GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING ELEMENT

Patent Number:

JP10012922

Publication date:

1998-01-16

Inventor(s):

ASAMI SHINYA; KOIKE MASAYOSHI; KOIDE NORIKATSU; YAMAZAKI SHIRO; UMEZAKI JUNICHI

Applicant(s)::

TOYODA GOSEI CO LTD

Requested Patent:

☐ JP10012922

Application Number: JP19960180165 19960619

Priority Number(s):

IPC Classification:

H01L33/00; H01S3/18

EC Classification: Equivalents:

Abstract

PROBLEM TO BE SOLVED: To enhance the emission efficiency of a light emitting element employing a group III nitride semiconductor.

SOLUTION: An emission layer 5 has a multiple quantum well structure comprising six barrier layers 51 of At0.05 Ga-.95 N having thickness of about 50&angst and five well layers 52 of In0.2 Ga0.8 N having thickness of about 50&angst laminated alternately. The emission layer 5 has total thickness of about 0.055&mu m. The well layer 52 is added with zinc and silicon at concentration of 5× 10<18> /cm<3>. Since the emission layer 5 comprises a strained superlattice, the emission intensity is enhanced.

Data supplied from the esp@cenet database - I2

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-12922

(43)公開日 平成10年(1998)1月16日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

HO1L 33/00 H01S 3/18

H01L 33/00

H01S 3/18 С

審査請求 未請求 請求項の数9 FD (全 7 頁)

(21)出顯番号

(22)出願日

特度平8-180165

平成8年(1996)6月19日

(71)出廣人 000241463

豐田合成株式会社

愛知県西春日井郡春日町大字落合字長畑1

番地

(72)発明者 浅見 慎也

愛知県西春日井郡春日町大字蔣合字長畑1

番地 豊田合成株式会社内

(72)発明者 小池 正好

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(74)代理人 弁理士 藤谷 修

最終頁に続く

(54) 【発明の名称】 3族窒化物半導体発光索子

(57)【要約】

【課題】 3 族窒化物化合物半導体を用いた発光素子の発 光効率の向上。

【解決手段】発光層 5 は、膜厚約50 ÅのAlo. osGao. osN から成る6層のバリア層51と膜厚約50ÅのIno. 2Gao. 8 N から成る5層の井戸層52とが交互に積層された多重 量子井戸構造で、全膜厚約0.055 µmである。又、井戸 層52には、亜鉛とシリコンが、それぞれ、5×10¹⁸/c m³の濃度に添加されている。発光層を歪超格子で構成し たため発光強度が増加した。

【特許請求の範囲】

【請求項1】発光層に3族窒化物半導体を用いた発光素

前記発光層を3族窒化物半導体の歪超格子から成る単一 又は多重の量子井戸構造としたことを特徴とする3族窒 化物半導体発光素子。

【請求項2】前記発光層はAlx2Ga1-x2N(0 <x2≤1)から 成るバリア層とInxiGa1-xiN(0 <x1≤1)から成る井戸層 とを積層させた単一又は多重の量子井戸の超格子で構成 されていることを特徴とする請求項1に記載の3族窒化 10 物半導体発光素子。

【請求項3】前記発光層にはアクセプタ不純物又はドナ 一不純物、又は、その両方が添加されていることを特徴 とする請求項1又は請求項2に記載の3族窒化物半導体 発光素子。

【請求項4】前記発光層の各井戸層にのみ前記アクセプ タ不純物と前記ドナー不純物とが共に添加されているこ とを特徴とする請求項3に記載の3族窒化物半導体発光

【請求項5】前記発光層の隣接する井戸層に、前記アク 20 セプタ不純物と前記ドナー不純物とが交互に添加されて いることを特徴とする請求項3に記載の3族窒化物半導 体発光素子。

【請求項6】前記発光層の前記井戸層には前記アクセプ タ不純物が、前記発光層の前記バリア層には前記ドナー 不純物が、それぞれ、添加されているか、又は、前記井 戸層には前記ドナー不純物が、前記バリア層には前記ア クセプタ不純物が、それぞれ、添加されていることを特 徴とする請求項3に記載の3族窒化物半導体発光素子。

