Deep learning

Hung-Hsuan Chen

Biological neural network vs artificial neural network (ANN)

A <u>synapse</u> is a structure that permits a <u>neuron</u> to pass an electrical or chemical signal to another neuron.

A: human neuron

B: artificial neuron

C: biological

synapse

D: ANN synapse

Simple ANN vs deep learning

- Simple neural network is also called single layer neural network
 - Single layer -> single hidden layer

Why deep learning?

Deep learning and big data

- Small model: tend to have high bias
- Deep learning (large model) and small data: tend to have high variance
- Deep learning (large model) and big data: small bias and small variance
 - Computation cost is an issue

Learning representations

- Deep learning is part of a broader family of machine learning methods based on <u>learning</u> <u>data representations</u>
- E.g., in CV, traditionally handcraft features (e.g., SIFT, HOG, etc.) are used as the features, but in deep learning, "raw pixels" used as the features

6

An example of learning data representation

Deep neural networks learn hierarchical feature representations

Computation of a neuron

- Function: $O = f(\mathbf{x}^{(m)}) = \sigma(\mathbf{w}^T \mathbf{x}^{(m)})$
 - We ignore the bias term
 - $-\sigma$: a non-linear activation function

• E.g.,
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to find **w** such that the loss is minimized?
 - (Stochastic) gradient descent
 - Logistic regression

Review: gradient of the logistic function

Lemma

If
$$f(z) = \frac{1}{1 + \exp(-z)}$$
, then $f'(z) = f(z)(1 - f(z))$

Proof

$$f'(z) = -\left(\frac{1}{1 + exp(-z)}\right)^{2} (-\exp(-z))$$

$$= \frac{1 + \exp(-z) - 1}{(1 + \exp(-z))^{2}} = \frac{1}{1 + \exp(-z)} \left(1 - \frac{1}{(1 + \exp(-z))}\right)$$

$$= f(z)(1 - f(z))$$

Review: logistic regression model training (by SGD)

Predicting function (ignore the bias term)

$$\hat{y}^{(m)} = f(\mathbf{x}^{(m)}) = \sigma(\mathbf{w}^T \mathbf{x}^{(m)})$$

• Loss for the mth instance:

$$loss := -y^{(m)} \log \hat{y}^{(m)} - (1 - y^{(m)}) \log(1 - \hat{y}^{(m)})$$

Weight update rule

$$w_i \leftarrow w_i - \eta \frac{\partial loss}{\partial w_i}$$

12/8/20 10

Review: gradient of logistic regression

$$\frac{\partial loss}{\partial w_{i}} = \frac{\partial - y^{(m)} \log \left(\sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})\right)}{\partial \log \left(\sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})\right)} \cdot \frac{\partial \log \left(\sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})\right)}{\partial \sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})} \cdot \frac{\partial \sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})}{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}} \cdot \frac{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}}{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}} \cdot \frac{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}}{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}} \cdot \frac{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}}{\partial \mathbf{w}^{T} \mathbf{x}^{(m)}} \cdot \frac{\partial (1 - \sigma(\mathbf{w}^{T} \mathbf{x}^{(m)}))}{\partial \sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})} \cdot \frac{\partial \sigma(\mathbf{w}^{T} \mathbf{x}^{(m)})}{\partial \sigma(\mathbf{w}^{T} \mathbf{x}^{(m$$

Feedforward neural network

$$\boldsymbol{o}^{(\ell)} = \begin{bmatrix} o_1^{(\ell)} & \dots & o_I^{(\ell)} \end{bmatrix}^T$$

$$\boldsymbol{W}^{(\ell)} = \begin{bmatrix} w_{11}^{(\ell)} & \cdots & w_{1J}^{(\ell)} \\ \vdots & \ddots & \vdots \\ w_{I1}^{(\ell)} & \cdots & w_{IJ}^{(\ell)} \end{bmatrix}$$

$$\mathbf{O}^{(2)} = \begin{bmatrix} O_1^{(2)} \end{bmatrix}^T$$

$$\mathbf{W}^{(2)} = \begin{bmatrix} w_{11}^{(2)} & w_{12}^{(2)} & w_{13}^{(2)} \end{bmatrix}$$

$$\boldsymbol{o}^{(1)} = \begin{bmatrix} o_1^{(1)} & o_2^{(1)} & o_3^{(1)} \end{bmatrix}^T$$

$$\boldsymbol{W}^{(1)} = \begin{bmatrix} w_{11}^{(1)} & \cdots & w_{14}^{(1)} \\ \vdots & \ddots & \vdots \\ w_{31}^{(1)} & \cdots & w_{34}^{(1)} \end{bmatrix}$$

