TP17 – Résonance

L'excitation périodique d'un système à une pulsation ω proche de sa pulsation propre ω_0 peut provoquer une réponse de très forte amplitude : c'est la **résonance**. Il s'agit d'un phénomène très général qui peut se manifester quelle que soit la nature de l'oscillateur : mécanique, optique, électrique, quantique, etc. On se propose ici de l'illustrer et de la caractériser avec un système modèle : le circuit RLC série.

Objectifs

- → Mesurer une tension : mesure directe au voltmètre numérique ou à l'oscilloscope numérique.
- \rightarrow Mesurer l'intensité d'un courant : mesure indirecte à l'oscilloscope aux bornes d'une résistance adaptée.
- \rightarrow Obtenir un signal de valeur moyenne, de forme, d'amplitude et de fréquence données.
- \rightarrow Gérer, dans un circuit électronique, les contraintes liées à la liaison entre les masses.
- $\rightarrow\,\,$ Mettre en œuvre un dispositif expérimental visant à caractériser un phénomène de résonance.

Résonance en intensité

On considère le circuit RLC série représenté ci-contre, alimenté par un signal sinusoïdal de fréquence f variable

$$e(t) = E_0 \cos(2\pi f t).$$

On s'intéresse à l'évolution de l'amplitude aux bornes de la résistance $u_R(t)$ en fonction de la fréquence f de la tension d'entrée e(t).

- REA
- 1. Réaliser le circuit avec $C = 10 \,\mathrm{nF}, \ L = 45 \,\mathrm{mH}$ et $R = 100 \,\Omega$. L'alimenter à l'aide d'un GBF produisant une tension sinusoïdale. Justifier que la mesure de $u_R(t)$ permet d'obtenir l'évolution de l'intensité i(t) dans le circuit. Quelle est l'allure du signal $u_R(t)$?

ANA VAL

2. Pour quelle fréquence f_{max} l'amplitude U_{R0} de la tension $u_R(t)$ est-elle maximale? Commenter la valeur obtenue. Que vaut alors le rapport $G_{R,\text{max}} = U_{R0}/E_0$?

REA

3. Mesurer le déphasage φ entre la tension $u_R(t)$ et la tension e(t) pour $f \ll f_{\text{max}}$, $f = f_{\text{max}}$ et $f \gg f_{\text{max}}$.

APPEL PROF 1

ANA REA

4. Sur papier semilog, tracer le rapport $G_R = U_{R0}/E_0$ en fonction de la fréquence f pour des fréquences comprises entre 1 kHz et 100 kHz. On pourra aussi rentrer les valeurs de f, E_0 et U_{R0} dans le fichier data.txt et utiliser le programme tp17-resonance.py.

REA VAL

5. Mesurer la valeur de la bande passante, c'est-à-dire l'intervalle de fréquence Δf pour lequel $G_R > G_{R,\max}/\sqrt{2}$ et calculer le rapport $f_{\max}/\Delta f$. Commenter la valeur obtenue.

Résonance en tension aux bornes du condensateur

ANA REA

6. Modifier le circuit précédent pour mesurer la tension e(t) à la sortie du GBF et la tension $u_C(t)$ aux bornes du condensateur. Faire un schéma.

ANA VAL

7. Pour quelle fréquence f_{max} l'amplitude U_{C0} de la tension $u_C(t)$ est-elle maximale? Ce résultat n'est valable que lorsque $Q \gg 1$!

REA VAL

8. Mesurer alors la valeur du rapport $G_{C,\text{max}} = U_{C0}/E_0$. Commenter la valeur obtenue.

REA

9. Pour $f \ll f_{\text{max}}$, $f = f_{\text{max}}$ et $f \gg f_{\text{max}}$, mesurer le rapport $G_C = U_{C0}/E_0$ et le déphasage φ_C entre $u_C(t)$ et e(t).

Étude en régime libre

10. Proposer et mettre en œuvre un protocole pour mesurer la fréquence propre f_0 et le facteur de qualité Q du circuit RLC série.

Comparer les valeurs de f_0 et Q avec les valeurs théoriques et les valeurs précédentes.

Documents

Document 1 - Matériel

- GBF;
- oscilloscope;
- bobine $L \approx 45 \,\mathrm{mH}$ ou $11 \,\mathrm{mH}$;
- boite à décade de résistance;
- boite à décade de capacité;
- câbles.