

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07H 21/04, C07K 14/47, C12N 15/63, 1/21, 15/85		A1	(11) International Publication Number: WO 99/37660 (43) International Publication Date: 29 July 1999 (29.07.99)
(21) International Application Number: PCT/US99/01313 (22) International Filing Date: 22 January 1999 (22.01.99)		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 60/072,298 23 January 1998 (23.01.98) US 60/098,539 28 August 1998 (28.08.98) US		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i> <i>With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.</i>	
(71)(72) Applicants and Inventors: IRUELA-ARISPE, Luisa [ES/US]; 1342 Holmby Avenue, Los Angeles, CA 90024 (US). HASTINGS, Gregg, A. [US/US]; 1615 Medowen Glen Court, Thousand Oaks, CA 91320 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US).			
(74) Agents: STEFFE, Eric, K.; Steme, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, D.C. 20005-3934 (US) et al.			
(54) Title: METH1 AND METH2 POLYNUCLEOTIDES AND POLYPEPTIDES			
(57) Abstract			
<p>The present invention relates to novel anti-angiogenic proteins, related to thrombospondin. More specifically, isolated nucleic acid molecules are provided encoding human METH1 and METH2. METH1 and METH2 polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. Also provided are diagnostic methods for the prognosis of cancer and therapeutic methods for treating individuals in need of an increased amount of METH1 or METH2.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

METH1 and METH2 Polynucleotides and Polypeptides

Background of the Invention

Federally-Sponsored Research and Development

Part of the work performed during development of this invention utilized
5 U.S. Government funds. The U.S. Government has certain rights in this invention.

Field of the Invention

The present invention relates to novel anti-angiogenic proteins, related to
thrombospondin. More specifically, isolated nucleic acid molecules are provided
10 encoding human METH1 and METH2 (ME, for metalloprotease, and TH, for
thrombospondin). METH1 and METH2 polypeptides are also provided, as are
vectors, host cells and recombinant methods for producing the same. Also
provided are diagnostic methods for the prognosis of cancer and therapeutic
methods for treating individuals in need of an increased amount of METH1 or
METH2.

15 ***Related Art***

Angiogenesis, the formation of new blood vessels from pre-existing
vasculature, is a tightly regulated process in normal adults. Under physiological
circumstances, growth of new capillaries is tightly controlled by an interplay of
growth regulatory proteins which act either to stimulate or to inhibit blood vessel
20 growth. Normally, the balance between these forces is tipped in favor of inhibition
and consequently blood vessel growth is restrained. Under certain pathological
circumstances, however, local inhibitory controls are unable to restrain the
increased activity of angiogenic inducers. Angiogenesis is a key step in the
metastasis of cancer (Folkman, *Nature Med.* 1:27-31 (1995)) and in abnormal
25 wound healing, inflammation, rheumatoid arthritis, psoriasis, and diabetic
retinopathy, it is integral to the pathology (Folkman *et al.*, *Science* 235:442-447
(1987)), engendering the hope that these pathological entities could be regulated

by pharmacological and/or genetic suppression of blood vessel growth (Iruela-Arispe *et al.*, *Thromb. Haem.* 78:672-677 1997)).

5 Thrombospondin-1 (TSP-1) is a 450 kDa, anti-angiogenic adhesive glycoprotein released from activated platelets and secreted by growing cells (reviewed in Adams, *Int. J. Biochem. Cell. Biol.* 29:861-865 (1997)). TSP-1 is a homotrimer, with each subunit comprised of a 1152 amino acid residue polypeptide, post-translationally modified by *N*-linked glycosylation and beta-hydroxylation of asparagine residues.

10 TSP-1 protein and mRNA levels are regulated by a variety of factors. TSP-1 protein levels are downregulated by IL-1 alpha and TNF alpha. TSP-1 mRNA and protein levels are upregulated by polypeptide growth factors including PDGF, TGF-beta, and bFGF (Bornstein, *Faseb J.* 6: 3290-3299 (1992)) and are also regulated by the level of expression of the p53 tumor suppressor gene product (Dameron *et al.*, *Science* 265:1582-1584 (1994)). At least four other members 15 of the thrombospondin family have been identified: TSP-2, TSP-3, TSP-4, and TSP-5 (also called COMP). There is a need in the art to identify other molecules involved in the regulation of angiogenesis.

Summary of the Invention

20 The present invention provides isolated nucleic acid molecules comprising a polynucleotide encoding the METH1 polypeptide having the amino acid sequence shown in SEQ ID NO:2 or the amino acid sequence encoded by the cDNA clone deposited in a bacterial host as ATCC Deposit Number 209581 on January 15, 1998.

25 The present invention also provides isolated nucleic acid molecules comprising a polynucleotide encoding the METH2 polypeptide having the amino acid sequence shown in SEQ ID NO:4 or the amino acid sequence encoded by the cDNA clone deposited in a bacterial host as ATCC Deposit Number 209582 on January 15, 1998.

5 The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using them for production of METH1 or METH2 polypeptides or peptides by recombinant techniques.

The invention further provides an isolated METH1 or METH2 polypeptide having an amino acid sequence encoded by a polynucleotide described herein.

10 The invention further provides a diagnostic method useful during diagnosis or prognosis of cancer.

15 An additional aspect of the invention is related to a method for treating an individual in need of an increased level of METH1 or METH2 activity in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an isolated METH1 or METH2 polypeptide of the invention or an agonist thereof.

15

Brief Description of the Figures

Figure 1 shows the nucleotide (SEQ ID NO:1) and deduced amino acid (SEQ ID NO:2) sequences of METH1. The protein has a predicted leader sequence of about 28 amino acid residues (underlined).

20

Figure 2 shows the nucleotide (SEQ ID NO:3) and deduced amino acid (SEQ ID NO:4) sequences of METH2. The protein has a predicted leader sequence of about 23 amino acid residues (underlined).

25

Figure 3 shows a comparison of the amino acid sequence of METH1 (SEQ ID NO:2) and METH2 (SEQ ID NO:4) with that of their closest homologue, a bovine metalloprotease (pNPI) (SEQ ID NO:5). Identical amino acids are boxed. Functional domains predicted by sequence and structural homology are labeled, including the signal peptide (single line), the potential cleavage site for mammalian subtilisin (double underlined), the zinc-binding-site (dotted line) in the metalloprotease domain, and the putative disintegrin loops (arrows).

Figure 4 shows the primary structure of METH1, METH2 and pNPI which includes a prodomain, a catalytic metalloprotease domain, a cysteine rich disintegrin domain, a TSP-like domain, a spacer region and a different number of TSP-like domains, three for METH1, two for METH2, and four for pNPI.

5 Figure 5 shows a comparison of the TSP-like domain of METH1 (SEQ ID NO:2) and METH2 (SEQ ID NO:4) with those of TSP1 (SEQ ID NOs:6, 7, and 8) and TSP2 (SEQ ID NOs:9, 10, and 11), cysteines are numbered 1 to 6, tryptophans are marked by asterisks.

10 Figure 6 shows that peptides and recombinant protein derived from the TSP-like domain of METH1 and METH2 block VEGF-induced angiogenesis. Angiogenesis was induced on CAMs from 12-14-day-old embryos using a nylon mesh containing VEGF casted on matrigel and in the presence or absence of the peptides or recombinant protein. Capillary density was evaluated as described in Example 4. Positive and negative control included VEGF alone and vehicle alone, respectively. (A) Quantification of the angiogenic response induced by VEGF in the presence of recombinant proteins. TSP1, purified platelet TSP1, GST, purified GST, GST-TSP1, GST-METH1, and GST-METH2 are described in Example 4. (B) Quantification of the angiogenic response induced by VEGF in the presence or absence of the peptides; P-TSP1, P-METH1, and P-METH2 (peptide derived from the Type I repeats of TSP, METH1 and METH2, respectively); SC1 and SC2 are scramble peptides used as controls. (C) Dose-response of the VEGF-induced angiogenesis in the presence of GST-METH1. (D) Dose-response of the VEGF-induced angiogenesis in the presence of GST-METH2. The angiogenic index was expressed considering the vascular response from the VEGF-matrigel as 100% and subtracting the background levels (matrigel alone). Assays were repeated, at least, twice. Each treatment was done in triplicate. Values represent the mean, bars indicate standard deviations. *p<0.001.

20 Figure 7 shows the effect of METH1 and METH2 recombinant proteins on bFGF-stimulated cell proliferation. Cells were cultured on 24-well plates in media containing bFGF and the recombinant protein to be tested (3 µg/ml, unless
25
30

indicated in the graph). Controls included vehicle or GST recombinant protein alone. (A), HDEC, human dermal endothelial cells; (B), HMEC, human mammary epithelial cells; (C), HDF, human dermal fibroblasts; (D), SMC, smooth muscle cells; (E) Dose-response of GST-METH1 and GST-METH2 on HDEC proliferation. Experiments were repeated, at least, twice. Each treatment was done in triplicate. Values represent the mean, bars indicate standard deviations.

5 *p<0.01.

10 Figure 8 shows a schematic representation of the pHE4-5 expression vector (SEQ ID NO:12) and the subcloned METH1 or METH2 cDNA coding sequence. The locations of the kanamycin resistance marker gene, the METH1 or METH2 coding sequence, the oriC sequence, and the *lacIq* coding sequence are indicated.

15 Figure 9 shows the nucleotide sequence of the regulatory elements of the pHE promoter (SEQ ID NO:13). The two *lac* operator sequences, the Shine-Delgarno sequence (S/D), and the terminal *HindIII* and *NdeI* restriction sites (*italicized*) are indicated.

20 Figure 10 shows an analysis of the METH1 amino acid sequence. Alpha, beta, turn and coil regions; hydrophilicity and hydrophobicity; amphipathic regions; flexible regions; antigenic index and surface probability are shown, and all were generated using the default settings. In the "Antigenic Index or Jameson-Wolf" graph, the positive peaks indicate locations of the highly antigenic regions of the METH1 or METH2 protein, i.e., regions from which epitope-bearing peptides of the invention can be obtained. The domains defined by these graphs are contemplated by the present invention. Tabular representation of the 25 data summarized graphically in Figure 10 can be found in Table 1.

30 Figure 11 shows an analysis of the METH2 amino acid sequence. Alpha, beta, turn and coil regions; hydrophilicity and hydrophobicity; amphipathic regions; flexible regions; antigenic index and surface probability are shown, and all were generated using the default settings. In the "Antigenic Index or Jameson-Wolf" graph, the positive peaks indicate locations of the highly antigenic

regions of the METH1 or METH2 protein, i.e., regions from which epitope-bearing peptides of the invention can be obtained. The domains defined by these graphs are contemplated by the present invention. Tabular representation of the data summarized graphically in Figure 11 can be found in Table 2.

Table 1

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Met	1	A	A	0.41	*	.	.	.	-0.30	0.60
Gly	2	.	A	.	.	.	C	0.91	*	.	.	.	0.50	0.81
Asn	3	A	A	0.71	*	.	.	.	0.75	1.24
Ala	4	A	A	0.89	*	.	.	.	1.09	1.26
Glu	5	A	A	0.93	*	.	.	F	1.58	1.97
Arg	6	.	A	B	.	.	.	1.23	.	.	.	F	1.92	1.21
Ala	7	.	.	B	.	T	.	1.69	.	.	.	F	2.66	1.61
Pro	8	.	.	.	T	T	.	1.39	.	.	.	F	3.40	1.82
Gly	9	.	.	.	T	T	.	1.28	.	.	.	F	3.06	1.25
Ser	10	.	.	.	T	T	.	0.93	.	.	.	F	2.42	1.07
Arg	11	.	.	.	T	T	.	0.61	*	.	.	F	1.93	0.68
Ser	12	.	.	.	T	T	.	0.34	*	.	.	F	1.74	1.07
Phe	13	.	.	B	.	T	.	0.34	*	.	.	F	0.25	0.59
Gly	14	.	.	B	.	T	.	0.38	*	.	.	F	0.25	0.47
Pro	15	.	.	B	B	.	.	-0.13	*	.	.	F	-0.45	0.50
Val	16	.	.	B	B	.	.	-1.06	*	.	.	F	-0.45	0.48
Pro	17	.	.	B	B	.	.	-1.57	.	.	.	F	-0.45	0.40
Thr	18	.	A	B	.	.	.	-1.68	.	.	.	F	-0.45	0.21
Leu	19	.	A	B	.	.	.	-1.92	.	.	.	-0.60	0.24	.
Leu	20	A	A	-2.30	.	.	.	-0.60	0.15	.
Leu	21	A	A	-2.03	.	.	.	-0.60	0.11	.

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini Surfis...
Leu	22	A	A					-2.63				-0.60	0.13	
Ala	23	A	A					-3.13				-0.60	0.13	
Ala	24	A	A					-2.91				-0.60	0.13	
Ala	25	A	A					-2.96				-0.60	0.16	
Leu	26	A	A	B				-2.44				-0.60	0.12	
Leu	27	A	A	B				-1.63				-0.60	0.16	
Ala	28	A	A	B				-1.63				-0.30	0.26	
Val	29	A	A	B				-1.86				-0.30	0.32	
Ser	30	A	A					-1.61	*	*		-0.30	0.32	
Asp	31	A	A					-0.69	*	*	F	-0.15	0.31	
Ala	32	A	A					-0.09	*	*	F	0.75	0.83	
Leu	33		A				C	0.20	*	*	F	1.55	0.96	
Gly	34		A				C	1.06	*	*	F	1.85	0.77	
Arg	35					T	C	1.36	*	*	F	2.70	1.32	
Pro	36					T	C	1.36	*	*	F	3.00	2.76	
Ser	37					T	C	1.94	*	*	F	2.70	4.66	
Glu	38	A				T		2.76	*	*	F	2.20	4.12	
Glu	39	A	A					2.29	*	*	F	1.50	4.61	
Asp	40	A	A					1.32	*	*	F	1.20	2.84	
Glu	41	A	A					0.68			F	0.90	1.22	
Glu	42	A	A					0.77			F	0.75	0.52	
Leu	43	A	A					0.77				0.60	0.48	

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisten.. Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Val	44	A	A						-0.04				0.60	0.48
Val	45	A	A						-0.04	*			-0.30	0.23
Pro	46	A	A						0.07	*			-0.30	0.48
Glu	47	A							-0.52	*		F	1.10	1.27
Leu	48	A							0.08	*		F	1.41	1.73
Glu	49	A							0.59	*		F	1.72	1.73
Arg	50	A							1.41	*		F	1.88	0.99
Ala	51	A				T			1.28	*		F	2.24	1.64
Pro	52					T	T		0.97	*		F	3.10	0.93
Gly	53					T	T			1.47	*	F	2.49	0.69
His	54					T	C	1.58	*	*	F	1.38	0.98	
Gly	55						C	0.66	*	*	F	1.62	1.25	
Thr	56						C	1.36	*	*	F	0.71	1.04	
Thr	57			A	B			0.76	*	*	F	0.60	1.49	
Arg	58			A	B				1.07	*	F	0.60	1.25	
Leu	59			A	B				0.51	*		0.45	1.17	
Arg	60			A	B				0.16	*		0.30	0.82	
Leu	61			A	B				0.47	*		-0.30	0.36	
His	62			A	B				0.78	*		-0.30	0.74	
Ala	63			A	A				0.67	*		0.30	0.65	
Phe	64			A	A				0.67	*		-0.15	1.37	
Asp	65			A	A				0.56	*	F	-0.15	0.83	

-10-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Gln	66	A	A	0.56	*	F	0.60	1.37		
Gln	67	A	A	0.59	*	F	0.60	1.30		
Leu	68	A	A	0.37	*	F	0.90	1.35		
Asp	69	A	A	1.18	*	.	0.30	0.64		
Leu	70	A	B	0.97	*	.	0.94	0.73		
Glu	71	A	B	0.97	*	.	1.43	1.37		
Leu	72	A	B	0.67	*	.	1.77	1.37		
Arg	73	T	C	1.18	*	F	2.86	2.22		
Pro	74	T	T	0.48	*	F	3.40	1.72		
Asp	75	T	T	0.48	*	F	2.76	1.80		
Ser	76	T	C	-0.11	*	F	2.07	0.76		
Ser	77	.	.	B	.	.	.	0.49	*	F	0.73	0.50		
Phe	78	.	.	B	.	.	.	0.03	*	.	0.24	0.46		
Leu	79	.	.	B	.	.	.	-0.46	.	.	-0.40	0.34		
Ala	80	.	.	B	.	T	.	-0.77	.	.	-0.20	0.22		
Pro	81	.	.	B	.	T	.	-1.28	.	.	-0.20	0.37		
Gly	82	.	.	.	T	T	.	-0.98	.	.	0.20	0.37		
Phe	83	.	.	B	.	T	.	-0.28	.	.	-0.20	0.63		
Thr	84	.	.	B	B	.	.	-0.32	.	.	-0.60	0.65		
Leu	85	.	.	B	B	.	.	-0.08	*	.	-0.60	0.49		
Gln	86	.	.	B	B	.	.	0.24	*	.	-0.29	0.56		
Asn	87	.	.	B	.	T	.	0.63	*	F	0.87	0.76		

-11-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Val	88	.	.	B	.	.	T	.	1.03	*	*	F	1.93	1.84
Gly	89	T	C	1.00	*	.	F	2.74	1.42
Arg	90	T	T	.	1.51	*	.	F	3.10	0.87
Lys	91	T	C	1.51	*	.	F	2.74	1.58
Ser	92	T	C	1.20	*	.	F	2.43	2.76
Gly	93	T	C	1.84	.	.	F	2.38	2.04
Ser	94	T	C	1.38	.	.	F	2.33	1.57
Glu	95	C	1.06	.	.	F	1.63	0.97
Thr	96	C	1.01	.	.	F	2.04	1.51
Pro	97	C	1.00	.	.	F	2.60	1.96
Leu	98	C	1.34	.	.	F	2.04	1.63
Pro	99	A	0.83	.	.	F	1.58	1.89
Glu	100	A	A	0.24	.	.	F	1.12	1.01
Thr	101	A	A	0.52	.	.	F	0.86	1.23
Asp	102	A	A	0.07	.	.	F	0.60	1.08
Leu	103	A	A	0.18	.	.	F	0.30	0.34
Ala	104	A	A	0.14	.	.	-0.60	0.20	.
His	105	.	A	B	-0.16	*	.	-0.60	0.19	.
Cys	106	.	A	B	-0.19	*	.	-0.60	0.31	.
Phc	107	.	A	B	-0.50	*	.	-0.60	0.30	.
Tyr	108	.	.	B	.	.	T	.	-0.54	.	.	-0.20	0.32	.
Ser	109	T	T	.	0.04	*	.	F	0.35	0.44

Res	Pos.	Garni.. Alpha	Chou.... Alpha	Garni.. Beta	Chou.... Beta	Garni.... Turn	Chou.... Turn	Garni.. Coll	Kyte.... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surf...
Gly	110	.	.	.	T	T	.	-0.27	.	*	F	0.35	0.82	
Thr	111	.	.	.	T	T	.	0.40	.	*	F	0.59	0.52	
Val	112	.	B	B	.	.	.	0.89	.	*	F	0.93	0.65	
Asn	113	.	.	B	T	.	.	0.83	.	*	F	1.72	1.01	
Gly	114	.	.	B	.	C	.	0.83	.	*	F	1.61	0.94	
Asp	115	.	.	.	T	C	.	0.59	.	*	F	2.40	1.69	
Pro	116	.	.	.	T	C	.	0.31	.	*	F	2.16	1.06	
Ser	117	.	.	.	T	C	.	0.58	.	*	F	1.92	1.08	
Ser	118	A	.	.	T	.	.	-0.23	.	*	F	1.33	0.66	
Ala	119	A	A	-0.19	.	.	.	-0.06	0.35	
Ala	120	A	A	-1.00	.	.	.	-0.30	0.35	
Ala	121	A	A	-1.46	.	.	.	-0.60	0.22	
Leu	122	A	A	-1.16	.	.	.	-0.60	0.11	
Ser	123	A	A	-1.20	.	.	.	-0.30	0.20	
Leu	124	A	A	-1.47	*	*	.	-0.30	0.19	
Cys	125	.	A	B	.	.	.	-0.77	*	*	.	-0.30	0.17	
Glu	126	.	A	B	.	.	.	-0.52	*	*	.	0.30	0.25	
Gly	127	A	-0.30	*	*	F	0.65	0.30	
Val	128	A	-0.70	*	*	F	0.65	0.57	
Arg	129	.	B	-0.13	*	*	F	0.65	0.29	
Gly	130	.	B	B	.	.	.	-0.28	*	*	.	-0.60	0.45	
Ala	131	.	B	B	.	.	.	-1.09	*	*	.	-0.60	0.50	

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Phe	132	.	B	B	.	.	.	-1.09	*	*	.	.	-0.60	0.21
Tyr	133	.	B	B	.	.	.	-0.23	*	*	.	.	-0.60	0.21
Leu	134	.	A	B	B	.	.	-0.93	*	*	.	.	-0.60	0.36
Leu	135	.	A	B	B	.	.	-0.83	*	*	.	.	-0.60	0.42
Gly	136	A	A	.	B	.	.	-0.94	-0.60	0.42
Glu	137	A	A	-1.13	-0.60	0.44
Ala	138	A	A	.	B	.	.	-0.89	-0.60	0.38
Tyr	139	.	.	B	B	.	.	-0.29	-0.60	0.66
Phe	140	.	.	B	B	.	.	-0.29	-0.60	0.59
Ile	141	.	.	B	B	.	.	-0.16	-0.60	0.48
Gln	142	.	.	B	B	.	.	-0.74	-0.60	0.48
Pro	143	.	.	B	B	.	.	-0.74	-0.60	0.55
Leu	144	.	A	.	.	.	C	-0.80	*	*	.	.	-0.40	0.80
Pro	145	.	A	.	.	.	C	-0.10	*	*	.	.	-0.10	0.62
Ala	146	A	A	0.90	*	*	.	.	0.30	0.69
Ala	147	A	A	0.09	*	*	.	.	0.75	1.64
Ser	148	A	A	-0.29	*	*	F	0.75	0.88	
Glu	149	A	A	0.21	*	*	F	0.45	0.88	
Arg	150	A	A	-0.17	*	*	F	0.60	1.25	
Leu	151	A	A	-0.17	*	*	.	.	0.30	0.94
Ala	152	A	A	0.21	*	*	.	.	0.30	0.55
Thr	153	A	A	0.17	*	*	.	.	0.04	0.43

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou.... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Emin... Surfa...
Ala	154	A	A	0.17	.	.	.	F	2.07	0.89
Ala	155	.	.	.	T	C	0.10	.	*	.	F	.	0.08	0.52
Pro	156	.	.	.	T	C	0.70	.	.	.	F	.	2.86	1.24
Gly	157	.	.	T	T	.	.	1.08	.	.	F	.	3.40	1.90
Glu	158	.	.	.	T	C	0.80	.	.	F	.	2.86	2.90	
Lys	159	C	1.18	.	.	F	.	2.32	1.90	
Pro	160	C	0.96	.	*	F	.	1.98	2.97	
Pro	161	C	1.17	.	*	F	.	1.64	1.41	
Ala	162	A	A	.	.	.	0.81	.	*	F	.	0.60	1.22	
Pro	163	A	A	.	.	.	0.78	.	*	.	.	-0.60	0.68	
Leu	164	A	A	.	.	.	-0.08	.	*	.	.	-0.60	0.60	
Gln	165	A	A	.	.	.	-0.68	.	*	.	.	-0.60	0.49	
Phe	166	.	A	B	.	.	-0.36	.	*	.	.	-0.60	0.26	
Ile	167	.	A	B	.	.	0.34	*	*	.	.	-0.26	0.62	
Leu	168	.	A	B	.	.	0.56	*	*	.	.	0.38	0.70	
Leu	169	.	A	B	.	.	1.48	*	*	.	.	0.87	1.31	
Arg	170	.	.	.	T	T	1.48	*	.	F	.	3.06	1.88	
Arg	171	.	.	.	T	T	1.83	*	.	F	.	3.40	3.96	
Asn	172	.	.	.	T	T	1.87	*	.	F	.	3.06	4.75	
Arg	173	.	.	.	T	T	1.82	*	.	F	.	2.72	4.05	
Gln	174	.	.	.	T	.	2.29	.	.	F	.	2.43	1.53	
Gly	175	.	.	.	T	.	1.83	.	.	F	.	2.19	0.94	

-15-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Asp	176	.	.	.	T	T	.	1.41	.	*	F	.	2.30	0.48
Val	177	.	B	.	.	T	.	0.74	*	.	F	.	1.85	0.40
Gly	178	.	.	.	T	T	.	0.29	*	.	F	.	2.50	0.22
Gly	179	.	B	.	.	T	.	-0.57	.	*	F	.	1.85	0.13
Thr	180	.	B	B	.	.	.	-1.08	.	*	F	.	0.30	0.13
Cys	181	.	B	B	.	.	.	-1.08	.	.	.	-0.10	0.10	.
Gly	182	.	B	B	.	.	.	-0.22	.	.	.	-0.05	0.16	.
Val	183	.	B	B	.	.	.	0.12	.	.	.	0.30	0.19	.
Val	184	.	B	B	.	.	.	0.26	*	.	.	0.90	0.60	.
Asp	185	.	B	.	T	.	.	0.68	*	*	F	.	1.75	0.94
Asp	186	.	B	.	T	.	.	1.13	*	*	F	.	2.20	2.49
Glu	187	.	B	.	T	.	.	1.17	*	*	F	.	2.50	5.18
Pro	188	.	.	.	T	C	.	1.68	*	*	F	.	3.00	4.48
Arg	189	.	.	.	T	C	.	2.58	*	*	F	.	2.70	2.66
Pro	190	.	.	.	T	C	.	1.99	*	*	F	.	2.40	3.07
Thr	191	.	.	.	T	C	.	1.99	*	*	F	.	2.10	2.00
Gly	192	.	.	.	T	C	.	1.68	*	*	F	.	1.80	1.77
Lys	193	A	A	1.89	*	*	F	.	0.90	1.65
Ala	194	A	A	1.78	*	*	F	.	0.90	1.98
Glu	195	A	A	1.99	*	*	F	.	0.90	3.35
Thr	196	A	A	2.30	*	*	F	.	0.90	2.90
Glu	197	A	A	2.64	*	*	F	.	0.90	4.79

5

10

15

20

-16-

Res	Pos.	Garni.. Alpha	Chou-.. Alpha	Garni.. Beta	Chou-.. Beta	Garni... Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Asp	198	A	A	2.26	*	F	0.90	4.79		
Glu	199	A	A	.	.	.	T	2.53	.	F	0.90	3.29		
Asp	200	A	.	.	.	T	.	2.53	.	F	1.30	2.74		
Glu	201	A	.	.	.	T	.	2.50	.	F	1.30	2.84		
Gly	202	A	.	.	.	T	.	2.50	.	F	1.30	1.62		
Thr	203	A	.	.	.	T	.	2.50	.	F	1.30	1.68		
Glu	204	A	A	2.50	*	F	0.90	1.62		
Gly	205	A	A	2.16	*	F	1.20	2.84		
Glu	206	A	A	1.94	*	F	1.50	1.95		
Asp	207	.	A	.	.	T	.	2.29	*	F	2.20	1.74		
Glu	208	.	A	.	.	.	C	2.31	*	F	2.30	3.04		
Gly	209	T	C	2.01	*	F	3.00	1.85		
Pro	210	T	T	2.14	.	F	2.60	1.48		
Gln	211	T	T	2.14	.	F	2.30	1.32		
Trp	212	T	C	2.14	.	F	1.44	2.32		
Ser	213	C	1.93	.	F	1.78	2.50		
Pro	214	T	T	1.69	.	F	2.12	2.23		
Gln	215	T	C	1.09	*	F	1.56	2.15		
Asp	216	T	C	1.09	.	F	2.40	1.32		
Pro	217	T	C	1.03	.	F	2.16	1.48		
Ala	218	T	.	0.48	.	F	1.77	0.85		
Leu	219	.	.	B	.	.	.	0.34	*	F	0.53	0.38		

5

10

15

20

-17-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte-... Hydro...	Eisen.. Alpha	Karpf... Flexi...	James... Anig...	Emini Surfa...
Gln	220	.	B	.	.	T	.	0.34	*	F	-0.01	0.24	
Gly	221	.	B	.	.	T	.	0.13	*	F	-0.05	0.41	
Val	222	.	B	.	.	T	.	0.03	*	F	-0.05	0.77	
Gly	223	.	B	.	.	T	.	0.28	*	F	0.25	0.64	
Gln	224	.	B	.	.	T	.	0.78	*	F	0.25	0.64	
Pro	225	.	B	.	.	T	.	0.43	.	F	0.20	1.25	
Thr	226	T	.	0.48	*	F	0.60	1.25	
Gly	227	T	C	0.44	*	F	0.45	0.97	
Thr	228	.	.	B	.	T	.	0.90	*	F	0.25	0.44	
Gly	229	.	.	B	.	T	.	0.94	*	F	0.85	0.60	
Ser	230	.	.	B	.	T	.	1.20	*	F	1.30	1.20	
Ile	231	.	A	B	.	.	.	1.62	*	F	0.90	1.67	
Arg	232	.	A	B	.	.	.	1.27	*	F	0.90	3.30	
Lys	233	.	A	B	.	.	.	0.72	*	F	0.90	2.13	
Lys	234	.	A	B	B	.	.	0.77	*	F	0.90	2.26	
Arg	235	.	A	B	B	.	.	0.77	*	F	0.90	1.55	
Phe	236	.	.	B	B	.	.	1.62	*	.	0.75	1.04	
Val	237	.	.	B	B	.	.	1.62	*	.	0.30	0.71	
Ser	238	.	.	B	.	T	.	1.33	*	.	0.70	0.71	
Ser	239	T	C	0.43	*	.	0.15	1.28	
His	240	T	C	0.32	*	.	0.45	1.28	
Arg	241	T	C	0.71	*	.	1.05	1.65	

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Emmi Surfa...
Tyr	242	A			B				0.97	*			0.45	1.78
Val	243	A			B				0.46	*			0.45	1.29
Glu	244				B	B			-0.10	*			-0.30	0.54
Thr	245				B	B			-0.66	*			-0.60	0.26
Met	246	A			B	B			-0.77	*			-0.60	0.35
Leu	247	A			B				-0.52				0.30	0.34
Val	248	A			B				0.03				-0.30	0.41
Ala	249	A			B				-0.57				-0.30	0.55
Asp	250	A					T		-0.84		F		0.25	0.66
Gln	251	A					T		-0.24		F		0.25	0.90
Ser	252	A					T		-0.13		F		1.30	1.54
Met	253	A					T		0.69	*			0.70	0.80
Ala	254	A							0.93	*			-0.10	0.63
Glu	255	A							0.63	*			-0.10	0.46
Phe	256	A							0.29	*			-0.10	0.63
His	257	A					T		-0.22	*			0.10	0.61
Gly	258	A					T		0.42	*	F		0.25	0.29
Ser	259	A					T		0.98	*	F		0.25	0.68
Gly	260	A					T		0.73	*	F		0.85	0.68
Leu	261	A	A						0.62		F		0.00	1.07
Lys	262	A	A						-0.16				-0.60	0.66
His	263		A	B					-0.12	*			-0.60	0.55

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Tyr	264	.	A	B	.	.	.	-0.63	*	.	.	-0.60	0.96	
Leu	265	.	A	B	.	.	.	-0.99	*	.	.	-0.60	0.40	
Leu	266	.	A	B	.	.	.	-0.48	*	.	.	-0.60	0.25	
Thr	267	.	A	B	.	.	.	-1.38	*	.	.	-0.60	0.22	
Leu	268	.	A	B	.	.	.	-1.93	*	.	.	-0.60	0.19	
Phe	269	A	A	-2.28	*	.	.	-0.60	0.24	
Ser	270	A	A	-1.36	*	.	.	-0.60	0.17	
Val	271	A	A	-1.36	*	.	.	-0.60	0.39	
Ala	272	A	A	-1.29	*	.	.	-0.60	0.38	
Ala	273	A	A	-0.43	*	.	.	-0.60	0.44	
Arg	274	A	A	0.23	*	.	.	-0.15	1.18	
Leu	275	A	A	.	.	T	.	0.32	*	.	.	0.45	1.59	
Tyr	276	.	.	B	.	.	T	0.88	*	.	.	1.39	2.44	
Lys	277	.	.	B	.	.	.	0.58	*	F	1.48	1.67		
His	278	.	.	B	.	.	T	1.28	*	F	1.12	1.42		
Pro	279	.	.	B	.	T	.	1.17	*	F	2.36	1.77		
Ser	280	.	.	.	T	T	.	1.68	*	F	3.40	1.43		
Ile	281	.	.	B	.	T	.	1.07	*	F	2.36	1.41		
Arg	282	.	.	B	B	.	.	0.72	*	F	1.47	0.67		
Asn	283	.	.	B	B	.	.	-0.06	*	F	1.13	0.67		
Ser	284	.	.	B	B	.	.	-0.70	*	F	0.19	0.79		
Val	285	.	.	B	B	.	.	-1.26	*	.	-0.30	0.30		

Res	Pos.	Garnai... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Ser	286	.	.	B	B	.	.	-1.22	*	.	.	-0.60	0.14	
Leu	287	.	.	B	B	.	.	-1.29	*	.	.	-0.60	0.08	
Val	288	.	.	B	B	.	.	-2.18	*	.	.	-0.60	0.21	
Val	289	.	.	B	B	.	.	-2.69	*	.	.	-0.60	0.11	
Val	290	.	.	B	B	.	.	-2.69	*	.	.	-0.60	0.11	
Lys	291	.	.	B	B	.	.	-3.28	*	.	.	-0.60	0.11	
Ile	292	.	.	B	B	.	.	-2.50	*	.	.	-0.60	0.10	
Leu	293	.	.	B	B	.	.	-1.64	*	.	.	-0.60	0.19	
Val	294	.	.	B	B	.	.	-0.79	*	.	.	-0.30	0.16	
Ile	295	.	.	B	B	.	.	0.07	*	.	.	0.00	0.39	
His	296	A	.	B	.	.	.	0.07	*	.	.	0.90	0.81	
Asp	297	A	.	B	.	.	.	0.61	*	.	.	1.80	2.19	
Glu	298	A	.	B	.	.	.	1.21	*	.	.	2.30	3.09	
Gln	299	.	.	T	.	.	.	2.07	*	.	.	3.00	3.51	
Lys	300	.	.	.	C	.	C	2.10	*	.	.	2.50	3.64	
Gly	301	.	.	.	T	C	C	1.82	*	.	.	2.40	1.56	
Pro	302	.	.	T	C	.	T	1.52	*	.	.	2.10	1.30	
Glu	303	.	.	B	.	.	T	1.52	*	.	.	1.45	0.87	
Val	304	A	T	0.93	*	.	.	1.00	1.42	
Thr	305	A	T	0.30	*	.	.	0.85	0.93	
Ser	306	A	T	-0.17	*	.	.	0.85	0.54	
Asn	307	A	T	-0.27	*	.	.	-0.05	0.60	

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turø	Chou... Turø	Garni.. Coll	Kyle... Hydro...	Eisen.. Alpha	Kapl... Flexi...	James... Antig...	Emini Surfa...
Ala	308	A	.	.	.	T	.	-1.08	*	*	.	-0.20	0.60
Ala	309	A	-0.11	*	*	.	-0.40	0.37
Leu	310	A	0.20	*	*	.	-0.10	0.45
Thr	311	.	B	-0.20	*	*	.	-0.10	0.72
Leu	312	.	B	-0.87	*	*	.	-0.40	0.61
Arg	313	.	B	-0.28	*	*	.	-0.40	0.40
Asn	314	.	.	T	.	.	.	0.02	*	*	.	0.30	0.44
Phe	315	.	.	T	T	.	.	0.83	*	*	.	0.20	0.57
Cys	316	.	.	T	T	.	.	1.19	*	*	.	0.20	0.50
Asn	317	.	.	T	T	.	.	2.00	*	*	.	0.20	0.62
Trp	318	.	.	T	T	.	.	1.86	*	*	.	0.35	1.25
Gln	319	.	.	T	.	.	.	1.86	.	.	.	0.45	3.16
Lys	320	.	.	T	.	.	.	2.34	*	*	F	0.60	3.16
Gln	321	.	.	T	.	.	.	2.80	.	.	F	0.94	4.65
His	322	C	2.50	*	*	F	1.68	4.15	
Asn	323	C	2.79	*	*	F	2.02	2.78	
Pro	324	.	.	.	T	C	2.90	.	.	F	2.56	2.68	
Pro	325	.	.	T	T	.	.	2.86	*	*	F	3.40	3.86
Ser	326	.	.	.	T	C	2.27	.	.	F	2.86	4.01	
Asp	327	.	.	.	T	C	2.30	.	.	F	2.52	2.62	
Arg	328	A	A	2.27	.	.	F	1.58	2.94
Asp	329	A	A	2.23	*	*	F	1.24	2.98

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Ala	330	A	A	2.44	*	.	.	.	0.90	2.80
Glu	331	A	A	2.43	*	.	.	.	0.75	2.38
His	332	A	.	.	.	T	.	1.84	*	.	.	.	1.15	2.06
Tyr	333	A	.	.	.	T	.	0.84	*	.	.	.	0.85	2.06
Asp	334	A	.	.	.	T	.	0.03	0.70	0.83
Thr	335	A	.	.	.	T	.	-0.08	-0.20	0.51
Ala	336	A	A	-0.39	*	.	.	.	-0.60	0.28
Ile	337	A	A	-0.24	*	.	.	.	-0.60	0.24
Leu	338	.	A	B	.	.	.	0.00	-0.60	0.33
Phe	339	.	A	B	.	.	.	0.00	*	.	.	.	-0.60	0.56
Thr	340	.	A	B	.	.	.	-0.50	*	.	F	0.00	1.34	
Arg	341	.	A	B	.	.	.	-0.58	*	F	0.25	1.34	.	
Gln	342	.	A	.	T	.	.	-0.03	*	F	1.35	0.83	.	
Asp	343	.	A	.	T	.	.	0.48	*	F	1.60	0.57	.	
Leu	344	.	A	.	T	.	.	1.18	*	F	2.15	0.39	.	
Cys	345	.	.	.	T	T	.	1.18	*	F	2.50	0.39	.	
Gly	346	.	.	.	T	T	.	0.40	.	F	2.25	0.34	.	
Ser	347	.	.	.	T	T	.	0.40	.	F	1.10	0.22	.	
Gln	348	.	.	B	.	.	.	0.69	.	F	1.35	0.68	.	
Thr	349	.	.	B	.	.	.	0.09	.	F	0.90	0.99	.	
Cys	350	.	.	B	.	.	.	0.41	.	F	0.05	0.61	.	
Asp	351	.	.	B	.	T	.	0.16	*	F	0.25	0.35	.	

-23-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni... Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpel... Flexi...	James... Antig...	Emini... Surfa...
Thr	352	.	B	.	.	T	.	-0.13	.	F	0.25	0.24		
Leu	353	.	B	.	.	T	.	-0.13	.	.	0.10	0.45		
Gly	354	.	B	.	.	T	.	-0.68	.	.	0.70	0.45		
Met	355	.	B	-0.36	.	.	-0.10	0.23		
Ala	356	.	B	-0.67	.	.	-0.10	0.28		
Asp	357	.	B	.	.	T	.	-1.21	.	.	0.10	0.41		
Val	358	.	B	.	.	T	.	-1.07	.	.	0.10	0.30		
Gly	359	.	B	.	.	T	.	-0.72	.	.	0.10	0.16		
Thr	360	.	B	.	.	T	.	-0.33	.	.	0.70	0.16		
Val	361	.	B	-0.04	*	.	0.24	0.34		
Cys	362	.	B	0.07	*	.	1.18	0.46		
Asp	363	.	B	.	.	T	.	0.62	*	.	1.87	0.62		
Pro	364	T	T	0.30	*	.	F	3.06	1.12	
Ser	365	T	T	0.31	*	.	F	3.40	1.12	
Arg	366	T	T	0.31	*	.	F	2.91	0.90	
Ser	367	.	.	.	B	T	.	0.09	*	.	F	1.87	0.43	
Cys	368	.	B	B	.	.	.	0.09	*	.	.	0.38	0.22	
Ser	369	.	B	B	.	.	.	0.30	*	.	.	0.64	0.20	
Val	370	.	B	B	.	.	.	0.60	*	.	.	0.30	0.25	
Ile	371	.	B	B	.	.	.	0.14	*	.	.	0.60	0.77	
Glu	372	.	B	B	.	.	.	-0.37	.	.	.	0.60	0.57	
Asp	373	A	.	.	.	T	.	0.30	.	F	1.15	0.63		

Res	Pos.	Garni. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surfa...
Asp	374	A						T		0.01	*				1.30	1.56
Gly	375	A						T		0.28					1.00	0.91
Leu	376	A						T		0.47	*				0.70	0.55
Gln	377	A	A							0.16					-0.30	0.29
Ala	378	A	A							-0.16	*				-0.60	0.42
Ala	379	A	A							-0.74	*				-0.60	0.73
Phe	380	A	A							-0.43	*				-0.60	0.43
Thr	381	A	A							0.38	*				-0.60	0.57
Thr	382	A	A							-0.43	*				-0.30	0.98
Ala	383	A	A							-0.19	*				-0.60	0.94
His	384	A	A							0.37	*				-0.30	0.64
Glu	385	A	A							0.21	*				-0.30	0.61
Leu	386	A	A							-0.18	*				-0.30	0.45
Gly	387	A			B					0.13	*				-0.60	0.28
His	388	A			B					0.12	*				-0.60	0.26
Val	389	A			B					-0.06	*				-0.60	0.32
Phe	390	A			B					-0.09	*				-0.60	0.49
Asn	391				B					0.72	*				-0.60	0.49
Met	392				B				T	1.07	*				0.25	1.11
Pro	393	A							T	0.51	*				0.85	2.14
His	394							T	T	1.41	*			F	1.70	1.34
Asp	395	A						T		2.11	*			F	1.30	2.72

5

10

15

20

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coll	Kyte-... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Asp	396	A	A						1.44	*		F	0.90	3.04
Ala	397	A	A						1.46	*		F	0.90	1.20
Lys	398	A	A						1.37	*	*	F	0.75	0.73
Gln	399	A	A						0.59	*			0.60	0.58
Cys	400		A	B					0.59	*			-0.30	0.48
Ala	401		A	B					0.24	*			0.30	0.38
Ser	402			B					-0.02	*			0.10	0.22
Leu	403			B					-0.07	*			0.04	0.30
Asn	404					T	T		-0.07	*			0.68	0.48
Gly	405					T	T		0.60			F	1.37	0.62
Val	406							C	0.89			F	1.96	1.26
Asn	407					T	C	1.16				F	2.40	1.05
Gln	408		A			T		1.37	*			F	1.96	1.44
Asp	409		A			T		0.77	*			F	1.72	1.92
Ser	410		A			T		0.52						
His	411		A	A				1.08	*				-0.06	0.69
Met	412		A	A					0.48				0.30	0.55
Met	413		A	A					-0.33				-0.60	0.41
Ala	414		A	A					-0.63				-0.60	0.25
Ser	415		A	A					-0.33	*			-0.60	0.34
Met	416		A	A					-1.11	*			-0.60	0.55
Leu	417		A					T	-0.51	*			-0.20	0.45

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Karp... Flexi...	Janes... Antig...	Emini Surfa...	
Ser	418	A				T		0.06	*			0.38	0.56	
Asn	419	A				T		0.34				0.66	0.76	
Leu	420					T	C	0.64				1.29	1.24	
Asp	421					T	T	1.03				2.37	1.60	
His	422					T	T	1.56		F		2.80	1.54	
Ser	423					T	C	1.56		F		1.72	1.97	
Gln	424					T	C	1.34		F		1.44	1.58	
Pro	425					T			1.49		F		0.86	1.79
Trp	426					T			1.19		F		0.43	0.72
Ser	427					T	C	0.63		F		0.15	0.55	
Pro	428					T	T	0.69		F		0.35	0.36	
Cys	429					T	T	0.09				0.20	0.54	
Ser	430			B		T		-0.59				-0.20	0.40	
Ala	431			B	B			-0.61				-0.60	0.18	
Tyr	432			B	B			-0.61				-0.60	0.49	
Met	433			B	B			-1.10				-0.60	0.49	
Ile	434			B	B			-1.24	*			-0.60	0.42	
Thr	435			B	B			-0.94	*			-0.60	0.22	
Ser	436			B	B			-0.36	*			-0.60	0.37	
Phe	437			B	B			-0.46	*			-0.60	0.85	
Leu	438			B		T		0.11	*	F		0.56	0.58	
Asp	439					T	T	0.66	*	F		1.27	0.59	

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coll	Kyle... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Asn	440	T	C	0.97	.	.	F	1.38	0.68	
Gly	441	T	T	0.60	.	.	F	2.94	1.42	
His	442	T	T	0.49	.	.	F	3.10	0.46	
Gly	443	A	.	.	.	T	.	0.70	.	.	F	1.49	0.23	
Glu	444	A	.	.	.	T	.	0.70	.	.	.	1.03	0.23	
Cys	445	.	.	B	.	T	.	0.74	.	.	.	1.32	0.29	
Leu	446	.	A	B	.	.	.	0.88	.	.	.	1.25	0.58	
Met	447	.	A	B	.	.	.	0.91	*	.	.	1.28	0.52	
Asp	448	.	A	.	.	T	.	1.26	*	.	F	2.02	1.67	
Lys	449	.	A	.	.	.	C	1.04	*	.	F	2.16	3.26	
Pro	450	T	T	0.82	*	*	F	3.40	5.10	
Gln	451	T	T	1.63	*	*	F	3.06	2.14	
Asn	452	.	.	B	.	T	.	1.42	*	*	F	2.02	1.85	
Pro	453	.	.	B	.	T	.	1.21	*	*	F	0.63	0.99	
Ile	454	.	.	B	.	.	.	0.82	*	*	F	0.09	0.88	
Gln	455	.	.	B	.	.	.	1.03	*	*	F	-0.25	0.54	
Leu	456	.	.	B	.	T	.	0.22	*	*	F	0.25	0.59	
Pro	457	.	.	B	.	T	.	0.01	*	*	F	0.25	0.69	
Gly	458	.	.	B	.	T	.	-0.12	.	.	F	0.25	0.62	
Asp	459	.	.	B	.	T	.	0.46	*	*	F	0.25	0.74	
Leu	460	.	.	B	.	T	C	0.16	*	*	F	1.05	0.69	
Pro	461	.	.	B	.	T	.	0.72	*	*	F	0.85	0.93	

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpi... Flexi...	James... Antig...	Emini... Surfa...
Gly	462	.	B	.	.	T	.	.	0.93	.	.	F	0.25	0.88
Thr	463	.	B	.	.	T	.	.	0.69	.	*	F	0.74	1.78
Ser	464	.	B	0.69	*	.	F	1.48	1.16
Tyr	465	.	.	.	T	.	.	.	1.61	*	.	F	2.22	1.88
Asp	466	.	.	.	T	T	.	.	1.82	.	.	.	2.61	2.56
Ala	467	.	.	.	T	T	.	.	1.50	*	.	F	3.40	3.31
Asn	468	.	.	.	T	T	.	.	1.81	*	.	F	2.76	1.13
Arg	469	.	.	B	.	T	.	.	1.41	*	.	F	2.32	1.17
Gln	470	.	.	B	B	.	.	.	1.34	*	.	.	0.53	1.01
Cys	471	.	.	B	B	.	.	.	0.64	*	.	.	0.04	0.90
Gln	472	.	.	B	B	.	.	.	0.89	.	.	.	-0.60	0.40
Phe	473	.	.	B	B	.	.	.	0.89	.	.	.	-0.26	0.23
Thr	474	.	.	B	B	.	.	.	0.78	.	.	.	0.08	0.74
Phe	475	.	.	B	T	.	.	.	0.48	*	.	.	1.72	0.71
Gly	476	.	.	.	T	T	.	.	1.19	*	.	F	2.76	1.10
Glu	477	.	.	.	T	T	.	.	1.16	*	.	F	3.40	1.52
Asp	478	.	.	.	T	T	.	.	1.19	*	.	F	3.06	2.39
Ser	479	.	.	.	T	T	.	.	1.29	*	.	F	2.72	1.30
Lys	480	.	.	.	T	.	.	.	1.99	*	.	F	2.43	1.16
His	481	.	.	.	T	.	.	.	1.74	*	.	F	2.34	1.16
Cys	482	.	.	.	T	C	.	.	1.16	*	.	F	2.10	0.87
Pro	483	A	.	.	T	.	.	.	0.86	.	.	F	2.15	0.44

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyle... Hydro...	Eisen... Alpha	Karpf... Flexi...	Janes... Antig...	Emini Surfa...
Asp	484					T	T		0.84	*		F	2.50
Ala	485	A					T		0.13	*		F	2.00
Ala	486	A							-0.13			F	1.17
Ser	487			B		T	T		0.22			F	1.40
Thr	488			B		T	T		-0.38	*		F	0.41
Cys	489			B		T	T		-0.67	*		F	1.75
Ser	490			B		T	T		-0.74			F	0.33
Thr	491			B					-0.47			F	0.46
Leu	492			B					-0.51			F	0.38
Trp	493			B					-0.51			F	0.30
Cys	494			B					-0.14			F	0.60
Thr	495			B		T	T		-0.19			F	0.11
Gly	496					B	T		-0.22			F	-0.05
Thr	497					T	T		-0.27			F	-0.60
Ser	498					T	T		-0.79			F	0.22
Gly	499					T	T		-0.98			F	-0.60
Gly	500						T		-1.33			F	0.35
Val	501					B	B		-0.99			F	0.14
Leu	502					B	B		-0.99			-0.60	0.10
Val	503					B	B		-0.64			-0.60	0.14
Cys	504							T	-0.33			-0.20	0.38
Gln	505						T		-0.69			0.10	0.62

-30-

Res	Pos.	Garni.. Alpha	Chou.... Alpha	Garni.. Beta	Chou.... Beta	Garni.... Turn	Chou.... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karp... Flexi...	James... Antig...	Emini Surface...
Thr	506	.	B	.	T	.	.	-0.04	.	.	F	0.25	0.72	
Lys	507	.	B	.	T	.	.	0.48	.	.	F	0.40	2.09	
His	508	.	.	.	C	0.74	-0.05	1.27	
Phe	509	.	B	.	.	1.41	-0.40	0.89	
Pro	510	.	.	T	.	.	1.07	0.30	0.74	
Trp	511	.	.	T	T	.	1.07	0.20	0.54	
Ala	512	.	.	T	T	.	0.72	0.51	0.90	
Asp	513	.	.	T	T	.	0.09	.	.	F	1.27	0.78		
Gly	514	.	.	T	T	.	0.44	.	.	F	1.58	0.40		
10	Thr	515	.	T	T	.	0.66	.	.	F	2.49	0.39		
Ser	516	.	.	T	T	.	0.60	.	*	F	3.10	0.40		
Cys	517	.	.	T	T	.	1.23	.	*	F	2.49	0.40		
Gly	518	.	.	T	T	.	0.94	.	*	F	2.48	0.56		
Glu	519	.	.	T	.	.	0.62	*	*	F	1.67	0.44		
15	Gly	520	.	T	.	.	0.04	*	*	F	1.36	0.44		
Lys	521	.	.	T	.	.	0.34	*	*	F	0.45	0.31		
Trp	522	.	.	T	.	.	0.67	*	.	.	0.90	0.29		
Cys	523	.	B	.	T	.	1.06	.	.	.	-0.20	0.29		
Ile	524	.	B	.	T	.	0.39	*	.	.	0.70	0.29		
Asn	525	.	.	T	T	.	-0.12	*	.	.	0.20	0.15		
Gly	526	.	.	T	T	.	-0.17	*	*	F	0.65	0.20		
Lys	527	.	.	T	.	.	0.17	*	*	F	0.45	0.47		

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen.. Alpha	Karpl... Flexi...	James... Antig...	Emini Surfa...
Cys	528	.	.	.	T	T	.	0.52	*	.	.	1.40	0.58
Val	529	.	.	B	.	T	.	1.41	*	.	.	1.04	0.85
Asn	530	.	.	B	.	T	.	1.52	*	.	F	1.83	0.71
Lys	531	.	.	B	.	T	.	1.91	*	.	F	2.32	2.58
Thr	532	.	.	B	.	T	.	1.83	*	.	F	2.66	6.96
Asp	533	.	.	.	T	T	.	1.80	*	.	F	3.40	5.89
Arg	534	.	.	.	T	T	.	2.66	*	.	F	3.06	2.55
Lys	535	.	.	B	.	T	.	2.34	*	.	F	2.32	2.95
His	536	.	.	B	.	.	.	2.09	*	.	F	1.78	2.55
Phc	537	.	.	B	.	.	.	1.70	*	.	F	1.44	2.01
Asp	538	.	.	B	.	.	.	1.67	*	.	F	0.65	0.87
Thr	539	.	.	B	.	.	.	1.21	*	.	F	-0.25	0.87
Pro	540	C	0.87	*	.	F	-0.05	1.00
Phc	541	.	.	.	T	.	.	0.61	*	.	F	0.45	0.80
His	542	.	.	.	T	T	.	0.97	*	.	.	0.20	0.58
Gly	543	.	.	.	T	T	.	0.37	*	.	.	0.20	0.37
Ser	544	.	.	.	T	T	.	0.39	*	.	.	0.20	0.43
Trp	545	.	.	.	T	T	.	0.26	*	.	.	0.20	0.33
Gly	546	C	0.74	*	.	.	-0.20	0.33
Met	547	T	0.49	*	.	.	0.00	0.38
Trp	548	T	.	0.49	*	.	.	0.00	0.38
Gly	549	.	.	.	T	C	0.79	0.00	0.38

-31.1-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyle... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Eminni Surf...
Pro	550	T	T	.	0.41	.	.	F	0.35	0.64
Trp	551	T	T	.	0.46	*	.	F	0.66	0.33
Gly	552	T	T	.	1.17	*	.	F	1.27	0.44
Asp	553	T	.	.	1.14	*	.	F	1.98	0.56
Cys	554	T	T	.	0.82	*	.	F	2.49	0.77
Ser	555	T	T	.	0.69	*	.	F	3.10	0.42
Arg	556	T	T	.	0.63	*	.	F	2.79	0.25
Thr	557	T	T	.	0.63	*	.	F	2.18	0.46
Cys	558	T	T	.	-0.22	*	.	F	1.87	0.34
Gly	559	T	T	.	0.44	*	.	F	1.56	0.13
Gly	560	T	T	.	0.50	*	.	F	0.65	0.15
Gly	561	T	T	.	0.08	*	*	F	0.35	0.45
Val	562	.	.	B	B	.	.	.	-0.21	*	*	.	-0.60	0.65
Gln	563	.	.	B	B	.	.	.	0.57	*	*	.	-0.60	0.65
Tyr	564	.	.	B	B	.	.	.	0.91	*	*	.	-0.15	1.29
Thr	565	.	.	B	B	.	.	.	0.59	*	*	.	0.79	3.01
Met	566	.	.	B	B	.	.	.	0.93	*	*	.	0.98	0.93
Arg	567	.	.	B	B	.	.	.	1.79	*	*	.	1.62	0.99
Glu	568	T	.	.	1.58	*	*	F	2.86	1.11
Cys	569	T	T	.	0.97	*	.	F	3.40	1.73
Asp	570	T	T	.	1.07	*	*	F	2.91	0.66

-31.2-

Res	Pos.	Garni.. Alpha	Chou.... Alpha	Garni.. Beta	Chou.... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Asn	571	T	C	1.71	*	.	F	2.37	0.59	
Pro	572	T	C	1.60	*	.	F	2.52	2.18	
Val	573	C	.	1.26	*	.	F	2.32	2.10	
Pro	574	T	T	1.58	*	.	F	2.42	1.29	
Lys	575	T	T	1.62	*	.	F	2.61	0.83	
Asn	576	T	T	1.38	*	.	F	3.40	2.23	
Gly	577	T	T	0.92	*	.	F	3.06	2.26	
Gly	578	T	T	1.78	*	.	F	2.27	0.61	
Lys	579	.	B	.	.	T	T	1.64	.	.	F	1.53	0.65	
Tyr	580	.	B	.	.	T	.	1.64	.	.	F	1.19	0.65	
Cys	581	.	B	.	.	T	.	1.76	.	.	F	1.30	1.32	
Glu	582	.	B	1.24	*	.	F	1.10	1.29	
Gly	583	.	B	B	.	.	.	1.70	*	.	F	0.75	0.61	
Lys	584	.	B	B	.	.	.	1.41	*	.	F	0.90	2.24	
Arg	585	.	B	B	.	.	.	1.77	*	.	F	1.15	2.02	
Tyr	586	.	B	B	.	.	.	2.13	*	.	.	1.25	4.01	
Arg	587	.	B	B	.	.	.	1.47	*	.	.	1.50	2.68	
Tyr	588	.	B	.	.	T	.	1.81	*	.	.	2.00	0.73	
Arg	589	T	T	0.96	*	.	.	2.50	1.59	
Ser	590	T	T	0.84	*	.	.	2.10	0.67	
Cys	591	T	T	1.70	*	.	.	1.85	0.74	
Asn	592	.	A	.	.	T	.	0.92	*	.	.	1.50	0.63	

5

10

15

20

-31.3-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Leu	593		A	B						0.96					0.89	0.25
Glu	594		A	B						0.84				F	1.13	0.73
Asp	595		A			T				1.17				F	2.17	0.76
Cys	596			B			T			1.81				F	2.66	1.48
Pro	597				T	T				1.47	*	*		F	3.40	1.37
Asp	598				T	T				2.32	*	*		F	2.91	0.81
Asn	599				T	T				2.01	*			F	3.02	3.03
Asn	600				T	T				1.31	*			F	2.98	2.83
Gly	601				T	T				2.09	*			F	2.94	1.47
Lys	602				T	C				2.30	*	*		F	2.70	1.79
Thr	603				T	C				2.30	*			F	3.00	1.92
Phe	604	A	A							2.30	*			F	2.10	3.37
Arg	605	A	A							1.63				F	1.80	2.91
Glu	606	A	A							1.98	*			F	1.50	1.08
Glu	607	A	A							1.34	*			F	1.20	2.17
Gln	608	A	A							1.62	*			F	0.90	1.12
Cys	609	A	A							2.32	*			*	0.60	0.88
Glu	610	A	A							2.21	*			*	0.60	0.81
Ala	611	A	A							1.51					0.60	0.81
His	612	A	A							1.21					0.45	1.32
Asn	613	A	A							1.26	*				0.45	1.02
Glu	614	A	A							1.33	*				0.45	2.02

-31.4-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Phe	615	A	A	1.03	*	*	F	0.60	1.50
Ser	616	A	A	0.92	.	.	F	0.90	1.25
Lys	617	A	A	0.61	.	.	F	0.45	0.62
Ala	618	A	A	T	T	.	.	0.31	.	.	F	0.25	0.71	
Ser	619	.	A	T	T	.	.	.	-0.03	.	.	F	0.85	0.71
Phe	620	.	.	T	T	.	.	.	0.46	.	.	F	1.26	0.35
Gly	621	.	.	T	T	.	.	0.17	.	.	F	1.07	0.54	
Ser	622	.	.	T	C	-0.73	.	.	.	*	.	F	1.08	0.41
Gly	623	.	.	T	C	-0.14	F	0.99	0.35	
Pro	624	.	.	T	C	-0.13	F	2.10	0.61	
Ala	625	.	A	.	C	-0.32	F	0.89	0.48	
Val	626	.	A	B	-0.19	*	.	0.03	0.34	
Glu	627	.	A	B	.	.	.	0.16	*	.	.	-0.18	0.34	
Trp	628	.	A	B	.	.	.	0.26	*	.	.	-0.09	0.67	
Ile	629	.	.	B	.	.	.	-0.12	*	.	.	-0.25	1.42	
Pro	630	.	.	B	.	T	0.12	*	.	.	.	0.10	0.83	
Tyr	632	.	.	B	.	.	.	-0.18	*	
Ala	633	.	.	T	T	0.12	*	0.20	0.78	
Lys	631	.	.	T	T	.	.	-0.10	*	.	.	0.20	0.82	
Gly	634	.	.	T	.	.	.	0.83	*	.	.	0.98	0.55	
Val	635	.	.	B	.	.	.	1.04	*	.	.	0.92	0.70	
Ser	636	.	.	B	.	T	1.11	*	.	F	2.66	1.17		

-31.5-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Kyte... Hydro...	Eisen... Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Pro	637	.	.	.	T	T	.	0.69	.	*	F	3.40	2.31
Lys	638	.	.	.	T	T	.	1.32	.	*	F	3.06	1.67
Asp	639	.	.	.	T	T	.	0.86	*	*	F	2.72	2.49
Arg	640	A	A	0.82	*	*	F	1.58	1.33
Cys	641	A	A	0.46	*	*	F	1.09	0.46
Lys	642	.	A	B	.	.	.	0.67	*	*	.	0.30	0.15
Leu	643	.	A	B	.	.	.	0.03	*	*	.	0.30	0.13
Ile	644	.	A	B	.	.	.	0.08	*	*	.	-0.60	0.25
Cys	645	.	A	B	.	.	.	-0.38	*	*	.	0.30	0.25
Gln	646	.	A	B	.	.	.	-0.60	*	*	.	-0.30	0.30
Ala	647	.	A	B	.	.	.	-0.99	*	*	.	-0.30	0.30
Lys	648	.	A	B	.	.	.	-0.42	*	*	F	-0.15	0.55
Gly	649	.	.	.	T	T	.	-0.23	*	*	F	0.65	0.50
Ile	650	.	.	.	T	T	.	-0.27	*	*	.	0.20	0.43
Gly	651	.	B	.	T	.	.	-1.12	*	*	.	-0.20	0.18
Tyr	652	.	B	.	T	.	.	-1.34	*	*	.	-0.20	0.14
Phe	653	.	B	B	.	.	.	-1.39	*	*	.	-0.60	0.16
Phe	654	.	B	B	.	.	.	-1.26	*	*	.	-0.60	0.29
Val	655	.	B	B	.	.	.	-0.32	*	*	.	-0.60	0.28
Leu	656	.	B	B	.	.	.	-0.83	*	*	.	-0.60	0.65
Gln	657	.	B	.	T	.	.	-1.44	*	*	.	-0.20	0.56
Pro	658	.	B	.	T	.	.	-0.74	*	*	F	-0.05	0.56

-31.6-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpf... Flexi...	James... Antig...	Emini Surf...
Lys	659	T	T	.	-0.39	*	F	1.40	1.13	
Val	660	.	.	B	.	.	T	.	0.16	.	F	0.85	0.65	
Val	661	.	.	B	.	.	T	.	0.76	*	F	0.85	0.60	
Asp	662	.	.	B	.	.	T	.	0.09	.	F	1.06	0.47	
Gly	663	.	.	B	.	.	T	.	0.00	*	F	0.67	0.34	
Thr	664	.	.	B	.	.	T	.	-0.26	*	F	1.48	0.61	
Pro	665	.	.	B	0.60	.	F	1.49	0.56	
Cys	666	.	.	.	T	.	.	.	1.16	.	F	2.10	0.95	
Ser	667	T	C	0.84	.	.	F	1.89	0.88	
Pro	668	T	T	0.89	.	.	F	1.88	0.82	
Asp	669	T	T	0.34	.	.	F	1.82	2.06	
Ser	670	T	T	-0.11	.	.	F	1.61	1.14	
Thr	671	B	T	.	-0.30	*	F	0.85	0.39	
Ser	672	B	B	0.00	.	*	F	-0.15	0.18	
Val	673	B	B	.	-0.13	*	.	-0.60	0.23	
Cys	674	B	B	.	-0.13	*	.	-0.60	0.16	
Val	675	B	B	.	-0.50	*	.	-0.60	0.20	
Gln	676	B	B	.	-1.04	*	F	-0.45	0.15	
Gly	677	B	B	.	-0.70	*	F	-0.45	0.20	
Gln	678	B	B	.	-0.43	*	F	-0.15	0.54	
Cys	679	B	B	.	-0.11	.	.	0.30	0.32	
Val	680	B	B	.	0.08	*	.	0.30	0.32	

-31.7-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Karpf... Flexi...	James... Antig...	Emini Surf...
Lys	681	.	B	.	.	T	.	0.08	*	.	.	0.10	0.10
Ala	682	.	B	.	.	T	.	0.53	*	.	.	0.70	0.30
Gly	683	.	B	.	.	T	.	-0.36	*	.	.	1.00	0.80
Cys	684	.	B	.	.	T	.	-0.58	*	.	.	1.00	0.28
Asp	685	A	B	0.28	*	.	.	0.30	0.20
Arg	686	A	B	-0.07	*	.	.	0.60	0.33
Ile	687	A	B	0.57	*	.	.	0.60	0.82
Ile	688	A	B	.	.	T	.	0.96	*	.	F	0.75	0.99
Asp	689	A	.	.	.	T	.	1.67	*	.	F	1.30	1.01
Ser	690	A	.	.	.	T	.	0.97	*	.	F	1.30	2.88
Lys	691	A	.	.	.	T	.	0.86	*	.	F	1.61	3.55
Lys	692	T	T	1.79	*	.	F	2.32	3.55
Lys	693	T	.	2.01	*	.	F	2.43	5.30
Phe	694	T	.	1.67	*	.	F	2.74	1.42
Asp	695	.	.	.	T	T	.	1.11	*	.	F	3.10	0.70
Lys	696	.	B	.	.	T	.	0.40	*	.	F	2.39	0.26
Cys	697	.	B	.	.	T	.	0.01	*	.	.	1.63	0.16
Gly	698	.	B	.	.	T	.	-0.38	*	.	.	1.32	0.10
Val	699	.	B	0.32	*	.	.	0.21	0.05
Cys	700	T	.	-0.02	.	.	.	0.00	0.14
Gly	701	T	T	-0.37	.	.	F	0.65	0.14
Gly	702	T	T	-0.01	.	.	F	0.65	0.26

-31.8-

Res	Pos.	Garni.. Alpha	Chou.... Alpha	Garni.. Beta	Chou.... Beta	Garni... Turn	Chou.... Turn	Garni.. Coil	Kyte.... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karp... Flexi...	James... Antig...	Emini Surf...
Asn	703	.	.	.	T	T	.	-0.33	.	.	F	0.65	0.69	
Gly	704	.	.	.	T	T	.	0.57	.	.	F	0.65	0.37	
Ser	705	.	.	.	T	T	.	1.28	.	.	F	1.25	0.76	
Thr	706	.	.	B	.	T	.	0.73	.	.	F	1.41	0.94	
Cys	707	.	.	B	.	T	.	0.78	*	*	F	1.37	0.67	
Lys	708	.	.	B	.	T	.	0.43	*	*	F	1.63	0.67	
Lys	709	.	.	B	.	.	.	0.48	*	*	F	1.69	0.46	
Ile	710	.	.	B	.	T	.	-0.08	*	*	F	2.60	1.14	
Ser	711	.	.	B	.	T	.	-0.08	*	*	F	1.89	0.42	
Gly	712	.	.	B	.	T	.	0.29	*	*	F	1.03	0.31	
Ser	713	.	.	B	.	T	.	-0.34	*	*	F	0.77	0.58	
Val	714	.	.	B	B	.	.	-0.34	*	*	F	0.11	0.44	
Thr	715	.	.	B	B	.	.	0.33	.	.	F	0.73	0.89	
Ser	716	.	.	B	B	.	.	0.29	.	.	F	1.16	1.03	
Ala	717	.	.	B	.	.	.	0.39	.	.	F	1.64	1.37	
Lys	718	T	C	0.66	.	.	F	2.32	1.49	
Pro	719	T	T	1.51	*	.	F	2.80	1.51	
Gly	720	T	T	0.93	*	.	F	2.52	2.50	
Tyr	721	.	.	B	.	T	.	0.34	*	.	.	1.54	0.88	
His	722	.	.	B	B	.	.	0.62	*	.	.	-0.04	0.40	
Asp	723	.	.	B	B	.	.	-0.31	*	.	.	-0.32	0.58	
Ile	724	.	.	B	B	.	.	-0.31	*	.	.	-0.60	0.26	

-31.9-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karp... Flexi...	James... Antig...	Emini Surf...
Ile	725	.	B	B	.	.	.	-0.28	*	.	.	-0.60	0.29	
Thr	726	.	B	B	.	.	.	-0.38	*	.	.	-0.60	0.25	
Ile	727	.	B	.	T	.	T	-0.93	*	.	.	-0.20	0.36	
Pro	728	.	B	.	T	.	T	-1.24	*	F	.	-0.05	0.52	
Thr	729	.	.	.	T	C	C	-0.36	*	F	.	0.15	0.52	
Gly	730	.	.	.	T	C	C	-0.36	*	F	.	0.30	1.19	
Ala	731	.	B	.	C	.	C	-0.04	*	F	.	-0.25	0.54	
Thr	732	.	B	.	C	.	C	-0.01	*	F	.	0.65	0.65	
Asn	733	.	B	B	.	.	.	0.24	*	F	.	-0.15	0.48	
Ile	734	.	B	B	.	.	.	0.56	*	F	.	0.45	0.96	
Glu	735	.	B	B	.	.	.	1.01	*	F	.	0.60	1.15	
Val	736	.	B	B	.	.	.	1.60	*	F	.	0.90	1.40	
Lys	737	.	B	B	.	.	.	1.91	*	F	.	1.24	3.21	
Gln	738	.	B	2.02	*	F	.	1.78	3.21	
Arg	739	.	B	2.57	*	F	.	2.12	8.48	
Asn	740	.	B	.	T	.	T	2.27	*	F	.	2.66	4.20	
Gln	741	.	.	.	T	T	T	3.23	*	F	.	3.40	3.25	
Arg	742	.	.	.	T	T	T	3.19	*	F	.	3.06	3.25	
Gly	743	.	.	.	T	T	T	3.19	*	F	.	3.00	3.25	
Ser	744	.	.	.	T	.	.	2.73	*	F	.	2.74	3.02	
Arg	745	C	2.43	*	F	.	2.48	1.52	
Asn	746	.	.	.	T	T	.	1.73	*	F	.	2.82	2.06	

-31.10-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyle... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Asn	747	T	T	.	0.81	*	.	F	2.80	1.33
Gly	748	T	C	0.57	.	*	.	F	1.57	0.56
Ser	749	.	B	-0.02	.	*	.	F	0.79	0.35
Phe	750	.	A	B	.	.	.	-0.09	.	*	.	.	-0.04	0.15
Leu	751	.	A	B	.	.	.	-0.68	-0.32	0.31
Ala	752	.	A	B	.	.	.	-1.27	*	.	.	.	-0.60	0.23
Ile	753	.	A	B	.	.	.	-0.92	-0.60	0.27
Lys	754	A	A	-0.97	0.30	0.55
Ala	755	A	A	-0.58	0.30	0.54
Ala	756	A	A	-0.01	.	.	.	F	0.60	1.12
Asp	757	A	.	.	.	T	.	-0.31	.	.	.	F	0.85	0.87
Gly	758	.	B	.	.	T	.	-0.23	*	.	.	F	0.25	0.61
Thr	759	.	B	.	.	T	.	-0.28	.	.	.	F	-0.05	0.50
Tyr	760	.	B	.	.	T	.	-0.03	*	.	.	.	-0.20	0.48
Ile	761	.	B	0.56	*	.	.	.	-0.40	0.48
Leu	762	.	B	0.31	*	.	.	.	-0.40	0.55
Asn	763	.	B	.	.	T	.	0.34	*	.	F	-0.50	0.55	
Gly	764	T	T	-0.16	*	.	F	0.50	1.14	
Asp	765	T	T	-0.21	*	.	F	0.50	1.14	
Tyr	766	T	C	0.37	*	.	F	0.45	0.95	
Thr	767	.	B	B	.	.	.	0.37	*	.	.	-0.15	1.38	
Leu	768	.	B	B	.	.	.	0.37	*	.	.	-0.60	0.68	

-31.11-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James.... Antig...	Emini Surf...
Ser	769	.	.	B	B	.	.	.	0.71	*	.	F	-0.45	0.75
Thr	770	.	.	B	B	.	.	.	0.71	*	*	F	-0.15	0.90
Leu	771	A	.	.	B	.	.	.	0.07	*	.	F	0.60	1.83
Glu	772	A	.	.	B	.	.	.	-0.22	*	.	F	0.45	0.96
Gln	773	A	.	.	B	.	.	.	0.34	*	*	F	0.45	0.66
Asp	774	A	.	.	B	.	.	.	0.69	*	*	F	0.00	1.25
Ile	775	A	.	.	B	.	.	.	0.66	*	.	.	0.75	1.44
Met	776	A	.	.	B	.	.	.	0.61	*	.	.	0.30	0.82
Tyr	777	.	.	.	B	B	.	.	-0.24	*	.	.	-0.30	0.37
Lys	778	.	.	.	B	B	.	.	-1.06	*	.	.	-0.60	0.39
Gly	779	.	.	.	B	B	.	.	-0.94	*	.	.	-0.60	0.32
Val	780	.	.	.	B	B	.	.	-0.30	*	.	.	-0.30	0.40
Val	781	.	.	.	B	B	.	.	0.00	*	.	.	-0.30	0.32
Leu	782	.	.	.	B	B	.	.	-0.10	*	.	.	-0.60	0.43
Arg	783	.	.	B	B	.	.	.	-0.44	*	.	.	-0.60	0.57
Tyr	784	.	.	B	.	.	T	.	-0.40	*	.	.	0.25	1.03
Ser	785	T	T	.	-0.13	*	.	F	0.80	1.68
Gly	786	T	C	0.13	*	.	F	1.05	0.86
Ser	787	T	C	0.13	*	.	F	0.45	0.56
Ser	788	.	.	A	.	.	.	C	0.02	*	.	F	0.05	0.34
Ala	789	A	A	0.38	*	.	F	0.45	0.60
Ala	790	A	A	-0.21	*	.	.	0.60	0.88

-31.12-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni... Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini Surfa...
Leu	791	A	A					0.24	*	*			0.30	0.46
Glu	792	A	A					0.24	*	*			0.60	0.89
Arg	793		A	B	B			-0.16	*			F	0.90	1.18
Ile	794	A	A		B			0.13	*		F		0.60	1.24
Arg	795	A	A		B			0.51	*		F		0.75	0.96
Ser	796		A			T		0.51	*		F		1.13	0.76
Phe	797						C	0.56	*		F		0.81	0.89
Ser	798					T	C	0.44	*		F		1.89	0.91
Pro	799					T	C	1.12	*		F		2.32	1.17
Leu	800					T	T	0.20	*		F		2.80	2.10
Lys	801					T	C	0.19	*		F		2.32	1.29
Glu	802					C	C	0.00	*		F		1.84	1.20
Pro	803	A			B			0.30	*		F		1.16	1.02
Leu	804	A			B			-0.34	*		F		0.73	0.89
Thr	805			B	B			-0.34	*				-0.30	0.38
Ile	806			B	B			-0.70	*				-0.60	0.20
Gln	807			B	B			-1.56					-0.60	0.35
Val	808			B	B			-1.69					-0.60	0.18
Leu	809			B	B			-0.88					-0.60	0.26
Thr	810			B	B			-1.16					-0.60	0.24
Val	811			B	B			-1.08					-0.60	0.33
Gly	812			B	B			-0.97	*				-0.60	0.33

5

10

15

20

-31.13-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turo	Chou... Turo	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Asn	813	A	-0.32	*	*	.	.	0.12	0.44
Ala	814	A	0.53	*	*	.	.	0.34	0.92
Leu	815	A	-0.04	*	*	F	1.76	1.86	
Arg	816	.	.	B	.	.	.	0.86	*	*	F	1.53	0.81	
Pro	817	.	B	0.96	*	*	F	2.20	1.61	
Lys	818	.	.	B	B	.	.	0.64	*	*	F	1.48	3.05	
Ile	819	.	.	B	B	.	.	0.99	*	*	F	1.56	2.25	
Lys	820	.	.	B	B	.	.	1.10	*	*	F	0.44	2.28	
Tyr	821	.	.	B	B	.	.	0.13	*	*	.	-0.38	0.99	
Thr	822	.	.	B	B	.	.	0.39	*	*	.	-0.45	1.04	
Tyr	823	A	.	.	B	.	.	0.39	*	*	.	-0.45	1.04	
Phe	824	A	.	.	B	.	.	1.32	*	*	.	-0.45	1.33	
Val	825	A	.	.	B	.	.	1.32	*	*	.	0.45	1.85	
Lys	826	A	.	.	B	.	.	1.57	*	*	F	0.90	2.36	
Lys	827	A	A	1.58	*	*	F	0.90	4.71	
Lys	828	A	A	1.12	*	*	F	0.90	8.51	
Lys	829	A	A	1.82	*	*	F	0.90	3.68	
Glu	830	A	A	2.09	*	*	F	0.90	2.96	
Ser	831	A	A	1.16	*	*	F	0.90	1.50	
Phe	832	A	A	0.90	*	*	.	0.30	0.52	
Asn	833	.	A	B	.	.	.	0.54	*	*	.	-0.30	0.47	
Ala	834	.	.	B	.	.	.	-0.20	*	*	.	-0.40	0.50	

-31.14-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen.. Alpha	Karpl... Flexi...	Eisen.. Beta	James... Antig...	Emini Surfa...
Ile	835	C	-0.50	*	.	.	.	-0.20	0.50
Pro	836	T	C	-0.79	0.00	0.42
Thr	837	.	.	.	T	T	.	-0.38	*	.	.	.	0.20	0.42
Phe	838	A	.	.	.	T	.	-1.23	*	.	.	.	-0.20	0.63
Ser	839	T	C	-1.53	*	.	.	.	0.00	0.30
Ala	840	.	A	B	B	.	.	-0.64	*	.	.	.	-0.60	0.15
Trp	841	.	A	B	B	.	.	-0.43	-0.60	0.29
Val	842	A	A	B	B	.	.	-0.41	-0.30	0.38
Ile	843	A	A	B	B	.	.	-0.06	*	.	.	.	-0.60	0.40
Glu	844	A	A	B	B	.	.	0.24	*	.	.	.	-0.60	0.37
Glu	845	A	A	A	A	.	.	0.17	*	.	.	.	0.30	0.87
Trp	846	A	A	A	A	.	.	0.16	*	.	.	.	0.61	0.66
Gly	847	A	A	A	A	.	.	1.06	*	.	F	1.37	0.51	
Glu	848	.	A	A	A	T	.	1.64	*	F	2.08	0.59	.	.
Cys	849	.	A	A	A	T	.	0.98	*	F	2.09	0.76	.	.
Ser	850	T	T	0.98	.	F	3.10	0.41	.	.
Lys	851	T	T	0.46	.	F	2.79	0.41	.	.
Ser	852	T	T	0.46	.	F	2.18	0.63	.	.
Cys	853	T	T	0.17	*	.	2.02	0.47	.	.
Glu	854	A	A	A	A	.	.	0.83	*	.	0.61	0.24	.	.
I.cu	855	A	A	A	A	.	.	1.24	.	.	-0.30	0.32	.	.
Gly	856	.	A	A	A	.	.	1.31	*	.	0.85	1.16	.	.

