the same formula as DC!
 - -Average power dissipation of resistive load in AC:

$$P = V_{rms} \times I_{rms} = I_{rms}^{2} R = \frac{V_{rms}^{2}}{R}$$
Same average
power dissipation
$$I_{rms} = \frac{V_{m}}{\sqrt{2}}$$

$$I_{rms} = 1 \text{ A}$$

$$V_{rms} = \frac{I_{m}}{\sqrt{2}}$$

$$= 230 \text{ V}$$

$$= 230 \text{ Q}$$

$$= 230 \text{ Q}$$

AC Circuit Analysis in Time Domain?

• In AC circuits, inductors/capacitors result in differential equations:

$$V_m \cos(\omega t) = v_R(t) + v_L(t) + v_C(t) = iR + L\frac{di}{dt} + \frac{\int i \, dt}{C}$$

→ difficult to solve in time-domain!

AC Circuit Analysis

Can then solve using DC circuit analysis techniques:

 KVL, KCL, Ohm's Law, Potential divider principle, current division principle, Thevenin equivalent, NVA, series equivalent impedance, parallel equivalent impedance, etc.

AC Circuit Analysis with Phasors & Impedances

We must work with KVL & KCL in Phasor form

Steps:

- 1. Replace voltage sources with their phasors (all must have same frequency)
- 2. Replace R, L, C elements with their impedances
- 3. Analyse circuit using DC circuit analysis techniques (work within complex domain)
- 4. Convert final results back to time-domain

Phasors

Sinusoidal voltage:

Phasor:

Another common practice is to represent phasors using the RMS value instead of the magnitude. In that case,

the phasor will be written as $\frac{V_m}{\sqrt{2}} \angle \theta$.

Note:

Note:

 Phasor is just a definition. It leads to mathematical convenience, but has no physical significance

Impedances

■ For resistance: R

For inductor:

$$j\omega L = \omega L \angle 90^{\circ}$$

For capacitor:

$$\frac{1}{j\omega C} = \frac{-j}{\omega C} = \frac{1}{\omega C} \angle -90^{\circ}$$

Illustration: KVL Applies for Phasors

Voltage	Magnitude	Phase Angle	Real	Imaginary
$V_{\rm S}$	7	O°	7	0
V_{R}	4.95	-45°	3.5	-3.5
V_{L}	4.95	45°	3.5	3.5

In AC circuits with R, L, C elements, because of the phase differences, we can only apply KVL in complex domain:

$$V_S = V_R + V_L$$

Relationship Among Magnitude, Phase, Real & Imaginary Parts

Phasor Division & Multiplication

■ Division:
$$\frac{A \angle \theta_1}{B \angle \theta_2} = \frac{A}{B} \angle (\theta_1 - \theta_2)$$

• Multiplication:

$$A \angle \theta_1 \times B \angle \theta_2 = AB \angle (\theta_1 + \theta_2)$$

Step-Up/Down Transformer

$$\frac{V_S}{V_P} = \frac{N_S}{N_P}$$

$$\frac{I_S}{I_P} = \frac{N_P}{N_S}$$

Why Rectifier?

Why Filter Capacitor?

Discharge voltage of the capacitor

Voltage Ripple

- Let V_{Load} : average load voltage
 - Average load current is given by

$$I_L = \frac{V_{Load}}{R_L}$$

- Since it is a full-wave diode bridge rectifier, the pattern repeats every T/2
- Let ΔV be the peak-to-peak ripple voltage
- $\Delta V = \frac{\Delta Q}{c}$ (capacitance's definition)
- For small ΔV , $t_1 \approx T/2$. Since $i(t) = \frac{dQ}{dt}$, average current $I_L \approx \frac{\Delta Q}{T/2}$.
- Hence

$$\Delta V \approx \frac{I_L * T/2}{C} = \frac{V_{Load}}{R_L} * \frac{1}{2f_S} * \frac{1}{C}$$

Characteristics of DC Motors

$$T_{\text{shaft}} = K_t I_m \text{ [N.m]}$$

$$E_b = K_e \omega \text{ [V]}$$

For PMDC motor:
$$K_t = K_e$$

Note:
$$\omega = 2\pi \times \frac{RPM}{60}$$
 [rad/s]

