

A MINI PROJECT REPORT

ON

"STAR TYPE CLASSIFICATION"

Submitted by

Apoorva Auti(Roll no 07)

Mahesh Ahirrao(Roll no 06)

Maitri Likhiya(Roll no 14)

Rohit Galande(Roll no 40)

Under the Guidance of

Prof. Vishal Patil

For the subject

Laboratory Practice II (410247)

Data Mining and Warehousing (410244 (D))

Submitted in partial fulfilment of the requirements

for the award of the degree of

Bachelor in Computer Engineering

MET BKC NASHIK

DEPARTMENT OF COMPUTER ENGINEERING

Academic Year 2021-22

CONTENTS

- 1. Problem Statement
- 2. Abstract
- 3. Star type classification
- 4. Datasets
- 5. Data Visualization
- 6. Preprocessing
- 7. KNN Classifier
- 8. Decision Tree Classifier
- 9. Random Forest Classifier
- 10. Logistic Regression
- 11. Conclusion

PROBLEM STATEMENT

Consider a labeled dataset belonging to an application domain. Apply suitable data preprocessing steps such as handling of null values, data reduction, discretization. For prediction of class labels of given data instances, build classifier models using different techniques (minimum 3), analyze the confusion matrix and compare these models. Also apply cross validation while preparing the training and testing datasets.

ABSTRACT

Celestial bodies such as stars are classified into categories such as Red Dwarf, Brown Dwarf, White Dwarf, MainSequence, Super Giants, Hyper Giants. This categorisation is based on properties such as size, temperature and contents.

However, categorising these bodies can be quite tedious. Hence, in this assignment, we train different types of machine learning models to categorize these bodies and compare their performance

Star Type Classification:

Dataset consists of the following features:

Temperature -- K

L -- L/Lo (Relative Luminosity)

R -- R/Ro (Relative Radius)

AM -- Mv (Absolute Magnitude)

Color -- General Color of Spectrum

Spectral_Class -- O,B,A,F,G,K,M / SMASS - https://en.wikipedia.org/wiki/Asteroid_spectral_types

Type -- Red Dwarf, Brown Dwarf, White Dwarf, Main Sequence, Super Giants, Hyper Giants TARGET:

Type

from 0 to 5

Red Dwarf - 0 Brown Dwarf - 1 White Dwarf - 2 Main Sequence - 3 Super Giants - 4 Hyper Giants - 5 MATH:

 $Lo = 3.828 \times 10^26 \text{ Watts (Avg Luminosity of Sun)}$

 $Ro = 6.9551 \times 10^8 \text{ m (Avg Radius of Sun)}$

Datasets:

```
[] import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns

%matplotlib inline

df = pd.read_csv('Stars.csv')
  df.head()
```

	Temperature	L	R	A_M	Color	Spectral_Class	Туре
0	3068	0.002400	0.1700	16.12	Red	М	0
1	3042	0.000500	0.1542	16.60	Red	M	0
2	2600	0.000300	0.1020	18.70	Red	М	0
3	2800	0.000200	0.1600	16.65	Red	М	0
4	1939	0.000138	0.1030	20.06	Red	М	0

- df.info()
- <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 240 entries, 0 to 239
 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Temperature	240 non-null	int64
1	L	240 non-null	float64
2	R	240 non-null	float64
3	A_M	240 non-null	float64
4	Color	240 non-null	object
5	Spectral_Class	240 non-null	object
6	Туре	240 non-null	int64
dtype	es: float64(3),	int64(2), object	(2)
memor	ry usage: 13.2+	KB	M-1858

Data Visualization:


```
sns.catplot(data=df, x='Type', y='Temperature', hue='Color')

# type 0 and 1 have temperature less than 5000K while other categories are spread over various ranges
# type 3,4,5 can have higher temperature values
# type 2,3,4,5 have temperature >= 5000K
```


Preprocessing:

```
[ ] df.describe()
```

	Temperature	L	R	A_M	Туре
count	240.000000	240.000000	240.000000	240.000000	240.000000
mean	10497.462500	107188.361635	237.157781	4.382396	2.500000
std	9552.425037	179432.244940	517.155763	10.532512	1.711394
min	1939.000000	0.000080	0.008400	-11.920000	0.000000
25%	3344.250000	0.000865	0.102750	-6.232500	1.000000
50%	5776.000000	0.070500	0.762500	8.313000	2.500000
75%	15055.500000	198050.000000	42.750000	13.697500	4.000000
max	40000.000000	849420.000000	1948.500000	20.060000	5.000000

```
[ ] df.head()
    # Rescale : Temperature, L, R, A_M
    # Encode : Color, Spectral_Class
```

