Για κάθε συνάρτηση f η οποία είναι συνεχής σε ένα κλειστό διάστημα $[\alpha,\beta]$, παραγωγίσιμη στο ανοιχτό διάστημα (α,β) και τέτοια, ώστε $f(\alpha)\neq f(\beta)$, ισχύει $f'(x)\neq 0$ για κάθε $x\in(\alpha,\beta)$. FALSE

Για κάθε συνάρτηση f η οποία είναι συνεχής σε ένα κλειστό διάστημα $[\alpha,\beta]$, παραγωγίσιμη στο ανοιχτό διάστημα (α,β) και τέτοια, ώστε $f'(x)\neq 0$ για κάθε $x\in (\alpha,\beta)$, ισχύει $f(\alpha)\neq f(\beta)$.TRUE

Υπάρχει συνάρτηση f η οποία είναι ορισμένη σε ένα κλειστό διάστημα $[\alpha, \beta]$ και παραγωγίσιμη στο (α, β) με $f(\alpha) = f(\beta)$ για την οποία ισχύει $f'(x) \neq 0$ για κάθε $x \in (\alpha, \beta)$.TRUE

Κάθε συνάρτηση f η οποία είναι συνεχής σε ένα κλειστό διάστημα $[\alpha,\beta]$ με $f(\alpha)=f(\beta)$ και τέτοια, ώστε $f'(\xi)=0$, για κάποιο $\xi\in(\alpha,\beta)$ είναι παραγωγίσιμη στο (α,β).FALSE

Εστω συνάρτηση f η οποία είναι ορισμένη σε ένα διάστημα $[\alpha,\beta]$ με $f(\alpha)=f(\beta)$. Αν δεν υπάρχει εφαπτομένη της C_f παράλληλη προς τον άξονα x'x, τότε η f δεν είναι ούτε συνεχής στο $[\alpha,\beta]$, ούτε παραγωγίσιμη στο (α,β) . FALSE

Κάθε συνάρτηση f η οποία είναι ορισμένη σε ένα κλειστό διάστημα $[\alpha,\beta]$ και τέτοια, ώστε $f'(\xi)=rac{f(\beta)-f(\alpha)}{\beta-\alpha}$ για κάποιο $\xi\in(\alpha,\beta)$ είναι συνεχής στο $[\alpha,\beta]$ ή παραγωγίσιμη στο (α,β) . FALSE

Υπάρχει συνάρτηση f η οποία είναι ορισμένη σ' ένα κλειστό διάστημα $[\alpha,\beta]$ και παραγωγίσιμη στο ανοικτό διάστημα (α,β) με $f'(x)\neq \frac{f(\beta)-f(\alpha)}{\beta-\alpha}$ για κάθε $x\in(\alpha,\beta)$.TRUE

Εστω συνάρτηση f η οποία είναι συνεχής σε ένα κλειστό διάστημα $[\alpha,\beta]$ και παραγωγίσιμη στο ανοικτό διάστημα (α,β) . Αν $\mathbf{A}(\alpha,f(\alpha))$ και $\mathbf{B}(\beta,f(\beta))$, τότε υπάρχει ένα τουλάχιστον $\xi\in(\alpha,\beta)$ τέτοιο, ώστε η εφαπτομένη της C_f στο σημείο $M(\xi,f(\xi))$ να είναι παράλληλη προς την ευθεία $\mathbf{AB}.\mathsf{TRUE}$

Εστω συνάρτηση f η οποία είναι ορισμένη σε ένα διάστημα $[\alpha,\beta]$ και τα σημεία $\mathbf{A}(\alpha,f(\alpha))$ και $\mathbf{B}(\beta,f(\beta))$ της γραφικής της παράστασης. Αν δεν υπάρχει εφαπτομένη της C_f παράλληλη προς την ευθεία $\mathbf{A}\mathbf{B}$, τότε η f ή δεν είναι συνεχής στο $[\alpha,\beta]$ ή δεν ειναι παραγωγίσιμη στο (α,β) .TRUE

Για κάθε συνάρτηση f η οποία είναι παραγωγίσιμη και μη σταθερή σε ένα διάστημα Δ ισχύει $f'(x) \neq 0$ για κάθε $x \in \Delta$.FALSE

Κάθε συνάρτηση f η οποία είναι παραγωγίσιμη σε ένα σύνολο $\mathbf A$ με f'(x)=0 για κάθε $x\in A$ είναι σταθερή στο $\mathbf A$.FALSE

Για όλες τις συναρτήσεις f, g οι οποίες είναι συνεχείς σε ένα διάστημα Δ και τέτοιες, ώστε f'(x)=g'(x) για κάθε εσωτερικό σημείο x του Δ , υπάρχει σταθερά $c\in\mathbb{R}$ τέτοια, ώστε f(x)=g(x)+c για κάθε $x\in\Delta$.TRUE

