Topología Elemental

Álvaro García Tenorio Manuel Navarro García Iván Prada Cazalla

25 de febrero de 2017

Índice general

1.	Espacios Topológicos	3
	1.1. Espacios Topológicos. Definición y Ejemplos.	3
	1.2. Conjuntos Abiertos e Interior	4
	1.3. Conjuntos Cerrados y Adherencia	6
	1.4. Puntos de Acumulación y Conjuntos Densos	10
	1.5. Topología relativa	12
2.	Continuidad	13
	2.1. Continuidad en un punto	13

ÍNDICE GENERAL 2

Prefacio

Estas notas son una transcripción de las clases de la asignatura "Topología Elemental", impartidas por Jesús María Ruiz Sancho en el curso 2016–2017 a los cursos de tercero de los Dobles Grados de Matemáticas e Informática y Matemáticas y Física en la facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid (UCM).

Agradecimientos

En primer lugar hay que agradecer a todos aquellos que han estado pendientes de la evolución del texto durante su proceso de construcción, corrigiendo numerosas faltas de estilo y erratas de toda la clase y condición. Entre ellos queremos destacar a María José Belda Beneyto y Clara Isabel López González.

Por otra parte, en términos de dominio de IATEX y otras diversas herramientas que han mejorado mucho este texto destacamos especialmente a uno de los autores, Álvaro Rodríguez García.

Capítulo 1

Espacios Topológicos

La necesidad del estudio de la proximidad y continuidad, de la forma más abstracta posible, (absteniéndose del uso de la noción de distancia) dio origen a la Topología.

La idea de espacio topológico se comenzó a desarrollar durante los siglos XIX y XX por matemáticos como Fréchet, Kuratowski, Alexandroff y Hausdorff entre otros.

La definición inicial de estos espacios se puede encontrar en el libro "Grundzüge der Mengenlehre" publicado por este último autor.

Al comienzo de este capítulo introducimos la noción moderna de espacio topológico, añadiendo unos cuantos ejemplos, y posteriormente, presentaremos los conjuntos abiertos y cerrados y sus relaciones.

1.1. Espacios Topológicos. Definición y Ejemplos.

Comenzamos, como no podía ser de otra manera, definiendo la estructura sobre la que trabajaremos a lo largo de todas estas notas, los llamados espacios topológicos.

Definición 1.1.1 (Espacio Topológico). Un *espacio topológico* es un conjunto arbitrario no vacío \mathcal{X} equipado con una colección \mathcal{T} de subconjuntos $\mathcal{U} \subset \mathcal{X}$ que cumplen las siguientes propiedades

- **T1** El vacío y el total están en la colección \mathcal{T} , es decir, $\{\emptyset, \mathcal{X}\} \subset \mathcal{T}$
- **T2** La unión arbitraria de conjuntos de \mathcal{T} está en \mathcal{T} . Escrito de forma más rigurosa, pero desde luego, menos elegante, $\bigcup_{i \in I} \mathcal{U}_i \in \mathcal{T}$ donde cada $\mathcal{U}_i \in \mathcal{T}$.
- **T3** La intersección finita de conjuntos de \mathcal{T} está en \mathcal{T} . O, dicho de otra forma, $\bigcap_{i=1}^{n} \mathcal{U}_i \in \mathcal{T}$ donde cada $\mathcal{U}_i \in \mathcal{T}$.

Hagamos un par de pequeñas observaciones antes de continuar con nuestro recién empezado via je cósmico—topológico.

Observación 1.1.1 (Sutilezas). Se desprende de la definición 1.1.1 que un espacio topológico no es más que un par $(\mathcal{X}, \mathcal{T})$. Como es natural, salvo que sea necesario, nos referiremos a un espacio topológico por el conjunto que lo conforma, al igual que hacemos en casi todas las ramas de las matemáticas (Espacios Vectoriales, Grupos, Anillos,...).

Introducimos ahora un poco de terminología con la que el lector no tiene más remedio que hacerse familiar.

Observación 1.1.2 (Terminología). A la familia de conjuntos \mathcal{T} que conforman un espacio topológico \mathcal{X} se le denomina topología de \mathcal{X} .

Asimismo, los conjuntos que conforman \mathcal{T} reciben el nombre de *abiertos* de \mathcal{X} . Normalmente los denotaremos con las letras \mathcal{U} o \mathcal{W} .

 \Diamond

Como es evidente, nos referiremos a los elementos de $\mathcal X$ como puntos.

¹ "Teoría abstracta de conjuntos", publicado en 1914 por *Félix Hausdorff* (1868-1942).

Introducimos ahora unos pocos ejemplos para irnos familiarizando con el concepto de espacio topológico viendo lo general que puede llegar a ser.

Ejemplo 1.1.1 (Topologías). Las demostraciones de que, efectivamente, se cumplen las restricciones impuestas por la definición 1.1.1, o bien ya se han hecho en cursos anteriores, o bien se dejan al lector como ejercicio inmediato.

1. El espacio ordinario \mathbb{R}^n es un espacio topológico con la topología definida por los conjuntos abiertos en el sentido usual cuando hablamos de espacios métricos, es decir

$$\mathfrak{I} = \{ \mathcal{U} \subset \mathbb{R}^n \mid \forall x \in \mathcal{U} \ \exists \ B_d(x, \varepsilon) \subset \mathcal{U} \}$$
 (1.1)

2. Una topología interesante por su simpleza, y por que dota a cualquier conjunto no vacío \mathcal{X} con estructura de espacio topológico, es la llamada $topología\ trivial$, que viene definida por

$$\mathcal{T} = \{\emptyset, \mathcal{X}\}\tag{1.2}$$

3. Siguiendo la idea del ejemplo anterior, pero a la inversa, encontramos una topología que también dota de estructura topológica a cualquier conjunto no vacío \mathcal{X} . Esta topología viene dada por

$$\mathfrak{I} = \mathcal{P}(\mathcal{X}) \tag{1.3}$$

A esta topología la llamaremos topología discreta.

