第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

第三节 随机变量的分布函数

第四节 连续型随机变量及其分布

第五节 随机变量函数的分布

教学计划: 4次课-12学时

随机变量

分布函数
$F(x) = P(X \le x)$

x左侧区间上的概率和

不直观

概率分布 概率1分布 情况,直观

离散型随机变量

$$F(x) = \sum_{x_k \le x} p_k$$
右连续

连续型随机变量

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

连续

分布律:

$$\sum p_k = 1$$
 概率密度:

$$P(x_1 < X \le x_2) = \sum_{x_1 < x_k \le x_2} P_k P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$
$$= F(x_2) - F(x_1) = F(x_2) - F(x_1)$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

$$= F(x_2) - F(x_1)$$

第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

第三节 随机变量的分布函数

→ 第四节 连续型随机变量及其分布 第五节 随机变量函数的分布

教学计划: 4次课-12学时

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

- ✓ 连续型随机变量的概率密度
 - 几种常见的连续型随机变量的分布

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

连续型随机问题

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

- ✓ 连续型随机变量的概率密度
- → 几种常见的连续型随机变量的分布
 - 均匀分布
 - ■指数分布
 - 正态分布
 - 正态分布的分位点 ---Ch6

二. 几种常见的连续型随机变量的分布

1. 均匀分布 若连续型随机变量 X 具有概率密度 f(x)为:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \exists \\ \frac{1}{b-a} \end{cases}$$

则称 X 在区间 (a,b)上服从均匀分布。记为: $X \sim U(a,b)$

注:
$$>$$
 易证 $f(x)$ 满足: $1^0 f(x) \ge 0$ $2^0 \int_{-\infty}^{+\infty} f(x) dx = 1$

证明:
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{b} f(x) dx + \int_{b}^{+\infty} f(x) dx = \int_{a}^{b} \frac{1}{b-a} dx$$
$$= \frac{1}{b-a} \int_{a}^{b} dx = \frac{1}{b-a} x \Big|_{a}^{b} = \frac{1}{b-a} (b-a) = 1$$

1. 均匀分布
$$X \sim U(a,b) \quad f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其它 \end{cases}$$

$$\int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$$

▶均匀分布的性质:

X 落在区间 (a,b) 中任意等长度的子区间的概率相同, 它只依赖于子区间的长度,与位置无关。

 \triangleright 均匀分布只能限制在一个有限区间(a,b)内。

1. 均匀分布
$$X \sim U(a,b)$$
 $f(x) = \begin{cases} \frac{1}{b-a}, & a < x < l \\ 0, & 其它 \end{cases}$ (求分布函数: 1) 分布函数定义在整轴上; 2) 用分断点分区间; 3) 分区间求分布函数

▶ 均匀分布的分布函数

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

当
$$x < a$$
 时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$

求分布函数:

- 1)分布函数定义在整个实数轴上;
- 3) 分区间求分布函数值。

1. 均匀分布
$$X \sim U(a,b) \qquad f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其它 \end{cases}$$

均匀分布的分布函数为:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$
连续且单调增

性质1F(x)是一个不减函数 性质 $20 \le F(x) \le 1$ 且 $\lim_{x \to -\infty} F(x) = 0, \lim_{x \to +\infty} F(x) = 1$ 性质3F(x)是连续函数

1. 均匀分布
$$X \sim U(a,b) \quad f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其它 \end{cases}$$

均匀分布的分布函数为:
$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$
 为匀分布常应用于下列情形:

▶均匀分布常应用于下列情形:

比如:

- 1) 在数值计算中,由于四舍五入, 小数点后某位小数进位 导致的误差:
- 2) 公交线路上两辆公共汽车前后通过某车站的时间,即乘 客的候车时间等.

例1. 某公共汽车站从早晨7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45 等时刻有汽车到达此站,如果乘客到达此站时间 *X* 是7:00到 7:30 之间的均匀随机变量,

试求: (1) 乘客候车时间少于 5 分钟的概率;

(2) 乘客候车时间超过10分钟的概率.

