Using Static Single Assignment Form

Announcements

- Project 2 schedule due today
- HW1 due Friday

Last Time

- SSA Technicalities

Today

- Constant propagation
- Loop invariant code motion
- Induction variables

Constant Propagation

Goal

 Discover constant variables and expressions and propagate them forward through the program

Uses

- Evaluate expressions at compile time instead of run time
- Eliminate dead code (e.g., debugging code)
- Improve efficacy of other optimizations (*e.g.*, value numbering and software pipelining)

Roadmap

Kinds of Constants

Simple constants Kildall [1973]

Constant for all paths through a program

Conditional constants Wegbreit [1975]

 Constant for actual paths through a program (when only one direction of a conditional is taken)

Data-Flow Analysis for Simple Constant Propagation

Simple constant propagation: analysis is "reaching constants"

```
- D: 2^{v \times c}

- \square: \cap

- F:

- Kill(x←...) = {(x,c) ∀c}

- Gen(x←c) = {(x,c)}

- Gen(x←y⊕z) = if (y,c<sub>y</sub>)∈In & (z,c<sub>z</sub>)∈In, {(x,c<sub>y</sub>⊕c<sub>z</sub>)}

- ...
```

Data-Flow Analysis for Simple Constant Propagation (cont)

Reaching constants for simple constant propagation

- D: {All constants} \cup { \top , \bot }

Using tuples of lattices

 $- \Box: \quad \mathbf{c} \Box \top = \mathbf{c}$ $\mathbf{c} \Box \bot = \bot$ $\mathbf{c} \Box \mathbf{d} = \bot \text{ if } \mathbf{c} \neq \mathbf{d}$ $\mathbf{c} \Box \mathbf{d} = \mathbf{c} \text{ if } \mathbf{c} = \mathbf{d}$

- F:

$$-F_{x\leftarrow c}(In) = c$$

$$-F_{x \leftarrow y \oplus z}(In) = \text{if } c_y = In_y \& c_z = In_z, \text{ then } c_y \oplus c_z, \text{ else } \top \text{ or } \bot$$

— . . .

Initialization for Reaching Constants

Pessimistic

- Each variable is initially set to \bot in data-flow analysis
- Forces merges at loop headers to go to ⊥ conservatively

Optimistic

- Each variable is initially set to \top in data-flow analysis
- What assumption is being made when optimistic reaching constants is performed?

Implementing Simple Constant Propagation

Standard worklist algorithm

- Identifies simple constants
- For each program point, maintains one constant value for each variable
- O(EV) (E is the number of edges in the CFG; V is number of variables)

Problem

 Inefficient, since constants may have to be propagated through irrelevant nodes

Solution

- Exploit a sparse dependence representation (e.g., SSA)

Sparse Simple Constant Propagation

Reif and Lewis algorithm Reif and Lewis [1977]

- Identifies simple constants
- Faster than Simple Constants algorithm

SSA edges

- Explicitly connect defs with uses
- How would you do this?

Main Idea

 Iterate over SSA edges instead of over all CFG edges

Sparse Simple Constants Algorithm (Ch. 19 in Appel)

worklist = all statements in SSA
while worklist ≠ Ø

Remove some statement S from worklist
if S is x = phi(c,c,...,c) for some constant c
 replace S with v = c
if S is x=c for some constant c
 delete s from program
 for each statement T that uses v
 substitute c for x in T
 worklist = worklist union {T}

Sparse Simple Constants

Complexity

- O(E') = O(EV), E' is number of SSA edges
- O(n) in practice

Other Uses of SSA

Dead code elimination

while \exists a variable v with no uses and whose def has no other side effects

Delete the statement s that defines v

for each of s's ud-chains

Delete the corresponding du-chain that points to s

- Contrast this approach with one that uses liveness analysis
 - This algorithm updates information incrementally
 - With liveness, we need to invoke liveness and dead code elimination iteratively until we reach a fixed point

Other Uses of SSA (cont)

Induction variable identification

- Induction variables
 - Variables whose values form an arithmetic progression
 - Useful for strength reduction and loop transformations

Why bother?

- Automatic parallelization, . . .

Simple approach

- Search for statements of the form, i = i + c
- Examine ud-chains to make sure there are no other defs of i in the loop
- Does not catch all induction variables. Examples?

Induction Variable Identification (cont)

Types of Induction Variables

- Basic induction variables
 - Variables that are defined once in a loop by a statement of the form,
 i=i+c (or i=i*c), where c is a constant integer
- Derived induction variables
 - Variables that are defined once in a loop as a linear function of another induction variable
 - $-j = c_1 * i + c_2$
 - $-j = i /c_1 + c_2$ where c_1 and c_2 are loop invariant

Induction Variable Identification (cont)

Informal SSA-based Algorithm

- Build the SSA representation
- Iterate from innermost CFG loop to outermost loop
 - Find SSA cycles
 - Each cycle may be a basic induction variable if a variable in a cycle is a function of loop invariants and its value on the current iteration
 - Find derived induction variables as functions of loop invariants, its value on the current iteration, and basic induction variables

Induction Variable Identification (cont)

Informal SSA-based Algorithm (cont)

- Determining whether a variable is a function of loop invariants and its value on the current iteration
 - The ϕ -function in the cycle will have as one of its inputs a def from inside the loop and a def from outside the loop
 - The def inside the loop will be part of the cycle and will get one operand from the ϕ -function and all others will be loop invariant
 - The operation will be plus, minus, or unary minus

Next Time

Reading

- Ch 8.10, 12.4

Lecture

Redundancy elimination