Hover Performance Tests of Baseline Metal and Advanced Technology Blade (ATB) Rotor Systems for the XV-15 Tilt Rotor Aircraft

K. Bartie, H. Alexander, M. McVeigh, S. La Mon, and H. Bishop

Prepared by

BOEING VERTOL COMPANY

Philadelphia, PA

for

Ames Research Center

under contract NAS2-11250

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California 94035

•			•
·			
	•		
	· <u>.</u>		
	•		
	•		
			•
		•	
	-		
	7		
	"		
	•		
•	·		
·	<u>.</u>		
		-	•
•			
	• .		
	■ ±		
• 	•		
	T		
	-		

FOREWORD

The research and development activity reported in this document was performed by the Boeing Vertol Company for the National Aeronautics and Space Administration, Ames Research Center, under Contract NAS2-11250. Mr. M.D. Maisel (Aeroflightdynamics, AVSCOM, Ames Research Center) was the NASA program manager, and Mr. D.J. Giulianetti (NASA) was deputy program manager. Other Ames Research Center personnel who made a significant contribution to this phase of the program included Messrs. M.K. Betzina, F.F. Felker III, L.A. Young, and D.B. Signor. Mr. H.R. Alexander was the Boeing Vertol Company program manager.

The following Boeing Vertol personnel made significant contributions to this test program:

D. Ekquist K. Farrance W. Grauer I. Walton	Wind Tunnel Test Engineering
F. Devlin N. Ross	Instrumentation and Control System Design
<pre>K. Bartie R. Benson C. Coleman M. McVeigh</pre>	Aerodynamics
H. Bishop M. Cawthorne S. La Mon H. Silcox	Stress
S. Botwinik D. Reed R. Smith R. Ricks	Dynamics
J. Mayer W. McLean D. Podgurski	Wind Tunnel Design and Project Management

Mr. Hank Silcox and Mr. Joseph Mayer merit special mention for their design of the balance system used to measure rotor performance. This was a major advance in balance technology and the accuracy and reliability of the measured performance data was an important component in the success of the program.

H.R. Alexander

ABSTRACT

Rotor hover performance data were obtained for the full scale Advanced Technology Blade (ATB) designed for the XV-15. The ATB rotor thrust-weighted solidity is 0.10. The test was conducted as part of contract NAS2-11250 at the NASA-Ames Outdoor Aeronautical Research Facility (OARF). The XV-15 basic rotor (solidity = .089) was also tested. Variations of the ATB tip planform and cuff planform were also tested. A peak figure of merit of 0.806 was demonstrated for the ATB and a value of 0.791 for the XV-15 steel blades. Measurements of the downwash in the wake at 0.4R below the disc are also presented.

KEY WORDS

Rotor
Hover Performance
Tilt Rotor
XV-15
Rotor Blade
Rotor Loads
Static Performance Test

TABLE OF CONTENTS

		<u>Page</u> vii
	LIST OF FIGURES	xiii
	LIST OF TABLES	
	LIST OF SYMBOLS	xiii
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	DESCRIPTION OF TEST INSTALLATION	6
	 3.1 Test Stand 3.2 Motor and Drive System 3.3 Balance 3.5 Hub and Controls 3.6 Rotors 3.6.1 Advanced Technology Blade Rotor 3.6.2 XV-15 Rotor 	6 9 9 13 13 13 22
4.0	INSTRUMENTATION	22
	 4.1 Instrumentation - General 4.2 Rotor Balance Instrumentation 4.3 Blade and Hub Instrumentation 4.4 Wake Rake 4.5 Anemometer 4.6 Acoustical Measurements 	22 22 22 27 27 27
5.0	DATA ACQUISITION AND REDUCTION	27
	5.1 Data Acquisition5.2 Data Processing	27 29
6.0	TEST RECORD AND DATA ACCURACY	30
7.0	O ROTOR PERFORMANCE	50
	7.1 XV-15 Metal Blade Performance 7.2 Baseline ATB Performance 7.3 Performance of ATB with Extended Cuff 7.4 Performance of ATB with No Cuff 7.5 Performance of ATB with Swept Tip and Extended Cu 7.6 Performance of ATB with Square Tip and Extended Cu 7.7 Configuration Performance Comparisons 7.8 Theory - Test Comparison	50 62 62 62 ff 76 uff 76 76 96

TABLE OF CONTENTS (Continued)

				Page
		7.8.1 Rotor Wake P 7.8.2 Airfoil Beha 7.8.3 Spanwise Flo	avior at High Angles of Attack	96 99 99
8.0	ROTOF	AND CONTROL SYSTEM	M LOADS	99
8	3.2		Technology Blade (ATB) ations: Advanced Technology Blade	101 101 125
9.0	ACOUS	TICS		125
10.0	CONCL	USIONS AND RECOMMEN	NDATIONS	128
		Conclusions Recommendations		128 129
11.0 F	REFER	ENCES		129
Append	dix A	- Corrections for	Effects of Wind	130
Þ	1.2	Introduction Correction for Wind	d Effects Correction Procedure	130 130

LIST OF FIGURES

Figure No.	<u>Title</u>	<u>Page</u>
1.1	XV-15 Tilt Rotor Research Aircraft in Cruise, Transition, and Hover	2
1.2	Baseline ATB Mounted on NASA-Ames OARF (Outdoor Aerodynamic Research Facility)	3
1.3	Advanced Technology Blade	4
1.4	Pretest Predictions and OARF Test Results for XV-15 Metal Blade and Baseline ATB Rotor	5
3.1	Plan View of NASA-Ames OARF	7
3.2	Three-View of Test Stand	8
3.3	Gearbox Operating Envelope	10
3.4	Six-Component Rotor Balance System	11
3.5	Schematic of Balance System	12
3.6	Baseline ATB Chord Distribution	15
3.7	Baseline ATB Twist Distribution	15
3.8	Baseline ATB Thickness/Chord Distribution	16
3.9	Baseline ATB Chordwise Stiffness Distribution	16
3.10	Baseline ATB Flapwise Stiffness Distribution	17
3.11	Baseline ATB Torsional Stiffness Distribution	17
3.12	Baseline ATB Pitch Inertia Distribution	18
3.13	Baseline ATB Mass Distribution	18
3.14	Comparison of Pretest Frequency Predictions with Per Rev Crossings and Spectral Analysis Peaks for Collective and Cyclic Modes	19
3.15	Advanced Technology Blade Basic Material Assembly	20
3.16	Baseline ATB with Alternate Tip and Cuff Configurations	21
3.17	Planform, Twist, and Airfoil Distributions for XV-15 Blades	23

Figure No.	<u>Ti</u> :	<u>tle</u>	<u>Page</u>
4.1	Summary of Instrumentation		24
4.2	Wake Rake Details		28
6.1	Test Schedule for XV-15 and	ATB	31
6.2	XV-15 and ATB Test Run Log		32
6.3	Check Calibration Results:	Thrust (From Rotor Balance)	41
6.4	Check Calibration Results:	Thrust (From NASA Load Cells)	42
6.5	Check Calibration Results:	Torque (From Rotor Balance)	43
6.6	Check Calibration Results:	Torque (From NASA Load Cells)	44
6.7	Check Calibration Results:	Thrust with Torque Load Applied (From Rotor Balance)	45
6.8	Check Calibration Results:	Thrust with Torque Load Applied (From NASA Load Cells)	46
6.9	Check Calibration Results:	Torque with Thrust Load Applied (Corrected for Friction Torque and AFFLEX Interaction)	1 47
6.10	Check Calibration Results:	Torque with Thrust Load Applied (From NASA Load Cells)	48
6.11	Effect of RPM on the Correla with Load Cell Thrust	ation of Balance Thrust	49
7.1	XV-15 C _T vs. C _P		51
7.2	XV-15 Figure of Merit		52
7.3	XV-15 Thrust Coefficient vs.	. Collective Pitch	54
7.4	Variation of Cp with $C_{T}^{3}/^{2}$	for XV-15 Rotor	55
7.5	Variation of Induced Efficient Coefficient for XV-15 Rotor		56

Figure No.	<u>Title</u>	<u>Page</u>
7.6	Effect of Tip Mach Number on Thrust/Power for XV-15 Blades	57
7.7	Effect of Tip Mach Number on Figure of Merit of XV-15 Blades	58
7.8	Tip Vortices of XV-15 Metal Blades	59
7.9	Contracted Wake Shape of XV-15 Rotor Deduced from Tip Vortex Photographs	60
7.10	Distribution of Downwash Velocities for Various Thrust Coefficients for XV-15 Rotor	61
7.11	C _T vs. C _P for Baseline ATB	63
7.12	Figure of Merit for Baseline ATB	64
7.13	Thrust Coefficient vs. Collective Pitch for Baseline ATB	65
7.14	Variation of Cp with $C_{\text{T}}^{3}/^{2}$ for Baseline ATB	66
7.15	Distribution of Downwash Velocities for Various Thrust Coefficients for Baseline ATB	67
7.16	CT vs. Cp for Baseline ATB with Extended Cuff	68
7.17	Figure of Merit for Baseline ATB with Extended Cuff	69
7.18	Thrust Coefficient vs. Collective Pitch for Baseline ATB with Extended Cuff	70
7.19	Variation of Cp with $C_{T}^{3}/^{2}$ for Baseline ATB with Extended Cuff	71
7.20	C _T vs. C _P for Baseline ATB with No Cuff	72
7.21	Figure of Merit for Baseline ATB with No Cuff	73
7.22	Thrust Coefficient vs. Collective Pitch for Baseline ATB with No Cuff	74
7.23	\tilde{V} ariation of Cp with $CT^3/2$ for Baseline ATB with No Cuff	75
7.24	CT vs. Cp for ATB with Swept Tip	77

Figure No.	<u>Title</u>	Page
7.25	Figure of Merit for ATB with Swept Tip	78
7.26	Thrust Coefficient vs. Collective Pitch for ATB with Swept Tip	79
7.27	Variation of Cp vs. CT3/2 for ATB with Swept Tip	80
7.28	C _T vs. C _P for ATB with Square Tip	81
7.29	Figure of Merit for ATB with Square Tip	82
7.30	Thrust Coefficient vs. Collective Pitch for ATB with Square Tip	83
7.31	Variation of Cp vs. CT ³ / ² for ATB with Square Tip	84
7.32	Comparison of C _T vs. Cp for XV-15 Metal Blade and Baseline ATB as Measured on OARF	85
7.33	Comparison of Figure of Merit for XV-15 Metal Blade and Baseline ATB as Measured on OARF	86
7.34	Effect of Tip Shape on C_T vs. C_P for ATB with Baseline Elliptical, Swept, and Square Tips vs. XV-15 Metal Blade	87
7.35	Effect of Tip Shape on Figure of Merit for ATB with Baseline Elliptical, Swept, and Square Tips vs. XV-15 Metal Blade	88
7.36	Effect of Cuff on C _T vs. Cp for Baseline ATB with Elliptical Tip-Comparison of Truncated (Baseline), Extended, and No Cuff vs. XV-15 Metal Blade	89
7 .37	Effect of Cuff on Figure of Merit for Baseline ATB with Elliptical Tip-Comparison of Truncated (Baseline), Extended, and No Cuff vs. XV-15 Metal Blade	90
7.38	Effect of Tip Shape on Cp vs. V _{TIP} , RPM, and M _{TIP} - Comparison of Baseline Elliptical Tip and Swept Tip	91
7.39	Effect of Tip Shape on C _T vs. Collective - Comparison of Raseline ATR Filiptical Tip. Swept. and Square Tips	92

