

Gegeben: Menge P von n Punkten in der Ebene, jeder Punkt $p \in P$ als (x_p, y_p) .

Gegeben: Menge *P* von *n* Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

Abstand.

Gegeben: Menge P von n Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

Abstand.

Definition: Euklidischer Abstand von p und q ist

$$d(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}.$$

Gegeben: Menge P von n Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

Abstand.

Definition: Euklidischer Abstand von *p* und *q* ist

$$d(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}.$$

Lösung: (Rohe Gewalt)

Gegeben: Menge *P* von *n* Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

Abstand.

Definition: Euklidischer Abstand von p und q ist $d(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$.

Lösung: (Rohe Gewalt)

- O Gehe durch alle $\binom{n}{2}$ Punktepaare und berechne ihren Abstand.
- Gib das Paar mit kleinstem Abstand zurück.

Gegeben: Menge *P* von *n* Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

Abstand.

Definition: Euklidischer Abstand von p und q ist $d(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$.

Lösung: (Rohe Gewalt) Laufzeit:

- O Gehe durch alle $\binom{n}{2}$ Punktepaare und berechne ihren Abstand.
- Gib das Paar mit kleinstem Abstand zurück.

Gegeben: Menge *P* von *n* Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

Abstand.

Definition: Euklidischer Abstand von p und q ist $d(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$.

Lösung: (Rohe Gewalt) Laufzeit: $\Theta(n^2)$

- O Gehe durch alle $\binom{n}{2}$ Punktepaare und berechne ihren Abstand.
- Gib das Paar mit kleinstem Abstand zurück.

Entwurfsparadigma: – inkrementell?

- randomisiert?
- Teile und Herrsche?

Entwurfsparadigma: – inkrementell?

– randomisiert?

- Teile und Herrsche?

Entwurfsparadigma: – inkrementell?

– randomisiert?

- Teile und Herrsche?

Lösung:

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?

Lösung: • Sortiere (nach x-Koordinate).

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?

- Lösung:
- Sortiere (nach x-Koordinate).
- Berechne Abstände aller aufeinanderfolgender Punktepaare.

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?

Spezialfall: **←**

- Berechne Abstände aller aufeinanderfolgender Punktepaare.
- Bestimme das Minimum dieser Abstände.

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?

Spezialfall:

Lösung:

- Sortiere (nach x-Koordinate).
- Berechne Abstände aller aufeinanderfolgender Punktepaare.
- Bestimme das Minimum dieser Abstände.

Strukturelle Einsicht:

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?

Spezialfall:

- Lösung:
- Sortiere (nach x-Koordinate).
- Berechne Abstände aller aufeinanderfolgender Punktepaare.
- Bestimme das Minimum dieser Abstände.

Strukturelle Einsicht:

Kandidatenmenge der Größe n-1, die gesuchtes Objekt enthält

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?

Spezialfall:

- Lösung:
- Sortiere (nach x-Koordinate).
- Berechne Abstände aller aufeinanderfolgender Punktepaare.
- Bestimme das Minimum dieser Abstände.

Strukturelle Einsicht:

Kandidatenmenge der Größe n-1, die gesuchtes Objekt enthält

Vgl. Übg.-Blatt 7: Dagoberts Sterne

- **Entwurfsparadigma:** inkrementell?
 - randomisiert?
 - Teile und Herrsche?!

Spezialfall:

- Sortiere (nach x-Koordinate).
- Berechne Abstände aller aufeinanderfolgender Punktepaare.
- Bestimme das Minimum dieser Abstände.

Strukturelle Einsicht:

Kandidatenmenge der Größe n-1, die gesuchtes Objekt enthält

Vgl. Übg.-Blatt 7: Dagoberts Sterne

•		•		•			
		•	•		•	•	
•	•	•			•	•	
	•			•			
•				•	•		,
				•		•	
•	•				•	•	
•	•				•	•	•
		•					

1. Teile

1. Teile

1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$, $P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links}

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$, $P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$, $P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$
 - \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$
 - \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
 - \circ gehe "gleichzeitig" durch P_{links} und P_{rechts} :

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links}

 d_{rechts} P_{rechts}

4. Kombiniere:

- \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
- o gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \ldots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

