Physics Lab #2: Parallel and Series Circuits

Charlie Coleman

Lab Partners: Alex Bielewicz, Tracey Jaron 2016 September 07

Abstract: In this lab, the resistance of parallel and series circuits were found through calculation and measurement. The lab was unsuccessful because in parts two and three, the percent errors were over 5%, but part four was successful.

Theory: The formula to determine the resistance in a series circuit can be found by applying Kirchoff's Voltage Law and Ohm's Law. The current flowing through a circuit can be assumed to be the same, because there is only one path through the circuit for the current to take. The sum of the voltages across components must equal the total current supplied by the power supply, so the equation we receive is $R_{tot} = \sum R$.

The formula to determine the resistance in a parallel circuit can be found by applying Kirchoff's Current Law and Ohm's Law. The voltage across all resistors is the same in parallel, and the current varies dependent on resistance. With this information, the equation for

resistance in parallel circuits is
$$R_{tot} = \frac{1}{\sum \frac{1}{R}}$$

Objective: The objective of the lab was to look at the properties of parallel and series circuits, like resistance, voltage, and current.

Procedure: First, the resistance of the three resistors were measured. Then, the three resistors were put in series with one another, and the voltage drop across each resistor was measured. The current between each resistor was then measured. The voltage drop across the entire circuit was also measured, and so was the current. Next, the resistors were put in parallel, and all the same things were measured. Next, two resistors were put in parallel, and those two were put in series with the last resistor, and the same values were measured. Finally, the voltage and current across a light bulb were measured as the voltage supplied changed.

Setup:

Data:

Part 1

	R_	meas	(Ω)
R1			5130
R2			1010
R3			9880

Pá	Part 2 Series		Par	Part 3 Parallel		Part 4 Complex		
	V (V)	I (A)		V (V)	I (A)		V (V)	I (A)
P1	0.634	0.0000603	P1	1.02	0.000102	P1	0.0798	0.000015
P2	0.063	0.0000605	P2	1.02	0.000196	P2	0.08	0.000078
Р3	0.329	0.0000603	Р3	1.02	0.000936	Р3	0.949	0.000095
P4	1.029	0.0000603	P4	1.03	0.001181	P4	1.03	0.000095

Part 5 Lightbulb

	I GI C			CDGID	
V	(V)		I (.	A)	
		0			0
		0.5		0.	03
		1		0.	05
		1.5		0.	06
		2		0.	07
		2.5		0.	08
		3		0.	09
		3.5		С	.1
		4		0.	11
		4.5		0.	12

Calculations:

Part One:

Series Resistance:

 $R = R_1 + R_2 + R_3 = 5130 \Omega + 1010 \Omega + 9880 \Omega = 16020 \Omega$

Parallel Resistance:

$$R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = \frac{1}{\frac{1}{5130\Omega} + \frac{1}{1010\Omega} + \frac{1}{9880\Omega}} = 777.5\Omega$$
Two:

Part Two:

Calculated Resistance:

$$R_{calc} = \frac{V}{I} = \frac{0.634 V}{6.03 * 10^{-5} A} = 10500 \Omega$$

Part Five:

Calculated Power:

 $P = V * I = 0.5 V * 0.03 A = 1.5 * 10^{-2} W$

Qualitative Error Analysis: One error for this lab is that resistors all have their own error range, so that can throw off the results. Another error is that the breadboard was most likely adding resistance to the circuit, making the measured current values smaller and increasing the total calculated resistance.

Quantitative Error Analysis:

Part One: N/A

Part Two:

Percent Error: 6.19%

Part Three:

Percent Error: 6.32%

Part Four:

Percent Error: 0.67%

Part Five: N/A

Results:

Part One:

Series Resistance: 16020 Ω Parallel Resistance: 777.5 Ω

Part Two:

	Calc	R	(Ω)
P1		1	0500
P2			1040
Р3			5450
P4		1	7100

Total Resisance: 17000 Ω

Part Three:

	Calc	R	(Ω)
P1		1(0000
P2		1	5200
Р3		-	1090
P4			872

Total Resistance: 826 Ω

Part Four:

	Calc R (Ω)
P1	5320
P2	1025.64103
Р3	9989.47368
P4	10842.1053

Total Resistance: 11000 Ω

Part Five:

V	(V)		R (Ω)	P (W)
		0.5	16.67	0.015
		1	20	0.05
		1.5	25	0.09
		2	28.57	0.14
		2.5	31.25	0.2
		3	33.33	0.27
		3.5	35	0.35
		4	36.36	0.44
		4.5	37.5	0.54

Resistance v Voltage

Conclusion: This lab was unsuccessful because our percent error was over 5% for part two and three. Part four was successful, however the lab was successful only one of three times. Part one and five had no percent error or ways to determine success.