The initial weights ($W^{(1)}$ and $W^{(2)}$) are randomly assigned

Forward (predict)

- Forward (predict)
 - $I^{(1)} = W^{(1)}x$
 - $o^{(1)} = \sigma(I^{(1)})$
 - $I^{(2)} = W^{(2)}O^{(1)}$
 - $\mathbf{0}^{(2)} = \sigma(\mathbf{I}^{(2)})$
- Initial weights $w_{ij}^{(\ell)}$: randomly assign
 - E.g., $w_{ij}^{(\ell)} \leftarrow N(0,1)$

Forward: predict $f(x^{(m)})$ based on current weights

Forward example

Input feature and target

•
$$x = [1 \quad -1 \quad 3 \quad -2]^T, y = 1$$

• Initial weights (random assign)

•
$$W^{(2)} = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}$$

•
$$\mathbf{W}^{(1)} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0.5 & -1 \\ -1 & -1 & 0 & 0.5 \end{bmatrix}$$

Forward

•
$$I^{(1)} = W^{(1)}x = [4 \ 0.5 \ 1]^T$$

•
$$\mathbf{O}^{(1)} = \sigma(\mathbf{I}^{(1)}) = [0.98 \ 0.62 \ 0.73]^T$$

•
$$I^{(2)} = W^{(2)}O^{(1)} = [-1.09]$$

•
$$\mathbf{0}^{(2)} = \sigma(\mathbf{I}^{(2)}) = [0.25]$$

Back-propagation

Slides are taken from Prof. Fei-Fei Li

12/8/20 15

Computational graph

•
$$f(x, y, z) = (x + y)z$$

- E.g., $x = -2, y = 5, z = -4$

$$x: -2$$

$$\frac{\partial q}{\partial x} = 1$$

$$y: 5$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \times \frac{\partial q}{\partial x} = (-4) \times 1 = -4$$

$$\frac{\partial f}{\partial z} = 3$$

$$\frac{\partial f}{\partial z} = 3$$

$$\frac{\partial f}{\partial z} = 3$$

Local gradient and chain rule

- Given f(x, y) = z and the global loss is L
 - 1. Compute local gradients $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
 - 2. The value of $\frac{\partial L}{\partial z}$ is computed by other components in the computational graph
 - 3. Based on chain rule, we can get $\frac{\partial L}{\partial x}$ and $\frac{\partial L}{\partial y}$ by $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \times \frac{\partial z}{\partial x}$, and $\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \times \frac{\partial z}{\partial y}$

Compute local gradient for every operator and apply chain rule

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$
 Observing $(x_1, x_2, y) = (-1, -2, 1)$

Now we've get
$$\frac{\partial L}{\partial w_0}$$
, $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial w_2}$

Gradient descent:
$$\mathbb{Q}_{\mathbf{w}}^{(k+1)} = \mathbb{Q}^{(k)} - \eta \frac{\partial L}{\partial \mathbb{Q}^{(k)}}$$

If we set $\eta = 0.001$:

$$\begin{bmatrix} \dot{w}_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -3 \end{bmatrix} - 0.001 \begin{bmatrix} -0.27 \\ 0.27 \\ 0.54 \end{bmatrix} = \begin{bmatrix} -2.9973 \\ 1.9973 \\ -3.00054 \end{bmatrix}$$

Compare the old w and new w:

$$f(w_0 = -3, w_1 = 2, w_2 = -3, x) = 0.7311$$

 $f(w_0 = -2.9973, w_1 = 1.9973, w_2 = -3.00054, x) = 0.7323$, indeed getting closer to 1

