Álgebra lineal I, Grado en Matemáticas

Febrero 2015, Segunda Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Rango de una matriz
- (b) Dependencia e independencia lineal de vectores
- (c) Matriz de una aplicación lineal
- (d) Espacio vectorial cociente

Ejercicio 1: (2 puntos) Sean E y F dos espacios vectoriales sobre el mismo cuerpo K, $\mathcal{B} = \{u_1, ..., u_n\}$ una base de E y $v_1, ..., v_n$ vectores de F. Demuestre que existe una única aplicación lineal $f: E \to F$ tal que $f(u_i) = v_i$, para i = 1, ..., n. ¿Qué ocurre si $\{u_1, ..., u_n\}$ es un sistema de generadores de E y no una base?

Ejercicio 2: (2 puntos)

Sea $\mathcal{P}_3(t)$ el espacio vectorial de los polinomios en una variable t con coeficientes reales y grado menor o igual que 3. Encuentre los valores de α y β (reales) para los cuales el siguiente conjunto de vectores forma una base de $\mathcal{P}_3(t)$

$$\{1+t, 2t^2+3, t^3, \alpha t^3+t^2+\beta t\}$$

Para $\beta = 1$ determine unas ecuaciones implícitas del subespacio vectorial V_{α} generado por los dos $\ddot{\iota}_{i}^{1}$ ltimos vectores.

Ejercicio 3: (4 puntos)

Una aplicación lineal $f: E \to E$, de un espacio vectorial en sí mismo es una proyección si $f^2 = f \circ f = f$.

a) Encuentre las matrices en la base canónica de las posibles proyecciones de $f: \mathbb{R}^4 \to \mathbb{R}^4$ tales que

$$f(1,1,0,0) = (0,1,0,-1), \quad f(1,0,1,0) = (1,1,1,\alpha), \quad \alpha \in \mathbb{R}$$

b) ¿Qué ocurre en el caso $\alpha = -1$?

Ejercicio 1:

Sean E y F dos espacios vectoriales sobre el mismo cuerpo K, $\mathcal{B} = \{u_1, ..., u_n\}$ una base de E y $v_1, ..., v_n$ vectores de F. Demuestre que existe una única aplicación lineal $f: E \to F$ tal que $f(u_i) = v_i$, para i = 1, ..., n. ¿Qué ocurre si $\{u_1, ..., u_n\}$ es un sistema de generadores de E y no una base?

Solución: Si $\mathcal{B} = \{u_1, ..., u_n\}$ una base de E para demostrar que la aplicación f tal que $f(u_i) = v_i$, para i = 1, ..., n; es única basta ver que con las imágenes de los vectores de una base queda completamente determinada la imagen f(u) de un vector cualquiera $u \in E$. En efecto, si las coordenadas de u en \mathcal{B} son $(x_1, ..., x_n)$, entonces

$$f(u) = f(x_1u_1 + \dots + x_nu_n) = x_1f(u_1) + \dots + x_nf(u_n) = x_1v_1 + \dots + x_nv_n.$$

Por ser las coordenadas de u únicas también o es f(u).

Otra forma de demostrar esta primera parte: Supongamos que existen dos aplicaciones lineales f y g tales que $f(u_i) = v_i y g(u_i) = v_i$. Entonces, la aplicación f - g cumple $(f - g)(u_i) = f(u_i) - g(u_i) = v_i - v_i = 0$, para i = 1, ..., n. Sea v un vector cualquiera de E, entonces existen escalares α_i tales que $v = \alpha_1 v_1 + ... + \alpha_n v_n$, y por la linealidad de f - g se tiene

$$(f-g)(v) = \alpha_1(f-g)(v_1) + \dots + \alpha_n(f-g)(v_n) = \alpha_1 + \dots + \alpha_n = 0$$

Así, f - g es la aplicación nula, o lo que es lo mismo f = g.

