cisco

Module 5: ACLs for IPv4 Configuration

Enterprise Networking, Security, and Automation v7.0 (ENSA)

Module Objectives

Module Title: ACLs for IPv4 Configuration

Module Objective: Implement IPv4 ACLs to filter traffic and secure administrative access.

Topic Title	Topic Objective
Configure Standard IPv4 ACLs	Configure standard IPv4 ACLs to filter traffic to meet networking requirements.
Modify IPv4 ACLs	Use sequence numbers to edit existing standard IPv4 ACLs.
Secure VTY Ports with a Standard IPv4 ACL	Configure a standard ACL to secure VTY access.
Configure Extended IPv4 ACLs	Configure extended IPv4 ACLs to filter traffic according to networking requirements.

5.1 Configure Standard IPv4 ACLs

Configure Standard IPv4 ACLs Create an ACL

All access control lists (ACLs) must be planned. When configuring a complex ACL, it is suggested that you:

- Use a text editor and write out the specifics of the policy to be implemented.
- Add the IOS configuration commands to accomplish those tasks.
- Include remarks to document the ACL.
- Copy and paste the commands onto the device.
- Always thoroughly test an ACL to ensure that it correctly applies the desired policy.

Configure Standard IPv4 ACLs Numbered Standard IPv4 ACL Syntax

To create a numbered standard ACL, use the access-list command.

Router(config)# access-list access-list-number {deny | permit | remark text} source [source-wildcard] [log]

Parameter	Description
access-list-number	Number range is 1 to 99 or 1300 to 1999
deny	Denies access if the condition is matched
permit	Permits access if the condition is matched
remark text	(Optional) text entry for documentation purposes
source	Identifies the source network or host address to filter
source-wildcard	(Optional) 32-bit wildcard mask that is applied to the source
log	(Optional) Generates and sends an informational message when the ACE is matched

Note: Use the **no access-list** access-list-number global configuration command to remove a numbered standard ACL.

Configure Standard IPv4 ACLs Named Standard IPv4 ACL Syntax

To create a named standard ACL, use the **ip access-list standard** command.

- ACL names are alphanumeric, case sensitive, and must be unique.
- Capitalizing ACL names is not required but makes them stand out when viewing the running-config output.

```
Router(config)# ip access-list standard access-list-name
R1(config)# ip access-list standard NO-ACCESS
R1(config-std-nacl)# ?
Standard Access List configuration commands:
  <1-2147483647> Sequence Number
  default
             Set a command to its defaults
                 Specify packets to reject
  deny
                 Exit from access-list configuration mode
  exit
                 Negate a command or set its defaults
  no
                 Specify packets to forward
  permit
                 Access list entry comment
  remark
R1(config-std-nacl)#
```

Configure Standard IPv4 ACLs Apply a Standard IPv4 ACL

After a standard IPv4 ACL is configured, it must be linked to an interface or feature.

- The ip access-group command is used to bind a numbered or named standard IPv4
 ACL to an interface.
- To remove an ACL from an interface, first enter the no ip access-group interface configuration command.

 $\label{eq:config-if} \textbf{Router}(\texttt{config-if}) \ \textit{\# ip access-group} \ \{\textit{access-list-number} \ | \ \textit{access-list-number} \} \ \{\textbf{in} \ | \ \textbf{out}\}$

Configure Standard IPv4 ACLs Numbered Standard ACL Example

R1#

The example ACL permits traffic from host 192.168.10.10 and all hosts on the 192.168.20.0/24 network out interface serial 0/1/0 on router R1.

```
R1(config)# access-list 10 remark ACE permits ONLY host 192.168.10.10 to the internet
R1(config)# access-list 10 permit host 192.168.10.10
R1(config)# do show access-lists
Standard TP access list 10
    10 permit 192.168.10.10
R1(config)#
R1(config)# access-list 10 remark ACE permits all host in LAN 2
R1(config)# access-list 10 permit 192.168.20.0 0.0.0.255
R1(config)# do show access-lists
Standard IP access list 10
    10 permit 192.168.10.10
    20 permit 192.168.20.0, wildcard bits 0.0.0.255
R1(config)#
R1(config)# interface Serial 0/1/0
R1(config-if)# ip access-group 10 out
R1(config-if)# end
```

Configure Standard IPv4 ACLs Numbered Standard ACL Example (Cont.)

