DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI

Even Semester of the Academic Year 2019-2020

MA 101 Mathematics I

Problem Sheet 5: Line Integrals and applications, Green's Theorem, Stokes Theorem and Divergence Theorem.

Instructors: Dr. J. C. Kalita and Dr. S. Bandopadhyay

- 1. Calculate the line integral of the vector field along the path described:
 - (a) $f(x,y) = (x^2 + y^2)\mathbf{i} + (x^2 y^2)\mathbf{j}$ from (0,0) to (2,0) along the curve y = 1 |1 x|
 - (b) $f(x, y, z) = 2xy\mathbf{i} + (x^2 + z)\mathbf{j} + (y + z)\mathbf{k}$ from (1, 0, 2) to (3, 4, 1) along a line segment
 - (c) $f(x, y, z) = x\mathbf{i} + y\mathbf{j} + (xz y)\mathbf{k}$, along the path described by $\alpha(t) = t^2\mathbf{i} + 2t\mathbf{j} + 4t^3\mathbf{k}$, $0 \le t \le 1$.

Solution:

- (a) Note that the parametric representation of the curve $\mathbf{r}(x)$ is given by:
- $\mathbf{r}(x) = x\mathbf{i} + x\mathbf{j} \text{ for } 0 \le x \le 1,$

 $\mathbf{r}(x) = x\mathbf{i} + (2-x)\mathbf{j} \text{ for } 1 \le x \le 2.$

$$\int_{C} f \cdot d\mathbf{r} = \int_{C} f(\mathbf{r}(x)) \cdot \mathbf{r}'(x) dx = \int_{0}^{1} \left((x^{2} + x^{2})1 + (x^{2} - x^{2})1 \right) dx$$

$$+ \int_{1}^{2} \left((x^{2} + (2 - x)^{2})1 + (x^{2} - (2 - x)^{2})(-1) \right) dx$$

$$= \frac{4}{3}.$$

- (b) Note that the parametrization of the line is given by:
- $\mathbf{r}(t) = <1, 0, 2> +t(<3, 4, 1> -<1, 0, 2>) = <2t+1, 4t, 2-t>$ for $0 \le t \le 1$.

Hence the line integral is given by:

Therefore the line integral is given by:
$$\int_C f \cdot d\mathbf{r} = \int_C f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^1 \left(2(2t+1)(4t)2 + ((2t+1)^2 + 2 - t)4 + (4t+2 - t)(-1) \right) dt = 40 - \frac{3}{2} = \frac{77}{2}.$$

(c) The line integral is given by:

$$\int_{C} f \cdot d\mathbf{r} = \int_{0}^{1} f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{0}^{1} ((t^{2})2t + (2t)2 + (4t^{5} - 2t)12t^{2}) dt = \frac{5}{2}.$$

2. Find the line integral of f(x, y, z) = z with respect to arc length of the curve given by $\mathbf{r}(t) = (t\cos t)\mathbf{i} + (t\sin t)\mathbf{j} + t\mathbf{k}, \ 0 \le t \le 1.$

Solution:
$$\int_C f ds = \int_0^1 t |\mathbf{r}'(t)| dt = \int_0^1 t \sqrt{(\cos t - t \sin t)^2 + (\sin t + t \cos t)^2 + 1} dt$$
$$= \int_0^1 t \sqrt{2 + t^2} dt = \frac{1}{3} (3^{\frac{3}{2}} - 2^{\frac{3}{2}}).$$

- 3. For each of the following vector fields show that \mathbf{f} is not a gradient vector in \mathbf{R}^2 . Then for each of the following find a closed path C such that $\oint_C \mathbf{f} \neq 0$ and if possible find a closed path C such that $\oint_C \mathbf{f} = 0$. ($\oint_C \mathbf{f}$ is also used to represent $\oint_C \mathbf{f} \cdot d\mathbf{r}$.)
 - (a) $\mathbf{f}(x,y) = y\mathbf{i} x\mathbf{j}$
 - (b) $\mathbf{f}(x,y) = \frac{y}{(x^2+y^2)}\mathbf{i} \frac{x}{(x^2+y^2)}\mathbf{j}$, for $(x,y) \neq (0,0)$.

