On R-models

Daniel Rogozin^{1,2}

¹Lomonosov Moscow State University ²Serokell OÜ

Definition 1.

$$\overline{A \to A} \xrightarrow{ax}$$

$$\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, \Gamma, A \backslash B, \Theta \to C} \backslash \to \qquad \qquad \frac{A, \Pi \to B}{\Pi \to A \backslash B} \to \backslash$$

$$\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, B / A, \Gamma, \Theta \to C} / \to \qquad \qquad \frac{\Pi, A \to B}{\Pi \to B / A} \to /$$

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \bullet B, \Delta \to C} \bullet \to \qquad \qquad \frac{\Gamma \to A \qquad \Delta \to B}{\Gamma, \Delta \to A \bullet B} \to \bullet$$

Definition 2.

R-model is a pair $\mathcal{M} = \langle W, R, v \rangle$, where R is a transitive relation on W and $v : Tp \to 2^R$ is a valuation, such that:

- 1. $\mathcal{M}, w \models p_i \Leftrightarrow w \in v(p_i);$
- 2. $\mathcal{M}, \langle a, b \rangle \models A \bullet B \Leftrightarrow there \ exists \ c \in W, \ \mathcal{M}, a \models A \ and \ \mathcal{M}, b \models B;$
- 3. $\mathcal{M}, \langle a, b \rangle \models A \backslash B \Leftrightarrow \text{for all } c \in R^{-1}(a), \ \mathcal{M}, \langle c, a \rangle \models A \text{ implies } \mathcal{M}, \langle c, b \rangle \models B;$
- 4. $\mathcal{M}, \langle a, b \rangle \models B/A \Leftrightarrow \text{for all } c \in R(a), \ \mathcal{M}, \langle a, c \rangle \models A \text{ implies } \mathcal{M}, \langle b, c \rangle \models B;$
- 5. $\mathcal{M}, \langle a, b \rangle \models \Gamma \rightarrow A \Leftrightarrow \mathcal{M}, \langle a, b \rangle \models \Gamma \text{ implies } \mathcal{M}, \langle a, b \rangle \models A$

where $\mathcal{M}, \langle a, b \rangle \models \Gamma$ denotes $\mathcal{M}, \langle a, b \rangle \models A_1 \bullet \cdots \bullet A_n$, or, equivalently, there exist c_1, \ldots, c_{n-1} , such that $\mathcal{M}, \langle a, c_1 \rangle \models A_1, \mathcal{M}, \langle c_1, c_2 \rangle \models A_2, \ldots, \mathcal{M}, \langle c_{n-1}, b \rangle \models A_n$ implies that $\mathcal{M}, \langle a, b \rangle \models B$.

Theorem 1. Let \mathbb{F} be a R-frame, then $\mathbb{F} \models L$.

Definition 3.

Let \mathcal{F}_1 , \mathcal{F}_2 be R-frames and $\mathcal{M}_1 = \langle \mathcal{F}_1, v_1 \rangle$, $\mathcal{M}_2 = \langle \mathcal{F}_2, v_2 \rangle$ be R-models. A map $f: W_1 \to W_2$ is said to be a R-frame p-morphism if the following conditions hold:

- 1. f is onto;
- 2. $\forall a, b \in W_1(aR_1b \Rightarrow f(a)R_2f(b))$ (monotonicity);

- 3. $\forall d \in W_1, c \in W_2, f(d)R_2c \Rightarrow \exists c' \in W_1, f(c') = c \& dR_1c' \text{ (left lift property)};$
- 4. $\forall d \in W_1, c \in W_2, cR_2f(d) \Rightarrow \exists c' \in W_1, f(c') = c \& c'R_1d \text{ (right lift property)}.$

A map $f: \mathcal{F}_1 \to \mathcal{F}_2$ is R-model p-moprhism, iff:

$$\mathcal{M}_1, \langle a, b \rangle \models p_i \Leftrightarrow \mathcal{M}_2, \langle f(a), f(b) \rangle \models p_i$$

Lemma 1. Let $f: \mathcal{M}_1 \twoheadrightarrow \mathcal{M}_2$, then $\mathcal{M}_1, \langle a, b \rangle \models A \Leftrightarrow \mathcal{M}_2, \langle f(a), f(b) \rangle \models A$, for all $a, b \in W_1$ and for all $A \in Fm$

Proof.

