

Master-Thesis

Path Planning for Dynamic Maneuvers with Micro Aerial Vehicles

Autumn Term 2014

Declaration of Originality

I hereby declare that the written we	ork I have submitted entitled
Path Planning for Dynamic Ma	aneuvers with Micro Aerial Vehicles
is original work which I alone have a	uthored and which is written in my own words. 1
A (1 ()	
Author(s)	
First name	Last name
Supervising lecturer	
First name	Last name
citation rules and that I have read etiquette' (http://www.ethz.ch/s	have been informed regarding normal academic and understood the information on 'Citation tudents/exams/plagiarism_s_en.pdf). The scipline in question here have been respected. ted electronically for plagiarism.
Place and date	Signature

 $[\]overline{^{1}\text{Co-authored work: The signatures}}$ of all authors are required. Each signature attests to the originality of the entire piece of written work in its final form.

Contents

Αl	bstract	iii
$\mathbf{S}\mathbf{y}$	rmbols	\mathbf{v}
1	Introduction 1.1 State of the Art	1 1
2	Einige wichtige Hinweise zum Arbeiten mit LATEX 2.1 Gliederungen	3
	2.2 Referenzen und Verweise	3 3
	2.4 Erstellen einer Tabelle2.5 Einbinden einer EPS-Graphik	$\frac{4}{5}$
	2.6 Mathematische Formeln	5 6
\mathbf{A}	Irgendwas	7
В	Nochmals irgendwas	9
Bi	bliography	11

Abstract

Hier kommt der Abstact hin ...

Symbols

Symbols

 ϕ, θ, ψ roll, pitch and yaw angle

b gyroscope bias

 Ω_m 3-axis gyroscope measurement

Indices

x x axis y y axis

Acronyms and Abbreviations

ETH Eidgen $\ddot{i}_{\dot{c}}$ zsische Technische Hochschule

EKF Extended Kalman Filter
IMU Inertial Measurement Unit
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter

Chapter 1

Introduction

1.1 State of the Art

A lot of research has been done in the field of Unmanned Aerial Vehicles (UAV) in the last years leading to a strong improvement in planning [1] as well as in control [2], [3]]. Another research field is machine learning [4] which is suitable to enhance the performance of aerobatic maneuvers but seams to have a downside regarding motion planning and trajectory generation in dense environments.

Speaking of trajectory planning, there are two different strategies which are pursued. On the one hand, the geometric and the temporal planning are decoupled [5] on the other hand, geometric and temporal information are coupled and the trajectory is the result of a minimization problem. For the couplet problem one can make use of the differential flatness of a quadrocopter to derive constraint on the trajectory. Then formulate a cost-function which could be the trajectory-time [3] or the total snap [6] (second derivation of acceleration).

Another aspect of planning is exploring the state space in the first place. A strong tool to do so are incremental search techniques as for instance the A^* [7] or the RRT* algorithm [8]. The sampling points of the solution of the incremental search can then be used as the vertices for the polynomial optimization.

Chapter 2

Einige wichtige Hinweise zum Arbeiten mit LATEX

Nachfolgend wird die Codierung einiger oft verwendeten Elemente kurz beschrieben. Das Einbinden von Bildern ist in \LaTeX nicht ganz unproblematisch und h $\ifmmode i\ell$ auch stark vom verwendeten Compiler ab. Typisches Format fi $\ifmmode i\ell$ Bilder in \LaTeX ist EPS¹.

2.1 Gliederungen

Ein Text kann mit den Befehlen \chapter{.}, \section{.}, \subsection{.} und \subsubsection{.} gegliedert werden.

2.2 Referenzen und Verweise

Literaturreferenzen werden mit dem Befehl \cite{.} erzeugt. Ein Beispiel: [?]. Zur Erzeugung von Fussnoten wird der Befehl \footnote{.} verwendet. Auch hier ein Beispiel².

Querverweise im Text werden mit \label{.} verankert und mit \ref{.} erzeugt. Beispiel einer Referenz auf das zweite Kapitel: Kapitel 2.

2.3 Aufzi $\frac{1}{2}$ hlungen

Folgendes Beispiel einer Aufzi $\frac{1}{2}$ hlung ohne Numerierung,

- Punkt 1
- Punkt 2

wurde erzeugt mit:

\begin{itemize}
 \item Punkt 1
 \item Punkt 2
\end{itemize}

Folgendes Beispiel einer Aufzi $\frac{1}{2}$ hlung mit Numerierung,

¹Encapsulated Postscript

²Bla bla.

```
1. Punkt 1
```

2. Punkt 2

wurde erzeugt mit:

\begin{enumerate}
 \item Punkt 1
 \item Punkt 2
\end{enumerate}

Folgendes Beispiel einer Auflistung,

P1 Punkt 1

P2 Punkt 2

wurde erzeugt mit:

\begin{description}
 \item[P1] Punkt 1
 \item[P2] Punkt 2
\end{description}

2.4 Erstellen einer Tabelle

Ein Beispiel einer Tabelle:

Table 2.1: Daten der Fahrzyklen ECE, EUDC, NEFZ.

