Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

Отчет по лабораторной работе $\mathbb{N}1$

по дисциплине

Логические основы интеллектуальных систем

И.В. Якимович

Студент группы	
121703	
Проверил:	В. П. Ивашенко

Выполнили:

Тема: Представление и синтаксическая проверка формул языки логики высказываний

Цель: Получить навыки синтаксического разбора формул языка логики высказываний

Задача: Проверить, является ли формула ДНФ

Описание лабораторной работы:

В ходе лабораторной работы необходимо проверить, является ли введенная формула ДНФ. Для этого требуется проверить:

- 1. Входят ли все символы формулы в алфавит языка логики высказываний.
- 2. Соотвествует ли введенная формула правилам грамматики языка логики высказываний.
- 3. Выполняются ли требования, необходимые для того, чтобы формула была ДНФ

Для выполнения данной проверки были выделены следующие подзадачи:

- 1. Анализ симоволов, из которых состоит формула
- 2. Проверка скобочной последовательности формулы
- 3. Проверка формулы на соответствие ДНФ
 - Разбиение формул по дизъюнкции на элементарные конъюнкции
 - Анализ элементов, из которых состоят элементарные конъюкции

Теоретические сведения:

Алфавит языка логики высказываний — алфавит, включающий символы логических констант и логических связок, символы для обозначения высказываний, скобки для указания приоритета операций (45 символов: 2 логических константы, десятичные цифры, заглавные буквы латинского алфавита для обозначения высказываний, 5 логических связок).

Алфавит – конечное или счетное множество символов.

Множество — абстрактная сущность, непосредственно связывающая одну или несколько сущностей в целое.

Абстрактный — существующий во внутренней памяти субъекта.

 $Cyб = \kappa m$ — носитель действия.

Действие — явление, которое имеет событие, предшествующее всем остальным событиям.

Целое — отнесенное к себе или к своим частям.

Отношение — множество связок.

Связка — абстрактная связь, множество не менее чем из одного элемента.

 Φ ормальный язык — множество текстов формального языка над некоторым алфавитом.

Грамматика языка логики высказываний:

Подформула языка логики высказываний - формула языка логики высказываний, которая является подстрокой формулы языка логики высказываний

Дизъюнктивная нормальная форма $(ДН\Phi)$ - это один из способов представления булевой функции в виде логического выражения, который заключается в представлении функции в виде дизъюнкции элементарных конъюнкций (слагаемых). Форма $ДН\Phi$ удовлетворяет следующим условиям:

- каждое слагаемое представляет собой конъюнкцию переменных и их отрицаний;
- все переменные, от которых зависит булева функция, содержатся в каждом слагаемом;
- каждое слагаемое является уникальным, то есть не существует двух одинаковых слагаемых.

Koнcmumyeнma - элементарная конъюкция, в которую по одному разу входит каждая переменная.

```
Примеры ДНФ: ((A/\backslash B)\backslash/(C\backslash/D)) (A\\B) ((A\backslash/B)\backslash/(C/\backslash D)) (!B)  \Pi p u m e p u \ ne \ C Д H \Phi :  а ((A/\backslash B)/\backslash(C\backslash/D)) (A\\B)\\((A/\C))
```

Описание алгоритма:

- 1. В программе описан класс DnfChecker, в котором реализованы основной метод программы Result. Данный метод состоит из следующих шагов:
 - (a) NewdnfLexer() на данном шаге производится построение лексического анализатора, который принимает на вход формулу и и разбивает ее на отдельные значимые единицы.
 - LITERAL: VAR | (OPB NOT VAR CLB);
 - VAR: [A-Z];
 - OR: '\ /';
 - AND: '/\';
 - NOT: '!';
 - OPB: '(';
 - CLB: ')';
 - (b) NewdnfParser() шаг, который производит грамматическую проверку формулы. Производится синтаксический парсинг используя такие правила, как:
 - dnf: normal disjunct EOF;
 - normal_disjunct: (conjuct | (OPB conjuct OR normal_disjunct CLB) | (OPB normal_disjunct OR conjuct CLB) | (OPB conjuct OR conjuct CLB));

- conjuct: LITERAL | (OPB conjuct AND LITERAL CLB) | (OPB LITERAL AND conjuct CLB);
- (c) Dnf() класса DnfParser шаг, который проверяет правило dnf и заполняет объекты lexerErrors, parserErrors соответсвующими ошибками, если в процессе выполнения они возникают
- $2.\ \mathrm{checkIsDnf}()$ финальный шаг программы, проверяющий lexerErrors, parserErrors на наличие ошибок.

Схемы использованных алгоритмов:

1. Result()

Рис.1.1, метод построение лексического анализатора из формулы NewdnfLexer()

Puc.1.2, метод построение синтаксического анализатора из формулы NewdnfParser()

Рис.1.3, метод проверки правила dnf на синтаксическом анализаторе

2. checkIsDnf()

Рис. 2, метод финального решения является ли формула ДНФ или нет

Тесты:

Для проверки работоспособности программы были проведены тесты, которые указаны ниже:

```
=== RUN TestIsDnf
--- PASS: TestIsDnf (0.00s)
PASS
ok lab/tests/unit 0.327s
```

Рис.8, результаты тестов

Все тесты, что были ранее приведены, отрабатывают правильно

Вывод:

В процессе выполнения лабораторной работы были получены навыки синтаксического анализа формул языка логики высказываний с использованием фреймворка ANTLR4. Также были созданы схемы для использованных алгоритмов, выполнена отладка программы, написаны модульные тесты и проведено ручное тестирование готовой программы.

Список используемых источников

1. Логические основы интеллектуальных систем. Практикум : учеб.- метод. пособие / В. В. Голенков [и др.]. – Минск : БГУИР, 2011. – 70 с. : ил. ISBN 978-985-488-487-5.