PROBLEM SET 2

MARK DITSWORTH

1. Problem 2.1

Given graph G = (V, E, W) consider a random walk on V with transition probabilities $M_{ij} = PX(t+1) = j|X(t) = i = \frac{w_{ij}}{\deg(i)}$.

Partition the vertex set as $V = V_+ \cup V_- \cup V_*$. Suppose that every node in V_* is connected to at least one node in either V_+ or V_- . Given a node $i \subset V$ let g(i) be the probability that a random walker starting at i reaches a node in V_+ before reaching one in V_- . If $i \in V_+$, then g(i) = 1 and if $i \in V_-$, then g(i) = 0. Find g(i) for $i \in V_*$.

Solution: There are two scenarios in which the random walker will reach a node in V_+ before one in V_- : Moving from V_* to V_+ immediately, or moving from V_* to V_* repeatedly until moving to V_+ . We essentially view leaving V_* as an absorbing barrier, and want the probability that we end in V_+ , which is the sum of all probabilities that will end in that scenario:

$$\sum_{j \in V_{+}} M_{ij} + \sum_{j \in V_{*}} \sum_{k \in V_{+}} M_{ij} M_{jk} + \sum_{j \in V_{*}} \sum_{k \in V_{*}} \sum_{l \in V_{+}} M_{ij} M_{jk} M_{kl} + \dots$$

Define $\nu_* \in \mathbb{R}^n$, n = |V| where the jth element is 1 if $j \in V_*$, and 0 otherwise. Similarly define $\nu_+ \in \mathbb{R}^n$ for the partition V_+ . Let $\Psi_i \in \mathbb{R}^n$, n = |V| have elements everywhere equal 0 except for the ith node that is the starting node. The probability that a random walker starting at node i is absorbed in the V_+ partition at time-step k is expressed as

$$\Psi_i^T \left[M \operatorname{diag} \left(V_* \right) \right]^{(k-1)} M V_+$$

The $[M \operatorname{diag}(V_*)]^{(k-1)}$ matrix expresses the probability of starting at node i, and ending at node j after k-1 steps, discounting the intermediate nodes that would absorb the random walker earlier (nodes belonging to V_+ or V_-) For convenience, we will denote this matrix as M_* , as in only accounting for transitions within partition V_* . The resulting matrix is dotted with M for the last transition time step, and then dotted with V_+ to attain the vector of probabilities end in partition V_+ . Ψ_i^T dotted with this vector selects the probability stemming from starting at node i. Thus, summing the probabilities across all k yields

$$\Psi_i^T \left[\sum_{k=0}^{\infty} \left(M_* \right)^k \right] M V_+$$

With each element of M_* less than 0, and the summation across each row bounded above by 1, it is clear that $\lim_{n\to\infty} (M_*)^n = \mathbf{0}$. Thus, the infinite sum converges to

 $(I - M_*)^{-1}$. In conclusion, the probability that a random walker starting at node $i \in V_*$ will reach a node in V_+ before a node in V_- is calculated by

$$g(i) = \Psi_i^T (I - M_*)^{-1} MV_+.$$

Note that for graphs with large |V|, the inverse operation can be quite expensive. Thus g(i) should be approximated either via pseudo-inverse operations or monte carlo simulations. See the attached notebook ps2.ipynb for justification of this closed-form expression for g(i).

2. Problem 2.2

For a graph G let h(G) denote its Cheeger constant and $\lambda_2(\mathcal{L}_G)$ the second-smallest eigenvalue of its normalized graph Laplacian ($\mathcal{L}_G = D - W$). The Cheeger inequality guarantees that

$$\frac{1}{2}\lambda_2(\mathcal{L}_G) \le h_G \le \sqrt{2\lambda_2(\mathcal{L}_G)}$$

This excercise shows that this inequality is tight (at least up to constants).

1. Construct a family of graphs \mathcal{G} for which $\lambda_2(\mathcal{L}_G) \to 0$ and for which there exists a constant C > 0 for which

$$\forall G \in \mathcal{G}, h_G \leq C\lambda_2(\mathcal{L}_G)$$

2. Construct a family of graphs \mathcal{G} for which $\lambda_2(\mathcal{L}_G) \to 0$ and for which there exists a constant c > 0 for which

$$\forall G \in \mathcal{G}, h_G \ge c\sqrt{\lambda_2(\mathcal{L}_G)}$$

3. Problem 2.3

Given a graph G show that the dimension of the nullspace of \mathcal{L}_G corresponds to the number of connected components of G.

