HW 1 Solutions

9/7/2020

```
Rong Li, ID: U73933267
```

```
library(rstanarm)
library(ggplot2)
```

7.2 Fake-data simulation and regression:

Simulate 100 data points from the linear model, y = a + bx + error, with a = 5, b = 7, the values of x being sampled at random from a uniform distribution on the range [0, 50], and errors that are normally distributed with mean 0 and standard deviation 3.

7.2a

Fit a regression line to these data and display the output.

```
a < -5
b <- 7
sigma <- 3
n = 100
set.seed(1)
x \leftarrow runif(n, 0, 50)
error <- rnorm(n, 0, sigma)
y <- a + b*x + error
fake <- data.frame(x, y)</pre>
fit <- stan_glm(y~x, data = fake)</pre>
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000129 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.29 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                             (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                             (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                             (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                             (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                             (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
```

```
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.115603 seconds (Warm-up)
## Chain 1:
                           0.086551 seconds (Sampling)
## Chain 1:
                           0.202154 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.7e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.27 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.117033 seconds (Warm-up)
## Chain 2:
                           0.085047 seconds (Sampling)
## Chain 2:
                           0.20208 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.7e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
                                            (Warmup)
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.119922 seconds (Warm-up)
```

```
## Chain 3:
                           0.091855 seconds (Sampling)
## Chain 3:
                           0.211777 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.7e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.11138 seconds (Warm-up)
## Chain 4:
                           0.075348 seconds (Sampling)
## Chain 4:
                           0.186728 seconds (Total)
## Chain 4:
print(fit)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  v ~ x
## observations: 100
## predictors:
## -----
##
               Median MAD_SD
## (Intercept) 4.5
                      0.6
               7.0
                      0.0
##
## Auxiliary parameter(s):
         Median MAD SD
## sigma 2.8
                0.2
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
print(coef(fit))
## (Intercept)
                         х
                  7.018834
##
      4.477634
The fitted regression line is y = 4.48 + 7.02 x.
```

7.2b

Graph a scatterplot of the data and the regression line.

Data and fitted regression line

7.2cUse the text function in R to add the formula of the fitted line to the graph.

Data and fitted regression line with formular

7.3 Fake-data simulation and fitting the wrong model:

Simulate 100 data points from the model, $y = a + bx + cx^2 + error$, with the values of x being sampled at random from a uniform distribution on the range [0, 50], errors that are normally distributed with mean 0 and standard deviation 3, and a, b, c chosen so that a scatterplot of the data shows a clear nonlinear curve.

7.3 a

Fit a regression line stan_glm(y \sim x) to these data and display the output.

```
n <- 100
a <- 2
b <- -3
c <- 1
set.seed(1)
x \leftarrow runif(n, 0, 50)
error \leftarrow rnorm(n, 0, 3)
y <- a + b*x + c*x^2 + error
fake <- data.frame(x, y)</pre>
fit \leftarrow stan_glm(y \sim x + I(x^2), data = fake)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.3e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.23 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
```

```
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.781436 seconds (Warm-up)
## Chain 1:
                           0.622455 seconds (Sampling)
## Chain 1:
                           1.40389 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.9e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.52983 seconds (Warm-up)
## Chain 2:
                           0.59057 seconds (Sampling)
## Chain 2:
                           1.1204 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.9e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.29 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
```

```
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.941462 seconds (Warm-up)
## Chain 3:
                           0.513429 seconds (Sampling)
                           1.45489 seconds (Total)
## Chain 3:
## Chain 3:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.6e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 F 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.707191 seconds (Warm-up)
## Chain 4:
                           0.564722 seconds (Sampling)
## Chain 4:
                           1.27191 seconds (Total)
## Chain 4:
print(fit)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  y \sim x + I(x^2)
## observations: 100
## predictors:
## -----
##
               Median MAD_SD
## (Intercept)
               1.4
                       1.0
## x
               -3.0
                       0.1
## I(x^2)
                1.0
                       0.0
## Auxiliary parameter(s):
         Median MAD_SD
```

The fitted regression line is: $y = 1.39 - 2.97x + x^2$.

7.3b

Graph a scatterplot of the data and the regression line. This is the best-fit linear regression. What does "best-fit" mean in this context?

Data and fitted regression line

"best-fit" means the coefficients are LSE. And the equation $y = 1.39 - 2.97x + x^2$ fits the data best in polynomial Regression.

