Capturing confusion of user between labels

By: Aditya Kumar Akash

1 Situation in which user is confused

We first look at situations where user u_i could be said to be confused between two labels l_1 and l_2 . Intuitively u_i should be confused, when majority of his labelling is inverse of what is established by consensus maximization. So consider following matrix with values being the number of videos:

$Consensus \downarrow, u_i \rightarrow$	l_1	l_2	l_1, l_2	Neither
l_1	a_1	a_2	a_3	a_4
l_2	b_1	b_2	b_3	b_4
l_{1}, l_{2}	c_1	c_2	c_3	c_4
Neither	d_1	d_2	d_3	d_4

The arrow represents from whom the label is obtained. Thus rows stand for labels obtained from consensus model, while column stand for labels given by user u_i .

Now we could say that a user u_i is confused between l_1 and l_2 when he uses them interchangeably. Thus relevant elements from matrix are :

Consensus	u_i	Video count
l_1	l_2	a_2
l_1	l_{1}, l_{2}	a_3
l_2	l_1	b_1
l_2	l_{1}, l_{2}	b_3

In these cases he uses the two labels in disagreement with the consensus prediction.

Let, $s = \sum_{i} (a_i + b_i + c_i + d_i)$, i.e. total number of videos he watched. $p_o(l_i|l_j) = \text{Observed}$ probability of putting label l_i given that consensus is on only l_i

Thus, $p_o(l_2|l_1) = (a_2 + a_3)/(a_1 + a_2 + a_3 + a_4)$, $p_o(l_1|l_2) = (b_1 + b_3)/(b_1 + b_2 + b_3 + b_4)$. Now we must remove from these the probability of seeing label l_i , given label l_i is used, by the consensus

Now we must remove from these the probability of seeing label l_i , given label l_j is used, by the consensus model. An example which better explains this would be - Suppose we labelled something as Computer, then given that, what would be the probability of assigning label Automata or Machine or System or Junk to that thing. Thus it is akin to keeping a label bias, and then looking at label probability distribution.

2 Label Biased Probability distribution

Consider the MLCM-r model from the **Multilabel Consensus Classification, ICDM** paper. We get a label probability distribution with each group node, which stood for seeing a label l_i when being in a group node of label l_j . Let us call this $p(reach \ l_i \ | \ start \ g_{l_j}^k)$, where $g_{l_j}^k$ stands for group node corresponding to label l_j of k^{th} labeller and $(reach \ l_i)$ stands for reaching any node group node with label l_i . It stands for probability of reaching any group node with label l_i from a given group node of label l_j , in the random walk amongst the graph of group nodes.

Thus probability of reaching any node with label l_i , given we are starting from any node with label l_i ,

$$p(reach \ l_i \mid start \ l_j) = \sum_k p(reach \ l_i \mid start \ g_{l_i}^k) * p(start \ g_{l_i} \mid start \ l_j)$$

Assuming that we uniformly select a group of given label to start with and there are m number of labellers, $p(start \ g_{l_j} \mid start \ l_j) = \frac{1}{m}$. Hence,

$$p(reach \ l_i \mid start \ l_j) = \frac{1}{m} * \sum_k p(reach \ l_i \mid start \ g_{l_i}^k)$$

For us $p(reach \ l_i \mid start \ l_j)$ would mean probability that consensus model has of seeing/putting label l_i , given label l_j is used. This was what we wanted. Let us call this $p_e(l_i|l_j)$.

3 Confusion

Now based on the above sections, we would calculate confusion of a user between two labels. Using similar concept as *Cohen Kappa* confusion could be given by :

$$Confusion \ = \ I_1 * \tfrac{p_o(l_1|l_2) \ - \ p_e(l_1|l_2)}{1 \ - \ p_e(l_2|l_1)} + I_2 * \tfrac{p_o(l_2|l_1) \ - \ p_e(l_2|l_1)}{1 \ - \ p_e(l_2|l_1)}$$

where I_1 , I_2 are indicator variables to generate positive value of confusion, i.e. $I_1 = 1$, if $p_o(l_1|l_2) \ge p_e(l_1|l_2)$ else 0, similar for I_2 .

This measure of confusion takes into account the probability of disagreement due to model itself, and hence is expected to be more robust.