

Elektromagnetische Strahlung

$$A = konstant Z = konstant$$

Zerfall von Na-24

Zerafll von Am-241

$^{241}_{95}Am_{146}$

Gamma Strahler Cs-137 -> Ba 137

Gamma Strahler Co-60 -> Ni-60

wanda

Gamma Strahlung

Gamma Strahlung

- Dringt sehr weit ein (Reichweite im Prinzip unendlich)
 - Exponentielle Schwächung in Materie
 - Sehr stark abhängig von Energie und Material
- Lässt sich mit Blei abschirmen (Energieabhängig!)
- Durchdringt den Körper
- Gefahr sowohl bei äußerer Einwirkung als auch bei Inkorporation

Wechselwirkung von γ-Strahlung mit Materie

	Absorption	inelastische Streung	Elastische Streuung
Elektronen	Photoeffekt	Compton-Effekt	Rayleigh- Streuung
Kerne	Kernphotoeffekt	Kernresonanz- streuung	Thomson-Streuung
Elektrische Felder	Paarerzeugung	-	Kernpotential- streuung (Delbrück)
Mesonen- felder	Mesonen-erzeugung	-	-

Wechselwirkungen von Photonen mit Materie

 $m_e c^2 \simeq 511 \text{ keV}$, electron rest energy

Compton-Effekt

Compton-Effekt

$$0 = \frac{h v'}{c} \sin \theta_{\gamma} + p \sin \theta_{e}$$

$$\frac{--\sin\theta_{\gamma} + p\sin\theta_{e}}{c}$$

$$b = \frac{1}{c} \sin \theta_{\gamma} + p \sin \theta_{e}$$

$$h v = h v' + E_{e}$$

$$\operatorname{ergibt} \frac{h v'}{h v} = \frac{1}{1 + \frac{h v}{m_e c^2} (1 - \cos \theta_{\gamma})}$$

$$E_e' = h\nu - h\nu' + m_0c^2$$

$$E_e^2 = E_e'^2 - p_e'^2 c^2 \qquad p_e'^2 = p_\nu^2 + p_\nu'^2 - 2p_\nu p_\nu' \cos \mathcal{D}_{\gamma}$$

Compton-Effekt

$$hv = hv' + E_e$$

$$\frac{hv'}{hv} = \frac{1}{1 + \frac{hv}{m_e c^2} (1 - \cos \theta_{\gamma})}$$

Maximaler Energieübertrag auf das Elektron für θ_{γ} =180°

$$E_{\rm e} = h v - \frac{h v}{1 + 2 \varepsilon}$$
 mit $\varepsilon = \frac{h v}{m_{\rm e} c^2}$

$$E_{\rm e} = \frac{2hv}{2-\frac{1}{8}}$$

Wechselwirkung von γ-Strahlung mit Materie

Paarbildung

PAIR FORMATION $\sigma_{pair} \propto Z^2/E_{\gamma}$

$$h \nu = 2m_e c^2 + E_{e^-} + E_{e^+}$$

= 1,02 MeV + $E_{e^-} + E_{e^+}$

Energieabhängigkeit der Wechselwirkung

Absorption von Gamma-Strahlung

$$\Phi(d) = \Phi(0) \cdot \exp(-\mu \cdot d) \quad \mu = \mu_{phot} + \mu_{compton} + \mu_{paar}$$

$$\mu = \frac{\rho \cdot N_L \cdot Z}{A} \cdot \sigma_e \qquad \text{linearer Schotmathingthing}$$

$$\lambda \text{in carer Schotmathing}$$

$$\Phi(d) = \Phi(0) \cdot \exp(-\frac{\mu}{\rho} \cdot (\rho \cdot d)) \quad \frac{\mu}{\rho} = N_L \cdot \frac{Z}{A} \cdot \sigma_e$$

$$\frac{\mu}{\rho}$$

Μασσενσχηω τη υνησκοε φφιζιεντ $\iota \nu \ \chi \mu^2 \ \gamma^{-1}$

Massenschwächungskoeffizienten für Luft

Der Energiebereich in dem Comptonstreuung den größten Energieverlust bewirkt ist...

- A. Für alle Materialien gleich
- B. Zwischen 1 und 10 keV
- C. Desto kleiner je größer Z
- D. Am niedrigsten für Pb

SMART Response Question

To set the properties right click and select SMART Response Question Object->Properties...

Massenschwächungskoeffizienten für Al

Massenschwächungskoeffizienten für Pb

Um 0.661MeV gamma Strahlung um den Faktor 1000 abzuschwächen benötigt man

C. ~0.6 m Normalbeton

D. ~1.3 m Wasser

SMART Response Question

To set the properties right click and select SMART Response Question Object->Properties...

Instrumentierung - Detektoren

Ziel:

Umwandeln der Strahlung (in ein elektrisches Signal)

Typen:

- Szintillations Detektoren
- Halbleiter Detektoren
- Gas gefüllte Detektoren

Funktionsprinzip von Szintillationsdetektoren

Potentielle Energie als Funktion der interatomaren Abstände

Inter Atomarer Abstand

Eigenschaften häufig verwendeter Szintillatoren

Material	Emission band Maximum (Å)	Decay time (ns)	Relative pulse height versus anthracene (=100)	Application
anthracene	4470	30	100	beta, alpha, gamma
stilbene	4110	6	60	beta, alpha, gamma
"plastic"	4300	4	40-70	beta, alpha, gamma
Nal(TI)	4130	250	230	gamma
ZnS(Ag)	4500	200	300	alpha, beta

Funktionsprinzip eines Nal(TI)-Szintillationszählers

Ortdosisleistungsmessgerät mit Szintillationskristall

Physik IV Clemens Walther Page 29

γ-Spektroskopie

Gamma Spektrum von Cs-137 gemessen mit Nal Detektoren

Halbleiterdetektor P-N Übergang

Halbleiterdetektor P-N Übergang

Halbleiterdetektoren werden immer in Sperrrichtung betrieben!

Nachweis der Strahlung nur im intrinsischen (Ladungsträger freien) Bereich des Kristalls.

Daraus folgt: Der intrinsische Bereich des Detektors sollte so groß wie möglich, die P- und N-Kontakte so klein wie möglich sein!

Germanium-Detektor-System

Gamma Spektrum mit Ge Detektor

Spektrum von 40K mit dem charakteristischen Full-Energy-Peak (1461 keV) und dem Comptonkontinuum. (DE: double escape, SE = single escape)

Vergleich von γ-Spektren gemessen mit Nal-Detektor & mit Ge-Detektor

Abb. 14. Gamma-Spektrum einer Schlammprobe aus einer Regenwasserkanalisation, aufgenommen mit Szintillations- und Halbleiterdetektor

Auflösung von Gamma-Detektoren

ODL in Kovalam Beach, Kerala, Indien

Th-232 Zerfallsreihe: Thorium-Reihe

Schwarzer Sand am Strand von Guarapari, Espirito Santo, Brasilien

50 μSv/h, gilt als gesund