Neural Networks

Astrini Sie

asie@seattleu.edu

Week 7a

ECEGR4750 - Introduction to Machine Learning Seattle University

October 31, 2023

Overview

- Neural Networks
 - Perceptron
 - Stacking Neurons
 - Fully Connected Multi-layer Neural Network
 - Forward Pass
 - Backpropagation
 - Training a Neural Network

Linear Classifiers

All the stuff that we learned so far (Linear and Logistic Regression) are linear classifiers

- Make predictions based on linear combinations of input features
- Decision boundaries are linear in the feature space (hyperplane in the *n*-dimensional feature space)

Linear Classifiers

I thought all real world stuff is non-linear?

Linear Classifiers

I thought all real world stuff is non-linear?

Neural networks are excellent for capturing complex, non-linear relationships in data!

Perceptron

Left source and Right source

- Mimics biological neurons in the brain.
- Concept started in the 1940s, and got popularized in the 90s, and repopularized in the 2010s after GPU.

Inputs, Outputs, and Parameters

source

Inputs, Outputs, and Parameters

• Inputs: x_0, x_1, \dots, n Raw data, or output from other neurons

Inputs, Outputs, and Parameters

source

Inputs, Outputs, and Parameters

- Inputs: x_0, x_1, \ldots, n Raw data, or output from other neurons
- Weights: w₁, w₂,..., w_n Control the level of importance of each input -¿ higher the weight, more important the input.

Inputs, Outputs, and Parameters

source

Inputs, Outputs, and Parameters

- Inputs: x_0, x_1, \dots, n Raw data, or output from other neurons
- Weights: w₁, w₂,..., w_n Control the level of importance of each input -¿ higher the weight, more important the input.
- **3 Bias**: bTo ensure that the activation function does not get a zero value in case all $x1, \ldots, x_n$ are zero.

Inputs, Outputs, and Parameters

source

Inputs, Outputs, and Parameters

- Inputs: x_0, x_1, \ldots, n Raw data, or output from other neurons
- Weights: w₁, w₂,..., w_n Control the level of importance of each input -¿ higher the weight, more important the input.
- **3 Bias**: b To ensure that the activation function does not get a zero value in case all $x1, \ldots, x_n$ are zero.
- **Output**: y = f(z)

Functions

source

Functions

Linear Function:

 $z = w_1 x_1 + \ldots + w_n x_n$ Weighted sum of inputs (linear combination).

Functions

source

Functions

- Linear Function: z = w₁x₁ + ... + w_nx_n Weighted sum of inputs (linear combination).
- Activation Function: f Non-linear component of a perceptron.

Linear Function

Linear Function of a Perceptron

$$z = w_1x_1 + w_2x_2 + \ldots + w_nx_n + b$$

where the weights w and bias b are parameters of the perceptron.

This is just like the model in a linear regression case!

The linear function of a perceptron is fed into a non linear function, called the activation function f, yielding the output y.

Image from ScienceDirect

- Sigmoid and tanh are less and less used these days partly because their are bounded from both sides and the gradient of them vanishes as z goes to both positive and negative infinity.
- ReLU is the most commonly used activation function because calculation of its derivative is efficient, yielding to a much faster training time.
- Softplus is not used very often either in practice and can be viewed as a smoothing of the ReLU so that it has a proper second order derivative.
- GELU and leaky ReLU are both variants of ReLU but they have some non-zero gradient even when the input is negative.

What about a linear activation function? Why can't we choose a linear activation function?

What about a linear activation function? Why can't we choose a linear activation function?

Applying a linear function to another linear function will result in a linear function over the original input. This loses much of the representational power of the neural network as often times the output we are trying to predict has a non-linear relationship with the inputs. Without non-linear activation functions, the neural network will simply perform linear regression.

Forward-pass in a single neuron

Let's look at this example and solve the forward pass from input to output for this single neuron:

source

Forward-pass in a single neuron

Inputs: $x_1 = 2, x_2 = 3, x_3 = 1$

Weights: $w_1 = 0.5, w_2 = 0.2, w_3 = 10$

Bias: b=2

Linear Function: $w_1x_1 + w_2x_2 + w_3x_3 + b = 13.6$

Activation Function: $f(z) = \frac{1}{1+e^{-z}}$ **Output:** y = f(z) = 0.999

Astrini Sie (Seattle University)

We can stack neurons, taking the output of one neuron and passing it as input to another neuron, resulting in a more complex function.

Input Features: $x_1, x_2, x_3, x_4 = \text{Size}$, Bedrooms, Zip Code, Wealth

Output of the First Layer (Hidden Units): a₁, a₂, a₃ = Family Size, Walkable, School Quality Assuming ReLU activation function:

$$\begin{aligned} a_1 &= \mathsf{ReLU}(w_{11}^1 x_1 + w_{12}^1 x_2 + b_1^1) \\ a_2 &= \mathsf{ReLU}(w_{23}^1 x_3 + b_2^1) \\ a_3 &= \mathsf{ReLU}(w_{33}^1 x_3 + w_{34}^1 x_4 + b_3^1) \end{aligned}$$

Output of the Second Layer (Final Output): y = Price Assuming sigmoid activation function:

$$y = h_w(x) = sigmoid(w_{11}^2 a_1 + w_{12}^2 a_2 + w_{13}^2 a_3 + b_1^2)$$

Multi-layer Neural Network

By expressing inputs x, weights w, hidden layers activation a, and outputs y as vectors, we can write down the equations for a forward pass in a neural network.

Multi-layer Neural Network

where:

 $z_i^{(k)} = \text{Output of unit } i \text{ in layer } k \text{ after going through the linear function}$ prior to the activation function

 $a_i^{(k)} = \text{Output of the activation layer of unit } i \text{ in layer } k$

 $w_{ij}^{(k)} = ext{Weight of connection from unit } i ext{ in layer } k ext{ to unit } j ext{ in layer } k-1$

If in layer k there are m_k units of neurons, $a^{(k)} \in \mathbf{R}^{m_k}$, $w^{(k)} \in \mathbf{R}^{m_k \times m_{k-1}}$, $b^{(k)} \in \mathbf{R}^{m_k}$

Forward Pass

$$a^{(1)}=x$$
 (Input layer, no activation function)
$$z^{(2)}=w^{(1)}\cdot a^{(1)}+b^{(1)}$$

$$a^{(2)}=f(z^{(2)})=f(w^{(2)}\cdot a^{(1)}+b^{(1)})$$
 and so on

References

Chris Re, Andrew Ng, and Tengyu Ma (2023) CSE229 Machine Learning Stanford University