Восходящий разбор. Неоднозначность и детерминированность

Теория формальных языков $2022 \ z$.

(Не)лирическое отступление

(Не)лирическое отступление

- Дополнительные задания не требуют больших объёмов кода, доступны всем (в том числе группам) и стоят минимум 2 балла. Следим за горящими сроками!
- Запись на доделывание закрывается после дедлайна.
- Планируем действия заранее:
 - 3 лабораторная по объёму большая используем чужой код (с контеста, от прошлых цивилизаций), но не забываем про структуры (и Рефал-стайл).
 - 4 лабораторная будет сложной (и прошлые цивилизации помогут мало). Зато будет 2 допзадания!
 - 5 лабораторная будет легче, но выполняться в мини-группах. Допзадание будет одно.
 - На последней неделе(!!) будет биг-фарма: возможность добрать баллы по всем темам решением задач.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Определение

КС-грамматика G неоднозначная, если существует слово $w \in L(G)$ такое, что в G у него больше одного дерева разбора. КС-язык L существенно неоднозначен, если всякая его грамматика неоднозначна.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Определение

КС-грамматика G неоднозначная, если существует слово $w \in L(G)$ такое, что в G у него больше одного дерева разбора. КС-язык L существенно неоднозначен, если всякая его грамматика неоднозначна.

Существование однозначной грамматики не гарантирует существования DPDA: см. $\{a^nb^n\} \cup \{a^nb^{2n}\}$.

Алгоритм Кока–Янгера–Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}; \text{изменим её на } T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}.$

4/31

Алгоритм Кока–Янгера–Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\};$ изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}.$

Идея алгоритма СТ

Читаем очередной символ, вычисляем множество $T_j'[A]$ для всех $A \in N$, постепенно достраивая его как список, упорядоченный по возрастанию. Если $A \to BC$, тогда если $k \in T_j'[C]$, то для всех $x \in T_k'[B]$ выполнено $x \in T_j'[A]$.

Алгоритм Кока–Янгера–Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\};$ изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}.$

```
\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \dots \\ \text{for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \dots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \text{ } T_j'[A] = T_j'[A] \cup \{i\} \end{split}
```

4/31

Алгоритм Кока–Янгера–Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\};$ изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}.$

```
\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j \text{=} 1 \dots n \\ \text{for all } A \in N \text{ if } A \rightarrow \mathfrak{a}_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k \text{=} j \text{-} 1 \dots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}
```

Для однозначных грамматик ACT работает за $O(n^2)$.

$$\begin{split} \forall \textbf{j}, \textbf{A}(\textbf{T}_j'[\textbf{A}] = \varnothing) \\ \text{for } j = 1 \dots n \\ \text{for } k = j - 1 \dots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

Инициализация таблицы:

	S	Α	В	G_A	$G_{\rm B}$
1 – a					
2 – b					
3 – b					
4 – a					

1 - 1 - 1 - 1 -

5/3

$$S o G_AA$$
 | G_BB | $oldsymbol{a}$ | $oldsymbol{b}$ | $A ooldsymbol{a}$ | SG_A | $B ooldsymbol{b}$ | SG_B | $G_A ooldsymbol{a}$ | $G_B ooldsymbol{b}$ | $G_B ooldsymbol{b}$ | SG_B | SG

$$\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \dots n \ \ \, \backslash \ \, j = 1 \\ \text{ for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{ for } k = j - 1 \dots 1 \\ \text{ for all } A \rightarrow BC \in R \\ \text{ if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

j=1, проход по терминальным правилам, цикла по нетерминальным нет, т.к. k=0:

	S	A	В	G_A	G_{B}
1 - a	0	0		0	
2 – b					
3 – b					
4 − a					

$$S o G_AA\,|\,G_BB\,|\,\alpha\,|\,{f b}$$
 $A o \alpha\,|\,SG_A$ $B o {f b}\,|\,SG_B$ $G_A o \alpha$ слово авьа

$$\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j\text{=}1..n \ \, \backslash \backslash \ \, j = 2 \\ \text{for all } A \in N \text{ if } A \to \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k\text{=}j\text{-}1..1 \\ \text{for all } A \to BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

j = 2, проход по терминальным правипам:

	S	A	В	G_A	$G_{\rm B}$
1 - a	0	0		0	
2 – b	1		1		1
3 – b					
4 – a					

$$egin{aligned} \mathbf{S} &
ightarrow G_A A \, | \, \mathbf{G_B B} \, | \, lpha \, | \, b & A
ightarrow lpha \, | \, SG_A & \mathbf{B}
ightarrow b \, | \, \mathbf{SG_B} \ G_A
ightarrow lpha & G_B
ightarrow b & {
m cлово} \, lpha b b \end{aligned}$$

$$\forall j, A(T_j'[A]=\varnothing)$$
 for $j=1..n\ \ j=2$ for $k=j-1..1\ \ k=1$ for all $A\to BC\in R\ \$ если второй нетерминал правой части есть в строке 2 с индексом 1 if $k\in T_j'[C]$ then for all $i\in T_k'[B]$ $T_j'[A]=T_j'[A]\cup \{i\}$ \\ тогда добавляем в ячейку второй строки для левого нетерминала содержимое ячейки первого нетерминала в строке 1

Подходящие правила есть для В и G_B . Но для нетерминала G_B (правило $S \to G_B B$) ячейка в первой строке пуста, так что добавляем только содержимое ячейки для S в ячейку B.