Solution: (a) Since $\frac{\partial P}{\partial u}$ and $\frac{\partial Q}{\partial x}$ (where P(x,y)=y and Q(x,y)=-x) are continuous functions

but
$$\frac{\partial P}{\partial y} = 1 \neq \frac{\partial Q}{\partial x} = -1$$
, **f** is not a gradient vector.

A necessary condition for $\oint_C \mathbf{f}$ to be equal to 0 for every closed path C in \mathbf{R}^2 is:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 for all $(x, y) \in \mathbf{R}^2$ (or **f** is the gradient vector of some scalar function).

In this case since $\frac{\partial P}{\partial y} = 1 \neq \frac{\partial Q}{\partial x} = -1$ for all $(x, y) \in \mathbf{R}^2$, so for all smooth simple closed curves C in \mathbf{R}^2 , $\oint_C \mathbf{f} \neq 0$.

Take for example a positively oriented circle C of radius r > 0 centered at the origin,

$$C = r\cos t\mathbf{i} + r\sin t\mathbf{j}, \ 0 \le t \le 2\pi$$

then
$$\oint_C \mathbf{f} = \int_0^{2\pi} (r \sin t (-r \sin t) - r \cos t (r \cos t)) dt = -2\pi r^2 \neq 0.$$

(You can also use Green's theorem to check this).

(b)
$$\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x} = \left(= \frac{x^2 - y^2}{(x^2 + y^2)^2} \right)$$
 are continuous for all $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},$ where $P(x, y) = \frac{y}{(x^2 + y^2)}$ and $Q(x, y) = -\frac{x}{(x^2 + y^2)}.$ Since \mathbf{f} is not defined at $(0, 0)$, so \mathbf{f} is not the gradient vector of any scalar function defined throughout \mathbb{R}^2 , but since $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ for all $(x, y) \neq (0, 0)$,

f is the gradient vector of some scalar function in any open simply connected subset of \mathbb{R}^2 not containing the origin.

If we take C as the positively oriented unit circle centered at (2,0) such that the closed disc enclosed by C does not contain the origin then check that $\oint_C \mathbf{f} = 0$.

(You can also use Green's theorem to check this).

Whereas if we choose C as the positively oriented unit circle centered at the origin, that is C =

cos
$$t\mathbf{i} + \sin t\mathbf{j}$$
, $0 \le t \le 2\pi$ then $(**) \oint_C \mathbf{f} = \int_0^{2\pi} (\sin t(-\sin t) - \cos t(\cos t)) dt = -2\pi \ne 0 \Rightarrow \mathbf{f}$ is not a gradient vector in $\mathbf{R}^2 - \{(0,0)\}$.

- 4. Show that each of the following functions F is a gradient vector and find an f for each F such that $F = \nabla f$.
 - (a) $F(x,y) = 3x^2y\mathbf{i} + x^3\mathbf{j}$
 - (b) $F(x,y) = (\sin y y \sin x + x)\mathbf{i} + (\cos x + x \cos y + y)\mathbf{j}$

Solution:

(a) Since P, Q are continuously differentiable functions, (where $P(x,y) = 3x^2y$ and $Q = x^3$) and $\frac{\partial P}{\partial y} = 3x^2 = \frac{\partial Q}{\partial x}$, F is the gradient of some scalar function f. Note that if f is such that F is the gradient vector of f, then $\frac{\partial f}{\partial x} = P(x,y) = 3x^2y$ and $\frac{\partial f}{\partial y} = Q(x,y) = x^3$, hence $f(x,y) = \int P(x,y)dx + g(y)$, where g is independent of x.

$$\frac{\partial f}{\partial x} = P(x,y) = 3x^2y$$
 and $\frac{\partial f}{\partial y} = Q(x,y) = x^3$, hence

Also
$$f(x,y) = \int Q(x,y)dy + h(x)$$
, where h is independent of y.

$$f(x,y) = \int P(x,y)dx + g(y) = x^3y + g(y) = \int Q(x,y)dy + h(x) = x^3y + h(x),$$

suggests that h, g should be such that, h = g = c.

Hence F is the gradient vector of any f of the form $f(x,y) = x^3y + c$.

(b) Since P, Q are continuously differentiable functions, (where $P(x, y) = \sin y - y \sin x + x$ and $Q(x,y) = \cos x + x \cos y + y$ and $\frac{\partial P}{\partial y} = \cos y - \sin x = \frac{\partial Q}{\partial x}$, F is the gradient of some scalar function f.

