Basic Statistics

A primer in basic statistics for BCB (Hons) 2019

AJ Smit and Robert Schlegel

2019-04-09

Contents

1	Intro	oduction 9
	1.1	Venue, date and time
	1.2	Course outline
	1.3	About this Workshop
	1.4	This is biology: why more R coding?
	1.5	Installing R and RStudio
	1.6	Resources
	1.7	Style and code conventions
	1.8	Assessment and teaching philosophy
	1.9	About this document
2	Type	es of data 10
_	2.1	Data classes
	2.1	2.1.1 Numerical data
		2.1.2 Qualitative data
		2.1.2 Quantative data
		2.1.4 Character values
		2.1.5 Missing values
		2.1.6 Complex numbers
	2.2	Viewing our data
	2.2	2.2.1 From the Environment pane
		2.2.2 head() and tail()
		2.2.3 colnames()
		2.2.4 summary()
		2.2.1 34.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
3		criptive statistics: central tendency and dispersion 12
	3.1	Samples and populations
	3.2	Measures of central tendency
		3.2.1 The mean
		3.2.2 The median
		3.2.3 Skewness
		3.2.4 Kurtosis
	3.3	Measures of variation and spread
		3.3.1 The variance and standard deviation
		3.3.2 Quantiles
		3.3.3 The minimum, maximum and range
		3.3.4 Covariance
		3.3.5 Correlation
	3.4	Missing values
	3.5	Descriptive statistics by group
		3.5.1 Groupwise summary statistics

CONTENTS 2

		3.5.2	Displays of group summaries
	3.6	Exercis	ses
		3.6.1	Exercise 1
	_		
4	-		ata displays 14
	4.1	-	ative data
	4.2	Contin	uous data
		4.2.1	Frequency distributions (histograms)
		4.2.2	Box plots
		4.2.3	Pairwise Scatter plots
		4.2.4	Bar graphs
		4.2.5	Density graphs
		4.2.6	Violin plots
	4.3	Exercis	ses
		4.3.1	Exercise 1
_	D:-4		
5	5.1	ribution	te distributions
	3.1	5.1.1	Bernoulli distribution
		5.1.1	Binomial distribution
		5.1.2	
			Negative binomial distribution
		5.1.4	Geometric distribution
	5 2	5.1.5	Poisson distribution
	5.2		nuous distributions
		5.2.1	Normal distribution
		5.2.2	Uniform distribution
		5.2.3	Student T distribution
		5.2.4	Chi-squared distribution
		5.2.5	Exponential distribution
		5.2.6	F distribution
		5.2.7	Gamma distribution
		5.2.8	Beta distribution
		5.2.9	Paranormal distributions
	5.3		g one's data distribution
	5.4	Exercis	ses
		5.4.1	Exercise 1
6	Infe	rences al	bout one or two populations 17
•	6.1		ptions
	0.1	6.1.1	Normality
		6.1.2	Homoscedasticity
		6.1.3	Two for one
	6.2		mple <i>t</i> -tests
	0.2	6.2.1	One-sided one-sample t -tests
		6.2.2	Two-sided one-sample <i>t</i> -tests
	6.3		imple t -tests
	0.5	6.3.1	One-sided two-sample <i>t</i> -tests
		6.3.2	
	6.4		<u> </u>
	6.5	_	arison of two population proportions
		6.5.1 6.5.2	One-sided and two-sided tests
		0.5.7	One-sided and two-sided tests

CONTENTS 3

	6.6	A t-tes	st workflow	19
		6.6.1	Loading data	
		6.6.2	Visualising data	
		6.6.3	Formulating a hypothesis	
		6.6.4	Choosing a test	
		6.6.5	Checking assumptions	
		6.6.6	Running an analysis	
		6.6.7	Interpreting the results	
		6.6.8	Drawing conclusions	
		6.6.9	Going further	19
	6.7	Exercis	ses	19
		6.7.1	Exercise 1	19
		6.7.2	Exercise 2	
7	ANC	OVA		20
	7.1	Remen	mber the <i>t</i> -test	21
	7.2		7A	
	7.2	7.2.1	Single factor	
			· ·	
		7.2.2	Multiple factors	
		7.2.3	Examples	
	7.3		atives to ANOVA	
		7.3.1	Wilcox rank sum test	
		7.3.2	Kruskall-Wallis rank sum test	21
		7.3.3	The SA time data	21
	7.4	Exercis	ses	21
		7.4.1	Exercise 1	21
		7.4.2	Exercise 2	
		7.4.3	Exercise 3	
		7.1.5	DACICIOCO	21
8	Simp	ole linea	ar regressions	22
	8.1		nple linear regression equation	22
		8.1.1	The intercept	
		8.1.2	The regression coefficient	
		8.1.3	A graph of the linear regression	
		8.1.4	Predicting from the linear model	22
		8.1.5	The coefficient of determination, r^2	
		8.1.6	Significance test for linear regression	22
		8.1.7	Confidence interval for linear regression	
		8.1.8	Prediction interval for linear regression	22
		8.1.9	Residual plot	22
		8.1.10	Standardised residual	22
		8.1.11	Normal probability plot of residuals	
	8.2	Using a	an additional categorical variable	
9	Corr	elations	S	23
	9.1	Pearson	n correlation	23
	9.2		nan rank correlation	
	9.3		ll rank correlation	
	9.4		anel visual	
	9.5		ole panel visual	
		-	•	
	9.6		Ses	23
		46 I	HVercice I	72

