Probability and Stochastic Processes (EL6303) NYU Tandon School of Engineering, Fall 2015 Instructors: Dr. Elza Erkip, Dr. X.K. Chen December 16, 2015

Final

Closed book, closed notes, no electronics, no calculators.

Only four formula sheets are allowed. Use the provided space to wrote your answers.

1.	1. (10 points) Answer the followequence of random variable		E. X, Y denote random variables, X_n is a chastic process.	
	** Circle the correct answer	** Circle the correct answer. Briefly explain.**		
	(a) X and Y are independent	$\operatorname{lent} \Rightarrow X \text{ and } Y \text{ are u}$	ncorrelated.	
	TRUE	FALS	E	
	(b) X and Y are uncorrelative	Y and Y are uncorrelated $\Rightarrow X$ and Y are independent.		
	TRUE	FALS	${ m E}$	
	(c) $X_n \to X$ in probability	(c) $X_n \to X$ in probability as $n \to \infty \Rightarrow X_n \to X$ with probability 1 as $n \to \infty$.		
	TRUE	FALS	E	
	(d) $X_n \to X$ with probabi	(d) $X_n \to X$ with probability 1 as $n \to \infty \Rightarrow X_n \to X$ in probability as $n \to \infty$.		
	TRUE			
	(e) $X(t)$ is wide sense state	$X(t)$ is wide sense stationary $\Rightarrow X(t)$ is strict sense stationary.		
	TRUE	FALS	E	
(f) $X(t)$ is strict sense stationary and has second moment			l moment $\Rightarrow X(t)$ is wide sense stationary	
	TRUE	FALS	E	
(g) $X(t)$ is mean-ergodic $\Rightarrow X(t)$ is wide sense stationary.		tationary.		
	TRUE	FALS	E	
(h) $X(t)$ is wide sense static		sionary $\Rightarrow X(t)$ is mea	n-ergodic.	
	TRUE	FALS	E	
(i) $X(t)$ is wide sense stationary $\Rightarrow X^3(t)$ is wide-sense stationary.		le-sense stationary.		
	TRUE	FALS	E	
	(j) $X(t), Y(t)$ jointly wide	sense stationary $\Rightarrow X$	Y(t) + 5Y(t) is wide sense stationary.	
	TRUE	FALS	E	

•

•

2. (15 points) You are running late for EL 6303 final and decide to either take a taxi or Lyft. The waiting time for taxi is a random variable T_T , the waiting time for Lyft is a random variable T_L . We assume

$$T_T \sim \text{Uniform}(0, 10), T_L \sim \text{Uniform}(0, 5),$$

We also assume that once the taxi or Lyft car arrive, it takes them the same amount of time to get to school.

The price of the taxi is fixed at $P_T = 15$ dollars. Lyft price P_L , on the other hand, is a random variable. We assume P_L is independent of T_L and that

$$P_L \sim \text{Uniform}(14, 26)$$
.

You are concerned about getting to school as early as possible, but you also don't want to pay too much. Your *overall cost* is a weighted combination of these two objectives. Hence the overall cost for i is

$$C_i = aT_i + bP_i$$

where $a, b \ge 0$ are constants and i = T, L denotes taxi or Lyft.

- (a) Suppose a = 4, b = 1. Find and sketch the probability density function of C_T .
- (b) For a = 4, b = 1, for which mode of transportation (taxi or Lyft) your average total $E(C_i)$ is smaller? Explain.
- (c) If you didn't care about the time, but only wanted to minimize the price, how would you set a and b? Which one would you choose, taxi or Lyft? Explain.
- (d) If you didn't care about the price, but only wanted to minimize your time, how would you set a and b? Which one would you choose, taxi or Lyft? Explain.

3. (18 points) Suppose that N(t), the number of passengers arriving at Jay Street-Metrotech station to take the A train, can be modeled as a Poisson process with parameter β . That is

$$P(N(t) = n) = \frac{(\beta t)^n}{n!} e^{-\beta t}, t \ge 0, n = 0, 1, \dots$$

The waiting time T_A for the A train is independent of N(t) and has an exponential distribution with parameter λ_A . That is the density of T_A is given by

$$f_{T_A}(t) = \lambda_A e^{-\lambda_A t}, t \ge 0.$$

Let $Y = N(T_A)$ be number of passengers getting on the A train from Jay Street-Metrotech station.

