Title:

OOMYCETE-RESISTANT TRANSGENIC

PLANTS BY VIRTUE OF PATHOGEN-

INDUCED EXPRESSION OF A

HETEROLOGOUS HYPERSENSITIVE

RESPONSE ELICITOR

Inventors:

Steven V. Beer and

David W. Bauer

Docket No.:

19603/2501 (CRF D-2375A)

10

20

25

30

OOMYCETE-RESISTANT TRANSCENIC PLANTS BY VIRTUE OF PATHOGEN-INDUCED EXPRESSION OF A HETEROLOGOUS HYPERSENSITIVE RESPONSE ELICITOR

This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/178,565, filed January 26, 2000, which is hereby incorporated by reference in its entirety.

This invention was made in part with support by the U.S. Government under Grant No. 97-34367-3937 from the U.S. Department of Agriculture. The U.S. Government may have certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to transgenic plants resistant to compete infection which contain a heterologous hypersensitive response elicitor under the control of a promoter responsive to infection by an compete.

BACKGROUND OF THE INVENTION

In general, fungal plant diseases can be classified into two types: those caused by soilborne fungi and those caused by airborne fungi. Soilborne fungi cause some of the most widespread and serious plant diseases, such as root and stem rot caused by Fusarium spp. and root rot caused by Phytophthora spp. For example, Phytophthora parasitica var. nicotiana, a soilborne comycete found in many tobacco growing regions worldwide, causes black shank, a highly destructive root and stem rot disease of many varieties of cultivated tobacco.

Since airborne fungi can be spread long distances by wind, they can cause devastating losses, particularly in crops which are grown over large regions. A number of pathogens have caused widespread epidemics in a variety of crops. Important diseases caused by airborne fungi are stem rust (*Puccinia graminis*) on wheat, corn smut (*Ustilago maydis*) on corn, and late blight disease (*Phytophthora*)

infestans) on potato and tomato. Plasmopera viticola is an airborne comycete that causes downy mildew disease on grape vines. The blue mold fungus (Peronospora

10

15

20

25

30

tabacina) has caused catastrophic losses in tobacco crops, particularly in the United States and Cuba.

Most of these fungal diseases are difficult to combat, and farmers and growers must use a combination of practices, such as sanitary measures, resistant cultivars, and effective fungicide against such diseases. Hundreds of millions of dollars are spent annually for chemical control of plant-pathogenic fungi. As a result, there is today a real need for new, more effective and safe means to control plant-pathogenic fungi, particularly comycetes which are responsible for major crop loss.

Genetic engineering promises to be an effective strategy for reducing the losses associated with diseases of field crops. Several successful approaches have been reported where the constitutive expression of antimicrobial peptides such as cecropins (Arce et al., "Enhanced Resistance to Bacterial Infection by Erwinia Carotovora Susp. Atroseptica in Transgenic Potato Plants Expressing the Attacin or the Cecropin SB-37 Genes," Am. J. Potato Res. 76:169-177 (1999)), lysozyme (Nakajima et al., "Fungal and Bacterial Disease Resistance in Transgenic Plants Expressing Human Lysozyme," Plant Cell Reports 16:674-679 (1997)), and monoclonal antibodies (Tayladoraki et al, "Transgenic Plants Expressing a Functional Single Chain FV Antibody are Specifically Protected from Virus Attack," Nature 366:468-472 (1993)) effectively protected plants from parasitic organisms. However successful, these approaches have limited application to food production since many of these antimicrobial peptides and plant defense molecules are potentially toxic or allergenic to humans (Franck-Oberaspach et al., "Consequences of Classical and Biotechnological Resistance Breeding for Food Toxicology and Allergenicity," Plant Breeding 116:1-17 (1997)). Thus, alternative approaches for genetically engineering disease resistance would be more desirable.

Plants posses a highly evolved pathogen surveillance system which allows for recognition of specific pathogen derived molecules known as elicitors. Elicitor recognition results in an incompatible plant-microbe interaction, defined as the rapid activation of plant defense genes, typically resulting in the hypersensitive response and the onset of systemic acquired resistance.

The hypersensitive response is a rapid, localized necrosis that is associated with the active defense of plants against many pathogens (Kiraly, Z.,

15

20

"Defenses Triggered by the Invader: Hypersensitivity," pages 201-224 in: Plant Disease: An Advanced Treatise, Vol. 5, J.G. Horsfall and E.B. Cowling, ed. Academic Press New York (1980); Klement, Z., "Hypersensitivity," pages 149-177 in: Phytopathogenic Prokaryotes, Vol. 2, M.S. Mount and G.H. Lacy, ed. Academic Press, New York (1982)). The hypersensitive response elicited by bacteria is readily observed as a tissue collapse if high concentrations (> 10⁷ cells/ml) of a limited host-range pathogen like Pseudomonas syringae or Erwinia amylovora are infiltrated into the leaves of nonhost plants (necrosis occurs only in isolated plant cells at lower levels of inoculum) (Klement, Z., "Rapid Detection of Pathogenicity of Phytopathogenic Pseudomonads," Nature 199:299-300; Klement, et al., "Hypersensitive Reaction Induced by Phytopathogenic Bacteria in the Tobacco Leaf," Phytopathology 54:474-477 (1963): Turner, et al., "The Quantitative Relation Between Plant and Bacterial Cells Involved in the Hypersensitive Reaction." Phytopathology 64:885-890 (1974); Klement, Z., "Hypersensitivity," pages 149-177 in Phytopathogenic Prokarvotes, Vol. 2., M.S. Mount and G.H. Lacy, ed. Academic Press, New York (1982)). The capacities to elicit the hypersensitive response in a nonhost and be pathogenic in a host appear linked. As noted by Klement, Z., "Hypersensitivity," pages 149-177 in Phytopathogenic Prokaryotes, Vol. 2., M.S. Mount and G.H. Lacy, ed. Academic Press, New York, (1982), these pathogens also cause physiologically similar, albeit delayed, necroses in their interactions with compatible hosts. Furthermore, the ability to produce the hypersensitive response or pathogenesis is dependent on a common set of genes, denoted hrp (Lindgren, P.B., et al., "Gene Cluster of *Pseudomonas syringae* py, 'phaseolicola' Controls Pathogenicity of Bean Plants and Hypersensitivity on Nonhost Plants," J. Bacteriol. 168:512-22

25 (1986); Willis, D.K., et al., "hrp Genes of Phytopathogenic Bacteria," Mol. Plant-Microbe Interact. 4:132-138 (1991)). Consequently, the hypersensitive response may hold clues to both the nature of plant defense and the basis for bacterial pathogenicity. The hrp genes are widespread in Gram-negative plant pathogens,

where they are clustered, conserved, and in some cases interchangeable (Willis, D.K.,
30 et al., "hrp Genes of Phytopathogenic Bacteria," Mol. Plant-Microbe Interact. 4:132138 (1991); Bonas, U., "hrp Genes of Phytopathogenic Bacteria," pages 79-98 in:

Current Topics in Microbiology and Immunology: Bacterial Pathogenesis of Plants

10

15

20

25

30

and Animals - Molecular and Cellular Mechanisms, J.L. Dangl, ed. Springer-Verlag, Berlin (1994)). Several hrp genes encode components of a protein secretion pathway similar to one used by Yersinia, Shigella, and Salmonella spp. to secrete proteins essential in animal diseases (Van Gijsegem, et al., "Evolutionary Conservation of Pathogenicity Determinants Among Plant and Animal Pathogenic Bacteria," Trends Microbiol. 1:175-180 (1993)). In E. amylovora, P. syringae, and P. solanacearum, hrp genes have been shown to control the production and secretion of glycine-rich, protein elicitors of the hypersensitive response (He, S.Y., et al. "Pseudomonas Syringae pv. Syringae Harpin_{Pss}: a Protein that is Secreted via the Hrp Pathway and Elicits the Hypersensitive Response in Plants," Cell 73:1255-1266 (1993); Wei, Z.-M., et al., "Hrpl of Erwinia amylovora Functions in Secretion of Harpin and is a Member of a New Protein Family," J. Bacteriol. 175:7958-7967 (1993); Arlat, M., et al. "PopA1, a Protein Which Induces a Hypersensitive-like Response on Specific Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum," EMBO J. 13:543-553 (1994)).

bacterium that causes fire blight of rosaceous plants, and was designated harpin (Wei, Z.-M., et al, "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora," Science 257:85-88 (1992)). Mutations in the encoding hrpN gene revealed that harpin is required for E. amylovora to elicit a hypersensitive response in nonhost tobacco leaves and incite disease symptoms in highly susceptible pear fruit. The P. solanacearum GMI1000 PopA1 protein has similar physical properties and also elicits the hypersensitive response in leaves of tobacco, which is not a host of that strain (Arlat, et al., "PopA1, a Protein Which Induces a Hypersensitive-like Response on Specific Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum," EMBO J. 13:543-53 (1994)). However, P. solanacearum popA mutants still elicit the hypersensitive response in tobacco and incite disease in tomato. Thus, the role of these glycine-rich hypersensitive response elicitors can vary widely among Gram-negative plant pathogens.

The first of these proteins was discovered in E. amvlovora Ea321, a

Other plant pathogenic hypersensitive response elicitors have been isolated, cloned, and sequenced. These include: Erwinia chrysanthemi (Bauer, et. al., "Erwinia chrysanthemi Harpin_{Ech}: Soft-Rot Pathogenesis," MPMI 8(4): 484-91

(1995)); Erwinia carotovora (Cui, et. al., "The RsmA' Mutants of Erwinia carotovora subsp. carotovora Strain Ecc71 Overexpress hrpN_{Ecc} and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves," MPMI 9(7): 565-73 (1966)); Erwinia stewartii (Ahmad, et. al., "Harpin is not Necessary for the Pathogenicity of Erwinia stewartii on Maize," 8th Int'l. Cong. Molec. Plant-Microb. Inter. July 14-19, 1996 and Ahmad, et. al., "Harpin is not Necessary for the Pathogenicity of Erwinia stewartii on Maize," Ann. Mtg. Am. Phytopath. Soc. July 27-31, 1996); and Pseudomonas svringae pv. syringae (WO 94/26782 to Cornell Research Foundation, Inc.).

Because the hypersensitive response results in localized necrosis of plant tissue, it is desirable to limit expression of a heterologous hypersensitive response elicitor to certain tissues in transgenic plants. This approach is discussed generally in PCT publication WO 94/01546 to Beer et al., but no specific transgenic plants are identified and only two suitable fungus-responsive promoters are suggested, e.g., the phenylalanine ammonia lyase and chalcone synthase promoters. No promoters responsive specifically to infection by oomycetes are identified therein.

