МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

Кафедра теоретической ядерной физики

На правах рукописи Широков Денис Дмитриевич

«Численное решение уравнения теплопроводности с использованием локально-адаптивных сеток»

Выпускная квалификационная работа бакалавра Направление подготовки 03.03.01 Прикладные математика и физика

Выпускная квалификационная
работа защищена
«»2021 г.
Оценка
Cornegan, PDV Konveen & A
Секретарь ГЭК Корнеев Ф.А.
к.фм.н., доцент

Москва

23 мая 2022 г.

Пояснительная записка

к бакалаврской дипломной работе: «ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ С ИСПОЛЬЗОВАНИЕМ ЛОКАЛЬНО-АДАПТИВНЫХ СЕТОК»

Студент	 . Широков Д.Д.
Научный руководитель к.фм.н.	 . Кучугов П.А.
Рецензент к.фм.н.	. Корнеев Ф.А.
Зам. зав. кафедрой к.фм.н.	 . Муравьев С.Е.

Аннотация

Здесь будет аннотация

Содержание

1	 Введение Основные понятия теории разностных схем 			
2				
3	Pas	ностні	ые схемы на статических сетках	9
	3.1	Избра	нные разностные схемы для уравнения теплопроводности	10
		3.1.1	Явная схема	10
		3.1.2	Однопараметрическое семейство неявных схем	12
		3.1.3	Локально-одномерные схемы	15
	3.2	Прогр	аммный код, примеры расчётов	16
4	4 Теория блочных локально-адаптивных сеток			
5	б Замечания о программной реализации			
6	Основные результаты			
7	Приложения к физике, реальные задачи			
8	Зак	лючен	ие	16
\mathbf{C}_{1}	писо	к лите	ратуры	18

1 Введение

Большинство моделей классической физики, таких как гидрогазодинамика, описываются начально-краевыми задачами для дифференциальных уравнений в частных производных второго порядка[1; 2]. Нахождение аналитического решения таких задач представляется возможным только в случае простых, канонических областей (таких как круг, шар, прямоугольник), простых начальных и граничных условиях, а также в случае линейных уравнений, описывающих простые физические процессы.

На практике же часто возникают нелинейные задачи, поставленные в областях сложной формы. Например, задача лазерного термоядерного синтеза (ЛТС), идя которой заключается в быстром нагреве и сжатии термоядерного топлива до температур и плотностей, необходимых для осуществления быстрого и эффективного протекания термоядерных реакций инерциально удерживаемой плазмы. Процессы распространения тепла в такой системе будут описываться нелинейным уравнением теплопроводности. Нелинейное уравнение теплопроводности также возникает в, например, задачах о самофокусировки световых пучков в нелинейных средах, эффекте T—слоя в низкотемпературной плазме, проблемы безударного сжатия; вообще с необходимостью в любой задаче, в которой присутствует процессы самопроизвольного нарушения симметрии с понижением её степени [3]

Любой численный метод приближённого решения таких задач использует дискретизацию (то есть переход от бесконечномерного функционального пространства к конечномерному пространству). Один из основных методов — метод конечных разностей. Его основа заключается в том, что исходная непрерывная задача в области $G \subset \mathbb{R}^n$ сводится к семейству разностных задач — системам конечного числа линейных (в общем случае — нелинейных) уравнений на т.н. разностные функции — функции, заданные на конечном числе точек (именуемых сетками), и принимающие значения (приближённые значения решения) на конечном числе точек. Такие задачи решаются алгоритмически и тем самым могут быть программно реализованы на современных ЭВМ. Более подробно метод описан в разделе 2.

Принципиальная возможность применения тех или иных алгоритмов основывается на вопросе об их сходимости, точности и устойчивости. Так, в работе [4] даётся обширное описание алгоритмов решения задач на *cmamu*-

ческих сетках, исследуются вопросы устойчивости и скорости сходимости. Более подробное исследование тех же вопросов в случае неравномерных статических сеток дан в работе [5].

