Nombre y apellidos:

Curso:

TRIGONOMETRÍA

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

RAZONES TRIGONOMÉTRICAS DE ALGUNOS ÁNGULOS

	30°	45°	60°
sen α			
cos α			
tg α			

Fecha:

RELACIONES FUNDAMENTALES

Son: I)	
II)	

Sirven para obtener

RESOLUCIÓN DE PROBLEMAS MEDIANTE SISTEMAS

Resolver un triángulo es hallar

- Triángulos rectángulos: para resolverlos se utiliza
- Triángulos oblicuángulos: para resolverlos es necesario trazar

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS ENTRE 0° Y 360°

Representación de ángulos

- Se utiliza una circunferencia de radio y centro en que se llama
- Para representar un ángulo en la circunferencia se procede así:
 - Su vértice en
 - Uno de sus lados sobre
 - Para situar el otro lado se mide el ángulo en sentido

Unidades de medida angular

Para pasar de grados a radianes se utiliza α° =

Seno, coseno y tangente

Si $0^{\circ} \le a \le 360^{\circ}$:

$$sen \alpha = \dots cos \alpha = \dots tg \alpha = \dots$$

Los ángulos que no tienen tangente son los de.....

PRACTICA

1. Halla las razones trigonométricas del ángulo α en cada caso:

- **2.** Si sen $\alpha = \frac{2}{5}$, calcula $\cos \alpha$ y $tg \alpha$ utilizando las relaciones fundamentales (0 < α < 90°).
- **3.** Sabiendo que $tg \alpha = 2$, calcula, en forma de radical, el valor de $sen \alpha$ y $cos \alpha$ ($\alpha < 90^{\circ}$).
- 4. Resuelve (halla los lados y ángulos desconocidos) el siguiente triángulo:

5. Calcula el área de este triángulo (calcula primero la altura sobre la base).

- 1. ¿A qué distancia de A y de B habrá que poner la viga de máxima altura?", te pregunta tu tía. ¿Qué le contestas?
- 2. "Oye, me vendría bien que me dijeras cuál va a ser la altura de las puertas de los armarios, h y h', para comprar la madera". Halla el dato que te pide tu tío.
- **3.** Una vez hechos los armarios, tus tíos quieren forrar de madera toda la superficie de los techos y te preguntan cuál es esa superficie. (Son rectángulos de longitud 13 m y anchura \overline{DC} y \overline{CE} respectivamente).
- **4.** Además, quieren poner radiadores para calentar la buhardilla. Te dicen que cada uno calienta unos 30 m³. ¿Cuántos radiadores necesitarán para toda la buhardilla? (Debes calcular el volumen útil de la buhardilla, esto es, descontando el volumen de los armarios).

PRACTICA

1. Dibuja dos ángulos en la circunferencia goniométrica cuyo seno sea $\frac{3}{4}$, y halla su coseno y su tangente.

2. Sabiendo que $tg \alpha = -3$ y que $0 < a < 180^\circ$, halla, $sen \alpha$ y $cos \alpha$. ¿Cuál es el ángulo α ?

- **3.** Sabiendo que sen $40^{\circ} \approx 0,64$, calcula:
 - a) $cos 40^{\circ}$
- b) tg 130°
- c) sen 220°
- d) cos 320°

- 4. En el triángulo de la figura, calcula:
 - a) Altura h.
- b) Longitud \overline{BP} .
- c) Longitud \overline{PC} .
- d) Longitud $\overline{BC} = a$.

e) Área.

APLICA. LA GRAN PRESA

Paula suele veranear todos los años en un pueblo, cerca del cual van a construir una presa. Curiosamente, una amiga de su madre está en el equipo de trabajo y un día la lleva a ver las obras. Paula aprovecha para hacerle muchas preguntas sobre cómo se diseña y se construye una presa de este tipo.

1. En primer lugar, Paula quiere saber cómo calculan la anchura de la presa. Su amiga le enseña los dibujos preliminares y le dice. "Bueno, con estos datos, hasta tú puedes calcular la anchura, CD, de la presa". ¿Cuál es esa anchura?

