МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни

«Дискретна математика»

Варіант 11

Виконала:

студентка групи KH-112 Подопригора X.I.

Викладач:

Мельникова Н.І.

Тема роботи: Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Варіант № 11

- 1. Формалізувати речення. Якщо Василь не прийде на іспит, то він не зможе отримати позитивну оцінку
- 2. Побудувати таблицю істинності для висловлювань:

$$(x \vee \overline{y}) \Rightarrow ((y \wedge \overline{z}) \Rightarrow (x \vee y));$$

- 3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям: $((p \to q) \land \overline{(\overline{q} \to r)}) \leftrightarrow (p \to \overline{r})$.
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $((p \to q) \land (q \to r)) \to (p \to r)$
- 5. Довести, що формули еквівалентні: $(p \land q) \rightarrow (p \land r)$ та $(p \land r) \leftrightarrow (q \land r)$.

Розв'язок:

- 1. Якщо Василь не прийде на іспит, то він не зможе отримати позитивну оцінку.
- р прийти на іспит
- q отримати позитивну оцінку

Отримуємо формалізоване речення: $\neg p \Rightarrow \neg q$

2.
$$(x \lor \neg y) \Rightarrow ((y \land \neg z) \Rightarrow (x \lor y))$$

За побудовою таблиць істиності можемо побачити, що висловлювання є тавтологією, тому що при всіх значеннях змінних на виході функція має значення істини.

Таблиця 1 Завдання 2

x	у	z	¬у	¬z	x ∨ ¬ y	y ∧ ¬z	x ∨ y	$(\mathbf{y} \land \neg \mathbf{z}) \Rightarrow (\mathbf{x} \lor \mathbf{y})$	F
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	1	0	0	1	1
0	1	0	0	1	0	1	1	1	1
0	1	1	0	0	0	0	1	1	1
1	0	0	1	1	1	0	1	1	1
1	0	1	1	0	1	0	1	1	1
1	1	0	0	1	1	1	1	1	1
1	1	1	0	0	1	0	1	1	1

3.
$$((p \rightarrow q) \land \neg (\neg q \rightarrow r)) \Leftrightarrow (p \rightarrow \neg r)$$

Таблиця 2 Завдання 3

р	q	r	!q	!r	p→q	!q→r	!(!q→r)	(p→q) ∧ !(!q→r)	p→¬r	F(⇔)
0	0	0	1	1	1	0	1	1	1	1
0	0	1	1	0	1	1	0	0	1	0
0	1	0	0	1	1	1	0	0	1	0
0	1	1	0	0	1	1	0	0	1	0
1	0	0	1	1	0	0	1	0	1	0
1	0	1	1	0	0	1	0	0	0	1
1	1	0	0	1	1	1	0	0	1	0
1	1	1	0	0	1	1	0	0	0	1

За побудовою таблиці істиності ми можемо побачити, що висловлювання не ε тавтологією, тому що функція не ма ε значення істиності при всіх значеннях змінних, а також не ε протиріччям, тому що функція не ε хибною на всіх значеннях змінних.

4.
$$((p\rightarrow q) \land (q\rightarrow r))\rightarrow (p\rightarrow r)$$

Припустимо, що формула не є тавтологією, тоді остання операція імплікації, що виконується, мала б бути хибною. Ми знаємо, що імплікація буде мати хибне значення тільки за умови, що передумова є істиною, а висновок - хибним.

Обозначимо (($p \rightarrow q$) $\wedge (q \rightarrow r)$) як P, а ($p \rightarrow r$) як Q. Нас цікавить випадок, за умови якого Q = F, це ітерація, коли p = T, r = F, підставемо значення в P, отримаємо (($T \rightarrow q$) $\wedge (q \rightarrow F)$). На будь-якому значенні q значення виразу P буде завжди дорівнювати F, а це значить, що й функція імплікації ніколи не буде на виході мати значення F.

