### **Contact:**

Gregory Garner (gregory.garner@rutgers.edu)
Robert Kopp (robert.kopp@rutgers.edu)

## Overview:

The IPCC AR6 sea-level change projection files are provided in a simplified format but represent a more complicated workflow involving combinations of multiple lines of evidence for the various individual contributors to sea-level change. We highly recommend using the data as provided in these confidence-level output files to remain consistent with the assessment in IPCC AR6 Chapter 9.

### **Directory Structure:**



# **File Description:**

## %COMPONENT%\_%SCENARIO%\_%CONFIDENCE%\_%TYPE%.nc

These files contain the time-series distributions of the sea-level change levels and rates. Below are how to construct these file names.

| %COMPONENT%        | Component represented in file                 |
|--------------------|-----------------------------------------------|
| AIS                | Antarctic Ice Sheet                           |
| GIS                | Greenland Ice Sheet                           |
| glaciers           | Glaciers                                      |
| landwaterstorage   | Land Water Storage                            |
| oceandynamics      | Ocean Dynamics (includes Thermal Expansion)   |
| verticallandmotion | Vertical Land Motion (non-climatic processes) |
| Total              | Total integrated over all components          |

| %SCENARIO%     | Scenario represented in file                                |
|----------------|-------------------------------------------------------------|
| ssp119         | Shared Socio-economic Pathway 1-1.9                         |
| ssp126         | Shared Socio-economic Pathway 1-2.6                         |
| ssp245         | Shared Socio-economic Pathway 2-4.5                         |
| ssp370         | Shared Socio-economic Pathway 3-7.0                         |
| ssp585         | Shared Socio-economic Pathway 5-8.5                         |
| tlim1.5win0.25 | 1.5 degC in year 2100 Temperature Target (0.25 degC window) |
| tlim2.0win0.25 | 2.0 degC in year 2100 Temperature Target (0.25 degC window) |
| tlim3.0win0.25 | 3.0 degC in year 2100 Temperature Target (0.25 degC window) |
| tlim4.0win0.25 | 4.0 degC in year 2100 Temperature Target (0.25 degC window) |
| tlim5.0win0.25 | 5.0 degC in year 2100 Temperature Target (0.25 degC window) |

| %CONFIDENCE%      | Confidence level represented in file                                               |
|-------------------|------------------------------------------------------------------------------------|
| medium_confidence | Projections using only processes with assessed medium confidence                   |
| low_confidence    | Projections using both assessed medium-<br>confidence and low-confidence processes |

| %TYPE% | Type of values represented in file              |
|--------|-------------------------------------------------|
| values | Value or level of sea-level change (units = mm) |
| rates  | Rate of sea-level change (units = mm per year)  |

Example – "oceandynamics\_ssp370\_low\_confidence\_values.nc" contains contribution of thermal expansion and ocean dynamics to the overall sea-level change for the SSP3-7.0 emissions scenario using both the assessed medium-confidence and low-confidence processes.

These are NetCDF version 4 files. All files are formatted the same with the only exception being that the "values" files contain the variable "sea\_level\_change" and the "rates" files contain the variable "sea\_level\_change\_rate". Below is the meta data for a regional "values" projection file.

```
dimensions:
  locations = 66190;
  quantiles = 107;
  years = 14;
variables:
  float lat(locations);
       lat: FillValue = NaNf ;
       lat:units = "Degrees North" ;
  float lon(locations);
       lon: FillValue = NaNf ;
       lon:units = "Degrees East" ;
  short sea_level_change(quantiles, years, locations);
       sea level change: FillValue = -32768s;
       sea level change:units = "mm" ;
       sea level change:scale factor = 1.;
  int years(years);
  int locations(locations);
  float quantiles(quantiles);
       quantiles: FillValue = NaNf ;
```

As noted before, the "rates" files will be formatted the same way, only instead of "sea\_level\_change", the variable name will be "sea\_level\_change\_rate". Below is a brief description of each of these variables.

