1.1. (a) $D(f) = \{(x, y) \in R^2 | [(x > 0) \cap (y > 0)] \cup [(x < 0) \cap (y < 0)] \}$

(b) $D(f) = \{(x, y) \in R^2 | x > 0\} \cap \{(x, y) \in R^2 | -x < y < x\}$

(c) $D(f) = \{(x, y) \in R^2 | 1 \le x^2 + y^2 \le 4 \}$

(d) $D(f) = D_1 \cup D_2 \setminus \{(0,1)\}$

 $D_1 = \{(x, y) \in \mathbb{R}^2 | x > 0\} \cap \{(x, y) \in \mathbb{R}^2 | 1 - x \le y \le 1 + x\}$

 $D_2 = \{(x, y) \in \mathbb{R}^2 | x < 0\} \cap \{(x, y) \in \mathbb{R}^2 | 1 + x \le y \le 1 - x\}$

(e) $D(f) = D_1 \cup D_2$

 $D_1 = \{(x, y) \in \mathbb{R}^2 | x \ge 0 \quad \cap \quad y \ge 1\}$

 $D_2 = \{(x, y) \in \mathbb{R}^2 | x \le 0 \cap 0 < y \le 1\}$

(f) $D(f) = \{(x, y) \in R^2 | y \neq x^2 \}$

(g) $D(f) = \{(x, y) \in R^2 | y > 0 \cap -y < x \le y \}.$

- $(h) \, D(f) = \{(x,y) \in R^2 \, \Big| \, x > 0 \quad \cap \quad 2k\pi < y < (2k+1)\pi \} \, (k \in {\bf Z}).$
- (i) $D(f) = \{(x, y) \in R^2 | y \neq (2k+1)\pi/2 \} (k \in \mathbb{Z}).$
- **1.2.** (a) $D(f) = \{(x, y) \in \mathbb{R}^2 | x \neq 0\}, \lim_{(x, y) \to (0, 0)} f(x, y) = 0.$
 - (b) $D(f) = \mathbf{R}^2 \setminus \{(0,0)\}, \lim_{(x,y) \to (0,0)} f(x,y) = 0.$
 - (c) $D(f) = \{(x, y) \in \mathbb{R}^2 | y \neq 0 \}, \lim_{(x,y) \to (0,0)} f(x,y) = 1/2.$
 - (d) $D(f) = \{(x,y) \in \mathbf{R}^2 | y \neq x \}, \lim_{(x,y) \to (0,0)} f(x,y) = 0.$

(e)
$$D(f) = \mathbf{R}^2 \setminus \{(0,0)\}, \lim_{(x,y) \to (0,0)} f(x,y) = \sqrt{e}$$
.

(f)
$$D(f) = \{(x,y) \in \mathbb{R}^2 | x \neq 0\} \cup \{(x,y) \in \mathbb{R}^2 | y \neq 0\}, \lim_{(x,y) \to (0,0)} f(x,y) = 0.$$

(g)
$$D(f) = \mathbf{R}^2 \setminus \{(0,0)\}, \lim_{(x,y) \to (0,0)} f(x,y) = 0.$$

1.5.
$$D(f) = \{(x,y) \in \mathbb{R}^2 | x > 0\}$$

 $\lim_{(x,y) \to (0^+,0)} f(x,y) = 0 \text{ khi } m > 1, \\ \lim_{(x,y) \to (0^+,0)} f(x,y) \text{ không tồn tại khi } 0 \le m \le 1.$

1.6. (a) 3, (b)
$$e^2$$
, (c) 0, (d) 0, (e) 0, (f) 0, (g) -2

1.8. (a) $D(f) = \{(x,y) \in \mathbb{R}^2 | x \neq 0\} \cap \{(x,y) \in \mathbb{R}^2 | x+y \neq 0\} \cup \{(0,0)\}, f(x,y) \text{ không liên tục tại điểm } O(0,0).$

(b) $D(f) = \mathbb{R}^2$, a = 0 thì f(x,y) liên tục tại điểm O(0,0), $a \neq 0$ thì f(x,y) không liên tục tại điểm O(0,0).

1.9. Khảo sát sự liên tục của các hàm số f(x,y) sau đây, trên tập xác định D(f) của nó

(a) $D(f) = \mathbb{R}^2$, f(x,y) không liên tục tại điểm (0,0) và liên tục tại mọi điểm $(x,y) \in D(f) \setminus \{(0,0)\}$.

(b)
$$D(f) = \mathbb{R}^2$$
, $f(x,y)$ liên tục trên $D(f)$.

1.10. (a) $D(f) = \mathbb{R}^2$, chọn được p = 0; (b) $D(f) = \mathbb{R}^2$, không chọn được p.

1.11.
$$\begin{cases} f_x^{\cdot}(x,y) = x^{xy}(1+\ln x)y \\ f_y^{\cdot}(x,y) = x^{xy+1}\ln x \end{cases}, \begin{cases} f_{x^2}^{\cdot,\cdot}(x,y) = x^{xy-1}y[1+(1+\ln x)^2xy] \\ f_{y^2}^{\cdot,\cdot}(x,y) = x^{xy+2}\ln^2 x \end{cases}, \begin{cases} f_{xy}^{\cdot,\cdot}(x,y) = x^{xy}(1+\ln x)(1+xy\ln x) \\ f_{yy}^{\cdot,\cdot}(x,y) = x^{xy}(1+\ln x)(1+xy\ln x) \end{cases}$$

1.10. (a)
$$D(f) = \mathbb{R}^{2}$$
, chọn được $p = 0$; (b) $D(f) = \mathbb{R}^{2}$, khong chọn được p .

