

פתרון הבחינה

במתמטיקה

קיץ תשע"ט, 2019, שאלון: 35582 מוגש ע"י צוות המורים של "יואל גבע"

.4 הוא AB אורך הקטע.1

(ראה ציור). מנקודה A נמצאת על ציר ה־ y , והנקודה A נמצאת על ציר ה־ x (ראה ציור). הנקודה M היא אמצע הקטע A.

. נתון: הנקודה t>0 . $\frac{AL}{LB}=t$ כך שי AB מצאת על הקטע L מצאת נתון: הנקודה

- ב. הבע באמצעות t את המשוואה של המקום הגאומטרי של כל הנקודות L שנבנו כך, וזהה את המקום הגאומטרי הזה.
 - ג. בעבור איזה ערך של t המקום הגאומטרי שמצאת בסעיף ב מתלכד עם המקום הגאומטרי שמצאת בסעיף א? נמק.
- . נמק. $\mathbf{x} > 0$ שבעבורו המקום הגאומטרי שמצאת בסעיף ב חותך את ציר ה־ $\mathbf{x} > 0$ נמק.

$$A(0,a) = \frac{1}{2} \cdot \frac{1}{$$

: phi3n riels o(0p) n'2d) (AB BANK M) 1015 ON OM=2 1081 1213 rad 210 21/3 (ADB) 2115 201 0/101. 4) DUNCAL MILES W SADIN LEICIA WAS INIE 7 1961 (1/60 : 4 CV JUL 19 21 UNP2] 1 x2+42=41 L(X14) 1, 55,6 $\frac{b \cdot t + o \cdot 1}{t + 1} = x$ D: + a.1 = y 1 /""), ipijjy AL = t a = y (++1) b = x(t+1) 4 = \(\left(\frac{\text{\formalford}}{t} - 0 \right)^2 + \((0 - \formalford)^2 \) \(\formalford)^2 \) \(\formalford)^2 \) $16 = \frac{\chi^{2}(t+1)^{2}}{t^{2}} + y^{2}(t+1)^{2}$ \ 16 $\frac{(\pm + 1)^{2}}{16 \pm^{2}} \times^{2} + \frac{(\pm + 1)^{2}}{16 \pm^{2}} = 1$ 1)1600 TUL'A. 801, 83 4165 153 4.28 50,03 T 130(1, 50,04) 1915 920 18 5 I'N Je AL = 1 1281 AL=1B 821) list AB 150 B G 1550 | 155 N E 196, Mally 191900 (U-X 1418) 2: (+ ht o) (425) | (m) MI 7+4 = 2 : b(c) 5/327 /281 >) bg shil pilly 1015g 1510 # [10 4:2 4

מתמטיקה, קיץ תשע"ט, מס' 035582 + נספח

- 3 -

- היא קובייה שאורך צלעה הוא 6 (ראה ציור). ABCDA' B'C'D' .2 .3 מצאת על ראשית הצירים. B נמצאת על ראשית הצירים.
 - . BC' ובין הקטע A'C א. חשב את גודל הזווית שבין הקטע
 - ב. הוכח שהישר A'C מאונך למישור

A'C היא נקודת החיתוך של הישר K הנקודה עם המישור BC'D .

 $\frac{A'K}{A'C}$ מצא את היחס ...

הנקודה O היא נקודת החיתוך של

. BD עם אלכסון הבסיס AC אלכסון הבסיס

. C'O מצאת על הקטע K נמצאת על הקטע

BA 813 pane 250 police on 12 police on 13 police on 15 po

BC' 16717 161 A'C 16717 16 101 101 100

90°, 1037) 1/1570 (0', 1) - 1.0+ 1.1+ (-1).1= 0

BC'D 110W 71110W A'C & MKDDG18D 2

C'D & PE PULLOW A'C & MKDDG18D 2

(BC' & PULLOW A'C & MKDDG18D)

DC' = (-6,0,6) - D(-1,0,1)

A'C. DC'= (-1,1,-1). (-1,0,1)= (-1). (-1)+1.0+(-1)1=0

DC' (PEI BC' (PE PIKN A'C!) DKN; PUSOOF

BC'D NEW (E POND) KID

PIN'D \(\text{S} \) \(\text{K} \) \(\text{R} \)

X = (6,0,6)+ +(-1,1,-1)

K (6-t, t, 6-t)

הזדמנות לעתודה יש פעם בחיים. אל תתפשר עליה.

