

CS6290 Tomasulo's Algorithm

Implementing Dynamic Scheduling

- Tomasulo's Algorithm
 - Used in IBM 360/91 (in the 60s)
 - Tracks when operands are available to satisfy data dependences
 - Removes name dependences through register renaming
 - Very similar to what is used today
 - Almost all modern high-performance processors use a derivative of Tomasulo's... much of the terminology survives to today.

Tomasulo's Algorithm: The Picture

Issue (1)

- Get next instruction from instruction queue.
- Find a free reservation station for it (if none are free, stall until one is)
- Read operands that are in the registers
- If the operand is not in the register,
 find which reservation station will produce it
- In effect, this step renames registers (reservation station IDs are "temporary" names)

Issue (2)

Instruction Buffers

3.
$$F1 = F2 + F3$$

2.
$$F4 = F1 - F2$$

1. | F1 = F2 / F3

To-Do list (from last slide):

Get next inst from IB's Find free reservation station Read operands from RF Record source of other operands Update source mapping (RAT)

Reg File

F1 3.141593

-1.00000 F2

F3 2.718282

F4 0.707107

RAT

F2

F3 0

F4

A2 (2)

A3 (3)

C1 (4)

C2 (5)

FI=F2/F3	I (A)	2.718

Adder

FP-Cmplx

Execute (1)

- Monitor results as they are produced
- Put a result into all reservation stations waiting for it (missing source operand)
- When all operands available for an instruction, it is ready (we can actually execute it)
- Several ready instrs for one functional unit?
 - Pick one.
 - Except for load/store
 Load/Store must be done in
 the proper order to avoid hazards through memory
 (more loads/stores this in a later lecture)

Execute (2)

To-Do list (from last slide):
Monitor results from ALUs
Capture matching operands
Compete for ALUs

Adder

FP-Cmplx

Execute (3) More than one ready inst for the same unit

Common heuristic: oldest first

You can do whatever: it only affects performance, not correctness

Optimal is impossible:
Precedence constrained scheduling
problem is NP-complete [GJ,p239]
... and that assumes you have
access to the entire graph

Adder

FP-Cmplx

Write Result (1)

- When result is computed, make it available on the "common data bus" (CDB), where waiting reservation stations can pick it up
- Stores write to memory
- Result stored in the register file
- This step frees the reservation station
- For our register renaming,
 this recycles the temporary name
 (future instructions can again find the value in the actual register, until it is renamed again)

Write Result (2)

- 0. F2 = F4 + F1
- 1. F1 = F2 / F3
- 2. F4 = F1 F2
- 3. F1 = F2 + F3

F4

To-Do list (from last slide):

Broadcast on CDB

Writeback to RF

Update Mapping

Free reservation station

Only update RAT (and RF) if RAT still contains your mapping!

Tomasulo's Algorithm: Load/Store

- The reservation stations take care of dependences through registers.
- Dependences also possible through memory
 - Loads and stores not reordered in original IBM 360
 - We'll talk about how to do load-store reordering later

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

Is ExW

F6, 34(R2) 1. L.D

2. L.D F2, 45(R3) 3. MUL.D F0, F2, F4

4. SUB.D F8, F2, F6

5. DIV.D F10,F0,F6

6. ADD.D F6, F8, F2

Cycle:

Register Status:

Assume

R2 is 100

R3 is 200

F4 is 2.5

Cycle:

Load: 2 cycles Add: 2 cycles Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	
2.	L.D	F2, 45(R3)	2		
3.	MUL.D	F0, F2, F4			
4.	SUB.D	F8, F2, F6			
5.	DIV.D	F10,F0,F6			
6.	ADD.D	F6, F8, F2			

Вι	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	1	L.D					134
LD2	1	6.9					245
AD1							
AD2							
AD3							
ML1							
ML2							
				•	•		

F0 F2 F4 F6 F8 F10 F12

L DZ

Register Status:

LD1

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	4	
		F2, 45(R3)	2	3	
3.	MUL.D	F0, F2, F4	3		
4.	SUB.D	F8, F2, F6			
		F10,F0,F6			
6.	ADD.D	F6, F8, F2			

3

Cycle:

Вι	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	1	L.D					134
LD2	1	L.D					245
AD1	1	nvL.b		2.4	602		
AD2							
AD3							
ML1							
ML2							

F0 F2 F4 F6 F8 F10 F12

Register Status: | A D | LD2 | LD1

Assume

R2 is 100

R3 is 200

F4 is 2.5

Cycle:

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	F2, 45(R3)	2	3	
3.	MUL.D	F0, F2, F4	3		
4.	SUB.D	F8, F2, F6	4		
		F10,F0,F6			
6.	ADD.D	F6, F8, F2			

4

Вι	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	10	L.D					134
LD2	<u>~</u>	L.D					245
AD1	- 1	SVB.D		Val	LD2	401	
AD2							
AD3							
ML1	1	MUL.D		2.5	LD2		
ML2							

F0 F2 F4 F6 F8 F10 F12

Register Status: ML1 LD2

LDT AOI ...

