ENGR122 Assignment 7

Mark McGuinness, SMS, Victoria University of Wellington DUE: 1pm 21 September 2018, submit online.

- 1. Show using geometry that if A is the area between $y=x^2$ and the x-interval [0,1], and if B is the area between $y=\sqrt{x}$ and the same x-interval, then A+B = 1. Hint: since the two functions are inverses of each other in the first quadrant, if you reflect one about the line y=x, you get the other function.
- 2. On Mars, gravity causes objects to accelerate downwards at $3.9m/s^2$. Robin drops a laptop from a bridge on Mars. It hits the ground after 20s.
 - (a) How far did it fall?
 - (b) How fast was the laptop going when it hit the ground?
 - (c) If Robin threw the laptop downwards at 12m/s (from the same height as in part a), how long would it take to to hit the ground? What would its speed be when it hit?
- 3. Suppose you are on Jupiter, and that you want to drop a laptop off a building so that it hits the ground at Usain Bolt's top speed. Gravitational acceleration on Jupiter is $23.6m/s^2$. Usain Bolt's top running speed is 12m/s.
 - (a) How long will it take for a falling laptop to reach Usain Bolt's speed?
 - (b) How high should the building be?
- 4. The velocity of an object is described by

(a)
$$v(t) = e^{-2t}$$

(b)
$$v(t) = \frac{t}{2} - 3t^2$$

(c)
$$v(t) = 2t - e^t$$

In each case:

• Write down the function describing

the distance traveled by the object as a function of time.

That is, compute the *indefinite inte* $qral \int v(t)dt$.

• Calculate the distance traveled between t = 1 and t = 2.

That is, compute the definite integral $\int_{1}^{2} v(t)dt$.

- Similarly, calculate the distance traveled between t = 2 and t = 3.
- 5. A car rolls along a street. The **vertical** velocity of a point on the wheel is given by

$$v(t) = \pi \sin\left(\frac{\pi t}{4}\right) m/s.$$

(a) Compute the indefinite integral

$$\int \pi \sin\left(\frac{\pi t}{4}\right) dt.$$

- (b) What is the value of the constant of integration, c, if the object's height at time 0 is 0m?
- (c) What is the object's height after 2s?
- (d) And after 4s?
- (e) What is the wheel's diameter?
- 6. Compute the following indefinite integrals:

(a)
$$\int \left[\sin(3x - 1) - x \right] dx$$

(b)
$$\int \cos^2(4x) \cdot dx$$

Hint: Recall that $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.

Tutorial Questions for week ending 21 September 2018, ENGR122

- 1. Show using geometry that the area between the graph of y = 1/x and the x-interval [1,2] is the same as the area between the graph of y = 1/x and the x-interval [0.5,1] Hint: the function 1/x is its own inverse in the first quadrant, so it is symmetrical upon reflection about the line y = x.
- 2. On the moon, gravity causes objects to accelerate downwards at $1.6m/s^2$. Alex drops a laptop from a bridge on the moon. It hits the ground after 20s.
 - (a) How far did it fall?
 - (b) How fast was the laptop going when it hit the ground?
- 3. Suppose you are on moon, and that you want to drop a laptop off a building so that it hits the ground at Usain Bolt's top speed. Gravitational acceleration on the moon is $1.6m/s^2$. Usain Bolt's top running speed is 12m/s.
 - (a) How long will it take for a falling laptop to reach Usain Bolt's speed?
 - (b) How high should the building be?
- 4. The velocity of an object is described by
 - (a) $v(t) = 2t^3$
 - (b) $v(t) = 3t^{-3}$
 - (c) $v(t) = e^{-\frac{t}{3}}$
 - (d) $v(t) = e^{4t}$
 - (e) $v(t) = 3t \frac{t^2}{5}$
 - (f) $v(t) = 2t e^{-t}$

In each case:

• Write down the function describing the distance traveled by the object as

a function of time.

That is, compute the *indefinite inte-gral* $\int v(t)dt$.

• Calculate the distance traveled between t = 0 and t = 1.

That is, compute the definite integral $\int_0^1 v(t)dt$.

- Similarly, calculate the distance traveled between t = 1 and t = 2.
- 5. A car rolls along a street. The **vertical** velocity of a point on the wheel is given by

$$v(t) = \frac{\pi}{2} \cos\left(\frac{\pi t}{4}\right) m/s.$$

(a) Compute the indefinite integral

$$\int \frac{\pi}{2} \cos\left(\frac{\pi t}{4}\right) dt.$$

- (b) What is the value of the constant of integration, c, if the object's height at time 0 is 0m?
- (c) What is the object's height after 2s?
- (d) And after 4s?
- (e) What is the wheel's diameter?
- 6. Compute the following indefinite integrals:

(a)
$$\int \left[\cos(2x+1) + 1\right] dx$$

(b)
$$\int \sin^2(3x) \cdot dx$$

Hint: Recall that $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.