



# CSE 1326: Digital Logic Design Lab Decoders

**United International University** 



- Implementation: Implement 3-to-8 line decoder using
  - a) Basic gates, AND gate with more inputs Non-hierarchical
  - b) Decoder and two-input AND gates Hierarchical (LS)
  - c) 2-to-4 line decoders with enable (Both TB and LS)
- Application: Implement combinational circuits (functions) using decoder and basic gates

$$F = M_1 . M_3 . M_6 . M_7$$

#### What To Do (1c)

1c) Implement a 3-to-8 line decoder using 2-to-4 line decoders with enable (see below) — Both TB and LS.



#### IC: 74139 dual 2-to-4 Decoder

Function Table of 74LS139

| INPUTS |        |   | OUTPUTS |    |    |    |
|--------|--------|---|---------|----|----|----|
| Enable | Select |   | OUTFUIS |    |    |    |
| G      | В      | A | Y0      | Y1 | Y2 | Y3 |
| 1      | X      | Χ | 1       | 1  | 1  | 1  |
| 0      | 0      | 0 | 0       | 1  | 1  | 1  |
| 0      | 0      | 1 | 1       | 0  | 1  | 1  |
| 0      | 1      | 0 | 1       | 1  | 0  | 1  |
| 0      | 1      | 1 | 1       | 1  | 1  | 0  |

1 = High, 0 = Low, X = don't care

| PIN NO.       | SYMBOL                                 | NAME AND FUNCTION          |
|---------------|----------------------------------------|----------------------------|
| 1, 15         | 1Ē, 2Ē                                 | enable inputs (active LOW) |
| 2, 3          | 1A <sub>0</sub> , 1A <sub>1</sub>      | address inputs             |
| 4, 5, 6, 7    | $1\overline{Y}_0$ to $1\overline{Y}_3$ | outputs (active LOW)       |
| 8             | GND                                    | ground (0 V)               |
| 12, 11, 10, 9 | $2\overline{Y}_0$ to $2\overline{Y}_3$ | outputs (active LOW)       |
| 14, 13        | 2A <sub>0</sub> , 2A <sub>1</sub>      | address inputs             |
| 16            | Vcc                                    | positive supply voltage    |

### Functional/Pin Diagram





#### Implement a 3-to-8 line Decoder

 Following that pattern complete this connection using 74139, note the pin numbers





## What To Do (2)

2. Application: Implement combinational circuits (functions) using decoder and basic gates.

$$F = M_1 . M_3 . M_6 . M_7$$

- a) For trainer board, use the circuit in 1c.
- b) For LS, use SOM, F=m0+m2+m4+m5
- Active-low decoders generate maxterms.
- If you have a product of maxterms equation for a function, you can easily use a active-low decoder and AND gates to implement that function.
- But, in logisim, there is no Active-low decoder. What can we do?

### Writing Report (skip grayed colored ones)

- 1. Pin diagram of 74139 (with two 2-to-4 decoders inside).
- 2. Logic diagram of 3-to-8 line decoder implementation
  - a) Basic gates, non-hierarchical (AND gate more inputs)
  - b) Basic gates, hierarchical (Decoder and AND gate two inputs)
  - c) 2-to-4 line decoders with enable
- 3. Logic diagram of realizing combinational circuits using 3-to-8 line decoder

$$F = M_1 . M_3 . M_6 . M_7$$

4. Answer the question: How to use the 3-to-8 line decoder (the one you have designed with two 2-to-4 line decoders) for implementing the following function?

$$F = m_0 + m_4 + m_5 + m_7$$