第四章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

4.1 概 述

- 一、存储器分类
 - 1. 按存储介质分类
 - (1) 半导体存储器 T
 - (2) 磁表面存储器
 - (3) 磁芯存储器
 - (4) 光盘存储器

TTL, MOS

磁头、载磁体

硬磁材料、环状元件

激光、磁光材料

易失

非易失

- 2. 按存取方式分类
- (1) 存取时间与物理地址无关(随机访问)
 - 随机存储器 在程序的执行过程中 可 读 可 写
 - 只读存储器 在程序的执行过程中 只读
- (2) 存取时间与物理地址有关(串行访问)
 - 顺序存取存储器 磁带
 - 直接存取存储器 磁盘

3. 按在计算机中的作用分类

存

储

器

4.1

静态 RAM **RAM** 动态 RAM 主存储器 **MROM PROM ROM EPROM EEPROM** Flash Memory 高速缓冲存储器(Cache)

辅助存储器 磁盘 磁带 光盘

二、存储器的层次结构

1. 存储器三个主要特性的关系

2. 缓存一主存层次和主存一辅存层次 4.1

4.2 主存储器

- 一、概述
 - 1. 主存的基本组成

2. 主存和 CPU 的联系

3. 主存中存储单元地址的分配

高位字节 地址为字地址

字地址	字节地址				
0	0	1	2	3	
4	4	5	6	7	
8	8	9	10	11	

低位字节 地址为字地址

字地址	字节地址		
0	1	0	
2	3	2	
4	5	4	

8 M

设地址线 24 根 若字长为16位 若字长为32位

按字节寻址 2²⁴ = 16 M 按 字 寻址

按 字 寻址 **4 M**

4. 主存的技术指标

- (1) 存储容量 主存存放二进制代码的总数量
- (2) 存储速度
 - 存取时间 存储器的 访问时间 读出时间 写入时间
 - 存取周期 连续两次独立的存储器操作 (读或写)所需的 最小间隔时间 读周期 写周期
- (3) 存储器的带宽 位/秒

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

地址线(单向)	数据线(双向)	芯片容量
10	4	1K × 4位
14	1	16K×1位
13	8	8K×8位

存储芯片片选线的作用

用。16K×1位的存储芯片组成 64K×8位 的存储器 8片 8片 8片 32片 16K×1位 16K×1位 16K×1 16K × 1位

当地址为65535时,此8片的片选有效

2. 半导体存储芯片的译码驱动方式 4.2

(1) 线选法

(2) 重合法

三、随机存取存储器(RAM)

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本电路

① 静态 RAM 基本电路的 读 操作

② 静态 RAM 基本电路的 写 操作

(2) 静态 RAM 芯片举例 ① Intel 2114 外特性

2. 动态 RAM (DRAM)

读出与原存信息相反写入与输入信息相同

读出时数据线有电流 为 "1" 写入时C_S充电 为 "1" 放电 为

(2) 动态 RAM 芯片举例

4.2

① 三管动态 RAM 芯片 (Intel 1103) 读

③ 单管动态 RAM 4116 (16K × 1位) 外特性 4.2

(3) 动态 RAM 时序

行、列地址分开传送

读时序

行地址 RAS 有效

写允许 WE 有效(高)

列地址 CAS 有效

数据 D_{OUT} 有效

写时序

行地址 RAS 有效

写允许 WE 有效(低)

数据 \mathbf{D}_{IN} 有效

列地址 CAS 有效

4.2

① 集中刷新(存取周期为0.5µs)以32×32矩阵为

② 分散刷新(存取周期为1μs) 以128×128矩阵为例

4.2

(存取周期为 0.5 μs + 0.5 μs)

③ 分散刷新与集中刷新相结合

对于 128×128 的存储芯片(存取周期为 0.5μs)

若每隔 2 ms 集中刷新一次

"死区" 为 64 µs

若每隔 15.6 μs 刷新一行

而且每行每隔 2 ms 刷新一次 "死区" 为 0.5 µs

将刷新安排在指令译码阶段,不会出现"死区"