【請求項5】前記アクセプタ不純物は亜鉛であり、前記 30 ドナー不純物はシリコンであることを特徴とする請求項 3乃至請求項6のいずれかの請求項に記載の3族窒化物 半導体発光素子。

【請求項7】前記発光層は、アクセプタ不純物が添加さ れたp伝導型のAlx3Ga1-x3N(X2 ≦X3) から成るp層 と、ドナー不純物が添加されたn伝導型のAlxaGa1-xaN (X2 ≤X4) から成るn層とで挟まれていることを特徴と する請求項2に記載の3族窒化物半導体発光素子。

【請求項8】前記p層に添加されている前記アクセプタ 不純物はマグネシウムであり、前記n層に添加されてい 40 る前記ドナー不純物はシリコンであることを特徴とする 請求項7に記載の3族窒化物半導体発光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は青色、緑色発光の効 率を向上させた3族窒化物半導体を用いた発光素子に関 する。

[0002]

【従来技術】従来、発光層に3族窒化物半導体から成る

6-268257号公報)。この素子では、発光層をIn o. 2Gao. eN の井戸層とIno. o4Gao. eeN のバリア層とから 成る多重量子井戸構造としている。

[0003]

【発明が解決しようとする課題】上記構造の発光素子は 井戸層とバリア層とを成るべく格子整合を図り、且つ、 成長の基礎となるn形GaN 層に対する格子不整合を緩和 する目的で多重量子井戸構造を採用するものである。し かし、上記の発光素子の発光強度は未だ十分ではなく、 GaN 系の化合物半導体発光素子において、さらに、発光 強度を増加させることが要請されている。

【0004】本発明は、上記課題を解決するために成さ れたものであり、その目的は3族窒化物半導体発光素子 の発光強度を増加させることである。

[0005]

【課題を解決するための手段】請求項1に記載の発明 は、発光層に3族窒化物半導体を用いた発光素子におい て、発光層を3族窒化物半導体の歪超格子から成る単一 又は多重の量子井戸構造としたことを特徴とする。

【0006】又、請求項2の発明は発光層をAlx2Ga1-x2 N(0 <x2≤1)から成るバリア層とInx₁Ga_{1-x1}N(0 <x1≤ 1)から成る井戸層とを積層させた単一又は多重の量子井 戸の超格子で構成したものであり、請求項3の発明はそ の発光層にアクセプタ不純物又はドナー不純物、又は、 その両方を添加したものであり、請求項4の発明は発光 層の各井戸層にのみアクセプタ不純物とドナー不純物と を共に添加したものである。さらに、請求項5の発明は 発光層の隣接する井戸層にアクセプタ不純物とドナー不 純物とを交互に添加し、井戸層にアクセプタ不純物、バ リア層にドナー不純物、又は、井戸層にドナー不純物、 バリア層にアクセプタ不純物、それぞれ、添加したもの であり、請求項5の発明はアクセプタ不純物を亜鉛、ド ナー不純物をシリコンとしたことを特徴とし、請求項で の発明は発光層をアクセプタ不純物が添加されたp伝導 型のAlx3Ga1-x3N(X2 ≦X3)から成るp層と、ドナー不 純物が添加されたn伝導型のAlx4Ga1-x4N (X2 ≤ X4) か ら成るn層とで挟んだことを特徴とする。 さらに、請求 項8の発明はp層に添加されているアクセプタ不純物を マグネシウム、n層に添加されているドナー不純物をシ リコンとしたことである。

【0007】尚、井戸層とバリア層との間の格子不整合 の程度は、0.4 ~4.8 %が望ましい。0.4 %以下である と歪超格子の性質が利用できないし、4.8 %以上となる と転位が多く発生し結晶性が低下するので望ましくな い。又、井戸層とバリア層の厚さは、1~20mmが望まし い。Inm 以下となると成膜が困難となり、20nm以上とな るとボンドの歪効果が低下し歪超格子の特性を利用する ことができなくなるので望ましくない。

【0008】井戸層をInx1Ga1-x1N(0 <x1≤1)で構成 量子井戸構造の青色発光素子が提案されている(特開平 50 し、バリア層をAlx2Ga1-x2N(0 <x2≦1)で構成した場合