-31.15-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Ermini... Surfa...
Trp	857	A	A					0.80	*	*			0.75	1.31
Gln	858	A	A					0.61	*	*			-0.15	1.31
Arg	859	A	A					0.61	*	*			-0.30	0.98
Arg	860			A	B			0.76	*				0.45	1.61
Leu	861			A	B			1.21	*				0.60	0.50
Val	862			A	B			1.50	*				0.60	0.50
Glu	863			A	B			0.61	*				0.94	0.43
Cys	864			A	B				0.50				0.98	0.36
Arg	865			A		T			0.04				F	2.17
Asp	866					T	T		0.86				F	0.78
Ile	867					T	T		1.50				F	3.40
Asn	868					T	T		0.91				F	3.06
Gly	869						T	C	1.28				F	1.28
Gln	870						T	C	1.17				F	1.32
Pro	871						T	C	0.50	*			F	2.07
Ala	872						T	C	0.80	*			F	1.05
Ser	873	A					T		0.84	*			F	0.85
Glu	874	A	A						1.19	*			F	0.75
Cys	875	A	A						0.33	*			F	0.45
Ala	876	A	A						0.59	*			0.60	0.55
Lys	877	A	A						0.97	*			F	0.75
Glu	878	A	A						0.68	*			F	0.90
														1.84

-31.16-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni... Beta	Chou-... Beta	Garni... Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen.. Alpha	Karpl... Flexi...	James... Antig...	Emini Surfa...
Val	879	A	A	0.38	*	.	F	0.90
Lys	880	A	A	0.73	*	.	F	0.90
Pro	881	A	.	.	.	T	.	.	1.43	*	.	F	1.30
Ala	882	T	T	.	1.18	*	.	F	2.01
Ser	883	T	T	.	0.51	*	.	F	2.32
Thr	884	T	T	.	0.78	*	.	F	2.18
Arg	885	.	.	B	.	T	.	.	0.73	*	.	F	2.09
Pro	886	T	T	.	0.91	*	.	F	3.10
Cys	887	T	T	.	1.29	*	.	.	2.64
Ala	888	T	T	.	0.92	*	.	.	2.43
Asp	889	T	.	.	1.02	*	.	.	1.72
His	890	T	C	.	0.91	*	.	.	1.51
Pro	891	T	T	.	0.83	*	.	.	1.16
Cys	892	T	T	.	1.50	*	.	.	1.00
Pro	893	T	T	.	1.28	*	.	.	0.60
Gln	894	.	A	.	.	T	.	.	0.93	*	.	.	0.10
Trp	895	.	A	B	0.97	*	.	-0.40	0.91
Gln	896	.	A	B	0.89	*	.	-0.05	1.02
Leu	897	.	A	B	1.26	*	.	-0.60	0.62
Gly	898	T	.	.	1.17	*	.	0.00	0.79
Glu	899	T	.	.	0.50	*	.	F	0.45
Trp	900	T	.	.	0.49	*	.	F	0.45

-31.17-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Ser	901	T	T	.	0.53	.	F	0.65	0.54	
Ser	902	T	T	.	1.03	.	F	1.25	0.62	
Cys	903	T	T	.	0.71	*	F	0.65	0.85	
Ser	904	T	T	.	0.37	*	F	1.25	0.34	
Lys	905	T	.	.	0.70	*	F	1.05	0.25	
Thr	906	T	.	.	0.66	*	F	1.69	0.94	
Cys	907	T	.	.	0.71	*	F	2.03	0.69	
Gly	908	T	T	.	1.42	*	F	2.27	0.54	
Lys	909	T	T	.	1.77	*	F	2.61	0.75	
Gly	910	T	T	.	1.83	*	F	3.40	2.81	
Tyr	911	T	T	.	1.84	*	F	3.06	5.57	
Lys	912	.	A	B	1.70	*	F	1.92	3.73	
Lys	913	.	A	B	2.09	*	F	1.58	3.11	
Arg	914	.	A	B	1.38	*	F	1.24	3.97	
Ser	915	.	A	B	0.91	*	F	0.90	1.06	
Leu	916	.	A	B	0.86	*	F	0.75	0.44	
Lys	917	.	A	B	0.78	*	.	0.30	0.30	
Cys	918	.	A	B	0.73	*	.	-0.30	0.30	
Leu	919	.	A	B	0.28	*	.	0.30	0.62	
Ser	920	.	B	0.23	.	.	0.50	0.31	
His	921	.	B	.	.	T	.	.	0.19	*	F	0.85	0.56	
Asp	922	T	T	.	-0.67	*	F	0.65	0.51	

-31.18-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen.. Alpha	Eisen.. Beta	Karpl... Flexi...	James... Antig...	Eminni Surf...
Gly	923	T	T	.	-0.30	.	F	F	0.65	0.31
Gly	924	T	T	.	0.48	.	F	F	0.65	0.31
Val	925	.	B	0.78	.	.	.	-0.10	0.25
Leu	926	.	B	0.51	.	.	.	-0.10	0.44
Ser	927	.	B	-0.16	.	.	.	-0.10	0.59
His	928	.	B	.	.	T	T	.	0.19	.	F	F	0.10	0.43
Glu	929	.	B	.	.	T	T	.	0.32	.	F	F	0.85	0.87
Ser	930	A	.	.	.	T	T	.	0.37	*	F	F	1.30	1.00
Cys	931	A	.	.	.	T	T	.	1.22	*	F	F	0.85	0.61
Asp	932	A	.	.	.	T	T	.	1.57	*	F	F	1.15	0.70
Pro	933	A	.	.	.	T	T	.	1.39	*	F	F	1.30	1.05
Leu	934	A	.	.	.	T	T	.	1.43	*	F	F	1.30	3.02
Lys	935	A	.	.	.	T	T	.	1.70	*	F	F	1.30	3.62
Lys	936	A	A	1.67	*	F	F	0.90	3.18
Pro	937	A	A	0.78	*	F	F	0.90	3.34
Lys	938	A	A	0.99	*	*	F	0.90	1.17
His	939	A	A	1.10	*	.	.	0.60	0.98
Phe	940	.	A	B	0.39	*	.	.	-0.30	0.55
Ile	941	.	A	B	0.03	*	.	.	-0.30	0.15
Asp	942	A	A	-0.36	*	.	.	-0.60	0.16
Phe	943	A	A	-0.99	*	.	.	-0.60	0.18
Cys	944	A	A	-0.96	.	.	.	-0.60	0.26

-31.19-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyle... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Thr	945	A	A	-0.92	*	*	*	.	0.30	0.27
Met	946	A	A	-0.33	*	*	.	.	-0.60	0.16
Ala	947	A	A	-0.72	-0.30	0.41
Glu	948	A	A	-0.41	0.30	0.36
Cys	949	A	A	-0.13	0.30	0.47
Ser	950	A	A	-0.21	0.30	0.60

-31.20-

Table 2

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini... Surf...
Met	1	.	B	-0.37	-0.40	0.50
Phe	2	.	B	-0.57	-0.40	0.61
Pro	3	.	B	-0.77	-0.40	0.48
Ala	4	C	-0.59	*	.	.	.	-0.20	0.49	.
Pro	5	C	-0.09	*	.	.	.	-0.20	0.87	.
Ala	6	T	C	0.22	*	*	.	0.85	1.11	.
Ala	7	T	C	0.11	*	*	.	0.45	1.15	.
Pro	8	A	.	.	.	T	T	0.11	*	*	.	-0.20	0.61	.
Arg	9	T	T	0.00	*	*	.	0.20	0.94	.
Trp	10	.	.	B	.	T	T	-0.60	*	*	.	-0.20	0.81	.
Leu	11	.	A	B	.	.	.	-0.82	*	*	.	-0.60	0.43	.
Pro	12	.	A	B	.	.	.	-1.04	*	*	.	-0.60	0.18	.
Phe	13	.	A	B	.	.	.	-1.64	*	*	.	-0.60	0.14	.
Leu	14	A	A	-2.57	*	*	.	-0.60	0.14	.
Leu	15	A	A	-3.09	*	*	.	-0.60	0.08	.
Leu	16	A	A	-3.09	*	*	.	-0.60	0.07	.
Leu	17	A	A	-3.69	*	*	.	-0.60	0.07	.
Leu	18	A	A	-3.80	*	*	.	-0.60	0.07	.
Leu	19	A	A	-3.20	*	*	.	-0.60	0.07	.
Leu	20	A	A	-3.20	*	*	.	-0.60	0.14	.

-31.21-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surf...
Leu	21	A	A	-2.98	*	.	.	.	-0.60	0.14
Leu	22	.	A	B	.	.	.	-2.06	*	.	.	.	-0.60	0.17
Pro	23	.	A	B	.	.	.	-1.59	*	.	.	.	-0.60	0.39
Leu	24	A	A	-1.37	*	.	.	.	-0.60	0.47
Ala	25	A	A	-0.77	*	.	.	.	-0.04	0.58
Arg	26	.	A	B	.	.	.	-0.54	*	.	.	.	0.82	0.58
Gly	27	.	A	B	.	.	.	0.38	.	.	F	0.63	0.71	
Ala	28	.	B	0.38	.	.	F	2.14	1.37	
Pro	29	C	0.60	.	.	F	2.60	1.08		
Ala	30	.	B	0.60	.	F	1.84	1.11		
Arg	31	.	.	B	.	.	.	0.14	.	F	1.58	1.11		
Pro	32	.	.	B	.	.	.	0.14	*	F	1.17	0.71		
Ala	33	.	.	B	.	T	0.73	*	F	1.11	0.69			
Ala	34	A	.	.	.	T	0.36	*	F	0.85	0.61			
Gly	35	.	.	.	T	C	0.64	*	F	0.45	0.40			
Gly	36	.	.	.	T	C	0.53	*	F	0.45	0.53			
Gln	37	A	-0.07	.	F	0.65	0.91			
Ala	38	.	.	B	.	.	-0.33	.	F	0.65	0.76			
Ser	39	.	.	B	B	B	-0.60	.	F	-0.15	0.57			
Glu	40	.	.	B	B	B	-0.47	.	F	-0.15	0.24			
Leu	41	.	.	B	B	B	-0.43	*	.	-0.30	0.37			
Val	42	.	.	B	B	B	-0.32	*	.	-0.30	0.40			

-31.22-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Val	43	.	B	B	B	.	.	-0.54	.	*	.	.	0.30	0.46
Pro	44	.	B	B	B	.	.	-0.46	.	*	F	-0.24	0.46	
Thr	45	.	B	B	B	.	.	-0.80	.	*	F	0.27	0.95	
Arg	46	.	B	B	B	.	.	-0.29	.	*	F	0.63	1.26	
Leu	47	T	C	-0.02	.	*	F	2.04	1.10	
Pro	48	T	C	0.49	*	*	F	2.10	0.77	
Gly	49	T	C	0.70	*	*	F	1.89	0.39	
Ser	50	T	C	0.20	*	*	F	1.68	0.81	
Ala	51	A	A	-0.50	*	*	F	0.87	0.43	
Gly	52	A	A	-0.50	*	*	F	0.66	0.44	
Glu	53	A	A	-0.32	*	*	.	-0.30	0.27	
Leu	54	A	A	-0.79	*	*	.	-0.30	0.37	
Ala	55	A	A	-0.79	*	*	.	-0.60	0.31	
Leu	56	A	A	-0.79	*	*	.	-0.60	0.24	
His	57	A	A	-1.14	*	*	.	-0.60	0.29	
Leu	58	A	A	-1.49	*	*	.	-0.60	0.25	
Ser	59	A	A	-0.63	*	*	.	-0.60	0.30	
Ala	60	A	A	-0.39	*	*	.	-0.30	0.44	
Phe	61	A	A	-0.28	*	*	.	-0.30	0.53	
Gly	62	T	T	-1.10	*	*	.	0.50	0.34	
Lys	63	A	.	.	.	T	.	-1.10	*	*	F	-0.05	0.25	
Gly	64	.	B	.	.	T	.	-0.69	*	*	.	-0.20	0.24	

-31.23-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini... Surfa...
Phe	65	.	.	B	.	T	.	-0.91	*	*	*	.	0.70	0.47
Val	66	.	.	B	B	.	.	-0.80	*	*	.	.	-0.30	0.19
Leu	67	.	.	B	B	.	.	-0.67	*	*	.	.	-0.30	0.20
Arg	68	.	.	B	B	.	.	-0.71	*	*	.	.	0.00	0.35
Leu	69	.	.	B	B	.	.	-0.37	*	*	.	.	1.20	0.80
Ala	70	T	C	0.03	*	*	.	.	2.55	1.61
Pro	71	T	C	0.19	*	*	F	.	3.00	1.10
Asp	72	.	.	.	T	T	.	0.19	*	*	F	.	2.60	1.16
Asp	73	A	.	.	.	T	.	-0.51	*	*	F	.	1.75	0.95
Ser	74	A	A	0.09	0.90	0.62
Phe	75	A	A	0.68	0.60	0.57
Leu	76	A	A	0.19	*	*	.	.	0.30	0.59
Ala	77	A	A	0.23	*	*	.	.	-0.60	0.38
Pro	78	A	A	-0.66	*	*	.	.	-0.30	0.89
Glu	79	A	A	-0.36	*	*	F	.	-0.15	0.75
Phe	80	A	A	0.46	*	*	F	.	0.90	1.29
Lys	81	A	A	0.46	*	*	F	.	0.90	1.63
Ile	82	A	A	0.70	*	*	F	.	0.75	0.78
Glu	83	A	A	0.57	*	*	F	.	0.45	0.89
Arg	84	A	A	0.27	*	*	F	.	0.75	0.44
Leu	85	A	.	.	.	T	.	0.62	*	*	F	.	0.85	0.84
Gly	86	.	A	.	.	T	.	0.69	*	*	F	.	1.15	0.48

-31.24-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emmi Surfa...
Gly	87	T	C	0.99	*	*	F	1.35	0.48	
Ser	88	T	C	0.68	*	*	F	1.05	0.59	
Gly	89	T	C	0.22	*	*	F	1.05	0.86	
Arg	90	.	B	.	.	T	.	0.69	*	*	F	1.19	0.86	
Ala	91	T	C	1.03	*	*	F	1.73	0.63	
Thr	92	.	B	.	.	T	.	1.49	*	*	F	2.32	1.11	
Gly	93	.	B	.	.	T	.	1.44	*	*	F	2.66	1.11	
Gly	94	.	.	.	T	T	.	0.98	*	*	F	3.40	1.09	
Glu	95	.	B	0.98	*	*	F	2.31	0.62	
Arg	96	.	B	1.22	*	*	F	2.12	1.23	
Gly	97	.	.	T	.	.	.	0.87	*	*	F	2.18	1.23	
Leu	98	.	B	.	T	.	.	0.51	*	*	F	1.49	0.38	
Arg	99	.	B	.	T	.	.	0.16	*	*	F	0.70	0.17	
Gly	100	.	B	.	T	.	.	-0.14	*	*	F	-0.20	0.15	
Cys	101	.	B	.	T	.	.	-0.60	*	*	F	-0.20	0.24	
Phe	102	.	B	-0.57	*	*	F	-0.10	0.12	
Phe	103	.	B	.	T	.	.	-0.61	*	*	F	-0.20	0.18	
Ser	104	.	B	.	T	.	.	-0.72	*	*	F	-0.05	0.24	
Gly	105	.	.	.	T	C	.	-0.72	*	*	F	0.15	0.45	
Thr	106	.	.	.	T	C	.	-0.06	*	*	F	0.45	0.52	
Val	107	.	B	.	.	C	.	0.43	*	*	F	1.25	0.67	
Asn	108	.	.	B	.	C	.	1.13	*	*	F	1.70	1.05	

-31.25-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini... Surfa...
Gly	109	.	.	B	.	C	1.13	*	F	2.30	1.26			
Glu	110	.	.	.	T	C	0.67	*	F	3.00	2.27			
Pro	111	A	.	.	T	.	0.39	*	F	2.50	1.16			
Glu	112	A	.	.	T	.	0.66	*	F	2.20	1.19			
Ser	113	A	.	.	T	.	-0.20	.	F	1.75	0.69			
Leu	114	A	A	B	.	.	-0.16	.	.	0.00	0.33			
Ala	115	A	A	B	.	.	-0.97	.	.	-0.30	0.26			
Ala	116	A	A	B	.	.	-1.42	.	.	-0.60	0.16			
Val	117	A	A	B	.	.	-1.31	.	.	-0.60	0.10			
Ser	118	.	A	B	.	.	-1.36	*	.	-0.30	0.20			
Leu	119	.	.	B	.	.	-1.36	*	.	-0.30	0.20			
Cys	120	.	.	B	.	T	-1.07	*	.	0.10	0.22			
Arg	121	.	.	B	.	T	-0.82	*	.	0.10	0.22			
Gly	122	.	.	.	T	T	-0.27	*	F	0.65	0.26			
Leu	123	.	.	.	T	T	-0.67	*	.	F	1.25	0.65		
Ser	124	.	.	.	T	C	-0.67	*	F	0.45	0.29			
Gly	125	.	.	B	.	T	-0.81	*	F	-0.05	0.24			
Ser	126	.	.	B	.	T	-0.92	*	F	-0.05	0.24			
Phe	127	.	.	B	.	T	-0.92	*	.	0.10	0.30			
Leu	128	.	A	B	.	C	-0.11	*	.	-0.30	0.30			
Leu	129	.	A	.	.	.	0.19	*	F	0.65	0.39			
Asp	130	A	A	.	.	.	-0.17	.	F	0.45	0.77			

-31.26-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surfa...
Gly	131	A	A						-0.18			F	0.45	0.81
Glu	132	A	A						-0.37		*	F	0.90	1.42
Glu	133	A	A						0.44		*	F	0.75	0.60
Phe	134	A	A						1.04		*		0.45	1.04
Thr	135		A	B					1.04		*		0.30	0.93
Ile	136			B					1.04		*	F	0.05	0.93
Gln	137			B					0.46		*	F	-0.10	1.06
Pro	138							C	0.11		*	F	0.25	0.75
Gln	139					T			0.47		*	F	0.60	1.05
Gly	140					T	C	0.48		*	F	0.45	0.60	
Ala	141					T	T		0.56		*	F	1.25	0.52
Gly	142					T	C	-0.03			F	0.45	0.25	
Gly	143					T	C	0.18			F	0.65	0.25	
Ser	144					T	C	-0.03			F	0.65	0.43	
Leu	145					T	B		0.28		*	F	0.65	0.68
Ala	146					T	B		0.98		*	F	0.85	0.93
Gln	147					T	B			0.51		F	2.00	1.36
Pro	148					T	B		0.86		*		1.05	1.36
His	149					T	B		1.27		*		1.45	2.34
Arg	150					T	B		1.79		*		1.55	2.64
Leu	151					T	B		2.03		*		0.85	1.80
Gln	152					T	B		1.82	*			0.65	1.31

5

10

15

20

-31.27-

Res	Pos.	Garni.. Alpha	Chou.. Alpha	Garni.. Beta	Chou.. Beta	Garni.. Beta	Chou.. Beta	Garni.. CoiI	Chou... TurA	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...	
Arg	153	.	.	.	T	1.44	*	.	.	.	1.05	1.03
Trp	154	.	.	.	T	.	.	.	1.13	*	.	.	F	0.84	1.26	
Gly	155	.	.	.	T	C	0.43	*	F	0.93	0.72	
Pro	156	.	.	.	T	C	1.36	*	F	1.17	0.37	
Ala	157	.	.	T	T	.	.	1.14	*	.	.	.	F	1.61	0.69	
Gly	158	.	.	T	C	0.22	*	F	2.40	1.08	
Ala	159	.	.	.	C	0.30	*	F	1.81	0.58	
Arg	160	.	B	0.76	*	*	.	F	1.37	0.89		
Pro	161	.	B	0.62	*	*	.	F	1.58	1.75		
Leu	162	.	.	.	C	1.00	*	F	1.84	1.72		
Pro	163	.	.	.	C	1.34	*	.	*	.	.	F	1.90	1.35		
Arg	164	.	.	.	C	1.64	*	.	*	.	.	F	2.20	1.52		
Gly	165	.	.	T	C	1.53	*	.	*	.	.	F	2.40	1.93		
Pro	166	.	.	T	C	0.89	*	F	3.00	2.17		
Glu	167	.	.	T	C	1.70	*	F	2.55	0.82		
Trp	168	A	.	.	T	.	1.60	*	2.05	1.44		
Glu	169	A	1.14	*	.	.	.	1.85	1.34		
Val	170	A	1.49	*	.	.	F	1.85	0.77		
Glu	171	A	1.36	*	.	.	F	2.00	1.26		
Thr	172	A	1.36	*	.	.	F	2.15	0.72		
Gly	173	.	.	T	C	1.76	*	F	3.00	1.68		
Glu	174	A	.	.	T	.	1.76	*	.	.	.	F	2.50	1.90		

5

10

15

20

-31.28-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini Surfa...
Gly	175	A	.	.	.	T	.	2.61	.	.	F	2.20	2.28	
Gln	176	A	.	.	.	T	.	2.72	.	.	F	1.90	4.00	
Arg	177	A	A	2.69	*	.	F	1.54	4.52	
Gln	178	A	A	3.03	*	.	F	1.58	4.52	
Glu	179	.	A	.	.	T	.	3.00	*	.	F	2.32	4.36	
Arg	180	.	A	.	.	T	.	3.34	*	.	F	2.66	3.03	
Gly	181	T	T	3.34	*	.	F	3.40	3.03	
Asp	182	T	C	3.23	.	.	F	2.86	3.03	
His	183	T	C	2.93	*	.	F	2.52	2.58	
Gln	184	T	C	2.93	*	.	F	2.18	3.50	
Glu	185	.	A	.	.	C	2.82	*	.	F	1.44	3.63		
Glu	186	A	A	3.17	.	F	0.90	4.61		
Ser	187	A	A	2.87	.	F	0.90	4.61		
Glu	188	A	A	2.90	.	F	0.90	3.57		
Glu	189	A	A	2.90	.	F	0.90	3.70		
Glu	190	A	A	2.90	.	F	0.90	4.79		
Ser	191	A	A	2.90	.	F	0.90	4.79		
Gln	192	A	A	2.61	.	F	0.90	4.79		
Glu	193	A	A	2.61	.	F	0.90	2.79		
Glu	194	A	A	2.27	.	F	0.90	3.61		
Glu	195	A	A	1.68	.	F	0.90	2.06		
Ala	196	A	A	1.68	.	F	1.16	1.20		

-31.29-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfa...
Glu	197	A	A	1.68	.	.	F	1.27	0.93
Gly	198	A	A	1.47	.	.	F	1.53	0.93
Ala	199	.	A	.	T	.	.	C	1.26	*	.	F	2.34	1.42
Ser	200	C	1.04	*	.	F	2.60	1.27
Glu	201	C	1.42	*	.	F	2.04	1.99
Pro	202	C	0.61	*	.	F	1.78	3.04
Pro	203	C	0.61	*	.	F	1.52	1.87
Pro	204	T	C	0.61	.	.	F	1.46	1.07	
Pro	205	T	C	0.60	.	.	F	0.45	0.70	
Leu	206	T	C	0.30	*	.	F	0.45	0.65	
Gly	207	.	B	.	.	T	.	0.62	*	.	F	0.51	0.57	
Ala	208	.	B	0.52	*	.	F	1.17	0.72	
Thr	209	.	B	0.78	*	.	F	1.58	1.25	
Ser	210	.	B	.	.	T	.	1.10	*	.	F	2.34	2.53	
Arg	211	.	B	.	.	T	.	1.21	*	.	F	2.60	4.91	
Thr	212	.	B	.	.	T	.	0.70	*	.	F	2.34	2.95	
Lys	213	.	B	.	.	T	.	0.99	*	.	F	2.08	1.63	
Arg	214	.	B	B	.	.	.	1.30	*	.	F	1.42	1.12	
Phe	215	.	B	B	.	.	.	1.01	*	.	.	1.01	1.34	
Val	216	.	B	B	.	.	.	1.01	*	.	.	0.60	0.68	
Ser	217	A	.	B	.	.	.	0.62	*	.	.	0.60	0.68	
Glu	218	A	A	0.28	*	.	.	-0.30	0.68	

5

10

15

20

-31.30-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Ala	219	A	A		B			-0.39	*	*			0.30	0.68
Arg	220	A	A		B			0.00	*	*			0.60	0.87
Phe	221	A	A		B			0.04	*	*			0.60	0.73
Val	222	A	A		B			-0.47	*	*			-0.30	0.59
Glu	223	A	A		B			-1.32	*	*			-0.30	0.25
Thr	224	A	A		B			-1.32	*	*			-0.60	0.21
Leu	225	A	A		B			-1.43	*	*			-0.60	0.29
Leu	226	A	A		B			-1.32					0.30	0.28
Val	227	A	A		B			-0.77					-0.60	0.20
Ala	228	A	A		B			-1.37					-0.30	0.32
Asp	229	A	A		B			-1.64					-0.30	0.38
Ala	230	A	A		B			-1.42					-0.30	0.52
Ser	231	A	A		B			-1.31					0.30	0.52
Met	232	A	A		B			-0.70					-0.30	0.27
Ala	233	A	A		B			-0.46					-0.60	0.42
Ala	234	A	A		B			-1.04					-0.60	0.31
Phe	235	A	A		B			-0.46					-0.60	0.32
Tyr	236	A	A		B			-0.97					-0.60	0.52
Gly	237	A	A		B			-0.37					-0.60	0.43
Ala	238	A	A		B			0.22					-0.60	0.86
Asp	239	A	A		B			0.78	*	*			-0.30	0.88
Leu	240	A	A		B			0.59	*				0.45	1.21

5

10

15

20

-31.31-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen... Alpha	Karp... Flexi...	James... Antig...	Emini Surfa...
Gln	241	A	A	B				0.02	*	*		-0.30	0.84
Asn	242	A	A	B				0.06	*			-0.30	0.41
His	243		A	B				-0.17	*			-0.60	0.72
Ile	244		A	B				-0.77	*			-0.60	0.35
Leu	245		A	B				-0.26	*			-0.60	0.21
Thr	246		A	B				-1.11	*			-0.60	0.21
Leu	247		A	B				-1.70	*			-0.60	0.22
Met	248		A	A				-2.26	*			-0.60	0.27
Ser	249		A	A				-1.26	*			-0.60	0.19
Val	250		A	A				-1.33	*			-0.30	0.45
Ala	251		A	A				-1.27	*			-0.30	0.32
Ala	252		A	A				-0.41	*			-0.60	0.37
Arg	253		A	A				0.16	*			-0.15	1.01
Ile	254		A	A				0.24	*			0.45	1.36
Tyr	255				B			0.80	*			0.99	2.08
Lys	256				B			0.50	*			1.33	1.42
His	257			B		T		1.13	*	F	1.12	1.42	
Pro	258					T	T	C	1.02	*	F	2.56	1.81
Ser	259					T	T		1.61	*	F	3.40	1.46
Ile	260					T	T		0.97	*	F	2.76	1.44
Lys	261				B			0.92	*	F	1.67	0.65	
Asn	262					T			0.14	*	F	1.73	0.78

5

10

15

20

-31.32-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini Surf...
Ser	263	.	.	B	B	.	.	-0.24	*	*	F	0.19	0.92	
Ile	264	.	.	B	B	.	.	-0.80	*	*	.	-0.30	0.45	
Asn	265	.	.	B	B	.	.	-0.77	*	*	.	-0.60	0.21	
Leu	266	.	.	B	B	.	.	-0.77	*	*	.	-0.60	0.12	
Met	267	A	.	B	B	.	.	-1.62	*	*	.	-0.60	0.33	
Val	268	.	.	B	B	.	.	-2.13	*	*	.	-0.60	0.15	
Val	269	.	.	B	B	.	.	-2.13	*	*	.	-0.60	0.15	
Lys	270	A	.	.	B	.	.	-2.99	*	*	.	-0.60	0.11	
Val	271	.	.	B	B	.	.	-2.18	*	*	.	-0.60	0.11	
Leu	272	.	.	B	B	.	.	-1.58	*	*	.	-0.30	0.25	
Ile	273	A	.	.	B	.	.	-0.72	*	*	.	0.30	0.21	
Val	274	A	.	.	B	.	.	0.18	*	*	.	0.30	0.49	
Glu	275	A	.	.	B	.	.	-0.16	*	*	.	0.75	1.19	
Asp	276	A	A	0.36	*	*	F	0.90	1.79	
Glu	277	A	A	0.96	*	*	F	0.90	2.39	
Lys	278	.	A	.	.	T	.	1.84	*	*	F	1.30	2.13	
Trp	279	.	A	.	.	.	C	1.84	*	*	F	1.10	2.21	
Gly	280	T	C	1.54	*	*	F	1.35	0.95	
Pro	281	T	C	1.54	*	*	F	1.36	0.64	
Glu	282	.	.	B	.	T	.	1.54	*	*	F	1.62	1.01	
Val	283	.	.	B	.	T	.	1.16	*	*	F	2.23	1.64	
Ser	284	T	C	1.10	*	*	F	2.74	1.05	

-31.33-

Res	Pos.	Garni.. Alpha	Chou-.. Alpha	Garni.. Beta	Chou-.. Beta	Garai.. Turn	Chou... Turn	Garni.. Coil	Kyte-.. Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surf...
Asp	285	.	.	.	T	T	.	0.63	.	.	F	3.10	0.60	
Asn	286	.	.	.	T	T	.	0.53	.	*	F	2.49	0.67	
Gly	287	.	.	.	T	T	.	-0.28	*	*	F	2.18	0.72	
Gly	288	.	.	.	T	.	.	0.69	*	*	F	1.07	0.35	
Leu	289	.	B	0.99	*	*	F	0.36	0.43	
Thr	290	.	B	0.29	*	*	.	-0.10	0.70	
Leu	291	.	B	-0.38	*	*	.	-0.40	0.61	
Arg	292	.	B	-0.03	*	*	.	-0.40	0.40	
Asn	293	.	B	0.02	*	*	.	-0.10	0.44	
Phe	294	.	.	.	T	T	.	0.83	*	*	.	0.20	0.57	
Cys	295	.	.	.	T	T	.	1.26	*	*	.	0.20	0.50	
Asn	296	.	.	.	T	T	.	2.18	*	*	.	0.20	0.61	
Trp	297	.	.	.	T	T	.	1.37	*	*	.	0.65	1.38	
Gln	298	.	.	.	T	.	.	1.37	*	*	.	0.45	2.23	
Arg	299	.	.	.	T	.	.	2.07	*	*	.	1.05	2.23	
Arg	300	.	.	.	T	.	.	2.52	*	*	F	1.20	3.67	
Phe	301	.	.	.	T	.	.	2.22	*	*	F	1.84	3.28	
Asn	302	.	.	.	T	.	.	2.51	*	*	F	2.18	2.24	
Gln	303	.	.	.	T	C	.	2.62	*	*	F	2.52	1.91	
Pro	304	.	.	.	T	C	.	2.48	*	*	F	2.86	4.33	
Ser	305	.	.	.	T	T	.	2.16	*	*	F	3.40	3.66	
Asp	306	.	.	.	T	T	.	2.86	*	*	F	3.06	3.27	

-31.34-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coll	Kyte-... Hydro...	Eisen... Alpha	Karpl... Flexi...	James... Antig...	Emini Surfa...	
Arg	307	C	2.82	*	.	F	2.32	3.66	
His	308	C	2.58	*	.	F	1.98	3.72	
Pro	309	C	2.79	*	.	F	1.64	3.49	
Glu	310	.	.	.	T	.	.	2.78	*	.	F	1.50	2.97	
His	311	A	.	.	.	T	.	.	2.19	*	.	F	1.00	3.15
Tyr	312	A	.	.	.	T	.	.	1.19	*	.	F	1.00	2.06
Asp	313	A	.	.	.	T	.	0.41	.	.	F	0.85	0.83	
Thr	314	A	.	.	.	T	.	.	-0.19	.	.	-0.20	0.51	
Ala	315	A	.	B	.	.	.	-0.50	*	.	.	-0.60	0.27	
Ile	316	.	B	B	.	.	.	-0.36	*	.	.	-0.60	0.23	
Leu	317	.	B	B	.	.	.	-0.11	.	.	.	-0.60	0.31	
Leu	318	.	B	B	.	.	.	-0.11	*	.	.	-0.60	0.53	
Thr	319	.	B	B	.	.	.	-0.50	.	.	F	0.00	1.23	
Arg	320	.	B	B	.	.	.	-0.58	*	.	F	-0.08	1.29	
Gln	321	.	B	T	.	.	.	-0.03	*	.	F	0.69	0.84	
Asn	322	.	.	T	T	.	.	0.78	*	.	F	1.31	0.57	
Phe	323	.	.	T	T	.	.	1.59	.	.	.	1.98	0.51	
Cys	324	.	.	T	T	.	.	1.56	*	.	.	2.20	0.51	
Gly	325	.	.	T	T	.	.	0.63	*	F	.	1.53	0.31	
Gln	326	.	.	T	.	.	.	-0.03	.	F	.	1.11	0.30	
Glu	327	.	.	T	.	.	.	-0.03	.	F	.	0.89	0.30	
Gly	328	.	.	T	.	.	.	0.36	.	F	.	1.27	0.50	

-31.35-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Karpf... Flexi...	James... Antig...	Emini Surfa...
Leu	329	.	.	B	.	.	.	0.21	.	F	0.65	0.42	
Cys	330	.	.	B	.	.	.	0.21	.	.	0.50	0.20	
Asp	331	.	.	B	.	T	.	-0.64	.	.	0.10	0.20	
Thr	332	.	.	B	.	T	.	-1.23	*	.	-0.20	0.18	
Leu	333	.	.	B	.	T	.	-0.89	.	.	0.10	0.34	
Gly	334	.	.	B	.	T	.	-0.97	.	.	0.70	0.34	
Val	335	.	.	B	.	.	.	-0.64	.	.	-0.40	0.16	
Ala	336	.	.	B	.	.	.	-0.96	.	.	-0.10	0.20	
Asp	337	.	.	B	.	T	.	-1.53	.	.	0.10	0.29	
Ile	338	.	.	B	.	T	.	-1.39	.	.	-0.20	0.27	
Gly	339	.	.	B	.	T	.	-1.04	*	.	0.10	0.14	
Thr	340	.	.	B	.	T	.	-0.40	.	.	0.70	0.14	
Ile	341	.	.	B	.	.	.	0.19	.	.	0.24	0.32	
Cys	342	.	.	B	.	.	.	0.23	.	.	1.18	0.52	
Asp	343	.	.	B	.	T	.	0.82	*	.	F	1.87	0.72
Pro	344	T	T	0.50	.	F	3.06	1.37	
Asn	345	T	T	0.51	.	F	3.40	1.37	
Lys	346	T	T	0.54	*	F	3.06	1.10	
Ser	347	B	T	0.32	.	F	1.87	0.53	
Cys	348	B	B	0.32	*	.	0.38	0.23	
Ser	349	B	B	0.53	*	.	0.64	0.20	
Val	350	B	B	0.53	*	.	0.30	0.25	

-31.36-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coll	Kyle... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surfa...
Ile	351	.	.	B	B	.	.	.	0.14	*	.	.	0.60	0.80
Glu	352	A	.	.	B	.	.	.	-0.37	.	.	.	0.60	0.59
Asp	353	A	A	0.30	.	.	F	0.75	0.66
Glu	354	A	A	0.01	*	.	F	0.90	1.62
Gly	355	A	A	0.28	*	.	F	0.75	0.95
Leu	356	A	A	1.13	*	.	.	0.30	0.57
Gln	357	A	A	0.82	*	.	.	-0.30	0.45
Ala	358	A	A	0.01	*	.	.	-0.60	0.66
Ala	359	A	A	-0.58	*	.	.	-0.60	0.66
His	360	A	A	-0.27	*	.	.	-0.60	0.38
Thr	361	A	A	0.54	*	.	.	-0.60	0.52
Leu	362	A	A	-0.27	*	.	.	-0.30	0.88
Ala	363	A	A	-0.02	*	.	.	-0.30	0.54
His	364	A	A	0.53	*	.	.	-0.30	0.37
Glu	365	A	A	-0.29	*	.	.	-0.30	0.45
Leu	366	A	A	.	B	.	.	.	-0.79	*	.	.	-0.60	0.27
Gly	367	A	A	.	B	.	.	.	-0.28	*	.	.	-0.30	0.61
His	368	A	A	.	B	.	.	.	-0.29	*	.	.	-0.30	0.21
Val	369	A	A	.	B	.	.	.	-0.47	*	.	.	-0.60	0.25
Leu	370	.	A	.	B	.	.	.	-0.50	*	.	.	-0.26	0.39
Ser	371	.	A	.	B	.	.	.	0.31	*	.	.	0.08	0.39
Met	372	.	.	B	0.66	.	.	.	0.92	0.88

5

10

15

20

-31.37-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coil	Kyte-... Hydro...	Eisen... Alpha	Eisen... Beta	Karpel... Flexi...	James... Antig...	Emini Surfa...
Pro	373				T				0.39	*			2.41	1.78
His	374				T	T			1.29	*		F	3.40	1.78
Asp	375				T	T			1.89			F	3.06	3.61
Asp	376				T	T			1.52			F	2.89	3.61
Ser	377				T	T			1.81	*	*	F	2.72	4.42
Lys	378			B		T			2.13	*	*	F	2.15	1.23
Pro	379				T	T			1.36	*	*	F	2.38	1.44
Cys	380			B		T			0.66	*	*	F	1.70	0.89
Thr	381			B		T			0.31	*	*	F	1.53	0.38
Arg	382			B	B				0.40	*	*	F	0.36	0.25
Leu	383			B	B				-0.24	*	*		0.04	0.71
Phe	384			B	B				-0.38	*	*		-0.43	0.49
Gly	385			B				C	0.33	*	*	F	0.05	0.25
Pro	386					T	C	0.61	*	*	F	0.45	0.59	
Met	387					T	T		0.47	*	*	F	0.65	0.93
Gly	388			A		T			0.42			F	1.00	1.29
Lys	389			A					0.52				0.10	0.62
His	390			A	A				0.28				-0.30	0.62
His	391			A	A				0.28				-0.30	0.63
Val	392				A				0.28				-0.30	0.49
Met	393			A	A				-0.29				-0.60	0.30
Ala	394			A	A				-1.19				-0.60	0.19

-31.38-

Res	Pos.	Garni... Alpha	Chou.... Alpha	Garni... Beta	Chou.... Beta	Garni.. Turn	Chou.... Turn	Garni.. Coll	Kyle... Hydro...	Eisen... Alpha	Karpf... Flexi...	James... Antig...	Emini Surf...
Pro	395	A	A	-1.19	*	*	-0.60	0.19	
Leu	396	A	A	-1.97	*	*	-0.60	0.26	
Phe	397	A	A	-1.11	*	*	-0.60	0.21	
Val	398	A	A	-0.51	*	*	-0.60	0.22	
His	399	.	A	B	.	.	.	-0.23	*	*	-0.60	0.46	
Leu	400	.	A	B	.	.	.	-0.83	*	*	-0.60	0.77	
Asn	401	.	A	.	T	.	.	-0.23	*	*	F	-0.05	0.85
Gln	402	.	A	.	T	.	.	0.18	*	*	F	-0.05	0.97
Thr	403	.	A	.	T	.	.	0.73	*	*	F	0.10	1.24
Leu	404	.	A	.	C	.	.	0.56	*	*	F	-0.10	1.03
Pro	405	.	.	.	T	.	.	0.70	.	.	.	0.00	0.92
Trp	406	.	.	.	T	.	.	0.40	.	.	.	0.00	0.34
Ser	407	.	.	.	T	C	.	-0.19	.	.	.	0.00	0.55
Pro	408	.	.	.	T	T	.	-0.48	.	.	.	0.20	0.36
Cys	409	.	.	.	T	T	.	0.09	.	.	.	0.20	0.34
Ser	410	.	.	B	.	T	.	-0.51	.	.	.	-0.20	0.40
Ala	411	.	A	B	.	.	.	-0.53	.	.	.	-0.60	0.21
Met	412	.	A	B	.	.	.	-0.23	.	.	.	-0.60	0.57
Tyr	413	.	A	B	.	.	.	-0.83	.	.	.	-0.60	0.74
Leu	414	.	A	B	.	.	.	-0.98	*	*	.	-0.60	0.60
Thr	415	.	A	B	.	.	.	-0.68	*	*	.	-0.60	0.50
Glu	416	A	A	-0.43	*	*	.	-0.30	0.54

-31.39-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Leu	417	A	A	.	.	.	T	.	-0.18	*	.	F	0.76	0.64
Leu	418	A	.	.	.	T	.	0.03	*	.	F	1.47	0.44	
Asp	419	.	.	.	T	T	.	0.50	*	.	F	2.18	0.35	
Gly	420	.	.	T	T	.	0.81	.	.	.	F	1.89	0.42	
Gly	421	.	.	T	T	.	.	0.14	.	.	F	3.10	0.84	
His	422	.	.	T	T	.	.	0.14	.	.	F	2.79	0.27	
Gly	423	.	.	T	T	.	.	0.14	.	.	F	1.58	0.23	
Asp	424	.	B	.	T	.	.	0.14	*	.	.	0.72	0.19	
Cys	425	.	B	.	T	.	.	-0.10	*	.	.	1.01	0.23	
Leu	426	.	B	0.03	*	.	.	0.50	0.24	
Leu	427	.	B	-0.28	*	.	.	0.50	0.22	
Asp	428	.	B	-0.52	*	.	.	-0.10	0.40	
Ala	429	.	B	.	T	.	.	-1.11	*	.	F	0.25	0.49	
Pro	430	A	.	.	T	.	.	-1.26	.	.	F	0.25	0.60	
Gly	431	.	.	T	T	.	.	-0.66	.	.	F	0.65	0.30	
Ala	432	.	B	.	T	.	.	-0.66	.	.	.	-0.20	0.46	
Ala	433	.	B	-0.87	.	.	.	-0.40	0.24	
Leu	434	.	B	-0.59	.	.	.	-0.40	0.38	
Pro	435	.	B	-0.72	.	.	.	-0.40	0.54	
Leu	436	.	B	.	T	.	.	-1.19	.	.	.	-0.20	0.53	
Pro	437	.	B	.	T	.	.	-0.81	.	.	F	0.00	0.53	
Thr	438	.	.	T	T	.	.	-0.57	*	.	F	0.45	0.53	

-31.40-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini... Surfi...
Gly	439	T	C	0.36	.	*	F	0.30	0.64	
Leu	440	T	C	-0.03	.	*	F	1.25	0.81	
Pro	441	.	B	.	.	T	.	0.19	.	*	F	0.50	0.55	
Gly	442	.	B	.	.	T	.	-0.41	.	*	F	0.45	0.57	
Arg	443	.	B	.	.	T	.	-0.34	.	.	.	0.25	0.57	
Met	444	.	A	B	.	.	.	0.00	.	*	.	-0.50	0.57	
Ala	445	.	A	B	.	.	.	0.00	.	*	.	-0.10	1.00	
Leu	446	.	A	B	.	.	.	0.21	.	*	.	-0.60	0.42	
Tyr	447	.	A	B	.	.	.	0.56	*	*	.	-0.60	0.71	
Gln	448	.	A	B	.	.	.	0.44	*	*	.	-0.45	1.22	
Leu	449	A	A	0.38	*	*	.	-0.15	2.57	
Asp	450	A	A	1.08	*	*	F	-0.15	0.88	
Gln	451	.	A	B	.	.	.	1.89	*	*	F	0.75	0.99	
Gln	452	.	A	B	.	.	.	1.24	*	*	F	0.90	2.09	
Cys	453	.	A	B	.	.	.	0.54	*	*	F	0.75	0.88	
Arg	454	.	A	B	.	.	.	1.01	*	*	.	-0.30	0.44	
Gln	455	.	A	B	.	.	.	0.80	*	.	.	-0.30	0.25	
Ile	456	.	A	B	.	.	.	0.80	*	.	.	-0.30	0.72	
Phe	457	.	A	.	.	T	.	0.10	*	*	.	0.70	0.62	
Gly	458	T	C	0.88	*	*	.	0.00	0.31	
Pro	459	T	T	0.73	*	*	F	0.65	0.86	
Asp	460	T	T	0.07	*	*	F	1.40	1.35	

-31.41-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini Surfa...
Phc	461	.	.	.	T	T	.	0.74	*	*	.	.	1.35	0.73
Arg	462	.	.	.	T	.	.	1.44	*	*	.	.	1.40	0.73
His	463	.	.	.	T	.	.	1.48	*	*	.	.	1.65	0.71
Cys	464	T	C	1.39	*	*	.	.	1.45	1.18
Pro	465	.	.	.	T	T	.	0.80	*	.	F	.	2.50	0.80
Asn	466	.	.	.	T	T	.	1.50	*	*	F	.	1.65	0.60
Thr	467	.	.	.	T	T	.	1.39	*	*	F	.	1.55	1.93
Ser	468	.	A	.	T	.	.	0.57	*	.	F	.	1.50	2.08
Ala	469	.	A	.	T	.	.	0.57	*	.	F	.	1.10	0.96
Gln	470	.	A	B	.	.	.	0.19	*	.	F	.	0.45	0.36
Asp	471	.	A	B	.	.	.	0.19	*	.	F	.	0.45	0.27
Val	472	.	A	B	.	.	.	-0.31	*	.	.	.	-0.30	0.46
Cys	473	.	A	B	.	.	.	-0.30	*	.	.	.	-0.30	0.22
Ala	474	.	A	B	.	.	.	-0.38	*	.	.	.	-0.60	0.14
Gln	475	.	A	B	.	.	.	-0.41	*	.	.	.	-0.60	0.10
Leu	476	.	A	B	.	.	.	-0.72	*	*	.	.	-0.60	0.25
Trp	477	.	A	B	.	.	.	0.13	-0.60	0.36
Cys	478	.	A	B	.	.	.	0.46	-0.26	0.35
His	479	.	.	.	T	T	.	0.46	0.88	0.42
Thr	480	.	.	.	T	T	.	0.46	1.52	0.40
Asp	481	.	.	.	T	T	.	1.06	.	.	F	.	3.06	1.30
Gly	482	.	.	.	T	T	.	0.53	.	.	F	.	3.40	1.48

-31.42-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coil	Kyle-... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surfa...
Ala	483	T	.	C	0.53	*	.	F	2.41	0.85
Glu	484	A	0.53	*	.	F	1.67	0.27	
Pro	485	A	0.53	*	.	F	0.73	0.37	
Leu	486	A	0.58	*	.	F	0.24	0.53	
	5	Cys	487	A	0.92	.	.	F	0.78	0.62
		His	488	.	B	.	.	.	1.17	.	.	F	0.61	0.64
		Thr	489	.	.	T	T	.	0.87	.	.	F	1.49	0.77
		Lys	490	.	.	T	T	.	0.27	.	.	F	2.52	1.92
		Asn	491	.	.	T	T	.	0.87	.	.	F	2.80	1.16
	10	Gly	492	.	.	T	T	.	1.24	.	.	F	2.52	1.25
		Ser	493	C	0.69	.	.	F	1.09	0.66
		Leu	494	C	1.00	.	.	.	0.36	0.41
		Pro	495	.	B	.	.	.	0.61	.	.	.	0.18	0.69
		Trp	496	.	.	T	T	.	0.30	.	.	.	0.50	0.51
	15	Ala	497	.	B	.	T	.	0.43	.	.	F	1.15	0.90
		Asp	498	.	.	.	T	T	0.07	.	.	F	1.40	0.46
		Gly	499	.	.	T	T	.	0.53	.	.	F	2.05	0.45
		Thr	500	.	.	.	T	C	0.53	.	.	F	2.50	0.42
		Pro	501	.	.	T	T	.	0.48	.	.	F	1.65	0.42
	20	Cys	502	.	.	T	T	.	1.03	*	.	F	1.20	0.39
		Gly	503	.	.	.	T	C	0.22	.	.	F	0.65	0.21
		Pro	504	.	.	T	.	.	-0.10	.	.	F	0.65	.

-31.43-

Res	Pos.	Garni.. Alpha	Chou.. Alpha	Garni.. Beta	Chou.. Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Karpel... Flexi...	James... Antig...	Emini Surfa...
Gly	505	T	.	.	-0.09	.	.	0.25	0.21
His	506	.	.	B	.	.	.	0.12	.	.	-0.40	0.28	
Leu	507	.	.	B	0.44	.	.	0.50	0.32
Cys	508	.	.	B	.	T	.	0.49	.	*	.	0.91	0.32
Ser	509	T	T	0.03	.	F	.	1.67	0.31
Glu	510	T	T	.	-0.43	.	F	1.28	0.20
Gly	511	T	T	.	-0.61	*	F	1.49	0.31
Ser	512	T	.	.	0.20	*	F	2.10	0.36
Cys	513	.	A	.	.	.	C	0.87	.	.	F	1.79	0.36
Leu	514	.	A	.	.	.	C	1.17	.	F	.	1.58	0.63
Pro	515	A	A	0.31	.	F	.	1.17	0.81
Glu	516	A	A	0.66	*	.	F	1.11	1.13
Glu	517	A	A	1.07	*	.	F	0.90	2.37
Glu	518	A	A	1.52	.	.	F	0.90	3.00
Val	519	A	A	2.38	.	.	F	0.90	2.68
Glu	520	A	A	2.38	*	.	F	0.90	3.09
Arg	521	A	.	.	.	T	.	1.52	*	.	F	1.30	2.76
Pro	522	A	.	.	.	T	.	0.67	*	*	F	1.30	2.76
Lys	523	A	.	.	.	T	.	0.67	*	*	F	1.30	1.18
Pro	524	T	.	1.18	*	*	F	1.30	1.01
Val	525	0.83	*	*	F	0.65	0.65
Val	526	.	.	B	.	.	.	0.43	*	*	F	0.65	0.32

5

10

15

20

-31.44-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coll	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini Surf...
Asp	527	.	B	.	.	T	.	.	0.06	*	.	F	-0.05	0.22
Gly	528	.	B	.	.	T	.	.	-0.20	*	.	F	-0.05	0.30
Gly	529	T	T	.	-0.28	.	.	F	0.65	0.62
Trp	530	T	C	0.23	.	.	.	0.00	0.39	.
Ala	531	C	.	0.88	.	.	.	-0.20	0.39	.
Pro	532	T	.	.	0.59	.	.	0.00	0.61	.
Trp	533	T	.	.	0.59	.	.	0.00	0.61	.
Gly	534	T	C	0.93	.	.	.	0.00	0.59	.
Pro	535	T	T	.	0.56	.	.	F	0.35	0.66
Trp	536	T	T	.	0.84	*	.	F	0.66	0.34
Gly	537	T	C	1.17	*	.	.	F	1.07	0.46
Glu	538	T	.	.	1.14	*	.	F	1.98	0.58
Cys	539	T	T	.	0.82	*	.	F	2.49	0.80
Ser	540	T	T	.	0.69	*	.	F	3.10	0.43
Arg	541	T	T	.	0.63	*	.	F	2.79	0.25
Thr	542	T	T	.	0.63	*	.	F	2.18	0.46
Cys	543	T	T	.	-0.22	*	.	F	1.87	0.34
Gly	544	T	T	.	0.44	*	.	F	1.56	0.13
Gly	545	T	T	.	0.04	*	.	F	0.65	0.15
Gly	546	T	T	.	-0.37	*	*	F	0.35	0.25
Val	547	B	B	.	-0.09	*	*	.	-0.60	0.33
Gln	548	B	B	.	0.69	*	.	.	-0.60	0.46

-31.45-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Phe	549	.	B	B	.	.	.	1.03	*	*	.	.	-0.30	0.91
Ser	550	.	B	B	.	.	.	0.71	*	*	.	.	0.79	2.13
His	551	.	B	1.10	*	*	.	.	1.18	0.66
Arg	552	.	.	T	.	.	.	1.96	*	*	.	.	2.37	1.52
Glu	553	.	.	T	.	.	.	1.74	*	.	F	.	2.86	1.89
Cys	554	.	.	T	T	.	.	2.44	*	.	F	.	3.40	2.15
Lys	555	.	.	T	T	.	.	2.53	*	.	F	.	3.06	1.90
Asp	556	.	.	.	T	C	.	2.57	*	.	F	.	2.52	1.70
Pro	557	.	.	.	T	C	.	2.46	*	.	F	.	2.52	5.49
Glu	558	C	.	2.11	.	.	F	.	2.32	4.41
Pro	559	.	.	T	T	.	.	2.43	*	.	F	.	2.72	2.62
Gln	560	.	.	T	T	.	.	2.50	*	.	F	.	2.76	1.67
Asn	561	.	.	T	T	.	.	2.26	*	.	F	.	3.40	1.89
Gly	562	.	.	T	T	.	.	1.80	*	.	F	.	2.76	1.92
Gly	563	.	.	T	T	.	.	0.99	*	.	F	.	2.27	0.59
Arg	564	.	.	B	.	T	.	0.86	*	.	F	.	0.93	0.30
Tyr	565	.	B	.	.	T	.	0.97	0.44	0.30
Cys	566	.	B	.	.	T	.	1.08	1.00	0.60
Leu	567	.	B	0.83	1.40	0.60
Gly	568	.	B	1.22	*	.	F	.	1.55	0.39
Arg	569	.	B	0.87	*	.	F	.	2.30	1.45
Arg	570	.	.	T	.	.	.	1.11	*	.	F	.	3.00	2.75

5

10

15

20

-31.46-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini Surf...
	Ala 571	.	.	.	T	.	.	1.48	*	*	F	2.70	4.82	
	Lys 572	.	.	.	T	.	.	1.62	*	*	F	2.40	3.30	
	Tyr 573	.	.	T	T	.	.	1.93	*	.	F	1.85	0.90	
	Gln 574	.	.	T	T	.	.	1.51	*	.	F	1.10	1.22	
5	Ser 575	.	.	T	T	.	.	1.40	*	.	.	0.50	0.88	
	Cys 576	.	.	T	T	.	.	1.99	*	.	.	0.50	0.97	
	His 577	.	A B	1.28	*	.	.	0.60	0.97	
	Thr 578	.	A	.	T	.	.	1.31	*	.	F	0.85	0.39	
	Glu 579	.	A	.	T	.	.	1.10	*	.	F	1.00	1.12	
10	Glu 580	.	A	.	T	.	.	1.40	*	.	F	1.64	1.27	
	Cys 581	.	A B	1.72	*	.	F	1.58	1.47	
	Pro 582	.	.	.	T C	.	.	1.80	*	.	F	2.37	0.84	
	Pro 583	.	.	T	T	.	.	1.81	*	.	F	2.91	0.97	
	Asp 584	.	.	T	T	.	.	1.11	*	.	F	3.40	2.43	
	Gly 585	.	.	T	T	.	.	1.22	*	.	F	3.06	1.36	
	Lys 586	.	A	.	T	.	.	1.89	*	.	F	2.32	1.72	
	Ser 587	A	A	2.10	*	.	F	1.58	1.79	
	Phe 588	A	A	2.31	*	.	F	1.24	3.13	
	Arg 589	A	A	1.64	*	.	F	0.90	2.71	
20	Glu 590	A	A	1.99	*	.	F	0.60	1.08	
	Gln 591	A	A	1.99	*	.	F	0.90	2.17	
	Gln 592	A	A	2.04	*	.	F	0.90	2.21	

-31.47-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...	
Cys	593	A	A						2.74	*	F	1.15	2.00		
Glu	594		A		T				2.04		F	1.50	1.86		
Lys	595		A		T				1.80		F	1.75	1.08		
Tyr	596				T				1.80			2.05	3.17		
Asn	597				T		T		1.56			2.50	2.94		
Ala	598				T		T		1.91			1.35	2.30		
Tyr	599			B			T		1.91			0.70	2.12		
Asn	600			B		T			1.27	*		0.75	2.20		
Tyr	601			B			T			1.51			0.25	2.16	
Thr	602			B					1.17	*	F	0.70	2.30		
Asp	603			B		T			1.76	*	F	1.75	1.42		
Met	604			B		T			1.19	*	F	2.00	1.45		
Asp	605				T		T		0.38	*	F	2.50	0.83		
Gly	606			B		T			0.62	*	F	1.85	0.41		
Asn	607			B	B				0.64	*	F	0.60	0.72		
Leu	608		A		B				-0.21	*		-0.10	0.45		
Leu	609				B	B			0.18	*		-0.35	0.34		
Gln	610				B	B			0.22	*		-0.60	0.33		
Trp	611				B	B			0.32	*		-0.60	0.79		
Val	612				B	B			-0.27	*		-0.45	1.50		
Pro	613				B		T		0.20	*		-0.20	0.88		

-31.48-

Res	Pos.	Garni... Alpha	Chou-... Alpha	Garni... Beta	Chou-... Beta	Garni... Turn	Chou-... Turn	Garni... Coll	Kyle-... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini Surfa...
Lys	614		B			T		0.16	*	*		-0.20	0.82	
Tyr	615		B			T		-0.14				0.10	0.82	
Ala	616					T	T	-0.07	*	*		0.50	0.71	
Gly	617					T		0.90	*			0.64	0.55	
Val	618		B					1.11	*			0.58	0.69	
Ser	619		B			T		1.18	*		F	2.32	1.14	
Pro	620		B			T		0.76	*		F	2.66	2.26	
Arg	621					T	T	1.39	*	*	F	3.40	1.63	
Asp	622					T	T	0.92	*	*	F	3.06	2.43	
Arg	623		A			T		1.08	*	*	F	2.32	1.30	
Cys	624		A	B				0.71	*	*	F	1.43	0.57	
Lys	625		A	B				1.03	*	*		0.64	0.18	
Leu	626		A	B				0.33	*	*		0.30	0.18	
Phe	627		A	B				0.44	*			0.04	0.35	
Cys	628		A	B				-0.01	*			0.98	0.34	
Arg	629		A	B				0.77	*	*		1.32	0.41	
Ala	630	A					T	0.42	*			2.36	0.92	
Arg	631						T	1.23	*		F	3.40	2.31	
Gly	632					T	T	1.23	*		F	3.06	2.04	
Arg	633					T	T	1.94	*		F	2.72	1.75	
Ser	634	A	A					0.98	*		F	1.58	1.79	

-31.49-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Karpl... Flexi...	Eisen... Beta	James... Antig...	Emini Surface...
Glu	635	A	A	0.87	*	*	F	1.24	1.34	
Phe	636	A	A	0.76	*	*	F	0.45	0.59	
Lys	637	A	A	0.51	*	*	.	0.30	0.77	
Val	638	A	A	0.44	*	*	.	0.30	0.45	
Phe	639	A	A	-0.11	.	.	.	0.45	1.03	
Glu	640	A	A	-1.00	*	*	.	0.30	0.38	
Ala	641	A	.	B	.	.	.	-0.30	*	*	.	-0.30	0.36	
Lys	642	A	.	B	.	.	.	-0.69	.	.	.	0.30	0.70	
Val	643	A	.	B	.	.	.	-0.14	.	.	.	0.60	0.40	
Ile	644	A	.	B	.	.	.	-0.26	*	*	F	0.45	0.57	
Asp	645	.	.	B	B	.	.	-0.92	.	.	F	0.45	0.23	
Gly	646	.	.	B	B	.	.	-0.68	*	*	F	-0.45	0.17	
Thr	647	.	.	B	B	.	.	-0.93	*	*	F	-0.15	0.24	
Leu	648	.	.	B	.	C	-0.08	.	.	F	0.05	0.22		
Cys	649	.	.	B	T	.	.	0.50	*	*	.	0.10	0.39	
Gly	650	.	.	.	T	C	-0.31	.	F	.	0.45	0.39		
Pro	651	.	.	.	T	T	.	-0.56	.	F	0.65	0.39		
Glu	652	A	.	.	.	T	.	-1.13	.	F	0.25	0.73		
Thr	653	A	.	.	.	T	.	-0.99	.	F	0.25	0.52		
Leu	654	A	.	B	.	.	.	-1.18	*	*	-0.30	0.18		
Ala	655	.	.	B	B	.	.	-0.72	*	*	-0.60	0.08		
Ile	656	.	.	B	B	.	.	-0.86	*	*	-0.60	0.10		

-31.50-

Res	Pos.	Garni.. Alpha	Chou.... Alpha	Garni.. Beta	Chou.... Beta	Garni.. Turn	Chou.... Turn	Garni.. Coll	Kyte... Hydro...	Eisen... Alpha	Karpf... Flexi...	Eisen... Beta	James... Antig...	Emini... Surfa...
Cys	657		B	B				-0.86	*			-0.60	0.13	
Val	658	A		B				-1.21	*			-0.30	0.21	
Arg	659		B	B				-1.26	*			-0.30	0.16	
Gly	660			B	T	T		-0.62	*	F		0.25	0.23	
Gln	661		B	B				-0.32	*	F		0.45	0.61	
Cys	662		B	B				0.00	*			0.30	0.32	
Val	663		B	B				0.19	*			0.30	0.32	
Lys	664		B		T			0.08	*			0.10	0.10	
Ala	665		B		T			0.39	*			0.70	0.30	
Gly	666		B		T			-0.47	*			0.70	0.56	
Cys	667		B		T			-0.66	*			0.70	0.21	
Asp	668		B	B				0.20	*			-0.30	0.15	
His	669		B	B				-0.14	*			0.30	0.26	
Val	670		B	B				0.23	*			0.30	0.64	
Val	671		B	B				0.69	*			0.64	0.59	
Asp	672		B	B				1.40	*	F		1.13	0.86	
Ser	673		B		T			0.59	*	F		2.32	2.31	
Pro	674	A			T			0.62	*	F		2.66	2.56	
Arg	675				T	T		1.52	*	F		3.40	2.56	
Lys	676				T	T		1.71	*	F		3.06	3.82	
Ieu	677				T			1.37	*	F		2.52	1.33	
Asp	678				T	T		0.81	*	F		2.23	0.67	

-31.51-

Res	Pos.	Garni.. Alpha	Chou.... Alpha	Garni.. Beta	Chou.... Beta	Garni.. Turo	Chou.... Turn	Garni.. Coll	Kyte.... Hydro...	Eisen... Alpha	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Lys	679	.	.	B	.	.	T	.	0.36	*	.	F	1.49
Cys	680	.	.	B	.	.	T	.	-0.10	*	.	.	0.70
Gly	681	.	.	B	.	.	T	.	-0.49	*	.	.	0.70
Val	682	.	.	B	0.37	*	.	.	-0.10
Cys	683	.	.	B	.	.	T	.	0.02	.	.	.	0.10
Gly	684	T	T	-0.02	.	.	F	1.59
Gly	685	T	T	0.34	.	.	F	1.93
Lys	686	T	T	0.02	.	.	F	2.27
Gly	687	T	.	0.99	.	.	F	2.41
Asn	688	T	T	1.70	.	.	F	3.40
Ser	689	.	.	B	.	.	T	.	1.19	.	.	F	2.66
Cys	690	.	.	B	.	.	T	.	1.23	.	.	F	2.34
Arg	691	.	.	B	.	.	T	.	0.84	.	.	F	2.17
Lys	692	.	.	B	0.89	*	.	F	1.80
Val	693	.	.	B	.	.	T	.	0.08	*	.	F	1.98
Ser	694	.	.	B	.	.	T	.	0.07	*	.	F	1.70
Gly	695	.	.	B	.	.	T	.	0.52	*	.	F	0.93
Ser	696	.	.	B	.	.	T	.	0.10	*	.	F	0.46
Ieu	697	.	.	B	0.06	*	.	F	0.39
Thr	698	.	.	B	0.67	.	.	F	0.37
Pro	699	.	.	B	.	.	T	.	0.62	.	.	F	0.10
Thr	700	T	T	0.72	.	.	F	0.50

-31.52-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Karpf... Flexi...	James... Antig...	Emmi... Surfa...
	Asn 701	.	B	.	.	T	.	1.02	.	F	0.10	2.00	
	Tyr 702	.	.	.	T	T	.	1.83	*	.	0.35	2.08	
	Gly 703	.	.	.	T	T	.	1.26	*	.	0.65	2.41	
	Tyr 704	.	.	.	T	T	.	0.61	*	.	0.35	1.05	
5	Asn 705	.	B	.	T	.	.	0.61	*	.	-0.20	0.50	
	Asp 706	.	B	.	T	.	.	-0.28	*	.	0.10	0.72	
	Ile 707	.	B	B	.	.	.	-0.24	*	.	-0.60	0.32	
	Val 708	.	B	B	.	.	.	-0.49	*	.	-0.30	0.31	
	Thr 709	.	B	B	.	.	.	-0.59	*	.	-0.60	0.19	
10	Ile 710	.	B	B	.	.	.	-1.18	*	.	-0.60	0.27	
	Pro 711	.	B	.	T	.	.	-1.49	*	.	-0.20	0.36	
	Ala 712	.	B	.	T	.	.	-0.60	*	.	-0.20	0.36	
	Gly 713	.	.	.	T	C	.	-0.63	*	.	0.00	0.83	
	Ala 714	.	.	.	T	C	.	-0.32	*	F	0.15	0.38	
15	Thr 715	.	B	B	.	.	.	-0.29	*	F	0.45	0.62	
	Asn 716	.	B	B	.	.	.	-0.03	*	F	-0.15	0.47	
	Ile 717	.	B	B	.	.	.	0.56	*	F	0.45	0.92	
	Asp 718	.	B	B	.	.	.	1.01	*	F	0.60	1.11	
	Val 719	.	B	B	.	.	.	1.30	*	F	0.90	1.35	
20	Lys 720	.	B	B	.	.	.	1.58	*	F	0.90	2.58	
	Gln 721	.	B	1.37	*	F	1.10	2.10	
	Arg 722	.	B	1.91	*	F	1.10	4.38	

-31.53-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni... Turn	Chou... Turn	Garni... Coll	Kyle... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini Surf...
Ser	723	C	1.06	*	*	F	1.30	2.17	
	724	.	.	.	T	C	1.91	*	*	F	1.05	0.93		
His	T	C	1.87	*	*	F	1.33	0.82		
Pro	725	.	.	.	T	T	1.87	*	*	F	1.21	0.99		
Gly	726	.	.	T	T	1.87	*	*	F	1.41	*	F	1.84	
Val	727	.	B	.	T	.	.	1.71	*	F	1.77	0.77		
Gln	728	.	B	1.50	*	F	2.80	1.26		
Asn	729	.	B	T	T	1.71	*	1.50	*	F	1.92	2.66		
Asp	730	.	.	T	T	0.90	*	0.90	*	F	1.64	1.27		
Gly	731	.	.	T	T	0.66	*	0.66	*	F	0.81	0.80		
Asn	732	.	B	.	T	0.70	*	0.70	*	F	-0.32	0.39		
Tyr	733	A	B	.	.	0.74	*	0.74	*	F	-0.60	0.79		
Leu	734	A	B	.	.	0.43	*	0.43	*	F	-0.60	0.71		
Ala	735	A	B	.	.	-0.16	*	-0.16	*	F	-0.40	0.46		
Leu	736	A	B	.	.	0.19	*	0.19	*	F	0.85	0.93		
Lys	737	A	B	.	.	-0.16	*	-0.16	*	F	1.45	0.91		
Thr	738	.	B	.	T	0.09	*	0.09	*	F	2.10	1.91		
Ala	739	A	.	.	T	0.66	*	0.66	*	F	2.00	1.50		
Asp	740	.	B	.	T	0.43	*	0.43	*	F	1.05	0.86		
Gly	741	.	B	.	T	0.43	*	0.43	*	F	0.39	0.70		
Gln	742	.	B	.	.	0.39	*	0.39	*	F	0.35	0.70		
Ter	743	.	B	.	.	0.36	*	0.36	*	F	0.30	0.67		

-31.54-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surf...
Leu	744	.	.	B	0.94	*	*	-0.20	0.67	
Leu	745	.	.	B	.	.	.	0.13	*	*	-0.40	0.63		
Asn	746	.	.	B	.	T	.	-0.11	*	F	-0.05	0.33		
Gly	747	.	.	.	T	T	.	-1.00	*	F	0.35	0.40		
Asn	748	T	C	-1.06	*	.	0.00	0.34		
Leu	749	T	C	-0.83	*	.	0.00	0.29		
Ala	750	A	A	B	.	.	.	-0.91	*	.	-0.60	0.29		
Ile	751	.	A	B	.	.	.	-0.91	*	.	-0.60	0.13		
Ser	752	.	A	B	.	.	.	-0.57	*	.	-0.60	0.27		
Ala	753	A	A	-0.57	*	.	-0.30	0.46		
Ile	754	A	A	-0.64	*	.	0.45	1.09		
Glu	755	A	A	-0.87	*	F	0.45	0.57		
Gln	756	A	.	B	.	.	.	-0.83	*	F	0.45	0.47		
Asp	757	A	.	B	.	.	.	-0.49	*	F	-0.15	0.49		
Ile	758	A	.	B	.	.	.	-0.24	*	.	0.60	0.57		
Leu	759	A	.	B	.	.	.	0.33	*	.	0.30	0.33		
Val	760	A	.	B	.	.	.	-0.56	*	.	0.30	0.28		
Lys	761	A	.	B	.	.	.	-1.37	*	F	-0.45	0.28		
Gly	762	.	.	B	B	.	.	-1.32	*	F	-0.45	0.28		
Thr	763	.	.	B	B	.	.	-0.68	*	F	0.45	0.76		
Ile	764	.	.	B	B	.	.	-0.17	*	F	-0.15	0.59		
Leu	765	.	.	B	B	.	.	0.34	*	.	-0.60	0.80		

-31.55-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Autig...	Emini Surf...
Lys	766	.	.	B	B	.	.	0.00	*	*	F	-0.45	0.55	
Tyr	767	.	.	B	.	T	.	-0.54	*	*	F	0.40	1.05	
Ser	768	T	C	-0.82	*	*	F	0.45	0.89	
Gly	769	T	C	-0.24	*	*	F	0.45	0.45	
Ser	770	T	C	-0.24	*	*	F	0.15	0.42	
Ile	771	.	A	B	.	.	.	-0.29	*	*	.	-0.60	0.26	
Ala	772	.	A	B	.	.	.	0.07	*	*	.	-0.30	0.45	
Thr	773	.	A	B	.	.	.	-0.44	*	*	.	0.30	0.66	
Leu	774	.	A	B	.	.	.	-0.10	*	*	.	-0.30	0.77	
Glu	775	A	A	-0.10	*	*	.	0.45	1.32	
Arg	776	.	A	B	.	.	.	0.09	*	*	F	0.60	1.23	
Leu	777	.	A	.	.	T	.	0.79	*	*	F	1.00	1.29	
Gln	778	.	A	.	T	.	.	0.89	*	*	F	1.30	1.46	
Ser	779	.	A	.	T	.	.	0.89	*	*	F	1.00	1.15	
Phe	780	.	.	B	.	.	.	0.68	*	*	F	0.41	1.15	
Arg	781	C	0.57	*	*	F	0.82	1.03		
Pro	782	C	1.17	*	*	F	1.63	1.33		
Leu	783	T	C	0.36	*	*	F	2.04	2.37	
Pro	784	T	C	0.34	*	*	F	2.10	1.00	
Glu	785	T	C	0.19	*	*	F	1.29	0.93	
Pro	786	.	.	B	.	T	.	0.08	*	*	F	0.88	0.84	
Leu	787	.	.	B	B	.	.	-0.52	*	*	F	0.27	0.94	

-31.56-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Kapl... Flexi...	James... Antig...	Emini Surf...
Thr	788	.	.	B	B	.	.	-0.52	.	.	.	-0.09	0.45
Val	789	.	.	B	B	.	.	-0.62	.	.	.	-0.60	0.24
Gln	790	.	.	B	B	.	.	-1.48	.	.	.	-0.60	0.42
Leu	791	.	.	B	B	.	.	-1.48	.	.	.	-0.60	0.21
Leu	792	.	.	B	B	.	.	-1.01	.	.	.	-0.60	0.45
Thr	793	.	.	B	B	.	.	-0.70	.	.	.	-0.60	0.26
Val	794	.	.	B	.	T	.	-0.70	*	F	.	0.25	0.54
Pro	795	.	.	B	.	T	.	-1.40	*	F	.	0.25	0.48
Gly	796	.	.	B	.	T	.	-0.80	*	F	.	-0.05	0.29
Glu	797	.	.	B	.	T	.	-0.20	*	F	.	0.25	0.60
Val	798	.	.	B	.	.	.	0.16	*	F	.	0.05	0.60
Phc	799	.	.	B	.	.	.	0.16	*	F	.	1.00	1.22
Pro	800	.	.	B	.	T	.	0.41	*	F	.	1.25	0.52
Pro	801	.	.	.	T	T	.	0.51	*	F	.	2.00	1.41
Lys	802	.	.	.	T	T	.	0.20	*	F	.	1.60	2.55
Val	803	.	.	B	.	T	.	0.36	*	F	.	2.00	2.38
Lys	804	.	.	B	B	.	.	0.36	*	F	.	0.80	1.33
Tyr	805	.	.	B	B	.	.	-0.29	*	.	.	0.00	0.58
Thr	806	.	.	B	B	.	.	-0.29	*	.	.	-0.20	0.58
Phe	807	.	.	B	B	.	.	-0.33	*	.	.	-0.40	0.45
Phe	808	.	.	B	B	.	.	0.52	*	.	.	-0.60	0.46
Val	809	.	.	B	.	T	.	-0.38	*	.	.	-0.20	0.53

-31.57-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni.. Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surf...
Pro	810		B			T		-0.13		*	F	-0.05	0.45	
Asn	811				T	T		-0.52		*	F	1.25	0.88	
Asp	812				T	T		-0.12		*	F	1.40	1.02	
Val	813	A						-0.02	*	*	F	0.65	0.89	
Asp	814	A						0.83	*	*		0.50	0.54	
Phc	815	A						0.74	*	*		0.80	0.57	
Ser	816	A						0.44	*	*		0.65	1.02	
Met	817	A						0.49	*	*		1.40	0.82	
Gln	818	A				T		1.34	*	F	2.20	1.89		
Ser	819					T	C	1.46	*	F	3.00	2.44		
Ser	820					T	C	1.57	*	F	2.70	4.84		
Lys	821	A				T		1.56	*	F	2.20	2.82		
Glu	822	A						1.84	*	F	1.70	3.04		
Arg	823	A			B			1.84	*	F	1.20	3.27		
Ala	824	A			B			1.26	*	F	0.90	2.63		
Thr	825				B	B		0.67	*	F	0.60	1.06		
Thr	826				B	B		0.62	*	F	-0.15	0.38		
Asn	827				B	B		0.41	*		-0.60	0.65		
Ile	828				B	B		-0.51	*		-0.60	0.70		
Ile	829				B	B		-0.73	*		-0.60	0.40		
Gln	830				A	B		-0.46	*		-0.60	0.21		
Pro	831				A	B		-0.73	*		-0.60	0.40		

-31.58-

Res	Pos.	Garni.. Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karpl... Flexi...	James... Antig...	Emini... Surfa...
Leu	832	.	A	B	.	.	.	-0.73	*	*	*	.	-0.60	0.57
Leu	833	.	A	B	.	.	.	-0.13	-0.60	0.57
His	834	.	A	B	.	.	.	-0.10	*	*	*	.	-0.60	0.39
Ala	835	.	A	B	B	.	.	-0.91	*	*	*	.	-0.60	0.35
Gln	836	.	A	B	B	.	.	-1.04	-0.60	0.35
Trp	837	.	A	B	B	.	.	-0.23	-0.60	0.26
Val	838	.	A	B	B	.	.	0.29	*	*	*	.	-0.60	0.42
Leu	839	.	.	B	.	T	.	0.02	*	*	*	.	-0.20	0.26
Gly	840	.	.	.	T	T	.	0.61	*	*	*	.	0.45	0.33
Asp	841	.	.	.	T	T	.	-0.06	.	.	.	F	1.15	0.76
Trp	842	.	.	.	T	T	.	-0.07	.	.	.	F	2.00	0.50
Ser	843	.	.	.	T	C	0.49	*	.	.	.	F	2.05	0.67
Glu	844	.	.	.	T	T	.	0.99	.	.	.	F	2.50	0.54
Cys	845	.	.	.	T	T	.	0.67	.	.	.	F	1.65	0.74
Ser	846	.	.	.	T	T	.	0.32	.	.	.	F	2.00	0.30
Ser	847	.	.	.	T	.	.	0.02	.	.	.	F	1.55	0.17
Thr	848	.	.	.	T	.	.	-0.02	.	.	.	F	0.70	0.32
Cys	849	.	.	.	T	.	.	-0.31	.	.	.	F	0.45	0.24
Gly	850	.	.	.	T	T	.	0.36	*	*	*	.	0.20	0.18
Ala	851	.	.	.	T	T	.	0.77	0.20	0.22
Gly	852	.	.	.	T	T	.	1.18	0.50	0.81
Trp	853	.	.	.	T	T	.	1.18	*	*	*	.	1.25	1.60

-31.59-

Res	Pos.	Garni... Alpha	Chou... Alpha	Garni... Beta	Chou... Beta	Garni.. Turn	Chou... Turn	Garni.. Coil	Kyte... Hydro...	Eisen... Alpha	Eisen... Beta	Karp... Flexi...	James... Antig...	Emini Surf...
	Gln 854	.	.	B	B	.	.	.	0.99	*	.	F	0.60	2.29
	Arg 855	.	.	B	B	.	.	1.33	*	.	F	0.60	1.72	
	Arg 856	.	.	B	B	.	.	1.26	*	.	F	0.90	2.83	
	Thr 857	.	.	B	B	.	.	1.71	.	.	F	1.05	0.87	
5	Val 858	.	.	B	B	.	.	2.00	.	.	.	1.20	0.87	
	Glu 859	.	.	B	B	.	.	1.79	.	.	.	1.50	0.75	
	Cys 860	.	.	T	T	.	.	1.38	*	.	.	2.40	0.80	
	Arg 861	.	.	T	T	.	.	0.92	.	.	F	3.00	1.44	
	Asp 862	.	.	T	C	1.23	.	*	*	F	2.55	0.82		
	Pro 863	.	.	T	T	.	.	1.50	*	F	2.60	2.66		
	Ser 864	.	.	T	T	1.20	.	*	F	2.30	1.37			
	Gly 865	.	.	T	T	1.28	.	*	F	1.70	1.10			
	Gln 866	A	.	.	.	0.86	.	*	F	0.05	0.72			
	Ala 867	.	.	B	.	0.19	.	*	F	0.05	0.78			
	Ser 868	.	.	B	.	0.40	*	.	.	-0.10	0.42			
	Ala 869	A	.	.	.	0.74	*	.	.	-0.10	0.39			
	Thr 870	A	.	.	.	0.50	*	.	.	0.70	0.77			
	Cys 871	A	.	.	.	-0.31	*	.	.	0.70	0.58			
	Asn 872	A	.	.	.	0.32	*	.	.	0.10	0.48			
	Lys 873	A	.	.	.	0.41	.	.	F	0.85	0.66			
	Ala 874	A	.	.	.	1.00	*	.	F	0.80	1.90			
	Leu 875	A	.	.	.	1.31	*	.	F	1.10	2.05			

-31.60-

Res	Pos.	Garni.. Alpha	Chou-... Alpha	Garni.. Beta	Chou-... Beta	Garni.. Turn	Chou-... Turn	Garni.. Coll	Kyte-... Hydro...	Eisen... Alpha	Eisen... Beta	Karpf... Flexi...	James... Antig...	Emini Surfa...
Lys	876	A	.	.	.	T	.	.	1.39	.	.	F	1.30	1.71
Pro	877	A	.	.	.	T	.	1.43	.	.	F	1.30	1.71	
Glu	878	A	.	.	.	T	.	.	1.18	.	.	F	1.30	4.14
Asp	879	A	.	.	.	T	.	.	1.10	.	.	F	1.30	3.20
Ala	880	A	1.91	.	.	F	1.10	1.11
Lys	881	A	.	.	.	T	.	.	1.57	.	.	F	1.30	1.11
Pro	882	A	.	.	.	T	.	.	1.78	*	.	F	1.15	0.89
Cys	883	A	.	.	.	T	.	.	0.97	*	.	F	1.30	1.53
Glu	884	A	.	.	.	T	.	.	0.30	.	.	F	1.15	0.63
Ser	885	A	A	0.68	*	.	F	-0.15	0.22
Gln	886	.	A	B	-0.18	*	.	F	-0.15	0.63
Leu	887	.	A	B	-0.36	.	.	.	-0.30	0.30
Cys	888	.	A	B	-0.08	.	.	.	-0.60	0.29
Pro	889	.	A	B	-0.47	.	.	.	-0.60	0.21
Leu	890	.	.	B	-0.56	.	.	.	-0.40	0.33

Detailed Description

By screening cDNA libraries with cDNA encoding the anti-angiogenic domain of TSP-1, the present inventors have identified two novel proteins, METH1 and METH2 (also called VEGA-1 and VEGA-2, respectively, for vascular endothelial growth antagonist) which contain the anti-angiogenic domain of TSP-1, a metalloproteinase domain, and a disintegrin-like domain. The present inventors have demonstrated that both METH1 and METH2 have anti-angiogenic activity.

Thus, the present invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a METH1 polypeptide having the amino acid sequence shown in SEQ ID NO:2, which was determined by sequencing a cloned cDNA. The METH1 protein of the present invention shares sequence homology with thrombospondin-1 and pNPI. The nucleotide sequence shown in SEQ ID NO:1 was obtained by sequencing a cDNA clone, which was deposited on January 15, 1998 at the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110-2209, and given accession number 209581. The cDNA clone contained in ATCC Deposit No. 209581 contains a METH1 sequence, encoding amino acids 1 to 950 of SEQ ID NO:2.

The present invention also provides isolated nucleic acid molecules comprising a polynucleotide encoding a METH2 polypeptide having the amino acid sequence shown in SEQ ID NO:4, which was partially determined by sequencing a cloned cDNA. The METH2 protein of the present invention shares sequence homology with thrombospondin-1 and pNPI. The nucleotide sequence shown in SEQ ID NO:3 was partially obtained by sequencing a cDNA clone, which was deposited on January 15, 1998 at the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110-2209, and given accession number 209582. The cDNA clone contained in ATCC Deposit No. 209582 contains a partial METH2 sequence, encoding amino acids 112-890 of SEQ ID NO:4.

Nucleic Acid Molecules

Some of the nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc.), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

Using the information provided herein, such as the nucleotide sequence in SEQ ID NO: 1 or SEQ ID NO:3, a nucleic acid molecule of the present invention encoding a METH1 or METH2 polypeptide may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA as starting material. Illustrative of the invention, the nucleic acid molecule described in SEQ ID NO:1 was discovered in a cDNA library derived from human heart and the nucleic acid molecule described in SEQ ID NO:3 was discovered in a cDNA library derived from human lung. The determined nucleotide sequence of the METH1 cDNA of SEQ ID NO:1 contains an open reading frame encoding

5 a protein of about 950 amino acid residues, including a predicted leader sequence of about 28 amino acid residues. The present inventors have determined that the nucleotide sequence of the METH2 cDNA of SEQ ID NO:3 contains an open reading frame encoding a protein of about 890 amino acid residues, including a predicted leader sequence of about 23 amino acid residues.

10 The present invention also provides the mature form(s) of the METH1 and METH2 proteins of the present invention. According to the signal hypothesis, proteins secreted by mammalian cells have a signal or secretory leader sequence which is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species on the protein. Further, it has long been known that the cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide. Therefore, the present invention provides a nucleotide sequence encoding the mature METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in the host identified as ATCC Deposit No. 209581 and as shown in SEQ ID NO:2. The present invention also provides a nucleotide sequence encoding the mature METH2 polypeptide having the amino acid sequence as shown in SEQ ID NO:4. By the mature METH1 protein having the amino acid sequence encoded by the cDNA clone contained in the host identified as ATCC Deposit No. 209581 is meant the mature form(s) of the METH1 protein produced by expression in a mammalian cell (e.g., COS cells, as described below) of the complete open reading frame encoded by the human DNA sequence of the clone contained in the vector in the deposited host. As indicated below, the mature METH1 having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581 may or may not differ from the predicted "mature" METH1 protein shown in SEQ 15 ID NO:2 (amino acids from about 29 to about 950) depending on the accuracy of
20
25
30

the predicted cleavage site based on computer analysis; and the mature METH2 may or may not differ from the predicted "mature" METH2 protein shown in SEQ ID NO: 4 (amino acids from about 24 to about 890) depending on the accuracy of the predicted cleavage site based on computer analysis.

5 Methods for predicting whether a protein has a secretory leader as well as the cleavage point for that leader sequence are available. For instance, the methods of McGeoch (*Virus Res.* 3:271-286 (1985)) and von Heinje (*Nucleic Acids Res.* 14:4683-4690 (1986)) can be used. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods
10 is in the range of 75-80%. von Heinje, *supra*. However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the predicted amino acid sequence of the complete METH1 and METH2 polypeptides of the present invention were analyzed by a computer program ("PSORT") (K. Nakai and M. Kanehisa, *Genomics* 14:897-911
15 (1992)), which is an expert system for predicting the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis by the PSORT program predicted the cleavage site between amino acids 28 and 29 in SEQ ID NO:2 and amino acids 23 and 24 in SEQ ID NO:4.
20 Thereafter, the complete amino acid sequences were further analyzed by visual inspection, applying a simple form of the (-1,-3) rule of von Heinje. von Heinje,
supra. Thus, the leader sequence for the METH1 protein is predicted to consist of amino acid residues from about 1 to about 28 in SEQ ID NO:2, while the mature METH1 protein is predicted to consist of residues from about 29 to about 950; and the leader sequence for the METH2 protein is predicted to consist of amino acid residues from about 1 to about 23 in SEQ ID NO:4, while the mature
25 METH2 protein is predicted to consist of residues from about 24 to about 890. An alternative predicted mature METH1 protein consists of residues 30 to 950 in SEQ ID NO:2.

As one of ordinary skill would appreciate, due to the possibilities of sequencing errors, as well as the variability of cleavage sites for leaders in different known proteins, the predicted METH1 polypeptide encoded by the deposited cDNA comprises about 950 amino acids, but may be anywhere in the range of 5 910-990 amino acids; and the predicted leader sequence of this protein is about 28 amino acids, but may be anywhere in the range of about 18 to about 38 amino acids. Also, the predicted METH2 polypeptide comprises about 890 amino acids, but may be anywhere in the range of 850 to about 930 amino acids; and the predicted leader sequence of this protein is about 23 amino acids, but may be anywhere in the range of about 13 to about 33 amino acids.

10 As indicated, nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically. The DNA may be double-stranded or single-stranded. Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the 15 non-coding strand, also referred to as the anti-sense strand.

By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, 20 DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the DNA 25 molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Isolated nucleic acid molecules of the present invention include DNA molecules comprising an open reading frame (ORF) shown in SEQ ID NO:1; DNA molecules comprising the coding sequence for the mature METH1 protein; and DNA molecules which comprise a sequence substantially different from those 30 described above but which, due to the degeneracy of the genetic code, still encode

the METH1 protein. Also included are DNA molecules comprising an open reading frame (ORF) shown in SEQ ID NO:3; DNA molecules comprising the coding sequence for the mature METH2 protein; and DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode the METH2 protein. Of course, the genetic code is well known in the art. Thus, it would be routine for one skilled in the art to generate such degenerate variants.

