Selection and haplotypes EHH statistics

Anders Albrechtsen

Signature of selection

- Mutation enters the population
- Mutation increases in frequency due to positive selection
- Increases LD
- Affects the variability
- Increases haplotype similarity
- Increases differences with other populations in the whole region

What is EHH?

Extended haplotype homozygosity (EHH): EHH at distance x from the core region is the probability that two randomly chosen chromosomes carry a tested core haplotype are homozygous at all SNPs for the entire interval from the core region to the distance x.

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}\left(x_{i}\right) = \sum_{h \in H_{c}\left(x_{i}\right)} \left(\begin{matrix} n_{h} \\ 2 \end{matrix}\right)$$
 Core SNP

slides stolen from Matteo Fumagalli

Core haplotype is 1

(Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$
Until marker x_{i}

(starting from x_0)

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

Sum across all unique haplotypes carrying the core SNP

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(x_{t}) = \sum_{h \in H_{c}(x_{t})} \binom{n_{h}}{2}$$

$$n_{h} \text{ is haplotype frequency of } h$$

$$n_{h} \text{ is haplotype frequency of the core}$$

Sum across all unique haplotypes SNP carrying the core SNP

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(x_{t}) = \sum_{he:H_{c}(x_{t})} \left(\frac{n_{h}}{2} \right)$$

$$n_{h} \text{ is haplotype frequency of } h$$

$$n_{h} \text{ is haplotype}$$

$$n_{h} \text{ is haplotype}$$

$$frequency of the core$$

 n_h is haplotype frequency of the core

Sum across all unique haplotypes SNP carrying the core SNP

$$EHH_{c}(x_{i}=0)=?$$

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}\left(x_{i}\right) = \sum_{h \in H_{c}\left(x_{i}\right)} \left(\frac{n_{h}}{2}\right)$$

$$n_{h} \text{ is haplotype fit}$$

$$n_{c} \text{ is haplotype}$$
frequency of the

 n_h is haplotype frequency of h

frequency of the core

Sum across all unique haplotypes SNP carrying the core SNP

$$EHH_{c}(x_{i}=0) = \begin{bmatrix} 5\\2\\5\\2 \end{bmatrix} = 1$$

$$EHH_{c}(x_{t}) = \sum_{h \in H_{c}(x_{t})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +1) = ?$$

How many unique haplotypes carrying the core SNP? What is their frequency?

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{n_{h}}{\binom{n_{c}}{2}}$$

$$EHH_{\varepsilon}(x_i = +1) = \frac{\binom{4}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{6+0}{10} = 0.60$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +2) = ?$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +2) = EHH_{c}(x_{i} = +1) = 0.60$$

How many unique haplotypes carrying the core SNP? What is their frequency?

$$EHH_{c}(x_{t}) = \sum_{h \in H_{c}(x_{t})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

How many unique haplotypes carrying the core SNP? What is their frequency?

1111 with freq=2

1110 with freq=2

1000 with freq=1

$$EHH_{c}(x_{i} = +3) = ?$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

How many unique haplotypes carrying the core SNP? What is their frequency?

1111 with freq=2

1110 with freq=2

1000 with freq=1
$$EHH_{c}(x_{i} = +3) = \frac{\binom{2}{2} + \binom{2}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{1+1+0}{10} = 0.20$$

	n_h
$EHH_{c}(x_{i}) = \sum_{i}$	2
$h \in H_c(x_i)$	n_c
	2

n	n choose 2
1	0
2	1
3	3
4	6
5	10
6	15

$$EHH_c(x_i = -1) = ?$$

 $EHH_c(x_i = -2) = ?$

Comment on differences (if any) between EHH(x=+2) and EHH(x=-2).

	n_h	
$EHH_c(x_i) = \sum_{i=1}^{n}$	2	
$h \in H_c(x_i)$	$ n_c $	Ī
	(2)	

(.,)

n	n choose 2
1	0
2	1
3	3
4	6
5	10
6	15

$$EHH_c(x_t = -1) = \frac{\binom{2}{1} + \binom{2}{2}}{\binom{5}{2}} = \frac{3+1}{10} = 0.4$$

$$EHH_{c}(x_{i}=-2) = \frac{\binom{2}{2} + \binom{1}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{1+0+0}{10} = 0.$$

Comment on differences (if any) between EHH(x=+2) and EHH(x=-2)?

iHs

often | iHs | is used

Exercises

Let see how the haplotype methods works on famous examples of human adaptation (LCT).

go to

http://popgen.dk/albrecht/BAG2018/web/

