

Dr. rer. nat. Johannes Riesterer

Schnittmenge

Sei $A \subset \mathbb{R}^n$. Für $y \in \mathbb{R}^p$ heißt

$$A_y := \left\{ x \in \mathbb{R}^{n-p} \mid (x,y) \in A \right\}$$

Schnittmenge von A zu y.

Sei $A \subset \mathbb{R}^n$ eine offene und beschränkte Teilmenge und $f: U \to \mathbb{R}$ eine stetige und beschränkte Funktion. Dann ist für jedes $y \in \mathbb{R}^p$ mit $A_y \neq \emptyset$ die Funktion $f_y(x) := f(x,y)$ über A_y und

$$F(y) := \begin{cases} \int_{A_y} f(x, y) d\mu_p, & \text{falls } A_y \neq \emptyset \\ 0 & \text{sonst} \end{cases}$$

über \mathbb{R}^p integrierbar und es gilt

$$\int_{A} f(x,y) d\mu_{n} = \int_{\mathbb{R}^{p}} \int_{\mathbb{R}^{p}} F(y) d\mu_{p}.$$

Hierfür schreiben wir auch kurz

$$\int_{A} f(x,y) d\mu_{n} = \int_{\mathbb{R}^{p}} \left(\int_{A_{Y}} f(x,y) d\mu_{n-p} \right) d\mu_{p}$$

Angewandte Mathematik

Sei φ_k eine monoton wachsende Folge von Treppenfunktionen auf \mathbb{R}^n mit $||f_A-\varphi_k||_1 \to 0$. Für jedes $y \in \mathbb{R}^p$ bilden dann die Funktionen $\varphi_k(x)_y := \varphi_k(x,y)$ eine monoton wachsende Folge von Treppenfunktionen auf \mathbb{R}^{n-p} , die gegen $f_y(x) := f_A(x,y)$ konvergiert. Die Folge der Integrale $\int_{\mathbb{R}^{n-p}} \varphi_k(x)_y d\mu_{n-p}$ ist beschränkt, da A beschränkt ist, und daher gibt es eine Quader I mit $U \subset I$ und mit $M := \max(f)$ ist $\int \varphi_k d\mu \leq M\mu(I)$ beschränkt. Mit dem kleinen Satz von B. Levi gilt

$$F(y) := \lim_{k \to \infty} \int_{\mathbb{R}^{n-p}} \varphi_k(x)_y d\mu_{n-p} .$$

Die Funktionen

$$\phi_k(y) := \int_{\mathbb{R}^{n-p}} \varphi_k(x,y) d\mu_{n-p}$$

sind Treppenfunktionen auf \mathbb{R}^p und die Folge ϕ_k konvergiert monoton wachsend gegen F und die Folge der Integrale $\int \phi_k(y) d\mu_p$ ist beschränkt, da mit dem Satz von Fubini für Treppenfunktionen und $\varphi_k \leq f_A$

$$\int_{\mathbb{R}^p} \phi_k(y) d\mu_p = \int_{\mathbb{R}^n} \varphi_k(x,y) d\mu_n \leq \int_{\mathbb{R}^n} f_A(x,y) d\mu_n.$$

Mit dem kleinen Satz von B. Levi ist F integrierbar und es gilt

$$\begin{split} \int_{\mathbb{R}^p} F(y) d\mu_p &= \lim_{k \to \infty} \int_{\mathbb{R}^p} \phi_k(y) d\mu_p = \lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k(x, y) d\mu_n \\ &= \int_{\mathbb{R}^n} f_A(x, y) d\mu_n \; . \end{split}$$

Riemann vs. Lebesgue

Eine Regelfunktion f auf $[a, b] \subset \mathbb{R}$ ist über [a, b]Lebesgueintegrierbar und es gilt

$$\int_{[a,b]} f(x) d\mu_1 = \int_a^b f(x) dx.$$

Sei φ_k eine Folge von Treppenfunktionen mit $||f-\varphi_k||_\infty \to 0$. Da für jede Funktion h auf [a,b] die Abschätzung $|h| \le ||h||_\infty 1_{[a,b]}$ gilt, folgt auch

$$||f_A - \varphi_{k,A}||_1 \to 0$$

und damit ist $f_{[a,b]}$ auch Lebesgueintegrierbar über [a,b] mit Lebesgueintegral

$$\int_{[a,b]} f(x)d\mu = \int_{\mathbb{R}} f_A(x)d\mu = \lim_k \varphi_{k,A}d\mu = \lim_k \int_a^b \varphi_k dx = \int_a^b f(x)dx$$

