SFWR TECH 4DA3 Multiple Regression

Instructor: Dr. Jeff Fortuna, B. Eng, M. Eng, PhD, (Electrical Engineering), McMaster University

email: fortunjj@mcmaster.ca

Simple Linear Regression Model

Probabilistic Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

where y_i = a value of the dependent random variable, y

 x_i = a value of the independent random variable, x

 β_0 = the *y*-intercept of the regression line

 β_1 = the slope of the regression line

 ε_i = random error, the residual

Deterministic Model:

$$\hat{y}_i = b_0 + b_1 x_i$$
where

$$b_0 \approx \beta_0, b_1 \approx \beta_1$$

and \hat{y}_i is the **predicted** value of y in contrast to the actual value of y.

Linear Regression Model

Distribution of Y for Different Values of x

The Multiple Regression Model

Probabilistic Model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_k x_{ki} + \varepsilon_i$$

where y_i = a value of the dependent random variable, y β_0 = the y-intercept

 $x_{1i}, x_{2i}, \dots, x_{ki}$ = individual values of the independent random variables, x_1, x_2, \dots, x_k

 $\beta_1, \beta_2, ..., \beta_k$ = the partial regression coefficients for the independent variables, $x_1, x_2, ..., x_k$

 ε_i = random error, the residual

Multiple Regression

Vector / Matrix form

The multiple regression model in vector / matrix form is very simple:

$$Y = Z\beta + \epsilon$$

where

Y is
$$n \times 1$$
, Z is $n \times (p+1)$, β is $(p+1) \times 1$ and ε is $n \times 1$

Note: the first column of **Z** is a column of 1's:

$$\mathbf{Z} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

That way, the first value of β , β_0 is the y intercept for the plane and the rest of the β values are the slopes for each dimension.

Assumptions about the model

 $Cov(\mathbf{\varepsilon}) = E(\mathbf{\varepsilon}\mathbf{\varepsilon}^T) = \sigma^2 \mathbf{I}$ is an $n \times n$ covariance matrix for the random errors.

Then,

$$E(\mathbf{Y}) = \mathbf{Z}\boldsymbol{\beta}$$
 and $Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$

where *I* is the $n \times n$ identity matrix:

$$\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Estimating the vector β

A reasonable way to estimate β is to chose the value of β that minimuzes the sum of squared residuals:

$$\min_{\beta} \left[(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta}) \right]$$

The solution (without proof) is:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{Y}$$

In other words, the solution depends directly on the covariance of the data (**Z**) and the covariance of the data (**Z**) with the observations (**Y**)

- This problem can be framed in the context of ANOVA but I am not going to do that
- All I am doing here is showing the prediction Y from data X

Simple Example Using Excel...

■ Done Live...

Predicting Values

Assuming that we have found β, given a previously unseen x we can predict y by:

$$Y = Z\beta$$

where Z is a single row of data with a 1 as the first value and β is a column vector of coefficients from the model.

$$Y = \begin{bmatrix} 1 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5.12 \\ 3.86 \\ 1.95 \end{bmatrix}$$

$$Y = 5.12 + (6*3.86) + (8*1.95) = 43.88$$