Κβαντική Θεωρία της Ύλης

Κωνσταντίνος Ζουριδάχης

Contents

1	Διαδικαστικά	2
2	Συγγράμματα	2
3	Βασικά Κλασικής Μηχανικής 3.1 Λαγκραζιανός Φορμαλισμός	2 2 3
4	Βασικά	4
5	Μεταθέτης	4
6	Η εξίσωση του Schroedinger	5
7	Χρησιμότητα Κυματοσυνάρτησης	6
8	Μοναδιαίοι Τελεστές	8

1 Διαδικαστικά

Θα έχουμε δύο δίωρα τέστ που θα πιάνουν σύνολο 6 μονάδες. Το τελικό διαγώνισμα θα πιάνει 4 μονάδες.

Συνολικός βαθμός:

max{60% τέστ × 40% διαγώνισμα, 100% Διαγώνισμα}

2 Συγγράμματα

- Κβαντομηχανική 2 Τραχανάς
- Principles of Quantum Mechanics Shankar
- Introductory Quantum Mechanics Liboff
- Atomic and electronic structures of solids Kaxiras
- Φυσική Στερεάς Κατάστασης Ι-ΙΙ Οικονόμου

3 Βασικά Κλασικής Μηχανικής

3.1 Λαγκραζιανός Φορμαλισμός

Υπολογισμός κλασικής τροχιάς (Αρχή Ελάχιστης Δράσης):

$$x_{cl}(t_i + \Delta t) = x(t_i) + \dot{x}(t_i)\Delta t$$

Τα $x(t_i)$ και $\dot{x}(t_i)$ είναι δεδομένα.

Ο δεύτερος νόμος του Νεύτωνα μας λέει:

$$m_j \frac{d^2 x_j}{dt^2} = -\frac{\partial V}{\partial x_j}$$

Όπου m_j είναι η μάζα του σωματιδίου j και x_j οι συντεταγμένες του σωματιδίου j.

Για τον υπολογισμό κλασικής τροχίας θα θεωρούμε ότι μεταβαίνουμε από (x_i,t_i) σε (x_f,t_f) . Μία global λύση για το πως καταλήγουμε από $(x_i,t_i) \to (x_f,t_f)$ είναι η Λαγκρανζιανή L (μονάδα μέτρησης Joules (J)).

Ορίζουμε:

$$L = T - V = L(x, \dot{x}, t)$$

Όπου T είναι η κινητική ενέργεια και V είναι η δυναμική ενέργεια. Συνήθως τις x και $\dot x$ τις γράφουμε σαν q και $\dot q$ αντίστοιχα που αναπαριστούν γενικευμένες συντεταγμένες, δηλαδή μπορούν να έχουν οποιαδήποτε μορφή χωρίς απαραίτητα να είναι καρτεσιανές.

Η δράση υπολογίζεται:

$$S[x(t)] = \int_{t_i}^{t_f} L(x, \dot{x}) dt$$

Η S[x(t)] (μονάδα μέτρησης Joule-seconds (Js)) είναι Functional (function of a function). Η κλασική τροχιά x_{cl} είναι αυτή για την οποία η S είναι μικρότερη.

Figure 2.2. If $x_{\rm cl}(t)$ minimizes S, then $\delta S^{(1)} = 0$ if we go to any nearby path $x_{\rm cl}(t) + \eta(t)$.

Figure 1:

Σημείωση

Function vs Functional

Function:

 $f:x\in X$ Number Field $\mapsto f(x)\in Y$ Number Field

Functional:

 $\mathscr{F}:f(x)\in Y^X$ Function Space $\mapsto \mathscr{F}[f(x)]\in Z$ Number Field

$$X, Y, Z \in \{\mathbb{R}, \mathbb{C}\}$$

3.2 Euler-Lagrange

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

Η εξίσωση αυτή μας βοηθάει να βρούμε την εξίσωση q(t) για την οποία η συναρτησιαχή εξίσωση της δράσεις εξτρεμίζεται, δηλαδή έχει στάσιμο σημείο το οποίο είναι minimum, maximum ή saddle point.

