

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

of probabilities, occur sufficiently often to give the bank a sure profit of 1.1 per cent on every deposit. The fallacy of those who devise sure methods of defeating the bank ('martingales,' as they are termed, lies in the fact that they neglect to consider that the fortunes of any one gambler, compared to that of the bank, is small: they prove that in the long-run they must win, forgetting that they only have a short run. As a matter of fact, when their schemes require the risk of a very large sum, they generally are afraid to make the risk, and so leave the game with the firm conviction, that, had they but possessed a little more money, success would have been insured.

The gambling superstition that has probably worked more ruin than any other is what they term the 'maturity of chances.' gambler says, to toss aces six times running is certainly a highly improbable event: if, therefore, aces have fallen five times, it is much more certain that the next throw will not fall an ace than if ace had not been thrown five times. The absurdity of this doctrine, apart from its being disproved by actual trial, can be easily shown. The chance of the occurrence of a certain event has no meaning after the event has occurred: it then has become a certainty. The chances of throwing an ace are as I to 6 on each throw, and entirely without reference to other throws. If I enter a room and pick up a die, the chances of my throwing an ace are as I to 6: to be told afterwards that five aces had just been thrown with that die, could evidently not influence the chances of my throwing an ace. Yet this doctrine is defended in the books on gambling, and is carried into practice at the gaming-table, to the ruin of many of its adherents.

Mr. Proctor gives very clear expositions of the fallacies underlying such beliefs; makes a forcible statement of the swindling processes to which even the better class of gamblers, lottery-holders, and the like, must resort; and illustrates his arguments with facts derived from actual experience. The book is no theorist's exposition merely, — it really ought not to matter if it were, because here theory and practice have been found to agree, — and is thus excellently calculated to meet the purpose for which it was written. It is in every respect a commendable work. Men desirous of guiding their actions by reason will here find expressed the position they should take on matters of chance and luck.

Our Temperaments; their Study and their Teaching. By Alex-Ander Stewart. London, Crosby, Lockwood, & Co. 8°.

Dr. Stewart gives in his preface a description of what this book is. "Impressed by the frequency with which the word 'temperament' is used to account for the action that is taken not only on the ordinary but on the eventful occurrences of life; while so little is known of the temperaments, that very few outside the medical profession can name off-hand the four principal ones, the sanguine, the bilious, the lymphatic, and the nervous, - I have endeavored to construct, from scattered and scanty material and my own observation, a practical guide by which observers may know the temperament of any one by looking at him, and associate with it certain mental qualities and traits of character." The author points out the disparity between the part the temperaments play in medicine and in general literature. He accords them a more definite value than expression and physiognomy, and believes them more available than phrenology, for the reason that the physical characteristics of the temperaments are definite, few, and readily

Dr. Stewart has collated an immense mass of observations on the temperaments from ancient, mediæval, and modern literature, and uses it to illustrate and expound his own argument. He first makes clear the ordinarily received medical doctrine of the temperaments, and then endeavors to give it added precision and scientific value. Dr. Stewart himself recognizes the just limitations of the doctrine which he develops. He sees, in the first place, that it applies only to civilized races; and, second, since the physical characteristics and the influences that modify the mental habit vary in different climates and countries, that it holds most forcibly with the British, since it is from that nation that the distinctions have been drawn.

Perhaps the greatest advance made by the present writer is the assignment of precise form-characteristics to the different temperaments. He gives a table, in which one column contains the physi-

cal, and the other the mental, characteristics of the four pure temperaments. These are very full and explicit. The physical characteristics are seven, — three relating to color (of the hair, eyes, and complexion), and four to form (of the face, nose, neck, and body).

The nervous temperament is accorded a special chapter, that the common error of confusing it with nervousness may be avoided. Nervousness, so far from being a normal characteristic, is described as "altogether a departure from the natural or healthy manifestations of the temperament." To the nervous temperament is ascribed the tempering, softening, and refining of the other three. literature would be without the grace, the tenderness, the sublimity of poetry, the other temperaments would be without the nervous' (p. 132). After a discussion of the compound temperaments, the practical applications of our knowledge of them are taken up. aid they may render in education, in the choice of a congenial and fitting profession, and in the promotion of health, is developed in a most interesting way. By way of illustrating the form-characteristics mentioned, and to enable observers to classify faces by them, a number of engravings are given from Lodge's 'Historical Portraits.' Dr. Stewart has certainly given us a most entertaining and valuable study in anthropology, and the publishers have done their full share in making it attractive to the reader.

Report of the Scientific Results of the Exploring Voyage of the 'Challenger.' Zoölogy, vol. xix. London, Government. 4°.

