IP6: Blockchain Transactionmanager

Projektvereinbarung

Faustina Bruno; Jurij Maïkoff

Studiengang:

- iCompetence
- Informatik

Betreuer:

- Markus Knecht
- Daniel Kröni

Auftraggeber:

Fachhochschule Nordwestschweiz FHNW Campus Brugg-Windisch Bahnhofstrasse 6 5210 Windisch

2019-10-22

Inhaltsverzeichnis

1	Aufg	Aufgabenstellung							
2	Planung								
	2.1	Meilensteine	2						
	2.2	Arbeitspakete	3						
	2.3	Bericht	5						
3	Risiken							Risiken	6
4	Que	llenverzeichnis	7						

1 Aufgabenstellung

Blockchains verfügen über verschiedene Mechanismen, um sich gegen Attacken abzusichern. Eine davon ist eine Gebühr auf jeder Transaktion, der sogenannte Gas Price[1]. Dadurch können Denial of Service (DoS)[2] Attacken, bei denen das Netzwerk mit unzähligen Transaktionen geflutet wird, effizient bekämpft werden. Der Angreifer kann die Attacke nicht aufrecht erhalten, da ihm die finanziellen Mittel zwangsläufig ausgehen.

Obwohl dieser Schutzmechanismus auf einer öffentlichen Blockchain sehr effizient und elegant ist, eignet er sich nicht für eine Lernumgebung. Hier sollen Anwender die Möglichkeit haben, Transaktionen ohne anfallende Gebühren ausführen zu können. Dadurch wird jedoch die Blockchain anfällig für DoS Attacken.

Die Projektaufgabe besteht darin, einer definierten Gruppe von Benutzern gratis Transaktionen zur Verfügung zu stellen. Um die Blockchain zu schützen, können bei Anzeichen von einer DOS Attacke, Schutzmechanismen eingeleitet werden.

Das Ziel der Arbeit ist die Realisierung einer Blockchain welche für eine definierte Gruppe von Benutzern:

- Kostenlose Transaktionen ermöglicht
- Schutz vor DOS Attacken gewährleistet

Um diese Ziele zu erreichen sind folgende Fragestellungen von Bedeutung:

- Wie identifizieren wir verantwortliche Benutzer bei einer DOS Attacke?
- Wie können DOS Attacken erkannt werden?
- Welche Schutzmechanismen stehen uns zur Verfügung?

2 Planung

In diesem Kapitel wird beschrieben, wie das Projekt geplant wird. Dazu gehören Meilensteine und die Benennung der wichtigsten Arbeitspakete.

2.1 Meilensteine

Die für das Projekt definierten Meilensteine sind in der Tabelle 2.1 aufgelistet.

Tabelle 2.1: Meilensteine

Erledigt bis	Meilenstein	Beschreibung
14.01.2019	MS 1. Kostenlose Transaktionen für eine definierte Benutzergruppe	Die Testblockchain ist in Betrieb und erlaubt die Definition einer Benutzergruppe, die kostenlose Transaktionen ausführen können. Für alle anderen Benutzer sind die Transaktionen mit Kosten verbunden
11.02.2019	MS 2. Identitätsmanagement auf der Blockchain	Die Identitätsverwaltung ist mit einer bestehenden Lösung, die wenn nötig angepasst wird, oder mit einer eigenen Implementation, auf der Blockchain implementiert
03.03.2019	MS 3. System zur Verhinderung von DOS Attacken	Das Testnetzwerk verhindert automatisch DOS Attacken von Benutzern, die kostenlose Transaktionen ausführen dürfen.
20.03.2019	MS 4. Abgabe der Bachelorthesis	Die Bachelorthesis und der entwickelte Code wird den Betreuern übergeben.

2.2 Arbeitspakete

In der Tabelle 2.2 sind die Arbeitspakete für dieses Projekt aufgeführt.

