DEVELOPMENT OF AGGREGATION METHODS OF PARTIALLY ORDERED SETS

CÉSAR GARCÍA CABEZA

TUTORS: IRENE DÍAZ RODRÍGUEZ & ELÍAS FERNÁNDEZ COMBARRO

TABLE OF CONTENTS

INTRODUCTION

REAL LIFE APPLICATION

REAL LIFE APPLICATION

BEST

WORST

MOTIVATION

N	COMBINATIONS
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800
11	39916800
12	479001600

1) C. BACHMAIER ET AL. "ON THE HARDNESS OF MAXIMUM RANK AGGREGATION PROBLEMS" (2015)

BASIC CONCEPTS

SET P WITH A BINARY RELATION \leq 2

REFLEXIVITY ANTISYMMETRY TRANSITIVITY

SET P WITH A BINARY RELATION \leq 2

REFLEXIVITY ANTISYMMETRY TRANSITIVITY

 $x \leq x$

2) CMU - DEPARTMENT OF MATHEMATICAL SCIENCES. PARTIALLY ORDERED SETS (2015)

SET P WITH A BINARY RELATION \leq 2

REFLEXIVITY

ANTISYMMETRY

TRANSITIVITY

$$x \le y, y \le x \Rightarrow x = y$$

2) CMU - DEPARTMENT OF MATHEMATICAL SCIENCES. PARTIALLY ORDERED SETS (2015)

SET P WITH A BINARY RELATION \leq 2

REFLEXIVITY ANTISYMMETRY TRANSITIVITY

 $x \le y, y \le z \Rightarrow x \le z$

2) CMU - DEPARTMENT OF MATHEMATICAL SCIENCES. PARTIALLY ORDERED SETS (2015)

COMPARABLE OBJECTS

OR

$$y \leq x$$

POSET REPRESENTATION

MATRIX

LINEAR EXTENSION

TOTAL ORDER RELATIONSHIP

ALL ELEMENTS ARE COMPARABLE TO EACH OTHER

AGGREGATION OF POSETS

AGGREGATION MATRIX

AGGREGATION MATRIX

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

AGGREGATION MATRIX

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

NOT OPTIMAL

PARTIAL RESTRICTIONS VIOLATED BY THE LINEAR EXTENSION

W,

COST =

NOT OPTIMAL

PARTIAL RESTRICTIONS VIOLATED BY THE LINEAR EXTENSION

COST = 0

NOT OPTIMAL

PARTIAL RESTRICTIONS VIOLATED BY THE LINEAR EXTENSION

$$COST = 0 + 1$$

NOT OPTIMAL

PARTIAL RESTRICTIONS VIOLATED BY THE LINEAR EXTENSION

$$COST = 0 + 1 + 2 = 3$$

ALGORITHMS

EXAMPLE

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

MINCOST ST

COMPUTING ALL THE POSIBLE LINEAR EXTENSIONS AND KEEPING THE BEST

SEQUENTIALLY CALCULATES
THE COST

OPTIMAL ALGORITHM

HIGH EXECUTION TIMES

MINCOST ST - EXAMPLE

W_2	W_1	W_2	\mathbf{W}_{0}	W_1	\mathbf{W}_{0}
W_1	W_2	\mathbf{W}_{0}	W_2	\mathbf{W}_{0}	W_1
W_0	W_0	W_1	W_1	W_2	W_2
S ₀	S ₁	S ₂	S_3	S ₄	S_5

POSSIBLE SOLUTION	COST
S ₀	3
S ₁	3
S ₂	4
S ₃	3
S ₄	4
S ₅	4

MINIMALS⁴

WHAT IS A MINIMAL ELEMENT?

AN ELEMENT $A \in P$ is a minimal element if there is no $B \in P$ such that A > B

4) E.F. COMBARRO, J.H. DE SARACHO AND I.D. RODRÍGUEZ. "MINIMALS PLUS: AN IMPROVED..." (2019)

VECTOR UP

VECTOR DOWN

BOUND

CONSTANT

USED VECTOR

VECTOR UP

VECTOR DOWN

BOUND CONSTANT

USED VECTOR

$$up[i] = \sum_{j=1}^{n} A[i,j] \quad up = [6,5,5]$$

VECTOR UP

VECTOR DOWN

BOUND ONSTANT

USED VECTOR

$$down[i] = \sum_{j=1}^{n} A[j,i] down=[5,5,6]$$

VECTOR UP

VECTOR DOWN

BOUND CONSTANT

USED VECTOR

bound =
$$\sum up[i]$$
 bound = 16

VECTOR UP

VECTOR DOWN

BOUND CONSTANT **USED VECTOR**

used = [False, False, False]

