AML4_Dx

jtrincado

2022-02-08 15:43:12

Contents

	1. Put together both 34 and 38 libraries. Apply QC and dimensionality reduction
	Put together both 34 and 38 libraries. Apply QC and dimensionality reduction.
## ##	Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##	Number of nodes: 6060
##	Number of edges: 202291
##	
##	Running Louvain algorithm
##	Maximum modularity in 10 random starts: 0.8474
##	Number of communities: 10
##	Elapsed time: 0 seconds

Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R ## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation' ## This message will be shown once per session

2. Get the LSC6 score

[1] "CD34" "SPINK2" "SOCS2" "FAM30A" "ADGRG1" "DNMT3B"

3. Predict the class of the cells using the markers and the expression of the BM cells form $Van_Galen\ paper$

```
## Performing PCA on the provided reference using 1821 features as input.
```

- ## Projecting cell embeddings
- ## Finding neighborhoods
- ## Finding anchors
- ## Found 1896 anchors
- ## Filtering anchors
- ## Retained 1082 anchors
- ## Finding integration vectors
- ## Finding integration vector weights
- ## Predicting cell labels

##													
##		HSC	Prog	GMP	${\tt ProMono}$	${\tt Mono}$	cDC	pDC	earlyEry	lateEry	${\tt ProB}$	В	Plasma
##	CD34	10	3	477	1113	436	128	9	11	1	0	1	0
##	CD38	5	0	92	2871	375	487	35	0	1	0	0	0

4. Project the predictions from Velten onto our UMAP

Cluster 9 seems the one with greater LSC6 score, spite of there isn't HSC-like predicted cells