Tabelle 2.2: Arbeitspakete

Erledigt bis	Arbeitspaket	Beschreibung
24.09.2019	Kickoff	Besprechung der Rahmenbedingungen
08.10.2019	Testumgebung	Zur Einarbeitung in die Materie, testen und analysieren von Code
20.10.2019	Projektvereinbarung abgeschlossen	Vereinbarung über Rahmenbedingungen, Planung und Ziele des Projekts
22.10.2019	Analyse Phase	Einarbeitung in das Thema Blockchain und Analyse von möglichen Tools
05.11.2019	Gratis Transaktionen in der Blockchain	Eine Blockchain in der jeder gratis Transaktionen ausführen kann
05.11.2019	Wallets analysieren	Einarbeitung in das Thema und Analyse von möglichen Tools
19.11.2019	Erster Berichts Entwurf für Feedback	Eine frühe Version des Berichtes für die Betreuer, damit die Studierenden ein Feedback zur Struktur erhalten
28.11.2019	Zwischenpräsentation	Präsentation des aktuellen Standes für Experte und Betreuer
10.12.2019	Analyse Smart Contracts	Einarbeitung in das Thema und Analyse von möglichen Tools
14.01.2020	Steuerung für gratis Transaktionen über Gruppen	Einschränkung von gratis Transaktionen auf Gruppen
11.02.2020	Erweiterung der Wallet	Gewählte Wallet für unsere Bedürfnisse erweitern
18.02.2020	zweite Berichts Version	Bericht geht nochmals an die Betreuer für ein finales Feedback vor der Einreichung der Thesis
25.02.2020	Analyse von Algorithmen für Gruppenverwaltung	Analyse von Algorithmen, um schadhaftes Verhalten in der Blockchain zu identifizieren / unterbinden

Arbeitspaket	Beschreibung
Implementierung Algorithmen in Smart Contracts	Gewählter Algorithmus mit einem Smart Contract implementieren
Testen und Überarbeiten von Blockchain	Testen und analysieren der implementieren Lösung, allfällige Korrekturen vornehmen
Abgabe Bachelorthesis	Übergabe von Thesis an Betreuer
Verteidigung	Verteidigung der Thesis vor Betreuer und Experten
	Implementierung Algorithmen in Smart Contracts Testen und Überarbeiten von Blockchain Abgabe Bachelorthesis

In der Grafik 2.1 sind die Arbeitspakete 2.2 und Meilensteine dargestellt. Für Januar 2020 ist bewusst nur ein Arbeitspaket definiert, da dort die Modulschlussprüfungen geschrieben werden müssen.

Abbildung 2.1: Zeitstrahl

Im Voraus werden nebst den Meilensteinen nur die wichtigsten Arbeitspakte bestimmt, kleinere Auf-

gaben werden agil definiert und wenn nötig iterativ bearbeitet. Für diese Vorgehensweise haben wir uns entschieden, da der Wissensstand noch nicht ausreichend ist, um alle Teilaufgaben im Voraus bestimmen zu können.

2.3 Bericht

Wir haben uns dazu entschlossen, den Bericht während des Projekts zu schreiben und nicht nach der praktischen Arbeit. Dadurch können Erkennktnisse und Entscheidungen zeitnahe dokumentiert werden. Diese Aufgabe ist in der Grafik 2.1 ersichtlich.

3 Risiken

In der Tabelle 3.1 sind die wichtigsten Risken aufgelistet. In der Spalte Auftreten wird die geschätzte Wahrscheinlichkeit eines Eintreffens des Risikos beschrieben. Die Spalte Auswirkung beschreibt die Schwere beim Eintreffen des Risikos. Bei beiden Spalten ist der Wert 1 das Minimum und der Wert 3 das Maximum. Der Wert in der Spalte Kategorie wird aus der Multiplikation von Auftreten und Auswirkung gebildet. Ein Risiko kann also von 1 bis 9 gewertet werden. Je höher die Kategorie, umso gefährlicher ist ein Risiko.

Tabelle 3.1: Risiken

Risiko	Auftreten	Auswirkun	gKategorie	Gegenmassnahme
Teammitglied bricht Projekt ab	1	3	3	Gute Kommunikation unter den Teammitgliedern. Protokollieren, wer was erledigt hat. Planung in Zusammenarbeit mit den Betreuern überarbeiten
Unterschätzen des Projektumfanges	2	2	4	Sorgfältige Planung und regelmässig Rücksprache mit den Betreuern
Ausfall von einem Teammitglied (mehr als 2 Wochen)	2	2	4	Sofortiges Informieren von Betreuern. Planung überarbeiten und Ausfall berücksichtigen
Datenverlust	1	3	3	Daten werden niemals nur auf einem Medium gespeichert. Versionierung mit GitHub
Themen zu Komplex	2	2	4	Intensivierung der Analysephasen. Gegenseitige Unterstützung der Teammitglieder. Informieren der Betreuer und eventuelle Anpassung der Planung

4 Quellenverzeichnis

[1] M. Inc., "What is Gas | MyEtherWallet Knowledge Base", 2018. [Online]. Verfügbar unter: https://kb.myetherwallet.com/en/transactions/what-is-gas/.

[2] "Denial-of-service attack - Wikipedia", 2019. [Online]. Verfügbar unter: https://en.wikipedia.org/wiki/Denial-of-service_attack.