

Curvas características de una bomba centrífuga

ASIGNATURA: ICM557

PROFESOR: CRISTÓBAL GALLEGUILLOS

ALUMNO: OSCAR RAMÍREZ

11/12/2020

Contenido

Fórmulas	3
Gráficos9)
Gráfico I: isorendimiento y potencia v/s caudal)
Gráfico II: ψ v/s φ:12	L
Velocidad específica13	3
Conclusión	1
Índice de Gráficos	
Gráfico 1 isorendimiento y potencia v/s caudal	
Índice de Tablas	
Tabla 1 Valores medidos 1	5
Tabla 2 Valores medidos 2	
T	5
Tabla 3 Valores medidos 3	
Tabla 4 Valores calculados 2700 rpm6	5
Tabla 4 Valores calculados 2700 rpm	5
Tabla 4 Valores calculados 2700 rpm 6	5
Tabla 4 Valores calculados 2700 rpm	5 5 7 7
Tabla 4 Valores calculados 2700 rpm	5 5 7 7

Fórmulas

Caudal Corregido (Q):

$$Q = Qx \left(\frac{n}{nx}\right) \left[\frac{m3}{h}\right]$$

Presión de aspiración (pax):

$$pax = 0.1 * pax\% - 10 - \frac{cpax}{1000}$$
 [mca]

Cpax = 115 [mm]

Presión de descarga (pdx):

$$pdx = 0.4 * pdx\% + \frac{cpdx}{1000} [mca]$$

Altura (Hx):

$$Hx = pdx - pax [mca]$$

Altura modificada (H):

$$H = Hx * \left(\frac{n}{nx}\right)^2 [mca]$$

Potencia en el eje de la bomba (N_{ex}):

$$N_{ex} = 0.0007355 * Fx * nx [kW]$$

Potencia en el eje de la Bomba Corregida (N):

$$N = Nex * \left(\frac{n}{nx}\right)^3 [kW]$$

Potencia Hidráulica (Nh):

$$Nh = \frac{\gamma * H * Q}{3600} [kW]$$

Rendimiento Global (η_{gl}) :

$$\eta_{gl} = \frac{Nh}{Ne} * 100 \, [\%]$$

Velocidad Tangencial del rodete descarga (U_2):

$$U_{2} = \frac{\pi}{60} * n * D_{2} \left[\frac{m}{s} \right]$$

 D_2 = Diámetro exterior del rodete.

Velocidad Meridional de descarga (cm₂):

$$Q = \frac{Q}{3600 * \pi * D_2 * B_2} \left[\frac{m}{s} \right]$$

 D_2 = Diámetro exterior del rodete.

 B_2 = Ancho exterior del rodete.

Phi (Φ):

$$\Phi = \frac{cm_2}{U_2} \ [-]$$

Psi (Ψ):

$$\Psi = \frac{2*g*H}{U_2^2} \left[- \right]$$

Valores Medidos

		n= 2700 RPM										
	n	срах	cpdx	n	pax%	pd%	Δhx	Fx	ta	Patm		
	[rpm]	[mm]	[mm]	RPM	%	%	mmhg	kp	C°	mmhg		
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7		
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7		
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7		
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7		
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7		
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7		
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7		
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7		
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7		
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7		
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7		
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7		

Tabla 1 Valores medidos 1

	n = 2900 RPM										
	n	срах	cpdx	n	pax%	pd%	Δhx	Fx	ta	Patm	
	[rpm]	[m]	[m]	RPM	%	%	mmhg	kp	C°	mmhg	
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7	
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7	
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7	
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7	
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7	
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7	
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7	
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7	
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7	
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7	
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7	
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7	

