装配及用户手册

目录

0	简介	2
1	机械部分	2
	1.0 准备工作	2
	切口打磨	2
	丝锥攻丝	3
	1.1 底座及 X 轴	4
	1.2 联合支架及 Y 轴	5
	1.3 滑动笔夹	5
	1.4 SG90 舵机	5
	1.5 42 步进电机及同步带	5
2	电子部分	5
	2.1 Arduino Uno R3	5
	2.2 CNC Shield V3 & A4988	5
	Rs 电阻	6
	42 步进电机连接线调整	6
	CNC Shield V3 电源接口制作	7
3	软件部分	11
	3.1 Arduino IDE	11
	官网下载	11
	网盘下载	11
	USB 转串口驱动官网下载	11
	USB 转串口驱动网盘下载	12
	3.2 Grbl firmware (Servo)	12
	项目主页	12
	整合分支	12
	网盘下载	12
	使用 Arduino IDE 编译上传 Grbl firmware (Servo)	12
	3.3 Inkscape	13
	官网下载	13
	网盘下载	13
	3.4 MI Inkscape Extension	14
	原始下载地址	14
	整合分支	14
	网盘下载	14
	3 5 General G-Code Sender	1/1

0 简介

打印机墨盒又双叕涨价了! 娃经常要我帮她抄写错题,费时费力,还嫌弃我字写的难看。不如自己 DIY 一台写字机器人,既可以替代我抄写错题,还可以部分替代打印机的功能节省墨(Jin)盒(Qian)。

本项目主要参考了 <u>T站</u>上的 <u>DrawBot V1.1</u> (Drawing Robot - Arduino Uno + CNC Shield + GRBL)。参考项目的机械部分采用了 3D 打印件,而我手头暂时还没有 3D 打印机,所以采用了 2040 铝合金的框架以及某宝上定制 CNC 切割了 5 块 3mm 铝合金板,电子部分和软件部分和参考项目一样。

本项目为开源项目,项目主页: https://github.com/zzhouj/drawbot。目录及文件说明:

- **sw2020/** 存放写字机器人的零件模型及装配文件,使用的三维建模软件是 SolidWorks 2020。
- dxf/3mm 铝合金板定制 CNC 切割文件,由 sw2020 文件夹中的对应零件模型导出生成。
- bom/ 各部分材料清单。
- BOM.xls 零件清单及参考价格。
- Assemble and User Manual.pdf 装配及用户手册。

1 机械部分

1.0 准备工作

切口打磨

2040 铝合金型材和 7878 角铝的切口,以及 3mm 铝合金板激光切口背面会有毛刺,在装配过程中容易划伤手。所以在进行装配前,需要对有毛刺的切口进行打磨和抛光。可以使用打磨块或者打磨板+带背胶的砂纸,按照粗磨(240 目),细磨(1000 目),抛光(4000 目)的顺序进行打磨。注意: 打磨时戴上口罩和手套进行防护。

- ① 左图: 打磨块。
- ② 右图: 打磨前后的角铝对比, 左侧是打磨后的角铝, 右侧是打磨前的角铝。

丝锥攻丝

2040 铝合金型材的切口上可以安装铝合金盖板,以提高框架的美观性和安全性。安装盖板之前需要对型材的两个圆孔进行攻丝,孔的直径是 4.2mm,可以使用 M5 的铰手攻丝钻头,攻丝深度不少于 8mm。

1. 需要用到的工具。

- ① 快速夹
- ② 钢丝钳
- ③ 丝锥绞手 (夹头+杠杆)
- ④ M5 丝锥
- ⑤ 沉头内六角螺丝 M5*10
- 2. 安装丝锥绞手。

- ① 左图:根据参考螺丝,使用电工胶布标记攻丝深度,注意丝锥头部大约 5mm 不是有效区域。
 - ② 右图:使用钢丝钳夹住丝锥夹头,转动绞手杠杆拧紧丝锥夹头。

3. 攻丝。

- ① 左图:使用快速夹将 2040 铝型材固定在桌面边缘。
- ② 右图:完成后使用参考螺丝测试丝路是否顺滑。
- ③ 攻丝的过程中需要不断的重复攻丝,退丝,清理(金属碎屑)的循环,直至达到预定深度,并在达到预定深度后在执行几次循环,将丝路清理干净。