Note that if
$$f$$
 is such that F is the gradient vector of f , then $\frac{\partial f}{\partial x} = P(x,y)$ and $\frac{\partial f}{\partial y} = Q(x,y)$ hence

 $f(x,y) = \int P(x,y)dx + g(y)$, where g is independent of x.

Also $f(x,y) = \int Q(x,y)dy + h(x)$, where h is independent of y. Since

$$\int P(x,y)dx + g(y) = x\sin y + y\cos x + \frac{x^2}{2} + g(y) = \int Q(x,y)dy + h(x) = y\cos x + x\sin y + \frac{y^2}{2} + h(x),$$

if we choose $g(y) = \frac{y^2}{2}$ and $h(x) = \frac{x^2}{2}$,

then
$$f(x,y) = x \sin y + y \cos x + \frac{x^2}{2} + \frac{y^2}{2}$$
 is such that $\nabla f = F$.

- 5. Use Green's theorem to evaluate the line integral along the given positively oriented curve:
 - (a) $\int_C (y+e^{\sqrt{x}})dx + (2x+\cos y^2)dy$, C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.

Solution: By Green's theorem:

$$\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy = \int_0^1 \int_{x^2}^{\sqrt{x}} \left(\frac{\partial}{\partial x} (2x + \cos y^2) - \frac{\partial}{\partial y} (y + e^{\sqrt{x}}) \right) dy dx$$

$$= \int_0^1 \int_{x^2}^{\sqrt{x}} (2 - 1) dy dx$$

$$= \frac{1}{2}.$$

(b) $\int_C xydx + 2x^2dy$, C consists of the line segment from (-2,0) to (2,0) and top half of the circle $x^2 + y^2 = 4$.

Solution: By Green's theorem

$$\int_{C} xy dx + 2x^{2} dy = \int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \left(\frac{\partial}{\partial x} (2x^{2}) - \frac{\partial}{\partial y} (xy) \right) dy dx$$

$$= \int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} (4x - x) dy dx (*)$$

$$= \int_{-2}^{2} \sqrt{4 - x^{2}} 3x dx = \frac{3}{2} \left[-\frac{2}{3} (4 - x^{2})^{\frac{3}{2}} \right]_{-2}^{2} = 0.$$

Aliter: By converting (*) to polar coordinates we get:

$$= \int_0^{\pi} \int_0^2 3r \cos \theta r dr d\theta$$
$$= 0.$$

6. Use Green's theorem to find out the work done by the force $\mathbf{F}(x,y) = x(x+y)\mathbf{i} + xy^2\mathbf{j}$ in moving a particle from the origin along x-axis to (1,0) and then along a line segment to (0,1), and then back to the origin along y-axis.

Solution: The work done is given by
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, where C is the given curve. By Green's theorem $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \int_0^{-x+1} \left(\frac{\partial}{\partial x} (xy^2) - \frac{\partial}{\partial y} (x(x+y)) \right) dy dx$
$$= \int_0^1 \int_0^{-x+1} \left(y^2 - x \right) dy dx$$

$$= -\frac{1}{12}.$$

7. Let D be a region bounded by a simple closed path C in the xy-plane. Use Green's theorem to prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$\bar{x} = \frac{1}{2A} \oint x^2 dy$$
, $\bar{y} = -\frac{1}{2A} \oint y^2 dx$ where A is the area of D.

Solution: By definition $\bar{x} = \frac{\iint_D x dA}{A}$, $\bar{y} = \frac{\iint_D y dA}{A}$, where A = Area(D).

But
$$\iint_D x dA = \iint_D \left(\frac{\partial}{\partial x} (\frac{1}{2}x^2) - \frac{\partial}{\partial y} (0) \right) dA$$
 ($P = 0, Q = \frac{1}{2}x^2$).

By Green's theorem
$$\iint_D x dA = \frac{1}{2} \oint_C x^2 dy$$
, hence $\bar{x} = \frac{1}{2A} \oint x^2 dy$.

Similarly
$$\iint_D y dA = \iint_D \left(\frac{\partial}{\partial x} (0) - \frac{\partial}{\partial y} (\frac{1}{2} y^2) \right) dA$$
 ($Q = 0, P = \frac{1}{2} y^2$).

