第1章 随机事件及其概率

(1) 排列组合公式

$$P_m^n = \frac{m!}{(m-n)!}$$
 从 m 个人中挑出 n 个人进行排列的可能数。

$$C_m^n = \frac{m!}{n!(m-n)!}$$
 从 m 个人中挑出 n 个人进行组合的可能数。

(2) 加法原理和乘法原理

加法原理(两种方法均能完成此事): m+n

某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事): $m \times n$

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由 $m \times n$ 种方法来完成。

(3) 一些常见排列

重复排列和非重复排列(有序);对立事件(至少有一个);圆排列;顺序问题

(4) 随机试验和随机事件

如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。

(5) 基本事件、样本空间和事件

在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

- ① 每进行一次试验,必须发生且只能发生这一组中的一个事件;
- ② 任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用 $\{\omega\}$ 来表示。

基本事件的全体, 称为试验的样本空间, 用 Ω 表示。

一个事件就是由 Ω 中的部分点(样本点 ω)组成的集合。通常用大写字母 A, B, C, … 表示事件,它们是 Ω 的子集。

 Ω 为必然事件, \emptyset 为不可能事件。

不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6) 事件的关系与运算

①关系:

如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生),记为 $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B,记为 A=B。 A、B中至少有一个发生的事件,记为 $A \cup B$,或者 A+B。

属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A –B,也可表示为 A –AB 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。

A、B同时发生: A \bigcap B, 或者 AB。A \bigcap B = \emptyset ,则表示 A 与 B 不可能同时发生,称事件 A 与 事件 B 互不相容或者互斥。基本事件是互不相容的。

 Ω – A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生的事件。互斥未必对立。

②运算:

结合率: A(BC)=(AB)C $A\cup (B\cup C)=(A\cup B)\cup C$

分配率: (AB) ∪ C= (A∪C) ∩ (B∪C) (A∪B) ∩ C= (AC) ∪ (BC)

德摩根率:
$$\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$$
 $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

(7) 概率的公理化定义

设 Ω 为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:

- 1° $0 \leqslant P(A) \leqslant 1$,
- $2^{\circ} P(\Omega) = 1$
- 3° 对于两两互不相容的事件 A_1 , A_2 , ... , 有可列 (完全) 可加性:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

则称P(A)为事件A的概率。

(8) 古典概型

1°
$$\Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$$

$$2^{\circ} P\{\omega_1\} = P\{\omega_2\} = \cdots P\{\omega_n\} = \frac{1}{n}$$

设任一事件 A , 它是由 $\omega_1, \omega_2, \cdots \omega_m$ 组成的,则有

$$P(A) = P\{\omega_1, \omega_2, \cdots, \omega_m\} = \frac{m}{n} = \frac{A$$
所包含的基本事件数 基本事件总数

(9) 几何概型

若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A, $P(A) = \frac{L(A)}{L(\mathcal{Q})}$ 。其中 L 为几何度量(长度、面积、体积)。

(10) 加法公式

$$P(A+B) = P(A)+P(B)-P(AB)$$

当 P(AB) = 0 时, P(A+B) = P(A) + P(B)

(11) 概率的单调性

$$P(A-B) = P(A) - P(AB)$$

当 B ⊂ A 时, P (A-B) = P (A) - P (B)

当 A= Ω 时, $P(\overline{B})=1-P(B)$

(12) 条件概率

定义 设 A、B 是两个事件, 且 P(A)>0, 则称

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

为事件 A 发生条件下,事件 B 发生的条件概率。

条件概率是概率的一种,所有概率的性质都适合于条件概率。例如

$$P(\Omega \mid B) = 1 \Longrightarrow P(\overline{B} \mid A) = 1 - P(B \mid A)$$

(13) 乘法公式

$$P(AB) = P(A)P(B|A)$$

更一般地,对事件 A_1 , A_2 , ···· A_n ,若 $P(A_1A_2 \cdots A_{n-1})>0$,则有 $P(A_1A_2 \ldots A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1A_2) \ldots P(A_n \mid A_1A_2 \ldots A_{n-1})$

(14) 独立性

①两个事件的独立性

设事件 $A \setminus B$ 满足 P(AB) = P(A)P(B) ,则称事件 $A \setminus B$ 是相互独立的。

若事件A、B相互独立,且P(A) > 0,则有

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

若事件A、B相互独立,则可得到 \overline{A} 与B、A与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独立。

必然事件 Ω 和不可能事件 \emptyset 与任何事件都相互独立。

Ø 与任何事件都互斥。

②多个事件的独立性

设 ABC 是三个事件,如果满足两两独立的条件,

$$P(AB) = P(A) P(B); P(BC) = P(B) P(C); P(CA) = P(C) P(A)$$

并且同时满足 P(ABC)=P(A)P(B)P(C)。那么 A、B、C 相互独立。

对于n个事件类似。

(15) 全概率公式

设事件组 B_1, B_2, \cdots, B_n 满足

1° B_1, B_2, \dots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \dots, n)$,

$$2^{\circ} A \subset \bigcup_{i=1}^{n} B_{i}$$
,

则有

$$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$$

(16) 贝叶斯公式

设事件组 B_1 , B_2 , …, B_n 及A满足

$$1^{\circ}$$
 B_1 , B_2 , ..., B_n 两两互不相容, $P(B_i) > 0$, $i = 1, 2, ..., n$,

$$2^{\circ}$$
 $A \subset \bigcup_{i=1}^{n} B_i, P(A) > 0,$

则

$$P(B \mid A) = \frac{P(B_i)P(A \mid B_i)}{\sum_{i=1}^{n} P(B_i)P(A \mid B_i)}, i=1, 2, \dots, n_o$$

此公式即为贝叶斯公式。

 $P(B_i)$,(i=1, 2, …, n),通常叫先验概率。 $P(B_i \mid A)$,(i=1, 2, …, n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了"由果朔因"的推断。

(17)

用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为1-p=q ,用 $P_n(k)$ 表示 n 重伯 努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散型随机变量的分布律

设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概率为

$$P(X=x_k)=p_k, k=1, 2, \dots,$$

则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \left| \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right|$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \dots$, (2) $\sum_{k=1}^{\infty} p_k = 1$.

