Package 'CondIndTests'

October 12, 2022

Type Package

Title Nonlinear Conditional Independence Tests Version 0.1.5 Date 2019-11-11 Author Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch>, Jonas Peters <jonas.peters@math.ku.dk>, Asbjoern Marco Sinius Munk <fgp998@alumni.ku.dk> **Depends** R (>= 3.1.0) Maintainer Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch> **Description** Code for a variety of nonlinear conditional independence tests: Kernel conditional independence test (Zhang et al., UAI 2011, <arXiv:1202.3775>), Residual Prediction test (based on Shah and Buehlmann, <arXiv:1511.03334>), Invariant environment prediction, Invariant target prediction, Invariant residual distribution test, Invariant conditional quantile prediction (all from Heinze-Deml et al., <arXiv:1706.08576>). License GPL LazyData TRUE Imports methods, randomForest, quantregForest, lawstat, RPtests, caTools, mgcv, MASS, kernlab, pracma, mize ${\bf URL}\ \ {\tt https://github.com/christinaheinze/nonlinearICP-and-CondIndTests}$ BugReports https://github.com/christinaheinze/nonlinearICP-and-CondIndTests/issues RoxygenNote 6.1.1 Suggests testthat NeedsCompilation no Repository CRAN **Date/Publication** 2019-11-12 06:50:21 UTC

2 CondIndTest

R topics documented:

	CondIndTest	2
	fishersTestExceedance	3
	fTestTargetY	
	InvariantConditionalQuantilePrediction	
	InvariantEnvironmentPrediction	
	InvariantResidualDistributionTest	7
	InvariantTargetPrediction	
	KCI	
	ksResidualDistributions	
	leveneAndWilcoxResidualDistributions	
	propTestTargetE	
	ResidualPredictionTest	
	wilcoxTestTargetY	
Index	1	7
Cond	IndTest Wrapper function for conditional independence tests.	_

Description

Tests the null hypothesis that Y and E are independent given X.

Usage

```
CondIndTest(Y, E, X, method = "KCI", alpha = 0.05,
  parsMethod = list(), verbose = FALSE)
```

Arguments

Υ	An n-dimensional vector or a matrix or dataframe with n rows and p columns.
Е	An n-dimensional vector or a matrix or dataframe with n rows and p columns.
Χ	An n-dimensional vector or a matrix or dataframe with n rows and p columns.
method	The conditional indepdence test to use, can be one of "KCI", "InvariantConditionalQuantilePredict "InvariantEnvironmentPrediction", "InvariantResidualDistributionTest", "InvariantTargetPrediction", "ResidualPredictionTest".
alpha	Significance level. Defaults to 0.05.
parsMethod	Named list to pass options to method.
verbose	If TRUE, intermediate output is provided. Defaults to FALSE.

Value

A list with the p-value of the test (pvalue) and possibly additional entries, depending on the output of the chosen conditional independence test in method.

fishersTestExceedance 3

References

Please cite C. Heinze-Deml, J. Peters and N. Meinshausen: "Invariant Causal Prediction for Nonlinear Models", arXiv:1706.08576 and the corresponding reference for the conditional independence test.

Examples

```
# Example 1
set.seed(1)
n <- 100
Z <- rnorm(n)
X < -4 + 2 * Z + rnorm(n)
Y <- 3 * X^2 + Z + rnorm(n)
test1 <- CondIndTest(X,Y,Z, method = "KCI")</pre>
cat("These data come from a distribution, for which {\tt X} and {\tt Y} are NOT
cond. ind. given Z.")
cat(paste("The p-value of the test is: ", test1$pvalue))
# Example 2
set.seed(1)
Z \leftarrow rnorm(n)
X < -4 + 2 * Z + rnorm(n)
Y \leftarrow 3 + Z + rnorm(n)
test2 <- CondIndTest(X,Y,Z, method = "KCI")</pre>
cat("The data come from a distribution, for which X and Y are cond.
ind. given Z.")
cat(paste("The p-value of the test is: ", test2$pvalue))
```

fishersTestExceedance Fishers test to test whether the exceedance of the conditional quantiles is independent of the categorical variable E.

Description

Used as a subroutine in InvariantConditionalQuantilePrediction to test whether the exceedance of the conditional quantiles is independent of the categorical variable E.

