Final Presentation @ Frontiers in Artificial Intelligence Jan 11th, 2022

Job-Scheduling by RL

Dept. of Computer Science / Sugiyama-Yokoya-Ishida Lab.

Toshiki Kodera

Problem: Job-Scheduling

Goal: Design strategy that maximizes task throughput

Slot & Task

- Each task has these properties:
 - Required effort (to get done)
 - Remaining time (by deadline)
- Each task is assigned to one slot
- Each slot can store only one task

Worker

• Worker chooses slots to deal with

Solution: RL

Use reinforcement learning (RL) to solve job-scheduling problem!

Reinforcement Learning

 Agent tries to find the best strategy which maximizes cumulative reward (= # of completed tasks)

Agent

Job-scheduler usesDeep Q-Network (DQN) algorithm

Job-Scheduling App

Components

- Task Panel & Monitor
 - Create/delete tasks
- Schedule Panel & Monitor
 - Try job-scheduling
- RL Panel & Monitor
 - Train/load/save RL models

Job-Scheduling App

1. INIT

 \rightarrow

2. TRAIN

 \rightarrow

3. USE

Environment

Task	Slot	Duration	Due	Prob.
Α	0	1	2	0.8
В	1	2	4	0.5
С	2	3	10	0.2

Agent

Epoch	# of Evaluation
1000	1

Example (1)

Covered: Ratio of completed tasks

Missed: Ratio of unfinished (& overdue) tasks

Meta-data

# of slot	# of worker	
5	1	

Environment

Task	Slot	Duration	Due	Prob.
Α	0	1	2	0.8
В	1	2	4	0.5
С	2	3	10	0.2

Agent

Epoch	# of Evaluation
1000	1

Example (2)

Covered: Ratio of completed tasks

Missed: Ratio of unfinished (& overdue) tasks

Meta-data

# of slot	# of worker	
5	2	

Environment

Task	Slot	Duration	Due	Prob.
Α	0	2	3	0.8
В	1	3	4	0.8
С	2	4	5	0.8

Agent

Epoch	# of Evaluation
1000	1

References

Repository:

- Job-Scheduling App.
 https://github.com/Sharkkii/Aiproject
- Reinforcement Learning framework https://github.com/Sharkkii/shaRL