3. 动态 RAM 和静态 RAM 的比较

主存	DRAM	SRAM	
存储原理	电容	触发器	缓花
集成度	高	低	
芯片引脚	少	多	
功耗	小	大	
价格	低	高	
速度	慢	快	
刷新	有	无	

四、只读存储器(ROM)

- 掩膜 ROM (MROM)
 行列选择线交叉处有 MOS 管为"1"
 行列选择线交叉处无 MOS 管为"0"
- 2. PROM (一次性编程)

熔丝断 为"0"

熔丝未断 为"1"

3. EPROM (多次性编程)

(1) N型沟道浮动栅 MOS 电路

G栅极

S 源

D漏

紫外线全部擦洗

D端加正电压

D端不加正电压

形成浮动栅

不形成浮动栅

S与D不导通为"(

S 与 D 导通为 "1"

(2) 2716 EPROM 的逻辑图和引脚

PD/Progr 功率下降 / 编程输入端 读出时为 低电平

4. EEPROM (多次性编程)

电可擦写

局部擦写

全部擦写

5. Flash Memory (快擦型存储器)

EPROM 价格便宜 集成度高

EEPROM 电可擦洗重写

比 E²PROM快 具备 RAM 功能

4.2

- 1. 存储器容量的扩展
- (1) 位扩展(增加存储字长)

10根地址线

用 2片 1K×4位 存储芯片组成 1K×8位 的存储器

8根数据线

(2) 字扩展(增加存储字的数量)

4.2

11根地址线

用 2片 1K×8位 存储芯片组成 2K×8位 的存储器

(3) 字、位扩展

4.2

用 8片 1K×4位 存储芯片组成 4K×8位 的存储器

12根地址线

8根数据线

2. 存储器与 CPU 的连接

- (1) 地址线的连接
- (2) 数据线的连接
- (3) 读/写线的连接
- (4) 片选线的连接
- (5) 合理选用芯片
- (6) 其他 时序、负载

例4.1 解: (1) 写出对应的二进制地址码 1片2K×8 $A_{15}A_{14}A_{13}$ $A_{11}A_{10}$... A_7 ... A_4 A_3 ... A_0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 **ROM** 2K×8位 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1

(2) 确定芯片的数量及类型

2片1KX4位

(3) 分配地址线

 A₁₀~A₀
 接 2K×8位 ROM 的地址线

 A₉~A₀
 接 1K×4位 RAM 的地址线

(4) 确定片选信号

例 4.1 CPU 与存储器的连接图

4.2

- 例4.2 假设同前,要求最小 4K为系统程序区,相邻 8K为用户程序区。
 - (1) 写出对应的二进制地址码
 - (2) 确定芯片的数量及类型

1片 4K×8位 ROM 2片 4K×8位 RAM

(3) 分配地址线

A₁₁~A₀ 接 ROM 和 RAM 的地址线

(4) 确定片选信号

例 4.3 设 CPU 有 20 根地址线, 8 根数据线。 4.2 并用 IO/M 作访存控制信号。RD 为读命令, WR 为写命令。现有 2764 EPROM (8K × 8位), 外特性如下:

用 138 译码器及其他门电路(门电路自定)画出 CPU 和 2764 的连接图。要求地址为 F0000H~FFFFFH,并写出每片 2764 的地址范围。

4.2

1. 编码的最小距离

任意两组合法代码之间 二进制位数 的 最少差异编码的纠错、检错能力与编码的最小距离有关

$$L-1=D+C(D\geq C)$$

L— 编码的最小距离 L=3

D — 检测错误的位数 具有 一位 纠错能力

C— 纠正错误的位数

海明码是具有一位纠错能力的编码

2.海明码的组成

组成海明码的三要素

海明码的组成需增添? 位检测位

$$2^k \geqslant n+k+1$$

检测位的位置?

$$2^{i}$$
 ($i = 0, 1, 2, 3 \dots$)

检测位的取值?

