calcolo con tipi

Luca Padovani Linguaggi e Paradigmi di Programmazione

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza. Ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

errori di programmazione

- sebbene il λ calcolo sia computazionalmente completo, per ragioni di efficienza, ogni linguaggio di programmazione basato sul λ calcolo deve fornire dati nativi (numeri, valori booleani, caratteri, ecc.) e le corrispondenti operazioni (somma, congiunzione, ecc.)
- non appena si fa ciò, si pone immediatamente il problema di gestire espressioni sintatticamente corrette ma prive di significato (la somma di un numero e di un booleano, la congiunzione logica di due numeri, ecc.)
- ▶ inoltre, questi **errori di programmazione** sono presenti anche nel λ -calcolo pure, dove però sono "nascosti" dal fatto che lì si possono solo definire e applicare funzioni
- usiamo i **tipi** per individuare (alcuni) errori

sintassi delle λ -espressioni con booleani

Estendiamo la sintassi con le costanti booleane e l'if

Estendiamo la semantica con riduzioni per l'if

```
if True M N 	o M if False M N 	o N
```

Molte espressioni sono sintatticamente corrette ma prive di senso

- ▶ if $(\lambda x.x) M N \rightarrow$
 - ► True False →
- **>** ...

tipi

- possiamo individuare questi errori dando un tipo alle espressioni
- un tipo è una forma sintattica di classificazione delle espressioni

Obiettivi

- la forma normale di una espressione di tipo Bool, se esiste, è una costante booleana (False o True)
- ▶ la forma normale di una espressione di tipo $t \rightarrow s$, se esiste, è un'astrazione che, applicata ad una espressione di tipo t, produce una espressione di tipo s

Sintassi dei tipi

giudizi

Giudizio: M è ben tipato e ha tipo t

 $\vdash M:t$

- ▶ in generale *M* conterrà variabili libere
- occorre relativizzare il tipo di M al tipo delle variabili libere di M
- introduciamo contesti per tracciare il tipo delle variabili libere di M

Giudizio: \emph{M} è ben tipato e ha tipo \emph{t} nel contesto Γ

Definizione (contesto)

Un **contesto** Γ è una funzione parziale da variabili a tipi.

Notazione

- Scriviamo dom(Γ) per il dominio di Γ
- Scriviamo x: t per il contesto Γ tale che $dom(Γ) = \{x\}$ e Γ(x) = t
- ► Scriviamo Γ , Γ' per l'unione di Γ e Γ' quando $dom(\Gamma) \cap dom(\Gamma') = \emptyset$

regole di tipo

Forma generale di una regola

[t-var]

$$\frac{premessa_1}{conclusione} \stackrel{premessa_n}{\cdots}$$

"se le premesse sono vere, allora la conclusione è vera"

[t-bool]

una regola senza premesse è detta assioma

Regole di tipo per il λ -calcolo con costanti

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma, x : t \vdash x : t} \qquad \frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

$$\frac{\Gamma, x : t \vdash M : s}{\Gamma \vdash \lambda x. M : t \rightarrow s}$$

[t-lam]

proprietà delle espressioni ben tipate

Lemma (subject reduction)

Se $\Gamma \vdash M : t \in M \rightarrow N$ allora $\Gamma \vdash N : t$.

Definizione (valore)

Diciamo che M è un **valore** se M è una costante o un'astrazione.

Esempi

- \triangleright ($\lambda x.x$) True non è un valore
- ▶ True $(\lambda x.x)$ non è un valore
- if $(\lambda x.x)$ True False non è un valore
- $\triangleright \lambda x.(\lambda y.y)$ True è un valore

(si riduce)

(non si riduce)

(non si riduce)

Teorema (progresso)

Se \vdash M : t e M \Rightarrow N \rightarrow allora N è un valore.

```
\frac{\overline{x : \mathsf{Bool} \vdash x : \mathsf{Bool}}^{[\mathsf{t-var}]}}{\vdash \lambda x.x : \mathsf{Bool} \to \mathsf{Bool}}^{[\mathsf{t-lam}]} \xrightarrow{\vdash \mathsf{False} : \mathsf{Bool}}^{[\mathsf{t-bool}]}
\vdash (\lambda x.x) \mathsf{False} : \mathsf{Bool}
```

```
\frac{x: t \vdash x: t}{\vdash \lambda x.x: s} [t-lam] \quad \frac{y: Bool \vdash y: Bool}{\vdash \lambda y.y: t} [t-lam] \\
\vdash (\lambda x.x) (\lambda y.y): t \quad \vdash (\lambda x.x) (\lambda y.y) : t \quad \vdash (\lambda x.x) (\lambda y.y) \text{ True} : Bool}

[t-bool]
[t-app]
```

