An Explicit Construction of a Class of Type-III and Type-IV QC-LDPC Codes with Girth 6

4th International Conference on

Combinatorics, Cryptography, Computer Science and Computing

November 20-21, 2019 - Iran University of Science & Technology

An Explicit Construction of a Class of Type-III and Type-IV QC-LDPC Codes with Girth 6

Mohammad Gholami

Shahrekord University

Department of Mathematics, Shrekord University, Shahrekord, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran gholami-m@sci.sku.ac.ir

Farzaneh Abedi

Department of Mathematics, Shrekord University, Shahrekord, Iran abedi@stu.sku.ac.ir

ABSTRACT

Type-t, $t \ge 1$, quasi-cyclic (QC) low-density parity-check (LDPC) codes are a class of protograph codes whose parity-check matrices contain blocks each of which is a summation of at most t circulant permutation matrices (CPMs). In this paper, the parity-check matrices with a single row of circulants are used to generate a class of 4-cycle free type-III and type-IV QC-LDPC codes by an explicit method, such that the constructed codes have smaller length and better error performance than state-of-the-art constructions.

KEYWORDS: QC-LDPC codes, Girth, Explicit Constructions, Parity-check matrix

1 INTRODUCTION

QC-LDPC codes [1]-[8] have received much attention due to their implementation-friendly structure and similar decoding performance compared to computer-generated random LDPC codes. The parity-check matrices of QC-LDPC codes are comprised of blocks of circulant matrices, classified by the researchers as *type-I* [1]-[2], *type-II* [3, 6] and *type-III* [6] QC-LDPC codes, if each block is a combination of at most one, two and three circulant permutation matrices (CPMs), respectively.

Corresponding to each QC-LDPC code with parity-check matrix H we give $Tanner\ graph\ TG(H)$ as a bipartite graph whose incident matrix is the parity-check matrix H. A cycle is a closed path in the Tanner graph that begins and ends at the same vertex. The length of the shortest cycles in the Tanner graph is called girth. Also, a (J, L)-regular LDPC code with the parity-check matrix H is defined as a code in which column and row weight of H, i.e. the summation of elements of each column and row of H, are J and L, respectively.

The methods of construction of LDPC codes are classified in random-like and structured categories. Among the structural method, explicit approaches are practical because there is no need for a computer search to find the parity-check matrices. Lally [3] presented a class of type-II QC-LDPC codes with girth six whose parity-check matrices just contain blocks of weight 2. Moreover, *perfect cyclic difference sets* [5] and *Sidon sequences* [4], are used as two main combinatorial objects to construct some type-II QC-LDPC codes with girths at most 6. The authors in [6] have proposed a search algorithm to find a class of type-II, III QC-LDPC codes with girth at most 10. In [7], the authors have investigated all of the

patterns of the base graphs corresponding to multi-type QC-LDPC codes with a given maximumachievable girth.

In this paper, we present an explicit construction for type-w, w = 3.4 QC-LDPC codes which are simpler and more flexible in terms of the length and rate than the codes recently constructed by algebraic and combinatorial approaches [8]. To achieve codes with a high rate, a single row of circulants is considered as the parity-check matrix of a class of QC-LDPC codes with column-weights w, w = 3.4. This construction of parity-check matrix is previously used in [8] to construct some type-III and type-IV QC-LDPC codes by Cyclic Difference Families (CDF). Simulation results show that the constructed codes outperform the codes in [8] and the codes constructed from progressive edge growth (PEG).

2 TYPE-w QC-LDPC CODES

Let m, s be some positive integers such that $0 \le s \le m-1$. By the permutation matrix (CPM) I^s of slope s, we mean the $m \times m$ permutation matrix $(p_{i,j})_{1 \le i,j \le m}$, in which $p_{i,j} = 1$ if and only if $i - j = s \mod m$. Note that when s = 0, the circulant I^s is the $m \times m$ identity matrix I. Now, for the positive integers w, l, let $H = (H_i)_{1 \le i \le l}$ in which each H_i is the sum of w CPM's of size m as $H_i = I^{s_{1,j}} + \cdots + I^{s_{w,j}}$ for some slopes $0 \le s_{i,j} \le m-1$, $1 \le i \le w$. The $1 \times ml$ matrix H can be considered as the parity-check matrix of a type-w QC-LDPC code of length ml which contains a cycle of length 4 if and only if the following condition is hold [3].

$$s_{i_0,i_0} - s_{i_1,i_0} + s_{i_2,i_1} - s_{i_2,i_1} = 0 \pmod{m},\tag{1}$$

 $s_{i_0,j_0} - s_{i_1,j_0} + s_{i_2,j_1} - s_{i_3,j_1} = 0 \pmod{m}, \tag{1}$ for some $1 \leq j_0 \leq j_1 \leq l$, $1 \leq i_0 \neq i_1 \leq w$ and $1 \leq i_2 \neq i_3 \leq w$, such that $i_1 \neq i_2$ and $i_0 \neq i_3$ if $j_0 = j_1$.

