

CLAIMS

What is claimed is:

1 1. An electronic device comprising:
2 a detection circuit to detect whether a predetermined device is within a predetermined
3 proximity of the electronic device; and
4 a control circuit to cause the electronic device to be in a first state when the
5 predetermined device is within the predetermined proximity and to cause the electronic device to
6 be in a second state when the predetermined device is not within the predetermined proximity.

2 2. The electronic device of claim 1 wherein the first state comprises a normal
operating state.

2 3. The electronic device of claim 2 wherein the second state comprises a lower
power state.

1 4. The electronic device of claim 2 wherein the second state comprises a locked state
2 to deny access to the electronic device when the electronic device is in the second state.

1 5. The electronic device of claim 1 wherein the predetermined device comprises a
2 transmitter to transmit wireless signals and the detector comprises a receiver to receive the
3 wireless signals from the predetermined device.

1 6. The electronic device of claim 1 further comprising a transmitter to transmit
2 wireless signals to the predetermined device, wherein the predetermined device comprises a
3 reflective device to reflect the wireless signals to the detection circuit.

1 7. An identification device comprising a transmitter to transmit wireless signals to
2 an electronic device, the wireless signals to identify the identification device to the electronic
3 device, the wireless signals further to be used by the electronic device to determine whether the
4 identification device is within a predetermined proximity to the electronic device such that the
5 electronic device is in a first state when the identification device is within the predetermined
6 proximity and the electronic device is in a second state when the identification device is not
within the predetermined proximity.

1 8. The identification device of claim 7 wherein the first state comprises a normal
operating state.

1 9. The identification device of claim 8 wherein the second state comprises a lower
2 power state.

1 10. The identification device of claim 8 wherein the second state comprises a locked
2 state to deny access to the electronic device when the electronic device is in the second state.

1 11. A method comprising:

2 determining whether a predetermined device is within a predetermined proximity of an
3 electronic device;
4 causing the electronic device to be in a first state when the predetermined device is within
5 the predetermined proximity of the electronic device; and
6 causing the electronic device to be in a second state when the predetermined device is not
7 within the predetermined proximity of the electronic device.

1 12. The method of claim 11 wherein the first state comprises a normal operating state.

1 13. The method of claim 12 wherein the second state comprises a lower power state.

1 14. The method of claim 12 wherein the second state comprises a locked state to deny
2 access to the electronic device when the electronic device is in the second state.

1 15. The method of claim 11 wherein determining whether the predetermined device is
2 within the predetermined proximity to the electronic device further comprises:
3 transmitting a wireless signal;
4 detecting whether the wireless signal is reflected by the predetermined device;
5 determining, from the reflected signal, whether the predetermined device is within the
6 predetermined proximity to the electronic device.

1 16. The method of claim 11 wherein determining whether the predetermined device is
2 within the predetermined proximity to the electronic device further comprises:

3 transmitting a wireless signal;
4 detecting whether an acknowledge signal is transmitted by the predetermined device in
5 response to the wireless signal; and
6 determining, from the acknowledge signal, whether the predetermined device is within
7 the predetermined proximity to the electronic device.

1 17. The method of claim 11 wherein determining whether the predetermined device is
2 within the predetermined proximity to the electronic device further comprises:

3 detecting a signal transmitted by the predetermined device; and
4 determining, from the signal, whether the predetermined device is within the
5 predetermined proximity to the electronic device.

1 18. An article comprising a machine-accessible medium providing access to
2 sequences of instructions that, when executed by one or more processors, cause the one or more
3 processors to:

4 determine whether a predetermined device is within a predetermined proximity of an
5 electronic device;
6 cause the electronic device to be in a first state when the predetermined device is within
7 the predetermined proximity of the electronic device; and
8 cause the electronic device to be in a second state when the predetermined device is not
9 within the predetermined proximity of the electronic device.

1 19. The article of claim 18 wherein the first state comprises a normal operating state.

1 20. The article of claim 19 wherein the second state comprises a lower power state.

1 21. The article of claim 19 wherein the second state comprises a locked state to deny
2 access to the electronic device when the electronic device is in the second state.

1 22. The article of claim 18 wherein the sequences of instructions that cause the one or
2 more processors to determine whether the predetermined device is within the predetermined
3 proximity to the electronic device further comprises sequences of instructions that, when
4 executed, cause the one or more processors to:

5 transmit a wireless signal;

6 detect whether the wireless signal is reflected by the predetermined device;

7 determine, from the reflected signal, whether the predetermined device is within the
8 predetermined proximity to the electronic device.

