Chapter 2 Nombres entiers, itérations

Exercice 1 (2.1)

Soit (u_n) une suite réelle à valeurs positives et a > 0. On suppose

$$\forall n\in \mathbb{N}, u_{n+1}\leq au_n.$$

Montrer que pour tout $n \in \mathbb{N}$, on a

$$u_n \le a^n u_0$$
.

Solution 1 (2.1)

Exercice 2 (2.1)

Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$x_0 = 4$$
 et $x_{n+1} = \frac{2x_n^2 - 3}{x_n + 2}$.

1. Montrer : $\forall n \in \mathbb{N}, x_n > 3$.

2. Montrer: $\forall n \in \mathbb{N}, x_{n+1} - 3 > \frac{3}{2}(x_n - 3)$.

3. Montrer: $\forall n \in \mathbb{N}, x_n \geqslant \left(\frac{3}{2}\right)^n + 3$.

4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente ?

Solution 2 (2.1)

1. Montrons par récurrence $\forall n \in \mathbb{N} \ x_n > 3$. Soit l'hypothèse de récurrence :

$$(\mathcal{H}_n)$$
: $x_n > 3$.

• La proposition \mathcal{H}_0 est vraie car $x_0 = 4 > 3$.

• Soit $n \ge 0$, supposons \mathcal{H}_n vraie et montrons que \mathcal{H}_{n+1} est alors vraie. On a alors

$$x_{n+1} - 3 = \frac{2x_n^2 - 3}{x_n + 2} - 3 = \frac{2x_n^2 - 3x_n - 9}{x_n + 2}.$$

Par hypothèse de récurrence $x_n > 3$, donc $x_n + 2 > 0$ et $2x_n^2 - 3x_n - 9 > 0$ (ceci par étude de la fonction $x \mapsto 2x^2 - 3x - 9$ pour x > 3). Donc $x_{n+1} - 3 > 0$ et \mathcal{H}_{n+1} est vraie.

• Nous avons montré

$$\forall n \in \mathbb{N} \quad \mathcal{H}_n \implies \mathcal{H}_{n+1}$$

et comme \mathcal{H}_0 est vraie alors \mathcal{H}_n est vraie quelque soit n. Ce qui termine la démonstration.

2. Montrons que $x_{n+1} - 3 - \frac{3}{2}(x_n - 3)$ est positif. On a

$$x_{n+1} - 3 - \frac{3}{2}(x_n - 3) = \frac{2x_n^2 - 3}{x_n + 2} - \frac{3}{2}(x_n - 3) = \frac{1}{2} \frac{x_n^2 - 3x_n}{x_n + 2} = \frac{x_n}{2} \frac{x_n - 3}{x_n + 2}$$

Ce dernier terme est positif car $x_n > 3$.

3. Montrons par récurrence que pour tout $n \in \mathbb{N}$, on a $x_n > \left(\frac{3}{2}\right)^n + 3$. Soit notre nouvelle l'hypothèse de récurrence :

$$\mathcal{H}_n: \quad x_n > \left(\frac{3}{2}\right)^n + 3.$$

• La proposition \mathcal{H}_0 est vraie.

Soit n ≥ 0, supposons que H_n vraie et montrons que H_{n+1} est vérifiée.
 D'après la question précédente x_{n+1} - 3 > ³/₂(x_n - 3) et par hypothèse de récurrence x_n > (³/₂)ⁿ + 3; en réunissant ces deux inégalités nous avons x_{n+1} - 3 > ³/₂((³/₂)ⁿ) = (³/₂)ⁿ⁺¹.

- Nous concluons en résumant la situation : \mathcal{H}_0 est vraie, et quelque soit $n \in \mathbb{N}$, $\mathcal{H}_n \implies \mathcal{H}_{n+1}$. Donc \mathcal{H}_n est toujours vraie.
- **4.** La suite (x_n) tend vers $+\infty$ et n'est donc pas convergente.