- Use the show running-config command to review the ACL in the configuration.
- Use the show ip interface command to verify the ACL is applied to the interface.

```
R1# show run | section access-list
access-list 10 remark ACE permits host 192.168.10.10
access-list 10 permit 192.168.10.10
access-list 10 remark ACE permits all host in LAN 2
access-list 10 permit 192.168.20.0 0.0.0.255
R1#
```

```
R1# show ip int Serial 0/1/0 | include access list
Outgoing Common access list is not set
Outgoing access list is 10
Inbound Common access list is not set
Inbound access list is not set
R1#
```

Configure Standard IPv4 ACLs Named Standard ACL Example

The example ACL permits traffic from host 192.168.10.10 and all hosts on the 192.168.20.0/24 network out interface serial 0/1/0 on router R1.

```
R1(config)# no access-list 10
R1(config)# ip access-list standard PERMIT-ACCESS
R1(config-std-nacl)# remark ACE permits host 192.168.10.10
R1(config-std-nacl)# permit host 192.168.10.10
R1(config-std-nacl)#
R1(config-std-nacl)# remark ACE permits host 192.168.10.10
R1(config-std-nacl)# permit host 192.168.10.10
R1(config-std-nacl)# remark ACE permits all hosts in LAN 2
R1(config-std-nacl)# permit 192.168.20.0 0.0.0.255
R1(config-std-nacl)# exit
R1(config)#
R1(config)# interface Serial 0/1/0
R1(config-if)# ip access-group PERMIT-ACCESS out
R1(config-if)# end
R1#
```

Configure Standard IPv4 ACLs Named Standard ACL Example (Cont.)

- Use the show access-list command to review the ACL in the configuration.
- Use the show ip interface command to verify the ACL is applied to the interface.

```
R1# show access-lists
Standard IP access list PERMIT-ACCESS
    10 permit 192.168.10.10
    20 permit 192.168.20.0, wildcard bits 0.0.0.255
R1# show run | section ip access-list
ip access-list standard PERMIT-ACCESS
 remark ACE permits host 192.168.10.10
 permit 192.168.10.10
 remark ACE permits all hosts in LAN 2
 permit 192.168.20.0 0.0.0.255
R1#
R1# show ip int Serial 0/1/0 | include access list
  Outgoing Common access list is not set
  Outgoing access list is PERMIT-ACCESS
  Inbound Common access list is not set
  Inbound access list is not set
```

Configure Standard IPv4 ACLs Packet Tracer – Configure Numbered Standard IPv4 ACLs

In this Packet Tracer, you will complete the following objectives:

- Plan an ACL Implementation.
- Configure, Apply, and Verify a Standard ACL.

Configure Standard IPv4 ACLs Packet Tracer – Configure Named Standard IPv4 ACLs

In this Packet Tracer, you will complete the following objectives:

- Configure and Apply a Named Standard ACL.
- Verify the ACL Implementation.

5.2 Modify IPv4 ACLs

Modify IPv4 ACLs Two Methods to Modify an ACL

After an ACL is configured, it may need to be modified. ACLs with multiple ACEs can be complex to configure. Sometimes the configured ACE does not yield the expected behaviors.

There are two methods to use when modifying an ACL:

- Use a text editor.
- Use sequence numbers.

Modify IPv4 ACLs Text Editor Method

ACLs with multiple ACEs should be created in a text editor. This allows you to plan the required ACEs, create the ACL, and then paste it into the router interface. It also simplifies the tasks to edit and fix an ACL.

To correct an error in an ACL:

- Copy the ACL from the running configuration and paste it into the text editor.
- Make the necessary edits or changes.
- Remove the previously configured ACL on the router.
- Copy and paste the edited ACL back to the router.

```
R1# show run | section access-list
access-list 1 deny 19.168.10.10
access-list 1 permit 192.168.10.0 0.0.0.255
R1#

R1(config)# no access-list 1
R1(config)# R1(config)# access-list 1 deny 192.168.10.10
R1(config)# access-list 1 permit 192.168.10.0 0.0.255
R1(config)#
```

Modify IPv4 ACLs Sequence Number Method

An ACL ACE can be deleted or added using the ACL sequence numbers.

