Universidade Federal do Paraná Curso de Verão UFPR 2019

Curso: Introdução à Análise na Reta

Professores: Bruno de Lessa e Ricardo Paleari

4º Lista de Exercícios - 05/02

1. Encontre exemplos de sequências (x_n) e (y_n) de números reais tais que:

- a) $\lim x_n = 0$, $\lim y_n = \infty$ e $\lim x_n \cdot y_n = 2019$.
- b) $\lim x_n = \infty$, $\lim y_n = \infty$ e $\lim \frac{x_n}{y_n} = 2019$.
- c) $\lim x_n = 0$, $\lim y_n = 0$ e $\lim \frac{x_n}{y_n} = 2019$.
- d) $\lim x_n = 0$, $\lim y_n = 0$ e $\lim x_n^{y_n} = 2019$.
- e) $\lim x_n = 1$, $\lim y_n = \infty$ e $\lim x_n^{y_n} = 2019$.
- 2. Mostre que lim $\sqrt[n]{n!} = \infty$.
- 3. Se $\lim x_n = +\infty$ e $a \in \mathbb{R}$, prove que

$$\lim \left[\sqrt{\log(x_n + a)} - \sqrt{\log(x_n)} \right] = 0.$$

4. Dados $k \in \mathbb{N}$ e a > 0, determine o limite

$$\lim \frac{n!}{n^k \cdot a^n}.$$

Supondo a > 0 e $a \neq e$, calcule

$$\lim \frac{a^n \cdot n!}{n^n} \in \lim \frac{n^k \cdot a^n \cdot n!}{n^n}.$$

- 5. Outra prova de que a série harmônica diverge. Seja S_n a n-ésima soma parcial da série harmônica. Prove que para $n=2^m$ vale $S_n>1+\frac{m}{2}$ e conclua daí que a série harmônica diverge.
- 6. Mostre que a série $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ diverge.
- 7. Mostre que se r > 1, a série $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^r}$ converge.
- 8. Mostre que se $\sum a_n$ é convergente e $a_n \geq 0$ para todo $n \in \mathbb{N}$, então a série $\sum a_n \cdot x^n$ é absolutamente convergente para todo $x \in [-1,1]$ e

$$\sum a_n \operatorname{sen}(nx), \sum a_n \cos(nx)$$

são absolutamente convergentes para todo $x \in \mathbb{R}$.

- 9. Dê exemplo de uma série convergente $\sum a_n$ e de uma sequência limitada (x_n) tais que a série $\sum a_n x_n$ seja divergente. Examine o que ocorre se uma das hipóteses seguintes for verificada:
 - a) (x_n) é convergente;
 - b) $\sum a_n$ é absolutamente convergente.
- 10. Se $\sum a_n$ é absolutamente convergente, prove que $\sum a_n^2$ também é convergente.
- 11. Se $\sum a_n^2$ e $\sum b_n^2$ convergem, prove que $\sum a_n b_n$ converge absolutamente.
- 12. Determine se a série $\sum \left(\frac{\log n}{n}\right)^n$ é convergente usando ambos os testes, de d'Alembert e Cauchy.
- 13. Determine para quais valores de x cada uma das séries abaixo é convergente:

$$\sum n^k x^n \quad \sum n^n x^n \quad \sum \frac{x^n}{n^n} \quad \sum n! x^n \quad \sum \frac{x^n}{n^2}.$$