Analízis 1.

Mit jelent az, hogy a ∈ R torlódási pontja a H ⊂ R halmaznak?

1. Definíció. Azt mondjuk, hogy a $\emptyset \neq H \subset \mathbb{R}$ halmaznak $a \in \mathbb{R}$ torlódási pontja, ha az a minden környezete végtelen sok H-beli elemet tartalmaz, azaz

$$\forall \varepsilon > 0$$
 esetén $K_{\varepsilon}(a) \cap H$ végtelen halmaz.

A H halmaz torlódási pontjainak a halmazát a H' szimbólummal jelöljük.

Környezetek segítségével adja meg a függvényhatárérték egységes definícióját!

2. Definíció. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A).$$

Ekkor A-t a függvény a-beli **határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a} f = A, \qquad \lim_{x \to a} f(x) = A, \qquad f(x) \to A, \quad ha \quad x \to a.$$

Adja meg egyenlőtlenségek segítségével a végesben vett véges határérték definícióját!

Adja meg egyenlőtlenségek segítségével a plusz végtelenben vett véges határérték definícióját!

Írja le a határértékre vonatkozó átviteli elvet!

4. Tétel (Függvényhatárértékre vonatkozó átviteli elv). Legyen $f\in\mathbb{R}\to\mathbb{R}$, $a\in\mathcal{D}_f'$ és $A\in\overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \quad \iff \quad \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \ \lim_{n \to +\infty} x_n = a \quad eset\'{e}n \quad \lim_{n \to +\infty} f(x_n) = A.$$

Hogyan szól a függvények hányadosának a határértékére vonatkozó tétel?

- 6. Tétel (A függvényhatárérték és a műveletek kapcsolata). Tegyük fel, hogy $f,g \in \mathbb{R} \to \mathbb{R}, \ a \in \left(\mathcal{D}_f \cap \mathcal{D}_g\right)'$ és léteznek az $A := \lim_a f \in \overline{\mathbb{R}}, \ B := \lim_a g \in \overline{\mathbb{R}}$ határértékek. Ekkor
 - 1. az f + g összegfüggvénynek is van határértéke a-ban és

$$\lim_{a} (f+g) = \lim_{a} f + \lim_{a} g = A + B,$$

feltéve, hogy az $A + B \in \overline{\mathbb{R}}$ összeg értelmezve van,

2. $az f \cdot g$ szorzatfüggvénynek is van határértéke a-ban és

$$\lim_{a} (f \cdot g) = \lim_{a} f \cdot \lim_{a} g = A \cdot B,$$

feltéve, hogy az $A \cdot B \in \overline{\mathbb{R}}$ szorzat értelmezve van,

 $3. \ az \ f/g \ hányadosfüggvénynek is van határértéke a-ban és$

$$\lim_{a} \frac{f}{g} = \frac{\lim_{a} f}{\lim_{a} g} = \frac{A}{B},$$

feltéve, hogy az $\frac{A}{B} \in \mathbb{R}$ hányados értelmezve van.

Definiálja függvény jobb oldali határértékét!

3. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Tegyük fel, hogy $a \in \mathbb{R}$ és $a \in (\mathcal{D}_f \cap (a, +\infty))'$. Azt mondjuk, hogy az f függvénynek az a helyen (vagy a-ban) van jobb oldali határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ a < x < a + \delta \colon f(x) \in K_{\varepsilon}(A).$$

Ekkor A egyértelmű, és ezt az f függvény a-ban vett **jobb oldali határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a \to 0} f = A,$$
 $\lim_{x \to a+0} f(x) = A,$ $f(a+0) = A.$