Final

- 1. Obviously B is not generating, so we can just simply delete it. So the CFG is turned into only $A \rightarrow aA \mid a$. It is not reachable, so the grammar cannot generate any language.
- 2. Since there is no string given, I'll assume a string in the CFG and give the parse tree and derivation.

Assume the string is aaba, which is generated by the grammar.

Parse tree:

Leftmost derivation: $S \rightarrow AB \rightarrow AAB \rightarrow aaB \rightarrow aabA \rightarrow aaba$ Rightmost derivation: $S \rightarrow AB \rightarrow AbA \rightarrow Aba \rightarrow Aaba \rightarrow aaba$

3. (a) $S \rightarrow AaBaA|AbBbA|CB|BC|bA|Ab$

 $A \rightarrow aA|bA|\epsilon$

B→aBb|ab

C→aA|bA

(b)S \rightarrow A#B#A|B

A→aA|bA|#A|ε

B→aBa|bBb|aCa|bCb

C→#A#|#

4. It contains strings that consist of 0's and broken into 3 or 2 parts by #, the number of 0's can be 0, if it is broken into 2 parts, then the left part of # contains half number of 0's than the right part of #.

It is not regular, using pumping lemma: for string $0^n \# 0^{2n}$ which is generated by the grammar, break it into xyz. Since $|xy| \le n$, y only consist of 0 and is not empty. So, let k=0, then in string xy^kz , the number of 0's left to # is less than n and cannot be half of 2n. That is to say xy^kz is

not in the language, so it is not regular.

5. $A \rightarrow AB|BA|BB|CC$

 $B \rightarrow CC$

 $C \rightarrow 0$

6. (a)

- (1) the TM starts at the left of the tape with state q_0 , read to right and jump by all 0's with notion * (which means checked) and all 1's. Find the first 0 with notion B (which means not-checked-yet), change B into * and state into q_1 , go right.
 - (2) from (1), when find another 0, write * and change state into $\,q_{\rm 2}$, go left.
 - (3) jump by every symbol, when arrive the start of the tape, change state into q_3 , go right.
- (4) from (3), jump by every 1's with * and 0's, find the first 1 with B, write *, state into $\,q_4$, go left.
- (5) jump by every symbol, when arrive the start of the tape, change state into q_0 , go right, begin step(1).
 - (6) in (2), if it cannot find another 0, then halt.
 - (7) in (4), if it cannot find 1, then halt.
 - (8) in (1), if it cannot find the first 0 and goes to the end of the tape, state into q_5 , go left.
 - (9) from (8), jump by every symbol with *, when find any symbol with B, halt.
- (10) from (8), jump by every symbol with *, if it arrives the start of the tape, state into $\ q_6$, $\ q_6$ is the accept state.

(b)

Most of the steps can simply copy from (a), and do a little adjustment to the rest.

- (1) same as (a).
- (2) same as (a).
- (3) same as (a).
- (4) same as (a).
- (5) same as (a).
- (6) in (2), if it cannot find another 0, state into $\ q_6$, $\ q_6$ is the accept state.
- (7) in (4), if it cannot find 1, state into $\ q_{6}$, $\ q_{6}$ is the accept state.
- (8) same as (a).
- (9) from (8), jump by every symbol with *, when find any symbol with B, state into $\,q_{_{6}}$, $\,q_{_{6}}\,$ is

the accept state.

(10)from (8), jump by every symbol with *, if it arrives the start of the tape, halt.

7. 000111:TRUE 10001:FALSE 0101:t=TRUE 0000:TRUE B:TRUE 0110011→1100110 001110→011100 100100→100100

This Turing machine M move every 1's in the string forward by one, but if the string start with 1, then the string remains the same.

- 8. (a) is Turing-recognizable, it is easy to design an algorithm to accept it. In brief, give 3 distinct inputs and simulating M on these inputs. As for (b), from our textbook p398, the Rice's Theorem, both (a) and (b) are undecidable. Since (b) is complement of (a), so (b) is not Turing-recognizable.
- 9. (a) The start state is q_0
 - (1) $\delta(q_0,\$) = (q_1,\$,R)$, from q_0 , when see in a \$, change state into q_1 , go right.
 - (2) $\delta(q_1,\$) = (q_2,\$,R)$, from q_1 , when see in a \$, change state into q_2 , go right.
- (3) $\delta(q_2,\$) = (q_0,\$,R)$, from q_2 , when see in a \$, change state into q_0 , go right. This time, write a \$ on another tape.
- (4) $\delta(q_0,B)=HALT$, from q_0 , when arrive the end of the string, the TM halt and write # on the other tape.
- (5) $\delta(q_1,B)=HALT$, from q_1 , when arrive the end of the string, the TM halt and write #\$ on the other tape.
- (6) $\delta(q_2,B)=HALT$, from q_2 , when arrive the end of the string, the TM halt and write #\$\$ on the other tape.
- (b) To generalize to any arbitrary symbol, suppose the symbol is %. Just simply change every \$ into % in the TM illustrated in (a).
- (c) suppose now we generalize it by "to i", then we will need i states $\{q_0,q_1,...,q_{i-1}\}$. Step (1)-(3) in (a) can be similarly generalized to (1)-(i) steps for states $\{q_0,q_1,...,q_{i-1}\}$. (i) step should be, $\delta(q_{i-1},\$)=(q_0,\$,R)$, from q_{i-1} , when see in a \$, change state into q_0 , go right. This time, write a \$ on another tape. Step (4)-(6) is generalized into step (i+1)-(2i), and it should be: $\delta(q_k,B)=HALT$, from q_k , when arrive the end of the string, the TM halt and write $\#(\$)^k$ on the other tape.
- 10. (a) $P \cup P = P$ that means the problem that is to solve 2 problems in P is also in P.

- (b) $NP \cup NP = NP$ because if we can verify a certificate in polynomial time, then verify 2 certificate will also cost polynomial time.
- (c) $NPC \cup NPC = NPC$ because if we can reduce every NP problem to a problem which is a NPC problem, then we can reduce it to 2 NPC problems.
- 11. This language is recursive. In problem 9(c) I illustrated how to divide a string. Using the similar strategy, if the length of a input string is n, we can do division from 2 to n-1(or smaller, to n square, that doesn't matter), that is in polynomial time. If divide by some k yield there is no remainder, accept and halt. If there is always a remainder, just halt. That means we build a TM that accept the language and the TM is always halt. So the language is recursive.