In continue, we give some explicit constructions for the slope matrix $S = (s_{i,j})_{1 \le i \le w, 1 \le j \le l}$, such that the corresponding type-w, w = 3.4, QC-LDPC code with paritycheck matrix H is 4-cycle free.

2.1 Type-III QC-LDPC Codes

Theorem 2.1. For $1 \le j \le l$, let $(s_{1,j}, s_{2,j}, s_{3,j}) = (ja_0, ja_1, ja_2)$, where $a_0 = 1, a_1 = 2$ and $a_2 = l + 3$, then the slope matrix $S = (s_{i,j})_{1 \le i \le 3, 1 \le j \le l}$ corresponds to a type-III QC-LDPC code with girth 6 for enough large CPM size m.

Proof. To show that the code is 4-cycle free, it is sufficient to prove that left-hand side (LHS) of Eq. 1 is not zero. Thus, we consider the following two cases.

Case 1 • If 4-cycle occurs in one block $j_0 = j_1$, then for each $0 \le t_1 \ne t_2 \ne t_3 \le 2$, we have following cases.

(a) $(s_{i_0,j_0},s_{i_1,j_0},s_{i_2,j_0},s_{i_3,j_0}) = (j_0a_{t_1},j_0a_{t_2},j_0a_{t_1},j_0a_{t_2})$, then the LHS is $2j_0(a_{t_2}-a_{t_2})$ a_{t_1}) which is obviously non-zero.

(b) $(s_{i_0,j_0},s_{i_1,j_0},s_{i_2,j_0},s_{i_3,j_0})=(j_0a_{t_1},j_0a_{t_2},j_0a_{t_1},j_0a_{t_3}), \ (j_0a_{t_2},j_0a_{t_1},j_0a_{t_3},j_0a_{t_1}),$ then LHS is $j_0(a_{t_2}+a_{t_3}-2a_{t_1})$ which is non-zero, because of $a_{t_2}+a_{t_3}\neq 2a_{t_1}$.

Case 2 • If 4-cycle occurs in two blocks $j_0, j_1, 1 \le j_0 < j_1 \le l$ in which $(s_{i_0, j_0}, s_{i_1, j_0}) =$ $(j_0a_{t_1},j_0a_{t_2})$ and $(s_{i_2,j_1},s_{i_3,j_1})=(j_1a_{k_1},j_1a_{k_2}),$ for some $0\leq t_1\neq t_2\leq 2$ and $0\leq k_1\neq k_2\leq 3$ 2, then LHS of Eq.1 is equal to $j_0(a_{t_1}-a_{t_2})+j_1(a_{k_1}-a_{k_2})$ which is zero if and only if

$$\frac{j_1}{j_0} = \frac{a_{k_2} - a_{k_1}}{a_{t_2} - a_{t_1}} \tag{2}$$

Or, equivalently $\frac{j_1}{j_0} \in \{\frac{a_2-a_1}{a_1-a_0}, \frac{a_2-a_0}{a_2-a_1}, \frac{a_2-a_0}{a_1-a_0}\}$. By setting $a_0=1$ and $a_1=2$, we must have $\frac{j_1}{j_0} \in \{a_2-2, a_2-1, \frac{a_2-1}{a_2-2}\}$ which is not hold for $a_2 \ge l+3$, so the constructed code is 4-cycle free. \blacksquare

Example 2.2. For l=3, the slope matrix S which is given by Theorem 2.1 and the corresponding parity-check matrix \mathcal{H} of type-III QC-LDPC code with girth 6 for CPM-size m=21 are as follows.

$$S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 6 & 12 & 18 \end{pmatrix}, \quad \mathcal{H} = (I^1 + I^2 + I^6 \quad I^2 + I^4 + I^{12} \quad I^3 + I^6 + I^{18}).$$

2.2 Type-IV QC-LDPC codes

Theorem 2.3. For $1 \le j \le l$, let $(s_{1,j}, s_{2,j}, s_{3,j}, s_{4,j}) = (ja_0, ja_1, ja_2, ja_3)$, where $(a_0, a_1, a_2, a_3) = (1,3,2l+4,4l+6)$, then the slope matrix $S = (s_{i,j})_{1 \le i \le 4,1 \le j \le l}$ corresponds to a type-IV QC-LDPC code with girth 6 for enough large CPM size m.

Proof. To show that the code is 4-cycle free, it is sufficient to prove that LHS of Eq.1 is not zero. Thus, we consider the following two cases.

