Ejercicios en clase: Algoritmos voraces (Greedy)

Análisis y Diseño de Algoritmos

29 de septiembre de 2020

Ejercicio 1. Describa un algoritmo eficiente que, dado un conjunto $\{a_1, a_2, \ldots, a_n\}$ de puntos en la recta, determine un conjunto mínimo de intervalos de tamaño 1 que contiene a todos los puntos. Justifique que su algoritmo es correcto usando la propiedades de elección voraz y subestructura óptima.

Solución.

- 1. Elección voraz: Seleccionar $[a_1, a_1 + 1]$.
- 2. Algoritmo recursivo.

Recibe: Un conjunto $A = \{a_1, \ldots, a_n\}$ de puntos en la recta real tal que $a_1 \leq \cdots \leq a_n$ Devuelve: Un conjunto de intervalos unitarios de tamaño mínimo que cubre AVORAZ-SEGMENTOS(A)

- 1: **if** $A = \emptyset$
- 2: return \emptyset
- 3: $A' = \{a_i \in A : a_i > a_1 + 1\}$
- 4: **return** $\{[a_1, a_1 + 1]\} \cup VORAZ-SEGMENTOS(A')$
- 3. Prueba de la elección voraz.

Lema 0.1 (Elección voraz). Existe una solución óptima que contiene a $[a_1, a_1 + 1]$.

Demostración. Sea X una solución óptima. Si $[a_1, a_1 + 1] \in X$ entonces no hay más que mostrar. Suponga entonces que $[a_1, a_1 + 1] \notin X$. Como X es una solucion, existe un intervalo $[p, p + 1] \in X$ que contiene a a_1 , osea $p \le a_1 \le p + 1$. Mostraremos que $X' = X \setminus \{[p, p + 1]\} \cup \{[a_1, a_1 + 1]\}$ es también una solución al problema.

Para esto, debemos probar que todo $a_i \in A$ está en algún intervalo de X'. Sea $a_i \in A$. Si $a_i \notin [p, p+1]$ entonces está en algún intervalo de $X \setminus \{[p, p+1]\}$. Dicho intervalo también está en X' y por lo tanto a_i está cubierto por algún intervalo de X'. Si $a_i \in [p, p+1]$ entonces

$$a_1 \le a_i \le p+1 \le a_1+1$$
,

y portanto $a_i \in [a_1, a_1 + 1]$. Luego X' es una solución y como |X| = |X'|, entonces X' es una solución óptima.

4. Prueba de subestructura óptima

Lema 0.2 (Subestructura óptima). Si X es una solución óptima para A que contiene a { $[a_1, a_1 + 1]$ }, entonces $X \setminus \{[a_1, a_1 + 1]\}$ es una solución óptima para A'.

Demostración. Suponga por contradicción que $X' = X \setminus \{[a_1, a_1 + 1]\}$ no es óptima en A'. Entonces existe una solución Y' para A' tal que |Y'| < |X'|. Entonces $Y = Y' \cup \{[a_1, a_1 + 1]\}$ es una solución óptima para A. Pero |Y| = |Y'| + 1 < |X'| + 1 = |X|, una contradicción.

Ejercicio 2. Dados dos conjuntos A y B, cada uno de los cuales tiene n enteros positivos, un *cruce* entre A y B es un conjunto de pares ordenados $\{(a_i,b_j):a_i\in A,b_j\in B\}$, tal que todo elemento en A aparece exactamente una vez, y todo elemento en B aparece exactamente una vez. La ganancia de un cruce X es $\prod_{(a_i,b_j)\in X}a_i^{b_j}$. Diseñe un algoritmo voraz que maximiza la ganancia de un cruce. Analize su algoritmo, justificando que es correcto usando las propiedades de elección voraz y subestructura óptima.

- 1. Elección voraz: elegir (a_{i*}, b_{j*}) tal que a_{i*}, b_{j*} son elementos máximos en A y B respectivamente.
- 2. Algoritmo voraz.

Recibe: Dos conjuntos de números $A = \{a_1, \ldots, a_n\}$ y $B = \{b_1, \ldots, b_n\}$.

Devuelve: Un cruce entre A y B con ganancia máxima.

VORAZ-CRUCE(A, B)

- 1: **if** $A = \emptyset$
- 2: return \emptyset
- 3: Sea a_{i*} en elemento máximo en A
- 4: Sea b_{j*} en elemento máximo en B
- 5: $A' = A \setminus \{a_{i*}\}$
- 6: $B' = B \setminus \{b_{i*}\}$
- 7: **return** $\{(a_{i*}, b_{j*})\} \cup \text{VORAZ-CRUCE}(A', B')$
- 3. Prueba de la elección voraz.

Lema 0.3 (Elección voraz). Existe una solución óptima que contiene a (a_{i*}, b_{j*}) , donde a_{i*} es un elemento máximo en A y b_{j*} es un elemento máximo en B

Demostración. Sea X una solución óptima al problema. Si $(a_{i*}, b_{j*}) \in X$ entonces no hay nada que probar. Suponga entonces que $(a_{i*}, b_{j*}) \notin X$. Como X es una solución, entonces existen elementos $a_i \in A, b_j \in B$ tales que $(a_{i*}, b_j), (a_i, b_{j*}) \in X$.

Sea
$$X' = X \setminus \{(a_{i*}, b_j), (a_i, b_{j*})\} \cup \{(a_{i*}, b_{j*}), (a_i, b_j)\}.$$

Es claro que X' es también una solución para el problema. A continuación mostraremos que su ganancia es tanto como la ganancia de X. Note que

$$\frac{ganancia(X')}{ganancia(X)} = \frac{a_{i^*}^{b_{j^*}}}{a_{i^*}^{b_j}} \cdot \frac{a_i^{b_j}}{a_i^{b_{j^*}}} = (a_{i^*}/a_i)^{b_{j^*}-b_j} \ge 1.$$

Luego, X' es una solución óptima que contiene a (a_{i*},b_{j*}) , lo que queríamos demostrar.

4. Prueba de subestructura óptima

Lema 0.4 (Subestructura óptima). Si X es una solución óptima para (A, B), entonces $X \setminus \{(a_{i*}, b_{j*})\}$ es una solución óptima para (A', B').

Demostración. Suponga por contradicción que $X' = X \setminus \{(a_{i*}, b_{j*})\}$ no es óptima en (A', B'). Entonces existe una solución Y' para (A', B') tal que ganancia(Y') > ganancia(X'). Entonces $Y = Y' \cup \{(a_{i*}, b_{j*})\}$ es una solución para (A, B). Pero

$$ganancia(Y) = ganancia(Y') \cdot a_{i^*}^{b_{j^*}} > ganancia(X') \cdot a_{i^*}^{b_{j^*}} = ganancia(X),$$

una contradicción.