

项目背景

功能介绍

技术方案

创新点

前景展望

魔方机器人发展背景

人工智能技术不断成熟

研究魔方原因

青少年对魔方的热爱 提高国民科学文化素养

发展的前提

硬件、图像处理等相关技术的 成熟

什么是 蔥方机器人

输入

混乱的三阶魔方

输出

还原的三阶魔方

机械结构

构造出稳定、简单的机械臂实现对魔方还原控制

魔方实现

方案

02

上位机

负责图像获取、图像处理、 信息传输得出魔方还原步骤

03

下位机

负责舵机控制,机器交互、 指令分析,控制机械臂还原 指令的实现

机械部分

机械结构图

机械控制过程:用四个水平 舵机用于自动夹紧,通过控制四个方向的连杆,使滑块增高块带动竖直舵机在滑轨 上进行前后运动,再由竖直舵机控制机械手对魔方进行 扭转,完成对魔方的还原。

PART 03

上位机实现过程

解魔方机器人APP

KNN分类算法 RGB、HSV

Kociemba算法

实现数据的传输

手机进行图像获取

图像处理

下位机

01

信息接收控制

使用HC-05设备实现对来自上 位机信息的接收和发送

02

机器交互

通过按键控制实现对机器 人的控制,并且LED灯会对 操作做出确认

03

舵机控制

通过定时器中断的方式产生 PWM实现,并且结合舵机 速度控制算法使得舵机还原 稳定且平稳

PART 04

项目创新点

魔方还原算法

颜色识别

插补算法

机械补偿

采用Kociemba算法, 优化算法,用较少的 步数使魔方复原 颜色识别采用KNN和opency,计算量小,识别成功率高

插补算法利用到PWM产生之中,可以使得整个 舵机的还原工程更加平 稳和流畅。 利用软件调控方式,对 机械臂存在的误差问题 进行补偿

1.机械智能化

一体化,用户通过将魔方放到 固定的位置,机器人会自动将 魔方传送到识别还原位置

2.控制智能化

增加更多的交互性,实现远程 操控机器人还原

3.视觉可视化

在魔方还原APP中增加3D魔方还原模块,实现在线玩转魔方,通过提供还原步骤和"一键还原"按钮,使得用用户在手机上也同样体验到魔方还原的快乐。

智能复原魔方 挑財观看