Exercícios MA719-Monitorias

PED

25 de Agosto de 2022

Email PED: k200608@dac.unicamp.br

Exercício 1: Considere o espaço vetorial $V = \mathbb{C}^4$ sobre \mathbb{C} .

- a) Exiba uma base de V sobre $\mathbb C$ e calcule sua dimensão.
- b) O espaço V pode ser considerado um espaço vetorial sobre \mathbb{R} ? Se sim, exiba uma base deste e calcule sua dimensão.
- c) Assumindo V um \mathbb{C} espaço vetorial, construa um operador linear $T:V\to V$ de modo que $\dim Ker(T)=2$, e o vetor $v_1=(1,i,0,0)$ pertence a imagem de V.
 - d) Refaça o item anterior considerando V um espaço vetorial sobre \mathbb{R} .

Exercício 2: a) Se $M_2(\mathbb{F})$ denota o espaço vetorial das matrizes 2×2 sobre um corpo \mathbb{F} , encontre uma base $\mathcal{A} = \{A_1, A_2, A_3, A_4\}$ de $M_2(\mathbb{F})$ tal que

$$A_i^2 = A_j, \quad j \in \{1, 2, 3, 4\}.$$

b) Considere o espaço vetorial $V = \mathbb{R}$ sobre \mathbb{Q} . Mostre que $\dim_{\mathbb{Q}} V = \infty$.

Exercício 3: Julgue os itens a seguir em relação a sua veracidade.

- () Seja V um espaço vetorial com dim V=10. É possível que exista um operador linear cuja dimensão da imagem é 5 c a dimensão do núcleo é 3.
 - () Se dim V=4, todo operador linear $T\in End_{\mathbb{Q}}(V)$ possui autovalor.
- () Se $P:V \to V$ é um operador de projeção num espaço vetorial de dimensão finita V, então

$$V = Im(P) \oplus Ker(P)$$
.

() Se V é um espaço vetorial de dimensão finita sobre $\mathbb R$ e $T\in End(V)$, então o conjunto

$$\mathcal{A}(T) := \{g \in \mathbb{R}[x] : g(T) \equiv 0\}$$

é não vazio.

() Nas mesmas condições do item anterior, se $\dim V = \infty,$ então

$$\mathcal{A}(T):=\{g\in\mathbb{R}[x]:g(T)\equiv 0\}$$

é não vazio.

- () Se todo autovalor de uma matriz A tiver multiplicidade algébrica igual a 1 então A é diagonalizável.
- () Seja A uma matriz 5×5 cujo polinômio característico é $p(x) = x^3(x-1)^2$. Se posto(A) = 4, então A não pode ser diagonalizável.
 - () Toda matriz triangular superior é diagonalizável.
- () Seja B uma matriz 6×6 cujo polinômio característico é $p(x) = x(x-3)(x-4)^2(x-6)$. Então pode-se afirmar que B não é invertível.
- () Se uma matriz quadrada $n \times n$ possui n autovalores distintos, então esta é diagonalizável.
- () Seja A uma matriz 4×4 cujos autovalores são $\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 4$. Se todos os autoespaços associados a estes tem dimensão 1 pode-se concluir que A não é diagonalizável.

26108 MONITORIA

GLn(K):= matrizes invertiveis

Ex: Seya IF um corpo de coracterística O. Mostre que F contém una cópia de Q.

C= fa+bi: a, b ∈ R = R ⊕ i R (R, C esp. veloriais sobre Q)

(: V > V@W (mergylholingerson)

 $0 \mapsto (0,0)$ ré linear, é injetor pois $(0,0)=(0,0) \in 0$

Q CO Q DQ i CROiR = C

 $\mathbb{Q} = \mathbb{Q}/\mathbb{K}_{er} = \mathbb{Q}(\mathbb{Q}) \subseteq \mathbb{C}$ and $\mathbb{Q} : \mathbb{Q} \to \mathbb{C}$ $q \mapsto q + 0;$

1º Teo. Isamorfismo

Ex: A & dita nilpotente se existe non tal que $A^n = 0$.

Mostre que existe AEM2(K) tal que A=0, mas A +0.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Ex. 1: a) Obs: e; eke = Sikeil

e=(1,0,0,0), e==(0,1,0,0), e==(0,0,1,0), e==(0,0,0,1)

pois (a,tbii, aztbzii aztbzi, aytbyi) = (a,tbii) e,t... + (aytbyi) ey

e dim V=4.

b) e== (1,0,0,0), e==(1,0,0,0), e==(0,1,0,0), e==(0,1,0,0)

es= (0,0,1,0), e6= (0,0,1,0), e7= (0,0,0,1), e8= (0,0,0,1)

dim V = 8

2 c) T(e1)=T(e2)=0, T(e3)=9, T(e4)=0

Lembrete: estender linearmente.

2. a) Base canônica i dempotente:

A₁ =
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, A₂ = $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, A₃ = $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, A₄ = $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

b) Suponha que dimav=n<0. Logo, existe hon..., on base de V sobre Qu. Assim,

YXEV, 31 WI, ..., WhER lig. X= X10,+...tanon

E com 1550 depinimos

 $f: \mathbb{R} \longrightarrow \mathbb{R}^n$

 $\alpha_1 \vartheta_1 t \dots t \alpha_n \vartheta_n \mapsto (\alpha_1, \dots, \alpha_n)$

Como f é injetora (pois x se escreve de forma única), $\mathbb{R} \hookrightarrow \mathbb{R}^n$

o que implice que IR é enumeraivel, o que é absurdo.

Def. (<) é uma relações de ordem parad num conjunto A se, para todo a, bEA.

1) a < a; 2) a < b, b < c => a < c; 3) a < b, b < a => a = b

Def. Seja (A, &) un conjunto com ordem parcial e ZCA. Dizemos que Z & uma cadeia se, para toda a, b & A, a & b ou b & a.

Lema de Zorn. Sega (A, \leq) um poset. Suponha que toda codeia em A tenha cota superior (se Σ é codeia em A, então existe MEA tal que $\alpha \leq m$, $\forall \alpha \in \Sigma$), então A posou um elemento maximal.

a é maximal se sotisfaz beA, a \leq b = > a = > Teorema. Todo espaço velorial possui uma base.

Demonstração. Seg V um espaço vetorial sobre F e defina

N=1BCV: B & 1-i.}

E seja I uma codera em N. Degina

U=UA AEZ

Soberse que $A\subseteq U$, $\forall A\in \Sigma$. Vamos mostrar que $U\in \Omega$. Tome $\sigma_1,...,\sigma_n\in U$ quaisquer e considere a combinação linear

 $Q = n C_n x + \dots + y C_p x$

Sem perda de generalidade, pode-se assumir que A, CA2 C... CAm. Lago,

Logo, como Amer, $\alpha_1 = \dots = \alpha_n = 0$, pois, em particular, $\alpha_1, \dots, \alpha_m$, 6∞ l.i. Portanto, UER e assim U é cota superior de Σ .

for arbitrariedade de Σ , segue pelo Lema de Forn que existe B elemento maximal em Ω .

Vamos mostror que B é base de V. Suporta que V‡ span B. Então existe a EVI span B. Assim, o conjunto

&= Buhoit & li.

e, portanto, GER. Mas B&G, o que é abourdo, pois B é maximal. Consequentemente, V= spon B.

I