- Use the ip access-list standard command to edit an ACL.
- Statements cannot be overwritten using an existing sequence number. The current statement must be deleted first with the no 10 command. Then the correct ACE can be added using sequence number.

```
R1# show access-lists
Standard IP access list 1
10 deny 19.168.10.10
20 permit 192.168.10.0, wildcard bits 0.0.0.255
R1#
```

```
R1# conf t
R1(config)# ip access-list standard 1
R1(config-std-nacl)# no 10
R1(config-std-nacl)# 10 deny host 192.168.10.10
R1(config-std-nacl)# end
R1# show access-lists
Standard IP access list 1
10 deny 192.168.10.10
20 permit 192.168.10.0, wildcard bits 0.0.0.255
R1#
```

Modify IPv4 ACLs Modify a Named ACL Example

Named ACLs can also use sequence numbers to delete and add ACEs. In the example an ACE is added to deny hosts 192.168.10.11.

```
R1# show access-lists
Standard IP access list NO-ACCESS
    10 deny 192.168.10.10
    20 permit 192.168.10.0, wildcard bits 0.0.0.255
R1# configure terminal
R1(config)# ip access-list standard NO-ACCESS
R1(config-std-nacl)# 15 deny 192.168.10.5
R1(config-std-nacl)# end
R1#
R1# show access-lists
Standard IP access list NO-ACCESS
    15 deny
              192.168.10.5
    10 deny 192.168.10.10
    20 permit 192.168.10.0, wildcard bits 0.0.0.255
R1#
```

Modify IPv4 ACLs ACL Statistics

The **show access-lists** command in the example shows statistics for each statement that has been matched.

- The deny ACE has been matched 20 times and the permit ACE has been matched 64 times.
- Note that the implied deny any statement does not display any statistics. To track how many implicit denied packets have been matched, you must manually configure the **deny any** command.
- Use the clear access-list counters command to clear the ACL statistics.

```
R1# show access-lists
Standard IP access list NO-ACCESS

10 deny 192.168.10.10 (20 matches)
20 permit 192.168.10.0, wildcard bits 0.0.0.255 (64 matches)
R1# clear access-list counters NO-ACCESS
R1# show access-lists
Standard IP access list NO-ACCESS
10 deny 192.168.10.10
20 permit 192.168.10.0, wildcard bits 0.0.0.255
R1#
```

Modify IPv4 ACLs Packet Tracer – Configure and Modify Standard IPv4 ACLs

In this Packet Tracer, you will complete the following objectives:

- Configure Devices and Verify Connectivity.
- Configure and Verify Standard Numbered and Named ACLs.
- Modify a Standard ACL.

5.3 Secure VTY Ports with a Standard IPv4 ACL

Secure VTY Ports with a Standard IPv4 ACL The access-class Command

A standard ACL can secure remote administrative access to a device using the vty lines by implementing the following two steps:

- Create an ACL to identify which administrative hosts should be allowed remote access.
- Apply the ACL to incoming traffic on the vty lines.

```
R1(config-line)# access-class {access-list-number \mid access-list-name} { in \mid out }
```

Secure VTY Ports with a Standard IPv4 ACL Secure VTY Access Example

This example demonstrates how to configure an ACL to filter vty traffic.

- First, a local database entry for a user ADMIN and password class is configured.
- The vty lines on R1 are configured to use the local database for authentication, permit SSH traffic, and use the ADMIN-HOST ACL to restrict traffic.

```
R1(config)# username ADMIN secret class
R1(config)# ip access-list standard ADMIN-HOST
R1(config-std-nacl)# remark This ACL secures incoming vty lines
R1(config-std-nacl)# permit 192.168.10.10
R1(config-std-nacl)# deny any
R1(config-std-nacl)# exit
R1(config)# line vty 0 4
R1(config-line)# login local
R1(config-line)# transport input telnet
R1(config-line)# access-class ADMIN-HOST in
R1(config-line)# end
R1#
```

Secure VTY Ports with a Standard IPv4 ACL Verify the VTY Port is Secured

After an ACL to restrict access to the vty lines is configured, it is important to verify it works as expected.

To verify the ACL statistics, issue the **show access-lists** command.

- The match in the permit line of the output is a result of a successful SSH connection by host with IP address 192.168.10.10.
- The match in the deny statement is due to the failed attempt to create a SSH connection from a device on another network.

```
R1#
Oct 9 15:11:19.544: %SEC_LOGIN-5-LOGIN_SUCCESS: Login Success [user: admin] [Source: 192.168.10.10] [localport: 23] at 15:11:19 UTC Wed Oct 9 2019
R1# show access-lists
Standard IP access list ADMIN-HOST
    10 permit 192.168.10.10 (2 matches)
    20 deny any (2 matches)
R1#
```

5.4 Configure Extended IPv4 ACLs

Configure Extended IPv4 ACLs **Extended ACLs**

Extended ACLs provide a greater degree of control. They can filter on source address, destination address, protocol (i.e., IP, TCP, UDP, ICMP), and port number.

