Package 'SpectroX'

December 6, 2017

Type Package
Title Proteotypic peptide selection and SRM/PRM/HRM panel creation
Version 1.0
Author Erik Ahrne
Maintainer Erik Ahrne <erik.ahrne@unibas.ch></erik.ahrne@unibas.ch>
Description Select proteptypic peptides based on full proteom analysis MaxQuant 1.6 search results or create SRM/PRM/HRM panel/library from MaxQuant 1.6 search results.
License GPL-3
Encoding UTF-8
LazyData true
Suggests testthat
RoxygenNote 6.0.1
R topics documented: createAnnotatedSpectrum getEmpiricalIRT getFragmentSequence getIRTModel getLabelMzShift getSearchedModifications parseMaxQuantMSMS plotIRTCalibration
createAnnotatedSpectrum Parse spectrum framgment match information listed in MaxQuant 'Identifications' results

Description

Parse spectrum framgment match information listed in MaxQuant 'Identifications' results

2 getEmpiricalIRT

Usage

```
{\tt createAnnotatedSpectrum(psm)}
```

Arguments

psm

a row of MaxQuant 'Identifications' data.frame

Details

No details

Value

list with attributes intensity, ionType, charge, mz, isNL

Note

No note

References

NA

Examples

```
print("No examples")
```

getEmpiricalIRT

Add iRT metric to data.frame

Description

Add iRT metric to data.frame

Usage

```
getEmpiricalIRT(tb, fit)
```

Arguments

tb tibble containing colum labelled "Retention time"

fit lm object

Details

No details

Value

vector of normalised rt (empirical irt)

getFragmentSequence 3

Note

No note

References

Using iRT, a normalized retention time for more targeted measurement of peptides, Escher et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/22577012

Examples

```
print("No examples")
```

getFragmentSequence

Get Fragment Sub Sequnece

Description

Get Fragment Sub Sequnece

Usage

```
getFragmentSequence(peptide = peptide, ionType = ionType,
    fragmentNb = fragmentNb)
```

Arguments

peptide character string ionType c("a","b","x","y")

fragmentNb integer

Details

No details

Value

character string

Note

No note

References

NA

Examples

```
print("No examples")
```

4 getLabelMzShift

getIRTModel

Get linear model predicting iRT as a function retention time (column name "rt")

Description

Get linear model predicting iRT as a function retention time (column name "rt")

Usage

```
getIRTModel(tb)
```

Arguments

tb

tibble including column "Retention time" and "Sequence"

Details

Uses Robust Linear Regression. Retention times of at least 3 iRT unique peptides needs to be listed in the input tibble

Value

list including fit rlm object, data.frame peptide,rt,irtRef

Note

No note

References

Using iRT, a normalized retention time for more targeted measurement of peptides, Escher et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/22577012

Examples

```
print("No examples")
```

getLabelMzShift

Get Mz Shift of complementary peptide/fragment ion

Description

Get Mz Shift of complementary peptide/fragment ion

Usage

```
getLabelMzShift(aaSeq, charge = 1, isHeavy = T)
```

Arguments

aaSeq character string

 $\begin{array}{ll} \text{charge} & \text{default 1} \\ \text{isHeavy} & \text{c(T,F)} \end{array}$

Details

Calculate mass shift of complimentary spectrum.

- PETIDEK (light) -> 8.014199
- PETIDEK (heavy) -> -8.014199
- PETIDER (light) -> 10.008269
- PETIDER (heavy) -> -10.008269

Value

numeric

Note

No note

References

NA

Examples

```
print("No examples")
```

getSearchedModifications

Get list of variable modifiections condsidered by MaxQuant

Description

Get list of variable modifiections condsidered by MaxQuant

Usage

```
getSearchedModifications(tb)
```

Arguments

df tible or data.frame

Details

No details

Value

character vector of modification names

Note

No note

References

NA

Examples

```
print("No examples")
```

parseMaxQuantMSMS

Parse MaxQuant msms.txt

Description

Parse MaxQuant msms.txt

Usage

```
parseMaxQuantMSMS(file, pepThrs = 0.05, targetPeptides = NA,
  targetProteins = NA, filterContaminants = T,
  contaminantRegExp = "^CON_", selectedPTMRegExp = NA,
  filterNonExclusivePeptides = T, minPepLength = 0, chargeState = 1:10,
  label = NA, maxMissedCleavages = 0)
```

Arguments

```
file path
pepThrs numeric default 0.05
```

 ${\tt targetPeptides} \ \ {\tt character} \ {\tt default} \ NA$

 $target Proteins \ \ character \ default \ NA$

 ${\tt filter Contaminants}$

TRUE

 ${\tt contaminantRegExp}$

,^CON_,

selectedPTMRegExp

NA

 $\verb|filterNonExclusivePeptides||$

default TRUE

minPepLength default 0

chargeState default [1,10]

label (Arg10 and Lys8 only filter) options NA (deafault,no filter), 'light', 'heavy'

plotIRTCalibration 7

Details

No details

Value

data.frame of maxQuant psm level results

Note

No note

References

NA

Examples

```
print("No examples")
```

plotIRTCalibration

Plot IRT calibration curve

Description

Plot IRT calibration curve

Usage

```
plotIRTCalibration(irtModel, cex = 1.5, col = "blue", pch = 19, ...)
```

Arguments

irtModel list

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

Index

```
createAnnotatedSpectrum, 1

getEmpiricalIRT, 2

getFragmentSequence, 3

getIRTModel, 4

getLabelMzShift, 4

getSearchedModifications, 5

parseMaxQuantMSMS, 6

plotIRTCalibration, 7
```