

Drexel UNIVERSITY College of Engineering	Lecturer Dr.	Oleh Tretiak
•	Recitation instructors:	Teaching assistants:
	Dr. Bahram Nabet	Mr. Donald Bucci
	Dr. Prawat Nagvajara	Mr. Zongquan Gu
	Dr. Gail Rosen	Mr. Timothy Kovich
	Dr. P. M. Shankar	Mr. Yohan Seepersad
	Dr. Baris Taskin	Mr. Feiyu Xiong
	ENGR 232	2 W 10-11 Lecture 1 2

Textbook

Text: James R. Brannan and William E. Boyce, Differential Equations: An Introduction to Modern Methods & Applications, John Wiley & Sons, Inc. 2007. ISBN-10 0-471-65141-9

ENGR 232 W 10-11 Lecture 1

3

Course Formalities

- Course materials will be on the learning.drexel.edu web site.
- Two in-class midterms, Week 4 and 8
- Two Matlab exams Week 5 and 10
- Seven homework assignments posted on Tuesday, due next Wednesday by 4 PM at the ECE Lab window on the second floor of Bossone. No HW will be collected at lecture.
- Eight prelabs and labs second half of recitation.
- You may not change lab/recitation sections.
- No late homework, labs, or exams except with valid prior notification or with documented medical emergency.
- See Syllabus for grading policy and details for lab procedures

ENGR 232 W 10-11 Lecture 1

4

How To Succeed

- Read the syllabus and follow instructions.
- Download and print lecture notes prior to class, follow and annotate during lecture.
- Read and study the text, do the homework.
- Read labs prior to recitation/lab session.
- Complete the prelabs and bring hardcopy stapled to verification sheet to lab sessions.
- If you have any questions, see me or any of the instructors or TA's. We are available by e-mail always and by appointment. See syllabus for TA office hours and appointment days.

ENGR 232 W 10-11 Lecture 1

5

Other Matters

- Honors credit?
- MATLAB club?
- If you are interested, send an e-mail to tretiak@drexel.edu

ENGR 232 W 10-11 Lecture 1

0

Introduction

- Differential equations are equations containing derivatives.
- Some examples of physical phenomena involving rates of change:

Motion of mechanical systems Population dynamics Electrical circuits

- A differential equation that describes a physical process is often called a mathematical model
- This lecture focuses on Section 1.1 and 1.2 of the text

ENGR 232 W 10-11 Lecture 1

/

Example 1: Free Fall Section 1.1

Formulate a differential equation describing motion of an object falling near sea level, neglect the force of the air.

- Variables: time t, velocity v, position x
- v = dx/dt, $a = dv/dt = d^2x/dt^2$
- Newton's 2^{nd} Law: F = ma = m(dv/dt) net force
- Force of gravity: F = mg downward force
 At t = 0, x = 0, v = 0. initial condition
- Plan:

 - Find equation for v(t)- Find equation for x(t)- Solve for t_i when $x(t_i) = 0$ Compute $v(t_i)$

ENGR 232 W 10-11 Lecture 1

Example 2: Increased Model Complexity A Falling Hailstone (1 of 4)

- A hailstone has mass m=0.025 kg and drag coefficient =0.007 kg/s.
- Taking g = 9.8 m/sec², the differential equation for the falling hailstone is

$$m\frac{dv}{dt} = mg - \gamma v$$

$$\frac{dv}{dt} = 9.8 - 0.28v$$

ENGR 232 W 10-11 Lecture 1

11

xel

Example 2: Sketching Direction Field (2 of 4)

 Using differential equation and table, plot slopes (estimates) on axes below. The resulting graph is called a direction field. (values of v' do not depend on t.)

Mice and Owls - A Model

- Consider a mouse population that reproduces at a rate proportional to the current population (assuming no owls present).
- Let t represent time, p(t) represent the mouse population, and r represent the growth rate (mice/time). Then
- When owls are present, they eat the mice. If the predation rate is a constant, k (mice/time), then

ENGR 232 W 10-11 Lecture 1

15

Example 3: Mice and Owls (1 of 2)

$$\frac{dp}{dt} = rp - k$$

- Consider a mouse population (p(t) is the number of mice at time t) that reproduces at a rate proportional to the current population, with a rate constant equal to 0.5 mice/month (assuming no owls present).
- When owls are present, they eat the mice. Suppose that the owls eat 15 per day (average). Write a differential equation describing mouse population in the presence of owls. (Assume that there are 30 days in a month.)

•

$$\frac{dp}{dt} = 0.5p - 450$$

ENGR 232 W 10-11 Lecture 1

16

