Álgebra II

CP8: Aplicaciones lineales y teorema de valores prefijados

Lic. David Balbuena Cruz

Objetivos

Esta clase práctica tiene como objetivos principales:

- Analizar si una aplicación entre espacios vectoriales es lineal.
- Construir una aplicación lineal a partir de imagenes prefijadas respecto a una base.

Le recomendamos consultar el libro Álgebra Tomo I de Teresita Noriega. Sección 2.1 y 2.2.

Ejercicios

- 1. Analice si son lineales o no las siguientes aplicaciones:
 - (a) $f: K^3 \to K^2$, definida por f(x, y, z) = (z, x + y).
 - (b) $f: K \to K^2$ definida por f(x) = (x, 1)
 - (c) $f: K^2 \to K$, definida por f(x,y) = |x-y|
 - (d) $f: M_2(K) \to M_2(K)$ definida por f(A) = AT TA.
 - (e) $f: E_1 \times E_2 \to E$ definida por $f(x_1, x_2) = x_1 + x_2$ donde E_1 y E_2 son dos subespacios del espacio vectorial E.
 - (f) $\varphi: E \times F \to E \times F$ dada por $\varphi(x,y) = (x,y-f(x))$, donde $E \times F$ son dos espacios vectoriales sobre $K \times f$ es una aplicación lineal de E en F.
- 2. Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$ tal que

$$f(1,2) = (3,-1,5)$$

$$f(k,1) = (2,1,-1)$$

donde $k \in \mathbb{R}$.

(a) ¿Con estos datos bastará para hallar f(1,-1)?

- (b) Será posible hallar f(x,y) para todo $(x,y) \in \mathbb{R}^2$
- 3. Sean los sistemas de vectores A y B , dados por:

$$a_1 = (1,1)$$
 $a_2 = (2,-1)$ $a_3 = (-3,2)$

$$b_1 = (1,0)$$
 $b_2 = (0,1)$ $b_3 = (1,1)$

¿Existirá alguna aplicación lineal T de K^2 en K^2 tal que $T(a_i)=b_i$ para i=1,2,3? ¿En caso de encontrar una aplicación, existirán otras?

4. ¿Cuántas aplicación lineales T de C^3 en C^2 existen tales que:

$$T(1, -i, 1+i) = (1, 0)$$
 y $T(i, 1, 1) = (0, 1)$

- 5. ¿Existirá alguna aplicación lineal de K^3 en K^3 cuya imagen esté generada por (1,1,0) y (1,2,3)? Si existe, hállela. ¿Será única?
 - (a) Responda la pregunta 4 considerando una aplicación de K^4 en K^2 cuya imagen esté generada por (1,1).