Modulo 1: Bayesian Classifier

 $\textcolor{red}{\textbf{PUCP}} \textcolor{red}{\textbf{--}} \textcolor{blue}{\textbf{NoSQL}} \textcolor{red}{\textbf{--}} \textcolor{blue}{\textbf{2025}}$

Introducción

La detección de fraude en sistemas financieros es una tarea crítica.

Este proyecto presenta un enfoque probabilístico para inferir si una transacción fue fraudulenta, usando técnicas de inferencia bayesiana y estructuras causales definidas por el usuario.

https://github.com/daneelsan/PUCP_NoSQL_BayesianClassifier/tree/main/BayesianClassifier

(a) Visualización de hipótesis 1

(b) Visualización de hipótesis $2\,$

Figura 1: Comparación de estructuras de hipótesis

La data representa transacciones financieras.

Cada fila es una transacción individual y contiene información detallada sobre ella:

- step: Un paso o índice de tiempo.
- customer: Un identificador único para el cliente que realiza la transacción.
- age: La edad del cliente, probablemente en categorías o rangos ('0', '1', '2', etc., 'U' para desconocido).
- gender: El género del cliente ('M' para masculino, 'F' para femenino, y posiblemente 'E' o 'U' para otros/desconocido).
- zipcodeOri: El código postal de origen de la transacción.
- merchant: Un identificador único para el comercio donde se realizó la transacción.
- **zipMerchant**: El código postal del comercio.
- category: La categoría o tipo de la transacción (ej. 'es_transportation' para transporte, 'es_health' para salud).
- **amount**: El valor monetario de la transacción.
 - Importante: Utiliza coma (,) como separador decimal (ej. "4,55" es 4.55).
- fraud: La variable objetivo. Es un indicador binario (0 o 1) que señala si la transacción fue fraudulenta (1) o no (0).

En resumen, son registros de transacciones con características del cliente, del comercio y de la propia operación, etiquetadas como fraudulentas o no fraudulentas.

		step	customer	age	gender	zipcodeOri	merchant	zipMerchant	A
1	1	0	'C1093826151'	4	М	'28007'	'M348934600'	'28007'	
2	2	0	'C352968107'	2	М	'28007'	'M348934600'	'28007'	
3	3	0	'C2054744914'	4	F	'28007'	'M1823072687'	'28007'	
4	4	0	'C1760612790'	3	М	'28007'	'M348934600'	'28007'	
5	5	0	'C757503768'	5	М	'28007'	'M348934600'	'28007'	
6	5	0	'C1315400589'	3	F	'28007'	'M348934600'	'28007'	
									V
•								•	

Out[8]=

age

In[*]:= BarChart[Counts[original[All, "age"]], ChartLabels → Automatic]

gender

In[*]:= BarChart[Counts[original[All, "gender"]], ChartLabels → Automatic]

\boldsymbol{amount}

 $\textit{In[a]:=} \ \, \textbf{ListPlot[Counts[original[All, "amount"]]], ImageSize} \rightarrow \textbf{Large]}$

category

In[11]:= ReverseSort[Dataset[Counts[original[All, "category"]]]]] Out[11]=

'es_transportation'	505 119
'es_food'	26 254
'es_health'	16133
'es_wellnessandbeauty'	15 086
'es_fashion'	6454
'es_barsandrestaurants'	6373
'es_hyper'	6098
'es_sportsandtoys'	4002
'es_tech'	2370
'es_home'	1986
'es_hotelservices'	1744
'es_otherservices'	912
'es_contents'	885
'es_travel'	728
'es_leisure'	499

In[10]:= PieChart[Counts[original[All, "category"]]], $ChartLabels \rightarrow Callout[Automatic], \ ImageSize \rightarrow Medium]$

Out[10]=

fraud

Muchos más "no fraude" que "fraudes":

In[*]:= Counts[original[All, "fraud"]]

Out[0]=

$$\langle |~0 \rightarrow 587~443~,~1 \rightarrow 7200~| \rangle$$

Out[•]//TableForm=

	count	percentage
no fraud	587 443	98.7892%
fraud	7200	1.21081%

Objetivo: preparar y cargar datos de transacciones financieras en una base de datos MongoDB:

1. Carga de Datos:

• Lee un archivo CSV llamado `fraud_credit_card.csv` en un DataFrame de Pandas.

