问题1

当给团体i分配一个额外席位时,其每席位代表人数从 $\frac{p_i}{n_i}$ 变为 $\frac{p_i}{n_i+1}$ 。分配后,绝对不公平的减少量为:

$$\Delta a_i = \frac{p_i}{n_i} - \frac{p_i}{n_i + \mathcal{I}} = \frac{p_i}{n_i(n_i + \mathcal{I})}$$

为了最大化每次分配席位时减少的绝对不公平,应选择 Δa_i 最大的团体分配席位。因此,定义 Q_i 为:

$$Q_i = \frac{p_i}{n_i(n_i + \mathcal{I})}$$
 $(i = \mathcal{I}, \mathcal{Z}, ..., m)$

每次增量席位分配给当前Qi值最大的团体。具体步骤如下:

- 1. 初始化每个团体已分配的席位数 n_i 。
- 2. 计算所有团体的 Q_i 。
- 3. 将下一个席位分配给0_i最大的团体。
- 4. 更新该团体的 $n_i \rightarrow n_i + 1$, 并重复步骤 2-3, 直到所有席位分配完毕。

问题2

目标: 1. 单调性: 总席位数增加时,每个团体的席位数不减; 2. 上下取整约束: 每个团体的席位数在比例分配值的上下取整之间。

解决:

1. 计算理想席位: 对于总席位数 s,总选民数 $P = \sum_{i=1}^{m} p_i$,每个团体 i 的理想席位为:

$$q_i = s \cdot \frac{p_i}{P}$$

2. 初始分配下取整:初始分配每个团体 i 的席位为 $n_i = [q_i]$,剩余席位数为:

$$r = s - \sum_{i=1}^{m} \lfloor q_i \rfloor$$

- **3.** 分配剩余席位: 将剩余席位分配给 $q_i \lfloor q_i \rfloor$ (即小数部分) 最大的前 r 个团体。
- 4. 确保单调性: 当总席位数从 s 增加到 s+1 时:
 - o 计算新的理想席位 $q'_i = (s + 1) \cdot \frac{p_i}{p}$
 - o 每个团体的席位下限为原席位数 n_i , 上限为 $[q'_i]$ 。
 - o 初始分配 $n'_i = \max([q'_i], n_i)$,确保不减少原席位。
 - o 若此时 $sum(n'_i) < s + 1$,将剩余席位按小数部分从大到小分配给满足 $n'_i < [q'_i]$ 的团体。

问题3

- **1.** 单层热传导:根据傅里叶定律,单位时间单位面积的热量 $Q = \frac{k\Delta T}{d}$,其中 k为导热系数,d 为厚度, ΔT 为温差。
- 2. 多层串联热阻: 每层的热阻 $R_i = \frac{d_i}{k_i}$, 总热阻为各层热阻之和:

$$R_{total} = \sum_{i=1}^{m} R_i = \sum_{i=1}^{m} \frac{d_i}{k_i}$$

3. 总热量计算: 稳态下,通过各层的热量相同,总热量为:

$$Q = \frac{T_{\mathcal{I}} - T_{\mathcal{Z}}}{R_{total}} = \frac{T_{\mathcal{I}} - T_{\mathcal{Z}}}{\sum_{i=1}^{m} \frac{d_i}{k_i}}$$

4. 单位时间单位面积的热传导量为:

$$Q = \frac{T_{\mathcal{I}} - T_{\mathcal{Z}}}{\sum_{i=\mathcal{I}}^{m} \frac{d_{i}}{k_{i}}}$$