(2) 连续型随机变量的分布密度

设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有

$$F(x) = \int_{-\infty}^{x} f(x) dx ,$$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。密度函数具有下面 2 个性质:

$$1^{\circ}$$
 $f(x) \ge 0$ 2° $\int_{-\infty}^{+\infty} f(x) dx = 1$ $\frac{1}{2}$

(3) 离散与连续型随机变量的关系

$$P \{X = x\} \approx P(x < X \le x + dx) \approx f(x)dx$$

积分微元f(x)dx在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

(4) 分布函数

设X为随机变量,x是任意实数,则函数

$$F(x) = P \{X \le x\}$$

称为随机变量 X 的分布函数,本质上是一个累积函数。

 $P\{a < X \le b\} = F(b) - F(a)$ 可以得到 X 落入区间 (a,b] 的概率。分布函数 F(x) 表示随机变量落入区间 $(-\infty, x]$ 内的概率。

分布函数具有如下性质:

- 1° $0 \le F(x) \le 1$, $-\infty < x < +\infty$;
- 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;
- 3° $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;
- 4° F(x+0) = F(x), 即 F(x) 是右连续的;
- 5° $P\{X=x\}=F(x)-F(x-0)$.

对于离散型随机变量, $F(x) = \sum_{x_i \le x} p_i$;

对于连续型随机变量, $F(x) = \int_{-\infty}^{x} f(x) dx$ 。

(5) 八十分布

(9) 八人为4	
0-1 分布	$P\{X=1\}=p, P\{X=0\}=q$
(贝努利试验)	p+q=1

二项分布	$\boxed{ \text{在 } n \text{ 重贝努里试验中,设事件 } A \text{ 发生的概率为 } p \text{ 。事件 } A \text{ 发} }$	
(伯努利概型:	上的次数是随机变量设为 X ,则 X 可能取值为 $0,1,2,\dots,n$ 。	
n 次独立重复进		
行的贝努利试验,	X 的分布律为 $P \{X = k\} = P_n(k) = C_n^k p^k q^{n-k},$	
即: ① 每次试验		
中 A 发生的概率	其中 $q=1-p,0 ,$	
每次均一样; ②	\bigcup 则称随机变量 X 服从参数为 n , p 的二项分布。记为	
每次试验是独立	$X \sim B(n,p)$.	
的,也即每次试验	当 $n=1$ 时, $P\{X=k\}=p^kq^{1-k}$, $k=0.1$,这就是 (0-1)	
A 发生与否与其	分布,所以(0-1)分布是二项分布的特例。	
他次试验 A 发生	当 n 很大, p 很小时,二项分布的极限分布可近似泊松分布	
与否是互不影响	$P(\lambda) (np=\lambda, n\to\infty)$.	
的。 这种试验称为伯	当 n 很大,由中心极限定可以,二项分布的极限分布可近似	
努利概型,或称为	正态分布 $N(np, npq)$ 。	
n 重伯努利试		
验。)		
泊松分布	设随机变量 X 的分布律为	
	$P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2 \dots,$	
	n:	
	则称随机变量 X 服从参数为 λ 的泊松分布, 记为 $X \sim P(\lambda)$ 。	
超几何分布	N个球中有 $M(M < N)$ 个红球, 余下为白球,从中任取 $n(n < N)$	
个球, n 个球中的红球数为 X ,则 X 的分布律为		
	$P\{X=k\} = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n},$	
	N	
	$\underset{\mathbb{H} \to l}{+} k = 0, 1, 2 \cdots, l, l = \min(M, n)$	
	也称随机变量 X 服从参数为 n,N,M 的超几何分布,记为	
	$H(n,N,M)$ \circ	
几何分布	n 重贝努里试验,事件 A 首次发生时的试验次数 X 的分布律	
	为	
	$P\{X=k\} = q^{k-1}p, k = 1,2,3,\cdots,$	
	其中 <i>p</i> ≥0, <i>q</i> =1- <i>p</i> 。	
	随机变量 X 服从参数为 p 的几何分布,记为 $G(p)$ 。	
均匀分布	设随机变量 X 的值只落在 $[a, b]$ 内,其密度函数 $f(x)$ 为	
	$\int \frac{1}{a} < x < b$	
	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \cancel{1} + \cancel{1} = 0 \end{cases}$	
	· / / -	
	则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为	
	$F(x) = \int f(t)dt = \begin{cases} \frac{b-x}{a} & a \le x < b \end{cases}$	
	$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x < a \\ \frac{b-x}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$	
	当 $a \le x_1 \le x_2 \le b$ 时, X 落在区间(x_1, x_2)内的概率为	
	$P \{x_1 < X < x_2\} = \frac{x_2 - x_1}{b - a}$	

指数分布	$f(x) = \begin{cases} \lambda e^{-\lambda x} & 0 \le x \\ 0 & x < 0 \end{cases}$
	其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。
	X的分布函数为
	$F(x) = \int_{-\infty}^{\infty} f(t)dt = \begin{cases} 1 - e^{\lambda x} & x > 0\\ 0 & x < 0 \end{cases}$
	记住积分公式:
	$\int_0^\infty x^n e^{-x} dx = n!$
正态分布	设随机变量 X 的密度函数为
	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$
	其中 μ 、 σ > 0 为常数,则称随机变量 X 服从参数为 μ 、 σ^2
	的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。
	f(x) 具有如下性质:
	1° $f(x)$ 的图形是关于 $x = \mu$ 对称的;
	2° 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$ 为最大值;
	若 $X \sim N(\mu, \sigma^2)$,则 X 的分布函数为
	$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$
	参数 $\mu = 0$ 、 $\sigma = 1$ 时的正态分布称为标准正态分布,记为
	$X \sim N(0,1)$,其密度函数记为
	$ \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} $, $-\infty < x < +\infty$,
	分布函数为 1 x t ²
	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$
	$\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。
	$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$
	如果 $X^{\sim}N(\mu,\sigma^2)$,则 $\frac{X-\mu}{\sigma}^{\sim}N(0,1)$ 。
	$P(x_1 < X \le x_2) = \mathcal{D}\left(\frac{x_2 - \mu}{\sigma}\right) - \mathcal{D}\left(\frac{x_1 - \mu}{\sigma}\right).$

(6) 分位数

下侧分位数: $P\{X \leq \mu_{\alpha}\} = \alpha$;

上侧分位数: $P\{X > \mu_{\alpha}\} = \alpha$ 。

第三章 二维随机变量及其分布

(1) 联合分布

离散型

如果二维随机向量 $\xi = (X, Y)$ 的所有可能取值为至多可列个有序对(x,y), 则称 ξ 为离散型随机量。

设 $\xi = (X, Y)$ 的所有可能取值为 $(x_i, y_i)(i, j = 1, 2, \cdots)$,且事件 $\{\xi = 1, 2, \cdots\}$ (x_i, y_i) }的概率为 p_{ii} ,称

$$P\{(X,Y)=(x_i,y_j)\}=p_{ij}(i,j=1,2,\cdots)$$

为 $\xi = (X, Y)$ 的分布律或称为(X, Y) 的联合分布律。

联合分布有时也用下面的概率分布表来表示:

秋百万市11·11·2/11 国前属于万市农外农7·					
X	<i>y</i> 1	<i>y</i> 2	•••	y_j	•••
x_1	p_{II}	p_{12}		p_{Ij}	
x_2	p_{21}	p_{22}		p_{2j}	
:	:	÷		:	:
x_i	p_{il}			p_{ij}	
:	:	:		:	÷

这里 p_{ii} 具有下面两个性质:

(1)
$$p_{ij} \ge 0$$
 ($i, j = 1, 2, ...$)

(1)
$$p_{ij} \ge 0$$
 ($i, j=1,2,...$); (2) $\sum_{i} \sum_{j} p_{ij} = 1$.

