Conditional Models

October 29, 2013

Outline

- Conditional Models
- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields
 - Pseudolikelihood training

Conditional Models

$$\mathcal{T} = (\langle \mathbf{x}_1, \mathbf{y}_1 \rangle, \langle \mathbf{x}_2, \mathbf{y}_2 \rangle, \dots, \langle \mathbf{x}_n, \mathbf{y}_n \rangle)$$

Last time, we worked with generative (joint) models

that sought to maximize the following objective $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathcal{T}$

Today, we will work with conditional models with the following conditional objective

$$p(\mathcal{T}) = \prod_{\langle \mathbf{x}, \mathbf{y} \rangle \in \mathcal{T}} p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) \tilde{p}(\mathbf{x})$$

Why Conditional Models?

Conditional models have the following property:

$$\forall \mathbf{x} \in \mathcal{X}, \quad \sum_{\mathbf{y} \in \mathcal{Y}_{\mathbf{x}}} p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = 1$$

 Intuitively, we don't "waste" effort modeling the marginal distribution of x

ERM for Conditional Models

Recall the cost function for joint models

$$cost(\mathbf{x}, \mathbf{y}, h) = -\log p(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})$$

For conditional models, it becomes

$$cost(\mathbf{x}, \mathbf{y}, h) = -\log p(\mathbf{Y} = \mathbf{y} \mid \mathbf{X} = \mathbf{x})$$

What's the difference? Intuition?

Maximum Entropy Markov Models

Recall HMMs

Maximum Entropy Markov Models

Recall HMMs

Consider this alternative structure:

MEMMs

You can go even further:

 Limitation: you cannot condition on the future, the probability p(y | x) still factors into conditionally independent steps

MEMM Structure

 MEMMs parameterize each local classification decision with a "conditional maximum entropy model" - more commonly known as a multiclass logistic regression classifier

$$p(y_i \mid \mathbf{x}, i, y_{i-1}; \boldsymbol{w}) = \frac{\exp \boldsymbol{w}^{\top} \boldsymbol{f}(y_i, \mathbf{x}, i, y_{i-1})}{\sum_{y' \in \Lambda} \exp \boldsymbol{w}^{\top} \boldsymbol{f}(y', \mathbf{x}, i, y_{i-1})}$$
$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = \prod p(y_i \mid \mathbf{x}, i, y_{i-1}; \boldsymbol{w})$$

Learning MEMM Params

 The training objective is the conditional likelihood of all of the local classification decisions

$$\mathcal{L} = \sum_{\langle \mathbf{x}, \mathbf{y}
angle \in \mathcal{T}} \sum_{i=1}^{r} oldsymbol{w}^{ op} oldsymbol{f}(y_i, \mathbf{x}, i, y_{i-1}) - \log Z(\mathbf{x}, i, y_{i-1}; oldsymbol{w})$$

$$\frac{\partial \mathcal{L}}{\partial w_j} = \sum_{\langle \mathbf{x}, \mathbf{y} \rangle \in \mathcal{T}} \sum_{i=1}^{|\mathbf{x}|} \left[f_j(y_i, \mathbf{x}, i, y_{i-1}) - \right]$$

$$\mathbb{E}_{p(y'|\mathbf{x},i,y_{i-1};\boldsymbol{w})}f_j(y',\mathbf{x},i,y_{i-1})$$

Task: Information Extraction

X-NNTP-Poster: NewsHound v1.33

Archive-name: acorn/faq/part2

Frequency: monthly

2.6) What configuration of serial cable should I use

Here follows a diagram of the necessary connections programs to work properly. They are as far as I know t agreed upon by commercial comms software developers fo

Pins 1, 4, and 8 must be connected together inside is to avoid the well known serial port chip bugs. The

Task: Information Extraction

Some Features

begins-with-number begins-with-ordinal begins-with-punctuation begins-with-question-word begins-with-subject blank contains-alphanum contains-bracketed-number contains-http contains-non-space contains-number contains-pipe

contains-question-mark contains-question-word ends-with-question-mark first-alpha-is-capitalized indented indented-1-to-4 indented-5-to-10 more-than-one-third-space only-punctuation prev-is-blank prev-begins-with-ordinal shorter-than-30

Empirically...

Task:

Learner	Agr. Prob.	SegPrecision	SegRecall
TokenHMM	0.865	0.276	0.140
FeatureHMM	0.941	0.413	0.529
MEMM	0.965	0.867	0.681

Conditional Random Fields

- Problems with MEMMs
 - What if we want to define a conditional distribution over trees? Or graphs? Or...?
 - Label bias
 - What if we want to define features like $y_{-1} = DT & y_{+1} = VB$

The Label Bias Problem

Here is a 6-state MEMM. There are two possible labelings of 'r i b' that have the following two probabilities.

What's the problem here?

Solving Label Bias

 Intuitively, we would like each feature to contribute globally to the probability

Solving Label Bias

 Intuitively, we would like each feature to contribute globally to the probability

Globally Normalized Models

$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = \frac{\exp \boldsymbol{w}^{\top} \boldsymbol{g}(\mathbf{x}, \mathbf{y})}{\sum_{\mathbf{y}' \in \mathcal{Y}_{\mathbf{x}}} \exp \boldsymbol{w}^{\top} \boldsymbol{g}(\mathbf{x}, \mathbf{y}')}$$

$$Z(\mathbf{x}; \boldsymbol{w}) = \sum_{\mathbf{v}' \in \mathcal{Y}_{\mathbf{x}}} \exp \boldsymbol{w}^{\top} \boldsymbol{g}(\mathbf{x}, \mathbf{y}')$$

