九州大学大学院数理学府 平成 26 年度修士課程入学試験 専門科目問題

- 注意 問題 [1][2][3][4][5][6][7][8][9][10] の中から 2 題を選択して解答せよ.
 - 解答用紙は,問題番号・受験番号・氏名を記入したものを必ず2題分提出すること.
 - \bullet 以下 $\mathbb N$ は自然数の全体 , $\mathbb Z$ は整数の全体 , $\mathbb Q$ は有理数の全体 , $\mathbb R$ は実数の全体 , $\mathbb C$ は複素数の全体を表す .
- [1] 2つの行列

$$A = \begin{pmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$$

で生成される \mathbb{C} 上 2 次の一般線形群 $GL(2,\mathbb{C})$ の部分群を G とする.このとき以下の問に答えよ.

- (1) $B^{-1}AB = A^{-1}$ を示せ.
- (2) Gの位数を求めよ.
- (3) G の元で位数 2 のものをすべて求めよ.
- (4) G から位数 3 の群への全射準同型写像が存在するかどうか答えよ.

- [2] p を素数とする. $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ は位数 p の有限体とし, 0 以外の \mathbb{F}_p の元全体が乗法によりなす群を \mathbb{F}_p^{\times} で表す. $M_r(\mathbb{F}_p)$ は成分が \mathbb{F}_p の元からなる $r\times r$ -行列全体の集合とする.さらに $A\in M_r(\mathbb{F}_p)$ に対して |A| は A の行列式を表す.行列の乗法に関して,以下の間に答えよ.
 - (1) $GL_r(\mathbb{F}_p) = \{A \in M_r(\mathbb{F}_p) : |A| \neq 0\}$ は群であることを示せ.
 - (2) $SL_r(\mathbb{F}_p)=\{A\in M_r(\mathbb{F}_p):|A|=1\}$ は $GL_r(\mathbb{F}_q)$ の正規部分群であることを示せ.
 - (3) $GL_r^{(2)}(\mathbb{F}_p)=\{A\in M_r(\mathbb{F}_p): |A|\in \mathbb{F}_p^{*,2}\}$ は $GL_r(\mathbb{F}_p)$ の正規部分群であることを示せ、ただし, $\mathbb{F}_p^{*,2}=\{x^2:x\in \mathbb{F}_p^*\}$ とする.
 - (4) $GL_r(\mathbb{F}_p)$ と $SL_r(\mathbb{F}_p)$ の位数を決めよ.
 - (5) $GL_r^{(2)}(\mathbb{F}_p)$ の位数を決めよ .
- [3] $\mathbb{F}_{11}=\mathbb{Z}/11\mathbb{Z}$ を位数 11 の有限体とする. 0 以外の \mathbb{F}_{11} の元全体が乗法によりなす群を \mathbb{F}_{11}^{\times} で表し, $\mathbb{F}_{11}[T]$ は 1 変数 T の \mathbb{F}_{11} 上の多項式環を表す.このとき以下の問に答えよ.
 - (1) $2 \in \mathbb{F}_{11}^{\times}$ の位数を求めよ.
 - (2) 多項式 T^2-2 で生成されるイデアル (T^2-2) に対し商環 $K=\mathbb{F}_{11}[T]/(T^2-2)$ は体になることを示せ .
 - (3) K 係数の多項式 X^3-1 は K 上で 1 次式の積に因数分解できることを示せ.
 - (4) $\alpha \in K$ を T で代表される元とするとき,K に含まれる 1 の原始 3 乗根を $k\alpha+l$ (ただし k,l は \mathbb{F}_{11} の元)の形で表せ.

- [4] 2 次元単位球面 $S^2=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$ と長さ 2 の円筒 $p(u,v)=(\cos 2\pi u,\sin 2\pi u,v)$ を考える. $(u,v)\in(0,1]\times(-1,1)$ に対し、 \mathbb{R}^3 内の 2 点 p(u,v) と (0,0,v) を結ぶ線分と S^2 との交点を (x_p,y_p,z_p) とする. このとき以下の問に答えよ.
 - (1) (u,v) を用いて (x_p,y_p,z_p) を表せ.
 - (2) 写像 $(0,1] \times (-1,1) \ni (u,v) \mapsto (x_p,y_p,z_p) \in S^2$ の第一基本形式 $I = Edu^2 + 2Fdudv + Gdv^2$ を求めよ.
 - (3) (2) を用いて S^2 の面積が 4π になることを示せ.
- [5] 2 次元単位球面 $S^2=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$ と, 2 点からなる部分集合 $S^0=\{(0,0,1),(0,0,-1)\}$ を考える. S^0 の 2 点を同一視して得られる S^2 の商空間を S^2/S^0 で表す. このとき以下の問に答えよ.
 - (1) S^2/S^0 はコンパクトなハウスドルフ空間であることを示せ.
 - (2) S^2/S^0 の整係数ホモロジー群 $H_n(S^2/S^0, \mathbb{Z})$ $(n \ge 0)$ を求めよ.

[6] 連立線形微分方程式の初期値問題

$$\frac{dx}{dt} = Ax, \qquad x(0) = x_0$$

を考える. ただし $A=\begin{pmatrix} -1&2&-1\\2&-4&2\\-1&2&-1 \end{pmatrix}$, $x_0\in\mathbb{R}^3$. このとき以下の問に答えよ .

