

What is our GOAL for this CLASS?

In this class, we learned about OLED (Organic Light-Emitting device) and its working. We also learned how OLED can be used to display text, shapes.

What did we ACHIEVE in the class TODAY?

- We learned about the OLED
- Draw shapes on OLED
- Draw text on OLED

Which CONCEPTS/ CODING BLOCKS did we cover today?

- OLED:
 - An OLED stands for an organic light-emitting diode. An OLED display is made up
 of pixels that glow when electricity is applied to them. It's like the heating
 elements in a toaster, but with less heat and a better resolution. This effect is
 called electroluminescence
 - It is called organic because it is made up of organic substances, such as carbon.

How did we DO the activities?

- 1. Display WHITEHATIR on the OLED.
 - Collect the material
 - 1 x ESP32

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

o 1 x OLED

• Connections:

- o Insert OLED into the breadboard
- o Take four jumper wires.
- o OLED VCC to ESP32 PIN VCC
- o OLED GND to ESP32 PIN GND
- o OLED Clk to ESP32 PIN GPIO22
- o OLED Data to ESP32 PIN GPIO21

- 2. To control the **OLED** display, install libraries
 - Click on the small triangle icon next to Library Manager
 - Select New File
 - Name the file libraries.txt
 - Write down Adafruit SSD1306

```
sketch.ino diagram.json ● libraries.txt ● Library Manager ▼

1 # Wokwi Library List
2 # See https://docs.wokwi.com/guides/libraries

3

4 Adafruit SSD1306
5
```

3. Import Libraries:

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

- SPI.h Serial Peripheral Interface (SPI) is a synchronous serial communication protocol used by microcontrollers for communicating with one or more peripheral devices quickly over short distances. When using SPI, there is always one master device (usually a microcontroller) that controls all peripheral devices.
- Wire.h This library allows you to communicate with I2C / devices. I2C is a serial communication protocol, so data is transferred bit by bit along a single wire.
- Adafruit_GFX.h: This library offers a common graphical syntax and set of functions for all LCD displays, OLED displays, and LED matrices.
- Adafruit_SSD1306: This library takes care of low-level communication with the hardware.

```
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
```

- 4. Define SCREEN_WIDTH & SCREEN_HEIGHT for OLED
 - **OLED** size is a 128×64

```
#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
```

- 5. Declare **SSD1306** display that connects to **I2C** communication using **Wire** Library
 - Initialize a **display** object with the **SCREEN_WIDTH & SCREEN_HEIGHT** defined earlier with I2C communication protocol.
 - A value of **(-1)** indicates that our OLED display does not have a **RESET** pin. Sometimes OLED displays have a RESET pin on the OLED, in that case we should connect it to a GPIO and should include the GPIO number as a parameter.

```
Adafruit SSD1306 display(SCREEN WIDTH, SCREEN HEIGHT, &Wire, -1);
```

- 6. Initialize using **void setup()** function
 - Serial.begin(115200): Sets the **data rate** in bits per second (baud) for **serial** data transmission.
 - Initialize the OLED display with the begin() method.
 - If the OLED displays nothing, check the OLED address at **0x3C**. In our case, the address is 0x3C.
 - If we are not able to connect to the display, it prints a message on the Serial Monitor.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.


```
void setup() {
   Serial.begin(115200);

if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
    Serial.println(F("SSD1306 allocation failed"));
    for(;;);
}
```

7. Print data on OLED

- to initialize, add a two second delay before writing text
- Clear the display buffer with the **clearDisplay()** method after initializing the display
- To write text set the font size, color, and location where the text will be displayed in the OLED and data which need to be printed.
- Set the font size using the **setTextSize()** method
- Set the font color using the **setTextColor()** method. **WHITE** sets white font and black background.
- Using the **setCursor(x,y)** method, specify the starting point of the text. In this case, the text will be started at **(0,10)**.
- send the text to the display using the **println()** method
- Call the **display()** method to isplay the text on the screen.

```
delay(2000);
display.clearDisplay();

display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(10, 20);
display.println("WHTEHATJR");
display.display();
```

• Call the main function using void loop()

```
void loop() {
}
```

8. Output:

- Compile and upload the program to the ESP32 board using Arduino IDE
- Verify the program by clicking the Tick option.
- **Upload the program** by clicking the arrow option.
- If the port is not selected, insert the USB cable in Computer's port and select the port

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

- If your OLED display is not showing anything:
- Check that the OLED display is properly wired

- 9. To print shapes on OLED.
 - Collect the material
 - o 1 x ESP32
 - o 1 x OLED

10. Let's do connections:

- Insert OLED into the breadboard
- Take four jumper wires.