Usage

fishersTestExceedance(Y, predicted, E, verbose)

Arguments

Υ	An n-dimensional vector.
predicted	A matrix with n rows. The columns contain predictions for different conditional quantiles of $Y X$.
Е	An n-dimensional vector. E needs to be a factor.
verbose	Set to TRUE if output should be printed.

Value

A list with the p-value for the test.

fTestTargetY

F-test for a nested model comparison.

Description

Used as a subroutine in InvariantTargetPrediction to test whether out-of-sample prediction performance is better when using X and E as predictors for Y, compared to using X only.

Usage

```
fTestTargetY(Y, predictedOnlyX, predictedXE, verbose, ...)
```

Arguments

Y An n-dimensional vector.

 $\begin{array}{ll} \text{predictedOnlyX} & \text{Predictions for Y based on predictors in X only.} \\ \text{predictedXE} & \text{Predictions for Y based on predictors in X and E.} \end{array}$

verbose Set to TRUE if output should be printed.

... The dimensions of X (df) and E (dimE) need to be passed via the ... argument

to allow for coherent interface of fTestTargetY and wilcoxTestTargetY.

Value

A list with the p-value for the test.

Invariant Conditional Quantile Prediction

Invariant conditional quantile prediction.

Description

Tests the null hypothesis that Y and E are independent given X.

Usage

```
InvariantConditionalQuantilePrediction(Y, E, X, alpha = 0.05,
  verbose = FALSE, test = fishersTestExceedance,
  mtry = sqrt(NCOL(X)), ntree = 100, nodesize = 5, maxnodes = NULL,
  quantiles = c(0.1, 0.5, 0.9), returnModel = FALSE)
```

Arguments

Υ	An n-dimensional vector.
Е	An n-dimensional vector. If $test = fishersTestExceedance$, E needs to be a factor.
Χ	A matrix or dataframe with n rows and p columns.
alpha	Significance level. Defaults to 0.05.
verbose	If TRUE, intermediate output is provided. Defaults to FALSE.
test	Unconditional independence test that tests whether exceedence is independent of E. Defaults to fishersTestExceedance.
mtry	Random forest parameter: Number of variables randomly sampled as candidates at each split. Defaults to sqrt(NCOL(X)).
ntree	Random forest parameter: Number of trees to grow. Defaults to 100.
nodesize	Random forest parameter: Minimum size of terminal nodes. Defaults to 5.
maxnodes	Random forest parameter: Maximum number of terminal nodes trees in the forest can have. Defaults to NULL.
quantiles	Quantiles for which to test independence between exceedence and E. Defaults to $c(0.1, 0.5, 0.9)$.
returnModel	If TRUE, the fitted quantile regression forest model will be returned. Defaults to FALSE.

Value

A list with the following entries:

- pvalue The p-value for the null hypothesis that Y and E are independent given X.
- model The fitted quantile regression forest model if returnModel = TRUE.

Examples

```
# Example 1
n <- 1000
E <- rbinom(n, size = 1, prob = 0.2)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * (X)^2 + rnorm(n)
InvariantConditionalQuantilePrediction(Y, as.factor(E), X)

# Example 2
E <- rbinom(n, size = 1, prob = 0.2)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * E + rnorm(n)
InvariantConditionalQuantilePrediction(Y, as.factor(E), X)</pre>
```

InvariantEnvironmentPrediction

Invariant environment prediction.

Description

Tests the null hypothesis that Y and E are independent given X.

Usage

```
InvariantEnvironmentPrediction(Y, E, X, alpha = 0.05, verbose = FALSE,
    trainTestSplitFunc = caTools::sample.split,
    argsTrainTestSplitFunc = list(Y = E, SplitRatio = 0.8),
    test = propTestTargetE, mtry = sqrt(NCOL(X)), ntree = 100,
    nodesize = 5, maxnodes = NULL, permute = TRUE,
    returnModel = FALSE)
```

Arguments

Y An n-dimensional vec	ctor.
------------------------	-------

E An n-dimensional vector. If test = propTestTargetE, E needs to be a factor.

