CHAPTER 28: DATA MINING CONCEPTS

28.14 Apply the Apriori algorithm to the following data set:

Trans ID	Items Purchased	
101	milk, bread, eggs	
102	milk, juice	
103	juice, butter	
104	milk, bread, eggs	
105	coffee, eggs	
106	coffee	
107	coffee, juice	
108	milk, bread, cookies, eggs	
109	cookies, butter	
110	milk, bread	

The set of items is {milk, bread, cookies, eggs, butter, coffee, juice}. Use 0.2 for the minimum support value.

28.15 Show two rules that have a confidence of 0.7 or greater for an itemset containing three items from Exercise 14.

27.20 Consider the following set of two-dimensional records:

RID	Dimension 1	Dimension 2
1	8	4
2	5	4
3	2	4
4	2	6
5	2	8
6	8	6

Also consider two different clustering schemes: (1) where Cluster 1 contains records $\{1, 2, 3\}$ and Cluster 2 contains records $\{4, 5, 6\}$ and (2) where Cluster 1 contains records $\{1, 6\}$ and Cluster 2 contains records $\{2, 3, 4, 5\}$. Which scheme is better and why?

28.21 Use the K-means algorithm to cluster the data from Exercise 28.20. We can use a value of 3 for K and can assume that the records with RIDs 1, 3, and 5 are used for the initial cluster centroids (means).