には、望ましいInの組成比x1は、0.03~0.5 であり、望 る。ましいA1の組成比x2は、0.03~0.3 である。それぞれ、 の2上記の下限値以下であると、歪みが入らないため歪超格 の障子の効果が発生しないため効果的でなく、上記の上限値 めの以上となると、ミスフィット転位が多く発生するので望 A1か

理由により上述した範囲が望ましい。 【0009】又、発光層に不純物を添加する場合には、添加するアクセプタ不純物とドナー不純物の濃度は $1 \times 10^{17}/cm^3 \sim 1 \times 10^{20}/cm^3$ の範囲が望ましい。 $1 \times 10^{17}/cm^3$ 以下であると、発光中心不足により発光効率が低下し、 $1 \times 10^{20}/cm^3$ 以上となると、結晶性が悪くなり、又、オージェ効果が発生するので望ましく

ましくない。又、井戸層とバリア層の厚さは、上述した

[0010]

ない。

【発明の作用及び効果】本発明は、発光層に 3 族窒化物 半導体を用いた発光素子において、発光層を 3 族窒化物 半導体の歪超格子から成る単一又は多重の量子井戸構造 としたために、ボンドの歪効果により転位のない良質な 結晶を得ることができ、発光に寄与する電子とホールの 20 濃度を増加させることができた結果、発光強度を向上さ せることができた。又、発光層を、アクセプタ不純物が 添加された p 伝導型の $Al_{xx}Ga_{1-xx}N$ ($X2 \le X3$) から成る p 層と、ドナー不純物が添加された n 伝導型の $Al_{xx}Ga_{1-xx}N$ ($X2 \le X4$) から成る n 層とで挟むダブルヘテロ接 合構造とすることで、発光効率を向上させることができ た。

[0011]

【発明の実施の形態】以下、本発明を具体的な実施例に 基づいて説明する。なお本発明は下記実施例に限定され 30 るものではない。

第1実施例

図 1 は本願実施例の発光素子100 の全体図を示す。発光素子100 は、サファイア基板 1 を有しており、そのサファイア基板 1 上に $0.05\,\mu$ mのAlN バッファ層 2が形成されている。

る。そして、第2コンタクト層73の上面全体にNi/Auの2重層からなる透明電極9が形成されその透明電極9の隅の部分にNi/Auの2重層からなるボンディングのためのパッド10が形成されている。又、n⁺層3上にはAlから成る電極8が形成されている。

【0013】発光層5の詳細な構成は、図2に示すように、膜厚約50Åの $Alo_{oos}Gao_{oos}N$ から成る6層のパリア層51と膜厚約50Åの $Ino_{oos}Gao_{oos}N$ から成る5層の井戸層52とが交互に積層された多重量子井戸構造で、全膜厚約 $0.055~\mu$ mである。又、井戸層52には、亜鉛とシリコンが、それぞれ、 $5\times10^{18}/cm^3$ の濃度に添加されている。

【0014】次に、この構造の発光ダイオード100製造方法について説明する。上記発光ダイオード100は、有機金属化合物気相成長法(以下「MOVPE」と記す)による気相成長により製造された。用いられたガスは、 NH_3 とキャリアガス H_2 又は N_2 とトリメチルガリウム($Ga(CH_3)_3$)(以下「TMG」と記す)とトリメチルアルミニウム($A1(CH_3)_3$)(以下「TMA」と記す)とトリメチルインジウム($In(CH_3)_3$)(以下「TMI」と記す)とシラン(SiH_4)とジエチル亜鉛($Zn(C_2H_5)_2$)(以下「DEZ」と記す)とシクロペンタジエニルマグネシウム($Mg(C_5H_5)_2$)(以下「 CP_2Mg 」と記す)である。

【0015】まず、有機洗浄及び熱処理により洗浄した a面を主面とし、単結晶のサファイア基板1をMOVPE 装 置の反応室に載置されたサセプタに装着する。次に、常 圧でH₂を流速2 liter/分で約30分間反応室に流しながら 温度1100℃でサファイア基板1をベーキングした。