	Temperature	L	R	A_M	Color	Spectral_Class	Туре
0	3068	0.002400	0.1700	16.12	Red	М	0
1	3042	0.000500	0.1542	16.60	Red	М	0
2	2600	0.000300	0.1020	18.70	Red	М	0
3	2800	0.000200	0.1600	16.65	Red	М	0
4	1939	0.000138	0.1030	20.06	Red	M	0

```
[ ] df['Color'].unique()
```

```
[ ] #removing typos
    df['Color'] = df['Color'].apply(lambda x:x.lower())
    df['Color'] = df['Color'].str.replace('-',' ')
    df['Color'] = df['Color'].str.replace('ish','')
    df['Color'] = df['Color'].str.replace('pale ','')
    df['Color'] = df['Color'].str.replace('white yellow','yellow white')
    df['Color'] = df['Color'].replace('whit','white')
    df['Color'].unique()
    array(['red', 'blue white', 'white', 'yellow white', 'yellow orange',
            'blue', 'orange', 'yellow', 'orange red'], dtype=object)
[ ] df['Spectral_Class'].unique()
    array(['M', 'B', 'A', 'F', 'O', 'K', 'G'], dtype=object)
[ ] #encoding labels
    from sklearn.preprocessing import LabelEncoder
    encoder = LabelEncoder()
    df['Color'] = encoder.fit_transform(df['Color'])
    df['Spectral_Class'] = encoder.fit_transform(df['Spectral_Class'])
    df.head()
```

	Temperature	L	R	A_M	Color	Spectral_Class	Type
0	3068	0.002400	0.1700	16.12	4	5	0
1	3042	0.000500	0.1542	16.60	4	5	0
2	2600	0.000300	0.1020	18.70	4	5	0
3	2800	0.000200	0.1600	16.65	4	5	0
4	1939	0.000138	0.1030	20.06	4	5	0

```
#rescaling non categorical features

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scalable = ['Temperature','L','R','A_M']
scaledColumns = pd.DataFrame(scaler.fit_transform(df[scalable]),columns=scalable)
scaledColumns.describe()
```

	Temperature	L	R	A_M
count	2.400000e+02	2.400000e+02	2.400000e+02	2.400000e+02
mean	1.850372e-17	-2.127927e-17	-1.850372e-17	-9.344377e-17
std	1.002090e+00	1.002090e+00	1.002090e+00	1.002090e+00
min	-8.978190e-01	-5.986236e-01	-4.595230e-01	-1.551051e+00
25%	-7.504023e-01	-5.986236e-01	-4.593402e-01	-1.009928e+00
50%	-4.953014e-01	-5.986232e-01	-4.580618e-01	3.739676e-01
75%	4.781574e-01	5.074424e-01	-3.767029e-01	8.862626e-01
max	3.094941e+00	4.145201e+00	3.316058e+00	1.491607e+00

[] df.drop(scalable,inplace=True,axis=1)
 df = pd.concat([df,scaledColumns],axis=1)
 df.head()

	Color	Spectral_Class	Туре	Temperature	Ĺ	R	A_M
0	4	5	0	-0.779382	-0.598624	-0.459210	1.116745
1	4	5	0	-0.782110	-0.598624	-0.459241	1.162414
2	4	5	0	-0.828477	-0.598624	-0.459342	1.362213
3	4	5	0	-0.807496	-0.598624	-0.459229	1.167171
4	4	5	0	-0.897819	-0.598624	-0.459340	1.491607

KNN Classifier:

```
[ ] from sklearn.metrics import classification report, confusion matrix, ConfusionMatrixDisplay
    from sklearn.model selection import cross val score
[ ] from sklearn.neighbors import KNeighborsClassifier
    knnModel = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                        metric_params=None, n_jobs=None, n_neighbors=6, p=2,
                        weights='uniform')
    knnModel= KNeighborsClassifier().fit(X train,y train.values.ravel())
[ ] cv_lr = cross_val_score(estimator = knnModel, X = X_train, y = y_train, cv = 10)
    print("CV: ", cv_lr.mean())
   CV: 0.870879120879121
[ ] #metrics and cross validation
    y_pred= knnModel.predict(X_train)
    print(classification_report(y_train,y_pred))
                 precision recall f1-score support
                             1.00
              0
                      1.00
                                        1.00
                                                   21
                             1.00
              1
                     0.88
                                        0.93
                                                    21
                              1.00
              2
                     0.88
                                        0.94
                                                    22
              3
                     0.95
                             0.73 0.83
                                                   26
                     0.87 0.95
1.00 0.90
              4
                                       0.91
                                                   21
                                       0.95
                                                   21
                                                 132
                                       0.92
        accuracy
    macro avg 0.93 0.93
weighted avg 0.93 0.92
                                       0.93
                                                  132
                                       0.92
                                                 132
```

```
[ ] y_test_pred = knnModel.predict(X_test)
    print(classification_report(y_test,y_test_pred))
    #for knn training data accuracy is 0.92 where as testing data accuracy is 0.94
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	19
1	0.95	1.00	0.97	19
2	1.00	1.00	1.00	18
3	0.83	0.71	0.77	14
4	0.86	0.95	0.90	19
5	1.00	0.95	0.97	19
accuracy			0.94	108
macro avg	0.94	0.93	0.94	108
weighted avg	0.94	0.94	0.94	108

[] ConfusionMatrixDisplay.from_estimator(knnModel,X_test,y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f28709108d0>

Decision Tree Classifier:

