Courbes algébriques

Alexandre Guillemot

9 octobre 2022

Table des matières

1	Ens	embles algébriques affines	3
	1.1	Définition	3
	1.2	Topologie de Zariski	4
	1.3	Nullstellensatz de Hilbert	5
	1.4	Sous-ensembles irréductibles	10
2	Cat	égorie des ensembles algébriques et foncteur $k[-]$	13
	2.1	Catégorie des ensembles algébriques sur k	13
	2.2	Foncteur $k[-]$	15
	2.3	Cas des corps algébriquement clos	18
3	Din	nension, espace tangent	19
	3.1	Topologie induite sur les ensembles algébriques	19
	3.2	Variétés affines, dimension	20
		3.2.1 Dimension d'une variété affine	20
		3.2.2 Dimension de krull	22
	3.3	Singularités	23
		3.3.1 Points singuliers, variétés lisses	23
	3.4	Anneau des fonctions régulières en un point	25
		3.4.1 Anneaux locaux	26
	3.5	Espace tangent	27
		3.5.1 Espace tangent de Zariski	27
		3.5.2 Espace tangent géométrique	28

Introduction

ana-maria.castravet@uvsq.fr k un corps, on considère $P_1, \dots, P_r \in k[x_1, \dots, x_n]$. $V(P_1, \dots, P_r) \subseteq \mathbb{A}^n_k$ sont les zéros de P_1, \dots, P_r . Courbe algébrique = variété algébrique de dimension 1. Les courbes elliptiques sont des cas particuliers de courbes algébriques.

Chapitre 1

Ensembles algébriques affines

1.1 Définition

k un corps, $n \in \mathbb{Z}$.

Définition 1.1.1. (Espace affine) $\mathbb{A}^n_k := k^n$ est l'espace affine sur le corps k de dimension n.

Rq 1.1.1. Ce n'est pas vraiment la définition de l'espace affine, c'est la définition de l'ensemble sous-jacent à l'espace affine, sachant que les espaces affines sont des variétés algébriques.

lorsque n=1, on parlera de droite affine. Lorsque n=2, on parlera de plan affine.

Définition 1.1.2. Soit $S \subseteq k[X_1, \dots, X_n]$, on définit

$$V(S) := \{ a \in \mathbb{A}_k^n \mid \forall P \in S, P(a) = 0 \}$$

On appelle de tels ensembles des ensembles algébriques affines.

Rq 1.1.2. Si $S = \{P_1, \dots, P_r\}$, on écrit $V(P_1, \dots, P_r) := V(S)$.

Ex 1.1.1. 1. $V(\emptyset) = \mathbb{A}^n_k$

- 2. $V(1) = \emptyset$
- 3. $P = X^4 1 \in k[X]$, si $k = \mathbb{R}$, $V(P) = \{1, -1\}$. Si $k = \mathbb{C}$, $V(P) = \{1, -1, i, -i\}$. Si $k = \mathbb{F}_2$, $V(P) = \{1\}$.
- 4. $P = X^2 + Y^2 + 1 \in k[X, Y]$, si $k = \mathbb{R}$, $V(P) = \emptyset$. Si $k = \mathbb{C}$, V(P) est isomorphe (en tant que variété algébrique, même si cela n'a pour le moment aucun sens) au cercle complexe (en considérant le changement de variables $a_j = ib_j$).

5.
$$P_i = \sum a_{ij} X_j - b_i \in k[X_1, \dots, X_n], i \in [1, r].$$

$$V(P_i) = \{x \in k^n \mid (a_{ij})x = b\} \simeq \mathbb{A}^n_k \text{ ou } \emptyset$$

Exercice. Les ensembles algébriques de \mathbb{A}^1_k sont : \emptyset , \mathbb{A}^1_k , tous les sous-ensembles finis (cf Td1 Exercice 1).

Ex 1.1.2. Les sous-ensembles algébriques de \mathbb{A}^2_k sont \emptyset , tout le plan, les sous-ensembles finis et des réunions finies des sous-ensembles finis avec des courbes planes, i.e. $V(P) \neq \emptyset$ les zéros d'un seul polynôme non constant. Donnons des exemples de courbes planes :

- 1. Les droites $V(aX + bY + c) \in \mathbb{A}^2_k$, avec $a \neq 0$ ou $b \neq 0$.
- 2. Les coniques $V(aX^2+bY^2+cXY+dX+eY+f)\subseteq \mathbb{A}^2_k \ (a\neq 0 \ \text{ou} \ b\neq 0 \ \text{ou} \ c\neq 0)$. Dans $\mathbb{P}^2_{\mathbb{C}}$, toutes les coniques sont de type cercle, droite ou droites qui se croisent.
- 3. $Y^2 = X^3 + aX + b$, $a, b \in k$ définissent ce qu'on appelle des courbes elliptiques.

Rq 1.1.3. V(S) = V(T) n'implique pas que S = T. Par exemple $V(X^2 + Y^2 + 1) = V(X^4 + 1) \subseteq \mathbb{A}^2_{\mathbb{R}}$. Plus généralement, sur n'importe quel corps, $V(P^2) = V(P)$ avec $P = k[X_1, \dots, X_n]$.

Théorème 1.1.1. (Théorème de la base de Hilbert) Pour tout $n \geq 1$, $k[X_1, \dots, X_n]$ est un anneau noethérien.

Rq 1.1.4. Pour tout $S \subseteq k[X_1, \dots, X_n]$, on a V(S) = V((S)). Ainsi tout ensemble algébrique peut s'écrire V(I) avec $I \subseteq k[X_1, \dots, X_n]$.

La remarque précédente nous permet de donner le corollaire suivant :

Corollaire 1.1.1. Chaque ensemble algébrique $V \subseteq \mathbb{A}^n_k$ est de la forme $V = V(P_1, \dots, P_r)$ avec $P_i \in k[X_1, \dots, X_n]$

1.2 Topologie de Zariski

Proposition 1.2.1. 1. Si $S \subseteq T \subseteq k[X_1, \dots, X_n]$, alors $V(T) \subseteq V(S) \subseteq \mathbb{A}_k^n$. 2. $S \subseteq k[X_1, \dots, X_n]$, alors

$$V(S) = \bigcap_{P \in S} V(P)$$

3.

$$\bigcap_{j \in J} V(S_j) = V\left(\bigcup_{j \in J} S_j\right), S_j \subseteq k[X_1, \cdots, X_n]$$

4.
$$V(PQ) = V(P) \cup V(Q)$$
 pour $P, Q \in k[X_1, \dots, X_n]$

5. Plus généralement, $V(IJ) = V(I) \cup V(J) = V(I \cap J)$ avec $I, J \stackrel{\text{id}}{\subseteq} k[X_1, \cdots, X_n]$

Démonstration. 1. Soit $x \in V(T)$. Alors soit $P \in S$, $P \in T$ comme $S \subseteq T$ et donc P(x) = 0, d'où $x \in V(S)$.

- 2. Pour tout $P \in S$, $V(S) \subseteq V(P)$ d'après (1). Ainsi $V(S) \subseteq \bigcap_{P \in S} V(P)$. Réciproquement, si $x \in \bigcap_{P \in S} V(P)$, alors P(x) = 0 pour tout $P \in S$ et ainsi $x \in V(S)$.
- 3. $S_i \subseteq \bigcup_{j \in J} S_j$, \supseteq est claire. Maintenant soit $x \in \bigcap_{j \in J} V(S_j)$, soit $P \in \bigcup_{j \in J} S_j$, il existe $j \in J$ tel que $P \in S_j$. Mais en particulier $x \in V(S_j)$, et donc P(x) = 0, ce qui prouve \subseteq .
- 4. D'après $(1), V(P), V(Q) \subseteq V(PQ)$ et ainsi $V(P) \cup V(Q) \subseteq V(PQ)$. Réciproquement, si $x \in V(PQ)$, alors PQ(x) = 0 et ainsi P(x) = 0 ou Q(x) = 0 par intégrité de k, et donc $x \in V(P) \cup V(Q)$.

 $IJ\subseteq I\cap J\subseteq I$ donc $V(I)\subseteq V(I\cap J)\subseteq V(IJ)$ et donc par symétrie $V(I)\cup V(J)\subseteq V(I\cap J)\subseteq V(IJ)$. Supposons qu'il existe $x\in V(IJ)$ tq $x\notin V(I)\cup V(J)$. Alors $\exists P\in I,\ Q\in J$ tq $P(x)\neq 0$ et $Q(x)\neq 0$. Mais $PQ\in IJ$ donc PQ(x)=0, contradiction.

Corollaire 1.2.1. Les ensembles algébriques de \mathbb{A}^n_k forment les fermés d'une topologie. On appelle cette topologie la topologie de Zariski.

1.3 Nullstellensatz de Hilbert

Définition 1.3.1. Soit $E \subseteq \mathbb{A}^n_k$. On définit

$$I(E) = \{ P \in k[X_1, \cdots, X_n] \mid P(a) = 0, \forall a \in E \}$$

Ex 1.3.1. 1. $I(\emptyset) = k[X_1, \dots, X_n]$

2. $I(a) = (X_1 - a_1, \dots, X_n - a_n) =: \mathfrak{m}_a$. Cet idéal est maximal, vu que c'est le noyau de l'application surjective

$$\begin{array}{ccc} \operatorname{ev}_a: & k[X_1, \cdots, X_n] & \to & k \\ & X_i & \mapsto & a_i \end{array}$$

et donc $k[X_1, \cdots, X_n]/\mathfrak{m}_a \simeq k$.

