DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON (ALBERTA) F/G 20/4
DETERMINATION OF THEORETICAL SAMPLING EFFICIENCIES FOR ASPIRATE--ETC(U) AD-A071 546 JUN 79 S B MELLSEN DRES-TP-499 UNCLASSIFIED NL AD A07/546

OF

AD A071546

MICROCOPY RESOLUTION TEST CHART

UNLIMITED DISTRIBUTION

SUFFIELD TECHNICAL PAPER

NO. 499

DETERMINATION OF THEORETICAL SAMPLING EFFICIENCIES FOR ASPIRATED PARTICULATE MATTER THROUGH A DRES SAMPLING PROBE IN ANISOKINETIC FLOW (U)

by

Stanley B. Mellsen

13E01

13E99

June 1979

9

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD: RALSTON: ALBERTA

WARNING

The use of this information is permitted subject to recognition of proprietary and patent rights .

79 07 20 020

UNLIMITED DISTRIBUTION

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

DRES-TP SUFFIELD TECHNICAL PAPER NO.

DETERMINATION OF THEORETICAL SAMPLING EFFICIENCIES FOR

ASPIRATED PARTICULATE MATTER THROUGH A DRES

SAMPLING PROBE IN ANISOKINETIC FLOW

by

Stanley B. Mellsen,

> 13E01 13E99

WARNING

of this information is parmitted subject to recogniti of proprietary and patent rights .

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD TECHNICAL PAPER NO. 499

DETERMINATION OF THEORETICAL SAMPLING EFFICIENCIES FOR ASPIRATED PARTICULATE MATTER THROUGH A DRES SAMPLING PROBE IN ANISOKINETIC FLOW (U)

by

Stanley B. Mellsen

ABSTRACT

Sampling efficiencies are calculated for an aspirated particulate matter sampling probe under various conditions of anisokinetic flow. A mathematical model developed for the purpose was used to obtain results for a wide range of particle sizes and flow velocities. The results can be used to predict or correct sampling errors in field or laboratory experiments. Using the same test parameters as in previous experimental tests by other workers, sampling efficiencies were calculated and the results were found to agree favorably with the results of the experiments.

(U)

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	DEFINITION OF THE PROBLEM	2
3.	EQUATIONS OF MOTION	3
4.	AIR FLOW FIELD EQUATIONS	5
5.	DISCRETIZATION SCHEME FOR THE AIR FLOW FIELD	7
6.	SOLUTION OF THE EQUATIONS OF MOTION	8
7.	RESULTS	10
8.	DISCUSSION	11
9.	CONCLUSIONS	13
10.	REFERENCES	14

FIGURES

APPENDICES

	ion For				
NTIS DDC TA		Z			
Unanno	The same of the same of the same of	-			
and the same of th	ication				
Ву					
Distribution/					
Availability Codes					
	Availand	l/or			
Dist.	specia	1			
A					

i

LIST OF FIGURES

- 1. Collection Tube for Sampling Particulates in Air.
- Co-ordinate System for Axial Flow in the Proximity of the Collection Tube.
- 3. Geometric Model for Flow Field in the Proximity of the Collection Tube.
- 4. Stream Function Boundary Conditions.
- 5. Dimensions of Discretization Grid for Air Flow Field.
- 6. Grid Points Along Sloping Boundary of Collection Tube.
- Comparison of Theoretical and Experimental Effects of Anisokinetic Sampling for Zinc Sphere Test Dust.
- Effect of Velocity Ratio on Sampling Efficiency for Fixed Sampling Rate (5 L min⁻¹).
- Effect of Velocity Ratio on Sampling Efficiency for Fixed Sampling Rate (40 L min⁻¹).
- Effect of Velocity Ratio on Collection Efficiency for Fixed Sampling Rate (5 L min⁻¹).
- Effect of Velocity Ratio on Collection Efficiency for Fixed Sampling Rate (40 L min⁻¹).
- 12. Effect of Flow Velocity in Sampling Tube on Sampling Efficiency for Fixed Velocity Ratio $(U_R/U_A = 1/10)$.
- 13. Effect of Flow Velocity in Sampling Tube on Collection Efficiency for Fixed Velocity Ratio $(U_B/U_A = 1/10)$.
- 14. Effect of Free Stream Velocity on Sampling Efficiency for One Particle Size and Constant Flow Velocity in Sampling Tube.

APPENDICES

- A. Computer Program for Calculating the Stream Function.
- B. Computer Program for Solving the Equations of Motion.

NOTATION

C	particle concentration in the sample, g cm ⁻³
co	particle concentration in the free stream, $g\ cm^{-3}$
d	particle diameter, cm
D	distance from the inlet to the outlet cross section of the collection tube, cm
h	thickness of the collection tube wall at the outlet cross section, cm
L	length of coaxial boundary tube, cm
r	radial co-ordinate of particle position, cm
rA	radius of coaxial boundary tube, cm
rB	radius of collection tube, cm
r _{p,∞}	radial co-ordinate of particle position far upstream, cm
r _{s,∞}	far upstream radius of the stream tube that impinges on the collection tube circumference, cm
t	time, seconds
u _r	radial component of local fluid velocity, cm sec-1
uz	axial component of local fluid velocity, cm sec-1
U	fluid velocity in collection tube, cm sec-1
UA	fluid velocity at boundary tube entrance, cm sec-1
UB	fluid velocity at collection tube exit, cm sec-1
U _C	fluid velocity at boundary tube exit, cm sec-1
u _o	free stream velocity, cm sec-1
v _r	radial component of local particle velocity, cm sec-1
v _z	axial component of local particle velocity, cm sec-1
Z	axial co-ordinate (origin at collection tube inlet) of particle position, \ensuremath{cm}
z ₀	axial co-ordinate of particle far upstream, cm

NOTATION (Cont'd)

absolute viscosity of fluid, poise
 p fluid density, g cm⁻³
 p particle density, g cm⁻³
 ψ stream function, cm³ sec⁻¹

The following are dimensionless

c _D	drag coefficient for spheres
G(1), G(2), G(3) and G(4)	dependent variables solved for by numerical integration. They represent $v_{\overline{z}}$, v_{γ} , v_{γ} and v_{γ} and v_{γ}
E _m	collection efficiency of sampling tube
Н	thickness of collection tube wall, h/rA
i,j	grid point co-ordinates in the radial and axial directions respectively
i _B ,j _B	grid point co-ordinates of the edge of the collection tube inlet
j _o	axial grid point co-ordinate of a particle at the far upstream position
K	inertia parameter of particle
r	radial co-ordinate of particle, r/rB
rp,	radial co-ordinate of particle position far upstream, $r_{p,\infty}/r_b$
r _{s,∞}	far upstream radius of the stream tube that impinges on the collection tube circumference, $r_{s,\infty}/r_b$
R	radial co-ordinate used in calculating the stream function field, $r/r_{\mbox{\scriptsize A}}$
Re	spherical particle Reynolds number in flow in the proximity of the collection tube
Reo	spherical particle Reynolds number in free stream

NOTATION (Cont'd)

radial component of local fluid velocity, du/dr
axial component of local fluid velocity, $d\overline{u}/d\overline{z}$
radial component of local particle velocity, $d\overline{r}/d\tau$
axial component of local particle velocity, $d\overline{z}/d\tau$
axial co-ordinate (origin at collection tube inlet) of particle, $z/r_{\rm B}$
axial co-ordinate of particle far upstream, z ₀ /r _B
axial co-ordinate used in calculation of the stream function field, $z/r_{\mbox{\scriptsize A}}$
ratio of collection tube radius to boundary tube radius, r_B/r_A
length of coaxial boundary tube, L/rA
distance from the inlet to the outlet cross section of the collection tube, $\mathrm{D/r}_\mathrm{A}$
distance from inlet of boundary tube to inlet of collection tube, β - γ
time, tUA/rB
dimensionless group independent of particle position, Re ₀ ² /K
stream function, ψ/½UArA ²

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD TECHNICAL PAPER NO. 499

ASPIRATED PARTICULATE MATTER THROUGH A DRES SAMPLING PROBE IN ANISOKINETIC FLOW (U)

by

Stanley B. Mellsen

1. INTRODUCTION

The collection of a representative sample of finely divided particulate matter from still or moving airstreams is required where the size distribution, mass flow rate, concentration, or some other characteristic of the particulate-air system has to be determined. A sample of particulate matter will be representative only if the particle size distribution and content in the sample are the same as those in the ambient air at the point of sampling.

Particulate matter sampling instruments used at DRES consist essentially of a probe or tube through which the sample is drawn and then separated from the air stream for analysis.

Such a sampling system may be subject to three distinct types

UNCLASSIFIED

of error (Vitols, 1964) due to:

- particles failing to enter the sampling probe in representative concentrations;
- (2) particles being deposited between the probe mouth and the separation location; and
- (3) particles being shattered, aggregated, or incompletely retained by collection devices.

Particles enter the sampling probe in representative concentrations when the entrance velocity is exactly equal to the velocity of the gas being sampled, in which case the sampling is said to be isokinetic. If the velocities are unequal errors of type (1) occur, in which case the sampling is referred to as anisokinetic.

The purpose of this report is to describe a mathematical model for calculating the error due to anisokineticity for a sampling probe developed and used at DRES (Fig. 1). The nominal inside diameter of this probe is 3/4 inch. The inlet end is sharp edged and the outside surface is sloped so that the tube wall thickness increases away from the inlet with a 1 in 12 slope. The length of the tapered section is 2 3/4 inches. Results are provided for various flow conditions so that the user of the sampling probe can determine the magnitude of sampling errors and make corrections when anisokinetic sampling occurs.

2. DEFINITION OF THE PROBLEM

Due to inertial and drag forces, a particle flowing at the free stream velocity far upstream of the sampling probe will not necessarily follow a stream line in the vicinity of the probe, where radial and axial velocity components of the fluid may be changing markedly. Thus, if the estimated concentration of particles in the free stream is taken as the number of particles collected by the sampler divided by the volume of air passing through the probe, the calculated values may differ markedly from the true free stream values. The total volume of air passing through the probe will be that enclosed by a stream tube that impinges on the outer circumference of the probe opening. When the velocity at the tube inlet,

 U_B , is less than the free stream velocity, U_A (U_B/U_A < 1), particles from outside the limiting stream tube will enter the sampler, while for U_B/U_A > 1 particles originally inside the limiting stream tube will pass outside the probe. All particles of the same diameter that are collected by the probe are those within the circular envelope generated by particles that just impinge on the outer circumference of the probe. Let $r_{p,\infty}$ be the upstream radius of the limiting particle trajectory envelope, and $r_{s,\infty}$ be the upstream radius of the stream tube that impinges on the probe circumference. Then the sampling efficiency is given by:

$$\left(\frac{c}{c_0}\right) = \left(\frac{r_{p,\infty}}{r_{s,\infty}}\right)^2$$
(Eq. 1)

where C_0 is the particle concentration in the free stream and C is the particle concentration in the sample.

The collection efficiency of the probe is given by:

$$E_{\rm m} = \left(\frac{r_{\rm p,\infty}}{r_{\rm B}}\right)^2 \tag{Eq. 2}$$

where r_B is the radius of the probe inlet. The problem then is to calculate $r_{p,\infty}$ and $r_{s,\infty}$ so that the sampling efficiency can be found from Eq. 1 and, incidentally, so that the collection efficiency can be found from Eq. 2.

