8. Given that

 $(\forall z > 0) (\exists n \in \mathcal{N}) (\forall m \geq n) [|a_m - L| < z].$ (*)

We want to show that for any fixed number M > 0, $(\forall z_i > 0)(\exists n_i \in \mathcal{N})(\forall m_i > n_i) [|Mam_i - ML| < z_i]$.

To do so, we given ϵ_{170} , we need to pick an n, such that $m_{1} \ge n_{1} = 2 |Ma_{11} - ML| < \epsilon_{1}$

 $\Rightarrow M | \alpha_{m_1} - \pi L | < \epsilon_1 \qquad (M > 0)$ $\Rightarrow | \alpha_{m_1} - L | < \frac{\epsilon_1}{M}$

So, we need to pick an n, so large that $|Q_{m_1}-L|<\frac{\Sigma_1}{M}$. To find this n, , we can set $\frac{\Sigma_1}{M}=\Sigma$ and hole backward from the given information (*).