RNA-Seq analysis using Galaxy

Konstantin Riege, Leibniz Institute on Aging (FLI)

Correlation with gene expression

RESEARCH ARTICLE

A complex association between DNA methylation and gene expression in human placenta at first and third trimesters

Yen Ching Lim¹, Jie Li¹, Yiyun Ni¹, Qi Liang¹, Junjiao Zhang¹, George S. H. Yeo², Jianxin Lyu¹*, Shengnan Jin¹*, Chunming Ding¹*

1 Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China, 2 KK Women's and Children's Hospital, Singapore, Singapore

Correlation with gene expression

- 1st trimester → 3rd trimester
 - ~200 diff. meth. promoter regions
 - ~2200 diff. meth. genes
 - \rightarrow Hypermethylation for > 90%
 - 2400 diff. expressed genes
 - → Downregulation for ~80%
 - → 25 with diff. Meth. promoter regions

Data download

https://share.leibniz-fli.de/index.php/s/mrWaNafRMnLc7be

25 DEG with DME

- Data preperation for 22 protein coding genes as listed in GENCODE – Ensembl v92
 - Minimalistic HG38 derived genome representation
 - Genes & 21 x 4kb intergenic regions: Fasta format
 - Minimalistic annotation
 - Genes: GTF format
 - Promoter 1kb gene upstream regions: BED format

25 DEG with DME

- Data preperation for RNA-Seq
 - Preprocessing & mapping of
 - RNA-Seq data
 - → Subsampling to 5%
 - → extraction from RAW FASTQ data

25 DEG with DME

- RNA-Seq
 - 1T & 3T @ N=4
 - 1T paired-end (PE)
 - 3T N1,N4 single (SE)
 - 3T N2,N3 paired-end (PE)

Galaxy – Upload

Quality analysis: FastQC

SE — Quality trimming: Trimmomatic

20

PE – Quality trimming: Trimmomatic

RNA – SE – Mapping: Hisat2

RNA – PE – Mapping: Hisat2

O ---fr

Select the upstream/downstream mate orientations for a valid paired-end a

Read filter: Samtools view

☐ The alignment or this read is not primary

Supplementary alignment

(-f)

☐ The read fails platform/vendor quality checks☐ The read is a PCR or optical duplicate

☐ Supplementary alignment

Sort reads: Samtools sort

Differential Gene expression

RNA – Quantification

- Requierements
 - Experiment strandness information
 - Prediction needs annotation in BED format

GTF to BED

RNA – SE – Infer experiment

All workflows

This is SingleEnd Data
Fraction of reads failed to determine: 0.0000
Fraction of reads explained by "++,--": 0.5033
Fraction of reads explained by "+-,-+": 0.4967

RNA – PE – Infer experiment

This is PairEnd Data
Fraction of reads failed to determine: 0.0000
Fraction of reads explained by "1++,1--,2+-,2-+": 0.4941
Fraction of reads explained by "1+-,1-+,2++,2--": 0.5059

RNA – SE – Quantify: featurecounts

RNA – PE – Quantify: featurecounts

If specified, fragments (or templates) will be counted instead of reads. (-p)

be extended from both ends. (--minOverlap)

RNA – Diff. expression: DESeq2

Cut columns: cut

Tag results