The present invention is directed to overcoming these and other deficiencies in the art

SUMMARY OF THE INVENTION

20

25

30

10

15

The present invention relates to a chimeric gene that includes a first DNA molecule encoding a hypersensitive response elicitor protein or polypeptide, a promoter operably linked 5' to the first DNA molecule to induce transcription of the first DNA molecule in response to activation of the promoter by an oomycete, and a 3' regulatory region operably linked to the first DNA molecule. Also disclosed are an expression system that includes a vector in which is inserted a chimeric gene of the present invention and a host cell that includes a chimeric gene of the present invention.

Another aspect of the present invention relates to a transgenic plant resistant to disease resulting from comycete infection. The transgenic plant includes a chimeric gene of the present invention, wherein the promoter induces transcription of the first DNA molecule in response to infection of the plant by an comycete.

10

15

20

25

Transgenic seeds and transgenic cultivars obtained from the transgenic plant are also disclosed.

An additional aspect of the present invention relates to a method of making a recombinant plant cell. This is accomplished by transforming a plant cell with a chimeric gene of the present invention under conditions effective to yield transcription of the first DNA molecule in response to oomycete-induced activation of the promoter.

A further aspect of the present invention relates to a method of making a plant resistant to disease resulting from oomycete infection. This is accomplished by transforming a plant cell with a chimeric gene of the present invention under conditions effective to yield transcription of the first DNA molecule in response to oomycete-induced activation of the promoter and regenerating the plant from the transformed plant cell.

The present invention confers oomycete-induced disease resistance to plants transformed with a chimeric gene encoding a hypersensitive response elicitor protein or polypeptide, which is transcribed within a limited population of plant cells in response to infection of the plant by an oomycete. To limit transcription of the chimeric gene within a certain population of plant cells, the chimeric gene includes a promoter that is responsive to infection by an oomycete (i.e., it is activated by the oomycete). The hypersensitive response elicitor protein or polypeptide can cause tissue collapse at the site of infection and/or induce systemic resistance against the oomycete and other pathogens. By using the promoter from the potato gst1 gene, for example, which is activated by infection with oomyceteous fungi, the present invention can control fungal pathogens within crops without harming the transgenic plant and without resorting to use of environmentally damaging chemicals.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation and partial restriction map of T
30 DNA in plant transformation vector pCPP1294. Filled triangles represent the left and right borders; Pgst1 represents the gst1 promoter from potato variety Atlantic; PR1-b represents the DNA molecule encoding a signal sequence from Nicotiana tabacum;

CONTROL CARSON

5

10

15

20

25

30

hrpN represents the DNA molecule encoding the hypersensitive response elicitor harpin_{Ea} of Erwinia amylovora; NT represents the nos terminating region; aacC1 represents the gentamycin resistance cassette.

Figure 2 is an image of transgenic *Arabidopsis* plants containing a construct encoding GUS under control of the *gst1* promoter. To demonstrate pathogen inducibility of the *gst1* promoter in *Arabidopsis*, GUS staining was measured following inoculation of the plants with water (left) or *P. parasitica* (right). GUS expression is indicated by dark staining.

Figures 3A and 3B show an analysis of hrpN gene expression in Arabidopsis transgenic line GSSN8-4, containing the construct shown in Figure 1, after inoculation with P. parasitica NOCO. At one day intervals leaves were collected for isolation of total RNA. Figure 3A is a Northern blot analysis performed using hrpN DNA as a probe. Figure 3B is an ethidium bromide stained gel shown as a control (bottom).

Figures 4A and 4B are images demonstrating *Arabidopsis* GSSN 8-4 are resistant to *P. parasitica*. Figure 4A shows the effects of *P. parasitica* infection in WT Arabidopsis (control, left) and GSSN 8-4 Arabidopsis (test, right). Figure 4B shows the degree of trypan blue staining of *P. parasitica*-infected leaves of WT (control, left) and GSSN 8-4 plants (test, right), both taken 10 days post-inoculation.

Figure 5 is a graph depicting the severity of *P. parasitica* infection in WT (control), EV (control), and *hrpN* transgenic plants (test). Two week old plants were drop inoculated with conidiospores of *P. parasitica* (2 ml drops; 5 x 10⁴ spores/ml). Ten days after inoculation, 30 plants of each genotype were rated for disease severity. Ratings were adapted from Cao et al. ("Generation of Broad-Spectrum Disease Resistance by Overexpression of an Essential Regulatory Gene in Systemic Acquired Resistance," <u>Proc. Natl. Acad. Sci. USA</u> 95:6531-6536 (1998), which is hereby incorporated by reference) as follows: 1, no conidiophores present on plant; 2, 0-5 conidiophores per infected plant; 3, 6-20 conidiophores present on a few infected leaves; 4, 6-20 conidiophores present on most infected leaves; 5, more than 20 conidiophores on all infected leaves.

15

30

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention relates to a novel DNA construct in the form of a chimeric gene. The chimeric gene includes a first DNA molecule encoding a hypersensitive response elicitor protein or polypeptide, a promoter operably linked 5' to the first DNA molecule to induce transcription of the first DNA molecule in response to activation of the promoter by an oomycete, and a 3' regulatory region operably linked to the first DNA molecule. As discussed more fully hereinafter, a chimeric gene of the present invention is particularly useful in preparing a transgenic plant for the purpose of rendering the transgenic plant resistant to disease resulting from infection thereof by an oomycete.

The first DNA molecule can encode any hypersensitive response elicitor protein or polypeptide which is effective in triggering a hypersensitive response (i.e., in a particular host plant selected for transformation). Generally, it is desirable to express hypersensitive response elicitors only in plants which are non-hosts for the source organism of the hypersensitive response elicitor. Suitable hypersensitive elicitor proteins or polypeptides are those derived from a wide variety of bacterial and fungal pathogens, preferably bacterial pathogens.

Exemplary hypersensitive response elicitor proteins and polypeptides

20 from bacterial sources include, without limitation, the hypersensitive response
elicitors from Erwinia species (e.g., Erwinia amylovora, Erwinia chrysanthemi,
Erwinia stewartii, Erwinia carotovora, etc.), Pseudomonas species (e.g.,
Pseudomonas syringae, Pseudomonas solanacearum, etc.), and Xanthomonas species
(e.g., Xanthomonas campestris). In addition to hypersensitive response elicitors from

25 these Gram-negative bacteria, it is possible to use elicitors from Gram-positive
bacteria. One example is the hypersensitive response elicitor from Clavibacter
michiganensis subsp. sepedonicus.

Exemplary hypersensitive response elicitor proteins or polypeptides from fungal sources include, without limitation, the hypersensitive response elicitors (i.e., elicitins) from various *Phytophthora* species (e.g., *Phytophthora parasitica*, *Phytophthora cryptogea*, *Phytophthora cinnamomi*, *Phytophthora capsici*, *Phytophthora megasperma*, *Phytophthora citrophthora*, etc.).

Preferably, the first DNA molecule encodes a hypersensitive response elicitor protein or polypeptide of Erwinia chrysanthemi, Erwinia amylovora,

Pseudomonas syringae, or Pseudomonas solanacearum.

The hypersensitive response elicitor protein or polypeptide from

5 Erwinia chrysanthemi has an amino acid sequence corresponding to SEQ. ID. No. 1 as follows:

	Met 1	Gln	Ile	Thr	Ile 5	Lys	Ala	His	Ile	Gly 10	Gly	Asp	Leu	Gly	Val 15	Ser
10	Gly	Leu	Gly	Ala 20	Gln	Gly	Leu	Lys	Gly 25	Leu	Asn	Ser	Ala	Ala 30	Ser	Ser
	Leu	Gly	Ser 35	Ser	Val	Asp	Lys	Leu 40	Ser	Ser	Thr	Ile	Asp 45	Lys	Leu	Thr
15	Ser	Ala 50	Leu	Thr	Ser	Met	Met 55	Phe	Gly	Gly	Ala	Leu 60	Ala	Gln	Gly	Leu
	Gly 65	Ala	Ser	Ser	Lys	Gly 70	Leu	Gly	Met	Ser	Asn 75	Gln	Leu	Gly	Gln	Ser 80
	Phe	Gly	Asn	Gly	Ala 85	Gln	Gly	Ala	Ser	Asn 90	Leu	Leu	Ser	Val	Pro 95	Lys
20	Ser	Gly	Gly	Asp 100	Ala	Leu	Ser	Lys	Met 105	Phe	Asp	Lys	Ala	Leu 110	Asp	Asp
	Leu	Leu	Gly 115	His	Asp	Thr	Val	Thr 120	Lys	Leu	Thr	Asn	Gln 125	Ser	Asn	Gln
25	Leu	Ala 130	Asn	Ser	Met	Leu	Asn 135	Ala	Ser	Gln	Met	Thr 140	Gln	Gly	Asn	Met
	Asn 145	Ala	Phe	Gly	Ser	Gly 150	Val	Asn	Asn	Ala	Leu 155	Ser	Ser	Ile	Leu	Gly 160
	Asn	Gly	Leu	Gly	Gln 165	Ser	Met	Ser	Gly	Phe 170	Ser	Gln	Pro	Ser	Leu 175	Gly
30	Ala	Gly	Gly	Leu 180	Gln	Gly	Leu	Ser	Gly 185	Ala	Gly	Ala	Phe	Asn 190	Gln	Leu
	Gly	Asn	Ala 195	Ile	Gly	Met	Gly	Val 200	Gly	Gln	Asn	Ala	Ala 205	Leu	Ser	Ala
35	Leu	Ser 210	Asn	Val	Ser	Thr	His 215	Val	Asp	Gly	Asn	Asn 220	Arg	His	Phe	Val
	Asp 225	Lys	Glu	Asp	Arg	Gly 230	Met	Ala	Lys	Glu	Ile 235	Gly	Gln	Phe	Met	Asp 240

20

25

30

35

Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp 245 250 Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys 5 Pro Asp Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr Asn Leu Asn Leu Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala 10 305 Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala 330 Asn Ala

