Theory Question 2: Solution:

Nuclear Masses and Stability

(a) The alpha-decay process is as follows:

$$A \rightarrow (A-4) + \alpha (A=4)$$

Therefore the energy criterion for decay to happen is:

$$m_A - m_{A-4} - m_4 > 0$$

The number and type of nucleons in the decay is preserved so we only have to consider the binding energies:

$$-B_A + B_{A-4} + B_4 > 0$$

If we write B/A = a + bA, where a and b are constants to be found from the graph, then this equation becomes:

$$-A(a+bA) + (A-4)(a+b(A-4)) + B_4 > 0$$
$$-8bA - 4a + 16b + B_4 > 0$$

By inspecting the graph, a good linear approximation to B/A above A = 100 is:

$$B/A = (9.6 - 0.0080 \times A) \text{ MeV}$$

i.e. a = 9.6 MeV and b = 0.0080 MeV, and the condition becomes:

$$A > 13.5/0.064 = 211$$

Part (b).

(i) Because A is fixed we only need to consider the penultimate two terms which depend on Z.

$$\frac{dB}{dZ} = -2Za_c A^{-1/3} - \frac{a_a}{A}(-4A + 8Z)$$

8

$$Z_{\text{max}} = \frac{4a_a}{2a_c A^{-1/3} + 8a_a / A} = \frac{A}{2} \frac{1}{\left(1 + \frac{a_c A^{\frac{2}{3}}}{4a_a}\right)}$$

(ii)
$$Z_{\text{max}} = 79.25$$

The full expression for the differential equation in (a) is:

$$\frac{dB}{dZ} = -2Za_c A^{-1/3} - \frac{a_a}{A}(-4A + 8Z) \pm 2a_p A^{-3/4}$$

The last term is positive if a change in Z of +1 changes the nucleus from an even-even to an odd-odd, and negative if the reverse is true. Note A is positive in this case.

How do we deal with the last term?

The number Z_{max} has to be an integer, and even numbers are favoured over odd so we can guess $Z_{\text{max}} = 80$. To check, evaluate the last three terms for various values of Z:

- 77 979.241
- 78 975.915
- 79 976.295
- 80 975.341
- 81 978.093
- 82 979.512
- 83 984.637

This confirms that $Z_{\text{max}} = 80$; this is an even-even nucleus.

- (iii) Consider only the last three terms in the equation; the rest are constant if A is constant. Call the sum of these quantities X. To find out whether these nuclei are stable we need to find differences in X between neighbouring species and to compare these differences with the energy requirements for each would-be decay process.
- (i) β -decay; $n \to p + e^-$, need $\Delta X > -1.30 + 0.51 = -0.79$ MeV
- (ii) β^+ decay; $p \to n + e^+$, need $\Delta X > 1.30 + 0.51 = 1.81 \text{MeV}$
- (iii) $\beta^-\beta^-$ decay; $2n \to 2p + 2e^-$, need $\Delta X > 2(-1.30 + 0.51) = -1.58 \text{ MeV}$
- (iv) Electron capture; $e^- + p \rightarrow n$, need $\Delta X > 1.30 0.51 = 0.79$ MeV

↑ For information: graph not expected from students

Nucleus/Process	X(MeV)
¹²⁸ ₅₁ Sb	496.59
¹²⁸ Te	491.19
¹²⁸ ₅₃ I	491.06
¹²⁸ ₅₄ Xe	489.16
¹²⁸ Cs	492.54

 \uparrow For information: table not expected from students

Nucleus/Process	β^- - decay	β + decay	Electron-capture	$\beta^-\beta^-$ - decay
¹²⁸ ₅₃ I	V	0	0	V
¹²⁸ Xe	0	0	0	0
¹²⁸ Cs	0	V	V	0

Students will fill out this table

Theory Question No.2: Mark Distribution

Smallest fractional mark allowed: 0.25

Marks allowed for errors consistently propagated only if physically reasonable.

(a)	Approach	1.5	
	Correct Answer	1.5	3
(b)(i)	Approach Correct Answer	1 1	
(b)(ii)		1	2
(b)(ii)	Approach Correct Answer	1	0
(b)(iii)	0.25 for each of 12 entries	3	2
			3
	Grand Total		10