Table 2. Estimates of sAUC with convergence rate when c11 = 1Scenario 1-4

Yi

2021-03-29

Print table

s.rdt <- "scenario/18rows/set-0.5b-all-c10.RData"
dt <- "res/DT-pkg-0.5b-all-c10/"</pre>

Table 1: Estimates of sAUC when $(c_1^2 = 1; c_2^2 = 0)$

		S = 25		S = 50		S = 200	
	sAUC	Median $[{Q_1}^*, {Q_3}^\dagger]$	CR^{\ddagger}	Median $[Q_1, Q_3]$	CR	Median $[Q_1, Q_3]$	CR
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.62	0.62 [0.50, 0.72]	99.7	0.63 [0.54, 0.69]	99.6	0.63 [0.59, 0.67]	99.4
Proposed $(c_1^2 = 1)$		0.64 [0.52, 0.73]	99.5	0.63 [0.55, 0.70]	99.5	0.62 [0.59, 0.66]	99.4
Proposed $(c_1^2 = c_2^2)$		0.62 [0.51, 0.71]	100.0	0.63 [0.56, 0.70]	99.8	0.66 [0.63, 0.68]	99.7
$Reistma_{O}$		0.66 [0.56, 0.74]	100.0	0.66 [0.61, 0.71]	100.0	0.66 [0.64, 0.69]	100.0
$\mathrm{Reistma}_{P}$		$0.63 \ [0.54, \ 0.70]$	100.0	0.62 [0.56, 0.67]	100.0	0.62 [0.59, 0.65]	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.70	$0.70 \ [0.62, \ 0.76]$	99.5	0.70 [0.65, 0.74]	99.8	0.71 [0.68, 0.73]	99.4
Proposed $(c_1^2 = 1)$		0.72 [0.64, 0.77]	99.8	0.71 [0.66, 0.75]	99.5	0.70 [0.68, 0.72]	99.0
Proposed $(c_1^2 = c_2^2)$		0.70 [0.61, 0.76]	100.0	0.70 [0.65, 0.74]	99.8	0.71 [0.69, 0.73]	99.7
$Reistma_{O}$		0.72 [0.65, 0.77]	100.0	0.72 [0.68, 0.75]	100.0	0.72 [0.70, 0.73]	100.0
$Reistma_{P}$		$0.71 \ [0.65, \ 0.75]$	100.0	0.70 [0.67, 0.73]	100.0	0.70 [0.69, 0.72]	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.56	0.59 [0.52, 0.65]	99.6	0.59 [0.52, 0.64]	99.4	0.57 [0.54, 0.61]	98.5
Proposed $(c_1^2 = 1)$		0.58 [0.51, 0.65]	99.7	0.57 [0.52, 0.62]	99.7	0.57 [0.54, 0.59]	99.7
Proposed $(c_1^2 = c_2^2)$		0.62 [0.56, 0.66]	99.8	0.63 [0.59, 0.66]	99.8	0.64 [0.62, 0.66]	99.1
$Reistma_{O}$		0.65 [0.60, 0.69]	100.0	0.65 [0.62, 0.68]	100.0	0.65 [0.63, 0.66]	100.0
$Reistma_{P}$		0.57 [0.51, 0.61]	100.0	$0.56 \ [0.53, \ 0.60]$	100.0	$0.56 \ [0.55, \ 0.58]$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.62	0.63 [0.58, 0.68]	99.8	0.64 [0.59, 0.67]	99.3	0.64 [0.61, 0.67]	98.7
Proposed $(c_1^2 = 1)$		0.63 [0.58, 0.68]	99.5	0.63 [0.59, 0.66]	99.9	0.62 [0.60, 0.64]	99.5
Proposed $(c_1^2 = c_2^2)$		0.64 [0.60, 0.69]	100.0	0.65 [0.62, 0.68]	99.4	0.67 [0.65, 0.68]	98.9
$Reistma_{O}$		0.67 [0.63, 0.71]	100.0	0.67 [0.65, 0.70]	100.0	0.67 [0.66, 0.68]	100.0
$Reistma_{P}$		0.62 [0.58, 0.66]	100.0	0.62 [0.59, 0.65]	100.0	0.62 [0.60, 0.63]	99.9

^{* 25}th empirical quartile; † 75th empirical quartile; ‡ Convergence rate.