

Control 3 Cálculo III forma A 24 de noviembre de 2022

Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

Problema 1. Sea la integral

$$I = \iint_R \cos(x^2) dx dy,$$

donde $R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le \sqrt{\pi}; y \le x \le \sqrt{\pi}\}.$

- a) Reescriba esta integral en el orden dydx.
- b) Calcule la integral I.

Solución.

a) Como R es una región del tipo II, convertiremos esta región a una del tipo I. Como $0 \le y \le \sqrt{\pi}$ e $y \le x \le \sqrt{\pi}$, entonces $0 \le x \le \sqrt{\pi}$ y $0 \le y \le x$, por tanto

$$I = \iint_D \cos(x^2) dx dy,$$

donde $D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le \sqrt{\pi}; 0 \le y \le x\}.$

b) Directamente calculamos la integral

$$I = \iint_{D} \cos(x^{2}) dx dy$$

$$= \int_{0}^{\sqrt{\pi}} \int_{0}^{x} \cos(x^{2}) dy dx$$

$$= \int_{0}^{\sqrt{\pi}} \cos(x^{2}) (y) \Big|_{0}^{x} dx$$

$$= \int_{0}^{\sqrt{\pi}} x \cos(x^{2}) dx$$

$$= \frac{1}{2} (\sin(x^{2})) \Big|_{0}^{\sqrt{\pi}}$$

$$= \frac{1}{2} (\sin(\pi) - \sin(0))$$

$$= 0.$$

Problema 2. Para a < 2, determine el valor de

$$\iiint_{\Omega} \frac{x^2}{(x^2 + y^2)^a} dx dy dz,$$

donde Ω es el sólido acotado que está encerrado entre el paraboloide de ecuación $z=x^2+y^2$ y el plano z=1.

Solución. Usaremos coordenadas cilíndricas. Primero si proyectamos el sólido en el plano XY, obtenemos una circunferencia unitaria centrada en el origen. De ahí tenemos que $0 \le \theta \le 2\pi$.

Por otro lado, si fijo θ , intersectamos el sólido Ω con el plano dado por dicho θ tenemos una región plana en rz que se ilustra a continuación:

Del dibujo, se tiene que $0 \le z \le 1$ y $0 \le r \le \sqrt{z}$ (o bien $0 \le r \le 1$ y $r^2 \le z \le 1$). En resumidas cuentas:

$$\Omega = \{ (r, \theta, z) : 0 < z < 1, \ 0 < r < \sqrt{z}, \ 0 < \theta < 2\pi \},$$

o incluso

$$\Omega = \{ (r, \theta, z) : 0 \le r \le 1, \ r^2 \le z \le 1, \ 0 \le \theta \le 2\pi \}.$$

Así, usando el teorema de Cambio de Variable, tenemos

$$\iiint_{\Omega} \frac{x^2}{(x^2 + y^2)^a} dx dy dz = \int_0^{2\pi} \int_0^1 \int_0^{\sqrt{z}} \frac{r^2 \cos^2(\theta)}{r^{2a}} r dr dz d\theta
= \int_0^{2\pi} \int_0^1 \int_0^{\sqrt{z}} r^{3 - 2a} \cos^2(\theta) dr dz d\theta
= \int_0^{2\pi} \int_0^1 \cos^2(\theta) \left[\frac{r^{4 - 2a}}{4 - 2a} \Big|_0^{\sqrt{z}} \right] dz d\theta$$

$$= \frac{1}{4 - 2a} \int_0^{2\pi} \int_0^1 \cos^2(\theta) z^{2-a} dz d\theta$$

$$= \frac{1}{4 - 2a} \int_0^{2\pi} \cos^2(\theta) \left[\frac{z^{3-a}}{3 - a} \Big|_0^1 \right] d\theta$$

$$= \frac{1}{(4 - 2a)(3 - a)} \int_0^{2\pi} \cos^2(\theta) d\theta$$

$$= \frac{1}{(4 - 2a)(3 - a)} \left[\frac{\theta}{2} + \frac{\sin(2\theta)}{4} \right] \Big|_0^{2\pi}$$

$$= \frac{\pi}{(4 - 2a)(3 - a)}.$$

Problema 3. Calcule la integral $\iint_R y^2 dx dy$, donde R es la región limitada por las curvas xy = 1, xy = 2, $xy^2 = 1$, $xy^2 = 2$.

Solución. Sean $u = xy, v = xy^2$.

Su jacobiano es

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} y & x \\ y^2 & 2xy \end{vmatrix} = 2xy^2 - xy^2 = xy^2 = v = |v|.$$

La región se transforma en $R' = \{(u, v) : 1 \le u \le 2, 1 \le v \le 2\}.$

Como $y^2 = \frac{v^2}{u^2}$, entonces

$$\iint_{R} y^{2} dx dy = \iint_{R'} \frac{v^{2}}{u^{2}} \frac{1}{v} du dv$$

$$= \int_{1}^{2} \int_{1}^{2} \frac{v}{u^{2}} du dv = \int_{1}^{2} v dv \int_{1}^{2} \frac{du}{u^{2}}$$

$$= \frac{4-1}{2} [-u^{-1}]_{1}^{2} = \frac{3}{2} \left(-\frac{1}{2} + 1\right) = \frac{3}{4}.$$

Tiempo: 90 minutos.

Justifique completamente sus respuestas.