This hypersensitive response elicitor protein or polypeptide has a molecular weight of 34 kDa, is heat stable, has a glycine content of greater than 16%, and contains substantially no cysteine. This Erwinia chrysanthemi hypersensitive response elicitor protein or polypeptide is encoded by a DNA molecule having a nucleotide sequence corresponding to SEO, ID, No. 2 as follows:

cgattttacc cgggtgaacg tgctatgacc gacagcatca cggtattcga caccgttacg 60 gegtttatgg cegegatgaa ceggcatcag geggegeget ggtegeegea ateeggegte 120 qatctqqtat ttcaqtttqq qqacaccqqq cqtqaactca tqatqcaqat tcaqccqqqq 180 cagcaatatc coggoatgtt gogoacgctg ctogotogtc gttatcagca ggoggoagag 240 tgcqatqqct qccatctqtq cctqaacqqc aqcqatqtat tgatcctctg gtgqccgctg 300 ccgtcggatc ccggcagtta tccgcaggtg atcgaacgtt tgtttgaact ggcgggaatg 360 acqttqccqt cqctatccat aqcaccqacq qcqcqtccqc aqacaqqqaa cqqacqcqcc 420 cgatcattaa gataaaggcg gcttttttta ttgcaaaacg gtaacggtga ggaaccgttt 480 caccytcygc qtcactcaqt aacaaqtatc catcatgatq cctacatcyg qatcygcqtq 540 ggcatccgtt gcagatactt ttgcgaacac ctgacatgaa tgaggaaacg aaattatgca 600 aattacgatc aaagcgcaca tcggcggtga tttgggcgtc tccggtctgg ggctgqgtqc 660 teagggactg aaaggactga atteegegge tteategetg ggtteeageg tggataaact 720 gagcagcacc atcgataagt tgacctccgc gctgacttcg atgatgtttg gcggcgcgct 780 qqcqcaqqqq ctqqqccca qctcqaaqqq qctqqqqatq aqcaatcaac tqqqccaqtc 840 tttcggcaat ggcgcgcagg gtgcgagcaa cctgctatcc gtaccgaaat ccggcggcga 900

15

25

30

tgcgttgtca aaaatgtttg ataaagcgct ggacgatctg ctgggtcatg acaccgtgac 960 caagetgact aaccagaqca accaactggc taattcaatg ctgaacgcca gccagatgac 1020 ccagggtaat atgaatgcgt tcggcagcgg tgtgaacaac gcactgtcgt ccattctcgg 1080 caacggtete ggecagtega tgagtggett eteteageet tetetggggg caggeggett 1140 gcagggcctg agcggcgcg gtgcattcaa ccagttgggt aatgccatcg gcatgggcgt 1200 ggggcagaat gctgcgctga gtgcgttgag taacgtcagc acccacgtag acggtaacaa 1260 ccqccacttt qtagataaaq aaqatcgcgg catggcgaaa gagatcggcc agtttatgga 1320 tcaqtatccq qaaatattcq qtaaaccqqa ataccaqaaa qatqqctqqa qttcqccqaa 1380 qacqqacqac aaateetqqq etaaaqeqet qaqtaaaccq gatgatgacg qtatgaccqq 1440 cgccagcatg gacaaattcc gtcaggcgat gggtatgatc aaaagcgcgg tggcgggtga 1500 taccqqcaat accaacctqa acctqcqtqq cqcqqqcqgt gcatcqctqq qtatcqatqc 1560 ggctgtcgtc ggcgataaaa tagccaacat gtcgctgggt aagctggcca acgcctgata 1620 atctqtqctq qcctqataaa qcqqaaacqa aaaaaqaqac gggqaaqcct gtctcttttc 1680 ttattatgcq qtttatgcgg ttacctggac cggttaatca tcgtcatcga tctggtacaa 1740 acqcacattt teccqttcat tegcqtegtt acqcgccaca ategcgatgg catettecte 1800 gtcgctcaga ttgcgcggct gatggggaac gccgggtgga atatagagaa actcgccggc 1860 cagatggaga cacgtotgcg ataaatotgt gccgtaacgt gtttctatcc gcccctttag 1920 cagatagatt geggtttegt aatcaacatg gtaatgeggt teegeetgtg egeeggeegg 1980 gatcaccaca atattcatag aaagctgtct tgcacctacc gtatcgcggg agataccgac 2040 20 aaaataqqqc aqtttttqcq tqqtatccqt qqqqtqttcc qqcctqacaa tcttgagttg 2100 gttcgtcatc atctttctcc atctgggcga cctgatcggt t 2141

The hypersensitive response elicitor protein or polypeptide derived from Erwinia amylovora has an amino acid sequence corresponding to SEO. ID. No. 3 as follows:

Met Ser Leu Asn Thr Ser Gly Leu Gly Ala Ser Thr Met Gln Ile Ser

Ile Gly Gly Ala Gly Gly Asn Asn Gly Leu Leu Gly Thr Ser Arg Gln

Asn Ala Gly Leu Gly Gly Asn Ser Ala Leu Gly Leu Gly Gly Gly Asn

Gln Asn Asp Thr Val Asn Gln Leu Ala Gly Leu Leu Thr Gly Met Met 50

	Met 65	Met	Met	Ser	Met	Met 70	Gly	Gly	Gly	Gly	Leu 75	Met	Gly	Gly	Gly	Leu 80
	Gly	Gly	Gly	Leu	Gly 85	Asn	Gly	Leu	Gly	Gly 90	Ser	Gly	Gly	Leu	Gly 95	Glu
5	Gly	Leu	Ser	Asn 100	Ala	Leu	Asn	Asp	Met 105	Leu	Gly	Gly	Ser	Leu 110	Asn	Thr
	Leu	Gly	Ser 115	Lys	Gly	Gly	Asn	Asn 120	Thr	Thr	Ser	Thr	Thr 125	Asn	Ser	Pro
10	Leu	Asp 130	Gln	Ala	Leu	Gly	Ile 135	Asn	Ser	Thr	Ser	Gln 140	Asn	Asp	Asp	Ser
	Thr 145	Ser	Gly	Thr	Asp	Ser 150	Thr	Ser	Asp	Ser	Ser 155	Asp	Pro	Met	Gln	Gln 160
	Leu	Leu	Lys	Met	Phe 165	Ser	Glu	Ile	Met	Gln 170	Ser	Leu	Phe	Gly	Asp 175	Gly
15	Gln	Asp	Gly	Thr 180	Gln	Gly	Ser	Ser	Ser 185	Gly	Gly	Lys	Gln	Pro 190	Thr	Glu
	Gly	Glu	Gln 195	Asn	Ala	Tyr	Lys	Lys 200	Gly	Val	Thr	Asp	Ala 205	Leu	Ser	Gly
20	Leu	Met 210	Gly	Asn	Gly	Leu	Ser 215	Gln	Leu	Leu	Gly	Asn 220	Gly	Gly	Leu	Gly
	Gly 225	Gly	Gln	Gly	Gly	Asn 230	Ala	Gly	Thr	Gly	Leu 235	Asp	Gly	Ser	Ser	Leu 240
	Gly	Gly	Lys	Gly	Leu 245	Gln	Asn	Leu	Ser	Gly 250	Pro	Val	Asp	Tyr	Gln 255	Gln
25	Leu	Gly	Asn	Ala 260	Val	Gly	Thr	Gly	Ile 265	Gly	Met	Lys	Ala	Gly 270	Ile	Gln
	Ala	Leu	Asn 275	Asp	Ile	Gly	Thr	His 280	Arg	His	Ser	Ser	Thr 285	Arg	Ser	Phe
30	Val	Asn 290		Gly	Asp	Arg	Ala 295	Met	Ala	Lys	Glu	Ile 300	Gly	Gln	Phe	Met
	Asp 305		Tyr	Pro	Glu	Val 310	Phe	Gly	Lys	Pro	Gln 315	Tyr	Gln	Lys	Gly	Pro 320
	Gly	Gln	Glu	Val	Lys 325	Thr	Asp	Asp	Lys	Ser 330	Trp	Ala	Lys	Ala	Leu 335	Ser
35	Lys	Pro	Asp	Asp 340	Asp	Gly	Met	Thr	Pro 345	Ala	Ser	Met	Glu	Gln 350	Phe	Asn
	Lys	Ala	Lys 355		Met	Ile	Lys	Arg 360		Met	Ala	Gly	Asp 365	Thr	Gly	Asn

15

20

25

30

Gly Asn Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp

Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu 385 390 395 400

5 Gly Ala Ala

This hypersensitive response elicitor protein or polypeptide has a molecular weight of about 39 kDa, has a pI of approximately 4.3, and is heat stable at 100°C for at least 10 minutes. This hypersensitive response elicitor protein or polypeptide has substantially no cysteine. The hypersensitive response elicitor protein or polypeptide derived from Erwinia amylovora is more fully described in Wei, Z-M., et al., "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora," Science 257:85-88 (1992), which is hereby incorporated by reference. The DNA molecule encoding this hypersensitive response elicitor protein or polypeptide has a nucleotide sequence corresponding to SEO. ID. No. 4 as follows:

aagettegge atggeaegtt tgacegttgg gteggeaggg taegtttgaa ttatteataa 60 gaggaatacg ttatgagtct gaatacaagt gggctgggag cgtcaacgat gcaaatttct 120 atcqqcqgtq cqggcggaaa taacqggttg ctgggtacca gtcgccagaa tgctgggttg 180 ggtggcaatt ctgcactggg gctgggcggc ggtaatcaaa atgataccgt caatcagctg 240 300 gctqgcttac tcaccggcat gatgatgatg atgagcatga tgggcggtgg tgggctgatg ggcggtggct taggcggtgg cttaggtaat ggcttgggtg gctcaggtgg cctgggcgaa 360 ggactgtega acgcqctgaa cgatatgtta ggcggttcgc tgaacacgct gggctcgaaa 420 qqcqqcaaca ataccacttc aacaacaaat tccccqctqq accaqqcqct qqqtattaac 480 tcaacqtccc aaaacqacqa ttccacctcc gqcacagatt ccacctcaga ctccagegac 540 cogatgcage agetgetgaa gatgtteage gagataatge aaageetgtt tggtgatggg 600 caaqatqqca cccaqqqcaq ttcctctqqq qqcaaqcaqc cqaccgaagg cgagcagaac 660 geetataaaa aaggagteae tgatgegetg tegggeetga tgggtaatgg tetgageeag 720 ctccttqqca acqqqqqact qqqaqqtqqt caqqqcqgta atqctqqcac qqqtcttqac 780 ggttcgtcgc tgggcggcaa agggctgcaa aacctgagcg ggccggtgga ctaccagcag 840 900 ttaggtaacg ccgtgggtac cggtatcggt atgaaagcgg gcattcaggc gctgaatgat 960 ateggtacge acaggeacag ttcaaccegt tetttegtea ataaaggega tegggegatg gcgaaggaaa tcggtcagtt catggaccag tatcctgagg tgtttggcaa gccgcagtac 1020 caqaaaggcc cqqqtcaqqa qqtgaaaacc gatgacaaat catqggcaaa agcactgagc

aagcaagat acgacgaat gacaccagc agtatgaac agttcaacaa agcacaggc 1140
atgatcaaaa ggccatggc gggtgatac ggcaacggc acctgcaggc acgeggcgc
ggtggttctt cgctgggtat tgatgccatg atggccggt atgccattaa caatatggca 1260
cttggcaagc tgggcgcggc ttaagctt 1280

5

The hypersensitive response elicitor protein or polypeptide derived from *Pseudomonas syringae* has an amino acid sequence corresponding to SEQ, ID. No. 5 as follows:

