Manual Network Tuning									
Parameters	Values used Loss Validation Loss Early stopping			Early stopping?	Loss plot	Notes	Scaled residual mean	Scaled residual std	
default	default			37	Network loss with default parameters				
batch size	[50,100,500,1000]	[0.7939, 0.7887, 0.7823, 0.7798]	[0.7874, 1440098.375, 0.778, 0.7927]	[34, 31, 57, 85]	Network loss with varying batch_size (0) Training ==50	Batch size 100 diverged. As such, the default has been changed to 500. Also recommended to increase the patience			
learning rate	[0.1, 0.01, 0.001, 0.0001]	[897.8777, 0.7813, 0.7789, 0.7823]	[1.8117, 0.8197, 0.7901, 0.7874]	[53, 41, 62, 59]	Network loss with varying learning, rate (#) 1.00 1.	Need to really adjust learning rate and batch size at the same time as these two parameters are linked			
new default	I.E. now with patience = 10, L-POP, batch=500	0.7808	0.7777	No	Network loss with new default parameters	Will lower patience down to 7, 10 won't really do anything. The coverage tests look a lot worse - may be worth incorporating these into your experiments.			

optimizers, ExpLoss()	'Adadelta', 'Adagrad','RMSprop',	[0.7795, 0.7789, 0.7785, 0.7785, 0.7784, 0.7796, 0.7796, 0.7783, 0.779, 0.78]	[0.7795, 0.7789, 0.7785, 0.7785, 0.7784, 0.7796, 0.7783, 0.779, 0.78]	[9, 14, 18, 23, 16, 29, 20, 17]	- salation Mayord	Used batch 500, patience 5, width 46, added layers 6. Will thy upping the patience as some seemed to have stopped too early.			
optimizers, ExpLoss()	'Adadelta', 'Adagrad','RMSprop',	[0.7786, 0.779, 0.7784, 0.779, 0.7794, 0.7791, 0.7799, 0.7799]	[0.7766, 0.7771, 0.7774, 0.7765, 0.7777, 0.7777, 0.7777]	[40, 29, 36, 34, 37, 40, 40, 40]	1000	Upped the patience from 5 to 9. Allowed val losses to drop marginally.			
optimizers, POPExpLoss()	['Adam', 'Adamax', 'Adadelta', 'Adagrad', 'RMSprop', 'SGD', 'Nadam', 'Ftrl']	[0.7811, 0.7822, 0.7828, 0.793, 0.785, 0.7834, 0.7918, 0.793]	[0.7782, 0.7784, 0.779, 4800.291, 0.7849, 0.7795, 0.7872, 0.7889]	[40, 40, 40, 10, 36, 40, 40, 40]	5 6073	Validation losses are marginally higher than that of ExpLoss(). Optimizers generally need more epochs to converge. Try running with more epochs			
optimizers, POPExpLoss()	'Adadelta', 'Adagrad','RMSprop',	[0.7899, 1.0565, 1.0431, 0.8057, 0.8352, 1.7653, 0.8623, 0.9828]	[0.7896, 905005.1875, 1803869.375, 0.8015, 0.8317, 2702104.75, 0.8599, 1.0032]	[75, 10, 10, 75, 75, 10, 75, 75]	Streets has will differed spirates 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Left for longer number of epochs. Generally showed poor results.			
alpha	[2,1,0.5,1.5,1.25,1.15]	[0.7814, 0.7811, 0.7820,0.7804]	[0.7771,0.7771, 7765,0.7811]	[34, 34, 35,36,39]	In drive	best params from test	means = [0.19725, 0.00988, 0.24377,0.21281,0.12763,0 .22214]	std = [1.14741, 1.17554,1.28740,1. 13950,1.07462,0.9 9933]	

alpha=1, li Ir=1e-3, dr more norn	w=45, al=3, r=0.9 (l.E 0.7788 nal values).	0.7773	Let it run to epoch 100, no early stopping	National loss with different optimizers (1)	Comparable mean and std to optuna found hyperparameters.	0.18127	0.96711	
layer_widt added_lay learning_r decay_rat	th=45, yers=3, crate=1e-4, e=0.9	val_loss: 0.7776	100, no ES	\$100 \$100 \$100 \$100 \$100 \$100 \$100 \$100	Good values. Again shows can acheius good results with more 'regular' Ir and dr	-0.01237	1.07265	What batch size?
layer_widd added_lay learning_r decay_rat 150, alpha	th=45, yers=3, rate=1e-4, te=0.9: batch a=1			Scaled Residual 10 2 2 4 60 63 15 60 6	Good but not better than PZFlow. Need to reproduce values above.	0.387	1.316	
layer_widt added_lay learning_r decay_rat 500, alpha	th=45, yers=3, rate=1e-4, te=0.9: batch a=1			Scaled Restrict 1	Good! Will also try bs 1000	-0.04386	1.1423	
layer_widt added_lay learning_r decay_rat 1000, alph	th=45, yers=3, rate=1e-4, te=0.9: batch ha=1				Decent again	-0.2059	1.0095	