Exercice 3 (2.1)

Soit (u_n) la suite donnée par $u_0 = 2$, $u_1 = 3$ et

$$\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n.$$

Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a $u_n = 2^n + 1$.

Solution 3 (2.1)

Exercice 4 (2.1)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 7, u_1 = -\frac{1}{10}$$
, et $\forall n \in \mathbb{N}, u_{n+2} = \frac{1}{10}u_{n+1} + \frac{1}{5}u_n$.

Montrer par récurrence : $\forall n \in \mathbb{N}, |u_n| \le 7 \cdot \left(\frac{1}{2}\right)^n$.

Solution 4 (2.1)

Pour $n \in \mathbb{N}$, on note R(n) l'assertion $|u_n| \le 7 \cdot \left(\frac{1}{2}\right)^n$.

On a bien $|u_0| = 7 \le 7\frac{1}{2^0}$ et $|u_1| = \frac{1}{10} \le \frac{7}{2} = 7 \cdot \frac{1}{2^1}$. Donc R(0) et R(1) sont vraies. Soit $n \in \mathbb{N}$ tel que R(n) et R(n+1) soient vraies. Nous allons montrer R(n+2). On a

$$\begin{aligned} |u_{n+2}| &= \left| \frac{1}{10} u_{n+1} + \frac{1}{5} u_n \right| \\ &\leq \frac{1}{10} |u_{n+1}| + \frac{1}{5} |u_n| \\ &\leq \frac{1}{10} \cdot 7 \cdot \frac{1}{2^{n+1}} + \frac{1}{5} \cdot 7 \cdot \frac{1}{2^n} \\ &= \frac{7}{5} \cdot \frac{1}{2^{n+2}} + \frac{28}{5} \cdot \frac{1}{2^{n+2}} \\ &= 7 \cdot \frac{1}{2^{n+2}}; \end{aligned} \qquad \therefore \text{inégalité triangulaire}$$

D'où R(n+2).

Conclusion

Par récurrence : $\forall n \in \mathbb{N}, R(n)$.

Exercice 5 (2.1)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=1,\,u_1=1$ et pour tout n positif,

$$u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n.$$

Montrer:

$$\forall n \in \mathbb{N}^*, 1 \le u_n \le n^2.$$

Solution 5 (2.1)

Récurrence double.

Exercice 6 (2.1)

Définissons une suite par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + n - 1$.

- 1. Démontrer que pour tout $n \ge 3$, u_n est positif. En déduire que pour tout $n \ge 4$, on a $u_n \ge n 2$. En déduire la limite de la suite.
- 2. Définissons maintenant la suite $v_n = 4u_n 8n + 24$. Montrer que la suite (v_n) est une suite géométrique, donner son premier terme et sa raison. Montrer que pour tout $n \in \mathbb{N}$, $u_n = 7\left(\frac{1}{2}\right)^n + 2n 6$. Remarquer que u_n est la somme d'une suite géométrique et d'une suite arithmétique dont on précisera les raisons et les premiers termes. En déduire une formule pour la quantité $u_0 + u_1 + ... + u_n$ en fonction de l'entier n.

Solution 6 (2.1)

Exercice 7 (2.1)

Démontrer par récurrence que, pour tout naturel n, $9^n - 1$ est multiple de 8.

Solution 7 (2.1)

Pour $n \in \mathbb{N}^*$, on pose R(n): « $9^n - 1$ est multiple de 8».

- On a $9^1 1 = 8$ qui est un multiple de 8 d'où R(1).
- Soit $n \in \mathbb{N}$ tel que R(n) est vraie, c'est-à-dire $9^n 1$ est multiple de 8. Il existe donc $k \in \mathbb{N}$ tel que $9^n 1 = 8k$, ou encore $9^n = 8k + 1$. D'où

$$9^{n+1} = 9 \times 9^n = 9 \times (8k+1) = 8 \times 9k + 9.$$

Finalement,

$$9^{n+1} - 1 = 8 \times (9k + 1)$$

est un multiple de 8.