均匀分布

Ch8 假设检验 分布拟合检验方法

用100天做统计

频率直方图

例1. 某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45 等时刻有汽车到达此站,如果乘客到达此站时间 *X* 是7:00到 7:30 之间的均匀随机变量。

试求: (1) 乘客候车时间少于 5 分钟的概率;

(2) 乘客候车时间超过10分钟的概率.

解: 设以7:00为起点0,以分为单位, $X \sim U(0,30)$

$$f(x) = \begin{cases} \frac{1}{30} & 0 < x < 30 \\ 0 & \cancel{4} \ \mathbf{\dot{C}} \end{cases}$$

X---乘客到达车站时间

$$X \sim U(0,30)$$
 $f(x) = \begin{cases} \frac{1}{30} & 0 < x < 30 \\ 0 & 其 它 \end{cases}$

从上午7时起, 每15分钟来一 班车,即7:00, 7:15,7:30有汽 车到达车站

7:30

7:45

(1) 乘客候车时间少于 5 分钟的概率

7:00

7:15

故所求概率为:

$$P\{X = 0\} + P\{10 < X < 15\} + P\{25 < X < 30\}$$

$$= 0 + \int_{10}^{15} \frac{1}{30} dx + \int_{25}^{30} \frac{1}{30} dx = \frac{1}{30} \int_{10}^{15} dx + \frac{1}{30} \int_{25}^{30} dx$$

$$= \frac{1}{30} x \Big|_{10}^{15} + \frac{1}{30} x \Big|_{25}^{30} = \frac{1}{30} (15 - 10) + \frac{1}{30} (30 - 25) = \frac{1}{3}$$

X---乘客到达车站时间

$$X \sim U(0,30)$$
 $f(x) = \begin{cases} \frac{1}{30} & 0 < x < 30 \\ 0 & 其 它 \end{cases}$

(2) 乘客候车时间超过10分钟的概率

从上午7时起, 每15分钟来一 班车,即7:00, 7:15,7:30有汽 车到达车站

候车时间超过10分钟,则乘客必须在7:00到7:05或7:15到7:20

之间到达车站

7:00 7:15 7:30 7:45

故所求概率为:

$$P(0 < X < 5) + P(15 < X < 20) = \int_0^5 \frac{1}{30} dx + \int_{15}^{20} \frac{1}{30} dx$$

$$= \frac{1}{30} \int_0^5 dx + \frac{1}{30} \int_{15}^{20} dx = \frac{1}{30} x \Big|_0^5 + \frac{1}{30} x \Big|_{15}^{20}$$

$$= \frac{1}{30} (5 - 0) + \frac{1}{30} (20 - 15) = \frac{1}{3}$$

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

- 连续型随机变量的概率密度
- 几种常见的连续型随机变量的分布
 - ✓ 均匀分布
 - **当**指数分布
 - 正态分布
 - 正态分布的分位点

2. 指数分布

若连续型随机变量 X 具有概率密度 f(x)为:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & \text{其中 } \theta > 0 \text{为常数} \end{cases}$$

则称 X 为服从参数 θ 的指数分布,记为: $X \sim E(\theta)$

注: \triangleright 易证 f(x) 满足: $\mathbf{1}^0 f(x) \ge \mathbf{0}$ $\mathbf{2}^0 \int_{-\infty}^{+\infty} f(x) dx = \mathbf{1}$ 证明:

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx = \int_{0}^{+\infty} \frac{1}{\theta} e^{-\frac{x}{\theta}} dx$$
$$= -\int_{0}^{+\infty} e^{-\frac{x}{\theta}} d(-\frac{x}{\theta}) = -e^{-\frac{x}{\theta}} \Big|_{0}^{+\infty} = -(e^{-\infty} - e^{0}) = -(0 - 1) = 1$$

2. 指数分布

若连续型随机变量 X 具有概率密度 f(x)为:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & \text{其它} \end{cases}$$

则称 X 为服从参数 θ 的指数分布,记为: $X \sim E(\theta)$

注: > f(x)的图形:

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

2. 指数分布 $X \sim E(\theta)$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & 其它 \end{cases}$$

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

▶指数分布的分布函数 $F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & \exists$ 它

当
$$x < 0$$
 时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$

当 $x \ge 0$ 时,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{x} f(t) dt$$

$$= \int_0^x \frac{1}{\theta} e^{-\frac{t}{\theta}} dt = -\int_0^x e^{-\frac{t}{\theta}} d(-\frac{t}{\theta}) = -e^{-\frac{t}{\theta}} \Big|_0^x = -(e^{-\frac{x}{\theta}} - 1) = 1 - e^{-\frac{x}{\theta}}$$

2. 指数分布 $X \sim E(\theta)$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

- ▶指数分布常应用于下列情形:
 - 1) 电器的寿命,零件的寿命等;
 - 2) 可靠性理论,排队论等.

例: 灯泡的寿命 $X \sim E(\theta=1)$ $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其它} \end{cases}$

例2. 设某计算机的寿命(单位:小时)是一个连续型随机变量X, 其密度函数为:

$$f(x) = \begin{cases} \lambda e^{-\frac{x}{100}}, & x \ge 0 \\ \mathbf{0}, & x < 0 \end{cases} \qquad f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ \mathbf{0}, & \text{#$\dot{\mathbf{r}}$} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & 其它 \end{cases}$$

求: (1)
$$\lambda$$
 的值 $\lambda = \frac{1}{100}$

X 为服从参数 $\theta = 100$ 的指数分布, $X \sim E(\theta = 100)$

(2) 这台计算机在毁坏前能运行50到150小时的概率.

2. 指数分布 $X \sim E(\theta)$

▶指数分布广泛应用于排队理论中,如银行顾客、医院病人排队等候服务的时间都服从指数分布。

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0 \\ 0 & \exists \dot{\nabla} \end{cases} \Rightarrow f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \exists \dot{\nabla} \end{cases}$$

$$X \sim E(\theta) \qquad X \sim E(\lambda)$$

A: 单位时间内平均到达人数;如: 每分钟平均到达4人;

 $1/\lambda$:到达者之间平均间隔时间;如:平均间隔时间为15秒.

X:等候服务的队列中下一个顾客到达的时间, $X \sim E(\lambda)$

2. 指数分布 $X \sim E(\theta)$

▶指数分布广泛应用于排队理论中,如银行顾客、医院病人

排队等候服务的时间都服从指数分布。

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & 其它 \end{cases}$$

A:单位时间内平均到达人数;

X:等候服务的队列中下一个顾客到达的时间, $X \sim E(\lambda)$

例: 顾客到达银行ATM机的速度为 20人/小时,即 $\lambda = 20$,如果一个顾客刚到,求下一个顾客在6分钟(0.1小时)内达的概率。

解:由于下一个顾客到达的时间 $X \sim E(\lambda = 20)$

所以所求概率为:
$$P(X < 0.1) = \int_0^{0.1} 20e^{-20x} dx$$

= $1 - e^{-20 \times 0.1} = 0.8647$

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

- 连续型随机变量的概率密度
- 几种常见的连续型随机变量的分布
 - ✓ 均匀分布
 - ✓ 指数分布
 - **■**正态分布
 - 正态分布的分位点

3. 正态分布

正态分布是应用最广泛的一种连续型分布.

数学家德莫佛最早发现了二项分布的 一个近似公式,这一公式被认为是正态 分布的首次问世.

正态分布在十九世纪前叶由数学家高斯加以推广,所以通常也称为高斯分布.