Figure No.	<u>Title</u>	<u>Page</u>
7.40	Effect of Tip Shape on Induced Efficiency Factor - Comparison of Baseline ATB Elliptical Tip with Swept and Square Tips	93
7.41	Effect of Cuff Shape on Induced Efficiency Factor - Comparison of Truncated (Baseline), Extended, and No Cuff	94
7.42	Comparison of Downwash Distributions for XV-15 Metal Blade and Baseline ATB Rotor	95
7.43	Tip Vortices of Baseline ATB with Extended Cuff	97
7.44	Comparison of Calculated and Measured Performance _ on the Advanced Technology Blade Rotor	98
7.45	Local Lift Coefficients, C_{ℓ} , at Various Radial Sections on a Rotating Propeller (Reference 7)	100
8.1	XV-15 Metal Blade: Hub Spindle Resultant Flap Bending Moments vs. $C_{\overline{1}}$	102
8.2	XV-15 Metal Blade: Pitch Link Loads vs. CT	103
8.3	Baseline ATB: Hub Spindle Resultant Flap Bending Moments vs. C_T (Runs 32 and 36)	104
8.4	Baseline ATB: Hub Spindle Resultant Flap Bending Moments vs. C_T (Run 50b)	105
8.5	Baseline ATB: Hub Spindle Steady Flap Bending Moments vs. C_T - Effect of RPM	106
8.6	Baseline ATB: Hub Spindle Alternating Flap Bending Moments vs. C_{T} - Effect of RPM	107
8.7	Baseline ATB: Hub Spindle Steady Chord Bending Moments vs. C _T - Effect of RPM	108
8.8	Baseline ATB: Hub Spindle Alternating Chord Bending Moments vs. C _T - Effect of RPM	109
8.9	Baseline ATB: Hub Spindle Steady Flap Bending Moments vs. RPM	110
8.10	Baseline ATB: Hub Spindle Alternating Flap Bending	111

Figure	No.	<u>Fitle</u>	Page
8.11		Baseline ATB: Hub Spindle Steady Chord Bending Moments vs. RPM	112
8.12		Baseline ATB: Hub Spindle Alternating Chord Bending Moments vs. RPM	113
8.13		Baseline ATB: Pitch Link Loads vs. C _T (Runs 32 and 36)	114
8.14		Baseline ATB: Pitch Link Loads vs. C _T (Run 50b)	115
8.15		Baseline ATB: Steady Pitch Link Loads vs. C_{T} - Effect of RPM	116
8.16		Baseline ATB: Alternating Pitch Link Loads_vs. C_{T} - Effect of RPM	. 117
8.17		Baseline ATB: Steady Pitch Link Loads vs. RPM	118
8.18		Baseline ATB: Alternating Pitch Link Loads vs. RPM	119
8.19		Baseline ATB: Flap Bending Moments at 0.10R vs. C_{T}	120
8.20		Baseline ATB: Flap Bending Moments at 0.10R vs. C_{T}	121
8.21		Baseline ATB: Steady Flap Bending Moments at 0.85R vs. C_T - Effect of RPM	122
8.22		Baseline ATB: Alternating Flap Bending Moments at 0.85R vs. C _T - Effect of RPM	123
8.23		Effect of Blade Sweep (Lag Angle) and Tip Shape on Steady Pitch Link Loads	124
9.1		Typical Near-Field Noise Data for XV-15 Metal Blade and ATB	126
9.2		Typical Far-Field Noise Data for XV-15 Metal Blade and ATB	126
A.1	÷	Effect of Wind on Induced Power	133
A.2		Effect of Wind on Hover Performance	134

LIST OF TABLES

Table No.	Title	<u>Page</u>
3.1	Rotor Balance Load Range and Accuracy	14
4.1	Placement of Blade Strain Gages	25
9.1	Acoustic Data Recorded During Rotor Tests at NASA-Ames Outside Aeronautical Research Facility (March '84 - August '84)	127
	LIST OF SYMBOLS	
Symbol	<u>Definition</u>	<u>Units</u>
ā	airfoil section lift-curve slope	rad ⁻¹
A ₁	lateral cyclic	degrees
В	number of rotor blades	-
B ₁	longitudinal cyclic	degrees
С	blade chord	ft.
ст	blade thrust-weighted chord, $\frac{\int_0^1 cx^2 dx}{\int_0^1 x^2 dx}$	ft.
c _d	section drag coefficient	-
CQ	section lift coefficient	-
C _{NF}	rotor normal force coefficient, NF/ $\rho\pi R^2 V_T^2$	-
Ср	rotor power coefficient, HPx550/ρπR ² VT ³	-
۲-	makes profile power coefficient, profile power/ρπR ² VT ³	-

CR177436

LIST OF SYMBOLS (Continued)

Symbol .	Definition	Units
c _{Pi}	rotor induced power coefficient, induced power/ $\rho\pi R^2V_T^3$	-
C _T	rotor thrust coefficient, $T/\rho\pi R^2V_T^2$	-
DL	wing download	16.
EIc	blade chordwise stiffness	lb.in. ²
EIF	blade flapwise stiffness	1b.in. ²
FM	rotor figure of merit, $C_T^3/^2/\sqrt{2Cp}$	-
g	acceleration due to gravity	ft./sec. ²
GJ	rotor torsional stiffness	lb.in. ²
Ip	blade pitch inertia	lb.in. ²
k	rotor induced efficiency factor	-
${M_{TIP}}$	blade tip Mach Number	-
NF	rotor normal force	1b.
PM	rotor pitching moment	in. lb.
P _{si}	static pressure at the i th tube in the downwash rake	lb./ft.²
Pti	total pressure at the i th tube in the downwash rake	lb./ft. ²
r ·	radial station on blade	ft.

LIST OF SYMBOLS (Continued)

Symbol	Definition	Units
R	blade radius	ft.
R _e	airfoil Reynolds Number	-
RM	rotor rolling moment	in. 1b.
SF	rotor side force	1b.
T	rotor thrust	1b.
T∞	rotor thrust out of ground effect	. 1b.
٧į	induced velocity	ft./sec.
v _{TIP} }	rotor tip speed	ft./sec.
v	wind velocity	ft./sec.
VWIND	wind velocity	knots
x	nondimensional blade position, r/R	-
YM	rotor yawing moment	in. 1b.
α	shaft angle of attack	degrees
β	hub gimbal angle	degrees
Ω	rotor rotational speed	radians/sec. or RPM
ህ ພ	ambient wind azimuth	degrees

CR177436

LIST OF SYMBOLS (Continued)

Symbol	<u>Definition</u>	<u>Units</u>
ρ	air density	slugs/ft. ³
σ	local rotor solidity, $Bc/\pi R$	-
σŢ	thrust weighted rotor solidity, $Bc_{T}/\pi R$	-
θ ₀	blade root collective pitch angle	degrees
θ.75	blade collective pitch angle at $r/R = 0.75$	degrees
μ	rotor advance ratio, V/V _{TIP}	-
Subscript	<u>Definition</u>	<u>Units</u>
н	conditions when wind velocity is zero	-

1.0 SUMMARY

This document presents isolated rotor test results conducted in two phases at Ames Research Center in March and July/August 1984. In March a benchmark test of the XV-15 steel blades was performed and in July/August the Advanced Technology Blade, including a number of variations, was tested. Between these two test periods, the facility was occupied by a scaled version of the V-22 rotor. All rotors tested were 25 ft. in diameter. The V-22 test is reported in Reference 1.

Figure 1.1 shows the XV-15 aircraft in several modes of operation. Figure 1.2 shows the baseline version of the ATB mounted on the test stand at NASA-Ames. Figure 1.3 shows the untwisted blade planform and distribution of airfoil sections for the baseline configuration.

The performance indices of both the XV-15 rotor and the ATB rotors turned out to be significantly better than expected. Predicted and test values of figure of merit as a function of C_T for both rotors are shown in Figure 1.4. These results, along with those from configuration variations, are discussed in detail in Section 7.0. Possible reasons for the poor quality of the predictions are identified, and suggestions are made for improvements in predictions capability.

The test facility used for this program was the Outdoor Aeronautical Research Facility at Ames Research Center. Major improvements to the power transmission and performance measuring components of the NASA test rig were funded under the program. These included provision of a 4:1 reduction gear box which permitted testing beyond the power levels available in the XV-15 aircraft. A major improvement in the test hardware was the development of a six-component balance with minimal load interaction, absence of thermal drift, and direct measurement of rotor thrust and torque. These features of the program are discussed further in Section 3.0 and in more detail in Reference 2.

The tests provided definitive thrust and torque data for the XV-15 steel blade and the Advanced Technology Blades. Hover performance for both rotors (and for the V-22 rotor tested using the same equipment) was significantly better than that predicted using contemporary theory. The measured peak figures of merit were all in the region .79 - .81, whereas predicted values did not exceed .79. In addition, peak performance occurs at a higher value of C_T than predicted, and does not drop off as fast as predicted at the higher values of C_T .

The airflow velocity distribution was measured at a distance approximately 0.4R downstream from the rotor plane. Vapor trails of the tip vortices were generated at high CT's in some atmospheric conditions and photographs of these have been used to estimate the rate of wake contraction and velocity variation as a function of distance from the rotor planes. These additional data have been used to initiate improvements in prediction methodology.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1.1 XV-15 Tilt Rotor Research Aircraft in Cruise, Transition, and Hover

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1.2 Baseline ATB Mounted on NASA-Ames OARF (Outdoor Aerodynamic Research Facility)

Blade bending moments were recorded at a number of stations and critical stations were monitored for safety. This included data near the tip which has been used to improve the mathematical modelling in this region. The test included eight hours of endurance and structural validation testing during which control inputs were cycled and blade frequency data was accumulated.

Over the test period Ames Research Center engineers monitored the near and far-field noise levels generated by rotor operation. The Advanced Technology Blades were found to generate significantly less noise than the XV-15 metal blades.

A summary of the rotor performance results along with conclusions and recommendations are given in Section 10.0.

2.0 INTRODUCTION

The XV-15 tilt rotor demonstrator aircraft has been flying successfully since 1977 using rotor blades of the original design. These blades have a rectangular planform and the material is steel. The blade design was optimized for a 9000 lbs. gross weight aircraft and there was no change to the rotor design when the gross weight became 13,000 lbs.

This, along with a number of other factors including fatigue strength limitations of the metal blades, led NASA to initiate a program to develop composite blades optimized to different performance criteria and exploiting the range of design options made feasible by composite materials. Other objectives of the Advanced Technology Blade program were to demonstrate fabrication techniques appropriate to highly twisted composite blades suitable for tilt rotor applications.

This report documents the XV-15 Advanced Technology Blade Rotor Test conducted at the Outdoor Aeronautical Research Facility (OARF) at NASA-Ames during April 1984 and July 1984. The report includes a description of the test apparatus and instrumentation, a presentation of the results, and a discussion of the implications of the results. The detailed, fully-corrected test data may be obtained from NASA-Ames $40' \times 80'$ wind tunnel staff in the form of computer tabulations.

3.0 DESCRIPTION OF TEST INSTALLATION

3.1 Test Stand

The Outside Aerodynamic Research Facility at NASA-Ames consists of a large concrete pad (Fig. 3.1) with a steel platform at the center of which is mounted a test stand carrying the propeller test rig. Details of the layout of the stand are given in Fig. 3.2. The supporting test stand consists of a horizontal frame carrying the motor and drive system. This frame is supported in front by two braced vertical steel beams and in the rear by a single, smaller beam. The rotor centerline lies 22 feet above the metal

platform providing 9.5 feet of clearance between the blade tips and the ground. The rotor hub, controls, six-component balance, gearbox and electric motor with services are mounted in-line within a 28-inch diameter cylindrical cowling. The motor housing is mounted on three load cells to provide rotor force and moment data that is independent of, and supplemental to, data from the main balance. The propeller test stand is described in more detail in Reference 2. Additional details and strength and safety analyses are provided in Reference 3.

3.2 Motor and Drive System

The test stand is powered by an electric motor driving through a new 4:1 reduction gearbox. The gearbox is oil cooled; the motor is water cooled. Gearbox output shaft torque limit is 252,000 in.lb. corresponding to the electric motor limit of 3,000 HP at 3000 RPM. This was sufficient to test well beyond the current (design maximum 163,000 in.lb.) operating torque limit of the XV-15. The gearbox is a Cincinnati Gear Co. epicyclic gear unit with a modified aft case to interface with the NASA motor package. The gearbox unit mounts directly to the face of the motor unit and supports the rotor balance through the balance mounting ring. The system consists of a sun gear around which are arranged a number of planets rolling within an annulus providing a coaxial design with power transmission at more than one point. Fig. 3.3 presents the gearbox operating envelope and shows that the hover RPM of the ATB and XV-15 rotors (565 RPM) is within the available operating range. Maximum RPM was limited to 625 RPM by the blade retention strap. Operating time below 370 RPM is also limited because of gear tooth and bearing lubrication considerations. However, this RPM is below the present range of interest. The motors and gearbox may rotate in either direction, however all the rotors tested were designed to rotate in the clockwise direction (viewed from the rear).

