Review Exercise 7

- Q3. Answer the following short questions.
- i) Define a linear inequality in one variable.

Ans. Linear Inequality in one variable
Let a, b be real numbers, then a is greater
than b if the difference a - b is positive and
we denote this order relation by the
inequality a > b. An equivalent statement is
that b is less than a, symbolized by b < a.
Similarly, if a - b is negative, then a is less
than b and expressed in symbols as a < b.

ii) State the trichotomy and transitive properties of inequality.

Ans. <u>Trichotomy Property of inequality</u>

For any $a,b \in \mathbb{R}$, one and only one of the following statements is true.

a < b or a = b, or a > b

Transitive Property of inequality

Let $a,b,c \in R$

- i) If a > b and b > c, then a > c
- ii) If a > b and b < c, then a < c

The formula relating degrees Fahrenheit to degrees Celcius is
$$F = \frac{9}{5}C + 32$$
. For what value of C is $F < 0$.

F < 0.
According to formula "F" will be zero, if
$$\frac{9}{5}$$
C+32=0
$$\frac{9}{5}$$
C=-32
$$C=-\frac{32}{9}\times 5$$

$$C=-\frac{160}{9}$$

 $\log F < 0$ i.e. negative $C < -\frac{160}{9}$

- Seven times the sum of an integer and 12 is at least 50 and at most 60. Write and solve the inequality that expresses this relationship.
- 18. Let the required integer be x then $50 \le x + 12 \le 60$ $50 \le x + 12$ and $x + 12 \le 60$ $50 - 12 \le x$ and $x \le 60 - 12$ $38 \le x$ and $x \le 48$

$$\sqrt{2t+4} = \sqrt{t-1}$$
Squaring both sides
$$(\sqrt{2t+4})^2 = (\sqrt{t-1})^2$$

$$2t+4=t-1$$

$$2t-t=-1-4$$

$$t=-5$$

ck:

$$\sqrt{2t+4} = \sqrt{t-1}$$

$$\sqrt{2(-5)+4} = \sqrt{-5-1}$$

$$\sqrt{-10+4} = \sqrt{-6}$$

 $\sqrt{-6} = \sqrt{-6}$ Which is true, so solution Set = {-5}

ii)
$$\sqrt{3x-1} - 2\sqrt{8-2x} = 0$$

 $\sqrt{3x-1} = 2\sqrt{8-2x}$
Squaring both sides
 $(\sqrt{3x-1})^2 = (2\sqrt{8-2x})^2$
 $3x-1 = 4(8-2x)$
 $3x-1 = 32-8x$
 $3x+8x = 32+1$
 $11x = 33$
 $x = \frac{33}{14}$

Check:

x = 3

$$\sqrt{3x-1} - 2\sqrt{8-2x} = 0$$

$$\sqrt{3(3)-1} - 2\sqrt{8-2(3)} = 0$$

$$\sqrt{9-1} - 2\sqrt{8-6} = 0$$

$$\sqrt{8} - 2\sqrt{2} = 0$$

$$2\sqrt{2} - 2\sqrt{2} = 0$$

$$0 = 0 \text{ Which is true, so}$$
solution set = {3}

Q5. Solve for x

i)
$$|3x+14|-2=5x$$

 $|3x+14|=5x+2$
 $\pm (3x+14)=5x+2$
 $3x+14=\pm (5x+2)$
 $3x+14=5x+2$ or $3x+14=-5x-2$
 $3x-5x=2-14$ or $3x+5x=-2-14$
 $-2x=-12$ or $8x=-16$
 $x=\frac{12}{2}$ or $x=-\frac{16}{8}$
 $x=6$ or $x=-2$

Check:

Put
$$x = 6$$
 in

$$|3x+14|-2=5x$$

 $|3(6)+14|-2=5(6)$
 $|18+14|-2=30$
 $|32|-2=30$
 $30-2=30$
 $30=30$, which is true

