

Avaliação Técnica de Produtos e Equipamentos

Sistemas de rastreamento TRACER - TAG RECOMINTE

SUMÁRIO

INT	RO	ODUÇ	ÃO
1.	(CARA	CTERÍSTICAS DA AVALIAÇÃO4
2.	١	DADO	S DO FORNECEDOR4
3.	(OBJET	TIVO5
4.	9	SOBRI	E O PRODUTO
5.	,	AVALI	AÇÕES GERAIS
5	5.1	l. E	Embalagem6
5	5.2	2. L	iteratura
		Car	caça do equipamento
5	5.4	1. T	este de inflamabilidade
6.	ı	INSPE	ÇÃO VISUAL
ϵ	5.1	L. lı	nspeção visual da amostra
e	5.2	2. lı	nspeção visual dos acessórios10
7.	ı	ENSAI	O PRÁTICO DE FUNCIONAMENTO1
7	7.1	L. P	Procedimento experimental1
7	7.2	2. C	Carga da bateria12
7	7.3	3. C	Consumo elétrico do equipamento
7	7.4	1. lı	nstalação no veículo14
7	7.5	5. T	este em campo
8.	,	ANÁLI	ISE DOS ACESSÓRIOS
8	3.1	L. li	nstrumentos de medição utilizados no ensaio
8	3.1	L. P	Procedimento experimental
9.	9	SOFTV	NARE DE MONITORAMENTO
10.		Inib	oidor de sinal
11		COI	NCI II SÃO

INTRODUÇÃO

A "Avaliação Técnica de Produtos e Equipamentos" consiste em avaliar as principais características de um produto, através de critérios técnicos desenvolvidos e aplicados pelo CESVI BRASIL.

Os produtos avaliados são divididos em:

- Equipamentos;
- Ferramentas;
- Insumos.

Para cada produto, o CESVI BRASIL analisa e define os itens a serem avaliados e determina os critérios que serão utilizados para cada avaliação.

As avaliações são realizadas por profissionais da área de tecnologia do CESVI BRASIL.

A conclusão desta avaliação define se o produto está apto a receber o certificado de Avaliação Técnica do CESVI BRASIL.

1. CARACTERÍSTICAS DA AVALIAÇÃO

DATA FINAL DA AVALIAÇÃO			PESQUISA N°.			
13.03.2014			ATP 130_14			
	TIPO:					
V	EQUIPAMENTO		FERRA	AMENTA		INSUMO
	DENOMINAÇÃO FORNECEDOR					
	TRACER TAG			RECOMINTE		

2. DADOS DO FORNECEDOR

Razão Social:	RECOMINTE INDÚSTRIA E COMÉRCIO DE PEÇAS AERONÁUTICAS LTDA.					
CNPJ:	08.446.025/0001-25					
Endereço:	Rua Ambrósio Molina, 1090 – Prédio J					
Bairro:	Eugênio de Mello CEP: 12247		12247	-000	Cidade:	São José dos Campos
E-mail:	pauloschip@hotmail.com		Site	www.tracertag.com		
Telefone:	fone: (0XX12) 3905-4041					

Imagem do produto:

3. OBJETIVO

O objetivo da Avaliação Técnica de Produtos e Equipamentos é comprovar a funcionalidade e eficiência de um equipamento, ferramenta ou insumo, além de confirmar as especificações técnicas fornecidas pelo fabricante.

4. SOBRE O PRODUTO

De acordo com as especificações do fabricante, os rastreadores TRACER TAG são feitos para monitorar diversas situações – desde a rota feita por um pedestre até a trajetória de uma carga em um caminhão. A tecnologia embarcada deste produto permite, inclusive, acompanhar bagagens em um avião, devido sua versatilidade e resistência.

Especificações técnicas disponibilizadas no site da empresa:

Características		
Motor GPS	SIRFstar IV - Banda L1, Código C/A	
Antena GPS	JDGA Quad V REM de polarização linear	
Resistência a sólidos e água	IP65 (IEC 60529)	
Carcaça e tampa	Policarbonato resistente a chama (UL94V-0)	
Portal de rastreamento		
Endereço	www.tracertag.com Aba "Área do cliente"	
Base de dados de localização GSM/Wi-Fi	Terceirizada	
Mapas	HERE®	
Transceptores		
GSM (MHz)	Quad – Band 850/900/1800/1900	
Conexão GPRS	UPD sobre VPN em GPRS classe 10	
Wi-Fi	802.11 b/g	
Massa (g)		
Massa total do equipamento	95	
Dimensões (mm)		
Dimensões (L x C x H)	86 x 54 x 19	
Comprimento do cabo da tocha	3.500	

5. AVALIAÇÕES GERAIS

Neste item são avaliados os itens que acompanham o produto e instruem o usuário em seu manuseio.

