Modul 1: forelæsning 5 Basisskift. Egenværdier Matematik og modeller 2018

Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

3. maj 2018 — Dias 1/11

KØBENHAVNS UNIVERSITET

Koordinater mht. en basis

- Lad $(\mathbf{q}_1, \dots, \mathbf{q}_n)$ være en basis i \mathbb{R}^n .
- Lad

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

være en vektor i \mathbb{R}^n .

• Da kan **x** skrives som en entydig bestemt linearkombination af basisvektorerne:

$$\mathbf{x}=t_1\mathbf{q}_1+\ldots+t_n\mathbf{q}_n.$$

• Talsættet (t_1, \ldots, t_n) kaldes **x**'s koordinater i basen $(\mathbf{q}_1, \ldots, \mathbf{q}_n)$.

KØBENHAVNS UNIVERSITE

Oversigt

Basisskift

Koordinater mht. en basis

2 Egenværdier

Bestemmelse af egenværdier og -vektorer

Dias 2/11

KØBENHAVNS UNIVERSITE

Koordinater mht. en basis - fortsat

• Formlen $\mathbf{x} = t_1 \mathbf{q}_1 + \ldots + t_n \mathbf{q}_n$ kan skrives

$$x = Qt$$

hvor \mathbf{Q} har søjlerne $\mathbf{q}_1, \dots, \mathbf{q}_n$ (i den rækkefølge) og

$$\mathbf{t} = \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}$$
.

ullet Koordinaterne for ${f x}$ mht. denne basis kan bestemmes ved formlen

$$\mathbf{t} = \mathbf{Q}^{-1}\mathbf{x}$$
.

Matricen Q kaldes basisskiftmatricen
(fra den naturlige basis til den nye basis (q₁,...,q_n)).

Eksempel

Lad

$$\mathbf{q}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{q}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

- **1** Vis at $(\mathbf{q}_1, \mathbf{q}_2)$ er en basis for \mathbb{R}^2 .
- **2** Bestem den vektor \mathbf{x} i \mathbb{R}^2 , som har koordinaterne (4, -1) mht. denne basis.
- 3 Hvilke koordinater har vektoren

$$\mathbf{x} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$

mht. denne basis?

Dias 5/11

KØBENHAVNS UNIVERSITET

Basisskift generelt

- Lad $(\mathbf{a}_1, \dots, \mathbf{a}_n)$ og $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ være to baser for \mathbb{R}^n .
- Lad \mathbf{x} have koordinaterne $\mathbf{y} = (y_1, \dots, y_n)$ mht. basen $(\mathbf{a}_1, \dots, \mathbf{a}_n)$ og lad \mathbf{A} være basisskiftmatricen fra den naturlige basis til basen $(\mathbf{a}_1, \dots, \mathbf{a}_n)$, dvs. \mathbf{A} har søjlerne $(\mathbf{a}_1, \dots, \mathbf{a}_n)$.

Vi har så $\mathbf{x} = \mathbf{A}\mathbf{y}$.

• Lad \mathbf{x} have koordinaterne $\mathbf{z} = (z_1, \dots, z_n)$ mht. basen $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ og lad \mathbf{B} være basisskiftmatricen fra den naturlige basis til basen $(\mathbf{b}_1, \dots, \mathbf{b}_n)$, dvs. \mathbf{B} har søjlerne $(\mathbf{b}_1, \dots, \mathbf{b}_n)$.

Vi har så $\mathbf{x} = \mathbf{Bz}$.

 Da er der f
ølgende sammenh
æng mellem x's koordinater mht. hver af de to baser:

$$\mathbf{A} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \mathbf{x} = \mathbf{B} \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \qquad \text{så} \qquad \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \mathbf{A}^{-1} \mathbf{B} \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$

(dvs. $\mathbf{y} = \mathbf{A}^{-1}\mathbf{B}\mathbf{z}$).

Den naturlige basis

Den *naturlige basis* for \mathbb{R}^n er $(\mathbf{e}_1, \dots, \mathbf{e}_n)$, hvor

$$\mathbf{e}_k = (0, \dots, 1, 0, \dots, 0)$$

(1-tallet står på den k'te plads).