德莫佛

高斯

3. 正态分布

- **→** 正态分布的定义
 - 正态分布的图形特点
 - 正态分布的分布函数
 - 标准正态分布
 - 正态分布的应用

(1) 正态分布的定义

若随机变量 X 的概率密度为: e^{-x^2} e^{-x}

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

则称 X 服从参数为 μ 和 σ^2 的正态分布,

记作: $X \sim N(\mu, \sigma^2)$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & 其它 \end{cases}$$

注:
$$\triangleright$$
 易证 $f(x)$ 满足: $\mathbf{1}^0$ $f(x) \ge \mathbf{0}$

$$2^0 \int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$$

正态分布 $N(\mu,\sigma^2)$ 的图形

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

正态分布的密度曲线是一条关于 μ 对称的钟形曲线,称为正态曲线。

3. 正态分布

- 正态分布的定义
- <u>→</u> 正态分布的图形特点
 - 正态分布的分布函数
 - 标准正态分布
 - 正态分布的应用

(2) 正态分布的图形特点

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

- \triangleright 1 显然: $f(x) \ge 0$
- \triangleright 2 f(x) 以 μ 为对称轴,并在 $x = \mu$ 处达到最大值:

$$f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$$

证明: 当 $x = \mu \pm h (h > 0)$ 时,有 $f(\mu + h) = f(\mu - h)$

$$f(x) = \frac{1}{\sigma \sqrt{2\pi} \cdot e^{\frac{(x-\mu)^2}{2\sigma^2}}}$$

(2) 正态分布的图形特点

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

- \triangleright 1 显然: $f(x) \ge 0$
- ightharpoonup 2 f(x) 以 μ 为对称轴,并在 $x = \mu$ 处达到最大值: $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$
- \triangleright 3 f(x) 以 x 轴为渐近线: 当 $x \rightarrow \pm \infty$ 时, $f(x) \rightarrow 0$
- \triangleright 4 $x = \mu \pm \sigma$ 为 f(x)的两个拐点的横坐标.

$$f''(x) = 0 \Rightarrow x = \mu \pm \sigma$$

 \geq 5 μ 决定图形的位置, σ 决定图形的形状。

 \succ 5 μ 决定图形的位置, σ 决定图形的形状。

固定 σ , 改变 μ ,则图形位置变, 但形状不变。固定 μ , 改变 σ ,则图形位置不变, 但形状改变。

$$f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$$
 σ 越小, $f(\mu)$ 越大 $X \sim N(\mu, \sigma^2)$ $\chi \sim$

注: 正态分布由它的两个参数μ和σ唯一确定, 当μ和σ不同时, 对应的是不同的正态分布。

3. 正态分布

- 正态分布的定义
- 正态分布的图形特点
- → 正态分布的分布函数
 - 标准正态分布
 - 正态分布的应用

(3) 正态分布的分布函数

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

若 $X \sim N(\mu, \sigma^2)$, 则 X 分布函数是

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$F(x) = \frac{1}{\sqrt{2\pi \cdot \sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt, \quad -\infty < x < \infty$$

$$\int_{-\infty}^{x} e^{-t^{2}} dt$$

$$\text{III.}$$

$$\text{III.}$$

$$\text{III.}$$

$$\text{III.}$$

$$\text{III.}$$

用泰勒公式展开成多项式 函数的和,逐项积分

- f(x)的原函数不是初等函数, 所以F(x)不能用解析式表达, 因此F(x)的值只能近似计算。
- > 其图形为:

(3) 正态分布的分布函数

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad F(x) = \frac{1}{\sqrt{2\pi}\cdot\sigma}\int_{-\infty}^x e^{-\frac{(t-\mu)^2}{2\sigma^2}}dt$$

问题:
$$P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} f(x) dx$$
 \times $= F(x_2) - F(x_1)$

解决的办法: 标准正态分布

用标准正态分布的分布函数值计算 F(x)

3. 正态分布

- 正态分布的定义
- 正态分布的图形特点
- 正态分布的分布函数
- ➡ 标准正态分布
 - 正态分布的应用

(4) 标准正态分布

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

称 $\mu=0, \sigma=1$ 的正态分布为标准正态分布 N(0,1).

其密度函数和分布函数常用 $\varphi(x)$ 和 $\Phi(x)$ 表示:

▶标准正态分布的重要性:

任何一个一般的正态分布都可以通过线性变换 $\frac{X-\mu}{\sigma}$ 化为标准正态分布.

