# Algorithmic Game Theory COMP6207

Lecture 1: Introduction

Dr Bahar Rastegari

b.rastegari@soton.ac.uk

Electronics and Computer Science University of Southampton

#### Advanced Intelligent Agents

- What is this module about?
  - It used to be Advanced Intelligent Agents
    - A successor of COMP6203: Intelligent Agents
  - Algorithm + Game Theory + Mechanism Design
- What is this module NOT about?
  - Not a programming course

#### Module Structure

- 3 hours of in-person lectures per week
  - 1 hour on Mondays 13:00-14:00 in 27/2003 (L/R 2)
  - 1 hour on Thursdays 9:00-10:00 in 07/3027 (L/R F1)
  - 1 hour on Fridays 11:00-12:00 in 13/3021
- Lectures will often include interactive activities such as playing games, solving assignments and short (ungraded) quizzes
- MS Teams group for Q&A on lectures and coursework
- Course Team:
  - Dr Bahar Rastegari (b.Rastegari@soton.ac.uk)
  - Dr Pavel Naumov (<u>P.Naumov@soton.ac.uk</u>)

#### Where to find what

• Module's page: general information about the module, schedule, slides and other materials

MS Teams: Q&A and discussions

#### Assessment

- 75% Exam
- 25% Coursework
  - 2 worksheets each worth 8%
  - 1 group presentation project worth 9%

### Guess the value of the laptop

- Two of you each lost a laptop (identical) and claimed for compensation towards the insurance company.
- Insurance company does not know the actual value of the laptop, only you two know.
- To find out a reasonable compensation amount, the IC separates you two and asks you its value ∈[£2, £100].
  - If you declare the same number x, each of you will be given £x
  - If you declare different numbers x and y (x < y), then you will be given x+2 and x-2 respectively

# Guess 2/3 of the average

- Each of you write down a number between 0 and 100.
- Whoever is closest to 2/3 of the average wins.

# Guess 2/3 of the average

- Each of you write down a number between 0 and 100.
- Whoever is closest to 2/3 of the average wins.

• 21.6 was the winning value in a large internet-based competition organized by the Danish newspaper Politiken. This included 19,196 people and with a prize of 5,000 DKK.

# Keywords

Dominated theory strategy Incomplete information Uncomplete information Incentive Uncomplete information Incentive Payoff strategy

# Game Theory: Pioneer



**Oskar Morgenstern** 



John von Neumann Minimax theorem, 1928 Linear programming duality



John Nash Nash equilibrium Bargaining game

Theory of Games and Economic Behavior, 1944, 1947, 2004

- Objective/Subjective probabilities
- vNM Utility Theorem

Expected Utility Theory

#### Recognition of Excellence

**1994 Nobel Prize** 



John Nash
Nash equilibrium
Bargaining game
Abel Prize



John Harsanyi
Bayesian games
Equilibrium selection
Application in political
and moral philosophy



Reinhard Selten
Bounded rationality
Subgame perfect equilibrium

#### 1996 Nobel Prize



William Vickrey



**James Mirrlees** 



**Robert Aumann** 

Incentives under asymmetric information

Repeated Games Correlated Equilibrium

# Mechanism Design

#### **2007 Nobel Prize**



**Leonid Hurwics** 



**Eric Maskin** 



**Roger Myerson** 

"for having laid the foundations of mechanism design theory"

### Market Design

#### **2012 Nobel Prize**



**Alvin Roth** 



Loyd S. Shapley

"for the theory of stable allocations and the practice of market design"

### **Auction Theory**

#### **2020 Nobel Prize**



Paul R. Milgrom



Robert B. Wilson

<sup>&</sup>quot;for improvements to auction theory and inventions of new auction formats"

#### Artificial Intelligence and Game Theory

- AI: to design intelligent robots/agents to perform human tasks.
  - cognition, psychology



• learning, optimisation



- *Game theory* is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers.
- Rationality: maximizing expected utility.
  - Perfect vs. Bounded.
- GT offers: principles of rationality + theoretical foundation.

#### Why study Game Theory

• Method of studying strategic situations, i.e., where the outcomes that affect you depend on actions of others.

