PATENT ABSTRACTS OF JAPAN

1 W

(11)Publication number:

2000-164558

(43)Dat

f publication f application: 16.06.2000

(51)Int.CI.

H01L 21/306 HO1L 21/308

(21)Application number: 10-339306

(71)Applicant:

HAMADA HEAVY INDUSTRIES LTD

NEC KYUSHU LTD

(22)Date of filing:

30.11.1998

(72)Inventor:

KOREMATSU KAZUNORI

ABE IKU

TANIGUCHI HISASHI YAMAGUCHI SHUJI

(54) METHOD FOR REPRODUCING SILICON WAFER WITH METAL FILM

PROBLEM TO BE SOLVED: To realize a method for reproducing a silicon wafer with a metal film capable of restricting a reduction in a substrate thickness at reproduction to a minimum and reproducing a plurality of times for greater than the prior art.

SOLUTION: As a silicon test wafer which is an aim to be reproduced, one is used in which an oxide film of 3,000 Å or more is formed in the lower layer of a metal film, and when reproducing, the entire metal film and a part of a minimum oxide film are removed by chemical etching due to an alkali-system solution or acid solution, and furthermore a metal contaminant on a surface of the oxide film is removed by the chemical etching due to the acid solution.

LEGAL STATUS

[Dat of request for examination]

30.11.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the xaminer's decision of rejection or application converted registration]

[Dat of final disposal for application]

[Patent number]

3046807

[Dat of registration]

17.03.2000

[Number of appeal against examiner's decision of

rej ction]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-164558 (P2000-164558A)

(43)公開日 平成12年6月16日(2000.6.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H 0 1 L 21/306

21/308

H 0 1 L 21/306

5F043

21/308

D F E

審査請求 有 請求項の数6 OL (全 7 頁)

(21)出願番号

特顯平10-339306

(71) 出願人 000253226

濱田重工株式会社

(22)出願日

平成10年11月30日(1998.11.30)

福岡県北九州市戸畑区牧山1丁目1番36号

(71)出顧人 000164450

九州日本電気株式会社

熊本県熊本市八幡一丁目1番1号

(72)発明者 是松 和憲

熊本県菊池郡大津町高尾野272-8 渡田

重工株式会社シリコンウエハー事業部旗本

工場内

(74)代理人 100082164

弁理士 小堀 益 (外1名)

最終頁に続く

(54) 【発明の名称】 金属膜付シリコンウエハーの再生方法

(57)【要約】

【課題】 再生時の基板厚さの減少を最小限に留め、 従来に比較して飛躍的に多数回の再生が可能な金属膜付 シリコンウエハーの再生方法の提供。

【解決手段】再生対象となるシリコンテストウエハーとして金属膜の下層に3000オングストローム以上の酸化膜を形成したものを使用し、再生に際して、アルカリ系溶液、または酸性溶液による化学的エッチングによって金属膜全部と最小限の酸化膜一部を除去し、さらに、酸性溶液による化学的エッチングによって酸化膜表面の金属汚染物質を除去する。