	S	A	В	G_A	$ G_{\mathrm{B}} $
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b					
4 – a					

$$S o G_A A \mid G_B B \mid a \mid {f b} \quad A o a \mid SG_A \quad B o {f b} \mid SG_B \ G_A o a \qquad G_B o {f b} \qquad$$
 слово авьа

$$\begin{split} &\forall j, A(T_j'[A] = \varnothing) \\ &\text{for } j\text{=}1 \dots n \ \ \backslash \ \, \textbf{j} = \textbf{3} \\ &\text{ for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ &\text{ for } k\text{=}j\text{-}1 \dots 1 \\ &\text{ for all } A \rightarrow BC \in R \\ &\text{ if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

ј = 3, проход по терминальным правилам:

	S	Α	В	G_A	$G_{\rm B}$
1 - a	0	0		0	
2 – b	1		1, 0		1
3 - b	2		2		2
4 – a					

$$egin{aligned} \mathbf{S} &
ightarrow & G_A A \, | \, \mathbf{G_B B} \, | \, lpha \, | \, b & A
ightarrow \, lpha \, | \, SG_A & \mathbf{B}
ightarrow \, b \, | \, \mathbf{SG_B} \ & G_A
ightarrow \, a & G_B
ightarrow \, b & {
m cлово} \, abba \end{aligned}$$

$$\forall j, A(T_j'[A] = \varnothing)$$
 for j=1..n \\ j = 3 for k=j-1..1 \\ k = 2 for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 3 с индексом 2 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку третьей строки для левого нетерминала содержимое ячейки первого нетерминала в строке 2

Подходящие правила: $S \to G_B B$, $B \to S G_B$, причём во второй строке ячейки G_B и S обе не пустые. Добавляем их содержимое в ячейки левых частей, S и B:

	S	A	В	G_{A}	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 — a					

$$\mathbf{S} o G_A A \, | \, \mathbf{G_B B} \, | \, a \, | \, b \quad A o a \, | \, SG_A \quad B o b \, | \, SG_B \ G_A o a \qquad G_B o b \qquad$$
 слово аbba

$$\forall j, A(T_j'[A] = \varnothing)$$
 for $j=1..n \ \ j=3$ for $k=j-1..1 \ \ k=1$ for all $A \to BC \in R \ \$ если второй нетерминал правой части есть в строке 3 с индексом 1 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку третьей строки для левого нетерминала содержимое ячейки первого нетерминала в строке 1

1 в третьей строке есть у нетерминалов S и B, но первый никогда не бывает вторым в правой части. Оста ётся правило S \rightarrow G_B B, оно также ничего не даёт, т.к. в первой строке ячейка G_B пуста.

	S	Α	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 - b	2, 1		2, 1		2
4 — a					

$$\begin{split} \forall j, A(T_j'[A] &= \varnothing) \\ \text{for } j = 1 \dots n \ \, \backslash \ \, j = 4 \\ \text{for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j - 1 \dots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

j = 4, проход по терминальным правилам:

	S	A	В	G_A	G_B
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 – a	3	3		3	

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{G_A} \mathbf{A} \, | \, G_B B \, | \, a \, | \, b \ & \mathbf{A}
ightarrow a \, | \, \mathbf{SG_A} \ & B
ightarrow b \, | \, SG_B \ & G_B
ightarrow b \ & c$$
лово аbba

$$\forall j, A(T_j'[A] = \varnothing)$$
 for $j=1...n \setminus \setminus j=4$ for $k=j-1...1 \setminus \setminus k=3$ for all $A \to BC \in R \setminus \setminus \setminus \in T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку 4-ой строки для левого нетерминала содержимое ячейки первого нетерминала в строке 3

Подходящие правила: $S \to G_A A$, $A \to S G_A$, однако ячейка G_A в третьей строке пуста. Добавляем содержимое ячейки S в ячейку A в четвёртой строке.

	S	A	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 - b	2, 1		2, 1		2
4 – a	3	3, 2, 1		3	

$$egin{aligned} \mathbf{S} & \to \mathbf{G_A} \mathbf{A} \, | \, G_B B \, | \, a \, | \, b & A &\to a \, | \, SG_A & B &\to b \, | \, SG_B \ G_A &\to a & G_B &\to b &$$
 слово abba

$$\forall j, A(T'_j[A] = \varnothing)$$
 for j=1..n $\setminus j = 4$ for k=j-1..1 $\setminus k = 2$ for all $A \to BC \in R$ $\setminus k = 0$ если второй нетерминал правой части есть в строке 4 с индексом 2 if $k \in T'_j[C]$ then for all $i \in T'_k[B]$ $T'_j[A] = T'_j[A] \cup \{i\}$ $\setminus k = 0$ тогда добавляем в ячейку 4-ой строки для левого нетерминала содержимое ячейки первого нетерминала в строке 2

Подходящее правило: $S \to G_A A$, однако ячейка G_A во второй строке пуста. На этом шаге таблица не меняется.

	S	A	В	G_A	$G_{\rm B}$
1 - a	0	0		0	
2 - b	1		1, 0		1
3 - b	2, 1		2, 1		2
4 — a	3	3, 2, 1		3	

$$S o G_AA\,|\,G_BB\,|\,a\,|\,b$$
 $A o a\,|\,SG_A$ $B o b\,|\,SG_BG_A o a$ Слово авьа

$$\forall j, A(T_j'[A] = \varnothing)$$
 for $j=1..n \ j=4$ for $k=j-1..1 \ k=1$ for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 4 с индексом 1 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку 4 -ой строки для левого нетерминала содержимое ячейки первого нетерминала в строке 1

Подходящее правило опять $S \to G_A A$, и на сей раз нужная ячейка G_A не пуста. То, что теперь $0 \in T_4'[S]$, показывает, что $abba \in L(G)$, поскольку $T_4'[S] = \{i \mid \alpha_{i+1} \dots \alpha_4 \in L_G(S)\}$, где $\alpha_1 \alpha_2 \alpha_3 \alpha_4 = abba$.

