Change-point detection in Phase I for autocorrelated Poisson profiles with random or unbalanced designs

Supplementary Material

A. Random design scenario

In this section, other simulation results in the random design scenario are given corresponding to three underlying correlation structures: AR(1), exchangeable, and independent.

A.1. AR(1) correlation

When the true correlation structure is AR(1), performance comparisons of different methods in the random design scenario are presented in Tables 1-2 and Figs. 1-2.

Table 1. Performance comparison with AR(1) correlation coefficient $\rho = 0.9$ when $\tau = 10$ and 50 in random design scenario.

Shift			Sign	al proba	abilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 10$)						
(0, 0.04)	0.058	0.614	0.595	0.159	0.057	0.060	0.052	0.110	0.534	0.530	0.347	0.000	0.114
(0, 0.05)	0.067	0.855	0.838	0.238	0.048	0.068	0.048	0.105	0.632	0.634	0.395	0.000	0.114
(0, 0.06)	0.076	0.965	0.959	0.367	0.056	0.077	0.050	0.119	0.745	0.745	0.501	0.000	0.125
(0.07, 0)	0.191	0.443	0.440	0.197	0.063	0.203	0.065	0.293	0.449	0.454	0.352	0.000	0.295
(0.09, 0)	0.306	0.725	0.721	0.329	0.082	0.322	0.080	0.378	0.591	0.592	0.448	0.000	0.380
(0.11, 0)	0.475	0.906	0.904	0.520	0.097	0.493	0.099	0.470	0.703	0.700	0.559	0.000	0.475
(0.025, 0.025)	0.085	0.512	0.501	0.144	0.059	0.087	0.056	0.118	0.474	0.473	0.341	0.000	0.129
(0.035, 0.035)	0.132	0.869	0.858	0.297	0.060	0.139	0.061	0.221	0.639	0.643	0.457	0.000	0.224
(0.045, 0.045)	0.199	0.989	0.986	0.500	0.066	0.211	0.063	0.317	0.792	0.791	0.549	0.000	0.316
						$\tau = 50$)						
(0, 0.04)	0.055	0.664	0.652	0.142	0.069	0.052	0.051	0.091	0.584	0.579	0.244	0.142	0.092
(0, 0.05)	0.069	0.885	0.875	0.225	0.084	0.068	0.049	0.098	0.697	0.693	0.343	0.131	0.094
(0, 0.06)	0.080	0.978	0.972	0.321	0.093	0.076	0.047	0.115	0.790	0.789	0.422	0.131	0.106
(0.07, 0)	0.205	0.507	0.506	0.207	0.256	0.197	0.054	0.290	0.490	0.488	0.310	0.272	0.292
(0.09, 0)	0.330	0.784	0.781	0.351	0.410	0.311	0.062	0.368	0.622	0.624	0.421	0.337	0.370
(0.11, 0)	0.480	0.936	0.932	0.544	0.575	0.463	0.075	0.455	0.727	0.726	0.531	0.396	0.458
(0.025, 0.025)	0.088	0.559	0.550	0.143	0.104	0.081	0.057	0.141	0.513	0.517	0.214	0.154	0.131
(0.035, 0.035)	0.130	0.907	0.896	0.292	0.160	0.120	0.054	0.203	0.708	0.709	0.398	0.211	0.193
(0.045, 0.045)	0.212	0.995	0.994	0.511	0.274	0.199	0.058	0.280	0.839	0.839	0.545	0.285	0.283

Table 2. Performance comparison with AR(1) correlation coefficient $\rho = 0.3$ when $\tau = 10$ and 50 in random design scenario.