3. EQUATIONS OF MOTION

The motion of an individual particle has been shown (Vitols, 1964 and Batchelor, 1956) to be determined by the following ordinary differential equations:

$$\frac{d\overline{v_r}}{d\tau} = \frac{C_D Re(\overline{v_r} - \overline{v_r})}{24 \text{ K}}$$
 (Eq. 3)

$$\frac{d\overline{v}_{\overline{z}}}{d\tau} = \frac{C_{\overline{D}}Re(\overline{u}_{\overline{z}} - \overline{v}_{\overline{z}})}{24 \text{ K}}$$
 (Eq. 4)

UNCLASSIFIED

where Re = Re₀[
$$(\overline{u_r} - \overline{v_r})^2 + (\overline{u_z} - \overline{v_z})^2$$
]^{1/2} (Eq. 5)

$$K = \frac{\sigma d^2 U_A}{18 \mu r_B}$$
 particle inertia parameter (Eq. 6)

$$Re_0 = \frac{U_A d\rho}{\mu}$$
 free stream Reynolds number (Eq. 7)

The symbols are defined in the notation section near the front of this report and the basic geometry of the flow system is illustrated in Fig. 2.

Several assumptions are inherent in the use of Eqs. 3 and 4 for calculating the collection and sampling efficiencies due to a stream of particles, including:

- (a) uniform particle distribution;
- (b) no gravitational or electrostatic forces of consequence;
- (c) monodisperse spherical particles with diameter very small in relation to the inlet diameter of the probe; and
- (d) free stream flow that is steady, incompressible and irrotational.

The drag coefficient is a function of Reynolds number and is available in the form of definitive empirical equations (Davies, 1945). These equations are stated as follows:

$$Re = \frac{C_D Re^2}{24} - 2.3363 \times 10^{-4} (C_D Re^2)^2 + 2.0154 \times 10^{-6} (C_D Re^2)^3 - 6.9105 \times 10^{-9} (C_D Re^2)^4$$
(Eq. 8)

for Re < 4 or $C_DRe^2 < 140$

$$log_{10}Re = -1.29536 + 9.86 \times 10^{-1} (log_{10}C_DRe^2) - 4.6677 \times 10^{-2}$$

 $(log_{10}C_DRe^2)^2 + 1.1235 \times 10^{-3} (log_{10}C_DRe^2)^3$ (Eq. 9)

for 3 < Re <
$$10^4$$
 or $C_D Re^2$ < 4.5 x 10^7

4. AIR FLOW FIELD EQUATIONS

The equations of fluid velocity were derived from the stream function for ideal flow over and through the collection probe. To solve the problem, an outer boundary was used around the collection tube in the form of a coaxial tube of radius r_A (Fig. 3), which was chosen large enough so that the effect of the boundary tube on flow in the proximity of the collection tube is negligible. The collection tube was inserted a distance D into the downstream end of the boundary tube. Since the flow is axisymmetric only a radial plane containing both tubes has to be considered.

The fluid enters the boundary tube with steady velocity \mathbf{U}_{A} , and separates into a central stream with velocity \mathbf{U}_{B} at the entrance of the collection tube, and an annular stream, with velocity \mathbf{U}_{C} , at the downstream end of the boundary tube. The axial velocities \mathbf{U}_{A} , \mathbf{U}_{B} and \mathbf{U}_{C} are uniform. Also, there is no radial flow at the end cross sections.

The boundary conditions on the flow can now be completely specified so that the flow field can be obtained by solution of the equation of the stream function.

The axially symmetric stream function $\psi(r,z)$ (Batchelor, 1967) satisfies:

$$\frac{\partial^2 \psi}{\partial r^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} = 0$$
 (Eq. 10)

The two velocity components (Fig. 2) are given by:

$$u_{z} = \frac{1}{r} \frac{\partial \psi}{\partial r}$$
 (Eq. 11)

$$u_r = -\frac{1}{r} \frac{\partial \psi}{\partial z}$$
 (Eq. 12)

When U_A and U_B are specified continuity gives U_C as follows:

$$U_{C} = \frac{U_{A} - \alpha^{2}U_{B}}{1 - \left[\left(\frac{r_{B} + h}{r_{B}}\right)\alpha\right]^{2}}$$
(Eq. 13)

where
$$\alpha = \frac{r_B}{r_A}$$
 (Eq. 14)

and h is the thickness of the collection tube wall at the outlet end (Fig. 3).

For uniform velocity profiles, the stream function is of the form:

$$\psi = \frac{1}{2}ur^2 \tag{Eq. 15}$$

To allow for greater generality, the stream function and the geometric variables were restated in the following dimensionless form:

$$\Psi = \frac{\Psi}{4 \mu_A r_A^2}$$
 (Eq. 16)

$$R = \frac{r}{r_A}$$
 (Eq. 17)

$$Z = \frac{z}{r_A}$$
 (Eq. 18)

$$\beta = \frac{L}{r_A}$$
 (Eq. 19)

$$\gamma = \frac{D}{r_A}$$
 (Eq. 20)

$$H = \frac{h}{r_A}$$
 (Eq. 21)

The boundary values for the stream function and the geometric configuration in terms of the dimensionless variables are shown in Fig. 4.

The axially symmetric stream function equation (Eq. 10) becomes:

$$\frac{\partial^2 \Psi}{\partial R^2} - \frac{1}{R} \frac{\partial \Psi}{\partial R} + \frac{\partial^2 \Psi}{\partial R^2} = 0$$
 (Eq. 22)

5. DISCRETIZATION SCHEME FOR THE AIR FLOW FIELD

The equation for the axially symmetric stream function (Eq. 22) is discretized as follows:

$$\frac{\Psi_{i-1,j} - 2\Psi_{i,j} + \Psi_{i+1,j}}{\Delta R^2} - \frac{\Psi_{i+1,j} - \Psi_{i-1,j}}{2i\Delta R^2} + \frac{\Psi_{i,j-1} - 2\Psi_{i,j} + \Psi_{i,j+1}}{\Delta Z^2} = 0$$
(Eq. 23)

where i and j are the grid point numbers in the R and Z directions respectively (Fig. 5). Eq. 23 can be rearranged to give a simple equation by choosing a square grid so that ΔZ and ΔR are equal. The resulting equation, which is suitable for Gauss-Seidel iteration (Carnahan et al., 1969), is given as follows:

$$\Psi_{i,j} = \frac{\Psi_{i-1,j} + \Psi_{i+1,j} + \Psi_{i,j-1} + \Psi_{i,j+1}}{4} - \frac{\Psi_{i+1,j} - \Psi_{i-1,j}}{8i} \quad (Eq. 24)$$

Eq. 24 is suitable for all interior points, which are defined as points for which the nearest boundary is at least one grid size unit away. A grid can be chosen such that all points not right on the boundary are interior points, with the exception of the outside boundary of the collection tube which has a slope of 1/12. To handle these points, which herein are called special boundary points (Fig. 6), a Taylor series expansion for a point near the boundary was used, as is generally applied to curved boundaries (Carnahan et al., 1969). The resulting finite difference equation is suitable for these points instead of Eq. 24.

$$\Psi_{i,j} = \frac{a}{2(a+1)} \left[\Psi_{i,j-1} + \Psi_{i,j+1} + \frac{2\Psi_{A}}{a(a+1)} + \frac{2\Psi_{i+1,j}}{a+1} + \frac{\Psi_{A}^{-\Psi_{i+1,j}}}{i(1+a)} \right] (Eq. 25)$$

where a is the distance, in terms of the grid size unit, from the grid point to the sloping boundary at point A and 0 < a < 1.

The grid size was chosen so that the thickness of the collection tube wall at the downstream end corresponded to exactly two units. Then the length of the tube must be 24 grid units since the slope of the outer collection tube boundary is 1/12. The boundary tube radius

and the distance, δ , (Fig. 4) to the upstream end of the boundary tube were chosen so that they are at least five times the radius of the inlet to the collection tube, so that particles travelling in the flow toward the tube inlet will behave as if they are coming from far upstream and into the collection tube in free space. Now, to satisfy these conditions, and to ensure adequate core storage space in the DRES IBM 1130 computer, while maintaining a fineness of grid for sufficient accuracy, the collection tube radius was chosen to be 12 units, the boundary tube radius 60 units, and the boundary tube length 88 units (Fig. 5).

The stream function at each point was then obtained by means of Gauss-Seidel iteration (Carnahan et al., 1969) using Eq. 24 and Eq. 25. The boundary conditions were set initially and held fixed throughout the course of the solution (Fig. 4) and, as a starting point for the iteration, the value of the stream function at all points not right on the boundary was set to zero. The calculations were done with the DRES IBM 1130 computer by means of a Fortran program, the listing of which is shown in Appendix A.

SOLUTION OF THE EQUATIONS OF MOTION

As previously stated in Section 2 of this report, the problem is to find the upstream radii $r_{p,\infty}$ and $r_{s,\infty}$ so that the sampling and collection efficiencies can be calculated. In the same dimensionless form used in Eqs. 3 and 4 the value of $\overline{r}_{p,\infty}$ (notation) was found by an iterative procedure called the half interval method (Carnahan et al., 1969). The value of $\overline{r}_{p,\infty}$ for a critical particle was estimated far upstream, the path followed to the plane of the collection tube opening, and the miss distance calculated. Next, the half interval method, previously mentioned, was applied to determine a better initial estimate. Then the path was followed again to the plane of the collection tube opening for another calculation of the miss distance. This process was repeated several times until sufficient accuracy was achieved. The initial upstream position in a plane perpendicular to the flow direction was located far enough from the collection tube opening so that free stream conditions prevailed. A distance of five target radii upstream of the target centre was considered

adequate (Batchelor, 1956).

The path of an individual particle was determined step-by-step by applying a fourth order Runge-Kutta method (Carnahan et al., 1969) to the equations of motion (Eqs. 3 and 4). The values of Re and K in these equations were easily found for each new step by direct substitution of previously determined values into Eqs. 5, 6 and 7, but the value of C_D Re in Eqs. 3 and 4 had to be calculated in each step by numerical solution of the definitive empirical equations (Eqs. 8 and 9). This was done using Newton's method (Carnahan et al., 1969) for finding the zero of a function. The values of $\overline{u_r}$ and $\overline{u_z}$ were calculated in each step from the stream function field as follows:

$$\overline{u_r} = \frac{\psi_{i,j-1} - \psi_{i,j+1}}{4(i-1)(\Delta R)^2}$$
 (Eq. 26)

$$\frac{\overline{u_z}}{4(i-1)(\Delta R)^2} = \frac{\Psi_{i+1,j} - \Psi_{i-1,j}}{4(i-1)(\Delta R)^2}$$
 (Eq. 27)

where i and j define the grid point of the particle position. Since the radius of the collection tube was chosen to be 12 grid units these are given by:

$$i = 1 + 12\overline{r}$$
 (Eq. 28)

$$j = j_0 + 12(\bar{z} - \bar{z}_0)$$
 (Eq. 29)

where j_0 and \overline{z}_0 are the starting point values of j and \overline{z} . The values of i and j obtained from Eqs. 28 and 29 were rounded off to the nearest lower integer value in each calculation. The value of $\overline{r}_{s,\infty}$ was obtained directly from the stream function by:

$$\overline{r}_{S,\infty} = \frac{\Delta R(i-2)r_A}{r_B} \sqrt{\frac{{\psi_i}_B, j_B}{{\psi_{i-1}, j_o}}}$$
 (Eq. 30)

calculated at the lowest value of i satisfying:

$$^{\Psi}i_{,}j_{0} > {^{\Psi}i_{B}},j_{B}$$
 (Eq. 31)

where i_B and j_B define the grid point at the edge of the collection tube inlet. The calculations to obtain the solutions were done with the DRES IBM 1130 computer by means of a Fortran program, the listing of which is shown in Appendix B. The sampling and collection efficiencies given by Eqs. 1 and 2 were also obtained by this program after the values of $\overline{r}_{p,\infty}$ and $\overline{r}_{s,\infty}$ had been calculated.

7. RESULTS

A sample stream function field for one set of input data is shown after its associated computer program (Appendix A), and a sample calculation of the sampling and collection efficiencies is shown after their associated computer program (Appendix B). Using these two computer programs many more calculations were made to produce the graphical results shown in Figs. 7 to 14. These results are described in greater detail as follows.