In another aspect, the invention provides isolated nucleic acid molecules encoding the METH1 or METH2 polypeptides having an amino acid sequence as encoded by the cDNA clones contained in the plasmids deposited as ATCC Deposit No. 209581 on January 15, 1998 or ATCC Deposit No. 209582 on January 15, 1998, respectively. In a further embodiment, nucleic acid molecules are provided encoding the mature METH1 or METH2 polypeptide or the full-length METH1 or METH2 polypeptide lacking the N-terminal methionine. The invention also provides an isolated nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3 or the nucleotide sequence of the METH1 or METH2 cDNA contained in the above-described deposited clones, or a nucleic acid molecule having a sequence complementary to one of the above sequences. Such isolated molecules, particularly DNA molecules, are useful as probes for gene mapping, by *in situ* hybridization with chromosomes, and for detecting expression of the METH1 or METH2 gene in human tissue, for instance, by Northern blot analysis.

The present invention is further directed to fragments of the isolated nucleic acid molecules described herein. By a fragment of an isolated nucleic acid molecule having the nucleotide sequence of the deposited cDNA or the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3 is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length which are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700,

750, 800, 850, 900, 950, 1000, 1050, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or
3000 nt in length are also useful according to the present invention as are
5 fragments corresponding to most, if not all, of the nucleotide sequence of the
deposited cDNA or as shown in SEQ ID NO:1 or SEQ ID NO:3. By a fragment
at least 20 nt in length, for example, is intended fragments which include 20 or
more contiguous bases from the nucleotide sequence of the deposited cDNA or
the nucleotide sequence as shown in SEQ ID NO:1 or SEQ ID NO:3.

Preferred nucleic acid fragments of the present invention include nucleic
10 acid molecules encoding epitope-bearing portions of the METH1 or METH2
protein. Methods for determining epitope-bearing portions of the METH1 and
METH2 proteins are described in detail below.

Other preferred nucleic acid fragments of the present invention include
nucleic acid molecules encoding: the metalloprotease domain of METH1, amino
15 acids 235 to 459 in SEQ ID NO:2; the disintegrin domain of METH1, amino
acids 460 to 544 in SEQ ID NO:2; the first TSP-like domain of METH1, amino
acids 545 to 598 in SEQ ID NO:2; the second TSP-like domain of METH1, amino
acids 841 to 894 in SEQ ID NO:2; the third TSP-like domain of METH1, amino
acids 895 to 934 in SEQ ID NO:2; amino acids 536 to 613 in SEQ ID NO:2;
20 amino acids 549 to 563 in SEQ ID NO:2; the metalloprotease domain of METH2,
amino acids 214 to 439 in SEQ ID NO:4; the disintegrin domain of METH2,
amino acids 440 to 529 in SEQ ID NO:4; the first TSP-like domain of METH2,
amino acids 530 to 583 in SEQ ID NO:4; the second TSP-like domain of METH2,
amino acids 837 to 890 in SEQ ID NO:4; amino acids 280 to 606 in SEQ ID
25 NO:4; and amino acids 529 to 548 in SEQ ID NO:4.

In addition, the present inventors have identified the following cDNA
clones related to portions of the sequence shown in SEQ ID NO:1: HOUCQ17RA
(SEQ ID NO:14), HPLBM11R (SEQ ID NO:15), HGBI07R (SEQ ID NO:16),
HNTMA49R (SEQ ID NO:17), HNALE27R (SEQ ID NO:18), and HIBDB45R
30 (SEQ ID NO:19).

The following public ESTs, which relate to portions of SEQ ID NO:1, have also been identified: D67076 (SEQ ID NO:20), AB001735 (SEQ ID NO:21), X14787 (SEQ ID NO:22), U64857 (SEQ ID NO:23), X04665 (SEQ ID NO:24), M64866 (SEQ ID NO:25), L07803 (SEQ ID NO:26), U08006 (SEQ ID NO:27), M16974 (SEQ ID NO:28), L13855 (SEQ ID NO:29), AL021529 (SEQ ID NO:30), D86074 (SEQ ID NO:31), L05390 (SEQ ID NO:32), Z69361 (SEQ ID NO:33), X99599 (SEQ ID NO:34), AF018073 (SEQ ID NO:35), L23760 (SEQ ID NO:36), Z46970 (SEQ ID NO:37), AC004449 (SEQ ID NO:38), Z69589 (SEQ ID NO:39), Z22279 (SEQ ID NO:40), and X17524 (SEQ ID NO:41).

The present inventors have also identified the following cDNA clones related to portions of SEQ ID NO:3: HCE4D69FP02 (SEQ ID NO:42), HIBDB45F (SEQ ID NO:43), HKIXH64R (SEQ ID NO:44), HIBDB45R (SEQ ID NO:19), HCE3Z95R (SEQ ID NO:45), HTLEQ90R (SEQ ID NO:46), HMWEF45R (SEQ ID NO:47), HTOFC34RA (SEQ ID NO:48), HHFDI20R (SEQ ID NO:49), HMSHY47R (SEQ ID NO:50), HCESF90R (SEQ ID NO:51), HMCAO46R (SEQ ID NO:52), HTTAQ67R (SEQ ID NO:53), HFKCF19F (SEQ ID NO:54), HMCAS31R (SEQ ID NO:55), HMWGP26R (SEQ ID NO:56), HLHTP36R (SEQ ID NO:57), HE8AN11R (SEQ ID NO:58), HEONN73R (SEQ ID NO:59), HBNBG53R (SEQ ID NO:60), and HMSCH94R (SEQ ID NO:61).

The following public ESTs, which relate to portions of the sequence shown in SEQ ID NO:3, have also been identified: D67076 (SEQ ID NO:20), AB001735 (SEQ ID NO:21), AB005287 (SEQ ID NO:62), X87619 (SEQ ID NO:63), X14787 (SEQ ID NO:22), X04665 (SEQ ID NO:24), M87276 (SEQ ID NO:64), M62458 (SEQ ID NO:65), AB002364 (SEQ ID NO:66), AB005297 (SEQ ID NO:67), X69161 (SEQ ID NO:68), X16619 (SEQ ID NO:69), I36448 (SEQ ID NO:70), L12260 (SEQ ID NO:71), I36352 (SEQ ID NO:72), X15898 (SEQ ID NO:73), I07789 (SEQ ID NO:74), I08144 (SEQ ID NO:75) U31814 (SEQ ID NO:76), and AF001444 (SEQ ID NO:77).

In specific embodiments, the polynucleotides of the invention are less than 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, or 7.5 kb in length. In a further embodiment, polynucleotides of the invention comprise at least 15 contiguous nucleotides of METH1 or METH2 coding sequence, but do not comprise all or a portion of any METH1 or METH2 intron. In another embodiment, the nucleic acid comprising METH1 or METH2 coding sequence does not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the METH1 or METH2 gene in the genome).

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, the cDNA clones contained in ATCC Deposit No. 209581 or ATCC Deposit No. 209582. By "stringent hybridization conditions" is intended overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (750 mM NaCl, 75mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

By a polynucleotide which hybridizes to a "portion" of a polynucleotide is intended a polynucleotide (either DNA or RNA) hybridizing to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30, 40, 50, 60 or 70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

By a portion of a polynucleotide of "at least 20 nt in length," for example, is intended 20 or more contiguous nucleotides from the nucleotide sequence of the reference polynucleotide (e.g., the deposited cDNAs or the nucleotide sequence as shown in SEQ ID NO:1 or SEQ ID NO:3). Of course, a polynucleotide which hybridizes only to a poly A sequence (such as the 3' terminal poly(A) tract of the METH1 or METH2 cDNA shown in SEQ ID NO:1 and SEQ ID NO:3,

respectively) or to a complementary stretch of T (or U) residues, would not be included in a polynucleotide of the invention used to hybridize to a portion of a nucleic acid of the invention, since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

Also contemplated are nucleic acid molecules that hybridize to the METH1 or METH2 polynucleotides at moderately high stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, moderately high stringency conditions include an overnight incubation at 37 degree C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 µg/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The METH1 or METH2 polynucleotide can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, METH1 or METH2 polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the METH1 or METH2 polynucleotides can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. METH1 or METH2 polynucleotides may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

"SEQ ID NO:1" refers to a METH1 polynucleotide sequence while "SEQ ID NO:2" refers to a METH1 polypeptide sequence. "SEQ ID NO:3" refers to a METH2 polynucleotide sequence while "SEQ ID NO:4" refers to a METH2 polypeptide sequence.

As indicated, nucleic acid molecules of the present invention which encode a METH1 or METH2 polypeptide may include, but are not limited to, those encoding the amino acid sequence of the mature polypeptide, by itself; the coding sequence for the mature polypeptide and additional sequences, such as those encoding the leader or secretory sequence, such as a pre-, or pro- or preprotein sequence; the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences, together with additional, non-coding sequences, including for example, but not limited to introns and non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences that play a role in transcription, mRNA processing, including splicing and polyadenylation signals, for example - ribosome binding and stability of mRNA;

an additional coding sequence which codes for additional amino acids, such as those which provide additional functionalities. Thus, the sequence encoding the polypeptide may be fused to a marker sequence, such as a sequence encoding a peptide which facilitates purification of the fused polypeptide. In certain preferred 5 embodiments of this aspect of the invention, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (Qiagen, Inc.), among others, many of which are commercially available. As described in Gentz *et al.*, *Proc. Natl. Acad. Sci. USA* 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. The "HA" tag is 10 another peptide useful for purification which corresponds to an epitope derived from the influenza hemagglutinin protein, which has been described by Wilson *et al.*, *Cell* 37:767-778 (1984). As discussed below, other such fusion proteins include the METH1 or METH2 fused to Fc at the N- or C-terminus.

The present invention further relates to variants of the nucleic acid 15 molecules of the present invention, which encode portions, analogs or derivatives of the METH1 or METH2 protein. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. Lewin, B., ed., *Genes II*, John Wiley & Sons, New York (1985). Non-naturally occurring 20 variants may be produced using art-known mutagenesis techniques.

Such variants include those produced by nucleotide substitutions, deletions or additions, which may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding 25 regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the METH1 or METH2 protein or portions thereof. Also especially preferred in this regard are conservative substitutions.

Further embodiments of the invention include isolated nucleic acid 30 molecules comprising a polynucleotide having a nucleotide sequence at least 95%

identical, and more preferably at least 96%, 97%, 98% or 99% identical to: a nucleotide sequence encoding the polypeptide having the amino acid sequence in SEQ ID NO:2; a nucleotide sequence encoding the polypeptide having the amino acid sequence in SEQ ID NO:2, but lacking the N-terminal methionine; a nucleotide sequence encoding the polypeptide having the amino acid sequence at positions from about 29 to about 950 in SEQ ID NO:2; a nucleotide sequence encoding the polypeptide having the amino acid sequence at position from about 30 to about 950 in SEQ ID NO:2; a nucleotide sequence encoding the polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581; a nucleotide sequence encoding the mature METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581; a nucleotide sequence encoding amino acids 235 to 459 in SEQ ID NO:2 (the metalloprotease domain of METH1); a nucleotide sequence encoding amino acids 460 to 544 in SEQ ID NO:2 (the disintegrin domain of METH1); a nucleotide sequence encoding amino acids 545 to 598 in SEQ ID NO:2 (the first TSP-like domain of METH1); a nucleotide sequence encoding amino acids 841 to 894 in SEQ ID NO:2 (the second TSP-like domain of METH1); a nucleotide sequence encoding amino acids 895 to 934 in SEQ ID NO:2 (the third TSP-like domain of METH1); a nucleotide sequence encoding amino acids 536 to 613 in SEQ ID NO:2; a nucleotide sequence encoding amino acids 549 to 563 in SEQ ID NO:2; a nucleotide sequence encoding the polypeptide having the amino acid sequence in SEQ ID NO:4; a nucleotide sequence encoding the polypeptide having the amino acid sequence in SEQ ID NO:4, but lacking the N-terminal methionine; a nucleotide sequence encoding the polypeptide having the amino acid sequence at positions from about 24 to about 890 in SEQ ID NO:4; a nucleotide sequence encoding the polypeptide having the amino acid sequence at positions from about 112 to about 890 in SEQ ID NO:4; a nucleotide sequence encoding the polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582; a nucleotide sequence encoding the mature METH2 polypeptide having the amino

acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582; a nucleotide sequence encoding amino acids 214 to 439 in SEQ ID NO:4 (the metalloprotease domain of METH2); a nucleotide sequence encoding amino acids 440 to 529 in SEQ ID NO:4 (the disintegrin domain of METH2); a 5 nucleotide sequence encoding amino acids 530 to 583 in SEQ ID NO:4 (the first TSP-like domain of METH2); a nucleotide sequence encoding amino acids 837 to 890 in SEQ ID NO:4 (the second TSP-like domain of METH2); a nucleotide sequence encoding amino acids 280 to 606 in SEQ ID NO:4; a nucleotide sequence encoding amino acids 529 to 548 in SEQ ID NO:4; or a nucleotide sequence complementary to any of the above nucleotide sequences .
10

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a METH1 or METH2 polypeptide is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the 15 reference nucleotide sequence encoding the METH1 or METH2 polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence 20 may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
25

As a practical matter, whether any particular nucleic acid molecule is at least 95%, 96%, 97%, 98% or 99% identical to, for instance, the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3 or to the nucleotide sequence of the deposited cDNA clones can be determined conventionally using known 30 computer programs such as the Bestfit program (Wisconsin Sequence Analysis

5 Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm of Smith and Waterman, *Advances in Applied Mathematics* 2: 482-489 (1981), to find the best segment of homology between two sequences. When
10 using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

15 A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag *et al.*, *Comp. Appl. Biosci.* 6:237-245 (1990). In a sequence alignment, the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size
20 Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

25 If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is
30

5 matched/aligned is determined by the results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence are calculated for the purposes of manually adjusting the percent identity score.

10 For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and, therefore, the FASTDB alignment does not show a match/alignment of the first 10 bases at the 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence), so 10% is subtracted from
15 the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal, so that there are no bases on the 5' or 3' ends of the subject sequence which are not matched/aligned with the query.
20 In this case, the percent identity calculated by FASTDB is not manually corrected. One again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.

25 The present application is directed to nucleic acid molecules at least 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in SEQ ID NO:1 or SEQ ID NO:3 or to the nucleic acid sequence of the deposited cDNAs, irrespective of whether they encode a polypeptide having METH1 or METH2 activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having METH1 or METH2 activity, one of skill in the art
30 would still know how to use the nucleic acid molecule, for instance, as a

hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having METH1 or METH2 activity include, *inter alia*, (1) isolating the METH1 or METH2 gene or allelic variants thereof in a cDNA library; (2) *in situ* hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the METH1 or METH2 gene, as described in Verma *et al.*, *Human Chromosomes: A Manual of Basic Techniques*, Pergamon Press, New York (1988); and (3) Northern Blot analysis for detecting METH1 or METH2 mRNA expression in specific tissues.

Preferred, however, are nucleic acid molecules having sequences at least 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in SEQ ID NO:1 or SEQ ID NO:3 or to a nucleic acid sequence of the deposited cDNAs which do, in fact, encode a polypeptide having METH1 or METH2 protein activity. By "a polypeptide having METH1 activity" is intended polypeptides exhibiting METH1 activity in a particular biological assay. For example, METH1 protein activity can be measured using the chorioallantoic membrane assay (Iruela-Arispe *et al.*, *Thrombosis and Haemostasis* 78(1):672-677 (1997)) or the cornea pocket assay (Tolsma *et al.*, *J. Cell. Biol.* 122:497-511 (1993)), both described in Example 4, below. By "a polypeptide having METH2 activity" is intended polypeptides exhibiting METH2 activity in a particular biological assay. For example, METH2 protein activity can also be measured using the chorioallantoic membrane assay (Iruela-Arispe *et al.*, *Thrombosis and Haemostasis* 78(1):672-677 (1997)) or the cornea pocket assay (Tolsma *et al.*, *J. Cell. Biol.* 122:497-511 (1993)), both described in Example 4, below.

Briefly, in the chorioallantoic assay, the potentially anti-angiogenic compound of interest is added to type I collagen pellets (Vitrogen), along with an angiogenic growth factor, such as bFGF. The samples are mixed and placed onto nylon meshes, and allowed to polymerize. After polymerization is complete, the meshes are placed onto the chorioallantoic membrane of 12 day old chick embryos and placed at 37°C for 24 hours. The embryos then injected with a fluorescent

agent, such as FITC-dextran, and the meshes are fixed and mounted for observation under a fluorescent microscope.

In the cornea pocket assay, hydron pellets containing the compound of interest and an angiogenic growth factor, such as bFGF, are implanted 1 to 2mm from the limbus of the cornea of rats or mice. Response is examined after a period of time, for example 5 days. The extent of angiogenesis is evaluated by measuring the capillaries migrating from the limb of the cornea.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 95%, 96%, 97%, 98%, or 99% identical to a nucleic acid sequence of the deposited cDNAs or a nucleic acid sequence shown in SEQ ID NO:1 or SEQ ID NO:3 will encode a polypeptide "having METH1 or METH2 protein activity." In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having METH1 or METH2 protein activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid).

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. *et al.*, "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," *Science* 247:1306-1310 (1990), wherein the authors indicate that proteins are surprisingly tolerant of amino acid substitutions.

Vectors and Host Cells

5

The present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells which are genetically engineered with the recombinant vectors, and the production of METH1 or METH2 polypeptides or fragments thereof by recombinant techniques.

10

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged *in vitro* using an appropriate packaging cell line and then transduced into host cells.

15

The DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the *E. coli lac, trp* and *tac* promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the mature transcripts expressed by the constructs will preferably include a translation initiating at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

20

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture and tetracycline or ampicillin resistance genes for culturing in *E. coli* and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as *E. coli, Streptomyces* and *Salmonella typhimurium* cells; fungal cells, such as yeast cells; insect cells such as *Drosophila S2* and *Spodoptera Sf9* cells; animal cells such as CHO, COS and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

25

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia.

5 Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

10 In addition to the use of expression vectors in the practice of the present invention, the present invention further includes novel expression vectors comprising operator and promoter elements operatively linked to nucleotide sequences encoding a protein of interest. One example of such a vector is pHE4-5 which is described in detail below.

15 As summarized in Figures 8 and 9, components of the pHE4-5 vector (SEQ ID NO:12) include: 1) a neomycinphosphotransferase gene as a selection marker, 2) an *E. coli* origin of replication, 3) a T5 phage promoter sequence, 4) two *lac* operator sequences, 5) a Shine-Delgarno sequence, 6) the lactose operon repressor gene (*lacIq*). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences were made synthetically. Synthetic production of nucleic acid sequences is well known in the art. CLONTECH 95/96 Catalog, pages 215-216, CLONTECH, 1020 East Meadow Circle, Palo Alto, CA 94303. A nucleotide sequence encoding METH1 (SEQ ID NO:2) or METH2 (SEQ ID NO:4), is operatively linked to the promoter and operator by inserting the nucleotide sequence between the NdeI and Asp718 sites of the pHE4-5 vector.

20

25

As noted above, the pHE4-5 vector contains a *lacIq* gene. *LacIq* is an allele of the *lacI* gene which confers tight regulation of the *lac* operator. Amann, E. et al., *Gene* 69:301-315 (1988); Stark, M., *Gene* 51:255-267 (1987). The *lacIq* gene encodes a repressor protein which binds to *lac* operator sequences and blocks transcription of down-stream (i.e., 3') sequences. However, the *lacIq* gene

30

product dissociates from the *lac* operator in the presence of either lactose or certain lactose analogs, e.g., isopropyl B-D-thiogalactopyranoside (IPTG). METH1 or METH2 thus is not produced in appreciable quantities in uninduced host cells containing the pHE4-5 vector. Induction of these host cells by the addition of an agent such as IPTG, however, results in the expression of the METH1 or METH2 coding sequence.

The promoter/operator sequences of the pHE4-5 vector (SEQ ID NO:13) comprise a T5 phage promoter and two *lac* operator sequences. One operator is located 5' to the transcriptional start site and the other is located 3' to the same site. These operators, when present in combination with the *lacIq* gene product, confer tight repression of down-stream sequences in the absence of a *lac* operon inducer, e.g., IPTG. Expression of operatively linked sequences located downstream from the *lac* operators may be induced by the addition of a *lac* operon inducer, such as IPTG. Binding of a *lac* inducer to the *lacIq* proteins results in their release from the *lac* operator sequences and the initiation of transcription of operatively linked sequences. *Lac* operon regulation of gene expression is reviewed in Devlin, T., TEXTBOOK OF BIOCHEMISTRY WITH CLINICAL CORRELATIONS, 4th Edition (1997), pages 802-807.

The pHE4 series of vectors contain all of the components of the pHE4-5 vector except for the METH1 or METH2 coding sequence. Features of the pHE4 vectors include optimized synthetic T5 phage promoter, *lac* operator, and Shine-Delgarno sequences. Further, these sequences are also optimally spaced so that expression of an inserted gene may be tightly regulated and high level of expression occurs upon induction.

Among known bacterial promoters suitable for use in the production of proteins of the present invention include the *E. coli lacI* and *lacZ* promoters, the T3 and T7 promoters, the *gpt* promoter, the lambda PR and PL promoters and the *trp* promoter. Suitable eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous Sarcoma

Virus (RSV), and metallothionein promoters, such as the mouse metallothionein-I promoter.

The pHE4-5 vector also contains a Shine-Delgarno sequence 5' to the AUG initiation codon. Shine-Delgarno sequences are short sequences generally located about 10 nucleotides up-stream (*i.e.*, 5') from the AUG initiation codon. These sequences essentially direct prokaryotic ribosomes to the AUG initiation codon.

Thus, the present invention is also directed to expression vector useful for the production of the proteins of the present invention. This aspect of the invention is exemplified by the pHE4-5 vector (SEQ ID NO:12).

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis *et al.*, *Basic Methods In Molecular Biology* (1986).

The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize proteins. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is

5 thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262). On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified in the advantageous manner described. This is the case when the Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as an antigen for immunizations. In drug discovery, for example, human proteins, such as the hIL5-receptor, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See, D.
10 Bennett *et al.*, *J. Mol. Recognition* 8:52-58 (1995) and K. Johanson *et al.*, *J. of Biol. Chem.* 270(16):9459-9471 (1995).

15 The METH1 or METH2 protein can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification. Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
20
25

METH1 and METH2 Polypeptides and Fragments

The invention further provides an isolated METH1 polypeptide having the amino acid sequence encoded by the deposited cDNA, or the amino acid sequence in SEQ ID NO:2, or a peptide or polypeptide comprising a portion of the above polypeptides. The invention also provides an isolated METH2 polypeptide having the amino acid sequence encoded by the deposited cDNA, or the amino acid sequence in SEQ ID NO:4, or a peptide or polypeptide comprising a portion of the above polypeptides.

METH1 or METH2 polypeptides can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The METH1 or METH2 polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in the METH1 or METH2 polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given METH1 or METH2 polypeptide. Also, a given METH1 or METH2 polypeptide may contain many types of modifications. METH1 or METH2 polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic METH1 or METH2 polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation,

demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, 5 selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter *et al.*, *Meth Enzymol* 182:626-646 10 (1990); Rattan *et al.*, *Ann NY Acad Sci* 663:48-62 (1992).)

It will be recognized in the art that some amino acid sequences of the METH1 and METH2 polypeptides can be varied without significant effect of the structure or function of the protein. If such differences in sequence are 15 contemplated, it should be remembered that there will be critical areas on the protein which determine activity.

The present inventors have shown that METH1 and METH2 inhibit angiogenesis *in vitro* and *in vivo*. METH1 and METH2 each contain a metalloprotease domain, a disintegrin domain, and TSP-like domains. The metalloprotease domain may be catalytically active. The disintegrin domain may play a role in inhibiting angiogenesis by interacting with integrins, since integrins are essential for the mediation of both proliferative and migratory signals. The 20 present inventors have shown that peptides derived from the TSP-like domains of METH1 and METH2 inhibit angiogenesis *in vitro* and *in vivo*.

Thus, the invention further includes variations of the METH1 polypeptide 25 which show substantial METH1 polypeptide activity or which include regions of METH1 protein such as the protein portions discussed below; and variations of the METH2 polypeptide which show substantial METH2 polypeptide activity or which include regions of METH2 protein such as the protein portions discussed below. Such mutants include deletions, insertions, inversions, repeats, and type 30

substitutions. As indicated above, guidance concerning which amino acid changes are likely to be phenotypically silent can be found in Bowie, J.U., *et al.*, "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," *Science* 247:1306-1310 (1990).

5 Thus, the fragment, derivative or analog of the polypeptide of SEQ ID NO:2 or SEQ ID NO:4, or that encoded by the deposited cDNA, may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the
10 genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as an IgG Fc fusion region peptide or
15 leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

20 Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the characteristics of the METH1 or METH2 proteins. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic. (Pinckard *et al.*, *Clin. Exp. Immunol.* 2:331-340 (1967); Robbins *et al.*, *Diabetes* 36:838-845 (1987); Cleland *et al.*, *Crit. Rev. Therapeutic Drug Carrier Systems* 10:307-377 (1993)).
25

30 As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 3).

TABLE 3. Conservative Amino Acid Substitutions.

Aromatic	Phenylalanine Tryptophan Tyrosine
Hydrophobic	Leucine Isoleucine Valine
Polar	Glutamine Asparagine
Basic	Arginine Lysine Histidine
Acidic	Aspartic Acid Glutamic Acid
Small	Alanine Serine Threonine Methionine Glycine

5

Of course, the number of amino acid substitutions a skilled artisan would make depends on many factors, including those described above. Generally speaking, the number of amino acid substitutions for any given METH1 or METH2 polypeptide will not be more than 50, 40, 30, 20, 10, 5, or 3.

10

15

Amino acids in the METH1 and METH2 proteins of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, *Science* 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as *in vitro* or *in vivo* inhibition of angiogenesis. Sites that are critical for inhibition of angiogenesis can also be determined by structural analysis such as crystallization, nuclear magnetic

resonance or photoaffinity labeling (Smith *et al.*, *J. Mol. Biol.* 224:899-904 (1992) and de Vos *et al.*, *Science* 255:306-312 (1992)).

The polypeptides of the present invention are preferably provided in an isolated form. By "isolated polypeptide" is intended a polypeptide removed from its native environment. Thus, a polypeptide produced and/or contained within a recombinant host cell is considered isolated for purposes of the present invention. Also intended as an "isolated polypeptide" are polypeptides that have been purified, partially or substantially, from a recombinant host cell or from a native source. For example, a recombinantly produced version of the METH1 or METH2 polypeptide can be substantially purified by the one-step method described in Smith and Johnson, *Gene* 67:31-40 (1988).

The polypeptides of the present invention include the METH1 polypeptide encoded by the deposited cDNA including the leader; the mature METH1 polypeptide encoded by the deposited the cDNA minus the leader (i.e., the mature protein); a polypeptide comprising amino acids about 1 to about 950 in SEQ ID NO:2; a polypeptide comprising amino acids about 2 to about 950 in SEQ ID NO:2; a polypeptide comprising amino acids about 29 to about 950 in SEQ ID NO:2; a polypeptide comprising amino acids about 30 to about 950 in SEQ ID NO:2; a polypeptide comprising the metalloprotease domain of METH1, amino acids 235 to 459 in SEQ ID NO:2; a polypeptide comprising the disintegrin domain of METH1, amino acids 460 to 544 in SEQ ID NO:2; a polypeptide comprising the first TSP-like domain of METH1, amino acids 545 to 598 in SEQ ID NO:2; a polypeptide comprising the second TSP-like domain of METH1, amino acids 841 to 894 in SEQ ID NO:2; a polypeptide comprising the third TSP-like domain of METH1, amino acids 895 to 934 in SEQ ID NO:2; a polypeptide comprising amino acids 536 to 613 in SEQ ID NO:2; a polypeptide comprising amino acids 549 to 563 in SEQ ID NO:2; the METH2 polypeptide encoded by the deposited cDNA including the leader; the mature METH2 polypeptide encoded by the deposited the cDNA minus the leader (i.e., the mature protein); a polypeptide comprising amino acids about 1 to about 890 in SEQ ID NO:4; a

polypeptide comprising amino acids about 2 to about 890 in SEQ ID NO:4; a polypeptide comprising amino acids about 24 to about 890 in SEQ ID NO:4; a polypeptide comprising amino acids about 112 to about 890 in SEQ ID NO:4; a polypeptide comprising the metalloprotease domain of METH2, amino acids 214 to 439 in SEQ ID NO:4; a polypeptide comprising the disintegrin domain of METH2, amino acids 440 to 529 in SEQ ID NO:4; a polypeptide comprising the first TSP-like domain of METH2, amino acids 530 to 583 in SEQ ID NO:4; a polypeptide comprising the second TSP-like domain of METH2, amino acids 837 to 890 in SEQ ID NO:4; a polypeptide comprising amino acids 280 to 606 in SEQ ID NO:4; a polypeptide comprising amino acids 529 to 548 in SEQ ID NO:4; as well as polypeptides which are at least 95% identical, and more preferably at least 96%, 97%, 98% or 99% identical to the polypeptides described above and also include portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a METH1 or METH2 polypeptide is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of the METH1 or METH2 polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:4 or to the amino acid sequence encoded by deposited cDNA clones can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag *et al.*, *Comp. App. Biosci.* 6:237-245 (1990). In a sequence alignment, the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number

of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total residues of the query sequence. Whether a residue is matched/aligned is determined by the results of the FASTDB sequence alignment.

5 This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are

10 considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a match/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C-termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched, the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time, the deletions are internal, so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case, the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are made for the purposes of the present invention.

The polypeptides of the present invention are useful as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide described herein. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen *et al.*, *Proc. Natl. Acad. Sci. USA* 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G. *et al.*, "Antibodies that react with predetermined sites on proteins", *Science* 219:660-666 (1983). Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson *et al.*, *Cell* 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and

most preferably between about at least about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention.

5 The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. Houghten, R. A., "General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids", *Proc. Natl. Acad. Sci. USA* 82:5131-5135 (1985). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten *et al.* (1986).

10 As one of skill in the art will appreciate, METH1 or METH2 polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EPA 394,827; Traunecker *et al.*, *Nature* 331:84- 86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than the monomeric METH1 or METH2 protein or protein fragment alone (Fountoulakis *et al.*, *J. Biochem.* 270:3958-3964 (1995)).

15 20

METH1 and METH2 Polynucleotide and Polypeptide Fragments

25 In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clones or shown in SEQ ID NO:1 or SEQ ID NO:3. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include

20 or more contiguous bases from the cDNA sequence contained in the deposited clones or the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 5 nucleotides) are preferred.

Moreover, representative examples of METH1 or METH2 polynucleotide fragments include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:1 or SEQ ID NO:3 or the cDNA contained in the deposited clones. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 10 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity. More preferably, 15 these polynucleotides can be used as probes or primers as discussed herein.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:2 or SEQ ID NO:4 or encoded by the 20 cDNA contained in the deposited clones. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 25 or 281 to the end of the coding region or SEQ ID NO:2 or SEQ ID NO:4. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes

the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted METH1 or METH2 protein as well as the mature form. Further preferred polypeptide fragments include the secreted METH1 or METH2 protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted METH1 or METH2 polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted METH1 or METH2 protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these METH1 or METH2 polypeptide fragments are also preferred.

Particularly, N-terminal deletions of the METH1 polypeptide can be described by the general formula m-950, where m is an integer from 2 to 949, where m corresponds to the position of the amino acid residue identified in SEQ ID NO:2. Preferably, N-terminal deletions of the METH1 polypeptide of the invention shown as SEQ ID NO:2 include polypeptides comprising the amino acid sequence of residues: G-2 to S-950; N-3 to S-950; A-4 to S-950; E-5 to S-950; R-6 to S-950; A-7 to S-950; P-8 to S-950; G-9 to S-950; S-10 to S-950; R-11 to S-950; S-12 to S-950; F-13 to S-950; G-14 to S-950; P-15 to S-950; V-16 to S-950; P-17 to S-950; T-18 to S-950; L-19 to S-950; L-20 to S-950; L-21 to S-950; L-22 to S-950; A-23 to S-950; A-24 to S-950; A-25 to S-950; L-26 to S-950; L-27 to S-950; A-28 to S-950; V-29 to S-950; S-30 to S-950; D-31 to S-950; A-32 to S-950; L-33 to S-950; G-34 to S-950; R-35 to S-950; P-36 to S-950; S-37 to S-950; E-38 to S-950; E-39 to S-950; D-40 to S-950; E-41 to S-950; E-42 to S-950; L-43 to S-950; V-44 to S-950; V-45 to S-950; P-46 to S-950; E-47 to S-950; L-48 to S-950; E-49 to S-950; R-50 to S-950; A-51 to S-950; P-52 to S-950; G-53 to S-950; H-54 to S-950; G-55 to S-950; T-56 to S-950; T-57 to S-950; R-58 to S-950; L-59 to S-950; R-60 to S-950; L-61 to S-950; H-62 to S-

950; A-63 to S-950; F-64 to S-950; D-65 to S-950; Q-66 to S-950; Q-67 to S-
950; L-68 to S-950; D-69 to S-950; L-70 to S-950; E-71 to S-950; L-72 to S-
950; R-73 to S-950; P-74 to S-950; D-75 to S-950; S-76 to S-950; S-77 to S-950;
5 F-78 to S-950; L-79 to S-950; A-80 to S-950; P-81 to S-950; G-82 to S-950; F-
83 to S-950; T-84 to S-950; L-85 to S-950; Q-86 to S-950; N-87 to S-950; V-88
to S-950; G-89 to S-950; R-90 to S-950; K-91 to S-950; S-92 to S-950; G-93 to
S-950; S-94 to S-950; E-95 to S-950; T-96 to S-950; P-97 to S-950; L-98 to S-
950; P-99 to S-950; E-100 to S-950; T-101 to S-950; D-102 to S-950; L-103 to
10 S-950; A-104 to S-950; H-105 to S-950; C-106 to S-950; F-107 to S-950; Y-108
to S-950; S-109 to S-950; G-110 to S-950; T-111 to S-950; V-112 to S-950; N-
113 to S-950; G-114 to S-950; D-115 to S-950; P-116 to S-950; S-117 to S-950;
S-118 to S-950; A-119 to S-950; A-120 to S-950; A-121 to S-950; L-122 to S-
950; S-123 to S-950; L-124 to S-950; C-125 to S-950; E-126 to S-950; G-127
to S-950; V-128 to S-950; R-129 to S-950; G-130 to S-950; A-131 to S-950; F-
15 132 to S-950; Y-133 to S-950; L-134 to S-950; L-135 to S-950; G-136 to S-950;
E-137 to S-950; A-138 to S-950; Y-139 to S-950; F-140 to S-950; I-141 to S-
950; Q-142 to S-950; P-143 to S-950; L-144 to S-950; P-145 to S-950; A-146
to S-950; A-147 to S-950; S-148 to S-950; E-149 to S-950; R-150 to S-950; L-
16 151 to S-950; A-152 to S-950; T-153 to S-950; A-154 to S-950; A-155 to S-950;
P-156 to S-950; G-157 to S-950; E-158 to S-950; K-159 to S-950; P-160 to S-
950; P-161 to S-950; A-162 to S-950; P-163 to S-950; L-164 to S-950; Q-165
to S-950; F-166 to S-950; H-167 to S-950; L-168 to S-950; L-169 to S-950; R-
17 170 to S-950; R-171 to S-950; N-172 to S-950; R-173 to S-950; Q-174 to S-950;
G-175 to S-950; D-176 to S-950; V-177 to S-950; G-178 to S-950; G-179 to S-
950; T-180 to S-950; C-181 to S-950; G-182 to S-950; V-183 to S-950; V-184
to S-950; D-185 to S-950; D-186 to S-950; E-187 to S-950; P-188 to S-950; R-
189 to S-950; P-190 to S-950; T-191 to S-950; G-192 to S-950; K-193 to S-950;
A-194 to S-950; E-195 to S-950; T-196 to S-950; E-197 to S-950; D-198 to S-
950; E-199 to S-950; D-200 to S-950; E-201 to S-950; G-202 to S-950; T-203
25 to S-950; E-204 to S-950; G-205 to S-950; E-206 to S-950; D-207 to S-950; E-
30

208 to S-950; G-209 to S-950; P-210 to S-950; Q-211 to S-950; W-212 to S-950;
S-213 to S-950; P-214 to S-950; Q-215 to S-950; D-216 to S-950; P-217 to S-
950; A-218 to S-950; L-219 to S-950; Q-220 to S-950; G-221 to S-950; V-222
5 to S-950; G-223 to S-950; Q-224 to S-950; P-225 to S-950; T-226 to S-950; G-
227 to S-950; T-228 to S-950; G-229 to S-950; S-230 to S-950; I-231 to S-950;
R-232 to S-950; K-233 to S-950; K-234 to S-950; R-235 to S-950; F-236 to S-
950; V-237 to S-950; S-238 to S-950; S-239 to S-950; H-240 to S-950; R-241
10 to S-950; Y-242 to S-950; V-243 to S-950; E-244 to S-950; T-245 to S-950; M-
246 to S-950; L-247 to S-950; V-248 to S-950; A-249 to S-950; D-250 to S-950;
Q-251 to S-950; S-252 to S-950; M-253 to S-950; A-254 to S-950; E-255 to S-
950; F-256 to S-950; H-257 to S-950; G-258 to S-950; S-259 to S-950; G-260
15 to S-950; L-261 to S-950; K-262 to S-950; H-263 to S-950; Y-264 to S-950; L-
265 to S-950; L-266 to S-950; T-267 to S-950; L-268 to S-950; F-269 to S-950;
S-270 to S-950; V-271 to S-950; A-272 to S-950; A-273 to S-950; R-274 to S-
950; L-275 to S-950; Y-276 to S-950; K-277 to S-950; H-278 to S-950; P-279
20 to S-950; S-280 to S-950; I-281 to S-950; R-282 to S-950; N-283 to S-950; S-
284 to S-950; V-285 to S-950; S-286 to S-950; L-287 to S-950; V-288 to S-950;
V-289 to S-950; V-290 to S-950; K-291 to S-950; I-292 to S-950; L-293 to S-
950; V-294 to S-950; I-295 to S-950; H-296 to S-950; D-297 to S-950; E-298
25 to S-950; Q-299 to S-950; K-300 to S-950; G-301 to S-950; P-302 to S-950; E-
303 to S-950; V-304 to S-950; T-305 to S-950; S-306 to S-950; N-307 to S-950;
A-308 to S-950; A-309 to S-950; L-310 to S-950; T-311 to S-950; L-312 to S-
950; R-313 to S-950; N-314 to S-950; F-315 to S-950; C-316 to S-950; N-317
30 to S-950; W-318 to S-950; Q-319 to S-950; K-320 to S-950; Q-321 to S-950; H-
322 to S-950; N-323 to S-950; P-324 to S-950; P-325 to S-950; S-326 to S-950;
D-327 to S-950; R-328 to S-950; D-329 to S-950; A-330 to S-950; E-331 to S-
950; H-332 to S-950; Y-333 to S-950; D-334 to S-950; T-335 to S-950; A-336
to S-950; I-337 to S-950; L-338 to S-950; F-339 to S-950; T-340 to S-950; R-
341 to S-950; Q-342 to S-950; D-343 to S-950; L-344 to S-950; C-345 to S-950;
G-346 to S-950; S-347 to S-950; Q-348 to S-950; T-349 to S-950; C-350 to S-

950; D-351 to S-950; T-352 to S-950; L-353 to S-950; G-354 to S-950; M-355
5 to S-950; A-356 to S-950; D-357 to S-950; V-358 to S-950; G-359 to S-950; T-
360 to S-950; V-361 to S-950; C-362 to S-950; D-363 to S-950; P-364 to S-950;
S-365 to S-950; R-366 to S-950; S-367 to S-950; C-368 to S-950; S-369 to S-
950; V-370 to S-950; I-371 to S-950; E-372 to S-950; D-373 to S-950; D-374
10 to S-950; G-375 to S-950; L-376 to S-950; Q-377 to S-950; A-378 to S-950; A-
379 to S-950; F-380 to S-950; T-381 to S-950; T-382 to S-950; A-383 to S-950;
H-384 to S-950; E-385 to S-950; L-386 to S-950; G-387 to S-950; H-388 to S-
950; V-389 to S-950; F-390 to S-950; N-391 to S-950; M-392 to S-950; P-393
15 to S-950; H-394 to S-950; D-395 to S-950; D-396 to S-950; A-397 to S-950; K-
398 to S-950; Q-399 to S-950; C-400 to S-950; A-401 to S-950; S-402 to S-950;
L-403 to S-950; N-404 to S-950; G-405 to S-950; V-406 to S-950; N-407 to S-
950; Q-408 to S-950; D-409 to S-950; S-410 to S-950; H-411 to S-950; M-412
20 to S-950; M-413 to S-950; A-414 to S-950; S-415 to S-950; M-416 to S-950; L-
417 to S-950; S-418 to S-950; N-419 to S-950; L-420 to S-950; D-421 to S-950;
H-422 to S-950; S-423 to S-950; Q-424 to S-950; P-425 to S-950; W-426 to S-
950; S-427 to S-950; P-428 to S-950; C-429 to S-950; S-430 to S-950; A-431 to
S-950; Y-432 to S-950; M-433 to S-950; I-434 to S-950; T-435 to S-950; S-436
25 to S-950; F-437 to S-950; L-438 to S-950; D-439 to S-950; N-440 to S-950; G-
441 to S-950; H-442 to S-950; G-443 to S-950; E-444 to S-950; C-445 to S-950;
L-446 to S-950; M-447 to S-950; D-448 to S-950; K-449 to S-950; P-450 to S-
950; Q-451 to S-950; N-452 to S-950; P-453 to S-950; I-454 to S-950; Q-455 to
S-950; L-456 to S-950; P-457 to S-950; G-458 to S-950; D-459 to S-950; L-460
to S-950; P-461 to S-950; G-462 to S-950; T-463 to S-950; S-464 to S-950; Y-
465 to S-950; D-466 to S-950; A-467 to S-950; N-468 to S-950; R-469 to S-950;
Q-470 to S-950; C-471 to S-950; Q-472 to S-950; F-473 to S-950; T-474 to S-
950; F-475 to S-950; G-476 to S-950; E-477 to S-950; D-478 to S-950; S-479
30 to S-950; K-480 to S-950; H-481 to S-950; C-482 to S-950; P-483 to S-950; D-
484 to S-950; A-485 to S-950; A-486 to S-950; S-487 to S-950; T-488 to S-950;
C-489 to S-950; S-490 to S-950; T-491 to S-950; L-492 to S-950; W-493 to S-

-70-

950; C-494 to S-950; T-495 to S-950; G-496 to S-950; T-497 to S-950; S-498
to S-950; G-499 to S-950; G-500 to S-950; V-501 to S-950; L-502 to S-950; V-
503 to S-950; C-504 to S-950; Q-505 to S-950; T-506 to S-950; K-507 to S-950;
H-508 to S-950; F-509 to S-950; P-510 to S-950; W-511 to S-950; A-512 to S-
5
950; D-513 to S-950; G-514 to S-950; T-515 to S-950; S-516 to S-950; C-517
to S-950; G-518 to S-950; E-519 to S-950; G-520 to S-950; K-521 to S-950; W-
522 to S-950; C-523 to S-950; I-524 to S-950; N-525 to S-950; G-526 to S-950;
K-527 to S-950; C-528 to S-950; V-529 to S-950; N-530 to S-950; K-531 to S-
10
950; T-532 to S-950; D-533 to S-950; R-534 to S-950; K-535 to S-950; H-536
to S-950; F-537 to S-950; D-538 to S-950; T-539 to S-950; P-540 to S-950; F-
541 to S-950; H-542 to S-950; G-543 to S-950; S-544 to S-950; W-545 to S-950;
G-546 to S-950; M-547 to S-950; W-548 to S-950; G-549 to S-950; P-550 to S-
950; W-551 to S-950; G-552 to S-950; D-553 to S-950; C-554 to S-950; S-555
to S-950; R-556 to S-950; T-557 to S-950; C-558 to S-950; G-559 to S-950; G-
15
560 to S-950; G-561 to S-950; V-562 to S-950; Q-563 to S-950; Y-564 to S-950;
T-565 to S-950; M-566 to S-950; R-567 to S-950; E-568 to S-950; C-569 to S-
950; D-570 to S-950; N-571 to S-950; P-572 to S-950; V-573 to S-950; P-574
to S-950; K-575 to S-950; N-576 to S-950; G-577 to S-950; G-578 to S-950; K-
579 to S-950; Y-580 to S-950; C-581 to S-950; E-582 to S-950; G-583 to S-950;
20
K-584 to S-950; R-585 to S-950; V-586 to S-950; R-587 to S-950; Y-588 to S-
950; R-589 to S-950; S-590 to S-950; C-591 to S-950; N-592 to S-950; L-593
to S-950; E-594 to S-950; D-595 to S-950; C-596 to S-950; P-597 to S-950; D-
598 to S-950; N-599 to S-950; N-600 to S-950; G-601 to S-950; K-602 to S-950;
T-603 to S-950; F-604 to S-950; R-605 to S-950; E-606 to S-950; E-607 to S-
25
950; Q-608 to S-950; C-609 to S-950; E-610 to S-950; A-611 to S-950; H-612
to S-950; N-613 to S-950; E-614 to S-950; F-615 to S-950; S-616 to S-950; K-
617 to S-950; A-618 to S-950; S-619 to S-950; F-620 to S-950; G-621 to S-950;
S-622 to S-950; G-623 to S-950; P-624 to S-950; A-625 to S-950; V-626 to S-
950; E-627 to S-950; W-628 to S-950; I-629 to S-950; P-630 to S-950; K-631
30
to S-950; Y-632 to S-950; A-633 to S-950; G-634 to S-950; V-635 to S-950; S-

636 to S-950; P-637 to S-950; K-638 to S-950; D-639 to S-950; R-640 to S-950;
C-641 to S-950; K-642 to S-950; L-643 to S-950; I-644 to S-950; C-645 to S-
950; Q-646 to S-950; A-647 to S-950; K-648 to S-950; G-649 to S-950; I-650
to S-950; G-651 to S-950; Y-652 to S-950; F-653 to S-950; F-654 to S-950; V-
5 655 to S-950; L-656 to S-950; Q-657 to S-950; P-658 to S-950; K-659 to S-950;
V-660 to S-950; V-661 to S-950; D-662 to S-950; G-663 to S-950; T-664 to S-
950; P-665 to S-950; C-666 to S-950; S-667 to S-950; P-668 to S-950; D-669 to
S-950; S-670 to S-950; T-671 to S-950; S-672 to S-950; V-673 to S-950; C-674
to S-950; V-675 to S-950; Q-676 to S-950; G-677 to S-950; Q-678 to S-950; C-
10 679 to S-950; V-680 to S-950; K-681 to S-950; A-682 to S-950; G-683 to S-950;
C-684 to S-950; D-685 to S-950; R-686 to S-950; I-687 to S-950; I-688 to S-
950; D-689 to S-950; S-690 to S-950; K-691 to S-950; K-692 to S-950; K-693
to S-950; F-694 to S-950; D-695 to S-950; K-696 to S-950; C-697 to S-950; G-
15 698 to S-950; V-699 to S-950; C-700 to S-950; G-701 to S-950; G-702 to S-950;
N-703 to S-950; G-704 to S-950; S-705 to S-950; T-706 to S-950; C-707 to S-
950; K-708 to S-950; K-709 to S-950; I-710 to S-950; S-711 to S-950; G-712 to
S-950; S-713 to S-950; V-714 to S-950; T-715 to S-950; S-716 to S-950; A-717
to S-950; K-718 to S-950; P-719 to S-950; G-720 to S-950; Y-721 to S-950; H-
20 722 to S-950; D-723 to S-950; I-724 to S-950; I-725 to S-950; T-726 to S-950;
I-727 to S-950; P-728 to S-950; T-729 to S-950; G-730 to S-950; A-731 to S-
950; T-732 to S-950; N-733 to S-950; I-734 to S-950; E-735 to S-950; V-736 to
S-950; K-737 to S-950; Q-738 to S-950; R-739 to S-950; N-740 to S-950; Q-741
to S-950; R-742 to S-950; G-743 to S-950; S-744 to S-950; R-745 to S-950; N-
25 746 to S-950; N-747 to S-950; G-748 to S-950; S-749 to S-950; F-750 to S-950;
L-751 to S-950; A-752 to S-950; I-753 to S-950; K-754 to S-950; A-755 to S-
950; A-756 to S-950; D-757 to S-950; G-758 to S-950; T-759 to S-950; Y-760
to S-950; I-761 to S-950; L-762 to S-950; N-763 to S-950; G-764 to S-950; D-
765 to S-950; Y-766 to S-950; T-767 to S-950; L-768 to S-950; S-769 to S-950;
T-770 to S-950; L-771 to S-950; E-772 to S-950; Q-773 to S-950; D-774 to S-
30 950; I-775 to S-950; M-776 to S-950; Y-777 to S-950; K-778 to S-950; G-779

to S-950; V-780 to S-950; V-781 to S-950; L-782 to S-950; R-783 to S-950; Y-
784 to S-950; S-785 to S-950; G-786 to S-950; S-787 to S-950; S-788 to S-950;
A-789 to S-950; A-790 to S-950; L-791 to S-950; E-792 to S-950; R-793 to S-
950; I-794 to S-950; R-795 to S-950; S-796 to S-950; F-797 to S-950; S-798 to
5 S-950; P-799 to S-950; L-800 to S-950; K-801 to S-950; E-802 to S-950; P-803
to S-950; L-804 to S-950; T-805 to S-950; I-806 to S-950; Q-807 to S-950; V-
808 to S-950; L-809 to S-950; T-810 to S-950; V-811 to S-950; G-812 to S-950;
N-813 to S-950; A-814 to S-950; L-815 to S-950; R-816 to S-950; P-817 to S-
950; K-818 to S-950; I-819 to S-950; K-820 to S-950; Y-821 to S-950; T-822 to
10 S-950; Y-823 to S-950; F-824 to S-950; V-825 to S-950; K-826 to S-950; K-827
to S-950; K-828 to S-950; K-829 to S-950; E-830 to S-950; S-831 to S-950; F-
832 to S-950; N-833 to S-950; A-834 to S-950; I-835 to S-950; P-836 to S-950;
T-837 to S-950; F-838 to S-950; S-839 to S-950; A-840 to S-950; W-841 to S-
950; V-842 to S-950; I-843 to S-950; E-844 to S-950; E-845 to S-950; W-846
15 to S-950; G-847 to S-950; E-848 to S-950; C-849 to S-950; S-850 to S-950; K-
851 to S-950; S-852 to S-950; C-853 to S-950; E-854 to S-950; L-855 to S-950;
G-856 to S-950; W-857 to S-950; Q-858 to S-950; R-859 to S-950; R-860 to S-
950; L-861 to S-950; V-862 to S-950; E-863 to S-950; C-864 to S-950; R-865
20 to S-950; D-866 to S-950; I-867 to S-950; N-868 to S-950; G-869 to S-950; Q-
870 to S-950; P-871 to S-950; A-872 to S-950; S-873 to S-950; E-874 to S-950;
C-875 to S-950; A-876 to S-950; K-877 to S-950; E-878 to S-950; V-879 to S-
950; K-880 to S-950; P-881 to S-950; A-882 to S-950; S-883 to S-950; T-884
25 to S-950; R-885 to S-950; P-886 to S-950; C-887 to S-950; A-888 to S-950; D-
889 to S-950; H-890 to S-950; P-891 to S-950; C-892 to S-950; P-893 to S-950;
Q-894 to S-950; W-895 to S-950; Q-896 to S-950; L-897 to S-950; G-898 to S-
950; E-899 to S-950; W-900 to S-950; S-901 to S-950; S-902 to S-950; C-903
to S-950; S-904 to S-950; K-905 to S-950; T-906 to S-950; C-907 to S-950; G-
908 to S-950; K-909 to S-950; G-910 to S-950; Y-911 to S-950; K-912 to S-950;
K-913 to S-950; R-914 to S-950; S-915 to S-950; L-916 to S-950; K-917 to S-
30 950; C-918 to S-950; L-919 to S-950; S-920 to S-950; H-921 to S-950; D-922

to S-950; G-923 to S-950; G-924 to S-950; V-925 to S-950; L-926 to S-950; S-927 to S-950; H-928 to S-950; E-929 to S-950; S-930 to S-950; C-931 to S-950; D-932 to S-950; P-933 to S-950; L-934 to S-950; K-935 to S-950; K-936 to S-950; P-937 to S-950; K-938 to S-950; H-939 to S-950; F-940 to S-950; I-941 to S-950; D-942 to S-950; F-943 to S-950; C-944 to S-950; T-945 to S-950; of SEQ ID NO:2.

Moreover, C-terminal deletions of the METH1 polypeptide can also be described by the general formula 1-n, where n is an integer from 2 to 950, where n corresponds to the position of amino acid residue identified in SEQ ID NO:2. Preferably, C-terminal deletions of the METH1 polypeptide of the invention shown as SEQ ID NO:2 include polypeptides comprising the amino acid sequence of residues: M-1 to C-949; M-1 to E-948; M-1 to A-947; M-1 to M-946; M-1 to T-945; M-1 to C-944; M-1 to F-943; M-1 to D-942; M-1 to I-941; M-1 to F-940; M-1 to H-939; M-1 to K-938; M-1 to P-937; M-1 to K-936; M-1 to K-935; M-1 to L-934; M-1 to P-933; M-1 to D-932; M-1 to C-931; M-1 to S-930; M-1 to E-929; M-1 to H-928; M-1 to S-927; M-1 to L-926; M-1 to V-925; M-1 to G-924; M-1 to G-923; M-1 to D-922; M-1 to H-921; M-1 to S-920; M-1 to L-919; M-1 to C-918; M-1 to K-917; M-1 to L-916; M-1 to S-915; M-1 to R-914; M-1 to K-913; M-1 to K-912; M-1 to Y-911; M-1 to G-910; M-1 to K-909; M-1 to G-908; M-1 to C-907; M-1 to T-906; M-1 to K-905; M-1 to S-904; M-1 to C-903; M-1 to S-902; M-1 to S-901; M-1 to W-900; M-1 to E-899; M-1 to G-898; M-1 to L-897; M-1 to Q-896; M-1 to W-895; M-1 to Q-894; M-1 to P-893; M-1 to C-892; M-1 to P-891; M-1 to H-890; M-1 to D-889; M-1 to A-888; M-1 to C-887; M-1 to P-886; M-1 to R-885; M-1 to T-884; M-1 to S-883; M-1 to A-882; M-1 to P-881; M-1 to K-880; M-1 to V-879; M-1 to E-878; M-1 to K-877; M-1 to A-876; M-1 to C-875; M-1 to E-874; M-1 to S-873; M-1 to A-872; M-1 to P-871; M-1 to Q-870; M-1 to G-869; M-1 to N-868; M-1 to I-867; M-1 to D-866; M-1 to R-865; M-1 to C-864; M-1 to E-863; M-1 to V-862; M-1 to L-861; M-1 to R-860; M-1 to R-859; M-1 to Q-858; M-1 to W-857; M-1 to G-856; M-1 to L-855; M-1 to E-854; M-1 to C-853; M-1 to S-852; M-1 to K-851; M-1 to S-850; M-1 to C-

849; M-1 to E-848; M-1 to G-847; M-1 to W-846; M-1 to E-845; M-1 to E-844;
M-1 to I-843; M-1 to V-842; M-1 to W-841; M-1 to A-840; M-1 to S-839; M-1
to F-838; M-1 to T-837; M-1 to P-836; M-1 to I-835; M-1 to A-834; M-1 to N-
833; M-1 to F-832; M-1 to S-831; M-1 to E-830; M-1 to K-829; M-1 to K-828;
5 M-1 to K-827; M-1 to K-826; M-1 to V-825; M-1 to F-824; M-1 to Y-823; M-1
to T-822; M-1 to Y-821; M-1 to K-820; M-1 to I-819; M-1 to K-818; M-1 to P-
817; M-1 to R-816; M-1 to L-815; M-1 to A-814; M-1 to N-813; M-1 to G-812;
M-1 to V-811; M-1 to T-810; M-1 to L-809; M-1 to V-808; M-1 to Q-807; M-1
to I-806; M-1 to T-805; M-1 to L-804; M-1 to P-803; M-1 to E-802; M-1 to K-
801; M-1 to L-800; M-1 to P-799; M-1 to S-798; M-1 to F-797; M-1 to S-796;
10 M-1 to R-795; M-1 to I-794; M-1 to R-793; M-1 to E-792; M-1 to L-791; M-1
to A-790; M-1 to A-789; M-1 to S-788; M-1 to S-787; M-1 to G-786; M-1 to S-
785; M-1 to Y-784; M-1 to R-783; M-1 to L-782; M-1 to V-781; M-1 to V-780;
M-1 to G-779; M-1 to K-778; M-1 to Y-777; M-1 to M-776; M-1 to I-775; M-1
15 to D-774; M-1 to Q-773; M-1 to E-772; M-1 to L-771; M-1 to T-770; M-1 to S-
769; M-1 to L-768; M-1 to T-767; M-1 to Y-766; M-1 to D-765; M-1 to G-764;
M-1 to N-763; M-1 to L-762; M-1 to I-761; M-1 to Y-760; M-1 to T-759; M-1
to G-758; M-1 to D-757; M-1 to A-756; M-1 to A-755; M-1 to K-754; M-1 to
I-753; M-1 to A-752; M-1 to L-751; M-1 to F-750; M-1 to S-749; M-1 to G-748;
20 M-1 to N-747; M-1 to N-746; M-1 to R-745; M-1 to S-744; M-1 to G-743; M-1
to R-742; M-1 to Q-741; M-1 to N-740; M-1 to R-739; M-1 to Q-738; M-1 to
K-737; M-1 to V-736; M-1 to E-735; M-1 to I-734; M-1 to N-733; M-1 to T-
732; M-1 to A-731; M-1 to G-730; M-1 to T-729; M-1 to P-728; M-1 to I-727;
M-1 to T-726; M-1 to I-725; M-1 to I-724; M-1 to D-723; M-1 to H-722; M-1
25 to Y-721; M-1 to G-720; M-1 to P-719; M-1 to K-718; M-1 to A-717; M-1 to S-
716; M-1 to T-715; M-1 to V-714; M-1 to S-713; M-1 to G-712; M-1 to S-711;
M-1 to I-710; M-1 to K-709; M-1 to K-708; M-1 to C-707; M-1 to T-706; M-1
to S-705; M-1 to G-704; M-1 to N-703; M-1 to G-702; M-1 to G-701; M-1 to C-
700; M-1 to V-699; M-1 to G-698; M-1 to C-697; M-1 to K-696; M-1 to D-695;
30 M-1 to F-694; M-1 to K-693; M-1 to K-692; M-1 to K-691; M-1 to S-690; M-1

to D-689; M-1 to I-688; M-1 to I-687; M-1 to R-686; M-1 to D-685; M-1 to C-684; M-1 to G-683; M-1 to A-682; M-1 to K-681; M-1 to V-680; M-1 to C-679; M-1 to Q-678; M-1 to G-677; M-1 to Q-676; M-1 to V-675; M-1 to C-674; M-1 to V-673; M-1 to S-672; M-1 to T-671; M-1 to S-670; M-1 to D-669; M-1 to P-668; M-1 to S-667; M-1 to C-666; M-1 to P-665; M-1 to T-664; M-1 to G-663; M-1 to D-662; M-1 to V-661; M-1 to V-660; M-1 to K-659; M-1 to P-658; M-1 to Q-657; M-1 to L-656; M-1 to V-655; M-1 to F-654; M-1 to F-653; M-1 to Y-652; M-1 to G-651; M-1 to I-650; M-1 to G-649; M-1 to K-648; M-1 to A-647; M-1 to Q-646; M-1 to C-645; M-1 to I-644; M-1 to L-643; M-1 to K-642; M-1 to C-641; M-1 to R-640; M-1 to D-639; M-1 to K-638; M-1 to P-637; M-1 to S-636; M-1 to V-635; M-1 to G-634; M-1 to A-633; M-1 to Y-632; M-1 to K-631; M-1 to P-630; M-1 to I-629; M-1 to W-628; M-1 to E-627; M-1 to V-626; M-1 to A-625; M-1 to P-624; M-1 to G-623; M-1 to S-622; M-1 to G-621; M-1 to F-620; M-1 to S-619; M-1 to A-618; M-1 to K-617; M-1 to S-616; M-1 to F-615; M-1 to E-614; M-1 to N-613; M-1 to H-612; M-1 to A-611; M-1 to E-610; M-1 to C-609; M-1 to Q-608; M-1 to E-607; M-1 to E-606; M-1 to R-605; M-1 to F-604; M-1 to T-603; M-1 to K-602; M-1 to G-601; M-1 to N-600; M-1 to N-599; M-1 to D-598; M-1 to P-597; M-1 to C-596; M-1 to D-595; M-1 to E-594; M-1 to L-593; M-1 to N-592; M-1 to C-591; M-1 to S-590; M-1 to R-589; M-1 to Y-588; M-1 to R-587; M-1 to V-586; M-1 to R-585; M-1 to K-584; M-1 to G-583; M-1 to E-582; M-1 to C-581; M-1 to Y-580; M-1 to K-579; M-1 to G-578; M-1 to G-577; M-1 to N-576; M-1 to K-575; M-1 to P-574; M-1 to V-573; M-1 to P-572; M-1 to N-571; M-1 to D-570; M-1 to C-569; M-1 to E-568; M-1 to R-567; M-1 to M-566; M-1 to T-565; M-1 to Y-564; M-1 to Q-563; M-1 to V-562; M-1 to G-561; M-1 to G-560; M-1 to G-559; M-1 to C-558; M-1 to T-557; M-1 to R-556; M-1 to S-555; M-1 to C-554; M-1 to D-553; M-1 to G-552; M-1 to W-551; M-1 to P-550; M-1 to G-549; M-1 to W-548; M-1 to M-547; M-1 to G-546; M-1 to W-545; M-1 to S-544; M-1 to G-543; M-1 to H-542; M-1 to F-541; M-1 to P-540; M-1 to T-539; M-1 to D-538; M-1 to F-537; M-1 to H-536; M-1 to K-535; M-1 to R-534; M-1 to D-533; M-1 to T-532; M-1 to K-531; M-1 to N-530;

M-1 to V-529; M-1 to C-528; M-1 to K-527; M-1 to G-526; M-1 to N-525; M-1
to I-524; M-1 to C-523; M-1 to W-522; M-1 to K-521; M-1 to G-520; M-1 to E-
519; M-1 to G-518; M-1 to C-517; M-1 to S-516; M-1 to T-515; M-1 to G-514;
M-1 to D-513; M-1 to A-512; M-1 to W-511; M-1 to P-510; M-1 to F-509; M-1
to H-508; M-1 to K-507; M-1 to T-506; M-1 to Q-505; M-1 to C-504; M-1 to V-
503; M-1 to L-502; M-1 to V-501; M-1 to G-500; M-1 to G-499; M-1 to S-498;
M-1 to T-497; M-1 to G-496; M-1 to T-495; M-1 to C-494; M-1 to W-493; M-1
to L-492; M-1 to T-491; M-1 to S-490; M-1 to C-489; M-1 to T-488; M-1 to S-
487; M-1 to A-486; M-1 to A-485; M-1 to D-484; M-1 to P-483; M-1 to C-482;
10 M-1 to H-481; M-1 to K-480; M-1 to S-479; M-1 to D-478; M-1 to E-477; M-1
to G-476; M-1 to F-475; M-1 to T-474; M-1 to F-473; M-1 to Q-472; M-1 to C-
471; M-1 to Q-470; M-1 to R-469; M-1 to N-468; M-1 to A-467; M-1 to D-466;
M-1 to Y-465; M-1 to S-464; M-1 to T-463; M-1 to G-462; M-1 to P-461; M-1
15 to L-460; M-1 to D-459; M-1 to G-458; M-1 to P-457; M-1 to L-456; M-1 to Q-
455; M-1 to I-454; M-1 to P-453; M-1 to N-452; M-1 to Q-451; M-1 to P-450;
M-1 to K-449; M-1 to D-448; M-1 to M-447; M-1 to L-446; M-1 to C-445; M-1
to E-444; M-1 to G-443; M-1 to H-442; M-1 to G-441; M-1 to N-440; M-1 to
D-439; M-1 to L-438; M-1 to F-437; M-1 to S-436; M-1 to T-435; M-1 to I-434;
20 M-1 to M-433; M-1 to Y-432; M-1 to A-431; M-1 to S-430; M-1 to C-429; M-1
to P-428; M-1 to S-427; M-1 to W-426; M-1 to P-425; M-1 to Q-424; M-1 to S-
423; M-1 to H-422; M-1 to D-421; M-1 to L-420; M-1 to N-419; M-1 to S-418;
M-1 to L-417; M-1 to M-416; M-1 to S-415; M-1 to A-414; M-1 to M-413; M-1
25 to M-412; M-1 to H-411; M-1 to S-410; M-1 to D-409; M-1 to Q-408; M-1 to
N-407; M-1 to V-406; M-1 to G-405; M-1 to N-404; M-1 to L-403; M-1 to S-
402; M-1 to A-401; M-1 to C-400; M-1 to Q-399; M-1 to K-398; M-1 to A-397;
M-1 to D-396; M-1 to D-395; M-1 to H-394; M-1 to P-393; M-1 to M-392; M-1
to N-391; M-1 to F-390; M-1 to V-389; M-1 to H-388; M-1 to G-387; M-1 to L-
386; M-1 to E-385; M-1 to H-384; M-1 to A-383; M-1 to T-382; M-1 to T-381;
30 M-1 to F-380; M-1 to A-379; M-1 to A-378; M-1 to Q-377; M-1 to L-376; M-1
to G-375; M-1 to D-374; M-1 to D-373; M-1 to E-372; M-1 to I-371; M-1 to V-

370; M-1 to S-369; M-1 to C-368; M-1 to S-367; M-1 to R-366; M-1 to S-365;
M-1 to P-364; M-1 to D-363; M-1 to C-362; M-1 to V-361; M-1 to T-360; M-1
to G-359; M-1 to V-358; M-1 to D-357; M-1 to A-356; M-1 to M-355; M-1 to
G-354; M-1 to L-353; M-1 to T-352; M-1 to D-351; M-1 to C-350; M-1 to T-
5 349; M-1 to Q-348; M-1 to S-347; M-1 to G-346; M-1 to C-345; M-1 to L-344;
M-1 to D-343; M-1 to Q-342; M-1 to R-341; M-1 to T-340; M-1 to F-339; M-1
to L-338; M-1 to I-337; M-1 to A-336; M-1 to T-335; M-1 to D-334; M-1 to Y-
333; M-1 to H-332; M-1 to E-331; M-1 to A-330; M-1 to D-329; M-1 to R-328;
M-1 to D-327; M-1 to S-326; M-1 to P-325; M-1 to P-324; M-1 to N-323; M-1
10 to H-322; M-1 to Q-321; M-1 to K-320; M-1 to Q-319; M-1 to W-318; M-1 to
N-317; M-1 to C-316; M-1 to F-315; M-1 to N-314; M-1 to R-313; M-1 to L-
312; M-1 to T-311; M-1 to L-310; M-1 to A-309; M-1 to A-308; M-1 to N-307;
15 M-1 to S-306; M-1 to T-305; M-1 to V-304; M-1 to E-303; M-1 to P-302; M-1
to G-301; M-1 to K-300; M-1 to Q-299; M-1 to E-298; M-1 to D-297; M-1 to
H-296; M-1 to I-295; M-1 to V-294; M-1 to L-293; M-1 to I-292; M-1 to K-291;
M-1 to V-290; M-1 to V-289; M-1 to V-288; M-1 to L-287; M-1 to S-286; M-1
20 to V-285; M-1 to S-284; M-1 to N-283; M-1 to R-282; M-1 to I-281; M-1 to S-
280; M-1 to P-279; M-1 to H-278; M-1 to K-277; M-1 to Y-276; M-1 to L-275;
M-1 to R-274; M-1 to A-273; M-1 to A-272; M-1 to V-271; M-1 to S-270; M-1
to F-269; M-1 to L-268; M-1 to T-267; M-1 to L-266; M-1 to L-265; M-1 to Y-
264; M-1 to H-263; M-1 to K-262; M-1 to L-261; M-1 to G-260; M-1 to S-259;
M-1 to G-258; M-1 to H-257; M-1 to F-256; M-1 to E-255; M-1 to A-254; M-1
25 to M-253; M-1 to S-252; M-1 to Q-251; M-1 to D-250; M-1 to A-249; M-1 to
V-248; M-1 to L-247; M-1 to M-246; M-1 to T-245; M-1 to E-244; M-1 to V-
243; M-1 to Y-242; M-1 to R-241; M-1 to H-240; M-1 to S-239; M-1 to S-238;
M-1 to V-237; M-1 to F-236; M-1 to R-235; M-1 to K-234; M-1 to K-233; M-1
to R-232; M-1 to I-231; M-1 to S-230; M-1 to G-229; M-1 to T-228; M-1 to G-
227; M-1 to T-226; M-1 to P-225; M-1 to Q-224; M-1 to G-223; M-1 to V-222;
M-1 to G-221; M-1 to Q-220; M-1 to L-219; M-1 to A-218; M-1 to P-217; M-1
30 to D-216; M-1 to Q-215; M-1 to P-214; M-1 to S-213; M-1 to W-212; M-1 to

Q-211; M-1 to P-210; M-1 to G-209; M-1 to E-208; M-1 to D-207; M-1 to E-
206; M-1 to G-205; M-1 to E-204; M-1 to T-203; M-1 to G-202; M-1 to E-201;
M-1 to D-200; M-1 to E-199; M-1 to D-198; M-1 to E-197; M-1 to T-196; M-1
to E-195; M-1 to A-194; M-1 to K-193; M-1 to G-192; M-1 to T-191; M-1 to P-
5 190; M-1 to R-189; M-1 to P-188; M-1 to E-187; M-1 to D-186; M-1 to D-185;
M-1 to V-184; M-1 to V-183; M-1 to G-182; M-1 to C-181; M-1 to T-180; M-1
to G-179; M-1 to G-178; M-1 to V-177; M-1 to D-176; M-1 to G-175; M-1 to
Q-174; M-1 to R-173; M-1 to N-172; M-1 to R-171; M-1 to R-170; M-1 to L-
169; M-1 to L-168; M-1 to H-167; M-1 to F-166; M-1 to Q-165; M-1 to L-164;
10 M-1 to P-163; M-1 to A-162; M-1 to P-161; M-1 to P-160; M-1 to K-159; M-1
to E-158; M-1 to G-157; M-1 to P-156; M-1 to A-155; M-1 to A-154; M-1 to T-
15 153; M-1 to A-152; M-1 to L-151; M-1 to R-150; M-1 to E-149; M-1 to S-148;
M-1 to A-147; M-1 to A-146; M-1 to P-145; M-1 to L-144; M-1 to P-143; M-1
to Q-142; M-1 to I-141; M-1 to F-140; M-1 to Y-139; M-1 to A-138; M-1 to E-
137; M-1 to G-136; M-1 to L-135; M-1 to L-134; M-1 to Y-133; M-1 to F-132;
M-1 to A-131; M-1 to G-130; M-1 to R-129; M-1 to V-128; M-1 to G-127; M-1
to E-126; M-1 to C-125; M-1 to L-124; M-1 to S-123; M-1 to L-122; M-1 to A-
121; M-1 to A-120; M-1 to A-119; M-1 to S-118; M-1 to S-117; M-1 to P-116;
20 M-1 to D-115; M-1 to G-114; M-1 to N-113; M-1 to V-112; M-1 to T-111; M-1
to G-110; M-1 to S-109; M-1 to Y-108; M-1 to F-107; M-1 to C-106; M-1 to H-
105; M-1 to A-104; M-1 to L-103; M-1 to D-102; M-1 to T-101; M-1 to E-100;
M-1 to P-99; M-1 to L-98; M-1 to P-97; M-1 to T-96; M-1 to E-95; M-1 to S-94;
M-1 to G-93; M-1 to S-92; M-1 to K-91; M-1 to R-90; M-1 to G-89; M-1 to V-
88; M-1 to N-87; M-1 to Q-86; M-1 to L-85; M-1 to T-84; M-1 to F-83; M-1 to
25 G-82; M-1 to P-81; M-1 to A-80; M-1 to L-79; M-1 to F-78; M-1 to S-77; M-1
to S-76; M-1 to D-75; M-1 to P-74; M-1 to R-73; M-1 to L-72; M-1 to E-71; M-
1 to L-70; M-1 to D-69; M-1 to L-68; M-1 to Q-67; M-1 to Q-66; M-1 to D-65;
M-1 to F-64; M-1 to A-63; M-1 to H-62; M-1 to L-61; M-1 to R-60; M-1 to L-
59; M-1 to R-58; M-1 to T-57; M-1 to T-56; M-1 to G-55; M-1 to H-54; M-1 to
30 G-53; M-1 to P-52; M-1 to A-51; M-1 to R-50; M-1 to E-49; M-1 to L-48; M-1

to E-47; M-1 to P-46; M-1 to V-45; M-1 to V-44; M-1 to L-43; M-1 to E-42; M-1 to E-41; M-1 to D-40; M-1 to E-39; M-1 to E-38; M-1 to S-37; M-1 to P-36; M-1 to R-35; M-1 to G-34; M-1 to L-33; M-1 to A-32; M-1 to D-31; M-1 to S-30; M-1 to V-29; M-1 to A-28; M-1 to L-27; M-1 to L-26; M-1 to A-25; M-1 to A-24; M-1 to A-23; M-1 to L-22; M-1 to L-21; M-1 to L-20; M-1 to L-19; M-1 to T-18; M-1 to P-17; M-1 to V-16; M-1 to P-15; M-1 to G-14; M-1 to F-13; M-1 to S-12; M-1 to R-11; M-1 to S-10; M-1 to G-9; M-1 to P-8; M-1 to A-7; of SEQ ID NO:2. For example, any of the above listed N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted METH1 polypeptide.

