Алгебра: Лекции

Авдеев Р. С.

Содержание

1	Лек	ция №1	5		
	1.1	Бинарные операции	5		
	1.2	Полугруппы, моноиды, группы, коммутативные (абелевы) группы	5		
	1.3	Порядок группы	6		
	1.4	Примеры групп	6		
	1.5	Подгруппы	6		
	1.6	Описание всех подгрупп в группе целых чисел по сложению	7		
	1.7	Циклические подгруппы	7		
	1.8	Порядок элемента группы	8		
	1.9	Связь между порядком элемента и порядком порождаемой им циклической под-			
		группы	8		
	1.10	Циклические группы	8		
	1.11	Левые смежные классы группы по подгруппе, разбиение группы на левые смежные			
		классы	9		
2	Лекция №2				
	2.1	Индекс подгруппы, теорема Лагранжа	10		
	2.2	Пять следствий из теоремы Лагранжа	10		
	2.3	Нормальные подгруппы	10		
		2.3.1 Примеры	11		
	2.4	Факторгруппа группы по нормальной подгруппе	11		
	2.5	Гомоморфизмы групп, простейшие свойства	12		
	2.6	Изоморфизм групп, изоморфные группы	12		
	2.7	Ядро и образ гомоморфизма групп	13		
	2.8	Теорема о гомоморфизме для групп	13		
3	Лекция №3				
	3.1	Классификация циклических групп с точностью до изоморфизма	14		
	3.2	Прямое произведение групп и разложение группы в прямое произведение подгрупп	14		
	3.3	Разложение конечной циклической группы	15		
	3.4	Примарные абелевы группы	16		
	3.5	Теорема о разложении конечной абелевой группы в прямое произведение примар-			
		ных циклических групп (формулировка)	16		
	3.6	Экспонента конечной абелевой группы, критерий цикличности	16		
4	Лекция №4				
	4.1	Понятие кольца	17		
	4.2	Коммутативные кольца	18		
	4.3	Обратимые элементы, делители нуля, нильпотенты	18		

	4.4	Поля	19			
	4.5	Критерий того, что кольцо вычетов является полем	19			
	4.6	Подкольца, подполя, гомоморфизмы, изоморфизмы	19			
	4.7	Идеалы в кольце	20			
	4.8	Главные идеалы и идеалы, порождённые подмножеством коммутативного кольца .	20			
	4.9	Факторкольцо кольца по идеалу	20			
	4.10		21			
	4.11	Теорема о гомоморфизме для колец	21			
5	Лек	Лекция №5 22				
	5.1	Кольцо $K[x]$ многочленов от одной переменной над полем	21			
	5.2	Деление с остатком	22			
	5.3	Наибольший общий делитель двух многочленов, теорема о его существовании и				
		линейном выражении	22			
	5.4	Теорема о том, что $K[x]$ является кольцом главных идеалов	23			
	5.5	Неприводимые многочлены	23			
	5.6	Φ акториальность кольца $K[x]$	24			
	5.7		25			
	5.8	Базис факторкольца $K[x]/(h)$ как векторного пространства над полем K	25			
6	Лекция №6					
	6.1	Лексикографический порядок на одночленах от нескольких переменных	26			
	6.2	Лемма о конечности убывающих цепочек одночленов	26			
	6.3	Старший член ненулевого многочлена	26			
	6.4	Лемма о старшем члене	27			
	6.5	Элементарная редукция многочлена относительно ненулевого многочлена	27			
	6.6	Лемма о конечности цепочек элементарных редукций	27			
	6.7	Остаток многочлена относительно заданной системы многочленов	28			
	6.8	Системы Грёбнера	28			
	6.9	Характеризация систем Грёбнера в терминах цепочек элементарных редукций	28			
	6.10	S-многочлены	29			
7	Лекция №7					
	7.1	Критерий Бухбергера	29			
	7.2	Базис Грёбнера идеала, теорема о трёх эквивалентных условиях	30			
	7.3	Решение задачи вхождения многочлена в идеал	31			
	7.4	Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен				
		не делится ни на один из предыдущих	31			
	7.5	Теорема Гильберта о базисе идеала	32			
	7.6	Алгоритм Бухбергера построения базиса Грёбнера идеала	33			
	7.7	Редуцируемость к нулю S-многочлена двух многочленов с взаимно простыми стар-				
		шими членами	33			
8	Лекция №8					
	8.1	Поля	33			
	8.2	Характеристика поля	34			
	8.3	Расширение полей, его степень	34			
	8.4	Степень композиции двух расширений	35			
	8.5	Присоединение корня неприводимого многочлена	35			
	8.6	Существование конечного расширения исходного поля, в котором заданный мно-				
		гочлен (а) имеет корень; (б) разлагается на линейные множители	36			

8.7	Алгебраические и трансцендентные элементы	36
8.8	Минимальный многочлен алгебраического элемента и его свойства	37
8.9	Поле, порождённое алгебраическим элементом	37
8.10	Порядок конечного поля	38
8.11	Общая конструкция конечных полей	38
8.12	Поле из четырёх элементов	39

1 Лекция №1

Лекция 07.04.2020

1.1 Бинарные операции

Пусть M – некоторое множество Определение.

Бинарная операция на множестве M – это отображение $\circ: M \times M \mapsto M$. Пара (M, \circ) называется множеством с бинарной операцией

1.2 Полугруппы, моноиды, группы, коммутативные (абелевы) группы

Определение.

- 1. (M, \circ) называется группой, если выполнены следующие условия:
 - (a) $(a \circ b) \circ c = a \circ (b \circ c)$ ассоциативность
 - (b) \exists нейтральный элемент, то есть такой $e \in M$, что $\forall a \in M : e \circ a = a \circ e = a$
 - (c) $\forall a \in M \exists$ обратный элемент (a^{-1}) , то есть такой b, что $a \circ b = b \circ a = e$
- 2. (M, \circ) называется полугруппой, если требуется только условие (a)
- 3. (M, \circ) называется моноидом, если требуются только (a) и (b)

Пример.

 $(\mathbb{N},+)$ – полугруппа, но не моноид $(\mathbb{N}\cup\{0\},+)$ – моноид

Замечание.

- 1. Примеры неассоциативных операций: $(\mathbb{Z}, -)$, $(\mathbb{N}, a \circ b = a^b)$
- 2. Нейтральный элемент единственен (если существует)

Если e_1, e_2 – два нейтральных, то $e_1 = e_1 \circ e_2 = e_2$

3. Обратный элемент единственен (если существует)

 b_1,b_2 – два обратных к $a\Rightarrow b_1=b_1\circ e=b_1\circ (a\circ b_2)=(b_1\circ a)\circ b_2=e\circ b_2=b_2$

4. $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1} = a \circ a^{-1} = e$$

Определение.

Группа G называется коммутативной (абелевой), если $\forall a,b \in G: ab=ba$

Абстрактные группы: мультипликативная запись: ab, e, a^{-1} Абелевы группы: аддитивная запись: a + b, 0, -a

1.3 Порядок группы

Определение.

Порядок группы G – это число элементов в ней. Обозначается |G|. G называется конечной, если $|G| < \infty$, бесконечной, если $|G| = \infty$

1.4 Примеры групп

1. Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +)$$

2. Числовые мультипликативные группы:

$$(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_n\setminus\{\bar{0}\},\times)$$

3. Группы матриц (операция ×):

$$GL_n(\mathbb{R})=\{A\in \operatorname{Mat}_n(\mathbb{R})\mid \det A\neq 0\}$$
 – полная линейная группа $SL_n(\mathbb{R})=\{A\in \operatorname{Mat}_n(\mathbb{R})\mid \det A=1\}$ – специальная линейная группа

4. Группы перестановок (операция \times):

симметрическая группа S_n – все перестановки длины $n, |S_n| = n!$ знакопеременная группа A_n – все чётные перестановки длины $n, |A_n| = n!/2$

1.5 Подгруппы

Определение.

Подмножество H группы G называется подгруппой, если

- 1. $e \in H$
- 2. $a, b \in H \Rightarrow ab \in H$
- 3. $a \in H \Rightarrow a^{-1} \in H$

Несобственные подгруппы: $\{e\} \subseteq G, G \subseteq G$.

Остальные подгруппы называются собственными

Пример.

2ℤ (все целые числа кратные 2) – подгруппа в ($\mathbb{Z},+$)

1.6 Описание всех подгрупп в группе целых чисел по сложению

Предложение.

Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого $k\geqslant 0$

Доказательство.

Пусть $H \in \mathbb{Z}$ – подгруппа.

Если
$$H = \{0\}$$
, то $H = 0\mathbb{Z}$

Пусть теперь $H \neq \{0\}$. Тогда $x \in H \Leftrightarrow -x \in H$

Положим $k = \min(H \cap \mathbb{N})$

Тогда $k\mathbb{Z} \subseteq H$ (если мы k сложим с собой много раз, то результат тоже будет лежать в подгруппе)

Пусть $a \in H \Rightarrow$ разделим a на k с остатком: $a = q \cdot k + r, 0 \leqslant r < k$

Тогда $r = \underset{\in H}{a} - q \cdot \underset{\in H}{k} \in H$

Так как k – минимальна $\Rightarrow r=0 \Rightarrow a=q\cdot k \Rightarrow a\in k\mathbb{Z} \Rightarrow k\mathbb{Z}=H$

1.7 Циклические подгруппы

Пусть G – группа, $g \in G$, $n \in \mathbb{Z}$

$$g^{n} = \begin{cases} \underbrace{g \cdot \dots \cdot g}_{n}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{|n|}, & n < 0 \end{cases}$$

Определение.