Sei $K:=B_1^2(0):=\{(x,y)\in\mathbb{R}^2\mid \sqrt{x^2+y^2}\leq 1\}$. Mit dem kleinen Satz von Fubini erhalten wir

$$\int_{K} 1 d\mu = \int_{-1}^{1} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} 1 dx \right) dy =$$

$$= 2 \int_{-1}^{1} \sqrt{1-y^{2}} dy$$

$$(substitution \ y = sin(u)) = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(u)^{2} du = 2 \cdot \frac{\pi}{2} = \pi$$

Seien U und V offene Teilmengen des \mathbb{R}^n , $T':U\to V$ ein lineare Abbildung und $Q\in\mathbb{I}(n)$ ein Quader. Dann gilt:

$$\mathsf{vol}(T'(Q)) = \mathsf{det}(T') \cdot \mathsf{vol}(Q)$$
.

Für Vektoren $a_1, \dots a_n$ im \mathbb{R}^n heißt die Menge

$$P(a_1, \dots, a_n) := \left\{ x = \sum_{k=1}^n t_k a_k \mid t_1, \dots, t_n \in [0, 1] \right\}$$

Parallelotop.

Angewandte Mathematik Beweis

$$\mathsf{vol}\big(P(a_1,\cdots,a_n)\big)=|det(a_1,\cdots,a_n)|\;.$$

Ausfürlicher Beweis

Seien U und V offene Teilmengen des \mathbb{R}^n . Eine Abbildung $T:U\to V$ heißt diffeomorphismus, wenn eine Umkehrfunktion $T^{-1}:V\to U$ existiert, also $T^{-1}(T(u))=u$ gilt für alle $u\in U$, die ebenfalls differenzierbar ist.

Für eine invertiertere Matrix A ist T(x) := Ax ein Diffeomorphismus.

Seien U und V offene Teilmengen des \mathbb{R}^n , $T:U\to V$ ein Diffeomorpismus und $f:V\to\mathbb{R}$ eine integrierbare Funktion. Dann gilt:

$$\int_{V} f(y)d\mu = \int_{U} f(T(x)) \cdot |\det(T'(x))| d\mu.$$

Angewandte Mathematik Beweis

Seien $I_k \in \mathbb{I}(n)$ Quader, $J_k := T(I_k)$ und $b_k = T(c_k)$. Dann ist

$$\sum_{k=1}^n b_k \operatorname{vol}(J_k) pprox \sum_{k=1}^n T(c_k) \cdot |\det T'(c_k)| \operatorname{vol}(I_k)$$
 .

Die Behauptung folgt dann (nicht trivial) durch den Übergang zu Grenzwerten mit entsprechenden Konvergenzsätzen.

Eine Folge von Funktionen f_k konvergiert Punktweise fast überall gegen eine Funktion f, falls es eine Nullmenge N gibt, mit $\lim_{k\to\infty} f_k(x) = f(x)$ für alle $x\in\mathbb{R}^n\setminus N$.

Sei f_k eine Folge integrierbarer Funktionen auf \mathbb{R}^n die fast überall Punktweise gegen eine Funktion f konvergiert. Es gebe eine integrierbare Funktion F mit $|f_k(x)| \leq F(x)$ für alle $x \in \mathbb{R}^n$ und alles k. Dann ist f integrierbar und es gilt

$$\int f(x)d\mu = \lim_{k \to \infty} f_k(x)d\mu$$

Sei $f: X \times T \subset \mathbb{R}^{n-p} \times \mathbb{R}^p$ eine Funktion, so dass für festes $x \in X$ die Funktion $f_x(t) := f(x,t)$ über T integrierbar ist. Durch Integration erhält man die Funktion

$$F(x) := \int_{\mathcal{T}} f(x, t) d\mu_{\mathcal{T}}$$

auf X.

f habe zusätzlich die Eigenschaften:

- Für festes t ist $f_t(x) := f(x, z)$ stetig.
- Es gibt auf T eine integrierbare Funktion ϕ mit $\phi(t) \ge 0$ und $|f(x,t)| \le \phi(t)$ für alle $(x,t) \in X \times T$.

Dann ist die oben definierte Funktion F stetig.

Angewandte Mathematik

Sei $x_k \to x$ eine konvergente Folge in X und $f_k(t) := f(x_k, t)$. Nach Voraussetzung konvergiert diese Folge Punktweise gegen die Funktion $f_t(x)$ und $|f_k(x)| \le \phi(x)$. Mit dem Satz von Lebesgue folgt

$$\lim_{k\to\infty}\int_T f_k(t)d\mu_T = \int_T f(x,t)d\mu_T$$

und damit $\lim_{k\to\infty} F(x_k) = F(x)$.

f habe zusätzlich die Eigenschaften:

- Für festes t ist $f_t(x) := f(x, z)$ stetig differenzierbar.
- Es gibt auf T eine integrierbare Funktion ϕ mit $\phi(t) \geq 0$ und $|\frac{\partial}{\partial x_i} f(x,t)| \leq \phi(t)$ für alle $(x,t) \in X \times T$ und $i=1,\cdots n-p$.

