

Chapter 5 Reliability of Systems

Hey! Can you tell us how to analyze complex systems?

Serial Configuration
Parallel Configuration
Combined Series-Parallel

Serial Configuration

Reliability Block Diagram

 E_1 = the event, component 1 does not fail, and E_2 = the event, component 2 does not fail, then $P\{E_1\} = R_1$ and $P\{E_2\} = R_2$ where R_1 = the reliability of component 1, and R_2 = the reliability of component 2. Therefore assuming independence: $R_s = P\{E_1 \cap E_2\} = P\{E_1\} P\{E_2\} = R_1 R_2$

Multiple Components in Series

Generalizing to n mutually independent components in series;

$$R_s(t) = R_1(t) \times R_2(t) \times ... \times R_n(t)$$

and
$$R_s(t) \le \min \{R_1(t), R_2(t), ..., R_n(t)\}$$

Component Count vs. System Reliability

Compone	nt N	Number of Components			
Reliability	10	100	1000		
.900	.3487	. 266x10 ⁻⁴	. 1748x10 ⁻⁴⁵		
.950	.5987	.00592	. 5292x10 ⁻²²		
.990	.9044	.3660	. 443x10 ⁻⁴		
.999	.9900	.9048	.3677		

System Reliability

Constant Failure Rate Components

$$R_s(t) = \prod_{i=1}^n R_i(t) = \prod_{i=1}^n e^{-\lambda_i t} = e^{i=1} = e^{-\lambda_s t}$$

where
$$\lambda_s = \sum_{i=1}^n \lambda_i$$

Weibull Components

$$R_s(t) = \prod_{i=1}^n e^{-\left(\frac{t}{\theta_i}\right)^{\beta_i}} = e^{-\sum_{i=1}^n \left(\frac{t}{\theta_i}\right)^{\beta_i}}$$

$$\lambda(t) = \frac{e^{-\sum_{i=1}^{n} \left(\frac{t}{\theta_{i}}\right)^{\beta_{i}} \left[\sum_{i=1}^{n} \frac{\beta_{i}}{\theta_{i}} \left(\frac{t}{\theta_{i}}\right)^{\beta_{i}-1}\right]}}{e^{-\sum_{i=1}^{n} \left(\frac{t}{\theta_{i}}\right)^{\beta_{i}}}} = \sum_{i=1}^{n} \frac{\beta_{i}}{\theta_{i}} \left(\frac{t}{\theta_{i}}\right)^{\beta_{i}-1}}{i=1}$$

Components in Series - Example

A communications satellite consists of the following components:

	Probability	Shape	Characteristic
Component	Distribution	Parameter	life
Power unit	Weibull	2.7	43,800 hr.
Receiver	Weibull	1.4	75,000 hr.
Transmitter	Weibull	1.8	68,000 hr.
Antennae	Exponential	MTTF = 100,	000 hr.

Components in Series - Example

$$\lambda_{S}(t) = \frac{2.7}{43,800} \left(\frac{t}{43,800}\right)^{1.7} + \frac{1.4}{75,000} \left(\frac{t}{75,000}\right)^{.4} + \frac{1.8}{68,000} \left(\frac{t}{68,000}\right)^{.8} + \frac{1}{100,000}$$

$$R_s(t) = e^{-\left(\frac{t}{43,800}\right)^{2.7}} e^{-\left(\frac{t}{75,000}\right)^{1.4}} e^{-\left(\frac{t}{68,000}\right)^{1.8}} e^{-\frac{t}{100,000}}$$

$$R_{s}(17,520) = e^{-\left(\frac{17,520}{43,800}\right)^{2.7}} e^{-\left(\frac{17,520}{75,000}\right)^{1.4}} e^{-\left(\frac{17,520}{68,000}\right)^{1.8}} e^{\frac{17,520}{100,000}} = .62$$

Class Exercise

The failure distribution of the main landing gear of a commercial airliner is Weibull with a shape parameter of 1.6 and a characteristic life of 10,000 landings. The nose gear also has a Weibull distribution with a shape parameter of .90 and a characteristic life of 15000 landings. What is the reliability of the landing gear system if the system is to be overhauled after 1000 landings?

