

Tarea 2

30 de agosto de 2023

 2^{0} semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 19:59:59 del 6 de septiembre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

- 1. Sean $P = \{p, q, r, s, t, v\}$ y $\varphi = \neg(p \to q) \lor ((r \lor s) \to (q \lor t)) \lor (\neg p \to \neg v)$ una fórmula en L(P). Encuentre una fórmula ψ en CNF tal que $\varphi \equiv \psi$. Debe demostrar la equivalencia lógica.
- 2. Dado $n \in \mathbb{N}$, sean $P = \{p_1, \dots, p_n, q_1, \dots, q_n\}$ y $\varphi = \bigvee_{i=1}^n (p_i \leftrightarrow q_i)$ una fórmula en L(P). Encuentre una fórmula ψ en DNF tal que $\varphi \equiv \psi$. Debe demostrar la equivalencia lógica.

Solución

Pauta (6 pts.)

a) Tenemos lo siguiente

$$\psi \equiv \neg(\neg p \lor q) \lor (\neg(r \lor s) \lor (q \lor t)) \lor (p \lor \neg v) \tag{1}$$

$$\equiv (p \land \neg q) \lor (\neg r \land \neg s) \lor q \lor t \lor p \lor \neg v \tag{2}$$

$$\equiv (p \land \neg q) \lor ((\neg r \lor q \lor t \lor p \lor \neg v) \land (\neg s \lor q \lor t \lor p \lor \neg v))$$
(3)

$$\equiv (\neg r \lor p \lor q \lor t \lor \neg v) \land (\neg s \lor p \lor q \lor t \lor \neg v) \tag{4}$$

donde,

- (1) $p \to q \equiv \neg p \lor q$.
- (2) De Morgan.
- (3) Distribución.
- (4) Distribución y absorción.
- b) Tenemos lo siguiente

$$\bigvee_{i=1}^{n} (p_i \leftrightarrow q_i) \equiv \bigvee_{i=1}^{n} (p_i \to q_i) \land (q_i \to p_i)$$

$$\equiv \bigvee_{i=1}^{n} (\neg p_i \lor q_i) \land (\neg q_i \lor p_i)$$

$$\equiv \bigvee_{i=1}^{n} (\neg p_i \land \neg q_i) \lor \bigvee_{i=1}^{n} (q_i \land p_i)$$

donde se aplica directamente la definición de equivalencia, luego la propiedad de la implicancia y distribución.

Dado lo anterior el puntaje asignado es el siguiente:

En ambos incisos:

- (1 punto) por encontrar ψ , la fórmula equivalente con la estructura pedida.
- (2 puntos) por demostrar equivalencia con pasos justificados correctamente.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2

1. El conectivo ternario M es definido de la siguiente forma:

p	q	r	M(p,q,r)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

¿Es $\{M\}$ funcionalmente completo? Demuestre su respuesta.

- 2. Sean Σ_1 y Σ_2 conjuntos de fórmulas y α, β fórmulas en lógica proposicional. Decida si las siguientes afirmaciones son verdaderas o falsas. En caso de ser verdadera demuestre, y en caso de ser falsa dé un contraejemplo.
 - a) Si $\Sigma_1 \cup \{\beta\} \models \alpha \text{ entonces } \Sigma_1 \models \alpha.$
 - b) Si $\Sigma_1 \models \alpha$ y $\Sigma_2 \models \beta$ entonces $\Sigma_1 \cup \Sigma_2 \models \alpha \wedge \beta$.
 - c) Si $\Sigma_1 \not\models \alpha$ entonces $\Sigma_1 \models \neg \alpha$.
 - d) $\Sigma_1 \models \alpha \rightarrow \beta$ si y sólo si $\Sigma_1 \cup \{\alpha\} \models \beta$.

Solución

Pauta (6 pts.)

2.1 $\{M\}$ no es funcionalmente completo. Demostraremos por inducción que si $P = \{p\}$, entonces se cumple que toda $\varphi \in L(p)$ creada con $\{M\}$ es equivalente a p o a $\neg p$, y por lo tanto, no podemos construir una tautología o una contradicción.

Antes de realizar la inducción, transformamos nuestro operador a una fórmula equivalente en DNF y simplificamos:

$$M(p,q,r) \equiv (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge (\neg r \vee \neg q))$$

Esta fórmula nos permitirá evaluar de forma más sencilla el operador M(p,q,r).

4

Por demostrar: $\varphi \equiv p$ o $\varphi \equiv \neg p$.

B.I.

$$a) \ M(p,p,p) = (p \wedge \neg p \wedge \neg p) \vee (\neg p \wedge (\neg p \vee \neg p)) = \neg p$$

b)
$$M(p, p, \neg p) = (p \land \neg p \land p) \lor (\neg p \land (p \lor \neg p)) = \neg p$$

c)
$$M(p, \neg p, p) = (p \land p \land \neg p) \lor (\neg p \land (\neg p \lor p)) = \neg p$$

$$d) \ M(p, \neg p, \neg p) = (p \land p \land p) \lor (\neg p \land (p \lor p)) = p$$

$$e) \ M(\neg p, p, p) = (\neg p \land \neg p \land \neg p) \lor (p \land (\neg p \lor \neg p)) = \neg p$$

$$f)$$
 $M(\neg p, p, \neg p) = (\neg p \land \neg p \land p) \lor (p \land (p \lor \neg p)) = p$

$$q) \ M(\neg p, \neg p, p) = (\neg p \land p \land \neg p) \lor (p \land (\neg p \lor p)) = p$$

$$h) \ M(\neg p, \neg p, \neg p) = (\neg p \land p \land p) \lor (p \land (p \lor p)) = p$$

Por a) podemos ocupar $\neg p$ como input para nuestro operador. Si bien este es el único caso base necesario, enunciamos todas las combinaciones posibles con negación para aplicarlo directamente en el paso inductivo.