【特許請求の範囲】

【請求項1】 金属膜の成膜工程のテストウエハーの金属膜の下層に酸化膜を形成し、

アルカリ系溶液または酸性溶液による化学的エッチング によって金属膜全部と最小限の酸化膜一部を除去し、 さらに、

酸性溶液による化学的エッチングによって酸化膜表面の 金属汚染物質を除去する金属膜付シリコンウエハーの再 生方法。

【請求項2】 形成する酸化膜の厚みが3000オング 10 ストローム以上である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項3】 金属膜全部と最小限の酸化膜を除去するための化学的エッチングの溶液が、金属膜がA1、Ti、W、Cuの金属及びその窒化物、シリサイド膜、またはそれぞれの組み合わせによる多層膜の場合には、1~20重量%のH2O2のアルカリ系溶液、あるいは、1~20重量%のNH4OHと1~20重量%のH2O2である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項4】 金属膜全部と最小限の酸化膜を除去するための化学的エッチングの溶液が、金属膜がA1系の金属膜の場合には、1~20重量%のKOHまたはNaOHと1~20重量%のH2O2のアルカリ系溶液である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項5】 金属膜全部と最小限の酸化膜を除去するための化学的エッチングの溶液が、金属膜がCu金属膜の場合、1~20重量%のHClと1~20重量%のH2O2の酸系溶液と1~20重量%のKOHまたはNaOHまたはNH4OHと1~20重量%のH2O2のアルカリ系溶液との組合せである請求項1に記載の金属膜付シリコンウエハーの再生方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、製造装置・プロセスが正常な状態にあるかを確認するために工程チェックに使用された後の最表層に金属膜が形成されているシリコンテストウエハーの再生方法に関する。

[0002]

【従来の技術】従来、このテストウエハーとしては、半 40 導体の製造に用いられるプライムウエハーを直接使用していたが、価格が高価なために、現在は、形状的にはプライムウエハー同等で内質が異なる安価なモニターウエハーあるいはダミーウエハーが主に使用されている。

【0003】このテストウエハーは、スパッタリング装置やCVD装置などにより形成された膜厚値、抵抗値、反射率などを評価項目として測定し、工程の健全性が調査される。この工程チェックに使用された後のテストウエハーの表層には、Al、Ti、W、Cuなどの金属やその室化物、シリサイドなどからなる拡散層やイオン注 50

入層、各種の膜などが形成されており、エッジを含む表面の膜を剥離すれば再使用可能である。

【0004】再使用可能の状態とは、基板厚さが標準基板としての厚みが維持されていることと、表面の汚染がないことである。例えば、8 インチテストウエハーの標準基板厚さは、 725 ± 25 μ mで、使用可能な最低厚さは一般的に $600\sim650$ μ mと言われている。そのため、再使用のための再生作業完了後の厚さの減少が少ないほど、その基板は何度も再生され、再使用可能である。

【0005】このテスト用金属膜付シリコンウエハーの再生は、特開平7-122532号公報、特開平9-17833号公報、特開平9-171981号公報などにも記載されているように、遊離砥粒を供給しながら対向して回転する金属製の定盤の内側にウエハーを保持して租研磨することにより膜を除去し、その後、化学的エッチングとポリシングを行うラッピング法、あるいは、酸もしくはアルカリ系の溶液を用いて表層を除去した後、ポリシングを行う化学的エッチングによる方法が知られている。

[0006]

20

【発明が解決しようとする課題】ところが、前者のラッピング法の場合、基板の厚さが再生加工完了時に一般的に50μm前後減少するため、2回程度しか再生ができない。また、後者の化学的エッチングの場合は、基板厚さの減少は20μm前後ではあるが、これも、5回前後の再生使用が限界である。また、溶液の種類によっては、基板が均一にエッチングされずに表面にむらが発生するなどの問題がある。

【0007】この発明が解決しようとする課題は、金属膜の成膜工程のテストウエハーの再生のための金属膜の除去に際して、基板厚さの減少を最小限に留め、これによって、再使用回数の飛躍的な増大を可能にできる方法を見出すことにある。

[0008]

【課題を解決するための手段】この発明は、金属膜の成膜工程のテストウエハーの金属膜の下層に酸化膜を形成し、アルカリ系溶液、または酸性溶液による化学的エッチングによって金属膜全部と最小限の酸化膜一部を除去し、さらに、酸性溶液による化学的エッチングによって酸化膜表面の金属汚染物質を除去することを特徴とする。

【0009】本発明で再生対象となるシリコンテストウエハーは、金属膜の下層に酸化膜が形成されているが、種類、膜厚に限定されるものではなく、初期の酸化膜の膜厚を厚くするほど再生回数を確保することができる。 【0010】金属膜全部と最小限の酸化膜一部を除去する化学的エッチングのための溶液は、膜の種類により種類が異なる。例えば、A1、Ti、W、Cuの金属及びその窒化物、シリサイド膜、またはそれぞれの組み合わ

