Exact results on traces of sets

Mingyuan Rong

(University of Science and Technology of China)

June 24, 2024

Fudan University

This work is joint with Mingze Li and Jie Ma.

Trace and arrow relation

Definition of trace

For a subset T of V define the **trace** of $\mathcal{F} \subseteq 2^V$ on T by

$$\mathcal{F}_{|T} = \{ F \cap T : F \in \mathcal{F} \}.$$

Definition of arrow relation

For integers n, m, a, and b, we say (n, m) arrows (a, b) and write

$$(n,m) \to (a,b)$$

if for every family $\mathcal{F} \subseteq 2^V$ with $|\mathcal{F}| \geqslant m$ and |V| = n, there is an a-element set $T \subseteq V$ such that $|\mathcal{F}_{|T}| \geqslant b$.

fixed (a, b) type results

Definition of arrow relation

For integers n, m, a, and b, we say (n, m) arrows (a, b) and write

$$(n,m) \to (a,b)$$

if for every family $\mathcal{F} \subseteq 2^V$ with $|\mathcal{F}| \geqslant m$ and |V| = n, there is an a-element set $T \subseteq V$ such that $|\mathcal{F}_{|T}| \geqslant b$.

- Sauer-Shelah lemma (1972): $(n,m) \rightarrow (s,2^s)$ for $m \geqslant 1 + \sum_{i=0}^{s-1} \binom{n}{i}$.
- Frankl (1983): $(n,m) \to (3,7)$ for $m > \lfloor \frac{n^2}{4} \rfloor + n + 1$.
- Bollobás and Radcliffe (1995): $n \geqslant 4$ and $n \neq 6$ then $(n,m) \rightarrow (4,12)$ for $m > \binom{n}{2} + n + 1$.
- Frankl and Wang (2024): $n\geqslant 25$ then $(n,m)\to (4,13)$ for $m\geqslant 1+\Pi_{i=0}^2\lfloor \frac{n+3+i}{3}\rfloor.$

Some early results

Definition of arrow relation

For integers n, m, a, and b, we say (n, m) arrows (a, b) and write

$$(n,m) \to (a,b)$$

if for every family $\mathcal{F}\subseteq 2^V$ with $|\mathcal{F}|\geqslant m$ and |V|=n, there is an a-element set $T\subseteq V$ such that $|\mathcal{F}_{|T}|\geqslant b$.

- Bondy: $(n,m) \to (n-1,m)$ for all $m \leqslant n$.
- Bollobás: $(n,m) \to (n-1,m-1)$ for all $m \leqslant \frac{3}{2}n$.
- Frankl: $(n,m) \to (n-1,m-2)$ for all $m \leqslant 2n$. $(n,m) \to (n-1,m-3)$ for all $m \leqslant \frac{7}{2}n$.

Some early results

For arrow relation, it suffices to consider **hereditary families** \mathcal{F} :

For any $F' \subseteq F \in \mathcal{F}$, we have $F' \in \mathcal{F}$.

Frankl (1983)

The following are equivalent:

- \bullet $(n,m) \to (a,b)$,
- For every **hereditary family** $\mathcal{F} \subseteq 2^{[n]}$ with $|\mathcal{F}| = m$, there exists $T \subseteq [n]$ with |T| = a such that $|\mathcal{F}_{|T}| \geqslant b$.

Some early results

For arrow relation, it suffices to consider **hereditary families** \mathcal{F} :

For any $F' \subseteq F \in \mathcal{F}$, we have $F' \in \mathcal{F}$.

Frankl (1983)

The following are equivalent:

- \bullet $(n,m) \rightarrow (a,b)$,
- For every **hereditary family** $\mathcal{F} \subseteq 2^{[n]}$ with $|\mathcal{F}| = m$, there exists $T \subseteq [n]$ with |T| = a such that $|\mathcal{F}_{|T}| \geqslant b$.

Using this, Frankl proved:

• For $s=2^{d-1}-1$, $(n,m)\to (n-1,m-s)$ for all $m\leqslant \frac{2^d-1}{d}n$.

Problem

Füredi / Frankl and Watanabe proposed the following problem.

Definition of m(n, s)

For n and s, what is the maximum value $\mathbf{m}(\mathbf{n},\mathbf{s})$ such that for every $m\leqslant m(n,s)$ we have

$$(n,m) \rightarrow (n-1,m-s).$$

Frankl and Watanabe proved the following limit exists.

