

END SEM - Executive M.Tech Course: Image Processing

- 1. E-mail, LMS (or any other method) submission will NOT be accepted.
- 2. Penalties for late assignment submission 10% of the total marks awarded will be deducted for each 10 minutes.

Date: 21 OCT 2023

- 3. Ensure that your submission consists of a single PDF file. Note that any files in ZIP or JPG format will not be considered during evaluation.
- 4. Formulate any necessary assumptions for the assignment.
- 1. (6 points) Given three sets of image and their transformed versions. Suggest which steps of operations would have been performed to transform from A to B.

2. (8 points) In photography, it is often desired to process the captured image that decreases the background noise and output the sharped results.

- Describe the construction of a composite 3x3 spatial filter mask that implements the above operation for you.[2]
- Compute Fourier transform $H(\omega_1, \omega_2)$ of the filter.[3]
- Plot sketch the one dimensional profiles $H(\omega_1, 0), H(\omega_1, \pi)$, and $H(0, \omega_2)$, $H(\pi, \omega_2)$. Use extra points as required. Explain the function of the filter profile in horizontal and vertical directions.[3]
- 3. (6 points) Given an actual image (f(x,y)) and its smoothed version (f'(x,y)), the unsharp version of the image can be generated as fs(x,y) using the mathematical given below:

$$fs(x,y) = f(x,y) - f'(x,y)$$

$$f_{sharped} = f(x,y) + fs(x,y)$$

10	10	10	10
10	216	210	10
10	209	150	10
10	10	10	10

Figure-1

Apply unsharp masking on 4x4 image given in figure-1 and draw final sharped image $f_{sharped}$. Use box filter for smoothing.

4. (15 points) Given an 5x5 image in 3-bits (gray levels between 0-7)

3	1	7	3	2
7	7	7	6	1
7	6	2	5	4
6	6	7	5	4
5	5	4	4	1

- Compute the entropy of the image shown above and the feasibility of using Huffman coding for compression purposes.[3]
- Compute the Huffman codes for each of the symbols. Also show the coding tree.[4]

• If we perform histogram equalization (HE) then how will the entropy and Huffman coding structures will change? [3+3+2] (show all necessary steps including HE and Huffman coding with tree+explanation)