Introducción a la Informática Teórica Tarea #1 "La Maldición del Tercer Ojo de Visnú"

Hernán Vargas Leighton, 201073009-3 2 de abril 2014

Respuestas

1. Para satisfacer las tres condiciones, necesitamos un autómata capaz de detectar las secuencias 44 y 23, además, debe ser capaz de diferenciar cuando el *string* tiene un número par de 5's. Para ello digamos:

$$M = (Q, \Sigma, \delta, q_0, F)$$

Con:

$$Q = \{a,b,c,d,e,f,g\}$$

$$\Sigma = \{1, 2, 3, 4, 5\}$$

$$q_0 = a$$

$$F = \{a, f, g\}$$

Y con δ : función de transición. Con ello tenemos que la tabla de transiciones será:

estado entrada	a	b	c	d	e	$\int f$	g
1	a	b	b	b	e	a	a
2	g	d	d	b	e	g	g
3	a	b	b	e	e	a	e
4	f	С	e	С	e	e	f
5	b	a	a	a	e	b	b

Notar que si se llega al estado *e* ya no podremos salvarnos de la maldición de Visnú. Con la tabla hecha nos basta escribir el autómata determinista:

Sobre los estados finales podemos decir los siguiente:

- Estado *a*: Para *strings* terminados en 1, 3 o 5 (par).
- Estado *f*: Para *strings* terminados en 4.
- Estado g: Para strings terminados en 2.

Cabe destacar que los estados c y d son variantes para número de 5 impar de los estados f y g respectivamente, en este caso no se cumplen las condiciones.

Además el estado e es al cual se cae cuando ya no es posible evitar la maldición.

2. En primer lugar definiré nuestro alfabeto con las iniciales de Ammavaru, Brahma y Chandra:

$$\Sigma = \{A, B, C\}$$

Se debe cumplir con:

- a) El string debe tener un largo par.
- b) El string debe contener al menos un AB.
- c) El *string* no debe tener *CC*.

Para cumplir con estas reglas debemos:

- a) Construir la expresión en con base en palabras de largo 2.
- b) Escribir la expresión regular AB. Como su largo es 2 no interfiere con la regla a).
- *c*) Asegurar que ninguna palabra de largo 2 sea *CC*. Además se debe tener la precaución que una palabra terminada en *C* no esté junto a una palabra que comience con *C* y viceversa.

Podemos construir una expresion regular que cumpla con estas tres reglas definiendo las siguientes palabras:

$$a = (A|B)(A|B)$$
 $b = CA$ $c = CB$ $d = AC$ $e = BC$ $f = CC$

Inmediatamente notamos que a serán las palabras sin problemas *incluida AB*. Por otro lado b, c, d, e son las que debemos tener en cuenta y f no debe estár incluida. Entonces:

- (a|b|c) denota una palabra que **no termina en** C.
- $(d|e)^+a$ denota una palabra que no comienza con C, no termina en C y no tiene CC intermedias pero si puede tener C.
- $((a|b|c)|(d|e)^+a)^*$ está compuesta por las anteriores y denota toda palabra de largo par sin CC que **no termine** en C
- Para aceptar la opción de que el *string* termine en C (sin quebrar las otras reglas) nos basta con agregar (d|e) o (ϵ) al final de la expresión actual.
 - Convenientemente escribimos: $(((a|b|c)|(d|e)^+a)^*)(\epsilon|(d|e))$
- Por último, para asegurar que exista al menos un AB agregamos directamente un AB y lo rodeamos por la expresion anterior. Como resultante tenemos: $(((a|b|c)|(d|e)^+a)^*)(\varepsilon|(d|e))AB(((a|b|c)|(d|e)^+a)^*)(\varepsilon|(d|e))$

Ahora nos basta volver al alfabeto inicial. Para ello tenemos que:

$$(a|b|c) = (A|B|C)(A|B)$$

$$(d|e) = (A|B)C$$

Además de las definiciones. Con esto tenemos que la expresión regular que cumple con las tres reglas y por lo tanto denota los poderosos talismanes de Visnú es:

$$\left(\left(\left(A|B|C\right)\left(A|B\right)\right)|\left(\left(A|B\right)C\right)^{+}\left(A|B\right)\left(A|B\right)\right)\right)^{*}\left(\varepsilon|\left(A|B\right)C\right)AB\left(\left(\left(A|B|C\right)\left(A|B\right)\right)|\left(\left(A|B\right)C\right)^{+}\left(A|B\right)\left(A|B\right)\right)\right)^{*}\left(\varepsilon|\left(A|B\right)C\right)AB\left(\left(\left(A|B|C\right)\left(A|B\right)\right)|\left(\left(A|B\right)C\right)^{+}\left(A|B\right)\left(A|B\right)\right)\right)$$

- 3. Las tres condiciones son:
 - a) Numero impar de 1's.
 - b) Si hay 0's serán (011)'s.
 - c) El string siempre termina en 1

Gracias a las reglas *a*) y *c*) podemos simplemente buscar un *string* de largo par y agregar un 1 al final. Este nuevo *string* estara denotado por:

- (011)* si está compuesto solo de (011)'s.
- $(1(011)^*1)^*$ si son solo (11)'s o si (011)'s estan rodeados por un 1.

Notar que éstas reglas cumplen con mantener la cantidad par de 1's, además:

$$(011|1(011)^*1)^*$$

Aceptará cualquier conbinación de (011)'s y 1's con un número par de 1's. Nos basta solo agregar un 1 al final de está expresión regular, pero éste 1 puede ser en la forma de (1) o (011) es decir: (1|011).

Con esto tenemos que la expresión regular que representa la información de los rayos del tercer ojo de Visnú es:

$$(011|1(011)^*1)^*(1|011)$$

4. Digamos: $\Sigma = \{A, B, C\}$, buscamos un autómata finito determinista $M = (Q, \Sigma, \delta, q_0, F)$ que cumpla con: $\mathcal{L}(R) = C^*(A|BC^*)^*$.

Sabemos que C^* , $A|BC^*$ y $(A|BC^*)^*$ son respectivamente:

Con esto nos basta hacer la unión y agregar las *entradas* faltantes para obtener el autómata finito determinista resultante:

Sobre los estados finales podemos decir los siguiente:

- Estado a: Para strings compuestos exclusivamente de C's.
- Estado *b*: Para *strings* terminados en *A*.
- Estado *c*: Para *strings* terminados en *B* o *C*.

Cabe destacar que el estado d es alcanzado cuando la cadena no es sagrada, es decir cuando el string no calza con la expresión regular $\mathcal L$

Ahora podemos definir $M = (Q, \Sigma, \delta, q_0, F)$ con:

$$Q = \{a, b, c, d\}$$

$$\Sigma = \{A, B, C\}$$

$$q_0 = a$$

$$F = \{a, b, c\}$$

Y con δ : función de transición. Con ello tenemos que la tabla de transiciones será:

estado entrada	а	b	c	d
A	b	b	b	d
В	С	С	c	d
С	a	d	c	d