4. Como último ejemplo curioso nos queda la llamada topología del punto. Consiste en considerar como abiertos a todos los subconjuntos de un conjunto \mathcal{X} que contengan a un determinado punto a. Es decir

$$\mathfrak{I}_a = \{ \mathcal{U} \subset \mathcal{X} \mid a \in \mathcal{U} \} \cup \{ \emptyset \}$$
 (1.4)

Con lo que ya tenemos una gama lo suficientemente amplia de ejemplos como para ir tirando. \diamondsuit

En lo que resta de capítulo iremos introduciendo algunos conceptos generales de los que haremos uso de forma constante a lo largo del curso.

1.2. Conjuntos Abiertos e Interior

En esta sección introducimos el concepto de entorno, cuya utilidad inmediata es caracterizar a los conjuntos abiertos de un espacio topológico \mathcal{X} .

Definición 1.2.1 (Entorno de un Punto). Un *entorno* de un punto $a \in \mathcal{X}$ es un conjunto que contiene a un abierto que contiene al punto a.

Normalmente denotaremos con la letra V a los entornos, esta costumbre se debe a un galicismo. Escribamos la definición de entorno 1.2.1 de forma conjuntista para que no quede ninguna duda

$$\mathcal{V} \supset \mathcal{U} \ni a \tag{1.5}$$

Como ya adelantamos, se puede usar la noción de entorno para caracterizar a los abiertos, tal y como muestra el siguiente lema.

Lema 1.2.1 (Caracterización de Abiertos). U es abierto si y solo si es entorno de todos sus puntos.

Demostración. Supongamos que \mathcal{U} es abierto, entonces, dado un punto $a \in \mathcal{U}$ es evidente que \mathcal{U} contiene a un abierto (él mismo) que contiene al punto a. Luego \mathcal{U} es, trivialmente, entorno de todos sus puntos.

Recíprocamente, si \mathcal{U} es entorno de todos sus puntos, entonces, para cada punto $a \in \mathcal{U}$ se cumple que

$$\mathcal{U} \supset \mathcal{U}_a \ni a$$

de donde se desprende que

$$\mathcal{U}\supset\bigcup_{a\in\mathcal{U}}\mathcal{U}_a=:A$$

Más aún, se da la otra contención, y además, de forma trivial, ya que todo punto de \mathcal{U} pertenece a algún \mathcal{U}_a , luego también a la unión de todos. Luego

$$\mathcal{U} = A$$

Como la unión arbitraria de abiertos es abierto, A es abierto, con lo que se sigue el resultado.

En general, un conjunto será entorno de algunos de sus puntos, en principio no de todos. De esta idea surge la siguiente definición.

Definición 1.2.2 (Punto Interior). Dado un conjunto $A \subset \mathcal{X}$, diremos que un punto $a \in \mathcal{X}$ es un **punto interior** de A si A es entorno de a.

Será algo habitual de ahora en adelante tratar de determinar el conjunto de puntos interiores de un determinado conjunto $A \subset \mathcal{X}$, a este conjunto se le denomina *interior* de \mathcal{X} .

Antes de continuar, fijemos unas cuantas notaciones que utilizaremos según el contexto para referirnos al interior de un conjunto.

$$\operatorname{Int}_{\mathcal{X}}(A) = \mathring{A} = \operatorname{Int}(A) \tag{1.6}$$

Merece la pena notar que el interior de un conjunto puede ser el conjunto vacío, así como que trivialmente se da la desigualdad conjuntista

$$\mathring{A} \subset A \tag{1.7}$$

Veamos ahora unos resultados elementales, pero a la vez cruciales, del interior de un conjunto.

Lema 1.2.2 (Apertura). El interior de un conjunto A es un abierto.

Demostración. Para probar esto haremos uso del lema 1.2.1, es decir, trataremos de ver que es entorno de todos sus puntos.

En efecto, dado un punto $a \in \mathring{A}$, existe un abierto $\mathcal{U}_a \subset A$ de manera que $a \in \mathcal{U}_a$. Luego para ver que \mathring{A} es un entorno de a basta demostrar la inclusión $\mathcal{U}_a \subset \mathring{A}$, hagámoslo.

Sea $x \in \mathcal{U}_a \subset A$, es claro que A es entorno de x, luego $x \in \mathring{A}$.

Con lo cual hemos demostrado que \mathring{A} es entorno de todos sus puntos.

El otro resultado elemental que caracteriza al interior de un conjunto A, es que es el mayor abierto contenido en A.

Presentamos aquí los primeros pasos de la demostración por ser especialmente útiles y omnipresentes en las matemáticas en general.

Como la unión de abiertos es abierto, es claro que una forma de construir el mayor abierto contenido en cierto conjunto es, coleccionar los abiertos contenidos en dicho conjunto y unirlos. Escrito formalmente, tomamos el conjunto

$$B := \bigcup_{\mathcal{W} \subset A} \mathcal{W} \tag{1.8}$$

Es claro que $B \subset A$, ya que es una unión de conjuntos contenidos en A, además, si hubiera un abierto más grande contenido en A que B, este pertenecería a la familia de conjuntos que estamos uniendo, lo cual es absurdo.

Presentamos el final de la demostración en forma de lema.

Lema 1.2.3 (Caracterización del Interior). El interior de un conjunto A es el mayor abierto contenido en A.

Demostración. Por el lema 1.2.2 sabemos que \mathring{A} es abierto, luego, por la ecuación (1.8) solo queda probar la igualdad

$$\mathring{A} = \bigcup_{\mathcal{W} \subset A} \mathcal{W} \subset A$$

Y esto es prácticamente trivial. Veámoslo.

Por una parte, \mathring{A} es un abierto contenido en A, luego está contenido en la unión de los abiertos contenidos en A.

Por otra parte, dado $x \in \bigcup_{W \subset A} W$, es claro que, como $\bigcup_{W \subset A} W \subset A$ es un abierto, A es entorno de x, luego $x \in \mathring{A}$, lo que concluye la demostración.

 \Diamond

El lema 1.2.3 es bastante fuerte y produce algunos corolarios interesantes que presentamos a modo de observaciones.