By Green's theorem
$$\iint_D ydA = \frac{1}{2} \oint_C y^2 dx$$
, hence $\bar{y} = \frac{1}{2A} \oint y^2 dx$.

8. If $\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j}$ and $r = |\mathbf{r}|$, let

$$f(x,y) = \frac{\partial(logr)}{\partial y}\mathbf{i} - \frac{\partial(logr)}{\partial x}\mathbf{j}$$

for r > 0.

Let C be a smooth simple closed curve in the annulus $1 < x^2 + y^2 < 25$, then find all possible values of the line integral of f along C.

Solution: Let
$$C_1$$
 denote the positively oriented unit circle centered at the origin. Note that $f(x,y) = \frac{y}{(x^2+y^2)}\mathbf{i} - \frac{x}{(x^2+y^2)}\mathbf{j}$, for $(x,y) \neq (0,0)$.
$$\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x} \quad \left(= \frac{x^2-y^2}{(x^2+y^2)^2} \right) \quad \text{are continuous for all } (x,y) \in \mathbf{R}^2 \setminus \{(0,0)\},$$
 where $P(x,y) = \frac{y}{(x^2+y^2)}$ and $Q(x,y) = -\frac{x}{(x^2+y^2)}$.

By Green's theorem
$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = 0 = \oint_C (P(x,y) dx + Q(x,y) dy),$$
 if C is such that the origin is not inside C .

By Green's theorem again

$$\begin{split} & \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = 0 = \oint_C (P(x,y) dx + Q(x,y) dy) - \oint_{C_1} (P(x,y) dx + Q(x,y) dy), \\ & \text{if } C \text{ is such that the origin is inside } C, \text{ and } C \text{ is positively oriented.} \\ & \text{Hence } \oint_C (P(x,y) dx + Q(x,y) dy) = -2\pi. \qquad \text{(refer to (**) of problem 3)} \\ & \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = 0 = -\oint_C (P(x,y) dx + Q(x,y) dy) - \oint_{C_1} (P(x,y) dx + Q(x,y) dy), \\ & \text{if } C \text{ is such that the origin is inside } C, \text{ and } C \text{ is negatively oriented.} \end{split}$$

Hence $\oint_C (P(x,y)dx + Q(x,y)dy) = 2\pi$.

Hence the only possible values of the line integral are $0, \pm 2\pi$.

- 9. The exercise demonstrates a connection between curl vector and rotations. Let ${\bf B}$ be a rigid body rotating about z-axis. The rotation can be described by the vector $\mathbf{w} = \omega \mathbf{k}$, where ω is the angular speed of \mathbf{B} , that is, the tangential speed at any point P in B divided by the distance d from the axis of rotation. Let $\mathbf{r} = \langle x, y, z \rangle$ be the position vector of P.
 - (a) By considering the angle θ in the figure, show that the velocity field of B is given by $\mathbf{v} = \mathbf{w} \times \mathbf{r}$.
 - (b) Show that $\mathbf{v} = -\omega y \mathbf{i} + \omega x \mathbf{j}$
 - (c) Show that $\nabla \times \mathbf{v} = 2\mathbf{w}$.

Solution:

(a) Given that $\omega = \frac{|\mathbf{v}|}{d}$, and $\sin \theta = \frac{d}{|\mathbf{r}|}$.

Therefore
$$|\mathbf{v}| = d\omega = \omega |\mathbf{r}| \sin \theta = |\mathbf{w} \times \mathbf{r}|$$
. (1)

Since \mathbf{v} is orthogonal to both \mathbf{w} and \mathbf{r} and its direction is same as that of $\mathbf{w} \times \mathbf{r}$ therefore from (1) it follows:

 $\mathbf{v} = \mathbf{w} \times \mathbf{r}$.

(b) Since $\mathbf{w} = \omega \mathbf{k}$ and $\mathbf{r}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$,

(b) Since
$$\mathbf{w} = \omega \mathbf{k}$$
 and $\mathbf{r}(x, y, z) = x\mathbf{i} + y\mathbf{j}$
 $\mathbf{v} = \mathbf{w} \times \mathbf{r} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & \omega \\ x & y & z \end{vmatrix} = -\omega y\mathbf{i} + \omega x\mathbf{j}.$
(c) $\nabla \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -\omega y & \omega x & 0 \end{vmatrix} = 2\mathbf{w}.$

$$(\mathbf{c}) \;
abla imes \mathbf{v} = \left| egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ -\omega y & \omega x & 0 \end{array}
ight| = 2\mathbf{w}.$$

10. Use Stokes' Theorem to evaluate

(a)
$$\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$
 where $\mathbf{F} = xyz\mathbf{i} + xy\mathbf{j} + x^2yz\mathbf{k}$ and S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward.

