Perfect forms and perfect Delaunay polytopes

Mathieu Dutour Sikirić

Rudjer Bošković Institute, Croatia

April 27, 2012

I. Lattices, packings

and coverings

Lattice packings

- ▶ A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$.
- ▶ A packing is a family of balls $B_n(x_i, r)$, $i \in I$ of the same radius r and center x_i such that their interiors are disjoint.

▶ If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B_n(0, \alpha)$ is a packing.

Density of lattice packings

► Take the lattice packing defined by a lattice *L*:

The packing density has the expression

$$\delta(L) = \frac{\lambda(L)^n \operatorname{vol}(B_n(0,1))}{\det L} \quad \text{with} \quad \lambda(L) = \frac{1}{2} \min_{v \in L - \{0\}} ||v||,$$

 $\operatorname{vol}(B_n(0,1))$ the volume of the unit ball $B_n(0,1)$ and $\det L$ the volume of an unit cell.

Empty sphere and Delaunay polytopes

- ▶ Definition: A sphere S(c, r) of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
 - (i) $||v-c|| \ge r$ for all $v \in L$,
 - (ii) the set $S(c, r) \cap L$ contains n + 1 affinely independent points.
- ▶ Definition: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

ightharpoonup Delaunay polytopes define a tesselation of the Euclidean space \mathbb{R}^n

Lattice covering

▶ For a lattice L we define the covering radius $\mu(L)$ to be the smallest r such that the family of balls $v + B_n(0, r)$ for $v \in L$ cover \mathbb{R}^n .

The covering density has the expression

$$\Theta(L) = \frac{\mu(L)^n \operatorname{vol}(B_n(0,1))}{\det(L)} \ge 1$$

with $\mu(L)$ being the largest radius of Delaunay polytopes

▶ The only general method for computing $\Theta(L)$ is to compute all Delaunay polytopes of L.

II. Gram matrix formalism

Gram matrix and lattices

- ▶ Denote by S^n the vector space of real symmetric $n \times n$ matrices and $S^n_{>0}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- ▶ Take a basis $(v_1, ..., v_n)$ of a lattice L and associate to it the Gram matrix $G_{\mathbf{v}} = (\langle v_i, v_j \rangle)_{1 \leq i,j \leq n} \in S^n_{>0}$.
- lacktriangle Example: take the hexagonal lattice generated by $v_1=(1,0)$ and $v_2=\left(rac{1}{2},rac{\sqrt{3}}{2}
 ight)$

$$G_{\mathbf{v}} = \frac{1}{2} \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right)$$

Isometric lattices

▶ Take a basis $(v_1, ..., v_n)$ of a lattice L with $v_i = (v_{i,1}, ..., v_{i,n}) \in \mathbb{R}^n$ and write the matrix

$$V = \left(\begin{array}{ccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)$$

and $G_{\mathbf{v}} = V^T V$.

The matrix $G_{\mathbf{v}}$ is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^2 for the basis V.

- ▶ If $M \in S_{>0}^n$, then there exists V such that $M = V^T V$ (Gram Schmidt orthonormalization)
- ▶ If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. O corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis \mathbf{v} and u an isometry of \mathbb{R}^n , then $G_{\mathbf{v}} = G_{u(\mathbf{v})}$.

Arithmetic minimum

▶ The arithmetic minimum of $A \in S_{>0}^n$ is

$$\min(A) = \min_{x \in \mathbb{Z}^n - \{0\}} x^T A x$$

▶ The minimal vector set of $A \in S_{>0}^n$ is

$$Min(A) = \left\{ x \in \mathbb{Z}^n \mid x^T A x = min(A) \right\}$$

- ▶ Both min(A) and Min(A) can be computed using some programs (for example sv by Vallentin)
- ▶ The matrix $A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has

$$Min(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}.$$

Reexpression of previous definitions

▶ Take a lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$. If $x \in L$,

$$x = x_1 v_1 + \cdots + x_n v_n$$
 with $x_i \in \mathbb{Z}$

we associate to it the column vector $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

• We get $||x||^2 = X^T G_{\mathbf{v}} X$ and

$$\det L = \sqrt{\det G_{\mathbf{v}}} \text{ and } \lambda(L) = \frac{1}{2} \sqrt{\min(G_{\mathbf{v}})}$$

▶ For $A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, det $A_{hex} = 3$ and min $(A_{hex}) = 2$

Changing basis

▶ If **v** and **v**' are two basis of a lattice *L* then V' = VP with $P \in GL_n(\mathbb{Z})$. This implies

$$G_{v'} = V'^T V' = (VP)^T VP = P^T \{V^T V\}P = P^T G_{v}P$$

▶ If $A, B \in S_{>0}^n$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$A = P^T B P$$

- ▶ Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- ► In practice, Plesken/Souvignier wrote a program isom for testing arithmetic equivalence and a program autom for computing automorphism group of lattices.

