observation of some measure, θ, of interest If $X_i, 1 \le i \le n, n \ge 1$ are steady-state observations from a simulation then a **point estimate** for θ is the sample mean: $\overline{X} =$ $\frac{1}{n}\sum_{i=1}^{n} X_{i}$.

Confidence intervals: Discrete-event simulations are stochastic 随机的, so all outputs are random variables and each an

If we draw a large number of samples, $100(1-\alpha)\%$ of them will have the mean value that lies under this interval. For any desired coverage probability level $1-\alpha$ we can define the

 $100(1-\alpha)\%$ confidence interval for μ by $[\overline{X}-z_{\frac{\alpha}{2}}, \overline{X}+z_{\frac{\alpha}{2}}, \overline{x}]$ where z_{α} is the α -quantile of the standard normal. For 95% confidence level: $\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$. If n>1, a 100lpha% confidence interval estimate for heta is \overline{X} \pm

 $t_{n-1,(1-a)/2} rac{s}{\sqrt{n}}$ where $t_{v,a}$ is the lpha-quantile of the Student's t distribution with v degrees of freedom. Confidence intervals in simulation: How do we apply

confidence intervals to simulation outputs? • Running n independent replications, possibly in parallel.

guarantees independence of the X_i .