Many experimenters have measured sampling efficiencies over the last sixty-five years (Vitols, 1964). An experimental study using zinc sphere test dust in a wind tunnel was done for sampling tubes of 0.65 to 1.90 cm diameter (Badzioch, 1959). The tubes were blunt-edged with a wall thickness of 0.6 mm. The results for some of these experiments are shown in Fig. 7. Using the same test parameters as in these experiments, sampling efficiencies were calculated for various velocity ratios, $U_{\rm B}/U_{\rm A}$, and the results plotted in Fig. 7 assuming that $U_{\rm B}/U_{\rm A}$, of the mathematical model, is equivalent to $U/U_{\rm O}$ in the experiments of Badzioch. The results agree favorably even though the tube shapes were slightly different. However, calculations for various input parameters, keeping $U_{\rm B}/U_{\rm A}=1$, gave sampling efficiencies between 0.9900 and 1.0000, indicating that the tapered outside wall of the collection tube does not disturb the flow so as to cause deviations for isokinetic velocity conditions. Therefore, the two tubes can, for practical purposes, be considered equivalent.

The sampling and collection efficiencies are functions of two dimensionless groups, the inertial parameter, K, and the free stream particle Reynolds number, Re_{Ω} . A new dimensionless group:

$$\phi = \frac{Re_0^2}{K}$$
 (Eq. 32)

independent of particle size can be introduced (Friedlander, 1977). According to the rules of dimensional analysis this is permissible, but the efficiencies are still determined by two groups chosen to be K and ϕ . The calculated sampling efficiency is plotted against the inertia parameter in Figs. 8 and 9 for sampling rates of 5 and 40 litres per minute respectively. Curves are plotted for values of $U_{\rm B}/U_{\rm A}$ of 1/3, 1, 3 and 10 in each of the two figures. Note that equal values of $U_{\rm B}/U_{\rm A}$ correspond to a different value of ϕ in Figs. 8 and 9. This is due to two different sampling rates because sampling rate and the corresponding free stream velocity were the only dimensional parameters which were changed. The calculated collection efficiencies were plotted in Figs. 10 and 11 for the same velocity ratios and sampling rates as the sampling efficiencies shown in Figs. 8 and 9.

To show the effect of varying the flow velocity in the sampling tube while maintaining a constant velocity ratio, the sampling efficiency was plotted against the inertia parameter in Fig. 12. Curves were plotted for the two sampling rates of 5 and 40 litres per minute as before. Similar curves are shown for the collection efficiencies in Fig. 13.

To illustrate directly the drastic effect of varying free stream velocity on the sampling efficiency for constant sampling velocity and particle size the sampling efficiency was plotted against the velocity ratio, $U_{\rm R}/U_{\rm A}$, for a particle size of 100 μm in Fig. 14.

DISCUSSION

As can be seen in Fig. 7, where the experiments of Badzioch are compared to the results obtained by means of the present mathematical model, the effect of anisokineticity produces sampling errors of greater than 100 percent even when the sampling velocity differs from the free stream velocity by less than a factor of three. These results are for 23 micron spherical particles. Smaller particles give rise to smaller

sampling error. The exact errors for very small particles cannot be determined by the present model because the computing errors increase with decreasing particle size for very small particles. Experience shows that, in addition to the requirement of a small grid size for calculating the stream function field, reliable results can only be achieved if the values of the time step increment $d\tau$ is at least less than the inertia parameter K. So, as particle size decreases, and correspondingly K decreases, a larger number of calculations are required which, in itself, can give rise to computing errors. However, the results did indicate that the sampling errors for particles in the order of 10 microns can be at least 50 percent. For example, for a sampling rate of 5 litres per minute and a sampling velocity which is a third of the free stream velocity, Fig. 8 shows a value of the sample concentration which is 1.5 times the free stream concentration when the inertia parameter is 0.029. This corresponds to a particle size of 10 microns when the particle density is 1 g cm $^{-3}$ and 5 microns when the particle density is 4 g cm $^{-3}$. The density of zinc sulfide, which is sometimes used as phosphorescent trace material with particle sizes of about 5 microns, is 4.1 g cm $^{-3}$ (Sehmel, 1973).

Although the model cannot be used for calculations using completely still air, very low free stream velocities can be treated. For a sampling rate of 5 litres per minute and a velocity ratio $U_{\rm B}/U_{\rm A}=10$, as used in one of the curves in Fig. 8, the corresponding free stream velocity is 3 cm sec⁻¹. This is about the wind velocity expected in an enclosure such as an ordinary, normally ventilated, room.

Another point to note, when considering sampling errors, is that even when the velocity ratio and particle size are kept constant, the sampling error varies somewhat with the absolute value of the sampling tube velocity. This is indicated by the difference in the two curves (Fig. 12) for sampling rates of 5 and 40 litres per minute.

The drastic effect on sampling efficiency of varying the free stream velocity while maintaining a constant sampling velocity is illustrated in Fig. 14 where the calculated results for a particle size of 100 microns are plotted directly.

9. CONCLUSIONS

The effect of anisokineticity on sampling with the DRES sampling probe used in field conditions is large enough so that drastic errors in sampling can occur. The results obtained by the mathematical model described herein can be used to estimate the size of these sampling errors. They can also be used to correct measured samples if the wind velocity and sampling rate are also measured, and the particle size and density are known. Long sampling periods are best, so that effects due to wind speed changes which occur over short time periods are averaged out.

10. REFERENCES

Badzioch, S.	1959	"Collection of Gas-Borne Dust Particles by Means of an Aspirated Sampling Nozzle". British Journal of Applied Physics, Vol. 10, Page 26.
Batchelor, G.K.	1956	"Surveys in Mechanics". Cambridge University Press.
Batchelor, G.K.	1967	"An Introduction to Fluid Dynamics". Cambridge University Press.
Carnahan, Brice; H.A. Luther and James O. Wilkes	1969	"Applied Numerical Methods". John Wiley and Sons.
Davies, C.N.	1945	"Definitive Equations for the Fluid Resistance of Spheres". Proc. Roy. Soc., Vol. 57, Part 4.
Friedlander, S.K.	1977	"Smoke, Dust and Haze". John Wiley and Sons.
Sehmel, G.A.	1973	"Particle Suspension from an Asphalt Road Caused by Car and Truck Traffic". Atmospheric Environment, Vol. 7, Page 291.
Vitols, Valentin	1964	"Determination of Theoretical Collection Efficiencies of Aspirated Particulate Matter Sampling Probes Under Anisokinetic Flow". Ph. D Thesis, University of Michigan.

Figure 1: Collection Tube for Sampling Particulates in Air

FIGURE 2: CO-ORDINATE SYSTEM FOR AXIAL FLOW IN THE PROXIMITY OF THE COLLECTION TUBE

FIGURE 3: GEOMETRIC MODEL FOR FLOW FIELD IN THE PROXIMITY OF THE COLLECTION TUBE

FIGURE 4: STREAM FUNCTION BOUNDARY CONDITIONS

FIGURE 5: DIMENSIONS OF DISCRETIZATION GRID FOR AIR FLOW FIELD

O- SPECIAL BOUNDARY POINTS

FIGURE 6: GRID POINTS ALONG SLOPING BOUNDARY OF COLLECTION TUBE

FIGURE 7: COMPARISON OF THEORETICAL AND EXPERIMENTAL EFFECTS OF ANISOKINETIC SAMPLING FOR ZINC SPHERE TEST DUST

FIGURE 8: EFFECT OF VELOCITY RATIO ON SAMPLING EFFICIENCY FOR FIXED SAMPLING RATE (5 L min-1)

FIGURE 9: EFFECT OF VELOCITY RATIO ON SAMPLING EFFICIENCY FOR FIXED SAMPLING RATE (40 L min-1)

FIGURE 10: EFFECT OF VELOCITY RATIO ON COLLECTION EFFICIENCY FOR FIGURE SAMPLING RATE (51 min-1)

FIGURE II: EFFECT OF VELOCITY RATIO ON COLLECTION EFFICIENCY FOR FOR FIXED SAMPLING RATE (40 L min-1)

FIGURE 12: EFFECT OF FLOW VELOCITY IN SAMPLING TUBE ON SAMPLING EFFICIENCY FOR FIXED VELOCITY RATIO ($\frac{1}{10}$ = $\frac{1}{10}$)

FIGURE 13: EFFECT OF FLOW VELOCITY IN SAMPLING TUBE ON COLLECTION EFFICIENCY FOR FIXED VELOCITY RATIO (UL = 10)

FIGURE 14: EFFECT OF FREE STREAM VELOCITY ON SAMPLING EFFICIENCY FOR ONE PARTICLE SIZE AND CONSTANT LOW VELOCITY IN SAMPLING TUBE

APPENDIX A

COMPUTER PROGRAM FOR CALCULATING THE STREAM FUNCTION

										NPRB(IC)=558D INTVL(IC)=5585					
										RB (RC) =558E NPR (IC) =5586					
			œ Q.Z				PIPES WITH P		Œ	UA(RC)=5590 NPZ(IC)=5587 I(I)=0001			NF SDF SDI		
PHY DRIVE 0000			SUBROUTINE REPSI COMMON PSI(61.89) .ITERS.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR	COMMON INTVL.INDEX.1TER READ(11)PSI.ITERS.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR Write(3.2001)	18.NPRB,URAT,UA,UB, ITERS	VL)	DW T N	15/ 10H NPRB	ON DISK	URAT(RC)=5592 RA(RC)=5588 J(I)=0000	13 =009E 24 =00E2		STOT SUBSC SDRED SDAF		AM 262
CART AVAIL	CONFIG 16K		SI SP) . ITERS . URAT . UA . R	NDEX . I TER TERS . URAT . UA . RB . N PR	RB NPZ NPR NPZB NP	DO 24 J=1,NPZ,INTVL WRITE(3,203)(PSI(1,J),I=1,NPR,INTVL)	FORMAT(2041 DISK STORAGE CHECK) FORMAT(65HOSTREAM FUNCTION FOR FL	15/ 10H NPZB	CURRENT VALUES OF	ITERS(IC)=5595 UB(RC)=558A ITER(IC)=5583	012 202 =0085 203		SIOF	905	R REPSI 4 PROGRAM
// JOB T 0108 LOG DRIVE CART SPEC 0000 0108	V2 MII ACTUAL 16K CONFIG 16K	// FOR #ONE WORD INTEGERS	SUBROUTINE REPSI	READ(1:1)PSI.ITERS.URAT	WITTE(3,201)RA,RB,NPZ,NPR,NPZ		201 FORMAT(65H0STRE	215 / 10H NPR = 9194 URAT = 9194	410H ITERS = .15) 202 FORMAT(45HITHE CUR 203 FORMAT('0',16F7.4) RETURN	END VARIABLE ALLOCATIONS PSI(RC)=7FFE-5596 ITERS(IC)=5595 NPZR(IC)=558C UB(RC)=5584 INDEX(IC)=5584	STATEMENT ALLOCATIONS	FEATURES SUPPORTED ONE WORD INTEGERS	CALLED SURPROGRAMS SWRT SCOMP SIOFX	INTEGER CONSTANTS	CORE REQUIREMENTS FOR REPSI COMMON 10878 VARIABLES

