נקודה צפה: יהי $x\in\mathbb{R}$ יהי ויהי $t\in\mathbb{N}_+$ בסיס יהי $eta\in\mathbb{N}\setminus\{0,1\}$ יהי אזי עבורם $\sigma \in \{\pm 1\}$ וכן $p \in \mathbb{Z}$ וכן $a_1 \neq 0$ באשר $a_1 \ldots a_t \in \mathbb{Z}$ $x = \sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i}\right) \cdot \beta^p$

עבורו $x \in \mathbb{R}$ ויהי ווהי $t \in \mathbb{N}_+$ בסיס הי $\beta \in \mathbb{N} \backslash \{0,1\}$ יהי שימן: יהי $x = \sigma \cdot \left(\sum_{i=1}^t rac{a_i}{eta^i}
ight) \cdot eta^p$ יצוג בנקודה צפה אזי

מנטיסה/ספרות משמעותיות: יהי $t\in\mathbb{N}_+$ בסיס הי $eta\in\mathbb{N}\setminus\{0,1\}$ יהי ויהי יצוג בנקודה צפה אזי $x = \sigma \cdot \left(\sum_{i=1}^t rac{a_i}{eta^i}
ight) \cdot eta^p$ עבורו $x \in \mathbb{R}$

 $t\in\mathbb{N}_{\perp}$ היהי בסיס $eta\in\mathbb{N}\setminus\{0,1\}$ יהי צפה: יהי במיס החזקה במיס היהי U צפה נקודה נקודה עבורן עבורן בייצוג עבורן בייצוג עבורן ויהיו $L,U\in\mathbb{Z}$ יהיו $t\in\mathbb{N}_+$ יהי בסיס $eta\in\mathbb{N}\backslash\{0,1\}$ יהי טענה: יהי הגבלה על החזקה ויהי $x \in \mathbb{R} \setminus \{0\}$ מספר בעל ייצוג נקודה צפה אזי $\beta^{L-1} < |x| < \beta^{U}$

 $L,U\in\mathbb{Z}$ בסיס יהיו $eta\in\mathbb{N}\setminus\{0,1\}$ הגבלה על החזקה ויהי

 $|x| \leq \beta^{\overline{L}-1}$:underflow ullet

קיצוץ נקודה צפה: יהי $\{0,1\}$ אויהי בסיס הי+ בסיס הי ויהי $t\in\mathbb{N}$ אזי $x=\sigma\cdot\left(\sum_{i=1}^{\infty}rac{a_i}{eta^i}
ight)\cdoteta^p$ בבסיס $x\in\mathbb{R}$ $f(x) = \sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) \cdot \beta^p$

עיגול נקודה צפה: יהי $t \in \mathbb{N}_+$ בסיס הי $eta \in \mathbb{N} \setminus \{0,1\}$ יהי יהי עיגול נקודה צפה: $x=\sigma\cdot\left(\sum_{i=1}^{\infty}rac{a_i}{eta^i}
ight)\cdoteta^p$ בבסיס $x\in\mathbb{R}$ $\sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) \cdot \beta^p \qquad 0 \le a_{t+1} < \frac{\beta}{2}$

 $\int \sigma \cdot \left(\left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) + \frac{1}{\beta^t} \right) \cdot \beta^p \frac{\beta}{2} \le a_{t+1} < \beta$ $x\in\mathbb{R}$ ויהי $t\in\mathbb{N}_+$ אזי $t\in\mathbb{N}$ בסיס יהי $t\in\mathbb{N}$ ויהי $t\in\mathbb{N}$

> $.e\left(x
> ight)=x-\mathrm{fl}\left(x
> ight)$ אזי א $x\in\mathbb{R}$ שגיאה: יהי $|e\left(x
> ight)|$ אזי $x\in\mathbb{R}$ איזי מוחלטת: שגיאה מוחלטת:

 $.\delta\left(x
ight)=rac{e\left(x
ight)}{\pi}$ אזי $x\in\mathbb{R}$ יהי שניאה יחסית: יהי

 $\mathrm{fl}\left(x
ight)=x\left(1-\delta\left(x
ight)
ight)$ אזי $x\in\mathbb{R}$ יהי מסקנה: יהי טענה: יהי $x\in\mathbb{R}$ ייהי ויהי $t\in\mathbb{N}_+$ יהי בסיס בסי $\beta\in\mathbb{N}\backslash\left\{0,1\right\}$ יהי טענה: יהי $|\delta\left(x
ight)|<eta^{-t+1}$ בקיצוץ נקודה צפה אזי

טענה: יהי $x\in\mathbb{R}$ ויהי והי $t\in\mathbb{N}_+$ בסיס הי בעל ייצוג בעל ייצוג אויהי הי בעל ייצוג

 $|\delta\left(x\right)| \leq \frac{1}{2}\beta^{-t+1}$ אזי צפה צפה בעיגול נקודה נקודה אזי $|e\left(x+y
ight)| \leq |e\left(x
ight)| + |e\left(y
ight)|$ אזי $|e\left(x+y
ight)| \leq |e\left(x
ight)|$ אזי אזי אזי אזי אזי $|e\left(x+y
ight)| \leq |e\left(x+y
ight)|$

 $|\delta\left(x+y
ight)|\leq|\delta\left(x
ight)|+$ מסקנה: יהיו א בעלי בעלי בעלי א בעלי מימן אויי מחקנה: יהיו

 $|\delta\left(x+y
ight)|~\leq~$ טענה: יהיו $x,y~\in~\mathbb{R}$ יהיו אזיי טענה: יהיו $\max \left\{ \left| \delta \left(x \right) \right|, \left| \delta \left(y \right) \right| \right\}$

 $|\delta\left(x-y
ight)| \leq \left|rac{e(x)}{x-y}
ight| + \left|rac{e(y)}{x-y}
ight|$ איזי $x,y \in \mathbb{R}$ טענה: יהיו

 $|\delta\left(xy
ight)| \ \le \ |\delta\left(x
ight)| + |\delta\left(y
ight)| + \pi x, y \ \in \ \mathbb{R}$ טענה: יהיו $\left|e\left(\frac{x}{y}\right)\right| \leq \frac{|x||e(y)|+|y||e(x)|}{|y|\cdot f(y)|}$ איז $x,y\in\mathbb{R}$ טענה: יהי

 \leq אזא x,y \in

אלגוריתם שיטת החצייה: יהי $\,arepsilon\,$ תהא $\,arepsilon\,$ $\,$ רציפה ויהיו $\,$ אזי $f(a_0) f(b_0) < 0$ עבורם $a_0 < b_0$

function BisectionMethod(a_0 , b_0 , ε):

while $\frac{b_0-a_0}{2n+1} \geq \varepsilon$ do

 $m_n \leftarrow \frac{a_n + b_n}{2}$ $\inf_{\mid} f(m_n) = 0 \text{ then } \\ \operatorname{return} m_n$ else if $f\left(a_{n}\right)f\left(m_{n}\right)<0$ then $\left(a_{n+1},b_{n+1}\right) \leftarrow \left(a_n,m_n\right)$ else if $f(m_n) f(b_n) < 0$ then $(a_{n+1},b_{n+1}) \leftarrow (m_n,b_n)$

< b ויהיו f : [a,b] ightarrow \mathbb{R} תהא arepsilon רציפה ויהיו עבורם $lpha \ \in \ [a,b]$ אזי קיים שורש $f\left(a
ight)$ של $f\left(b
ight) < 0$ עבורם .|BisectionMethod $(a\,,\,b\,,\,arepsilon)\,-\,q\,|\,<\,arepsilon$

 $.e_n = lpha - x_n$ אזי אזי $x_n o lpha$ עבורה עבורה א $\{x_n\} \subseteq \mathbb{R}$ אזי טענה: מאזי אזי אוי פאלגוריתם רציפה $f:[a,b] \to \mathbb{R}$ אזי טענה: תהא $|lpha-m_n| \leq rac{b-a}{2n+1}$ וכן ווא $m_n o lpha$

עבורה lpha ightarrow תהא lpha ightarrow עבורה lpha lpha אזי lpha אזי lpha אזי $|e_{n+1}|$ \leq עבורו $p\in\mathbb{R}_+$ $\lim \sup_{n \to \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|p} < \infty$

מסקנה: סדר ההתכנסות של שיטת החצייה היא לינארית.

וכן α פשוט ε_M דיוק המכונה ותהא א גזירה ברציפות בעלת שורש פשוט ε_M

 $\lim_{x \to \alpha} \left| \frac{f(x)}{x f'(x)} \right|$

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

lpha ויהי מענה: תהא $f\in C^1\left([a,b],\mathbb{R}\setminus\{0\}
ight)$ טענה: תהא

 $x_0,x_1\in\mathbb{R}$ ויהיו $f\in C\left(\left[a,b\right],\mathbb{R}\backslash\left\{0
ight\}
ight)$ שיטת המיתרים: תהא $x_n - x_{n-1}$ $x_{n+1} = x_n - f(x_n) \cdot \frac{1}{x_n}$ $f(x_n)-f(x_{n-1})$

 $f:[a,b] o\mathbb{R}$ רציפה ויהיו רציפה $f:[a,b] o\mathbb{R}$ רציפה ויהיו אזי $f\left(a_{0}\right)f\left(b_{0}\right)<0$ עבורם $a_{0}< b_{0}$

timeton negular assist
$$a_0$$
, a_0 , e :
$$\begin{cases} n \leftarrow 0 \\ p \leftarrow 0 \\ n \leftarrow 0 \end{cases}$$
 while
$$\begin{cases} \frac{b_0 - a_0}{2^{n+1}} \geq \varepsilon \text{ do} \\ \frac{2n+1}{2^{n+1}} \geq \varepsilon \text{ do} \end{cases}$$
 if $f(m_n) = 0$ then
$$| \text{return } m_n \text{ else if } f(a_n) f(m_n) < 0 \text{ then } \\ | \left(\frac{a_{n+1}, b_{n+1}}{n \leftarrow n + 1} \right) \leftarrow (a_n, m_n) \\ | n \leftarrow n + 1 \text{ else if } f(m_n) f(b_n) < 0 \text{ then } \\ | \left(\frac{a_{n+1}, b_{n+1}}{n \leftarrow n + 1} \right) \leftarrow (m_n, b_n) \\ | n \leftarrow n + 1 \text{ end} \end{cases}$$
 end

 ויהיו lpha יחיד פשוט פורש בעלת אורש $f\in C\left(\left[a,b\right],\mathbb{R}\backslash\left\{0\right\}
ight)$ ויהיו $\phi = rac{1+\sqrt{5}}{2}$ אזי שיטת המיתרים בעלת סדר התכנסות $x_0, x_1 \in \mathbb{R}$ $x_n = x_0 \in \mathbb{R}$ ויהי $g:I o \mathbb{R}$ אזי $g:I o \mathbb{R}$ איזי

 $g(x_{n-1})$

 $x_n o lpha$ עבורה $g:I o \mathbb{R}$ איטרציה: שיטת איטרציה עבורה $g\left(a
ight)=a$ עבורה $a\in\mathbb{R}$ אזי $g:I o\mathbb{R}$ עהא מקנית שבת: תהא