- (1) A の固有値を求めよ.
- (2) Ker A と Im A の直交基底を求めよ.
- (3) $x_0 \in \text{Im } A$ のとき,解は $x(t) \in \text{Im } A$ を満たすことを示せ.
- (4) $x_0 \in \text{Im } A$ のときの解 x(t) を求めよ.

[7] 複素関数 f(z), g(z) を

$$f(z) = \begin{cases} \frac{\sin z}{z}, & z \neq 0, \\ 1, & z = 0, \end{cases} \qquad g(z) = \sum_{n = -\infty}^{+\infty} \frac{c_n}{z - n}$$

で定める.ただし, $\{c_n\}$ は複素数列で,級数 $\sum_{n=-\infty}^{n=+\infty} \frac{c_n}{n}$ は絶対収束するものとする.このとき以下の問に答えよ.

- (1) f(z) は複素平面 $\mathbb C$ 上で正則であることを示せ.
- (2) 複素平面から整数点を除いた領域を $D=\mathbb{C}\setminus\mathbb{Z}$ で表わす . g(z) は D の任意のコンパクト集合上で一様収束することを示せ .
- (3) 任意の整数点 $z=m\in\mathbb{Z}$ は複素関数 $h(z)=rac{\sin\pi z}{\pi}\,g(z)$ の除去可能特異点であり, $\lim_{z\to m}h(z)=c_m$ が成り立つことを示せ.

4

[8] 積分

$$F(t) = \int_0^\infty e^{-tx} \, \frac{\sin x}{x} \, dx$$

について考える. ただし, t>0 とする . このとき以下の問に答えよ .

- (1) F(t) は t>0 の連続関数で , $\lim_{t\to\infty}F(t)=0$ を満たすことを示せ .
- (2) F(t) は t>0 において微分可能であることを示せ.また,その導関数は

$$F'(t) = -\frac{1}{1+t^2}$$

で与えられることを示せ.

(3) F(t) を求めよ.また , $\lim_{t \to 0+} F(t)$ を求めよ.

- [9] 次の問に答えよ.
 - (1) X を連続型確率変数とする. u(x) が非負関数 $(u(x) \ge 0)$ であるとき、任意の c>0 に対して次の不等式が成り立つことを示せ.

$$P[u(X) \ge c] \le \frac{E[u(X)]}{c}$$

(2) X の確率密度関数 $f(x;\theta)$ が次で与えられるとき, X の平均 E(X) と分散 V(X) を求めよ. ただし, θ は正の定数である.

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) & x > 0\\ 0 & x \le 0 \end{cases}$$

- (3) X_1,X_2,\ldots,X_n を互いに独立で同じ分布に従う確率変数とする.ただし分布の確率密度関数は(2)の $f(x;\theta)$ とする.また x_1,x_2,\ldots,x_n を X_1,X_2,\ldots,X_n の実現値とする.このとき尤度関数 $L(\theta;x_1,x_2,\ldots,x_n)=\prod_{i=1}^n f(x_i;\theta)$ を最大にする θ は $\overline{x}_n=\frac{1}{n}\sum_{i=1}^n x_i$ であることを示せ.
- (4) (3) で得られた θ の最尤推定量 $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ は , 任意の $\varepsilon > 0$ に対して

$$\lim_{n \to \infty} P(|\overline{X}_n - \theta| < \varepsilon) = 1$$

となることを示せ.

 $[{f 10}]$ 正整数 k , 有限集合 E および以下を満たす関数 $\rho\colon 2^E \to \mathbb{R}$ が与えられているとする .

$$\rho(\emptyset) = 0,$$

$$X \subseteq Y \subseteq E \implies \rho(X) \le \rho(Y),$$

$$X, Y \subseteq E \implies \rho(X) + \rho(Y) > \rho(X \cup Y) + \rho(X \cap Y).$$

このとき , 要素の個数が k である集合 X $(X\subseteq E)$ の中で $\rho(X)$ を最大化するものを求める問題を P とし , 問題 P に対して以下のような算法を考える .

ステップ1: X_0 を \emptyset , i を1とする.

ステップ 2: i < k を満たす限り以下の (2-a) と (2-b) を繰り返す.

(2-a) $\rho(X_{i-1} \cup \{e\}) - \rho(X_{i-1})$ を最大化する $e \in E \setminus X_{i-1}$ を e_i とする.

(2-b) X_i を $X_{i-1} \cup \{e_i\}$ とし, i を 1 増やす.

ステップ $3: X_k$ を出力する.

このとき以下の問に答えよ.

(1) $X \subseteq Y$ を満たす任意の $X,Y \subseteq E$ および $e \in E \setminus Y$ に対して

$$\rho(X \cup \{e\}) - \rho(X) \geq \rho(Y \cup \{e\}) - \rho(Y)$$

が成り立つことを証明せよ.

(2) 問題 P の最適解の一つを Z としたとき , (1) の結果を用いて , 任意の i $(i=0,1,\ldots,k)$ に対して

$$\rho(Z) - \rho(X_i) \le k \Big(\rho(X_{i+1}) - \rho(X_i)\Big)$$

が成り立つことを証明せよ.

(3) 問題 P の最適解の一つを Z としたとき ,(2) の結果を用いて ,

$$\left(1 - \left(1 - \frac{1}{k}\right)^k\right)\rho(Z) \le \rho(X_k)$$

が成り立つことを証明せよ.