

"INGENIERÍA C

PERFIL DE EGRESO DE LA CARRERA.

Esta asignatura aporta al perfil de egreso, dotándolo de conocimiento avanzado en tecnologías de vanguardia y de alta demanda en el mundo académico, científico y laboral. Los tópicos a tratar comprenderán desde la comprensión del área del aprendizaje automático, la importancia de los datos y la información, la identificación de problemáticas que permitan el uso de algoritmos de machine learning, el desarrollo de un modelo adecuado para la problemática y la puesta en marcha de un entorno de producción.

IDENTIFICACIÓN.

CÓDIGO	: ELEC294
NOMBRE DE LA ACTIVIDAD CURRICULAR	: Electivo Profesional 3: Machine Learning
CONTRIBUCIÓN AL PERFIL DE EGRESO	: Entrega al estudiante herramientas tecnológicas de procesamiento de datos para apoyar el proceso de toma de decisiones.
EQUIPO DOCENTE	: Joel Torres Carrasco
E-MAIL PROFESOR	: joel.torres@ulagos.cl
NIVEL EN QUE SE IMPARTE	: Semestre 12
N° DE HORAS	: 4 horas docencia directa + 2 horas trabajo dirigido
Nº HORAS TRABAJO AUTÓNOMO	: 5
N° CRÉDITOS SCT	: 7
TIPO DE ACTIVIDAD	: Electivo
PRE-REQUISITOS	: 9° semestre
ÁREA DEL CONOCIMIENTO A LA QUE PERTENECE	: Inteligencia Artificial

- Comprenderá la teoría de aprendizaje automático
- Construirá sistemas inteligentes basados en algoritmos de aprendizaje Automático

ACTIVIDAD DE INTEGRACIÓN.

Proyecto de Investigación: Los estudiantes deben desarrollar un proyecto en equipo a lo largo del semestre sobre una aplicación de Machine Learning aplicado. Este proyecto debe contemplar la factibilidad técnica, la obtención y preprocesamiento de datos, el modelo de procesamiento de datos, entrenamiento, testeo e implementación.

CONTENIDOS.

Tema	Detalle
1. Introducción al Machine Learning	 1.1 Origen, Historia y Fundamentos 1.2 Tipos de aprendizaje, supervisado, no supervisado, reforzado. 1.3 Tareas de ML 1.4 Algoritmos clásicos de ML 1.5 Redes Neuronales, perceptrón y perceptrón multicapa 1.6 Métricas de evaluación 1.7 Frameworks y librerías disponibles para ML
2. Implementación de Sistemas Inteligentes	2.1 La naturaleza de los datos 2.2 Arquitectura de proyectos basados en datos 2.3 Limpieza y preparación de datos 2.4 Factibilidad de un proyecto basado en datos 2.5 Herramientas que facilitan la implementación de sistemas
3. Proyectos aplicados en Machine Learning	2.6 Redes Neuronales Convolucionales 2.7 Redes Neuronales Recurrentes 2.8 Arquitectura de Modelos Transformadores 2.9 Procesamiento de Lenguaje Natural 2.10Redes Generativas 2.11Modelo AutoEncoder 2.12Aprendizaje Profundo Reforzado

ESTRATEGIAS DE ENSEÑANZA APRENDIZAJE.

Las estrategias de enseñanza-aprendizaje que se pretenden implementar son mediante:

- Clases expositivas con uso de pizarra y data show apoyadas por apuntes entregados por el profesor.
- Laboratorios a realizar al término de cada unidad.
- Presentaciones a cargo de los alumnos de temas que permitan el reforzamiento del aprendizaje visto en clases.
- Trabajo final, incluye clase expositiva por parte de los estudiantes

FORMAS DE EVALUACIÓN.

Las evaluaciones se expresarán de la siguiente manera:

Se realizarán se realizará un Proyecto de Investigación Semestral que se desarrollará en tres avances (A1,A2 y A3) y una presentación (Pre) correspondiente al 30% de la nota final. De esta manera, la nota final se calculará de la siguiente forma:

$$NF = 0.2 \times A1 + 0.2 \times A2 + 0.4 \times A3 + 0.2 \times Pre$$

Según reglamento:

$$NF \ge 4.0 \implies Alumno Eximido$$

Para alumnos que rinden examen:

$$NF_{Con\ Examen} = 0.7 \ x \ NF + 0.3 \ x \ Nota \ Ex.$$

*El examen corresponderá a un plazo extendido, centrado en el resultado de la implementación con requisitos acotados, al que se le aplicará una sanción de incumplimiento de proyecto.

DOCUMENTACIÓN.

BIBLIOGRAFÍA OBLIGATORIA

- Pattern recognition and machine learning. Christopher M. Bishop. Springer, 2006.
- Mastering Pyton: machine learning, data structures, Django, object oriented programming and software engineering (including bonus programming interview questions). Michael B. White. CreateSpace Independently Published Platform, 2018.
- Machine Learning: The New AI. Ethem Alpaydin. Series: MIT Press Essential Knowledge Series. Cambridge, MA: The MIT Press. 2016.

BIBLIOGRAFÍA COMPLEMENTARIA

 MONTRÉAL.AI ACADEMY: ARTIFICIAL INTELLIGENCE 101 FIRST, WORLD-CLASS OVERVIEW OF AI FOR ALL, VIP AI 101 CHEATSHEET. Vincent Boucher.

