VRP con ventanas de tiempo

ICT 3464

Profesor Homero Larrain

El VRP con ventanas de tiempo

Este problema (que abreviaremos como VRPTW) generaliza el CVRP para incluir ventanas de tiempo.

Dado que el CVRP es un problema NP-hard, este nuevo problema también lo es. Más aún, el problema de encontrar una solución factible al VRPTW es por si solo NP-hard.

Formulación del problema

Sea un grafo completo G(V,A), y una flota K de vehículos idénticos, cada uno de capacidad Q. Los vértices 0 y n+1 representan el depot al comienzo y al final del horizonte de planificación, y los restantes $N \coloneqq V \setminus \{0,n+1\}$ nodos representan clientes. Cada arco $(i,j) \in A$ posee asociado un costo de c_{ij} .

Cada cliente posee una demanda q_i , un tiempo de servicio s_i , y una ventana de atención $[a_i, b_i]$. Por simplificar la notación, se asume que $q_0 = s_0 = q_{n+1} = s_{n+1} = 0$.

Todos los nodos deben ser "visitables" desde el nodo 0:

¿Qué es lo más temprano que podríamos llegar al nodo i?

$$a_0 + t_{0i} \le b_i, \qquad \forall i \in V \setminus \{0\}$$

$$a_0 \le b_i - t_{0i}, \qquad \forall i \in V \setminus \{0\}$$

$$a_0 \le \min_{i \in V \setminus \{0\}} \{b_i - t_{0i}\}$$

• El nodo n + 1 debe ser "alcanzable" desde cualquier nodo:

¿Qué es lo más temprano que podríamos llegar al nodo n+1?

$$b_0 \ge a_i + s_i + t_{i,n+1}, \quad \forall i \in V \setminus \{0\}$$

¿Qué pasa si no es posible alcanzar el nodo i en a_i ?

¿Qué es lo más temprano que podríamos llegar al nodo n+1?

$$b_0 \ge \max\{a_0 + t_{oi}, a_i\} + s_i + t_{i,n+1}, \qquad \forall i \in V \setminus \{0\}$$

$$b_0 \ge \max_{i \in V \setminus \{0\}} \{\max\{a_0 + t_{oi}, a_i\} + s_i + t_{i,n+1}\}$$

Modelo a tres índices

Variables:

- x_{ijk} : binaria, vale uno cuando el arco $(i,j) \in A$ es utilizado por el vehículo $k \in K$.
- T_{ik} : tiempo de comienzo del servicio del vehículo $k \in K$ en el nodo $i \in V$.

$$\min \sum_{(i,j)\in A} \sum_{k\in K} c_{ij} x_{ijk}$$

s.a:

$$\sum_{j \in \delta^{+}(i)} \sum_{k \in K} x_{ijk} = 1, \quad \forall i \in N$$

$$\sum_{j \in \delta^{+}(i)} x_{0jk} = 1, \quad \forall k \in K$$

$$\sum_{j \in \delta^{+}(i)} x_{ijk} - \sum_{j \in \delta^{-}(i)} x_{jik} = 0, \quad \forall i \in N, k \in K$$

$$\sum_{j \in \delta^{-}(n+1)} x_{jn+1,k} = 1, \quad \forall k \in K$$

$$x_{ijk} \left(T_{ik} + s_i + t_{ij} - T_{jk} \right) \leq 0, \quad \forall (i,j) \in A, \forall k \in K$$

$$a_i \leq T_{ik} \leq b_i, \quad \forall i \in V, \forall k \in K$$

$$\sum_{i \in N} q_i \sum_{j \in \delta^{+}(i)} x_{ijk} \leq Q, \quad \forall k \in K$$

$$x_{ijk} \in \{0, 1\}, \quad \forall (i,j) \in A, k \in K$$

El modelo anterior no es lineal, por la presencia de la siguiente restricción:

$$x_{ijk}(T_{ik} + s_i + t_{ij} - T_{jk}) \le 0, \quad \forall (i,j) \in A, \forall k \in K$$

Sin embargo, es posible reemplazar esta restricción por:

$$T_{ik} + s_i + t_{ij} - T_{jk} \le (1 - x_{ijk}) M_{ij}, \quad \forall (i, j) \in A, \forall k \in K$$

¿Qué valor de M_{ij} podemos tomar?

Modelo a dos índices

Esta versión del modelo se puede utilizar para resolver el problema utilizando planos cortantes.

Variables:

• x_{ij} : binaria, vale uno cuando el arco $(i,j) \in A$ es utilizado por algún vehículo en la solución.

Además, se define como P al conjunto de rutas (posiblemente parciales) infactibles para el problema. Se define además como A(p) al conjunto de arcos pertenecientes a una ruta $p \in P$. Este conjunto hace innecesaria la variable T_{ik} .

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.a:

$$\sum_{j \in \delta^{+}(i)} x_{ij} = 1, \quad \forall i \in \mathbb{N}$$

$$\sum_{j \in \delta^{-}(i)} x_{ji} = 1, \quad \forall i \in \mathbb{N}$$

$$\sum_{(i,j) \in \delta^{+}(S)} x_{ij} \ge r(S), \quad \forall S \subseteq \mathbb{N}, S \neq \emptyset$$

$$\sum_{(i,j) \in A(p)} x_{ij} \le |A(p)| - 1, \quad \forall p \in \mathbb{P}$$

$$x_{ij} \in \{0,1\}, \quad \forall (i,j) \in A$$