Name: Student Id#

QUESTIONS

(20pt)

- 1. Two intrinsic silicon samples are tested at room temperature, T=300K, and T=X. The Fermi level at room temepreature is determined to be 0.1eV below the Fermi level measured at T=X
 - a. Calculate temperature X
 - b. What is the ratio of hole concentartions in both temperatures
 - c. In order to achieve the same hole density by doping, how much and what type dopant per cm³ should be added?
- 2. The effective mass of holes in a particular semiconductor is 10x larger than the effective mass of electrons at room temperature. If the bandgap of the semiconductor is 1.5eV and the intrinsic carrier concentration is 10⁵ cm⁻³, where is the Fermi level located with respect to the conduction band? Calculate to impurity concentration which is required to make this semiconductor p type with 0.2eV shifted Fermi level.

(20pt)

- 3. The mobility of holes in silicon drops linearly from 420 cm²/V-s to 300 cm²/V-s at room temperature when impurity level is increased from 10¹⁵ to 10¹⁷. When 5V is applied to a 1cm long cylindrical p-type silicon rod with 0.1mm diameter how much current would be drawn from the source if the doping concentrations are $N_d = 10^{13}$ and $N_a = 0.5x10^{17}$ cm⁻³. In the same semiconductor, an excess hole concentration of $p(x) = 10^{17} e^{-x/L_p}$ is created by an external excitation. Electron and hole recombination times are 0.2µs and 0.5µs, respectively. Calculate the total hole diffusion current passing through x=0 point (the front end) in the absence of the external voltage source.
- 4. A piece of silicon with 10¹⁶ cm⁻³ donor density forms a metallurgical junction with another piece of silicon (20pt) where acceptor density is 10¹⁵ cm⁻³. Calculate:
 - a. Carrier concentrations and location of Fermi level before they form a junction at thermal equilibrium at 300K
 - b. Calculate the width of the space charge region, built in voltage, total charge density at x<- x_0 , $x_p < x < 0 < x < x_n$, $x > x_n$ and maximum electric field.
 - c. Draw the band diagram and indicate your findings on the band diagram clearly.

(4 pt)

- 5. A p-n junction silicon diode has a cross sectional area of $10^5 \mu m^2$ and operating at room temperature. (20pt) Majority carrier concentrations in p and n regions at thermal equilibrium are given as 8x10¹⁵ and 1x10¹⁶ cm⁻³, respectively. Minority carrier lifetimes and diffusion constants in n and p regions are 0.1µs, 1µs, 8cm²/s and 23cm²/s, respectively. Calculate
 - a. Reverse saturation current of this diode
 - b. The total number of excess electron distribution in p region under 0.5V forward bias voltage
 - c. Total electron densities at $x=-x_p-1\mu m$ under 0.5V forward bias voltage
 - d. Total electron and hole currents passing through x=-x_p-1μm under 0.5V forward bias voltage
 - 6. What are the commonly used acceptors and donors in silicon? (4pt bonus question. 1pt per element).

h =
$$6.626 \times 10^{-34}$$
 J-s
m₀ = 9.11×10^{-31} kg
 $\in_0 = 8.85 \times 10^{-14}$ F/cm

k =
$$1.38 \times 10^{-23}$$
 J/K
1eV = 1.6×10^{-19} J
 $m_n^* / m_0 = 1.08$ in Si

 $E_{g-Si} = 1.12 \text{ eV}$

University of California, Irvine

EECS-170A Midterm Exam November 14th, 2007 4:00-5:20PM

Name:

Student Id#

$$\in_{Si}$$
=11.7x \in_0

$$m_p^* \, / \, m_0 = 0.56 \, \mathrm{in} \, \, \mathrm{Si}$$