Observación 1.2.1 (Propiedades del Interior). Enumeramos algunas propiedades del interior.

1. El interior del interior de un conjunto es el interior de dicho conjunto. Si lo escribimos sin que suene como un trabalenguas tenemos

$$\mathring{\mathring{A}} = \mathring{A} \tag{1.9}$$

Esto es trivial ya que al ser \mathring{A} un abierto, el mayor abierto contenido en él es él mismo.

2. Un abierto coincide con su interior, es decir

$$A = \mathring{A} \tag{1.10}$$

Esto es cierto por la misma razón que lo es la ecuación (1.9).

3. Los interiores preservan las contenciones. O lo que es lo mismo

$$A \subset B \Rightarrow \mathring{A} \subset \mathring{B} \tag{1.11}$$

Esto es claro ya que, como B contiene a A, el mayor abierto contenido en B será en general más grande que el mayor abierto contenido en cualquier subconjunto suyo.

Esto ya nos da cierta artillería para defendernos con estos conjuntos.

Con esto podemos decir que ya hemos liquidado todo lo referente a conjuntos abiertos.

1.3. Conjuntos Cerrados y Adherencia

En esta sección estudiaremos los conjuntos cerrados.

Cabe destacar que la noción de ser cerrado no es exactamente la contraria a la de ser abierto, ya que, como veremos más adelante, hay conjuntos que no son ni abiertos ni cerrados así como conjuntos que son abiertos y cerrados a la vez.

Definición 1.3.1 (Conjunto Cerrado). Un conjuto \mathcal{F} de un espacio topológico \mathcal{X} se dice *cerrado* si su complementario, $\mathcal{X} \setminus \mathcal{F}$, es abierto.

Usualmente denotaremos a los conjuntos cerrados con las letras \mathcal{F} o \mathcal{H} .

Usando propiedades básicas de teoría de conjuntos se obtienen algunas propiedades elementales de los conjuntos cerrados.

Lema 1.3.1 (Propiedades de los Cerrados). Dado un espacio topológico X se verifica

- 1. El vacío y el total son cerrados.
- 2. La intersección arbitraria de cerrados es cerrada.
- 3. La unión finita de cerrados es cerrada.

Demostración. Vayamos caso por caso.

- 1. \mathcal{X} es cerrado pues $\mathcal{X} \setminus \mathcal{X} = \emptyset$ es abierto. Asimismo, \emptyset es cerrado pues $\mathcal{X} \setminus \emptyset = \mathcal{X}$ es abierto.
- 2. $\bigcap_{i\in I} \mathcal{F}_i$ es cerrado ya que

$$\mathcal{X}\setminus\left(\bigcap_{i\in I}\mathcal{F}_i
ight)=igcup_{i\in I}\mathcal{X}\setminus\mathcal{F}_i$$

es abierto por ser la unión arbitraria de abiertos un abierto.

3. $\bigcup_{i=1}^{n} \mathcal{F}_i$ es cerrado, basta tomar el complementario y ver que es abierto por ser intersección finita de abiertos.

$$\mathcal{X}\setminus\left(\bigcup_{i=1}^n\mathcal{F}_i\right)=\bigcap_{i=1}^n\mathcal{X}\setminus\mathcal{F}_i$$

Con lo que concluye la demostración.

Observación 1.3.1 (Abiertos y Cerrados a la Vez). Basta con mirar con atención este lema 1.3.1 para darse cuenta de que hemos encontrado dos conjuntos que son abiertos y cerrados a la vez, el vacío y el total.

Introducimos ahora un concepto elemental pero interesante, el concepto de puntos adherentes y adherencia.

Definición 1.3.2 (Punto Adherente). Un punto $a \in \mathcal{X}$ se dice **adherente** a un conjunto $A \subset \mathcal{X}$ si todo entorno de a corta al conjunto A.

Como ya es habitual, coleccionaremos los puntos adherentes a un conjunto dado y estudiaremos las propiedades del conjunto de puntos adherentes. Introduzcamos una definición para verlo formalmente.

Definición 1.3.3 (Adherencia). Se define la *adherencia* o *clausura* de un conjunto $A \subset \mathcal{X}$ como el conjunto de los puntos adherentes de A.

Usualmente denotaremos a la adherencia de alguna de las siguientes formas

$$Adh_{\mathcal{X}}(A) = Adh(A) = \overline{A} \tag{1.12}$$

Vamos a desgranar ahora una serie de resultados que nos van a hacer ver que adherencia e interior de un conjunto son, de alguna manera, conceptos duales.

Comenzamos en primer lugar con algo casi trivial.

Observación 1.3.2 (Adherencia y Conjunto). Es claro que se verifica que

$$A \subset \overline{A} \tag{1.13}$$

Esto es debido a que, evidentemente, cualquier entorno de a contiene al punto a, luego, por definición, corta al conjunto A.

Lema 1.3.2 (Clausura de la Adherencia). La adherencia de un conjunto A es un cerrado.

Demostraci'on. Usaremos lo único que tenemos, es decir, la definici\'on de conjunto cerrado. Por ende, probaremos que $\mathcal{X}\setminus\overline{A}$ es abierto, para lo cual veremos que es entorno de todos sus puntos, haciendo buen uso del lema 1.2.1.

Dado $x \in \mathcal{X} \setminus \overline{A}$, como x no es un punto adherente, entonces existirá un entorno $\mathcal{V}(\ni x)$, el cual podemos escoger abierto sin pérdida de generalidad tal que se verifica

$$\mathcal{V} \cap A = \emptyset$$

Si consiguiéramos demostrar que se de la igualdad

$$\mathcal{V} \cap \overline{A} = \emptyset$$

habríamos acabado ya que tendríamos que $x \in \mathcal{V} \subset \mathcal{X} \setminus \overline{A}$, que es, por definición que $\mathcal{X} \setminus \overline{A}$ sea entorno de x.

En efecto, la comprobación de esta igualdad es muy fácil, ya que, si tomamos un $y \in \mathcal{V}$, al ser \mathcal{V} abierto, es entorno de y.