Moreover, N-terminal deletions of the METH2 polypeptide can be described by the general formula m-890, where m is an integer from 2 to 889, where m corresponds to the position of the amino acid residue identified in SEQ ID NO:4. Preferably, N-terminal deletions of the METH2 polypeptide of the invention shown as SEQ ID NO:4 include polypeptides comprising the amino acid sequence of residues: F-2 to L-890; P-3 to L-890; A-4 to L-890; P-5 to L-890; A-6 to L-890; A-7 to L-890; P-8 to L-890; R-9 to L-890; W-10 to L-890; L-11 to L-890; P-12 to L-890; F-13 to L-890; L-14 to L-890; L-15 to L-890; L-16 to L-890; L-17 to L-890; L-18 to L-890; L-19 to L-890; L-20 to L-890; L-21 to L-890; L-22 to L-890; P-23 to L-890; L-24 to L-890; A-25 to L-890; R-26 to L-890; G-27 to L-890; A-28 to L-890; P-29 to L-890; A-30 to L-890; R-31 to L-890; P-32 to L-890; A-33 to L-890; A-34 to L-890; G-35 to L-890; G-36 to L-890; Q-37 to L-890; A-38 to L-890; S-39 to L-890; E-40 to L-890; L-41 to L-890; V-42 to L-890; V-43 to L-890; P-44 to L-890; T-45 to L-890; R-46 to L-890; L-47 to L-890; P-48 to L-890; G-49 to L-890; S-50 to L-890; A-51 to L-890; G-52 to L-890; E-53 to L-890; L-54 to L-890; A-55 to L-890; L-56 to L-890; H-57 to L-890; L-58 to L-890; S-59 to L-890; A-60 to L-890; F-61 to L-890; G-62 to L-890; K-63 to L-890; G-64 to L-890; F-65 to L-890; V-66 to L-890; L-67 to L-890; R-68 to L-890; L-69 to L-890; A-70 to L-890; P-71 to L-890; D-72 to L-890; D-73 to L-890; S-74 to L-890; F-75 to L-890; L-76 to L-890; A-77 to L-890; P-78 to L-890; E-79 to L-890; F-80 to L-890; K-81 to L-

890; I-82 to L-890; E-83 to L-890; R-84 to L-890; L-85 to L-890; G-86 to L-
890; G-87 to L-890; S-88 to L-890; G-89 to L-890; R-90 to L-890; A-91 to L-
890; T-92 to L-890; G-93 to L-890; G-94 to L-890; E-95 to L-890; R-96 to L-
890; G-97 to L-890; L-98 to L-890; R-99 to L-890; G-100 to L-890; C-101 to L-
5
890; F-102 to L-890; F-103 to L-890; S-104 to L-890; G-105 to L-890; T-106
to L-890; V-107 to L-890; N-108 to L-890; G-109 to L-890; E-110 to L-890; P-
111 to L-890; E-112 to L-890; S-113 to L-890; L-114 to L-890; A-115 to L-890;
A-116 to L-890; V-117 to L-890; S-118 to L-890; L-119 to L-890; C-120 to L-
890; R-121 to L-890; G-122 to L-890; L-123 to L-890; S-124 to L-890; G-125
10
to L-890; S-126 to L-890; F-127 to L-890; L-128 to L-890; L-129 to L-890; D-
130 to L-890; G-131 to L-890; E-132 to L-890; E-133 to L-890; F-134 to L-890;
T-135 to L-890; I-136 to L-890; Q-137 to L-890; P-138 to L-890; Q-139 to L-
890; G-140 to L-890; A-141 to L-890; G-142 to L-890; G-143 to L-890; S-144
15
to L-890; L-145 to L-890; A-146 to L-890; Q-147 to L-890; P-148 to L-890; H-
149 to L-890; R-150 to L-890; L-151 to L-890; Q-152 to L-890; R-153 to L-890;
W-154 to L-890; G-155 to L-890; P-156 to L-890; A-157 to L-890; G-158 to L-
890; A-159 to L-890; R-160 to L-890; P-161 to L-890; L-162 to L-890; P-163
20
to L-890; R-164 to L-890; G-165 to L-890; P-166 to L-890; E-167 to L-890; W-
168 to L-890; E-169 to L-890; V-170 to L-890; E-171 to L-890; T-172 to L-890;
G-173 to L-890; E-174 to L-890; G-175 to L-890; Q-176 to L-890; R-177 to L-
890; Q-178 to L-890; E-179 to L-890; R-180 to L-890; G-181 to L-890; D-182
25
to L-890; H-183 to L-890; Q-184 to L-890; E-185 to L-890; D-186 to L-890; S-
187 to L-890; E-188 to L-890; E-189 to L-890; E-190 to L-890; S-191 to L-890;
Q-192 to L-890; E-193 to L-890; E-194 to L-890; E-195 to L-890; A-196 to L-
890; E-197 to L-890; G-198 to L-890; A-199 to L-890; S-200 to L-890; E-201
30
to L-890; P-202 to L-890; P-203 to L-890; P-204 to L-890; P-205 to L-890; L-
206 to L-890; G-207 to L-890; A-208 to L-890; T-209 to L-890; S-210 to L-890;
R-211 to L-890; T-212 to L-890; K-213 to L-890; R-214 to L-890; F-215 to L-
890; V-216 to L-890; S-217 to L-890; E-218 to L-890; A-219 to L-890; R-220
to L-890; F-221 to L-890; V-222 to L-890; E-223 to L-890; T-224 to L-890; L-

225 to L-890; L-226 to L-890; V-227 to L-890; A-228 to L-890; D-229 to L-890;
A-230 to L-890; S-231 to L-890; M-232 to L-890; A-233 to L-890; A-234 to L-
890; F-235 to L-890; Y-236 to L-890; G-237 to L-890; A-238 to L-890; D-239
to L-890; L-240 to L-890; Q-241 to L-890; N-242 to L-890; H-243 to L-890; I-
5 244 to L-890; L-245 to L-890; T-246 to L-890; L-247 to L-890; M-248 to L-890;
S-249 to L-890; V-250 to L-890; A-251 to L-890; A-252 to L-890; R-253 to L-
890; I-254 to L-890; Y-255 to L-890; K-256 to L-890; H-257 to L-890; P-258
to L-890; S-259 to L-890; I-260 to L-890; K-261 to L-890; N-262 to L-890; S-
10 263 to L-890; I-264 to L-890; N-265 to L-890; L-266 to L-890; M-267 to L-890;
V-268 to L-890; V-269 to L-890; K-270 to L-890; V-271 to L-890; L-272 to L-
890; I-273 to L-890; V-274 to L-890; E-275 to L-890; D-276 to L-890; E-277
to L-890; K-278 to L-890; W-279 to L-890; G-280 to L-890; P-281 to L-890; E-
15 282 to L-890; V-283 to L-890; S-284 to L-890; D-285 to L-890; N-286 to L-890;
G-287 to L-890; G-288 to L-890; L-289 to L-890; T-290 to L-890; L-291 to L-
890; R-292 to L-890; N-293 to L-890; F-294 to L-890; C-295 to L-890; N-296
to L-890; W-297 to L-890; Q-298 to L-890; R-299 to L-890; R-300 to L-890; F-
20 301 to L-890; N-302 to L-890; Q-303 to L-890; P-304 to L-890; S-305 to L-890;
D-306 to L-890; R-307 to L-890; H-308 to L-890; P-309 to L-890; E-310 to L-
890; H-311 to L-890; Y-312 to L-890; D-313 to L-890; T-314 to L-890; A-315
to L-890; I-316 to L-890; L-317 to L-890; L-318 to L-890; T-319 to L-890; R-
25 320 to L-890; Q-321 to L-890; N-322 to L-890; F-323 to L-890; C-324 to L-890;
G-325 to L-890; Q-326 to L-890; E-327 to L-890; G-328 to L-890; L-329 to L-
890; C-330 to L-890; D-331 to L-890; T-332 to L-890; L-333 to L-890; G-334
to L-890; V-335 to L-890; A-336 to L-890; D-337 to L-890; I-338 to L-890; G-
339 to L-890; T-340 to L-890; I-341 to L-890; C-342 to L-890; D-343 to L-890;
P-344 to L-890; N-345 to L-890; K-346 to L-890; S-347 to L-890; C-348 to L-
890; S-349 to L-890; V-350 to L-890; I-351 to L-890; E-352 to L-890; D-353
to L-890; E-354 to L-890; G-355 to L-890; L-356 to L-890; Q-357 to L-890; A-
358 to L-890; A-359 to L-890; H-360 to L-890; T-361 to L-890; L-362 to L-890;
30 A-363 to L-890; H-364 to L-890; E-365 to L-890; L-366 to L-890; G-367 to L-

890; H-368 to L-890; V-369 to L-890; L-370 to L-890; S-371 to L-890; M-372
to L-890; P-373 to L-890; H-374 to L-890; D-375 to L-890; D-376 to L-890; S-
377 to L-890; K-378 to L-890; P-379 to L-890; C-380 to L-890; T-381 to L-890;
R-382 to L-890; L-383 to L-890; F-384 to L-890; G-385 to L-890; P-386 to L-
890; M-387 to L-890; G-388 to L-890; K-389 to L-890; H-390 to L-890; H-391
5 to L-890; V-392 to L-890; M-393 to L-890; A-394 to L-890; P-395 to L-890; L-
396 to L-890; F-397 to L-890; V-398 to L-890; H-399 to L-890; L-400 to L-890;
N-401 to L-890; Q-402 to L-890; T-403 to L-890; L-404 to L-890; P-405 to L-
890; W-406 to L-890; S-407 to L-890; P-408 to L-890; C-409 to L-890; S-410
10 to L-890; A-411 to L-890; M-412 to L-890; Y-413 to L-890; L-414 to L-890; T-
415 to L-890; E-416 to L-890; L-417 to L-890; L-418 to L-890; D-419 to L-890;
G-420 to L-890; G-421 to L-890; H-422 to L-890; G-423 to L-890; D-424 to L-
890; C-425 to L-890; L-426 to L-890; L-427 to L-890; D-428 to L-890; A-429
15 to L-890; P-430 to L-890; G-431 to L-890; A-432 to L-890; A-433 to L-890; L-
434 to L-890; P-435 to L-890; L-436 to L-890; P-437 to L-890; T-438 to L-890;
G-439 to L-890; L-440 to L-890; P-441 to L-890; G-442 to L-890; R-443 to L-
890; M-444 to L-890; A-445 to L-890; L-446 to L-890; Y-447 to L-890; Q-448
20 to L-890; L-449 to L-890; D-450 to L-890; Q-451 to L-890; Q-452 to L-890; C-
453 to L-890; R-454 to L-890; Q-455 to L-890; I-456 to L-890; F-457 to L-890;
G-458 to L-890; P-459 to L-890; D-460 to L-890; F-461 to L-890; R-462 to L-
890; H-463 to L-890; C-464 to L-890; P-465 to L-890; N-466 to L-890; T-467
25 to L-890; S-468 to L-890; A-469 to L-890; Q-470 to L-890; D-471 to L-890; V-
472 to L-890; C-473 to L-890; A-474 to L-890; Q-475 to L-890; L-476 to L-890;
W-477 to L-890; C-478 to L-890; H-479 to L-890; T-480 to L-890; D-481 to L-
890; G-482 to L-890; A-483 to L-890; E-484 to L-890; P-485 to L-890; L-486
30 to L-890; C-487 to L-890; H-488 to L-890; T-489 to L-890; K-490 to L-890; N-
491 to L-890; G-492 to L-890; S-493 to L-890; L-494 to L-890; P-495 to L-890;
W-496 to L-890; A-497 to L-890; D-498 to L-890; G-499 to L-890; T-500 to L-
890; P-501 to L-890; C-502 to L-890; G-503 to L-890; P-504 to L-890; G-505
to L-890; H-506 to L-890; L-507 to L-890; C-508 to L-890; S-509 to L-890; E-

510 to L-890; G-511 to L-890; S-512 to L-890; C-513 to L-890; L-514 to L-890;
P-515 to L-890; E-516 to L-890; E-517 to L-890; E-518 to L-890; V-519 to L-
890; E-520 to L-890; R-521 to L-890; P-522 to L-890; K-523 to L-890; P-524
to L-890; V-525 to L-890; V-526 to L-890; D-527 to L-890; G-528 to L-890; G-
5
529 to L-890; W-530 to L-890; A-531 to L-890; P-532 to L-890; W-533 to L-
890; G-534 to L-890; P-535 to L-890; W-536 to L-890; G-537 to L-890; E-538
to L-890; C-539 to L-890; S-540 to L-890; R-541 to L-890; T-542 to L-890; C-
10
543 to L-890; G-544 to L-890; G-545 to L-890; G-546 to L-890; V-547 to L-
890; Q-548 to L-890; F-549 to L-890; S-550 to L-890; H-551 to L-890; R-552
to L-890; E-553 to L-890; C-554 to L-890; K-555 to L-890; D-556 to L-890; P-
557 to L-890; E-558 to L-890; P-559 to L-890; Q-560 to L-890; N-561 to L-890;
G-562 to L-890; G-563 to L-890; R-564 to L-890; Y-565 to L-890; C-566 to L-
15
890; L-567 to L-890; G-568 to L-890; R-569 to L-890; R-570 to L-890; A-571
to L-890; K-572 to L-890; Y-573 to L-890; Q-574 to L-890; S-575 to L-890; C-
576 to L-890; H-577 to L-890; T-578 to L-890; E-579 to L-890; E-580 to L-890;
C-581 to L-890; P-582 to L-890; P-583 to L-890; D-584 to L-890; G-585 to L-
20
890; K-586 to L-890; S-587 to L-890; F-588 to L-890; R-589 to L-890; E-590
to L-890; Q-591 to L-890; Q-592 to L-890; C-593 to L-890; E-594 to L-890; K-
595 to L-890; Y-596 to L-890; N-597 to L-890; A-598 to L-890; Y-599 to L-
25
890; N-600 to L-890; Y-601 to L-890; T-602 to L-890; D-603 to L-890; M-604
to L-890; D-605 to L-890; G-606 to L-890; N-607 to L-890; L-608 to L-890; L-
609 to L-890; Q-610 to L-890; W-611 to L-890; V-612 to L-890; P-613 to L-
890; K-614 to L-890; Y-615 to L-890; A-616 to L-890; G-617 to L-890; V-618
to L-890; S-619 to L-890; P-620 to L-890; R-621 to L-890; D-622 to L-890; R-
623 to L-890; C-624 to L-890; K-625 to L-890; L-626 to L-890; F-627 to L-890;
C-628 to L-890; R-629 to L-890; A-630 to L-890; R-631 to L-890; G-632 to L-
30
890; R-633 to L-890; S-634 to L-890; E-635 to L-890; F-636 to L-890; K-637
to L-890; V-638 to L-890; F-639 to L-890; E-640 to L-890; A-641 to L-890; K-
642 to L-890; V-643 to L-890; I-644 to L-890; D-645 to L-890; G-646 to L-890;
T-647 to L-890; L-648 to L-890; C-649 to L-890; G-650 to L-890; P-651 to L-

890; E-652 to L-890; T-653 to L-890; L-654 to L-890; A-655 to L-890; I-656 to
L-890; C-657 to L-890; V-658 to L-890; R-659 to L-890; G-660 to L-890; Q-661
to L-890; C-662 to L-890; V-663 to L-890; K-664 to L-890; A-665 to L-890; G-
666 to L-890; C-667 to L-890; D-668 to L-890; H-669 to L-890; V-670 to L-
890; V-671 to L-890; D-672 to L-890; S-673 to L-890; P-674 to L-890; R-675
5 to L-890; K-676 to L-890; L-677 to L-890; D-678 to L-890; K-679 to L-890; C-
680 to L-890; G-681 to L-890; V-682 to L-890; C-683 to L-890; G-684 to L-
890; G-685 to L-890; K-686 to L-890; G-687 to L-890; N-688 to L-890; S-689
to L-890; C-690 to L-890; R-691 to L-890; K-692 to L-890; V-693 to L-890; S-
10 694 to L-890; G-695 to L-890; S-696 to L-890; L-697 to L-890; T-698 to L-890;
P-699 to L-890; T-700 to L-890; N-701 to L-890; Y-702 to L-890; G-703 to L-
890; Y-704 to L-890; N-705 to L-890; D-706 to L-890; I-707 to L-890; V-708
to L-890; T-709 to L-890; I-710 to L-890; P-711 to L-890; A-712 to L-890; G-
15 713 to L-890; A-714 to L-890; T-715 to L-890; N-716 to L-890; I-717 to L-890;
D-718 to L-890; V-719 to L-890; K-720 to L-890; Q-721 to L-890; R-722 to L-
890; S-723 to L-890; H-724 to L-890; P-725 to L-890; G-726 to L-890; V-727
to L-890; Q-728 to L-890; N-729 to L-890; D-730 to L-890; G-731 to L-890; N-
17 732 to L-890; Y-733 to L-890; L-734 to L-890; A-735 to L-890; L-736 to L-890;
K-737 to L-890; T-738 to L-890; A-739 to L-890; D-740 to L-890; G-741 to L-
890; Q-742 to L-890; Y-743 to L-890; L-744 to L-890; L-745 to L-890; N-746
20 to L-890; G-747 to L-890; N-748 to L-890; L-749 to L-890; A-750 to L-890; I-
751 to L-890; S-752 to L-890; A-753 to L-890; I-754 to L-890; E-755 to L-890;
Q-756 to L-890; D-757 to L-890; I-758 to L-890; L-759 to L-890; V-760 to L-
890; K-761 to L-890; G-762 to L-890; T-763 to L-890; I-764 to L-890; L-765
25 to L-890; K-766 to L-890; Y-767 to L-890; S-768 to L-890; G-769 to L-890; S-
770 to L-890; I-771 to L-890; A-772 to L-890; T-773 to L-890; L-774 to L-890;
E-775 to L-890; R-776 to L-890; L-777 to L-890; Q-778 to L-890; S-779 to L-
890; F-780 to L-890; R-781 to L-890; P-782 to L-890; L-783 to L-890; P-784 to
L-890; E-785 to L-890; P-786 to L-890; L-787 to L-890; T-788 to L-890; V-789
30 to L-890; Q-790 to L-890; L-791 to L-890; L-792 to L-890; T-793 to L-890; V-

794 to L-890; P-795 to L-890; G-796 to L-890; E-797 to L-890; V-798 to L-890;
F-799 to L-890; P-800 to L-890; P-801 to L-890; K-802 to L-890; V-803 to L-
890; K-804 to L-890; Y-805 to L-890; T-806 to L-890; F-807 to L-890; F-808
to L-890; V-809 to L-890; P-810 to L-890; N-811 to L-890; D-812 to L-890; V-
5 813 to L-890; D-814 to L-890; F-815 to L-890; S-816 to L-890; M-817 to L-890;
Q-818 to L-890; S-819 to L-890; S-820 to L-890; K-821 to L-890; E-822 to L-
890; R-823 to L-890; A-824 to L-890; T-825 to L-890; T-826 to L-890; N-827
to L-890; I-828 to L-890; I-829 to L-890; Q-830 to L-890; P-831 to L-890; L-
10 832 to L-890; L-833 to L-890; H-834 to L-890; A-835 to L-890; Q-836 to L-890;
W-837 to L-890; V-838 to L-890; L-839 to L-890; G-840 to L-890; D-841 to L-
890; W-842 to L-890; S-843 to L-890; E-844 to L-890; C-845 to L-890; S-846
to L-890; S-847 to L-890; T-848 to L-890; C-849 to L-890; G-850 to L-890; A-
15 851 to L-890; G-852 to L-890; W-853 to L-890; Q-854 to L-890; R-855 to L-
890; R-856 to L-890; T-857 to L-890; V-858 to L-890; E-859 to L-890; C-860
to L-890; R-861 to L-890; D-862 to L-890; P-863 to L-890; S-864 to L-890; G-
20 865 to L-890; Q-866 to L-890; A-867 to L-890; S-868 to L-890; A-869 to L-890;
T-870 to L-890; C-871 to L-890; N-872 to L-890; K-873 to L-890; A-874 to L-
890; L-875 to L-890; K-876 to L-890; P-877 to L-890; E-878 to L-890; D-879
to L-890; A-880 to L-890; K-881 to L-890; P-882 to L-890; C-883 to L-890; E-
25 884 to L-890; S-885 to L-890; of SEQ ID NO:4.

Moreover, C-terminal deletions of the METH2 polypeptide can also be described by the general formula 1-n, where n is an integer from 2 to 890 where n corresponds to the position of amino acid residue identified in SEQ ID NO:4. Preferably, C-terminal deletions of the METH2 polypeptide of the invention shown as SEQ ID NO:4 include polypeptides comprising the amino acid sequence of residues: M-1 to P-889; M-1 to C-888; M-1 to L-887; M-1 to Q-886; M-1 to S-885; M-1 to E-884; M-1 to C-883; M-1 to P-882; M-1 to K-881; M-1 to A-880; M-1 to D-879; M-1 to E-878; M-1 to P-877; M-1 to K-876; M-1 to L-875; M-1 to A-874; M-1 to K-873; M-1 to N-872; M-1 to C-871; M-1 to T-870; M-1 to A-869; M-1 to S-868; M-1 to A-867; M-1 to Q-866; M-1 to G-865; M-1 to S-

864; M-1 to P-863; M-1 to D-862; M-1 to R-861; M-1 to C-860; M-1 to E-859;
M-1 to V-858; M-1 to T-857; M-1 to R-856; M-1 to R-855; M-1 to Q-854; M-1
to W-853; M-1 to G-852; M-1 to A-851; M-1 to G-850; M-1 to C-849; M-1 to
T-848; M-1 to S-847; M-1 to S-846; M-1 to C-845; M-1 to E-844; M-1 to S-843;
5 M-1 to W-842; M-1 to D-841; M-1 to G-840; M-1 to L-839; M-1 to V-838; M-1
to W-837; M-1 to Q-836; M-1 to A-835; M-1 to H-834; M-1 to L-833; M-1 to
L-832; M-1 to P-831; M-1 to Q-830; M-1 to I-829; M-1 to I-828; M-1 to N-827;
M-1 to T-826; M-1 to T-825; M-1 to A-824; M-1 to R-823; M-1 to E-822; M-1
to K-821; M-1 to S-820; M-1 to S-819; M-1 to Q-818; M-1 to M-817; M-1 to S-
10 816; M-1 to F-815; M-1 to D-814; M-1 to V-813; M-1 to D-812; M-1 to N-811;
M-1 to P-810; M-1 to V-809; M-1 to F-808; M-1 to F-807; M-1 to T-806; M-1
to Y-805; M-1 to K-804; M-1 to V-803; M-1 to K-802; M-1 to P-801; M-1 to P-
800; M-1 to F-799; M-1 to V-798; M-1 to E-797; M-1 to G-796; M-1 to P-795;
M-1 to V-794; M-1 to T-793; M-1 to L-792; M-1 to L-791; M-1 to Q-790; M-1
15 5 to V-789; M-1 to T-788; M-1 to L-787; M-1 to P-786; M-1 to E-785; M-1 to P-
784; M-1 to L-783; M-1 to P-782; M-1 to R-781; M-1 to F-780; M-1 to S-779;
M-1 to Q-778; M-1 to L-777; M-1 to R-776; M-1 to E-775; M-1 to L-774; M-1
to T-773; M-1 to A-772; M-1 to I-771; M-1 to S-770; M-1 to G-769; M-1 to S-
768; M-1 to Y-767; M-1 to K-766; M-1 to L-765; M-1 to I-764; M-1 to T-763;
20 M-1 to G-762; M-1 to K-761; M-1 to V-760; M-1 to L-759; M-1 to I-758; M-1
to D-757; M-1 to Q-756; M-1 to E-755; M-1 to I-754; M-1 to A-753; M-1 to S-
752; M-1 to I-751; M-1 to A-750; M-1 to L-749; M-1 to N-748; M-1 to G-747;
M-1 to N-746; M-1 to L-745; M-1 to L-744; M-1 to Y-743; M-1 to Q-742; M-1
to G-741; M-1 to D-740; M-1 to A-739; M-1 to T-738; M-1 to K-737; M-1 to
25 L-736; M-1 to A-735; M-1 to L-734; M-1 to Y-733; M-1 to N-732; M-1 to G-
731; M-1 to D-730; M-1 to N-729; M-1 to Q-728; M-1 to V-727; M-1 to G-726;
M-1 to P-725; M-1 to H-724; M-1 to S-723; M-1 to R-722; M-1 to Q-721; M-1
to K-720; M-1 to V-719; M-1 to D-718; M-1 to I-717; M-1 to N-716; M-1 to T-
715; M-1 to A-714; M-1 to G-713; M-1 to A-712; M-1 to P-711; M-1 to I-710;
30 M-1 to T-709; M-1 to V-708; M-1 to I-707; M-1 to D-706; M-1 to N-705; M-1

to Y-704; M-1 to G-703; M-1 to Y-702; M-1 to N-701; M-1 to T-700; M-1 to P-699; M-1 to T-698; M-1 to L-697; M-1 to S-696; M-1 to G-695; M-1 to S-694; M-1 to V-693; M-1 to K-692; M-1 to R-691; M-1 to C-690; M-1 to S-689; M-1 to N-688; M-1 to G-687; M-1 to K-686; M-1 to G-685; M-1 to G-684; M-1 to C-683; M-1 to V-682; M-1 to G-681; M-1 to C-680; M-1 to K-679; M-1 to D-678; M-1 to L-677; M-1 to K-676; M-1 to R-675; M-1 to P-674; M-1 to S-673; M-1 to D-672; M-1 to V-671; M-1 to V-670; M-1 to H-669; M-1 to D-668; M-1 to C-667; M-1 to G-666; M-1 to A-665; M-1 to K-664; M-1 to V-663; M-1 to C-662; M-1 to Q-661; M-1 to G-660; M-1 to R-659; M-1 to V-658; M-1 to C-657; M-1 to I-656; M-1 to A-655; M-1 to L-654; M-1 to T-653; M-1 to E-652; M-1 to P-651; M-1 to G-650; M-1 to C-649; M-1 to L-648; M-1 to T-647; M-1 to G-646; M-1 to D-645; M-1 to I-644; M-1 to V-643; M-1 to K-642; M-1 to A-641; M-1 to E-640; M-1 to F-639; M-1 to V-638; M-1 to K-637; M-1 to F-636; M-1 to E-635; M-1 to S-634; M-1 to R-633; M-1 to G-632; M-1 to R-631; M-1 to A-630; M-1 to R-629; M-1 to C-628; M-1 to F-627; M-1 to L-626; M-1 to K-625; M-1 to C-624; M-1 to R-623; M-1 to D-622; M-1 to R-621; M-1 to P-620; M-1 to S-619; M-1 to V-618; M-1 to G-617; M-1 to A-616; M-1 to Y-615; M-1 to K-614; M-1 to P-613; M-1 to V-612; M-1 to W-611; M-1 to Q-610; M-1 to L-609; M-1 to L-608; M-1 to N-607; M-1 to G-606; M-1 to D-605; M-1 to M-604; M-1 to D-603; M-1 to T-602; M-1 to Y-601; M-1 to N-600; M-1 to Y-599; M-1 to A-598; M-1 to N-597; M-1 to Y-596; M-1 to K-595; M-1 to E-594; M-1 to C-593; M-1 to Q-592; M-1 to Q-591; M-1 to E-590; M-1 to R-589; M-1 to F-588; M-1 to S-587; M-1 to K-586; M-1 to G-585; M-1 to D-584; M-1 to P-583; M-1 to P-582; M-1 to C-581; M-1 to E-580; M-1 to E-579; M-1 to T-578; M-1 to H-577; M-1 to C-576; M-1 to S-575; M-1 to Q-574; M-1 to Y-573; M-1 to K-572; M-1 to A-571; M-1 to R-570; M-1 to R-569; M-1 to G-568; M-1 to L-567; M-1 to C-566; M-1 to Y-565; M-1 to R-564; M-1 to G-563; M-1 to G-562; M-1 to N-561; M-1 to Q-560; M-1 to P-559; M-1 to E-558; M-1 to P-557; M-1 to D-556; M-1 to K-555; M-1 to C-554; M-1 to E-553; M-1 to R-552; M-1 to H-551; M-1 to S-550; M-1 to F-549; M-1 to Q-548; M-1 to V-547; M-1 to G-546; M-1

to G-545; M-1 to G-544; M-1 to C-543; M-1 to T-542; M-1 to R-541; M-1 to S-540; M-1 to C-539; M-1 to E-538; M-1 to G-537; M-1 to W-536; M-1 to P-535; M-1 to G-534; M-1 to W-533; M-1 to P-532; M-1 to A-531; M-1 to W-530; M-1 to G-529; M-1 to G-528; M-1 to D-527; M-1 to V-526; M-1 to V-525; M-1 to P-524; M-1 to K-523; M-1 to P-522; M-1 to R-521; M-1 to E-520; M-1 to V-519; M-1 to E-518; M-1 to E-517; M-1 to E-516; M-1 to P-515; M-1 to L-514; M-1 to C-513; M-1 to S-512; M-1 to G-511; M-1 to E-510; M-1 to S-509; M-1 to C-508; M-1 to L-507; M-1 to H-506; M-1 to G-505; M-1 to P-504; M-1 to G-503; M-1 to C-502; M-1 to P-501; M-1 to T-500; M-1 to G-499; M-1 to D-498; M-1 to A-497; M-1 to W-496; M-1 to P-495; M-1 to L-494; M-1 to S-493; M-1 to G-492; M-1 to N-491; M-1 to K-490; M-1 to T-489; M-1 to H-488; M-1 to C-487; M-1 to L-486; M-1 to P-485; M-1 to E-484; M-1 to A-483; M-1 to G-482; M-1 to D-481; M-1 to T-480; M-1 to H-479; M-1 to C-478; M-1 to W-477; M-1 to L-476; M-1 to Q-475; M-1 to A-474; M-1 to C-473; M-1 to V-472; M-1 to D-471; M-1 to Q-470; M-1 to A-469; M-1 to S-468; M-1 to T-467; M-1 to N-466; M-1 to P-465; M-1 to C-464; M-1 to H-463; M-1 to R-462; M-1 to F-461; M-1 to D-460; M-1 to P-459; M-1 to G-458; M-1 to F-457; M-1 to I-456; M-1 to Q-455; M-1 to R-454; M-1 to C-453; M-1 to Q-452; M-1 to Q-451; M-1 to D-450; M-1 to L-449; M-1 to Q-448; M-1 to Y-447; M-1 to L-446; M-1 to A-445; M-1 to M-444; M-1 to R-443; M-1 to G-442; M-1 to P-441; M-1 to L-440; M-1 to G-439; M-1 to T-438; M-1 to P-437; M-1 to L-436; M-1 to P-435; M-1 to L-434; M-1 to A-433; M-1 to A-432; M-1 to G-431; M-1 to P-430; M-1 to A-429; M-1 to D-428; M-1 to L-427; M-1 to L-426; M-1 to C-425; M-1 to D-424; M-1 to G-423; M-1 to H-422; M-1 to G-421; M-1 to G-420; M-1 to D-419; M-1 to L-418; M-1 to L-417; M-1 to E-416; M-1 to T-415; M-1 to L-414; M-1 to Y-413; M-1 to M-412; M-1 to A-411; M-1 to S-410; M-1 to C-409; M-1 to P-408; M-1 to S-407; M-1 to W-406; M-1 to P-405; M-1 to L-404; M-1 to T-403; M-1 to Q-402; M-1 to N-401; M-1 to L-400; M-1 to H-399; M-1 to V-398; M-1 to F-397; M-1 to L-396; M-1 to P-395; M-1 to A-394; M-1 to M-393; M-1 to V-392; M-1 to H-391; M-1 to H-390; M-1 to K-389; M-1 to G-388; M-1 to M-387;

M-1 to P-386; M-1 to G-385; M-1 to F-384; M-1 to L-383; M-1 to R-382; M-1
to T-381; M-1 to C-380; M-1 to P-379; M-1 to K-378; M-1 to S-377; M-1 to D-
376; M-1 to D-375; M-1 to H-374; M-1 to P-373; M-1 to M-372; M-1 to S-371;
M-1 to L-370; M-1 to V-369; M-1 to H-368; M-1 to G-367; M-1 to L-366; M-1
5 to E-365; M-1 to H-364; M-1 to A-363; M-1 to L-362; M-1 to T-361; M-1 to H-
360; M-1 to A-359; M-1 to A-358; M-1 to Q-357; M-1 to L-356; M-1 to G-355;
M-1 to E-354; M-1 to D-353; M-1 to E-352; M-1 to I-351; M-1 to V-350; M-1
to S-349; M-1 to C-348; M-1 to S-347; M-1 to K-346; M-1 to N-345; M-1 to P-
344; M-1 to D-343; M-1 to C-342; M-1 to I-341; M-1 to T-340; M-1 to G-339;
M-1 to I-338; M-1 to D-337; M-1 to A-336; M-1 to V-335; M-1 to G-334; M-1
10 to L-333; M-1 to T-332; M-1 to D-331; M-1 to C-330; M-1 to L-329; M-1 to G-
328; M-1 to E-327; M-1 to Q-326; M-1 to G-325; M-1 to C-324; M-1 to F-323;
M-1 to N-322; M-1 to Q-321; M-1 to R-320; M-1 to T-319; M-1 to L-318; M-1
15 to L-317; M-1 to I-316; M-1 to A-315; M-1 to T-314; M-1 to D-313; M-1 to Y-
312; M-1 to H-311; M-1 to E-310; M-1 to P-309; M-1 to H-308; M-1 to R-307;
M-1 to D-306; M-1 to S-305; M-1 to P-304; M-1 to Q-303; M-1 to N-302; M-1
20 to F-301; M-1 to R-300; M-1 to R-299; M-1 to Q-298; M-1 to W-297; M-1 to
N-296; M-1 to C-295; M-1 to F-294; M-1 to N-293; M-1 to R-292; M-1 to L-
291; M-1 to T-290; M-1 to L-289; M-1 to G-288; M-1 to G-287; M-1 to N-286;
M-1 to D-285; M-1 to S-284; M-1 to V-283; M-1 to E-282; M-1 to P-281; M-1
25 to G-280; M-1 to W-279; M-1 to K-278; M-1 to E-277; M-1 to D-276; M-1 to
E-275; M-1 to V-274; M-1 to I-273; M-1 to L-272; M-1 to V-271; M-1 to K-
270; M-1 to V-269; M-1 to V-268; M-1 to M-267; M-1 to L-266; M-1 to N-265;
M-1 to I-264; M-1 to S-263; M-1 to N-262; M-1 to K-261; M-1 to I-260; M-1
30 to S-259; M-1 to P-258; M-1 to H-257; M-1 to K-256; M-1 to Y-255; M-1 to I-
254; M-1 to R-253; M-1 to A-252; M-1 to A-251; M-1 to V-250; M-1 to S-249;
M-1 to M-248; M-1 to L-247; M-1 to T-246; M-1 to L-245; M-1 to I-244; M-1
to H-243; M-1 to N-242; M-1 to Q-241; M-1 to L-240; M-1 to D-239; M-1 to
A-238; M-1 to G-237; M-1 to Y-236; M-1 to F-235; M-1 to A-234; M-1 to A-
233; M-1 to M-232; M-1 to S-231; M-1 to A-230; M-1 to D-229; M-1 to A-228;

-90-

M-1 to V-227; M-1 to L-226; M-1 to L-225; M-1 to T-224; M-1 to E-223; M-1 to V-222; M-1 to F-221; M-1 to R-220; M-1 to A-219; M-1 to E-218; M-1 to S-217; M-1 to V-216; M-1 to F-215; M-1 to R-214; M-1 to K-213; M-1 to T-212; M-1 to R-211; M-1 to S-210; M-1 to T-209; M-1 to A-208; M-1 to G-207; M-1 to L-206; M-1 to P-205; M-1 to P-204; M-1 to P-203; M-1 to P-202; M-1 to E-201; M-1 to S-200; M-1 to A-199; M-1 to G-198; M-1 to E-197; M-1 to A-196; M-1 to E-195; M-1 to E-194; M-1 to E-193; M-1 to Q-192; M-1 to S-191; M-1 to E-190; M-1 to E-189; M-1 to E-188; M-1 to S-187; M-1 to D-186; M-1 to E-185; M-1 to Q-184; M-1 to H-183; M-1 to D-182; M-1 to G-181; M-1 to R-180; M-1 to E-179; M-1 to Q-178; M-1 to R-177; M-1 to Q-176; M-1 to G-175; M-1 to E-174; M-1 to G-173; M-1 to T-172; M-1 to E-171; M-1 to V-170; M-1 to E-169; M-1 to W-168; M-1 to E-167; M-1 to P-166; M-1 to G-165; M-1 to R-164; M-1 to P-163; M-1 to L-162; M-1 to P-161; M-1 to R-160; M-1 to A-159; M-1 to G-158; M-1 to A-157; M-1 to P-156; M-1 to G-155; M-1 to W-154; M-1 to R-153; M-1 to Q-152; M-1 to L-151; M-1 to R-150; M-1 to H-149; M-1 to P-148; M-1 to Q-147; M-1 to A-146; M-1 to L-145; M-1 to S-144; M-1 to G-143; M-1 to G-142; M-1 to A-141; M-1 to G-140; M-1 to Q-139; M-1 to P-138; M-1 to Q-137; M-1 to I-136; M-1 to T-135; M-1 to F-134; M-1 to E-133; M-1 to E-132; M-1 to G-131; M-1 to D-130; M-1 to L-129; M-1 to L-128; M-1 to F-127; M-1 to S-126; M-1 to G-125; M-1 to S-124; M-1 to L-123; M-1 to G-122; M-1 to R-121; M-1 to C-120; M-1 to L-119; M-1 to S-118; M-1 to V-117; M-1 to A-116; M-1 to A-115; M-1 to L-114; M-1 to S-113; M-1 to E-112; M-1 to P-111; M-1 to E-110; M-1 to G-109; M-1 to N-108; M-1 to V-107; M-1 to T-106; M-1 to G-105; M-1 to S-104; M-1 to F-103; M-1 to F-102; M-1 to C-101; M-1 to G-100; M-1 to R-99; M-1 to L-98; M-1 to G-97; M-1 to R-96; M-1 to E-95; M-1 to G-94; M-1 to G-93; M-1 to T-92; M-1 to A-91; M-1 to R-90; M-1 to G-89; M-1 to S-88; M-1 to G-87; M-1 to G-86; M-1 to L-85; M-1 to R-84; M-1 to E-83; M-1 to I-82; M-1 to K-81; M-1 to F-80; M-1 to E-79; M-1 to P-78; M-1 to A-77; M-1 to L-76; M-1 to F-75; M-1 to S-74; M-1 to D-73; M-1 to D-72; M-1 to P-71; M-1 to A-70; M-1 to L-69; M-1 to R-68; M-1 to L-67; M-1 to V-66; M-

1 to F-65; M-1 to G-64; M-1 to K-63; M-1 to G-62; M-1 to F-61; M-1 to A-60; M-1 to S-59; M-1 to L-58; M-1 to H-57; M-1 to L-56; M-1 to A-55; M-1 to L-54; M-1 to E-53; M-1 to G-52; M-1 to A-51; M-1 to S-50; M-1 to G-49; M-1 to P-48; M-1 to L-47; M-1 to R-46; M-1 to T-45; M-1 to P-44; M-1 to V-43; M-1 to V-42; M-1 to L-41; M-1 to E-40; M-1 to S-39; M-1 to A-38; M-1 to Q-37; M-1 to G-36; M-1 to G-35; M-1 to A-34; M-1 to A-33; M-1 to P-32; M-1 to R-31; M-1 to A-30; M-1 to P-29; M-1 to A-28; M-1 to G-27; M-1 to R-26; M-1 to A-25; M-1 to L-24; M-1 to P-23; M-1 to L-22; M-1 to L-21; M-1 to L-20; M-1 to L-19; M-1 to L-18; M-1 to L-17; M-1 to L-16; M-1 to L-15; M-1 to L-14; M-1 to F-13; M-1 to P-12; M-1 to L-11; M-1 to W-10; M-1 to R-9; M-1 to P-8; M-1 to A-7; of SEQ ID NO:4. Preferably, any of the above listed N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted METH2 polypeptide.

15 The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of SEQ ID NO:2 or SEQ ID NO:4, where n and m are integers as described above.

20 Also preferred are METH1 or METH2 polypeptide and polynucleotide fragments characterized by structural or functional domains. Preferred embodiments of the invention include fragments that comprise alpha-helix and alpha-helix forming regions ("alpha-regions"), beta-sheet and beta-sheet-forming regions ("beta-regions"), turn and turn-forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions"), hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. As set out in the Figures, such preferred regions include Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and turn-regions, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Eisenberg alpha and beta amphipathic regions, Karplus-Schulz flexible regions, Emini surface-forming regions, and Jameson-Wolf high

antigenic index regions. Polypeptide fragments of SEQ ID NO:2 falling within conserved domains are specifically contemplated by the present invention. (See Figures 10 & 11 and Tables 1& 2.) Moreover, polynucleotide fragments encoding these domains are also contemplated.

5 Other preferred fragments are biologically active METH1 or METH2 fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the METH1 or METH2 polypeptide. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

10 However, many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:1 or SEQ ID NO:3 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence would be cumbersome. Accordingly, 15 preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 936 of SEQ ID NO:1, b is an integer of 15 to 950, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:1, and where the b is greater than or equal to a + 14. Moreover, 20 preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 876 of SEQ ID NO:3, b is an integer of 15 to 890, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:3, and where the b is greater than or equal to a + 14.

Epitopes & Antibodies

In the present invention, "epitopes" refer to METH1 or METH2 polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates

to a METH1 or METH2 polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen *et al.*, *Proc. Natl. Acad. Sci. USA* 81:3998-4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., *Proc. Natl. Acad. Sci. USA* 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson *et al.*, *Cell* 37:767-778 (1984); Sutcliffe, J. G. *et al.*, *Science* 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe *et al.*, *supra*; Wilson *et al.*, *supra*; Chow, M. *et al.*, *Proc. Natl. Acad. Sci. USA* 82:910-914; and Bittle, F. J. *et al.*, *J. Gen. Virol.* 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

Using DNAstar analysis, SEQ ID NO:2 was found antigenic at amino acids: 2-14, 32-44, 47-60, 66-78, 87-103, 109-118, 146-162, 168-180, 183-219, 223-243, 275-284, 296-306, 314-334, 341-354, 357-376, 392-399, 401-410, 418-429, 438-454, 456-471, 474-488, 510-522, 524-538, 550-561, 565-626, 630-643,

659-671, 679-721, 734-749, 784-804, 813-820, 825-832, 845-854, 860-894, 899-917, 919-924 and 928-939. Thus, these regions could be used as epitopes to produce antibodies against the protein encoded by METH1 cDNA.

Using DNAsstar analysis, SEQ ID NO:4 was found antigenic at amino acids: 26-38, 45-52, 69-76, 80-99, 105-113, 129-136, 138-217, 254-263, 273-289, 294-313, 321-331, 339-356, 371-383, 417-427, 438-443, 459-471, 479-505, 507-526, 535-546, 550-607, 615-640, 648-653, 660-667, 669-681, 683-704, 717-732, 737-743, 775-787, 797-804, 811-825, 840-867 and 870-884. Thus, these regions could be used as epitopes to produce antibodies against the protein encoded by METH2 cDNA.

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (*Wahl et al., J. Nucl. Med.* 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

20 *Fusion Proteins*

Any METH1 or METH2 polypeptide can be used to generate fusion proteins. For example, the METH1 or METH2 polypeptide, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the METH1 or METH2 polypeptide can be used to indirectly detect the second protein by binding to the METH1 or METH2. Moreover, because secreted proteins target cellular locations based on trafficking signals, the METH1 or METH2 polypeptides can be used as a targeting molecule once fused to other proteins.

Examples of domains that can be fused to METH1 or METH2 polypeptides include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

5 Moreover, fusion proteins may also be engineered to improve characteristics of the METH1 or METH2 polypeptide. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the METH1 or METH2 polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the METH1 or METH2 polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the METH1 or METH2 polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

10 15 Moreover, METH1 or METH2 polypeptides, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker *et al.*, *Nature* 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis *et al.*, *J. Biochem.* 270:3958-3964 (1995).)

20 25 30 Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.)

Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused 5 with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., *J. Molecular Recognition* 8:52-58 (1995); K. Johanson et al., *J. Biol. Chem.* 270:9459-9471 (1995).)

Moreover, the METH1 or METH2 polypeptides can be fused to marker sequences, such as a peptide which facilitates purification of METH1 or METH2. 10 In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz *et al.*, *Proc. Natl. Acad. Sci. USA* 86:821-824 15 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson *et al.*, *Cell* 37:767 (1984).)

Thus, any of these above fusions can be engineered using the METH1 or METH2 polynucleotides or the polypeptides.

20 ***Biological Activities of METH1 or METH2***

METH1 or METH2 polynucleotides and polypeptides can be used in assays to test for one or more biological activities. If METH1 or METH2 polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that METH1 or METH2 may be involved in the diseases associated with the 25 biological activity. Therefore, METH1 or METH2 could be used to treat the associated disease.

Immune Activity

METH1 or METH2 polypeptides or polynucleotides may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells.

5 Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmunity disorders, acquired (e.g., by chemotherapy or toxins), or infectious.
10 Moreover, METH1 or METH2 polynucleotides or polypeptides can be used as a marker or detector of a particular immune system disease or disorder.

METH1 or METH2 polynucleotides, or polypeptides may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. METH1 or METH2 polypeptides or polynucleotides could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

25 Moreover, METH1 or METH2 polypeptides or polynucleotides can also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, METH1 or METH2 polynucleotides or polypeptides could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, METH1 or METH2 polynucleotides or polypeptides

that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting, important in the treatment of heart attacks (infarction), strokes, or scarring.

METH1 or METH2 polynucleotides or polypeptides may also be useful
5 in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of METH1 or METH2 polypeptides or polynucleotides that can inhibit an immune response, particularly
10 the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by METH1 or METH2 include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic
15 encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes
20 mellitus, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly
25 allergic asthma) or other respiratory problems, may also be treated by METH1 or METH2 polypeptides or polynucleotides. Moreover, METH1 or METH2 can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

METH1 or METH2 polynucleotides or polypeptides may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD,
30 but, in this case, the foreign transplanted immune cells destroy the host tissues.

The administration of METH1 or METH2 polypeptides or polynucleotides that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

5 Similarly, METH1 or METH2 polypeptides or polynucleotides may also be used to modulate inflammation. For example, METH1 or METH2 polypeptides or polynucleotides may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

10 15 *Hyperproliferative Disorders*

METH1 or METH2 polypeptides or polynucleotides can be used to treat or detect hyperproliferative disorders, including neoplasms. METH1 or METH2 polypeptides or polynucleotides may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, METH1 or METH2 polypeptides or polynucleotides may proliferate other cells which can inhibit the hyperproliferative disorder.

20 25 For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by METH1 or METH2 polynucleotides or polypeptides include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, 5 ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by METH1 or METH2 polynucleotides or polypeptides. Examples of such hyperproliferative disorders include, but are not limited to: 10 hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenström's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

15 METH1 or METH2 polypeptides or polynucleotides can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune 20 response. Alternatively, METH1 or METH2 polypeptides or polynucleotides may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by METH1 or METH2 polynucleotides 25 or polypeptides. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegaviridae (e.g.,

Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiolitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox , hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. METH1 or METH2 polypeptides or polynucleotides can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by METH1 or METH2 polynucleotides or polypeptides include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Nocardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema,

sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, 5 skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. METH1 or METH2 polypeptides or polynucleotides can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by METH1 or METH2 polynucleotides or polypeptides include, but not limited to, the following families: Amebiasis, Babesiosis, 10 Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, 15 opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. METH1 or METH2 polypeptides or polynucleotides can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using METH1 or METH2 polypeptides or 20 polynucleotides could either be by administering an effective amount of METH1 or METH2 polypeptide to the patient, or by removing cells from the patient, supplying the cells with METH1 or METH2 polynucleotide, and returning the engineered cells to the patient (*ex vivo* therapy). Moreover, the METH1 or METH2 polypeptide or polynucleotide can be used as an antigen in a vaccine to 25 raise an immune response against infectious disease.

Regeneration

METH1 or METH2 polynucleotides or polypeptides can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, *Science* 276:59-87 (1997).) The regeneration of tissues could be used to

repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteoarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

5 Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also
10 may include angiogenesis.

15 Moreover, METH1 or METH2 polynucleotides or polypeptides may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. METH1 or METH2 polynucleotides or polypeptides of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could
20 be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

25 Similarly, nerve and brain tissue could also be regenerated by using METH1 or METH2 polynucleotides or polypeptides to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stroke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the METH1 or
30 METH2 polynucleotides or polypeptides.

Chemotaxis

METH1 or METH2 polynucleotides or polypeptides may have chemotaxis activity. A chemotactic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

METH1 or METH2 polynucleotides or polypeptides may increase chemotactic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotactic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. As a chemotactic molecule, METH1 or METH2 could also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that METH1 or METH2 polynucleotides or polypeptides may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, METH1 or METH2 polynucleotides or polypeptides could be used as an inhibitor of chemotaxis.

Binding Activity

METH1 or METH2 polypeptides may be used to screen for molecules that bind to METH1 or METH2 or for molecules to which METH1 or METH2 binds. The binding of METH1 or METH2 and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the METH1 or METH2 or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of METH1 or METH2, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan *et al.*, *Current Protocols in*

5 *Immunology 1(2):Chapter 5 (1991).)* Similarly, the molecule can be closely related to the natural receptor to which METH1 or METH2 binds, or at least, a fragment of the receptor capable of being bound by METH1 or METH2 (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

10 Preferably, the screening for these molecules involves producing appropriate cells which express METH1 or METH2, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing METH1 or METH2 (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either METH1 or METH2 or the molecule.

15 The assay may simply test binding of a candidate compound to METH1 or METH2, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to METH1 or METH2.

20 Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing METH1 or METH2, measuring METH1 or METH2/molecule activity or binding, and comparing the METH1 or METH2/molecule activity or binding to a standard.

25 Preferably, an ELISA assay can measure METH1 or METH2 level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure METH1 or METH2 level or activity by either binding, directly or indirectly, to METH1 or METH2 or by competing with METH1 or METH2 for a substrate.

30 All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to

bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the METH1 or METH2 molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of METH1 or METH2 from suitably manipulated cells or tissues.

5 Therefore, the invention includes a method of identifying compounds which bind to METH1 or METH2 comprising the steps of: (a) incubating a candidate binding compound with METH1 or METH2; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with METH1 or METH2, (b) assaying a biological activity , and (b) determining if a biological activity of METH1 or METH2 has been altered.

10

Other Activities

15 METH1 or METH2 polypeptides or polynucleotides may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

20 METH1 or METH2 polypeptides or polynucleotides may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, METH1 or METH2 polypeptides or polynucleotides may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

25 METH1 or METH2 polypeptides or polynucleotides may be used to change a mammal's mental state or physical state by influencing biorhythms, circadian rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

METH1 or METH2 polypeptides or polynucleotides may also be used as a food additive or preservative, such as to increase or decrease storage

capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Cancer Diagnosis and Prognosis

It is believed that certain tissues in mammals with cancer express significantly diminished levels of the METH1 or METH2 protein and mRNA encoding the METH1 or METH2 protein when compared to a corresponding "standard" mammal, i.e., a mammal of the same species not having the cancer.

Further, it is believed that diminished levels of the METH1 or METH2 protein can be detected in certain body fluids (e.g., sera, plasma, urine, and spinal fluid) from mammals with cancer when compared to sera from mammals of the same species not having the cancer. Thus, the invention provides a diagnostic method useful during tumor diagnosis, which involves assaying the expression level of the gene encoding the METH1 protein in mammalian cells or body fluid and comparing the gene expression level with a standard METH1 gene expression level, whereby a decrease in the gene expression level under the standard is indicative of certain tumors. The invention also provides a diagnostic method useful during tumor diagnosis, which involves assaying the expression level of the gene encoding the METH2 protein in mammalian cells or body fluid and comparing the gene expression level with a standard METH2 gene expression level, whereby a decrease in the gene expression level under the standard is indicative of certain tumors.

Where a tumor diagnosis has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting diminished METH1 or METH2 gene expression will experience a worse clinical outcome relative to patients expressing the gene at a lower level.

(1990)), S1 nuclease mapping (Fujita *et al.*, *Cell* 49:357- 367 (1987)), the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR) (Makino *et al.*, *Technique* 2:295-301 (1990)), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

Assaying METH1 or METH2 protein levels in a biological sample can occur using antibody-based techniques. For example, METH1 or METH2 protein expression in tissues can be studied with classical immunohistological methods (Jalkanen, M., *et al.*, *J. Cell. Biol.* 101:976-985 (1985); Jalkanen, M., *et al.*, *J. Cell. Biol.* 105:3087-3096 (1987)).

Other antibody-based methods useful for detecting METH1 or METH2 protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).

Suitable labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (^{125}I , ^{121}I), carbon (^{14}C), sulfur (^{35}S), tritium (^3H), indium (^{112}In), and technetium (^{99m}Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

Modes of administration

It is recognized than an increase in the vascular supply plays a central role in tumor progression and metastasis; therefore, inhibitors of angiogenesis can prove effective as adjuvant therapy for cancer patients. Some of the currently recognized angiogenic suppressors are poor candidates for systemic treatment due to severe collateral effect. The present inventors have found that METH1 and METH2 are potent inhibitors of angiogenesis both *in vitro* and *in vivo*. The advantage of METH1 and METH1 is that these inhibitors are normally associated with suppression of physiological angiogenesis; therefore, they offer lack of toxicity and endothelial specificity over other angiogenic inhibitors. Furthermore,

METH1 and METH2 present a restricted pattern of expression providing a possible advantage on organ specificity.

Accordingly, the polypeptides of the present invention may be employed to treat cancer. The METH1 and METH2 polypeptides of the present invention can also be used to treat individuals with other disorders that are related to angiogenesis, including abnormal wound healing, inflammation, rheumatoid arthritis, psoriasis, endometrial bleeding disorders, diabetic retinopathy, some forms of macula degeneration, hemangiomas, and arterial-venous malformations.

Thus, the invention provides a method of inhibiting angiogenesis in an individual comprising administering to such an individual a pharmaceutical composition comprising an effective amount of an isolated METH1 polypeptide of the invention, effective to increase the METH1 activity level in such an individual. The invention also provides a method of inhibiting angiogenesis in an individual comprising administering to such an individual a pharmaceutical composition comprising an effective amount of an isolated METH2 polypeptide of the invention, effective to increase the METH2 activity level in such an individual.

METH1 polypeptides which may be used to inhibit angiogenesis in this manner include: METH1 polypeptide encoded by the deposited cDNA including the leader; the mature METH1 polypeptide encoded by the deposited the cDNA minus the leader (i.e., the mature protein); a polypeptide comprising amino acids about 1 to about 950 in SEQ ID NO:2; a polypeptide comprising amino acids about 2 to about 950 in SEQ ID NO:2; a polypeptide comprising amino acids about 29 to about 950 in SEQ ID NO:2; a polypeptide comprising amino acids about 30 to about 950 in SEQ ID NO:2; a polypeptide comprising the metalloprotease domain of METH1, amino acids 235 to 459 in SEQ ID NO:2; a polypeptide comprising the disintegrin domain of METH1, amino acids 460 to 544 in SEQ ID NO:2; a polypeptide comprising the first TSP-like domain of METH1, amino acids 545 to 598 in SEQ ID NO:2; a polypeptide comprising the second TSP-like domain of METH1, amino acids 841 to 894 in SEQ ID NO:2; a

polypeptide comprising the third TSP-like domain of METH1, amino acids 895 to 934 in SEQ ID NO:2; a polypeptide comprising amino acids 536 to 613 in SEQ ID NO:2; and a polypeptide comprising amino acids 549 to 563 in SEQ ID NO:2.

METH2 polypeptides which may be used to inhibit angiogenesis in this
5 manner include: the METH2 polypeptide encoded by the deposited cDNA including the leader; the mature METH2 polypeptide encoded by the deposited the cDNA minus the leader (i.e., the mature protein); a polypeptide comprising amino acids about 1 to about 890 in SEQ ID NO:4; a polypeptide comprising amino acids about 2 to about 890 in SEQ ID NO:4; a polypeptide comprising amino
10 acids about 24 to about 890 in SEQ ID NO:4; a polypeptide comprising amino acids about 112 to about 890 in SEQ ID NO:4; a polypeptide comprising the metalloprotease domain of METH2, amino acids 214 to 439 in SEQ ID NO:4; a polypeptide comprising the disintegrin domain of METH2, amino acids 440 to 529 in SEQ ID NO:4; a polypeptide comprising the first TSP-like domain of METH2,
15 amino acids 530 to 583 in SEQ ID NO:4; a polypeptide comprising the second TSP-like domain of METH2, amino acids 837 to 890 in SEQ ID NO:4; a polypeptide comprising amino acids 280 to 606 in SEQ ID NO:4; and a polypeptide comprising amino acids 529 to 548 in SEQ ID NO:4.

As a general proposition, the total pharmaceutically effective amount of
20 METH1 or METH2 polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the polypeptide. If given continuously, the METH1 or
25 METH2 polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed.

Pharmaceutical compositions containing the METH1 or METH2 of the
30 invention may be administered orally, rectally, parenterally, intracistemally,

intravaginally, intraperitoneally, topically (as by powders, ointments, drops or transdermal patch), buccally, or as an oral or nasal spray. By "pharmaceutically acceptable carrier" is meant a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

Chromosome Assays

The nucleic acid molecules of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.

In certain preferred embodiments in this regard, the cDNA herein disclosed is used to clone genomic DNA of a METH1 or METH2 protein gene. This can be accomplished using a variety of well known techniques and libraries, which generally are available commercially. The genomic DNA then is used for *in situ* chromosome mapping using well known techniques for this purpose.

In addition, in some cases, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region of the gene is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes.

Fluorescence *in situ* hybridization ("FISH") of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with probes from the cDNA as

short as 50 or 60 bp. For a review of this technique, see Verma *et al.*, *Human Chromosomes: A Manual Of Basic Techniques*, Pergamon Press, New York (1988).

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, *Mendelian Inheritance In Man*, available on-line through Johns Hopkins University, Welch Medical Library. The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).
5
10

Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.
15

Examples

Example 1: Identification and cloning of METH1 and METH2

To search for novel genes with TSP-like domains, a large human cDNA database consisting of approximately 900,00 expressed sequence tags (ESTs) was screened for sequences homologous to the second type I repeat of TSP1. Several ESTs were predicted to encode proteins with TSP-like domains. Two cDNA clones originated from human heart and lung libraries were further sequenced and chosen for functional analysis.
20
25

The amino-terminal end of METH1 was obtained using 5' rapid amplification of cDNA ends (RACE) PCR technique (Marathon cDNA amplification kit, Clontech) according to manufacturer instructions. The amino-terminal end of METH2 was obtained partially through 5'RACE PCR and later confirmed and completed by genomic screening. For the genomic screen, BAC clones (Genome Systems) were initially identified by PCR. Positive BAC clones containing 150-200bp of sequence were subsequently subcloned into pGEM vector as small fragments and sequenced.

Analysis and comparison of the deduced amino acid sequence with the GenBank, EMBL and SwissProt databases suggested that these genes belong to a new family of metalloproteases with homology to the reproxin family in their NH₂-terminal end and with several TSP-like motifs in the COOH-terminal end. These cDNAs were named METH1 and METH2; ME, for metalloprotease and TH, for thrombospondin. The mouse homologue of METH1 was identified and named ADAMTS1 (Kuno, K., *et al.*, *J. Biol. Chem.* 272:556-562 (1997)). Direct comparison of the human and mouse sequences revealed a high level of conservation (83.4% amino acid identity). Thus far no homologues for METH2 have been identified.

Interestingly, a recently identified protein named pNPI (procollagen I N-proteinase; Colidge, A., *et al.*, *Proc. Natl. Acad. Sci. USA* 94:2374-2379 (1997)) showed a striking sequence and structural similarity to METH1 and METH2 (Figure 3). As the novel proteins described here, pNPI also contains metalloproteinase (reproxin subfamily) and TSP domains at the carboxy-terminal end. Although the sequence for pNPI is of bovine origin, sequence alignment revealed identical structural features. The amino acid similarity between METH1 and METH2 is 51.7%, and between METH1 or METH2 and pNPI the homology is lesser 33.9% and 36.3%, respectively.

Sequence analysis showed that the ORF of METH1 and METH2 coded for proteins of 950 and 890 amino acids, respectively. In all three proteins, the NH₂ terminal end contains a putative signal peptide followed by another putative

transmembrane domain around amino acid 300, deduced from the hydrophilicity plots. It is not clear whether these proteins are bound to the membrane. However, given preliminary data, it is more likely that this second transmembrane domain will consist of a hydrophobic pocket and that METH1, METH2 and pNPI
5 are in fact secreted proteins. The NH₂-terminal end past the signal peptide has homology to the superfamily of zinc metalloproteases and can be subdivided in a prodomain, a metalloprotease domain, and a cysteine-rich region.

The double underlined sequence in METH1 and METH2 in Figure 3 localized at the boundary between the prodomain and the metalloprotease domain,
10 are potential cleavage sites for mammalian subtilisins, such as furins (Barr, 1991). Proteolytical processing occurs in SVMPs to yield soluble metalloproteases and disintegrins (Bjarnason, J.B. & Fox, J.W., *Methods Enzymol.* 248:345-368 (1995)) and has also been detected in some ADAMs (reviewed by Wolsberg, T.G.
15 & White, J.M., *Developmental Biology* 180:389-401 (1996)). At this point, preliminary experiments suggest that proteolytical processing occurs, at least in METH1. Additionally, both METH1 and METH2 present a Zn²⁺ -binding site
20 (dotted line in Figure 3) that is presumed to be catalytically active due to the conservation of certain functionally important amino acids (Rawlings, N.D. & Barrett, A.J., *Methods Enzymol.* 248:183-228 (1995)) suggesting that these
25 proteins may be active proteases. Following the metalloprotease domain, there is a cysteine-rich region which contains two putative disintegrin loops (Wolsberg, T.G. & White, J.M., *Developmental Biology* 180:389-401 (1996)) (marked by arrows in Figure 3). Disintegrin domains are found within the superfamily of metalloproteases in snake venom metalloproteases (SVMPs) and ADAMs (mammalian proteins containing a disintegrin and a metalloprotease domain) and have a possible function inhibiting binding of integrins to their ligands in SVMPs. Conversely, the ADAM-disintegrin-like domain, as part of membrane anchored
30 proteins, may promote rather than disrupt, cell-cell interactions (Wolsberg, T.G. & White, J.M., *Developmental Biology* 180:389-401 (1996)). The TSP-like domains are located in the COOH-half of METH1 and METH2 proteins. METH1

contains two conserved TSP domains separated by a spacer region with unknown function, and a subdomain with less homology, and only 5 cysteines, following the second anti-angiogenic region. METH2 contains two TSP domains separated by the spacer region. The alignment of the TSP-like domains of METH1 and METH2 with those of TSP1 and TSP2 are shown in Figure 5. The homology varies between 19.2% to 52% amino acid similarity among all the TSP repeats. The cysteines, numbered 1 to 6, and the tryptophans, labeled by asterisks, are highly conserved.

Southern blot of human genomic DNA revealed the presence of METH1 and METH2 in the genome. METH1 and METH2 probes revealed bands of different size suggesting that they are transcribed from different genes.

The consensus sequence for the type I repeats includes 16 residues with 6 perfectly conserved cysteines. Typically it begins with the sequence motif WSXWS (SEQ ID NO:82) that has also been shown to bind to heparin (Guo, N., *et al.*, *J. Biol. Chem.* 267:19349-19355 (1992)). The affinity of this region to heparin has been proposed to be the part of the anti-angiogenic activity of TSP-1 (Guo, N., *et al.*, *J. Peptide Res.* 49 (1997)). Among the five members of the TSP family of proteins, only TSP-1 and TSP-2 inhibit angiogenesis and contain the type I repeats (Tolsma, S.S., *et al.*, *J. Cell. Biol.* 122:497-511 (1993); Kyriakides, T.R., *et al.*, *J. Cell Biol.* 140:419-430 (1998)). The type I or properdin repeats were probably added to the precursor of TSP1 and 2 by exon shuffling between 500 and 900 years ago (Adams, J., *et al.*, *The Thrombospondin Gene Family*, 1 Ed. Molecular Biology Intelligence Unit (Springer, Ed.), R.G. Landes Company, Germany (1995)). It is likely that the acquisition of this domain provided the precursor of TSP1 and TSP2 with functions, such as regulation of new vessel formation. More recently, BAI-1 (brain angiogenic inhibitor-1), a protein isolated from a brain library for its ability to be regulated by p53, has also been shown to contain the type I repeat of TSP-1 and to provide anti-angiogenic potential to this molecule (Nishimori, H., *et al.*, *Oncogene* 15:2145-2150 (1997)). Nevertheless, it appears that additional sequences or context are also important, since other

proteins containing the type I repeats appear not to have clear or more established anti-angiogenic properties such as: properdin, F-spondin, and other members of the complement family.

Because of the presence of TSP-repeats in METH1 and METH2, along
5 with their anti-angiogenic properties, these proteins were originally considered
members of the TSP superfamily. Nevertheless, they have no additional homology
to other TSPs, and in fact, the similarity to TSP1 and TSP2 is restricted to the
type I repeats. Furthermore, the proteins also have strong sequence and structural
homology to members of the ADAM family. These features led Kuno and
10 colleagues to name ADAMTS to the mouse homolog of METH1 (Kuno, K., *et al.*, *J. Biol. Chem.* 272:556-562 (1997)). The recent identification of pNPI and
its striking sequence homology to the proteins here described, prompt all these
three proteins to be grouped in a subfamily named metallospondins. At this point,
it is not clear whether pNIP has anti-angiogenic properties or whether METH1
15 and/or METH2 participate in the cleavage of the amino terminal pro-peptide of
 $\alpha 1(I)$ procollagen.

Example 2: Northern and Southern blot analysis

Total RNA was purified from cells by guanidinium-isothiocyanate extraction, as previously described (Chomczynski, P. & Sacchi, N., *Anal. Biochem.* 162:156-159 (1987)) Poly(A)+RNA was extracted using a Boehringer Mannheim (BMB, Indianapolis, IN) kit according to the manufacturer conditions. Other poly(A)+RNA blots were purchased from Clontech (Palo Alto, CA). Pre-hybridization was performed in a solution containing: 50% formamide, 6X SSPE, 1X Denhardt's solution, 0.1% SDS and 100 μ g/ml of heat denatured salmon sperm DNA for 12-18h at 42°C. Hybridization with labeled cDNA probes proceeded in the same solution at 42°C for 12-18h. TSP1 and METH1 probes corresponded to the entire human cDNAs. METH2 probe corresponded to a *Kpn*I-*Eco*RI fragment from the human cDNA. A 1.3Kb *Pst*I fragment of the glyceraldehyde-3-

phosphate-dehydrogenase (GPDH) was used to normalize for loading and transfer efficiency. Membranes were exposed to Kodak Biomax MS film (Kodak, New Haven, CT).

For Southern blots, human genomic DNA, purchased from Promega (Madison, WI), was heated at 65°C for 10 min and digested with *Eco*RI and *Pst*I overnight at 37°C. 5 μ g of digested DNA was separated in a 1% agarose gel, transferred to a nytran membrane and cross-linked by ultraviolet light. cDNA probes, as well as, prehybridization and hybridization conditions were identical to those described for Northern blots. Blots were washed with high stringency (0.2X SSC, 0.2% SDS at 50°C).

The expression pattern of METH1 and METH2 was examined in both adult and embryonic tissues. Northern blot analysis was performed under high-stringency conditions with blots that included poly(A)+RNA from human tissues. METH1 and METH2 transcripts revealed a single band of 4.6 and 3.7Kb, respectively. Abundant METH1 mRNA expression was observed in adrenal, heart, placenta, followed by skeletal muscle, thyroid and stomach. From the embryonic tissues analyzed, kidney showed the highest expression of METH1 mRNA. Nevertheless, weaker expression of METH1 mRNA was seen in all tissues analyzed. Distribution of METH2 mRNA was more restricted and weaker than that of METH1. The highest expression was seen in lung, both embryonic and adult. Interestingly, METH1 and METH2 expression do not appear to overlap. In combination, the structural similarities and their pattern of expression suggest functional redundancy yet different transcriptional regulation. The expression levels of TSP1 transcripts in the same blots were also analyzed, for purpose of comparison. TSP1 mRNA highest expression was seen in the adult placenta and in all embryonic tissues analyzed. In contrast to METH1 and METH2 we observed constant levels of TSP1 transcript in all the other tissues examined.

The cell type distribution was also studied by Northern blot analysis of poly(A)+RNA. METH1 mRNA was detectable, at low levels, in dermal

fibroblasts, vascular smooth muscle, endometrial stromal cells, and in two cancer cell lines, HeLa and G631, an adenocarcinoma and a melanoma, respectively. METH2 mRNA was detected only on SW480, a colon carcinoma cell line, but no expression was seen in any other of the cell lines or primary strains analyzed.

5 The possibility that groups of angiogenic and anti-angiogenic factors regulate vascular network formation in specific organs has been a frequently discussed hypothesis likely to be true, yet unproven. The expression patterns of METH1 and METH2, which are clearly distinct and almost non-overlapping, were puzzling, at least with concern to overall levels. TSP1 and TSP2 also share identical structure, high level of amino acid similarity, yet their pattern of expression differs significantly (Iruela-Arispe, M.L., *Dev. Dyn.* 197:40-56 (1993)).
10 The differences are likely based on dissimilar cis-acting elements in their promoters and different regulatory mechanisms, as previously suggested. Although the promoters for METH1 and 2 have not been characterized, it is likely
15 that they provide unique features for the regulation of each gene. Nevertheless, the possibility that one motif, the anti-angiogenic / type I repeat, with demonstrated anti-angiogenic properties is present in several proteins with different tissue specificities is appealing. Alternatively, the small differences in sequence between closely related members of the same family could possess
20 significance that goes beyond functional redundancy. In the case of TSP1 and TSP2, aside from the striking structural similarities and perhaps having functionally common anti-angiogenic properties, TSP1 and TSP2 also appear to display functions of their own and not likely shared by their similar relative. This became evident with the outcome of the two knock-outs for these genes. TSP1
25 null animals exhibited primarily lung disorders (Lawler, J., *et al.*, *J. Clin. Invest.* 101:982-992 (1998)) and secondarily vascular abnormalities, but only under specific pathological settings or on a restricted set of organs. In contrast TSP2 knock-out mice exhibited unpredicted collagen assembly anomalies, with carry-on consequences to the skin, tendons, and bone (Kyriakides, T.R., *et al.*, *J. Cell Biol.* 140:419-430 (1998)). In addition, these animals also appear to have overall
30

increase in capillary density in the dermis. It is not understood how the resemblance between the newly described members of the metallospondin family translate functionally. Clearly, pNIP has been shown to display active proteolytic activity by cleaving the N-terminus of type I procollagen (Colidge, A., *et al.*, *Proc. Natl. Acad. Sci. USA* 94:2374-2379 (1997)).

5 A second region of functional interest corresponds to the disintegrin domain. This domain has been more fully characterized in related members of the snake venom metalloproteases that have been shown to bind to α IIb β 3 and inhibit platelet interaction blocking coagulation (Pfaff, M., *et al.*, *Cell Adhes Commun.* 2:491-501 (1994); Usami, Y., *et al.*, *Biochem. Biophys. Res. Commun.* 201:331-339 (1994)). The disintegrin motif consists of a thirteen to fifteen domain which frequently contain an RGD or a negatively charged residue at the position of the aspartic acid. The RGD, or equivalent, binds to integrins and serve as antagonist or signaling ligands (Wolsberg, T.G. & White, J.M., *Developmental Biology* 180:389-401 (1996)). METH2, but not METH1, has an RGD sequence located amino-terminal to the disintegrin domain. In addition, both molecules present relatively high, but not perfect, degree of conservation of cysteines within the disintegrin motif. This appears to display an important role in the tertiary structure of this region and its ability to interact with integrins. In addition, some 10 of these domains have been shown to act as functional adhesion molecules, particularly those with transmembrane regions (Wolsberg, T.G. & White, J.M., *Developmental Biology* 180:389-401 (1996)). It is unlikely that this will be the case for METH1 and METH2, since both these proteins appear to be secreted.

15

20

Example 3: Expression and purification of recombinant proteins

25 Recombinant constructs for expression of truncated fusion proteins were as follows: (1) pRSET-METH1-Type I: METH1 nt 1605-1839 (from the start codon) was amplified by polymerase chain reaction using the following primers: 5'-GCA TTT TGG ATC CGC CTT TTC ATG-3' (SEQ ID NO:78) and 5'-GTT

GTG TGC TGC AGA TTG TTC C-3' (SEQ ID NO:79). The amplified fragment was then subcloned into the *Bam*HI and *Pst*I sites of the pRSET vector; (2) pGEX-METH1-TSP was generated by ligating the *Bam*HI-*Eco*RI fragment from the pRSET-METH1-TSP into the *Sma*I site of the pGEX-5X vector (Pharmacia Biotech Inc., Piscataway, NJ) by blunt-end ligation; (3) pGEX-1.0-METH2: the fragment nt 838-1818 of METH2 cDNA (from the start codon) was ligated into *Bam*HI-*Eco*RI sites of pGEM-2TK. The METH2 fragment was amplified by PCR using the following primers: 5'-GAAAAATGGGGATCCGAGGTG-3' (SEQ ID NO:80) and 5'-GCAGGAGAATTCCGTCCATG-3' (SEQ ID NO:81) to generate 10 *Bam*HI and *Eco*RI restriction sites; (4) pGEX-METH2-TSP: a 0.5Kb *Xma*I-*Eco*RI fragment isolated from pGEX-1.0-METH2 was subcloned into the *Xma*I and *Eco*RI sites of pGEX-2TK vector. All constructs were sequenced to verify sequence fidelity and correct open reading frame.

15 The recombinant proteins were named 6H-METH1, the recombinant protein expressed with the plasmid pRSET-METH1-TSP, GST-METH1, the protein expressed with the plasmid pGEX-METH1-TSP and GST-METH2, the protein expressed with the plasmid pGEX-METH2-TSP.

20 Expression plasmids were transformed into BL21(DE3) *E. coli* strain (Stratagene Cloning Systems, La Jolla, CA) and fusion proteins were induced following manufacturer recommendations. Briefly, induced bacteria pellets were resuspended in PBS and sonicated on ice for 1 min. The suspension was, subsequently, incubated at RT for 20min in the presence of 1% triton X-100 and centrifuged at 4°C. Histidine tagged fusion proteins were then purified on Ni-NTA beads (Qiagen, Chatsworth, CA) by incubating 20ml of supernatant with 1ml 25 of beads (50% slurry) for 2h at 4°C. The suspension was transferred into a column and washed with 10 columns volume of PBS containing 10mM imidazole, followed by 50mM imidazole and finally 100mM imidazole. The protein was eluted with 500mM imidazole in PBS. Fractions containing the recombinant protein were dialyzed against phenol-red free DMEM. Samples were centrifuged 30 for 30min at 4°C, part of the protein was not soluble and was lost during

centrifugation. The supernatant was stored at -70°C and used for proliferation, cornea pocket and chorioallantoic membrane (CAM) assays.

For purification of GST-fusion proteins, the extract was cleared by centrifugation and applied to a GST-affinity column (Pharmacia). The column was washed with PBS-1% triton X-100 in the presence of 0.1mM reduced glutathione and, subsequently, with the same buffer in the presence of 0.5mM reduced glutathione. Fusion proteins were eluted with 10mM reduced glutathione in 50mM Tris-HCl, pH 7.5. Fractions containing the protein were dialyzed against DMEM, stored at -70°C and used for proliferation, cornea pocket and chorioallantoic membrane (CAM) assays.

Integrity and purity of recombinant proteins was analyzed in 12.5% or 15% acrylamide gels stained with Coomassie blue.

A recombinant GST fusion protein containing the first two type I repeats of TSP was also dialyzed against DMEM before used in functional assays. Intact TSP1 was purified from platelets as previously described (Roberts, D.D., *et al.*, *J. Tissue Cult. Methods* 16:217-222 (1994)).

To test the hypothesis that METH1 and METH2 TSP domains could function as regulators of angiogenesis recombinant fusion proteins were generated in bacteria. The constructs included the first TSP domain of METH1 or METH2. This domain is the most conserved, 52% amino acid similarity with the second type I repeat of TSP1, (this domain contains a putative binding site for CD36). All recombinant proteins were isolated under native conditions to preserve their secondary structure as much as possible. 6H-METH1 and GST-METH1 contained the first TSP-like domain of METH1 fused to a histidine tag or a GST, respectively. METH1 recombinant protein was made with two different tags because of purification and structural advantages. The differences in size are due to the size of the tag, 6KDa the histidine and 27KDa the GST. GST-METH2 contained the first TSP domain of METH2 also fused to a GST. A fragment corresponding to the last two type I repeats of TSP1, also fused to a GST, and

intact TSP1 purified from platelets were used as positive controls. In addition, GST alone was included in all experiments as negative control.

Example 4: TSP domains in METH1 and METH2 disrupt angiogenesis in vivo

Cornea pocket assay

5 Swiss Webster females and males, were purchased from Charles River (Boston, MA) and used between 8-10 weeks-old for implantation of the pellets. Cornea pockets were performed as described by Kenyon and colleagues (Kenyon, B.M., et al., *Invest. Ophthalmol. Vis. Sci.* 37:1625-1632 (1996)) with few modifications. Briefly, a solution of 10 μ g of recombinant bFGF plus 5 mg of 10 sucralfate were mixed with 10 μ l of Hydron (200mg/ml in ethanol; New Brunswick, NJ) and the recombinant protein of interest (2 μ g). The suspension was then smeared onto a sterile nylon mesh square (pore size 500 μ m; Tetko Inc., Briarcliff Manor, NY) and allowed to dry for 30min. The fibers of the mesh were pulled to produce pellets of 500 μ m³ that were stored at -20°C. Uniformly sized 15 pellets were selected under a microscope and used for the assays.

Mice were anesthetized with Avertin. An incision was made in the cornea using a Nikon SMZ-U dissecting microscope with the aid of a surgical blade. A single pellet was implanted into the pocket. Five days after pellet implantation, corneal angiogenesis was evaluated and photographed.

20 CAM assay

Chorioallantoic membrane assays were performed on Leghorn chicken embryos (SPAFAS, MA) at 12-14 days of embryonic development. Matrigel (750 μ g/ml), VEGF (250ng/mesh) and the protein or peptide to be tested were mixed, placed onto nylon meshes (pore size 250 μ m; Tetko Inc.) and incubated sequentially at 37°C for 30min and at 4°C for 2h to induce polymerization. A positive (matrigel and VEGF) and a negative (VEGF alone) control were also prepared for each CAM. Polymerized meshes were placed onto the third outer 25

region of the CAM and incubated for 24h. To visualize vessels, 400 μ l of fluorescein isothiocyanate dextran (10mg/ml, SIGMA) was injected in the chick blood stream. After 5-10min incubation, the chick was topically fixed with 3.7% formaldehyde for 5min. The meshes were then dissected and mounted onto slides.

5 Fluorescence intensity was analyzed with a computer-assisted image program (NIH Image 1.59).

Peptides used on these assays were synthesized by Chiron (Raleigh, NC). Sequence corresponded to amino acids: P-TSP1, 430-447; P-METH1, 549-563; P-METH2, 529-548.

10 The evaluation of angiogenic or anti-angiogenic responses relies heavily on the sensitivity and specificity of the assays used to assess the response. To evaluate the anti-angiogenic activity of these fragments *in vivo*, two popular and well-accepted angiogenesis assays were used: the corneal pocket and the chorioallantoic membrane. The visibility, accessibility, and avascularity of the cornea are highly advantageous and facilitate the visualization of the neovascular response and the topical application of the test substances. A known amount of angiogenesis factor(s) is implanted, as a pellet, in a pocket made in the cornea eye. 15 To test an angiogenesis inhibitor, the molecule is implanted with the stimulator in the same pellet, and the response is compared to the stimulator alone.

20 In these experiments, bFGF was used as the vascularization stimulator. Pellets containing the recombinant protein were implanted in mouse corneas and their ability to inhibit the bFGF-induced angiogenic response was compared to that of controls. When a bFGF pellet containing GST was implanted new capillary vessels grew from the cornea limbus, across the cornea and into the pellet within 25 5 days. In contrast, addition of GST-METH1 or GST-METH2 to the bFGF pellets completely abolished blood vessel growth. Table 4 contains a summary of the results obtained from 41 assays performed. Intact TSP1 purified from platelets and GST-TSP1 were used as positive controls. All assays were performed at identical concentrations, suggesting that METH1 and METH2 have similar potency to that of TSP1 in the inhibition of angiogenesis. In addition, when half

of the standard concentration was used, a weak, however noticeable response was seen, indicating a dose-dependent effect.

Table 4.
Activity of METH1 and METH2 recombinant proteins in the corneal pocket assay

bFGF Pellets	Vascularized corneas/Total corneas
Vehicle	5/5
TSP1	0/5
GST	11/11
GST-TSP1-TI	1/4
GST-METH1-TSP	0/8
GST-METH2-TSP	0/8

In the CAM assay, the angiogenic response is analyzed by measuring the number of vessels that grow within a matrix polymer containing the angiogenic growth factor. To determine whether recombinant METH1 and METH2 proteins inhibited neovascularization in the CAM assay induced by VEGF, a matrigel polymer containing VEGF and the recombinant protein were implanted in the CAM. Quantitative analysis of the experiments, which included three different polymers per treatment are shown in Figure 6A. Matrigels polymers containing VEGF plus 5 μ g of GST-METH1 or GST-METH2 caused greater than 80% inhibition in blood vessel growth. A similar potency was found using the GST recombinant protein derived from the type I repeats of TSP1. Furthermore, the anti-angiogenic effect of the TSP domains in METH1 and METH2 was dose-dependent with a complete inhibition of blood vessel growth when 15 μ g/ml of protein was used (Figure 6C and D). GST alone, at identical concentrations, had no significant effect on VEGF-stimulated angiogenesis.

Synthetic peptides from the second or the third type I repeats of human TSP1 can mimic that anti-angiogenic effects of the intact TSP1 (Tolsma, S.S., *et al.*, *J. Cell. Biol.* 122:497-511 (1993)). In fact, a 19-residue polypeptide was shown to be sufficient to block *in vivo* neovascularization in the rat cornea and to inhibit the bFGF-induced migration of cultured endothelial cells (Vogel, T., *et al.*, *J. Cell. Biochem.* 53:74-84 (1993); Tolksma, S.S., *et al.*, *J. Cell. Biol.* 122:497-511 (1993)). To test whether the same was true for the METH1 and METH2 TSP domains, peptides derived from the same region were synthesized and their anti-angiogenic activity was evaluated in the CAM assay. The results are shown in Figure 6B. Peptides derived from both the TSP domain of METH1 and METH2 blocked VEGF-induced angiogenesis similarly to that of TSP1. In contrast, scramble peptides had no significant effects.

Example 5: Proliferation assays

Human dermal endothelial cells (HDEC) were isolated and grown on Vitrogen™ coated petri-dishes in EBM (Clonetics, San Diego, CA) supplemented with 15% fetal calf serum, 25 μ g/ml cAMP, and 1 μ g/ml of hydrocortisone-21-acetate and were used from passages 3 to 6. Cells were made quiescent by incubation of confluent monolayers with phenol red-free EBM containing 0.2% BSA for 48h. Human dermal fibroblasts were isolated from neonatal foreskin and by enzymatic dissociation. Both fibroblasts and smooth muscle cells were maintained in DMEM supplemented with 10% fetal calf serum. Human mammary epithelial cells (HMEC) were purchased from Clonetics and maintained in the recommended media (mammary epithelial growth media, MEGM).

Quiescent human dermal endothelial cells, between passage 3 and 6, were plated on Vitrogen™ coated 24-well plates in EBM supplemented with 0.2% BSA, 0.1% fetal calf serum and 1 ng/ml of bFGF in the presence or absence of the recombinant protein and incubated at 5% CO₂ at 37°C for 48h. For vascular smooth muscle (VSM) and fibroblast proliferation assays, cells were incubated

under the same conditions but using DMEM instead of EBM. Human mammary epithelial cells were incubated on their growth media. A pulse of [³H]-Thymidine (1 μCi/μl) was added during the last 4h prior harvesting. Cells were washed and fixed in 10% TCA. Incorporation of [³H]-thymidine was determined by scintillation counting, as previously described (Iruela-Arispe, M.L. & Sage, E.H., *J. Cell. Biochem.* 52:414 (1993)).

Statistical analysis were done using In-Stat software (Graph Pad Software) for Macintosh. Assuming normal distributions, data were analyzed by one-way ANOVA, followed by either T-test Dunnett test for comparisons between groups, or student-Newman-Kleus test for multiple comparisons between groups.

To gain insight into the mechanism by which METH1 and METH2 inhibit neovascularization, the direct effect of the purified recombinant fusion proteins on endothelial cell proliferation was tested. Serum-starved endothelial cells were plated into growth medium containing bFGF and FCS. Recombinant proteins (3 μg/ml) were added at the same time of plating. 40% (GST-METH1), 45% (6H-GST) or 36% (GST-METH2) inhibition was observed, in contrast to a non-significant effect when GST alone was added. The recombinant protein from the type I repeats of TSP1 had similar inhibitory effects. (Figure 7A). Furthermore, suppression of proliferation mediated by METH1 or METH2 were dose-dependent, as shown in Figure 7E. The inhibition was observed as early as one day after treatment and the inhibitory effect was not toxic and reversible since the removal of the recombinant protein and subsequent addition of growth factor alone led to the resumption of endothelial cell proliferation.

The cell specificity of the anti-proliferative effects for METH1 and METH2 on the endothelium was evaluated by additional proliferation assays on a variety of non-endothelial cells. No significant inhibition of proliferation was seen on fibroblasts or smooth muscle cell cultures. In contrast, a non significant, but reproducible stimulation of proliferation for these two cell types could be observed. This result rules out the presence of any potential nonspecific inhibitor of cell growth in the recombinant protein preparations. On mammary epithelial

cell, however, METH1 and METH2 inhibited cell proliferation to the same degree as to endothelial cells. Interestingly, TSP1 also suppresses mammary epithelial cell proliferation both *in vitro* and in a transgenic model.

5 The possibility that METH1 and METH2 might act as disintegrins is consistent with their anti-angiogenic properties. Clearly blockade of $\alpha v \beta 3$ and $\beta 1$ integrins with antibodies has been shown to inhibit neovascularization both during development and in tumors (Brooks, P.C., *et al.*, *Cell* 85:683-693 (1996); Brooks, P.C., *et al.*, *Cell* 92:391-400 (1998); Senger, D.R., *et al.*, *Proc. Natl. Acad. Sci. USA* 94:13612-13617 (1997)). Integrins are essential for the mediation of both proliferative and migratory signals (Schwartz, M.A. & Ingber, D.E., *Mol. Biol. Cell* 5:389-393 (1994)), therefore interference with those signals can be highly deleterious to the angiogenic process. The angiogenic functional assays were performed with recombinant protein containing only the type I repeats in METH1 and METH2.

15 The mechanism of action of METH1 and METH2 with regards to their angio-inhibitory activity is not known. To date we have evidence that these proteins are secreted and bind to endothelial cells. Further investigations are guided towards the identification of receptors and signal transduction mechanisms. A likely hypothesis resulting from the lessons learned from TSP1 is that both 20 METH1 and METH2 bind to CD36. Recently, this scavenger receptor has been implicated in the mediation of signals by which TSP1 exert its anti-angiogenic effects (Dawson, D.W., *et al.*, *J. Cell. Biol.* 138:707-717 (1997)). Both the CSVTCG (SEQ ID NO:83) (Asch, A.S., *et al.*, *Nature* 262:1436-1439 (1993); Catimel, B., *et al.*, *Biochem. J.* 284:231-236 (1992)) and the GCQXR (SEQ ID NO:84) sequences have been proposed as primary binding motifs to CD36 25 (Dawson, D.W., *et al.*, *J. Cell. Biol.* 138:707-717 (1997)). METH1 and METH2 have almost entire conservation in both these regions. A complementary and also likely occurrence is binding of METH1 and METH2 to bFGF. Binding to heparin and bFGF has been proposed as part of the anti-angiogenic activity of TSP1 (Guo, N., *et al.*, *J. Peptide Res.* 49 (1997)). This property appears to be mediated 30

through the WSXWS (SEQ ID NO:82) motif, also conserved in METH1 and METH2. Future efforts will focus on the signals implicated in the anti-angiogenic properties mediated by these novel proteins and on their potential as proteases of the extracellular milieu.

5 *Example 6: Isolation of the METH1 or METH2 cDNA Clone From the Deposited Sample*

Two approaches can be used to isolate METH1 or METH2 from the deposited sample. First, the deposited clone is transformed into a suitable host (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or 10 patents. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. A single colony is then used to generate DNA using nucleic acid isolation techniques well known to those skilled in the art. (e.g., 15 Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press.)

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:1 or SEQ ID NO:3 (i.e., within the region of SEQ ID NO:1 or SEQ ID NO:3 bounded by the 5' NT and the 3' NT of the clone) are synthesized 20 and used to amplify the METH1 or METH2 cDNA using the deposited cDNA plasmids as templates. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 µg of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 uM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 25 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94 degree C for 1 min; annealing at 55 degree C for 1 min; elongation at 72 degree C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product

is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of the METH1 or METH2 gene which may not be present in the deposited clones. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine *et al.*, *Nucleic Acids Res.* 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the METH1 or METH2 gene of interest is used to PCR amplify the 5' portion of the METH1 or METH2 full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known

sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the METH1 or METH2 gene.

Example 7: Bacterial Expression of METH1 or METH2

5 A METH1 or METH2 polynucleotide encoding a METH1 or METH2 polypeptide invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 5, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end
10 of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a
15 6-histidine tag (6-His), and restriction enzyme cloning sites. The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are
20 identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

25 Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D. ⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final

concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4 degree C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified METH1 or METH2 protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the METH1 or METH2 protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified METH1 or METH2 protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a METH1 or METH2 polynucleotide, called pHE4a. (ATCC Accession Number 209645, deposited February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an *E. coli* origin

of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

5 DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 5, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, 10 BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

15 ***Example 8: Purification of METH1 or METH2 Polypeptide from an Inclusion Body***

20 The following alternative method can be used to purify METH1 or METH2 polypeptide expressed in *E. coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10 degree C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfluidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The

homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

5 The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4 degree C overnight to allow further GuHCl extraction.

10 Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4 degree C without mixing for 12 hours prior to further purification steps.

15 To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 um membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed 20 by SDS-PAGE.

25 Fractions containing the METH1 or METH2 polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring 30

of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant METH1 or METH2 polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant 5 bands should be observed from Coomassie blue stained 16% SDS-PAGE gel when 5 ug of purified protein is loaded. The purified METH1 or METH2 protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

10 ***Example 9: Cloning and Expression of METH1 or METH2 in a Baculovirus Expression System***

In this example, the plasmid shuttle vector pA2 is used to insert METH1 or METH2 polynucleotide into a baculovirus to express METH1 or METH2. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of 15 the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes 20 are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned METH1 or METH2 polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily 25 appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., *Virology* 170:31-39 (1989).

5

Specifically, the METH1 or METH2 cDNA sequence contained in the deposited clone, including the AUG initiation codon and any naturally associated leader sequence, is amplified using the PCR protocol described in Example 5. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

10

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

15

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

20

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

25

Five ug of a plasmid containing the polynucleotide is co-transfected with 1.0 ug of a commercially available linearized baculovirus DNA ("BaculoGold^a baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One ug of BaculoGold^a virus DNA and 5 ug of the plasmid are mixed in a sterile

30

well of a microtiter plate containing 50 ul of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 ul Lipofectin plus 90 ul Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27 degrees C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27 degrees C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 ul of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4 degree C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 uCi of ^{35}S -methionine and 5 uCi ^{35}S -cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by

centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced METH1 or METH2 protein.

