Lezione 15 - 04/11/2022

Osservazione - Il sottogruppo alterno

Lemma - Cardinalità del sottogruppo alterno

Esercizio sulla relazione coniugio

Lemma - Gli r-cicli di Sn

Classi laterali e teorema di Lagrange

Teorema - Cardinalità classi laterali destre e sinistre

Teorema - Teorema di Lagrange

Corollario

Osservazione - Il sottogruppo alterno

La mappa $\epsilon:S_n o\{\pm 1\}$ definita come

$$\epsilon(\sigma) = \begin{cases} 1 & \sigma \text{ è pari} \\ -1 & \sigma \text{ è dispari} \end{cases}$$

è un **omomorfismo** di gruppi; questo è equivalente a dire che il **prodotto** di due permutaizioni pari **è pari** così come il prodotto di una permutazione pari ed una dispari e il prodotto di una permutazione dispari ed una pari **è dispari**. A sua volta questo segue dalle definizioni.

Esempio:

$$\sigma = au_1... au_6$$
 $\sigma' = au'_1... au'_8$ au_i, au'_j trasposizioni $\sigma au = \underbrace{ au_1... au_6 au'_1... au'_8}_{14 ext{ trasposizioni}}$

In particolare

$$A_n = \{\sigma \in S_n : \sigma \ \mathrm{\grave{e}} \ \mathrm{pari} \}$$

è un sottogruppo di S_n e prende il nome di **sottogruppo alterno**.

Lemma - Cardinalità del sottogruppo alterno

$$|A_n|=rac{n!}{2}$$
 (ovvero sono metà pari e metà dispari)

Dimostrazione: basta costruire una corrispondenza biunivoca

$$\Phi:A_n o \{\sigma\in S_n|\sigma\ \mathrm{\`e}\ \mathrm{dispari}\}$$

Questo conclude perché se $a=|A_n|$

$$|n! = a + |\{\sigma \in S_n : \sigma \ ext{\'e dispari}\}| = 2a \Longrightarrow a = rac{n!}{2}.$$

Sia au una permutazione dispari fissata

$$\Phi(\sigma) = \sigma au$$

 $\Phi(\sigma)$ è dispri, perchè σ è pari, quindi Φ è effettivamente un'applicazione

$$A_n o \{\sigma \in S_n : \sigma \ \mathrm{\`e} \ \mathrm{dispari} \}$$

Φ è iniettiva:

$$egin{aligned} \Phi(\sigma) &= \Phi(\sigma') \ \sigma au &= \sigma' au \ \sigma au au^{-1} &= \sigma' au au^{-1} \ \sigma &= \sigma' \end{aligned}$$

- Φ è suriettiva: $lpha \in S_n$ dispari, $lpha au^{-1} \in A_n$ e

$$\Phi(\alpha\tau^{-1}) = \alpha\tau^{-1}\tau = \alpha$$

Esercizio sulla relazione coniugio

Siano
$$\sigma=(1,5)(2,3,4)$$
 e $au=(1,4,3)(2,6,7,5)$

$$au\sigma au^{-1}=(au(1), au(1))(au(2), au(3), au(4))=(4,2)(6,1,3)$$

derivata nel seguente modo

$$au\sigma au^{-1}: 1 o 3 o 4 o 3 \ 2 o 5 o 1 o 4 \ 3 o 4 o 2 o 6 \ 4 o 1 o 5 o 2 \ 5 o 7 o 7 o 5 \ 6 o 2 o 3 o 1 \ 7 o 6 o 6 o 6 o 7$$

Calcolare au tale che $au\sigma au^{-1}=\mu$ dove

$$egin{aligned} \sigma &= (1,2,3)(4,7,8) \ au &= (3,4,9)(5,2,1) \end{aligned} \ au &= (au(1), au(2), au(3))(au(4), au(7), au(8)) = \ &= egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \ 3 & 4 & 9 & 5 & 6 & 7 & 2 & 1 & 8 \end{pmatrix} \end{aligned}$$

In quanto in σ non sono presenti 5,6 e 9, in $\tau\sigma\tau^{-1}$ possono essere messi uno dei valori rimanenti a caso.

