← Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题

✔ 恭喜!您通过了!

下一项

0/1分

1.

Suppose a MAC system (S,V) is used to protect files in a file system by appending a MAC tag to each file. The MAC signing algorithm S is applied to the file contents and nothing else.

What tampering attacks are not prevented by this system?

- Swapping two files in the file system.
- Replacing the tag and contents of one file with the tag and contents of a file from another computer protected by the same MAC system, but a different key.
- Erasing the last byte of the file contents.
- Changing the first byte of the file contents.

这个选项的答案不正确

The MAC tag will fail to verify if any file data is changed.

0/1分

2.

Let (S,V) be a secure MAC defined over (K,M,T) where $M=\{0,1\}^n$ and $T=\{0,1\}^{128}$. That is, the key space is K, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$.

Which of the following is a secure MAC: (as usual, we use | to denote string concatenation)

 $S'(k, m) = ig[t \leftarrow S(k, m), ext{ output } (t, t) ig)$ and

$$V'ig(k,m,(t_1,t_2)ig) = egin{cases} V(k,m,t_1) & ext{if } t_1 = t_2 \ ext{"0"} & ext{otherwise} \end{cases}$$

(i.e., $V'(k,m,(t_1,t_2))$ only outputs "1"

if t_1 and t_2 are equal and valid)

这应该被选择

 $S'(k,m) = S(k,m \oplus m)$ and

$$V'(k,m,t) = V(k, m \oplus m, t)$$

未选择的是正确的

Week 3
$$\operatorname{Problem}$$
 Set $(k, m[0, ..., n-2] \parallel 0)$ and

8/10 分 (80%)

测验, 10 个问题

$$V'(k,m,t) = V(k, m[0,...,n-2]||0, t)$$

未选择的是正确的

 $S'(k,m)=S(k,m\oplus 1^n)$ and $V'(k,m,t)=V(k,m\oplus 1^n,t)$.

正确

a forger for (S', V') gives a forger for (S, V).

 $S'(k,m)=\left(S(k,m),S(k,0^n)\right)\quad\text{and}$ $V'\big(k,m,(t_1,t_2)\big)=\big[V(k,m,t_1)\text{ and }V(k,0^n,t_2)\big]$ (i.e., $V'\big(k,m,(t_1,t_2)\big)$ outputs ``1" if both t_1 and t_2 are valid tags)

未选择的是正确的

 $S'(k,m) = S(k,\,m ig\| m)$ and $V'(k,m,t) = V(k,\,m ig\| m,\,t)\,.$

正确

a forger for (S', V') gives a forger for (S, V).

1/1分

3.

Recall that the ECBC-MAC uses a fixed IV (in the lecture we simply set the IV to 0). Suppose instead we chose a random IV for every message being signed and include the IV in the tag.

Week 3 – Problem Set

8/10 分 (80%)

测验, 10 个问题 other words, $S(k,m) := ig(r, \; \operatorname{ECBC}_r(k,m)ig)$

where $\mathrm{ECBC}_r(k,m)$ refers to the ECBC function using r as the IV. The verification algorithm V given key k, message m, and tag (r,t) outputs ``1" if $t=\mathrm{ECBC}_r(k,m)$ and outputs ``0" otherwise.

The resulting MAC system is insecure.

An attacker can query for the tag of the 1-block message m and obtain the tag (r,t). He can then generate the following existential forgery: (we assume that the underlying block cipher operates on n-bit blocks)

The tag $(r \oplus m, t)$ is a valid tag for the 1-block message 0^n .

正确

The CBC chain initiated with the IV $r\oplus m$ and applied to the message 0^n will produce exactly the same output as the CBC chain initiated with the IV r and applied to the message m. Therefore, the tag $(r\oplus m,\ t)$ is a valid existential forgery for the message 0.

(The tag $(r, t \oplus $	r) is a valid tag for the 1-block message (0^n .

- The tag $(m \oplus t, r)$ is a valid tag for the 1-block message 0^n .
- The tag $(m \oplus t, t)$ is a valid tag for the 1-block message 0^n .

1/1分

4.

Suppose Alice is broadcasting packets to 6 recipients

Week 3B1, Problem Set not important but integrity is.

8/10 分 (80%)

测验, 10 个问题 In other words, each of B_1,\dots,B_6 should be assured that the

packets he is receiving were sent by Alice.