Как уже отмечалось, в прикладных задачах приходится сталкиваться с квазилинейными уравнениями теплопроводности:

$$\frac{\partial u}{\partial t} = \sum_{\alpha=1}^{p} \frac{\partial}{\partial x_{\alpha}} \left[k_{\alpha}(u) \frac{\partial u}{\partial x_{\alpha}} \right]$$

Проблема использования cmamuчeckux сеток, то есть сеток, не меняющихся на протяжении всего алгоритмического процесса поиска решения, связана со следующим обстоятельством. В статьях [6; 7] показано, что одномерное уравнение теплопроводности в случае зависящего от температуры коэффициента теплопроводности имеет решения, производные которых разрывны в точках обращения в нуль решения u(x,t), при этом поток тепла $k(u)\frac{\partial u}{\partial x}$ — непрерывен, то есть существует фронт температуры, который, как показано в [8], распространяется с конечной скоростью. Эти "проблемные точки решения" оказываются сильно локализованными: если для численного решения использовать достаточно грубые сетки, то основные ошибки в приближённом решении будут локализованны именно в окрестностях этих точек. Конечно, можно использовать более мелкий шаг сетки и улучшить точность решения, ибо, как предсказывает теория [4], приближённое решение должно схоидтся к точному при стремлении шага сетки к нулю.

Однако даже на мощных вычислитльных системах расчёт сложных трёхмерных задач со сложной пространственной геометрией требует огромного числа точек сетки, что значительно увеличивает используемую память и расчётное время [9]. Более того, точность решения в области особенностей существенно влияет на точность решения во всей остальной области. Поэтому хотя бы для получения приемлемой кратины решения в целом на всей области без точного учёта особенностей неизбежно приходится сильно измельчать сетку. Учитывая, что в подобластях гладкого поведения решения просто нет необходимости измельчать сетку настолько сильно, заключаем, что использование классических алгоритмов приводит к тому, что большая часть компьютерных вычислений производится напрасно.

Поэтому для данного класса гидродинамических проблем с локализован-

ными особенностями разрабатывались специальные методы локально-адаптивных сеток (Adaptive mesh refinement), учитывающие разномасштабное поведение решения. Например, в работе [10] предлагалось использовать адаптивную сетку, построение которой производится с помощью соответствующего преобразования координат. Конкретный вид преобразования задаётся с помощью некоторой функции Q, вид которой определяется особенностями решения исследуемой задачи. Т.к. вид функции Q выбирался вручную в завимимости от конкретной задачи, этот метод не обладал достаточной автономностью. Многие методы были основаны на геометрической адаптации рассчётных сеток, что, в свою очередь, приводит к трудностям реализации на ЭВМ, поскольку неструктурированные сетки порождают нерегулярный доступ к памяти. С учётом современного развития массивно-параллельных архитектур процессоров с большим числом ядер, эффективность работы которых зависит в первую очередь от упорядоченности обращений в память, производительность методов с неструктурированными сетками оказывается неудовлетворительной.

Метод структурированных адаптивных сеток (Block-structured adaptive mesh refinement) был представлен в работах [11; 12] применительно к уравнениям гиперболического типа. Преимущества метода в:

- использовании простых прямоугольных областей определённого размещения, удобных для реализации на компьютере
- возможности использования архитектуры параллельных вычислений
- использовании точно таких же разностных схем, как и для статических декартовых сеток (с некоторыми алгоритмическими модификациями)

Целью данной работы является изучение метода стрктурированных декартовых локально-адаптивных сеток применительно к задачам для уравнения теплопроводности, программная реализация данного метода, сравнение со статическими аналогами.

В разделе 2 вводятся основные математические формулировки разностных задач. В разделе 3 описываются алгоритмы решения задач на статических сетках (которые в последствии непосредственно используются при решении методом адаптивных сеток), приводятся примеры решения модельных

задач. В разделе 4 приводится описание метода, программной реализации и результатов решения модельных задач.