3.3 Balance

The test stand is furnished with a six-component balance. As shown in Figures 3.4 and 3.5, the rotor balance system is mounted between the hub/stack assembly baseplate and the transmission (through the balance mounting ring). The balance has two sections. The front section is a multi-flexured, torque-sensing element which measures the frictional torque of the bearings. The rear thrust-measuring section of the balance system consists of two flexure plates mounted on either end of cylindrical spacer units. These flexure elements measure thrust and also normal force, side force, pitching moment and yawing moment. The primary torque measurement is made by strain gages mounted on the drive shaft forward flexible coupling. Additional strain gages on the flexible couplings measure the axial load in the drive shaft. This is a function of the axial motion of the main thrust measuring flexures and amounts to approximately 3% of the total load.

Balance strain gages are of the foil type and are temperature compensated. The primary sensitivities are in the thrust and torque directions with a maximum error of 50 lb. of thrust and 25 in.lb. of torque. The balance is designed to withstand the loss of one rotor blade without yielding and has

infinite life over the normal operating load range. Axial load range is -400 to 16,000 lb. and the torque range is 0 to 252,000 in.lb. Table 3.1 summarizes the design load ranges and accuracies for the rotor balance. The flexible couplings are designed to measure a maximum torque of 252,000 in.lb. with an accuracy of \pm 120 in.lb.

3.5 Hub and Controls

The 3-bladed gimballed rotor hub and upper controls are XV-15 rotor components defined by BHT Drawing No. 300-018-012. The ATB pitch housing was designed to be compatible with this hub. The upper controls provided control by collective, longitudinal and lateral pitch. Collective pitch motion was transmitted through the center of the shaft and was controlled by a hydraulic actuator. Longitudinal and lateral cyclic motion was provided through the rotating swashplate. The motions of the nonrotating swashplate were controlled by electric linear actuators. Both collective and cyclic pitch actuator control systems were open loop with the electric cyclic pitch actuators rate-limited to 0.5 deg/sec. Collective pitch motion was limited to a range of -4 to 25 degrees; cyclic pitch was electrically limited to \pm 3.0 degrees and a mechanical stop was provided at \pm 4.0 degrees.

The complete hub/stack assembly was mounted on a base plate (actuator plate) which was also the mounting point for the control actuators and the connecting element to the balance system. A slipring assembly with 48 rings was incorporated within the stack to provide transmission of data from the rotating components to the data acquisition system.

A cowling covered the upper controls and balance and was attached to the motor casing. The cowling provided weather protection.

3.6 Rotors

3.6.1 Advanced Technology Blade Rotor

The ATB rotor is a three-bladed, 25 ft. diameter rotor with a thrust-weighted solidity (σ_T) of 0.10, which is 12.3% more than the solidity of the XV-15 steel blades (.089). The blades are of composite construction. Theoretical blade chord, twist, and thickness/chord distributions for the baseline ATB are given in Figures 3.6, 3.7, and 3.8 respectively. Sectional properties are given in Figures 3.9 through 3.13. Estimated blade frequencies in the cyclic and collective modes are shown in Figure 3.14 along with test measurements. The blades were inspected for fidelity to the design values of twist, chord, airfoil contour and surface condition, and were found to be acceptable.

The rotor blades were instrumented to record flap, lag, and torsional moments at selected spanwise positions. Details of the instrumentation are given in Section 4.0, Table 4.1.

Figure 3.15 is an exploded view of the advanced technology blade with callouts of the various materials. Figure 3.16 presents the baseline ATB configuration with the alternate tip and cuff sections that were tested.

Table 3.1 Rotor Balance Load Range and Accuracy

COMPONENT	LOAD RANGE	ACCURACY	% OF MAX. LOAD
AXIAL FORCE (THRUST)	-400/16,000 LB	<u>+</u> 50 LB -	0.3
NORMAL FORCE	<u>+</u> 600 LB	<u>+</u> 12 LB	2.0
SIDEFORCE	<u>+</u> 600 LB	<u>+</u> 12 LB	2.0
PITCHING MOMENT	<u>+</u> 20,000 IN-LB	<u>+</u> 400 IN-LB	2.0
YAWING MOMENT	<u>+</u> 20,000 IN-LB	<u>+</u> 400 IN-LB	2.0
ROLLING MOMENT (FRICTION TORQUE)	<u>+</u> 15,000 IN-LB	<u>+</u> 25 IN-LB	0.16

Figure 3.7 Baseline ATB Twist Distribution

Figure 3.8 Baseline ATB Thickness/Chord Distribution

Figure 3.9 Baseline ATB Chordwise Stiffness Distribution

Figure 3.10 Baseline ATB Flapwise Stiffness Distribution

Figure 3.11 Baseline ATB Torsional Stiffness Distribution

21

3.6.2 XV-15 Rotor

The XV-15 blades tested in this program were the same full scale blades that had been previously tested by Bell Helicopter Textron Corporation on the Wright Patterson Air Force Base (WPAFB) whirl tower during the XV-15 development program (Reference 4). The planform, twist, airfoil and thickness/chord distributions are shown in Fig. 3.17.

4.0 INSTRUMENTATION

4.1 Instrumentation - General

The instrumentation installed for the ATB and XV-15 steel blade tests is indicated in Figure 4.1. This shows the type of data measured and which variables were monitored for safety. All data was recorded on magnetic tape. All non-steady state variables were subject to high speed sampling.

4.2 Rotor Balance Instrumentation

The rotor balance was instrumented to measure six components of rotor force and moment: thrust, sideforce, normal force, pitching moment, yawing moment, and rolling moment. Thrust and rolling moment measurements were significantly more sensitive than the others, as indicated in Table 3.1. The drive shaft flexible coupling was instrumented to measure torque and axial force. The balance rolling moment (bearing friction torque) was subtracted from the shaft torque to provide the net rotor torque. The drive shaft axial force was added to the balance thrust measurement to give the rotor thrust. Balance temperature was continuously monitored by thermocouples.

4.3 Blade and Hub Instrumentation

The instrumented blade was strain gaged to measure torsion, flap bending, and chord bending at the radial stations shown in Table 4.1. All gages were mounted on the spar beneath the airfoil contour.

Hub instrumentation was provided to measure control system position (θ .75, A_1 , B_1), hub gimbal angles, root collective, pitch-link load, and hub yoke moments. Transducers were installed in the rotating system (hub and drive system) to measure the following:

- (a) Blade pitch angle measured by a potentiometer mounted on the blade housing. The potentiometer was a custom-fit resistance element with wiper arm.
- (b) Hub gimbal angle measured by a potentiometer attached to the gimbal inside the hub.
- (c) Hub yoke bending moments measured by strain gages mounted on the hub spindles; both flapwise and chordwise gages were provided.

Table 4.1 Placement of Blade Strain Gages

		PER	CENT	RADIL	ıs	
FLAP	10.0 ⁽¹⁾	20.6	29.0	49.0	69.0	84.0
CHORD	10.0 ⁽¹⁾	20.6	30.0	50.0	70.0	85.0
TORSION	-	-	30.0	51.0	71.0	_

NOTE: 1) ON PITCH HOUSING

- 2) ON HUB SPINDLE THERE WERE IN- AND OUT-OF-PLANE BENDING GAGES AT 6% RADIUS
- 3) SEE RUN LOG FOR ADDITIONAL INFORMATION

- (d) Pitch link load measured by a strain gage bridge on the pitch link.
- (e) Flexible coupling torque measured by strain gage bridges (active and spare) on the forward flexible coupling of the drive shaft.
- (f) Flexible coupling axial load measured by strain gage bridges on the forward flexible coupling.
- (g) Forward shaft bending measured by (2) perpendicular bending bridges mounted on the rotor shaft.
- (h) Rotor 1/rev and 512/rev measured by a phototachometer on the drive shaft.
- (i) Hub acceleration measured by accelerometers mounted on support structure near the hub.

The signals from the rotating system were transferred to the fixed system through a 48-ring slipring assembly. As configured, the test stand was limited to 10 channels on the slipring. For the hover performance test, the recorded parameters and their corresponding slipring channels requirements were as follows:

Parameter	Channels Required
*Shaft torque	1
*Shaft axial load (AFFLEX)	1
*Pitch housing flap bending @ $r/R = .10$	1
*Pitch housing chord bending @ $r/R = .10$	1
*Pitch link load	1
Root collective	1
*Gimbal angle	1
Blade flap bending @ $r/R = .31$	1
*Hub yoke chord bending	1
*Hub yoke flap bending	1

*Required for safety

Although only 10 channels were available on the slipring at any one time, these channels could be reassigned to read other strain gages, if desired.

4.4 Wake Rake

A wake rake consisting of 22 pitot-static tubes was mounted behind the rotor disc plane at the station corresponding to the wing upper surface. The purpose of the rake was to measure the isolated rotor slipstream velocities and angles under different rotor operating conditions and to use this data to understand the structure of the rotor slipstream and the wing download and its distribution. The wake rake was connected to a Scanivalve to measure the pressures. The wake rake and the spacing of the pitot-static tubes is shown in Fig. 4.2.

4.5 Anemometer

A wind speed and direction transducer was installed on a narrow tower approximately 200 feet north and 200 feet east of the rotor hub centerline. The indicator was on approximately the same level as the rotor hub. The signals from the transducer were fed to the data acquisition equipment in the control room.

4.6 Acoustical Measurements

Near-field and far-field noise levels were measured. The near-field microphone represented a point on the side of the fuselage of a typical tilt rotor in hover. Far-field noise was recorded by an array of microphones at 250 ft (76m) and 650 ft (198m) radius at 0, 15, 30 and 45 degrees behind the rotor disc.

5.0 DATA ACQUISITION AND REDUCTION

5.1 Data Acquisition

The NASA-Ames OARF data system provided signal conditioning and amplification for 50 data channels. Steady-state data were recorded on digital tape. A quick-look short-form print-out was provided at the end of each run and a detailed print-out was processed overnight. A monitor program displayed up to 15 steady-state parameters on the Test Engineer's CRT. Two analog tape recorders were used for safety monitoring and acquisition of dynamic data. Complete details of the assignments of the data acquisition equipment are given in References 2 and 5.

The following quantities were measured:

```
Rotor balance thrust, T (lb.)
Rotor balance normal force, NF (lb.)
Rotor balance side force, SF (lb)
Rotor balance pitching moment, PMB (in.lb.)
Rotor balance yawing moment, YMB (in.lb.)
Rotor balance rolling moment, RMB (in.lb.)
Load cell axial, normal, and sideforces (lb.)
Rotor RPM
Shaft torque (in.lb.)
```



```
Shaft axial load AFFLEX (1b.)
Hub gimbal angle, \beta (degrees)
Blade root collective, \theta_0 (degrees)
Lateral cyclic (swashplate axes), A<sub>1</sub> (degrees)
Longitudinal cyclic (swashplate axes), B1 (degrees)
Blade collective pitch, 0.75 (degrees)
Blade flap moment at 31% radius (in.lb.)
Blade chord moment at 10% radius (in.1b.)
Pitch housing flap moment at 10% radius (in.1b.)
Pitch housing chordwise moment (in.1b.)
Pitch-link load (lb.)
Ambient wind speed, VWIND (knots)
Ambient wind azimuth, \psi_W (degrees) Ambient temperature (°F)
Ambient barometric pressure (psi)
Relative humidity, (percent)
Hub horizontal acceleration (g)
Hub vertical acceleration (g)
```

5.2 Data Processing

The data reduction program (Reference 6) performed the following operations:

- (a) Subtracted non-rotating zero values.
- (b) Converted corrected voltages to engineering units.
- (c) Computed rotor forces and moments from load cell readings.
- (d) Computed rotor balance forces and moments from balance flexure outputs.
- (e) Corrected rotor balance forces and moments for component interactions through the respective balance calibration matrices.
- (f) Corrected rotor balance data for temperature effects, if significant.
- (q) Corrected rotor balance thrust for flexible coupling axial load.
- (h) Corrected rotor shaft torque for bearing friction (balance rolling moment).
- (i) Transferred rotor balance data to the reference body axis (rotor hub centerline).
- (j) Corrected rotor torque for wind effects, using the method presented in Appendix A.

- (k) Computed atmospheric data from temperature, humidity, and pressure measured at the test site.
- (1) From the corrected data, computed rotor parameters (V_{TIP} and M_{TIP}) and coefficients (C_T, C_P, etc.) as well as rotor horsepower and figure of merit.

Provisions were made to harmonically analyze all rotating parameters (blade, hub, shaft and control system) and vibratory balance flexure and fixed system accelerometer data at Boeing Vertol.

