

Digital Talent Scholarship 2022

Convolution Neural Network Pt 1

Lead a sprint through the Associate Machine Learning Track

Agenda

- Computer Vision
- Convolution Neural Network
- Classifying Real-World Images
- Horse or Human
- Cats and Dogs

Are your students ML-ready?

Recap Apa itu Computer Vision?

Coding Session

mnist / fashion_mnist dataset

mnist = tf.keras.datasets.fashion_mnist

Computer Vision

import tensorflow as tf

mnist = tf.keras.datasets.fashion_mnist

(training_images, training_labels) , (test_images, test_labels) =
mnist.load data()

training_images = training_images/255.0

test_images = test_images/255.0

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),

tf.keras.layers.Dense(512, activation=tf.nn.relu),

tf.keras.layers.Dense(10, activation=tf.nn.softmax)])

model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy')

model.fit(training_images, training_labels, epochs=5)

model.evaluate(test_images, test_labels)

classifications = model.predict(test_images)

print(classifications[0])

print(test_labels[0])

Additional Codes

import matplotlib.pyplot as plt

plt.imshow(training_images[0])

print(training_labels[0])

print(training_images[0])

Limitations of DNN

- 1. Not 28x28 greyscale
- 2. Not Left-facing boot
- 3. Must be centered, well defined, similar shapes

Solusinya? CNN!

Apa itu CNN

CNN atau bisa disebut sebagai Convolution Neural Network merupakan bagian dari Al

CNN merupakan bagian dari Deep Learning

Convolution NN

- 1. Mengekstrak fitur dalam sebuah gambar
- 2. Mencocokkan fitur yang tepat dengan set

Bagian manakah dari proses ini yang merupakan Machine Learning?

Convolution NN

tf.keras.layers.Conv2D(64, (3,3), activation='relu')

Convolutions is about Filter!

Input image

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Filter

1	0	1
0	1	0
1	0	1

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolution NN

Convolution NN

Lalu Apa itu Pooling?

Input image

5	34	78	156
32	54	221	221
0	0	114	119
253	59	56	45

tf.keras.layers.MaxPooling2D(2, 2)

Pooling

Pooling

Contoh Filter dan Pooling

https://colab.research.google.com/drive/1CTxGUcjxQzvTWVFf F5j2LcopK82jN8E0

Classifying Real-World Images

Classifying Real-World Images

Classifying Real-World Images

Data Generator

- You can then use this to do some transformers in the image so just normalizing them
- in this case, this will be the training directory that contains the horses and humans sub directories.
- You only have two classes like we do here keep this is binary, if you have more classes it should be categorical feel validation datasets.
- These two generators now provide the images that your model can use for training and validation.

Data Generator

```
test_datagen = ImageDataGenerator(rescale=1./255)
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(300, 300),
        batch_size=32,
        class_mode='binary')
```


Image Augmentation and Overfitting

Apa itu overfitting

Bagaimana cara menangani overfitting?


```
train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```



```
train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```



```
train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```



```
train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```



```
train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```



```
train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```


Apa itu Dropout

Dropout merupakan proses mencegah terjadinya overfitting dan juga mempercepat proses learning. Dropout mengacu kepada menghilangkan neuron yang berupa hidden maupun layer yang visible di dalam jaringan. Dengan menghilangkan suatu neuron, berarti menghilangkannya sementara dari jaringan yang ada.

Mengapa ini bisa membantu mengurangi overfitting?

tf.keras.layers.Dropout(0.5)

Effect on Augmentation

Cats and Dogs Dataset

https://goo.gle/2AKklzX

QnA

Thank you