Alice decides to use a MAC. Suppose Alice and B_1, \ldots, B_6 all

share a secret key k. Alice computes a tag for every packet she

sends using key k. Each user B_i verifies the tag when

receiving the packet and drops the packet if the tag is invalid.

Alice notices that this scheme is insecure because user B_1 can

use the key k to send packets with a valid tag to

users B_2, \dots, B_6 and they will all be fooled into thinking

that these packets are from Alice.

Instead, Alice sets up a set of 4 secret keys $S = \{k_1, \dots, k_4\}$.

She gives each user B_i some subset $S_i \subseteq S$

of the keys. When Alice transmits a packet she appends 4 tags to it

by computing the tag with each of her 4 keys. When user B_i receives

a packet he accepts it as valid only if all tags corresponding

to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .

How should Alice assign keys to the 6 users so that no single user

can forge packets on behalf of Alice and fool some other user?

未选择的是正确的

正确

Every user can only generate tags with the two keys he has.

Since no set S_i is contained in another set S_i , no user i

can fool a user j into accepting a message sent by i.

未选择的是正确的

未选择的是正确的 Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题

1/1分

5,

Consider the encrypted CBC MAC built from AES. Suppose we

compute the tag for a long message m comprising of n AES blocks.

Let m^\prime be the n-block message obtained from m by flipping the

last bit of m (i.e. if the last bit of m is b then the last bit

of m' is $b \oplus 1$). How many calls to AES would it take

to compute the tag for m' from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size)

- \bigcirc n
- () 6
- 0

正确

You would decrypt the final CBC MAC encryption step done using k_2 ,

the decrypt the last CBC MAC encryption step done using k_1 ,

flip the last bit of the result, and re-apply the two encryptions.

5

1/1分

6.

Let H:M o T be a collision resistant hash function.

Which of the following is collision resistant:

(as usual, we use \parallel to denote string concatenation)

未选择的是正确的

$$igcup H'(m) = H(H(m))$$

正确

a collision finder for H^\prime gives a collision finder for H.

$$H'(m) = H(|m|)$$

(i.e. hash the length of m)

Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题

正确

a collision finder for H' gives a collision finder for H.

 $H'(m)=H(m)igoplus H(m\oplus 1^{|m|})$

(where $m \oplus 1^{|m|}$ is the complement of m)

未选择的是正确的

$$H'(m)=H(m)\oplus H(m)$$

未选择的是正确的

正确

a collision finder for H' gives a collision finder for H.

1/1分

7,

Suppose H_1 and H_2 are collision resistant

hash functions mapping inputs in a set M to $\{0,1\}^{256}$.

Our goal is to show that the function H_2(H_1(m)) is also

collision resistant. We prove the contra-positive:

suppose H_2(H_1(\cdot)) is not collision resistant, that is, we are

given x \neq y such that $H_2(H_1(x)) = H_2(H_1(y))$.

We build a collision for either H_1 or for H_2.

This will prove that if H_1 and H_2 are collision resistant

then so is H 2(H 1(\cdot)). Which of the following must be true:

Either x, y are a collision for H_2\quad or \quad H_1(x), H_1(y) are a collision for H_1.

Either x, y are a collision for H_1\quad or

\quad $H_1(x)$, $H_1(y)$ are a collision for H_2 .

正确 Week 3 --|f|Pr36116977-58e²(H_1(y)) then

8/10 分 (80%)

测验, 10 个问题 either H_1(x) = H_1(y) and x \neq y, thereby giving us

a collision on H_1. Or H_1(x) \neq H_1(y) but

 $H_2(H_1(x)) = H_2(H_1(y))$ giving us a collision on H_2 .

Either way we obtain a collision on H_1 or H_2 as required.

Either x, H_1(y) are a collision for H_2\quad or \quad H_2(x), y are a collision for H_1.

Either H_2(x), H_2(y) are a collision for H_1\quad or

 $\quad x, y are a collision for H_2.$

1/1分

8.

In this question you are asked to find a collision for the compression function:

where \$\$\text{AES}(x, y)\$\$ is the AES-128 encryption of \$\$y\$\$ under key \$\$x\$\$.

Your goal is to find two distinct pairs $\{(x_1, y_1)\$ and $\{(x_2, y_2)\$ such that $\{(x_1, y_1)\$ = $\{(x_2, y_2)\$.