7.6 Formulating comparisons as regression models:

Take the election forecasting model and simplify it by creating a binary predictor defined as x = 0 if income growth is less than 2% and x = 1 if income growth is more than 2%.

```
hibbs <- read.table("/Users/amelia/Desktop/678hw1/hibbs.dat", header=TRUE)
```

7.6a

Compute the difference in incumbent party's vote share on average, comparing those two groups of elections, and determine the standard error for this difference.

growth 5.5075 2.502052

The difference is 5.5 and the standard error is 2.5.

7.6b

Regress incumbent party's vote share on the binary predictor of income growth and check that the resulting estimate and standard error are the same as above.

```
fit <- stan_glm(hibbs.vote~V1, data = newdata)</pre>
```

```
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 3.7e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.37 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
```

```
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.096082 seconds (Warm-up)
## Chain 1:
                           0.06478 seconds (Sampling)
## Chain 1:
                           0.160862 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.070228 seconds (Warm-up)
## Chain 2:
                           0.058109 seconds (Sampling)
## Chain 2:
                           0.128337 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
                                            (Warmup)
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.067051 seconds (Warm-up)
```

```
## Chain 3:
                           0.054699 seconds (Sampling)
## Chain 3:
                           0.12175 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.7e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.05727 seconds (Warm-up)
## Chain 4:
                           0.055566 seconds (Sampling)
## Chain 4:
                           0.112836 seconds (Total)
## Chain 4:
print(fit)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  hibbs.vote ~ V1
## observations: 16
   predictors:
## ----
##
               Median MAD_SD
## (Intercept) 49.4
                       1.8
                5.4
                       2.4
##
## Auxiliary parameter(s):
        Median MAD SD
## sigma 5.1
                0.9
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

8.8 Comparing lm and stan glm:

The resulting estimate and standard error are the same as above.

Use simulated data to compare least squares estimation to default Bayesian regression:

8.8a

Simulate 100 data points from the model, y = 2 + 3x + error, with predictors x drawn from a uniform distribution from 0 to 20, and with independent errors drawn from the normal distribution with mean 0 and standard deviation 5. Fit the regression of y on x data using lm and stan_glm (using its default settings) and check that the two programs give nearly identical results.

```
n <- 100
a <- 2
b <- 3
sigma <- 5
set.seed(1)
x \leftarrow runif(n, 0, 20)
error <- rnorm(n, 0, sigma)
y = a + b*x + error
fake <- data.frame(x, y)
fit1 \leftarrow lm(y~x, data = fake)
fit2 <- stan_glm(y~x, data = fake)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.5e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.25 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1:
             Elapsed Time: 0.076341 seconds (Warm-up)
## Chain 1:
                           0.067404 seconds (Sampling)
## Chain 1:
                           0.143745 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.4e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
```

```
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
                                            (Sampling)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.066099 seconds (Warm-up)
## Chain 2:
                           0.064148 seconds (Sampling)
## Chain 2:
                           0.130247 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.9e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.072208 seconds (Warm-up)
## Chain 3:
                           0.073699 seconds (Sampling)
## Chain 3:
                           0.145907 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2.2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
```

```
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.076549 seconds (Warm-up)
## Chain 4:
                            0.070937 seconds (Sampling)
## Chain 4:
                            0.147486 seconds (Total)
## Chain 4:
a_hat1 <- coef(fit1)[1]</pre>
b_hat1 <- coef(fit1)[2]</pre>
a_hat2 <- coef(fit2)[1]
b_hat2 <- coef(fit2)[2]</pre>
print(fit1)
##
## Call:
## lm(formula = y ~ x, data = fake)
##
## Coefficients:
## (Intercept)
                      3.078
         1.103
print(fit2)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  y ~ x
## observations: 100
## predictors:
## -----
               Median MAD_SD
## (Intercept) 1.1
                       1.1
## x
               3.1
                       0.1
##
## Auxiliary parameter(s):
         Median MAD_SD
## sigma 4.7
                0.3
##
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
The two programs give nearly identical results.
```

8.8b

Plot the simulated data and the two fitted regression lines.

```
text(x_bar, a_hat1 + b_hat1*x_bar-5, paste("y =", round(a_hat1, 2), "+", round(b_hat1, 2), "x"), adj=0, text(x_bar-4, a_hat2 + b_hat2*x_bar+10, paste("y =", round(a_hat2, 2), "+", round(b_hat2, 2), "x"), adj
```

Data and 2 fitted regression lines

8.8c

Repeat the two steps above, but try to create conditions for your simulation so that lm and stan_glm give much different results.

