

ET2438

Welcome

- Lectures Sven Olof Larsson
- Laborations Karel de Vogeleer
- Individual work (to be defined)

Course Objektives

After the course you should:

- Understand principles of TCP/IP internetworking
- Have familiarity with TCP/IP protocols
- Have familiarity with IP routing and design of networks within autonomous systems
- Understand mobile IP
- Understand DNS
- Be able to set up, configure and run simple networks within autonomous systems
- Be able to examine, analyze and evaluate diverse Internet protocols with the help of Opnet simulator
- Be able to do future research and development within the Internet domain.

Schedule

All lectures are in Landstingssalen at Wämö Center 09:00 – 12:00*

Week	Мо	Tu	We	Th	Fr
36		1-3, 10			
37		4, 5, 9	6-8		13-14
38			15 + ex.	11, 12	
39		12 + ex.*			16-18
40			19-21	Reserve	22, 23
41	24-27		28, 29		30, 31
42		Rehearsal			

*) Tuesday 22/9, week 39 is 13:00 - 16:00

Course Book

Comer, D. E.,

Internetworking with TCP/IP

Principles, Protocols, and Architectures, Volume 1, Prentice-Hall, Inc., 2006 (5th edition),

ISBN 0-13-187671-6

We will use a "bottom-up" approach.

Internet

Continental Core Networks

National/Regional Networks - WANs

Local Area Networks - LANs

With other words...

Intermediate System (IS)

Autonomous Systems – AS (Typically ISPs)

Overview

- All networks behave the same, at some level of abstraction (IP level)
- All levels are arranged into layers
- The abstraction is implemented by the use of protocols (conventions, rules on how to behave)
- Protocols are described in standards RFCs
- Standards are coordinated by IETF (Internet Engineering Task Force)

Protocol Layers

Most important protocol layer designs:

- ISO (Intl. Standards Org.) has made the OSI (Open Systems Interconnection) 7 layer model
- DoD (Department of Defense) model (4 layers)
- TCP/IP model (4 layers): actual Internet model

OSI Reference Model

To allow access to network Application resources To translate, encrypt, and Presentation compress data To establish, manage, and Session terminate sessions To provide reliable process-toprocess message delivery and Transport To move packets from source error recovery to destination; to provide Network internetworking To organize bits into frames; Data link to provide hop-to-hop delivery To transmit bits over a medium: Physical to provide mechanical and electrical specifications

Physical communication

Encapsulation

TCP/IP Reference Model

Layer

Application

Transport

Internet

Network Interface

Objects passed

Internet Standards

Groups that coordinate diverse Internet issues

- Internet Society (ISOC)
- Internet Architecture Board (IAB)
- Internet Research Task Force (IRTF)
- Internet Research Steering Group (IRSG)
- Research Group (RG)
- Internet Engineering Task Force (IETF)
- Internet Engineering Steering Group (IESG)
- Working Groups(WG)
- Internet Assigned Numbers Authority (IANA)
- Internet Cooperation for Assigned Names and Numbers (ICANN)
- Network Information Center (NIC)

Network HW Technologies

- Types of communication networks
 - Telephone Networks (PSTN)
 - Local Area Networks (LAN): IEEE 802.3 (CSMA/CD)
 - Wireless Local Area Networks (WLAN): IEEE 802.11
 - Wide Area Networks (WAN): ADSL; CATV; SONET; FTTH; PPP;
 X.25; FR; ATM
 - Metropolitan Area Networks (MAN)
 - Radio Networks (RN): single-hop; multi-hop
 - Mobile Communication Networks (MCN): GSM; UMTS
 - Satellite Networks (SN)
 - Cable Television (CT)
 - **–**
- Ethernet implementations
 - 10BASE5; 10BASE2; 10BASE-T; 10BASE-FL;
 - Fast Ethernet: 100BASE-TX; 100BASE-FX; 100BASE-T4;
 - Gigabit Ethernet: 1000BASE-SX/LX; 1000BASE-T;
- Different standards for PHY and DLL (OSI data link layer)

Maximum Transmission Unit - MTU

- Examples of MTU (in bytes):
 - 1500 (Ethernet IEEE 802.3)
 - 8191 (Token Bus IEEE 802.4)
 - 4464 (Token Ring IEEE 802.5)
 - 4352 (FDDI)
 - 576 (X.25) IP specified minimum size
 - 53 (ATM)
 -
- In order to avoid segmentation, one needs to know the so-called **Path MTU**, (smallest MTU of the end-to-end path)
- Besides MTU, there is also a minimum transmission unit, e.g. 46 bytes (Ethernet)

Switching Technology

Circuit Switched

"Bandwidth allocation" (Reservation of resources)

Low multiplexing gain

Intelligent network – Simple hosts

Packet Switched

No reservations needed (Packets can get lost. Store & Forward)

High multiplexing gain

Intelligent hosts – Simple network

Mechanisms at transport level makes It reliable (Virtual connections end-to-end, retransmissions etc.)