Tabla 2 Valores medidos 2

	n =3070 RPM										
	n	срах	cpdx	n	pax%	pd%	Δhx	Fx	ta	Patm	
	[rpm]	[m]	[m]	RPM	%	%	mmhg	kp	C°	mmhg	
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7	
2	3070	115	165	3076	92	13,6	133	1,68	16	5	
3	3070	115	165	3076	94,8	19,4	118	1,79	16	5	
4	3070	115	165	3076	97	24,5	104	1,85	16	5	
5	3070	115	165	3077	99,4	29,1	91	1,89	16	5	
6	3070	115	165	3078	101,7	34,4	76	1,91	16	5	
7	3070	115	165	3078	105,2	41,3	59	1,92	16	5	
8	3070	115	165	3078	107,6	46,2	45	1,89	16	5	
9	3070	115	165	3078	110	49,2	32	1,83	16	5	
10	3070	115	165	3077	112,5	54,4	17	1,69	16	5	
11	3070	115	165	3078	114,3	56,9	9	1,55	16	5	
12	3070	115	165	3078	120,5	62,1	0	1,13	16	5	

Tabla 3 Valores medidos 3

Valores Calculados

N= 2700

	Qx	Q	pax	pdx	Нх	Н	Nex
	m³/h	m³/h	Mca	Mca	Mca	Mca	KW
1	91,8	84,937	-0,685	2,485	3,17	2,7137	2,3053
2	88,92	82,242	-0,435	4,365	4,8	4,1061	2,4652
3	82,8	76,582	-0,265	5,965	6,23	5,3294	2,5845
4	76,32	70,588	-0,115	7,405	7,52	6,4329	2,6640
5	73,44	67,950	0,125	9,205	9,08	7,7731	2,7425
6	67,32	62,264	0,365	10,925	10,56	9,0334	2,7833
7	60,48	55,938	0,595	13,005	12,41	10,6160	2,7833
8	53,28	49,297	0,795	14,605	13,81	11,8223	2,7425
9	46,8	43,301	1,015	16,125	15,11	12,9352	2,5835
10	33,84	31,299	1,245	17,565	16,32	13,9607	2,3459
11	25,2	23,307	1,375	18,285	16,91	14,4654	2,0875
12	19,44	17,980	1,845	19,805	17,96	15,3636	1,5507

Tabla 4 Valores calculados 2700 rpm

Ne	Nh	η _{gl}	U2	cm2	ф	ψ
KW	KW	-	m/s	m/s	-	-
1,8260	0,6279	34,3882	17,6715	2,2893	0,1295	0,1704
1,9504	0,9199	47,1654	17,6715	2,2167	0,1254	0,2579
2,0448	1,1118	54,3726	17,6715	2,0641	0,1168	0,3347
2,1077	1,2370	58,6890	17,6715	1,9026	0,1077	0,4040
2,1723	1,4389	66,2377	17,6715	1,8314	0,1036	0,4882
2,2021	1,5322	69,5801	17,6715	1,6782	0,0950	0,5674
2,2021	1,6177	73,4616	17,6715	1,5077	0,0853	0,6667
2,1723	1,5877	73,0877	17,6715	1,3287	0,0752	0,7425
2,0463	1,5258	74,5646	17,6715	1,1671	0,0660	0,8124
1,8561	1,1903	64,1318	17,6715	0,8436	0,0477	0,8768
1,6516	0,9185	55,6109	17,6715	0,6282	0,0355	0,9085
1,2269	0,7525	61,3356	17,6715	0,4846	0,0274	0,9649

Tabla 5 Valores calculados 2700 rpm

	Qx	Q	pax	pdx	Нх	Н	Nex
	m³/h	m³/h	Mca	Mca	Mca	Mca	KW
1	102,6	97,193	-0,965	2,645	3,61	3,2395	2,9252
2	98,28	93,100	-0,725	5,245	5,97	5,3573	3,1387
3	92,88	87,985	-0,485	6,725	7,21	6,4700	3,3095
4	84,96	80,482	-0,245	8,725	8,97	8,0494	3,4590
5	77,76	73,662	-0,065	10,605	10,67	9,5749	3,5230
6	71,28	67,547	0,225	12,365	12,14	10,9016	3,5858
7	64,8	61,364	0,445	14,365	13,92	12,4828	3,6097
8	52,92	50,148	0,695	16,245	15,55	13,9637	3,5858
9	43,56	41,264	0,885	17,885	17	15,2553	3,4163
10	29,16	27,623	1,115	19,405	18,29	16,4129	3,1814
11	20,16	19,091	1,345	20,645	19,3	17,3073	2,9262
12	10,8	10,227	1,835	22,605	20,77	18,6255	2,0077

