ASRM 461 Project

Due April 23rd

Simulation and Classification

In this project you will use a programming language such as Excel, R, or Python to simulate data from different distributions. Your final submission will include your code, outputs, and explanations.

Part 1 Convolutions

In this part, you will see the effect of adding two distributions together. Simulate X_1 , X_2 , and then compute their sum $Y = X_1 + X_2$. Classify Y as an (a, b, 0) distribution and give its parameters.

a.
$$X_1 = \text{Geo}(\beta = 12), X_2 = \text{Geo}(\beta = 12)$$

b.
$$X_1 = Bin(m = 24, q = 0.6), X_2 = Bin(m = 36, q = 0.6)$$

c.
$$X_1 = Poi(\lambda = 16), X_2 = Poi(\lambda = 20)$$

Part 2 Compound Distributions

In this part, you will create a collective risk model with N being the number of claims and X_i being the amount of loss. Simulate N, X_i , and the sum $S = X_1 + X_2 + \cdots + X_N$. Compute E[S], Var[S], and compare to the theoretical values using the law of total expectation.

a.
$$N = Poi(\lambda = 25), X_i = Exp(\theta = 100)$$

b.
$$N = Poi(\lambda = 100), X_i = LogNormal(\mu = 1, \sigma = 2)$$

c.
$$N = Bin(m = 36, q = 0.6), X_i = Gamma(\alpha = 100, \theta = 2)$$

Part 3 Credibility Theory

For each of the three models in Part 2, determine the credibility standards with

a.
$$r = 0.99, p = 0.9$$

b.
$$r = 0.95, p = 0.95$$

c.
$$r = 0.90, p = 0.99$$