Greedy Algorithms

Greedy algorithm: one always makes a locally optimal choice. (in the hope that this choice will lead to a globally optimal solution)

(Not always find an optimal solution)

16.1 An activity-selection problem

Input: n activities with start time s_i and finish time f_i Output: a maximum set of compatible activities

Step 0: Sort the input according to f_i increasingly.

Step 1: Schedule the activities one by one. O(n)

Time: $T(n) = \begin{cases} O(n) & \text{if the input is sorted,} \\ O(n | gn) & \text{otherwise.} \end{cases}$

Correctness:

(Assume that $A=\{a_1, a_2, ..., a_n\}$ is sorted)

- (1) There is an optimal solution contains a_1 . (If Y is an optimal solution, $Y = \{first in Y\} \cup \{a_1\}$ is also an optimal solution.) 和 a1 沒衝突
- (2) Let $Y=\{a_1\} \cup Y'$ be an optimal solution to A. Then, Y is an optimal solution to $A' = \{a_i | s_i \ge f_1\}$. after a choice \rightarrow same problem of smaller size

16-3 **16.2 Elements of Greedy strategy**optimization problems

- 1. **Greedy-choice property:** a globally optimal solution can be arrived by making a locally optimal (greedy) choice. (top-down, usually)
- 2. Optimal substructure: an optimal solution to the problem contains optimal solutions to sub-problems. after a choice → same subproblem of smaller size!

O-1 knapsack problem (integer): weight Input: n items with weight w_i and value v_i capacity C (w_i , v_i , and C are integers)

Output: a subset of items with weight≤C and maximum value (each item must be taken or left behind)

Fractional knapsack problem: Same as above. But fractions of items can be taken.

The fractional problem has both properties.
 (Greedy according to v/w_i, O(nlg n) time)

16-3x 16-3a

• The 0/1 problem only has the optimalsubstructure property. (dynamic programming) 16-3b-(integer weights) See Ex. 16.2-2

Example:

16.3 Huffman codes (for compression)

(total=100)			2 possible code tables			
	a	b	С	d	е	f
frequency	45	13	12	16	9	5
fixed-length	000	001	010	011	100	101
variable-length	0	101	100	111	1101	1100

Cost: (fixed) $3\times(45+13+12+16+9+5)$ (var) $1\times45+3\times(13+12+16)+4\times(9+5)$ ($\sqrt{}$) 224

Coding: $abc \Rightarrow 0.101.100 \Rightarrow 0101100$ Decoding: $001011101 \Rightarrow 0.0.101.1101 \Rightarrow aabe$ prefix codes: no codeword is a prefix of other

Prefix codes: no codeword is a prefix of other (<a:00, b:0, c:10, d:1> are not prefix codes)
000 ⇒ ab, ba, bbb

Representing prefix codes by a tree:

- a:0, b:101, c:100, d:111, e:1101, f:1100
- cost of T: $\sum_{c \in C} f(c) \times depth(T, c)$

16-7x

• Time: $O(n \lg n)$ /* $(n - 1) \times 3 \lg n$ (using a heap as a priority queue)

• Correctness: omitted 16-7y

proof 0-1 knapsack (DP)

Homework: Ex. 16.1-4, 16.2-2, 16.2-3, 16.2-4,
16.2-5, 16.2-7, 16.3-6
proof

(proof: greedy-choice & optimal substructure)