

ИНСТИТУТ ОТРАСЛЕВЫХ РЫНКОВ И ИНФРАСТРУКТУРЫ Лаборатория системного анализа отраслевых рынков

Моделирование спотовых цен на электроэнергию на оптовом рынке в России

Докладчик: Касьянова Ксения kasyanova-ka@ranepa.ru

Руководитель НИР: Каукин А.С., к.э.н, зав. лабораторией НИР в рамках исполнения Государственного задания РАНХиГС при Президенте Российской Федерации на 2020 год

Общие сведения о выполняемой НИР

Мотивация:

- экономические модели требуют введения определенных предпосылок и упрощений;
- при моделировании цены как случайного процесса не учитываются экономические факторы.

Цель работы:

разработка модели, учитывающей недостатки двух классов моделей:
 моделирование цены на оптовом рынке электроэнергии как
 диффузионно-скачкообразного процесса с учётом фундаментальных
 факторов спроса и предложения (температура, уровень деловой активности и др.), особенностей российского рынка.

Гипотеза:

 с помощью построенной модели можно получить трендсезонное разложение цены на электричество с более точными оценками коэффициентов при интересующих нас переменных.

Результаты работы могут быть использованы:

- для научно-методологического обеспечения прикладных исследований и моделирования рынков электроэнергии, в частности совершенствования методов статистического анализа случайных процессов;
- для разработки конкретных направлений, мер и механизмов государственной политики в сфере регулирования рынка электроэнергии:

- определение темпа роста цен на электроэнергию;
- ⇒ причины различия в динамике цен в ценовых зонах;
- ⇒ влияние структуры генерирующих мощностей на волатильность цен;
- ⇒ оценка влияния резких изменений экономических факторов на цены.

Задачи

- определение факторов влияющих на цены на электричество, особенностей российского рынка;
- выбор подходящей модели, способной учесть неодинаковое влияние факторов на различные компоненты процесса (тренд, сезонность и стохастические компоненты);
- оценивание моделей, сравнение с моделями не учитывающими стохастические компоненты, моделями оцененными на данных, очищенных от выбросов;
- сравнение финансовых рисков до/после событий, влияющих на факторы, включенные в модель.

Содержание

- 1. Способы моделирования цен на электричество:
 - 1.1 экономические модели;
 - 1.2 случайные процессы.
- 2. Выбор факторов, влияющих на цены:
 - 2.1 особенности рынка электричества;
 - 2.2 принцип работы ОРЭМ и особенности российского рынка;
 - 2.3 выбор ценовых факторов, включаемых в модель.

Классификация моделей

Анализ предметной отрасли

Авторы, год	Название работы	Результат
Judio Lucia, Eduardo Schwartz (Review of Derivatives Research, 2002)	Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange	Эмпирическая оценка детерминистической сезонной компоненты в одно- и двухфакторной модели цен на электричество.
Álvaro Cartea, Marcelo G. Figueroa (Applied Mathematical Finance, 2005)	Pricing in Electricity Markets: a mean reverting jump diffusion model with seasonality	Применение модели цен на электричество, учитывающую тенденцию возвращения к среднему, скачкообразность и сезонность процесса.
Maciej Kostrzewski, Jadwiga Kostrzewska (Energy Economics, 2019)	Probabilistic Electricity Price Forecasting with Bayesian Stochastic Volatility Models	Прогнозирование спот-цен на электричество с помощью байесовского подхода позволяет учесть неопределенность в распределении коэффициентов параметров, что улучшает прогнозы в сравнении с классическими моделями.

Модель Мертона (Merton's Jump-Diffusion Model)

Kostrzewski and Kostrzewska (2019):

Базовая модель описывающая цену на электричество:

- эмпирическое распределение имеет тяжелые хвосты, что не согласуется со стандартной моделью Блэка-Шоулза
- **в** модель добавляется отдельная компонента, отвечающая за скачкообразность процесса.

