Hierarchical Reinforcement Learning

Aijun Bai

Multi-Agent Systems Lab., USTC

Oct 10, 2011

Outline

- Preliminaries
 - Motivation
 - Example: The Taxi Domain
- Approaches to Hierarchical RL
 - Options
 - The MAXQ Framework
- Automatic Hierarchy Discovery
- Future Work

Flat Reinforcement Learning Methods

- Suffer from the curse of dimensionality:
 - comupational complexity grows exponentially with the number of vaiables used to describe a state
- Ignore the internal structure of:
 - domain knowledge
 - problem itself

leading to slow learning

 Closely concern about policies and value function which are hard to transfer for sharing and reusing

Hierarchical Reinforcement Learning Methods

Key Ideas:

- Impose constraints on the value function/policy
 - State abstraction: symmetries, state aggreation
 - Temporal abstraction: options, task hierarchies
- Develope learning algorithms that expoit these constraints
 Purpose of Hierarchical RL:
 - **Speed-up:** Leverage the structure within domain/problem
 - Scale-up: Decompose large problems into smaller ones
 - Transfer: Use hierarchical structure as pirior knowledge for similar new problems

The Taxi Domain

States: $25 \times 14 \times 5 \times 5 = 8750$

- Taxi location: (x, y)
- Taxi fuel amount: [0, 13]
- Passenger location: R, Y, B, G and In
- Destination location: R, Y, B, G, F

Actions: 7

- North, South, East, West
- Pickup, Putdown
- Fillup

4	R				G
3	0				
2					
1			F		
0	Y			В	
	0	1	2	3	4

Problem size: $8750 \times 7 = 61250$

The Taxi Hierarchy

Policy structure

- Get: move to the passenger and pickup
- Put: move to the destination and putdown
- Refuel: move to F to fillup if needed

Elementary hierarchical method

- Solve all possible **Navigation**: $25 \times 5 \times 4 = 500$
- Solve **Get**, **Put** and **Refuel** using **Navigation**: $25 \times (4+4+1) \times (5+1) = 1350$
- Determine among **Get**, **Put** and **Refuel** in top level: $25 \times 14 \times 5 \times 5 \times 3 = 26250$

Semi-Markov Decision Process

SMDP is a generalization of MDP:

- Action selections are made at the controlled states
- Duration between controlled states is a random variable

Transition function becomes:

•
$$T: S \times A \times S \times N \rightarrow [0, 1]$$

The Bellman equation become:

•
$$V^*(s) = \max_a [R(s, a) + \sum_{s', d} \gamma^d T(s', d|s, a) V^*(s')]$$

•
$$Q^*(s, a) = R(s, a) + \sum_{s', d} \gamma^d T(s', d|s, a) \max_{a'} Q^*(s', a')$$

RL methods correspondingly extend to SMDPs.

Options are temporally-extened actions, defined as $O = (I, \pi, \beta)$:

- $I \subseteq S$ is the initiation set of states
- \bullet π is this option's own policy
- ullet eta(s) is the probability of termination in state s

Options are also called as skills, behaviors, macro-actions, etc.

Hierarchical RL using options:

- MDPs augmented with predefined options become SMDPs
- The optimal policy over options can be learned using SMDP RL methods

The MAXQ Hierarchy

MAXQ hierarchy is orgnized in a task hierarchies $H: \{T_i: 0 \leq i \leq m\}$ represented as a DAG.

Decompose value function

- $V^i(s) = R(s, i)$ Immediate reward of promitive T_i
- $V^i(s) = \max_a Q^i(s, a)$ Total expected reward in task T_i
- $Q^{i}(s, a) = V^{a}(s) + C^{i}(s, a)$ Reward if sub-task T_{a} selected
- $C^{i}(s, a) = E_{d,s'}[\gamma^{d} V^{i}(s')]$ Expected reward after T_{a} finished

The MAXQ-Q Learning Algorithm

Overview of MAXQ-Q:

- ullet Learn V for each primitive action
- ullet Learn C for each composite action
- Use Q-learning-like update rules

Properites of MAXQ-Q

- ullet Facilitates state abstraction: Different representation for each $C,\ V$
- Learning proceeds bottom-up
- Convergence with hierarchical optimality guarantee

Automatic Hierarchy Discovery Approches

Automatically inducing options or task hierarchies:

- **Bottlenecks in** *S***:** connect two or more strongly-connected regions
- Exit conditions: satisfy the preconditions of actions
- Factored representation: analyze DBN models of factored MDP

Future Work

- Characterization of hierarchical structure
- Automatic discovery of hierarchical structure
- Transfer of hierarchical structure

References

- N. Mehta, "Hierarchical Structure Discovery in Reinforcement Learning," 2009.
- N.K. Jong and P. Stone, "Hierarchical Model-Based Reinforcement Learning: R- MAX + MAXQ," International Conference on Machine Learning, 2008.
- T.G. Dietterich, "Hierarchical Reinforcement Learning", Slides, 2000.
- T.G. Dietterich, "Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition," Journal of Machine Learning Research, 1999.