【0016】次に、温度を 400℃まで低下させて、H₂を 20 liter/分、NH₃を10 liter/分、TMA を 1.8×10⁻⁵ モル/分で約90秒間供給してAlN のバッファ層 2 を約0.05 μ mの厚さに形成した。次に、サファイア基板 1 の温度を1150℃に保持し、H₂を20liter/分、NH₃を10 liter/分、TMG を 1.7×10⁻⁴モル/分、H₂ガスにより0.86p pm に希釈されたシランを20×10⁻⁸モル/分で40分導入し、膜厚約4.0 μm、電子濃度 1×10¹⁸/cm³、シリコン濃度 4×10¹⁸/cm³のシリコン(Si)ドープGaN から成る高キャリア濃度 n + 層 3 を形成した。

【0017】上記の高キャリア濃度 n^+ 層3を形成した後、続いて温度を 1100° C に保持し、 H_2 を20 liter/分、 NH_3 を10 liter/分、TMGを1.12× 10^{-4} モル/分、 H_2 ガスにより0.86ppm に希釈されたシランを10×10 $^{-9}$ モル/分で30分導入し、膜厚約0.5 μ m、電子濃度5× 10^{17} /cm³、シリコン濃度1× 10^{18} /cm³のシリコン(Si)ドープGaN から成るn層4を形成した。

膜厚約35 n m, ホール濃度 3×10¹⁷/cm³. マグネシウム 【0018】その後、サファイア基板1の温度を1100℃ (Mg) 濃度 5×10¹⁹/cm³のGaN から成るp 伝導形の第1 に保持し、N₂又はH₂を20 liter/分、NH₃を10 liter/コンタクト層72、膜厚約5 n m, ホール濃度 6×10¹⁷ 分、TMG を0.5×10⁻⁴モル/分、TMA を0.8×10⁻⁵モル/分で0.5分間導入してAlo.osGao.osN から成る厚さ50成るp *伝導形の第2コンタクト層73が形成されてい 50 Åのバリア層51を形成した。続いて、温度を800℃に

保持し、 N_2 又は H_2 を20 liter/分、 NH_3 を10 liter/分、TMG を0.5 ×10⁻⁴モル/分、TMI を1.6 ×10⁻⁴モル/分、 H_2 ガスにより0.86ppm に希釈されたシランを0.15 ×10⁻⁸mol/分で、DEZ を0.2 ×10⁻⁶モル/分で、1.5 分間供給して、シリコンと亜鉛が、それぞれ、 5×10¹⁸/c m^3 にドープさた $Ino.\ 20$ Gao. goN から成る厚さ50 Aの井戸層52を形成した。このような手順の繰り返しにより、図2に示すように、バリア層51と井戸層52とを交互に5層だけ積層たし多重量子井戸構造で、全体の厚さ0.055 μ mの発光層5を形成した。

【0019】続いて、温度を1100℃に保持し、N₂又はH₂を20 liter/分、NH₃を10 liter/分、TMG を0.5 ×10⁻⁴モル/分、TMA を0.47×10⁻⁶モル/分、及び、CP₂Mgを2×10⁻⁶モル/分で 2分間導入し、膜厚約10 n mのマグネシウム(Mg)ドープのAlo.osGao.ozN から成るクラッド層 7 1を形成した。クラッド層 7 1のマグネシウム濃度は 5×10¹⁹/cm³である。この状態では、クラッド層 7 1は、まだ、抵抗率10⁸ Ωcm以上の絶縁体である。

【0020】次に、温度を1100℃に保持し、N₂又はH₂を20 liter/分、NH₃ を10 liter/分、TMG を0.5 ×10⁻⁴ モル/分、及び、CP₂Mg を 2×10⁻⁸モル/分で 4分間導入し、膜厚約35 n mのマグネシウム(Mg)ドープのGaN から成る第1コンタクト層72を形成した。第1コンタクト層72のマグネシウム濃度は 5×10¹⁹/cm³である。この状態では、第1コンタクト層72は、まだ、抵抗率10⁻⁸ Ωcm以上の絶縁体である。

