Estruturas de Dados

Noções de complexidade

- Nem todos os algoritmos desenvolvidos para resolver um mesmo problema sempre tem o mesmo custo;
 - Alguns algoritmo levam mais tempo que outros;
 - Alguns algoritmos consomem mais memória que outros;
- O projeto de um algoritmo pode afetar no tempo levado para a resolução do problema de maneira mais relevante que a velocidade do computador;

- Suponha o seguinte cenário:
 - Computador A que executa 10¹⁰ instruções por segundo;
 - Computador B que executa 10⁷ instruções por segundo;
 - Algoritmo X que executa 2n² instruções para ordenar n elementos;
 - Algoritmo Y que executa 50 n lg n instruções para ordenar n elementos;
- O que terminaria mais rápido?
 - Executar o algoritmo X no computador A ou executar o algoritmo Y no computador B para 10⁷ elementos?

Obs: $\lg n = \log_2 n$

- Computador A executando algoritmo X:
 - Total de instruções

$$2 \times (10^7)^2 = 2 \times 10^{14}$$
 instruções

o Total de tempo:

$$2 \times 10^{14} / 10^{10} = 20000$$
 segundos (mais de 5 horas e meia)

- Computador B executando algoritmo Y:
 - Total de instruções:

$$50 \times 10^7 \log_2 10^7 \approx 10^7 \times 23,25 \times 50 \approx 1162,5 \times 10^7$$

o Total de tempo:

$$10^7 \times 1162,5 / 10^7 = 1162,5 \text{ segundos (menos de 20 minutos)}$$

- Como a eficiência de um algoritmo é importante para o desempenho obtido na solução do problema, se torna uma área de muita importância a análise de algoritmos;
- Na área de análise de algoritmos existem dois tipos de problemas distintos:
 - o Análise de um algoritmo em particular;
 - Qual o custo de usar um dado algoritmo para resolver um problema específico?
 - Análise de uma classe de algoritmos;
 - Qual o algoritmo de menor custo para resolver um problema particular?

- A análise de algoritmos em particular tem por objetivo fazer uma previsão do quanto é consumido de cada um dos recursos por um determinado algoritmo;
- A análise de um algoritmo pode ser feita de duas maneiras:
 - Por meio do Método Experimental;
 - o Por meio do Método Analitico;

- Método Experimental:
 - Realizar várias implementações completas do algoritmo;
 - Executar uma grande quantidade de testes;
 - Analisar estatisticamente os resultados;
- Existem alguns motivos para não usar o método experimental:
 - Resultados dependem do compilador;
 - Resultados dependem do hardware;
 - Tempo pode ser influenciado pelo uso de memória;

- Método Analitco:
 - Usar um modelo matemático, baseado em um computador idealizado;
 - Extrair funções que descrevem a complexidade do algoritmo em função do tamanho do problema;
 - Complexidade de tempo;
 - Complexidade de espaço;

- O que é a eficiência de um algoritmo?
 - Medida Quantitativa;
 - o O inverso da quantidade de recursos requeridos para o seu funcionamento
- Por que medir a eficiência de um algoritmo?
 - Prever a quantidade de recursos a serem usados;
 - De espaço de memória (complexidade de espaço);
 - De tempo de execução (complexidade de tempo);
 - A preocupação mais frequente na área de análise de algoritmos;
 - Escolher um modelo de tecnologia adequado para sua implementação;

- Adotar um modelo matemático de computador torna a análise de algoritmos mais abrangente;
- Existem diversos modelos matemáticos de computadores;
- O modelo adotado para a análise de nossos algoritmos será a máquina de acesso aleatório (random-access machine - RAM) de um único processador;
 - Instruções executadas em sequência sem operações concorrentes;
 - Composto por operações:
 - Aritméticas e lógicas;
 - De movimentação;
 - De Desvio
 - Cada operação é executada em uma unidade de tempo;

- Em alguns casos algumas análises podem ser simplificadas, levando em consideração o custo das operações mais significativas;
 - A quantidade de comparações entre o elemento procurado e os elementos do vetor em um algoritmo de busca;
 - Quantidade de comparações e trocas num algoritmo de ordenação;

 Considere o seguinte algoritmo, implementado em C, para procurar o maior valor entre um vetor de inteiros;

```
int max(int v[], int n){
     //n é a quantidade de elementos
     em v
     int i, temp;
     temp=v[0];
 5.
       for(i=1;i<n;i++){
          if(temp < v[i]){
 6.
             temp=v[i]
 8.
10.
```