6.0 TEST RECORD AND DATA ACCURACY

The chronology of the testing is presented in Fig. 6.1 and the XV-15/ATB Test Run Log in Fig. 6.2. A rigorous calibration of the rotor balance had been performed at the place of manufacture before assembly of the propeller test rig at the OARF. Following installation of the rig at Ames, another calibration was made which included checks for thermal drift effects on balance readings and a determination of the interaction between the torque and axial forces at the flexible coupling. The contribution of the flexible coupling axial load (AFFLEX) was also determined. This accounts for approximately 4% of the net rotor thrust. This check calibration showed that the installed balance was behaving to specification and that the data obtained from the load cells was in close agreement with the balance data.

The XV-15 blades were installed, checked out, and testing commenced. Initial results indicated that the rotor performance was lower than expected. This was caused by an improper pretest procedure for obtaining R-cals in which the collective actuator was moved to maximum stroke and induced a false load indication in the balance. When this was understood, a new check calibration was performed using the minimum collective setting for zeroes. The results are presented in Figures 6.3 through 6.11. The check calibration was made with thrust and torque loads applied singly and in combination. The maximum applied thrust was 7000 lb. which corresponds to a CT of .01 at hover RPM. At this condition the error'in rotor thrust was only 0.03 percent, as read from the balance (Fig. 6.3). The load cell result was 0.4 percent off (Fig. 6.4). Some hysteresis is evident in both systems. Figures 6.5 and 6.6 present the variation of the difference between the actual and measured torque for a range of applied torque levels. The torque balance error is 0.3 percent (Fig. 6.5). The load cell check calibration shows considerable hysteresis compared to the balance (Fig. 6.6). Figures 6.7 and 6.8 present the variation of the difference between the applied and measured thrust at various torque levels, for a constant applied thrust of 7000 lb. Figures 6.9 and 6.10 show the variation between the applied and measured torque with a constant applied thrust of 7000 lb. The errors are essentially the same as for the case with zero torque applied. Figure 6.11 shows the effect of RPM on the correlation of balance and load cell thrust.

	TIME		***	9633	0615	200	0737	0800	0803	\$15 5	1HBAL	¥.		E E	• °					
-					\dashv	-+	368	86	88	38	3 34 3	Bt ADE	TAMD	ED OFF.	1°. 6°. 7. 8.					
	DATE	3/22/84 3/23	3/27	3/28	3/29	3/30	4/2	4/2	4/2	4/2	DID EHERGENCY SHUTDOWN AND BROKE THE GIMBAL	GREEN BLADE FND. WHITE BLADE	ALSO SAM HIGH VIBRATION ON TEST STAND	SET DROPPED OFF-LINE.	2°.					
											TDOM A	ADE PM	VT10M 0		-2°, 0°,					
					-	\dashv	\dashv				NCY SHU	MEEN BI	H VIBR	Š	-3.5°.		- 14.			١
	_										EMERGE			RPH AT 0.7 -3.4°.	75		3.			
									ļ			CHECKED TRACK.		555 RP#	٠.		STALL A			
											MORKIN	<u> </u>	3	BACK UP TO 555 RPM AT 0,75 NOTE 0,75MIN = -3.4°.	CAME DOWN FOR NEW ZERO POINT AND BACK UP TO 585 RPM. FOR ENTIRE RIM. SHUT DOWN DUE TO HIGH HUBYOK 1 AND 2 LONDS		13.5. BLADES STALL AT			
											A.E. NOT	SHEATH THE BOT WANTED	OOK ALL	. BACK	70 589 BYOK 1					Log
						T0 2	10 4			3	BAL AK	POT MOT	OVER 1	A ZEROS ICREMENT	BACK UP	Æ.	12.5.			Un H
	AVG. WIND - KTS	_				-	3				OLE 613	JUNE	THE WENT	SHUT DOWN FOR NEW ZEROS.	NT AND DUE TO	TO 584	11.5°,			Test
	ž.					0.691					OF COMS	STAR H	NLANCE	UT DOM	ERO POI T DOMN (BACK UP 2°, 13°	10.5			ATB T
	8 10°	0	TRIM -0.37	TRIM -0.37	TRIM -0.10	TRIM 0,16	TRIM 0.62	TRIM 0.62	JRJJ J.63	000 1.86	- CONTR	2405	WE. B	Ž.	CAME DOWN FOR NEW ZERO POINT AND BACK UP TO 585 RPM. FOR ENTIRE RUN. SHUT DOWN DUE TO HIGH HUBYOK 1 AND 2	ТООК ИБИ ZEROS AND BACK UP TO 584 RPM 8°, 9°, 10°, 11°, 12°, 13°	8.5			
		-	\vdash	-						_	90 12 12	HETME BLADE LOADS	LOOKS THE SAME.	5° AND 10°. LOOKS OK. DID A 0,75 SWEEP FROM -:	DOWN FO	NEN ZER °, 10°,	6.5	<u> </u>		5 and
	o1 _V	ľ	TRIM	TRIM 1.51	<u> </u>	TRIM 0.19	TRIM 0.15	T.O		1	₽ 2	IKING	LOOK	. 10°. •75 SW			2.5°, 4.5°,	AMES	•	×-1
	9.78	3	VARY	25	SWEEP			-	SNEEP -7 to +11	SWEEP -7 TO +11	N 3/23 L	ontoe T	K AGAIN.	. 5° AND	.75 " 5". NNCLE OUT	5 MINUTES. TOOK NEW ZEROS AND BACK UP 2°, 4°, 6°, 8°, 9°, 10°, 11°, 12°, 13°	5. 2.5	NASA A		×
	RPM	75, 178	SWEEP	284	589,	585	584	585	586	587	CONTINUED ON 3/23 UP TO 400 RPH - CONTROL CONSOLE GIMBAL ANGLE NOT WORKING.	OCTOB NOT BOTTOD	CHECKED TRACK AGAIN. LOOK	UP TO 600 RPM TO CHECK TRACK AT θ_{75} shut down at 0652. Back up at 0732.	RPM AND 0.75 " 5". GIMBAL ANGLE OUT	RPH FOR 5 MINUTES.	-1.5°, 0.5°,	₽	(igure 6
	WT TARE RUN	1		 		:	:	;	:	1	5 *2	ŭ	SHUT		€ .			BLADE 910		Fig
		4_	-	<u> </u>	××	≨ u				-	0 FIT.		TO 10°.	TO CHE(RUN AT	RUN AT -6°, -	-5.5.			
	TYPE	CHECK	+-	TRACK	TRA	PERFORM- ANCE		_		ightharpoons	GINEER'S NOTES SPINIER NOT ON. COULD NOT GET HARDMARE TO FIT.	4 14 Min 203 Of m	INCREASED 0,75 TO 10°. HONITORING EQUIPMENT.	UP TO 600 RPM TO CHECK T Shut down at 0652. Back	DID A WARM-UP RUN AT 577 LOST BLADE AWGLE AT TP 6	01D A WARN-UP RUN AT 587 0,75 = -7.5°, -6°, -4°,		XV-15 METAL O.A.R.F. TEST		
	u u	R OFF			E E						ET HAR	9	INCREAS HONITOR	UP TO SHUT D	DID A L	010 A 010	27.	XV-1		
	00 N	SPINNER OFF			SPINNER						101	1	• §	RUN 3 (CONT.)	368	PCN 6	PCN &			
	RATIO	RI ADF.			LADE +						OTES	•	, x	- <u>- </u>		-		TION:		
	CONFIGURATION CODE	HETAI B		$\frac{1}{1}$	METAL BLADE	<u> </u> 	<u> </u> 	1	<u> </u> 	 	R S N	POT.	RPH .	888 88	• <u>~</u> → &	÷•→≘ &——	12	IFICA		
	8	XV-15 H			XV-15 M						1 = 1		4		2223	និន្ទន	22	IDEN		
	NO.	- 5		-	X LANGO	-		_			TEST EN		RUN 2	SAN 1MAI	LS 2 OIO	OINTS.	BCAL P	MODEL IDENTIFICATION		
	Ež]"8				<u> </u>		F			GNA STN	ZERO POI	-10 ARE	—{ d1			

RUN 18 HAD A HARD OVER ON LONG. CYCLIC JUST BEFORE SHUTDOM. WENT FROM 0.60° TO -4° AND STAYED THERE DURING SHUTDOM. LOST GINEAL ANGLE AND BLADE AND THE MAY DOWN. RUN 18 COLLECTIVE SKEEP AT EACH M_TIP OF 0.6. 0.663, 0.663, 0.691. 0.733 MODEL IDENTIFICATION: XV-16 METAL BLADE AT NASA AMES MODEL IDENTIFICATION: O.A.R.F. TEST 910	TEST ENGINEER'S NOTES	INSTRUMENTATION CHECK-OUT	FOR MTIP S.E.10.12 + SNEEP 4	NER PERFORM		588 + + 0.691 2	622	587	584	XV-15 METAL BLADE + SPINNER PERFORM 582 SWEEP TRIM TRIM 0.691 3 4/3 0641	TARE RPM 0.75 A1C B1C WTIP WIND - KTS	·
--	-----------------------	---------------------------	------------------------------	-------------	--	-----------------	-----	-----	-----	--	---------------------------------------	---

18 18 18 18 18 18 18 18						·					·				-	
THRUST CHECK LOADS THRUST AND TORQUE CHECK LOADS RAKE CHECK-OUT XV-15 METAL BLADE + SPINNER PERFORM ENGINEER'S NOTES MAY 26 MAKE RAKE IN POSITION ELIDENTIFICATION: XV-15 METAL BLADE ELIDENTIFICATION: XV-15 METAL BLADE FIGURE FIGURE	N ON	CONFIGU	RATION CO	DE	-	WT TARE RUN	A P	9.7.5	°2 V4°	8 0	MTIP			DATE		TIME
THRUST AND TORQUE CHECK LOADS RAKE CHECK-OUT XV-15 METAL BLADE + SPINNER PERFORM ENGINEER'S NOTES MAY 25 WAKE RAKE IN POSITION ELIDENTIFICATION: XV-15 METAL BLADE ELIDENTIFICATION: XV-15 METAL BLADE FIGURE FIGURE	:		I DAD		+-									17/10	0.	
THRUST AND TORQUE CHECK LOADS RAKE CHECK-OUT XV-15 PETFORM ENGINEER'S NOTES FIGURE ELIDENTIFICATION: XV-15 METAL BLADE ELIDENTIFICATION: XV-15 METAL BLADE FIGURE	: :												•	4/10	9	
ELIDENTIFICATION: XV-15 METAL BLADE ENGINEER'S NOTES ELIDENTIFICATION: XV-15 METAL BLADE Figure Figure	20	THRUST AND TO	ORQUE CHECK	LOADS										4/11	=	
ENGINEER'S NOTES FIGURE ER'S NOTES FIGURE AND TES FIGURE AND TEST BILD TEST BIL	2.1	RAKE CHECK-ON	10											4/12		Š
ELIDENTIFICATION: XV-15 METAL BLADE FIGURE THAKE RAKE + RAKE RAKE + RAKE RAKE + RAKE RAKE	22	XV-15 METAL	₩ +		PERFORM	1	583	SWEEP	TRIM 0	TRIM 0.49	0.691			4/13	┰┤	08.5 0.1 0.1
ENGINEER'S NOTES FIGURE RAKE IN POSITION FIGURE RAKE FIGURE FI	2					1	<u>8</u> 2		TRIN O	TRIM 0.51	0,691				80	27 gg
ENGINEER'S NOTES FIGURE RAKE IN POSITION EL IDENTIFICATION: XV-15 METAL BLADE Figure	2					1	FOR MT1P		TRIM	TRIM	0.735. 0.60.0.65			→	686	24.5
ENGINEER'S NOTES MM 26 MAKE RAKE IN POSITION EDITON'S NOTE: (A. N. P. 15 METAL BLADE O. A. R. F. TEST 910	2			+ RAKE			586		TRIM 0.26	TRIM 0.07	0.691	·		4/16	-+	245
ENGINEER'S NOTES FINAL SE MAKE RAKE IN POSITION EL IDENTIFICATION: XV-15 METAL BLADE O.A.R.F. TEST 910 Figure	2	<u> </u>				1	586	 	TRIM 0.26	TRIN -0.21	0.689			_	20	825 825
EDITION EDITION XV-15 METAL BLADE O.A.R.F. TEST 910	TEST	ENGINEER'S N	VOTES											•		
EDITON'S MOTE: XV-15 METAL BLADE O.A.R.F. TEST 910 Figure		PLUN 25 NAKE RAI	KE IN POSITION	*												
XV-15 METAL BLADE AT N. O.A.R.F. TEST 910 Figure 6.2					ЕБПОЯ		RUN NUME AFTER RU CONTINUE	IER8 27, N 26 AND D THE RI	28, AND 2 1 TEST 910 UN NUMBER	S WERE D D WAS SU R SEQUEN	IOT USED FOR SPENDED FOR I	XMATION OF JVX	16 METAL BLADE! PROGRAM (TEST 9 IND THEN SWITCH!	8 WERE REMOV 111). TEST 911 ED TO A NEW	ð -	***************************************
XV-16 METAL BLADE AT N. O.A.R.F. TEST 910							SEQUENC	E. THUS.	TEST 010	RESUME	B AT RUN 30 W	TH ATB TESTING.				
XV-15 METAL BLADE AT N. O.A.R.F. TEST 910															-	
Figure 6.2	80	EL IDENTIFICA		(V-15)	WETAL I	BLADE	AT NAS	A AME	8							
6.2					2		-									
			-		Ē		- 1	V-15	and A	TB Te	st Run Lo	g (Continue	(p)			