• Used in business, cybersecurity, economics, politics, etc.

Beautiful theoretical results.

Get better at rock-paper-scissors.

#### Mechanism Design

- A.k.a. Reverse Game Theory
  - Algorithm design, protocol design
- Impossibilities
  - Mutually exclusive desired properties
- Approximability
  - Approximation rations
  - Worst-case, smoothed analysis, average-case

#### Content

- Mechanism design with money
  - Vickrey–Clarke–Groves mechanism (VCG)
- Mechanism design without money
  - Matching theory (One-sided, two-sided, roommate, stability)
- Auctions & Computational advertising
- Computational Social Choice
  - Voting and fair division

### **Learning Outcomes**

By the end of this module, you should be able to

- Describe various game-theoretic concepts and governing principles
- Solve problems arising in settings with self-interested participants, and predict possible behaviour and outcomes
- **Describe** the principles of mechanism design and explain its use to shape incentives and designing markets/mechanisms
- **Apply** game theory and mechanism design on practical problems, **develop** efficient algorithms, and **evaluate** the solutions.

# Reference books (partial list)

- David F. Manlove, *Algorithmics of Matching under Preferences*. World Scientific Publishing Company, 2013, ISBN 10: 9814425249/ISBN 13: 9789814425247.
- Martin J. Osborne, *An Introduction to Game Theory*. Oxford University Press, 2003, ISBN 10: 0195128958/ISBN 13: 9780195128956.
- Alvin E. Roth, Marilda A. Oliviera Sotomayor, *Two-Sided Matching: A Study in Game-Theoretic Modelling and Analysis*. Cambridge University Press, 1990, ISBN 10:0521437881/ISBN 13:9780521437882.
- Yoav Shoham, Kevin Leyton-Brown, <u>Multiagent Systems: Algorithmic,</u> <u>Game-Theoretic, and Logical Foundations</u>. Cambridge University Press, 2009, ISBN: 9780521899437.
- Vijay Vazirani, Noam Nisan, Tim Roughgarden, Éva Tardos, <u>Algorithmic</u>
   <u>Game Theory</u>. Cambridge University Press, 2007, ISBN: 9780521872829.
- Michael Wooldridge, An Introduction to Multi-Agent Systems. John Wiley & Sons, 2<sup>nd</sup> Edition, 2009. ISBN 10: 0470519460/ISBN 13: 9780470519462

# Reference courses (partial list)

- Yiling Chen <a href="http://www.eecs.harvard.edu/cs286r/">http://www.eecs.harvard.edu/cs286r/</a>
- Constantinos Daskalakis <a href="https://stellar.mit.edu/S/course/6/sp17/6.853/index.html">https://stellar.mit.edu/S/course/6/sp17/6.853/index.html</a>
- Matthew O. Jackson, Kevin Leyton-Brown, Yoav Shoham

https://www.coursera.org/learn/game-theory-1

https://www.coursera.org/learn/game-theory-2

- Jonathan Levin <a href="http://web.stanford.edu/~jdlevin/teaching.html">http://web.stanford.edu/~jdlevin/teaching.html</a>
- Christos H. Papadimitrio http://www.cs.berkeley.edu/~christos/games/cs294.html
- David C. Parkes <a href="http://beta.blogs.harvard.edu/k108875/lectures">http://beta.blogs.harvard.edu/k108875/lectures</a>
- Alvin E. Roth <a href="https://stanford.edu/~alroth/alroth.html">https://stanford.edu/~alroth/alroth.html</a>
- Tim Roughgarden <a href="http://theory.stanford.edu/~tim/f13/f13.html">http://theory.stanford.edu/~tim/f13/f13.html</a>
- Eva Tardos <a href="http://www.cs.cornell.edu/courses/cs6840/2012sp/">http://www.cs.cornell.edu/courses/cs6840/2012sp/</a>

### Suggested reading for next lecture

 Read Huffington Post's article on "<u>Badminton and the</u> <u>science of rule making</u>", by Jason Hartline and Robert Kleinberg.

 Watch Tim Roughgarden's <u>introductory lecture on</u> <u>algorithmic game theory</u>.

 Next lecture: Q&A on Strategic Form Games a.k.a. Normal form games