Exploiding Muongraphy for Finding the Hidden Room in a Pyramid

Patomporn Payoungkhamdee 8 November 2019

Motivation

Smoke rising from Mount Iwo-dake on Satsuma-Iwojima Island (© 2014 Hiroyuki Tanaka)

Muograph of Mount Iwo-dake on Satsuma-Iwojima Island. A larger-than-expected mass of low-density magma is seen about 300 meters below the volcano crater. (© 2014 Hiroyuki Tanaka)

Relevant theory/equation

Muography

Figure 3. A schematic diagram of muography. A photography and a muography in the lower part of the figure are referenced from Tanaka et al. [2007a].

Muography

Straight-ray tracing

Straight-ray tracing

Near block ray tracing

Muon path length (Governing Equation)

Number of remaining muon could approximately be governed by

$$N(r) = N_0 e^{-\lambda(\vec{x})r}$$

- Obviously, this system is non-linear
- Require the non-linear technique for inverse problem

Methods for solving

Non-linear least square problem

- Defining least square loss function
- Line search
 - Gradient
 - Steepest descent
 - Conjugated gradient
 - Step length
 - Backtracking
 - Quad/Cube interpolations
- This work will be conducting in 2D system

Real model

Initial model

Conventions

- Detector would be located in the main chamber and outside of the building
- Assuming that muon source is isotropically distributed over the sky

* Source

System