Биометрическая идентификация личности по ЭКГ

BIOHACK 2018

Участники

Глухов Эрнест | СПбГУ

Программирование, Биоинформатика Python, R, Pipeline Pilot

Миночкина Александра | МФТИ

Математика, Программирование, Биоинформатика Python

Мирошникова Анастасия | Новосибирский государственный университет

Биология, Биоинформатика, Химия R, Python, bash

Богданов Марат Робертович

к.б.н., доцент кафедры вычислительной математики и кибернетики УГАТУ, Уфа, доцент кафедры прикладной информатики БГПУ им.М. Акмуллы, Уфа.

Цель проекта

- Определение наиболее информативных признаков
 ЭКГ для биометрической идентификации.
- 2. Выбор таких методов МО, которые обеспечивают максимальную точность.

Актуальность

Существующие методы биометрической идентификации личности (распознавание отпечатков пальцев, лица, голоса, сетчатки глаза) не устойчивы к фальсификации.

При этом потребность в достоверном методе определения индивида увеличивается.

Гипотеза

Гипотеза: человека можно точно идентифицировать по ЭКГ.

В терминах машинного обучения: задача классификации индивидов по ЭКГ решается с высокой точностью.

Обзор существующих практик

- 1. Анализ характерных точек ЭКГ:
- временные
- амплитудные
- морфологические
- 1. Анализ фазовых и частотных свойств ЭКГ

Этапы выполнения

Описание данных

Проект: PhysioNet

База: Physikalisch-Technische Bundesanstalt (РТВ)

Образцов ЭКГ: 549

Испытуемых: 290

Возраст: от 17 до 87 лет

Отведений: 16

Частота дискретизации: 1кГц

Разрядность: 16 бит

Продолжительность измерения: 180 сек.

Импорт данных

1. Выделение первого и третьего отведения из кардиограммы

Взаимное расположение первого и третьего отведения характеризуют индивидуальные особенности работы сердца индивида

Препроцессинг данных

- 1. Высокочастотная фильтрация
- 2. Коррекция базовой линии

- 1. Обработка полной кардиограммы:
 - определение R-пиков на диаграмме
 - определение длины кардиоцикла

2. Создание паттернов:

- выделение кардиоциклов
- определение R-пиков

...

2. Создание паттернов:

• • •

- синхронизация по времени R-пиков
- синхронизация по амплитуде R-пиков
- определение координат пиков Q, R, S

3. Выделение кластеров точек, соответствующих QRS пикам первого отведения ЭКГ

4. Выделение кластеров точек, соответствующих QRS- областям третьего отведения.

Кластеры точек 1 и 3 отведения синхронизированы по времени.

Постпроцессинг

- 1. Фильтрация выбросов
- 2. Балансирование количества наблюдений

Финальные выборки

Конечные выборки для обучения:

- 1) 10 индивидов, 8 признаков, несбалансированные классы
- 2) 18 индивидов, 6 признаков, сбалансированные классы
- 3) 18 индивидов, 9 признаков, сбалансированные классы
- 4) 268 индивидов, 9 признаков, сбалансированные классы

Модели. Линейный ДА

Модели были кроссвалидированы:

- данные разбиты на 5 подвыборок
- воспроизведены в 10 повторах.

На основе кросс-валидации построены доверительные интервалы для точности.

Линейный дискриминантный анализ

Модели. Наивный Байес и квадратичный ДА

Наивный Байесовский классификатор

Квадратичный дискриминантный анализ

Модели. Опорные вектора

Метод опорных векторов

Показывающие обнадеживающие результаты на малых выборках.

Модели. Сравнение

Качество модели для полной выборки

Лучшие модели:

- квадратичный дискриминантный анализ
- наивный Байесовский классификатор.

Модели. LSTM RNN

Преимущества:

- не нужно выделять признаки
- используется информация о взаимосвязи последовательных значений ЭКГ

Модели. LSTM RNN

x, MC	z, MB
1	-0,0012
2	-0, <mark>0</mark> 034
1000	365,267

Accuracy: 0,723

Выводы

- Выделены воспроизводимые характеристики ЭКГ, устойчивые в течение жизни и позволяющие идентифицировать индивида.
- Построены модели, решающие задачу классификации с высокой точностью.

Биометрическая идентификация личности по ЭКГ

BIOHACK 2018