This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

F00 BIT OPTIMIZATION PROJECT

Meeting Schedule

Date: 5/22/98 Time: 1.30 PM Venue: Conference Room, E 159B

Agenda

1. Introduction by S.J. Huang.

- 2. IDEAS program validation and development.
- 3. Analysis of current F00 bit design.
- 4. Benchmarking of F00 bit with respect to F05 and FDS bits.
- 5. Development of F00 bit design.
 - Preliminary Insert Designs and their comparative analysis.
 - Variation of Insert counts and consequent results. V
 - Modification of bit cutting structure with results.
 - Discussion of results followed by recommendations for future development.

• ,	
•	
	\cdot
1 🖹	F00 BIT OPTIMIZATION PROJECT
	SMITH INTERNATIONAL, INC.
2 🗂	Agenda
	■ IDEAS PROGRAM VALIDATION AND DEVELOPMENT
	■ ANALYSIS AND BENCHMARKING OF CURRENT FOO BIT DESIGN WITH
	RESPECT TO F05 AND FDS BITS DEVELOPMENT OF THE F00 BIT
	■ NEXT STEP
	■ REAL TIME CHALLENGES
	■ SUPPLEMENTARY WORK
3 🛅	Program validation and development
•	■ Duplicating field results
	– W.O.B.= 7-13 kdAN
	– R.P.M.=80-240 rpm – R.O.P.=35 m/hr
	■ IDEAS Parameters & Results
	- Rock Types
	■ Ductile ■ Brittle
	- W.O.B.=10,000 kg-f
	- R.P.M.=140 rpm
	- R.O.P.=24-28 m/hr
	■ Verifying performance trends
4 🗇	Analysis and Benchmarking of current F00 bit design
	■ Identifying Key Performance Parameters
	- R.O.P.
	- Coverage
	■ Comparison with FDS and F05 bit designs
5 🗇	The Target
٠, ٠	The Target ■ DUCTILE ROCK
	- R.O.P.=24.82 m/hr
	- COVERAGE=56.02 %
	■ BRITTLE ROCK
	- R.O.P.=26.95 m/hr
	- COVERAGE-39.59 %

-

□ Development of F00 bit design

- **■** Insert shapes
 - 10 different shapes compared
- Row counts
 - Adding and subtracting inserts from all rows
- Cutting structure modifications
 - Improving core design

¬□ Selection of Inserts

- **CONVENTIONAL DESIGNS**
 - CHISEL
 - VECTOR
 - CONICAL
- **EXPERIMENTAL DESIGNS**
 - MAVERICK
 - DURA
 - COBRA

8 Surpassing The Target in Ductile Rock

- **INSERT SHAPES**
 - R.O.P. = 12% Increase [Vector]
 - COVERAGE = 4% Increase [Vector]
- **ROW COUNTS**
 - R.O.P. = 16% Increase [-1 Insert on each row]
 - COVERAGE = 5% Increase [-1 Insert on each row]

9 Achieving The Goal in Brittle Rock

- **INSERT SHAPES**
 - R.O.P. = 62% Increase [Vector] (Coverage being 5% lower)
 - COVERAGE = 5% Increase [Concept] (R.O.P. being 9% lower)
- **ROW COUNTS**
 - R.O.P. = 15% Increase [+1 Insert on each row]
 - COVERAGE = 14% Increase [+2 Inserts on each row]

10 Next Step

- Combination/selection of optimized insert shape for drive rows
- Optimize cutting structure
 - Bottom hole profile
 - Individual Row counts
 - Skip pitches

- Force Analysis
 - Balancing cutting structure based on forces
- Study of gage area

11 TReal Time Challenges

- Insert Retention
 - Iceman
 - Trucut
- Insert Rotation
 - Iceman
 - Off-gage
- Insert Breakage
 - Iceman
 - Off-gage
 - Trucut
- Cone Peeling