连续型

对于二维随机向量 $\xi=(X,Y)$, 如果存在非负函数 $f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边分别平行于坐标 轴的矩形区域 D, 即 D={(X,Y)|a < x < b, c < y < d}有

$$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$$

则称 ξ 为连续型随机向量;并称f(x,y)为 $\xi=(X,Y)$ 的分布密度或称为(X,Y)的联合分布密度。

分布密度 f(x,y) 具有下面两个性质:

(1)
$$f(x,y) \ge 0$$

- (1) $f(x,y) \ge 0;$ (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1.$
- (2) 二维随机变量的本质

$${X = x, Y = y} = {X = x} \cap {Y = y}$$

(3) 联合分布函数

设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

$$F(x, y) = P\{X \le x, Y \le y\}$$

称为二维随机向量(X,Y)的联合分布函数。

联合分布函数 F(x,y) 是一个以全平面为其定义域,以事件 $\{(\omega_1,\omega_2)|$ $-\infty < X(\omega_1) \le x, -\infty < Y(\omega_2) \le y$ 的概率为函数值的一个实值函数。

分布函数F(x, y)具有以下的基本性质:

- (1) $0 \le F(x, y) \le 1$;
- (2) F(x,y) 分别对 x 和 y 是非减的,即

当 $x_2 > x_1$ 时,有 $F(x_2, y) \ge F(x_1, y)$; 当 $y_2 > y_1$ 时,有 $F(x, y_2) \ge F(x, y_1)$;

(3) F(x,y) 分别对 x 和 y 是右连续的,即

$$F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);$$

- (4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$
- (5) 对于 $x_1 < x_2$, $y_1 < y_2$,有

$$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$$

(4) 离散型与连续型的关系

$$P \{X = x, Y = y\} \approx P \{x < X \le x + dx, y < Y \le y + dy\} \approx f(x, y) dx dy$$

(5) 边缘分布

(e) (Ca)/3 (i)		
离散型	X的边缘分布为	
	$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij} (i, j = 1, 2, \dots);$	
	Y的边缘分布为	
	$P_{\bullet j} = P(Y = y_j) = \sum_{i} p_{ij}(i, j = 1, 2, \dots)$	
连续型	X的边缘分布密度为	
	$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$	
	Y的边缘分布密度为	
	$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$	

(6) 条件分布

(6) 水门 海市			
离散型	在已知 $X=x_i$ 的条件下, Y 取值的条件分布为		
	$P \{ Y = y_j \mid X = x_i \} = \frac{p_{ij}}{p_{i\bullet}};$		
	在已知 $Y=y_j$ 的条件下, X 取值的条件分布为		
	$P \{X = x_i \mid Y = y_j\} = \frac{p_{ij}}{p_{\bullet j}},$		
连续型	在已知 Y=y 的条件下, X 的条件分布密度为		
	$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$		
	在已知 X=x 的条件下, Y 的条件分布密度为		
	$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$		

(7) 独立性

一般型	$F(X,Y) = F_X(x) F_Y(y)$	
离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$	
	有零不独立	
连续型	$f(x,y) = f_X(x) f_Y(y)$ 直接判断,充要条件: ①可分离变量 ②正概率密度区间为矩形	
二维正态分布	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$ $\rho = 0$	
随机变量的函数	若 $X_1, X_2,, X_m, X_{m+1},, X_n$ 相互独立, h, g 为连续函数,则: $h(X_1, X_2,, X_m)$ 和 $g(X_{m+1},, X_n)$ 相互独立。 特例: 若 X 与 Y 独立,则: $h(X)$ 和 $g(Y)$ 独立。 例如: 若 X 与 Y 独立,则: $3X+1$ 和 $5Y-2$ 独立。	

(8) 二维均匀分布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D\\ 0, & \not\equiv \ell \ell \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 $(X,Y) \sim U(D)$ 。例如图 3.1、图 3.2 和图 3.3。

(9) 二维正态分布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称(X,Y)服从二维正态分布,记为 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即 $X\sim N(\mu_1,\sigma_1^2), Y\sim N(\mu_2,\sigma_2^2)$.

但是若 $X\sim$ N(μ_1,σ_1^2), $Y\sim N(\mu_2,\sigma_2^2)$,(X, Y)未必是二维正态分布。

(10) 函数分布

一维随机变	离散型	已知 X 的分布列为
量的函数		$X \qquad x_1, x_2, \cdots, x_n, \cdots$
		$P(X=x_i) p_1, p_2, \cdots, p_n, \cdots$
		$Y = g(X)$ 的分布列 ($y_i = g(x_i)$ 互不相等)如下:
		$Y = g(x_1), g(x_2), \cdots, g(x_n), \cdots$
		$P(Y=y_i) p_1, p_2, \dots, p_n, \dots$
		若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
	连续型	先利用 X 的概率密度 $f_X(x)$ 写出 Y 的分布函数
		$F_{Y}(y) = P(g(X) \le y) = \int f(x) dx,$
		$g(x) \le y$ 再利用变上下限积分的求导公式求出 $f_Y(y)$ 。
		丹州用文工下限你刀的水寸公式水苗 $J(y)$ 。

