

Rozwiązania Kontestu 1 – Finaliści

Zadanie 1. Wielomian $P(x) = a_{2n}x^{2n} + a_{2n-1}x^{2n-1} + \ldots + a_1x + a_0$, gdzie $a_{2n} \neq 0$ nie ma żadnych pierwiastków rzeczywistych. Udowodnij, że $Q(x) = a_{2n}x^{2n} + a_{2n-2}x^{2n-2} + \ldots + a_2x^2 + a_0$ również nie ma pierwiastków rzeczywistych.

Rozwiązanie 1. Zakładamy bez straty ogólności, że $a_{2n} > 0$. Załóżmy nie wprost, że istnieje pierwiastek a wielomianu Q. Wielomian W(x) = P(x) - Q(x) jest nieparzysty. Zatem

$$0 = W(a) + W(-a) = P(a) + P(-a) - Q(a) - Q(-a) = P(a) + P(-a),$$

to jednak oznacza, że na przedziale [-a,a] istnieje x_0 takie, że $P(x_0) \leq 0$. Jednak przez to, że $a_{2n} > 0$ dla dostatecznie dużych wartości jest dodatni. Istnieje zatem pomiędzy nimi pierwiastek. Sprzeczność.

Zadanie 2. Znajdź wszystkie takie pary liczb pierwszych p, q, że spełniona jest podzielność:

$$pq \mid 5^{q} + 5^{p}$$

Źródło: Zadanie 2 z Chinese National Olympiad 2009

Rozwiązanie 2. Przypadek 1: p = q. Wtedy $p^2 \mid 2 \cdot 5^p$. A więc p = 5. Sprawdzamy że para (5,5) spełnia nasze warunki.

Od teraz zakładamy $p \neq q$.

Przypadek 2: q = 5. Wtedy dostajemy $p \mid 5^p + 5^5$. Ale z małego twierdzenia Fermata wiemy, że $5^p \equiv 5 \pmod{p}$, więc $p \mid 5 + 5^5$, czyli $p \mid 3130$, a więc $p \in \{2, 5, 313\}$. Sprawdzamy że pary (2, 5), (5, 2), (5, 313), (313, 5) spełniają nasze warunki.

Przypadek 3: $p, q \neq 5$. Znowu rozważamy naszą podzielność modulo p, q. Korzystając znowu z małego twierdzenia Fermata, otrzymujemy: $5^p + 5^q \equiv 5 + 5^q \pmod{p}$. Skoro $p \neq 5$ to $5^{q-1} \equiv -1 \pmod{p}$ oraz analogicznie $5^{p-1} \equiv -1 \pmod{q}$.

Przypadek 4: p=2. Dostajemy $q\mid 25+5^q$. Z MTF dostajemy $q\mid 30$. A więc q=2 lub q=3, ale łatwo sprawdzić że $4\nmid 50$, więc para (2,2) nie działa. Sprawdzamy że pary (2,3),(3,2) działają.

Teraz wiemy już że $2 \neq p, q \neq 5$. W takim razie $5^{p-1} \not\equiv 1 \pmod q$ ale $5^{2(p-1)} \equiv 1 \pmod q$. To ładnie przetłumaczymy na rzędy. Przez $ord_p(5)$ oznaczamy najmniejszą taką liczbę dodatnią całkowitą d, że $5^d \equiv 1 \pmod p$. Ważna własność ord jest taka, że $5^n \equiv 1 \pmod p$ wtedy i tylko wtedy gdy $ord_p(5) \mid n$. A więc z wyżej opisanych własności wiemy, że $ord_p(5) \mid 2(q-1)$ oraz $ord_p(5) \nmid q-1$. Możemy to wyrazić za pomocą wykładników 2-adycznych: $v_2(ord_p(5)) = v_2(q-1)+1$. Ale z MTF, $ord_p(5) \mid p-1$, więc $v_2(ord_p(5)) \leqslant v_2(p-1)$. Dostajemy więc nierówność $v_2(q-1)+1=v_2(p-1)$. Ale analogicznie z drugiej strony dostajemy $v_2(p-1)+1=v_2(q-1)$, sprzeczność.

A więc jedyne rozwiązania to: (5,5), (2,5), (5,2), (5,313), (313,5), (2,3), (3,2).

Źródło: Rozwiązanie z AoPS

Zadanie 3. Dany jest trójkąt ABC i jego ortocentrum H. Niech M i N będą środkami BC i AC odpowiednio. Załóżmy że okręgi opisane na BHM i AHN są styczne, a H leży wewnątrz czworokąta ABMN, Prosta przechodząca przez H równoległa do AB przecina okręgi opisane na BHM i NHA w K i L odpowiednio. Proste KM i NL przecinają się w punkcie F. Udowodnij, że CF = FJ, gdzie J to środek okręgu wpisanego w trójkąt MHN.

Źródło: Zadanie 1 z APMO 2018

Rozwiązanie 3. Zauważmy, że

oraz

Stąd wynika, że jeśli H' jest ortocentrum trójkąta $\triangle AMN$, to punkt F jest izogonalnie sprzężony z H' (tj. $\not\preceq HBA = \not\preceq H'MA$).

Ponadto, czworokat HMFN jest wpisany w okrag, ponieważ

$$\not FMN = \not MHA \text{ oraz } \not FNM = \not NHA.$$

Stąd, jako że F jest środkiem okręgu opisanego na trójkącie $\triangle ANM$ (izogonalnym sprzężeniem punktu H'), wynika, że

$$MF = FN$$
.

Zatem FM = FJ = FN (z własności trójliścia) oraz FA = FJ, ponieważ FA = FM = FN.