Риск-нейтральный диффузионно-скачкообразный процесс (jump-diffusion process), описывающий изменение цены на электричество S_t :

$$dS_t/S_t = (r - \lambda \bar{k})dt + \sigma dW_t + kdq_t,$$

- ▶ где σ волатильность диффузионной компоненты, при $\lambda=0$ получаем модель Блэка-Шоулза;
- ightharpoonup скачки порожденны составным процессом Пуассона q_t с параметром λ , где k величина случайного скачка (логнормально распределенный):

$$ln(1+k) \sim N(\gamma, \delta^2)$$

► где среднее - $\bar{k} = E(k) = e^{\gamma + \delta^2/2} - 1$.

Модели с детерминистической компонентой

Lucia and Schwartz (2002):

Модели с детерминистической сезонной компонентой:

– однофакторная модель спотовых цен:

$$ln(S_t) = f(t) + X_t$$
$$dX_t = -\kappa X_t dt + \sigma(t) dW$$

– двухфакторная модель спотовых цен:

$$ln(S_t) = f(t) + X_t + \epsilon_t$$
$$dX_t = -\kappa X_t dt + \sigma_X(t) dW_X$$
$$d\epsilon_t = \mu_{\epsilon} dt + \sigma_{\epsilon}(t) dW_{\epsilon}$$
$$dW_X dW_{\epsilon} = \rho dt$$

где $g(t)=e^{f(t)}$ - детерминистическая функция сезонности, X_t - процесс, возвращающий среднее (OU process) с нулевым долгосрочным средним и скоростью подстройки κ .

Модель стохастической волатильности с экспоненциально распределенными скачками, эффектом рычага и экзогенными переменными (SVDEJX*):

- для прогнозирования используется SV модель с экзогенными переменными (температура) и дамми-переменными на выходные и понедельник;
- в модели скачки вверх/вниз распределены экспоненциально, с разными параметрами;

$$\xi_t^U \sim Exp(\eta_U) \ i.i.d., \xi_t^D \sim Exp(\eta_D) \ i.i.d.$$

ightharpoonup с помощью байесовского подхода можно оценить ненаблюдаемые компоненты модели $\xi_t^U, \xi_t^D, q_t, h_t$:

$$q_t = \begin{cases} 1, & p_D \\ 0, & p_0 \\ -1, & p_U \end{cases}$$

* Stochastic volatility model with a double exponential distribution of jumps, a leverage effect and exogenous variables.

Модель стохастической волатильности SVDEJX:

$$y_{t} = y_{t-1} + \mu + \psi X_{t} + d_{Sat} D_{Sat,t} + d_{Sun} D_{Sun,t} + d_{Mon} D_{Mon,t} + \frac{1}{\sqrt{exp(h_{t-1})}} \epsilon_{t}^{(1)} + J_{t}$$

$$h_{t-1} = h_{t-2} + \kappa_{h}(\theta_{h} - h_{t-2}) + \sigma_{h}(\rho \epsilon_{t-1}^{(1)} + \sqrt{1 - \rho^{2}} \epsilon_{t-1}^{(2)})$$

$$J_{t} = -\xi_{t}^{D} \cdot \mathbb{I}(q_{t} = -1) + 0 \cdot \mathbb{I}(q_{t} = 0) + \xi_{t}^{U} \cdot \mathbb{I}(q_{t} = 1)$$

- $y_t = ln(S_t)$ логарифм цены
- $h_{t-1} = y_t y_{t-1}$
- X_t логарифм почасовой температуры
- $ightharpoonup D_{Sat,t}, D_{Sun,t}, D_{Mon,t}$ учитывают недельную сезонность
- q_t наличие скачка вверх/вниз (значения переменной ненаблюдаемы, но можно оценить вероятность скачка)
- ho < 0 параметр "рычага", ho > 0 обратный параметр "рычага" (если большим значениям логарифма цены соответствуют большие значения дисперсии)
- $\epsilon_t^{(1)}, \epsilon_t^{(2)} \sim N(0,1) \ i.i.d., \xi_t^D \sim Exp(\eta_D) \ i.i.d., \xi_t^U \sim Exp(\eta_U) \ i.i.d.$

