- Graph G=(V,E) directed or undirected
- Adjacency list representation
- Goal: Systematically explore every vertex and every edge
- Idea: search deeper whenever possible
 - Using a LIFO queue (Stack; FIFO queue used in BFS)

- Maintains several fields for each $v \in V$
- Like BFS, colors the vertices to indicate their states. Each vertex is
 - Initially white,
 - grayed when discovered,
 - blackened when finished
- Like BFS, records discovery of a white v during scanning Adj[u] by $\pi[v] \leftarrow u$

- Unlike BFS, predecessor graph G_{π} produced by DFS forms spanning forest
- $G_{\pi}=(V,E_{\pi})$ where $E_{\pi}=\{(\pi[v],v): v \in V \text{ and } \pi[v] \neq \text{NIL}\}$
- G_{π} = depth-first forest (DFF) is composed of disjoint depth-first trees (DFTs)

- DFS also timestamps each vertex with two timestamps
- d[v]: records when v is first discovered and grayed
- f[v]: records when v is finished and blackened
- Since there is only one discovery event and finishing event for each vertex we have $1 \le d[v] < f[v] \le 2|V|$


```
DFS(G)
for each u \in V do
   color[u] \leftarrow white
   \pi[u] \leftarrow NIL
time \leftarrow 0
for each u \in V do
  if color[u] = white then
     DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
color[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1
for each v \in Adi[u] do
    if color[v] = white then
       \pi[v] \leftarrow u
       DFS-VISIT(G, v)
color[u] \leftarrow black
f[u] \leftarrow time \leftarrow time + 1
```

- Running time: $\Theta(V+E)$
- Initialization loop in DFS : $\Theta(V)$
- Main loop in DFS: $\Theta(V)$ exclusive of time to execute calls to DFS-VISIT
- **DFS-VISIT** is called exactly once for each $v \in V$ since
 - DFS-VISIT is invoked only on white vertices and
 - **DFS-VISIT**(G, u) immediately colors u as gray
- For loop of DFS-VISIT(G, u) is executed |Adj[u]| time
- Since $\Sigma |Adj[u]| = E$, total cost of executing loop of **DFS-VISIT** is $\Theta(E)$

Slide Credits

• Ata Turk, Bilkent University