| IC Number | IC Name | Input | <b>Gate Count</b> | Pin Details   |            |
|-----------|---------|-------|-------------------|---------------|------------|
| 7400      | NAND    | 2     | 4                 | 1,2 = 3       | 9,10 = 8   |
| 7408      | AND     | 2     | 4                 | 4,5 = 6       | 12,13 = 11 |
| 7432      | OR      | 2     | 4                 |               |            |
| 7486      | XOR     | 2     | 4                 |               |            |
| 7402      | NOR     | 2     | 4                 | 2,3 = 1       | 8,9 = 10   |
|           |         |       |                   | 5,6 = 4       | 11,12 = 13 |
|           |         |       |                   | 1 = 2         | 9 = 8      |
| 7404      | NOT     | 1     | 6                 | 3 = 4         | 11 = 10    |
|           |         |       |                   | 5 = 6         | 13 = 12    |
| 4073      | AND     | 3     | 3                 | 1,2,8 = 9     |            |
| 4075      | OR      | 3     | 3                 | 3,4,5 = 6     |            |
|           |         |       |                   | 11,12,13 = 10 |            |
| 7410      | NAND    | 3     | 3                 | 1,2,13 = 12   |            |
| 7411      | AND     | 3     | 3                 | 3,4,5 = 6     |            |
|           |         |       |                   | 9,10,11 = 8   |            |

# IC 7483 4-bit binary adder



## **New Apparatus:**

#### IC 74151 (8:1 Multiplexer):

The 74151 is a 16 pin IC which requires a Ground connection at pin 8 and  $V_{\rm CC}$  at pin 16. Pins 4, 3, 2, 1 and 15, 14, 13, 12 are the inputs, pins 9, 10 and 11 are used to select a particular input and pin 5 is the output. Pin 6 is provides the inverse of the output at pin 5. An input at pin 7 is used to Enable the IC.



Figure B.3: Pinout of IC74151

#### IC 74138 (3 to 8 Line Decoder):

The 74138 is also a 16 pin IC which requires Ground at pin 8 and VCC at pin 16. Pins 15, 14, 13, 12, 11, 10, 9 and 7 are used as the outputs and pins 3, 2 and 1 are used to take input. A combination of the inputs at pins 6, 4 and 5 is used to enable the device. In order for the IC to function as intended, pin 6 (G1) must have a high value and both pins 4 and 5 (G2A and G2B) must have low values.

Unlike some of the other ICs used so far, the outputs of the 74138 IC are ACTIVE-LOW which means that they provide a 0 or LOW output when they are activated and a 1 or High output when they are inactive.



Figure B.4: Pinout of IC74138



Figure D.1.1: 4:1 Multiplexer

## IC 7474 (Dual D Flip-Flops):



Figure B.1: Pinout of IC7474

## **D.1 Procedure**



Figure D.1.1: JK Flip-Flop implemented using AND and NOR gates



Figure D.3.1: Right Shift Register

### IC 74107 (Dual JK Flip-Flops):



Figure B5: Pinout of IC74107

The 74107 is a 14 pin IC which requires a Ground connection at pin 7 and  $V_{\rm CC}$  at pin 14. Pins 1 and 4 serve as the J and K inputs for the first Flip-Flop and pins 8 and 11 act as the J and K inputs for the second Flip-Flop. Pins 2 and 5 are the outputs of Flip-Flop 1 and Flip-Flop 2 respectively. Pin 12 is the clock input for the first Flip-Flop and pin 9 is the clock input for the second Flip-Flop. The CLR 1 and CLR 2 inputs (pin 13 and pin10, respectively) have to be supplied with logic 1 or 0 depending on the internal implementation of the paticular IC.