	离散型 设随机变量(X, Y)是离散型随机变量, 其分布律分别为		
二维随机变	内閣全 反随が反重 (X,T) 足肉散至随が反重,共力が行力が为 $P\{X=x_i,Y=y_i\}=p_{ii}$ $i,j=1,2,$		
量的函数	Z=G(X,Y)是随机变量,则 Z 的分布律为		
至时四处	$P\{Z=z_{t}\}=P\{G(X,Y)=z_{t}\}$		
	$= \sum_{(x_i, y_i) \in T_k} P\{X = x_i, Y = y_j\}, k = 1, 2, \dots$		
	其中 $T_k = \{(x_i, y_i) G(x_i, y_i) = z_k\}$ 。		
	连续型 先求出 Z 的分布函数 $F_Z(z)$		
	$F_{Z}(z) = P_{Z}(z) = P_{Z}(X, Y) \le z$		
	$= \iint f(x,y) dx dy$		
	$-\iint_{\{(x,y):G(x,y)\leq z\}}(x,y)dxdy$		
	对 $F_Z(z)$ 微分得到 $f_Z(z)$ 。		
Z=X+Y	根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$		
	对于连续型, $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$		
	-∞		
	两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。		
	n 个相互独立的正态分布的线性组合,仍服从正态分布。 Σα 2 2		
	$\mu = \sum_{i} C_{i} \mu_{i} , \qquad \sigma^{2} = \sum_{i} C_{i}^{2} \sigma_{i}^{2}$		
Z=X/Y	根据定义计算: $F_Z(z) = P(Z \le z) = P(X/Y \le z)$		
	对于连续型, $f_z(x) = \int_{-\infty}^{+\infty} y f(zy, y) dy$		
$Z=\max(X_1,X)$			
2,···X _n)和	它们的分布函数分别为:		
$Z=\min(X_1,X_2)$	$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$		
$, \cdots X_n)$	$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$		
χ^2 分布	设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明		
	它们的平方和		
	$W = \sum_{i} X_i^2$		
	i=1 的分布密度为		
	4		
	$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} \Gamma\left(\frac{n}{2}\right)^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$		
	, , , , , , , , , , , , , , , , , , , ,		
	我们称随机变量 W 服从自由度为 n 的 χ^2 分布,记为 $W \sim \chi^2(n)$,其中 f^{∞} $\frac{n}{2}-1$ 。		
	$\Gamma\left(\frac{n}{2}\right) = \int_0^{\infty} x^{\frac{n}{2}-1} e^{-x} dx.$		
	所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个		
	重要参数。 $ \chi^2 分布满足可加性: 设 Y_i \sim \chi^2(n_i), 则 $		
	,		
	$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$		
	:_1		

t 分布	设 X , Y 是两个相互独立的随机变量,且 $X \sim N(0,1)$, $Y \sim \chi^2(n)$,可以证明		
	函数		
	$T = \frac{X}{\sqrt{Y/n}}$		
	$\sqrt{Y/n}$		
	的概率密度为		
	$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$		
	我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$ 。		
	$t_{1-\alpha}(n) = -t_{\alpha}(n)$		
F分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且 X 与 Y 独立,可以证明 $F = \frac{X/n_1}{Y/n_2}$ 的概率密		
	度函数为		
	$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2} y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$		
	$0, y < 0$ 我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记		
	为 $F \sim F(n_1, n_2)$.		
	$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$		

第四章 随机变量的数字特征

(1) 一维随机变量的数字特征

	离散型	连续型			
期望	设 X 是离散型随机变量, 其分布律为	设 X 是连续型随机变量, 其概率			
期望就是平均	$P(X = x_k) = p_k, k=1,2,$	密度为 $f(x)$,			
值	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$			
	(要求绝对收敛)	(要求绝对收敛)			
函数的期望	Y=g(X)	Y=g(X)			
	$E(Y) = \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$			
方差 D(X)=E{[X- E(X)] ² }, 标准差	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$			
$\sigma(X) = \sqrt{D(X)}$					
,					

矩	①对于正整数 k ,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 $v_k = E(X^k) = \sum_i x_i^k p_i , k=1,2,$	①对于正整数 k ,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 $v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx,$	
	②对于正整数 k , 称随机变量 X 与 $E(X)$ 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k = \sum_i (x_i - E(X))^k p_i , k=1,2,$	$k=1,2,$ ②对于正整数 k ,称随机变量 X 与 $E(X)$ 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E[(X - E(X))^k]$ $= \int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx,$ $k=1,2,$	
切比雪夫不等式	设随机变量 X 具有数学期望 $E(X)=\mu$,方有下列切比雪夫不等式 $P\{ X-\mu \geq \varepsilon$	2	
	切比雪夫不等式给出了在未知 X 的分布的情况下,对概率 $P\{ X-\mu \geq \varepsilon\}$ 的一种估计,它在理论上有重要意义。		

(2) 期望的性质

- C, E(C)=C C, E(CX)=CE(X)

$$\equiv$$
, $E(X+Y)=E(X)+E(Y)$, $E(\sum_{i=1}^{n}C_{i}X_{i})=\sum_{i=1}^{n}C_{i}E(X_{i})$

四、E(XY)=E(X)E(Y), 充分条件: X和 Y独立; 充要条件: X和 Y不相关。

(3) 方差的性质

- \neg , D(C)=0; E(C)=C
- \Box , $D(aX)=a^2D(X)$; E(aX)=aE(X)
- \equiv , $D(aX+b)=a^2D(X)$; E(aX+b)=aE(X)+b
- $\square \setminus D(X)=E(X^2)-E^2(X)$
- 五、 $D(X\pm Y)=D(X)+D(Y)$,充分条件: X和 Y独立; 充要条件: X和 Y不相关。 $D(X \pm Y) = D(X) + D(Y) \pm 2E[(X - E(X))(Y - E(Y))]$, 无条件成立。 而 E(X+Y)=E(X)+E(Y), 无条件成立。

(4) 常见分布的期望和方差

	期望	方差
0-1 分布 B(1, p)	p	p(1-p)
二项分布 $B(n,p)$	np	np(1-p)
泊松分布 $P(\lambda)$	λ	λ
几何分布 G(p)	$\frac{1}{p}$	$\frac{1-p}{p^2}$

超几何分布 <i>H(n,M,N)</i>	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N - n}{N - 1} \right)$
均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布 $N(\mu, \sigma^2)$	μ	$\sigma^{^2}$
χ ² 分布	n	2n
t 分布	0	$\frac{n}{n-2} (n \ge 2)$

(5) 二维随机变量的数字特征

期望	$E(X) = \sum_{i=1}^{\infty} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
	$E(Y) = \sum_{j=1}^{\infty} y_j p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
函数的期望	$E[G(X,Y)] = \sum \sum G(x_i, y_j) p_{ij}$	E[G(X,Y)] =
	i j	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,y) f(x,y) dx dy$
方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
	$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
协方差	对于随机变量 X 与 Y, 称它们的二阶:	混合中心 $ \mu_{11} \to X \to Y $ 的协方差
	或相关矩,记为 $\sigma_{\scriptscriptstyle XY}$ 或 $\cos(X,Y)$,且	却
	cov(X,Y) = E[(X - X)]	E(X))(Y - E(Y))].
	与记号 σ_{XY} 相对应, X 与 Y 的方差 $D(X)$)与 $D(Y)$ 也可分别记为 $oldsymbol{\sigma}_{\mathit{XX}}$ 与 $oldsymbol{\sigma}_{\mathit{YY}}$ 。

