Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA Ano letivo 2018/2019

TURMAS: PN1, PN2 e PNrep

EXERCÍCIOS PN-P6

- **6.1.** Considere dois fios infinitos separados por uma distância \boldsymbol{a} atravessados por correntes elétricas em sentidos diferentes, como mostra a figura.
 - a) Determine o campo $ec{B}$, no ponto \emph{P} . Justifique.
 - b) Calcule a força por unidade de comprimento, entre os dois fios.
 - c) Mostre se a força determinada na alínea anterior é atrativa ou repulsiva.
- **6.2.** O diagrama representa uma barra cilíndrica de alumínio, **AB**, que está parada sobre dois carris, também, de alumínio. Os carris podem ser ligados a uma pilha, de modo a circular uma corrente elétrica através de **AB**. Na região do espaço onde este dispositivo está montado, há um campo magnético perpendicular ao plano do papel, conforme representado. Em que direção se deslocará **AB**, se a corrente elétrica estiver a fluir de **A** para **B**? Justifique.

2I

- **6.3.** Considere uma bobina de comprimento \boldsymbol{L} , raio \boldsymbol{R} e com \boldsymbol{N} espiras.
 - a) Coloca-se no interior da bobina (centro geométrico) uma pequena espira de raio R_1 ($R_1 < R$) perfeitamente alinhada com uma espira da bobina. Determine a f.e.m. induzida na espira, quando se liga uma fonte exterior V à bobina, nos seguintes casos (V_0 é uma constante):
 - i. $V = V_0$ (Volt);
 - ii. $V = V_0 \times t$ (Volt);
 - iii. $V = V_0 \operatorname{sen}(\omega t)$ (Volt).
 - b) Como se alteraria a resposta à alínea anterior, no caso da espira estar inclinada de um ângulo θ em relação à secção reta da bobina? Justifique.