Evidence for Exposed Superdense Planetary Cores

12.420 Fall 2017 Haley Bates-Tarasewicz

Background

Generally two types:

- Terrestrial exposed cores impacts during early solar system
- Cthonian Planets hydrodynamic escape of gas envelope (usually in extreme thermal cases)

Approach:

 Try to find planets with densities that imply compositions close to pure iron by comparing to a modified polytropic equation of state

Exoplanet Data

Data Processing:

- All data used retrieved from Exoplanet.eu database
 - 3711 confirmed planets
- Removed planets missing Mass or Radius data
 - o 678 planets
- Mass Radius relationship only accurate for <100 M_{Earth}
 - o 236 planets

Starting Point

Removing Low-Density Planets

Removing Low-Density Planets

Removing Statistically Unlikely Candidates

Removing Statistically Unlikely Candidates

Removing Statistically Unlikely Candidates

24 Superdense Planetary Core Candidates

Mechanism for Formation

Previous Work

Assumptions and Criteria for Continued Consideration

Assumptions:

- Fossilized core theory is correct
- Solar abundance of elements

Must Satisfy:

- Consistent with observed gas/ice giant core data and/or core accretion models
- Very close to host star

Planetary Embryo Size Discussion on Size

- Sources suggest an embryo of 10-20M_{Earth} is required for runaway gas accretion, though rocky planetary cores seem to be smaller than this.
- Simulations can create 100M_{Earth} planets over short (1Myr) time scales with an embryo of 0.6M_{Earth}

Hypothesized gas/ice giant core masses potentially more useful:

- Jupiter: 12-45MEarth
- Saturn: 9-22MEarth
- Uranus: ~0.55MEarth

May not be exactly consistent with core accretion model, but roughly consistent with solar system planets

Comparison With Our Solar System

Semimajor Axis Criteria

Conclusions

- There are at least 24 planets that current data suggest are more dense than a pure iron sphere of the same radius
- These planets have masses consistent with those of the cores of gas and ice giants in our own solar system
- For these planets that have semimajor axis data, most are within the expected semimajor-axis range for Hot Jupiters
- Many have unconstrained or poorly constrained masses, followup data would help with certainty
- In many cases, multiple or all planets from a system exhibit superdense traits, potentially showing signs of systematic error

Future Work

- Try to understand the primordial planetary envelopes that would produce internal pressures consistent with the observed compression
- Similar past work has potentially found envelopes indicative of brown dwarf sized planets -- more research would help understand brown dwarf formation
- Examine escape methods that would produce fossilized cores on reasonable timescales