Extended ACLs can be created as:

- Numbered Extended ACL Created using the access-list access-list-number global configuration command.
- Named Extended ACL Created using the ip access-list extended access-listname.

Configure Extended IPv4 ACLs Protocols and Ports

Extended ACLs can filter on internet protocols and ports. Use the ? to get help when entering a complex ACE. The four highlighted protocols are the most popular options.

Protocol Options

R1(config)# access-list 100 permit ?	
<0-255>	An IP protocol number
ahp	Authentication Header Protocol
dvmrp	dvmrp
eigrp	Cisco's EIGRP routing protocol
esp	Encapsulation Security Payload
gre	Cisco's GRE tunneling
icmp	Internet Control Message Protocol
igmp	Internet Gateway Message Protocol
ip	Any Internet Protocol
ipinip	IP in IP tunneling
nos	KA9Q NOS compatible IP over IP tunneling
object-group	Service object group
ospf	OSPF routing protocol
рср	Payload Compression Protocol
pim	Protocol Independent Multicast
tcp	Transmission Control Protocol
udp	User Datagram Protocol
R1(config)# access-list 100 permit	

Configure Extended IPv4 ACLs Protocols and Ports (Cont.)

Selecting a protocol influences port options. Many TCP port options are available, as shown in the output.

```
R1(config)# access-list 100 permit tcp any any eq ?
 <0-65535>
               Port number
              Border Gateway Protocol (179)
 bgp
 chargen
               Character generator (19)
  cmd
               Remote commands (rcmd, 514)
 daytime
               Daytime (13)
  discard
               Discard (9)
  domain
              Domain Name Service (53)
 echo
               Echo (7)
 exec
               Exec (rsh, 512)
 finger
               Finger (79)
              File Transfer Protocol (21)
  ftp-data
              FTP data connections (20)
  gopher
              Gopher (70)
 hostname
               NIC hostname server (101)
 ident
               Ident Protocol (113)
  irc
              Internet Relay Chat (194)
 klogin
               Kerberos login (543)
 kshell
               Kerberos shell (544)
  login
               Login (rlogin, 513)
  1pd
               Printer service (515)
               MS Remote Procedure Call (135)
 msrpc
               Network News Transport Protocol (119)
 nntp
               Onep Cleartext (15001)
 onep-plain
 onep-tls
               Onep TLS (15002)
 pim-auto-rp PIM Auto-RP (496)
               Post Office Protocol v2 (109)
               Post Office Protocol v3 (110)
              Simple Mail Transport Protocol (25)
  smtp
  sunrpc
              Sun Remote Procedure Call (111)
 syslog
               Syslog (514)
              TAC Access Control System (49)
 tacacs
 talk
               Talk (517)
 telnet
               Telnet (23)
 time
              Time (37)
              Unix-to-Unix Copy Program (540)
 uucp
 whois
               Nicname (43)
               World Wide Web (HTTP, 80)
```

Configure Extended IPv4 ACLs Protocols and Port Numbers Configuration Examples

Extended ACLs can filter on different port number and port name options.

This example configures an extended ACL 100 to filter HTTP traffic. The first ACE uses the **www** port name. The second ACE uses the port number **80**. Both ACEs achieve exactly the same result.

```
R1(config)# access-list 100 permit tcp any any eq www
!or...
R1(config)# access-list 100 permit tcp any any eq 80
```

Configuring the port number is required when there is not a specific protocol name listed such as SSH (port number 22) or an HTTPS (port number 443), as shown in the next example.

```
R1(config)# access-list 100 permit tcp any any eq 22
R1(config)# access-list 100 permit tcp any any eq 443
R1(config)#
```

Configure Extended IPv4 ACLs Apply a Numbered Extended IPv4 ACL

In this example, the ACL permits both HTTP and HTTPS traffic from the 192.168.10.0 network to go to any destination.