Για όλες τις συναρτήσεις f, g οι οποίες είναι παραγωγίσιμες σε ένα σύνολο A και τέτοιες, ώστε f'(x)=g'(x) για κάθε $x\in A$, υπάρχει σταθερά c τέτοια, ώστε f(x)=g(x)+c για κάθε $x\in A$.FALSE

Για κάθε συνάρτηση f η οποία είναι παραγωγίσιμη και γνησίως αύξουσα σε ένα διάστημα Δ ισχύει f'(x)>0 για κάθε $x\in\Delta$.FALSE

Κάθε συνάρτηση f η οποία είναι ορισμένη σε ένα διάστημα Δ και τέτοια, ώστε f'(x) < 0 σε κάθε εσωτερικό σημείο x του Δ , είναι γνησίως φθίνουσα σε όλο το Δ . FALSE

Για κάθε συνάρτηση f με πεδίο ορισμού $\mathbf A$ και για κάθε $x_0\in A$, το οποίο είναι θέση τοπικού μεγίστου της f υπάρχει $\delta>0$ τέτοιο, ώστε $f(x)\leq f(x_0)$ για κάθε $x\in (x_0-\delta,x_0+\delta)$.FALSE

Υπάρχει συνάρτηση f για την οποία κάποιο τοπικό μέγιστο είναι μικρότερο από κάποιο τοπικό ελάχιστο. Τ
RUE

Κάθε συνάρτηση f έχει ένα τουλάχιστον τοπικό ακρότατο. FALSE

Κάθε συνάρτηση η οποία παρουσιάζει ολικό ελάχιστο παρουσιάζει και τοπικό ελάχιστο. TRUE Για κάθε συνάρτηση f η οποία παρουσιάζει ολικό ελάχιστο, αυτό είναι το μικρότερο από όλα τα τοπικά ελάχιστα. TRUE

Για κάθε συνάρτηση f η οποία παρουσιάζει ολικό μέγιστο, αυτό είναι το μεγαλύτερο από όλα τα τοπικά μέγιστα. TRUE

Κάθε συνάρτηση f η οποία παρουσιάζει τοπικά μέγιστα, παρουσιάζει και ολικό μέγιστο που είναι το μεγαλύτερο από όλα τα τοπικά μέγιστα. FALSE

Κάθε συνάρτηση f η οποία παρουσιάζει τοπικά ελάχιστα, παρουσιάζει και ολικό ελάχιστο που είναι το μικρότερο από όλα τα τοπικά ελάχιστα. FALSE

Για κάθε συνάρτηση f, η οποία είναι παραγωγίσιμη σε ένα διάστημα Δ , οι πιθανές θέσεις των τοπικών ακροτάτων της είναι τα εσωτερικά σημεία του Δ στα οποία η f' μηδενίζεται και τα άκρα του Δ που ανήκουν στο πεδίο ορισμού της.TRUE

Εστω συνάρτηση f ορισμένη σε ένα διάστημα Δ . Ονομάζουμε κρίσιμα σημεία της f στο διάστημα Δ τα εσωτερικά σημεία του Δ στα οποία η f δεν παραγωγίζεται ή η παράγωγός της είναι ίση με το μηδέν.TRUE

Εστω συνάρτηση f η οποία είναι παραγωγίσιμη σε ένα διάστημα (α,β) με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής. Αν f'(x)>0 στο (α,x_0) και f'(x)<0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f.TRUE

Εστω συνάρτηση f η οποία είναι παραγωγίσιμη σε ένα διάστημα (α,β) με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής. Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(x_0,\beta)$, τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β) .TRUE

Για κάθε συνάρτηση f η οποία είναι συνεχής σε ένα κλειστό διάστημα $[\alpha,\beta]$ η μεγαλύτερη από τις τιμές της στα κρίσιμα σημεία της και στα σημεία α , β είναι το μέγιστο της f στο $[\alpha,\beta]$.TRUE

Για κάθε συνάρτηση f η οποία είναι συνεχής σε ένα κλειστό διάστημα $[\alpha, \beta]$ η μικρότερη από τις τιμές της στα κρίσιμα σημεία της είναι το ελάχιστο της f στο $[\alpha, \beta]$. FALSE

Αν μία συνάρτηση f είναι παραγωγίσιμη στο $\mathbb R$ και η f' είναι γνησίως αύξουσα στο $\mathbb R$, τότε η f είναι κυρτή στο $\mathbb R$.TRUE

Αν μία συνάρτηση f είναι κοίλη σε ένα διάστημα Δ , τότε η εφαπτομένη της γραφικής της παράστασης σε κάθε σημείο του Δ βρίσκεται πάνω από τη γραφική της παράσταση με εξαίρεση το σημείο επαφής.TRUE

Για κάθε συνάρτηση f η οποία είναι δύο φορές παραγωγίσιμη και κυρτή σε ένα διάστημα Δ ισχύει f''(x)>0 για κάθε $x\in\Delta$.FALSE

