

Topics to be covered

- Revision of Last Class
- Mass of Sub atomic Particles
- Relative Atomic Mass, Absolute Atomic Mass, Gram Atomic Mass
- Trick for fast calculation
- MPQ (Magarmach Practice Questions)

Rules to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rules to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- 7. It does not matter whatever situation you are in NEVER EVER CREATE A BACKLOG BECAUSE IT MAY RESULT IN BACKLOG FOR YOUR DREAM COLLEGE.

Revision of Last class

Matter

(have mass and occupy space)

Pure substance

(have fixed composition)

Prorganic Compounds Prorganic Compounds

Mixture

(have variable composition)

Elements

(contain only one kind of particles, can be atom br)

Compounds

(contain more than one type d particles but in fixed rer.to)

Homogeneous mixtures

(e.g. sait solution, sugar solution, air ce)

Heterogeneous mixtures

(e.g. colloids, alloys etc.)

Metals

Nonmetals Metalloids

Mass of Sub Atomic Particles

mass of \$ ~ massod n = la. m.u.

no. of \$ + no. of n = nucleons

find inside nucleus

mass e < < < < mass b on mass n

i atom mars = total mars p + total mars n

= no dly	no of newsons x (maked In.)
+ (4) Permissed by +	no. of newtonna x/max of In.
	4
- a.m.n.	

make of latom = la.m.u. x no. of nucleons = la.m.u. x /

Mass of Subatomic Particles

Particle	Mass
proton	1,67 × 10 -27 kg
neutron	1,67 × 10 ⁻²⁷ kg
electron	9,11 × 10 ⁻³¹ kg

1 Kg=10009 1a.m.w = 1.67×10 27 Kg =1.67x1027x 1000 g = 1.67×10 × 10 3 mass no = no af b + no af n. mars of Jatom |a.m.u. x | = |a.m.u = 1.67x10 9 1a.m.u. X 4 = 4 a.m.u. = 4 × 1.67 × 10 9

Mass of latom.
16a.mu. = 16x1.67x10 7

14a.m.u. = 14x1.67x10 9

12a.m.n. = 12x1.67x1024g

1 a.m.u.

- mass no in g = Gram atomic moss (G.A.M.)
- 2 avogadro no ef atoms mars = Gr. A.M.) (Ny ar No)

3 la.m.u. con lu con l Da = 1 = 1.67x10 24 atomic mars unified Dalton A unit mars of Latom of C-12

Na atom C-12 mass = 129 $\frac{-1}{6.028 \times 16^{23}} = 1.67 \times 10^{-24} = 1a \cdot m \cdot u$

Absolute Atomic Mass (A.A.M.)

a.m.u

12 a.m.u. 14 a.m.u.

12a·m·u. of He 12a·m·u. = 1 atomis = 3 atomis absolute) mass of latom. I find no of atoms in

6) 28 a.m.u. of N 14 a.m.u = latom. = 2 atoms

2 4 4 = 12 x 24 = 2 atoms (d) 24 u ag C 12 u=1 stom

(A) 1/12th of the mass of carbon-12

(B) The mass of the most abundant isotope

(C) The mass of an atom compared to carbon-12

The actual man of one atom

- (A) grams
- (B) kilograms
- (C) centigrams
- (D) atomic mass uni

Relative marks of B (world) = marks of B = 99 33

B marks 3 times Compared to A

Relative Atomic Mass (R.A.M.)

orelative mass of latom

OR.A.M. = absolute mass of latom C-12
mass of 1 th of latom C-12

= absolute mass of latom

2) R.A.M has no writ.

R.A.M. Co

He laton H times heavy as lamu

4 He Gr. A. M. atoms R.A.M. atoms atoms A . A . M . (1) Hg. Hu 4 9/N 1Hu 14 27 NA 27 27 W AL Se C NA 12. 2 N 960 16 h NA 6

atom. p=11/ n=12/ e=11

b+n=11+12=23

RAMatons A.A.M. atons Gr.A.M. atons 23 NA

Gram Atomic Mass (G.A.M.)

absolute mass of NA atoms in g

A.M.M., R.M.M. & G.M.M.

