PART 3: QUESTION 4

(a-1) Draw histograms (by hand) for both Age and Strength

Computation Tables (Grouping)

Age groups	frequency
5 - 10	2
10 - 15	1
15 - 20	1
20 - 25	1
25 - 30	1

Strength groups	frequency
21 - 25	1
25 - 30	2
30 - 35	0
35 - 40	1
40 - 45	1
45 - 50	1

Histograms

(a-2) Comment on the shape of each distribution.

Both distributions can be described as right skewed (with more data to the left)

(b-1) Apply a natural log transformation

Computation Tables (Applying Natural Logarithms, ln)

Original Alien Beam Data		Log-transformed Data	
Age, x (years)	Strength, y (MPa)	ln(Age), x'	ln(Strength), y'
5	48	1.6094	3.8712
10	42	2.3026	3.7377
15	37	2.7081	3.6109
20	30	2.9957	3.4012
25	27	3.2189	3.2958
30	21	3.4012	3.0445

(b-1) Re-draw histograms for the transformed variables

Computation Tables (Grouping)

ln(Age) groups	frequency
1.5 - 2.0	1
2.0 - 2.5	1
2.5 - 3.0	2
3.0 - 3.5	2

ln(Strength) groups	frequency
3.0 - 3.2	1
3.2 - 3.4	1
3.4 - 3.6	1
3.6 - 3.8	2
3.8 - 4.0	1

Histograms

(c) Compute the regression coefficients $\beta 0$ and $\beta 1$ for the log-log model using the least squares method

According to the least squares paradigm, the best fitting regression line is obtained with optimal coefficients, i.e.:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

For β_1 :

	Computations on Log-transformed Data					
	ln(Age), x'	ln(Strength), y'	x'-x*	(x'-x*)^2	y'-y*	(x'-x*).(y'-y*)
	1.6094	3.8712	-1.0965	1.20240	0.3776	-0.41410
	2.3026	3.7377	-0.4034	0.16273	0.2441	-0.09847
	2.7081	3.6109	0.0021	0.00000	0.1174	0.00024
	2.9957	3.4012	0.2898	0.08396	-0.0924	-0.02676
	3.2189	3.2958	0.5129	0.26306	-0.1977	-0.10141
	3.4012	3.0445	0.6952	0.48333	-0.4490	-0.31218
Summation	16.23588	20.96135		2.19548		-0.95268
Mean (x* & y*)	x* = 16.23588/6	y* = 20.96135/6				
Mean (x* & y*)	2.7060	3.4936		β1	-0.43393	

For β_0 :

From
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

β0	4.66776

(d) Determine the R² value and interpret its meaning

The formula below is used:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} \in [0,1]$$

Computing Predicted values [ln(Strength), y^]					
ln(Stren	ln(Strength), y^ is computed using the regression coefficients, β0 and β1				
ln(Strength), y'	ln(Strength), y^	Residuals (y' - y^)	RSS =(y' - y^)^2	(y'-y*)^2	
3.8712	3.96938	-0.09818	0.00964	0.14261	
3.7377	3.66860	0.06907	0.00477	0.05959	
3.6109	3.49266	0.11826	0.01399	0.01377	
3.4012	3.36783	0.03337	0.00111	0.00853	
3.2958	3.27100	0.02484	0.00062	0.03909	
3.0445	3.19188	-0.14736	0.02172	0.20163	
Summation			0.05184	0.46524	

R^2	1 - [sum((y' - y^)^2)/sum((y'-y*)^2)]
R^2	0.88857

(e) Compute the p-value for β_1 and explain whether Age significantly affects Strength.

Testing the Null Hypothesis

$$T_{H_0:\beta_1=0}=\frac{\hat{\beta}_1}{\hat{\sigma}_{\widehat{\beta}_1}}$$

Computing the P-value for β1		
n (data points)		6
df (degrees of freedom)	= (n-2)	4
Residual Sum of Squares (RSS) (errors^2) = sum(y' - y^)^2	$1 = Sum(v' - v^*)^2$	
Residual Standard Error (RSE)	= RSS/df	0.11384
Computing the t-statistic (using	g the β1 = 0 null hypo	thesis)
β1 (Slope Coefficient) -0.43393		
[(x'-x*)^2]^0.5		1.48172
SE(β1): Standard error	SE(β1): Standard error 0.076	
t-statistic for β1 -5		-5.64781
Two-tailed p-value; $p = 2*P(T> t)$	(From Excel)	0.004841
Two-tailed p-value; p = 2*P(T> t)	(From Tables) = 1-0.995	0.005

The p-value for $\beta_1 = 0.005$. We reject the null hypothesis at the 5% significance level. This means that age has a statistically significant effect on the bending strength of alien beams, and we can be fairly confident (with 95% confidence) that the relationship isn't due to chance.

(f-1) Compute the residuals for the transformed model. Manually plot the residuals against the fitted values.

Computation of the residuals

Residuals vs Fitted		
Residuals (y' - y^)	Fitted [ln(Strength), y^]	
-0.09818	3.96938	
0.06907	3.66860	
0.11826	3.49266	
0.03337	3.36783	
0.02484	3.27100	
-0.14736	3.19188	

(f-2) Manually plot the residuals against the fitted values.

VALIDATE YOUR HAND CALCULATIONS IN R.

---- (Code and Output shown in the following section) ----