Introduction à la cryptographie

Louiza Khati

4A-Partie 2

Chiffrement asymétrique

Alice envoie un message à Bob (utilisation du bi-clé de Bob)

Chiffrement asymétrique

- Propriétés sur les clés
 - La connaissance de la clé publique ne doit pas permettre de retrouver la clé privée
 - La clé privée et la clé publique sont liées
- Propriétés sur le schéma : fonction à sens unique
 - Chiffrer un message doit être facile
 - Déchiffrer un message sans la clé doit être très difficile!
- Repose sur un problème difficile (preuve par réduction)
 - La factorisation d'entiers
 - Le **logarithme** discret

Chiffrement asymétrique : Factorisation

- Factorisation des nombre entiers
 - $-53 \times 37 = ?$
 - 1403 = ?

Chiffrement asymétrique : Factorisation

- Factorisation des nombre entiers
 - 53 x 37 = 1961
 - 1403 = 61 * 23

Chiffrement asymétrique : Factorisation

- Factorisation des nombre entiers
 - 53 x 37 = 1961
 - 1403 = 61 * 23
- Et
 2519590847565789349402718324004839857142928212620403202777713783
 6043662020707595556264018525880784406918290641249515082189298559
 1491761845028084891200728449926873928072877767359714183472702618
 9637501497182469116507761337985909570009733045974880842840179742
 9100642458691817195118746121515172654632282216869987549182422433
 6372590851418654620435767984233871847744479207399342365848238242
 8119816381501067481045166037730605620161967625613384414360383390
 4414952634432190114657544454178424020924616515723350778707749817
 1257724679629263863563732899121548314381678998850404453640235273
 81951378636564391212010397122822120720357 ????

Complexité : produit et factorisation

- Produit de deux nombres de n bits
- Coût d'un produit : N₁ ×N₂
 - Soient N₁ et N₂ deux nombres premiers sur n bits
 - Méthode naïve : coût O(n²)
 - Méthodes plus efficaces : complexité quasi-linéaire

- Pour un entier sur N sur n bits, complexité exponentielle
- Algorithme naı̈f : $O(\sqrt{N}) \rightarrow O(2^{n/2})$

Factorisation

- Record de factorisation
 - **768** bits et 232 chiffres décimaux

https://members.loria.fr/AGuillevic/files/teaching/NFS/techniques-de-l-ingenieur-record-calcul-RSA240.pdf

Rappels : Algorithme d'Euclide

- Soient a et b deux entiers : pgcd(a,b) = pgcd(b, r) où r = a mod(b)
- Exemple : pgcd (119, 91) = ?
 - 119 = 1* 91 + 28
 - 91 = 3*28 +7
 - 28 = 4*7 + 0

PGCD!

Rappels : Algorithme d'Euclide

- Soient a et b deux entiers : pgcd(a,b) = pgcd(b, r) où r = a mod(b)
- Exemple : pgcd (119, 91) = 7
 - 119 = 1* 91 + 28
 - 91 = 3*28 +7
 - -28 = 4*7 + 0

Rappels : Théorème de Bezout

 Soient a et b deux entiers naturels tel que pgcd(a,b) = d alors il existe deux entiers relatifs u et v tel que :

$$d = a*u+b*v$$

u et v sont appelés les coefficients de Bezout.

- Exemple : a = 21 et $b = 12 \rightarrow d = 3$ - $(-1)^*21 + 2 * 12 = 3 \rightarrow 0 = -1$ et v = 2
- Cas particulier d = 1: a et b premiers entre eux alors il existe u et v tel que

(calcul inverse modulaire)

Rappels : Algorithme d'Euclide étendu

- Version récursive de l'algorithme d'Euclide
- Permet de trouver les coefficients de Bezout
- Exemple : pgcd (119, 91) = ?

$$-(2)91=3*28+7$$

$$-(3)28 = 4*7 + 0$$

- Reconstruction (trouver les coefficients de Bezout) :
 - $-(2) \rightarrow 91 3*28 = 7$
 - Avec (1) \rightarrow 91 3 * (119 1*91) = 7
 - Finalement 4*91-3*119=7

Rappels : Indicatrice d'Euler

 Fonction qui à tout entier naturel N non nul associe le nombre d'entiers compris entre 1 et N (inclus) et premiers avec N.