【0021】次に、温度を1100℃に保持し、N₂又はH₂を20 liter/分、NH₃を10 liter/分、TMG を0.5 ×10⁻⁴ モル/分、及び、CP₂Mg を 4×10⁻⁸モル/分で 1分間導入し、膜厚約5 n mのマグネシウム(Mg)ドープのGaN か 30 ら成る p ⁺ の第2コンタクト層73を形成した。第2コンタクト層73のマグネシウム濃度は 1×10²⁰/cm³である。この状態では、第2コンタクト層73は、まだ、抵抗率10⁸ Ωcm以上の絶縁体である。

【0022】次に、電子線照射装置を用いて、第2コン

タクト層 7 3,第 1 コンタクト層 7 2 及びクラッド層 7 1 に一様に電子線を照射した。電子線の照射条件は、加速電圧約 10 kV、資料電流 1 μ A、ビームの移動速度 0.2 m m/sec 、ビーム径60 μ m ϕ 、真空度 5.0 × 10^{-6} Torrである。この電子線の照射により、第 2 コンタクト層 7 3,第 1 コンタクト層 7 2 及びクラッド層 7 1 は、それぞれ、ホール濃度 6× 10^{17} /cm³, 3×10^{17} /cm³、抵抗率 2 Ω cm, 1 Ω cm, 0.7Ω cm 0 p 伝導形半導体となった。このようにして多層構造のウエハが得られた。【0023】次に、図3に示すように、第 2 コンタクト層 7 3 の上に、スパッタリングにより Si0 2 層 1 1 を 2000 Åの厚さに形成し、その Si0 2 層 1 1 上にフォトレジスト12 を塗布した。そして、フォトリソグラフにより、図3に示すように、第 2 コンタクト層 7 3 上において、高

トレジスト12を除去した。次に、図4に示すように、フォトレジスト12によって覆われていない $Si0_2$ 層11をフッ化水素酸系エッチング液で除去した。

【0024】次に、フォトレジスト12及びSi02層11によって覆われていない部位の第2コンタクト層73、第1コンタクト層72、クラッド層71、発光層5、n層4を、真空度0.04Torr、高周波電力0.44W/cm²、BClaガスを10 ml/分の割合で供給しドライエッチングした後、Arでドライエッチングした。この工程で、図5に示すように、高キャリア濃度n⁺層3に対する電極のを形成のための孔Aが形成された。その後、フォトレジスト12及びSi02層11を除去した。

【0025】次に、一様にNi/Auの2層を蒸着し、フォトレジストの塗布、フォトリソグラフィー工程、エッチング工程を経て、第2コンタクト層73の上に透明電極9を形成した。そして、その透明電極9の一部にNi/Auの2層を蒸着してパッド10を形成した。一方、n+層3に対しては、アルミニウムを蒸着して電極8を形成した。その後、上記のごとく処理されたウエハは、各素子毎に切断され、図1に示す構造の発光ダイオードを得た。この発光素子は駆動電流20mAで発光ピーク波長470 nm、発光強度2mWであった。従来構造のLEDに比べて発光強度は2倍になった。

【0026】上記の実施例では、発光層 5 にIno. 2Gao. 8 N の井戸層 5 2 と Alo. os Gao. 9s N のバリア層 5 1 との多重量子井戸構造の歪超格子を用いたが、格子定数の不一致の範囲が0.4~4.8 %で、各層の厚さの範囲が1~20 nmであれば、一般式Al Gay1 In1-x1-y1 N(0 ≤ x1 ≤ 1 .0 ≤ y1 ≤ 1,0 ≤ x1+y1 < 1)の井戸層と一般式Alx2 Gay2 In 1-x2-y2 N(0 ≤ x2 ≤ 1 .0 ≤ y2 ≤ 1,0 ≤ x2+y2 ≤ 1)のバリア層とを用いても良い。又、量子井戸構造は多重周期でも1周期でも良い。又、井戸層 5 2 にシリコンと亜鉛とをドープしたがノンドープであっても良い。又、n 層 4 はバリア層 5 1 よりもバンドギャップの広い Alxa Ga1-x4 N を用いても良い。例えば、n 層 4 を、シリンコ濃度 2 × 10 18/cm³、電子濃度 1×10 18/cm³の Alo. os Gao. 92 N としても良い。