2. Preprocesamiento y Limpieza de Datos:

- Convierte el campo `amount` (monto) a formato numérico (reemplazando comas por puntos).
- Discretiza el `amount` en categorías como 'very low', 'low', 'medium' y 'high'.
- Estandariza los campos `age`, `gender` y `category` (remueve comillas y maneja valores 'U' o desconocidos).
- Convierte la columna `fraud` (que es 0 o 1) a etiquetas 'yes' o 'no'.

3. Selección de Características:

• Elimina columnas que se consideran no relevantes para el análisis posterior (como `step`, `customer`, `zipcodeOri`, `merchant`, `zipMerchant`).

4. Carga a MongoDB:

- Establece una conexión a una base de datos MongoDB Atlas (usando credenciales de variables de entorno).
- Limpia (borra) la colección `transactions` en la base de datos `fraud_db`.
- Inserta los datos preprocesados del DataFrame en la colección `transactions` de MongoDB, realizando la carga en **batches** para optimizar el rendimiento y mostrando una barra de progreso.

index_dataset.py

Objetivo: preparar, indexar y optimizar un dataset de transacciones almacenado en MongoDB para su uso eficiente en un clasificador bayesiano.

1. Calcular y Almacenar Cardinalidades:

- Identifica todos los valores únicos para las variables clave y les asigna un índice numérico.
- Estas correspondencias (mapeos) se guardan en la colección 'cardinalities'.

2. Indexar el Dataset:

• Crea la colección `transactions_indexed` donde los valores categóricos originales de las transacciones se reemplazan por sus índices numéricos correspondientes.

3. Precalcular y Almacenar Conteos:

- Calcula y guarda en la colección `precomputed` las frecuencias de aparición de valores individuales y ciertas combinaciones de valores (especialmente con la variable `fraud`).
- Actúa como una caché para acelerar las consultas de probabilidad realizadas por el clasificador.

transactions

La data del archivo **fraud_credit_card.xlsx**:

self.client["fraud_db"]["transactions"]

cardinalities

Guarda las cardinalidades de los parámetros:

self.client["fraud_db"]["cardinalities"]

transactions indexed

Versión indexada del collection transactions:

self.client["fraud_db"]["transactions_indexed"]

precomputed

Conteos precomputados para optimizar la clasificación:

self.client["fraud_db"]["precomputed"]

transacions_sampled_10

Un sample del 10% de la colección "transacions_indexed":

self.client["fraud_db"]["transactions_sampled_10"]

Interfaz del clasificador

Pestaña de Inferencia

Figura 1: Comparación de estructuras de hipótesis

Pestaña de Hipótesis

El grafo causal se construye din'amicamente usando **networkx**, permitiendo al usuario interpretar las relaciones causa-efecto establecidas.

Figura 2: Comparación de estructuras de hipótesis

Benchmarks

Benchmarks de Optimización

Optimizaciones

- 1. Ninguna: Realiza consultas directas a la base de datos para cada conteo necesario, sin optimizaciones específicas a nivel de la consulta o caché.
- A pesar de que la base de datos ha sido preprocesada (ej. binning), cada **count_documents** aún puede ser costoso.
- Cada vez que el clasificador necesita obtener un conteo de documentos para una combinación de valores (p. ej. count_documents({'gender': 'M', 'age': '2'})), realiza una consulta completa a la colección en la base de datos.
- 2. Indexes: Estructuras de datos en la base de datos que permiten búsquedas y recuperación de documentos mucho más rápidas en campos específicos.
- Mejoran el rendimiento al permitir que la base de datos salte directamente a los datos relevantes en lugar de escanear toda la colección.

```
self.data_collection.create_index([(parent, 1), (var, 1)])
```

- 3. Precomputed database: Almacenar conteos o agregaciones frecuentes en una colección separada (precomputed) dentro de la base de datos.
- Mejora el rendimiento al evitar cálculos repetitivos en vivo; en su lugar, el sistema realiza una búsqueda rápida en esta tabla de resultados ya calculados.

```
res = self.precomputed.find_one(evidence, {"count": 1})
if res is not None:
   count = res["count"]
   count = self.data_collection.count_documents(evidence)
return count
```