For en vilkårlig vektor $\mathbf{x} \in \mathbb{R}^n$ gælder

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n.$$

(Koordinaterne for \mathbf{x} i den naturlige basis er netop talsættet (x_1, \dots, x_n) , og det er grunden til navnet.)

Dias 6/11

KØBENHAVNS UNIVERSITE

Egenværdi og egenvektor - motivation

Epidemiens udvikling

- Hvordan udvikler antallet af raske, syge, døde og helbredte sig i epidemimodellen?
- Vi vil senere give et svar vha. egenværdier og -vektorer for den indgående matrix

$$\mathbf{A} = \begin{pmatrix} 0.8 & 0.0 & 0.0 & 0.0 \\ 0.2 & 0.7 & 0.0 & 0.0 \\ 0.0 & 0.1 & 1.0 & 0.0 \\ 0.0 & 0.2 & 0.0 & 1.0 \end{pmatrix}.$$

• Vigtigt at den største egenværdi er 1 og at egenvektorerne udgør en basis for \mathbb{R}^4 .

KØBENHAVNS UNIVERSITET

Egenværdi og egenvektor

Definition

Lad **A** være en $n \times n$ matrix. Hvis der om en vektor $\mathbf{x} \neq \mathbf{0}$ i \mathbb{R}^n og et tal λ gælder

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
.

så siges \mathbf{x} at være en egenvektor for \mathbf{A} med tilhørende egenværdi λ .

Bemærkning: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ betyder at de to vektorer $\mathbf{A}\mathbf{x}$ og \mathbf{x} er proportionale med proportionalitetsfaktor λ .

Eksempel

Hvilke af følgende vektorer $\begin{pmatrix} -3\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\3 \end{pmatrix}$ og $\begin{pmatrix} 6\\-2 \end{pmatrix}$ er egenvektorer for matricen

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 3 & 10 \end{pmatrix}?$$

Og hvad med eventuelle tilhørende egenværdier?

Dias 9/11

KØBENHAVNS UNIVERSITET

Bestemmelse af egenværdier

- **1** Udregn $\det(\mathbf{A} \lambda \mathbf{E})$ ved at bruge en af metoderne om udregning af determinant.
- **2** Løs ligningen $\det(\mathbf{A} \lambda \mathbf{E}) = 0$ mht. λ . (Det er en n'te grads ligning, som har højst n reelle tal som løsninger.)
- 3 R kan bruges: eigen(A) eller eigen(A)\$values.
- **NB** For en trekantsmatrix er egenværdierne netop diagonalelementerne.

Bestemmelse af egenvektorer

Når λ er en egenværdi for **A**, så findes en egenvektor **x** hørende til λ som en løsning $\mathbf{x} \neq \mathbf{0}$ til ligningen $(\mathbf{A} - \lambda \mathbf{E})\mathbf{x} = \mathbf{0}$.

- **1** Løs ligningssystemet $(\mathbf{A} \lambda \mathbf{E})\mathbf{x} = \mathbf{0}$ ved at lave elementære rækkeoperationer.
- 2 Bestem de mulige værdier for vektoren **x** (der er altid uendelig mange løsninger).
- 3 R kan bruges: eigen(A) eller eigen(A)\$vectors.

Dias 11/11

KØBENHAVNS UNIVERSITET

Det karakteristiske polynomium

Definition

Lad **A** være en $n \times n$ matrix. Polynomiet $\det(\mathbf{A} - \lambda \mathbf{E})$ kaldes det karakteristiske polynomium for **A**.

Eksempel

$$\det\left(\mathbf{A}-\lambda\mathbf{E}\right)=\det\begin{pmatrix}2-\lambda & 3\\ 3 & 10-\lambda\end{pmatrix}=(2-\lambda)(10-\lambda)-9=\lambda^2-12\lambda+11$$

(Matricen ${\bf A}-\lambda{\bf E}$ fremkommer ved at trække samme tal λ fra alle diagonalelementerne.)

Sætning

Lad **A** være en $n \times n$ matrix. Et tal λ er en egenværdi for **A** netop når

$$\det(\mathbf{A} - \lambda \mathbf{E}) = 0.$$

Dias 10/11