Definition of m(s)

$$m(s) = \lim_{n \to +\infty} \frac{m(n,s)}{n}$$
.

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$				$\frac{15}{4}$								$\frac{31}{5}$	

- From previous developments, m(0) = 1, $m(1) = \frac{3}{2}$, m(2) = 2.
- Frankl (1983) proved $m(2^{d-1}-1)=\frac{2^d-1}{d}$ for $d\geqslant 1$. Therefore $m(3)=\frac{7}{3}$, $m(7)=\frac{15}{4}$ and $m(15)=\frac{31}{5}$.

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$	$\frac{17}{6}$	$\frac{13}{4}$	$\frac{7}{2}$	$\frac{15}{4}$								$\frac{31}{5}$	

- From previous developments, m(0)=1, $m(1)=\frac{3}{2}$, m(2)=2.
- Frankl (1983) proved $m(2^{d-1}-1)=\frac{2^d-1}{d}$ for $d\geqslant 1$. Therefore $m(3)=\frac{7}{3}$, $m(7)=\frac{15}{4}$ and $m(15)=\frac{31}{5}$.
- Watanabe (1991) proved $m(4) = \frac{17}{6}$, $m(5) = \frac{13}{4}$, $m(6) = \frac{7}{2}$.

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$	$\frac{17}{6}$	$\frac{13}{4}$	$\frac{7}{2}$	$\frac{15}{4}$	$\frac{17}{4}$	$\frac{65}{14}$					6	$\frac{31}{5}$	$\frac{67}{10}$

- From previous developments, m(0)=1, $m(1)=\frac{3}{2}$, m(2)=2.
- Frankl (1983) proved $m(2^{d-1}-1)=\frac{2^d-1}{d}$ for $d\geqslant 1$. Therefore $m(3)=\frac{7}{3}$, $m(7)=\frac{15}{4}$ and $m(15)=\frac{31}{5}$.
- Watanabe (1991) proved $m(4) = \frac{17}{6}$, $m(5) = \frac{13}{4}$, $m(6) = \frac{7}{2}$.
- Frankl and Watanabe (1994) proved $m(9)=\frac{65}{14}$, and $m(2^{d-1}-0)=\frac{2^d-1}{d}+\frac{1}{2}$ for $d\geqslant 2$, and $m(2^{d-1}-2)=\frac{2^d-2}{d}$ for $d\geqslant 3$. Therefore $m(8)=\frac{17}{4}$, $m(9)=\frac{65}{14}$, m(14)=6, $m(16)=\frac{67}{10}$.

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$	$\frac{17}{6}$	$\frac{13}{4}$	$\frac{7}{2}$	$\frac{15}{4}$	$\frac{17}{4}$	$\frac{65}{14}$	5			$\frac{29}{5}$	6	$\frac{31}{5}$	$\frac{67}{10}$

- From previous developments, m(0) = 1, $m(1) = \frac{3}{2}$, m(2) = 2.
- Frankl (1983) proved $m(2^{d-1}-1)=\frac{2^d-1}{d}$ for $d\geqslant 1$. Therefore $m(3)=\frac{7}{3}$, $m(7)=\frac{15}{4}$ and $m(15)=\frac{31}{5}$.
- Watanabe (1991) proved $m(4) = \frac{17}{6}$, $m(5) = \frac{13}{4}$, $m(6) = \frac{7}{2}$.
- Frankl and Watanabe (1994) proved $m(9)=\frac{65}{14}$, and $m(2^{d-1}-0)=\frac{2^d-1}{d}+\frac{1}{2}$ for $d\geqslant 2$, and $m(2^{d-1}-2)=\frac{2^d-2}{d}$ for $d\geqslant 3$. Therefore $m(8)=\frac{17}{4}$, $m(9)=\frac{65}{14}$, m(14)=6, $m(16)=\frac{67}{10}$.
- Watanabe (1995) proved m(10) = 5 and $m(13) = \frac{29}{5}$.

