

Experimento 2: CIRCUITOS COMBINACIONAIS – MAPA DE KARNAUGH

1 OBJETIVO

O mapa de Karnaugh é apresentado como uma ferramenta muito útil para a simplificação de funções Booleanas de até 5 variáveis. Um circuito de decisão de maioria, em que a saída é 1 se e somente se a maioria das entradas for 1 é apresentado como um exemplo de aplicação.

2 INTRODUÇÃO TEÓRICA:

2.1 Generalidades

O mapa de Karnaugh é uma forma ordenada para simplificar uma expressão Booleana, a qual geralmente nos leva a um circuito com configuração mínima. Pode ser facilmente aplicado em funções envolvendo de duas a cinco variáveis. Para seis ou mais variáveis, o método começa a se tornar incômodo, e podemos usar outras técnicas mais elaboradas. Também pode ser usado para determinar se portas duais ou complementares tornarão o circuito mais simples

2.2 Mintermos e mapas de 2 a 5 variáveis

Qualquer função Booleana pode ser escrita na forma canônica disjuntiva ou conjuntiva. A forma canônica disjuntiva é também conhecida como soma dos produtos, e é escrita como soma de termos que apresentam sempre todas as variáveis envolvidas. Exemplo: Escrever na forma canônica disjuntiva a função:

$$f(A,B,C) = A(C + \overline{B})$$

$$f(A,B,C) = A \cdot C + A \cdot \overline{B}$$

$$f(A,B,C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C}$$

Cada termo é conhecido como produto padrão, produto canônico ou mintermo.

O mapa de Karnaugh é uma forma de representar uma dada função de maneira que cada mintermo mantenha-se vizinho de todos aqueles dos quais difere apenas por uma variável. Assim, os mapas de Karnaugh de 2 a 5 variáveis são indicados nas figuras 1, 2, 3 e 4.

Figura 1 - Mapa de Karnaugh de 2 variáveis.

Figura 2 - Mapa de Karnaugh de 3 variáveis.

Figura 3 - Mapa de Karnaugh de 4 variáveis.

Figura 4 - Mapa de Karnaugh de 5 variáveis.

Os números dentro das células representam o mintermo correspondente. No caso, por exemplo, de 3 variáveis, tem-se:

$$\begin{aligned} \mathbf{m}_0 &= \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{C}}, \quad \mathbf{m}_1 &= \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \cdot \mathbf{C}, \quad \mathbf{m}_2 &= \overline{\mathbf{A}} \cdot \mathbf{B} \cdot \overline{\mathbf{C}}, \\ \mathbf{m}_3 &= \overline{\mathbf{A}} \cdot \mathbf{B} \cdot \mathbf{C}, \quad \mathbf{m}_4 &= \mathbf{A} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{C}}, \quad \mathbf{m}_5 &= \mathbf{A} \cdot \overline{\mathbf{B}} \cdot \mathbf{C}, \\ \mathbf{m}_6 &= \mathbf{A} \cdot \mathbf{B} \cdot \overline{\mathbf{C}}, \quad \mathbf{m}_7 &= \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \end{aligned}$$

Assim, o mapa de Karnaugh da função f(A,B,C) do exemplo anterior terá Ls nas células 4, 5 e 7; como é indicado na figura 5.

Figura 5 - Mapa de Karnaugh de f.

A minimização pelo uso do mapa de Karnaugh baseia-se na relação: $X \cdot Y + X \cdot \overline{Y} = X$. Na figura 5, as células 4 e 5 são vizinhas, pois $m_4 = A \cdot \overline{B} \cdot \overline{C}$ e $m_5 = A \cdot \overline{B} \cdot C$, e diferem somente pelo C. Desta forma, elas podem ser agrupadas produzindo o termo: $A \cdot \overline{B} = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$. Essa idéia pode ser estendida para grupos de 2, 4, 8, 16, 32, 64 ou mais células.