PAGE

RELATIVE ENTRY POINT ADDRESS IS 00A3 (HEX) PAGE 2

END OF COMPILATION

dna //

ASTORE WS UA REPSI CART ID 0108 DB ADDR 4C00 DB CNT 0012

// EJECT

THIS SUBROUTINE CALCULATES THE STREAM FUNCTION FOR FLOW THROUGH TWO CONCENTRIC PIPES WITH A TAPERED OUTSIDE WALL ON THE SUBROUTINE SBM24 COMMON PSI(61.89).ITERS.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR COMMON INTVL.INDEX.ITER RFAD(2,100)NZ,NR,ITMAX,EPSMX READ(2,101)RA,RB,XL,D,UA,UB WRITE(3,290)NZ,NR,ITMAX,EPSMX,RA,RB,XL,D,UA,UB,INTVL,ITER DELTA = (BETA-GAMMA)/ALPHA UC=(UA-ALPHA**2*UB)/(1.-(((RB+2.0)/RB)*ALPHA)**2) URAT = UB/UA R=RD/RA, Z=ZD/RA, PSI=PSID/((1.0/2.0)*UA*RA**2) CALCULATE AND WRITE DIMENSIONLESS PARAMETERS PSIR-URÄT#ALPHA##2 WRITE(3+201)ALPHA,BETA,GAMMA,DELTA,URAT,UCRA READ AND CHECK INPUT PARAMETERS XEB-((XL-D)/XL)*FLOAT(NZ)
NZB-IFIX(XZB + 0.1)
NZB-NZB+1
NPZS-NPZR+12
XRB-ALPHA*FLOAT(NR)
NRB-IFIX(XRB + 0.1) ESTABLISH ROUNDARY POINTS DELR-1.0/FLOAT (NR) NPRR=NR8+1 NPRS = NPR8+1 NPRC = NPR8 + 2 // FOR *ONE WORD INTEGERS *LIST ALL INSIDE PIPE ALPHA=RB/RA BETA-XL/RA NPZ=NZ+1 APR-NR+1 PAGE 00000 UUU

GO DIRECTLY TO FURTHER ITERATIONS TET PAST IS PARTIALLY CALCULATED AND IN FILE GO DIRECTLY TO FURTHER ITERATIONS TOTATIONE AND ST BOUNDARY CONDITIONS ON CENTRE LINE AND ST BOUNDARY CONDITIONS ON CENTRE LINE AND ST BOUNDARY CONDITION AT OUTLET OF INSIDE PIPE DS: [1-1]=[RI=DELR:+*2 DS: 1 = 2.NRR RI=FLOAT(I-1) PS: [1-1]=[RI=DELR:+*2 DS: 1 = 2.NRR PS: [1-1]=[RI=DELR:+*2 DS: [1-1]=[RI=DELR:
--

PAGE

				-5580	-5585	9000=1	=0012	=001E	-0037		-029A	37 =060D			FAXI	01-004E	
				NPRR(1C)=5580	INTVL(1C) = 5585	ALPHAIR 1	PSIBIR		-		=019E 1				FOVR	. 800000E 01-004E	
											206	36	82		FSBR	Ų,	
				RB (RC) #558E	NPR (1C) =5586	1=0004	-0010	1=0028	1=0036	1=003C	=017C =0393	€C598	■079E		FSTOX	-+00000E 01=004C	
				88 (80	APR (10	DIR	FORTE	XX418	1) \$7 dN	111011	205	35	48		FSTO	00000	
							5		Z	1	*0165	*0591	+610=				-
				9590	5587	2000	=000E	-0026	=0035	1=0038	500	30			FLDX	V+00=00	
	BY.)			UA(RC)=5590	NP2 (1C) = 5587	-	מנוא מונא	-	NZB(1)=C	7(1)=0	-C160 -0361	-04EF	-078C		FLD SUBSC	.00000CE 00=004A	
·F9.4/	VEN VEN			,	Š	×	ο α	XX	NZ		203	28	82			.00	
RA .	D AFTE	ARE		2		0 1) ac	4	4	4	-012A -0349	-04E7	-0785		FDIV	8 700	
H SAN	REACHE N FIEL	OF PSI ARE!		C1=559		0000	1 = 0018	1=0024	1=0034	1=0034		27			FMPYX	DE 00=	
= 0.00 PARAMETERS / = 0.00	FORMATICHMICONVERGENCE CONDITION HAS BEEN REACHED AFTER 115. 11H ITERATIONS/ 38H THE STREAM FUNCTION FIELD IS GIFORMATITHO. 16F7.4)	VALUES 15.15.		URAT (RC)=5592	RACR	EPSMX (R	XRBCR	XKZIR	ITMAXCI	111		=047D	-0741		FMPY	.100000E 00=0048	
ONLES 	TREAM	RRENT NTER PS1	G						and and and			56	2		FSUBX	940	
BETA BETA H URAT	THE S	ON COU	OMPLET	1=5595	UB(RC)=558A	1=5583	1=0016	1=0022	1=0033	1=0039	=0062 =030F	-0477	-0737		2. S.	01=0	
101	3ENCE	FRSEN FERATI	ute c	ITERS(1C)=5595	UBIRC	ITER(IC)=5583				NPRCCI	500	52	2		FSUB	.200000E 01=0046	11493
110H0ALPHA = "F9.4" 10H BETA 1 10H DELTA = "F9.4" 10H URAT	FORMATICALICONVERGENCE CONDITINGS 115. 11H ITERATIONS/ 38H THE SIFORMATIHO, 16F7.4)	FORMATIGATING CONVERGENCE. CURREN FORMATIZENI THE ITERATION COUNTER 134H AND THE CURRENT VALUES OF PSI	FORMATIZOH DISK WRITE COMPLETE) RETURN			11	*	A STATE OF STATE	-	2	**************************************	■0460	=0715	6.8	FADOX SRED		
DELTA	17 (6H	T (26H	17 (20H	VARIABLE ALLOCATIONS PSI (RC)=7FFE-5596	558C	1=5584	1=0014	1=0020	1=0032	1=0038	3	50		FEATURES SUPPORTED ONE WORD INTEGERS	FABS FADD F.	** CONSTANTS *** 120000E 01=0044	INTEGER CONSTANTS
1001	FORMA FORMA	FORMA FORMA	RETURN	IR AL	MP28(1C)=558C				- 1		=0057	=046B	-06AD	ES SU	SURP	000E	ER CON
100	202	204	300	ARIAB	MPZE	AFTAID	DELRIR	•	7N	1000	TATEN 100		300	EATUR ONE W	ALLED FABS IF IX	*100000 C1=	NTEGE

68 PROGRAM

CORE REQUIREMENTS FOR SBM24 COMMON 10878 VARIABLES

8800 RELATIVE ENTRY POINT ADDRESS IS OLAA (HEX) DB CNT *STORE WS UA SBM24 CART ID 0108 DB ADDR 4C12 END OF COMPILATION

// EJECT

		590 RB(RC)=558E NPRB(IC)=558D 587 NPR(IC)=5586 INTVL(IC)=5585		SDF10 SDWRT SDCOM SDAF SDF SD1	
	T.UA.RB.MPRB.MPZB.UB.RA.MPZ.MPR *RB.MPRR.MPZB.UB.RA.MPZ.MPR	URAT(RC)=5592 UA(RC)=5590 RA(RC)=5588 NPZ(IC)=5587 IB(I)=0008	#007A	PRNTZ SRED SF10 S101	м 114
PAGE 10	#ONE WORD INTEGERS #IOCS(CARD) #IOCS(CARD) #IOCS(CARD) #IOCS(DISK) #IOCOMMON PATICES.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR #ITE(I 1) PSI . ITERS.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR #ITE(I 1) PSI . ITERS.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR #IOCOMMON PATICE(I 1) PSI . ITERS.URAT.UA.RB.NPRB.NPZB.UB.RA.NPZ.NPR #IOCO FORMAT(215) #IOCOMMON PATICES #IOCOMMON PATIC	FND VARIABLE ALLOCATIONS PSI(RC)=7FFE-5596 ITERS(IC)=5595 NP7R(IC)=558C UB(RC)=558A INDEX(IC)=5584 ITER(IC)=5583	STATEMENT ALLOCATIONS 100 = COOC 1 = CO33 2 = CO57 3 FEATURES SUPPORTED ONE WORD INTEGERS 10CS	CALLES SURPROGRAMS SAW24 REPSI FLD FSTO CARD2 INTEGER CONSTANTS 2=0000A 1=000B	CORE REQUIREMENTS FOR COMMON 10878 VARIABLES 10 PROGRAM

FND OF COMPILATION

PAGE 11	// xf0 1 •FILES(1.0PS11@)	

STAFAM FUNCTION FOR FLOW IN TWO CONCENTRIC PIPES WITH PARAMETERS											
STREAM FUNCTION FOR FLO	RA = 60.00	MP7 = 89		 UB = 3.0000 TFRS = 2800							

0.0000 0.0044 0.0179 0.0403 0.0716 0.1118 0.1609 0.2189 0.2857 0.3613 0.4457 0.5389 0.6409 0.7517 0.8714 1.0000 0.0000 0.0047 0.0190 0.0426 0.0752 0.1167 0.1667 0.2852 0.2922 0.3676 0.4516 0.5440 0.6450 0.7546 0.8729 1.0000 0.0000 0.0044 0.0177 0.0399 0.0711 0.1111 0.1599 0.2177 0.2844 0.3599 0.4444 0.5377 0.6399 0.7511 0.6711 1.0000 0.0000 0.0045 0.0180 0.0404 0.0719 0.1122 0.1614 0.2194 0.2862 0.3618 0.4462 0.5394 0.6413 0.7520 0.8716 1.0000 0.0000 0.0045 0.0181 0.0407 0.0722 0.1127 0.1620 0.2201 0.2869 0.3625 0.4469 0.5400 0.6418 0.7524 0.8718 1.00000 0.0000 0.0045 0.0182 0.0409 0.0727 0.1133 0.1627 0.2209 0.2878 0.3634 0.4477 0.5407 0.6424 0.7528 0.8720 1.0000 0.00cc 0.0c46 0.01P4 0.0413 0.0733 0.1141 0.1637 0.2220 0.2889 0.3645 0.4487 0.5416 0.6431 0.7533 0.8722 1.0000 0.0000 0.0049 0.0196 0.0437 0.0769 0.1187 0.1690 0.2276 0.2945 0.3697 0.4534 0.5456 0.6462 0.7555 0.8734 1.00000 0.0000 0.0130 0.0527 0.1199 0.1398 0.1720 0.2141 0.2658 0.3268 0.3969 0.4759 0.5635 0.6599 0.7647 0.8781 1.0000 0.0000 0.0132 0.0531 0.1199 0.1398 0.1737 0.2165 0.2684 0.3294 0.3994 0.4780 0.5654 0.6613 0.7657 0.8786 1.0000 0.0000 0.0123 0.0533 0.1199 0.1372 0.1735 0.2181 0.2712 0.3328 0.4029 0.4815 0.5684 0.6638 0.7675 0.8796 1.00000 3.0000 0.0133 0.0533 0.1199 0.1355 0.1727 0.2182 0.2720 0.3340 0.4043 0.4829 0.5698 0.6649 0.7683 0.8800 1.0000 0.0000 0.0046 0.0186 0.0418 0.0741 0.1152 0.1650 0.2234 0.2904 0.3659 0.4500 0.5427 0.6440 0.7539 0.8726 1.0000 0.00000 0.0133 0.0532 0.1199 0.1388 0.1739 0.2177 0.2701 0.3314 0.4013 0.4799 0.5670 0.6626 0.7667 0.8791 1.00000 0.0000 0.0044 0.0178 0.0400 0.0712 0.1113 0.1602 0.2181 0.2848 0.3603 0.4448 0.5381 0.6402 0.7513 0.8712 0.0000 0.0044 0.0178 0.0402 0.0714 0.1115 0.1606 0.2184 0.2852 0.3608 0.4452 0.5384 0.6405 0.7515 0.8713 0.0000 0.0051 0.0205 0.0454 0.0793 0.1216 0.1721 0.2306 0.2973 0.3723 0.4556 0.5474 0.6476 0.7565 0.8739 0.0000 0.0055 0.0219 0.0481 0.0829 0.1256 0.1761 0.2344 0.3008 0.3753 0.4582 0.5495 0.6492 0.7575 0.8744 0.0000 0.0124 0.0512 0.1199 0.1372 0.1679 0.2098 0.2619 0.3233 0.3939 0.4733 0.5614 0.6582 0.7636 0.8775 0.0000 0.0062 0.0243 0.0523 0.0883 0.1313 0.1814 0.2392 0.3049 0.3788 0.4610 0.5518 0.6510 0.7587 0.8750 0.0000 0.0073 0.0284 0.0597 0.0968 0.1391 0.1881 0.2447 0.3095 0.3826 0.4641 0.5542 0.6528 0.7599 0.8757 0.0000 0.0090 0.0355 0.0737 0.1101 0.1492 0.1958 0.2508 0.3144 0.3865 0.4673 0.5567 0.6547 0.7612 0.8763 0.0000 0.0110 0.0456 0.1199 0.1274 0.1599 0.2035 0.2567 0.3191 0.3904 0.4704 0.5591 0.6565 0.7624 HE CURRENT VALUES OF PSI STORED ON DISK ARE