 P_{rechts}

4. Kombiniere:

- $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
- \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
- \circ gehe ", gleichzeitig" durch P_{links} und P_{rechts} : für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$; halte die letzten 6 Punkte im grauen Streifen aufrecht $(o K_{\scriptscriptstyle D})$
- \bullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\text{links}}$ und $q \in K_p$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

4. Kombiniere:

- $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
- \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
- gehe "gleichzeitig" durch P_{links} und P_{rechts} : für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$; halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
- ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
- \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Algorithmus $T(n) = \begin{cases} \text{Laufzeit des rekursiven Teils,} \\ \text{d.h. ohne Vorverarbeitung (1.)} \end{cases}$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Algorithmus $T(n) = T(\lfloor n/2 \rfloor)$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$
 - \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Algorithmus $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil)$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Algorithmus $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil)$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:

 - \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\text{links}}$ und $q \in K_p$
 - \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Algorithmus $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil)$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$

O(1)

- o gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
- ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
- \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$

O(1)

- \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate
- gehe "gleichzeitig" durch P_{links} und P_{rechts} : für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$; halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$
- ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
- \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$

O(1)

 \bigcirc sortiere P_{links} und P_{rechts} nach y-Koordinate

 $O(n \log n)$

 \circ gehe "gleichzeitig" durch P_{links} und P_{rechts} :

für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$; halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$

- ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
- \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$

O(1)

 \circ sortiere P_{links} und P_{rechts} nach y-Koordinate

 $O(n \log n)$

für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$; halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$

- ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in \mathcal{K}_p$
- \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, \ P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - o sortiere P_{links} und P_{rechts} nach y-Koordinate $O(n \log n)$
 - o gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - ullet gib Min. von $d_{ ext{mitte}}$, $d_{ ext{links}}$ und $d_{ ext{rechts}}$ (und entspr. Paar) zurück

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\text{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\text{rechts}} = P \setminus P_{\text{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:

 - o sortiere P_{links} und P_{rechts} nach y-Koordinate $O(n \log n)$
 - o gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - \circ gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

Betrachte $n^{\log_b a} = n^{\log_2 2} = n^1$.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

Betrachte $n^{\log_b a} = n^{\log_2 2} = n^1$.

$$ext{Gilt } f \in egin{dcases} O(n^{1-arepsilon}) & ext{für ein } arepsilon > 0 \ \Theta(n^1) & \ \Omega(n^{1+arepsilon}) & ext{für ein } arepsilon > 0 \ \end{pmatrix} ?$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

Betrachte $n^{\log_b a} = n^{\log_2 2} = n^1$.

$$ext{Gilt } f \in egin{dcases} O(n^{1-arepsilon}) & ext{für ein } arepsilon > 0 \ \Theta(n^1) & \ \Omega(n^{1+arepsilon}) & ext{für ein } arepsilon > 0 \ \end{pmatrix} ?$$

Nein, $f: n \mapsto O(n \log n)$ passt in keinen der drei Fälle.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

Betrachte $n^{\log_b a} = n^{\log_2 2} = n^1$.

$$ext{Gilt } f \in egin{dcases} O(n^{1-arepsilon}) & ext{für ein } arepsilon > 0 \ \Theta(n^1) & & \ \Omega(n^{1+arepsilon}) & ext{für ein } arepsilon > 0 \ \end{pmatrix} ?$$

Nein, $f: n \mapsto O(n \log n)$ passt in keinen der drei Fälle.

Die Rekursionsbaummethode liefert...

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

Betrachte $n^{\log_b a} = n^{\log_2 2} = n^1$.

$$ext{Gilt } f \in egin{dcases} O(n^{1-arepsilon}) & ext{für ein } arepsilon > 0 \ \Theta(n^1) & & \ \Omega(n^{1+arepsilon}) & ext{für ein } arepsilon > 0 \ \end{pmatrix} ?$$

Nein, $f: n \mapsto O(n \log n)$ passt in keinen der drei Fälle.

Die Rekursionsbaummethode liefert... $T(n) = O(n \log^2 n)$.