```
[ ] from sklearn.tree import DecisionTreeClassifier
    tree = DecisionTreeClassifier(max_depth=4)
    tree.fit(X_train,y_train)
    DecisionTreeClassifier(max_depth=4)
[ ] cv_lr = cross_val_score(estimator = tree, X = X_train, y = y_train, cv = 10)
    print("CV: ", cv_lr.mean())
    CV: 0.9923076923076923
[ ] y train pred = tree.predict(X train)
    print(classification_report(y_train,y_train_pred))
                 precision recall f1-score
                                               support
              0
                      1.00
                              1.00
                                        1.00
                                                   21
                                        1.00
              1
                     1.00
                              1.00
                                                   21
              2
                                                   22
                     1.00
                              1.00
                                        1.00
              3
                     1.00
                              1.00
                                       1.00
                                                   26
              4
                                        1.00
                     1.00
                              1.00
                                                   21
              5
                     1.00
                              1.00
                                        1.00
                                                   21
                                        1.00
                                                 132
       accuracy
       macro avg
                    1.00
                               1.00
                                        1.00
                                                  132
    weighted avg
                    1.00
                               1.00
                                        1.00
                                                  132
```

```
[ ] y_test_pred = tree.predict(X_test)
    print(classification_report(y_test,y_test_pred))

#for decision tree training accuracy is 1.00 where as testing accuracy is 0.99
#error found was in type 3 and 4 which can be reduced by increasing dataset size
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	19
1	1.00	1.00	1.00	19
2	1.00	1.00	1.00	18
3	0.82	1.00	0.90	14
4	1.00	0.84	0.91	19
5	1.00	1.00	1.00	19
accuracy			0.97	108
macro avg	0.97	0.97	0.97	108
weighted avg	0.98	0.97	0.97	108

[] ConfusionMatrixDisplay.from_estimator(tree,X_test,y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f286f756dd0>

Random Forest Classifier:

```
[ ] from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier(criterion = 'entropy', max features = 4, n estimator's = 800, random state=69)
    rf.fit(X_train, y_train.ravel())
    RandomForestClassifier(criterion='entropy', max_features=4, n_estimators=800,
                          random_state=69)
[ ] cv_lr = cross_val_score(estimator = rf, X = X_train, y = y_train, cv = 10)
    print("CV: ", cv_lr.mean())
    CV: 1.0
[ ] y train pred = rf.predict(X train)
    print(classification_report(y_train,y_train_pred))
                 precision recall f1-score support
               0
                      1.00
                              1.00
                                        1.00
                                                    21
                     1.00 1.00
                                     1.00
              1
                                                   21
                                                    22
              2
                     1.00
                              1.00
                                        1.00
                                       1.00
                     1.00 1.00
1.00 1.00
1.00 1.00
                                                    26
21
              3
               4
                                         1.00
                                       1.00
                                                   21
              5
                                                   132
                                        1.00
        accuracy
    macro avg 1.00 1.00 weighted avg 1.00 1.00
                                         1.00
                                                   132
                                         1.00
                                                   132
```

```
[ ] y_test_pred = rf.predict(X_test)
    print(classification_report(y_test,y_test_pred))
#for random forest training accuracy is 1.00 where as testing accuracy is 0.98
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	19
1	1.00	1.00	1.00	19
2	1.00	1.00	1.00	18
3	0.88	1.00	0.93	14
4	1.00	0.89	0.94	19
5	1.00	1.00	1.00	19
accuracy			0.98	108
macro avg	0.98	0.98	0.98	108
weighted avg	0.98	0.98	0.98	108

[] ConfusionMatrixDisplay.from_estimator(rf,X_test,y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f286df00650>

Logistic Regression:

```
[ ] from sklearn.linear model import LogisticRegression
    lr = LogisticRegression(random state=69, max iter=10000)
    lr.fit(X_train,y_train.ravel())
    LogisticRegression(max_iter=10000, random_state=69)
[ ] cv_lr = cross_val_score(estimator = lr, X = X_train, y = y_train, cv = 10)
    print("CV: ", cv_lr.mean())
   CV: 0.9543956043956043
[ ] y_train_pred = lr.predict(X_train)
    print(classification_report(y_train,y_train_pred))
                precision recall f1-score support
                   1.00
                           1.00
                                    1.00
                                               21
             0
                           1.00
                                    1.00
             1
                   1.00
                                               21
             2
                   1.00
                           1.00
                                    1.00
                                               22
             3
                   0.96
                           0.92
                                    0.94
                                               26
                  1.00
                           0.95
                                    0.93
                                               21
             4
                           1.00
                                     1.00
                                              21
                                     0.98
                                             132
       accuracy
                  0.98
                           0.98
                                    0.98
                                              132
      macro avg
    weighted avg
                  0.98
                            0.98
                                    0.98
                                              132
```

CONCLUSION

Thus we have created classifiers for the given dataset and obtained the following results.

Model	Precision	Recall	Accuracy
KNN	0.94	0.94	0.94
Decision Tree	0.98	0.97	0.97
Random Forest	0.98	0.98	0.98
Logistic Regression	0.98	0.98	0.98