Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Ордена Трудового Красного Знамени

федеральное государственное бюджетное образовательное учреждение высшего образования

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Кафедра «Теория электрических цепей»

Лабораторная работа №16

«Исследование на ЭВМ резонансных явлений в пассивном и активном последовательном колебательном контуре»

Выполнил:

студент группы БВТ2306

Кесслер А. С.

Оглавление

Цель работы:	3
Предварительный расчёт:	
Вывод	11
Вопросы для самопроверки	12

Цель работы:

С помощью программы Micro-Cap исследовать характеристики одиночного последовательного пассивного и активного контура при различных добротностях.

Предварительный расчёт:

При выбранной ёмкости С = 10 нФ и резонансной частоте f_0 = 4,8 кГц величина индуктивности L = 0,11 Гн

По предварительному расчёту							
R, Om	р, Ом	Q	f ₁ , кГц	f ₂ , кГц	П, кГц	I ₀ , A	f ₀ , кГц
160	3316,6	4,553	4,3	5,356	1,056	6,25	4,8
640	3316,6	2,276	3,86	5,97	2,11	1,56	4,8

Получено экспериментально					
f ₀ , кГц	I ₀ , A	f1, кГц	f2, кГц	П, кГц	Q
4,8	6,242	4,6	5,02	0,42	11,42
4,8	1,562	4,36	5,29	0,93	5,16

График зависимости модуля входного сопротивления от частоты при R1 = $160~{\rm Om}$:

График зависимости модуля входного сопротивления от частоты при R1 $= 640~\mathrm{Om}$

Графики зависимости фазы входного сопротивления от частоты при $R1 = 160 \; \mathrm{Om} \; \mathrm{u} \; R1 = 640 \; \mathrm{Om} :$

График зависимости модуля входного тока от частоты при R1 = 160 Ом и R1 = 640 Ом:

График зависимости модуля входного тока от частоты при разных L:

График зависимости модуля входного тока от частоты при разных С:

Гиратор:

Рассчитать значение ёмкости C_1 так, чтобы резонансная частота активного последовательного колебательного контура с гиратором в качестве индуктивности (рис. 2) равнялась $f_0 = 5$ кГц. R = 0,1 Ом, $C_2 = 1$ мкФ и G = 0,1 См.

$$C_1 = 10 \text{ MK}\Phi$$

По предварите.	льному расчёту	Получено экспериментально
R, Ом	R, O м C_1, M к Φ $f_0, $ к Γ ц	
0,1	10	5,032
0,2	10	5,032

График зависимости модуля входного тока от частоты в схеме с гиратором при R=0,1:

График зависимости модуля входного тока от частоты в схеме с гиратором при R=0,2:

Вывод

Мы с помощью программы Micro-Cap исследовали характеристики одиночного последовательного пассивного и активного контура при различных добротностях.

Вопросы для самопроверки

- 1.Почему резонанс в последовательном пассивном колебательном контуре называется резонансом напряжений?
- 2. Как рассчитывается резонансная частота сложного пассивного колебательного контура и как она рассчитывается для схем содержащих гиратор?
- 3. Что такое добротность последовательного пассивного колебательного контура?
- 4. Что такое полоса пропускания последовательного пассивного колебательного контура? Какие существуют способы расчета полосы пропускания?
- 5.Выведите уравнения, с помощью которых рассчитывают входные AЧX и ФЧX последовательного пассивного колебательного контура.

Ответы

1) В таком контуре добротность численно равна отношению напряжения на реактивном элементе контура к напряжению на резисторе или на входе в режиме резонанса. Добротность показывает, во сколько раз напряжение на реактивных элементах контура будет превышать входное.

2)

$$f_0 = \frac{1}{2\pi\sqrt{LC}}.$$

$$f_0 = \frac{1}{2\pi\sqrt{LC_1}} = \frac{G}{2\pi\sqrt{C_1C_2}}$$

- 3)Величина, определяющая амплитуду и ширину АЧХ резонанса. Отношение сохраненной энергии в контуре и потери энергии за единичный период колебаний.
- 4)Полоса пропускания (прозрачности) диапазон частот, в пределах которого амплитудно-частотная характеристика (АЧХ) акустического,

радиотехнического, оптического или механического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного искажения его формы.

Характеристическое сопротивление $\rho = \sqrt{\frac{L}{C}}\,.$ Добротность $Q = \sqrt{\frac{\rho}{R}}\,.$ Нижняя граничная частота $f_1 = \frac{f_0}{2Q} \Big(\sqrt{1+4Q^2}-1\Big).$ Верхняя граничная частота $f_2 = \frac{f_0}{2Q} \Big(\sqrt{1+4Q^2}+1\Big).$ Абсолютная полоса пропускания $\Pi = f_2 - f_1.$

5)ФЧХ:

$$\varphi = \arctan \frac{X_{\text{EX}}}{R}$$

АЧХ:

$$Z = \sqrt{R^2 + X^2} = R \sqrt{1 + \left(\frac{X}{R}\right)^2}$$