

Out-of-distribution Detection using Flow-based Contrastive Learning

Saandeep Aathreya, Dr. Shaun Canavan

Far-OOD (Semantic Shift)

When encountering OOD data, how should the model behave?

Near-OOD (Covariate Shift)

When encountering OOD data, how should the model behave?

Likelihood Based Approaches (Mahalanobis)

Thresholding

Removing Normality Assumption

Training $k \times l$ models is impractical.

<u>Example</u>: Resnet18 classifier with **four** intermediate layers trained on CIFAR100 would require training 400 normalizing flow models

Normalizing Flows (NF)

Out-of-distribution Detection using *Flow-based* Contrastive Learning

Change of Variables

Likelihood of the data point x relates to probability density of a simpler distribution (Z)

$$L_{flow} = -\log p_X(x)$$

Supervised Contrastive Learning (SCL)

Supervised Contrastive
Image taken from [1]

Out-of-distribution Detection using Flow-based *Contrastive Learning*

Combining NF and SCL

$$\mathcal{L}_{flow} = -p_X\left(x
ight) = p_Z\left(egin{array}{c} z_i^{flow} \end{array}
ight) \cdot \left|\detrac{\partial f(x)}{\partial x}
ight|$$
 Flow feature

Normalizing Flow

Similarity score between Anchor and Positive

$$\mathcal{L}_{con} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{S(\ z_i^{flow}, z_p^{flow}\)}{\sum_{a \in A(i)} S(\ z_i^{flow}, z_a^{flow}\))}$$
Similarity score between Anchor and All images in batch

SCL

Learning Distributions Contrastively

<u>Bhattacharyya Coefficient</u>: Quantifies overlap between two distributions. Greater the overlap, higher the coefficient value.

$$S(z_i,z_j) = \exp(z_i \cdot z_j/ au)$$
 \downarrow $S_{flow}(z_i,z_j,\mathcal{N}_i) = \exp\Big(p_Z(z_i|\mathcal{N}_i) \cdot p_Z(z_j|\mathcal{N}_i)\Big)^ au$ Computed from \mathcal{L}_{flow}

$$\mathcal{L}_{con} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{S_{flow}(z_i, z_p, \mathcal{N}_i)}{\sum_{a \in A(i)} S_{flow}(z_i, z_a, \mathcal{N}_i)}$$

Intuition – With Flow Loss

Intuition – With Flow + Contrastive Loss

Pipeline

$$M_i = \max_{i \in \{1,...,k\}} p_Z(z|\mathcal{N}_{y=i})$$

Score Computation

Metrics

AUROC: A higher AUROC value indicates better performance in correctly classifying OOD samples across all thresholds. *Higher is better*

AUPR-Success (Area Under the Precision-Recall Curve for Success): A higher AUPR-Success indicates that the model can confidently identify OOD samples without misclassifying many ID samples as OOD. <u>Higher is better</u>

AUPR-Error: Indicates model's ability to avoid false positives (high precision) across all levels of false negative rates. *Higher is better*

FPR@TPR=95%: It represents the false positive rate when the model correctly identifies 95% of the OOD samples. *Lower is better*

Experiments

No.	Name	ID Dataset	OOD Datasets	Model	Result
1	Semantic Shift (Vision)	CIFAR10	lsun-r, lsun-c, isun, svhn,	Resnet18 and WideResnet	Averaged
		CIFAR100	textures, places365		
2	Semantic Shift (Expression)	RAF-DB	lsun-r, lsun-c, isun, svhn,		
		AffectNet	textures, places365		
3	Covariate Shift (Expression)	RAF-DB	AffectNet		Individual
		AffectNet	Raf-DB		

- No additional training of pretrained classifier.
- No external dataset utilized as OOD.
- Compared with five other methods

Semantic Shift (Common vision dataset)

D_{in} (model)	Method	AUROC ↑	AUPR-S ↑	AUPR-E ↑	FPR-95 ↓
	MSP	90.90	97.94	64.11	53.99
	ODIN*	88.33	96.67	71.49	38.35
CIFAR-10	Mahalanobis	90.09	97.04	76.92	28.07
(ResNet)	Energy	91.91	97.94	72.85	36.80
(Kesivet)	ReAct	91.78	97.88	72.77	36.80
	Ours	97.19	99.43	85.66	16.26
	MSP	91.79	98.27	64.09	55.45
	ODIN*	95.01	98.68	84.39	21.09
	Mahalanobis*	92.03	98.09	75.44	32.73
CIFAR-10	Energy	95.30	97.87	81.89	22.5
(WideResNet)	ReAct*	51.92	85.46	17.53	97.12
	Ours	95.19	98.78	86.11	20.30
	MSP*	79.29	95.04	40.34	76.58
	ODIN	83.28	95.96	48.74	67.96
CIFAR-100	Mahalanobis	73.46	93.00	35.90	79.46
	Energy	82.07	95.71	43.92	74.45
(ResNet)	ReAct	84.22	96.27	49.08	67.78
	Ours	88.22	96.85	67.89	41.85
	MSP	65.31	90.38	26.21	88.45
	ODIN	79.43	94.60	43.98	73.19
	Mahalanobis	73.99	92.58	43.80	68.45
CIFAR-100	Energy	77.11	93.95	39.07	78.03
(WideResNet)	ReAct	80.74	95.24	48.04	67.47
	Ours	84.54	95.89	54.84	60.05

ID Dataset: CIFAR-10, CIFAR-100

OOD Dataset: lsun-r, lsun-c, isun, svhn, textures, places365

The results marked with * are taken from the previous work¹.