Dann ist die oben definierte Funktion F stetig differenzierbar und es gilt

$$\frac{\partial}{\partial x_k}F(x) = \int_T \frac{\partial}{\partial x_k}f(x,t)d\mu_T.$$

Beweis

Sei $x_k := x_0 + h_k e_i$ und

$$\varphi_k(t) := \frac{f(x,t) - f(x_0,t)}{h_k}.$$

Damit sind die Funktionen φ_k integrierbar und für jedes $t \in \mathcal{T}$ gilt

$$\lim_{k\to\infty}\varphi_k(t)=\frac{\partial}{\partial x_i}f(x_0,t).$$

Mit dem Satz von Lebesgue gilt

$$\lim_{k\to\infty}\int_{\mathcal{T}}\varphi_k(t)d\mu_{\mathcal{T}}=\int_{\mathcal{T}}\frac{\partial}{\partial x_i}f(x_0,t)d\mu_{\mathcal{T}}$$

und da

$$\int_{T} \varphi_{k}(t) d\mu_{T} = \frac{F(x_{k}) - F(x_{0})}{h_{k}}$$

ist, folgt die Behauptung.

Für integrierbare Funktionen f und g auf \mathbb{R}^n ist die Faltung definiert durch

$$(f*g)(x) := \int_{\mathbb{R}^n} f(y) \cdot g(x-y) \ d\mu_y \ . \tag{1}$$

Das Integral existiert wegen dem Satz von Fubini.

Für die Faltung gilt bei entsprechenden Voraussetzungen der Differenzierbarkeit der Funktionen

$$\partial^{\alpha}(f*g)=f*\partial^{\alpha}g.$$

Umwandlung von Bildern

- Viele Verfahren der Signalverarbeitung haben ihren Ursprung in der Analysis. Um diese anwenden zu können, müssen diskrete Daten in kontinuierliche Daten umgewandelt werden.
- Auf der anderen Seite kann ein Computer nur diskrete Daten verarbeitet. Kontinuierliche Signale (zum Beispiel von Sensoren) müssen daher in diskrete Daten umgewandelt werden.

Für ein eindimensionales, diskretes Bild $U:[1,\ldots,N]\to R$ bezeichne $U_j:=U(j)$.

Stückweise konstante Interpolation

Definiere
$$\phi^0(x) := 1_{[-\frac{1}{2},\frac{1}{2})}(x) := \begin{cases} 1, & \text{for } -\frac{1}{2} \leq x < \frac{1}{2} \\ 0 & \text{else} \end{cases}$$
, $\phi^0_j(x) := \phi^0(x-j) \text{ und } u(x) := \sum_{j=1}^N U_j \phi^0_j(x)$

Höherdimensionale stückweise Interpolation

Für ein 2-dimensionales, diskretes Bild

$$U: [1, \ldots, N] \times [1, \ldots, M] \rightarrow R$$
 definiere

$$U: [1, \dots, N] \times [1, \dots, M] \to R$$
 definiere $u(x, y) := \sum_{i=1}^N \sum_{j=1}^M U_{i,j} \cdot \phi_i(x) \cdot \phi_j(y)$ und analog für

n-dimensonale Bilder....

Abtastung

Für ein kontinuierliches Bild $u: I^n \to R$ erhält man durch gewichtete Mittelungen $U_i := \int_{I^n} \phi(x-x_i)u(x)dx$ ein diskretes Bild.

Integration

Faltung

$$(f * g)(x) := \int_{\mathbb{R}^n} f(y - x) \cdot g(y) \ dy \tag{2}$$

Beispiel 1

Link: Box

Beispiel 2

Link: Gauß

Diskrete Faltung

Diskrete Faltung

Für zwei diskrete Funktionen $U:[1,\ldots,N]\to R$ und $H:[1,\ldots,N]\to R$ mit stückweisen konstanten Interpolation $u(x):=\sum_{l=1}^N U_l\phi_j^0(x)$ und $h(x):=\sum_{m=1}^N H_m\phi_m^0(x)$ ergibt die Faltung