| locations | Each projection is associated with a specific   |
|-----------|-------------------------------------------------|
|           | location. This dimension variable holds all     |
|           |                                                 |
|           | the location IDs. For a global projection file, |
|           | there is only one location with the ID of -1.   |
|           | The regional files contain tide gauge           |
|           | projections and a 1x1 degree global grid.       |
|           | Tide gauge location IDs are consistent with     |
|           | their PSMSL IDs while the global grid location  |
|           | IDs are formatted "10MMM0NNN0" where            |
|           | MMM and NNN are the whole degrees               |
|           | latitude and longitude respectively. A simple   |
|           | filter would be IDs greater than 10^9 are       |
|           | global grid locations. IDs less than 10^9 are   |
|           | tide gauges.                                    |
| quantiles | Quantiles of the distribution of the sea-level  |
|           | change variable. 107 quantiles are available,   |

|                       | including 0.0 to 1.0 in 0.01 increments and a   |
|-----------------------|-------------------------------------------------|
|                       | few key quantile values (i.e. 0.995, 0.999,     |
|                       | etc.). Multiply the quantiles by 100 to get     |
|                       | the equivalent percentile values.               |
| years                 | Years at which projection data are available.   |
|                       | The medium-confidence projections are           |
|                       | available from 2020-2150 in 10-year             |
|                       | increments while the low-confidence             |
|                       | projections are available from 2020-2300 in     |
|                       | 10-year increments.                             |
| lat                   | Latitude of the locations. For global           |
|                       | projections, this value is Infinity.            |
| lon                   | Longitude of the locations. For global          |
|                       | projections, this value is Infinity.            |
| sea_level_change      | The level of sea-level change since the AR6     |
|                       | reference period. Values have units of          |
|                       | millimeters. Values of -32768 should be         |
|                       | considered missing data. Note: The Python       |
|                       | netCDF4 package will read in this data with     |
|                       | the dimension order [quantiles, years,          |
|                       | locations] but MatLab and R will use the        |
|                       | reverse order of [locations, years, quantiles]. |
| sea_level_change_rate | The rate of sea-level change. Rates are 10-     |
|                       | year average rates with units of millimeters    |
|                       | per year. These are stored in the netCDF file   |
|                       | as tenths of a millimeter per year with a       |
|                       | scale_factor of 0.1 which is generally          |
|                       | automatically applied when reading in the       |
|                       | data. Rates of -3276.8 should be considered     |
|                       | missing data. Note: The Python netCDF4          |
|                       | package will read in this data with the         |
|                       | dimension order [quantiles, years, locations]   |
|                       | but MatLab and R will use the reverse order     |
|                       | of [locations, years, quantiles].               |

 ${\tt \%PBOX\%\_\%SCENARIO\%\_milestone\_figuredata.nc}$ 

These files contain the "milestone" data that's depicted in IPCC AR6 Chapter 9 Fig 9.29. Below is how to construct the filename.

| %PBOX% | Confidence level represented in file             |
|--------|--------------------------------------------------|
| pb_1f  | Probability box 1f which includes only medium-   |
|        | confidence processes for calculating milestones. |
| pb_2f  | Probability box 2f which includes both low- and  |
|        | medium-confidence processes for calculating      |
|        | milestones.                                      |

The %SCENARIO% portion of the file name is consistent with the %SCENARIO% table above for the projection files.

Example – "pb\_2f\_tlim2.0win0.25\_milestone\_figuredata.nc" is a low-confidence milestone data file for the 2.0 degC temperature target scenario.

Below are the meta-data for this type of file.

```
dimensions:
  heights = 99 ;
  quantiles = 5 ;
  sites = 66190 ;
variables:
  short heights(heights) ;
      heights:units = "mm" ;
  float quantiles(quantiles) ;
  int sites(sites) ;
  short exceedance_years(sites, quantiles, heights) ;
      exceedance_years:units = "-" ;
```

| heights          | The milestone heights at which the year of exceedance is calculated. Height levels are provided from 100 through 5000 mm in 100 mm increments.                                                                                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| quantiles        | Quantiles of the distribution of the year at which a particular height is exceeded. Only the 0.05, 0.17, 0.5, 0.83, and 0.95 quantiles are provided, which are the most commonly used quantiles throughout the report and figures. Multiply the quantiles by 100 to get the equivalent percentiles. |
| sites            | See the "locations" dimension description in the projection file table above.                                                                                                                                                                                                                       |
| exceedance_years | The years at which a particular level (see heights above) of sea-level change is exceeded.                                                                                                                                                                                                          |

# location\_list.lst

This is the location list file used to produce the projections. It can be used to cross-reference location IDs with names of the locations.

Column 1 – Location name (string with spaces having been replaced with underscores)

Column 2 – Location ID (integer value)

Column 3 – Latitude (-90 to 90 degrees)

Column 4 – Longitude (-180 to 180 degrees)