	No. 5	as fo	llow	S:													
10		Met 1	Gln	Ser	Leu	Ser 5	Leu	Asn	Ser	Ser	Ser 10	Leu	Gln	Thr	Pro	Ala 15	Met
		Ala	Leu	Val	Leu 20	Va1	Arg	Pro	Glu	Ala 25	Glu	Thr	Thr	Gly	Ser 30	Thr	Ser
15		Ser	Lys	Ala 35	Leu	Gln	Glu	Val	Val 40	Val	Lys	Leu	Ala	Glu 45	Glu	Leu	Met
		Arg	Asn 50	Gly	Gln	Leu	Asp	Asp 55	Ser	Ser	Pro	Leu	Gly 60	Lys	Leu	Leu	Ala
20		Lys 65	Ser	Met	Ala	Ala	Asp 70	Gly	Lys	Ala	Gly	Gly 75	Gly	Ile	Glu	Asp	Val 80
		Ile	Ala	Ala	Leu	Asp 85	Lys	Leu	Ile	His	Glu 90	Lys	Leu	Gly	Asp	Asn 95	Phe
		Gly	Ala	Ser	Ala 100	Asp	Ser	Ala	Ser	Gly 105	Thr	Gly	Gln	Gln	Asp 110	Leu	Met
25		Thr	Gln	Val 115	Leu	Asn	Gly	Leu	Ala 120	Lys	Ser	Met	Leu	Asp 125	Asp	Leu	Leu
		Thr	Lys 130	Gln	Asp	Gly	Gly	Thr 135	Ser	Phe	Ser	Glu	Asp 140	Asp	Met	Pro	Met
30		Leu 145	Asn	Lys	Ile	Ala	Gln 150	Phe	Met	Asp	Asp	Asn 155	Pro	Ala	Gln	Phe	Pro 160
		Lys	Pro	Asp	Ser	Gly 165	Ser	Trp	Val	Asn	Glu 170	Leu	Lys	Glu	Asp	Asn 175	Phe
		Leu	Asp	Gly	Asp 180	Glu	Thr	Ala	Ala	Phe 185	Arg	Ser	Ala	Leu	Asp 190	Ile	Ile
35		Gly	Gln	Gln 195	Leu	Gly	Asn	Gln	Gln 200	Ser	Asp	Ala	Gly	Ser 205	Leu	Ala	Gly

Thr Gly Gly Leu Gly Thr Pro Ser Ser Phe Ser Asn Asn Ser Ser

220

215

210

25

30

35

ID. No. 6 as follows:

	Val 225	Met	Gly	Asp	Pro	Leu 230	Ile	Asp	Ala	Asn	Thr 235	Gly	Pro	Gly	Asp	Ser 240
	Gly	Asn	Thr	Arg	Gly 245	Glu	Ala	Gly	Gln	Leu 250	Ile	Gly	Glu	Leu	11e 255	Asp
5	Arg	Gly	Leu	Gln 260	Ser	Val	Leu	Ala	Gly 265	Gly	Gly	Leu	Gly	Thr 270	Pro	Val
	Asn	Thr	Pro 275	Gln	Thr	Gly	Thr	Ser 280	Ala	Asn	Gly	Gly	Gln 285	Ser	Ala	Gln
10	Asp	Leu 290	Asp	Gln	Leu	Leu	Gly 295	Gly	Leu	Leu	Leu	Lys 300	Gly	Leu	Glu	Ala
	Thr 305	Leu	Lys	Asp	Ala	Gly 310	Gln	Thr	Gly	Thr	Asp 315	Val	Gln	Ser	Ser	Ala 320
	Ala	Gln	Ile	Ala	Thr 325	Leu	Leu	Val	Ser	Thr 330	Leu	Leu	Gln	Gly	Thr 335	Arg
15	Asn	Gln	Ala	Ala 340	Ala											

This hypersensitive response elicitor protein or polypeptide has a molecular weight of 34-35 kDa. It is rich in glycine (about 13.5%) and lacks cysteine and tyrosine. Further information about the hypersensitive response elicitor derived from *Pseudomonas syringae* is found in He, S. Y., et al., "*Pseudomonas syringae* pv. *syringae* Harpin_{Pss}: a Protein that is Secreted via the Hrp Pathway and Elicits the Hypersensitive Response in Plants," <u>Cell</u> 73:1255-1266 (1993), which is hereby incorporated by reference. The DNA molecule encoding this hypersensitive response elicitor from *Pseudomonas syringae* has a nucleotide sequence corresponding to SEQ.

atgcagagte teagtettaa eageageteg etgcaaaeee eggcaatgge eettgteetg 60 qtacqtcctq aaqccqaqac qactqqcaqt acqtcqaqca aqqcqcttca qqaaqttgtc 120 gtgaagetgg cegaggaact gatgegeaat ggtcaacteg acgacagete gecattggga 180 aaactqttqq ccaaqtcqat qqccqcaqat qqcaaqqcqq qcqqcqqtat tqaqqatqtc 240 ateqetqeqe tqqacaaqet qatecatqaa aagetegqtg acaacttegg egegtetgeg 300 360 aaqteqatqc tegatqatet tetqaccaaq caqqatqqcg ggacaaqett etecqaagac 420 gatatgeega tgetgaacaa gategegeag tteatggatg acaatecege acagtttccc 480 aageeggaet egggeteetg ggtgaaegaa etcaaggaag acaaetteet tgatggegae 540

10

15

20

25

30

35

gaaacggctg	cgttccgttc	ggcactcgac	atcattggcc	agcaactggg	taatcagcag	600
agtgacgctg	gcagtctggc	agggacgggt	ggaggtctgg	gcactccgag	cagtttttcc	660
aacaactcgt	ccgtgatggg	tgatccgctg	atcgacgcca	ataccggtcc	cggtgacagc	720
ggcaataccc	gtggtgaagc	ggggcaactg	atcggcgagc	ttatcgaccg	tggcctgcaa	780
tcggtattgg	ccggtggtgg	actgggčaca	cccgtaaaca	ccccgcagac	cggtacgtcg	840
gcgaatggcg	gacagtccgc	tcaggatctt	gatcagttgc	tgggcggctt	gctgctcaag	900
ggcctggagg	caacgctcaa	ggatgccggg	caaacaggca	ccgacgtgca	gtcgagcgct	960
gcgcaaatcg	ccaccttgct	ggtcagtacg	ctgctgcaag	gcacccgcaa	tcaggctgca	1020
gcctga						1026

Another potentially suitable hypersensitive response elicitor from Pseudomonas syringae is disclosed in U.S. Patent Application Serial No. 09/120,817, which is hereby incorporated by reference.

The hypersensitive response elicitor protein or polypeptide derived from *Pseudomonas solanacearum* has an amino acid sequence corresponding to SEQ. ID. No. 7 as follows:

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln 1 5 15

Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser 25 30

Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile 40 45

Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly 50 55 60

Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala 65 70

Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser 85 90

Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met 100

Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala 115 120 1130

Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala

	Glu	Ala	Leu	Gln	Glu 165	Ile	Glu	Gln	Ile	Leu 170	Ala	Gln	Leu	Gly	Gly 175	Gly
	Gly	Ala	Gly	Ala 180	Gly	Gly	Ala	Gly	Gly 185	Gly	Val	Gly	Gly	Ala 190	Gly	Gly
5	Ala	Asp	Gly 195	Gly	Ser	Gly	Ala	Gly 200	Gly	Ala	Gly	Gly	Ala 205	Asn	Gly	Ala
	Asp	Gly 210	Gly	Asn	Gly	Val	Asn 215	Gly	Asn	Gln	Ala	Asn 220	Gly	Pro	Gln	Asn
10	Ala 225	Gly	Asp	Val	Asn	Gly 230	Ala	Asn	Gly	Ala	Asp 235	Asp	Gly	Ser	Glu	Asp 240
	Gln	Gly	Gly	Leu	Thr 245	Gly	Val	Leu	Gln	Lys 250	Leu	Met	Lys	Ile	Leu 255	Asn
	Ala	Leu	Val	Gln 260	Met	Met	Gln	Gln	Gly 265	Gly	Leu	Gly	Gly	Gly 270	Asn	Gln
15	Ala	Gln	Gly 275	Gly	Ser	Lys	Gly	Ala 280	Gly	Asn	Ala	Ser	Pro 285	Ala	Ser	Gly
	Ala	Asn 290	Pro	Gly	Ala	Asn	Gln 295	Pro	Gly	Ser	Ala	Asp 300	Asp	Gln	Ser	Ser
20	Gly 305	Gln	Asn	Asn	Leu	Gln 310	Ser	Gln	Ile	Met	Asp 315	Val	Val	Lys	Glu	Val 320
	Val	Gln	Ile	Leu	Gln 325	Gln	Met	Leu	Ala	Ala 330	Gln	Asn	Gly	Gly	Ser 335	Gln
	Gln	Ser	Thr	Ser 340	Thr	Gln	Pro	Met								

30

Further information regarding this hypersensitive response elicitor protein or polypeptide derived from *Pseudomonas solanacearum* is set forth in Arlat, M., et al., "PopA1, a Protein which Induces a Hypersensitive-like Response in Specific Petunia Genotypes, is Secreted via the Hrp Pathway of *Pseudomonas solanacearum*," EMBO J. 13:543-533 (1994), which is hereby incorporated by reference. It is encoded by a DNA molecule from *Pseudomonas solanacearum* having a nucleotide sequence corresponding SEQ. ID. No. 8 as follows:

atgtcagtcg gaaacatcca gagcccgtcg aacctcccgg gtctgcagaa cctgaacctc 60

35 aacaccaaca ccaacagca gcaatcgggc cagtccgtgc aagacctgat caagcaggtc 120
gagaaggaca tcctcaacat catcgcagcc ctcgtgcaga aggccgcaca gtcggcgggc 180
ggcaacaccg gtaacaccgg caacgcgcg gcgaaggacg gcaatgccaa cgcggggcc 240

aacgacccga gcaagaacga cccgagcaag agccaggctc cgcagtcggc caacaagacc 300 ggcaacgtcg acgacgccaa caaccaggat ccgatgcaag cgctgatgca gctgctggaa 360 gacetggtga agetgetgaa ggeggeeetg cacatgeage ageeeggegg caatgacaag 420 qqcaacqqcq tqqqcqtqc caacqqcqcc aaqqqtqccq qcqqccagqq cqqcctgqcc 480 gaagegetge aggagatega geagateete geeeageteg geggeggegg tgetggegee 540 qqcqqcqcqq qtqqcqqtat cqqcqqtqct qqtqqcqcqq atqqcqqctc cqqtqcqqqt 600 ggcqcaqgcg qtqcqaacgg cgccqacggc ggcaatggcg tgaacggcaa ccaggcgaac 660 ggcccgcaga acgcaggcga tgtcaacggt gccaacggcg cggatgacgg cagcgaagac 720 caqqqcqcc tcaccqqcqt qctqcaaaaq ctqatqaaqa tcctqaacqc qctqqtqcaq 780 atgatgcage aaggeggeet eggeggegge aaceaggege agggeggete gaagggtgee 840 qqcaacqcct cqccqqcttc cqqcqcqaac ccqqqcqcqa accaqcccqq ttcqqcqqat 900 gatcaatcgt ccggccagaa caatctgcaa tcccagatca tggatgtggt gaaggaggtc 960 qtccaqatcc tqcaqcaqat qctqqcqqcq caqaacqqcq qcaqccaqca qtccacctcq 1020 1035 acqcaqccga tqtaa

