Introduction to Electrodynamics by David J. Griffiths Notes

Chris Doble

December 2023

Contents

1	Vector Algebra			
	1.6	The T	Theory of Vector Fields	1
		1.6.1	The Helmholtz Theorem	1
		1.6.2	Potentials	1

1 Vector Algebra

1.6 The Theory of Vector Fields

1.6.1 The Helmholtz Theorem

• The **Helmholtz theorem** states that a vector field \mathbf{F} is uniquely determined if you're given its divergence $\nabla \cdot \mathbf{F}$, curl $\nabla \times \mathbf{F}$, and sufficient boundary conditions.

1.6.2 Potentials

• If the curl of a vector field vanishes everywhere, then it can be expressed as the gradient of a **scalar potential**

$$\nabla \times \mathbf{F} = \mathbf{0} \Leftrightarrow \mathbf{F} = -\nabla V.$$

• If the divergence of a vector field vanishes everywhere, then it can be expressed as the curl of a **vector potential**

$$\nabla \cdot \mathbf{F} = 0 \Leftrightarrow \mathbf{F} = \nabla \times \mathbf{A}.$$