检测位的取值与该位所在的检测"小组"中承担的奇偶校验任务有关

各检测位 C; 所承担的检测小组为

- C₁ 检测的 g₁ 小组包含第 1, 3, 5, 7, 9, 11 ···
- C, 检测的 g, 小组包含第 2, 3, 6, 7, 10, 11 ···
- C₄ 检测的 g₃ 小组包含第 4, 5, 6, 7, 12, 13 ···
- C₈ 检测的 g₄ 小组包含第 8, 9, 10, 11, 12, 13, 14, 15, 24 ···
 - g, 小组独占第 2i-1位
 - g_i和g_i小组共同占第2ⁱ⁻¹+2^{j-1}位
 - g_i、g_j和g_l小组共同占第 2ⁱ⁻¹+ 2ⁱ⁻¹+ 2^{l-1}位

例4.4 求 0101 按 "偶校验" 配置的海明码

解: n=4 根据 $2^k \ge n+k+1$ 得 k=3

海明码排序如下:

二进制序号	1	2	3	4	5	6	7
名称	_	C ₂ 1	0	C ₄ 0	1	0	1

∴ 0101 的海明码为 0100101

练习1 按配偶原则配置 0011 的海明码 4.2

解: n=4 根据 $2^k \ge n+k+1$ 取 k=3

$$C_1 = 3 \oplus 5 \oplus 7 = 1$$

$$C_2 = 3 \oplus 6 \oplus 7 = 0$$

$$C_4 = 5 \oplus 6 \oplus 7 = 0$$

·· 0011 的海明码为 1000011

3. 海明码的纠错过程

4.2

形成新的检测位 P_i 其位数与增添的检测位有关如增添 3 位(k=3) 新的检测位为 P_4 P_2 P_1 以 k=3 为例, P_i 的取值为

$$P_{1} = \overset{C}{\overset{1}{\oplus}} 3 \oplus 5 \oplus 7$$

$$P_{2} = \overset{C}{\overset{2}{\oplus}} 3 \oplus 6 \oplus 7$$

$$P_{4} = \overset{C}{\overset{4}{\oplus}} 5 \oplus 6 \oplus 7$$

对于按"偶校验"配置的海明码不出错时 $P_1=0$, $P_2=0$, $P_4=0$

4.2

例4.5 已知接收到的海明码为0100111

(按配偶原则配置) 试问要求传送的信息是什么?

解: 纠错过程如下

$$P_1 = 1 \oplus 3 \oplus 5 \oplus 7 = 0$$
 无错

$$P_2 = 2 \oplus 3 \oplus 6 \oplus 7 = 1$$
 有错

$$P_4P_2P_1 = 110$$

第6位出错,可纠正为0100101,故要求传送的信息为0101。

4.2

练习2 写出按偶校验配置的海明码 0101101 的纠错过程

$$P_4 = 4 \oplus 5 \oplus 6 \oplus 7 = 1$$

$$\mathbf{P_2} = \mathbf{2} \oplus \mathbf{3} \oplus \mathbf{6} \oplus \mathbf{7} = \mathbf{0}$$

$$P_1 = 1 \oplus 3 \oplus 5 \oplus 7 = 0$$

- ∴ P₄P₂P₁ = 100 第 4 位错,可不纠
- 练习3 按配奇原则配置 0011 的海明码 配奇的海明码为 0101011

七、提高访存速度的措施

- 采用高速器件
- ·采用层次结构 Cache 一主存
- 调整主存结构

2. 多体并行系统

4.2

体内地址

体号

(2) 低位交叉 各个体轮流编址

4.2

低位交叉的特点

在不改变存取周期的前提下,增加存储器的带宽

(3) 存储器控制部件(简称存控)

易发生代码 丢失的请求 源,优先级 最高

严重影响 CPU 工作的请求源, 给予 次高 优先级

4.3 高速缓冲存储器

一、概述

1. 问题的提出 避免 CPU "空等"现象 CPU 和主存(DRAM)的速度差异

程序访问的局部性原理

2. Cache 的工作原理

4.3

(1) 主存和缓存的编址

主存和缓存按块存储

块的大小相同

B 为块长

(2) 命中与未命中

缓存共有 C 块 主存共有 M 块 M >>> C

命中 主存块 调入 缓存

主存块与缓存块 建立 了对应关系

用标记记录与某缓存块建立了对应关系的主存块块号

未命中 主存块 未调入 缓存

主存块与缓存块 未建立 对应关系

(3) Cache 的命中率

CPU 欲访问的信息在 Cache 中的 比率

命中率与 Cache 的 容量与 块长 有关

一般每块可取 4 至 8 个字

块长取一个存取周期内从主存调出的信息长度

CRAY_1 16体交叉 块长取 16 个存储字 IBM 370/168 4体交叉 块长取 4 个存储字 (64位×4=256位)