- Exemples :
 - $\varphi(5) = 4 (\{1,2,3,4\})$
 - Si p est premier : $\phi(p) = p-1$
 - Si p_i premier et $n = \Pi p_i$ alors $\phi(n) = \Pi (p_i-1)$
- Remarque : Pour calculer φ(n), il faut connaitre la décomposition en facteurs premiers de n!

Indicatrice d'Euler : Exemples

- n = 17 alors $\phi(n) = ?$ Ensemble premier avec n ?
- n = 15 alors $\phi(n) = ?$ Ensemble premier avec n ?
- n = 113 alors $\phi(n) = ?$ Ensemble premier avec n ?
- n = 42 alors $\phi(n) = ?$ Ensemble premier avec n ?
- Si n = pq avec p et q deux grands nombres premiers alors?

Rappels(?) : Théorème d'Euler

- Soient a et N deux entiers
- Théorème d'Euler : si pgcd(a,N)=1 alors

$$a^{\phi(N)} = 1 \mod (N)$$

 Cas particuliers: soient p et q deux entiers premiers distincts, N=pq et a entier relatif tel que pgcd(a,N) = 1 alors

$$a^{(p-1)(q-1)} = 1 \mod(N)$$

RSA

- Présenté en 1977
- Rivest, Shamir et Adleman (RSA)
- Basé sur la problème de la factorisation
- Mécanismes basés sur le cryptosystème RSA :
 - Chiffrement RSA (confidentialité des données)
 - Signature RSA (intégrité des données + non répudiation)

RSA : génération des clés

- Génération du bi-clé de chiffrement de Bob
 - Tirer aléatoirement deux grands nombres entiers p et q
 - Certaines propriétés doivent être vérifiées.
 - Calculer le module N = p q
 - Le module N est un paramètre public
 - Calculer l'indicatrice d'Euler : $\phi(N) = (p-1)(q-1)$
 - Choisir l'exposant public e tel que PGCD(e, $\phi(N)$) = 1
 - Calculer l'exposant privé d tel que d e= 1 $mod(\phi(N))$
 - Algorithme d'Euclide étendu

RSA: génération des clés

- Génération du bi-clé de chiffrement de Bob
 - Tirer aléatoirement deux grands nombres entiers p et q

```
    Certaines propriétés doivent être vérifiées.
    Calculer le module N = p q
    Le module N est un paramètre public
    Calculer l'indicatrice d'Euler : φ(N) = (p-1)(q-1)
    Choisir l'exposant public e tel que PGCD(e, φ(N)) = 1
    Calculer l'exposant privé d tel que d e = 1 mod(φ(N))
    Taille de la clé :
    khati@khati-ThinkPad-X280:-$ time openssl genrsa -out mykey.pem 1024
    real om0,033s user 0m0,028s sys om0,005s khati@khati-ThinkPad-X280:-$ time openssl genrsa -out mykey.pem 2048
    real om0,242s sys om0,009s khati@khati-ThinkPad-X280:-$ time openssl genrsa -out mykey.pem 3072
    real om0,968s user om0,959s sys om0,009s khati@khati-ThinkPad-X280:-$ time openssl genrsa -out mykey.pem 4096
    Taille de la clé :
```

- [ANSSI] Module, exposant secret d : 2048 bits minimum (→2030) ensuite 4096
- [ANSSI] Exposant public $e : > 2^{16} = 65536$ (exemple : e = 65537)

