Exo 7

- 1. Déterminer les matrices A_1 de s_1 et A_2 de s_2 .
- 2. Calculer les produits A_1A_2 et A_2A_1 .
- 3. En déduire $s_1 \circ s_2$ et $s_2 \circ s_1$.

If l'application
$$S_1(x,y,z) \mapsto (x,y,-z)$$

et $S_2(x,y,z) \mapsto (-x,y,z)$

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2/ et on a que
$$A_1 A_2 = A_2 A_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Ry 31 A,B 2 matrices diagonales AB=BA

$$S_1 \circ S_2 = S_2 \circ S_1 \quad (x,y,z) \mapsto (-x,y,-z)$$

On considère la rotation $r_1: \mathbb{R}^3 \to \mathbb{R}^3$ d'axe Oz (orienté par le vecteur (0,0,1)) et d'angle $\frac{\pi}{2}$ et la rotation $r_2: \mathbb{R}^3 \to \mathbb{R}^3$ d'axe Ox et d'angle π .

- 1. Déterminer les matrices A_1 de r_1 et A_2 de r_2 .
- 2. Calculer les produits A_1A_2 et A_2A_1 .

Sign se place dans
$$\mathbb{R}^2$$
 alors me rotation de $\mathbb{T}/2$ contour de O

est l'application (x,y) \mapsto (-y,x)

I' s'ensuit que r_1 (x,y,z) \mapsto (-y,x,z)

De même me notation d'angle \mathbb{T} class \mathbb{R}^7

est l'application (x,y) \mapsto (-x,-y)

et l'application (x,y,z) \mapsto (-x,-y,z)

et me rotation d'axe Oz

Il est facile à voir que

 V_2 (x,y,z) \mapsto (x,-y,-z)

 V_3 (x,y,z) \mapsto (x,-y,-z)

 V_4 (x,y,z) \mapsto (x,-y,-z)

 V_5 (x,-y,-z)

 V_6 (x,-y,-z)

 V_7 (x,-y,-z)

 V_8 (x,-y,-z)

- 3. Calculer l'ensemble Δ des points fixes de $r_1 \circ r_2$ et l'ensemble Δ' des points fixes de $r_2 \circ r_1$.
- 4. Choisir un vecteur v orthogonal à Δ et déterminer sont image par $r_1 \circ r_2$. En déduire $r_1 \circ r_2$.
- 5. Choisir un vecteur w orthogonal à Δ' et déterminer sont image par $r_2 \circ r_1$. En déduire $r_2 \circ r_1$.

$$\begin{array}{c} 3 \\ (x, y, \overline{z}) \in \Delta \iff \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} y \\ y \\ \overline{z} \end{pmatrix} = \begin{pmatrix} y \\ y \\ \overline{z} \end{pmatrix} \\ \Rightarrow \qquad \begin{pmatrix} y \\ y \\ -\overline{z} \end{pmatrix} = \begin{pmatrix} y \\ y \\ \overline{z} \end{pmatrix} \Rightarrow \begin{array}{c} x = y \\ \overline{z} = 0 \\ \\ (x, y, \overline{z}) \in \Delta \end{pmatrix} \Leftrightarrow \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} y \\ y \\ \overline{z} \end{pmatrix} = \begin{pmatrix} y \\ y \\ \overline{z} \end{pmatrix} \Rightarrow x = y = \overline{z} = 0$$

$$\begin{array}{c} (x, y, \overline{z}) \in \Delta \\ (x, y, \overline{z}) \in \Delta \\ \\ (x$$

Calculer AB, BA, tr(AB), tr(BA) pour les matrices suivantes.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array}\right), B = \left(\begin{array}{cc} 2 & 1 \\ 3 & -1 \end{array}\right).$$

Que remarquez vous?

$$AB = \begin{pmatrix} 8 & -1 \\ 4 & 2 \end{pmatrix}$$

$$BA = \begin{pmatrix} 4 & 4 \\ 1 & 6 \end{pmatrix}$$

$$tr \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} + a_{22} = srmme d'elts$$

$$sur | a diagonale$$

tr AB = 10 = 1 BA Remangne on a egalité

Exercice 10 :

Soit $A \in M_2(\mathbb{R})$, $B \in M_2(\mathbb{R})$. Montrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Signat A =
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$

On calcul que les ēlts sur la diagonale traces

$$AB = \begin{pmatrix} aa' + bc' & ?? \\ ?? & cb' + da' \end{pmatrix}$$

$$AB = \begin{pmatrix} aa' + bc & ?? \\ ?? & cb' + da' \end{pmatrix}$$

$$AA' + bc' + bc' + da'$$

$$AA' + bc' + da'$$

$$AA' + bc' + da'$$

On voit facilement que tr AB = + BA