X A matrix or dataframe with n rows and p columns.

alpha Significance level. Defaults to 0.05.

verbose If TRUE, intermediate output is provided. Defaults to FALSE.

trainTestSplitFunc

Function to split sample. Defaults to stratified sampling using caTools::sample.split,

assuming E is a factor.

argsTrainTestSplitFunc

Arguments for sampling splitting function.

test Unconditional independence test that tests whether the out-of-sample prediction

accuracy is the same when using X only vs. X and Y as predictors for E. Defaults

to propTestTargetE.

mtry Random forest parameter: Number of variables randomly sampled as candidates

at each split. Defaults to sqrt(NCOL(X)).

ntree Random forest parameter: Number of trees to grow. Defaults to 100.

nodesize Random forest parameter: Minimum size of terminal nodes. Defaults to 5.

maxnodes Random forest parameter: Maximum number of terminal nodes trees in the for-

est can have. Defaults to NULL.

permute Random forest parameter: If TRUE, model that would use X only for predicting

Y also includes a random permutation of E. Defaults to TRUE.

returnModel If TRUE, the fitted quantile regression forest model will be returned. Defaults to

FALSE.

Value

A list with the following entries:

- pvalue The p-value for the null hypothesis that Y and E are independent given X.
- model The fitted models if returnModel = TRUE.

Examples

```
# Example 1
n <- 1000
E \leftarrow rbinom(n, size = 1, prob = 0.2)
X < -4 + 2 * E + rnorm(n)
Y < -3 * (X)^2 + rnorm(n)
InvariantEnvironmentPrediction(Y, as.factor(E), X)
# Example 2
E \leftarrow rbinom(n, size = 1, prob = 0.2)
X < -4 + 2 * E + rnorm(n)
Y \leftarrow 3 * E + rnorm(n)
InvariantEnvironmentPrediction(Y, as.factor(E), X)
# Example 3
E <- rnorm(n)</pre>
X < -4 + 2 * E + rnorm(n)
Y < -3 * (X)^2 + rnorm(n)
InvariantEnvironmentPrediction(Y, E, X, test = wilcoxTestTargetY)
InvariantEnvironmentPrediction(Y, X, E, test = wilcoxTestTargetY)
```

Invariant Residual Distribution Test

Invariant residual distribution test.

Description

Tests the null hypothesis that Y and E are independent given X.

Usage

```
InvariantResidualDistributionTest(Y, E, X, alpha = 0.05,
  verbose = FALSE, fitWithGam = TRUE,
  test = leveneAndWilcoxResidualDistributions, colNameNoSmooth = NULL,
  mtry = sqrt(NCOL(X)), ntree = 100, nodesize = 5, maxnodes = NULL,
  returnModel = FALSE)
```

Arguments

Υ	An n-dimensional vector.
E	An n-dimensional vector. E needs to be a factor.
Χ	A matrix or dataframe with n rows and p columns.
alpha	Significance level. Defaults to 0.05.
verbose	If TRUE, intermediate output is provided. Defaults to FALSE.
fitWithGam	If TRUE, a GAM is used for the nonlinear regression, else a random forest is used. Defaults to TRUE.
test	Unconditional independence test that tests whether residual distribution is invariant across different levels of E. Defaults to leveneAndWilcoxResidDistributions.
colNameNoSmoot	h
	Gam parameter: Name of variables that should enter linearly into the model. Defaults to NULL.
mtry	Random forest parameter: Number of variables randomly sampled as candidates at each split. Defaults to sqrt(NCOL(X)).
ntree	Random forest parameter: Number of trees to grow. Defaults to 100.
nodesize	Random forest parameter: Minimum size of terminal nodes. Defaults to 5.
maxnodes	Random forest parameter: Maximum number of terminal nodes trees in the forest can have. Defaults to NULL.
returnModel	If TRUE, the fitted quantile regression forest model will be returned. Defaults to

Value

A list with the following entries:

FALSE.

- pvalue The p-value for the null hypothesis that Y and E are independent given X.
- model The fitted model if returnModel = TRUE.

Examples

```
# Example 1
n <- 1000
E <- rbinom(n, size = 1, prob = 0.2)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * (X)^2 + rnorm(n)
InvariantResidualDistributionTest(Y, as.factor(E), X)
InvariantResidualDistributionTest(Y, as.factor(E), X, test = ksResidualDistributions)
# Example 2
E <- rbinom(n, size = 1, prob = 0.2)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * E + rnorm(n)
InvariantResidualDistributionTest(Y, as.factor(E), X)
InvariantResidualDistributionTest(Y, as.factor(E), X, test = ksResidualDistributions)</pre>
```

InvariantTargetPrediction

Invariant target prediction.

