BINET-CAUCHYJEV TEOREM

AB & Mn, det (AB) = det A det B

2ad. 3.)

a) Nema 2a mat
$$A \in \mathbb{R}^{n+m}$$
 rajedi $AA^T = I$.

Keliko (2meri det (A).

det (A A^T) = det (I) = 1

 $= 2 \cdot (det A)^2 = 1$

det (A) · det (A^T)

 $= 2 \cdot (det A)^2 = 1$
 $= 2 \cdot (det A)^2 = 1$

b) Also je
$$\det(A) = 5$$
, Keliho je $\det(A^2)^2$

$$\det(A^2) = \left(\det(A)\right)^2 = 5^2 - 25$$

$$D2$$
-pitat Gracyiu
+ det $(NA) = N^n$ det (A)

7. B.

$$5 - 2n - 1$$
 $4 - 2n - 9$
 $5 - 2n - 2$

Prince 8.)

 $= \alpha \cdot \alpha^{n-1} + (-1) \cdot \beta \cdot \beta^{n-1} = \alpha \cdot (-1) \cdot \beta^{n}$

2ad. 6.) A) $\begin{vmatrix} -1 & 2 & 2 & \cdots & 2 \\ 2 & -1 & 2 & \cdots & 2 \\ 2 & 2 & -1 & \cdots & 2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 2 & 2 & 2 & \cdots & -1 \end{vmatrix}$ Suma svakoj stupca je 2(n-1)-1 = 2n-3

 $= \begin{pmatrix} 2n^{-3} & 2n^{-3} & 2n^{-3} & 2n^{-3} \\ 2 & -1 & 2 & 2 \\ 2 & 2 & -1 & 2 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2n^{-3} & 2n^{-3} & 2n^{-3} & 2n^{-3} \\ 2n^{-1} & 2n^{-2} & 2n^{-2} & 2n^{-2} \\ 2n^{-1} &$

= (n -3) (-3) n-7