Extended ACLs can be applied in various locations. However, they are commonly applied close to the source. Here ACL 110 is applied inbound on the R1 G0/0/0 interface.

```
R1(config)# access-list 110 permit tcp 192.168.10.0 0.0.255 any eq www
R1(config)# access-list 110 permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1(config)# interface g0/0/0
R1(config-if)# ip access-group 110 in
R1(config-if)# exit
R1(config)#
```

Configure Extended IPv4 ACLs TCP Established Extended ACL

TCP can also perform basic stateful firewall services using the TCP established keyword.

- The established keyword enables inside traffic to exit the inside private network and permits the returning reply traffic to enter the inside private network.
- TCP traffic generated by an outside host and attempting to communicate with an inside host is denied.

Configure Extended IPv4 ACLs TCP Established Extended ACL (Cont.)

- ACL 120 is configured to only permit returning web traffic to the inside hosts. The ACL is then applied outbound on the R1 G0/0/0 interface.
- The show access-lists command shows that inside hosts are accessing the secure web resources from the internet.

Note: A match occurs if the returning TCP segment has the ACK or reset (RST) flag bits set, indicating that the packet belongs to an existing connection.

Configure Extended IPv4 ACLs Named Extended IPv4 ACL Syntax

Naming an ACL makes it easier to understand its function. To create a named extended ACL, use the **ip access-list extended** configuration command.

In the example, a named extended ACL called NO-FTP-ACCESS is created and the prompt changed to named extended ACL configuration mode. ACE statements are entered in the named extended ACL sub configuration mode.

Router(config)# ip access-list extended access-list-name

R1(config)# ip access-list extended NO-FTP-ACCESS
R1(config-ext-nacl)#

Configure Extended IPv4 ACLs Named Extended IPv4 ACL Example

The topology below is used to demonstrate configuring and applying two named extended IPv4 ACLs to an interface:

- SURFING This will permit inside HTTP and HTTPS traffic to exit to the internet.
- **BROWSING** This will only permit returning web traffic to the inside hosts while all other traffic exiting the R1 G0/0/0 interface is implicitly denied.

Configure Extended IPv4 ACLs Named Extended IPv4 ACL Example (Cont.)

- The SURFING ACL permits HTTP and HTTPS traffic from inside users to exit the G0/0/1 interface connected to the internet. Web traffic returning from the internet is permitted back into the inside private network by the BROWSING ACL.
- The SURFING ACL is applied inbound and the BROWSING ACL is applied outbound on the R1 G0/0/0 interface.

```
R1(config)# ip access-list extended SURFING
R1(config-ext-nacl)# Remark Permits inside HTTP and HTTPS traffic
R1(config-ext-nacl)# permit tcp 192.168.10.0 0.0.0.255 any eq 80
R1(config-ext-nacl)# permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1(config-ext-nacl)# exit
R1(config)#
R1(config)# ip access-list extended BROWSING
R1(config-ext-nacl)# Remark Only permit returning HTTP and HTTPS traffic
R1(config-ext-nacl)# permit tcp any 192.168.10.0 0.0.0.255 established
R1(config-ext-nacl)# exit
R1(config)# interface g0/0/0
R1(config-if)# ip access-group SURFING in
R1(config-if)# ip access-group BROWSING out
R1(config-if)# end
R1# show access-lists
Extended IP access list SURFING
    10 permit tcp 192.168.10.0 0.0.0.255 any eq www.
    20 permit tcp 192.168.10.0 0.0.0.255 any eq 443 (124 matches)
Extended IP access list BROWSING
    10 permit tcp any 192.168.10.0 0.0.0.255 established (369 matches)
R1#
```

Configure Extended IPv4 ACLs Named Extended IPv4 ACL Example (Cont.)

The show access-lists command is used to verify the ACL statistics. Notice that the permit secure HTTPS counters (i.e., eq 443) in the SURFING ACL and the return established counters in the BROWSING ACL have increased.

```
R1# show access-lists
Extended IP access list BROWSING

10 permit tcp any 192.168.10.0 0.0.0.255 established
Extended IP access list SURFING

10 permit tcp 19.168.10.0 0.0.0.255 any eq www

20 permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1#
```

Configure Extended IPv4 ACLs Edit Extended ACLs

An extended ACL can be edited using a text editor when many changes are required. Or, if the edit applies to one or two ACEs, then sequence numbers can be used.

