User: Imisi Aiyetan

```
1 . use "/Users/imisiaiyetan/Downloads/Table11 1.dta", clear
   (Married women's hours of work and related data)
 2 . do "/var/folders/13/xkzn5ncx4x12s95bhv8j20qw0000gn/T//SD00327.000000"
 3 . **** Homework 8******
 5 . **** Solution to guestion b and c
 7 . ***Import data from download folder****
 8 . use "/Users/imisiaiyetan/Downloads/Table11_1.dta"
  (Married women's hours of work and related data)
10 . **** Generate the binary treatment variables*****
11 .
12 . gen treat1 = 0
13 .
14 . replace treat1 = 1 if hwage >= 5
  (552 real changes made)
16 \cdot gen treat2 = 0
17 .
18 . replace treat2 = 1 if wage \geq 7
  (51 real changes made)
20 \cdot gen treat3 = 0
21 .
22 . replace treat3 = 1 if unemployment >= 5
  (703 real changes made)
23 .
24 . ***Question b****
26 . ***Estimate the IV regression by running mrt on the binary treatment variables,
27 . ***** control variables and instrumental varibale
29 . ivregress 2sls mtr treat1 treat2 age heduc hsiblings (siblings= treat3)
   Instrumental variables (2SLS) regression
                                                          Number of obs =
                                                                           753
                                                          Wald chi2(6) = 221.26
                                                          Prob > chi2 = 0.0000
                                                          R-squared
                                                                        = .09078
                                                          Root MSE
            mtr
                       Coef.
                               Std. Err.
                                              z
                                                   P> | z |
                                                             [95% Conf. Interval]
```


User: Imisi Aiyetan

siblings	.0271812	.0607782	0.45	0.655	0919418	.1463042
treat1	0584407	.0229095	-2.55	0.011	1033425	013539
treat2	0626907	.0391681	-1.60	0.109	1394588	.0140775
age	0008333	.0007985	-1.04	0.297	0023982	.0007317
heduc	0089675	.0011935	-7.51	0.000	0113066	0066283
hsiblings	005162	.0117717	-0.44	0.661	0282341	.01791
_cons	.8027829	.199089	4.03	0.000	.4125755	1.19299

Instrumented: siblings

Instruments: treat1 treat2 age heduc hsiblings treat3

30 .

31 . ****Alternative method is to use gmm approach****

32 .

33 . ivregress gmm mtr treat1 treat2 age heduc hsiblings (siblings= treat3)

Instrumental variables (GMM) regression

Number of obs = 753 Wald chi2(6) = 226.51 Prob > chi2 = 0.0000 R-squared = .

Root MSE = .09078

GMM weight matrix: Robust

	,				 	
mtr	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
siblings	.0271812	.0598936	0.45	0.650	090208	.1445704
treat1	0584407	.0228697	-2.56	0.011	1032645	013617
treat2	0626907	.039495	-1.59	0.112	1400995	.0147182
age	0008333	.0007484	-1.11	0.266	0023	.0006335
heduc	0089675	.0012995	-6.90	0.000	0115145	0064205
hsiblings	005162	.0115997	-0.45	0.656	0278971	.017573
_cons	.8027829	.1955154	4.11	0.000	.4195796	1.185986

Instrumented: siblings

Instruments: treat1 treat2 age heduc hsiblings treat3

34.

35 . ****Question c*****

36

 ${\tt 37}$. reg mtr treat1 treat2 treat3 age heduc hsiblings

Source	ss	df		MS		Number of obs		753
Model Residual	1.82334348 3.41922921	6 746		8890579 1583417		F(6, 746) Prob > F R-squared	=	66.30 0.0000 0.3478 0.3425
Total	5.24257268	752	.006	5971506		Adj R-squared Root MSE	=	.0677
mtr	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
treat1 treat2	067291 0461611	.0060		-11.19 -4.63	0.000	0790937 0657211		0554882 0266012

treat3	0061028	.0101769	-0.60	0.549	0260816	.0138761
age	0011407	.000311	-3.67	0.000	0017512	0005302
heduc	0088924	.000881	-10.09	0.000	010622	0071628
hsiblings	.0000467	.0010281	0.05	0.964	0019717	.002065
_cons	.8964564	.0205165	43.69	0.000	.8561794	.9367333

38 . predict e_z , residuals

39 .

40 . reg siblings treat1 treat2 treat3 age heduc hsiblings

Source	SS	df		MS		Number of obs		753 6.38
Model Residual	196.411427 3826.14103	6 746		352378 887538		F(6, 746) Prob > F R-squared	=	0.0000 0.0488 0.0412
Total	4022.55246	752	5.34	913891		Adj R-squared Root MSE	=	2.2647
siblings	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	erval]
treat1 treat2 treat3 age heduc hsiblings _cons	3256005 .6081235 224522 0113107 .0027604 .1916292 3.446259	.2011 .3332 .3404 .010 .0294 .0343	966 345 403 719 924	-1.62 1.82 -0.66 -1.09 0.09 5.57 5.02	0.106 0.068 0.510 0.277 0.925 0.000	72042 0461875 8928457 0317334 0550973 .1241117 2.098932	1.	0692189 .262434 1438017 .009112 0606181 2591467

41 . predict e_y , residuals

42.

43 . reg treat3 treat1 treat2 age heduc hsiblings

Source	SS	df		MS		Number of obs	=	753
						F(5, 747)	=	8.19
Model	2.42569724	5	.4851	.39447		Prob > F	=	0.0000
Residual	44.2542496	747	.0592	42637		R-squared	=	0.0520
						Adj R-squared	=	0.0456
Total	46.6799469	752	.0620	74397		Root MSE	=	.2434
treat3	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
treat1	.1263408	.0211	147	5.98	0.000	.0848895		1677921
treat2	.0103424	.0358	189	0.29	0.773	0599754		0806602
age	0004761	.0011	179	-0.43	0.670	0026707		0017186
heduc	0001401	.0031	675	-0.04	0.965	0063583		0060781
hsiblings	0032171	.0036	944	-0.87	0.384	0104698		0040357
_cons	.8733817	.0664	794	13.14	0.000	.742873		1.00389

61 .

```
44 . predict e t, residuals
45.
46 . * Estimate the first covariance using the second and the first residuals
48 . corr e_y e_z, covariance
   (obs=753)
                                e_z
                   5.08795
            е_у
                   .000997 .004547
49 . scalar scov1 = r(cov_12)
50 .
51 . * Estimate the second covariance using the third and the first residuals
53 . corr e_t e_z, covariance
   (obs=753)
                                e_z
                   .058849
            e_t
            e_z
                   2.4e-11 .004547
54 \cdot \text{scalar scov2} = r(\text{cov } 12)
56 . * Finally, divide the first covariance by the second covariance.
58 . scalar alpha hat2 = scov1/scov2
59 . display alpha hat2
   41319651
60.
  end of do-file
```