3. $I(\mathbb{A}^n_k) = \{0\}$ si le corps est infini.

Définition 1.3.2. $I \stackrel{\text{id}}{\subseteq} A$, alors

$$\sqrt{I} = \{ f \in A \mid \exists n > 0, \, f^n \in I \}$$

est le radical de I. I est un idéal radical si $I = \sqrt{I}$

Proposition 1.3.1. 1. $E \subseteq E' \subseteq \mathbb{A}_k^n$, alors $I(E') \subseteq I(E)$

- 2. $I(E \cup E') = I(E) \cap I(E')$
- 3. $J \subseteq I(V(J))$ pour tout $J \stackrel{\text{id}}{\subseteq} k[X_1, \dots, X_n]$.
- 4. $E \subseteq V(I(E))$ pour tout $E \subseteq \mathbb{A}_k^n$.
- 5. $V(I) = V(\sqrt{I}) \subseteq \mathbb{A}_k^n$, pour tout $I \stackrel{\text{id}}{\subseteq} k[X_1, \dots, X_n]$
- 6. $I(V) = \sqrt{I(V)}$, pour tout $V \subseteq \mathbb{A}_k^n$ ensemble algébrique affine.

Démonstration. 1. Soit $P \in I(E')$. Alors pour tout $x \in E$, $x \in E'$ et donc P(x) = 0, ce qui prouve que $P \in I(E)$.

- 2. $E, E' \subseteq E \cup E'$, donc $I(E \cup E') \subseteq I(E), I(E')$ et donc $I(E \cup E') \subseteq I(E) \cap I(E')$. Réciproquement, soit $P \in I(E) \cap I(E')$, alors pour tout $x \in E \cup E'$, $x \in E$ ou $x \in E'$ et donc P(x) = 0.
- 3. Soit $P \in J$, alors pour tout $x \in V(J)$, P(x) = 0 et ainsi $P \in I(V(J))$.
- 4. Soit $x \in E$, alors pour tout $P \in I(E)$, P(x) = 0 et ainsi $x \in V(I(E))$.
- 5. Comme $I \subseteq \sqrt{I}$, $V(\sqrt{I}) \subseteq V(I)$. Maitenant soit $x \in V(I)$, alors pour tout $P \in \sqrt{I}$, il existe $n \ge 1$ tel que $P^n \in I$, et ainsi $P^n(x) = 0$. Mais par intégrité de k, P(x) = 0 et ainsi $x \in V(\sqrt{I})$.
- 6. On a toujours $I(V) \subseteq \sqrt{I(V)}$. Maintenant soit $P \in \sqrt{I(V)}$, alors $\exists n \geq 1$ tel que $P^n \in I(V)$. Ainsi, pour tout $x \in V$, $P^n(x) = 0$ et donc P(x) = 0 par intégrité de k. Finalement, $P \in I(V)$.

Lemme 1.3.1. $E = V(I(E)) \iff E \text{ est un ensemble alg\'ebrique}.$

 $D\'{e}monstration$. Il suffit de montrer que si E est un ensemble alg\'{e}brique affine, alors $V(I(E)) \subseteq E$: supposons que $E = V(J), \ J \subseteq k[X_1, \cdots, X_n]$. ALors $J \subseteq I(V(J))$ et ainsi $V(I(E)) = V(I(V(J))) \subseteq V(J) = E$.

Ex 1.3.2. Le segment $[0,1] \subseteq \mathbb{A}^1_{\mathbb{R}}$ n'est pas un ensemble algébrique.

Fixons $k \in \mathbf{Fld}$, $n \ge 1$. Définissons deux applications :

$$I: \{V \subseteq \mathbb{A}^n_k \text{ ensemble algébrique}\} \to \{I \overset{\text{id}}{\subseteq} k[X_1, \cdot, X_n] \mid I = \sqrt{I}\}$$

$$V \mapsto I(V)$$

Remarquons que cette application est bien définie d'après 1.3.1. De même, on définit

$$V: \quad \{I \overset{\mathrm{id}}{\subseteq} k[X_1,\cdot,X_n] \mid I = \sqrt{I}\} \quad \to \quad \{V \subseteq \mathbb{A}^n_k \text{ ensemble algébrique}\}$$

$$I \qquad \qquad \mapsto \qquad V(I)$$

Théorème 1.3.1. (Nullstellensatz, 1) Si $k = \bar{k}$, alors on a $I(V(J)) = \sqrt{J}$ pour tout $J \subseteq k[X_1, \dots, X_n]$

Ex 1.3.3. Si $k = \mathbb{R}$, $P = X^2 + Y^2 + 1 \in \mathbb{R}[X, Y]$ irréductible. I = (P) est un idéal premier, donc radical, mais $I(V(P)) = I(\emptyset) = \mathbb{R}[X, Y] \neq (P)$.

Corollaire 1.3.1. Si $k = \bar{k}$, alors V et I sont inverses l'une de l'autre.

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \text{Soit} \ J \overset{\text{id}}{\subseteq} k[X_1,\cdots,X_n] \ \text{un id\'{e}al radical.} \ \text{Alors} \ I(V(J)) = \sqrt{J} = J \ \text{et donc} \\ I \circ V = \text{id.} \ \text{Soit} \ V = V(J) \subseteq \mathbb{A}^n_k \ \text{un ensemble alg\'{e}brique affine.} \ \text{Alors} \ I(V(J)) = \sqrt{J} \ \text{et donc} \\ \text{donc} \ V(I(V)) = V(\sqrt{J}) = V(J) = V, \ \text{donc} \ V \circ I = \text{id.} \end{array}$

Donnons 2 reformulations du Nullstellensatz

Proposition 1.3.2. (Nullstellensatz 2,3) Considérons l'anneau $k[X_1, \dots, X_n]$. Tfae :

- 1. Pour tout $J \stackrel{\mathrm{id}}{\subseteq} k[X_1, \cdots, X_n], I(V(J)) = \sqrt{J}$
- 2. Pour tout $J \subseteq k[X_1, \dots, X_n]$, J propre implique que $V(J) \neq \emptyset$
- 3. Les idéaux maximaux de $k[X_1, \dots, X_n]$ sont exactement les idéaux

$$\mathfrak{m}_a = (X_1 - a_1, \cdots, X_n - a_n)$$

 $D\'{e}monstration.$ $2 \Rightarrow 3$: Soit $\mathfrak{m} \stackrel{\max}{\subseteq} k[X_1, \cdots, X_n]$. C'est un idéal propre, donc $V(\mathfrak{m}) \neq \emptyset$. Alors soit $a \in V(\mathfrak{m})$, remarquons que pour tout $f \in \mathfrak{m}$, f(a) = 0 donc $f \in \mathfrak{m}_a$ (vu que l'on peut écrire $f = Q_1(X_1 - a_1) + \cdots + Q_i(X_i - a_i) + c$). Ainsi $\mathfrak{m} \subseteq \mathfrak{m}_a$ mais \mathfrak{m} est maximal donc $\mathfrak{m} = \mathfrak{m}_a$.

 $1 \Rightarrow 2$: Soit $J \subseteq k[X_1, \dots, X_n]$ idéal propre. On a $\sqrt{J} = I(V(J))$. Supposons que $V(J) = \emptyset$, alors $\sqrt{J} = I(V(J)) = k[X_1, \dots, X_n]$ et donc $J = k[X_1, \dots, X_n]$, contradiction.

 $3 \Rightarrow 1$: Soit $I \subseteq k[X_1, \dots, X_n]$, on veut mq $\sqrt{I} = I(V(I))$. Comme $I \subseteq I(V(I))$, on a directement le première inclusion du fait que $\sqrt{I(V(I))} = I(V(I))$. Dans l'autre sens, si $I = k[X_1, \dots, X_n]$, l'égalité est claire. Sinon soit $f \in I(V(I))$, écrivons $I = (P_1, \dots, P_r)$. Maintenant considérons l'anneau $k[X_1, \dots, X_n, X_{n+1}]$, puis l'idéal

$$(P_1, \cdots, P_r, 1 - X_{n+1}f) =: J \stackrel{\text{id}}{\subseteq} k[X_1, \cdots, X_{n+1}]$$

Si J est un idéal propre, alors d'après le théorème de Krull il existe $\mathfrak{m} \stackrel{\max}{\subseteq} k[X_1, \cdots, X_{n+1}]$ tel que $J \subseteq \mathfrak{m}$. Maintenant par hypothèse il existe $(a_1, \cdots, a_n, b) \in \mathbb{A}_k^{n+1}$ tel que

$$\mathfrak{m} = (X_1 - a_1, \cdots, X_n - a_n, X_{n+1} - b)$$

Mais alors pour tout $i \in [1, r]$, $P_i(a) = 0$ et 1 - bf(a) = 0. Mais alors la première série d'égalités nous indique que $a \in V(I)$, et comme $f \in I(V(I))$, f(a) = 0, ce qui est absurde. Ainsi J est $k[X_1, \dots, X_{n+1}]$ tout entier, donc en particulier il existe $Q_1, \dots, Q_n, Q \in k[X_1, \dots, X_{n+1}]$ tels que

$$1 = P_1 Q_1 + \dots + P_r Q_r + Q(1 + X_{n+1} f)$$
(1.1)

