OPTIMASI KINERJA PELABUHAN PENYEBERANGAN KETAPANG – GILIMANUK

I Gusti Putu Suparsa

Dosen Jurusan Teknik Sipil, Fakultas Teknik, Universitas Udayana, Denpasar. E-mail: suparsa@civil.unud.ac.id

Abstrak: Pelabuhan penyeberangan Ketapang dan Gilimanuk menghubungkan pulau Jawa dan Bali merupakan pelabuhan penyeberangan yang sangat sibuk setelah pelabuhan penyeberangan Merak dan Bakauheni yang menghubungkan pulau Jawa dan Sumatera. Permintaan jasa pelayanan (demand) pada pelabuhan penyeberangan mengalami peningkatan yang sangat pesat dari tahun ke tahun, sementara sarana dan prasarana (supply) yang tersedia tidak mampu mengimbanginya. Penelitian ini dilakukan bulan September tahun 2008 pada kondisi pengoperasian normal dengan mengambil lokasi pada pelabuhan penyeberangan Ketapang. Adapun tujuan penelitian ini adalah untuk melakukan optimasi apabila terjadi gangguan/kerusakan pada salah satu bagian dari sistem penyeberangan. Data yang dikumpulkan meliputi pertumbuhan permintaan, sarana dan prasarana, headway dermaga serta jadual yang telah ditetapkan oleh PT. ASDP. Metode yang digunakan adalah analisis garis tunggal. Hasil yang didapat dengan teknik optimasi apabila kemungkinan terjadi gangguan pengoperasian salah satu dermaga dan kerusakan pada beberapa unit kapal sistem penyeberangan masih mampu memberikan pelayanan yang optimal, sehingga antrian (waktu tunggu) penumpang dapat diminimalkan.

Kata kunci: optimasi, headway dermaga, kapal, waktu siklus.

OPTIMIZATION OF PERFORMANCE THE PORT OF CROSSING KETAPANG – GILIMANUK

Abstract: The port of crossing between Ketapang and Gilimanuk connecting of Java and Bali Island represents very busy port after port of crossing between Merak and Bakauheni connecting of Java and Sumatra Island. Natural demand increases rapidly by years whereas facilities (number of berth) and basic facilities (number of ferries) are unable to balance it. This research was conducted in September 2008 at condition of normal operation by taking location at port of Ketapang. The objective of this research is to optimize in the event of problem or damage at one part of the system. Collected data cover growth of demand, condition of facilities, dock headway and also schedule which have been specified by PT. ASDP. Method used is single line analysis. The result shows by using technique of optimization when operation problem would possibly happen, the system still can give optimal service so that queue (lay time) passenger can be minimized.

Keywords: optimization, dock headway, ferries, cycle time.

PENDAHULUAN

Latar Belakang

Kebutuhan pelayanan akan jasa transportasi merupakan hasil interaksi antara aktivitas sosial dan ekonomi yang tersebar didalam ruang atau tata guna lahan. Penyebaran aktivitas dan pola interaksi yang demikian kompleks menimbulkan permasalahan transportasi yang sangat beragam dan banyak faktor penentu yang harus dipertimbangkan (Adib, 1983).

Transportasi untuk orang atau barang umumnya tidak dilakukan hanya untuk keinginan itu saja, tetapi untuk mencapai tujuan lainnya. Dengan demikian kebutuhan transportasi dapat disebut sebagai kebutuhan ikutan (derived demand) yang diturunkan dari kebutuhan ekonomi atau pelayanan (Morlok 1985).

Pelabuhan penyeberangan Ketapang -Gilimanuk termasuk salah satu pelabuhan yang sangat ramai setelah pelabuhan penyeberangan Merak - Bakauheni. Selat Bali yang memisahkan pelabuhan Ketapang dan Gilimanuk mempunyai jarak sekitar 6,00 Km, dapat ditempuh dalam waktu sekitar 45 menit, dengan demikian termasuk penyeberangan jarak dekat. Pada kondisi normal setiap hari rata-rata sistem penyeberangan dapat melayani penumpang sampai 5.400 orang, kendaraan roda-4 sekitar 1950 unit, sepeda motor sekitar 560 unit dan barang mencapai 7.326 ton (PT.ASDP, 2006). Pelabuhan penyeberangan dilayani oleh kapal Ferry RoRo dan Landing Craft Machine (LCM) berjumlah 24 unit. Dengan demikian sistem pelabuhan penyeberangan Ketapang – Gilimanuk mempunyai peranan yang sangat penting dan strategis, apabila terjadi gangguan pada salah satu fasilitas penyeberangan akan menimbulkan dampak negatif, seperti tundaan (delay) yang mengakibatkan kerugian sangat besar bagi operator, terutama bagi pengguna jasa penyeberangan (penumpang dan barang). Berdasarkan permasalahan tersebut akan dilakukan evaluasi kinerja sistem penyeberangan terutama mengatur skenario hubungan antara besarnya permintaan (demand) dengan kapasitas sarana dan prasarana (supply) yang ada.