Dove

- ▶ $t \stackrel{\text{def}}{=} \text{Bool} \rightarrow \text{Bool}$
- $ightharpoonup s \stackrel{ ext{def}}{=} t
 ightarrow t = (ext{Bool}
 ightarrow ext{Bool})
 ightarrow ext{Bool}
 ightarrow ext{Bool}$

```
\frac{\overline{\Gamma \vdash x : \mathsf{Bool}} \quad \overline{\Gamma \vdash y : \mathsf{Bool}} \quad \overline{\Gamma \vdash \mathsf{False} : \mathsf{Bool}}}{\Gamma \vdash \mathsf{False} : \mathsf{Bool}} \xrightarrow{[\mathsf{t-bool}]} \\ \frac{\Gamma \vdash \mathsf{if} \ x \ y \ \mathsf{False} : \mathsf{Bool}}{x : \mathsf{Bool} \vdash \lambda y . \mathsf{if} \ x \ y \ \mathsf{False} : \mathsf{Bool} \to \mathsf{Bool}} \xrightarrow{[\mathsf{t-lam}]} \\ \frac{x : \mathsf{Bool} \vdash \lambda y . \mathsf{if} \ x \ y \ \mathsf{False} : \mathsf{Bool} \to \mathsf{Bool}}{\vdash \lambda x . \lambda y . \mathsf{if} \ x \ y \ \mathsf{False} : \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}}
```

OVE

 $ightharpoonup \Gamma \stackrel{\text{def}}{=} x : \text{Bool}, y : \text{Bool}$

$$\frac{ \overbrace{\Gamma \vdash z : t_1 \rightarrow t_2 \rightarrow s}^{\text{[t-var]}} \ \overline{\Gamma \vdash x : t_1}^{\text{[t-var]}} }{ \frac{\Gamma \vdash z x : t_2 \rightarrow s}{x : t_1, y : t_2, z : t_1 \rightarrow t_2 \rightarrow s \vdash z x y : s}^{\text{[t-app]}} } \frac{ }{\Gamma \vdash y : t_2}^{\text{[t-var]}} \frac{ }{\text{[t-app]}} }$$

$$\frac{x : t_1, y : t_2 \vdash \lambda z.z x y : (t_1 \rightarrow t_2 \rightarrow s) \rightarrow s}{x : t_1, y : t_2 \vdash \lambda z.z x y : (t_1 \rightarrow t_2 \rightarrow s) \rightarrow s}^{\text{[t-lam]}} \frac{ }{x : t_1 \vdash \lambda y.\lambda z.z x y : t_2 \rightarrow (t_1 \rightarrow t_2 \rightarrow s) \rightarrow s}^{\text{[t-lam]}}$$

Dove

- $\qquad \qquad \Gamma \stackrel{\text{def}}{=} x: t_1, y: t_2, z: t_1 \rightarrow t_2 \rightarrow s$
- $ightharpoonup t_1$, t_2 ed **s** sono tipi arbitrari

esercizi

Determinare quali delle seguenti espressioni sono ben tipate, cercando di costruire per ciascuna un albero di prova.

- 1 $\lambda f.\lambda x.f(fx)$
- $\frac{2}{\lambda X.XX}$ No Autoapplicazione non è tipabile
- if True $(\lambda x.\lambda y.x)(\lambda x.\lambda y.y)$
- 4 if True $(\lambda x.x)(\lambda x.\lambda y.y)$ No? In realtà si
- $((\lambda x.x) \text{ True}) \text{ False}$
- 6 $(\lambda x.\lambda y.\lambda z.z x y) (\lambda x.x)$ True

Nota

 è possibile verificare le risposte chiedendo a GHCi il tipo di queste espressioni dimostrazioni (appendice facoltativa)

Teorema (progresso)

 $Se \vdash M : t \in M \Rightarrow N \rightarrow allora N \stackrel{.}{e} un valore.$

Dal lemma di subject reduction deduciamo $\vdash N : t$. Dimostriamo che $N \rightarrow$ implica che N è un valore per induzione su N e per casi sulla sua forma.