Źródło: Rozwiązanie z apmo-official.org

Zadanie 4. Na stole leży 2025 zapałek i standardowa kostka do gry, na której górna ścianka pokazuje liczbę oczek a. Igor i Stefan grają w następującą grę: na zmianę zabierają zapałki zgodnie z następującą zasadą, przy czym Igor zaczyna: Gracz, który jest przy ruchu, przechyla kostkę po wybranej krawędzi i zabiera dokładnie tyle zapałek, ile wynosi liczba oczek na górnej ściance kostki. Gracz, który nie może wykonać prawidłowego ruchu, przegrywa. Dla jakich wartości a Stefan może wymusić, że Igor przegra?

Źródło: Zadanie 2 z Bundeswettbewerb Mathematik Runda 2. 2022

Rozwiązanie 4. Jeżeli na kostce na górze znajduje się liczba $a \in \{1, 2, ..., 6\}$, to oczywiste jest, że poprzez przewrócenie kostki na jedną z krawędzi można uzyskać jedną z czterech liczb ze zbioru $\{1, 2, ..., 6\} \setminus \{a, 7 - a\}$. W szczególności po przewróceniu kostki ani a, ani 7 - a nie znajdą się na górze, a zawsze można tak przewrócić kostkę, aby na górze znalazła się liczba 1 lub 2.

Grę opisujemy jednoznacznie jako przesuwanie pionka przez pola tabeli 2026×6 , por. rysunek. Sytuację, że na stole znajduje się n zapałek $(0 \le n \le 2025)$, a na górze kostki jest liczba

 $a\ (a\in\{1,2,\ldots,6\})$ opisujemy jako: "Pionek znajduje się na polu $(n\mid a)$, tj. na polu w wierszu n i kolumnie a". Każdy możliwy ruch odpowiada przesunięciu pionka z pola $(n\mid a)$ na jedno z pól $(n-i\mid i)$, gdzie $i\in\{1,2,\ldots,6\}\setminus\{a,7-a\}$. Ruch jest dozwolony tylko wtedy, gdy $n-i\geqslant 0$. Dozwolone ruchy prowadzą więc dokładnie do czterech pól na przekątnej: $(n-1\mid 1), (n-2\mid 2),\ldots, (n-6\mid 6)$, ale nie do kolumn a ani 7-a.

Każdy ruch prowadzi do pola z niższym numerem wiersza, a ponieważ można tak przewrócić kostkę, aby na górze znalazła się jedna z dwóch liczb 1 lub 2, pionek znajdujący się na polu $(n \mid a)$ z $n \geqslant 2$ i dowolnym a można zawsze przesunąć zgodnie z zasadami. Jedynymi polami, z których nie można wykonać żadnego dozwolonego ruchu, są pola w wierszu 0 oraz dwa pola $(1 \mid 1)$ i $(1 \mid 6)$. Gracz, który przed swoim ruchem ma pionek na jednym z tych pól, przegrywa. Dlatego te pola nazywamy polami przegrywającymi i oznaczamy je na czerwono. Gracz, który przed swoim ruchem ma pionek na polu, z którego można wykonać dozwolony ruch na jedno z przegrywających pól, może wymusić wygraną tym ruchem. Takie pola nazywamy polami wygrywającymi i oznaczamy je na zielono.

Na przykład wszystkie pola w wierszu 1 z wyjątkiem $(1 \mid 1)$ i $(1 \mid 6)$ są zielone, podobnie jak wszystkie pola w wierszu 2. Z drugiej strony, jeśli przed ruchem gracza pionek znajduje się na polu, z którego można wykonać ruch wyłącznie na pola wygrywające, jego przeciwnik może wymusić wygraną. Takie pola również nazywamy polami przegrywającymi i oznaczamy je na czerwono. Z kolei pola, z których można dotrzeć do co najmniej jednego czerwonego pola, są polami wygrywającymi i oznaczamy je na zielono.

Postępujemy w ten sposób wiersz po wierszu, aż wszystkie pola tabeli zostaną oznaczone. Jest to możliwe, ponieważ wszystkie ruchy prowadzą do wierszy o niższym numerze, a te pola są już oznaczone. Kolorystyka powtarza się od wiersza drugiego z okresem 9. Liczba 2025 jest podzielna przez 9, a więc pola w tym wierszu będą zaznaczone przegrywające. To oznacza, że Igor jako gracz zaczynający znajduje się na polu przegrywającym niezależnie od tego, w jaki sposób kostka jest ułożona na początku, czyli dla każdego a Stefan może doprowadzić do przegranej Igora.

$n \setminus a$	1	2	3	4	5	6
0	0	0	0	0	0	0
1	0	1 1 1 1	1	1	1	0
2	1	1	1	1	1	1
3	1	1	0	0	1 1 1 0	1 1 1
4	1	1	0	0	1	1
5	1	0	1	1		1
5 6 7	1	1	1	1	1	1
7	1	1	1	1	1	1
8	1	1	0	0	1 1 0	1
9	0	0	0	0	0	0
10	1	1	1	1	1	1
11	1	1	1	1	1	1
12	1	1	0	0	1 1	1
13	1 1 1	1	0	0	1	1 1 1 1
14	1	0	1 1 1	1	0	1
15	1	1	1		1	1
16	1	1 1 1	1	1	1 1 1	1
17	1	1	0	0	1	1
18	0	0	0	0	0	0
19	1	1 1	1 1	1	1 1	1
20	1	1	1	1	1	1
21	1	1	0	0	1	1
22	1	1	0	0	1	1
23	1	0	1	1	0	1
24	1	1	1	1	1	1
25	1	1	1	1	1	1
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26			0	0	1	
27	0	0	0	0	0	0

Tabela przedstawiająca początkowy układ ruchów wygrywających i przegrywających

Źródło: Rozwiązanie z Bundeswettbewerb Mathematik