אזי $x_n o lpha$ אזי מתכנסת שיטת איטרציה $g \in C\left(I, \mathbb{R}\right)$ תהא

שיטת איטרציה $g\in C\left(I,\mathbb{R}
ight)$ ותהא $f:I o\mathbb{R}$ שיטת איטרציה $(f\left(lpha
ight) = 0) \Longleftarrow (g\left(lpha
ight) = lpha)$ מתכנסת אזי

עבורה $\alpha \in [a,b]$ אזי קיימת $g \in C\left(\left[a,b\right],\left[a,b\right]\right)$ תהא משפט: תהא $g(\alpha) = \alpha$

K לישפיץ g בורם 1>K>0וכן $g:\mathbb{R}\to\mathbb{R}$ לישפיץ פונקציה ביווץ: עבורם g עבורם $g' \mid \geq K > 1$ וכן $g \in C^1 \left(\mathbb{R} \right)$ עבורם g לישפיץ

K ליפשיץ g עבורו אבור ויהי $g\in C\left(X\right)$ תהא סגור יהי יהי מסקנה: יהי אנור תהא . מתכנסת לנקודת האיטרציה gהאיטרציה שיטת אזי K עבורו g ליפשיץ א עבורו $G \in C\left(X
ight)$ עבורו ליפשיץ א מסקנה: יהי X יהי ליפשיץ

 $|e_n| \le \frac{K^n}{1-K} |x_1 - x_0|$ אא

 \dot{g} מתקיים כי מתקיים מ $x\in(\alpha-\varepsilon,\alpha+\varepsilon)$ אזי עבורו כל אזי איי איי עבורה lpha שבת אזיי נקודת אזיי פורה $g \in C^1\left(I,\mathbb{R}
ight)$ עבורה מושכת: $|g'(\alpha)| < 1$

 $0 \quad < \quad \liminf_{n \to \infty} \frac{|{}^{-n}\top^{\perp}|}{|e_n|^p}$

 $f\left(x_{n}
ight)=f\left(lpha
ight)+$ וכן מענה: תהא א גזירה ברציפות בעלת שורש פשוט בעלת גזירה גזירה ליגזירה בעלת אורש $.e_{n}=rac{f(x_{n})}{f'(\zeta_{n})}$ אור טיילור שלה איי $f'\left(\zeta_{n}
ight)e_{n}$

 $|f\left(x_{n}\right)|\leq g$ טור טיילור שלה וכן $f\left(x_{n}\right)=f\left(\alpha\right)+f'\left(\zeta_{n}\right)e_{n}$ $|e_n| \le \left| \frac{2\varepsilon_M}{f'(\zeta_n)} \right|$ איז ε_M

אזי $x_{0}\in\mathbb{R}$ ויהי $f\in C^{1}\left(\left[a,b\right],\mathbb{R}\backslash\left\{0
ight\}
ight)$ אזי $f\in C^{1}\left(\left[a,b\right],\mathbb{R}\backslash\left\{0
ight\}
ight)$

. אזי שיטת ניוטון בעלת סדר התכנסות ריבועי אזי $x_0 \in \mathbb{R}$

function RegulaFalsi(a_0 , b_0 , ε):

 x_n אזי אזי $x_0 \in \mathbb{R}$ ויהי $g:I o \mathbb{R}$ אזי איטרציה: תהא

 $\left|g'
ight| \leq K$ עבורו א עבורו K < 1 ויהי $g \in C^1\left(\left[a,b
ight],\left[a,b
ight]
ight)$ משפט: תהא $g\left(lpha
ight) =lpha$ עבורה $lpha \in \left[a,b
ight]$ אזי קיימת ויחידה

 \leq עבורו K < 1 ויהי $g \in C^1\left(\left[a,b\right],\left[a,b\right]
ight)$ עבורו $g \in C^1\left(\left[a,b\right],\left[a,b\right]
ight)$ השבת. מתכנסת לנקודת השבת. g אזי שיטת איט אזי K

 $\left|g'\right|\,\leq\,$ עבורו א א בורו $G\,\in\,C^{\,1}\left(\left[a,\,b\right],\left[a,\,b\right]\right)$ מסקנה: תהא עבורו א עבורו ווהי עבורו א מסקנה: תהא

עבורם K > 0 וכן $g: \mathbb{R} \to \mathbb{R}$ עבורם K > 0 וכן אנקציה

 $|g(x) - g(y)| \le K|x - y|$

טענה: יהי X סגור תהא $G \in C (X)$ טענה: יהי א סגור תהא עבורו $G \in C (X)$ אזי $g\left(lpha
ight) =lpha$ עבורה $lpha \in \left[a,b
ight]$ קיימת ויחידה

 $\left|g'\left(lpha
ight)
ight|<1$ משפט: תהא שבת עבורה $g\in C^{1}\left(I,\mathbb{R}
ight)$ משפט: תהא

 $=\left|\left|g'\left(lpha
ight)
ight|>$ בורה עבורה שבת אזי נקודת אזי $g\in C^{1}\left(I,\mathbb{R}
ight)$ נקודה דוחה: תהא עבורה קיימים עבורה עבורה אזי נקודת אזי עבורה קיימים עבורה עבורה עבורה $g \in C^1 \left(I, \mathbb{R}\right)$ וכן $\left|g'\left(\mathcal{U}
ight)
ight|<1$ וכן $lpha\in\partial\mathcal{U},\partial\mathcal{V}$ תחומים באשר $\mathcal{U},\mathcal{V}\subseteq\mathbb{R}$

 $|g'(\mathcal{V})| > 1$ מטקנה: תהא $\zeta \in [a,b]$ ויהי $f \in C^1\left([a,b],\mathbb{R}\setminus\{0\}
ight)$ שורש פשוט $.(\zeta-\varepsilon,\zeta+\varepsilon)$ אזי בקטע מתכנסת ניוטון שיטת עבורו $\varepsilon>0$ אזי אזי קיים $0<\alpha$ נקודת שבת עבורה $g\in C^1\left(I,\mathbb{R}
ight)$ משפט: תהא $x\in(lpha-arepsilon,lpha+arepsilon)$ עבורו לכל arepsilon<lpha אזי קיים arepsilon>0 עבורו לכל arepsilon'מתקיים כי a מתכנסת ל־ α בקצב התכנסות לינארי. משפט: יהי a נקודת שבת עבורה $g\in C^p\left(I,\mathbb{R}
ight)$ תהא p>1 יהי

 אזי קיים $n \, \in \, [p-1]$ לכל $g^{\, \left(n \right)} \left(\alpha \right) \, = \, 0$ וכן $g^{\, \left(p \right)} \left(\alpha \right) \, \neq \, 0$ α ל־סת כנסת g כי מתקיים $x\in(\alpha-\varepsilon,\alpha+\varepsilon)$ לכל לכל עבורו כי $\varepsilon>0$

שורש פשוט $\zeta\in\left[a,b
ight]$ ויהי $f\in C^{2}\left(\left[a,b
ight],\mathbb{R}\backslash\left\{0
ight\}
ight)$ שורש פשוט

עבורו עבורו $\zeta\in[a,b]$ ויהי ווא $f\in C^{2}\left(\left[a,b\right],\mathbb{R}\backslash\left\{0
ight\}
ight)$ שורש עבורו עבורו שיטת ניוטון arepsilon>0 אזי קיים $f''(\zeta)\neq 0$ וכן $f'(\zeta)=0$ $(\zeta - \varepsilon, \zeta + \varepsilon)$ מתכנסת בקצב לינארי בקטע

 $m\in\mathbb{N}_{+}$ יהי $f\in C^{1}\left(\left[a,b\right],\mathbb{R}\backslash\left\{0
ight\}
ight)$ יהי המתוקנת: תהא $g(x) = x - m \cdot \frac{f(x)}{f'(x)}$ אא

שורש $\zeta\in[a,b]$ ויהי $f\in C^{\eta}\left([a,b],\mathbb{R}\setminus\{0\}
ight)$ שורש מתכנסת מסדר מסדר המתוקנת עבורו שיטת עבורו $\varepsilon \,>\, 0$ מיים אזי אזי מדרגה מדרגה

 $(\zeta - \varepsilon, \zeta + \varepsilon)$ בקצב ריבועי בקטע $g\left(x
ight) \ = \ x \ -$ איז $f \ \in \ C^1\left(\mathbb{R}
ight)$ תהא תהא

 $lpha \in I$ נקודת מיטרטיבית ותהא $g:I o\mathbb{R}$ נקודת נחום ההתכנסות: תהא שיטת $x \in J$ לכל הכן מכך עבורו עבורו עבורו איי מקסימלי לכל איי קטע שבת איי שבת שבת איי איי קטע מקסימלי

 α האיטרציה α המתחילה ב־ α מתכנסת ל־ $lpha\in I$ נקודת שיטה $lpha\in C^1$ (I,\mathbb{R}) מיטר $lpha\in C^1$ נקודת $\left|g'\left(x
ight)
ight|\leq1$ מתקיים $x\in K$ לכל

 $g\left(x
ight) = x-g\left(x
ight) \in C^{1}\left(\mathbb{R}^{n},\mathbb{R}^{n}
ight)$ אזי $f\in C^{1}\left(\mathbb{R}^{n},\mathbb{R}^{n}
ight)$ שיטת ניוטון־רפסון: תהא $D_f(x)^{-1} \cdot f(x)$

טענה: תהא $\zeta \in \mathbb{R}^n$ ויהי $f \in C^1\left(\mathbb{R}^n,\mathbb{R}^n
ight)$ שורש פשוט אזי קיימת . סביבה של ζ בה שיטת ניוטון־רפסון מתכנסת בקצב ריבועי $\mathcal{U} \subset \mathbb{R}^n$ $f \in C\left(\left[a,b\right],\mathbb{R}
ight)$ סענה: תהא $f \in C\left(\left[a,b\right],\mathbb{R}
ight)$

בעלת סדר לינארי. regula falsi אזי f(a) f(b) < 0 $\Pi_n = \{f \in \mathbb{R} \, [x] \mid \deg (f) \leq n \}$ אזי $n \in \mathbb{N}$ סימון: יהי יהי תו

אזי $a_0 \dots a_n$, $b_0 \dots b_n \in \mathbb{R}$ ויהיו $n \in \mathbb{N}$ אזי מטרי: יהי $f(x) = \sum_{k=0}^{n} (a_k \cos(kx) + b_k \sin(kx))$ פולינום אקספוננטי: יהי $n\in\mathbb{N}$ ויהיו איז אויהיו אקספוננטי: יהי $a_0\ldots a_n$ איז איזי $f(x) = \sum_{k=0}^{n} a_k e^b k^x$

 $x_0 \dots x_n \in \mathbb{R}$ ותהיינה $f: \mathbb{R} o \mathbb{R}$ ותהיינה (פ"א): תהא $i \in \{0 \dots n\}$ לכל $p\left(x_i\right) = f\left(x_i\right)$ עבורו עבורו $p \in \Pi_n$ אזי משפט: תהא $x_0 \ldots x_n \in \mathbb{R}$ ותהיינה $f: \mathbb{R} o \mathbb{R}$ נקודות שונות אזי

קיים ויחיד $p \in \Pi_n$ פולינום אינטרפולציה. $\ell_i\left(x
ight) = n$ פולינום לגראנז': תהיינה $x_0 \ldots x_n \in \mathbb{R}$ נקודות שונות אזי