CONTENTS	4

10	Conf	idence intervals	24
		Calculating confidence	24
		CI of compared means	24
		Harrell plots	24
		Exercises	24
		10.4.1 Exercise 1	24
		10.4.2 Exercise 2	24
11		ng assumptions or: How I learned to stop worrying and transform the data	25
	11.1	Backgroud	26
		11.1.1 Normality	26
		11.1.2 Homoscedasticity	26
		11.1.3 Epic fail. Now what?	26
	11.2	Transforming data	26
		11.2.1 Log transform	26
		11.2.2 Arcsine transform	26
		11.2.3 Cube root	26
		11.2.4 Square root transform	26
	11.3	Exercises	26
		11.3.1 Exercise 1	26
		11.3.2 Exercise 2	26
12	Lina	ar mixed models	27
12			27
		Wilcox rank sum test	
	12.2	Kruskall-Wallis rank sum test	27
		12.2.1 Single factor	27
		12.2.2 Multiple factors	27
	12.3	Generalised linear models	27
		12.3.1 Sign Test	27
		12.3.2 Wilcoxon Signed-Rank Test	27
		12.3.3 Mann-Whitney-Wilcoxon Test	27
		12.3.4 Kruskal-Wallis Test	27
		12.3.5 Generalised linear models (GLM)	27
		Exercises	27
	12.5	Exercise 1	27
13	Chi-	equared	28

List of Tables

List of Figures

Preface

This is a workshop about the practice of the basic statistics used by biologists, and not about the theory and mathematical underpinnings of the methods used. Each of the Chapters will cover a basic kind of statistical approach, and the main classes of data it applies to. Since much insight and understanding can be gained from visualising our data, we will also explore the main types of graphical summaries that best accompany the statistical methodologies. It is our intention to demonstrate how we go about analysing our data.

Prerequisites

A prerequisite for this course is a basic proficiency in using R (?). The necessary experience will have been gained from completing the Intro R Workshop: Data Manipulation, Analysis, and Graphing¹ Workshop that was part of your BCB Core Honours module (i.e. Biostatistics). You will also need a laptop with R and RStudio installed as per the instructions provided in that workshop. If you do not have a personal laptop, most computers in the 5th floor lab will be correctly set up for this purpose.

 $^{^{1}} https://robwschlegel.github.io/Intro_R_Workshop/$

Introduction

- 1.1 Venue, date and time
- 1.2 Course outline
- 1.3 About this Workshop
- 1.4 This is biology: why more R coding?
- 1.5 Installing R and RStudio
- 1.6 Resources
- 1.7 Style and code conventions
- 1.8 Assessment and teaching philosophy
- 1.9 About this document

Types of data

2.1 Data classes

- 2.1.1 Numerical data
- 2.1.1.1 Nominal (discrete) data
- 2.1.1.2 Continuous data
- 2.1.1.3 Dates
- 2.1.2 Qualitative data
- 2.1.2.1 Categorical data
- 2.1.2.2 Ordinal data
- 2.1.3 Binary data
- 2.1.4 Character values
- 2.1.5 Missing values
- 2.1.6 Complex numbers
- 2.2 Viewing our data
- 2.2.1 From the Environment pane
- 2.2.2 head() and tail()
- 2.2.3 colnames()
- 2.2.4 summary()

Descriptive statistics: central tendency and dispersion

Samples and populations 3.1

- 3.2 Measures of central tendency
- 3.2.1 The mean
- 3.2.2 The median
- 3.2.3 Skewness
- 3.2.4 Kurtosis
- 3.3 Measures of variation and spread
- 3.3.1 The variance and standard deviation
- 3.3.2 **Ouantiles**
- 3.3.3 The minimum, maximum and range
- 3.3.4 Covariance
- 3.3.5 Correlation
- 3.4 Missing values
- 3.5 Descriptive statistics by group
- 3.5.1 Groupwise summary statistics
- 3.5.2 Displays of group summaries
- 3.6 Exercises
- 3.6.1 **Exercise 1**

Graphical data displays

- 4.1 Qualitative data
- 4.2 Continuous data
- 4.2.1 Frequency distributions (histograms)
- 4.2.2 Box plots
- 4.2.3 Pairwise Scatter plots
- 4.2.4 Bar graphs
- 4.2.5 Density graphs
- 4.2.6 Violin plots
- 4.3 Exercises
- 4.3.1 Exercise 1

