The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Shiwei Liu1, Tianlong Chen2, Xiaohan Chen2, Li Shen3 Decebal Constantin Mocanu1,4, Zhangyang Wang2, Mykola Pechenizkiy1,

발표자: 문규식

Index

1. Terminology

- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Terminology (1)

- Dense model
 - 모든 weight가 학습에 참여하는 fully-connected model
 - Pruning이 적용되지 않은 기본 형태의 신경망
- Pruning
 - Model의 weight의 일부를 제거하거나 0으로 만들어 model의 연산량 과 메모리 사용량을 줄이는 과정

Terminology (2)

- Sparsity
 - 신경망의 weight 중 0인 값의 비율
- Sparse model
 - 전체 weight 중 상당수가 0으로 설정된 model
 - "상당수"의 기준은 실험 목적과 context에 따라 다름
 - 일반적으로 80%의 sparsity

Densely Connected

Index

- 1. Terminology
- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Overview (1)

 Without importance-based pruning, random pruning at initialization enables strong sparse training

- Key findings
 - 1. Network size matters
 - As networks grow wider and deeper, random pruning becomes more effective
 - 2. Appropriate layer-wise sparsity ratios
 - Pre-defined layer-wise sparsity ratios boosts performance

Overview (2)

- Outperform dense models in
 - Accuracy
 - Out-of-distribution (OoD) detection
 - Detecting inputs outside the training distribution
 - Uncertainty
 - Reflecting how confident the model is in its prediction
 - Robustness
 - Withstanding noisy or perturbed inputs while maintaining correct predictions

Index

- 1. Terminology
- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Motivation

- Deep learning has led to larger and over-parameterized networks
 - These model achieved high performance
 - But require heavy computational and memory costs
- Sparsity and model compression are now key to efficiency

Limitations of Existing Approaches

- Complex and costly pruning techniques
 - Depend on importance-based criteria
 - Require extra computation and multiple passes over the data
- During or after training pruning
 - Improve inference
 - Does not reduce training cost

Index

- 1. Terminology
- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Categorizing Pruning (1)

- Pruning Granularity
 - 1. Unstructured pruning
 - 개별 weight 각각을 제거하는 방식
 - 2. Structured pruning
 - Neuron, channel, filter, layer 등 structure 단위로 제거하는 방식
 - 3. Semi-structured pruning
 - Weight를 block 단위나 pattern으로 제거하는 방식

Categorizing Pruning (2)

- Pruning Scenario
 - 1. After training
 - 2. During training
 - 3. Before training
 - 1. Static sparse training (✓)
 - 학습 시작 전 생성된 mask를 사용하여 처음부터 끝까지 동일한 구조로 학습
 - 2. Dynamic sparse training
 - 학습 도중 mask를 변경하면서 구조를 점진적으로 조정하며 학습

Random Pruning (1)

- Remove weights randomly, without computing importance scores
- Key characteristics
 - No importance scores
 - Simple and light weight
 - Does not require additional heuristics or ranking
 - Applicable at various stage
 - Can be applied before, during or after training

Random Pruning (2)

- In this paper
 - Layer-wise sparsity ratios are pre-defined
 - Within each layer, weights are randomly pruned to match the target ratio

Sparsity of Layer A: 0.33

Index

- 1. Terminology
- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Random Pruning in This Paper

- Random pruning
 - Removes weights or filters in each layer randomly to target sparsity
 - Layer-wise sparsity are pre-defined before training
- Pre-defined layer-wise sparsity ratio
 - Originally designed for:
 - Controlling layer-wise sparsity in importance-based pruning
 - Why it can be used for random pruning:
 - The sparsity ratio is defined independently of importance scores
 - It can be pre-determined based on layer structure

6 Layer-Wise Sparsity Ratios (1)

- 6 layer-wise sparsity ratios
 - 1. ERK
 - 2. ERK+
 - 3. Uniform
 - 4. Uniform+
 - 5. SNIP ratio
 - 6. GraSP ratio

6 Layer-Wise Sparsity Ratio (2)

1. ERK

• Layer의 크기가 클수록 더 높은 sparsity를 가지도록 설계된 기법

2. ERK+

- ERK를 수정한 기법
- Last fully-connected layer를 dense로 유지
- Last layer 대신 다른 layer에서 더 pruning을 하여 전체 sparsity를 맞춤
- Why?
 - 일반적으로 마지막 fully-connected layer는 accuracy에 영향을 많이 주는 layer

6 Layer-Wise Sparsity Ratio (3)

- 3. Uniform
 - 모든 layer에 동일한 sparsity 적용한 기법
- 4. Uniform+
 - Uniform 기법에 exception 추가
 - First convolutional layer는 dense로 유지 (Sparsity 0%)
 - Last fully-connected layer는 minimum 20%의 parameter를 유지