Rumusan Masalah

Berdasarkan latar belakang diatas permasalahan yang timbul adalah langkah apa yang harus dilakukan apabila salah satu fasilitas sistem penyeberangan kapal atau dermaga terganggu atau mengalami kerusakan.

Tujuan Penelitian

Dari rumusan masalahnya tujuan penelitian adalah untuk merencanakan dan mengatur skenario pelayanan dengan teknik optimasi, sehingga dampak yang terjadi akibat gangguan atau kerusakan salah satu fasilitas sistem penyeberangan dapat diminimalkan.

MATERI DAN METODE

Kebutuhan (demand) Angkutan Penyeberangan

Kebutuhan pelayanan angkutan penyeberangan adalah komponen yang sangat penting dalam melakukan evaluasi terhadap kinerja sistem penyeberangan. Karakteristik kebutuhan pelayanan angkutan penyeberangan dari waktu ke waktu sangat bervariasi yang dipengaruhi oleh berbagai faktor, antara lain kondisi normal, kondisi liburan dan kondisi khusus.

Sarana dan Prasarana

Sarana angkutan penyeberangan yang terdiri dari kapal Ferry Ro-Ro dan LCM dan prasarananya adalah dermaga (Ponton dan MB) serta *Beaching*.

Rencana operasi angkutan penyeberangan Ketapang – Gilimanuk dituangkan dalam jadual (*scheduling*), yang ditentukan berdasarkan hubungan antar berbagai komponen yang saling terkait dalam proses angkutan penyeberangan.

Tabel 1. Data Kebutuhan (demand) Angkutan Penyeberangan

Tahun	Trip	Tipe Kendaraan (R-4 & R-2)							
		Truk (B)	Truk (S)	Trailer	Bus (B)	Bus (S)	MP (R-4)	SM (R-2)	
2002	43.309	177.267	166.439	5.575	70.628	8.033	304.856	180.448	
2003	49.853	179.402	169.982	5.537	65.187	5.490	283.552	163.627	
2004	50.222	192.826	188.025	5.279	58.404	6.493	292.504	222.330	
2005	52.714	198.183	192.095	4.559	56.815	2.098	283.291	255.418	
2006	53.094	185.041	168.214	4.659	44.904	2.058	239.817	206.114	
Jumlah	249.192	932.719	884.755	25.609	295.938	24.172	1.404.020	1.027.937	
Rerata	49.838	186.544	176.951	5.122	59.188	4.834	280.884	205.587	
Harian	118/145	511	485	14	159	13	769	563	
R-4		26,19%	24,86%	0,70%	8,15%	0,67%	39,42%		
Total		77,60%						22,40%	

Sumber: PT. ASDP Ketapang (2008)

Tabel 2. Data Jumlah Kapal Ferry Ro-Ro dan LCM

	Nama Kapal Tahun/Asal G			Kapasitas Muat			
				Penp.	Roda-2	Roda-4	
A	Dermaga MB/Ponton						
1	Kmp. Prahita	1968/Jepang	459	332	100	24	
2	Kmp. Mutis	1990/Jepang	621	259	65	19	
3	Kmp. Gilimanuk I	1964/Jepang	733	248	80	25	
4	Kmp. Gilimanuk II	1990/Jakarta	840	271	75	25	
5	Kmp. Nusa Dua	1982/Jakarta	536	282	125	22	
6	Kmp. Nusa Makmur	1990/Jakarta	497	264	125	25	
7	Kmp. Rajawali Nusantara	1989/Jepang	815	319	140	55	
8	Kmp. Marina Pratama	1993/Jepang	688	300	175	37	
9	Kmp. Citra Mandala Abadi	1985/Jepang	580	270	125	18	
10	Kmp. Reni II	1968/Jepang	456	374	135	23	
11	Kmp. Edha	1967/Jepang	456	300	83	24	
12	Kmp. Dharma Rucitra	1984/Jepang	496	200	150	25	
13	Kmp. Trisila Bhakti I	1995/Jakarta	669	300	150	30	
14	Kmp. Sereia Do Mar	1990/Jepang	409	285	100	12	
	Total (ur	4004	1628	364			
	Rerata (u	nit)		286	116	26	
В	Dermaga LCM						
15	Kmp. Dharma Badra	1984/Jepang	193	156	85	19	
16	Kmp. Pertiwi Nusantara	-	-	219	100	17	
17	Lct. Trisna Dwitya	1975/Singapura	876	-	-	16	
18	Lct. Bhaita Caturtya	1983/Samarinda	536	-	-	14	
19	Lct. Arjuna	1975/Cirebon	221	-	-	9	
20	Lct. Putri Sritanjung I	2001/Samarinda	497	-	-	17	
21	Lct. Putri Sritanjung II	2002/Samarinda	529	-	-	17	
22	Lct. Jambo V	2000/Banjarmasin		-	-	11	
23	Lct. Labitra Amalia	2000/Korea	405	-	-	12	
24	Lct. Reulina	1998/Korea 457		-	-	12	
	Total (ur	375	375	144			
	Rerata (u				15		

