Machine Learning for Defensive Cybersecurity

Azqa Nadeem

PhD candidate Cyber Analytics Lab

Lorentz workshop: Security & Privacy Day

> whoami

- 3rd year PhD candidate
 - Under supervision of <u>Dr. Sicco Verwer</u>
 - Explainable sequential ML for network security
- Security lecturer at TU Delft
- Co-organizer Cyber Security
 Next Generation (CSng) workshop
 - https://csng.nl/

Current state of security

Facets of defensive cybersecurity

Spam/Malware detection

Automated code patching

Cyberattack detection (IoT/Mobile/Kernel)

Access control

Attacker modelling

Attacker behavior profiling

Forensic analysis

- Offensive security applications
 - Crafting malware, hardware attacks, ...

A few use cases

[1] Automated bug-fix patches

Goal: Automatically learn bug-free code variant

via Neural machine translation

- AST-level operations
 - Code structure, try-catch, casting, ...

[2] Industrial Control System defense

Goal: Detect irregular behavior in a water treatment plant

Learn 'normal' behavior

Behavior localization via graphical models

[3] Proactive malware detection

- Goal: Alerting user of impending exposure to malicious content
- Monitoring users' HTTP traffic
 - Mobile cellular network

- Predicting impending exposure
 - Via deep neural nets

Time →

[4] Proactive malware detection

- Goal: Adversarially robust malware detectors
- Craft malware and learn from it
 - Greedy random multi-bit search approach
- Malware detection competitions
 - Attackers craft malware
 - Defenders learn robust detectors

[5] Malware behavior profiling

- Goal: Automated behavior discovery of malware
- Find behavior groups in network traffic
 - Clustering approach
- Malware profiles via cluster membership

- Connects with C&C
- Opens backdoors
- Persistent

[6] Attacker behavior profiling

Goal: Automatically discover attacker strategies using intrusion alerts

- Discover attacker strategies
 - Suffix-based probabilistic deterministic finite automaton

Victim: X.X.X.X Objective

Objective

(Path 2)

114s

Objective

(Path 1)

9s<mark>/</mark>22s

Words of Caution & Open questions

(Caution!) Machine learning is not a silver bullet [1/5]

- Cannot blindly apply ML to cybersecurity
 - Address unique problems

- Do not throw data in black-box
 - Ethical considerations

(Caution!) More benign than malicious [2/5]

- Security data has class imbalance
- Labels are often noisy
- Unrealistic class distribution
 - Bias in data → bias in models
- Real-world performance evaluation?

(Caution!) Landscape is adversarial [3/5]

Attackers hide, malware evades detection

- ML cannot detect all evasion attempts!
- Representative dataset is required
- How to incorporate continual learning?
- How to design robust systems?

(Caution!) Know what to evaluate [4/5]

- Be mindful of evaluation metrics.
 - Precision, Recall, AUC, F1 score ...
 - Accuracy in imbalanced datasets

- Performance metrics ≠ improved security
- How to operationalize security evaluation?
- Value explainability over accuracy?

(Caution!) Know the limitations of ML [5/5]

- Can find patterns faster than humans
 - But is also really stupid
- Cannot replace human intelligence
 - Trade-off between automation and explainability

- Incorporate human intelligence in a smarter way?
- Build trust in ML systems?

17

Summary: Open questions

- How to design <u>robust systems</u> that evolve with the threat landscape?
- What role does <u>explainability</u> play in designing and evaluating ML systems?
- How to build <u>trust</u> in ML systems?
- How to fill the gap between academia and industry to allow <u>real-world</u> performance evaluation?
- How to operationalize <u>security evaluation</u>?

Thank you!

- How to design robust systems that evolve with the threat landscape?
- What role does explainability play in designing and evaluating ML systems?
- How to build trust in ML systems?
- How to fill the gap between academia and industry to allow real-world performance evaluation?
- How to operationalize <u>security evaluation</u>?

