第5次作业

激励函数 $D = D_1 \bar{Q}$

$$Q = D = D_1 \overline{Q}$$

激励方程

$$D_0 = Q_1$$

$$D_0 = Q_1$$
$$D_1 = Q_2$$

$$D_2 = (Q_1 \oplus Q_2) \oplus (\overline{Q_1 + Q_2})$$

$Q_2Q_1Q_0$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	100
001	000
010	101
011	001
100	010
101	110
110	111
111	011

Q	Q^{n+1}
S0	S4
S1	S0
S2	S5
S3	S1
S4	S2
S5	S6
S6	S 7
S7	S3

状态图

激励方程

$$D_0 = \overline{Q_0}$$

$$D_0 = \overline{Q_0}$$

$$D_1 = Q_0 \oplus Q_1$$

输出函数

$$F = Q_0 Q_1$$

3.6 激励方程

$$D_0 = \overline{Q_0}$$

$$D_1 = Q_0 \oplus Q_1$$

Q_1Q_0	$Q_1^{n+1}Q_0^{n+1}$	F
00	01	0
01	10	0
10	11	0
11	00	1

输出函数

$$F = Q_0 Q_1$$

逻辑功能:该电路是一个模4计数器,每当完成一次循环计数后就输出一次1

激励方程
$$EN_1 = Y$$
 $EN_2 = XYQ_1$

次态方程
$$Q_1^{n+1} = EN_1 \cdot \overline{Q_1} + \overline{EN_1} \cdot Q_1 = \overline{YQ_1} + \overline{YQ_1}$$

$$Q_2^{n+1} = EN_2 \cdot \overline{Q_2} + \overline{EN_2} \cdot Q_2 = \overline{XYQ_2}Q_1 + XQ_2 + \overline{YQ_2} + \overline{Q_2}Q_1$$

输出函数 $Z = \overline{X} \overline{Q_2}$

3.7 激励转换表

XYQ_2Q_1	EN_2EN_1	$Q_2^{n+1}Q_1^{n+1}$	Z_{arphi}
0000₽	00€	00₽	1.
0001₽	00€	01	1.
0010₽	00 €	10 .	0₽
0011₽	00 € ³	11.	0.0
0100₊3	0143	01.	1.0
0101	11 ₄ ³	10 .	1.0
0110₽	01 ₄ ³	11 ¢	0.0
0111₽	11₽	00 0	0 .0
1000₽	OO _€ ²	00 ¢	0.0
1001₽	00€	01 ¢	0.0
1010₽	00€	10 -	0.0
1011₽	00€	11 \$\varphi\$	0.0
1100₽	01₽	01	0 £
1101₽	01₽	00₽	0 ©
1110₽	01 ¢ ³	11.	0 ©
1111₽	01₊⁻	10 .	0 ©

3.7 状态输出表

Q_2Q_1	00€	014		10₽	11 .	
S ₀	S ₀ /1 ₽	S₁/1 ₽		S ₀ /0 ₽	S₁/0 ₽	
S ₁ 4	S ₁ /1 ₽	S ₂ /1 ₽		S₁/0 ₽	S ₀ /0 ₽	
S ₂ 4	S ₂ /0 ₽	S ₃ /0 ₽	- 1	S ₂ /0 ₽	S ₃ /0 ₽	
S ₃ 4	S ₃ /0 ₽	S ₀ /0 ₽	9	S ₃ /0 ₽	S ₂ /0 ₽	
•						

功能描述

当Y=0时,系统保持不变

当Y=1时,若X=0,系统为模4加1计数器

若X=1, 系统在S0~S1、S2~S3之间循环

3.9 用一个4位二进制计数器74LS163设计一个模10计数器, 其计数序列 为3, 4, 5, ···, 11, 12, 3, 4

利用/LD端实现 从1100到0011的跳变

$$UP/DN = Q_D$$

$$LD = RCO$$

$$A = Q_A$$
 $B = Q_B$

$$C = Q_C$$
 $D = \overline{Q_D}$

0111~0000减1计数

1000~1111加1计数

模16计数器

最大等效类 (A,D) (B,C) (E) ,分别设为A',B',C',最小化状态表为:

<i>X</i> ₂ <i>X</i> ₁ , , , , , , , , , , , , , , , , , , ,	00 &	01 &	11 -
A'	A'/1 -	B'/0 -	C'/1 -
B' ₽	A'/0 -	C'/0 -	B'/1 -
C' +	A'/1 -	B'/0 -	B'/1 -

2	25, 32		_		
3	√	12,25			
4	31,34,25	√	13,14,25		
5	X	14	X	X	
6	X	34	X	X	13 √
	1	2	3	4	5

相容类 (1,2) (1,3) (1,4) (2,3) (2,4) (2,5) (2,6) (3,4) (5,6)

相容类 (1,2) (1,3) (1,4) (2,3) (2,4) (2,5) (2,6) (3,4) (5,6)

状态合并图

最大相容类 (2,5,6) (1,2,3,4)

3.15

最大相容类 (2,5,6) (1,2,3,4)

闭合覆盖表

			覆	盖				闭	合	
	1	2	3	4	5	6	00	01	11	10
256		2			5	6	56	134	25	2
1234	1	2	3	4			13	4	25	1234
134	1		3	4			13	4	25	134

选择最小化 (1,3,4) (2,5,6)

设(1,3,4)为A, (2,5,6)为B

最小化状态表

X1x2 Y	00	01	11	10
Α	A/0	A/0	B/1	A/0
В	B/1	A/0	B/1	B/0