Example:

 The ACE sequence number 10 in the SURFING ACL has an incorrect source IP networks address.

```
R1# show access-lists
Extended IP access list BROWSING

10 permit tcp any 192.168.10.0 0.0.0.255 established
Extended IP access list SURFING

10 permit tcp 19.168.10.0 0.0.0.255 any eq www

20 permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1#
```

Configure Extended IPv4 ACLs Edit Extended ACLs (Cont.)

- To correct this error the original statement is removed with the no sequence_#
 command and the corrected statement is added replacing the original statement.
- The show access-lists command output verifies the configuration change.

```
R1# configure terminal
R1(config)# ip access-list extended SURFING
R1(config-ext-nacl)# no 10
R1(config-ext-nacl)# 10 permit tcp 192.168.10.0 0.0.0.255 any eq www
R1(config-ext-nacl)# end
```

```
R1# show access-lists
Extended IP access list BROWSING

10 permit tcp any 192.168.10.0 0.0.0.255 established
Extended IP access list SURFING

10 permit tcp 192.168.10.0 0.0.0.255 any eq www

20 permit tcp 192.168.10.0 0.0.0.255 any eq 443
R1#
```

Configure Extended IPv4 ACLs Another Extended IPv4 ACL Example

Two named extended ACLs will be created:

- PERMIT-PC1 This will only permit PC1 TCP access to the internet and deny all other hosts in the private network.
- REPLY-PC1 This will only permit specified returning TCP traffic to PC1 implicitly deny all other traffic.

Configure Extended IPv4 ACLs Another Extended IPv4 ACL Example (Cont.)

- The PERMIT-PC1 ACL permits PC1 (192.168.10.10) TCP access to the FTP, SSH, Telnet, DNS, HTTP, and HTTPS traffic.
- The REPLY-PC1 ACL will permit return traffic to PC1.
- The PERMIT-PC1 ACL is applied inbound and the REPLY-PC1 ACL applied outbound on the R1 G0/0/0 interface.

```
R1(config)# ip access-list extended PERMIT-PC1
R1(config-ext-nacl)# Remark Permit PC1 TCP access to internet
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 20
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 21
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 22
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 23
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 53
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 80
R1(config-ext-nacl)# permit tcp host 192.168.10.10 any eq 443
R1(config-ext-nacl)# deny ip 192.168.10.0 0.0.0.255 any
R1(config-ext-nacl)# exit
R1(config)#
R1(config)# ip access-list extended REPLY-PC1
R1(config-ext-nacl)# Remark Only permit returning traffic to PC1
R1(config-ext-nacl)# permit tcp any host 192.168.10.10 established
R1(config-ext-nacl)# exit
R1(config)# interface g0/0/0
R1(config-if)# ip access-group PERMIT-PC1 in
R1(config-if)# ip access-group REPLY-PC1 out
R1(config-if)# end
R1#
```

Configure Extended IPv4 ACLs Verify Extended ACLs

The **show ip interface** command is used to verify the ACL on the interface and the direction in which it was applied.

```
R1# show ip interface g0/0/0
GigabitEthernet0/0/0 is up, line protocol is up (connected)
  Internet address is 192.168.10.1/24
  Broadcast address is 255.255.255.255
  Address determined by setup command
  MTU is 1500 bytes
  Helper address is not set
  Directed broadcast forwarding is disabled
  Outgoing access list is REPLY-PC1
  Inbound access list is PERMIT-PC1
  Proxy ARP is enabled
  Security level is default
  Split horizon is enabled
  ICMP redirects are always sent
  ICMP unreachables are always sent
  ICMP mask replies are never sent
  IP fast switching is disabled
  IP fast switching on the same interface is disabled
  IP Flow switching is disabled
  IP Fast switching turbo vector
  IP multicast fast switching is disabled
  IP multicast distributed fast switching is disabled
  Router Discovery is disabled
R1#
R1# show ip interface g0/0/0 | include access list
Outgoing access list is REPLY-PC1
Inbound access list is PERMIT-PC1
R1#
```

Configure Extended IPv4 ACLs Verify Extended ACLs (Cont.)

The **show access-lists** command can be used to confirm that the ACLs work as expected. The command displays statistic counters that increase whenever an ACE is matched.

