a Dummy PHSCore

The PyPHS* development team¹

¹Project-team S3[†], STMS, IRCAM-CNRS-UPMC (UMR 9912), 1 Place Igor-Stravinsky, 75004 Paris, France

March 1, 2017

1 System dimensions

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 0;$$

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

2 System variables

$$\begin{aligned} & \text{State variable } \mathbf{x} = \left(\begin{array}{c} x_{\mathrm{L}} \\ x_{\mathrm{C}} \end{array} \right); \\ & \text{Input } \mathbf{u} = \left(\begin{array}{c} u_{\mathrm{out}} \end{array} \right); \\ & \text{Output } \mathbf{y} = \left(\begin{array}{c} y_{\mathrm{out}} \end{array} \right); \end{aligned}$$

3 Constitutive relations

^{*}https://github.com/afalaize/pyphs

[†]http://s3.ircam.fr

4 System parameters

4.1 Constant

parameter	value (SI)
C:	5.06605918212e-08
R:	r*(Abs(xC) + 1)
r:	100.0
L:	0.5

5 System structure

$$\mathbf{M} = \begin{pmatrix} -1.0r (|x_{\mathbf{C}}| + 1) & -1.0 & -1.0 \\ 1.0 & 0 & 0 \\ 1.0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{x}\mathbf{x}} = \begin{pmatrix} -1.0r (|x_{\mathbf{C}}| + 1) & -1.0 \\ 1.0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{x}\mathbf{y}} = \begin{pmatrix} -1.0 \\ 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{y}\mathbf{x}} = \begin{pmatrix} 1.0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{y}\mathbf{y}} = \begin{pmatrix} 0 \end{pmatrix};$$

$$\begin{aligned} \mathbf{J} &= \left(\begin{array}{ccc} 0 & -1.0 & -1.0 \\ 1.0 & 0 & 0 \\ 1.0 & 0 & 0 \end{array} \right); \\ \mathbf{J_{xx}} &= \left(\begin{array}{ccc} 0 & -1.0 \\ 1.0 & 0 \end{array} \right); \\ \mathbf{J_{xy}} &= \left(\begin{array}{ccc} -1.0 \\ 0 \end{array} \right); \\ \mathbf{J_{yy}} &= \left(\begin{array}{ccc} 0 \end{array} \right); \end{aligned}$$

$$\mathbf{R} = \begin{pmatrix} 1.0r (|x_{\rm C}| + 1) & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix};$$

$$\begin{aligned} \mathbf{R}_{\mathbf{x}\mathbf{x}} &= \begin{pmatrix} 1.0r\left(|x_{\mathrm{C}}|+1\right) & 0\\ 0 & 0 \end{pmatrix};\\ \mathbf{R}_{\mathbf{x}\mathbf{y}} &= \begin{pmatrix} 0\\ 0 \end{pmatrix};\\ \mathbf{R}_{\mathbf{y}\mathbf{y}} &= \begin{pmatrix} 0\\ 0 \end{pmatrix}; \end{aligned}$$