

Curso:	Ciência da Computação		
Disciplina:	Fundamentos Teóricos da Computação	Valor	0,0
Professor (a):	João Paulo C. Aramuni		0,0
Nome:		Nota	
Nº da Atividade/Nome:	Lista 04	ž	
Data:			
Valor:	0,0 pts		

Assuntos: APD; APN; ER.

1. Construa AFNs que reconheçam:

- a) $L_1 = \{w \in \{a,b,c\}^* \mid w \text{ não contém abc}\}, \text{ com 3 estados.}$
- **b)** $L_2 = \{w \in \{a,b\}^* \mid |w| >= 2 \text{ e o primeiro e o último símbolos de } w \text{ são idênticos}\}, \text{ com 4 estados.}$

2. Encontre expressões regulares que denotem as linguagens L_1 e L_2 da primeira questão.

Para L_l , a ER será construída a partir do AFN obtido no item (a) da primeira questão:

Página 1 / 7

Eliminando-se o estado 3:

Eliminando-se o estado 2:

ER: $(b + c + a(a+ba)*(c+bb))*(\lambda + a(a+ba)*(\lambda+b))$.

Uma ER para L_2 é: a(a+b)*a + b(a+b)*b

3. Considere o APD abaixo. Marque com V as palavras reconhecidas por este APD e com F as palavras não reconhecidas por este APD.

- (F) BBABBAA
- (F) BBABAAA
- (F) ABABBAB
- (F) ABABAAABB
- (V) AABABBAB
- **4.** Construa APDs para reconhecer as seguintes linguagens:
- **a)** Um APD para { $0^n 1^{2n} | n >= 0$ }

Um APD para $\{0^n \mathbf{1}^{2n} | n \ge 0\}$:

b) Um APD para { $0^{3n}1^{2n} | n >= 0$ }

Um APD para $\{0^{3n}1^{2n} | n \ge 0\}$: $1, X/\lambda$ $0, \lambda/XX$ $0, \lambda/\lambda$ 0' $0, \lambda/\lambda$

c) Um APD para { $w0w^r | w \in \{1,2\}^*$ }

d) Um APD para { $0^{m}1^{n} | m < n$ }

Um APD para $\{0^m \mathbf{1}^n \mid m < n\}$:

- **5.** Construa APNs para reconhecer as seguintes linguagens:
- a) $\{w \in \{0,1\}^* \mid \text{o número de 0s em } w \text{ \'e igual ao número de 1s}\}$

b) $\{w \in \{0,1\}^* \mid w = w^r \}$

c) { $0^m 1^n | m > n$ }

APN para $\{0^m 1^n | m > n\}$:

$$\begin{array}{c|c} \mathbf{0}, \lambda/\mathbf{X} & & \\ \mathbf{0}, \lambda/\lambda & & \mathbf{1}, \mathbf{X}/\lambda \\ \hline & & \mathbf{0}, \lambda/\lambda & \\ \hline \end{array}$$

6. Construa AFD para cada uma das seguintes Expressões Regulares a) (ab)*ac

b) (ab*a)*(ba*b)*

c) ((aa+bb)*cc)*

7. Escreva as expressões regulares para os seguintes conjuntos:

a)
$$\{w \in \{a,b\}^* \mid |w| >= 3\}$$

AFD

Diagrama de ER (Elimina-se os estados 1 e 2)

ER: $(a + b)(a + b)(a + b)(a + b)^*$

b) $\{w \in \{a,b\}^* \mid w \text{ começa com } a \text{ e tem tamanho par } \}$

AFD

Diagrama de ER (Elimina-se o estado de erro e o estado 1)

ER: a(a + b)(aa + ab + ba + bb)*

c) $\{w \in \{a,b\}^* \mid w \text{ cont\'em apenas um ou dois b's }\}$

AFD

Adiciona-se um estado final único que recebe transições λ

Elimina-se o estado 2b

Elimina-se o estado 1b

ER: $a*(ba*(\lambda + ba*))$