16 The diagram shows a particle X, with kinetic energy E_k , about to collide with a stationary particle Y. Both particles have the same mass.

$$X \rightarrow Y$$

After colliding, X and Y travel onwards together as a single larger particle.

How much kinetic energy is lost in the collision?

- **A** 0

- $\mathbf{B} \quad \frac{E_{\mathbf{k}}}{4} \qquad \qquad \mathbf{C} \quad \frac{E_{\mathbf{k}}}{2} \qquad \qquad \mathbf{D} \quad \frac{3E_{\mathbf{k}}}{4}$
- 17 The first column in the table gives four examples of work being done. The second column gives more detail of the action.

Which row is **not** correct?

	example	detail
A	a girl dives from a diving board into a swimming pool	work is done by the girl against gravity as she falls
В	a man pushes a car along a level road	work is done by the man against friction
С	an electron is accelerated towards a positively-charged plate	work is done on the electron by the electric field of the plate
D	a piston is pushed outwards as a gas expands	work is done on the atmosphere by the gas

Space for working