Sumber: PT.ASDP Ketapang (2008)

Rencana Operasi

Tabel 3. Rencana Operasi

Klas	Uraian	Kapal di Dermaga					Jumlah	
		Ponton	MB I	MB II	Beaching I	Beaching II	Kapal	
A	Kondisi Normal							
	Kapal Tersedia	14			1	24		
	Beroperasi	4	4	4	5	5	22	
	Istirahat	1	-	1	-	-	2	
	Sailing Time	45'	45'	45'	45'	45'		
	Port Time	45'	45'	45'	45'	45'		
	Headway Dermaga	15'	15'	15'	18'	18'		
В	Kondisi Padat							
	Kapal Tersedia		14		1	0	24	
	Beroperasi	5	4	4	5	5	23	
	Istirahat	ı	ı	1	-	=	1	
	Sailing Time	40'	40'	40'	30'	30'		
	Port Time	40'	40'	40'	30'	30'		
	Headway	15'	15'	15'	18'	18'		
	Dermaga							
C	Kondisi Sangat Pad	lat						
	Kapal Tersedia		12		1	24		
	Beroperasi							
	Istirahat							
	Sailing Time	40'	40'	40'	30'	30'		
	Port Time	40'	40'	40'	30'	30'		
	Headway	14'	13'	13'	20'	20'		
	Dermaga							
	Hasil survai*	10'	10'	10'	-	-		

Sumber: PT.ASDP Ketapang (2008)

*hasil Survai(2008)

Proses Penyeberangan

Kegiatan penyeberangan di Pelabuhan Ketapang - Gilimanuk menggambarkan kondisi pelayanan dengan fasilitas yang tersedia saat ini. Kebutuhan (demand) yang dianalisis adalah kendaraan bermotor roda-4, seperti truk, bus dan mobil penumpang atau mobil pribadi dan kendaraan roda-2; sedangkan penumpang tidak dimasukan karena pada kenyataannya tidak memerlukan pengaturan khusus dan diasumsikan tidak berpengaruh terhadap waktu bongkar/muat kapal. Proses pelayanan dimulai pada saat kendaraan antri masuk kapal selama headway waktu keberangkatan kapal. Tingkat pengisian kapal (occupancy) sangat dipengaruhi oleh laju kedatangan kendaraan. Proses pelayanan terhenti pada saat kapal bersandar di dermaga untuk menurunkan kendaraan dan proses menurunkan kendaraan tidak dipengaruhi oleh laju kedatangan kendaraan. Apabila tingkat kedatangan kendaraan tidak dapat diimbangi oleh tingkat pelayanan sistem penyeberangan, maka akan terjadi antrian/ tundaan yang berpengaruh tehadap waktu tunggu kendaraan.

Headway Dermaga

Berdasarkan kapasitas dan fasilitas sistem penyeberangan yang ada dilakukan analisis dengan mengoptimalkan headway dermaga berdasarkan hubungan antara kapasitas kapal rencana, kedatangan kendaraan roda-4 dan roda-2 serta tingkat pelayanan kapal. Waktu operasi kapal dapat diilustrasikan seperti Gambar 1.

Keterangan:

Tp = waktu berlabuh (port time)

Tm = waktu manuver (maneuver time)

Ts = waktu berlayar (sailing time)

hw = waktu antar dermaga (headway)

Gambar 1. Waktu operasi kapal

Penerapan jadwal keberangkatan kapal pada salah satu dermaga dapat ditentukan seperti pada Gambar 2.