せによる多層膜の場合には、1~20重量%のKOHま たはNaOHと1~20重量%のH2O2のアルカリ系溶 液、あるいは、1~20重量%のNH4OHと1~20 重量%のH2O2によって除去可能であるが、Al-Cu のようなA1系の金属膜の場合には、不溶解性の反応生 成物の発生し難い1~20重量%のKOHまたはNaO Hと1~20重量%のH2O2を使用した方が表面への生 成物の付着がなく有効である。また、Cu金属膜の場 合、酸化膜をほとんど化学エッチングしない1~20重 量%のHClと1~20重量%のH2O2の酸系溶液が有 効であり、さらに、1~20重量%のKOHまたはNa OHまたはNH4OHと1~20重量%のH2O2のアル カリ系溶液を使用し、酸化膜一部を除去する。また、完 全に金属膜を除去するためには、化学的エッチングを2 回以上に分けて行う方が効果的である。これらの金属膜 の除去方法は、最近になって使用されているTa、Co も含め新しい金属膜にも適用できる。

【0011】前記のアルカリ系溶液、酸系溶液、あるいは、濃度範囲外であっても、金属膜の除去は可能であるが、金属膜のエッチング速度、金属膜と酸化膜のエッチング選択比、反応生成物の付着、経済性の点から不利である。また、処理温度は、金属膜及び酸化膜の厚さにより温度を決定する必要がある。

【0012】A1、Fe、Znのような表面のメタル汚染物の除去方法としては、一般的にはHC1、HF、HNO3等のような酸性溶液を単体もしくは混合液として使用されているが、本発明の場合、テストウエハー表面の酸化膜も除去されないようにするためには、1~20重量%のHC1と1~20重量%のH2O2のような酸系溶液を使用するのが好ましい。

【0013】なお、メタル成膜装置の発塵確認用のように、再生用途を拡大するために、酸化膜表面上のパーティクル個数も保障する必要がある場合には、SC-1洗浄のような公知技術を追加して適用することができる。また、本発明は再生対象として、テストウエハーだけでなく、プライムウエハーにも適用できる。

[0014]

【発明の実施の形態】以下に、実施例によって本発明の 実施の形態を説明する。

【0015】実施例1

 $725\pm10\mu$ m厚さのテストウエハー 25 枚に、酸化炉によって平均 3005 オングストロームの厚さの酸化膜を成膜し、そのエッジを含む表面にスパッタリングによって平均 10054 オングストロームの厚さの A1 膜を成膜したものを再生対象として準備した。

【0016】最表層の金属膜の除去の第1段階として、この再生対象ウエハーを、膜除去のための第1槽に浸漬し、温度50℃で、重量比が、KOH: H2O2: H2O=1:1:18の溶液を満たしたテフロンバスの第1槽に5分浸漬し、金属膜を剥離後、超純水を収容した第2 50

槽でリンスを行った。

【0017】次に、第2段階として、温度50℃で、KOH: H2O2: H2O=1:1:18 (重量比)の溶液を満たしたテフロンバスの第3槽に5分間浸漬したのち、第4槽でリンスを実施した。金属膜の除去を2段階で行うのは、第1段階で金属膜を除去し、第2段階で部分的に残留する金属膜と酸化膜一部を除去するためである。

【0018】金属膜の除去後、表面の汚染物を除去した。金属膜を除去した再生対象ウエハーを、続いて、温度80℃で、重量比で、HC1:H2O2:H2O=1:1:8の溶液を満たしたテフロン製の第5槽に5分浸債後、第6槽でリンスしたのち、スピンナードライヤーによって乾燥した。この金属膜と汚染除去の処理による厚さの減少は、234オングストロームに過ぎなかった。【0019】次に、同一条件でA1膜を成膜した後、再生処理を行なうことを10回繰り返しても、最終的に厚さの減少量は2483オングストロームに過ぎなかった。

【0020】ここで、酸化膜の残厚が、ほぼ500オングストロームとなったので、酸化膜をHFによって除去し、再度酸化膜を3000オングストローム成膜にした。A1膜の場合、3000オングストロームの厚さの酸化膜で、10回の再生が可能となった。そして本条件での平均厚さ減少量は、250オングストロームに過ぎなかった。