4 Βασικά

Σημείωση: \dot{x} είναι η χρονική παράγωγος, δηλαδή $\frac{\partial x}{\partial t}$.

Στην κβαντομηχανική η φυσική κατάσταση ενός σώματος περιγράφεται από μια κυματοσυνάρτηση $\Psi(x_i,t)$.

Τα φυσικά μεγέθη σχετίζονται με τελεστές, δηλαδή μετασχηματισμούς που επενεργούν πάνω στις κυματοσυναρτήσεις. Π.χ. ο τελεστής θέσης x που πολλαπλασιάζει την y με x.

Ιδιότητα

Γραμμικοί τελεστές:

$$A[\psi_1(x) + \psi_2(x)] = A\psi_1(x) + A\psi_2(x), \forall \psi_1, \psi_2$$

5 Μεταθέτης

Αν A και B δύο τελεστές, ο ορισμός του μεταθέτη λέει:

Ορισμός

$$[A, B] = AB - BA$$

Για τυχούσα χυματοσυνάρτηση ψ δεν ισχύει απαραίτητα ότι $A(B\psi)=B(A\psi)$. Ισοδύναμα, δεν ισχύει εν γένει ότι AB=BA, δηλαδή οι χβαντομηχανικοί τελεστές δεν μετατίθενται απαραίτητα.

Ιδιότητα

Βασικές ιδιότητες μεταθετών:

$$[A, B] = -[B, A]$$

$$[A, B + C] = [A, B] + [A, C]$$

$$[A, BC] = [A, B]C + B[A, C]$$

$$[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}]$$

Πρόταση

Παράδειγμα μεταθέτη:

$$[x,p] = i\hbar$$

Πρόταση

Αν δύο τελεστές μετατίθονται, τότε ισχύει η ιδιότητα:

$$[A,B]=0$$

6 Η εξίσωση του Schroedinger

Η Χαμιλτονιανή H ενός συστήματος είναι ένας τελεστής που αντιστοιχεί στην συνολική ενέργεια του συστήματος (συμπεριλαμβάνεται δυναμική και κινητική ενέργεια). Ο τελεστής που αντιστοιχεί στο σύστημα συμβολίζεται \mathbf{H} .

Πρόταση

Με τα παραπάνω δεδομένα, ισχύει ότι:

$$\mathbf{H}\psi = i\hbar \frac{\partial \psi}{\partial t}$$

Για ${f H}=rac{p^2}{2m}+V({f r})$ και με αντικατάσταση ${f p} o -i\hbar
abla$ προκύπτει:

$$\mathbf{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r})$$

Κάνοντας αντικατάσταση στην εξίσωση $\mathbf{H}\psi=i\hbar\frac{\partial\psi}{\partial t}$ καταλήγουμε:

Ορισμός

Η κυματοσυνάρτηση που μας δίνει την χρονική εξέλιξη του συστήματος:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(\mathbf{r})\psi = i\hbar\frac{\partial\psi}{\partial t}$$

7 Χρησιμότητα Κυματοσυνάρτησης

Το τετράγωνο της απόλυτης τιμής της $\psi(\mathbf{r})$ μας δίνει την πυχνότητα πιθανότητας.

Πρόταση

Σε 1 διάσταση, για $P(x)=|\psi(x)|^2$ το γινόμενο P(x)dx μας δίνει την πιθανότητα να βρούμε το σωματίδιο μεταξύ x και x+dx.

Ορισμός

Η πιθανότητα να βρούμε το σωματίδιο μεταξύ a και b δίνεται από το:

$$P(a \le x \le b) = \int_a^b |\psi(x)|^2 dx$$

Μία κανονικοποιημένη κυματοσυνάρτηση μας λέει ότι αν ψάξουμε παντού, το σωματίδιο θα βρίσκεται κάπου με πιθανότητα 100%, οπότε:

Ορισμός

Η πιθανότητα να βρίσκεται το σωματίδιο οπουδήποτε:

$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = 1$$

Ορισμός

Για δύο κυματοσυναρτήσεις $\psi(x)$ και $\phi(x)$ ορίζουμε το εσωτερικό γινόμενο ως το ολοκλήρωμα:

$$(\psi,\phi) = \int_{-\infty}^{+\infty} \psi^*(x)\phi(x) dx$$

και ισχύει
$$(\psi,\phi)=(\phi,\psi)^*$$

Σημείωση

Μιγαδικός συζυγής:

αν
$$z=x+iy$$
 $(x,y\in\Re),$ τότε $z^*\equiv x-iy$

Ορισμός

Για μία κυματοσυνάρτηση $\psi(x)$ και έναν τελεστή A ορίζουμε ως **μέση τιμή** το ολοκλήρωμα:

$$\langle A \rangle = \int_{-\infty}^{+\infty} \psi^*(x) A \psi(x) dx$$

Η μέση τιμή $\langle A \rangle$ είναι και η αναμενόμενη τιμή για το φυσικό μέγεθος A όταν γίνεται μέτρησή του ενώ το σύστημα είναι στην κατάσταση $\psi(x)$.

Ορισμός

Αβεβαιότητα μέτρησης:

$$\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$

όπου:

$$\langle A^2 \rangle = \int_{-\infty}^{+\infty} \psi^*(x) A^2 \psi(x) dx$$

και $\langle A \rangle$ η μέση τιμή.

Θέλουμε να εγγυηθούμε ότι η μέση τιμή $\langle A \rangle$ είναι πραγματικός αριθμός. Η ιδιότητα αυτή εξασφαλίζεται με την απαίτηση ότι τα φυσικά μεγέθη παριστάνονται στην Κβαντομηχανική με εριμιτιανούς τελεστές. Γενικότερα, όλοι οι τελεστές που περιγράφουν φυσικά μεγέθη πρέπει να είναι εριμιτιανοί.

Ορισμός

Ένας τελεστής A είναι εριμιτιανός αν ισχύει:

$$\int \psi^*(A\phi) \, dr = \int (A\psi)^* \phi \, dr$$

ή αλλιώς $(\psi,A\phi)=(A\psi,\phi)$ όπου ψ,ϕ κυματοσυναρτήσεις.

Οι ιδιοτιμές ενός ερμιτιανού τελεστή είναι πραγματικοί αριθμοί και οι ιδιοσυναρτήσεις ερμιτιανού τελεστη που αντισοιχούν σε διαφορετικές ιδιοτιμές είναι ορθογώνιες μεταξύ τους.

Πρόταση

Αφού οι εριμιτιανοί τελεστές είναι πραγματικοί αριθμοί, για την μέση τιμή εριμιτιανού τελεστή ισχύει:

$$\langle A \rangle^* = \int [\psi^*(A\psi)]^* dr = \int (A\psi)^* \psi dr = \int \psi^*(A\psi) dr = \langle A \rangle$$

Δηλαδή, οι μέσες τιμές εριμιτιανών τελεστών είναι πραγματικοί αριθμοί.

Ορισμός

 ${\bf O}$ συζυγής ενός τελεστή A είναι ο τελεστής A^\dagger για τον οποίο ισχύει:

$$(\psi, A\phi) = (A^{\dagger}\psi, \phi)$$

Για τους **εριμιτιανούς** τελεστές ισχύει $A=A^{\dagger}$. Με αφορμή αυτό, οι εριμιτιανοί τελεστές ονομάζονται **αυτοσυζυγείς**.

Ιδιότητα

Ιδιότητες συζυγών τελεστών:

$$(A^{\dagger})^{\dagger} = A$$
$$(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$$
$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$
$$(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$$

8 Μοναδιαίοι Τελεστές

Ορισμός

Τελεστές για τους οποίους ισχύει $U^\dagger=U^{-1}$ ονομάζονται μοναδιαίοι.

Οι μοναδιαίοι τελεστές χρησιμοποιούνται για την περιστροφή του συστήματος συντεταγμένων. Επειδή ϑ α πρέπει να ισχύει ότι $(U\psi,U\phi)=(\psi,\phi)$ προχύπτει ο παραπάνω ορισμός $U^\dagger=U^{-1}.$

ΤΟΟΟ: Περισσότερη ανάλυση μοναδιαίων αν γίνεται.