Sample problems with solutions for Homework 5

- 1. If you need to see some examples of u/du substitution, see http://tutorial.math.lamar.edu/Classes/CalcI/SubstitutionRuleIndefinitePtII.aspx
- 2. Given F'(x) = f(x), G'(x) = F(x), and $\int_a^b e^x G(x) dx = 42$, evaluate $\int_a^b e^x f(x) dx$, using the information on the following table.

x	f(x)	F(x)	G(x)
a	2	4	-2
b	-1	5	8

- 3. The function $f(x) = c \ln(1+x^2)$ defines a probability density function on the interval [0, 1].
 - (a) Use technology to estimate the value of c.
 - (b) Using this value for c, find the expected value of this distribution. Evaluate the integral without using technology.

Solutions

- 2. To evaluate $\int_a^b e^x f(x) dx$, we use integration by parts.
 - $u = e^x$
 - $du = e^x dx$
 - dv = f(x) dx
 - v = F(x)

Now using the formula for integration by parts, we get:

$$\int_a^b e^x f(x) \ dx = e^x F(x) \Big|_a^b - \int_a^b e^x F(x) \ dx$$

The first term we can compute using the provided table, but the resulting integral will require another application of integration by parts:

- \bullet $w = e^x$
- $\bullet \ dw = e^x \ dx$
- dp = F(x) dx
- p = G(x)

Then we can compute the needed integral:

$$\int_{a}^{b} e^{x} F(x) dx = e^{x} G(x) \Big|_{a}^{b} - \int_{a}^{b} e^{x} G(x) dx$$

We can compute everything here with that was given, so we can finish:

$$\int_{a}^{b} e^{x} f(x) \ dx = e^{x} F(x) \Big|_{a}^{b} - \left(e^{x} G(x) \Big|_{a}^{b} - \int_{a}^{b} e^{x} G(x) \ dx \right) =$$

3. (a) Entering the following into Wolfram alpha: "integral from 0 to 1 of ln(1 + x^2)" gives the result 0.2639. Thus $c \approx \frac{1}{0.2639} \approx 3.789$.

1

(b) The expected value is given by the following integral: $\int_0^1 cx \ln(1+x^2) dx$. To evaluate this integral, we'll begin with a u/du substitution, with $u=1+x^2$, du=2x dx, giving

$$\int_0^1 cx \ln(1+x^2) \, dx = \frac{c}{2} \int_0^1 2x \ln(x^2+1) \, dx = \frac{c}{2} \int_1^2 \ln u \, du$$

We have previously used integration by parts to find that $\int \ln x \, dx = x \ln x - x + C$. So

$$\frac{c}{2} \int_{1}^{2} \ln u \, du = \frac{c}{2} (u \ln u - u) \Big|_{1}^{2} = \frac{c}{2} (2 \ln 2 - 2 - (0 - 1)) = c (\ln 2 - \frac{1}{2}) \approx 0.193c \approx 0.732$$