第七章 存储系统

7.3 设某流水线计算机有一个指令和数据合一的 cache,已知 cache 的读写时间为 10ns,主存的读写时间为 100ns,取指的命中率为 98%,数据的命中率为 95% 在执行程序时,约有 1/5 指令需要存取一个操作数,为简化起见,假设指令流水线在任何时候都不阻塞。问设置 cache 后,与无 cache 比较,计算机的运算速度可提高多少倍?

解:

有 cache 的情况如下:

平均访存时间 = 平均取指时间 + 平均取数时间

 $= (10ns + (1 - 98\%) \times 100ns) + (10ns + (1 - 95\%) \times 100ns)$

/ 5 = 15 ns

无 cache 的情况:

平均访存时间 = 平均取指时间 + 平均取数时间

= 100 ns + 20 ns

= 120 ns

速度提高倍数 = 120ns / 15ns = 8 倍

- 7.5 设某计算机的 cache 采用 4 路组相联映像,已知 cache 容量为 16KB,主存容量为 2MB,每个字块有 8 个字,每个字有 32 位。请回答:
- (1) 主存地址多少位(按字节编址),各段如何划分?
- (2)设 cache 起始为空, CPU 从主存单元 0、1、...、100 依次读出 101 个字(主存一次读出一个字),并重复按此次序数读 11 次,问命中率为多少?若 cache 速度是主存的 5 倍,问采用 cache 与无 cache 比较速度提高多少?

解:

(1) 主存与 cache 的容量都不考虑扩充。2MB 容量的主存地址为 21 位。16KB 的 cache 地址为 14 位,所以主存地址的区号位数=21-14=7 位。Cache 和主存地址各段的分配:

Cache: 组号 7 位 组内块号 2 位 块内地址 3 位 字节 2 位

主存: 区号7位 组号7位 组内块号2位 块内地址3位 字节2位

(2) 第一轮全部不命中,以后 10 次全部命中,命中率 10/11=91%。设 cache 的读出时间为 1,主存的读出时间为 5

无 cache 的访问时间/有 cache 的访问时间 = $(11 \times 5)/(1 \times 5 + 10 \times 1)$ = 55/15 = 3.67 倍。略低于此数,因为不设置 cache 时,访问主存的速度会稍快些,无须询问 cache 是否命中。

- 7.6 设某计算机采用直接映像 cache, 已知容量为 4096B。
- (1) 若 CPU 依次从主存单元 0、1、...、99 和 4096、4097、...、4195 交替取指令,循环执行 10 次,问命中率为多少?
- (2) 如 cache 存取时间为 10ns, 主存存取时间为 100ns, cache 命中率为 95%, 求平均存取时间。

解:

(1) cache 容量为 4096 字,其地址为 $0^{\sim}4095$ 。从主存 $0^{\sim}99$ 和 $4096^{\sim}4195$ 依次取指,每次都不命中,所以命中率为 0。

- (2) 平均取指时间 = 10ns + (1 0) x 100ns = 110ns
- 7.7 一个相联 cache 由 64 个存储块组成,每组包含 4 个存储块,主存由 8192 个储存块组成,每块由 32 字组成,4 字节组成1字,访问地址为字地址。问:
- (1) 主存和 cache 地址各多少位? 地址映像是几路组相联?
- (2) 在主存地址格式中,区号、组号、块号和块内地址各多少位?

解:

- (1) cache 容量 64 x 32 x 4 = 2^{13B}, cache 地址为 13 位 主存容量 8192 x 32 x 4 = 2^{20B}, 主存地址为 20 位 地址映像为 4 路组相联
- (2) 主存地址 区号7位 组号4位 块号2位 块内地址5位 字节2位
- 7.10 主存储器容量为 4 MB, 虚存容量为 1GB, 虚拟地址和物理地址各为多少位? 根据寻址方式计算出来的有效地址是虚拟地址还是物理地址? 如果页面大小为 4KB, 页表长度是多少?

