Group 12

組員:309551*** 朱○毅

309551*** 王〇憲

309551*** 張玟棋

309553*** 陳〇安

Outline

- 問題描述
- 資料集說明
- 分析流程
- 分析結果
- ●討論

問題描述

DDoS

- DoS:一種嘗試對目標系統(如網站、應用程式等)進行惡意攻擊的 行為,通常,攻擊者會產生大量的封包或請求,最終使得目標系統無 法負荷
- DDoS:第一個D意指「分散式」,即攻擊者會使用多個盜用或受控的來源來產生DoS攻擊

如何防禦DDoS

- 1. 預留頻寛或系統資源,並在達門檻值時對流量進行整體的限制 缺點:會影響正常的使用者
- 2. 找出有問題的IP,並加以過濾問題:要如何找出來?

資料集說明

資料來源

- 來源網站: Kaggle
- 資料集: DDoS Dataset
 - https://www.kaggle.com/devendra416/ddos-datasets

資料集簡述

- 資料大小: 3.84GB
- column數:85,最後1個column為label
 - Source/Destination IP/Port \ Protocol \ Total Forward Packet...
 - o 除了IP和Timestamp之外皆為純數字

分析流程

Preproc	essing	Analysis		Model Training		Test & Evaluation	
 Missing v 	alue	Correlation matrix	•	Naive Bayes	•	Confusion matrix	
 Outliers 	•	Feature selection	•	Logistic Regression		 Accuracy 	
• One-hot e	ncoding		•	SVM		o Precision	
 Timestam 	ıp		•	Random Forest		o Recall	
 Normaliza 	ntion					o F1-score	

Preprocessing

Analysis

Model Training Test & Evaluation

- Missing value
- Timestamp 切割
- **IP** 數值化
- port 作 one-hot encoding
- Normalization

Preprocessing Analysis Model Test & Training Evaluation

• Correlation matrix 分析

• 選擇相關係數高的作為 feature

Src IP	Dst IP	Protocol
Fwd Pkt Len Max	Fwd Pkt Len Mean	Fwd Pkt Len Std
Bwd Pkt Len Min	Pkt Len Min	PSH Flag Cnt
ACK Flag Cnt	CWE Flag Count	Fwd Seg Size Avg
Fwd Seg Size Min	tHour	Src Port_80
Src Port_1025	Dst Port_53	Dst Port_80

Src IP -	-0.44
Dst IP -	-0.29
Protocol -	-0.27
Flow Duration -	-0.12
Tot Fwd Pkts -	-0.02
Tot Bwd Pkts -	-0.01
TotLen Fwd Pkts -	0.03
TotLen Bwd Pkts -	-0.01
Fwd Pkt Len Max -	0.27
Fwd Pkt Len Min -	-0.19
Fwd Pkt Len Mean -	0.30
Fwd Pkt Len Std -	0.41
Bwd Pkt Len Max -	-0.11
Bwd Pkt Len Min -	-0.25
Bwd Pkt Len Mean -	-0.14
Bwd Pkt Len Std -	-0.03
Flow Byts/s -	-0.03
Flow Pkts/s -	-0.05
Flow IAT Mean -	-0.04
Flow IAT Std -	-0.03
Flow IAT Max -	-0.06
Flow IAT Min -	-0.04
Fwd IAT Tot -	-0.15
Fwd IAT Mean -	-0.07
Fwd IAT Std -	-0.10

Analysis

Model Training Test & Evaluation

- Train : Test = 8 : 2
- 根據文獻,選擇效果較好的 model 來訓練
 - Logistic Regression
 - SVM
 - Random Forest
- 另取 Naive Bayes 作為對照組

Preprocessing

Analysis

Model Training Test & Evaluation

Confusion matrix

- Accuracy
- Precision
- Recall
- F1-score

如何應對3V的問題

- VOLUME 資料量
 - 先以1/1000的資料當作input
 - 結果高於目標時才改為使用全部的資料
- VARIETY 資料多元性
 - 取相關係數高的feature,將84個feature降成18個feature
- VELOCITY ─ 資料即時性
 - 固定資料集無即時性

分析結果

Naive Bayes

訓練model的時間:43分7秒

confusion matrix:

TP: 242971	FP: 15775
FN: 122217	TN: 1132225

testing result:

Summary Stats

Accuracy = 0.9087044288379122

Precision = 0.9377000262836469

Recall = 0.6652133855417722

F1 Score = 0.7782960757641865

SVM

● 訓練model的時間:5分鐘29秒

confusion matrix:

TP: 119810	FP: 13517
FN: 9276	TN: 615197

testing result:

Summary Stats

Accuracy = 0.9699221430456585

Precision = 0.8986176843400061

Recall = 0.9281409293029453

F1 Score = 0.9131407361677966

Logistic Regression

● 訓練model的時間:8分鐘24秒

confusion matrix:

TP: 256418	FP: 2906		
FN: 4293	TN: 1249696		

testing result:

```
Summary Stats
```

Accuracy = 0.9952428876247016

Precision = 0.9887939411701192

Recall = 0.9835334911070112

F1 Score = 0.9861567009912794

Random Forest

● 訓練model的時間:39分鐘45秒

confusion matrix:

TP: 255431	FP: 3096
FN : 26	TN: 1254134

testing result:

```
Summary Stats
```

```
Accuracy = 0.9979361229388499

Precision = 0.9880244616616446

Recall = 0.9998982216185112

F1 Score = 0.9939258809612751
```

總比較

	NB	SVM	LR	RF	目標
Accuracy	0.909	0.970	0.995	0.998	0.85
Precision	0.939	0.899	0.988	0.988	0.80
Recall	0.665	0.928	0.983	0.999	0.85
F1-score	0.779	0.913	0.986	0.994	X

討論

如何防禦DDoS

- 利用model進行預測
- 在流量達門檻值時進行預測

資料集

- 是否特徵過於明顯?
 - 證據:根據文獻,Naive Bayes對DDoS問題的處理結果很差

Q&A