

11. Sekvencijski sklopovi - primjer

Primjer 8.6 iz knjige:

S. D. Brown, Z. G. Vranešić: Fundamentals of Digital Logic with VHDL Design, McGraw-Hill, 2001, str. 475-480.

Zadatak - neformalna specifikacija

- Automat prihvaća kovanice:
 - nickel, 5 centi (5/100 \$) i
 - dime, 10 centi (10/100 \$).

Kad se ubaci ukupno 15 centi automat izbacuje traženi artikl.

 Ako se ubaci 20 automat ne vraća ostatak već "kreditira" kupca s 5 u sljedećoj narudžbi.

- Sinkroni rad
- Uzlaznim bridom (pozitivnim) okidani bistabili
- Takt impulsi reda veličine 100 ns
- Mehanizam koji prihvaća kovanice generira dva signala čije prisustvo označava koji je novčić ubačen:
 - sense_D
 - sense_N
- Kako je taj mehanizam mehanički, pretpostavljamo da je puno sporiji od "elektronike" te će signali biti prisutni veći broj takt impulsa.

Automat ("mehanički dio") generira i dva signala: D i N. D je postavljen u "1" u trajanju 1 takt impulsa nakon što D_S postane "1", a N je postavljen u "1" u trajanju 1 takt impulsa nakon što N_S postane "1"

Sklop za generiranje signala N

Dijagram stanja

Tablica stanja

Trenutno	Slje	Izlaz			
stanje	DN = 00	01	10	11	Z
S1	S 1	S 3	S 2	_	0
S2	S 2	S 4	S 5	_	0
S3	S 3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S 3	_	_	_	1
S6	S 6	S 8	S 9	_	0
S7	S 1	_	_	_	1
S8	S 1	_	_	_	1
S9	S 3	_	_	_	1

Ekvivalentna stanja

Trenutno	Slj	Izlaz			
stanje	<i>DN</i> =00	01	10	11	Z
S1	S1	S 3	S 2	_	0
S2	S2	S 4	S 5	_ [0
S 3	S 3	S 6	S 7	_ [0
S4	S 1	_	_	_	1
S5	S 3	_	_	_	1
S 6	S 6	S 8	S 9	_	0
S7	S 1	_	_	-	1
S 8	S 1	_	_	_	1
S 9	S3	_	_	_	1

$$P_1 = (S1,S2,S3,S4,S5,S6,S7,S8,S9)$$

S obzirom na izlaze:

$$P_2 = (S1,S2,S3,S6) (S4,S5,S7,S8,S9)$$

Trenutno	Slj	Sljedeće stanje					
stanje	DN =00	01	10	11	Z		
S1	S 1	S 3	S 2	1	0		
S2	S2	S 4	S 5	_	0		
S3	S3	S 6	S 7	_	0		
S4	S 1	_	_	_	1		
S5	S 3	_	_	_	1		
S 6	S 6	S 8	S 9	_	0		
S7	S 1	_	_	_	1		
S 8	S 1	_	_	_	1		
S 9	S 3	_	_	_	1		

Sad gledamo slijedeća stanja:

$$P_2 = (\$1,\$2,\$3,\$6) (\$4,\$5,\$7,\$8,\$9) \\ \text{DN 00} \quad \$1,\$2,\$3,\$6 \quad \$1,\$3,\$1,\$1,\$3 \\ \text{DN 01} \quad \$3,\$4,\$6,\$8 \quad -\ ,\$$

Slijedi nova podjela:

$$P_3 = (S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)$$

Ponovo gledamo slijedeća stanja:

$$P_3 = (S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)$$

DN 00 S1 S3 S2,S6 S1,S3,S1,S1,S3
DN 01 S3 S6 S4,S8 - ,- ,- ,- ,-
DN 10 S2 S7 S5,S9 - ,- ,- ,- ,-

Nova podjela:

$$P_4 = (S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)$$

Trenutno	Slj	Izlaz			
stanje	DN =00	01	10	11	Z
S1	S 1	S 3	S 2	1	0
S2	S2	S 4	S 5	_	0
S 3	S3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S3	_	_	_	1
S 6	S 6	S 8	S 9	_	0
S7	S 1	_	_	_	1
S 8	S 1	_	_	_	1
S 9	S 3	_	_	_	1

Ponovo gledamo sljedeća stanja:

Konačna podjela:

$$P_5 = (S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)$$
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
 $S1 S3 S2 S4 S5$

