Example Claims Data

Claim Amounts (in \pounds 's)									
24	26	73	84	102	115				
132	159	207	240	241	254				
268	272	282	300	302	329				
346	359	367	375	378	384				
452	475	495	503	531	543				
563	594	609	671	687	691				
716	757	821	829	885	893				
968	1053	1081	1083	1150	1205				
1262	1270	1351	1385	1498	1546				
1565	1635	1671	1706	1820	1829				
1855	1873	1914	2030	2066	2240				
2413	2421	2521	2586	2727	2797				
2850	2989	3110	3166	3383	3443				
3512	3515	3531	4068	4527	5006				
5065	5481	6046	7003	7245	7477				
8738	9197	16370	17605	25318	58524				
1									

Histogram of Claim Amounts

Claim Amounts (in 1000s of Pounds Sterling)
[NB: 4 claim amounts larger than 10000 Pounds Sterling not shown]

Sample Statistics: $\overline{x} = 2989.83$, s = 6856.11, median = 1233.5

1. Characterisation

• Probability Density Function (pdf):

$$f_X(x;\theta)=rac{1}{\theta}e^{-x/ heta}$$
 (mean parameterisation) or
$$f_X(x;\lambda)=\lambda e^{-\lambda x}$$
 (rate parameterisation)

• Moments:

$$E_{\theta}(X) = \theta$$
 $E_{\theta}(X^2) = 2\theta^2$ $Var_{\theta}(X) = \theta^2$ or
$$E_{\lambda}(X) = \frac{1}{\lambda}$$
 $E_{\lambda}(X^2) = \frac{2}{\lambda^2}$ $Var_{\lambda}(X) = \frac{1}{\lambda^2}$

• Quantiles (Percentiles):

$$\operatorname{Median}_{\theta}(X) = x_{0.5} \text{ solves} : \int_{0}^{x_{0.5}} \frac{1}{\theta} e^{-x/\theta} dx = 0.5$$

$$\Longrightarrow \left[-e^{-x/\theta} \right]_{x=0}^{x_{0.5}} = 0.5$$

$$\Longrightarrow -e^{-x_{0.5}/\theta} + 1 = 0.5$$

$$\Longrightarrow x_{0.5} = \theta \ln(2)$$

$$\operatorname{OR} \qquad x_{p} \text{ solves} : \int_{0}^{x_{p}} \frac{1}{\theta} e^{-x/\theta} dx = p$$

$$\Longrightarrow x_{p} = \theta \ln\left(\frac{1}{1-p}\right)$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n :
 - "Common Sense" Methods: θ is "Population Average", estimate by \overline{x} .
 - (Standard) Method of Moments (MOM): Solve system:

$$E_{\theta}(X) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

:

$$E_{\theta}(X^k) = \overline{x^k} = \frac{1}{n} \sum_{i=1}^n x_i^k$$

where k is number of parameters.

• (Generalised) Method of Moments: Solve system:

$$E_{\theta}\{g_1(X)\} = \overline{g_1(x)} = \frac{1}{n} \sum_{i=1}^{n} g_1(x_i)$$

:

$$E_{\theta}\{g_k(X)\} = \overline{g_k(x)} = \frac{1}{n} \sum_{i=1}^{n} g_k(x_i)$$

e.g.,
$$g_1(X) = \{X - E_{\theta}(X)\}^2$$
.

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Method of Percentiles (MOP):

Solve system:

$$x_{p_1} = \hat{x}_{p_1}$$

:

$$x_{p_k} = \hat{x}_{p_k}$$

where \hat{x}_p is observed p^{th} percentile of data, for some choice of p_1, \ldots, p_k .

For example, for our data, MOP estimate based on median $(p_1 = 0.5)$ solves:

$$\theta \ln(2) = 1233.5$$

So

$$\hat{\theta}_{MOP} = 1233.5/\ln(2) = 1779.56$$

(compared to

$$\hat{\theta}_{MOM} = \overline{x} = 2989.83$$

using standard MOM).

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Maximum Likelihood Estimate (*MLE*)
 Likelihood Function:

$$L(\theta; x_1, \dots, x_n) = \prod_{i=1}^n f_X(x_i; \theta) = \frac{1}{\theta^n} \exp\left(-\frac{1}{\theta} \sum_{i=1}^n x_i\right)$$

Log-Likelihood Function: $l(\theta) = \ln\{L(\theta; x_1, \dots, x_n)\}\$

Maximum Likelihood Estimate, $\hat{\theta}_{MLE}$, solves:

$$\frac{\partial l(\theta)}{\partial \theta_i} = 0, \qquad 1 \le i \le k$$

For example, for exponential disribution:

$$l(\theta) = -n\ln(\theta) - \frac{n}{\theta}\overline{x}$$

so that

$$\frac{dl(\theta)}{d\theta} = -\frac{n}{\theta} + \frac{n}{\theta^2}\overline{x} = 0 \implies \hat{\theta}_{MLE} = \overline{x}$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Maximum Likelihood Estimates (Continued)
 Maximum Likelihood Theorem: For large samples,

$$Pr_{\theta} \left\{ \frac{\hat{\theta}_{MLE} - \theta}{\sqrt{I^{-1}(\hat{\theta}_{MLE})}} \le t \right\} \approx \Phi(t),$$

where $\Phi(\cdot)$ is the standard normal *CDF* and

$$I(\theta) = -E_{\theta}\{l''(\theta)\}\$$

So, we can use $\hat{\theta}_{MLE} \pm 1.96 \sqrt{I^{-1}(\hat{\theta}_{MLE})}$ as an approximate 95% confidence interval for θ .

