



**Clustertools**An overview and comparison of different clustering methods in Python

Luzie Helfmann, Johannes von Lindheim and Mattes Mollenhauer Mathematical aspects in Machine Learning, SS17



- Overview over various clustering methodologies
- Understand and compare approaches
- Implement specific algorithms in Python library

→ Clustertools package



▶ Clustertools package specifications



- Clustertools package specifications
- Methods Package Contents
  - Distance-based methods

  - Density-based methodsGraph/similarity-based methods
  - Consensus Clustering



- Clustertools package specifications
- Methods Package Contents
  - Distance-based methods
  - Density-based methods
  - Graph/similarity-based methods
  - Consensus Clustering
- Results
  - ▶ Trade-off
  - Comparison of the algorithms
  - Consensus Clustering



## Our project: Clustertools Python package



https://github.com/clustertoolsgroup/clustertools project

## Clustertools Python package



| Branch: master ▼ clust                             | ertools_project / clustertools / models /          | Create new file | Upload files                     | Find file | History  |  |
|----------------------------------------------------|----------------------------------------------------|-----------------|----------------------------------|-----------|----------|--|
| hexcoffee Uneven blobs dataset, consensus examples |                                                    |                 | Latest commit d9b6768 2 days ago |           |          |  |
|                                                    |                                                    |                 |                                  |           |          |  |
| initpy                                             | initial commit                                     |                 |                                  | 29 c      | days ago |  |
| consensus.py                                       | Uneven blobs dataset, consensus examples           |                 |                                  | 2 0       | days ago |  |
| density.py                                         | comparison of algorithms                           |                 |                                  | 8 0       | days ago |  |
| distance.py                                        | initial commit                                     |                 |                                  | 29 0      | days ago |  |
| fuzzy.py                                           | comparison of algorithms                           |                 |                                  | 8 0       | days ago |  |
| similarity.py                                      | Verbose decision in spectral, parameter adjustment |                 |                                  | 3 0       | days ago |  |

- self-contained library for different clustering algorithms
- only numpy and scipy dependency
- scikit-learn oriented API

### Package contents





#### Clustertools API



Constructing squared distance matrix terminated by break condition 73 iterations until termination. Finished after 0.00.54 642282

#### Clustertools API



Constructing squared distance matrix terminated by break condition 73 iterations until termination. Finished after 0.00-54 642282

access all clustering information via object instance properties:

clustering\_object.cluster\_labels





Figure: Fuzzy C-Means on two noisy data sets

 Idea: similarity of data points according to some distance measure

#### Methods: Distance-based methods





Hard clustering: strict membership of every data point to one cluster (implemented: K-Means, Regular Space Clustering)

Figure: Fuzzy C-Means on two noisy data sets

 Idea: similarity of data points according to some distance measure

#### Methods: Distance-based methods





Figure: Fuzzy C-Means on two noisy data sets

 Idea: similarity of data points according to some distance measure

- Hard clustering: strict membership of every data point to one cluster (implemented: K-Means, Regular Space Clustering)
- Fuzzy (soft) clustering: a point has some degree of membership to every cluster (implemented: Fuzzy C-Means)





Figure: Mean Shift Algorithm on two data sets

 Idea: clusters are defined as regions of higher density (implemented: Mean Shift, DBSCAN)







Figure: kNN-adjacency based Spectral Clustering

## Methods: Graph/similarity-based methods





Figure: kNN-adjacency based Spectral Clustering

Implemented: Affinity Propagation, Spectral Clustering, Hierarchical Clustering



Find clustering  $C^*$  for given set of existing clusterings  $\Lambda = \{C_1, \dots, C_m\}$  $C^*$  should represent a "common denominator"



Find clustering  $\mathcal{C}^*$  for given set of existing clusterings  $\Lambda = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$  $\mathcal{C}^*$  should represent a "common denominator"

#### Motivation:

Robustness



Find clustering  $\mathcal{C}^*$  for given set of existing clusterings  $\Lambda = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$  $\mathcal{C}^*$  should represent a "common denominator"

