Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear GABARITO da AP2 - Segundo Semestre de 2012 Professores: Márcia Fampa & Mauro Rincon

(1.0)1. Determine o determinante da matriz abaixo apresentando os cálculos que foram realizados. Em seguida, justificando, responda se é possível calcular a sua inversa.

$$A = \left[\begin{array}{cccc} 0 & 2 & 3 & 0 \\ 0 & 4 & 5 & 0 \\ 0 & 1 & 0 & 3 \\ 2 & 0 & 1 & 3 \end{array} \right].$$

Solução: Expandindo em cofatores primeiro em relação à primeira coluna e depois em relação à última coluna, temos

$$\begin{vmatrix} 0 & 2 & 3 & 0 \\ 0 & 4 & 5 & 0 \\ 0 & 1 & 0 & 3 \\ 2 & 0 & 1 & 3 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 0 \\ 4 & 5 & 0 \\ 1 & 0 & 3 \end{vmatrix} = -2 \cdot 3 \cdot \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2 \cdot 3 \cdot (-2) = 12.$$

Logo, $\det(A)=12$. É possível calcular a inversa de A, pois seu determinante é diferente de zero.

(3.0)2. Considere o sistema linear

$$\begin{cases} x_1 - x_2 + \alpha x_3 = -2 \\ -x_1 + 2x_2 - \alpha x_3 = 3 \\ \alpha x_1 + x_2 + x_3 = 2 \end{cases}$$

- (a) Determine a sua solução (em função de α), considerando $|\alpha| \neq 1$.
- (b) Determine para que valor de α este sistema não tem solução. Justifique.

Solução:

Apliquemos inicialmente operações elementares sobre as linhas da matriz aumentada correspondente ao sistenma dado, como no método de eliminação de Gauss.

$$\begin{bmatrix} 1 & -1 & \alpha & -2 \\ -1 & 2 & -\alpha & 3 \\ \alpha & 1 & 1 & 2 \end{bmatrix}$$

Fazendo $L2 \leftarrow L1 + L2$ e $L3 \leftarrow \alpha L1 - L3$ temos:

$$\begin{bmatrix} 1 & -1 & \alpha & -2 \\ 0 & 1 & 0 & 1 \\ 0 & -\alpha - 1 & \alpha^2 - 1 & -2\alpha - 2 \end{bmatrix}$$

Fazendo $L3 \leftarrow L3 - L2(-\alpha - 1)$ temos:

$$\begin{bmatrix} 1 & -1 & \alpha & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & \alpha^2 - 1 & -\alpha - 1 \end{bmatrix}$$

(a) Considerando $\alpha \neq 1$ e $\alpha \neq -1$, temos pela linha 3, que $x_3 = \frac{-\alpha - 1}{\alpha^2 - 1} = \frac{-1}{\alpha - 1}$. Pela linha 2 temos que $x_2 = 1$. Substituindo x_2 e x_3 na linha 1 temos:

$$x_1 - 1 - \frac{\alpha}{\alpha - 1} = -2$$

Resolvendo essa equação temos que $x_1 = \frac{1}{\alpha - 1}$.

Neste caso, portanto, a solução do sistema é $(\frac{1}{\alpha-1}, 1, \frac{-1}{\alpha-1})$.

(b) O sistema original não terá solução única se o determinante das matrizes de coeficientes dos sistemas representados acima for igual a zero, isto é, se $\alpha^2 - 1 = 0 \Rightarrow \alpha = 1$ ou $\alpha = -1$.

Se $\alpha=1$ a linha 3 do último sistema não pode ser satisfeita, indicando que o sistema não tem solução.

