```
% Auto-generated by cameraCalibrator app on 20-Feb-2022
% Define images to process
imageFileNames = {'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 1.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 2.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 3.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 4.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 5.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 6.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 7.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 8.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 9.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 10.jpeg',...
    'C:\Users\DELL\OneDrive\Desktop\Spring\CV\cv\New folder\chess 11.jpeg',...
% Detect calibration pattern in images
detector = vision.calibration.monocular.CheckerboardDetector();
[imagePoints, imagesUsed] = detectPatternPoints(detector, imageFileNames);
```

Warning: The checkerboard must be asymmetric: one side should be even, and the other should be odd. Otherwise, the orientation of the board may be detected incorrectly.

% Visualize pattern locations
h2=figure; showExtrinsics(cameraParams, 'CameraCentric');

Extrinsic Parameters Visualization

% Display parameter estimation errors displayErrors(estimationErrors, cameraParams);

Standard Errors of Estimated Camera Parameters

Mapping coefficients: [-1245.0232 +/5.0174	-0 0001 ±/0 0000	-0.0000 +/- 0.0000 0.0	000 +/-
Distortion center (pixels):[514.2935 +/- 1.1308			500 T/-
Stretch matrix parameters: [1.0000 +/- 0.0000			
Extrinsics			
Rotation vectors:			
<u> </u>	0.0131 +/- 0.0029	-1.5723 +/- 0.0003]	
	0.0024 +/- 0.0018	-1.5791 +/- 0.0003]	
[0.0210 +/- 0.0018	-0.2612 +/- 0.0019	-1.5500 +/- 0.0003]	
[-0.0737 +/- 0.0022	0.2218 +/- 0.0023	-1.5577 +/- 0.0004]	
[-0.2640 +/- 0.0020	0.0195 +/- 0.0018	-1.5774 +/- 0.0003]	
[0.0187 +/- 0.0021	-0.1969 +/- 0.0021	-0.0030 +/- 0.0003]	
[0.2901 +/- 0.0016	-0.2635 +/- 0.0016	-1.5571 +/- 0.0004]	
[-0.1453 +/- 0.0024	0.1650 +/- 0.0024	-1.5653 +/- 0.0004]	
-0.2685 +/- 0.0016	0.2857 +/- 0.0016	-1.5520 +/- 0.0004]	
-0.1334 +/- 0.0024	-0.1270 +/- 0.0024	-1.5683 +/- 0.0004]	
	0.2126 +/- 0.0020	-	
Translation vectors (millimeters):			
[-75.5677 +/- 0.3412	79.8777 +/- 0.3356 -	373.6116 +/- 1.5119]	
-74.3810 +/- 0.3039	80.4873 +/- 0.3064 -	341.7585 +/- 1.3533]	
	76.3810 +/- 0.3121 -	365 3630 ±/- 1 3000 1	

% For example, you can use the calibration data to remove effects of lens distortion.
undistortedImage = undistortFisheyeImage(originalImage, cameraParams.Intrinsics);

- % See additional examples of how to use the calibration data. At the prompt type:
- % showdemo('MeasuringPlanarObjectsExample')
- % showdemo('StructureFromMotionExample')