20-11-2020

Name: M-Maheith Reddy

RollNo. 1801CS31

Ansı:

To prove: All CFL's are not closed under complementations.

Poroof:

Assume CFL's are closed under complementation.

Consider two CFL's L1 and L2. By our assumption Li and L2 are also CFLe

Since, CFL's are closed under union, II ULZ is a CFL.

By our assumption LIVI2 = LINL2 is also CFL, for all CFL's L1, L2

But we know LINL2 is not always a CFL since CFLs are not closed under complentation. This is a contradiction due to our initial assumption that CFL's are closed under complementation.

: All CFL's are not chosed under complementation.

Henre Proved!

2.

Given: If L is CFL and R is Regular language

To prove: LUR is CFL

Proof: Regular languages are CFL's.

i. R is CFL.

We know that CFLs are closed under union. Hence, LUR is also a CFL

Eg: if L = {ab|n≥0} and R=a*b* are CFL and regular language over the alphabet {a,b} respectively.

LUR = a b which is regular, hence a CFL as well.

: LUR is CFL. Hence Proved!

3	a all strings over {0,1} with the substring 0101
	(0+1) 0101 (0+1) *
	Ball strings beginning with 11 and ending with ab.
	11 (1+a+b) ab
	E det of all strings over $\{a,b\}$ with a consecutive bis
	(a+b) * bbb (a+b) *
	& Let of all sterings that end with 'I' and has no substring '00'
	substring '00' (1+01) t
4	For a given string of length in. No. of subetrings of
	length 1, = n \ \ \ S = a_1 a_2 a_3 and an
	2, = $n-1$ 3, = $n-2$ Total no. of substrings are 1+2+3+ ($n-1$)+ n
	1+2+3+ (n-1)+n
	$n-1=2$ $n=1$ 2 $\frac{n(n+1)}{2}$
	This is the total no. of substeing that can be formed from a string of length n.
	that can be formed from a string of length h.