1.11.
$$\begin{cases} f'_{x}(x,y) = x^{xy}(1 + \ln x)y & f''_{x^{2}}(x,y) = x^{xy-1}y[1 + (1 + \ln x)^{2}xy] & f''_{xy}(x,y) = x^{xy}(1 + \ln x)(1 + xy \ln x) \\ f''_{y}(x,y) = x^{xy+1} \ln x & f''_{y^{2}}(x,y) = x^{xy+2} \ln^{2} x & f''_{yx}(x,y) = x^{xy}(1 + \ln x)(1 + xy \ln x) \end{cases}$$

1.12. (a)
$$\begin{cases} \frac{\partial f(x(u,v),y(u,v))}{\partial u} = -(4u + \sin 2u)e^{\cos^{2}u - 2(u^{2} + v^{2})} \\ \frac{\partial f(x(u,v),y(u,v))}{\partial v} = -4ve^{\cos^{2}u - 2(u^{2} + v^{2})} \end{cases}$$
(b)
$$\begin{cases} \frac{\partial f(x(u,v),y(u,v))}{\partial v} = \frac{2}{u} \\ \frac{\partial f(x(u,v),y(u,v))}{\partial v} = \frac{2(v^{4} - 1)}{v(v^{4} + 1)} \end{cases}$$

(c)
$$\begin{cases} \frac{\partial f(x(u,v),y(u,v))}{\partial u} = (1+2uv)e^{u(uv+1)} + uv(2-ue^{u})e^{-c} \\ \frac{\partial f(x(u,v),y(u,v))}{\partial v} = u^{2}(e^{u(uv+1)} + e^{-e^{u}}) \end{cases}$$

$$\begin{cases} \frac{\partial f\left(x(u,v),y(u,v)\right)}{\partial u} = (1+2uv)e^{u(uv+1)} + uv(2-ue^{u})e^{-e^{u}} \\ \frac{\partial f\left(x(u,v),y(u,v)\right)}{\partial v} = u^{2}(e^{u(uv+1)} + e^{-e^{u}}) \end{cases}$$

$$(d) \begin{cases} \frac{\partial f\left(x(u,v),y(u,v)\right)}{\partial u} = \frac{u}{v^{2}} \left(2\ln(3u-2v) + \frac{3u}{3u-2v}\right) \\ \frac{\partial f\left(x(u,v),y(u,v)\right)}{\partial v} = \frac{2u^{2}}{v^{2}} \left(\frac{\ln(3u-2v)}{v} + \frac{1}{3u-2v}\right) \end{cases}$$

1.13.
$$2\left(\frac{1}{x} + \ln x\right)e^{x}$$

1.14.
$$(t^2 - 3t + 1)[2(2t - 3)\sin t + (t^2 - 3t + 1)\cos t]$$

1.19. (a)
$$\frac{\partial f(1,2,-1)}{\partial \vec{e}} = -\frac{28}{3}$$
, (b) $\frac{\partial f(1,1,1)}{\partial \vec{e}} = \frac{1}{6}$, (c) $\frac{\partial f(1,1)}{\partial \vec{e}} = \frac{7}{5}$

1.20. (a)
$$\frac{\partial f(1,3,0)}{\partial e} = -\sqrt{\frac{3}{2}}$$
, (b) $\sqrt{5}$

1.21. (a)
$$2x\cos(x^2+y^2)dx + 2y\cos(x^2+y^2)dy$$
, (b) $e^x(\cos y + \sin y + x\sin y)dx + e^x(x\cos y - \sin y)dy$

(c)
$$\frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$$
, (d) $\left(\frac{e^{x/y}}{y} + \frac{ye^{-y/x}}{x^2}\right)dx - \left(\frac{xe^{x/y}}{y^2} + \frac{e^{-y/x}}{x}\right)dy$

(e) $(e^y + ze^x)dx + (e^z + xe^y)dy + (e^x + ye^z)dz$, (f) $x^{y^2z-1}y^2zdx + 2x^{y^2z}yz\ln xdy + x^{y^2z}y^2\ln xdz$

1.22. dx - 2dy

1.23. (a)
$$y'(x) = \frac{y(3x^2 - y^2)}{x(3y^2 - x^2)}$$
, (b) $y'(x) = -\frac{e^y + y(e^x - e^{xy})}{e^x + x(e^y - e^{xy})}$, (c) $y'(x) = \frac{a^2}{(x + y)^2}$
(d) $y'(x) = \frac{x + y}{x - y}$, $y''(x) = 2\frac{x^2 + y^2}{(x - y)^3}$.

- **1.24.** (a) Không có cực trị, (b) $f_{cd} = f(1,1) = 1$, (c) Không có cực trị, (d) $f_{ct} = f(0,0) = 0$
- **1.26.** $f_{ct} = f(3,3,3) = 9$.
- **1.27.** Tam giác đều có $S_{cd} = \frac{3\sqrt{3}}{4}R^2$
- **1.28.** (a) GTNN = -64 tại điểm (4,2), GTLN = 4 tại điểm (2,1).
 - (b) GTNN = -1 tại điểm (-1,-1), GTLN = 6 tại các điểm (-3,0), (0,-3).