Analytic Geometry

1. Linear Equation

1) Point-slope form

Given a point in the line (x_1, y_1) , and the slope of the line, m, an equation of the line may be expressed as $y - y_1 = m(x - x_1)$

Example: Determine an equation of a line through point (3, 2) with slope m = 2.

Solution:

$$(x_1, y_1) = (3, 2)$$
 and $m = 2$, so $y - 2 = 2$ $(x - 3)$, this equation can be expressed in standard form: $2x - y - 4 = 0$

2) Slope Y-intercept form

Given a slope and the y-intercept of the line, b, an equation of the line may be expressed in the form: y = mx + b.

Example: Determine an equation of the line with m=3 and y-intercept 2.

Solution: b = 2 and m = 3, the y = 3x + 2

3) Two point solution

Given two points (x_1, y_1) and (x_2, y_2) , then the equation of the line can be expressed as

$$(y - y_1) = \frac{(y_1 - y_2)}{(x_1 - x_2)} (x - x_1)$$
 or $y - y_1 = m (x - x_1)$, here $m = \frac{(y_1 - y_2)}{(x_1 - x_2)}$

Example: given two points $P_1(2, 3)$ and $P_2(-1, 2)$, determine the equation of the line.

Solution: $m = \frac{(y_1 - y_2)}{(x_1 - x_2)} = \frac{(3 - 2)}{(2 - (-1))} = \frac{1}{3}$, so $y - 3 = \frac{1}{3}(x - 2)$, this equation can be expressed in standard

form: x - 3y + 7 = 0

2. Length of segment

The length of a line segment can be found by Pythagorean Theorem given two points P_1 (x_1 , y_1) and P_2 (x_2 , y_2), then the segment joining P_1 and P_2 may be expressed by following formula:

$$L = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Example: Find the length of the line segment joining points (3, 2) and (-1, 4)

Solution: L=
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{4^2 + 2^2} = \sqrt{20} = 4\sqrt{5}$$

3. Midpoint of a line segment

We can calculate the coordinates of the midpoint of a line segment if the coordinates of the endpoints are given.

The coordinates of the midpoint M of the segment with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$ are:

$$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$$

- \blacktriangleright The relations between two lines with slope m_1 and m_2 :
 - if $m_1=m_2$, then two lines are parallel;
 - if $m_1 \cdot m_2 = -1$, then two lines are perpendicular;
 - if $m_1 \neq m_2$, the two lines have one intersection.

In-class questions

- 1. Let points A = (0,0,0), B = (1,0,0), C = (0,2,0), and D = (0,0,3). Points E, F, G, and H are midpoints of line segments BD, AB, AC, and DC respectively. What is the area of EFGH?
- 2. Let points A = (0, 0), B = (1, 2), C = (3, 3), and D = (4, 0). Quadrilateral ABCD is cut into equal area pieces by a line passing through A. This line intersects CD at point (p/q, r/s), where these fractions are in lowest terms. What is p+q+r+s?
- 3. A dilation of the plane-that is, a size transofrmation with a positive scale factor-sends the circle of radius 2 centered at A(2, 2) to the circle of radius 3 centered at A'(5, 6). What distance does the origin O(0, 0) more under this transformation?

- 4. What is the area of the region enclosed by the graph of the equation $x^2 + y^2 = |x| + |y|$?
- 5. How many triangles with positive area have all their vertices at points (i, j) in the coordinate plane, where i and j are integers between 1 and 5, inclusive?
 - (A) 2128 (B) 2148 (C) 2160 (D) 2200 (E) 2300
- 6. Which of the following describes the set of values of a for which the curves $x^2 + y^2 = a^2$ and $y = a^2 a$ in the real xy-pane intersect at exactly 3 points?
- 7. points A(6, 13) and B(12, 11) lie on a circle ω in the plane. Suppose that the tangent lines to ω at A and B intersect at point on the x-axis. What is the area of ω ?
- 8. A lattice point in an xy-coordinate system is any point where both x and yare integers. The graph of y = mx + 2 passes through no lattice point with $0 < x \le 100$ for all m such that 1/2 < m < a. What is the maximum possible value of a?