5

Example 10: Expression of METH1 or METH2 in Mammalian Cells

10

METH1 or METH2 polypeptide can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLV, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

15

20

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2DHFR (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human HeLa, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

25

Alternatively, METH1 or METH2 polypeptide can be expressed in stable cell lines containing the METH1 or METH2 polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as DHFR, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected METH1 or METH2 gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., *et al.*, *J. Biol. Chem.* 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., *Biochem. et Biophys. Acta* 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., *Biotechnology* 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy *et al.*, *Biochem J.* 227:277-279 (1991); Bebbington *et al.*, *Bio/Technology* 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-DHFR (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen *et al.*, *Molecular and Cellular Biology*, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart *et al.*, *Cell* 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of METH1 or METH2. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

If a naturally occurring signal sequence is used to produce a secreted protein, the vector does not need a second signal peptide. Alternatively, if a naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence in an effort to secrete the protein from the cell. (See, e.g., WO 96/34891.)

The amplified fragment is then digested with the appropriate restriction enzyme and purified on a 1% agarose gel using a commercially available kit

-140-

("Geneclean," BIO 101 Inc., La Jolla, Ca.). The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 or pC4 using, for instance, restriction enzyme analysis.

5

10

15

20

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μ g of the expression plasmid pC6 or pC4 is cotransfected with 0.5 μ g of the plasmid pSVneo using lipofectin (Felgner et al., *supra*). The plasmid pSV2-neo contains a dominant selectable marker, the *neo* gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 uM, 2 uM, 5 uM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 uM. Expression of METH1 or METH2 is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 11: Construction of N-Terminal and/or C-Terminal Deletion Mutants

25

The following general approach may be used to clone a N-terminal or C-terminal deletion METH1 or METH2 deletion mutant. Generally, two oligonucleotide primers of about 15-25 nucleotides are derived from the desired 5' and 3' positions of a polynucleotide of SEQ ID NO:1 or SEQ ID NO:3. The 5' and 3' positions of the primers are determined based on the desired METH1 or

5

METH2 polynucleotide fragment. An initiation and stop codon are added to the 5' and 3' primers respectively, if necessary, to express the METH1 or METH2 polypeptide fragment encoded by the polynucleotide fragment. Preferred METH1 or METH2 polynucleotide fragments are those encoding the N-terminal and C-terminal deletion mutants disclosed above in the "Polynucleotide and Polypeptide Fragments" section of the Specification.

10

15

Additional nucleotides containing restriction sites to facilitate cloning of the METH1 or METH2 polynucleotide fragment in a desired vector may also be added to the 5' and 3' primer sequences. The METH1 or METH2 polynucleotide fragment is amplified from genomic DNA or from the deposited cDNA clone using the appropriate PCR oligonucleotide primers and conditions discussed herein or known in the art. The METH1 or METH2 polypeptide fragments encoded by the METH1 or METH2 polynucleotide fragments of the present invention may be expressed and purified in the same general manner as the full length polypeptides, although routine modifications may be necessary due to the differences in chemical and physical properties between a particular fragment and full length polypeptide.

20

25

As a means of exemplifying but not limiting the present invention, the polynucleotide encoding the METH1 polypeptide fragment D-40 to S-950 or the METH2 polypeptide fragment L-20 to L-890 is amplified and cloned as follows: A 5' primer is generated comprising a restriction enzyme site followed by an initiation codon in frame with the polynucleotide sequence encoding the N-terminal portion of the polypeptide fragment beginning with D-40 or L-20, respectively. A complementary 3' primer is generated comprising a restriction enzyme site followed by a stop codon in frame with the polynucleotide sequence encoding C-terminal portion of the METH1 or METH2 polypeptide fragment ending with S-950 or L-890, respectively.

30

The amplified polynucleotide fragment and the expression vector are digested with restriction enzymes which recognize the sites in the primers. The digested polynucleotides are then ligated together. The METH1 or METH2

polynucleotide fragment is inserted into the restricted expression vector, preferably in a manner which places the METH1 or METH2 polypeptide fragment coding region downstream from the promoter. The ligation mixture is transformed into competent *E. coli* cells using standard procedures and as described in the Examples herein. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Example 12: Protein Fusions of METH1 or METH2

METH1 or METH2 polypeptides are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of METH1 or METH2 polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 7; see also EP A 394,827; Traunecker, *et al.*, *Nature* 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time *in vivo*. Nuclear localization signals fused to METH1 or METH2 polypeptides can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 7.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHII cloning site. Note that the 3' BamHII site

should be destroyed. Next, the vector containing the human Fc portion is restricted with BamHI, linearizing the vector, and METH1 or METH2 polynucleotide, isolated by the PCR protocol described in Example 5, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

10 Human IgG Fc region:
GGGATCCGGAGCCAAATCTTCTGACAAA ACTCACACATGCCACC
GTGCCAGCACCTGAATTGAGGGTGACCGTCAGTCTTCCTTTCC
CCCCAAAACCAAGGACACCCCTCATGATCTCCGGACTCCTGAGGT
CACATGCGTGGTGGTGACGTAAGCCACGAAGACCCCTGAGGTCAAG
TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA
AGCCCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT
CCTCACCGTCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAG
TGCAAGGTCTCCAACAAAGCCCTCCCAACCCCCATCGAGAAAACCA
TCTCCAAAGCAAAGGGCAGCCCCGAGAACCAACAGGTGTACACCC
20 GCCCCCACCCGGATGAGCTGACCAAGAACCAAGGTCAACCGT
TGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGG
AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCCTCCCGT
GCTGGACTCCGACGGCTCCTTCTCCTACAGCAAGCTCACCGTGG
ACAAGAGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGAT
25 GCATGAGGCTCTGCACAACCAACTACACGCAGAACAGGCCTCTCC
TCTCCGGTAAATGAGTGCACGGCCGCGACTCTAGAGGAT (SEQ ID
NO:85)

Example 13: Production of an Antibody

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing METH1 or METH2 is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of METH1 or METH2 protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

5

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Kohler *et al.*, *Nature* 256:495 (1975); Kohler *et al.*, *Eur. J. Immunol.* 6:511 (1976); Kohler *et al.*, *Eur. J. Immunol.* 6:292 (1976); Hammerling *et al.*, in: *Monoclonal Antibodies and T-Cell Hybridomas*, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with METH1 or METH2 polypeptide or, more preferably, with a secreted METH1 or METH2 polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56 degree C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 ug/ml of streptomycin.

10

15

20

25

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.* (*Gastroenterology* 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify

clones which secrete antibodies capable of binding the METH1 or METH2 polypeptide.

Alternatively, additional antibodies capable of binding to METH1 or METH2 polypeptide can be produced in a two-step procedure using anti-idiotypic 5 antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to 10 identify clones which produce an antibody whose ability to bind to the METH1 or METH2 protein-specific antibody can be blocked by METH1 or METH2. Such antibodies comprise anti-idiotypic antibodies to the METH1 or METH2 protein-specific antibody and can be used to immunize an animal to induce formation of further METH1 or METH2 protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the 15 antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted METH1 or METH2 protein-binding 20 fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For *in vivo* use of antibodies in humans, it may be preferable to use 25 "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, *Science* 229:1202 (1985); Oi *et al.*, *BioTechniques* 4:214 (1986); Cabilly *et al.*, U.S. Patent No. 4,816,567; Taniguchi *et al.*, EP 171496; Morrison *et al.*, EP 173494; Neuberger *et al.*, WO 8601533; Robinson *et al.*, WO 8702671; Boulian *et al.*, *Nature* 312:643 (1984); 30 Neuberger *et al.*, *Nature* 314:268 (1985).)

Example 14: Production Of METH1 or METH2 Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing METH1 or METH2 polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 16-23.

5 First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

10 15 Plate 293T cells (do not carry cells past P+20) at 2×10^5 cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

20 25 The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 10-12, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

30 Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not

spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37 degree C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or HGS CHO-5 media (116.6 mg/L of CaCl₂ (anhyd); 0.00130 mg/L CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂O; 71.02 mg/L of Na₂HPO₄; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂O; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂O; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H₂O; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalanine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tyrosine-2Na-2H₂O; and 99.65 mg/ml of L-Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of

Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal Acetate. Adjust osmolarity to 327 mOsm) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

10 The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37 degree C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

15 On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 16-23.

20 It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the METH1 or METH2 polypeptide directly (e.g., as a secreted protein) or by METH1 or METH2 inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

Example 15: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the

Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

5 GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

10 The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

15 The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, *Ann. Rev. Biochem.* 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN- α , IFN- γ , and IL-10. The Class 20 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:82)).

25 Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	Ligand	JAKs				STATS	GAS(elements) or ISRE
		Jak2	Jak1	Jak2	Jak3		
IFN family							
10	IFN-a/B	+	+	-	-	1,2,3	ISRE
	IFN-g		+	+	-	1	GAS (IRF1>Lys6>IFP)
	IL-10	+	?	?	-	1,3	
gp130 family							
15	IL-6 (Pleiotrophic)	+	+	+	?	1,3	GAS (IRF1>Lys6>IFP)
	IL-11(Pleiotrophic)	?	+	?	?	1,3	
	OnM(Pleiotrophic)	?	+	+	?	1,3	
	LIF(Pleiotrophic)	?	+	+	?	1,3	
	CNTF(Pleiotrophic)	-+	+	+	?	1,3	
	G-CSF(Pleiotrophic)	?	+	?	?	1,3	
	IL-12(Pleiotrophic)	+	-	+	+	1,3	
g-C family							
20	IL-2 (lymphocytes)	-	+	-	+	1,3,5	GAS
	IL-4 (lymph/myeloid)	-	+	-	+	6	GAS (IRF1 = IFP >>Ly6)(IgH)
	IL-7 (lymphocytes)	-	+	-	+	5	GAS
	IL-9 (lymphocytes)	-	+	-	+	5	GAS
25	IL-13 (lymphocyte)	-	+	?	?	6	GAS
	IL-15	?	+	?	+	5	GAS
gp140 family							
30	IL-3 (myeloid)	-	-	+	-	5	GAS (IRF1>IFP>>Ly6)
	IL-5 (myeloid)	-	-	+	-	5	GAS
	GM-CSF (myeloid)	-	-	+	-	5	GAS
Growth hormone family							
35	GH	?	-	+	-	5	
	PRL	?	+/-	+	-	1,3,5	GAS(B-CAS>IRF1=IFP>>Ly6)
	EPO	?	-	+	-	5	
Receptor Tyrosine Kinases							
	EGF	?	+	+	-	1,3	GAS (IRF1)
	PDGF	?	+	+	-	1,3	GAS (not IRF1)
	CSF-1	?	+	+	-	1,3	

-151-

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 16-17, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman *et al.*, *Immunity* 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is:

5' GCGCCTCGAGATTCCCCGAAATCTAGATTCCCCGAAATGATT
CCCCGAAATGATTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID
NO:86)

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTGCAAAGCCTAGGC:3'
(SEQ ID NO:87)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATTCCCCGAAATCTAGATTCCCCGAAATGATTCCCC
GAAATGATTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCA
TAGTCCGCCCTAACTCCGCCATCCGCCCTAACTCCGCCAGT
TCCGCCATTCTCCGCCCATGGCTGACTAATTTTTATTATGCA
GAGGCCGAGGCCGCCTGGCCTTGAGCTATTCCAGAAGTAGTGAG
GAGGCTTTTGAGGCCCTAGGCTTTGCAAAAAGCTT:3' (SEQ ID
NO:88)

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter

molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and Xhol, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 16-17.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 18 and 19. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, IL-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HE LA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

-153-

Example 16: High-Throughput Screening Assay for T-cell Activity

The following protocol is used to assess T-cell activity of METH1 or METH2 by determining whether METH1 or METH2 supernatant proliferates and/or differentiates T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 15. Thus, factors that increase SEAP activity indicate the ability to activate the Jak-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1×10^7 cells in OPTI-MEM to T25 flask and incubate at 37 degree C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

-154-

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing METH1 or METH2 polypeptides or METH1 or METH2 induced polypeptides as produced by the protocol described in Example 14.

5 On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

10 Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100,000 cells per well).

15 After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

20 The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20 degree C until SEAP assays are performed according to Example 20. The plates containing the remaining treated cells are placed at 4 degree C and serve as a source of material for repeating the assay on a specific well if desired.

25 As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

-155-

Example 17: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity of METH1 or METH2 by determining whether METH1 or METH2 proliferates and/or 5 differentiates myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 15. Thus, factors that increase SEAP activity indicate the ability to activate the Jak-STATs signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfet U937 cells with the GAS/SEAP/Neo construct 10 produced in Example 15, a DEAE-Dextran method (Kharbanda *et. al.*, 1994, *Cell Growth & Differentiation* 5:259-265) is used. First, harvest 2×10^6 U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

15 Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37 degree C for 45 min.

20 Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37 degree C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

25 These cells are tested by harvesting 1×10^6 cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of 5×10^5 cells/ml. Plate 200 ul cells per well in the 96-well plate (or 1×10^5 cells/well).

-156-

Add 50 ul of the supernatant prepared by the protocol described in Example 14. Incubate at 37 degree C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 20.

5

Example 18: High-Throughput Screening Assay Identifying Neuronal Activity

10

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed by METH1 or METH2.

15

20

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfected PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells by METH1 or METH2 can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K *et al.*, *Oncogene* 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

25

5' GCGCTCGAGGGATGACAGCGATAGAACCCGG -3' (SEQ ID NO:89)

5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:90)

-157-

Using the GAS:SEAP/Neo vector produced in Example 15, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 14. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 14, 37 degree

C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 20.

5 *Example 19: High-Throughput Screening Assay for T-cell Activity*

10

NF-KB (Nuclear Factor KB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-KB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF- KB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

15

In non-stimulated conditions, NF- KB is retained in the cytoplasm with I- KB (Inhibitor KB). However, upon stimulation, I- KB is phosphorylated and degraded, causing NF- KB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- KB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

20

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-KB promoter element are used to screen the supernatants produced in Example 14. Activators or inhibitors of NF-KB would be useful in treating diseases. For example, inhibitors of NF-KB could be used to treat those diseases related to the acute or chronic activation of NF-KB, such as rheumatoid arthritis.

25

To construct a vector containing the NF-KB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-KB binding site (GGGGACTTCCC) (SEQ ID NO:91), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an Xhol site:

-159-

5':GCGGCCTCGAGGGACTTCCGGGACTTCGGGACTTCG
GGACTTTCCATCCTGCCATCTCAATTAG:3' (SEQ ID NO:92)

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5 5':GCGGCAAGCTTTGCAAAGCCTAGGC:3' (SEQ ID NO:93)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains 10 the following sequence:

15 5':CTCGAGGGACTTCCGGGACTTCGGGACTTCGGACT
TTCCATCTGCCATCTCAATTAGTCAGCAACCATACTCCGCCCTAA
CTCCGCCATCCGCCCTAACCTCCGCCAGTCCGCCATTCTCCG
CCCCATGGCTGACTAATTTTTATTATGCAGAGGCCGAGGCCGC
CTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTGGA
GGCCTAGGCTTTGCAAAAAGCTT:3' (SEQ ID NO:88)

20 Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-KB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

25 In order to generate stable mammalian cell lines, the NF-KB/SV40/SEAP cassette is removed from the above NF-KB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-KB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF-KB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 16. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 16. As a positive control, exogenous TNF alpha (0.1, 1,

-160-

10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 20: Assay for SEAP Activity

5 As a reporter molecule for the assays described in Examples 16-19, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

10 Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 ul of 2.5x dilution buffer into Optiplates containing 35 ul of a supernatant. Seal the plates with a plastic sealer and incubate at 65 degree C for 30 min. Separate the Optiplates to avoid uneven heating.

15 Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 ml Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 ul Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

20 Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
25	10	3
	11	3.25
	12	3.5
	13	3.75
	14	4
	15	4.25
30	16	4.5
	17	4.75
	18	5

-161-

	19	105	5.25
	20	110	5.5
	21	115	5.75
	22	120	6
5	23	125	6.25
	24	130	6.5
	25	135	6.75
	26	140	7
	27	145	7.25
	10	150	7.5
	28	155	7.75
	29	160	8
	30	165	8.25
	31	170	8.5
15	32	175	8.75
	33	180	9
	34	185	9.25
	35	190	9.5
	36	195	9.75
	20	200	10
	38	205	10.25
	39	210	10.5
	40	215	10.75
	41	220	11
25	42	225	11.25
	43	230	11.5
	44	235	11.75
	45	240	12
	46	245	12.25
	30	250	12.5
	48	255	12.75
	49	260	13

Example 21: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

35 Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to

-162-

detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

5 The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

10 For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

15 A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37 degree C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

20 For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37 degree C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

25 For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

30 To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates

an extracellular signaling event caused by the a molecule, either METH1 or METH2 or a molecule induced by METH1 or METH2, which has resulted in an increase in the intracellular Ca^{++} concentration.

5

Example 22: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

10

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

15

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

20

25

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, identifying whether METH1 or METH2 or a molecule induced by METH1 or METH2 is capable of activating tyrosine kinase signal transduction pathways is of interest. Therefore, the following protocol is designed to identify such molecules capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses

-164-

with 100% ethanol, rinsed with water and dried overnight. Some plates are
coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml),
gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma
Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson
5 (Bedford, MA), or calf serum, rinsed with PBS and stored at 4 degree C. Cell
growth on these plates is assayed by seeding 5,000 cells/well in growth medium
and indirect quantitation of cell number through use of alamarBlue as described
by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr.
Falcon plate covers #3071 from Becton Dickinson (Bedford, MA) are used to
10 cover the Loprodynne Silent Screen Plates. Falcon Microtest III cell culture plates
can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of
Loprodynne plates (20,000/200ml/well) and cultured overnight in complete
medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr.
15 After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant
produced in Example 14, the medium was removed and 100 ml of extraction
buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2
mM Na₃VO₄, 2 mM Na₄P₂O₇ and a cocktail of protease inhibitors (# 1836170)
obtained from Boehringer Mannheim (Indianapolis, IN) is added to each well and
20 the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then
placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm
membrane bottoms of each well using house vacuum. Extracts are collected in
a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately
placed on ice. To obtain extracts clarified by centrifugation, the content of each
well, after detergent solubilization for 5 minutes, is removed and centrifuged for
25 15 minutes at 4 degree C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although
many methods of detecting tyrosine kinase activity are known, one method is
described here.

-165-

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg²⁺ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30 degree C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37 degree C for 20 min. This allows the streptavidin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37 degree C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 23: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 22, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4 degree C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyn filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 14 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard

-167-

procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation by METH1 or METH2 or a molecule induced by METH1 or METH2.

5

Example 24: Method of Determining Alterations in the METH1 or METH2 Gene

10

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:1. Suggested PCR conditions consist of 35 cycles at 95 degree C for 30 seconds; 60-120 seconds at 52-58 degree C; and 60-120 seconds at 70 degree C, using buffer solutions described in Sidransky, D. *et al.*, *Science* 252:706 (1991).

15

20

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTHERM Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons of METH1 or METH2 is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations in METH1 or METH2 is then cloned and sequenced to validate the results of the direct sequencing.

25

PCR products of METH1 or METH2 are cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., *Nucleic Acids Research* 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations in METH1 or METH2 not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in the METH1 or METH2 gene. Isolated genomic clones are nick-translated with digoxigenin deoxy-uridine 5'-triphosphate (Boehringer Manheim),

and FISH performed as described in Johnson, Cg. et al., *Methods Cell Biol.* 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the METH1 or METH2 genomic locus.

5 Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., *Genet. Anal. Tech. Appl.* 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region of METH1 or METH2 (hybridized by the probe) are identified as insertions, deletions, and 10 translocations. These METH1 or METH2 alterations are used as a diagnostic marker for an associated disease.

15

Example 25: Method of Detecting Abnormal Levels of METH1 or METH2 in a Biological Sample

METH1 or METH2 polypeptides can be detected in a biological sample, 20 and if an increased or decreased level of METH1 or METH2 is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect METH1 or 25 METH2 in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies to METH1 or METH2, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 13. The wells are blocked so that non-specific binding of METH1 or METH2 to the well is reduced.

-169-

The coated wells are then incubated for > 2 hours at RT with a sample containing METH1 or METH2. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded METH1 or METH2.

5 Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

10 Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot METH1 or METH2 polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the 15 METH1 or METH2 in the sample using the standard curve.

Example 26: Formulating a Polypeptide

20 The METH1 or METH2 composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the METH1 or METH2 polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

25 As a general proposition, the total pharmaceutically effective amount of METH1 or METH2 administered parenterally per dose will be in the range of about 1ug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and

-170-

1 mg/kg/day for the hormone. If given continuously, METH1 or METH2 is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

5 Pharmaceutical compositions containing METH1 or METH2 are administered orally, rectally, parenterally, intracistemally, intravaginally, 10 intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), buccally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, 15 intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

METH1 or METH2 is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include poly(lactides) (U.S. Pat. No. 20 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. *et al.*, *Biopolymers* 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer *et al.*, *J. Biomed. Mater. Res.* 15:167-277 (1981), and R. Langer, *Chem. Tech.* 12:98-105 (1982)), ethylene vinyl acetate (R. Langer *et al.*) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped METH1 or METH2 25 polypeptides. Liposomes containing the METH1 or METH2 are prepared by methods known per se: DE 3,218,121; Epstein *et al.*, *Proc. Natl. Acad. Sci. USA* 82:3688-3692 (1985); Hwang *et al.*, *Proc. Natl. Acad. Sci. USA* 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese 30 Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324.

Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

5 For parenteral administration, in one embodiment, METH1 or METH2 is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

10 15 Generally, the formulations are prepared by contacting METH1 or METH2 uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

20 25 The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrans; chelating agents such as

-172-

EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

METH1 or METH2 is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

METH1 or METH2 used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

METH1 or METH2 polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous METH1 or METH2 polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized METH1 or METH2 polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, METH1 or METH2 may be employed in conjunction with other therapeutic compounds.

-173-

Example 27: Method of Treating Decreased Levels of METH1 or METH2

The present invention relates to a method for treating an individual in need of a decreased level of METH1 or METH2 activity in the body comprising, administering to such an individual a composition comprising a therapeutically effective amount of METH1 or METH2 antagonist. Preferred antagonists for use in the present invention are METH1 or METH2-specific antibodies.

Moreover, it will be appreciated that conditions caused by a decrease in the standard or normal expression level of METH1 or METH2 in an individual can be treated by administering METH1 or METH2, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of METH1 or METH2 polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of METH1 or METH2 to increase the activity level of METH1 or METH2 in such an individual.

For example, a patient with decreased levels of METH1 or METH2 polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 26.

Example 28: Method of Treating Increased Levels of METH1 or METH2

The present invention also relates to a method for treating an individual in need of an increased level of METH1 or METH2 activity in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of METH1 or METH2 or an agonist thereof.

Antisense technology is used to inhibit production of METH1 or METH2. This technology is one example of a method of decreasing levels of METH1 or METH2 polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

-174-

For example, a patient diagnosed with abnormally increased levels of METH1 or METH2 is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 26.

5

Example 29: Method of Treatment Using Gene Therapy - Ex Vivo

10

One method of gene therapy transplants fibroblasts, which are capable of expressing METH1 or METH2 polypeptides, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37 degree C for approximately one week.

15

20

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. *et al.*, *DNA* 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

25

The cDNA encoding METH1 or METH2 can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 5. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus

-175-

linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector contains 5 properly inserted METH1 or METH2.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing 10 the METH1 or METH2 gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the METH1 or METH2 gene(the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, 15 the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and 20 replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether METH1 or METH2 protein is produced.

25 The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

Example 30: Method of Treatment Using Gene Therapy - In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) METH1 or METH2 sequences into an animal to increase or decrease the expression of the METH1 or METH2 polypeptide. The METH1 or METH2 polynucleotide may be operatively linked to a promoter or any other genetic elements necessary for the expression of the METH1 or METH2 polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. *et al.* (1997) *Cardiovasc. Res.* 35(3):470-479, Chao, J *et al.* (1997) *Pharmacol. Res.* 35(6):517-522, Wolff J.A. (1997) *Neuromuscul. Disord.* 7(5):314-318, Schwartz, B. *et al.* (1996) *Gene Ther.* 3(5):405-411, Tsurumi Y. *et al.* (1996) *Circulation* 94(12):3281-3290 (incorporated herein by reference).

The METH1 or METH2 polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The METH1 or METH2 polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the METH1 or METH2 polynucleotides may also be delivered in liposome formulations (such as those taught in Felgner P.L. *et al.* (1995) *Ann. NY Acad. Sci.* 772:126-139 and Abdallah B. *et al.* (1995) *Biol. Cell* 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The METH1 or METH2 polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression 5 of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

10 The METH1 or METH2 polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues 15 comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery 20 to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated 25 cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked METH1 or METH2 polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 30

-178-

0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked METH1 or METH2 polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected METH1 or METH2 polynucleotide in muscle *in vivo* is determined as follows. Suitable METH1 or METH2 template DNA for production of mRNA coding for METH1 or METH2 polypeptide is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The METH1 or METH2 template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for METH1 or METH2 protein expression. A time course for METH1 or METH2 protein expression may

-179-

be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of METH1 or METH2 DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The
5 results of the above experimentation in mice can be used to extrapolate proper dosages and other treatment parameters in humans and other animals using METH1 or METH2 naked DNA.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples.
10

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.
15

The entire disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference.

-179.1-

Applicant's or agent's file reference number: 1488.107PC02	International application no: TBA
--	-----------------------------------

**INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)**

A. The indications made below relate to the microorganism referred to in the description on page 32, lines 16-17.	
B. IDENTIFICATION OF DEPOSIT	
Name of depository institution American Type Culture Collection	
Address of depository institution (including postal code and country) 10801 University Boulevard formerly at: 12301 Parklawn Drive Manassas, Virginia 20110-2209 Rockville, Maryland 20852 United States of America United States of America	
Date of deposit 15 January 1998	Accession Number 209581
C. ADDITIONAL INDICATIONS (Leave blank if not applicable) This information is continued on an additional sheet <input type="checkbox"/> DNA plasmid HOUQC17	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (Leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	

For receiving Office use only		For International Bureau use only	
<input type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer		Authorized officer	

-179, 2-

Applicant's or agent's file reference number: 1488.107PC02	International application No: TBA
--	-----------------------------------

**INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)**

A. The indications made below relate to the microorganism referred to in the description on page 32, lines 25-26.	
B. IDENTIFICATION OF DEPOSIT	
Name of depository institution American Type Culture Collection	
Address of depository institution (<i>including postal code and country</i>) 10801 University Boulevard formerly at: 12301 Parklawn Drive Manassas, Virginia 20110-2209 Rockville, Maryland 20852 United States of America United States of America	
Date of deposit 15 January 1998	Accession Number 209582
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/>	
DNA plasmid HCE4D69	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only		For International Bureau use only	
<input type="checkbox"/> This sheet was received with the international application		<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer		Authorized officer	

-180-

What Is Claimed Is:

1. An isolated nucleic acid molecule comprising a polynucleotide selected from the group consisting of:

5 (a) a polynucleotide encoding a polypeptide comprising amino acids 1 to 950 in SEQ ID NO:2;

(b) a polynucleotide encoding a polypeptide comprising amino acids 2 to 950 in SEQ ID NO:2;

(c) a polynucleotide encoding a polypeptide comprising amino acids 29 to 950 in SEQ ID NO:2;

10 (d) a polynucleotide encoding a polypeptide comprising amino acids 30 to 950 in SEQ ID NO:2;

(e) a polynucleotide comprising a nucleotide sequence encoding the METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;

15 (f) a polynucleotide comprising a nucleotide sequence encoding the mature METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;

(g) a polynucleotide encoding a polypeptide comprising amino acids 1 to 890 in SEQ ID NO:4;

20 (h) a polynucleotide encoding a polypeptide comprising amino acids 2 to 890 in SEQ ID NO:4;

(i) a polynucleotide encoding a polypeptide comprising amino acids 24 to 890 in SEQ ID NO:4;

(j) a polynucleotide encoding a polypeptide comprising amino acids 112 to 890 in SEQ ID NO:4;

25 (k) a polynucleotide comprising a nucleotide sequence encoding the METH2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582;

-181-

- (l) a polynucleotide comprising a nucleotide sequence encoding the mature METH2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582;
- 5 (m) a polynucleotide variant created by altering a polynucleotide of (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), or (l), wherein:
- (i) said altering includes a nucleotide insertion, deletion, or substitution, or any combination thereof; and
- (ii) the number of alterations is equal to or less than 5% of the total number of nucleotides present in the unaltered polynucleotide;
- 10 (n) a polynucleotide encoding amino acids 235 to 459 in SEQ ID NO:2;
- (o) a polynucleotide encoding amino acids 460 to 544 in SEQ ID NO:2;
- (p) a polynucleotide encoding amino acids 545 to 598 in SEQ ID NO:2;
- 15 (q) a polynucleotide encoding amino acids 841 to 894 in SEQ ID NO:2;
- (r) a polynucleotide encoding amino acids 895 to 934 in SEQ ID NO:2;
- 20 (s) a polynucleotide encoding amino acids 536 to 613 in SEQ ID NO:2;
- (t) a polynucleotide encoding amino acids 549 to 563 in SEQ ID NO:2;
- (u) a polynucleotide encoding amino acids 214 to 439 in SEQ ID NO:4;
- 25 (v) a polynucleotide encoding amino acids 440 to 529 in SEQ ID NO:4;
- (w) a polynucleotide encoding amino acids 530 to 583 in SEQ ID NO:4;

-182-

- (x) a polynucleotide encoding amino acids 837 to 890 in SEQ ID NO:4;
- (y) a polynucleotide encoding amino acids 280 to 606 in SEQ ID NO:4);
- 5 (z) a polynucleotide encoding amino acids 529 to 548 in SEQ ID NO:4; and
- (aa) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), (m), (n), (o), (p), (q), (r), (s), (t), (u), (v), (w), (x), (y), or (z).
- 10 2. An isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of the METH1 polypeptide of SEQ ID NO:2 or the METH2 polypeptide of SEQ ID NO:4.
- 15 3. An isolated nucleic acid molecule, comprising a polynucleotide selected from the group consisting of:
- (a) 50 contiguous nucleotides of the coding region of SEQ ID NO:1, provided that said nucleotide sequence is not any one of SEQ ID NOs:14-41, or any subfragment thereof; and
- 20 (b) a nucleotide sequence complementary to the nucleotide sequence in (a).

4. An isolated nucleic acid molecule, comprising a polynucleotide selected from the group consisting of:
- (a) 50 contiguous nucleotides of the coding region of SEQ ID NO:3, provided that said nucleotide sequence is not SEQ ID NOs:19-22, 24, 42-77, or any subfragment thereof; and
- 25 (b) a nucleotide sequence complementary to the nucleotide sequence in (a).

-183-

5. A method for making a recombinant vector comprising inserting an isolated nucleic acid molecule of claim 1 into a vector in operable linkage to a promoter.

6. A recombinant vector produced by the method of claim 5.

5 7. A method of making a recombinant host cell comprising introducing the recombinant vector of claim 6 into a host cell.

8. A recombinant host cell produced by the method of claim 7.

9. A recombinant method for producing a METH1 or METH2 polypeptide, comprising culturing the recombinant host cell of claim 8 under 10 conditions such that said polypeptide is expressed and recovering said polypeptide.

10. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:

- (a) amino acids 1 to 950 in SEQ ID NO:2;
- (b) amino acids 2 to 950 in SEQ ID NO:2;
- 15 (c) amino acids 29 to 950 in SEQ ID NO:2;
- (d) amino acids 30 to 950 in SEQ ID NO:2;
- (e) the amino acid sequence of the METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;
- 20 (f) the amino acid sequence of the mature METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;
- (g) amino acids 1 to 890 in SEQ ID NO:4;
- (h) amino acids 2 to 890 in SEQ ID NO:4;
- 25 (i) amino acids 24 to 890 in SEQ ID NO:4;

-184-

- (i) amino acids 112 to 890 in SEQ ID NO:4;
- (j) an amino acid sequence of the METH2 polypeptide having the amino acid sequence encoded by the METH2 cDNA clone contained in ATCC Deposit No. 209582;
- 5 (k) an amino acid sequence of the mature METH2 polypeptide having the amino acid sequence encoded by the METH2 cDNA clone contained in ATCC Deposit No. 209582;
- (l) the amino acid sequence of a polypeptide variant created by altering a polypeptide of (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), or (k), wherein:
 - (i) said altering includes an amino acid insertion, deletion, or substitution, or any combination thereof; and
 - (ii) the number of alterations is equal to or less than 5% of the total number of amino acids present in the unaltered amino acid sequence;
- 10 (m) amino acids 235 to 459 in SEQ ID NO:2;
- (n) amino acids 460 to 544 in SEQ ID NO:2;
- (o) amino acids 545 to 598 in SEQ ID NO:2;
- (p) amino acids 841 to 894 in SEQ ID NO:2;
- (q) amino acids 895 to 934 in SEQ ID NO:2;
- 15 (r) amino acids 536 to 613 in SEQ ID NO:2;
- (s) amino acids 549 to 563 in SEQ ID NO:2;
- (t) amino acids 214 to 439 in SEQ ID NO:4;
- (u) amino acids 440 to 529 in SEQ ID NO:4;
- (v) amino acids 530 to 583 in SEQ ID NO:4;
- 20 (w) amino acids 837 to 890 in SEQ ID NO:4;
- (x) amino acids 280 to 606 in SEQ ID NO:4;
- (y) amino acids 529 to 548 in SEQ ID NO:4;
- (z) the amino acid sequence of an epitope-bearing portion of any one of the polypeptides of (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l),
25 (m), (n), (o), (p), (q), (r), (s), (t), (u), (v), (w), (x), or (y).
- 30

-185-

11. The isolated polypeptide of claim 10, which is produced in a recombinant host cell.

12. The isolated polypeptide of claim 11, wherein said recombinant host cell is mammalian.

5 13. An isolated nucleic acid molecule comprising a polynucleotide encoding a METH1 or METH2 polypeptide wherein, except for one to fifty conservative amino acid substitutions, said polypeptide has a sequence selected from the group consisting of:

- (a) amino acids from about 1 to about 950 in SEQ ID NO:2;
- (b) amino acids from about 2 to about 950 in SEQ ID NO:2;
- (c) amino acids from about 29 to about 950 in SEQ ID NO:2;
- (d) amino acids from about 30 to about 950 in SEQ ID NO:2;
- (e) the amino acid sequence of the METH1 polypeptide as encoded by the cDNA clone contained in ATCC Deposit No. 209581;
- 10 (f) the amino acid sequence of the mature METH1 polypeptide as encoded by the cDNA clone contained in ATCC Deposit No. 209581;
- (g) amino acids from about 1 to about 890 in SEQ ID NO:4;
- (h) amino acids from about 2 to about 890 in SEQ ID NO:4;
- (i) amino acids from about 24 to 890 in SEQ ID NO:4;
- 15 (j) amino acids from about 112 to about 890 in SEQ ID NO:4;
- (k) the amino acid sequence of the METH2 polypeptide as encoded by the cDNA clone contained in ATCC Deposit No. 209582; and
- (l) the amino acid sequence of the mature METH2 polypeptide as encoded by the cDNA clone contained in ATCC Deposit No. 209582.

25 14. An isolated polypeptide wherein, except for one to fifty conservative amino acid substitutions, said polypeptide has a sequence selected from the group consisting of:

-186-

- (a) amino acids from about 1 to about 950 in SEQ ID NO:2;
(b) amino acids from about 2 to about 950 in SEQ ID NO:2;
(c) amino acids from about 29 to about 950 in SEQ ID NO:2;
(d) amino acids from about 30 to about 950 in SEQ ID NO:2;
5 (e) the amino acid sequence of the METH1 polypeptide having
the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit
No. 209581;
10 (f) the amino acid sequence of the mature METH1 polypeptide
having the amino acid sequence encoded by the cDNA clone contained in ATCC
Deposit No. 209581;
15 (g) amino acids from about 1 to about 890 in SEQ ID NO:4;
(h) amino acids from about 2 to about 890 in SEQ ID NO:4;
(i) amino acids from about 24 to about 890 in SEQ ID NO:4;
(j) amino acids from about 112 to about 890 in SEQ ID NO:4;
20 (k) the amino acid sequence of the METH2 polypeptide having
the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit
No. 209582;
(l) the amino acid sequence of the mature METH2 polypeptide
having the amino acid sequence encoded by the cDNA clone contained in ATCC
Deposit No. 209582; and
(m) the amino acid sequence of an epitope-bearing portion of
any one of the polypeptides of (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), or (l).

15. An isolated nucleic acid molecule comprising a polynucleotide at
least 95% identical to a polynucleotide selected from the group consisting of:
25 (a) a polynucleotide encoding a polypeptide comprising amino
acids 1 to 950 in SEQ ID NO:2;
(b) a polynucleotide encoding a polypeptide comprising amino
acids 2 to 950 in SEQ ID NO:2;

-187-

- (c) a polynucleotide encoding a polypeptide comprising amino acids 29 to 950 in SEQ ID NO:2;
- (d) a polynucleotide encoding a polypeptide comprising amino acids 30 to 950 in SEQ ID NO:2;
- 5 (e) a polynucleotide comprising a nucleotide sequence encoding the METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;
- 10 (f) a polynucleotide comprising a nucleotide sequence encoding the mature METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;
- (g) a polynucleotide encoding a polypeptide comprising amino acids 1 to 890 in SEQ ID NO:4;
- 15 (h) a polynucleotide encoding a polypeptide comprising amino acids 2 to 890 in SEQ ID NO:4;
- (i) a polynucleotide encoding a polypeptide comprising amino acids 24 to 890 in SEQ ID NO:4;
- 20 (j) a polynucleotide encoding a polypeptide comprising amino acids 112 to 890 in SEQ ID NO:4;
- (k) a polynucleotide comprising a nucleotide sequence encoding the METH2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582;
- 25 (l) a polynucleotide comprising a nucleotide sequence encoding the mature METH2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582; and
- (m) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), or (l),
wherein
said % identity is calculated using the FASTDB computer program, with
the parameters: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining
30 Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5,

-188-

Gap Size Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

16. An isolated polypeptide comprising a polypeptide having 95% identity to a polypeptide having an amino acid sequence selected from the group consisting of:

5 (a) amino acids from about 1 to about 950 in SEQ ID NO:2;

(b) amino acids from about 2 to about 950 in SEQ ID NO:2;

(c) amino acids from about 29 to about 950 in SEQ ID NO:2;

(d) amino acids from about 30 to about 950 in SEQ ID NO:2;

10 (e) the amino acid sequence of the METH1 polypeptide having

the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209581;

(f) the amino acid sequence of the mature METH1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC

15 Deposit No. 209581;

(g) amino acids from about 1 to about 890 in SEQ ID NO:4;

(h) amino acids from about 2 to about 890 in SEQ ID NO:4;

(i) amino acids from about 24 to about 890 in SEQ ID NO:4;

(j) amino acids from about 112 to about 890 in SEQ ID NO:4;

20 (k) the amino acid sequence of the METH2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582; and

(l) the amino acid sequence of the mature METH2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209582;

25 wherein

said % identity is calculated using the FASTDB computer program, with the parameters: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5,

ATGTGGGGCCTTGGGGAGACTGTTGAGAACGTGCGGTGGAGGAGTCCAGTACACGATGAGGAAATGTGACAACCCA
 M W G P W G D C S R T C G G G V Q Y T M R E C D N P
 GTCCCAAAGAATGGAGGGAAGTACTGTGAAGCAAACGAGTGCCTACAGATCTGTAAACCTTGAGGACTGTCCAGAC
 V P K N G G K Y C E G K R V R Y R S C N L E D C P D
 AATAATGGAAAAACCTTTAGAGAGGAACAATGTGAAGCACACAACGAGTTTCAAAAGCTCCTTGGAGTGGCCT
 N N G K T F R E E Q C E A H N E F S K A S F G S G P
 GCGGTGGAATGGATTCCAAGTACGCTGGCGTCACCAAAGGACAGGTGCAAGCTCATCTGCCAAGCCAAAGGCATT
 A V E W I P K Y A G V S P K D R C K L I C Q A K G I
 GGCTACTTCTCGTTGCAGCCAAGGTTGATGGTACTCCATGTAGCCCAGATTCCACCTCTGTCTGTGCAA
 G Y F F V L Q P K V V D G T P C S P D S T S V C V Q
 GGACAGTGTAAAAGCTGGTTGATCGCATAGACTCCAAAAGAAGTTGATAATGTGGTGGTGC
 G Q C V K A G C D R I I D S K K K F D K C G V C G G
 AATGGATCTACTTGAAAAAAAAATCAGGATCAGTTACTAGTGCAAAACCTGGATATCATGATATCATACAATTCCA
 N G S T C K K I S G S V T S A K P G Y H D I I T I P
 ACTGGAGCCACCAACATCGAAGTGAACAGCGGAACCAGAGGGGATCCAGGAACAATGGCAGTTCTGCCATCAA
 T G A T N I E V K Q R N Q R G S R N N G S F L A I K
 GCTGCTGATGGCACATATATTCTTAATGGTACTACACTTGTCCACCTTAGAGCAAGACATTATGTACAAAGGTGTT
 A A D G T Y I L N G D Y T L S T L E Q D I M Y K G V
 GTCTTGAGGTACAGCGGCTCTGCGGATTGGAAAGAATTGCAAGCTTTAGCCCTCTCAAAGAGCCCTGACCATC
 V L R Y S G S S A A L E R I R S F S P L K E P L T I
 CAGGTTCTACTGTGGGCAATGCCCTTCGACCTAAAATTAATACACCTACTTGTAAAGAAGAAGGAATCTTC
 Q V L T V G N A L R P K I K Y T Y F V K K K K E S F
 AATGCTATCCCCACTTTTCAGCATGGTCATTGAAGAGTGGGCAATGTTCTAAGTCATGTGAATTGGGTTGGCAG
 N A I P T F S A W V I E E W G E C S K S C E L G W Q
 AGAAGACTGGTAGAATGCCGAGACATTAATGGACAGCCTGCTCCGAGTGTGCAAAGGAAGTGAAGCCAGCCAGCACC
 R R L V E C R D I N G Q P A S E C A K E V K P A S T
 AGACCTTGTGCAGACCATCCCTGCCCGAGTGGCAGCTGGGAGTGGTCATCATGTTCTAAGACCTGTGGGAAGGGT
 R P C A D H P C P Q W Q L G E W S S C S K T C G K G
 TACAAAAAAAAGAAGCTTGAAGTGTCTGCCCCATGATGGAGGGGTGTATCTCATGAGAGCTGTGATCCTTAAAGAAA
 Y K K R S L K C L S H D G G V L S H E S C D P L K K
 CCTAAACATTCATAGACTTTGCACAATGGCAGAACATGGCAGTTAAGTGGTTAAGTGGTGTAGCTTGGCAAGGC
 P K H F I D F C T M A E C S
 AAAGTGGAGGAAGGGCTGGTGCAGGGAAAGCAAGAAGGCTGGAGGGATCCAGCGTATCTGCCAGTAACAGTGAGGTG
 TATCAGTAAGGTGGGATTATGGGGTAGATAGAAAAGGAGTTGAATCATCAGAGTAAACTGCCAGTTGCAAATTGAT
 AGGATAGTTAGTGAGGATTATTAACCTCTGAGCAGTGTATAGCATAATAANCCCGGGCATTTATTATTATTC
 TTTTGTACATCTATTACAAGTTAGAAAAACAAAGCAATTGTCAAAAAAAAAAAAAAAAGG
 CGGGCCGCTCTAGAGGATCCCTCGAGGGGCCAAGCTACGCGTGCATGNTGTCAAGTCTN

FIGURE 1

ATGTTCCCCGCCCGCCGCCGGTGGCTTCGTCCTGCTGCTGCTGCTGCTGCTGCCCTGGCCCG
 M F P A P A A P R W L P F L L L L L L L P L A R
 GGCGCCCCGGCCCGGCCGCAGCCGGGGCAGGCCTCGGAGCTGGTGGTGCACAGCGGGCTGGCCAGCGCGGGC
 G A P A R P A A G G Q A S E L V V P T R L P G S A G
 GAGCTCGCGCTCCACCTGTCCGCCTCGGAAGGGCTTCGTGTTGCGCCTGGCGCCGACGACAGCTTCTGGCGCC
 E L A L H L S A F G K G F V L R L A P D D S F L A P
 GAGTTCAAGATCGAGCGCTCGGGGGCTCCGGCCGGCGACCGGGGGCGAGCGGGGGCTGCGCGGCTGTTTTTTCC
 E F K I E R L G G S G R A T G G E R G L R G C F F S
 GGCACCGTGAATGGGGAGCCCGAGTCGCTGGCGCGGTCAAGCCTGTGCGCGGGCTGAGCGGCTCCTCCGTGGAC
 G T V N G E P E S L A A V S L C R G L S G S F L L D
 GGCGAGGAGTTCACCATCCAGCGCAGGGCGGGGGCTCCCTGGCTCAGCCGCACCGCCTGCAGCGCTGGGTCCC
 G E E F T I Q P Q G A G G S L A Q P H R L Q R W G P
 GCCGGAGCCGCCCTCCCGAGGACCCGAGTGGAGGTGGAGACGGAGAGGGTCAAGAGGCAGGAGAGAGGAGAC
 A G A R P L P R G P E W E V E T G E G Q R Q E R G D
 CACCAAGGAGGACAGCGAGGAGGAGGCCAAGAACAGGAGGCAGAAGGCCTAGCGAGCCGCCACCGCCCTGGGGGCC
 H Q E D S E E S Q E E E A E G A S E P P P P L G A
 ACGAGTAGGACCAAGCGTTGTGCTGAGGCGCGCTTCGTGGAGACGCTGCTGGTGGCCGATGCGTCCATGGCTGCC
 T S R T K R F V S E A R F V E T L L V A D A S M A A
 TTCTACGGGGCCGACCTGCAGAACACATCCTGACGTTAATGTCGTGGCAGCCGAATCTACAAGCACCCAGCATT
 F Y G A D L Q N H I L T L M S V A A R I Y K H P S I
 AAGAATTCCATCAACCTGATGGTGGAAAAGTGCTGATCGTAGAAAGATGAAAAATGGGGCCAGAGGTGTCCGACAA
 K N S I N L M V V K V L I V E D E K W G P E V S D N
 GGGGGCTTACACTGCGTAACTCTGCAACTGGCAGCGCGTTCAACCAGCCAGCGACCCGCCACCCAGGCACTAC
 G G L T L R N F C N W Q R R F N Q P S D R H P E H Y
 GACACGGCCATCCTGCTCACAGACAGAACCTCTGTGGCAGGAGGGCTGTGTGACACCCCTGGGTGTGGCAGACATC
 D T A I L L T R Q N F C G Q E G L C D T L G V A D I
 GGGACCATTTGTGACCCCAACAAAAGCTGCTCCGTGATCGAGGATGAGGGCTCCAGCGGGCCACACCCCTGGCCCAT
 G T I C D P N K S C S V I E D E G L Q A A H T L A H
 GAACTAGGGCACGTCTCAGCATGCCAACGACACTCCAAGCCCTGCACACGGCTCTCGGGCCATGGCAAGCAC
 E L G H V L S M P H D D S K P C T R L F G P M G K H
 CACGTGATGGCACCGCTGTCACCTGAACCAAGACAGACTGCCCTGGTGGCCATGTATCTCACAGAG
 H V M A P L F V H L N Q T L P W S P C S A M Y L T E
 CTTCTGGACGGGGCACGGAGACTGTCTCTGGATGCCCTGGTGGCCCTGCCCTCCCCACAGGCCCTCCGGG
 L L D G G H G D C L L D A P G A A L P L P T G L P G
 CGCATGGCCCTGTACCAAGCTGGACCAAGCAGTCAGGAGATCTTGGCCGAGTTCCGCACTGCCCAACACCTCT
 R M A L Y Q L D Q Q C R Q I F G P D F R H C P N T S
 GCTCAGGACGTCTGCGCCAGCTTGGTGCACACTGATGGGCTGAGCCCTGTGCCACACGAAGAATGGCAGCCTG
 A Q D V C A Q L W C H T D G A E P L C H T K N G S L
 CCCTGGCTGACGGCACGCCCTGGCACCTCTGCTCAGAAGGCAGCTGTCTACCTGAGGAGGAAGTGGAG
 P W A D G T P C G P G H L C S E G S C L P E E E V E
 AGGCCCAAGCCGTGGTAGATGGAGGCTGGCACCGTGGGGACCCCTGGGAGAATGTTCTCGGACCTGTGGAGGAGGA
 R P K P V V D G G W A P W G P W G E C S R T C G G G G

FIGURE 2

GTACAGTTTCACACCGTGAGTGCAAGGACCCGAGCCTCAGAATGGAGGAAGATACTGCCTGGTCGGAGAGCCAAG
 V Q F S H R E C K D P E P Q N G G R Y C L G R R A K
 TACCACTCATGCCACACGGAGGAATGCCCTGACGGAAAAGCTCAGGGAGCAGCAGTGTGAGAAGTATAATGCC
 Y Q S C H T E E C P P D G K S F R E Q Q C E K Y N A
 TACAATTACACTGACATGGACGGGAATCTCCTGCAGTGGTCCCCAAGTATGCTGGGTGTCCCCCGGGACCGCTGC
 Y N Y T D M D G N L L Q W V P K Y A G V S P R D R C
 AAGTTGTTCTGCCAGCCGGGGAGGAGCAGTTCAAAGTGTTCGAGGCCAAGGTGATTGATGGCACCCGTGTGGG
 K L F C R A R G R S E F K V F E A K V I D G T L C G
 CCAGAAAACACTGCCATCTGTGTCCGTGCCAGTGTGTCAGGCCGGCTGTGACCATGTGGTGGACTGCCCTCGGAAG
 P E T L A I C V R G Q C V K A G C D H V V D S P R K
 CTGGACAAATGCCGGGTGTGGGGGAAAGGCAACTCCTGCAGGAAGGTCTCCGGTCCCTCACCCCCACCAATTAT
 L D K C G V C G G K G N S C R K V S G S L T P T N Y
 GGCTACAATGACATTGTCACCATCCCAGCTGTGCCACTAATATTGACGTGAAGCAGCGGAGCCACCCGGTGTGCAG
 G Y N D I V T I P A G A T N I D V K Q R S H P G V Q
 AACGATGGGAACTACCTGGCCTGAAGACGGCTGATGGCAGTACCTGCTAACGGCAACCTGCCATCTGCCATA
 N D G N Y L A L K T A D G Q Y L L N G N L A I S A I
 GAGCAGGACATCTGGTGAAGGGGACCATCCTGAAGTACAGCGGCTCCATGCCACCCCTGGAGCGCCTGCAGAGCTTC
 E Q D I L V K G T I L K Y S G S I A T L E R L Q S F
 CGGCCCTGCCAGAGCCTGTACAGTGCAGCTCCTGACAGTCCCTGGCAGGTCTTCCCCAAAAGTCAAATACACC
 R P L P E P L T V Q L L T V P G E V F P P K V K Y T
 TTCTTGTTCTTAATGACGTGGACTTTAGCATGCAGAGCAGCAAAGAGAGAGCAACCACCAACATCATCCAGCCGCTG
 F F V P N D V D F S M Q S S K E R A T T N I I Q P L
 CTCCACGCACAGTGGTGTGGGGACTGGTCTGAGTGCTCTAGCACCTGCAGGGCCGGCTGGCAGAGGCAGACTGTA
 L H A Q W V L G D W S E C S S T C G A G W Q R R T V
 GAGTGCAGGGACCCCTCCGGCAGGCCTGCAACAGGCTCTGAAACCCGAGGATGCCAACCCCTGCGAA
 E C R D P S G Q A S A T C N K A L K P E D A K P C E
 AGCCAGCTGTCCCCCTGTGATTCAAGGGGGCAGGGCCAGTCTGTGCTCTGGACATGCGGTACTGAGGTGCAGAC
 S Q L C P L
 AAGGTCTCCACTGTGGTGAATGGTCCCTGGCCATATCAAGGCAGCACGGCCACCCAGGCCTCCATTGCCGCAAC
 CCCTCCAGTACTGCACAAATTCTAAGGGGGAGAGAAAAGGTATGGGCGGCAAAACCTATCATCAACTGTCCAWTG
 NAATGGAACCTTGCTGGGTTCAATTAAAGGCATAAGTAAAGTAAATTCTATTATGATCAACAGACCTCACNTCATCTG
 TTGCAAGATAACACTANTAAAAAAAAAAAAAA

FIGURE 2

WO 99/37660

Figure 3

Figure 4

<pre> * * * PDGWSIWSRWTSCSTSCGNGLQGRGRCDSLN-----NRC-----EGSSVQRTCHIOEC DGGWISHWSPWSSCSVTACGDGVLTIRLGNNSPSEDMNCKP-----EGEARSKKICKKDACP NSGAGHGPSPDQICSVTTCGGGVOKRSLCNPNTPOFGKOC-----VSDVTEVOIIVKODCP EECAHSIMAEYIQCSVTACGSGRQGRGRCDSLN-----NRC-----LSPSIQURACSLSKC DGGWISHWSPWSSCSVTACGVGNIDTIRLGNNSPSEDMNCKP-----KSSGREKVKCOGAPCP DGRWISIWSPHSACTVTCAGGIREYTVVNSPSEPOYSGRAC-----VSDVQEROMVAKRSC HSSAGMIGEAGDCSRICCGGGUOVMRECONPVPCNEGYC-----EGKRVRYRSVLEDCP ---WVI-EBAGECSSKSCELGWQRILVECRDINGQ-PASECAKEVKPASWPCADHPCP ---WQL-CEWSSCSKICCGKGYKKISLKCLSHDGG-VLSH-----ES DGGWAPGCHGAGECCSRICCGGGUOFSHRECKDPEPNSGRYC-----LSRRKYQSOCHTEEC ---WVI-CDWSEBCSSICCGAGWQRITVECRDISGQ-ASAALNKALKPEDAKPESOCP </pre>	TSP1 TSP2 METH1 METH2
1 2 3 4 5 6	

Figure 5

A.**B.****C.****D.**

Figure 6

A.**B.****C.****D.****E.**

Figure

7

FIGURE 8

Figure 9

Figure 10

Figure 11

-1-

SEQUENCE LISTING

<110> Iruela-Arispe, Luisa
Hastings, Gregg A.
Ruben, Steven M.

<120> Meth1 and Meth2 Polynucleotides and Polypeptides

<130> 1488.107PC02

<140>

<141>

<150> 60/072,298
<151> 1998-01-23

<150> 60/098,539
<151> 1998-08-28

<160> 93

<170> PatentIn Ver. 2.0

<210> 1
<211> 3261
<212> DNA
<213> Homo sapiens

<220>

<221> CDS
<222> (1)..(2853)

<220>

<221> UNSURE
<222> (3095)
<223> May be any nucleic acid

<220>

<221> UNSURE
<222> (3248)
<223> May be any nucleic acid

<220>

<221> UNSURE
<222> (3255)
<223> May be any nucleic acid

<220>

<221> UNSURE
<222> (3261)
<223> May be any nucleic acid

<400> 1
atg ggg aac gcg gag cgg gct ccg ggg tct cgg agc ttt ggg ccc gta 48

-2-

Met Gly Asn Ala Glu Arg Ala Pro Gly Ser Arg Ser Phe Gly Pro Val			
1	5	10	15
ccc acg ctg ctg ctg ctc gcc gcg gct cta ctg gcc gtg tcg gac gca	96		
Pro Thr Leu Leu Leu Ala Ala Ala Leu Leu Ala Val Ser Asp Ala			
20	25	30	
ctc ggg cgc ccc tcc gag gag gac gag gag cta gtg gtg ccg gag ctg	144		
Leu Gly Arg Pro Ser Glu Glu Asp Glu Glu Leu Val Val Pro Glu Leu			
35	40	45	
gag cgc gcc ccg gga cac ggg acc acg cgc ctc cgc ctg cac gcc ttt	192		
Glu Arg Ala Pro Gly His Gly Thr Thr Arg Leu Arg Leu His Ala Phe			
50	55	60	
gac cag cag ctg gat ctg gag ctg cgg ccc gac agc agc ttt ttg gcg	240		
Asp Gln Gln Leu Asp Leu Glu Leu Arg Pro Asp Ser Ser Phe Leu Ala			
65	70	75	80
ccc ggc ttc acg ctc cag aac gtg ggg cgc aaa tcc ggg tcc gag acg	288		
Pro Gly Phe Thr Leu Gln Asn Val Gly Arg Lys Ser Gly Ser Glu Thr			
85	90	95	
ccg ctt ccg gaa acc gac ctg gcg cac tgc ttc tac tcc ggc acc gtg	336		
Pro Leu Pro Glu Thr Asp Leu Ala His Cys Phe Tyr Ser Gly Thr Val			
100	105	110	
aat ggc gat ccc agc tcg gct gcc gcc ctc agc ctc tgc gag ggc gtg	384		
Asn Gly Asp Pro Ser Ser Ala Ala Leu Ser Leu Cys Glu Gly Val			
115	120	125	
ccg ggc gcc ttc tac ctg ctg ggg gag gcg tat ttc atc cag ccg ctg	432		
Arg Gly Ala Phe Tyr Leu Leu Gly Glu Ala Tyr Phe Ile Gln Pro Leu			
130	135	140	
ccc gcc gcc agc gag cgc ctc gcc acc gcc ccc gca ggg gag aag ccg	480		
Pro Ala Ala Ser Glu Arg Leu Ala Thr Ala Ala Pro Gly Glu Lys Pro			
145	150	155	160
ccg gca cca cta cag ttc cac ctc ctg cgg cgg aat cgg cag ggc gac	528		
Pro Ala Pro Leu Gln Phe His Leu Leu Arg Arg Asn Arg Gln Gly Asp			
165	170	175	
gta ggc ggc acg tgc ggg gtc gtg gac gac gag ccc cgg ccg act ggg	576		
Val Gly Gly Thr Cys Gly Val Val Asp Asp Glu Pro Arg Pro Thr Gly			
180	185	190	
aaa gcg gag acc gaa gac gag gac gaa ggg act gag ggc gag gac gaa	624		
Lys Ala Glu Thr Glu Asp Glu Asp Glu Gly Thr Glu Gly Glu Asp Glu			
195	200	205	
ggg cct cag tgg tcg ccg cag gac ccg gca ctg caa ggc gta gga cag	672		

-3-

Gly Pro Gln Trp Ser Pro Gln Asp Pro Ala Leu Gln Gly Val Gly Gln			
210	215	220	
ccc aca gga act gga agc ata aga aag aag cga ttt gtg tcc agt cac 720			
Pro Thr Gly Thr Gly Ser Ile Arg Lys Lys Arg Phe Val Ser Ser His			
225	230	235	240
cgc tat gtg gaa acc atg ctt gtg gca gac cag tcg atg gca gaa ttc 768			
Arg Tyr Val Glu Thr Met Leu Val Ala Asp Gln Ser Met Ala Glu Phe			
245	250	255	
cac ggc agt ggt cta aag cat tac ctt ctc acg ttg ttt tcg gtg gca 816			
His Gly Ser Gly Leu Lys His Tyr Leu Leu Thr Leu Phe Ser Val Ala			
260	265	270	
gcc aga ttg tac aaa cac ccc agc att cgt aat tca gtt agc ctg gtg 864			
Ala Arg Leu Tyr Lys His Pro Ser Ile Arg Asn Ser Val Ser Leu Val			
275	280	285	
gtg gtg aag atc ttg gtc atc cac gat gaa cag aag ggg ccg gaa gtg 912			
Val Val Lys Ile Leu Val Ile His Asp Glu Gln Lys Gly Pro Glu Val			
290	295	300	
acc tcc aat gct gcc ctc act ctg cg ^g aac ttt tgc aac tgg cag aag 960			
Thr Ser Asn Ala Ala Leu Thr Leu Arg Asn Phe Cys Asn Trp Gln Lys			
305	310	315	320
cag cac aac cca ccc agt gac cg ^g gat gca gag cac tat gac aca gca 1008			
Gln His Asn Pro Pro Ser Asp Arg Asp Ala Glu His Tyr Asp Thr Ala			
325	330	335	
att ctt ttc acc aga cag gac ttg tgt ggg tcc cag aca tgt gat act 1056			
Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Ser Gln Thr Cys Asp Thr			
340	345	350	
ctt ggg atg gct gat gtt gga act gtg tgt gat ccg agc aga agc tgc 1104			
Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp Pro Ser Arg Ser Cys			
355	360	365	
tcc gtc ata gaa gat gat ggt tta caa gct gcc ttc acc aca gcc cat 1152			
Ser Val Ile Glu Asp Asp Gly Leu Gln Ala Ala Phe Thr Thr Ala His			
370	375	380	
gaa tta ggc cac gtg ttt aac atg cca cat gat gat gca aag cag tgt 1200			
Glu Leu Gly His Val Phe Asn Met Pro His Asp Asp Ala Lys Gln Cys			
385	390	395	400
gcc agc ctt aat ggt gtg aac cag gat tcc cac atg atg gc ^g tca atg 1248			
Ala Ser Leu Asn Gly Val Asn Gln Asp Ser His Met Met Ala Ser Met			
405	410	415	
ctt tcc aac ctg gac cac agc cag cct tgg tct cct tgc agt gcc tac 1296			

-4-

Leu Ser Asn Leu Asp His Ser Gln Pro Trp Ser Pro Cys Ser Ala Tyr			
420	425	430	
atg att aca tca ttt ctg gat aat ggt cat ggg gaa tgt ttg atg gac	1344		
Met Ile Thr Ser Phe Leu Asp Asn Gly His Gly Glu Cys Leu Met Asp			
435	440	445	
aag cct cag aat ccc ata cag ctc cca ggc gat ctc cct ggc acc tcg	1392		
Lys Pro Gln Asn Pro Ile Gln Leu Pro Gly Asp Leu Pro Gly Thr Ser			
450	455	460	
tac gat gcc aac cgg cag tgc cag ttt aca ttt ggg gag gac tcc aaa	1440		
Tyr Asp Ala Asn Arg Gln Cys Gln Phe Thr Phe Gly Glu Asp Ser Lys			
465	470	475	480
cac tgc cct gat gca gcc agc aca tgt agc acc ttg tgg tgt acc ggc	1488		
His Cys Pro Asp Ala Ala Ser Thr Cys Ser Thr Leu Trp Cys Thr Gly			
485	490	495	
acc tct ggt ggg gtg ctg gtg tgt caa acc aaa cac ttc ccg tgg gcg	1536		
Thr Ser Gly Gly Val Leu Val Cys Gln Thr Lys His Phe Pro Trp Ala			
500	505	510	
gat ggc acc agc tgt gga gaa ggg aaa tgg tgt atc aac ggc aag tgt	1584		
Asp Gly Thr Ser Cys Gly Glu Gly Lys Trp Cys Ile Asn Gly Lys Cys			
515	520	525	
gtg aac aaa acc gac aga aag cat ttt gat acg cct ttt cat gga agc	1632		
Val Asn Lys Thr Asp Arg Lys His Phe Asp Thr Pro Phe His Gly Ser			
530	535	540	
tgg gga atg tgg ggg cct tgg gga gac tgt tcg aga acg tgc ggt gga	1680		
Trp Gly Met Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly			
545	550	555	560
gga gtc cag tac acg atg agg gaa tgt gac aac cca gtc cca aag aat	1728		
Gly Val Gln Tyr Thr Met Arg Glu Cys Asp Asn Pro Val Pro Lys Asn			
565	570	575	
gga ggg aag tac tgt gaa ggc aaa cga gtg cgc tac aga tcc tgt aac	1776		
Gly Gly Lys Tyr Cys Glu Gly Lys Arg Val Arg Tyr Arg Ser Cys Asn			
580	585	590	
ctt gag gac tgt cca gac aat aat gga aaa acc ttt aga gag gaa caa	1824		
Leu Glu Asp Cys Pro Asp Asn Asn Gly Lys Thr Phe Arg Glu Glu Gln			
595	600	605	
tgt gaa gca cac aac gag ttt tca aaa gct tcc ttt ggg agt ggg cct	1872		
Cys Glu Ala His Asn Glu Phe Ser Lys Ala Ser Phe Gly Ser Gly Pro			
610	615	620	
gcg gtg gaa tgg att ccc aag tac gct ggc gtc tca cca aag gac agg	1920		

-5-

Ala Val Glu Trp Ile Pro Lys Tyr Ala Gly Val Ser Pro Lys Asp Arg
 625 630 635 640
 tgc aag ctc atc tgc caa gcc aaa ggc att ggc tac ttc ttc gtt ttg 1968
 Cys Lys Leu Ile Cys Gln Ala Lys Gly Ile Gly Tyr Phe Phe Val Leu
 645 650 655
 cag ccc aag gtt gta gat ggt act cca tgt agc cca gat tcc acc tct 2016
 Gln Pro Lys Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Thr Ser
 660 665 670
 gtc tgt gtg caa gga cag tgt gta aaa gct ggt tgt gat cgc atc ata 2064
 Val Cys Val Gln Gly Gln Cys Val Lys Ala Gly Cys Asp Arg Ile Ile
 675 680 685
 gac tcc aaa aag aag ttt gat aaa tgt ggt gtt tgc ggg gga aat gga 2112
 Asp Ser Lys Lys Phe Asp Lys Cys Gly Val Cys Gly Asn Gly
 690 695 700
 tct act tgt aaa aaa ata tca gga tca gtt act agt gca aaa cct gga 2160
 Ser Thr Cys Lys Lys Ile Ser Gly Ser Val Thr Ser Ala Lys Pro Gly
 705 710 715 720
 tat cat gat atc atc aca att cca act gga gcc acc aac atc gaa gtg 2208
 Tyr His Asp Ile Ile Thr Ile Pro Thr Gly Ala Thr Asn Ile Glu Val
 725 730 735
 aaa cag cgg aac cag agg gga tcc agg aac aat ggc agc ttt ctt gcc 2256
 Lys Gln Arg Asn Gln Arg Gly Ser Arg Asn Asn Gly Ser Phe Leu Ala
 740 745 750
 atc aaa gct gat ggc aca tat att ctt aat ggt gac tac act ttg 2304
 Ile Lys Ala Ala Asp Gly Thr Tyr Ile Leu Asn Gly Asp Tyr Thr Leu
 755 760 765
 tcc acc tta gag caa gac att atg tac aaa ggt gtt gtc ttg agg tac 2352
 Ser Thr Leu Glu Gln Asp Ile Met Tyr Lys Gly Val Val Leu Arg Tyr
 770 775 780
 agc ggc tcc tct gcg gca ttg gaa aga att cgc agc ttt agc cct ctc 2400
 Ser Gly Ser Ser Ala Ala Leu Glu Arg Ile Arg Ser Phe Ser Pro Leu
 785 790 795 800
 aaa gag ccc ttg acc atc cag gtt ctt act gtg ggc aat gcc ctt cga 2448
 Lys Glu Pro Leu Thr Ile Gln Val Leu Thr Val Gly Asn Ala Leu Arg
 805 810 815
 cct aaa att aaa tac acc tac ttc gta aag aag aag gaa tct ttc 2496
 Pro Lys Ile Lys Tyr Thr Tyr Phe Val Lys Lys Lys Glu Ser Phe
 820 825 830
 aat gct atc ccc act ttt tca gca tgg gtc att gaa gag tgg ggc gaa 2544

-6-

Asn Ala Ile Pro Thr Phe Ser Ala Trp Val Ile Glu Glu Trp Gly Glu		
835	840	845
tgc tct aag tca tgt gaa ttg ggt tgg cag aga aga ctg gta gaa tgc 2592		
Cys Ser Lys Ser Cys Glu Leu Gly Trp Gln Arg Arg Leu Val Glu Cys		
850.	855	860
cga gac att aat gga cag cct gct tcc gag tgt gca aag gaa gtg aag 2640		
Arg Asp Ile Asn Gly Gln Pro Ala Ser Glu Cys Ala Lys Glu Val Lys		
865	870	875
cca gcc agc acc aga cct tgt gca gac cat ccc tgc ccc cag tgg cag 2688		
Pro Ala Ser Thr Arg Pro Cys Ala Asp His Pro Cys Pro Gln Trp Gln		
885	890	895
ctg ggg gag tgg tca tca tgt tct aag acc tgt ggg aag ggt tac aaa 2736		
Leu Gly Glu Trp Ser Ser Cys Ser Lys Thr Cys Gly Lys Gly Tyr Lys		
900	905	910
aaa aga agc ttg aag tgt ctg tcc cat gat gga ggg gtg tta tct cat 2784		
Lys Arg Ser Leu Lys Cys Leu Ser His Asp Gly Gly Val Leu Ser His		
915	920	925
gag agc tgt gat cct tta aag aaa cct aaa cat ttc ata gac ttt tgc 2832		
Glu Ser Cys Asp Pro Leu Lys Pro Lys His Phe Ile Asp Phe Cys		
930	935	940
aca atg gca gaa tgc agt taa gtgggttaag tgggttagc tttgaggcaa 2883		
Thr Met Ala Glu Cys Ser		
945	950	
ggcaaagtga ggaagggctg gtgcaggaa agcaagaagg ctggagggat ccagcgatac 2943		
ttgccagtaa ccagttaggt gtatcagtaa ggtgggatta tggggtaga tagaaaagga 3003		
gttgaatcat cagactaac tgccagttgc aaatttgata ggatagttag tgaggattat 3063		
taacctctga gcagtatat agcataataa anccccggc attattatta ttatttcttt 3123		
tgttacatct attacaagtt tagaaaaaac aaagcaattt taaaaaaaaaaaaaaaaa 3183		
aaaaaaaaaa aaaggcgcc cgctctagag gatccctcga gggcccaag cttacgcgtg 3243		
catgntgtca tnagtctn 3261		

<210> 2
<211> 950
<212> PRT
<213> Homo sapiens

<400> 2

-7-

Met Gly Asn Ala Glu Arg Ala Pro Gly Ser Arg Ser Phe Gly Pro Val
1 5 10 15

Pro Thr Leu Leu Leu Leu Ala Ala Ala Leu Leu Ala Val Ser Asp Ala
20 25 30

Leu Gly Arg Pro Ser Glu Glu Asp Glu Glu Leu Val Val Pro Glu Leu
35 40 45

Glu Arg Ala Pro Gly His Gly Thr Thr Arg Leu Arg Leu His Ala Phe
50 55 60

Asp Gln Gln Leu Asp Leu Glu Leu Arg Pro Asp Ser Ser Phe Leu Ala
65 70 75 80

Pro Gly Phe Thr Leu Gln Asn Val Gly Arg Lys Ser Gly Ser Glu Thr
85 90 95

Pro Leu Pro Glu Thr Asp Leu Ala His Cys Phe Tyr Ser Gly Thr Val
100 105 110

Asn Gly Asp Pro Ser Ser Ala Ala Ala Leu Ser Leu Cys Glu Gly Val
115 120 125

Arg Gly Ala Phe Tyr Leu Leu Gly Glu Ala Tyr Phe Ile Gln Pro Leu
130 135 140

Pro Ala Ala Ser Glu Arg Leu Ala Thr Ala Ala Pro Gly Glu Lys Pro
145 150 155 160

Pro Ala Pro Leu Gln Phe His Leu Leu Arg Arg Asn Arg Gln Gly Asp
165 170 175

Val Gly Gly Thr Cys Gly Val Val Asp Asp Glu Pro Arg Pro Thr Gly
180 185 190

Lys Ala Glu Thr Glu Asp Glu Glu Gly Thr Glu Gly Glu Asp Glu
195 200 205

Gly Pro Gln Trp Ser Pro Gln Asp Pro Ala Leu Gln Gly Val Gly Gln
210 215 220

Pro Thr Gly Thr Gly Ser Ile Arg Lys Lys Arg Phe Val Ser Ser His
225 230 235 240

Arg Tyr Val Glu Thr Met Leu Val Ala Asp Gln Ser Met Ala Glu Phe
245 250 255

His Gly Ser Gly Leu Lys His Tyr Leu Leu Thr Leu Phe Ser Val Ala
260 265 270

Ala Arg Leu Tyr Lys His Pro Ser Ile Arg Asn Ser Val Ser Leu Val

-8-

275

280

285

Val Val Lys Ile Leu Val Ile His Asp Glu Gln Lys Gly Pro Glu Val
 290 295 300

Thr Ser Asn Ala Ala Leu Thr Leu Arg Asn Phe Cys Asn Trp Gln Lys
 305 310 315 320

Gln His Asn Pro Pro Ser Asp Arg Asp Ala Glu His Tyr Asp Thr Ala
 325 330 335

Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Ser Gln Thr Cys Asp Thr
 340 345 350

Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp Pro Ser Arg Ser Cys
 355 360 365

Ser Val Ile Glu Asp Asp Gly Leu Gln Ala Ala Phe Thr Thr Ala His
 370 375 380

Glu Leu Gly His Val Phe Asn Met Pro His Asp Asp Ala Lys Gln Cys
 385 390 395 400

Ala Ser Leu Asn Gly Val Asn Gln Asp Ser His Met Met Ala Ser Met
 405 410 415

Leu Ser Asn Leu Asp His Ser Gln Pro Trp Ser Pro Cys Ser Ala Tyr
 420 425 430

Met Ile Thr Ser Phe Leu Asp Asn Gly His Gly Glu Cys Leu Met Asp
 435 440 445

Lys Pro Gln Asn Pro Ile Gln Leu Pro Gly Asp Leu Pro Gly Thr Ser
 450 455 460

Tyr Asp Ala Asn Arg Gln Cys Gln Phe Thr Phe Gly Glu Asp Ser Lys
 465 470 475 480

His Cys Pro Asp Ala Ala Ser Thr Cys Ser Thr Leu Trp Cys Thr Gly
 485 490 495

Thr Ser Gly Gly Val Leu Val Cys Gln Thr Lys His Phe Pro Trp Ala
 500 505 510

Asp Gly Thr Ser Cys Gly Glu Gly Lys Trp Cys Ile Asn Gly Lys Cys
 515 520 525

Val Asn Lys Thr Asp Arg Lys His Phe Asp Thr Pro Phe His Gly Ser
 530 535 540

Trp Gly Met Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly
 545 550 555 560

-9-

Gly Val Gln Tyr Thr Met Arg Glu Cys Asp Asn Pro Val Pro Lys Asn
565 570 575

Gly Gly Lys Tyr Cys Glu Gly Lys Arg Val Arg Tyr Arg Ser Cys Asn
580 585 590

Leu Glu Asp Cys Pro Asp Asn Asn Gly Lys Thr Phe Arg Glu Glu Gln
595 600 605

Cys Glu Ala His Asn Glu Phe Ser Lys Ala Ser Phe Gly Ser Gly Pro
610 615 620

Ala Val Glu Trp Ile Pro Lys Tyr Ala Gly Val Ser Pro Lys Asp Arg
625 630 635 640

Cys Lys Leu Ile Cys Gln Ala Lys Gly Ile Gly Tyr Phe Val Leu
645 650 655

Gln Pro Lys Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Thr Ser
660 665 670

Val Cys Val Gln Gly Gln Cys Val Lys Ala Gly Cys Asp Arg Ile Ile
675 680 685

Asp Ser Lys Lys Phe Asp Lys Cys Gly Val Cys Gly Gly Asn Gly
690 695 700

Ser Thr Cys Lys Lys Ile Ser Gly Ser Val Thr Ser Ala Lys Pro Gly
705 710 715 720

Tyr His Asp Ile Ile Thr Ile Pro Thr Gly Ala Thr Asn Ile Glu Val
725 730 735

Lys Gln Arg Asn Gln Arg Gly Ser Arg Asn Asn Gly Ser Phe Leu Ala
740 745 750

Ile Lys Ala Ala Asp Gly Thr Tyr Ile Leu Asn Gly Asp Tyr Thr Leu
755 760 765

Ser Thr Leu Glu Gln Asp Ile Met Tyr Lys Gly Val Val Leu Arg Tyr
770 775 780

Ser Gly Ser Ser Ala Ala Leu Glu Arg Ile Arg Ser Phe Ser Pro Leu
785 790 795 800

Lys Glu Pro Leu Thr Ile Gln Val Leu Thr Val Gly Asn Ala Leu Arg
805 810 815

Pro Lys Ile Lys Tyr Thr Tyr Phe Val Lys Lys Lys Glu Ser Phe
820 825 830

-10-

Asn Ala Ile Pro Thr Phe Ser Ala Trp Val Ile Glu Glu Trp Gly Glu
835 840 845

Cys Ser Lys Ser Cys Glu Leu Gly Trp Gln Arg Arg Leu Val Glu Cys
850 855 860

Arg Asp Ile Asn Gly Gln Pro Ala Ser Glu Cys Ala Lys Glu Val Lys
865 870 875 880

Pro Ala Ser Thr Arg Pro Cys Ala Asp His Pro Cys Pro Gln Trp Gln
885 890 895

Leu Gly Glu Trp Ser Ser Cys Ser Lys Thr Cys Gly Lys Gly Tyr Lys
900 905 910

Lys Arg Ser Leu Lys Cys Leu Ser His Asp Gly Gly Val Leu Ser His
915 920 925

Glu Ser Cys Asp Pro Leu Lys Lys Pro Lys His Phe Ile Asp Phe Cys
930 935 940

Thr Met Ala Glu Cys Ser
945 950

<210> 3

<211> 3008

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(2670)

<220>

<221> UNSURE

<222> (2887)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (2957)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (2970)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (2981).

