COMPREHENSIVE EXAM

ALGEBRA Spring 2018

Part I: Group Theory (Do 4 of the following 5 problems)

- 1. (a) Let G be a group and let $H \triangleleft G$. Prove that G/H is cyclic if and only if there is an element $a \in G$ with the property that for every element $x \in G$, there is an integer n such that $xa^n \in H$.
 - (b) Prove that every element of the group \mathbb{Q}/\mathbb{Z} has finite order.
 - (c) Prove that \mathbb{Q}/\mathbb{Z} is not a cyclic group.
- 2. (a) Let G be a group with $|G| = 520 = 2^3 \cdot 5 \cdot 13$. Prove that G is not simple.
 - (b) Let G be a group with $|G| = 36 = 2^2 \cdot 3^2$. Prove that G is not simple.
- 3. Note: $675 = 3^3 \cdot 5^2$.
 - (a) Up to isomorphism, describe all Abelian groups of order 675.
 - (b) Consider $G = \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_{25}$.
 - i. Determine, with explanation, the number of elements of order 15 in G.
 - ii. Determine, with explanation, the number of elements of order 45 in G
- 4. Let G be a finite group such that p||G|. Let H be a p-Sylow subgroup of G and let ϕ be an automorphism on G.
 - (a) Prove that $\phi(H)$ is a *p*-Sylow subgroup of G.
 - (b) Prove that if $H \triangleleft G$, then $\phi(H) = H$.
- 5. (a) In S_7 , find two elements σ and τ of order 6 that are not conjugates.
 - (b) Determine, with explanation, the number of conjugates of σ and the number of conjugates of τ .
 - (c) Determine, with explanation the centralizer of σ and the centralizer of τ .

Part II: Ring and Field Theory (Do 4 of the following 5 problems)

- 1. Let R be a principal ideal domain. Let I=(a) be a nonzero ideal in R. Prove that the following are equivalent.
 - (a) I is a maximal ideal,
 - (b) I is a prime ideal,
 - (c) a is an irreducible element of R.
- 2. Let $f(x) = x^6 3 \in \mathbb{Q}[x]$ and let E be the splitting field for f(x) over \mathbb{Q} .
 - (a) Prove $E = \mathbb{Q}(\sqrt[6]{3}, i)$.
 - (b) Determine, with explanation, $|Gal(f(x)/\mathbb{Q})|$.
 - (c) Let σ be the automorphism on E which sends $\sqrt[6]{3}$ to $\omega\sqrt[6]{3}$ (where ω is a primitive 6th root of unity) and sends i to i. Determine, with explanation, the permutation on the roots of f(x) determined by σ .
- 3. Let p be prime.
 - (a) Prove that, if F is a finite field of characteristic p, then $|F| = p^n$ for some $n \ge 1$.
 - (b) Let $n \geq 1$. Prove that any field of order p^n is a splitting field for $x^{p^n} x \in \mathbb{Z}_p[x]$.
- 4. (a) Find a basis for $\mathbb{Q}[x]/(x^2+x+1)$ as a vector space over \mathbb{Q} .
 - (b) Find a multiplicative inverse for $x + (x^2 + x + 1) \in \mathbb{Q}[x]/(x^2 + x + 1)$.
 - (c) Show that $x + (x^3 + x^2 + x) \in \mathbb{Q}[x]/(x^3 + x^2 + x)$ does not have a multiplicative inverse.
- 5. Let I and J be ideals in a ring R. Define $I + J = \{a + b : a \in I, b \in J\}$
 - (a) Prove that I + J is an ideal in R.
 - (b) Prove that if I + J = R and $I \cap J = 0$, then R/I is isomorphic to J.