	S	A	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 — a	3, 0	3, 2, 1		3	

Язык L обладает префикс-свойством (prefix-free), если $\forall w(w \in L \Rightarrow \forall v(v \neq \varepsilon \Rightarrow wv \notin L)).$

Детерминированные КС-языки

Язык L обладает префикс-свойством (prefix-free), если $\forall w(w \in L \Rightarrow \forall v(v \neq \varepsilon \Rightarrow wv \notin L)).$

Детерминированные языки с префикс-свойством — языки, распознаваемые DPDA с допуском по пустому стеку.

Рассмотрим язык a^+ . Предположим, он распознаётся DPDA с допуском по пустому стеку. Тогда на элементе a стек уже обязательно пуст. А значит, работа DPDA не может быть продолжена, и элемент a не может быть им распознан.

Детерминированные КС-языки

Язык L обладает префикс-свойством (prefix-free), если $\forall w(w \in L \Rightarrow \forall v(v \neq \varepsilon \Rightarrow wv \notin L)).$

Детерминированные языки с префикс-свойством — языки, распознаваемые DPDA с допуском по пустому стеку.

Рассмотрим язык L, $w_1, w_1w_2 \in L$, $w_2 \neq \varepsilon$. Предположим, он распознаётся DPDA с допуском по пустому стеку. Тогда на элементе w_1 стек уже обязательно пуст. А значит, работа DPDA не может быть продолжена, и элемент w_1w_2 не может быть им распознан.

Эндмаркеры

Рассмотрим язык a^+ \$ (алфавит терминалов $\Sigma = \{a, \$\}$). В этом языке ни одно слово не является префиксом другого.

Эндмаркеры

Рассмотрим язык $\{w\$ \mid w \in L\}$ (алфавит терминалов $\Sigma = \Sigma_L \cup \{\$\}, \$ \notin \Sigma_L$). Независимо от L, в этом языке ни одно слово не является префиксом другого.

• Хорошие новости: любой детерминированный КС-язык легко преобразовать в язык, распознаваемый DPDA с допуском по пустому стеку.

Эндмаркеры

Рассмотрим язык $\{w\$ \mid w \in L\}$ (алфавит терминалов $\Sigma = \Sigma_L \cup \{\$\}, \$ \notin \Sigma_L$). Независимо от L, в этом языке ни одно слово не является префиксом другого.

- Хорошие новости: любой детерминированный КС-язык легко преобразовать в язык, распознаваемый DPDA с допуском по пустому стеку.
- Плохие новости: существенно неоднозначные контекстно-свободные языки с префикс-свойством. Стандартный пример: $\{a^nb^nc^md\} \cup \{a^mb^nc^nd\}$.

Языки нередуцируемых префиксов

Определим понятие свёртки — перехода справа налево в правиле переписывания $A \to \alpha$. Что можно сказать о всех возможных префиксах сентенциальных форм, порождаемых грамматикой G, к которым нельзя применить ни одну свёртку?

Языки нередуцируемых префиксов

Определим понятие свёртки — перехода справа налево в правиле переписывания $A \to \alpha$. Что можно сказать о всех возможных префиксах сентенциальных форм, порождаемых грамматикой G, к которым нельзя применить ни одну свёртку?

Такие с.ф. образуют регулярный язык. Идея обоснования: в распознающем их PDA из стека ничего не читается, т.е. PDA учитывает только символы сент. формы и свои состояния.

Описание конструкции

- Отмеченная позиция в правиле: •. В правиле с правой частью $\xi_1 \dots \xi_n$ есть n+1 таких позиций.
- Правило $A \to \alpha \bullet B\beta$ и правило $B \to \bullet \gamma$ одно и то же множество переходов по символу, не приводящих к редукции \Rightarrow в одном состоянии.
- При чтении элемента правой части сдвигаем вправо на позицию.

0	$S' \to \bullet S$ $S \to \bullet (S)$ $S \to \bullet \alpha$
1	S' o S ullet
2	$S \to (\bullet S)$
3	$S \rightarrow a \bullet$

$$S' \to S \quad S \to \alpha \quad S \to (S)$$

0	$S' \to \bullet S$ $S \to \bullet (S)$ $S \to \bullet a$
1	S' o S ullet
2	$S \to (\bullet S)$
	$S \to \bullet(S)$
	$S \rightarrow \bullet a$
3	$S \rightarrow a \bullet$
4	$S \to (S ullet)$

$$S' \to S \quad S \to \alpha \quad S \to (S)$$

0	$S' \to \bullet S$
	$S \to \bullet(S)$
	$S \rightarrow ullet a$
1	$S' \to S ullet$
2	$S \to (\bullet S)$
	$S \to \bullet(S)$
	$S \rightarrow ullet a$
3	$S \rightarrow a \bullet$
4	$S \to (S ullet)$
5	$S \to (S) \bullet$

Типы состояний автомата

- Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

Типы состояний автомата

- Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

 Хранить сами сентенциальные формы плохо проблема с извлечением нескольких подряд символов.

Типы состояний автомата

- Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

- Хранить сами сентенциальные формы плохо проблема с извлечением нескольких подряд символов.
- Логично хранить последовательности последних символов с.ф., которые могут привести к разным свёрткам, закодированными одним символом стека.

Типы состояний автомата

- Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

- Хранить сами сентенциальные формы плохо проблема с извлечением нескольких подряд символов.
- Логично хранить последовательности последних символов с.ф., которые могут привести к разным свёрткам, закодированными одним символом стека.
- А это в точности состояния автомата.

