CS 584 Data Mining (Spring 2022)

Prof. Sanmay Das George Mason University

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

• Find a linear hyperplane (decision boundary) that will separate the data

• One Possible Solution

• Another possible solution

• Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x} + b \le -1 \end{cases}$$

$$Margin = \frac{2}{\|\vec{w}\|}$$

Linear SVM

• Linear model:

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

- Learning the model is equivalent to determining the values of \vec{w} and b
 - How to find them from training data?

Learning Linear SVM

- Objective is to maximize: Margin = $\frac{2}{\|\vec{w}\|}$
 - Which is equivalent to minimizing:

$$L(\vec{w}) = \frac{\parallel \vec{w} \parallel^2}{2}$$

• Subject to the constraints:

$$y_i = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \ge 1 \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \le -1 \end{cases}$$

or
$$y_i(\mathbf{w} \bullet \mathbf{x}_i + b) \ge 1$$
, $i = 1, 2, ..., N$

- This is a constrained optimization problem
 - · Solve it using Lagrange multiplier method
 - Yields a quadratic programming problem

• We get the dual of the original problem:

$$\max_{\lambda_i} \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j \mathbf{x}_i^T \mathbf{x}_j$$

• Subject to
$$\sum_{i=1}^{n} \lambda_i y_i = 0$$

- And $\lambda_i \geq 0$
- Cool things:
 - Most of the λ_i will be 0: *Sparsity*
 - Objective only involves dot products of training examples $(\mathbf{x}_i, \mathbf{x}_i)$
 - Can recover w, b easily

Example of Linear SVM

	Support vectors		
x 1	x2	У	Λ
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

Learning Linear SVM

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once \mathbf{w} and b are found? Given a test record, \mathbf{x}_i

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

• Subject to:

•
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge \xi_i \quad \forall i$$

•
$$\xi_i \ge 0 \quad \forall i$$

• Dual:

$$\max_{\lambda_i} \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

• Subject to
$$\sum_{i=1}^{n} \lambda_i y_i = 0$$

• And
$$0 \le \lambda_i \le C$$

• Find the hyperplane that optimizes both factors

Another View of SVMs

$$\hat{y} = \mathbf{w}^T \mathbf{x} + b$$
where $y \in \{+1, -1\}$

Now define the hinge loss as $Loss(y, \hat{y}) = max(0, 1 - y\hat{y})$

Figure 4.37. Hinge loss as a function of $y\hat{y}$.

The optimization problem is equivalent to:

$$\min_{\mathbf{w},b} C \sum_{i=1}^{n} \text{Loss}(y_i, \hat{y_i}) + \frac{\|w\|^2}{2}$$

Training error

Complexity penalty