Zauberhafte Normalteiler

Definition (1.1). Sei (G, \circ) eine Gruppe und $U \subset G$ eine Untergruppe. U heißt **Normalteiler** von $G \iff \forall g \in G : gUg^{-1} = U$

Bemerkung. Im Allgemeinen ist $U \subset G$ kein Normalteiler Wir suchen größte Untergruppe von G, in der U Normalteiler ist. Wir wollen also V finden sodass

- i) $U \subset V$ (U ist in V enthalten)
- ii) U ist Normalteiler in V
- iii) Ist V' eine weitere Untergruppe von G die i) und ii) erfüllt, so gilt $V' \subset V$. (V ist größtmöglich)

Definition (2.2). Sei (G, \circ) eine Gruppe und $U \subset G$ eine Untergruppe. Der **Normalisator** von U in G ist definiert als $N_G(U) := \{g \in G \mid gUg^{-1} = U\}$

Satz (2.3). $N_G(U)$ ist Untergruppe von G und erfüllt die Eigenschaften i) bis iii).

Satz (2.4). Seien G, U und $N_G(U)$ wie gehabt.

Seien ferner $m \in \mathbb{N}$, $x_1, \ldots, x_m \in N_G(U)$ und $u_0, \ldots, u_m \in U$. Dann gilt für ein geeignetes $u \in U$:

$$u_m \circ x_m \circ u_{m-1} \circ x_{m-1} \circ \ldots \circ u_1 \circ x_1 \circ u_0 = x_m \circ \ldots \circ x_1 \circ u.$$

Insbesondere:

$$x_m \circ \ldots \circ x_1 \in U \implies u_m \circ x_m \circ u_{m-1} \circ x_{m-1} \circ \ldots \circ u_1 \circ x_1 \circ u_0 \in U.$$

Definition (3.1). Die Gruppe aller Permutationen mit n Karten entspricht der **symmetrischen Gruppe** S_n . Jede Permutation lässt sich mit $\mathbb{Z}_n := \{0, \dots, n-1\}$ als bijektive Abbildung $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ identifizieren.

Definition (3.2). Sei $r \in \mathbb{Z}_n$. Die Permutation $s_r : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$, $k \longmapsto s_r(k) = k + r \mod n$ entspricht einem zyklischen Shift im Kartenstapel. s_r ist bijektiv, also $s_r \in S_n$.

Satz (3.4). $S := \{s_r \mid r \in \mathbb{Z}_n\}$ ist kommutative Untergruppe von S_n .

Definition (4.1). Wir definieren $\phi_a : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$, $k \longmapsto \phi_a(k) = ak \mod n$. ϕ_a ist bijektiv $\Leftrightarrow a$ und n teilerfremd. In dem Fall gilt $\phi_a \in S_n$

Definition (4.2). Seien $a, b \in \mathbb{Z}$. Definiere $\phi_{a,b} : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$, $k \longmapsto \phi_{a,b}(k) = ak + b \mod n$. $\phi_{a,b}$ ist bijektiv $\Leftrightarrow a$ und n teilerfremd.

Lemma (4.4). Sei $\phi \in S_n$ bijektiv. Dann gilt:

$$\exists a \in \mathbb{Z}_n^*, b \in \mathbb{Z}_n : \phi = \phi_{a,b} \iff \exists a \in \mathbb{Z}_n : \forall k \in \mathbb{Z}_n : \phi(k+1) = \phi(k) + a \mod n$$

Satz (4.5). Der Normalisator von S in S_n ist $N_{S_n}(S) = \{\phi_{a,b} \mid a,b \in \mathbb{N} \text{ teilerfremd}\}$

Bemerkung (5.1). Seien $c, n \in \mathbb{N}$. Wir definieren folgende Mischoperationen:

- i) R_c : Teile die n Karten von links nach rechts auf c Stapel aus. Danach werden die Karten wieder aufgenommen, und zwar von rechts nach links. Ganz nach oben kommt also der Stapel ganz links.
- ii) L_c : Von links nach rechts austeilen, dieses Mal von links nach rechts aufnehmen. Ganz nach oben kommt also der Stapel ganz rechts.

Satz (5.2). R_c und L_c wie gehabt. Dann gilt:

- i) Wenn c ein Teiler von c-1 und a:=(n-1)/c, dann sind a und n teilerfremd und R_c entspricht $\phi_{a,a}$.
- ii) Wenn c ein Teiler von c+1 und a:=(n+1)/c, dann sind a und n teilerfremd und L_c entspricht $\phi_{-a,-1}$.

Lemma (5.3). Für $n \in N$ sei $A_n := \{x | n-1 \text{ durch } x \text{ teilbar} \}$ und $B_n := \{x | n+1 \text{ durch } x \text{ teilbar} \}$.

Wähle $a_1, \ldots, a_r \in A_n$ und $a'_1, \ldots, a'_l \in B_n$ aus. Sei a das Produkt aller a_i und a'_j . Wähle c_i bzw c'_j sodass $c_i a_i = n - 1$, bzw $c'_j a'_j = n + 1$.

Führe auf einen Kartenstapel R_{c_1}, \ldots, R_{c_r} und $L_{c'_1}, \ldots, L_{c'_l}$ in beliebiger Reihenfolge durch. Dazwischen darf noch zusätzlich abgehoben werden. Der Kartenstapel befindet sich in der Permutation $\phi_{a,b}$, mit unbekanntem b falls das Abheben beliebig stattfindet.

Für uns von zentraler Bedeutung: a = 1 oder a = -1

⇒ Die Karten sind in der gleichen, bzw der gespiegelten zyklischen Reihenfolge.

Im Fall vom Originaltrick:

n = 9, $A_n = \{1, 2, 4, 8\}$. Wir wählen $a_1 = a_2 = a_3 = 4$ und somit $c_1 = c_2 = c_3 = 2$.

Es gilt $a = a_1 \cdot a_2 \cdot a_3 = 4 \cdot 4 \cdot 4 = 64 \equiv 1 \mod 9$. Wendet man R_2 also 3 Mal auf den Kartenstapel an, so ist das äquivalent zu $\phi_{1,r} = s_r$. Das ganze entspricht also einem zyklischen Shift um r Stellen.