Maintenant le morphisme de localisation $k[X_1, \dots, X_n] \to k[X_1, \dots, X_n, 1/f]$ et le choix de l'élément 1/f induit un morphisme d'évaluation

$$k[X_1, \cdots, X_n] \xrightarrow{} k[X_1, \cdots, X_n, 1/f] \longleftrightarrow k(X_1, \cdots, X_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Ainsi au travers de ce morphisme l'égalité 1.3 deviens

$$1 = P_1(X_1, \dots, X_n)Q_1(X_1, \dots, X_n, 1/f) + \dots + P_r(X_1, \dots, X_n)Q_r(X_1, \dots, X_n, 1/f)$$

Alors écrivons les Q_i comme des éléments de $k[X_1, \dots, X_n][X_{n+1}]$,

$$Q_{i} = \sum_{l=0}^{d_{i}} R_{i,l}(X_{1}, \cdots, X_{n}) X_{n+1}^{l}$$

En les passant au travers du morphisme d'évaluation précédent on peut les réécrire

$$Q_i = \frac{R_i(X_1, \cdots, X_n)}{f^{d_i}}$$

et alors 1.3 deviens

$$1 = \sum_{i=1}^{r} \frac{P_i R_i}{f^{d_i}}$$

et ainsi en notant $d = \max\{d_i\}$

$$f^d = \sum_{i=1}^r P_i R_i f^{d-d_i}$$

dans $k(X_1, \dots, X_n)$ donc dans $k[X_1, \dots, X_n]$. Finalement si d = 0, alors $1 \in I$ absurde puisque l'on avait supposé I propre. Sinon, $f^d \in I$ et donc $f \in \sqrt{I}$.

Citons finalement une version plus générale du Nullstellensatz. Montrons qu'elle implique la version 3, et ainsi tous les énoncés équivalents prouvés précédemment.

Théorème 1.3.2. (Nullstellensatz, 0) Soit une extension de corps $K \hookrightarrow L$, avec L une k-algèbre de type fini. Alors $[L:K] < \infty$.

Rq 1.3.1. L K-algèbre de type fini ssi $L \simeq k[X_1, \cdots, X_n]/I$.

Montrons que 1.3.2 implique 3:

 $D\'{e}monstration$. Soit k un corps algébriquement clos. Soit $\mathfrak{m} \stackrel{\max}{\subseteq} k[X_1, \cdots, X_n]$. Soit $L := k[X_1, \cdots, X_n]/\mathfrak{m}$ (qui est un corps et une k-algèbre de type fini). Considérons les morphismes $i: k \hookrightarrow k[X_1, \cdots, X_n], \ \pi: k[X_1, \cdots, X_n] \twoheadrightarrow L$. On note $\varphi = \pi \circ i. \ k \to L$ est un morphisme de k-algèbres, donc de corps et donc d'après 1.3.2, $[L:K] < \infty$. Mais comme k est algébriquement clos, on doit avoir $k \simeq L$ (car $K \hookrightarrow L$ est alors une extension algébrique de k). Soit $a_i := \pi(X_i) \in L \simeq k$. Maitenant $\pi(X_i - i(\varphi^{-1}(a_i))) = \pi(X_i) - a_i = a_i - a_i = 0$, donc

$$(X_1 - i(\varphi^{-1}(a_1)), \cdots, X_n - i(\varphi^{-1}(a_n))) =: \mathfrak{m}_a \subseteq \mathfrak{m}$$

et comme \mathfrak{m}_a est maximal, $\mathfrak{m} = \mathfrak{m}_a$.

Prouvons 1.3.2 dans le cas où k est non dénombrable :

Démonstration. (Nullstellensatz 0, corps K non dénombrable) Soit $K \hookrightarrow L$ une extension de corps, avec L une k-algèbre de type fini. Ecrivons $L \simeq k[X_1, \cdots, X_n]/I = K[a_1, \cdots, a_n]$. Il suffit de montrer que $K \hookrightarrow L$ est algébrique, car dans ce cas a_1, \cdots, a_n sont des éléments algébriques sur K et donc $K \hookrightarrow K(a_1) \hookrightarrow \cdots \hookrightarrow K(a_1, a_2, \cdots, a_n) = L$ est finie et chaque extension de cette suite d'extension est finie. Pour prouver que $K \hookrightarrow L$ est algébrique, supposons le contraire. Alors soit $z \in L$ un élément transcendant, puis considérons $K \hookrightarrow K(z) \hookrightarrow L$, et $K(z) \simeq K(T)$ le corps des fractions de k[T]. Maintenant

 $L \simeq K[a_1, \dots, a_n]$ est un isom de K-algèbres, L admet une base dénombrable comme K-espace vectoriel. Mais K(T) comme K-ev admets une famille libre non dénombrable

$$\left\{\frac{1}{T-\lambda}\right\}_{\lambda \in k}$$

car K est non dénombrable. Vérifions que cette famille est bien libre : écrivons

$$\sum_{\text{finie}} a_i \frac{1}{T - \lambda_i} = 0$$

dans $K(T) \hookrightarrow L$. Ainsi

$$\sum_{\text{finie}} a_i (T - \lambda_i) \cdots (\widehat{T - \lambda_i}) \cdots (T - \lambda_l) = 0$$

dans k[T], puis on évalue en λ_i et on obtiens $a_i = 0$ pour tout i.

1.4 Sous-ensembles irréductibles

Définition 1.4.1. $V \subseteq \mathbb{A}^n_k$ ensemble algébrique. V est irréductible si pour toute décomposition $V = V_1 \cup V_2$ avec V_1, V_2 ensembles algébriques, on a $V = V_1$ ou $V = V_2$. On dit sinon que V est réductible.

Proposition 1.4.1. $V \subseteq \mathbb{A}^n_k$ ensemble algébrique. Alors tfae

- 1. V est irréductible
- 2. I(V) est un idéal premier
- 3. $k[X_1, \cdots, X_n]/I(V)$ est un anneau intègre

 $D\'{e}monstration.$

 $1 \Rightarrow 2$: Soient $f, g \in k[X_1, \dots, X_n]$ tq $fg \in I(V)$. Mais $V(fg) = V(f) \cup V(g)$, puis soit $V_1 = V \cap V(f)$, $V_2 = V \cap V(g)$, alors $V_1 \cup V_2 = V \cap V(fg) = V$. Ainsi $V_1 = V$ ou $V_2 = V$, donc $f \in V$ ou $g \in V$.

 $2\Rightarrow 1$: Soit $V\subseteq \mathbb{A}^n_k$ ensemble algébrique tq I(V) est un idéal premier. Supposons que V est réductible, alors $V=V_1\cup V_2$ avec $V\neq V_1, V\neq V_2$. Comme V_1,V_2 sont algébriques, alors V(I(V))=V, $V(I(V_i))=V_i$, et ainsi $V(I(V))\neq V(I(V_1))$ et $I(V)\subseteq I(V_1)$. Donc il existe $f_1\in I(V_1)$ tq $f_1\notin I(V)$. De même, il existe $f_2\in I(V_2)$ tq $f_2\notin I(V)$. Mais $f_1f_2\in I(V_1)\cap I(V_2)=I(V)$ et ainsi I(V) n'est pas premier.

 $2\iff 3$: viens du fait que $J\stackrel{\mathrm{id}}{\subseteq} A$ est premier si et seulement si A/J est intègre. \square

Rq 1.4.1. Supposons que $k = \bar{k}$. Alors I et V sont inverses l'une de l'autre et donnent une correspondance entre les idéaux radicaux de $k[X_1, \dots, X_n]$ et les ensembles algébriques affines de \mathbb{A}^n_k . Alors au travers de cette bijection, les ensembles irréductibles correspondent aux idéaux premiers, et les points aux idéaux maximaux.

Théorème 1.4.1. Soit $V \subseteq \mathbb{A}^n_k$ un ensemble algébrique. Alors $\exists V_1, \cdots, V_m \subseteq \mathbb{A}^n_k$ irréductibles tels que

- 1. $V = V_1 \cup V_2 \cup \cdots \cup V_m$
- 2. $\forall i \neq j, \ V_i \nsubseteq V_j$

Les $\{V_i\}_{i\in [\![1,m]\!]}$ avec ces propriétés sont uniques à ordre près, on les appelle les composantes irréductibles de V.

Ex 1.4.1. Soit $V := V(XY, (X-1)Z) \subseteq \mathbb{A}_k^n$, k de caractéristique 0. Sur V, on a

$$(X = 0 \lor Z = 0) \land (X = 1 \lor Y = 0)$$

$$\iff (X = 0 \land Y = 0) \lor (Z = 0 \land X = 1) \lor (Z = 0 \land Y = 0)$$

Ainsi $V = V_1 \cup V_2 \cup V_3$ avec $V_1 = V(X,Y)$, $V_2 = V(X-1,Z)$ et $V_3 = V(Y,Z)$. On peut alors prouver que ce sont les composantes irréductibles de V.

