代数 0 R1 班 作业 8

2022年5月25日

1 基础题

本部分题必做.

题 1. 设 W 是 \mathbb{R}^n 的子空间, 证明 $(W^{\perp})^{\perp} = W$.

题 2. 求 ℝ⁴(配标准内积)中,下列向量组生成的子空间的正交补的一组基.

1. $\{(1,0,2,1),(2,1,2,3),(0,1,-2,1)\};$

 $2. \{(1,1,1,1),(-1,1,-1,1),(2,0,2,0)\}.$

题 3. 记 $R_n = \mathbb{R}[x]_{\leq n}$ 为全体次数不超过 n 的多项式构成的线性空间, 其上配有内积

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx.$$

- 称形如 $P_0(x)=1, P_k(x)=rac{1}{2^k k!}rac{d^k}{dx^k}[(x^2-1)^k], k=1,2,\cdots,n$ 的多项 式为 Legendre 多项式. 证明 P_0,P_1,\cdots,P_n 构成 R_n 的一组正交基.
- 设 f 是次数为 n 的首一多项式, 求 f 长度 (即 $\sqrt{(f,f)})$ 的最小值.
- $x^n ext{ } ext{$

题 4. 设 V 是有限维 \mathbb{R} -向量空间, $f\colon V\times V\to\mathbb{R}$ 双线性型, 满足对 $x,y\in V$, $f(x,y)=0\Leftrightarrow f(y,x)=0$. 证明, f 要么是对称的, 要么是反对称的.

注: 称 f 是反对称的, 如果对任何 $x,y \in V, f(x,y) = -f(y,x)$.

题 5. 对顶点为 $\{v_1,\cdots,v_n\}$ 的图 Γ , 考虑 \mathbb{R}^n 上的对称双线性型

$$q_{\Gamma}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j,$$

其中当 i=j 时 $a_{ij}=2$,当 $i\neq j$ 且 v_i,v_j 相邻 (有一条边连接) 时, $a_{ij}=-1$,其余情况 $a_{ij}=0$. 证明,对下面这些图 Γ , q_Γ 是正定的:

图 1: Simply Laced Dynkin Diagrams

题 6. 设 $(E,\langle\cdot,\cdot\rangle)$ 是一个有限维实内积空间. 假设 $\{v_1,\cdots,v_n\}$ 是其一组基,满足 $\langle v_i,v_j\rangle\leq 0$,对任何 i,j (几何上看,这说两两夹角都是直角或钝角).

- 证明, 存在唯一的向量 v_i^* 使得 $\langle v_i^*, v_j \rangle = \delta_{ij}$, 其中 δ_{ij} 为 Kronecker 符号, 当 i = j 时为 1, 其余情况为 0.
- 证明 $\langle v_i^*, v_j^* \rangle \ge 0$, 对任何 i, j (几何上看, 这说两两夹角是直角或锐角).

题 7. (Hadamard 不等式) 对 $A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{R})$, 证明

$$(\det A)^2 \le \prod_{i=1}^n \left(\sum_{j=1}^n a_{ij}^2\right).$$

等号成立的条件是什么?

题 8. 设 $(E, \langle \cdot, \cdot \rangle)$ 是一个有限维实内积空间.

• 对任何 $0 \neq \alpha \in E$, 定义 E 上的一个线性变换

$$s_{\alpha}: \beta \mapsto \beta - 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

证明, s_{α} 保持内积, 即 $s_{\alpha} \in O(E)$.

几何上看, s_{α} 是关于垂直于 α 的超平面的反射.

- 求 s_{α} 在实数域上的相似标准型 (原本 s_{α} 是一个线性变换,但固定一组基后其成为一个矩阵. 而相似标准型和基的选取无关).
- 如果你正确计算了上述相似标准型, 可以看出对任何 $0 \neq \alpha, \beta$, 都有 s_{α} 和 s_{β} 相似. 直接证明之, 即找到 E 的线性同构 w, 使得 $ws_{\alpha}w^{-1} = s_{\beta}$.

下面我们引入根系的概念. 根系是研究复半单 Lie 代数的强大工具, 但它的性质基本都是初等的几何问题.

设 $R \in E - \{0\}$ 的一个有限子集. 称 (E,R) 是一个根系, 如果

- 1. R 生成了 E.
- 2. 对任何 $\alpha, \beta \in R$, 数 $2\frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.
- 3. 对任何 $\alpha, \beta \in R, s_{\alpha}(\beta) \in R.$

进一步称 R 是一个约化根系, 如果对任何 $\alpha, \beta \in R$ 且 α, β 线性相关, 有 $\beta = \pm \alpha$.

• 设 (E,R), (F,S) 都是约化根系, 证明 $(E \oplus F, R \cup S)$ 也是约化根系. 这里把 R 理解为 $R \oplus 0$, S 理解为 $0 \oplus S$.

约化根系 (E,R) 称为可约的,如果存在非平凡的子空间 E_1,E_2 使得 $E_1 \oplus E_2 = R$ 且 $R = (R \cap E_1) \cup (R \cap E_2)$. 若 (E,R) 不是可约的,则称其为不可约的.

- 在同构意义下, 求 \mathbb{R}^2 里的所有约化根系 (提示: 共 4 个). 其中有哪些是不可约的?

注: 三类对象,即 (几何对象) 约化根系, (组合对象) Dynkin 图和 (代数对象) 复半单 Lie 代数在同构意义下有着——对应的关系. 因此分类了所有根系便能分类所有复半单 Lie 代数. 上面的例子应该已经让大家看到, 根系的分类完全是初等几何学的讨论.

题 9. 设 $(E,\langle\cdot,\cdot\rangle)$ 是一个有限维实内积空间. 定义反对称变换 T 为满足 $\langle T(v),w\rangle=-\langle v,T(w)\rangle$ 的线性变换. 请找出 T 在标准正交基下的矩阵的最简型. (或者反对陈矩阵在正交矩阵的共轭下的分类.)

题 10. 设 $(E,\langle\cdot,\cdot\rangle)$ 是一个 n 维实内积空间. 假设 T 是一个对称变换,有特征值 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. 证明对称变换的特征值可以由如下的 Min-Max 方法给出.

 $\lambda_k = \min \left\{ \max \left\{ \langle T(x), x \rangle : x \perp W_k, |x| = 1 \right\} : W_k \subset E$ 子空间, $\dim W_k = k - 1 \right\}$ 这里先固定 k-1 维子空间 W_k ,取出对应的最大值

$$\max \left\{ \langle T(x), x \rangle : x \perp W_k, |x| = 1 \right\}.$$

然后让 W_k 取遍 k-1 维子空间,取出这些值中的最小值。

2 思考题

本部分题选做,不计成绩.

题 11. $SO(3,\mathbb{R})$ 在 \mathbb{R}^3 上的作用可以延拓到三个变元的多项式环 $\mathbb{R}[X_1,X_2,X_3]$ 上,即 $A.f(\mathbb{X})=f(A^{-1}\mathbb{X}), A\in SO(3,\mathbb{R}), f\in \mathbb{R}[X_1,X_2,X_3]=\mathbb{R}[\mathbb{X}].$ 求所 有 $f\in \mathbb{R}[X_1,X_2,X_3]$,使得对任意 $A\in SO(3,\mathbb{R}), A.f=f.$

提示: $|\mathbb{X}|^2=X_1^2+X_2^2+X_3^2$ 就是一个满足要求的例子. 一般地,利用 Null stellen satz.