$1. \Rightarrow$

- (a) Basic case: follows from the definition.
- (b) Let $A = B \bullet C$ and $\mathcal{M}_1, \langle a, b \rangle \models B \bullet C$, then there exists $c \in W_1$, such that $\mathcal{M}_1, \langle a, c \rangle \models B$ and $\mathcal{M}_1, \langle c, b \rangle \models C$. Then, aR_1c and cR_1b , so $f(a)R_2f(c)$ and $f(c)R_2f(b)$. Thus, by IH, $\mathcal{M}_2, \langle f(a), f(c) \rangle \models B$ and $\mathcal{M}_2, \langle f(c), f(b) \rangle \models C$, so $\mathcal{M}_2, \langle f(a), f(b) \rangle \models B \bullet C$.
- (c) Let $A = B \setminus C$ and $\mathcal{M}_1, \langle a, b \rangle \models B \setminus C$. Let $c \in W_2$, such that $cR_2f(a)$. Then, by left lift property, there exist $d \in W_1$, such that f(d) = c and dR_1a . Thus, $\mathcal{M}_1, \langle d, a \rangle \models A$ implies $\mathcal{M}_1, \langle d, b \rangle \models B$. By IH, $\mathcal{M}_2, \langle c, f(a) \rangle \models A$ implies $\mathcal{M}_2, \langle c, f(b) \rangle \models B$, then $\mathcal{M}_2, \langle f(a), f(b) \rangle \models A \setminus B$.
- (d) Similarly to (c), but via right lift property.

2. ←

- (a) Basic case: follows from the definition.
- (b) Let $A = B \bullet C$. Let $\mathcal{M}_2, \langle f(a), f(b) \rangle \models B \bullet C$. Then there exists $c \in W_2$, such that $\mathcal{M}_2, \langle f(a), c \rangle \models B$ and $\mathcal{M}_2, \langle c, f(b) \rangle \models C$. So far as f is onto, then there exists $d \in W_1$, such that c = f(d), then $\mathcal{M}_2, \langle f(a), f(d) \rangle \models B$ and $\mathcal{M}_2, \langle f(d), f(b) \rangle \models C$, and, by IH, $\mathcal{M}_1, \langle a, d \rangle \models B$ and $\mathcal{M}_1, \langle d, b \rangle \models C$, then $\mathcal{M}_1, \langle a, b \rangle \models B \bullet C$.
- (c) Let $A = B \setminus C$ and $\mathcal{M}_2, \langle f(a), f(b) \rangle \models B \setminus C$. Let $c \in W_1$ and cR_1a , then $f(c)R_1f(a)$ by monotonicity, so $\mathcal{M}_2, \langle f(c), f(a) \rangle \models A$ implies $\mathcal{M}_2, \langle f(c), f(b) \rangle \models B$. By IH, $\mathcal{M}_1, \langle c, a \rangle \models A$ implies $\mathcal{M}_1, \langle c, b \rangle \models B$. Thus, $\mathcal{M}_1, \langle c, a \rangle \models A \setminus B$.
- (d) Similarly to (c).

Lemma 2.

- 1. Let \mathcal{M}_1 and \mathcal{M}_2 be R-models and $f: \mathcal{M}_1 \twoheadrightarrow \mathcal{M}_2$. Then $\mathcal{M}_1 \models A$ iff $\mathcal{M}_2 \models A$.
- 2. Let \mathcal{F}_1 and \mathcal{F}_2 be R-frames and $f: \mathcal{F}_1 \twoheadrightarrow \mathcal{F}_2$, then $\mathcal{F}_1 \models A$ implies $\mathcal{F}_2 \models A$.

Proof.

1. • Only if:

Let $\mathcal{M}_1 \models A$. Let $c, d \in W_2$. So far as f is onto, then there exists $a, b \in W_1$, such that f(a) = c and f(b) = d.

Then $\mathcal{M}_1, \langle a, b \rangle \models A$, thus $\mathcal{M}_2 \langle f(a), f(b) \rangle \models A$. That is, $\mathcal{M}_2 \langle c, d \rangle \models A$

• If:

Follows from the previous lemma.