Tabla 6 Valores calculados 2900 rpm

Ne	Nh	Ŋgl	U2	cm2	ф	ψ
KW	KW	-	m/s	m/s	-	-
2,4866	0,8577	34,4936	19,4386	2,6196	0,1348	0,1681
2,6681	1,3587	50,9244	19,4386	2,5093	0,1291	0,2781
2,8133	1,5508	55,1226	19,4386	2,3715	0,1220	0,3358
2,9404	1,7648	60,0200	19,4386	2,1692	0,1116	0,4178
2,9948	1,9214	64,1565	19,4386	1,9854	0,1021	0,4970
3,0514	2,0060	65,7401	19,4386	1,8206	0,0937	0,5659
3,0653	2,0867	68,0741	19,4386	1,6539	0,0851	0,6479
3,0514	1,9076	62,5165	19,4386	1,3516	0,0695	0,7248
2,9041	1,7149	59,0501	19,4386	1,1122	0,0572	0,7918
2,7044	1,2351	45,6687	19,4386	0,7445	0,0383	0,8519
2,4849	0,9001	36,2228	19,4386	0,5146	0,0265	0,8983
1,7050	0,5189	30,4359	19,4386	0,2757	0,0142	0,9668

Tabla 7 Valores calculados 2900 rpm

	Qx	Q	pax	pdx	Нх	Н	Nex
	m³/h	m³/h	Mca	Mca	Mca	Mca	KW
1	111,6000	108,8780	-1,1650	2,7650	3,9300	3,7406	3,4830
2	107,2800	104,6294	-0,9150	5,6050	6,5200	6,2018	3,8008
3	100,8000	98,3095	-0,6350	7,9250	8,5600	8,1422	4,0497
4	99,0000	96,5540	-0,4150	9,9650	10,3800	9,8734	4,1854
5	87,8400	85,6419	-0,1750	11,8050	11,9800	11,3879	4,2773
6	82,8000	80,7018	0,0550	13,9250	13,8700	13,1759	4,3240
7	71,2800	69,4737	0,4050	16,6850	16,2800	15,4653	4,3466
8	63,0000	61,4035	0,6450	18,6450	18,0000	17,0993	4,2787
9	43,2000	42,1053	0,8850	19,8450	18,9600	18,0112	4,1429
10	30,6000	29,8343	1,1350	21,9250	20,7900	19,7625	3,8247
11	24,1200	23,5088	1,3150	22,9250	21,6100	20,5286	3,5090
12	17,2800	16,8421	1,9350	25,0050	23,0700	21,9156	2,5582

Tabla 8 Valores calculados 3070 rpm

Ne	Nh	η_{gl}	U2	cm2	ф	ψ
KW	KW	-	m/s	m/s	-	-
3,2343	1,1095	34,3038	21,2058	2,9346	0,1384	0,1631
3,5260	1,7677	50,1328	21,2058	2,8201	0,1330	0,2705
3,7569	2,1806	58,0425	21,2058	2,6497	0,1250	0,3551
3,8828	2,5970	66,8845	21,2058	2,6024	0,1227	0,4306
3,9642	2,6568	67,0210	21,2058	2,3083	0,1089	0,4967
4,0035	2,8967	72,3529	21,2058	2,1752	0,1026	0,5747
4,0245	2,9269	72,7283	21,2058	1,8725	0,0883	0,6745
3,9616	2,8603	72,1994	21,2058	1,6550	0,0780	0,7458
3,8358	2,0659	53,8584	21,2058	1,1349	0,0535	0,7856
3,5447	1,6062	45,3119	21,2058	0,8041	0,0379	0,8619
3,2489	1,3147	40,4653	21,2058	0,6336	0,0299	0,8954
2,3686	1,0055	42,4517	21,2058	0,4539	0,0214	0,9558