```
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.2e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration:
                       200 / 2000 [ 10%]
                                            (Warmup)
                                            (Warmup)
## Chain 1: Iteration:
                        400 / 2000 [ 20%]
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
                                            (Sampling)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.070839 seconds (Warm-up)
```

```
## Chain 1:
                           0.057962 seconds (Sampling)
## Chain 1:
                           0.128801 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.7e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
                        800 / 2000 [ 40%]
## Chain 2: Iteration:
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.066993 seconds (Warm-up)
## Chain 2:
                           0.058008 seconds (Sampling)
## Chain 2:
                           0.125001 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.4e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.069206 seconds (Warm-up)
## Chain 3:
                           0.07027 seconds (Sampling)
## Chain 3:
                           0.139476 seconds (Total)
## Chain 3:
##
```

```
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.8e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.090724 seconds (Warm-up)
## Chain 4:
                           0.072352 seconds (Sampling)
## Chain 4:
                           0.163076 seconds (Total)
## Chain 4:
##
## Call:
## lm(formula = y ~ x, data = fake)
##
## Coefficients:
## (Intercept)
                          Х
        69.490
                      1.347
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  v ~ x
## observations: 5
## predictors:
## ----
##
               Median MAD SD
## (Intercept) 69.7
                      48.8
                       2.6
                1.3
##
## Auxiliary parameter(s):
        Median MAD_SD
## sigma 3.1
                1.1
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

Data and 2 fitted regression lines

gives the result: y = 69.49 + 1.35x; The stan glm gives the result: y = 69.75 + 1.32x.

10.1 Regression with interactions:

Simulate 100 data points from the model, y = b0 + b1x + b2z + b3xz + error, with a continuous predictor x and a binary predictor z, coefficients b = c(1, 2, -1, -2), and errors drawn independently from a normal distribution with mean 0 and standard deviation 3, as follows. For each data point i, first draw zi, equally likely to take on the values 0 and 1. Then draw xi from a normal distribution with mean zi and standard deviation 1. Then draw the error from its normal distribution and compute yi.

10.1a

Display your simulated data as a graph of y vs. x, using dots and circles for the points with z = 0 and 1, respectively.

```
set.seed(1)
zi <- rbinom(100, 1, 0.5)
z <- data.frame(zi)
error <- rnorm(100, 0, 3)
x <- data.frame()
for (i in 1:100){

x[i, 1] <- rnorm(1, z[i, 1], 1)
}
y = 1 + 2*x - z - 2*x*z + error
fake <- data.frame(x, z, y)
colors <- ifelse(fake$zi == 0, "blue", "red")
pch1 <- ifelse(fake$zi == 0, 20, 1)
plot(fake$V1, fake$V1.1, xlab = "x", ylab = "y", main="Simulated data", col = colors, pch = pch1)</pre>
```


Simulated data

10.1b

Fit a regression predicting y from x and z with no interaction. Make a graph with the data and two parallel lines showing the fitted model.

```
fit0 <- stan_glm(V1.1 ~ V1 + zi, data = fake)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.4e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
                                            (Warmup)
## Chain 1: Iteration:
                        200 / 2000 [ 10%]
## Chain 1: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
                                            (Warmup)
## Chain 1: Iteration:
                        800 / 2000 [ 40%]
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
```

```
## Chain 1: Elapsed Time: 0.072064 seconds (Warm-up)
## Chain 1:
                           0.074073 seconds (Sampling)
## Chain 1:
                           0.146137 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.8e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.068299 seconds (Warm-up)
## Chain 2:
                           0.06697 seconds (Sampling)
## Chain 2:
                           0.135269 seconds (Total)
## Chain 2:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.6e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.058163 seconds (Warm-up)
## Chain 3:
                           0.065596 seconds (Sampling)
## Chain 3:
                           0.123759 seconds (Total)
## Chain 3:
```

```
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
                       1 / 2000 [ 0%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.063812 seconds (Warm-up)
## Chain 4:
                           0.072729 seconds (Sampling)
## Chain 4:
                           0.136541 seconds (Total)
## Chain 4:
print(fit0)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  V1.1 ~ V1 + zi
## observations: 100
## predictors:
## -----
##
               Median MAD_SD
                       0.4
## (Intercept) 0.8
                       0.3
## V1
                1.3
## zi
               -2.0
                       0.7
##
## Auxiliary parameter(s):
        Median MAD SD
## sigma 3.1
               0.2
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
b hat <- coef(fit0)</pre>
plot(fake$V1, fake$V1.1, xlab = "x", ylab = "y", main="Data and two parallel lines", col = colors, pch
abline(b_hat[1], b_hat[2], col="blue")
abline(b_hat[1] + b_hat[3], b_hat[2], col="red")
x_bar <- mean(fake$V1)</pre>
text(x_bar-0.5, b_hat[1] + b_hat[2]*x_bar+1.5,
     paste("y =", round(b_hat[1], 2), "+", round(b_hat[2], 2), "x"),
    adj=0, col = "blue")
```

```
text(x_bar-0.5, b_hat[1] + b_hat[3] + b_hat[2]*x_bar-1,
    paste("y =", round(b_hat[1] + b_hat[3], 2), "+", round(b_hat[2], 2), "x"),
    adj=0, col = "red")
```