【0021】一方、再生後のウエハーのメタル汚染レベルは、FLAA測定装置で行なった結果、 $5E10atoms/cm^2$ 以下であり、メタル成膜装置及び酸化炉で使用するには十分のレベルであった。

【0022】実施例2

7 2 5 μ m ± 1 0 μ m 厚さのテストウエハー 2 0 枚に、酸化炉にて平均 3 0 0 3 オングストロームの厚さの酸化膜を成膜し、そのエッジを含む表面に平均 1 0 0 7 1 オングストロームの厚さのW膜を成膜したものを準備して再生対象とした。 このウエハーの表層の金属膜の除去の第 1 段階として、温度 5 0 ℃で、重量比でKOH: H 2 O2: H2 O=1:1:18の溶液を満たしたテフロンバスの第 1 槽に 5 分浸漬し、実施例 1 と同じく第 2 槽でリンスした。

【0023】さらに、温度50℃で、重量比でKOH: H2O2:H2O=1:1:18の溶液を満たしたテフロンバスの第3槽に5分浸漬、第4槽でリンスした。 【0024】つぎに、温度80℃で、HC1:H2O2: H2O=1:1:8 (重量比)の溶液を満たしたテフロ

120-1:1:8 (重量に) の格根を満たしたテノロンバスの第5槽に5分浸漬後、第6槽で、リンス処理し、その後スピンナードライヤーによって乾燥して表面のメタル汚染の除去を施した。この処理により、厚さの減少は、243オングストロームであった。次に、同一条件でW膜を成膜した後、再生処理を行なうことを10

10

回繰り返した。最終的に厚さの減少量は、2497オン グストロームであり、酸化膜の残厚が、ほぼ500オン グストロームにすぎなかった。

【0025】本条件での平均厚さ減少量は250オングストロームであり、W膜の場合、3000オングストロームの厚さの酸化膜で、10回以上の再使用が可能となることがわかった。一方、再生後のウエハーのメタル汚染レベルは、5E10atoms/cm²であり、メタル成膜装置及び酸化炉で使用するには十分のレベルであった。

【0026】実施例3

725±10μm厚さの10枚に、酸化炉にて平均3008オングストロームの厚さの酸化膜を成膜し、そのエッジを含む表面に平均10023オングストロームの厚さのA1膜を成膜したものを再生対象として準備した。【0027】このウエハーを、膜除去の第1段階として温度45℃で、重量比でNaOH: H2O2: H2O=1:1:18の溶液を満たしたテフロンバスの第1槽に5分浸漬し金属膜を剥離後、第2槽でリンスした。次に、最表層の金属膜の除去の第2段階として、温度45℃で、重量比でNaOH: H2O2: H2O=1:1:18の溶液を入れたテフロンバスの第3槽に5分間浸漬し、第4槽でリンスした。

【0028】さらに、温度80℃で、重量比、HCl: H2O2:H2O=1:1:8の溶液を満たしたテフロン バスの第5槽に5分浸漬して表面のメタル汚染物を除去 し、第6槽でリンスし、その後スピンナードライヤーに よって乾燥した。

【0029】この処理による厚さの減少は、224オングストロームに過ぎなかった。次に、同一条件でA1膜 30を成膜した後、再生処理を行なうことを10回繰り返した。最終的に厚さの減少量は、2276オングストロームであり、酸化膜の残厚が、ほぼ700オングストロームとなった。

【0030】このことから、平均厚さ減少量は230オングストロームに過ぎず、A1膜の場合、3000オングストロームの厚さの酸化膜で、10回以上の再使用が可能となることがわかる。

【0031】一方、再生後のウエハーのメタル汚染レベルは、5E10atoms/cm²以下であり、メタル成膜装置及び酸化炉で使用するには十分のレベルであった。

実施例4

 $725\pm10\mu$ m厚さのテストウエハー 25 枚に、酸化炉にて平均 2998 オングストロームの厚さの酸化膜を成膜し、そのそのエッジを含む表面に平均 10068 オングストロームの厚さのT i 膜を成膜したものを準備し、再生対象ウエハーとした。