Conditional Random Fields

- CRFs (Lafferty et al., 2001) are a special form of globally normalized models
 - They solve the label bias problem
 - They can be applied to arbitrary structures
 - They can use arbitrary features*
 - They generalize the notion of the logistic regression to cases where the output spaces has structure

CRFs for Sequence Labels

$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = \frac{\exp \sum_{i=1}^{|\mathbf{x}|} \boldsymbol{w}^{\top} \boldsymbol{f}(y_i, \mathbf{x}, i, y_{i-1})}{\sum_{\mathbf{y}' \in \Lambda^{|\mathbf{x}|}} \exp \sum_{i=1}^{|\mathbf{x}|} \boldsymbol{w}^{\top} \boldsymbol{f}(y_i', \mathbf{x}, i, y_{i-1}')}$$

Comparison to MEMMs

• CRF

$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = \frac{\exp \sum_{i=1}^{|\mathbf{x}|} \boldsymbol{w}^{\top} \boldsymbol{f}(y_i, \mathbf{x}, i, y_{i-1})}{\sum_{\mathbf{y}' \in \Lambda^{|\mathbf{x}|}} \exp \sum_{i=1}^{|\mathbf{x}|} \boldsymbol{w}^{\top} \boldsymbol{f}(y_i', \mathbf{x}, i, y_{i-1}')}$$

MEMM

$$p(y_i \mid \mathbf{x}, i, y_{i-1}; \boldsymbol{w}) = \frac{\exp \boldsymbol{w}^\top \boldsymbol{f}(y_i, \mathbf{x}, i, y_{i-1})}{\sum_{\substack{y' \in \Lambda}} \exp \boldsymbol{w}^\top \boldsymbol{f}(y', \mathbf{x}, i, y_{i-1})}$$

 $p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = \prod p(y_i \mid \mathbf{x}, i, y_{i-1}; \boldsymbol{w})$

CRFs: Sum of their Parts

 A CRF is a globally normalized model in which g decomposes into local parts of the *output* structure

$$\Pi_i(\mathbf{x}, \mathbf{y}) = \langle y_i, \mathbf{x}, i, y_{i-1} \rangle$$

$$m{g}(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{\#parts(\mathbf{x})} m{f}(\Pi_k(\mathbf{x}, \mathbf{y}))$$

Sequential Parts

Sequential Parts

Sequential Parts

Training CRFs

 Maximum likelihood estimation is straightforward, conceptually

$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w}) = \frac{\exp \sum_{i=1}^{|\mathbf{x}|} \boldsymbol{w}^{\top} \boldsymbol{f}(y_i, \mathbf{x}, i, y_{i-1})}{\sum_{\mathbf{y}' \in \Lambda^{|\mathbf{x}|}} \exp \sum_{i=1}^{|\mathbf{x}|} \boldsymbol{w}^{\top} \boldsymbol{f}(y_i', \mathbf{x}, i, y_{i-1}')}$$

$$\partial \mathcal{L}$$
#parts(\mathbf{y})

$$rac{\partial \mathcal{L}}{\partial w_j} = \sum_{i=1}^{\#parts(\mathbf{y})} \Big[m{f}(\Pi_i(\mathbf{x}, \mathbf{y})) -$$

$$\mathbb{E}_{p(\mathbf{y}'|\mathbf{x}; \boldsymbol{w})} f(\Pi_i(\mathbf{x}, \mathbf{y}'))$$

Efficient Inference

- If the parts factor into a sequence or a tree, then you can use polytime DP algorithms to
 - Solve for the MAP setting of Y
 - Compute the partition function
 - Compute posterior distributions over the settings of the variables in the parts

Forward Chart

$$\alpha_t(s \mid \mathbf{x}) = \sum_{r \to s} \alpha_{t-1}(r) \exp \mathbf{w}^{\top} \mathbf{f}(r, s, t, \mathbf{x})$$

A Word About Features

- Less "local" features require bigger part functions
 - This has a direct impact on the runtime of inference algorithms
 - But, in conditional models, you get to see the whole source "for free"
- Features are generally constructed by domain experts
 - They often have the form of templates %yi_suf(%xi)
- Feature learning or induction is becoming increasingly important
 - Conjunctions of basis features
 - Vector space ("distributed") representations

- How to train intractable models?
 - Approximate inference (Gibbs sampling, Importance Sampling, etc.)
 - Approximate models

m

$$p(\mathbf{y} \mid \mathbf{x}) \approx \prod_{k=1}^{m} p(y_k \mid \mathbf{x}, \mathbf{y} \setminus y_k)$$

$$= \prod_{k=1}^{m} \frac{\exp \sum_{j:y_k \in \Pi_j(\mathbf{x}, \mathbf{y})} \boldsymbol{w}^{\top} \boldsymbol{f}(\Pi_j(\mathbf{x}, \mathbf{y}))}{Z(\mathbf{x}, \mathbf{y} \setminus y_k; \boldsymbol{w})}$$

$$p(y_1 \mid \mathbf{x}, \mathbf{y} \backslash y_1)$$

$$p(y_1 \mid \mathbf{x}, \mathbf{y} \setminus y_1) \times p(y_2 \mid \mathbf{x}, \mathbf{y} \setminus y_2)$$

Details

- PL is due to Besag (1975) who was estimating models of agricultural output
- Consistent estimator
- Like Gibbs sampling, local search, ... you can use larger groups of variables to estimate the PL

Preventing Overfitting

- Maximum likelihood estimation leads to overfitting
 - You typically want to regularize

$$\mathcal{L} = \lambda R(\boldsymbol{w}) + \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \log p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{w})$$

$$R(\boldsymbol{w}) = \sum_{j} w_{j}^{2} \qquad R(\boldsymbol{w}) = \sum_{j} |w_{j}|$$