NO.	CONFIGURA	CONFIGURATION CODE	TYPE	TARE	R M	9.7.6	•0	8 10°	4110	-	COMPUTER	RAKE	DATA BEGINS AT TP NO.	DATE		TIME
ŝ	ATB + RAKE B1001,002,003		SPINNER CHECK OUT		589	g	1.0	-0.5	.677		YES		;	7/16/84		0638 0652
=			-	:	589	VARY	TRIM	TRIM	.677				3	→		12154
32		SPINNER ON	PERF. DATA	!	569				.663			YES	5	71,17		0755
:				:	571			 	.663			YES	3	-	56	0841 0912
*			CHECK	1	!	:	1	:			1	1	;	7/18	- 	
9			 	:	1	;	:	ŀ	;			;	1	→		
	B1.100	B ^{1.1} 001,002,003	PERF. DATA	1	569	<u>A</u>	TRIM	TRIM	.663		YES	ON	3	7/19		0749 0831
31	B ¹ 001,	B ¹ 001,002,003	-	ł	965	A	TRIM	TRIM	769		YES	XES	3			0919 0955
:	 		BLADE FREO.	-	VARY	10	NOTE	NOTE	VARY		ON	ON.	:			1103 1128
TEST	TEST ENGINEER'S NOTES	TES								•						
	RUN 30 TRACK NO.	RUN 30 TRACK NOT CORRECTED AT THIS STAGE - TOO LIGH	STAGE - TC	O LIGHT F	OR ADEQUA	HT FOR ADEQUATE DEFINITION. CHECK DATA POINT AT Θ_{75} = 10^{0}	JON. CHEC	CK DATA PC	JINT AT 197	10.						
	BUN 31 TRACK CH COLLECTIV	MUN 31 TRACK CHECKED AT $\theta_{-75} = 10^{0}$ AFTER P.L. ADJUSTMENT AND TIPS PAINTED (FLUORESCENT PAINT). TRACK AND BALANCE OK. COLLECTIVE SMEEP FOR LOADS DATA – NO WARM-UP RUN, SO PERF. DATA NOT VALID. $\theta_{-75} = -2^{0} + +16^{\circ}$	AFTER P.L. Nata - No h	, ADJUSTME IARH-UP RU	NT AND TI	PS PAINTED F. DATA NO	(FLUORES) T VALID.	CENT PAIN! 0,75 = -2	r). TRACK 10 → +16°	'and bala	NCE OK.					
	RUN 32 SPINNER I	SPINNER FITTED. 1ST SWEEP 7º→19°, ∆2°, 2MD R-CAL, RESTART UNDER RUM 33.	70-19° A2°		EP 7.5°→	SWEEP 7.50-17.50 A20; TRIP BEFORE DATA AT 19.50.	TRIP BEF(DRE DATA	NТ 19.5°.	NEW WOZ,	-					
	RUN 33 1ST SWEET	1ST SWEEP 8 → 18, Δ2°; SECOND SWEEP 8.5° →	ND SWEEP 8.	.5°+ 18.5	. 18.5°. Δ2°.											
	BUN 36 PUN	1> 0.75 = -40-130, A20; -30-190 NO SCANIVALVE DATA, P-CAL NOT OPERATIONAL.	-30-196	O SCANTVA	ILVE DATA,	P-CAL NOT	OPERATION	NAL.		,	,					
<u> </u>	NUN 37 ALUM. TA	ALUM. TAPE REMOVED FROM NOTCHES. WIND APPROX. 5 KTS THIS RUN.	CHES. WIN	O APPROX.	5 KTS THI		OD ANGLE	RANGE LI	MITED TO 1	5 0 + 19°,	'ODD' ANGLE RANGE LIMITED TO 159, 190, ∆20, +19.30.					
	RUN 38 RPH = 30	RPM = 300625 x 25's. R01	ROTOR ALLOWED TO BE OUT OF TRIM BY "1" (FOR CYCLIC EXCITATION)	0 TO BE OL	JT OF TRIM	BY ≈1 ⁰ (F	OR CYCLIC	EXCITATI	€							
	81 001,	8 ¹ 001,002,003: BLADES WITH BASELINE TIPS, CUFFS, FLIGHTWORTHY B ^{1.1} T.E. NOTCHES AT CUFF JUNCTION SEALED WITH ALUM. TAPE	TH BASELIN	E TIPS, CI SEALED WI	UFFS, FLIC	SHTWORTHY										
MOD	MODEL IDENTIFICATION:	ON: ATB AT NASA AMES	VASA AI	: 1	O.A.R.F. T	TEST 910	-									

Figure 6.2 XV-15 and ATB Test Run Log (Continued)

CONFIG		TVDE	3			•	(COMPLITER		DATA			-
	CONFIGURATION CODE	PS	TARE	MPK	9.78	٠ ٢	ပို့ပ	di L	DATA	DATA	AT TP NO.	NA I	-	
ATB + RAKE B	B ¹ 001,002,003 SPINNER	ER BLADE	:	VARY	9	NOTE	NOTE	VARY	YES	YES	•	7/20	0615	
			:	591		TRIM	TRIM	1691			3	_	0720	
		-	:	592		TRIM	TRIM	.691			2	<u> </u>	0/35	
		BLADE	1	VARY	2	NOTE	NOTE	VARY			29		0945	
		<u> </u> -									3	→	1035	_
		 	!		1	 		-		9-	3	7/21	0623 0640	
		PERF.		625		TRIM	TRIM	.734		→	3		0653	
		ENDURANCE				AS SPECIFIED	CIFIED		Q.	윤			0725 0735	
		PERF.	1			TRIM	TRIM	- -	YES	YES	15	-	0735	
INEER'S	TEST ENGINEER'S NOTES													
32 98 NOM	RPM = 323													
MUN 40 8	$0.75 = -4^{\circ}$ TO 12° ONLY. CBIO 100% ALLOMABL $12 > 10 = 4^{\circ} - 12^{\circ}$, $\Delta 4^{\circ}$; $12^{\circ} - 18^{\circ}$, $\Delta 2^{\circ}$. CB10 100%	ALLOWABLE 18°, 52°	E REACHED. °; -3.5°→1	8.50, 140,	8.5° 18	1.5°, 42°;	-3°-+9°, Δ4	MABLE REACHED. ", A2°i, -3.5°—» 8.5°, A4°, 8.5°—» 18.5°, A2°i, -3°—» 9°, A4°i, 9°—» 17°, A2°, +18.5°.	+18.5°. P	PERF. DATA TO TP 28.	82		
_	7 29 RPM = 300580, A20 RPM; LAT. CY	380, A20 RPM;	; LAT. CYCI	CLIC INPUT $\approx \pm 1^{0}$ GIMBAL ANGLE FOR EXCITATION.	= ±1 ⁰ 61MB	AL ANGLE F	OR EXCITA	TION. CYCLIC	CYCLIC INPUT CHANGED TO LONGITUDINAL AT TP	LONGITUDIN	IAL AT TP 38.			
(CONT.)	CONTINUATION OF DOM SUPED FOR BLANE FOED DATA	TED END BILANS	E FEET DA	4	· ·	A = 00 B = +1.00 FOR EXCITATION	PETTATION	580 - 625 × 20 898	Mod UC ×					
	3 : 6.75 = -4.50, -40-+ 16°, A2°, +17.5°; END PERF. DATA AT TP 14	-4°-+16°, A	2°, +17.5°	END PERF	DATA AT	TP 14.		1						
RUN 44	ENDURANCE RUN BEGINNING AT 0725. INPUT	NNING AT 072		CYCLIC 2.5	O EVERY 4	MINS (OR	LESS 1F N	ECESSARY TO A	CYCLIC 2.50 EVERY 4 MINS (OR LESS IF NECESSARY TO RESTRICT GIMBAL ANGLE TO ±2.50.	ALE TO ±2.		ALTERNATING CYCLIC INPUTS.	Ę.	
RUN 44 (CONT.) (B)		TP 15 40.		1.5°, -1.5°	+6.50,	₩°; 6.5°—	• 16.5°, A	2°; -3° -+ +5°	3.5°, -1.5°6.5°, 6.5°16.5°, 6.2°; -3°+5°, 64°; +5°17°,		Δ2 ⁰ ; -2.5 ⁰ -+5.5 ⁰ , Δ4 ⁰ , 5.5 ⁰ -+15.5 ⁰	5.5° ~ 15.5°	. 620	
					- 1	-								
MODEL IDENTIFICATION:	SATION: ATB AT	NASA	AMES 0.	A.R.F. TI	TEST 910									
										,				
		Figure	ire 6.2	XV-15		and ATB		Run Log	Test Run Loa (Continued)	_				

-															
RUN NO.	CONFIGURATION CODE	TYPE OF RUN	WT TARE RUN	RPM	8.7.8	A. O.	ور 10	HTIP	00	COMPUTER DATA	RAKE Data	DATA BEGINS AT TP NO.	BLADE LAG ANGLE	DATE	TIME
:	ATB+RAKE B ² 001,002,003 SPINNER	PERF. DATA	;	625	A	TEOR	TRIM	.730		YES	YES	3	•-	9/8	0908 0936
83	ATB+RAKE B ³ 001,002,003	l .	1	995	A			.663				7		2/8	0701 0732
:		 	1	571			 -	.663			 - 	7		_	0826 0911
	END OF TEST														
									-						
								-							
TEST	TEST ENGINEER'S NOTES													<u> </u>	
	NUN 01 [$\frac{1}{3}$: $\frac{0}{75}$ = 0^{0} — 14^{0} , $\Delta 2^{0}$; 1^{0} — 13^{0} NUN 62 1^{3} : 81.ADES WITH -2 RECTANGALAR ALT.	, 42°; 1 Rectangue		7. ∆2°. 11°. [3]		-10, 2	+ 10°,	θ ₇₅ = -1°, 2°→10°, Δ2°; 1°→7°, Δ2°.	, 82°.						
				7											
															-
	٠							-							
									-						
			-												
MOD	MODEL IDENTIFICATION: ATB AT NASA AMES O	ASA AN		A.R.F. TE	TEST 910										1
												-			
		Figure	6.2	XV-15	15 and	ATB	Test	Test Run Log (Continued)) (Con	linued)					

BALANCE THRUST ERROR VS. APPLIED THRUST

RUN 20
O INCREASING LOAD
DECREASING LOAD

Figure 6.3 Check Calibration Results: Thrust (From Rotor Balance)

LOAD CELL THRUST ERROR vs. APPLIED THRUST

RUN 20

△ INCREASING LOAD

▽ DECREASING LOAD

Figure 6.4 Check Calibration Results: Thrust (From NASA Load Cells)

BALANCE TORQUE ERROR vs. APPLIED TORQUE

RUN 19
O INCREASING LOAD

Figure 6.5 Check Calibration Results: Torque (From Rotor Balance)

LOAD CELL TORQUE ERROR vs. APPLIED TORQUE

RUN 19

△ INCREASING LOAD

♥ DECREASING LOAD

NOTE: QLC = TORQUE FROM NASA LOAD CELLS

Figure 6.6 Check Calibration Results: Torque (From NASA Load Cells)

BALANCE THRUST INTERACTION DUE TO TORQUE WITH 7000 LB APPLIED THRUST LOAD

RUN 20

⊙ INCREASING

☐ DECREASING

Figure 6.7 Check Calibration Results: Thrust with Torque Load Applied (From Rotor Balance)

WITH 7000 LB APPLIED THRUST LOAD

RUN 20

△ INCREASING

▽ DECREASING

Figure 6.8 Check Calibration Results: Thrust with Torque Load Applied (From NASA Load Cells)

WITH 7000 LB APPLIED THRUST

RUN 20

O INCREASING

☐ DECREASING

Figure 6.9 Check Calibration Results: Torque with Thrust Load Applied (Corrected for Friction Torque and AFFLEX Interaction)

LOAD CELL TORQUE ERROR vs. APPLIED TORQUE WITH 7000 LB APPLIED THRUST

RUN 20

△ INCREASING

▽ DECREASING

NOTE: QLC = CORRECTED TORQUE FROM NASA LOAD CELLS

Figure 6.10 Check Calibration Results: Torque with Thrust Load Applied (From NASA Load Cells)

Figure 6.11 Effect of RPM on the Correlation of Balance Thrust with Load Cell Thrust

The rake to measure rotor induced velocity was installed and calibrated toward the end of the XV-15 blade testing and only a limited amount of such data is available for these blades.