Now put x = -2

$$|3(-2)+14|-2 \neq 5(-2)$$

$$|-6+14|-2\neq -10$$

$$|8| - 2 \neq -10$$

$$8 - 2 \neq -10$$

 $6 \neq -10$ which is not true

So, Solution Set =
$$\{6\}$$

ii)
$$\frac{1}{3}|x-3| = \frac{1}{2}|x+2|$$

$$\frac{|x-3|}{|x+2|} = \frac{3}{2}$$

$$\frac{|x-3|}{|x+2|} = \frac{3}{2}$$

$$\pm \left(\frac{x-3}{x+2}\right) = \frac{3}{2}$$

$$\frac{1}{3}|-3| = \frac{1}{2}|2|$$

$$\frac{3}{3} = \frac{2}{2}$$

$$1 = 1, \text{ which is true}$$

So, Solution Set = $\{-12,0\}$

Q6. Solve the following inequality.

i)
$$-\frac{1}{3}x + 5 \le 1$$
$$-\frac{1}{3}x \le 1 - 5$$
$$-\frac{1}{3}x \le -4$$

Multiplying both sides by -3

Solution Set =
$$\{x / x \ge 12\}$$

or
$$\frac{x-3}{x+2} = \pm \frac{3}{2}$$

 $\frac{x-3}{x+2} = \frac{3}{2}$ or $\frac{x-3}{x+2} = -\frac{3}{2}$
 $2(x-3) = 3(x+2)$ or $2(x-3) = -3(x+2)$
 $2x-6 = 3x+6$ or $2x+3x = 6-6$
 $-x = 12$ or $5x = 0$
 $x = -12$ or $x = 0$

Check:

Put
$$x = -12$$

$$\frac{1}{3}|x-3| = \frac{1}{2}|x+2|$$

$$\frac{1}{3}|-12-3| = \frac{1}{2}|-12+2|$$

$$\frac{1}{3}|-15| = \frac{1}{2}|-10|$$

$$\frac{15}{3} = \frac{10}{2}$$

5=5, which is true

Now put
$$x = 0$$

$$\frac{1}{3}|0-3| = \frac{1}{2}|0+2|$$

ii)
$$-3 < \frac{1-2x}{5} < 1$$

 $-3 < \frac{1-2x}{5}$ and $\frac{1-2x}{5} < 1$

Multiplying both sides by 5

$$-15 < 1-2x$$
 and $1-2x < 5$
 $-15-1 < -2x$ and $-2x < 5-1$

$$-16 < -2x$$
 and $-2x < 4$

Multiplying both sides by -1

$$\begin{array}{ccccc}
16 > 2x & \text{and} & 2x > -4 \\
\frac{16}{2} > x & \text{and} & x > \frac{-4}{2} \\
8 > x & \text{and} & x > -2
\end{array}$$

$$8 > x > -2$$

Solution Set =
$$\{x/8 > x > -2\}$$

Diective

Which of the following is the solution of the inequality

$3 - 4x \le 11$?

- $x \ge -8$
- **(b)** $x \ge -2$
- $x \ge \frac{-14}{4}$ (c)
- None of these (d)
- A statement involving any of the 2. symbols <, > or \le or \ge is called:
 - (a) Equation
 - (b) Identity
 - (c) Inequality (d) Linear equation
- 3. x =____ is a solution of the inequality $-2 < x < \frac{3}{2}$
 - (a)
- (c)
- 0 (d) $\frac{5}{2}$
- If x is not larger than 10, then 4.
 - $x \ge 8$ (b) (a)
- x ≤10
 - (c)
- x < 10 (d) x > 10
- If the capacity c of an elevator is at 5. most 1600 pounds, then ___

 - (a) c < 1600 (b) $c \ge 1600$

 - (c) $c \le 1600$ (d) c > 1600
- x = 0 is a solution of the inequality 6.
 - (a) x > 0
- (b) 3x + 5 < 0
- (c) x + 2 < 0 (d) x 2 < 0
- 7. The linear equation in one variable x is:
 - (a) ax + b = 0
 - (b) $ax^2 + bx + c = 0$
 - (c) ax + by + c = 0
 - (d) $ax^2 + by^2 + c = 0$

- 8. An inconsistent equation is that whose solution set is:
 - (b) Not empty (a) Empty
 - (c) (d)None of these Zero
- 9. Absolute value of a real number a

