3多路分配器

(1) 多路分配器 (Demultiplexer)工作原理

又称数据分配器,常用DEMUX表示。单输入,多输出。 多路分配器的功能是根据地址译码的指向,将输入数据D的逻辑值分配到相应的输出线上去。

\overline{A}	В	EN	Y_3	Y_2	Y_I	$\overline{Y_{\theta}}$
×	×	0	0	0	0	0
0	0	1	0	0	0	D
0	1	1	0	0	D	0
1	0	1	0	D	0	0
1	1	1	D	0	0	0

(2) 1—4 数据分配器的Verilog HDL模型

endcase

endmodule

else Y=4'b0000;

1—4数据分配器的仿真验证

•译码器用作数据分配器(Demultiplexer)。

4多路选择器

多路选择器(Multiplexers)又称数据选择器、多路开关,常记为MUX。它是一种多路输入、单路输出的组合逻辑电路。记为 n/1 或 n —1

逻辑功能: 当使能端 EN 有效时,在选择控制变量的控制下,从多路输入数据里选中一路送到输出端。

n个选择控制变量的每种取值组合对应选中m=2n路输入数据中的一路送到输出端。

一. 常用多路选择器的设计

1. 8选1多路选择器

功能表

	输	λ	输出	
/EN	С	В	A	Y /Y
1	d	d	d	0 1
0	0	0	0	$D_o \overline{D}_o$
0	0	0	1	$D_1 \overline{D}_1$
0	0	1	0	$D_2 \overline{D}_2$
0	0	1	1	$D_3 \overline{D}_3$
0	1	0	0	$D_4 \overline{D}_4$
0	1	0	1	D_5 \overline{D}_5
0	1	1	0	$D_6 \overline{D}_6$
0	1	1	1	$D_7 \overline{D}_7$

使能有效时 Y的输出逻辑表达式?

使能有效时 Y的卡诺图?

电路封装,逻辑符号

互补输出

选择控制变量输入端,C为高位。

低有效使 能输入端 8个数据输入端,其下标对 应选择控制变量C、B、A状 态组合的十进制值。

8选1的Verilog HDL模型

```
abo my8_1_wave.v*
     1 module my8_1_wave(din,sel,n_en,out);
         input [7:0] din;
         input [2:0] sel;
         input
                  n en;
         output
                     out;
         reg
                    out;
           always @ (din or sel or n en)
             begin
     9
              if (!n en)
    10
                 case (sel)
    11
                   3'b000: out=din[0];
    12
                   3'b001: out=din[1];
    13
                   3'b010: out=din[2];
    14
                   3'b011: out=din[3];
    15
                   3'b100: out=din[4];
    16
                   3'b101: out=din[5];
    17
                   3'b110: out=din[6];
                   3'b111: out=din[7];
    18
                   default : out=1'b0;
    19
    20
                 endcase
              else out=1'b0;
    21
    22
             end
       endmodule
    24
```

8选1的功能仿真

2. 分析 74LS153的逻辑功能,建立Veriloh HDL模型

74LS153功能表

弁	输出		
/E _o	X_2	X_1	Y ₀
1	d	d	0
0	0	0	a_0
0	0	1	a ₁
0	1	0	a_2
0	1	1	a_3

箱	输出		
/E ₁	X ₂	X ₁	Y ₁
1	d	d	0
0	0	0	b ₀ b ₁
0	0	1	b ₁
0	1	0	b ₂
0	1	1	b ₃

74LS153逻辑符号

功能: 具有共用选择输入端的双4选1

74LS153的Verilog HDL描述

```
module my153(x2, x1, n_e0, n_e1, a, b, y0, y1);
 input x2, x1, n_e0, n_e1;
 input [3:0] a,b;
 output y0, y1;
 reg y0, y1;
   always @ (x2 or x1 or n_e0 or n_e1 or a or b)
    begin
     if (! n_e0)
       case (\{x2,x1\})
        2'b00 : y0 = a[0];
        2'b01: y0=a[1];
        2'b10: y0=a[2];
        2'b11: y0=a[3];
       endcase
      else yo=1'b0;
```