 $\prod_{k \in \{0...n\} \setminus \{i\}} (x - x_k)$ $\Pi_{k \in \{0...n\} \setminus \{i\}} (x_i - x_k)$

 $\ell_i\left(x_i
ight)=\delta_{i,j}$ טענה: תהיינה $x_0\ldots x_n\in\mathbb{R}$ נקודות שונות אזי טענה בסיס לגראנז': תהיינה \mathbb{R} נקודות שונות אזי $x_0 \ldots x_n \in \mathbb{R}$ Π_n בסיס של $\{\ell_0 \ldots \ell_n\}$ מסקנה צורת לגראנז': תהא $f:\mathbb{R} o \mathbb{R}$ ותהיינה לגראנז': תהא מסקנה צורת לגראנז': תהא

שונות אזי $\sum_{i=0}^{n}f\left(x_{i}
ight)\ell_{i}\left(x
ight)$ פולינום אינטרפולציה. טענה בסיס ניוטון: תהיינה $x_0 \dots x_{n-1} \in \mathbb{R}$ אזי Π_n בסיס של $\left\{\prod_{i=0}^{j}\left(x-x_i
ight)
ight\}_{j=-1}^{n-1}$

 $x_0 \dots x_{n+1} \in \mathbb{R}$ טענה: $f: \mathbb{R} o \mathbb{R}$ אם סענה: תהא f פולינום אינטרפולציה של $\sum_{i=-1}^{n}A_{j+1}\prod_{i=0}^{j}(x-x_i)$ ויהי

 $\sum_{j=-1}^{n-1} A_{j+1} \prod_{i=0}^j (x-x_i)$ אי $x_0 \dots x_{n+1}$ בנקודות $\{x_0,\dots,x_n\}$ בי f בי אינטרפולציה של פולינום אינטרפולציה של $x_0 \ldots x_{n+1} \; \in \; \mathbb{R}$ תהיינה $f \; : \; \mathbb{R} \; o \; \mathbb{R}$ תהא

f פולינום אינטרפולציה של $\sum_{i=-1}^n A_{j+1} \prod_{i=0}^j (x-x_i)$ ויהי $\sum_{j=-1}^{k-1} A_{j+1} \prod_{i=0}^{j} (x-x_i)$ איי $x_0 \dots x_{n+1}$ בנקודות $\{x_0,\ldots,x_k\}$ בי f של אינטרפולציה של פולינום

יהי $x_0 \dots x_{n+1} \in \mathbb{R}$ תהיינה $f: \mathbb{R} o \mathbb{R}$ יהי f פולינום אינטרפולציה של $\sum_{i=-1}^{n}A_{j+1}\prod_{i=0}^{j}\left(x-x_{i}
ight)$ $\sum_{j=-1}^{n-1} B_{j+1} \prod_{i=0}^{j} \left(x-x_i
ight)$ יההי $x_0 \ldots x_{n+1}$ בנקודות $\{x_0,\ldots,x_n\}$ פולינום אינטרפולציה של $\{x_0,\ldots,x_n\}$ איי

 $\sum_{j=-1}^{n} A_{j+1} \prod_{i=0}^{j} (x - x_i)$ $\left(\sum_{j=-1}^{n-1} B_{j+1} \prod_{i=0}^{j} (x - x_i)\right)$

 $A_{n+1} \prod_{i=0}^{n} (x - x_i)$ $x_0 \dots x_k \; \in \; \mathbb{R}$ תהיינה $f \; : \; \mathbb{R} \; o \; \mathbb{R}$ תהא f פולינום אינטרפולציה של $\sum_{j=-1}^{k-1} A_{j+1} \prod_{i=0}^{j} (x-x_i)$ ויהי $f[x_0 \dots x_k] = A_k$ איי $\{x_0 \dots x_k\}$ ב־

 $\sigma \in {\mathbb R}$ שונות ותהא $x_0 \ldots x_k \in {\mathbb R}$ מסקנה: תהא $f: {\mathbb R} o {\mathbb R}$ שונות ותהא $f\left[x_0\ldots x_k
ight]=f\left[x_{\sigma(0)}\ldots x_{\sigma(k)}
ight]$ תמורה אזי S_{k+1} $x_0 \dots x_n \in \mathbb{R}$ ותהיינה $f:\mathbb{R} o \mathbb{R}$ ותהיינה פולינום $\sum_{j=-1}^{n-1} f\left[x_0\dots x_{j+1}
ight]\prod_{i=0}^{j}\left(x-x_i
ight)$ איי $\mathbb R$

 $\{x_0 \dots x_n\}$ ביf שינטרפולציה של אזי $x_0
eq x_k$ באשר $x_0 \dots x_k \in \mathbb{R}$

 $f\left[x_{0}\ldots x_{k}\right] = \frac{f\left[x_{1}\ldots x_{k}\right] - f\left[x_{0}\ldots x_{k-1}\right]}{f\left[x_{0}\ldots x_{k-1}\right]}$ $x_k - x_0$

יהיי $x_0 \dots x_n \in \mathbb{R}$ תהיינה $f: \mathbb{R} o \mathbb{R}$ ויהי שגיאה באינטרפולציה: $.e\left(x\right)=f\left(x\right)-p\left(x\right)$ פ"א איז $p\in\Pi_{n}$

משפט ביטוי לשגיאה באינטרפולציה: תהא $f:\mathbb{R} o \mathbb{R}$ תהיינה פ"א אזי $p \in \Pi_n$ ויהי $x_0 \dots x_n, x \in \mathbb{R}$

 $e(x) = f[x_0 ... x_n, x] \prod_{i=0}^{n} (x - x_i)$ $f \ \in \ C^k\left((a,b)
ight)$ באשר $f \ \in \ C\left([a,b]
ight)$ מענה: תהא עבורה $c \ \in \ (a,b)$ אזיי קיימת $x_0 \dots x_k \ \in \ [a,b]$ ותהיינה

 $f\left[x_0\dots x_k\right] = \frac{f^{(k)}(c)}{k!}$ $f \in C([a,b])$ מסקנה נוסחת השגיאה בפולינום האינטרפולציה: תהא $x_0 \dots x_n, x \in \mathbb{R}$ תהיינה $f \in C^{n+1}\left((a,b)\right)$ באשר

 $e\left(x
ight) \;=\; c\;\in\; \left(a,b
ight)$ עבורה ע פ"א אזי קיימת $p\;\in\; \Pi_n$ ייהי ויהי $\frac{f^{(n+1)}(c)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$

תהיינה $f \in C^{n+1}\left((a,b)
ight)$ באשר באשר $f \in C\left([a,b]
ight)$ תהיינה עבורה $c \in (a,b)$ פ״א אזי קיימת $p \in \Pi_n$ ויהי $x_0 \ldots x_n$, $x \in \mathbb{R}$ $|e(x)| = \left| \frac{f(n+1)(c)}{(n+1)!} \right| (b-a)^{n+1}$

 תהא $f\in C^{n+1}\left((a,b)
ight)$ באשר באשר $f\in C\left([a,b]
ight)$ תהא $x_0 \ldots x_n$, $x \in \mathbb{R}$ תהיינה $\sup \left| f^{(n+1)}
ight| \leq M$ עבורה $M \in \mathbb{R}$

 $|e\left(x
ight)|\leq rac{M(b-a)^{n+1}}{(n+1)!}$ פ"א אזי $p\in\Pi_n$ ויהי ווהי $p\in\Pi_n$ [a,b] אלוקה של $\{x_0\dots x_n\}$ תהא $a,b\in\mathbb{R}$ חלוקה של \in באשר $f\in C^m\left([a,b]
ight)$ אזי $k,m\in\mathbb{N}$ ויהיו

 $i \in \{1 \dots n\}$ לכל Π_k הערה: יהיו $a,b\in\mathbb{R}$ תהא $\{x_0\ldots x_n\}$ חלוקה של $a,b\in\mathbb{R}$ אזי פונקציית k-1 חלקות וסדר וסדר ממעלה k וסדר הינה פונקציית ספליין ממעלה ו אינטרפולנט ליניארי למקוטעין: יהיו $a,b\in\mathbb{R}$ תהא $\{x_0\ldots x_n\}$ חלוקה

$$\begin{array}{lll} f &: & \text{NDIN} & a,b & \in & \mathbb{R} & \text{NDIN} \\ f & \left[\left\{a+\frac{b-a}{n}\cdot i\right\}_{i=0}^{n}\right] & = & \text{NN} & \left[a,b\right] & \to & \mathbb{R} \\ & \cdot \frac{1}{n!\left(\frac{b-a}{n}\right)^{n}}\left(\sum_{k=0}^{n}\left(-1\right)^{k}\binom{n}{k}f\left(a+\frac{b-a}{n}\cdot k\right)\right) \end{array}$$

 $f\left[x,x
ight]=f'\left(x
ight)$ אזי $f\in C^{1}\left(\mathbb{R}
ight)$ הפרש מחולק עם חזרה: תהא $f\left[x,x
ight]=\lim_{h
ightarrow0}f\left[x,x+h
ight]$ איי איז $f\in C^{1}\left(\mathbb{R}
ight)$ טענה: תהא ותהיינה $f\in C^{n}\left(\mathbb{R}
ight)$ תהא חזרות: חזרות מחולק אחולק $f\left[x_0\dots x_n
ight] \;\;=\;\;$ אוי בסדר עולה $x_0\dots x_n \;\;\in\;\; \mathbb{R}$ $\int f[x_1 \dots x_n] - f[x_0 \dots x_{n-1}]$

 $f^{(n)}(x_0)$ $x_0 \dots x_m \in \mathbb{R}$ פולינום אינטרפולציית הרמיט: תהא $f: \mathbb{R} o \mathbb{R}$ פולינום אינטרפולציית הרמיט $\sum_{i=0}^{m}g\left(x_{i}
ight)=n+1$ באשר $g:\left\{x_{0}\ldots x_{m}
ight\}
ightarrow\mathbb{N}_{+}$ ותהא $i \in \{0 \dots m\}$ לכל לכל $p^{\left(j\right)}\left(x_{i}
ight) = f^{\left(j\right)}\left(x_{i}
ight)$ אזי עבורו עבורו ל $j \in \{0 \dots g\left(x_i
ight) - 1\}$ ולכל

g : ותהא $x_0 \ldots x_m \in \mathbb{R}$ תהיינה f : $\mathbb{R} o \mathbb{R}$ ותהא איי קיים $\sum_{i=0}^m g\left(x_i\right) = n+1$ באשר $\left\{x_0 \ldots x_m\right\} \, o \, \mathbb{N}_+$ ויחיד $p \in \Pi_n$ פולינום אינטרפולציית הרמיט.