5.1. Embalagem

A embalagem, onde o equipamento é fornecido, é responsável pela sua preservação. Dessa maneira, a embalagem deve ser adequada, protegendo o equipamento de possíveis impactos e, por consequência, evitando danos.

Resultado da avaliação: adequado.

Observação: foi verificado que o equipamento é fornecido com embalagem que o protege de possíveis impactos, evitando danos durante o transporte.

5.2. Literatura

O equipamento deve ser fornecido com um manual de uso ou um manual técnico, que contenha todas as informações a seu respeito de maneira clara e objetiva.

Resultado da avaliação: adequado.

Observação: o manual técnico é disponibilizado de forma impressa, junto com o equipamento. As informações contidas no manual técnico são claras e objetivas, o que facilita o manuseio do equipamento.

Carcaça do equipamentoNesse item será avaliado se a carcaça do equipamento propaga chama em caso de incêndio acidental.

5.3. Teste de inflamabilidade

Os procedimentos experimentais utilizados para o ensaio de inflamabilidade da amostra são descritos a seguir:

- Atear fogo a carcaça do equipamento com a utilização de um maçarico;
- Verificar fuligem;
- Constatar as formas de propagação de incêndio.

Ensaio de inflamabilidade

Resultado da avaliação: adequado.

Observação: ao provocar o incêndio na carcaça do equipamento, foi verificado que o fogo não se propaga rapidamente. No auge do fogo podemos verificar que a quantidade de fuligem não é considerável. Assim, podemos ver que o plástico não propaga chama e não houve respingo do material. Após a retirada do maçarico, a extinção do fogo foi rápida.

6. INSPEÇÃO VISUAL

Neste item é realizada a inspeção visual do equipamento, procurando verificar possíveis falhas que comprometam a qualidade do produto.

6.1. Inspeção visual da amostra

Os procedimentos experimentais utilizados para o ensaio de inspeção visual da amostra são descritos a seguir:

- Executar inspeção visual na amostra, com o intuito de verificar os pontos de falhas no fechamento entre tampa e base, manchas, deformações ou qualquer outra irregularidade que visivelmente comprometa a qualidade da amostra;
- Verificar a integridade dos circuitos que compõem o módulo principal do equipamento.

Inspeção visual do equipamento:

Inspeção visual dos circuitos:

Resultado da avaliação: adequado.

Observação: durante a inspeção visual não foram encontradas irregularidades que comprometam a qualidade do produto, como falhas de fechamento, manchas ou deformações, mesmo após a utilização da amostra em diferentes níveis de temperatura ambiente. As placas de circuito impresso, que compõem a amostra, não apresentaram adaptações, componentes defeituosos, marcas de danos aparentes ou oxidações.

6.2. Inspeção visual dos acessórios

Os procedimentos experimentais utilizados para o ensaio de inspeção visual dos acessórios da amostra são descritos a seguir:

Executar inspeção visual em todos os acessórios da amostra, com o intuito de verificar manchas, deformações ou qualquer outra irregularidade que visivelmente comprometa a qualidade dos acessórios.

Resultado da avaliação: adequado.

Observação: durante a inspeção visual não foram encontradas irregularidades que comprometam a qualidade dos seguintes acessórios: adaptador DC (100~240Vac 50/60Hz 0,3 A --- 5,0Vdc/900mA), cabo USB convencional / USB mini B5 e manual do usuário.

7. ENSAIO PRÁTICO DE FUNCIONAMENTO

Neste item o equipamento é instalado em um veículo e submetido a testes de rota, trafegando por ruas, avenidas e rodovias. O intuito é verificar o comportamento da amostra nas condições reais de tráfego, como locais com baixa captação de sinal GSM ou GPS, áreas de sombra, locais com pontos de referência conhecidos, localidades remotas e etc.

7.1. Procedimento experimental

Os procedimentos experimentais utilizados para o ensaio prático funcional são os seguintes:

- Tempo de carga completa da bateria interna do equipamento;
- Verificar o consumo elétrico do equipamento e tempo de funcionamento;
- Instalar o rastreador em um veículo;
- Trafegar com o veículo em ruas, avenidas e rodovias que apresentem diferentes níveis de cobertura GSM/GPRS, GPS e Wifi
- Verificar no software online, fornecido pela TRACER TAG, as posições geradas pelo equipamento durante os testes de rota e compará-las com as reais posições.