×	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$	$\frac{17}{6}$	$\frac{13}{4}$	$\frac{7}{2}$	$\frac{15}{4}$	$\frac{17}{4}$	$\frac{65}{14}$	5	?	?	$\frac{29}{5}$	6	$\frac{31}{5}$	$\frac{67}{10}$

- From previous developments, m(0) = 1, $m(1) = \frac{3}{2}$, m(2) = 2.
- Frankl (1983) proved $m(2^{d-1}-1)=\frac{2^d-1}{d}$ for $d\geqslant 1$. Therefore $m(3)=\frac{7}{3}$, $m(7)=\frac{15}{4}$ and $m(15)=\frac{31}{5}$.
- Watanabe (1991) proved $m(4) = \frac{17}{6}$, $m(5) = \frac{13}{4}$, $m(6) = \frac{7}{2}$.
- Frankl and Watanabe (1994) proved $m(9)=\frac{65}{14}$, and $m(2^{d-1}-0)=\frac{2^d-1}{d}+\frac{1}{2}$ for $d\geqslant 2$, and $m(2^{d-1}-2)=\frac{2^d-2}{d}$ for $d\geqslant 3$. Therefore $m(8)=\frac{17}{4}$, $m(9)=\frac{65}{14}$, m(14)=6, $m(16)=\frac{67}{10}$.
- Watanabe (1995) proved m(10) = 5 and $m(13) = \frac{29}{5}$.
- Frankl and Watanabe (1994) conjectured m(11) = 5.3 and m(12) = 5.6.

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$	$\frac{17}{6}$	$\frac{13}{4}$	$\frac{7}{2}$	$\frac{15}{4}$	$\frac{17}{4}$	$\frac{65}{14}$	5	?	$\frac{28}{5}$	$\frac{29}{5}$	6	$\frac{31}{5}$	$\frac{67}{10}$

In 2021, Piga and Schülke proved the following theorem.

Theorem (Piga and Schülke 2021)

- $m(2^{d-1}-3)=\frac{2^d-3}{d}$ for $d\geqslant 4$.
- $m(2^{d-1}-4) = \frac{2^d-4}{d}$ for $d \geqslant 5$. $\Longrightarrow m(12) = 5.6$.

They also proved the following general bound.

Theorem (Piga and Schülke 2021)

•
$$m(2^{d-1}-c)=\frac{2^d-c}{d}$$
 for all $1\leqslant c\leqslant \frac{d}{4}$.

In their article, Piga and Schülke ask the following question.

Question (Piga and Schülke)

For any positive integer d, determining the maximum integer $c_0(d)$ such that for any $c\leqslant c_0(d)$,

$$m(2^{d-1}-c) = \frac{2^d-c}{d}$$
.

Our results

×	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m(x)	1	$\frac{3}{2}$	2	$\frac{7}{3}$	$\frac{17}{6}$	$\frac{13}{4}$	$\frac{7}{2}$	$\frac{15}{4}$	$\frac{17}{4}$	$\frac{65}{14}$	5	$\frac{53}{10}$	$\frac{28}{5}$	$\frac{29}{5}$	6	$\frac{31}{5}$	$\frac{67}{10}$

Theorem (Li-Ma-R., 2024+)

$$m(11) = m(2^{5-1} - 5) = \frac{2^5 - 5 - 0.5}{5} = 5.3.$$

• This solves the last open conjecture of Frankl and Watanabe in 1994.

Our results

Theorem (Li-Ma-R., 2024+)

Let $d \geqslant 50$. For $1 \leqslant c \leqslant d$, we have

$$m(2^{d-1} - c) = \mathfrak{B}_c,$$

where

$$\mathfrak{B}_c = \begin{cases} \frac{2^d-c}{d} & \text{ for } 1\leqslant c\leqslant d-1, \\ \frac{2^d-d-\frac{1}{2}}{d} & \text{ for } c=d. \end{cases}$$

 This answers the previous question of Piga-Schülke, showing that

$$c_0(d) = d - 1$$
 for $d \geqslant 50$.

Our results

Theorem (Li-Ma-R., 2024+)

Let $d \geqslant 50$. For $1 \leqslant c \leqslant d$, we have

$$m(2^{d-1} - c) = \mathfrak{B}_c,$$

where

$$\mathfrak{B}_c = \begin{cases} \frac{2^d-c}{d} & \text{ for } 1 \leqslant c \leqslant d-1, \\ \frac{2^d-d-\frac{1}{2}}{d} & \text{ for } c=d. \end{cases}$$

 This answers the previous question of Piga-Schülke, showing that

$$c_0(d) = d - 1 \text{ for } d \geqslant 50.$$

That is, the maximum c is d-1 for which the following holds

$$m(2^{d-1} - c) = \frac{2^d - c}{d}.$$

Notion

- Let n be a positive integers and $\mathcal{F} \subseteq 2^{[n]}$ be a hereditary family.