<223> May be any nucleic acid

-11-

<400> 3
atg ttc ccc gcc ccc gcc ccc cgg tgg ctt ccg ttc ctg ctg ctg 48
Met Phe Pro Ala Pro Ala Ala Pro Arg Trp Leu Pro Phe Leu Leu Leu
1 5 10 15

ctg ctg ctg ctg ctg ccg ctg gcc cgc ggc gcc ccg cgg ccc 96
Leu Leu Leu Leu Leu Pro Leu Ala Arg Gly Ala Pro Ala Arg Pro
20 25 30

gca gcc ggg ggg cag gcc tcg gag ctg gtg gtg ccc acg cgg ttg ccc 144
Ala Ala Gly Gly Gln Ala Ser Glu Leu Val Val Pro Thr Arg Leu Pro
35 40 45

ggc agc gcg ggc gag ctc gcg ctc cac ctg tcc gcc ttc ggc aag ggc 192
Gly Ser Ala Gly Glu Leu Ala Leu His Leu Ser Ala Phe Gly Lys Gly
50 55 60

ttc gtg ttg cgc ctg gcg ccc gac gac agc ttc ctg gcg ccc gag ttc 240
Phe Val Leu Arg Leu Ala Pro Asp Asp Ser Phe Leu Ala Pro Glu Phe
65 70 75 80

aag atc gag cgc ctc ggg ggc tcc ggc cgg gcg acc ggg ggc gag cgg 288
Lys Ile Glu Arg Leu Gly Gly Ser Gly Arg Ala Thr Gly Gly Glu Arg
85 90 95

ggg ctg cgc ggc tgt ttt tcc ggc acc gtg aat ggg gag ccc gag 336
Gly Leu Arg Gly Cys Phe Phe Ser Gly Thr Val Asn Gly Glu Pro Glu
100 105 110

tcg ctg gcg gcg gtc agc ctg tgc cgc ggg ctg agc ggc tcc ttc ctg 384
Ser Leu Ala Ala Val Ser Leu Cys Arg Gly Leu Ser Gly Ser Phe Leu
115 120 125

ctg gac ggc gag gag ttc acc atc cag ccg cag ggc gcg ggg ggc tcc 432
Leu Asp Gly Glu Glu Phe Thr Ile Gln Pro Gln Gly Ala Gly Ser
130 135 140

ctg gct cag ccg cac cgc ctg cag cgc tgg ggt ccc gcc gga gcc cgc 480
Leu Ala Gln Pro His Arg Leu Gln Arg Trp Gly Pro Ala Gly Ala Arg
145 150 155 160

ccc ctc ccg cga gga ccc gag tgg gag gtg gag acg gga gag ggt cag 528
Pro Leu Pro Arg Gly Pro Glu Trp Glu Val Glu Thr Gly Glu Gly Gln
165 170 175

agg cag gag aga gga gac cac cag gag gac agc gag gag gag agc caa 576
Arg Gln Glu Arg Gly Asp His Gln Glu Asp Ser Glu Glu Ser Gln
180 185 190

gaa gag gag gca gaa ggc gct agc gag ccg cca ccg ccc ctg ggg gcc 624
Glu Glu Glu Ala Glu Gly Ala Ser Glu Pro Pro Pro Pro Leu Gly Ala
195 200 205

-12-

acg agt agg acc aag cgg ttt gtg tct gag gcg cgc ttc gtg gag acg 672
 Thr Ser Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr
 210 215 220

 ctg ctg gtg gcc gat gcg tcc atg gct gcc ttc tac ggg gcc gac ctg 720
 Leu Leu Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu
 225 230 235 240

 cag aac cac atc ctg acg tta atg tct gtg gca gcc cga atc tac aag 768
 Gln Asn His Ile Leu Thr Leu Met Ser Val Ala Ala Arg Ile Tyr Lys
 245 250 255

 cac ccc agc atc aag aat tcc atc aac ctg atg gtg gta aaa gtg ctg 816
 His Pro Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu
 260 265 270

 atc gta gaa gat gaa aaa tgg ggc cca gag gtg tcc gac aat ggg ggg 864
 Ile Val Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly
 275 280 285

 ctt aca ctg cgt aac ttc tgc aac tgg cag cgg cgt ttc aac cag ccc 912
 Leu Thr Leu Arg Asn Phe Cys Asn Trp Gln Arg Arg Phe Asn Gln Pro
 290 295 300

 agc gac cgc cac cca gag cac tac gac acg gcc atc ctg ctc acc aga 960
 Ser Asp Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg
 305 310 315 320

 cag aac ttc tgt ggg cag gag ggg ctg tgt gac acc ctg ggt gtg gca 1008
 Gln Asn Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala
 325 330 335

 gac atc ggg acc att tgt gac ccc aac aaa agc tgc tcc gtg atc gag 1056
 Asp Ile Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu
 340 345 350

 gat gag ggg ctc cag gcg gcc cac acc ctg gcc cat gaa cta ggg cac 1104
 Asp Glu Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His
 355 360 365

 gtc ctc agc atg ccc cac gac gac tcc aag ccc tgc aca cgg ctc ttc 1152
 Val Leu Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phe
 370 375 380

 ggg ccc atg ggc aag cac cac gtg atg gca ccg ctg ttc gtc cac ctg 1200
 Gly Pro Met Gly Lys His His Val Met Ala Pro Leu Phe Val His Leu
 385 390 395 400

 aac cag acg ctg ccc tgg tcc ccc tgc agc gcc atg tat ctc aca gag 1248
 Asn Gln Thr Leu Pro Trp Ser Pro Cys Ser Ala Met Tyr Leu Thr Glu
 405 410 415

-13-

ctt ctg gac ggc ggg cac gga gac tgt ctc ctg gat gcc cct ggt gcg Leu Leu Asp Gly Gly His Gly Asp Cys Leu Leu Asp Ala Pro Gly Ala 420 425 430	1296
gcc ctg ccc ctc ccc aca ggc ctc ccg ggc cgc atg gcc ctg tac cag Ala Leu Pro Leu Pro Thr Gly Leu Pro Gly Arg Met Ala Leu Tyr Gln 435 440 445	1344
ctg gac cag cag tgc agg cag atc ttt ggg ccg gat ttc cgc cac tgc Leu Asp Gln Gln Cys Arg Gln Ile Phe Gly Pro Asp Phe Arg His Cys 450 455 460	1392
ccc aac acc tct gct cag gac gtc tgc gcc cag ctt tgg tgc cac act Pro Asn Thr Ser Ala Gln Asp Val Cys Ala Gln Leu Trp Cys His Thr 465 470 475 480	1440
gat ggg gct gag ccc ctg tgc cac acg aag aat ggc agc ctg ccc tgg Asp Gly Ala Glu Pro Leu Cys His Thr Lys Asn Gly Ser Leu Pro Trp 485 490 495	1488
gct gac ggc acg ccg tgc ggg cct ggg cac ctc tgc tca gaa ggc agc Ala Asp Gly Thr Pro Cys Gly Pro Gly His Leu Cys Ser Glu Gly Ser 500 505 510	1536
tgt cta cct gag gag gaa gtg gag agg ccc aag ccc gtg gta gat gga Cys Leu Pro Glu Glu Val Glu Arg Pro Lys Pro Val Val Asp Gly 515 520 525	1584
ggc tgg gca ccg tgg gga ccc tgg gga gaa tgt tct cgg acc tgt gga Gly Trp Ala Pro Trp Gly Pro Trp Gly Glu Cys Ser Arg Thr Cys Gly 530 535 540	1632
gga gga gta cag ttt tca cac cgt gag tgc aag gac ccc gag cct cag Gly Gly Val Gln Phe Ser His Arg Glu Cys Lys Asp Pro Glu Pro Gln 545 550 555 560	1680
aat gga gga aga tac tgc ctg ggt cgg aga gcc aag tac cag tca tgc Asn Gly Gly Arg Tyr Cys Leu Gly Arg Arg Ala Lys Tyr Gln Ser Cys 565 570 575	1728
cac acg gag gaa tgc ccc cct gac ggg aaa agc ttc agg gag cag cag His Thr Glu Glu Cys Pro Pro Asp Gly Lys Ser Phe Arg Glu Gln Gln 580 585 590	1776
tgt gag aag tat aat gcc tac aat tac act gac atg gac ggg aat ctc Cys Glu Lys Tyr Asn Ala Tyr Asn Tyr Thr Asp Met Asp Gly Asn Leu 595 600 605	1824
ctg cag tgg gtc ccc aag tat gct ggg gtg tcc ccc ccg gac cgc tgc Leu Gln Trp Val Pro Lys Tyr Ala Gly Val Ser Pro Arg Asp Arg Cys 610 615 620	1872

-14-

aag ttg ttc tgc cga gcc cg ^g ggg agg agc gag ttc aaa gtg ttc gag Lys Leu Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu 625 630 635 640	1920
gcc aag gtg att gat ggc acc ctg tgt ggg cca gaa aca ctg gcc atc Ala Lys Val Ile Asp Gly Thr Leu Cys Gly Pro Glu Thr Leu Ala Ile 645 650 655	1968
tgt gtc cgt ggc cag tgt gtc aag gcc ggc tgt gac cat gtg gtg gac Cys Val Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asp 660 665 670	2016
tcg cct cgg aag ctg gac aaa tgc ggg gtg tgt ggg ggc aaa ggc aac Ser Pro Arg Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Asn 675 680 685	2064
tcc tgc agg aag gtc tcc ggg tcc ctc acc ccc acc aat tat ggc tac Ser Cys Arg Lys Val Ser Gly Ser Leu Thr Pro Thr Asn Tyr Gly Tyr 690 695 700	2112
aat gac att gtc acc atc cca gct ggt gcc act aat att gac gtg aag Asn Asp Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys 705 710 715 720	2160
cag cgg agc cac ccg ggt gtg cag aac gat ggg aac tac ctg gcg ctg Gln Arg Ser His Pro Gly Val Gln Asn Asp Gly Asn Tyr Leu Ala Leu 725 730 735	2208
aag acg gct gat ggg cag tac ctg ctc aac ggc aac ctg gcc atc tct Lys Thr Ala Asp Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser 740 745 750	2256
gcc ata gag cag gac atc ttg gtg aag ggg acc atc ctg aag tac agc Ala Ile Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser 755 760 765	2304
ggc tcc atc gcc acc ctg gag cgc ctg cag agc ttc cgg ccc ttg cca Gly Ser Ile Ala Thr Leu Glu Arg Leu Gln Ser Phe Arg Pro Leu Pro 770 775 780	2352
gag cct ctg aca gtg cag ctc ctg aca gtc cct ggc gag gtc ttc ccc Glu Pro Leu Thr Val Gln Leu Leu Thr Val Pro Gly Glu Val Phe Pro 785 790 795 800	2400
cca aaa gtc aaa tac acc ttc ttt gtt cct aat gac gtg gac ttt agc Pro Lys Val Lys Tyr Thr Phe Phe Val Pro Asn Asp Val Asp Phe Ser 805 810 815	2448
atg cag agc agc aaa gag aga gca acc acc aac atc atc cag ccg ctg Met Gln Ser Ser Lys Glu Arg Ala Thr Thr Asn Ile Ile Gln Pro Leu 820 825 830	2496

-15-

ctc cac gca cag tgg gtg ctg ggg gac tgg tct gag tgc tct agc acc	2544
Leu His Ala Gln Trp Val Leu Gly Asp Trp Ser Glu Cys Ser Ser Thr	
835	840
845	
tgc ggg gcc ggc tgg cag agg cga act gta gag tgc agg gac ccc tcc	2592
Cys Gly Ala Gly Trp Gln Arg Arg Thr Val Glu Cys Arg Asp Pro Ser	
850	855
860	
ggc cag gcc tct gcc acc tgc aac aag gct ctg aaa ccc gag gat gcc	2640
Gly Gln Ala Ser Ala Thr Cys Asn Lys Ala Leu Lys Pro Glu Asp Ala	
865	870
875	880
aag ccc tgc gaa agc cag ctg tgc ccc ctg tgattcaggg gggcaggggc	2690
Lys Pro Cys Glu Ser Gln Leu Cys Pro Leu	
885	890
cagtcttgtg ctccctggaca tgcggtaactg aggtgcagac aaggctcca ctgtggcac	2750
tgggtccctt ggccatatatca aggcagcactg gcccacccag gcctcccatt gccgcaaccc	2810
ctccagtaact gcacaaaattc ctaaggggaa agagaaaagg tatggggcg aaacccat	2870
catcaactgt ccawtgnaat ggaacttgct cgggttcaat taaaggcata agttaaagta	2930
aattcattat gatcaacaga cctcacntca tctgttgc an gatacaacta ntaaaaaaaaa	2990
aaaaaaaaaaaa aaaaaaaaaa	3008

<210> 4
<211> 890
<212> PRT
<213> Homo sapiens

<400> 4			
Met Phe Pro Ala Pro Ala Ala Pro Arg Trp Leu Pro Phe Leu Leu			
1	5	10	15
Leu Leu Leu Leu Leu Pro Leu Ala Arg Gly Ala Pro Ala Arg Pro			
20	25	30	
Ala Ala Gly Gly Gln Ala Ser Glu Leu Val Val Pro Thr Arg Leu Pro			
35	40	45	
Gly Ser Ala Gly Glu Leu Ala Leu His Leu Ser Ala Phe Gly Lys Gly			
50	55	60	
Phe Val Leu Arg Leu Ala Pro Asp Asp Ser Phe Leu Ala Pro Glu Phe			
65	70	75	80
Lys Ile Glu Arg Leu Gly Gly Ser Gly Arg Ala Thr Gly Gly Glu Arg			

-16-

85

90

95

Gly Leu Arg Gly Cys Phe Phe Ser Gly Thr Val Asn Gly Glu Pro Glu
 100 105 110

Ser Leu Ala Ala Val Ser Leu Cys Arg Gly Leu Ser Gly Ser Phe Leu
 115 120 125

Leu Asp Gly Glu Glu Phe Thr Ile Gln Pro Gln Gly Ala Gly Gly Ser
 130 135 140

Leu Ala Gln Pro His Arg Leu Gln Arg Trp Gly Pro Ala Gly Ala Arg
 145 150 155 160

Pro Leu Pro Arg Gly Pro Glu Trp Glu Val Glu Thr Gly Glu Gly Gln
 165 170 175

Arg Gln Glu Arg Gly Asp His Gln Glu Asp Ser Glu Glu Ser Gln
 180 185 190

Glu Glu Glu Ala Glu Gly Ala Ser Glu Pro Pro Pro Pro Leu Gly Ala
 195 200 205

Thr Ser Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr
 210 215 220

Leu Leu Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu
 225 230 235 240

Gln Asn His Ile Leu Thr Leu Met Ser Val Ala Ala Arg Ile Tyr Lys
 245 250 255

His Pro Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu
 260 265 270

Ile Val Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly
 275 280 285

Leu Thr Leu Arg Asn Phe Cys Asn Trp Gln Arg Arg Phe Asn Gln Pro
 290 295 300

Ser Asp Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg
 305 310 315 320

Gln Asn Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala
 325 330 335

Asp Ile Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu
 340 345 350

Asp Glu Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His
 355 360 365

-17-

Val Leu Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phe
370 375 380

Gly Pro Met Gly Lys His His Val Met Ala Pro Leu Phe Val His Leu
385 390 395 400

Asn Gln Thr Leu Pro Trp Ser Pro Cys Ser Ala Met Tyr Leu Thr Glu
405 410 415

Leu Leu Asp Gly Gly His Gly Asp Cys Leu Leu Asp Ala Pro Gly Ala
420 425 430

Ala Leu Pro Leu Pro Thr Gly Leu Pro Gly Arg Met Ala Leu Tyr Gln
435 440 445

Leu Asp Gln Gln Cys Arg Gln Ile Phe Gly Pro Asp Phe Arg His Cys
450 455 460

Pro Asn Thr Ser Ala Gln Asp Val Cys Ala Gln Leu Trp Cys His Thr
465 470 475 480

Asp Gly Ala Glu Pro Leu Cys His Thr Lys Asn Gly Ser Leu Pro Trp
485 490 495

Ala Asp Gly Thr Pro Cys Gly Pro Gly His Leu Cys Ser Glu Gly Ser
500 505 510

Cys Leu Pro Glu Glu Val Glu Arg Pro Lys Pro Val Val Asp Gly
515 520 525

Gly Trp Ala Pro Trp Gly Pro Trp Gly Glu Cys Ser Arg Thr Cys Gly
530 535 540

Gly Gly Val Gln Phe Ser His Arg Glu Cys Lys Asp Pro Glu Pro Gln
545 550 555 560

Asn Gly Gly Arg Tyr Cys Leu Gly Arg Arg Ala Lys Tyr Gln Ser Cys
565 570 575

His Thr Glu Glu Cys Pro Pro Asp Gly Lys Ser Phe Arg Glu Gln Gln
580 585 590

Cys Glu Lys Tyr Asn Ala Tyr Asn Tyr Thr Asp Met Asp Gly Asn Leu
595 600 605

Leu Gln Trp Val Pro Lys Tyr Ala Gly Val Ser Pro Arg Asp Arg Cys
610 615 620

Lys Leu Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu
625 630 635 640

-18-

Ala Lys Val Ile Asp Gly Thr Leu Cys Gly Pro Glu Thr Leu Ala Ile
645 650 655

Cys Val Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asp
660 665 670

Ser Pro Arg Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Asn
675 680 685

Ser Cys Arg Lys Val Ser Gly Ser Leu Thr Pro Thr Asn Tyr Gly Tyr
690 695 700

Asn Asp Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys
705 710 715 720

Gln Arg Ser His Pro Gly Val Gln Asn Asp Gly Asn Tyr Leu Ala Leu
725 730 735

Lys Thr Ala Asp Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser
740 745 750

Ala Ile Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser
755 760 765

Gly Ser Ile Ala Thr Leu Glu Arg Leu Gln Ser Phe Arg Pro Leu Pro
770 775 780

Glu Pro Leu Thr Val Gln Leu Leu Thr Val Pro Gly Glu Val Phe Pro
785 790 795 800

Pro Lys Val Lys Tyr Thr Phe Phe Val Pro Asn Asp Val Asp Phe Ser
805 810 815

Met Gln Ser Ser Lys Glu Arg Ala Thr Thr Asn Ile Ile Gln Pro Leu
820 825 830

Leu His Ala Gln Trp Val Leu Gly Asp Trp Ser Glu Cys Ser Ser Thr
835 840 845

Cys Gly Ala Gly Trp Gln Arg Arg Thr Val Glu Cys Arg Asp Pro Ser
850 855 860

Gly Gln Ala Ser Ala Thr Cys Asn Lys Ala Leu Lys Pro Glu Asp Ala
865 870 875 880

Lys Pro Cys Glu Ser Gln Leu Cys Pro Leu
885 890

<210> 5

<211> 1203

<212> PRT

-19-

<213> Bovine

<400> 5

Met Asp Pro Pro Ala Gly Ala Ala Gly Arg Leu Leu Cys Pro Ala Leu
1 5 10 15

Leu Leu Leu Leu Leu Pro Leu Pro Ala Asp Ala Arg Leu Ala Ala
20 25 30

Ala Ala Ala Asp Pro Pro Gly Gly Pro Gln Gly His Gly Ala Glu Arg
35 40 45

Ile Leu Ala Val Pro Val Arg Thr Asp Ala Gln Gly Arg Leu Val Ser
50 55 60

His Val Val Ser Ala Ala Thr Ala Pro Ala Gly Val Arg Thr Arg Arg
65 70 75 80

Ala Ala Pro Ala Gln Ile Pro Gly Leu Ser Gly Ser Glu Glu Asp
85 90 95

Pro Gly Gly Arg Leu Phe Tyr Asn Val Thr Val Phe Gly Arg Asp Leu
100 105 110

His Leu Arg Leu Arg Pro Asn Ala Arg Leu Val Ala Pro Gly Ala Thr
115 120 125

Val Glu Trp Gln Gly Glu Ser Gly Ala Thr Arg Val Glu Pro Leu Leu
130 135 140

Gly Thr Cys Leu Tyr Val Gly Asp Val Ala Gly Leu Ala Glu Ser Ser
145 150 155 160

Ser Val Ala Leu Ser Asn Cys Asp Gly Leu Ala Gly Leu Ile Arg Met
165 170 175

Glu Glu Glu Glu Phe Phe Ile Glu Pro Leu Glu Lys Gly Leu Ala Ala
180 185 190

Lys Glu Ala Glu Gln Gly Arg Val His Val Val Tyr His Arg Pro Thr
195 200 205

Thr Ser Arg Pro Pro Leu Gly Gln Ala Leu Asp Thr Gly Ile Ser
210 215 220

Ala Asp Ser Leu Asp Ser Leu Ser Arg Ala Leu Gly Val Leu Glu Glu
225 230 235 240

Arg Val Asn Ser Ser Arg Arg Arg Met Arg Arg His Ala Ala Asp Asp
245 250 255

Asp Tyr Asn Ile Glu Val Leu Leu Gly Val Asp Asp Ser Val Val Gln

-20-

260 265 270

Phe His Gly Thr Glu His Val Gln Lys Tyr Leu Leu Thr Leu Met Asn
275 280 285

Ile Val Asn Glu Ile Tyr His Asp Glu Ser Leu Gly Ala His Ile Asn
290 295 300

Val Val Leu Val Arg Ile Ile Leu Leu Ser Tyr Gly Lys Ser Met Ser
305 310 315 320

Leu Ile Glu Ile Gly Asn Pro Ser Gln Ser Leu Glu Asn Val Cys Arg
325 330 335

Trp Ala Tyr Leu Gln Gln Lys Pro Asp Thr Asp His Asp Glu Tyr His
340 345 350

Asp His Ala Ile Phe Leu Thr Arg Gln Asp Phe Gly Pro Ser Gly Met
355 360 365

Gln Gly Tyr Ala Pro Val Thr Gly Met Cys His Pro Val Arg Ser Cys
370 375 380

Thr Leu Asn His Glu Asp Gly Phe Ser Ser Ala Phe Val Val Ala His
385 390 395 400

Glu Thr Gly His Val Leu Gly Met Glu His Asp Gly Gln Gly Asn Arg
405 410 415

Cys Gly Asp Glu Val Arg Leu Gly Ser Ile Met Ala Pro Leu Val Gln
420 425 430

Ala Ala Phe His Arg Phe His Trp Ser Arg Cys Ser Gln Gln Glu Leu
435 440 445

Ser Arg Tyr Leu His Ser Tyr Asp Cys Leu Arg Asp Asp Pro Phe Thr
450 455 460

His Asp Trp Pro Ala Leu Pro Gln Leu Pro Gly Leu His Tyr Ser Met
465 470 475 480

Asn Glu Gln Cys Arg Phe Asp Phe Gly Leu Gly Tyr Met Met Cys Thr
485 490 495

Ala Phe Arg Thr Phe Asp Pro Cys Lys Gln Leu Trp Cys Ser His Pro
500 505 510

Asp Asn Pro Tyr Phe Cys Lys Thr Lys Lys Gly Pro Pro Leu Asp Gly
515 520 525

Thr Met Cys Ala Pro Gly Lys His Cys Phe Lys Gly His Cys Ile Trp
530 535 540

-21-

Leu Thr Pro Asp Ile Leu Lys Arg Asp Gly Asn Trp Gly Ala Trp Ser
545 550 555 560

Pro Phe Gly Ser Cys Ser Arg Thr Cys Gly Thr Gly Val Lys Phe Arg
565 570 575

Thr Arg Gln Cys Asp Asn Pro His Pro Ala Asn Gly Gly Arg Thr Cys
580 585 590

Ser Gly Leu Ala Tyr Asp Phe Gln Leu Cys Asn Ser Gln Asp Cys Pro
595 600 605

Asp Ala Leu Ala Asp Phe Arg Glu Glu Gln Cys Arg Gln Trp Asp Leu
610 615 620

Tyr Phe Glu His Gly Asp Ala Gln His His Trp Leu Pro His Glu His
625 630 635 640

Arg Asp Ala Lys Glu Arg Cys His Leu Tyr Cys Glu Ser Lys Glu Thr
645 650 655

Gly Glu Val Val Ser Met Lys Arg Met Val His Asp Gly Thr Arg Cys
660 665 670

Ser Tyr Lys Asp Ala Phe Ser Leu Cys Val Arg Gly Asp Cys Arg Lys
675 680 685

Val Gly Cys Asp Gly Val Ile Gly Ser Ser Lys Gln Glu Asp Lys Cys
690 695 700

Gly Val Cys Gly Gly Asp Asn Ser His Cys Lys Val Val Lys Gly Thr
705 710 715 720

Phe Ser Arg Ser Pro Lys Lys Leu Gly Tyr Ile Lys Met Phe Glu Ile
725 730 735

Pro Ala Gly Ala Arg His Leu Leu Ile Gln Glu Ala Asp Thr Thr Ser
740 745 750

His His Leu Ala Val Lys Asn Leu Glu Thr Gly Lys Phe Ile Leu Asn
755 760 765

Glu Glu Asn Asp Val Asp Pro Asn Ser Lys Thr Phe Ile Ala Met Gly
770 775 780

Val Glu Trp Glu Tyr Arg Asp Glu Asp Gly Arg Glu Thr Leu Gln Thr
785 790 795 800

Met Gly Pro Leu His Gly Thr Ile Thr Val Leu Val Ile Pro Glu Gly
805 810 815

-22-

Asp Ala Arg Ile Ser Leu Thr Tyr Lys Tyr Met Ile His Glu Asp Ser
820 825 830

Leu Asn Val Asp Asp Asn Asn Val Leu Glu Asp Asp Ser Val Gly Tyr
835 840 845

Glu Trp Ala Leu Lys Lys Trp Ser Pro Cys Ser Lys Pro Cys Gly Gly
850 855 860

Gly Ser Gln Phe Thr Lys Tyr Gly Cys Arg Arg Arg Leu Asp His Lys
865 870 875 880

Met Val His Arg Gly Phe Cys Asp Ser Val Ser Lys Pro Lys Ala Ile
885 890 895

Arg Arg Thr Cys Asn Pro Gln Glu Cys Ser Gln Pro Val Trp Val Thr
900 905 910

Gly Glu Trp Glu Pro Cys Ser Arg Ser Cys Gly Arg Thr Gly Met Gln
915 920 925

Val Arg Ser Val Arg Cys Val Gln Pro Leu His Asn Asn Thr Thr Arg
930 935 940

Ser Val His Thr Lys His Cys Asn Asp Ala Arg Pro Glu Gly Arg Arg
945 950 955 960

Ala Cys Asn Arg Glu Leu Cys Pro Gly Arg Trp Arg Ala Gly Ser Trp
965 970 975

Ser Gln Cys Ser Val Thr Cys Gly Asn Gly Thr Gln Glu Arg Pro Val
980 985 990

Leu Cys Arg Thr Ala Asp Asp Ser Phe Gly Val Cys Arg Glu Glu Arg
995 1000 1005

Pro Glu Thr Ala Arg Ile Cys Arg Leu Gly Pro Cys Pro Arg Asn Thr
1010 1015 1020

Ser Asp Pro Ser Lys Lys Ser Tyr Val Val Gln Trp Leu Ser Arg Pro
1025 1030 1035 1040

Asp Pro Asn Ser Pro Val Gln Glu Thr Ser Ser Lys Gly Arg Cys Gln
1045 1050 1055

Gly Asp Lys Ser Val Phe Cys Arg Met Glu Val Leu Ser Arg Tyr Cys
1060 1065 1070

Ser Ile Pro Gly Tyr Asn Lys Leu Cys Cys Lys Ser Cys Asn Pro His
1075 1080 1085

Asp Asn Leu Thr Asp Val Asp Asp Arg Ala Glu Pro Pro Ser Gly Lys

-23-

1090

1095

1100

His Asn Asp Ile Glu Glu Leu Met Pro Thr Leu Ser Val Pro Thr Leu
1105 1110 1115 1120

Val Met Glu Val Gln Pro Pro Gly Ile Pro Leu Glu Val Pro Leu
1125 1130 1135

Asn Thr Ser Ser Thr Asn Ala Thr Glu Asp His Pro Glu Thr Asn Ala
1140 1145 1150

Val Asp Val Pro Tyr Lys Ile Pro Gly Leu Glu Asp Glu Val Gln Pro
1155 1160 1165

Pro Asn Leu Ile Pro Arg Arg Pro Ser Pro Tyr Glu Lys Thr Arg Asn
1170 1175 1180

Gln Arg Ile Gln Glu Leu Ile Asp Glu Met Arg Lys Lys Glu Met Leu
1185 1190 1195 1200

Gly Lys Phe

<210> 6

<211> 50

<212> PRT

<213> Homo sapiens

<400> 6

Asp Asp Gly Trp Ser Pro Trp Ser Glu Trp Thr Ser Cys Ser Thr Ser
1 5 10 15

Cys Gly Asn Gly Ile Gln Gln Arg Gly Arg Ser Cys Asp Ser Leu Asn
20 25 30

Asn Arg Cys Glu Gly Ser Ser Val Gln Thr Arg Thr Cys His Ile Gln
35 40 45

Glu Cys

50

<210> 7

<211> 57

<212> PRT

<213> Homo sapiens

<400> 7

Asp Gly Gly Trp Ser His Trp Ser Pro Trp Ser Ser Cys Ser Val Thr
1 5 10 15

-24-

Cys Gly Asp Gly Val Ile Thr Arg Ile Arg Leu Cys Asn Ser Pro Ser
20 25 30

Pro Gln Met Asn Gly Lys Pro Cys Glu Gly Glu Ala Arg Glu Thr Lys
35 40 45

Ala Cys Lys Lys Asp Ala Cys Pro Ile
50 55

<210> 8

<211> 57

<212> PRT

<213> Homo sapiens

<400> 8

Asn Gly Gly Trp Gly Pro Trp Ser Pro Trp Asp Ile Cys Ser Val Thr
1 5 10 15

Cys Gly Gly Val Gln Lys Arg Ser Arg Leu Cys Asn Asn Pro Thr
20 25 30

Pro Gln Phe Gly Gly Lys Asp Cys Val Gly Asp Val Thr Glu Asn Gln
35 40 45

Ile Cys Asn Lys Gln Asp Cys Pro Ile
50 55

<210> 9

<211> 50

<212> PRT

<213> Homo sapiens

<400> 9

Glu Glu Gly Trp Ser Pro Trp Ala Glu Trp Thr Gln Cys Ser Val Thr
1 5 10 15

Cys Gly Ser Gly Thr Gln Gln Arg Gly Arg Ser Cys Asp Val Thr Ser
20 25 30

Asn Thr Cys Leu Gly Pro Ser Ile Gln Thr Arg Ala Cys Ser Leu Ser
35 40 45

Lys Cys

50

<210> 10

<211> 57

<212> PRT

<213> Homo sapiens

-25-

<400> 10

Asp Gly Gly Trp Ser His Trp Ser Pro Trp Ser Ser Cys Ser Val Thr
1 5 10 15

Cys Gly Val Gly Asn Ile Thr Arg Ile Arg Leu Cys Asn Ser Pro Val
20 25 30

Pro Gln Met Gly Gly Lys Asn Cys Lys Gly Ser Gly Arg Glu Thr Lys
35 40 45

Ala Cys Gln Gly Ala Pro Cys Pro Ile
50 55

<210> 11

<211> 56

<212> PRT

<213> Homo sapiens

<400> 11

Asp Gly Arg Trp Ser Pro Trp Ser Pro Trp Ser Ala Cys Thr Val Thr
1 5 10 15

Cys Ala Gly Gly Ile Arg Glu Arg Thr Arg Val Cys Asn Ser Pro Glu
20 25 30

Pro Gln Tyr Gly Gly Lys Ala Cys Val Gly Asp Val Gln Glu Arg Gln
35 40 45

Met Cys Asn Lys Arg Ser Cys Pro
50 55

<210> 12

<211> 3974

<212> DNA

<213> Homo sapiens

<400> 12

ggtagcttaag tgagttaggc gtccgatcga cggacgcctt ttttttgaat tcgtaatcat 60

ggtcatagtc gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacggag 120

ccggaagcat aaagtgtaaa gcctggggtg cctaattgagt gagcttaactc acattaattg 180

cgttgcgctc actgcccgt ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa 240

tccggccaacg cgccccggaga ggcgggttgc gtattggcg ctcttcgct tcctcgctca 300

ctgactcgct ggcgtcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg 360

-26-

taatacgggtt atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc 420
agcaaaaggc caggaaccgt aaaaaggccg cggtgctggc gttttccat aggctccgccc 480
ccccctgacga gcatcacaaa aatcgacgct caagttagag gtggcgaac ccgacaggac 540
tataaagata ccaggcggtt cccccctggaa gctccctcggt gcgccttcct gttccgaccc 600
tgcccgcttac cggatacctg tccgccttgc tcccttcggg aagcgtggcg ctttctcata 660
gctcacgctg taggtatctc agttcggtgt aggtcggtcg ctccaagctg ggctgtgtgc 720
acgaacccccc cggtcagcccc gaccgctgctg ccttatccgg taactatcgat cttgagtcca 780
accccgtaag acacgactta tcgcccactgg cagcagccac tggtaacagg attagcagag 840
cgaggtatgt aggcgggtgct acagagttct tgaagtggtg gcctaactac ggctacacta 900
gaagaacagt atttggatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg 960
gtagctcttgc atccggcaaa caaaccacccg ctggtagccgg tggttttttt gtttgcaga 1020
agcagattac ggcgcagaaaa aaaggatctc aagaagatcc tttgatctt tctacgggt 1080
ctgacgctca gtggAACGAA aactcacgtt aagggatTTT ggtcatgaga ttatcgctga 1140
caattcgcgc gcgaaggcga agcggcatgc atttacgtt acaccatcga atggtgcaaa 1200
acctttcgcg gtatggcatg atagcgccccg gaagagagtc aattcagggt ggtgaatgtg 1260
aaaccagtaa cgttatacga tgtcgcagag tatgccgggt tctcttatca gaccgttcc 1320
cgctgggtga accaggccag ccacgttct gcgaaaacgc gggaaaaagt ggaagcggcg 1380
atggcggagc tgaattacat tcccaaccgc gtggcacaac aactggcggtt caaacagtcg 1440
ttgctgatttgc gcgttgccac ctccagtctg gccctgcacg cgccgtcgca aattgtcg 1500
gcgattaaat ctcgcgcga tcaactgggt gccagcgtgg tggtgcgtat ggtagaacga 1560
agcggcgtcg aagcctgtaa agcggcggtg cacaatcttc tcgcgcacac cgtcagtggg 1620
ctgatcatta actatccgtt ggatgaccag gatgccatttgc tgcgtggatc tgcctgcact 1680
aatgttccgg cgttatttct tgcgtgtctt gaccagacac ccatcaacacg tattatTTT 1740
tcccatgaag acggtaacgcg actggcggtg gagcatctgg tcgcattggg tcaccagcaa 1800
atcgcgtgt tagcggggccc attaagttct gtctcgccgc gtctcggtct ggctgggtgg 1860
cataaaatatc tcactcgcaaa tcaaattcag ccgatagcgg aacgggaagg cgactggagt 1920

-27-

gccatgtccg gtttcaaca aaccatgcaa atgctgaatg agggcatcgt tcccactgcg 1980
atgctggttg ccaacgatca gatggcgctg ggcgcaatgc gcgcattac cgagtccggg 2040
ctgcgcgttg gtgcggatat ctgcgttagtg ggatacgacg ataccgaaga cagctcatgt 2100
tatatccccgc cgtaaaccac catcaaacag gatttcgcc tgctgggca aaccagcgtg 2160
gaccgcttgc tgcaactctc tcagggccag gcggtaagg gcaatcagct gttgcccgtc 2220
tcactggta aaagaaaaac caccctggcg cccaatacgc aaaccgcctc tccccgcgcg 2280
ttggccgatt cattaatgca gctggcacga caggtttccc gactggaaag cggcagtga 2340
gcgcaacgca attaatgtaa gttagcgcga attgtcgacc aaagcggcca tcgtgcctcc 2400
ccactcctgc agttcggggg catggatgctc cgatagccg ctgctggttt cctggatgcc 2460
gacggatttg cactgccgtt agaactccgc gaggtcggtcc agcctcaggc agcagctgaa 2520
ccaaactcgcg aggggatcga gcccgggtg ggcgaagaac tccagcatga gatccccgcg 2580
ctggaggatc atccagccgg cgtcccgaa aacgattccg aagcccaacc tttcatagaa 2640
ggcggcggtg gaatcgaaat ctctgtatgg caggttggc gtcgttttgt cggcatttc 2700
gaaccccaga gtcccgctca gaagaactcg tcaagaaggc gatagaaggc gatgcgctgc 2760
gaatcgggag cggcgatacc gtaaaagcagc aggaagcggt cagccattc gcccggcaagc 2820
tcttcagcaa tatcacgggt agccaaacgct atgtcctgat agcggccgc cacacccagc 2880
cgccccacagt cgatgaatcc agaaaagcgg ccattttcca ccatgatatt cgccaaggcag 2940
gcacgcgat cggtcacgac gagatcctcg ccgtcgccca tgcgcgcctt gaggctggcg 3000
aacagttcgg ctggcgcgag cccctgatgc tcttcgtcca gatcatcctg atcgacaaga 3060
ccggcttcca tccgagtacg tgctcgctcg atgcgtatgtt tgcgttttgt gtcgaatggg 3120
caggtagccg gatcaagcgt atgcagccgc cgcattgcat cagccatgat ggatactttc 3180
tcggcaggag caaggtgaga tgacaggaga tcctgccccg gcacttcgccc caatagcagc 3240
cagtccttc ccgcttcagt gacaacgtcg agcacagctg cgcaaggaac gcccgtcg 3300
gccagccacg atagccgcgc tgcctcgatcc tgcagttcat tcagggcacc ggacaggctcg 3360
gtcttgacaa aaagaaccgg gcgcggctgc gctgacagcc ggaacacggc ggcacatcagag 3420
cagccgattt tctgttgtgc ccagtcatacg ccgaatagcc tctccaccca agcggccgga 3480

-28-

gaacctgcgt gcaatccatc ttgttcaatc atgcgaaacg atcctcatcc tgtctttga 3540
tcagatcttgcg atccccctgcg ccatcagatc ctggcgcca agaaaggccat ccagttact 3600
ttgcagggtc tcccaacctt accagaggc gccccagctg gcaattccgg ttcgcttgct 3660
gtccataaaa ccgcccagtc tagctatcgc catgtaagcc cactgcaagc tacctgcttt 3720
ctcttgcgc ttgcgttttc cttgtccag atagcccagt agctgacatt catccgggt 3780
cagcacggtt tctgcggact ggcttctac gtgttccgct tccttagca gcccttgcgc 3840
cctgagtgtc tgccgcagcg tgaagcttaa aaaactgcaa aaaatagttt gacttgtgag 3900
cggataacaa ttaagatgta cccattgtg agcgataac aatttacac attaaagagg 3960
agaaattaca tatg 3974

<210> 13
<211> 112
<212> DNA
<213> Homo sapiens

<400> 13
aagctaaaaa aactgcaaaa aatagttga cttgtgagcg gataacaatt aagatgtacc 60
caatttgtgag cggataacaa tttcacacat taaagaggag aaattacata tg 112

<210> 14
<211> 542
<212> DNA
<213> Mus musculus

<220>
<221> UNSURE
<222> (3)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (21)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (22)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (361)
<223> May be any nucleic acid

-29-

<220>
<221> UNSURE
<222> (369)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (407)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (427)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (479)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (482)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (535)
<223> May be any nucleic acid

<400> 14
gtncgaattt cggcacgaga nnttagacgc ctttcatgg aagctgggga atgtggggc 60
cttgggaga ctgttcgaga acgtgcggtg gaggagtcca gtacacgatg agggaatgtg 120
acaacccagt cccaaagaat ggagggaaat actgtgaagg caaacgagtg cgctacagat 180
cctgtaacct tgaggactgt ccagacaata atggaaaaac cttagagag gaacaatgtg 240
aagcacacaa cgagttttca aaagcttcct ttgggagtgg gcctgcggtg gaatggattc 300
ccaaagtacgc tggcgctctca ccaaaggaca ggtcaagtt catgttgcca agccaaaggc 360
nttggctant tctttcgttt tgcagccaa gtttgttagg tgggtantcc atgttaggcc 420
cagattncac ctgtgtctgt gtgcaggac agtgtgttaa aagttgggttg tgatccgcnt 480
cntagattcc aaaaggagtt ttgttaatgt ggtgtttcn gggggaatgg tctantttta 540
aa

542

<210> 15
<211> 320

-30-

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 15

cagagaacat tcgccccact cttcaatgac ccatgctgaa aaagtgggaa tagcattgaa 60
agattccttc ttcttctta cgaaggtaggt gtatttaatt ttaggtcgaa gggcattgcc 120
cacagtaaga acctggatgg tcaagggctc tttgagaggg ctaaagctgc gaattcttc 180
caatgccgca gaggagccgc tgtacctcaa gacaacacct ttgtacataa tgtcttgctc 240
taaggtggac aaagtgttagt caccattaag aatatatgtg ccatcagcag ctttgatggc 300
aagaaagctg cccttgttcc

320

<210> 16

<211> 316

<212> DNA

<213> Eimeria tenella

<400> 16

aatgccgaga cattaatgga cagcctgctt ccgagtgtgc aaaggaagtg aagccagcca 60
gcaccagacc ttgtcagac catccctgcc cccagtgca gctggggag tggcatcat 120
gttctaagac ctgtggaaag gtttacaaaa aaagaagctt gaagtgtctg tcccatgtat 180
gaggggtgtt atctcatgag agctgtgatc cttaaagaa acctaaacat ttcataact 240
tttgcacaat ggcagaatgc agttaagtgg tttaagtggt gttagcttg agggcaaggc 300
aaagtgagga agggct

316

<210> 17

<211> 383

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> UNSURE

<222> (160)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (326)

<223> May be any nucleic acid

-31-

<220>
<221> UNSURE
<222> (358)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (366)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (377)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (379)
<223> May be any nucleic acid

<400> 17
gtcgacccac gcgtccggat ggtactccat gtagcccaga ttccacctct gtctgtgtgc 60
aaggacagtg tgtaaaagct ggttggatc gcatcataga ctccaaaaag aagtttgata 120
aatgtgggt ttgcggggga aatggatcta cttgtaaaan aatatcagga tcagttacta 180
gtgcaaaacc tgggatatac tgatatcatc acaattccaa ctgggagcca ccaacatcga 240
agtgaaacag cggaaccaga ggggatccag ggaacaatgg gcagcttct tgccatcaa 300
gctgctggat ggcacatata ttcttnaatg gtgactacac tttgtccacc ttagaganag 360
acattntgtg acaaagngnt tgt

383

<210> 18
<211> 404
<212> DNA
<213> Crotalus atrox

<220>
<221> UNSURE
<222> (21)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (301)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (335)

-32-

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (373)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (378)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (382)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (383)

<223> May be any nucleic acid

<400> 18

cccacgcgtc cggccacggt nccgggactt gtgtgggtcc cagacatgtg atactcttgg 60

gatggctgat gttggaactg tgtgtgatcc gagcagaaggc tgctccgtca tagaagatga 120

tggtttacaa gctgccttca ccacagccca tgaatttaggc cacgtgtta acatgccaca 180

tgtatggatgc aaagcagtgt gccagcctta aatggtgtga accagggatt cccacatgtat 240

ggcgtcaatg ctttccaacc tgggaccaca gccagccttg ggtcctcctt gcagtggcct 300

nacatggatt gacatcattt ctgggatgaa tggtncatgg gggaatgttt tgattggaca 360

agccttcaga atnccctnac anntcccaag gggttctccc tggg 404

<210> 19

<211> 152

<212> DNA

<213> Homo sapiens

<220>

<221> UNSURE

<222> (105)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (122)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (135)

-33-

<223> May be any nucleic acid

<400> 19

atcgtagaag atgaaaaatg gggcccaagag gtgtccgaca atggggggct tacactgcgt 60

aacctctgca actggcagcg gcgttcaac cagcccagcg accgnacacc agagcactac 120

gncacggcca tcctnctcac cagacagaac tt

152

<210> 20

<211> 4180

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 20

gcagctccga gctagggtgct atcgcaaggc cagagcgcac agccggcgg agagagcaga 60

tccttgctca gatcgagtca aatcgggcca aggccggagga cgaagagtcc aggctcctat 120

tctggacttg ttccccagct ccgggggcgc ttcttaggtcc tgcagcagcc agcagtgcgg 180

agccaccaac tcggtgctgg aatgaaaaaaaa ttcccgccgc ccagtgcaga atctttctaa 240

gtgacccgga gtttcgggtg cttagctctgc acgaactttc ccatcaaagt gatgtgaat 300

tttaaggcatc aggagcaggc cagcgaagct ctacgcgtct aaacgtctat ccagaccaag 360

agttctctgc ggtgcagggt gcggtgccat gcagccaaaa gtccttttg gggtcacgca 420

agcagaagcc ctgctccgac atgggggacg tccagcgggc agcgagatct cggggctctc 480

tgtccgcaca catgctgttg ctgctcctcg cttccataac aatgctgcta tgtgcgcggg 540

gcmcacacgg gcgccccacg gaggaagatg aggagctggt cctgcctcg ctggagcgcg 600

ccccgggcca cgattccacc accacacgac ttcgtctgga cgccttggc cagcagctac 660

atctgaagtt gcagccggac agcggtttct tggcgcctgg cttcacccctg cagactgtgg 720

ggcgcagtcc cgggtccgag gcacaacatc tggacccac cggggacctg gctcaactgct 780

tctactctgg cacggtaac ggtgatcccg gctctgccgc agccctcagc ctctgtgaag 840

gtgtgcgtgg tgccttctac ctacaaggag aggagttctt cattcagcca ggcctggag 900

tggccaccga ggcctggcc cctgccgtgc ccgaggagga gtcatccgca cggccgcagt 960

tccacatcct gaggcgaagg cggcgccgc gtggcgccgc caagtgcggc gtcatggacg 1020

-34-

acgagaccct gccaaccagc gactcgac ccgagagcca gaacacccgg aaccagtggc 1080
ctgtgcggga ccccacgcct caggacgcgg gaaagccatc aggaccagga agcataagga 1140
agaagcgatt tgggtccagc ccccggttatg tgaaaaccat gctcgtagct gaccagtcca 1200
tggccgactt ccacggcagc ggtctaaagc attaccttct aaccctgttc tcgggtggcag 1260
ccaggtttta caagcatccc agcattagga attcaattag cctggtggtg gtgaagatct 1320
tggtcatata cgaggagcag aagggaccag aagttacctc caatgcagct ctcacccttc 1380
ggaatttctg cagctggcag aaacaacaca acagccccag tgaccggat ccagagcact 1440
atgacactgc aattctgttc accagacagg atttatgtgg ctcccacacg tgtgacactc 1500
tcggaatggc agatgttggc accgtatgtg accccagcag gagctgctca gtcatagaag 1560
atgatggttt gcaagccgcc ttcaccacag cccatgaatt gggccatgtg tttaacatgc 1620
cgcacgatga tgctaagcac tgtgcagct tgaatgggtg gagtggcgat tctcatctga 1680
tggcctcgat gctctccagc ttagaccata gccagccctg gtcaccttgc agtgcctaca 1740
tggtcacgtc cttcctagat aatggacacg gggaatgtt gatggacaag ccccagaatc 1800
caatcaagct cccttctgat cttccggta ccttgtacga tgccaaaccgc cagtgtcagt 1860
ttacattcgg agaggaatcc aagcactgcc ctgatgcagc cagcacatgt actaccctgt 1920
ggtgtcactgg cacctccggg ggcttactgg tgtgccaaac aaaacacttc cttggggcag 1980
atggcaccacg ctgtggagaa gggaaagtggt gtgtcagtgg caagtgcgtg aacaagacag 2040
acatgaagca ttttgcatac cctgttcatg gaagctgggg accatggggc cctggggag 2100
actgctcaag aacctgtggt ggtggagttc aatacacaat gagagaatgt gacaacccag 2160
tcccaaagaa cggaggaaag tactgtgaag gcaaacgagt ccgctacagg tccgtaaaca 2220
tcgaggactg tccagacaat aacggaaaaa cttcagaga ggagcagtgc gaggcgcaca 2280
atagattttc caaagcttcc tttggaaatg agcccactgt agagtggaca cccaaagtacg 2340
ccggcgtctc gccaaaggac aggtgcaagc tcacctgtga agccaaaggc attggctact 2400
tttcgtctt acagcccaag gtttagatg gcactccctg tagtccagac tctacctctg 2460
tctgtgtgca agggcagtgt gtgaaagctg gctgtgatcg catcatagac tccaaaaaga 2520
agtttgataa gtgtggcggtt tgtggagaa acggttccac atgcaagaag atgtcaggaa 2580

-35-

tagtcactag tacaagacct gggtatcatg acattgtcac aattcctgct ggagccacca 2640
acattgaagt gaaacatcg aatcaaaggg ggtccagaaa caatggcagc tttctggcta 2700
ttagagccgc tgatggtacc tatattctga atggaaactt cactctgtcc acactagagc 2760
aagacacctac ctacaaagggt actgtcttaa ggtacagtgg ttcctcggt gcgcgtggaaa 2820
gaatccgcag cttagtcca ctcaaagaac ccttaaccat ccaggttctt atggtaggcc 2880
atgctctccg acccaaaatt aaattcacct actttatgaa gaagaagaca gagtcattca 2940
acgccattcc cacatttct gagtgggtga ttgaagagtg gggggagtgc tccaagacat 3000
gccccgtcagg ttggcagaga agagtagtgc agtgcagaga cattaacgga caccctgctt 3060
ccgaatgtgc aaaggaagtg aagccagcca gtaccagacc ttgtgcagac cttccttgcc 3120
cacactggca ggtggggat tggtcaccat gttccaaaac ttgcggaaag gttacaaga 3180
agagaacctt gaaatgtgtg tcccacgatg ggggcgtgtt atcaaatgag agctgtgatc 3240
ctttgaagaa gccaaagcat tacattgact tttgcacact gacacagtgc agttaagagg 3300
cgtagagga caaggtagcg tggggagggg ctgatacact gagtgcaaga gtactggagg 3360
gatccagtga gtcaaaccag taagcagtga ggtgtggcaa ggagggtgt gttagggata 3420
catacgaaag gaggtagatc aggacactac cctgccagtt acattctgat aaggttgta 3480
atgaggcaca gtagcatctg aaagaccata cagagcacta aggagcccc aagcactatt 3540
agtatctctt ttcttatatc tatcgcccaa ataatttca gagtctggca gaagccctgt 3600
tgactgtac taactagata cttcttatca caaagattgg gaaaggcaaa gcagaaaagat 3660
ggtaagactg gtttcaaac aaggcttggt ttcaatcact ggaggcaagg aggaggggac 3720
aaacaagatc attattcgaa gtcgctggtt gctgtggtt tacggaaaggt tgatgcatca 3780
ttccttatcaa cagtgaaaag tttagctgt tcaacgtgac agaaaggctc atctccgtga 3840
aagagctcct gatttcttct tacaccatct cagttcttaa ctatagttca tggtaggtta 3900
aaaaacaattc atctatattttaaaaatgtaca ttggaaaaaa aaagtgaagt ttatgaggtta 3960
cacataaaaaa ctgaaggaaa caatgagcaa catgcctcct gctttgcttc ctccctgaggt 4020
aaacctgcct ggggatttag gtttttaag attatccatg gtcacaaga ggcagtaaaa 4080
taatacatgt tgtgccagag tttagaatggg gtatagagat cagggtcccc tgagatgggg 4140

-189-

Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

17. A method for inhibiting angiogenesis in an individual, comprising administering an effective amount of a polypeptide of claim 10 to said individual.

5 18. A polypeptide comprising the amino acid sequence m-n of SEQ ID NO:2, wherein m is an integer of 1 to 950, and wherein n is an integer of 10 to 950.

10 19. A polypeptide comprising the amino acid sequence m-n of SEQ ID NO:4, wherein m is an integer of 1 to 890, and wherein n is an integer of 10 to 890.

ATGGGGAAACGCGGAGCGGGCTCCGGGTCTCGGAGCTTGGGCCGTACCCACCGCTGCTGCTCGCCCGGGCGCTA
 M G N A E R A P G S R S F G P V P T L L L L A A A L
 CTGGCCGTGTCGGACGCACTCGGGCGCCCTCCGAGGAGCAGGAGCTAGTGGTGCCGGAGCTGGAGCTGGAGCGCGCCCCCG
 L A V S D A L G R P S E E D E E L V V P E L E R A P
 GGACACGGGACCACCGCGCCTCCGCCTGCACGCCCTTGACCAGCAGCTGGATCTGGAGCTGGGCCGACAGCAGCTTT
 G H G T T R L R L H A F D Q Q L D L E L R P D S S F
 TTGGCGCCCGGCTTCACGCTCCAGAACGCTGGGCCAAATCCGGTCCGAGGCCGCTCCGGAAACCGACCTGGCG
 L A P G F T L Q N V G R K S G S E T P L P E T D L A
 CACTGCTTCACTCCGGCACCGTGAATGGCGATCCCAGCTGGCTGCCGCCCTAGCCTCTGCGAGGGCGTGC CGGC
 H C F Y S G T V N G D P S S A A A L S L C E G V R G
 GCCTTCTACCTGCTGGGGAGGGGTATTCATCCAGCCGCTGCCGCCAGCGAGCGCCTCGCCACCGCCGCCA
 A F Y L L G E A Y F I Q P L P A A S E R L A T A A P
 GGGGAGAAGCCGCCGGCACCACTACAGTTCCACCTCCTGCGCGGAATCGGAGGGCGACGTAGGC GGACGTGCGGG
 G E K P P A P L Q F H L L R R N R Q G D V G G T C G
 GTCGTGGACGACGAGCCCCGGCGACTGGAAAGCGGAGACCGAACGAGGGACTGAGGGCGAGGACGAA
 V V D D E P R P T G K A E T E D E D E G T E G E D E
 GGGCCTCAGTGGTGC CGCAGGACCCGGCACTGCAAGCGTAGGCAGCCCACAGGA ACTGGAAGCATAAGAAAGAAG
 G P Q W S P Q D P A L Q G V G Q P T G T G S I R K K
 CGATTGTGTCAGTCACCGCTATGTGGAAACCATGCTTGTGGCAGACCAGTCAGTGGCAGAAATTCCACGGCAGTGGT
 R F V S S H R Y V E T M L V A D Q S M A E F H G S G
 CTAAAGCATTACCTCTCACGTTGTTTGGCAGCCAGATTGTACAAACACCCAGCATTGTAATTCAAGTTAGC
 L K H Y L L T L F S V A A R L Y K H P S I R N S V S
 CTGGTGGTGGTGAAGATCTGGTCATCCACGATGAACAGAAGGGGCCGAAGTGA CCTCAATGCTGCCCTCACTCTG
 L V V V K I L V I H D E Q K G P E V T S N A A L T L
 CGGAACCTTGCAACTGGCAGAGCAGCACACCCACCCAGTGACCGGGATGCAGAGCACTATGACACAGCAATTCTT
 R N F C N W Q K Q H N P P S D R D A E H Y D T A I L
 TTCACCAGACAGGACTTGTGGGTCCCAGACATGTGATACTCTGGGATGGCTGATGTTGAAC TGTTGTGATCCG
 F T R Q D L C G S Q T C D T L G M A D V G T V C D P
 AGCAGAAGCTGCTCCGTATAGAAGATGATGGTTACAAGCTGCCCTCACACAGCCATGAATTAGGCCACGTGTT
 S R S C S V I E D D G L Q A A F T T A H E L G H V F
 AACATGCCACATGATGATGCAAGCAGTGCCAGCCTTAATGGTGTGAACCAAGGATCTCCACATGATGGCGTCAATG
 N M P H D D A K Q C A S L N G V N Q D S H M M A S M
 CTTTCCAACTGGACCACAGCCAGCCTTGGCTCCTTGCACTGCCTACATGATTACATCATTTCTGGATAATGGTCAT
 L S N L D H S Q P W S P C S A Y M I T S F L D N G H
 GGGGAATGTTGATGGACAAGCCTCAGAATCCACAGCTCCAGGCATCTCCCTGGCACCTCGTACGATGCCAAC
 G E C L M D K P Q N P I Q L P G D L P G T S Y D A N
 CGGCAGTGCAGTTACATGGGAGGACTCCAAACACTGCCCTGATGCAGCCAGCACATGATGGCACCTTGTTG
 R Q C Q F T F G E D S K H C P D A A S T C S T L W C
 ACCGGCACCTCTGGTGGGTGCTGGTGTCAAACCAACACTCCCGTGGCGGATGGCACCCAGCTGGAGAAGGG
 T G T S G G V L V C Q T K H F P W A D G T S C G E G
 AAATGGTGTATCAACGGCAAGTGTGTGAACAAAACCGACAGAAAGCATTGATACGCCCTTCATGGAGCTGGG
 K W C I N G K C V N K T D R K H F D T P F H G S W G

FIGURE 1

-36-

aacatggtga tcactcatct cacatggag gctgctgcag 4180

<210> 21
<211> 9248
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 21
gcagctccga gctagggtct atcgcaaggc cagagcgcac agcccggcgg agagagcaga 60
tccttgctca gatcgagtca aatcggggcc aaggcggagg acgaagagtc caggctccta 120
ttctggactt gttccccagc tccggggcgc ctcttaggtc ctgcagcagc caggagtgcg 180
gagccaccaa ctcggtgctg gaatgaaaaa attccgcgc gccagtgcag aatcttcta 240
agtgacccgg agcttcgggt gctagctctg cacgaacttt cccatcaaag tgatcgtgaa 300
ttttaagcat caggagcagg ccagcgaagc tctacgcgtc taaacgtcta tccagaccaa 360
gagttctctg cggtgtcaggg tgcggtgcca tgcagccaaa agtcccttg gggtcacgca 420
agcagaagcc ctgctccgac atgggggacg tccagcgggc agcgagatct cggggctctc 480
tgtccgcaca catgctgttg ctgctcctcg cttccataac aatgctgcta tgtgcgcggg 540
gcccacacgg gcgcacacgg gaggaagatg aggagctggt cctgcctcg ctggagcgcg 600
ccccgggcca cgattccacc accacacgcc ttctgttgcgc cgccttggc cagcagctac 660
atctgaagtt gcagccggac agcggttct tggcgcctgg cttcacccctg cagactgtgg 720
ggcgcagtc cgggtccgag gcacaacatc tggacccac cggggacctg gctcaactgct 780
tctactctgg cacggtgaac ggtgatcccg gctctgcgc agccctcagc ctctgtgaag 840
gtgtgcgtgg tgccttctac ctacaaggag aggagttctt cattcagcca gcgcctggag 900
tggccacccga gcgcctggcc cctgcgtgc ccgaggagga gtcatccgca cggccgcagt 960
tccacatcct gaggcgaagg cggcggggca gtggcggcgc caagtgcggc gtcatggacg 1020
acgagaccct gccaaccacgc gactcgac cggagagcca gaacacccgg aaccagtggc 1080
ctgtgcggga ccccacgcct caggacgcgg gaaagccatc aggtataaga gtgaccccca 1140
tctctcagtc tttacgaggc gtgacttggg gtcacactcc agatgcctc taaatgcgaa 1200

-37-

tgactcagac ttgcagtgaa ttgaagttct gggcgtgac cttcccgctc ccccccccc 1260
aaaaaaaaatg tgaccatact ctgctagaac acttatttgc ccgaatagtt aataatttga 1320
gaaagagaga aagaatcgga ggtcctgttag ataagggcta agcgttcct ccgcgaagcc 1380
aataacccga ctccttacac tggagaatct ctctccatcc cttaatgcc tttagtgaat 1440
gtatgagttc actttaacta gggttagtt tcgcgttag tttgttaacg tcagtccgt 1500
tgagcacgta gcgcctaaag gagggcggag tagaggagcc atggtgacct ggatgtgcgt 1560
tcaggagcct gggcaacggc agtggtgatc tcatttctgt ggcctccgt ctgtcccctt 1620
cccccatggaaaagctgac cccgatggct ggtggctccg ttgggccccct ctgcagaacc 1680
tgcttggag gtcttgctt ggttcgcccc gcctccacgc gcctccctacc tcggccctgt 1740
tgctcgact ccctctcccg gcagagggtt gactccccag cgctgtggaa tggtagcctg 1800
gactgatcct ccctgctaca cattcgccctg actctgcccgt gttcagtctc taccagccag 1860
ttagttcttt ttaatcattt aaatttcttt ttggcccttt cttagatttctt ccctctttt 1920
cgacttgtcc ctaggagctg gtattcatat cctactttac gatttctctg accgctgagt 1980
ctcagcagcc cgaaaaaggc cattttccaa attggcaacc ctgggttgag aaaggaactt 2040
attccccccg gggcactggg agtgagagga ggcaggaaaa cactgctggg cagagtgggt 2100
ggccttagtg cccggaactg gatcaagcag agaacccccctt gggaccctt gaatgagaga 2160
gctgagcctt acagactgag actcctcaag ccccacccctt tggctgagct ccccgccctg 2220
ccccatgcct tccacgtgga gctggatgat ctcattcggg atttcagcccc tggcttcaat 2280
agtgaaaggg tgactcaggg cgtccgcctg cttctttgc caagtttta ctacagctgg 2340
gtagaaatga tagccatact gcctcactca ggctgtggag tcttcaaaga ccacaaaaga 2400
aatctgcgga cacatatata gacagttga tcactctgtt gcttgctttt ttttgggg 2460
ttttgtctta tttaaagcaa aagaaaaaaag actaaaaat aactcacagt ttttagaaga 2520
tgcaaataattt tgttttatgg ttgttccagg tgtattttagt ttttatttac ttgtactagg 2580
ttgactttcc taatatacccg cgagaaggc actatttagga gaaggactgc ccatgagcaa 2640
acttcctttt ctttttacag gaccaggaag cataaggaag aagcgatttgc tggccagccc 2700
ccgttatgtg gaaaccatgc tcgtggctga ccagtccatg gccgacttcc acggcagcgg 2760

tctaaagcat tacttctaa ccctgttctc ggtggcagcc aggtttaca agcatcccag 2820
cattaggaat tcaatttagcc tggtggttgt gaagatcttgc tcatatatg aggagcagaa 2880
gggaccagaa gttacctcca atgcagctct cacccttcgg aatttctgca actggcagaa 2940
acaacacaac agccccagtg accgggatcc agagcactat gacactgcaa ttctgttcac 3000
cagacaggta agacaggagc ttatcaacca tttcatcaac tcaactcgga ggtcagcctt 3060
gtgtggatg ggatgagagg gtgggggtgt ggcggagagg aaacccagaa gggatgaca 3120
tttcaaattgt aaacaaaata accaattaaa aaaaaaggc atctcatctg tattgcctca 3180
tttccttcg gttataggct agctcaatct gtcttgctta tttctatccc aaacttccac 3240
atctcaagtt ctacagtctt atttaaaag cattacaggg aatcttgctt agagtcagtc 3300
cttcaagccc agcaataatg aatggacagg cttcaaagtgc catgtgaaga cacgcccac 3360
tgaagagcta agtatacactc tctcctactt aaaagggatt tcccttgctt cttttagga 3420
tttatgtggc tcccacacgt gtgacactct cgggatggca gatgttgaa ctgtatgtga 3480
ccccagcagg agctgctcag tcataagaaga tgatggtttgc caagccgcct tcaccacagc 3540
ccacgaattt ggtaaatcggtt cttcagagta caagttaaatgc ccaaatgcat ggatacaacc 3600
caataagtca atctgatgtg acgagagaga aaacatctca gactatgttgc taccctcagc 3660
caccagcaat tttagaaggg gtagggtata tttccacga tttcaagtat ggtcttacta 3720
ggacaggaga aagtggtaca aacatttgcgat ctttgcattt tttatacttgc ccctgatcaa 3780
agttagtgc agccccata caggttgtct aataagagag ccattgagcc tcactcaata 3840
atacagctga atgtccttct tgcgttgcttc ccaggccatg tggtaacat gcccacat 3900
gatgctaagc actgtgccatg cttgaatgggt gtgactggcg attctcatct gatggcctcg 3960
atgctctcca gcttagacca tagccagccc tggtcacccatg gcagtgccta catggtcacg 4020
tccttcctag ataatggaca cggttaagatg acagtcctc tttccagatg gtgttcaacc 4080
ttccttgcgtt agggctctt ctggcttaatg gagctccatg gctcttgctc atttcccctc 4140
cttcagagtt ttctctggca ggatcataag tagtagatct ttacccat tgcattcctgc 4200
tcccaaagtc cattcattca taaacaataa cttctcgccca ttgtaaaatc agaagtcccc 4260
tattgaggat aacgtctcga taaaaatcta aagttcccta gcattgattt tcccaaaaat 4320

gcatgattc accaaacatg tattaataat tgccctttt ttctttcct ttttttttt 4380
tattattta gggaatgtt tcatggacaa gcccccagaat ccaatcaagc tcccttctga 4440
tcttcccggt accttgcacg atgccaaccg ccagtgtcag tttacattcg gagaggaatc 4500
caagcactgc cctgatgcag ccagcacatg tactaccctg tggtgactg gcaccccccgg 4560
tggcttactg gtgtgccaaa caaaaacctt cccttggca gatggcacca gctgtggaga 4620
aggaaagtgg tgtgtcagtg gcaagtgcgt gaacaagaca gacatgaagc attttgcgt 4680
gagtttccc aatgaaacat atccgttgc aactcagggt tgagaagggc aaagtgtatgg 4740
tttagttcct ttccttagaca aactcctcta cctgtgtcct gtagtggac tatgagatgg 4800
tagcgtatTT tgagaattga ttgtctgttt tacatTTTc tctgattccc taaaatgtct 4860
ttatagttct aacactgata tctgtatctc catTTtagact cctgttcatg gaagctgggg 4920
accatgygga ccgtggggag actgctcaag aacctgtgg ggtggagttc aatacacaat 4980
gagagaatgt gacaacccag tcccaaagaa cggagggaa tactgtgaag gcaaacgagt 5040
ccgctacagg tcctgttaaca tcgaggactg tccagacaat aacggtgagt catactggac 5100
ttcagctctc agaaaccggg caaaggcggc gtgccacaac atgtgggtgg aagttggaaa 5160
ctggaaacat catcgccgtc gttcttttt cagaaaaac gttcagagag gacgtgcg 5220
aggcgacaaa tgagtttcc aaagcttctt ttggaaatga gcccaactgta gagtggacac 5280
ccaagtacgc cggcgtctcg ccaaaggaca ggtcaagct cacctgtgaa gccaaaggca 5340
ttggctactt ttctgtctta cagccaaagg taggtgcttt tacactgaa tctttgcaaa 5400
ggagcctcag ctgggcttgc tgccatgcca tacaaatgtt tggctgtct ttacctattg 5460
atctgtgttc cgTTTgaat ttggaaatact tctaaatgca ggaacaactc cttgctttgg 5520
gatttgtgt tgccTTctgt tggaaaggaa gcttaaatct agcttagcact taaaagagtc 5580
ttgcatgtgt ttaatattgc ttctctatcc ccaaagaatg gcccttgaa aactcaagag 5640
ccctctctgt ataacttaggt ttacacataca aaaattcatg gttagataaa ttatataatta 5700
acatggcacc caggagttt agaaagttagt ccaaagtact tgTTactggg tacctagcag 5760
ccgcacatac gacacacta actaaggtaa gagtttgaga attaaaaatt catcgTTgga 5820
acatgtactt tgaccaaaga gactcgccat ttctttgg gtttgcaaga aaggataaaat 5880

-40-

cctgcttga agaagaaaat tgaatgaaat ttgcttaagc ttgtcatgta ttcttagcat 5940
tataagatag caaactatat ccaagttgtg gatgaagtat ttagcaagtg atttataaag 6000
taccccaac tacagcatat tattcttagt actgaccatg gaacaataat cagtgtgaca 6060
gtgaaccctg ctcccattga cctaggccag caaatatata aaatcaagac atttataagc 6120
cttacagata gctatatgaa ctgttggaaa agccaaaatg aaagtgaaca tgtggcacgt 6180
gacaaggaga ctacttgtag cctgggagga gaggcattccc agttgccatc acatcagatg 6240
tttaaccacc atggtgcatg ttgtctccac aggttgtaga tggcactccc tgtagtccag 6300
actctaccc tgcgtgtgtg caagggcagt gtgtgaaagc tggctgtat cgcatcatag 6360
actccaaaaa gaagttttagt aagtgtggcg tttgtggagg aaacggttcc acatgcaaga 6420
agatgtcagg aatagtcact agtacaaggt gagtttcaga acgctcaatt ctgcagtaga 6480
cacgctgtgt tgctcagttg gtccctagca tctacaagac cttgggttca atccgcatgc 6540
atgtacctgt agtcccagt tatgggagac agagacaagt gtgacaagac ggtcagatgt 6600
tcaggtcatc tttgctacat agtgactttc agttcacctt ggggaacatg aaaaacctga 6660
ctggaaacac aaacacacac aaaacaatta acccaggtac ttcatgtaat cccagtgttc 6720
agtaggctga cttgggagga tgggtgctat aaggcctagg ttagcttggt ctacataatg 6780
agttccagta taacctggcc cacaagtgaa ccctaaagt aattaatcga cacatgaaac 6840
aaaacacatg ctttggagac cctgtaattt tgatatacga tttttaggaa ctaaggaaaa 6900
gtcacattta aaagaattgc ctatTTAA agcaatgtga ttgattaact cattgaaaga 6960
catatacctg ttttctttgt ccacagaccc ggttatcatg acattgtcac aattcctgct 7020
ggagccacca acattgaagt gaaacatcg aatcaaagg ggtccagaaa caatggcagc 7080
tttctggcta ttagagccgc tgatggtacc tatattctga atggaaactt cactctgtcc 7140
acactagagc aagacctcac ctacaaaggt actgtctaa ggtacagtgg ttccctcggt 7200
gcgcgtggaga gaatccgcag cttagtcca ctcaaagaac ccttaaccat ccaggttctt 7260
atggtaggccc atgctctccg accccaaaatt aaattcacct actttatgaa gaagaagaca 7320
gagtcattca acgccccatcc cacatTTCT gagtgggtga ttgaagagtg gggggaggtgc 7380
tccaagacat gcggctcagg ttggcagaga agagtagtgc agtgcagaga catataatgga 7440

-41-

caccctgctt ccgaatgtgc aaaggaagtg aagccagcca gtaccagacc ttgtcagac 7500
cttccttgcc cacactggca ggtggggat tggtcaccat gttccaaaac ttgcggaaag 7560
ggttacaaga agagaacctt gaaatgtgtg tcccacgatg gggcggtgtt atcaaatgag 7620
agctgtgatc ctttgaagaa gccaaagcat tacattgact tttgcacact gacacagtgc 7680
agttaagagg cgtagagga caaggtagcg tggggagggg ctgatacact gagtgctgga 7740
gggatccagt gagtcaaacc agtaagcagt gaggtgtggc aaggagggtgt gtgtagggga 7800
tacatagcaa aggaggtaga tcaggacact accctgccag ttacattctg ataaggtagt 7860
taatgaggca cagtagcatc tgaaagacca tacagagcac taaggagccc caaagcacta 7920
ttatgtatctc ttttcttata tctatcgccc aaataatttt cagagtctgg cagaagccct 7980
gttgcaactgt actgactaga tacttcttat cacaagatt gggaaaggca aagcagaaag 8040
atggtaagac tgggtttcaa acaaggctt gtttctatca ctggaggcaa ggaggagggg 8100
acaaacaaga tcattattcg aagtcgtgg ttgctgtggt tttacggaag gttgatgcat 8160
cattcctatc aacagtgaaa agttcagctt gttcaacgtg acagaaaggc tcataccgt 8220
gaaagagctc ctgatttctt cttacaccat ctcagttctt aactataatt catgttgagg 8280
tagaaacaat tcatactatc ataaaaatgtt cattggaaaa aaaaaagtga agtttatgag 8340
gtacacataa aaactgaagg aaacaatgag caacatgcct cctgcttgc ttccctcga 8400
ggtaaacctg cctggggatt gaggttggtt aagattatcc atggctcaca agaggcagta 8460
aaataataca tgggtgtccca gagttagaat ggggtataga gatcagggtc ccatgagatg 8520
gggaacatgg tgatcactca tctcacatgg gaggctgtg caggtagca ggtccactcc 8580
tggcagctgg tccaacagtc gtatccgtt gaatgtctgt tcagctttc tactgagaga 8640
gaatatgact gttccatat gtatatgtat atagaaaaat atgttactat gaattgcatg 8700
tactttataa gtattgggt gtctgttccct tctaagaagg actatagttt ataataaaatg 8760
cctataataa catatttatt tttatacatt tatttctaat gataaaacct ttaagttata 8820
tcgccttgtt aaaaagtgcataaaaaatag agtatttata caatataatgt taactagaaa 8880
taataaaaga acacttttga atgtgtatgc ctatttctg gagtgggatt aacttctggg 8940
caagaaatct gatgagacac aaacattgga cttcaagaca gttttaaaat ttgggtaaat 9000

-42-

gaactgtatt tcctgtttat agacgtacta ataaaaaaaga agttgatgat gtcttagtg 9060
gtaagattgt tactaatgtg gttggcaa at tgctgtaaag agccagatag taagcattta 9120
tggcattgta ggctatctt cctgccacaa ccatgtgaca gtgagtgctt tgtaggactg 9180
agagcagcca taaatgacat gtaaatgata aactgtggct gtgc tttaat aaaaactttat 9240
ttacaaaa 9248

<210> 22

<211> 5722

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 22

ggacgcacag gcattccccg cgccctccca gccctcgccg ccctcgccac cgctcccg 60
cgccgcgctc cgg tacacac aggatccctg ctgggcacca acagctccac catggggctg 120
gcctggggac taggcgtcct gttcctgatg catgtgtgtg gcaccaaccg cattccagag 180
tctggcggag acaacagcgt gtttgcacatc tttgaactca cccggggccgc ccgcaagggg 240
tctgggcgcc gactggtaa gggcccccac cttccagcc cagcttccg catcgaggat 300
gccaacctga tccccctgt gcctgatgac aagtccaa acctggtaa tgctgtgcgg 360
gcagaaaagg gtttcctcct tctggcatcc ctgaggcaga tgaagaagac ccggggcacg 420
ctgctggccc tggagcggaa agaccactt ggcagggtct tcagcgtggt gtccaatggc 480
aaggcgggca ccctggacct cagcctgacc gtccaaaggaa agcagcacgt ggtgtctgtg 540
gaagaagctc tcctggcaac cggccagtgg aagagcatca ccctgtttgt gcaggaagac 600
agggcccaac tgcacatcga ctgtaaaatg atggagaatg ctgagttgga cgtccccatc 660
caaagcgtct tcaccagaga cctggccagc atcgccagac tccgcacatc aaaggggggc 720
gtcaatgaca atttccagg ggtgctgcag aatgtgaggt ttgtcttgg aaccacacca 780
gaagacatcc tcaggaacaa aggctgctcc agctctacca gtgtcctcct cacccttgac 840
aacaacgtgg tgaatggttc cagccctgac atccgcacta actacattgg ccacaagaca 900
aaggacttgc aagccatctg cggcatctcc tgtgatgagc tgtccagcat ggtcctggaa 960

ctcaggggcc tgcgcaccat tgtgaccacg ctgcaggaca gcatccgcaa agtgactgaa 1020
gagaacaaag agttggccaa tgagctgagg cggcctcccc tatgctatca caacggagtt 1080
cagtacagaa ataacgagga atggactgtt gatacgctca ctgagtgtca ctgtcagaac 1140
tcagttacca tctgcaaaaaa ggtgtcctgc cccatcatgc cctgctccaa tgccacagtt 1200
cctgatggag aatgctgtcc tcgctgttgg cccagcgact ctgcggacga tggctggct 1260
ccatggtccg agtggacctc ctgttctacg agctgtggca atggaattca gcagcgcggc 1320
cgctcctgcg atagcctcaa caaccgatgt gagggctcct cggtccagac acggacctgc 1380
cacattcagg agtgtgacaa aagattaaa caggatggtg gctggagcca ctggtccccg 1440
tggtcatctt gttctgtgac atgtggtgat ggtgtgatca caaggatccg gctctgcaac 1500
tctcccaagcc cccagatgaa tggaaacccc tgtgaaggcg aagcgcgggaa gaccaaagcc 1560
tgcaagaaag acgcctgccc catcaatgga ggctgggtc cttggtcacc atggacatc 1620
tgttctgtca cctgtggagg aggggtacag aaacgttagtc gtctctgcaa caaccccgca 1680
ccccagtttgc gaggcaagga ctgcgttggt gatgtacag aaaaccagat ctgcaacaag 1740
caggactgtc caattgtatgg atgcctgtcc aatccctgct ttgccggcgt gaagtgtact 1800
agctaccctg atggcagctg gaaatgtggt gcttgcctt ctggttacag tggaaatggc 1860
atccagtgcgca cagatgttgc tgagtgc当地 gaagtgc当地 atgcctgtt ccaccacaat 1920
ggagagcacc ggtgtgagaa cacggacccc ggctacaact gcctgc当地 cccccacgc 1980
ttcacccgct cacagccctt cggccagggt gtcgaacatg ccacggccaa caaacaggtg 2040
tgcaagcccc gtaaccctg cacggatggg acccacgact gcaacaagaa cgccaaagtgc 2100
aactacctgg gccactatacg cgacccatg taccgctgcg agtgcaagcc tggctacgct 2160
ggcaatggca tcatctgc当地 ggaggacaca gacctggatg gctggccaa tgagaacctg 2220
gtgtgc当地 ccaatgc当地 ttaccactgc aaaaaggata attgccccaa cttcccaac 2280
tcagggcagg aagactatga caaggatggatg attggtgatg cctgtgatga tgacgtgac 2340
aatgataaaa ttccagatga cagggacaac tgtccattcc attacaaccc agctcagtt 2400
gactatgaca gagatgtatgt gggagacccgc tggacaact gtccctacaa ccacaaccc 2460
gatcaggcag acacagacaa caatggggaa ggagacgc当地 gtgctgc当地 cattgtgga 2520

-44-

gacggtatcc tcaatgaacg ggacaactgc cagtacgtct acaatgtgga ccagagagac 2580
actgatatgg atggggttgg agatcagtgt gacaattgcc ctttggaaaca caatccggat 2640
cagctggact ctgactcaga ccgcattgga gatacctgtg acaacaatca ggatattgt 2700
gaagatggcc accagaacaa tctggacaac tgccttatg tgcccaatgc caaccaggct 2760
gaccatgaca aagatggcaa gggagatgcc tgtgaccacg atgatgacaa cgatggcatt 2820
cctgatgaca aggacaactg cagactcggt cccaatcccg accagaagga ctctgacggc 2880
gatggtcgag gtatgcctg caaagatgtat ttgaccatg acagtgtgcc agacatcgat 2940
gacatctgtc ctgagaatgt tgacatcagt gagaccgatt tccggccgatt ccagatgatt 3000
cctctggacc ccaaaggac atccaaaat gaccctaact gggttgtacg ccatcagggt 3060
aaagaactcg tccagactgt caactgtgat cctggactcg ctgttaggtta tgatgagttt 3120
aatgctgtgg acttcagtgg caccccttc atcaacacccg aaagggacga tgactatgt 3180
ggatttgtct ttggctacca gtccagcagc cgctttatg ttgtgtgtg gaagcaagtc 3240
acccagtcct actgggacac caacccacg agggctcagg gatactcggg ccttctgtg 3300
aaagttgtaa actccaccac agggcctggc gagcacctgc ggaaccccct gtggcacaca 3360
ggaaacaccc ctggccaggt gcgcacccctg tggcatgacc ctcgtcacat aggctggaaa 3420
gatttcaccc cctacagatg gcgttcagc cacaggccaa agacgggtt cattagagt 3480
gtgatgtatg aagggaagaa aatcatggct gactcaggac ccatctatga taaaacctat 3540
gctggtgta gactagggtt gtttgtttc tctcaagaaa tggtgttctt ctctgacctg 3600
aaatacgaat gtagagatcc ctaatcatca aattgttcatg tgaaagactg atcataaacc 3660
aatgctggta ttgcaccccttc tggaactatg ggcttgagaa aaccccccagg atcaacttc 3720
cttggcttcc ttcttttctg tgcttgcattc agtgtggact cctagaacgt gcgacctgcc 3780
tcaagaaaat gcagtttca aaaacagact catcagcatt cagcctccaa tgaataagac 3840
atcttccaag catataaaca attgcttgg tttccttttgg aaaaagcattc tacttgcttc 3900
agttggaaag gtgcccattc cactctgcct ttgtcacaga gcagggtgct attgtgaggc 3960
catctctgag cagtggactc aaaagcattt tcaggcatgt cagagaaggg aggactcact 4020
agaatttagca aacaaaacca ccctgacatc ctccttcagg aacacggggaa gcagaggcca 4080

-45-

aagactaag gggagggcgc ataccgaga cgattgtatg aagaaaatat ggaggaactg 4140
ttacatgttc ggtactaagt catttcagg ggattgaaag actattgctg gatttcatga 4200
tgctgactgg cgtagctga ttaacccatg taaataggca cttaaataga agcaggaaag 4260
ggagacaaag actggctct ggacttcctc cctgatcccc acccttactc atcacccattgc 4320
agtggccaga attaggaaat cagaatcaa ccagtgtaaag gcagtgtcggt ctgccattgc 4380
ctggtcacat tgaaatttgtt ggcttcatttc tagatgttagc ttgtgcagat gtgcaggaa 4440
aatagggaaaa cctaccatct cagtggcac cagctgcctc ccaaaggagg ggcagccgtg 4500
cttatatttt tatggttaca atggcacaaa attattatca acctaactaa aacattcctt 4560
ttctcttttt tccgtaatta ctaggttagtt ttcttaattct ctctttggaa agtatgattt 4620
ttttaaagtc ttacgatgt aaaatattta tttttactt attctggaaag atctggctga 4680
aggattattc atggaacagg aagaagcgta aagactatcc atgtcatctt tggtgagagt 4740
cttcgtgact gtaagattgt aaatacagat tatttattaa ctctgttctg cctggaaattt 4800
taggcttcat acggaaagtg tttgagagca agtagttgac atttacgc aaatctcttgc 4860
caagaacagc acaaggaaaa tcagtctaat aagctgtct gccccttgc ctcagagtgg 4920
atgttatggg attccttttt tctctgtttt atctttcaa gtggaaattttt tggttatcc 4980
atttgcaaattt gttttaattt gcaaagaaag ccatgaggtc ttcaataactg ttttacccca 5040
tcccttgtgc atatttccag ggagaaggaa agcatataca ctttttctt tcattttcc 5100
aaaagagaaaa aaaatgacaa aagggtgaaac ttacatacaa atattacctc atttgggtgt 5160
tgactgagta aagaattttt ggatcaagcg gaaagagttt aagtgtctaa caaacttaaa 5220
gctactgttag tacctaaaaa gtcagtgttg tacatagcat aaaaactctg cagagaagta 5280
ttcccaataaa gggaaatagca ttgaaatgtt aaatacaatt tctgaaagtt atgttttttt 5340
tctatcatct ggtataccat tgcttttattt ttataaaattt ttttctcatt gccattggaa 5400
tagaatattc agattgtgtt gatatgttat ttaaataattt tatcaggaaa tactgcctgt 5460
agagtttagta ttcttattttt tatataatgt ttgcacactg aattgaagaa ttgttggttt 5520
tttctttttt ttgtttttttt tttttttttt tttttttttt cttttgaccc cccattttta 5580
ctatggcca atacccctttt ctaggaatgt gttttttttt gtacacattt ttatccattt 5640

-46-

tacattctaa agcagtgtaa gttgtatatt actgtttctt atgtacaagg aacaacaata 5700
aatcatatgg aaatttatat tt 5722

<210> 23
<211> 42521
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 23
gatcgtttc cagacatTTT tGTTCTGT tcATTCCTT atCGTATTCA AAAAGTTAC 60
acAAATGACC TTCTCTATCT GTCTGCgtCT CTTTAACTC TCACCGTTG GGACCTTC 120
aATAGTTTT CGCTATCAA TCTAAACATT AGTTGCGTTG ACTCGACATT TGACCCCTCA 180
CTATCATCTC CAGTTCTCTT TTTTGTACA CTTTAGCAGT GGCAGCAGAG AGCAAGTAGG 240
TGGAGCCAAA GTGTGCGCCA TTCATCGGGA AAAATTGTGT TCTTCATCAA ATTTGGGCA 300
ATTTACTCGG GATTGCGCT AATTGGAAA CAAAATTCA AATTCTGCC AATTGTTTG 360
TTTGCTTTTT TTCTTTTTT TTGCTCCTC CCATCTCTCA TCAAATTGCT CTTTTTGCA 420
TTCTAACATA TCAGCCATCT TCAGAGTGTG TCACTAACCC CCATTTTAT TCAAGGTTAG 480
TGATATAGTA TCCTAACTAC AGACGTACAA CCATGAGGTT GCTGCTCTC TCGGCAGCCC 540
TTCTTCTGTG CTCCGTCCCA ACGTGGGCCT TCTCTCTGTC ATCATTCTC GGAAGCGATG 600
TTGCAAGCTC TCCTATACCT AGAATCTGT AAATTGAAAA CTCTAATTCA 660
CAGAAGCCAT ACCTTCATCC AAACCTCCCCA CCAGGAGCGTG ACCCGGGCAG TTCCAGAATG 720
AAGAGACAGG CATATCAAGT GTACGTTGAT GGAGATGTTT CGTTACTGT TGACAAGTCT 780
GGACAAAAGG AAACCGGCAA CTGGGGACCA TGGGTGCCCG AGAACGAGTG CTCACGTTG 840
TGTGGTGGAG GAGTTCAACT CGAGAAAGAGA CAGTGCAGGT TCGTGGACTT TTCACTTTT 900
AGGAAATTCA CTAGACGTTCA TAAAAGCTTA TTTCAAAAAA TTTGGTTTC CTGATCTCA 960
TGCCTTATG AACGTGGTGA AAGATCAACC TAGGCTAGCC TGTGACATAC ATTTTTGAA 1020
GCAGATCCAA CTTTATCAAG AGCCATCGAA TTCTCGTTT AAAGTGTGTTT TTGTTCTGA 1080
TAACCTTTT CTAATAGCTT TACCCATTAA TATGTCAAGA CTGAAAGCAA TGAATCACAA 1140