15

20

25

30

5

10

Other embodiments of the present invention include, but are not limited to, use of the nucleotide sequence encoding for the hypersensitive response elicitor protein or polypeptide from Erwinia carotovora and Erwinia stewartii. Isolation of Erwinia carotovora hypersensitive response elicitor protein or polypeptide is described in Cui, et al., "The RsmA Mutants of Erwinia carotovora subsp. carotovora Strain Ecc71 Overexpress hrp N_{Ecc} and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves," MPMI, 9(7):565-73 (1996), which is hereby incorporated by reference. The hypersensitive response elicitor protein or polypeptide of Erwinia stewartii is set forth in Ahmad, et al., "Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize," 8th Int'l. Cong, Molec. Plant-Microbe Interact., July 14-19, 1996 and Ahmad, et al., "Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize," Ann. Mtg. Am. Phytopath. Soc., July 27-31, 1996, which are hereby incorporated by reference.

The hypersensitive response elicitor proteins or polypeptides from various *Phytophthora* species are described in Kaman, et al., "Extracellular Protein Elicitors from Phytophthora: Most Specificity and Induction of Resistance to Bacterial and Fungal Phytopathogens," *Molec. Plant-Microbe Interact.*, 6(1):15-25 (1993); Ricci, et al., "Structure and Activity of Proteins from Pathogenic Fungi

19770693 .012601

10

15

20

30

Phytophthora Eliciting Necrosis and Acquired Resistance in Tobacco," <u>Eur. J. Biochem.</u>, 183:555-63 (1989); Ricci, et al., "Differential Production of Parasiticein, and Elicitor of Necrosis and Resistance in Tobacco, by Isolates of Phytophthora parasitica," <u>Plant Path.</u> 41:298-307 (1992); Baillreul, et al., "A New Elicitor of the Hypersensitive Response in Tobacco: A Fungal Glycoprotein Elicits Cell Death, Expression of Defense Genes, Production of Salicylic Acid, and Induction of Systemic Acquired Resistance," <u>Plant J.</u>, 8(4):551-60 (1995), and Bonnet, et al., "Acquired Resistance Triggered by Elicitors in Tobacco and Other Plants," <u>Eur. J.</u> Plant Path., 102:181-92 (1996), which are hereby incorporated by reference.

Another hypersensitive response elicitor in accordance with the present invention is from *Clavibacter michiganensis* subsp. sepedonicus which is described in U.S. Patent Application Serial No. 09/136,625, which is hereby incorporated by reference.

Other elicitors can be readily identified by isolating putative hypersensitive response elicitors and testing them for elicitor activity as described, for example, in Wei, Z-M., et al., "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora," Science 257:85-88 (1992), which is hereby incorporated by reference. Cell-free preparations from culture supernatants can be tested for elicitor activity (i.e., local necrosis) by using them to infiltrate appropriate plant tissues. Once identified, DNA molecules encoding a hypersensitive response elicitor can be isolated using standard techniques known to those skilled in the art. The isolated DNA molecule can then be introduced into the chimeric gene for expression in a transgenic plant of the present invention.

The first DNA molecule can also encode fragments of the above

25 hypersensitive response elicitor proteins or polypeptides as well as fragments of full
length elicitors from other pathogens.

Suitable fragments can be produced by several means. Subclones of the gene encoding a known elicitor protein can be produced using conventional molecular genetic manipulation for subcloning gene fragments, such as described by Sambrook et al., Molecular Cloning: A Laboratory Manual. Cold Springs Laboratory, Cold Springs Harbor, New York (1989), and Ausubel et al. (ed.), Current Protocols in Molecular Biology, John Wiley & Sons (New York, NY) (1999 and preceding

10

15

20

25

30

the present invention.

editions), which are hereby incorporated by reference. The subclones then are expressed *in vitro* or *in vivo* in bacterial cells to yield a smaller protein or polypeptide that can be tested for elicitor activity, e.g., using procedures set forth in Wei, Z-M., et al., Science 257: 85-88 (1992), which is hereby incorporated by reference.

In another approach, based on knowledge of the primary structure of the protein, fragments of the elicitor protein gene may be synthesized using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. Erlich, H.A., et al., "Recent Advances in the Polymerase Chain Reaction," Science 252:1643-51 (1991), which is hereby incorporated by reference. These can then be cloned into an appropriate vector for expression of a truncated protein or polypeptide from bacterial cells as described above.

An example of suitable fragments of a hypersensitive response elicitor which elicit a hypersensitive response are fragments of the *Erwinia amylovora* hypersensitive response elicitor protein or polypeptide of SEQ. ID. No. 3. The fragments can be a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 3, an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 3, or an internal fragment of the amino acid sequence of SEQ. ID. No. 3. The C-terminal fragment of the amino acid sequence of SEQ. ID. No. 3 can span amino acids 105 and 403 of SEQ. ID. No. 3. The N-terminal fragment of the amino acid sequence of SEQ. ID. No. 3 can span the following amino acids of SEQ. ID. No. 3: 1 and 98, 1 and 104, 1 and 122, 1 and 168, 1 and 218, 1 and 266, 1 and 342, 1 and 321, and 1 and 372. The internal fragment of the amino acid sequence of SEQ. ID. No. 3 can span the following amino acids of SEQ. ID. No. 3: 76 and 209, 105 and 209, 99 and 209, 137 and 204, 137 and 200, 109 and 204, 109 and 200, 137 and 180, and 105 and 180. DNA molecules encoding these fragments can also be utilized in the chimeric gene of

The first DNA molecule also can be a DNA molecule that hybridizes under stringent conditions to the DNA molecule having nucleotide sequence of SEQ. ID. Nos. 2, 4, 6, or 8. An example of suitable stringency conditions is when hybridization is carried out at a temperature of about 37°C using a hybridization medium that includes 0.9M sodium citrate ("SSC") buffer, followed by washing with 0.2x SSC buffer at 37°C. Higher stringency can readily be attained by increasing the

15

20

25

temperature for either hybridization or washing conditions or increasing the sodium concentration of the hybridization or wash medium. Nonspecific binding may also be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein-containing solutions, addition of heterologous RNA, DNA, and SDS to the hybridization buffer, and treatment with RNase. Wash conditions are typically performed at or below stringency. Exemplary high stringency conditions include carrying out hybridization at a temperature of about 42°C to about 65°C for up to about 20 hours in a hybridization medium containing 1M NaCl, 50 mM Tris-HCl, pH 7.4, 10 mM EDTA, 0.1% sodium dodecyl sulfate (SDS), 0.2% ficoll, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 50 µg/ml *E. coli* DNA, followed by washing carried out at between about 42°C to about 65°C in a 0.2x SSC buffer.

Variants of suitable hypersensitive response elicitor proteins or polypeptides can also be expressed by the first DNA molecule. Variants may be made by, for example, the deletion, addition, or alteration of amino acids that have minimal influence on the properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide (such as a 6xHis tag).

The promoter of the chimeric gene should be selected on the basis of its ability to induce transcription of the first DNA molecule in response to infection of the plant by an oomycete (i.e., the oomycete activates the promoter).

According to one embodiment, the promoter preferably includes some or all of the promoter-effective regions of a gst1 gene from potato. The gst1 promoter is activated in response to infection by oomycetes and not by wounding or other environmental perturbations. The gst1 promoter from potato has a nucleic acid sequence corresponding to SEQ. ID. No. 9 as follows:

gaattcagga agaattttgt aggitcaact aaattatata tatatatata aaaaaataaa 60
aattattaga cgcttcgact atttacttac tttaaaattt gaattttcgt acgaataaaa 120
ttatttqtca qaqaaaaqtc ttttaqctat tcacatqcta qqaaqtttca cttttqqtqq 180

30

atcagtgatt	gtatattatt	taatatatat	caattttctc	atcaaactga	aaatgaaaga	240
taaaattaat	attaaaaact	ccattcattt	taatttattg	tcatgttttg	acttgatcca	300
aaatctaaca	atttaaaagg	ttttaaattt	ttgtgctttt	ttttaaatta	aaaatatgtc	360
aaatatatta	aaatatattt	tttaaatttt	atactaaaaa	acatgtcaca	tgaatatttg	420
aaattataaa	attatcaaaa	ataaaaaaag	aatatttctt	taacaaatta	aaattgaaaa	480
tatgataaat	aaattaaact	attctatcat	tgatttttct	agccaccaga	tttgaccaaa	540
cagtgggtga	catgagcaca	taagtcatct	ttattgtatt	ttattactca	ctccaaaaat	600
atagggaata	tgtttactac	ttaatttagt	caaatataat	tttatattag	aataattgaa	660
tagtcaaaca	agaaacttta	atgcatcctt	attttt			696

15

20

25

30

5

Effective fragments of SEQ. ID. No. 9 are also encompassed by the present invention. U.S. Patent Nos. 5,750,874 and 5,723,760 to Strittmayer et al., which are hereby incorporated by reference, define promoter-effective regions of the potato gst1 promoter. Preferably, the gst1 promoter includes a nucleotide sequence corresponding, at a minimum, to nucleotides 295-567 of SEQ. ID. No. 9. The gst1 promoter can also include effective portions containing nucleotides 295-696 of SEQ. ID. No. 9.

The chimeric gene of the present invention also includes an operable 3' regulatory region, selected from among those which are capable of providing correct transcription termination and polyadenylation of mRNA for expression in plant cells, operably linked to the first DNA molecule which encodes for a hypersensitive response elicitor. A number of 3' regulatory regions are known to be operable in plants. Exemplary 3' regulatory regions include, without limitation, the nopaline synthase 3' regulatory region (Fraley, et al., "Expression of Bacterial Genes in Plant Cells," Proc. Nat'l Acad. Sci. USA, 80:4803-4807 (1983), which is hereby incorporated by reference) and the cauliflower mosaic virus 3' regulatory region (Odell, et al., "Identification of DNA Sequences Required for Activity of the Cauliflower Mosaic Virus 35S Promoter," Nature, 313(6005):810-812 (1985), which is hereby incorporated by reference). Virtually any 3' regulatory region known to be operable in plants would suffice for proper expression of the coding sequence of the chimeric gene of the present invention.