2 Основные понятия теории разностных схем

Математическая формулировка физических задач, описанных во введении имеет вид:

$$\begin{cases} L[u](x) = f(x), & x = (x_1, \dots, x_n)^T \in G \subset \mathbb{R}^n \\ \Gamma[u](x) = \mu(x), & x \in \partial G \end{cases}, \tag{1}$$

где

- ullet L дифференциальный оператор уравнения;
- Γ оператор начально-краевых условий (в общем случае также дифференциальный);
- f, μ заданные функции.

Решения исходной задачи — функции u(x) непрерывного аргумента $x \in G$, являются элементами некоторого функционального пространства H_0 с нормой $\|\cdot\|$. В методе конечных разностей область G заменяется на некоторое дискретное множество точек ω_h , именуемое $cem\kappa o \ddot{u}$, а функциональное пространство H_0 заменяется на H_h — гильбертово пространство сеточных функций $y_h: G \supset \omega_h \to \mathbb{R}$, где h — некоторый параметр, характеризующий сетку ω_h в области G. Например, равномерная статическая сетка:

$$\omega_h = \{x = (x_1, \dots, x_n) \in G \mid x_i = h_i \cdot k, \ k = 0, 1, \dots, N_i \ i = 1, \dots, n\}$$

Получив приближённое решение задачи y_h , необходимо оценивать степень "близости" к решению исходной задачи u(x). y_h и u являются элементами разных функциональных пространств, поэтому для оценивания близости в работе используется проекционный метод: пространство H_0 отображается (проектируется) на пространство H_h оператором \mathcal{P} :

$$\mathcal{P}_h \colon H_0 \ni u \mapsto u_h \in H_h.$$

Простейший выбор: ограничение u на сетку ω_h :

$$u_h(x) := u(x), \quad x \in \omega_h \subset G$$

Иногда пользуются "более равномерным" способом ограничения с усреднением по окрестности узла:

$$u_h(x) := \frac{1}{2h} \int_{x-h}^{x+h} u(x')dx'$$

Тогда близость приближённого решения y_h и исходного решения u оценивается по норме $\|\cdot\|_h$ пространства H_h :

$$e = ||y_h - u_h||_h,$$

при этом требуется, чтобы она аппроксимировала норму $\|\cdot\|_0$ в слудеющем смысле[4]:

$$\lim_{h \to 0} ||u_h||_h = ||u||_0$$

В работе используется норма $||y||_h = \sqrt{\sum_{i=1}^N h y_i^2}$. Исходному дифференциальному оператору L ставится в соответствие разностный оператор L_h :

$$L_h[v](x) = \sum_{x' \in T(x)} A_h(x, x') v(x'),$$

где T(x) — некоторое множество узлов сетки, называемое *шаблоном*. Например, двумерный оператор Лапласа $L=\Delta$ на двумерной равномерной сетке можно аппроксимировать, используя шаблон "крест" (см. рис. 1):

$$\Delta u(x) = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} \mapsto \frac{u_{i+1}^j - 2u_i^j + u_{i-1}^j}{h_1^2} + \frac{u_i^{j+1} - 2u_i^j + u_i^{j-1}}{h_2^2},$$

где $u_i^j = u(x_{1i}, x_{2j}), \quad (x_{1i}, x_{2j}) \in \omega_h$. Погрешность аппроксимации оператора L разностным оператором L_h определяется как сеточная функция $\psi_h = L_h[u_h] - (L[u])_h, u \in H_0$. Если $\|\psi_h\| = O(|h|^m)$, то говорят, что оператор L_h аппроксимирует оператор L с порядком m. Если $\psi(x) = O(h^m), m$, то говорят, что оператор L_h аппроксимирует оператор L в точке x с порядком m.