Case 1. If 4-cycle occurs in one block $j_0 = j_1$, then for each $0 \le t_1 \ne t_2 \ne t_3 \ne t_4 \le 3$, we have the following cases.

- 1. $(s_{i_0,j_0},s_{i_1,j_0},s_{i_2,j_0},s_{i_3,j_0})=(j_0a_{t_1},j_0a_{t_2},j_0a_{t_1},j_0a_{t_2})$, then LHS is $2j_0(a_{t_2}-a_{t_1})$ which is nonzero.
- 2. $(s_{i_0,j_0}, s_{i_1,j_0}, s_{i_2,j_0}, s_{i_3,j_0}) = (j_0 a_{t_1}, j_0 a_{t_2}, j_0 a_{t_1}, j_0 a_{t_3}), \quad (j_0 a_{t_2}, j_0 a_{t_1}, j_0 a_{t_3}, j_0 a_{t_1}),$ then LHS is $j_0(a_{t_2} + a_{t_3} 2a_{t_1})$ which is nonzero, because of $a_{t_2} + a_{t_3} \neq 2a_{t_1}$.
- 3. $(s_{i_0,j_0},s_{i_1,j_0},s_{i_2,j_0},s_{i_3,j_0})=(j_0a_{t_1},j_0a_{t_2},j_0a_{t_3},j_0a_{t_4})$, then LHS is $j_0(a_{t_1}-a_{t_2}+a_{t_3}-a_{t_4})$, which is nonzero because $a_{t_1}-a_{t_2}\neq a_{t_4}-a_{t_3}$.

Case 2. If 4-cycle occurs in two blocks $j_0, j_1, 0 \le j_0 < j_1 \le l$, where $(s_{i_0, j_0}, s_{i_1, j_0}) = (j_0 a_{t_1}, j_0 a_{t_2})$ and $(s_{i_2, j_1}, s_{i_3, j_1}) = (j_1 a_{k_1}, j_1 a_{k_2})$, for some $t_1 \ne t_2$ and $k_1 \ne k_2$ in $\{0, 1, 2, 3\}$, then LHS is equal to $j_0(a_{t_1} - a_{t_2}) + j_1(a_{k_1} - a_{k_2})$ which is zero if and only if

$$\frac{j_1}{j_0} = \frac{a_{k_1} - a_{k_2}}{a_{t_1} - a_{t_2}} \tag{3}$$

Or, equivalently

$$\frac{j_{1}}{j_{0}} \in \left\{\frac{a_{2}-a_{1}}{a_{1}-a_{0}}, \frac{a_{2}-a_{0}}{a_{3}-a_{2}}, \frac{a_{3}-a_{1}}{a_{2}-a_{0}}, \frac{a_{3}-a_{2}}{a_{2}-a_{1}}, \frac{a_{2}-a_{0}}{a_{2}-a_{1}}, \frac{a_{3}-a_{1}}{a_{3}-a_{2}}, \frac{a_{3}-a_{2}}{a_{1}-a_{0}}, \frac{a_{3}-a_{1}}{a_{1}-a_{0}}, \frac{a_{3}-a_{1}}{a_{2}-a_{1}}, \frac{a_{3}-a_{1}}{a_{2}-a_{1}}, \frac{a_{3}-a_{2}}{a_{3}-a_{2}}, \frac{a_{3}-a_{2}}{a_{1}-a_{0}}\right\}$$

$$(4)$$

Without less of generality, we consider $a_0 < a_1 < a_2 < a_3$, then from $j_0 < j_1$, we have $a_1 - a_0 < a_2 - a_1 < a_3 - a_2 < a_2 - a_0 < a_3 - a_1 < a_3 - a_0$. By setting $a_0 = 1$ and $a_1 = 3$, from LHS of Eq. 1 to be nonzero, we must have $\frac{a_{k_1} - a_{k_2}}{a_{t_1} - a_{t_2}} \notin \{\frac{j_1}{j_0}, \ 1 \le j_0 < j_1 \le l\}$, therefore according to $\frac{j_1}{j_0} \ne \frac{a_2 - a_1}{a_1 - a_0}$, we must have $\frac{a_2 - 3}{2} > l$, i.e. $a_2 \ge 2l + 4$. Let $a_2 = 2l + 4$, then from $\frac{j_1}{j_0} \ne \frac{a_3 - a_2}{a_2 - a_1}$, we have $\frac{a_3 - a_2}{a_2 - a_1} > l$, or $a_3 \ge a_2(l + 1) - 3l + 1$. Then, $a_3 = 2l^2 + 3l + 5$ is a proper choice for a_3 . In each way, Eq. 4 is not satisfied for $(a_0, a_1, a_2, a_3) = (1,3,2l + 4,2l^2 + 3l + 5)$, then the constructed code is 4-cycle free.