Por tanto, tendríamos que el punto y no es adherente, ya que existe un entorno, el propio \mathcal{V} que no corta con el conjunto A, incumpliendo así la definición 1.3.2.

Continuamos esta dualización de conceptos dándonos cuenta de que la adherencia es el menor cerrado que contiene a A. Como antes, parte de la demostración se basa en un procedimiento estándar que pasamos a explicar.

Es fácil darse cuenta de que, como la intersección arbitraria de cerrados es un cerrado, el menor conjunto cerrado que contiene a uno dado puede ser construido de la siguiente manera

$$B := \bigcap_{\mathcal{H} \supset A} \mathcal{H} \tag{1.14}$$

En efecto es un conjunto que contiene a A ya que todos los conjuntos de la familia a intersecar contienen a A, además, es el menor de ellos, ya que, de haber uno más pequeño, pertenecería a la familia que se está intersecando, lo cual es absurdo (¡compruébese!).

Presentamos, otra vez, en forma de lema, el resto de la demostración.

Lema 1.3.3 (Caracterización de la Adherencia). La adherencia de un conjunto A es el menor cerrado que contiene a A.

Demostración. Por la ecuación (1.14) la demostración se reduce a comprobar que

$$\overline{A} = \bigcap_{\mathcal{H} \supset A} \mathcal{H}$$

Y esto es una comprobación inmediata.

Por un lado, como \overline{A} es un cerrado que contiene a A, es claro que \overline{A} se encuentra en la familia a intersecar, luego contiene a la intersección de la familia.

Recíprocamente, dado un punto adherente x, si hubiera un conjunto \mathcal{H} de la familia tal que $x \notin \mathcal{H}$, entonces tendríamos que $x \in \mathcal{X} \setminus \mathcal{H} \subset \mathcal{X} \setminus A$.

Como \mathcal{H} es cerrado, $\mathcal{X} \setminus \mathcal{H}$ es abierto, y, por tanto existirá un entorno \mathcal{V} de x de manera que

$$x \in \mathcal{V} \subset \mathcal{X} \setminus \mathcal{H} \subset \mathcal{X} \setminus A$$

Y, por ende, $\mathcal{V} \cap A = \emptyset$, contra la definición de punto adherente.

Presentamos a continuación unas cuantas igualdades conjuntistas que pueden resultar bastante útiles al lector.

Proposición 1.3.4 (Complementario de la Adherencia).

$$\mathcal{X} \setminus \overline{A} = \operatorname{Int}(\mathcal{X} \setminus A)$$

Demostración. Procedemos por doble contención.

Sea $z \in \mathcal{X} \setminus \overline{A}$. Como z no es adherente a A, por definición (1.3.3) habrá un entorno \mathcal{V}_z de z de manera que $\mathcal{V}_z \cap A = \emptyset$. En particular, podremos extraer un entorno abierto \mathcal{U}_z tal que verifique

$$\mathcal{U}_z \cap A = \emptyset$$

Tratamos de demostrar que z es punto interior de $\mathcal{X} \setminus A$, esto es, por definición (1.2.2), que $\mathcal{X} \setminus A$ sea entorno de z, esto a su vez significa que hay un abierto \mathcal{U}'_z contenido en $\mathcal{X} \setminus A$ de forma que $z \in \mathcal{U}'_z$. Así pues el problema se reduce a encontrar dicho entorno, sin embargo, es trivial comprobar el entorno \mathcal{U}_z anteriormente definido cumple los requisitos.

Sea $z \in \text{Int}(\mathcal{X} \setminus A)$, demostremos que z no es adherente a A, para lo cual debemos encontrar un entorno de z, al que llamaremos \mathcal{V}_z , de manera que no corte al conjunto A. Esto es trivial, ya que z es punto interior de $\mathcal{X} \setminus A$, luego el propio $\mathcal{X} \setminus A$ es entorno de z, y, evidentemente, no corta a A.

Con lo que concluye la prueba.

Insistiendo es esta dualidad vía complementación entre abiertos y cerrados, presentamos un corolario inmediato.

Corolario 1.3.5 (Complementario del Interior).

$$\mathcal{X} \setminus \mathring{B} = Adh(\mathcal{X} \setminus B)$$

Demostración. Nos limitaremos a comprobar que ambos conjuntos tienen el mismo complementario. En efecto, por una parte

$$\mathcal{X} \setminus (\mathcal{X} \setminus \mathring{B}) = \mathring{B}$$

Por otro lado, denotando $A := \mathcal{X} \setminus B$ tenemos

$$\mathcal{X} \setminus \mathrm{Adh}(\mathcal{X} \setminus B) = \mathcal{X} \setminus \overline{A} \stackrel{\mathrm{Prp. 1.3.4}}{=} \mathrm{Int}(\mathcal{X} \setminus A) = \mathrm{Int}(\mathcal{X} \setminus (\mathcal{X} \setminus B)) = \mathrm{Int}(B) = \mathring{B}$$

Con lo que se tiene el resultado.

Una última identidad notable, un poco más profunda que las anteriores es la que relaciona la unión de las adherencias con la adherencia de las uniones.

Proposición 1.3.6 (Unión de Adherencias). La unión de las adherencias es la adherencia de las uniones.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Demostración. Procedemos por doble contención.

- \subset Dado $z \in \overline{A \cup B}$, todo entorno \mathcal{V}_z de z corta a $A \cup B$. Veamos que z es, o bien adherente a A, o bien adherente a B (quizá a ambos). Para ello supondremos que no es adherente a ninguno de ellos, es decir, que existe un entorno \mathcal{W}_z de z que no corta ni a A ni a B. Si este entorno existiera tampoco cortaría a la unión (compruébese), lo cual es absurdo.
- Dado un punto $z \in \overline{A} \cup \overline{B}$, veamos que todo entorno de \mathcal{V}_z de z corta a $A \cup B$, si no lo hiciera, para cada punto $x \in \mathcal{V}_z$, x no estaría en A, luego $A \cap \mathcal{V}_z = \emptyset$, análogamente ocurriría con B, lo cual contradice nuestra hipótesis.

