# Tutorat mathématiques : TD1

## Université François Rabelais

## Département informatique de Blois

## Analyse



#### Problème 1

Soit le polynôme  $P(X) = X^n + aX + b$  avec  $(a, b) \in \mathbb{R}^2$ .

Montrer que P admet au plus 3 racines réelles. On pourra s'aider du théorème de Rolle.

#### Problème 2

Donner la valeur, si elle existe, des expressions suivantes :

1.  $\cos\left(-\frac{22\pi}{12}\right)$ 

7.  $\sin\left(\arctan\left(\sqrt{3}\right)\right)$ 

2.  $\arcsin\left(\sin\left(\frac{14\pi}{2}\right)\right)$ 

8.  $\sin(x) = \tan(x)$ 

3.  $\cos\left(\arcsin\left(\frac{1}{2}\right)\right)$ 

9.  $\cos\left(x + \frac{\pi}{3}\right) = \cos\left(2x + \frac{\pi}{6}\right)$ 

4.  $\sin\left(\arccos\left(\frac{\sqrt{3}}{2}\right)\right)$ 

10.  $2\sin^2(x) + \sqrt{3}\sin(2x) = 3$ 

5.  $\tan\left(\frac{17\pi}{6}\right)$ 

 $11. \cos(3x) = \sin(2x)$ 

6.  $\arctan\left(\cos\left(\frac{15\pi}{5}\right)\right)$ 

12.  $\arcsin(3x) = \arccos(2x)$ 

## Problème 3

Soit la fonction f définie telle que :

$$f(x) = 2\arctan(x) - \arcsin\left(\frac{1-x^2}{1+x^2}\right)$$

- 1. Faire la division euclidienne de  $\frac{1-x^2}{1+x^2}$ , en faire un encadrement et en déduire  $D_f$ .
- 2. Calculer la limite de f en  $+\infty$  et en  $-\infty$ .
- 3. Justifier que f est continue sur  $\mathbb{R}$  et dérivable sur  $\mathbb{R}^*$  et montrer que  $f'(x) = \frac{2}{x^2+1}(1+\mathrm{sgn}(x))$ . On rappellera éventuellement que la fonction signe s'écrit :  $\mathrm{sgn}(x) = \frac{x}{|x|} = \begin{cases} -1 & \text{si } x < 0 \\ 1 & \text{sinon} \end{cases}$
- 4. Déduire des questions précédentes une forme plus simple de f.

#### Problème 4

Calculer la dérivée  $n - \grave{e}me$  de  $x \mapsto x^n(1+x^2)$ .