3. Cache 的基本结构

4.3

4. Cache 的 读写 操作

4.3

写

Cache 和主存的一致性

- 5. Cache 的改进
 - (1) 增加 Cache 的级数

片载(片内) Cache

片外 Cache

(2) 统一缓存和分开缓存

指令 Cache 数据 Cache

与主存结构有关

与指令执行的控制方式有关 是否流水

Pentium 8K 指令 Cache 8K 数据 Cache

PowerPC620 32K 指令 Cache 32K 数据 Cache

二、Cache 一主存的地址映象

4.3

每个缓存块 i 可以和 若干 个 主存块 对应每个主存块 j 只能和 一个 缓存块 对应

2. 全相联映象

主存中的 任一块 可以映象到 缓存 中的 任一块

3. 组相联映象

4.3

主存储器

 组
 Cache
 共 Q 组,每组内两块 (r=1)

 0
 标记
 字块 0
 标记
 字块 1

 1
 标记
 字块 2
 标记
 字块 3

标记 | 字块 2^c-2 | 标记 | 字块 2^c-1

 $2^{c-r}-1$

主存地址

主存字块标记 组地址

直接映象铁映象

字块内地址

b位

字块0

字块1

•

字块2^{c-r}-1

字块2^{c-r}

字块2^{c-r}+1

字块2^{c-r+1}

•

字块2"-1

 $i=j \mod Q$

某一主存块 j 按模 Q 映射到 缓存 的第 i 组中的 任一块

三、替换算法

- 1. 先进先出(FIFO)算法
- 2. 近期最少使用法(LRU)算法

小结 成本萬活

直接 / 某一主存块 只能固定 映射到 某一 缓存块

全相联 某一主存块能 映射到任一缓存块

组相联 某一主存块能映射到某一缓存组中的任一块

4.4 辅助存储器

- 一、概述
 - 1. 特点 不直接与 CPU 交换信息
 - 2. 磁表面存储器的技术指标
 - (1) 记录密度 道密度 $D_{\rm t}$ 位密度 $D_{\rm b}$
 - (2) 存储容量 $C = n \times k \times s$
 - (3) 平均寻址时间 寻道时间 + 等待时间

辅存的速度。

寻址时间

磁头读写时间

- (4) 数据传输率
- $D_r = D \times V$

(5) 误码率

出错信息位数与读出信息的总位数之比

4.4

二、磁记录原理和记录方式

1. 磁记录原理

写

写入"0"

写入"1"

读

读出 "0"

读出"1"

2. 磁表面存储器的记录方式

4.4

例 NRZ1 的读出代码波形

三、硬磁盘存储器

- 1. 硬磁盘存储器的类型
 - (1) 固定磁头和移动磁头
 - (2) 可换盘和固定盘
- 2. 硬磁盘存储器结构

(1) 磁盘驱动器

(2) 磁盘控制器

- •接受主机发来的命令,转换成磁盘驱动器的控制命令
- 实现主机和驱动器之间的数据格式转换
- 控制磁盘驱动器读写

磁盘控制器是

主机与磁盘驱动器之间的接口 {对主机 通过总线 对硬盘(设备)

(3) 盘片

由硬质铝合金材料制成

四、软磁盘存储器

1. 概述

硬盘

软盘

速度

高

低

磁头

固定、活动

活动

浮动

接触盘片

盘片

固定盘、盘组大部分不可换

可换盘片

价格 高

低

环境

苛刻

2. 软盘片

由聚酯薄膜制成

保护套 主轴孔 实际的软盘片

读/写磁头访问槽 写保护口 衬里/清洁材料

五、光盘

1. 概述

采用光存储技术 利用激光写入和读出

第一代光存储技术 采用非磁性介质 不可擦写

第二代光存储技术 采用磁性介质 可擦写

2. 光盘的存储原理

只读型和只写一次型 热作用(物理或化学变化)

可擦写光盘 热磁效应