Diskrete Mathematik - Übungen SW01

David Jäggli

1. März 2023

Inhaltsverzeichnis

1	Logik	2
2	Prädikate und Quantoren	4
3	Beweise	4

1 Logik

1.)

p	q	$\mid r \mid$	$p \wedge q$	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge r$	$(p \land q) \lor (p \land r)$
W	W	W	W	W	W	W	W
W	w	f	w	w	W	f	w
W	f	w	f	w	W	w	w
W	f	f	f	f	f	f	f
f	w	w	f	W	f	f	f
f	w	f	f	W	f	f	f
f	f	w	f	W	f	f	f
f	f	f	f	f	\mathbf{f}	f	f

Letzte Spalte entspricht der 3. letzten Spalte, wodurch $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ belegt wurde.

I.)

p	q	$p \wedge q$	$p \lor (p \land q)$
W	W	W	W
W	f	f	w
f	w	f	${ m f}$
f	f	f	f

Die letzte Spalte entspricht der ersten Spalte, wodurch $p \vee (p \wedge q) \equiv p$ belegt wurde.

II.)

p	q	$\mid r \mid$	$p \rightarrow q$	$q \rightarrow r$	$p \to r$	$(p \to q) \land (q \to r)$	$(p \to q) \land (q \to r) \to (p \to r)$
W	W	w	W	W	W	W	W
W	W	f	W	f	f	f	W
w	f	w	f	w	W	f	W
W	f	f	f	w	f	f	W
f	w	w	W	w	W	W	W
f	w	f	W	f	W	f	W
f	f	w	W	W	W	W	W
f	f	f	W	W	W	W	W

Die letzte Spalte ist in allen Fällen wahr, wodurch belegt wurde, dass die Aussage eine Tautologie ist.

$$\begin{aligned} &(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r) \\ &\equiv (\neg p \lor q) \land (\neg q \lor r) \rightarrow (\neg p \lor r) \\ &\equiv \neg ((\neg p \lor q) \land (\neg q \lor r)) \lor \neg p \lor r \\ &\equiv \neg (\neg p \lor q) \lor \neg (\neg q \lor r) \lor \neg p \lor r \\ &\equiv p \lor \neg q \lor q \lor \neg r \lor \neg p \lor r \\ &\equiv p \lor \neg p \lor q \lor \neg q \lor r \lor \neg r \\ &\equiv \mathbf{T} \lor \mathbf{T} \lor \mathbf{T} \\ &\equiv \mathbf{T} \end{aligned}$$

IV.)

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$p \land (p \to q)$	$ \mid (p \land (p \to q)) \to \neg p $
W	W	f	f	W	W	W
W	f	f	w	f	f	W
\mathbf{f}	w	w	f	W	f	W
f	f	w	w	W	f	W

Die letzte Spalte ist immer wahr wodurch mit der Tabelle belegt wurde, dass der Ausdruck eine Tautologie ist.

$$\begin{array}{l} (\neg q \wedge (p \rightarrow q)) \rightarrow \neg p \\ \equiv (\neg q \wedge (\neg p \vee q)) \rightarrow \neg p \\ \equiv (\neg q \wedge \neg p \vee \neg q \wedge q) \rightarrow \neg p \\ \equiv (\neg q \wedge \neg p) \rightarrow \neg p \\ \equiv \neg (q \vee p) \rightarrow \neg p \\ \equiv q \vee p \vee \neg p \\ \equiv q \vee \mathbb{T} \\ \equiv \mathbb{T} \end{array}$$

2 Prädikate und Quantoren

V.)

- (a). wahr
- (b). wahr
- (c). falsch
- (d). falsch

Begründung:

- a. ist so weil ist so
- b. bei $n=\frac{2}{3}$ stimmt der Ausdruck \to Aussage ist wahr c. Keine Zahl entspricht ihrem negativen äquivalent
- d. $0.5^2 = 0.25 \rightarrow \text{Aussage ist falsch}$.

Korrektur:

- bei c(n=0) ist stimmt $n = -n \rightarrow Aussage$ ist wahr
- bei d habe ich überlesen, dass $n \in \mathbb{Z}$ sein muss

3 Beweise

VI.)

Wenn diese Aussage wahr ist dann dürfen in keinem Monat mehr als 2 Tage sein. Falls in jedem Monat 2 Meetings stattfinden kämen wir auf 24 Meetings. Das letzte muss aber auch noch irgendwo hin \rightarrow in einem Monat sind 3 Meetings.

VII.)

Ke blasse wimer da hätt uf die Lösig söue cho. Isch aber no gschid.