CS-540: Intro to Artificial Intelligence

SECTION 1 LECTURER: ERIN WINTER

Informed Search

Because you have a **weighted**, **directed** graph Dijkstra's Search is your only suitable choice. It is also **optimal** and **complete**. Observe the first few states that Dijkstra's chooses to expand.

*Assume ties broken الممانية ماممانيا

alphabetically
*Allow state to appear multiple
times in priority queue

Frontier	Expanded
{US:0}	{}

*Assume ties broken alphabetically *Allow state to appear multiple times in priority queue

Frontier	Expanded
{US:0}	{}
{CS:1,DIS:2,ENG:2}	{US}

*Assume ties broken alphabetically *Allow state to appear multiple times in priority queue

Frontier	Expanded
{US:0}	{}
{CS:1,DIS:2,ENG:2}	{US}
{DIS:2, ENG:2,CHEM:3}	{US,CS}

*Assume ties broken alphabetically *Allow state to appear multiple times in priority queue

Frontier	Expanded
{US:0}	{}
{CS:1,DIS:2,ENG:2}	{US}
{DIS:2, ENG:2,CHEM:3}	{US,CS}
{ENG:2,CHEM:3, CHA:5,MED:7}	{US,CS,DIS}

*Assume ties broken alphabetically *Allow state to appear multiple times in priority queue

Frontier	Expanded
{US:0}	{}
{CS:1,DIS:2,ENG:2}	{US}
{DIS:2, ENG:2,CHEM:3}	{US,CS}
{ENG:2,CHEM:3, CHA:5,MED:7}	{US,CS,DIS}
{CHEM:3, CHA:5, EN2:5, MED:7}	{US, CS, DIS, ENG}

*Assume ties broken alphabetically *Allow state to appear multiple times in priority queue

Frontier	Expanded
{US:0}	{}
{CS:1,DIS:2,ENG:2}	{US}
{DIS:2, ENG:2,CHEM:3}	{US,CS}
{ENG:2,CHEM:3, CHA:5,MED:7}	{US,CS,DIS}
{CHEM:3, CHA:5, EN2:5, MED:7}	{US, CS, DIS, ENG}
{GR:4, CHA:5, EN2:5, MED:7}	{US, CS,DIS, ENG, CHEM}

*Assume ties broken alphabetically *Allow state to appear multiple times in priority queue

Frontier	Expanded
{US:0}	{}
{CS:1,DIS:2,ENG:2}	{US}
{DIS:2, ENG:2,CHEM:3}	{US,CS}
{ENG:2,CHEM:3, CHA:5,MED:7}	{US,CS,DIS}
{CHEM:3, CHA:5, EN2:5, MED:7}	{US, CS, DIS, ENG}
{GR:4, CHA:5, EN2:5, MED:7}	{US, CS,DIS, ENG, CHEM}
{CHA:5,EN2:5,MED:7}	{US,CS,DIS, ENG,CHEM ,GR}

What you know that Dijkstra's doesn't...

- •The distance of each state relative to Soil Sciences!
- •It doesn't make sense *in context* to investigate Grainger Hall or the Chemistry building as potential stops on the shortest route to Soil Sciences.
- How to reduce wasted effort? A heuristic function that utilizes relative distance from the goal state.

Big Idea of Informed Search

- Search problems are a pursuit of some goal state through a succession of intermediary states
- Instead of ordering states within the frontier by path cost, try to quantify the distance of a given state to a goal state using a heuristic function
- Heuristic functions are educated guesses, even with domain knowledge we can't expect them to be perfect

Heuristic Functions

Define a heuristic function, h(n)

- uses domain-specific information in some way
- is computable from the current state description
- it estimates
 - the "goodness" of node n
 - how close node n is to a goal
 - the cost of minimal cost path from node n to a goal state

Heuristic Function Properties

- • $h(n) \ge 0$, for all nodes n^*
- •h(n) close to 0 means we think n is close to a goal state
- •h(n) much greater than 0 means we think n is far from a goal state

^{*}this property is especially important for ensuring correctness in algorithms that utilize heuristic functions