 All such programs take Gram matrices as input.

An example of equivalence

▶ Take the hexagonal lattice and two basis in it.

$$v_1=(1,0) \text{ and } v_2=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right) \qquad v_1'=\left(\frac{5}{2},\frac{\sqrt{3}}{2}\right) \text{ and } v_2'=(-1,0)$$

▶ One has
$$v_1' = 2v_1 + v_2$$
, $v_2' = -v_1$ and $P = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$

$$G_{\mathbf{v}} = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$$
 and $G_{\mathbf{v}'} = \begin{pmatrix} 7 & -\frac{5}{2} \\ -\frac{5}{2} & 1 \end{pmatrix} = P^T G_{\mathbf{v}} P$

Root lattices

Let us take the lattice

$$A_n = \left\{ x \in \mathbb{Z}^{n+1} \text{ s.t. } \sum_{i=1}^{n+1} x_i = 0 \right\}$$

If we take the basis $v_i = e_{i+1} - e_i$ then we get the Gram matrix $A = (a_{ij})_{1 \le i,j \le n}$ with $a_{i,i} = 2$, $a_{i,i+1} = a_{i+1,i} = -1$ and $a_{i,j} = 0$ otherwise.

Let us take the lattice

$$D_n = \left\{ x \in \mathbb{Z}^n \text{ s.t. } \sum_{i=1}^n x_i \equiv 0 \pmod{2} \right\}$$

For the basis $v_1 = e_1 + e_2$, $v_2 = e_1 - e_2$, $v_i = e_i - e_{i-1}$ we get

$$G_{v} = \left(\begin{array}{ccccccc} 2 & 0 & -1 & 0 & \dots & 0 \\ 0 & 2 & -1 & 0 & \dots & 0 \\ -1 & -1 & 2 & -1 & \dots & 0 \\ 0 & 0 & -1 & 2 & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & \dots & \dots & -1 & 2 \end{array}\right)$$

III. Perfect and eutactic forms

Hermite function

▶ If $A \in S_{>0}^n$ then the arithmetic minimum is

$$\min(A) = \min_{x \in \mathbb{Z}^n - \{0\}} x^T A x$$

and the set of minimal vectors is

$$Min(A) = \left\{ x \in \mathbb{Z}^n : x^T A x = min(A) \right\}$$

▶ The Hermite function on the space $S_{>0}^n$ is

$$\gamma(A) = \frac{\min(A)}{(\det A)^{1/n}}$$

▶ The density of the lattice packing *L* associated to *A* is

$$\delta(L) = \sqrt{\gamma(A)^n} \frac{\operatorname{vol}(B_n(0,1))}{2^n}$$

► Finding lattice packings with highest packing density is the same as maximizing the Hermite function.

Perfect forms

A form A is extreme if there is a neighborhood V of A in $S_{>0}^n$ such that

If
$$B \in V$$
 with $B \neq \lambda A$ then $\gamma(B) < \gamma(A)$

▶ A matrix $A \in S_{>0}^n$ is perfect (Korkine & Zolotarev, 1873) if the equation

$$B \in S^n$$
 and $x^T B x = \min(A)$ for all $x \in \min(A)$

implies B = A.

- ► Theorem: (Korkine & Zolotarev, 1873) If a form is extreme then it is perfect.
- Perfect forms are rational forms.
- ▶ If A is perfect then $\gamma(A)^n$ is rational.

A perfect form

▶ $A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ corresponds to the lattice:

▶ If $B = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ satisfies to $x^T B x = \min(A_{hex})$ for $x \in \text{Min}(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}$, then:

$$a = 2$$
, $b = 2$ and $a - 2c + b = 2$

which implies $B = A_{hex}$. A_{hex} is perfect.

