

### Lab meeting

#### Deep dive into deep RL

Andrea Pierré February 12<sup>th</sup>, 2024

Brown University

#### Outline

1. Context

2. Deep RL algorithm & building blocs

3. Results

4. Future directions

#### Outline

1. Context

2. Deep RL algorithm & building blocs

3. Results

4. Future directions

# How do neurons in the LEC integrate sensory and spatial information?

- Piriform Cortex encodes olfactory information
- Hippocampus encodes spatial information
- Lateral Entorhinal Cortex (LEC) encodes both olfactory & spatial information



#### Why modeling?

- · Having a reliable model to make predictions
- · Simulation may uncover insight's from the real data
- Derive principles from the simulation which can be checked in the experiment

#### Why modeling?

- Having a reliable model to make predictions
- · Simulation may uncover insight's from the real data
- Derive principles from the simulation which can be checked in the experiment

#### Why modeling?

- · Having a reliable model to make predictions
- · Simulation may uncover insight's from the real data
- Derive principles from the simulation which can be checked in the experiment

# The half-triangle task



#### Mapping states to action



#### Outline

1. Context

2. Deep RL algorithm & building blocs

3. Results

4. Future directions

Deep RL is different from supervised learning → the

data to optimize on is not fixed (moving target)

DON tricks:



- Deep RL is different from supervised learning → the data to optimize on is not fixed (moving target)
- DON tricks:
  - Replay buffer → save the data experienced in a huffer and sample from it to break the
  - temporal correlation of the data
  - Exploration warm up with e-greedy → experience more diverse data
  - Batching → update the weights of the networks based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



- Deep RL is different from supervised learning  $\rightarrow$  the data to optimize on is not fixed (moving target)
- DQN tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with ←greedy →
    - Batching → update the weights of the network
      - based on several data examples at the same
    - Target network → use 2 networks to stabilize



- Deep RL is different from supervised learning  $\rightarrow$  the data to optimize on is not fixed (moving target)
- · DQN tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with  $\epsilon$ -greedy ightarrow experience more diverse data
  - Batching → update the weights of the network based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



- Deep RL is different from supervised learning → the data to optimize on is not fixed (moving target)
- · DQN tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with  $\epsilon$ -greedy ightarrow experience more diverse data
  - Batching → update the weights of the network based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



- Deep RL is different from supervised learning → the data to optimize on is not fixed (moving target)
- · DON tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with  $\epsilon$ -greedy  $\rightarrow$  experience more diverse data
  - Batching → update the weights of the network based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



- Deep RL is different from supervised learning → the data to optimize on is not fixed (moving target)
- · DON tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with  $\epsilon$ -greedy  $\rightarrow$  experience more diverse data
  - Batching → update the weights of the network based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



- Deep RL is different from supervised learning → the data to optimize on is not fixed (moving target)
- · DQN tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with  $\epsilon$ -greedy  $\rightarrow$  experience more diverse data
  - Batching → update the weights of the network based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



- Deep RL is different from supervised learning → the data to optimize on is not fixed (moving target)
- · DQN tricks:
  - Replay buffer → save the data experienced in a buffer and sample from it to break the temporal correlation of the data
  - Exploration warm up with  $\epsilon$ -greedy  $\rightarrow$  experience more diverse data
  - Batching → update the weights of the network based on several data examples at the same time instead of only one
  - Target network → use 2 networks to stabilize learning (one of them is updated with a lag)



#### Deep RL implementation

#### **Algorithm 1:** Deep Q-Network (DQN)

```
Initialize replay memory D to capacity N
Initialize action-value network O with random weights \theta
Initialize target action-value network \hat{Q} with random weights \theta^- = \theta
for episode \leftarrow 1 \dots M do
       state \leftarrow reset(env)
       done ← False
       while done ≠ True do
                                                                                    /* 4 action values vector */
               Q \leftarrow forward\_pass(state)
               action \leftarrow \epsilon_{aready}(action\_space, state, Q)
               state_{new}, reward, done \leftarrow env.step(action, state)
               Store transition (state, action, reward, next_state, done) in D
               Sample random minibatch of transitions from D
                                                                                    /* 4 action values vector */
               Q \leftarrow forward\_pass(state_{new})
                                                                                                            /* scalar */
               O_{new} \leftarrow reward + \gamma max(\hat{O})
               V \leftarrow max(Q)
                                                                                                            /* scalar */
               if done = True then
                                                                                                            /* scalar */
                       \hat{V}_{nred} \leftarrow reward
               else
                      \hat{y}_{nred} \leftarrow Q_{new}
                                                                                                            /* scalar */
               end
               Loss \leftarrow (y - \hat{y}_{pred})^2
               Perform a gradient descent step on Loss with respect to the network parameters \theta
               Every C steps reset \hat{Q} = Q
       end
end
```

#### Outline

1. Context

2. Deep RL algorithm & building blocs

3. Results

4. Future directions

## How deep RL feels like



#### Networks architectures

$$28 \rightarrow 54 \rightarrow 54 \rightarrow 54 \rightarrow 4$$



#### Rewards & steps



### Loss, rewards & steps distributions













#### Policy learned (when it works)



#### Outline

1. Context

2. Deep RL algorithm & building blocs

3. Results

4. Future directions

#### Adding memory into the task

#### Current environment

| step | location | cue     | reward |
|------|----------|---------|--------|
| 1    | 2        | No odor | 0      |
| 2    | 3        | No odor | 0      |
| 3    | 4        | Odor A  | 0      |
| 4    | 3        | Odor A  | 0      |
| 5    | 2        | Odor A  | 0      |
| 6    | 1        | Odor A  | 0      |
| 7    | 0        | Odor A  | 10     |
|      |          |         |        |

#### With memorization needed

| step | location | cue    | reward |
|------|----------|--------|--------|
| 1    | 2        | Ø      | 0      |
| 2    | 3        | Ø      | 0      |
| 3    | 4        | Odor A | 0      |
| 4    | 3        | Ø      | 0      |
| 5    | 2        | Ø      | 0      |
| 6    | 1        | Ø      | 0      |
| 7    | 0        | Ø      | 10     |
|      |          |        |        |

#### RNN for memorization and sequence modeling



#### Feedback connectivity



#### Network of networks



(Perich and Rajan, 2020) 14/14

# Questions ?