6 Layer-Wise Sparsity Ratio (4)

5. SNIP ratio

- Not designed for random pruning
- Pruning-at-Initialization (Pal) 기법 중 하나
- $|g \odot w|$ 의 절대값이 낮은 weight를 제거
 - g: Network weight
 - w: Network gradient
 - ①: 같은 크기의 두 vector나 matrix의 element끼리 곱하는 operation
- Training 전에 한 번의 iteration만으로 weight를 제거
- SNIP가 생성한 layer-wise sparsity 비율만을 체택
 - 어떤 weight를 제거할지 나타내는 mask는 버림
 - Random pruning을 위한 mask는 무작위로 생성

6 Layer-Wise Sparsity Ratio (5)

- 6. GraSP ratio
 - Pruning at Initialization (Pal) 기법 중 하나
 - 각 weight가 gradient norm에 미치는 영향을 평가
 - Gradient norm: 손실 함수의 변화량
 - $-w \odot H_g$: Weight의 중요도를 계산하는 score
 - w: Weight
 - g: gradient
 - H: Hessian
 - H_g : 2차 정보가 반영된 gradient
 - GraSP ratio가 생성한 layer-wise sparsity 비율만을 체택
 - Random pruning을 위한 mask는 무작위로 생성

Index

- 1. Terminology
- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Experiments Settings

Table 1: Summary of the architectures, datasets and hyperparameters used in this paper.

Model	Mode	Data	#Epoch	Batch Size	LR	Momentum	LR Decay, Epoch	Weight Decay
ResNets	Dense	CIFAR-10/100	160	128	0.1	0.9	10×, [80, 120]	0.0005
	Sparse	CIFAR-10/100	160	128	0.1	0.9	10×, [80, 120]	0.0005
Wide ResNets	Dense	ImageNet	90	192*4	0.4	0.9	10×, [30, 60, 80]	0.0001
	Sparse	ImageNet	100	192*4	0.4	0.9	10×, [30, 60, 90]	0.0001

Models

- ResNet
 - Network가 깊어질수록 발생하는 gradient vanishing 문제를 해결한 model
 - Input 값을 skip connection을 통해 직접 다음 layer에 더해줌
 - 100층 이상의 network도 안정적으로 학습 가능
- Wide ResNet
 - ResNet의 너비를 늘린 version
 - Layer의 수를 줄이고, channel의 수를 늘려 연산의 병렬화와 효율 향상
 - 성능은 비슷하거나 더 좋고 학습 속도는 훨씬 빠름

Datasets (1)

- CIFAR-10/100
 - 크기: 32 x 32 RGB image
 - Class 수:
 - CIFAR-10: 10개
 - CIFAR-100: 100개
 - Sample 수: 각 class당 6,000개
 - Computer vision 기초 실험용

Datasets (2)

- ImageNet
 - 크기: 대부분 224 x 224 이상의 image
 - Class. 수: 1,000개
 - Sample 수: 약 140만 장
 - 대규모, 복잡한 data

Settings (1)

- Epoch
 - 전체 학습 dataset의 반복 학습 횟수
- Batch size
 - 한 번의 forward/backward 연산에서 처리하는 data 개수
- Learning rate (LR)
 - Model이 weight를 update할 때 얼만큼 이동할지 결정하는 계수

Table 1: Summary of the architectures, datasets and hyperparameters used in this paper.

Model	Mode	Data	#Epoch	Batch Size	LR	Momentum	LR Decay, Epoch	Weight Decay
ResNets	Dense	CIFAR-10/100	160	128	0.1	0.9	$10 \times$, [80, 120]	0.0005
	Sparse	CIFAR-10/100	160	128	0.1	0.9	$10 \times$, [80, 120]	0.0005
Wide ResNets	Dense	ImageNet	90	192*4	0.4	0.9	10×, [30, 60, 80]	0.0001
	Sparse	ImageNet	100	192*4	0.4	0.9	10×, [30, 60, 90]	0.0001

Settings (2)

- Momentum
 - 이전 step의 gradient를 일정 비율반영
 - Oscillation을 줄이고 더 빠르게 수렴하도록 돕는 계수
- LR Decay Schedule
 - 학습 중 learning rate를 줄이는 시점과 방식
- Weight Decay
 - Weight가 너무 커지는 것을 방지하는 정규화 기법

Table 1: Summary of the architectures, datasets and hyperparameters used in this paper.

