

OptiMOS[®]-P Small-Signal-Transistor

Features

- P-Channel
- Enhancement mode
- Super Logic level (2.5 V rated)
- 150°C operating temperature
- · Avalanche rated
- dv/dt rated
- Pb-free lead plating; RoHS compliant
- Qualified according to AEC Q101
- Halogen-free according to IEC61249-2-21

Product Summary

V _{DS}	-20	٧
R _{DS(on),max}	550	mΩ
I _D	-0.63	Α

PG-SOT-323

Туре	Package	Tape and Reel Information	Marking	Lead free	Packing
BSS 209PW	SOT-323	H6327: 1000 pcs/reel	X3s	Yes	Non Dry

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	ID	T _C =25 °C	-0.63	А
		T _C =70 °C	-0.5	
Pulsed drain current	I _{D,pulse}	T _C =25 °C	-2.5	
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ = -0.63 A, $R_{\rm GS}$ =25 Ω	4.0	mJ
Reverse diode dv/dt	dv/dt	I_{D} = -0.63 A, V_{DS} =-16 V, di/dt=-200 A/µs, $T_{j,max}$ =150 °C	-6	kV/μs
Gate source voltage	V_{GS}		±12	V
Power dissipation	P_{tot}	T _A =25 °C	0.30	W
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$		-55 150	°C
ESD class		JESD22-C101 (HBM)	0 (max 250V)	
Soldering temperature			260 °C	
IEC climatic category; DIN IEC 68-1			55/150/56	

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - soldering point	$R_{ m thJS}$		-	-	120	K/W
SMD version, device on PCB:	$R_{ m thJA}$	minimal footprint	-	-	420	
		6 cm ² cooling area ¹⁾	-	-	350	

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(BR)DSS}$	V _{GS} =0 V, I _D =-250μA	-20	-	-	V
Gate threshold voltage	$V_{GS(th)}$	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 3.5 \ \mu {\rm A}$	-0.6	-0.9	-1.2	
Zero gate voltage drain current	I _{DSS}	$V_{\rm DS}$ =-20 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C	1	-0.1	-1	μΑ
		V _{DS} =-20 V, V _{GS} =0 V, T _j =150 °C	-	-10	-100	
Gate-source leakage current	I _{GSS}	V _{GS} =12 V, V _{DS} =0 V	-	-10	-100	nA
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	V _{GS} =2.5 V, I _D =0.46 A	1	581	900	
		V _{GS} =4.5 V, I _D =0.63 A	1	379	550	
Transconductance	$g_{ extsf{fs}}$	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = 0.46~{\rm A}$	0.87	1.74	-	s

 $^{^{1)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical without blown air; \succeq 10 sec.

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Dynamic characteristics						
Input capacitance	Ciss		-	87	115	pF
Output capacitance	Coss	V _{GS} =0 V, V _{DS} =-15 V, f=1 MHz	-	35	46.7	
Reverse transfer capacitance	Crss]	-	30	45	
Turn-on delay time	$t_{d(on)}$		-	2.6	4.0	ns
Rise time	t _r	V _{DD} =-10 V, V _{GS} =-	-	7	11	<u> </u> -
Turn-off delay time	$t_{\text{d(off)}}$	$-4.5 \text{ V, } I_D$ =0.58 A, R_G =6 Ω	-	6	9	
Fall time	t_{f}]	-	4.6	6.9	
Gate Charge Characteristics ³⁾						
Gate to source charge	Q _{gs}		-	-0.18	-0.24	nC
Gate to drain charge	Q _{gd}	$V_{\rm DD}$ =10 V, $I_{\rm D}$ =0.58 A, $V_{\rm GS}$ =0 to 4.5 V	-	-0.46	-0.7	
Gate charge total	Qg		-	-1.0	-1.3	
Gate plateau voltage	$V_{ m plateau}$		-	-2.0	-	V
Reverse Diode						
Diode continous forward current	Is	T -25 °C	-	-	-0.7	Α
Diode direct current, pulsed	/ _{SM}	— T _C =25 °C	-	-	-4.0	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =-0.58 A, T _j =25 °C	-	-0.92	-0.88	V
Reverse recovery time	t _{rr}	V_{R} =10 V, I_{F} = $ I_{S} $, di_{F} / dt =100 A/ μ s	-	9	11.2	ns
Reverse recovery charge	Q _{rr}		-	1.27	1.59	nC

1 Power dissipation

P_{tot} =f(T_A)

2 Drain current

3 Safe operating area

$$I_D = f(V_{DS}); T_A = 25 \, ^{\circ}C^{1)}; D = 0$$

parameter: t_p

4 Max. transient thermal impedance

$$Z_{\text{thJS}}$$
=f(t_{p})

parameter: $D=t_p/T$

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 °C$

parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}$ =f(I_D); T_j =25 °C

parameter: V_{GS}

7 Typ. transfer characteristics

 I_{D} =f(V_{GS}); $|V_{DS}|$ >2 $|I_{D}|R_{DS(on)max}$

parameter: $T_{\rm j}$

8 Typ. forward transconductance

 g_{fs} =f(I_D); T_j =25 °C

9 Drain-source on-state resistance

$$R_{DS(on)}$$
=f(T_j); I_D =-0.58 A; V_{GS} =-4.5 V

10 Typ. gate threshold voltage

$$V_{\mathrm{GS(th)}} = f(T_{\mathrm{j}}); \ V_{\mathrm{GS}} = V_{\mathrm{DS}}; \ I_{\mathrm{D}} = -3.5 \ \mu\mathrm{A}$$

11 Typ. capacitances

 $C=f(V_{DS}); V_{GS}=0 V; f=1 MHz$

12 Forward characteristics of reverse diode

$$I_{F}$$
=f(V_{SD})
parameter: T_{j}

13 Avalanche characteristics

I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

14 Typ. gate charge

$$V_{\rm GS}$$
=f($Q_{\rm gate}$); $I_{\rm D}$ =-0.58 A pulsed

parameter: $V_{\rm DD}$

15 Drain-source breakdown voltage

$$V_{BR(DSS)}$$
=f(T_i); I_D =-250 μ A

Package Outline:

Footprint:

Packaging:

Published by
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.