Minimum Spanning Tree (MST)

- ▶ Undirected connected graph G = (V, E)
- ightharpoonup Weight function $w:E\longrightarrow {f R}$
- Spanning tree: a tree that connects all vertices
- ▶ Minimum Spanning Tree *T*:

$$w(T) = \sum_{(u,v) \in T} w(u,v) \quad \text{is minimized}$$

Idea of "growing" a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding

Basic properties:

▶ Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of G=(V,E). Removing (u,v) of T partitions T into two trees T_1 and T_2 . Then T_1 is a MST of $G_1=(V_1,E_1)$ and T_2 is a MST of $G_2=(V_2,E_2).^1$

Proof. Note that

$$w(T) = w(T_1) + w(u, v) + w(T_2).$$

There cann't be a better subtree than T_1 or T_2 , otherwise T would be suboptimal.

 $^{^1}$ The subgraph G_1 is induced by vertices in T_1 , i.e., $V_1 = \{ \text{vertices in } T_1 \}$ and $E_1 = \{ (x,y) \in E; x,y \in V_1 \}$. Similarly for G_2 .

Basic properties:

Greedy-choice property:

Let T be a MST of G=(V,E), $A\subseteq T$ be a subtree of T, and (u,v) be min-weight edge in G connecting A and V-A. Then $(u,v)\in T$.²

Proof. If $(u,v) \not\in T$, then

- ▶ $(u,v) \cup T$ forms a cycle,
- lacktriangledown replace one of edges of T by (u,v) form a new tree T
- this is contradiction to T is MST

²It is an abuse of notation we will view A as being both edges and vertices.

Prim's algorithm

- ▶ Basic idea:
 - builds one tree, so that A is always a tree
 - starts from a root r
 - ightharpoonup at each step, find the next lightest edge crossing cut (A,V-A) and add this edge to A (greedy choice)
- ► How to find the next lightest edge quickly?

Answer: use a priority queue

Review: Priority queue

A priority queue maintains a set S of elements, each with an associated value called a "key", and supports the following operations:

- ► Search(S,k): returns x in S with key[x] = k
- ► Insert(S, x)/Delete(S, x): inserts/deletes the element x into the set S
- Maximum(S)/Minimum(S): returns x in S with largest/smallest key
- Extract-max(S)/Extract-min(S): removes and returns x in S with largest/smallest key
- ► Increase-key(S, x, k)/Decrease-key(S, x, k): increases/decreases the value of element x's key to the new value k

The priority queue has been used in Huffman coding.

Prim's algorithm - pseudocode

```
MST-Prim(G, w, r)
Q = empty
for each vertex u in V
   key[u] = infty
   pi[u] = Nil
   Insert(Q, u)
endfor
Decrease-key(Q,r,0)
while Q not empty
   u = Extract-Min(Q)
   for each v in Adj[u]
       if (v in Q) and (w(u,v) < key[v])
           Decrease-key(Q, v, w(u,v))
           pi[v] = u // parent of v
      endif
   endfor
endwhile
return A = { (v, pi[v]): v in V-\{r\} } // MST
```

Prim's algorithm – running time:

- depends on how the priorty queue is implemented
- ▶ Suppose Q is a binary heap (see Section 6.1)
 - ▶ Initialize Q and the first for loop: $O(|V| \lg |V|)$
 - ▶ Decrease key of root r: $O(\lg |V|)$
 - While-loop:
 - a) |V| Extract-Min calls: $O(|V| \lg |V|)$
 - b) $\leq |E|$ Decrease-Key calls: $O(|E|\lg|V|)$
- ▶ Total: $O(|E| \lg |V|)$

Note: G is connected, $\lg |E| = \Theta(\lg |V|)$ (why?)

Kruskal's algorithm

- ► Basic idea:
 - scan edges in increasing of weight
 - put edge in if no loop created
- Why does this result in MST? Answer: min-weight edge is always in MST (the greedy-choice property).
- ► Implementation data structure: disjoint-set

Review: Disjoint-Set data structure

Disjoint-Set maintains a collection of $S = \{S_1, S_2, ... S_k\}$ of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.

A disjoint-set data structure supports the following operations:

- ► Make-set(x): creates a new set whose only member (and thus representative) is x.
- ▶ Union(x,y): unites the sets that contain x and y, say S_x and S_y , into a new set that is the union of these two sets: $S_x \cup S_y$. The representative is any member of $S_x \cup S_y$.
- ► Find-set(x): returns (a pointer to) the representative of the (unique) set containing x.

To learn more about the disjoint-set data structure, see Chapter 21.

Kruskal's algorithm – pseudocode:

```
MST-Kruskal(G, w)
A = emtpy
for each vertex v in V
    Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E
    if Find-set(u) \= Find-set(v)
        A = A U \{(u,v)\}
        Union(u,v)
    endif
endfor
return A
```

Kruskal's algorithm – running time:

- depends on the implementation of the disjoint-set
- ▶ Sort: $\Theta(|E|\lg|E|)$
- ▶ |V| Make-Set ops
- ▶ 2|E| Find-Set ops
- ightharpoonup |V|-1 Union ops
- ▶ Total: $O(|E|\lg|V|)$

Note: G *is connected,* $\lg |E| = \Theta(\lg |V|)$