layer_width=45, added_layers=3, learning_rate=1e-4, decay_rate=0.9: batc 500, alpha=2				-0.3604	1.21	
layer_width=45, added_layers=3, learning_rate=1e-4, decay_rate=0.9: batc 150, alpha=2	n		Good!	-0.0888	1.1844	
layer_width=45, added_layers=3, learning_rate=1e-4, decay_rate=0.9: batc 100, alpha=2	n			poor		

	Optuna Network Tuning														
Study number	Parameters	Values	Number of trials	Batch size and learning rate	Layer_width and added_layers	Epochs	Pruning	Early Stopping Patience	Best trial	Best value	es	Loss	Validation Loss	Notes	Plots
	Layer width and 1 added layers	5-50, 0-7	100	500, 1e-4	5-50, 0-7	30	Medium pruning	5	i	76 47, 6		0.7774	0.7747277617	Prefers deeper network - more layers and greater width. Can't really improve on 0.77 in general. Hard to see improvement of added layers from 4+, layer width 30+. Interesting that 74 trials were pruned.	Google drive
	batch_size and 2 learning rate	50-2500(50), 1e-5, 1e-2 (log)	50	50-2500(50), 1e-5, 1e-2 (log)	16,1	30	Medium pruning	5	5	32 6.904e-05	5, 150	0.7871	0.7835963964	Will be interesting to see if similar results are obtained with the layer widths found above. Smaller batch sizes (<100) preferred as expected. Learning rate found to be best around 1e-4	Google drive
;	batch_size and 3 learning rate	50-1000(50), 1e-5, 1e-3 (log)	40	50-1000(50), 1e-5, 1e-3 (log)	40,4	30	Medium pruning	5	5	4 3.256e-5,	500	0.7799	0.7796990275	With the deeper network, prefers a higher batch size. Note the difference of the validation losses in the range 100-500 is <0.002	Google drive
	batch_size and learning rate					30	Medium pruning	5	5	0.0000672 4 600	29,	0.7783	0.779718101		
	batch_size, learning rate 5 and decay rate	50-500(50), 1e- 5-1e-4(0.2e-5)	50	50-500(50), 1e- 5-1e-4(0.2e-5)	40,4	30	Medium pruning	5		500,1e-04	1,0.5	0.7794	0.7746039033	Compared to the models used above, the lower decay rate finds a marginally lower validation loss	Google drive
	learning rate, layer width and 6 added layers	1e-5-1e-3, 5-70,	100	500		50	Medium pruning	8	3	0.001069 ⁻ 46 5, 32, 7	15259		0.7907698154	Held alpha at 2. Looks like needed more epochs to run so rerun with 100 epochs. results now stored as df and saved onto drive	Google drive
	learning rate,	1e-5-1e-3, 5-70, 0-9					Medium pruning	8		0.0001877 63905401 66 5		0.7802			
	learning rate, layer width,- decay rate and added layers	1e-5-1e-3, 5-70, 0-9	100	500		100	Medium pruning	8	3 2	0.0051829 216 4054591,		0.7798	0.7829719186	Seems you can only add trials to continue tests if parameters stay the same. Decay rate did not change here	Lost
08 (in drive)	learning rate, layer width, decay rate and added layers	1e-5-1e-3, 5-70, 0.5-1, 0-9	100	500		100	Medium pruning	8	3	0.0015508 40121252 0.5929072 3 80534, 45	2, 21956	0.7785	0.7752603292	Good. Will add on 100 trials to study 2 to continue	Google drive
	learning rate, layer width, decay rate and added layers	1e-5-1e-3, 5-70, 0.5-1, 0-10	100	500		100	Medium pruning	8	same	same		same	same	Continuation of above. Trial 3 remains the best.	
11	learning rate, layer width, decay rate and 0 added layers	1e-5-1e-3, 5-70, 0.5-1, 0-11	100	150		100	Medium pruning	3	3	45, 3, 'learning_ 0.001215! 98680723 'decay_ra 0.6676494 13406	57217 l, te':	0.7811	0.7743891478	Tested above but with batch of 150. Validation loss has been made marginally lower again, although might be overfitted.	

