Clase 22

IIC2223 / IIC2224

Prof. Cristian Riveros

¿qué es una forma normal?

Ejemplo: polinomios

Un polinomio cualquiera:

$$p(x) := (x^3 \cdot ((x-2) + 3x^2) - (3x^5 - 2x^2)) \cdot 2x + 7$$

Un polinomio cualquiera

cuando planeamos hacer un algoritmo sobre polinomios:

$$p(x) := 2x^5 + 4x^3 - 4x + 7$$

Formas normales son útiles en computación para **estudiar** un objeto y **diseñar** algoritmos.

Definición

Una gramática $\mathcal G$ esta en forma normal de Chomsky (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

¿cuáles gramáticas están en CNF?

S
$$\rightarrow$$
 a S b | ϵ

A \rightarrow A B | a | ϵ
B \rightarrow B A | b | ϵ

S \rightarrow AB | AC | SS
C \rightarrow SB
A \rightarrow a
B \rightarrow b

Definición

Una gramática \mathcal{G} esta en forma normal de Chomsky (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Si \mathcal{G} esta en CNF:

- \blacksquare ¿puede aceptar la palabra ϵ ?
- ¿puede tener reglas unitarias?
- ¿puede tener reglas en vacío?

Toda gramática se puede convertir en CNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

- Primero, suponga que $\mathcal G$ no contiene reglas en vacío o unitarias.
- Por lo tanto, todas las reglas en $\mathcal G$ son de la forma:
 - $X \to \gamma$ para $|\gamma| \ge 2$
 - X → a

j cómo transformamos G en forma normal de Chomsky?

Hacia la forma normal de Chomsky

Sea una gramática ${\cal G}$ donde las reglas son de la forma:

- $X \rightarrow \gamma$ para $|\gamma| \ge 2$
- $X \rightarrow a$

Paso 1: Convertir todas las reglas a la forma:

- $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

Paso 2: Convertir todas las reglas a la forma:

- $X \rightarrow YZ$
- X → a

Hacia la forma normal de Chomsky (Paso 1)

Paso 1

Convertir todas las reglas a la forma:

- $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

Solución:

- Para cada $a \in \Sigma$, agregar un nueva variable X_a y una regla $X_a \rightarrow a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Hacia la forma normal de Chomsky (Paso 1)

Hacia la forma normal de Chomsky (Paso 1)

Paso 1

Convertir todas las reglas a la forma $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$ o $X \to a$.

Solución:

- Para cada $a \in \Sigma$, agregar un nueva variable X_a y una regla $X_a \rightarrow a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Correctitud

Si \mathcal{G}' es la gramática resultante, entonces se cumple que $\mathcal{L}(\mathcal{G}')$ = $\mathcal{L}(\mathcal{G})$.

Hacia la forma normal de Chomsky (Paso 2)

Paso 2

Convertir todas las reglas a la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Solución:

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una nueva variable Z.
- Reemplazamos la regla *p* por dos reglas:

$$X \to Y_1 Z$$
 y $Z \to Y_2 \dots Y_k$

Repetimos este paso hasta llegar a la forma normal de Chomsky.

Hacia la forma normal de Chomsky (Paso 2)

```
Ejemplo del Paso 2 (continuación)
El resultado del Paso 1 es:
                            S \rightarrow ASB \mid AB
                            S \rightarrow AZ \mid AB
                            Z \quad \to \quad S \; B
```

Hacia la forma normal de Chomsky (Paso 2)

Paso 2

Convertir todas las reglas a la forma: $X \rightarrow YZ$ o $X \rightarrow a$.

Solución:

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una nueva variable Z.
- Reemplazamos la regla *p* por dos reglas:

$$X \rightarrow Y_1 Z$$
 y $Z \rightarrow Y_2 \dots Y_k$

Repetimos este paso hasta llegar a la forma normal de Chomsky.

Correctitud

Si \mathcal{G}'' es la gramática resultante, entonces se cumple que $\mathcal{L}(\mathcal{G}'')$ = $\mathcal{L}(\mathcal{G}')$.

Toda gramática se puede convertir en CNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Teorema

Existe una grámatica \mathcal{G}' en forma normal de Chomsky tal que:

$$\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$$

Si \mathcal{G}' no tiene reglas unitarias ni en vacío, entonces \mathcal{G}' es de **tamaño polinomial** con respecto a \mathcal{G} .

Cierre de clase

En esta clase vimos:

- Forma normal de Chomsky (CNF)
- Como convertir una gramática a CNF

Próxima clase: Uso de CNF para lema de bombeo