Description

Tests the null hypothesis that Y and E are independent given X.

Usage

```
InvariantTargetPrediction(Y, E, X, alpha = 0.05, verbose = FALSE,
  fitWithGam = TRUE, trainTestSplitFunc = caTools::sample.split,
  argsTrainTestSplitFunc = NULL, test = fTestTargetY,
  colNameNoSmooth = NULL, mtry = sqrt(NCOL(X)), ntree = 100,
  nodesize = 5, maxnodes = NULL, permute = TRUE,
  returnModel = FALSE)
```

Arguments

Y An n-dimensional vector.

E An n-dimensional vector or an nxq dimensional matrix or dataframe.

X A matrix or dataframe with n rows and p columns.

alpha Significance level. Defaults to 0.05.

verbose If TRUE, intermediate output is provided. Defaults to FALSE.

fitWithGam If TRUE, a GAM is used for the nonlinear regression, else a random forest is

used. Defaults to TRUE.

trainTestSplitFunc

Function to split sample. Defaults to stratified sampling using caTools::sample.split,

assuming E is a factor.

argsTrainTestSplitFunc

Arguments for sampling splitting function.

test Unconditional independence test that tests whether the out-of-sample prediction

accuracy is the same when using X only vs. X and E as predictors for Y. Defaults

to fTestTargetY.

colNameNoSmooth

Gam parameter: Name of variables that should enter linearly into the model.

Defaults to NULL.

mtry Random forest parameter: Number of variables randomly sampled as candidates

at each split. Defaults to sqrt(NCOL(X)).

ntree Random forest parameter: Number of trees to grow. Defaults to 100.

nodesize Random forest parameter: Minimum size of terminal nodes. Defaults to 5.

maxnodes Random forest parameter: Maximum number of terminal nodes trees in the for-

est can have. Defaults to NULL.

10 KCI

permute Random forest parameter: If TRUE, model that would use X only for predicting

Y also includes a random permutation of E. Defaults to TRUE.

returnModel If TRUE, the fitted quantile regression forest model will be returned. Defaults to

FALSE.

Value

A list with the following entries:

- pvalue The p-value for the null hypothesis that Y and E are independent given X.
- model The fitted models if returnModel = TRUE.

Examples

```
# Example 1
n <- 1000
E \leftarrow rbinom(n, size = 1, prob = 0.2)
X < -4 + 2 * E + rnorm(n)
Y < -3 * (X)^2 + rnorm(n)
InvariantTargetPrediction(Y, as.factor(E), X)
InvariantTargetPrediction(Y, as.factor(E), X, test = wilcoxTestTargetY)
# Example 2
E \leftarrow rbinom(n, size = 1, prob = 0.2)
X < -4 + 2 * E + rnorm(n)
Y \leftarrow 3 * E + rnorm(n)
InvariantTargetPrediction(Y, as.factor(E), X)
InvariantTargetPrediction(Y, as.factor(E), X, test = wilcoxTestTargetY)
# Example 3
E <- rnorm(n)</pre>
X < -4 + 2 * E + rnorm(n)
Y < -3 * (X)^2 + rnorm(n)
InvariantTargetPrediction(Y, E, X)
InvariantTargetPrediction(Y, X, E)
InvariantTargetPrediction(Y, E, X, test = wilcoxTestTargetY)
InvariantTargetPrediction(Y, X, E, test = wilcoxTestTargetY)
```

KCI

Kernel conditional independence test.

Description

Tests the null hypothesis that Y and E are independent given X. The distribution of the test statistic under the null hypothesis equals an infinite weighted sum of chi squared variables. This distribution can either be approximated by a gamma distribution or by a Monte Carlo approach. This version includes an implementation of choosing the hyperparameters by Gaussian Process regression.

