Direct Extension of RR17b PSI Protocol to Multiparty Setting

November 14, 2020

Protocol $\Pi_{M-RRPSI}$

Parameters:

n - a bound on the size of the input set of each party; \mathcal{D} - a domain of input items;

 σ - computational security parameter; λ - statistical security parameter;

 N_{BF} - size of the Bloom filter; $N_{\mathrm{OT}} > N_{\mathrm{BF}}$ - number of random OTs to perform;

 N_{OT}^{1} , N_{cc} , $N_{maxones}$ – parameters for Π_{AppROT} computed as in Sec. ??.

Inputs: Each party P_i , $i \in \{0,...,t\}$, inputs its set of items $X_i = \{x_{i1}, x_{i2}, ..., x_{in_i}\}$, $n_i \le n$, $x_{ij} \in \mathcal{D}$.

Offline-phase $\Pi_{MPSI}^{Offline}$

1. [hash seeds agreement]

Parties run a coin-tossing protocol to agree on random hash-functions $h_1, h_2, ..., h_k$: $\{0, 1\} \rightarrow [N_{BF}]$.

- 2. [approximate ROT-offline] Parties perform in parallel (with parameters N_{OT} , N_{OT}^1 , N_{cc} , and $N_{maxones}$):
 - P_0 as a receiver performs $\Pi_{AppROT}^{Offline}$ with each P_i , $i \in [t]$.
- 3. [random shares] Each P_i , $i \in [t]$, sends $S^{il} = (s_1^{il}, ..., s_{N_{BF}}^{il})$ to any P_l , $l \in [t] \setminus \{i\}$, where $s_r^{il} \leftarrow \{0, 1\}^{\sigma}$, $r \in [N_{BF}]$.

Online-phase Π_{MPSI}^{Online} :

- 4. **[compute Bloom filters]** Each party P_i , $i \in [t] \cup \{0\}$, locally computes the Bloom filter BF_i of its input set X_i . If $n_0 < n$, then P_0 computes the Bloom filter of the joint set X_0 with $(n n_0)$ random dummy items.
- 5. [approximate ROT-online]
 - Using BF₀ as its input, P₀ performs Π_{AppROT}^{Online} with every other party to finish Π_{AppROT} s started on Step 2. As a result, it receives t arrays M_*^i , P_i learns M^i , where M_*^i and M^i are N_{BF} -size arrays of σ -bit values.
 - P_0 computes $GBF^0 = \bigoplus_{i \in [t]} M_*^i$.
- 6. [secret-sharing of GBFs and sending codewords] Each P_i , $i \in [t]$, locally computes

$$\mathrm{GBF}^i = M^i \bigoplus_{l \in [t] \setminus \{i\}} \left[S^{li} \oplus S^{il} \right].$$

For each item x in P_i 's input set, it computes a summary value $K_x^i = \bigoplus_{r \in h_*(x)} GBF^i[r]$, where $h_*(x) = \{h_i(x) | i \in [k]\}$. P_i sends a random permutation of $K^i = \{K_x^i | x \in X_i\}$ to P_0 . If $|X_i| < n$, then P_i completes K^i up to size n by uniformly random σ -bit values before the permutation.

7. **[output]** For each $x_{0j} \in X_0$, P_0 outputs x_{0j} as a member of the intersection, if there exist $K^1[j_1]$, $K^2[j_2]$, ..., $K^t[j_t]$ such that

$$\bigoplus_{r \in h_*(x_{0j})} \mathrm{GBF}^0[r] = K^1[j_1] \oplus K^2[j_2] \oplus ... \oplus K^t[j_t].$$

Figure 1: Direct multiparty extension of the PSI protocol of RR17b