Class Exercise - solution

$$R(1000) = e^{-\left(\frac{1000}{10,000}\right)^{1.6}} e^{-\left(\frac{1000}{15,000}\right)^{.9} = (.975)(.916) = .893}$$

Parallel Configuration

$$R_s = P\{E1 \cup E2\} = 1 - P\{(E1 \cup E2)^c\}$$

$$= 1 - P\{E1^c \cap E2^c\}$$

$$= 1 - P\{E1^c\} P\{E2^c\} = 1 - (1-R_1) (1-R_2)$$

where E1 = event, component 1 does not fail E2 = event, component 2 does not fail, and $Pr{E1} = R_1$ and $Pr{E2} = R_2$

The probability at least one component does not fail!

Parallel Configuration - Generalization

$$R_{s}(t) = 1 - \prod_{i=1}^{n} [1 - R_{i}(t)]$$

$$R_s(t) >= \max \{R_1(t), R_2(t), ..., R_n(t)\}$$

Parallel Configuration - CFR Model

$$R_{s}(t) = 1 - \prod_{i=1}^{n} \left[1 - e^{-\lambda_{i}t} \right]$$

Parallel Configuration – 2-component CFR Model

$$R_{s}(t) = 1 - \prod_{i=1}^{n} \left[1 - e^{-\lambda_{i}t}\right]$$

For n = 2:

$$R_s(t) = 1 - (1 - e^{-\lambda_1 t})(1 - e^{-\lambda_2 t})$$

= $e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t}$

$$MTTF = \int_0^\infty R_s(t)dt = \int_0^\infty e^{-\lambda_1 t} dt + \int_0^\infty e^{-\lambda_2 t} dt - \int_0^\infty e^{-(\lambda_1 + \lambda_2)t} dt$$
$$= \frac{1}{\lambda_1} + \frac{1}{\lambda_2} - \frac{1}{\lambda_1 + \lambda_2}$$

$$R_{s}(t) = 1 - \prod_{i=1}^{n} \left[1 - e^{-\left(\frac{t}{\theta_{i}}\right)^{B_{i}}} \right]$$

If n identical Weibull components are in parallel:

$$R_{s}(t) = 1 - \left[1 - e^{-\left(\frac{t}{\theta}\right)^{B}}\right]^{n}$$

Parallel Configuration - Example

A circuit breaker has a Weibull failure distribution (against a power surge) with beta equal to .75 and a characteristic life of 12 years.

$$R(1) = e^{-\left(\frac{1}{12}\right)^{.75}} = .856$$

Determine the one year reliability if two identical circuit breakers are redundant.

Two redundant breakers have a reliability function of:

$$R(t) = 1 - \left[1 - e^{-\left(\frac{t}{12}\right)^{.75}}\right]^{2}$$

$$R(1) = 1 - \left[1 - e^{-\left(\frac{1}{12}\right)^{.75}}\right]^2 = 1 - (1 - .856)^2 = .979$$

Question: how are two redundant circuit breakers physically configured?

$$R_A = [1 - (1 - R_1) (1 - R_2)]$$

$$R_B = R_A R_3$$

$$R_A = [1 - (1 - R_1) (1 - R_2)]$$

$$R_s = [1 - (1 - R_B) (1 - R_c)] R_6$$

High Level Redundancy

$$R_{high} = 1 - (1-R^2)^2 = 1 - [1-2 R^2 + R^4] = 2R^2 - R^4$$

Low Level Redundancy

$$R_{LOW} = [1-(1-R)^2]^2 = [1-(1-2R+R^2)]^2 = (2R-R^2)^2$$

High vs Low Level Redundancy

$$R_{low} - R_{high} = (2R - R^2)^2 - (2R^2 - R^4)$$

$$= R^2 (2-R)^2 - R^2 (2 - R^2)$$

$$= R^2 [4 - 4R + R^2 - 2 + R^2]$$

$$= 2 R^2 [R^2 - 2R + 1] = 2 R^2 (R - 1)^2 \ge 0$$

Let n = the number of redundant, identical and independent components each having a reliability of R.