The first DNA molecule, promoter, and a 3' regulatory region can be ligated together using well known molecular cloning techniques described in

15

20

25

Sambrook et al., <u>Molecular Cloning: A Laboratory Manual</u>, Second Edition, Cold Spring Harbor Press, NY (1989), which is hereby incorporated by reference.

The chimeric gene can also include a second DNA molecule encoding a secretion signal. A number of suitable secretion signals are known in the art and other are continually being identified. The secretion signal can be an RNA leader which directs secretion of the subsequently transcribed protein or polypeptide, or the secretion signal can be an amino terminal peptide sequence that is recognized by a host plant secretory pathway. The second DNA molecule can be ligated between the promoter and the first DNA molecule, using known molecular cloning techniques as indicated above.

According to one embodiment, the second DNA molecule encodes a secretion signal derived from *Nicotiana tabacum*. Specifically, this DNA molecule encodes the secretion signal polypeptide for *PR1-b* gene of *Nicotiana tabacum*. This second DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 10 as follows:

```
tectagaecat gggattitti etettiteae aaatgeeete attittieti gigtegaeae 60
ttetettati eetaataata teteaetett eteatgeea aaaet<u>etaaa</u> 110
```

The above sequence includes Xbal sites (underlined) at each end to facilitate insertion of the second DNA molecule into the chimeric gene of the present invention. The coding sequence of SEQ. ID. No. 10 starts at base 8. The polypeptide encoded by this nucleic acid molecule has an amino acid sequence corresponding to SEQ. ID. No. 11 as follows:

```
Met Gly Phe Phe Leu Phe Ser Gln Met Pro Ser Phe Phe Leu Val Ser 1 10 15

Thr Leu Leu Leu Phe Leu Ile Ile Ser His Ser Ser His Ala Gln Asn 20 25 30

Ser Arq
```

An alternative second DNA molecule encoding the secretion signal polypeptide for *PR1-b* gene of *Nicotiana tabacum* has a nucleotide sequence corresponding to SEQ. ID. No. 12 as follows:

2.5

atgggatttt	ttctctttc	acaaatgccc	tcatttttc	ttgtctctac	acttctctta	60
ttcctaataa	tatctcactc	ttctcatgcc	caaaactctc	aa		102

This nucleotide sequence is disclosed in Genbank Accession No. X03465, which is hereby incorporated by reference. The polypeptide encoded by this nucleic acid molecule has an amino acid sequence corresponding to SEQ. ID. No. 13 as follows:

Met Gly Phe Phe Leu Phe Ser Gln Met Pro Ser Phe Phe Leu Val Ser 10 Thr Leu Leu Leu Phe Leu Ile Ile Ser His Ser Ser His Ala Gln Asn 25 Ser Gln

Yet another second DNA molecule encodes the secretion signal for the PR1-a gene of Nicotiana tabacum. This DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 14 as follows:

20 atgggatttg ttetetttte acaattgeet teatttette ttgtetetae acttetetta 60 ttcctaqtaa tatcccactc ttqccqtqcc 90

This DNA molecule is disclosed in Genbank Accession No. X06361, which is hereby incorporated by reference. The polypeptide encoded by this nucleic acid molecule has an amino acid sequence corresponding to SEQ. ID. No. 15 as follows:

Met Gly Phe Val Leu Phe Ser Gln Leu Pro Ser Phe Leu Leu Val Ser 30 Thr Leu Leu Phe Leu Val Ile Ser His Ser Cys Arg Ala 20

Still another second DNA molecule encodes the secretion signal for the PR4-a gene of Nicotiana tabacum. This DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 16 as follows:

atggagagag ttaataatta taagttgtgc gtggcattgt tgatcatcag catggtgatg 75 gcaatggcgg cggca

60

35

15

20

25

30

This DNA molecule is disclosed in Genbank Accession No. X58546, which is hereby incorporated by reference. The polypeptide encoded by this nucleic acid molecule has an amino acid sequence corresponding to SEQ. ID. No. 17 as follows:

Each second DNA molecule can be cloned using primers that introduce restriction sites at the 5' and 3' ends thereof to facilitate insertion of the second DNA molecule into the chimeric gene of the present invention. SEQ. ID. No. 10 is shown to include such restriction sites (e.g., XbaI).

Further aspects of the present invention include an expression system that includes a vector containing a chimeric gene of the present invention, as well as a host cell which includes a chimeric gene of the present invention. As described more fully hereinafter, the recombinant host cell can be either a bacterial cell (i.e., Agrobacterium) or a plant cell. In the case of recombinant plant cells, it is preferable that the chimeric gene is stably inserted into the genome of the recombinant plant cell.

The chimeric gene can be incorporated into cells using conventional recombinant DNA technology. Generally, this involves inserting the chimeric gene into an expression vector or system to which it is heterologous (i.e., not normally present). As described above, the chimeric gene contains the necessary elements for the transcription and translation in plant cells of the first DNA molecule (i.e., encoding the hypersensitive response elicitor protein or polypeptide) and, if present, the second DNA molecule.

U.S. Patent No. 4,237,224 issued to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture.

Once the chimeric gene of the present invention has been prepared, it is ready to be incorporated into a host cell. Recombinant molecules can be introduced

D9770693.D12601

10

15

20

25

30

into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Springs Laboratory, Cold Springs Harbor, New York (1989), which is hereby incorporated by reference. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like. Preferably the host cells are either a bacterial cell or a plant cell.

Accordingly, another aspect of the present invention relates to a method of making a recombinant plant cell. Basically, this method is carried out by transforming a plant cell with a chimeric gene of the present invention under conditions effective to yield transcription of the first DNA molecule in response to oomycete-induced activation of the promoter. Preferably, the chimeric gene is stably inserted into the genome of the recombinant plant cell as a result of the transformation.

A related aspect of the present invention concerns a method of making a plant resistant to disease resulting from oomycete infection. Basically, this method is carried out by transforming a plant cell with a chimeric gene of the present invention under conditions effective to yield transcription of the first DNA molecule in response to oomycete-induced activation of the promoter and regenerating a plant from the transformed plant cell.

One approach to transforming plant cells with a chimeric gene of the present invention is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792, all to Sanford, et al., which are hereby incorporated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector

10

15

20

25

and heterologous DNA) can also be propelled into plant cells. Other variations of particle bombardment, now known or hereafter developed, can also be used.

Another method of introducing the chimeric gene is fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies that contain the chimeric gene. Fraley, et al., <u>Proc. Natl. Acad. Sci.</u>
USA, 79:1859-63 (1982), which is hereby incorporated by reference.

The chimeric gene may also be introduced into the plant cells by electroporation. Fromm, et al., <u>Proc. Natl. Acad. Sci. USA</u>, 82:5824 (1985), which is hereby incorporated by reference. In this technique, plant protoplasts are electroporated in the presence of plasmids containing the chimeric gene. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.

Another method of introducing the chimeric gene into plant cells is to infect a plant cell with Agrobacterium tumefaciens or Agrobacterium rhizogenes previously transformed with the chimeric gene. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25-28°C.

Agrobacterium is a representative genus of the Gram-negative family Rhizobiaceae. Its species are responsible for crown gall (A. tumefaciens) and hairy root disease (A. rhizogenes). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.

Heterologous genetic sequences such as a chimeric gene of the present invention can be introduced into appropriate plant cells by means of the Ti plasmid of 30 A. tumefaciens or the Ri plasmid of A. rhizogenes. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into

10

15

20

25

30

the plant genome. Schell, J., <u>Science</u>, 237:1176-83 (1987), which is hereby incorporated by reference.

Plant tissue suitable for transformation include leaf tissue, root tissue, meristems, zygotic and somatic embryos, and anthers.

After transformation, the transformed plant cells can be selected and regenerated.

Preferably, transformed cells are first identified using, e.g., a selection marker simultaneously introduced into the host cells along with the chimeric gene of the present invention. Suitable selection markers include, without limitation, markers coding for antibiotic resistance, such as kanamycin resistance (Fraley, et al., Proc. Natl. Acad. Sci. USA, 80:4803-4807 (1983), which is hereby incorporated by reference). A number of antibiotic-resistance markers are known in the art and other are continually being identified. Any known antibiotic-resistance marker can be used to transform and select transformed host cells in accordance with the present invention. Cells or tissues are grown on a selection media containing an antibiotic, whereby generally only those transformants expressing the antibiotic resistance marker continue to grow.

Once a recombinant plant cell or tissue has been obtained, it is possible to regenerate a full-grown plant therefrom. Thus, another aspect of the present invention relates to a transgenic plant that is resistant to disease resulting from omycete infection. The transgenic plant includes a chimeric gene of the present invention, wherein the promoter induces transcription of the first DNA molecule in response to infection of the plant by an oomycete. Preferably, the chimeric gene is stably inserted into the genome of the transgenic plant of the present invention.

Plant regeneration from cultured protoplasts is described in Evans, et al., <u>Handbook of Plant Cell Cultures</u>, Vol. 1: (MacMillan Publishing Co., New York, 1983); and Vasil I.R. (ed.), <u>Cell Culture and Somatic Cell Genetics of Plants</u>, Acad. Press, Orlando, Vol. I, 1984, and Vol. III (1986), which are hereby incorporated by reference.

It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce,

10

15

20

25

30

endive, cabbage, cauliflower, broccoli, turnip, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.

After the chimeric gene is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing or by preparing cultivars. With respect to sexual crossing, any of a number of standard breeding techniques can be used depending upon the species to be crossed. Cultivars can be propagated in accord with common agricultural procedures known to those in the field.

Resistance against different types of oomycetes may be imparted to transgenic plants according to the present invention. Without being bound by any particular theory, it is believed that a hypersensitive response elicitor protein or polypeptide encoded by the first DNA molecule is transcribed in response to infection of the plant by an oomycete. The exact mechanism by which the promoter is activated to regulate transcription of sequences under its control is not fully understood; however, the first DNA molecule is transcribed and the hypersensitive response elicitor is expressed in a limited population of cells (i.e., those in which transcription has been induced following oomycete infection). Once expressed, it is believed that the hypersensitive response elicitor can either be secreted from the plant cell (assuming the chimeric gene also contains a second DNA molecule encoding an N-terminal secretion signal) or leaked from an oomycete-infected plant cell.

15

20

25

30

Regardless of how the hypersensitive response elicitor is delivered to the intercellular environment, it is believed that the hypersensitive response elicitor protein or polypeptide will initiate a hypersensitive response to cause localized necrosis of oomycete-infected tissues. In addition, systemic acquired resistance may be developed by the transgenic plant following initiation of the hypersensitive response. This may yield broad disease and/or pathogen resistance to the transgenic plants of the present invention.