#### Motivation:

- Robustness
- Knowledge reuse



Find clustering  $C^*$  for given set of existing clusterings  $\Lambda = \{C_1, \dots, C_m\}$  $C^*$  should represent a "common denominator"

#### Motivation:

- Robustness
- Knowledge reuse
- Distributed computing



Find clustering  $\mathcal{C}^*$  for given set of existing clusterings  $\Lambda = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$   $\mathcal{C}^*$  should represent a "common denominator"

#### Motivation:

- Robustness
- Knowledge reuse
- Distributed computing
- Parameter search (own contribution)



$$NMI(X,Y) = \frac{I(X,Y)}{\sqrt{H(X)H(Y)}}.$$
 (1)

$$NMI(X,Y) = \frac{I(X,Y)}{\sqrt{H(X)H(Y)}}.$$
 (1)

Set  $X = C_i$ ,  $Y = C_j \Rightarrow$  estimation  $\phi^{\text{NMI}}(C_i, C_j)$  from data.



$$NMI(X,Y) = \frac{I(X,Y)}{\sqrt{H(X)H(Y)}}.$$
 (1)

Set  $X = C_i$ ,  $Y = C_j \Rightarrow$  estimation  $\phi^{NMI}(C_i, C_j)$  from data.

Objective function for consensus clustering (average NMI):

$$\phi^{\text{ANMI}}(\mathcal{C}^*, \Lambda) = \frac{1}{m} \sum_{i=1}^{m} \phi^{\text{NMI}}(\mathcal{C}^*, \mathcal{C}_i). \tag{2}$$



$$NMI(X,Y) = \frac{I(X,Y)}{\sqrt{H(X)H(Y)}}.$$
 (1)

Set  $X = C_i$ ,  $Y = C_j \Rightarrow$  estimation  $\phi^{\text{NMI}}(C_i, C_j)$  from data.

Objective function for consensus clustering (average NMI):

$$\phi^{\text{ANMI}}(\mathcal{C}^*, \Lambda) = \frac{1}{m} \sum_{i=1}^{m} \phi^{\text{NMI}}(\mathcal{C}^*, \mathcal{C}_i). \tag{2}$$

Direct maximization / greedy approaches do not work :(



## **Reclustering points:**

- ► Hamming distance on points (count different labels)
- Recluster with affinity based algorithm



### **Reclustering points:**

- Hamming distance on points (count different labels)
- Recluster with affinity based algorithm

## **Reclustering clusters:**

- ▶ Jaccard distance on all clusters:  $\#(C_i \cap C_j) / \#(C_i \cup C_j)$
- Assign every cluster to a meta-cluster
- Compete for points



► Issue I: choice of parameters has big effect on outcome

### Results: Trade-off



- ► Issue I: choice of parameters has big effect on outcome
- ▶ **Issue II:** some algorithms don't scale well with *n* and *d*





Figure: Computing time of algorithms vs. number of data points on a log-log plot

### Results: Trade-off



- ▶ **Issue I:** choice of parameters has big effect on outcome
- ► **Issue II:** some algorithms don't scale well with *n* and *d*
- ▶ **Issue III:** shape-dependent clustering, existence of outliers and noise