כמידע על **פסיכומטרי** ביואל גבע **→**

 $A^{\prime}C$ $\gamma(G^{\prime})G$ $A^{\prime}K$ $\gamma(G^{\prime})$ γ

A'K = 2 : P'T(P)

(10 K_{0}) (8 M_{0}) (8 M_{0}) (8 M_{0}) (10 $M_$

- . $\mathbf{z} \cdot \mathbf{\bar{z}} = \left| \mathbf{z} \right|^2$ מתקיים \mathbf{z} מחפר מרוכב א. (1) א. 3
- הוכח כי אם המספר המרוכב z נמצא על מעגל היחידה, אז גם המספר $\frac{1}{z}$ נמצא על מעגל היחידה.
- . הראה כי בעבור כל מספר מרוכב z הנמצא על מעגל היחידה, הסכום $z+\frac{1}{z}$ הוא מספר ממשי.
 - הם מספרים מרוכבים הנמצאים על מעגל היחידה. ב z_2 הם מספרים מרוכבים הנמצאים על מעגל היחידה. נתון כי הרכיבים המדומים של z_1 ו־ z_2 הם חיוביים.

. וביע הראשון ברביע ברביע ברביע ב z_1 אז $z_1+rac{1}{z_1}+z_2+rac{1}{z_2}>2$ נמצאים ברביע הראשון.

. $0<\alpha<\frac{\pi}{2}$: נתון: $w=1\cdot\mathbf{c}$ is (מ)

. w נתונה סדרה הנדסית שהאיבר הראשון שלה הוא $\frac{1}{\mathrm{w}}$ והאיבר השני הוא

נתון כי סכום 5 האיברים הראשונים בסדרה ההנדסית שווה ל־ 0.

- ג. (1) הבע באמצעות α את מנת הסדרה, והסבר מדוע כל איברי הסדרה נמצאים על מעגל היחידה.
 - מצא את שתי האפשרויות). (מצא את שתי האפשרויות).

$$\frac{2 - RC(SO)}{2 - RC(S(-O))}$$

$$\frac{2 - RC(S(-O))}{2 - RC(S(-O))}$$

$$\frac{2 - RC(S(O))}{2 - RC(S(O))}$$

$$Z = Rcis(0)$$
 : 1772) (2
 $Z = Rcis(-0)$

$$Z \cdot \bar{Z} = |Z|^2$$
 10 m/s/)

A ciso-p cis(-a) = |R cis(a)|²

R² cis(o) = R²

 $\frac{3}{2} = 2^{2}$ (nk $\int e^{-\lambda}$

(1)2

R = 1 73'n = 7 For F = 1.3N F = 100(0) P = 1

 $\frac{1}{7} = \frac{1}{1 \text{ ciso}} = \frac{1 \text{ ciso}}{1 \text{ ciso}} = 1 \text{ ciso}(-0)$

19100 SOUN TO 184) } day plan

 $2 + \frac{1}{2} = 4 cis0 + \frac{1}{cis(a)} = 1 cis0 + 1 cis(-a)$

CoSQ + ising + cos(-0) + isn(-0) = cosQ + ising + cosQ - isna

(1)2) S. e. N, 12NN 200N

 $Z_1 = 1 ciso_1$ (27) $Z_2 = 1 ciso_2$ (28) (8) $Z_1 = 1$ (28) $Z_2 = 1 ciso_2$ (27)

0 < 01 < 180° (180°) | U) + (117 880)

((a) 450501 + 20505 >2 (1)

COSOA+ COSO2>1

0050120

A

co502>1

807 of 10110 13 101 101 101 101 101 101 1010 >0

- . x נתונה הפונקציה: $f(x) = \ell n \left(\frac{e^x}{e^x + 1} \right)$. המוגדרת לכל
- עם הצירים (אם יש כאלה). מצא את שיעורי נקודות החיתוך של גרף הפונקציה (f(x)) מצא את שיעורי נקודות אינון של גרף הפונקציה
 - (אם יש כאלה) (ג) מצא את תחומי החיוביות והשליליות של הפונקציה (f(x)) מצא את תחומי החיוביות והשליליות של
 - . x מצא את משוואת האסימפטוטה של הפונקציה f(x) המקבילה לציר ה־
 - (אם יש כאלה) f(x) מצא את תחומי העלייה והירידה של הפונקציה (f(x)
 - . f(x) סרטט סקיצה של גרף הפונקציה
 - . $f(x) = x \ln(e^x + 1)$ הוכח כי (1) ...
 - . y=x ממצא כולו מתחת לישר f(x) הסבר מדוע גרף הפונקציה (2)
 - $g(x)=rac{1}{\sqrt{e^x+1}}$ מתונה הפונקציה .x נתונה הפונקציה
 - (ז) אם יש כאלה) g(x) מה הם תחומי החיוביות והשליליות של הפונקציה (ציה החיוביות והשליליות של אחרים (מו
 - a > 1 (2)

, $\mathrm{g}(\mathrm{x})$ היעזר בנגזרת הפונקציה $\mathrm{f}(\mathrm{x})$ והראה כי נפח גוף הסיבוב של השטח המוגבל על ידי גרף הפונקציה $\mathrm{x}=\ell$ חם על ידי הצירים ועל ידי הישר $\mathrm{x}=\ell$ חם שווה ל־ $\mathrm{x}=\ell$ ח פרט את חישוביך.

