Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Meyer, Schneider, Unterreiter SS 08 06.10.2008

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:							
Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden.							
Dieser Teil der Klausur umfasst die Rechenaufgaben. Geben Sie immer den ${\bf vollst"andigen}$ Rechenweg an.							
Die Bearbeitungszeit beträgt eine Stunde.							
Die Gesamtklausur ist mit 40 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 12 von 40 Punkten erreicht werden.							
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 5 Punkte

Berechnen Sie die Funktionalmatrix der Abbildung

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^3 \quad \text{mit} \quad \vec{f}(x,y) = \begin{pmatrix} e^{y\cos x} \\ y^2 \sin^2 x \\ x \ln(x^2 + y^2) \end{pmatrix}$$

.

2. Aufgabe

5 Punkte

Für das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$\vec{v}(x,y,z) = \begin{pmatrix} y^2 \cos x \\ e^{2z} + 2y \sin x \\ 2ye^{2z} \end{pmatrix}$$

gilt rot $\vec{v} = \vec{0}$. Ermitteln Sie ein Potenzial von \vec{v} .

3. Aufgabe

10 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2 - xy + y^2 - 1$ und der Bereich $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 8\}.$

Begründen Sie, dass f auf B einen kleinsten und einen größten Funktionswert annimmt, und ermitteln Sie diese beiden Werte.

4. Aufgabe

6 Punkte

Berechnen Sie das Kurvenintegral $\int_{\vec{c}} \vec{v} \cdot d\vec{s}$ für das Vektorfeld $\vec{v} \colon \mathbb{R}^2 \to \mathbb{R}^2$ mit $\vec{v}(x,y) = \begin{pmatrix} x^2 - y \\ xy \end{pmatrix}$ längs der Kurve \vec{c} , wobei \vec{c} die Verbindungsstrecke vom Punkt (1,1) zum Punkt (0,2) ist.

5. Aufgabe

9 Punkte

Bsei der Bereich im 1. Quadranten der $xy-{\rm Ebene},$ der durch den Kreis $x^2+y^2=2,$ die Parabel $y=x^2$ sowie die $x-{\rm Achse}$ berandet wird.

Berechnen Sie $\iint_B x \, dx dy$.

6. Aufgabe

5 Punkte

Berechnen Sie die Länge der parametrisierten Kurve $\vec{c}: [1, e] \to \mathbb{R}^2 \ \text{mit} \ \vec{c}(t) = (\sin \ln t, \cos \ln t)^T$.