Εστω συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β) και ένα σημείο $x_0\in(\alpha,\beta)$. Αν η f είναι κυρτή στο (α,x_0) και κοίλη στο (x_0,β) ή αντιστρόφως, το σημείο $\mathrm{A}(x_0,f(x_0))$ είναι σημείο καμπής της γραφικής παράστασης της f.TRUE

Αν το $A(x_0,f(x_0))$ είναι σημείο καμπής της γραφικής παράστασης της f και η f είναι δύο φορές παραγωγίσιμη, τότε f''(x)=0.TRUE

Κάθε συνάρτηση f η οποία είναι δύο φορές παραγωγίσιμη σε ένα διάστημα Δ παρουσιάζει καμπή σε κάθε εσωτερικό σημείο του Δ στο οποίο η f'' μηδενίζεται. FALSE

Οι πιθανές θέσεις σημείων καμπής μιας συνάρτησης f σε ένα διάστημα Δ στο οποίο είναι δύο φορές παραγωγίσιμη είναι τα εσωτερικά σημεία του Δ στα οποία η f'' μηδενίζεται.TRUE

Εστω συνάρτηση f ορισμένη σε ένα διάστημα (α,β) και $x_0\in(\alpha,\beta)$. Αν η f'' αλλάζει πρόσημο εκατέρωθεν του x_0 και ορίζεται εφαπτομένη της C_f στο $A(x_0,f(x_0))$, τότε το $A(x_0,f(x_0))$ είναι σημείο καμπής της C_f . TRUE

Η ευθεία $x=x_0$ λέγεται κατακορυφή ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f αν και μόνο αν και τα δύο όρια $\lim_{x\to x_0^+}f(x)$, $\lim_{x\to x_0^-}f(x)$ είναι ίσα με $+\infty$ ή $-\infty$. FALSE

Η ευθεία $y=\beta$ λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f στο $+\infty$ αν και μόνο αν $\lim_{x\to +\infty} f(x) = \beta. \text{TRUE}$

Η ευθεία $y=\lambda x+\beta$ λέγεται ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης fστο $+\infty$ αν και μόνο αν $\lim_{x\to +\infty} \left[f(x)-(\lambda x+\beta)\right]=+\infty.$ FALSE Η ευθεία $y=\lambda x+\beta$ είναι ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f στο

 $+\infty$ αν και μόνο αν $\lim_{x\to+\infty}rac{f(x)}{x}=\lambda\in\mathbb{R}$ και $\lim_{x\to+\infty}(f(x)-\lambda x)=\beta\in\mathbb{R}$. TRUE Οι πολυωνυμικές συναρτήσεις βαθμού μεγαλύτερου ή ίσου του 2 δεν έχουν ασύμπτω-

τες.TRUE

Οι ρητές συναρτήσεις $\frac{P(x)}{O(x)}$ με βαθμό αριθμητή P(x) μεγαλύτερο τουλάχιστον κατά δύο του βαθμού του παρονομαστή δεν έχουν πλάγιες ασύμπτωτες.ΤRUE

Κατακόρυφες ασύμπτωτες της γραφικής παράστασης μιας συνάρτησης f αναζητούμε στα άκρα διαστημάτων του πεδίου ορισμού της στα οποία η f δεν ορίζεται και στα σημεία του πεδίου ορισμού της στα οποία η f ίσως δεν είναι συνεχής. TRUE

Κάθε γραφική παράσταση συνάρτησης έχει το πολύ δύο κατακόρυφες ασύμπτωτες.FALSE Κάθε γραφική παράσταση συνάρτησης έχει το πολύ δύο οριζόντιες ή πλάγιες ασύμπτωτες.TRUE

Για κάθε συνάρτηση f η γραφική της παράσταση δεν έχει κοινά σημεία με τις ασύμπτωτές της.FALSE

$$\text{Av} \lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} g(x) = 0 \text{ και υπάρχει το } \lim_{x \to x_0} \frac{f'(x)}{g'(x)}, \text{ τότε } \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \text{TRUE }$$

$$\text{Av} \lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} g(x) = 0 \text{ και υπάρχει το } \lim_{x \to x_0} \frac{f'(x)}{g'(x)}, \text{ τότε δεν υπάρχει το } \lim_{x \to x_0} \frac{f(x)}{g(x)}. \text{FALSE }$$

$$\text{Av} \lim_{x \to x_0} f(x) = +\infty, \lim_{x \to x_0} g(x) = +\infty \text{ και υπάρχει το } \lim_{x \to x_0} \frac{f'(x)}{g'(x)}, \text{ τότε } \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \text{TRUE }$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \text{TRUE }$$

Οι κανόνες de l' Hospital ισχύουν για τις απροσδιόριστες μορφές $\dfrac{+\infty}{+\infty}$ και $\dfrac{-\infty}{-\infty}$ όχι όμως για τις απροσδιόριστες μορφές $\frac{+\infty}{-\infty}$ και $\frac{-\infty}{+\infty}$.FALSE

Οι κανόνες de l' Hospital δεν ισχύουν για πλευρικά όρια. FALSE