Теперь сформулируем непосредственно то, что называется разностной

Рис. 1: Шаблон "Крест"

cxemoй, алгоритмы решения которой и реализуются на компьютере. Исходной задаче (1) ставится в соответствие семейство разностных задач, зависящих от параметра h, называемое разностной схемой:

$$\left\{ \begin{cases}
L_h[y_h] = \varphi_h, & x \in \omega_h \\
l_h[y_h] = \chi_h, & x \in \gamma_h
\end{cases} , \quad \varphi_h = \mathcal{P}_h[f], \chi_h = \mathcal{P}_h[\mu]$$

Под погрешностью разностной схемы понимается $z_h = y_h - u_h$, где $u_h = \mathcal{P}_h u$ — проекция решения исходной задачи на H_0 . Решения разностной задачи сходится к решению исходной задачи, если

$$||z_h||_h \to 0$$
 при $|h| \to 0$

Введём также понятие устойчивости схемы. Разностная схема называется устойчивой (корректной, сходящейся), если $\exists h_0 > 0 : \forall h(|h| \leqslant h_0) \Rightarrow$

$$1. \forall \varphi \in H_h \quad \exists ! y_h$$
— решение;
$$2. \exists M > 0: \forall \varphi_h, \tilde{\varphi}_h \|y_h - \tilde{y}_h\| \leqslant M \|\varphi_h - \tilde{\varphi}_h\|$$

На этом только лишь математическая сторона вопроса формулирования проблемы завершена. Дальнейшие шаги по исследованию разностной схемы опираются на конкретный выбор множества сеток $\{\omega_h\}$ и аппроксимирующего оператора L_h , выбор которого, в свою очередь, существенно зависит от некоторых вопросов реализации получаемого алгоритма на компьютере.

3 Разностные схемы на статических сетках

Основное преимущество статических равномерных сеток —

- относительно простая реализация в виде программного кода¹;
- удобное и простое представление данных в программе. Так, например, рассматривая задачу для двумерного нестационарного уравнения теплопроводности, результаты вычислений программы могут хранится в трёхмерном массиве (в отличие от алгоритмов на нестатических и неравномерных сетках, где используются более сложные структуры, см. подробнее в разд. 4);
- существенное упрощение формул и доказательств сходимости, устойчивости получающихся разностных схем.

Всюду далее под равномерной статической сеткой будем понимать:

$$\omega_{h\tau} := \{ (x_{ik} = k \cdot h_i, t_j = j \cdot \tau) \mid i = 1, \dots, n; k = 1, \dots, N_i \}$$

Как указывалось выше, свойства разностной схемы зависят и от выбора аппроксимирующего оператора L_h . В [4] исследуется множество различных схем. Далее приводятся избранные схемы, каждая из которых обладает отличительной особенностью, для задачи Дирихле для линейного:

$$\begin{cases} u_t = \Delta u + f, & (x,t) \in G \times (0,T) \\ u(x,t) = \mu_{-i}(x,t), & x_i = 0 \\ u(x,t) = \mu_i(x,t), & x_i = L_i \end{cases}, \quad t \in [0,T)$$
 и (x,0) = $u_0(x)$, $x \in \bar{G}$

 $^{^{1}}$ Так, например, реализация явной схемы может занимать не более 10 строк кода (подробнее см. раздел 3.2)

Рис. 2: Пятиточечный шаблон явной схемы

и квазилинейного уравнений теплопроводности:

$$\begin{cases} u_t = \sum_{\alpha=1}^p \frac{\partial}{\partial x_\alpha} \left[k_\alpha(u) \frac{\partial u}{\partial x_\alpha} \right] + f, & (x,t) \in G \times (0,T) \\ u(x,t) = \mu_{-i}(x,t), & x_i = 0 \\ u(x,t) = \mu_i(x,t), & x_i = L_i \end{cases} \quad t \in [0,T) \\ u(x,0) = u_0(x), & x \in \bar{G} \end{cases}$$
 где $\bar{G} = \prod_{i=1}^n [0,L_i].$

3.1 Избранные разностные схемы для уравнения теплопроводности

3.1.1 Явная схема

Шаблон явной схемы нагляден в одномерном случае (см. рис. 2). Множество $\{(x,t)\in\omega_h\mid t=t_j\}$ будем называть j-ым временным слоем. Оператор $\frac{\partial u}{\partial t}$ аппроксимируется, используя значения функции на (j+1)-ом временном слое и j-ом временном слое, а оператор Лапласа аппроксимируется, используя значения только на j-ом временном слое:

$$L = \frac{\partial u}{\partial t} - \Delta u \mapsto L_{h\tau} = \frac{u_i^{j+1} - u_i^j}{\tau} - \frac{u_{i+1}^j - 2u_i^j + u_i^j}{h^2} + \varphi_i^j, \quad \varphi_i^j = f(x_i, t_j)$$