• Conclusion: par récurrence

 $\forall n \in \mathbb{N}, R(n).$

Exercice 8 (2.1)

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ tel que $\alpha + \frac{1}{\alpha} \in \mathbb{Q}$. Montrer

$$\forall n \in \mathbb{N}, \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}.$$

Solution 8 (2.1)

On souhaite essayer de démontrer ce résultat par récurrence. Commençons par établir un lien entre $\alpha^n + 1/\alpha^n$ et $\alpha^{n+1} + 1/\alpha^{n+1}$. On a

$$\left(\alpha^{n} + \frac{1}{\alpha^{n}}\right)\left(\alpha + \frac{1}{\alpha}\right) = \alpha^{n+1} + \frac{1}{\alpha^{n-1}} + \alpha^{n-1} + \frac{1}{\alpha^{n+1}}.$$

Ce qui fait également apparaître α^{n-1} . On a alors

$$\alpha^{n+1} + \frac{1}{\alpha^{n+1}} = \left(\alpha^n + \frac{1}{\alpha^n}\right) \left(\alpha + \frac{1}{\alpha}\right) - \left(\alpha^{n-1} + \frac{1}{\alpha^{n-1}}\right).$$

Ce qui suggère d'utiliser plutôt une récurrence à deux pas.

Pour $n \in \mathbb{N}$, on pose R(n) l'assertion $\alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}$ ». L'assertion R(0), c'est-à-dire $1 + 1 \in \mathbb{Q}$, est vraie. L'assertion R(1) est également vraie par hypothèse sur α.

Soit $n \in \mathbb{N}^*$ tel que R(n) et R(n-1). Puisque R(1) est également vraie, on peut écrire

$$\alpha + \frac{1}{\alpha} \in \mathbb{Q}$$
 $\qquad \qquad \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}$ $\qquad \qquad \alpha^{n-1} + \frac{1}{\alpha^{n-1}}.$

Or, on a vu que

$$\alpha^{n+1} + \frac{1}{\alpha^{n+1}} = \underbrace{\left(\alpha^n + \frac{1}{\alpha^n}\right)}_{\in \mathbb{Q}} \underbrace{\left(\alpha + \frac{1}{\alpha}\right)}_{\in \mathbb{Q}} - \underbrace{\left(\alpha^{n-1} + \frac{1}{\alpha^{n-1}}\right)}_{\in \mathbb{Q}}.$$

Puisque le produit de deux rationnel est un rationnel, et que la somme de deux rationnels est un rationnel, on

en déduit que $\alpha^{n+1} + \frac{1}{\alpha^{n+1}} \in \mathbb{Q}$, c'est-à-dire R(n+1). Ainsi, on a montré que si R(n) et R(n-1) sont vraies, alors R(n+1) est vraie. De plus, R(0) et R(1) sont vraies.

Conclusion

D'après le principe de récurrence

$$\forall n \in \mathbb{N}, \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}.$$

Exercice 9 (2.2)

Soit une suite géométrique (u_n) . Déterminer les éléments caractéristiques (premier terme u_0 et raison q) de la suite (u_n) à partir des données suivantes.

1.
$$u_6 = 96$$
 et $q = 2$;

3.
$$u_3 = 40$$
 et $u_7 = 640$.

2.
$$u_1 = 72$$
 et $u_4 = -8/3$;

Solution 9 (2.2)

1. On a
$$u_6 = q^6 u_0 = 2^6 u_0 = 64 u_0$$
, d'où $u_0 = 96/64 = 3/2$.

2. On a
$$u_1 = qu_0$$
 et $u_4 = q^4u_0$, d'où

$$\frac{u_4}{u_1} = q^3 = \frac{-8}{3 \times 72} = -\frac{1}{27}.$$

On a donc
$$q = -1/3$$
 et $u_0 = -216$.