Oomycetes against which resistance is imparted include, without limitation, species of *Plasmopara*, *Phytophthora*, *Peronospora*, *Pseudoperonospora*, *Bremia*, *Sclerospora*, *Aphanomyces*, *Pythium*, and *Albugo*.

According to one embodiment of the present invention, an oomycete resistant transgenic tobacco plant includes a chimeric gene of the present invention, wherein expression of the encoded hypersensitive response elicitor is responsive to infection of the plant by an oomycete that is a pathogen of tobacco, including, but not limited to, *Peronospora tabacina* (which causes blue mold) and *Phyophthora parasitica* (which causes black shank).

The chimeric gene of the present invention can be utilized to impart oomycete resistance for a wide variety of tobacco plants, some of which may possess varying levels of natural resistance against pathogenic oomycetes. The varieties of tobacco plants which can be protected include, without limitation, those referred to as Coker 371 Gold, K 149, K 326, K 346, K 394, K 730, RG 11, RG17, RG22, Speight G-70, Speight G-117, Speight G-126, GL939, NC 55, NC 71, NC 72, NC 95, NC 2326, OX 207, OX 940, RG 81, RG H4, RG H61, Speight 168, Speight NF3, Speight 172, CU 236, CU 387, CU 368, NC TG91, OX 4142NF, OX 4083, RG 4H2-12, RG 4H2-17, RG 4H2-20, Speight 177, Speight 178, Speight 179, VPI 107, VPI 605, NG TG94, KY 14, KY 8959, KY 907, KY 908, TN 86, TN 90, TN 97, VA 116, VA 509, B 21 x KY 10, KY 14 x L8, NC 3, NC BH129, DH332, COOP 313, COOP 543, Clay's 403, Clay's 502, HY 402, PF 561, and R 711.

According to another embodiment of the present invention, an oomycete resistant transgenic grape plant includes a chimeric gene of the present invention, wherein expression of the encoded hypersensitive response elicitor is responsive to infection of the plant by an oomycete that is a pathogen of grape,

including, but not limited to, *Plasmopara viticola* (which causes downy mildew), *Pythium* spp. (which cause root and/or stem rot), and *Phytophthora* spp. (which cause root and/or stem rot).

The chimeric gene of the present invention can be utilized to impart 5 oomycete resistance for a wide variety of grapevine plants. The chimeric gene is particularly well suited to imparting resistance to Vitis scion or rootstock cultivars. Scion cultivars which can be protected include, without limitation, those commonly referred to as Table or Raisin Grapes, such as Alden, Almeria, Anab-E-Shahi, Autumn Black, Beauty Seedless, Black Cornish, Black Damascus, Black Malvoisie, 10 Black Prince, Blackrose, Bronx Seedless, Burgrave, Calmeria, Campbell Early, Canner, Cardinal, Catawba, Christmas, Concord, Dattier, Delight, Diamond, Dizmar, Duchess, Early Muscat, Emerald Seedless, Emperor, Exotic, Ferdinand de Lesseps, Fiesta, Flame seedless, Flame Tokay, Gasconade, Gold, Himrod, Hunisa, Hussiene, Isabella, Italia, July Muscat, Khandahar, Katta, Kourgane, Kishmishi, Loose Perlette, Malaga, Monukka, Muscat of Alexandria, Muscat Flame, Muscat Hamburg, New 15 York Muscat, Niabell, Niagara, Olivette blanche, Ontario, Pierce, Queen, Red Malaga, Ribier, Rish Baba, Romulus, Ruby Seedless, Schuyler, Seneca, Suavis (IP 365), Thompson seedless, and Thomuscat. They also include, without limitation, those used in wine production, such as Aleatico, Alicante Bouschet, Aligote, 20 Alvarelhao, Aramon, Baco blanc (22A), Burger, Cabernet franc, Cabernet, Sauvignon, Calzin, Carignane, Charbono, Chardonnay, Chasselas dore, Chenin blanc, Clairette blanche, Early Burgundy, Emerald Riesling, Feher Szagos, Fernao Pires, Flora, French Colombard, Fresia, Furmint, Gamay, Gewurztraminer, Grand noir, Gray Riesling, Green Hungarian, Green Veltliner, Grenache, Grillo, Helena, Inzolia, 25 Lagrein, Lambrusco de Salamino, Malbec, Malvasia bianca, Mataro, Melon, Merlot, Meunier, Mission, Montua de Pilas, Muscadelle du Bordelais, Muscat blanc, Muscat Ottonel, Muscat Saint-Vallier, Nebbiolo, Nebbiolo fino, Nebbiolo Lampia, Orange Muscat, Palomino, Pedro Ximenes, Petit Bouschet, Petite Sirah, Peverella, Pinot noir, Pinot Saint-George, Primitivo di Gioa, Red Veltliner, Refosco, Rkatsiteli, Royalty,

30 Rubired, Ruby Cabernet, Saint-Emilion, Saint Macaire, Salvador, Sangiovese, Sauvignon blanc, Sauvignon gris, Sauvignon vert, Scarlet, Seibel 5279, Seibel 9110, Seibel 13053, Semillon, Servant, Shiraz, Souzao, Sultana Crimson, Sylvaner, Tannat,

10

15

20

30

Teroldico, Tinta Madeira, Tinto cao, Touriga, Traminer, Trebbiano Toscano, Trousseau, Valdepenas, Viognier, Walschriesling, White Riesling, and Zinfandel. Rootstock cultivars which can be protected include Couderc 1202, Couderc 1613, Couderc 1616, Couderc 3309, Dog Ridge, Foex 33 EM, Freedom, Ganzin 1 (A x R #1), Harmony, Kober 5BB, LN33, Millardet & de Grasset 41B, Millardet & de Grasset 420A, Millardet & de Grasset 101-14, Oppenheim 4 (SO4), Paulsen 775, Paulsen 1045, Paulsen 1103, Richter 99, Richter 110, Riparia Gloire, Ruggeri 225, Saint-George, Salt Creek, Teleki 5A, Vitis rupestris Constantia, *Vitis california*, and *Vitis girdiana*.

Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedures. Alternatively, transgenic seeds or propagules (e.g., scion or rootstock cultivars) are recovered from the transgenic plants. The seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants. The transgenic plants are propagated from the planted transgenic seeds under conditions effective to impart oomycete resistance to plants.

EXAMPLES

The following examples are provided to illustrate embodiments of the present invention, but they are by no means intended to limit its scope.

Example 1 - Construction of Chimeric Gene

25 Cloning of gst1 promoter

The gst1 promoter region from nucleotides (539 to +48) (Martini et al., "Promoter Sequences of a Potato Pathogenesis-related Gene Mediate Transcriptional Activation Selectively upon Fungal Infection," Mol. Gen. Genet. 236 (2-3):179-86 (1993), which is hereby incorporated by reference), was PCR amplified using DNA from potato cultivar Atlantic, using a forward primer containing a BamHI site (SEQ. ID. No. 18) as follows: a reverse primer containing an EcoRI site (SEQ. ID. No. 19) as follows:

32

and PrimeZyme DNA polymerase (Whatman Biometra, Goettingen, Germany). The DNA was ligated into the LITMUS 38 vector (New England Biolabs, Beverly, MA) and three clones were sequenced on an ABI 377 sequencer at the Cornell

BioResource Center. Each clone had two to three nucleotide changes when compared to the published sequence (Martini et al., "Promoter Sequences of a Potato Pathogenesis-related Gene Mediate Transcriptional Activation Selectively upon Fungal Infection," Mol. Gen. Genet. 236: (2-3) 179-86 (1993), which is hereby incorporated by reference). The changes were most likely due to mistakes made by the polymerase because the promoter is extremely A-T rich and all but one of the changes were in different places in the three clones. One clone, pCPP1308, with a single change in the cis-acting region identified by Martini et al. ("Promoter Sequences of a Potato Pathogenesis-related Gene Mediate Transcriptional Activation Selectively upon Fungal Infection," Mol. Gen. Genet. 236: (2-3) 179-86 (1993), which is hereby incorporated by reference) was used as the source of the gst1 promoter in all subsequent constructions.

Plant Transformation Constructs

DOZZOSGA, O12501

25

30

The gst1:uidA construct was made by ligating the gst1 promoter from pCPP1308 into pBI101 (Clontech Labs, Palo Alto, CA). For the gst1:hrpN and gst1:signal sequence:hrpN constructs (described below), the gst1 promoter region was engineered to have a 5' HindIII site and a 3' Xbal site by the polymerase chain reaction (PCR) using pCPP1308 as the template. The forward primer had the nucleotide sequence of SEQ. ID. No. 18 and the reverse primer had a nucleotide sequence according to SEQ. ID. No. 20 as follows:

15

30

For gst1:hrpN constructs, the hrpN gene of Erwinia amylovora (i.e., encoding a hypersensitive response elicitor identified as harpin_{Ea}) was engineered to have a 5' XbaI restriction site and a 3' SstI restriction site by PCR using pCPP1084 (Wei et al., "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia Amylovora," Science 257:85-88 (1992), which is hereby incorporated by reference) as the template. The forward primer had a nucleotide sequence corresponding to SEQ. ID. No. 21 as follows:

atactctaga accatgggtc tgaatacaag tggg

34

and the reverse primer had a nucleotide sequence corresponding to SEQ. ID. No. 22 as follows:

tcatgagete ttaageegge ceagettgee aagtg

35

For gst1:signal sequence:hrpN, the hrpN gene was engineered to have a BamHI site on each end. The forward primer had a nucleotide sequence corresponding to SEQ. ID. No. 23 as follows:

20 tagaggatec etgaatacaa gtgggetggg ageg

34

and the reverse primer had a nucleotide sequence corresponding to SEQ. ID. No. 24 as follows:

25 tcatggatcc ttaagccgcg cccagcttgc caagtg

36

The nopaline synthase terminator was extracted from pBI101 by digesting with SstI and EcoRI

The nucleic acid molecule encoding the PR1-b signal sequence (of SEQ. ID. No. 11) was engineered to have XbaI restriction sites on both ends. The forward primer had a nucleotide sequence corresponding to SEQ. ID. No. 25 as follows:

and the reverse primer had a nucleotide sequence corresponding to SEQ. ID. No. 26 as follows:

5

10

15

20

aggtetagag ttttgggeat gagaagagtg

30

The fragment was amplified using pSKG55 as a template (Gopalan et al., "Expression of the Pseudomonas Syringae Avirulence Protein AvrB in Plant Cells Alleviates its Dependence on the Hypersensitive Response and Pathogenicity (Hrp) Secretion System in Elicitating Genotype-Specific Hypersensitive Cell Death." Plant Cell 8:1095-1105 (1996), which is hereby incorporated by reference).