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

- Connect OLED PIN VCC to ESP32 PIN 3.3V
- Connect OLED PIN GND to ESP32 PIN GND
- Connect OLED PIN CLK to ESP32 PIN GPIO22
- Connect OLED PIN DATA to ESP32 PIN GPIO21

11. Import Libraries:

- SPI.h Serial Peripheral Interface (SPI) is a synchronous serial communication protocol used by microcontrollers for communicating with one or more peripheral devices quickly over short distances. When using SPI, there is always one master device (usually a microcontroller) that controls all peripheral devices.
- Wire.h This library allows you to communicate with I2C / devices. I2C is a serial communication protocol, so data is transferred bit by bit along a single wire.
- Adafruit_GFX.h: This library offers a common graphical syntax and set of functions for all LCD displays, OLED displays, and LED matrices.
- Adafruit_SSD1306: This library takes care of low-level communication with the hardware.

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.


```
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
```

12. Define SCREEN_WIDTH & SCREEN_HEIGHT for OLED

• Our **OLED** size is a 128×64

```
#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
```

13. Declaration of an **SSD1306** display that connects to **I2C** communication using **Wire** Library

- Initialize a **display** object with the **SCREEN_WIDTH & SCREEN_HEIGHT** defined earlier with I2C communication protocol.
- A value of **(-1)** indicates that our OLED display does not have a **RESET** pin. Sometimes OLED displays have a RESET pin on the OLED, in that case connect it to a GPIO and include the GPIO number as a parameter.

```
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);
```

14. Initialize using void setup() function

- Serial.begin(115200): Sets the **data rate** in bits per second (baud) for **serial** data transmission.
- Initialize the OLED display with the begin() method
- If the OLED displays nothing, check the OLED address at **0x3C**. In our case, the address is 0x3C.
- If we are not able to connect to the display, it prints a message on the Serial Monitor.
- If something fails, don't proceed further, try to repeat the process using for() loop
- Using the **setCursor(x,y)** method, specify the starting point of the text. In this case, the text will be started at **(0,0)**.


```
void setup() {
   Serial.begin(9600);

   // initialize OLED display with I2C address 0x3C
   if (!oled.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
        Serial.println(F("failed to start SSD1306 OLED"));
        while (1);
   }

   delay(2000); // wait two seconds for initializing oled.setCursor(0, 0);
}
```

- 15. Write code for shapes that need to display under the main function i.e **void loop()** function.
 - Circle:
 - Clear the display buffer with the clearDisplay() method after initializing the display
 - drawCircle method is used to draw circle shape on the OLED. drawCircle will use X and Y coordinates along with Radius (CenterX, CenterY, Radius in Pixels, WHITE);
 - o **display.display()** is used to apply the changes.
 - o Set a **delay** of 1s
 - fillCircle method is used to fill color in the circle shape on the OLED. fillCircle will use X and Y coordinates along with Radius (CenterX, CenterY, Radius in Pixels, WHITE);

```
void loop() {
    // draw a circle
    display.clearDisplay();
    display.drawCircle(50, 30, 30, WHITE);
    display.display();
    delay(1000);

    // fill a circle
    display.clearDisplay();
    display.fillCircle(50, 30, 30, WHITE);
    display.display();
    delay(1000);
```

- Trianale:
 - Clear the display buffer with the clearDisplay() method after initializing the display.
 - drawTriangle() method is used to draw a triangle shape on the OLED.
 drawTraiangle() will use X and Y coordinates for three sides of a triangle

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

- along with color.
- display.drawTriangle (FirstX , FirstY, SecondX, SecondY, ThirdX, ThirdY, WHITE).
- o **display.display()** is used to apply the changes.
- Set a **delay** of 1s.
- fillTriangle() method is used to fill color in a triangle shape on the OLED.
 drawtriangle() method will use X and Y coordinates for three sides of a
 triangle along with color.

```
// draw a triangle
display.clearDisplay();
display.drawTriangle(50, 10, 0, 60, 60, 60, WHITE);
display.display();
delay(1000);

// fill a triangle
display.clearDisplay();
display.fillTriangle(50, 10, 0, 60, 60, 60, WHITE);
display.display();
delay(1000);
```

Rectangle

- Clear the display buffer with the clearDisplay() method after initializing the display
- drawRectangle() method is used to draw a rectangle shape on the OLED. drawRectangle will use X and Y coordinates, Width & Height in Pixels along with the color
- display.drawRect(StartX, StartY, Width in Pixels, Height in Pixels, WHITE);
- **isplay.display()** is used to apply the changes.
- Set a delay of 1s
- fillRectangle() method is used to fill color in a rectangle shape on the OLED. drawRectangle will use X and Y coordinates, Width & Height in Pixels along with the color


```
// draw a rectangle
display.clearDisplay();
display.drawRect(40, 20, 60, 40, WHITE);
display.display();
delay(1000);

// fill a rectangle
display.clearDisplay();
display.fillRect(40, 20, 60, 40, WHITE);
display.display();
delay(1000);
}
```

16. Output:

- Compile and upload the program to ESP32 board using Arduino IDE
- Verify the program by clicking the Tick option.
- Upload the program by clicking the arrow option.
- If the port is not selected, insert the USB cable in Computer's port and select the port
- If OLED display is not showing anything: Check that the OLED display is properly wired
- We learned about OLED and how to display text and pattern on OLED.

What's NEXT?

In the next class, we will learn about BIT ARRAYS

Expand Your Knowledge

To know more about **OLED** <u>click here</u>.

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.