- (a) Find the expected value of Y in terms of β and λ_A .
- (b) Find the variance of Y in terms of β and λ_A .
- (c) Now suppose that all the arriving passengers can either take the A train or the C train, whichever comes first. The waiting time T_C for the C train is independent of N(t) and T_A , and is exponential with parameter λ_C . Let Z be the number of passengers getting on the first arriving train from Jay Street-Metrotech station.
 - i. Find E(Z).
 - ii. Find the relationship between λ_A and λ_C to have E(Z) = E(Y)/3.

4. (12 points) Consider two sequences of random variables X_n and Y_n , n = 1, 2, ... and a random variable X. We are given that

$$P(|X_n - X| \le Y_n) = 1,$$

for all n. Also $E(Y_n) \to 0$ as $n \to \infty$.

- (a) Find $\lim_{n\to\infty} E(|X_n-X|)$. Explain your steps.
- (b) Prove that $X_n \to X$ in probability as $n \to \infty$.

5. (15 points) Consider the stochastic process $X(t) = A\cos(\pi t) + B\sin(\pi t)$. Here A and B are independent random variables such that

$$A = \begin{cases} -1, & \text{with probability } 3/4\\ 3, & \text{with probability } 1/4 \end{cases}$$

$$B = \begin{cases} 1, & \text{with probability } 3/4\\ -3, & \text{with probability } 1/4 \end{cases}$$

- (a) Find E(X(t)).
- (b) Find $R_{XX}(t_1, t_2)$.
- (c) Is X(t) WSS? Explain.
- (d) Find the distribution of X(0).
- (e) Find the distribution of X(0.25).
- (f) Is X(t) SSS? Explain.

6. (15 points) Consider a zero mean WSS stochastic process X(t) with power spectral density

$$S_{XX}(w) = \begin{cases} N_0/2, & -B \le w \le B \\ 0, & \text{else} \end{cases}$$

We consider two LTI systems with transfer functions $\mathcal{F}(h_1(t)) = H_1(w)$ and $\mathcal{F}(h_2(t)) = H_2(w)$ such that

$$H_1(w) = \begin{cases} K_1, & w \in (-0.1B, 0.1B) \cup (-B, -0.9B) \cup (0.9B, B) \\ 0, & \text{else} \end{cases}$$

$$H_2(w) = \begin{cases} -K_2, & w \in (-a, a) \cup (-0.8B, -0.7B) \cup (0.7B, 0.8B) \\ 0, & \text{else} \end{cases}$$

where K_1 , $K_2 > 0$ and $0 \le a \le 0.1B$. Here $h_i(t)$ is the impulse response of system i and \mathcal{F} denotes Fourier transform.

Now consider $Y_1(t)$ and $Y_2(t)$ below:

- (a) Find $E(Y_1^2(3))$.
- (b) Find $E(Y_2^2(-5))$.
- (c) Find an expression for the cross-correlation function of $Y_1(t)$ and $Y_2(t)$, $R_{Y_1,Y_2}(t_1,t_2) = E(Y_1(t_1)Y_2(t_2))$.
- (d) For B=100 rad/sec, find the largest set of a's for which $Y_1(t)$ and $Y_2(t+\pi)$ are uncorrelated.

- 7. (15 points) Suppose N(t) is a WSS Gaussian white noise stochastic process with E(N(t)) = 0 and $R_{NN}(\tau) = q\delta(\tau)$. Consider two (deterministic) pulses $p_1(t)$ and $p_2(t)$ such that
 - $p_i(t) \neq 0$ only when $0 \leq t \leq T$, i = 1, 2.
 - $\int_0^T p_i^2(t)dt = 1, i = 1, 2.$
 - $\int_0^T p_1(t)p_2(t)dt = 0$, that is $p_1(t)$ and $p_2(t)$ are orthogonal.

Consider

$$N_i(t) = \int_0^t N(u)p_i(u)du, i = 1, 2, 0 \le t \le T.$$

- (a) Find $E(N_1(t))$.
- (b) Find $E(N_1^2(t))$.
- (c) Find $E(N_1(t)N_2(t))$.
- (d) Now we set t = T. Find the joint distribution of $N_1(T)$ and $N_2(T)$.