通信电路 第二周作业 Cadence 报告

刘开济

2019010973

1 用传输线实现电容电感

1.1 感抗 L 型网络实现低通/高通最大功率传输匹配

由纸质作业不难得到基于电容、电感的电路设计:

图 1: L型低通匹配电路

图 2: L型高通匹配电路

其中有关键参数:

$$\begin{cases} L_{LPF} = 346.87nH \\ C_{LPF} = 6.9374pF \\ L_{HPF} = 365.13nH \\ C_{HPF} = 7.3025pF \end{cases}$$

考察其幅频特性。

分别考虑其在 50MHz-200MHz 与 50MHz-500MHz 的幅频特性,可知其在 很宽的频带内比较平坦。

图 3: LPF 50MHz-200MHz 范围幅频特性 图 4: HPF 50MHz-200MHz 范围幅频特性

图 5: LPF 50MHz-500MHz 范围幅频特性 图 6: HPF 50MHz-500MHz 范围幅频特性

1.2 传输线 L 型网络实现低通/高通最大功率传输匹配

我们先考察传输线等效电感电容的理论。

对于理想传输线,输入阻抗满足:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 tan\beta l}{Z_0 + jZ_L tan\beta l}$$
 (1)

若取终端短路,对 $\frac{1}{8}$ 波长传输线就有:

$$Z_{in}|_{short,\frac{1}{8}\lambda} = jZ_0 \tag{2}$$

可知 frac18 波长终端短路传输线可以等效为电感。若取终端开路,则相应有:

$$Z_{in}|_{open,\frac{1}{8}\lambda} = \frac{Z_0}{j} \tag{3}$$

可知 $\frac{1}{8}$ 波长终端开路传输线可以等效为电容。考虑匹配频点 $f_0=100MHz$,根据

之前感抗 LC 匹配网络,可以解得对应传输线的特征阻抗,其参数为:

$$\begin{cases} Z_0|LPF, L = 217.9449\Omega \\ Z_0|LPF, C = 229.4157\Omega \\ Z_0|HPF, C = 217.9449\Omega \\ Z_0|HPF, L = 229.4157\Omega \end{cases}$$

仿真电路如下:

(a) 传输线 LPF schematic

(b) 传输线 HPF schematic

图 7: 传输线 L 型匹配电路设计

(a) 传输线 LPF 50MHz-200MHz 幅频特性

(c) 传输线 HPF 50MHz-200MHz 幅频特性

(d) 传输线 HPF 50MHz-1GHz 幅频特性

图 8: 传输线 L 型匹配网络幅频特性

我们发现, 在匹配频点附近, 传输线电路的幅频特性与 LC 感抗电路相近。但在高频段, 传输线电路出现了明显的选频尖峰。

2 用 Butterworth 方法实现低通/带通滤波器

2.1 Butterworth 低通滤波

理论分析按照课件操作依样画葫芦。本滤波器实现比较简单,是一个二阶 Butterworth LPF。

图 9: LPF 电路

考察其幅频特性,有:

图 10: LPF 幅频特性

检验设计参数,其中有额定电压 $V_0 = 500 mV$ 有:

采样频率 f	采样压降 V_{smpl}	衰减系数 $\alpha_s = 20 log_{10}(\frac{V_{smpl}}{V_0}) $
2.01502 kHz	474.6816mV	0.4514
29.7305 kHz	6.939613mV	37.1527

可见该设计符合需求。

2.2 Butterworth 带通滤波

理论分析仍参考课件,本滤波器低通原型至少为一个三阶 Butterworth 滤波器。

图 11: BPF 电路

考察其幅频特性,有:

图 12: BPF 幅频特性

分别考察其通带与阻带衰减系数。

采样频率 f	采样压降 V_{smpl}	衰减系数 $\alpha_s=20 log_{10}(rac{V_{smpl}}{V_0}) $
3.70488 kHz	398.2865mV	1.9755
9.70885 kHz	424.1371mV	1.4293
29.6kHz	7.588475mV	36.3763

通带和阻带衰减系数满足设计要求。实验用 Matlab 代码打包上传。