引理: 若
$$X \sim N(\mu, \sigma^2)$$
, 则 $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ (证略)

引理: 若
$$X \sim N(\mu, \sigma^2)$$
, 则 $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

 \rightarrow 由此可得: 若 $X \sim N(\mu, \sigma^2)$, 则其分布函数 F(x)

$$F(x) = P(X \le x) = P(\sum_{\sigma} \frac{\iota}{-1} \le \frac{x - \mu}{\sigma}) = \Phi(\frac{x - \mu}{\sigma})$$

$$F(x) = \frac{1}{\sqrt{2\pi \cdot \sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt, \quad -\infty < x < \infty$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

根据引理,只要将标准正态分布的分布函数制成表,就 可以解决一般正态分布的概率计算问题。而现已编制了 $\Phi(x)$ 的表,可供查用。请见教材P382附表2

▶标准正态分布表-附表2 P382

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

$$\Phi(0) = 0.5$$

$$x \ge 0$$
 $\Phi(x) \ge 0.5$

▶标准正态分布表-附表2 P382

\boldsymbol{x}	0.00	0.01	0.02	0.03	0.04	0.05	0.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
3. 0 0. 9987 0. 9987 0. 9988 0. 9989 0. 9989 0. 9989 0. 9989 0. 9989							

$$\Phi(0.25) = 0.5987$$

$$\Phi(-0.25) = ?$$

1000	The state of the s	NAME OF TAXABLE PARTY.			CONTROL SOL	9500			
0. 9987	0.9987	0. 9987	0.9988	0.9988	0.9989	0. 9989	0. 9989	0.9990	0.9990
0.9990	0, 9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
0.9993	0.9993	0. 9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
0. 9995	0. 9995	0.9995	0, 9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	0. 9990 0. 9993 0. 9995	0. 9990 0, 9991 0. 9993 0, 9993 0. 9995 0, 9995	0.9990 0.9991 0.9991 0.9993 0.9993 0.9994 0.9995 0.9995 0.9995	0.9990 0,9991 0,9991 0,9991 0.9993 0,9993 0,9994 0,9994 0.9995 0,9995 0,9995 0,9996	0.9990 0.9991 0.9991 0.9991 0.9992 0.9993 0.9993 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996	0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996	0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996	0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996	0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.

▶关于正态分布表

教材P382<mark>附表2为标准正态分布表,</mark>借助于附表2,可以 查表计算一般正态分布的概率问题。

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

表中给出的是x > 0时, $\Phi(x)$ 的值.

当
$$-x < 0$$
时有: $\Phi(-x) = 1 - \Phi(x)$

$$\Phi(-0.25) = 1 - \Phi(0.25)$$

$$=1-0.5987=0.4013$$

$$\Phi(x) = P(X \le x) = \int_{-\infty}^{x} \varphi(t) dt$$

正态分布概率计算:

$$F(b) = \frac{1}{\sqrt{2\pi \cdot \sigma}} \int_{-\infty}^{b} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

>若
$$X \sim N(0,1)$$
, 则 $P(a < X < b) = \Phi(b) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} e^{-\frac{t^2}{2}} dt$

>若
$$X \sim N(\mu, \sigma^2)$$
, 则 $Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$

则有:
$$P(a \le X \le b) = P(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma})$$

$$\times F(b) - F(a) = P(\frac{a-\mu}{\sigma} \le Y \le \frac{b-\mu}{\sigma})$$

$$= \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) \checkmark$$

借助于标准正态分布表,可以查表计算一般正态分布的概率问题。

利用线性变换算概率:
$$X \sim N(10,4)$$
 $\frac{X-10}{2} \sim N(0,1)$ $X \sim N(\mu,\sigma^2)$

$$P(X \le 12) = \frac{1}{2\sqrt{2\pi}} \int_{-\infty}^{12} e^{-\frac{(x-10)^2}{8}} dx$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$=P(\frac{X-10}{2} \le \frac{12-10}{2}) = \Phi(1) = 0.8413$$
 查表