Note: Traffic must be generated to verify the operation of the ACL.

```
R1# show access-lists
Extended IP access list PERMIT-PC1
10 permit tcp host 192.168.10.10 any eq 20
20 permit tcp host 192.168.10.10 any eq ftp
30 permit tcp host 192.168.10.10 any eq 22
40 permit tcp host 192.168.10.10 any eq telnet
50 permit tcp host 192.168.10.10 any eq domain
60 permit tcp host 192.168.10.10 any eq www
70 permit tcp host 192.168.10.10 any eq 443
80 deny ip 192.168.10.0 0.0.255 any
Extended IP access list REPLY-PC1
10 permit tcp any host 192.168.10.10 established
R1#
```

Configure Extended IPv4 ACLs Verify Extended ACLs (Cont.)

The **show running-config** command can be used to validate what was configured. The command also displays configured remarks.

```
R1# show running-config | begin ip access-list
ip access-list extended PERMIT-PC1
remark Permit PC1 TCP access to internet
permit tcp host 192.168.10.10 any eq 20
permit tcp host 192.168.10.10 any eq ftp
permit tcp host 192.168.10.10 any eq 22
permit tcp host 192.168.10.10 any eq telnet
permit tcp host 192.168.10.10 any eq domain
permit tcp host 192.168.10.10 any eq www
permit tcp host 192.168.10.10 any eq 443
deny ip 192.168.10.0 0.0.0.255 any
ip access-list extended REPLY-PC1
remark Only permit returning traffic to PC1
permit tcp any host 192.168.10.10 established
```

Configure Extended IPv4 ACLs Packet Tracer – Configure Extended IPv4 ACLs - Scenario 1

In this Packet Tracer, you will complete the following objectives:

- Configure, Apply, and Verify an Extended Numbered IPv4 ACL.
- Configure, Apply, and Verify an Extended Named IPv4 ACL.

Configure Extended IPv4 ACLs Packet Tracer – Configure Extended IPv4 ACLs - Scenario 2

In this Packet Tracer, you will complete the following objectives:

- Configure a Named Extended IPv4 ACL.
- Apply and Verify the Extended IPv4 ACL.

5.5 Module Practice and Quiz

Module Practice and Quiz Packet Tracer – IPv4 ACL Implementation Challenge

In this Packet Tracer, you will complete the following objectives:

- Configure a router with standard named ACLs
- Configure a router with extended named ACLs
- Configure a router with extended ACLs to meet specific communication requirements
- Configure an ACL to control access to network device terminal lines
- Configure the appropriate router interfaces with ACLs in the appropriate direction
- Verify the operation of the configured ACLs

Module Practice and Quiz

Packet Tracer – Configure and Verify Extended IPv4 ACLs – Physical Mode Lab – Configure and Verify Extended IPv4 ACLs

In this Packet Tracer Physical Mode activity, you will complete the following objectives:

- Build the Network and Configure Basic Device Settings
- Configure VLANs on the Switches
- Configure Trunking
- Configure Routing
- Configure Remote Access
- Verify Connectivity
- Configure and Verify Extended Access Control Lists

In this Lab, you will complete the following objectives:

- Build the Network and Configure Basic Device Settings
- Configure and Verify Extended IPv4 ACLs

Module Practice and Quiz

What did I learn in this module?

- To create a numbered standard ACL, use the use the **ip access-list standard** access-list-name global configuration command.
- Use the **no access-list** access-list-number global configuration command to remove a numbered standard ACL.
- Use the **show ip interface** command to verify if an interface has an ACL applied to it.
- To create a named standard ACL, use the **ip access-list standard** access-list-name global configuration command.
- Use the **no ip access-list standard** access-list-name global configuration command to remove a named standard IPv4 ACL.
- To bind a numbered or named standard IPv4 ACL to an interface, use the **ip access-group** {access-list-number | access-list-name} { **in** | **out** } global configuration command.
- To remove an ACL from an interface, first enter the no ip access-group interface configuration command.
- To remove the ACL from the router, use the no access-list global configuration command.

Module Practice and Quiz

What did I learn in this module?

- Extended ACLs can filter on source address, destination address, protocol (i.e., IP, TCP, UDP, ICMP), and port number.
- To create a numbered extended ACL, use the Router(config)# access-list access-list-number {deny | permit | remark text} protocol source source-wildcard [operator [port]] destination destination-wildcard [operator [port]] [established] [log] global configuration command.
- ALCs can also perform basic stateful firewall services using the TCP established keyword.
- The show ip interface command is used to verify the ACL on the interface and the direction in which it was applied.
- To modify an ACL, use a text editor or use sequence numbers.
- An ACL ACE can also be deleted or added using the ACL sequence numbers.
- Sequence numbers are automatically assigned when an ACE is entered.