At the completion of the benchmark testing on the XV-15 steel blades the rig was handed over to the V-22 program (formerly known as the JVX) for rotor performance and download testing of a scaled rotor and semispan wing installations. This V-22 test program is reported in Reference 1.

At the conclusion of the V-22 testing the rig was refurbished and an intermittent problem with the force readout from the drive system flexible coupling gages (AFFLEX) was resolved. The AFFLEX signal is a measurement of the thrust force in the drive shaft when this is stretched or compressed by flexure motions in the main balance. This component of thrust was measured by bridges located 180 degrees apart in the flexible coupling so that I per rev components of force would cancel. One set of gages was found to be malfunctioning and these were disconnected. The AFFLEX signal was then recalibrated with the rotor in the azimuthal location where the I per rev component passed through zero.

In subsequent testing the rotor was set to this position while pre- and post-test zeroes were being taken.

The Advanced Technology Blades were installed and testing commenced in the baseline configuration (i.e., elliptical tip and truncated cuff). This was followed by configuration variations which included a full airfoil cuff, swept and square tips, cuff removed, and changes in blade sweep. A check calibration of all measuring systems was performed at the conclusion of testing. This confirmed that accuracy was to the same standard of excellence as at the beginning of the test program.

7.0 ROTOR PERFORMANCE

7.1 XV-15 Metal Blade Performance

The performance of the XV-15 metal blades at the nominal operating tip Mach number of 0.69 is presented in Fig. 7.1 as a plot of rotor thrust coefficient vs. rotor power coefficient corrected to zero wind conditions. The data was gathered during six separate runs and the data scatter is small. A mean line was faired through this data and used to calculate the rotor figure of merit shown on Figure 7.2. Note that this figure of merit curve always falls below the line faired through the individual values of figure of merit, calculated from each test point. This is the correct method for defining the average rotor figure of merit; the average thrust - power relationship for the rotor is first determined, then quantities, such as figure of merit, which are functions of this relationship, may be computed. Peak figure of merit for the XV-15 rotor is 0.791 at a thrust coefficient of 0.0105. Also shown in Figure 7.2 is the performance of the XV-15 rotor as tested on the Wright Patterson AFB whirl tower in 1973 (Reference 4). The data has been adjusted for the effects of the tower. This comparison shows that the shape of the curve is the same. The peak figure of merit occurs at the same thrust coefficient but has a lower value.

Figure 7.3 presents the variation of thrust coefficient with collective pitch. The collective pitch values have not been corrected to zero wind conditions. It is estimated, however, that the correction would reduce the collective by 1 degree, at most. Also shown on Figure 7.3 is data (without correction to collective for tower blockage) from the whirl tower test of Reference 4. It is not known why there is a 4 degree difference between the two sets of data. The collective pitch settings recorded in the present test of the XV-15 metal blades appear to be incorrect, and are presented only as confirmation of the shape of the curve of C_T vs. θ .75 Calculations using performance codes support the WPAFB values of collective as does flight test experience.

Maximum thrust was not reached because alternating loads increased rapidly above a C_T value of .0161. Figure 7.3 suggests, however, that a reasonable value for maximum thrust coefficient for XV-15 would be .0165, i.e. $C_T/\sigma_{T_{MAX}} = .185$.

One measure of rotor induced efficiency is k, as defined by

$$C_p = C_{p_0} + k \frac{C_T^{3/2}}{\sqrt{2}}$$

where k=1.0 corresponds to ideal induced efficiency. The value of $^{C}P_{O}$ is defined by linear extrapolation to zero thrust of the curve of $C_{T}^{3/2}$ vs. Cp. This data is presented in Figure 7.4 and was used to compute the values of k presented in Figure 7.5.

The sensitivity of the XV-15 rotor performance to tip Mach number is presented in Figures 7.6 and 7.7. Tip Mach number was varied from 0.60 to 0.73. No well-defined trend is evident although there is a tendency for reduced performance to accompany increases in Mach number.

The distribution of downwash velocity in the wake of the rotor was measured by the wake rake described in Section 4.5. The rake was positioned so that the ends of the probes would coincide with the probable location of the upper surface of a wing. At 75 percent radius the distance from the rotor disc to the XV-15 wing surface is 0.40R.

In addition to measurements of the wake, a limited series of photographs were obtained of the tip vortices made visible by water vapor condensation. Figure 7.8 is a typical example and shows clearly the helical path of the vortices from each blade. By measuring from these photographs, M. Maisel of NASA Ames succeeded in constructing the shape of the outer wake. Figure 7.9 shows that, for $C_T = .0116$, the wake contracts to approximately .79R at .55R downstream of the disc. At 0.4R where the probe lies, the tip vortex is located at 0.80R. This value is confirmed by the data of Fig 7.10 which shows the radial distribution of downwash for selected values of rotor thrust coefficient. Lines have been faired through the data obtained from the pure pitot-static probes only. The data from the 5-hole angle of attack probes was considered to be less reliable. At all the values of C_T shown, the edge of the wake appears to lie at 80 percent radius.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 7.8 Tip Vortices of XV-15 Metal Blades

NASA-AMES O.A.R.F. TEST 910 XV-15 METAL BLADE

Figure 7.9 Contracted Wake Shape of XV-15 Rotor Deduced from Tip Vortex Photographs

NASA-AMES O.A.R.F. TEST 910 XV-15 METAL BLADE Z/R = 0.4 RUN 25 V_{TIP} M_{TIP} C_{T RPM} VWIND NOTE: SOLID SYMBOLS DENOTE DATA FROM ANGLE OF ATTACK PROBES SYM TP □ 16 .00796 585.9 766.9 .690 2.9 ▽ 20 .01053 585.7 766.7 .690 2.4 0 22 .01246 585.5 766.4 .689 3.3
 \$\rightarrow\$ 24 .01422 586.9 768.3 .690
 2.9 RADIAL STATION (r/R) 1.4 1.0 .6 .2 0 20 SIDE OF NACELLE 40 DOWNWASH VELOCITY (FPS) 60 80 100 120 140

Figure 7.10 Distribution of Downwash Velocities for Various Thrust Coefficients for XV-15 Rotor

The shape of the downwash distribution changes with increasing thrust coefficient, becoming more skewed toward high downwash values just inside the tip vortex. Outside the tip vortex, the wake-induced velocity is essentially zero; the non-zero values of downwash shown are attributable to the ambient wind.

7.2 Baseline ATB Performance

The baseline ATB configuration consists of an approximately elliptical tip planform and a cuff truncated at the trailing edge to permit gimbal angles up to 12 degrees at high collective pitch settings.

Thrust versus power coefficient test data is shown in Figure 7.11. The data is shown for four different runs during which tip Mach number was held constant and for two runs at high and low Mach number. There is remarkably little scatter. The solid line in Figure 7.11 is an estimated mean faired through the data. This faired line is the basis of the figure of merit shown by the solid line in Figure 7.12. The individual test point figures of merit are also shown in Figure 7.12. As noted in the preceding paragraphs the mean figure of merit curve falls below the mean of the individually calculated test points because of the non-linearity of the figure of merit function. Peak figure of merit for the baseline blade is just under 0.80, and remains high out to the C_T obtainable at the power limit of the test rig. Note that a maximum value of $C_T = .022$ ($C_T/\sigma_T = .22$) was reached at reduced tip speed.

Figure 7.13 presents the collective pitch vs. thrust relationship and shows a change in slope between C_T values of 0.006 and 0.008. As will be shown, consistent, repeatable C_T vs. θ 75 relationships were obtained for all the ATB configurations and are considered to be reliable.

The plot of $C_T^{3/2}$ versus C_P is shown in Figure 7.14. The linear projection to zero thrust gives a value of P_0 equal to 0.000185 compared with a steel blade value of 0.00013. Figure 7.15 presents downwash distributions for the baseline ATB.

7.3 Performance of ATB with Extended Cuff

The power-thrust relationship for the ATB with the trailing edge of the cuff extended to complete the airfoil section is shown in Figure 7.16. In Figure 7.17 data is presented in figure of merit format. It is seen that the cuff extension has an effect that increases the figure of merit by approximately 0.01. Figure 7.18 shows the variation of thrust coefficient with collective pitch and Figure 7.19 presents the variation of $C_{\rm T}^{3/2}$ as a function of power coefficient. The value of $P_{\rm O}$ deduced from Figure 7.19 is the same as that obtained from Figure 7.14 for the blade with a truncated cuff (0.000185).

7.4 Performance of ATB with No Cuff

As expected there was a significant reduction in rotor efficiency when the cuff was removed. The results for the cuff-removed configuration are given in Figures 7.20 through 7.23. A peak figure of merit around 0.77 was found, and the $^{\rm P}{\rm P}_{\rm O}$ value is 0.000197. A run was made with the blade sweep angle

NASA-AMES O.A.R.F. TEST 910 SOLID SYMBOLS DENOTE DATA ATB ROTOR WITH BASELINE ELLIPTICAL TIP NOTE: FROM ANGLE OF ATTACK PROBES AND TRUNCATED CUFF RADIAL STATION (r/R) 1.4 .8 .6 .2 .4 0 0 SIDE 0F 20 NACELLE 40 DOWNWASH VELOCITY (FPS) 60 80 100 120 140 RUN 50 Z/R= 0.4 SYM <u>TP</u> 160 7 561.2 .661 734.6 1.9 .00866 9 560.9 .660 734.2 2.2 0.01242 △ .01647 11 560.5 .660 733.6 2.2 ♦ .01859 12 560.1 .659 733.2 2.2 ▽ .01917 49 564.5 .660 738.9 2.9

Figure 7.15

Distribution of Downwash Velocities for Various Thrust Coefficients for Baseline ATB

set to zero degrees and there is an apparent increase of efficiency at this setting. The apparent increase in efficiency is however, within the scatter of earlier testing and is not considered to be significant.

Figure 7.22 indicates that the collective pitch required for a given C_T may be less when the blade sweep/droop is reduced to zero. The control system flexibility accounts for most of this difference. The recorded values of collective reflect the control setting at the actuator input. Because of the nose down pitching moments associated with blade sweep, the control blade setting is less in this case by the amount of control flexibility windup. At a nominal collective input of 16 degrees the difference between the swept and non-swept conditions is estimated to be 0.82 degrees. Figure 7.22 indicates a difference of almost 2 degrees suggesting that some additional mechanism may be involved.

7.5 Performance of ATB with Swept Tip and Extended Cuff

Test results for the ATB with the swept tip are shown in Figures 7.24, 25, 26 and 27.

The rate of growth of pitch link loads was almost twice that for the baseline tip and this restricted testing to a maximum C_T of .016 (compared with a C_T of 0.020 with the baseline tip at the same RPM). However at this value of C_T the figure of merit (Figure 7.25) is 0.795 and is still trending upward.

7.6 Performance of ATB with Square Tip and Extended Cuff

Test data with the square tip installed (and extended cuff) is given in Figures 7.28 through 7.31. There is a slight reduction in efficiency throughout the C_T range compared with the baseline tip configuration.

7.7 Configuration Performance Comparisons

Figures 7.32 through 7.42 summarize the comparative performance of the baseline ATB and the XV-15 blades, and of the various ATB alternate configurations.

