Алгоритмически неразрешимые проблемы.

Рассмотрим следующую проблему: существует ли алгоритм, который для любой машины Тьюринга T и произвольного слова B выясняет вопрос: применима машина T к слову B или нет? Сформулируем *проблему применимости*:

Проблема применимости:

Существует ли машина Тьюринга L, применимая ко всем словам вида $N(T)\lambda B$, где N(T) - код произвольной машины Тьюринга T, B – произвольное слово, такая, что в случае, если T применима к слову B, то заключительная конфигурация машины L имеет вид 1, а если T

не применима к слову B, то заключительная конфигурация машины L имеет вид χ ?

 $S_{(}$

<u>Теорема об алгоритмической неразрешимости проблемы применимости.</u>

Не существует машины Тьюринга L, решающей проблему применимости.

Доказательство.

1. Решим вспомогательную задачу: построить машину Тьюринга T_1 , применимую ко всем словам вида $x_1x_2...x_n$, $x_i \in \{a,b\}$,

 $i \in \{1, 2, ..., n\}$, преобразующие их в слово $x_1 x_2 ... x_n \lambda x_1 x_2 ... x_n$, по окончании работы переводящая считывающее устройство машины Тьюринга T_1 на начало полученного слова.

Можно предложить следующее решение этой задачи. Пусть дано некоторое слово $x_1x_2...x_n$ в алфавите $\{a,b\}$. Работа машины T_1 будет состоять из n циклов. К началу i — го цикла конфигурация такова, что продублировано i -1 букв исходного слова и считывающее устройство рассматривает букву x_i :

$$x_1 x_2 ... x_{i-1} x_i x_{i+1} ... x_n \lambda x_1 x_2 ... x_{i-1}$$

Очередной цикл будет проходить в три этапа:

I – запоминание буквы (при этом она отмечается); II – поиск правой крайней пустой клетки, в которую записывается X_i ;

III – возвращение считывающей головки машины влево к помеченной букве, стирание метки, сдвиг головки на одну клетку впра-BO.

Рассмотрим два случая.

1) $x_i = a$

Первый этап осуществляется следующими командами: $as_1 \rightarrow a' \Pi s_2$ (a'- помеченная буква a, s_2 - состояние запоминания

a).

Поиск крайней правой пустой клетки обеспечивается командами: $bs_2 \rightarrow b\Pi s_2$; $as_2 \rightarrow a\Pi s_2$; $\lambda s_2 \rightarrow \lambda \Pi s_3$; $bs_3 \rightarrow b\Pi s_3$; $as_3 \rightarrow a\Pi s_3$.

Запись в пустую ячейку символа $a: \lambda s_3 \rightarrow a \Pi s_4$.

Возвращение влево к метке $a': as_4 \rightarrow a T s_4; bs_4 \rightarrow b T s_4; \lambda s_4 \rightarrow \lambda T s_4.$

Стирание метки и сдвиг головки вправо: $a's_{a} \rightarrow a\Pi s_{1}$. 2) $x_i = b$.

Первый этап осуществляется следующими командами:

 $bs_1 \rightarrow b'\Pi s_5$ (b'- помеченная буква b, s_5 - состояние запоминания

b). Поиск крайней правой пустой клетки:

 $bs_5 \rightarrow b\Pi s_5$; $as_5 \rightarrow a\Pi s_5$; $\lambda s_5 \rightarrow \lambda \Pi s_6$; $bs_6 \rightarrow b\Pi s_6$; $as_6 \rightarrow a\Pi s_6$.

Запись в пустую ячейку символа $b: \lambda s_6 \rightarrow b I s_4$.

Возвращение влево к метке $b': as_A \rightarrow a I s_A; bs_A \rightarrow b I s_A; \lambda s_A \rightarrow \lambda I s_A$.

Стирание метки и сдвиг головки вправо: $b's_4 \rightarrow b\Pi s_1$.

Если при сдвиге вправо головка при внутреннем состоянии S_1 встретит символ λ - это означает, что всё слово уже продублировано и нужно двигаться на его начало: $\lambda s_1 \to \lambda J s_7$; $as_7 \to a J s_7$; $as_7 \to a J s_7$.

Зависание над пустой ячейкой в состоянии s_7 будет означать, что считывающее устройство дошло до начало полученного слова.

Сдвигаем головку вправо и останавливаем работу. $\lambda s_7 \rightarrow \lambda \Pi s_0$.

Запишем программу машины T_1 :

шины L'.

Janninem lipol pammy maintinist 11.							
	S_1	s_2	S_3	S_4	S_5	S_6	S ₇
λ	λIIs_7	$\lambda \Pi s_3$	$aIIs_4$	$\lambda J I s_4$	$\lambda\Pi s_6$	$b \mathcal{I} S_4$	$\lambda \Pi s_0$
a	$a'\Pi s_2$	$a\Pi s_2$	$a\Pi s_3$	$aIIs_4$	$a\Pi s_5$	$a\Pi s_6$	$aIIs_7$
b	$b'\Pi s_5$	$b\Pi s_2$	$b\Pi s_3$	b Л s_4	$b\Pi s_5$	$b\Pi s_6$	$b \mathcal{I} s_7$
a'	-	-	-	$a\Pi s_1$	-	-	-
<i>b</i> '	-	-	-	$b\Pi s_1$	-	-	-

В клетки таблицы, помеченные прочерком, можно писать любые команды, так как до исполнения этих команд дело никогда не дойдёт.