- ▶ Il caso N = x è impossibile perché N è ben tipato nel contesto vuoto.
- Se N = c oppure $N = \lambda x.M'$ allora N è un valore e abbiamo finito.
- ightharpoonup Caso $N = N_1 N_2$:
 - deduciamo $\vdash N_1 : s \rightarrow t \in \vdash N_2 : s$
 - deduciamo che N₁ →
 - deduciamo che N_1 è un valore
 - deduciamo che N_1 è un'astrazione ed N è un redex
 - questo caso è impossibile
- Caso $N = if N_1 N_2 N_3$:
 - deduciamo $\vdash N_1$: Bool e $\vdash N_2$: $t \in \vdash N_3$: t
 - deduciamo che $N_1 \rightarrow$
 - deduciamo che N_1 è un valore
 - deduciamo che N_1 è una costante ed N è un redex

 - questo caso è impossibile

 $da \vdash N : t \in [t-app]$

da def. di \rightarrow ip. induttiva su N₁

 $da \vdash N_1 : s \rightarrow t$

da N →

 $da \vdash N : t \in [t-if]$ da def. di \rightarrow

ip. induttiva su N_1

 $da \vdash N_1 : Bool$ da N →

Lemma (sostituzione)

Se Γ , $x : t \vdash M : s \in \Gamma \vdash N : t \ allora \ \Gamma \vdash M\{N/x\} : s$.

Si procede per induzione su M e per casi sulla sua forma.

- ► Casi in cui $x \notin fv(M)$ e $M\{N/x\} = M$:
 - concludiamo $\Gamma \vdash M : t$ rimozione delle ipotesi inutili
- ► Caso M = x in cui $M\{N/x\} = N$ e t = s:
 - concludiamo $\Gamma \vdash N : t$ ipotesi
- Caso $M = M_1 M_2$ in cui $M\{N/x\} = M_1\{N/x\} M_2\{N/x\}$:
 - deduciamo $\Gamma, x: t \vdash M_1: t' \rightarrow s \in \Gamma, x: t \vdash M_2: t'$ da [t-app]
 - deduciamo $\Gamma \vdash M_1\{N/x\} : t' \to s \in \Gamma \vdash M_2\{N/x\} : t'$ ip. induttiva
- concludiamo Γ ⊢ M{N/x} : s usando [t-app]
 Caso M = λy.M'. Possiamo assumere x ≠ y e y ∉ fv(N) grazie all'α-conversione, dunque M{N/x} = λy.M'{N/x}. Ora:
 - deduciamo $\Gamma, x: t, y: t' \vdash M': s' \in s = t' \rightarrow s'$ da [t-lam]
 - otteniamo $\Gamma, y: t' \vdash N: t$ lemma di indebolimento e $y \notin fv(N)$
 - deduciamo $\Gamma, y: t' \vdash M'\{N/x\}: s'$ ip. induttiva
 - concludiamo $\Gamma \vdash M\{N/x\} : t$ usando [t-lam]
- ► Il caso $M = \text{if } M_1 M_2 M_3$ è lasciato come esercizio.

Lemma (subject reduction)

```
Se \Gamma \vdash M : t \in M \rightarrow N \text{ allora } \Gamma \vdash N : t.
```

Si procede per induzione sulla derivazione di $M \to N$ e per casi sull'ultima regola applicata (si veda la def. di \to).

- ► Caso $M \rightarrow_{\beta} N$ in cui $M = (\lambda x.M') N' \in N = M'\{N'/x\}$:
 - deduciamo $\Gamma \vdash \lambda x.M' : s \rightarrow t \in \Gamma \vdash N' : s$
 - deduciamo $\Gamma, x : s \vdash M' : t$ da [t-lam] • concludiamo $\Gamma \vdash N : t$ lemma di sostituzione
- ► Caso $M \rightarrow_n N$ in cui $M = \lambda x.N x$ dove $x \notin fv(N)$:
 - deduciamo Γ , $x : t' \vdash Nx : s \in t = t' \rightarrow s$
 - deduciamo $\Gamma, x: t' \vdash N: s' \rightarrow s \in \Gamma, x: t' \vdash x: s'$ da [t-app]
 - deduciamo t' = s' da [t-var]
 concludiamo Γ ⊢ N : t rimozione delle ipotesi inutili
- ► Caso $M = M_1 M_2$ in cui $M_1 \to N_1$ e $N = N_1 M_2$:
 - deduciamo $\Gamma \vdash M_1 : s \to t \in \Gamma \vdash M_2 : s$ da [t-app] • deduciamo $\Gamma \vdash N_1 : s \to t$ ip. induttiva
 - concludiamo $\Gamma \vdash N : t$ usando [t-app]
- I casi rimanenti sono lasciati come esercizio.

da [t-app]

da [t-lam]