Figure 7.32 shows that at values of C_T above .0125 the power required for the ATB becomes progressively less than that for the XV-15 blades. Figure 7.33 shows the same information in figure of merit format. Figures 7.34 and 7.35 summarize the comparative behavior of the alternate tip configuration and the XV-15 blades. Figures 7.36 and 7.37 summarize the comparative behaviors of the different cuff configurations.

It is seen that the baseline design elliptical tip outperforms the alternatives although the trend for the swept tip suggests that it might be better at C_T values beyond 0.016. The cuff comparisons clearly demonstrate that extending the trailing edge of the cuff to form a full airfoil has a significant beneficial effect on hover performance.

Figure 7.38 Effect of Tip Shape on C_P vs. V_{TIP}, RPM, and M_{TIP} - Comparison of Baseline Elliptical Tip and Swept Tip

XV-15 Metal Blade and Baseline ATB Rotor

In Figure 7.38 the effect of tip shape on power required is shown as a function of tip speed, RPM, and tip Mach number. A comparison is made between the swept and the baseline elliptical planforms. The extended cuff configuration was used for this crossplot. At the normal operating RPM (nominally 565), and at maximum RPM (625), the elliptical tip maintains a slight advantage at $C_T = .012$.

Figure 7.39 compares the baseline elliptical, swept, and square tips on a C_T vs. collective basis. As in Figure 7.40, the extended cuff was used for this plot. As expected, the baseline elliptical tip has slightly better performance than the other tip configurations.

Figures 7.40 and 7.41 present the effect of tip shape and cuff configuration on induced efficiency as a function of rotor thrust coefficient.

Figure 7.42 compares downwash distributions for the metal blade and the baseline ATB at nearly similar thrust coefficients.

The photograph in Figure 7.43 show tip vortices for the elliptical tip with the extended cuff configuration. (Compare with Figure 7.8).

7.8 Theory-Test Comparison

The predictions for the XV-15 metal blades and for the Advanced Technology Blades are compared with measured performance in Figure 1.4. The figure of merit is generally underestimated at high values of C_T. The predicted performance of the XV-15 metal blades and the baseline ATB blades was calculated using a current lifting-line/blade element program. The program, which correlates well with low twist helicopter blades, appears to overestimate the induced power for highly twisted propellers/rotors. Possible reasons for the discrepancies are discussed in the following paragraphs.

7.8.1 Rotor Wake Model

Because over 70 percent of the power absorbed by a hovering rotor is wake-induced, the successful prediction of performance depends on how well the effects of the vortex wake are modelled. An accurate wake model is one in which the strength and positions of the vortices forming the wake are correctly represented. The current wake model is semi-empirical and contains many correction factors determined by correlation of the analysis with measured helicopter rotor and prop-rotor performance. While the model yields practical results in cases where the rotor geometry and operating conditions are within the range of the empirical factors, extensions to configurations outside the data base are less reliable. This semi-empirical wake representation is outdated and is currently being replaced with a modern wake representation based upon experimentally observed rotor wake structures following Landgrebe, Kocurek, and Gray.

A comparison of the effect of the different wake representations on the calculation of figure of merit for the ATB rotor is presented in Figure 7.44. With the current wake, the peak figure of merit level is underpredicted and performance at C_T values greater than 0.009 is also underpredicted. When the empirical wake is replaced by the Kocurek wake model,

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 7.43 Tip Vortices of Baseline ATB with Extended Cuff

prediction of peak figure of merit is improved. Note that neither module predicts the high figures of merit at high thrust coefficients. Also shown are the results of a blade element/momentum analysis (using the same airfoil data) which somewhat overpredicts the performance but yields a better overall shape for the curve.

Although there has been much work on experimentally observed rotor wake structures for helicopter rotors, there have been no tests conducted specifically for highly twisted rotors or propellers. Some progress in this direction was made during this test as described in sections 7.1 and 7.7. Further detailed experiments using pressure instrumented blades and lasers to measure the detailed wake structure should be conducted for representative rotors. These results can be mathematically modelled and incorporated into suitable analysis techniques.

While the introduction of more realistic wake models may improve the prediction techniques, other areas also require attention.

7.8.2 Airfoil Behavior at High Angles of Attack

Highly twisted tilt rotor blades operate in hover with the root sections at or beyond stall angles of attack. Two-dimensional airfoil data obtained from the wind tunnel usually does not define the post-stall lift, drag, and pitching moment behavior because testing is rarely conducted beyond stall. It has been shown by the OARF results and elsewhere that the root area can influence rotor performance significantly. Additional test data both at model and full scale is therefore required on representative airfoils at high angles of attack to establish the basic shape of the post-stall behavior for the root section.

7.8.3 Spanwise Flow Effects

There is evidence that two-dimensional airfoil data is not entirely applicable near the root of a rotating blade. Figure 7.45 from Reference 7 shows that propeller blade sections near the root appear to have extended lift-curves and higher lift-curve slopes than those obtained from two-dimensional wind tunnel tests. The mechanism suggested for this improved performance is boundary layer thinning arising from centrifugal spanwise pumping and the effect of Coriolis forces on the boundary layer. Development of a method to account for this effect is recommended and could be conducted as part of the previously recommended experiments on pressure instrumented blades.

8.0 ROTOR AND CONTROL SYSTEM LOADS

Rotor and control loads were continuously monitored throughout the hover testing of the XV-15 Metal Blade and Advanced Technology Blades to ensure that static and dynamic limits were not exceeded. In general, testing was limited by steady spindle flap bending at the extremes of the thrust range. While oscillatory loads did not limit performance testing, it was necessary

100

Figure 7.45 Local Lift Coefficients, C₂, at Various Radial Sections on a Rotating Propeller (Reference 7)

to use cyclic to control flapping and flap-induced loads to acceptable levels. Even with cyclic control, transient bending loads frequently exceeded the endurance limit of the hub yoke spindle necessitating frequent damage counts to determine the percentage of spindle life used. (Total life used did not exceed 5 per cent.)

The sign convention used in reporting the measured loads is as follows:

- + Flap Bending -- Compression in the blade upper surface
- + Chord Bending -- Compression in trailing edge
- + Pitch Link Load -- Consistent with blade torsion leading edge up

It should be noted that, in any given run, substantial scatter is present in the loads data because of cyclic adjustments and variations in wind direction and magnitude. However, although not ideal for correlation studies, the data indicate general trends.

8.1 XV-15 Metal Blade

The rotor system, blades, hub, and controls were essentially the same as previously tested on the Aero Propulsion Laboratory Whirl Stand at Wright-Patterson Air Force Base and documented in Bell Helicopter Report No. 300-099-010 (CR 114626), Reference 4.

Figures 8.1 and 8.2 present a summary of the measured steady and oscillating yoke spindle and pitch link loads as a function of C_T. Comparing the data from the previous testing at Wright-Patterson with the current Ames testing does not indicate any significant differences in the measured loadings.

The upper end of the thrust range was generally limited by blade stall as evidenced by an increase in rotor noise, a rapid increase in oscillatory pitch link loads, and difficulty in controlling gimbal angle. In the preliminary run-ups, operation was limited by oscillatory loads in the hub yoke spindle. Bending moment allowables initially imposed on the spindle for this test, (\pm 20,000 in.lb. as compared to \pm 58,000 in.lb. in the previous whirl test) were based on later knowledge of the endurance limits for the titanium material and were routinely exceeded during spin-up and shut-down. This limitation was overcome by utilizing an S-N curve for the spindle to allow short time exceedance of the \pm 20,000 in.lb. endurance limit. A running damage count was maintained to ensure safety of operation.

8.2 Baseline Advanced Technology Blade (ATB)

Figures 8.3 through 8.22 present a summary of the measured steady and oscillating yoke spindle, pitch link, and flap bending loads as a function of C_T and RPM.

NASA-AMES O.A.R.F. TEST 910 ATB ROTOR WITH BASELINE ELLIPTICAL TIP AND TRUNCATED CUFF

> <u>SYM</u> <u>RPM</u> <u>VTIF</u> <u>−</u> 500 654 <u>−</u> 626 819

Figure 8.6 Baseline ATB: Hub Spindle Alternating Flap Bending Moments vs. C_T -Effect of RPM

Figure 8.7 Baseline ATB: Hub Spindle Steady Chord Bending Moments vs. CT ~ Effect of RPM

NASA-AMES O.A.R.F. TEST 910 ATB ROTOR WITH BASELINE ELLIPTICAL TIP AND TRUNCATED CUFF

Figure 8.16 Baseline ATB: Alternating Pitch Link Loads vs. C_T - Effect of RPM

NASA-AMES O.A.R.F. TEST 910 ATB ROTOR WITH BASELINE ELLIPTICAL TIP AND TRUNCATED CUFF 200 ALTERNATING PITCH LINK LOADS (LB) 150 100 Δ Δ 1 50 🐼 Δ ŋ 300 400 500 600 ROTOR SPEED (RPM) Figure 8.18 Baseline ATB: Alternating Pitch Link Loads vs. RPM

NASA-AMES O.A.R.F. TEST 910 ATB ROTOR WITH BASELINE ELLIPTICAL TIP AND TRUNCATED CUFF

SYMBOL	RPM	VTIP
_	564	738
	592	775
$-\Delta$ -	626	819

Figure 8.21 Baseline ATB: Steady Flap Bending Moments at 0.85R vs. C_T - Effect of RPM

NASA-AMES O.A.R.F. TEST 910 ATB ROTOR WITH BASELINE ELLIPTICAL TIP AND TRUNCATED CUFF

Figure 8.22 Baseline ATB: Alternating Flap Bending Moments at 0.85R vs. C_T - Effect of RPM

Figure 8.23 Effect of Blade Sweep (Lag Angle) and Tip Shape on Steady Pitch Link Loads

A comparison of the ATB loads with the XV-15 Metal Blade loads indicates that load trends are similar, with the greatest difference being in the oscillatory loads. This is to be expected since oscillatory loads are dependent on wind conditions and cyclic control adjustments, and it was evident that the the oscillatory loads were affected by these.

In general, the ATB blades were tested to significantly higher thrust coefficients (C_T) than the metal blade without encountering any signs of instability, flutter, or excessive loads. As expected the steady spindle beam moments and steady pitch link loads were proportionately higher than the metal blade for the same C_T due to the increased chord of the ATB.

Load trends with RPM followed expected patterns. For the same C_{T} , increasing the RPM increases blade thrust and blade loads.

8.3 Alternate Configurations: Advanced Technology Blade

Two alternate configurations had a notable effect on blade loads. These were the 0.0 degrees blade sweep (the baseline has 1 degree sweep) and the swept tip configurations. As expected there was an effect on steady pitch link loads as shown in Figure 8.23. As noted in sections 7.5 and 7.7, the swept tip performance data was following a trend which suggested that peak performance might be better than the baseline ATB when pitch link loads restricted the test before peak figure of merit was reached.

9.0 ACOUSTICS

Near-field and far-field noise levels were measured during the hover test program. The near-field microphone location represented a point on the fuselage side of a typical tilt rotor in hover. The microphone location simulates a point on a fuselage 8 ft aft (2.4 meters) and with 2 ft (0.6m) radial clearance from the tip path plane. Far-field noise was recorded with an array of microphones at 250 ft and 650 ft radius, at 0, 15, 30 and 45 degrees behind the rotor disc.

Figure 9.1 shows comparative XV-15 metal blade and ATB overall near-field sound pressure levels as a function of rotor thrust. The ATB noise level is approximately 2-3 dB lower than the metal blades over the normal operating range.

Far-field noise data for the 15 degrees aft location is shown in Figure 9.2. The ATB OASPL is approximately 5-6 dB lower than that from the XV-15 metal blades.

These comparative trends are expected since the tip pressure loading is less for the tapered, higher solidity ATB with its more even thrust distribution over the span.

Table 9.1 summarizes runs during which acoustics data was acquired during the OARF testing in 1984. This includes JVX isolated rotor runs as well as XV-15 metal blades and ATB test runs. The acquisition and analysis of the acoustics data from these tests was an Ames Research Center activity. Additional information may be obtained from Ames personnel (M.D. Maisel).