5. Доведемо, що формули $(p \land q) \rightarrow (p \land r)$ та $(p \land q) \leftrightarrow (p \land r)$ еквівалентні за допомогою побудови таблиць істиності.

Таблиця 2 Завдання 5 (1)

р	q	r	p∧q	p∧r	f(→)
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Таблиця 2 Завдання 5 (2)

p	q	r	p∧r	q∧r	f(↔)
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	1	1

За результатами побудови таблиць істиності ми можемо побачити, що функції є хибними тільки на одному наборі змінних, що дозволяє стверджувати про іхню еквівалентність.

Завдання II.

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул:

11.
$$(x \vee \overline{y}) \Rightarrow ((y \wedge \overline{z}) \Rightarrow (x \vee y));$$

Текст програми:

```
9 #include <stdio.h>
10 #include <stdbool.h>
12 int main() {
13
       int x, y, z;
15
       printf("Type value for x. Use only 0 or 1!\n");
       scanf("%d", &x);
17
     printf("Type value for y. Use only 0 or 1!\n");
      scanf("%d", &y);
19
20
       printf("Type value for z. Use only 0 or 1!\n");
21
       scanf("%d", &z);
22
       if (x == 0 && y == 0 && z == 0)
24
           printf("If x = 0, y = 0 and z = 0, our function is 1\n");
26
27
       else if (x == 0 \&\& y == 0 \&\& z == 1)
28
29
           printf("If x = 0, y = 0 and z = 1, our function is 1\n");
30
31
       else if (x == 0 \&\& y == 1 \&\& z == 0)
           printf("If x = 0, y = 1 and z = 0, our function is 1\n");
33
34
       else if (x == 0 \&\& y == 1 \&\& z == 1)
35
37
           printf("If x = 0, y = 1 and z = 1, our function is 1\n");
38
       else if (x == 1 &\& y == 0 &\& z == 0)
40
           printf("If x = 1, y = 0 and z = 0, our function is 1\n");
42
       else if (x == 1 \&\& y == 0 \&\& z == 1)
44
45
           printf("If x = 1, y = 0 and z = 1, our function is 1\n");
46
       else if (x == 1 &\& y == 1 &\& z == 0)
47
48
           printf("If x = 1, y = 1 and z = 0, our function is 1\n");
49
       else if (x == 1 && y == 1 && z == 1)
51
52
           printf("If x = 1, y = 1 and z = 1, our function is 1\n");
53
       }
55
       else
56
           printf ("Your values for the variables are incorrect!\n");
58
59
60
       printf("Check our results with logical formula: %i\n", (!x&&y)||(z||x||true));
62
       return 0:
63 }
```

Результати виконання програми:

```
[MacBook-Pro-Christina:discMathLab_01 khrystynahora$ gcc main.c
MacBook-Pro-Christina:discMathLab_01 khrystynahora$ ./a.out
 Type value for x. Use only 0 or 1!
Type value for y. Use only 0 or 1!
Type value for z. Use only 0 or 1!
If x = 1, y = 0 and z = 1, our function is 1
[MacBook-Pro-Christina:discMathLab_01 khrystynahora$ ./a.out
Type value for x. Use only 0 or 1!
1
Type value for y. Use only 0 or 1!
Type value for z. Use only 0 or 1!
If x = 1, y = 1 and z = 1, our function is 1
[MacBook-Pro-Christina:discMathLab_01 khrystynahora$ ./a.out
Type value for x. Use only 0 or 1!
Type value for y. Use only 0 or 1!
Type value for z. Use only 0 or 1!
If x = 0, y = 0 and z = 0, our function is 1
[MacBook-Pro-Christina:discMathLab_01 khrystynahora$ ./a.out
Type value for x. Use only 0 or 1!
Type value for y. Use only 0 or 1!
Type value for z. Use only 0 or 1!
Your values for the variables are incorrect!
```

Висновок: після виконання лабораторної роботи я ознайомилася з основними поняттями математичної логіки, навчилася будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень, а також навчилася писати прості програми для побудови таблиці істиності складних висловлювань.