A non-perfect form

- $A_{sqr} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has $Min(A_{sqr}) = \{\pm(0,1), \pm(1,0)\}.$
- ▶ See below lattices L_B , L_{sqr} associated to matrices $B, A_{sqr} \in S^2_{>0}$ with $Min(B) = Min(A_{sqr})$:

Eutactic forms

▶ A form $A \in S_{>0}^n$ is eutactic (Voronoi, 1908) if there exist $\lambda_V > 0$ such that

$$A^{-1} = \sum_{v \in \mathsf{Min}(A)} \lambda_v v v^T$$

- ▶ Theorem: (Voronoi, 1908) A form *A* is extreme if and only if it is perfect and eutactic.
- ► Theorem: (Ash, 1977)
 - (i) If A is not an eutactic form then it is topologically ordinary point for γ
 - (ii) If A is an eutactic form then it is a critical but topologically non-degenerate point for γ .
 - (ii) γ is a topological Morse function.

Examples of perfect forms

▶ The root lattice are all perfect:

Name	Min	Min	det	Aut
A_n	$e_i - e_j$	2n(n+1)	n+1	2(n+1)!
D_n	$\pm e_i \pm e_j$	4n(n-1)	4	2 ⁿ n!
E ₆	complex	72	3	103680
E ₇	complex	126	2	2903040
E ₈	complex	240	1	696729600

- Another remarkable lattice is the Leech lattice of dimension 24.
 - Every vector v has $||v||^2 \ge 4$ and $\det Leech = 1$.
 - ► There are 196280 shortest vectors (maximal number in dimension 24)
 - Its automorphism group quotiented by $\pm Id_{24}$ is the sporadic simple group Co_0
 - It plays a significant role in modular form theory and Lorentzian lattice theory.

Known results on lattice packing density maximization

dim.	Nr. of perfect forms	Absolute maximum	
		of γ realized by	
2	1 (Lagrange)	A_2	
3	1 (Gauss)	A_3	
4	2 (Korkine & Zolotarev)	D_4	
5	3 (Korkine & Zolotarev)	D_5	
6	7 (Barnes)	E ₆ (Blichfeldt)	
7	33 (Jaquet)	E ₇ (Blichfeldt)	
8	10916 (DSV)	E ₈ (Blichfeldt)	
9	≥500000	Λ_9 ?	
24	?	Leech (Cohn & Kumar)	

Remarks

- ► The enumeration of perfect forms is done with the Voronoi algorithm.
- ► The solution in dimension 24 was obtained by different methods.

and the Voronoi algorithm

IV. Ryshkov polyhedron

The Ryshkov polyhedron

▶ The Ryshkov polyhedron R_n is defined as

$$R_n = \left\{ A \in S^n \text{ s.t. } x^T A x \ge 1 \text{ for all } x \in \mathbb{Z}^n - \{0\} \right\}$$

- ▶ The cone is invariant under the action of $GL_n(\mathbb{Z})$.
- ▶ The cone is locally polyhedral, i.e. for a given $A \in R_n$

$$\left\{x \in \mathbb{Z}^n \text{ s.t. } x^T A x = 1\right\}$$

is finite

- ▶ Vertices of R_n correspond to perfect forms.
- ▶ For a form $A \in R_n$ we define the local cone

$$Loc(A) = \left\{ Q \in S^n \text{ s.t. } x^T Q x \ge 0 \text{ if } x^T A x = 1 \right\}$$

The Voronoi algorithm

- ▶ Find a perfect form (say A_n), insert it to the list \mathcal{L} as undone.
- Iterate
 - For every undone perfect form A in L, compute the local cone Loc(A) and then its extreme rays.
 - For every extreme ray r of Loc(A) realize the flipping, i.e. compute the adjacent perfect form $A' = A + \alpha r$.
 - ▶ If A' is not equivalent to a form in \mathcal{L} , then we insert it into \mathcal{L} as undone.
- Finish when all perfect domains have been treated.