KCI 11

Usage

```
KCI(Y, E, X, width = 0, alpha = 0.05, unbiased = FALSE,
  gammaApprox = TRUE, GP = TRUE, nRepBs = 5000, lambda = 0.001,
  thresh = 1e-05, numEig = NROW(Y), verbose = FALSE)
```

Arguments

Υ	A vector of length n or a matrix or dataframe with n rows and p columns.
Е	A vector of length n or a matrix or dataframe with n rows and p columns.
X	A matrix or dataframe with n rows and p columns.
width	Kernel width; if it is set to zero, the width is chosen automatically (default: 0).
alpha	Significance level (default: 0.05).
unbiased	A boolean variable that indicates whether a bias correction should be applied (default: FALSE).
gammaApprox	A boolean variable that indicates whether the null distribution is approximated by a Gamma distribution. If it is FALSE, a Monte Carlo approach is used (default: TRUE).
GP	Flag whether to use Gaussian Process regression to choose the hyperparameters
nRepBs	Number of draws for the Monte Carlo approach (default: 500).
lambda	Regularization parameter (default: 1e-03).
thresh	Threshold for eigenvalues. Whenever eigenvalues are computed, they are set to zero if they are smaller than thresh times the maximum eigenvalue (default: 1e-05).
numEig	Number of eigenvalues computed (only relevant for computing the distribution under the hypothesis of conditional independence) (default: $length(Y)$).
verbose	If TRUE, intermediate output is provided. (default: FALSE).

Value

A list with the following entries:

- testStatistic the statistic $Tr(K_{(ddot(Y)|X)} * K_{(E|X)})$
- criticalValue the critical point at the p-value equal to alpha; obtained by a Monte Carlo approach if gammaApprox = FALSE, otherwise obtained by Gamma approximation.
- pvalue The p-value for the null hypothesis that Y and E are independent given X. It is obtained by a Monte Carlo approach if gammaApprox = FALSE, otherwise obtained by Gamma approximation.

Examples

```
# Example 1
n <- 100
E <- rnorm(n)
X <- 4 + 2 * E + rnorm(n)
Y <- 3 * (X)^2 + rnorm(n)</pre>
```

```
KCI(Y, E, X)
KCI(Y, X, E)
```

ksResidualDistributions

Kolmogorov-Smirnov test to compare residual distributions

Description

Used as a subroutine in InvariantResidualDistributionTest to test whether residual distribution remains invariant across different levels of E.

Usage

ksResidualDistributions(Y, predicted, E, verbose)

Arguments

Y An n-dimensional vector.

predicted An n-dimensional vector of predictions for Y.

E An n-dimensional vector. E needs to be a factor.

verbose Set to TRUE if output should be printed.

Value

A list with the p-value for the test.

leveneAndWilcoxResidualDistributions

Levene and wilcoxon test to compare first and second moments of residual distributions

Description

Used as a subroutine in InvariantResidualDistributionTest to test whether residual distribution remains invariant across different levels of E.

Usage

leveneAndWilcoxResidualDistributions(Y, predicted, E, verbose)

propTestTargetE 13

Arguments

Y An n-dimensional vector.

predicted An n-dimensional vector of predictions for Y.

E An n-dimensional vector. E needs to be a factor.

verbose Set to TRUE if output should be printed.

Value

A list with the p-value for the test.

propTestTargetE Proportion test to compare two misclassification rates.

Description

Used as a subroutine in InvariantEnvironmentPrediction to test whether out-of-sample performance is better when using X and Y as predictors for E, compared to using X only.

Usage

```
propTestTargetE(E, predictedOnlyX, predictedXY, verbose)
```

Arguments

E An n-dimensional vector.

predictedOnlyX Predictions for E based on predictors in X only. predictedXY Predictions for E based on predictors in X and Y.

verbose Set to TRUE if output should be printed.

Value

A list with the p-value for the test.

14 ResidualPredictionTest

 ${\tt Residual Prediction Test}$

Residual prediction test.

Description

Tests the null hypothesis that Y and E are independent given X.