7. AX	. 2%		
X = 50.0 = 60.00 = 12.00 = 24.00 = 3.00 ULATEO DIMENSIONLESS PARAMETERS A = 0.2000 A = 5.333 A = 5.335 A = 5.335			TRANSPORT OF A PRINT OF STREET OFFICE OF SPACE OF 10th STREET STREET
x = 60.00 = 12.70 = 10.00 = 1.00 = 1.00 = 2.000 M = 0.4000 A = 0.4000			
12-70 12-70 12-70 13-70		0-10E-02	SOUTH THE PARTY OF
# # 200 # 24-00 # 3-00 # 100 # 100 # 280 # 14666 # 14666 # 14666 # 5-3333 # 5-3333 # 5-3333 # 10-9306		00.09	
## 24-00 # 1-00 # 1-00 ULATED DIMENSIONLESS PARAWETERS # 0-4600 # 1-4666 # 1-4666 # 1-4666 # 1-4600 #			
= 1.00 = 3.00 LATED DIMENSIONLESS PARAMETERS A 0.2000 A 5.333 A 5.3300 A 0.9306			
1.00 1.00			
2800 A = 0.2000 A = 0.4000 A = 0.4000 A = 0.4000 A = 0.333 A = 0.9306 A = 0.9306			
# 2800 ULATEO DIMENSIONLESS PARAMETERS A = 0.4000 A = 0.3333 A = 3.0000 B = 0.9306		900	
# 2600 ULATEO DIMENSIONLESS PARAMETERS A = 0.4000 A = 0.4000 A = 0.4000 A = 0.9306 A = 0.9306	WTVL .	7	
A = 0.2000 A = 0.4666 A = 0.4666 A = 0.4000 A = 0.9306 B 0.9306			
# 0-2000 # 0-4000 # 0-4000 # 9-333 # 9-3306 # 9-3000			
7 - 1-4666 7 - 3-3-300 8 - 3-3-300 9 - 9-306 0 - 9-306 1 - 1000 1 - 10	ALCULATED (
1.4666 A = 0.4600 A = 3.0000 B = 0.9306			
0.4000 0.43333 0.43300	2 7 7	Decomo	
00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.00000 00.00	ETA .		
3,0000	* A		
0.0000	LTA .		
9.63.00	PAT .		
	. 49		
CONTRACTOR OF THE PROPERTY OF			

	00	00	00	00	000	000	00	00	000	000	001	00	00	001	000	000	00	00	90	00	000
	.1113 0.1602 0.2181 0.2848 0.3604 0.4448 0.5381 0.6402 0.7513 0.8712 1.0000	.1116 0.1666 0.2185 0.2852 0.3608 0.4452 0.5385 0.6406 0.7515 0.8713 1.0000	.1119 0.1610 0.2189 0.2857 0.3613 0.4457 0.5389 0.6409 0.7517 0.8714 1.0000	1.00	.1127 0.1620 0.2201 0.2870 0.3626 0.4469 0.5400 0.6418 0.7524 0.8718 1.0000	.1133 0.1627 0.2209 0.2879 0.3635 0.4478 0.5407 0.6424 0.7528 0.8720 1.00000	1.00	.1152 0.1650 0.2234 0.2904 0.3660 0.4501 0.5427 0.6440 0.7540 0.8726 1.00000	1.00	.1188 0.1690 0.2276 0.2945 0.3698 0.4535 0.5456 0.6463 0.7555 0.8734 1.00000	.1216 0.1721 0.2307 0.2974 0.3724 0.4557 0.5474 0.6477 0.7565 0.8739 1.0000	.1257 0.1762 0.2345 0.3008 0.3754 0.4582 0.5499 0.6493 0.7576 0.8744 1.00000	1.00	1.00	.1493 0.1958 0.2508 0.3144 0.3866 0.4674 0.5567 0.6547 0.7612 0.8763 1.00000	1.00	.1679 0.2099 0.2619 0.3234 0.3939 0.4733 0.5615 0.6583 0.7636 0.8776 1.00000	1.00	.1737 0.2165 C.2685 0.3295 0.3994 O.4781 O.5654 O.6613 O.7657 O.8786 1.0000	100	1.00
	.0712		.6714	.6716	.6718	.6720	.8723	.8726	.8730	.8734	.6739	.8744	.8750	1679.	.8763	.8769	.6776	.6781	.0786	1628	.8796
	9113	215	917 0	520 0	.524 0	528 0	533 0	940	247	955	595	976	587 0	0 009	612 0	625 0	969	647	657 0	0 299	675 0
	2 0.7	6 0.7	9 0.7	3 0.1	6 0.7	4 0.7	1 0.1	0 0.7	1 0.1	3 0.7	7 0.1	3 0.7	0 00	6 0.7	7 0.1	5 0.1	3 0.7	9 0.7	3 0.1	6 001	8 0.7
	0.640	0.640	0.640	0.641	0.641	0.642	0.643	9,900	0.645	0.646	0.647	0.649	0.651	0.652	0.654	0.656	0.658	0.659	0.661	0.662	0.663
	1966	5385	5389	5394	2400	2407	9416	5427	1446	9575	9474	6696	9186	5545	1986	2656	5615	9636	9694	5670	5684
	0 0	.0 25	.0 16	62 0.	.0 69	78 0.	.0 88	01 0	16 0.	135 0.	.0 15	.0 28	11 0.	45 0.	74 0.	0 50	.33 0.	.0 65	.010	.00 66	15 0.
	0	0.44	44.0	0.44	10.44	44.0	0.44	0.49	0.49	0.49	0.49	0.49	0.46	99.0	0.46	4.0	10.47	0.41	0.41	0.47	0.48
	.360	.3606	.3613	.3619	.3626	.3639	1.3646	.3660	.3677	1.3696	1.3724	1.3754	3.3788	3856	3866	.3904	\$ 3939	9966	19994	10000	.4029
2		1852 0	758	698	0 018	619	0 068	906	1923	546	974 0	8000	670	560	1144 0	161	1234 0	1268 0	295 0	314 0	328
	0.0	99 0.	.0 60	0 94	01 0.	9 0.	20 02	.0 46	53 0.	16 0.	0 40	0 5	15 0.3	.0 8	0 90	28 0.3	19 0.3	58 0.3	35 0.3	2 003	12 0.1
	0.21	0.21	0.21	0.21	0.22	0.22	0.22	0.22	0.22	0.22	0.23	0.23	0.23	0.24	0.25	0.25	0.26	0.26	0.26	0.27	0.27
	1602	.1606	.1610	.1614	.1620	1627	.1637	.1650	1667	.1690	1721	.1762	.1815	.1881	.1958	.2036	.2099	.2141	.2165	2117	.2181
	113 0	116 0	119 0	122 0	127 0	133 0	141 0	192 0	167 0	198 0	216 0	257 0	313 0	392 0	663 0	0 009	0 619	720 0	737 0	739 0	735 0
2 6	2 0.1	4 0.1	6 0.1	9 0.1	2 0.1	1 0.1	3 0.1	1 0.1	3 0.1	9 0.1	3 0.1	9 0.1	3 0.1	1.0 8	1 0.1	4 0.1	2 0.1	8 0.1	9 0.1	8 0.1	3 0.1
GIVEN	0.071	0.071	0.071	0.071	0.072	0.072	0.073	0.074	0.075	0.076	0.079	0.082	0.088	960-0	0.110	0.127	0.137	0.139	0.139	0-138	0.137
21 0	0401	2040	6000	5040	1070	6040	0413	6110	9740	0437	7540	0481	0523	1650	0737	1199	1199	1199	1199	1199	1199
FIEL	18 0	78 0.	79 0.	00 0	81 0.	82 0.	84 0.	96 0.	90 06	96 0.	0 50	19 0.	43 0.	.0 98	55 0.	56 0.	12 0.	27 0.	31 0.	32 00	33 0.
THE STREAM FUNCTION FIELD IS GIVEN BY	0.0000 0.0044 0.0177 0.0399 0.0711 0	0.0000 0.0044 0.0178 0.0402 0.0714 0	0.0000 0.0044 0.0179 0.0403 0.0716 0	0.0000 0.0045 0.0180 0.0405 0.0719 0.1122 0.1614 0.2194 0.2863 0.3619 0.4462 0.5394 0.6413 0.7520 0.8716 1.0000	0.0000 0.0045 0.0181 0.0407 0.0722 0	0.0000 0.0045 0.0182 0.0409 0.0727 0	0.0000 0.0046 0.0184 0.0413 0.0733 0.1141 0.1637 0.2220 0.2890 0.3646 0.4488 0.5416 0.6431 0.7533 0.8723 1.0000	0 1410.0 6140.0 3810.0 3400.0 0000.0	0.0000 0.0047 0.0190 0.0426 0.0753 0.1167 0.1667 0.2253 0.2923 0.3677 0.4516 0.5441 0.6451 0.7547 0.8730 1.0000	0.0000 0.0049 0.0196 0.0437 0.0769 0	0.0000 0.0051 0.0205 0.0454 0.0793 0	0.0000 0.0055 0.0219 0.0481 0.0829 0	0.0000 0.0062 0.0243 C.0523 0.0883 0.1313 0.1815 0.2392 0.3049 0.3788 0.4611 C.5518 0.6510 0.7587 0.8750 1.0000	0.0000 0.0073 0.0284 0.0597 0.0968 0.1392 0.1881 0.2448 0.3095 0.3826 0.4642 0.5542 0.6528 0.7600 0.8757 1.00000	0.0000 0.0000 0.0355 0.0737 0.1101 0	0.0000 0.0110 0.0456 0.1199 0.1274 0.1600 0.2036 0.2568 0.3191 0.3904 0.47C5 0.5592 0.6565 0.7625 0.8769 1.0000	0.0000 0.0124 0.0512 0.1199 0.1372 0	0.0000 0.0130 0.0527 0.1199 0.1398 0.1720 0.2141 0.2658 0.3268 0.3969 0.4759 0.5636 0.6599 0.7647 0.8781 1.0000	0.0000 0.0132 0.0531 0.1199 0.1399 0	0.0000 0.0133 0.0532 0.1199 0.1288 0.1739 0.2177 0.2702 0.3314 0.4013 0.4799 0.5670 0.6626 0.7667 0.8791 1.00000	0.0000 0.0133 0.0523 0.1199 0.1373 0.1735 0.2181 0.2712 0.3328 0.4029 0.4815 0.5684 0.6638 0.7675 0.8796 1.0000
IN FUN	.000	**00*	**00*	*00*	• 0045	• 0045	9700	9700	1,000	•0000	1500	• 0005	.0062	.0073	0000	.0110	.0124	.0130	\$610	0133	.0133
THE STREAM FUNCTION FIELD IS GIVEN BY	0000	0000	0 000	0000	6000	0 000	0 000	0000	0000	000	5000	0000	0 000	0000	0 000	000	0 000	0000	000	0000	0 000
T. F.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0