The subalgorithms are:

- Find the extreme rays of the local cone Loc(A) (use cdd or Irs or any other program)
- For any extreme ray r of Loc(A) find the adjacent perfect form A' in the Ryshkov polyhedron R_n
- ► Test equivalence of perfect forms using autom

Flipping on an edge I

$$\mathsf{Min}(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}$$

with

$$A_{hex}=\left(egin{array}{cc} 1 & 1/2 \ 1/2 & 1 \end{array}
ight) \ \ {
m and} \ \ D=\left(egin{array}{cc} 0 & -1 \ -1 & 0 \end{array}
ight)$$

Ahex

Flipping on an edge II

$$\mathsf{Min}(B) = \{\pm(1,0), \pm(0,1)\}$$

with

$$B = \begin{pmatrix} 1 & 1/4 \\ 1/4 & 1 \end{pmatrix} = A_{hex} + D/4$$

Flipping on an edge III

$$Min(A_{sqr}) = \{\pm(1,0),\pm(0,1)\}$$

with

$$A_{sqr} = \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight) = A_{hex} + D/2$$

Flipping on an edge IV

$$Min(\tilde{A}_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$$

with

$$\widetilde{A}_{hex} = \left(egin{array}{cc} 1 & -1/2 \ -1/2 & 1 \end{array}
ight) = A_{hex} + D$$

The Ryshkov polyhedron R_2

Well rounded forms and retract

- A form Q is said to be well rounded if it admits vectors v₁, ..., vn such that
 - (v_1, \ldots, v_n) form a basis of \mathbb{R}^n
 - \triangleright v_1, \ldots, v_n are shortest vectors.
 - $P Q[v_1] = \cdots = Q[v_n].$
- ▶ Well rounded forms correspond to bounded faces of R_n .
- ▶ Every form can be continuously deformed to a well rounded form and this defines a retracting homotopy of R_n onto a polyhedral complex WR_n of dimension $\frac{n(n-1)}{2}$.
- ▶ Every face of WR_n has finite stabilizer, hence we can use it for computing the homology of $GL_n(\mathbb{Z})$ and other arithmetic groups.
- Actually, in term of dimension, we cannot do better:
 - A. Pettet and J. Souto, Minimality of the well rounded retract, Geometry and Topology, 12 (2008), 1543-1556.

References

- ► G. Voronoi, Nouvelles applications des paramètres continues à la théorie des formes quadratiques 1: Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908) 97–178.
- M. Dutour Sikirić, A. Schürmann and F. Vallentin, Classification of eight dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc.
- A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.
- ▶ J. Martinet, *Perfect lattices in Euclidean spaces*, Springer, 2003.
- S.S. Ryshkov, E.P. Baranovski, Classical methods in the theory of lattice packings, Russian Math. Surveys 34 (1979) 1–68, translation of Uspekhi Mat. Nauk 34 (1979) 3–63.

V. The lattice covering problem

Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center c in an n-dimensional lattice L is said to be an empty sphere if:

- (i) $||v-c|| \ge r$ for all $v \in L$,
- (ii) the set $S(c,r) \cap L$ contains n+1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

Equalities and inequalities

- ▶ Take $M = G_v$ with $v = (v_1, ..., v_n)$ a basis of lattice L.
- ▶ If $V = (w_1, ..., w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c|| = r$$
 i.e. $w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2$

Substracting one obtains

$$\{w_{i}^{T}Mw_{i} - w_{j}^{T}Mw_{j}\} - 2\{w_{i}^{T} - w_{j}^{T}\}Mc = 0$$

- ▶ Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- ▶ Similarly $||w c|| \ge r$ translates into linear inequalities on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w = \sum_{i=0}^n \lambda_i v_i$ with $1 = \sum_{i=0}^n \lambda_i$, then one has

$$||w-c|| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

Iso-Delaunay domains

- ▶ Take a lattice L and select a basis v_1, \ldots, v_n .
- ▶ We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

▶ An iso-Delaunay domain is the assignment of Delaunay polytopes, so it is also the assignment of the Voronoi polytope of the lattice.

Primitive iso-Delaunay

- ▶ If one takes a generic matrix M in $S_{>0}^n$, then all its Delaunay are simplices and so no linear equality are implied on M.
- ► Hence the corresponding iso-Delaunay domain is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- ▶ The group $GL_n(\mathbb{Z})$ acts on $S_{>0}^n$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- ▶ Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- ► Enumerating primitive iso-Delaunay domains is done classicaly:
 - Find one primitive iso-Delaunay domain.
 - ▶ Find the adjacent ones and reduce by arithmetic equivalence.
- ▶ This is very similar to the Voronoi algorithm for perfect forms.