2. Let $f: \mathcal{F}_1 \twoheadrightarrow \mathcal{F}_2$ and $\mathcal{F}_1 \models A$.

Let $\mathcal{M}_1 = \langle \mathcal{F}_1, v_1 \rangle$ and $\mathcal{M}_2 = \langle \mathcal{F}_2, v_2 \rangle$, such that for all $p \in Tp$, $\mathcal{M}_1, \langle a, b \rangle \models p \Leftrightarrow_{def} \mathcal{M}_1, \langle f(a), f(b) \rangle \models p$. Thus, $\mathcal{M}_1 \twoheadrightarrow \mathcal{M}_2$ and $\mathcal{M}_1 \models A$. Thus, $\mathcal{M}_2 \models A$.

Definition 4.

- 1. Let $\mathcal{F} = \langle W, R \rangle$ be a transitive frame and $V \subseteq W$, such that $V \neq \emptyset$ and V is downward and upward closed with respect to R. Then a frame $\mathcal{F} \upharpoonright V = \langle V, R \cap V \times V \rangle$ is a generated subframe.
- 2. If, $\mathcal{M} = \langle W, R, \theta \text{ and } V \subseteq W, \text{ such that } \mathcal{F} \upharpoonright V \text{ is a generated subframe. Then } \mathcal{M} \upharpoonright V = \langle V, R \cap V \times V, \theta' \rangle \text{ is a generated submodel, where } \theta'(p) = \theta(p) \cap V.$

As usual, if $V = \{x\}$ is a singleton, then $\mathcal{F} \upharpoonright x = \langle W \upharpoonright x, R \cap x \rangle$ is a rooted frame (model).

Lemma 3. Let $\mathcal{M} = \langle W, R, \theta \text{ and } V \text{ is } R\text{-closed subset of } W, \text{ then:}$

- 1. If $a, b \in V$, then $\mathcal{M}, \langle a, b \rangle \models A$ iff $\mathcal{M} \upharpoonright V, \langle a, b \rangle \models A$;
- 2. $Log(\mathcal{F}) \subseteq Log(\mathcal{F} \upharpoonright V)$

Proof.

- 1. (a) Let $a, b \in V$ and $\langle a, b \rangle \in \theta(p)$, then $\mathcal{M} \upharpoonright V, \langle a, b \rangle \models p$, for $p \in Tp$.
 - (b) Let $A = B \bullet C$ and $\mathcal{M}, \langle a, b \rangle \models B \bullet C$, then there exists $c \in W$, such that aRC and $\mathcal{M}, \langle a, c \rangle \models B$, cRb and $\mathcal{M}, \langle c, b \rangle \models C$. So far as V is upwardly and downwardly closed, then $c \in V$. Then, by IH, $\mathcal{M} \upharpoonright V, \langle a, c \rangle \models B$, cRb and $\mathcal{M} \upharpoonright V, \langle c, b \rangle \models C$. So $\mathcal{M} \upharpoonright V \langle a, b \rangle \models B \bullet C$.
 - (c) Let $A = B \setminus C$ and $\mathcal{M}, \langle a, b \rangle \models B \setminus C$. Then for all $c \in R^{-1}(a)$, $\mathcal{M}, \langle c, a \rangle \models B$ implies $\mathcal{M}, \langle c, b \rangle \models C$. Let $\mathcal{M}, \langle c, a \rangle \models B$. By IH, $\mathcal{M} \upharpoonright V, \langle c, a \rangle \models B$. $c \in V$, because V is R-closed upwardly and downloadly. On the other hand, cRb, so $b \in V$. Hence, $\langle c, b \rangle \in \mathcal{F} \upharpoonright V$. By IH, $\mathcal{M} \upharpoonright V, \langle c, b \rangle \models C$. Hence, $\mathcal{M} \upharpoonright V, \langle a, b \rangle \models A \setminus B$.
- 2. Let $\mathcal{F} \upharpoonright V \models \Gamma \to A$. Then there exist a valuation v and $\langle a, b \rangle \in R \cap V \times V$, such that $\mathcal{M} \upharpoonright V, \langle a, b \rangle \models \Gamma$ and $\mathcal{M} \upharpoonright V, \langle a, b \rangle \models A$.

Let us define a valuation $v^{'}$ for the frame \mathcal{F} , such that $v(p) = v^{'}(p)$. Then, by the first part, $\mathcal{M}, \langle a, b \rangle \models \Gamma$ and $\mathcal{M}, \langle a, b \rangle \models A$. So, $\mathcal{F} \models \Gamma \to A$.

Definition 5.

By $L_{\mathbf{S4}}^*$ ($L_{\mathbf{S4}}$) we mean the calculus L^* (L) extended with the following inference rules:

$$\frac{\Gamma, A, \Delta \to B}{\Gamma, !A, \Delta \to B} ! \to \frac{!\Gamma \to A}{!\Gamma \to !A} \to !$$

3

Proposition 1.