Shift			Sign	al proba	abilities						$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	- 5	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 10$)							
(0, 0.06)	0.384	0.418	0.423	0.390	0.073	0.391	0.101	0	0.433	0.437	0.433	0.428	0.000	0.436
(0, 0.08)	0.654	0.710	0.709	0.668	0.112	0.660	0.159	0	0.523	0.546	0.547	0.543	0.002	0.525
(0.05, 0)	0.595	0.513	0.514	0.459	0.102	0.602	0.139	0	0.495	0.475	0.473	0.469	0.000	0.496
(0.07, 0)	0.908	0.866	0.864	0.810	0.184	0.912	0.277	0	0.674	0.665	0.661	0.659	0.009	0.672
(0.035, 0.035)	0.734	0.698	0.700	0.641	0.129	0.741	0.191	0	0.564	0.557	0.558	0.554	0.002	0.563
(0.045, 0.045)	0.934	0.926	0.927	0.890	0.229	0.937	0.354	C	0.690	0.695	0.687	0.688	0.021	0.692
						$\tau = 50$)							
(0, 0.06)	0.310	0.374	0.379	0.328	0.359	0.303	0.090	C	0.364	0.408	0.408	0.397	0.332	0.359
(0, 0.08)	0.559	0.655	0.659	0.598	0.636	0.544	0.125	0	0.494	0.548	0.550	0.542	0.440	0.495
(0.05, 0)	0.588	0.511	0.508	0.451	0.646	0.578	0.131	0	0.476	0.465	0.465	0.459	0.421	0.478
(0.07, 0)	0.890	0.847	0.850	0.788	0.922	0.885	0.261	0	0.633	0.634	0.631	0.617	0.553	0.634
(0.035, 0.035)	0.669	0.650	0.653	0.594	0.730	0.656	0.162	0	0.533	0.545	0.546	0.521	0.459	0.529
(0.045, 0.045)	0.900	0.897	0.897	0.848	0.927	0.894	0.289	C	0.648	0.661	0.663	0.652	0.548	0.645

A.2. Exchangeable correlation

When the true correlation structure is exchangeable, performance comparisons of different methods in the random design scenario are shown in Tables 3-4 and Figs. 3-4

Figure 1. Values of RMSE($\hat{\tau}$) with AR(1) correlation coefficient $\rho=0.9$ when $\tau=10$ and 50 in random design scenario.

Figure 2. Values of RMSE($\hat{\tau}$) with AR(1) correlation coefficient $\rho=0.3$ when $\tau=10$ and 50 in random design scenario.

4.

Table 3. Performance comparison with exchangeable correlation coefficient $\rho = 0.9$ when $\tau = 10$ and 50 in random design scenario.

Shift			Sign	al proba	bilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 10$)						
(0, 0.04)	0.059	0.685	0.329	0.637	0.053	0.065	0.047	0.061	0.545	0.416	0.553	0.000	0.071
(0, 0.05)	0.063	0.894	0.557	0.862	0.055	0.067	0.048	0.070	0.672	0.542	0.675	0.000	0.063
(0, 0.06)	0.062	0.982	0.767	0.969	0.051	0.067	0.044	0.081	0.783	0.660	0.787	0.000	0.093
(0.07, 0)	0.132	0.416	0.242	0.395	0.064	0.143	0.059	0.190	0.440	0.326	0.444	0.000	0.193
(0.09, 0)	0.204	0.684	0.438	0.649	0.070	0.225	0.064	0.279	0.562	0.444	0.569	0.000	0.284
(0.11, 0)	0.303	0.886	0.657	0.869	0.086	0.322	0.067	0.347	0.679	0.589	0.678	0.000	0.356
(0.025, 0.025)	0.077	0.556	0.276	0.519	0.057	0.080	0.055	0.109	0.505	0.365	0.504	0.000	0.125
(0.035, 0.035)	0.102	0.898	0.579	0.865	0.062	0.110	0.059	0.182	0.667	0.554	0.674	0.000	0.180
(0.045, 0.045)	0.143	0.993	0.852	0.989	0.066	0.154	0.055	0.207	0.814	0.688	0.813	0.000	0.217
						$\tau = 50$)						
(0, 0.04)	0.059	0.688	0.382	0.637	0.064	0.056	0.046	0.061	0.587	0.512	0.593	0.100	0.068
(0, 0.05)	0.066	0.895	0.603	0.858	0.072	0.063	0.052	0.082	0.702	0.610	0.706	0.114	0.076
(0, 0.06)	0.073	0.983	0.817	0.970	0.084	0.069	0.058	0.115	0.793	0.697	0.794	0.152	0.125
(0.07, 0)	0.146	0.443	0.287	0.416	0.176	0.138	0.054	0.224	0.469	0.394	0.466	0.208	0.218
(0.09, 0)	0.219	0.718	0.512	0.690	0.272	0.206	0.056	0.288	0.590	0.512	0.593	0.253	0.276
(0.11, 0)	0.320	0.892	0.723	0.873	0.383	0.302	0.059	0.341	0.690	0.609	0.692	0.314	0.348
(0.025, 0.025)	0.078	0.580	0.325	0.540	0.085	0.073	0.055	0.105	0.532	0.436	0.536	0.147	0.091
(0.035, 0.035)	0.110	0.902	0.649	0.872	0.125	0.106	0.053	0.160	0.699	0.600	0.707	0.194	0.163
(0.045, 0.045)	0.146	0.993	0.903	0.988	0.175	0.135	0.051	0.221	0.838	0.748	0.837	0.237	0.223

Table 4. Performance comparison with exchangeable correlation coefficient $\rho = 0.3$ when $\tau = 10$ and 50 in random design scenario.