Notation

- For any $x \in [n]$, we write $d_{\mathcal{F}}(x) = |\{F \in \mathcal{F} : x \in F\}|$ for the degree of x in \mathcal{F} .
- For any $x \in [n]$, we write $\mathcal{F}(x)$ for the **link** of x in \mathcal{F} . That is, $\mathcal{F}(x) = \{F \setminus \{x\} : x \in F \in \mathcal{F}\}.$
- Let $\delta(\mathcal{F}) = \min_{x \in [n]} d_{\mathcal{F}}(x)$ be the **minimal degree** of \mathcal{F} .

About arrow relation

Since for any hereditary family $\mathcal{F}\subseteq 2^V$ and $x\in V$, we have $|\mathcal{F}_{|V\setminus\{x\}}|=|\mathcal{F}|-d_{\mathcal{F}}(x)$. It is easy to get the following corollary.

Corollary

Let n, m and s be positive integers. The following are equivalent.

- $\bullet (n,m) \to (n-1,m-s).$
- $m(n,s) \geqslant m$.
- For any hereditary family $\mathcal{F} \subseteq 2^{[n]}$ with $|\mathcal{F}| \leqslant m$, there exists $x \in [n]$ such that $d_{\mathcal{F}}(x) \leqslant s$.
- For any hereditary family $\mathcal{F} \subseteq 2^{[n]}$ with $\delta(\mathcal{F}) \geqslant s+1$, we have $|\mathcal{F}| \geqslant m+1$.

Constructions

This construction shows $m(n, 2^{d-1} - d) \leqslant \frac{2^d - d - \frac{1}{2}}{d} n$ for $2d \mid n$.

Construction (Piga and Schülke 2021)

Let $U_1,...,U_{2k}$ be a partition of [n] into sets of size d. $x_i \in U_i.$

- $\mathcal{G} = \{S \subseteq V \colon \text{there is an } i \text{ such that } S \subseteq U_i \text{ and } |S| \leqslant d-2\}.$
- $\mathcal{H} = \{U_i \setminus \{x_i\}: \text{ for } i \in \{1, 2, ..., 2k\}\}.$
- $\mathcal{I} = \{\{x_i, x_{i+1}\}: \text{ for } i \in \{1, 3, 5, ..., 2k-1\}\}.$

Let $\mathcal{F}=\mathcal{G}\cup\mathcal{H}\cup\mathcal{I}$, then it is easy to see that $|\mathcal{F}|=\frac{2^d-d-\frac{1}{2}}{d}n+1$ and $\delta(\mathcal{F})\geqslant 2^{d-1}-d+1$.

Constructions

This construction shows $m(n, 2^{d-1} - c) \leqslant \frac{2^d - c}{d} n$ for $d \mid n, c \leqslant d$.

Construction

Let $U_1,...,U_k$ be a partition of V into sets of size d. Let $\mathcal{G}_i\subseteq 2^{U_i}$, $|\mathcal{G}_i|=c-1$.

•
$$\mathcal{F} = \{ F \subseteq V : F \in 2^{U_i} \setminus \mathcal{G}_i \text{ for some } i \in [k] \}.$$

It is easy to check that $|\mathcal{F}| = \frac{n}{d}(2^d - c) + 1$ and $\delta(\mathcal{F}) \geqslant 2^{d-1} - c + 1$.

Colexicographic order

Colexicographic order

For two finite sets $A, B \subseteq \mathbb{Z}_{>0}$, we say that $A \prec_{col} B$ or A precedes B in the **colexicographic** (colex for short) order if $\max(A \triangle B) \in B$.

- Let m be a positive integer, we define $\mathcal{R}(m)$ to be the family containing the first m finite subsets of $\mathbb{Z}_{>0}$ according to the colex order.
- If $m=2^k+t$, where k and t are non-negative integers with $t<2^k$, then we have

$$\mathcal{R}(m) = 2^{[k]} \cup \{F \cup \{k+1\} : F \in \mathcal{R}(t)\}.$$

- For example, $\mathcal{R}(7) = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3\}, \{1,3\}, \{2,3\}\}.$

A result of Katona

The following theorem due to Katona is a generalisation of the well-known Kruskal-Katona theorem.

