TD 4 de processus stochastiques et mouvement brownien

Sauf mention explicite, on utilisera la filtration \mathcal{F}^+ .

Exercice 1 — Temps d'arrêt.

Soit (T_n) une suite de \mathcal{F}^0 -temps d'arrêt.

- 1. On suppose que pour tout ω , la suite $(T_n(\omega))$ tend en croissant vers une valeur $T(\omega)$. Montrer que T est un \mathcal{F}^0 -temps d'arrêt.
- 2. On suppose que pour tout ω , la suite $(T_n(\omega))$ tend en décroissant vers une valeur $T(\omega)$. Montrer que T est un \mathcal{F}^+ -temps d'arrêt.

Exercice 2 — Mesurabilité.

Soient B un mouvement brownien et T un temps d'arrêt pour la filtration \mathcal{F}^0 . Démontrer que $(T, B_{\min(t,T)})_{t\geq 0}$ est \mathcal{F}_T -mesurable.

Exercice 3 — Non temps d'arrêt.

Soit B un mouvement brownien, montrer que $T = \inf\{t \geq 0 : B_t = \max_{0 \leq s \leq 1} B_s\}$ n'est pas un temps d'arrêt.

Exercice 4 — Pas de zéro isolé.

Soit B un mouvement brownien et

$$z\acute{e}ro = \{t \ge 0 : B_t = 0\};$$

Montrer que p.s. le zéro du mouvement brownien est fermé et sans point isolé. En déduire que, l'ensemble des zéros du mouvement brownien est non-dénombrable.

Exercice 5 — Le dernier point du cercle.

Soit B un mouvement brownien sur \mathbb{R} . Par projection sur \mathbb{R}/\mathbb{Z} , ce processus définit une trajectoire aléatoire sur le cercle. Démontrer que le dernier point à être découvert par ce processus est presque sûrement bien défini et que sa loi est uniforme sur le cercle.

Exercice 6 — Filtration non continue.

Soit A un ouvert de \mathbb{R} et Ω l'ensemble des trajectoires càd de \mathbb{R}^+ dans \mathbb{R} . Soit X le processus coordonnés dans Ω et

$$T_A = \inf\{t > 0: X_t \in A\}.$$

- 1. Montrer que T_A est un \mathcal{F}_t^+ temps d'arrêt si et seulement si $\{T_A < t\} \in \mathcal{F}_t^0$ pour tout t.
- 2. En déduire que T_A est un temps d'arrêt pour \mathcal{F}_t^+ . 1

^{1.} En fait T_A n'est pas un temps d'arrêt pour \mathcal{F}_t^0 .