-47-

gaggctatct acgtttgtt ttgaagctct gtaggaatca tctaaaaaaa ttaagtaaag 1200
taatggagat gaaattctaa tttttaaaaa tcataatcat tactttctgt attatcttca 1260
agttcaaact tttcaaacgg ttattctcaa gaaactcaca tagaatttta acaatttcct 1320
ctatctattt cttgcaagca acccaccgaa ctcaaatctt atccaaacta aacttttagt 1380
ggtgactgca ctggagcttc agtccgctac atctcgta acttgaacgc atgcgagct 1440
ggtactgatt tccgtgctga gcaatgctcc aaattcaacg atgaggctct tgatggaaac 1500
taccacaagt ggactccata caaggaaag aacaagtaag ttaactttct tcaagatgtt 1560
tttctaattt tcgagtttc aggtgcgagc tcgtctgtaa gccagaatct ggaaacttct 1620
actacaagtgg ctgtgataag gttgttgatg gaaccaagtg cgactccaag agcaacgata 1680
tctgtgttga tggggaatgt cttccagttg gatgtgacgg aaagcttgg a tcttgcata 1740
ttaaaaatata attcaaaatc ttcatttcat gccgaatatt tcagctctca aattcgacaa 1800
gtgcggaaag tgcgatggag atggttctac ctgcaagact attgaaggac gtttcgatga 1860
gcgcaatetc tctccaggat accatgat tatcaaactt ccagaaggag ccaccaacat 1920
taagattcag gaagccagaa agagcacca caacttggct ctgaagaacg gttccgatca 1980
cttttatttgc aatggaaatg gattgatcca agttgagaag gaggttgaag tcggaggAAC 2040
tatcttcgtt tacatgacg ctgaaccaga aactctcagt gctcaaggac cactctccga 2100
ggagctcacc gttgctcttc tcttcagaaa gggaaGCCGT gatactgcta tcaagtacga 2160
gttctctattt ccacttgagg aggaagttga ctacatgtac aagtttgaca actggactcc 2220
gtgctctgtt tcatgcggaa agggtgttca aaccctaat ctctactgtt ttgatggaaa 2280
gaacaaggga cgcgttgagg atgatctctg cgaggagaac aatgccacaa agccagagtt 2340
cgaaaagagc tgtgaaactg ttgactgttga agccgaatgg ttcactggag actggaaatc 2400
ttgctcatcc acctgcggag atcaaggaca gcaataccgt gtcgtctact gccatcaagt 2460
attcgctaac ggacgtcgtt ttaccgttga ggtggaaac tgcaccgtt agagaccacc 2520
agtaaagcag acttgcaatc ggttaagtta ttttataat gcataaaacaa ctctgttaat 2580
ctatttgcattt atgcgatgct atccatatat attaccagat ggtgttgggtt cccaaaactt 2640
ataaacaattt attttctt tgcagtttgc cctggccaga gtggcaagct ggtccgttgt 2700

cggttgctc agagaagtgt ggagacgcct tccaatacag atcggtgacc tgccgcagt 2760
agaaggaagg agaagaggga aaactcttgg ccgctgatgc ttgcccaagct gatgagcaag 2820
agaagttcga cacagagaga acttgcaatt tggaccatg cgagggactt acatttgtca 2880
ctggagaatg gaacttgggt agatttgca aaatatgggg acctggggaa aagcatacta 2940
aataagatca actttatgaa acaaataatt ttttagtgcac ccgctgcaac gatactgagg 3000
agactcgtga agtcacactgc aaggactccc aaggaagagc ctatccactc gagaagtgtt 3060
tggtgataa ctccaccgag attccaactg atactaggtg agtcattcca gatatgacat 3120
tgaacttggaa ttaattttt tcttccagat catgcgccac ccaaccacca tgtgagtacg 3180
agtggaccgt cagtgagtgg agcaagtgtt ccaccgaatg cggacacgga cacaagactc 3240
gtcggttat ctgtgccatc cacaaaacg gaggactcga ggttgttgcgtaa gaaggacact 3300
gtcaagctga gaagccagaa ggaaagacta actgcaccaaa tgaggagaag tgtactggaa 3360
catggtacac atcttcatgg tccgagtgtt ccgctgaaatg tgggggtggaa tcccaagatc 3420
gtgtcgctgt ttgcttgaac tacgataaga agccagttcc agaatggtgc gacgaagccg 3480
tcaagccatc tgagaaacaa gattgtaacg ttgatgactg cccaaacttgc gttgactctg 3540
attcggatg ctgcccagat aactctactt ttgctaccgg agaattcaac ttccggatgt 3600
ctaactgctc ggaaacagaa ttccggatgtt gtgctgacaa tggatgttgcgac 3660
ctaactccaa gggatgcgaa gaattcggtt agtctccact taaccttgcgaa gctgtatgttgc 3720
ccaaatgctga cgctgaagct tcaggagatg ctccagaact ctgcagcgctc acaaacgaga 3780
acggagaagc tggatgttgcgaa ccattgtcc aatcaactgtt cttcttggag 3840
atggggact tatcgaaat gatactgttgcgaa cttccaaatgttgcgaa gaccatacac tgctcgaaga 3900
ccgaatttgcgatg atgctgttgcgaa gattgttgcgaa ccattgtcc aatcaactgtt cttcttggag 3960
gcccattgttgcgaa cacttgcgaa ggttgcgaa agactcaattt ccattgttgcgaa cacgtatgttgcgaa 4020
tcacttgcgaa tggatgttgcgaa aacattgttgcgaa gatgttgcgaa gccatcttgcgaa gctgttccc 4080
tctatggatg ctgtaaatgttgcgaa tggatgttgcgaa accacactat tctggatgttgcgaa 4140
agcgatcatc cttccatgttgcgaa gagcttagcg acttcggatg ctgcccagat ggttgcgaa 4200
ctgcttgcgaa aagaatgttgcgaa accggatgttgcgaa gagagaactgttgcgaa aagtttgcgat 4260

-49-

gctgccctga tggaaagacc accgccaagg ggtcccacaa cgagggatgc ggatgcgagt 4320
tcgccaata cggatgctgc ccagacggaa aatcagttgc caagggagcc ggattttacg 4380
gatgccaga aagctgcgcc cagagccagt tcggatgctg cccagacgga aagactcg 4440
ctcgccgaga gaacaaggaa ggatgtccat gccagtacac ccgttacgga tgctgcccag 4500
atggggagac tactgcttt ggaccacgca atgatggatg tgataactgc cgctacgcca 4560
agcacggatg ttgcccagat ggagagacca aggctttgg accagatgga gccggatgcc 4620
caccactac cacgccccca ttcctcatgg gaggaactgt tgccccacat aaaatcgccg 4680
cctgtaatca gacacaaggaa agtggAACCG tctgcggagc cggatacaag cttgtaagta 4740
attaacctca tgaaaaaggaa ttggagcaac acatttcatg tataaatatt tcaatttcag 4800
gcatggcatt atgataaccac tgagggacgt tgcaaccagt tctggtacgg aggatgcgg 4860
ggaaatgaca acaactttgc tagccaggat atgtgcgaga ctatctgcgt cgaaccacca 4920
ggcaaggaa gatgttacct gccacgtgtt gatggaccac tccggtgtga ccaacttcag 4980
ccaagatact attatgatca ttccaagaag cactgtgtgg cttctgttg gagaggatgt 5040
ctcgaaatg ccaacaactt caacttttc gaagaatgct ccatgttctg taaggacgtt 5100
ggaccgtacg atgctccaac caccgctgct ccaccaccac caccacagca aaatgctcag 5160
caataccttc caactccaga agttcaacag attgagattc aatctgctga gcaaccta 5220
ccacaacagc cacaacaaca gcaacagcaa caacagcaac aaccacagca accacgtcaa 5280
tcaatggaaag acatctgcag atcccccaa gacgcggac catgcgagac ttactccgat 5340
caatggttct acaacgctt cagccaaggaa tgcgaaacct tcacttatgg aggatgtgga 5400
ggaaatctca atcgccccg cagcaaggat gaatgcgagc agcgttgc ttcggtcac 5460
ggagctcagc catccgctgc ccggcaggaa caagctcagc cagcagctca accagctcaa 5520
ccagctcagc caagtaacat cgtctctcca ccacaacagt cagctagtc agttgtgg 5580
ccatgtaagt tctttagaat gcatttattt cttactataa gtttctataa gttcgcatgt 5640
gaagcatccc catttcagcg aacagcaaac aacgcgatgc ttgccaccc aacgttgacc 5700
aaggacgtt gtaaggggct tttgactcct ggtactacgaa agttgccacc ggatcctgcg 5760
tcacattcaa gtacaccgga tgcggaggaa acgccaacag atttgcgtc aaggatcagt 5820

-50-

gcgagtcact ctgtgtgaag ccagcttctg aagctgcttc agccggaatt ggtatgcttt 5880
gagttataga gaatgttcac tattttgtt aaatgttgta gtaaatgaga aactggctca 5940
gtttgaaaat gtttgcacca tgtttcaaaa tagttttgtt gttgaatagt tgaggccatg 6000
aaaatcttaa ttacactcca gaagtacatt ttaaaacatt tttgagaatt aggtcttcaa 6060
aaaaaggttt aatattgagg tttcaaatta gaaatattaa tatacgggaa tttgggttta 6120
aaactgattt ttaaaatctt attttgaag tttcgctttg atattcgtgc aaaaaaaaaa 6180
ccaactttt cagacggtgc agctggaatc aactcagttt gtgacgaagc caaggacacc 6240
ggaccgtgca ccaactttgt cacgaaatgg tactacaaca aagccgacgg aacctgcaac 6300
cgattccatt acggtgtgatg ccaaggaacc aacaatcgat tcgacaacga gcaacagtgc 6360
aaggctgctt gtcaaaatca taaggatgct tgtcaacttc caaagggtca aggaccatgc 6420
tctggaaagc attccttattt ttactacaac actgccagtc atcaatgcga gacgttca 6480
tatggtggt gcctcgaaaa tactaacaga ttgcgtacca ttgaggagtg tcaagcgaga 6540
tgcccagta agttctaagt taatagtgtat atatgctttt tttccctttt attctttgac 6600
aattttcaaa tacttttgc ataattacct tatttctattt cccttctgtt tcccattttc 6660
ctccacccgc tacaaattgtt ttccctact ctctcctttc tcactttccc gtccgaaggg 6720
acacggcaat gctgcctaaa tgaactgcct aataatattt atgaattttc caattttcta 6780
aaaaaaaaaca attctctcaa aaaattccctt gccgttccgc cactgcttcc ttacccattt 6840
gttgcgtat tttttttaaa taaatgaata aagctgaaat agttaacagt ttctgaaattt 6900
gcatgttaagt ttgttagtgta tcagtgtgtt tgctgtgaaa gttttttttt acctgcattga 6960
tttcctgaac tgcattgaaac tgttcttattt acgttttaga tttgctgaag tgcgttagaa 7020
gtgtgatttt gtttcagaag acgaccagac tacaacaaca tcacaaccag aagagctccc 7080
aagtttgcca cttgttcaag aagatcctca gccacgaccg gcattttcat tgaagtaagc 7140
acgtgttagtc caagtgccta cttctcgat gaccaaaaaaa ttatataaa ggtttccaag 7200
tattaaggaa tcagtagcat gtaaattgtg tggattgttc tcctgggtt atgggtttttt 7260
ttctcactca caatcagata tggagtagct tatatggaa ttatattgag aaatagaata 7320
tgtcataaca tccaaattta attattaaaa agttgtgaag tttctcattt tgtatataaa 7380

-51-

attcgccctt caaataagaa caaaaattaa ctgtatgaaa gagctgaatt caatttgaaa 7440
ttgagaaaat aactggttca aaaagaagaa aaacgttggaa aatctagac gtaaatctat 7500
ggattttctt ttcaggtcgg ggaaatttcg acgattttta tattttcaaa aatcattcac 7560
aaatatacac caaaaattat ttttaccata ataaaatacg gaatttcact ggattactgt 7620
agtattcatg taaggtaact gtattgttac tctagggata ctacaagaat attttgcaa 7680
agttgttaga agtatagaga ttactgtttaga ttgaaaatct agacaaaaat cattttccgt 7740
ataaatctgt ggggatagaa tggttgaaggc acaaggctta taaagcacca tggaaaaaaa 7800
ttttaacagt gatTTTTTA agcatatcct cttcccagg aaatccactt ttcaaatata 7860
ttcccactaa actctttaag acaatccttc gcccatagtc gtcgcgtga tgctccattt 7920
gcacgttccg tatccgcccc tcaccatact cctgattccg aagaggaacg agttgactgt 7980
tatgctyttc cagatccagg atcttgcggg taataaatct cacctatcca ttacaaccat 8040
taccgtctta atgattcaga gactaccgtc ttgtttggca ctactctgcc acgagtaact 8100
catgccgtca attctactat ggtggatgtg ctggaaatac gaatcgcttc gagacccggg 8160
ataaaatgtga aacatcggtt gttgctaaga ttgaagaacg cgtggaaagt gtgtcagaag 8220
cttcaaaatc tctggaaagag gtttagactaa cgatccaag gatggattct cactttggat 8280
atcatgatcc agaagtttatgaaatcgaaag aagaagctga atatgtcatt gttgataaccg 8340
gagctctacc tgaattatgc atgcttccag aacaaagagg gtcttggat gataacattt 8400
ttagatggag gtaagtcaaa tcaagaatag aaaattcgaa aatccaaaaa actttataat 8460
tataactaaaa gcaaaatctt aaaatcttc agattcgact ctgaaaagtc tcaatgtgt 8520
accttcatgt attctggatg taatccaaat gcaaatcact tcactagtca gtttagttc 8580
attatTTTGT gtccttcgt ggaactggcc cttgggttc taacttgatc ttctccttcc 8640
gaatacccaa tttgagcacc gctggctcac ttttcgacg gtgacgttcc tcaattctag 8700
cgcccttgtt atttctgag cactcttgag caacagttc ctcactggaa atgtttgat 8760
ttcaagaggg agtgagagag agaaataaac gtacaatttt tgaagccgca catgatttg 8820
tagaagtgcgttgcgt cagttatcattt catgtttcgat agttgtttct gtagtaattt 8880
ttatggatta ggaactaaga aatcatcact cactgcggta gttgcatttt tgtgcattgc 8940

-52-

tctccata aaagcaacaa atgcaacaac tgatagagcc gccacacaaa ttgcaataat 9000
tcgaagtcga tttctaattc ctttctttac ttttgcgtcgat 9060
gtgcttcgggt cgagctcgca atgaggaaat gggtcgatga gtggaccgtg 9120
tttttgcgtcgat tggtcacaac ggcgtccagt gtatggat 9180
gccccccccc aaatctgaaa attttaaatt taagaacagg atctatacgta gttttgccca 9240
tcacagtccat atgtctatat taaaaaaaaat tatcggacat taaaaaaaaat gttttctcat 9300
ttttcagta tttctataaa aactgcattc gcatttacataacttta atcgttaaaa 9360
acttagtctt taagtacctg gggatccgta aacacagaca atttcacatcac aataatcgcc 9420
ttcaaatccc acatcacaga tgcattttcc atttctaaaaa aacccctcgat cacatttact 9480
tgtatattgg cattcacttc caaaatatga gcccacacat tcacatcggt ccccccgttcca 9540
ttctcccttg ttccgcact gaaataattc aatagatttt ggaagtttag ggcctcaaaa 9600
atatacctt tccgctggcc gatagtcaca catttcaccc ttccatccga ctccgcaaat 9660
gcacggctca ctgaatagaa ggctttccgg gtcgaagcgg aatccgaccg agagtccgtg 9720
aactgtaaat tgaaaatttg taattccaaa aaaaaacag ctttgcataa aatcgtccaa 9780
aagaatttttta gagttagaca ttattttctt caaaaagttc aaagttgtat cagtttaaa 9840
ataaaatatt taataggatt gtagagctt gtagaaaaaa taaaagctac ttgaaaaaaag 9900
aaaggtatcc aaaaaggtat tgagatagtt tcaagcaact ctatggtaa actgtcgagt 9960
ttttaagtcc tacaaatctc ttataacatc gctacatcta ctatcaaact ttgaaaaaaaa 10020
accataaccac attcaaaatg ttcacatttac tctccagttc gtccttgat acaatgacaa 10080
atccctccag catagattcc tccattacga cattccggctc tcggatcatc cagagcaaca 10140
ttgtcttagaa tacttctt ttgaaataa cgatgcacgt cgctcaatattt attttcatct 10200
agatcttagtg agtcatctcg tgatgtgtttt ataaaaatag gaagagtaaa 10260
gtggaaaattt gtaaacagta catagcgta gatactgaca agtctactat caattgattt 10320
atttattgcg tcttggaaagg ggtatcaatg agagaaatag ggagatgggt aaaaatgcatt 10380
tataagagaa tacaaaagat gacgttaattt gatcgtttga aaatactttt 10440
aagtatcaat tattatctgtt gaagacagtc acgtgactct gactcgaaact caatttgcatt 10500

-53-

-54-

ttttgtggat tctgttgtat tccttgcact tgcatcagca ataacagaag caggcaatga 12120
gaattacagc aatgattcca gcgcagatgg caataacgat tgcggcggt gatgtgctca 12180
cccagcagac attgtatgg acatgctga tattacagtc tggatagtac cagtcgaatg 12240
gcatacatct ttccgtttt ccaccacacc agaagcaatt ctgaaaaaat gtgttttga 12300
aattttcaat atgtttgctt ataaaattga atttatttt tcaaacagtg tttcagaaac 12360
tcaacttctg aaatttagaa agtattctca attgagagct gttttgtat taaaagttc 12420
agtttagaac tacaggtgtg aaaaaatctg agcaagtgaa caccaacgta ttgcacatcaca 12480
gtttacgcgt caatttattc gagtgttcat tgtagagaaa gttaggtcac cttccagaaa 12540
attaagaaac ttgttcaga cattttgct ctttagagg aattttttt tagagggaaac 12600
acgcaagttt ctttgaaaac aaaaacaaaa tatattttt atccacttac cgagcccttg 12660
ccaacacatg tttcacaagt gttcaatcg ttgcacatcaa ttctacagta ttctgtttc 12720
tctgaccatg tcatgttattc cgcacatact gatactagaa caattgagaa aaagagtagt 12780
aatcggtaaa tcatcggttct gaaaaatcaa taaatagtaa caacttgagc aagtctcgta 12840
actgagcgac aaaaccaaag tagtaatgaa atagaaagat agaaaggtaa actcaaaggg 12900
ctcgcgtgtg tttgtctatc gagtgccat gagttttagg agtagcgaca gaaataagtt 12960
ggcagaagaa gaacatacga actatgtcgg gctacaagat tcttgggttt acttttgaa 13020
aaagaaaatg catttgagaa aatgcaatcg ttccggcagaa atcgaatgga gtttagagca 13080
gaatggtaaa aataaaggta gatcagcaaa aatagttgaa caaatatttt gttagattca 13140
tgaaagataa caaaaaaaaaa taaatacaga aaacaatata tgacgtatcc ttcaatcatt 13200
gtttttgtat agtgcattt cagtagttgt acctgttata agtacagcgaa agttatacat 13260
tttagagtgg gtcttgcac gatccatatt ttttgaacgc aatattgaa atccaaaaaa 13320
aaataaagaa actaggcgcc aagaagctat agtagctata cgccataatt gtgaataacct 13380
tgaattacat taaattccaa caaaatagga aaatcatata aaaacgaaatg tagttgtcaa 13440
ttcaaaaacg tttttaaaat tgttcataag cgccgagctg tccccctcag ttttcgttta 13500
ttcagctttt ctctctctt ctattctcta tcgtcaccta tatttcatacg tcccccttac 13560
caaaagtggaa agtgaatgag gatggaaata tgataccgca tgcttcaaaa aaatttgctt 13620

-55-

atgagaaaacc aacatttgaa aatttccagg aaacttgtga acgagcctgt ggtaaatgga 13680
gaaatgtggc agtgtgcgag ttgccggccg aacacggaga ttgccaactt gcgattccca 13740
ggtatgtact gttgacacat tttacaatg ggatggaaag tggtcggta tcaggtggaa 13800
atgttcatgg caaggttta aatagatgta gtaactgaaa acaaaatgac agatgtacat 13860
acataaaatta ggattaaaaac aaaaatacta tgccggagtca ggtgactaat tttctggaa 13920
attccagaat ttgaaaatgt tttctctgt ttgaaagtag aacgggacct tttacaaaat 13980
aggctgaggt aggtaggctg tagaaagtgc ctttgggtgc tttgtatTT ttgtttcaa 14040
aaaatcactt gtaagcacat gaaaatcaca tgaataatga tgaaaatTT agaaaattag 14100
tataaagaag atttacatTT taataataat aattccagat ggtaccatga cccaaaaaca 14160
tcccaatgtc aaatgtatgt gtggactgga tgccggaggaa atggaaacgc gttctttca 14220
aaagcayact gtgaatctct ttgccgagtt gagacattat ggtccaacaa cactgacttc 14280
tgtacattgg aacgatcggc cggtccatgt acagattcta tttcaatgtg gtatTCGAT 14340
tcaactcatc tcgattgtaa gccattcaact tatggaggtt gccgtggaaa tcagaatcga 14400
ttcgtagca aagagcaatg tcagcagagc tgccgtcctg gagacacaaa atctgaggat 14460
atctgcacac tccgcccaga gccgggaccg tgtcggtcgg gactcgagaa atactttac 14520
gacccggta tccaatcctg tcatatgttc cattatggag gttgtgaggg aaatgcaaac 14580
cggttcgatt cagagttgga ctgctccga cgatgctcgat gtgtcaaggt tgaagcaagt 14640
gaaagcgaga gagtgggaca gctgacgtct gcatccacgc cagttatTT tattgttaac 14700
aaaacagcga ttttgttgg aaatactgta agttatTT tttatTCGA agatttctta 14760
atatttaaac tggtcccattt agagtttgtt tcattttccg acaatagact gcaaaattga 14820
taactttca tgaacacttt agccgatttt agctagttt gtttattaaa atttggtaat 14880
tcaaaataaa aaccttacgc cactccactt ttgaaatactt gtcaaataca tttttcagt 14940
tccgaatccg atgcaacagt tacggagtgc ttccaataac atggtacaag aacggaggc 15000
tcctccagtt cggctcgca atcactgaag agaatgatga cactttggaa attgtggatg 15060
ctttaactgc tgacgcccgt gtctacactt gcattgccgg ccaggatagt acaatgagcg 15120
agggagtcga ggttgtgatc aagagacttc ctggtcacag aactacatct cgtccaaatgc 15180

tgacaccatc caagaacttc tccttggaa ccccaccgac accatctcca tctacagttt 15240
ctacaacacc cttccgaatc tatacgctg gatctgctcc atctgatgct cgtgtaagcc 15300
gcccgacaag caattcctgt atggatgtgg gtaacgcgag cacgtgcgtat ttgatcgtga 15360
agaacggttt gtgcgggaag aagcgatatg gaacattctg ctgtcacact tgcacccggg 15420
ttcataattt taaattttaa gtttggattt tttgatttca aattttattt aatcttttaa 15480
tgtttctcc ttcataatat ctccattgcg agatctttt ttcccttctc ttccctatact 15540
ttcccctcag acaattggct aattactcg tgcgtccagt aaataaatat gaattttttt 15600
cttcttccta tactttggta tacataatca tggcatgaaa tacaagacaa aaaaaacaag 15660
aaaaaacaat ccacttgaaa tccattcagg tgtgaactaa catcttactc tattaacttc 15720
gtgccattac ttccacttat tttgcctatt cactaatgaa gtctctgaga attattttct 15780
gtctaactct gctgattgca agcttccag ctcagcggag ccggccaaaa cagaattttg 15840
tacgccttcc tagtgggttc acgtttcctg cggatgcggc gagtaatttt caaagagatg 15900
cgtatattcc agcgacggta aatttcgct ttttgtaaa tgaatttcag gcttcaaatt 15960
attttctagg aaaaaatttt aaagtaggct tgcgactact catttcctg ctttacctgc 16020
caacaggcta gctttggag agaaatcaaa agtttgggtt ctgtaaatct aagctttccg 16080
aagcgtccga aagttttgg gaatccgcta tacactttaa gattgataaa tatttgaatc 16140
aggtttattt tgcactatta aggctgttag gcactaggcc ggcaaagctc gcctacgggg 16200
agccttacaa tcaagtatta ttcatgaagg tcttgattt gttacagaat tccatctaaa 16260
attacttata caaaaacatg aaaaatttca gtttgcggcc ccatctgaga agattttca 16320
agctccacca cgctattaa ctggagaaca caatccagct tatggtaggc ccaattttt 16380
atctgatttt ctaaattttaa cttcaagctc acaataccga tgtgcaagga atgaactacg 16440
ctgagtacaa gcaagcgatg gccccacaac cacatccagt cgatgctt tctccaccac 16500
ctcctgcacc aatggtccca ccggttactg tagttgaacc acctgcaatg ccgtatgaaa 16560
tgactacgt tgcattgtt ggaccactta ctactccgc atcagtcggc ttgaagaagg 16620
gaaagtttggat aatttgcattt tcaagtaatt ggatacaatt tccagcatcg 16680
gaggaattgc tcaaaacttg aacgacaggt acaccagctt aacaccagaa gctcaacgtg 16740

-57-

ctcagaaagg tcataacctat acggctctgg gcgggtggaca attctatcaa agtttacttg 16800
gaggggtaag atgcaagggtt agaacttaca aactcaattc attttacaga aaggaggccc 16860
cgaggaggattc tccccactct cgttcttct aaacggcggt ctaggaggta ctgggtggtg 16920
tggtaacaat ggattcttcg ttccggtgcc tgtagtcatt ccgcctccac cgccaccgccc 16980
accaggacca aactgtttca cgaaccggc gggattccct tgctgttaacg tgacacttga 17040
gaaaactatg gaagacgcgt acctggccgc aaaagcagat ggtgcacac tgtgaatgt 17100
acagaaaatg gcaactgcag tgcaagcggt ggggtttatg gatttcattt tataatgtaa 17160
tgtgctttc cctagaattt aataagctta caacttgaat tacgacttga attacaactt 17220
gaataagctt aaaatatcca ccaaatttca gcaagccgaa aaaaaattcg gaacaacttt 17280
cgaatcagtc gctgctcatt cggacttcgt cgcaaaaatt aattttgccg gtgacctgaa 17340
ctgtaaaata gaaatcgatg ggaaattcat actagcgtac gcaactccaa tcgcccagca 17400
agaggtgaac attgtcgatg ctagctcatt cttctcgga gctgctgata aggatttgg 17460
tgggtcaat ggtaccaagc ccacccat tgcgttacggt cccattaaat aatggagggt 17520
ctagctttaa agatttctgt atattaaagc tgaaatgtga attaattgtt tatttgccaa 17580
tcacaataaa gttggaaata tcatttgaat agttcgaaag ttttcaatcg gaatgggaga 17640
aaattcgaaa atttaggtgg aggtgaaaag ttgatgaagt aacacaatta actgtgctcg 17700
aatcctgaat agaaggagaa aagagcctat aaacagattt tcaatttaca catattacac 17760
aacaattcag gaagaagaca gtagttgca aagaaaatac gtagaaaaaa gagtgaagga 17820
ctggcggtat gtcagtttgg atgtacaaat agaactcctg aagcataaga aacagaagaa 17880
tcgaccgatg atcgaacctg aaatggattt attgttgcattt gaaaaatatt aagcaattct 17940
aatctctac cttgtttgat tgcgttgcattt gcaagaatct aaactcgtga gtgtgattgt 18000
tactgatccg gaaatgttcg gctgcttgca gcattatcaa tatcggattt cggccacaaa 18060
tcgtgttctg ggtcttttg aggttagtcat taaaagctgc cggattaaagc gtctcaattt 18120
cgctcattcc ctgcttatcc atattggta tctgctcata aatcggataa gaactatgac 18180
gatcgatcg agaaaagctg aagcgttctc cccaatggca aaagtccgaa gagatcacaa 18240
acaagtttct tggatccctcc atgtatgag caaaaatatt tccatacggt tgctgcctag 18300

atcctggtaa agatccaaca agtaccgaa caatgggtga acgtttgaa cccataacct 18360
ttgcaataaa tggagttgc atttcaatac tatgctctga ttcttcatct cggcgatcca 18420
tcaaatcgaa atgacgagtg gcacgaagct cctcgtaac tgcaaaggc aatgttgtaa 18480
aagatgtact aagagtgcaa tagattactt ttgtgatcaa cgatcaagtc gccgagtgga 18540
gttctgtact tgctgcatgt ggttatagca catccattta gagcaacaac gtgagatggg 18600
ccaagaatga agactcttc actgaaaagtt attgagtaag ccctgtgcc aagtacaaat 18660
ttcaacaact cacactgctg atgaaacaac ttgtttgaaa gcatatgcag ctgtttctcc 18720
acaatacgaa tatcccgcat gtctgaaagt tatcagaaaa taaatattaa atgcatttag 18780
agtattacgg taaaatcaac gctcgagccg ttccaatccg tggaccggcg ttgtcaagcc 18840
attttgcgatca agatctcgct ggttggcggtt gtaccatgat ccggcatgtg 18900
aggcagatct cgtgtgctcg ccgaatccgt ttagtgacat tttaaattca gatggtctga 18960
atattaaagt tttgataat tggatatac gacttgatta atatgtttag tagggtttc 19020
aactactgtg tggcccaaa atagtcaaca ttgaaaaatg gaaaagttt aatttaata 19080
ttcaaataat tttaaattat taatattaaa attcacaata cagtgtaca tcacacttaa 19140
ttcaagatgt tctaaaaata tgagccatcg ggctagctct acttcacgaa ttcaaatcaa 19200
gtccggggaa ctggctcgaa agaaaataaa ttttaattt ggtttatgtc cgaaatagaa 19260
atggaaatct ggttttcat tctgaataat ttccgagaaa cacttacaaa ataaaattca 19320
gatatcttc aaaaggaagg ccaaatgtcc tgagaaatag agcacgagag tttgaaata 19380
cctgcaacaa caggatttc ttctatttt tttttgaac tgaattttaa actattatct 19440
attctgaaaa catttttgt ccaaaaaaaaa tcaagaacaa tttagagcaa aatgtggcaa 19500
tccgaaaatg ttgatgcaac aaaaaagtgt ttttttttc attgaatttc agtttgaaa 19560
actgatttct ttccaaaaaaaaaaaacgaaagg aaaatttga gaaaaaagtg aaaaatccaa 19620
aatgctgatt ttggttttt tttcaaaaaaaaaaaacgattttt gcaaagtgtg tgctttttt 19680
cgaaaatttc agaaccttga gacaaaaaaaaac caaaattgtg ttcccagtg aagcccccca 19740
cgtggacatg gtcagacgaa tcttgcgt gttcgccagcc aattttcatt ttgtgtgaac 19800
gcataattgt tcaaagaaga ttccgtctaa aaagacgaaa ttgaaataga ttgtgaaatc 19860

-59-

ctttgaaatt ttctttgac aaaaggtcac cgttattcaa aaattgagat ggtctcgtga 19920
ctaaaattaa acaatcaaga taatcatgat tgtggcctg tttaaaata cactttcaa 19980
aaacgaaatg taggctccaa tccaaactgc gcatcaagac caagaatata aaattttaa 20040
actcggaga cgttagagaaa ctttgaatat taaacatcgc cgtcaagttt ccgtcagagc 20100
g gcctgaaa ttttttagag gttttcaaaa agctacc catacaaata atcataagaa 20160
aaacgtttta aaactttgca ttccacccaa aatgtctga aattacccgt aaaaagaatg 20220
tgtgaaggga gtgatttgag ggttctgtca aacagtttga ctgttcgcg ttgcacgtgt 20280
ctcgacgtgg atggatttga agaggaccgc gctgatcttgc tgctggcgt cgtcgtcttgc 20340
tcggaccgcgcc gcgagtagtc ttca gtc tac caattacctg aaaatttgc acttttgc 20400
atgtgaaact ggctgcctga agcaatgccca tataataatc ataataataa taatgaagag 20460
ggatgaggat gcatgccaaa agaatgaaag gaaagacgct ctttacaac accagccgat 20520
agtattttaga agaaaaagaa gactaaaaag agagtattgg gtgatggag aaagaacaca 20580
ataggggaggc cagtgaaata gaacgagaac aatggatcg gcagacattt gacactagag 20640
ggccactgt ttca gtc ttccacttgc aatattggaa gagggccaag aaggggagtt 20700
ccaagaatgg aaaaagtggt aggtttgtag aaaatctgcc ttttttttt taaaatttgc 20760
tgttcactac ttatattcgt gttca tctgt ttatgtcttc cattataggc aggcaagtt 20820
tcatgcctac atacctgcct catgcctatt tgactttcaa tataaaactt gat ttttggc 20880
attttcatt ttataacaat tgtaactaat aataagctt gcaaagttt ctgaaagaaa 20940
ttgtctaaat ttccctggta cactgaacat tttcggtat aaaatctatg cgtatcaagc 21000
ctatttctaa gagccgtaag tatttcagc tgaaaatgta aaccacggag tcaatattta 21060
cttcgtatca tccatcttcc attccgtctt gtttacaccc acggcaggta ttttagacacg 21120
aatgattgtt ttctcggtt cctaatactt tttccccca aatattccca tattccagtt 21180
ctgaacaatg cacttttcag cggtcatcgg gtc catccag ccctcattca gcccttcat 21240
ttatcttcgt ttctactttt agacgaaaat gcaaaaaaaa gagaaaaaga cactctttt 21300
tgacgcteac attcgctcac attgctgtgg tagaaaaaca ctcactcggt ggctgctggg 21360
aaggaaaaac gagaaaatgt ttggtcacgc aatacgccta tatcttgc tatcttgc 21420

-61-

atacattcat tcactgatgg ttttcctatc aggtgatcat tttttgttc ttctcaatta 23040
cactatctaa aaatgatgaa gttttgctt cgccgcattt tggttgaagt gatgatatat 23100
ccattgattt tcgtctccac ttgtgtctt ttacgtctt acaacttctt tttaagtgtt 23160
ttgcgtattt actgtttcat ttatttttg cagaaaatga gcctgttcag caaattttc 23220
ggaggcatga tgcaagaagc tccgattact ccacaagaat ctattcaaaa acttcggaa 23280
acagaagata ttcttgagaa gaaacaagaa ttcttgaga aaaaaattga cgacgtaagt 23340
tggaagatca gttttggcg aattaatcac attaaaaagt gctgaaatcg aaattttaa 23400
actctcgagt ctcaagtgac tgtgacgtaa ttaaaacatt gctcagcatt tacattgtt 23460
actgacgtct ttcaaggtt tagtcgagca aatccaaaaa agagcaataa aaatttctgc 23520
tacgatacgt ttggaaatt ggaatcatag tttttaaac tccattttc aaaaaataca 23580
ttattagaaa atcagtaagt ttccggaaatt atttgagaaa cgtttcagga aagcaaaatg 23640
ccgtgaagta tggaacaaaa aacaagcggg tggctctcca gtgtttgagt aggaagaaag 23700
cttcgagaa gcagttgatc catattgacg gagtttggc tactctcgaa catcaggttg 23760
gtatataaaa atatttagaga aataaaattga ataacacggt ttttcttcca gagagaaaacc 23820
ctcgaaaatg cttcaacgaa tgctgaagtt ctcacggta tgaaacttgc tagcgatgca 23880
ttgaaagcgg ttcataataa catggatagc gaccaagttc gtgatatgtat ggataacata 23940
gatgaacaac gagaagtggc gaaggaaatc gcggatgcta tttcaaacc tggcttaac 24000
aacgcaattt acgaggccga tttgctgcgc gagttgggg atcttgaaca ggttcgtcta 24060
taccaccaac atcgtgtaat tattagaaaa tataccagga agcacttgc aaagatttgc 24120
ttgatgcgag agctccccca gtcacgcttc cggataactcc caatattgca cttccagcct 24180
ccagaccgag agctaaagaa gctgacaagg atctagaaga cctcgaaagt tggcaaact 24240
aacttctcta agtcacttcc atatttaatt ttcggctatt tttgtttcat ttgcattttc 24300
ttcatcaatc ctaccatttc ccggagattc tcctaaatca actttctaat tacgacaaat 24360
tcaaatagtt gaatgatttc tgtttagcca tttcattcga aacaaatttc cccaggctt 24420
cgatcaacac tcatcaaaat tgtaacatat tatcgagctt tttggaaatt tgcattttt 24480
tacatcttgg tccctttctc caaaatcttc caagcatgca tttaagttcc aacttttatt 24540

-62-

aaaaattcat tctggcaaac atgttatttg taccgggtga aaacgaaaac caagcgagaa 24600
atagttacat ctcagatctc cctaacgatg gctcaacccc tttgacgctc atttactaat 24660
gtttatactt ttgctcattt actaatgaat ggctcattta ctaacttgct gagattttt 24720
aatttactac tgctaattgt aagatata tcatttatca tttactatat ataaagcgct 24780
tattccgtt gtccatagg ttgatgttat gtatgtttt tagtctgtga cgttttggct 24840
tctggaagga tagtgagttt ggcttagtgt agggatata ggggtactgt agtggtacaa 24900
tagtggtacg taggagtac ttgtatgatta cggtagtttca agaaaaattt gtttcagct 24960
ccagaagtgcg gggccgcgc cggaggtgcg gtccacggct gttttacat aaggtagttc 25020
caaaaaatgt cctacttcca attactcata actcagtttgc cgcgtatag ctatagcgtt 25080
tgagttaaa aaaattgtgg ccaactgaaa tgctgtttgt cagagatgcg agctctaaaa 25140
gatgatcgaa atattctatt tctgcggatc tagaatattt cgatcatctt ttggagctga 25200
catctccgca atcgctaaag ataactaaaa ggtaccaatt aacaaaaatgt gttttacaat 25260
attgccaaca acattttagg ttcttcgc tgattgtttc ctttgggtt tggatgggt 25320
cccgaggatgg ttttttcgc tggttctact attttttggc tcggcaggct ctgaacaatt 25380
ggttgcacaa tcttcttcaa cttcatcaaa ttatccagag ttatgttgct gcttctgctg 25440
tccaacat tcatgcattt gacggaaactc ttcaactttc tgattgtca ctggattctt 25500
cttttcgat ttatattttt gaaaacttta ctatcataaa caatagtatt tatcatgtta 25560
caaatcagtt tggaaatgatc tccttcattt aaaattttta atgatcagtc gattcactct 25620
tagagccacg aaaaatgtgg gacaattgtt tgagaagtga aaaaatgtta ttaatgttg 25680
aatttagttgt acatataagt aatacatgaa aatacatctt aaaaatacag ttactactag 25740
gtattattgc taaaattgtt gttccaatct gccagttacta tgagcgtaat tcgttgatcc 25800
aatcttcgaa tagccgtgag cacaggcttc gccggcaactg cacacaaact tcacgattgc 25860
acgatttgca gaggttagagg acgaacgact ttctgttaat tggcggaaata ttgttttaag 25920
ataaaatgtt taggaacgat cgtactgttt tttagaacgag actgtctagc tggtgccgc 25980
atcgagcatt gatggcatcc aagaccttga acttcttcgc tgaatgatat acgatgctt 26040
aatatggatc cactgaaaat tgaggttata gtagattt gggagctatt atgatttcac 26100

-63-

ccatgaagaa ctgcgtcagt aactcgttc agattctcgc tatcctttc accgctttt 26160
cgttgttaatt ctatgagaaa acggtagaat ttggtgacat ttgtcgagtt aaacaattcc 26220
acgaggcaga caaacatctg aaatttgcgt ttttccaca aatgcataaa cttcaataa 26280
aacaaaccgc ttcttagggca acatcagcta aactgtgatc atgctcgat tcggcgtta 26340
gcgagaagca taaatggtag aataaatgaa agatatcggt aggttcgcgg gaatccggat 26400
tgttagtctt gagataatca acgcaatttt gttcagatt cgtcatcagg tatttgcgc 26460
atagcctgag aactgtgcac acgtttgtt ctgaaaataa atttggcatt cattgaaact 26520
acatcgatca tgaactacca tcaataacat ccggatataa accaagagaa ttgggagaaa 26580
tgacagtgtat caacttgaga atatcttccg gtgactcatac aaggatattc agctgctta 26640
tggcgcccttc aaggaaaaac ttgttctcca tcaagatgcg gaaataatcc gaatttcttg 26700
caaagattgc tggatccaca aagtactttt gattaccaac aataataggc cagtttcgaa 26760
gcttgctgt cgactcaaaa tcgacctgaa agaaaaatcg aaaaattcca attaaaaaaaa 26820
cgttgttta cgtaatcgga tccttctagg aaggttcat gacttgggt cggtgcatt 26880
agaatgacgt ttacggggaa atcattattt attccgaaac gtgcttggc ttgttctgtt 26940
tgctgaaatt ttgaaagggtt ctccgaatat taagcgaaaa aaacttacat taataatata 27000
aggctcata gcgccgagta gctaaacaat taatatttga ttacaagttt ggaaagatct 27060
ttctgagctc gatcaggaag aaaaacttct tgaaacttta gaagatgaaa tgtgtgctac 27120
cgtataaact taaaagggtc atgaataaaat ttctcctttt ggtcctgcga cgattaaact 27180
tttaatcaa ttctctggc tagttttat tcaataacta gaaatgttgtt ttatTTTGT 27240
tccctactta aatcatatgt tattttctt tcccttgtg tcttacaggc ttttttagct 27300
gaagaaaatag caatTTCCG ataaaatttgc ttgctctatg taaaaggcgc atgcatttt 27360
ttgagagacg ggtctcgcaa cgtgctcaact cctcgccccg atttggcttt cgtttgcgc 27420
gttttcaggc ctttaaaaga tagtccgtc gttttttct caatttctgc tgaataagg 27480
tttaattaaa ttatTTCA aaatcttggt aaacatttaa actcatatat tcagaatttt 27540
cattcctctt tcacccagaa aaccgaattt caatattaag attaagaaca catctagaac 27600
atgcaaaaaa cacaattgct atctctctac tttcattttt aggctgattt ttgaagaaa 27660

aatcatataaaa tacgtccatt attgttgtat cccttggttt catccaaagt tgactcgatt 27720
gatctcttaa atgtggtatt ccgttcgaaa ttgcatttat ttttagaagt taacacattc 27780
ggaatgtga taattcgat caaaccaaaa ttgtcttctt ttgcgccttt ttgtgcagtg 27840
tcagcattaa acaaaacgag aatattgaaa gttacgtggc gttgcattct ctcaccacga 27900
tgacatcacg aaatgcagac gacaaagacc ggtgaaaaat agtgcgctga atggtaaaaa 27960
cttgcgaaga taacgtgtta cgggttggaa gagaaaaacat tccgcgagac aatgctttt 28020
gtgagaggcg cagatggttc agagaacact agagaaaacc gcgcctctgt ccgctcacag 28080
ccagccccat caagcctctt cgggcattcga cgcatagaca cacatcattt tgcccaatt 28140
tccttcatt ccgtcaagta ttgcataact aatcgattt gctcattaca atacacattt 28200
tacagaagtt cctcttcattt tacttggtcc gaccgcattca gataactggg agatccagtt 28260
gtgcatgttc ttgtgcccac acaaactcgc gccatttac aattttatga tcgacaaccc 28320
tcaagaaggt aagcatttaa acgtgttggc cgtgcgtctc aaaaaattgt taaaaaacct 28380
ggcgacacgc gttttccac aatttcattt cctagggcat ttgttatttg aagtaattct 28440
attacgcgtt cgaatcgga cgaatcctgc aggtttgtt gtagtcaatt ttatcaagtc 28500
gactgcctct tatgctttct gaaaaaagag aatgacagtt ttgcctaagt agtactaaag 28560
cgatcttttta tcttggcaa aaccttgata taagcattat cacagcatat catgcagatt 28620
gattttagagt taagcatgaa atgtgcagg ctaaaataaa ttacaaaata agtccatagt 28680
ccattttagt aacagtatac atcagctgat agaattcacat gcgtaatgac aggtctaaaa 28740
cattatcaaa caaaagacat tacaaaaaca agaaaaatac aatataatag aacgactatt 28800
tgaaatgagc gtagttaat tcggaaacttc aatagattat catacgctt tttaaaaaaa 28860
tgtgtgttcc ctttctccg cggttgcggc ctacaaaccc gtgagtcgga aggccataatc 28920
gggttggaaa aaaagtatca aacactgatg gtgtttttt tagggaggtt gtccagaaag 28980
agaaagaaac tgaagatttg cgaatcgata gcgtcgatc ctctcgacgc cagtgaagtc 29040
aagatcggtt acaatagtgt atgcgattcc caaaatccac atatcaaccc gactcgat 29100
atttatcatt tgtaagtact aacaagagat gtgaacgtat ttacactcaa cattagcaaa 29160
ttccagaaga agatctaaac aaaaactatc gaaatggctc tcaacgtgaa ccgcgtgtc 29220

-65-

gctgatccat tctaccgcta caagatgccc aagctgtcag caaaagtgcga aggcaaagga 29280
aacggaatca aaacggtcat ttccaacatg tctgagatcg cgaaagctct cgagcgtccg 29340
ccgatgtgta tgtttatcgc cagttggctc gccattggac acaaaaataa ccattgtttt 29400
tcagacccc a cagaactt tggctgtgag ctcggggctc aaacgaactt cgatgccaag 29460
aacagacgtt acattgtcaa cggcgagcat gatgccaaca agtccagga tatttttagat 29520
ggtttcatta aaaagttgt gcttgcaaa tcatgtgaaa acccgaaac tcagttggta 29580
cgagatcatt gaattaataa tctgtctaattttt cagttgtcc gtaaaaataa 29640
catcaagagc aagtgcagg catgtggatg ttcgttcgac attgatctca aacataagct 29700
gtctacattc atcatgaaga atcctccaaa gattgatgtc gattttgtat agtacgttt 29760
actaacattt ttcgattgaa cttatgcaaa attctgccaa aaattctatt tgcattttaa 29820
atccttcaa ttcgattttc cgtgtgcttc cagtgcatc aaacatgcta atttttggtt 29880
tccagccaaa gccgaacaaa agaatggaaa gaagacatcg ggtgctgacg ccggccggc 29940
cgtggctgcc gacataatcc acaacagcga caaaggcagt tcgaatgatg acgacgcga 30000
cgattggaa cctgaaccag tcgagccgaa tggcatgctg tcggcggaa tggcaagct 30060
cgtgctggac aaggatctt agaagagcga agaacagcgt ctcgacatgc ttcacacatt 30120
cttctgaaa gccaaggaag aaggtaaagaa ttctgagcat tgataaaaag tattctcgat 30180
atttcagata gaatttctga tgccaaggaa caaactgctc tacgtgacga agctgagaga 30240
ctttagctga agcaaaaagc atcttcctt ctcgcgaacg tttttcttga tgagaaagta 30300
atcaactgaca aacaaatcag caaacaccgc aatcttctgc ttcgcttcac gttgaatgac 30360
aagaaagctc aaagataacct gttggagga gttgagcaag taattcacaa acatgaagcg 30420
gaacttctgt ctaaatcagc tcacatcatt aagtcattgt atgatgaaga tgtctgcgaa 30480
gaggattcgc ttatttcattt gggagagaag gtttagtacca aatggagctt tgtttcgaat 30540
taaagtttat atttacagcc gtcgagtaag tatgtctcca aatctttgc caagaagatt 30600
attgagaact ctcaaccagt gctcaactgg ctgaaagaag cggaagaaga aaccgaagaa 30660
gagtcgcacg atgagatgc ggtaagaaat atcagattt tttttttttt ttcattttttttt 30720
ggttttcagt tcggaggaga cgtcaaggag agtgaattcc ttcgtcaaca gaaggagaag 30780

-66-

gctgctagag aagctcagca aaaatcagcc aaggctacaa acggcaatgc tgctgctgca 30840
tccggagcaa atgatgaaga ggacttggat attgatgaca tttattgtt cagatgctt 30900
tttaaaaattt acctgggcta cttatgtttt ttgtgtattt cttcccatat tcgaaccaat 30960
tcaactaatt tcgaagaagc ctcagttttt ttttgcttcc tcccccttcc aatagtaagc 31020
atcatttcat ttctgtcttc tgtctttct gtcctacgc tggtttccct tcaccaaatac 31080
caattcattt attcgtaaag tcattactat ttgttgtttaa tcgtaaacat ttggaaatat 31140
tcttggtaaa ttcagtctta tattacaaaa acacaatgtt caaaaaaaaaaa gaatcacttc 31200
agatgggaac ccgtcgaatt cgccggtccg atggagaata cacattgtt tttcgaaag 31260
tttagccatt ttcaaatcat cacccagctg atttcatttgc cgacgaagcg ataaattgtt 31320
aagagccgaa aacctttgc tgctcgaaac agtactataat gtacaataag gcttcactat 31380
tgcgttgc aaaaactgtat gcagcgattt tagaagcaac ttgtccgaaa acaatgaaga 31440
caatgtgttc taaatggtc ttgaaaggat ggaaggattt ggtgttaagtt ttaatcagt 31500
ttgataataa aatatgtttt tcttttacag atggatgag aacaaagaag aagtgtatgag 31560
aataggatgc ttggcaaaat tccgtgcttc tcgcccattt cgttatgctc ttttctcac 31620
aactggtagc aaacttagtgc aatgtatgtcc gttcgataaa atatgggaa tcggtagtt 31680
tccaacggat cgttttattt ttccatcgcc catcacaatg caatcagaat ctccaaactg 31740
gaaatgtttt gaaatcattt aatcatctt tgagctgata tggtgacgga agaaaaggac 31800
gtctgaaaat ggctgaatta ttataggaaa agatatgcaaa gccgcacaat gggctccatt 31860
gagctctggc aagaatctgc tggaaagat tttggatgga atccgagagg aattgtggaa 31920
tgattcaaat tacaagttt ctctggatc agaaaattat tattatataa aatttactatt 31980
tcagagatga acgagaagaa gtggagaaac gaatggaaac tggaaagat tatctattca 32040
ctgctataga gcacatggac ttgtatgtaca aagaaagagc aacaaaaga gtattgtt 32100
aatcagaaaa tctgcgtaat tgcgtacaga aataacgtat tccagattgt tcgaggaaga 32160
attgttaact gatgatagat cctacatcac accagatatt cagaggctcc ttcccgactg 32220
ggcttggccg ccgatcctcg tgaaaaacga gcctattcaa ccatcgctgc ctgtaataat 32280
cgatttccctt aggtacttgc cttgtatctt aatttatacg aattaaacttt caaattccag 32340

-67-

atcatctcca ctgcgagcag ctgaaatatac acgttaggaag agcacatctc attcgacaag 32400
ctttagtaaa aggccgtacc tcaggagcag atcgagaagt ctgtccaaaa gcccggctcg 32460
aagacgctcc agacatctt cccgaagtgg atccccgtaca ccagctcaac ggcattccag 32520
aagatccgaa agtacatctc gaagacgttc cggacggcac tctagaagtc gatctagaag 32580
cccaccacga aaacgtccgg tacgcccgtc aagaaggcaga tccaggagca ggacacccaa 32640
ccgaaattgg acaagagcac ggagcagaac aagaagtcag gctaaaagta gcagcacttt 32700
aacctggcca ctgagcccat cgagaagcag aagtaacagt aatgaaagga atttcaaaga 32760
gaagaaagac cgaaaaaaaga aaaaatctga gaagaaacgg aagcatcatt ctaaatccag 32820
aaaacaccgt tctaaaagat ccgaatccag agaagaacgt cacagaagac ggaaggagaa 32880
aaaaagagag aaaaagaaga aacgacgtcg gagaagttcc actacttcag attaaacttt 32940
atttttgaaa actagtatac actttaaaag tcataacttt tttaaaagtc ataaactgg 33000
tttaatatca aatgtctttt caaatattct ctatttatattt attcttcgtt attaaactga 33060
gattaagtac tgggtatatac attaataaaa ttacgatact ttgccgataa aatcgttat 33120
aattacaatc tgtctgctgg tgaaaattgt acatgctatt ttcttggtcc tcattcttt 33180
ttcattctct gtaagggtttt gttcggtttt tgaaaaatttc tgagagtagc cgaaaaaaa 33240
aaaaaaaaaa actaaataacc tacagtaatg ccagaggcat atgctaaata attatcaaaa 33300
atagtttc cgcggcgaga cccatccccca caaaagtatg actcccttga aagtcgtaaa 33360
tgacaatttc ttgaaacaag aacatttgta tattaacgaa acacaaaattt ccgagaatgc 33420
gtattgagca gcatatttgc cgagccaaat atctcgtagc gaaaactaca ttaattctta 33480
aaaaacactac tggtagcgctt gtgtcgattt acgggctctt tgaattatca ttgatttatac 33540
gatagaatat taaaaaaaata aattcatttc gaaatttagag cccataaaatc gacacaaaaca 33600
ctacagtagc catttaaaga attactgttag ttttcgtat gagatatttt ggcgttcaaa 33660
tatgttgcgc aatacgcatt ctcagaattt gttcggtttt aataatagac agtggctcg 33720
ctaaaaacta agaacaaagt aaatcaaagt tttttctgt tcacttcaaa ttttacacga 33780
tcttgaagca aagttcaaaa gagcatgaat caattggaaa gtgttcaatg caccctacag 33840
atatgatttc gggcagtgt aaactacagg gcacagacat aaaaatttaa attgttgaag 33900

-68-

actaaaatat aaacatatga attcaagggt cataataaaat gtattttttt aaataatatt 33960
tattaaatgt atgcatacaa ttaaatacaa cataattatc aaatacaaattt attataattg 34020
caaccgtcg gacaacaact ttgctgaggt gtcgtgtgac agtcagaatc cttgtcacac 34080
cagctgaccg gctcagagac gatacatcg 34140
cgacgcgttg gaggacaaca ctcacgatcgatgt cgatgcagcg ctgaaactca 34200
ggaaactatg tgaaatttag gtggatcacc caaccagctg cccttcacccg cactgataat 34260
ttggagtgc 34320
ttgcaaaggc cctggagatt ggcttgctg aaagagttga tattatttct attgatataa 34380
taccctaaat ttacgaaaat tatgctaaat taggattta gttataatcc tcgtcacatc 34440
tgatctctga aaactaaaaa atatcctttt tgtagtgtg gcaccaaattt cgtgctgtaa 34500
cagagaccaa aaacactact tttcgacat ttccctctcct tgcagcgaaa aataaaaattt 34560
tttggaaaatc tttttttct catacccgga aaaaacccaac aaaaacggcc ttgttccaaa 34620
ggcggtgagt atttctattt tatgaaagtg gccgagattt ctcttttct acgccaagta 34680
gttaattctt cgcggcaaga cccatcaatt ttctaacctc taatctcttt ttcaacatga 34740
atatccacgt catcatagaa ttgcactcg ggcttataga tttggagcct ttgaaagtat 34800
atgcaccagt ctatatgggt gttggaaac gaataggcag tagtttttg gaccaattgt 34860
agaatagaca gtagtaatacg ggaagaatataa aagaatttca taattcagat ttcaataaaaa 34920
aataaaatttta attgagaaaa aaaacggttg atattctttt gtttaagcag acaagtatgc 34980
ggaagtgaat cttgagcacc tcgtaaatca cgggaggcgt acttgtacag aagagagata 35040
aggattaaag aggcgcaagc tttgccactt tgaagttaaa aaataaagaa agagacatgc 35100
aaatttgtgg acaaatacg 35160
acacaatggaa ttttacaata ggaatattga aaatacgcattt atggaaatc ggaacagata 35220
tgaagggtgtc aatatttgatgtc tggttttcc ccgatttttga aatttttga 35280
aaaaaaatgc ataattcaca gattgaaattt ggaatttgggt cgagaaaaaga ataaggagtg 35340
ttatgaattt gatgtggcaaa caaaacacaa attctacatt tgcacaaaaa tgcccactaa 35400
aatgggcata ttgcacacaca ttccacacaa attgcataca tattccacaa tggggatata 35460

-69-

tttgaatatt tagattaata aagatgaaat aattgagttt tattttaat taaaatattt 35520
ttctgttat cattaattga aaatgtgaa ttactttta atagacgaat catcaaagaa 35580
cttgatccct gcattatcag gcaatcctac ataacccttc aacgttgcg ttttaccaat 35640
tgcaacattt ctcgctactg gaacacgcat actggaatac gatgacgatt ccaattggaa 35700
gaatatattg gtgcccgggtt ggaagttaac aattgaattt tggttaagcg ataaaggata 35760
cacattgata acatccaaaa gttcagttat gtatatccat ccgtataaat cttgcgatct 35820
tccattcacc aaaagctggt cgccatcttgc tataggaatg aatggagttt aggatcccg 35880
aacagtacga gttgtgagcg tagtccact gaaaattact aaatatttag ttcaaagggtt 35940
ttctgttact acttttttgt tgcaacaact ctgagaaattt ttagtttca ccaaaatttt 36000
tcgattttgtt acagaattgc acaatataattt ttggaatagc aagaaattgt tcagtgaatg 36060
tcaaattctga caaaaaaaaaa tttttttaaa aggtgcctat caattttaa aaatgttcta 36120
atattttgtt ggaaagtttc aataatttca ctacatttac tatttctttt ttaggcctat 36180
tttgggtatt caaaatatta accacacgac cttcaataca ggaaaactgt caaatttttt 36240
ttaaattatg aacaattaac tcactttaca ttttgcctc cattccttgc agttaatata 36300
agacttccca acgcttcttg agaactattc gaaataatata aatcttcga atttcttcct 36360
actatatac ctatgtgtt gctcggttgc acgtctagag tatccaatata aacccacta 36420
gaagctgata taaagaaaaaa taatagaaat atattttca tttttccaa atgactaaat 36480
gaccaacttc aagacattt atatgcttaa aatcacgtca cagaactata atcatgttga 36540
tttttgcataaaaatgataa gaaatgcgac caaaatgtgtt atttctccg tttgcctct 36600
gaatgagtca aattcacgtta aaacttggca tttgtcacag tgtgtcagac acaaggcaca 36660
tatgttatttta ccggactttt caagacttta ttattattga gatcaaacca gattacagaa 36720
gacggggagaa aggtaccaac aaatatcaga atattgcaaa aaaaaattaa aaatttcaaa 36780
acgcaaaactt caaacttagga gagctaattc aaactttgaa atcatgttcc ataaccggta 36840
gcatttggc ggtgacttgtt ttgacagcccc attgaaggaa gagaagtact cccgacaggc 36900
tgaacatataat gaaatagtcc aggcttcca tttagagaatg tgatgttga aggaagaaca 36960
atgggacgtta gagtactccg aatagagcag taagtccattt gatgagctga aacagtaaat 37020

-70-

aatcgaaaag ttagtaaata tttcaagga atgaaagtaa accgaaatta tccgagtatg 37080
ggcgaaaaat agtttttct cttttttga cttcgaaaaat catcctattt aaatatcatc 37140
gttttttcg agttccagaa aaaatattt aaaaatcatc cgaaatccga acacaaaatc 37200
cgaaggctac tccaaggtaa gttaacccta ctcggcaaatt ctctcgctt ggagcgcgga 37260
cggggcgcga cttagatcact ggttcgcgtt ccagtcaccc tttttttcgc gcttcttacg 37320
cgccacgtcc gcgcgttcaagg aggagcgatt tgccggactac cttttatgca ttccagactgg 37380
tactaaaaa ttaatcgatt tttttaaaaa gtgtcataaa ctttttctac gtcttttct 37440
gacacaatgt tgaaccgtac tagattgtt gtaacacggt cttcaaattt gatttcgcg 37500
aaaaaatgg aataatttt ttcttaacttt tttctttta aaatcttacc acacttagca 37560
aataaccatg aagcacaact tcataagtgg atcctatttt tcgtttgaag aggaaaata 37620
ctgaaaacaa aagagctgat atggagcaag acacgtggat ccagaagagt atacgcacaa 37680
tcacactatc cccttcgatt ttgacgcgtt acagaattct ggaatttttt tttgaacttt 37740
aatggattgc gattcaaaaag aaaacgtac ttaatctcca gttaaagctg attttcattt 37800
caaaaatgtat ttagaaaaaa ctcacgctaa taaggcggag agtattgtct gtagaaccgc 37860
catgattact gtagatgcat agagtggaaa tgacacata taagcgtcg gctgttttg 37920
aacgacaatc gaattggccg ccatcatctc attcttcgac ctccccgtttt atttctgaaa 37980
atatatgaca cttttaaat gaattgacag aaatctgatg ctaactacat tttaacttgt 38040
aggagtggtt caaatgattc ataaaggaa tacaatttct gaatgtcaa agaagaaaaga 38100
aaaaaatat tggtaatgt ataattttt agggtaaag taaataaata aacacaaggc 38160
cgaagattag caagagttt gggataaccc ccgtgaagaa aaatatgaaa aaaaatggtt 38220
tgaagaatt aaaaaatcc ttcaaaattt gagattcaaa ttttggatcat ctgttctgtt 38280
cgaacattga gcagaagaag cttttaccaaa taaatccaaa atttggtaag agaatatagt 38340
ttaaggatatt cacccagttc aaaatagtag ttcaaaaact cgagtctaa tttttcagt 38400
attcgaattt ttacagtaca ttgatcgaaa cgttatttga tcgcttttg ataaaacaaa 38460
aaatagataa tgaagctgcc aagttaaaaa aaatcggggc taaggctaat ggagcataca 38520
cggtatataca ctacctggat attagttta gacttcatca gatatttagt cagaaaagta 38580

-71-

cgtcaagaag tcggatacga aatgtataaa tttcttaaaa cttaaaactt cgagatatcc 38640
agactgtggc tctcaagctt cagtgcctgg agaaaatagtt taatagttag aatatgtttt 38700
aaatttctta attttctga agaagtcgta aaagtataaa tggtgctaga tcaaacactc 38760
tagaaaacct tcaccacttg agaatactcc agtctcaaattttccctcgacgcggaaagtg 38820
tagaaggcg cgagattcag aagttaggtga aaatttagacg gaaaactctc tcaaaattga 38880
aatcaatgaa taggacaact gagacaatgt gcaggtgtat gtgtatgcac atggcaccca 38940
cgtacacgca tacatcttat gtttagagaag tacgtgtgct ccgctcatca tgtctctcc 39000
ttctcctaca tctacatttt ttgctccgtg agccacgcccggaaaaaacgacgac 39060
ggcgacgggg gacgactact cgactctaattggccctaaa cgcaagtaaa tttttaggca 39120
atgtatgttt gcgagagttt agagccccac cgccacgagg agaagtgggg gaagattccg 39180
aagagattcc ccctcctcct tctgatcacc tcgtcttcc tttttgttc cattccgtg 39240
aaaaagctgt ggaagggagg agaagaactt accggctaaa tggaaaaaaaaa ggaactctaa 39300
cttattctga ctctacggaa ataggaagcc tacttgtcaa tttagaccgccctcgac 39360
tttctttttt ttgttagata caaatataaa aactaactgc gtgtatgcacgatatct 39420
tgaattggaa agtgtcagtg ctcagaggaa atagccaatc attgacagaa atttgactac 39480
ttcagaagga atcaactaga acatttgacg cctgaaacct aacaagaaaa atctataatt 39540
tggagatccc tagattgtatg ccaactttat taaaaactaa gtataacttat atatatacga 39600
ttttttaaa aataaacctg attgtctgaa ttctacaag attgcgacca aattttccgt 39660
atttccaaaa tctaataatca ggggtttcta ctaaaattca acgagaactc ttaacattat 39720
ggttatTTTaa acacatgggtt caccggcgc tcaaacttca ttcttagtcc tctgattttt 39780
ggtaaatcga cgcctacgtc tcaacaatta gtttgtcag aaaataagta aaaagagttg 39840
tgctccatct tgcacacata cacatcgctt gtaatgaaga ggttcgagt cagatgacta 39900
ggcgtagaaa tgtgcgaaat tcacggataa cagagatTTTtgatgttca tcagacttac 39960
acgTTTggaa agtatgaatt gggtagac aacggagtgg cagatgtcg gaaaattttg 40020
cagaaaagag aacctaagag cggtgtatggg ttgggtacta acgaacttac aagaaaattt 40080
gtcattgaaa attttaaaat tttaaatttt gcttgcagtt catcttctc tattaacaaa 40140

aattattttg tagctttct caatttcagg caattaaaac atttcaattt attcttctat 40200
tatggaagtt tatctctaatt tgaaactctc caatttgtat caaagaacaa acgttctcg 40260
tgttgaaaa aaaaaacagt tctttttga aactcgcgca caaattatta accaatcatc 40320
ctcggttgcg cgcaaaattt tagaaaaat cattaaattt tatcaaaaat agtttaccat 40380
tctgatgagt ttttcatata caaaaatgcc ctggcaattt ttgtttctc tgaaatagca 40440
cataataattt gaactctacc cacataaagt tcgttctgaa aaacaccctt caattattgt 40500
gattgagagc caccggaa gggatttagaa aaacggatgt aatctgtata ccttcgagat 40560
tcgtttatcc cttgtataa ccaatagcag gaaaattaca gcttttctt agtaagcggt 40620
gaaactagag agattctata gaatatggc gtaataattt gtatgttaaa gttttagaat 40680
aacacaagtc cagagtaagg gcaagaaaag taatgagcaa cgaaaccag catgcaagac 40740
acccgaattt cgggtctt ctgaaactaa aagttgcgtg tactaaacct taaaccagca 40800
gctggctagt ctcaagaaat aatagaaaaa aggaaggaat gaagatatgg gaataataca 40860
aattgaaaat gttgtgtgag ctccgaataa tttcaatattt caaaaatttt tgaattgtgt 40920
ggacggctgt gtgtgcgtgt gcgtatgcgt cggcaagaaa aagaagcgac cgaataagaa 40980
aatggttgtat tcagtgaaca aaaaaagaga gaaagatatc caaacaatattt tattcaaaac 41040
tattatcaat cggtaggtat tgctctagag cacaccctt tggacactca gcagacatgc 41100
gttagagaggg attatgtggt acatatagtg gatggagggaa cagatatttta taaatactta 41160
tggaaaagag gatgaagata ggatgaggta gatgaatttga gaagatttttta aatgataat 41220
ggatattgaa ttgttataaag gagattctaa attatccgaa gaacacaac tatacaaga 41280
ctacaaaata atctagacga gtcccagttt tgcaaggtaa ggattaatct taaaaggatc 41340
ttttaaatattt tatttcaat gctccataa attttaaaaa gtaggtgcattt tctaatatgt 41400
acagtgatta ggagatatgt gacgttacgt gaggtctcgaa taaagtacgg tattcgagct 41460
aaatttcaaa cattgtcaag gtagattcggt tacacagccaa ccataaaatgt tccactaaaa 41520
atgtgttgc tttctccctt ggaacacaaa tctagctgct gaacttttcc acttcaactac 41580
atgtcaatgg gattgatatg catctaggac attttttgg ttatcaatag tccgcataac 41640
ttgcgttaacc aatacaacccg attgtccaaa aaaatttgaa cactacaaaa cgtattttattt 41700

-73-

attcgatac ccgttgcatt tcaatacaca agttgatact tgctgccct cggggctctc 41760
agacactcat tgactgaaaa cagacgattg ctcgtcgtagtctgaag gctcgagag 41820
ctgaggaaga tatgaggaca taatgaattt atgtgtgaga atgagaaaaat gaaaaaggaa 41880
aatgagaaa aaaaagatga tgaagaatgt acaaataaat aatcaagtag caatgacgag 41940
aaaagaacca ggtccttttgcaggcaatt ttgcggaaattt tcagatcaaa tttgtcgcca 42000
ttgcttctgg attaataatg gatgacgctt tgacaatggt gctcaataca agtgc当地 42060
gattggtttg ggatggcgta tagaaataga gccgggtgaga cgatgtgatg aagttctgag 42120
agacgagatg tgatcgagggc gttttagtc gaggcaaaacc gaggccgcat atggggttcc 42180
gataggcaat cggagaccag tgtccatctg aaagagataa aagttattcg agttgtgaat 42240
gttgcaagga aaattaaagg tacagttagag acaatcgaga ctttttcgg gaggacgcca 42300
tctaaaaact gtggaaagcac gtggctttgg tagcttgatg tcacagaagt tgattccata 42360
agaattacat tagaaagctt gcgacgctaa atggataaaat ctggtaacgg cttccataata 42420
gcaagttaag tttttcaca ataaattttt cagaattgaa tagatgcatt ttataactta 42480
cacatcgagt gggcacgttg gtggacaaga caagccccga t 42521

<210> 24
<211> 4434
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 24
cccgccctcg ccaccgctcc cggccggccgc gctccggta acacaggatc cctgctggc 60
accaacagct ccaccatggg gctggctgg ggacttaggagc tcctgttcct gatgc当地 120
tgtggcacca accgcattcc agagtctggc ggagacaaca gcgtgttga catttgaa 180
ctcaccgggg cggcccgcaaa ggggtctggg cggccgactgg tgaagggccc cgacccttcc 240
agcccagctt tccgcattcga ggatgccaac ctgatcccc ctgtgcctga tgacaagttc 300
caagacctgg tggatgctgt gcccacagaa aagggttcc tccttctggc atccctgagg 360
cagatgaaga agacccgggg cacgctgctg gccctggagc ggaaagacca ctctggccag 420

-74-

gtcttcagcg tgggttccaa tggcaaggcg ggcaccctgg acctcagcct gaccgtccaa 480
ggaaaggcagc acgtggtgta tgtggaaagaa gctctcctgg caaccggcca gtggaaagac 540
atcaccctgt ttgtgcagga agacagggcc cagctgtaca tcgactgtga aaagatggag 600
aatgctgagt tggacgtccc catccaaagc gtcttcacca gagacctggc cagcatcgcc 660
agactccgca tcgcaaaggg gggcgtaat gacaattcc agggggtgct gcagaatgtg 720
aggtttgtct ttggaaaccac accagaagac atcctcagga acaaaggctg ctccagctct 780
accagtgtcc tcctcaccct tgacaacaac gtggtaatg gttccagccc tgccatccgc 840
actaactaca ttggccacaa gacaaggac ttgcaagcca tctgcggcat ctcctgtgat 900
gagctgtcca gcatggctt ggaactcagg ggcctgcgc ccattgtgac cacgctgcag 960
gacagcatcc gcaaagtgac tgaagagaac aaagagttgg ccaatgagct gaggcggct 1020
ccccatatgct atcacaacgg agttcagttt accatctgca aaaaggtgtc ctgccccatc 1080
tgcactgagt gtcactgtca gaactcagtt accatctgca aaaaggtgtc ctgccccatc 1140
atgccttgct ccaatgccac agttcctgat ggagaatgct gtccctcgctg ttggcccagc 1200
gactctgcgg acgatggctg gtctccatgg tccgagtgga cctcctgttc tacgagctgt 1260
ggcaatggaa tttagcagcg cggccgctcc tgcgatagcc tcaacaaccc atgtgagggc 1320
tcctcggtcc agacacggac ctgccccatt caggagtgtg acaagagatt taaacaggat 1380
ggtggcttggaa gccactggtc cccgtggta tcttggatgtg tgacatgtgg tggatgtgg 1440
atcacaagga tccggctctg caactctccc agccccaga tgaacggaa accctgtgaa 1500
ggcgaagcgc gggagaccaa agcctgcaag aaagacgcct gccccatcaa tggaggctgg 1560
ggtccttggt caccatggaa catctgttct gtcacctgtg gaggaggggt acagaaaacgt 1620
agtctgtctct gcaacaaccc cacaccccttggca aggactgcgt tggatgtgta 1680
acagaaaaacc agatctgcaaa caagcaggac tggatgtggatggatgcct gtccaaatccc 1740
tgctttggcg gctgtggatgt tactagctac cctgtatggca gctggaaatg tggatgtgg 1800
ccccctgggtt acagtggaaa tggatccag tgcacatgttggatgtg caaaaatgt 1860
cctgtatgcct gcttcaacca caatggagag caccgggtgtg agaacacggaa ccccggtac 1920
aactgcctgc cctgcccccc acgcttcacc ggctcacagc cttccggcca gggatgtcgaa 1980

catgccacgg ccaacaaaca ggtgtcaag ccccgtaacc cctgcacgga tgggaccac 2040
gactgcaaca agaacgcaa gtgcaactac ctggggccact atagcgaccc catgtaccgc 2100
tgcgagtgca agcctggcta cgctggcaat ggcatcatct gcggggagga cacagacctg 2160
gatggctggc ccaatgagaa cctgggtgc gtggccaatg cgacttacca ctgcaaaaag 2220
gataattgcc ccaaccccttcc caactcaggg caggaagact atgacaagga tggaaatttgt 2280
gatgcctgtg atgatgacga tgacaatgt aaaattccag atgacagggga caactgtcca 2340
ttccattaca acccagctca gtatgactat gacagagatg atgtgggaga ccgcgtgtgac 2400
aactgtccct acaaccacaa cccagatcag gcagacacag acaacaatgg ggaaggagac 2460
gcctgtgctg cagacattga tggagacggt atcctcaatg aacgggacaa ctgcgcgtac 2520
gtctacaatg tggaccagag agacactgtat atggatgggg ttggagatca gtgtgacaat 2580
tgccccttgg aacacaatcc ggatcagctg gactctgact cagaccgcat tggagatacc 2640
tgtgacaaca atcaggatata tggatgaaat ggcaccaga acaatctgga caactgtccc 2700
tatgtgccca atgccaacca ggctgaccat gacaaagatg gcaaggaga tgcctgtgac 2760
cacgatgtg acaacgatgg cattcctgat gacaaggaca actgcagact cgtgcacat 2820
cccgaccaga aggactctga cggcgatggt cgaggtgtatg cctgcaaaga tgattttgac 2880
catgacagtg tgccagacat cgatgacatc tgcctgaga atgttgcacat cagtgagacc 2940
gattcccgcc gattccagat gattcctctg gaccccaaag ggacatccca aaatgaccct 3000
aactgggttg tacgccccatca gggtaaagaa ctcgtccaga ctgtcaactg tgatcctgga 3060
ctcgctgttag gttatgatga gtttaatgtt gtggacttca gtggcacctt cttcatcaac 3120
accgaaagg acgatgacta tgctggattt gtctttggct accagtcac cagccgcattt 3180
tatgttgtga tgtggaaagca agtcacccatc tcctactggg acaccaaccc caccggggct 3240
cagggatact cgggccttc tgtgaaagtt gttaactcca ccacaggccc tggcgagcac 3300
ctgcggaaacg ccctgtggca cacagggaaac acccctggcc aggtgcgcac cctgtggcat 3360
gaccctcgtc acataggctg gaaagatttc accgcctaca gatggcgtct cagccacagg 3420
ccaaagacgg gtttcattag agtgggtgtatg tatgaaggaa agaaaatcat ggctgactca 3480
ggaccatct atgataaaac ctatgctggt ggttagactag ggttgtttgt cttctctcaa 3540

-76-

gaaatggtgt tcttctctga cctgaaatac gaatgttagag atccctaatac atcaaattgt 3600
tgattgaaag actgatcata aaccaatgct ggtattgcac cttctggAAC tatgggcttg 3660
agaaaaacccc caggatcaact ttccttggc ttcccttctt tctgtgcttg catcagtgtg 3720
gactcctaga acgtgcgacc tgccctcaaga aaatgcagtt ttcaaaaaca gactcagcat 3780
tcagcctcca atgaataaga catcttccaa gcatataaaac aattgcttg gtttccttt 3840
gaaaaagcat ctacttgctt cagttggaa ggtgcccatt ccactctgcc tttgtcacag 3900
agcagggtgc tattgtgagg ccatctctga gcagtggact caaaagcatt ttcaggcatg 3960
tcagagaagg gaggactcac tagaatttagc aaacaaaaacc accctgacat ctccttcag 4020
gaacacgggg agcagaggcc aaagcactaa ggggagggcg catacccgag acgattgtat 4080
gaagaaaata tggaggaact gttacatgtt cggtactaag tcattttcag gggattgaaa 4140
gactattgct ggatttcatg atgctgactg gcgttagctg attaaccat gtaaataggc 4200
acttaaatag aagcagggaaa gggagacaaa gactggcttc tggacttcct ccctgatccc 4260
cacccttaact catcacctgc agtggccaga attaggaaat cagaatcgaa accagtgtaa 4320
ggcagtgctg gtcgcattt cctggtcaca ttgaaattgg tggcttcatt ctagatgtag 4380
cttgcgaga tgttagcagga aaataggaaa acctaccatc tcagtgagca ccag 4434

<210> 25
<211> 2837
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 25
agagagccag tccgatgtct gcagccccc tggccaggcc ttcctctcc tgccgcagct 60
agtccccctc aggacagaca gagtactggc gtcggtcacc attcacttgc aaacacacca 120
ggtcacgtga agaaacttcc tggtagact caggctgtag ctgtgcactc ttcaaccacg 180
aggttggttt ttcctaagt gtcacaggtg gagacaagat gctctggca ctggccctgc 240
tggctctggg catagggcca agagttctg ctggtgacca cgtcaaggac attcatttg 300
acctttcag catcagcaac attaaccgga agaccatcgg tgccaaagcag ttccgaggc 360

ctgaccccg ggtgcccggc taccgttttg tacggtttga ctacatcccc ccagtgaaca 420
cagatgatct caacaggatt gtcaagcttg caaggagaaa ggagggcttc ttccctcacag 480
cccaactgaa gcaggaccgc aagtctcggg gaacgctcct ggtgttggaa ggcccccggca 540
cctcccaagag gcagtttagt atttgtcca atggcccagg ggacactttg gacctcaact 600
actgggtaga aggcaatca gataccaaact tcctggagga tgtgggcctg gctgactccc 660
agtggaaagaa tgtgactgtg caggtggcca gtgacaccta tagcctgtat gtgggctgctg 720
atcttatcga cagtgtcacc ctggaagaac cattctatga gcagctagaa gtagacagga 780
gcaggatgta cgtggccaaa ggtgcacatctc gagagagtca cttcaggggc ttgctgcaga 840
atgtccatct cgtgtttgca gattctgtgg aagatatctt aagcaagaaa agctgtcaac 900
acagccaggg agctgaagtc aacaccatca gtgaacatac agagactctc catctgagcc 960
ctcacatcac cacagatctc gtggtccagg gtgtggagaa ggcacaggag gtgtgtacgc 1020
actcctgcga ggagttgagc aacatgatga atgagctctc tggactgcac gtcatggtga 1080
accagctgag caagaacctg gagagagtgt ctatgtataa ccagttccctt ttggagctca 1140
ttggggccccc tctgaagaca agaaacatgt cagcctgtgt gcaggagggc cgaatcttgg 1200
cagaaaatga aacctgggtt gtggatagtt gtaccacatg cacctgcaag aaatttaaaa 1260
cagtcgtccca tcagatcacc tgctcacctg caacttgtc caacccatct tttgtggaaag 1320
gcgagtgctg tccatccctgt tcacactctg cagacagtga tgagggctgg tctccgtggg 1380
cagagtggac cgagtgttct gtcacccctgt gctctggac ccagcagaga ggccggcttt 1440
gtgatgtcac cagcaacacc tgcctggcc cctccattca gacaaggaca tgcagcctgg 1500
gcaaataatgtga tacgagaatc cgtcagaatg gaggctggag tcactggtca ccctggtctt 1560
catgctccgt gacttgttga gttggcaatg tcacccgcac acgtctctgc aactcaccag 1620
tgccccagat gggtggcaag aactgcaagg gcagcggccg ggaaacccaaa ccctgtcagc 1680
gtgatccgtg cccattgtat ggccgctggc gcccctggtc cccttggtca gcctgcacag 1740
ttacctgtgc tggagggatc cgtgagcgct cacgtgttttga caacagccctt gagcccccagt 1800
atggagggaa ggactgtgtc ggggatgtga cagaacacca aatgtcaac aagagaagct 1860
gccctattga tgggtgctta tccaaccctgt gttttcctgg agccaaatgc aacagcttcc 1920

-78-

ctgatgggtc ctggtcctgt ggctcctgcc cagtggcctt tctggcaat ggtacccact 1980
gtgaggacct ggatgagtgt gctgtggtca cagatatttgc ttctcaact aacaaagctc 2040
cccgctgtgt caacaccaac ccgggcttcc actgcctgcc ttgtccacca cgctacaagg 2100
ggaaccaacc cttcggtgtt ggcctggagg atgctaggac agaaaaacaa gtgtgtgagc 2160
cagagaatcc atgtaaggac aagactcaca gctgccacaa gaatgcagag tgcatactacc 2220
tggccactt tagtgacccc atgtacaagt gtgagtgcc aattggctac gcaggtgatg 2280
ggctcatctg cggggaggac tcagacctgg atggctggcc caacaacaac ctggtgtgtg 2340
ctactaatgc cacctaccac tgcataagg acaactgccc caaactgcc aattccggc 2400
aggaggattt tgataaggat ggaatcgag atgcttgcgat cgaggacgat gacaatgacg 2460
gtgtgagcga tgagaaggac aattgccagc ttctcttcaa tccccgtcaa ttagactatg 2520
acaaggatga ggttggagac cgctgtgaca actgccccta tgtgcacaac ccagcacaga 2580
tcgacacaga caacaatggc gagggggatg cctgctctgt ggacattgac ggagacgatg 2640
ttttcaatga gcgagacaat tgtccatatg tctacaacac tgaccagaga gatacggatg 2700
gtgatggcgt gggtgaccac tgtgacaatt gtcctctgt gcacaacccca gatcagatcg 2760
atcaggacaa tgatctcggtt ggagaccagt gtgacaacaa tgaggacata gatgatgacg 2820
gccaccagaa caaccaa 2837

<210> 26

<211> 4108

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 26

agagagccag tccgatgtct gcagcctccc tggccaggcc tctcctctcc tgccgcagct 60

agtccccctc aggacagaca gagtactggc gtcggtcacc attcacttgc aaacacacca 120

ggtcacgtga agaaacttcc tggtgacact caggctgttag ctgtgcactc ttcaaccacg 180

aggttggttt tctcttaagt gtcacaggtg gagacaagat gctctggca ctggccctgc 240

tggctctggg catagggcca agagcttctg ctggtgacca cgtcaaggac acttcatttgc 300

-79-

acctttcag catcagcaac attaaccgga agaccatcg tgccaagcag ttccgagggc 360
ctgaccccg ggtgccgc taccgtttt tacggttga ctacatcccc ccagtgaaca 420
cagatgatct caacaggatt gtcaagctt caaggagaaa ggagggcttc ttcccacag 480
cccaactgaa gcaggaccgc aagtctcggg gaacgctcct ggtgttgaa ggccccggca 540
cctcccagag gcagtttag attgtgtcca atggcccagg ggacactttg gacctaact 600
actgggtaga aggcaatcag cataccaact tcctggagga tgtggcctg gctgactccc 660
agtggaagaa tgtgactgt caggtggcca gtgacaccta tagcctgtat gtggctgcg 720
atcttatcga cagtgtcacc ctggaagaac cattctatga gcagctagaa gtagacagga 780
gcaggatgta cgtggccaaa ggtgcacatc gagagagtca cttcaggggc ttgctgcaga 840
atgtccatct cgtgtttgca gattctgtgg aagatatctt aagcaagaaa agctgtcaac 900
acagccaggg agctgaagtc aacaccatca gtgaacatac agagactctc catctgagcc 960
ctcacatcac cacagatctc gtggccagg gtgtggagaa ggcacaggag gtgtgtacgc 1020
actcctgcga ggagttgagc aacatgatga atgagctctc tggactgcac gtcatggta 1080
accagctgag caagaacctg gagagagtgt ctatgtataa ccagttcctt ttggagctca 1140
ttggggccccc tctgaagaca agaaacatgt cagcctgtgt gcaggagggc cgaatctt 1200
cagaaaatga aacctgggtt gtggatagtt gtaccacatg cacctgcaag aaatttaaaa 1260
cagtctgcca tcagatcacc tgctcacctg caacttgtc caacccatct tttgtgaaag 1320
gcgagtgctg tccatcctgt tcacactctg cagacagtga tgaggctgg tctccgtgg 1380
cagagtggac cgagtgttct gtcacccctgt gctctggac ccagcagaga ggccggctt 1440
gtgatgtcac cagcaacacc tgcctggcc cctccattca gacaaggaca tgcagcctgg 1500
gcaaatgtga tacgagaatc cgtcagaatg gaggctggag tcactggta ccctggctt 1560
catgctccgt gacttgtgga gttggcaatg tcacccgcac acgtctctgc aactcaccag 1620
tgccccagat gggtggcaag aactgcaagg gcagcggccg ggaaacaaaa ccctgtcagc 1680
gtgatccgtg cccaaattgtat ggccgctgga gcccctggc cccttggta gcctgcacag 1740
ttacctgtgc tggagggatc cgtgagcgct cacgttttca acacagccct gagccccagt 1800
atggagggaa ggactgtgtc gggatgtga cagaacacca aatgtcaac aagagaagct 1860