Nama Kapal	Waktu Berangkat
Kapal I	
Kapal II	•
Kapal III	. •
Kapal IV	•
Kapal I	• •
headway kapal	hw hw hw
Headway dermaga	• Hw

Syarat: hw > (Tm + Tp)

Gambar 2. Jadwal keberangkatan kapal

Secara umum distribusi kendaraan yang datang pada sistem penyeberangan dengan jumlah fasilitas pelayanan tertentu, dapat diasumsikan seperti Gambar 3 (*Hisashi Kobayashi*, 1988).

$$\lambda_{1}, \mu_{1} \qquad \lambda_{1} = \frac{\mu_{1}}{\mu_{1} + \mu_{2} + \mu_{m}} \lambda_{n}$$

$$\lambda_{2}, \mu_{2} \qquad \lambda_{2} = \frac{\mu_{2}}{\mu_{1} + \mu_{2} + \mu_{m}} \lambda_{n}$$

$$\lambda_{k}, \mu_{m} \qquad \lambda_{k} = \frac{\mu_{m}}{\mu_{1} + \mu_{2} + \mu_{m}} \lambda_{n}$$

Gambar 3. Distribusi kendaraan datang

$$TP = \sum_{i=1}^{n} t_{bi} . q_{bi} + \sum_{i=1}^{n} . t_{mi} . q_{mi}$$

Dimana:

hw = *headway* minimum dermaga (menit)

Tp = waktu bersandar kapal yang terdiri dari waktu bongkar (t_b) dan waktu muat (t_m) kendaraan dalam satuan (menit)

t_b = rata-rata waktu menurunkan kendaraan (menit / kendaraan)

t_m = rata-rata waktu menaikkan kendaraan (menit / kendaraan)

q_i = tingkat *occupancy* kapal (unit kendaraan)

Dalam kondisi *steady state*, hubungan antara *occupancy* kapal (Qk), laju kedatangan kendaraan (λm) dan *head-way* keberangkatan kapal (hw) pada setiap fasilitas pelayanan dapat dinyatakan sebagai berikut:

$$Qk = \lambda m \times hw$$

 $Qc = \sum_{m=1}^{\infty} \lambda m \cdot hw$

Dengan mensubstitusikan nilai:

$$\lambda m = \frac{\mu m}{\mu 1 + \mu 2 + \dots + \mu m} X \mu n$$

$$Qk = \frac{\mu m}{\mu 1 + \mu 2 + \dots + \mu m} X \mu n$$

$$hw = \frac{Qk(\mu k + \mu 2 + + \mu m)}{\lambda n \,.\, \mu m}$$

Dimana:

hw = *head way* keberangkatan kapal pada fasilitas pelayanan ke-m

λn = laju kedatangan kendaraan total pada areal parkir/antrian

λm = laju kedatangan kendaraan pada fasilitas pelayanan ke-m

μm = laju pelayanan pada fasilitas pelayanan ke-m

Qk = tingkat *occupancy* kapal pada pelayanan ke-m

Ukuran Operasi Sistem Penyeberangan

Hubungan yang mendasar dalam menentukan ukuran operasi sistem penyeberangan adalah kapasitas prasarana, rencana operasi, karakteristik kapal, karakteristik kendaraan roda-4 dan roda-2. Pada analisis lintasan garis tunggal semua kapal harus dioperasikan dari satu ujung ke ujung lainnya dan kemudian kembali, kapal bergerak bolak balik diantara dua terminal ujung. Kapal akan beroperasi dengan headway waktu keberangkatan yang merata, dan semua kapal mempunyai kapasitas yang relatif sama. Dalam kondisi ini hubungan antara kapasitas total, headway keberangkatan kapal, jumlah keberangkatan dan kapasitas kapal dalam satu arah adalah:

$$Qc = \frac{Qk}{hw} = QkxJk$$

Dimana:

Qc = kapasitas total dalam satu hari, unit kendaraan

Q = kapasitas kapal rencana, unit kendaraan

Hw = *headway* waktu keberangkatan kapal, menit

Jk = jumlah keberangkatan kapal

Hubungan antar parameter dapat dijelaskan seperti Gambar 4.

Gambar 4. Hubungan antar parameter operasi system penyeberangan

Konsep arus tersebut diatas dapat dihubungkan secara langsung dengan kebutuhan kapal, dengan menganggap bahwa semua kapal membutuhkan waktu yang relatif sama untuk perjalanan pergi pulang, maka hubungannya adalah sebagai berikut:

$$N = \frac{JD \times Tc}{Hw} = \frac{JD \times Tc}{hw \times JD} = \frac{Tc}{hw}$$

Dimana:

N = jumlah kapal

JD = Jumlah Dermaga

Tc = waktu siklus kapal

 $= 2 \{Ts + Tm + Tp\}$

Hw = headway dermaga

hw = headway antar dermaga/headway keberangkatan kapal

Hubungan akhir menjadi:

$$N = \frac{2\{Ts + Tm + Tp\}}{hw}$$

HASIL DAN PEMBAHASAN

Evaluasi Kapasitas Sistem Penyeberangan

Kapasitas sistem penyeberangan Ketapang - Gilimanuk dievaluasi berdasarkan kondisi pelayanan yang terjadi dilapangan. Evaluasi dilakukan dengan beberapa skenario terhadap kinerja dermaga Ponton dan *Moveable Bridge* (MB) serta dermaga *Beaching* (LCM).

