MM-Pred User-Manual

Filippo Guerri

July 5, 2024

1 Introduction

This user guide provides instructions for using MM-Pred. The program can be used only as a command line tool in Linux environment.

2 Installing the software

The software is compatible with python 3.8 or later versions. Download the folder from link than run the following commands to create a virtual environment (this steps will ensure that the necessary packages to run the program are available). The installation of the virtual environment has to be performed only once.

```
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```

Once the virtual environment has been installed a first time and the folder "venv" has been created, it has to be activated every time a new session is initialized, running the command:

source venv/bin/activate

If the user wants to include NetMhcIIpan in the analysis, the software has to be downloaded from IEDB (section MHC-II binding predictions - Download). Also, to include the Blast alignment in the analysis Blast+ has to be installed. Run the following script to install Blast+:

```
wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.12.0/ncbi
-blast-2.12.0+-x64-linux.tar.gz
```

```
tar -xzf ncbi-blast-2.12.0+-x64-linux.tar.gz
```

3 Run Epitope Prediction

python3 MHCIIPRED.py -q QUERY -a ALLELE

- QUERY (mandatory): The fasta file to which epitope predictions is applied.
- ALLELE (mandatory): A 1-column txt file with the identifier of the alleles.

This script applies the CNNPEPPRED prediction for the alleles specified in ALLELE to the protein sequences in QUERY.

```
python3 MHCIIPRED.py -q ... -a ... -n NETMHCIIPAN_PATH
```

• NETMHCIIPAN_PATH (optional): The relative or absolute path for the folder "mhc_ii" of the NetMhciipan software.

This script applies both CNNPEPPRED and NETMHCIIPAN (Ba and El) predictions for the alleles specified in ALLELE to the protein sequences in QUERY.

```
python3 MHCIIPRED.py ... -m MODE
```

 MODE (optional): Can be either "protein" or "peptide." It specifies if the QUERY file contains full-length protein sequences or small peptide/epitopes.

If MODE is set to "protein" the program will identify a 9-mer core for each window of size W of the sequences in QUERY.

If MODE is set to "peptide" the program predicts one 9-mer core for each sequence in QUERY.

```
DEFAULT = protein
```

```
python3 MHCIIPRED.py ... -m protein -w W
```

• W (optional): The window size for the prediction. DEFAULT = 15. Used only when MODE = protein and only if the alignment is performed (see below).

```
python3 MHCIIPRED.py ... -r RESULTS_FOLDER
```

• RESULTS_FOLDER (optional): The name of the results folder.

4 Run Epitope Prediction with Alignment

```
python3 MHCPREPRED.py -b BLAST_PATH -q QUERY -t TARGET -a ...
```

• BLAST_PATH (mandatory): Relative or absolute path to the blast folder "ncbi-blast-2.12.0+".

- QUERY (mandatory): Fasta file.
- TARGET (mandatory): Fasta file.

QUERY is aligned against TARGET. Epitope predcition is then applied to the TARGET's sequences that show a significant alignment with QUERY.

python3 MHCPREPRED.py -b BLAST_PATH -q QUERY -t TARGET -a ... -afp AF_PAR -afv AF_VAL

- AF_PAR (optional): Parameter chosen to filter alignment, possible values: "evalue", "bitscore". DEFAULT = evalue.
- AF_VAL (optional): The cutoff to filter the alignments. DEFAULT = 0.05.

python3 MMPRED.py ... -alg_mode ALG_MODE

• ALG_MODE (mandatory): Is the alignment mode, can be either "blastp" or "psiblast".

python3 MMPRED.py ... -alg_mode psiblast -pssm_comp_db EPITOPES_DB -n_core N

- EPITOPES_DB (mandatory when using psiblast): Is the fasta file containing the set of sequences against which a psiblast search is performed to compute the PSSM.
- N (optional): number of core to be used to ue parallele computation of the PSSM, can be used only when using psiblast.

5 To Run the Pipeline from the Parameter File

python3 MHCPREPRED.py -getPF PARAM_FILE_NAME

• PARAM_FILE_NAME: The name of the empty parameter file. An empty parameter file named PARAM_FILE_NAME is generated using this script. Instructions on how to use it are in the file itself.

python3 MHCPREPRED.py -PF PARAM_FILE_NAME

• Runs the pipeline with the parameters specified in PARAM_FILE_NAME.

6 Output

The program will generate a folder named RESULTS_FOLDER which contains a file named "PRED_SUMMARY.csv" with a table summarizing all the results.

6.1 Without-alignemnt

When alignment is not applied, "PRED_SUMMARY.csv" columns are:

- core: sequence of the predicted core (9-residues)
- query: ID of the query sequence as in the fasta file (QUERY) in input
- start: start of the predicted core
- end: end of the predicted core
- method: epitope prediction method
- score: prediction score
- rank: prediction %Rank
- allele: allele used in the prediction

6.2 with Alignment

When alignment is applied, the "PRED_SUMMARY.csv" columns are:

- core: sequence of the predicted core (9-residues)
- target_seq_id: ID of the target sequence, as specified in the fasta file (TARGET) in input.
- target_window_start: starting position of the window of size W extracted from the target sequence after the alignment.
- target_window_end: ending position of the window of size W extracted from the target sequence after the alignment.
- target_alg_start: starting position of the alignment for the target sequence.
- target_alg_end: ending position of the alignment for the target sequence.
- target_core_start: starting position of the predicted core. This position is relative to the window of size W.
- target_core_end: ending position of the predicted core. This position is relative to the window of size W.
- ident: identity obtained in the alignment
- evalue: E-value obtained in the alignment
- \bullet bits core: Bit-score obtained in the alignment
- target_aligned_seq: aligned target sequence, .i.e is the sequence from position target_alg_start to target_alg_end

- query_seq_id: ID of the query sequence, as specified in the fasta file (QUERY)
- query_alg_start: starting position of the alignment for the query sequence
- query_alg_end: ending position of the alignment for the query sequence
- query_aligned_seq: aligned query sequence, i.e. is the sequence from position query_alg_start to query_alg_end.
- method: epitope prediction method

• score: prediction score

• rank: prediction %Rank

 \bullet allele: allele used in the prediction