【0027】第2実施例

上記第1実施例では、各井戸層52に亜鉛とシリコンとを同時に添加している。第2実施例の発光ダイオード100の発光層5は、図6に示すように、複数の井戸層520に、順に交互に、シリコンと亜鉛を添加したものである。この構造において、アクセプタ準位とドナー準位による対発光が可能となり、青色の発光効率が向上する。このようにして得られた発光素子は、駆動電流20mAで、発光ピーク波長470nm、発光強度3mWであった。この発光効率は45%であり、従来の構成のものに比べて3倍に向上した。

【0028】第3実施例

キャリア濃度n⁺ 層 3 に対する電極形成部位A のフォ 50 第 3 実施例の発光ダイオード 2 0 0 は、図 7 に示すよう

8

に、全ての井戸層521に亜鉛を添加し、全てのバリア層511にシリコンを添加したものである。この構造において、アクセプタ準位とドナー準位による対発光が可能となり、紫外線の発光効率が向上する。尚、逆に、全ての井戸層521にシリコンを添加し、全てのバリア層511に亜鉛を添加するようにしても良い。このようにして得られた発光素子は、駆動電流20mAで、発光ピーク波長470m、発光強度3mWであった。この発光効率は4.5%であり、従来の構成のものに比べて3倍に向上した。

【0029】第4実施例

上記の全ての実施例において、バリア層51、510、511にはマグネシウムが添加されていないが、マグネシウムを添加した後の、熱処理、又は、電子線照射処理によりp型化しても良い。

【0030】第5実施例

発光層 5 を図8に示すように構成しても良い。即ち、本実施例では、発光層 5 は、不純物無添加のAlo.osGao.ss Nから成るバリア層 5 1 2 と不純物無添加のIno.2Gao.s Nから成る井戸層 5 2 2 の5 周期で形成されている。そ 20して、全てのバリア層 5 1 2 の厚さは35 Åで一定であるが、井戸層 5 2 2 の厚さは、クラッド層 7 1 の側に存在する方から順に、35 Å、45 Å、55 Å、45 Å、35 Å となっている。このように井戸層の厚さを変化させると量子効果によりバンド幅が変化し、各井戸層からはピーク波長が異なる発光が得られることになり、全体として、発光のスペクトルを広くすることでできる。特別な場合には、上記のように井戸層の厚さを多種類に多数変化させることで白色光を得ることができる。

【0031】上記の全実施例において、コンタクト層は 30 2層構造としたが1層構造でも良い。又、上記全実施例において、クラッド層71、第1コンタクト層72、第2コンタクト層73の総合厚さは、50nmとし、これらの成長温度を1100℃とし、総合成長時間を7分としたが、総合厚さは10nm~150 nmの範囲とすることが可能である。この場合には、こられの層の総合成長時間は1~20分である。10nmよりも薄いとクラッド層71のキャリアの閉じ込め効果が低下すると共に第1コンタクト層72、第2コンタクト層73が薄くなり、オーミック性が悪化し、接触抵抗が増大するので望ましくない。又、 40 150 nmよりも厚いと、成長に時間がかかり、発光層5がその成長温度以上の温度にさらされる時間が長くなり、結晶性の改善効果が低下するので望ましくない。

【0032】又、クラッド層71の厚さは2nm~70nm、第1コンタクト層72の厚さは2nm~100nm、第2コンタクト層73の厚さは2nm~50nmが望ましい。クラッド層71の厚さが2nmよりも薄いと、キャリアの閉じ込め効果が低下するため発光効率が低下するので望ましくない。第1コンタクト層72の厚さが2nmよりも薄いと、注入されるホール数が減少するので発光効率が低下する 50

ので望ましくない。第2コンタクト層73が2mよりも 薄いと、オーミック性が悪くなり接触抵抗が増大するの で望ましくない。又、各層が上記の上限厚さを越える と、発光層がその成長温度以上に曝される時間が長くな り発光層の結晶性の改善効果が低下するので望ましくない。

【0033】又、クラッド層71のホール濃度は 1×10^{17} ~ 1×10^{18} / cm^3 が望ましい。ホール濃度が 1×10^{18} / cm^3 以上となると、不純物濃度が高くなり結晶性が低下し発光効率が低下するので望ましくなく、 1×10^{17} / cm^3 以下となると、直列抵抗が高くなり過ぎるので望ましくない。

