CS5590: Exam - 1

7:45pm-9:15pm, 03-Sep-2019

ROLL NO.

Note: Fill in the blanks/boxes appropriately such that the respective statements become true. While filling the blanks/boxes strictly follow the instructions in the respective question appearing immediately after/before the blank/box. You are free to use any standard mathematical symbols like π , e , Σ , $ \cdot $,
1. Consider a binary classification problem with input space $\mathcal{X} = \mathbb{R}^n$, and output space $\mathcal{Y} = \{-1,1\}$. Consider a training set given by $= \{(x_0,1),(-x_0,-1)\}$, where $x_0 \in \mathcal{X} \ (\neq 0)$ is a given fixed point. It is proposed to employ the logistic loss and the linear inductive bias (without the norm-bound). Then, the simplified expression for the ERM problem is:
$\min_{w\in\mathbb{R}^n}\left[___\right]$.
Your expression in the previous blank must involve w, x_0 only.
[1 Mark]
In the box below argue that this optimization problem as no solution:
[1 Mark]
Now, the inductive bias is changed to linear functions with norm-bound given by hyperparameter $W=1$. Then, the optimal solution, \hat{w} , of the corresponding ERM problem in it's original

form involving the hyperparameter W is given by: $\hat{w}=$. This expression must involve

The above exercise highlights yet another advantage of the norm-bounded linear functions over

[0.5 Mark]

 x_0 alone.

the set of all linear functions!

¹Here, the ERM is not re-written in the Tikhonov form i.e., it is NOT rewritten in the regularized risk minimization form.

2. Assume you have a classification problem with 3 classes: '\(\mathbb{H}'\), '\(\dagger'\), and '\(\mathbb{T}'\). The loss function, l, you would employ if you were restricted to model only one real-valued function, f, is given by $l(x, \mathbf{H}, f) \equiv \underline{\hspace{1cm}}, \ l(x, \dagger, f) \equiv \underline{\hspace{1cm}}, \ l(x, \dagger, f) \equiv \underline{\hspace{1cm}}.$

[1.5 Marks; Practice set problem!]

Suppose you re allowed to model 3 real-valued functions, say, f, g, h. Then, the loss function you would employ is given by: $l(x, \maltese, (f, g, h)) \equiv$

[2 Marks; Practice set problem!]

3. Consider a regression problem where the input space, $\mathcal{X} = \mathbb{R}^n$, and the output space, $\mathcal{Y} = \mathbb{R}$. It is proposed to use the inductive bias as the set of all affine functions:

$$\mathcal{G} \equiv \left\{g \mid \exists \; w \in \mathbb{R}^n, \; b \in \mathbb{R} \; \ni \; g(x) = w^ op x - b \; orall \; x \in \mathcal{X}
ight\}.$$

The parameters are $w \in \mathbb{R}^n$, $b \in \mathbb{R}$. The loss to be used is the square loss. Let the input vectors in the training set be arranged as column vectors in the matrix $X_{n \times m}$, where m is the training set size. Let $y_{m \times 1}$ denote the vector with entries as the corresponding outputs in the training set. Let us denote the q-dimensional vector with all entries as unity by 1_q . Then, the simplified expression for the ERM optimization problem written in terms of $X, y, 1_m, w, b$ is given by:

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left[rac{1}{m} \left(
ight.
ight.$$

Your expression in the previous blank must not use explicit symbols for columns, entries of X, y. In other words, please employ vector operations rather than scalar ones.

[1 Mark]

Now, if the inductive bias is changed to norm-bounded affine functions:

$$\mathcal{G}_W \equiv \left\{g \mid \exists \; w \in \mathbb{R}^n, \; b \in \mathbb{R}, \; \|w\| \leq W \; \;
ightarrow \; g(x) = w^ op x - b \; orall \; x \in \mathcal{X}
ight\},$$

the simplified expression for the ERM problem in Tikhonov form² turns out to be:

$$\min_{oldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}} igg[$$

Your expression in the previous blank must be in terms of $X, y, 1_m, w, b, \lambda$ only, where λ is the hyperparameter (that replaces W).

[0.5 Mark]

Now, by repeating the analysis done in the lecture for the case of linear/ridge regression, or otherwise, find an analytical expression for the optimal solution, (\hat{w}, \hat{b}) , of this problem. The optimal \hat{w} satisfies the following linear equalities:

$$\left(\begin{array}{c} \end{array}
ight) \hat{w} = \left(\begin{array}{c} \end{array}
ight)$$

Your expression for the first of the previous two blanks must be only in terms of X, λ , I_n , 1_m , m, where I_n is the identity matrix of size n. And, the second must be in terms of X, y, 1_m , m.

²Regularized risk minimization form.

In the following box, please write a form two blanks, denoted by, say, P , is positive	al proof of why the matrix in the first of the previous re definite.
Hence, the optimal $\hat{w} = P^{-1}q$, where q blanks.	denotes the vector in the second of the previous two
	[1 Mark]
The optimal \hat{b} is given by the expression: $\hat{w}, X, y, 1_m, m$ alone.	This expression must involve
	[0.5 Mark]