

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления	-
КАФЕДРА	Системы обработки информации и управления (ИУ 5)	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

HA TEMV:

HAILINS.							
Прогнозирование рака молочной железы							
<u> </u>							
СтудентИУ5-63Б		С. А. Некрасов					
(Группа)	(Подпись, дата)	(И.О.Фамилия)					
Руководитель		Ю. Е. Гапанюк					
Туководитель	(Подпись, дата)	(И.О.Фамилия)					
T 0							
Консультант	(Потичест)	(H O Фолит-)					
	(Подпись, дата)	(И.О.Фамилия)					

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТ	УТВЕРЖДАЮ			
	Заведующий кафедрой(Индекс)				
		(И.О.Фамилия)			
	«»	(И.О.Фамилия) >Г.			
ЗАДАІ на выполнение научно-исс	ледовательской ра				
по темеПрогнозирование рака молочной	и́ железы				
Студент группы _ИУ5-63Б					
Некрасов Сергей Андреевич (Фамилия, имя					
Направленность НИР (учебная, исследовательскаучебная	ая, практическая, пр	оизводственная, др.)			
Источник тематики (кафедра, предприятие, НИР))кафедра_				
График выполнения НИР: 25% к нед., 50%	» кнед., 75% к	нед., 100% кнед.			
Техническое задание решить задачу бин дисциплины по выбранной предметной области_		-			
Оформление научно-исследовательской работ	ы:				
Расчетно-пояснительная записка на 31 листе фор Перечень графического (иллюстративного) матер		каты, слайды и т.п.)			
Дата выдачи задания « _15_ »февраля2023	3 г.				
Руководитель НИР		Ю. Е. Гапанюк			
Студент	(Подпись, дата)	(И.О.Фамилия) C. А. Некрасов (И.О.Фамилия)			

 $\underline{\Pi}$ римечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре

Оглавление

Введение
Задание 3
Описание датасета4
Импорт библиотек4
Загрузка данных4
Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных5
Построение графиков для понимания структуры данных6
Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения18
Выбор метрик для последующей оценки качества моделей
Сохранение и визуализация метрик
Выбор наиболее подходящих моделей для решения задачиклассификации или регрессии
Формирование обучающей и тестовой выборок на основеисходного набора данных
Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс- валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы
Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей скачеством baseline-моделей
Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпараметров на качество моделей и т.д
3аключение
Список использованных источников информации

Введение

В данном курсовом проекте предстоит выполнить типовую задачу машинного обучения - провести анализ данных, провести некоторые операции с датасетом, подобрать модели, а также подобрать наиболее подходящие гиперпараметры выбранных моделей. Машинное обучение очень актуально в современном мире, оно используется практически во многих сферах. Программист должен подбирать подходящие технологии машинного обучения для достижения наилучших результатов. Чему мы и научимся в этом курсовом проекте. Попробуем не менее пяти видов различных моделей и подберем наилучшую из них на основе выбранных метрик. Также построим вспомогательные графики, которые помогут нам визуально взглянуть на все необходимые показатели.

Задание

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Описание датасета

Ссылка на датасет: https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset

- 1. id: уникальный идентификатор.
- 2. diagnosis: M злокачественная B доброкачественная (целевой признак).
- 3. radius mean: радиус долей.
- 4. texture mean: среднее значение текстуры поверхности.
- 5. perimeter mean: внешний периметр долей.
- 6. area mean: средняя площадь долей.
- 7. smoothness mean: среднее значение уровней гладкости.
- 8. compactness mean: среднее значение компактности.
- 9. concavity mean: среднее значение вогнутости.
- 10. concave points mean: среднее значение вогнутых точек.
- 11. symmetry mean: среднее значение симметрии.
- 12. fractal dimension mean: среднее значение фрактальной размерности.

Использовать будем только вышеперечисленные столбцы.