Example 2.4. For l=3, the slope matrix S which is given by Theorem 2.2 and the corresponding parity-check matrix \mathcal{H} of type-IV QC-LDPC code with girth 6 for CPM-size m=63, are as follows.

$$S = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 9 \\ 10 & 20 & 30 \\ 32 & 64 & 96 \end{pmatrix},$$

$$\mathcal{H} = (I^1 + I^3 + I^{10} + I^{32} \quad I^2 + I^6 + I^{20} + I^{64} \quad I^3 + I^9 + I^{30} + I^{96}).$$

2.3 Some Comparisons with other Constructions

Using Theorem 2.1 and Theorem 2.2, Table 1 presents some constructed type-IV QC-LDPC codes with girth 6 against the Type-II QC-LDPC codes in [3, 4, 5] having the same column/row weights. As the table shows, the constructed codes are smaller than the codes in [3, 4, 5].

Table 1: The length of type-I	QC-LDPC codes against the codes in	[3, 4, 5]
10010 1. 1110 10115011 01 0, 50 1	Q = EET = Cours upumst the Cours in	

l	R	n_1	$n_{2}[3]$	n_3 [4]	n_4 [5]
2	0.5	70	144	92	1092
3	0.66	189	468	210	-
4	0.75	496	1088	568	7944
5	0.8	750	2100	1110	-
6	0.83	1170	3600	2052	-

Finally, Table 2 provides a 6,8-cycle multiplicities comparison between some constructed type-III QC-LDPC codes lifted from $1 \times l$ base matrices, $4 \le l \le 8$, denoted by prop and the QC-LDPC codes of the same length and regularity in [8]. As the table shows, the constructed codes have better 6,8-cycle multiplicities than the codes in [8].

Table 2: 6,8-cycle multiplicities of the constructed type-III QC-LDPC codes of length n against the codes in [8]

Cycle	Length	6		8	
l	n	prop	[8]	prop	[8]
4	124	2077	2139	31248	30969
5	215	4085	4128	80625	80625
6	342	7182	8341	173052	180519
7	511	11680	14746	328719	364343
8	728	17927	19474	572208	593957

Figure 1 has provided a bit-error-rate comparison between the type-III QC-LDPC code lifted from a 1×8 base matrix with lifting degree m = 91 and girth 6, on one hand, and a 4-cycle free QC-LDPC code from cyclic difference sets in [8] and an LDPC code from progressive

edge growth (PEG) [9], on the other hand. As the figure shows, the constructed code, denoted by $C(1 \times 8; m = 91; g = 6)$, outperforms the code in [8] and PEG LDPC code.

Figure 1: The constructed type-III QC-LDPC code with girth 6 against QC-LDPC code in [8] and PEG LDPC code [9]

3 ACKNOWLEDGEMENTS

This work was supported in part by the research council of Shahrekord University. Moreover, the first author was in part supported by a grant from IPM (No. CS1398-4-279)

REFERENCES

- [1] M. P. C. Fossorier, "Quasi-cyclic low density parity-check codes from circulant permutation matrices," IEEE Transactions on Information Theory., vol. 50, 2004, pp. 1788–1793.
- [2] M. Gholami, M. Samadieh, and G. Raeisi, "Column-weight three QC LDPC codes with girth 20," IEEE Communications Letters., vol. 17, 2013, pp. 1439-1442.
- [3] K. Lally, "Explicit construction of type-II QC-LDPC codes with girth at least 6," In 2007 IEEE International Symposium on Inform. Theory., 2007, pp. 2371-2375.
- [4] G. Zhang, "Type-II quasi-cyclic low-density parity-check codes from Sidon sequences," Electronics Lett., vol. 52, 2016, pp. 367–369.
- [5] L. Zhang, B. Li and L. Cheng, "Construction of type-II QC-LDPC codes based on perfect cyclic difference set," Chinese Journal of Electronics, vol. 24, 2015, pp. 146-151.
- [6] G. Malema, and M. Nkwebi, "Construction of flexible type II and III QC-LDPC codes," Science Journal of Circuits, Systems and Signal Processing, vol. 3, 2014, pp. 31–34.
- [7] H. Park, S. Hong, JS. No, DJ. Shin, "Design of multiple-edge protographs for QC-LDPC codes avoiding short inevitable cycles," IEEE Trans. Inform. Theory., vol. 59, 2013, pp. 4598–4614.
- [8] H. Park, S. Hong, J.S. No and D. J. Shin, "Construction of high-rate regular quasi-cyclic LDPC codes based on cyclic difference families," IEEE Trans. Commun., vol. 61, 2013, pp. 3108–3113.
- [9] X. Jiang, M.H. Lee, and J. Qi., "Improved progressive edge-growth algorithm for fast encodable LDPC codes," EURASIP Journal on Wireless Communications and Networking, 2012. Vol.1, 2012, p. 178.