Which of the following methods finds the required x_1, y_1 and x_2, y_2

- Choose $\$x_1,y_1,x_2\$\$$ arbitrarily (with $\$x_1 \neq x_2\$\$$) and let $\$\$v := AES(y_1,x_1)\$\$$. Set $\$\$y_2 = AES^{-1}(x_2,v \neq y_1 \neq y_2)\$\$$
- Choose $\$x_1,y_1,y_2\$\$$ arbitrarily (with $\$y_1 \neq y_2\$\$$) and let $\$\$v := AES(y_1,x_1)\$\$$.

Set $$x_2 = AES^{-1}(y_2, v \cdot y_1 \cdot y_2)$ \$

You got it!

- Choose $\$x_1,y_1,y_2\$\$$ arbitrarily (with $\$y_1 \neq y_2\$\$$) and let $\$\$v := AES(y_1,x_1)\$\$$. Set $\$x_2 = AES^{-1}(y_2,v \neq y_1)\$\$$
- Choose $\$x_1,y_1,y_2\$\$$ arbitrarily (with $\$y_1 \neq y_2\$\$$) and let $\$\$v := AES(y_1,x_1)\$\$$.

Set $$x_2 = AES^{-1}(y_2, v \cdot y_2)$ \$

1/1分

9.

Repeat the previous question, but now to find a collision for the compression function $f_2(x, y) = \text{AES}(x, x) \cdot y$.

Week 3 – Problem Set

8/10 分 (80%)

测验, 10 个问题 Which of the following methods finds the required \$\$(x_1, y_1)\$\$ and \$\$(x_2, y_2)\$\$?

Choose $\$\$x_1, x_2, y_1\$\$$ arbitrarily (with $\$\$x_1 \neq x_2\$\$$) and set $\$\$y_2 = y_1 \cdot AES(x_1,x_1) \$\$$

Choose $\$\$x_1, x_2, y_1\$\$$ arbitrarily (with $\$\$x_1 \neq x_2\$\$$) and set $\$\$y_2 = AES(x_1,x_1) \cdot AES(x_2,x_2)\$\$$

Choose $\$x_1, x_2, y_1\$\$$ arbitrarily (with $\$x_1 \neq x_2\$\$$) and set

 $$$y_2 = y_1 \cdot AES(x_1,x_1) \cdot AES(x_2,x_2)$ \$

正确

Awesome!

Choose $\$\$x_1, x_2, y_1\$\$$ arbitrarily (with $\$\$x_1 \neq x_2\$\$$) and set $\$\$y_2 = y_1 \cdot AES(x_2,x_2) \$\$$

1/1分

10。

Let $$H: M \to T \$ be a random hash function where $\|M\| gg\|T\| \$ (i.e. the size of \$M\$ is much larger than the size of \$T\$).

In lecture we showed

that finding a collision on \$\$H\$\$ can be done with $\$\$O\big(|T|^{1/2}\big)\$\$$ random samples of \$\$H\$\$. How many random samples would it take until we obtain a three way collision, namely distinct strings \$\$x,y,z\$\$ in \$\$M\$\$ such that \$\$H(x) = H(y) = H(z)\$\$?

\$\$O\big(|T|^{2/3}\big)\$\$

正确

An informal argument for this is as follows: suppose we

collect \$\$n\$\$ random samples. The number of triples among the \$\$n\$\$

samples is \$\$n\$\$ choose 3 which is \$\$O(n^3)\$\$. For a particular

triple x,y,z to be a 3-way collision we need H(x) = H(y)

and H(x) = H(z). Since each one of these two events happens

with probability \$1/T \$ (assuming \$H\$\$ behaves like a random

function) the probability that a particular triple is a 3-way

collision is $\$\$O(1/|T|^2)\$\$$. Using the union bound, the probability

that some triple is a 3-way collision is \$\$O(n^3/|T|^2)\$\$ and since

we want this probability to be close to 1, the bound on \$\$n\$\$

Week 3 rd Rawblem Set 测验, 10 个问题		
\subset	\$\$O\big(T ^{3/4}\big)\$\$	
C	\$\$O\big(T \big)\$\$	
	\$\$O\big(T ^{1/4}\big)\$\$	
		A D E