Figure 9.1 Typical Near-Field Noise Data for XV-15 Metal Blade and ATB

ROTOR CO	ONFIGURATION	PRIMARY TEST OBJECTIVE	M M	VTIP	RUN	ACOUSTIC DATA REEL NO.
XV-15 METAL BLADES	FL IGHT- I SOLATED	SHAKEDOWN A TRACK & BALANCE			1 2	1 .
	ROTOR		584, 600	764, 785	3-8	2
		•	585	99/	9,10	m
		PERFORMANCE	587, 622	768, 814	11,12	.
			587, 625	768, 818	14-16	4
-	-	-	553- 588	724- 770	22-24	S
0.6578 SCALE JVX (V-22) BLADES	DESIGN- ISOLATED ROTOR	SHAKEDOWN & TRACK & BALANCE	573- 580	750- 759	1,2	9
	(SNIM ON)	PERFORMANCE	576, 625	754.818	3-5	6,7
		_	577	755	ي إ	7
		_	625	818	7	80
-	-		515, 621	674, 813	83	ω
ADVANCED TECHNOLOGY BLADES	BASELINE TIP, TRUNCATED CUFF	SHAKEDOWN & TRACK & BALANCE	570, 589	746, 771	30,32,33	6
	ISULATED RUIDK	PERFORMANCE	569- 595	745- 779	36,37	6
-		-	080	3//	₽ ;	2 5
	-	DYNAMICS	300- 600	393- 785	4	01
	≖	PERFORMANCE/ENDURANCE PERFORMANCE	590, 625 500- 566	772, 818 655- 741	44 50	9 T
	BASELINE TIP, EXTENDED CUFF	PERFORMANCE	570, 625	746, 818	56,58	=
	SWEPT TIP EXTENDED CUFF	PERFORMANCE	565, 625	740, 818	19'65	12
	SQUARE TIP	PFFORMANCE	023 333	345 045	63 63	2

10.0 CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

Full scale rotor hover performance was obtained for the basic XV-15 rotor and the Advanced Technology Blade (ATB). The following conclusions can be drawn from the results:

- 1. Accuracy and reliability of the performance data is very high as shown by the low level of scatter in the data and repeatability of data taken at different times. (See for example, Figure 7.11).
- 2. Both the ATB and the XV-15 rotors performed at levels significantly better than anticipated from theoretical estimates. Measured peak values of figure of merit were in the range 0.79 to 0.81 whereas predicted values did not exceed 0.79. Peak performance occurred at higher values of C_T and did not drop off as quickly as predicted (Figure 1.4).
- 3. The performance of the baseline XV-15 rotor is higher than that measured during a previous test of the same blades on the WPAFB whirl tower when corrected for tower blockage effects (Figure 7.2).
- 4. Of the three tip shapes tested on the ATB blades, the elliptical tip outperformed a rectangular tip and a swept tip (Figure 7.35). The swept tip and elliptical tips had the same solidity; the solidity of the rectangular tip was slightly higher. However, testing of the swept tip was curtailed but did indicate that its performance might match or exceed that of the elliptical tip at high thrust.
- 5. Testing of the ATB with no cuff, truncated cuff, and full cuff showed that performance is improved as more blade area is added to the cuff region (Figure 7.37).
- 6. A value of $C_T/\sigma_T = .22$ was reached with the ATB before loads limited further testing (Figure 7.11). The corresponding value for the XV-15 was .18, (Figure 7.1).
- 7. Comparison of the ATB and XV-15 blade loads indicates that load trends are similar. The ATB blades were tested to significantly higher thrust levels than the XV-15 without encountering any instability, flutter, or excessive loads.
- 8. Acoustical measurements show (Figures 9.1 and 9.2) that the ATB with the elliptical tips was 2-3 dB lower than the XV-15 metal blades in the near-field and 5-6 dB lower in the far-field.

10.2 Recommendations

- 1. A program of research should be initiated aimed at developing better wake models for use in tilt rotor hover performance analyses. The program would consist of experimentally determining the wake vortex structure for different rotor operating conditions (tip speed, collective) for representative blade planforms, twist distributions, and number of blades. It would also be desirable to make these measurements with blades having pressure instrumentation so that the blade circulation distribution can be determined. The combination of blade circulation distribution and wake geometry can then be used to derive wake models for use in hover performance analyses.
- 2. There is a need to acquire a better understanding of behavior of the thick root sections used on tilt rotor blades especially near and beyond stall. A program of wind tunnel test and analysis to define the stall and post-stall behavior should be initiated. This would include two-dimensional testing as well as measurements on the root sections of rotor blades.

11.0 REFERENCES

- McVeigh, M. A. and Bartie, K., "V-22 Large-Scale Rotor Hover Performance and Wing Download Test", Bell Boeing Document D901-99140-1, March 1985.
- Benson, R. G., Ekquist, D., et al, "XV-15/Advanced Technology Blade Hover Test Plan for NASA-Ames OARF", Boeing Document D210-12262-1, December 1983.
- 3. Silcox, H. F., et al, "System Safety Analysis for Advanced Technology Blades (ATB) on NASA-Ames Test Rig", Boeing Document D210-12256, Volumes 1-5, January 1984.
- 4. Helf, S., et al, "Full-Scale Hover Test of a 25-Foot Tilt Rotor", BHT Report 300-099-010, NASA CR114626, May 1973.
- Devlin, J. F., "Instrumentation Requirements for Advanced Technology Blade Rotor Test at NASA-Ames OARF", Bell Boeing Document D901-99025-2, May 1984.
- Walton, I., "Data Reduction Requirements for JVX/XV-15 Large-Scale Rotor Test at NASA-Ames_OARF", Bell Boeing Document D901-99050-3, October 1983.
- 7. Schlichting, H., "Boundary Layer Theory", McGraw-Hill, NY, 1968.
- 8. Hoerner, S. F., "Fluid Dynamic Drag", published by Hoerner Fluid Dynamics, 1965.

APPENDIX A - CORRECTIONS FOR EFFECTS OF WIND

A.1 Introduction

The XV-15 and ATB rotor diameters are 25 feet. The ATB rotor has a thrust-weighted solidity of 0.10, the XV-15 rotor has a solidity of 0.089. The rotor data was generally acquired in conditions where the ambient wind velocity was not zero. A correction for the effect of wind is therefore required to arrive at true hover performance. The method used to correct for the effect of wind on hover performance is presented below.

A.2 Correction for Wind Effects

In a wind of speed V at an angle α to the rotor shaft, the rotor develops a thrust T and a normal force NF. The rotor power is

$$C_{p} = C_{p} + \mu C_{T} \cos \alpha - \mu C_{NF} \sin \alpha + k \overline{v}_{i} C_{T}$$
 (1)

where μ = V/VT, \overline{v}_i = v_i/V_T , v_i is the mean induced velocity, and k is a correction factor for the ideal induced velocity.

During the test the rotor was trimmed to zero flapping. The rotor balance measured T and NF. Wind speed (V) and direction (α) were measured by an anemometer mounted at a height above the ground. Using Hoerner's recommended model for the wind boundary layer, (Reference 8), it was determined that if the anemometer were positioned at the same height as the hub, the mean wind speed would be read. The effect of the wind can be calculated as follows.

The power required to hover in zero wind conditions is:

$$C_{P_H} = C_{P_{PRO}} + k_H \bar{v}_{i_H} C_T$$

Since $^{C}P_{PRO}$ does not vary significantly with small changes in ambient wind conditions, we may substitute for $^{C}P_{PRO}$ from Equation (1).

The adjusted power for hover in zero wind may then be written:

$$C_{P_{H}} = C_{P} - \mu \left(C_{T} \cos \alpha - C_{NF} \sin \alpha\right) + k_{H} \overline{v}_{iH} \left\{1 - \frac{k \overline{v}_{i}}{k_{H} \overline{v}_{iH}}\right\} C_{T} \qquad (2)$$

The ratio
$$v_{\star} = \overline{v}_{i} / \overline{v}_{iH}$$
 is obtained by solving
$$v_{\star}^{4} + 2 v_{\star}^{3} V_{\star} \cos_{\alpha} SIGN C_{\uparrow} + v_{\star}^{2} V_{\star}^{2} - 1 = 0$$
 (3) where $V_{\star} = V/v_{iH}$

Equation (3) is solved for V_{\star} by iteration using the Newton-Raphson method

$$v_{\star n+1} = v_{\star n} - (F/F')_{n} .$$
where $F = v_{\star}^{4} + 2v_{\star}^{3} V_{\star} \cos_{\alpha} SIGN C_{T} + v_{\star}^{2} V_{\star}^{2} - 1$

$$F' = 4v_{\star}^{3} + 6v_{\star}^{2} V_{\star} \cos_{\alpha} SIGN C_{T} + 2v_{\star} V_{\star}^{2}$$
(4)

and a starting value is given by an approximation developed by Wayne Johnson, viz

$$v_{\star} = 1 - \mu \cos \alpha / \sqrt{2 |C_{T}|} = 1 - 0.5 V_{\star} \cos \alpha$$

Figure A.1 shows the induced velocity ratio (and ideal power ratio) for different wind speeds and directions for $C_T=.015$. The effect of not applying a wind correction is shown in Figure A.2 where true hover performance is compared to that which would be calculated from measurements made in a 3 knot wind. The effect of the wind is substantial, amounting to approximately 2 points in figure of merit when the flow is axial.

On the basis of the above analysis the method for wind correction is:

- 1) Calculate v, using the full iterative quartic solution.
- Calculate the hover power using equation (2). From estimated hover performance the value of $k_{\rm H}$ is 1.16. It is assumed that $k=k_{\rm H}$ since only very low advance ratios are involved.

A.3 Data Reduction and Correction Procedure

The following are the steps in the data reduction and correction procedure.

- 1. Record the main balance thrust (axial force), rolling moment (friction torque), normal force and shaft torque. Record mean wind speed (V) and direction (α) .
- 2. Subtract the friction torque from the shaft torque to yield a true rotor torque.
- 3. Put data in coefficient form, C_T, C_P, etc.
- 4. Calculate the following:

(a)
$$V_* = V/ (V_T \sqrt{|C_T|/2})$$

(b)
$$v_{\star} = 1 - .5 V_{\star} \cos \alpha$$

- (c) F and F' from equation (4)
- (d) $v_{*n+1} = v_{*n} F/F'$
- (e) $\triangle = -F/F'$

If $|\Delta| \ge .00001$ set $v_{\star n} = v_{\star n+1}$ go to step (b) and iterate until $|\Delta| < .00001$.

(f) set
$$v_{\star} = v_{\star n-1}$$

5. Calculate the corrected hover power coefficient from

$$C_{P_{H}} = C_{P} - \mu \left(C_{T} \cos \alpha - C_{NF} \sin \alpha\right) + k_{H} \left(1-v_{\star}\right) \frac{|C_{T}|^{3/2}}{\sqrt{2}}$$

134

Figure A.2 Effect of Wind on Hover Performance

1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No.
CR 177436			
4. Title and Subtitle		5. Report Date	_
Hover Performance Tests Of Baseline Metal and		October 198	36
Advanced Technology Black	de (ATB) Rotor Systems for	6. Performing Organiz	ation Code
the XV-15 Tilt Rotor Ai	ccrait.	B. Performing Organiz	ation Report No.
7. Author(s)	y yelleleh C Ic Mon	D210-12380-	
	, M. McVeigh, S. La Mon,	10. Work Unit No.	
and H. Bishop		10: 110: 110:	
9. Performing Organization Name and Address	-		<u> </u>
Boeing Vertol Company		11. Contract or Grant	No.
P.O. Box 16858		NAS2-11250	
Philadelphia, Pennsylva	nia 19142	13. Type of Report ar	nd Period Covered
12. Sponsoring Agency Name and Address		FINAL	
		14. Sponsoring Agency	Code
NASA/AMES RESEARCH CENT	EK 0.4005	505-61-51	
MOFFETT FIELD, CALIFORN	IA 94035	1. 303-01 31	
employed the rectangular were used on the initial rotor configuration examples and the metal blades on the shapes were also tested. A new six-component rot accurate data over a bring the report. The test form for the performance.	The XV-15 Tilt Rotor Research of planform metal blades (red) flight configuration of mined the non-linear taper (de (ATB), (rotor solidity XV-15. Variations of the discor force and moment balance for the data are presented in note results, and in dimensions wake and acoustics data	the XV-15. The composite-con baseline ATB the designed to conditions on-dimensional nal form for the condition on the condition of the conditi	second struction, ed to replac ip and cuff btain highly is describe coefficient e steady and
ROTOR		tement NLIMITED JBJECT CATEGORY	05
ROTOR BLADE	-		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
INCLASSIFIED	UNCLASSIFIED	151	

.