APPENDIX B

COMPUTER PROGRAM FOR SOLVING THE EQUATIONS OF MOTION

0000	CAPT SPFC CART AVAIL PHY	DAY DRIVE DOOD OOO1			
V2 W11 ACT	ACTUAL 16K CONFIG 16K				
// FOR +ORD INTEGERS	NTEGERS				
SURBOL	SURROUTINE GTPS!				
	THIS SUBROUTINF RETRIEVES THE STREAM FUNCTION ARRAY AND ASSOCIATED CONSTANTS FROM DISK	REAM FUNCTION ARRAY A	NND ASSOCIATED		
	COMMON PSI(61,80), URAT, RB, NPRB, NPZB, RA, NPR, INTVL PFAN(1:1)PSI	ZB.RA.MPR.INTVL			
READL	RFAD(1:5430) ITERS, URAT, UA, RR, NPRB, NPZB, UB, RA, NPZ, NPR SPITE(4, 200)	SONDZE OUR ORA ONDZ ONDR			
X21TE	WELTE(3,201)RA, RR, NPZ, NPR, NPZR, NPRR, URAT, UA, UB, ITERS WRITE(3,202)	PROURATOUA DE ITERS			
0200	6 - ZdN = 6WZdN				
24 #21TF(26 #31F(3+02)(91)	יערו			
201 FORWAT	1 APAMETERS 10408A FUNCTION FOR FL	TWC	PIPES WITH P		
10H / 515	915/ 10H NP2	5/ 10H NPRB	/ 510 =		
4104 1	= +15)				
203 FORWAT 203 FORWAT 2FTURN	(*************************************	VALUES OF PSI STOKED ON DISK ARE.	,		
VARIABLE ALLOCATIONS PSI (2C) = 7FFF = 59F0	1APLF ALLOCATIONS 151(20)=7FFF=59F0 18A1(80)=590F	RB (RC) = 590C	NPRB (1C) # 590B	MP28 (101) 8590	RA (RC) = 5908
4PR([C)=5907		UA(R)=0000	UBIR 1=0002	ITERS(I)=0004	NPZ(1)=0005

PAGE 1

*00F3

STATEMENT ALLOCATIONS 200 =000E 231 =CC1A 202 =008D 203 =C0A6 24

PEATURES SUPPORTED ONE WORD INTEGERS

PAGE 2									
SWRT SURPROGRAMS	X 510F	51	OI SUBSC SDRED SDAF SDF	SDRED	SDAF	SDF	108		
INTEGER CONSTANTS									
1=000A 5430=000B	98	3=000C	0000=6		-				
CORE REQUIREMENTS FOR GIPSI COMMON 9770 VARIABLES	GTPSI	10 PROGRAM 272	272						
RELATIVE ENTRY POINT ADDRESS IS ODAB (HEX)	ADDRESS	IS DOAR (HE)	5					r	
FUD OF COMPILATION									
// DUP									
*STORE WS UA GTPSI	1PS1	PA CAT	2130						

1/ FJECT

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY PARMISHED TO DDQ

PAGE 5

.233630E 01=002E .100000E=03=0030	.129536E 01=003A .986000E 01=003C .100000E 00=003E	*112350E 01=0044	3=0056 3=0057 4=0058	2 CD3E 4ALES 42 PROGRAM 426	RELATIVE ENTRY DOINT ANDRESS IS 3063 (HFX)			
SEAL CONSTANTS	.691050F 01=0036	.100100F-01=0042	INTEGED CONSTANTS 1=0054 20=0055	CORE REQUIREMENTS FOR CORE	ATIVE SATES DOINT	FNO OF COMPILATION	40C //	

Daf's //

THIS PAGE IS BEST QUALITY PRACTICABLE

)+0.5+weF(J))+0.5*weF(J) }+0.5*weF(J) }+0.5*weF(J) }+0.5*weF(J) }+WeF(J)	Pass 1 2 cusses 1 2 cusses 2 3 cusses 3 4 cusses 3 5 cusses 3 5 cusses 3 5 cusses 3 6 cuss	# CONTROL OF THE STATE OF THE S			
PASS 2 9 DO 22 J=1.W 5AVY(J)=F(J) 70 72 J=1.W 5AVY(J)=F(J) 71 11]=5AVY(J)+D.5*HPF[J) 72 Y(J)=5AVY(J)+D.5*HPF[J) 73 Y(J)=5AVY(J)+D.5*HPF[J) 74 Y(J)=5AYY(J)+D.5*HPF[J) 75 Y(J)=5AYY(J)+D.5*HPF[J) 75 Y(J)=5AYY(J)+D.5*HPF[J) 75 Y(J)=5AYY(J)+HPF[J)	7 [PUNG=1 PASS 2 3 50 22 J=1.N \$AVY(J)=Y(J) PH(J)=F(J) XXX+0.5+H PUNG=1 RFUNG=1 RFUNG=1 A Y(J)=SAVY(J)+0.5+HF[J) PUNG=1 PUNG=1 	PASS 1			
9 55 5 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9ASS 2 9 DO 22 J=1.W SAVY(J)=Y(J) PH(LJ)=Y(J) PH(LJ)=Y(J) N=X+D=Y=W I PUNGS 1 R=X+D=Y=W I PUNGS 1 R=Y(J)=SAVY(J)+O.5=W=F(J) SY (J)=SAVY(J)+O.5=W=F(J) SY (J)=SAVY(J)+W=F(J) R=Y(M) PASS 4 PASS 5 PASS 6 PASS 7 PASS 6 PASS 7 PASS				
3 00 22 J=1.N \$AVY[J]=Y[J] \$AVY[J]=Y[J] 22 Y[J]=Y[J] X=X+0.4=H IRUNG=1 RETURN PASS 3 4 00 33 J=1.N PASS 3 4 00 33 J=1.N PASS 3 4 00 43 J=1.N PASS 4 5 00 44 J=1.N PASS 4 5 00 44 J=1.N PASS 4 FILIS PATICAL HEF[J] RETURN REX+0.5+H RETURN RETURN PASS 5 FILIS PATICAL HEF[J] RETURN PASS 5 FILIS PATICAL HEF[J] RETURN PASS 5 PATICAL HEF[J] RETURN PASS 5 PATICAL HEF[J]	9 DO 22 J=1.N SAVY(J)=Y(J) PH(J)=F(J) 22 Y(J)=SAVY(J)+0.5+H=F(J) X=X+0.5=H FUNG=1 R=X+0.5=H RETURN PASS 3 4 DO 22 J=1.N PASS 3 4 DO 44 J=1.N PHI(J)=PHI(J)+2.0=F(J) RETURN PASS 4 5 DO 44 J=1.N PHI(J)=PHI(J)+2.0=F(J) RETURN RETURN PASS 5 6 DO 55 J=1.N PASS 5 6 DO 55 J=1.N PASS 5 FETURN PASS 5 RETURN PASS 5 FETURN PASS 7 RETURN PASS 7 FETURN PASS 7 RETURN PASS 7 PAUNG=2 RETURN PASS 7 PAUNG=2 RETURN PASS 7 PAUNG=2 RETURN	PASS 2		the second secon	The second secon
X=X+0.59+ I PUNG=1 RETURN PASS 3 J=1.0N PASS 4 PO 33 J=1.0N PHI(J)=PHI(J)+2.0+F(J) I PUNG=1 RETURN PASS 4 5 DO 44 J=1.0N PHI(J)=PHI(J)+2.0+F(J) 44 Y(J)=SAYY(J)+H+F(J) X=X+0.5+H I RUNG=1 RETURN PASS 5	Y=X+0.59+H Y=X+0.59+H PASS 3 A DO 33 J=1.N PASS 3 A DO 33 J=1.N PHI(J)=PHI(J)+2.0*F(J) IQUYG=1 PHI(J)=PHI(J)+2.0*F(J) X=X+0.5+H Y=X+0.5+H Y=X+0.5+H Y=X+0.5+H RETURN A Y(J)= SAVY(J) + F(J))*H/6.0 FT(IQN PASS 5 A DO 55 J=1.0*N PASS 5 A DO 55 J=1.0*N PASS 5 FT(IQN PASS 5 FT(IQN				
39 Y(J)=SAVY(J)+0.5*H*F(J) 19UNG=1 RFT(JRN PASS 4 5 DO 44 J=1.0N PHI(J)=PHI(J)+2.0*F(J) 4 V(J)=SAVY(J)+H*F(J) X=X+0.5*H 1RUNG=1 RETURN PASS 5	39 Y(J) = SAVY(J) +0.5*H*F(J) 19UNG=1 19UNG=1 19UNG=1 19UNG=1 19UNG=1 19UNG=1 19UNG=1 19UNG=1 19UNG=1 19UNG=2	X=X+0.5+H IRUNG=1 RFTURN PASS 3 PASS 3			
PASS 4 5 DO 44 J=1.N PHI(J)=PHI(J)+2.0*F(J) 44 Y(J)=SAVY(J)+H#F(J) X=X+0.55+H IRUNG=1 RETURN PASS 5	PASS 4 5 DO 44 J=1.0N PHI(J)=PHI(J)+2.0+F(J) 44 Y(J)=SAYY(J)+H*F(J) X=X+0.5+H IRUNG=1 RETURN PASS 5 6 DO 55 J=1.0N 55 Y(J) = SAYY(J) + (PHI(J) + F(J))**H/6.0 RETURN FTURN FTURN FTURN FTURN	Y(J) *SAVY(J) +0.5*HPF(J) FRUNG=1 RETURN			
PHI(J)=PHI(J)+2.0#F(J) Y(J)=SAVY(J)+H#F(J) X=X+0.5*H IRUNG=1 RETURN PASS 5	PHI(J)=PHI(J)+2.0+F(J) Y(J)=SAVY(J)+W=F(J) X=X+0.5*H IRUG=1 RETURN RETURN PASS 5 DA 55 J=1.N Y(J) = SAVY(J) + (PHI(J) + F(J))*H/6.0 RETURN RETURN RETURN RETURN RETURN RETURN RETURN RETURN	PASS 4 50 64 Jajan			
IRUNG=1 RETURN PASS 5	RUNG=1 RETURN DASS 5 DASS 5 VEJ 5 SAVY(J) + (PHI(J) + F(J))*H/6.0 RETURN	PHI(J)=PHI(J)+2.0+F(J) Y(J)=SAVY(J)+H+F(J) X=X+0.5*H	3000×6		
White or candidate and an included the party of the party	DO 55 J=1.0N YLJ) = SAVY(J) + (PH](J) + F(J))#H/6.0 IRUNG=2 RFTURN				

CNS

JII 1=00C8 VATIABLE ALLOCATIONS
PHIR 1=0062-0000 SAVYIR 1=00C6-0064

=017E 6 -0160 44 =0152 5 *0141 33 *011E 4 =0108 22 STATEMENT ALLOCATIONS
2 =0105 3 =010

-01A3

*019F 55

ONE WORD INTEGERS

SUBSC FSTOX FSTO FMPYX FDIV FLD FLDX CALLED SURPROGRAMS FADE FADEX FMPY

SUBIN

.600000E 01 = 00CE *FSCHOOF SCHOOCA . 200000E SINDSCC

2=0001 INTEGER CONSTANTS 1=0000

250 202 PROGRAM CORF REQUIREMENTS FOR SBV22 COMMON D VARIABLES

PELATIVE ENTRY POINT ADDRESS IS COD2 (HEX)

FND OF COMPILATION

*STORE WS UA SBW22 CART ID 0108 DA ADDR 4F55 DB CNT 0012 dno //

11 FJECT

THIS PAGE IS BEST QUALITY PRACTICABLE

IF CORRECT STRFAM FUNCTION VALUES ARE ALREADY IN TEMPORARY STORAGE PASS BY RETRIEVAL FROM DISK STORAGE ESTABLISH PHYSICAL PROPERTIES FOR CALCULATING COLLECTION EFFICIENCY DIMENSION G(4), DG(4)