相关系数	对于随机变量 X 与 Y ,如果 $D(X)>0$, $D(Y)>0$,则称	
11177/11/93	cov(X,Y)	
	$\sqrt{D(X)}\sqrt{D(Y)}$	
	为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。	
	$ \rho \le 1$, 当 $ \rho = 1$ 时,称 X 与 Y 完全相关: $P\{X = aY + b\} = 1$	
	$_{\Box \triangle H \Rightarrow}$ 「正相关,当 $\rho = 1$ 时 $(a > 0)$,	
	完全相关 $\left\{ \begin{array}{ll} \mathbb{E}[a] & \text{ if } (a>0), \\ \mathbb{E}[a] & \text{ if } (a<0), \end{array} \right.$	
	而当 $\rho=0$ 时,称 X 与 Y 不相关。	
	以下五个命题是等价的:	
	2cov(X,Y)=0;	
	$\Im E(XY) = E(X)E(Y);$	
	4D(X+Y)=D(X)+D(Y);	
	(5)D(X-Y) = D(X) + D(Y).	
协方差矩阵	$egin{pmatrix} \sigma_{\mathit{XX}} & \sigma_{\mathit{XY}} \ \sigma_{\mathit{YX}} & \sigma_{\mathit{YY}} \end{pmatrix}$	
	$\left(oldsymbol{\sigma}_{\scriptscriptstyle Y\!X} oldsymbol{\sigma}_{\scriptscriptstyle Y\!Y} ight)$	
混合矩	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的 $k+l$ 阶	
	混合原点矩,记为 v_{kl} ; $k+l$ 阶混合中心矩记为:	
	$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$	

(6) 协方差的性质

- \rightarrow $\cos(X, Y) = \cos(Y, X)$;
- \subseteq $\cot(aX,bY)=ab\cot(X,Y)$;
- \equiv , $\operatorname{cov}(X_1+X_2, Y)=\operatorname{cov}(X_1, Y)+\operatorname{cov}(X_2, Y)$;

 $\square \cdot \text{cov}(X,Y) = E(XY) - E(X)E(Y).$

- (7) 独立和不相关
 - 一、若随机变量 X与 Y相互独立,则 $\rho_{XY}=0$;反之不真。
 - 二、若(X,Y) $\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则 X与 Y相互独立的充要条件是 X和 Y不相关。

第五章 大数定律和中心极限定理

(1) 大数定律

伯努利	设 μ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在每次试验中发生的
大数定	概率,则对于任意的正数 ε ,有
律	$\lim_{n\to\infty}P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
	伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较
	大判别的可能性很小,即
	$\lim_{n\to\infty}P\Big(\Big \frac{\mu}{n}-p\Big \geq\varepsilon\Big)=0.$
	这就以严格的数学形式描述了频率的稳定性。
辛钦大	设 X_1 , X_2 ,, X_n ,是相互独立同分布的随机变量序列,且 $E(X_n)=\mu$,则对于任
数定律	意的正数 ε 有
	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$

(2) 中心极限定理 $\overline{X} \to N(\mu, \frac{\sigma^2}{\pi})$

设随机变量 X_1 , X_2 , ...相互独立, 服从同一分布, 且具有相同的数学期望和 列维一 林德伯 方差: 格定理 $E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots),$ 则随机变量序列 $Y_n = \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n}\sigma}$ 的分布函数 $F_n(x)$ 对任意的实数 x,有 $\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt.$ 此定理也称为**独立同分布**的中心极限定理。 设随机变量 X_n 为具有参数 n, p(0 的二项分布,则对于任意实数 <math>x, 有 棣莫弗 一拉普 $\lim_{n\to\infty} P\left\{\frac{X_n - np}{\sqrt{np(1-p)}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{t^2}{2}} dt.$ 拉斯定 <u>埋</u> | (3) 二项定理

若当
$$N \to \infty$$
时, $\frac{M}{N} \to p(n, k$ 不变),则
$$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$$

即超几何分布的极限分布为二项分布。

(4) 泊松定理

若当n→∞时,np→ λ >0,则

$$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$$
 $(n \to \infty).$

其中 *k*=0, 1, 2, ..., *n*,。

即二项分布的极限分布为泊松分布。

第六章 样本及抽样分布

(1) 数理统计的基本概念

在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母 总体 体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。

个体	总体中的每一个单元称为样品(或个体)。
样本	我们把从总体中抽取的部分样品 X_1, X_2, \dots, X_n 称为样本。样本中所含的样品数
117	称为样本容量,一般用 n 表示。在一般情况下,总是把样本看成是 n 个相互独立
	的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在具体的一
	次抽取之后, x_1, x_2, \dots, x_n 表示 n 个具体的数值(样本值)。
样本函	设 X_1, X_2, \dots, X_n 为总体的一个样本,称
数和统	$\varphi = \varphi(X_1, X_2, \dots, X_n)$
计量	为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未知参数,则称 φ
	(X_1, X_2, \cdots, X_n) 为一个统计量。
常见统	$\frac{1}{V} + V_1 = \frac{1}{V} \cdot \frac{1}{V} \cdot \frac{1}{V}$
计量及	样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}.$
其性质	样本方差 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$
	样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}.$
	样本 k 阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \cdots.$
	样本 k 阶中心矩 $M_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k, k = 2, 3, \cdots$
	$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
	$E(S^{2}) = \sigma^{2}, E(M_{2}) = \frac{n-1}{n}\sigma^{2}, \sharp + M_{2} = \frac{1}{n}\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}.$

(2) 正态总体下的四大分布

正态分布	设 X_1, X_2, \cdots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数
	$u^{\underline{def}} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$
t 分布	设 X_1, X_2, \cdots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数
	$t\frac{def}{S/\sqrt{n}} = t (n-1),$
	其中 t(n-1)表示自由度为 n-1 的 t 分布。
χ^2 分布	设 X_1, X_2, \cdots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数
	$w^{\underline{def}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
	其中 $\chi^2(n-1)$ 表示自由度为 n-1 的 χ^2 分布。

(3) 正态总体下分布的性质

第七章 参数估计

(1) 点估计

矩估计

设总体 X 的分布中包含有未知数 $\theta_1,\theta_2,\cdots,\theta_m$,则其分布函数可以表成 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设 X_1,X_2,\cdots,X_n 为总体 X 的 n 个样本,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^n X_i^k \qquad (k=1,2,\cdots,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n X_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n X_i^2, \\ \dots \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n X_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

若 $\overset{\wedge}{ heta}$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

极 大 似 然估计 设总体X的一组样本为 X_1, X_2, \cdots, X_n , 其样本值为 x_1, x_2, \cdots, x_n 。

当 X 为连续型总体时,设其概率密度为 $f(x;\theta_1,\theta_2,\cdots,\theta_m)$,其中 $\theta_1,\theta_2,\cdots,\theta_m$ 为未知参数。称

$$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$$

为样本的似然函数,简记为 L_n .