Данные:

- ► Спотовые цены JCPL (Jersey Central Power and Light Company), находящейся в первой ценовой зоне, определяемой сетевым оператором PJM Interconnection.
- ▶ Период: 22/08/2010 14/01/2012

Спотовые цены на 4 часа (непиковый час) и 16 часов (пиковый час), USD/MWh

PI(%)	ARX	SNARX	SIMPLE	LAD	QRA	B_Q	B_HPD
Unconditional coverage							
50	69.74	56.51	58.63	56.36	53.55	53.33	53.22
90	96.13	94.23	94.44	93.64	92.07	90.28	90.72
		Mean (star	ndard devia	tion) of th	ne PI widt	h	
50	8.63	6.09	6.32	6.73	6.4	5.6	5.52
	(3.33)	(2.64)	(2.89)	(3.66)	(3.78)	(4.02)	(3.91)
90	21.28	20.73	25.73	26.2	21.1	16.08	15.79
	(8.29)	(8.78)	(15.74)	(17.21)	(12.09)	(11.15)	(10.71)
	N	Iedian (inte	er-quartile i	range) of t	he PI wid	lth	
50	8.66	5.94	5.89	5.79	5.62	4.37	4.29
	(5.25)	(4.21)	(5.77)	(6.93)	(5.19)	(3.86)	(3.79)
90	21.34	20.64	23.22	21.87	19.51	12.88	12.70
	(13.02)	(15.28)	(25.86)	(26.33)	(18.51)	(10.63)	(10.43)

Сравнение ширины доверительных интервалов прогноза, полученных по байесовским (B_Q, B_HPD) и не байесовским моделям. Результат получен по данным за все 24 часа.

Российский рынок электроэнергии и мощности

	Тип рынка					
	Оптов	Розничный рынок				
Электроэнергия	Рынок на сутки вперед 74.7 % 767.89 млн Мвт·ч	Балансирующий рынок 5.7 % 59.04 млн Мвт·ч	Рынок регулируемых цен			
	Рынок регулируемых договоров 15.4 % 158.2 млн Мвт·ч	Рынок свободных договоров 4.2 % 42.93 млн Мвт·ч	Рынок нерегулируемых цен			
	Оптовый рынок		Розничный рынок			
Мощность	Конкурентный отбор мощности	ДПМ и реализация в статусе вынужденного генератора	Рынок регулируемых цен			
	Рынок регулируемых договоров	Рынок свободных договоров	Рынок нерегулируемых цен			

Классификация рынков электроэнергии и мощности России

- (*) Структура объемов реализации электрической энергии в секторах оптового рынка электроэнергии за 2016 г.
- (**) Потребление электроэнергии по субъектам Российской Федерации в 2016 г 1077.94 млн.МВт.час. Росстат

Российский оптовый рынок электричества

Ценовые зоны. Источник: АТС

Российский рынок электроэнергии и мощности

Формирование тарифа для конечного потребителя на электроэнергию

- цена покупки электроэнергии на оптовом рынке или у розничного генератора;
- цена покупки мощности энергосбытовой компанией на оптовом рынке или у розничного генератора;
- цена передачи по сети с дифференциацией по уровню напряжения;
- ▶ инфраструктурные платежи: плата за услуги СО ЕЭС, АТС, ЦФР;
- надбавка сбытовых компаний (кроме участников оптового рынка).

Средневзвешенные регулируемые цены на электрическую энергию для потребителей первой ценовой категории за 2017 год, руб./МВт.ч

Источник: "НП Совет Рынка"

Российский оптовый рынок электричества

Формирование кривой совокупного предложения

Источник: ОАО "Э.ОН Россия"

Российский оптовый рынок электричества

Определение и фиксация объемов поставки и потребления. Источник: ОАО "Э.ОН Россия"

Данные

Данные по ценам на электричество за каждый час, начиная с 1.08.2013 по двум ценовым зонам (источник: ATC).