For example, for our data,

$$l''(\theta) = \frac{n}{\theta^2} - \frac{2n}{\theta^3} \overline{x},$$

so that

$$I(\theta) = \frac{n}{\theta^2}$$

Thus,

$$\sqrt{I^{-1}(\hat{\theta}_{MLE})} = \frac{\hat{\theta}_{MLE}}{\sqrt{n}} = \frac{2989.83}{\sqrt{96}} = 305.15$$

and a 95% confidence interval is:

$$2989.83 \pm 1.96(305.15) = (2391.74, 3587.92)$$

3. Goodness-of-Fit Testing:

• "Common Sense" Methods:

Compare parameter estimates based on different methods. For example, we had $\hat{\theta}_{MOP} = 1779.56$ versus $\hat{\theta}_{MOM} = \hat{\theta}_{MLE} = 2989.83$ (CAUTION: Only *MLE* has precision estimate so far)

Use "structural facts" about the distribution. For example, we know that $E_{\theta}(X) = \theta = \sqrt{Var_{\theta}(X)}$ for exponential distributions. From data, we see that $\overline{x} = 2989.83 \neq s = 6856.11$ (Again, no precision estimates, though).

- 3. Goodness-of-Fit Testing (Continued):
 - Histograms with <u>Superimposed Density Curves</u>:

Histogram of Claim Amounts w/ MLE Exponential Density Superimposed

Claim Amounts (in 1000s of Pounds Sterling)
[NB: 4 claim amounts larger than 10000 Pounds Sterling not shown]

Histogram of Claim Amounts w/ MOP Exponential Density Superimposed

Claim Amounts (in 1000s of Pounds Sterling)
[NB: 4 claim amounts larger than 10000 Pounds Sterling not shown]

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test:

- IDEA:
 Data is n iid observations classified into k categories.
 O_i = number of observations in category i.
 "Theory": p_i = Pr(obs. in cat. i)
 E_i = np_i = expected # of obs. in ith category.

 - \cdot Measure discrepancy using $test\ statistic$

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}},$$

which has an approximate χ^2 -distribution with a number of degrees of freedom equal to:

 $df = k-1-(\# \ parameters \ estimated \ in \ determining \ p_i).$

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):

IMPLEMENTATION:

- · For continuous data, need to "discretise" using bins.
- \cdot BIN CHOICE ISSUES:
 - \cdot Too few bins = oversmoothing
 - \cdot Too many bins = undersmoothing
 - · Choose 5 to 15 bins.
- · Could use histogram bins (equal width):

Table 2.1: Observed and Expected Claim Amounts (in 1000 \pounds 's) using the Exponential Distribution

	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10+
O_i $E_{i,MLE}$ $E_{i,MOP}$	43	20	11	7	2	3	1	3	1	1	4
$E_{i,MLE}$	27.3	19.5	14.0	10.0	7.2	5.1	3.7	2.6	1.9	1.3	3.4
$E_{i,MOP}$	41.3	23.5	13.4	7.6	4.4	2.5	1.4	0.8	0.5	0.3	0.3

$$X^2 = 17.92 \; (MLE) \text{ or } X^2 = 49.55 \; (MOP)$$

with $df = 11 - 1 - 1 = 9$.

$$Pr(\chi_9^2 > 17.92) = 0.0376; Pr(\chi_9^2 > 49.55) = 1.31 \times 10^{-7}$$

Reject exponential distribution.

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Calculating E_i 's:

$$Pr_{\theta}(a < X \le b) = \int_{a}^{b} \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) dx$$
$$= \exp\left(-\frac{a}{\theta}\right) - \exp\left(-\frac{b}{\theta}\right).$$

Thus, we estimate p_1 (using $\hat{\theta}_{MLE}$):

$$p_1 = \exp(0) - \exp\left(-\frac{1000}{\hat{\theta}_{MLE}}\right)$$
$$= 1 - \exp\left(-\frac{1000}{2989.83}\right)$$
$$= 0.284.$$

So,
$$E_{1,MLE} = np_1 = 96(0.284) = 27.3$$
.

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Reliability of test requires $E_i > 5$.
 - · Use equal-count bins. Try 12 bins, so that

$$E_i = 96/12 = 8$$
 for all *i*.

- · Equal-count bin construction:
 - · Use $Pr_{\theta}(a < X \leq b)$ formula from above recursively.
 - · For first bin, (0, b), solve:

$$n\left\{1 - \exp\left(-\frac{b}{\theta}\right)\right\} = 8.$$

Using $\hat{\theta}_{MLE}$ yields b = 260.15

· For next bin, (260.15, b), solve:

$$n\left\{\exp\left(-\frac{260.15}{\theta}\right) - \exp\left(-\frac{b}{\theta}\right)\right\} = 8.$$

Using $\hat{\theta}_{MLE}$ yields b = 545.11. Continue.

Table 2.2: Observed and Expected Claim Amounts (in \mathcal{L} 's) using the Exponential Distribution

Bin Range	O_i	E_i	 Bin Range	O_i	E_i
0-260	12	8	2072-2618	5	8
260-545	18	8	2618-3285	6	8
545-860	10	8	3285-4145	6	8
860-1212	8	8	4145-5357	3	8
1212-1612	7	8	5357-7429	4	8
1612-2072	10	8	7429+	7	8

$$X^2 = 23.00, df = 12 - 1 - 1 = 10,$$

$$Pr_{\theta}(\chi_{10}^2 > 23.00) = 0.011.$$