Пусть $g \in G$. $\langle g \rangle := \{g^n \mid n \in \mathbb{Z}\}$ называется циклической подгруппой, порождаемой элементом g

g – образующий или порождающий элемент

Пример.

$$2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$$

1.8 Порядок элемента группы

Пусть
$$G$$
 – группа, $g \in G$ $M(g) = \{n \mid g^n = e\}$

Определение.

Порядок элемента g – это

$$\operatorname{ord}(g) := egin{cases} \min M(g), \ \operatorname{если} M(g)
eq \varnothing \\ \infty, \ \operatorname{если} M(g) = \varnothing \end{cases}$$

Замечание.

$$\operatorname{ord}(g) = 1 \Leftrightarrow g = e$$

1.9 Связь между порядком элемента и порядком порождаемой им циклической подгруппы

Предложение.

$$\operatorname{ord}(g) = |\langle g \rangle|$$

Доказательство.

Имеем
$$g^k = g^s \Rightarrow g^{k-s} = e \; (\star)$$

1.
$$\operatorname{ord}(g) = \infty \underset{(\star)}{\Rightarrow} \forall k > s : g^k \neq g^s \Rightarrow |\langle g \rangle| = \infty$$

2.
$$\operatorname{ord}(g) = m < \infty \Rightarrow$$
 элементы $g^0 = e, g^1 = g, g^2, \dots, g^{m-1}$ попарно различны (если $\exists \ k, s : g^k = g^s \Rightarrow g^{k-s} = e$, но $\operatorname{ord}(g) = m$)
$$n \in \mathbb{Z} \Rightarrow n = q \cdot m + r, \ 0 \leqslant r < m$$

$$\Rightarrow g^n = g^{qm} \cdot g^r = (g^m)^q \cdot g^r = g^r$$

$$\Rightarrow \langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\} \Rightarrow |\langle g \rangle| = m = \operatorname{ord}(g)$$

lacksquare

1.10 Циклические группы

Определение.

Группа G называется циклической, если $G = \langle g \rangle$ для некоторого $g \in G$

Пример.

$$(\mathbb{Z},+) = \langle 1 \rangle$$

Замечание.

G циклична $\Leftrightarrow G$ – коммутативна и \leqslant счётна

1.11 Левые смежные классы группы по подгруппе, разбиение группы на левые смежные классы

Пусть G – группа, $H \subseteq G$ – подгруппа

Отношение L_H на G:

$$(a,b) \in L_H \Leftrightarrow a^{-1}b \in H$$

Предложение.

 L_H – отношение эквивалентности

Доказательство.

- 1. Рефлексивность: $a^{-1}a=e\in H$
- 2. Симметричность: $a^{-1}b \in H \Rightarrow b^{-1}a = (ab^{-1})^{-1} \in H$
- 3. Транзитивность: $a^{-1}b\in H,\ b^{-1}c\in H\Rightarrow a^{-1}c=a^{-1}b\cdot b^{-1}c\in H$

•

Замечание.

 $a^{-1}b \in H \Leftrightarrow b \in aH \Rightarrow$ класс элемента a это в точности множество aH.

Определение.

Множество $aH:=\{ah \mid h \in H\}$ называется левым смежным классом элемента a по подгруппе H

Лемма.

Если
$$|H|<\infty$$
, тогда $\forall a\in G:|aH|=|H|$

Доказательство.

По определению имеем $|aH| \leqslant |H|$

Если $\exists h_1,h_2\in H:ah_1=ah_2$, то, домножим на a^{-1} слева, получим $h_1=h_2$. Итого |aH|=|H|

oxdot

2 Лекция №2

Лекция 14.04.20

2.1 Индекс подгруппы, теорема Лагранжа

Определение.

Индекс подгруппы H – это число левых смежных классов G по H Обозначение: [G;H]

Теорема.

Если
$$|G| < \infty$$
, $H \subseteq G$ – подгруппа $\Rightarrow |G| = |H| \cdot [G;H]$

Доказательство.

Так как вся группа G разбивается на попарно не пересекающиеся смежные классы, а в каждом смежном классе ровно |H| элементов $\Rightarrow |G| = |H| \cdot [G;H]$

•

2.2 Пять следствий из теоремы Лагранжа

Следствие.

- 1. $|G| < \infty$, $H \subseteq G$ подгруппа $\Rightarrow |G|$ \vdots |H|
- 2. $|G| < \infty, g \in G \Rightarrow |G| : \operatorname{ord}(g)$

Так как $\operatorname{ord} g = |\langle g \rangle|$, а $\langle g \rangle$ является подгруппой в $G \Rightarrow |G| \stackrel{:}{:} \operatorname{ord} g$

- 3. $|G| < \infty \Rightarrow \forall g \in G : g^{|G|} = e$ $|G| : \text{ord } q \Leftrightarrow |G| = \text{ord } q \cdot s \Rightarrow (q^{\text{ord } g})^s = e^s = e$
 - $|G| \cdot \operatorname{ord} g \Leftrightarrow |G| \operatorname{ord} g \cdot s \Rightarrow (g \cdot s) \epsilon \epsilon$

4. (малая теорема Ферма) $p\in\mathbb{N}$ – простое число, $\bar{a}\in\mathbb{Z}_p\setminus\{0\}\Rightarrow \bar{a}^{p-1}=\bar{1}$ В группе вычетов по модулю простого числа каждый элемент обратим $\Rightarrow |G|=p-1\Rightarrow \forall \bar{a}\in G: \bar{a}^{|G|}=\bar{a}^{p-1}=\bar{1}$

5. Если |G|=p, где p – простое $\Rightarrow G$ – циклическая группа, причём $\forall g\in G\setminus\{e\}:|G|=\langle g\rangle$ Пусть $g\in G\setminus\{e\}\Rightarrow |G|$: $|\langle g\rangle|$. Так как $g\neq e$, то $|\langle g\rangle|=\mathrm{ord}(g)>1$. Но так как |G| – простое число $\Rightarrow \mathrm{ord}(g)=p\Rightarrow |\langle g\rangle|=|G|\Rightarrow \langle g\rangle=G$

2.3 Нормальные подгруппы

Определение.

Отношение R_H на $G:(a,b)\in R_H \Leftrightarrow ba^{-1}\in H$ – это тоже отношение эквивалентности

Определение.

Подгруппа $H\subseteq G$ называется нормальной, если $\forall g\in G:gH=Hg$ Обозначение: $H\triangleleft G$

2.3.1 Примеры

- 1. G коммутативна $\Rightarrow \forall H \subseteq G$ нормальна
- 2. $G = S_3$, $H = \{ \mathrm{id}, (1\ 2) \} \Rightarrow H$ не нормальная подгруппа
- 3. $H = \{e\}$ или $H = G \Rightarrow H \triangleleft G$

Предложение.

Следующие условия эквиваленты:

1. $H \triangleleft G$

 $2. \ \forall g \in G : gHg^{-1} = H$

3. $\forall g \in G : gHg^{-1} \subseteq H$

Доказательство.

1. \rightarrow 2. $gH=Hg\Rightarrow$ умножая на g^{-1} справа, получаем $gHg^{-1}=H$

2. → 3. тривиально

3. $\to 1$. $gHg^{-1}\subseteq H\Rightarrow$ домножая на g^{-1} справа, получаем $gH\subseteq Hg$. Так как 3. верно $\forall g\in G$, то верно и для $g^{-1}:g^{-1}Hg\subseteq H\Rightarrow$ умножая на g слева получаем $Hg\subseteq gH\Rightarrow$. Итого gH=Hg

 $\overline{}$

2.4 Факторгруппа группы по нормальной подгруппе

Определение.

 $H \triangleleft G \leadsto G /_H$ – множество левых смежных классов G по H

Определим на $^{G}\!\!/_{\!H}$ бинарную операцию, полагая

$$(g_1H)\cdot(g_2H)=(g_1g_2)H$$

Корректность:

Пусть $g_1'H=g_1H,\,g_2'H=g_2H,\,$ тогда $g_1'=g_1h_1,\,g_2'=g_2h_2,\,$ где $h_1,h_2\in H$

$$\Rightarrow (g_1'H) \cdot (g_2'H) = (g_1g_2')H = (g_1h_1g_2h_2)H = (g_1 g_2 \underbrace{g_2^{-1} h_1g_2}_{\in H} h_2) \subseteq (g_1g_2)H \Rightarrow (g_1'g_2')H = (g_1g_2)H$$

$$\left({}^{G}\!\!/_{H},\circ \right) \!\!:$$

1. ассоциативность: есть

2. нейтральный элемент: eH

3. обратный элемент к gH: $g^{-1}H$

Определение.

Пример.

$$G = (\mathbb{Z}, +), H = n\mathbb{Z}, n \in \mathbb{N} \Rightarrow G/H = (\mathbb{Z}_n, +)$$

2.5 Гомоморфизмы групп, простейшие свойства

G, F – группы

Определение.

Отображение $\varphi:G o F$ называется гомоморфизмом, если $\forall a,b\in G: \varphi(ab)=\varphi(a)\cdot \varphi(b)$

Свойства.

$$\varphi:G\to F$$
 – гомоморфизм \Rightarrow

1.
$$\varphi(e_G) = e_F$$

 $\varphi(e_G) = \varphi(e_G \cdot e_G) = \varphi(e_G) \cdot \varphi(e_G) \Rightarrow e_F = \varphi(e_G)$
2. $\varphi(g^{-1}) = (\varphi(g))^{-1}$
 $\varphi(g^{-1}) \cdot \varphi(g) = \varphi(g^{-1}g) = \varphi(e_G) = e_F$
 $\varphi(g) \cdot \varphi(g^{-1}) = \varphi(gg^{-1}) = e_F$

2.6 Изоморфизм групп, изоморфные группы

Определение.