1.1 底座及 X 轴

1.2 联合支架及 Y 轴

1.3 滑动笔夹

1.4 SG90 舵机

1.5 42 步进电机及同步带

2 电子部分

2.1 Arduino Uno R3

推荐阅读《Arduino Uno R3 硬件参考》来了解 Uno R3 的技术参数和引脚说明。

2.2 CNC Shield V3 & A4988

推荐阅读《A4988 驱动 NEMA 步进电机(42 步进电机)》或者《A4988 驱动模块使用详解》来了解 A4988 驱动模块的使用。

推荐阅读《Arduino CNC 电机扩展板详解(A4988 驱动 42 步进电机)》,并测试其中的例子,确认 42 步进电机是可以正常工作的,以及接线是正确的。

- 1. 测试前请先按照《<u>A4988 Vref 电压调节</u>》调节步进电机在工作时流过线圈的电流强度,建议调整到 0.7A 即可。计算公式: I_TripMax= Vref/(8*Rs)。例如: Rs 为 0.1 欧姆,Vref 参考电压就需要调节到 0.56V(0.7A*8*0.1 欧姆)。
- 2. 测试代码使用了第三方库: AccelStepper 库,请按照《<u>使用 AccelStepper 步进电机库准</u> <u>备工作</u>》中的说明下载和安装好 AccelStepper 库。

- 3. 编译下载好测试程序,若发现 42 步进电机的主轴不转或者抖动,一般就是两相(两个 线圈)接错,我在测试时就遇到这种情况,后来对照购买的 42 步进电机和 42 步进电机 连接线的说明,才发现原来是两相接错了。
- 4. 若在测试过程中发现 42 步进电机有失速现象,特别是将测试程序中的 moveSteps 调大为 2000,并采用全速模式时特别容易出现。此时可以通过降低 setMaxSpeed,或者通过增加微步细分驱动模式来避免产生电机失速。

Rs 电阻

通过查看 A4988 驱动模块上面 S1 S2 标号可以确定 Rs 电阻的阻值。

我采购模块的是 0.1 欧姆(标号 R100=0.1 欧姆, R200=0.2 欧姆, R050=0.05 欧姆)。

42 步进电机连接线调整

1. 我购买的 42 步进电机和 A4988 驱动模块的引脚说明:

- ① 左图: 电机侧 A+/A-为线圈 1, B+/B-为线圈 2。
- ② 右图: A4988 驱动模块侧 1A/1B 为线圈 1, 2A/2B 为线圈 2。

- ③ 所以只要 42 步进电机连接线两头的接线顺序一致就不会接错。
- 2. 购买的 42 步进电机连接线两头的接线顺序:

- ① 左图:连接线默认状态。XH2.54 侧:红黑为一组,蓝绿为一组;杜邦 2.54 侧:红蓝为一组,绿黑为一组。**处于两相接错状态**。
- ② 右图:连接线调整之后。XH2.54 侧:红黑为一组,蓝绿为一组;杜邦 2.54 侧:红黑为一组,蓝绿为一组。连接正确。
- 3. 如何调整杜邦端口接线顺序:

- ① 左图: 先用尖头镊子将杜邦塑料头上的卡子挑起来。
- ② 右图: 然后就可以轻松将杜邦线头抽出杜邦外壳。
- ③ 调整接线顺序后再插回杜邦外壳,用手按几下原来被挑起的卡子,使其卡住杜邦线头即可。

CNC Shield V3 电源接口制作

1. 需要用到的工具。

- ① 中号一字改锥
- ② 小号十字改锥
- ③ 中号十字改锥
- ④ 美工刀
- ⑤ 剥线钳
- ⑥ 尖嘴钳
- ⑦ PZ 压线钳
- 2. 需要用到的材料。

