Тема 2.2. Булевы функции. Нормальные формы

План: Булевы функции. Дизъюнктивные и конъюнктивные нормальные формы. Совершенные формы.

Задания с решением

Построив соответствующую таблицу значений, выясните, равны ли следующие булевы функции

$$f(x, y, z) = (x + y)' \lor (x + z)', g(x, y, z) = xyz + x'y'z'.$$

Решение:

Построим таблицы значений для функций f и g:

$$f(x,y,z) = (x+y)' \lor (x+z)'$$

х	у	z	x + y	(x+y)'	x + z	(x+z)'	f(x,y,z)
0	0	0	0	1	0	1	1
0	0	1	0	1	1	0	1
0	1	0	1	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	1	0	1	0	0
1	0	1	1	0	0	1	1
1	1	0	0	1	1	0	1
1	1	1	0	1	0	1	1

$$g(x, y, z) = xyz + x'y'z'$$

х	у	Z	xy	xyz	x'	y'	z'	x'y'	x'y'z'	g(x,y,z)
0	0	0	0	0	1	1	1	1	1	1
0	0	1	0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1	0	0	0
0	1	1	0	0	1	0	0	0	0	0
1	0	0	0	0	0	1	1	0	0	0
1	0	1	1	0	0	0	1	0	0	0
1	1	0	1	1	0	0	0	0	0	1
1	1	1								

Получили:

$$f(0,0,1) \neq g(0,0,1), \ f(0,1,0) \neq g(0,1,0), \ f(1,0,1) \neq g(1,0,1), \ f(1,1,0) \neq g(1,1,0).$$
 Следовательно, $f(x,y,z) \neq g(x,y,z).$

Задания для самостоятельного решения

- 1. Построить таблицы значений для следующих функций:
 - 1.1. $f(x, y, z) = ((x \rightarrow z) \land \overline{y}) \rightarrow \overline{x};$
 - 1.2. $f(x, y, z) = ((x \lor y) \to z) \land (x \mid y) \longleftrightarrow \overline{z});$
 - 1.3. $f(x, y, z) = (xyz) | (\overline{xyz}).$
- 2. Для заданной булевой функции трех переменных:
 - а) построить таблицу истинности, найти двоичную форму булевой функции и привести функцию к СДНФ и СКНФ;
 - б) с помощью эквивалентных преобразований привести функцию к ДНФ, КНФ, СДНФ, СКНФ.
 - 2.1. $(x \vee \overline{y}) \rightarrow (\overline{z} \oplus \overline{x})$
 - 2.2. $\overline{(x|\overline{y}) \oplus (z \to \overline{x})}$
 - 2.3. $\overline{(z \to x) \leftrightarrow (y \mid x)}$
 - 2.4. $(z \rightarrow x) \oplus (x \mid \overline{y})$
 - 2.5. $(z \to x)(\overline{(x \lor y)} \to (z \downarrow x));$
 - 2.6. $((x|\overline{y})\vee z)\leftrightarrow (z+x);$
 - 2.7. $\overline{x}z \rightarrow ((y \downarrow x) \lor (z \downarrow x));$
 - 2.8. $((x+yz) \rightarrow \overline{y} \cdot \overline{x}) \rightarrow (x|y);$
 - 2.9. $(y \mid z) \leftrightarrow (x \rightarrow \overline{(y \lor z)});$
 - 2.10. $(\overline{z} \lor (x \to y)) \leftrightarrow (y \to zx)$.
- 3. Преобразовать булеву функцию а) в конъюнктивную нормальную форму; б) в дизъюнктивную нормальную форму.

3.1.
$$f(x, y, z) = (xz + y\overline{z}) \rightarrow (yz \lor x\overline{z});$$

3.2.
$$f(x, y, z) = \overline{((x \downarrow y) \rightarrow z)} \rightarrow (y \lor \overline{x})z;$$

3.3.
$$f(x, y, z) = (x \rightarrow (\overline{z} | (y \lor x)))\overline{z};$$

3.4.
$$f(x, y, z) = \overline{(xyz \to z)} \to (z + y);$$

3.5.
$$f(x, y, z) = ((x \rightarrow z)(y \rightarrow z)) \rightarrow (x | (y \lor z));$$

3.6.
$$f(x, y, z) = (y \lor xz) \downarrow (x \rightarrow \overline{(y \lor z)});$$

3.7.
$$f(x, y, z) = ((zy \rightarrow \overline{x}) \downarrow (x \lor z)) \lor y;$$

3.8.
$$f(x, y, z) = (\overline{x} \vee \overline{y})(z \rightarrow \overline{y}) \rightarrow (z \mid y);$$

3.9.
$$f(x, y, z) = (y \leftrightarrow (xz \lor y)) \rightarrow (y | (xz));$$

3.10.
$$f(x, y, z) = (yz \rightarrow x(y \lor \overline{z})) + xz$$
.