续前

```
if (n_e1==0)
      case ({x2,x1})
          2'b00 : y1=b[0];
          2'b01: y1=b[1];
          2'b10: y1=b[2];
          2'b11: y1=b[3];
      endcase
    else y1=1'b0;
  end
endmodule
```


三. 多路选择器的应用

1. 数据选择传送

2. 多路选择器与多路分配器联用,实现多通道数据分时传送。

8 路分时传送Verilog HDL模型

```
module time_tran (en, sel, D, F);
 input
                en;
 input [2:0] sel;
 input [7:0] D;
 output [7:0] F;
  always @ (en or sel oe D)
    if (en==1)
      case (sel)
        3'b000 : F[0]=D[0];
        3'b001 : F[1]=D[1];
        3'b111 : F[7]=D[7];
      endcase
    else F=8'b0;
endmodule
```

3. 逻辑函数发生器

多路选择器的特点

一般表达式:
$$Y = \sum_{i=0}^{2^n-1} D_i m_i$$

- (1)具有标准"与或"表达式的形式
 - (2)提供了选择变量的全部最小项
 - (3)一般情况下, D_i 可当成一个变量处理
 - (4)受使能端控制,低有效。

逻辑函数都可以转换为与或表达式形式

用多路选择器实现逻辑函数的基本方法

- (1) 函数的高位变量作为选择控制变量
- (2) 分析高位变量各种组合情况下,输出与其它变量的逻辑关系,确定各数据输入端的连接。
 - (0, 1, 原变量、反变量、变量组合)
- (3) 画出电路图

例1: 用双4选1多路选择器74LS153实现全减器功能。

例2: 用一个8-1多路选择器 (74LS151) 实现下列逻辑函数的功能。

$$F(X_3, X_2, X_1, X_0) = \sum m(1,2,4,9,10,11,12,14,15)$$

分析: 74LS151逻辑符号,输出Y的卡诺图

逻辑函数的特点: 四个变量

解: 1. 作函数的卡诺图

- 2. 选函数变量X3、X2、X1作为选择控制变量,接到74LS151的 C,B,A端。作函数的降维卡诺图。
- 3. 与74LS151的卡诺图比较,确定 D0~D7。

X	X_1X_0 4. 画电路图					
X_3X_2	1	00	01	11	10	
	0	0	1	0	1	
0	1	1	0	0	0	
1	1	1	0	1	1	
1	0	0	1	1	1	

X_2X_1	00	01	11	10
0	X_0	$\overline{X_0}$	0	$\overline{X_0}$
1	X_0	1	1	$\overline{X_0}$

F(降维)

4. 不规则脉冲信号发生器

例:分析波形,用一个8选1实现 F。

解:

用变量ABCD为对应脉冲编码,即第一个脉冲对应0000,第二个脉冲对应0001,,第十六个脉冲对应1111

转换为F关于A,B,C,D的函数,列真值表。

真值表

A	B	\boldsymbol{C}	D	\boldsymbol{F}
0	0	0	0	$\frac{1}{D}$
0	0	0	1	0
0	0	1	0	1 1
0	0	1	1	1
0	1	0	0	0 \mathbf{D}
0	1	0	1	1
0	1	1	0	1 1
0	1	1	1	1
1	0	0	0	0 0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	\mathbf{D}
1	1	0	0	0
1	1	0	1	\mathbf{D}
1	1	1	0	0 D
1	1	1	1	1

将ABC作为多路选择器的选择控制变量,D作为数据输入端的匹配变量,用MUX 8-1实现。

图示为输出10000101的不规则脉冲信号发生电路的仿真波形

请同学分析并建立Verilog HDL模型

作业11:

4.18

4.19

4.25 (1)