Задание для самостоятельной работы: проверить работу машины Тьюринга T_1 над словом aba.

2. Докажем теорему об алгоритмической неразрешимости проблемы применимости от противного. Будем считать, что в алфавите машины T_1 , $\{a,b\} = \{*,1\}$. Допустим,

что существует машина Тьюринга L, решающая проблему применимости. Построим на базе этой машины новую машину Тьюринга L следующим образом: начальным состоянием машины L объявляется начальное состояние машины T_1 , все внутренние состояния и команды машин T_1 и L объявляются также внутренними состояниями и командами L, заключительное состояние машины T_1 отождествляется с начальным состоянием машины L, заключительное состояние машины L объявляется заключительным состоянием ма

Рассмотрим произвольную машину Тьюринга T и запишем на ленте её код N(T). Запустим машину L '. Сначала, применяя команды машины T_1 , будет продублирован через пробел код N(T) получено слово $N(T)\lambda N(T)$, затем будут исполняться команды машины L, и, в зависимости от T, возможны случаи:

а) Машина Т самоприменима.

Тогда T применима к слову N(T) и, выполняя команды машины L, в заключительном состоянии получаем конфигурацию 1.

б) Машина T несамоприменима.

Тогда T не применима к слову N(T) и, выполняя команды машины L, в заключительном состоянии получаем конфигурацию λ .

Таким образом, построенная машина L' решает проблему самоприменимости. Но, согласно теореме об алгоритмической неразрешимости проблемы самоприменимости, это невозможно. Полученное противоречие показывает, что сделанное допущение о существовании машины Тьюринга L, решающей проблему применимости, не существует. Теорема доказана.

Нормальные алгоритмы.

Алфавитом будем называть множество из конечного числа различных символов, называемых *буквами*.

Например, алфавитами являются $\{0;1;2\}$, $\{\&;^{\wedge};\%;\$;a\}$.

Словом в данном алфавите называется горизонтальный ряд конечного числа букв данного алфавита.

Например, словами в алфавите $\{a;b\}$ являются a, abba, bababb.

Пустым словом называется слово, не содержащее букв, и будем считать, что любой алфавит содержит пустое слово.

Будем говорить, что слово P входит в слово Q, если Q имеет вид $Q = Q_1 P Q_2$. (Может быть, или Q_1 , или Q_2 являются пустыми словами.

Примеры. Пусть в алфавите $\{a,b\}$ имеем слово Q=ababbabb.

Тогда P = aba входит в слово Q, так как Q = Pbbabb. Слово R=bab также входит в слово Q, так как Q=aRbabb=ababRb.

Заметим, что в этом примере слово R входит в слово Q не единственным способом.

В дальнейшем будем находить первые вхождения данных слов в другие слова и заменять их на другие слова.

Пусть A — алфавит, не содержащий в качестве букв символов · и \rightarrow . Обычной формулой подстановки в алфавите A называется слово $P \rightarrow Q$, где P и Q- некоторые слова в алфавите A.

Заключительной формулой подстановки в алфавите А называется слово $P \rightarrow Q$, где PиQ- слова в алфавите A.

P называется левой частью формулы подстановки $P{
ightarrow} aQ$, а Qеё правой частью, где а есть . или пустое слово.

Нормальной схемой подстановок в алфавите A называется конечная

 $S = egin{cases} P_1
ightarrow a_1 Q_1 \ P_2
ightarrow a_2 Q_2 \ \dots & ext{, где a_i есть} \ P_k
ightarrow a_k Q_k \end{cases}$

$$(P_k \to a_k Q_k$$
 точка . или пустое слово, Q_i и P_i - слова в алфавите $A,\ i-1,2,...,k$.

упорядоченная система подстановок

Нормальным алгоритмом над алфавитом A называется пара (B,S),

где B — алфавит, включающий в себя алфавит A и не содержащий букв . и \longrightarrow , а S - нормальная схема подстановок над алфавитом B.

Нормальный алгоритм над алфавитом A преобразует слова в A следующим образом.

Работа данного нормального алгоритма над словом R состоит из отдельных шагов, в результате которых получается последователь- $R = R_1, R_2, R_3, ..., R_i, R_{i+1}, ...$ ность слов

Слово R_{i+1} получается из слова R_i следующим образом.

Просматривается нормальная схема подстановок и из неё выбирается самая верхняя формула, в левую часть которой входит слово R_i .

Пусть это формула $P_j \to a_j Q_j$, где a_j - либо . либо пустое слово.

Затем первое вхождение P_j в слово R_i заменяется на слово Q_j , что и даёт слово R_{i+1} .