Solution:
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS.$$

By Stokes' theorem,
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{C_{1}} Pdx + Qdy + Rdz + \int_{C_{2}} Pdx + Qdy + Rdz + \int_{C_{3}} Pdx + Qdy + Rdz + \int_{C_{4}} Pdx + Qdy + Rdz$$

where C_i , i = 1, 2, ... 4 are the four sides of the bottom surface of the cube, and P(x, y, z) =

xyz, Q(x, y, z) = xy, $R(x, y, z) = x^2yz$. Since for $C_1, y = -1, z = -1$: For $C_2, x = 1, z = -1$: For $C_3, y = 1, z = -1$: For C_4

$$\int_{C_1} Pdx + Qdy + Rdz + \int_{C_2} Pdx + Qdy + Rdz + \int_{C_3} Pdx + Qdy + Rdz + \int_{C_4} Pdx + Qdy + Rdz + \int_{C_4} Pdx + Qdy + Rdz$$

$$= \int_{C_1} Pdx + \int_{C_2} Qdy + \int_{C_3} Pdx + \int_{C_4} Qdy$$

$$= \int_{-1}^{1} (-1)(-1)xdx + \int_{-1}^{1} (-1)(1)ydy + \int_{1}^{-1} (-1)(1)xdx + \int_{1}^{-1} (-1)(-1)ydy = 0.$$

(b) $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = 2z\mathbf{i} + 4x\mathbf{j} + 5y\mathbf{k}$ and C is the curve of intersection of the plane z = x + 4 and the cylinder $x^2 + y^2 = 4$.

where P(x, y, z) = 2z, Q(x, y, z) = 4x, R(x, y, z) = 5y.

where
$$F(x,y,z) = 2z$$
, $Q(x,y,z) = 4x$, $R(x,y,z) = 3y$.
The surface $\mathbf{r}(x,y)$ is of the form: $\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + f(x,y)\mathbf{j}$, where $f(x,y) = x + 4$, hence
$$\frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} = -\frac{\partial f}{\partial x}\mathbf{i} - \frac{\partial f}{\partial y}\mathbf{j} + \mathbf{k} = -\mathbf{i} + \mathbf{k}$$

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS = \iint_{D} (5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) \cdot (-\mathbf{i} + \mathbf{k}) dA,$$

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS = \iint_{D} (5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) \cdot (-\mathbf{i} + \mathbf{k}) dA,$$
where D is the disc of radius 2 centered at the origin.
Hence
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS = \iint_{D} (-5 + 4) dA = -\int_{0}^{2} \int_{0}^{2\pi} r d\theta dr = -4\pi.$$

11. Calculate the work done by the force field

$$\mathbf{F}(x, y, z) = (x^{x} + z^{2})\mathbf{i} + (y^{y} + x^{2})\mathbf{j} + (z^{z} + y^{2})\mathbf{k}$$

when a particle moves under its influence around the edge of the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies in the first octant, in a counterclockwise direction as viewed from above.

Solution: The work done is given by

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS.$$

$$(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})\mathbf{i} + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})\mathbf{j} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\mathbf{k} = 2(y\mathbf{i} + z\mathbf{j} + x\mathbf{k}).$$

The surface $\mathbf{r}(x,y)$ is of the form $\mathbf{r}(x,y)=x\mathbf{i}+y\mathbf{j}+f(x,y)\mathbf{j}$ where $f(x,y)=\sqrt{4-x^2-y^2}$, hence $\frac{\partial r}{\partial x}\times\frac{\partial r}{\partial y}=-\frac{\partial f}{\partial x}\mathbf{i}-\frac{\partial f}{\partial y}\mathbf{j}+\mathbf{k}=\frac{x}{\sqrt{4-x^2-y^2}}\mathbf{i}+\frac{y}{\sqrt{4-x^2-y^2}}\mathbf{j}+\mathbf{k}$

$$\partial x \wedge \partial y = \partial x^{\mathbf{I}} - \partial y^{\mathbf{J}} + \mathbf{K} = \sqrt{4 - x^2 - y^2}^{\mathbf{I}} + \sqrt{4 - x^2 - y^2}^{\mathbf{J}} + \mathbf{K}$$