Гомоморфизм $\varphi:G\to F$ называется изоморфизмом, если φ является биекцией

Определение.

Группа G и F называются изоморфными, если \exists изоморфизм $\varphi:G\to F$ Обозначение: $G\simeq F,$ $G\cong F,$ $\varphi:G\overset{\sim}\to F$

Пример.

$$G=(\mathbb{R},+), F=(\mathbb{R}_{>0},\times), \varphi:G o F:x\mapsto e^x$$
 $arphi$ – гомоморфизм, биективен $\Rightarrow arphi$ – изоморфизм

2.7 Ядро и образ гомоморфизма групп

$$\varphi:G\to F$$
 – гомоморфизм групп

Определение.

Ядро
$$\ker \varphi := \{g \in G \mid \varphi(g) = e_F\} \subseteq G$$

Образ $\operatorname{Im} \varphi := \varphi(G) \subseteq F$

Лемма.

 $\ker \varphi \triangleleft G$

Доказательство.

Покажем, что
$$g(\ker \varphi)g^{-1} \subseteq \ker \varphi$$
 $x \in \ker \varphi, g \in G$: $\varphi(gxg^{-1}) = \varphi(g) \cdot \varphi(x) \cdot \varphi(g^{-1}) = \varphi(g) \cdot \varphi(g^{-1}) = e_F$

 $\ker \varphi \triangleleft G \Rightarrow$ определена $G_{\ker \varphi}$

2.8 Теорема о гомоморфизме для групп

Пусть $\varphi:G \to F$ – гомоморфизм групп

Теорема.

$$G_{\ker \varphi} \simeq \operatorname{Im} \varphi$$

Доказательство.

Рассмотрим отображение $\psi: G_{\ker \varphi} \to \operatorname{Im} \varphi: \psi(g \ker \varphi) := \varphi(g) \; \forall g$

1. корректность:

$$g\ker \varphi=g'\ker \varphi$$
, то $g'=g\cdot h$ для некоторого $h\in\ker \varphi$ $\psi(g'\ker \varphi)=\varphi(g')=\varphi(gh)=\varphi(g)\cdot \varphi(h)=\varphi(g)=\psi(g'\ker \varphi)$

oxdot

2. ψ – гомоморфизм

$$\psi(g_1 \ker \varphi \cdot g_2 \ker \varphi) = \psi(g_1 g_2 \cdot \ker \varphi) = \varphi(g_1 g_2) = \varphi(g_1) \cdot \varphi(g_2) = \psi(g_1 \ker \varphi) \cdot \psi(g_2 \ker \varphi)$$

- 3. сюръективность: любой элемент из образа представим в виде $\varphi(g)\Rightarrow g$ представим в виде $g\ker\varphi\Rightarrow\varphi(g)$ представим в виде $\psi(g\ker\varphi)$
- 4. инъективность: если $\psi(g_1 \ker \varphi) = \psi(g_2 \ker \varphi)$, тогда $\varphi(g_1) = \varphi(g_2)$ $\Rightarrow e_F = \varphi(g_1)^{-1} \cdot \varphi(g_2) = \varphi(g_1^{-1}g_2) \Rightarrow g_1^{-1}g_2 \in \ker \varphi \Rightarrow g_2 \ker \varphi = g_1 \ker \varphi$

•

3 Лекция №3

Лекция 21.04.20

3.1 Классификация циклических групп с точностью до изоморфизма

Предложение.

Пусть G – циклическая группа. Тогда:

- (a) если $|G|=\infty$, то $G\simeq (\mathbb{Z},+)$
- (б) если |G|=n, то $G\simeq (\mathbb{Z}_n,+)$

Доказательство.

Пусть $G=\langle g \rangle$. Рассмотрим отображение $\varphi: \mathbb{Z} \to G: k \mapsto g^k$.

Тогда φ – это гомоморфизм:

$$\varphi\left(k+l\right)=g^{k+l}=g^{k}\cdot g^{l}=\varphi\left(k\right)\cdot\varphi\left(l\right)$$

arphi – сюръективен $\Rightarrow \operatorname{Im} arphi = G \Rightarrow G \simeq \mathbb{Z}/\ker arphi$

Так как $\ker \varphi$ – это подгруппа в \mathbb{Z} , то $\ker \varphi = m\mathbb{Z}$ для некоторого $m \geqslant 0$.

Если m=0, то $\ker \varphi = \{0\} \Rightarrow G \simeq \mathbb{Z}/_{\{0\}} \simeq \mathbb{Z}.$

Если m>0, то $G\simeq \mathbb{Z}/_{m\mathbb{Z}}\simeq \mathbb{Z}_m.$

•

3.2 Прямое произведение групп и разложение группы в прямое произведение подгрупп

Пусть G_1, \ldots, G_m – группы

Определение.

Прямое произведение групп G_1,\dots,G_m – это множество $G_1\times\dots\times G_m$ с бинарной операцией

$$(g_1, \ldots, g_m) \cdot (g'_1, \ldots, g'_m) = (g_1 g'_1, \ldots, g_m g'_m)$$

- 1. ассоциативность: очевидна
- 2. нейтральный элемент: $(e_{G_1}, \ldots, e_{G_m})$
- 3. обратный к (g_1,\ldots,g_m) элемент: $(g_1^{-1},\ldots,g_m^{-1})$ $\Rightarrow G_1\times\ldots\times G_m$ группа

Пример.

1.
$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_n$$

2. $\mathbb{Z}^n = \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{}$ – подгруппа в \mathbb{R}^n , состоящая из вектором с целыми координатами: "решётка ранга n"

Замечание.

- 1. $G_1 \times \ldots \times G_m$ абелева $\Leftrightarrow G_i$ абелевы
- 2. Если все G_i конечны, то $|G_1 \times \ldots \times G_m| = |G_1| \times \ldots \times |G_m|$
- 3. $\forall i = 1, \dots m$: G_i отождествляется с подгруппой

$$\{(e_{G_1}, \dots, e_{G_{i-1}}, g, e_{G_{i+1}}, \dots, e_{G_m}) \mid g \in G_i\}$$

Пусть $H_1,\ldots,H_m\subseteq G$ – набор подгрупп

Определение.

Говорят, что G разлагается в прямое произведение своих подгрупп H_1,\dots,H_m , если отображение $H_1,\dots,H_m\to G:(h_1,\dots,h_m)\mapsto h_1\cdot\dots\cdot h_m$ является изоморфизмом. Обозначается $G=H_1\times\dots\times H_m$

3.3 Разложение конечной циклической группы

Теорема.

Пусть $n, m, l \in \mathbb{N}, n = m \cdot l, \gcd(m, l) = 1 \Rightarrow \mathbb{Z}_n \simeq \mathbb{Z}_m \times \mathbb{Z}_l$

Доказательство.

Рассмотрим отображение $\varphi: \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l : \varphi (a \mod n) = (a \mod n, a \mod l)$

- 1. корректность: следует из того, что $n \ \vdots \ m$ и $n \ \vdots \ l$
- 2. φ гомоморфизм:

$$\varphi((a+b) \mod n) = ((a \mod m) + (b \mod m), (a \mod l) + (b \mod l)) =$$

$$= (a \mod m, a \mod l) + (b \mod m, b \mod l) = \varphi(a \mod n) + \varphi(b \mod n)$$

3. $\,arphi$ – инъективен: достаточно проверить, что $\ker arphi = \{ar{0}\}$

$$\varphi\left(a\mod n\right)=(0,0)\Rightarrow a\mathbin{\dot{:}} m,\ a\mathbin{\dot{:}} l,\ \mathbf{Ho}\ \gcd\left(m,l\right)=1\Rightarrow a\mathbin{\dot{:}} ml\Rightarrow a\equiv 0\mod n$$

4. φ – сюръективен: $|\mathbb{Z}_n|=n=ml=|\mathbb{Z}_m\times\mathbb{Z}_l|\Rightarrow$ инъективное отображения между двумя равномощными множествами биективно

Следствие.

$$n\in\mathbb{N},$$
 $n\geqslant 2,$ $n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ – разложение на простые множители
$$\Rightarrow \mathbb{Z}_n\simeq \mathbb{Z}_{p_1^{k_1}}\times\ldots\times \mathbb{Z}_{p_s^{k_s}}$$

3.4 Примарные абелевы группы

Определение.

Конечная абелева группа A называется примарной, если $|A|=p^k$, где p – простое, $k\in\mathbb{N}$

3.5 Теорема о разложении конечной абелевой группы в прямое произведение примарных циклических групп (формулировка)

Теорема.

Пусть A – конечная абелева группа. Тогда $A\simeq \mathbb{Z}_{p_1^{k_1}}\times\ldots\times\mathbb{Z}_{p_t^{k_t}}$, где p_1,\ldots,p_t – простые (не обязательно попарно различные), $k_i\in\mathbb{N}$. Более того набор множителей $\mathbb{Z}_{p_1^{k_1}},\ldots,\mathbb{Z}_{p_t^{k_t}}$ определён однозначно с точностью до перестановки

3.6 Экспонента конечной абелевой группы, критерий цикличности

Определение.

Экспонента группы A – это число

$$\exp A := \min \left\{ n \in \mathbb{N} \mid na = 0 \right\} = \operatorname{lcm} \left\{ \operatorname{ord}(a) \mid a \in A \right\}$$

Замечание.

Так как $\forall a \in A: |A| : \operatorname{ord}(a)$, то порядок группы является общим кратным всех $\operatorname{ord}(a)$ $\Rightarrow |A| : \exp A \Rightarrow \exp A \leqslant |A|$.

Предложение.

 $\exp A = |A| \Leftrightarrow A$ – циклическая группа

Доказательство.

