	Energy 4: Give an example of a signerice with one limit but which diverges	
	$ \Omega_n = \begin{cases} 0, & \text{if } n \text{ is when} \\ n, & \text{if } n \text{ is odd} \end{cases} $	
	>> The sequence diverges if lum an = ±00, Then such a sequence can't have an	noc
	limit print that is not so.	
	>> The required is divergent and have as a limit print,	
7		-
_	Exercise 13; Prove in general that	
	(a) lim sup (anton) \leq lim sup an + lim sup bn	
l	n-700 n-700	
	For all natural numbers k : $A_k = \sup \{a_n : n \ge k\}$, $B_k = \sup \{b_n : n \ge k\}$ where A_k , $B_k \in \mathbb{R} \cup \{+\infty\}$, By definitions $\limsup a_n = \limsup A_k$ and	he r
	A_{K} , $B_{K} \in \mathbb{R} \cup \{+\infty\}$, By definition $\limsup_{n \to \infty} a_{n} = \lim_{k \to \infty} A_{K}$ and	her
	A_{K} , $B_{K} \in \mathbb{R} \cup \{+\infty\}$, By definition $\limsup_{n \to \infty} a_{n} = \limsup_{k \to \infty} A_{K}$ and $\limsup_{n \to \infty} b_{n} = \limsup_{k \to \infty} B_{K}$. Also, we consider $C_{K} = \sup_{n \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so,	her
	A_{K} , $B_{K} \in \mathbb{R} \cup \{+\infty\}$, By definition $\limsup_{n\to\infty} a_{n} = \lim_{k\to\infty} A_{K}$ and $\limsup_{n\to\infty} b_{n} = \lim_{k\to\infty} B_{K}$. Also, we consider $C_{K} = \sup\{(a_{n}+b_{n}): n \geq K\}$, so,	her
	A_{K} , $B_{K} \in \mathbb{R} \cup \{+\infty\}$, By definition $\limsup_{n \to \infty} a_{n} = \limsup_{k \to \infty} A_{K}$ and $\limsup_{n \to \infty} b_{n} = \limsup_{k \to \infty} B_{K}$. Also, we consider $C_{K} = \sup_{n \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so,	her
	A_K , $B_K \in \mathbb{R} \cup \{+\infty\}$, By definition $\limsup_{n \to \infty} a_n = \lim_{k \to \infty} A_K$ and $\limsup_{n \to \infty} b_n = \lim_{k \to \infty} B_k$. Also, we consider $C_K = \sup\{(a_n + b_n): n \ge K\}$, so, now $C_K = \lim_{n \to \infty} (a_n + b_n)$	her
	A_{K} , $B_{K} \in \mathbb{R}$ \cup $\{+\infty\}$, B_{Y} definitions $\lim_{n\to\infty} \sup_{K\to\infty} A_{K}$ and $\lim_{n\to\infty} \sup_{K\to\infty} b_{n} = \lim_{K\to\infty} B_{K}$. Also, we consider $C_{K} = \sup_{K\to\infty} \{a_{n}+b_{n}\}$: $n \geq K$, so, where $C_{K} = \sup_{K\to\infty} \{a_{n}+b_{n}\}$: $n \geq K$, we have $a_{n}+b_{n} \leq A_{K}+B_{K}$, because a_{n} is estimated by	her
	A_{K} , $B_{K} \in \mathbb{R}$ U $\{\pm\infty\}$, By definition $\limsup_{n \to \infty} A_{K}$ and $\limsup_{n \to \infty} b_{n} = \limsup_{k \to \infty} B_{k}$. Also, we appside $C_{K} = \sup_{n \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so, now $C_{K} = \limsup_{n \to \infty} (a_{n} + b_{n})$. If $C_{K} = \limsup_{n \to \infty} (a_{n} + b_{n})$ is estimated by the supremum of all terms of (a_{n}) with $n \ge K$ and also for b_{n} . So, $C_{K} = \sup_{n \to \infty} \{(a_{n} + b_{n}): n \ge K\} \le A_{K} + B_{K}$	her
	A_{K} , $B_{K} \in \mathbb{R}$ U $\{+\infty\}$, By definition $\lim_{n \to \infty} \sup_{k \to \infty} A_{K}$ and $\lim_{n \to \infty} \sup_{k \to \infty} B_{K}$. Also, we consider $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so, where $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so, where $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so, we consider $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, so, where $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, we have $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, we have $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, because $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, we have $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, we have $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$, and also for $C_{K} = \sup_{k \to \infty} \{(a_{n} + b_{n}): n \ge K\}$.	her
	A _K , $B_k \in \mathbb{R} \cup \{+\infty\}$, B_y definition $\lim \sup a_n = \lim A_K$ and $n \Rightarrow \infty$ $k \Rightarrow \infty$ $\lim \sup b_n = \lim B_k. Also, we consider C_k = \sup \{(a_n + b_n): n \ge k\}, so, n \Rightarrow \infty$ $\lim_{k \to \infty} C_k = \lim_{n \to \infty} (a_n + b_n)$ For all $n \ge k$, we have $a_n + b_n \le A_k + B_k$, because a_n is estimated by the supremum of all terms of (a_n) with $n \ge k$ and also for b_n . So, $C_k = \sup \{(a_n + b_n): n \ge k\} \le A_k + B_k$ For all k , so we take the infortion on both sides as k tends to ∞ , which	her
	A _K , $B_k \in \mathbb{R}$ U $\{\pm \infty\}$, By definition $\limsup_{n \to \infty} a_n = \limsup_{k \to \infty} A_K$ and $\limsup_{n \to \infty} b_n = \limsup_{k \to \infty} B_k$. Also, we consider $C_k = \sup_{n \to \infty} \{(a_n + b_n) : n \ge k \}$, so, now $C_k = \limsup_{n \to \infty} (a_n + b_n)$. For all $n \ge k$, we have $a_n + b_n \le A_k + B_k$, because a_n is estimated by the supremum of all terms of (a_n) with $n \ge k$ and also for b_n . So, $C_k = \sup_{n \to \infty} \{(a_n + b_n) : n \ge k \} \le A_k + B_k$ For all k , so we take the infortion on both sides as k tends to ∞ , which preserves the inequality.	her