$$(h*u)(k) = \int u(y)h(k-y) dy$$

$$= \int \sum_{l=1}^{N} U_l \phi^0(y-l) \sum_{m=1}^{N} H_m \phi^0(k-y-m)$$

$$= \sum_{l=1}^{N} \sum_{m=1}^{N} U_l H_m \int \phi^0(y-l) \phi^0(k-y-m) dy$$

Diskrete Faltung

Diskrete Faltung

Da für das Integral

$$\int \phi^0(y-l)\phi^0(k-y-m) \ dy = \begin{cases} 1 \text{ falls } m=k-l \\ 0 \text{ sonst} \end{cases}$$

gilt, folgt die Darstellung

$$(u*h)(k) = \sum_{l} U_{l}H_{k-l}$$

Kanten

Kanten sind durch schnelle Änderungen des Farbwertes gekennzeichnet. Sie sind damit Extremstellen der ersten Ableitung.

Intensität und Gradient entlang eines Bildschnittes

Figure: Quelle: ai.stanford.edu

Gradientenbasierte Kantenerkennung

Bei der Detektion von Kanten mit Hilfe des Gradienten ist Rauschen ein Problem, da sich hier ebenfalls der Farbwert schnell ändert.

Figure: Quelle: Wikipedia

Gradientenbasierte Kantenerkennung

Idee: Wende einen Filter an, der das Rauschen reduziert und bilde dann den Gradienten. Bilde also den Gradienten

$$\frac{\partial (u*f)(x)}{\partial x}$$

wobei f ein Faltungskern ist.

Ableitung von Faltungen

Es gilt

$$\frac{\partial (u*f)(x)}{\partial x} = (u*f')(x)$$

Gradientenbasierte Kantenerkennung

Welcher Filter ist gut geeignet?

Kantenerkennung nach Canny

Es gibt Kanten auf unterschiedlichen Skalen ("grobe Kanten" und "feine Kanten"). Wähle daher einen parameterabhängigen Faltungskern f_{σ} . Zu einem Originalbild u_0 bekommen wir eine ganze Klasse von Bildern

$$u(x,\sigma)=u_0*f_\sigma(x).$$

Kantenerkennung nach Canny

Die Stellen der Kanten soll sich bei wachsendem σ nicht verändern und ebenso sollen auch keine Kanten hinzukommen. Deswegen soll in einem Kantenpunkt x_0 von u_0 gelten:

$$\frac{\partial^2}{\partial x^2} > 0 \Rightarrow \frac{\partial}{\partial \sigma} u(x_0, \sigma) > 0$$
$$\frac{\partial^2}{\partial x^2} = 0 \Rightarrow \frac{\partial}{\partial \sigma} u(x_0, \sigma) = 0$$
$$\frac{\partial^2}{\partial x^2} < 0 \Rightarrow \frac{\partial}{\partial \sigma} u(x_0, \sigma) < 0$$

Kantenerkennung nach Canny

Für einen allgemeinen Punkt soll daher gelten:

$$\frac{\partial^2}{\partial x^2}u(x,\sigma) = \frac{\partial}{\partial \sigma}u(x,\sigma)$$
$$u(x,0) = u_0(x)$$

Kantenerkennung nach Canny

Diese partielle Differentialgleichung hat die eindeutige Lösung

$$u(x,\sigma)=(u_0*G^{\sqrt{2\sigma}})(x)$$

wobei $G^{\sqrt{2\sigma}}$ der Gaußfilter ist.

Kantenerkennung nach Canny

Die Kantenerkennung nach Canny faltet ein gegebenes Bild u zuerst mit einem Gaußkernel G^{σ} . Danach wird der Betrag der Ableitung und seine Richtung berechnet:

$$p(x) = ||\nabla(u * G^{\sigma})(x)||$$

$$= \sqrt{\left(\frac{\partial}{\partial x_1}(u * G^{\sigma})(x)\right)^2 + \left(\frac{\partial}{\partial x_2}(u * G^{\sigma})(x)\right)^2}$$

$$\theta(x) = \angle\nabla(u * G^{\sigma})(x) = \arctan\left(\frac{\frac{\partial}{\partial x_2}(u * G^{\sigma})(x)}{\frac{\partial}{\partial x_1}(u * G^{\sigma})(x)}\right)$$

Kantenerkennung nach Canny

Als Kanten werden lokale Maxima von p(x) in Richtung $(\sin \theta(x), \cos \theta(x))$

Kanten als lokale Maxima in Kantenrichtung

Figure: Quelle: towardsdatascience.com

Kantenschärfen mit Laplace

Durch die Operation $u - \tau \triangle u$ werden die Kanten hervorgehoben.

Kanten als lokale Maxima in Kantenrichtung

Figure: Quelle:OpenCV

Figure: Quelle: Stackoverflow