(3.0)3. Ache os autovalores da matriz A abaixo e os autovetores correspondentes ao autovalor positivo.

$$A = \left(\begin{array}{ccc} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{array}\right),$$

Solução:

$$A - \lambda I = \begin{pmatrix} -\lambda & 2 & -1 \\ 2 & 3 - \lambda & -2 \\ -1 & -2 & -\lambda \end{pmatrix}.$$

Então, $P(\lambda) = det(A - \lambda I) = 0$. Logo $\lambda^2(3 - \lambda) + 4 + 4 - (3 - \lambda) + 4\lambda + 4\lambda = 0$. Logo $\lambda^2(3 - \lambda) + 8 + 8\lambda - (3 - \lambda) = 0$. Logo $(3 - \lambda)(\lambda^2 - 1) + 8(1 + \lambda) = 0$. Logo $(3 - \lambda)(\lambda + 1)(\lambda - 1) + 8(\lambda + 1) = 0$. Logo $(\lambda + 1)((3 - \lambda)(\lambda - 1) + 8) = 0$. Logo $(\lambda + 1)(\lambda - 1)(\lambda - 1) = 0$. Logo $(\lambda + 1)(\lambda + 1)(\lambda - 1) = 0$.

Os autovalores de A são portanto,

$$\lambda_1 = \lambda_2 = -1 \text{ e } \lambda_3 = 5.$$

Os autovetores associados a $\lambda_3 = 5$ são obtidos abaixo:

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 5 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow \begin{cases} 2y - z = 5x \\ 2x + 3y - 2z = 5y \\ -x - 2y = 5z \end{cases}$$

$$\Rightarrow \begin{cases} -5x & +2y & -z = 0 \\ 2x & -2y & -2z = 0 \\ -x & -2y & -5z = 0 \end{cases} \Rightarrow \begin{cases} -5x & +2y & -z = 0 \\ 2x & -2y & -2z = 0 \\ 0 = 0 \end{cases}$$

Onde a equação 0=0 foi obtida pela operação $L_3:=L_3-L_1-2L_2$. Da segunda equação temos x=y+z. Substituindo na primeira equação temos -5(y+z)+2y-z=0. Logo -3y-6z=0. Solução: y=-2z, x=-2z+z=-z. Os autovetores são do tipo v=(-z,-2z,z)=z(-1,-2,1), para todo $z\in \mathbb{R}$.

(3.0)4. Para cada das transformações lineares de $I\!\!R^3 \to I\!\!R^3$ abaixo, determine uma base para o seu núcleo e sua dimensão, uma base para sua imagem e sua dimensão, e diga se a transformação é injetora ou sobrejetora, justificando a resposta.

(a) $L(x) = (x_1 - x_3, x_2, x_2)^T$.

Solução:

Núcleo, N(L): Se x está no núcleo de L, então L(x) = 0, ou seja, $x_1 = x_3$ e $x_2 = 0$. Portanto, $N(L) = \{(1, 0, 1)^T\}$ (dimensão = 1).

Imagem, Imagem, I(L): Um vetor y pertence à imagem de L se e somente se y é a soma de um múltiplo de $v_1 = (1,0,0)^T$ com um múltiplo de $v_2 = (0,1,1)^T$. Logo, I(L) é o subspaço bidimensional (dimensão = 2) de \mathbb{R}^3 gerado por $[v_1, v_2]$.

Como $N(L) \neq \{(0,0,0)^T\}$, L não é injetora e como $I(L) \neq \mathbb{R}^3$, L não é sobrejetora.

(b) $L(x) = (x_3, 0, x_2)^T$.

Solução:

Núcleo, N(L): Se x está no núcleo de L, então L(x) = 0, ou seja, $x_2 = 0$ e $x_3 = 0$. Portanto, N(L) é o subspaço unidimensional (dimensão = 1) de \mathbb{R}^3 gerado por $(1,0,0)^T$.

Imagem, I(L): Um vetor y pertence à imagem de L se e somente se y é a soma de um múltiplo de $e_1 = (1,0,0)^T$ com um múltiplo de $e_3 = (0,0,1)^T$. Logo, I(L) é o subspaço bidimensional (dimensão = 2) de \mathbb{R}^3 gerado por $[e_1,e_2]$.

Como $N(L) \neq \{(0,0,0)^T\}$, L não é injetora e como $I(L) \neq \mathbb{R}^3$, L também não é sobrejetora.