À rendre le lundi 3 juin.

Une célébrité: la fonction Gamma

Dans ce problème, pour tout $n \in \mathbb{N}^*$, nous noterons Γ_n la fonction définie par

$$\forall x \in]0, +\infty[$$
 $\Gamma_n(x) = \frac{n! \cdot n^x}{x(x+1) \cdots (x+n)}.$

Partie A. Une suite d'intégrales.

Pour tout entier $n \in \mathbb{N}^*$ et tout réel $x \in [1, +\infty[$, on note

$$F_n(x) = \int_0^n \left(1 - \frac{u}{n}\right)^n u^{x-1} du.$$

- 1. Soit $n \in \mathbb{N}^*$. Justifier que la fonction F_n est bien définie sur $[1, +\infty[$.
- 2. (a) Démontrer l'inégalité

$$\forall (a,b) \in]0,+\infty[^2 \quad a < b \quad \Longrightarrow \quad \frac{a}{b} \leq \ln(b) - \ln(b-a) \leq \frac{a}{b-a}.$$

- (b) Fixons u dans $]0, +\infty[$ et posons $f_u : x \mapsto x \ln(1 \frac{u}{x})$. Étudier les variations de f_u sur $]u, +\infty[$.
- (c) En déduire que

$$\forall n \in \mathbb{N}^* \quad \forall u \in [0, n] \quad \left(1 - \frac{u}{n}\right)^n \le \left(1 - \frac{u}{n+1}\right)^{n+1}.$$

- (d) Soit $x \in [1, +\infty[$. Démontrer que la suite $(F_n(x))_{n \in \mathbb{N}^*}$ est croissante.
- 3. Dans cette question, on fixe un entier $n \in \mathbb{N}^*$ et un réel $x \in [1, +\infty[$.
 - (a) Justifier l'inégalité

$$F_n(x) \le \int_0^n e^{-u} u^{x-1} du.$$

(b) Justifier l'existence d'un réel A strictement positif tel que

$$\forall u > A \quad u^{x-1} < e^{u/2}.$$

(c) En déduire une majoration de $F_n(x)$ par une quantité indépendante de n.

Partie B. La fonction Gamma comme limite.

Dans cette partie, pour deux réels positifs a et b, on notera

$$I(a,b) = \int_0^1 t^a (1-t)^b dt.$$

1. (a) Démontrer pour tous réels positifs a et b la relation

$$(a+1)I(a,b+1) = (b+1)I(a+1,b).$$

- (b) Pour $a \in [1, +\infty[$ un réel supérieur à 1 et $n \in \mathbb{N}^*$, exprimer I(a, n) à l'aide de a et de n.
- 2. (a) Soit $n \in \mathbb{N}^*$ et $x \in [1, +\infty[$. Établir une relation entre $F_n(x)$ et I(x-1, n). En déduire que $F_n(x) = \Gamma_n(x)$.
 - (b) Prouver que pour tout $x \in [1, +\infty[$, la suite $(\Gamma_n(x))_{n \in \mathbb{N}^*}$ est convergente.
- 3. (a) Soit $n \in \mathbb{N}^*$ et $x \in]0, +\infty[$. Établir une relation entre $\Gamma_{n+1}(x)$ et $\Gamma_n(x+1)$.
 - (b) Soit $x \in]0,1[$. Justifier que la suite $(\Gamma_n(x))_{n \in \mathbb{N}^*}$ est convergente.

Ce qui précède permet de donner un sens à la définition suivante :

$$\forall x \in]0, +\infty[\quad \Gamma(x) = \lim_{n \to +\infty} \Gamma_n(x).$$

- 4. (a) Que vaut $\Gamma(1)$?
 - (b) Démontrer que

$$\forall x \in]0, +\infty[\Gamma(x+1) = x\Gamma(x).$$

(c) Donner la valeur de $\Gamma(n)$ pour tout entier $n \in \mathbb{N}^*$.

