Lista 7

Questão 3

Demonstre a proposição a seguir: uma função $f:A\to\mathbb{R}$, definida em um aberto $A\subset\mathbb{R}$, é contínua se, e somente se, para todo $c\in\mathbb{R}$, os conjuntos

$$[f < c] = \{x \in A : f(x) < c\} \in [f > c] = \{x \in A : f(x) > c\}$$
 forem abertos.

 (\Rightarrow)

Assumir que f é contínua. Dado $c \in \mathbb{R}$, mostremos que [f < c] é aberto. Seja $a \in [f < c]$, isto é, f(a) < c. Mostraremos que a é um ponto interior de [f < c]. Tomamos um $\epsilon > 0$ tal que $\epsilon < c - f(a)$, pela continuidade de f, existe $\delta > 0$ tal que

Finalmente

$$x \in A \cap (a - \delta, a + \delta) \Longrightarrow f(x) < c$$

 $A \cap (a - \delta, a + \delta) \subset [f < c],$

portanto a é um ponto interior de [f < c]. Analogamente provamos que [f > c] é aberto.

 (\Leftarrow)

Assumir que [f < c] e [f > c] são abertos para todo $c \in \mathbb{R}$. Dado $a \in A$ e $\epsilon > 0$. Os conjuntos $[f < f(a) + \epsilon]$ e $[f > f(a) - \epsilon]$ são abertos. Então existe um $\delta > 0$ tal que

$$(a - \delta, a + \delta) \subset [f < f(a) + \epsilon] \cap [f > f(a) - \epsilon] \cap A.$$

Consequentemente

dado
$$x \in (a - \delta, a + \delta) \Longrightarrow x \in A$$
, $f(x) < f(a) + \epsilon e f(x) > f(a) - \epsilon$
 $x \in A e |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \epsilon$.

Portanto f é continua em $a \in A$.

Lista 7

Questão 9

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função arbitrária. Para cada $n \in \mathbb{N}$, consideremos o conjunto

$$C_n = \{a \in \mathbb{R} : \text{ existe } I \ni a \text{ aberto tal que se } x, y \in I, \text{ então } |f(x) - f(y)| < 1/n \}.$$

Demonstre que:

- (a) Cada C_n é um conjunto aberto;
- (b) f é contínua em a se, e somente se, $a \in C_n$ para todo $n \in \mathbb{N}$.

Conclua que o conjunto dos pontos de continuidade de qualquer função $f: \mathbb{R} \to \mathbb{R}$ é uma intersecção enumerável de abertos.

Prova:

- (a) Seja $a \in C_n$, então existe um intervalo aberto I_a que contrem a tal que $\forall x, y \in I_a \Longrightarrow |f(x) f(y)| < 1/n$. Como I_a é um intervalo aberto, existe $\delta > 0$ tal que $(a \delta, a + \delta) \subset I_a$. Basta mostar que $(a \delta, a + \delta) \subset C_n$, para afirmar que C_n é aberto. Dado $b \in (a \delta, a + \delta)$, existe um $\delta_1 > 0$ tal que $(b \delta_1, b + \delta_1) \subset (a \delta, a + \delta)$. Logo, $(b \delta_1, b + \delta_1) \subset I_a$ e para todo $x, y \in (b \delta_1, b + \delta_1) \Longrightarrow |f(x) f(y)| < 1/n$. Concluindo que $b \in C_n$ e $(a \delta, a + \delta) \subset C_n$.
- (b) \Rightarrow) Assumir que f é contínua em a, dado $n \in \mathbb{N}$ existe $\delta > 0$ tal que

para cada
$$z \in (a - \delta, a + \delta) \Longrightarrow |f(z) - f(a)| < \frac{1}{4n}.$$
 (1)

Tomamos $x, y \in (a - \delta, a + \delta)$ por (1)

$$|f(x) - f(a)| < \frac{1}{4n} e |f(y) - f(a)| < \frac{1}{4n}$$

$$|f(x) - f(y)| \le |f(x) - f(a)| + |f(a) - f(y)| < \frac{1}{4n} + \frac{1}{4n} = \frac{1}{2n} < \frac{1}{n},$$

provando que $a \in C_n$.

 \Leftarrow

Supor que $a \in C_n$ para todo $n \in \mathbb{N}$. Dado $\epsilon > 0$, existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \epsilon$. Por hipóteses existe um intervalo aberto I_a que contém a tal que

$$x, y \in I_a$$
, implica $|f(x) - f(y)| < 1/n < \epsilon$.

Existe $\delta > 0$ tal que $(a - \delta, a + \delta) \subset I_a$ e fazendo y = a obtemos

$$x \in (a - \delta, a + \delta)$$
, implica $|f(x) - f(a)| < \epsilon$.

Então f é contínua em a.

Seja $C = \{x \in \mathbb{R} : f \text{ \'e contínua em } x\}$, pela parte (b) afirmamos que

$$C = \{x \in \mathbb{R} : x \in C_n \text{ para todo } n \in \mathbb{N}\} = \bigcap_{n \in \mathbb{N}} \{x \in \mathbb{R} : x \in C_n\}.$$

Por conseguinte $C = \bigcap_{n \in \mathbb{N}} C_n$ e pela parte (a) temos que cada C_n é aberto. Portanto C é a interseção enumerável de abertos.