Contents

1	Nai	ve Bayes
	1.1	1. Overarching Goals
	1.2	Understanding Conditional Probability
	1.3	Bayes' Theorem
		Terminology / Glossary

1 Naive Bayes

1.1 1. Overarching Goals

- We want to assign each $\bar{x} \in X$ to its correct class $C_k, k \in 1, ..., K$
- We ask: Given $\bar{x} \in X$, what is its most probable class C_k ?

1.2 Understanding Conditional Probability

- Sample space (Ω) contains events whose probability of occurring is proportional to its area w.r.t the sample space
- In a fair coin flip, $\mathbb{P}(heads) = \mathbb{P}(H) = \mathbb{P}(tails) = \mathbb{P}(T) = 0.5$
- Say we have the events H, T, and T, where H is the event that Hillary Clinton is elected president, T is the probability that Trump is, and N is the probability that a nuclear winter occurs during the next presidency.
- see figure one
- If we want to talk about the probability of a nuclear winter happening $(\mathbb{P}(N))$ given that Donald Trump is elected president $(\mathbb{P}(T))$, we express it as $\mathbb{P}(N|T)$.
 - $-\mathbb{P}(N|T)$ is read as "probability of a nuclear winter given that Trump is elected"
- $\mathbb{P}(N|T) = \frac{\mathbb{P}(N \cap T)}{\mathbb{P}(T)}$.
 - Note that the probability of event T occurring is in the denominator, think of this as the new sample space that has been reduced.
 - We then find the probability of $\mathbb{P}(N \cap T)$ over this new, reduced sample space. This is equivalent to $\mathbb{P}(N|T) = \frac{\mathbb{P}(N \cap T)}{\mathbb{P}(T)}$.
 - see figure 2

1.3 Bayes' Theorem

- We can represent the entire sample space Ω in terms of conditional probabilities.
- see figure 3
- As a reminder: we want to assign each $\bar{x} \in X$ to its correct class $C_k, k \in {1,...,K}$
- We ask: Given $\bar{x} \in X$, what is its most probable class C_k ?
- $P(C_k|\bar{x}) = \frac{P(\bar{x}|C_k) \cdot P(C_k)}{P(\bar{x})}$
- $P(C_k|\bar{x}) = \frac{P(C_k \cap \bar{x})}{P(\bar{x})} = \frac{P(C_k,\bar{x})}{P(\bar{x})}$

$$- = \frac{P(x_1, x_2, \dots, x_n, C_k)}{P(\bar{x})}$$

$$- = \frac{P(x_1|x_2,...,x_n,C_k) \cdot P(x_2,...,x_n,C_n)}{P(\bar{x})}$$

$$- = \frac{P(x_1|x_2,...,C_k) \cdot P(x_2|x_3,...,C_k) ... P(x_n|C_k) P(C_k)}{P(\bar{x})}$$

• See figure 4.

1.4 Terminology / Glossary

- ullet Sample Space (Ω) set of all possible outcomes of an experiment
- \bullet A, B events that are subsets of the sample space
- $\mathbb{P}(A)$ Probability of event A occurring.
- $\mathbb{P}(-A)$ (or $\mathbb{P}(A^c)$) Probability of A's complement ("not A") occurring.
- $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B|A)}{\mathbb{P}(B)}$
- $A \perp B$ A is independent of B if and only if the (non-)occurrence of B has no effect on the (non-)occurrence of A, and vice versa.
 - Corollary: If $A \perp B$, $\mathbb{P}(A|B) = \mathbb{P}(A)$
 - Technical definition: $A \perp B$ if and only if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

Figure 1: A visual representation of the sample space in the case of one and two coin flips.

Figure 2: A visual representation of the sample space in conditional probability.

Figure 3: A visual representation of the sample space as conditional probabilities

Figure 4: The expansion of bayes' theorem