wichtige Gleichungen $\bullet |a+b| \leq |a|+|b|$

 $\bullet | |a| - |b|| \leq |a - b|$

 $\bullet |ab| = |a| \cdot |b|$

∀n∈N: (1+x)ⁿ≥1+nx
(x∈R n x≥-1)

Binomialkoeffizienten

 $\binom{n}{k}$:= $\frac{n!}{k!(n-k)!}$

"Anzahl der k-elementisen Teilmengen einer Mense mit n Elementen"

 $\binom{n}{k}$ + $\binom{n}{k-1}$ = $\binom{n+1}{k}$

 $\binom{0}{0} = 1$ $\binom{n}{n} = \binom{n}{0} = 1$

 $a^{n+1} - b^{n+1} = \sum_{k=0}^{n} a^{n-k} b^k$ $= \sum_{k=0}^{n} a^{k} b^{n-k}$ $(\alpha + b)^n = \sum_{k=0}^n \binom{n}{k} \alpha^{n-k} b^k$

M = S = Sup(M) = max(M)r = inf(M) = min(M)grôfte unter Schraube

Ist Ø≠M⊆R nach oben beschränkt, so existict sup(M). Verschiedene Mensen

Z := No U {-n | n EN} $Q := \left\{ \frac{P}{q} : P \in \mathbb{Z}, q \in \mathbb{N} \right\}$ "rationals Zahlen"

=) p Primzah (: Tp R Q Rationale Exponenten $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$

 $\alpha^r \cdot \alpha^s = \alpha^{r+s}, (\alpha^r)^s = \alpha^{r+s}$

 $= \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$