Na Absolute molecular mass (A.M.M.) mobile Abolt at mass (A.A.M.) >2×14=28 W

Na Relative moleulan moss (R.M.M.) -> 28

Na Goram moleulari mates (Gr. M.M.) -> 28g

Rel at moss (R.A.M.)

Gram at mass (G.A.M.)

N 144.

H2504 1x2+1x32+4x16 1 32 161 798 A.M.M. 98 h Gr. A. M 989

H 17N 160 + 3x16=63

63h

63g

NIT AxBy.

G.M.M. = 2 no. of atoms x at. mass

A.F.M., R.F.M. & G.F.M.

SO4 32 16 5

Absolute formula mass: (A.F.M.)->ions 5042 absolute moss of 1 ions 1x32+4x16=96h

Relative formula mass = (R.F.M.) -> ions Sont grelative mass of lions 96

-> ions

Govern foremula mass = (Gr.F.M.) => ions Soy absolute mass of NA ions.

96 g

Na 2 Nat both mass same storme

as a - Tous

H, H& H,

0,0,0,0 all mass same -> False

B 20

C 30

D 40

E 50

F 60

Gr 70

H 80

Relative montes of H w. sn.t. B = 80 = 4

H manks 4 times more as compared to 12

Relative manks of Hwart D =
$$\frac{80}{40}$$
 = 2.
H manks 2 times more as Compared to D

absolute manks H will not Change

Effect on R.A.M., R.M.M. & R.F.M. if definition of 1 a.m.u. is changed

Conventional scale

non-Conventional scale

rew R.A.M. (A') = maks of latom -(2)
$$\frac{1}{2} \times \frac{12}{N_A}$$

Divide eq. @ by eq. (1)

A = mass of latom

A mass of latom

A mass of latom

A NA H

Find new relative atomic mass of sodium if 1 a.m.u. is defined as 1/48 th of 1 atom of C-12. If Relative atomic mass on conventional scale is 23.

A = ?

A = ?

A' = A ×
$$\frac{3}{12}$$

B 48

 $= 23 \times 48$

D 46

A' = 92

grand new RAM of the y lamu is defined as 1 of latom of C-12.

Ans A'=?

A'= A× x

= 4 x 24 = 8

Gofind new A.A.M. of Oif lamu. Log laton of C-12

(5) find new A.A.M.

(b) find new A.A.M. — Old A.A.M. = 16 w.

Ans(1) A' = A x x

= 16 x .60 = 80

applied new R.M.M. of O2 if lamu = 1 of latom of C-12

Ans a
$$A' = A \times \frac{x}{12}$$

Magarmach Practice Questions (MPQ)

What is the unit of absolute atomic mass?

- (A) amu
- B grams
- c kg
- D g/mol

Relative atomic mass is the ratio of the average mass of atoms of an element to:

- A 1 amu
- B 1 gram
- 1/12th of mass of C-12 atom
- 1 mole

What is the relative atomic mass of oxygen?

- A 16
- B 32
- **c** 8
- D 12

What is the absolute atomic mass of hydrogen approximately?

- A 1 g
- B 1.67 × 10⁻²⁴ g
- c 1.67 × 10⁻²⁷ kg
- Both b and c

The gram atomic mass of nitrogen is:

- (A) 14 g
- B 7 g
- **C** 28 g
- D 1 g

Which of the following is true for relative atomic mass?

- A It has units
- B It is a ratio and has no units
- Measured in grams
- Measured in kilograms

Which is the correct value for Avogadro's number?

- B 6.022 x 10²⁴
- 6.022 x 10²³
- 3.011 x 10²³

The gram atomic mass of an element is numerically equal to its:

- Absolute mass
- B Molecular mass
- Relative atomic mass
- Molar mass

The absolute atomic mass of carbon is approximately:

- A 12 g
- B 1.99 x 10⁻²³ g
- 1.99 x 10⁻²² g
- 12 amu

What is the gram atomic mass of sulfur?

- A 16 g
- B 32 g
- 64 g
- D 12 g

