TECNOLOGÍA ELECTRÓNICA DE COMPUTADORES

2º Curso – GRADO EN INGENIERÍA INFORMÁTICA EN TECNOLOGÍAS DE LA INFORMACIÓN

> Tema 3: Componentes electrónicos. Diodos y transistores

> Lección 5. El transistor de efecto de campo (FET)

Lección 5. El transistor de efecto de campo

- 5.1. El transistor de efecto de campo (Field Effect Transistor)
- 5.2. El FET de Metal-Oxido-Semiconductor (MOSFET)
 - MOSFET de acumulación de canal N
 - MOSFET de acumulación de canal P
- 5.3. Comparación de características de transistores FET y bipolares

Bibliografía de la lección

Lectura clave

A.P. Malvino Principios de Electrónica Editorial Mc. Graw Hill Capítulo 13. Apartados 13.6 y 13.7 de MOSFET

Otras lecturas complementarias

Apartado 13.8 sobre hojas de característica (Malvino)

Consultar http://es.rs-online.com/web/

http://es.farnell.com/

para ver algunos MOSFET

MOSFET: http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/mosfet.html

5.1. El transistor de efecto de campo (Field Effect Transistor)

Field Effect Transistor = FET

* MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor

5.2 El FET de Metal-Oxido-Semiconductor (MOSFET)

El MOSFET de acumulación de canal N

generando un Canal N de paso para la corriente entre D y S.

<u>Características del transistor MOSFET – canal N (NOTAS)</u>

1) La puerta (G) es muy sensible, puede perforarse con tensiones de 30 V, por lo que debe protegerse.

- 2) Cuando se utiliza un MOSFET como dispositivo independiente se suele unir el substrato a la fuente, con lo que deja de ser un dispositivo simétrico:
 - Permanece un diodo entre fuente y drenador (diodo parásito) que algunos fabricantes representan en el símbolo (no es un componente aparte)
 - Sólo conduce como transistor de drenador a fuente
 - El sustrato se suele conectar al punto más negativo del circuito

Características del transistor MOSFET – canal N

Característica de entrada: i_G=f(u_{GS},u_{DS})

Característica de salida:

 $i_D = f(u_{DS}, u_{GS})$

ZONA RESISTIVA:

Comportamiento como resistencia de bajo valor (típicamente cortocircuito)

ZONA DE CORTE:
Comportamiento como interruptor abierto

El MOSFET de acumulación de canal P

<u>Características del transistor MOSFET – canal P (NOTAS)</u>

- 1) La puerta (G) es muy sensible, puede perforarse con tensiones de 30 V, por lo que debe protegerse.

 ATTENTION
- 2) Cuando se utiliza un MOSFET como dispositivo independiente se suele unir el substrato a la fuente, con lo que deja de ser un dispositivo simétrico:
 - Aparece un diodo entre drenador y fuente (diodo parásito) que algunos fabricantes representan en el símbolo (no es un componente aparte)
 - Sólo conduce como transistor de drenador a fuente

- El sustrato se suele conectar al punto más positivo del circuito

T D

Características del transistor MOSFET – canal P

Característica de entrada:

Característica de salida:

$$i_{SD} = f(u_{SD}, u_{SG})$$

ZONA RESISTIVA:

Comportamiento como resistencia de bajo valor (típicamente cortocircuito)

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón

Características más importantes

- Tipo de canal
- Corriente máxima que puede soportar
- Tensión máxima que puede soportar
- Resistencia
- Rapidez

 $V_{DS} = 60 \text{ V}$ $I_D = 500 \text{ mA}$ $R_{DS} = 1.2 \Omega$ Tensión inversa máxima Corriente directa máxima Caída de Tensión directa

5.3 Comparación de transistores bipolares y MOSFET

	Bipolar	MOSFET
Gobierno	Por corriente (base)	Por tensión (puerta)
Consumo (puerta)	Importante	Muy bajo en continuo (sí en los cambios)
Facilidad de integración	Normal	Muy alta
Velocidad	Normal	Alta
Aplicaciones	Como interruptor en circuitos de poca potencia (en desuso en potencias medias y grandes) En circuitos como amplificador	Masiva en circuitos integrados digitales como interruptor Como interruptor en fuentes de alimentación

Comparación del funcionamiento de los diferentes MOSFET

MOSFET DE ACUMULACIÓN DE CANAL N

- Con u_{GS}=0 no conduce
- Al aplicar tensión u_{GS} positiva, se forma el canal y entra en conducción
- Cuanto más positiva es u_{GS} más canal y más conduce

MOSFET DE ACUMULACIÓN DE CANAL P

- Con u_{GS}=0 no conduce
- Al aplicar tensión u_{GS} negativa, se forma el canal y entra en conducción
- Cuanto más negativa es u_{GS} más canal y más conduce

IMPORTANTE

¡¡ Sea cual sea el tipo de FET, las curvas características permiten resolver el circuito!!

- A diferencia de los circuitos con bipolar, suele ser IMPRESCINDIBLE trabajar con la curva característica
- Es bastante usual que R_{DS-ON}≅0. En ese caso las curvas serán de la forma:

Ejemplo de análisis

Determinar el punto de funcionamiento del transistor de forma analítica y de forma gráfica mediante la recta de carga

Aspectos importantes

- Resolver circuitos en los que se maneje un MOSFET considerándolo como interruptor ideal
- Resolver circuitos en los que se considere el comportamiento resistivo del MOSFET
- MOSFET canal P y canal N
- Buscar hojas de características de MOSFET populares (ej. BS170, BS107, BS250, 2N7000). Averiguar la resistencia que tienen en zona resistiva.

