Prefill-Decode Disaggregation

Chenye Wang Dec 11, 2024

- [1] Splitwise: Efficient Generative LLM Inference Using Phase Splitting, 2023.
- [2] DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving, OSDI24.
- [3] MuxServe: Flexible Spatial-Temporal Multiplexing for Multiple LLM Serving, ICML, 2024.

LLM inference process

Prefill:

compute intensive

Decode:

memory intensive

majority of E2E latency

Spatial-Temporal Multiplexing

Service demand

Figure 2. The dynamic request arrival rates of different LLMs over a 20 day period.

Fig. 3: Distribution for prompt and generated tokens.

Conversation

1500

1000

Insight 1:

- LLM popularity varies significantly.
- Different inference services may have widely different prompt and token distributions.

Memory footprint

- Insight 2:
 - The decode phase is memory intensive

Model	Parameters (GB)	#Layers	#Heads	Head Size	KV Cache of 1k Tokens (MB)
LLaMA-7B	14	32	32	128	262.1
LLaMA-13B	26	40	40	128	409.6
LLaMA-30B	60	60	52	128	798.72
LLaMA-65B	130	80	64	128	1310.7

Latency

• Insight 3:

- The prefill phase is compute intensive.
- The majority of E2E time is spent in the decode phase.

(a) TTFT by prompt(b) TBT by batch size. (c) Latencies on prod size. traces (no batching).

Throughput

- Insight 4:
 - The prompt phase batch size should be limited to ensure good performance.
 - In contrast, batching the token generation phase yields high throughput without any downside.

(a) Prompt phase.

(b) Token generation phase.

Goodput (SLO)

- Collocating prefill and decode causes Interference.
- By allocating 2 GPUs for prefill and 1 GPU for decoding, we can get 2x goodput.

GPU hardware selection

 Decode phase can be run on less compute_x0002_capable hardware to reduce device cost.

	Coding			Conversation			
	A100	H100	Ratio	A100	H100	Ratio	
TTFT	185 ms	95 ms	0.51×	155 ms	84 ms	0.54×	
TBT	52 ms	31 ms	$0.70 \times$	40 ms	28 ms	$0.70 \times$	
E2E	856 ms	493 ms	$0.58 \times$	4957 ms	3387 ms	$0.68 \times$	
Cost [5]	\$0.42	\$0.52	1.24×	\$2.4	\$3.6	1.5×	
Energy	1.37 Whr	1.37 Whr	$1 \times$	7.9 Whr	9.4 Whr	1.2×	

TABLE IV: P50 request metrics on A100 vs. H100 without batching on Llama-70B.

Splitwise

- Machine pool management
 - Prompt pool
 - Token pool
 - Mixed pool
 - Dynamic adjustment
- Scheduler
 - Cluster-level scheduling
 - Request routing
 - Join the Shortest Queue (JSQ)
 - Machine-level scheduling
 - FCFS
 - Batching

Layer-wise KV-cache transfer

 After each layer in the LLM is calculated in the prompt machine, the KV cache corresponding to that layer is immediately transferred to the token machine.

(a) Serialized KV-cache transfer. (b) Optimized KV-cache transfer per-layer during prompt phase.

TODO

- DistServe
 - High Node-Affinity Placement Algorithm
 - Low Node-Affinity Placement Algorithm
- MuxServe
 - Enumeration-based Greedy Placement Algorithm
 - Adaptive Batch Scheduling Algorithm