1º) LOWEST NUMBER OF ELEMENTS BELOW

MIN = 5

$$P(i) = \frac{up[i]}{\sum_{j \ minimal} up[i]}$$

2º) MINIMALS

3º) CHOOSE MINIMAL

4º) UPDATE

 $MINIMALS = [W_0, W_1]$

PROBABILITIES =
$$\left[\frac{6}{11}, \frac{5}{11}\right]$$

 W_1

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

	Wn	W ₁	W,
UP	6	5	5
DOWN	5	5	6
USED	FALSE	FALSE	FALSE

BOUND = 16

1º) LOWEST NUMBER OF ELEMENTS BELOW

MIN = 5

2°) MINIMALS

 $MINIMALS = [W_0, W_1]$

3º) CHOOSE MINIMAL

PROBABILITIES = $\left[\frac{6}{11}, \frac{5}{11}\right]$

4º) UPDATE

 $A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$

	Wn	W ₁	W ₂
UP	6-1 = 5	5-3 = 2	5-1 = 4
DOWN	5-1 = 4	5-3 = 2	6-1=5
USED	FALSE	TRUE	FALSE
BOUND = 16			

 W_1

1º) LOWEST NUMBER OF ELEMENTS BELOW

MIN = 4

2°) MINIMALS

3º) CHOOSE MINIMAL

4º) UPDATE

$$MINIMALS = [W_0]$$

$$W_0$$
 W_1

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

	Wn	W ₁	W,
UP	5	2	4
DOWN	4	2	5
USED	FALSE	TRUE	FALSE

BOUND = 16

1º) LOWEST NUMBER OF ELEMENTS BELOW

MIN = 4

2º) MINIMALS

3º) CHOOSE MINIMAL

4º) UPDATE

 $MINIMALS = [W_0]$

PROBABILITIES = [1]

$$W_0$$
 W_1

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

	Wn	W ₁	W,
UP	5-3 = 2	2-1 = 1	4-1 = 3
DOWN	4-3 = 1	2-1 = 1	5-2 = 3
USED	TRUE	TRUE	FALSE

BOUND = 16

MINIMALS - SEARCH OF THE MINIMALS

1º) LOWEST NUMBER OF ELEMENTS BELOW

2º) MINIMALS

3º) CHOOSE MINIMAL

4º) UPDATE

MIN = 3

 $MINIMALS = [W_2]$

PROBABILITIES = [1]

A =	=	$\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$	1 3	2 \ 1
		\ ₁	1	3/

	Wn	W ₁	W ₂
UP	2	1	3
DOWN	1	1	3
USED	TRUE	TRUE	FALSE

BOUND = 16

MINIMALS - SEARCH OF THE MINIMALS

1º) LOWEST NUMBER OF ELEMENTS BELOW

2º) MINIMALS

3°) CHOOSE MINIMAL

4º) UPDATE

MIN = 3

 $MINIMALS = [W_2]$

PROBABILITIES = [1]

Α	= ($\sqrt{3}$	1	2
		1	3	1
		$\sqrt{1}$	1	3/

	Wn	W ₁	W,	
UP	2-2=0	1-1=0	3-3=0	
DOWN	1-1=0	1-1=0	3-3=0	
USED	TRUE	TRUE	TRUE	

BOUND = 16

MINIMALS RANDOM

RANDOMLY CHOSEN

MINIMALS RANDOM - EXAMPLE

MINIMALS

$$MINIMALS = [W_0, W_1]$$

PROBABILITIES =
$$\left[\frac{6}{11}, \frac{5}{11}\right]$$

MINIMALS RANDOM

$$MINIMALS = [W_0, W_1]$$

PROBABILITIES =
$$\left[\frac{1}{2}, \frac{1}{2}\right]$$

$$P(i) = P(i) = \frac{1}{k} \frac{i}{u u p[i]}$$

MINCOST MT

BASED ON MINCOST ST

PARALLEL⁵

5) E. OUELLET AND O. SAAD "FAST IMPLEMENTATIONS AND A NEW INDEXING..." (2018)