Data and two parallel lines

= 0, the fitted model is y = 0.81 + 1.26x; When z = 1, the fitted model is y = -1.14 + 1.26x.

10.1c

Fit a regression predicting y from x, z, and their interaction. Make a graph with the data and two lines showing the fitted model.

```
fit1 <- stan_glm(V1.1 ~ V1 + zi + V1:zi, data = fake, refresh = 0)
print(fit1)</pre>
```

```
## stan_glm
##
    family:
                   gaussian [identity]
                   V1.1 ~ V1 + zi + V1:zi
    formula:
##
    observations: 100
##
    predictors:
##
##
               Median MAD_SD
                        0.4
## (Intercept)
                0.8
## V1
                 2.2
                        0.4
                        0.7
## zi
                -0.7
## V1:zi
                -2.2
                        0.6
##
## Auxiliary parameter(s):
##
         Median MAD_SD
                 0.2
## sigma 2.9
##
```

```
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg

colors <- ifelse(fake$zi == 0, "blue", "red")
pch1 <- ifelse(fake$zi == 0, 20, 1)
plot(fake$V1, fake$V1.1, xlab = "x", ylab = "y", main="Data and two lines", col = colors, pch = pch1)
b_hat <- coef(fit1)
abline(b_hat[1], b_hat[2], col="blue")
abline(b_hat[1] + b_hat[3], b_hat[2] + b_hat[4], col="red")
text(x_bar-0.5, b_hat[1] + b_hat[2]*x_bar+1.5,
    paste("y =", round(b_hat[1], 2), "+", round(b_hat[2], 2), "x"),
    adj=0, col = "blue")

text(x_bar-0.5, b_hat[1] + b_hat[3] + b_hat[2]*x_bar-1,
    paste("y =", round(b_hat[1] + b_hat[3], 2), "+", round(b_hat[2] + b_hat[4], 2), "x"),
    adj=0, col = "red")</pre>
```

Data and two lines

= 0, the fitted model is: y = 0.77 + 2.23x; When z = 1, the fitted model is: y = 0.07 + 0.07x.

10.2 Regression with interactions:

Here is the output from a fitted linear regression of outcome y on pre-treatment predictor x, treatment indicator z, and their interaction:

10.2a

Write the equation of the estimated regression line of y on x for the treatment group and the control group, and the equation of the estimated regression line of y on x for the control group.

The equation of the estimated regression line of y on x for the treatment group and the control group is y = 1.2 + 1.6x + 2.7z + 0.7xz;

The equation of the estimated regression line of y on x for the control group is y = 1.2 + 1.6x.