Theorem (G. Katona 1978)

Let $f: \mathbb{N} \to \mathbb{R}$ be a monotone non-increasing function and let \mathcal{F} be a hereditary family with $|\mathcal{F}| = m$. Then

$$\sum_{F \in \mathcal{F}} f(|F|) \geqslant \sum_{R \in \mathcal{R}(m)} f(|R|).$$

- In the proof, we often choose \mathcal{F} as the link of some vertex and $f(k)=\frac{1}{k+1}$. For convenience, we set

$$W(m) = \sum_{R \in \mathcal{R}(m)} \frac{1}{|R| + 1}$$

Properties on W-function

- Let d be a positive integer. We have

$$W(2^{d-1}) = \sum_{R \subseteq [d-1]} \frac{1}{|R|+1} = \sum_{i=0}^{d-1} \frac{\binom{d-1}{i}}{i+1} = \sum_{i=0}^{d-1} \frac{\binom{d}{i+1}}{d} = \frac{2^d-1}{d}.$$

- For any positive integer $c<2^{d-2}$, since $A\bigtriangleup B=A^c\bigtriangleup B^c$ for any sets A and B, we have

$$2^{[d-1]} \setminus \mathcal{R}(2^{d-1} - c) = \{ [d-1] \setminus H : H \in \mathcal{R}(c) \}.$$

- Thus we can conclude that

$$W(2^{d-1} - c) = \frac{2^d - 1}{d} - \sum_{R \in \mathcal{R}(c)} \frac{1}{d - |R|} \geqslant \frac{2^d - 1}{d} - \frac{c}{d - \log c}.$$

Frankl's proof on $m(n, 2^{d-1} - 1)$

- We only need to show that $m(n, 2^{d-1} 1) \geqslant \frac{2^d 1}{d} n$, which is equivalent to show that for any hereditary family $\mathcal{F} \subseteq 2^{[n]}$ with $\delta(\mathcal{F}) \geqslant 2^{d-1}$, then $|\mathcal{F}| \geqslant \frac{2^d 1}{d} n + 1$.
- By Katona's theorem, for any $x \in [n]$,

$$\sum_{H \in \mathcal{F}(x)} \frac{1}{|H|+1} \geqslant W(2^{d-1}) = \frac{2^d - 1}{d}.$$

- Then it follows:

$$|\mathcal{F}| - 1 = |\mathcal{F} \setminus \{\emptyset\}| = \sum_{x \in [n]} \sum_{H \in \mathcal{F}(x)} \frac{1}{|H| + 1} \geqslant \frac{2^d - 1}{d} n \quad \Box$$

Proof sketch: our first theorem on m(11)

- Let $\mathcal{F}\subseteq 2^{[n]}$ be a hereditary family with $\delta(\mathcal{F})\geqslant 12$, we want to show that $|\mathcal{F}|\geqslant 5.3n+1$.
- For the uniform weight $\omega(x) = \sum_{H \in \mathcal{F}(x)} \frac{1}{|H|+1}$, $\omega(x) < 5.3$ if and only if $\mathcal{F}(x)$ is isomorphic with $\mathcal{R}(12)$ or $\binom{[4]}{\leq 2} \cup \{\{1,2,3\}\}$

- We use a non-uniform weight u(x), which is slightly different from $\omega(w)$.
- Then we have: u(x) < 5.3 if and only if $\mathcal{F}(x) \cong \mathcal{R}(12)$. We call these vertices **mini-weight**.

Proof sketch: our first theorem on m(11)

- Note that $u(x) = 5.3 - \frac{2}{15}$ if x is mini-weight.

 \boldsymbol{x} is mini-weight

- We define the following "perturbation" $\varepsilon(x)$.

$$\varepsilon(x) = \begin{cases} -\frac{2}{15}, & x \text{ is mini-weight,} \\ \sum_{Q \in \mathcal{Q}(x)} \frac{\frac{1}{15}c(Q)}{4-c(Q)}, & x \text{ is not mini-weight.} \end{cases}$$

- This ε transforms the "loss" of mini-weight vertices to others, and we can show that $u(x)-\varepsilon(x)\geqslant 5.3$ for any $x\in[n]$.