Tabla 9 Valores calculados 3070 rpm

Gráficos

Gráfico I: isorendimiento y potencia v/s caudal

Gráfico 1 isorendimiento y potencia v/s caudal

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones de operación óptimas para la bomba son entre los 43.3 y los 62.26 [m3/hr] dado que entre estos valores de caudal se obtienen los mejores rendimientos de la bomba (74,56%), el cual se obtiene específicamente a 2700 [rpm] entregando un caudal de 46.8 [m3/hr]. A estos niveles de operación la bomba entrega una altura de 12,93[mca].

¿Las curvas tienen la forma esperada?

Sí, se desarrollan de la manera como lo describe la teoría. En el gráfico de altura vs caudal el caudal disminuye y aumenta la temperatura. En el gráfico de rendimiento vs caudal, es la característica, ya que aumenta el rendimiento al aumentar el caudal hasta cierto punto, en donde el rendimiento se ve afectado al aumentar mucho más el caudal.

¿Cuál es la potencia máxima consumida?

La potencia máxima se registra al girar a 3070 [rpm] y con un caudal de 69.47 m3/s, en donde la potencia alcanzada fue de 4,02 [kW].

¿Qué tipo de curvas son?

La primera curva perteneciente a altura v/s caudal, al disminuir el caudal y al aumentar la altura, pertenece al tipo de curva ascendente. Mientras que la curva Potencia v/s Caudal, al ser máxima cercana al rendimiento óptimo y disminuir sin discriminar el caudal, es del tipo sin sobrecarga.

En resumen, \mathbf{H} - \mathbf{Q} son curvas ascendentes, $\mathbf{\eta}$ - \mathbf{Q} son curvas de velocidad específica baja y \mathbf{N} - \mathbf{Q} curvas sin sobrecarga.

Gráfico II: ψ v/s φ:

Gráfico 2 ψ V/S ϕ

¿La nube de puntos que conforman esta curva son muy dispersos?

No, los puntos tienen una tendencia ordenada, por lo tanto, la dispersión es pequeña, esto confirma que los parámetros adimensionales son correspondientes a la misma máquina, quedando en evidencia que la forma de las curvas no depende de la velocidad de rotación de la bomba.

Al observar las curvas anteriores ¿qué tipo de bomba centrífuga es? justifíquelo

El rendimiento global máximo calculado es de un 74.56 %, y el caudal para ese rendimiento es de 43.3 [m^3/h]. Sabiendo estos datos se puede determinar el tipo de bomba centrífuga.

Con estos datos obtenidos, se da cuenta que es una bomba de tipo centrífuga, velocidad media y sin voluta debido a la altura que alcanza.

Velocidad específica

Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta

La ecuación para determinar la velocidad específica es:

Ns =
$$\frac{\text{rpm} * \sqrt{\text{gpm}}}{\text{H}^{\frac{3}{4}}} = \frac{2900 * \sqrt{364.55}}{43.3^{3/4}} = 3280,27$$

FIG. 6-12 Approximate relative impeller shapes and efficiency variations for various specific speeds of centrifugal pumps. (Worthington Corp.)

Las características constructivas y operacionales antes descritas parecen ser coherentes con la gráfica mostrada, ya que la bomba ideal para una velocidad específica Ns=3280,27 sigue siendo una bomba centrífuga de media velocidad específica.

Conclusión

Con el funcionamiento de una bomba centrífuga a tres distintas velocidades, incluyendo su nominal, se pudo establecer los puntos de mejor rendimiento y obtener un rango de operación donde la bomba funciona más eficientemente con la ayuda de la construcción de las curvas características de la bomba en sus distintas velocidades de rotación.

Además, se hizo uso del cálculo de velocidades específicas y parámetros adimensionales comprobando la similitud en resultados.