10.2b

Graph with pen on paper the two regression lines, assuming the values of x fall in the range (0, 10). On this graph also include a scatterplot of data (using open circles for treated units and dots for controls) that are consistent with the fitted model.

```
set.seed(1)
b_hat <- c(1.2, 1.6, 2.7, 0.7)
x \leftarrow runif(100, 0, 10)
error \leftarrow rnorm(100, 0, 0.5)
z <- round(runif(100, 0, 1))
y <- b_hat[1] + b_hat[2]*x + b_hat[3]*z + b_hat[4]*x*z + error
df <- data.frame(x, z, y)</pre>
x_bar <- mean(df$x)</pre>
ggplot(df, aes(x, y)) +
  geom_point(aes(color = ifelse(z==0, "blue", "red")), pch=ifelse(z==0, 1, 20), show.legend = FALSE) +
  geom_abline(
    intercept = c(b_hat[1], b_hat[1] + b_hat[3]),
    slope = c(b_hat[2], b_hat[2] + b_hat[4]),
    color = c("red", "blue")) +
  geom_text(aes(x=x_bar,y=b_hat[1] + b_hat[2]*x_bar),label="y = 1.2+1.6x",
            size=5,col = "red") +
  geom_text(aes(x=x_bar,y=b_hat[1] + b_hat[3] + (b_hat[2]+b_hat[4])*x_bar),label="y = 3.9+2.3x",
            size=5,col = "blue") +
  labs(title = "Date and two regression lines")
```

Date and two regression lines

10.5 Regression modeling and prediction:

The folder KidIQ contains a subset of the children and mother data discussed earlier in the chapter. You have access to children's test scores at age 3, mother's education, and the mother's age at the time she gave birth for a sample of 400 children.

```
data_kid <- read.csv("/Users/amelia/Documents/MA678/kidiq/kidiq.csv", header = TRUE)
kidiq <- head(data_kid, 400)</pre>
```

10.5a

Fit a regression of child test scores on mother's age, display the data and fitted model, check assumptions, and interpret the slope coefficient. Based on this analysis, when do you recommend mothers should give birth? What are you assuming in making this recommendation?

```
fit <- stan_glm(kid_score~mom_age, data = kidiq)</pre>
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.3e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.23 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration:
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1:
             Elapsed Time: 0.062655 seconds (Warm-up)
## Chain 1:
                           0.102994 seconds (Sampling)
## Chain 1:
                           0.165649 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.8e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.28 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
```

```
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.062028 seconds (Warm-up)
## Chain 2:
                           0.092418 seconds (Sampling)
## Chain 2:
                           0.154446 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.055136 seconds (Warm-up)
                           0.094897 seconds (Sampling)
## Chain 3:
## Chain 3:
                           0.150033 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2.2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
```

```
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                           (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                           (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.056754 seconds (Warm-up)
## Chain 4:
                           0.087762 seconds (Sampling)
## Chain 4:
                           0.144516 seconds (Total)
## Chain 4:
print(fit)
## stan glm
## family:
                  gaussian [identity]
## formula:
                  kid_score ~ mom_age
## observations: 400
## predictors:
## -----
##
               Median MAD_SD
## (Intercept) 66.7
                       8.5
## mom_age
               0.9
                       0.4
##
## Auxiliary parameter(s):
        Median MAD SD
## sigma 20.4
              0.7
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
ggplot(kidiq, aes(mom_age, kid_score)) +
  geom_point() +
  geom_abline(
    intercept = coef(fit)[1],
   slope = coef(fit)[2],
    col = "blue") +
  geom_text(aes(x=23, y=95), label="y = 66.7 + 0.9x",
            size=5,col = "blue") +
```

labs(title = "Date and the fitted model")

Date and the fitted model


```
The assumptions (Gauss-Markov):
```

- (1)var (ϵ_i) is the same, i = 1, 2, 3, ...;
- (2)cov $(\epsilon_i, \epsilon_j) = 0, i \neq j.$

Check the assumptions:

```
error <- fitted(fit) - kidiq$kid_score
df <- data.frame(kidiq, fitted(fit), error)
ggplot(df, aes(x = error)) + geom_density() + labs(title = "The density plot of errors")</pre>
```

The density plot of errors

Normal Q-Q Plot

cording to the images, the assumptions are not satisfied. The slope coefficient 0.9 means: if we compare a

mother with age of 0 to mother with age of 1 expect the child to have difference in IQ of 0.9 on average.

```
a <- tapply(df$kid_score, df$mom_age, mean)
print(a)
         17
                   18
                            19
                                      20
                                               21
                                                         22
                                                                   23
                                                                            24
## 88.50000 71.60000 90.07895 81.52500 84.86667 83.80000 88.14286 92.91304
         25
                   26
                            27
                                      28
## 86.48571 90.90625 91.35000 86.00000 99.00000
```

I recommend mothers should give birth at the age of 29. I assume the group size of every age is equal.