Lemma - Gli r-cicli di Sn

In S_n gli r-cicli sono

$$\frac{1}{r} \cdot \frac{n!}{(n-r)!}$$

<u>Dimostrazione</u>: Il **primo numero** del ciclo lo posso scegliere in n modi, **il secondo** in n-1, il terzo in n-2 l'r-esimo in n-r+1 modi. In totale

$$n(n-1)...(n-r+1)=rac{n!}{(n-r)!}$$

Però ognuno dei cicli ottenuti in questo modo viene ${\bf contato}\ r$ ${\bf volte}$ (ci sono ripetizioni):

$$(1,2,...,r)=(2,3,...,r,1)=(3,4,...,r,1,2)....$$

Ad esempio in S_n ci sono $\binom{n}{2}$ trasposizioni.

Classi laterali e teorema di Lagrange

Sia G un gruppo e $H \leq G$; definiamo **due relazioni di equivalenza** $ho_d,
ho_s$ su G:

$$a
ho_d b \Longleftrightarrow ab^{-1} \in H$$

 $a
ho_s b \Longleftrightarrow b^{-1} a \in H$

- 1. ρ_d, ρ_s sono relazioni di equivalenza
 - Riflessiva: $a
 ho_d a \qquad a a^{-1} \in H \qquad e \in H$
 - Simmetrica: $a
 ho_d b \Rightarrow b
 ho_d a$

$$ab^{-1} \in H \qquad (ab^{-1})^{-1} \in H \ (ab^{-1})^{-1} = ba^{-1} \Leftrightarrow b
ho_d a$$

• Transitiva: $a\rho_d b,\ b\rho_d c\Rightarrow a\rho_d c.$ Si ha che $ab^{-1}\in H$ e $bc^{-1}\in H$ e si ha che $H\leq G.$

$$(ab^{-1})(bc^{-1}) \in H \ (ab^{-1})(bc^{-1}) = abb^{-1}c^{-1} = ac^{-1} \Leftrightarrow a
ho_d c$$

- 2. $ho_d=
 ho_s$ se G è abeliano.
- 3. Esempio: $G=\mathbb{Z}$ e $H=n\mathbb{Z}$. Sia $ho=
 ho_d=
 ho_s$

$$a
ho b \Leftrightarrow ab^{-1} \in H o a - b \in n\mathbb{Z}$$

che implica che ho è precisamente la **congruenza mod n**.

- 4. Struttura delle classi di equivalenza
 - Classe laterale destra di $a \mod H$

$$egin{aligned} \{b \in G : b
ho_d a\} &= \{b \in G : ba^{-1} \in H\} \ &= \{b \in G : ba^{-1} = h \text{ per qualche } h \in H\} \ &= \{b \in G : b = ha \text{ per qualche } h \in H\} \ &= Ha \leftarrow ext{classe laterale destra di } a \mod H \end{aligned}$$

• Classe laterale sinistra di $a \mod H$

$$egin{aligned} \{b \in G : b
ho_s a\} &= \{b \in G : a^{-1}b \in H\} \ &= \{b \in G : a^{-1}b = h \text{ per qualche } h \in H\} \ &= \{b \in G : b = ah \text{ per qualche } h \in H\} \ &= aH \leftarrow ext{classe laterale sinistra di } a \mod H \end{aligned}$$

Esempio: $S_3 = \{Id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

Poniamo $H=\{Id,(1,2)\}$ e troviamo le classi laterali destre e sinistre di $S_3 \mod H$:

$$HId = H$$
 $H(1,2) = \{Id \cdot (1,2), (1,2)(1,2)\} = \{(1,2), Id\} = H$
 $H(2,3) = \{Id \cdot (2,3), (1,2)(2,3)\} = \{(2,3), (1,2,3)\}$
 $H(1,3) = \{Id \cdot (1,3), (1,2)(1,3)\} = \{(1,3), (1,3,2)\}$
 $H(1,2,3) = \{Id \cdot (1,2,3), (1,2)(1,2,3)\} = \{(1,2,3), (2,3)\}$
 $H(1,3,2) = \{Id \cdot (1,3,2), (1,2)(1,3,2)\} = \{(1,3,2), (1,3)\}$

