RL benchmark - Manual hyperparameter tuning

1 Introduction and methods

This is a benchmark on the reaching WidowX arm. We vary the hyperparameters and keep the same training environment.

• Algorithms: PPO2

• Environment: widowx-reacher-v5

• 6 joints

 \bullet Fixed goal

• Dense reward: $-\text{dist}^{**}2$

2 Results

Figure 1: Number of training steps

Figure 2: Normalise observation and reward

Figure 3: Number of parallel environments

Figure 4: Gamma

Figure 5: Number of steps to run for each environment per update

Figure 6: Learning rate

Figure 7: Entropy coefficient for the loss calculation

Figure 8: Clipping parameter

Figure 9: Factor for trade-off of bias vs variance for Generalized Advantage Estimator

Figure 10: Number of training minibatches per update

Figure 11: Number of epoch when optimizing the surrogate

3 Findings summary

- 200,000 timesteps are enough for the return to reach a plateau, however 500, 000 timesteps are required to reach the highest success ratio at 5mm. This means that the reward may not describe sufficiently well the objective we want to achieve.
- Best cliprange: 0.2
- Best ent coef: 0.01
- Best gamma: 0.95
- Best lam: 0.95 (note that the best return is not the same as the best success ration @ 5mm)
- Best learning rate: 0.01
- Best nb envs: 1 (but try also 8 since many hyperparams are fitted to this value)
- Best nminibatches: 8

 \bullet Best nopte pochs: 50

• Best normalize: True

 \bullet Best nsteps: 16

These parameters take too long to train. The following parameters are faster to train.

• Timesteps: 500, 000

 \bullet cliprange: 0.1

 \bullet ent coef: 0.0001

 \bullet gamma: 0.95

 \bullet lam: 0.99

 \bullet learning rate: 0.01

• nb envs: 8

• nminibatches: 8

 \bullet noptepochs: 20

• normalize: True

• nsteps: 16