1. State machine Diagram of ECU

1. ECU 1

2. <u>ECU 2</u>

Process Data (State Machine Diagram for Actuators)

Open - stopped - Not pressed, Closed-Moving - Pressed,

Closed-stopped - Pressed,

Opon - stopped - Not pressed, Closed-stopped - Not pressed, Closed-Moving - Pressed

2. State Machine Diagram of ECU Components

1. ECU 1

- ECV1 CAN Tx Poth:

- ECV1 Io HwAb Poth:

2. ECU 2

- ECUZ CAN Rx Poth:

- ECU2 Io HwAb Poth:

1. Sequence Diagram for ECU

1. <u>ECU 1</u>

ECU1 Sequence Diagram

2. ECU 2

ECU2 Sequence Diagram

4. CPU Load for the ECU

1. ECU1

Single OS Task with period of 5ms

Assume the worst case execution time of this task $T_1 \leq 5 \, \text{ms}$

CPU Load of ECU1 % =
$$\frac{T_1}{5ms} \times 100 \%$$

2. <u>ECU2</u>

Single OS Task with period of 1ms

Assume the worst case execution time of this task $T_2 \leq 1 \text{ms}$

CPU Load of ECU2 % =
$$\frac{T_2}{1ms} \times 100 \%$$

5. BUS Load in the system

Periodic Messages					# Frames / 20ms
	5ms	10ms	15ms	20ms	
Speed State: 5ms	х	х	х	x	4 Frames
Door State: 10ms		х		x	2 Frames
Light Sw. State: 20ms				x	1 Frame
Total					7 Frames

- # Data Bytes per Msg: 1Byte = 8bits
- # bits per CAN Frame without data: 47bits
- # total bits per CAN Frame: 47+8 = 55bits
- # bits transmitted over CAN in 20ms = 55bits * 7 Frames = 385 bits
- # bits transmitted over CAN in 1s = 385bits/20ms = 19,250 bits/s
- # max bits that can be transmitted over CAN in 1s = 125,000 bits/s

$$BUS \ Load = \frac{BUS \ Utilization}{BUS \ Max \ Capacity} = \frac{19,250}{125,000} = 15.4\%$$