DAT 103

Datamaskiner og operativsystemer (Computers and Operating Systems)

Supplementary exercises (Set 3)

Problem 1

Consider an operating system running on a computer system with 16 cores uses the many-to-many model to map user threads to kernel threads. If N user threads are created for a particular process and N > 16, how many kernel threads will be allocated to this process?

Problem 2

Describe the differences among short-term, and long-term scheduling.

Problem 3

Describe the actions taken by a kernel to context-switch between processes.

Problem 4

What resources are used when a thread is created? How do they differ from those used when a process is created?

Problem 5

What advantage is there in having different time-quantum sizes at different levels of a multilevel queueing system?

Problem 6

Explain the how the following scheduling algorithms discriminate either in favor of or against short processes:

- (a) FCFS
- (b) RR
- (c) Multilevel feedback queues

Problem 7

Consider the following table of arrival time and burst time for three processes P₁, P₂ and P₃:

Process	Arrival Time	Burst Time
P_1	0	9
P_2	1	4
P_3	2	9

The shortest-remaining-time-first (i.e., preemptive shortest job first) scheduling algorithm is used. Scheduling is carried out only at arrival or completion of processes.

- (a) Draw the Gantt Chart of the execution.
- (b) What is the average waiting time for the three processes?

Problem 8

Consider the following table of processing time and period for two periodic processes P₁ and P₂:

Process	Processing time	Period
P_1	5	8
P_2	3	5

The completion deadlines of each process are the beginning of its next period. For example, the completion deadlines of P_1 are at time $8, 16, 24, \ldots$, while the completion deadlines of P_2 are at time $5, 10, 15, 20, \ldots$

- 8.1 Use Rate-Monotonic Scheduling to schedule the two processes, where the priority is assigned based on the inverse of each process' period. At time = 20, can the two processes meet all their deadlines? Draw the Gantt Chart of the execution to justify your answer.
- 8.2 Use Earliest Deadline First to schedule the two processes. At time = 20, can the two processes meet all their deadlines? Draw the Gantt Chart of the execution to justify your answer.

Hint: Both Rate-Monotonic Scheduling and Earliest Deadline First are priority scheduling with preemption.