Álgebra Linear I Soma de Subespaços Vetoriais

Prof. Jairo

Definição

Definição

Sejam U e W subespaços de um espaço vetorial V. O subconjunto

$$U+W=\{u+w\,;\,\,u\in U\,\mathrm{e}\,\,w\in W\}$$

de V é chamado de soma de U e W.

Definição

Definição

Sejam U e W subespaços de um espaço vetorial V. O subconjunto

$$U+W=\{u+w\,;\,\,u\in U\,\mathrm{e}\,\,w\in W\}$$

de V é chamado de soma de U e W.

Proposição (1)

Sejam U e W subespaços de um espaço vetorial V. O subconjunto U+W também é um subespaço de V.

Definição Exemplos

Definição

Sejam U e W subespaços de um espaço vetorial V. O subconjunto

$$U + W = \{u + w \; ; \; u \in U \; e \; w \in W\}$$

de V é chamado de soma de U e W.

Proposição (1)

Sejam U e W subespaços de um espaço vetorial V. O subconjunto U+W também é um subespaço de V.

Demonstração.

A cargo do leitor.

Exemplo (1)

Considere os subespaços $U = \{(x, x) \in \mathbb{R}^2 ; x \in \mathbb{R}\}$ e $W = \{(0, y) \in \mathbb{R}^2 ; y \in \mathbb{R}\}$ de \mathbb{R}^2 . Tem-se que $U + W = \mathbb{R}^2$.

Exemplo (1)

Considere os subespaços $U=\{(x,x)\in\mathbb{R}^2\,;\;x\in\mathbb{R}\}$ e $W=\{(0,y)\in\mathbb{R}^2\,;\;y\in\mathbb{R}\}$ de \mathbb{R}^2 . Tem-se que $U+W=\mathbb{R}^2$.

Prova.

Com efeito, por definição, $U+W\subset\mathbb{R}^2$. Vamos mostrar que $\mathbb{R}^2\subset U+W$. De fato, dado $v=(x,y)\in\mathbb{R}^2$, tomemos u=(x,x) e w=(0,y-x). Note que $u\in U$, $w\in W$ e u+w=(x+0,x+y-x)=(x,y)=v. Isto é $v\in U+W$. Segue-se que $U+W=\mathbb{R}^2$.

Soma direta

Definição

Sejam U e W subespaços de um espaço vetorial V, tais que $U \cap W = \{\mathbf{0}\}$. Neste caso, o subespaço U + W é dito ser *soma direta de U e W* e denotado por $U \oplus W$.

Soma direta

Definição

Sejam U e W subespaços de um espaço vetorial V, tais que $U \cap W = \{\mathbf{0}\}$. Neste caso, o subespaço U + W é dito ser *soma direta de U e W* e denotado por $U \oplus W$.

Exemplo (2)

Os subespaços U e W do exemplo 1 acima, é soma direta de \mathbb{R}^2 .

Soma direta

Definição

Sejam U e W subespaços de um espaço vetorial V, tais que $U \cap W = \{\mathbf{0}\}$. Neste caso, o subespaço U + W é dito ser *soma direta de U e W* e denotado por $U \oplus W$.

Exemplo (2)

Os subespaços U e W do exemplo 1 acima, é soma direta de \mathbb{R}^2 .

Prova.

Com efeito, pelo exemplo 1, $U+W=\mathbb{R}^2$. Além disso, se $u=(x,y)\in U\cap W$ então, por um lado, $u\in U\Rightarrow x=y$, por outro lado, $u\in W\Rightarrow x=0$. Logo, x=y=0. Segue-se que u=(0,0). Assim, $U\cap W=\{\mathbf{0}\}$.

Teorema

Sejam U_1 , U_2 , U subespaços de um espaço vetorial V. Então $U_1 \oplus U_2 = U$ se, e somente se, cada vetor $u \in U$ se escreve de modo único como soma $u = u_1 + u_2$, com $u_1 \in U_1$ e $u_2 \in U_2$.

Teorema

Sejam U_1 , U_2 , U subespaços de um espaço vetorial V. Então $U_1 \oplus U_2 = U$ se, e somente se, cada vetor $u \in U$ se escreve de modo único como soma $u = u_1 + u_2$, com $u_1 \in U_1$ e $u_2 \in U_2$.

Demonstração

Exercício.

Exercícios

- 1. Exiba dois subespaços (diferentes dos subespaços triviais) U e W de \mathbb{R}^4 tais que $U \oplus W = \mathbb{R}^4$. Um seguida, exiba mais dois subespaços U' e W' de \mathbb{R}^4 tais que $U' + W' = \mathbb{R}^4$ e $U' \cap W' \neq \{\mathbf{0}\}$.
- 2. Uma função $f: \mathbb{R} \to \mathbb{R}$ é dita ser par (respectivamente *ímpar*) quando f(-x) = f(x) (respectivamente f(-x) = -f(x)), para todo $x \in \mathbb{R}$. Prove que:
 - a) o conjunto U de todas as funções pares e o conjunto W de todas as funções ímpares são subespaços de $\mathcal{F}(\mathbb{R};\mathbb{R})$;
 - b) $U \oplus W = \mathcal{F}(\mathbb{R}; \mathbb{R})$.
- 3. Encontre um subespaço E de $\mathbb{M}_{3\times 3}(\mathbb{R})$ tal que $D\oplus E=\mathbb{M}_{3\times 3}(\mathbb{R})$, onde $D\subset \mathbb{M}_{3\times 3}(\mathbb{R})$ é o conjunto de todas as matrizes diagonais de ordem 3.

Desafios

- 1. Generalize o Exemplo (4) do material sobre espaços vetoriais. Mais precisamente mostre que, se X é um conjunto qualquer e $(V, +, \cdot)$ um espaço vetorial, então com as definições naturais, o conjunto $\mathcal{F}(X; V) = \{f : X \to V\}$ de todas as funções de X em V é um espaço vetorial. Sugestão: A única mudança será substituir a soma "+" de
 - números reais pela soma "+" de vetores de V.
- 2. Admitindo que o Desafio 1 foi provado, então pondo X = U, onde U é um espaço vetorial, $\mathcal{F}(U;V)$ é um espaço vetorial:
 - a) generalize as definições de função par e função ímpar (para funções $f: U \rightarrow V$) do exercício 2;
 - b) mostre que o conjunto U de todas as funções pares e o conjunto W de todas as funções ímpares são subespaços de $\mathcal{F}(U;V)$:
 - c) $U \oplus W = \mathcal{F}(U; V)$.

