Lenguaje matemático, conjuntos y números

Pregunta 1 (2puntos)

- a) Sean, $p_1, p_2, \ldots, p_k \in \mathbb{N}^*$, k números primos distintos. Demuestre que el número $N = p_1 p_2 \ldots p_k + 1$ no es divisible por ningún p_i siendo $i = 1, 2, \ldots, k$.
- b) Deduzca de lo anterior que existen infinitos números primos.

Nota. Se recuerda que un número natural primo es un número natural n estrictamente mayor que 1 que tiene únicamente dos divisores naturales distintos: él mismo y el 1.

Solución:

a) Demostremos el contrarrecíproco. Supongamos que existe $i \in \{1, 2, ..., k\}$ tal que N es divisible por p_i . Entonces existe $r \in \mathbb{Z}$ tal que $N = rp_i$. En consecuencia, $p_1p_2...p_k + 1 = rp_i$, es decir,

$$1 = rp_i - p_1p_2 \dots p_k = p_i(r - p_1p_2 \dots p_{i-1}p_{i+1} \dots p_k)$$

Por tanto, $p_i q = 1$ siendo $q = r - p_1 p_2 \cdots p_{i-1} p_{i+1} \cdots p_k$. En consecuencia $q = 1/p_i$ y como $q \in \mathbb{Z}$ y $p_i \in \mathbb{N}^*$ resulta que $p_i = 1$. Por tanto p_i no es primo.

b) Procedemos por reducción al absurdo. Supogamos que sólo hay un número finito (k) de números primos distintos $p_1, p_2, \ldots, p_k \in \mathbb{N}^*$ y sea $N = p_1 p_2 \ldots p_k + 1$. Se cumple que $N > p_1 p_2 \ldots p_k \geqslant p_i$ para todo $i \in \{1, 2, \ldots\}$ y N es primo pues ningún p_i es divisor de él. Luego sólo es divisible por 1 y por él mismo. Así pues se ha construido un número primo distinto de los p_i y por tanto hay al menos k+1 números primos distintos, que contradice la hipótesis.

Pregunta 2 (3 puntos) Sea la sucesión a_n definida por recurrencia mediante

$$\begin{cases} a_0 = 4 \\ a_{n+1} = \frac{2a_n^2 - 3}{a_n + 2} \end{cases}$$

- a) Demuestre por inducción que $a_n 3 > 0$ para todo $n \in \mathbb{N}$.
- b) Demuestre que $a_{n+1} 3 \frac{3}{2}(a_n 3) > 0$ para todo $n \in \mathbb{N}$.
- c) Demuestre por inducción que $a_n \geqslant \left(\frac{3}{2}\right)^n + 3$ para todo $n \in \mathbb{N}$.

Solución:

- a) i) La propiedad $a_n 3 > 0$ es cierta para n = 0 pues $a_0 3 = 4 3 = 1 > 0$.
 - ii) Supongamos que $a_n 3 > 0$ y demostremos que $a_{n+1} 3 > 0$. En efecto:

$$a_{n+1} - 3 = \frac{2a_n^2 - 3}{a_n + 2} - 3 = \frac{2a_n^2 - 3 - 3a_n - 6}{a_n + 2} = \frac{2a_n^2 - 3a_n - 9}{a_n + 2}$$

Ahora bien teniendo en cuenta que las soluciones de la ecuación $2x^2 - 3x - 9 = 0$ son $\frac{3 + \sqrt{9 + 72}}{4} = 3$ y $\frac{3 - \sqrt{9 + 72}}{4} = -\frac{3}{2}$ se obtiene que

$$a_{n+1} - 3 = \frac{2(a_n - 3)(a_n + \frac{3}{2})}{a_n + 2}$$
.

Por la hipótesis de inducción se tiene que $a_n - 3 > 0$, y de $a_n > 3$, también se deduce que $a_n + \frac{3}{2} > 0$ y $a_n + 2 > 0$. Por tanto, $a_{n+1} - 3 > 0$. b) Usando que $a_n > 3$ para todo $n \in \mathbb{N}$ se tiene:

$$a_{n+1} - 3 - \frac{3}{2}(a_n - 3) = \frac{2a_n^2 - 3}{a_n + 2} - 3 - \frac{3}{2}(a_n - 3) = \frac{4a_n^2 - 6 - 6a_n - 12 - 3a_n^2 + 3a_n + 18}{2(a_n + 2)} = \frac{a_n^2 - 3a_n}{2(a_n + 2)} = \frac{a_n(a_n - 3)}{2(a_n + 2)} > 0$$

- c) i) La propiedad $a_n \ge \left(\frac{3}{2}\right)^n + 3$ es cierta para n = 0 pues $a_0 = 4 \ge (3/2)^0 + 3 = 4$.
- ii) Supongamos que $a_n \ge \left(\frac{3}{2}\right)^n + 3$ y demostremos que $a_{n+1} \ge \left(\frac{3}{2}\right)^{n+1} + 3$. En efecto por el apartado b) sabemos que

$$a_{n+1} > 3 + \frac{3}{2}(a_n - 3) > 0$$

y utilizando la hipótesis de inducción

$$3 + \frac{3}{2}(a_n - 3) \ge 3 + \frac{3}{2}\left(\left(\frac{3}{2}\right)^n + 3 - 3\right) = \left(\frac{3}{2}\right)^{n+1} + 3$$

En consecuencia, $a_{n+1} > \left(\frac{3}{2}\right)^{n+1} + 3$ y por tanto, $a_{n+1} \ge \left(\frac{3}{2}\right)^{n+1} + 3$.

Pregunta 3 (2,5 puntos) Sea $f: [0,1] \longrightarrow [0,1]$ una aplicación creciente, es decir, para todo $x, x' \in [0,1]$, si $x \le x'$ entonces $f(x) \le f(x')$. Sea $A = \{x \in [0,1] \mid f(x) \le x\}$.