1 23. The article of claim 18 wherein the sequences of instructions that cause the one or
2 more processors to determine whether the predetermined device is within the predetermined
3 proximity to the electronic device further comprises sequences of instructions that, when
4 executed, cause the one or more processors to:

5 transmit a wireless signal;

6 detect whether an acknowledge signal is transmitted by the predetermined device in
7 response to the wireless signal; and

8 determine, from the acknowledge signal, whether the predetermined device is within the
9 predetermined proximity to the electronic device.

1 24. The article of claim 18 wherein the sequences of instructions that cause the one or
2 more processors to determine whether the predetermined device is within the predetermined
3 proximity to the electronic device further comprises sequences of instructions that, when
4 executed, cause the one or more processors to:

5 detect a signal transmitted by the predetermined device; and
6 determine, from the signal, whether the predetermined device is within the predetermined
7 proximity to the electronic device.

25. A method comprising:

2 detecting when a predetermined device enters a predetermined region with respect to an
3 electronic device; and
4 causing the electronic device to boot up in response to the predetermined device entering
5 the predetermined region.

1 26. The method of claim 25 wherein determining when the predetermined device
2 enters the predetermined region with respect to the electronic device further comprises:
3 transmitting a wireless signal;
4 detecting whether the wireless signal is reflected by the predetermined device;
5 determining, from the reflected signal, whether the predetermined device is within the
6 predetermined region with respect to the electronic device.

1 27. The method of claim 25 wherein determining when the predetermined device
2 enters the predetermined region with respect to the electronic device further comprises:
3 transmitting a wireless signal;
4 detecting whether an acknowledge signal is transmitted by the predetermined device in
5 response to the wireless signal; and
6 determining, from the acknowledge signal, whether the predetermined device is within
7 the predetermined region with respect to the electronic device.

1 28. The method of claim 25 wherein determining when the predetermined device
2 enters the predetermined region with respect to the electronic device further comprises:
3 detecting a signal transmitted by the predetermined device; and
4 determining, from the signal, whether the predetermined device is within the
5 predetermined region to the electronic device.

1 29. An article comprising a machine-accessible medium to provide access to
2 sequences of instructions that, when executed, cause one or more electronic devices to:
3 detect when a predetermined device enters a predetermined region with respect to at least
4 one of the one or more electronic device; and
5 cause the electronic device to boot up in response to the predetermined device entering
6 the predetermined region.

1 30. The article of claim 25 wherein the sequences of instructions that cause the one or
2 more electronic devices to determine when the predetermined device enters the predetermined
3 region with respect to the electronic device further comprises sequences of instructions that,
4 when executed, cause the one or more electronic devices to:
5 transmit a wireless signal;
6 detect whether the wireless signal is reflected by the predetermined device;
7 determine, from the reflected signal, whether the predetermined device is within the
8 predetermined region with respect to the electronic device.

1 31. The article of claim 25 wherein the sequences of instructions that cause the one or
2 more electronic devices to determine when the predetermined device enters the predetermined
3 region with respect to the electronic device further comprises sequences of instructions that,
4 when executed, cause the one or more electronic devices to:
5 transmit a wireless signal;
6 detect whether an acknowledge signal is transmitted by the predetermined device in
7 response to the wireless signal; and
8 determine, from the acknowledge signal, whether the predetermined device is within the
9 predetermined region with respect to the electronic device.

1 32. The article of claim 25 wherein the sequences of instructions that cause the one or
2 more electronic devices to determine when the predetermined device enters the predetermined
3 region with respect to the electronic device further comprises sequences of instructions that,
4 when executed, cause the one or more electronic devices to:

5 detect a signal transmitted by the predetermined device; and
6 determine, from the signal, whether the predetermined device is within the predetermined
7 region to the electronic device.

1 33. An electronic device comprising:
2 a detector that detects when a predetermined device is within a predetermined range of
3 the electronic device; and
4 a control circuit that causes the electronic device to boot up in response to the
5 predetermined device entering the predetermined range.

1 34. The electronic device of claim 33 wherein the predetermined device comprises a
2 transmitter to transmit wireless signals and the detector comprises a receiver to receive the
3 wireless signals from the predetermined device.

1 35. The electronic device of claim 33 further comprising a transmitter to transmit
2 wireless signals to the predetermined device, wherein the predetermined device comprises a
3 reflective device to reflect the wireless signals to the detection circuit.