- Let $\mathcal{F}\subseteq 2^{[n]}$ be a hereditary family with $\delta(\mathcal{F})\geqslant 2^{d-1}-c+1$ and $c\in [d].$
- As in Frankl's proof, for any $x \in [n]$ we use the uniform **weight** $\omega(x)$ defined as following

$$\omega(x) = \sum_{x \in F \in \mathcal{F}} \frac{1}{|F|} = \sum_{H \in \mathcal{F}(x)} \frac{1}{|H| + 1}.$$

This weight satisfies the following property.

$$\sum_{x \in [n]} \omega(x) = |\mathcal{F} \setminus \{\emptyset\}| = |\mathcal{F}| - 1.$$

- Since $\delta(\mathcal{F})\geqslant 2^{d-1}-c+1>2^{d-2}$, we can show that $|N(x)|\geqslant d$ for any $x\in [n].$

Definition (good/bad vertex)

For any $x \in [n]$,

- we call x bad if |N(x)| = d;
- we call x good if |N(x)| > d.

Definition (Pile)

Let $P \subseteq [n]$ and |P| = d. We call P a **pile**, if

- For any $y \in P$, we have $P \subseteq N(y)$.
- There exists $z \in P$, such that P = N(z).
- Note that for $d \ge 6$, every bad vertex x is in exactly one pile, which is N(x). This is the reason why we have to distinguish between the proofs of two results (they cannot be unified).

Definition (Pile)

Let $P \subseteq [n]$ and |P| = d. We call P a **pile**, if

- For any $y \in P$, we have $P \subseteq N(y)$.
- There exists $z \in P$, such that P = N(z).
- Note that for $d \ge 6$, every bad vertex x is in exactly one pile, which is N(x). This is the reason why we have to distinguish between the proofs of two results (they cannot be unified).

Definition (Different types of piles)

A pile is an **intersecting pile** if it intersects another pile. Otherwise, we call the pile **non-intersecting pile**.

Proof sketch: $m(2^{d-1}-c)$, $1 \le c \le d$

We consider the following partition of piles,

$$\mathcal{P}_1 = \{ \text{non-intersecting piles } P \},$$

 $\mathcal{P}_2 = \{ \text{intersecting piles } P \}.$

Then we have the following partition of [n],

$$[n] = J \cup \left(\bigcup_{P \in \mathcal{P}_1} P\right) \cup \left(\bigcup_{P \in \mathcal{P}_2} P\right).$$

Note that every $x \in J$ is a good vertex.

Proof sketch: $m(2^{d-1}-c)$, $1 \leqslant c \leqslant d$

We will partition the vertex set [n] into three parts and prove the average weight in each part is at least \mathfrak{B}_c .

- Vertices that are not in any pile. (shown in white)
- Vertices that are in intersecting piles. (shown in red)
- Vertices that are in non-intersecting piles. (shown in green)

Proof sketch: $m(2^{d-1}-c)$, $1 \le c \le d$

- Out of piles. We know that every vertex not contained in any piles is good, hence their weight is at least \mathfrak{B}_c .
- Intersecting piles. The "gain" of the intersection of piles (shown in blue) is enough to share with others (shown in red).

Proof sketch: $m(2^{d-1}-c)$, $1 \le c \le d$

• Non-intersecting piles. Assume the average weight is less than \mathfrak{B}_c . By calculating the weights there are at most 7 good vertices. By this the structure is almost fixed and we know the average weight is at least \mathfrak{B}_c (will see soon).

Technical lemmas

Now we give more details for the proof of $m(2^{d-1}-c)=\mathfrak{B}_c$.

Lemma

Given two positive integers n and d with $d \geqslant 50$, $\mathcal{F} \subseteq 2^{[n]}$ is a hereditary family. Let $x \in [n]$ be a vertex with $d_{\mathcal{F}}(x) \geqslant 2^{d-1} - c + 1$, where $c \in [d]$. Then

$$\label{eq:linear_eq} \ \ \, \textbf{if} \ |N(x)| = d \text{, we have} \ \omega(x) > \mathfrak{B}_c - \tfrac{1}{18}.$$

② if
$$|N(x)| > d$$
, we have $\omega(x) > \mathfrak{B}_c - \frac{1}{18} + \frac{|N(x)| - d}{6} > \mathfrak{B}_c$.

- By the above lemma, we know that the weight of any vertex is at least $\mathfrak{B}_c \frac{1}{18}$.
- In particular, the weight of good vertex is at least \mathfrak{B}_c .

Technical lemmas

For any pile P, let θ_P be the number of vertices in P which only belong to one pile.

Lemma 1 (for intersecting piles)

If the family $\mathcal{P}(\boldsymbol{x})$ consisting all piles containing \boldsymbol{x} has size at least 2, then we have

$$\omega(x) > \mathfrak{B}_c + \frac{1}{18} \sum_{P \in \mathcal{P}(x)} \frac{\theta_P}{d - \theta_P}$$

Technical lemmas

Let n, d and c be positive integers with $d \geqslant 50$ and $1 \leqslant c \leqslant d$.