当 X 为离散型总体时,设其分布律为 $P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m)$,则称

$$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$$

为样本的似然函数。

若似然函数 $L(x_1,x_2,\cdots,x_n;\theta_1,\theta_2,\cdots,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 处取到最大值,

则称 $\hat{\theta}_1$, $\hat{\theta}_2$,…, $\hat{\theta}_m$ 分别为 θ_1 , θ_2 ,…, θ_m 的最大似然估计值,相应的统计量称为最大似然估计量。

称

$$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right|_{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \dots, m$$

为似然方程组。

若 $\hat{\theta}$ 为 θ 的极大似然估计,g(x)为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计。

(2) 估计量的评选标准

无偏性	设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 为未知参数 θ 的估计量。若 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的无
	偏估计量。
	$E(\overline{X})=E(X), E(S^2)=D(X)$
有效性	$\partial_{0}\hat{\theta}_{1} = \hat{\theta}_{1}(X_{1}, X_{2}, \dots, X_{n})$ 和 $\hat{\theta}_{2} = \hat{\theta}_{2}(X_{1}, X_{2}, \dots, X_{n})$ 是未知参数 θ 的两个无偏
	估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。
一致性	设 $\overset{\wedge}{ heta}$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $ heta$,都有
	$\lim_{n\to\infty}P(\stackrel{\circ}{\theta}-\theta >\varepsilon)=0,$
	则称 $\overset{\wedge}{ heta}$ 为 $ heta$ 的一致估计量(或相合估计量)。
	$\stackrel{\wedge}{=}$ 为 θ 的无偏估计,且 $D(\hat{\theta}) \rightarrow 0 (n \rightarrow \infty)$,则 $\stackrel{\wedge}{\theta}$ 为 θ 的一致估计。

(3) 区间估计

(3) 区即值订		
置信区	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 X_1, X_2, \cdots, X_n 出发,找	
间和置信度	出两个统计量 $\theta_1 = \theta_1(X_1, X_2, \dots, X_n)$ 与 $\theta_2 = \theta_2(X_1, X_2, \dots, X_n)$ $(\theta_1 < \theta_2)$,使	
旧汉	得区间 $[\theta_1, \theta_2]$ 以 $1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 θ ,即	
	$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$	
	那么称区间 $[heta_1, heta_2]$ 为 $ heta$ 的置信区间, $1-lpha$ 为该区间的置信度(或置信水平)。	
区间估	设 X_1, X_2, \cdots, X_n 为总体 X 的一个样本, x_1, x_2, \cdots, x_n 为其一组样本值。在置信度	
计的枢轴变量	为 $1-\alpha$ 下,我们来确定参数 θ 置信区间 $[\theta_1,\theta_2]$ 。具体步骤如下:	
抽 芝 里 法	(i) 选取待估参数 θ 的估计量;	
14	原则: 优良性准则, 常用: $\overline{X} \to \mu$, $S^2 \to \sigma^2$,	
	(ii) 建立枢轴变量;	
	对选定的 θ 的估计量,构造关于待估参数 θ 和样本的函数 $W(X_1, X_2,,$	
	(X_n, θ) ,其中 W 不含任何其他未知参数。	
	(iii)确定 W的分布	
	在一定条件下, W 通常具有经典分布(主要有正态、 χ^2 、 T 、 F 分布)。	
	(iv) 根据 W 的分布,对置信水平 $1-\alpha$ 查上侧分位数,使	
	$P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1 - \alpha$	
	或类似的概率式成立。	
	(v) 改写不等式得	
	$P\{A \le \theta \le B\} = 1 - \alpha$	
	其中 A、B 是不含未知参数的统计量.。	

(4) 单正态总体 $N(\mu, \sigma^2)$ 的期望和方差的区间估计

估计 均值	己知方差	(i) 选择样本函数 $u = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$.
μ		(ii) 查表找分位数 $P\left(-u_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \le u_{\alpha/2}\right) = 1 - \alpha.$
		(iii)导出置信区间 $\left[\overline{X}-u_{lpha/2}\frac{\sigma_0}{\sqrt{n}},\overline{X}+u_{lpha/2}\frac{\sigma_0}{\sqrt{n}}\right]$

		·
	未知方差	(i) 选择样本函数 $t = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t (n - 1).$
		(ii) 查表找分位数 $P\left(-t_{\alpha/2}(n-1) \leq \frac{\overline{X}-\mu}{S/\sqrt{n}} \leq t_{\alpha/2}(n-1)\right) = 1-\alpha.$
		(iii)导出置信区间
		$\left[\overline{X} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right]$ (i) 选择样本函数 $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.
估计	未知均值	(i) 选择样本函数 $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.
方差		(ii)查表找分位数
σ^2		$P\left(\chi_{1-\alpha/2}^{2}(n-1) \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi_{\alpha/2}^{2}(n-1)\right) = 1 - \alpha.$
		(iii)导出 σ^2 的置信区间
		$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right]$
		$\left[\chi_{\alpha/2}^{z}(n-1) \ \chi_{1-\alpha/2}^{z}(n-1)\right]$
	已知均值	(i) 选择样本函数 $W = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$.
		(ii)查表找分位数
		$P\left(\chi_{1-\alpha/2}^{2}(n) \leq \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma^{2}} \leq \chi_{\alpha/2}^{2}(n)\right) = 1 - \alpha.$
		(iii) 导出 σ^2 的置信区间 $\left[\frac{\sum_{i=1}^n (X_i - \mu)^2}{\chi_{al2}^2(n)}, \frac{\sum_{i=1}^n (X_i - \mu)^2}{\chi_{1-al2}^2(n)}\right]$

(5) 双正态总体双正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的期望差和方差商的区间估计

(2) 从上出出一种,从上出出出一种。		
估计	已知 _ ² _ ²	(i) 选择样本函数 $u = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0,1).$
$\mu_1 - \mu_2$	$\sigma_1^2, \ \sigma_2^2$	V ⁰ 1 ^{/11} 1+0 ₂ /n ₂
		$P\left(-u_{\alpha/2} \le \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \le u_{\alpha/2}\right) = 1 - \alpha.$
		(iii) 导出置信区间
		$\left[(\overline{X} - \overline{Y}) - u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{X} - \overline{Y}) + u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$
	未知	(i) 选择样太函数 $T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{2} \sim t(n_1 + n_2 - 2)$
	σ_1^2 , σ_2^2	(i) 选择样本函数 $T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t (n_1 + n_2 - 2)$
	1 2	
	但相等 	其中 $S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
		(ii)查表找分位数
		$P\left(-t_{\alpha/2}(n_1+n_2-2) \le \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \le t_{\alpha/2}(n_1+n_2-2)\right) = 1-\alpha.$
		(iii)导出置信区间
		$\left[(\overline{X} - \overline{Y}) - t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, (\overline{X} - \overline{Y}) + t_{\alpha/2}(n_1 + n_2) \right]$
		$-2)S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$

