Logarithm and Exponent

沈威宇

July 1, 2025

Contents

1	Log	garithm (對數) and Exponent (指數)	1
	I	Definition	1
		i Positive integer exponent (正整數指數)	1
		ii Euler's number (歐拉數/尤拉數)	1
		iii Natural logarithm (自然對數)	1
		iv Logarithm (對數)	1
		v Common logarithm (常用對數)	1
		vi Exponent (指數)	1
		vii Root (根號)	2
		viii Scientific notation (科學記號)	2
		ix Characteristic (首數) and mantissa (尾數)	2
		x Logarithmic function (對數函數)	2
		xi Exponential function (指數函數)	2
		xii Natural exponential function (自然指數函數)	2
		xiii Exponential growth (指數成長)	2
	Ш	Laws	2
		i Logarithmic laws (對數律)	2
		ii Exponential laws (指數律)	3
		iii Derivative function of natural exponential function	3
		iv Derivative function of natural logarithmic function	3
		v Taylor expansion of logarithmic function	4
		vi Taylor expansion of exponential function	4
		vii Inverse	4
	Ш	Values	4

1 Logarithm (對數) and Exponent (指數)

I Definition

In the following definitions, $\arg(x \in \mathbb{C}_{\neq 0})$ represents the argument (輻角) of x. If we replace $\arg(x)$ with the principal argument (輻角主值) of x, we get the definition of the principal branch (主分支) of them.

i Positive integer exponent (正整數指數)

The exponent of $a \in \mathbb{R}$ to the power of $n \in \mathbb{N}$, denoted as a^n , is defined as

$$a^n := \prod_{k=1}^n a.$$

ii Euler's number (歐拉數/尤拉數)

The Euler's number, denoted as e, is defined as

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

iii Natural logarithm (自然對數)

The natural logarithm of x, denoted as ln(x) or $log_e(x)$, is defined as:

$$\ln(x) \coloneqq \begin{cases} \int_1^x \frac{1}{t} \, \mathrm{d}t, & x \in \mathbb{R}_{>0}, \\ \ln|x| + i \arg(x), & x \in \mathbb{C}_{\neq 0}, \end{cases}$$

iv Logarithm (對數)

The logarithm of x to the base a, denoted as $\log_a(x)$, is defined as

$$\log_a(x) \coloneqq \frac{\ln(x)}{\ln(a)}, \quad a, x \in \mathbb{C}_{\neq 0} \land a \neq 1,$$

where a is called the base (底數) and x is called the argument (真數).

v Common logarithm (常用對數)

 $\log_{10}(x)$ is called the common logarithm of x, also denoted as $\log(x)$.

vi Exponent (指數)

The exponent of a to the exponent or power of n, denoted as a^n , is defined as

$$a^{n} := \begin{cases} e^{n \ln(a)}, & a \in \mathbb{C}_{\neq 0} \land n \in \mathbb{C}, \\ 0, & a = 0 \land n \in \mathbb{R}_{>0}, \end{cases}$$

where a is called the base (底數) and n is called the exponent (指數) or power (冪次).

vii Root (根號)

The yth root (y 次方根) of $w \in \mathbb{C}$, denoted as $\sqrt[y]{w}$ is defined as the principal branch of $w^{\frac{1}{y}}$, where $\sqrt{}$ is called the radical symbol, radical sign, root symbol, or surd (根號).

viii Scientific notation (科學記號)

Scientific notation refers to the representation of a real number in the form of $a \times 10^n$, where $1 \le |a| < 10 \land n \in \mathbb{Z}$.

ix Characteristic (首數) and mantissa (尾數)

Given a common logarithm log(x), the characteristic of it is defined as $\lfloor log(x) \rfloor$, and the mantissa of it is defined as $log(x) - \lfloor log(x) \rfloor$.

x Logarithmic function (對數函數)

 $f(x) = k \log_a(x)$ where $a > 0 \land a \neq 1 \land k \in \mathbb{R}_{\neq 0}$ is called a logarithmic function with base a, of which the domain is $\mathbb{R}_{>0}$ and the range is \mathbb{R} .

xi Exponential function (指數函數)

 $f(x) = ka^x$ where $a \neq 0 \land k \in \mathbb{R}_{\neq 0}$ is called an exponential function with base a, of which the domain is \mathbb{R} and the range is $\mathbb{R}_{>0}$.

xii Natural exponential function (自然指數函數)

 e^x is called the natural exponential function.

xiii Exponential growth (指數成長)

Exponential growth usually refers to a functional that satisfies f'(x) = kf(x) where $k \in \mathbb{R}$, that is, $f(x) = e^{kx} + c$ where $k, c \in \mathbb{R}$.

II Laws

i Logarithmic laws (對數律)

$$\log_{a}(r) + \log_{a}(s) = \log_{a}(rs)$$

$$\log_{a}(r) - \log_{a}(s) = \log_{a}\left(\frac{r}{s}\right)$$

$$\log_{a^{m}}(r^{n}) = \frac{n}{m}\log_{a}(r)$$

$$\log_{a}(b) = \frac{\log_{c}(b)}{\log_{c}a}$$

$$a^{\log_{c}(b)} = b^{\log_{c}(a)}$$

ii Exponential laws (指數律)

$$a^{r} \cdot a^{s} = a^{r+s},$$

$$(a^{r})^{s} = a^{rs},$$

$$(a \cdot b)^{r} = a^{r} \cdot b^{r}$$

iii Derivative function of natural exponential function

$$\frac{\mathsf{d}}{\mathsf{d}x}e^x = e^x$$

Proof.