7.2. Carga da bateria

Para a carga da bateria, foi necessário conectar o aparelho ao adaptador AC/DC através do cabo USB e em seguida conectar o referido adaptador em uma tomada de rede elétrica 127 ou 220V. Para realizar a conexão do cabo USB no equipamento foi necessária a remoção da tampa plástica que protege o mini conector USB do equipamento. Notou-se que, em aproximadamente 2 horas e 30 minutos, o processo de carga completa da bateria é finalizado através da indicação do led do próprio equipamento, que abandona seu estado de acendimento intermitente. Além disso, o software de monitoramento também mostra o tempo de carga conforme os gráficos abaixo:

Término da carga da bateria

Obs.: o tempo de carga é o mesmo para cargas em 127 e 220V.

7.3. Consumo elétrico do equipamento

Para a análise de consumo elétrico, foi utilizado uma fonte variável de tensão para a alimentação do equipamento com as tensões de 12V a 24V, considerando o equipamento com programações de sinal de alerta para temperatura e velocidade ativo.

Durante o teste, o multímetro foi conectado em serie com o circuito do equipamento rastreador com o intuito de verificar com mais precisão a corrente de consumo informada pela fonte de alimentação variável. Abaixo estão os consumos apresentados pelo equipamento após o ensaio:

Consumo elétrico do equipamento			
Tensão ajustada na fonte	Corrente medida no multímetro		
12V	36,1 mA		
24V	20,8 mA		

Obs.: as médias da corrente elétrica coletadas durante o intervalo de 5 minutos, com tensão estabilizada em 12 e 24 Volts, apresentaram valores satisfatórios em seu consumo.

O consumo típico do equipamento depende diretamente do perfil de configuração embarcada pelo usuário.

7.4. Instalação no veículo

Para iniciar o teste em campo o equipamento foi instalado no veículo com sua bateria descarregada. A bateria de alimentação do veículo possuí tensão de 12V. Para a utilização do equipamento em veículos automotores foi utilizado um cabo de conversor 12/24V para 5V com 1,5 A de corrente máx., conforme ilustração da imagem abaixo:

Após a instalação foi observado que o tempo de carga total do equipamento foi de 3 horas. Mesmo com as programações de alarmes ativa o tempo de carga foi satisfatório, mediante ao baixo consumo do equipamento.

Término da carga da bateria

7.5. Teste em campo

Durante os testes em campo com o equipamento rastreador TRACER TAG instalado em um veículo, chegou-se aos seguintes resultados:

Rota utilizada para o teste em campo

Os resultados mostrados acima correspondem às posições geradas em uma rota de carro, para o litoral sul do Estado de São Paulo, através de cidades que estão localizadas em regiões com grande incidência de áreas de sombra.

Com esta rota é possível verificar a memória interna do equipamento, uma vez que todos os pontos gerados em regiões de sombra foram enviados quando reestabelecido o sinal GPRS.

Mapa do software do monitoramento

Resultado da avaliação: adequado.

Observação: as posições apontadas pelo software de monitoramento adquiridas pelo equipamento foram consideradas satisfatórias.

8. ANÁLISE DOS ACESSÓRIOS

Nesse item é avaliado o funcionamento dos acessórios que acompanham o equipamento TRACER TAG.

8.1. Instrumentos de medição utilizados no ensaio

Os instrumentos utilizados em laboratório para a realização dos ensaios necessários para a avaliação do produto são os seguintes:

Relação de instrumentos				
Instrumentos	Modelo	Marca		
Variac	TDGC2	EZA		
Multímetro	MD-6130	Icel		

8.1. Procedimento experimental

Os procedimentos experimentais utilizados para a verificação de funcionamento dos acessórios do TRACER TAG são os seguintes:

- Conectar os acessórios ao módulo principal e verificar o funcionamento;
- Ligar o Variac a uma tomada de rede elétrica de 220Vac;
- Com o auxílio de um multímetro, ajustar o Variac para a menor tensão de saída informada na etiqueta do adaptador, neste caso 100Vac;
- Conectar o adaptador DC à saída do Variac e o cabo USB ao adaptador;
- Medir a tensão de saída em aberto do adaptador DC;
- Conectar o equipamento rastreador com a bateria descarregada no adaptador;
- Medir o nível de tensão de saída e corrente de carga para o adaptador.

O adaptador DC modelo ASUC1-050090 (entrada 100~240Vac 50/60Hz 0,3A e saída 5,0Vdc/900mA), foi submetido aos ensaios conforme descritos no procedimento experimental. Abaixo estão os resultados apresentados após os ensaios:

Adaptador DC

Resultado dos ensaios com adaptador DC				
Tensão de entrada (Vac)	Tensão de Saída em aberto (Vac)	Tensão de Saída com carga (Vac)	Corrente de Saída (A)	
100	5,10	5,10	0,79	
110	5,09	5,10	0,80	
127	5,09	5,09	0,80	
200	5,09	5,08	0,81	
220	5,07	5,07	0,83	
240	5,07	5,07	0,83	

A corrente aferida em todas as situações correspondem ao estágio de carregamento da bateria inicial, conforme o aumento de carga da bateria esta corrente tende a diminuir. Lembrando que o tempo de carga na tomada é menor por não ocorrer envio de posicionamento. Valores estes considerados satisfatório.