Пусть $|A|=n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ – разложение на простые множители

$$\Leftarrow: A = \langle a \rangle \Rightarrow \operatorname{ord}(a) = n \Rightarrow \exp A = n$$
 $\Rightarrow: \exp A = n. \ \operatorname{lcm} = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s} \Rightarrow$ чтобы его получить $\forall i = 1, \ldots, s: \exists c_i : \operatorname{ord}(c_i) = p_i^{k_i} \cdot m_i$

Положим $a_i = m_i \cdot c_i$, тогда $\operatorname{ord}(a_i) = p_i^{k_i}$

Пусть $a = a_1 + ... + a_s$

Пусть ma=0 для некоторого $m\in\mathbb{N}\Rightarrow ma_1+\ldots+ma_s=0$ (*)

При фиксированном i умножим (\star) на $n_i = n / p_i^{k_i}$

Тогда
$$\forall j \neq i: n_i m \ \vdots \ p_i^{k_j} \Rightarrow n_i m a_j = 0 \Rightarrow n_i m a_i \Rightarrow n_i m \ \vdots \ p_i^{k_i}$$
, но $n_i \not = p_i \Rightarrow m \ \vdots \ p_i^{k_i}$

Так как i – произвольное $\Rightarrow m : n$, но na = 0 (так как n = |A|) $\Rightarrow \operatorname{ord}(a) = n$

Получается $A = \langle a \rangle \Rightarrow A$ – циклическая группа

4 Лекция №4

Лекция 26.04.20

4.1 Понятие кольца

Определение.

Кольцо – это множество R, на котором заданы две бинарные операции " + " (сложение) и " \cdot " (умножение), удовлетворяющие следующим условиям:

1. $(\mathbb{R}, +)$ – абелева группа (аддитивная группа кольца R)

•

2. $\forall a, b, c \in R$:

$$a\cdot(b+c)=ab+ac$$
 (левая дистрибутивность) $(a+b)\cdot c=ac+bc$ (правая дистрибутивность)

- 3. $\forall a, b, c \in R : (ab)c = a(bc)$ (ассоциативность умножения)
- 4. $\exists 1 \in R$ такой, что $\forall a \in R : a \cdot 1 = 1 \cdot a = a$ (единица)

Пример.

- 1. **ℤ**, **ℚ**, **ℝ**, **ℂ**
- 2. \mathbb{Z}_n кольцо вычетов
- 3. $\mathrm{Mat}_{n\times n}(\mathbb{R})$ кольцо матриц
- 4. $\mathbb{R}[x]$ кольцо многочленов от одной переменной x с коэффициентами из \mathbb{R}
- 5. $\mathcal{F}(M,\mathbb{R})$ кольцо функций из множества M в \mathbb{R} (с поточечными операциями сложения и умножения):

$$(f_1 + f_2)(m) := f_1(m) = f_2(m), (f_1 \cdot f_2)(m) := f_1(m) \cdot f_2(m)$$

4.2 Коммутативные кольца

Определение.

Кольцо R называется коммутативным, если $\forall a,b \in R: a \cdot b = b \cdot a$

4.3 Обратимые элементы, делители нуля, нильпотенты

Определение.

Элемент $a \in R$ называется обратимым, если $\exists b \in R$ такой, что $a \cdot b = b \cdot a = 1$. Обозначается a^{-1}

Замечание.

Все обратимые элементы в R образуют группу по умножению

Определение.

Элемент a называется левым (правым) делителем нуля, если $a \neq 0$ и $\exists b \neq 0 \in R$ такой, что ab=0 (соответственно ba=0)

Замечание.

Если R коммутативно, то { левые делители нуля } = { правые делители нуля } \Rightarrow называются просто делителями нуля

Замечание.

Все делители нуля необратимы: пусть $a,b\neq 0$ и ab=0. Если $\exists a^{-1}$, то домножим слева на a^{-1} , получим b=0 – противоречие

Определение.

Элемент $a \in R$ называется нильпотентом, если $a \neq 0$ и $\exists n \in \mathbb{N}$ такой, что $a^n = 0$

Замечание.

Всякий нильпотетн является делителем нуля: если $a^n=0$ и n минимально, то $a\cdot a^{n-1}=0$

4.4 Поля

Определение.

Кольцо R называется полем, если оно коммутативно (ассоциативно с 1), $0 \neq 1$ и \forall ненулевой элемент обратим

Замечание.

В поле нет делителей нуля

4.5 Критерий того, что кольцо вычетов является полем

Предложение.

Кольцо \mathbb{Z}_n является полем $\Leftrightarrow n$ – простое число

Доказательство.

Согласование: $a \in \mathbb{Z} \leadsto \bar{a} \in \mathbb{Z}_n$ – вычет $a \mod n$

 \Rightarrow : если n=1, то $Z_n=\{0\}$ – не поле

если n>1 и $n=m\cdot k$, где 1< m,k< n, то $\bar m\cdot \bar k=\bar 0\Rightarrow$ в \mathbb{Z}_n есть делители нуля $\Rightarrow \mathbb{Z}_n$ – не поле

 \Leftarrow : Пусть n=p – простое число, $a\in\mathbb{Z}_p\setminus\{0\}$

Тогда $\gcd(a,p)=1\Rightarrow \exists k,l\in\mathbb{Z}$ такие, что $ak+pl=1\Rightarrow \bar{a}\cdot\bar{k}+\bar{p}\cdot\bar{l}=\bar{1}\Rightarrow \bar{a}\cdot\bar{k}=\bar{1}\Rightarrow a$ обратим

\Box

4.6 Подкольца, подполя, гомоморфизмы, изоморфизмы

Пусть R – кольцо

Определение.

Подмножество $S\subseteq R$ называется подкольцом , если $\forall a,b\in S:a+b\in S,\ ab\in S$ и S само является кольцом относительно этих операций

Определение.

Подполе в R – это подкольцо, являющиеся полем

Определение.

Пусть R и S – два кольца, тогда отображение $\varphi: R \to S$ называется гомоморфизмом (колец), если $\forall a,b \in R: \varphi(a+b) = \varphi(a) + \varphi(b), \ \varphi(ab) = \varphi(a) \cdot \varphi(b)$

Изоморфизм – это биективный гомоморфизм

4.7 Идеалы в кольце

Пусть R – кольцо

Определение.

Подкольцо $I \subseteq R$ называется (двусторонним) идеалом, если

(1): I – подгруппа по сложению

(2): $\forall a \in I, \forall r \in R : ar \in I, ra \in I$

Обозначение: $I \triangleleft R$

4.8 Главные идеалы и идеалы, порождённые подмножеством коммутативного кольца

Пусть R – коммутативное кольцо, $a \in R$

Определение.

Множество $(a) := \{ ra \mid r \in R \}$ называется главным идеалом, порожденным элементом a Замечание.

(1):
$$(a) = R \Leftrightarrow a$$
 – обратим

(2):
$$(a) = \{0\} \Leftrightarrow a = 0$$

Определение.

 $S \subseteq R$ – подмножество \Rightarrow

$$(S) := \{r_1 s_1 + \ldots + r_k s_k \mid r_i \in R, s_i \in S\}$$

называется идеалом, порожденным подмножеством S

4.9 Факторкольцо кольца по идеалу

Пусть R – кольцо, $I \triangleleft R$

Рассмотрим факторгруппу (R/I,+) и введём на ней операцию умножения, полагая (a+I)(b+I):=ab+I

Корректность: $a+I=a'+I, b=b'+I \Rightarrow a'=a+x, b'=b+y$, где $x,y\in I$. Тогда

$$(a'+I)(b'+I) = a'b' + I = (a+x)(b+y) + I = ab + \underbrace{ay + xb + xy}_{\in I} + I = ab + I$$

4.10 Ядро и образ гомоморфизма колец

Пусть $\varphi:R \to R'$ – гомоморфизм колец

Определение.

$$\ker \varphi := \big\{ r \in R \ \big| \ \varphi(r) = 0 \big\} \triangleleft R$$

$$\operatorname{Im} \varphi := \varphi(R) \subseteq R'$$

Теорема.

Доказательство.

Пусть $I:=\ker \varphi$, тогда из доказательства теоремы о гомоморфизме для групп отображение $\psi:R/I\to\operatorname{Im}\varphi$, где $\psi(a+I)=\varphi(a)$ является изоморфизмом групп по сложению Остаётся показать, что ψ – гомоморфизм колец

$$\psi((a+I)(b+I)) = \psi(ab+I) = \varphi(ab) = \varphi(a) \cdot \varphi(b) = \psi(a+I)\psi(b+I)$$

5 Лекция №5

Лекция 28.04.2020

5.1 Кольцо K[x] многочленов от одной переменной над полем

Пусть K – поле, K[x] – кольцо многочленов от x с коэффициентами из k

$$K[x] = \{a_n x^n + \ldots + a_1 x + a_0 \mid n \geqslant 0, \ a_i \in K\}$$

 $\forall f \in K[x]$ определена степень $\deg f$. Удобно полагать, что $\deg 0 = -\infty$.

Тогда

$$\deg(fg) = \deg f + \deg g$$
$$\deg(f+g) \leqslant \max(\deg f, \deg g)$$

Обратимые элементы в K[x]: $\left\{f \mid \deg f = 0\right\}$

Делители нуля в K[x]: их нет

5.2 Деление с остатком

Пусть K – поле

Теорема.

Для любых двух многочленов $f,g\in K[x],\ g\neq 0$, существует единственные многочлены $q,r\in K[x]$, для которых $f=q\cdot g+r$ и либо r=0, либо $\deg r<\deg g$

Доказательство.