Démonstration. Soit $V \subseteq \mathbb{A}^n_k$ un ensemble algébrique. Si V est irréductible, on a terminé. Sinon il existe des sous-ensembles algébriques propres de $V_1, V_2 \not\subseteq V$ tels que $V = V_1 \cup V_2$. Si V_1, V_2 sont irréductibles, alors on a finit. Sinon on itère le procédé sur V_1 et V_2 . Alors supposons que le procédé ne termine pas, il va exister une suite strictement décroissante $\cdots \not\subseteq W_2 \not\subseteq W_1 \not\subseteq V$ d'ensembles algébriques. Ainsi on obtiens une suite croissante

$$I(W) \subseteq I(W_1) \subseteq I(W_2) \subseteq \cdots$$

Remarquons alors qu'elle es strictement croissante puisque $V(I(W_i)) = W_i$ et la suite des W_i est strictement décroissante. Ainsi on obtiens une contradiction avec le fait que $k[X_1, \dots, X_n]$ est noethérien.

Occupons nous maintenant de l'unicité : Supposons que

$$V = \bigcup_{i=1}^{s} V_i = \bigcup_{i=1}^{t} W_i$$

On veut montrer que l'ensemble $\{V_i\}_{i\in \llbracket 1,s\rrbracket}$ est égal à l'ensemble $\{W_i\}_{i\in \llbracket 1,t\rrbracket}$. On va montrer une inclusion : montrons qu'il existe $j\in \llbracket 1,t\rrbracket$ tel que $V_i=W_j$, avec $i\in \llbracket 1,s\rrbracket$. Comme $V_i\subseteq \bigcup_{j\in \llbracket 1,t\rrbracket}W_j$, on a

$$V_i \subseteq \bigcup_{j \in [\![1,t]\!]} W_j \cap V_i$$

CHAPITRE 1. ENSEMBLES ALGÉBRIQUES AFFINES

Mais V_i est irréductible, donc $\exists j \in \llbracket 1,t \rrbracket$ tel que $V_i = W_j \cap V_j$, et en particulier $V_i \subseteq W_j$. Maintenant de la même manière on peut prouver qu'il existe $i' \in \llbracket 1,s \rrbracket$ tel que $W_i \subseteq V_{i'}$. Mais alors $V_i \subseteq W_j \subseteq V_{i'}$ et donc i=i', d'où $V_i = W_j$.

Chapitre 2

Catégorie des ensembles algébriques et foncteur k[-]

Fixons un $k \in \mathbf{Fld}$.

2.1 Catégorie des ensembles algébriques sur k

Pour définir une catégorie des ensembles algébriques, nous avons besoin de définir une notion de morphisme entre ensembles algébriques.

Définition 2.1.1. (Morphisme d'ensembles algébriques) Soit $V, W \subseteq \mathbb{A}^n, \mathbb{A}^m$ des ensembles algébriques affines. $\varphi = (\varphi_1, \cdots, \varphi_m) : V \to W$ est une fonction régulière, ou morphisme (d'ensembles algébriques affines) si pour tout $i \in [1, l], \exists P_i \in k[X_1, \cdots, X_n]$ tel que $\varphi_i(q) = P_i(a)$ pour tout $a \in V$.

- **Ex 2.1.1.** 1. Soit $V \subseteq W \subseteq \mathbb{A}^n$ un ensemble algébrique. Alors l'injection associée à cette inclusion $i: V \to W$ est un morphisme.
 - 2. $\pi_i: \mathbb{A}^n_k \to \mathbb{A}^1_k$ la projection sur la *i*-ème coordonnée est un morphisme.

Proposition 2.1.1. Soit $\varphi^1: V_1 \to V_2, \ \varphi^2: V_2 \to V_3$ des morphismes d'ensembles algébriques, où $V_i \subseteq \mathbb{A}_k^{n_i}$. Alors $\varphi^2 \circ \varphi^1: V_1 \to V_3$ est un morphisme d'ensembles algébriques.

Démonstration. Notons $\varphi^1=(\varphi_1^1,\cdots,\varphi_{n_2}^1)$ et $\varphi^2=(\varphi_1^2,\cdots,\varphi_{n_3}^2)$, puis $f_i^1,\,g_j^2\in k[X_1,\cdots,X_{n_1}],k[Y_1,\cdots,Y_{n_2}]$ les polynômes associés à $\varphi_i^1,\,\varphi_j^2$. Maintenant considérons les polynômes $h_i\in k[X_1,\cdots,X_{n_1}]$ obtenus en évaluant les g_i en f_1,\cdots,f_{n_2} , alors

CHAPITRE 2. CATÉGORIE DES ENSEMBLES ALGÉBRIQUES ET FONCTEUR K[-]

on a

$$(\varphi^2 \circ \varphi^1)(a) = (g_1(f_1(a), \dots, f_{n_2}(a)), \dots, g_{n_3}(f_1(a), \dots, f_{n_2}(a)))$$

= $(h_1(a), \dots, h_{n_3}(a))$

et donc $\varphi^2 \circ \varphi^1$ est un morphisme.

Proposition 2.1.2. Soient $V, W \subseteq \mathbb{A}^n_k$, \mathbb{A}^l_k des ensembles algébriques. Une application $\varphi: V \to W$ est un morphisme si et seulement si pour tout morphisme $f: W \to \mathbb{A}^1$, $f \circ \varphi: V \to \mathbb{A}^1$ est un morphisme.

 $D\'{e}monstration.$

 \Rightarrow : La composition de morphismes est un morphisme.

 \Leftarrow : Soit $p_i: W \hookrightarrow \mathbb{A}^l \to \mathbb{A}^1$ la projection sur la *i*-ème coordonnée, c'est un morphisme car composition de morphismes. Maintenant $\pi \circ \varphi = \varphi_i$ est un morphisme donc il existe $P_i \in k[X_1, \cdots, X_n]$ tel que $\varphi_i(a) = P_i(a)$ pour tout $a \in V$, et ainsi φ est un morphisme. \square

On peut ainsi définir une catégorie des ensembles algébriques affines sur k, notée k-**EnsAlg**, ou encore seulement **EnsAlg** si le contexte est clair, dont

- 1. Les objets sont les ensembles algébriques affines $V \subseteq \mathbb{A}_k^n$,
- 2. $\mathbf{Hom_{EnsAlg}}(V, W)$ est la classe des morphismes de V dans W au sens de 2.1.1
- 3. La composition de morphismes correspond à la composition des applications sousjacentes.

Remarquons que cette catégorie est bien définie du fait que id_V est un morphisme et que les morphismes sont stables par composition.

Proposition 2.1.3. $\varphi: V \to W \subseteq \mathbb{A}^l$ est un morphisme ssi $V \to \mathbb{A}^l$ est un morphisme.

Démonstration.

 $\Rightarrow : V \to W \hookrightarrow \mathbb{A}^l$ est une composition de morphismes, donc est un morphisme.

 \Leftarrow : Par hypothèse, $i \circ \varphi : V \to \mathbb{A}^l$ est un morphisme $(i : W \to \mathbb{A}^l)$ est le morphisme associé à l'inclusion $W \subseteq \mathbb{A}^l$). Ainsi il existe $P_i \in k[X_1, \cdots, X_n]$ tels que

$$(P_1(a), \cdots, P_l(a)) = (i \circ \varphi)(a) = \varphi(a)$$

pour tout $a \in V$, et donc φ est un morphisme.

Ex 2.1.2. 1. $\varphi: \mathbb{A}^n \to \mathbb{A}^l$ définie par $\varphi(X_1, \dots, X_n) = (P_1(x), \dots, P_l(x))$ avec les $P_i \in k[X_1, \dots, X_n]$ est un morphisme, par définition.

- 2. $\varphi: \mathbb{A}^1 \to V := \{(x,y) \mid y = x^2\} \subseteq \mathbb{A}^2$ donné par $\varphi(t) = (t,t^2)$ est un morphisme.
- 3. $\varphi: \mathbb{A}^1 \to V := \{(x,y) \mid y^2 = x^3\} \subseteq \mathbb{A}^2$ donné par $\varphi(t) = (t^2,t^3)$ est un morphisme.

2.2 Foncteur k[-]

Donnons maintenant un foncteur entre **EnsAlg** et k – **CAlg**_{tf,red} la catégorie des kalgèbres de type fini réduites sur k.

Définition 2.2.1. $V\subseteq \mathbb{A}^n_k$ ensemble algébrique. L'algèbre des fonctions régulières sur V est

$$k[V] := k[X_1, \cdots, X_n]/I(V)$$

Rq 2.2.1. Comme $I(V) = \sqrt{I(V)}, K[V]$ est une k-algèbre de type fini et réduite ($\sqrt{\{0\}} = \{0\}$). En effet, pour tout anneau A et $I \stackrel{\mathrm{id}}{\subseteq} A, A/I$ est réduit si et seulement si $I = \sqrt{I}$.

Remarquons que l'ensemble des fonctions régulières sur un ensemble algébrique $V \subseteq \mathbb{A}^n_k$ est munie d'une structure naturelle de k-algèbre. Alors

Lemme 2.2.1. L'application

$$\chi: k[V] \rightarrow \mathbf{Hom_{EnsAlg}}(V, \mathbb{A}^1)$$

 $[P] \mapsto (f_P: a \mapsto P(a))$

est bien définie et est un isomorphisme de k-algèbres.