Shift			Sign	al proba	abilities						$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	- 7	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 1$)							
(0, 0.06)	0.117	0.289	0.126	0.290	0.060	0.122	0.058	(0.196	0.351	0.215	0.348	0.000	0.208
(0, 0.08)	0.175	0.515	0.210	0.515	0.065	0.179	0.066	(0.270	0.465	0.327	0.470	0.000	0.279
(0.05, 0)	0.166	0.143	0.161	0.138	0.063	0.176	0.062	(0.273	0.268	0.269	0.269	0.000	0.274
(0.07, 0)	0.338	0.284	0.325	0.266	0.077	0.351	0.081	(0.372	0.343	0.365	0.352	0.000	0.375
(0.035, 0.035)	0.218	0.288	0.230	0.286	0.066	0.230	0.067	(0.297	0.369	0.315	0.370	0.000	0.302
(0.045, 0.045)	0.357	0.505	0.383	0.502	0.084	0.372	0.084	(0.397	0.498	0.426	0.498	0.000	0.397
						$\tau = 5$)							
(0, 0.06)	0.104	0.261	0.117	0.266	0.123	0.098	0.053	(0.185	0.379	0.200	0.377	0.174	0.182
(0, 0.08)	0.150	0.490	0.194	0.495	0.188	0.141	0.061	(0.213	0.484	0.282	0.483	0.237	0.211
(0.05, 0)	0.178	0.163	0.183	0.161	0.219	0.169	0.064	(0.238	0.248	0.249	0.248	0.243	0.233
(0.07, 0)	0.326	0.302	0.333	0.288	0.389	0.316	0.073	(0.363	0.373	0.360	0.360	0.358	0.361
(0.035, 0.035)	0.210	0.306	0.227	0.305	0.253	0.200	0.061	(0.278	0.370	0.309	0.377	0.267	0.279
(0.045, 0.045)	0.337	0.506	0.359	0.502	0.403	0.323	0.074	(0.371	0.487	0.395	0.491	0.336	0.379

A.3. Independent

When the Poisson profile samples are independent, performance comparisons of different methods in the random design scenario are provided in Table 5 and Figure 5.

B. Unbalanced design scenario

In this section, the critical values L of different detection methods for three correlation settings in the unbalanced design scenario are listed in Table 6. Then, other simulation results in the unbalanced design scenario are given corresponding to three true correlation structures: AR(1), exchangeable, and independent.

Figure 3. Values of RMSE($\hat{\tau}$) with exchangeable correlation coefficient $\rho = 0.9$ when $\tau = 10$ and 50 in random design scenario.

Figure 4. Values of RMSE($\hat{\tau}$) with exchangeable correlation coefficient $\rho = 0.3$ when $\tau = 10$ and 50 in random design scenario.

Table 5. Performance comparison for independent setting when $\tau = 10$ and 50 in random design scenario.

Shift			Signal p	robabili	ties			P($ \hat{\tau} - \tau $	≤ 1	
(δ_0, δ_1)	S_{Ind}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{AR}	S_{Exc}	Shad	LRT
					$\tau = 10$)					
(0, 0.06)	0.582	0.580	0.546	0.103	0.588	0.162	0.476	0.472	0.471	0.000	0.477
(0, 0.07)	0.753	0.747	0.722	0.131	0.761	0.230	0.571	0.568	0.566	0.002	0.570
(0.05, 0)	0.815	0.810	0.759	0.134	0.819	0.237	0.611	0.609	0.604	0.000	0.613
(0.07, 0)	0.992	0.991	0.982	0.335	0.992	0.561	0.801	0.801	0.793	0.051	0.802
(0.025, 0.025)	0.614	0.608	0.550	0.108	0.620	0.163	0.513	0.516	0.507	0.000	0.515
(0.035, 0.035)	0.924	0.921	0.888	0.198	0.925	0.351	0.680	0.681	0.673	0.016	0.684
					$\tau = 50$)					
(0, 0.06)	0.468	0.469	0.452	0.552	0.456	0.121	0.481	0.477	0.475	0.407	0.477
(0, 0.07)	0.645	0.643	0.621	0.717	0.635	0.150	0.535	0.539	0.540	0.472	0.538
(0.05, 0)	0.795	0.789	0.732	0.848	0.788	0.223	0.617	0.615	0.610	0.531	0.616
(0.07, 0)	0.988	0.987	0.975	0.995	0.987	0.513	0.797	0.798	0.788	0.677	0.797
(0.025, 0.025)	0.527	0.524	0.479	0.601	0.516	0.124	0.493	0.494	0.488	0.437	0.497
(0.035, 0.035)	0.881	0.877	0.845	0.917	0.876	0.265	0.647	0.649	0.648	0.551	0.645