 Qual a quantidade de comparações para um vetor de n elementos?

```
int max(int v[], int n){
    //n é a quantidade de elementos
     em v
 3.
     int i, temp;
     temp=v[0];
        for(i=1;i< n;i++){}
 5.
 6.
          if(temp < v[i])
             temp=v[i]
 8.
10.
```

- Qual a quantidade de comparações para um vetor de n elementos?
 - Para responder essa questão devemos analisar quantas vezes a linha 6 será executada;
 - A variável de controle do laço for irá assumir os valores 1,2,3,...n-1
 - Dessa forma, em um vetor com n elementos (indexados de 0 até n-1) realizará comparações entre temp e cada elemento do vetor, exceto o primeiro, que está na posição 0;
 - Assim, temos um total de n-1 comparações

```
int max(int v[], int n){
     //n é a quantidade de elementos
     em v
 3.
     int i, temp;
     temp=v[0];
 5.
        for(i=1;i< n;i++)
 6.
          if(temp < v[i])
             temp=v[i]
 8.
10.
```

- A função que expressa a complexidade de tempo de execução é geralmente expressa de acordo com o tamanho da entrada do algoritmo;
- Para alguns, além do tamanho da entrada, o desempenho também é afetado de acordo com algumas entradas em particular;

 Suponha um algoritmo que deseja verificar a posição de uma chave única em um vetor, implementado a seguir

```
int buscar(int v[],int n, int chave){ //sendo n a
      quantidade de elementos em v
         int i, pos;
         i=0;
         pos = -1;
         while((i < n) \&\& (pos == -1)){}
           if(v[i]==chave){}
              pos = i;
 8.
           j++:
10.
11.
         return pos;
12.
```

• Como poderíamos extrair a quantidade de comparações entre elementos do vetor e a chave buscada?

- Para isso precisamos responder a algumas perguntas:
 - O que aconteceria se o primeiro elemento do vetor tivesse o valor da chave?
 - Esse seria o caso em que o tempo de execução teria o melhor desempenho;
 - Menor tempo de execução dentre todos os possíveis para entradas de tamanho n para o algoritmo;
 - Também chamado de melhor caso;
 - O que aconteceria se o valor da chave não estivesse em nenhum elemento do vetor?
 - Esse seria o caso em que o tempo de execução teria o maior desempenho;
 - Maior tempo de execução dentre todos os possíveis para entradas de tamanho n para o algoritmo;
 - Também chamado de pior caso;

- Número de comparações no melhor caso:
 - No melhor caso o elemento procurado é o primeiro;
 - Dessa forma, a quantidade de comparações (execuções da linha 6) é apenas uma;
 - O algoritmo irá identificar que o elemento é o procurado, ajustar as variáveis e retornar que encontrou o elemento;
 - Assim, a quantidade total de operações de comparação é 1, logo, no melhor caso:

$$f(n) = 1$$
;

- Número de comparações no pior caso:
 - No pior caso o elemento n\u00e3o est\u00e1 no vetor;
 - Dessa forma, a quantidade de comparações (execuções da linha 6) é exatamente igual a quantidade de elementos que existe no vetor;
 - Deve-se comparar o elemento procurado com todos elementos do vetor;
 - Assim, o total de operações de comparação é a quantidade de elementos que existem no vetor, ou seja, no **pior caso**:

$$f(n) = n$$

- Qual o desempenho esperado para o algoritmo?
 - O desempenho esperado está relacionado à média dos tempos de execução de todas entradas de tamanho N;
 - Para calcular a média é necessário supor distribuição de probabilidades;
 - É a análise mais difícil!

- Para analisarmos o caso médio vamos simplificar e supor o seguinte:
 - Toda pesquisa a ser feita irá encontrar o valor buscado;
 - Desconsiderar os casos em que o valor não é encontrado
 - Uma probabilidade p; de que o i-ésimo registro seja o procurado;
- Como para que o i-ésimo registro seja o recuperado são necessárias i comparações, temos:

$$f(n) = 1 \times p_1 + 2 \times p_2 + ... + n \times p_n$$

 Dessa forma, basta conhecer a distribuição de probabilidades p_i para calcular o caso médio;