Model	Mode	Data	#Epoch	Batch Size	LR	Momentum	LR Decay, Epoch	Weight Decay
ResNets	Dense	CIFAR-10/100	160	128	0.1	0.9	$10 \times$, [80, 120]	0.0005
	Sparse	CIFAR-10/100	160	128	0.1	0.9	$10 \times$, [80, 120]	0.0005
Wide ResNets	Dense	ImageNet	90	192*4	0.4	0.9	10×, [30, 60, 80]	0.0001
	Sparse	ImageNet	100	192*4	0.4	0.9	10×, [30, 60, 90]	0.0001

Measurement Metrics

- Out-of-Distribution (OoD)
 - Model이 학습 data와 다른 분포의 input을 감지하는 정도
- Adversarial robustness
 - Noise가 추가되었을 때도 model이 잘 예측하는 정도
- Uncertainty estimation
 - Model이 자신의 예측에 대해 가지고 있는 확신을 측정

Main Findings

- Model의 크기가 커질수록
 - 1. Random pruning의 성능 향상
 - 2. Pruning 기법 간의 성능 차이가 줄어듦
- CIFAR-10 실험 (작은 model, data set)
 - ERK 기반 random pruning이 SNIP, GraSP보다 뛰어난 성능을 보일 때도 있음
- ImageNet 실험 (큰 model, data set)
 - SNIP이 ERK 기반 random pruning에 비해 훨씬 좋은 성능을 보임

Main Findings - Depth

- 같은 width이지만 depth를 변경
 - Depth가 커질수록 동일 sparsity에서도 dense model과 유사한 성능을 달성

Figure 1: From shallow to deep. Test accuracy of training randomly pruned subnetworks from scratch with different depth on CIFAR-10. ResNet-A refers to a ResNet model with A layers in total.

Main Findings - Width

- 같은 depth이지만 width를 변경
 - Width가 커질수록 dense model과 비슷하거나 더 높은 accuracy 유지 가능

Figure 2: **From narrow to wide.** Test accuracy of training randomly pruned subnetworks from scratch with different width on CIFAR-10. ResNet-A-B refers to a ResNet model with A layers in total and B filters in the first convolutional layer.

Main Findings – Metrics (1)

- Model이 커질수록 향상
 - Uncertainty estimation
 - OoD detection

Figure 3: **Uncertainty estimation (ECE).** The experiments are conducted with various models on CIFAR-10. Lower ECE values represent better uncertainty estimation.

Figure 4: **Out-of-distribution performance (ROC-AUC).** Experiments are conducted with models trained on CIFAR-10, tested on CIFAR-100. Higher ROC-AUC refers to better OoD performance.

Main Findings – Metrics (2)

- Model이 커질수록 향상
 - Adversarial robustness

Figure 17: **Adversarial robustness.** The experiments are conducted with various models on CIFAR-10. Higher values represent better adversarial robustness.

ERK vs SNIP (1)

- Why SNIP is better than ERK?
 - Gradient flow를 통한 해석
 - Gradient flow: Weight를 바꾸는 gradient가 전달되는 정도
 - Effective gradient norm
 - Gradient flow를 수치로 측정한 것
 - Pruning 후 남아있는 weight에 대해 gradient norm을 측정
 - Gradient가 더 큰 model이 더 높은 accuracy를 가짐
 - 초기 gradient flow가 강할수록 학습이 잘 된다는 기존 주장과 동일
 - Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserving gradient flow. In International Conference on Learning Representations, 2020.

ERK vs SNIP (2)

Why SNIP is better than ERK?

Figure 6: **Gradient norm of randomly pruned networks during training.** *Top:* Comparison between gradient norm of SNIP and ERK with 50% sparse ResNet-20, ResNet-56, and ResNet-110 on CIFAR-10. *Bottom:* Comparison between gradient norm of SNIP and ERK with Wide ResNet-50 on ImageNet at various sparsities.

ERK vs SNIP (3)

Why SNIP is better than ERK?

초기 gradient flow만으로는 학습 성능을 전부 설명은 불가능 on CIFAR-10. Bottom: Comparison between gradient norm of SNIP and ERK with Wide ResNet-50 on ImageNet at various sparsities.

Gradient Flow?

- Gradient는 학습 초반에 상승했다가 감소하여 일정한 수준으로 유지
 - 초기 하락 후 평탄한 시점 (flat phase)
- Flat phase에서의 gradient norm
 - Sparse vs dense model간 성능 차이와 유사하게 움직임
- Flat phase 까지의 gradient까지의 gradient flow를 고려
 - Accuracy의 정확도를 더 잘 예측할 수 있음

Index

- 1. Terminology
- 2. Overview
- 3. Introduction
- 4. Random Pruning
- 5. Methodology
- 6. Experiments
- 7. Conclusion

Conclusion

- Key findings
 - Random pruning
 - 적절한 크기의 모델과 layer-wise sparsity ratio가 있다면 dense model 수준의 성능을 달성할 수 있음
 - 추가 효과
 - OoD detection, uncertainty estimation, adversarial robustness 향상
 - 큰 model일수록 pruning에 대한 robustness가 강하며, random pruning을 사용해도 성능이 유지될 수 있음