10.5b

Repeat this for a regression that further includes mother's education, interpreting both slope coefficients in this model. Have your conclusions about the timing of birth changed?

```
fit1 <- stan glm(kid score~mom age + mom hs, data = kidiq)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.5e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.25 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration:
## Chain 1: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1:
             Elapsed Time: 0.072512 seconds (Warm-up)
## Chain 1:
                           0.099636 seconds (Sampling)
## Chain 1:
                           0.172148 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.2e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
```

(Warmup)

Chain 2: Iteration: 600 / 2000 [30%]

```
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.065364 seconds (Warm-up)
## Chain 2:
                           0.097515 seconds (Sampling)
## Chain 2:
                           0.162879 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.8e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.070348 seconds (Warm-up)
## Chain 3:
                           0.095773 seconds (Sampling)
## Chain 3:
                           0.166121 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.7e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
```

```
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.065339 seconds (Warm-up)
## Chain 4:
                           0.095643 seconds (Sampling)
## Chain 4:
                           0.160982 seconds (Total)
## Chain 4:
print(fit1)
## stan glm
  family:
                  gaussian [identity]
   formula:
                  kid_score ~ mom_age + mom_hs
##
   observations: 400
   predictors:
## ----
               Median MAD_SD
##
## (Intercept) 66.8
                       8.7
## mom_age
                0.5
                       0.4
                       2.6
## mom hs
               11.6
##
## Auxiliary parameter(s):
         Median MAD SD
                 0.7
## sigma 19.9
##
## ----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

The slope coefficient of mom_age: Comparing childern with the same value of mom_hs, but whose mothers differ by 1 year in age, we would expect to see a difference of 0.5 points in the child's test score. The slope coefficient of mom_hs: Comparing childern whose mothers have the same age, but who differed in whether they completed high school, the model predicts an expected difference of 11.5 in their test scores.

10.5c

Now create an indicator variable reflecting whether the mother has completed high school or not. Consider interactions between high school completion and mother's age. Also create a plot that shows the separate regression lines for each high school completion status group.

```
fit2 <- stan_glm(kid_score~mom_age + mom_hs + mom_age:mom_hs, data = kidiq)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.7e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.27 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
```

```
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.326605 seconds (Warm-up)
## Chain 1:
                           0.370538 seconds (Sampling)
## Chain 1:
                           0.697143 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.8e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
             Elapsed Time: 0.297945 seconds (Warm-up)
## Chain 2:
                           0.318761 seconds (Sampling)
## Chain 2:
                           0.616706 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.9e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
```

```
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.377634 seconds (Warm-up)
## Chain 3:
                           0.371321 seconds (Sampling)
## Chain 3:
                           0.748955 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.7e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4:
             Elapsed Time: 0.35205 seconds (Warm-up)
## Chain 4:
                           0.403813 seconds (Sampling)
## Chain 4:
                           0.755863 seconds (Total)
## Chain 4:
print(fit2)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  kid_score ~ mom_age + mom_hs + mom_age:mom_hs
## observations: 400
##
   predictors:
## -----
##
                  Median MAD SD
## (Intercept)
                  108.0
                          18.1
                   -1.5
                           0.8
## mom_age
## mom_hs
                  -40.6
                          20.3
## mom_age:mom_hs
                    2.4
                           0.9
## Auxiliary parameter(s):
         Median MAD SD
                 0.7
## sigma 19.8
##
## ----
## * For help interpreting the printed output see ?print.stanreg
```

* For info on the priors used see ?prior_summary.stanreg

Data and separate regression lines

10.5d

Finally, fit a regression of child test scores on mother's age and education level for the first 200 children and use this model to predict test scores for the next 200. Graphically display comparisons of the predicted and actual scores for the final 200 children.

```
df2 <- kidiq[1:200,]
df3 <- kidiq[201:400,]
fit3 <- stan_glm(kid_score ~ mom_age + mom_hs + mom_age:mom_hs, data = df2)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:</pre>
```

```
## Chain 1: Gradient evaluation took 2.6e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.345061 seconds (Warm-up)
## Chain 1:
                           0.371972 seconds (Sampling)
## Chain 1:
                           0.717033 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 3.2e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.32 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.298571 seconds (Warm-up)
## Chain 2:
                           0.290341 seconds (Sampling)
## Chain 2:
                           0.588912 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
```