In this volume, Hubrecht reports on the Nemertea, his contribution comprising one hundred and fifty pages and sixteen finely drawn plates. The 'Challenger' nemerteans were few in number, and only some twenty stations afforded specimens. Of these stations, only five were over one hundred fathoms, and only three of these exceeded one thousand fathoms. Carinina grata and Cerebratulus angusticeps were obtained from these three, but the last species was dredged elsewhere at a depth of only ten fathoms. The most aberrant types were the above-mentioned Carinina and the pelagic Pelagonemertes. The section-cutter was the chief instrument of investigation, and the number of sections made exceeded 19,500. The report is divided into a systematic and an anatomical part, followed by a chapter on theoretical considerations. The latter will afford reading of much interest to those who are not engaged in the study of nemerteans. The conclusion reached by the author is, that "more than any other class of invertebrate animals, the Nemertea have preserved in their organization traces of such features as must have been characteristic of those animal forms by which a transition has been gradually brought about from the archicelous diploblastic (ceelenterate) type to those enterocœlous Triploblastica that have afterward developed into the Chordata (Urochorda, Hemichorda, Cephalochorda, and Vertebrata)." This statement excludes the idea of any direct ancestral relations between Nemertea and Chordata, and fully recognizes the points of agreement between Balanoglossus and

The clear and weighty arguments by which the author sustains this proposition do not admit of condensation.

The reports on the *Cumacea* and *Phyllocarida* are by Prof. G. O. Sars, where that distinguished naturalist finds himself on congenial ground. The number of species of the former group obtained by the 'Challenger' is fifteen, ranging, among them, from the surface to 2,050 fathoms in bathymetric distribution. In addition to the more purely systematic part, Professor Sars discusses the derivation of the group, and gives a summary of the characters of all the families, and enumerates the genera of which each is composed. The memoir is illustrated by eleven plates, distinguished by that accuracy and beauty which characterize all the work of Professor Sars' facile pencil.

To the single genus of recent *Phyllocarida* heretofore known (all the others being palæozoic fossils), the 'Challenger' expedition added two new generic types, which are naturally of great interest. The illustration and description of these take but three plates and some thirty odd pages of text, in which the author fully discusses the history, morphology, and development of the group, and the homologies of the several parts in the *Nebaliidæ* with those of other recent *Crustacea*. As regards the phylogenetic relations, the

author is inclined to indorse the suggestions of Packard rather than the hypotheses of Metchnikoff and Boas.

The report on the *Pteropoda gymnosomata* is in some respects disappointing. It was hoped by those interested in these animals that the extraordinary opportunities offered by the 'Challenger' voyage would result in a monographic series of illustrations, giving us satisfactory artistic representations of these exquisite 'sea-butter-flies' taken from life. Instead of this, we have a series of diagrammatic plates taken from pickled specimens, and in nearly every case grossly misrepresenting the form and proportions of the living animal. M. Paul Pelseneer, who reports on the group, is evidently quite unacquainted with these animals under their normal conditions of existence,—an ignorance which is not unpardonable, but which has led him into sundry observations which future experience, should he have it, will enable him to modify in the direction of accuracy.

For the rest, considering the chaos which preceded Dr. Boas's monograph, in the *Spolia Atlantica*, in regard to the species, sometimes well figured but poorly described, sometimes unfigured, and sometimes described from immature or mutilated specimens, — considering all this confusion, and finding the characters of form and color familiar to those who know these animals in life, gone irrevocably in pickled specimens, it is not surprising that the author should be disposed to criticise sharply, if not altogether justly, the work of a past epoch. He has brought a certain order out of the confusion, and his work will be helpful to the student of museum specimens. The ideal iconography, which we might have had, of the animals as they live and move, must, however, be looked for from some other direction.

NOTES AND NEWS.

The government of the province of Cordoba (Argentine Republic) has established a meteorological service, of which Prof. Oscar Doering will be in charge. The new institute will be independent of the national meteorological office which was founded by Mr. Gould. The officers of telegraph and telephone stations will be obliged to make observations in conformity with the instructions. The work will be begun next year on forty stations.

— The first number of the American Journal of Psychology will appear early in October. Among the articles which will probably appear in that or the succeeding numbers are the following: 'On Gradual Increments of Sensation,' 'New Methods and Further Results in the Study of the Knee-Jerk,' 'Psycho-Physic Methods and Star Magnitudes,' 'A Criticism of Psycho-Physic Methods and Results,' 'A New Binocular Phenomenon and its Use in Determining the Empirical Horopter,' 'A Review of Contemporary Methods and Results in the Histology of the Central Nervous System in Europe,' 'Paranoia.— A detailed study of a case extending over many years,' 'An Important Study of the Play-Instinct in Children,' 'A Further Study of Heracleitus,' 'An Extended Review of the Work of the English Society for Psychical Research.' The journal will also contain many digests and critiques of current psychological literature, both books and articles.