[a,b] אלוקה אלוקה מפליין הרמיט: יהיו $a,b\in\mathbb{R}$ תהא חלוקה של .1 אזי פונקציית ספליין ממעלה $k\in\mathbb{N}$ וסדר חלקות אזי ויהי $x_0 \dots x_n \in \mathcal{F}$ ותהיינה $f: \mathbb{R} \to \mathbb{R}$ טענה: תהא פולינום $\sum_{j=-1}^{n-1} f\left[x_0\dots x_{j+1}
ight]\prod_{i=0}^{j}\left(x-x_i
ight)$ איי $\mathbb R$

 $B_n^k:[0,1] o$ אזי $k\in\{0\dots n\}$ ויהי ויהי $n\in\mathbb{N}$ אזי אזי ריהי $B_n^k(x) = \binom{n}{k} x^k (1-x)^{n-k}$ המוגדר \mathbb{R}

 Π_n טענה: יהי $\left\{B_n^k
ight\}_{k=0}^n$ אזי $n\in\mathbb{N}$ בסיס של

המוגדרת $P_n^B:([0,1] o \mathbb{R}) imes [0,1] o \mathbb{R}$ אזי אוי $n \in \mathbb{N}$ המוגדרת: יהי $P_n^B(f, x) = \sum_{k=0}^n B_n^k(x) \cdot f\left(\frac{k}{n}\right)$

אזי $\lambda,\mu\in\mathbb{R}$ ויהיו $f,g:[0,1] o\mathbb{R}$ אזי \bullet $P_n^B\left(\lambda f + \mu g, x\right) = \lambda P_n^B\left(f, x\right) + \mu P_n^B\left(g, x\right)$

 $B_n^k \geq 0$ מתקיים $k \in \{0 \dots n\}$ •

 $.P_{n}^{B}\left(c,x
ight)=c$ אזי $c\in\mathbb{R}$ ויהי $f:\left[0,1
ight]
ightarrow\mathbb{R}$ תהא $P_n^B(x,x) = x \bullet$

 $P_n^B(x^2,x) = x^2 + \frac{1}{n}(x-x^2)$ •

 $\sum_{k=0}^{n} B_n^k(x) \left(\frac{k}{n} - x\right)^2 = \frac{x(1-x)}{n} \bullet$

 $.B_n^k\left(x
ight)=xB_{n-1}^{k-1}\left(x
ight)+\left(1-x
ight)B_{n-1}^k\left(x
ight)$ סענה: תהא $x\in\left[0,1
ight]$ תהא $f:\left[0,1
ight] o\mathbb{R}$ אוי $.{\lim}_{n\to\infty}\,P_{n}^{B}\left(f,x\right)$ אזיי $x \in [0,1]$ ותהא $f:[0,1]
ightarrow \mathbb{R}$ אזי $\sup \left| f(x) - P_n^B(x) \right| = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$

המקיימת $H:V^2 o \mathbb{C}$ אזי נ"ס מ"ז היי א המקיימת המכפלה מנימית: היי א מ"ז היי אזי חצר־מכפלה היימית

 $\forall a, b \in V.H(a, b) = \overline{H(b, a)}$ הרמיטיות:

orall a,b,c \in V.orall lpha,eta \in נינאריות: ullet $\mathbb{R}.H(\alpha a + \beta b, c) = \alpha H(a, c) + \beta H(b, c)$

 $\forall a \in V.H (a,a) \in \mathbb{R}_+$ חיוביות: • אזי V אזי אוי אוי מושרית: יהי א מ"ו נ"ס ותהא חצי־מכפלה פנימית H על

קירוב ריבועים מינימליים: יהי V מ"ז נ"ס תהא חצי־מכפלה פנימית H מעל $\{v_0 \dots v_n\} \subseteq V$ תהא V מעל H $\in L$ ויהי $\mathrm{span}\left\{v_0\ldots v_n
ight\}$ ויהי מכפלה מכפלה מכפלה

 $.{\rm arg\,min}_{v\in {\rm span}\{v_0\dots v_n\}}\;({\rm dist}\,(u,v))$ יהי $c_0 \ldots c_n \in \mathbb{R}$ ויהיו $u \in L$ יהי $\mathrm{span} \left\{ v_0 \ldots v_n \right\}$ $k \in \Sigma_{i=0}^n$ הינו קירוב ריבועים מינימליים של הינו $\sum_{i=0}^n c_i v_i$ $A \subseteq \sum_{i=0}^{n} c_i (v_i, v_k) = (u, v_k)$ מתקיים $\{0 \dots n\}$ עתהא על מעל א מעל פנימית חצי־מכפלה מיס מיט מ"ט מ"ט ענה: יהי על מ"ט מ"ט מ"ט מ"ט מ"ט מ"ט מענה: יהי ע בת"ל מכפלה פנימית מעל באשר א בת"ל בת"ל בעמית מעל $\{v_0 \ldots v_n\}$

 $v \in \, \mathrm{span} \, \{ v_0 \ldots v_n \}$ יהי $u \in \, L \, \, \text{יהי} \, \, \mathrm{span} \, \{ v_0 \ldots v_n \}$ $(v-u) \perp \mathrm{span} \left\{ v_0 \ldots v_n
ight\}$ קירוב ריבועים מינימליים אזי מכפלה פנימית מעל באשר $\{v_0 \dots v_n\} \subseteq V$ תהא Vאזי $c_0 \dots c_n \; \in \; \mathbb{R}$ ויהיו $u \; \in \; L$ יהי $\mathrm{span} \, \{ v_0 \dots v_n \}$

 $\sum_{i=0}^{n} c_i (v_i, v_k) = (u, v_k)$ מסקנה: יהי V מ"ו נ"ס תהא חצי־מכפלה פנימית H מעל על תהא מסקנה: ויהי אזי הקירוב ריבועים מינימליים הוא או $u \in L$ יהי $\mathrm{span}\,\{v_0 \ldots v_n\}$

מכפלה פנימית ממש עד מחשקלת: תהא $w \in C^1\left([a,b]
ight)$ תהא חיובית ממש עד כדי קבוצה זניחה אזי $H:C^1\left([a,b]
ight)^2 o\mathbb{R}$ כך

 $.H(f,g) = \int_{a}^{b} (f \cdot g \cdot w)$

טענה: תהא ([a,b]) אזי מכפלה חיובית ממש עד כדי קבוצה אזי מכפלה $w\in C^1$ $.C^{1}\left([a,b]
ight)$ פנימית ממושקלת w הינה מכפלה פנימית מעל סדרה אורתוגונלית של פולינומים: תהא H מכפלה פנימית מעל $\mathbb{R}\left[x
ight]$ אזי מתקיים i
eq j וכן לכל $q_n \in \Pi_n$ באשר $q_n \}_{n=0}^\infty \subseteq \mathbb{R}[x]$

 $.H\left(q_{i},q_{j}\right)=0$ $P_{n+1}\left(x
ight)=P_{1}\left(x
ight)=x$ וכן $P_{0}\left(x
ight)=1$ פולינומי לג'נדר: $P_{0}\left(x
ight)=P_{0}\left(x
ight)$ $\frac{2n+1}{n+1}xP_{n}(x) - \frac{n}{n+1}P_{n-1}(x)$

טענה: תהא מכפלה פנימית ממושקלת 1 בקטע [-1,1] אזי פולינומי לג'נדר מהווים סדרה אורתוגונלית של פולינומים. $P_{n+1}\left(x
ight) = x\cdot P_{n}\left(x
ight)$ איזי $n \in \mathbb{N}\backslash\left\{0,1
ight\}$ יהי

 $\frac{(P_n, P_n)}{P_{n-1}} P_{n-1}(x)$ (P_{n-1},P_{n-1}) $T_n\left(x
ight) = \cos\left(n \cdot \arccos\left(x
ight)
ight)$ פולינומי צ'בישב:

(-1,1] אוי פולינומי ביבישבו (-1,1] אוי פולינומי ממושקלת $\frac{1}{\sqrt{1\!-\!x^2}}$ בקטע בקטע וויינומי פולינומי צ'בישב מהווים סדרה אורתוגונלית של פולינומים. $T_{n+1}\left(x
ight)\;=\;T_{1}\left(x
ight)\;=\;x$ וכן $T_{0}\left(x
ight)\;=\;1$

 $.2xT_{n}(x) - T_{n-1}(x)$ $L_{n+1}\left(x
ight)=$ בולינומי לגר: $L_{1}\left(x
ight)=1-x$ וכן בו $L_{0}\left(x
ight)=1$ $\left(\frac{2n+1}{n+1} - \frac{x}{n+1}\right) L_n(x) - \frac{n}{n+1} L_{n-1}(x)$

טענה: תהא מכפלה פנימית ממושקלת $e^{\,-\,x}$ בקטע מופלה פנימית ממפלה ענה: אזי פולינומי מהווים סדרה אורתוגונלית של פולינומים. $H_{n+1}\left(x
ight)=$ וכן $H_{1}\left(x
ight)=2$ ו וכן וכן או וכן וכן וכן פולינומי הרמיט: 1 $.2xH_{n}\left(x\right) -2nH_{n-1}\left(x\right)$

הרמיט מהווים סדרה אורתוגונלית של פולינומים.

 $Q_{n+1}\left(x
ight) = xQ_{n}\left(x
ight) +$ ותהא $f:\,\mathbb{N}^{2}\,
ightarrow\,\mathbb{R}$ אטענה: תהא סדרה אורתוגונלית של פולינומים אזי $\sum_{i=0}^{n} f\left(n+1,i
ight)\cdot Q_{i}\left(x
ight)$

 $f(n+1,i) = -\frac{\left(xQ_n,Q_i\right)}{T}$

למרחב b למרחב מינימליים מינימליים ל $b' \in \mathbb{R}^m$ ויהי ו $b \in \mathbb{R}^m$ יהי $A^TAx = A^Tb$ איי קיים ויחיד פתרון למערכת $\{Ax \mid x \in \mathbb{R}^n\}$ $x_0 \dots x_n \in \mathcal{P}'(x) = p'(x) + \mathcal{P}'(x) = \mathcal{P}'(x)$ תהיינה \mathcal{R} תהיינה פ"א של \mathcal{R} ויהי \mathcal{R} פ"א של \mathcal{R} $\frac{d}{dx} \left(f \left[x_0 \dots x_n, x \right] \prod_{i=0}^n \left(x - x_i \right) \right)$

ייהי $x_0 \ldots x_n \in \mathbb{R}$ תהיינה $f \in C^1 \left(\mathbb{R} \right)$ ויהי ע פ"א שגיאה בנגזרת: תהא $e_{f'}(x) = e'_{f}(x)$ של f איי

אזי $x_i = x_j$ אם עבורן אם אם א עבורן אז נקודות אזיי. נקודות אזיי אזיי אזיי אזיי אזיי $.\left\{x_i\ldots x_j\right\} = \left\{x_i\right\}$ טענה: תהא $\hat{f}:\mathbb{R} o \hat{\mathbb{R}}$ בסדר חוקי ותהא טענה: תהא להיינה $\hat{f}:\mathbb{R} o \hat{\mathbb{R}}$

אזי חוקי חוקי $\sigma \in S_{n+1}$ $f[x_0 \dots x_n] = f \left| x_{\sigma(0)} \dots x_{\sigma(n)} \right|$

רציפה. $f\left[x_{0}\ldots x_{n},x
ight]$ טענה: תהא $x_0 \ldots x_n \in \mathbb{R}$ ותהיינה $f: \mathbb{R} o \mathbb{R}$ אזי $\left(\frac{\mathrm{d}}{\mathrm{d}x}f\left[x_{0}\ldots x_{n},x\right]\right)(x)=f\left[x_{0}\ldots x_{n},x,x\right]$