```
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.33549 seconds (Warm-up)
## Chain 3:
                           0.329111 seconds (Sampling)
## Chain 3:
                           0.664601 seconds (Total)
## Chain 3:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.8e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
                        800 / 2000 [ 40%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.350814 seconds (Warm-up)
## Chain 4:
                           0.358816 seconds (Sampling)
## Chain 4:
                           0.70963 seconds (Total)
## Chain 4:
print(fit3)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  kid_score ~ mom_age + mom_hs + mom_age:mom_hs
## observations: 200
## predictors:
## ----
##
                  Median MAD_SD
                          22.4
## (Intercept)
                  114.9
## mom_age
                   -1.2
                           1.0
```

```
## mom hs
                                                                                -37.0
                                                                                                                  26.1
                                                                                       1.8
                                                                                                                      1.2
## mom_age:mom_hs
##
##
           Auxiliary parameter(s):
##
                                       Median MAD SD
## sigma 17.6
                                                                          0.9
##
## ----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
score_hat \leftarrow coef(fit3)[1] + coef(fit3)[2]*df3$mom_age + coef(fit3)[3]*df3$mom_hs + coef(fit3)[4]*df3$mom_hs + coef(fit3)[4]*df3
df4 <- data.frame(df3, score_hat)</pre>
ggplot(df4) +
        geom_point(aes(mom_age, kid_score), show.legend = FALSE, col = "blue") +
        geom_point(aes(mom_age, score_hat), show.legend = FALSE, col = "red") +
        labs(title = "Predicted and actual scores")
```

Predicted and actual scores

#blue dots are the actual scores; red dots are the predcted scores

10.6 Regression models with interactions:

The folder Beauty contains data (use file beauty.csv) Beauty and teaching evaluations from Hamermesh and Parker (2005) on student evaluations of instructors' beauty and teaching quality for several courses at the University of Texas. The teaching evaluations were conducted at the end of the semester, and the beauty judgments were made later, by six students who had not attended the classes and were not aware of the course evaluations.

See also Felton, Mitchell, and Stinson (2003) for more on this topic.

```
df106 <- read.csv("/Users/amelia/Desktop/678hw1/beauty.csv", header=T)</pre>
```

10.6a

Run a regression using beauty (the variable beauty) to predict course evaluations (eval), adjusting for various other predictors. Graph the data and fitted model, and explain the meaning of each of the coefficients along with the residual standard deviation. Plot the residuals versus fitted values.

```
fit106 <- stan_glm(eval~beauty, data = df106)</pre>
```

```
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.2e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.049254 seconds (Warm-up)
## Chain 1:
                           0.096847 seconds (Sampling)
## Chain 1:
                           0.146101 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.4e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
```

```
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.046086 seconds (Warm-up)
## Chain 2:
                           0.097804 seconds (Sampling)
## Chain 2:
                           0.14389 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 3e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.3 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.047181 seconds (Warm-up)
## Chain 3:
                           0.100867 seconds (Sampling)
## Chain 3:
                           0.148048 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2.3e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.23 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.051792 seconds (Warm-up)
```

```
## Chain 4:
                          0.100202 seconds (Sampling)
## Chain 4:
                          0.151994 seconds (Total)
## Chain 4:
print(fit106)
## stan_glm
## family:
                 gaussian [identity]
## formula:
                 eval ~ beauty
## observations: 463
## predictors: 2
## ----
             Median MAD SD
## (Intercept) 4.0
                     0.0
## beauty
            0.1
                     0.0
##
## Auxiliary parameter(s):
       Median MAD_SD
## sigma 0.5
              0.0
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
ggplot(df106, aes(beauty, eval)) +
 geom_point(show.legend = FALSE) +
 geom_abline(
   intercept = coef(fit106)[1],
   slope = coef(fit106)[2],
   color = "blue") +
 labs(title = "Data and fitted model")
```

Data and fitted model

The intercept 4.0 reflects the predicted course evaluation for teacher whose beauty is 0. The coefficient of beauty means: If we compare a teacher with beauty of 0 to teacher with beauty of 1 expect the teacher to have difference in course evaluation of 0.1 on average.

```
residual <- coef(fit106)[1] + coef(fit106)[2] * df106$beauty
df106_1 <- data.frame(fitted(fit106), residual)
colnames(df106_1)[1] <- 'fitted_values'
ggplot(df106_1, aes(fitted_values, residual)) +
    geom_point(show.legend = FALSE) +
    labs(title = "Residuals versus fitted values")</pre>
```

Residuals versus fitted values

10.6b

Fit some other models, including beauty and also other predictors. Consider at least one model with interactions. For each model, explain the meaning of each of its estimated coefficients.