РDA по LR(0)-автомату

Общая конструкция

- При каждом сдвиге кладём в стек номер состояния, в которое приходим в конечном автомате.
- При каждой свёртке извлекаем из стека n символов, где n длина правой части β правила $A \to \beta$, после чего переходим в состояние с номером n+1-ого символа в стеке, подразумевая на ленте символ A.
- Совершаем переход по символу A из полученного состояния (этот шаг мы на графе объединили с предыдущим).

Пример построения PDA

0	$S' \rightarrow \bullet S$	
	$S \to \bullet(S)$	
	$S \rightarrow \bullet a$	
1	$S' \to S ullet$	$S \rightarrow S'$
2	$S \to (\bullet S)$	
	$S \to \bullet(S)$	
	$S \rightarrow ullet a$	
3	S o a ullet	$a \rightarrow S$
4	$S \to (S ullet)$	
5	$S \to (S) \bullet$	$(S) \rightarrow S$

Пример построения PDA

Пример построения PDA

Промежуточный PDA-распознаватель

- Стековые символы, ведущие в состояния свёртки, не являющиеся финальными (у нас это 3 и 5), бесполезны, потому что сразу же безальтернативно извлекаются из стека.
- Распознаватель ещё не может быть использован как парсер, потому что он «читает» нетерминалы с ленты.
 Этого можно избежать, если принять, что нетерминал обязан быть считанным сразу после свёртки, и объединить свёртку (порождение нетерминала) и его считывание в один ε-переход.
- После добавления таких ε-переходов исходные переходы по нетерминалам можно удалять.

Избавление от переходов по нетерминалам

0	$S' \rightarrow \bullet S$	
	$S \to \bullet(S)$	
	$S \rightarrow ullet a$	
1	$S' \to S ullet$	$S \rightarrow S'$
2	$S \to (\bullet S)$	
	$S \to \bullet(S)$	
	$S \rightarrow \bullet a$	
3	S o a ullet	$a \rightarrow S$
4	$S \to (S ullet)$	
5	$S \rightarrow (S) \bullet$	$(S) \rightarrow S$

Избавление от переходов по нетерминалам

Избавление от переходов по нетерминалам

0	$S' \rightarrow \bullet S$	
	$S \to \bullet(S)$	
	$S \rightarrow ullet a$	
1	S' o S ullet	$S \rightarrow S'$
2	$S \to (\bullet S)$	
	$S \to \bullet(S)$	
	$S \rightarrow ullet a$	
3	S o a ullet	$a \rightarrow S$
4	$S \to (S ullet)$	
5	$S \to (S) \bullet$	$(S) \rightarrow S$

Бонус — регулярная аппроксимация

Аппроксимацией исходного языка $(^n a)^n$, построенной по LR(0)-автомату (Pereira–Wright), является язык $(^*a)^*$.

PDA или DPDA?

- Если есть ε-переходы, то нет никаких других.
- Если есть ε-переход, то он единственный из данного состояния.

PDA или DPDA?

- Если есть ε-переходы, то нет никаких других. Если делается свёртка, то нельзя сделать сдвиг.
- Если есть ε-переход, то он единственный из данного состояния. Если делается свёртка одного типа, то нельзя сделать свёртку другого типа.
- Допуск по пустому стеку ⇒ DPDA для языков с префикс-свойством.
- DPDA с допуском по пустому стеку распознают те же языки, что и LR(0)-разбор.
- В конструкции LR(0)-автомата часто навязывается эндмаркер \Rightarrow изначальная грамматика может описывать не LR(0)-язык!

Отказ от эндмаркера и SLR

- Используем ту же конструкцию автомата.
- Разрешим при возможности сделать свёртку вида $\beta \to A$ заглянуть в множество FOLLOW(A), чтобы понять, какую свёртку делать (и делать ли).

Отказ от эндмаркера и SLR

- Используем ту же конструкцию автомата.
- Разрешим при возможности сделать свёртку вида $\beta \to A$ заглянуть в множество FOLLOW(A), чтобы понять, какую свёртку делать (и делать ли).

Здесь есть конфликт свёрток для S' (по $V \to id \bullet$ и $T \to id \bullet$), но $FOLLOW_1(V) \cap FOLLOW_1(T) = \varnothing \Rightarrow$ эта грамматика — SLR(1).

Коллапс линейных парсеров

Теорема

Для всякого языка из класса DCFL существует распознающая его SLR(1)-грамматика.

Теоретический коллапс линейных парсеров

Теорема

Для всякого языка из класса DCFL существует распознающая его SLR(1)-грамматика.

Следует из теоремы:

Для всякого языка из класса DCFL существует распознающая его LR(k)-грамматика.

TR(k)-распознаватели

Грамматика G — LR(k), тогда и только тогда, когда для всех пар сентенциальных форм xy, xy', порождаемых правосторонним разбором, где y, y' $\in \Sigma^+$, таких что xy допускает правую свёртку в префиксе y по правилу ξ_1 , а xy' — свёртку где угодно по правилу ξ_2 , и первые k символов y и y' совпадают, $\xi_1 = \xi_2$.

Грамматика G — LR(k), тогда и только тогда, когда для всех пар сентенциальных форм ху, ху', порождаемых правосторонним разбором, где $y, y' \in \Sigma^+$, таких что xyдопускает правую свёртку в префиксе y по правилу ξ_1 , а xy' — свёртку где угодно по правилу ξ_2 , и первые k символов у и у совпадают, $\xi_1 = \xi_2$.

$$\begin{array}{lll} S' \rightarrow S & S \rightarrow L = R; & S \rightarrow R; \\ L \rightarrow id & L \rightarrow *R & R \rightarrow L \end{array}$$

Поскольку $= \in FOLLOW_1(R)$, возникает конфликт вида сдвиг-свёртка при попытке анализа с.ф. L. Ho lookahead у L, порождённой посредством $S \to L = R$, и посредством $S \to R$; $\to L$;, будет разный.

