EEA/S3 2021/2022

TD: Electronique Analogique I

Exercice 1:

On considère le schéma suivant, déterminez la tension V et le courant I_T.

Exercice 2:

Calculez le courant traversant la résistance de $1k\Omega$ dans les 4 cas suivants:

Exercice 3:

Calculer la tension V_S aux bornes de la résistance R_L dans les deux cas suivants:

- E1=6 V et E2=5 V.
- E1=12 V et E2=8 V.

On donne: R1=R2=RL=1 $k\Omega$.

Exercice 4:

La source de tension est sinusoïdale de la forme : Ve(t) = VM sin ωt . Les diodes possèdent une tension de seuil V_d et une résistance dynamique r_d .

Déterminez la tension de sortie et tracez la caractéristique de transfert vs=f(ve)

١

Exercice 5:

Pour les deux circuits suivants :

- 1- Donner l'état de chaque diode (bloquée ou passante), toutes les diodes sont idéales.
- 2- Calculer le courant qui circule dans D_1 et celui qui circule dans D_2

Exercice 6:

La tension seuil des diodes est 0.6v. Leur résistance dynamique est considérée nulle.

On donne E1= 25V, E2=10V, E3=15V, E=10V et R= 20Ω .

Donner l'état de chaque diode (bloquée ou passante) avec une justification.

Exercice 7:

Sachant que $R1 = R2 = 1k\Omega$ et $R3 = 2k\Omega$, calculez le courant qui traverse la diode.

۲

Exercice 8:

Trouver les valeurs de V et de I dans le circuit suivant. Utiliser la méthode hypothèse vérification et supposer que les diodes sont idéales.

Données : $R1 = 1 \text{ k}\Omega$, $R2 = 2.5 \text{ k}\Omega$ et $R3 = 2 \text{ k}\Omega$

Exercice 9:

Trouver les valeurs de I et V pour les circuits de la figure suivante en supposant que la diode est idéale?

Exercice 10:

Trouver les valeurs de I et V pour les circuits de la figure suivante en supposant que la diode est idéale?

Exercice 11:

Trouver les valeurs de I et V pour les circuits de la figure suivante en supposant que la diode est idéale. Pour la figure 21.b considérons vin= 0,2,6, et 10v.

Exercice 12:

Supposons que nous ayons approximé un caractéristique voltampère non linéaire par les segments de ligne droite illustrés à la figure suivante. Trouvez le circuit équivalent pour chaque segment. Utilisez ces circuits équivalents pour trouver V dans les circuits illustrés à la fig. a et b.