RSA : génération des clés

- Génération du bi-clé de chiffrement de Bob
 - Tirer aléatoirement deux grands nombres entiers p et q
 - Certaines propriétés doivent être vérifiées.
 - Calculer le module N = p q
 - Le module N est un paramètre public
 - Calculer l'indicatrice d'Euler : $\phi(N) = (p-1)(q-1)$
 - Choisir l'exposant public e tel que PGCD(e, $\phi(N)$) = 1
 - Calculer l'exposant privé d tel que d e= 1 $mod(\phi(N))$
 - Calculé grâce à l'algorithme d'Euclide étendu
 - Calcul de d : il existe u et v tel que $u*e+v*\phi(n) = 1 \rightarrow u*e = 1 \mod(\phi(N))$ [Théorème de Bezout]

Exemple simple

$$p = 17 \text{ et } q = 31$$

$$N = ?$$

$$\phi(N) = ?$$

$$e = 7$$
, $pgcd(7,480)=1$

$$d = ?$$

RSA: génération des clés

- Génération du bi-clé de chiffrement de Bob
 - Tirer aléatoirement deux grands nombres entiers p et q
 - Certaines propriétés doivent être vérifiées.
 - Calculer le module N = p q (pas trop proches!)
 - Le module N est un paramètre public
 - Calculer l'indicatrice d'Euler : $\phi(N) = (p-1)(q-1)$
 - Choisir l'exposant public e tel que PGCD(e, $\phi(N)$) = 1
 - Calculer l'exposant privé d tel que d e= 1 $mod(\phi(N))$
 - Calculé grâce à l'algorithme d'Euclide étendu
 - Calcul de d : il existe u et v tel que $u*e+v*\phi(n) = 1 \rightarrow u*e = 1 \mod(\phi(N))$ [Théorème de Bezout]

Exemple simple

$$p = 17 \text{ et } q = 31$$

$$\phi(N) = (17-1)(31-1) = 480$$

e = 7, pgcd(7,480)=1
d = ?

RSA : génération des clés

- Génération des clés
 - Calculer d tel que pgcd(7,480)=1
 - Algorithme d'Euclide étendu

Exemple simple

$$\rightarrow$$
 1 = 343 * 7 mod (480)

: (527,7)

: (527,343)

Exemple : Euclide étendu

• $(104,53) \rightarrow 53^{-1} = ? \mod 104$

■ (31, 67) → d tel que d*31 mod 67

■ (52,91) → d tel que d*52 mod 91

Rappels : Chiffrement asymétrique

Trois algorithmes : k = paramètre de sécurité = taille de la clé

■ Génération de clé : (sk,pk) ← Keygen(k)(avec sk = (d,N) et pk=(e,N))

RSA

■ Chiffrement : c ← encrypt(pk, m)

■ Déchiffrement : m ← decrypt(sk, c)

RSA: Chiffrement naïf

- Opération de chiffrement « Raw RSA »
 - Alice découpe le message m en bloc m_i tel que o<m_i<N

Raw RSA()

- Chiffrement de chaque message m_i :
 - $c_i = m_i^e \mod(N)$
- Déchiffrement de c :
 - $c_i^d \mod(N) = m_i$

RSA: Chiffrement naïf

- Opération de chiffrement « Raw RSA »
 - Alice découpe le message m en bloc m_i tel que o<m_i<N

Raw RSA()

- Chiffrement de chaque message m_i :
 - $c_i = m_i^e \mod(N)$
- Déchiffrement de c :
 - $c_i^d \mod(N) = m_i$

Wessage m

RSA_decrypt(sk,.) naif

RSA_decrypt (sk,.) naif

Condition

RSA_decrypt (sk,.) naif

Chiffee c

Cryptographie - Louiza Khati

25

Modèle de sécurité : chiffrement asymétrique

- Malléabilité
- Adversaire A:
 - A la vue d'un chiffré C d'un message inconnu M (ou plusieurs), il peut construire un chiffré C* tel que la relation entre M* et M soit connue.

Chiffrement asymétrique : Sécurité

- RSA naïf :
 - Taille du message limité
 - Même avec l'hypothèse que le message m<N → chiffrement déterministe

- Raw RSA
 - Chiffrement déterministe
 - Adversaire : Possibilité de calculer le chiffré de n'importe quel message

Question : comment définir un chiffrement asymétrique robuste ?