Con lo que finaliza la demostración.

Por supuesto, este resultado presenta un dual inmediato.

Corolario 1.3.7 (Intersección de Interiores). El interior de la intersección es la intersección de los anteriores.

$$\operatorname{Int}(A \cap B) = \mathring{A} \cap \mathring{B}$$

Demostración. Comprobaremos, como ya hicimos anteriormente, que ambos conjuntos tienen el mismo complementario.

Por un lado

$$\mathcal{X} \setminus \operatorname{Int}(A \cap B) = \operatorname{Adh}(X \setminus (A \cap B))$$

Recíprocamente

$$\mathcal{X} \setminus (\mathring{A} \cap \mathring{B}) = (\mathcal{X} \setminus \mathring{A}) \cup (\mathcal{X} \setminus \mathring{B}) = \operatorname{Adh}(\mathcal{X} \setminus A) \cup \operatorname{Adh}(\mathcal{X} \setminus B)) =$$

$$= \operatorname{Adh}((\mathcal{X} \setminus A) \cup (\mathcal{X} \setminus B)) = \operatorname{Adh}(X \setminus (A \cap B))$$

Así, el resultado se sigue.

El resultado análogo a la proposición 1.3.6 con la intersección no se da, tal y como muestra el siguiente ejemplo.

Ejemplo 1.3.1 (Cuadrados Abiertos). Si consideramos los conjuntos

$$A := (0,1) \times (0,1)$$
 $B := (1,2) \times (0,1)$

En \mathbb{R}^2 con la topología usual, es fácil demostrar (se deja al lector) que $\overline{A \cap B} = \emptyset$ mientras que $\overline{A} \cap \overline{B} = \{1\} \times [0, 1]$.

 \Diamond

Vistas todas estas igualdades, al igual que hicimos en la observación 1.2.1, caractericemos los conjuntos cerrados a partir del concepto de adherencia.

Proposición 1.3.8 (Cerrados y Adherencia). Un conjunto es A cerrado si y solo si coincide con su adherencia. Es decir

$$A = \overline{A}$$

Demostración. Si A es cerrado, como \overline{A} es el mayor cerrado contenido en A, es claro que se tiene que dar la igualdad $A = \overline{A}$.

Recíprocamente, si se da la igualdad $A = \overline{A}$, como \overline{A} es cerrado, también lo será A.

Añadimos una observación final trivial, simplemente por curiosidad.

Observación 1.3.3 (Doble Adherencia). Dado un conjunto A, se tiene que

$$\overline{A} = \overline{\overline{A}}$$

Esto es inmediato ya que, como \overline{A} es un cerrado, coincide con su adherencia.

1.4. Puntos de Acumulación y Conjuntos Densos

En esta sección presentamos el concepto de punto de acumulación, que es muy útil para trabajar con sucesiones, como veremos más adelante. Además, definiremos la idea de que un conjunto sea denso de varias maneras que nos serán muy útiles a la hora de resolver problemas.

Definición 1.4.1 (Punto de Acumulación). Dado un conjunto A en un espacio topológico \mathcal{X} , se dice que un punto $x \in \mathcal{X}$ es un **punto de acumulación** de A si todo entorno de \mathcal{V}_x de x verifica que

$$(\mathcal{V}_x \setminus \{x\}) \cap A \neq \emptyset$$

Presentemos un poco de terminología para el conjunto de los puntos de acumulación.

Definición 1.4.2 (Conjunto Derivado). Al conjunto de los puntos de acumulación de un conjunto A se le denomina $conjunto \ derivado$. Usualmente denotaremos al conjunto derivado por A'.

Observación 1.4.1 (Entornos Perforados). Cuando consideramos un entorno \mathcal{V}_x de un punto $x \in \mathcal{X}$, a veces (sobre todo cuando hablamos de puntos de acumulación) es útil no considerar el entorno entero, sino el entorno salvo un punto.

Por ejemplo $V_x \setminus \{x\}$. A este último conjunto se le suele denominar *entorno perforado* o *entorno pinchado* de x.

Una propiedad interesante de los conjuntos derivados se presenta en el siguiente lema.

Lema 1.4.1 (Descomposición de la Adherencia).

$$\overline{A} = A \cup A'$$

Demostración. La demostración es inmediata, procedemos por doble contención.

C Veamos que todos los puntos de $\overline{A} \setminus A$ están en A'. En efecto, dado un $x \notin A$ adherente a A se tiene que para todo entorno \mathcal{V}_x de x

$$\mathcal{V}_x \cap A \neq \emptyset$$

Como $x \notin A$ se tiene que $(\mathcal{V}_x \setminus \{x\}) \cap A \neq \emptyset$, cumpliendo la definición de punto de acumulación.

 \Box Es evidente que $A \subset \overline{A}$, luego solo queda comprobar que $A' \subset \overline{A}$. Esto es trivial y se deja al lector la comprobación.

Como queríamos demostrar.

Cabe señalar que, claramente, esta descomposición, en general, no es un partición, tal y como muestra es siguiente sencillo ejemplo.

Ejemplo 1.4.1 (Disco). Si consideramos el disco unidad D en \mathbb{R}^2 con la topología usual, es fácil demostrar que sus puntos de acumulación coinciden con su adherencia, con lo que obtenemos que

$$\overline{D} \setminus D \subseteq A' \tag{1.15}$$

En general (compruébese) se verifica que $\overline{A} \setminus A \subset A'$.

Según uno echa un ojo a la definición 1.4.1 le dan ganas de ver qué pasa con aquellos puntos que no cumplen esta definición por los pelos. Para esto introducimos la siguiente definición.

Definición 1.4.3 (Puntos Aislados). Se llaman *puntos aislados* de un conjunto A, a aquellos puntos de A que no son puntos de acumulación. Es decir, a los puntos $x \in A$ que poseen un entorno que cumple

$$\mathcal{V}_x \cap A = \{x\}$$

Por el momento no usaremos mucho esta definición, aunque la dejamos aquí aparcada por si las moscas.

Pasamos hora a definir el concepto de densidad de un conjunto.