Semantic Shift (Expression dataset)

D_{in} (model)	Method	AUROC ↑	AUPR-S ↑	AUPR-E ↑	FPR-95 ↓
	MSP	66.72	89.15	26.16	87.8
	ODIN	65.62	88.40	28.06	82.84
	Mahalanobis	97.92	99.11	88.88	8.97
RAF	Energy	75.32	93.57	37.2	79.49
(ResNet)	ReAct	78.89	94.7	40.85	76.12
	Ours	96.35	99.57	87.50	13.05
·	MSP	66.47	89.46	25.75	89.28
	ODIN	66.21	88.92	28.92	85.01
	Mahalanobis	98.17	99.62	90.86	9.40
RAF	Energy	75.32	93.57	37.2	79.49
(WideResNet)	ReAct	71.17	93.06	30.80	84.99
	Ours	97.98	99.57	91.97	10.08
	MSP	67.61	91.11	26.15	89.63
	ODIN	71.19	91.71	32.26	82.58
	Mahalanobis	98.27	99.64	91.57	8.48
Aff	Energy	67.69	91.12	27.68	87.50
(ResNet)	ReAct	73.06	93.32	31.17	84.25
	Ours	76.66	90.91	69.95	30.70
7	MSP	66.88	90.93	26.22	89.5
	ODIN	63.58	87.93	24.79	89.6
	Mahalanobis	98.33	99.76	94.13	5.2
Aff	Energy	55.83	86.02	20.04	94.07
(WideResnet)	ReAct	65.33	91.33	23.47	93.03
	Ours	99.71	99.95	97.95	1.32

ID Dataset: RAF-DB, AffectNet
OOD Dataset: lsun-r, lsun-c, isun, svhn, textures,
places365

Only Mahalanobis and Our method show competitive performance on expression dataset.

Covariate Shifts

D_{in} (model)	Method	AUROC ↑	AUPR-S ↑	AUPR-E↑	FPR-95 ↓
RAF (ResNet)	Mahalanobis Ours	97.92 96.35	99.11 99.57	88.88 87.50	8.97 13.05
RAF (WideResNet)	Mahalanobis Ours	98.17 97.98	99.62 99.57	90.86 91.97	9.40 10.08
Aff (ResNet)	Mahalanobis Ours	98.27 76.66	99.64 90.91	91.57 69.95	8.48 30.70
Aff (WideResnet)	Mahalanobis Ours	98.33 99.71	99.76 99.95	94.13 97.95	5.2 1.32

D_{in} (model)	Method	AUROC ↑	AUPR-S ↑	AUPR-E ↑	FPR-95 ↓
RAF	Mahalanobis	57.87	87.95	18.8	95.59
(ResNet)	Ours	87.21	97.22	50.43	64.37
RAF	Mahalanobis	55.33	86.7	18.03	96.08
(WideResNet)	Ours	63.51	89.89	25.22	89.75
Aff	Mahalanobis	75.53	93.51	35.16	79.34
(ResNet)	Ours	91.4	98.20	63.40	48.93
Aff	Mahalanobis	77.31	94.20	36.75	77.84
(WideResnet)	Ours	85.23	96.79	45.42	72.59

Semantic Shift

OOD Dataset: lsun-r, lsun-c, isun, svhn, textures, places365

Covariate Shift

OOD Dataset: RAF-DB or AffectNet

ID Dataset: RAF-DB, AffectNet

Likelihood Plots

$$egin{aligned} \mu_c &= rac{1}{N_k} \sum_{i=1}^k \mu^i \ \sigma_c &= rac{1}{N_k} \sum_{i=1}^k \sigma^i \end{aligned} egin{aligned} k & egin{cases} rac{\mathcal{N}_0(\mu_1,\sigma_1)}{\mathcal{N}_1(\mu_1,\sigma_1)} \ dots \ rac{dots}{\mathcal{N}_k(\mu_1,\sigma_1)} \end{aligned}$$

$$oxed{M_i = \max_{i \in \{1,...,k\}} p_Z(z|\mathcal{N}_{y=i})}$$

Score Computation

Histogram plots of M_i values on ID and OOD Test set

Semantic to Covariate Shift

RAF-DB trained on CIFAR10

Semantic to Covariate Shift

AffectNet trained on CIFAR10

Summary

$$\mathcal{L}_{con} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{S_{flow}(z_i, z_p, \mathcal{N}_i)}{\sum_{a \in A(i)} S_{flow}(z_i, z_a, \mathcal{N}_i)}$$
 $\mathcal{L} = \mathcal{L}_{con} + \lambda \mathcal{L}_{flow}$

(a) Modified Contrastive Loss

(c) Effect of Covariate Shift

(b) Class Preserving Training

(d) Correlation with Likelihood histogram