Quindi si ha che

•
$$H = H(1,2)$$

•
$$H(2,3) = H(1,2,3)$$

•
$$H(1,3) = H(1,3,2)$$

Che formano la seguente **partizione** di S_3 :

Passiamo ora alle classi laterali sinistre:

$$IdH = H$$
 $(1,2)H = \{(1,2) \cdot Id, (1,2)(1,2)\} = H$
 $(2,3)H = \{(2,3) \cdot Id, (2,3)(1,2)\} = \{(2,3), (1,3,2)\}$
 $(1,3)H = \{(1,3) \cdot Id, (1,3)(1,2)\} = \{(1,3), (1,2,3)\}$
 $(1,2,3)H = \{(1,2,3) \cdot Id, (1,2,3)(1,2)\} = \{(1,2,3), (1,3)\}$
 $(1,3,2)H = \{(1,3,2) \cdot Id, (1,3,2)(1,2)\} = \{(1,3,2), (2,3)\}$

Quindi si ha che

•
$$(1,2)H = H$$

•
$$(2,3)H = (1,3,2)H$$

•
$$(1,3)H = (1,2,3)H$$

Che formano la seguente **partizione** di S_3 :

Sia ora $H = \{Id, (1,2,3), (1,3,2)\}$. Poichè H è un sottogruppo

$$H = H(1,2,3) = H(1,3,2) = (1,2,3)H = (1,3,2)H$$

Calcoliamo ora le classi laterali destre:

$$H(1,2) = \{(1,2), (1,2,3)(1,2), (1,3,2)(1,2)\}$$
 $= \{(1,2), (1,3), (2,3)\} = (1,2)H$
 $H(2,3) = \{(2,3), (1,2,3)(2,3), (1,3,2)(2,3)\}$
 $= \{(2,3), (1,2), (1,3)\} = (2,3)H$
 $H(1,3) = \{(1,3), (1,2,3)(1,3), (1,3,2)(1,3)\}$
 $= \{(1,3), (2,3), (1,2)\} = (1,2)H$

Che forma la seguente partizione

Teorema - Cardinalità classi laterali destre e sinistre

Tutte le classi laterali destre e sinistre hanno la stessa cardinalità, che è quella di ${\cal H}$.

Dimostrazione: dati $a,b\in G$ costruiamo una **corrispondenza**

$$lpha: Ha
ightarrow Hb \ lpha(ha) = hb$$

 α è biunivoca

• Iniettività:

7

$$lpha(ha) = lpha(h'a)$$
 $hb = h'b$
 $hbb^{-1} = h'bb^{-1}$
 $h = h'$

• Suriettività: dato che $hb \in Hb$, risulta per definizione

$$hb = \alpha(ha)$$

Ora se prendo b=e ottengo una corrispondenza biunivoca

$$\alpha: Ha
ightarrow He = H$$

Posso procedere allo stesso modo con i laterali sinistri:

$$eta:aH o bH\ eta(ah)=bh$$

è una biezione, che da luogo ad una biezione $aH\leftrightarrow H$ quando prendo b=e. Quindi

Teorema - Teorema di Lagrange

Se G è un gruppo finito e $H \leq G$, detto [G:H] il numero di laterali di H in G, risulta

$$|G| = [G:H]|H|$$

8

i

 $\left[G:H\right]$ si legge indice di H in G.

Corollario

Se $H \leq G$, G finito allora $|H| \mid |G|$

 $\frac{\text{Dimostrazione}}{|H|}. \text{ Poiché le classi laterali formano una partizione di } G, \text{ l'ordine di } G \text{ è quello di } H \text{ moltiplicato per il numero di classi laterali denotato con } [G:H].$