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS = \iint_{D} 2 \left(y \mathbf{i} + z \mathbf{j} + x \mathbf{k} \right) \cdot \left(\frac{x}{\sqrt{4 - x^2 - y^2}} \mathbf{i} + \frac{y}{\sqrt{4 - x^2 - y^2}} \mathbf{j} + \mathbf{k} \right) dA,$$

Hence
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS = 2 \iint_{D} \left(x + y + \frac{xy}{\sqrt{4 - x^2 - y^2}} \right) dA$$

= $2 \int_{0}^{2} \int_{0}^{\frac{\pi}{2}} \left((r \cos \theta + r \sin \theta) + (\frac{r^2 \cos \theta \sin \theta}{\sqrt{4 - r^2}}) \right) r d\theta dr = 2(I_1 + I_2) = 2(\frac{16}{3} + \frac{8}{3}) = 16.$

12. Let S be the surface of the solid cylinder T bounded by the planes z = 0 and z = 3 and the cylinder $x^2 + y^2 = 4$. Calculate the outward flux $\iint_C \mathbf{F} \cdot \mathbf{n} dS$ given $\mathbf{F}(x, y, z) = (x^2 + y^2 + z^2)(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$.

Solution: By divergence theorem.

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{T} Div(F) dv.$$

$$Div(F) = \nabla \cdot F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 5(x^2 + y^2 + z^2),$$

$$\begin{split} Div(F) &= \nabla \cdot F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 5(x^2 + y^2 + z^2), \\ \text{where } P &= (x^2 + y^2 + z^2)x, \ Q = (x^2 + y^2 + z^2)y \ \text{and} \ R = (x^2 + y^2 + z^2)z. \\ \text{By using cylindrical coordinates we get:} \\ \iint_S \mathbf{F} \cdot \mathbf{n} dS &= \iiint_T Div(F) dv = \int_0^3 \int_0^{2\pi} \int_0^2 5(r^2 + z^2) r dr d\theta dz = 300\pi. \end{split}$$

13. Use Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$ where

$$\mathbf{F}(x,y,z) = z^2 x \mathbf{i} + \left(\frac{1}{3}y^3 + \tan z\right) \mathbf{j} + (x^2 z + y^2) \mathbf{k}$$

and S is the top half of the sphere $x^2 + y^2 + z^2 = 1$.

Solution: Let S_1 be the unit disc centered at the origin with normal facing downward, and let $S_2 = S \cup S_1$, then S_2 has outer facing normal if S has upward facing normal.

$$\iint_{S_2} \mathbf{F} \cdot \mathbf{n} dS = \iint_{S} \mathbf{F} \cdot \mathbf{n} dS + \iint_{S_1} \mathbf{F} \cdot \mathbf{n} dS.$$

By divergence theorem $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{S} Div(F) dv$.

Since
$$Div(F) = \nabla \cdot F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = z^2 + y^2 + x^2$$
,

Since
$$Div(F) = \nabla \cdot F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = z^2 + y^2 + x^2$$
, where $P = z^2 x$, $Q = \frac{1}{3} y^3 + \tan z$, $R = x^2 z + y^2$. By using spherical coordinates we get:
$$\iint_{S_2} \mathbf{F} \cdot \mathbf{n} dS = \int_0^1 \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \rho^2 (\rho^2 \sin \phi) d\phi d\theta d\rho = \frac{2\pi}{5}.$$

Also
$$\iint_{S_1} \mathbf{F} \cdot \mathbf{n} dS = \iint_{S_1} \mathbf{F} \cdot (-\mathbf{k}) dS = \iint_{S_1} (x^2 \times 0 + y^2)(-1) dS = -\int_0^1 \int_0^{2\pi} (r^2 \sin^2 \theta) r dr d\theta = -\frac{\pi}{4}$$
$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iint_{S_2} \mathbf{F} \cdot \mathbf{n} dS - \iint_{S_2} \mathbf{F} \cdot \mathbf{n} dS = \frac{13\pi}{20}.$$