Démonstration. Considérons l'application

$$\tilde{\chi}: k[X_1, \cdots, X_n] \rightarrow \mathbf{Hom_{EnsAlg}}(V, \mathbb{A}^1)$$
 $P \mapsto f_P$

C'est un morphisme de k-algèbres, vérifions que son noyau est exactement I(V):

$$\tilde{\chi}(P) = 0 \iff \forall a \in V, P(a) = 0 \iff P \in I(V)$$

Finalement, cette application est surjective par définition de $\mathbf{Hom_{EnsAlg}}(V, \mathbb{A}^1)$, et donc $\tilde{\chi}$ se factorise en un isomorphisme au travers du quotient k[V] (cet isomorphisme est χ et donc χ est un isomorphisme).

Maintenant, soit $\varphi: V \subseteq \mathbb{A}^n_k \to W \subseteq \mathbb{A}^l_k$ un morphisme, alors ce morphisme induit un morphisme de k-algèbres entre k[W] et k[V], définit formellement comme

$$\begin{array}{cccc} k[\varphi] = \varphi^*: & k[W] & \to & k[V] \\ & [P] & \mapsto & \chi^{-1}(\chi([P]) \circ \varphi) \end{array}$$

Ainsi au travers de χ il envoie f_P sur $f_P \circ \varphi$. De plus, si on note $\varphi_i \in k[X_1, \dots, X_n]$ des polynômes tels que $\varphi(a) = (\varphi_i(a))$ pour tout $a \in V$, alors

$$\varphi^*([Y_i]) = \chi^{-1}(\chi([T_i]) \circ \varphi) = \varphi_i$$

CHAPITRE 2. CATÉGORIE DES ENSEMBLES ALGÉBRIQUES ET FONCTEUR K[-]

Ainsi φ^* correspond au morphisme d'évaluation en les φ_i . Finalement, pour tout $y \in W$,

$$\varphi^*([P])(x) = (f_P \circ \varphi)(x) = f_P(\varphi(x)) = [P](\varphi(x))$$

Proposition 2.2.1. Soient $\varphi_1: V_1 \to V_2$, $\varphi_2: V_2 \to V_3$. Alors $\varphi_1^* \circ \varphi_2^* = (\varphi_2 \circ \varphi_1)^*$. De plus, $(\mathrm{id}_V)^* = \mathrm{id}_{k[V]}$.

Démonstration. 1. $k[\mathrm{id}_V]([P]) = \chi^{-1}(\chi([P]) \circ \mathrm{id}_V) = [P] = \mathrm{id}_{k[V]}([P])$ donc $k[\mathrm{id}_V] = \mathrm{id}_{k[V]}$.

$$(k[\varphi_1] \circ k[\varphi_2])[P] = \chi^{-1}(\chi(\chi^{-1}(\chi([P]) \circ \varphi_2)) \circ \varphi_1)$$
$$= \chi^{-1}(\chi([P]) \circ \varphi_2 \circ \varphi_1)$$
$$= k[\varphi_2 \circ \varphi_1]([P])$$

Définition 2.2.2. (Foncteur k[-]) On définit

$$\begin{array}{ccccc} k[-]: & \mathbf{EnsAlg}^{\mathrm{op}} & \to & k-\mathbf{CAlg}_{\mathrm{tf,red}} \\ & V & \mapsto & k[V] \\ & \varphi: V \to W & \mapsto & k[\varphi]: k[W] \to k[V] \end{array}$$

Ce foncteur est bien défini au vu de 2.2.1.

Théorème 2.2.1. k[-] est pleinement fidèle.

Corollaire 2.2.1. Soit $\varphi: V \to W$ morphisme. C'est un isomorphisme ssi $\varphi^*: k[W] \to k[V]$ est un isomorphisme. En particulier V non isomorphe à W ssi k[V] non isomorphe à k[W].

 $D\'{e}monstration.$ (2.2.1) Les foncteurs pleinements fidèles préservent et réfléchissent les isomorphismes.

Démonstration. (2.2.1) A relire Soit $\varphi: V \to W \subseteq \mathbb{A}^l$, écrivons $\varphi = (\varphi_1, \dots, \varphi_l)$, avec $\varphi_i: V \to k$. φ morphisme, donc

$$\varphi^*: k[W] \simeq k[Y_1, \cdots, Y_l]/I(W) \rightarrow k[V]$$

$$[Y_i] \mapsto \varphi_i$$

16

CHAPITRE 2. CATÉGORIE DES ENSEMBLES ALGÉBRIQUES ET FONCTEUR K[-]

Montrons que F est injective : soient φ, ψ telles que $\varphi^* = \psi^*$. Alors $\varphi_i = \psi_i$ et donc $\varphi = \psi$. Montrons que F est surjective : soit $\alpha: k[W] \to k[V]$ un morphisme de k-algèbres. Alors notons $\varphi_i := \alpha([Y_i]) \in k[V]$, ainsi $\varphi_i: V \to k$ est une fonction régulière. Posons alors $\varphi = (\varphi_1, \dots, \varphi_l)$. Il suffit de montrer que l'image de φ est contenue dans W. En effet, si c'est le cas, on peut définit $\tilde{\varphi}: V \to W$ qui fait commuter

$$\begin{array}{c} V \xrightarrow{\varphi} \mathbb{A}^l \\ & \uparrow \\ & \tilde{\varphi} \\ & W \end{array}$$

et ainsi $\tilde{\varphi}^* = \alpha$. Soit $W = V(P_1, \dots, P_r) \subseteq \mathbb{A}^l$, $P_i \in k[Y_1, \dots, Y_l]$. En particulier, $P_i \in I(W)$ pour tout i. On doit vérifier que $P_i(\varphi_1(a), \dots, \varphi_l(a)) = 0$ pour tout i et $a \in V$. Comme $P_i \in I(W)$, $\alpha([P_i]) = 0$. Mais $\alpha([Y_i]) = \varphi_i$, donc

$$0 = \alpha([P_i]) = P_i(\alpha([Y_1]), \cdots, \alpha([Y_l])) = P_i(\varphi_1, \cdots, \varphi_l) \in k[V]$$

Proposition 2.2.2. $\varphi: V \to W$ est un isomorphisme si et seulement si l'application sous-jacente à φ est bijective, et son inverse $\varphi^{-1}: W \to V$ est un morphisme.

 $D\acute{e}monstration$. Clair du fait que le foncteur d'oubli $\mathbf{EnsAlg} \to \mathbf{Sets}$ est fidèle.

Ex 2.2.1. Reprenons les points 2 et 3 de 2.1.2 :

- 3. C'est un isomorphisme puisque $\varphi^{-1}:V\to\mathbb{A}^1$ donné par $\varphi^{-1}(x,y)=x$ est un morphisme et est une inverse de φ dans **Sets**.
- 4. Forcément, une inverse de φ est une inverse dans **Sets** au travers du foncteur d'oubli qui envoie un ensemble algébrique sur son ensemble sous-jacent. Ainsi $\varphi^{-1}:V\to\mathbb{A}^1$ doit forcément être définie comme

$$\varphi^{-1}(x,y) = \begin{cases} y/x & \text{si } (x,y) \neq 0 \\ 0 & \text{sinon} \end{cases}$$

Mais φ^{-1} n'est pas un morphisme : supposons qu'il existe $P \in k[X,Y]$ tq $P(x,y) = \varphi^{-1}(x,y)$, alors P(x,y) = y/x pour tout $(x,y) \in V$ et $V = \{(t^2,t^3) \mid t \in k\}$, et ainsi $P(t^2,t^3) = t$ pour tout $t \in k \setminus \{0\}$, ce qui est clairement impossible. On peut aussi vérifier que le morphisme induit sur les algèbres de fonctions régulières n'est pas un isomorphisme.

2.3 Cas des corps algébriquement clos

Supposons désormais que $k = \bar{k}$. Alors

Proposition 2.3.1. k[-]: **EnsAlg**^{op} $\rightarrow k$ – **CAlg**_{tf,red} est essentiellement surjectif. Ainsi les catégories **EnsAlg**^{op} et k – **CAlg**_{tf,red} sont équivalentes.

Démonstration. Soit $L = k[X_1, \cdots, X_n]/J \in k - \mathbf{CAlg}_{td,red}$. Alors

$$k[V(J)] = k[X_1, \dots, X_n]/I(V(J)) = k[X_1, \dots, X_n]/\sqrt{J} = L$$

d'après le Nullstellensatz.

Chapitre 3

Dimension, espace tangent

3.1 Topologie induite sur les ensembles algébriques

 \mathbb{A}^n_k est muni d'une topologie, dont les fermés sont les V(I) pour I un idéal de $k[X_1, \dots, X_n]$. Ainsi on définit la topologie de Zariski sur $V \subseteq \mathbb{A}^n_k$ un esnemble algébrique comme la topologie induite sur V. Plus concrètement, les fermés de V sont les $V(I) \cap V$, pour I un idéal de $k[X_1, \dots, X_n]$ (i.e. les ensembles algébriques $W \subseteq V$).