Exemplos: Minimize as funções dadas:

a)
$$f_1 = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C$$

b)
$$f_2 = B \cdot \overline{D} + B \cdot C \cdot D + A \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

Os mapas de Karnaugh correspondentes são apresentados nas figuras 6 e 7.

Note que é possível desenhar o mapa de Karnaugh sem mesmo escrever a função na forma de soma de produtos.

Exemplo: Minimizar a função:

$$f_3 = B(\overline{A} + C)(AD + \overline{AD}) + A\overline{C}(\overline{B} + D)(B + D)$$

 $f_3 = B(\overline{A} + C)(AD + \overline{AD}) + A\overline{C}(\overline{B} + D)(B + D)$ O primeiro termo será a interseção de B com $(\overline{A} + C)$ e com $(AD + \overline{AD})$. A figura 8a indica B hachurado, $(\overline{A} + C)$ sombreado e $(AD + \overline{AD})$ cercado com as linhas tracejadas. As interseções entre as três áreas estão indicadas por 1s.

Figura 6 - Mapa de Karnaugh de f₁. A função mínima será: $f_1 = B \cdot C + A \cdot B \cdot C$.

Figura 7 - Mapa de Karnaugh de f2. A função mínima será: $f_2 = \overline{C} \cdot \overline{D} + B \cdot C + A \cdot \overline{D}$.

Da mesma forma, o mapa de Karnaugh do segundo termo é indicado na figura 8b. A função f3 é a união desses dois conjuntos (ver figura 8c). Unindo-se os 1s aos pares, como é mostrado na figura 8c, obtém-se a função mínima desejada:

$$f_3 = A \cdot D \cdot \overline{C} + A \cdot B \cdot D + \overline{A} \cdot B \cdot \overline{D}$$

Figura 8 - Mapa de Karnaugh de f₃.

Figura 9 - Mapa de Karnaugh de f₄.

Quando a função envolver 5 variáveis, é necessário certo cuidado para considerar devidamente as células vizinhas simetricamente distribuídas em relação ao eixo vertical de simetria.

Exemplo: Minimizar a função:

$$f_4 = E(\overline{AC} + ACD + \overline{ABC} + A\overline{BCD}) + \overline{BE}(AC + A\overline{C} + \overline{AC})$$

O mapa de Karnaugh da função f_4 é apresentado na figura 9. Agrupando os mintermos, obtemos a função mínima:

$$f_4 = \overline{B}C + \overline{A}\overline{C}E + A\overline{B}\overline{E} + ACDE$$

Resumindo, a minimização pelo uso de mapas de Karnaugh de até 5 variáveis pode ser esquematizada como:

- 1º passo: Coloque 1s em todas as células correspondentes aos mintermos envolvidos na função.
- 2° passo: Circule todos os grupos de 16 mintermos, se houver, que possuam adjacências dois a dois.
- 3° passo: Repita o 2° passo para grupos de 8, 4 ou 2 mintermos que ainda não tenham sido circulados.
- 4º passo: Circule todos os mintermos que não possuam adjacências e ainda não tenham sido circulados.
- 5° passo: Escreva a função mínima partir dos grupos de mintermos formados.

Observe-se que podem ocorrer situações em que resulte mais de uma expressão mínima. Neste caso é indiferente adotar-se uma ou outra expressão.

Finalmente, note-se que existem situações em que é mais cômodo trabalhar com a forma canônica conjuntiva ou a na forma de produto de somas.

Exemplo: Minimizar a função:

$$f_5 = AC + AD + \overline{B}C + \overline{B}D$$

Tem-se, utilizando produto de somas no mapa de Karnaugh da figura 10:

$$f_5 = (C+D)(A+\overline{B})$$

Figura 10 - Mapa de Karnaugh de f₅.

2.3 Exemplo: circuito de decisão de maioria

Considere um circuito de decisão de maioria com 4 entradas. A saída (Y₁) será 1 se e somente se a maioria das entradas for 1. Listando-se todas as saídas em função das variáveis de entrada obtemos a função desejada, isto é:

$$Y_1 = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

O mapa de Karnaugh dessa função é apresentado na figura 11.

