Hybrid Movie Recommendation System

EE359, 2021 Spring, SJTU

Ziliang Guo 518030910273 Aofan Jiang 518030910275

June, 2021

Outline

Dataset - Overview

Dataset - Extraction

MovieLens (available)

- Ratings: userId, movieId, rating, timestamp [e.g.] 1, 1193, 5, 978300760)
- Categories: movieId, title, genres [e.g.] 1, Toy Story (1995), Animation | Children's | Comedy
- Not Used
 - tags data (messy): userId, movieId, tag, timestamp
 - links data: movieId, imdbId, tmdbId
- 1. Users set $\mathcal{U} = \{1, 2, \dots, u_i\}$, Movies Set $\mathcal{M} = \{1, 2, \dots, m_j\}$, Movies Categories Set $\mathcal{C} = \{1, 2, \dots, c_k\}$
- 2. Users' ratings logs $\mathbf{R} = (r_{u,m})$: user u's rating of movie m, nan if non-existent
- 3. Users' weighted normed movie ratings \bar{r}_m : rating of movie m, 0 if non-existent

$$\bar{r}_{m} = \frac{\sum_{u \in \mathcal{U}} r_{u,m} \cdot \left(\frac{\sum_{j \in \mathcal{M}} (r_{u,j} \neq nan)}{|r_{u,j} \neq nan|}\right)^{-1}}{\sum_{u \in \mathcal{U}} \left(\frac{\sum_{j \in \mathcal{M}} (r_{u,j} \neq nan)}{|r_{u,j} \neq nan|}\right)^{-1}}$$

Recommendation

Min-Hash

Movie Vector

Movie

Index

Recd.

Movies

Indices

- extracted from
 - movies list
 - users' ratings
- $vec_{min-hash}[i,j]$
 - $0: r_{j,i}$ is nan
 - Boolean: $r_{j,i} \ge 3$

Clustering - Intuition

- Movie Vector
 - extracted from
 - movies list
 - movies' categories (multi-labeled)
 - $vec_{embed}[i,j]$
 - Boolean: movie i has label j
- EM Algorithm

Movie

Index

Recd.

Movies

Indices

Time Sequence Analysis - Intuition

- Movie Sequence
 - extracted from users' ratings (as history)
 - each item of each sequence movie index
- LSTM
 - predict future based on the past history
 - analogy: e-shopping recommendation

Hu, J., Wang, X., Zhang, Y. et al. Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network. Neural Process Lett 52, 1485–1500 (2020).

Time Sequence Analysis + Clustering

- Movie Vector $vec_{embed}[i,j]$: considers categories only
- Improved Movie Vector
 - extracted from
 - movies list, movies' categories (multi-labeled)
 - users' ratings (weighted normed)
 - $vec_{LSTM\ embed}[i,j] = a \cdot \bar{r}_i$, shape $(movie_cnt, category_cnt)$
 - a (Boolean): movie i has label j
 - \bar{r}_i : users' rating of movie i

User-Based Recommendation

Collaborative Filtering

Movie-User-Based Recommendation

Neural Collaborative Filtering (NCF)

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In WWW '17. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 173–182.

Experiment Results

Approach	Accuracy@10 (%)	Recall@10 (%)
Random	0.2649	0.8775
Min-Hash	4.1225	8.0298
LSTM + Clustering	0.5629	1.5728
Collaborative Filtering	6.4901	16.6887
NCF	2.0695	0.5629

Analysis

- Clustering-Related
 - Biased cluster size
- NCF
 - Explicit feedback degrades to implicit feedback

