Last time:

Saw that linear end-point configurations are possible:

Cend = $x_1 x_2 \cdot \cdot \cdot \cdot x_r$ blow-up leads to valid F-th. configuration blow-down leads to C^2/T -sing of type $A(x_1 \cdot \cdot \cdot \cdot x_r)$

No quartic vertices

Assume the contrary

Cend = --- y x y y ---.

with at least are -u-curve with nz 3

-> need at least 2 blow-ups

41	blow-up			g(i)		
y x (2) 1 y:	1	u (1)	,	(4)	1	(4(1)
1		194		^		92
(40)				y(1)		

$$\rightarrow$$
 Fi: gange algebra at $(x^{(4)}, y_i^{(1)})$ is at least $e_6 \oplus so(8)$ or $e_7 \oplus su(3)$

-> blow-up 4 more times

			y(1)			
			2			
			1			
y (1)	1	1	$\chi_{(g)}$	ţ	4	4(1)
			1			
			2			
			y(1)			

now gauge algebra

at $x^{(8)}$ is e_8 and at $(2,y_i^{(1)})$ at least $54(2) \oplus 9_2$

$$\rightarrow x^{(12)} > 12$$
 not possible 1

Restriction to trivalent vertices

but x(11) > 12 4 only possible trivalent vertices: Csub = 2 2 2 2 2 --. can be proved using similar argument Endpoint classification Suppose we have a subgraph of the form Coup = x, x2 x3 x4 x5 x6 x7 x8 x9 x10 x1, Then X = 2 suppose to the contravy $\rightarrow x_1 x_2 x_3^{(1)} | x_4^{(3)} | 3 | x_5^{(5)} | 3 | 5 | 3 | 2 | x_6^{(10)} | 122315|31$ $\chi_{(2)}^{4}$ 13 | $\chi_{(2)}^{8}$ | $\chi_{(1)}^{2}$ $\chi_{(2)}^{10}$ $\chi_{(2)}^{10}$ but x(10) > 12 for x > 2 / -> starting at eleven or mor curver: Csub = X, X2 X3 X4 X5 2--- 24 5 44 4, 424,

Generalized D-type theories

at 4 curves:

$$C_{\text{rigid}} = \begin{array}{|c|c|c|c|c|} \hline 2 & 4 & \hline \end{array}$$

with minimal resolutions:

A 5 curves and above:

For rigid D-type theories, are finds
$$C(D) = D_N \gamma$$
 for $N \ge 2$ with $\gamma \in \{32, 24\}$

Orbifold examples: A-type theories A(x1,..., xr):

$$(z_1, z_2) \longrightarrow (\omega z_1, \omega^q z_2)$$
 where $\omega = e^{2\pi i/\rho}$
and $\frac{\rho}{q} = x_1 - \frac{1}{x_2 - \dots - \frac{1}{x_k}}$

Consider now the cases XANY for 2 ≤ X, y ≤ 7

$$\frac{1}{p} = \frac{1}{N(x-1)(y-1) + xy-1}, \frac{q}{p} = \frac{N(y-1) + y}{N(x-1)(y-1) + xy-1}$$

For x=q=7 there is F-th arbifold realization:

$$(\mathbb{C}^{2} \times \mathbb{T}^{2}) / \mathbb{T} : (2_{1}, 2_{1}, 2) \mapsto (\mathcal{T}^{-1}_{2_{1}}, \mathcal{T}^{-1}_{2_{2}}, \mathcal{T}^{-1}_{2})$$

$$(ifle)$$

with
$$\gamma = \exp(2\pi i \cdot \frac{1}{12}), \quad \zeta = \exp(2\pi i \cdot \frac{k}{12k+1})$$

$$\Rightarrow \frac{1}{p} = \frac{1}{12(12k+1)}, \quad \frac{4}{p} = \frac{24k+1}{12(12k+1)}$$

matches with (*) for N=4K-1, x=y=7.

Orbifold examples! D-type theories

Cend =
$$D_N 24 \longrightarrow \frac{P}{9} = \frac{18N-12}{6N-5}$$

$$D_{N}31 \rightarrow \frac{P}{9} = \frac{18N - 24}{12N - 17}$$

supplemented with N: (21, Z2) (-21, Z1)