Name:	
4-digit code:	

- Write your name and your VIP ID in the space provided above.
- The test has five (5) pages, including this one.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, or notes may be used on this test.
- An approved calculator may be used on this test.

Page	Max. points	Your points
2	20	
3	20	
4	20	
5	40	
Total	100	

Problem 1 (10 pts). The function $f(x) = x^4 - 5x^3 + 11x$ has a critical point at x = 1. Identify what kind of critical point it is.

- $\bigcirc f(x)$ has a local minimum at x = 1.
- $\bigcirc f(x)$ has a local maximum at x = 1.
- $\bigcirc x = 1$ is neither maximum, minimum, nor inflection point of f(x).
- $\bigcirc f(x)$ has an inflection point at x = 1.

Problem 2 (10 pts). The function y = f(x) is shown below. How many inflection points does this function have on the interval shown?

Figure 4.5

- \bigcirc 0
- \bigcirc 1
- \bigcirc 2
- \bigcirc 3

Problem 3 (10 pts). Concerning the graph of the function below, which of the following statements is true?

- \bigcirc The derivative is zero only at one value of x, where it is a local minimum.
- \bigcirc The derivative is zero at two values of x, both being local maxima.
- \bigcirc The derivative is zero at two values of x, one is a local maximum, while the other is a local minimum.
- \bigcirc The derivative is zero at two values of x, one is a local maximum on the interval, while the other is neither a local maximum nor a minimum.
- \bigcirc The derivative is zero at two values of x, one is a local minimum on the interval, while the other is neither a local maximum nor a minimum.

Problem 4 (10 pts). Find all local maxima, minima and inflection points of the function $f(x) = 2x^3 + 3x^2 - 180x + 9$.

Problem 5 (10 pts). If the graph below is that of f'(x), which of the following statements is true concerning the function f(x)?

Figure 4.2

- \bigcirc The derivative is zero only at one value of x, where it is a local minimum.
- \bigcirc The derivative is zero at two values of x, both being local maxima.
- \bigcirc The derivative is zero at two values of x, one is a local maximum, while the other is a local minimum.
- \bigcirc The derivative is zero at two values of x, one is a local maximum on the interval, while the other is neither a local maximum nor a minimum.
- \bigcirc The derivative is zero at two values of x, one is a local minimum on the interval, while the other is neither a local maximum nor a minimum.

Problem 6 (10 pts). Find the global maximum and the global minimum of the function $f(x) = 2x^3 - 9x^2$ over the interval $-1 \le x \le 6$.

Problem 7 (10 pts). At a price of \$80 for a half-day trip, a white-water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Problem 8 (10 pts each). Compute the following antiderivatives:

(a)
$$\int \left(7 - \frac{3}{x} - 3\sqrt[4]{x} - 3^x\right) dx$$

$$(b) \int \frac{3x}{25x^2 + 7} \, dx$$

$$(c) \int (3x-5)e^{2x} dx$$