В многомерном случае:

$$L\mapsto rac{u_i^{j+1}-u_i^j}{ au}+\sum_{k=1}^nrac{u_{i+}^j-2u_i^j+u_{i-}^j}{h_k^2}+arphi_i^j,$$
 где $i_\pm=(i_1,\ldots,i_{k-1},i_k\pm1,i_{k+1},\ldots,i_n)$

Такой "запаздывающий" выбор шаблона позволяет явно выразить значения функции на (j+1)—ом временном слое через значения на j—ом временном слое:

$$u_i^{j+1} = u_i^j + \tau \sum_{k=1}^n \frac{u_{i+}^j - 2u_i^j + u_{i-}^j}{h_k^2} + \varphi_i^j$$
 (2)

(отсюда и название схемы). Значения функции на 1-ом временном слое следуют из начальных условий: $u_i^1 = u_0(x_i)$, а граничные услвоия дают замкнутую систему уравнений:

$$\begin{cases} u_i^j = u_i^j + \tau \sum_{k=1}^n \frac{u_{i+}^j - 2u_i^j + u_{i-}^j}{h_k^2} + \varphi_i^j, & i_k = 2, \dots, N_k - 1 \\ u_i^1 = u_0(x_i), & i_k = 1, \dots, N_k \\ u_{i_k}^j = \mu_{-\alpha}(x_i, t_j), & i_{k \neq \alpha} = 1, \dots, N_k; \ i_{\alpha} = 0 \\ u_{i_k}^j = \mu_{+\alpha}(x_i, t_j), & i_{k \neq \alpha} = 1, \dots, N_k; \ i_{\alpha} = N_{\alpha} \end{cases}$$

Одно из преимуществ такой схемы — простота программной реализации. Так, задав начальные условия на 1-ом временном слое и граничные значения на всех последующих j>1, явно считаются значения на всех последующих слоях. В приложении (бла-бла-бла) представлен код и описание программы, реализующей явную разностную схему для одномерного уравнения теплопроводности. Другое преимущество схемы — скорость счёта. Число арифметических операций, необходимых для расчёта значений функции на одном временном слое порядка $O(N_x)$, где N_x — число точек по оси x (в многомерном случае — $O(\prod N_\alpha)$). Ещё одно преимущество схемы — возможность параллельного счёта. Из формулы (2) видно, что расчёт значений u_i^{j+1} не зависит от i: зависимость от i присутствует в правой части, но эти значения в j-ый момент времени уже предполагаются известными, поэтому значения на новом временном слое u_i^{j+1} и u_k^{j+1} для разных i и k могут считаться независимо друг от друга.

Рис. 3: Шеститочечный шаблон явной схемы

Схема обладает лишь первым порядком сходимости: $O(h+\tau)$, что заставляет использовать достаточно мелкую сетку. Более того, схема имеет существенный недостаток — она устойчива и сходится к решению лишь при условии $\tau \leqslant \frac{h^2}{2n}$.

Как показано в [4], в случае квазилинейных уравнений условие устойчивости приобретает вид:

$$\tau \leqslant \frac{h^2}{2 \cdot \max k(u)}$$

Откуда видно, что если k(u) является быстроменяющейся функцией (например $k \sim u^{\sigma}$), то использование явных схем нецелесообразно, поскольку требуется очень мелкий шаг τ по времени. Поэтому для квазилинейных уравнений теплопроводности применяются преимущественно неявные схемы.