- Implement a graph search with a priority queue frontier
- Prioritize nodes by lowest h(n) value, that is, expand nodes estimated closest to the goal first
- Called a "greedy" algorithm because it makes shortsighted decisions based on what seems best at the given moment selecting the lowest *h(n)* value node from the frontier

- Is it optimal?
- Is it complete?
- If it doesn't have both of these properties, it would be wiser to simply use Dijkstra's algorithm.

f(n) = h(n)

of nodes tested: 0, expanded: 0

expnd. node	Frontier
	{S:8}

f(n) = h(n)

of nodes tested: 1, expanded: 1

expnd. node	Frontier	
	{S:8}	
S not goal	{C:3,B:4,A:8}	

f(n) = h(n)

of nodes tested: 2, expanded: 2

expnd. node	Frontier
	{S:8}
S	{C:3,B:4,A:8}
C not goal	{G:0,B:4,A:8}

f(n) = h(n)

of nodes tested: 3, expanded: 2

expnd. node	Frontier
	{S:8}
S	{C:3,B:4,A:8}
С	{G:0,B:4, A:8}
G	{B:4, A:8}

Optimal Path: S, B, G

Optimal Path Cost: 9

BFS Path: S,C,G

BFS Path Cost: 13

Learning from GBFS's Mistakes

- Greedy best-first search makes the unsound assumption that the heuristic function always estimates distance to a goal state correctly
- With an especially bad heuristic function, greedy best-first search can traverse the entire graph $O(b^m)$ or worse, get on an infinite incorrect path like depth-first search
- Time and space complexity: O(b^m)

Attempt 2: A-Search

same computation as Dijkstra's

- Use as an evaluation function f(n) = g(n) + h(n), where g(n) is minimum cost path from start to current node n (as defined in UCS)
- •Nodes in the frontier are ranked by the estimated cost of a solution, where g(n) is the cost from the start node to node n, and h(n) is the estimated cost from node n to a goal
- Think of it as a "first half" (from the start to node n using known edges) + "second half" (estimated cost from n to goal) computation

Evaluating A-Search

- Smarter, but still falls into the some of the same traps as Greedy Best-First Search with a bad heuristic
- •Neither admissible nor complete.
- •O(b^m) time and space complexity.

Counterexample:

Because the heuristic function returns infinity on node E, E looks so bad that it will never be expanded

How to improve A-Search...

- Constrain the heuristic function!
- A-Search incorporates desirable information, cost to current node and the estimated cost from current node to the goal
- However, any heuristic function that prevents expansion of nodes along the goal path can never be optimal or complete.

Admissible Heuristics

- An admissible heuristic h(n) never overestimates the cost from n to the goal
- So, an admissible heuristic applied to A-search f(n) = g(n) + h(n) can never overestimate the true solution path cost

Admissible Heuristic Functions

Which of the following are admissible heuristics? Assume h* is the true cost from n to the goal.

$$h(n) = h^*(n) YES$$

$$h(n) = \max(2, h^*(n)) \text{ NO, what if } h^*(n) = 1$$

$$h(n) = \min(2, h^*(n))$$
 YES, this never overestimates

$$h(n) = h^*(n) - 2$$
 NO, negative if $h^*(n) < 2$

$$h(n) = \sqrt{h^*(n)}$$
 NO, square root of $h^*(n)$ is $h^*(n)$ if $0 < h^*(n) < 1$

Comparing Heuristic Functions

•A heuristic function h2 **dominates** h1 if *for* all s

```
h1(n) \le h2(n) \le h*(n)
```

- Want heuristic functions as close to h* as possible, but not over h*
- Good heuristic functions can be slow, so sometimes it's better to use a weaker heuristic that expands more nodes in a given interval

A-Search + Admissible (or Consistent) Heuristic =

A* Search

effective and used in practice

A* Algorithm

```
Frontier = {S} where S is the start node
Explored ={}
Loop do
 if Frontier is empty then return failure
 pick node, n, with min f(n) = h(n) + g(n) value from Frontier
 if n is a goal state then return solution
 for each each child, n', of n do
    if n' is not in Explored or Frontier
          then add n' to Frontier
    else if n' in Frontier as m
          if g(m) \le g(n') throw n' away
          else add n' to Frontier and remove m
   Remove n from Frontier and add n to Explored
```

When Should A* Stop?