Exercice. Les ouverts distingués D(f) forment une base pour la topologie de zariski de \mathbb{A}^n .

Ainsi $\{D(f) \cap V\}_f$ est une base des ouverts pour la topologie de Zariski sur V un ensemble algébrique fixé.

Proposition 3.1.1. Soient $V, W \subseteq \mathbb{A}^n, \mathbb{A}^l$. Tout morphisme $\varphi : V \to W$ est continu pour la topologie de zariski induite sur V et W.

Démonstration. Dans un premier temps, soit $f_i \in k[X_1, \dots, X_n]$ tels que $\varphi(a) = (f_1(a), \dots, f_i(a))$. Alors montrer que φ est continue revient à montrer que $\tilde{\varphi}: \mathbb{A}^n \to \mathbb{A}^l$ définie par $\tilde{\varphi}(a) = (f_1(a), \dots, f_i(a))$ pour tout $a \in \mathbb{A}^n$ est continue. En effet, soit Z un fermé de W, alors $Z = Z' \cap W$ pour Z un fermé de \mathbb{A}^l . Maintenant $\varphi^{-1}(Z) = \tilde{\varphi}^{-1}(Z') \cap V$ et est donc un fermé si et seulement si $\tilde{\varphi}^{-1}(Z')$ est un fermé. On peut donc se ramener au cas $\varphi: \mathbb{A}^n \to \mathbb{A}^l$. Ainsi considérons un fermé $V(J) \subseteq \mathbb{A}^l$, posons $I := k[\varphi](J)$, et montrons que $\varphi^{-1}(V(J)) = V(I)$. \subseteq : soit $x \in \varphi^{-1}(V(J))$, alors pour tout $P \in I$, il existe $Q \in J$ tel que $P = k[\varphi](Q)$. Maintenant

$$P(x) = k[\varphi](Q)(x) = Q(\varphi(x)) = 0$$

puisque $Q \in J$ et $\varphi(x) \in V(J)$.

 \supseteq : Soit $x \in V(I)$, alors pour tout $Q \in J$, $k[\varphi](Q) \in I$ et donc

$$Q(\varphi(x)) = k[\varphi](Q)(x) = 0$$

et donc $\varphi(x) \in V(J)$.

Exercice. Soit $f: X \to Y$ un morphisme dans **Top**, si X est irréductible, alors $\overline{f(X)}$ irréductible.

Ex 3.1.1. $(k = \bar{k})$ $f: \mathbb{A}^1 \to V := \{(x,y) \mid y^2 = x^3\}$ est surjectif, donc V est irréductible.

Ex 3.1.2. $V = \{(x,y) \mid xy = 1\} \subseteq \mathbb{A}^2$. Notons $f: V \to \mathbb{A}^1$ la projection sur la première coordonnée, alors $f(V) = \mathbb{A}^1 \setminus \{0\}$ n'est pas fermé (si $|k| = \infty$) et donc ne peut pas être un ensemble algébrique.

Exercice. $E \subseteq \mathbb{A}^n_k$ ensemble quelconque, alors $\bar{E} = V(I(E))$. Soit $E \subseteq V(J)$ un fermé Alors $J \subseteq I(V(J)) \subseteq I(E)$ et donc $V(I(E)) \subseteq V(J)$, ce qui prouve que $V(I(E)) = \bar{E}$.

3.2 Variétés affines, dimension

Définition 3.2.1. (Variété affine) Une variété affine est un ensemble algébrique affine irréductible.

Ainsi si V est une variété affine, alors $k[V] = k[X_1, \dots, X_n]/I(V)$ est intègre (vu que I(V) est un idéal premier).

3.2.1 Dimension d'une variété affine

Définition 3.2.2. $k(V) := \operatorname{Frac} k[V]$ est le corps de fonctions rationnelles sur V.

$$k(V) = \left\{ \frac{P}{Q} \mid P, Q \in k[V], \ Q \neq 0 \right\}$$

Définition 3.2.3. $(k = \bar{k})$ V variété affine. On définit la dimension de V par

$$\dim V := \operatorname{trdeg}_{k} k(V)$$

où tr $\deg_k k(V)$ est le degré de transcendance de k(V) sur k.

Définition 3.2.4. $k \subseteq K$ extension de corps.

- 1. Une partie $S \subseteq K$ est algébriquement indépendante si pour tout $m \geq 1$, tout $s_1, \dots, s_m \in S$, si $P \in k[X_1, \dots, X_m]$ est tel que $P(s_1, \dots, s_m) = 0$, alors P = 0.
- 2. $S \subseteq K$ est une base de transcendance de K (sur k) si S est algébriquement indépendante et $k(S) \subseteq K$ est algébrique.
- 3. On dit que $k \subseteq K$ est purement transcendante si $\exists S$ base de transcendance $k \subseteq k(S) = K$.

Rq 3.2.1. Si |S| = n, alors $k(S) \simeq k(X_1, \dots, X_n)$. Si S_1, S_2 sont deux bases de transcendance de K/k, alors $|S_1| = |S_2|$.

Rq 3.2.2. dim $V \leq n$ pour toute variété algébrique dans \mathbb{A}^n .

Définition 3.2.5. trdeg_k(K) = |S|, S base de transcendance de K/k.

- **Ex 3.2.1.** 1. dim $\mathbb{A}_k^n = n : V = \mathbb{A}_k^n$, $k[V] = k[X_1, \dots, X_n]$. $I(V) = \{0\}$. Ainsi $k(V) = k(X_1, \dots, X_n)$. Et $\{X_1, \dots, X_n\}$ est une base de transcendance de k(V), donc dim V = n.
 - 2. $V = \{(x,y) \mid xy = 1\} \subseteq \mathbb{A}^1$. Alors V = V(XY 1) est irréductible; Ainsi V est une variété affine. k[V] = k[X,Y]/(XY 1) = k[x,y] où x = [X], y = [Y] (et xy = 1). $k(V) = \operatorname{Frac}(k[x,y]) =: k(x,y)$. Maintenant k(x,y) = k(x) vu que y = 1/x. Maintenant $\{x\}$ est une base de trascendance de k(x): sinon il existe $P \in k[X]$ non nul tel que $P(x) = 0 \in k(x)$, et en particulier dans $k[x] \subseteq k[V]$. Ainsi $P \in I(V)$ donc P(X) = (XY 1)Q(X,Y) dans k[X,Y] avec $Q \in k[X,Y]$, ce qui est absudre puisque $\deg_Y P = 0$. Ainsi $\dim V = 1$

Lemme 3.2.1. $(k = \bar{k})$ Soit $f \in k[X_1, \dots, X_n]$ irréductible. Alors $V := V(f) \subseteq \mathbb{A}^n_k$ est une variété affine de dimension n-1.

 $\begin{array}{l} \textit{D\'{e}monstration.} \ f \ \text{non constant.} \ \text{On peut supposer que} \ \deg_{X_n}(f) > 0. \ \text{Notons} \ k[V] = k[x_1, \cdots, x_n]. \\ \text{Ainsi} \ f(x_1, \cdots, x_n) = 0 \ \text{vu que} \ I(V) = (f). \ \text{Maoitenant} \ k \subseteq k(x_1, \cdots, x_{n-1}) \subseteq k(x_1, \cdots, x_{n-1})(x_n) \\ \text{est alg\'{e}brique} \ \text{car} \ f(x_1, \cdots, x_n) = 0. \ \text{Montrons que} \ \{x_1, \cdots, x_{n-1}\} \ \text{sont alg\'{e}brique} \\ \text{ment ind\'{e}pendants} \ \text{sur} \ k : \text{si} \ g \in k[X_1, \cdots, X_{n-1}] \ \text{tel que} \ g(x_1, \cdots, x_{n-1}) = 0 \ \text{dans} \ k(V) \ (\text{donc} \ \text{dans} \ k[V]). \ \text{Alors} \ g(x_1, \cdots, x_{n-1}) \in I(V) = (f) \ \text{mais} \ \text{deg}_{X_n} \ g = 0, \ \text{absurde.} \end{array}$

- **Rq 3.2.3.** Soient $f_1, \dots, f_r \in k[X_1, \dots, X_n], V := V(f_1, \dots, f_r) \subseteq \mathbb{A}^n_k$. Supposons que V est irréductible, alors dim $V \ge n r$. Preuve en exercice
- Ex 3.2.2. $V := V(Y X^2, Z X^3, XZ Y^2) \subseteq \mathbb{A}^3_k$. Alors $V = \{(t, t^2, t^3) \mid t \in k\}$ est une variété affine de dimension 1 (on parle de courbe affine). En effet, V est irréductible, puis $k[V] \simeq k[T]$ donc $\frac{k}{l}V = k(T)$ est de degré de transcendance 1 sur k. Comme V est définie par 3 équations, $XZ Y^2$ peut s'exprimer en fonction des deux autres polynômes et est donc superflue.

Rq 3.2.4. Si V, W sont des variétés affines isomorphes, alors $k[V] \simeq k[W]$ et ainsi $k(V) \simeq k(W)$ donc dim $V = \dim W$. Dans l'exemple précédente, on peut conclure que V est de dimension 1 avec cette remarque.