- ① 2芯1平方保护套软电线 0.2m
- ② 电源接头 DC 母头
- ③ 预绝缘管型端子【1平方管长 8mm】x4
- 3. 剥掉 2 芯电线两端保护套。

- ① 上左图: 使用美工刀从红线和蓝线之间剖开约 5mm 左右。
- ② 上中图: 顺着剖开的切口,用手撕开保护套外皮约 25mm 左右。
- ③ 上右图:将保护套外皮和内芯线剥开并翻起。
- ④ 下左图:将翻起的保护套外皮用尖嘴钳剪除。
- ⑤ 下右图:在2芯电线另一端重复上述操作,完成后的状态。

4. 内芯线剥皮。

- ① 左图:使用剥线钳 1.0 档位剥去约 10mm 的内芯线保护套。
- ② 右图:对另外3根内芯线重复上述操作,完成后的状态。

5. 压接预绝缘管型端子。

- ① 上左图:套上预绝缘管型端子。
- ② 上右图:使用 PZ 压线钳 1.0 档位,用力压接管型端子和线芯。
- ③ 下图:对另外 3 根内芯线重复上述操作,完成后的状态。
- ④ 注意: 压接后露出的多余线芯,可以使用尖嘴钳截去。

6. 对接 CNC Shield V3 和 DC 母头

- ① 左图:将压接好的线头一端插入 DC 母头的接线槽中,并用中号十字改锥拧紧。
- ② 中图:将压接好的线头另一端插入 CNC Shield V3 的接线槽中,并用中号一字改锥 拧紧。
 - ③ 右图: CNC Shield V3 电源接口制作完成。
 - ④ 注意:接线时正负极不要接错。

3 软件部分

3.1 Arduino IDE

官网下载

- 1. 打开 Arduino 官网: https://www.arduino.cc/。
- 2. 鼠标移动到导航栏菜单 SOFTWARE 上,点击下拉菜单 DOWNLOADS 打开下载网页: https://www.arduino.cc/en/software/。
- 3. 在 DOWNLOAD OPTIONS 下根据自己的操作系统选择适合自己的版本进行下载。
- 4. 若您使用 Windows 操作系统,建议下载 Windows ZIP file 版本,并在解压后的文件夹根目录下新建一个文件夹 portable。

网盘下载

由于 Arduino 官网是境外网站,访问可能受限,我在百度网盘上镜像了一份最新(截至本文档写作日期)的 Windows ZIP file 版本,地址及提取码如下:

- ① arduino-1.8.13-windows.zip https://pan.baidu.com/s/1vTS0KWl8ofQgZ1sEcmsdrA 提取码:m58s
- ② arduino-1.8.13-windows.exe https://pan.baidu.com/s/1ZwsYJ5x-x0vNcNG9frReAw 提取码: bugo

USB 转串口驱动官网下载

- 1. 若您采购了 Arduino Uno 官方版开发板,则串口驱动位于 Arduino IDE 的根目录下的 drivers 目录中。
- 2. 若您采购了副(ke)厂(long)的 Uno 开发板,则一般采用的是 CH340 USB 转串口芯片。
- 3. 在 bing 中搜索 ch340,搜索结果中的第一条: <u>USB 转串口芯片:CH340 南京沁恒微电子</u> 股份有限公司页面中,有各操作系统的驱动程序下载,如 CH341SER.EXE。

USB 转串口驱动网盘下载

① CH341SER.EXE
https://pan.baidu.com/s/1w1-0J5isymuUxMPFYX7-RQ
提取码:2cgj

3.2 Grbl firmware (Servo)

项目主页

- 1. Grbl: https://github.com/grbl/grbl v0.9j 及之前的版本。
- 2. Grbl Servo: https://github.com/robottini/grbl-servo 基于 v0.9i 支持伺服马达的版本。
- 3. config.h (T 站上的 DrawBot V1.1 项目): https://www.thingiverse.com/download:3853123。

整合分支

我基于上述三部分整合了一个分支: https://github.com/zzhouj/grbl/tree/v0.9i_servo。您可以在此分支中看到 Grbl Servo 对 Grbl v0.9i 所作的修改,以及 config.h (T 站上的 DrawBot V1.1项目)进行了那些修改。