Noch besser?

$$T(n) \approx 2T(n/2) + O(n \log n) = O(n \log^2 n)$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: P in $P_{\mathsf{links}} = \{p_1, \ldots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$

 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - lacktriangle bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - ullet gib Min. von $d_{
 m mitte}$, $d_{
 m links}$ und $d_{
 m rechts}$ (und entspr. Paar) zurück

Noch besser?

$$T(n) \approx 2T(n/2) + O(n(\log n)) = O(n(\log^2 n))$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: P in $P_{\text{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\text{rechts}} = P \setminus P_{\text{links}}$
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - \circ sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - ullet gib Min. von $d_{
 m mitte}$, $d_{
 m links}$ und $d_{
 m rechts}$ (und entspr. Paar) zurück

Noch besser?

$$T(n) \approx 2T(n/2) + O(n(\log n)) = O(n(\log^2 n))$$

1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$

- 2. Teile: P in $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:
- Place in Plinks d_{links} bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} in P_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - \odot sortiere P_{links} und P_{rechts} nach y-Koordinate
 - o gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - ullet gib Min. von $d_{
 m mitte}$, $d_{
 m links}$ und $d_{
 m rechts}$ (und entspr. Paar) zurück

Noch besser!

$$T(n) \approx 2T(n/2) + O(n(\log n)) = O(n(\log^2 n))$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$ und P' = P nach y-Koordinate $\rightarrow p'_1, \ldots, p'_n$ mit $y'_1 \leq \cdots \leq y'_n$
- 2. Teile: P in $P_{\text{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\text{rechts}} = P \setminus P_{\text{links}}$ P' in P'_{links} und P'_{rechts} (sortiert nach y-Koordinate)
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - gehe "gleichzeitig" durch P'_{links} und P'_{rechts} :

 für jeden Punkt p in P'_{links} gehe in P'_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P'_{\text{links}}$ und $q \in K_p$
 - ullet gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Noch besser!

$$T(n) \approx 2T(n/2) + O(n\log n) = O(n\log n)$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$ und P' = P nach y-Koordinate $\rightarrow p'_1, \ldots, p'_n$ mit $y'_1 \leq \cdots \leq y'_n$
- 2. Teile: P in $P_{\text{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\text{rechts}} = P \setminus P_{\text{links}}$ P' in P'_{links} und P'_{rechts} (sortiert nach y-Koordinate)
- 3. Herrsche: bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}
- 4. Kombiniere:
 - $oldsymbol{o} d = \min\{d_{links}, d_{rechts}\}$
 - gehe "gleichzeitig" durch P'_{links} und P'_{rechts} :

 für jeden Punkt p in P'_{links} gehe in P'_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$
 - ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P'_{\text{links}}$ und $q \in K_p$
 - ullet gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

1. Vorverarbeitung ($2 \times$ Sortieren)

1. Vorverarbeitung ($2 \times$ Sortieren) $O(n \log n)$

1. Vorverarbeitung ($2 \times$ Sortieren) $O(n \log n)$

2. Teilen

1. Vorverarbeitung ($2 \times Sortieren$) $O(n \log n)$

2. Teilen O(n)

- 1. Vorverarbeitung ($2 \times$ Sortieren) $O(n \log n)$
- 2. Teilen O(n)
- 3. Herrschen

1. Vorverarbeitung ($2 \times$ Sortieren) $O(n \log n)$

2. Teilen O(n)

3. Herrschen 2T(n/2)

- 1. Vorverarbeitung ($2 \times$ Sortieren) $O(n \log n)$
- 2. Teilen O(n)
- 3. Herrschen 2T(n/2)
- 4. Kombinieren

- 1. Vorverarbeitung (2× Sortieren) $O(n \log n)$
- 2. Teilen O(n)
- 3. Herrschen 2T(n/2)
- 4. Kombinieren O(n)

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen
$$O(n)$$
3. Herrschen $2T(n/2)$ $T(n) = 0$
4. Kombinieren $O(n)$

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen
$$O(n)$$

2. Teilen
$$O(n)$$
3. Herrschen $2T(n/2)$ $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren $O(n)$

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen O(n)3. Herrschen 2T(n/2) $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren O(n)

Gesamtlaufzeit

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen O(n)3. Herrschen 2T(n/2) $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren O(n)

 $O(n \log n)$ Gesamtlaufzeit

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen
$$O(n)$$

2. Teilen
$$O(n)$$
3. Herrschen $2T(n/2)$ $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren $O(n)$

4. Kombinieren
$$O(n)$$

Gesamtlaufzeit

 $O(n \log n)$

Speicherplatzbedarf?

