MATH H113: Honors Introduction to Abstract Algebra

2016-03-07

- The Alternating Group
- Group Actions
- Cayley's Theorem

Last Time

Theorem: Let $n \geq 2$. Then there is a unique homomorphism $\epsilon : S_n \to \{\pm 1\}$ \$ such that $\epsilon(\tau) = -1$ for all transpositions of $\tau \in S_n$. It is surjective.

See pictures

Group Actions

Recall: An action of a group G on a set A is a function $G \times A \to A$, denoted $(g, a) \mapsto g \cdot a$, such that:

```
1. g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a \ \forall g_1, g_2 \in G; a \in A, and 2. 1 \cdot a = a \ \forall a \in A.
```

Giving an action of G on A is equivalent to giving a homomorphism $\phi: G \to S_A$, $g \mapsto (a \mapsto g \cdot a)$. New: Such a map is called a permutation representation of G.

The kernel of a group action = $\{g \in G : g \cdot a = a \ \forall a \in A\} = \ker \phi$.

The stabilizer of an element $a \in A$ is the subgroup

 $G_a = \{ g \in G : g \cdot a = a \}$

(so the kernel of the action is $\bigcap_{a \in A} G_a$).

(*Note*: G_a need not be normal.)

Definition: An action of a group on a set is:

- faithful if its kernel is the trivial subgroup, and
- transitive if it has only one orbit $(\forall a, b \in A. \exists g \in G \text{ s.t. } b = g \cdot a)$

Proposition: Let G act on a set A, let $a \in A$, and let O be the orbit of a under the action of G. Then, for any $b \in O$, the set $\{g \in G : g \cdot a = b\}$ is a left coset of G_a in G, and there is a natural well-defined bijection from the set G/G_a (set of left cosets) to O, given by $gG_a \mapsto g \cdot a$. Therefore, $|O| = |G : G_a|$ (and $|O| = \infty \iff |G : G_a| = \infty$).

Proof: Given $b \in O$ and $h \in G$ such that $b = h \cdot a$, we have $\{g \in G : g \cdot a = a\}$ b} = hG_a because

 $g \in hG_a \iff gG_a = hG_a \iff g^{-1}h \in G_a \iff g^{-1}h \cdot a = a \iff g^{-1}(h(a)) = a \iff g^{-1}(b) = a \iff g(a) = b \iff g \in \{g' \in G : g' \cdot a = b\}.$ Then the above map is well defined $gG_a = hG_a \iff g(a) = h(a)$ (from the above). It's injective by the above. It's surjective by the definition of the orbit: $O \implies h \cdot a = b$ for some $h \in G \implies hG_a \mapsto b$.

The last sentence is immediate.

Cayley's Theorem

Look at ghe multiplication table for V_4 (Klein group):

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

(Generally, in a multiplication table, the entry row x and column y is the product xy (not yx)).

Each row of the multiplication table contains every element of the group exactly once (not counting row labels). Similarly for columns. (by Prop. 2 on p. 20)

By (1) each $g \in G$ gives rise to a permutation of G called σ_g : $\sigma_g(h) = gh$. So we get a function $\phi: G \to S_G$.

By (2), this function is injective. In fact, ϕ is a homomorphism, because it is the permutation representation of G associated to the action of G on itself by left multiplication: $\sigma_q(h) = g \cdot h = gh$

Check that it's a group action:

1.
$$g_1 \cdot (g_2 \cdot a) = g_1(g_2 a) = (g_1 g_2) a = (g_1 g_2) \cdot a \ \forall g_1, g_2, a \in G$$
, and 2. $1 \cdot a = a \ \forall a \in G$ because $1a = a$.

This proves: Theorem (Cayley): Every group is isomorphic to a subgroup of some permutation group. (In fact, one such isomorphism is given by the permutation representation of G associated to the action of G on itself by left multiplication.) So, if G is a finite group and n = |G|, then one such representation is the isomorphism of G with a subgroup of S_n .

Proof: Let $\phi: G \to S_G$ be as in the parentesized sentence. Since ϕ is injective, it gives an isomorphism to $\text{Im}\phi$, which is a subgroup of S_G .

Example: If $G = S_3$, then the map $G \to S_G$ gives an isomorphism of S_3 with a subgroup of S_6 (on homework: Ex. 4.2.2).

More general theorem: Let G be a group, let H be a subgroup of G, and let A = G/H (= set of left coset of H in G). Let G act on A by $g \cdot (aH) = (ga)H$ for all $g, a \in G$ (this is well defined because $(ga)H = g(aH) = \{gx : x \in aH\}$). Let $\pi_H : G \to S_A = S_{G/H}$ be the associated permutation representation. Then:

- 1. G acts transitively on A;
- 2. The stabilizer of 1H = H is H
- 3. $\ker \pi_H = \bigcap_{x \in G} xHx^{-1}$. This is the largest normal subgroup of G contained in H.

Proof:

- 1. Let $gH \in A$. Then $gH = g \cdot 1H$, so gH is in the same orbit as 1H, so there is only one orbit.
- 2. $x \cdot 1H = 1H \iff (x1)H = H \iff xH = H \iff x \in H$ so $x \in G_{1H} \iff x \in H$, so $G_{1H} = H$.
- 3. From your homework, $xHx^{-1} = xG_{1H}x^{-1} = G_{x \cdot 1H} = G_{xH}$: So $\bigcap_{x \in G} xHx^{-1} = \bigcap_{x \in G} G_{xH} = \bigcap_{a \in A} G_a = \ker \pi_H$. Second part: $\bigcap_{x \in G} xHx^{-1}$ is normal in G (it's in $\ker \pi_H$), and $\subseteq H$. Let $N \subseteq G$ with $N \subseteq H$. Then $N = gNg^{-1} \subseteq gHg^{-1} \ \forall g \in G$, $\therefore N \subseteq \bigcap_{x \in G} xHx^{-1}$.

When H=1 you get back Cayley's theorem because G bijective to G/H by $\psi(g)=gH\in G/H \forall g\in g\in G$. and the actions correspond $x\psi(g)=\psi(xg)\ \forall g,x\in G$. So $\ker\pi_H=1$ (subgroup of H=1) so π_H is injective.