12 Supplementary Work

- IDEAS program development
- Lab testing
 - Single insert indentation tests
- Insert manufacture (Including RTW in the design loop)
 - Injection Molding
 - Punch and die process
- Patent Issues


```
1DEAS Calculation Summary
  Project:
                  /users/fa8297/ideas/orca-bit
  Diameter of Bit:
                            7.87 (in)
                                             [200 (mm)]
  Weight on Bit: 22046 (lbf)
                                     [10000 (kgf)]
  Revolutions per minute: 140 (rpm)
  Revolutions of Simulated:
                                     40 (rev)
  Hardness coefficient of Rock:
                                     14504 (lbf/in2) [100.0 (Mpa)]
  The Critical Contact Depth of Rock:
                                             7.874 [in]
                                                               [200.0 (mm)]
  Anti-breakage Factor of Rock:
                                    1000.000 (Mpa/mm)
  Borehole area: 48.707 (sq.in)
  Rev.
          CutArea Coverage
          (sq.in) %
  1
          20.94
                   43.00
  2
          27.54
                   56.53
  3
          26.24
                   53.88
  4
          25.16
                   51.66
  5
          26.82
                   55.06
 6
          31.18
                   64.02
 7
          26.00
                   53.39
 8
          27.28
                  56.01
 9
          30.34
                  62.30
 10
          28.54
                  58.60
 11
          26.23
                  53.86
 12
          25.48
                  52.31
 13
          27.01
                  55.45
 14
          31.35
                  64.36
 15
          22.71
                  46.62
 16
          28.75
                  59.03
 17
          26.37
                  54.15
 18
          28.02
                  57.53
 19
          28.74
                  59.00
 20
         30.89
                  63.42
 21
         26.36
                  54.13
 22
         26.43
                  54.26
 23
         29.97
                  61.52
 24
         24.78
                  50.88
 25
         28.05
                  57.58
26
         29.69
                  60.96
27
         23.68
                  48.63
28
         26.64
                  54.69
29
         30.10
                  61.79
30
         22.58
                  46.36
31
         28.48
                  58.47
32
         26.57
                  54.55
33
         27.83
                  57.13
34
         24.03
                  49.34
35
         32.74
                  67.22
36
         29.79
                 61.16
37
         24.48
                 50.26
38
         26.74
                 54.90
39
         27.40
                 56.25
40 .
         26.16
                 53.71
Average of Coverage for Bit:
                                   55.85 %
Average of Coverage for Each Row:
Cone
        Row
                 Rmin
                          Rmax
                                   C.Avr
                                           CovI
                                                    CovA
                 (in)
                          (in)
                                   (sq.in) %
                                                    ¥
1
         1
                 3.827
                          3.937
                                   0.005
                                           0.17
                                                    0.01
1
        2
                 3.488
                          3.937
                                  0.488
                                           4.66
                                                    1.00
1
        3
                 3.047
                          3.936
                                  1.986
                                           10.19
                                                    4.08
1
        4
                 1.898
                         3.074
                                  6.412
                                           34.92
                                                    13.17
1
        5
                 -0.020
                         1.007
                                  0.460
                                           14.46
                                                    0.95
        1
                 3.802
                         3.937
                                  0.005
                                           0.14
                                                   0.01
        2
                 3.507
                         3.937
                                  0.341
                                           3.39
                                                   0.70
        3
                 3.013
                         3.936
                                  1.680
                                           8.34
                                                   3.45
                 2.544
                         3.768
                                  6.231
                                           25.67
                                                   12.79
                 0.537
                         1.651
                                  2.506
                                           32.75
                                                   5.15
```

2

2

2

2

```
1
                 3.807
                                  0.005
                         3.937
                                          0.15
                                                  0.01
3
         2
                 3.486
                         3.937
                                  0.465
                                          4.42
                                                  0.95
3
         3
                 3.008
                         3.937
                                 2.215
                                          10.92
3
                                                  4.55
         4
                 1.225
                         2.351
                                  4.360
                                          34.47
3
                                                  8.95
         5
                 0.352
                         0.738
                                  0.029
Max Penetration Depth
                                          2.23
                                                  0.06
                         0.437 (ft)
Average of ROP 85.38 (ft/h)
                                          [133 (mm)]
                                  [26.02 (m/h)]
Ratio of Cone Rotary Speed to Bit:
Cone
        Ratio
1
        1.1950
2
        1.2750
3
        1.1320
Scraping Brittle File Size
                                 19248 (bytes)
Vertical Brittle File Size
                                 19200 (bytes)
Shell Contacted Times
                        255 (times)
Contact Percentage of Shell to Rock
                                         5.3125 %
```

Const.	fr fc	FZ
Core 1	2.5/26 .7	3.6/3.7
(one 2	3-0/h · 7	4.2/4.5
Cone 3	2.0/17.3	2.6 /25
Con 1 3 Row	1.8/1.6.2	2.7/2.5
Cone 3 Blow	1.6/1.6,2	2.0/2 2