

planetmath.org

Math for the people, by the people.

skew-Hermitian matrix

Canonical name SkewHermitianMatrix Date of creation 2013-03-22 13:36:14 Last modified on 2013-03-22 13:36:14

Owner matte (1858) Last modified by matte (1858)

Numerical id 21

Author matte (1858) Entry type Definition Classification msc 15A57

Synonym anti-Hermitian matrix
Related topic HermitianMatrix
Related topic SymmetricMatrix
Related topic SkewSymmetricMatrix

Definition. A square matrix A with complex entries is skew-Hermitian, if

$$A^* = -A$$
.

Here $A^* = \overline{A^T}$, A^T is the transpose of A, and \overline{A} is is the complex conjugate of the matrix A.

Properties.

- 1. The trace of a skew-Hermitian matrix is http://planetmath.org/node/2017imaginary.
- 2. The eigenvalues of a skew-Hermitian matrix are http://planetmath.org/node/2017imagina

Proof. Property (1) follows directly from property (2) since the trace is the sum of the eigenvalues. But one can also give a simple proof as follows. Let x_{ij} and y_{ij} be the real respectively imaginary parts of the elements in A. Then the diagonal elements of A are of the form $x_{kk} + iy_{kk}$, and the diagonal elements in A^* are of the form $-x_{kk} + iy_{kk}$. Hence x_{kk} , i.e., the real part for the diagonal elements in A must vanish, and property (1) follows. For property (2), suppose A is a skew-Hermitian matrix, and x an eigenvector corresponding to the eigenvalue λ , i.e.,

$$Ax = \lambda x. \tag{1}$$

Here, x is a complex column vector. Since x is an eigenvector, x is not the zero vector, and $x^*x > 0$. Without loss of generality we can assume $x^*x = 1$. Thus

$$\overline{\lambda} = x^* \overline{\lambda} x
= (x^* \lambda x)^*
= (x^* A x)^*
= x^* A^* x
= x^* (-A) x
= -x^* \lambda x
= -\lambda.$$

Hence the eigenvalue λ corresponding to x is http://planetmath.org/node/2017imaginary.