How to run the code:

create a folder and put 'fashion-mnist_test.csv' , 'fashion-mnist_train.csv' and '1905092.ipynb' files that folder then simply run with python

For Learning Rate = 0.01

Model-1:(with hidden_size=20)

Accuracy: 0.64175

Loss: 0.8895936970492301 F1-score: 0.6016868650052304

Model 2: (with hidden_size=50)

Accuracy: 0.7940833333333334 Loss: 0.5811283330371421 F1-score: 0.791712704646328

F1-score: 0.8360678907002909

For Learning Rate = 0.02

Model-1:(with hidden_size=20)

Confusion Matrix - 1000 - 800 True Label - 600 - 400 - 200 ω -ი -- 0 Ó i ż Predicted Label

Model 2: (with hidden_size=50)

Accuracy: 0.79

Loss: 0.5659487287387795 F1-score: 0.7747949630730459

Confusion Matrix - 1000 - 800 True Label - 600 - 400 - 200 ი -- 0 ó i Predicted Label

Model-3: (with hidden_size=100)

Accuracy: 0.81625

Loss: 0.5073293849775868 F1-score:0.8156361301615462

For Learning Rate = 0.03

Model-1:(with hidden_size=20)

Accuracy: 0.597

Loss: 0.9842851111663592 F1-score: 0.5265684475106417

Predicted Label

Model 2: (with hidden_size=50)

F1-score: 0.7737789271317966

Predicted Label