Let X = a random variable, the number of components (out of n components) operating. Then

$$\Pr\{X=x\}=P(x)=\binom{n}{x}R^x(1-R)^{n-x}$$

If k (<= n) components must operate for the system to operate:

$$R_s = \sum_{x=K}^N P(x)$$

k-out-of-n Redundancy Exponential Distribution

$$R_{s}(t) = \sum_{x=k}^{N} {N \choose x} e^{-\lambda xt} \left[1 - e^{-\lambda t}\right]^{N-x}$$

$$MTTF = \int_0^\infty R_s(t)dt = \frac{1}{\lambda} \sum_{x=k}^N \frac{1}{x}$$

Out of the 12 identical AC generators on the C-5 aircraft, at least 9 of them must be operating in order for the aircraft to complete its mission. Failures are known to follow an exponential distribution with a mean of 100 operating hours. What is the reliability of the generator system over a 10 hour mission? Find the MTTF.

A Very Good Solution

Let T_i = time to failure of the ith generator

$$Pr\{T_i \ge 10\} = e^{-10/100} = .9048$$

$$R_{s}(t) = \sum_{x=9}^{12} {12 \choose x} .9048^{x} \left[1 - .9048\right]^{12-x} = .9782$$

$$M \ T \ T \ F = 100 \sum_{x=9}^{12} \frac{1}{x} = 38.53 \text{ hours}$$

Complex Configurations

a. linked network:

Decomposition Approach

(b) Component E does not fail, R_E:

$$R_{(b)} = [1-(1-R_A)(1-R_B)][1-(1-R_C)(1-R_D)]$$

Decomposition Approach

(c) Component E fails $(1-R_E)$:

$$R_{(c)} = 1 - (1 - R_A R_C) (1 - R_B R_D)$$

Decomposition Approach

$$R_S = R_E R_{(b)} + (1 - R_E) R_{(c)}$$

if
$$R_A = R_B = .9$$
, $R_C = R_D = .95$, and $R_E = .80$, then $R_{(b)} = [1-(1-.9)^2][1-(1-.95)^2] = .99 \times .9975 = .9875$ $R_{(c)} = 1 - [1-(.9) (.95)]^2 = .978975$

$$R_s = .8 (.9875) + (1-.8) (.978975) = .9858$$

Enumeration Method

S = success; F = failure

A	<u>B</u>	<u>C</u>	D	<u>E</u>	System	Probability
S	S	S	S	S	S	.58482
F	S	S	S	S	S	.06498
S	F	S	S	S	S	.06498
S	S	F	S	S	S	.03078
S	S	S	F	S	S	.03078
S	S	S	S	F	S	.146205
F	F	S	S	S	F	
S	F	F	S	S	S	.00342
S	S	F	F	S	F	
S	S	S	F	F	S	.007695
					TOTAL	.9858
	•	•	•	•		•
						•

Example – Automotive Braking System

Case I. BP3 fails and BP4 is operational.

1.
$$P_I = [1 - R(BP)] R(BP)$$

- 2. $R_f = R(M)\{1 [1 R(WC) R(BP)]^2 [1 R(WC)]\}.$
- 3. $R\{mechanical\} = R(C)$
- 4. These two subsystems operate in parallel, therefore, $R_I = 1 [1 R_f] [1 R(C)]$.

Case II. BP4 fails and BP3 is operational.

Then $P_{II} = P_{I}$ and $R_{II} = R_{I}$ (by symmetry of the network and assuming identical reliabilities)

Case III. BP3 and BP4 have failed.

1.
$$P_{III} = [1 - R(BP)]^2$$

2. Cable system has failed.

3.
$$R_{III} = R(M) \{1 - [1 - R(WC) R(BP)]^2 \}$$

Case IV. Both BP3 and BP4 are operational.

- 1. $P_{IV} = [R(BP)]^2$
- 2. $R_f = R(M)\{1 [1 R(WC) R(BP)]2 [1 R(WC)]2\}.$
- 3. $R\{cable system\} = R(C)$
- 4. $R_{IV} = 1 [1 Rf] [1 R(C)]$

The overall system reliability can now be found from:

$$R_S = P_I R_I + P_{II} R_{II} + P_{III} R_{III} + P_{IV} R_{IV}$$

A Common Everyday Reliability Block Diagram to Solve

A Common Everyday Reliability Block Diagram – solved

$$1-(1-.8)(1-.81) = .962$$

$$R_s = (.962) (.95) (.94) = .859066$$

Summary

- Series Configuration
- Parallel Configuration
- Combined Series-Parallel Configuration
- High / Low Level Redundancy
- K out-of-n Redundancy
- Complex Configurations linked networks