Cуществование: индукция по $\deg f$

Если f=0, то можно брать q=r=0. Теперь считаем, что $\deg f=n\geqslant 0$

Пусть $f=a_nx^n+\ldots+a_1x+a_0$ ($a_n\neq 0$), $g=b_mx^m+\ldots+b_1x+b_0$ ($b_m\neq 0$). Если $\deg f<\deg g\Rightarrow$ достаточно взять $q=0,\,r=f$

Иначе, положим $h=f-a_n/b_mx^{n-m}\cdot g$, тогда $\deg h<\deg f$

По предположению индукций $h=q\cdot g+r$, где либо r=0, либо $\deg r<\deg g$. Тогда $f=\left(q+a_{n}/b_{m}x^{n-m}\right)\cdot g+r$

Единственность: Пусть $f=q_1\cdot g+r_1=q_2\cdot g+r_2$ – два представления многочлена f. Тогда $(q_1-q_2)\cdot g=r_2-r_1$. Пусть $q_1\neq q_2$, тогда $\deg\left(q_1-q_2\right)\cdot g\geqslant \deg g>\deg\left(r_2-r_1\right)$ – противоречие $\Rightarrow q_1=q_2\Rightarrow r_1=r_2$

 $oldsymbol{\cdot}$

5.3 Наибольший общий делитель двух многочленов, теорема о его существовании и линейном выражении

Определение.

Пусть $f,g \in K[x], g \neq 0$. Говорят, что f делится на g (g делит f), если $\exists h \in K[x]$ такой, что $f = g \cdot h$.

Определение.

Наибольший общий делитель многочленов $f,g\in K[x]$ – это такой многочлен $h\in K[x]$, что

- (1) h делит оба f и q
- (2) h имеет максимальную возможную степень

Теорема.

Пусть $f,g\in K[x]$ и $(f,g)\neq (0,0)$, тогда

- (1) $\exists \gcd(f, q) =: h$
- (2) $\exists u,v \in K[x]$ такие, что h=uf+vg

Доказательство.

- (1) прямой ход алгоритма Евклида (деление одного на другого)
- (2) обратный ход алгоритма Евклида (расширенный алгоритм Евклида)

oxdot

Замечание.

 $\gcd(f,g)$ определён с точностью до пропорциональности

5.4 $\,\,\,\,\,$ Теорема о том, что K[x] является кольцом главных идеалов

Определение.

Коммутативное кольцо R без делителей нуля называется кольцом главных идеалов (КГИ), если всякий идеал в R является главным

Предложение.

$$K[x]$$
 – КГИ

Доказательство.

Пусть $I \triangleleft K[x]$. Если $I = \{0\}$, то I = (0) – главный.

Если $I \neq \{0\}$, то выберем в I многочлен $g \neq 0$ наименьшей степени.

Тогда $(g)\subseteq I$. Пусть $f\in I$, разделим f на g с остатком: $f=q\cdot g+r$, где либо r=0, либо $\deg r<\deg g$. Но тогда $r=f-q\cdot g\in I$. Так как $\deg g$ – наименьший $\Rightarrow r=0$ $\Rightarrow f\in (g)$ $\Rightarrow I\subseteq (g)$.

 \Box

5.5 Неприводимые многочлены

Определение.

Многочлен $h \in K[x]$, $\deg h > 0$ называется неприводимым, если его нельзя представить в виде $h = h_1 \cdot h_2$, где $\deg h_1, \deg h_2 < \deg h$. Иначе h называется приводимым

Замечание.

- (1) $h \in K[x]$, $\deg h = 1 \Rightarrow$ h неприводим (множители не могут быть степени 0, так как $\deg h_1 + \deg h_2 = \deg h$)
- (2) $h \in K[x]$, $\deg h \geqslant 2$, h неприводим $\Rightarrow h$ не имеет корней в K (по теореме Безу, в обратную сторону неверно: можно взять два неприводимых многочлена, перемножить и получить приводимый многочлен)
 - (3) $h \in K[x], \deg h = \{1,2\} \Rightarrow h$ неприводим $\Leftrightarrow h$ не имеет корней в K

Лемма.

Если $h\in K[x]$ – неприводимый многочлен, h делит $g_1\cdot\ldots\cdot g_k$, для некоторых $g_1,\ldots,g_k\in K[x]$, то $\exists i\colon h$ делит g_i

Доказательство.

Индукция по k. k = 1 – ясно

k=2: пусть $g_1\not: h$, так как h неприводим, то $\gcd(g_1,h)=1\Rightarrow \exists u,v\in K[x]$ такие, что $1=ug_1+vh$. Умножим на g_2 : $g_2=ug_1g_2+vhg_2\Rightarrow r_2$: h

$$\vdots_h$$
 \vdots_h

Для k>2 применяем предыдущее рассуждение для $(g_1\cdot\ldots\cdot g_{k_1})\cdot g_k$. Если g_k \vdots h – всё ОК, иначе $\exists i\in\{1,\ldots,k-1\}$: g_i \vdots h по предположению индукции

lacksquare

5.6 Факториальность кольца K[x]

Теорема.

Пусть $f \in K[x]$ и $\deg f \geqslant 1$, тогда

- (1) \exists разложение $f = h_1 \cdot \ldots \cdot h_k$, где h_i неприводимы
- (2) это разложение единственно, с точностью до перестановки множителей и пропорциональности

Доказательство.

Пусть $\deg f = n$. Индукция по n:

 $n=1\Rightarrow f$ – неприводим, единственность есть

n > 1

Существование: если f – неприводим, то он и есть разложение. Если f приводим, то $f=f_1\cdot f_2$, $\deg f_1, \deg f_2 < n \Rightarrow$ по предположению индукции $f_1=g_1\cdot\ldots\cdot g_p, \ f_2=h_1\cdot\ldots\cdot h_q$, где g_i, h_j – неприводимые. Тогда $f=g_1\cdot\ldots\cdot g_p\cdot h_1\cdot\ldots\cdot h_q$ – разложение f

Единственность: Пусть $f=h_1\cdot\ldots\cdot h_k=h'_1\cdot\ldots\cdot h'_m$ – два разложения на неприводимые множители. h_1 делит $h'_1\cdot\ldots\cdot h'_m$ \Rightarrow по лемме $\exists i$ такой, что h делит h'_i . Переставив множители, будем считать, что h_1 делит h'_1 . Так как h_1 и h'_1 неприводимые, то $h_1=\varepsilon\cdot h_2$, где $\varepsilon\in K\setminus\{0\}$. Так как в K[x] нет делителей нуля, то можем сократить на h_1 , получим $h_2\cdot\ldots\cdot h_k=\varepsilon\cdot h'_2\cdot\ldots\cdot h'_m$. Так как мы понизили степень \Rightarrow по предположению индукции они пропорциональны и равны \Rightarrow при добавлении h_1 они такими остаются.

lacksquare

Замечание.

- (1) всякое КГИ факториальна
- (2) $K[x_1,\ldots,x_n]$, где $n\geqslant 2$ это не КГИ, но тоже факториальна

5.7 Критерий того, что факторкольцо K[x]/(h) является полем

Пусть
$$h=a_nx^n+\ldots+a_1x+a_0\in K[x],$$
 $\deg h=n>0$ Рассмотрим факторкольцо $K[x]/(h),$ $f\in K[x]\leadsto \bar f:=f+(h)\in F$

Предложение.

F – поле \Leftrightarrow h – неприводим

Доказательство.

 \Rightarrow : если $h=h_1\cdot h_2$, $\deg h_i < n \Rightarrow \bar{h}=\bar{h}_1\cdot \bar{h}_2$. Так как $\bar{h}=0$, то $\bar{h}_1\cdot \bar{h}_2=0 \Rightarrow$ в F есть делители нуля (так как h_1,h_2 ненулевые) \Rightarrow противоречие

 $\Leftarrow:$ пусть $f\in K[x],\, \bar f\neq \bar 0\Rightarrow f\not h\Rightarrow \gcd(f,h)=1\Rightarrow \exists u,v\in K[x]$ такие, что $1=uf+vh\Rightarrow \bar 1=\bar u\bar f+\bar v\bar h=\bar u\bar f\Rightarrow \bar f$ – обратим $\Rightarrow F$ – поле

\Box

5.8 Базис факторкольца K[x]/(h) как векторного пространства над полем K

Рассмотрим отображение $K \to F, \, \alpha \mapsto \overline{\alpha} = \alpha + (h),$ оно инъективно $\Rightarrow K$ является подполем в $F \Rightarrow F$ становится векторным пространством над K

Предложение.

Элементы $\bar{1}, \bar{x}, \dots, \bar{x}^{n-1}$ – образуют базис в F над K. В частности, $\dim_K F = n$

Доказательство.

 $\bar{f} \in F, f \in K[x]$. Поделим f на h с остатком:

$$f = q \cdot h + r \Rightarrow \bar{f} = \bar{q} \cdot \bar{h} + \bar{r} = \bar{r} \in \langle \bar{1}, \bar{x}, \dots, \bar{x}^{n-1} \rangle$$

Если $b_0\bar{1}+\ldots+b_{n-1}\bar{x}^{n-1}=0$ для некоторых $b_i\in K$, то $b_0+\ldots+b_{n-1}x^{n-1}$: $h\Rightarrow b_0=\ldots=b_{n-1}=0$.

lacksquare

6 Лекция №6

Лекция 13.05.2020

$$K$$
 – поле, $R=K[x_1,\ldots,x_n]$ $M=\left\{ax_1^{k_1}\cdot\ldots\cdot x_nk_n\;\middle|\;a\in K\setminus\{0\}\;,\;k_i\geqslant 0\right\}$ – все одночлены от $x_1,\ldots,x_n.$

6.1 Лексикографический порядок на одночленах от нескольких переменных

Определение.

$$ax_1^{i_1} \cdot \ldots \cdot x_n^{i_n} \succ bx_1^{j_1} \cdot \ldots \cdot x_n^{j_n} \Leftrightarrow \exists k : i_1 = j_1, i_2 = j_2, \ldots, i_{k-1} = j_{k-1}, i_k > j_k$$

Замечание.