The partition of $S^2_{>0} \subset \mathbb{R}^3$ I

If $q(x,y) = ux^2 + 2vxy + wy^2$ then $q \in S_{>0}^2$ if and only if $v^2 < uw$ and u > 0.

The partition of $S^2_{>0} \subset \mathbb{R}^3$ II

We cut by the plane $\mathrm{u}+\mathrm{w}=1$ and get a circle representation.

The partition of $S^2_{>0}\subset \mathbb{R}^3$ III

Primitive iso-Delaunay domains in $S_{>0}^2$:

Optimization problem

- The lattice covering problem is to find a lattice covering of minimal density.
- ► Thm. Given an iso-Delaunay domain *LT*, there exist a unique lattice, which minimize the covering density over *LT*.
- ► The effective lattice is obtained by solving a semidefinite programming problem, so no exact solution, but approximate solutions available at any precision.
- ► The local maxima that are found are defined by algebraic integers.
- See for more details
 - A. Schürmann and F. Vallentin, *Computational approaches to lattice packing and covering problems*, Discrete & Compututational Geometry **35** (2006) 73–116.
 - A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.

Known results on covering density minimization

dim.	Best covering	nr of iso-Delaunay
2	A ₂ (Kershner)	1 (Voronoi)
3	A_3^* (Bambah)	1(Voronoi)
4	A ₄ (Delone & Ryshkov)	3(Voronoi)
5	A ₅ (Ryshkov & Baranovski)	222(Engel)
6	L_6 (conj. Vallentin)?	?
7	L ₇ (conj. Schürmann & Vallentin)?	?
24	Leech (conj.)?	?

- It turn out that the lattice of minimal covering density are unique for $n \le 5$
- In general the best lattice coverings are expected to be non-rational and with low symmetry.
- ▶ But experimentations seemed to indicate that E₆ is a local covering maxima.

VI. Quadratic functions

and the Erdahl cone

The Erdahl cone

▶ Denote by $E_2(n)$ the vector space of degree 2 polynomial functions on \mathbb{R}^n . We write $f \in E_2(n)$ in the form

$$f(x) = a_f + b_f \cdot x + Q_f[x]$$

with $a_f \in \mathbb{R}$, $b_f \in \mathbb{R}^n$ and Q_f a $n \times n$ symmetric matrix

▶ The Erdahl cone is defined as

$$Erdahl(n) = \{ f \in E_2(n) \text{ such that } f(x) \ge 0 \text{ for } x \in \mathbb{Z}^n \}$$

- It is a convex cone, which is non-polyhedral since defined by an infinity of inequalities.
- ▶ The group acting on Erdahl(n) is $AGL_n(\mathbb{Z})$, i.e. the group of affine integral transformations

$$x \mapsto b + Px$$
 for $b \in \mathbb{Z}^n$ and $P \in GL_n(\mathbb{Z})$

Scalar product

▶ Definition: If $f, g \in E_2(n)$, then:

$$\langle f,g \rangle = a_f a_g + \langle b_f,b_g \rangle + \langle Q_f,Q_g \rangle$$

- ▶ Definition: For $v \in \mathbb{Z}^n$, define $ev_v(x) = (1 + v \cdot x)^2$.
- We have

$$\langle f, ev_v \rangle = f(v)$$

- Thus finding the rays of Erdahl(n) is a dual description problem with an infinity of inequalities and infinite group acting on it.
- ▶ If $f \in Erdahl(n)$ then Q_f is positive semidefinite.
- ▶ Definition: We also define

$$Erdahl_{>0}(n) = \{ f \in Erdahl(n) : Q_f \text{ positive definite} \}$$

Relation with Delaunay polytope

▶ If *D* is a Delaunay polytope of a lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ of empty sphere S(c, r) then we define the function

$$f_{D,\mathbf{v}}: \mathbb{Z}^n \to \mathbb{R}$$

$$x = (x_1, \dots, x_n) \mapsto \|\sum_{i=1}^n x_i v_i - c\|^2 - r^2$$

Clearly $f_{D,\mathbf{v}} \in Erdahl_{>0}(n)$.

- ► The perfection rank of a Delaunay polytope is the dimension of the face it defines in *Erdahl(n)*.
- ▶ Definition: If $f \in Erdahl(n)$ then

$$Z(f) = \{ v \in \mathbb{Z}^n : f(v) = 0 \}$$

▶ Theorem: If $f \in Erdahl(n)$ then there exist a lattice L_f and a lattice L' containing a Delaunay polytope D_f such that

$$Z(f) = D_f + L_f$$

▶ We have dim L' + dim $L_f \le n$. In case of equality Z(f) is called a Delaunay polyhedra.