Figure 5. Values of RMSE($\hat{\tau}$) for independent setting when $\tau = 10$ and 50 in random design scenario.

Table 6. Critical values L of different chart statistics for different correlation settings in unbalanced design scenario.

Chart	Independent		AR(1)]	Exchangeab	le
Statistics	$\rho = 0$	$\rho = 0.3$	$\rho = 0.6$	$\rho = 0.9$	$\rho = 0.3$	$\rho = 0.6$	$\rho = 0.9$
S_{Ind}	11.8385	17.9364	34.3145	100.1897	60.7770	112.1658	165.0564
S_{Tru}	11.8385	12.0693	11.9865	12.1532	11.7783	12.1198	12.2513
S_{AR}	11.7923	12.0948	11.9344	12.0951	34.0610	33.0242	19.6546
S_{Exc}	11.7031	12.2972	13.0888	15.5624	11.7677	12.1309	12.4207
Shad	8.8277	13.0197	24.0843	71.9877	42.9252	80.6522	116.5058
LRT	11.8303	17.9810	34.4138	99.5253	60.8572	112.3274	164.9352
GLMM	0.7486	3.8003	15.5897	100.7394	51.7593	117.6187	192.2147

B.1. AR(1) correlation

When the true correlation structure is AR(1), performance comparisons of different methods in the unbalanced design scenario are summarised in Tables 7-9 and Figs. 6-8.

Table 7. Performance comparison with AR(1) correlation coefficient $\rho = 0.9$ in unbalanced design scenario.

Shift			Sign	al proba	bilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 1$	10						
(0, 0.04)	0.056	0.562	0.551	0.102	0.046	0.062	0.052	0.071	0.519	0.517	0.177	0.000	0.068
(0, 0.06)	0.070	0.947	0.941	0.219	0.052	0.076	0.053	0.100	0.739	0.737	0.362	0.000	0.123
(0.07, 0)	0.170	0.421	0.425	0.120	0.060	0.187	0.065	0.252	0.471	0.471	0.254	0.000	0.247
(0.10, 0)	0.359	0.805	0.806	0.273	0.085	0.382	0.093	0.382	0.642	0.643	0.441	0.000	0.385
(0.03, 0.03)	0.096	0.672	0.661	0.129	0.054	0.105	0.063	0.163	0.561	0.563	0.258	0.000	0.168
(0.04, 0.04)	0.143	0.935	0.928	0.239	0.063	0.156	0.067	0.214	0.720	0.720	0.371	0.000	0.222
						$\tau = 3$	30						
(0, 0.04)	0.079	0.923	0.916	0.155	0.065	0.083	0.060	0.099	0.613	0.612	0.200	0.015	0.094
(0, 0.06)	0.114	1.000	1.000	0.446	0.080	0.116	0.058	0.136	0.840	0.842	0.421	0.018	0.131
(0.07, 0)	0.389	0.809	0.805	0.253	0.251	0.392	0.079	0.311	0.495	0.496	0.282	0.112	0.311
(0.10, 0)	0.718	0.991	0.990	0.609	0.526	0.723	0.101	0.435	0.714	0.715	0.472	0.203	0.434
(0.03, 0.03)	0.185	0.969	0.965	0.259	0.128	0.189	0.062	0.207	0.663	0.662	0.315	0.048	0.205
(0.04, 0.04)	0.319	1.000	1.000	0.528	0.204	0.322	0.076	0.291	0.818	0.820	0.455	0.099	0.293
						$\tau = 0$	50						
(0, 0.04)	0.067	0.642	0.625	0.066	0.071	0.066	0.053	0.110	0.602	0.604	0.096	0.143	0.109
(0, 0.06)	0.090	0.977	0.973	0.164	0.107	0.087	0.049	0.160	0.810	0.811	0.349	0.205	0.145
(0.07, 0)	0.232	0.500	0.500	0.107	0.270	0.225	0.065	0.303	0.500	0.502	0.218	0.299	0.303
(0.10, 0)	0.424	0.862	0.860	0.269	0.506	0.412	0.071	0.436	0.691	0.688	0.447	0.380	0.431
(0.03, 0.03)	0.120	0.755	0.748	0.111	0.140	0.116	0.061	0.202	0.640	0.641	0.193	0.212	0.200
(0.04, 0.04)	0.179	0.968	0.963	0.204	0.225	0.172	0.054	0.309	0.792	0.794	0.399	0.302	0.299