Figura 11 - Mapa de Karnaugh de Y₁.

Figura 12 – Implementação do circuito de decisão de maioria usando somente portas NÃO-E. O circuito pode ser construído usando apenas dois CIs.

Simplificando, obtemos:

$$Y_1 = ABC + ABD + ACD + BCD$$

Assim, obtemos o circuito da figura 12. O circuito implementa a equação acima, mas as portas E e OU foram convertidas em portas NÃO-E, usando o teorema de De Morgan. O circuito pode ser construído usando apenas dois CIs: um 7420 e um 7410. A quarta porta NÃO-E de 3 entradas pode ser implementada usando uma porta NÃO-E de 4 entradas.

3 PARTE EXPERIMENTAL

3.1 Monte um circuito representado pela tabela verdade 1 de 3 variáveis abaixo, usando somente portas NÃO-E.

Tabela 1 - Tabela verdade de 3 variáveis

В	U	S1
0	0	1
0	1	0
1	0	1
1	1	1
0	0	1
0	1	0
1	0	0
1	1	0
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

Note que é possível montar esse circuito usando apenas dois CIs. Uma solução possível para implementá-lo é utilizando dois CIs 7400.

3.2 Monte um circuito representado pela tabela verdade 2 de 4 variáveis abaixo, usando somente portas NÃO-E.

Tabela 2 - Tabela verdade de 4 variáveis

Α	В	U	۵	S ₂
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Note que é possível montar esse circuito usando apenas três CIs. Uma solução possível para implementá-lo com três CIs, sendo dois deles 7400 e um 7410.

3.3 Projete um circuito representado pela tabela verdade 3 de 5 variáveis, utilizando somente portas NÃO-E e inversora.

Note que é possível montar esse circuito usando apenas quatro CIs, sendo um CI 7430, um 7420, um 7410 e um 7404.

4 INSTRUÇÕES PARA A REALIZAÇÃO DO EXPERIMENTO

4.1 Pré-relatório

O pré-relatório deve ser feito em grupo de no máximo dois alunos e deve ser feito à mão.

- a) Para o circuito descrito na seção 3.1, apresente:
- mapa de Karnaugh
- equação booleana e simplificações
- circuito a ser montado, usando somente portas NÃO-E, com pinagem e número dos CIs indicados (utilizar apenas dois CIs).

- b) Para o circuito descrito na seção 3.2, apresente:
- mapa de Karnaugh
- equação booleana e simplificações
- circuito usando somente portas NÃO-E, com pinagem e número dos CIs indicados (utilizar apenas três CIs).

Tabela 3 - Tabela verdade de 5 variáveis

Α	В	С	D	Ε	S_3
0	0	0	0	0	1
0	0	0	0	1	1
0 0 0 0 0	0	0	1	0	1
0	0	0	1	1	0
0	0 0 0	1	0	0	1
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1 0
0	1	0	0	0	0
0 0 0 0	1	0	0	1	1 0 0
0	1	0	1	0	0
0	1	0	1	1	
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	0	1	0
1	0	1	1	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	0
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	0

- c) Para o circuito descrito na seção 3.3, apresente:
- mapa de Karnaugh
- equação booleana e simplificações
- circuito usando somente portas NÃO-E e inversora, com pinagem e número dos CIs indicados (utilizar apenas quatro CIs).

<u>Opcional:</u> simule cada um dos circuitos projetados em um software como o Circuit Maker ou similar, para ter certeza de que seu projeto está certo.

4.2 Visto

Implemente os circuitos conforme as instruções contidas nos itens 3.1, 3.2 e 3.3 da parte experimental deste roteiro.

Se algum dos chips necessários para a montagem não estiver disponível em seu kit, você poderá solicitá-lo ao professor.