- 4. LRU cache: Caché en memoria RAM que guarda los resultados de las llamadas a funciones.
- La primera vez que se ejecuta una consulta de conteo, el resultado se almacena; las veces subsiguientes con los mismos argumentos, el resultado se devuelve instantáneamente desde la RAM.

```
@lru_cache(maxsize=10000) # You can adjust maxsize based on expected unique
queries
   def _cached_compute_counts(self, evidence_tuple):
       evidence = dict(evidence_tuple) # Convert tuple back to dict
       return count
   def compute_counts(self, evidence):
        # Convert the dictionary (which is not hashable) to a sorted tuple of (key,
value) pairs
        # so it can be used as a cache key.
       hashable_evidence = tuple(sorted(evidence.items()))
        return self._cached_compute_counts(hashable_evidence)
```

Benchmarks de Optimización

Análisis

• benchmark0: No optimizaciones

Out[0]=

	test_id	repeat	category	gender	age	amount_bin	fraud_pred
1	0	0	es_fashion	М	0	medium	
2	0	1	es_fashion	М	0	medium	
3	0	2	es_fashion	М	0	medium	
4	0	3	es_fashion	М	0	medium	
5	0	4	es_fashion	М	0	medium	
6	0	5	es_fashion	М	0	medium	
•							b

• benchmark1: Solo MongoDB optimización por indexación

Out[0]=

								_
	test_id	repeat	category	gender	age	amount_bin	fraud_pre	
1	0	0	es_fashion	М	0	medium		Γ
2	0	1	es_fashion	М	0	medium		
3	0	2	es_fashion	М	0	medium		
4	0	3	es_fashion	М	0	medium		
5	0	4	es_fashion	М	0	medium		
6	0	5	es_fashion	М	0	medium		V
•							•	

• benchmark2: MongoDB index optimization + precomputed counts

Out[0]=

	test_id	repeat	category	gender	age	amount_bin	fraud_pred
5	0	4	es_fashion	М	0	medium	
6	0	5	es_fashion	М	0	medium	
7	0	6	es_fashion	М	0	medium	
8	0	7	es_fashion	М	0	medium	
9	0	8	es_fashion	М	0	medium	
10	0	9	es_fashion	М	0	medium	•
•				> //			

• **benchmark3**: mongodb index optimization + precomputed counts + LRU cache

Out[0]=

	test_id	repeat	category	gender	age	amount_bin	fraud_pred
1	0	0	es_fashion	М	0	medium	
2	0	1	es_fashion	М	0	medium	
3	0	2	es_fashion	М	0	medium	
4	0	3	es_fashion	М	0	medium	
5	0	4	es_fashion	М	0	medium	
6	0	5	es_fashion	М	0	medium	•
•	→						

Benchmarks de Optimización

Statistics Summary

Out[0]=

0	5.55147 s 1.21282 s	0.0551509 s 0.0624999 s	5.45389 s
0	1 21282 c	0.0624000.6	4 40064
•	1.212023	0.06249995	1.10361 s
0	0.355424 s	0.0140068 s	0.342133 s
0	0.00411283 s	0.0199202 s	0.000015735

Caching es realmente rápido:

In[o]:= UnitConvert[MeanAround[benchmark3[All, "elapsed"]], "Milliseconds"] Out[0]=

 (4.1 ± 1.2) ms

Benchmarks de Hipótesis

Hipótesis

Hipótesis determinadas a mano (leer comentarios en la sección de K2):

Out[•]=

Análisis

Out[0]=

vaive	Bayes	V				
	evidence_id	avg_time_sec	fraud_prediction	probability	age	gender
1	1	0.319	False	0.0018	3	М
2	2	0.326	False	0.0008	4	F
3	3	0.321	False	0.0000	4	М
4	4	0.323	False	0.0029	4	F
5	5	0.328	True	0.0000	5	F
6	6	0.318	False	0.0066	5	F ,