Chiffrement: RSA-OAEP

- « Optimal Asymmetric Encryption Padding »
- Par Mihir Bellare et Phillip Rogaway en 1994
- Standard PKCS v2.2 (Plusieurs RFC : 2437, 3447, ...)
- Ajouter de l'aléa :
 - Masquer le message M (1<M<N avec N le module RSA)
 - Rendre le chiffrement probabiliste
 - Taille de l'aléa suffisamment grand?
 - Au moins 128 bits sinon recherche exhaustive sur cet aléa

Chiffrement : RSA-OAEP

Chiffrement: RSA-OAEP

- Preuve de sécurité : RSA-OAEP
 - Paramètres RSA problème difficile (paramètres bien choisis)
- Ne permet de chiffrer qu'un « bloc de message »

Chiffrement : RSA-OAEP

- Preuve de sécurité : RSA-OAEP robuste (IND-CCA).
 - Paramètres RSA problème difficile (paramètres bien choisis)
- Ne permet de <u>chiffrer qu'un « bloc de message »</u>
 - Chiffrement asymétrique très long!
 - A combiner avec un chiffrement symétrique
 - Chiffrer une clé symétrique K (petite taille) avec RSA-OAEP,
 - Chiffrer le message long avec la clé et le chiffrement symétrique.

Chiffrement: RSA-OAEP

- Preuve de sécurité : RSA-OAEP est robuste (IND-CCA2).
 - Paramètres RSA problème difficile (paramètres bien choisis)
- TP:
 - Attaques si les paramètres sont mal choisis

Crypto-système RSA

- Fonction à sens unique :
 - Calculer Me mod(N) est facile
 - Sans la trappe d, à partir de C = M^e mod(N), il est très difficile de trouver M
 = problème RSA
 - Repose sur le problème de la factorisation
- Avec des paramètres biens choisis :
 - Génération de p et q premiers
 - p et q de taille similaire
 - Recherche exhaustive
 - Exposant public e pas trop petit (>2¹⁶)
 - Exposant secret d de même taille que le module
 - Taille de module <u>au moins 2048 bits</u>.

Conclusion : Chiffrement asymétrique

- Permet de chiffrer que de « petites données »
- En pratique : permet de chiffrer une clé symétrique K dans le but de chiffrer les données avec K.
- Remarque : nous avons vu des chiffrements asymétriques basés sur RSA mais il en existe d'autres!

Conclusion : Chiffrement asymétrique

Bob veut envoyer des données chiffrées à Alice.

Allier les avantages du chiffrement symétrique et asymétrique!

Signature Exemples basés sur RSA

Signature manuscrite

- engage la responsabilité du signataire
- physiquement attachée au document signé
- vérification de la signature par comparaison avec une signature précédente

Signatures électroniques

- Elles garantissent :
 - l'intégrité du document
 - l'authentification de l'émetteur
 - la non-répudiation
- Elles dépendent :
 - du message
 - du signataire identifié par sa paire de clés publique/privée

Signature asymétrique

Alice envoie un message signé à Bob (utilisation de la bi-clé d'Alice)

Différent du chiffrement asymétrique!

Signature

- Algorithme asymétrique sinon pas de non-répudiation
 - Si algo symétrique > clé partagée K
- Seul le détenteur de la clé privée peut signer
- Tout le monde peut vérifier la signature (clé publique)

Signature : attaquant

- But ?
- Fournir une forge/contrefaçon (m*, s*) pour un utilisateur tel que :
 - (m*, s*) n'a jamais été généré par l'utilisateur
- Exemple : Alice génère plusieurs signatures (m₁,s₁), (m₂,s₂),..., (m_q,s_q)
 - Un attaquant peut fournir $(m_3, s_3) \rightarrow ce$ n'est pas une forge
 - Si un attaquant fournit (m*, s*) \neq (m_i, s_i) pour tout i \in {1,...,q}, c'est une forge.
 - → un couple valide (m*, s*) non générée par Alice.