O cabo USB não apresentou problema em sua conexão e funcionamento.

Cabo USB

Resultado da avaliação: adequado.

Observação: os resultados obtidos nos ensaios, de acordo com o procedimento experimental foram satisfatórios. Não foram apresentados problemas de funcionamento em nenhum dos acessórios que acompanham o equipamento TRACER TAG.

9. SOFTWARE DE MONITORAMENTO

O software de rastreamento online, fornecido pela empresa para que o usuário possa monitorar o equipamento, foi testado e os resultados podem ser vistos a seguir:

o endereço para acesso ao site é o seguinte: http://www.tracertag.com/index.php?lang=pt br

A tela de abertura do portal "Área do Cliente" necessita de inserção de login e senha do usuário, ambos fornecidos pela TRACER TAG, após a aquisição do equipamento.

Portal do software do monitoramento

O portal informa quais os navegadores indicados para o melhor funcionamento do software de monitoramento, conforme descrito abaixo:

Portal do software do monitoramento

Para o melhor funcionamento do portal, os navegadores Google Chrome, Safari e Firefox, apresentaram melhor eficiência, pois não foram apresentadas restrições nas informações desejadas pelo usuário.

O portal de acesso aos dados de rastreamento possui várias abas à disposição do usuário na borda superior da tela inicial, conforme ilustração abaixo:

Portal do software do monitoramento - Aba: PAINEL

Cada uma dessas abas tem uma função, que auxilia o usuário no monitoramento do equipamento, além de possibilidades de adequações no aparelho para cada situação.

Abaixo estão as abas que auxiliam o usuário no monitoramento:

Painel: essa aba mostra na tela uma visão ampla, em mapa, da última localização do equipamento, conforme ilustra a imagem abaixo:

Portal do software do monitoramento - Aba: PAINEL

Rotas: essa aba mostra ao usuário a última localização do equipamento e o trajeto em intervalos determinados, ilustrado em mapa.

Portal do software do monitoramento - Aba: ROTAS

Os pontos fixos apresentados no mapa acima possuem informações armazenadas, como por exemplo, velocidade, horário e temperatura, além de outras informações técnicas, conforme ilustração abaixo:

Portal do software do monitoramento - Aba: ROTAS

Outro ponto observado é que essas informações técnicas também estão disponibilizadas em gráficos na tela "Rotas", conforme imagem abaixo:

Portal do software do monitoramento - Gráficos de dados

Alarmes: essa aba possibilita que o usuário configure ou crie no equipamento funcionalidades que permitam facilitar o monitoramento desejado.

Portal do software do monitoramento - Aba: ALARMES

As notificações podem ser programadas para aparecerem na tela do software de monitoramento, e-mail e SMS.

Tags: essa aba possibilita que o usuário visualize todos os dados técnicos de seu equipamento, além de poder alterar os dados do equipamento para facilitar a associação com alguma aplicação.

Portal do software do monitoramento – Aba: TAGS

Perfil: essa aba permite ao usuário informar e atualizar seus dados, senha de acesso e os dados de quem deve ser informado de quando forem excedidos um ou mais dos limites estabelecidos na aba de "alarmes".

Portal do software do monitoramento – Aba: PERFIL

Resultado da avaliação: adequado.

Observação: o software de monitoramento possui informações completas que instrui o usuário e facilita a transposição de dados e até mesmo a configuração do equipamento.

10. Inibidor de sinal

Neste item é avaliada a funcionalidade do equipamento com a utilização de um inibidor de sinal.

Os procedimentos experimentais utilizados para o ensaio com o inibidor de sinal são descritos a seguir:

Verificar se o equipamento armazena dados como inibidor de sinal ligado.

Resultado da avaliação: adequado.

Observação: foi verificado que o equipamento não emitia sinais de GPRS e GPS. Porém quando desligado o inibidor de sinal, as informações contidas no equipamento foram descarregadas e visualizadas no software do monitoramento.

11. CONCLUSÃO

Após a realização dos testes, o CESVI BRASIL chegou às seguintes conclusões:

O equipamento TRACER TAG da RECOMINTE apresentou eficiência em sua utilização, pois obteve resultados satisfatórios. Os testes práticos foram realizados de acordo com as especificações do fabricante.

Foi concluído que o produto avaliado está apto a receber o certificado de Avaliação Técnica do CESVI BRASIL.

Data da avaliação: 13/03/2014

Status: APROVADO

Data para reavaliação: 13/03/2016

RESPONSÁVEIS:

Avaliação Técnica:	Revisão:
Bruno Honorato Espindola	Denis G. Peres
	-

