Particle spectrograph

Wave operator and propagator

SO(3) irrans	Fundamental fields	Multiplicities
	$ \beta_{ij} \alpha^{\alpha\beta} = 0 $	1
	ch a	ı
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#1}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$ +	3
	2 ($\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta}$ - $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$ +	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}$) == $\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == 0$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0$	$t_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0 - i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi})$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ i\ k^{X}\ \partial_{arepsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	6 i k^{χ} $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t_{\chi}^{\chi}$ -	
	$4 \bar{l} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	20

 $\sigma_{1^{\bar{-}}}^{\#_1} \dagger^\alpha$

 $\tau_1^{\#1} + \alpha \beta$

 $\sigma_{1}^{\#2} \, \dagger^{\alpha}$

 $f_{1}^{\#1}c$

 $\mathcal{A}_{1}^{\#1}$

 $\frac{\frac{i\,kt_1}{3}}{\sqrt{2}\,kt_1}$

 ${\mathscr A}_{1^{ar{-}}}^{\#1}\,\dagger^{lpha}$

0 0

 $\mathcal{A}_{1^-}^{\#2} \dagger^{lpha} \ f_{1^-}^{\#1} \dagger^{lpha}$

 $-\frac{1}{3}ikt_1$

0 0 0

 $\frac{1}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\sigma_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$ $\sigma_{0^{-}}^{\#1}$

0 + 1

 $\frac{i k t_1}{\sqrt{2}}$

 $f_{2}^{\#1} +^{\alpha\beta}$ $\mathcal{A}_{2}^{\#1} +^{\alpha\beta\chi}$

<u>t1</u>

 $\mathcal{A}_{2}^{\#1} + {}^{6}$

 $\tau_{0}^{\#2} + 0$

 $\tau_{2^{+}\alpha\beta}^{\#1}$

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4\,k^2}{(1+2\,k^2)^2\,t_1}$

 $\sigma_{0}^{\#1} \dagger 0 0$

 $\sigma_{2-\alpha\beta\chi}^{\#1}$

	Source	50(3)	$\sigma_{0}^{\#1} ==$	$\tau_0^{\#1} == 0$	$\tau_{0}^{\#2} == 0$	$t_1^{\#2}\alpha$ +		τ#1α =
Ma	ass	ive	e ar	nd r	nas	sle	ss sp	ect

ctra

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$