3D Modelling from Point Clouds

URL: https://autode.sk/3IVS3r2

1. Introduction

1.1 Level of Detail

The Level of detail for this project is Level 4 as it will contain the following:

- Detailed architectural and structural elements
- Modelled of services
- Higher level of detail in families and fixed furnishings
- Base sweeps, architraves and heater is modelled

To conclude, the point cloud density, accuracy and features coverage modelled are fit for purpose and are suffice for Level 4 as level of detail.

1.2 Workflow

Since in this project the point clouds had been provided, the workflow between field surveying and initial look in Autodesk Recap are interchange compared to in actual works surveying. Below are the diagram of the work flow. Diagram below shows the workflow.

Autodesk Recap – Point Cloud Exploration

- Initial look at the Point Cloud
- Calculating the Point Cloud Density by converting a known square dimension into .pts file
- Determining the five field measurements for check distance (>2m) – group discussion
- Editing unnecessary point cloud and converting to .rcp file

Field Survey

- Measuring the determine check measurement using distro and tape measure
- Observe and making notes of features and materials
- Observe any features that might not be captured by point cloud (i.e., features that are obstructed)
- Determing the services which would be include in the modelling

Autodesk Revit -Modelling

- Using an Architectural template
- Creating levels of Level 0, Real Ceiling, and other false ceiling
- Model the wall, column, floor and false ceiling and matching it exactly to point cloud (or to best)
- Door and windows are placed
- A UK family library of Autodesk Revit 2022 Content is load if not found in the family categories
- Every modelled features are edited manually to adjust it properties to best fit its real-life features
- Services are modelled – Fire System and Heater

Figure 1: Workflow of this modelling

2. Modelling and Assumption Made

2.1 Floors

The thickness of the floor is assume to be 34.4cm. During the field survey, the floor slab has been measured and calculated from the exposed slab of the staircases.

2.2 Walls

The wall are modelled based on the internal finish face wall boundaries captured by the point cloud. All **internal** and **external** wall have the high of 4.382m (actual ceiling).

2.2.1 **External:** The thickness assume to be 43cm as a rough measuring of external wall from other parts of the same building while was done in field survey. The material is concrete.

Figure 2: External walls are highlighted. This is deduce because the external wall have windows on it side and are facing outdoor.

2.2.2 **Internal:** The internal wall model has two type which are 17 cm and 13cm. The material is concrete.

Figure 3: The 17cm internal wall is measured and derived from the gap between the point cloud boundaries on the Room 102 B side and Print Room side.

Figure 4: The 13 cm internal wall determined because of its best fit to the door frame of Room 102 A door.

Figure 5: 17cm Internal walls are highlighted

Figure 6: 13cm Internal walls are highlighted

2.2.3 **Partition Wall:** The partition wall is use for the slanted ceiling extrusion from the flat ceiling. It is also use for the wall of Room 102 B. This is assume so because the wall is part of the slanted ceiling. The material is concrete.

Figure 7: Partition walls are highlighted: use for slanted ceiling extrusion from the flat ceiling.

Figure 8: Partition wall are also used for the internal wall of Room 102 B as it .is part of the slanted ceiling for window side Room 102 B

2.2.4 **Curtain Wall:** host the double fire door that need UCL ID.

Figure 9: Curtain Wall are model from curtain wall storefront with glass panel and mullions. The curtain wall have height a of 3.782m which are the false ceiling of Print Room and Lift Corridor.

2.3 Ceiling

The ceiling is modelled in a per room basis format as per the measured height rather than in a zone format. This is because the false ceiling have variation of height depending on its location. Table 1 are the measurement from the floor to the ceiling in relation to point cloud.

Location	Measurement (m)
Actual Ceiling	4.382
Chadwick 102 Room A and Room B	3.507
Print Room and Lift Corridor	3.782
Corridor Room 101 and 102 (without slanted ceiling)	3.501

Table 1: Actual and false ceiling height

Figure 10: Cross section of ceilings from Corridor 101 to Lift corridor to Room 102

Figure 11: Cross section of ceilings from the Room 102 B to Print Room

Figure 12: Cross section of ceilings from Print Room to Lift Corridor to Corridor 101

Figure 13: Cross section of ceilings from Corridor 101 to Stair Door to Head Department (facing it)

2.4 Column and Beam

Column and beam are made out of concrete. The height of these column are assume to be up till the actual ceiling.