 Assumindo que cada elemento do vetor tem a mesma probabilidade, ou seja, p_i = 1/n, tal que 1 ≤ i ≤ n, temos:

$$f(n) = 1 \times \frac{1}{n} + 2 \times \frac{1}{n} + ... + n \times \frac{1}{n}$$

$$f(n) = \frac{1}{n} \times (1 + 2 + ... + n)$$

$$f(n) = \frac{n+1}{2}$$

Supondo a seguinte implementação do algoritmo selection sort

```
void selection(int v[], int n){
      int i,j, idx_menor, aux;
      for(i=0; i < n-1; i++)
            idx menor = i;
            for(j=i+1;j < n;j++){
                   if(v[j]<v[idx_menor]){</pre>
                         idx menor=j;
            aux=v[i];
            v[i]=v[idx_menor];
            v[idx_menor]=aux;
```

 Qual a quantidade de comparações para um vetor de n elementos?

```
void selection(int v[], int n){
      int i,j, idx menor, aux;
      for(i=0;i < n-1;i++){
            idx menor = i;
            for(j=i+1;j < n;j++)
                   if(v[i]<v[idx menor]){</pre>
                         idx menor=j;
            aux=v[i];
            v[i]=v[idx_menor];
            v[idx menor]=aux;
```

- Qual a quantidade de comparações para um vetor de n elementos?
 - Existem 2 laços no algoritmo, e a comparação está dentro de ambos:
 - O bloco do laço externo é executado n-1 vezes;
 - O bloco do laço interno tem sua execução dependendo do índice que controla o laço externo;
 - Tal bloco é executado (n-1) + (n-2) + (n-3) + (n-4)+...+1;
 - A quantidade de comparações é dada por:

```
\sum_{1}^{n} n - 1
```

```
void selection(int v[], int n){
      int i,j, idx menor, aux;
      for(i=0; i < n-1; i++)
            idx menor = i;
            for(j=i+1;j < n;j++)
                   if(v[i]<v[idx menor]){</pre>
                         idx menor=j;
            aux=v[i];
            v[i]=v[idx menor];
            v[idx menor]=aux;
```

Resolvendo a somatória:

$$\sum_{1}^{n} n - i = \sum_{1}^{n} n - \sum_{1}^{n} i = n^{2} - \sum_{1}^{n} i = n^{2} - \frac{n(n+1)}{2} = \frac{n^{2} - n}{2}$$

Assim tem-se que:

$$f(n) = \frac{n^2 - n}{2}$$

- Para valores pequenos de n todos algoritmos tem custo baixo;
 - o Inclusive os algoritmos ineficientes!
- A análise de complexidade de algoritmos é realizada para valores de n grandes;

Notação assintótica

- Para expressar a eficiência de um algoritmo, o mais comum é usar a ordem de crescimento do tempo de execução;
- Uma boa maneira de expressar a ordem de crescimento do tempo de execução é utilizando notações assintóticas;

Notação assintótica

- A notação assintótica descreve o crescimento de funções;
- Abstrai os termos de baixa ordem e constantes;
- É utilizada para comprar funções;
 - o De maneira similar as operações relacionais entre números;

Notação assintótica

- Existem diferentes notações para comprar o crescimento de funções, dentre elas estão:
 - Notação O (big o);
 - Notação Ω (big ômega);
 - Notação Θ (big teta);

Notação Big o

- Notação O (Limite Superior):
 - A notação O define um limite superior para para a função;
 - Para uma dada função g(n) define-se O(g(n)) como o conjunto de funções:

$$O(g(n)) = \{f(n): \exists c, n_0 : c, n_0 > 0 \mid 0 \le f(n) \le cg(n), \forall n \ge n_0\}$$

Ou ainda::

 $O(g(n)) = \{f(n): existem constantes positivas c, n_0 tais que 0 \le f(n) \le cg(n)$ para todo $n \ge n_0 \}$

Notação O (Big o)

- Em outras palavras:
 - Dadas duas funções f(n) e g(n), se f(n) pertence a O(g(n)) então:
 - A taxa de crescimento de g(n) é maior que a taxa de crescimento de f(n) a partir de um ponto n_0 ;

Notação O (Big o)

- Desse modo, para provar que uma função f(n) pertence ao conjunto O(g(n)) devemos encontrar as constantes c e n₀ que satisfazem a inequação;
- Por exemplo:
 - Provar que $f(n)=n^2+2n+1$ pertence a $O(n^2)$;
 - Temos que achar constantes c e n_0 tais que:
 - $n^2+2n+1 \le cn^2$

$$n^2 + 2n + 1 \le cn^2 \to 1 + \frac{2}{n} + \frac{1}{n^2} \le c$$

• Assim, com c \geq 4 e n \geq 1 temos que f(n)=n²+2n+1 pertence a O(n²);

