TEAM 25

Anastasia Yagnych

Bogdan Monogov

Dominique Watt

Fathma BintayIslam

Hamza Said

Skolkovo Institute of Science and Technology

Skoltech

Extreme weather events in Arctics monitoring and prediction

Polar lows

- Polar lows are intense, short-lived cyclonic systems
- Significant challenges for forecasting due to their rapid evolution and small spatial scale
- Detection and prediction of those are crucial for improving maritime safety and understanding Arctic atmospheric dynamics

Experiment

Annotation → Detection → Event Extraction → Trajectory Modeling

Detection of polar low events

Trajectory modeling

Annotation Methodology

- We manually labeled polar lows and non-events to establish a reliable ground truth for training and validating our models.
- What Was Labeled:
 - Mature-stage polar lows (~10 timestamps)
 - Non-events (~10 timestamps) for balanced classification
- Tools Used: EddyClicker
- → Annotation Criteria:
 - ☐ Clear cyclonic eye in WSPD graph
 - Deep purple color in EddyClicker vortices criteria

EddyClicker Software's Interface: black line highlights track of a Polar low, where the x and y axes are the horizontal and vertical coordinates

Detection

- CNN was employed to detect polar low events
 - Loss Function (Binary Cross Entropy)
 - Adam optimizer
 - Batch Size
 - **⊒** Epochs
 - Early Stopping

Results:

Metric	Value	
Accuracy	0.86	
Precision (Event)	0.79	
Recall (Event)	1.00	
F1-Score (Event)	0.88	
AUC-ROC	0.98	

Feature	Description
rel_vort	Smoothed relative vorticity at 850 hPa.
vortex_diam	Approximate size of the vortex.
theta_trop, theta_diff	Tropospheric stability and surface-mid-level temperature differences
shear_angle, shear_strength	Wind shear parameters capturing vertical velocity gradients.
slp, sst_t500	Sea-level pressure and surface–mid-level temperature differences.
land_dist	Distance from land, accounting for land–sea contrasts.
lat, lon	Core geospatial coordinates.

- I. Initial approach: polynomial extrapolation
- I. Refined approach: recurrent architectures

GRU model

- I. Masking layer
- II. Three GRU layers (128, 96, and 64 units)
 - A. Layer normalization and a dropout layer
- III. Two dense layers
 - A. ReLU

LSTM model

- I. Masking layer
- II. Bidirectional LSTM layer (128 units)
- III. Layer Normalization, Dropout
- IV. Additional LSTM layers (96, 64 units) and Dropout layers

Input

V. Dense layer

Transformers

- Multi-head self-attention mechanism (4 heads)
- II. Normalization layer
- III. Two fully connected layers with expansion
 - A. Śwish activation
- IV. L1 regularization
- V. Haversine loss

$$Y_t = (\Delta \mathrm{lat}_t, \Delta \mathrm{lon}_t) = f(X_1, X_2, \dots, X_t)$$

$$\Delta \operatorname{lat}_t = \operatorname{lat}_t - \operatorname{lat}_{t-1}, \quad \Delta \operatorname{lon}_t = \operatorname{lon}_t - \operatorname{lon}_{t-1}, \quad \text{for } t \ge 1$$

At t = 0, no previous position exists, so we set:

$$\Delta ext{lat}_0 = 0, \quad \Delta ext{lon}_0 = 0$$

$$ext{lat}_1^{ ext{pred}} = ext{lat}_0 + \Delta ext{lat}_1$$

$$ext{lat}_2^{ ext{pred}} = ext{lat}_1^{ ext{pred}} + \Delta ext{lat}_2 = ext{lat}_0 + \sum_{i=1}^2 \Delta ext{lat}_i$$

$$\operatorname{lat}_t^{\operatorname{pred}} = \operatorname{lat}_0 + \sum_{i=1}^t \Delta \operatorname{lat}_i \quad ext{and} \quad \operatorname{lon}_t^{\operatorname{pred}} = \operatorname{lon}_0 + \sum_{i=1}^t \Delta \operatorname{lon}_i$$

1 point predicted (trained on 7)

2 points predicted (trained on 6)

3 points predicted (trained on 5)

Skoltech

Results of the work

based model

Conclusion

The best approach for the classification of the polar lows - CNNs

The best approach for the trajectory prediction - Transformer-based models

Future work perspectives:

Conduction of the experiments on the more extended and bigger datasets with more refined models (CNN, transformers)

Identification between polar lows and other cyclones