- ▶ Индекс равновесных цен на покупку электроэнергии, руб./МВт.ч.
- ▶ Объем полного планового потребления, МВт.ч
- Объем покупки на РСВ, МВт.ч

Спотовые цены (усредненные за день/за месяц) для 1 и 2 ценовой зон, руб./МВт.ч

$$corr(p_1^m, p_2^m) = 0.07$$

Факторы влияющие на цены на электричество

Особенности рынка электричества:

- невозможность хранения \rightarrow проблема обязательства энергоустановки (unit commitment);
- проблема с ограничениями ЛЭП, возможность перенапряжения сети;
- невозможность перераспределить волатильность цен по производственной цепочке.

Особенности российского рынка:

- высокая степень изношенности основных фондов и потери тепла;
- проблема неплатежей;
- вынужденная генерация;
- завершение ДПМ и продление ДПМ ВИЭ.

Модель 1: выбор ценовых факторов

$$\begin{split} p_t &= p_{t-1} + \mu + \beta_1 y_{t-1} + \beta_2 y_{t-7} + \beta_3 y_{t-30} + \beta_4 y_{t-365} + \gamma_1 \hat{p}_t^{coal} + \gamma_2 \hat{p}_t^{gas} + \\ &\quad + \psi_1 T_{t-1} + \psi_2 T_{t-30} + d_{Sat} D_{Sat,t} + d_{Sun} D_{Sun,t} + d_{Mon} D_{Mon,t} + \\ &\quad + \phi \mathbf{X}_t + \sqrt{exp(h_{t-1})} \epsilon_t^{(1)} + J_t \\ h_{t-1} &= h_{t-2} + \kappa_h (\theta_h - h_{t-2}) + \sigma_h (\rho \epsilon_{t-1}^{(1)} + \sqrt{1 - \rho^2} \epsilon_{t-1}^{(2)}) \\ J_t &= -\xi_t^D \cdot \mathbb{I}(q_t = -1) + 0 \cdot \mathbb{I}(q_t = 0) + \xi_t^U \cdot \mathbb{I}(q_t = 1) \end{split}$$

- $p_t = ln(S_t)$ логарифм средней цены за день;
- $> y_t = ln(Y_t)$ уровень деловой активности;
- $ightarrow p_t^R$ логарифм прогноза цены на ресурсы, где $R = \{coal, gas\};$
- T_t логарифм модуля средней дневной температуры (если $\psi > 0$, то большим отклонениям от нуля соответствуют большие цены);
- **х**_t столбец других неценовых факторов, ϕ строка коэффициентов;
- ightarrow $D_{Sat,t},D_{Sun,t},D_{Mon,t}$ учитывают недельную сезонность;
- ▶ ненаблюдаемые переменные: $h_{t-1} = p_t p_{t-1} = ln(S_t/S_{t-1})$ и q_t скачки вверх $(\xi_t^U \sim Exp(\eta_U) \ i.i.d.)$ и вниз $(\xi_t^D \sim Exp(\eta_D) \ i.i.d.)$;
- ρ параметр "рычага" ($\rho > 0$, если большим значениям логарифма цены соответствуют большие значения дисперсии); $\epsilon_i^{(1)}, \epsilon_i^{(2)} \sim N(0,1) \ i.i.d.$.

Приложение А

Российский оптовый рынок электричества

Зоны свободного перетока мощности оптового рынка. Источник: ПЕРЕТОК.РУ

^{*} С точки зрения энергорынка, разделение на ЗСП по-прежнему учитывается только при определении вынужденной генерации, при этом используется базовый перечень ЗСП.