估计 σ_2^2	已知 <i>µ</i> ₁ , <i>µ</i> ₂	(i) 选择样本函数 $F = \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma_1^2}}{\frac{1}{n_2} \sum_{j=1}^{n_2} \frac{(Y_j - \mu_2)^2}{\sigma_2^2}} \sim F(n_1, n_2).$
$\left rac{\sigma_2^2}{\sigma_1^2} ight $		$\frac{\frac{1}{n_2}\sum_{j=1}^{n_2}\frac{(j-\mu_2)^j}{\sigma_2^2}}{(ii)$ 查表找分位数
		$P\left(F_{1-\alpha/2}(n_1, n_2) \leq \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma_1^2}}{\frac{1}{n_2} \sum_{j=1}^{n_2} \frac{(Y_j - \mu_2)^2}{\sigma_2^2}} \leq F_{\alpha/2}(n_1, n_2)\right) = 1 - \alpha.$
		(iii) 导出 $\dfrac{\sigma_2^2}{\sigma_1^2}$ 的置信区间
		$\left[\frac{\frac{1}{n_2}\sum_{j=1}^{n_2}(Y_j-\mu_2)^2}{\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2}F_{1-\alpha/2}(n_1,n_2),\frac{\frac{1}{n_2}\sum_{j=1}^{n_2}(Y_j-\mu_2)^2}{\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2}F_{\alpha/2}(n_1,n_2)\right]$
	未知	
	μ_1, μ_2	(i) 选择样本函数 $D = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$
		(ii) 查表找分位数
		$P\left\{F_{1-\alpha/2}(n_1-1,n_2-1) \le \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \le F_{\alpha/2}(n_1-1,n_2-1)\right\} = 1-\alpha.$
		(iii) 导出 $\dfrac{\sigma_2^2}{\sigma_1^2}$ 的置信区间
		$\left[\frac{S_2^2}{S_1^2}F_{1-\alpha/2}(n_1-1,n_2-1),\frac{S_2^2}{S_1^2}F_{\alpha/2}(n_1-1,n_2-1)\right]$
	己知 μ_1	(i) 选择样本函数 $D = \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma_1^2}}{S_*^2 / \sigma_2^2} \sim F(n_1, n_2 - 1).$
	未知 μ_2	2 2
		(ii) 查表找分位数
		$\frac{1}{n} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma^2}$
		$P \left\{ F_{1-\alpha/2}(n_1, n_2 - 1) \leq \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma_1^2}}{S_2^2 / \sigma_2^2} \leq F_{\alpha/2}(n_1, n_2 - 1) \right\} = 1 - \alpha.$
		σ^2
		(iii)导出 $\dfrac{\sigma_2^2}{\sigma_1^2}$ 的置信区间
		$\left[\frac{S_2^2}{\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2}F_{1-\alpha/2}(n_1,n_2-1),\frac{S_2^2}{\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2}F_{\alpha/2}(n_1,n_2-1)\right]$

未知 μ_1 已知 μ_2	(i) 选择样本函数 $D = \frac{S_1^2/\sigma_1^2}{\frac{1}{n_2}\sum_{j=1}^{n_2} \frac{(Y_j - \mu_2)^2}{\sigma_2^2}} \sim F(n_1 - 1, n_2).$
	(ii) 查表找分位数 (
	$P\left\{F_{1-\alpha/2}(n_1-1,n_2) \leq \frac{S_1^2/\sigma_1^2}{\frac{1}{n_2}\sum_{j=1}^{n_2}\frac{(Y_j-\mu_2)^2}{\sigma_2^2}} \leq F_{\alpha/2}(n_1-1,n_2)\right\} = 1-\alpha.$
	(iii)导出 $\frac{\sigma_2^2}{\sigma_1^2}$ 的置信区间
	$\left[\frac{\frac{1}{n_2}\sum_{j=1}^{n_2}\frac{(Y_j-\mu_2)^2}{\sigma_2^2}}{S_1^2}F_{1-\alpha/2}(n_1-1,n_2),\frac{\frac{1}{n_2}\sum_{j=1}^{n_2}\frac{(Y_j-\mu_2)^2}{\sigma_2^2}}{S_1^2}F_{\alpha/2}(n_1-1,n_2)\right]$

第八章 假设检验

基本思想	假设检验的统	计思想是,概率很小的事件在一次试验中可以认为基本上是		
	不会发生的,即小概率原理。			
	为了检验一个假设 #4是否成立。我们先假定 #4是成立的。如果根据这个假			
	定导致了一个不合	理的事件发生,那就表明原来的假定从是不正确的,我们拒		
	绝接受 LG; 如果由	此没有导出不合理的现象,则不能拒绝接受 1%, 我们称 1%是		
	相容的。与恐相对的假设称为备择假设,用恐表示。			
	这里所说的小	概率事件就是事件 $\{K \in R_{\alpha}\}$,其概率就是检验水平 α ,通常		
	我们取α=0.05, 5	有时也取 0.01 或 0.10。		
基本步骤	假设检验的基本步			
		零假设 <i>H</i> ₀ ;		
	(ii) 选择组			
	(iii) 对于检验水平α查表找分位数 λ;			
	(iv) 由样本值 x_1, x_2, \dots, x_n 计算统计量之值 \hat{K} ;			
	将 \hat{K} 与 λ 进行比较,作出判断: 当 $ \hat{K} > \lambda$ (或 $\hat{K} > \lambda$)时否定 H_0 , 否则认为 H_0			
	相容。			
两类错误	第一类错误	当 H ₀ 为真时,而样本值却落入了否定域,按照我们规定的		
		检验法则,应当否定 H_0 。这时,我们把客观上 H_0 成立判为		
		H_0 为不成立(即否定了真实的假设),称这种错误为"以真		
		当假"的错误或第一类错误,记 α 为犯此类错误的概率,即		
		$P\{$ 否定 $H_0 H_0$ 为真 $\}=\alpha$;		
		此处的 α 恰好为检验水平。		
	第二类错误	当 H ₁ 为真时,而样本值却落入了相容域,按照我们规定的		
		检验法则,应当接受 H_0 。这时,我们把客观上 H_0 。不成立		
		判为 H_0 成立(即接受了不真实的假设),称这种错误为"以		
		假当真"的错误或第二类错误,记 $oldsymbol{eta}$ 为犯此类错误的概率,		
		即 $P{接受 H_0 H_1 为真}=\beta$ 。		

