Warmup: odds and log-odds

Group members:

Instructions: Work with a neighbor on the following activity. I will collect the handout at the end of class, and it will be part of your class participation grade. You will be graded only on effort – it is ok if you don't finish all the questions, or get them all correct.

Odds

Last time, you calculated that the empirical probability that a 5 year old patient has dengue is 0.2.

Recall that if π is the *probability* of an event, then the *odds* are given by

$$odds = \frac{\pi}{1 - \pi}$$

1. If $\pi = 0.2$, calculate the odds.

2. Repeat the calculation for $\pi = 0.1$ and $\pi = 0.9$. What happens to the odds as $\pi \to 0$? As $\pi \to 1$?

Log-odds

As we shall see, we often work with the log-odds when modeling binary data. If π is the probability of an event, then the log-odds are

$$\text{log-odds} = \log(\text{odds}) = \log\left(\frac{\pi}{1-\pi}\right)$$

3. If $\pi = 0.2$, calculate the log-odds.

4. What happens to the log-odds as $\pi \to 0$? As $\pi \to 1$?