Assume

R2 is 100

R3 is 200

F4 is 2.5

Cycle:

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
		F6, 34(R2)	1	2	4
2.	L.D	F2, 45(R3)	2	3	6
		F0, F2, F4	3		
4.	SUB.D	F8, F2, F6	4		
5.	DIV.D	F10,F0,F6	5		
6.	ADD.D	F6, F8, F2			

5

В	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	0						
LD2	10	L.D					245
AD1	1	SUB.D	VLI	0.5	LD2		
AD2							
AD3							
ML1	1	MUL.D	Val	2.5	LD2		
ML2	1	O,VIO			MLI	4000	
					•	Mi	2

F0 F2 F4 F6 F8 F10 F12 F12

Register Status: ML1 LD2

I LB2 ncz AD1

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	F2, 45(R3)	2	3	5
3.	MUL.D	F0, F2, F4	3	6	
4.	SUB.D	F8, F2, F6	4	6	
		F10,F0,F6	5		
6.	ADD.D	F6, F8, F2	6		
			•		

Вι	ısy	Ор	Vj	Vk	Qj	Qk	Α	
LD1	0							
LD2	0							
AD1	1	SUB.D	1.5	0.5				
AD2		AOOD		Val.	901			
AD3								
ML1	1	MUL.D	1.5	2.5				
ML2	1	DIV.D		0.5	ML1			

F0 F2 F4 F8 F10 F12 F6

Register Status: ML1 Cycle: 6

902 AD1 ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Cycle:

Load: 2 cycles

Add: 2 cycles Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	F2, 45(R3)	2	3	5
3.	MUL.D	F0, F2, F4	က	6	
4.	SUB.D	F8, F2, F6	4	6	8
		F10,F0,F6	5		
6.	ADD.D	F6, F8, F2	6		

8

Busy Op		Vj	Vk	Qj	Qk	Α	
LD1	0						
LD2	0						
AD1		SUB.D		0.5			
AD2	1	ADD.D	1.0	2.5	AD1		
AD3							
ML1		MUL.D	1.5	2.5			
ML2	1	DIV.D		0.5	ML1		

F0 F2 F4 F6 F8 F10 F12

Register Status: ML1

AD2 AD1 ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	, ,	2	3	5
3.	MUL.D	F0, F2, F4	3	6	
		F8, F2, F6	4	6	8
		F10,F0,F6	5		
6.	ADD.D	F6, F8, F2	6	9	

Busy Op		Vj	Vk	Qj	Qk	Α	
0							
0							
0							
1	ADD.D	1.0	2.5				
1	MUL.D	1.5	2.5				
1	DIV.D		0.5	ML1			
	0 0 0 1	0 0 0 1 ADD.D	0 0 0 1 ADD.D 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 ADD.D 1.0 2.5 1 MUL.D 1.5 2.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F0 F2 F4 F6 F8 F10 F12

Register Status: ML1 Cycle:

AD2

ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Cycle:

Load: 2 cycles Add: 2 cycles Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.		F2, 45(R3)	2	3	5
3.	MUL.D	F0, F2, F4	3	6	
4.	SUB.D	F8, F2, F6	4	6	8
5.	DIV.D	F10,F0,F6	5		
6.	ADD.D	F6, F8, F2	6	9	11

11

Busy Op		Vj	Vk	Qj	Qk	Α	
LD1	0						
LD2	0						
AD1	0						
AD2	0	ADD.D	1.0	2.5			
AD3							
ML1	1	MUL.D	1.5	2.5			
ML2	۲	DIV.D		0.5	ML1		

F0 F2 F4 F6 F8 F10 F12

Register Status: ML1

AB2

ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	F2, 45(R3)	2	3	5
3.	MUL.D	F0, F2, F4	3	6	3
4.	SUB.D	F8, F2, F6	4	6	8
5.	DIV.D	F10,F0,F6	5		
6.	ADD.D	F6, F8, F2	6	9	11

В	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	10	MUL.D	1.5	2.5			
ML2	1	DIV.D	3,76	0.5	ML1		
	F) F2		6 F8	F10	F12	

Cycle:

16

Register Status: M21

ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Cycle:

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	, ,	2	3	5
3.	MUL.D	F0, F2, F4	3	6	16
4.	SUB.D	F8, F2, F6	4	6	8
		F10,F0,F6	5	17	
6.	ADD.D	F6, F8, F2	6	9	11

Busy Op			Vj	Vk	Qj	Qk	Α
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	۲	DIV.D	3.75	0.5			

F0 F2 F4 F6 F8 F10 F12

17 Register Status:

ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles Add: 2 cycles Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.		F2, 45(R3)	2	3	5
3.	MUL.D	F0, F2, F4	3	6	16
4.	SUB.D	F8, F2, F6	4	6	8
		F10,F0,F6	5	17	
6.	ADD.D	F6, F8, F2	6	9	11

Вι	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	1	DIV.D	3.75	0.5			

F6 F₀ F2 F4 F8 F10 F12

Register Status: Cycle: 18

Georgia College of Computing

ML2

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

			ls	Ex	W
1.	L.D	F6, 34(R2)	1	2	4
2.	L.D	F2, 45(R3)	2	3	5
3.	MUL.D	F0, F2, F4	3	6	16
4.	SUB.D	F8, F2, F6	4	6	8
5.	DIV.D	F10,F0,F6	5	17	57
6.	ADD.D	F6, F8, F2	6	9	11

Ві	ısy	Ор	Vj	Vk	Qj	Qk	Α
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	10	DIV.D	3.75	0.5			

F0 F2 F4 F6 F8 F10 F12

Cycle: 57 Register Status:

ML2

Timing Example

Kind of hard to keep track with previous table-based approach

Simplified version to track timing only

Load: 2 cycles Add: 2 cycles Mult: 10 cycles Divide: 40 cycles

Inst	Operands	ls	Exec	Wr	Comments
L.D	F6,34(R2)	1	2	4	
L.D	F2, 45(R3)	2	3	₁ 5	
MUL.D	F0,F2,F4	3	6	_/ 16	
SUB.D	F8,F2,F6	4	6 /	8	
DIV.D	F10,F0,F6	5	17 /	57	
ADD.D	F6,F8,F2	6	9	11	

