

Team members

Supervisor: Fabrice RETIERE

Student: Carl RETHMEIER

Student: Paul LOPES GOEMS

How does the setup work?

Too much electronic noise on the signal observed on the oscilloscope:

- Sol. 1.: Could improve the code WaveFormProcess -
- ★ Sol. 2. : Improve the setup

Sources of electronic noise

- Ground loops and no ground point
- When the F.L. is on it creates radio waves whose frequencies are between 400 MHz and 1.2 GHz
- Radio waves propagate through the air and are transmitted to any piece of conductive metal
 - The lid of the box conduct electric field and disturb the amplifiers >> the signal is disturbed
 - Each detector receives these radio waves >> the signal is disturbed

The metal divider act as a transmitter and the connectors of the signal wire act as

antenna >> the signal is disturbed

metal divider

The lid of the box

Three main solutions to improve the setup

- Create a ground point : help for trigger.
- Isolate the lid from the box.

Copper tape

Copper tape

<u>Csq</u>:

- The electric field from the flash lamp is guided by copper
- No more electric field above the amplifiers

Three main solutions to improve the setup

Isolate the flash lamp : Faraday cage.

The centimeter thick piece of metal absorb radio waves from the F.L.

A aluminum foil, connected to the pieces of metal, conduct electric field to the copper tape and so to the ground.

Three main solutions to improve the setup

Isolate the detectors from the radio waves of the F.L.: Faraday cage.

Analysis

- Use number of waveforms without a pulse to calculate probabilities
- Analysis of histogram from scope.
 - Histogram plots minimum amplitude (for negative pulses)
 - Events in peak closest to 0 taken as number of zeros
- Development of peak finder (and learning how already developed software works).
 - Boxcar smoothing over 600 bins
 - 3.5 baseline sigma threshold for pulse
 - Pulse checked using width and charge
 - Count number of zeros and apply Poisson

Analysis

- PE>
 - Ready
- Dark Noise
 - Ready
- Crosstalk
 - Developing
- Afterpulse
 - Will integrate waveform after initial dark noise pulse

Histogram

<*DN*>