Vamos con la segunda parte. Si $\{u_1, ..., u_n\}$ fuese un sistema generador y no una base, podemos suponer, sin pérdida de generalidad, que $\mathcal{B}' = \{u_1, ..., u_k\}$, k < n es una base de E y el resto de vectores $u_{k+1}, ..., u_n$ dependen linealmente de los vectores de \mathcal{B}' . Entonces, si $f(u_i) = v_i$ para i = 1, ..., k; las imágenes del resto de vectores $u_{k+1}, ..., u_n$ quedan completamente determinadas conocidos $v_1, ..., v_k$:

$$u_j = a_{1j}u_1 + ...a_{kj}u_k \Rightarrow f(u_j) = a_{1j}f(u_1) + ...a_{kj}f(u_k)$$
 para $j = k + 1, ..., n;$
 $\Rightarrow v_j = a_{1j}v_1 + ...a_{kj}v_k$, para $j = k + 1, ..., n.$ (*)

y los $v_{k+1},...,v_n$ no pueden ser vectores cualesquiera de F. Si los vectores dados $v_1,...,v_n$ cumplen (*), entonces la aplicación existe y es única.

Ejercicio 2: Sea $\mathcal{P}_3(t)$ el espacio vectorial de los polinomios en una variable t con coeficientes reales y grado menor o igual que 3. Encuentre los valores de α y β (reales) para los cuales el siguiente conjunto de vectores forma una base de $\mathcal{P}_3(t)$

$$\{1+t, 2t^2+3, t^3, \alpha t^3+t^2+\beta t\}$$

Para $\beta=1$ determine unas ecuaciones implícitas del subespacio vectorial V_{α} generado por los dos últimos vectores.

Solución: Consideremos las coordenadas de los vectores dados en a base canónica o estándar $\mathbb{B} = \{1, t, t^2\}$ que son respectivamente:

$$(1, t, 0, 0), (3, 0, 2, 0), (0, 0, 0, 1), (0, \beta, 1, \alpha)$$

Los vectores formaran una base si son linealmente independientes, es decir, si el rango de la matriz cuyas filas o columnas son las coordenadas de los vectores en \mathcal{B} es igual a 4.

$$\det \begin{pmatrix} 1 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \beta & 1 & \alpha \end{pmatrix} = 2\beta + 3$$

Así, si $\beta \neq \frac{-3}{2}$, entonces el determinante es distinto de 0 y el rango igual a 4.

Para $\beta=1$ unas ecuaciones implícitas del subespacio $V_{\alpha}=L(t^3,\ \alpha t^3+t^2+t)$ en la base canónica \mathcal{B} vienen determinadas por la condición

$$\operatorname{rg}\begin{pmatrix}0 & 0\\0 & 1\\0 & 1\\1 & \alpha\end{pmatrix} = \operatorname{rg}\begin{pmatrix}0 & 0 & x_1\\0 & 1 & x_2\\0 & 1 & x_3\\1 & \alpha & x_4\end{pmatrix}$$

Escalonamos la matriz para estudiar el rango

$$\begin{pmatrix} 0 & 0 & x_1 \\ 0 & 1 & x_2 \\ 0 & 1 & x_3 \\ 1 & \alpha & x_4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \alpha & x_4 \\ 0 & 1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & x_1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \alpha & x_4 \\ 0 & 1 & x_2 \\ 0 & 0 & x_3 - x_2 \\ 0 & 0 & x_1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \alpha & x_4 \\ 0 & 1 & x_2 \\ 0 & 0 & x_3 - x_2 \\ 0 & 0 & x_1 \end{pmatrix}$$

Así, para que el rango de la última matriz sea 2, se tiene que cumplir

$$x_3 - x_2 = 0, \ x_1 = 0$$

que son las ecuaciones de V_{α} buscadas. \square

Ejercicio 3: Una aplicación lineal $f: E \to E$, de un espacio vectorial en sí mismo es una proyección si $f^2 = f \circ f = f$.

a) Encuentre las matrices en la base canónica de las posibles proyecciones de $f: \mathbb{R}^4 \to \mathbb{R}^4$ tales que

$$f(1,1,0,0) = (0,1,0,-1), \quad f(1,0,1,0) = (1,1,1,\alpha), \quad \alpha \in \mathbb{R}$$

b) ¿Qué ocurre en el caso $\alpha = -1$?

