

Using deep learning for unifying genomic data and traits in species delimitation

MF Perez; I Sanmartín; BC Faircloth; LAC Bertollo; MB Cioffi

Introduction

Different species concepts - distinct strategies to identify species boundaries (de Queiroz 2007). It is important to adopt a multidisciplinary approach, by assessing different sources of evidence (Carstens et al. 2013).

Most approaches consist in analyzing genomic and phenotypical/geographical information separately, followed by visual/qualitative comparison. Methods that actually integrate different data are limited to up to a few hundreds of loci and simple models of evolution (Solís-Lemus et al. 2015).

We present a method based on **simulated data and deep learning**, that **combines** both **genomic and trait** information in a unified framework.

Methods

Results

Probabilities are low when using only traits.

slightly better results than using only SNPs.

Increasing SNPs also raised the probability

Conclusions

The accuracy of our approach was very high (confusion matrix with the test set). Confusion of model 4 (migration) with model 1 (one species).

Incorporating traits resulted in similar accuracy to using only SNPs.

Traits incorporate information complimentary to genomic data that might be useful for species delimitation.

