Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Recap: Weak solutions
Viscosity limits
Lax Entropy Condition
Applications

Lecture 9

Entropy solutions

Lax Entropy Condition

Recap: Characteristics

Recall the general properties of characteristics $\gamma(t)$:

- ▶ The map $t \mapsto u(\gamma(t), t)$ is always constant on [0, T].
- \blacktriangleright The function γ has the form

$$\gamma(t) = f'(\mathbf{v}(x_0)) t + x_0.$$

► Here, $f'(v(x_0))$ is the propagation speed (possibly different everywhere!).

Motivation: Lax entropy condition

We consider the *Riemann problem*: find u with

$$\partial_t \mathbf{u} + \partial_x f(\mathbf{u}) = 0$$
 and $\mathbf{u}(x, 0) = \mathbf{v_0}(x) = \begin{cases} u_l & \text{for } x \leq 0 \\ u_r & \text{for } x > 0 \end{cases}$

for a convex flux f'' > o (i.e. f' is strictly increasing).

Two characteristic speeds:

$$\gamma'(t) = f'(u_l)$$
 for $x_0 \le 0$ and $\gamma'(t) = f'(u_r)$ for $x_0 > 0$

Experience/heuristically: we have $f'(u_r) \leq \sigma' \leq f'(u_l)$

< □ > < □ Lax Entropy Condition

Motivation: Lax entropy condition

Lemma

We consider the *Riemann problem* for convex flux from the previous slide. Let u be weak solution with discontinuity along the curve $S = \{(\sigma(t), t), t > 0\}$.

Let $u_{\varepsilon} \in C^{2}(\mathbb{R} \times \mathbb{R}^{+})$ be solution to

$$\partial_t u_{\varepsilon} + \partial_x f(u_{\varepsilon}) = \varepsilon \Delta u_{\varepsilon} \quad \text{in } \mathbb{R} \times \mathbb{R}^+$$

with $u_{\varepsilon}(x,t) = v_{\varepsilon}(x-st)$, $s = \sigma'(t)$ ("travelling-wave").

Further, let $u_{\varepsilon} \stackrel{\varepsilon \to 0}{\to} u$ a.e. in $\mathbb{R} \times \mathbb{R}^+$, where u is weak solution to $\partial_t u + \partial_x f(u) = 0$. Assume for $t = t_0$:

$$\lim_{\delta \to 0} u(\sigma(t_0) + \delta, t_0) = u_r \quad \text{and} \quad \lim_{\delta \to 0} u(\sigma(t_0) - \delta, t_0) = u_l$$

and $u_{\varepsilon}(x, o) \to u(x, o)$ a.e. in \mathbb{R} . Then:

$$f'(u_r) \leq s \leq f'(u_l)$$
 in $(\sigma(t_0), t_0)$.

Lax Entropy Condition < □ > < ⑤

The Lax Entropy Condition

Let: u is weak solution to $\partial_t u + \partial_x f(u) = o$ with some initial value; S is smooth curve in $\mathbb{R} \times \mathbb{R}^+$ along which u is discontinuous.

Let
$$(x_0, t_0) \in S$$
, $u_l := \lim_{\delta \to 0} u(x_0 - \delta, t_0)$, $u_r := \lim_{\delta \to 0} u(x_0 + \delta, t_0)$ and $s := \frac{f(u_l) - f(u_r)}{u_l - u_r}$.

Then u fulfills the Lax Entropy Condition in (x_0, t_0) if and only if

$$f'(u_r) < s < f'(u_l).$$

A discontinuity that fulfills both the Lax Entropy Condition and the Rankine-Hugoniot Jump Condition is called **shock**, and *s* is the shock speed.

< □ > < □ >

Lax Entropy Condition

The Lax Entropy Condition - Example 1

We consider a convex flux, i.e. f'' > o.

Recall: u is discontinuous on a smooth curve S; taking the value u_i left from the discontinuity and the value u_r right from it. Speed:

$$s:=\frac{f(u_l)-f(u_r)}{u_l-u_r}.$$

Then u fulfills the Lax Entropy Condition if and only if

$$f'(u_r) < \mathbf{s} < f'(u_l).$$

If $u_1 < u_r \stackrel{f'' > 0}{\Rightarrow} f'(u_1) < f'(u_r) \Rightarrow \text{Lax Entropy Condition cannot be fulfilled.}$

Hence: no discontinuous solutions that fulfill both entropy condition and $u_1 < u_r$.

Lax Entropy Condition < □ > < □

The Lax Entropy Condition - Example 1 B

We consider the convex flux with $f(u) = \frac{1}{2}u^2$ (Burgers' equation). If the initial value is

$$\mathbf{v}_{0} = \begin{cases} u_{l} & \text{for } x < 0 \\ u_{r} & \text{for } x \geq 0. \end{cases}$$

If $u_l < u_r$, a weak solution that fulfills the entropy condition cannot be discontinuous for t > 0.

The Lax Entropy Condition - Example 2

We consider a convex flux, i.e. f'' > 0, and $u_l > u_r$ on the discontinuity curve.

Lax-Entropy condition

$$f'(u_r) < \mathbf{s} = \frac{f(u_l) - f(u_r)}{u_l - u_r} < f'(u_l)$$

is fulfilled (mean value theorem!).

Lax Entropy Condition 《 ㅁ 》 《 ⑤

The Lax Entropy Condition - Example 3

Recall: The Burgers' equation

$$\partial_t \frac{u}{u} + \partial_x \left(\frac{u^2}{2}\right) = 0$$
 and $u(x, 0) = v_0(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$,

has at least two weak solutions which are given by

$$u_1(x,t) = \begin{cases} 0, & x < \frac{t}{2} \\ 1, & x > \frac{t}{2} \end{cases}$$

and

$$u_{2}(x,t) = \begin{cases} 0, & x < 0 \\ \frac{x}{t}, & 0 \le x < t \\ 1, & t < x \end{cases}$$

Which one is the right one (in terms of viscosity limits)? Only u_2 fulfills the entropy condition!

Lax Entropy Condition

The Lax Entropy Condition

Question: Are weak solutions that fulfill the Lax entropy condition unique?

Recall: Weak solutions are in general not unique

(that was the reason why we introduced the viscosity limit, which itself led us to the entropy condition).

Theorem (Uniqueness of entropy solutions)

Let $f \in C^2(\mathbb{R})$ with f'' > 0 on \mathbb{R} .

Let u_1 and u_2 denote two weak solutions of the conservation law with the same initial value.

If u_1 and u_2 fulfill the Lax entropy condition along all discontinuities.

Then
$$u_1 = u_2$$
 (a.e.).

(without proof)

Lax Entropy Condition 4 □ ▶ 4 🗗

Recap: Weak solutions

Lax Entropy Condition
Applications

SF2521