COMMON PSI(61,80), URAT, RB, NPRB, NPZB, RA, NPR, INTVL

DEFINE FILE 115439, 2, U, 18)

READ(2, 100)G4LFT, G4RIT, SIGNL, DTAU, NIBP, NSBP, NX

WRITE(3, 200)

WRITE(3, 201)G4LFT, G4RIT, SIGNL, DTAU, NIBP, NSBP, NX CALL STREAM FUNCTION ARRAY FROM DISK STORAGE AND SET CONSTARTS FOR FLUID VELOCITY CALCULATION DC IS CYLINDER DIAMETER, CW
DP IS PARTICLE DIAMETER, CW
RHO IS FLUID DENSITY, GM/CC
SIGMA IS PARTICLE DENSITY, GM/CC
WHY IS ARSOLUTE VISCOSITY OF FLUID, POISE
UN IS FLUID VELOCITY IN INSIDE PIPE CM/SEC
ISR IS STARTING RATIO 2/RB = ~G(3) READ (2-10110C.DP.RHC.SIGMA.XNU.UR.ISR IS FREE STREAM VELOCITY, CW/SEC REZERHO+DP+UA/XMU XK=SIGMA+DP++2+UA/(9+XMU+DC) THE OWNER PROPERTY OF SECTION CALL GTPSI WRITE(3,211) INTVL CONTINUE READ(2-111) ICONF IF(ICONF)2-3-3 READIZ-1111 INTVL #10CS(1132 PRINTER) #10CS(D15K) #L15T ALL UA . UR/URAT ONE WORD INTEGERS CONTINUE #10CSICARDI 5 PAGF R 11 FOR 000000000000 UUUU 0000

DAGE

PAGE 10

```
1 1HC )
201 FORMAT( 10HCS4LEF = 0F10.6/ 10H G4RIT = 0F10.6/10H SIGNL = 0
1 F4.0/ 10H DTAU = 0F10.6/ 10H NIRP = 014/ 10H NSRP = 014/
2 10H NX = 014)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              101 FORWAT(FIG.5.FIG.7.FIG.6, FIG.6.FIG.7.FIG.4.15)
111 FORWAT(15)
200 FORWAT(111, 37x, 40HCOLLECTION FFFICIENCY OF A CIRCULAR TUBE/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            100 FORWATIIOX,F10.7.20X,F10.7.19X,F3.0/ 10X,F10.7.20X,13,25X,14/
                                                                                                                                                                                                                                                                                                                                                                                      RSINF=SORT(PSI(NPRB-NPZB)) + RA/RR
PSIHT = PSI(NPRB-NPZB)
DO 25 1=1.9NPR
IF(PSI(1,JO)-PSIHT)25,25,24
IF(PSI(1,JO)-PSIHT)25,25,24
RSINF = FLOAT(1-2) + SORT(PSIHT/PSI(1-1,JO)) + DELR+RA/RB
GO TO 28
                                                                                                                                                                                         TAW = TAU + 0.0001
WRITE(3,204)TAW.G(1),G(2),G(3),G(4),UZ,UR.XCDRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FORMATS FOR INPUT AND OUTPUT STATEMENTS
                                                                                                                                                        PRINT SOLUTIONS FOR FINAL VALUE OF TAU
                                                                                                                                                                                                                                             CALCULATE THE COLLECTION EFFICIENCY
                                                                                                                                                                                                                                                                                                                                                     CALCULATE THE SAMPLING EFFICIENCY
                                             IF ((6(4)-1.0)*SIGNL-0.0)19.19.20
G4RIT=642ER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE(3,210) RSINF
CR=(642FR/RSINF)##2
WRITE(3,207) CR
READ(2,111)NSTOP
IF(NSTOP)1,30,30
                                                                                                                                                                                                                                                                             WRITE(3.209) G42FR
                                                                                                                                                                                                                                                                                                                    WRITE(3,206)EN
                                                                                                                                                                                                                                                                                                  FV = 642FR**2
                                                                                                 20 GALFT-G4ZER
21 CONTINUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                  GO TO 21
=
                                                                   10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                54
PAGF
                                U
                                                                                                                                                                                                                               UUU
                                                                                                                                                                                                                                                                                                                                     CUU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LUU
```

FDIV FMPYX SWRT FSURX FSUB FADD FAXB FSORT

3.000

FSTO

FLOX

FLD

FDIVX

-016D -0302 -0533

-01A4 -03CC

5 5

*019C *0296 *0502

RA(RC)=59D8
G4RIT(R)=001A
S1GMA(R)=0026
P(R)=0032
G4ZER(R)=0034
TAW(R)=0064
IB(I)=0064
NR(I)=0065
J(I)=0068

4
-
9

PEAL CONSTANTS .10	.240000E 01=0078	03-0	986	.400000E 01=007A	01=0C7A C3=0086	.100000E-02=007C	.000000E co=c07E	00=007E	.200000E 01=0080	01-0080
INTEGER CONSTANTS 2=00R8 3=0089		1=008A		0=008B	\$=00BC					
CORF REQUIREMENTS FOR COMMON 9770 VARIABLES		118 P	PROGRAM	1420						
END OF COMPILATION										
// xeo 1										
#F11 FC/1,051131										

0.50000	2.000000	-1-	0.020000	10	10	20
39799	64817	SIGNE	DIAU	AIAD	NSAP	××

DISK STOPAGE CHECK

STREAM FUNCTION FOR FLOW IN TWO CONCENTRIC PIPES WITH PARAMETERS

90.09	12.00	. 89	61	65	13	3.0000	1.0000	3.0000	2890
40	38	NP7	MON	NPZA	Mosa	URAT	NA U	40	ITERS

0.0000 0.0044 0.0177 0.0399 0.0711 0.1111 0.1599 0.2177 0.2844 0.3599 0.4444 0.5377 0.6399 0.7511 0.8711 1.0000 0.0000 0.0044 0.0178 0.0401 0.0712 0.1113 0.1602 0.2181 0.2848 0.3604 0.4448 0.5381 0.6402 0.7513 0.6712 1.0000 0.0000 0.0044 0.0178 0.00402 0.0714 0.1116 0.1606 0.2185 0.2852 0.3608 0.4452 0.5385 0.6406 0.7515 0.8713 1.0000 0.0044 0.0179 0.0403 0.0716 0.1119 0.1610 0.2189 0.2857 0.3613 0.4457 0.5389 0.6409 0.7517 0.8714 1.0000 0-1398 0-1737 0-2165 0-2685 0-3295 0-3994 C-4781 0-5654 0-6613 0-7657 0-8786 1-00000 C.CC47 C.0190 C.0426 C.0753 O.1167 O.1667 O.2253 O.2923 O.3677 C.4516 O.5441 C.6451 O.7547 C.8730 1.0C00 0.0049 0.0196 0.0437 0.0769 0.1188 0.1690 0.2276 0.2945 0.3698 0.4535 0.5456 0.6463 0.7555 0.8734 1.0000 0.0000 0.0355 0.0219 0.0481 0.0829 0.1257 0.1762 0.2345 0.3008 0.3754 0.4582 0.5495 0.6493 0.7576 0.6744 1.0000 0.0000 0.0062 0.0243 0.0523 0.0883 0.1313 0.1815 0.2392 0.3049 0.3788 0.4611 0.5518 0.6510 0.7587 0.6750 1.0000 0.0000 0.0073 0.0284 0.0597 0.0968 0.1392 0.1291 0.2448 0.3095 0.3826 0.4642 0.5542 0.6528 0.7600 0.8757 1.0000 ᲘᲑᲘᲘᲘᲘ Ი"ᲬᲘᲛᲘ Მ"ᲔᲨᲜᲬ Ნ**"**ᲔᲒᲛᲨ Ნ"ᲔᲒᲛᲨ Მ"11Ე1 Მ"1493 Ნ"1958 Მ"2568 Მ"3144 Მ"ᲛᲧᲜᲜ Მ"4*Რ*74 Მ"5567 Მ"6547 Მ"7612 Მ"Მ76岁 1"ᲛᲔᲛᲛ ᲢᲢᲢᲘᲘᲘ 0.0110 0.0456 0.1199 0.1274 0.1600 0.2368 0.3368 0.3191 0.3904 0.4705 0.5592 0.6565 0.7625 0.8767 1.0300 0.0000 C. COSI 0.0205 0.C454 C. C793 0.1216 0.1721 C. 2307 0.2974 0.3724 C. 4557 0.5474 C. 6477 0.7565 0.8739 1.CCCC 0.7528 0.7533 0.7520 1.7524 0.7540 0.7636 0.7647 0.1199 0.1372 0.1679 0.2099 0.2619 0.3234 0.3939 0.4733 0.5615 0.6583 0.5394 0.6413 0.5400 0.6418 0.5427 0.6440 0.1398 0.1720 0.2141 0.2658 0.3268 0.3969 0.4759 0.5636 0.6599 0.5407 0.6424 0.5416 0.6431 0.0000 0.0045 0.0180 0.0405 0.0719 0.1122 0.1614 0.2194 0.2863 0.3619 0.4462 0.0407 0.0722 0.1127 0.1620 0.2201 0.2870 0.3626 0.4469 0.0409 0.0727 0.1133 0.1627 0.2209 0.2879 0.3635 0.4478 C.0413 0.0733 C.1141 C.1637 0.2220 C.2890 0.3646 C.4488 0.0186 0.0419 0.0741 0.1152 0.1650 0.2234 0.2904 0.3660 0.4501 THE CUMPENT VALUES OF PSI STORED ON DISK ARE THE INTERVAL OF THE ARITTEN VALUES IS 0.1199 0.1199 0.0182 C.0124 0.0512 0.0181 0.0184 0.0527 0.0045 9400.0 0.0130 000000

THE PHYSICAL PARAMETERS ARE 0.794345E-01 0.1374E 01 1.99500 0.0050000 0.001213 1.000000 0.001789 29.2374 5 DP DP SIGWA XMU UA UA

THE MOTION OF A COITICAL PARTICLE IS GIVEN BY

	CDRE	24.0000	24-0006	24,0004	24,0003	24.0008	24.0005	24.0013	24.0010	24,6020	24-0014	24.0030	24-0027	24.0019	24.0042	24.0030	24.0067	24.0118	24.0085	24.0214	24.0128	24.0245	24.0498	24,1132	24.4007	
	ď	9,0000-	-0-0046	-0-00+0-	-0-0057	-0.0063	-0.0076	-0.0067	-2.0100	-0-0125	-0-0145	-0.0185	-0.6218	-0.0283	-0-0338	-0.0446	-0.0541	-0.0732	-0.0903	-0-1254	-0-1807	-0.2688	-0.4319	-0-7548	-0-6267	
	70	1.0020	1.0032	1.0043	1.0063	1.0078	1.0103	1.0122	1.0144	1.0183	1.0214	1.0269	1.0314	1.0393	1.0457	1.0572	1.0665	1.0832	1.0966	1.1347	1.1703	1.2138	1.3305	1.6108	2.8384	
	(4)8	1.250000	1.249095	1.248159	1.247135	1.245995	1.244693	1.243181	1.241419	1.239326	1.236808	1.233756	1.230065	1.225563	1,219981	1.213004	1.204200	1.192889	1-176094	1.158742	1.132598	1.096348	1.042921	0.957491	0.810398	
	6(3)	-5.000000	-4.799558	-4.598900	-4.397952	-4-196700	-3.995085	-3.793057	-3.590579	-3.387547	-3.183948	-2.979363	-2.773988	-2.567551	-2.359786	-2-150419	-1.939117	-1.725401	-1.508673	-1.288249	-1.061076	-0.827169	-0.581631	-0.313697	0.031483	
	6(2)	-0.004612	-0.004523	-0.004862	-0.005347	-0.006074	-0.006957	-C.CO9124	-0.009561	-0.011458	-0.013817	-0-016849	-0.020324	-0.024776	-0.031212	-0.039706	-0.049674	-0-064910	-0.084059	-0.112612	-0.149771	-0.214183	-0.328062	-0.541864	-0.943110	
1.250000 2.000000	6(1)	1,002017	1,002612	1,003966	1.005386	1.007127	1.004980	1.0111183	1.213679	1.016748	1.020335	1-024671	1.02936#	1.735249	1.042709	1.051016	1.062152	1.076004	1.091695	1.119230	1.15057#	1.107810	1.275572	1.449531	2.195671	
641 FF = 642	TAU	0.000	0.2000	0.4000	0004.0	00000	1.0000	1.2000	1.4000	1.4000	1.8000	2.0000	2.2000	2.4000	2000	2.8000	3.0000	3.2000	3.4000	3.6000	3000 · E	C000	4.2000	4.4000	** A000	