Partie C. Intermède : deux petits résultats de convexité.

Soit I un intervalle.

1. Soit $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions définies sur I et f sa limite, au sens où

$$\forall x \in I \quad f_n(x) \xrightarrow[n \to +\infty]{} f(x).$$

Supposons que pour tout $n \in \mathbb{N}^*$, la fonction f_n est convexe sur I. Démontrer que f est convexe sur I.

2. Soit g une fonction deux fois dérivable sur I et strictement positive sur I. Montrer que si $\ln \circ g$ est convexe, alors g est convexe.

Partie D. Convexité et log-convexité de Γ .

1. (a) Soit $n \in \mathbb{N}^*$.

Prouver que $\ln \circ \Gamma_n$ est convexe sur $]0, +\infty[$. En déduire que Γ_n est convexe sur $]0, +\infty[$.

- (b) Démontrer que $\ln \circ \Gamma$ et Γ sont convexes sur $]0, +\infty[$. On justifiera que Γ est strictement positive sur $]0, +\infty[$.
- 2. Soit Υ une fonction strictement positive sur $]0, +\infty[$ et telle que
 - $-- \Upsilon(1) = 1$;
 - $-- \forall x \in]0, +\infty[\Upsilon(x+1) = x\Upsilon(x);$
 - $\ln \circ \Upsilon$ est convexe.

On va démontrer que nécessairement, $\Upsilon = \Gamma$. On notera $\psi = \ln \circ \Upsilon$.

(a) Soit $x \in]0,1]$ et $n \in \mathbb{N}^*$. Que vaut $\psi(n)$? Démontrer l'égalité

$$\psi(x) - \ln(\Gamma_n(x)) = \psi(n+1+x) - \psi(n+1) - x \ln(n).$$

puis établir l'inégalité

$$\psi(n+1) - \psi(n) \le \frac{\psi(n+1+x) - \psi(n+1)}{x} \le \psi(n+2) - \psi(n+1).$$

(b) Conclure.

Quelques éléments sur la fonction Γ .

En seconde année, on définira la fonction Γ comme une intégrale « à paramètre » :

$$\forall x \in]0, +\infty[\quad \Gamma(x) = \int_0^{+\infty} e^{-u} u^{x-1} dx.$$

Il s'agira d'abord de donner un sens à cet écriture. Premier problème : la borne infinie bien sûr. Un autre pourrait passer inaperçu : pour x < 1, la fonction $u \mapsto e^{-u}u^{x-1}$ n'est pas prolongeable par continuité en 0. C'est ce qui explique que dans ce problème, la fonction F_n n'est définie que sur $[1, +\infty[$.

On a prouvé que Γ était convexe sur \mathbb{R}_+^* . Cette convexité sur un intervalle ouvert implique (exercice pas si facile) que cette fonction est continue sur $]0, +\infty[$. En fait, Γ est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* mais pour le prouver, il faudra recourir aux théorème de dérivation d'une intégrale à paramètre (spé). Les variations de Γ sont inaccessibles pour le moment.

La fonction Γ , on l'a vu, vérifie la relation

$$\forall x \in]0, +\infty[\Gamma(x+1) = x\Gamma(x),$$

ce qui implique notamment que pour tout $n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$.

Ainsi, la fonction Γ est une fonction continue sur \mathbb{R}_+^* qui prolonge la factorielle (translatée). On peut imaginer tout un tas de fonctions continues qui font cela mais nous avons prouvé en partie D que Γ est l'unique fonction « log-convexe » qui satisfait la relation donnée plus haut et d'image 1 en 1. Ce résultat est connu sous le nom de théorème de Bohr-Mollerup.

Il y aurait bien des choses à dire sur la fonction Γ mais la page est bientôt terminée. On donne les deux belles valeurs ci-dessous :

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
 et $\Gamma'(1) = -\gamma$, $(\gamma \text{ constante d'Euler})$.