- a) Demuestre que $A \neq \emptyset$.
- b) Demuestre que $f(A) \subset A$.
- c) Sea $a = \inf(A)$. Demuestre que f(a) es una cota inferior de A y deduzca que f(a) = a.

Solución:

- a) Para x = 1 se tiene que $f(1) \in [0, 1]$ y en consecuencia $f(1) \leq 1$. Por tanto, $1 \in A$ y en consecuencia $A \neq \emptyset$.
- b) Veamos que $f(A) \subset A$. En efecto para todo $y \in f(A)$ existe $x \in A$ tal que y = f(x). Como $x \in A$ se cumple que $y = f(x) \leqslant x$. Pero al ser f una aplicación creciente resulta que $f(y) \leqslant f(x) = y$. En consecuencia $y \in A$.
- c) Sea $a = \inf(A)$ que existe pues A es un conjunto no vacío acotado inferiormente por 0. Al ser a el ínfimo y 0 cota inferior de A se obtiene que $0 \le a$. Como a es una cota inferior de A resulta que $a \le x$ para todo $x \in A$. Aplicando que f es creciente, obtenemos que $f(a) \le f(x) \le x$ para todo $x \in A$. Por tanto f(a) es una cota inferior de A.

Al ser f(a) una cota inferior de A y $a = \inf(A)$, se deduce que $f(a) \le a$. Por tanto, $a \in A$. Aplicando el apartado b) se obtiene que $f(a) \in f(A) \subset A$. Por tanto, $a \le f(a)$ pues a es una cota inferior de A. En consecuencia a = f(a).

Pregunta 4 (2,5 puntos) En el conjunto $\mathcal{G} = \{z = a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, se considera las restricciones a \mathcal{G} de la suma y el producto de números complejos.

- a) Demuestre que si $z, z' \in \mathcal{G}$ entonces z + z' y $zz' \in \mathcal{G}$.
- b) Determine el conjunto de todos los elementos de \mathcal{G} con inverso en \mathcal{G} .
- c) Demuestre que para todo $\omega \in \mathbb{C}$ existe $z \in \mathcal{G}$ tal que $|\omega z| < 1$.

Solución:

- a) En efecto si z = a + ib y z' = a' + ib' con $a, a', b, b' \in \mathbb{Z}$ entonces
 - i) $z + z' = (a + a') + i(b + b') \in \mathcal{G}$ pues a + a' y $b + b' \in \mathbb{Z}$.
 - ii) $zz' = (a+ib)(a'+ib') = (aa'-bb') + i(ba'+ab') \in \mathcal{G}$ pues aa'-bb' y $ba'+ab' \in \mathbb{Z}$.
- b) $0 \neq z = a + ib \in \mathcal{G}$ es inversible en \mathcal{G} si y sólo si $z^{-1} = \frac{a}{a^2 + b^2} i\frac{b}{a^2 + b^2} \in \mathcal{G}$, es decir, $\frac{a}{a^2 + b^2} \in \mathbb{Z}$ y

 $\frac{b}{a^2+b^2}\in\mathbb{Z} \text{ para } a,b\in\mathbb{Z} \text{ y se obtiene que } a=0 \text{ y } b=\pm 1 \text{ o } b=0 \text{ y } a=\pm 1.$

En definitiva, el conjunto de los elementos inversibles es $\mathcal{J} = \{1, -1, i, -i\}$.

Otra forma de verlo es observando que si $0 \neq z = a + ib \in \mathcal{G}$ entonces $|z| \geqslant 1$ pues $|z| \geqslant \max \left(|a|, |b|\right) \geqslant 1$. Por tanto si $0 \neq z \in \mathcal{G}$ es inversible en \mathcal{G} entonces $|z| \geqslant 1$ y $|z^{-1}| = \frac{1}{|z|} \geqslant 1$. Por tanto, |z| = 1 y se obtiene el conjunto de elementos inversibles \mathcal{J} .

c) Observemos en primer lugar que si $\alpha \in \mathbb{R}$ existe $N_{\alpha} \in \mathbb{Z}$ tal que $|\alpha - N_{\alpha}| \leq \frac{1}{2}$. En efecto, si consideramos la parte entera de α , $E(\alpha) \in \mathbb{Z}$, tal que $E(\alpha) \leq \alpha < E(\alpha) + 1$, se tiene,

$$1 = E(\alpha) + 1 - E(\alpha) = (E(\alpha) + 1 - \alpha) + (\alpha - E(\alpha)) = |\alpha - (E(\alpha) + 1)| + |\alpha - E(\alpha)|.$$

En consecuencia, $|\alpha - (E(\alpha) + 1))| \leq \frac{1}{2}$ o $|\alpha - E(\alpha)| \leq \frac{1}{2}$, pues en caso contrario la suma de ambos sería estrictamente mayor que 1. Se toma N_{α} igual a uno de los dos valores $E(\alpha)$ o $E(\alpha) + 1$ cumpliendo que $|\alpha - N_{\alpha}| \leq \frac{1}{2}$. En otras palabras N_{α} es el entero "más próximo" a α .

Sea $\omega = x + iy \in \mathbb{C}$ y sean los correspondientes N_x y N_y tales que $|x - N_x| \leqslant \frac{1}{2}$ y $|y - N_y| \leqslant \frac{1}{2}$. Para $z = N_x + iN_y$ se cumple que $z \in \mathcal{G}$ y $|\omega - z|^2 = (x - N_x)^2 + (y - N_y)^2 \leqslant 1/4 + 1/4 = 1/2$ y por tanto $|\omega - z| \leqslant \sqrt{2}/2 < 1$.