Blockchain Innovation Program Tutorial Framework

POWERED BY

Blockchain Innovation Program Tutorial Framework

The Blockchain Innovation Program is a designed as an intensive 10-week programme which will provide students with educational and entrepreneurial support for them to develop a comprehensive understanding of what's involved in Bitcoin Application Development. The programme will see the students complete the three bitcoin primitive courses Hash Functions, Merkle Trees, and Digital Signatures before they complete the newly refactored Introduction to Bitcoin Development.

Educators from the Bitcoin SV Academy team will prescribe weekly resource and question packs to stimulate the students to develop a deeper consideration for what is involved in creating a scalable Bitcoin application. The students will attend fortnightly tutorials where their answers to the question pack will be evaluated and discussed in greater detail.

Live session #1

Hash Functions	 Hash Functions and Hash Tables Content Addressed Distributed Data Structures
	Efficient Provable Data Possession for Hybrid Clouds

Course pre-requisite: Hash Functions (primitives)

Worksheet to complete prior to the live session: Week 1 – Hash Functions

Live session #2

LIVE SESSION NE		
Merkle Trees	GitHub MerkleDAG	
	 ForkBase: Immutable, Tamper-evident Storage 	
	 Substrate for Branchable Applications 	
	 Merkle-CRDTs - MerkleDAGs meet CRDTs 	
	 Merkle²: A Low Latency Transparency Log System 	
Digital Signatures	Digital Signatures	
	 Legitimating Technologies: Digital Signatures Case 	
	Study.	
	Segwit, Mixing and Law	
	SigHash Flags	

Course pre-requisite: Merkle Trees and Digital Signatures (Primitives)

Worksheet to complete prior to the live session: Week 2 Merkle Trees and Week 3 Digital Signatures.

Live session #3

Data and Databases	What is DBaaS?	
	SQL vs NoSQL	
	What is Cloud Storage?	
	What is Object Storage?	
	Block vs File Storage	
	What is a Load Balancer?	
	 Kubernetes vs Docker 	
API led Event-Driven &	API vs SDK	
Microservices Architectures	What is API Management?	
	What is a REST API?	
	What is an API Gateway?	
	What is Event Driven Architecture?	
	What are Microservices?	
	 Architecting a Cloud Native API Solution. 	
	 Blockchain Enabled Trustless API Marketplace 	
	 Unofficial API and Browser Extension Development 	
	for Augmenting Student Resources	

Course pre-requisite: Bitcoin Development Chapter 1

Worksheet to complete prior to the live session: Week 4 Data and Databases and API led

Event-Driven & Week 5 Microservices Architectures

Live session #4

Debunking the Blockchain Trilemma, CAP Theorem & Application Scalability	 Myths of Decentralisation On Decentralisation The Wizard of Blockchain Cost Performance Trade-Off Evaluation in Microservices impacted by the CAP Theorem Limitations
Working Blockchain & Overlay Networks	 A Survey and Comparison of P2P Overlay Network Schemes. Virtual Networking Explained What is a Content Delivery Network Mandala Network SPV Working Blockchain

Course pre-requisite: Bitcoin Development Chapter 2&3

Worksheet to complete prior to the live session: Week 6 Debunking the Blockchain Trilemma, CAP Theorem & Week 7 Application Scalability and Working Blockchain & Overlay Networks.

Live session #5

Intro to Git and Github	 Git and GitHub for Beginners Getting Started With OpenSSH Key Management. Setting up an Nx monorepo with Angular Setting up CI/CD with Github Actions and Vercel 	
Constructing Transactions & Script	 Introduction to Bitcoin Transactions MintBlue API, SDK and Integrations 	

Course pre-requisite: Bitcoin Development Chapter 4-5

Worksheet to complete prior to the live session: Week 8 Intro to Git and Github and Week 9 Constructing Transactions and Bitcoin Script.

Live session #6

Metanet	Metanet Overlay	
	 Dagda 	
	The Birth of Ontology & the DAG	
	Tutorial on directed Acyclic Graphs	
	A.N.N.E preview.	
End of programme	Feedback on project completed by students	
	Wrap up of the programme	

Course pre-requisite: Bitcoin Development Chapter 6

Worksheet to complete prior to the live session: Week 10 Metanet

Blockchain Innovation Program Worksheets

Week 8: Bitcoin Script and Transactions

1. Introduction to Bitcoin Transactions

- a. What is a predicate?
- b. Does the predicate have to be based upon public and private ECDSA key?
- c. Why does bitcoin script not have declarative loop statements?

d.

nLockTime	
Version	
Input Count	
Output	
Input	
Output Count	

Match the strings with their data items.

- i. 67e7105b52e8534596af29dba949921cffe3dbaa555b8ed96121346c6755adae00 0000006a47304402206e4db9dee8449b861e5fdc00ba3bdb80fba8cd52c754893 76c54bd65d26262650220453569438e6bc6f957b1f7ff6fff4af2e42edaae1ac8853 82373d42fa569b17c41210267d2d1f8b3affffa10b68b2756ba7f6f4efafcadbecd14 5181016178d00b379bfffffff
- ii. 01
- iii. 01
- iv. 00000000
- v. 01000000
- vi. 9c276bee0000000976a914accd105073775756cc04962bc1e4893694f50c5588ac
- e. What distinguished the input from the output?
- 2. More proof that UTXO is superior to account-based systems

https://zemgao.com/more-proof-that-utxo-is-superior-to-account-based-systems/

- a. What is the difference between UTXO and account-based systems?
- b. What is the back to genesis problem?

3. Learn Forth

https://skilldrick.github.io/easyforth/#introduction https://wiki.bitcoinsv.io/index.php/Opcodes used in Bitcoin Script

a. Which opcodes would perform the same functionality as the pre-defined words dup, drop, swap and rot in Forth?

4. Smart Contracts for Bitcoin SV

https://by-example.scrypt.io/

- a. How does a high level language like sCrypt work in relation to bitcoin script?
- b. Which of the following above examples demonstrate that the bitcoin system can act as a Turing Machine?