Импорт библиотек

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import random
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.metrics import accuracy_score, balanced_accuracy_score
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.preprocessing import LabelEncoder
%matplotlib inline
sns.set(style="ticks")
import warnings
warnings.filterwarnings('ignore')
```

Загрузка данных

```
In [87]: #first_data = pd.read_csv('healthcare-dataset-stroke-data.csv')
first_data = pd.read_csv('datasets/breast-cancer.csv')

In [88]: # Удалим дубликаты записей, если они присутствуют
data = first_data.drop_duplicates()
# Также удалим ненужный столбеи-идентификатор
data = data.drop(columns=['id'], axis=1)
# Оставим только медианные значения
data = data.loc[:, 'diagnosis':'fractal_dimension_mean']
```

Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

In [89]:	data.head()									
Out[89]:	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_mean
	0 M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419
	1 M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812
	2 M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069
	3 M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
	4 M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809
	4									•
In [90]:	data.shape									
Out[90]:	(569 11)									
[].	(505, 11)									
	# Список кол data.column									
Out[91]:	<pre>I]: Index(['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',</pre>									
	# <i>Cnucoк кол</i> data.dtypes	понок с типа	ми данных							
Out[92]: (object							
	radius_mean texture mear	า	float64 float64							
	perimeter_me		float64							
	area_mean		float64							
	smoothness_n		float64							
	compactness_ concavity me		float64 float64							
	concavity_me		float64							
	symmetry mea		float64							
	fractal dime		float64							
(dtype: objec	ct								
	# Проверим н data.isnull(ых значений							
Out[93]: (diagnosis		0							
	radius mean		0							
t	texture_mear	า	0							
	perimeter_me	ean	0							
	area_mean		0							
	smoothness_n		0 0							
	compactness_ concavity me		0							
	concavity_me		0							
	symmetry mea		Ø							
1	fractal_dime	ension_mean	0							
(dtype: int64	4								

Построение графиков для понимания структуры данных

In [94]: # Парные диаграммы sns.pairplot(data)

Out[94]: <seaborn.axisgrid.PairGrid at 0x7f8fc85e1f70>

Out[95]: <seaborn.axisgrid.PairGrid at 0x7f8fcba43970>


```
In [96]: # Убедимся, что целевой признак
              # для задачи бинарной классификации содержит только 0 и 1 data['diagnosis'].unique()
    Out[96]: array(['M', 'B'], dtype=object)
    In [97]: diagnosis = LabelEncoder()
              code_diagnosis = diagnosis.fit_transform(data["diagnosis"])
data["diagnosis"] = code_diagnosis
               data = data.astype({"diagnosis":"int64"})
              np.unique(code_diagnosis)
    Out[97]: array([0, 1])
    In [98]: data['diagnosis'].unique()
    Out[98]: array([1, 0])
 In [99]: # Оценим дисбаланс классов для stroke
            fig, ax = plt.subplots(figsize=(2,2))
            plt.hist(data['diagnosis'])
            plt.show()
             300
             200
             100
                 0.0
In [100]: data['diagnosis'].value_counts()
Out[100]: 0
                 357
                 212
            Name: diagnosis, dtype: int64
In [101]: # посчитаем дисбаланс классов
            total = data.shape[0]
            Класс 0 составляет 62.7399999999999, а класс 1 составляет 37.26%.
            Присутствует незначительный дисбаланс классов.
In [104]: def upsample(features, target, repeat):
    features_zeros = features[target == 0]
                 features_ones = features[target == 1]
                 target_zeros = target[target == 0]
                target_ones = target[target == 1]
                 features_upsampled = pd.concat([features_zeros] + [features_ones] * repeat)
                 target_upsampled = pd.concat([target_zeros] + [target_ones] * repeat)
                return features_upsampled, target_upsampled
In [105]: # Скрипичные диаграммы для числовых колонок for col in ['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean']:
                 sns.violinplot(x=data[col])
                plt.show()
```


Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

```
In [106]: data.dtypes
Out[106]: diagnosis
                                        int64
                                      float64
           radius_mean
          texture_mean
                                      float64
          perimeter_mean
                                     float64
                                     float64
          area mean
                                      float64
           smoothness mean
          compactness_mean
                                      float64
           concavity_mean
                                     float64
          concave points_mean
                                     float64
           symmetry_mean
fractal_dimension_mean
                                     float64
                                    float64
          dtype: object
```

Категориальный признак "diagnosis" был закодирован ранее, другие категориальные признаки отсутствуют.