THE MOTION OF A CRITICAL PARTICLE IS GIVEN BY

		0000	50000*2	7000	2000	9000	*000	1100	8000	8100	2100	0100	0023	9100	0400	5026	9500	0900	7 900	6900	9610	0282	0810	0428	1233
	CDRE	24.	24.	24.	24.	24.	34.	24.	24.	24.	24.	24.	24.	24.	24.	243	24.	24.	24.	24.	24.	24.	56.	24.	26.
	5	-0.0051	-0.0054	-0.0056	-0.0066	-0°0074	-0.0088	-0.0100	-0.0119	-0.0141	-0.0164	-0.0206	-0.0241	-0.0306	-0.0359	-0.0466	-0.0550	-0.0736	-0.0892	-0-1198	-0-1519	-0-2116	-0.2979	-0.4177	-0-7361
	70	1.0017	1.0026	1.0036	1.0052	1.0063	1.0083	1.0099	1.0116	1.0146	1.0169	1.0209	1.0240	1.0294	1.0366	1.0448	1.0510	1.0615	1.0692	1.0808	1.1033	1-1151	1.1122	1.1353	1.0917
	(+)9	1.529785	1.528744	1.527645	1.526445	1.525113	1.523597	1.521846	1.519618	1.517425	1.514567	14511160	1-507064	1.502133	1.496097	1.488698	1.479502	1.467992	1-453473	1.435034	1.411255	1.379064	1.335886	1.273719	1.177222
	6(3)	-5.000000	-4.799630	-4.599087	-4.398308	-4.197280	-3.995962	-3.794316	-3.592316	-3.389887	-3.186950	-2.983451	-2.779315	-2.574399	-2.368416	-2.160969	-1.952122	-1-741715	-1.529555	-1.315505	-1.099379	-0.878923	-0.656165	-0.429785	-0-20139K
	6(2)	-0.005172	-0.005297	-0.005708	-0.006262	-0.007085	-0.000078	-0.009383	-0.010975	-0.013054	-0.015611	-0.018397	-0.022467	-0.027099	-0.033359	-0.040775	-0.051472	-0.063867	-0.081855	-0-102978	-0.138016	-0.195728	-0.248841	-0.377610	-0.424759
10 1.528320 1.529785 1.531250	6(1)	1.001737	1.002163	1.003264	1.004420	1.005826	1.007310	1.009054	1.011001	1.013354	1.016059	1.018824	1.022584	1.026567	1.033905	1.040381	1.044098	1.055963	1.065591	1.074775	1.691054	1.110081	1.115664	1,137621	1-128947
17FR = 64L FF = 64Z FR = 64R 17 =	TAU	0.0000	0.200	0.4000	0.6000	0.8000	1.000	1.2000	1.4000	1.6000	1.8000	2.0000	2.2000	2.4000	2.6000	2.8000	3.0000	3.2000	3.4000	3.6000	3. 4000	4.0000	4.2000	4.4000	0009-7

THE MOTION OF A CRITICAL PARTICLE IS GIVEN BY

64RIT =	1.529886						
TAU	6(1)	6(2)	6(3)	(+)9	70	3	CORE
000000	1.001737	-0.005172	-5.000000	1.529886	1.0017	-0.0051	24.0000
0.2000	1.002163	-0.005297	-4.799630	1.528845	1.0026	-0.0054	24.0005
000000	1,003264	-0.005708	-4.599087	1.527747	1.0036	-0.0056	24.0004
0009-0	1.004420	-0.006262	-4.398308	1.526547	1.0052	-0.0066	24.0002
0008-0	1.005826	-0.007085	-4.197280	1.525214	1.0063	-0.0074	24.0006
1.0000	1.007310	-0.008378	-3.995962	1.523699	1.0083	-0.0068	24.0004
1.2000	1,009054	-0.009383	-3.794316	1.521948	1.0099	-0.0100	24.0011
1.4000	1.011001	-0.010975	-3.592316	1.519920	1.0116	-0-0115	24.0008
1.6000	1,013358	-0.013054	-3.389887	1.517527	1.0146	-0.0141	24.0018
1. 0000	1,016059	-0.015611	-3.186950	1.514669	1.0169	-0.0164	24.0012
2.0000	1.018824	-0.018397	-2.983451	1.511261	1.0209	-0.0206	24.0010
2.2000	1.022584	-0.022467	-2.779315	1.507185	1.0240	-0.0241	24.0023
2.4000	1.026567	-0.027099	-2.574399	1.502235	1.0294	-0.0306	24.0016
2.6000	1.033905	-0.033359	-2.368416	1.496198	1.0366	-0.0359	24.0040
2.8000	1.040381	-0.040775	-2.160969	1.488600	1.0448	9940-0-	24,0026
00000-6	1.048098	-0.051472	-1.952122	1.479604	1.0510	-0.0558	24.0056
3.2000	1.055963	-C.063867	-1.741715	1-468093	1.0615	-0.0736	24.0040
3.4000	1.065591	-0.091855	-1.529555	1.453574	1.0692	-0.0892	24.0087
3.4000	1-074775	-2.102978	-1.315505	1-435136	1.0808	-0-1198	24.0063
3. AOOO	1.098347	-0-137111	-1.099478	1.411389	1.1033	-0-1519	24.0224
0000-	1.109863	-0.185655	-0.879219	1.379264	1.1151	-0.2116	24.0283
4.2000	1-115647	-0.248836	-0.656477	1.336091	1.1122	-0.2979	24.0180
0007.7	1.137620	-0.377618	-C.43009E	1.273925	1.1353	-0-4177	24.0428
0009**	1.125415	-0.623691	-0.202971	1.178444	1.0917	-0.7361	24-1253
6.7709	1.290820	-1.631347	0.003258	1.008198	1.6846	-1.5900	24.9538
THE UPSTRE	UPSTREAM PARTICLE RADIUS IS 0.152	5 15 0.1529E 01					
S COLLEC	THE COLLECTION EFFICIENCY IS 0.2340F 0	-					

THE SAMPLING FFFICIENCY IS 0.7818E 00

DOCUMENT C	CONTROL DATA -		ne overall degum	ent is classified)
1. ORIGINATING ACTIVITY		2a. DOCUMEN		CLASSIFICATION
DEFENCE RESEARCH ESTABLISHMENT SUF	FIELD	26. GROUP		
DETERMINATION OF THEORETICAL SAMPLEMATTER THROUGH A DRES SAMPLING PRO				CULATE
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	Technical I	Paper		
& AUTHOR(S) (Lest name, first name, middle initial) Mellsen, Stanley B.				
& DOCUMENT DATE June 1979	76. TOTAL NO	. OF PAGES	76. NO. OF	REFS
13E01 13E99		TECHNICAL		499
Bb. CONTRACT NO.		OCUMENT NO.(S) (Any other n	umbers that may be
10. DISTRIBUTION STATEMENT UNLIMITED DISTRIBUTION			nemuso.	
11. SUPPLEMENTARY NOTES given northerdises of Pures and arm to describe and transfer seeds to the product of the tests indirectly of the test indirectly of the tests indirectly of the test indirectly of tests indirectly of the test indirectly of the tes	12. SPONSORIF	NG ACTIVITY	ricumba Karibasaga a ta Karibasaga a ta	e who Aidad os whe so mae yr therebook.
13. ARSTRACT STREET, THE OTHER PARTIES AND ASSESSED.				

Sampling efficiencies are calculated for an aspirated particulate matter sampling probe under various conditions of anisokinetic flow. A mathematical model developed for the purpose was used to obtain results for a wide range of particle sizes and flow velocities. The results can be used to predict or correct sampling errors in field or laboratory experiments. Using the same test parameters as in previous experimental tests by other workers, sampling efficiencies were calculated and the results were found to agree favorably with the results of the experiments.

Security Classification

KEY WORDS

Particulate Sampling
Collection Efficiency

Sampling Probe

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the organization issuing the document.
- DOCUMENT SECURITY CLASSIFICATION: Enter the overall security classification of the document including special warning terms whenever applicable.
- 2b. GROUP: Enter security reclassification group number. The three groups are defined in Appendix 'M' of the DRB Security Regulations.
- DOCUMENT TITLE: Enter the complete document title in all capital letters. Titles in all cases should be unclassified. If a sufficiently descriptive title cannot be selected without classification, show title classification with the usual one-capital-letter abbreviation in parentheses immediately following the title.
- 4. DESCRIPTIVE NOTES: Enter the category of document, e.g. technical report, technical note or technical letter. If appropriate, enter the type of document, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.
- AUTHOR(S): Enter the name(s) of author(s) as shown on or in the document. Enter last name, first name, middle initial.
 If military, show rank. The name of the principal author is an absolute minimum requirement.
- DOCUMENT DATE: Enter the date (month, year) of Establishment approval for publication of the document.
- TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- /b. NUMBER OF REFERENCES: Enter the total number of references cited in the document.
- 8a. PROJECT OR GRANT NUMBER: If appropriate, enter the applicable research and development project or grant number under which the document was written.
- 8b. CONTRACT NUMBER: It appropriate, enter the applicable number under which the document was written.
- 9e. ORIGINATOR'S DOCUMENT NUMBER(S): Enter the official document number by which the document will be identified and controlled by the originating ectivity. This number must be unique to this document.

- 9b. OTHER DOCUMENT NUMBER(S): If the document has been assigned any other document numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. DISTRIBUTION STATEMENT: Enter any limitations on further dissemination of the document, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this document from their defence documentation center."
 - (2) "Announcement and dissemination of this document is not authorized without prior approval from originating activity."
- 11. SUPPLEMENTARY NOTES: Use for additional explanatory
- SPONSORING ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summery of the document, even though it may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each peragraph of the abstract shall end with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (TS), (S), (C), (R), or (U).

The length of the abstract should be limited to 20 single-spaced standard typewritten lines; 74 inches long.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a document and could be helpful in cataloging the document. Key words should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context.

AD-A071 546

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON (ALBERTA) F/G 20/4
DETERMINATION OF THEORETICAL SAMPLING EFFICIENCIES FOR ASPIRATE--ETC(U) JUN 79 S B MELLSEN

UNCLASSIFIED DRES-TP-499

NL

END DATE 7-80 DTIC

DA 0715

SUPPLEMENTARY

INFORMATION

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD TECHNICAL PAPER NO. 499

ASPIRATED PARTICULATE MATTER THROUGH A DRES SAMPLING PROBE IN ANISOKINETIC FLOW (U)

by

Stanley B. Mellsen

ERRATA SHEET

"D" in Figures 7 to 14 denotes the diameter of the collection tube. In terms of the symbols defined under Notation this should read $2r_{\rm R}$.

Figure 14 caption, second line, should read "constant flow velocity".