Paбота нормального алгоритма над словом R заканчивается в двух случаях:

- 1) существует такое слово R_i из последовательности (1), что слово R_{i+1} получается из слова R_i с помощью заключительной формулы подстановки;
- 2) существует такое слово R_j из последовательности (1), что ни одна левая часть формул подстановок из нормальной схемы не имеет вхождений в слово R_j .

В первом случае результатом работы нормального алгоритма над словом R объявляется слово R_{i+1} , во втором - R_j .

В этих случаях говорят, что данный нормальный алгоритм *применим к слову R* .

В остальных случаях работа нормального алгоритма над словом R не заканчивается (последовательность (1) будет бесконечной), тогда будем говорить, что данный нормальный алгоритм неприменим к слову.

Примеры.

1) Построить тождественный нормальный алгоритм, т.е. алгоритм, применимый к каждому слову в любом алфавите A и результатом работы которого было бы то же самое слово.

Такой нормальный алгоритм может быть задан нормальной схемой $\{\rightarrow$., т.е. в этой схеме имеется только одна формула подстановки, являющаяся заключительной, с пустой левой и правой частью.

2) Построить нормальный алгоритм, применимый ко всем словам вида $x_1x_2...x_n$ в алфавите $\{a,b\}$ и преобразующий их в слово

$$lpha = egin{cases} x_n, \text{если } x_{n-1} = a \ b^{n-1}x_n, \text{если } x_{n-1} = b, \quad n > 1. \end{cases}$$

Последней в схеме подстановок запишем формулу $\to \alpha$, тогда слово $x_1x_2...x_n$ перейдёт в $\alpha x_1x_2...x_n$ Затем с помощью формул подстановок $\alpha a \to a\alpha$, $\alpha b \to b\alpha$ символ α прейдёт на конец слова: $x_1x_2...x_n\alpha$

 $bb\alpha \rightarrow \gamma bb$, $ba\alpha \rightarrow \gamma ba$, $a\gamma \rightarrow \gamma b$, $b\gamma \rightarrow \gamma b$, $\gamma \rightarrow .$

Запишем нормальную схему подстановок:
$$\begin{cases} \beta \to . \\ b \ b\alpha \to \gamma b \ b \\ b \ a\alpha \to \gamma b \ a \\ a\gamma \to \gamma b \\ b\gamma \to \gamma b \\ \gamma \to . \end{cases}$$

Проверим работу построенного нормального алгоритма над словом *abba* :

abba, $\underline{\alpha}\underline{a}\underline{b}ba$, $a\underline{\alpha}\underline{b}ba$, $ab\underline{\alpha}\underline{a}$, $ab\underline{b}\underline{a}\alpha$, $ab\underline{b}\underline{a}\alpha$, $ab\gamma ba$, $\gamma bbba$, bbba.

Проверим работу построенного нормального алгоритма на словом bbaaa:

bbaaa, α bbaaa, $b\alpha$ baaa, $bb\alpha$ aaa, $bba\alpha$ aa, $bbaa\alpha$ a, $bbaaa\alpha$, $bba\beta a, bb\beta a, b\beta a, \beta a, a.$

Видим, что нормальный алгоритм работает так, как и требовалось, при различных значениях x_{n-1} .

3. Построить нормальный алгоритм удвоения – нормальный алго-

ритм над $A = \{a, b\}$, преобразующий каждое слово R в алфавите A в слово RR. $\alpha a \rightarrow a\beta a\alpha$

Зададим нормальный алгоритм удвоения нормаль- $\alpha b \rightarrow b \beta b \alpha$ ной схемой подстановок: $\beta aa \rightarrow a\beta a$ Работа этого алгоритма над словом *bab* состоит и $\beta ab \rightarrow b\beta a$ следующей последовательности слов:

схемами подстановок $\begin{cases} \alpha \to b \\ b \to a \end{cases}$ или $\{ \to aab \, .$

Как и в случае машин Тьюринга, будем рассматривать числовые функции, функции вида $f:N_0^n o N_0$, то есть функции многих переменных, где каждая переменная может принимать значения во множестве целых неотрицательных чисел, и своей область

прибытия функция также имеет множество неотрицательных целых чисел.

Каждое неотрицательное число k будем изображать словом из k+1 единицы.

Упорядоченный набор чисел $(m_1, m_2, ..., m_n)$ будем изображать словом $1^{m_1+1} * 1^{m_2+1} * ... * 1^{m_n+1}$.

Числовая функция $f(x_1, x_2, ..., x_n)$ называется вычислимой по Маркову, если существует нормальный алгоритм, который каждое изображение набора аргументов преобразует в значение функции $f(x_1, x_2, ..., x_n)$ на этом наборе.

Другими словами, числовая функция $f(x_1, x_2, ..., x_n)$ называется вычислимой по Маркову, если существует нормальный алгоритм, применимый ко всем словам вида $1^{x_1+1}*1^{x_2+1}*...*1^{x_n+1}$, преобразующий их в слово $1^{f(x_1, x_2, ..., x_n)+1}$.