```
In [107]: # Числовые колонки для масштабирования
          In [108]: sc1 = MinMaxScaler()
          sc1_data = sc1.fit_transform(data[scale_cols])
In [109]: # Добавим масштабированные данные в набор данных
          for i in range(len(scale_cols)):
              col = scale_cols[i]
new_col_name = col + '_scaled'
data[new_col_name] = sc1_data[:,i]
In [110]: data.head()
Out[110]:
                                                                                                                        concave symmetry_mean
              diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean points_mean
           0 1 17.99 10.38 122.80 1001.0
                                                                              0.11840
                                                                                               0.27760
                                                                                                              0.3001
                                                                                                                        0.14710
                                                                                                                                        0.2419
                            20.57
                                        17.77
                                                     132.90
                                                               1326.0
                                                                              0.08474
                                                                                               0.07864
                                                                                                              0.0869
                                                                                                                        0.07017
                                                                                                                                        0.1812
                 1 19.69 21.25
                                                    130.00
                                                               1203.0
                                                                              0.10960
                                                                                               0.15990
                                                                                                              0.1974
                                                                                                                        0.12790
                                                                                                                                        0.2069
                           11.42
                                        20.38
                                                      77.58
                                                                386.1
                                                                              0.14250
                                                                                               0.28390
                                                                                                              0.2414
                                                                                                                        0.10520
                                                                                                                                        0.2597
           3
                           20.29 14.34
                                                  135.10
                                                               1297.0
                                                                              0.10030
                                                                                               0.13280
                                                                                                              0.1980
                                                                                                                        0.10430
                                                                                                                                        0.1809
           5 rows × 21 columns
In [111]: # Проверим, что масштабирование не повлияло на распределение данных for col in scale_cols:
              col_scaled = col + '_scaled'
               fig, ax = plt.subplots(1, 2, figsize=(8,3))
               ax[0].hist(data[col], 50)
ax[1].hist(data[col_scaled], 50)
               ax[0].title.set_text(col)
ax[1].title.set_text(col_scaled)
               plt.show()
```


Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

```
In [112]: # Воспользуемся наличием тестовых выборок,
            # включив их в корреляционную матрицу
            corr_cols_1 = scale_cols + ['diagnosis']
            corr_cols_1
Out[112]: ['radius_mean',
              'texture_mean'
              'perimeter_mean',
              'area_mean',
              'smoothness_mean'
             'compactness_mean',
              'concavity_mean',
             'concave points_mean',
              symmetry_mean'
             'fractal_dimension_mean',
             'diagnosis']
In [113]: scale_cols_postfix = [x+'_scaled' for x in scale_cols]
            corr_cols_2 = scale_cols_postfix + ['diagnosis']
            corr_cols_2
Out[113]: ['radius_mean_scaled',
              texture mean scaled
              'perimeter_mean_scaled',
              area_mean_scaled',
              'smoothness_mean_scaled'
             'compactness_mean_scaled',
'concavity_mean_scaled',
              'concave points_mean_scaled',
              'symmetry_mean_scaled',
              'fractal_dimension_mean_scaled',
              'diagnosis']
In [114]: fig, ax = plt.subplots(figsize=(10,5))
            sns.heatmap(data[corr_cols_1].corr(), annot=True, fmt='.2f')
            ax.set_title('Исходные данные (до масштабирования)')
            plt.show()
                                            Исходные данные (до масштабирования)
                                                                                                                  - 1.0
              radius mean - 1.00
                                            1.00
                                                   0.99
                                                                                                     0.73
                                                                               0.82
                                                                                             -0.31
             texture_mean - 0.32
                                                                                             -0.08
                                                                                      0.07
                                                                                                                  - 0.8
           perimeter mean - 1.00
                                            1.00
                                                   0.99
                                                                               0.85
                                                                                             -0.26
                                                                                                     0.74
                                                                                                                  - 0.6
                                                   1.00
                area_mean - 0.99
                                                                               0.82
                                                                                                     0.71
                                     -0.02
         smoothness mean -
                                                   0.18
                                                          1.00
                                                                                                                  - 0.4
        compactness_mean -
                                                                 1.00
                                                                        0.88
                                                                               0.83
                                            0.72
                                                                               0.92
           concavity_mean -
                                                                 0.88
                                                                        1.00
                                                                                                                  - 0.2
      concave points mean -
                                                   0.82
                                                                        0.92
                                                                               1.00
                                     0.07
                                                                                      1.00
                                                                                                                  - 0.0
           symmetry_mean -
                                                   -0.28
   fractal_dimension_mean - -0.31
                                     -0.08
                                           -0.26
                                                                                             1.00
                                                                                                     -0.01
                                            0.74
                                                   0.71
                                                                               0.78
                                                                                                    1.00
                  diagnosis -
                             0.73
                                                                  compactness mean
                                                                                concave points_mean
                               radius mean
                                      texture mean
                                                            moothness mean
                                                                         concavity mean
                                                                                        symmetry_mean
                                                                                               fractal_dimension_mean
                                             perimeter mean
```


На основе корреляционной матрицы можно сделать следующие выводы: Корреляционные матрицы для исходных и масштабированных данных совпадают.

Целевой признак классификации "diagnosis" наиболее сильно коррелирует с radius_mean (0.73), perimeter_mean (0.74) и concave points_mean (0.78). Эти признаки обязательно следует оставить в модели классификации.

Выбор метрик для последующей оценки качества моделей.

В качестве метрик для решения задачи классификации будем использовать:

Метрики, формируемые на основе матрицы ошибок:

Метрика precision: Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Метрика recall (полнота): Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Метрика F1-мера: Для того, чтобы объединить precision и recall в единую метрику используется $F\beta$ -мера, которая вычисляется как среднее гармоническое от precision и recall:

Метрика ROC AUC:

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество

классификатора.

Для получения ROC AUC используется функция гос auc score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