LR(k)-распознаватели

Грамматика G — LR(k), тогда и только тогда, когда для всех пар сентенциальных форм ху, ху', порождаемых правосторонним разбором, где $y, y' \in \Sigma^+$, таких что xyдопускает правую свёртку в префиксе y по правилу ξ_1 , а xu' — свёртку где угодно по правилу ξ_2 , и первые kсимволов y и y' совпадают, $\xi_1 = \xi_2$.

Любая LR(k)-грамматика по определению гарантирует однозначный разбор при определённой длине lookahead-строки, поэтому ни одна грамматика с неоднозначным разбором не является LR(k) ни для какого значения к.

$LR(k) \rightarrow LR(1)$, Mickunas–Lancaster–Shneider

$$\begin{array}{cccc} S' \rightarrow S & S \rightarrow Abb & S \rightarrow Bbc \\ A \rightarrow \alpha A & A \rightarrow \alpha & B \rightarrow \alpha B \\ & B \rightarrow \alpha & \end{array}$$

He LR(1), из-за свёрток $A \to a$, $B \to a$. Используем трансформацию присоединения правого контекста:

$$\begin{array}{lll} S' \rightarrow S & S \rightarrow [Ab]b & S \rightarrow [Bb]c \\ [Ab] \rightarrow \alpha [Ab] & [Ab] \rightarrow \alpha b & [Bb] \rightarrow \alpha [Bb] \\ & [Bb] \rightarrow \alpha b & \end{array}$$

$\mathsf{LR}(\mathsf{k}) \to \mathsf{LR}(1), \textbf{Mickunas-Lancaster-Shneider}$

$$S' \rightarrow S$$
 $S \rightarrow bSS$ $S \rightarrow a$
 $S \rightarrow aac$

He LR(1), конфликт свёртки на префиксе ba с контекстом a.

Используем трансформацию уточнения правого контекста:

$$\begin{array}{llll} S \rightarrow bS\alpha[\alpha/S] & S \rightarrow bSb[b/S] & S \rightarrow \alpha & S \rightarrow \alpha\alphac \\ [\alpha/S] \rightarrow \epsilon & [\alpha/S] \rightarrow \alphac & [b/S] \rightarrow S\alpha[\alpha/S] & [b/S] \rightarrow Sb[b/S] \end{array}$$

Теперь присоединим правые контексты:

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

Видно, что если язык L распознаётся DPDA (т.е. является LR(1)-языком), то он также является LR(0)-языком, поскольку удовлетворяет префикс-свойству. Действительно, любое слово этого языка содержит единственную букву с, причём она расположена точно в середине слова.

Построим пробную КС-грамматику для языка L:

$$S \rightarrow aSb | aCa | bCb | c$$

$$C \rightarrow aCa|bCb|c$$

Проверим, является ли она LR(0)-грамматикой. Для этого построим LR(0)-автомат и проанализируем его на конфликты.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

```
Пробная грамматика для L: \begin{array}{ccc} S & \to & aSb \mid aCa \mid bCb \mid c \\ C & \to & aCa \mid bCb \mid c \end{array}
```

Начинаем строить LR(0)-автомат. Для этого вводим новое стартовое состояние S' (состояние окончательной свёртки) и начинаем разбор правила $S' \to \bullet S$.

Поскольку отмеченная позиция в правиле находится перед нетерминалом S, добавляем в состояние все ситуации вида $S \to \bullet \alpha$.

Переходы по нетерминалу S и терминалу с ведут к бесконфликтным свёрткам, поэтому малоинтересны. Разберёмся с переходом по $\mathfrak a$.

$$\begin{array}{c} S' \rightarrow \bullet S \\ S \rightarrow \bullet \alpha S b \\ S \rightarrow \bullet \alpha C \alpha \\ S \rightarrow \bullet b C b \\ S \rightarrow \bullet c \end{array}$$

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

```
Пробная грамматика для L:  \begin{array}{ccc} S & \to & aSb \, | \, aCa \, | \, bCb \, | \, c \\ C & \to & aCa \, | \, bCb \, | \, c \end{array}
```

Переходы по нетерминалу S и терминалу с ведут к бесконфликтным свёрткам, поэтому малоинтересны. Разберёмся с переходом по а.

$$\begin{pmatrix} S' \rightarrow \bullet S \\ S \rightarrow \bullet \alpha Sb \\ S \rightarrow \bullet \alpha Ca \\ S \rightarrow \bullet bCb \\ S \rightarrow \bullet c \end{pmatrix} \xrightarrow{\alpha} \begin{pmatrix} S \rightarrow \alpha \bullet Sb \\ S \rightarrow \alpha \bullet Ca \\ S \rightarrow \bullet \alpha Ca \\ S \rightarrow \bullet bCb \\ S \rightarrow \bullet c \\ C \rightarrow \bullet aCa \\ C \rightarrow \bullet bCb \\ C \rightarrow \bullet c \end{pmatrix}$$

Похоже, что есть потенциальный конфликт (даже два) по свёрткам в S и C. Построим конфликтное состояние явно.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

Пробная грамматика для L: $\begin{array}{ccc} S & \to & \alpha Sb \,|\, \alpha C\alpha \,|\, bCb \,|\, c \\ C & \to & \alpha C\alpha \,|\, bCb \,|\, c \end{array}$

Похоже, что есть потенциальный конфликт (даже два) по свёрткам в S и C. Построим конфликтное состояние явно.