3. On a
$$u_7 = u_0 q^7$$
 et $u_3 = u_0 q^3$, d'où

$$\frac{u_7}{u_3} = q^4 = 16 = 2^4,$$

d'où
$$q = \pm 2$$
 puis $u_0 = u_3/q^3 = \pm 5$ (du même signe que q).

Exercice 10 (2.2)

La suite $(a_n)_{n\in\mathbb{N}}$ est définie par $a_0=4$ et

$$\forall n \in \mathbb{N}, a_{n+1} = \frac{3a_n + 2}{a_n + 4}.$$

1. Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ définie, pour tout $n\in\mathbb{N}$, par

$$b_n = \frac{a_n - 1}{a_n + 2}$$

est une suite géométrique.

- **2.** Calculer b_n pour tout $n \in \mathbb{N}$.
- 3. En déduire une expression de a_n en fonction de n.

Solution 10 (2.2)

1. Pour $n \in \mathbb{N}$, on a

$$b_{n+1} = \frac{a_{n+1} - 1}{a_{n+1} + 2} = \frac{\frac{3a_n + 2}{a_n + 4} - 1}{\frac{3a_n + 2}{a_n + 4} + 2} = \frac{2a_n - 2}{5a_n + 10} = \frac{2}{5} \frac{a_n - 1}{a_n + 2} = \frac{2}{5} b_n.$$

Conclusion

La suite (b_n) est une suite géométrique de raison $\frac{2}{5}$.

2. On a $b_0 = \frac{a_0 - 1}{a_0 + 2} = \frac{1}{2}$, d'où

Conclusion

$$\forall n \in \mathbb{N}, b_n = \frac{1}{2} \left(\frac{2}{5}\right)^n.$$

3. Pour $n \in \mathbb{N}$,

$$b_n = \frac{a_n - 1}{a_n + 2} \implies b_n(a_n + 2) = a_n - 1$$

$$\implies 1 + 2b_n = a_n(1 - b_n)$$

$$\implies a_n = \frac{1 + 2b_n}{1 - b_n}$$

$$\implies a_n = \frac{1 + \left(\frac{2}{5}\right)^n}{1 - \frac{1}{2}\left(\frac{2}{5}\right)^n}.$$

Conclusion

$$\forall n \in \mathbb{N}, a_n = 2 \frac{1 + \left(\frac{2}{5}\right)^n}{2 - \left(\frac{2}{5}\right)^n} = \frac{5^n + 2^n}{5^n - 2^{n-1}}.$$

Exercice 11 (2.2)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=0$ et pour tout n positif, $u_{n+1}=2u_n+1$. Calculer u_n en fonction de n.

Solution 11 (2.2)

On trouve $u_n = 2^n - 1$.

Exercice 12 (2.2)

Soit $p_0 = 10000$ une population initiale de lapins. On suppose que le taux de reproduciton annuel est de 3 par couple (tous les individus se reproduisent et font partie d'un unique couple). De plus, à la fin de chaque année, la population est diminuée par la vente d'une quantité fixe de 1000 individus. Déterminer la population au bout de 50 ans.

Solution 12 (2.2)

On a une suite arithmético-géométrique: $p_{n+1} = \frac{3}{2}p_n - 1000$. On cherche r le point fixe de la fonciton f: $x \mapsto \frac{3}{2}x - 1000$, on trouve r = 2000. On introduit $y_n = p_n - r$, alors

$$y_{n+1} = p_{n+1} - 2000 = \frac{3}{2}p_n - 1000 - 2000 = \frac{3}{2}(p_n - 2000) = \frac{3}{2}y_n.$$

Ainsi, la suite (y_n) est une suite géométrique de raison $\frac{3}{2}$, donc

$$y_n = \left(\frac{3}{2}\right)^n y_0 = 8000 \left(\frac{3}{2}\right)^n.$$

En particulier, $p_{50} = 8000 \left(\frac{3}{2}\right)^{50} + 2000$, qui est de l'ordre de 5.1×10^{12} .