Table 8. Performance comparison with AR(1) correlation coefficient $\rho = 0.6$ when $\tau = 10$ and 50 in unbalanced design scenario.

Shift			Sign	al proba	abilities					$P(\hat{\tau} -$	$ \tau \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{In}	$_{d}$ S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 10$)						
(0, 0.06)	0.143	0.386	0.391	0.235	0.059	0.148	0.068	0.24	2 0.443	0.442	0.352	0.000	0.248
(0, 0.08)	0.269	0.692	0.694	0.436	0.069	0.277	0.083	0.35	2 - 0.562	0.564	0.466	0.000	0.355
(0.07, 0)	0.526	0.508	0.502	0.397	0.090	0.536	0.127	0.46	5 - 0.474	0.478	0.473	0.000	0.463
(0.10, 0)	0.884	0.891	0.888	0.794	0.173	0.889	0.264	0.65	5 - 0.679	0.677	0.658	0.002	0.654
(0.040, 0.040)	0.453	0.615	0.614	0.446	0.088	0.462	0.106	0.43	6 0.522	0.520	0.476	0.000	0.437
(0.045, 0.045)	0.566	0.754	0.754	0.556	0.093	0.579	0.136	0.51	2 - 0.591	0.590	0.538	0.000	0.515
						$\tau = 50$)						
(0, 0.06)	0.162	0.438	0.440	0.207	0.209	0.154	0.064	0.31	7 0.498	0.500	0.349	0.295	0.311
(0, 0.08)	0.299	0.759	0.755	0.416	0.382	0.284	0.081	0.42	8 0.653	0.658	0.539	0.389	0.425
(0.07, 0)	0.599	0.587	0.580	0.417	0.692	0.587	0.120	0.52	8 0.528	0.523	0.501	0.442	0.528
(0.10, 0)	0.914	0.914	0.911	0.802	0.946	0.910	0.264	0.69	2 0.719	0.714	0.687	0.594	0.692
(0.040, 0.040)	0.501	0.673	0.672	0.423	0.602	0.487	0.110	0.50	9 0.583	0.585	0.514	0.432	0.509
(0.045, 0.045)	0.617	0.802	0.799	0.568	0.711	0.604	0.131	0.58	0 0.671	0.671	0.591	0.501	0.580

B.2. Exchangeable correlation

When the true correlation structure is exchangeable, performance comparisons of different methods in the unbalanced design scenario are illustrated in Tables 10 - 12 and Figs. 9 - 11.

Table 9. Performance comparison with AR(1) correlation coefficient $\rho = 0.3$ in unbalanced design scenario.

