1. Give an example of each of the following.	
(a) A closed, connected graph of at least two operators.	
(b) A Hugenholtz path of at least three lines that doesn't qualify as a Goldstone path.	
(c) Non-equivalent, interchangeable subgraphs, where at least one subgraph contains multiple operator	S.
(d) A graph that is disconnected and linked.	

2. Interpret the following graph algebraically, and then simplify your expression as much as possible. 1

$$\bigvee \equiv \sum_{ia} c_a^i \tilde{a}_i^a$$

¹The operators in this graph are defined as follows.

3. Write the following algebraic expression as a graph. 2

$$\sum_{\substack{abcd\\ijkl}} \overline{v}_{ij}^{ab} \overline{w}_{bcd}^{jkl} \mathbf{i} a_{ab\bullet}^{ij^{\circ}} a_{j^{\circ}kl}^{b^{\bullet}cd} \mathbf{i}$$

$$\left(\frac{1}{2!}\right)^2 \sum_{pqrs} \overline{v}_{pq}^{rs} \tilde{a}_{rs}^{pq} \equiv \boxed{\boldsymbol{v}} - \boldsymbol{\dot{\phi}} - \boldsymbol{\dot{\phi}}$$

$$\left(\frac{1}{3!}\right)^2 \sum_{\substack{pqr\\stu}} \overline{w}_{pqr}^{stu} \tilde{a}_{stu}^{pqr} \equiv \boxed{\boldsymbol{w}} \quad \stackrel{\downarrow}{\longrightarrow} \quad \stackrel{\downarrow}{\longrightarrow}$$

²Use the following to denote the operators in your graph.