Приложение Б.1

Регламент проведения конкурентного отбора заявок для балансирования системы

- ▶ При формировании поузловых модельных пар <цена-количество> СО определяет на основе ценовых заявок на планирование объемов производства в отношении групп точек поставки (ГТП) генерации объемы электрической энергии, заявленные Участниками оптового рынка в отношении каждой ГТП генерации к продаже на сутки вперед, и из этих объемов выделяет объемы (часть объемов) электрической энергии, и формирует на эти объемы ценопринимающую часть вместо условий третьего и четвертого приоритета для модельных пар;
- если ГТП относится к нескольким узлам расчетной модели, СО распределяет объемы электрической энергии, содержащиеся в каждой паре «цена – количество» в ценовой заявке в соответствии с коэффициентами или формулами отнесения объемов к каждому узлу;
- пределы регулирования (Рмин и Рмакс) определяются для ГТП генерации и объектов управления, относящихся к ГТП потребления с регулируемой нагрузкой, с разделением по техническим и технологическим (с учетом вынужденных режимов и ограничений по топливу) характеристикам, причинам поддержания регулировочного резерва мощности в системе.

Приложение Б.2

Регламент проведения конкурентного отбора заявок для балансирования системы

СО проводит конкурентный отбор БР и определение диспетчерских объемов, индикаторов стоимости и цен балансирования в соответствии с Математической моделью расчета диспетчерских объемов электрической энергии, индикаторов и цен на балансирование вверх (вниз) в результате конкурентного отбора ценовых заявок БР так, чтобы:

- в диспетчерские объемы были включены все объемы электрической энергии, не превышающие установленных пределов, относящиеся к соответствующему узлу;
- индикатор в данном узле был не меньше цены, указанной Участником оптового рынка в ценовой заявке на планирование объема отрицательного потребления в отношении ГТП потребления с регулируемой нагрузкой по объекту управления или в ценовой заявке на планирование объема производства в отношении ГТП генерации за объем электрической энергии;
- индикаторы во всех узлах расчетной модели отличались на стоимость нагрузочных потерь электрической энергии и системных ограничений.

Приложение Б.3

Специальные случаи расчета результатов конкурентного отбора

Если при проведении конкурентного отбора БР для определенного операционного часа в некоторой группе узлов расчетной модели:

- приняты только ценопринимающие объемы в заявках на продажу индикаторы в этой группе узлов считаются равными нулю;
- принята заявка с четвертой (дополнительной) ступенью, с ценой или с модельной ценой, равной десяти тарифам на электроэнергию, для определения индикаторов стоимости на данный час проводится дополнительный расчет, обеспечивающий вычисление индикаторов стоимости по ценам, не превышающих указанной модельной цены и максимальной из цен, указанных в принятых третьих ступенях ценовых заявок участников;
- оказывается, что для какого-либо часа объемов производства недостаточно для формирования ПБР, удовлетворяющего в этот час остальным СО вправе изменить состав выбранного оборудования;
- не удается выполнить действия предыдущего подпункта СО имеет право в установленном порядке ввести ограничения потребления и/или изменить ограничения на перетоки по сечениям экспортно-импортных операций.

Приложение В.1

Параметры спроса и предложения электрической энергии

Ценовая зона – Европа Дата: 12.07.2018. 10:00

	ЦЗ на покупку		ЦЗ на продажу	
	Цена, руб./МВтч	Объем, МВтч	Цена, руб./МВтч	Объем, МВтч
1	*	88253.36	*	83264.25
2	100	1	271	3
3	1900	33.705	300	54
4	2300	41	390	0.9999
5			427	1
6			429	49.66
7			444	1
208			3000	32
209			3500	0.5
210			3860	4.375
211			5490	27
212			5842	2
213			6100	9.5
214			13260	102.652

(*) – заявки ценополучателей Источник: АТС

Приложение В.2

Модель расчета узловых цен

Математическая модель расчета узловых цен по методике ATC. Источник: Б.Г. Булатов, В.О. Каркунов (2009)