Données, informations et connaissance

- Données: Observations ou faits bruts concernant un phénomène, un domaine de connaissances ou les caractéristiques de certaines entités. Objet sans contexte.
- Exemple : Prix, poids,...
- Type :Alphabétique, numérique, texte, image, audio.
- Informations: Données qui ont été traitées et placées dans un contexte significatif et utile pour un utilisateur particulier.
- Le traitement de données ajoute de la valeur aux données brutes pour leur conférer une signification.

La qualité de l'information

Temps

- Opportunité
- Fréquence
- Clarté
- Exactitude
- Pertinence
- Caractère exhaustif
- Concision

connaissance

- La connaissance est le résultat d'une analyse cognitif de plusieurs informations.
- La connaissance est humaine.
- Es ce que plus on s'informe et plus on a de connaissance?

Problème

- a) Sous information
- b) Sur information

Type de connaissance

- a) connaissance explicite
- Connaissance tacite

Plan

- Ce qu'est le data warehouse ?
- Un modèle multidimensionnel
- Architecture d'un data warehouse
- Implémentation d'un data warehouse
- Autres développements de la technologie data cube
- Data warehousing et data mining

Ce qu'est le data warehouse ?

- Différentes définitions
 - Une BD d'aide à la décision qui est maintenue séparément de la base opérationnelle de l'organisation.
- "Un data warehouse est une collection de données concernant un sujet particulier, varie dans le temps, non volatile et où les données sont intégrées."—W. H. Inmon
- Data warehousing:
 - Le processus qui permet de construire un data warehouse

Les caractéristiques des data warehouse

Orienté sujet

- Organisée autour d'un sujet bien précis, ex: client, produit, ventes.
- S'intéresse à la modélisation et l'analyse des données pour aider les décideurs, non pas pour des activités quotidiennes ou traitement transactionnel
- Fournit une vue simple et concise concernant un sujet particulier en excluant les données qui ne servent pas à la prise de décision

Les caractéristiques des data warehouse

Données intégrées:

- Normalisation des données
- Définition d'un référentiel unique

Données intégrées

- Construite en intégrant plusieurs sources de données possiblement hétérogènes
- Les techniques d'intégration et de nettoyage des données sont utilisées
 - Garantir la consistance des conventions de nommage (les attributs Nom et Nom_Famille dans BD1 et BD2 désignent la même chose)
 - structures de codage (l'attribut Nom est sur 15 char et 20 char sur BD1 et BD2; NSS est une chaîne dans BD1 et c'est un entier long dans BD2),
 - domaines des attributs (ex: cm vs pouce), etc.
 - C'est au moment où les données sont copiées dans le data warehouse qu'elles sont traduites

Les caracteristiques des data warehouse

Données non volatiles

- Traçabilité des informations et des décisions prises
- Copie des données de production

Bases de production

Entrepôts de données

- La portée temporelle des données dans un data warehouse est plus longue que celle des bases opérationnelles
 - Data warehouse: fournit des infos sous une perspective historique (ex: 5 à 10 dernières années)
- Dans un data warehouse, en général, chaque donnée fait référence au temps
 - Mais dans une base opérationnelle les données peuvent ne pas faire référence au temps

Les caractéristiques des data warehouse

- 3. Données non volatiles
 - Traçabilité des informations et des décisions prises
 - Copie des données de production

Bases de production

Entrepôts de données

Data Warehouse est Non-Volatile

- Un support de stockage séparé
- Les mises à jour de la base opérationnelle n'ont pas lieu au niveau du data warehouse
 - N'a besoin que de deux opérations pour accéder aux données :
 - Chargement initial des données et interrogation (lecture).

OLTP vs. OLAP

	OLTP	OLAP
utilisateurs	Tout le monde	décideurs
fonction	Opérations journalières	Aide à la décision
DB design	Orienté applications	Orienté sujet
data	courante, à jour, relationnel plat	historiques, résumés, multidimensionnelle intégrées
usage	répétitive	ad-hoc
accès	read/write index/hash sur clés	Beaucoup de scans
Unité de travail	Transactions courtes	Requêtes complexes
# enregistrement	dizaines	millions
# utilisateurs	Centaine(s)	Dizaine(s)
Taille BD	100MB-GB	100GB-TB
métrique	Exécution des transactions	Temps de réponse aux requêtes

Data Warehouse

OLTP: On-Line Transactional Processing

Service Service Service commercial Financier livraison BD prod **BD** prod **BD** prod Clientèle Data Warehouse O R Clientèle Q

OLAP: On-Line Analitical Processing

Des Tables aux Data cubes

- Un data warehouse est basé sur un modèle multidimensionnel où les données sont vues selon plusieurs dimensions
 - Les tables de dimension ex: Produit (nom_prod, marque, type),
 ou temps(jour, semaine, mois, trimestre, année)
 - La table de faits contient des mesures (ex: unités_vendues) et les clés externes faisant référence à chaque table de dimension

Modélisation Conceptuelle des Data Warehouses

- Dimensions & mesures
 - Schéma en étoile: Au milieu, une table de faits connectée à un ensemble de tables de dimensions
 - Schéma flocon de neige (snowflake): Un raffinement du précédent où certaines tables de dimensions sont normalisées (donc décomposées)
 - Constellation de faits: Plusieurs tables de faits partagent quelques tables de dimension (constellation d'étoiles)

Les types de modèles

Modèle en étoile

Modèle en flocon

Modèle en étoile

- Une table de fait centrale et des dimensions
- Les dimensions n'ont pas de liaison entre elles
- Avantages:
 - Facilité de navigation
 - Nombre de jointures limité
- Inconvénients:
 - Redondance dans les dimensions
 - Toutes les dimensions ne concernent pas les mesures

Modèle en flocon

- Une table de fait et des dimensions décomposées en sous hiérarchies
- On a un seul niveau hiérarchique dans une table de dimension
- La table de dimension de niveau hiérarchique le plus bas est reliée à la table de fait. On dit qu'elle a la granularité la plus fine
- Avantages:
 - Normalisation des dimensions
 - Économie d'espace disque
- Inconvénients:
 - Modèle plus complexe (jointure)
 - Requêtes moins performantes

Les types de modèles

Modèle en étoile

Modèle en flocon

Modèle en étoile

- Une table de fait centrale et des dimensions
- Les dimensions n'ont pas de liaison entre elles
- Avantages:
 - Facilité de navigation
 - Nombre de jointures limité
- Inconvénients:
 - Redondance dans les dimensions
 - Toutes les dimensions ne concernent pas les mesures

Modèle en étoile

Modèle en flocon

- Une table de fait et des dimensions décomposées en sous hiérarchies
- On a un seul niveau hiérarchique dans une table de dimension
- La table de dimension de niveau hiérarchique le plus bas est reliée à la table de fait. On dit qu'elle a la granularité la plus fine
- Avantages:
 - Normalisation des dimensions
 - Économie d'espace disque
- Inconvénients:
 - Modèle plus complexe (jointure)
 - Requêtes moins performantes

Exemple de Constellation de faits

Un exemple de Data Cube

modèles de data warehouse

Entreprise warehouse

 Collecte de toutes les informations concernant les sujets traités au niveau de l'organisation

Data Mart

 Un sous ensemble d'un entreprise warehouse. Il est spécifique à un groupe d'utilisateurs (ex: data mart du marketing)