两类错误的关系	人们当然希望犯两类错误的概率同时都很小。但是,当
	容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则
	lpha变大。取定 $lpha$ 要想使 eta 变小,则必须增加样本容量。
	在实际使用时,通常人们只能控制犯第一类错误的概
	率,即给定显著性水平 α。α 大小的选取应根据实际情况而
	定。当我们宁可"以假为真"、而不愿"以真当假"时,则应把
	α取得很小,如 0.01,甚至 0.001。反之,则应把 α取得大

单正态总体 $N(\mu,\sigma^2)$ 的均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
	$H_0: \mu = \mu_0$			$ u > u_{1-\frac{\alpha}{2}}$
已知 σ^2	$H_0: \mu \leq \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}}$	N (0, 1)	$u > u_{\alpha}$
	$H_0: \mu \geq \mu_0$			$u < u_{1-\alpha}$
	$H_0: \mu = \mu_0$		<i>t</i> (<i>n</i> – 1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$		$t > t_{\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < t_{1-\alpha}(n-1)$
	$H_0: \sigma^2 = \sigma^2$ $H_0: \sigma^2 \le \sigma_0^2$ $W = \frac{(n-1)S}{\sigma_0^2}$	$W = (n-1)S^2$	n ² (n 1)	$w > \chi_{\frac{\alpha}{2}}^2 (n-1) \vec{\boxtimes}$
- 未知 <i>μ</i>				$w < \chi_{1-\frac{\alpha}{2}}^2(n-1)$
μ		$N = \frac{1}{\sigma_0^2}$	$\chi^2(n-1)$	$w > \chi_{\alpha}^{2}(n-1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$w < \chi_{1-\alpha}^2(n-1)$
	H2 - 2	$W = \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma_0^2}$	$\chi^2(n)$	$w < \chi_{\frac{\alpha}{2}}^2(n)$ 或
	$H_0: \sigma^2 = \sigma_0^2$			$w > \chi_{1-\frac{\alpha}{2}}^2(n)$
已知 μ	$H_0: \sigma^2 \leq \sigma_0^2$			$w > \chi_{\alpha}^{2}(n)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$w < \chi^2_{1-\alpha}(n)$

双正态总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的均值和方差的假设检验

	条件	零假设	统计量	对应样本	否定域
--	----	-----	-----	------	-----

			函数分布	
已知 σ_1^2 ,	$H_0: \mu_1 = \mu_2$	$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_1^2 / n_2}}$	N(0,1)	$ u > u_{1-\frac{\alpha}{2}}$
	$H_0: \mu_1 \leq \mu_2$			$u > u_{\alpha}$
σ_2^2	$H_0: \mu_1 \ge \mu_2$, , , , ,		$u < u_{1-\alpha}$
未知	$H_0: \mu_1 = \mu_2$	$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w / \sqrt{1/n_1 + 1/n_2}}$		$ t > t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$H_0: \mu_1 \leq \mu_2$	" • ' - ' -	$t(n_1 + n_2 - 2)$	$t > t_{\alpha}(n_1 + n_2 - 2)$
$\sigma_1^2 = \sigma_2^2$	$H_0: \mu_1 \geq \mu_2$	$S_{w} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2}}$		$t < t_{1-\alpha}(n_1 + n_2 - 2)$
	$H_0: \sigma_1^2 = \sigma_2^2$			$f < F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)$ 或
未知	$H_0: \mathcal{O}_1 \to \mathcal{O}_2$	$F = \frac{S_1^2/\sigma_1^2}{1}$	$F(n_1 - 1, n_2 - 1)$	$f > F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$
μ_{1},μ_{2}	$H_0: \sigma_1^2 \le \sigma_2^2$	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$	(1 -52 -)	$f > F_{\alpha}(n_1 - 1, n_2 - 1)$
	$H_0: \sigma_1^2 \ge \sigma_2^2$			$f < F_{1-\alpha}(n_1 - 1, n_2 - 1)$
	$H_0: \sigma^2 = \sigma^2$	$F = \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma_1^2}}{\frac{1}{n_2} \sum_{j=1}^{n_2} \frac{(Y_j - \mu_2)^2}{\sigma_2^2}}$		$f < F_{1-\frac{\alpha}{2}}(n_1, n_2)$ 或
己知				$f > F_{\frac{\alpha}{2}}(n_1, n_2)$
μ_{1},μ_{2}	$H_0: \sigma^2 \le \sigma_0^2$		$F(n_1, n_2)$	$f > F_{\alpha}(n_1, n_2)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$f < F_{1-\alpha}(n_1, n_2)$
	II2 _2	$F = \frac{S_1^2 / \sigma_1^2}{\frac{1}{n_2} \sum_{j=1}^{n_2} \frac{(Y_j - \mu_2)^2}{\sigma_2^2}}$		$f < F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2)$ 或
己知	$H_0: \sigma^2 = \sigma^2$		$F(n_1-1,n_2)$	$f > F_{\frac{\alpha}{2}}(n_1 - 1, n_2)$
μ_1 , 未知 μ_2	$H_0: \sigma^2 \le \sigma_0^2$			$f > F_{\alpha}(n_1 - 1, n_2)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$f < F_{1-\alpha}(n_1 - 1, n_2)$
未知 µ ₁ , 己知 µ ₂	$H_0: \sigma^2 = \sigma^2$	$F = \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{(X_i - \mu_1)^2}{\sigma_1^2}}{S_2^2 / \sigma_2^2}$	$F(n_1, n_2 - 1)$	$f < F_{1-\frac{\alpha}{2}}(n_1, n_2 - 1)$ 或
				$f > F_{\frac{\alpha}{2}}(n_1, n_2 - 1)$
	$H_0: \sigma^2 \le \sigma_0^2$			$f > F_{\alpha}(n_1, n_2 - 1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$f < F_{1-\alpha}(n_1, n_2 - 1)$

第九章 回归分析

(1) 一元线性回归模型

$$Y=a+bx+\varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$

其中 a、b、 σ^2 为未知参数,称 a— 回归常数(又称截距),b— 回归系数(又称斜率), ε — 随机误差(随机扰动项)。

(2) 一元线性回归模型的参数估计

$$\begin{cases} \hat{b} = \frac{l_{xy}}{l_{xx}} \\ \hat{a} = \overline{y} - \hat{b}\overline{x} \end{cases}$$

其中

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$l_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y}$$

$$l_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

(3) 对 σ^2 的无偏估计为:

$$\hat{\sigma}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (l_{yy} - \hat{b}^{2} l_{xx})$$

$$\sharp \psi \qquad l_{yy} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} y_{i}^{2} - n\overline{y}^{2}$$

(4) 一元线性回归模型的显著性检验, 样本相关系数为

$$R = \frac{l_{xy}}{\sqrt{l_{xx}} \sqrt{l_{yy}}}$$