Семинар №1

Виды сходимостей случайных векторов.

Определение. Пусть $\{\xi_n\}_{n\in\mathbb{N}}$ — последовательность случайных векторов размерности m.

- 1. $\xi_n \xrightarrow{\text{п.н.}} \xi$ (почти наверное), если $P(\omega: \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)) = 1$.
- 2. $\xi_n \xrightarrow{P} \xi$ (по вероятности), если $\forall \varepsilon > 0$ $P(\|\xi_n \xi\|_2 \ge \varepsilon) \to 0$ при $n \to \infty$, где $\|\overrightarrow{x}\|_2 = \sqrt{x_1^2 + \ldots + x_m^2}$ для $\overrightarrow{x} \in \mathbb{R}^m$.
- 3. $\xi_n \xrightarrow{L_p} \xi$ (в L_p), если $E(\|\xi_n \xi\|_p)^p \to 0$ при $n \to \infty$, где $\|\overrightarrow{x}\|_p = (|x_1|^p + \ldots + |x_n|^p)^{1/p}$.
- 4. $\xi_n \xrightarrow{d} \xi$ (по распределению), если \forall ограниченной непрерывной функции $f: \mathbb{R}^m \to \mathbb{R}$ выполнено $Ef(\xi_n) \to Ef(\xi)$.

Лемма 1. Пусть $\xi_n = (\xi_n^{(1)}, \dots, \xi_n^{(m)}), \ \xi = (\xi^{(1)}, \dots, \xi^{(m)})$ – случайные векторы. Тогда

$$\xi_n \xrightarrow{n.n.} \xi \iff \forall i = 1, \dots, m \quad \xi_n^{(i)} \xrightarrow{n.n.} \xi^{(i)}$$

$$\xi_n \xrightarrow{P} \xi \iff \forall i = 1, \dots, m \quad \xi_n^{(i)} \xrightarrow{P} \xi^{(i)}$$

$$\xi_n \xrightarrow{L_p} \xi \Longleftrightarrow \forall i = 1, \dots, m \quad \xi_n^{(i)} \xrightarrow{L_p} \xi^{(i)}$$

Замечание. Для сходимости по распределению лемма неверна. Из сходимости по распределению случайных векторов следует покомпонентная сходимость, однако обратное неверно, что показывает следующий пример.

Пример. Пусть ξ и η – независимые одинаково распределённые случайные величины. Пусть последовательности случайных величин $\{\xi_n\}_{n\in\mathbb{N}}$ и $\{\eta_n\}_{n\in\mathbb{N}}$ таковы, что $\forall n$ $\xi_n=\xi$ и $\eta_n=\eta$. Тогда, очевидно, $\xi_n\stackrel{d}{\to}\xi$ и $\eta_n\stackrel{d}{\to}\xi$, т.к. $\xi=^d\eta$ по условию. Но векторной сходимости нет: $(\xi_n,\eta_n) \not\rightarrow^d (\xi,\xi)$, ведь $(\xi_n,\eta_n)\stackrel{d}{\to}(\xi,\eta)$ и распределения векторов (ξ,η) и (ξ,ξ) не совпадают, так как все значения второго вектора почти наверное лежат на прямой y=x, а для первого вектора это не так.

Замечание. Взаимосвязь различных видов сходимостей та же, что и в случае случайных величин.

Следующим важным результатом, который нам понадобится, является теорема о наследовании сходимостей.

Теорема 1. (О наследовании сходимостей)

- 1. Пусть $\xi_n \xrightarrow{n.n.} \xi$ случайные векторы размерности т. Пусть $h: \mathbb{R}^m \to \mathbb{R}^s$ функция, непрерывная почти всюду относительно распределения случайной величины ξ (т.е. $\exists B \in \mathcal{B}(\mathbb{R}^n)$ такое, что h непрерывна на B и $P(\xi \in B) = 1$). Тогда $h(\xi_n) \xrightarrow{n.n.} h(\xi)$.
- 2. Пусть $\xi_n \xrightarrow{P} \xi$ случайные векторы размерности т. В тех же условиях, что и в пункте 1, $h(\xi_n) \xrightarrow{P} h(\xi)$.
- 3. Пусть $\xi_n \xrightarrow{d} \xi$ случайные векторы размерности т. Пусть $h: \mathbb{R}^m \to \mathbb{R}^s$ непрерывная функция (достаточно непрерывности всюду относительно распределения ξ). Тогда $h(\xi_n) \xrightarrow{d} h(\xi)$.

Как мы уже знаем, из покомпонентной сходимости по распределению не следует сходимость векторов по распределению. Однако если одна из компонент двумерного вектора сходится по распределению к константе, то можно брать от вектора непрерывные функции, и при этом сходимость по распределению будет сохраняться, о чём и говорит лемма Слуцкого.