Usage

```
ResidualPredictionTest(Y, E, X, alpha = 0.05, verbose = FALSE,
  degree = 4, basis = c("nystrom", "nystrom_poly", "fourier",
  "polynomial", "provided")[1], resid_type = "OLS", XBasis = NULL,
  noiseMat = NULL, getnoiseFct = function(n, ...) {            rnorm(n) },
        argsGetNoiseFct = NULL, nSim = 100, funcOfRes = function(x) {
        abs(x) }, useX = TRUE, returnXBasis = FALSE,
        nSub = ceiling(NROW(X)/4), ntree = 100, nodesize = 5,
        maxnodes = NULL)
```

Arguments

Υ	An n-dimensional vector.
Е	An n-dimensional vector or an nxq dimensional matrix or dataframe.
Χ	A matrix or dataframe with n rows and p columns.
alpha	Significance level. Defaults to 0.05.
verbose	If TRUE, intermediate output is provided. Defaults to FALSE.
degree	Degree of polynomial to use if basis="polynomial" or basis="nystrom_poly". Defaults to 4.
basis	Can be one of "nystrom", "nystrom_poly", "fourier", "polynomial", "provided". Defaults to "nystrom".
resid_type	Can be "Lasso" or "OLS". Defaults to "OLS".
XBasis	Basis if basis="provided". Defaults to NULL.
noiseMat	Matrix with simulated noise. Defaults to NULL in which case the simulation is performed inside the function.
getnoiseFct	Function to use to generate the noise matrix. Defaults to function($n,$){rnorm(n)}.
argsGetNoiseFct	
	Arguments for getnoiseFct. Defaults to NULL.
nSim	Number of simulations to use. Defaults to 100.
funcOfRes	Function of residuals to use in addition to predicting the conditional mean. Defaults to $function(x){abs(x)}$.
useX	Set to TRUE if the predictors in X should also be used when predicting the scaled

residuals with E. Defaults to TRUE.

wilcoxTestTargetY 15

returnXBasis	Set to TRUE if basis expansion should be returned. Defaults to FALSE.
nSub	Number of random features to use if basis is one of "nystrom", "nystrom_poly" or "fourier". Defaults to ceiling(NROW(X)/4).
ntree	Random forest parameter: Number of trees to grow. Defaults to 500.
nodesize	Random forest parameter: Minimum size of terminal nodes. Defaults to 5.
maxnodes	Random forest parameter: Maximum number of terminal nodes trees in the forest can have. Defaults to NULL.

Value

A list with the following entries:

- pvalue The p-value for the null hypothesis that Y and E are independent given X.
- XBasis Basis expansion if returnXBasis was set to TRUE.
- fctBasisExpansion Function used to create basis expansion if basis is not "provided".

Examples

```
# Example 1
n <- 100
E \leftarrow rbinom(n, size = 1, prob = 0.2)
X < -4 + 2 * E + rnorm(n)
Y < -3 * (X)^2 + rnorm(n)
ResidualPredictionTest(Y, as.factor(E), X)
# Example 2
E \leftarrow rbinom(n, size = 1, prob = 0.2)
X < -4 + 2 * E + rnorm(n)
Y <- 3 * E + rnorm(n)
ResidualPredictionTest(Y, as.factor(E), X)
# not run:
# # Example 3
# E <- rnorm(n)
\# X < -4 + 2 * E + rnorm(n)
# Y <- 3 * (X)^2 + rnorm(n)
# ResidualPredictionTest(Y, E, X)
# ResidualPredictionTest(Y, X, E)
```

wilcoxTestTargetY

Wilcoxon test to compare two mean squared error rates.

Description

Used as a subroutine in InvariantTargetPrediction to test whether out-of-sample performance is better when using X and E as predictors for Y, compared to using X only.

16 wilcoxTestTargetY

Usage

```
wilcoxTestTargetY(Y, predictedOnlyX, predictedXE, verbose, ...)
```

Arguments

Y An n-dimensional vector.

 $\label{eq:predictedOnlyX} \begin{array}{ll} \text{Predictions for Y based on predictors in X only.} \\ \text{predictedXE} & \text{Predictions for Y based on predictors in X and E.} \end{array}$

verbose Set to TRUE if output should be printed.

... Argument to allow for coherent interface of fTestTargetY and wilcoxTestTar-

getY.

Value

A list with the p-value for the test.

Index

```
fishersTestExceedance, 3
fTestTargetY, 4

InvariantConditionalQuantilePrediction, 4
InvariantEnvironmentPrediction, 6
InvariantResidualDistributionTest, 7
InvariantTargetPrediction, 9

KCI, 10
ksResidualDistributions, 12
leveneAndWilcoxResidualDistributions, 12
propTestTargetE, 13
ResidualPredictionTest, 14
wilcoxTestTargetY, 15
```