EXPERIMENT 5 – ONLINE VERSION FIRST ORDER CIRCUITS

Preliminary Work:

1.

11)
$$T = \frac{L}{R} = \frac{39.10^4}{500}$$
 $T = 7.8 \mu s$

$$V_{R}(t) = V(t).R$$

$$= \frac{V_{in}(t)}{R} \left(1 - e^{-\frac{t}{T}}\right).R = V_{in}(t)\left(1 - e^{-\frac{t}{T}}\right) \quad \text{when } V_{in}(t)$$

2.

$$\mathcal{L}_{c(t)} = \frac{1}{(3.3k).(4.7n)} \int_{0}^{t} \mathcal{L}_{in}(t) dt \qquad \mathcal{L}_{k}(t) = (3.3k)(4.7n) \frac{d \mathcal{L}_{in}(t)}{dt} \\
= \frac{1}{(1.551).(10^{5})} \int_{0}^{t} \mathcal{L}_{in}(t) dt \qquad = (1.551).(10^{5}) \frac{d \mathcal{L}_{in}(t)}{dt}$$

$$V_{R}(t) = (3.31)(4.7n) \frac{\partial U_{in}(t)}{\partial t}$$

$$= (1,581)(10^{5}) \frac{\partial U_{in}(t)}{\partial t}$$

case 2)

$$\mathcal{V}_{C}(t) = \frac{1}{(33 \text{ k}).(10n)} \int_{0}^{t} \mathcal{Q}_{in}(t) dt$$

$$= \frac{1}{(3,3)(10^{-4})} \int_{0}^{t} \mathcal{Q}_{in}(t) dt$$

$$V_{R}(t) = (33\xi)(10n) \frac{\partial V_{in}(t)}{\partial t}$$
$$= (3,3)(10^{5}) \frac{\partial V_{in}(t)}{\partial t}$$

$$T=(33k).(10n) = 330\mu s$$

case 3)

$$V_{C}(t) = \frac{1}{(33 \text{ k}).(19n)} \int_{0}^{t} V_{in}(t) dt$$

$$= \frac{1}{(1.551)(10^{-3})} \int_{0}^{t} V_{in}(t) dt$$

$$V_{R}(t) = (33k)(47n) \frac{d U_{in}(t)}{dt}$$

$$= (1,551)(10^{3}) \frac{d U_{in}(t)}{dt}$$

case 4)

$$\mathcal{V}_{C}(t) = \frac{1}{(100k).(17n)} \int_{0}^{t} \mathcal{V}_{in}(t) dt$$

$$= \frac{1}{(4,7)(10^{-3})} \int_{0}^{t} \mathcal{V}_{in}(t) dt$$

$$T = (100k)(47n) = 4.7 \text{ ms}$$

3. If we choose time as τ (exponent of the e will be -1, since in all equations e in the form of $e^{-\tau}$ (t/ τ)), solve the equation, we get a voltage value. At the first period, if we look at the corresponding time of this voltage we can find τ from graph.(fort he 1st question) For second question, since the given input is seen on the capacitor with exponential, then $t=\tau$, exponential is equal to 0.68 times of the Vin, so the corresponding time of this voltage we can find τ from graph.

EXPERIMENT 5 REPORT SHEET

Name:

Derya TINMAZ

Date : 31.12.2020

Experimental Work: 5

1)

Figure 1: the image of the schematic of square wave sources

Figure 2: all the signals in a single scope output

Comments: The signal with greastest frequency has the smallest period, and its waves are closer to each other than other waves.

Figure 3: The schematic of the circuit in Figure 1a

Figure 4: The scope output of the circuit($V_{in}(t)$ and $V_{R}(t)$)

Time constant τ:

to find
$$T$$
 in the $V_{R}(t)$ graph:

 $V_{R}(t) = V_{in}(t) \left(1 - e^{-\frac{t}{T}}\right)$

when $t = T = V_{in}(t) \left(1 - e^{-\frac{t}{T}}\right)$

so when $V = 3,16$
 $= V_{in}(t) \left(0,632\right)$ the time is T

between $(50_{AS} - 0)$
 $V_{in} = 5$. $0.632 = 3,16$ which is $10,6,45$

Case 1: f=100Hz, $R=3.3k\Omega$, C=4.7

Figure 6: The scope output of the circuit($V_{in}(t)$ and $V_{R}(t)$)

Figure 7: The scope output for Vc(t)

Time constant τ :

when
$$V_c(\tau) = 0.63 V_c$$

= 0.63.5 = 3,15
if we look corresponding time when $V_c = 3.15$ we get τ which is 331, 7 μ s.

Case 2: f=100Hz, $R=33k\Omega$, C=10 nF

Figure 8: The scope output of the circuit $(V_{in}(t))$ and $V_R(t)$

Figure 9: The scope output for Vc(t)

Time constant τ:

when
$$V_c(\tau) = 0.63 V_c$$

= 0.63.5 = 3,15
if we look corresponding time when $V_c = 3.15$ we get τ which is 695,845.

Case 3: f=100Hz, $R=33k\Omega$, C=47 nF

Figure 10: The scope output of the circuit($V_{in}(t)$ and $V_{R}(t)$)

Figure 11: The scope output for Vc(t)

Time constant τ :

when
$$V_c(\tau) = 0.63 V_c$$

= 0.63.5 = 3,15
if we look corresponding time when $V_c = 3.15$ we get τ which is 1.8 ms

Case 4: f=100Hz, $R=100k\Omega$, C=47 nF

Figure 12: The scope output of the circuit($V_{in}(t)$ and $V_{R}(t)$)

Figure 13: The scope output for Vc(t)

Time constant τ :

when
$$V_c(\tau) = 0.63 V_c$$

= 0.63.5 = 3,15
if we look corresponding time when $V_c = 3.15$ we get τ which is 4.92ms