2. Después, Paula le pregunta por la construcción de la presa. Observa el dibujo que vio Paula y calcula la altura, x, de los cimientos. Aprovecha, también, para calcular la longitud d de la rampa de caída.

3. Paula se ha enterado de que la presa va a dar servicio eléctrico a los pueblos A y B, tendiendo cables de alta tensión entre la presa y cada uno de los pueblos, y entre los propios pueblos. Esta vez no hace falta que pregunte nada, porque su amiga le asegura que, desde la presa, los pueblos se ven bajo un ángulo de 43°. ¿Cuál es la distancia entre los dos pueblos? (Calcula primero ¹).

Unidad 7

Ficha de trabajo A

PRACTICA

1. a) $tq \alpha = 0.33$

$$\cos \alpha = 0.95$$

 $sen \alpha = 0.32$

b) sen $\alpha = 0.8$

$$\cos \alpha = 0.6$$

 $tg \alpha = 1.3$

2. $\cos \alpha = \sqrt{1 - \frac{4}{25}} = 0.92$

$$tg \alpha = 0.43$$

$$tg \alpha = 0.43$$

3.
$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$$
; $\cos \alpha = \frac{1}{\sqrt{1+2^2}} = \frac{\sqrt{5}}{5}$

sen
$$\alpha = \sqrt{1 - \frac{5}{25}} = \sqrt{\frac{20}{25}} = \frac{2\sqrt{5}}{5}$$

4. *a* = 11,66

$$\widehat{B} = 30^{\circ} 57' 50''$$

$$\widehat{C} = 59^{\circ} \, 2' \, 10''$$

5. $h = 7.66 \rightarrow A = 191.5 \text{ m}^2$

APLICA

- 1. A 2,61 m de A y a 5,39 m de B.
- **2.** h = 1.73 m

$$h' = 0.84 \text{ m}$$

3. La parte izquierda del techo es un rectángulo de 13 m de ancho y 3,22 de alto. Su superficie es de 41,86 m².

La parte derecha tiene 13 m de ancho y 5,74 m de alto. Su superficie es de 74,62 m².

4. La altura de la viga más alta es de 4,52 m.

El volumen de la buhardilla es 235,04 m³.

El volumen de los armarios es 11,245 m³ y 5,46 m³, respectivamente.

Por tanto, el volumen que se debe calentar es de 218,335 m³.

Así, se necesitan 218,335 : $30 = 7,28 \approx 8$ radia-

Ficha de trabajo B

PRACTICA

1.

$$\cos\alpha = \pm\sqrt{1-\left(\frac{3}{4}\right)^2}$$

$$\cos \alpha = 0.66$$

$$\cos \beta = -0.66$$

$$tg \alpha = 1,13$$

$$tg \beta = -1.13$$

2. $\cos \alpha = -0.31$

$$sen \alpha = 0.9$$

$$\alpha = 108^{\circ} \ 26'$$

3. a) $\cos 40^{\circ} = 0.77$

b)
$$tg 130^{\circ} = -1,19$$

c) $sen 220^{\circ} = sen (180^{\circ} + 40^{\circ}) = -sen 40^{\circ} = -0.64$

d)
$$\cos 320^{\circ} = \cos (360^{\circ} - 40^{\circ}) = \cos 40^{\circ} = 0.77$$

4. $h = 12 \cdot sen 50^{\circ} \approx 9,19 \text{ m}$

$$\overline{BP} = 12 \cdot \cos 50^{\circ} \approx 7.71 \text{ m}$$

$$\overline{PC} = \sqrt{10^2 - h^2} = 3,94 \text{ m}$$

$$\overline{BC} = 11,65 \text{ m}$$

Área =
$$53,53 \text{ m}^2$$

APLICA

- 1. La anchura de la presa es 1,67 km.
- 2. Los cimientos medirán 9,28 m de altura. La rampa mide 80 m.
- 3. La distancia entre los pueblos es de 20,55 km.