- (1) $m_1, m_2, m_3 \in M, m_1 \prec m_2 \Rightarrow m_1 \cdot m_3 \prec m_2 \cdot m_3$
- (2) $m_1, m_2, m_3 \in M, m_1 \prec m_2, m_2 \prec m_3 \Rightarrow m_1 \prec m_3$

 $g \in R \leadsto M(g) := \{$ все одночлены, входящие в $g\}$

6.2 Лемма о конечности убывающих цепочек одночленов

Лемма.

Не существует бесконечных убывающих цепочек

$$m_1 \succ m_2 \succ m_3 \succ \ldots$$
, где $\forall i \in \mathbb{N} : m_i \in M$

Доказательство.

От противного: пусть $m_1 \succ m_2 \succ m_3 \succ \dots$ – бесконечная убывающая цепочка. Пусть $m_i = a_i x_1^{k_1(i) \cdot \dots \cdot x_n^{k_n(i)}}$, $\forall i \in \mathbb{N}$.

Имеем:

$$k_1(1)\geqslant k_1(2)\geqslant k_1(3)\geqslant\ldots\Rightarrow\exists i_1\in\mathbb{N}:\forall i\geqslant i_1:k_1(i)=k_1(i_1)$$
 $k_2(i_1)\geqslant k_2(i_1+1)\geqslant k_2(i_2+2)\geqslant\ldots\Rightarrow\exists i_2\geqslant i_1\in\mathbb{N}:\forall i\geqslant i_2:k_2(i)=k_2(i_2)$ *и так далее* $\exists i_n\geqslant i_{n-1}:\forall i\geqslant i_n:k_n(i)=k_n(i_n)$

Итого: при $i\geqslant i_n$ все m_i имеют одинаковые наборы степеней \Rightarrow противоречие.

6.3 Старший член ненулевого многочлена

Определение.

 $f \in R \setminus \{0\} \Rightarrow$ старший член L(f) – это наибольший в лексикографическом порядке одночлен, присутствующий в f.

6.4 Лемма о старшем члене

Лемма.

Пусть
$$f, g \in R \setminus \{0\} \Rightarrow L(fg) = L(f) \cdot L(g)$$
.

Доказательство.

Пусть $u \in M(f), v \in M(g) \Rightarrow u \leq L(f), v \leq L(g).$

$$uv \leq L(f) \cdot v \leq L(f) \cdot L(g) \Rightarrow uv \leq L(f) \cdot L(g)$$

Причём '=' $\Leftrightarrow u = L(f)$ и v = L(g).

 $\Rightarrow L(f) \cdot L(g)$ больше любого другого одночлена в $fg \Rightarrow L(f) \cdot L(g) = L(fg)$.

6.5 Элементарная редукция многочлена относительно ненулевого многочлена

Пусть $g, f \in R \setminus \{0\}$, g содержит одночлен m такой, что $m : L(f) \Rightarrow m = L(f) \cdot m'$, где $m' \in M$.

Элементарная редукция $q \stackrel{f}{\to} q' := q - m' \cdot f$

В g одночлен m заменяется суммой нескольких меньших одночленов.

Пусть $F \subseteq R \setminus \{0\}$.

Определение.

g редуцируется к g' при помощи F, если \exists конечная цепочка элементарных редукций

$$g\stackrel{f_1}{ o}g_1\stackrel{f_2}{ o}g_2\stackrel{f_3}{ o}\dots\stackrel{f_k}{ o}g_k=g',$$
 где $f_i\in F$

Обозначение: $g \stackrel{F}{\leadsto} g'$.

gнередуцируем относительно F, если $\forall m \in M(g)$ и $\forall f \in F \colon m \not \vdash L(f)$

6.6 Лемма о конечности цепочек элементарных редукций

Лемма.

Пусть $F\subseteq R\setminus\{0\}\Rightarrow$ всякая последовательность элементарных редукций относительно F за конечное число шагов приводит к нередуцироемому многочлену.

Доказательство.

Обозначение: $L_k(g)$ – k-ый по старшинству одночлен в $g \in R$.

От противного: пусть существует бесконечная цепочка элементарных редукций

$$g \stackrel{f_1}{\rightarrow} g_1 \stackrel{f_2}{\rightarrow} g_2 \stackrel{f_3}{\rightarrow} \dots$$

В силу леммы 1 имеем:

$$L(g_1) \succeq L(g_2) \succeq L(g_3) \succeq \ldots \Rightarrow \exists i_1 : \forall i \geqslant i_1 : L(g_i) = L(g_{i_1})$$

$$L_2(g_{i_1}) \succeq L_2(g_{i_1+1}) \succeq L_3(g_{i_1+2}) \succeq \ldots \Rightarrow \exists i_2 \geqslant i_1 : \forall i \geqslant i_2 : L_2(g_i) = L_2(g_{i_2})$$

* и так далее *

Итого:
$$L(g_{i_1}) = L(g_{i_2}) \succ L_2(g_{i_2}) = L_2(g_{i_3}) \succ L_3(g_{i_3}) = L_3(g_{i_4}) \succ \dots$$

 $\Rightarrow L(g_{i_1}) \succ L_2(g_{i_2}) \succ \dots$ – бесконечная убывающая цепочка одночленов \Rightarrow противоречие.

 \Box

•

6.7 Остаток многочлена относительно заданной системы многочленов

Определение.

Если $g \overset{F}{\leadsto} r$ и r нередуцируем, то r называется остатком многочлена g относительно системы F .

Замечание.

Остаток определён неоднозначно.

6.8 Системы Грёбнера

Определение.

Множество F называется системой Грёбнера, если $\forall g \in R$ остаток g относительно F определён однозначно, то есть не зависит от цепочки приводящих к нему элементарных редукций.

6.9 Характеризация систем Грёбнера в терминах цепочек элементарных редукций

Предложение.

Следующие условия эквивалентны:

- (1) F система Грёбнера
- (2) $\forall g \in R$ обладает следующим свойством: если $g \stackrel{f_1}{\to} g_1$ и $g \stackrel{f_2}{\to} g_2$ две элементарные редукции, то $\exists g' \in R$ такой, что $g_1 \stackrel{F}{\leadsto} g'$ и $g_2 \stackrel{F}{\leadsto} g'$.

Доказательство.

Аллах так сказал!

lacksquare

6.10 S-многочлены

```
Пусть f_1, f_2 \in R, рассмотрим m = \operatorname{lcm}(L(f_1), L(f_2)).
Пусть m_1, m_2 \in M таковы, что m = m_1 \cdot L(f_1) и m = m_2 \cdot L(f_2).
```

Определение.

Многочлен $S(f_1,f_2):=m_1f_1-m_2f_2$ называется S-многочленом (S-полиномом), построенным по f_1 и f_2 .

Замечание.

$$S(f_1, f_2) = -S(f_2, f_1).$$

7 Лекция №7

Лекция 19.05.2020

7.1 Критерий Бухбергера

Теорема.

Для системы $F \subseteq R \setminus \{0\}$ следующие условия эквиваленты:

(1) F – система Грёбнера

(2)
$$\forall f_1, f_2 \in F : S(f_1, f_2) \stackrel{F}{\leadsto} 0.$$

Доказательство.

 $(1)\Rightarrow (2)$: положим $m=\mathrm{lcm}(L(f_1),L(f_2))=m_1\cdot L(f_1)=m_2\cdot L(f_2).$ Тогда

$$m_1 \cdot f_1 \stackrel{f_1}{\to} m_1 \cdot f_1 - m_1 \cdot f_1 = 0$$

$$m_1 \cdot f_1 \stackrel{f_2}{\to} m_1 \cdot f_1 - m_2 \cdot f_2 = S(f_1, f_2) \stackrel{F}{\leadsto} r_0$$

Поскольку остаток определен однозначно $\Rightarrow S(f_1, f_2) \stackrel{F}{\leadsto} 0.$

 $(2)\Rightarrow (1)$: пусть $g\in R, m_1, m_2\in M(g)$ и мы сделали элементарные редукции m_1 при помощи $f_1\in F$ и m_2 при помощи $f_2\in F$.

$$m_1 = m'_1 \cdot L(f_1), \quad m_2 = m'_2 \cdot L(f_2)$$

$$g \xrightarrow{f_1} g_1 = g - m'_1 \cdot f_1$$

$$g \xrightarrow{f_2} g_2 = g - m'_2 \cdot f_2$$

Теперь достаточно показать, что $g_1 - g_2 = m_2' \cdot f_2 - m_1' \cdot f_1 \stackrel{F}{\leadsto} 0.$

 $\mathit{Случай}$ 1: $L(m_2' \cdot f_2)$ и $L(m_1' \cdot f_1)$ не пропорциональны.

$$m_2' \cdot f_2 - m_1' \cdot f_1 \stackrel{f_2}{\rightarrow} -m_1' \cdot f_1 \stackrel{f_1}{\rightarrow} 0$$

 $\mathit{Случай}\ 2{:}\ L(m_2'\cdot f_2)=L(m_1'\cdot f_1).$ Тогда $\exists m\in M$ такой, что

$$m_2' \cdot f_2 - m_1' \cdot f_1 = m \cdot S(f_1, f_2) \stackrel{F}{\leadsto} 0$$

Случай 3: $L(m_2'\cdot f_2)=\alpha\cdot L(m_1'\cdot f_1)$ при $\alpha\neq 1$. Тогда

$$L(m_2' \cdot f_2 - m_1' \cdot f_1) = (\alpha - 1) \cdot L(m_1' \cdot f_1)$$

 $\Rightarrow m_2' \cdot f_2 - m_1' \cdot f_1 \stackrel{f_1}{\to} m_2' \cdot f_2 - m_1' \cdot f_1 - (\alpha - 1) \cdot m_1' \cdot f_1 = m_2' \cdot f_2 - \alpha \cdot m_1' \cdot f_1$ $L(m_2' \cdot f_2) = L(\alpha \cdot m_1' \cdot f_1) \Rightarrow$ попали в случай 2.