Solution: The nullspace of \mathcal{L}_G is the set of linearly independent vectors \mathcal{X} such that $\forall \mathbf{x} \in \mathcal{X}$, $\mathcal{L}_G \mathbf{x} = \mathbf{0}$. By expanding \mathcal{L}_G we can see that both D and W transform each \mathbf{x} to equal vectors.

$$\mathcal{L}_{G}\mathbf{x} = (D - W)\mathbf{x} = D\mathbf{x} - W\mathbf{x} = \mathbf{0}$$
$$D\mathbf{x} = W\mathbf{x}$$

Consider that graph $G=(V,E,W),\ (|V|=n)$ has k connected components. Let \mathbf{x}^i be a vector where

$$x_j^i = \begin{cases} 1 & j \in \text{ component } i \\ 0 & \text{otherwise} \end{cases}$$

Clearly, without loss of generality, $D\mathbf{x}^i$ is equal to a vector containing the degree of each node in G that is in component i. $W\mathbf{x}^i$ is clearly the same since for each node, it will sum all weights of edges that connect to nodes in component i. Thus, there will be k linearly independent vectors that are transformed to $\mathbf{0}$ by \mathcal{L}_G . All other vectors that do this will be linear combinations of $\mathcal{X} = {\mathbf{x}^1, \dots, \mathbf{x}^k}$. Therefor, the cardinality of the nullspace of \mathcal{L}_G is equal to the number of connected components in graph G.

4. Problem 2.4

Given a connected unweighted graph G = (V, E), its diameter is equal to

$$\operatorname{diam}(G) = \max_{u,v \in V} \min_{pathp,u \to v} \operatorname{len}(p)$$

Show that

$$\operatorname{diam}(G) \ge \frac{1}{\operatorname{vol}(G)\lambda_2(\mathcal{L}_G)}$$

5. Problem 2.5

Prove the Courant Fisher Theorem: Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_1 \leq \dots \lambda_n$, for $k \leq n$,

$$\lambda_k(A) = \min_{U: \dim(U) = k} \left[\max_{x \in U} \frac{x^T A x}{x^T x} \right].$$

Also show that

$$\lambda_2(A) = \max_{y \in \mathbb{R}^n} \left[\min_{x \in \mathbb{R}^n : x \perp y} \frac{x^T A x}{x^T x} \right]$$

6. Problem 2.6

Given a set of points $x_1, \ldots, x_n \in \mathbb{R}^p$ and a partition of them in k clusters S_1, \ldots, S_k reca the k-means objective

$$\min_{S_1, \dots, S_k} \min_{\mu_1, \dots, \mu_k} \sum_{l=1}^k \sum_{i \in S_l} ||x_i - \mu_l||^2.$$

Show that this is equivalent to

$$\min_{S_1, \dots, S_k} \sum_{l=1}^k \frac{1}{S_l} \sum_{i, j \in S_l} ||x_i - x_j||^2.$$

Solution:

$$\min_{S_1, \dots, S_k} \min_{\mu_1, \dots, \mu_k} \sum_{l=1}^k \sum_{i \in S_l} ||x_i - \mu_l||^2 =$$

$$\min_{S_1, \dots, S_k} \sum_{l=1}^k \sum_{i \in S_l} \|x_i - \frac{1}{|S_l|} \sum_{j \in S_l} x_j \|^2 =$$

$$\min_{S_1, \dots, S_k} \sum_{l=1}^k \frac{1}{|S_l|} \sum_{i \in S_l} \||S_l| x_i - \sum_{j \in S_l} x_j \|^2 =$$

$$\min_{S_1, \dots, S_k} \sum_{l=1}^k \frac{1}{|S_l|} \sum_{i \in S_l} \sum_{j \in S_l} \|x_i - x_j \|^2 =$$

$$\min_{S_1, \dots, S_k} \sum_{l=1}^k \frac{1}{|S_l|} \sum_{i, j \in S_l} \|x_i - x_j \|^2.$$