Power Conversion in Motors

Mechanical power at motor shaft:

$$P_{\rm mech} = T_{\rm shaft} \, \omega \, [W]$$

• Electrical power supplied to motor:

$$P_{\rm in} = V_m I_m [W]$$

Circuit Representation: PMDC Motor

• From the circuit:

$$I_m = \frac{V_m - E_b}{R_m}$$

• Since $E_b = K_e \omega$, we have:

$$I_{m} = \frac{V_{m}}{R_{m}} - \frac{K_{e} \omega}{R_{m}}$$

Basic Properties of PMDC Motor

Rearranging:

$$\omega = \frac{V_m}{K_e} - \frac{R_m I_m}{K_e}$$

• For a fixed load (i.e., fixed $T_{\rm shaft}$, which implies fixed I_m since $T_{\rm shaft} = K_t I_m$):

Shaft speed ω can be increased by increasing motor voltage V_m

• For a fixed voltage, if $T_{\rm shaft}$ increases, I_m increases, and hence ω decreases:

Shaft speed ω decreases with increasing load $T_{\rm shaft}$

Op-Amp Terminals

Op-Amp Equivalent Circuit

- A is the open-loop voltage gain
 - -It is very large, approaching infinity
- R_{in} is the input impedance & R_{out} is the output impedance

Typical Op Amp Parameters

Parameter	Variable	Typical Ranges	I deal Values
Voltage Gain	Α	10 ⁵ to 10 ⁸	∞
Input Impedance	R_{in}	10^5 to 10^8 Ω	∞ Ω
Output Impedance	R _{out}	10 to 100 Ω	0 Ω
Supply Voltage	V _S -V _S	5 to 30 V -30 to 0 V	N/A N/A

Op-amp Golden Rules

 Rule 1: In a closed loop, the output attempts to do whatever is necessary to make the voltage difference

between the inputs zero

The voltage gain of a real op-amp is so high that a fraction of a mV difference between the V_+ & V_- inputs will swing the output to saturation V_- •

- Rule 2: The inputs draw no current
 - The ideal op-amp has infinite input impedance (R_{in}). Thus, the current drawn at the two terminals is zero

Non-Inverting Amplifier

 For an ideal op-amp, the non-inverting amplifier gain is given simply by

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_{\text{f}}}{R_{\text{i}}}$$

Inverting Amplifier

 For an ideal op-amp, the inverting amplifier gain is given simply by

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{i}}}$$

Comparator

 The comparator is an electronic decisionmaking circuit that makes use of an opamp's very high gain in its open-loop state (i.e., there is no feedback resistor)

Op-Amp as a Comparator – How It Works

Recall that for op-amp:

- The difference between the two inputs is amplified as $(A(V_{+} V_{-}))'$ at the output
- The open-loop voltage gain ('A') of the op-amp is very high (ideally ∞)
- Even if there is a very small difference between the inputs, the high 'A' will pull the output to "saturation"

Op-Amp as a Comparator

How It Works

■ If V₋ > V₊:

$$V_{\text{out}} = \begin{cases} -V_{\text{sat}} & \text{if dual power supply} \\ 0 & \text{if single power supply} \end{cases}$$

Common Application of Comparator

 The comparator is ideal for converting analog signals to digital signals at certain threshold values

Filter

 A filter is a device or process that removes some unwanted components or features from a signal

• Examples:

 Removing the noise from measured ECG signal using a filter to help a doctor understand the heart better

Removing some frequencies or frequency bands from an audio signal

Passive Low-Pass Filter

Voltage divider:

The capacitor's impedance decreases as the frequency increases, hence V_c

Power Gain in decibels (dB)

■ The Voltage Amplification (A_v) or Gain of a voltage amplifier/filter is given by:

$$A_{v} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

The voltage gain is commonly expressed in terms of the resulting power gain in dB:

Power Gain (dB) =
$$10 \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right)^2 dB$$

= $20 \log_{10} \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right| dB$

Frequency Response

- It is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system
 - -Frequency in logarithmic Scale: horizontal x-axis

Power Gain in decibels (dB): vertical y-axis
 To describe a change in output power over the whole frequency range

Power Gain in dB $(f) = 20 \log_{10} |A_v(f)|$

Cut-off Frequency

 In filters, the cut-off frequency characterizes a boundary between a passband and a stopband

 The cut-off frequency is taken as the frequency at which the output of the circuit is −3 dB (corresponding to half the power) of the nominal

passband value

Cut-off Frequency: -3 dB Point (i.e., Half-power Point)

- Graphical approach:
 - -Find the passband gain from the magnitude vs frequency plot

-Subtract 3 dB from the passband gain and draw a line

on the plot

The points where this line cuts the plot corresponds to the cut-off frequency(s)