Figure 14: Column and beam are highlighted

Figure 15: A rectangular column and beam in the lift corridor which are cut open to its surfaces

2.5 **Lift**

The lift car is not measured internally, hence the dimension is assume to have the generic dimension of 10 person lift. The door trim is shown to the correct size.

2.6 Doors

The determining factor if either a door family or a wall opening will be used is if it has a door frame. A **wall opening** can be seen in the print room corridor which leads to Geometrics Laboratory. Doors are **dimensioned** to the largest opening width and height measured which are the inner face of the architrave. Below are the Door Schedule.

<door schedule=""></door>					
A B C D					
Mark	Family	Rough Height	Rough Width		
		10.000	10.000		
Door - Leading to Stairs	Doors_IntSgl_w-Transome	2.110	0.950		
Door - Head Department	Doors_Assembly_Sgl	2.110	1.810		
Door - Room 101	Doors_IntSgl	2.090	0.900		
Door - Room 102 B	Doors_IntDbl_1	2.110	1.510		
Door - Room 102 A	Doors_IntSgl	2.110	0.920		
Door - Curtain Wall	Doors_Dbl_Glass_5	2.053	1.257		

Table 2: Door Schedule

2.7 Windows

Windows are dimensioned to the largest opening width and height measured which are the inner face of the architrave. Below are the window schedule.

<window schedule=""></window>							
A B C D							
Mark	Family	Rough Height	Rough Width				
Window - Slanted Corridor 101	Windows_SCO_Horz_Bar_Tpl	2.800	2.800				
Window - Print Room	Windows_Sgl_Plain	0.640	0.480				
Window - Print Room	Windows_Sgl_Plain	0.640	0.480				
Window - Print Room	Windows_Sgl_Plain	0.640	0.480				
Window - Print Room	Windows_Sgl_Plain	0.640	0.480				
Window - Front Room 102 A	Windows_Sash_w-Bars_2	2.650	1.200				
Window - Side Room 102 A	Windows_Sash_w-Bars_2	2.650	1.100				
Window - Side Room102 B	Windows_Sash_w-Bars_2	2.700	1.250				

Table 3: Window Schedule

Figure 16: Internal wall Print Room windows

2.8 Services

Two services choose are Fire System and Heater.

Location	Fire System Component
Print Room Corridor	White Smoke Alarm
	 Exit Sign above Curtain Wall door
	 Fire Door Curtain Wall – (see section
	3.6)
Lift Corridor	White Smoke Alarm
	 Red Fire Alarm – (see section 3.6)
	Fire Extinguisher
	 Fire Extinguisher CO2
	 Fire Break Alarm – (see section 3.6)
	 Exit Sign above Door Stairs

Table 4: Fire System listed components respective to its location

Figure 17: Fire System that are listed in the table above

There are 3 heater that are directly below the three windows in Room 102 A and B.

Figure 18: An example of heater which are all in Room 102 under the windows

3. Geometric Simplification

3.1 Nature of the Building: The wall between the room, corridor and the lift shaft are not straight and have a lateral deviation. The ceiling also have a miniscule lateral deviation. The material is concrete.

Figure 19: Orthogonal constraints of Revit and the deviation with the point cloud

- 3.2 Frame of Doors and Windows: are not modelled perfectly to the point cloud as some of the families are restricted. However, the average design and thickness of the frame is taken to account when choosing the best family to model the doors and window.
- 3.3 Front Window in Room 102 A: This window is modelled as a full size. This assumption and simplification is deduce because of the existent of the panel and its extrusion which are there to be able to instal the whiteboard.

Figure 20: Front windows of Room 102 A that are now been covered by panel

- 3.4 Width of Curtain Wall : Because of the restrictions in Revit, the Width of the curtain wall is set to default Curtain Wall Storefront.
- 3.5 Base Sweeps: Although, all internal surface of walls have a base sweep, the modelled have a little extrusion which are not the case as in real life as it is flush to the wall. This is because of Revit restriction.

Figure 21: Extrusion of base sweeps in Revit model

3.6 Fire System: The fire alarm in red are model on the wall rather on the ceiling due to Revit family limitation and the break glass box are connected to any duct. Additionally, the fire door of the curtain wall are also not being model as only door family under curtain wall panels is allowed to insert into the glass panel of the curtain wall.