Shift			Sign	al proba	abilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 10$)						
(0, 0.08)	0.571	0.651	0.646	0.583	0.083	0.579	0.143	0.517	0.554	0.554	0.535	0.000	0.516
(0, 0.10)	0.829	0.880	0.875	0.838	0.120	0.834	0.247	0.607	0.656	0.658	0.628	0.000	0.605
(0.05, 0)	0.519	0.442	0.432	0.398	0.081	0.527	0.120	0.473	0.473	0.468	0.478	0.000	0.470
(0.07, 0)	0.869	0.812	0.804	0.757	0.148	0.873	0.237	0.621	0.620	0.622	0.622	0.000	0.617
(0.030, 0.030)	0.500	0.464	0.455	0.419	0.079	0.509	0.117	0.444	0.452	0.453	0.445	0.000	0.446
(0.045, 0.045)	0.894	0.885	0.881	0.839	0.148	0.897	0.282	0.662	0.672	0.672	0.667	0.001	0.662
						$\tau = 30$)						
(0, 0.08)	0.919	0.951	0.951	0.920	0.777	0.919	0.275	0.625	0.653	0.650	0.619	0.327	0.624
(0, 0.10)	0.993	0.997	0.997	0.993	0.957	0.993	0.492	0.751	0.781	0.783	0.744	0.425	0.751
(0.05, 0)	0.871	0.824	0.817	0.746	0.688	0.870	0.216	0.515	0.514	0.514	0.497	0.282	0.517
(0.07, 0)	0.997	0.994	0.994	0.981	0.978	0.997	0.480	0.702	0.702	0.702	0.680	0.407	0.701
(0.030, 0.030)	0.864	0.844	0.837	0.771	0.676	0.863	0.218	0.527	0.533	0.536	0.508	0.282	0.526
(0.045, 0.045)	0.998	0.998	0.997	0.992	0.986	0.998	0.581	0.757	0.764	0.762	0.742	0.452	0.755
						$\tau = 50$)						
(0, 0.08)	0.615	0.689	0.687	0.608	0.697	0.603	0.156	0.590	0.614	0.611	0.592	0.504	0.589
(0, 0.10)	0.855	0.909	0.907	0.853	0.909	0.849	0.274	0.714	0.749	0.750	0.727	0.598	0.714
(0.05, 0)	0.578	0.507	0.497	0.427	0.657	0.570	0.137	0.530	0.526	0.525	0.510	0.446	0.527
(0.07, 0)	0.895	0.857	0.850	0.781	0.928	0.891	0.288	0.677	0.667	0.668	0.664	0.569	0.678
(0.030, 0.030)	0.534	0.504	0.496	0.426	0.622	0.524	0.134	0.525	0.515	0.517	0.503	0.438	0.528
(0.045, 0.045)	0.928	0.920	0.915	0.866	0.950	0.924	0.334	0.730	0.733	0.732	0.720	0.601	0.730

Figure 6. Values of RMSE($\hat{\tau}$) with AR(1) correlation coefficient $\rho = 0.9$ in unbalanced design scenario.

Figure 7. Values of RMSE($\hat{\tau}$) with AR(1) correlation coefficient $\rho = 0.6$ when $\tau = 10$ and 50 in unbalanced design scenario.

Figure 8. Values of RMSE($\hat{\tau}$) with AR(1) correlation coefficient $\rho = 0.3$ in unbalanced design scenario.

Table 10. Performance comparison with exchangeable correlation coefficient $\rho = 0.9$ in unbalanced design scenario.

Shift			Sign	al proba	abilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 1$	10						
(0, 0.04)	0.047	0.635	0.300	0.587	0.047	0.053	0.051	0.034	0.534	0.404	0.537	0.000	0.038
(0, 0.06)	0.059	0.968	0.724	0.954	0.055	0.061	0.056	0.061	0.751	0.637	0.752	0.000	0.062
(0.08, 0)	0.130	0.503	0.297	0.480	0.064	0.140	0.050	0.212	0.511	0.405	0.506	0.000	0.231
(0.10, 0)	0.197	0.741	0.514	0.717	0.073	0.214	0.069	0.296	0.619	0.543	0.621	0.000	0.303
(0.03, 0.03)	0.070	0.708	0.383	0.662	0.056	0.077	0.050	0.097	0.582	0.475	0.589	0.000	0.099
(0.04, 0.04)	0.102	0.953	0.697	0.938	0.057	0.109	0.059	0.138	0.737	0.632	0.737	0.000	0.152
						$\tau = 3$	30						
(0, 0.04)	0.068	0.942	0.688	0.915	0.064	0.065	0.049	0.077	0.593	0.511	0.596	0.003	0.077
(0, 0.06)	0.085	1.000	0.985	1.000	0.072	0.087	0.052	0.122	0.830	0.744	0.830	0.014	0.114
(0.08, 0)	0.303	0.875	0.689	0.845	0.193	0.304	0.059	0.280	0.528	0.469	0.538	0.114	0.285
(0.10, 0)	0.476	0.983	0.902	0.975	0.317	0.477	0.071	0.333	0.655	0.586	0.656	0.131	0.331
(0.03, 0.03)	0.133	0.972	0.789	0.957	0.101	0.132	0.060	0.148	0.648	0.557	0.654	0.028	0.147
(0.04, 0.04)	0.202	1.000	0.980	1.000	0.144	0.201	0.056	0.205	0.810	0.730	0.811	0.044	0.211
						$\tau = 0$	50						
(0, 0.04)	0.054	0.624	0.366	0.580	0.068	0.052	0.056	0.093	0.602	0.495	0.601	0.106	0.088
(0, 0.06)	0.073	0.971	0.813	0.951	0.086	0.068	0.051	0.126	0.806	0.709	0.809	0.192	0.124
(0.08, 0)	0.183	0.524	0.381	0.501	0.229	0.169	0.059	0.263	0.548	0.475	0.556	0.248	0.259
(0.10, 0)	0.292	0.778	0.614	0.757	0.347	0.278	0.065	0.356	0.664	0.576	0.663	0.327	0.346
(0.03, 0.03)	0.096	0.717	0.468	0.675	0.123	0.086	0.051	0.166	0.640	0.544	0.637	0.170	0.146
(0.04, 0.04)	0.132	0.956	0.790	0.940	0.164	0.121	0.056	0.212	0.788	0.700	0.791	0.243	0.206

