IA pour la prédiction des faillites d'entreprises

Sommaire

01

LE DATASET

Présentation des données

02

EXPLORATION

Exploration et conclusion

03

NOS STRATEGIES

Secrets de data scientist

04

RESULTATS

Nos premiers résultats

O5 CONCLUSION

Programme IA ou pas?

Le dataset

• 6819 lignes et 96 colonnes

 5 features (toutes type float sauf 'Net income flag' et 'Liability-Assets Flag' qui sont des int)

```
0 6811
1 8
Name: Liability-Assets Flag, dtype: int64
1 6819
Name: Net Income Flag, dtype: int64
```

1 target : Bankrupt? (valeur 0 si l'entreprise n'a pas fait faillite et valeur 1 si l'entreprise a fait faillite)

Exploration

02

Notre cible : Bankrupt

0 = non faillite

6599 entreprises

1 = faillite

220 entreprises

Notre cible en %

0: pas en faillite | 1: a fait faillite / Total en %

3% d'entreprises en faillites

97% d'entreprises qui n'ont pas fait faillite

Les features

Nos 95 features ont des distributions et échelles différentes.

- 69 features ont des données entre 0 et 1
- 1 feature a juste des 1
- 1 feature a des 0 et 1
- les autres ont des échelles de 0 jusqu'à 9.990000e+09

Distribution des données

Feature correlation

feature_1	feature_2	correlation
Bankrupt?	Debt ratio %	0.250161
Bankrupt?	Current Liability to Assets	0.194494
Bankrupt?	Borrowing dependency	0.176543
Bankrupt?	Current Liability to Current Assets	0.171306
Bankrupt?	Liability to Equity	0.166812

Bankrupt?	ROA(C) before interest and depreciation	-0.260807
Bankrupt?	ROA(B) before interest and depreciation	-0.273051
Bankrupt?	ROA(A) before interest and % after tax	-0.282941
Bankrupt?	Net Income to Total Assets	-0.315457

3. Nos statégies

SCALING

Standardiser et normaliser les données

SMOTE

Oversampler les données

Preprocessing workflow

```
Preprocessing pipelines
def check_not_normal(X):
    data = []
    for i in X.columns:
        if X[i].skew() < -0.9 or X[i].skew() > 0.9:
            data.append(i)
    return data
def check_normal(X):
    data = []
    for i in X.columns:
        if X[i].skew() > -0.9 and X[i].skew() < 0.9:</pre>
            data.append(i)
    return data
ftr_to_scale = check_not_normal(X)
ftr_to_norm = check_normal(X)
scaling_itr = ColumnTransformer([
    ('scaling', StandardScaler(), ftr_to_scale)
], remainder='passthrough')
```

➤ Decision Tree

DT w/ standard scaling

DT w/ normal scaling

DT w/ standard | normalize scaling

DT w/ normal | standard and robust scaling

DT w/ oversampling balancing (SMOTE)

▼ Random Forest Classifier

RF w/out robust scaling

RF w/ robust scaling

- → Bagging Classifier
 - > Bagging w/ decision tree
 - > Bagging w/ random forest
- ➤ Boosting

W/out robust scaling

W/ robust scaling

Preprocessing workflow

Résultats

1. RobustScaler sur toutes les features

2. SMOTE ENN: SMOTE est appliqué pour créer des données synthétiques d'échantillons de classes minoritaires, puis en utilisant ENN, les points de données sur la frontière sont supprimés pour augmenter la séparation des deux classes.

3. Random Forest (avec GridSearchCV) 'max_depth': 10, 'n_estimators': 150

Decall coo

Recall score:

0:0.93

1:0.77

Metrics

Feature

Net Worth Turnover Rate (Times)
Net Value Growth Rate

Generalisation

Conclusion

Cette prédiction n'est pas assez précise pour être commercialisé à cause de sa marge d'erreur encore trop importante.

A voir par la suite:

- Features selection
- Model tuning
- Autres modèles