Definición 1.4.4 (Conjunto Denso). Decimos que un conjunto A es **denso** en un espacio topológico \mathcal{X} si la adherencia de A es el propio espacio \mathcal{X} . Es decir

$$\overline{A} = \mathcal{X}$$

Esta definición es poco manejable en algunas circunstancias, lo bueno que tiene es que, con relativamente poco esfuerzo podemos dar una definición equivalente en unos términos un poco más sencillos, tal y como muestra la siguiente proposición.

Proposición 1.4.2 (Caracterización de la Densidad). Son equivalentes:

- 1. A es denso.
- 2. Todo abierto no vacío U contiene algún punto de A.

Demostración. Veamos ambas implicaciones

- \Longrightarrow Sea \mathcal{U} un abierto de \mathcal{X} . Por ser \mathcal{U} abierto, es entorno de todos sus puntos. En particular, si $x \in \mathcal{U}$, \mathcal{U} es entorno de x, luego, por ser A denso, $\mathcal{U} \cap A \neq \emptyset$.
- Sea $x \in X$ un punto cualquiera, tomemos un entorno arbitrario suyo \mathcal{V}_x , por definición de entorno, habrá un abierto \mathcal{U}_x que verifique

$$x \in \mathcal{U}_x \subset \mathcal{V}_x$$

Como \mathcal{U}_x es abierto, contiene, por hipótesis, algún punto de A, luego $\mathcal{V}_x \cap A \neq \emptyset$, cumpliendo así x la definición de punto adherente.

Con lo que ya hemos terminado.

De forma natural surge preguntarse si, como en el caso conocido de \mathbb{R}^n , los espacios topológicos en general, poseen algún subconjunto numerable denso. La respuesta a esta pregunta es no, como veremos más adelante, precisamente por eso surge la siguiente definición.

Definición 1.4.5 (Espacio Topológico Separable). Se dice que un espacio topológico \mathcal{X} es separable si posee un subconjunto numerable denso.

Para afianzar la idea de que en la topología la intuición no parará de tendernos trampas, presentamos el siguiente ejemplo.

Ejemplo 1.4.2 (Espacios Separables). Recordamos en primer lugar por qué \mathbb{R}^n es separable y después presentamos un ejemplo contraintuitivo.

- 1. \mathbb{Q}^n es un conjunto denso y numerable en \mathbb{R}^n con la topología usual. La numerabilidad de \mathbb{Q}^n es consecuencia de la numerabilidad de \mathbb{Q} (inducción). Asimismo, la densidad puede probarse fácilmente por inducción sobre n.
- 2. Dado un conjunto cualquiera \mathcal{X} equipado con la topología de un punto $a \in X$, el espacio topológico $(\mathcal{X}, \mathcal{T}_a)$ es separable (nótese que a es denso y finito).

Así se ve que en espacios topológicos puestos con un poco de mala baba pasan cosas que nos descarajan la intuición.

Para finiquitar esta sección presentamos el concepto de frontera de un conjunto, que, de momento, al igual que el concepto de punto aislado, quedará en el baúl de los recuerdos.

Definición 1.4.6 (Frontera de un Conjunto). Definimos la frontera de un conjunto los puntos adherentes al conjunto que no son interiores. Dicho de otra forma (e introduciendo notación de paso)

$$Fr(A) = \overline{A} \setminus \mathring{A} \tag{1.16}$$

1.5. Topología relativa

Definición 1.5.1 (Topología relativa). Sea $(\mathcal{X}, \mathcal{T})$ un espacio topológico, y un subconjunto $\mathcal{Y} \subset \mathcal{X}$. Definimos la **topología relativa** en \mathcal{Y} como $\mathcal{T}|_{\mathcal{Y}} = \{U \cap \mathcal{Y} : U \in \mathcal{T}\}$. Se verifica que esta es una topología en \mathcal{Y} , y entonces decimos que $(\mathcal{Y}, \mathcal{T}|_{\mathcal{Y}})$ es un **subespacio topológico**.

Gracias a esta definición, siempre que hablemos en adelante de un subconjunto de \mathcal{X} y necesitemos una topología definida en él, se usará por defecto la relativa para dotarlo de estructura de espacio topológico.

Vamos a ver ahora que la topología relativa también preserva esa "dualidad" de la que hablábamos antes entre abiertos y cerrados. En particular, también los cerrados relativos son las intersecciones de los cerrados de \mathcal{X} .

Proposición 1.5.1. Los cerrados de \mathcal{Y} son las intersecciones de los cerrados de \mathcal{X} con \mathcal{Y} . Es decir, $C \subset \mathcal{Y}$ es cerrado si existe $F \subset \mathcal{X}$ cerrado tal que $C = F \cap \mathcal{Y}$.

Demostración. Sea $W \subset \mathcal{X}$ un abierto de X. Entonces, $\mathcal{X} \setminus W$ es cerrado, y queremos ver si $C = \mathcal{Y} \cap (\mathcal{X} \setminus W)$ es cerrado. Pero esto es lo mismo que ver si $\mathcal{Y} \setminus F$ es abierto, y:

$$\mathcal{Y} \setminus C = \mathcal{Y} \setminus (\mathcal{Y} \cap (\mathcal{X} \setminus W)) = \mathcal{Y} \setminus ((\mathcal{Y} \cap \mathcal{X}) \setminus W) = \mathcal{Y} \setminus (\mathcal{Y} \setminus W) = \mathcal{Y} \cap W$$

donde para las igualdades anteriores se han utilizado relaciones conocidas de teoría de conjuntos. Entonces, como $\mathcal{Y} \cap W$ es abierto por definición de topología relativa, $\mathcal{Y} \setminus C$ también lo es, y por tanto C es cerrado.

