Contextual Bandits 200B

- E. Greedy - Square CB (involve pap- 90p)
Weighting) Proved given Lemma 4070 $At't_{k}[K] \rightarrow [0]$ The [1*(7) - 1*(7)] \leq + $\gamma \# (\hat{f}(\pi) - \hat{f}(\pi))^2$ $\#_{\rho} \left[\mathcal{A}^{*}(\pi^{*}) - \mathcal{A}^{*}(\pi) \right]$ = Ep[f*(5,*)-f(5,*) 平介(不)一个(元)

 $\leq \frac{K}{2} + 2 F_{P} \left(f(\pi) + f(\pi)^{2} \right)$ $FReget = XI + XSFP(F_{t}(\pi))$ (over T. > = 7 JKI Regulso

Today: LinucB High-level (1) Use linear possession (B) to estimate the rescriber 2) Use uncertainty estimates log to get UCB on each orm D'Optimistic' prick was work west were. Algorithm O*EPR', B>O (Assume O(,)) known For to Dto T-1. (O*/, <1) $\begin{aligned}
& + \sum_{s=1}^{\infty} \frac{1}{2^{s}} = \frac{1}{2^{s}} & + \sum_{s=1}^{\infty} \frac{1}{2^{s}} = \frac{1}{2^{s}} \frac{1}{2^{s}} & + \sum_{s=1}^{\infty} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} & + \sum_{s=1}^{\infty} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} & + \sum_{s=1}^{\infty} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} & + \sum_{s=1}^{\infty} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} \frac{1}{2^{s}} & + \sum_{s=1}^{\infty} \frac{1}{2^{s}} \frac{1}{2^{s$ Z= Z & S & I (SO < U, Zeu)= £ < 05, w > + | u(2) how much We (cnow report direction in 5 - Bbserce Context Xtx1.

Of State - Select THE REGRAX MAX (O, O(x_1, T))
THE THE KY D S.A. $\frac{\langle \theta - \hat{\theta}_{t}, \tilde{Z}_{t}(0 - \hat{\theta}_{t}) \rangle}{\sum (16\beta + 4)^{2}}$ - Hay Ttai, get reward fett. Possible issues: - Of too small, document of the

Thm: FRagret: A (f*(x+, T*)-f*(xe, Te)) There $B = \Theta(d \log T)$. Has two parts. Part I: Show (with high protestility)

It is always in the

Uncertainty Set.

Then = argmax 20* p(x, T) E Regret = $\frac{T-1}{t=0}$ ($\frac{t}{t}$ ($\frac{t}{t}$ ($\frac{t}{t}$ ($\frac{t}{t}$)) $\frac{t}{t}$ = $\frac{T-1}{t}$ ($\frac{t}{t}$ ($\frac{t}{t}$)) Step! $O^* \in \mathbb{G}_1$ (HW) $\leq \int (max \langle 0, d(x_{11}, \pi_{cei}) \rangle$ t = 0 $g \in \mathcal{O}_1$ $m \neq d(x_{cei}, \pi_{cei})$ $= \left(\begin{array}{c} \mathcal{T} - \left(\begin{array}{c} \mathcal{T} + \mathcal{T} \\ \mathcal{T} - \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} - \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} - \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} - \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} \\ \mathcal{T} \\ \mathcal{T}$

 \mathcal{P}^{ox} $(\theta - 0^{*}, \phi(\chi_{t}, \pi_{t}))$ = Max $\left(\frac{5}{2}\right)^{1/2}\left(0-0^{*}\right)\frac{5^{-1/2}}{2}\left(x_{\ell}, \pi_{\ell}\right)$ Leanne (Elliptical Potential Cerma)
Suppose of the Partial Cerma

Suppose of the Partial Cerma Za = Z ps ps (FI

hen 2 pt 2 pt 2 20 log T. how Sufprising

PE is "