Ekvivalentna stanja – nova tablica stanja

Trenutno	Sljed	Izlaz			
stanje	<i>DN</i> = 00	01	10	11	Z
S1	S 1	S 3	S2	_	0
S2	S2	S 4	S 5	_	0
S3	S 3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S 3	_	_	-	1
S 6	S6	S 8	S 9	_	0
S7	S 1	_	_	_	1
S8	S 1	_	_	_	1
S9	S3	_	_	_	1

Trenutno	Slje	Sljedeće stanje					
stanje	DN=00	01	10	11	Z.		
S1	S 1	S 3	S2	_	0		
S2	S2	S 4	S 5	_	0		
S 3	S 3	S 2	S 4	_	0		
S4	S 1	_	_	_	1		
S5	S 3	_	_	_	1		

Novi dijagram stanja – minimalni automat

Mealyjev model automata

VHDL – "state machine"

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity machine is
  Port (D, N: in STD LOGIC;
        CP: in STD LOGIC:
        RESET: in STD LOGIC;
        Z: out STD LOGIC);
end machine:
architecture Behavioral of machine is
  type state_type is (S1,S2,S3,S4,S5);
  signal state, next_state : state_type;
  signal Z int : std logic;
  signal DN : std_logic_vector (0 to 1);
begin
  DN \leq D \& N:
  SYNC PROC: process (CP)
  OUTPUT_DECODE: process (state)
  NEXT STATE DECODE: process (state, DN)
end Behavioral:
```

```
SYNC_PROC: process (CP)
 begin
   if (CP'event and CP = '1') then
     if (RESET = '1') then
       state <= S1:
       Z \le '0':
     else
       state <= next state;
       Z \leq Z int:
     end if;
   end if;
 end process;
OUTPUT_DECODE: process (state) -- MOORE State Machine - Outputs based on state only
  begin
         state = S4 then Z_int <= '1';
   elsif state = S5 then Z_int <= '1';</pre>
                          Z \text{ int } <= '0';
   else
   end if;
 end process;
```

```
NEXT STATE DECODE: process (state, DN)
begin
 --declare default state for next state to avoid latches
 next_state <= state; --default is to stay in current state</pre>
 --insert statements to decode next state
 case (state) is
   when S1 =>
     case (DN) is
         when "00" => next state <= $1;
         when "01" => next state <= S3;
         when "10" => next state <= S2:
         when others => next_state <= state;</pre>
     end case;
   when S2 =>
    case (DN) is
         when "00" => next state <= S2;
         when "01" => next state <= $4:
         when "10" => next state <= $5:
         when others => next state <= state;
     end case;
```