## Results: Comparison of the algorithms

| Method                       | Parameters                                                             | Comput. Com-<br>plexity                                                                           | Advantages                                                                                                                                   | Limitations                                                                                                                                                                     | Possible exten-<br>sions                                               |
|------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Affinity<br>Propaga-<br>tion | Similarity ma-<br>trix                                                 | $\mathcal{O}(n^2 \ iter)$                                                                         | Works on abstract similarity<br>relations, exemplar weight-<br>ing and sensitivity parame-<br>ter tuning possible                            | Needs optimal configura-<br>tion of iteration damping<br>and sensitivity parameters                                                                                             | Hierarchical Affin-<br>ity Propagation                                 |
| DBScan                       | Density parameters $\epsilon$ , $m_{\text{points}}$                    | $\mathcal{O}(n^2)$                                                                                | Noise/outlier detection,<br>detection of highly nonlin-<br>ear shapes                                                                        | Highly sensitive to density<br>parameters                                                                                                                                       | HDBSCAN, input<br>parameter estima-<br>tors                            |
| Fuzzy C-<br>Means            | Number of clusters <i>k</i> and fuzzier <i>m</i>                       | O(nk²d iter)                                                                                      | Noise/outlier detection                                                                                                                      | k needs to be known/ap-<br>proximated in advance,<br>strong dependence on cho-<br>sen distance metric, not<br>deterministic, might only<br>converge to local minimum            | estimation of num-<br>ber of clusters,<br>Kernel C-Means,<br>C-Means++ |
| Hierarchical<br>clustering   | Number of clusters <i>k</i> and/or maximum linkage distance <i>l</i>   | $\mathcal{O}(n^2\log(n))$ in general, $\mathcal{O}(n^2\log(n))$ for single-link and complete-link | Can detect highly nonlinear<br>structures, only works on a<br>distance measure between<br>the points (observations<br>themselves not needed) | The number of clusters or<br>a stopping distance thresh-<br>old, as well as the link-<br>age function must be spec-<br>ified, depends heavily on<br>the given distance function | Variety of different<br>distance or linkage<br>functions               |
| K-Means<br>K-<br>Means++     | Number of clus-<br>ters k                                              | $\mathcal{O}(nkd\ iter)$ (Lloyd iteration) worst case $iter = 2^{\Omega(\sqrt{2})}$               | Computational speed,<br>many results on conver-<br>gence, complexity and<br>objective function available                                     | k needs to be known/ap-<br>proximated in advance, not<br>deterministic, might only<br>converge to local minimum                                                                 | Kernel K-Means, K-<br>Medioids                                         |
| Mean Shift                   | Bandwidth pa-<br>rameter for ker-<br>nel density esti-<br>mation (kde) | $\mathcal{O}(n^2 \; iter)$ , kde doesn't scale well with $d$                                      | no knowledge about shapes<br>or number of clusters as-<br>sumed, used a lot for image<br>segmentation                                        | too expensive for most ap-<br>plications                                                                                                                                        | bandwidth estima-<br>tors, code could be<br>parallelized               |
| Regular<br>Space             | Minimal distance $\epsilon_{min}$                                      | $\mathcal{O}(nk)$ , worst case $\mathcal{O}(n^2)$<br>k is parameter dependent                     | Computational speed,<br>useful for large-scale<br>statespace discretizations                                                                 | Restricted interpretability                                                                                                                                                     | Kernel extension                                                       |
| Spectral<br>Clustering       | Number of clusters <i>k</i>                                            | $\mathcal{O}(n^3)$                                                                                | Can detect highly nonlin-<br>ear structures, works on ab-<br>stract similarity graph                                                         | k has to be know/approx-<br>imated, few results on<br>different graph/adjacency<br>types, strongly dependent<br>on choice of graph, very<br>slow                                | Landmark and/or<br>sparse methods,<br>more efficent<br>eigensolvers    |

## Results: Consensus Clustering - Good DBSCAN





► The consensus clusterer is able to extract the correct clustering from the good DBSCAN clusterings







► The consensus clusterer finds the right three blobs from the KMeans clusterings

# Results: Consensus Clustering - Parameter Search



## We propose:

- 1. Fit clustering algorithm with range of parameters
- 2. Produce consensus clustering
- 3. Pick NMI-maximizer

## Results: Consensus Clustering - Parameter Search



#### We propose:

- 1. Fit clustering algorithm with range of parameters
- 2. Produce consensus clustering
- 3. Pick NMI-maximizer
- $\Rightarrow$  objective function for search of parameters, despite lack of labels



#### We propose:

- 1. Fit clustering algorithm with range of parameters
- 2. Produce consensus clustering
- 3. Pick NMI-maximizer
- ⇒ objective function for search of parameters, despite lack of labels





Our presentation, paper (with more details and references to the literature) and Python package can be found on: https://github.com/clustertoolsgroup/clustertools\_project

**Disclaimer:** Our K-Means, Regspace and DBSCAN implementations come from the project Markov Chains and Markov State Models with Prof. Noé.