

Problema

Transacciones Fraudulentas

Global card fraud losses totaled almost \$23 billion in 2016.1

The US accounted for 24% of global card purchase volume and 40% of fraud losses (\$9 billion) in 2016.

General-purpose and private-label global and domestic credit, debit, and prepaid cards; excludes operational costs incurred by issuers, merchants, acquirers, call centers, and chargeback management.

McKinsey&Company | Source: The Nilson Report, 2017

\$27.85 billion Worldwide credit card fraud Losses 16.2% Increase in credit card fraud losses in 2018 \$35.67 billion Projected credit card fraud between 2017 and 2018 SOURCE: The NIIson Report.

Cash In

Cash Out

Payment

Transfer

Beneficio e Importancia de la Solución

Conjunto de datos

Variables

*step: Representa una hora.

type: Tipo de transacción fraudulenta.

amount: Dinero de la transacción fraudulenta.

*nameOrig: Cliente que realizó la transacción.

oldbalanceOrg: Dinero de la cuenta origen antes de la transferencia.

newbalanceOrig: Dinero de la cuenta origen después de la transferencia.

*nameDest: Cliente que recibió la transacción.

oldbalanceDest: Dinero de la cuenta destino antes de la transferencia.

newbalanceDest: Dinero de la cuenta destino después de la transferencia.

¿Cómo detectar transacciones Fraudulentas?

Deteccion de anomalias o patrones inusuales que son distintos a los comportamientos esperados.

Arquitectura

Autoencoders

Se aprende la codificación de datos no etiquetados, el objetivo es optimizar el error de reconstrucción mediante las muestras dadas.

Experimentación

No fraudulentas	Fraudulentas
599224	776

Undersampling

División de datos

Train	lest
80%	20%

Train Test

Valores nulos

Type isFraud 0

Variables innecesarias

Variable

Porcentaje de valores

únicos en el dataset 99.99%

nameOrig

nameDest

72.86%

Ordinal Encoding

Variable "type"	Variable "type"
Payment	0
Transfer	1
Cash in	2
Cash Out	3
Debit	4

One Hot Encoding

type_CASH_IN	type_CASH_OUT	type_DEBIT	type_PAYMENT	type_TRANSFER
1	0	0	0	0
0	0	0	1	0
0	1	0	0	0
0	0	0	0	1
1	0	0	0	0

Resultados

Ordinal Encoding y Undersampling

Accuracy por Epoch

Accuracy: 94%

Ordinal Encoding y Autoencoders

Loss por Epoch

Accuracy: 91%

One Hot Encoding y Undersampling

Accuracy: 91%

Accuracy por Epoch

) validation

One Hot Encoding y Autoencoders

Loss por Epoch

Accuracy: 92%

Modelos y Accuracies

	Undersampling	AutoEncoders
Ordinal Encoder	94%	91%
One Hot Encoder	91%	92%

Conclusiones

- 1. El número de reportes de transacciones fraudulentas va en aumento dia con dia. Por lo tanto, es necesaria una solución eficiente y eficaz.
- 2. El mejor modelo para clasificar y/o detectar que una transacción es fraudulenta es utilizando Ordinal Encoding y Undersampling en los datos.
- 3. Las redes neuronales son herramientas que ayudan a detectar una infinidad de anomalías en un conjunto de datos, por lo que son muy utilizados en la solución a distintos problemas, de esta forma reducir el impacto de estos.