Ex 3.2.3. $V = V(XZ - Y^2, XW - YZ, YW - Z^2) = V(f_1, f_2, f_3) \subseteq \mathbb{A}^4$. On sait que dim $V \ge 1$ d'après la remarque 3.2.3. En fait, dim V = 2, et $f_i \notin (f_j, f_l)$ pour tout i, j, k différents deux à deux. Montrons par exemple que $f_3 \notin (f_1, f_2)$: Soit $W = V(f_1, f_2)$, si $f_3 \in (f_1, f_2)$, alors V = W. Mais $V \cap \{x = 0\} \ne W \cap \{x = 0\}$:

$$V \cap \{x = 0\} = \{(0, 0, 0, w) \mid w \in k\}$$

$$W \cap \{x = 0\} = \{(0, 0, z, w) \mid z, w \in k\}$$

On peut montrer les autres de manière similaire, ainsi on ne peut pas éliminer d'équation, mais pourtant dim V=2: Soit $V'=V(f_1)$, $V''=V(f_1,f_2)$ ($V\subseteq V''\subseteq V'$). Calculons la dimension de ces différentes variétés:

$$k[V'] = k[X, Y, Z, W]/(XZ - Y^2) = k[x, y, z, w]$$

où $xz = y^2$. Alors k(V') = k(x, y, z, w) = k(x, y, w) puisque $z = y^2/x$ dans k(V'). Enfin on peut prouver que x, y, z sont algébriquement indépendants, et donc dim V' = 3.

k[V'']=k[x,y,z,w] avec $xz=y^2$, sw=yz. Ainsi k(V'')=k(x,y) puisque $z=y^2/x$, w=yz/x, et on peut prouver que x,y sont algébriquement indépendants, i.e. dim V''=2.

k(V) = k(x, y, z, w), mais $z = y^2/x$, w = yz/x, mais la 3eme équation ne nous donne pas d'autre relation (c'est la même que celle donnée par la première équation). Il est donc possible de prouver que x, y sont algébriquements indépendnts et alors dim V = 2.

3.2.2 Dimension de krull

Soit $A \in \mathbf{CRings}$.

Définition 3.2.6. (Dimension de Krull)

$$\dim A := \sup\{l \ge 0 \mid \mathfrak{p}_0 \nsubseteq \mathfrak{p}_1 \nsubseteq \cdots \not\subseteq \mathfrak{p}_l \subseteq A\}$$

- **Ex 3.2.4.** 1. $A = k[X_1, \dots, X_n]$. Alors considérons $\mathfrak{p}_i = (X_1, \dots, X_i)$ pour $0 \le i \le n$, on a donc dim $A \ge n$. On peut en fait montrer que dim A = n.
 - 2. La dimension d'un corps vaut 0,
 - 3. dim $\mathbb{Z} = 1$.

Rq 3.2.5. $\mathfrak{p} \subseteq A$ idéal premier, alors

$$\dim(A/\mathfrak{p}) = \sup\{l \ge 0 \mid \mathfrak{p} = \mathfrak{p}_0 \not\subseteq \cdots \not\subseteq \mathfrak{p}_l\}$$

Définition 3.2.7. (Hauteur) Soit $\mathfrak{p} \stackrel{\text{pr}}{\subseteq} A$, alors

$$ht(\mathfrak{p}) = \sup\{s \ge 0 \mid \mathfrak{p}_0 \nsubseteq \cdots \nsubseteq \mathfrak{p}_s = \mathfrak{p}\}$$

Ex 3.2.5. 1. $A = \mathbb{Z}$, alors $ht(p\mathbb{Z}) = 1$.

- 2. A = k[T], alors ht((f)) = 1.
- 3. $A = k[X_1, \dots, X_n], \mathfrak{p} = (X_1, \dots, X_s)$. Alors $ht\mathfrak{p} = s$.

Théorème 3.2.1. k corps, A k-algèbre de type fini. Soit p idéal premier, alors

$$ht\mathfrak{p} + \dim A/\mathfrak{p} = \dim A$$

Ex 3.2.6. 1. $A = \mathbb{Z}, \mathfrak{p} = p\mathbb{Z}$ avec p premier; Alors $ht\mathfrak{p} = 1, \mathfrak{A}/p = \mathbb{F}_p$ est de dimension 0.

- 2. $A = k[X_1, \dots, X_n], \mathfrak{p} = (X_1, \dots, X_s)$ avec $s \in [1, n]$. $ht\mathfrak{p} = s, A/\mathfrak{p} \simeq k[X_{s+1}, \dots, X_n],$ dim $A/\mathfrak{p} = n s$.
- 3. La dimension peut être infinie : par exemple $A = k[\mathbb{N}]$.

Théorème 3.2.2. Soit V une variété affine. Alors

$$\dim k[V] = \dim V$$

3.3 Singularités

3.3.1 Points singuliers, variétés lisses

Soit $V \subseteq \mathbb{A}^n_k$ une variété affine. Notons $d = \dim V$, et soit $I(V) = (P_1, \dots, P_r) \stackrel{\mathrm{id}}{\subseteq} k[X_1, \dots, X_n]$. On a $d \geq n - r$. Considérons le morphisme

$$\varphi: \mathbb{A}^n \to \mathbb{A}^r$$

$$x \mapsto (P_1(x), \cdots, P_r(x))$$

En particulier, $\varphi_{|V} = 0$.

Notation. On note

$$d\varphi(x) = \begin{bmatrix} \frac{\partial P_1}{\partial X_1}(x) & \cdots & \frac{\partial P_1}{\partial X_n}(x) \\ \vdots & & \vdots \\ \frac{\partial P_r}{\partial X_1}(x) & \cdots & \frac{\partial P_r}{\partial X_n}(x) \end{bmatrix} \in M_{r,n}(k)$$

la matrice jacobienne de φ en x.

Définition 3.3.1. $a \in V$ est un point régulier (ou encore non singulier) de V si

$$rk(d\varphi(a)) = n - d$$

Si $rk(d\varphi(a)) < n - d$, on dit que a est un point singulier de V.

Rq 3.3.1. 1. $\forall a \in V, rk(d\varphi(a)) \leq n - d$

2. La définition précédente ne dépend pas du choix de P_1, \dots, P_r

Définition 3.3.2. V est lisse si $\forall a \in V$, a est un point régulier.

Ex 3.3.1. 1. \mathbb{A}^n est lisse.

2. $V=V(f)\subseteq \mathbb{A}^n$, pour $f\in k[X_1,\cdots,X_n]$ irréductible est une variété affine de dimension n-1?. Alors

$$d\varphi = \left[\frac{\partial f}{X_1}, \cdots, \frac{\partial f}{X_n}\right]$$

Ainsi $a \in V(f)$ est singuler ssi $rk(d\varphi(a)) = 0$ ssi $\frac{\partial f}{X_1}(a) = \cdots = \frac{\partial f}{X_n}(a) = 0$.

- 3. Si f = XY 1, $V = V(f) \subseteq \mathbb{A}^2$. Alors $\frac{\partial f}{X} = Y$ et $\frac{\partial f}{Y} = X$, alors $a \in V$ singulier si $a_2 = a_1 = 0$, mais $a \in V \iff a_1 a_2 = 1$, donc tout point de V est régulier et V est donc lisse.
- 4. $f = Y^2 X^3$, $V := V(f) \subseteq \mathbb{A}^2$. Si $\operatorname{char} k \neq 2, 3$, alors $a \in V$ singulier ssi a = (0, 0).
- 5. $f = Y^2 X(X-1)(X-\lambda), \lambda \in k$ ("courbe ellipitique" si $\lambda \neq 0, 1$). $f = Y^2 X^3 + (\lambda+1)X^2 \lambda X$. Alors

$$\frac{\partial f}{\partial X} = -3X^2 + 2(\lambda + 1)X - \lambda$$
$$\frac{\partial f}{\partial Y} = 2Y$$

et donc $(a,b) \in V(f)$ singulier ssi

$$\begin{cases}
-3x^2 + 2(\lambda + 1)x - \lambda = 0 \\
2y = 0 \\
y^2 = x(x - 1)(x - \lambda)
\end{cases} \iff \begin{cases}
y = 0 \\
x = 0, 1, \lambda \\
-3x^2 + 2(\lambda + 1)x - \lambda = 0
\end{cases}$$

Alors

- (a) Si x = 0, $\lambda = 0$ et (0,0) est le seul point singulier.
- (b) Si x = 1, alors $\lambda = 1$ et (1,0) est le seul point singulier.
- (c) Si $x = \lambda$, alors $\lambda = 0, 1$ et donc c'est les cas précédents. Ainsi si $\lambda \neq 0, 1$, alors V(f) est lisse.

3.4 Anneau des fonctions régulières en un point

Soit $V \subseteq \mathbb{A}^n_k$ une variété affine, $a \in V$. Par définition,

$$k[V] = \frac{k[X_1, \cdots, X_n]}{I(V)}$$

puis $k(V) = \operatorname{Frac} k[V]$.

Définition 3.4.1. $\alpha \in k(V)$ est bien définie au point $a \in V$ si $\exists f, g \in k[V]$ telles que $\alpha = f/g \in k(V)$ et $g(a) \neq 0$. Dans ce cas, la valeur de α en a est définie comme $\alpha(a) := f(a)/g(a) \in k$.

