Stress analysis

Leif Rune Hellevik August 31, 2017

Outline

- Recap
 - Reynolds transport theorem
 - Cauchy stress theorem
 - Governing equations
- Principal stress theorem
- LaPlace law for membranes
- Physiological relevance

Reynolds and Cauchy

Reynolds transport theorem

$$\dot{B} = \int_{V(t)} \frac{\partial b}{\partial t} dV + \int_{A(t)} b(\mathbf{v} \cdot \mathbf{n}) dA$$

Material derivative of an extensive property

$$\dot{B} = \frac{d}{dt} \int_{V(t)} \beta \rho \, dV = \int_{V(t)} \dot{\beta} \rho \, dV$$

Cauchy stress theorem

$$t_i = T_{ik} n_k \Leftrightarrow \mathbf{t} = \mathbf{T} \mathbf{n}$$

Governing equations

Conservation of mass

$$\frac{\partial \rho}{\partial t} + (\rho \mathbf{v}_i)_{,i} = \mathbf{0}$$

Cauchy's equations of motion

$$\rho \mathbf{a}_i = T_{i\mathbf{k},\mathbf{k}} + \rho \mathbf{b}_i$$

Principal stress theorem

- There are three orthogonal planes without shear stresses
- The planes are called principal stress planes
- The principal directions are the unit normals n_i
- ▶ The principal stresses σ_i are the normal stresses on these planes

Show that we may find $\mathbf{t} \parallel \mathbf{n}$

- ▶ $\mathbf{t} \parallel \mathbf{n}_i \Rightarrow \mathbf{t} = \sigma \mathbf{n}$
- ▶ Cauchy stress theorem: $\mathbf{t} = \mathbf{T} \cdot \mathbf{n}$
- T · n = σ ni.e. an eigenvalue problem
- Equivalent representations of the eigenvalue problem

$$(\sigma \mathbf{I} - \mathbf{T}) \cdot \mathbf{n} = 0 \Leftrightarrow (\sigma \, \delta_{ik} - T_{ik}) \, n_k = 0$$

Solutions to the eigenvalue problem

► The eigenvalue problem $(\sigma \mathbf{I} - \mathbf{T}) \cdot \mathbf{n} = 0$ has only non-trivial solutions if

$$\det(\sigma \mathbf{I} - \mathbf{T}) = 0$$

Characteristic equation for the stress tensor

$$\sigma^3 - I\sigma^2 + II\sigma - III = 0$$

- ► The principal invariants of **T** are denoted: I, II, and III
- ▶ It may be shown that the three σ_i are real since $\mathbf{T} = \mathbf{T}^T$
- ▶ Orthogonal basis ($\mathbf{n}_i \cdot \mathbf{n}_j = 0$) if $\sigma_i \neq \sigma_j$

Stress analysis for thin walled containers

Thin-walled spherical shell

- Plane-isotropic state of stress
- Force equilibrium analysis yields:

$$\sigma = \sigma_{\theta} = \sigma_{\phi} = \frac{r}{2t} p$$

- Any direction parallel to shell surface is a principal direction $(\sigma_{\theta} = \sigma_{\phi})$
- Stress matrix in spherical coordinates (r, θ, ϕ)

$$\mathbf{T} = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \sigma$$

Biaxial state of stress

- A thin-walled circular vessel is subjected to internal pressure p
- ▶ The mid-wall radius is r
- ▶ Wall thickness is t ≪ r

► LaPlace equations by force equilibrium analysis:

$$\sigma_z = \frac{r}{2t} p$$
 and $\sigma_\theta = \frac{r}{t} p$

► Radial stress $\sigma_R \in [-p, 0]$, i.e. $\sigma_R \ll (\sigma_z, \sigma_\theta)$

Biaxial state of stress (cont)

 Stress matrix in cylindrical coordinates (R, θ, z)

$$\mathbf{T} = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right] \frac{r}{2t} p$$

Law of LaPlace

- A generalization of the previous expressions
- A membrane of thickness t and main radii of curvature r₁ and r₂
- σ_1 and σ_2 denote normal stresses in directions of main curvature
- Transmural pressure p

$$\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{p}{t}$$

Models for heart wall-stress estimation

Several models have been proposed for heart wall-stress. We will come back to these later (chap 6)

► Ellipsoidal model

$$\frac{p}{D} = \frac{D}{2t} \left(1 - \frac{t}{D} - \frac{D^2}{2l^2} \right)$$

The Arts model for fiber stress σ_f

$$\frac{p}{\sigma_f} = \frac{1}{3} \ln \left(1 + \frac{V_w}{V} \right)$$

where V_w is LV wall volume

Physiological relevance of the law of LaPlace

- Great conceptual importance, although valid for simple geometries only
- r/t main determinant for wall stress
- Hypertension (high blood pressure)
 - Cardiac muscle cells grow and increase wall thickness
 - ▶ $r/t \downarrow$ while $p \uparrow$
 - Wall stress $\sigma \propto \frac{r}{t} p$ remain similar

 Same effect for arteries which hypertrophy in hypertension

 How stresses in cells are sensed is still largely unknown

Important parameters for vascular hemodynamics¹

- ▶ pressure $p \uparrow \Rightarrow$ wall strain $\varepsilon_{\theta\theta} \uparrow \Rightarrow$ wall thickness $h \uparrow$
- ▶ flow $q \uparrow \Rightarrow$ wall shear stress $\tau_w \uparrow \Rightarrow$ diameter $D \uparrow$

¹vd Vosse 2008

Summary

- Recap
 - Reynolds transport theorem
 - Cauchy stress theorem
 - Governing equations
- Principal stress theorem
- LaPlace law for membranes
- Physiological relevance