Notação Ω (Big ômega)

- Notação Ω (Limite inferior)
 - A notação Ω define um limite inferior para a função
 - \circ Para uma dada função g(n) define-se $\Omega(g(n))$ como o conjunto de funções:

$$\Omega(g(n)) = \{f(n): \exists c, n_0: c, n_0 > 0 \mid 0 \le cg(n) \le f(n), \forall n \ge n_0\}$$

Ou ainda::

 $\Omega(g(n)) = \{f(n): existem constantes positivas c, n_0 tais que 0 \le cg(n) \le f(n)$ para todo $n \ge n_0 \}$

Notação Ω (Big ômega)

- Em outras palavras:
 - O Dadas duas funções f(n) e g(n), se f(n) pertence a $\Omega(g(n))$ então:
 - A taxa de crescimento de g(n) é maior que a taxa de crescimento de f(n) a partir de um ponto n_0 ;

Notação Ω (Big ômega)

- Desse modo, para provar que uma função f(n) pertence ao conjunto Ω (g(n)) devemos encontrar as constantes c e n₀ que satisfazem a inequação;
- Por exemplo:
 - Provar que $f(n)=n^2+2n+1$ pertence a $\Omega(n^2)$;
 - Temos que achar constantes c e n_0 tais que:
 - $cn^2 \le n^2 + 2n + 1$

$$cn^2 \le n^2 + 2n + 1 \to c \le 1 + \frac{2}{n} + \frac{1}{n^2}$$

• Assim com c \leq 1 e n \geq 1 temos que f(n)=n²+2n+1 pertence a $\Omega(n^2)$

Notação Θ (Big teta)

- Notação Θ (Limite restrito):
 - A notação Θ define um limite restrito para para a função;
 - Para uma dada função g(n) define-se Θ(g(n)) como o conjunto de funções:

$$\Theta(g(n)) = \{f(n): \exists c_1, c_2, n_0: c_1, c_2, n_0 > 0 \mid c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0\}$$

Ou ainda:

 $\Theta(g(n)) = \{f(n): existem constantes positivas <math>c_1, c_2 e n_0 \text{ tais que } c_1g(n) \le f(n) \le c_2g(n) \text{ para todo } n \ge n_0 \}$

Notação Θ (Big teta)

- Em outras palavras:
 - Dadas duas funções f(n) e g(n), se f(n) pertence a (g(n)) então:
 - A taxa de crescimento de g(n) é a mesma que a taxa de crescimento de f(n) a partir de um ponto n_0 ;

Notação Θ (Big teta)

- Desse modo, para provar que uma função f(n) pertence ao conjunto Θ (g(n)) devemos encontrar as constantes c₁, c₂ e n₀ que satisfazem a inequação;
- Por exemplo:
 - Provar que $f(n)=n^2+2n+1$ pertence a $\Theta(n^2)$;
 - Temos que achar constantes c_1 , c_2 e n_0 tais que:
 - $c_1 n^2 \le n^2 + 2n + 1 \le c_2 n^2$

$$c_1 n^2 \le n^2 + 2n + 1 \le c_2 n^2 \to c_1 \le 1 + \frac{2}{n} + \frac{1}{n^2} \le c_2$$

• Assim com $c_1 \le 1$, $c_2 \ge 4$ e $n \ge 1$ temos que $f(n)=n^2+2n+1$ pertence a $\Theta(n^2)$;

Notação Assintótica

• É possível fazer uma analogia entre as notações assintóticas e as operações relacionais entre números reais:

$$egin{array}{ll} O &pprox & \leq \ \Omega &pprox & \geq \ \Theta &pprox & = \ \end{array}$$

Classes de funções de complexidade

 As principais classes de problemas possuem as seguintes funções de complexidade:

```
    f(n) = O(1);
    f(n) = O(log n);
    f(n) = O(n);
    f(n) = O(n log n);
    f(n) = O(n²);
    f(n) = O(n³);
    f(n) = O(2n);
    f(n) = O(n!);
```

Exercícios

 Dado o algoritmo bubble sort, apresentado a seguir, extraia a função de complexidade de tempo, considerando somente o número de comparações, e mostre que tal função é O(n²);

2. Mostre que o pior caso da quantidade de comparações do algoritmo Selection sort é $\Theta(n^2)$.