Representation of Image, Text and Signals

Image to Matrix representation

Signal to Matrix representation

Text to Matrix representation

Sentece 1: We are in DCS.

Sentece 2: DCS is in Vidyavardhaka.

Sentece 3: Vidyavardhaka is in Mysore.

Vocabulary/Dictionary = Vidyavardhaka, are, We, in, DCS, is, Mysore

	Vidyavardhaka	are	We	in	DCS	is	Mysore
Sentence 1	0	1	1	1	1	0	0
Sentence 2	1	0	0	1	1	1	0
Sentence 3	1	0	0	1	0	1	1

- 1. Bag-of-words
- 2. Term document matrix (TDM)
- 3. Term-frequency inverse document frequency (TFIDF)
- 4. TDM+SVD
- 5. TDM+NMF
- 6. TFIDF+SVD
- 7. TFIDF+NMF
- 8. Doc2vec
- 9. Word embedding (Skip gram, CBOW, and glovec)
- 10. fastText
- 11. BERT (Bidirectional Encoder Representations from Transformers)

Word embedding (Skip gram)

Fig. 1. The skip-gram model. Both the input vector \mathbf{x} and the output \mathbf{y} are one-hot encoded word representations. The hidden layer is the word embedding of size N.

Word embedding (CBOW)

Fig. 2. The CBOW model. Word vectors of multiple context words are averaged to get a fixed-length vector as in the hidden layer. Other symbols have the same meanings as in Fig 1.