Cada circuito apresentado valerá 1/3 da nota do visto. Não será dado visto a circuitos que não funcionem integralmente. É sugerido que o aluno chame o professor ou monitor logo após a realização de cada item e não uma única vez ao final do experimento.

4.3 Relatório

O relatório é <u>individual</u>, deve ser feito <u>à mão</u>, e consiste em responder ao questionário abaixo. Não é necessário entregar um relatório formal, com introdução, metodologia, resultados, etc.

- 1) Mostre como implementar, explicando seu raciocínio:
- a) o circuito $A \cdot B \cdot C + A \cdot B \cdot C$ usando apenas portas NAND. (2 pontos)
- b) uma porta NAND de 3 entradas usando uma porta NAND de 4 entradas. (1 ponto)
- 2) No circuito abaixo, a saída esperada para uma determinada entrada do circuito é 0. No entanto, o LED acendeu. Explique como, com a ajuda da ponta lógica, você pode descobrir <u>rapidamente</u> qual das portas NÃO-E de 4 entradas está montada errada. (1 ponto)

Figura 13

3) Usando mapas de Karnaugh, projete os circuitos X, Y e Z definidos pela seguinte tabela. Apresente a solução mínima, mostrando os mapas de Karnaugh, as equações dos sistemas e os esquemáticos. Se a minimização por mapa de Karnaugh for possível, apresente também o esquemático da implementação usando somente portas NAND. Caso os mapas de Karnaugh não ajudem na minimização, proponha uma solução minimizada usando outro tipo de porta lógica. (2 pontos cada circuito)

mintermo	ABCD	X	Y	Z
0	0000	1	0	0
1	0001	0	1	1
2	0010	1	1	1
3	0011	0	0	0
4	0100	1	1	1
5	0101	1	0	0
6	0110	1	0	0
7	0111	1	1	0
8	1000	0	1	1
9	1001	0	0	0
10	1010	0	0	1
11	1011	0	1	0
12	1100	0	0	1
13	1101	1	1	0
14	1110	0	1	0
15	1111	1	0	0

5 QUESTIONÁRIO DE AUTO-AVALIAÇÃO (OPCIONAL)

Não é necessário entregar.

5.1 – No mapa da figura 14 a função dada é equivalente a:

a)
$$f = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

b)
$$f = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

c)
$$f = \overline{ABC} + A\overline{BC} + AB\overline{C} + \overline{ABC}$$

d)
$$f = \overline{ABC} + AB\overline{C} + A\overline{BC} + \overline{ABC}$$

Figura 14

5.2 – Na figura 14, a função é

a)
$$f = \overline{A}$$

c)
$$f = \overline{B}$$

d)
$$f = AB$$

$$e) f = C$$

5.3 – Na figura 15, supondo que X pode ser 1 ou 0, a função mínima será:

a)
$$f = A + BD + \overline{BD} + CD$$

b)
$$f = A + BD + \overline{BD} + \overline{CB}$$

- c) As opções (a) e (b) estão certas.
- d) Nenhuma das opções está correta.

Figura 15

5.4 – Dada a função

$$f = \overline{ABCD} + \overline{ABCD} +$$

$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

, qual é a fórmula mínima?

a)
$$f = AD + AB + BD + AC$$

b)
$$f = A\overline{D} + AB + B\overline{D} + AC$$

c)
$$f = \overline{AD} + AB + \overline{BD} + \overline{AC}$$

d)
$$f = \overline{AD} + AB + \overline{BD} + A\overline{C}$$

5.5 - A função simplificada \overline{f} da questão 5.4 é:

a)
$$\overline{f} = B\overline{D}\overline{C} + \overline{A}D + A\overline{B}$$

b)
$$\overline{f} = AB + A\overline{BD} + \overline{ABCD}$$

c)
$$\overline{f} = AB + A\overline{D} + \overline{A}B\overline{C}\overline{D}$$

d)
$$\overline{f} = B\overline{DC} + A\overline{D} + AB$$