BTVN DCT and Quantization

Tên: Trương Hoàng Anh

MSSV: 20200131

Source image: Là 1 ma trận 8*8

Source	image						
139	144	149	153	155	155	155	155
144	151	153	156	159	156	156	156
150	155	160	163	158	156	156	156
159	161	162	160	160	159	159	159
159	160	161	162	162	155	155	155
161	161	161	161	160	157	157	157
162	162	161	163	162	157	157	157
162	162	161	161	163	158	158	158

Source image là ma trận kiểu số nguyên không đấu 8 bit. Để tính DCT (sử dụng hàm dct2 trong matlab) thì cần phải chuyển qua dạng số nguyên có dấu 8 bit nên Source image phải trừ cho 128. Sau đó thực hiện DCT.

Kết quả sau khi thực hiện DCT là:

```
Forward DCT coefficients
235.6000
          -1.0000 -12.1000
                             -5.2000
                                       2.1000
                                               -1.7000
                                                        -2.7000
                                                                  1.3000
-22.6000 -17.5000 -6.2000
                            -3.2000
                                      -2.9000
                                               -0.1000 0.4000
                                                                 -1.2000
-10.9000
         -9.3000
                  -1.6000
                            1.5000
                                      0.2000
                                               -0.9000
                                                        -0.6000
                                                                 -0.1000
 -7.1000
         -1.9000
                    0.2000
                             1.5000
                                      0.9000
                                               -0.1000
                                                                  0.3000
 -0.6000
         -0.8000 1.5000
                            1.6000
                                     -0.1000
                                               -0.7000
                                                         0.6000
                                                                  1.3000
  1.8000
         -0.2000
                    1.6000
                            -0.3000
                                      -0.8000
                                               1.5000 1.0000
                                                                 -1.0000
 -1.3000
          -0.4000
                   -0.3000
                             -1.5000
                                      -0.5000
                                                1.7000
                                                         1.1000
                                                                 -0.8000
 -2.6000
         1.6000 -3.8000
                            -1.8000
                                      1.9000
                                               1.2000
                                                        -0.6000
                                                                 -0.4000
```

Ta có bảng lượng tử:

${\tt Quantization}$		table					
16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Lấy cái quả sau khi DCT chia cho từng phần tử của bảng lượng tử ta ta thu được kết quả:

Normalized quantized coefficients

15	0	-1	0	0	0	0	0
-2	-1	0	0	0	0	0	0
-1	-1	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Lấy kết quả trên nhân ngược lại từng phần tử của bảng lượng tử ta thu được kết quả:

Denormalized quantized coefficients

240	0	-10	0	0	0	0	0
-24	-12	0	0	0	0	0	0
-14	-13	0	0	0	0	0	0
-14	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Sau đó ta DCT ngược (Dùng hàm idet2 trong matlab) để thu được ảnh ban đầu (có sai số nhưng không đáng kể) do ban đầu ta trừ 128 để có ảnh kiểu số nguyên có đấu 8 bit vì vậy sau khi DCT ngược ta phải +128 để thành kiểu ảnh số nguyên không dấu 8 bit.

Reconstructed		image	sampl	es				
	142	144	147	150	152	153	154	154
	149	150	153	155	156	157	156	156
	157	158	159	161	161	160	159	158
	162	162	163	163	162	160	158	157
	162	162	162	162	161	158	156	155
	160	161	161	161	160	158	156	154