SORTING ALGORITHMS

BUBBLE

SELECTION

INSERTION

QUICKSORT

MERGESORT

SORTING_METHOD(WHAT_TO_ORDER, COMPARATOR)

SORTING ALGORITHMS - COMPARISON A

ONLY TAKE INTO ACCOUNT THE TIMES AN I ELEMENT IS LOWER OR GREATER THAN ANOTHER J

$$\mathbf{P}[\mathbf{I} \leq \mathbf{J}] = \begin{cases} \frac{lower}{lower + greater} & if \ lower + greater \neq 0 \\ 0.5 & otherwise \end{cases}$$

LOWER \rightarrow A[I, J]

GREATER \rightarrow A[J, I]

SORTING ALGORITHMS - COMPARISON B

THE TIMES AN I ELEMENT IS LOWER OR GREATER THAN ANOTHER J

THE TIMES OBJECTS I AND J ARE NOT COMPARABLE

$$P[I \le J] = \begin{cases} \frac{lower & .5 \times notCompared}{total} \end{cases}$$

LOWER
$$\rightarrow$$
 A[I, J] GREATER \rightarrow A[J, I]

TOTAL
$$\rightarrow$$
 A[I, I]

NOT COMPARED \rightarrow TOTAL – (LOWER + GREATER)

SORTING ALGORITHMS - EXAMPLE

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

COMPARISON A

COMPARISON B

$$\begin{bmatrix} 1 & \frac{A[0,1]}{A[0,1] + A[1,0]} & \frac{A[0,2]}{A[0,2] + A[2,0]} \\ \frac{A[1,0]}{A[1,0] + A[0,1]} & 1 & \frac{A[1,2]}{A[1,2] + A[2,1]} \\ \frac{A[2,0]}{A[2,0] + A[0,2]} & \frac{A[2,1]}{A[2,1] + A[1,2]} & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \frac{A[0,1] + 0.5 \times 1}{3} & \frac{A[0,2] + 0.5 \times 0}{3} \\ \frac{A[1,0] + 0.5 \times 1}{3} & 1 & \frac{A[1,2] + 0.5 \times 1}{3} \\ \frac{A[2,0] + 0.5 \times 0}{3} & \frac{A[2,1] + 0.5 \times 1}{3} & 1 \end{bmatrix}$$

SORTING ALGORITHMS - EXAMPLE

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

COMPARISON A

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix}$$

COMPARISON B

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix}$$

SIMULATED ANNEALING⁶

OPTIMIZATION ALGORITHM

INITIAL SOLUTION

SIMULATED ANNEALING - FLOWCHART

COMPUTE NEW SOLUTION

COMPUTE COST

ACCEPT AND UPDATE

UPDATE OPTIMUM

LOWER TEMPERATURE

SIMULATED ANNEALING - CALCULATE NEW SOLUTION

SWAP TWO POSITIONS

 $[W_0, W_{2}, W_1]$

 $[W_1, W_2, W_0]$

I = RANDOM(N) = 2

SIMULATED ANNEALING - CALCULATE COST SOLUTION

ALGORITHM OF THE COST

SIMULATED ANNEALING - ACCEPT AND UPDATE

NEWCOST <= CURRENTCOST

$$P(accepted) = 1$$

NEWCOST > CURRENTCOST

$$P^7(accepted) = e^{\frac{-\Delta cost}{T}}$$

SIMULATED ANNEALING - UPDATE BEST

KEEP BEST SOLUTION

SIMULATED ANNEALING - LOWER TEMPERATURE

INITIAL TEMPERATURE

COOLING SYSTEM

LIMIT TEMPERATURE

$$T_{i+1} = \beta T_i$$

LINEAR PROGRAMMING - 4 CONCEPTS⁶

DECISION VARIABLES

VECTOR X

DOMAIN

X ≥ 0

CONSTRAINTS

 $\cdot AX \leq B$

OBJECTIVE FUNCTION

· CIX

LINEAR PROGRAMMING - STANDARD FORM⁷

 $\max\{c^T \mid Ax \leq b \land x \geq 0\}$

 $min\{c^T \mid Ax \leq b \land x \geq 0\}$

VARIABLES

3 OBJECTS

V MATRIX N X N SIZE

$$V = \begin{bmatrix} V_{o,o} & V_{o,1} & V_{o,2} \\ V_{1,0} & V_{1,1} & V_{1,2} \\ V_{2,0} & V_{2,1} & V_{2,2} \end{bmatrix}$$