【0032】このウエハーを、第1槽に浸漬し、温度7 5℃で、重量比、NH4OH: H2O2: H2O=1:1: 50 18の溶液を満たしたテフロンバスに5分浸漬した後、第2槽でリンス処理した。つぎに最表層の金属膜の除去の第2段階として、温度50℃で、重量比で、KOH: H2O2: H2O=1:1:18の溶液を満たした第3槽としてのテフロンバスに5分間、浸漬したのち、第4槽で、リンスを行った。次に表面のメタル汚染の除去のための第5槽で、温度80℃で、重量比が、HC1: H2O2: H2O=1:1:8の溶液を満たしたテフロンバスに5分浸漬したのち、第6槽でリンスを行った。その後スピンナードライヤーにて乾燥した。この処理による厚さの減少は131オングストロームであった。

【0033】つぎに、同一条件でTi膜を成膜した後、再生処理を行なうことを20回繰り返した。最終的に厚さの減少量は、2453オングストロームであり、酸化膜の残厚が、ほぼ500オングストロームとなった。

【0035】実施例5

 $725\pm10\mu$ m厚さのテストウエハー10 枚に、酸化 炉によって平均 3004 オングストロームの厚さの酸化 膜を成膜し、そのエッジを含む表面に平均 10016 オングストロームの厚さのTiN膜を成膜したものを再生 対象ウエハーとして準備した。

【0036】このウエハーの膜除去の第1段階として、温度75℃で、重量比がNH4OH: $H_2O_2: H_2O=1:1:1:8$ の溶液を満たしたテフロンバスの第1槽に5分間浸漬して第2槽でリンスした。ついで、ウエハーの膜除去の第2段階として、温度60℃で、重量比がKOH: $H_2O_2: H_2O:=1:1:1:8$ の溶液を満たしたテフロンバスの第3槽に5分間浸漬したのち、第4槽でリンスした。

【0037】次に表面のメタル汚染の除去のために、温度80℃で、重量比が、HCl:H2O2:H2O=1:1:8の溶液を満たしたテフロンバス第5槽に5分間浸漬したのち、第6槽でリンスし、その後スピンナードライヤーにて乾燥した。

【0038】この処理により、厚さの減少は、127オングストロームであった。次に、同一条件でTiN膜を成膜した後、再生処理を行なうことを20回繰り返した。最終的に厚さの減少量は、2398オングストロームであり、酸化膜の残厚が、ほぼ600オングストロームとなった。

【0039】以上のことから、TiN膜の場合、300 0オングストロームの厚さの酸化膜で、20回の再生が 可能となり、本条件での平均厚さ減少量は、120オン グストロームとなった。 7

【0040】一方、再生後のウエハーのメタル汚染レベルは、5E10atoms/cm²であり、メタル成膜装置及ひ酸化炉で使用するのに十分なレベルであった。 【0041】実施例6

 $725 \pm 10 \mu$ m厚さのテストウエハー 25 枚に、酸化炉にて平均 3011 オングストロームの厚さの酸化膜を成膜し、そのそのエッジを含む辰面に平均 29993 オングストロームの厚さの Cu 膜を成膜したものを再生対象として準備した。

【0042】このウエハーを、最表層の金属膜の除去の 10 第1段階として、温度30℃の重量比でHCl:H 2O2:H2O=1:1:15の溶液を満たしたテフロンバスの第1槽に3分間浸漬したのち、第2槽でリンスした。次に、最表層の金属膜の除去の第2段階として、温度75℃で、重量比、NH4OH:H2O2:H2O=1:1:18の溶液を満たしたテフロンバスの第3槽に3分間浸潰したのち、第4槽でリンスした。

【0043】次に、温度80℃の重量比HCl:H 2O2:H2O=1:1:8の溶液を満たしたテフロンバスの第5槽に5分間浸漬して表面のメタル汚染物を除去 20 し、第6槽でリンスし、スピンナードライヤーにて乾燥した。