12/8/20

29

Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

sigmoid gate:
$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$
 $\sigma(z)(1 - \sigma(z))$
 $\sigma(z)(1 - \sigma(z))$

30 : { 0 it 27 w

$$\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y} = \frac{\partial x}{\partial y}$$

Gradients add at branches

$$g_{12} = \sigma(g_{11})$$

$$\frac{\partial g_{12}}{\partial g_{11}} = \sigma(g_{11}) (1 - \sigma(g_{11}))$$

$$= (0.47)(0.53) = 0.2491$$

$$\frac{\partial L}{\partial g_{11}} = \frac{\partial L}{\partial g_{12}} \times \frac{\partial g_{12}}{\partial g_{11}}$$

$$= -2.128 \times 0.2491 = -0.53$$

37

38

- Use original $w^{(1)}, w^{(2)}$:
 - $\hat{y} = 0.4711$
- Use the new $w^{(1)}$, $w^{(2)}$ computed by gradient descent ($\eta=0.001$)

•
$$\mathbf{w}^{(\ell)} = \mathbf{w}^{(\ell)} - \eta \nabla_{\mathbf{w}^{(\ell)}} L$$

- $\hat{y} = 0.4714$
- The new \hat{y} indeed closer to 1

ple y 1 $w_{11}^{(2)}$ $w_{12}^{(2)}$ $w_{11}^{(2)}$ $w_{11}^{(1)}$ $w_{22}^{(1)}$ $w_{22}^{(1)}$ x_1 x_2 x_2

Back-prop update

Back-prop

•
$$\frac{\partial loss}{\partial I^{(2)}} = \frac{\partial loss}{\partial O^{(2)}} \frac{\partial O^{(2)}}{\partial I^{(2)}}$$

•
$$\frac{\partial loss}{\partial W^{(2)}} = \frac{\partial loss}{\partial I^{(2)}} \frac{\partial I^{(2)}}{\partial W^{(2)}}$$

•
$$\frac{\partial loss}{\partial I^{(1)}} = \frac{\partial loss}{\partial I^{(2)}} \frac{\partial I^{(2)}}{\partial O^{(1)}} \frac{\partial O^{(1)}}{\partial I^{(1)}}$$

$$\frac{\partial loss}{\partial W^{(1)}} = \frac{\partial loss}{\partial I^{(1)}} \frac{\partial I^{(1)}}{\partial W^{(1)}}$$

Red: computed in higher layers
Blue: depends on the activation function
Green: depends on the loss function

Back-prop: adjust weights to minimize error

•
$$I^{(1)} = W^{(1)}x$$

• $O^{(1)} = \sigma(I^{(1)})$
• $I^{(2)} = W^{(2)}O^{(1)}$
• $O^{(2)} = \sigma(I^{(2)})$

Weight updates

- Update $W^{(\ell)}$ by (stochastic) gradient descent
 - Compute $\frac{\partial loss}{\partial \mathbf{W}^{(\ell)}}$ for all $\mathbf{W}^{(\ell)}$

•
$$\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)} - \eta \frac{\partial loss}{\partial \mathbf{W}^{(\ell)}}$$

Loss functions

- K-nary multi-class classification: cross entropy loss
 - $Loss = -\sum_{k=1}^{K} I(y_k = 1) \log \hat{y}$
 - Example: 3 classes

$$p(\hat{y}_i = k) = [1/4 \quad 1/4 \quad 1/2]$$

$$p(y_i = k) = [0 \ 1 \ 0]$$

- When $K = 2 \Rightarrow$ back to binary classification $(y \in \{0,1\})$
 - $Loss = -y \log \hat{y} (1 y) \log(1 \hat{y})$
- Regression

•
$$Loss = \frac{1}{2}(y - \hat{y})^2$$

- Multi-label classification (assuming L possible labels $(\ell_1, ..., \ell_L)$ for each instance)
 - Loss = $\sum_{i=1}^{L} \left(-\ell_i \log \hat{\ell}_i (1 \ell_i) \log (1 \hat{\ell}_i) \right)$