ारा क्रिक्सियाच्ये सर

- None of these (d)
- |x| = a is equivalent to: 10.
 - (a) $\dot{x} = a$ or x = -a
 - (b) $x = \frac{1}{a} \text{ or } x = \frac{-1}{a}$
 - (c) $x = a \text{ or } x = \frac{-1}{-1}$
 - None of these (d)
- A linear inequality in one variable 11. x is:
 - (a) a x + b > 0. a ≠ 0
 - $ax^{2} + bx + c < 0, a \ne 0$ (b)
 - ax + by + c > 0, $a \neq 0$ (c)
 - $ax^{2} + by^{2} + c < 0, a \ne 0$ (d)
- Law of Trichotomy is ... **12.** $(a,b \in R)$
 - a < b or a = b or a > b(a)
 - (b) a < b or a = b
 - (c) a < b or a > b
 - None of these (d)

13.	Transitive law is	Í	(c) $x = 2 \text{ or } x = \frac{1}{2}$				
	(a) $a < b$ and $b < c$, then $a < c$		$(c) \qquad x = 2 \text{ or } x = \frac{1}{2}$				
	(b) $a > b$ and $b < c$, then $a > c$		(d) $x = 2 \text{ or } x = \frac{-1}{2}$				
	(c) $a > b$ and $b < c$, then $a > c$	1	$(\mathbf{d}) \mathbf{x} = 2 \text{ or } \mathbf{x} = \frac{1}{2}$				
	(d) None of these	21.	An is equation that is satisfied				
14.	If $a > b$, $c > 0$ then:		by every number for which both				
	(a) $a c < bc$ (b) $ac > bc$		sides are defined:				
	(c) $ac = bc$ (d) None		(a) Identity (b) Conditional				
15.	If $a > b$, $c > 0$ then:		(c) Inconsistent (c) None				
	(a) $\frac{a}{c} > \frac{b}{c}$ (b) $\frac{a}{c} < \frac{b}{c}$	22.	An equation is an equation				
	c c c c c		whose solution set is the empty set:				
	(c) $\frac{a}{c} = \frac{b}{c}$ (d) $\frac{b}{c} \neq \frac{b}{c}$		(a) Identity (b) Conditional				
	c c c c		(c) Inconsistent (d) None				
16.	If $a > b$, $c < 0$, then:	23.	A equation is an equation that				
	(a) $\frac{a}{c} < \frac{b}{c}$ (b) $\frac{a}{c} > \frac{b}{c}$		is satisfied by atleast one number				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		but is not an identity:				
	(c) $\frac{a}{c} = \frac{b}{c}$ (d) $\frac{a}{c} \le \frac{b}{c}$	1	(a) Identity (b) Conditional				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(c) Inconsistent (d) None				
17.	If $a, b \in R$ then:	24.	x + 4 = 4 + x is equation:				
			(a) Identity (b) Conditional				
	(a) $\left \frac{\mathbf{a}}{\mathbf{b}} \right = \frac{ \mathbf{a} }{ \mathbf{b} }$ (b) $ \mathbf{a}\mathbf{b} = \frac{ \mathbf{a} }{ \mathbf{b} }$		(c) Inconsistent (d) None				
	1.1.1.1	25.	 ,				
	(c) $\left \frac{\mathbf{b}}{\mathbf{a}} \right = \frac{ \mathbf{b} }{ \mathbf{a} }$ (d) None of these	<u> </u>	(a) Identity (b) Conditional				
	a a		(c) Inconsistent (d) None				
18.	When the variable in an equation	26.	x = x + 5 is equation:				
	occurs under a radical, the equation	}	(a) Identity (b) Conditional				
	is called aequation.		(c) Inconsistent (d) None				
	(a) Radical (b) Absolute value	27.	, ÷				
	(c) Linear (d) None of these)	solution are calledequations.				
19.	x =0 has only solution.		(a) equivalent (b) Linear				
	(a) one (b) two	28.	(c) Inconsistent (c) None				
	(c) three (d) none of		A solution that does not satisfy the				
	these		original equation is called				
20.	The equation $ x =2$ is equivalent to	1	solution:				
	• •		(a) Extraneous (b) Root				
	(a) x=2 or x=-2	1	(c) General (d) None				

(b) x = -2 or x = -2

ANSWER KEY

1.	b	2.	c	3.	c	4.	Ь	5.	C
6.	d	7.	a	8.	a	9.	a	10.	a
11.	a	12.	a	13.	a	14.	b	15.	a
16.	a	17.	a	18.	a	19.	a	20.	a
21.	a	22.	С	23.	b	24.	a	25.	b
26.	С	27.	a	28.	a				