Kennzahl	Einheit	ECE	EUDC	NEFZ
Dauer	S	780	400	1180
Distanz	km	4.052	6.955	11.007
Durchschnittsgeschwindigkeit	$\mathrm{km/h}$	18.7	62.6	33.6
Leerlaufanteil	%	36	10	27

Die Tabelle wurde erzeugt mit:

```
\begin{table}[h]
\begin{center}
  \caption{Daten der Fahrzyklen ECE, EUDC, NEFZ.}\vspace{1ex}
  \label{tab:tabnefz}
  \begin{tabular}{11|ccc}
  \hline
  Kennzahl & Einheit & ECE & EUDC & NEFZ \\ \hline \hline
  Dauer & s & 780 & 400 & 1180 \\
  Distanz & km & 4.052 & 6.955 & 11.007 \\
  Durchschnittsgeschwindigkeit & km/h & 18.7 & 62.6 & 33.6 \\
  Leerlaufanteil & \% & 36 & 10 & 27 \\
  \hline
  \end{tabular}
  \end{center}
  \end{table}
```

2.5 Einbinden einer EPS-Graphik

Das Einbinden von Graphiken kann wie folgt bewerkstelligt werden:

```
\begin{figure}[h]
  \centering
  \includegraphics[width=0.75\textwidth]{pics/k_surf.eps}
  \caption{Ein Bild.}
  \label{pics:k_surf}
\end{figure}
```


Figure 2.1: Ein Bild.

oder bei zwei Bildern nebeneinander mit:

```
\begin{figure}[h]
  \begin{minipage}[t]{0.48\textwidth}
    \includegraphics[width = \textwidth]{pics/cycle_we.eps}
  \end{minipage}
  \hfill
  \begin{minipage}[t]{0.48\textwidth}
    \includegraphics[width = \textwidth]{pics/cycle_ml.eps}
  \end{minipage}
  \caption{Zwei Bilder nebeneinander.}
  \label{pics:cycle}
  \end{figure}
```

Bemerkung: Ersetzt man den Positionierungsparameter h durch H, so wird das Gleiten der Abbildung verhindert.

2.6 Mathematische Formeln

Einfache mathematische Formeln werden mit der equation-Umgebung erzeugt:

$$p_{me0f}(T_e, \omega_e) = k_1(T_e) \cdot (k_2 + k_3 S^2 \omega_e^2) \cdot \Pi_{max} \cdot \sqrt{\frac{k_4}{B}}.$$
 (2.1)

Der Code dazu lautet:

Figure 2.2: Zwei Bilder nebeneinander.

Mathematische Ausdrië, $\frac{1}{2}$ cke im Text werden mit \$formel\$ erzeugt (zB: $a^2+b^2=c^2$).

2.7 Weitere n \ddot{i}_2^1 tzliche Befehle

Hervorhebungen im Text sehen so aus: hervorgehoben. Erzeugt werden sie mit dem ϵ Befehl.

Appendix A

Irgendwas

Bla bla ...

Appendix B

Nochmals irgendwas

Bla bla ...

Bibliography

- [1] R. HE, A. BACHRACH, M. ACHTELIK, A. GERAMIFARD, D. GURDAN, S. PRENTICE, J. STUMPF, AND N. ROY: On the design and use of a micro air vehicle to track and avoid adversaries. The Int. Journal of Robotics Research, vol. 29, pp. 529-546, 2010.
- [2] D. Colling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke: *A prototype of an autonomous controller for a quadrotor UAV*. In Proceedings of the European Control Conference, Kos, Greece, 2007, pp. 1-8.
- [3] M. Hehn and R. D'Andrea: Quadrocopter trajectory generation and control. In International Federation of Automatic Control (IFAC), World Congress 2011, 2011.
- [4] S. Lupashin, A. Schollig, M. Sherback, and R. D'Andrea: A simple learning strategy for high-speed quadrocopter multi-flips. In Proc. of the IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, May 2010, pp. 1642-1648.
- [5] Y. BOUKTIR, M. HADDAD, AND T. CHETTIBI: Trajectory Planning for a Quadrotor Helicopter. In Mediterranean Conference on Control and Automation, Jun. 2008, pp. 1258-1263
- [6] D. MELLINGER AND V. KUMAR: Minimum snap trajectory generation and control for quadrotors. In International Conference on Robotics and Automation, 2011, pp. 2520-2525.
- [7] M. LIKHACHEV, G. GORDON AND S. THRUN: ARA^* : Anytime A^* with Provable Bounds on Sub-Optimality . Advances in Neural Information Processing Systems, vol. 16, 2003
- [8] C. RICHTER, A. BRY, AND N, ROY: Polynomial Trajectory Planning for Quadrotor Flight. In International Conference on Robotics and Automation, 2013.