• Dermaga Ponton/MB

Skenario	Jumlal	h (unit) Headway (men		y (menit)	Waktu Siklus	Jumlah Kapasitas S Operasi (unit ker		
	Dammaga	Vonal	Dermaga Kapal		(menit)	Operasi	R-4	R-2
	Dermaga	Kapal	Dermaga		(memt)		K-4	K-Z
		10	(Hw)	(hw)		0.6	2406	11 126
_	2	12	45	15	100	96	2496	11.136
I	3	10	54	18	180	80	2080	9.280
		9	60	20		72	1872	8.352
	_	12	40	13,3		108	2808	12.528
II	3	10	48	16	160	90	2340	10.440
		9	54	18		80	2080	9.280
		12	35	11,7		123	3198	14.268
III	3	10	42	14	140	102	2652	11.832
		9	47	15,7		91	2366	10.556
		12	30	10		144	3744	16.704
IV	3	10	36	12	120	120	3120	13.920
		9	40	13,3		108	2808	12.528
		12	27,5	9,17*		157	4082	18.212
V	3	10	33	11	110	130	3380	15.080
		9	37	12,3		116	3016	13.456
		12	30	10		144	3744	16.704
VI	2	10	36	12	180	120	3120	13.920
		9	40	13,3		108	2808	12.528
		12	27	9*		160	4160	18.560
VII	2	10	32	10,7	160	134	3484	15.544
		9	35,5	11,8		122	3172	14.152
		12	24	8*		180		
VIII	2	10	28	9,3*	140	154	4004	17.864
		9	31	10,3		139	3614	16.124
		12	20	6,7*		214		
IX	2	10	24	8*	120	180		
		9	27	9*		160	4160	18.560

Sumber: Hasil Analisis (2009)

• Dermaga *Beaching* (LCM)

Skenario	Jumlah (unit)		Headway (menit)		Waktu Siklus	Jumlah Operasi	Kapasitas Sistem (unit kend)	
	Dermaga	Kapal	Dermaga (Hw)	Kapal (hw)	(menit)	_	R-4	R-2
		12	30	15		72	1080	
I	2	11	32,72	16,36	180	60	900	
		10	36	18		50	750	
		9	40	20		40	600	
		12	20	10		144	2160	
II	2	11	21,82	10,90	120	121	1815	
		10	24	12		100	1500	
		9	26,66	13,33		81	1215	

Sumber: Hasil Analisis (2009)

SIMPULAN DAN SARAN

Simpulan

• Berdasarkan hasil survai dilapangan diketahui *headway* minimum dermaga adalah 10 menit < 13 menit seperti

jadual yang ditetapkan oleh PT. ASDP, dengan demikian apabila hanya 2 dermaga yang beroperasi melayani 12, 10 dan 9 kapal berturut-turut menghasilkan headway minimum dermaga 10, 12 dan 13,3 menit dengan kapasitas pelayanan

^{*} tidak memenuhi

- lebih besar dari permintaan (demand) saat sekarang.
- Kapasitas sistem masih bisa ditingkatkan dengan mengefisienkan waktu berlabuh kapal (port time).

Saran

- Jumlah operasi optimal (scheduling) dalam sehari dapat ditentukan dengan menghitung biaya gabungan minimum dari biaya operasi kapal dan biaya waktu tunggu penumpang.
- Masa pelayanan sistem penyeberangan dapat dievaluasi dengan prediksi pertumbuhan penumpang (predictive model).

DAFTAR PUSTAKA

- Abbas, Salim H.A. 1995. Manajemen Transportasi, PT. Raja Grafindo Persada Jakarta;
- Ang, Alfredo H.S and Wilson H.T. 1975. Probability Concepts In Engineering Planning And Design, John Wiley and Son, Inc;
- Kobayashi, H. 1989. Modeling and Analysis, Addison-Wesley Publishing Company;
- Nurhayati, M. 1986. Penelitian Operasional Teori dan Latihan, Dharma Patria Bandung.