 $L_{\mathbf{S4}}$ ($L_{\mathbf{S4}}^{*}$) might be equivalently defined as $L_{\mathbf{S4}}^{'}(L_{\mathbf{S4}}^{*}) = L(L^{*}) \oplus !A \rightarrow A \oplus !A \rightarrow !!A$ closed under monotonicity !-rule

It is clear that $L_{\mathbf{S4}} \subseteq L_{\mathbf{S4}}'$. The converse inclusion is proved straightforwardly as follows:

nat
$$L_{\mathbf{S4}} \subseteq L_{\mathbf{S4}}$$
. The converse inclusion is proved straightforwardly as follows:
$$\frac{!A \to A \qquad \Gamma, A, \Delta \to A}{\Gamma, !A, \Delta \to B} \text{ cut } \qquad \underbrace{ \{!A_i \to !!A_i\}_{i=1,\dots,n} \qquad \frac{!A_1, !A_2, \dots, !A_n \to B}{!!A_1, !A_2, \dots, !A_n \to !B}}_{ \qquad \mathbf{Cut}} \text{ mon }$$

Definition 6.

A modal R-model \mathfrak{M} is a R-model with additional truth condition: $\mathfrak{M}, \langle a, b \rangle \models !A \Leftrightarrow \exists R_{1\langle a, b \rangle} \subseteq R \text{ such that } \forall w \in R_1 \mathfrak{M}, w \models A$

Theorem 2. Let $R \subseteq W \times W$ be a (reflexive) transitive relation and $\mathcal{F} = \langle W, R \rangle$ a modal R-model, then $L_{\mathbf{S4}} \subseteq Log(F)$.

We prove this theorem modulo the previous proposition for simplicity.

1. Let $\mathcal{F} \models A$, then for all $\langle a,b \rangle \in R$ and for each valuation $v, \langle \mathcal{F}, v \rangle, \langle a,b \rangle \models A$. Thus, $\langle \mathcal{F}, v \rangle$, $\langle a, b \rangle \models A$.

2. Let $\mathcal{F} \models !A$, then for all $\langle a,b \rangle \in R$, $\langle \mathcal{F},v \rangle$, $\langle a,b \rangle \models !A$, where v is a valuation. It means that there exists $U_{\langle a,b\rangle} \subseteq R$ such that for each $u \in U, \langle \mathcal{F}, v \rangle, u \models A$.

Lemma 4. Let $\mathcal{F}_1 = \langle W_1, R_1 \rangle$ and $\mathcal{F}_2 = \langle W_2, R_2 \rangle$ be R-frames and $f : \mathcal{F}_1 \twoheadrightarrow \mathcal{F}_2$ a p-morphism. Then p-morphism properties also hold

Let us show that $\langle \mathcal{F}_1, v_1 \rangle, \langle a, b \rangle \models !A \Leftrightarrow \langle \mathcal{F}_2, v_2 \rangle, \langle f(a), f(b) \rangle \models !A$

 (\Rightarrow) Let $\langle \mathcal{F}_1, v_1 \rangle, \langle a, b \rangle \models A$. Then there exists a subrelation R_1 such that $\langle a, b \rangle$ and for each $p \in R_1, \langle \mathcal{F}_1, v_1 \rangle, p \models A$. Let us define $R_1' = \{\langle f(x), f(y) \rangle \mid \langle x, y \rangle \in R_1\} \subseteq R_2$. By IH, for each $p' \in R_1', \langle \mathcal{F}_1, v_1 \rangle, p \models A$. Thus, there exists a subrelation that contains $\langle f(a), f(b) \rangle$ in each pair of which A is true. So, $\langle \mathcal{F}_2, v_2 \rangle$, $\langle f(a), f(b) \rangle \models !A$.

 (\Leftarrow) Let $\langle \mathcal{F}_2, v_2 \rangle$, $\langle f(a), f(b) \rangle \models A$. Then there exists $R_2 \subseteq R_2$ such that $\langle f(a), f(b) \rangle \in R_2$ and for each $\langle c, d \rangle$, $\langle \mathcal{F}_2, v_2 \rangle$, $\langle c, d \rangle \models A$. By lifting property,

Let \mathbb{Z}^* be the set of all finite sequences of integers. Let us define the following relation R.