Lemma 2 (for non-intersecting piles)

For any hereditary family $\mathcal{F}\subseteq 2^{[n]}$ with $\delta(\mathcal{F})\geqslant 2^{d-1}-c+1$. If $P\subseteq [n]$ is a non-intersecting pile, then

$$\sum_{x \in P} \omega(x) \geqslant \mathfrak{B}_c d.$$

This lemma is the most technical part of the proof.

Let $\mathcal{F}\subseteq 2^{[n]}$ be a hereditary family with $\delta(\mathcal{F})\geqslant 2^{d-1}-c+1$, where $d\geqslant 50$ and $c\in [d]$. Adapting the uniform weight $\omega(x)$, we only need to show that $\sum_{x\in [n]}\omega(x)\geqslant \mathfrak{B}_c n$. Since we have the partition $[n]=J\cup (\bigcup_{P\in \mathcal{P}_2}P)\cup (\bigcup_{P\in \mathcal{P}_1}P)$, we only need to show that the average weight in each part is at least \mathfrak{B}_c .

For any $x \in J$, we know that x is good and $\omega(x) \geqslant \mathfrak{B}_c$.

As for the part $K=\bigcup_{P\in\mathcal{P}_2}P$, we set $K_1=\{x\in K:|\mathcal{P}(x)|=1\}$ and $K_2=K\setminus K_1.$

By Lemma 1, we can get

$$\begin{split} \sum_{x \in K_2} \omega(x) \geqslant \sum_{x \in K_2} \left(\mathfrak{B}_c + \frac{1}{18} \sum_{P \in \mathcal{P}(x)} \frac{\theta_P}{d - \theta_P} \right) \\ &= \mathfrak{B}_c |K_2| + \frac{1}{18} \sum_{P \in \mathcal{P}_2} \theta_P \\ &\sum_{x \in K_1} \omega(x) \geqslant \sum_{x \in K_1} (\mathfrak{B}_c - \frac{1}{18}) = \mathfrak{B}_c |K_1| - \frac{1}{18} \sum_{P \in \mathcal{P}_2} \theta_P. \end{split}$$

Thus we have

$$\sum_{x \in K} \omega(x) = \sum_{x \in K_1} \omega(x) + \sum_{x \in K_2} \omega(x) \geqslant \mathfrak{B}_c(|K_1| + |K_2|) = \mathfrak{B}_c|K|.$$

For any $P \in \mathcal{P}_1$, by Lemma 2, we can get

$$\sum_{x \in P} \omega(x) \geqslant \mathfrak{B}_c d.$$

Now combine all results above, we conclude that

$$|\mathcal{F}| - 1 = \sum_{x \in [n]} \omega(x) = \sum_{x \in J} \omega(x) + \sum_{x \in K} \omega(x) + \sum_{P \in \mathcal{P}_1} \sum_{x \in P} \omega(x)$$
$$\geqslant \mathfrak{B}_c(|J| + |K| + d|\mathcal{P}_1|) = \mathfrak{B}_c n.$$

So we conclude that $|\mathcal{F}| \geqslant \mathfrak{B}_c n + 1$ and we finish the proof.

Difference between our proof and Piga-Schülke proof

- They choose a maximum collection of disjoint piles and call them **clusters**.
- There could be bad vertices (shown in red) outside of all the clusters. For these bad vertices to have enough weight, they send $\frac{1}{2}-\frac{c-1}{d-c}\geqslant\frac{1}{6}$ weight for every vertex outside of a cluster (shown in red) which have connection with some vertices in the cluster.
- This is why they need $c \leqslant \frac{d}{4}$.

Difference between Our proof and Piga-Schülke proof

- There are no bad vertex outside of piles.
- We have more understanding in the edge structure of a pile, where they just used a simple inequality (works well for $c\leqslant \frac{d}{4}$).
- In order to achieve the range $1\leqslant c\leqslant d$, we need $d\geqslant 50$ to make certain weight inequalities holds. Weight inequalities though out the proof are far from tight. So there is hope to improve this bound.

Open problems

- The general question: $m(2^{d-1}-c)$ for all possible c?
- What about $m(2^{d-1} + 1)$?

Thank you!

Thanks a lot for your attention!