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen
$$O(n)$$

2. Teilen
$$O(n)$$
3. Herrschen $2T(n/2)$ $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren $O(n)$

4. Kombinieren
$$O(n)$$

Gesamtlaufzeit

 $O(n \log n)$

Speicherplatzbedarf?

$$O(n)$$
,

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen O(n)3. Herrschen 2T(n/2) $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren O(n)

 $O(n \log n)$ Gesamtlaufzeit

Speicherplatzbedarf?

O(n), wenn P' in situ in P'_{links} und P'_{rechts} zerlegt wird.

Ist die Laufzeit $O(n \log n)$ optimal?

Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?

Ist die Laufzeit $O(n \log n)$ optimal?

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen –

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness!

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem *Nächstes Paar*?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness!

Wie?

- **Def.** Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem *Nächstes Paar*?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness!

Wie? Teste, ob das nächste Paar Abstand 0 hat!

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$

Zeit lösen – dann auch Element Uniqueness!

Genaugenommen muss man die Zahlen a_1, \ldots, a_n in eine *Menge* von (paarweise verschiedenen!) Punkten der Ebene transformieren, aber auch das geht! – Wie?

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness! \checkmark Wie? Teste, ob das nächste Paar Abstand 0 hat!

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness! \checkmark Wie? Teste, ob das nächste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen a_1, \ldots, a_n in eine *Menge* von (paarweise verschiedenen!)

Punkten der Ebene transformieren, aber auch das geht! – Wie? a_3 a_6 $a_{2/5}$ a_4 a_1

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness!

Wie? Teste, ob das nächste Paar Abstand 0 hat!

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness! \checkmark Wie? Teste, ob das nächste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen a_1, \ldots, a_n in eine Menge von (paarweise verschiedenen!) Punkten der Ebene transformieren, aber auch das geht! – Wie?

- Def. Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$ Zeit lösen – dann auch Element Uniqueness! \checkmark Wie? Teste, ob das nächste Paar Abstand 0 hat!

Das heißt...

- Satz. Das Problem Nächstes Paar kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden, wenn man als Rechenmodell das algebraische Entscheidungsbaummodell zugrunde legt.
- Kor. Unser $O(n \log n)$ -Zeit-Algorithmus für das Problem Nächstes Paar ist asymptotisch optimal, wenn man....

Implementieren Sie die einfache Brute-Force-Lösung in Java.

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen) (•,•)-Kandidaten testet.

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in $O(n \log^2 n)$ Zeit läuft!

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in $O(n \log^2 n)$ Zeit läuft!
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche- Algorithmus, der in O(n log n) Zeit läuft!

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in $O(n \log^2 n)$ Zeit läuft!
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche- Algorithmus, der in O(n log n) Zeit läuft!
 10 Extra-Übungspunkte!

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in $O(n \log^2 n)$ Zeit läuft!
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche- Algorithmus, der in O(n log n) Zeit läuft!
 10 Extra-Übungspunkte!
 Abgabe: 11.01.11, 8:55 (ner Email bei mir)

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in $O(n \log^2 n)$ Zeit läuft!
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche- Algorithmus, der in $O(n \log n)$ Zeit läuft!

 10 Extra-Übungspunkte!

 Abgabe: 11.01.11, 8:55

Goodrich & Tamassia: Data Structures & Algorithms in Java. Wiley, 4. Aufl., 2005 (5. Aufl., 2010)

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und
 Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und
 Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

- Sortierverfahren
- Java
- Datenstrukturen
- Graphenalgorithmen
- Systematisches Probieren

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und
 Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

- Sortierverfahren
- Java
- Datenstrukturen
- 👅 🧿 Graphenalgorithmen
- Systematisches Probieren

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und
 Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

- Sortierverfahren
- Java
- O Datenstrukturen (Augmentieren von DS)
- Graphenalgorithmen
- Systematisches Probieren

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und
 Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

- Sortierverfahren
- Java
- O Datenstrukturen (Augmentieren von DS)
 - Graphenalgorithmen (kürzeste Wege, min. Spannbäume)
 - Systematisches Probieren

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und
 Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

- Sortierverfahren
- Java
- O Datenstrukturen (Augmentieren von DS)
 - Graphenalgorithmen (kürzeste Wege, min. Spannbäume)
 - Systematisches Probieren (dynamisches Progr., Greedy-Alg.)