Figure 22: Fire Door that are on the curtain wall which cannot be model because of Revit family limitation under Curtain Wall Panels

4. Accuracy and Modelling Tolerances

The repeated check measurement are taken by using distro and averaging it.

4.1 Check Distance

Check Distance (m)	1	2	3	Average (m)
Chadwick Room 101 Width	6.350	6.351	6.350	6.350
Chadwick Room 101 Length	9.271	9.269	9.268	9.269
Print Room Width	3.265	3.265	3.265	3.265
Print Room Length	4.223	4.227	4.224	4.225
Small Corridor Vertical Height (Without the Slope Ceiling)	3.502	3.502	3.502	3.502

Table 5: three measurement of check measurement using Distro and its average

4.2 Deviations

Location	Check Distance	Model Measurement	Deviation (m)	Deviation (mm)
	(m)	(m)		
Chadwick Room 101 Width	6.350	6.353	0.003	3
Chadwick Room 101 Length	9.269	9.277	0.008	8
Print Room Width	3.265	3.278	0.013	13
Print Room Length	4.225	4.230	0.005	5
Small Corridor Vertical Height (Without the Slope Ceiling)	3.502	3.501	0.001	1

Table 6: Calculation of deviation between Check Distances and Model Measurement of point cloud

The modelling tolerance are categorised as a High-level Tolerance which the model data constructed to a tolerance of 15mm of the point cloud.

5. Sheet

Figure 23: Floor plan sheet

Figure 24: Cross- section sheet

Window Schedule					
Mark	Family	Rough Height	Rough Width		
Window - Slanted Corridor 101	Windows_SCO_Horz_B ar_Tpl	2.800	2.800		
Window - Print Room	Windows_Sgl_Plain	0.640	0.480		
Window - Print Room	Windows_Sgl_Plain	0.640	0.480		
Window - Print Room	Windows_Sgl_Plain	0.640	0.480		
Window - Print Room	Windows_Sgl_Plain	0.640	0.480		
Window - Front Room 102 A	Windows_Sash_w-Bars_ 2	2.650	1.200		
Window - Side Room 102 A	Windows_Sash_w-Bars_ 2	2.650	1.100		
Window - Side Room102 C	Windows_Sash_w-Bars_ 2	2.700	1.250		

Door Schedule					
Mark	Family	Rough Height	Rough Width		
Door - Leading to Stairs	Doors_IntSgl_w-Tran	2.110	0.950		
Door - Head Department	Doors_Assembly_Sgl	2.110	1.810		
Door - Room 101	Doors_IntSgl	2.090	0.900		
Door - Room 102 B	Doors_IntDbl_1	2.110	1.510		
Door - Room 102 A	Doors_IntSgl	2.110	0.920		
Door - Curtain Wall	Doors_Dbl_Glass_5	2.053	1.257		

Code Status SHEET Alin Zohari - Schedule Sustability description Purpose of issue Alin Zohari - Schedule Status Date Project Number Project Number Project Number Science (gl A4) PEV Project Number Project Number Science (gl A4) PEV Project Number Project Number Science (gl A4) PEV Schedule	AUTODESK. PRO-Chadwick Room 102 & Corridors UCL						
SUITABLITY DESCRIPTION PURPOSE OF ISSUE Alin Zohari - Author Shecked by 3	Code	Status	SHEET	Issue Date			REV
Schedule	SUITABILITY DESCRIPTION	PURPOSE OF ISSUE	Alin Zohari -	Author_ Checked by	3	,	

Figure 25: Window and Door Schedule Sheet

6. Conclusion and Problem Encountered

All through this project one problem encountered in every steps of modelling is the orthogonal constraints. This is caused primarily by the use of Revit and the limitations on orthogonal design that this fosters. This is where a definite fitness of purpose play an important role in modelling.

7. Reference

Craven P. (2014), "BIM Survey Specification" https://www.plowmancraven.co.uk/bim-survey-specification/

Thomson, C. and Boehm, J. (2015). Automatic Geometry Generation from Point Clouds for BIM. Remote Sensing, 7(9), pp.11753–11775. doi:https://doi.org/10.3390/rs70911753.