3.1.2 Однопараметрическое семейство неявных схем

Идея неявных схем заключается в использовании шаблона, затрагивающего как значения функции на j-ом временном слое (который предполагается уже известным), так и на последующих слоях (значения функции на которых ещё не известны). Так, однопараметрическое семейство неявных схем, зависящих от параметра $\sigma \in (0,1]$ получается при аппроксимации дифференциального оператор на шеститочечном шаблоне (см. рис. 3), причём значения на "верхнем"и "нижнем"временных слоях берутся с весами σ и $1-\sigma$ соответственно. Так, аппроксимация дифференциального оператора для одномерного уравнения с постоянными коэффициентами выглядит следующим

образом:

$$L = \frac{\partial u}{\partial t} - \Delta u \mapsto L_{h\tau} =$$

$$= \frac{u_i^{j+1} - u_i^j}{\tau} - \sigma \frac{u_{i+1}^{j+1} - 2u_i^{j+1} + u_i^{j+1}}{h^2} - (1 - \sigma) \frac{u_{i+1}^j - 2u_i^j + u_i^j}{h^2} + \varphi_i^j,$$

$$\varphi_i^{j+1} = f(x_i, t_{j+1})$$

В многомерном случае можно задавать целый вектор $\sigma = (\sigma_1 \dots \sigma_n)$:

$$L \mapsto \frac{u_i^{j+1} - u_i^j}{\tau} + \\ + \sum_{k=1}^n \left[\sigma_k \frac{u_{i+}^{j+1} - 2u_i^{j+1} + u_{i-}^{j+1}}{h_k^2} + (1 - \sigma_k) \frac{u_{i+}^j - 2u_i^j + u_{i-}^j}{h_k^2} \right] + \\ + \varphi_i^j, \text{ где}$$
$$i_{\pm} = (i_1, \dots, i_{k-1}, i_k \pm 1, i_{k+1}, \dots, i_n)$$

Аналогично явной схеме, добавляя граничные и начальные условия, получаем замкнутую систему линейных уравнений. Однако, в отличие от явной схемы, значения на новом временном слое u^{j+1} не выражаются явно через значения на предыдущем временном слое u^j , а получаются путём решения соответствующей системы линейных алгебраических уравнений $Mu^{j+1} = D$. В одномерном случае матрица системы получается $mp\ddot{e}x\partial uaronaльно\ddot{u}$:

$$M = \begin{pmatrix} B_1 & C_1 & 0 & 0 & 0 & 0 & 0 \\ A_2 & B_2 & C_2 & 0 & 0 & 0 & 0 \\ 0 & A_3 & B_3 & C_3 & 0 & 0 & 0 \\ 0 & 0 & A_4 & B_4 & C_4 & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & A_{n-1} & B_{n-1} & C_{n-1} \\ 0 & 0 & 0 & 0 & 0 & A_n & B_n \end{pmatrix},$$

где

$$A_i = -\sigma\tau$$

$$B_i = h^2 + 2\sigma\tau$$

$$C_i = -\sigma\tau$$

$$D_i = h^2 u_i^j + \tau (1 - \sigma) \left(u_{i-1}^j - 2u_i^j + u_{i+1}^j \right) + \tau h^2 \varphi_i^{j+1}$$

В таком случае существует эффективный алгоритм расчёта, именуемый *методом прогонки*: Сначала определяем α и β :

$$\begin{cases} \alpha_1 = -\frac{C_1}{B_1}, \\ \beta_1 = \frac{D_1}{B_1}, \\ \alpha_i = -\frac{C_i}{B_i + A_i \cdot \alpha_{i-1}}, \quad i = 2, \dots, n-1 \\ \beta_i = \frac{D_i - A_i \cdot \beta_{i-1}}{B_i + A_i \cdot \alpha_{i-1}} \\ \beta_n = \frac{D_n - A_n \cdot \beta_{n-1}}{B_n + A_n \cdot \alpha_{n-1}} \end{cases}$$

Затем по ним определяем неизвестные:

$$\begin{cases} x_n = \beta_n, \\ x_i = \alpha_i \cdot x_{i+1} + \beta_i, & i = n - 1, \dots, 1 \end{cases}$$

Сложность такого алгоритма $O(N_x)$, что не уступает явной схеме. Преимущества же неявной схемы в том, что для неё условия устойчивости принимает вид

$$\sigma \geqslant \frac{1}{2} - \frac{h^2}{4\tau}.$$

Из этого условия видно, что при $\sigma \geqslant 0.5$ схема безусловно устойчива, то есть устойчива вне зависимости от выбора шагов h и τ .

