1

Assignment 14

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

https://github.com/Bharat437/Matrix Theory/tree/master/Assignment14

1 Problem

(UGC,Dec 2015,74):

Let **V** be a finite dimensional vector space over \mathbb{R} . Let $T: \mathbf{V} \to \mathbf{V}$ be a linear transformation such that $rank(\mathbf{T}^2) = rank(\mathbf{T})$. Then,

- 1) $Kernel(\mathbf{T}^2) = Kernel(\mathbf{T})$
- 2) $Range(\mathbf{T}^2) = Range(\mathbf{T})$
- 3) $Kernel(\mathbf{T}) \cap Range(\mathbf{T}) = \{0\}.$
- 4) $Kernel(\mathbf{T}^2) \cap Range(\mathbf{T}^2) = \{0\}.$

2 EXPLANATION

Range(T)	It is column-space of linear operator T .	
	$\mathbf{T}(\mathbf{x}) = \mathbf{v} \implies \mathbf{A}\mathbf{x} = \mathbf{v}$	(2.0.1)
	where $\mathbf{x}, \mathbf{v} \in \mathbf{V}$ and We can also say that	
	$Range(\mathbf{T}) = C(\mathbf{A})$	(2.0.2)
	where $C(\mathbf{A})$ is column space of \mathbf{A} .	
Kernel(T)	It is null-space of linear operator T.	
	$\mathbf{T}(\mathbf{x}) = 0 \implies \mathbf{A}\mathbf{x} = 0$	(2.0.3)
	where $x \in V$ and matrix A is same as before. We can also say that	
	$Kernel(\mathbf{T}) = N(\mathbf{A})$	(2.0.4)
	where $N(\mathbf{A})$ is null space of \mathbf{A} .	
rank(T)	$rank(\mathbf{T}) = rank(\mathbf{A})$	(2.0.5)
\mathbf{T}^2	$\mathbf{T}^2(\mathbf{x}) = \mathbf{A}^2 \mathbf{x} \qquad \mathbf{x} \in \mathbf{V}$	(2.0.6)
	$rank(\mathbf{T}^2) = rank(\mathbf{A}^2)$	(2.0.7)
\mathbf{A} and \mathbf{A}^2	The basis vectors of column-space of A and A^2 are same. The basis vectors of null-space of A and A^2 are same.	
	The busis vectors of nun-space of A and A are same.	

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations	
Given	V is a finite dimensional space over \mathbb{R} and $T: V \to V$	
	$rank(\mathbf{T}) = rank(\mathbf{T}^2)$	(3.0.1)
	According to rank-nullity theorem.	
	$dim(\mathbf{V}) = rank(\mathbf{T}) + nullity(\mathbf{T})$	(3.0.2)
	$dim(\mathbf{V}) = rank(\mathbf{T}^2) + nullity(\mathbf{T}^2)$	(3.0.3)
	from (3.0.2) and (3.0.3). we get	
	$\implies rank(\mathbf{T}) + nullity(\mathbf{T}) = rank(\mathbf{T}^2) + nullity(\mathbf{T}^2)$	(3.0.4)
	$\implies nullity(\mathbf{T}) = nullity(\mathbf{T}^2)$	(3.0.5)

TABLE 2: Observations

Option	Solution	True/False
1	From (3.0.5), let	
	$nullity(\mathbf{T}) = nullity(\mathbf{T}^2) = n$ (3.0.6)	
	Therefore, from table 1 and $(3.0.6)$ we can say that both null space of linear operator \mathbf{T} and null space of linear operator \mathbf{T}^2 will have same n number of basis.	True
	$\implies Kernel(\mathbf{T}) = Kernel(\mathbf{T}^2) \tag{3.0.7}$	
2	From (3.0.1), let	
	$rank(\mathbf{T}) = rank(\mathbf{T}^2) = r \tag{3.0.8}$	
	Therefore, from table 1 and $(3.0.8)$ we can say that both column space of linear operator \mathbf{T} and column space of linear operator \mathbf{T}^2 will have same r number of basis.	True
	$\implies Range(\mathbf{T}) = Range(\mathbf{T}^2) \tag{3.0.9}$	
3	From (3.0.6), (3.0.8) and also we can say that column space $C(\mathbf{A})$ and null space $N(\mathbf{A})$ are r-dimensional space and n-dimensional space respectively which will intersect only at origin(zero vector). And also from (2.0.2) and (2.0.4), we get	
	$\implies Kernel(\mathbf{T}) \cap Range(\mathbf{T}) = \{0\} $ (3.0.10)	
4	From table (3.0.7), (3.0.9) and (3.0.10), we get	
	$\implies Kernel(\mathbf{T}^2) \cap Range(\mathbf{T}^2) = \{0\} $ (3.0.11)	True

TABLE 3: Solution