Cut-off Frequency: -3 dB Point (i.e., Half-power Point)

• Quantitative approach (for <u>first</u>-order filters):

$$f_H = \frac{1}{2\pi R_H C_H}, \quad f_L = \frac{1}{2\pi R_L C_L}$$

First-order Low-Pass Filter

Slope after cut-off frequency

≈ -20 dB/decade

Passive Low-Pass Filter

 We can use the voltage divider rule to find the voltage gain

$$\frac{V_{\rm c}}{V_{\rm in}} = \left[\frac{1}{\sqrt{1 + (R\omega C)^2}} \right]$$

Gain in dB =
$$20 \log_{10} 1$$
, $-20 \log_{10} \sqrt{1 + (\omega CR)^2}$.

Passband gain (= 0 dB) Change in gain with ω

Passive High-Pass Filter

Using voltage divider rule to find the voltage gain:

$$ightharpoonup V_{\text{out}} = \left[\frac{R}{R + \frac{1}{j\omega C}}\right] V_{\text{in}}$$

$$\frac{|V_{\text{out}}|}{|V_{\text{in}}|} = \left[\frac{1}{\sqrt{1 + \left(\frac{1}{\omega CR}\right)^2}}\right] = \frac{20 \log_{10} 1 - 20 \log_{10} \sqrt{1 + \left(\frac{1}{\omega CR}\right)^2}}{\text{Passband gain (= 0 dB)}} \right]$$
 Change in gain with ω (= 0 dB) (-3 dB occurs at f_H)

Active Low-Pass Filter

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{V_{\text{out}}}{V_{+}} \times \frac{V_{+}}{V_{\text{in}}} = \left(1 + \frac{R_f}{R_1}\right) \frac{V_{+}}{V_{\text{in}}}$$

Hence,
$$\left| \frac{V_{\text{out}}}{V_{\text{in}}} \right| = \left(1 + \frac{R_f}{R_1} \right) \frac{1}{\sqrt{1 + (R\omega C)^2}}$$

The Need for Amplifying Signals

- Voltage output from sensors may be in the order of mV, e.g., microphone signals
- The sensor voltage output would need to be scaled before A-to-D conversion for more accurate measurements (e.g., using Arduino Uno)

Envelope Detector

- An envelope detector is an electronic circuit that takes a high-frequency signal as input (sound) and provides an output which is the envelope of the original signal
- The capacitor in the circuit stores up charge on the rising edge, and releases it slowly (through the load) when signal falls

IR Proximity Sensor

Classification of Signals

- Continuous signals
 - Independent variable is a continuous variable

- Examples
 - ✓ Sine wave from a function generator
 - ✓ Speech signal received from a microphone
- Discrete signals

 Independent variable takes on discrete values, e.g., integers

- Examples
 - ✓ Weekly stock market index
 - ✓ Speech signal stored on a digital computer

Continuous vs. Discrete Time Signals

Sampling Theorem

How frequently should the signal be sampled to ensure that information contained in the signal is preserved?

 $f_{\rm s} \ge 2 \times {\rm max}$ frequency component in the signal

Nyquist Rate & Nyquist Frequency

- The minimum sampling rate that is required to well represent a continuous time signal with highest frequency component f is given by 2 x f and this is known as the Nyquist rate
- For a given sampling rate f_s , perfect reconstruction is possible for a continuous signal whose highest frequency component is $f_s/2$, also known as the Nyquist frequency
 - For example, audio CDs use a sampling rate of 44.1 kHz. Therefore, the Nyquist frequency is 22.05 kHz

Aliasing

- When the sampling rate is lower than the Nyquist rate, the signal reconstructed from samples (using DAC) is <u>different</u> from the original continuous signal
- This effect is known as aliasing

The red waveform represents the original continuous time signal

The blue dots represent samples obtained from the continuous signal with sampling rate < Nyquist rate

Spectral Analysis

- Any function of time can be described as a sum of sine waves, each with different amplitudes and frequencies
- Spectral analysis investigates the distribution of a signal's frequency components
- The plot of a signal's frequency components and their corresponding magnitudes is called "frequency spectrum"

Example of Frequency Spectrum

The frequency spectrum of a particular audio tone

Oscilloscope Can Help Us Perform Spectral Analysis

 A square wave (triangular waveform too) can be decomposed into an infinite sum of sinusoidal waves

Filters Can Help Suppress (Attenuate) Undesirable Frequencies

