

Animaplano 01 Matemáticas 7°

Prof: Silvia Malaver *

Nombre:	Curso:	Fecha:	

Un animaplano consiste de un cuestionario y un plano en el que se ubican las respuestas a las preguntas en su orden.

Cuestionario

1	Γ_n	grados.	1.	mitad	4.	1110	án mula	noato
Ι.	Ŀn	grados.	ıа	mitad	ae	un	anguio	recto

9	Resuelva	9^4	_
Z.	nesueiva	4	=

16. Reste
$$3^2$$
, a $\sqrt{10000}$ =

3. Reste
$$\sqrt{9}$$
, a la mitad de 30 =

17.
$$200 - 107$$

4. Halle
$$\sqrt{25} \times \sqrt{25} =$$

18.
$$3 \operatorname{docenas} + 3 \operatorname{decenas} =$$

19.
$$100 - (7 \times 2) =$$

6. Halle 4!, (Nota:
$$4! = 4 \cdot 3 \cdot 2 \cdot 1$$
)

20. Reste 6, al doble de
$$50 =$$

7. Reste
$$3^2$$
, al cuádruple de $10 =$

21. Sume
$$(9 \times 9) + (18 \div 3) =$$

22.
$$1/2$$
 centena + 6 unidades = u

23. Represente LXVII
$$=$$

10. Resuelva
$$50 - (6 \times 3) =$$

24. Halle
$$10^2 - \sqrt{9} =$$

11. Sume
$$15^0$$
, al triple de $20 =$

25. Resuelva
$$8^2 + \sqrt{16} =$$

26. Sume
$$40 + (2^2)^2 =$$

13.
$$11 + 11 + 11 + 11 =$$

14. Reste
$$2^3$$
, al cuádruple de $15 =$

28.
$$(9 \times 9) + 2^3 =$$

15. Halle
$$9^2 - \sqrt{100} =$$

29. Resuelva
$$7^2 \times 12^0 =$$

30. 3 docenas + 2 decenas =

33. Si
$$2m + 8 = 60$$
, entonces $m =$

31. El triple de $4^2 =$

32. Halle
$$7 \times 2^2 =$$

34. El
$$50\%$$
 de $90 =$

Así que empezamos con la pregunta número uno y su respuesta será un número entre 1 y 100. Luego respondemos la pregunta número dos y su respuesta (entre 1-100) se debe conectar por medio de un segmento de recta con la respuesta de la pregunta número uno.

Así al final lograremos un gráfico que puede llegar a ser curiosos; un animal, un objeto, etc.

Animaplano

1.	2.	3	4.	5	6	7	8	9	10	
11 ·	٠	•	٠	•	٠	٠	٠	•	•	
21 ·	•	•	•	•	•		•	•	•	
31 ·	•	•	•	•	•		•	•	•	
41 ·		•		•				•	• 50	
51·	•	•	•	•	•		•	•	•	
61 ·		•		•				•	•	
71 ·	•	•	•		•	•		•	•	
81 ·	•	•	•	•	•	•		•	•	
91 ·	•	•	•	•	•	•	•	•	• 100	

^{*}Por Germán Avendaño Ramírez, Lic. Mat. U.D., M.Sc. U.N.