```
In [116]: class MetricLogger:
                        _init__(self):
                  def
                       self.df = pd.DataFrame(
                           {'metric': pd.Series([], dtype='str'),
                            'alg': pd.Series([], dtype='str'),
'value': pd.Series([], dtype='float')})
                  def add(self, metric, alg, value):
                      Добавление значения
                      # Удаление значения если оно уже было ранее добавлено self.df.drop(self.df[(self.df['metric']==metric)&(self.df['alg']==alg)].index, inplace = True)
                       # Добавление нового значения
                       temp = [{'metric':metric, 'alg':alg, 'value':value}]
                      self.df = self.df.append(temp, ignore_index=True)
                  def get_data_for_metric(self, metric, ascending=True):
                       Формирование данных с фильтром по метрике
                      temp_data = self.df[self.df['metric']==metric]
temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
return temp_data_2['alg'].values, temp_data_2['value'].values
                  def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
                      Вывод графика
                       array_labels, array_metric = self.get_data_for_metric(metric, ascending)
                      fig, ax1 = plt.subplots(figsize=figsize)
                      pos = np.arange(len(array_metric))
rects = ax1.barh(pos, array_metric,
                                           align='center',
                                             height=0.5,
                      tick_label=array_labels)
ax1.set_title(str_header)
                       for a,b in zip(pos, array_metric):
   plt.text(0.5, a-0.05, str(round(b,3)), color='white')
```

Выбор наиболее подходящих моделей для решения задачиклассификации или регрессии.

Для задачи классификации будем использовать следующие модели:

- Логистическая регрессия
- Метод ближайших соседей
- Метод опорных векторов
- Дерево решений
- Случайный лес
- Градиентный бустинг

Формирование обучающей и тестовой выборок на основеисходного набора данных.

```
In [117]: X_train, X_test, y_train, y_test = train_test_split(data, data.diagnosis, random_state=1)
In [118]: X_train.shape, y_train.shape, X_test.shape, y_test.shape
Out[118]: ((426, 21), (426,), (143, 21), (143,))
```

Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.

```
In [119]: # Модели
           'SVC':SVC(probability=True),
                            'Tree':DecisionTreeClassifier(),
                           'RF':RandomForestClassifier()
                           'GB':GradientBoostingClassifier()}
In [120]: # Сохранение метрик
           clasMetricLogger = MetricLogger()
In [121]: # Отрисовка ROC-кривой
           def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
               roc_auc_value = roc_auc_score(y_true, y_score, average=average)
               #plt.figure()
               ax.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
               ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
ax.set_xlim([0.0, 1.0])
ax.set_xlim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
               ax.set_ylabel('True Positive Rate')
               ax.set_title('Receiver operating characteristic')
ax.legend(loc="lower right")
In [122]: def clas_train_model(model_name, model, clasMetricLogger):
               model.fit(X_train, y_train)
               # Предсказание значений
               Y_pred = model.predict(X_test)
               # Предсказание вероятности класса "1" для гос аис
               Y_pred_proba = Y_pred_proba_temp[:,1]