7.2 Базис Грёбнера идеала, теорема о трёх эквивалентных условиях

Определение.

Множество $F\subseteq R\setminus\{0\}$ называется базисом Грёбнера идеала I, если I=(F) и F – система Грёбнера.

Теорема.

Пусть $F\subseteq I\setminus\{0\}\Rightarrow$ следующие условия эквивалентны:

- (1) F базис Грёбнера в I
- $(2) \ \forall g \in I : g \stackrel{F}{\leadsto} 0$
- (3) $\forall g \in I \setminus \{0\}: \exists f \in F: L(g) : L(f)$

Доказательство.

$$(1) \Rightarrow (2): I_0 = \left\{ g \in I \mid g \stackrel{F}{\leadsto} 0 \right\} \subseteq I$$

1) $0 \in I_0$

 $oldsymbol{\cdot}$

- 2) $g \in I_0 \Rightarrow -g \in I_0$
- 3) $g_1, g_2 \in I_0 \Rightarrow g_1 + g_2 \in I_0$

Пусть $g=(g_1+g_2)-g_2 \overset{F}{\leadsto} 0 \Rightarrow \exists$ остаток r такой, что

$$\begin{cases} g_1 + g_2 \stackrel{F}{\leadsto} r \\ g_2 \stackrel{F}{\leadsto} r \end{cases} \Rightarrow g_1 + g_2 \stackrel{F}{\leadsto} 0$$

- 4) $g \in I_0 \Rightarrow \forall m \in R : m \cdot g \in I_0$
- 1) 3) $\Rightarrow I_0$ подгруппа по сложению в I
- 3) 4) \Rightarrow I_0 идеал в R. $F \subseteq I_0 \Rightarrow I = (F) \subseteq I_0 \Rightarrow I = I_0$
- $(2) \Rightarrow (1)$:

$$g \in I \Rightarrow g \stackrel{F}{\leadsto} 0 \Rightarrow g = m_1 \cdot f_1 + \ldots + m_k \cdot f_k$$

где $m_1, \ldots, m_k \in M$ и $f_1, \ldots, f_k \in F$.

 $\Rightarrow g \in (F) \Rightarrow I \subseteq (F)$. Ho $F \subseteq I \Rightarrow I = (F)$.

Пусть $f_1,f_2\in F\Rightarrow S(f_1,f_2)\in (F)=I\Rightarrow S(f_1,f_2)\overset{F}{\leadsto}0\Rightarrow F$ – система Грёбнера

- $(2)\Rightarrow (3)$: $\forall g\in I$: $g\overset{F}{\leadsto}0\Rightarrow$ в соответствующей цепочке элементарных редукций есть одна, примененная к $L(g)\Rightarrow \exists f\in F$: L(g) \vdots L(f).
 - $(3) \Rightarrow (2)$: $g \in I$, $g \stackrel{F}{\leadsto} r$ остаток \Rightarrow

$$r = \underbrace{g}_{\in I} - \underbrace{m_1 \cdot f_1 - \ldots - m_k \cdot f_k}_{\in I}$$
, где $m_i \in M, f_i \in F$

 $\Rightarrow r \in I$. Если $r \neq 0 \Rightarrow \exists f \in F \text{: } L(r) \ \vdots \ L(f) \Rightarrow r$ можно редуцировать дальше – противоречие $\Rightarrow r = 0$.

•

7.3 Решение задачи вхождения многочлена в идеал

F – базис Грёбнера в $I \Rightarrow$

- (1) $\forall q \in I$ любая цепочка элементарных редукций относительно F приводит к нулю
- (2) $\forall g \in R : g \in I \Leftrightarrow$ остаток относительно F равен нулю

7.4 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится ни на один из предыдущих

<u>Лемма.</u>

Не существует бесконечная последовательность одночленов m_1, m_2, \ldots такая, что $\forall i > j$: $m_i \not \mid m_j$.

Доказательство.

Индукция по n (число переменных).

n=1: степени убывают \Rightarrow конечна.

Пусть доказано для < n, докажем для n.

Пусть есть бесконечная последовательность $m_1, m_2, \ldots m_i \not \mid m_i$ при i > j

$$m_i = a_i x_1^{k_1(i)} \cdot \ldots \cdot x_n^{k_n(i)}$$

Тогда $\forall j \geqslant 2 \colon m_j \not \mid m_1 \Rightarrow \exists i \in \{1, \dots, n\}$ такой, что $k_i(j) < k_i(1)$.

 $\Rightarrow \exists i \in \{1,\ldots,n\}$ такой, что $k_i(j) < k_i(1)$ для бесконечного числа значений j.

Без ограничений общности считаем, что i=n. Перейдя к подпоследовательности можно считать, что $\forall j \geqslant 2$: $k_n(j) < k_n(1)$.

Тогда $k_n(j)$ принимает лишь конечное число значений \Rightarrow какой-то из этих значений встречается бесконечно много раз, значит он не влияет на результат.

Снова перейдя к подпоследовательности, можно считать $k_n(1) = k_n(2) = \dots$

Полагая $x_n=1$, получаем последовательность из x_1,\ldots,x_{n-1} с тем же свойством – противоречие.

•

7.5 Теорема Гильберта о базисе идеала

Теорема.

Всякий идеал в R порождается конечным числом элементов.

Доказательство.

 $I \triangleleft R$. Если $I = \{0\} \Rightarrow I = (0)$ – ОК.

 $I \neq \{0\}$. Выберем $r_1 \in I \setminus \{0\}$. Если $I = (r_1)$ – ОК.

Иначе выберем $f_2 \in I \setminus (r_1), f_2 \overset{\{r_1\}}{\leadsto} r_2$ – остаток. Тогда $r_2 \in I \setminus (r_1), L(r_2) \not L(r_1)$. Если $I = (r_1, r_2)$ – ОК, иначе продолжаем процесс.

Если процесс не закончится, то получим бесконечную последовательность r_1, \ldots такую, что $\forall i > j \colon L(r_i) \not \mid L(r_i) -$ противоречие.

$oldsymbol{\cdot}$

7.6 Алгоритм Бухбергера построения базиса Грёбнера идеала

Дано:
$$I = (F)$$
, где $F = \{f_1, \dots, f_k\}$.

Перебираем все пары i < j. Если $\exists i < j$ такой, что $S(f_i, f_j) \stackrel{F}{\leadsto} r_1 \neq 0$, то добавляем r_1 в F и повторяем процедуру для $F \cup \{r_1\}$.

Алгоритм закончится за конечное число шагов $\Rightarrow F$ – система Грёбнера по критерию Бухбергера $\Rightarrow F$ – базис Грёбера в I.

7.7 Редуцируемость к нулю S-многочлена двух многочленов с взаимно простыми старшими членами

Предложение.

Пусть
$$f_1, f_2 \in R \setminus \{0\}, \gcd(L(f_1), L(f_2)) = 1 \Rightarrow S(f_1, f_2) \stackrel{\{f_1, f_2\}}{\leadsto} 0.$$

Доказательство.

Пусть $g \in (f_1, f_2)$ и $g = h_1 f_1 + h_2 f_2$, где $h_1, h_2 \in R$.

Покажем, что L(g) : $L(f_1)$ или L(g) : $L(f_2)$. Пусть не так.

Тогда $L(h_1f_1) = -L(h_2f_2)$, то есть они сократились.

 $L(h_1)=L(f_2)\cdot m$ и $L(h_2)=-L(f_1)\cdot m$, где $m\in M$.

Положим $h'_1 = h_1 - f_2 m$ и $h'_2 = h_2 + f_1 m$.

Имеем $g=h_1'f_1+h_2'f_2$ и $L(h_1'f_1)=-L(h_2'f_2)$. Повторяя процедуру, получим бесконечную цепочку равенств, причем $L(h_1)\succ L(h_1')\succ\ldots$ – противоречие.

•

8 Лекция №8

Лекция 27.05.2020

8.1 Поля

Знакомые нам поля: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p (p – простое), K[x]/h (k – поле, h – неприводимый многочлен).

8.2 Характеристика поля

Определение.

Характеристика поля K – это наименьшее $p\in\mathbb{N}$ такое, что $\underbrace{1+1+\ldots+1}_p=0.$

Обозначение: $\operatorname{char} K$

Пример

$$\operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$$
, $\operatorname{char} \mathbb{Z}_p = p$.

Предложение.

K – поле \Rightarrow char K=0 или char K – простое число.

Доказательство.

Пусть char K=p, где $p\geqslant 2$, так как в полях выполнено условие $0\neq 1$.

Если p = mk, где m, k < p, то

$$0 = \underbrace{1 + \ldots + 1}_{mk} = \underbrace{(1 + \ldots + 1)}_{m} \underbrace{(1 + \ldots + 1)}_{k} = 0$$

Так как

$$\underbrace{(1+\ldots+1)}_m \neq 0 \ \mathsf{u} \ \underbrace{(1+\ldots+1)}_k \neq 0$$

 \Rightarrow в Kесть делители нуля – противоречие $\Rightarrow p$ – простое.

8.3 Расширение полей, его степень

Определение.