Rq 3.4.1. En général, pour $\alpha \in k(V)$, on peut toujours écrire $\alpha = f/g$ mais f et g ne sont pas uniques.

Ex 3.4.1. $V = V(Y^2 - X^3) \subseteq \mathbb{A}^2$; Alors k[V] = k[x, y] avec $y^2 = x^3$. Alors

$$\frac{y}{x} = \frac{x^2}{y} \in k(V)$$

Proposition 3.4.1. Soit $\alpha \in k(V)$ bien définie en $a \in V$. Alors $\alpha(a)$ est bien définie.

Démonstration. Si $\alpha=f/g=f'/g'$ avec $f,g,f',g'\in k[V]$ et $g(a),g'(a)\neq 0$. Alors $fg'-f'g=0\in k[V]$ et donc f(a)g'(a)-f'(a)g(a)=0, ce qui implique que

$$\frac{f(a)}{g(a)} = \frac{f'(a)}{g'(a)} \in k$$

Notation.

$$k[V]_a := \{ \alpha \in k(V) \mid \alpha \text{ est définie en } a \}$$

C'est un sous anneau de k(V), dit anneau local de fonctions régulières autour de a.

Rq 3.4.2. 1. $k \subseteq k[V] \subseteq k[V]_a \subseteq k(V)$

- 2. $a \in V \iff I(V) \subseteq \mathfrak{m}_a$. Si $g \in k[V], g(a) = 0 \iff g \in \mathfrak{m}_a/I(V) \stackrel{\max}{\subseteq} k[V]$.
- 3. $k[V]_a$ est la localisation de k[V] en $S = A \setminus \mathfrak{p}$, où $\mathfrak{p} = \mathfrak{m}_a / I(V)$.

3.4.1 Anneaux locaux

Rappelons que si A est un anneau, $S = A \backslash \mathfrak{p}$, l'image $S^{-1}\mathfrak{p}$ de \mathfrak{p} par le morphisme canonique $A \to S^{-1}A$ est l'unique idéal maximal de $S^{-1}A$. En effet, $S^{-1}A \backslash S^{-1}\mathfrak{p}$ sont des inversibles de $S^{-1}A$. Ainsi $S^{-1}A$ est un anneau local.

Notation. On notera (A, \mathfrak{m}) les anneaux locaux, avec \mathfrak{m} leur unique idéal maximal. A/\mathfrak{m} est le corps résiduel de A.

Proposition 3.4.2. Soit A un anneau noethérien intègre, $S \subseteq A$ un ensemble multiplicatif. Alors $S^{-1}A$ est noethérien.

 $D\'{e}monstration$. Soit $I \subseteq S^{-1}A$. Ainsi le morphisme $\varphi: A \to S^{-1}A$ est injectif. Alors $J:=\varphi^{-1}(I)$ est un idéal de A, qui est de type fini. Ainsi il existe $P_1,\cdots,P_r\in J$ tel que $J=(P_1,\cdots,P_r)$. Montrons que $I=(\varphi(P_1),\cdots,\varphi(P_r))=(P_1/1,\cdots,P_r/1)$. Soit $a/s\in I$, alors

$$\varphi(a) = \frac{a}{1} = \frac{a}{s} \frac{S}{1}$$

donc il existe $f_1, \dots, f_r \in A$ tq $a = \sum f_i P_i \in A$. Et donc

$$\frac{a}{s} = \sum \frac{f_i}{s} \frac{P_i}{1}$$

et donc $a/s \in (P_1/1, \cdots, P_r/1)$.

Corollaire 3.4.1. Soit V une variété algébrique. Alors $k[V]_a$ est un anneau noethérien.

Démonstration. k[V] est noethérien et intègre car V est une variété algébrique. Ainsi $k[V]_a$ est noéthérien comme localisation de k[V].

Lemme 3.4.1. (Nakayama) (A, \mathfrak{m}) anneau local noethérien, et M un A-module de type fini. Si $\mathfrak{m}M = M$, alors M = 0.

Corollaire 3.4.2. $\mathfrak{m}^i/\mathfrak{m}^{i+1}=0 \iff \mathfrak{m}^i=0$. En particulier, $\mathfrak{m}/\mathfrak{m}^2=0 \iff \mathfrak{m}=0 \iff A$ est un corps.

Rq 3.4.3. Soit (A, \mathfrak{m}) un anneau local noethérien. $\mathfrak{m}/\mathfrak{m}^2$ est un A-module, mais aussi un k-ev où $k = A/\mathfrak{m}$ de type fini (en tant que A-module et en tant que k-ev)

Théorème 3.4.1. (A, \mathfrak{m}) anneau local noethérien, $k = A/\mathfrak{m}$. Alors

$$\dim_k \mathfrak{m}/\mathfrak{m}^2 \ge \dim A$$

où dim A est la dimension e krull de A. De plus, si on a égalité (on note $d = \dim A$), alors $\mathfrak{m} = (x_1, \dots, x_d)$ avec $x_i \in A$, et on dit que (A, \mathfrak{m}) est un anneau régulier.

3.5 Espace tangent

Soit V une variété affine, $a \in V$, on note $A = k[V]_a$. L'idéal maximal de A est $\mathfrak{m} = \{\alpha \in A \mid \alpha(a) = 0\}$.

Exercice. Considérons le morphisme

$$ev: k[V]_a \rightarrow k$$

 $\alpha \mapsto ev(\alpha) = \alpha(a)$

Alors $\ker(ev) = \mathfrak{m}$ idéal maximal de $k[V]_a$, et $k[V]_a/\mathfrak{m} \simeq k$

3.5.1 Espace tangent de Zariski

Définition 3.5.1. $V \subseteq \mathbb{A}^n$ variété affine, $a \in V$. Soit $A = k[V]_a$ l'anneau local associé à a. L'espace tangent de V en a est le k-ev

$$T_aV := (\mathfrak{m}/\mathfrak{m}^2)^{\vee} := \mathbf{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

l'espace tangent à V en a.

Théorème 3.5.1. $\dim k[V] = \dim k[V]_a$

Donc (A, \mathfrak{m}) est régulier ssi dim $V = \dim A = \dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim_k T_a V$. On va montrer que (A, \mathfrak{m}) est régulier si et seulement si $a \in V$ est régulier.

Théorème 3.5.2. $\dim_k T_a V \ge \dim V$ avec égalité si et seulement si $a \in V$ est un point régulier.

Pour montrer ce théorème, nous devons parler d'espace tangent géométrique.

3.5.2 Espace tangent géométrique

Soit
$$V = V(P_1, \dots, P_r) \subseteq \mathbb{A}^n$$
, avec $P_1, \dots, P_r \in k[X_1, \dots, X_n]$, et $a \in V$.

Définition 3.5.2. (Espace tangent géométrique) L'espace tangent géométrique de V en a est définit comme

$$T_a^{\text{geom}}V = V(P_1^1, \cdots, P_r^1) \subseteq \mathbb{A}^n$$

οù

$$P_i^1 = \sum_{j=1}^n \frac{\partial P_i}{\partial X_j} (a)(X_j - a_j)$$

Rq 3.5.1. Soit $P \in k[X_1, \dots, X_n]$, on peut décomposer P en $P = \sum_{i=0}^d P^i$ où les P^i sont des polynômes homogènes de degré i (tous les monômes sont de la forme X^{α} avec $|\alpha| = i$) en réalisant l'expansion de taylor de P en 0. Ainsi,

$$P^{1} = \sum_{j=1}^{n} \frac{\partial P}{\partial X_{j}}(0)X_{j}$$

Maintenant si $a \in \mathbb{A}^n$, alors on peut réaliser l'expansion de taylor de P en $a, P = \sum P^i$, et alors

$$P^{1} = \sum_{j=1}^{n} \frac{\partial P}{\partial X_{j}}(a)(X_{j} - a_{j})$$

Ex 3.5.1. 1. Soit $V = \{(x,y) \mid y^2 = x\} \subseteq \mathbb{A}^2$. Alors V = V(P) avec $P = Y^2 - X$. Alors soit $a = (a_1, \dots, a_2) \in V$ (donc $a_2^2 = a_2$), on a

$$\frac{\partial P}{\partial X} = -1$$
$$\frac{\partial P}{\partial Y} = 2Y$$

On a donc

$$T_a^{\text{geom}} = V(-(X - a_1) + 2a_2(Y - a_2))$$

- est la droite tangente au point (a_1, a_2) , qui est isomorphe à k. En effet, $\dim T_a^{\text{geom}} = 1$ (c'est le translaté d'un sous-espace de k^2 de dimension 1). De même, $\dim V = 1$ vu que k[V] = k[Y], puis V est lisse donc tout point est régulier.
- 2. Cas particulier : a=(0,0), alors $T_a^{\text{geom}}V=V(x)$. Maintenant $k[V]\simeq k[X]$, et $k[V]_a=k[x,y]_{(x,y)}\simeq k[x]/(x)$. Finalement, $\mathfrak{m}=(X/1)$ et donc $\dim_k\mathfrak{m}/\mathfrak{m}^2=1$ (X/1) est une base de ce k-ev). Ainsi $\dim T_aV=1$ en 0.