PZFlow Tuning								
Parameters	Values used	M1 Losses	M0 Losses	Epochs	Plots	Notes	Mean	Std
Batch size	500	-4.2919 -4.2960	-4.0426 -4.0457	50		Very bad	6.2687	2.4729
Batch size	100	-4.2931 -4.2966	-4.0430 -4.0458				6.2503	2.7401
Data size	Used all data vectors, batch 100							
Default values		-4.2930 -4.2929	-4.0487 -4.0515	100	Drive	Decent. M0 training loss divereged so ended after epoch 68	-0.2611	1.296

	Optuna Network Tuning on Photometry data		n				n													
					Layer_width															
Study number	Parameters	Values	Number of trials	Batch size and learning rate	and added_layers	Epochs	Pruning	Early Stopping Patience	Best trial	Best values	Losses	Metric	Mean+Std	Notes	Plots					
11	lr,dr,al,lw	1e-4,1e-3(1e-4);		500		5	medium pruning (based on validation)	10		14 55,5,4e-4,0.9	0.2916, 0.2988	SSR: 853794.1775	0.5972, 1.2821	Resduals lie above 0.5. Some valued 4-6 sigma						
		1e-4,1e-3(1e-4); 0.9,1 (0.01); 0,9		Repeat of						lw:9, al:1, 3e-4,		SSR: 198.061719389		All trials found the same value - something strange here. Overall most values look better but has more outliers and						
12	Ir,dr,al,lw	; 5,70	50	above with 150				10	0*	0.92	0.3097, 0.3149	694	-0.1637, 1.7723	higher variance.	Drive					
13	lr,dr,al,lw	1e-4,1e-3(1e-4); 0.9,1 (0.01); 0,9 ; 5,70	50	150				10		layer_width': 34, 'added_layers': 0, 'learning_rate': 0.0004, 'decay_rate': 0 1.0}.		AM+SD: 93.5017	1.9855, 2.6440	Only got through 10 trials or so. Very poor outcome. The metric from the objective function does not match that outputted later						
		1e-4,1e-3(1e-4); 0.9,1 (0.01); 0,9	before									MSE(on SR):		MSE seems to like to make						
14	lr,dr,al,lw	; 5,70 1e-4,1e-3(1e-4); 0.9,1 (0.01); 0,9 ; 5,70	disconnect)	500		5	0	10		0		4775.3971	-1.6591, 1.3193	the residuals negative. Took test above and tried 150 instead of 500. Not awful, though still a few at 4 sigma. Perhaps keep running and see	Drive					
	Ir,dr,al,lw	; 5,70 1e-4,1e-3(1e-4);		150		5 30 (reduced to		I		0		I	-1.089, 1.2636	what appears?	Drive					
15	lr,dr,al,lw	0.9,1 (0.01); 0,9 ; 5,70	50	500		get through more trials)		10				MSE(on R):		Ended early as metric is giving repeat values						
	best values from	, .,				,														
1	unobservables	45,3,1e-4,0.9	1	500		5	0						-0.2005, 1.335	Repeat with 100 epochs, then try smaller batch size						
1	best values from unobservables	45,3,1e-4,0.9	I	500		10	0						0.16433, 1.1115	Good but a couple of values that are 4 sigma. Next try 150 batch size	Science Interestant 4	02 04 04 05 10 10 10 10 10 10 10 10 10 10 10 10 10				
I	best values from unobservables	45,3,1e-4,0.9	J	150		10	0						-0.0139, 1.2237	Still high variance.	Scated Residual 5 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Raw Residual 0.29 0.11 0.12 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15				
	Repeat of above but alpha=2 Alpha=2, bs of	45,3,1e-4,0.9		150		10	0						-0.06932, 1.14716	The high sigma 4 values are gone which is good - all just about within 3 Not better than above, some 4	Scaled Renthual 3	Raw Residual 0.30				
	Alpha=2, bs of 500	45,3,1e-4,0.9		500									0.08035, 1.1944	Not better than above, some 4 sigma values.		Pow Partitual				
	Alpha=2, bs of 100	45,3,1e-4,0.9		100									0.15887, 1.11877	Nice! Highest sigma around 3.8. Go lower?	Scaled Residual 1	0.25 Row Residual 0.25 0				
	Alpha=2, bs of	45,3,16-4,0.9												J.O. GO IOWET?	$p(M_0 x)$ bits	$\rho(M_1 x)$ bin				
	50			50									overfitting							