MATH 710 HW # 3

MARIO L. GUTIERREZ ABED PROF. A. BASMAJIAN

Problem 1 (Problem 9-1). Suppose M is a smooth manifold, $X \in \mathfrak{X}(M)$, and γ is a maximal integral curve of X.

- a) We say γ is **periodic** if there is a number T > 0 such that $\gamma(t + T) = \gamma(t)$ for all $t \in \mathbb{R}$. Show that exactly one of the following holds:
 - $-\gamma$ is constant.
 - $-\gamma$ is injective.
 - $-\gamma$ is periodic and nonconstant.
- b) Show that if γ is periodic and nonconstant, then there exists a unique positive number T (called the **period of** γ) such that $\gamma(t) = \gamma(t')$ if and only if t t' = kT for some $k \in \mathbb{Z}$.
- c) Show that the image of γ is an immersed submanifold of M; diffeomorphic to \mathbb{R} , \mathbb{S}^1 , or \mathbb{R}^0 .

Proof of a). If γ is constant, then it obviously cannot be nonconstant periodic nor can it be injective. Thus let us we assume that γ is nonconstant. If γ is not injective then $\gamma(t_0) = \gamma(t_1)$ for some $t_0 \neq t_1$ (say, WLOG, $t_0 < t_1$), and γ is defined on at least $(t_0 - \varepsilon, t_1 + \varepsilon)$ for some $\varepsilon > 0$. Let $T = t_1 - t_0$. Then γ and $t \mapsto \gamma(t_1 + t)$ are both integral curves of X starting at $\gamma(t_0)$, and thus γ must be defined on at least $(t_0 - \varepsilon, t_1 + T + \varepsilon)$. By induction, $t_0 + kT$ is in the domain of γ for all $k \in \mathbb{Z}$, so γ is defined on \mathbb{R} and has period T.

Proof of b). Let \mathcal{A} be the set of all T > 0 such that $\gamma(t+T) = \gamma(t)$ for all $t \in \mathbb{R}$, which is nonempty since γ is assumed to be periodic. If we can show that \mathcal{A} is closed, then $T_0 = \inf \mathcal{A} \in \mathcal{A}$ is the period of γ . But if $T \notin \mathcal{A}$, then $\gamma(t+T) \neq \gamma(t)$ for some $t \in \mathbb{R}$, so

$$\gamma^{-1}(M \setminus \{\gamma(t)\}) - t' = \{t - t' : \gamma(t) \neq \gamma(t')\}$$

is a neighborhood of T contained in $\mathbb{R} \setminus \mathcal{A}$.

Proof of c). If γ is constant, it is obvious that the image of γ is diffeomorphic to \mathbb{R}^0 . Otherwise, Proposition 9.21¹ shows that γ is a smooth immersion. If γ is injective, then Proposition 5.18² shows

Proposition. Let V be a smooth vector field on a smooth manifold M, and let $\theta \colon \mathfrak{D} \to M$ be the flow generated by V. If $p \in M$ is a singular point of V, then $\mathfrak{D}^{(p)} = \mathbb{R}$ and $\theta^{(p)}$ is the constant curve $\theta^{(p)}(t) \equiv p$. If p is a regular point, then $\theta^{(p)} \colon \mathfrak{D}^{(p)} \to M$ is a smooth immersion.

Proposition (Images of Immersions as Submanifolds). Suppose M is a smooth manifold (with or without boundary), N is a smooth manifold, and $F \colon N \to M$ is an injective smooth immersion. Let S = F(N). Then S has a unique topology and smooth structure such that it is a smooth submanifold of M and such that $F \colon N \to S$ is a diffeomorphism onto its image.

¹Here's Proposition 9.21, for reference:

²Here's Proposition 5.18, for reference

that the image of γ is diffeomorphic to \mathbb{R} , and if γ is periodic then it descends to a smooth injective immersion from \mathbb{S}^1 to M (using a suitable smooth covering of \mathbb{S}^1 by \mathbb{R}), which is a diffeomorphism onto its image.

Problem 2 (Problem 9-3). Compute the flow of each of the following vector fields on \mathbb{R}^2 :

- a) $V = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$.
- b) $W = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$.
- c) $X = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$.
- d) $Y = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$.

