Physiological Feature Selection Methods for Emotion Recognition

Ву	Andreas De Lille	
Supervisors	Prof. dr. ir. Joni Dambre Dr. ir. Pieter Van Mierlo	
Counsellor	Ir. Thibault Verhoeven	

Content

- Emotion Recognition
- Machine learning
- Features
- Problem Statement
- Solution Approach
- Feature Selection Methods
- Results
- Next Steps
- Solution

Emotion Recognition

Emotion in the brain

Emotion Classification

Classification with Machine Learning

Input: brain waves

Feature Extraction and Machine Learning

Output: valence/arousal

Features

Non - EEG

EEG features

Power of a specific channel (PSD, DE)

(A)symmetry features
- Left vs. Right

- Front vs.Back

Fractions of different wavebands

Non - EEG Features

Heart Rate

Respiration Rate

Galvanic Skin Response

Plethysmograph (blood pressure)

Skin Temperature

Not all features are good features

Problem statement

Find good features

Added value of physiological features

Solution

Feature Selection: General Flow

IN: EEG and non-EEG features

OUT: Subset of features that can predict emotion

Feature Selection Methods

Wrapper Method

FS: Embedded - Random forests

Day	Outlook	Humidity	Wind	Play tennis
1	sunny	high	weak	no
2	sunny	high	strong	no
3	overcast	high	weak	yes
4	rain	high	weak	yes
5	rain	normal	weak	yes
6	rain	normal	strong	no
7	overcast	normal	strong	yes
8	sunny	high	weak	no
9	sunny	normal	weak	yes
10	rain	normal	weak	yes
11	sunny	normal	strong	yes
12	overcast	high	strong	yes
13	overcast	normal	weak	yes
14	rain	high	strong	no

FS: Embedded - Random Forests

Results

Results: non-EEG / EEG / ALL (RF)

0	1	2
ALL	EEG	non-EEG

Next steps

Stability of the feature selection methods

Find features that work for all persons

Questions