PrimeZyme DNA polymerase (Whatman Biometra, Goettingen, Germany) was used with a hot start procedure for amplification of all fragments. The amplified fragments were purified, digested with the appropriate enzymes, and ligated into the binary vector pPZP221 (Hajdukiewicz et al., "The Small Versatile pPZP Family of Agrobacterium Binary Vectors for Plant Transformation," <u>Plant Mol. Bio.</u> 25:989-994 (1994), which is hereby incorporated by reference) or intermediate constructs, to build up the final constructs. The proper construction of pCPP1294 (Figure 1) was confirmed by sequencing on an ABI 377 automated sequencer.

The final constructs were transformed into Agrobacterium tumefaciens strain GV3101 (Martin et al., "The GUS Reporter System as a Tool to Study Plant Gene Expression," in Gallagher, ed., GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, pp. 23-43 (1992), which is hereby incorporated by reference) by electroporation using a Bio-Rad GenePulser (Bio-Rad Ltd., York, UK).

<u>Example 2</u> - Inoculation with *Peronospora parasitica* Activates gst1 Transcription in *Arabidopsis*

30

25

To evaluate the activity of the gst1 promoter in a plant other than potato, transgenic Arabidopsis were constructed containing the E. coli uidA gene for B-glucuronidase (GUS) under control of the gst1 promoter. Histochemical GUS

15

20

2.5

30

assays of were performed essentially as described by Martin et al., "The GUS Reporter System as a Tool to Study Plant Gene Expression," in Gallagher, ed., GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, pp. 23-43 (1992), which is hereby incorporated by reference. Uninoculated and inoculated whole small *Arabidopsis* plants were submerged for 30 minutes on ice in six well microtiter plates in a solution of 1.5% freshly prepared paraformaldehyde in 100 mM sodium phosphate buffer, pH 7.2, containing 0.1% Triton X-100. The plants were washed twice for 5 minutes with sodium phosphate buffer pH 7.2. The plants were then submerged in a solution of 2 mM X-gluc (5-bromo-4-chloro-3-indolyl β -D-glucuronide), 50 mM sodium phosphate, pH 7.2, 0.5% Triton X-100. The solution was vacuum infiltrated into the plants and the plants were then incubated for 16 hours in the dark at 37°C. The staining was stopped by rinsing the plants several times in water and the tissue was then cleared by incubating in several changes of 70% ethanol.

Twenty lines were evaluated for GUS expression in uninoculated leaves, leaves inoculated with Peronospora parasitica isolate NOCO, and whole plants using a histochemical staining procedure (Martin et al., "The GUS Reporter System as a Tool to Study Plant Gene Expression," in Gallagher, ed., GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, pp 23-43 (1992), which is hereby incorporated by reference). Five lines showed more intense staining of the inoculated areas than the uninoculated areas and two lines showed no visible staining of any plant parts except the inoculated leaves (Figure 2). These results are consistent with those reported for potato and reveal that the gst1 promoter is pathogen inducible in Arabidopsis. No induction of GUS activity was detected in the five lines that responded to P. parasitica when inoculated with Pseudomonas syringae pv. tomato strain DC3000, even after disease symptoms appeared (results not shown). Previously, it was reported that the gst1 gene is induced in response to fungi, viruses, and nematodes (Strittmatter et al., "Infections with Various Types of Organisms Stimulate Transcription From a Short Promoter Fragment of the Potato gst1 Gene," Mol. Plant-Microbe Interact. 9:68-73 (1996), which is hereby incorporated by reference), but results with bacterial pathogens were not reported.

10

15

20

25

30

Example 3 - Pathogen Inducible Expression of hrpN in Transgenic Arabidopsis

To generate transgenic Arabidopsis expressing hrpN in a pathogen-

inducible manner, plant transformation vectors, pCPP1292 for cytoplasmic localization of HrpN in plants, and pCPP1294 for extracellular localization of HrpN, were constructed. (Figures 3A and 3B). Arabidopsis ecotype Columbia (Col-0) was transformed with the two constructs. Arabidopsis thaliana ecotype Columbia (Col-0) plants were grown in a growth chamber at 22° C and a 17 hour photoperiod. Plants with primary fluorescence 5-15 cm tall were transformed via a known vacuum infiltration method (protocol available on the Internet at http://www.bch.msu.edu/pamgreen/vac.htm, which is hereby incorporated by reference) adapted from Bechtold et al., C. R. Acad. Sci. Paris 316:1194-1199 (1993), and Bent et al., Science 265:1856-1860 (1994), which are hereby incorporated by reference. Seeds were collected from each plant individually, sterilized and spread on selection plates containing 150 mg/l gentamycin, 0.2 g/l Arabidopsis Growth Medium (Lehle Seeds), and 0.7% Phytagar (Gibco BRL, Bethesda, MD). Plates were vernalized for 2 days at 4°C and then moved to a growth chamber maintained at 22° C and 14 hours light. Gentamycin resistant plants were selected after 2 weeks and individual plants were transplanted to soil. Each individual T1 seedling was brought up by single seed descent and individual plant lines were selected for lack of segregation of gentamycin resistance in the T3 generation. Insertion of T-DNA was confirmed by PCR and Southern analysis.

Transgenic *Arabidopsis* lines were inoculated 2 weeks after sowing with a 5 x 10⁴ conidiospore suspension of *P. parasitica* isolate NOCO. Flats were covered with a humidity dome and moved to the growth chamber maintained at 18° C, 16 hours light, and 100% humidity. Plants were scored for infection 7 days after inoculation with a disease rating system adapted from Cao et al., "Generation of Broad-Spectrum Disease Resistance by Overexpression of an Essential Regulatory Gene in Systemic Acquired Resistance," <u>Proc. Natl. Acad. Sci. USA</u> 95:6531-6536 (1998), which is hereby incorporated by reference. A rating of 1, 0 conidiophores present; 2, 0-5 conidiophores present; 3, 6-20 conidiophores on a few leaves; 4, 6-20 conidiophores on all leaves; 5, 20 or more conidiophores present on all leaves. Inoculated leaves were stained with lactophenol-trypan blue (Keogh et al.,

10

15

20

25

30

"Comparison of Histological and Physiological Responses to Phakopsora Pachyrhizi in Resistant and Susceptible Soybean," <u>Trans. Br. Mycol. Soc.</u> 74:329-333 (1980), which is hereby incorporated by reference) to observe the extent of fungal colonization under the microscope.

Plants were selected that lacked segregation of antibiotic resistance in the T3 generation. Lines containing the gst1:hrpN construct ("GN lines") lines were tested for resistance to P. parasitica isolate NOCO in an initial screen.

Thirty lines containing the gst1:signal sequence:hrpN construct ("GSSN lines") were tested for resistance to P. parasitica isolate NOCO in an initial screen. All but one of the lines was free of any signs of the oomycete ten days after inoculation. Ten GSSN lines were chosen for further study and inoculated by spraying with a conidiospore suspension (5 x 10⁴ spores/ml) of P. parasitica NOCO. Northern analysis revealed that expression of hrpN was induced by P. parasitica 2 days after inoculation with strong induction at 4 days (Figure 3A). A range of expression levels were observed among the ten lines, line GSSN 8-4 was chosen for further study as it displayed the highest level of expression. Production of the harpin_{En} protein in inoculated plants was confirmed by immuno-blot analysis.

RNA was isolated from inoculated plants over a 4 day interval to analyze hrpN gene expression. RNA was isolated from Ig of plant tissue as described by Carpenter et al., "Preparation of RNA, in Arabidopsis Protocols," (Martinez-Zapater, JM. and Salinas, J., eds.), Humana Press, Totowata, New Jersey, pp. 85-89 (1998). Twenty micro-gram samples were separated by formaldehydeagarose gel electrophoresis and blotted onto Hybond N+ membranes (Amersham Pharmacia Biotech, Little Chalfont, Buckinghamshire, UK). Hybridizations and washing were performed according to Church et al., "Genomic Sequencing," Proc. Natl. Acad. Sci. USA 81:1991-1995 (1984), which is hereby incorporated by reference, using P³²labeled hrpN DNA as a probe.

The Arabidopsis lines GSSN 8-4 (test), Col-0 WT (wild type, control), and Col-0 EV (empty vector, control) were inoculated by drop inoculation with a conidiospore suspension (5×10^4 spores/ml) of *P. parasitica*. Plants were maintained in a growth chamber (16 hours of light, 18° C, 100% humidity) and were scored for infection ten days post inoculation. Nearly all (29 out of 30) 8-4 plants were free of

10

15

20

25

30

any signs of *P. parasitica* (Figure 4A). Trypan blue staining showed that growth of the oomycete was strongly inhibited in GSSN 8-4 plants. Extensive hyphal growth was evident in Col-0 WT and Col-0 EV plants (Figure 4B).

Plants were rated for disease severity based on the number of conidiophores per leaf. Nearly all GSSN 8-4 plants received a disease rating of 1 with only one being scored 3. The majority of the Col-0 WT and Col-0 EV plants were rated 5, the remainder were rated 4 (Figure 5).

This example demonstrates that pathogen inducible expression of the harpin_{Ea} hypersensitive response elicitor of *Erwinia amylovora* in transgenic plants is a potentially useful strategy for engineering plants for disease resistance. Challenge with *Peronospora parasitica* resulted in accumulation of *hrpN* mRNA, production of harpin_{Ea} protein, and resistance to *P. parasitica*. Upon challenge by *P. parasitica*, it is believed that the transgenic plants most likely mount a hypersensitive response at the site of inoculation, conferring resistance. Subsequently the plants may develop systemic resistance.

For the purposes of the present invention, the gst1 promoter was most applicable to the Arabidopsis/P. parasitica pathosystem since it is well documented that transcription from gst1 is activated by other oomycete pathogens (Martini et al., "Promoter Sequences of a Potato Pathogenesis-related Gene Mediate Transcriptional Activation Selectively upon Fungal Infection," Mol. Gen. Genet. 236: (2-3) 179-86 (1993), which is hereby incorporated by reference). Additionally, it has been reported that gst1 activation is stimulated by ascomycete, viral, and nematode infection and mycorrhization (Strittmatter et al., "Infections with Various Types of Organisms Stimulate Transcription From a Short Promoter Fragment of the Potato gst1 Gene," Mol. Plant-Microbe Interact, 9:68-73 (1996), which is hereby incorporated by reference). Therefore, it is possible that both gst1:hrpN and gst1:signal sequence:hrpN constructs may also confer resistance against ascomycete, virus, and nematode infection, as well as mycorrhization.

Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

All of the references designated as being incorporated herein by reference are intended to be incorporated in their entirety unless specific portions thereof have been identified with particularity.