5.9.5. Vingrinājumi.

(i) Ja N' ir moduļa M' apakšmodulis un $f:M''\to M'$ ir moduļu homomorfisms, tad $f^{-1}(N')$ ir moduļa M'' apakšmodulis.

 \square Tā kā N' un M'' ir moduļi, varam secināt, ka abi moduļi satur aditīvo 0. Pie tam $f(0_{M''}) = f(0 \cdot x) = 0 \cdot f(x) = 0_{M'} = 0_{N'}$. Tas nozīmē, ka kopa $f^{-1}(N')$ nav tukša. Pieņemsim, ka $x, y \in f^{-1}(N')$ un $a \in R$. Tā kā M'' ir modulis, tad $x + ay \in M''$. Atliek pamatot, ka $f(x + ay) \in N'$, bet tas izriet no tā, ka N' ir modulis un kopas $f^{-1}(N')$ definīcijas, jo

$$f(x + ay) = f(x) + f(ay) = f(x) + af(y) \in N'.$$

(ii) Ja

- $\varphi: N \to N_0$ ir moduļu izomorfisms;
- N_0 ir pilnīgi reducējams modulis;
- $N_0 = \bigoplus_{i=1}^s N_i$ ir šī moduļa N_0 reprezentācija ar ireducibliem apakšmoduļiem,

tad

- \bullet N ir pilnīgi reducējams modulis un
- $N = \bigoplus_{i=1}^{s} \varphi^{-1}(N_i)$ ir šī moduļa N reprezentācija ar ireducibliem apakšmoduļiem.
- \square Apskatīsim N_i , kur $i \in \overline{1,s}$, un apzīmēsim $M_i = \varphi^{-1}(N_i)$.

No (i) varam secināt, ka M_i ir moduļa N apakšmodulis. Pamatosim, ka M_i ir ireducibls. Tā kā N_i ir ireducibls, tad pastāv nenulles elements kopā N_i . Tas nozīmē, ka M_i nav triviālais modulis, jo φ ir epimorfisms.

Lai $0 \subseteq H \subset M_i$ būtu moduļa M_i apakšmodulis. Saskatām, ka $\varphi(H) \subset N_i$, jo $\varphi(M_i) = N_i$, $H \subset M_i$ un φ ir monomorfisms, garantējot to, ka $\varphi(M_i)$ būs stingra apakškopa kopai N_i . Ja $x, y \in \varphi(H)$ un $a \in R$, tad $\varphi^{-1}(x)$ un $\varphi^{-1}(y)$ pieder kopai H. Tā kā H ir modulis, tad $\varphi^{-1}(x) + a\varphi^{-1}(y) \in H$ un $\varphi(H) \ni \varphi(\varphi^{-1}(x) + a\varphi^{-1}(y)) = x + ay$. Tātad $\varphi(H)$ ir stingrs apakšmodulis N_i . No tā, ka N_i ir ireducibls, secinām, ka $\varphi(H) = 0_N$. Tā kā φ ir monomorfisms, secinām, ka $H = 0_{N_0}$ un apakšmodulis M_i ir ireducibls.

Apskatām $x \in N$. Varam veikt sekojošus pārveidojumus:

$$\varphi(x) = n_1 + n_2 + \dots + n_s \qquad n_i \in N_i, \ i \in \overline{1, s}$$

$$x = \varphi^{-1}(\varphi(x)) = \varphi^{-1}(n_1 + n_2 + \dots + n_s)$$

$$= \varphi^{-1}(n_1) + \varphi^{-1}(n_2) + \dots + \varphi^{-1}(n_2)$$

$$= m_1 + m_2 + \dots + m_s \qquad m_i \in M_i, \ i \in \overline{1, s}.$$

No tā, ka N_0 ir pilnīgi reducējams un φ ir izomorfisms, seko unitāte katra x reprezentācijai caur apakšmoduļu summu. Apvienojot šo ar teorēmu 5.7.5, iegūstam prasīto.