【0044】上記の処理により、厚さの減少は、15オ

ングストロームであった。次に、同一条件でCu膜を成膜した後、再生処理を行なうことを10回繰り返した。 最終的に厚さの減少は、162オングストロームであり、酸化膜の残厚がほぼ2850オングストロームとなった。

【0045】以上のことから、Cu膜の場合、3000 オングストロームの厚さの酸化膜で、150回以上の再生が可能となることがわかる。一方、再生後のウエハーのメタル汚染レベルは、5E10atoms/cm²であり、メタル成膜装置及び酸化炉で使用するには十分のレベルであった。

[0046]

【発明の効果】本発明によって、

1. 基板の厚さは全く減少せず、基板は半永久的に使用することができる。

【0047】2. 再生1回当たりの酸化膜の除去量を少なく押さえられるため、最初に3000オングストロームの厚さの酸化膜を成膜すれば、少なくとも10回の繰り返し使用が可能となる。

【0048】3. テストウエハーに関わるコストも、基板の費用、酸化膜の成膜費用、再生費用が削減されるため、大幅な低減となる。

【手続補正書】

【提出日】平成11年9月28日(1999.9.28)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 金属膜の下層に酸化膜が形成されたテストウエハーに対し、アルカリ系溶液または酸系溶液による第1の化学的エッチングによって前記金属膜を除去し、その後リンスを行い、次にアルカリ系溶液による第2の化学的エッチングによって、前記第1の化学的エッチングで残存した前記金属膜と前記酸化膜の一部を除去し、

さらに、

酸<u>系</u>溶液による<u>第3の</u>化学的エッチングによって酸化膜 表面の金属汚染物質を除去する金属膜付シリコンウエハ ーの再生方法。

【請求項2】 形成する酸化膜の厚みが3000オングストローム以上である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項3】 <u>前記第1及び第2の化学的エッチングの</u> うち少なくとも一方の化学的エッチングの溶液が、金属 膜がA1、Ti、W、Cuの金属及びその窒化物、シリサイド膜、またはそれぞれの組み合わせによる多層膜の場合には、 $1\sim20$ 重量%のKOHまたはNaOHと $1\sim20$ 重量%のH2O2のアルカリ系溶液、あるいは、 $1\sim20$ 重量%のNH4OHと $1\sim20$ 重量%のH2O2である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項4】 <u>前記第1及び第2の</u>化学的エッチングの 溶液が、金属膜がA1系の金属膜の場合には、1~20 重量%のKOHまたはNaOHと1~20重量%のH2 O2のアルカリ系溶液である請求項1に記載の金属膜付 シリコンウエハーの再生方法。

【請求項5】 金属膜がCu系金属膜の場合、前記第1 の化学的エッチング溶液が1~20重量%のHClと1 ~20重量%のH2O2の酸系溶液であり、前記第2の化 学的エッチング溶液が1~20重量%のKOHまたはN aOHまたはNH4OHと1~20重量%のH2O2のア ルカリ系溶液である請求項1に記載の金属膜付シリコン ウエハーの再生方法。

【請求項6】 <u>テストウエハーの表面に酸化膜を成膜し、第1の工程として前記酸化膜の上に金属膜を成膜し、第2の工程としてアルカリ系溶液または酸系溶液による化学的エッチングによって前記金属膜と前記酸化膜の</u>一部を除去し、第3の工程としてHC1及びH2O2の

酸系溶液の化学的エッチングによって酸化膜表面の金属 汚染物質を除去し、前記第1乃至第3の工程を複数回繰 り返した後、前記酸化膜の膜厚が所定値以下になったと き前記酸化膜をHFで除去し、前記HFで酸化膜が除去 された前記テストウエハー上に酸化膜及び金属膜を設け ることを特徴とする金属膜付シリコンウエハーの再生方 法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【手続補正書】

【提出日】平成11年12月21日 (1999.12. 21)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 金属膜の下層に酸化膜が形成されたテストウエハーに対し、アルカリ系溶液または酸系溶液による第1の化学的エッチングによって前記金属膜を除去し、その後リンスを行い、次にアルカリ系溶液による第2の化学的エッチングによって、前記第1の化学的エッチングで残存した前記金属膜と前記酸化膜の一部を除去し、