- The following statistics have been compiled, for the U.S. Geological Survey, by Charles A. Ashburner, principally from the direct returns of the operators of individual coal-mines, supplemented by valuable contributions from State officials. The total production of all kinds of coal in 1886, exclusive of that consumed at the mines, known as colliery consumption, was 107,682,209 short tons, valued at \$147,112,755 at the mines. This may be divided into Pennsylvania anthracite, 36,696,475 short or 32,764,710 long tons, valued at \$71,558,126; all other coals, including bituminous, brown coal, lignite, and small lots of anthracite produced in Arkansas and Colorado, 70,985,734 short tons, valued at \$75,554,-629. The colliery consumption at the individual mines varies from nothing to 8 per cent of the total product, being greatest at special Pennsylvania anthracite mines, and lowest at those bituminous mines where the bed is nearly horizontal and where no steam-power or ventilating furnaces are employed. The averages for the different States vary from 3 to 6 per cent, the latter being the average in the Pennsylvania anthracite region. The total production, including colliery consumption, was: Pennsylvania anthracite, 34,-853,077 long or 39,035,446 short tons, all other coals, 73,707,-957 short tons; making the total absolute production of all coals in the United States 112,743,403 short tons, valued as follows: anthracite, \$76,119,120; bituminous, \$78,481,056; total value, \$154,600,176. The total production of Pennsylvania anthracite, including colliery consumption, was 699,473 short tons in excess of that produced in 1885, but its value was \$552,828 less. The total production of bituminous coal was 1,086,408 short tons greater than in 1885, while its value was \$3,866,592 less. The total production of all kinds of coal shows a net gain of 1,785,881 short tons compared with 1885, but a loss in spot value of \$4,419,420.

— The Naturwissenschaftliche Rundschau gives an abstract of J. Coaz's observations on the planerogams first taking possession of the land at the end of retreating glaciers. The end of the Rhone glacier has been marked yearly since 1874, and therefore Coaz made his observations at this place. In the zone left by the ice in 1874, he found 39 species; in the zone following, 37: 23 species grew in the zone left by the ice in 1876, but then the figures fall off to 12. In the zone of 1881 only 7 are found, and in that of 1881 only a single species. This is Saxifraga aizoides. Epilobium Fletscheri and Oxyria digyna grow in all zones except the last. Willows do not occur except in the first two zones. The observations were made in 1883.

LETTERS TO THE EDITOR.

** The attention of scientific men is called to the advantages of the correspondence columns of SCIENCE for placing promptly on record brief preliminary notices of their investigations. Twenty copies of the number containing his communication will be furnished free to any correspondent on request.

The editor will be glad to publish any queries consonant with the character of the journal.

Correspondents are requested to be as brief as possible. The writer's name is in all cases required as proof of good faith.

Scientific Ballooning.

I AGREE most heartily with Professor Waldo, in Science for July 15, that "no meteorological data are so much to be desired as those which are now obtained for short, irregular intervals, by balloons.' Six years ago, when there was talk of a balloon-voyage from Minneapolis to the Atlantic, I wrote a note regarding the relative importance of the free and captive balloon. I was not then aware that no balloon had ever been kept afloat at a half-mile height more than twenty hours, and then only by the use of about half a ton of ballast. Probably there are now several balloons, in this country, that can be floated more than twenty-four hours by using four hundred or five hundred pounds of ballast each day. The great desideratum in ballooning is a gastight envelope. The best record I know of is the suspension of a balloon at about one thousand feet, for thirteen hours, with a loss of about one hundred and sixty pounds of sand. I think an approximation to a tight balloon may be made by increasing the number of coats of varnish, but this would bring about an unwieldly envelope and one likely to crack when emptied of gas.

If we had such an envelope, however, it would be impossible to keep the balloon captive, at a half-mile height, in a wind much over five miles per hour. As the chief investigations we wish to make are during the progress of storms, when the velocity of the current rises to forty and fifty miles per hour, it can hardly be considered that a captive balloon is practicable.

A captive balloon, however, can never give us what we wish; namely, the distribution of temperature, moisture, etc., in a vertical direction, nor in a horizontal stratum. Just the height to which we must go is in some doubt, some authorities placing it at 20,000 feet and over. I think that at least nine-tenths of the disturbance is below 6000 feet, so that the exploration is by no means as formidable as it might seem at first. There is nothing the aeronaut, with a few hundred pounds of ballast, has so completely under his control as an up-and-down movement, and he can satisfy the most enthusiastic observer with all he may wish of such movement. The weight of an observer, perhaps, is the least objectionable point in ballooning. In most cases at least two men are taken, together