Benchmarks de Tamaño de datos

Out[•]=

	test_id	repeat	category	gender	age	amount_bin
1	0	0	es_fashion	М	0	medium
2	0	1	es_fashion	М	0	medium
3	0	2	es_fashion	М	0	medium
4	0	3	es_fashion	М	0	medium
5	0	4	es_fashion	М	0	medium
6	0	5	es_fashion	М	0	medium

20

25

Métricas de Clasificación

Matriz de confusión:

- Verdadero Positivo (VP): El modelo predijo que era fraude, y realmente era fraude.
- Verdadero Negativo (VN): El modelo predijo que NO era fraude, y realmente NO era fraude.
- Falso Positivo (FP): El modelo predijo que era fraude, pero en realidad NO era fraude.
- Falso Negativo (FN): El modelo predijo que NO era fraude, pero en realidad SÍ era fraude.

Out[0]=

Otras Métricas

- Accuracy: (VP + VN)/(VP + VN + FP + FN)
 - Es la proporción de predicciones correctas (tanto fraudes como no-fraudes) sobre el total de predicciones.
- **Precision:** VP/(VP+FP)
 - De todas las veces que el modelo predijo "fraude", ¿cuántas veces realmente fue fraude?
- Recall (Exhaustividad o Sensibilidad): VP/(VP+FN)
 - De todos los casos que realmente eran fraude, ¿cuántos logró detectar el modelo?
- **F1-Score:** 2× (Precision × Recall) / (Precision + Recall)
 - Es un promedio "armónico" de la Precisión y el Recall. Proporciona un equilibrio entre ambas métricas.

Out[0]=

Classifier Performance Metrics

En resumen, para la detección de fraude:

- **Recall** es a menudo lo más importante porque no quieres que los fraudes se te escapen.
- Precision también es importante para evitar la "fatiga de alertas" o molestar a clientes legítimos.
- **F1-Score** busca un buen compromiso entre ambos.
- Accuracy puede ser engañosa y debe usarse con precaución, especialmente si el número de fraudes es muy pequeño.

Algoritmo K2 (learn_k2_structures.py)

Objetivo: descubrir automáticamente cómo se relacionan las diferentes variables en el dataset de transacciones para construir un modelo de red bayesiana.

- Para lograrlo, inicializa un clasificador bayesiano.
- Luego se utiliza el algoritmo K2 para analizar los datos y encontrar las conexiones más probables entre las variables
 - E.g., determinar si la edad o el género influyen en la categoría de una transacción o en la probabilidad de
- Este proceso se repite varias veces, probando con diferentes límites para la cantidad de "padres" que cada variable puede tener.

Out[0]=

metadata	dataset_size	594 643
	variables	{age, gender,
	cardinalities	< age → 8, ge
	learning_timestamp	1751895502.
hypotheses	Naive Bayes	< fraud → {ag
	Structured (fraud->amount_bin, gender->age)	< fraud → {ar
	K2 learned (u=1)	< >
	K2 learned (u=2)	< >
	K2 learned (u=3)	< >
	7 total >	
learning_details	K2 learned (u=1)	
	K2 learned (u=2)	< structure →
	K2 learned (u=3)	< structure →
	K2 learned (u=4)	< structure →
	K2 learned (u=5)	< structure →

Algoritmo K2 (learn_k2_structures.py)

No es raro que el algoritmo K2 encuentre que algunas (o todas) las variables no tienen padres. No necesariamente significa que haya un error:

- No hay dependencias fuertes: Si en los datos una variable realmente no depende mucho de otras, K2 lo detecta y no le asigna padres
- Datos limitados: Con pocos datos, es difícil ver relaciones claras, y el algoritmo prefiere simplicidad
 - \bullet Este no es el caso con fraud_credit_card.xlsx
- Orden de las variables: El orden en que le das las variables a K2 es crucial.
 - Si un posible padre aparece después de su hijo, K2 nunca lo considerará
- El parámetro alpha: Este valor afecta qué tan "convencido" está el algoritmo de que hay una relación
 - Un alpha alto puede hacer que el modelo prefiera no asignar padres
 - Se probaron α =0.01, α =0.1, α =1.0, α =1.0, α =10.0, α =100.0 sin resultados
- Datos dispersos: Si las variables tienen muchos valores posibles y pocos ejemplos para cada combinación, K2 puede tener dificultades para encontrar patrones