Perfect Delaunay polytopes/polyhedra

▶ Definition: If *D* is a *n*-dimensional Delaunay polyhedra then we define

$$\mathsf{Dom}_{\mathbf{v}} \ D = \sum_{v\mathbf{v} \in D} \mathbb{R}_{+} e v_{v}$$

- We have $\langle f_{D,\mathbf{v}}, \mathsf{Dom}_{\mathbf{v}} \ D \rangle = 0$.
- ▶ Definition: D is perfect if Dom D is of dimension $\binom{n+2}{2} 1$ that is if the perfection rank is 1.
- ▶ This implies that f_D is an extreme rays of Erdahl(n) and f_D is rational.
- A perfect *n*-dimensional Delaunay polytope has at least $\binom{n+2}{2}-1$ vertices. There is only one way to embed it as a Delaunay polytope of a lattice.
- Perfect Delaunay polytopes are remarkable and rare objects that we want to enumerate.

Perfect Delaunay polytope

► There is a finite number of them in each dimension *n*. Known results:

suits.		
dim.	perfect Delaunay	authors
1	$[0,1]$ in $\mathbb Z$	
2	Ø	
3	Ø	
4	Ø	
5	Ø	↑ (Deza, Laurent & Grishukhin)
6	2 ₂₁ in E ₆	(Deza & Dutour)
7	3 ₂₁ in E ₇	
	and ER_7 in $L(ER_7)$	
8	≥ 27	(Dutour Sikiric & Rybnikov)
9	≥ 100000	(Dutour Sikiric)

- ▶ Theorem: There exist perfect Delaunay polytopes D such that $\mathbb{Z}D \neq \mathbb{Z}^n$.
- ► Theorem: There exist lattices with several perfect Delaunay polytopes.
- ▶ Theorem: For $n \ge 6$ there exist a perfect Delaunay polytope with exactly $\binom{n+2}{2} 1$ vertices.

Extreme rays of Erdahl(n)

▶ Definition: If $f \in Erdahl_{>0}(n)$ then we define

$$Dom f = \sum_{v \in Z(f)} \mathbb{R}_+ ev_v$$

- We have $\langle f, \mathsf{Dom} \ f \rangle = 0$.
- ▶ Erdahl, 1992: The extreme rays of Erdahl(n) are
 - (a) The constant function 1.
 - (b) The functions

$$(a_1x_1+\cdots+a_nx_n+\beta)^2$$

with (a_1, \ldots, a_n) not collinear to an integral vector.

- (c) The functions f such that Z(f) is a perfect Delaunay polyhedra.
- Note that if $f \in Erdahl(n)$ with Z(f) a Delaunay polyhedra, then there exist a lattice L' of dimension $k \leq n$, a Delaunay polytope D of L', a basis \mathbf{v}' of L' and a function $\phi \in \mathsf{AGL}_n(\mathbb{Z})$ such that

$$f \circ \phi(x_1,\ldots,x_n) = f_{D,\mathbf{v}'}(x_1,\ldots,x_k)$$

Delaunay polyhedra retract

- For a function $f \in Erdahl(n)$ a proper decomposition is a pair (g,h) with f = g + h, $g \in Erdahl(n)$ and $h(x) \ge 0$ for $x \in \mathbb{R}^n$.
- ▶ Lemma: For a proper decomposition we have

$$Vect Z(f) + Ker Q_f \subset Ker Q_h$$

and there exist a proper decomposition with equality.

- ▶ Fix an integral complement L' of $Vect\ Z(f) + Ker\ Q_f$. A proper decomposition is called extremal if det $Q_h|_{L'}$ is maximal among all proper decompositions.
- ▶ Theorem: For $f \in Erdahl(n)$, there exist a unique extremal decomposition. For it we have that Z(g) is a delaunay polyhedra.
- ► Conjecture: The decomposition depends continuously on $f \in Erdahl(n)$.
- ▶ On the other hand in a neighborhood of $f \in Erdahl(n)$ we can have an infinity of Delaunay polyhedra.

