SESA3029 Aerothermodynamics

Lecture 2.5
Shock-expansion method

Recap: Prandtl-Meyer expansion fan

$$\sin \mu_1 = \frac{1}{M_1}$$

$$\sin \mu_2 = \frac{1}{M_2}$$

$$\theta = \nu(M_2) - \nu(M_1)$$

Expansion fan

Flow past a flat plate at incidence

Example

- M₁=2, p₁=30 kN/m², 1m chord plate at 10 degrees incidence
 - Find M_{2U} , M_{2L} , p_{2U} , p_{2L}
 - Find lift, drag and pitching moment
 - Find centre of pressure and aerodynamic centre
 - Convert to coefficient form

Expansion fan (1 to 2U)

Isentropic-flow table ($\gamma = 1.4$):									
M	p/p_0	ho/ ho 0	T/T_0	ν (deg.)	A / A *				
2.0000	0.1278	0.2300	0.5556	26.3798	1.6875				

- Isentropic process,
 - $-M_1=2$ IFT gives $v(M_1)=26.38$ deg., $p_1/p_0=0.1278$
 - P-M equation $\theta = v(M_2) v(M_1)$
 - Hence $v(M_2)=36.38$ deg.

2.3800	0.0706	0.1505	0.4688	36.2607	2.3593
2.4000	0.0684	0.1472	0.4647	36.7465	2.4031

Interpolation from IFT: $M_{2U}=2.385$, $p_{2U}/p_0=0.0701$ Hence $p_{2U}=16.5$ kN/m²

Flow past a flat plate at incidence

Oblique shock (1 to 2L)

Oblique-shock chart: $\gamma = 1.4$

Shock angle 39 deg.

Oblique shock calculation

 $M_{n1}=M_1\sin\beta=2.\sin(39)=1.259$

NST gives $p_{2L}/p_1=1.683$ (interpolation)

Hence p_{2L} =50.5 kN/m²

For M_{n1} =1.259 NST gives M_{n2} =0.8077 (interpolation)

Hence M_{2L} =0.8077/sin(39-10)=1.67

Aerodynamic forces

L=Ncos α -Asin α D=Acos α +Nsin α

Here A=0 (flat plate);

Pressure is constant along both upper and lower surfaces (centre of pressure is at the half chord)

$$N=(p_{2L}-p_{2U})c=(50.5-16.5) = 34.0 \text{ kN/m}$$

$$L=N\cos\alpha=34\cos10=33.5 \text{ kN/m}$$

D=Nsin
$$\alpha$$
=34sin10=5.9 kN/m (Non zero!)

$$M_{LE} = \int_{0}^{c} (p_{2U} - p_{2L}) x dx$$
$$= \left[-34 \frac{x^{2}}{2} \right]_{0}^{1} = -17 \text{ kN}$$

Centre of pressure and aerodynamic centre

Forces and moments about leading edge

Moment coefficient about any point

$$C_{M,x} = C_{M,LE} + \overline{x}C_L \qquad \qquad \overline{x}_{cp} = -\frac{C_{M,LE}}{C_L} \qquad \text{(point where force acts with no moment)}$$

$$\frac{\mathrm{d}C_{M,x}}{\mathrm{d}C_L} = \frac{\mathrm{d}C_{M,LE}}{\mathrm{d}C_L} + \overline{x} \qquad \Longrightarrow \qquad \overline{x}_{ac} = -\frac{\mathrm{d}C_{M,LE}}{\mathrm{d}C_L} \qquad \text{(point where C_{M} is independent of C_{L})}$$

Aerodynamic coefficients

chord c=1m

$$C_L = \frac{L}{\frac{1}{2} \rho_1 V_1^2 c} = \frac{2L}{\gamma \rho_1 M_1^2 c} = \frac{2 \times 33,500}{1.4 \times 30,000 \times 2^2} = 0.40$$

$$C_D = \frac{D}{\frac{1}{2} \rho_1 V_1^2 c} = \frac{2D}{\gamma \rho_1 M_1^2 c} = \frac{2 \times 5,900}{1.4 \times 30,000 \times 2^2} = 0.070$$

$$C_{M,LE} = \frac{M_{LE}}{\frac{1}{2} \rho_1 V_1^2 c^2} = \frac{2M_{LE}}{\gamma \rho_1 M_1^2 c^2} = \frac{2 \times (-17,000)}{1.4 \times 30,000 \times 2^2 \times 1^2} = -0.20$$

$$\overline{X}_{CP} = \frac{-C_{M,LE}}{C_L} = \frac{0.2}{0.4} = 0.5$$

$$\overline{X}_{AC} = \frac{-dC_{M,LE}}{dC} = 0.5$$

(assuming linear variation of coefficients with incidence)

Key points

- In supersonic inviscid flow we have non-zero drag this
 is called wave drag.
- Centre of pressure and aerodynamic centre are at the half chord position for a flat plate in supersonic flow
 - Compared to quarter chord location for incompressible flow
 - Movement of aerodynamic centre of a wing as we pass through Mach 1 has control implications