מסקנה: תהא $x_0 \ldots x_n \in \mathbb{R}$ ותהיינה $f \in C^1\left(\mathbb{R}
ight)$ אזי $e_{f'}(x) = f[x_0 \dots x_n, x, x] \prod_{i=0}^{n} (x - x_i) +$ $f[x_0 \dots x_n, x] \stackrel{d}{\underset{dx}{=}} \left(\prod_{i=0}^n (x - x_i)\right)$

p ויהי $x_0 \ldots x_n \in [a,b]$ תהיינה $f \in C^1\left([a,b]\right)$ ויהי עבורס $\zeta,\,\xi\in(a\,,b)$ פיימיס אזי f של פ"א פ"א פ"א $f'(x) = p'(x) + \frac{f(n+2)(\zeta)}{(n+2)!} \cdot \prod_{i=0}^{n} (x - x_i) +$

 $\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left(\prod_{i=0}^{n} (x - x_i) \right)$

מסקנה: תהא $x_0 \ldots x_n \in \mathbb{R}$ ותהיינה $f:[a,b] o \mathbb{R}$ אזי

 $e_{f'}(a) = n$ איז $\frac{\mathrm{d}}{\mathrm{d}x} \left(\prod_{i=0}^{n} (x - x_i) \right)(a) = 0$ אוז • $\mathcal{O}\left((b-a)^{n+1}\right)$

 $p\in\mathbb{N}$ אוי א $x_0\ldots x_n\in\mathbb{R}$ ותהיינה ותהיינה ותהא הקירוב: תהא וקיים $C \in \mathbb{R}$ וקיים

המקיימים $h \in \left[\min_{i \neq j} \left| x_i - x_j \right|, \max \left| x_i - x_j \right| \right]$ $|e_{f'}(a)| \leq Ch^p$

בין מקסימלי מרחק מרחק עם $x_1 \dots x_n$ בין מעל הנקודות שיטת שיטת הא מינימלי עבורו $p \in \mathbb{N}$ הנקודות ועם שגיאה $e\left(x
ight)$ סדר הקירוב של השיטה הוא

טענה: תהא $x_0 \dots x_n \in \mathbb{R}$ תהיינה $f \in C^1(\mathbb{R})$ ותהא עבורה $\{x_0 \ldots x_n\}$ סימטריות סביב $a \in \mathbb{R} ackslash \{x_0 \ldots x_n\}$

 $\frac{\mathrm{d}}{\mathrm{d}x} \left(\prod_{i=0}^{n} (x - x_i) \right) (a) = 0$ סדר דיוק אלגברי: תהא $f:\mathbb{R} o\mathbb{R}$ ותהא $e:\mathbb{R} o\mathbb{R}$ ותהא ווסחת

 $.e_{\,p}\,=\,0$ מתקיים $p\,\in\,\Pi_{\,n}$ לכל עבורו מקסימלי מקסים $n\,\in\,\mathbb{N}$ אזי f טענה: תהא $x_0 \ldots x_n \in \mathbb{R}$ תהיינה $f \in C^m$ ויהי ענה: תהא

 $f[x_0 \dots x_n, x, x, x] \prod_{i=0}^n (x - x_i)$ $2f\left[x_0 \ldots x_n, x, x\right] \stackrel{d}{=} \left(\prod_{i=0}^n \left(x - x_i\right)\right)$ $f[x_0 \dots x_n, x] \stackrel{d^2}{=} (\prod_{i=0}^n (x - x_i))$

p יהי $x_0 \ldots x_n \in [a,b]$ תהיינה $f \in C^2\left([a,b]
ight)$ ויהי תהא עבורם $\zeta,\,\xi,\,\chi\in(a\,,b)$ עבורם אזי קיימים f של של פ"א פ"א

 $f''(x) = p''(x) + \frac{f^{(n+3)}(\zeta)}{(n+3)!} \cdot \prod_{i=0}^{n} (x - x_i) +$

 $\frac{f^{(n+2)}(\xi)}{(n+2)!} \cdot \frac{d}{dx} \left(\prod_{i=0}^{n} (x-x_i) \right) + \frac{f^{(n+1)}(\chi)}{(n+1)!}$ $\frac{d^2}{dx^2} \left(\prod_{i=0}^n (x - x_i) \right)$

h>0 יהי $a\in\mathbb{R}$ יהי $f\in C^2\left(\mathbb{R}
ight)$ ההי מנזרת: תהא לקירוב נגזרת: תהא

a של u של בה באשר קיימת סביבה u של בה $a\in\mathbb{R}$ ויהי $f\in C^2\left(\mathbb{R}
ight)$ $\mathcal{O}\left(h
ight)$ חסומה אזי סדר קירוב הפרש קדמי אזי חסומה ל h>0 ויהי $a\in\mathbb{R}$ יהי $f\in C^2\left(\mathbb{R}
ight)$ תהא מרכזי לקירוב נגזרת: תהא

f ניא של p יהי h>0 יהי $a\in\mathbb{R}$ יהי $f\in C^{2}\left(\mathbb{R}
ight)$ ויהי מסקנה: תהא $p'(a) = \frac{f(a+h) - f(a-h)}{2h}$ אא $\{a+h, a-h\}$ בנקודות בה aשל \mathcal{U} סביבה קיימת באשר $a\in\mathbb{R}$ ויהי והי $f\in C^{3}\left(\mathbb{R}\right)$ תהא 2 $\mathcal{O}\left(h^2
ight)$ חסומה אזי סדר קירוב הפרש מרכזי הינו f''''

טענה: תהא \mathcal{U} של $a\in\mathbb{R}$ ויהי ויהי $a\in\mathbb{R}$ באשר קיימת סביבה $f\in C^3$ של .2 חסומה אזי הפרש מרכזי בעל סדר דיוק אלגברי $f^{\prime\prime\prime\prime}$

D יהי $a\in\mathbb{R}$ יהי $f\in C^1\left(\mathbb{R}
ight)$ תהא תהא משפט ריצ'רזטון: תהא $h\geqslant 0$ יהי $a\in\mathbb{R}$ יהי $\sum_{k=1}^{M-1} \inf_{k=1}^{\infty} k^x 2i$ שיטת קירוב ל־f'(a) מסדר f'(a) בעלת קירוב ל- $.f'\left(a\right) = D\left(h\right) + \textstyle\sum_{i=0}^{\infty} C_{i}h^{2k+2i}$

h>0 יהי $a\in\mathbb{R}$ יהי $f\in C^1\left(\mathbb{R}
ight)$ תהא יהי $a\in\mathbb{R}$ יהי בין הפרש h שיטת שיטת $\mathcal{O}\left(h^{2k}\right)$ מסדר $f'\left(a\right)$ ל שיטת שיטת $D\left(h\right)$ ותהא ותהא $4^{k} \stackrel{\smile}{D(h)} - D(2h) + \mathcal{O}\left(h^{2k+2}
ight)$ נקודותיה אזי

f טענה: תהא p ויהי p ויהי $x_0 \ldots x_n \in \mathbb{R}$ תהיינה $f \in R$ ויהי p ויהי של $\int_a^b f = \int_a^b p + \int_a^b f \left[x_0 \dots x_n, x
ight] \prod_{i=0}^n \left(x - x_i
ight)$ איי אזי $x_0 \dots x_n \in \mathbb{R}$ ותהיינה $f \in R\left([a,b]\right)$ אזי אזינטגרל: תהא $.E\left(\int_a^b f\right) = \int_a^b e_f(x) dx$

טענה: תהא $x_0 \ldots x_n$, $k \in \mathbb{R}$ ותהיינה $f \in C^{n+1}\left([a,b]
ight)$ באשר איי $\max_{i \in [n]} \max_{x \in [a,b]} |x - x_i| \le k (b-a)$

 $\left| \frac{f\left[x_{0} \ldots x_{n} \right] - f\left[x_{\sigma(0)} \ldots x_{\sigma(n)} \right]}{\left[f\left(n+1 \right) \left(x \right) \right]} \left(b-a \right) \left(k \left(b-a \right) \right) \left(k \left$ $x_0 \dots x_n, k \in \mathbb{R}$ ותהיינה $f \in C^{n+1}\left([a,b]
ight)$ מסקנה: תהא איי $\max_{i \in [n]} \max_{x \in [a,b]} |x-x_i| \leq k \, (b-a)$ באשר $|E(\int_a^b f)| = \mathcal{O}((b-a)^{n+2})$

טענה: תהא $x_0 \ldots x_n \in \mathbb{R}$ ותהיינה $f \in C^{n+1}\left([a,b]
ight)$ באשר $\xi \in (a,b)$ אזי קיים (a,b) בעלת סימן בקטע בעלת $\prod_{i=0}^{n} \left(x-x_i\right)$ $\left|E\left(\int_a^bf\right)\right|=rac{f^{\left(n+1
ight)}\left(\xi
ight)}{\left(n+1
ight)!}\int_a^b\prod_{i=0}^n\left(x-x_i
ight)\mathrm{d}x$ עבורו מסקנה: תהא $x_0 \ldots x_n \in \mathbb{R}$ ותהיינה $f \in C^{n+1}\left([a,b]
ight)$ באשר

אזי [a,b] בעלת סימן בקטע בעלת $\prod_{i=0}^{n} \left(x-x_i\right)$ $|E(\int_a^b f)| = \mathcal{O}((b-a)^{n+2})$

 $(b-a)\,f\,(a)$ אזי $f\in C^1\,([a,b])$ תהא המלבן לקירוב אינטגרל: תהא מסקנה: תהא $\xi \in (a,b)$ אזי קיים $f \in C^1\left([a,b]
ight)$ עבורו שגיאת כלל

 $E\left(\int_a^b f\right) = \frac{(b-a)^2}{2} f'\left(\xi\right)$ המלבן הינה אזי $f \in C^2\left([a,b]
ight)$ אזי אינטגרל: תהא לקירוב אינטגרל:

 $\frac{b-a}{2} \left(f\left(a\right) + f\left(b\right) \right)$ אניאת שגיאת עבורו אניאם $\xi\in(a,b)$ איי קיים $f\in C^{2}\left([a,b]\right)$ תהא מסקנה: תהא $E\left(\int_a^b f\right) = -\frac{(b-a)^3}{12} f''(\xi)$ הטרפז הינה

 $x_0 \ldots x_{n+1} \in \mathbb{R}$ ותהיינה $f \in C^{n+2}\left([a,b]
ight)$ טענה: תהא בעלת $\prod_{i=0}^{n+1}\left(x-x_{i}\right)$ וכן $\int_{a}^{b}\prod_{i=0}^{n}\left(x-x_{i}\right)\mathrm{d}x=0$ באשר $E\left(\int_a^b f\right) =$ עבורו $\xi \in (a,b)$ אזי קיים [a,b] אזי קיים סימן קבוע בקטע

 $\frac{f^{(n+2)}(\xi)}{(n+2)!} \int_a^b \prod_{i=0}^{n+1} (x - x_i) \, \mathrm{d}x$