Common activation functions

• Logistic (sigmoid) function

•
$$f(z) = \frac{1}{1 + \exp(-z)}$$

• Hyperbolic (tanh) function

•
$$f(z) = \frac{2}{1 + \exp(-2z)} - 1$$

- Rectified Linear Unit (ReLU)
 - $f(z) = \max(0, z)$
- Soft-plus
 - $f(z) = \log(1 + \exp(z))$

Leaky ReLU

•
$$f(z) = \begin{cases} z & \text{if } z \ge 0 \\ \alpha z & \text{if } z < 0 \end{cases}$$

• α is small and positive (e.g., 0.01)

Activation function for the output layer

- For the final layer, select the activation function based on the type of your task
 - Regression: return one value based on linear activation function
 - f(z) = z
 - K-ary multi-class classification: return a vector based on softmax function

•
$$f(\mathbf{z}) = \left[\frac{e^{z_1}}{\sum_j e^{z_j}}, \frac{e^{z_2}}{\sum_j e^{z_j}}, \dots, \frac{e^{z_K}}{\sum_j e^{z_j}}\right]$$

• $Sum(f(\mathbf{z})) = 1$

Multi-label classification: return a vector based on sigmoid function

•
$$f(\mathbf{z}) = \left[\frac{1}{1 + \exp(-z_1)}, \frac{1}{1 + \exp(-z_2)}, \dots, \frac{1}{1 + \exp(-z_K)}\right]$$

• $\operatorname{Sum}(f(\mathbf{z})) \neq 1$

Why non-linear activation function?

 If no (non-linear) activation function, multilayer reduces to single layer

ReLU: "default" activation function for the hidden layers

- Vanishing gradient problem in sigmoid and tanh
 - When z is outside [-4,4], $f'_{sigmoid}(z) \approx 0$ and $f'_{tanh}(z) \approx 0$ → new information cannot be back-propagated
- ReLU's sparse neuron outputs may prevent overfitting
 - When z < 0, $f_{ReLU}(z) = 0$ → many neuron outputs are zero → model becomes smaller
- ReLU's computation cost is small
 - No exponential computation
- ReLU's may resemble biological neurons
 - Firing rate > 0 only when input current is large enough (see the figure)

12/8/20

Vanishing gradient of sigmoid function

12/8/20

49

Derivative of activation functions

- Logistic (sigmoid) function
 - f'(z) = f(z)(1 f(z))
- Hyperbolic (tanh) function
 - $f'^{(z)} = 1 (f(z))^2$
- Rectified Linear Unit (ReLU)

•
$$f(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{else} \end{cases}$$

• Soft-plus

$$f'(z) = \frac{1}{1 + \exp(-z)}$$

Leaky ReLU

•
$$f'(z) = \begin{cases} 1 \text{ if } z \ge 0 \\ \alpha \text{ if } z < 0 \end{cases}$$

• α is small and positive (e.g., 0.01)

Example: write your own activation operation

 Define autograd function (in PyTorch) by writing forward and backward for Tensors

 You may define your customized activation functions

```
class ReLU(torch.autograd.Function):
    def forward(self, x):
        self.save_for_backward(x)
        return x.clamp(min=0)

def backward(self, grad_y):
        x, = self.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input</pre>
```

- PyTorch performs chain rules for you if all operators on the graph are well-defined:
 - loss.backward()

12/8/20

Nonlinearities via Layers

Marianas Labs

Carnegie Mellon University

Learning representations

Popular deep learning framework

- Most popular
 - Tensorflow (Keras), PyTorch
- Others
 - MXNet, Caffe and Caffe2, Theano, Torch

Other successful deep learning architecture

- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)

Conclusion

- Supervised DNN is composed by many hidden layers
 - Learning representations
 - Interaction between features to form highdimensional features
 - Non-linearity property
- Training a supervised DNN is based on SGD
 - View few (e.g., 32) instances in on batch
 - Chain rule and backpropagation are the tricks to perform derivative