```
The first model is eval = \beta_0 + \beta_1 beauty + \beta_2 female + \epsilon
```

```
fit106_1 <- stan_glm(eval ~ beauty + female, data = df106)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1: Gradient evaluation took 2.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.29 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
```

```
## Chain 1: Iteration: 2000 / 2000 [100%]
## Chain 1:
## Chain 1: Elapsed Time: 0.067394 seconds (Warm-up)
## Chain 1:
                           0.111931 seconds (Sampling)
## Chain 1:
                           0.179325 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 7.2e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.72 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
## Chain 2: Iteration:
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.058593 seconds (Warm-up)
## Chain 2:
                           0.112 seconds (Sampling)
## Chain 2:
                           0.170593 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.9e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.056398 seconds (Warm-up)
## Chain 3:
                           0.103794 seconds (Sampling)
```

```
## Chain 3:
                           0.160192 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.8e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.053089 seconds (Warm-up)
## Chain 4:
                           0.102371 seconds (Sampling)
## Chain 4:
                           0.15546 seconds (Total)
## Chain 4:
print(fit106_1)
## stan_glm
## family:
                  gaussian [identity]
                  eval ~ beauty + female
## formula:
   observations: 463
##
   predictors:
## -----
##
               Median MAD_SD
## (Intercept)
                4.1
                       0.0
## beauty
                0.1
                       0.0
## female
               -0.2
                       0.0
##
## Auxiliary parameter(s):
##
         Median MAD SD
## sigma 0.5
                0.0
##
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

The intercept 4.1 means: If a male teacher whose beauty is 0, then we would predict his course evaluation to be 4.1.

The coefficient of beauty means: Comparing teachers of the same gender, but whose beauty differs by 1 point, we would expect to see a difference of 0.1 in the course evaluation.

The coefficient of female means: Comparing teachers with the same value of beauty, but differ in gender, the model predicts an expected difference of 0.2.

```
The second model is eval = \beta_0 + \beta_1 beauty + \beta_2 female + \beta_3 beauty * female + \epsilon
fit106_2 <- stan_glm(eval ~ beauty + female + beauty:female, data = df106)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.5e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.25 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                             (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                             (Warmup)
                        400 / 2000 [ 20%]
## Chain 1: Iteration:
                                             (Warmup)
                        600 / 2000 [ 30%]
## Chain 1: Iteration:
                                             (Warmup)
## Chain 1: Iteration:
                        800 / 2000 [ 40%]
                                             (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 1:
## Chain 1:
            Elapsed Time: 0.082428 seconds (Warm-up)
## Chain 1:
                            0.141889 seconds (Sampling)
## Chain 1:
                            0.224317 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
                           1 / 2000 [ 0%]
## Chain 2: Iteration:
                                             (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                             (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                             (Warmup)
                        600 / 2000 [ 30%]
## Chain 2: Iteration:
                                             (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                             (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.074586 seconds (Warm-up)
## Chain 2:
                            0.141714 seconds (Sampling)
## Chain 2:
                            0.2163 seconds (Total)
## Chain 2:
##
```

```
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.8e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.070645 seconds (Warm-up)
## Chain 3:
                           0.109595 seconds (Sampling)
## Chain 3:
                           0.18024 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2.2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.068453 seconds (Warm-up)
## Chain 4:
                           0.131182 seconds (Sampling)
## Chain 4:
                           0.199635 seconds (Total)
## Chain 4:
print(fit106_2)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  eval ~ beauty + female + beauty:female
```

```
observations: 463
##
    predictors:
##
##
                 Median MAD_SD
## (Intercept)
                  4.1
                         0.0
## beauty
                  0.2
                         0.0
## female
                 -0.2
                         0.1
## beauty:female -0.1
                         0.1
##
##
  Auxiliary parameter(s):
         Median MAD_SD
## sigma 0.5
                0.0
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

The intercept 4.1 represents the predicted course evaluation scores for male teachers whose beauty score is 0. The coefficient of beauty can be thought of as the comparison of mean course evaluation scores across male teachers whose beauty differs by 1 point.

The coefficient of female can be conceived as the difference between the predicted course evaluation scores for male teachers who have beauty of 0, and female teachers who have beauty of 0.

The coefficient on the interaction term represents the difference in the slope for beauty, comparing male teachers and female teachers.