CSCI203

Week 7 – Lecture B

Looking at Sorting (Again)

- We have already seen a number of sorting algorithms with varying efficiency.
 - ► Insertion Sort:
 - > Selection Sort:
 - ► Bubble Sort:
 - ► All O(n²)
 - ▶ Quick Sort:
 - ► Heap Sort:
 - ► Merge Sort:
 - ► All O(*n* log *n*)
- ► Can we do better than O(n log n) operations?

Linear Time Sorting?

- ▶ What if we could sort n items in O(n)?
- ▶ We can!
- ➤ Sometimes...
- ...provided the keys we wish to sort satisfy certain conditions:
 - ➤ The keys are integers;
 - Each key fits in a single word of memory;
 - \blacktriangleright All keys are smaller than some upper bound, k;
 - k satisfies a specific relationship to n.
 - ▶ (To be revealed later).

▶ Given these conditions we can sort our array as follows:

```
key: array[1..n] of integer
a: array[1..k] of integer
for i in 1..k
   a[i]=0
rof
for i in 1..n
   a[key[i]]++
rof
for i in 1..k
   for j in 1..a[i]
     print i
   rof
rof
```

- ▶ This algorithm takes:
 - \triangleright O(k) operations to initialize the array;
 - O(n) operations to store the keys;
 - ightharpoonup O(n+k) operations to output the result.
- ▶ Provided $k \in O(n)$ this algorithm is also in O(n).
- You might object that, if there is data associated with each key, it has been lost.
- ➤ You would be right!

Counting Sort Improved.

► We can address this objection by replacing our integer array with an array of lists.

```
key: array[1..n] of integer
a: array[1..k] of list[]
for i in 1..k
    a[i]=[]
rof
for i in 1..n
    append data to a[key[i]]
rof
for i in 1..k
    for j in 1..length[a[i]]
        print i,a[i][j]
    rof
rof
```

- ▶ Now, we have retained the data associated with each key.
 - In the order they appeared in the original data set.

- ▶ This, revised, version of counting sort is still O(n+k).
 - \triangleright O(n) if $k \in O(n)$.
- ▶ If $k \notin O(n)$ this will not be the case.
- ▶ If k >> n the algorithm is O(k).
- Can we find a way to sort n integers in O(n) time even if k is much larger than n?
- Yes—provided $k=n^{O(1)}$.
 - ightharpoonup We say k is polynomial in n.

- ► Radix sort works by treating the integer keys as numbers in some arbitrary base, b.
- ► E.g. *key*=123 decimal
 - > = 1111011 base 2
 - > = 173 base 8
 - > = 7B base 16
 - > = 443 base 5
 - > = 78 base 17
 - etc.
- Note: if the maximum value of key is k, the number of digits in a key, $d \le \lceil \log_b k \rceil$
- ► We will sort our keys using the digits in our selected base in order, as follows...

- ➤ Our algorithm is as follows:
 - sort the data by the least significant digit of the key
 - sort the data by the next least significant digit of the key
 - **>...**
 - sort the data by the most significant digit of the key
- We use counting sort for each of the sorts in the above sequence.
- Remember: counting sort preserves prior order.
 - ► We say counting sort is a *stable* sort.

- ► We can analyse radix sort as follows:
 - ▶ At each step we perform counting sort on n keys with k represented in base b.
 - \triangleright Each sort is O(n+b).
 - There are d sort steps, where $d = \lceil \log_b k \rceil$
 - ▶ Thus, our algorithm is $O((n+b).\log_b k)$
 - Now, if we set b=n, we get a complexity of $O((n+n).\log_n k)$
 - If k is polynomial in n, $\log_n k$ is a constant...
 - \triangleright ...and our algorithm is O(n).