例3. 已知自动车床生产的零件的长度 X (毫米)服从正态分布 $N(50,0.75^2)$,如果规定零件的长度在 50 ± 1.5 毫米之间 为合格品、求: 生产零件是合格品的概率。

解:
$$X \sim N(50, 0.75^2)$$
 $\frac{X-50}{0.75} \sim N(0,1)$

所求的概率为:

$$P(x_1 < X \le x_2) = F(x_2) - F(x_1)$$

$$P(|X-50|<1.5) = P(\frac{|X-50|}{0.75}|<\frac{1.5}{0.75}) = P(-2<\frac{|X-50|}{0.75}<2)$$

$$= \Phi(2) - \Phi(-2) = \Phi(2) - (1 - \Phi(2))$$

$$= 2\Phi(2) - 1 = 2 \times 0.9772 - 1 = 0.9544$$

查附表2

- 例4. 将一温度调节器放置在贮存着某种液体的容器内,调节器调整在 d^0C ,液体的温度 X (以°C计)是一个随机变量,且 $X \sim N(d, 0.5^2)$
 - (1) 若d = 90, 求X小于89的概率;
 - (2) 若要求保持液体的温度至少为80的概率不低于0.99,问d至少为多少?

例4. 将一温度调节器放置在贮存着某种液体的容器内,调节器调整在 $d^{0}C$,液体的温度 X (以 $^{\circ}$ C计)是一个随机变量,且 $X \sim N(d, 0.5^{2})$

(1) 若
$$d = 90$$
, 求 X 小于89的概率;

$$\frac{X-90}{0.5} \sim N(0,1)$$

解:
$$P(X < 89) = P(\frac{X - 90}{0.5} < \frac{89 - 90}{0.5})$$

$$=\Phi(\frac{89-90}{0.5})$$

$$F(x) = P(X \le x)$$

$$=\Phi(-2)=1-\Phi(2)$$

$$=1-0.9772=0.0288$$

例4. $X \sim N(d, 0.5^2)$

(2) 若要求保持液体的温度至少为80的概率不低于0.99,问d至少为多少?

按题意需求 d 满足:

$$\frac{X-d}{0.5} \sim N(0,1)$$

$$0.99 \le P(X \ge 80) = 1 - P(X < 80)$$

$$= 1 - P(\frac{X - d}{0.5} \le \frac{80 - d}{0.5})$$

$$= 1 - \Phi(\frac{80 - d}{0.5})$$

即
$$\Phi\left(\frac{80-d}{0.5}\right) \le 1-0.99 = 0.01$$

$$0.99 \le P(X \ge 80) \longrightarrow \Phi(\frac{80 - d}{0.5}) \le 1 - 0.99 = 0.01$$

$$\le 1 - \Phi(2.33)$$

附表2
$$x \to \Phi(x)$$

$$x \leftarrow \Phi(x) = 0.01$$

▶标准正态分布表-附表2 P382

$$2.33 = x \leftarrow \Phi(x) = 0.99$$

 $\Phi(2.33) = 0.99$

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$$

$$0.99 \le P(X \ge 80) \longrightarrow \Phi(\frac{80 - d}{0.5}) \le 1 - 0.99 = 0.01$$

$$\le 1 - \Phi(2.33) = \Phi(-2.33)$$

$$\frac{80-d}{0.5} \le -2.33 \qquad \therefore \ d \ge 80 + 0.5 \times 2.33 = 81.16$$

$$-2.33 = x \leftarrow \Phi(x) = 0.01$$

3. 正态分布

- 正态分布的定义
- 正态分布的图形特点
- 正态分布的分布函数
- 标准正态分布
- 正态分布的应用

(5) 正态分布的应用

下图是用某大学男生身高数据画出的频率直方图:

选100人做统计:将158-190cm分为16个单位进行统计,每2cm为一个单位。

(5) 正态分布的应用

下图是用某大学男生身高数据画出的频率直方图:

红是合正密曲线拟的态度线

可见, 男生的身高应服从正态分布。

人的身高高低不等,但中等身材的占大多数,特高和特矮的只是少数,而且较高和较矮的人数大致相近,这反映了服从正态分布的随机变量的<mark>特点</mark>。

Z)用曲线拟合则平且力图, 何到概平省及曲线。

(5) 正态分布的应用

除了身高外,

- 1) 在正常条件下年降雨量;
- 2) 产品的质量指标,如:零件的尺寸;
- 3) 农作物的产量,如小麦的穗长;
- 4) 测量误差,如:射击的水平或垂直偏差;

都服从或近似服从正态分布.