Observación 1.5.1. En particular, se verifican las siguientes propiedades:

- 1. Sea $A \subset \mathcal{X}$ abierto. Si $A \cap U$ es un abierto en la topología $\mathfrak{T} \upharpoonright_A$ (es decir, U es abierto en $\mathfrak{T}_{\mathcal{X}}$), entonces $A \cap U$ es también abierto en $\mathfrak{T}_{\mathcal{X}}$.
- 2. Sea $F \subset \mathcal{X}$ cerrado. Si $F \cap C$ es un cerrado en la topología $\mathfrak{T}|_F$ (es decir, C es cerrado en $\mathfrak{T}_{\mathcal{X}}$), entonces $F \cap C$ es también cerrado en $\mathfrak{T}_{\mathcal{X}}$. \diamondsuit

Capítulo 2

Continuidad

La continuidad es la propiedad por excelencia que queremos que nuestras funciones verifiquen. En este breve capítulo vamos a generalizar la noción de continuidad que ya conocemos y dominamos para espacios como \mathbb{R}^n , de forma que la podamos aplicar a cualquier espacio métrico conocido. La continuidad, además, será clave para definir más adelante la noción de homeomorfismo: las aplicaciones que preservan las propiedades topológicas de un espacio dado.

2.1. Continuidad en un punto

En el espacio euclídeo usual, cuando teníamos una función $f:A\subset\mathbb{R}^m\to\mathbb{R}^n$, con un punto $a\in A$, decíamos que f es continua en a si y solo si $\forall \varepsilon>0$ $\exists \delta>0$ tal que si $x\in A, \|x-a\|<\delta$, entonces $\|f(x)-f(a)\|<\varepsilon$. Podemos reescribir esta condición como que si $x\in A\cap B(a,\delta)$, entonces $f(x)\in B(f(a),\varepsilon)$. Pero de nuevo, esto es equivalente a que para cualquier B^a (bola centrada en a), $A\cap B^a\subset f^{-1}(B^{f(a)})$ para cierta $B^{f(a)}$.

De esta forma, vamos a proceder ahora a generalizar esta definición para espacios topológicos arbitrarios.

Definición 2.1.1. Sean \mathcal{X}, \mathcal{Y} espacios topológicos, $f : \mathcal{X} \to \mathcal{Y}$. f es **continua** en $x_0 \in \mathcal{X}$ si para todo entorno $V^{f(x_0)}$ la imagen inversa $f^{-1}(V^{f(x_0)})$ es entorno de x_0 .

Observación 2.1.1. Si la topología de \mathcal{X} es grosera, o la topología de \mathcal{Y} es muy fina, la continuidad suele ser más fácil de comprobar. Podemos pensar en \mathcal{X} con la topología discreta como ejemplo de lo primero y en \mathcal{Y} con la topología trivial como ejemplo de lo segundo:

- 1. En la topología discreta, cualquier conjunto es abierto, con lo cual $\{x_0\}$ es abierto y por tanto cualquier conjunto que contenga a x_0 es entorno suyo. Entonces, para cualquier entorno de $f(x_0)$ su imagen inversa contendrá a x_0 y por lo anterior será entorno suyo. Es decir, cualquier función que nazca en \mathcal{X} con la topología discreta es continua.
- 2. En la topología trivial, los únicos abiertos son el vacío y el total, con lo cual dado un punto su único entorno es el total. Entonces, si \mathcal{Y} con la topología trivial es el espacio de llegada de una función f, f es continua, pues la imagen inversa del total es el total, y este es abierto (y por tanto entorno) en cualquier topología.

Observación 2.1.2. Hay algunas funciones muy simples cuya continuidad se puede estudiar de forma más o menos general.

- 1. Si $f: \mathcal{X} \to \mathcal{Y}$ es la aplicación constante f = b, entonces f es continua con cualquier topología. En efecto, la imagen inversa de cualquier subconjunto (y en particular de cualquier entorno) de \mathcal{Y} que contenga a b es el total, que es entorno de todos los puntos.
- 2. La continuidad de la aplicación identidad depende de los espacios topológicos sobre los que está definida, al contrario de lo que pueda parecer. En efecto, sea $f:(\mathcal{X}, \mathcal{T}_{\text{discreta}}) \to$

 $(\mathcal{X}, \mathcal{T}_{\text{trivial}})$. Esta sí es continua, por la observación 2.1.1. Sin embargo, su inversa, que también es la aplicación identidad, no es continua. Esto se sigue directamente de que, por ser la topología del espacio de llegada la discreta, $\{f(x_0)\}$ es abierto y por tanto entorno de $f(x_0)$, pero su imagen inversa es $\{x_0\}$ que con la topología trivial del espacio de salida no es entorno.

Ahora, veremos un par de propiedades interesantes de la continuidad en un punto.

Proposición 2.1.1. Dada $f: \mathcal{X} \to \mathcal{Y}$, continua en $x_0 \in \mathcal{X}$, si $A \subset \mathcal{X}$ tal que $x_0 \in A$, entonces $f \upharpoonright_A : A \to \mathcal{Y}$ es continua en x_0 .

Demostración. Sea $V^{f(x_0)}$ un entorno de x_0 . Como en A estamos considerando la topología relativa, se verifica que $(f|_A^{-1})(V^{f(x_0)}) = A \cap f^{-1}(V^{f(x_0)})$. Pero como por la continuidad de f en x_0 tenemos que $f^{-1}(V^{f(x_0)})$ es entorno de x_0 en \mathcal{X} , entonces $A \cap f^{-1}(V^{f(x_0)})$ es entorno de x_0 en A.

Proposición 2.1.2. La continuidad es una propiedad local, es decir, $f: \mathcal{X} \to \mathcal{Y}$ es continua en $x_0 \in \mathcal{X}$ si $\exists V^{x_0} \subset \mathcal{X}$ entorno de x_0 tal que $f|_{x_0}$ es continua en x_0 .

Demostración. Sea $V^{f(x_0)}$ un entorno de $f(x_0)$. Si $\exists V^{x_0} \subset \mathcal{X}$ entorno de x_0 tal que $f \upharpoonright_{x_0}$ es continua en x_0 , entonces $(f \upharpoonright_{V^{x_0}})(V^{f(x_0)}) = f^{-1}(V^{f(x_0)}) \cap V^{x_0}$, luego es entorno de x_0 en V^{x_0} . Entonces es entorno de x_0 en \mathcal{X} y por tanto f es continua.