H.I. Si $\varphi_1, \varphi_2, \varphi_3 \in L(P)$ y se construyen utilizando únicamente $\{M\}$ entonces $\varphi_i \equiv p$ p $\varphi_i \equiv \neg p$ para $i \in \{1, 2, 3\}$

T.I. PD:
$$M(\varphi_1, \varphi_2, \varphi_3) \equiv p$$
 o $M(\varphi_1, \varphi_2, \varphi_3) \equiv \neg p$.

Existen 8 casos posibles:

a)
$$M(\varphi_1, \varphi_2, \varphi_3) \equiv M(p, p, p) \equiv \neg p$$

b)
$$M(\varphi_1, \varphi_2, \varphi_3) \equiv M(p, p, \neg p) \equiv \neg p$$

c)
$$M(\varphi_1, \varphi_2, \varphi_3) \equiv M(p, \neg p, p) \equiv \neg p$$

d)
$$M(\varphi_1, \varphi_2, \varphi_3) \equiv M(p, \neg p, \neg p) \equiv p$$

$$e) \ M(\varphi_1, \varphi_2, \varphi_3) \equiv M(\neg p, p, p) \equiv \neg p$$

$$f) M(\varphi_1, \varphi_2, \varphi_3) \equiv M(\neg p, p, \neg p) \equiv p$$

$$g) \ M(\varphi_1, \varphi_2, \varphi_3) \equiv M(\neg p, \neg p, p) \equiv p$$

h)
$$M(\varphi_1, \varphi_2, \varphi_3) \equiv M(\neg p, \neg p, \neg p) \equiv p$$

2.2 $\Sigma_1, \Sigma_2 \subseteq L(p), \alpha, \beta \in L(p)$.

a) Falso. Si
$$\Sigma_1 = \{ \neg \alpha, \neg \beta \}$$
 entonces $\Sigma \cup \{ \beta \} \models \alpha$, pero $\Sigma_1 \nvDash \alpha$

- b) Verdadero. Sea σ una valuación tal que $\sigma(\Sigma \cup \Sigma_2) = 1$. Esto es equivalente a decir que $\sigma(\Sigma_1) = 1$ y $\sigma(\Sigma_2) = 1$. Luego, por consecuencia lógica, $\sigma(\alpha) = 1$ y $\sigma(\beta) = 1$, y podemos concluir que $\sigma(\alpha \wedge \beta) = 1$.
- c) Falso.

Sea $\Sigma_1 = \{p\}$ y $\alpha = q$. Luego $\Sigma_1 \nvDash \alpha$ pero $\Sigma_1 \nvDash \neg \alpha$.

d) Verdadero. Debemos demostrar ambos sentidos de la doble implicancia.

 (\Rightarrow)

Sea σ una valuación tal que $\sigma(\Sigma_1 \cup \{\alpha\}) = 1$. Vamos a demostrar que $\sigma(\beta) = 1$.

Como $\sigma(\Sigma_1 \cup \{\alpha\}) = 1$ necesariamente debe cumplirse que $\sigma(\Sigma_1) = 1$ y $\sigma(\alpha) = 1$. Por consecuencia lógica, $\sigma(\Sigma_1) = 1$ implica que $\sigma(\alpha \to \beta) = \sigma(\neg \alpha \lor \beta) = 1$. Ya que sabemos que $\sigma(\alpha) = 1$, entonces necesariamente $\sigma(\neg \alpha) = 0$ y por lo tanto $\sigma(\beta) = 1$.

 (\Leftarrow)

Sea $\sigma(\Sigma_1) = 1$ Debemos demostrar que $\sigma(\alpha \to \beta) = 1$. Demostraremos por casos.

Caso 1: $\sigma(\alpha) = 1$

Luego $\sigma(\Sigma_1 \cup \{\alpha\}) = 1$ y por consecuencia logica $\sigma(\beta) = 1$. De esto concluimos que $\sigma(\alpha \to \beta) = 1$.

Caso 2: $\sigma(\alpha) = 0$

Por definción de la implicancia se cumple que $\sigma(\alpha \to \beta) = 1$.

Como en todos los casos posibles se cumple, entonces hemos demostrado que $\sigma(\alpha \to \beta) = 1$.

Dado lo anterior el puntaje asignado es el siguiente:

- (0.5 punto) Por notar el patrón de las fórmulas construidas con $\{M\}$
 - (1 puntos) Por el caso base.
 - (1 puntos) Por el paso inductivo.
 - (0.5 puntos) Por concluir correctamente.
- 2.2) (**0.75 puntos**) Por cada inciso de esta pregunta (demostración o contraejemplo), a cada sentido de la doble implicancia se le asigna la mitad del puntaje.

Puntajes parciales y soluciones alternativas a criterio del corrector.