

Modèle bayésien pour la désagrégation du chauffage

François Culière

Plan

- 1. Présentation de l'entreprise
- 2. Contexte général & Objectifs
- 3. Méthodes & Outils
- 4. Résultats & Discussion
- 5. Conclusion

Présentation d'Hello Watt

- Fondé en 2016 par Sylvain Le Falher et Xavier Coudert
- Début comme comparateur de fournisseurs d'énergie
 (pour choisir entre les 35 fournisseurs d'électricité en France)
- Ambition : être le conseiller énergie des particuliers
- **109** collaborateurs (~70 à mon arrivée)
- 2 sites : Paris et Amiens

Hello Watt: la vision

Je baisse ma facture énergétique En changeant de fournisseur d'énergie

Je réduis ma consommation énergétique

En suivant ma consommation énergétique au jour le jour (Coach Conso) En réalisant des travaux de rénovation énergétique

Je produis ma propre énergie En installant des panneaux photovoltaïques sur mon toit

1. Amélioration du Coach Conso

- a. Désagrégation de la consommation
- b. Comparaison aux logements similaires (consommation, isolation)
- c. Proposition de travaux de rénovation pour les passoires thermiques

2. Amélioration de l'acquisition client

- a. Optimisation des campagnes SEA Adwords
- b. Amélioration de l'expérience client sur le site

Équipe data: environnement technique

GitLab

Contexte général & Objectifs

• Trouver la répartition de la consommation totale de plusieurs appareils

Désagrégation d'énergie

- Difficulté du problème dépend :
 - 1. fréquence d'échantillonnage
 - 2. nombre d'appareils
- Peut être vu comme un problème de factorisation de matrice (type NMF)
- Hello Watt
 - Utilisation Linky (30 min résolution temporelle)
 - Focalisation sur les appareils à haute consommation

- Chauffage compte pour 40% de la consommation annuelle en électricité
- Détection non supervisée en utilisant la relation :

$$P_{tot} = ext{HPLC} \left(T_{in} - T_{ext} \right) - rac{1}{\eta_{HS}} A_{sol} I_{sol} - rac{\eta_B}{\eta_{HS}} P_B - rac{\Phi_O}{\eta_{HS}} + P_B$$

- Enjeux pour l'équipe rénovation :
 - > Trouver les logements les moins bien isolés
 - ➤ Chiffrer les économies en chauffage suite à une rénovation
- Nécessité d'avoir un modèle précis
 - Construction d'un modèle bayésien ajusté sur chaque logement

Méthodes & Outils

• Paradigme des **statistiques** qui se résume par la formule de **Bayes** :

$$\begin{split} P(\Theta \mid \text{data}) &= \frac{P(\text{data} \mid \Theta) \times P(\Theta)}{P(\text{data})}, \\ Posterior &= \frac{\text{Vraisemblance} \times \text{Prior}}{\text{Evidence}}. \end{split}$$

- Source d'opposition dans la communauté scientifique
- Permet de modéliser de grandes classes de problème (modèles graphiques)
- Problèmes calculatoires → Méthodes MCMC et d'inférence variationnelle

Inférence variationnelle

• Cadre de l'inférence variationnelle :

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\theta}(\mathbf{z})$$

• On souhaite calculer la distribution postérieure :

$$p_{\theta_{\max}}(\mathbf{z} \mid \mathbf{x}) = \frac{p_{\theta_{\max}}(\mathbf{x}, \mathbf{z})}{\int p_{\theta_{\max}}(\mathbf{x}, \mathbf{z}) d\mathbf{z}}$$

• Approximation de la vrai distribution par une distribution variationnelle (guide) :

$$\phi_{\text{max}}, \theta_{\text{max}} = \underset{\phi, \theta}{\operatorname{argmin}} \operatorname{KL}(q_{\phi}(z) \| p_{\theta}(z \mid \mathbf{x}))$$

Inférence variationnelle: en pratique

• Remplacement de la KL divergence par la borne inférieure variationnelle (ELBO) :

$$ELBO = \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z}) \right]$$

Propriétés :

$$\log p_{\theta}(\mathbf{x}) \ge \text{ELBO}$$

$$\log p_{\theta}(\mathbf{x}) - \text{ELBO} = \text{KL}(q_{\phi}(z) || p_{\theta}(z \mid \mathbf{x}))$$

• Maximiser l'**ELBO**, augmente l'évidence des données

- Permet de :
 - > **Décrire** modèle graphique bayésien
 - > **Décrire** une distribution variationnelle (guide)
 - Minimiser l'ELBO, nécessitant le calcul et la rétro-propagation de son gradient
- Librairie utilisée : **Pyro** basée sur Pytorch

S'adapte à des grands jeux de données avec l'utilisation du GPU

17

- Permet de trouver le **HPLC** du logement
- Modèle qui autorise une mixture de régression en dessous d'une température critique

- Température de cassure modélisée par une loi de dirichlet
- Mixture de régression modélisée par : Sigmoid o Cumsum (Dirichlet)
 - > Permet d'échantillonner un vecteur aléatoire ordonné

Modèle de désagrégation du chauffage : prédictions du chauffage

• Calculées avec les paramètres du modèle

$$c^{(h)}|c^{(tot)}, w_a, T_c, b_a = c^{(tot)} - w_a T_c - b_a$$

Résultats & & Discussion

- Dataset de 676 logements partitionné en deux sous-ensembles A and B
- Modèle ajusté sur :
 - > A+B et **évalué** sur **B** d'une part
 - > A et **évalué** sur **B** d'autre part
- Différence moyenne des prédictions : 10%

- Initialisation des paramètres :
 - Tombe facilement dans un minimum local
 - ➤ Initialisation des paramètres avec régressions pour T < 17°C et T > 17°C
- Critère d'arrêt à utiliser pour limiter le temps d'inférence
 - Test de racine unitaire de l'ELBO
 - Variation relative des paramètres lors de n derniers pas de calculs

- Pipeline robuste aux données manquantes et comportements étranges de consommation
- Pipeline d'inférence proposée :

- Choix du modèle pour choisir le nombre de cassures et d'états latents
 - Comportement de consommation avec 2 températures de cassures (chauffage et climatisation)
 - Comportement sans température de cassure évidente
- Nécessite un critère pour choisir le modèle
 - Utilisation du BIC (pénalise la complexité du modèle)

$$BIC = -2\ln(L) + k \cdot \ln(N)$$

Utilisation de statistiques sur les données d'entrées (nombre de données, KDE)

 Calculer les prédictions lorsqu'un utilisateur se connecte sur la plateforme d'Hello Watt

- Utiliser comme prior lors du ré-entraînement du modèle, nécessaire pour détecter :
 - Changement de comportement de consommation
 - Travaux d'isolation

- Approche plus générale de la modélisation bayésienne
 - Utilisation d'un ensemble de modèle (point de cassure, états latents) et former des mixtures

 Amélioration du modèle en ajoutant des données météorologiques (vent, couverture nuageuse)

Conclusion

- Objectifs réalisés
 - Développement d'un modèle de désagrégation du chauffage mis en production sur le site d'Hello Watt
 - Ecriture d'un papier de recherche accepté à la conférence NILM
 - > Réalisation d'études statistiques pour enrichir le site d'Hello Watt

 Expérience valorisante et révélatrice des responsabilités du data scientist en entreprise

Merci!