```
when S3 =>
       case (DN) is
          when "00" => next_state <= S3;
          when "01" => next_state <= S2;
          when others => next state <= state;
       end case:
     when S4 =>
       case (DN) is
          when "00" => next state <= $1;
          when others => next state <= state;
       end case:
     when S5 =>
       case (DN) is
          when "00" => next state <= $3:
          when others => next state <= state;
       end case;
     when others =>
       next_state <= state;</pre>
   end case;
 end process;
end Behavioral;
```


Kodiranje stanja

Trenutno	Slje	Sljedeće stanje				
stanje	DN=00	01	10	11	Z	
S 1	S 1	S 3	S 2		0	
S2	S2	S 4	S 5	_	0	
S 3	S 3	S 2	S 4	_	0	
S4	S 1	_	_	_	1	
S5	S 3	_		_	1	

	Slje	Izlaz			
ABC	DN=00	01	10	11	Z
S1000	000	001	010		0
S2010	010	011	100	_	0
S3001	001	010	011	_	0
S4011	000	_	_	_	1
S5100	001	_	_	_	1

Ulazne jednadžbe - bistabil A

	Slje	Sljedeće stanje				
ABC	DN=00	01	10	11	Z	
S1000	000	001	010		0	
S2010	010	011	100	_	0	
S3001	001	010	011		0	
S4011	000	-		_	1	
S5100	001			_	1	

$$A^{n+1}=BD$$

Ulazne jednadžbe - bistabil B

	Slje	Izlaz			
ABC	DN=00	01	10	11	Z
S1000	Q <mark>O</mark> O	001	010	ı	O
S2010	010	011	100	_	0
S3001	001	010	011	_	0
S4011	000			_	1
S5100	001			_	1

$$B^{n+1} = \overline{B}D + CN + B\overline{C}\overline{D}$$

Ulazne jednadžbe - bistabil C

	Slje	Sljedeće stanje				
ABC	DN=00	01	10	11	Z	
S1000	000	001	010		0	
S2010	010	011	100	_	0	
S3001	001	010	011	_	0	
S4011	000	+	+	_	1	
S5100	001	-	$ \sqcup$	_	1	

$$C^{n+1}=A+\overline{B}C\overline{N}+\overline{C}N$$

Izlazna jednadžba - izlaz Z

	Slje	Sljedeće stanje				
ABC	DN=00	01	10	11	\mathcal{Z}	
S1000	000	001	010		0	
S2010	010	011	100	_	0	
S3001	001	010	011	_	0	
S4011	000	_	_	_	1	
S5100	001	_	_	_	1	

	Z^{n}	ABC							
		000	001	011	010	100_	101	111	110
DN	00			1		1	Х	Х	X
	01			Х		X	Х	Х	Х
	11	X	Х	Х	Х	X	Х	Х	Х
	10			Х		×	Х	Х	X

$$Z=A+BC$$

Ulazne jednadžbe bistabila i izlazna jednadžba

$$A^{n+1}=BD$$
 $B^{n+1}=\overline{B}D+CN+B\overline{C}D$
 $C^{n+1}=A+\overline{B}C\overline{N}+\overline{C}N$
 $Z=A+BC$

$$Q^{n+1} = D'$$

Logička shema

Shema - simulacija


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Dbist is
 Port ( D : in STD_LOGIC;
       CP: in STD_LOGIC;
       Reset: in STD_LOGIC;
       Q: out STD_LOGIC);
end Dbist;
architecture Behavioral of Dbist is
begin
 process (CP, Reset)
 begin
  if Reset='1' then Q <= '0';
  elsif (CP'event and CP='0') then
     Q \leq D:
  end if;
 end process;
end Behavioral;
```

```
library IEEE:
use IEEE.STD LOGIC 1164.ALL:
entity VendingMachine is
 Port (D.N: in STD LOGIC:
        CP, Reset: in STD LOGIC;
        Z: out STD LOGIC);
end VendingMachine;
architecture Struct of VendingMachine is
  signal A.B.C.Anxt.Bnxt.Cnxt: STD LOGIC:
begin
 Anxt \leq B and D:
  Bnxt <= (not B and D) or (C and N) or (B and not C and not D);
 Cnxt <= A or (not B and C and not N) or (not C and N);
  Z \le (\text{not } A \text{ and } B \text{ and } C) \text{ or } (A \text{ and not } B \text{ and not } C):
  Bist A: entity Dbist port map (D=>Anxt, Q=>A, Reset=>Reset, CP=>CP);
  Bist_B: entity Dbist port map (D=>Bnxt, Q=>B, Reset=>Reset, CP=>CP);
  Bist C: entity Dbist port map (D=>Cnxt, Q=>C, Reset=>Reset, CP=>CP):
end Struct:
```


VHDL + D_{sense}, N_{sense}

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
                                          sense
entity filter is
  Port ( Ulaz : in STD_LOGIC;
        Takt: in STD_LOGIC;
        lzlaz : out STD_LOGIC);
end filter;
architecture struktura of filter is
signal izl1, izl2 : STD_LOGIC;
begin
 Bist1 : entity Dbist port map (D=>Ulaz, Q=>izl1, Reset=>'0', CP=>Takt);
 Bist2 : entity Dbist port map (D=>izl1, Q=>izl2, Reset=>'0', CP=>Takt);
 lzlaz <= izl1 and not izl2;</pre>
end struktura;
```

VHDL + D_{sense}, N_{sense}

```
library IEEE:
use IEEE.STD LOGIC 1164.ALL;
entity Automat is
  Port (Dsense: in STD LOGIC:
        Nsense: in STD LOGIC;
        Cp: in STD LOGIC;
        Resetiraj: in STD_LOGIC;
        Cokoladica: out STD LOGIC);
end Automat:
architecture struktura of Automat is
signal D, N: STD LOGIC;
begin
 FilterD: entity Filter port map (Ulaz=>Dsense, Izlaz=>D, Takt=>Cp);
 FilterN: entity Filter port map (Ulaz=>Nsense, Izlaz=>N, Takt=>Cp);
 VM : entity VendingMachine port map (D=>D, N=>N, CP=>Cp,
                                      Reset=>Resetiraj, Z=>Cokoladica);
end struktura;
```

VHDL - simulacija