Voronoi algorithm on the Erdahl cone

► From a given n-dimensional perfect Delaunay polytope Q of form f we can define the local cone

$$Loc(f) = \{g \in E_2(n) \text{ s.t. } g(x) \ge 0 \text{ for } x \in Z(f)\}$$

- ► The flipping algorithm finds the adjacent quadratic perfect form *g* from a given perfect form *f*.
- ▶ The problem is Erdahl(n) is not locally polyhedral, i.e. the rank of g can be lower than n.
- ▶ The technique is to use a recursive algorithm for realizing the enumeration. We start form $[0,1] \times \mathbb{R}^{n-1}$ and by subdivizion reach $[0,1]^n$ (its local cone is the cut cone CUT_{n+1} occuring in combinatorial optimization).

VII. Covering maxima, pessima and their characterization

Eutacticity

▶ If $f \in Erdahl_{>0}(n)$ then define μ_f and c_f such that

$$f(x) = Q_f[x - c_f] - \mu_f$$

Then define

$$u_f(x) = (1 + c_f \cdot x)^2 + \frac{\mu_f}{n} Q_f^{-1}[x]$$

- ▶ Definition: $f \in Erdahl_{>0}(n)$ is eutactic if u_f is in the relative interior of Dom f.
- ▶ Definition: Take a Delaunay polytope P for a quadratic form Q of center c_P and square radius μ_P . P is called eutactic if there are $\alpha_V > 0$ so that

$$\begin{cases} 1 &= \sum_{v \in \text{vert } P} \alpha_v, \\ 0 &= \sum_{v \in \text{vert } P} \alpha_v(v - c_P), \\ \frac{\mu_P}{n} Q^{-1} &= \sum_{v \in \text{vert } P} \alpha_v(v - c_P)(v - c_P)^T. \end{cases}$$

Covering maxima

- A given lattice L is called a covering maxima if for any lattice L' near L we have $\Theta(L') < \Theta(L)$.
- ▶ Theorem: The following are equivalent:
 - ▶ L is a covering maxima
 - Every Delaunay polytope of maximal circumradius is perfect and eutactic.
- ▶ The following are perfect Delaunay polytope:

name	# vertices	\mid $\#$ orbits Delaunay polytopes \mid
E ₆	27	1
E_7	56	2
ER ₇	35	4
O_{10}	160	6
BW_{16}	512	4
O_{23}	94208	5
Λ_{23}	47104	709

▶ Theorem: For any $n \ge 6$ there exist one lattice $L(DS_n)$ which is a covering maxima.

There is only one perfect Delaunay polytope $P(DS_n)$ of maximal radius in $L(DS_n)$.

The infinite series

- ▶ For n even $P(DS_n)$ is defined as the lamination over D_{n-1} of
 - one vertex
 - ▶ the half cube $\frac{1}{2}H_{n-1}$
 - the cross polytope CP_{n-1}

For n = 6, it is E_6 .

- ▶ For *n* odd as the lamination over D_{n-1} of
 - ightharpoonup the cross polytope CP_{n-1}
 - ▶ the half cube $\frac{1}{2}H_{n-1}$
 - ▶ the cross polytope CP_{n-1}

For n = 7, it is E_7 .

- ▶ Conjecture: The lattice DS_n has the following properties:
 - L(DS_n) has the maximum covering density among all covering maxima
 - ▶ Among all perfect Delaunay polytopes, $P(DS_n)$ has
 - maximum number of vertices
 - maximum volume

If true this would imply Minkovski conjecture.

Pessimum and Morse function property

- ▶ For a lattice L let us denote $D_{crit}(L)$ the space of direction d of deformation of L such that Θ increases in the direction d.
- ▶ Definition: A lattice L is said to be a covering pessimum if the space D_{crit} is of measures 0.
- ► Theorem: If a lattice L has all its Delaunay polytopes of maximum circumradius are eutactic and are not simplices then Q is a pessimum.

name	# vertices	# orbits Delaunay polytopes
\mathbb{Z}^n	2 ⁿ	1
D_4	8	1
$D_n \ (n \geq 5)$	2^{n-1}	2
E ₆ *	9	1
E ₇ *	16	1
E ₈	16	2
K_{12}	81	4

▶ Theorem: The covering density function $Q \mapsto \Theta(Q)$ is a topological Morse function if and only if $n \leq 3$.

THANK YOU