An Example

- Consider the following set of numbers:
- ▶ 467, 362, 753, 178, 610, 800, 250, 138, 708, 426, 692, 426, 187, 965, 346, 257, 684, 575, 350, 594, *n*=20.
- Let us set the base, b, to 10.
- ▶ We will sort them by each decimal digit from least to most significant:

Key	d ₂	d_1	d_0
467	4	6	7 2 3
362	3	6	2
753	7	5	3
178	1	7	8
610	6	1	0
800	8	0	0
250	2	5	0
138	1	3	8
708	7	0	8
426	4	2 9 2	6 2 6 7
692	6	9	2
426	4		6
187	1	8	
965	9	6	5
346	3 2	4	6
257		5	7
684	6	8	4
575	5	7	5
350	3 5	5	0
594	5	9	4

Sort on d₀

Key	d ₂	d_1	d_0
610	6	1	0
800	8	0	0
250	2	5	0
350	3	5 5 6 9	0 2 2 3
362	3	6	2
692	6	9	2
753	7	5	3
684	6	8	4
594	5	9	4
965	9	6 7 2 2 4	5 5 6
575	5	7	5
426	4	2	6
426	3	2	6
346		4	6 7
467	4	6	7
187	1	8	7 7
187 257	1 2 1	5	
178		7	8
138	1	3	8
708	7	0	8

Key	d ₂	d ₁	d_0
610	6	1	0
800	8	0	0
250	2	5	0
350	3	5	0
362	3	6	2
692	6	9	2
753	7	5	3
684	6	8	4
594	5	9	4
965	9	6	5
575	5	7	5
426	4	7 2 2	6
426	4		6
346	3	4	6
467	4	6	7 7
187	<u>1</u> 2	8	
257		5 7	7
178	1		8
138	1	3	8
708	7	0	8

Now sort on d₁

Key	d ₂	d_1	d_0
800	8	0	0
708	7	0	8
610	6	1	0
426	4	1 2 2 3	6
426	4	2	6
138	1		8
346	3	4	6
250	3 2	4 5	0
350	3	5	0
753	7	5	3 7
257	2 3	5	7
362	3	6	2
965	9	6	5
467	4	6	7
575	5	7	5
178	1	7	8
684	6	8	4
187	1	8	7
692	6	9	2
594	5	9	4

	The second second		
Key	d ₂	d_1	d_0
800	8	0	0
708	7	0	8
610	6	1	0
426	4	2	6
426	4		6
138	1	3	8
346	3	4	6
250	2	5	0
350	3	5	0
753	7	5	3
257	2	5	7
362	3	6	2
965	9	6	5
467	4	6	7
575	5	7	5
178	1	7	8
684	6	8	4
187	1	8	7
692	6	9	2
594	5	9	4

Finally, sort on d₂

And we are done!

Key	d ₂	d_1	d_0
138	1	3	8
178	1	7	8
187	1	8	7
250	2	5	0
257	2	5	7
346	3	4	6
350	3	5	0
362	3	6	2
426	4	2	6
426	4	2	6
467	4	6	7
575	5	7	5
594	5	9	4
610	6	1	0
684	6	8	4
692	6	9	2
708	7	0	8
753	7	5	3
800	8	0	0
965	9	6	5

Analysis of Radix Sort

Analysis

- Although radix sort is O(n), we cannot immediately conclude that it will be faster than an order n log n sort such as merge sort.
- ▶ The critical issue is the size of log_2 n compared to $log_n k$.
- If we assume 64-bit integers $k = 2^{64}$.
- Let us look at the relationship for different values of n.

Analysis

▶ The following table compares $\log_2 n$ with $\log_n k$:

n	log ₂ n	log _n k
10	3.32	19.27
100	6.64	9.63
1,000	9.97	6.42
10,000	13.29	4.82
100,000	16.61	3.85
1,000,000	19.93	3.21

- As you can see, radix sort wins as soon as *n* is somewhere between one hundred and one thousand.
- ▶ In fact, the break-even point is *n*=256.
- ► For 32-bit integers break-even is n=51.