$$\begin{pmatrix} S' \rightarrow \bullet S \\ S \rightarrow \bullet \alpha Sb \\ S \rightarrow \bullet \alpha Sb \\ S \rightarrow \bullet \alpha Ca \\ S \rightarrow \bullet bCb \\ S \rightarrow \bullet c \end{pmatrix} \xrightarrow{\alpha} \begin{pmatrix} S \rightarrow \alpha \bullet Sb \\ S \rightarrow \alpha \bullet Ca \\ S \rightarrow \bullet \alpha Ca \\ S \rightarrow \bullet bCb \\ S \rightarrow \bullet c \\ C \rightarrow \bullet \alpha Ca \\ C \rightarrow \bullet bCb \\ C \rightarrow \bullet c \end{pmatrix} \xrightarrow{c} \begin{pmatrix} S \rightarrow c \bullet \\ C \rightarrow c \bullet \end{pmatrix}$$

Присоединим к конфликтующим S и C-нетерминалам их правые контексты.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

```
Пробная грамматика для L:  \begin{array}{ccc} S & \to & aSb \,|\, aCa \,|\, bCb \,|\, c \\ C & \to & aCa \,|\, bCb \,|\, c \end{array}
```

Грамматика для L после присоединения правых контекстов к нетерминалам S и C методом MLS (новые нетерминалы выделены красным):

Можно построить LR(0)-автомат для этой грамматики и убедиться, что он не содержит конфликтов. Значит язык L — детерминированный (более того, LR(0)).

Другой подход к анализу КС-языков

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

Можно сразу попробовать построить DPDA для L. Заметим, что до прочтения буквы с стек обязательно заполняется (иначе потеряется информация либо о структуре палиндрома, либо о количестве букв а в начале слова), причём, поскольку неизвестно, когда именно префикс \mathfrak{a}^n переходит в палиндром, придётся запоминать, какие конкретные буквы были прочитаны: считаем, что символ стека A соответствует \mathfrak{a} , символ B — терминалу \mathfrak{b} .

Для экономии места символ \forall использован в роли параметра, пробегающего значения A, B и Z_0 : на детерминированность это не влияет, поскольку переходы с его участием делаются по разным терминалам.

Другой подход к анализу КС-языков

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

После прочтения буквы с стек только опустошается: структура оставшейся части слова определяется уже прочитанной его частью.

Единственная тонкость — это переход от чтения w^R к чтению b^n . Он происходит, если на вершине стека лежит A, а читается буква b, и это не приводит к неопределённости, поскольку при чтении буквы b из палиндромной части мы обязаны всегда иметь на вершине стека символ b.

Другой подход к анализу КС-языков

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

Добавляем состояние чтения суффикса b^n (в нём на вершине стека должны быть всегда лишь символы A) и финальное состояние. Легко убедиться, что итоговый стековый автомат — DPDA.

Лемма о накачке для DCFL

Teopeма (S. Yu)

Пусть L — DCFL. Тогда существует такая длина накачки p, что для всех пар слов $w, w' \in L$, таких что w = xy & w' = xz, |x| > p и первые буквы y, z совпадают, выполнено одно из двух:

- существует накачка только префикса х (в привычном смысле);
- $oldsymbol{2}$ существует разбиение $x=x_1x_2x_3,\,y=y_1y_2y_3,$ $z=z_1z_2z_3$ такое, что $|x_2x_3|\leqslant p,\,|x_2|>0,\,\mu$ $orall i(x_1x_2^ix_3y_1y_2^iy_3\in L\ \&\ x_1x_2^ix_3z_1z_2^iz_3\in L).$

Лемма о накачке для DCFL

Теорема (S. Yu)

Пусть L — DCFL. Тогда существует такая длина накачки p, что для всех пар слов $w, w' \in L$, таких что w = xy & w' = xz, |x| > p и первые буквы y, z совпадают, выполнено одно из двух:

- существует накачка только префикса х (в привычном смысле);
- $oldsymbol{\circ}$ существует разбиение $\mathbf{x}=\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3,\,\mathbf{y}=\mathbf{y}_1\mathbf{y}_2\mathbf{y}_3,$ $z=z_1z_2z_3$ такое, что $|\mathbf{x}_2\mathbf{x}_3|\leqslant \mathbf{p},\,|\mathbf{x}_2|>0$, и $\forall \mathbf{i}(\mathbf{x}_1\mathbf{x}_2^\mathbf{i}\mathbf{x}_3\mathbf{y}_1\mathbf{y}_2^\mathbf{i}\mathbf{y}_3\in \mathbf{L}\ \&\ \mathbf{x}_1\mathbf{x}_2^\mathbf{i}\mathbf{x}_3\mathbf{z}_1\mathbf{z}_2^\mathbf{i}\mathbf{z}_3\in \mathbf{L}).$

Рассмотрим язык $\{a^nb^n\}\cup\{a^nb^{2n}\}$, положим $x=a^nb^{n-1}$, $y=b, z=b^{2n-1}$, где n-1>p. Тогда в случае 2 придётся накачивать в x только b, а в случае 1 нет подходящей накачки.

Замыкания DCFL

- Замкнуты относительно дополнения (смена конечных состояний в DPDA).
- Замкнуты относительно пересечения с регулярным языком.
- Не замкнуты относительно объединения (см. $\{a^nb^n\}\cup\{a^nb^{2n}\}$).
- Не замкнуты относительно пересечения.