Número 1.1. Sea X un conjunto, y \mathcal{T}_{CF} la familia de todos los subconjuntos de X cuyo complementario es finito, más el conjunto vacío. Probar que \mathcal{T}_{CF} es una topología en X. Esta topología se llama, por razones evidentes, topología de los complementarios finitos. ¿Qué topología obtenemos si X es un conjunto finito?

A partir del enunciado se deduce que los abiertos de esta topología son los elementos de la colección

$$\mathfrak{I}_{\mathrm{CF}} = \{ U \subset X : U = \emptyset \text{ o } X \backslash U \equiv U^c \text{ es finito} \}.$$

Veamos que efectivamente T_{CF} es una topología al verificar las condiciones necesarias.

- En primer lugar, el vacío pertenece a esta por definición. Además, el complementario del total X (el vacío) es finito, luego X también pertenece a \Im_{CF} .
- Por otro lado, sea $\{U_{\alpha}\}_{{\alpha}\in I}$ para un cierto conjunto de índices I una colección arbitraria de elementos de ${\mathcal T}_{\operatorname{CF}}$, teniéndose que

$$X \setminus \bigcup_{\alpha} U_{\alpha} = \bigcap_{\alpha} (X \setminus U_{\alpha}).$$

Pero $X-U_{\alpha}$ es finito para cada $\alpha \in I$, luego la intersección numerable de ellos también lo será. De este modo, la unión numerable de abiertos de $\mathcal{T}_{\mathrm{CF}}$ pertenece a ella.

ullet Por último, consideremos U_1 y U_2 dos abiertos de $\mathfrak{T}_{\mathrm{CF}}$. Analógamente al caso anterior,

$$X \setminus (U_1 \cap U_2) = \bigcup_{i=1}^2 (X \setminus U_i).$$

Sin embargo, $X \setminus U_i$ es finito para $i \in \{1, 2\}$, luego la unión finita de conjuntos finitos es finita.

Para finalizar, se nos pregunta qué topología se obtendría en caso de que X fuese un conjunto finito. Si damos por cierta esta suposición, es claro que $\mathcal{T}_{\mathrm{CF}}$ coincide con la topología discreta, ya que el complementario de todo conjunto es finito.

A pesar de haber terminado con lo requerido del ejercicio, podemos ir más allá estudiando más a fondo esta topología. Para comenzar, nótese que si X es numerable trivialmente el conjunto es separable y primer y segundo axioma de numerabilidad. El caso en el que X no es numerable ya no es tan sencillo. Vayamos por partes.

■ X es separable. Es más, todo conjunto numerable es denso en X. En efecto, supongamos que existiese un conjunto $A \subset X$ numerable pero que no es denso en X. Esto implica que existe un abierto $B \in \mathcal{T}_{CF}$ tal que $B \cap A = \emptyset$. De este modo,

$$(X \backslash B) \cup (X \backslash A) = X.$$

Pero los conjuntos del primer miembro son finitos, y la unión de finitos es finita, lo que conllevaría a que X también lo sea. Esto nos conduce a la contradicción buscada.

■ X no es primer axioma de numerabilidad, lo que implica que tampoco es segundo. Para corroborar esto, comprobemos que para cada punto $a \in X$ no existe una base de entornos abiertos numerable centrada en a. Razonaremos de nuevo por reducción al absurdo.

Supongamos que sí que existe esa base y sea esta

$$\mathcal{U}^a = \{ V_k \in \mathfrak{T}_{\mathrm{CF}} : k \ge 1 \}.$$

La intersección

$$\left(\bigcap_{k\geq 1} V_k\right) \setminus \{a\}$$

es no vacía puesto que, al tomar los complementarios y aplicar las leyes de De Morgan se tiene que

$$X \setminus \left(\bigcap_{k \ge 1} V_k\right) = \left(\bigcup_{k \ge 1} X \setminus V_k\right),$$

y esta unión es numerable ya que $X \setminus V_k$ es finito (recordemos que $V_k \in \mathcal{T}_{CF}$). Al ser X no numerable y

$$X = \left(\bigcap_{k \ge 1} V_k\right) \cup \left(\bigcup_{k \ge 1} X \setminus V_k\right),$$

la intersección anterior ha de ser no numerable.

Tomemos ahora un punto cualquiera b de esta intersección con la condición de que sea distinto de a y consideremos el entorno abierto de a dado por $W:=X\setminus\{b\}$. Claramente, $a\in W$ y es abierto puesto que su complementario es finito. De forma evidente la condición $V_k\subset W$ no se verifica para ningún k ya que $b\in V_k$ para todo k. Esto verifica que \mathcal{U}^a no puede ser base, concluyendo así que cuando X no es numerable \mathfrak{T}_{CF} no es primer axioma de numerablidad.

■ X es compacto. En efecto, supongamos que $\{V_k : k \geq 1\}$ es un recubrimiento por abiertos de X y tomemos un V_{k_0} arbitrario. Como este abierto pertenece a $\mathfrak{T}_{\mathrm{CF}}$ su complementario es finito, luego

$$X \backslash V_{k_0} := \{x_1, \dots, x_r\}$$

con $x_j \in X$ y $j = \{1, ..., r\}$ tales que $x_j \in V_{k_j}$ para cierto k_j , pues la unión de V_k recubre X según lo hemos definido. De este modo, podemos tomar X como la unión de V_{k_0} con los V_{k_j} que contienen a los puntos x_j , esto es,

$$X = \bigcup_{j=0}^{r} V_{k_j},$$

lo que prueba que X es compacto.

■ X es conexo. Un modo de probar esto es comprobar que no existen conjuntos abiertos y cerrados simultáneamente. En caso de que esto ocurriese, lo que quiere decir que $A \in \mathcal{T}_{CF}$ y $X \setminus A \in \mathcal{T}_{CF}$, se tiene que $X \setminus A$ y $X \setminus (X \setminus A) = A$ son finitos, luego

$$X = A \cup (X \backslash A)$$

sería finito, y esto contradice que sea no numerable.