

Introdução a transistores bipolar de junção

Prof. Alceu André Badin

Transistor Bipolar de Junção (BJT)

Transistor:

Dispositivo (semicondutor) de 3 terminais, cujo princípio de operação baseia-se no controle da corrente num dos terminais pela tensão aplicada nos outros dois.

Modos de Utilização:

Fonte Controlada ⇒ AMPLIFICADORES

Interruptor (chave) ⇒ CIRCUITOS DIGITAIS

John Bardeen, William Shockley e Walter Brattain (Nobel de Física de 1956)

2.1 – Estrutura Física do BJT

Junções equivalentes (modelo diferente)

Estrutura mais realista do BJT (npn)

Emissor: fortemente dopado

Base: estreita e fracamente dopada

Coletor: maior área

Modos de Operação:

Operando como chave

Os transistores bipolares foram os primeiros semicondutores de potência totalmente controlados utilizados comercialmente em conversores estáticos.

(a) Símbolo e (b) Característica ideal de um BJT.

O BJT pode conduzir corrente somente em uma direção, e quando em estado bloqueado suporta somente tensões positivas, ou seja, $i_c>0$ e $v_{CE}>0$.

Quando uma corrente de base é aplicada a base o BJT, este passa a conduzir. Com a remoção da corrente de base o BJT volta ao estado bloqueado.

2.2 – Operação Física no Modo Ativo (RAD)

- ightharpoonup o valor de i_C não depende do <u>valor</u> de v_{CB}, apenas que v_C > v_B
- \blacktriangleright mais de 95% dos elétrons emitidos são coletados (i_C > 0.95 i_E)

Relações importantes:

$$i_C = I_S.e^{\frac{v_{BE}}{V_T}}$$

Temos que:
$$i_C = I_S.e^{\frac{v_{BE}}{V_T}} \qquad onde: \begin{cases} I_S = k\frac{A}{W} & \text{largura da base} \\ V_T: \text{tensão térmica (\approx25mV @ 300K)} \end{cases}$$
 e:
$$i_C = \alpha.i_E$$

$$i_C = \alpha . i_E$$

Da 1ª Lei de Kirchhoff: $i_E = i_C + i_B$

$$i_E = i_C + i_B$$

$$i_C = \frac{\alpha}{1 - \alpha} i_B \qquad e \qquad i_E = \frac{1}{1 - \alpha} i_B$$

Fazendo: $\beta = \frac{\alpha}{1-\alpha}$

Teremos:
$$i_C = \beta.i_B$$
 e $i_E = (\beta+1).i_B$

Comparativo entre β e α

$\alpha = \frac{\beta}{\beta + 1}$ (ganho de corrente em base-comum)	$\beta = \frac{\alpha}{1 - \alpha}$ (ganho de corrente em emissor-comum)
0,9	9
0,95	19
0,99	99
0,998	499

- ► Valores típicos:2 $50 < \beta < 500$ (0,952 < $\alpha < 0$,998)
- ightharpoonup Transistores iguais podem ter β ligeiramente diferentes

Dependência típica de β no IC e na temperatura em um transistor de silício npn de circuito integrado destinado à operação em torno de 1 mA.

Modelo Ebers-Moll

J. J. Ebers, J. L. Moll, "Large-Signal Behavior of Junction Transistor," *Proceedings of the IRE*, **42**, pp 1761-1772, 1954.

Modelo de Ebers-Moll (Grandes Sinais)

Table 4.3 Simplified Models for the Operation of the BJT in DC Circuits npn pnp Active $_{\circ}E$ EBJ: Forward Biased $V_{CE} \ge 0.3 \text{ V}$ $V_{BE} \simeq 0.7 \text{ V}$ $V_{EB} \simeq 0.7 \text{ V}$ $V_{EC} \ge 0.3 \text{ V}$ CBJ: Reverse --- C Biased φE οE Saturation EBJ: Forward $V_{CEsat} \simeq 0.2 \text{ V}$ Biased $V_{BE} \simeq 0.7 \text{ V}$ $V_{EB} \simeq 0.7 \text{ V}$ $V_{EC\text{sat}} \simeq 0.2 \text{ V}$ CBJ: Forward $\frac{-}{I_C = \beta_{\text{forced}} I_B}$ Biased ρE $\beta_{\text{forced}} < \beta_{\text{min}}$

<u>Símbolo e Modelos Equivalentes</u>

Representação gráfica das características do BJT

Característica i_C - v_{BE}

Característica de saída (i_C-v_{CE})

Característica de Saída - Limites de Operação

Teste de transistores

- Traçador de curvas Fornece um gráfico de curvas características.
- Medidores digitais Alguns medidores digitais medem β_{DC} ou $h_{FE}.$

• Ohmímetro:

Exemplo:

O transistor da figura abaixo tem β =100 e exibe uma tensão v_{BE} de 0,7V com i_C = 1 mA. Projete o circuito para que uma corrente de 2 mA flua através do coletor e que uma tensão de + 5V apareça no terminal do coletor.

<u>Solução</u>

tem-se:

$$V_C = +5 \text{ V} \Rightarrow V_{RC} = 15 - 5 = 10 \text{ V}$$

 $I_C = 2 \text{ mA} \Rightarrow R_C = V_{RC} / 2 \text{ mA} = 5 \text{ k}\Omega$

como:
$$V_{BE} = 0.7 \text{ V para } I_C = 1 \text{ mA}$$

 V_{BE} para $I_C = 2 \text{ mA \'e dado por:}$

$$R_{c}=5k\Omega$$

$$V_{C}=+5 \text{ V}$$

$$V_{BE} \text{ para } I_{C}=1 \text{ mA}$$

$$V_{BE} \text{ para } I_{C}=2 \text{ mA \'e dado por:}$$

$$i_{C}=I_{S}.e^{\frac{v_{BE}}{V_{T}}} \quad V_{BE}=0,7+V_{T} \ln \left(\frac{2}{1}\right)=0,717 \text{ V}$$

$$I_{C}=I_{S}.e^{\frac{v_{BE}}{V_{T}}} \quad V_{BE}=0,7+V_{T} \ln \left(\frac{2}{1}\right)=0,717 \text{ V}$$

como:
$$V_B = 0 \Rightarrow V_E = -0.717 \text{ V}$$

 $(\beta = 100 \Rightarrow \alpha = 100/101)$

e:
$$I_E = I_C / \alpha = 2 / 0.99 = 2.02 \text{ mA}$$

assim:
$$R_E = (V_E - (-15)) / I_E = 7.07 \text{ k}\Omega$$