K,F – поля, $K\subseteq F$ называется расширением поля K ($K\subseteq F$ – расширением полей).

Определение.

Степень расширения полей $K\subseteq F$ – это размерность F как векторного пространства над K. То есть элементы F представляются в виде линейной комбинации элементов с коэффициентами из K.

Обозначение: [F:K].

Пример.

$$\overline{[\mathbb{C}:\mathbb{R}]} = 2: \binom{a}{b} \in K \leadsto a + bi \in F.$$

 $[\mathbb{R}:\mathbb{Q}]=\infty$ (иррациональные числа, например, не представимы).

Определение.

Расширение полей $K\subseteq F$ называется конечным, если $[F:K]<\infty.$

lacksquare

8.4 Степень композиции двух расширений

Лемма.

Пусть $K\subseteq F$, $F\subseteq L$ – конечные расширения полей.

Тогда $K \subseteq L$ – тоже расширение, причём $[L:K] = [L:F] \cdot [F:K]$.

Доказательство.

Пусть e_1, \ldots, e_n – базис F над K и f_1, \ldots, f_m – базис L над F.

Покажем, что $\{e_i \cdot f_j\}$ – базис L над K.

(1)

$$a\in L\Rightarrow a=\sum_{j=1}^m \alpha_j\cdot f_j,$$
 где $\alpha_j\in K: \alpha_j=\sum_{i=n}^n \beta_{ij}\cdot e_i,$ где $\beta_{ij}\in K$

$$\Rightarrow a = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \beta_{ij} \cdot e_i f_j \right) \Rightarrow L = \langle e_i f_j \rangle$$

(2) Если

$$\sum_{j=1}^m \sum_{i=1}^n \gamma_{ij} \cdot e_i f_j = 0, \text{ где } \gamma_{ij} \in K, \text{ то } \sum_{j=1}^m \left(\sum_{i=1}^n \gamma_{ij} \cdot e_i\right) f_j = 0$$

 $\{f_i\}$ – базис L над $F \Rightarrow$

$$\forall j : \sum_{i=1}^{n} \gamma_{ij} \cdot e_i = 0$$

 $\{e_i\}$ – базис F над $K\Rightarrow \forall i,j: \gamma_{ij}=0.$ То есть система $\{e_if_j\}$ линейно независима.

 \Box

8.5 Присоединение корня неприводимого многочлена

K – поле, $h = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \ldots + \alpha_1 x + \alpha_0 \in K[x]$, deg h = n.

Если h неприводим, то $F:={}^{K[x]}\!\!/_{(h)}$ – поле, где $K\subseteq F$ и [F:K]=n.

Обозначим $\forall f \in K \leadsto \bar{f} := f + (h) \in F$.

Предложение.

Элемент \bar{x} является корнем многочлена $h \in F$.

Доказательство.

$$h(\bar{x}) = \alpha_n \bar{x}^n + \alpha_{n-1} \bar{x}^{n-1} + \ldots + \alpha_1 \bar{x} + \alpha_0 = \bar{h} = \bar{0} \text{ (B } F)$$

Определение.

Переход от K к F называется присоединением корня неприводимого многочлена h.

8.6 Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители

Следствие.

 $\forall f \in K[x], \deg f \geqslant 1$: существует конечное расширение $K \subseteq F$ такое, что f имеет корень в F. Доказательство.

Достаточно взять F = K[x]/(h), где h – неприводимый делитель f.

Следствие.

 $\forall f \in K[x], \deg f \geqslant 1$: существует конечное расширение $K \subseteq F$ такое, что f разлагается на линейные множители над F.

Доказательство.

Предыдущее следствие, теорема Безу и индукция по $\deg f$.

•

•

8.7 Алгебраические и трансцендентные элементы

Пусть $K \subseteq F$ – расширение полей.

Определение.

Элементы $\alpha \in F$ называются алгебраическими над k, если $\exists f \in K[x], \deg f \geqslant 1$ такой, что $f(\alpha) = 0$, и трансцендентным иначе.

Пример.

 $\sqrt{2} \in \mathbb{R} \leadsto x^2 - 1 \in \mathbb{Q}[x], \sqrt[3]{3} \leadsto x^3 - 3.$

 $i\in\mathbb{C}$ – алгебраический над \mathbb{Q} : x^2+1 .

e, π – трансцендентные числа над \mathbb{Q} .

8.8 Минимальный многочлен алгебраического элемента и его свойства

Определение.

Минимальным многочленом элемента $\alpha \in F$, алгебраическим над K, называется такой $h \in K[x]$, $\deg h \geqslant 1$, что $h(\alpha) = 0$ и h имеет наименьшую степень.

Лемма.

Пусть $K\subseteq F$ – расширение полей, $\alpha\in F$ – элемент, алгебраический над K, и $h\in K[x]$ – его минимальный многочлен. Тогда:

- (1) h определён однозначно с точностью до пропорциональности
- (2) для всякого $f \in K[x]$ имеем $f(\alpha) = 0 \Leftrightarrow f : h$
- (3) h неприводим над K

Доказательство.

Положим $I := \{ f \in K[x] \mid f(\alpha) = 0 \}$. Тогда I идеал в K[x].

Так как K[x] – кольцо главных идеалов, то $\exists g \in I : I = (g).$

Тогда $h(\alpha) = 0 \Rightarrow h \in I \Rightarrow h \vdots g$.

h пропорционален g в силу минимальности \Rightarrow условия (1) и (2).

(3): Если h приводим, значит найдётся многочлен h': $\deg h' < \deg h$ и $h'(\alpha) = 0$ – противоречие.

•

8.9 Поле, порождённое алгебраическим элементом

Пусть $K\subseteq F$, $\alpha\in F$ – элемент, алгебраический над K, h_{α} – минимальный многочлен для α . Положим $K(\alpha):=$ пересечение всех подполей в F, содержащих K и $\alpha=$ наименьшее подполе в F, содержащее K и α .

Замечание.

$$K(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \mid f, g \in K[x], g(\alpha) \neq 0 \right\}$$

Предложение.

Существует изоморфизм ψ : $K[x]/(h_{\alpha}) \simeq K(\alpha)$ такой, что $\psi(\bar{x}) = \alpha$.

Доказательство.

Рассмотрим гомоморфизм φ : $K[x] \to F$, $f \mapsto f(\alpha)$.

Тогда $\ker \varphi = (h_\alpha)$ по (2) пункту из леммы \Rightarrow по теореме о гомоморфизме для колец получается изоморфизм

$$\psi: {}^{K[x]}\!/_{(h_\alpha)} \simeq \operatorname{Im} \varphi,$$
 где $\psi(\bar{x}) = \varphi(\bar{x}) = \alpha$

Так как $K[x]/(h_{\alpha})$ – поле, то $\operatorname{Im} \varphi$ – подполе в $F, K \in \operatorname{Im} \varphi, \alpha = \psi(\bar{x}) \in \operatorname{Im} \varphi \Rightarrow K(\alpha) \subseteq \operatorname{Im} \varphi$.

С другой стороны ${\rm Im}\, \varphi=\big\{f(\alpha)\ \big| f\in K[x]\big\}$ – содержится в любом поле, содержащим $\alpha\Rightarrow {\rm Im}\, \varphi\subseteq K(\alpha).$

Следствие.

 $\forall y \in K(\alpha)$ единственным образом представим в виде

$$y = \beta_0 + \beta_1 \alpha + \ldots + \beta_{n-1} \alpha^{n-1}$$
, где $\beta_i \in K$

8.10 Порядок конечного поля

Пусть K – конечное поле, тогда $\operatorname{char} K = p > 0$ – простое число.

Пусть $\langle 1 \rangle \subseteq K$ – подгруппа по сложению, порожденная 1. Заметим, что $\langle 1 \rangle$ – подкольцо, изоморфное $\mathbb{Z}_p \Rightarrow \langle 1 \rangle$ – поле, изоморфное \mathbb{Z}_p .

Далее отождествляем $\langle 1 \rangle$ с \mathbb{Z}_p , то есть $\mathbb{Z}_p \in K$.

Теорема.

$$\overline{|K|} = p^n$$
, где $n = \dim_{\mathbb{Z}_p} K$.

Доказательство.

 $\mathbb{Z}_p \subseteq K \Rightarrow K$ векторное пространство над \mathbb{Z}_p .

Пусть $n=\dim \mathbb{Z}_p K$. Выберем базис e_1,\ldots,e_n в K над \mathbb{Z}_p . Тогда

$$K = \left\{ a_1 e_1 + \ldots + a_n e_n \mid a_i \in \mathbb{Z}_p \right\}$$

Для всех a_i есть ровно p вариантов $\Rightarrow |K| = p^n$.

8.11 Общая конструкция конечных полей

Выбираем неприводимый многочлен $h \in \mathbb{Z}_p[x]$, $\deg h = n$. Тогда $F := \mathbb{Z}_p[x]/(h)$ – поле, векторное пространство над \mathbb{Z}_p размерности $n \Rightarrow |F| = p^n$.

•

8.12 Поле из четырёх элементов

 $4=2^2$ – выбираем неприводимый многочлен степени 2 из поля $\mathbb{Z}_2.$

$$h = x^2 + x + 1 \in \mathbb{Z}_2[x] \Rightarrow F = \mathbb{Z}_{p/(h)}$$

F – векторное пространство над \mathbb{Z}_2 с базисом $\bar{1},\bar{x}\Rightarrow$

$$F = \{\bar{0}, \bar{1}, \bar{x}, \bar{x} + \bar{1}\}$$

С операциями +: по модулю 2, ×: умножить многочлены и понизить степень по правилу $\bar{x}^2 = \bar{x} + \bar{1}$.