При значениях $\sigma \neq 0.5$ схема имеет порядок точности $O(h^2+\tau)$, а при $\sigma = 0.5$ (так называемая *схема Кранка-Николсона*) $O(h^2+\tau^2)$, то есть больший, явная схема.

Недостатком такой схемы является отсутствие возможности распараллеливания.

В случае многомерной задачи дело обстоит хуже. Получаемые системы линейных уравнений имеют более сложную матрицу (не трёхдиагональную). Для их решения пользуются в общем случае методом последовательного исключения переменных (методом Гаусса), который работает за $O(N^3)$, где $N \times N$ — размерность матрицы. Так, уже в двумерной задаче матрица будет размера $N_x N_y \times N_x N_y$, и расчёт будет проводиться заметно дольше, чем при расчёте явной схемой ($\sim O(N^2)$).

3.1.3 Локально-одномерные схемы

Итак, явные схемы обладают быстрой скоростью счёта ($\sim O(N^n)$), в то время как устойчивость таких систем достигается лишь при определённом выборе параметров сетки. Неявные схемы безусловно устойчивы и имеют больший порядок точности, однако требуют решения системы N^n уравнений, для чего требуется значительно больше вычислительной работы, чем для явной схемы [1].

Для сочетания лучших качеств явных (объём работы $\sim O(N^n)$) и неявных (безусловная устойчивость) схем было предложено несколько *экономичных* схем. Подбробнее об этом написано в [4; 13—17].

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

Итак, рассматриваемую многомерную задачу Дирихле в цилиндре $\bar{Q}_T = \bar{G} \times [0,T], \ \bar{G} = \prod_{i=1}^n [0,L_i]$

$$\begin{cases} u_t = \sum_{\alpha=1}^p \frac{\partial}{\partial x_\alpha} \left[k_\alpha(u) \frac{\partial u}{\partial x_\alpha} \right] + f, & (x,t) \in G \times (0,T] \\ u(x,t) = \mu_{-i}(x,t), & x_i = 0 \\ u(x,t) = \mu_i(x,t), & x_i = L_i, \\ u(x,0) = u_0(x), & x \in \bar{G} \end{cases}$$

заменяем цепочкой одномерных задач "вдоль каждого из напарвлений":

$$\begin{cases} \frac{1}{p} \frac{\partial v_{(\alpha)}}{\partial t} = \frac{\partial}{\partial x_{\alpha}} \left[k_{\alpha}(v_{(\alpha)}) \frac{\partial v_{(\alpha)}}{\partial x_{\alpha}} \right] + f_{\alpha}, & x \in G, t \in \Delta_{\alpha} = \left(t_{j + \frac{\alpha - 1}{p}}, t_{j + \frac{\alpha}{p}} \right) \\ v_{(\alpha)}(x, t_{j + \frac{\alpha - 1}{p}}) = v_{(\alpha - 1)}(x, t_{j + \frac{\alpha - 1}{p}}), & x \in G \\ v_{(\alpha)}(x, t) = \mu_{-\alpha}(x, t), & x_{\alpha} = 0, t \in [t_{j + \frac{\alpha - 1}{p}}, t_{j + \frac{\alpha}{p}}] \\ v_{(\alpha)}(x, t) = \mu_{\alpha}(x, t), & x_{\alpha} = L_{\alpha}, t \in [t_{j + \frac{\alpha - 1}{p}}, t_{j + \frac{\alpha}{p}}] \end{cases}$$

$$v_{(\alpha)}(x,0) = u_0(x)$$

$$v_{(1)}(x,t_j) = v_{(p)}(x,t_j)$$

$$u(x,t_{j+1}) = v_{(p)}(x,t_{j+1}).$$

Каждая из одномерных задач решается неявной двухслойной шеститочечной схемой с весом σ_{α} . Пускай область G дискретизуется сеткой ω_h , имеющий вдоль каждого направления N точек. Для каждого значения $\alpha=1,\ldots,p$ получается N^{p-1} задач. Каждая из них решается (методом прогодки как неявная одномерная схема) за $\sim O(N)$. Таким образом,