DOMAIN

BINARY

ZERO-ONE LINEAR PROGRAMMING

$$D = \{0, 1\}$$

CONSTRAINTS

CONSTRAINT	ТҮРЕ
V[0,0] = 1	DIAGONAL
V[1,1] = 1	DIAGONAL
V[2,2] = 1	DIAGONAL
V[0,1] + V[1,0] = 1	NO CYCLES
V[0,2] + V[2,0] = 1	NO CYCLES
V[2,1] + V[1,2] = 1	NO CYCLES
$V[0,1] + V[1,2] - V[0,2] \le 1$	TRANSITIVITY
$V[0,2] + V[2,1] - V[0,1] \le 1$	TRANSITIVITY
V[1,0] + V[0,2] - V[1,2] \le 1	TRANSITIVITY
$V[1,2] + V[2,0] - V[1,0] \le 1$	TRANSITIVITY
$V[2,0] + V[0,1] - V[2,1] \le 1$	TRANSITIVITY
$V[2,1] + V[1,0] - V[2,0] \le 1$	TRANSITIVITY

OBJECTIVE FUNCTION

COST OF THE AGGREGATION

MINIMISE

VARIABLE X PARTIAL COST

$$objectiveFunction(V,A) = \sum_{i,j}^{n} V[i,j]x A[j,i] = V[0,1]x A[1,0] + V[0,2]x A[2,0] + \dots + V[2,1]x A[1,2]$$

 $\forall i \neq j$

EXPERIMENTS

PARAMETERS

SIZE OF THE POSETS

AMOUNT OF POSETS

RESULTS

AVERAGE

MINCOST ST VS MINCOST MT

MINIMALS VS MINIMALS RANDOM

SORTING ALGORITHMS: COMPARISON A VS COMPARISON B

SELECTION

SELECTION INSERTION MERGESORT BUBBLE DUICKSORT

SIMULATED ANNEALING: INITIAL ALGORITHM

RANDOM

SIMULATED ANNEALING: INITIAL ALGORITHM

RANDOM

QUICKSORT

SIMULATED ANNEALING: INITIAL ALGORITHM

RANDOM

QUICKSORT

MINIMALS

LINEAR PROGRAMMING

QUICKSORT

QUICKSORT

MINIMALS

QUICKSORT

MINIMALS

MINIMALS + SA LT

NUICKSORT MINIMALS + SALT MINIMALS + SA HT

N	MINIMALS (MS)	QUICKSORT(MS)	MINIMALS+SA LT (MS)	MINIMALS+SA HT (MS)	LINEAR PROGRAMMING (MS)	MINCOST MT (MS)
3	0,19894	0,03990	0,63184	55,24363	6963,14810	32,82010
4	0,09810	0,01943	0,52893	61,15640	6234,57310	0,97050
5	0,19574	0,01995	0,60648	79,48764	6438,74210	1,99220
6	0,19478	0,05738	0,69495	89,79747	7002,72700	12,14280
7	0,25991	0,04095	0,96700	97,62566	7868,88970	41,58960
8	0,19948	0,05933	1,00327	106,92099	9126,45090	264,87810
9	0,27718	0,05987	1,24245	134,00389	11065,30240	2569,49330
10	0,35919	0,05987	1,39723	148,50157	13921,74060	27600,38580
11	0,35117	0,09916	1,60339	158,93650	18212,21800	275991,06630
12	0,47300	0,06042	1,74745	172,52270	23393,36860	3147048,23830
TOTAL TIME (MS)	2,60750	0,51625	10,42301	1104,19646	110227,16050	3453563,57700

CONCLUSIONS

SUMMARY

TWO CATEGORIES OF ALGORITHMS

MINCOST MT OPTIMAL LINEARPROGRAMMING **AGGREGATION METHODS MINIMALS** NON-OPTIMAL QUICKSORT SIMULATED ANNEALING

SIMULATED ANNEALING

QUALITY OF THE INITIAL SOLUTION

TEMPERATURE AND COOLING CONSTANT

OPTIMAL ALGORITHMS

MINCOST MT OR LINEARPROGRAMMING?

NON-OPTIMAL ALGORITHMS

MINIMALS + SIMULATED ANNEALING

WHAT IS THE BEST AGGREGATION METHOD?

WHAT IS THE BEST AGGREGATION METHOD?

MINIMALS + SIMULATED ANNEALING

HIGH TEMPERATURE

LOW COOLING CONSTANT