【0034】第1 コンタクト層72は、マグネシウム(Mg)が $1\times10^{19}\sim5\times10^{20}$ /cm³の範囲で第2 コンタクト層73のマグネシウム(Mg) 濃度より低濃度に添加され p 伝導型を示す層とすることで、その層のホール濃度を $3\times10^{17}\sim8\times10^{17}$ /cm³と最大値を含む領域とすることができる。これにより、発光効率を低下させることがない。

【0035】第2コンタクト層73は、マグネシウム(Mg) 濃度を $1 \times 10^{20} \sim 1 \times 10^{21} / \text{cm}^3$ とする場合が望ましい。マグネシウム(Mg) が $1 \times 10^{20} \sim 1 \times 10^{21} / \text{cm}^3$ に添加された p 伝導型を示す層は、金属電極に対してオーミック性を向上させることができるが、ホール濃度が $1 \times 10^{17} \sim 8 \times 10^{17} / \text{cm}^3$ とやや低下する。(駆動電圧 $5 \text{ V以下にできる範囲を含む、オーミック性の改善からMg濃度が上記の範囲が良い。)$

【0036】又、発光層 5 のシリコン濃度及び亜鉛濃度は、それぞれ、 $1 \times 10^{17} \sim 1 \times 10^{20} / \text{cm}^3$ が望ましい。 $1 \times 10^{17} / \text{cm}^3$ 以下であると、発光中心不足により発光効率が低下し、 $1 \times 10^{20} / \text{cm}^3$ 以上となると、結晶性が悪くなり、又、オージェ効果が発生するので望ましくない。さらに好ましくは $1 \times 10^{18} \sim 1 \times 10^{19} / \text{cm}^3$ の範囲が良い。又、シリコン(Si)の濃度は、亜鉛(Zn)に比べて、10倍~1/10が好ましく、さらに好ましくは $1 \sim 1/10$ 00間程度か、少ないほうがより望ましい。

【0037】アクセプタ不純物は、2族元素のベリリウム(Be)、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、水銀(Hg)を用いても良い。2族元素をアクセプタ不 40 純物とした場合には、ドナー不純物として、4族元素である炭素(C)、シリコン(Si)、ゲルマニウユ(Ge)、錫(Sn)、鉛(Pb)を用いることができる。又、4族元素をアクセプタ不純物とした場合には、ドナー不純物として、6族元素のイオウ(S)、セレン(Se)、テルル(Te)を用いることもできる。p型化は、電子線照射の他、熱アニーリング、N₂プラズマガス中での熱処理、レーザ照射により行うことができる。

【0038】上記の実施例は発光素子として、全て発光 ダイオードを示したが、レーザダイオードでも良い。 【図面の簡単な説明】 【図1】本発明の具体的な第1実施例に係る発光ダイオ ** ードの構成を示した構成図。

【図2】同実施例の発光ダイオードの製造工程を示した 断面図。

【図3】同実施例の発光ダイオードの製造工程を示した断面図。

【図4】同実施例の発光ダイオードの製造工程を示した断面図。

【図5】同実施例の発光ダイオードの製造工程を示した 断面図。

【図6】第2実施例に係る発光ダイオードの構成を示した構成図。

【図7】第3実施例に係る発光ダイオードの構成を示した構成図。

【図8】第5実施例に係る発光ダイオードの発光層の構成を示した構成図。

【符号の説明】

10, 100, 200…発光ダイオード

10

1…サファイア基板

2…バッファ層

3…高キャリア濃度 n+ 層

4…n層

5 …発光層

51, 510, 511, 512…パリア層

52, 520, 521, 522…井戸層

10 71…クラッド層

72…第1コンタクト層

73…第2コンタクト層

8…電極

9…透明電極

10…パッド

【図1】

[図3] 【図4】 【図5】

【図2】

【図6】

【図7】

[図8]

フロントページの続き

(72)発明者 小出 典克

愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 山崎 史郎

愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内

(72)発明者 梅崎 潤一

愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内