Solución: Por ser $f^2 = f$ tenemos que

$$\begin{cases} f^2(1,1,0,0) = f(0,1,0,-1) \\ f^2(1,1,0,0) = f(1,1,0,0) = (0,1,0,-1) \end{cases} \Rightarrow f(0,1,0,-1) = (0,1,0,-1)$$

$$\begin{cases} f^2(1,0,1,0) = f(1,1,1,\alpha) \\ f^2(1,0,1,0) = f(1,0,1,0) = (1,1,1,\alpha) \end{cases} \Rightarrow f(1,1,1,\alpha) = (1,1,1,\alpha)$$

Así, si los vectores

$$\mathcal{B}' = \{v_1 = (1, 1, 0, 0), v_2 = (0, 1, 0, -1), v_3 = (1, 0, 1, 0), v_4 = (1, 1, 1, \alpha)\}$$

fueran una base de \mathbb{R}^4 , entonces f estaría completamente determinada, y eso ocurre si y sólo si

$$\det\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & \alpha \end{pmatrix} = \alpha + 1 \neq 0 \Leftrightarrow \alpha \neq -1.$$

Supongamos $\alpha \neq -1$, entonces

$$f(v_1) = v_2, f(v_2) = v_2, f(v_3) = v_4, f(v_4) = v_4.$$

Calculamos la matriz de f en la base canónica por dos métodos:

Método 1: la matriz de f en la base \mathcal{B}' es

$$M_{\mathcal{B}'}(f) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Como nos piden la matriz en la base canónica, entonces hacemos el cambio de base a la base canónica \mathcal{B} considerando

$$P = C(B', B) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & \alpha \end{pmatrix}$$

La matriz de f en la base canónica es

$$M_{\mathcal{B}}(f) = C(\mathcal{B}', \mathcal{B}) M_{\mathcal{B}'}(f) C(\mathcal{B}, \mathcal{B}') = P M_{\mathcal{B}'}(f) P^{-1}$$

$$M_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & \alpha \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & 0 \\ -\frac{\alpha}{\alpha+1} & \frac{\alpha}{\alpha+1} & \frac{\alpha}{\alpha+1} & -\frac{1}{\alpha+1} \\ \frac{1}{\alpha+1} & -\frac{1}{\alpha+1} & \frac{\alpha}{\alpha+1} & -\frac{1}{\alpha+1} \\ -\frac{1}{\alpha+1} & \frac{1}{\alpha+1} & \frac{1}{\alpha+1} & \frac{1}{\alpha+1} \end{pmatrix},$$

$$M_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 1 & 0\\ \frac{1}{\alpha+1} & \frac{\alpha}{\alpha+1} & \frac{\alpha}{\alpha+1} & \frac{-1}{\alpha+1}\\ 0 & 0 & 1 & 0\\ \frac{-1}{\alpha+1} & \frac{-\alpha}{\alpha+1} & \frac{\alpha^2+\alpha+1}{\alpha+1} & \frac{1}{\alpha+1} \end{pmatrix}.$$

Método 2: Calculamos las imágenes de los vectores de la base canónica obteniendo sus coordenadas en \mathcal{B}' y aplicando la linealidad de f:

$$(1,0,0,0) = v_1 + \frac{-\alpha}{\alpha+1}v_2 + \frac{1}{\alpha+1}v_3 + \frac{-1}{\alpha+1}v_4 \Rightarrow$$

$$f(1,0,0,0) = f(v_1) + \frac{-\alpha}{\alpha+1}f(v_2) + \frac{1}{\alpha+1}f(v_3) + \frac{-1}{\alpha+1}f(v_4) = (0, \frac{1}{\alpha+1}, 0, \frac{-1}{\alpha+1}).$$

$$(0,1,0,0) = v_1 + \frac{\alpha}{\alpha+1}v_2 + \frac{-1}{\alpha+1}v_3 + \frac{1}{\alpha+1}v_4 \Rightarrow$$

$$f(0,1,0,0) = f(v_1) + \frac{\alpha}{\alpha+1}f(v_2) + \frac{-1}{\alpha+1}f(v_3) + \frac{1}{\alpha+1}f(v_4) = (0, \frac{\alpha}{\alpha+1}, 0, \frac{-\alpha}{\alpha+1}).$$
...

(b) Si $\alpha = -1$, entonces f no está completamente determinada por las condiciones del enunciado ya que no conocemos las imágenes de los vectores de una base. Podemos ver fácilmente que $v_2 = v_4 - v_3$, y por la linealidad de f tendríamos

$$f(v_2) = f(v_4) - f(v_3) = v_4 - v_4 = 0$$

lo que contradice $f(v_2) = v_2$. Así, concluimos que si $\alpha = -1$ no existe una proyección que cumpla las condiciones pedidas.