 $\star f(x)$

0.95

(5) 正态分布的应用 5) 城市用电量;

显然一个城市一天居民用电量是 一个随机变量 X,它是千家万户用电 量 X_k 的总和。即

$$X = \sum_{k=1}^{n} X_k \overset{\text{近似}}{\sim} N(\mu, \sigma^2)$$
 Ch5 中心极限定理

分析: 每家每户的用电量 X_k 具有以下的特点:

- (1) 相互独立;
- (2) 对城市用电量总和 X 的影响都很小.

算概率: 用电负荷至少应该设计多大才能以99%的概率保证居 民用电正常。

3. 正态分布

- 正态分布的定义
- 正态分布的图形特点
- 正态分布的分布函数
- 标准正态分布
- 正态分布的应用

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

- 连续型随机变量的概率密度
- 几种常见的连续型随机变量的分布
 - ✔ 均匀分布
 - ✓ 指数分布
 - ✓ 正态分布
 - α 分位点---Ch6

小结

随机变量

	离散型随机变量	连续型随机变量		
	1) $(0-1)$ 分布 $P(X = k) = p^{k} (1-p)^{1-k}$ $k = 0,1$	1) $U(a,b)$ \bigstar $f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \exists \dot{\Sigma} \end{cases}$		
重要分布	2) $B(n,p)$ $P(X=k) = C_n^k p^k (1-p)^{n-k}$ $k = 0,1,\cdots n$	2) $E(\theta)$ ★ $f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \text{其它} \end{cases}$		
	3) $P(\lambda)$ $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} k = 0,1,2$	3) $N(\mu, \sigma^2)$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} -\infty < x < \infty$		

小结

正态分布

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$N(\mu, \sigma^2)$

N(0,1)

概率密度

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$-\infty < x < \infty$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$-\infty < x < \infty$$

分布函数

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} dt$$

$$-\infty < x < \infty$$

$$\Rightarrow \pm$$

$$-\infty < x < \infty$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
查表
$$-\infty < x < \infty$$

概率计算

$$F(x) = P(X \le x) = P(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}) = \Phi(\frac{x - \mu}{\sigma})$$

$$P(a \le X \le b) = P(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

小结

随机变量

连续型随机变量

其它概率分布

1) U(a,b)

4) 瑞利分布
$$R(\mu)$$

$$f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \text{其它} \end{cases}$$
 5) 贝塔分布 $\beta(p,q)$ 6) 伽马分布 $\Gamma(\alpha,\beta)$

$$5$$
)贝塔分布 $\beta(p,q)$

重要分布

2)
$$E(\theta)$$

$$f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \text{其它} \end{cases} 8) t 分布 t(n)$$

7)
$$\chi^2$$
分布 $\chi^2(n)$

$$\beta$$
) t 分布 $t(n)$

9)
$$F$$
 分布 $F(n_1, n_2)$

3)
$$N(\mu,\sigma^2)$$

3)
$$N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} -\infty < x < \infty$$

10) 威布尔分布
$$W(m,\alpha)$$

11) 柯西分布
$$C(\mu,\alpha)$$

作业

授课内容	习题二
2.2 离散型随机变量及其分布律	2(1),3分布律, 6,7二项分布, 12,泊松分布
2.3 随机变量的分布函数	17(1)(2), 19
2.4 连续型随机变量概率密度	20,21,23,概率密度
	24指数分布,26,27,29正态分布
2.5 随机变量函数的分布	33离散, 34(1), 35(1)(2)(3)连续