Solution. Let $\gamma(t) = (x(t), y(t))$ a curve. We have the differential equations

$$x'(t) = y(t)$$
 $y'(t) = 1$
 $x'(t) = x(t)$ $y'(t) = 2y(t)$
 $x'(t) = x(t)$ $y'(t) = -y(t)$
 $x'(t) = y(t)$ $y'(t) = x(t)$

Therefore the flows are, respectively,

$$\theta_{t}(x,y) = \left(x + ty + \frac{1}{2}t^{2}, y + t\right),$$

$$\theta_{t}(x,y) = (xe^{t}, ye^{2t})$$

$$\theta_{t}(x,y) = (xe^{t}, ye^{-t})$$

$$\theta_{t}(x,y) = \frac{1}{2} \left(e^{t}(x+y) + e^{-t}(x-y), e^{t}(x+y) - e^{-t}(x-y)\right).$$

Problem 3 (Problem 9-4). For any integer $n \geq 1$, define a flow on the odd-dimensional sphere $\mathbb{S}^{2n-1} \subseteq \mathbb{C}^n$ by $\theta(t,z) = e^{it}z$. Show that the infinitesimal generator of θ is a smooth nonvanishing vector field on \mathbb{S}^{2n-1} . [Remark: in the case n=2, the integral curves of X are the curves γ_z of Problem 3-6, so this provides a simpler proof that each γ_z is smooth.]

Proof. For all $z \in \mathbb{C}^n$ let $\gamma_z(t) = \theta(t, z)$, so that the infinitesimal generator $\theta^{(z)'}(0) = \gamma_z'(0) = ie^{it}z|_{t=0} = iz \partial/\partial z$, which is clearly smooth and nonvanishing (it would only vanish at $z = z_0 = 0$ but $z_0 \notin \mathbb{S}^{2n-1}$).

Problem 4 (Problem 9-5). Suppose M is a smooth, compact manifold that admits a nowhere vanishing smooth vector field. Show that there exists a smooth map $F: M \to M$ that is homotopic to the identity and has no fixed points.

Proof. Let V be a nowhere vanishing smooth vector field on M. Since M is compact, we know that there is a global flow $\theta \colon \mathbb{R} \times M \to M$ of V (Corollary 9.17). Then by Theorem 9.22,³ each p has a neighborhood U_p in which V has the coordinate representation $\partial/\partial s^1$. Choosing a sufficiently small neighborhood V_p of p, there is some $T_p > 0$ such that $\theta_t(x) = x + (t, 0, \dots, 0)$ in local coordinates for all $0 \le t \le T_p$ and $x \in V_p$. Since $\{V_p : p \in M\}$ is an open cover of M, there is a finite subcover $\{V_{p_1}, \dots, V_{p_n}\}$. Let $T = \min\{T_{p_1}, \dots, T_{p_n}\}$. Then θ_T has no fixed points, and the map $H \colon M \times I \to M$ given by $(x, t) \mapsto \theta(tT, x)$ is a homotopy from the identity to θ_T .

Problem 5 (Problem 9-6 (The Escape Lemma)). Suppose M is a smooth manifold and $V \in \mathfrak{X}(M)$. If $\gamma \colon J \to M$ is a maximal integral curve of V whose domain J has a finite least upper bound b, show that for any $t_0 \in J$, $\gamma([t_0,b])$ is not contained in any compact subset of M.

Proof. Let θ be the flow of V. Let $\{b_n\}$ be an increasing sequence contained in $[t_0, b)$ and converging to b. Since $\gamma([t_0, b))$ is contained in a compact set $E \subseteq M$, there is a subsequence $\{\gamma(b_{n_k})\}$ of $\{\gamma(b_n)\}$ that converges to a point $p \in E$. Choose some $\varepsilon > 0$ and a neighborhood U of p such that θ is defined on $(-2\varepsilon, 2\varepsilon) \times U$, and choose an integer m such that $b_m \in (b - \varepsilon, b)$ and $\gamma(b_m) \in U$. Define $\gamma_1 : [t_0, b + \varepsilon) \to M$ by

$$\gamma_1(t) = \begin{cases} \gamma(t) & \text{if } t_0 \le t < b, \\ \theta^{(\gamma(b_m))}(t - b_m) & \text{if } b \le t < b + \varepsilon. \end{cases}$$

For all $t \in (b_m, b)$ we have

$$\theta^{(\gamma(b_m))}(t - b_m) = \theta_{t - b_m}(\gamma(b_m)) = \gamma(t),$$

so γ_1 is smooth because γ and $t \mapsto \theta^{(\gamma(b_m))}(t - b_m)$ agree where they overlap. But γ_1 extends γ at b, which contradicts the maximality of γ . $(\Rightarrow \Leftarrow)$

³Here's Theorem 9.22, for reference:

Theorem (Canonical Form Near a Regular Point). Let V be a smooth vector field on a smooth manifold M; and let $p \in M$ be a regular point of V. There exist smooth coordinates (s^i) on some neighborhood of p in which V has the coordinate representation $\partial/\partial s^1$. If $S \subseteq M$ is any embedded hypersurface with $p \in S$ and $V_p \notin T_p S$, then the coordinates can also be chosen so that s^1 is a local defining function for S.