- 3.2 Программный код, примеры расчётов
- 4 Теория блочных локально-адаптивных сеток
- 5 Замечания о программной реализации
- 6 Основные результаты
- 7 Приложения к физике, реальные задачи
- 8 Заключение

Список литературы

- 1. Тихонов A., Самарский A. Уравнения математической физики.—изд. 8-е, стереотипное. 2007.
- 2. Ландау Л., Лифшиц Е. Теоретическая физика: гидродинамика. 5-е изд., стереот // М.: Физмат-лит. 2001. Т. 5. С. 736.
- Квазилинейное уравнение теплопроводности с источником: обострение, локализация, симметрия, точные решения, асимптотики, структуры / В. А. Галактионов [и др.] // Итоги науки и техники. Серия «Современные проблемы математики. Новейшие достижения». 1986. Т. 28, № 0. С. 95—205.
- 4. *Самарский А. А.* Теория разностных схем. "Наука,"Глав. ред. физикоматематической лит-ры, 1989.
- 5. Самарский А. А. Локально-одномерные разностные схемы на неравномерных сетках // Журнал вычислительной математики и математической физики. 1963. Т. 3, № 3. С. 431—466.
- 6. Зельдович Я., Компанеец А. К теории распространения тепла при теплопроводности, зависящей от температуры // Сборник, посвященный. $1950.-\mathrm{T.}\ 70.-\mathrm{C.}\ 61-71.$
- 7. $Баренблатт \Gamma$. О некоторых неустановившихся движениях жидкости и газа в пористой среде // Прикл. матем. и мех.—1952.—16. 1952. № 1. С. 67—78.
- 8. *Баренблатт Г.*, *Вишик М.* О конечной скорости распространения в задачах нестационарной фильтрации жидкости и газа // Прикладная математика и механика. 1956. Т. 20, N 3. С. 411—417.
- 9. Метод адаптивных декартовых сеток для решения задач газовой динамики / А. Афендиков [и др.]. "Российская академиня наук", 2017.
- Дарьин Н. А., Мажукин В. И., Самарский А. А. Конечно-разностный метод решения уравнений газовой динамики с использованием адаптивных сеток, динамически связанных с решением // Журнал вычислительной математики и математической физики. 1988. Т. 28, № 8. С. 1210—1225.

- Berger M. Adaptive mesh refinement for hyperbolic partial differential equations[P D. Thesis]. — 1982.
- 12. Berger M. J., Colella P. Local adaptive mesh refinement for shock hydrodynamics Journal of computational Physics. 1989. T. 82, № 1. C. 64—84.
- 13. Peaceman D. W., Rachford Jr H. H. The numerical solution of parabolic and elliptic differential equations // Journal of the Society for industrial and Applied Mathematics. -1955. T. 3, N 1. C. 28-41.
- 14. Douglas Jr J. On the Numerical Integration of $u_{xx} + u_{yy} = u_t$ by Implicit Methods // Journal of the society for industrial and applied mathematics. 1955. T. 3, $N_2 1. C. 42-65$.
- 15. *Яненко Н.* Об одном разностном методе счета многомерного уравнения теплопроводности // Докл. АН СССР. Т. 125. 1959. С. 1207.
- 16. Дъяконов Е. Г. Разностные схемы с расщепляющимся оператором для многомерных нестационарных задач // Журнал вычислительной математики и математической физики. 1962. Т. 2, № 4. С. 549—568.
- Самарский А. А. Об одном экономичном разностном методе решения многомерного параболического уравнения в произвольной области // Журнал вычислительной математики и математической физики. 1962. Т. 2, № 5. С. 787—811.