Teoria da Informação

Códigos de Hamming

Miguel Barão

Código de Hamming

Conhecimentos necessários:

- Aritmética módulo 2.
- Espaços vectoriais.
- Rank de uma transformação linear.
- Espaço nulo (kernel) de uma transformação linear.

Código de Hamming

O código de Hamming permite corrigir até 1 erro numa palavra de código.

Seleccionando o número pretendido de bits de paridade $m \ge 2$, as palavras de código têm comprimento $2^m - 1$, das quais m são bits de paridade e $2^m - 1 - m$ são dados.

Exemplo:

Código de Hamming

Define-se a matriz de Hamming onde cada coluna contém um número em binário de 1 a 7:

$$\mathbf{H} \triangleq \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

 As palavras de código válidas são todas as que satisfazem a equação Hc = 0. Isto é,

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Código de Hamming Palavras de código

A tabela seguinte mostra todas as 16 palavras de código que satisfazem Hc = 0:

0	0000000	8	1000011
U		0	
1	0001111	9	1001100
2	0010110	10	1010101
3	0011001	11	1011010
4	0100101	12	1100110
5	0101010	13	1101001
6	0110011	14	1110000
7	0111100	15	1111111

Código de Hamming Correcção de erros

- Suponha-se que ocorreu um erro na transmissão de uma palavra de código.
- A troca de um bit (devido ao erro) pode ser simulada fazendo um XOR bit-a-bit entre a palavra de código transmitida e um vector de zeros onde o bit onde ocorre o erro é colocado a um:

■ Ou seja, é recebida a palavra $\mathbf{r} = \mathbf{c} \oplus \mathbf{e}$.

Código de Hamming Correcção de erros

- Como se viu anteriormente, uma palavra de código satisfaz Hc = 0. O descodificador usa esta equação para detectar erros: $Hc \neq 0 \Rightarrow$ erro.
- Caso não ocorram erros na transmissão, a palavra recebida é igual à transmitida, $\mathbf{r} = \mathbf{c}$, e portanto $\mathbf{H}\mathbf{r} = \mathbf{0}$.
- No caso de ocorrer um erro na transmissão, a palavra recebida é $\mathbf{r} = \mathbf{c} \oplus \mathbf{e}$. Neste caso obtém-se

$$\begin{aligned} Hr &= H(c \oplus e) \\ &= Hc \oplus He \\ &= 0 \oplus He \\ &= He \end{aligned}$$

Qual o resultado de He?

Código de Hamming Correcção de erros

- Qual o resultado de He?
- Usando o exemplo anterior, $e = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T$, obtém-se

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

O resultado indica a posição onde ocorreu o erro!

Código de Hamming Aplicação num canal binário simétrico

Supondo que o código de Hamming (7,4) é aplicado num canal binário simétrico, qual a probabilidade de erro na descodificação? Resposta: Como o código permite corrigir até um bit errado, então a transmissão ocorre sem erros nas seguintes situações:

- Não houve bits trocados.
- Houve um bit trocado.

A probabilidade de a transmissão ocorrer sem erros é então:

Supondo que o código de Hamming (7,4) é aplicado num canal binário simétrico, qual a probabilidade de erro na descodificação? Resposta: Como o código permite corrigir até um bit errado, então a transmissão ocorre sem erros nas seguintes situações:

- Não houve bits trocados.
- Houve um bit trocado.

A probabilidade de a transmissão ocorrer sem erros é então:

$$\Pr\{\text{não ocorrerem erros}\} = (1 - p_e)^7 + 7(1 - p_e)^6 p_e.$$