网盘下载

由于 Github 是境外网站,访问可能受限,我在百度网盘上镜像了一份最新(截至本文档写作日期)的整合分支版本,地址及提取码如下:

① grbl-0.9i_servo.zip https://pan.baidu.com/s/1hzgLwkzNqOl 1vCKqHr1qw 提取码:nj75

使用 Arduino IDE 编译上传 Grbl firmware (Servo)

推荐参考《Compiling GrbI》来了解如何使用 Arduino IDE 编译上传 GrbI firmware。我这里也写一份简要的操作指南:

 下载 arduino-1.8.13-windows.zip 到本地文件夹(如) E:\drawbot。解压到当前文件夹, 进入解压后生成的文件夹 E:\drawbot\arduino-1.8.13 新建一个文件夹 portable。

- 2. 下载 grbl-0.9i_servo.zip 到本地文件夹 E:\drawbot。解压到当前文件夹,解压后生成的文件夹为 E:\drawbot\grbl-0.9i servo。
- 3. 启动 Arduino IDE,可执行文件位于 E:\drawbot\arduino-1.8.13\arduino.exe。
- 4. 在 Arduino IDE 的菜单栏中选择【项目】【加载库】【添加.ZIP 库...】(也可添加文件夹),选 择 文 件 夹 E:\drawbot\grbl-0.9i_servo\grbl 点 击 【 打 开 】 。注 意: 并 不 是 打 开 grbl-0.9i_servo.zip 解压后的根目录,而是其子目录 grbl,其中包含源码和示例。
- 5. 在 Arduino IDE 的菜单栏中选择【文件】【示例】最后的三方库示例【grbl】【grblUpload】,Arduino IDE 会在新的窗口中打开 grblUpload 示例的源码。注意:若未找到 grblUpload 示例,则说明添加库的路径搞错了,此时可以先将错误的库删除,然后重复上述步骤重新加载正确的库。已安装的库文件夹位于:portable\sketchbook\libraries。
- 6. 使用 USB 连接 Arduino Uno 开发板,在 Arduino IDE 的菜单栏中选择【工具】【开发板】 选中 Arduino Uno。在 Arduino IDE 的菜单栏中选择【工具】【端口】选择您的开发板在您的操作系统中的串口编号。
- 7. 点击 Arduino IDE 的菜单栏中【项目】【上传 Ctrl+U】,或者点击 Arduino IDE 的工具栏中的第二个按钮(图标为向右的箭头)进行编译上传。

3.3 Inkscape

官网下载

- 1. 打开 Inkscape 官网: https://inkscape.org/
- 2. 鼠标移动到导航栏菜单 DOWNLOAD 上,点击下拉菜单 Current Version 打开下载网页: https://inkscape.org/release/inkscape-1.0.2/。
- 3. 下载页面右侧栏有历史版本下载链接的列表,选择 0.92 打开网页: https://inkscape.org/release/inkscape-0.92/?latest=1。
- 4. 根据自己的操作系统选择适合自己的版本进行下载。

网盘下载

- ① inkscape-0.92.5-x64.7z https://pan.baidu.com/s/1wESQJ-UTsMEQzT2tUo4XqQ 提取码: 69db
- ② inkscape-0.92.5-x64.msi https://pan.baidu.com/s/1flazfeywtmtkXFL1hxTz0g

3.4 MI Inkscape Extension

原始下载地址

- 1. http://www.mediafire.com/file/ae0wquqornzc3o2/MI+Inkscape+Extension.zip
- 2. servo.py (T 站上的 DrawBot V1.1 项目): https://www.thingiverse.com/download:8332761。

整合分支

我基于上述三部分整合了一个分支: https://github.com/zzhouj/MI-Inkscape-Extension。您可以在此分支中看到 servo.py (T 站上的 DrawBot V1.1 项目)进行了那些修改。

网盘下载

由于 Github 是境外网站,访问可能受限,我在百度网盘上镜像了一份最新(截至本文档写作日期)的整合分支版本,地址及提取码如下:

① MI-Inkscape-Extension-main.zip
https://pan.baidu.com/s/1MHAxbmlCq1A2BkrJj ypGw
提取码:dbh6

3.5 General G-Code Sender