Лемма 2. (Слуцкий) Пусть $\xi_n \stackrel{d}{\to} \xi$ и $\eta_n \stackrel{d}{\to} C = const$ – случайные величины. Тогда

$$\xi_n + \eta_n \xrightarrow{d} \xi + C,$$

 $\xi_n \eta_n \xrightarrow{d} \xi C.$

Следствием этих двух важных результатов является следующая лемма (в учебнике Боровкова она значится как "теорема непрерывности").

Лемма 3. Пусть $\xi_n \stackrel{d}{\to} \xi$ – случайные векторы размерности $m, \ a \ h(x) : \mathbb{R}^m \to \mathbb{R}$ – функция, дифференцируемая в точке $a \in \mathbb{R}^m$. Пусть $b_n \to 0, \ b_n \neq 0$. Тогда

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} \xrightarrow{d} (\xi, h'(a)),$$

где h'(a) – градиент функции h(x), взятый в точке a.

Для случайных векторов остаются верны предельные теоремы, аналогичные соответствующим теоремам для случайных величин: ЗБЧ, УЗБЧ, ЦПТ. Приведём формулировку центральной предельной теоремы для случая н.о.р. случайных векторов.

Теорема 2. (Многомерная ЦПТ)

 Π усть $\{\xi_n\}_{n\in\mathbb{N}}$ – н. о. р. сл. векторы, $E\xi_1=\overrightarrow{a}$, матрица ковариаций случайного вектора ξ_1 $D\xi_1=\Sigma$. Тогда

$$\sqrt{n}\left(\frac{\xi_1+\ldots+\xi_n}{n}-a\right)\xrightarrow{d} N(0,\Sigma),$$

где $N(0,\Sigma)$ – многомерное нормальное распределение.

Задача. Пусть X_1, \ldots, X_n – выборка из $N(0, \sigma^2)$. Рассмотрим $Y = \frac{1}{n} \sum_{i=1}^n X_i^4$, $Z = \frac{1}{n} \sum_{i=1}^n X_i^2$. Используя многомерную центральную предельную теорему, найти предел по распределению для выражения $\sqrt{n}(T-\sigma)$, где $T = \sqrt{\frac{Y}{3Z}}$.

Решение. Решение этой задачи тесно связано с поиском асимптотически нормальных оценок для некоторых параметров, что мы будем проходить позднее. Сначала найдём матожидания статистик Y и Z: $EY = \frac{1}{n} \sum_{i=1}^{n} EX_i^4 = EX_1^4 = 3\sigma^4$, аналогично, $EZ = \sigma^2$, отсюда, пользуясь многомерной ЦПТ, получаем:

$$\sqrt{n} \left(\left(\begin{array}{c} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{4} \\ \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \end{array} \right) - \left(\begin{array}{c} EX_{1}^{4} \\ EX_{1}^{2} \end{array} \right) \right) = \sqrt{n} \left(\left(\begin{array}{c} Y \\ Z \end{array} \right) - \left(\begin{array}{c} 3\sigma^{4} \\ \sigma^{2} \end{array} \right) \right) \xrightarrow{d} N(0, \Sigma),$$

где матрица ковариаций Σ вектора $(X_1^4, X_1^2)^T$ равна

$$\Sigma = \begin{pmatrix} 96\sigma^8 & 12\sigma^6 \\ 12\sigma^6 & 2\sigma^4 \end{pmatrix}.$$

Далее, используем лемму 3 для $b_n = \frac{1}{\sqrt{n}}, \ a = (EX_1^4, EX_1^2)^T = (3\sigma^4, \sigma^2)^T, \ \xi_n = \sqrt{n}((Y, Z)^T - (EX_1^4, EX_1^2)^T),$ $\xi = N(0, \Sigma)$ и $h(x, y) = \sqrt{\frac{x}{3y}}$, отсюда $a + \xi_n b_n = (Y, Z)^T$, получаем следующее соотношение:

$$\sqrt{n}(h(Y,Z) - h(3\sigma^4, \sigma^2)) \xrightarrow{d} (h'(a), N(0, \Sigma)) = N(0, h'(a)^T \Sigma h'(a)),$$

где последнее равенство вытекает из свойств гауссовских векторов. Найдём число $d^2 := h'(a)^T \Sigma h'(a)$ (а это действительно число, поскольку матрица размера 2×2 умножается с двух сторон на вектор размерности 2). Находим $h'(x,y) = (\frac{1}{\sqrt{12xy}}, -\frac{\sqrt{x}}{\sqrt{12y^3}})^T$, отсюда $h'(3\sigma^4, \sigma^2) = (\frac{1}{6\sigma^3}, -\frac{1}{2\sigma})^T$ и $d^2 = \frac{7}{6}\sigma^2$. Окончательный ответ таков:

$$\sqrt{n}(T-\sigma) \xrightarrow{d} N(0, \frac{7}{6}\sigma^2).$$