Distributions

5.1 Discrete distributions

- 5.1.1 Bernoulli distribution
- 5.1.2 Binomial distribution
- 5.1.3 Negative binomial distribution
- 5.1.4 Geometric distribution
- 5.1.5 Poisson distribution

5.2 Continuous distributions

- 5.2.1 Normal distribution
- 5.2.2 Uniform distribution
- 5.2.3 Student T distribution
- 5.2.4 Chi-squared distribution
- 5.2.5 Exponential distribution
- 5.2.6 F distribution
- 5.2.7 Gamma distribution
- 5.2.8 Beta distribution
- 5.2.9 Paranormal distributions
- 5.3 Finding one's data distribution
- 5.4 Exercises
- **5.4.1** Exercise 1

Inferences about one or two populations

6.1	Assumpt	tions

- 6.1.1 Normality
- 6.1.2 Homoscedasticity
- 6.1.3 Two for one
- 6.2 One-sample *t*-tests
- 6.2.1 One-sided one-sample *t*-tests
- 6.2.2 Two-sided one-sample *t*-tests
- 6.3 Two-sample *t*-tests
- 6.3.1 One-sided two-sample t-tests
- 6.3.2 Two-sided two-sample *t*-tests
- 6.4 Paired t-tests
- 6.5 Comparison of two population proportions
- 6.5.1 One-sample and two-sample tests
- 6.5.2 One-sided and two-sided tests
- 6.6 A *t*-test workflow
- 6.6.1 Loading data
- 6.6.2 Visualising data
- 6.6.3 Formulating a hypothesis
- 6.6.4 Choosing a test
- 6.6.5 Checking assumptions
- 6.6.6 Running an analysis
- 6.6.7 Interpreting the results
- 6.6.8 Drawing conclusions
- 6.6.9 Going further
- 6.7 Exercises
- **6.7.1** Exercise 1
- 6.7.2 Exercise 2

ANOVA

CHAPTER 7. ANOVA 21

7.1 Remember the *t*-test

- 7.2 ANOVA
- 7.2.1 Single factor
- 7.2.2 Multiple factors
- 7.2.2.1 About interaction terms
- 7.2.3 Examples
- 7.2.3.1 Snakes!

7.3 Alternatives to ANOVA

- 7.3.1 Wilcox rank sum test
- 7.3.2 Kruskall-Wallis rank sum test
- 7.3.2.1 Single factor
- 7.3.2.2 Multiple factors
- 7.3.3 The SA time data
- 7.4 Exercises
- 7.4.1 Exercise 1
- 7.4.2 **Exercise 2**
- **7.4.3** Exercise 3

Simple linear regressions

Placeholder

8.1 The simple linear regression equati	ıatıor
---	--------

- 8.1.1 The intercept
- 8.1.2 The regression coefficient
- 8.1.3 A graph of the linear regression
- 8.1.4 Predicting from the linear model
- **8.1.5** The coefficient of determination, r^2
- 8.1.6 Significance test for linear regression
- 8.1.7 Confidence interval for linear regression
- 8.1.8 Prediction interval for linear regression
- 8.1.9 Residual plot
- 8.1.10 Standardised residual
- 8.1.11 Normal probability plot of residuals

8.2 Using an additional categorical variable

Correlations

- 9.1 Pearson correlation
- 9.2 Spearman rank correlation
- 9.3 Kendall rank correlation
- 9.4 One panel visual
- 9.5 Multiple panel visual
- 9.6 Exercises
- 9.6.1 Exercise 1

10 Confidence intervals

- 10.1 Calculating confidence
- 10.2 CI of compared means
- 10.3 Harrell plots
- 10.4 Exercises
- 10.4.1 Exercise 1
- 10.4.2 Exercise 2

Testing assumptions or: How I learned to stop worrying and transform the data

11.1 Backgroud

- 11.1.1 Normality
- 11.1.2 Homoscedasticity
- 11.1.3 Epic fail. Now what?
- 11.2 Transforming data
- 11.2.1 Log transform
- 11.2.2 Arcsine transform
- 11.2.3 Cube root
- 11.2.4 Square root transform
- 11.3 Exercises
- 11.3.1 Exercise 1
- 11.3.2 Exercise 2

Linear mixed models

- 12.1 Wilcox rank sum test
- 12.2 Kruskall-Wallis rank sum test
- 12.2.1 Single factor
- 12.2.2 Multiple factors
- 12.3 Generalised linear models
- 12.3.1 Sign Test
- 12.3.2 Wilcoxon Signed-Rank Test
- 12.3.3 Mann-Whitney-Wilcoxon Test
- 12.3.4 Kruskal-Wallis Test
- 12.3.5 Generalised linear models (GLM)
- 12.4 Exercises
- 12.5 Exercise 1

13 Chi-squared

A chi-squared test is used when one wants to see if there is a realtionship between count data of two or more factors.

```
x <- c(A = 20, B = 15, C = 25)
chisq.test(x)

R>
R> Chi-squared test for given probabilities
R>
R> data: x
R> X-squared = 2.5, df = 2, p-value = 0.2865
```