To ensure **optimality**, A* should terminate only when a goal state is *removed* from the priority queue

Same rule as for Dijkstra's

A* with h(n) = 0 is Dijkstra's

Consistent Heuristic Functions

A heuristic, h, is called **consistent** (aka **monotonic**) if, for every node n and every successor n' of n, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n':

$$c(n, n') \ge h(n) - h(n')$$

or, equivalently: $h(n) \le c(n, n') + h(n')$

- •Values of f(n) along any path are nondecreasing
- Consistency is a stronger condition than admissibility

Admissible vs. Consistent Heuristics

A* using an admissible heuristic will give an optimal solution on an acyclic graphs (trees)

However, a **consistent** heuristic must be used with A* to guarantee optimality on graphs with cycles

Remember, all consistent heuristics are admissible, but not all admissible heuristics are consistent

Consistent Heuristics

Is this *h* consistent?

h(C)=900, h(D)=1, c(C, D)=1 < 900-1, so h is NOT consistent

A* Search Practice

Is *h* is admissible and/or consistent? Consistent

$$f(n) = g(n) + h(n)$$

of nodes tested: 0, expanded: 0

expnd. node	Frontier
	{S:0+8}

To test for admissibility, check that h(n) never overestimates the true cost to the goal.

To check for consistency, check h(n) is consistent AND $h(n) \le c(n, n') + h(n')$ for all successor nodes n'.

f(n) = g(n) + h(n)

of nodes tested: 1, expanded: 1

expnd. node	Frontier
	{S:8}
S not goal	{A:1+8,B:5+4,C:8+3}

f(n) = g(n) + h(n)

of nodes tested: 2, expanded: 2

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
A not goal	{B:9,G:1+9+0,C:11,
	D:1+3+∞,E:1+7+∞}

f(n) = g(n) + h(n)

of nodes tested: 3, expanded: 3

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
A	{B:9,G:10,C:11,D:∞,E:∞}
B not goal	{G:5+4+0,G:10,C:11,
	D:∞,E:∞} replace

f(n) = g(n) + h(n)

of nodes tested: 4, expanded: 3

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
A	{B:9,G:10,C:11,D:∞,E:∞}
В	{G:9,C:11,D:∞,E:∞}
G goal	{C:11,D:∞,E:∞}
	not expanded

f(n) = g(n) + h(n)

of nodes tested: 4, expanded: 3

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
Α	{B:9,G:10,C:11,D:∞,E:∞}
В	{G:9,C:11,D:∞,E:∞}
G	{C:11,D:∞,E:∞}

Fast, optimal, complete under same graph conditions as Dijkstra's

path: S,B,G

cost: 9

The Bad News About A*

- •A* uses a lot of memory, ie. O(number of states)
- •For some search problems, A* will fill the available system memory before finding a solution

How do we use less memory?

- 1. Sacrifice optimality beam search
- 2. Sacrifice some time iterative deepening A*

Beam Search

Use an evaluation function f(n) = h(n) as in Greedy Best-First search, and restrict the maximum size of the Frontier to a constant, k

- •Only keep *k* best nodes as candidates for expansion, and throw away the rest
- •More space efficient than Greedy Best-First Search, but may throw away a node on a solution path. Space complexity **O(km)**.
- Not complete
- Not optimal/admissible

Iterating Deepening A*

- Iterative-deepening A*
- •Cutoff based on f = g + h value rather than depth
- •At each iteration do loop-avoiding DFS, not expanding any node with f-value that exceeds current threshold
- •At each iteration increase the *f*-value threshold by setting it to the smallest *f*-value of any node that exceeded the cutoff in the previous iteration
- Complete
- Optimal / Admissible
- Linear space required

How to come up with admissible/consistent heuristics?

Heuristics are often defined by relaxing the problem, i.e., computing the exact cost of a solution to a simplified version of problem

remove constraints

8-puzzle: Each tile moves independently

simplify problem

8-puzzle: A tile can move to any adjacent position \rightarrow Number of moves to get a tile to its goal position = City-Block distance (aka Manhattan distance or L₁ distance)

Map navigation: Use distance formula from n to goal state as h(n), which will always be optimistic because straight line distance is best case, reality has obstacles