$$\begin{cases}
(0) = \ln \left(\frac{e^{0}}{e^{\frac{1}{4}n}} \right) = \ln \frac{2}{2} = -\ln 2 \qquad : \frac{2^{3}}{2^{3}} (n) \quad .1c$$

$$\ln \left(\frac{e^{0}}{e^{\frac{1}{4}n}} \right) = 0 \qquad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{e^{0}}{e^{\frac{1}{4}n}} = 0 \quad : \frac{1}{2^{3}} (n) \quad .1c$$

$$\frac{\times \rightarrow \infty}{\times \rightarrow \mathscr{E}(e_{1})} = \ln 1 = 0 \tag{3}$$

$$\times \rightarrow -e$$
: $\lim_{x \to -\infty} \left(\frac{e^x}{e^x + 1} \right) \rightarrow \ln(c) \rightarrow -\infty$

$$S|X| = \frac{e^{X}(e^{X_{1}}) - e^{X_{1}} e^{X_{2}}}{(e^{X_{2}})^{2}} = \frac{e^{X_{1}}}{e^{X_{1}}} = \frac{e^{X_{2}}}{e^{X_{1}}} = \frac{e^{X_{2}}}{e^{X_{1}}} = \frac{e^{X_{2}}}{e^{X_{1}}} = \frac{e^{X_{2}}}{e^{X_{1}}} = \frac{e^{X_{2}}}{e^{X_{1}}} = \frac{e^{X_{1}}}{e^{X_{1}}} =$$

4. [1]: 1. (4) [1] 4. (BX 1/c/ 9.1 (1/c/ 9) (1/c/ 6)

/ XB: D. & pin

הזדמנות לעתודה יש פעם בחיים. אל תתפשר עליה.

למידע על **פסיכומטרי** ביואל גבע ←

$$g(x) = \frac{1}{\sqrt{e^x + 1}}$$

. הוא פרמטר m . $f(x) = \frac{e^{-mx}}{1+x^2}$ הוא פרמטר. .5

. m ≥ 0 ענה על הסעיפים א-ב בעבור

- א. (1) מהו תחום ההגדרה של הפונקציות (1) ?
- . נמק. (אם את תחומי החיוביות והשליליות של הפונקציות (f(x)) מצא את תחומי החיוביות והשליליות (z)
- נתון כי כל הפונקציות f(x) מן המשפחה חותכות זו את זו בנקודה אחת. מצא את שיעוריה.
 - f'(x) מצא את הערכים של m שבעבורם מצא את מצא , $m \geq 0$ בעבור נעבור . בעבור
 - (i) אינה מתאפסת בשום נקודה.
 - (ii) מתאפסת בנקודה אחת בדיוק.
 - (iii) מתאפסת בשתי נקודות בדיוק.
- . $m \geq 0$ בעבור f(x) בסוף השאלה נתונים שלושה גרפים (III-I) של פונקציות מן המשפחה $m \neq 1$ בעבור $m \neq 1$ בעבור $m \neq 1$ בעוד כי $m \neq 1$ בעבור $m \neq 1$ בעבור $m \neq 1$ בעבור מבין השלושה את הערך או את טווח הערכים של $m \neq 1$ המתאים לו. נמק.

ענה על סעיף ג. תוכל להיעזר בגרף המתאים מבין הגרפים III-I

. 0 < m < 1 בעבור בעבור f(- x) בעבור ג.

x (1) χ (2) γ (3) (2) γ (3) (3) γ (

$$f(x) = -m \cdot e^{-mx} (1+x^2) - 2x \cdot e^{-mx}$$

$$(1+x^2)^2$$

$$f(x) = -e^{-mx} \left[m(1+x^{2}) + 2x \right] - e^{-mx} \left[mx^{2} + 2x + m \right]$$

$$(1+x^{2})^{2}$$

$$(1+x^{2})^{2}$$

אותר ונביטןי מ+x++2x+m ריבוצי לבור ס+ מ חיטורי לבור ס- א , (פריג לשני מקרים: m x2+2x+m 1(12) m (15) m+0 I

. P'ODICN 100 1/c 301c 00/cn, p'ODICN 1/e (80 1cm)

P-001/cv Je € D>0 20/co 3710 00/61 € △=0 78100 6,007 (A) P<0 26/00

D= b²-4ac = 4-4·m²=0 → m=±1

6,009/cm //10 /00 6 V/100 / WSI J6/co 3 N/C ODAN 6, DU P=0 5 V/O C N/D W=1 28/0 6,000 km 76 6, 10U P>O 6 M/20 M/2 0<WC1 26/10 e' 100 2x po okel m x2+2x+m·1(c) on ns mp/2: m=0 II (x=0) 3 N/C 00/CN

אל תתפשר עליה.

100/CN) 10 = m >1. 100/CN) 10 = m >1. 13/p) 100 00/CN + m=1,0 13/p) 100 00/CN + 0< m<1

100 610/610 0'N/.

הזדמנות לעתודה יש פעם בחיים. אל תתפשר עליה.

לחידע על **פסיכומטרי** ביואל גבע **→**