Y_pred_proba = Y_pred_proba_temp[:,1]
               precision = precision_score(y_test.values, Y_pred)
               recall = recall_score(y_test.values, Y_pred)
               f1 = f1_score(y_test.values, Y_pred)
               roc_auc = roc_auc_score(y_test.values, Y_pred_proba)
               clasMetricLogger.add('precision', model_name, precision)
               clasMetricLogger.add('recall', model_name, recall)
clasMetricLogger.add('f1', model_name, f1)
               clasMetricLogger.add('roc_auc', model_name, roc_auc)
               fig, ax = plt.subplots(ncols=2, figsize=(10,5)) draw_roc_curve(y_test.values, Y_pred_proba, ax[0])
               cmap=plt.cm.Blues, normalize='true')
               fig.suptitle(model_name)
               plt.show()
In [123]: for model name, model in clas models.items():
               clas_train_model(model_name, model, clasMetricLogger)
```


Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

```
In [124]: X_train.shape
Out[124]: (426, 21)
In [125]: n_range_list = list(range(0,1250,50))
           n_range_list[0] = 1
In [126]: n_range = np.array(n_range_list)
           tuned_parameters = [{'n_neighbors': n_range}]
           tuned_parameters
Out[126]: [{'n_neighbors': array([ 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200])}]
 In [127]: %%time
            clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='roc_auc')
           clf_gs.fit(X_train, y_train)
            CPU times: user 1.44 s, sys: 2.54 s, total: 3.98 s
            Wall time: 522 ms
Out[127]: GridSearchCV(cv=5, estimator=KNeighborsClassifier(),
                   param_grid=[{'n_neighbors': array([ 1, 50, 100, 150, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200])}],
                                                                   1, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,
                          scoring='roc_auc')
 In [128]: # Лучшая модель
            clf_gs.best_estimator_
Out[128]: KNeighborsClassifier(n_neighbors=200)
In [129]: # Лучшее значение параметров
           clf_gs.best_params_
Out[129]: {'n_neighbors': 200}
In [130]: clf_gs_best_params_txt = str(clf_gs.best_params_['n_neighbors'])
           clf_gs_best_params_txt
Out[130]: '200'
In [131]: # Изменение качества на тестовой выборке в зависимости от К-соседей
           plt.plot(n_range, clf_gs.cv_results_['mean_test_score'])
Out[131]: [<matplotlib.lines.Line2D at 0x7f8ff0dbe7f0>]
```


Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей скачеством baseline-моделей.

Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде форме графиков и сделать выводы В текстового Рекомендуется графиков описания. построение обучения валидации, значений И влияния гиперпараметров на качество моделей и т.д.

Вывод: Исходя из приведенных метрик, видим, что 4 модели: градиентный бустинг, дерево, логистическая регрессия и случайный лес показывают одинаково высокий результат.

Заключение

В данном курсовом проекте мы выполнили типовую задачу машинного обучения. Провели анализ данных, преобразовали готовый датасет под наши потребности, подобрали модели, а также подобрали наиболее подходящие гиперпараметры.

В данном проекте были закреплены все знания, полученные в курсе лекций и на лабораторных работах. Часть информации была найдена в различных открытых источниках в интернете.

Проделанная работа вызвала интерес к предмету и дальнейшей работе в этой сфере, которая является одной из самых перспективных и актуальных в современном мире.

Список использованных источников информации

- 1. Документация программной библиотеки seaborn на языке Python [Электронный ресурс]. URL: https://pandas.pydata.org/docs/
- 2. Документация программной библиотеки Pandas на языке Python [Электронный ресурс]. URL: https://seaborn.pydata.org/
- 3. Методические указание по разработке НИРС, опорный пример [Электронный ресурс]. URL: https://github.com/ugapanyuk/ml_course_2022/wiki/TMO_NIRS
- 4. Репозиторий курса "Технологии машинного обучения", бакалавриат, 6 семестр [Электронный ресурс]. URL: https://github.com/ugapanyuk/ml_course_2022/wiki/COURSE_TMO
- 5. Kaggle [Электронный ресурс]. URL: https://www.kaggle.com/