$$\frac{d}{dx}e^{x} = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{e^{x} \cdot e^{\Delta x} - e^{x}}{\Delta x}$$

$$= e^{x} \cdot \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$

$$= e^{x} \cdot \lim_{\Delta x \to 0} \frac{\lim_{n \to \infty} \sum_{i=0}^{n} \frac{(\Delta x)^{i}}{i!} - 1}{\Delta x}$$

$$= e^{x} \cdot \lim_{\Delta x \to 0} \frac{\lim_{n \to \infty} \sum_{i=1}^{n} \frac{(\Delta x)^{i}}{i!}}{\Delta x}$$

$$= e^{x} \cdot \lim_{\Delta x \to 0} \sum_{i=1}^{n} \frac{(\Delta x)^{i-1}}{i!}$$

$$= e^{x}$$

iv Derivative function of natural logarithmic function

$$\frac{\mathsf{d}}{\mathsf{d}x} \ln(x) = \frac{1}{x}$$

Proof.

 $\frac{d}{dx}\ln(x) = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln(x)}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{\ln\left(\frac{x + \Delta x}{x}\right)}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{\ln\left(1 + \frac{\Delta x}{x}\right)}{\Delta x}$ $= \lim_{\frac{\Delta x}{x} \to 0} \frac{\ln\left(1 + \frac{\Delta x}{x}\right)}{\frac{\Delta x}{x}} \cdot \frac{1}{x}$ $= \frac{1}{x}$

v Taylor expansion of logarithmic function

The Taylor expansion of the logarithmic function $k \log_a(x)$ at x = b is

$$k \log_a(x) = k \log_a(b) + \sum_{n=1}^{\infty} \frac{k(-1)^{n+1}}{n(\ln a)b^n} (x-b)^n, \quad \left| \frac{x-b}{b} \right| < 1.$$

vi Taylor expansion of exponential function

The Taylor expansion of the exponential function ka^x at x = b is

$$ka^{x} = \sum_{n=0}^{\infty} \frac{ka^{b}(\ln a)^{n}}{n!}(x-b)^{n}.$$

vii Inverse

For any $a > 0 \land a \neq 1 \land b \neq 0$, the logarithmic function $k \log_a \left(\frac{x}{b}\right)$ and the exponential function $ba^{\frac{x}{k}}$ are inverses of each other, that is, they are symmetric about y = x.

 $\log 2 \approx 0.3010$, $\log e \approx 0.4343$, $\log 3 \approx 0.4771$, $\log \pi \approx 0.4971$, $\log 4 \approx 0.6021$, $\log 5 \approx 0.6990$

 $\log 6 \approx 0.7782$, $\log 7 \approx 0.8451$, $\log 8 \approx 0.9031$, $\log 9 \approx 0.9542$, $\log 11 \approx 1.0414$, $\ln 2 \approx 0.6931$

III Values

 $\ln 3 \approx 1.0986, \quad \ln \pi \approx 1.1447, \quad \ln 5 \approx 1.6094, \quad \ln 7 \approx 1.9459, \quad \ln 10 \approx 2.3026, \quad \ln 11 \approx 2.3980$ $\sqrt{2} \approx 1.4142, \quad \sqrt{e} = 1.6487, \quad \sqrt{3} \approx 1.7321, \quad \sqrt{\pi} \approx 1.7725, \quad \sqrt{5} \approx 2.2361$ $\sqrt{6} \approx 2.4495, \quad \sqrt{7} \approx 2.6458, \quad \sqrt{10} \approx 3.1623, \quad \sqrt{11} \approx 3.3166, \quad \sqrt{13} \approx 3.6056$ $\sqrt{14} \approx 3.7417, \quad \sqrt{15} \approx 3.8730, \quad \sqrt{17} \approx 4.1231, \quad \sqrt{19} \approx 4.3590, \quad \sqrt{21} \approx 4.5826$ $\frac{\sqrt{5} + 1}{2} \approx 1.6180, \quad \frac{\sqrt{5} - 1}{2} \approx 0.6180, \quad \frac{\sqrt{6} + \sqrt{2}}{4} \approx 0.9659, \quad \frac{\sqrt{6} - \sqrt{2}}{4} \approx 0.2588$ $\frac{\sqrt{10 + 2\sqrt{5}}}{4} \approx 0.9511, \quad \frac{\sqrt{10 - 2\sqrt{5}}}{4} \approx 0.5878$ $\langle a_n = n^2 \rangle_{n=1}^{20} = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400$ $\langle a_n = n^2 \rangle_{n=21}^{40} = 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521$ $\langle a_n = n^{-1} \rangle_{n=1}^{15} = 1, 0.5, 0.\overline{3}, 0.25, 0.2, 0.1\overline{6}, 0.\overline{142857}, 0.125, 0.\overline{1}, 0.1, 0.\overline{09}, 0.08\overline{3}, 0.\overline{076923}, 0.0\overline{0714285}, 0.0\overline{6}$ $\frac{1}{\sqrt{2}} \approx 0.7071, \quad \frac{1}{\sqrt{3}} \approx 0.5774, \quad \frac{1}{\sqrt{5}} \approx 0.4772, \quad \frac{1}{2\sqrt{2}} \approx 0.3536, \quad \frac{1}{2\sqrt{3}} \approx 0.2887, \quad \frac{1}{2\sqrt{5}} \approx 0.2236$

 $\arg\min(x^x) = \frac{1}{a} \approx 0.3680, \quad \min(x^x) = (e^{-1})^{(e^{-1})} \approx 0.6922, \quad e^e \approx 15.1543$