Table 11. Performance comparison with exchangeable correlation coefficient $\rho = 0.6$ when $\tau = 10$ and 50 in unbalanced design scenario.

Shift			Sign	al proba	abilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 1$	10						
(0, 0.06)	0.073	0.385	0.104	0.375	0.052	0.077	0.053	0.112	0.437	0.198	0.443	0.000	0.125
(0, 0.08)	0.089	0.689	0.172	0.670	0.055	0.098	0.055	0.139	0.563	0.323	0.569	0.000	0.143
(0.08, 0)	0.195	0.247	0.199	0.243	0.063	0.209	0.059	0.268	0.346	0.293	0.345	0.000	0.278
(0.10, 0)	0.313	0.417	0.334	0.415	0.077	0.331	0.078	0.378	0.471	0.405	0.468	0.000	0.382
(0.04, 0.04)	0.133	0.402	0.169	0.398	0.058	0.144	0.054	0.172	0.454	0.282	0.462	0.000	0.189
(0.05, 0.05)	0.193	0.646	0.288	0.638	0.065	0.204	0.061	0.265	0.543	0.382	0.544	0.000	0.270
						$\tau = 0$	50						
(0, 0.06)	0.081	0.384	0.122	0.380	0.094	0.079	0.050	0.160	0.489	0.248	0.492	0.202	0.148
(0, 0.08)	0.111	0.702	0.219	0.688	0.136	0.103	0.051	0.224	0.629	0.419	0.633	0.239	0.231
(0.08, 0)	0.270	0.289	0.274	0.289	0.320	0.252	0.064	0.323	0.385	0.348	0.392	0.304	0.318
(0.10, 0)	0.380	0.443	0.400	0.445	0.446	0.362	0.075	0.422	0.504	0.450	0.504	0.369	0.418
(0.04, 0.04)	0.172	0.425	0.224	0.417	0.209	0.161	0.057	0.271	0.479	0.336	0.490	0.275	0.266
(0.05, 0.05)	0.253	0.679	0.368	0.669	0.307	0.237	0.062	0.329	0.595	0.455	0.605	0.309	0.329

Table 12. Performance comparison with exchangeable correlation coefficient $\rho = 0.3$ in unbalanced design scenario.