 $x_0 \ldots x_{n+1} \in \mathbb{R}$ ותהיינה $f \in C^{n+2}\left([a,b]
ight)$ מסקנה: תהא בעלת $\prod_{i=0}^{n+1} \left(x-x_i
ight)$ וכן וכן $\int_a^b \prod_{i=0}^n \left(x-x_i
ight) \mathrm{d}x = 0$ באשר $\left|E\left(\int_a^b f\right)\right| = \mathcal{O}\left((b-a)^{n+3}\right)$ איז [a,b] איז קבוע בקטע

אזי $f \in C^2\left([a,b]
ight)$ אזי אינטגרל: אינטגרל לקירוב אינטגרל

מסקנה: תהא $\xi \in (a,b)$ אזי קיים $f \in C^2([a,b])$ עבורו שגיאת כלל $.E\left(\int_a^bf
ight)=rac{(b-a)^3}{24}f^{\prime\prime}\left(\xi
ight)$ נקודת האמצע הינה

 תהיינה $A_0 \ldots A_n \in \mathbb{R}$ תהיינה $f \in R\left([a,b]\right)$ תהיינה $\sum_{i=0}^{n}A_{i}f\left(x_{i}\right)$ איי והכלל פ"א של p ויהי x_{0} . . . x_{n} \in [a,b] $\int_a^b p(x) dx = \iff (n אלגברי של לפחות אינטגרל בעל סדר דיוק אלגברי של לפחות$ $\lim_{i=0}^{n} A_{i} p(x_{i})$

מסקנה: תהיינה w > 0 באשר $f, w \in R([a,b])$ מסקנה: אוי $x_0 \dots x_n \in [a,b]$ ותהיינה $A_0 \dots A_n \in \mathbb{R}$ נהכלל $\int_{a}^{b}f\left(x\right)w\left(x\right)\mathrm{d}x$ לקירוב לקירוב בעל סדר דיוק $\sum_{i=0}^{n}A_{i}f\left(x_{i}\right)$ $A_i = \alpha$ מתקיים $i \in \{0 \dots n\}$ לכל (לכל לפחות אלגברי של לפחות אלגברי אל $(\int_a^b \ell_i(x) w(x) dx)$

אזי $f \in C\left([a,b]
ight)$ תהא אינטגרל: אינטגרל לקירוב אינטגרל: $\frac{b-a}{6} \left(f\left(a\right) + 4f\left(\frac{a+b}{2}\right) + f\left(b\right) \right)$

.3 טענה: תהא $f \in C\left([a,b]
ight)$ אזי כלל סימפסון בעל סדר דיוק אלגברי עבורו שגיאת כלל $\xi \in (a,b)$ אזי קיים $f \in C^4\left([a,b]\right)$ עבורו שגיאת כלל

 $E\left(\int_a^b f\right) = -\left(\frac{b-a}{2}\right)^5 \cdot \frac{f^{(4)}(\xi)}{90}$ סימפסון הינה ותהא $f \in C^2([a,b])$ תהא אינטגרל: לקירוב אינטגרל: מורכב לקירוב אינטגרל:

אזי h אזי קבוע הפרש חלוקה אזי $x_0 \ldots x_n$ $T_h(f) = \sum_{i=0}^{n-1} \frac{h}{2} (f(x_i) + f(x_{i+1}))^n$

אזי קיים $\xi \in (a,b)$ אזי קיים $f \in C^2\left([a,b]
ight)$ עבורו שגיאת כלל $E\left(\int_{a}^{b}f\right)=-rac{(b-a)h^{2}}{12}f''(\xi)$ הטרפז המורכב הינה מטקנה: תהא $\left|f^{(2)}
ight| \leq M$ גזירה פעמיים באשר $f \in C\left([a,b]
ight)$ אזי מטקנה: תהא $\left|E\left(\int_a^bf
ight)
ight|\leq rac{(b-a)h^2}{12}\,M$ שגיאת כלל הטרפז המורכב הינה ותהא $f \in C\left([a,b]
ight)$ תהא אינטגרל: לקירוב אינטגרל

 $S_h(f) = \frac{h}{3} \left(f(x_0) + f(x_{2M}) + 2 \sum_{i=1}^{M-1} f(x_{2i}) + \frac{h}{2} \right)$ מסקנה: תהא $\xi \in (a,b)$ אזי קיים $f \in C^4\left([a,b]\right)$ עבורו שגיאת כלל $E\left(\int_{a}^{b}f
ight)=-rac{(b-a)h^{4}}{180}f^{(4)}\left(\xi
ight)$ סימפסון המורכב הינה טענה: תהא חלוקה בעלת הפרש חבוע ותהא ותהא ותהא ותהא ותהא ל $f\in C\left([a,b]\right)$

 $.S_{h}(f) = \frac{4T_{h}(f) - T_{2h}(f)}{2} \approx h$

 $f \in C^2\left([a,b]
ight)$ מלל הטרפז המורכב עם שגיאה לקירוב אינטגרל: תהא אזי $arepsilon \in \mathbb{R}^n$ ותהא $x_0 \ldots x_n$ אזי הפרש בעלת הפרש אוותהא $\sum_{i=0}^{n-1} \frac{h}{2} \left(f\left(x_{i}\right) + \varepsilon_{i} + f\left(x_{i+1}\right) + \varepsilon_{i+1} \right)$

מסקנה: תהא $x_0 \dots x_n$ תהא $f \in C^2\left([a,b]\right)$ חלוקה בעלת הפרש קבוע h ותהא $arepsilon \in \mathbb{R}^n$ אזי שגיאת כלל הטרפז המורכב עם $\left|E\left(\int_a^bf
ight)
ight|\,\leq\,rac{(b-a)h^2}{12}\left|f^{\prime\prime}\left(\xi
ight)
ight|+(b-a)$ אניאה הינה

 2^{n-1} טענה: יהי $T_n\left(x
ight)$ אזי המקדם הראשי של $n\in\mathbb{N}$ הינו $\left\{\cos\left(\frac{2k+1}{n}\cdot\frac{\pi}{2}\right)\mid k\in\{0,\ldots,n-1\}\right\}$ n ב $\{T_n=0\}$ איז $n\in\mathbb{N}$ איז $n\in\mathbb{N}$

 $-1 < T_n < 1$ אזי $n \in \mathbb{N}$ טענה: יהי $n \in \mathbb{N}$ טענה: יהי (-1,1) אזי נקודות הקיצון של T_n בקטע אזי נקודות הינן $n\in\mathbb{N}$ יהינן $\left\{\cos\left(\frac{k\pi}{n}\right)\mid k\in\{0,\ldots,n\}\right\}$

באשר $f, w \in R([a,b])$ באשר $f, w \in R([a,b])$ תהא אורתוגונלית $\{q_i\}_{i=0}^\infty$ תהא תה אורתוגונלית $w~\geq~0$ אזי $\operatorname{sols}\left(q_{n+1}\right) = \{x_0 \ldots x_n\}$ אזי $\operatorname{sols}\left(q_{n+1}\right)$ $\sum_{i=0}^{n} \left(\left(\int_{a}^{b} \ell_{i}(x) w(x) dx \right) \cdot f(x_{i}) \right)$

 ≥ 0 באשר $w \in R([a,b])$ באשר $w \in R([a,b])$ עבורו $\xi \in (a,b)$ אזי קיים $f \in C^{2n+2}([a,b])$ $E\left(\int_a^b f
ight) = rac{f(2n+2)(\xi)}{(2n+2)!}$ אניאת כלל גאוס הינה - הינה

 $\int_{a}^{b} \left(\prod_{i=0}^{n} (x - x_i)\right)^2 w(x) dx$ $f \in \mathcal{R}$ ותהא $w \geq 0$ באשר $w \in \mathcal{R}([a,b])$ מסקנה: תהא

2n+1 אזי כלל גאוס בעל סדר דיוק אלגברי $C^{2n+2}\left([a,b]
ight)$ $c\in(a,b)$ טענה: יהי $f\in C^{n+1}\left([a,b]
ight)$ ויהי $f\in C^{n+1}$. $\|e\left(x\right)\|_{\infty} = \left|\frac{f^{\left(n+1\right)}\left(c\right)}{\left(n+1\right)!}\right| \cdot \left\|\prod_{i=0}^{n}\left(x-x_{i}\right)\right\|_{\infty}$ עבורו

 $\widehat{T}_n\left(x
ight)=rac{1}{2n-1}T_n\left(x
ight)$ אזי $n\in\mathbb{N}$ יהי $n\in\mathbb{N}$ פולינום צ'בישב מתוקן: יהי מתוקן עבורו לכל מחוקן מחוק $p \in \Pi_n$ אזי $f \in C\left([a,b]\right)$ תהא מינימקס: פולינום המינימקס $\|f\left(x
ight)-p\left(x
ight)\|_{\infty}\leq\|f\left(x
ight)-q\left(x
ight)\|_{\infty}$ מתקיים $q\in\Pi_{n}$ משפט המינימקס לפולינומים: יהי $p \ \in \ \Pi_n$ אזי (ב-1, 1) אזי $\|\hat{T}_n\|_{\infty} \le \|p\|_{\infty}$

מסקנה: פולינום המינימקס ממעלה n של x^{n+1} בקטע x^{n+1} הינו $x^{n+1} - \widehat{T}_{n+1}(x)$ $p \in \Pi_n$ ויהי n+1 מסקנה: יהי $f \in R\left([-1,1]\right)$ ויהי

 \widehat{T}_{n+1} פולינום המינימקס של f אזי p איזי p פולינום המינימקס פול אזי $p \in \Pi_n$ ויהי ויהי $f \in C\left([a,b]
ight)$ תהא משפט איפיון כללי לפולינום המינימקס: תהא $t_0 \dots t_{n+1} \in (f)$ מתוקן אזי (p) מתוקן אזי (p) מתוקן אזי (p) מתוקן אזי $f\left(t_{i}\right)-p\left(t_{i}\right) = \operatorname{sign}\left(e\left(t_{0}\right)\right)\cdot\left(-1\right)^{i}\cdot\left[a,b\right]$ עבורם $\left[a,b\right]$

נורמה מושרית על מרחב המטריצות: תהא 🏗

 $\nu_{M}(A) = \max_{x \in \mathbb{R}^{n} \setminus \{0\}} \left\{ \frac{\nu(Ax)}{\nu(x)} \right\}$

 $(i \in \{0, \dots, n+1\})$ לכל $\|f - p\|_{\infty}$

 $u =
u_{ ext{M}}$ נורמה אזי נסמן $u : \mathbb{R}^n o \mathbb{R}$ נורמה האי נסמן.