Замыкания DCFL

- Замкнуты относительно дополнения (смена конечных состояний в DPDA).
- Замкнуты относительно пересечения с регулярным языком.
- Не замкнуты относительно объединения (см. $\{a^nb^n\}\cup\{a^nb^{2n}\}$).
- Не замкнуты относительно пересечения.
- Не замкнуты относительно гомоморфизмов. См. $\{ca^nb^n\} \cup \{a^nb^{2n}\}.$
- Не замкнуты относительно конкатенации. См. $L_1 = \{c\alpha^nb^n\} \cup \{\alpha^nb^{2n}\}, \ L_2 = c^*.$

Метод подмены vs накачка для DCFL

- Так же, как и в лемме о накачке для DCFL, нужно подобрать два слова ху, хz с длинными одинаковыми префиксами и различными суффиксами у, z, принадлежащие языку L.
- В лемме о накачке суффиксы у и z должны иметь существенно разное происхождение с точки зрения их распознавания PDA (разное поведение стека на префиксе x в слове xy и в слове xz), а в методе подмены часто достаточно, если стек на x только накапливается, а на у и z читается по-разному.
- В обоих случаях х лучше выбирать так, чтобы от поведения стека на нём максимально сильно зависел успех распознавания суффиксов ц и z.

Метод подмены vs накачка для DCFL

Исследовать LL(k)-свойства уже известного нам DCFL $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

• Подберём два слова с одинаковым поведением стека до буквы с и разными суффиксами. Проще всего это сделать, если положить, что до с встречаются только буквы а. Тогда $xz=a^{n+k}ca^{n+k}$, $yz=a^{n+k}cb^{n+k}$, где n так велико, что после прочтения префикса $x=a^n$ в стеке точно есть минимум k+3 символа, где k — предполагаемый lookahead.

Метод подмены vs накачка для DCFL

Исследовать LL(k)-свойства уже известного нам DCFL $L = \{a^n w c w^R b^n \mid w \in \{a, b\}^*\}.$

- $xz = a^{n+k}ca^{n+k}$, $yz = a^{n+k}cb^{n+k}$, где n так велико, что после прочтения префикса $x = a^n$ в стеке точно есть минимум k+3 символа, где k предполагаемый lookahead.
- Пусть последний символ стека после чтения $\alpha^n T_z$. В слове $\alpha^{n+k}c\alpha^{n+k}$ при чтении символа T_z анализатору будет видно $k_1 \leqslant k$ букв α (если $k_1 < k$, то за ними будет конец слова), и начиная с этого состояния анализатор распознает суффикс α^i , $i \geqslant k_1$. В слове $\alpha^{n+k}cb^{n+k}$ при чтении символа T_z анализатор увидит $k_2 \leqslant k$ букв b и распознает суффикс b^j , $j \geqslant k_2$.
- Если заменить в слове $a^{n+k}cb^{n+k}$ суффикс b^j на a^i , то анализатор прочитает T_z с lookahead'ом, равным a^{k_1} . Ситуация ничем не будет отличаться от той, где он видел a^{k_1} букв в суффиксе слова $a^{n+k}ca^{n+k}$, и анализатор определит, что слово $a^{n+k}cb^{n+k-j}a^i \in L$, что неверно. Значит, L не LL(k).

Если PDA $\mathscr A$ допускает декомпозицию на DPDA, между которыми есть максимум k недетерминированных переходов, но не допускает такую декомпозицию при i < k переходов, скажем, что $\mathscr A$ задаёт КС-язык с k-недетерминированностью.

Если PDA $\mathscr A$ допускает декомпозицию на DPDA, между которыми есть максимум k недетерминированных переходов, но не допускает такую декомпозицию при i < k переходов, скажем, что $\mathscr A$ задаёт КС-язык с k-недетерминированностью.

 $oldsymbol{0}$ Степень недетерминированности языка $\{a^nb^n\}\cup\{a^nb^{2n}\}$?

Если PDA $\mathscr A$ допускает декомпозицию на DPDA, между которыми есть максимум k недетерминированных переходов, но не допускает такую декомпозицию при i < k переходов, скажем, что $\mathscr A$ задаёт КС-язык с k-недетерминированностью.

- **①** Степень недетерминированности языка $\{a^nb^n\} \cup \{a^nb^{2n}\}$? Ответ: 1
- **②** Степень недетерминированности языка $\{a^nb^n\} \cup ... \cup \{a^nb^{k*n}\}$?

Если PDA $\mathscr A$ допускает декомпозицию на DPDA, между которыми есть максимум k недетерминированных переходов, но не допускает такую декомпозицию при i < k переходов, скажем, что $\mathscr A$ задаёт КС-язык с k-недетерминированностью.

- Степень недетерминированности языка $\{a^nb^n\} \cup \{a^nb^{2n}\}$? Ответ: 1
- ② Степень недетерминированности языка $\{a^nb^n\}\cup...\cup\{a^nb^{k*n}\}$? Ответ: тоже 1 (см. критерий исправляемости)
- **3** Степень недетерминированности языка $\{ww^R\}$ также 1.
- **①** Степень недетерминированности языка $\{ww^Rvv^R\}$ равна 2.

Исправление недетерминированности

Пусть L — недетерминированный КС-язык и k>0. Язык L — k-исправляемый, если существует алфавит Δ , $\Delta\cap\Sigma=\emptyset$ и DCFL $L(k)\subseteq (\Sigma\cup\Delta)^*$ такой, что для $h(\Delta)=\varepsilon$, h(L(k))=L и все слова языка L(k) содержат не больше k букв из Δ .

Язык L имеет k-ую степень недетерминизма \Leftrightarrow L k-исправляемый, но не k-1-исправляемый.