Shift			Sign	al proba	abilities					$P(\hat{\tau} -$	$\tau) \leq 1$		
(δ_0, δ_1)	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{Tru}	S_{AR}	S_{Exc}	Shad	LRT
						$\tau = 1$	10						
(0, 0.08)	0.148	0.476	0.174	0.472	0.072	0.154	0.060	0.218	0.458	0.271	0.456	0.000	0.222
(0, 0.10)	0.223	0.723	0.297	0.722	0.077	0.233	0.070	0.308	0.578	0.390	0.582	0.000	0.310
(0.07, 0)	0.291	0.294	0.291	0.278	0.076	0.304	0.073	0.343	0.361	0.347	0.348	0.000	0.343
(0.08, 0)	0.376	0.375	0.375	0.357	0.085	0.395	0.091	0.394	0.428	0.400	0.433	0.000	0.397
(0.04, 0.04)	0.239	0.384	0.258	0.375	0.076	0.251	0.078	0.301	0.413	0.330	0.414	0.000	0.304
(0.05, 0.05)	0.378	0.592	0.409	0.585	0.087	0.393	0.086	0.405	0.519	0.435	0.518	0.000	0.405
						$\tau = 3$	30						
(0, 0.08)	0.320	0.840	0.434	0.839	0.203	0.322	0.061	0.310	0.526	0.387	0.527	0.108	0.312
(0, 0.10)	0.512	0.972	0.684	0.971	0.331	0.510	0.078	0.433	0.649	0.526	0.649	0.151	0.435
(0.07, 0)	0.620	0.582	0.612	0.552	0.433	0.618	0.098	0.391	0.387	0.396	0.382	0.174	0.393
(0.08, 0)	0.752	0.722	0.754	0.701	0.575	0.751	0.112	0.427	0.433	0.439	0.428	0.213	0.428
(0.04, 0.04)	0.525	0.727	0.571	0.718	0.355	0.522	0.085	0.375	0.450	0.403	0.447	0.136	0.376
(0.05, 0.05)	0.759	0.914	0.811	0.910	0.565	0.760	0.117	0.475	0.580	0.512	0.578	0.242	0.476
						$\tau = 0$	50						
(0, 0.08)	0.168	0.504	0.210	0.505	0.218	0.158	0.058	0.329	0.52	0.377	0.521	0.326	0.322
(0, 0.10)	0.263	0.742	0.348	0.738	0.337	0.252	0.064	0.386	0.629	0.477	0.633	0.376	0.382
(0.07, 0)	0.351	0.327	0.349	0.304	0.429	0.336	0.077	0.394	0.398	0.398	0.390	0.357	0.396
(0.08, 0)	0.451	0.424	0.452	0.402	0.541	0.437	0.081	0.442	0.446	0.445	0.441	0.384	0.443
(0.04, 0.04)	0.292	0.410	0.310	0.399	0.357	0.281	0.062	0.359	0.462	0.383	0.462	0.337	0.357
(0.05, 0.05)	0.451	0.627	0.485	0.622	0.533	0.438	0.078	0.456	0.567	0.495	0.562	0.400	0.454

Figure 9. Values of RMSE($\hat{\tau}$) with exchangeable correlation coefficient $\rho = 0.9$ in unbalanced design scenario.

Figure 10. Values of RMSE($\hat{\tau}$) with exchangeable correlation coefficient $\rho = 0.6$ when $\tau = 10$ and 50 in unbalanced design scenario.

Figure 11. Values of RMSE($\hat{\tau}$) with exchangeable correlation coefficient $\rho = 0.3$ in unbalanced design scenario.

B.3. Independent

When the Poisson profile samples are independent, performance comparisons of different methods in the unbalanced design scenario are reported in Table 13 and Fig. 12.

Table 13. Performance comparison for independent setting when $\tau = 10$ and 50 in unbalanced design scenario.

Shift	Signal probabilities						$P(\hat{\tau} - \tau) \le 1$				
(δ_0, δ_1)	S_{Ind}	S_{AR}	S_{Exc}	Shad	LRT	GLMM	S_{Ind}	S_{AR}	S_{Exc}	Shad	LRT
$\tau = 10$											
(0, 0.06)	0.518	0.520	0.495	0.081	0.528	0.132	0.461	0.462	0.457	0.000	0.460
(0, 0.07)	0.689	0.689	0.668	0.091	0.698	0.183	0.545	0.544	0.546	0.000	0.547
(0.04, 0)	0.523	0.517	0.469	0.074	0.532	0.135	0.483	0.484	0.489	0.000	0.486
(0.06, 0)	0.922	0.920	0.888	0.135	0.927	0.323	0.695	0.694	0.689	0.000	0.695
(0.025, 0.025)	0.540	0.537	0.492	0.086	0.547	0.146	0.486	0.488	0.488	0.000	0.486
(0.035, 0.035)	0.885	0.880	0.847	0.127	0.888	0.291	0.656	0.657	0.656	0.000	0.654
$\tau = 50$											
(0, 0.06)	0.539	0.543	0.511	0.615	0.531	0.149	0.545	0.545	0.541	0.465	0.545
(0, 0.07)	0.714	0.710	0.682	0.770	0.708	0.217	0.638	0.64	0.636	0.541	0.638
(0.04, 0)	0.568	0.563	0.502	0.636	0.559	0.169	0.533	0.535	0.523	0.456	0.536
(0.06, 0)	0.943	0.942	0.912	0.965	0.94	0.419	0.739	0.738	0.732	0.601	0.739
(0.025, 0.025)	0.579	0.573	0.526	0.646	0.569	0.162	0.549	0.549	0.548	0.471	0.551
(0.035, 0.035)	0.915	0.910	0.880	0.939	0.913	0.357	0.727	0.725	0.721	0.606	0.726

Figure 12. Values of RMSE($\hat{\tau}$) for independent setting when $\tau = 10$ and 50 in unbalanced design scenario.