 $M_n\left(\mathbb{R}
ight)$ טענה: תהא $u:\mathbb{R}^n o \mathbb{R}$ נורמה מעל יי נורמה $u:\mathbb{R}^n$ טענה: תהא $A \in M_n\left(\mathbb{R}
ight)$ נורמה ותהא נורמה : $\mathbb{R}^n
ightarrow \mathbb{R}$ אזי $.\nu\left(A\right) = \max_{v \in \mathbb{S}^{n-1}} \left\{\nu\left(Av\right)\right\}$

 $x\in\mathbb{R}^n$ ותהא $A\in M_n$ (\mathbb{R}) נורמה תהא טיי : $\bar{\mathbb{R}}^n o \mathbb{R}$ ותהא מסקנה: תהא $u(Ax) \leq \nu(A) \cdot \nu(x)$ אזי

טענה: תהא $A,B \in M_n\left(\mathbb{R}
ight)$ נורמה ותהיינה $u:\mathbb{R}^n o \mathbb{R}$ אזי טענה: תהא $\nu(A \cdot B) \leq \nu(A) \cdot \nu(B)$ $\in M_{n}\left(\mathbb{R}
ight)$ טענה: תהא

 $.\max_{i \in [n]} \sum_{j=1}^{n} |a_{i,j}|$ = אוי A \in $M_n\left(\mathbb{R}
ight)$ אוי \in

 $\max_{j\in[n]}\sum_{i=1}^n\left|a_{i,j}
ight|$ מטקעה: תהיינה m,M>0 עבורם n,M>0 עבורם n,M>0 עבורם $m \cdot \eta(A) \le \nu(A) \le M \cdot \eta(A)$

 $\operatorname{spec}\left(A
ight) \;\;=\;\; n$ אזי $A\;\;\in\;\; M_{n}\left(\mathbb{R}
ight)$ אזי מטריצה: תהא $\{\lambda \in \mathbb{R} \mid A$ ע"ע של $\lambda\}$ $ho\left(A
ight) \;\;=\;\;$ אזי $A\;\;\in\;\;M_{n}\left(\mathbb{R}
ight)$ אזי $A\;\;\in\;\;M_{n}\left(\mathbb{R}
ight)$

 $\max_{\lambda \in \operatorname{spec}(A)} |\lambda|$ אזי $A \in M_n\left(\mathbb{R}
ight)$ אזי $u : \mathbb{R}^n
ightarrow \mathbb{R}$ אזי משפט: תהא $\rho(A) \leq \nu(A)$

 $.
u\left(I
ight)=1$ טענה: תהא $u:\mathbb{R}^{n}
ightarrow\mathbb{R}$ אזי וורמה איזי $u:\mathbb{R}^{n}
ightarrow\mathbb{R}$ $f\left(A
ight) \;=\; n$ המוגדרת $f\;:\; M_{n}\left(\mathbb{R}
ight) \;
ightarrow\; \mathbb{R}$ מסקנה:

. אינה נורמה מושרית $\sum_{i=1}^n \sum_{j=1}^n \left| a_{i,j} \right|$ $u:\mathbb{R}^n o\mathbb{R}$ אזי קיימת נורמה $A\in M_n\left(\mathbb{R}
ight)$ ותהא arepsilon>0 אזי קיימת נורמה $u(A) < \rho(A) + \varepsilon$ עבורה $b,\,r,\,x,\, ilde{x}\in$ ותהיינה א ותהיינה א ותהיינה אגיאה של מערכת משוואות: תהא א ותהיינה א

Ax=a באשר איז $A ilde{x}=b+r$ וכן Ax=b באשר \mathbb{R}^n $b,r,x, ilde{x}\in\mathbb{R}^n$ ותהיינה $A\in M_n\left(\mathbb{R}
ight)$ באשר

אזי $A ilde{x} = b + r$ וכן Ax = b באשר באשר אזי $b, r, x, ilde{x} \in \mathbb{R}^n$

- $\|b\| \le \|A\| \|x\|$ •
- $\|x\| \le \|A^{-1}\| \|b\|$ $||r|| \le ||A|| ||e|| \bullet$
- $||e|| \le ||A^{-1}|| ||r|| \bullet$

 $A \in M_n\left(\mathbb{R}
ight)$ טענה: תהא $\|\cdot\|$ נורמה מושרית תהא אזי $A ilde{x} = b + r$ וכן Ax = b באשר בא $b, r, x, ilde{x} \in \mathbb{R}^n$

 $\left\| \frac{1}{\|A\|} \le \frac{\|e\|}{\|r\|} \le \|A^{-1}\| \bullet \|$

 $\left\| \frac{1}{\|A^{-1}\|} \le \frac{\|b\|}{\|x\|} \le \|A\|$

מסקנה: תהא $\|\cdot\|$ נורמה מושרית תהא $A\in M_n$ ($\mathbb R$) מסקנה: תהא נורמה מושרית מושרית תהא אזי $A ilde{x} \ = \ b + r$ וכן $Ax \ = \ b$ באשר $b, r, x, ilde{x} \ \in \ \mathbb{R}^n$

 $A\in M_n\;(\mathbb{R})$ אזי וורמה מושרית ותהא $\|\cdot\|$ אזי וורמה אוי .cond $(A) = ||A|| ||A^{-1}||$

- אזי $A\tilde{x} = b + r$ $.\delta\left(x\right) = \frac{\|e\|}{\|x\|} \bullet$
- $.\delta(b) = \frac{\|r\|}{\|b\|} \bullet$

טענה: תהא $\|\cdot\|$ נורמה מושרית תהא $A \in M_n\left(\mathbb{R}\right)$ הפיכה ותהיינה אזיי $A ilde{x} = b + r$ וכן Ax = b באשר $b, r, x, ilde{x} \in \mathbb{R}^n$ $.\delta(x) \in \left[\frac{\delta(b)}{\operatorname{cond}(A)}, \operatorname{cond}(A) \delta(b)\right]$

 $A \in M_n\left(\mathbb{R}
ight)$ הפיכה אזי וורמה מושרית ותהא וורמה $\|\cdot\|$ $.cond(A) \ge \left| \frac{\max spec(A)}{\min spec(A)} \right|$

.cond $(A) \geq 1$ אזי $A \in M_n$ ($\mathbb R$) נורמה מושרית נורמה מושרית נורמה אזי $\|\cdot\|$ אזי וורמה טענה: תהא $\|\cdot\|$ נורמה מושרית ותהיינה $A,B\in M_n$ ($\mathbb R$) טענה: תהא וורמה מושרית ותהיינה .cond $(A) \geq \frac{\|A\|}{\|A-B\|}$ אזי אזי A
eq B הפיכה וכן

 $\operatorname{cond}\left(A
ight)=$ איי $A\in M_{n}\left(\mathbb{R}
ight)$ איי וורמה מושרית ותהא וותהא וורמה איי $\|\cdot\|$

 $\max \left\{ \frac{\|A\|}{\|A-B\|} \mid \det(B) = 0 \right\}$ $\operatorname{cond}\left(A
ight)=$ אזי $A\in M_{n}\left(\mathbb{R}
ight)$ נורמה מושרית ותהא ותהא ותהא וורמה מסקנה: תהא

 $A\in M_n\left(\mathbb{R}
ight)$ אפיכה ותהיינה $\|\cdot\|$ נורמה מושרית תהא

וכן $A ilde{x} \; = \; b \; + \; r$ וכן $Ax \; = \; b$ באשר באשר $b, \, r, \, x, \, ilde{x} \; \in \; \mathbb{R}^n$ $\delta\left(x
ight) = \delta\left(x
ight)$ אזי r וכן r ו"ע של t max spec t

 $A,B \in M_n\left(\mathbb{R}
ight)$ טענה: תהא $\|\cdot\|$ נורמה מושרית ותהיינה

 $Ae = -R\tilde{x}$ אוי אוי A = b וכן A = bA באשר $A,R\in M_{n}\left(\mathbb{R}
ight)$ באשר מסקנה: תהא $\left\Vert \cdot \right\Vert$ נורמה מושרית תהיינה $(A+R)\, ilde{x} = b$ וכן Ax=b באשר וכן $b,x, ilde{x} \in \mathbb{R}^n$ הפיכה ותהיינה

 $\|e\| \le \|A^{-1}\| \|R\| \|\tilde{x}\|$ אזי אוי A באשר $A,R\in M_n\left(\mathbb{R}
ight)$ באשר $A,R\in M_n\left(\mathbb{R}
ight)$ באשר מסקנה: תהא $(A+R)\, ilde{x} = b$ וכן Ax=b באשר $b,x, ilde{x} \in \mathbb{R}^n$ הפיכה ותהיינה $\|e\|$ איי $\|A\|$ $\leq \operatorname{cond}(A)$ איי

שגיאה של מערכת משוואות: תהיינה $A,R~\in~M_{n}\left(\mathbb{R}
ight)$ ותהיינה $(A+R)\, ilde x \;=\; b\, +\, r$ וכן $Ax\; =\; b$ באשר באשר $b,\, r,\, x,\, ilde x \;\in\; \mathbb{R}^n$ משפט: תהא $\|\cdot\|$ נורמה מושרית תהיינה A, $R\in M_n$ ($\mathbb R$) הפיכה מושרית נורמה מושרית האינה

וכן Ax=b באשר באשר $b,r,x, ilde{x}\in\mathbb{R}^n$ וכן

 $\frac{\|e\|}{\|x\|} \le$ אזי $\|B\| \le \frac{1}{\|A-1\|}$ וכן (A+R) $\tilde{x} = b+r$ $\frac{1-\operatorname{cond}(A)\left(\frac{\|B\|}{\|A\|}\right)}{1-\operatorname{cond}(A)\left(\frac{\|B\|}{\|A\|}\right)}$

טענה: תהא אזי אלגוריתם עליונה הפיכה אזי אלגוריתם אול $A \in M_n\left(\mathbb{R}
ight)$ $\mathcal{O}\left(n^2\right)$ מן לדירוג בעל סיבוכיות זמן טענה: תהא $A\in M_n\left(\mathbb{R}
ight)$ הפיכה אזי אלגוריתם גאוס לדירוג בעל סיבוכיות $\mathcal{O}\left(n^3\right)$ זמן

 $L,U\in\mathcal{M}$ הפיכה אזי קיימות $A\in\mathcal{M}_n$ (\mathbb{R}) משפט פירוק בערוק באשר על משולשית עליונה וכן משולשית תחתונה עם 1 על האלכסון M_n

 $U_A \in M_n\left(\mathbb{R}
ight)$ המטריצה $A \in M_n\left(\mathbb{R}
ight)$ המטריצה מימון: תהא המשולשית העליונה הראשונה המתקבלת באלגוריתם גאוס.