Исправляемость и анализ на DCFL

Техника использования леммы о накач<u>ке для DCFL</u>

- анализируем позиции в словах языка L, в которых может произойти смена наполнения стека на его опустошение, а может не произойти. Такие позиции считаем подозрительными на исправляемость.
- подбираем два слова из L, xyz_1 , xyz_2 такие, что исправляемая позиция находится в подслове у, причём в подслове у слова xyz_1 происходит наполнение стека, а в слове xyz_2 стек опустошается либо игнорируется.
- убеждаемся, что отдельно х накачать нельзя, после чего рассматриваем накачки у z_1 и у z_2 . Из-за разного поведения стека на их префиксах, скорее всего, эти накачки будут выводить из языка L.

Проанализировать контекстно-свободный язык $L = \{wa^nc^nw^R | w \in \{a, b\}^*\}.$

- В словах языка есть произвольные подслова из $\{a, b\}^*$, что усложняет анализ. К тому же есть блок c^n , который на первый взгляд однозначно указывает на детерминизм, однако нет условия $n \ge 1$, поэтому в некоторых случаях на его существование нельзя положиться. Воспользуемся замкнутостью DCFL относительно пересечений с регулярными языками, избавимся от c^n и сузим область накачек.
- Простейший язык, с которым мы можем пересечь L для этой цели: $a^*b^*a^*$, после чего взять $xy = a^m$, $z_1 = a^{n_1}$, $z_2 = a^{n_2}b^{2*n_3}a^{m+n_2}$.

Проанализировать контекстно-свободный язык $L = \{wa^nc^nw^R \mid w \in \{a, b\}^*\}.$

- Нужно избавиться от подслова с буквами с и сузить область накачек.
- Простейший язык, с которым мы можем пересечь L для этой цели: $a^*b^*a^*$, после чего взять $xy = a^m$, $z_1 = a^{n_1}$, $z_2 = a^{n_2}b^{2*n_3}a^{m+n_2}$.
- Хотя поведение стека на этих фрагментах слов соответствует рекомендуемому, анализ ни к чему не приводит: мы без проблем можем накачивать в этих словах одновременно суффикс послова ху и элементы z₁ и z₂, а всё потому, что слова в языке а*, являющиеся палиндромами, описываются регулярными выражениями. Искомое пересечение языков неудачное, выберем то, которое чётче обозначит нерегулярную структуру палиндрома.

Проанализировать контекстно-свободный язык $L = \{wa^n c^n w^R \mid w \in \{a, b\}^*\}.$

- Рассмотрим пересечение L с языком а*b*a*b*a*. В нём уже будут два типа палиндромов, не распознаваемые регулярками (с одним или двумя подсловами, состоящими из букв b).
- Абеляр (т.е. антагонист) выбирает длину накачки р.
- ullet Элоиза (т.е. мы) выбирает слова $a^{p+1}ba^{p+1}$ и $a^{p+1}ba^{p+1}a^{p+1}ba^{p+1}$ и $xy=a^{p+1}ba^p, z_1=a, z_2=a^{p+2}ba^{p+1}.$
- Абеляр не может накачивать только $a^{p+1}ba^p$: при накачке только второго a^p произойдёт рассинхронизация с суффиксом z_1 , а при любой накачке с участием первого a^{p+1} рассинхронизация с суффиксом z_2 .
- Значит, Абеляру остаётся только накачивать подслово суффикса \mathfrak{a}^p синхронно с подсловом z_1 (т.е. \mathfrak{a}) (и некоторым подсловом z_2 , но это уже не важно), что также приводит к выходу из языка палиндромов.

Проанализировать контекстно-свободный язык $L = \{wa^nc^nw^R | w \in \{a, b\}^*\}.$

- Рассмотрим пересечение L с языком $a^*b^*a^*b^*a^*$.
- Абеляр (т.е. антагонист) выбирает длину накачки р.
- ullet Элоиза (т.е. мы) выбирает слова $a^{p+1}ba^{p+1}$ и $a^{p+1}ba^{p+1}a^{p+1}ba^{p+1}$ и $xy=a^{p+1}ba^p, z_1=a, z_2=a^{p+2}ba^{p+1}.$
- Абеляр не может накачивать только $a^{p+1}ba^p$: при накачке только второго a^p произойдёт рассинхронизация с суффиксом z_1 , а при любой накачке с участием первого a^{p+1} рассинхронизация с суффиксом z_2 .
- Значит, Абеляру остаётся только накачивать подслово суффикса a^p синхронно с подсловом z_1 (т.е. a) (и некоторым подсловом z_2 , но это уже не важно), что также приводит к выходу из языка палиндромов.
- Заметим, что если взять слова a^pba^p и $a^pba^pa^pba^p$ и $xy=a^pba^{p-1}$, тогда синхронную накачку придумать можно: накачивать в xy букву b (она ещё в пределах длины накачки), в z_2 её же, а в z_1 ничего.
- Мы показали, что язык пересечения NCFL, значит, язык L NCFL.

Иерархия недетерминированных КСязыков

Семейство языков $w_1w_1^R\$\dots w_kw_k^R\$$ ($\$\notin\Sigma$) задаёт бесконечную иерархию недетерминированных языков с k-недетерминизмом.

Иерархия недетерминированных КСязыков

Семейство языков $w_1w_1^R\$\dots w_kw_k^R\$$ ($\$\notin\Sigma$) задаёт бесконечную иерархию недетерминированных языков с k-недетерминизмом.

 Введение вложенных структур с совпадающими маркерами начала и конца приводит к неограниченному недетерминизму.

Иерархия Хомского revisited

Утверждения ниже касаются только языков (не грамматик)!

- RegL ⊂ CFL;
- $RegL \subset DCFL$;
- DCFL \subset CFL;
- RegL ⊂ LL(1);
- LR(0) не сравним с RegL;
- LR(0) не сравним с LL(k);
- $LL(k) \subset LL(k+1)$;
- $LL(k) \subset LR(1)$;
- LR(k) = SLR(1) = DCFL.