解:

主存容量 = 4MB = 2^22B 虚存容量 = 1GB = 2^30B , 虚拟地址 30 位,物理地址 22 位,按寻址方式计算出来的有效地址时虚拟地址。如果页面大小是 4KB, 采用页式管理时,页面的数量 = 1GB / 4KB = 2^18 , 页表长度为 2^18 。

7.11 某虚存有如下快表放在相联存储器中,其容量为8个存储单元。问:按如下3个虚拟地址访问主存,主存的实际地址码各是多少?(设地址均为16进制)

页号	本页在主存起始地址		页号	页内地址
33	42000			
25	38000	1	15	0324
7	96000	2	7	0128
6	60000			
4	40000	3	48	0516
15	80000			
5	50000			
30	70000			

图 7.11

解.

先查快表, 查得该逻辑页号在主存的起始位置后, 与页内地址相加即得主存的实际地址。

- (1) 主存地址=80000+0324=80324H
- (2) 主存地址=96000+0128=96128H
- (3)逻辑页号为48的页面不在快表中,要到主存去查,如果再主存中查到,将该页的内容调入快表(若快表已满,则按替换算法撤销一行后调入),并计算主存地址。如果再主存中查不到,则需启动操作系统从辅存中调入相应的页表到主

存中, 然后再到主存去查。

- 7.12 某程序对页面要求的序列为 P3 P4 P2 P6 P4 P3 P7 P4 P3 P6 P3 P4 P8 P4 P6。
- (1)设主存容量为3个页面,求分别采用FIFO和LRU替换算法时各自的命中率(假设开始时主存为空)。
- (2) 当主存容量增加到4个页面时,两替换算法各自的命中率又是多少?
- (3)程序运行时, CPU 访问主存的命中率会增加还是减少?

解:

(1) 编号最大者表示(三、二、一)将被调出的页面。

(1) 4/1 3/2/Cl (C) (— (—) 14 [X/4] H 13/1 H																
页面	Ī	3	4	2	6	4	3	7	4	3	6	3	4	8	4	6
请求	रें															
L	三	3	3	3	4	2	6	4	3	7	4	4	6	3	3	8
R	=	/	4	4	2	6	4	3	7	4	3	6	3	4	8	4
U	_	/	/	2	6	4	3	7	4	3	6	3	4	8	4	6
	命	m	m	m	m	h	m	m	h	h	m	h	h	m	h	m
	中															
F	三	3	3	3	4	4	2	6	3	3	7	4	4	7	3	8
Ι	=	/	4	4	2	2	6	3	7	7	4	7	7	3	8	4
F	_	/	/	2	6	6	3	7	4	4	6	3	3	8	4	6
0	命	m	m	m	m	h	m	m	m	h	m	m	h	m	m	m
	中															

采用 LRU 算法的命中率为 6/15=40%, 采用 FIFO 算法的命中率为 3/15=20%

(2) 编号最大者表示(三、二、一)将被调出的页面。

页面	Ī	3	4	2	6	4	3	7	4	3	6	3	4	8	4	6
请求	रें															
L	四	3	3	3	3	3	2	6	6	6	7	7	7	6	6	3
R	三	/	4	4	4	2	6	4	3	7	4	4	6	3	3	8
U	<u> </u>	/	/	2	2	6	4	3	7	4	3	6	3	4	8	4
	_	/	/	/	6	4	3	7	4	3	6	3	4	8	4	6
	命	m	m	m	m	h	h	m	h	h	h	h	h	m	h	h
	中															
F	四	3	3	3	3	3	3	4	4	2	2	2	6	7	7	3
Ι	三	/	4	4	4	4	4	2	2	6	6	6	7	3	3	4
F		/	/	2	2	2	2	6	6	7	7	7	3	4	4	8
0		/	/	/	6	6	6	7	7	3	3	3	4	8	8	6
	命	m	m	m	m	h	h	m	h	m	h	h	m	m	h	m
	中															

采用 LRU 算法的命中率为 9/15=60%, 采用 FIFO 算法的命中率为 6/15=40%

(3)程序运行时,CPU访问主存的命中率会增加。