さらに、

酸系溶液による第3の化学的エッチングによって酸化膜 表面の金属汚染物質を除去する金属膜付シリコンウエハ ーの再生方法。

【請求項2】 形成する酸化膜の厚みが3000オングストローム以上である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項4】 前記第1及び第2の化学的エッチングの溶液が、金属膜がA1系の金属膜の場合には、1~20 重量%のKOHまたはNaOHと1~20重量%のH2 O2のアルカリ系溶液である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【補正内容】

[0008]

【課題を解決するための手段】この発明は、金属膜の下層に酸化膜が形成されたテストウエハーに対し、アルカリ系溶液または酸系溶液による第1の化学的エッチングによって前記金属膜を除去し、その後リンスを行い、次にアルカリ系溶液による第2の化学的エッチングによって、前記第1の化学的エッチングで残存した前記金属膜と前記酸化膜の一部を除去し、さらに、酸系溶液による第3の化学的エッチングによって酸化膜表面の金属汚染物質を除去することを特徴とする。

【請求項5】 金属膜がCu系金属膜の場合、前記第1の化学的エッチング溶液が1~20重量%のHClと1~20重量%のH2O2の酸系溶液であり、前記第2の化学的エッチング溶液が1~20重量%のKOHまたはNaOHまたはNH4OHと1~20重量%のH2O2のアルカリ系溶液である請求項1に記載の金属膜付シリコンウエハーの再生方法。

【請求項6】 テストウエハーの表面に酸化膜を成膜し、第1の工程として前記酸化膜の上に金属膜を成膜し、第2の工程としてアルカリ系溶液または酸系溶液による化学的エッチングによって前記金属膜と前記酸化膜の一部を除去し、第3の工程としてHC1及びH2O2の酸系溶液の化学的エッチングによって酸化膜表面の金属汚染物質を除去し、前記第1乃至第3の工程を複数回繰り返した後、前記酸化膜の膜厚が所定値以下になったとき前記酸化膜をHFで除去し、前記HFで酸化膜が除去された前記テストウエハー上に酸化膜及び金属膜を設けることを特徴とする金属膜付シリコンウエハーの再生方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

【0010】金属膜全部と最小限の酸化膜一部を除去する化学的エッチングのための溶液は、膜の種類により種類が異なる。例えば、A1、Ti、W、Cuの金属、そのシリサイド膜、TiN、またはそれぞれの組み合わせによる多層膜の場合には、1~20重量%のKOHまたはNaOHと1~20重量%のNH4OHと1~20重量%のH2O2によって除去可能であるが、A1-CuのようなA1系の金属膜の場合には、不溶解性の反応生成物の発生し難い1~20重量%のKOHまたはNaOHと1~20重量%のH2O2を使用した方が表面への生成物の付着がなく有効である。また、Cu金属膜の

場合、酸化膜をほとんど化学エッチングしない1~20 重量%のHC1と1~20重量%のH2 O2の酸系溶液 が有効であり、さらに、1~20重量%のKOHまたは NaOHまたはNH4 OHと1~20重量%のH2 O2 のアルカリ系溶液を使用し、酸化膜一部を除去する。ま た、完全に金属膜を除去するためには、化学的エッチングを2回以上に分けて行う方が効果的である。これらの金属膜の除去方法は、最近になって使用されているTa、Coも含め新しい金属膜にも適用できる。

フロントページの続き

(72) 発明者 阿部 郁

熊本県菊池郡大津町高尾野272-8 濱田 重工株式会社シリコンウエハー事業部熊本 工場内

(72)発明者 谷口 久

熊本県菊池郡大津町高尾野272-8 **该田** 重工株式会社シリコンウエハー事業部熊本 工場内

(72)発明者 山口 周二

熊本県熊本市八幡一丁目1番一号 九州日 本電気株式会社内

F ターム(参考) 5F043 AA22 AA28 AA31 BB15 BB21 GG10