 המוגדרת הא הא האי הא הפיכה אזי ו $A \in M_{n}\left(\mathbb{R}\right)$ המוגדרת הא $A \in M_{n}\left(\mathbb{R}\right)$ i>j באשר $(L_A)_{i,j}$ $\overline{(U_A)}_{j,j}$

A של LU פירוק L_A , U_A אזי אוי הפיכה $A\in M_n$ ($\mathbb R$) של $b \in \mathbb{R}^n$ יהי הפיכה $A \in M_n\left(\mathbb{R}
ight)$ האלגוריתם גאוס עם הצרה חלקית: תהא

function GaussPartialPivoting(A, b): $B \leftarrow (A|b)$

for $i \leftarrow [1, \ldots, n]$ do $m \leftarrow \arg\max\{(A)_{i,j} \mid j \in [n]\}$ $[R_1(B), R_m(B)] \leftarrow [R_m(B), R_1(B)]$ for $j \leftarrow [i+1,\ldots,n]$ do $R_{j}(B) \leftarrow R_{i}(B) - \frac{(A)_{i,j}}{(A)_{i,i}} \cdot R_{i}(B)$ $R_i(B) \leftarrow \frac{1}{(A)_{i,i}} \cdot R_i(B)$

return $C_1(B) \dots C_n(B)$, $C_{n+1}(B)$ $b \in \mathbb{R}^n$ סענה: תהא $A \in M_n\left(\mathbb{R}\right)$ באשר e (GaussPartialPivoting (A,b)) < אזי צפה אזי בעזרת נקודה צפה A,bAx=b במציאת פתרון במציאת e (GaussElimination (A,b)) $Q,R\in \mathcal{A}$ פשפט פירוק QR משפט מירוק $A\in M_{n}\left(\mathbb{R}
ight)$ תהא וער פירוק A=QR באשר עבורן משולשית משולית וכן אורתוגונלית אורתוגונלית באשר $M_{n}\left(\mathbb{R}
ight)$

 $v_1 \dots v_n \ \in \$ הפיכה ותהא $A \ \in \ M_n\left(\mathbb{R}
ight)$ הימון: תהא $Q_{A} = \mathrm{Min} \ C_{1}\left(A
ight), \ldots, C_{n}\left(A
ight)$ אזי אזי \mathbb{R}^{n} המוגדרת $R_A \in M_n\left(\mathbb{R}\right)$ אזי א הפיכה הפיכה $A \in M_n\left(\mathbb{R}\right)$ המוגדרת

 $i \leq j$ באשר באשר $\left(R_A\right)_{i,\,j} = \left\langle C_j\left(A
ight), C_i\left(Q_A
ight)
ight
angle$ A של QR פירוק Q_A , R_A אינA הפיכה A $\in M_n$ ($\mathbb R$) של QR טענה: תהא בנורמה cond (Q) = 1 אורתוגונלית אזי אורתוגוע $Q \in M_n\left(\mathbb{R}\right)$ אורמה

 r_i = אוי i \in [n] ויהי A \in M_n (\mathbb{R}) אוי \in M_n $\sum_{j \in [n] \setminus \{i\}} |(A)_{i,j}|$ $\lambda\in\operatorname{spec}\left(A
ight)$ אזי לכל אזי $A\in M_{n}\left(\mathbb{R}
ight)$ תהא אוי לכל משפט העיגולים של גרשגורין: תהא

 $\left|\lambda-(A)_{i,i}
ight|\leq r_{i}$ עבורו $i\in[n]$ קיים אזי $\lambda\in\operatorname{spec}\left(A
ight)$ ויהי $A\in M_{n}\left(\mathbb{R}
ight)$ אזי $\lambda\in\operatorname{spec}\left(A
ight)$ $\min_{i \in [n]} (|(A)_{i,i} - r_i|) \le |\lambda| \le \rho(A) \le$

 $\max_{i \in [n]} (|(A)_{i,i} - r_i|) = ||A||_{\infty}$

 $.ig|(A)_{i,i}ig|>r_i$ מתקיים $i\in[n]$. הפיכה A אזי אזי בשורות אזי $A\in M_n$ (\mathbb{R}) הפיכה מסקנה: תהא $c\in\mathbb{R}ackslash\{0\}$ ויהי $ho\left(A
ight)<1$ באשר $A\in M_{n}\left(\mathbb{R}
ight)$ אזי מענה: תהא

מנת רליי: תהא $\sigma:\mathbb{R}^n\setminus\{0\} o\mathbb{R}$ אזי $A\in M_n\left(\mathbb{R}
ight)$ המוגדרת מנת רליי: טענה: תהא $v\in\mathbb{R}^n\setminus\{0\}$ יהי $\lambda\in\mathrm{spec}\,(A)$ יהי $A\in M_n$ (\mathbb{R}) טענה: תהא

 $.\sigma (v) = \lambda$ אזי א $\sigma\left(v
ight)=v^{T}Av$ אזי $v\in\mathbb{S}^{n-1}$ ויהי $A\in M_{n}\left(\mathbb{R}
ight)$ סענה: תהא משפט שיטת החזקה: יהיו $|\lambda_i| \geq |\lambda_j|$ באשר אב $|\lambda_i| \geq |\lambda_i|$ לכל $v_1 \ldots v_m \in \mathbb{R}^n$ יהיו $|\lambda_1| > |\lambda_2|$ באשר $\lambda_1 \in \mathbb{R}$ יהי i < jעבורה $A\in M_n$ ($\mathbb R$) ותהא $C_1
eq 0$ באשר באשר ר1 באשר מהיי $i \in [m]$ לכל אכל ו"ע של ו"ע פר v_i וכן מקסימלית בת"ל בת"ל לכל יע קבוצת אכל $v_1 \dots v_m$

 $\lim_{k \to \infty} \sigma \left(A^k \cdot \left(\sum_{i=1}^m C_i v_i \right) \right) = \lambda_1 \bullet$ לכל $\left|\sigma\left(A^k\cdot\left(\sum_{i=1}^mC_iv_i\right)\right)-\lambda_1\right|\leq \alpha\cdot\left|\frac{\lambda_2}{\lambda_1}\right|$

$$\lim_{k \to \infty} \frac{A^k \cdot \left(\sum_{i=1}^m C_i v_i\right)}{\lambda_1^k} = C_1 v_1$$

עבורה $A \in M_n\left(\mathbb{R}
ight)$ ותהא ותהא $C_1
eq 0$ באשר באשר $C_1 \dots C_m \in \mathbb{R}$ $\lim_{k \to \infty} \frac{\left\|A^{k+1} \cdot \left(\sum_{i=1}^m C_i v_i\right)\right\|_2}{\left\|A^k \cdot \left(\sum_{i=1}^m C_i v_i\right)\right\|_2}$

 $\mu \in \mathbb{R} \backslash \operatorname{spec}\left(A
ight)$ יהי $A \in M_n\left(\mathbb{R}
ight)$ תהא משפט שיטת החזקה ההפוכה: תהא עם ו"ע $\{0\}$ אוי $v\in\mathbb{R}\setminus\{0\}$ אוי $\lambda\in\mathrm{spec}\,(A)$ אוי $v\in\mathbb{R}\setminus\{0\}$ ויהי $(A-\mu I)^{-1}$ $v=\frac{1}{\lambda-\mu}v$

 A^TA באשר הימניים של A הם ו"ע של $A \in M_{n imes m}$ הימניים של $A \in M_{n imes m}$ באשר אזי $A \in M_{n imes m}$

אורתוגונלית וכן $U \in M_m\left(\mathbb{R}
ight)$ אורתוגונלית וכן אורתוגונלית וכן $V \in M_n\left(\mathbb{R}
ight)$ $(\Sigma)_{i,i} \leq (\Sigma)_{j,j}$ אלכסונית אי־שלילית עבורה $\Sigma \in M_{m \times n} (\mathbb{R})$ ערכים $A = U \Sigma V^T$ יהיי $A \in M_{n \times m} \left(\mathbb{R} \right)$ תהא ערכים סינגולריים: תהא

.Sing $(A) = \left\{ (\Sigma)_{i,i} \mid i \in [\min{\{n,m\}}] \right\}$ איז SVD $A = U \Sigma V^T$ ויהי $A \in M_{n imes m} \left(\mathbb{R}
ight)$ ויהי וקטורים סינגולריים ימניים: תהא $.\{C_{i}\left(V
ight)\mid i\in\left[n
ight]\}$ אזי SVD פירוק

 $A = \mathsf{ini} \ A \in M_{n imes m} (\mathbb{R})$ ויהי שמאליים: תהא ויהי $.\left\{ C_{i}\left(U\right)\mid i\in\left[m\right]\right\}$ אזי SVD פירוק $U\Sigma V^{T}$

 $\operatorname{spec}\left(AA^{T}\right)\,\cup\,\left\{0
ight\}$ אוי $A\in\,M_{n imes m}\left(\mathbb{R}
ight)$ סענה: תהא .spec $\left(A^TA\right)\cup\{0\}$

 $\operatorname{SPEC}\left(A^TA
ight)$ אזי SVD אזי $A\in M_{n imes m}\left(\mathbb{R}
ight)$ אזי $A\in M_{n imes m}\left(\mathbb{R}
ight)$ $.\{0\} = \left\{\sigma^2 \mid \sigma \in \operatorname{Sing}(A)\right\} \cup \{0\}$ טענה: תהא אזי הוקטורים הסינגולריים אזי בעלת פירוק אזי הוקטורים הסינגולריים $A\in M_{n imes m}\left(\mathbb{R}
ight)$

טענה: תהא אזי הוקטורים הסינגולריים בעלת פירוק אזי בעלת אזי החקטורים הסינגולריים $A\in M_{n imes m}$ AA^T השמאליים של A הם ו"ע של

יהי SVD פירוק $A = U\Sigma V^T$ יהי $A \in M_{n imes m}\left(\mathbb{R}\right)$ ויהי מימון: תהא שווה A^TA שווה בתור ו"ע של $i \in [\min\{n,m\}]$ $C_{i}\left(V\right)\sim C_{i}\left(U\right)$ אזי AA^{T} בתור ו"ע של $C_{i}\left(U\right)$ אזי $C_{i}\left(U\right)$

טענה: תהא SVD פירוק $A = U\Sigma V^T$ ויהי $A \in M_{n imes m}\left(\mathbb{R}
ight)$ אזי אי $\left\{A\cdot C_{i}\left(V
ight)\mid\left(i\in\left[\min\left\{n,m
ight\}
ight)
ight)\wedge\left(C_{i}\left(V
ight)\sim C_{i}\left(U
ight)
ight)$ אורתוגונלים וכן הינם ו"ע של -AA T עש אורתוגונלים וכן הינם ו"ע של

 $\frac{1}{\operatorname{rank}(A)} A \cdot C_{\operatorname{rank}(A)}(V)$ ותהא $m \geq n$ באשר באשר $m, n \in \mathbb{N}_{\perp}$ יהיו וותהא פירוק למציאת פירוק

.SVD משפט: תהא $A\in M_{n imes m}\left(\mathbb{R}
ight)$ בעלת פירוק $A = U \Sigma V^T$ ויהי $A \in M_{n imes m}\left(\mathbb{R}
ight)$: תהא משפט יחידות פירוק פירוק: פירוק פירוק אזי איי איי איי פירוק אזי לכל $(\Sigma)_{i,i}
eq (\Sigma)_{j,j}$ באשר SVD פירוק עד כדי סימן הוקטורים הסנגולריים. SVD

function SVD(A):

 $S \leftarrow \sqrt{D}$

 $\Sigma \leftarrow M_{m \times n}(\mathbb{R})$

for $j \in [n]$ do

 $(\Sigma)_{i,j} \leftarrow (S)_{i,j}$

for $i \in [m]$ do

 $U \leftarrow M_m(\mathbb{R})$

 $(V, D) \leftarrow \text{OrthogonalDiagonalization}(A^T A) // \text{such}$

that $\forall i \leq j \in [n].(D)_{i,i} \geq (D)_{j,j}$

$$A=U\Sigma V^T$$
 ויהי $A\in M_{n\times m}$ (C) אויהי SVD משפט יחידות פירוק פירוק (C) אוי האוי פירוק מצורק פירוק (S) אוי קיים ויחיד פירוק עצ עד בדי הכפלת הוקטורים הסעולריים בי $A=(1,-1,i,-i)$ SVD מסטרית אוי $A\in M_n$ (R) מסטרית אוי $A\in M_n$ (R) מסטרית אוי $A\in M_n$ (R) $\{|\lambda|\mid \lambda\in\operatorname{spec}(A)\}$