PTP4 Zusammenfassung: Theoretische Quantenmechanik

Physik am Ende des 19. Jahrhunderts: Bekannte Wechselwirkungen ueberzeugend beschrieben: Graviation in klassischer Mechanik durch Newton, Lagrange, Hamilton Elektromagnetismus durch Maxwell'sche Gleichungen Ungeklaerte Fragen:

- Widerspruch Galilei-Invarianz in kl. Mechanik (Geschwindigkeiten addiert) und Maxwell Elektrodynamik (Lichtgeschwindigkeit Obergrenze) aufgeloest durch Lorentz Invarianz in Einsteins spezieller Relativitaetstheorie
- Stabilitaet der Atome (im Rutherford Modell) nicht erklaerbar
- diskrete Spektrallinien nicht erklaerbar
- Schwarzkoerperstrahlung nicht beschreibbar (UV-Katastrophe)

Hohlraumstrahlung: Stehende Wellen im Hohlraum: Moden Es sind $\frac{L}{\lambda}$ Wellen auf Strecke L moeglich

Anzahl abschaetzen:

Kugel $(V_{Kugel} = \frac{4}{3} * \pi * r^3)$ Zwei Polarisationsrichtungen: E und B Feld bringt Faktor zwei

Radius ist $\frac{L}{\lambda}$ $N(\lambda) = 2 * \frac{4}{3} * \pi * (\frac{L}{\lambda})^3$

- Dispersions relation: $k = \frac{\omega}{c}$
- Kreisfrequenz: $\omega = 2 * \pi * \nu$
- Wellenlaenge: $\lambda = \frac{2*\pi}{k}$