-80-

gccctattga tgggtgctta tccaaccgt gtttcctgg agccaagtgc aacagcttcc 1920
ctgatgggtc ctggtcctgt ggctcctgcc cagtggcctt tctggcaat ggtacccact 1980
gtgaggacct ggatgagtgt gctgtggtca cagatatttgc ttctcaact aacaagctc 2040
cccgcgtgt caacaccaac ccgggcttcc actgcctgcc ttgtccacca cgctacaagg 2100
ggaaccaacc ctccgggttt ggcctggagg atgcttaggac agaaaaacaa gtgtgtgagc 2160
cagagaatcc atgtaaggac aagactcaca gctgccacaa gaatgcagag tgcatctacc 2220
tggccactt tagtgacccc atgtacaagt gtgagtgcca gattggctac gcaggtgatg 2280
ggctcatctg cggggaggac tcagacctgg atggctggcc caacaacaac ctgggtgtg 2340
ctactaatgc cacctaccac tgcatcaagg acaactgccc caaactgccaa aattccgggc 2400
aggaggattt tgataaggat ggaatcgag atgcttgta cgaggacgat gacaatgacg 2460
gtgtgaycga tgagaaggac aattgccagc ttctcttcaa tccccgtcaa ttagactatg 2520
acaaggatga ggttggagac cgctgtgaca actgccccta tgtgcacaac ccagcacaga 2580
tcgacacaga caacaatggc gagggggatg cctgctctgt ggacattgac ggagacgatg 2640
ttttcaatga gcgagacaat tgtccatatg tctacaacac tgaccagaga gatacggatg 2700
gtgatggcgt gggtgaccac tgtgacaatt gtcctctgat gcacaacccaa gatcagatcg 2760
atcaggacaa tgatctcggtt ggagaccagt gtgacaacaa tgaggacata gatgatgacg 2820
gccaccagaa caaccaagac aactgcccata acatctccaa ctccaaccag gctgaccatg 2880
acaacgacgg caagggcgat gcctgact ctgatgatga caatgatggt gttccagatg 2940
acagggacaa ctgtcggctt gtgttcaacc cagaccagga agactcgac ggtgacggcc 3000
gaggtgacat ttgtaaagat gactttgaca atgataatgt cccagatatt gatgatgtgt 3060
gccctgagaa caatgccatc actgagacag acttcagaaa cttccagatg gtccctctgg 3120
atcccaaggg gaccacacaa attgatccaa actggtaat tcgtcaccaaa ggcaaagacg 3180
tggtgacac agcaaactca gaccctggca tcgctgttagg tttcgacgag tttgggtctg 3240
tggacttcag tggcactttc tatgtcaaca ctgaccggga tgatgactac gctggctttg 3300
tctttggcta tcagtcaagc agccgcttct atgtggtgat gtgaaagcag gtgacccaga 3360
cctactggga agacaagccc agtcggcctt acggctactc tggtggtca ctcaaagtgg 3420

-81-

taaactccac gactggtact ggcgagcacc tgaggaatgc cctgtggcac acggaaaca 3480
cagaaggcca ggtccggact ctatggcatg accccaaaaa cattggctgg aaagactaca 3540
ctgcctacag gtggcacctg attcacaggc ctaagacagg ctacatgaga gtcttagtgc 3600
atgaaggaaa gcaagtcatg gctgactcag gaccaattta tgaccaaacc tacgctggtg 3660
gacggctggg cctgtttgtc ttctccaaag agatggtcta tttctcgac ctcaagtatg 3720
agtgcagaga tgcctagaga gcagggctcc agtccagca atgtgctgca aacacccctt 3780
cttagacaca tcagtcatac ttggcacattg tggctttct gtcatttgc atttcctgtt 3840
tcttgacctt aactgagtgg atctacacct cttcatcag caccaagtcc aagtgtcttc 3900
aaaggagaaa catcaattgc actccaagag ctccagcct gctgctggaa aacatttgg 3960
tgagatatga ggctcaccgt ggagcgaaga ccgagcattc cgctgtgttg cttttcttg 4020
tttgtttaaa aagaatgacg tttacatgta aatgtaatta cttgcagtat ttatgtgtat 4080
atggagtcga agggagctt agagcaca 4108

<210> 27
<211> 820
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 27
tcgaccagag gaggggaggc cagttctct cccaagggtg ccacacaccc ctccctgttc 60
atcaccagac aggcccttcc ttcttagcca tatgctaacc ttctcctccc tggaaattt 120
cctctgcagg agccaaagca gatggagct ggagttgtg gagctcctgg tctgtatgca 180
gagcaggcat ccagggaaagg agaagagagt gtgacaatcc agcacaccc aatggagggg 240
cctcgtgttc agggcggaaa gtacagacgc aggcttgctg agggcctctg gacacaggct 300
ggaccagatg ctgtggatgt cgaccctgc actgactatt ggataaagac ttcttcaac 360
taagagaaga tgcaaattcag cacactttt tctttgttct gccagcttcc aggcctaaga 420
ctaggttttgc ctgtctacag ccaactattc tattagttac aaaactcaat cattttattc 480
agcaactgga tggactgt taactagaag ctctgtccta cttacagcac tttggatcat 540

-82-

caaaaaata aagtaaaata gaaaactgag aaaactcaat ccatgaccag ggagaactta 600
caggatgtta gagacaaaac aagcagacac ctgaaacaat caacgccaa taaaacaaag 660
taggatgaaa attctttag ttcttgata acaatttgtt cactcataga aacattatta 720
attggtaggg taagcagaca ctctgaaaca atgagaaaa tactaaaaat tgacttgagt 780
tatccaaat tcgccttattt acctgttata tcataactct 820

<210> 28
<211> 2397
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 28
ttttttttt catccactt tgttttattt ggcgttgatt gttacaggtc ccagcctgta 60
gacatctttt actccaattt cctgaataga tagctttattt cttcaaggt aatatagtgc 120
ggggcttct ggctgagatg tttgctgttg ttttcttcat cttgtcttg atgacttgac 180
agccctgggt aactgcacag gagaaggtga accagagagt aagacggca gctacacccg 240
cagcagttac ctgccagctg agcaactggc cagagtggc agattgttt ccgtgccagg 300
acaaaaagta ccgacacccgg agcctttgc agccaaacaa gtttggggg accatctgca 360
gtggtgacat ctgggatcaa gccagctgct ccagttctac aacttggta aggcaagcac 420
agtgtggaca ggatttccag tgtaaggaga caggtcgctg cctgaaacgc caccttgt 480
gtaatggaga ccaggactgc cttgatggct ctgatggaga cgactgtgaa gatgtcaggg 540
ccattgacga agactgcagc cagttatgaa caattccagg atcacagaag gcagccttgg 600
ggtaaatat cctgacccag gaagatgctc agagtgtgta cgatgccagt tattatgggg 660
gccagtgtga gacggtatac aatggggat ggagggagct tcgatatgac tccacctgtg 720
aacgtctcta ctatggagat gatgagaaat actttcgaa accctacaac tttctgaagt 780
accactttga agccctggca gatactggaa tctcctcaga gttttatgat aatgcaaatg 840
accccttttc caaagttaaa aaagacaagt ctgactcatt tggagtgacc atcggcatag 900
ccccagccgg cagcccttta ttgggtgggtg taggtgtatc ccactcacaa gacacttcat 960

-83-

tcttgaacga attaaacaag tataatgaga agaaattcat tttcacaaga atttcacaa 1020
aggtgcagac tgcacatTTT aagatgagga aggatgacat tatgctggat gaaggaatgc 1080
tgcagtcatt aatggagctt ccagatcagt acaattatgg catgtatgcc aagttcatca 1140
atgactatgg caccattac atcacatctg gatccatggg tggcatttat gaatatatcc 1200
tggtgattga caaAGCAAAA atggaatccc ttggattac caGcagAGat atcACGACAT 1260
gttttggagg ctccTTGGGC attcaatATG aagacaaaat aaATGTTGGT ggaggTTTat 1320
caggagacca ttgtaaaaaa ttggaggtg gcaAAACTGA aAGGGCCAGG aAGGCCATGG 1380
ctgtggagaA cattatttct cgggtgcgag gtggcagttc tggctggagc ggtggcttgg 1440
cacagaacag gagcaccatt acataccgtt cctggggag gtcattaaAG tataatcctg 1500
ttgttatcga ttttgagatg cagcctatcc acgaggtgct gcccacaca agcctggggc 1560
ctctggaggc caAGCGCCAG aacctgcGCC gcgccttggA ccagtatctg atggaattca 1620
atgcctGCCG atgtgggcct tgcttcaaca atggggtgcc catcctcgag ggcaccagct 1680
gcaggtgcca gtGCCGCCtG ggtagcttgg gtgctGCCtG tgagcaaaca cagacagaag 1740
gagccaaAGC agatgggagc tggagttgct ggagctcctG gtctgtatgc agagcaggca 1800
tccagggaaAG gagaagagag tgtgacaATC cagcacctca gaatggaggg gcctcgtgtc 1860
cagggcggaa agtacagacg caggcttgcT gagggcctct ggacacaggc tggaccagat 1920
gctgtggatg tcgacccctg cactgactat tggataaAGA cttctttcaa ctaagagaag 1980
atgcaaATCA gcacactTTT ttctttgttc tgccagcttc caggcctaAG actaggttt 2040
gctgtctaca gccaactatt ctattagttt caaaactcaa tcattttatt cagcaactgg 2100
atgttGACTG ttaactAGAA gctctgtcct acttacAGCA ctttggatca tcaaaaaaat 2160
aaAGTAAAAT agaaaACTGA gaaaACTCAA tccatgacca gggagaACTT acaggatgtt 2220
agagacaaaa caagcagaca CCTGAAACAA tcaacGCCA ataaaacaaa gtaggatgaa 2280
aattctcttA gttctttgat aacaatttgt tcactcatag aaacattatt aattggtagg 2340
gtaAGCAGAC ACTCTGAAAC aatgagaaaa atactaaaaa ttgacttgag ttatttc 2397

<210> 29

<211> 4100

-84-

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 29

ggatcccccc gtcgcgtac catttcatc gacccacccc aggacgacga ctgagctccc 60
tcttcctcgc cgccggactgg ggccgaccctg ttgcgtgtgc ggccgcgcgc gtcctgtccc 120
ccacttcggc tcccgctcct gtcctgtc tcggcccccac tcctgttctt gttcctgttc 180
ctgttccgtt tcccggtcct gtcggggctc ccggcccccgc acccacctcc gtcctgtcg 240
cggtctcca ggcccagaca aaataaaaaaa agatatatattt ttcaagtccg tctctccgc 300
ccgggtgtt ctatggctga gggagttctgg ctctcggggc tctcggtcg gctggggggc 360
tcgggtgtt ggctggctgg cgagatggac cgctccggcg cgcaagcggtcc ggggtgtcg 420
tgatgggtgg gcggagcgcg gaccggggat tatatacacc atgtgcattcc ataattgtatg 480
ttgtttgaga aaaacaaaagt cataaaagtgg cactcagaca gcaactttggc ctggcgcccg 540
gccaccatct gagtgcccaa ccggggcccg cggttacatc acccccacat ggaccatcac 600
ggcccattag caccaattgg ccagagtgtc gggagccacc gctaattgca gtaacgcgcg 660
gctgccagac tgcaatttac cgcgcgatac tgcaatttac tgcaaggcccg gtaaactgca 720
gtacgcggcg gcccgcggaa atctactgtt gtatggcg gccggcgcg gtaactgcaac 780
tgttagtaaac tgttagctgca gtagagttac tgcaaggccca tcggggccgtt gtggccgcca 840
gggttaactgc accccgcagta aatttactgc agccggactt tgtgcgtgtt ggagaccgcg 900
ccgaactggg acccccccga ctcccccccg actccccccc gactcccccc cgactcccc 960
ccgactcccc cccgactccc ccccgactcc ccccgactc ccccgccgcg cgccgcgc 1020
tcgatgcgc ccatecgcgcc ccgttccgcg tgcgcacgcg ccagttggcc cgccccccggc 1080
acgtggcaccg tatttcccccc ccgtaaatca agagggatta tgcggatgtc tagtttatgt 1140
ctcaatttcc tctttccgga gataaaagcc gggacccccc cgccgaaaaaa ggatacacca 1200
gcccgcgtgtt ccggcgatgtt ggcgggtgtcg gtgtttttt cggccggcgctt ggggggttcct 1260
ggccccccggcg tcgcgggaaa ccccccgtggg ctcgatgcca tcttcgaggc cccgggtcacg 1320
cccgccgcggcc ccactcgcca tccctcgccgc gaggagctgg agtgggacga tgaggatcac 1380

ccgctgctgg acctcgagcc gcccgtggga tcacgctgcc atccctacat cgcgtactcg 1440
ctggccggcc acatgaacgc cgtcacgagc gtggtcgtga agccctactg ctcgcccggc 1500
gaggtcatcc tgtggcgctc tggcacccgc tacctggtca acccctttgt cgccatccag 1560
gcccctggccg tcggagagcc cttaaatgag gcggccctca aggagctcg 1620
gtgcacaagg actccctgcc gccgctgcgc tataatggag ggccccccgc cgagtaagag 1680
accctgcggc ctgcccggc gggtgccct cgtcgtgcct gccgcccggc 1740
ctctaacgcc gccacccggc ctgcagcagc agccccccgc gggggccgggg ccggggccctc 1800
gaagccggcc cgaccccccgc cccggccccc gcccgcgaag ggcacgccccg cggcgtcg 1860
ggcaacaaca gccacggggg ccqacgcctc cccccggcc cccgaccccg gggcgcccac 1920
gtgggacgccc ttgcggcccg agttcgacgt ggccccctcg tggcgccgc tgctggagcc 1980
cgagatcgcc aagccgtacg cgccgcctgct gctggccgag taccgcggcc gctgcctgac 2040
cgaggagggtg ctgcccgcgc gcgaggacgt gttcgccctgg acgcgcctca cggcgccccga 2100
ggacgtcaag gtggtcatca tcggccagga cccgtaccac gggccggggcc aggcccacgg 2160
gctggccctc agcgtccggc gcggggtgcc gatccccccg agcctggcca acatttcg 2220
ggcgggtccgg gcgacgttacc cgacgctgcc cgccgcggcc cacggctgcc tggaggccctg 2280
ggcgcgcgc ggggtgctgc tgctgaacac gacgctgacc gtgcggcg 2340
ctccccacgcc ccgctcggt gggcgccggct cgtgcgcgc gtcgtccagc ggctctgcga 2400
gaccgcgcc aagctgggtgt tcatgctctg gggcgccac gctcaaaagg cctgcgcgc 2460
ggacccgcgc cgccacaagg tgctcacctt cagccatccg tcgcccgtgg cccgcacgc 2520
cttcaggacc tgcccgact ttggagaggc gaacgctgac ctcgtccaga cggggccggc 2580
ccccgtcgac tggagcgtgg actgagtcgg gcgtgcgc acaccgcgg cggaggacga 2640
ggagggggga ggggggtggg atggacggag gagagcggat gatggagccc gcgctcgccg 2700
gcgcgcgc cagcgcgcgtg ccgggtccctgg cgggtgcgtcg cgagtggggta tggccgtgg 2760
aggaggtcga gcccctccggg ccgtgcggcagg acaccgcgg cgcgcgcgcg gagagcgcac 2820
ccccctccccg ggaggggggtg cgcggagcga aagacggaga ggggggcgtg gaagacggcg 2880
aggaggggaa ggcgcacggag aaggaggaga cggaaagacga ggaagacggg ggggacgaaag 2940

-86-

ggacgacgac ggcggcgccg ggcccgccc gggcgcagca cgtggagttt gacacgctgt 3000
ttatggtcgc gtccgtggac gagctcgccg gccggcggt gacggacacg atccgcccgg 3060
acctggccgc ggccctggcc ggcctccccg tcgcctgcac caagacgtcc gcgtttgcgc 3120
gcggcgcgcg cggcccgccg ggcgcggccg ggcgcggcca taaaagcctg cagatgtta 3180
tcctgtgccg cagagccac cggcgcgcg tacgcgatca gctccggtcc gcggcgcgcg 3240
cccgacgccc acgcgagccc cgccgcgcg ccacgagcgg acggggcgcgg ccggccgcgc 3300
cggtgttcat ccacgagttc atcacccccc agccggtgcg gctgcaccgg gacaacgtgt 3360
ttgcggcgcc atgagcacct tcggacgcgc gtccgtggcc acggtcgatg actaccaccg 3420
gttcctgcag gccaacgaga cggccgcccg ggcctggcc ggcgcctccc gccgcgtctc 3480
cacccggcggg ggcgagacgc gggcccccgcg gtccctgcgc ggccccacg acgatgaggc 3540
gcgcctgcgc gccggcgcc tgggcaccgc ccgcgggcgc tcgcgccagc gcggcgcgc 3600
cgagccggac cccgtctacg ccacccgttgt ccagcctacc caccaccacc accagcagca 3660
ccaccaccgc tctcagcatc cgcaacgcgca gcaacaacag cagcggccgc cacgcgcgcg 3720
cggcagcgtg cacgcctcgg cgacggccgc ggacggaccc gagtcgtgcg cggccgcacc 3780
cccgccgcgc cgccggcagcg tgcaacgcctc ggacggccgc gccccggcgg tccagctgcc 3840
ccggcccccgg caacggagca tcaacgcctc gacgacggcc gccccgacgc cccagctgcc 3900
gagaccccccgc cagcgcagcg tcaacgcctc ggcccgccgc gccgtccct cgacggccac 3960
cctcccgccgc ccccgaccc cgtccccggg ccggcgcgcgc ccccccgcct catgctgtta 4020
tcgcgatcaa taaaggcgca gcgcacccacgg accagacaaa agacacaacc ggttcggtct 4080
ctctgtccgc gcacgcgcgg 4100

<210> 30

<211> 38734

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 30

gatcctcgtg accgggtaca ccgacgcctc ctggacgcgc ctgttcggcca tcgcggcg 60

ggtcgtcacc gacatcggtt cgatgtctc gcacagttcc atcgtggccc gcgagttcca 120
cgtcccgtcg gtggtaaca ccaaggacgc cacccagcgc atcaacacccg gcgacctgat 180
cgtgggtggac ggcgacgcgg gcacggtcga ggtcgtcgag agcgccgaca ccgaccccgca 240
gggccccggcc gggggccgccc ggaccccgccg cggagccacc accgactgaa gccggccacc 300
gccgcaacac cggaccacga ccggcccccgc gagggggcggc ccacacccca gacgggagac 360
gaccggatga tccccaaacca gtggtatccc atcgtcgagg cgcgaggatgt gggcaacgcac 420
aaaccgctcg gtgtgcgcgg catgggccag gacctcgatgc tctggcgca catcgacggc 480
aacctcgatct gccaaggccgc ccgctgccccg cacaaggccg ccaacctcgcc cgacggccgc 540
atgaagggcac acaccatcgat atgcccgtac cacggcttcc gctacggagc cgacgggtgcc 600
tgccgggtga tccccggcgat gggctccgag gcccgcattcc ccggctcgat gcgggttaccc 660
acctacccgg tccgggagca gttcggcctg gtgtggatgt ggtggggcga cgagcgcccg 720
acggccgacc tgccggccggt ggccggcccg gccgaggtga cggacaacccg gaagctgtac 780
gccaccaagc gctggaccccg cccgggtgcac tacacccgtt acatcgagag cctgctcgag 840
ttctaccacg tgacctacgt gcacccggac cactggttca actacatcgat ctacctgctc 900
ctgtacggca ccccgagcaa gttcggcctc gacggccgcg agcggttaccc ggccgcccacc 960
cgatcacca accacccgggt ggagacggag gcccggggc agaccatccg ctactccttc 1020
gaccactgcc aggaggacga ccccaccaac accacccact acgtcatcac gttcaccttc 1080
ccgtgcatgg tgcacgtgca gaccgagcag ttgcagatca cctcctggct ggtggccatc 1140
gacgaccaga acaccgagca catcctgcgc tggtagatgt acgaacaggt caagccgtc 1200
ctgagggttcg aaccgctgctg ccgtctgctg ccctgggcgt ccctctacat ggagaagtgg 1260
gtgcaggacc cccaggacgt ccgcacatcgat gaaacaccagg aacccaaatg cagcgccggc 1320
ggcgtgaaca agttcatccc cgatcgacgag atgaacgcca agtacatctc gatgcgcgc 1380
aagctgatcg cggacgcctc ggccgcgcgg tcgtcaccgg cgccggccgc ggagcccgag 1440
ccggaagcgg cggggcgcccc cggatcagcg gcccgtgcca cggcaacgg cagggagcgc 1500
gccccggac gacgcggcac caagcccaag gaggacgccc ccgcgcgcggc gtagacccgaa 1560
agacggggga cggacaagag agagcgagag tgagagatgt acggcgata cgacgcgtcg 1620

-88-

accggccccca aggccctggt gacggccttc aacaccgtcg ccgtggccgg cgccgtgtgg 1680
ttcctgttcg gcggcgccgga caccgtggcc gactggttcg gcaccgactt cgacgaggcg 1740
gtgaccctgc gccgggtcct gctggcgacc ctgtcggtgc tctacctgct gcgcattcatc 1800
gccacgaact tcgtgatgct ccagcgcaag atggagtggt cggagtcggc caccatcgaa 1860
atctgggtcc tggtgatcca cggcacgatg gcgtacttcg gcccaccaa cgacgcccggc 1920
gtgagcgcgt tcacctggct gggcgctcg ctgtacccctc tcgggtcccta cctgaacacg 1980
gggtcgaggat accagcgcaa actcttggaa aagcgccccgg agaacaaggg caagctctac 2040
accgaaggcc tttcaagca ctcgatgcac atcaactact tcggtgacgc cgtgtcttc 2100
tccgggttcg cgctggtcac gggcaccccg tgggccttcg ccatccccct gatcatggtc 2160
tgcatgttcg tcttcctgaa catccccatg ctcgacaagt acctcgccga gcgatacgcc 2220
gaggccttcg acgagtaacgc gtcccgacg gcgaagttcg tcccctacgt gtactgaccc 2280
cgcccggtcac gcgcgtacgg cggccctcccc gggcgagggg ggccgcccgt a cccgggtggca 2340
accacagatc ccacagatcc ccacagatcc ccacagagcc cctccacaga cccctccag 2400
agatccacag atccctcca cagatccgag acgaggcacg tatgaccgga gacattccct 2460
tcggagaggc cgaggcggtcc ctgaccgccc aggtgctgcg cgaggtccctg gcccggccggc 2520
ccgaggcggtt cgcccggtcg acctccgacg agggcgccgt cgacgacttc ggcttcgacc 2580
cgagactgac cgacgactac ctgctcccg ccctgcgcct gctgtacgag aagtacttcc 2640
gggtcgacct ggagggactg gagaacgtgc cggccgagggg gggcgcaactc ctggtcgcca 2700
accactccgg caccctggc ctcgacgccc tcatgctcca ggtggcgctg cacgaccatc 2760
acagcacgca ccgcaggctc cggctgtcg cggccgaccc tgccttcgac ctccccgtcg 2820
tccgtgacct cgcccgcaag gcccggccacg tacgcgcctg ccccgagaac gcgcgtcggt 2880
tgctcggttc cggcgaactg gtcggcggtga tgccggagggg ctacaagggg ctggcaagc 2940
ccttcgagga gcgcgtacccgg ctgcagcgct tcggccgggg aggcttcgac gcgggtggcac 3000
tgcggtcgac ggcggccatg gtgcccgtct cgatcgtcg cggccgaggag atctaccgaa 3060
tgatcggttc ggcggccacc ctggccggaa tgctgaagct gcccgtacttc cgcgtaccc 3120
cgacccccc gctgctgggc gcgcgtggcc tgatcccgat ggcgcaccaag tggaccatcc 3180

-89-

gcttcggtgc cccgatccac acggacggct tccccgagga cgccgcggag gaccgcgtgg 3240
tggtcgagaa gctcgccggc gaggtgaagg acaccatcca gcacacgctc aacgagatgc 3300
tggagggccg cggctccccg ttcgtctgag ggccgcggct cccggttcgc ccgagggcgg 3360
cggctcccg ttcgcccag gaccgtccct ctctccggg gccccgcctc agccccccgc 3420
cgacgatccc cggcggcaga tgctgcaac gctggcgaag gccagaacgg cgaggccgac 3480
gagcgtgacg ccgcccggcga ccagctccgc ggacagatgc atggatctc ctcaggggg 3540
acgacggacg gtatggtca tatagccatg cgaacccgc cgtccgcgg atccgcagcc 3600
gcaccgcggc gcgaattcac ccgttagagca gaccggtgcg gccgaggagg ggtggcgatt 3660
gggtggtcgc gcgttcgaac gttacgatc ctctgttgtg tccaaactga ccgacgtgcc 3720
caagcggatc ctcatcgggc gcgcactgctc cagcgaccgg ctgggtgaaa cgctcctgcc 3780
gaagcgcatac cgcgtcccg tgttcgctc cgacccgctg tcctccgtgg cgtacgcgcc 3840
cggcgaggtg ctgctcgatcc tgtccatcgc gggcgtgtcg gcctaccact tcagcccgta 3900
gatcgccgtc gcggtcggtt tcctgtatcc caccgtggtc gcctcctacc ggcagaacgt 3960
gcacgcctac ccgagcggcg gcccgcacta cgagggtggcc accaccaacc tcggggccaa 4020
ggccggctcg accgtcgcca gcccgcgtc ggtcgactac gtcctgaccg tcgcggctc 4080
catctcctcc ggcatacgata acctggctc cgacgatcccc ttctgtgtcg agcacaagg 4140
cctgtgcgcg gtcggcgta tcctgtgtc cacgctgtatc aacctgcgcg gggcaggga 4200
gtcgggcacc ctgttcgcga ttccgacgta cgtctcgatc gcccggctcg tcatcatgtat 4260
cgtgtgggg gcggtcccg gactggctt ggacgacacc atgcgtgccg cgaccgcgg 4320
ctacgagatc aagccggagc acggcggctt gcccggcttc gcgctgtatct tcctcctcc 4380
gcgcgccttc tcctccggct gtgcggcgatc caccgggtgtc gaggcgatct ccaacggcg 4440
ccggccttc cgcaagccca agtccaagaa cgccggaaac accctcgatc tgatgggtct 4500
gctggccgtc accatgttct gcccgcgtatc cgcgtggcc gcccggaccg acgtgcggat 4560
gtcggagaac cccggccaccg acctcttcca caacggcgatc gcccggcgatc cggactacgt 4620
ccagcaccgg gtatctcgatc aggtcgccga ggccggcttc ggcgaggggca gtcctgtt 4680
catcgatgtc gccgcagccca ccgcgtgtgtt ctccttcctc gcccggccaaacaa ccgcgtacaa 4740

-90-

cggtttcccg ctgctcggct cgatcctcgc ccaggaccgc tacctgccgc gccagctgca 4800
cacccgcggc gaccgcctgg ccttctccaa cggcatcgta ctccctcccg gagccgcccatt 4860
gctcctggtc gtcgtctacg ggcggactc gacccggctg atccagctct acatcgctgg 4920
cgtcttcgtg tccttcacgc tcagccagat cggcatggtc cgccactgga accgcaacct 4980
ggccggcgag cgggaccagt ccaagcgacg ccacatgatg cgctcccgcg cgatcaacgc 5040
cttcggcgcc ttcttcacccg gcctcgtcct ggtggtggtc ctggcgacca agttcacgca 5100
cggccctgg gtcgcgtgc tcggcatgtg catcttcttc gcgaccatga cggcgatccg 5160
caagcaactac gaccgggtcg ccgaggagat cgcggccccg gaggaccgg aggaggcaca 5220
gagcgacgac atggtgcgcc cctcacgcgt tcactcggtg gtccgtatct ccaagatcca 5280
ccgcggccacg ctccgcgcggc tcgcctacgc caagctgatg cgctccgaca gcctggaggc 5340
gctcagcgtc aacgtcgacc cggccgagac gaaggcgctg cgcgaggagt gggagcgccg 5400
cggcatcgcc gtaccgctga aggtcctggc ctcgcccgtac cgcgagatca cccggccgg 5460
catcgagtac gtcaagagcc tgcgcaagga gtccccgcgc gacgcggtct cggtgatcat 5520
ccccgagtac gtggtcggcc actggtaga gcacctgctg cacaaccaga gcgcctgcg 5580
cctcaaggcgc cggctgttgt tcacgcggg cgtcatggc acgtcggtcc cgtaccagct 5640
ggagtcctcc gaggccgcca ggccgcgggc ggcgaagcgc caggactgga gcgcgcggg 5700
tgcggtgcgg cgcggaccgg cccaccacca ccaggaccgt gaccgtacga aggactcctc 5760
ctcgccacg tagactggac ggctgttgta cctgtcatcc ccccggtctc tggagtcacc 5820
ccgcacatgca ggcagaaccc aagaagtcgc aggccgaaca ggcgacggcgc gggagccgg 5880
tctcgagcc ggtctcgctg gtggcgagg agtacgaggt cgaggtcgcc cccgtcgccc 5940
acggccggcca ctgcacgcgc cgcacgtccg agggccaggt gctgtcgcc cggcacacgc 6000
tgccccggcga gcccggcgtg gccccggta cggagggcga ggagggtgcc cgcttcctgc 6060
ggccggacgc ggtcgagatc ctggaccctt ccaaggaccg catcgaagcc ccctgcccc 6120
tcggccggccc cggccgctgc ggccggctgcg actggcagca cggccaaacccg ggcgcggc 6180
gacgcctgaa gggcgagggtg gtcggcgagc agttgcagcg cctggcggtt ctcaccccg 6240
aggaggccgg ctgggacggc acgggtatgc cggccgaggg cgacaagctg cggccggcc 6300

aggccccgtc gtggcgacg cgctgcagt tcgcgggttga cggccacggt cgccgcggtc 6360
tgcggcccca ccgctccac gagatcgagc cgatcgacca ctgcattgtac gggcgagg 6420
gcgtcagcga actggcatac gagcgccgtg actggcccg catggcgacg gtcgaggcga 6480
tcgcggcgac gggctccag gaccgccagg tcattctgac cccgcgcccc ggcgcccggc 6540
tccccatcgta cgaactggac cgcccggtct cggcatgct cgtcgaaaaa aaggacggcg 6600
gcgtccacccg cgtccacggc cgcccggtcg tccgcgagcg cgccgacgac cgacacctacc 6660
gcgtcgctc cggcggttc tggcagggtcc acccgaaaggc cgccgacacc ctggtcaccc 6720
cggtcatgca gggctgtcg ccccgcaagg gcgacatggc cctggacacc tactgcggcg 6780
tcggcccttt cgccggcgcc ctggccgacc gcgtcgaaaaa ccaggagcg gtcctcgca 6840
tcgagtcgg caagcgccgc gtcgaggacg cccggccacaa cctcgccgccc ttgcaccgcg 6900
tccgcacatcgta gcagggaag gtcgagtcgg tcctgcggcc caccggcatac gacgagggtcg 6960
acctcatcgta cctcgaccccg ccccgcccg cgccggcccg caagacggtc cagcacctct 7020
cgaccctggg cgcccgagg atcgccatcg tggcctgcga cccggcccg ctggcccg 7080
acctggggta cttccaggac ggggggtacc gggtgccgac gtcgagggtcg ttgcatctgt 7140
tcccgtatgac tgccacgtt gagtgcgtgg cgattttggaa gcccggcgca aaggggctct 7200
gacctgcatt tttttggct ggatcaggag cggcctgttg cgctcgaccc gttctccaaa 7260
gcgcacgcg tagagcttcg ggaccgctcg tgaaagccgc ctgacctggc gttgcacgag 7320
cggtgcggcg atgtcggtcg ggtcgccct tctcctggcg cgaaggggaaa ccgaagggtct 7380
tgacgctcgg gtgacgctat ttctgaaggg tcgtcaccga ctggggaggc agggccctgc 7440
ctctcgccgc ccatgaaagca gttctctct gctccaggta atcgatcgagg gtgcctgac 7500
ggatcaggta gacggtcagg gaccgcagg tgcagggtcg cgacgcccag gtcgaggatc 7560
atcaggcgcc gtcattggat gatggcgaaag gcggcgatca caccgtcgac ggaacagggtt 7620
gcgttcaggta gtctgtcggt ggcggccacc ggcacgggtct ggaagctcggtt ctccgaccgc 7680
agctcgccac cagtccgaga ggagccgata ctgtccgggtg ccgggtgacc ttgcgtgcaa 7740
gcgttgctgc ccccgctcggtt cagaccgggg cagcaacgt tgcacgatcg gccggtaactc 7800
aacgggatcg tgtggagttt cggaccggaa cggcttggca ggacgtgccc gagcggatcg 7860

gctcctggc cacattgcac accccttcc gtcgatgggt gaaaggcggc accttca 7920
gaaaggggg tccggccccc cccgggacct tgcgcccacc gtcgccgacc ggctgatgaa 7980
ccggctccgc gctcccggca ccaacctgac ccgacgtgag accgaagtcc tctcacccgt 8040
cgccgacgga ctgtccgacc aggccatcg cgacgcctc cacttgaccg aaggcaccgt 8100
cgatatacacc tggcctgcat ctatgccaac ctgcggaccg actcgccac cggcgctgtg 8160
gccactgtca cgcgcacatcg cgacctcggt ctatccgacc gctgaacagt atgtgggtgg 8220
cggtgttcc gttctccacg acttcagcg cggtccggagt tgggtgctg gctgggcttg 8280
gtgcccgtc ctctgaaccc atgtgaacgc ccacggccag ttgcggccgg acacgcccc 8340
cgacactggc ctccggcccg gccagaatgc cccggccctg cacctggctt gcctacctgt 8400
acaggcgagg ggggtccctc ggagccactg cctgttaactc cgagggggccg ccctggccg 8460
actcggttccggtt caccgcggac gcggtgcggt caggaggcac cgtctgcgtc atcaggcg 8520
gctcggccga gcgagttatt cccgcacccg tgggaccaga aatgtcagcc ctgcgtgacc 8580
gcttcgaaga ccgtgacgcg gttgtcgtcg gagagcgagt ggggtgggtc ggcgtgcgcg 8640
gcgcggaaatg cctccgacga ggtgtaggcg gtgaatgcgg cgtcgtccctc gaagttgagg 8700
acggccaggt agccgtgtgc gcccttgcgg ggacgcagca gccgtgcgtt gcgcagcccc 8760
ggcacgttgg aaagggtggc ggcgcacgtg ggggtgcagt tttctcgaa cggccctgg 8820
gcggggcgcgg cgacggtgaa ctcggtgacg ggggtgcgtt tttctgtctt ctctcggtt 8880
ttgggtgtat gtcggtggt gtcggcccg gcccggccgc gcacggcgat ggcgtatgt 8940
tgtacccgcgt gtccgatcga gttccgttgc ggggtgcggt tacagggtcg gagttgggt 9000
cggtccgcg gtcggctgag ggagcctgcc tggcggccgg gcccagattt cgaacgcgt 9060
agtcatgaac ggggtacgg cggccagcag ggcgaagatc gttgtccggc ccagccgcca 9120
cttcagccgg atcgcgcacca ggacggtcag ggacacgtag acgtgaagg cggccgcgt 9180
gaggggtcccg aagatccgtc cggccagttc ggtggttcg gggatgtact tgaggtacat 9240
cccgccgcgc agacctgccc acgtgcacgc ttgcgtatgtc ggcgtccagg tgaacgcgcg 9300
cagcagacgg ctggtgccgg tttcgccagc ccgtgcggcc ggcgcgtcgg cggaggcgg 9360
ttcggaggtg ggcgtggagg gtgtctgcgg ggtgcctggg cgtgcggggcc acagggcg 9420

-93-

gttgcggagc aggccgacga tggcgggac caggagcggg cgatgagga aggtgtccag 9480
caggatgccg caggccatgg cgaagccgaa ctggaacagt tcgcggatcg gctgggtcat 9540
caggacggcg aaggtcgccc cgaggatgag gcccgccggag gagatgacgc cgccggtg 9600
tgtcagtgcg gcggtgatcg cttcgctgg gggctgggtg cgcaatccct gcttgaaccg 9660
gctcatgatg aagatgttgt agtcgacgccc gagcgcgacg aggaagacga agatgtacgc 9720
ggtgacgcgg ttgcccgtgc cgctgtcacc gaggacggtc acggtaaga aggtggtggc 9780
gcccaagggtg gccaggaacg acaggagcag ggtcgccacc aggttagagcg gggcaaggag 9840
cgagcggagc agcaggacga ggaccacggt gacgatggct aggaccagca gcacgatgag 9900
ggtcgtgtcg cggtcgaggg cggagcggat gtcggcggtc tgccgcgtct cgccgcgtat 9960
gagcaccgtg gcgtcctgga cgccggccgc ctgggtcg gattgtgtgg cctgcttgag 10020
gggaccgatc gcgtcgagtg cttggagct gttagggtgcg aggtcgagga tgacgtcgta 10080
gaagacggtc ttgcccgtcct tgcccatgctg ggggtctgcg acacggctga cgtgatcg 10140
gtcggtgagc gcggtggcga tgcggcggtt gtcggggctg gagcgcaggt tgtcctgg 10200
atggacgacg acggtaactgg gggcgatctc gcccggcccg aattcctccc gaatgaggtg 10260
ctgtccgtgc tccgactcgg tggcgccgcg gaagccgctg aggtgttga agctctcctg 10320
gtagccgagc agtccccgcgc tcagtaccac caggagtgcg atcacggccg aggccacctt 10380
gacgggggcc cgtgcgacca gggcgccgt gcggtgccag atgcctgcgc cgcactgcg 10440
ttcggccggcc ttgtccacgc ccccgccca gaagacgctc ctgcccagca ggaggaccag 10500
ggcggggatg aaggtgaacg ccaccagcgc catgacggcc acgcccagag cgaggtacgg 10560
tccgaagccg tgaagtgcgg gggagacggc cacgagcagg gcaaacatgg cgacgacgat 10620
gttcgaggcg ctggcgagga cggactcggc ggtgcggcgc acggcggcct gcatcg 10680
ggcgccgtct ggctcgatcg gcaagggtctc gcggtagcgg gcggtatga tcagcg 10740
gtccgtgccc accccgaaca gcagcacggt catgatcgag gcggtctggg agctgaccgt 10800
gatgactccg gctccgcga gaatcgccgc gagagtctcc gccacgcga tagccacgc 10860
cacggcaaga agcggcacga ggcgcacgt gggcgagcgg tagatcgcca gcaggatgt 10920
caggacgagc acgacggtgg ccagcagcag gactttgtca ccgcgcgtga agacccac 10980

ggtgtcggtg gcgatcccg cggggccggt caccgcgacg tcggcgggcc cggcccggtc 11040
ggacgcgagg gcacgcacct cgtcgaccgc attcttggaaag gactcgccg aggggctgcc 11100
ctccatgggc acgatgacca gctgagcacc gcggtcctgc gagaccaact cggccgcagc 11160
gtcggggagcg gtcaccgtgg agaccacgct cacgacatgg tcgggtcggc tggttccgga 11220
aagggccgag gtgatggcgg cgaccgattt cggtggcgctc ttgcggcggt cggtgccctt 11280
gcccgggacc acgatgatcg ccggcgctgc gtcctggccc ggaagctggg cgccggacgag 11340
atcacgggcc ttcatggagt ccgaggcggc gggcggcagg ttggcggagg cggtgcctc 11400
gacggattcc agggccgggg cgaccccgcc gaggaggccc gcgatcagga cccagaaggc 11460
caccaccacg gccccggcgt tcttcgatcc caggagacat cgacgcacag cggggggagtt 11520
catcggttgc atcgccgcagc ctgcggcagg aagtacggac agaacttagc gacagggtgt 11580
ctctaagttt cgtcaagcta acaccccccc tcggcctctc gggcgtgggg gtaggttggc 11640
gggagacggc acagcgcccg aggtgaagcg gaaaaatgc ccaagattga agccggcagc 11700
gtccggggagc accggggcgca gcccggcgctc cagctgattt acgcggccga ggagctcctg 11760
gaagagggcg gtgccgaagc cctcacagcc ggacgcgtttt ccgcgcgagc cggatcgcc 11820
cgcaacagca tctaccgcta cttcaactcc atcgacgacc tgctcgaact cgtcgtcacc 11880
cgcaattcc ccgcctggat cgacgcgttg gaggcggcca tcgcggccga gaccacaccc 11940
gccgcccagg ctggcccta cgtcaggccc aacctcgaac aggacgtcg cggcacccac 12000
ggctggccggg ccgcgtcac ggcgcactcg ctctccccgt cggcggggga gcggttgagg 12060
aatctgcaca tctcgctaca cgaggcgctc gcccgggtcg tgcgcaact gggcagcca 12120
cagcccgagc tgaccgtggc ggtggtccaa gcagtcgtcg atgcgtgcatt ccgcagaatc 12180
gaccaaggcg acgatctgac aaccgtgtcc gacttcgcgg ccggagcgcac gcgtcgactg 12240
ctcgccggatg acgacttgcc acatcaccccg tgacgcaccc cgtccaggcg gctcgaggc 12300
ccgtcgacag cgaagccccg gcagaacgag ccggatctt agccgcaccc gacgtgtacg 12360
cagaccgctg gtggctcatg cctcgctca tccgatctt ccaccggcg gccgaccgg 12420
cagtggccga cggccatcgta ttacgacgtc cacgaccccg accagcgccgt tcagtgcgtt 12480
gacgttcgtg gtgcgtcat tggtcaccccg gcctctgggg gtcaccagcg cttttagggc 12540

-95-

acgagactcg acgggtggcgc gtgataccag gcaggcatca tgaccattatg gcgatgacac 12600
tccggcttcc cgacgacctg gacacgaagc ttacggagcg ggctcggtgg gagggttgca 12660
gcaagcagga acttgccatc ggggccattc gtgatgcccgg gAACCGGGCC gagctgaagg 12720
tcgatgacgt tctggccggc ctgatggaca gcgatgcgga gattctggac tacctgaagt 12780
gagcggcgtg cgctacacctc agatcgacga gatcctggcc atcgatgcgca cggtaaacgg 12840
tgccgagcac agcgtgcgtg acatgggcct cttgtgtcg gcgatcgaac ggccccggac 12900
gaacgtttc ggagccgagc tgtatccac cctgcacgag aAGCCGCGGC actactgcac 12960
tccgtcgccc gcaatcacgc gctgatcgac ggcaacaagc gcaccgcctg gttcgccatg 13020
cgcgtttcc tgcgggttcaa cggcgccagc gccagtaccg tccccccccca cggcgccgg 13080
cccgacggac ccgaggcccc tcacgcgtg ctcaccagca gcccctctcct cagcagcgca 13140
ctgggaccgg cgctgctgat cggccgttcc gcccctggggg ttctcgccct ggacacggcg 13200
ttgtgggtct cggtggtcaag tgaggtggcg ggcggggccc ggtggggctt cgtggcgccgg 13260
ctgcgtgtcg ggcggggcg tctgggagcc ctgatcgccg gctactcaa cggcgatc 13320
ggcttggcg tggtcgttgt caaaactcatac gcccggact gagagggcct gtgggtgt 13380
tcgcggagcg catacggtgg cagaccggc ggaatcctcg ggcggccggc cggagcggtc 13440
ccggcaccccc ggcgaacagc cgcacgtccc cgtccggtcg ggtcagggtcc gagccgttag 13500
atccaggtca gtcgcccacag ggcagaagc ccggtgccgt ccaccgcgt a cggccggcc 13560
cccacgttcc cccggacac cacgaagtcc ttggcctgac acagcgggac gacgggcacg 13620
tcgcggcgca cgatccgtg aagggttcg aggtcggctt cggcgatcg cgggtcgccgg 13680
aagcgctgac tgctcgat cagccggtcg gcccgttgc tgccgtaccc cgtcgccatg 13740
gtggcgatcc tggcgacgag aggaccggc aaggtgtcgg gatcgggtta gtcggcgacc 13800
cagccgacgg cgtaggcgac gagctctccc tcggccagc tcttctggaa ttctccat 13860
tcatatcctc tgagggtcac cttgaacagc cgtcgccctt ctagttgtt tttcacctcc 13920
gcagcctctt cgtgggtca tccgcgtccc ggcgcgtaac cgtagggtaa agacagcgccgg 13980
atccctcac cggcctcgac gaggaggcgg cgtgcctttt cggcgatcg cgggtcgat 14040
ttgtcgaaga aggaggtggt gtggccgtg atgctcgatc ggtatgggaa gtagagcgccgg 14100

-96-

tccacggttc cgtcgttagac gtcgttagaa atccggtccc tgtctatcatcg ccaggccgcc 14160
gcctgccgtg cgcgctgtc gtgaaacggc ttgccgcggc gggtgttgag gtacagggtt 14220
cgagtctccg cgctctgcgc ctccgtcacg cgaagccccg gatcgctcgg gttcagatcg 14280
gcgagcattt cggggggaaag ctgtctgagg gcgacatcga tgcggtgga tatccaggcc 14340
cgggcgagtg agtcgggggt gtcgtagaag tggagttcga tcggccggcc ggtgttctcg 14400
gcggcgccct tgtaccgagg gttggcgag agggagatct tctcgccctt cgcgttaggag 14460
acgacgcccgt acggtccggt cccgtcgatc cggccgtccg agcgcaaggaa gtccgcccgg 14520
tacgtggtcg agtcgacgat cggccgcgc cgggtcgta gcttgaaggg gaacgtggcg 14580
tccggtgccg tcagtcggaa agtgcggc cggtcgcggg cgtccatcga ctcgatggtg 14640
tccaggaggg acgacggccc cacgtcgaa tctatcttct tgacccgttc gaacgagaac 14700
cgacgtccct tggctgtcat tctgcgtccg ctggagaagg tggatgtcatc ccgcagccgg 14760
catcgatagg tgcgtaggcc ggaatcggtg aaggagcgc tttcggctgc gtcgggaacg 14820
ggctccgcca ctccggctc cagggtcagc agtgtctggaa agacattgt gtacagagtg 14880
gtcgagccgg agtcgtagcc gccggccggg tcgagtgacg tcggccgttc cgtcgccccg 14940
accttgcattt tggatgtccctc ctggtcgtcc gtcgggtaaa gcagcagacc ggctgccagt 15000
gccgtggcga tcaccgtggg tggatgtacg gacgcacggaa tggcgacacg aataggctc 15060
atgaggctcg tcctcgcaag atcgagacga acaggaattt tcgtaccctt gggtgagag 15120
tgcgtcgcc aagtatgcgc aggctcgct tccttcggag cccgacggca ctccggaaac 15180
gaagtcttat gactgacacg gtggactgc tatgccccgt tcggcgagag ggccgcccagg 15240
ggtcggcacc ccctctcagc agccgttccg cctcgctcc ggtggctctg cggacccgct 15300
tgcgcgggtc cggccacgg tctactcct cgtgccatt ccctgtgcaa tgtcacctgt 15360
gccatgttcc gtgttgcagg gcgtggccat gccaagtcgg gaggtcggtc gtctccgtc 15420
agggtggcagt gcggtactcc gtttcccacg tcctctcccc cttcagtcgg ccgtgtccg 15480
cacggccgga tccctcatgg gagggcgctgt gagaaggatca ctggtaacggc gaggtctggg 15540
ggccggcgctg ccgctggccc tgaccgtcgcatgagcgtg ggcctgtgt cgcagccggc 15600
cggcgcagcc gggAACACCG ggtccgtcggtc acgtcgccg cggacgacc cggagcacgc 15660

-97-

gggacccccc cccgtcgcbc agtccccac cgccgagacg gagcacgtcg cgcaaggacg 15720
cacgagggcg tccgagcttc cgcccggtgc cgcgagtaag gacgcgtca aggagggtga 15780
cggcaagacc gcgaaggcgc cggtccgtcc ctgcagaagtgc acggacaagg cggtcgccgg 15840
caagaccggc aactcccgtg cgctgtccgc cgctgtcaac gtctccgact tcaccagccg 15900
gagcggcggc gcgctggtcc agcagatcaa ggctgtccacg accgactgcg tcaacaccct 15960
gttcaacctg accgggaacg acgcctacta cgccctccgt gagtcgcaga tgacctcggt 16020
cgccctacgcc ctgcgcgacg gctcgacgtc ctacccggc aacgcctcca ccggtatgcc 16080
gcagctcgtg ctctacctgc gcgcgggcta ctacgtgcac tactacaacg ccggcacgg 16140
ggcacctac ggcagcagcc tgcagaccgc gatacgcgc gggatcgacg ccttctcgc 16200
cagccgcac tcccgcgacg tcaacgcacgc caacggcgag acgctcgccg agggcgtcac 16260
gctcatcgac agcgccgagg agaacgccc ctacatccac gtcgtcaagc gactgctggc 16320
ggactacgac tccacctgga actcgtcgtg gtggatgctc aacgcggtca acaacgtgta 16380
cacggtgacc ttccgcggtc accaggtgcc cgcttcgtg agtgcgtgc agtctgaccc 16440
cgccctgate gacgcgtct acaacttcgc gagcggccac ctgcgtgc tggaacgga 16500
ccagtcctac ctcacgtcga acgcgggacg tgaactcgcc cggttcctgc agcattccgc 16560
actgcgtcc aaggtcagcc ctctggccgg cggcctgctc aactccagct ccatcaaggg 16620
ccggacggcc ccgctgtggg tcggtgtcgc cgagatgacc gactactacg acaaggccaa 16680
ctgctcctac tacggcacct ggcacccca ggcacaactg gcccgcctcc tcctgacgg 16740
gacctaccca tgcagctcca gcatcaccat caaggcgacg cagatgaccc cggcgagct 16800
gtcctccagc tgcagcagcc tgcgcacca ggacgcctac ttccacaacg tggccgtga 16860
caacggccccc gtcgcgaacg acaacaacag caccatcgag gtcgtggtct tcgactccag 16920
caccgactac cagacccatcg cggcgccgat gtacgggatc gacaccaaca acggcgccat 16980
gtacctggag gggaatccgt cggcgccgg caaccagccg cgcttcatcg cctacgaggc 17040
cgagtggctg cgtccggact tccagatctg gaacctcaac cacgagtaca cccactaccc 17100
cgacggccgc ttgcacatgt acggcgactt caacgcacac atcaccaccc cgaccatctg 17160
gtgggtcgaa ggcttcgccc agtacgtctc ctactcctac cgccgggtcc cctacaccga 17220

-98-

ggccacgacc gaggcggggc gtcgcacgta cgcgctgagc accctgttcg acaccacgta 17280
cagccacgac accacgcgca tctaccgctg gggctacctc gccgtgcggt acatgctcg 17340
aaaccaccgc gccgacatgg acaccgtcct cagccactac cgcgcgaa actggaacgc 17400
cgccccgagc tacctgaccg gcaccatcg 17460
gctggcggcc tgcgccgccc gcaactgcgg tggcgaaaa accaaccgc ccggaaacca 17520
ggcgcccacc gccgcgttca ccaccgcgt ccagggcctg aacgtcacct tcaccgacca 17580
gtccaccgac gcccacggca ccattgcctc ccgctcctgg agttcgccg acggcaccac 17640
ctccacggcc accaaccggc tcaagacgta cgggtcgcc gggcctaca cggtaagct 17700
gaccgtcacc gacgacaagg gagccacccg caccgcacg aggacggtca cggcggcag 17760
cgccggaggc ggcggcaccg aatgcaacgg gaccgacacc cgggaactgg gccaactg 17820
ccaacgcggc aaccagtccg ccaccacgg caactacgcc tacctgtacc tctacgtccc 17880
ggccggcacc acccagctga agatcaccac ctccggcg 17940
ctacagcacc agcggctggc cggcaccac gagctacacg cagcggccca cggagccgg 18000
caacaaccac accctgacca tcaccaaccc gccggccggc gccaactaca tcagcctgca 18060
cgccgtcagc agttcagcg gctcaccgt gagttccg 18120
ccaaggcacc accctcacga cggccgggg cggctctccc cggccggggc ggctccggg 18180
gcggcggcag gggggagacc tccgtcgccc cggaccgaga acacatcgcc cggccgaca 18240
cgccatccc tacctccag gaggcagac gtgaagtcat tacccgcacg caggcagc 18300
cgccatgt ggtccctcat catgtccgtc ggtctcacct ggcactcgc cacacccgcc 18360
gtcgccagcg gtgaccaggc cacgtcacgg ctcagcgcct cgcacacggc cggccggc 18420
caactcgcag cggaccagca catctccacc caggaggcac agcggcgcgt actgcggcag 18480
gagcggctca cggcgtcgc aacagcgctg cgtgagcgcc tgggttcccg cttcgacg 18540
gcctggatcg accagaagca cggccggcagg ctgaccgtcg cgtcacccg gtcgacggcc 18600
acggccctcg tcgaggcccg gtcggctcg gtcaggcac cgcacacgac cacatcg 18660
gtcgaccgca gcctgcggca actcgaccgc atgtccgcag gactggccca cggatcg 18720
gcagcgaaca agggcgccgc ccacggcctg cagtcgcgg tggtggtgca ggacaacaag 18780

-99-

gttcgtctgg acctgccacg gggcaagacc ctcacccccc cccagcacgc agtcgtggag 18840
tgggcgaagc ggaccctcg cgatggcctc gaggtcagca cctacgcgca tgcctccgaa 18900
cccttctact gcggcggcca gtactcgtgc gaccccccgc tgcgctcggg cctggccatc 18960
tacggcacga acgtccgctg ctccagcgcc ttcatggcgt acagcggcag cagctactac 19020
atgatgaccg cccggccactg tgccggaggac agtcgtact gggaggtccc cacctacagc 19080
tacggctacc agggggtcgg tcacgtcgcc gactacacct tcggctacta cggcactcc 19140
gcgatcgtca gggtcgacga ccccggttc tggcagccgc gcggctgggt ctacccctcg 19200
acccgcatca ccaactggga ctacgactac gtcggccagt acgtgtgcaa gcagggctcc 19260
acgaccggct acacctgcgg gcagatcacc gagaccaacg caacggtgtc ctacccaggc 19320
cgcacccctga cccggcatgac ctggtccacc gcatgcgacg ctcccggtga cagcggcagc 19380
ggcgtctacg acggctcaac ggcccacggc atcctcagcg gggggccgaa cagcggatgc 19440
ggcatgatcc acgaaccgat cagccgagca ctggcggacc gcggggtcac gctgctggcc 19500
ggctaagcag cccggggcggg ccgtgagtagc gccgccccgg tcacatcacg aggacgtcga 19560
ccgccccacg cgccgtcgcc gtctttcccc gtgtcccgct ccgtccgcca cccagcggac 19620
tggggggcggg ggcgtggcac gtcgtgcacg ccgcagcgcg gtggAACCCG tcggccgatt 19680
agaccgtacc ggggagcgc tttccggctc ctttcgtggg acgggggggt gcgtatgcgc 19740
gcgtcaccca tttctggaag tgccggaccc ggcacagcag ttgccagtgg gcgcgtacgg 19800
catgatggtg caccacctcg acggccgacg cctcgaccga atccccccgc cagacgagca 19860
gatgccgctg ccacagcggg tccccccgca ggggttaac cagactccg cccaccgggc 19920
gcatggtggg ctggacggcg gccaccccca gacccttggc gatcatcgac tgcagtttgt 19980
cgagcatgtg gaactcgtgg gtgacggcg gcctgaatcc cgcggcccca caagcgtcgt 20040
agaaggcgcc gggccagccc accccgtcgt ccgcggagac gaaccacgcg tcctccgaca 20100
ggtcggccaa ggacacctcc agccggtgcg ccagtgggtg atcggcaggg gtggccacga 20160
acaccgggac ggttctgata gtcgggttgt ccagcttcgg agagtgtcga agaggcagcc 20220
ctggtagtc gcaacccagg gcgacgtcga gtcgccccgc ctctaggaga tcgatgagtt 20280
ctccggtcgc gtacacactg ctgaccgaga cggtcagatc gggcaggct tcacggagga 20340

-100-

cgtcgagcaa ggtgggtacc accggtgtgt tcatggcccc gagggcgaagc cgacgtgtcg 20400
ccccggacga gcggggaggc cgcagccgtg cgagattgtc ggagagcgcc aggatctccc 20460
gggccccggcc gacgacctgg ggcgcgttagg cggtgagctc cacgcccgcg ctgctgcgca 20520
ggaagacccc ctcgcccggc agtccctcga tgcggcgcag ttgggtactc atcgcggct 20580
gggtgtatcc gagcgcgcga gcagccggc cgacgcccc cgcgtcggtc atcgcacaca 20640
gcacgcgcaa gtggcgcagc tcaagttcca cgggggcacc tcgctccggg cgaacagagt 20700
tccattatgc gccaggagga aggccgtgg gaatccggga cggcctgacg cttcggtcg 20760
accagtagcc cgagggttat ggatgagccg gagcctctgg tatggcctgg ccgggtgttc 20820
ccgggtgacc gccgtggaaa tctcgaccc gctgtttggt ccgcagaggc gactgcggaa 20880
ccctgaagcg caccgcaccc gaggagcgac atcatgcctc acacctgcat cagttcacc 20940
gtcgaagcga ccggggccgc gttcacccgc gcccgcacc gctgtccac cgcgtgagc 21000
tgggtgggag ggccggcgtga ggaagagctc cgcttcagcg cggaaactcgt gacctccgag 21060
ctcctcacca acgggctgctgac gacgcgggc gggccatga ccgtcgagtt gacgctggcg 21120
cacgacatgg tcgtcgctgc ggtcctcgat gacagccggg agctgcccgc gcctcgccag 21180
acggaggcgg acgacgagtg cgggcgggaa ctcgcccgtga tcgaggaccc cagtctgata 21240
cggggagtcg agaccacttc cggcgaaag cgctgctgg cggttctgcc gctgcggacg 21300
ccacaggagc gggctatcga gtcggctccg gctgaggagg cggaccacgg cttcgaggca 21360
gaccggaaac gctggtaact ggctcccaa ggaagcggac tactggcgag tctgtttccg 21420
gcatgtgag ttctcgctcc tcggcggcc cagtagccga cccaggcag gcggcgtgc 21480
ctgaggcgt gatgacgctc gtctgacgct ctggccgctt tcaagctgca cagcgagccg 21540
agaaacagcc tttgacctgg cttttctgc ggctgcctca ggccgacatc tttccgatga 21600
cgaccacgt ggagtacgtg gcgattctgg agcctgctgg caaggggttc tgacctgcgc 21660
ttttgttctc ctgcggcggg cgcggcaagc tcgtgcgggg cagttgggt tcccgaggc 21720
cggtgctcggt gtgtccggcc ggcgggtggg ctgccttcgt ttctagttggc gcgagaggc 21780
actcggacgc ctgagccgag atgcgggttcg ttccggacca tggggccgcg aggatgaccc 21840
ggtcagcgcac cgctggcacc tggaaagaa ctttgcgac aaggccctgg ccgaggttcg 21900

-101-

ctccccacagc gcctgctgga ccacagcgaa cacacccgc ccggtcggcg tccatgagca 21960
gaccacccgc gaacgttggc atcagactcca cgacacctc ggcaagggtg tcggcttgct 22020
cgaatgcgcc cggccctga acctgtccct caacaccgtc aagcgctacc cgcgcacccg 22080
cgatcctgaa gccctgcgcc ccgtgaagca gctgtttcgc gaggtccagg agcagggtg 22140
caccggcage ttcaccctgc tctaccgcag cacccaggc cgcccagaag gcgaccggcc 22200
cgtcgaggg tcgcggcttg acgctcaccc tatccatcac tggaacggcg acgtctgatc 22260
ccgtctgccc ggggcttggg tcccgctgc ggcccgtagg cccggctcac cccagcaccc 22320
atcaactgttc gagagtgatt acctctccgc cggacacatg gaaatctgca tcggctggag 22380
tagacattgg gcagcagtgt ggttatgttt ctccgttaac ccagaaggac cgcaggcccc 22440
ggcagagacg aactgccggg cagcagtacc cgcagttgca ggacggtgcg gtggtggagt 22500
gtcgaagcca ggtatggtgca ggacggcgac gggactgacg accggaccgg gcggcccgca 22560
gtggtcaggg gccgccaccc cagtgcagta cccagcagcg aagtcaagtga gcggtaccc 22620
ggtaaggcg tcggctgcgg acgcgcgcgc cgggaggttc ggcagtggtg gttccaagcc 22680
agagcagacg caggacgggc aacggggccg actgtcggac agtggcgctg tcacaggtca 22740
ctgagagggt cgtgtcacca gcagtagagc agtaccagag gaaagaacgg aggaaccaag 22800
cgccatcagg atcgccccggg cgcagtttg ggccccggta ccgcaggaca tcgatagtga 22860
ggtgtctcc ggtcaagaaa ccgcgatccc cgcgcccccg gcagcaggca ggtcggtcc 22920
gcggacacag aaggccggtg cagtatcagg gccggcagat ggtgtaggag ttccctcggg 22980
gccctggtgc cgcacccgc cagggccct ccatgcgttc cgcagagagg tgcagatgac 23040
agcagacgat tcgtacggcc gtctcgacga cgacgattac cccgcctaca ccatggggcg 23100
ggcggccgag atgctcgta cgacccccc tttcctgcgg gccgtcgag aagccggct 23160
gatcacgccc ctccgctcgg agggcggcca cgcgcgtac tcccgctacc agttgcgcac 23220
cgccggcccg cccgcgaac tcgtcgacca gggcactccc gtcgaggcg gctgcccgc 23280
cgtcatcctg gaagaccagc tccaagaagc gcggcgtatc aacgaggaac tgcagaggcg 23340
cccgccggc ctggtgaca agggcggagg ctgaggccgc atctggccgc cggtcctgtg 23400
agggctcgcc tgccaagacg ggaagccctt gcccacacga gaagaggcaa ctgtccgcac 23460

-102-

cgtatgtctg ggcccggtcc tggcttaggac tcccgtttc ttgccggagc gatgcggctg 23520
tggacgcgga accggacggc agtgtcgtcg ggcgcggagc gcggggcgca cgtcgatggc 23580
gacaggaccg gcgaagggtgt attcgtgttc ggcgggtgtga cggcgcacct ggcggcgag 23640
ggcggcggcg caggtgtcac agggacatcg gttccgactt ccaccacccg tccgggttcc 23700
accagcgtgt catccacctg atccaggctg cgcggtagg tgctcgacgt cgggggtgt 23760
cgggggcagt tgtaccgttc cgccgcgagg agtgaccacg ttgaccacccg gcctgtggcg 23820
ctcaggaacg ggctggactg tcgcagtccg ggccaactca agcccgacca tgaggccgac 23880
cacggcgccg cgcgaccccg accacagcta cacgcgtggc atgaccaagg cggcacatgc 23940
ttcgaacgag ccatctcatg tgtgcggta tgaacgtgat cgacgtcccc ggcactctgg 24000
tgcggacgca agccgtctgg ggcccacccc acgactggct cgccgccccg ccccccggc 24060
gccaccgtcc gtcccgccct gcgtcgtcgc ccgtgtggcg tcatgacggc gacagacttc 24120
ctcgctatg ggccgaccat acggccaacg ccagaggtaa agcgctgtcc atggtgagtt 24180
ccctgaacag aagggtctggc gggacccctt ttccaagacc gtgctgcagg agtccgtcag 24240
agcgcaggta atcccggtct gtcgcgacc cagggctgtc ctccgtctgg ccgagggtcc 24300
tcgtttctg ggcgacatcc ctttagcgtg ggccgttagcc gccgaaggga ggcgcattgt 24360
cgacgaatt gacgggccccg ttgggaacgg caatgcggga ggtcacgttt ccggaccgg 24420
ctcgccggat catcttggtg cgggctggaa caccgcaggc cgaggccgag gcaatggccg 24480
cccgatgtg ggccgagatg ccggaaaggct gacgtccccg aacgcagaca acccgatcc 24540
tcctcacacg cattccctg agccgtcgcc catggaacgg aaccagccgt acgaaccccg 24600
gaggcgccgt tgcggctct gcccgcaggc cggggccacg cagggcgaag aggccgcgc 24660
gcgttctgcc gcctggcqcg gctgccggct gttcacgaga acaccgaggg aggagtcgcc 24720
ccgcctttgc ccggcgcggtt gccgggtgga gagcagggtgg tgaaggactg gctcgctgaa 24780
ggcggccgag gcgacccgt cggccggccct gaacggcttt cactgtcccc gccggccgag 24840
gccgcgcaca caggcatgtt ttgccatctc cctcgctgtc tactgacccccc agcagcagga 24900
tccagtagggc cgtcgcggcg ctgcccgcctc actcgccat cgtatggggaa atgcggcatg 24960
tggtgagggc ccggccggcg tgccggtcgg gccctcacac tgggggtgt tcggcgcggtt 25020

-103-

tgtcgtgtcg gtcagacgga caggtgggg gcgccgagca tggcggaagc ccgctgcaac 25080
ggactgtcgc tgcgcgcggg ggcggcctcg ggaagggtgc ggcaggtcaa gcccagctgg 25140
gccatggccc ttaggatttc gccggtgctg aagtgcgcgc ggtcctggcg ggtgatgacc 25200
tggccgacct gcttggcggg gtagtggcgt cgtccgatga tcacggactc gccggtgacc 25260
ggttcggtt tgacgcctt catcgattcc agcacgccc tcttggtcag gtcaacggg 25320
aagcgggcaa tgacacagcg catgatgcct cacaggcagg agagttacgg ggccggccgc 25380
cgtctggcgg ttcaagcggga gagagcggagg acgcccagg cgctgcgtg ttctgcgacc 25440
acgggcacca gcccggcccg tccgaagggc accgcgtcct cggcttcctc cctctggcc 25500
gacggtgaga cgaagggctc gctgtcgac gtgatgtcac cgaggcggag ccggtcggtg 25560
tatcgggagc tgtccggac ggccggagc cggggctggg tgaccaggcc gacgcacccg 25620
gcacccctcggt cgacgacgcac cagatgcgtc gcacggggcg cggccatcac ggacagcgcc 25680
acctcgacgg tcatgtcgta ccagacctgt ggccggccgg cgtccatgac gtccggccacc 25740
gtgccgcgca atgggagagc gcctacggag cgatccgtca actgtccctgg cgtcaagggg 25800
tgccctcctgc gcagacgggc ggggttcctg atcaggacgg tcctaggcgg ccgcgcgcagc 25860
cgtggacttg agtgcggggg tacgccccgt cgccgaggcg gggccggcgtc ggccgcgtga 25920
ggtggcqccg cgcttcttgg ggcgttcagt cgccggggcg gtatgacga ccgggatgcc 25980
ggtcggggcc tgggctccgg tgatccggct gagggcctcg tcgccccggc tgacctgggt 26040
ggtctgcggc cgatcccg cttccgacat gagacggacc atgccgcggc gctggttcgg 26100
ggtgacgagc gtgacgacgc tgccggactc gccggcgcgg gccgtgcggc cgcccccgtg 26160
gagtagtcc ttgtggtcgg tcggcgggtc gacgttgcac acgaggtcga ggttgcac 26220
gtggattccg cgtgccgcga cggtggcgc caccagcacg gtgacgtgcc cggtcttcaa 26280
ctgcgcaga gtgcgggtgc gctgcggctg ggacttgcgg ccgtgcaggg cggccggcccg 26340
taccccgctg ttgagcaggt cccgggtcag tctgtcgacg gctgtctgg tgtcgagggaa 26400
catgatcacg cggccgtcgc gtgcggcgat ctgggtggtg gccgcgtgt tgtcggcgcc 26460
gtggacatgg agtacgttgt gtcctcgat ggtgacggcg cggccggagg ggtgcacgg 26520
gtgcacgacg gggtcgtga ggtacggcg tacgagcagg tcgacgttgc ggtcgagggt 26580

-104-

ggcggagaac agcatgcgct ggccttcggg acgcacctgg tcgagcagtg cggtgacctg 26640
cgccatgaag cccatatcgg ccatctggc ggcctcgta aggacggtga cggagacctg 26700
gttcaaccgg cagtcgcccgc ggtcgatgag gtccttgaga cgtcccggag tggcgacgac 26760
gacctcgccg ccaccacgca ggcggacgc ctgcctgccc atgcacatcc cgccccaccac 26820
cgtggccagc cgcaagttca cagagcgggc gtacggggtg agcgcgtcgg tgacctgctg 26880
cgccagctca cgtgtcggtta cgaggaccag ccccaacggc tgccgaggct cggcccgccg 26940
gccggccgta cggggccagca gagccaggcc gaaggcgagg gtctttccgg aaccggtgcg 27000
cccgcggccc atgatgtcgc ggccggcgag ggagttcggc agggtcgcgg cctggatcgg 27060
gaacggcacg gtcacccctt gttggccgag cgcggccagc agttccccgg gcatgtcgag 27120
atcggcgaag ccctccgcag cgggaagcgc ggggggtgatc gtccggggga gggcgaactc 27180
ccccctgaacg gcgcggggcc ggccggcgta accgcggag cggctgggtc cggccggccg 27240
gcgcggcgcc ggcgaaccga agcggctgcc gccccttccg gagtcggcac cgcgcggccg 27300
tgtgcgagcg aagcggtcgt tcgtgcgtgt gcggttcata cggAACCTTC ctcgatgcgg 27360
cacatatcaa ggaatttccg aagcaatgag cagcacggag aatcgcaaga atggaccgg 27420
gggccttgcg agcggatctg gccgacagaa aatctgtcg gcacgtgcgc tggaaatgatt 27480
gggggtgctg tgggctcgat attcgaagcg tccactgcac tgttagctatg aaggatgcgg 27540
ctgcaccccttca aaggacgat ccgtgtcggt taaacacacg ctgtccggag cgtcgccgc 27600
aggtaaaatc actgcgggaa acgcacgttag ctggggcccg cacccccaa gatgcgggcc 27660
ccagctacaa gtacgtgaca gtcggcgta ggcggaaacg atgttctcg ccgtcgccg 27720
cttctggccc tgcgcgatgt cgaagttcac cttctggct tcgagcagct cgccggaaagcc 27780
ctggggcgcc atgttcgagt agtggggcgaa cacatcagcg cgcgcaccgt cctgctcgat 27840
gaagccgaag ccctttccg cgttgaacca cttcacggta ccagcagcca tgtcatttct 27900
ccttcggggc agtcgtacgg gatccgcacc gcgcggaccc cgtgtcgccg caatgatcac 27960
cccgcccgaa aaaagacccgg agatgtaaaa gtgcgtccag gggtaactgag cccgaccgg 28020
gcacttggaaa ttccggaaac cacaactgcg actgcacatcg acagtagcac ggcacacg 28080
ccactqtgcg qtqaagaacg ccacccgttgc tattgcggca gagaatctat ccgcacatgc 28140

-105-

cgataaaaac tcaaaccgcg cgcacagata ttgaccttcg cgcgacgcca tatatatcgcat 28200
gccgcgctcg cgtgatccgg tcccccacca cgctctccgc tactgcacgg gtcgcaccgc 28260
cgcggggca gacaggtccg gccatgacgc cgccatgct cggggcgtag cggaacgcctg 28320
ccggtcgggt gtacgtctcg cgcgccggca gcactgcggg ggaggggccc gttgccagac 28380
gtctgcctg gcaaccggct gtcggctcg gctggtttgtt cagccgtggc aggtgatgtg 28440
gttctgcgcg cccgcttcgg tgaacgcgcc gcagccccgg ctgccttcta ccaggccgac 28500
cctcaggagg cgtgaccggg ggaagccgag gatcagcggt agtcgtcagg ggaggcttcc 28560
ttgcccgggt aggtgacgta ctcgaagtat gcccaggcat cggccggct gccgtccacg 28620
tccgtcaccg cgtatgcctt ggccagttcc cgcgtggagg tggacttgcc gttccaccgc 28680
ttcgcgcggc ctgggtcggc ggccagcgcc ggcaccgtac gggccaggta gtgcgggac 28740
tccgcgatcg cgaacgtcgg ctcttggcg atcgcgtcac gccagttctc ctcactcaca 28800
ccgaagtggg agagcatctg ctccgaacgc aggaagcccgg gggacaccgc gaccgcgtg 28860
ccctcgtaact ccgcgcagtc ctgagccagc ccgaacgcga ggccgatcgg ggcgttctc 28920
gccaggtcgt agtagatgtt ctgcggtag cggcggttgg agtgcgcggc accgtcgggt 28980
acttccacat gcagcggcgc gtcggagcgg atcagcagcg gaagcagcag cgccgcgtg 29040
atcacgtcgc agcgcgcgc cagctccagg atccgcaggc cgtggcgag cgggtctcc 29100
cagctttct tcccgaacac cgaggtggcc agaagggtct cggcccccac caggtcggt 29160
acgagaatgt cgagccgcgc gtaactccgg tcgatccgcgt cgacgaggc gcggacctgg 29220
gcttcgtcga gatggtcggc gggaaactgcg attccggtag cggccgtgc ggtgacgagt 29280
tcggcggtct cctcgatggc ctgcggctcg cggccgaccc cgtggcccg gggccgggtg 29340
ttcggccgg tcacatacac ggtagcgcgg gcccgcaccc gttccacagc ctgagctcgt 29400
cccgccccgc gggtagcgcgc cgcacgagg gcgcgtcgcc ctgcgcggg acccttcgga 29460
ccggcctgct cgggtttctc agtggtctgc ctgggtatgt ctcgttgct catgtcatcc 29520
atcgttcacg ctaaaaaccga cagaacacgt cacctttat gtggggggta cgcgcacatca 29580
tcccggccat agcgccaaact acgtcctcgc actgagcggtt ttcagcgtgg gccaccgatc 29640
gggtgacgccc ggtcaggtagcggc gggtaggggc cgcaacgcac aaggctcgcg tgacgacat 29700

-106-

ggccaccgcg cgcatgatct cccagggga gcccagccgt cccccggcagc cccagccgct 29760
gagaccagct cacccgggac acccggtccg acaccgcaca cgatcaagta gtcgacctcc 29820
agacgcgttc agcagcccac atcccaggag ccgtctaccg tcccaggaac ccctgctccg 29880
ggaccatcgg gtcggcacc gggagtgcac agttgatcag taactggcaa cgagctcgtg 29940
cacggtaagc ggtgagggtgt cgaggtccag atgggcccgc gcggtggtgc ccccagccgt 30000
cggccgaccg gcatgcccag cgggcagccc accggtgtgc cgagcggcgg accccggcgc 30060
ggcacggca tgggcccgcac ccccaccccg cagcacctga agtcggtcag gacccggccgc 30120
gtgacgggct tcgggtcaga cctgtgcggg gaacagcagg cagtcgtccg ggccggatgat 30180
caggttgate tcgccgtccg tgtgcggac ggggtctcg gcatggacgc gcacgtcgcc 30240
gatgctgagc tcgtactcga atcgcgtcc ggtgtacgag cactgctcga tcctcgcccg 30300
gagcacgtt acggcacccgt cgtgcgggac gtcggcgcgg tcggtgagcg tgatgcgttc 30360
cgagcgcagg cccacggtgg cggacgaccc cgcggagcag gcccggcca ccctcaagcg 30420
ctgaccggtc tcacccagtt cgacctgtac ggctccgccc tcggtgccgc cgacgcgc 30480
ctccaggagg ttgcagcggc cgatgaagcc ggccgacctcg ggagtggcgg gagtctcgta 30540
gatctcggtc ggtgtgccc cctgctggag gtgtccgtgc atgaacacgg cgatgcggtc 30600
ggacaggac atggcctcga cctggtcgtg ggtgacgtac acggtggtga tgccgacctc 30660
ccgctggagg tccttgagcc agacgcgggc ctggtcgcgc atcttcgcgt ccaggttgg 30720
gagcggttcg tccaggagca gcacgcggg ggagtagacg atgcctcg 30780
gcccgcgtgc tgtccgcgg agagctggtg gggtagcgg tcgcgcaggt gagccatgtc 30840
gacctggtg aggacgtcgt cgatgaggcg ccgttgcgtg cccttggta cttgcggag 30900
cttcagcggc agtgcgaggt tgtcgac ggtcatgtgt ggccagagcg cgtacgactg 30960
gaagaccagg ccgagattgc ggccttcggg gggcaccgtg ctgcgcggg tgccgtcga 31020
gaagacctgg tcgcccacac ggtggtgcc cgagtgggg gtctccagac ccgcgacgca 31080
cgacaagggtg gtggacttgc cgcaaaaaaa cggccgcggc agagtgaaga actccccgtc 31140
cgcgacggtg aagttgacgt cctccaggac cgcggccccg tggaggact tcttgatgtt 31200
ctcgacgacc agtcaggca tgcttcc cttcaggag gagaccggcg aggccggcga 31260

-107-

cgacggcggt gacggcgatc tggagggtgg cgagggcgcc cacggagccg gtctcaccct 31320
gggtccacag atcgatggcg gtggtgccga tgacctgtga ctggctccg gcgaggaaca 31380
tggcgggggc gtactcgccg atcatctggg tccagatgag caggaacgag gcgagcatcg 31440
cgggcacgag gagacggagc atgatccggg acaccgtgcg ccaccagtgcg gcgccggcga 31500
cgcgctgcggc gttgtcgagt tcggctccga gctgcattggt cgccggggag atcgcgccgt 31560
acgcccacgg gagtgccccgg atgccaagg cgatgatcag cgccaaagagc gtgccgcgca 31620
ccgcgtcgcc gccgggtatc caggtgaagg cccagaacag gccgatgccc acgatcaggc 31680
ccgggaccgc gtgcggtgac tgcgctgtcg tctccaggag acgggcaag cgaaagtccg 31740
agcggcgtgc cacgaggacg accaccgtgc cgaacagggt cacggccacc gcccccacga 31800
aggccacggt gatgctgtg acgatcgact cggtgttaggg ggctgtgcg aagatcagac 31860
ggaagttgtc cagggtgagc aggtcgaacg ggttcaccag cggagtgcgc agcgaggtga 31920
acgcgcgcag gatgagcgcg agcatcgcc gaagtgcgcga aagacgcac tacagaccga 31980
cgaaggcgaa gcccagccac ttccaggcac cgatgtcgag caggtcgag cgggtcgccct 32040
tgccgcgcac cgacacgaac cgctggcggt gccccagcag ccgcgtctgg aacacgacca 32100
ggcgatgggt ggtgagcagc atgaaggtgg acgcccgcgc cagcaggccc tagtccggat 32160
tgatcgagtc gatgcccgtc tctgttagga agttggagaa gaggggtatgc cggcgccgt 32220
cgcccaggat gagcgggatg gacagggtct cgatcgccgt gccgaagatc agcagacccg 32280
cgtagagcat cggcgggcgc agcatcgca ccacgaccga ggcgcaggacg cgcagaggcc 32340
ccgcgcgcac gctgcgggccc gctgttctcca gagaggtgtc ggaggcggcc agcgcggtgg 32400
cgcagaacag gtaggcgtatg gggacctggg cgacggcctc gacgaacgc ataccggca 32460
gtgagtagac gttccagggc acccagccga agccctcgcc caccgcgcgc gtcaggaagc 32520
cggccgggccc gtagacgcacg atccacccga aggccaggac gagcggggag atgttagatgg 32580
gccagcgcag cacctgcccc aacaggcggg cggcgccccaa gcgggtgcgc tccagcagaa 32640
tcgccccatcg caccgcgtatg gcgagcgcga acacggctgt caggacggcg aagaggagg 32700
tgtcgaggac gatcgaaaccg aagcccgccg acgtgaacag gtgggtgttag ttcgagagg 32760
tgaaggcgcc gccggcccgac tacaggggt ggttgccgac cgactggtag aggatcggt 32820

-108-

cgacgggggc gaggacgagc acggcggtga cgaggaacgt cagccagtgg atggtgacct 32880
cacgtccggc gccgaacagg cgccggtaact gggcggtgcc cagctcgccc gcgcgcggga 32940
tgcgggacgg cgcgggtggc gcccgggtg tctggatggc catgacgact ccgtacgaac 33000
gggtgggaa caggggcgtt gggcggcgg gggcggtca gccggccgccc ttctcccagc 33060
gcgcgacgta cgccctccgc acgcgtccg qcaccgcac gggccggtac agatggacgc 33120
ggtccgcgccc gagcctgcgc cgcatgtcct gcagactgtc catggcgtcc tggcgcacgt 33180
ccggccggta cggcaccagg ccgcctcgg cgaccgcgc ctgccttcg gggagagca 33240
ggaagtccag gaagagacgg gccgcgttcg ggtgcggggc ggtttcacg acggacagcg 33300
cgcgccgcat gacgacggtg ccctccgcgt agtagctcca ccccagcagt ccccgctgt 33360
gctcggcggc gggtatcgcg acgccatcac gtacggcagg atcccggcgt gccgcaggta 33420
ggccagttcc tggcgcgagt ggaggcgacg cctgagacgg accgtggcgc ggggtgcgtc 33480
ggccggacg agggacaggg cgacggggtt cgtgccgacg cacaggtcgg cgaggccgtc 33540
gaaggtgaat tcctcctctc cggtaagggc gtggccgat gcggtgtcgc ctcctcgaa 33600
ctccaggggc agtacaccca tgccgatcag gttgttgcgg tggatgcgtc cgaaggactc 33660
ggctatcacc gccccactc ccagcagcgc ctgtgccttg gggcccaagt cgccgctgga 33720
gccggcgccg tagttgcggc ccgcgaccac gacgagatcg tggccgcgg cgccgttaggt 33780
cgccgcccgt tcgtggacgg gccccatccg cagttgcgtg ccccgatggc cccctgcgc 33840
atggacgatg cggccgggtc cttcgaggg cttggccgccc ggtgcgttcc tgacccgagg 33900
cgccgatcag gacgacgccc tgcaacggac gcgaggacag cgtcagttc gtccgcggca 33960
acagcgacga ccccggtgac ttccgatgac ggcacgccc cggccgccc aacccgagct 34020
gaccgtcgac cgccggccct gctctgggtc accctccgc tccgcctgcg agatcagatc 34080
gccgacgcgc cggccggcac cgtcgccac gtcgtcgcca ccgaccccg cggcaccgct 34140
cgacctgccc acctggtgcc acatgacagg tcacacctgt ctggcacgc ccccgccgaa 34200
cgccgggtgt acgccccgaa gtcacccgccc gacgacgcgc ccacccgccc ggacgcaccc 34260
tggcaccgc tccggcgccg gcaggagcag ccccgaaacc ggtgacgcgt ctcgtcgcc 34320
ggccgtttcg agtggaccgc ggacgcggaa cgtcacggcg tccggaaacc ccggaaagggtg 34380

accggcctgc gtgtcttcaa gccgagccgt tcgtacaagg cgatcgcc 34440
tcggccacgt gcaggaaggg acgatcacccg cgcgccgaga tgcgctcggt gagagcgcgg 34500
acgaggcggg cggcataacc ctgcccgcgc gcctcgggag cggcgcagac ggcgctgatc 34560
tcggtccagc ccggaggacg caggcgttcc ccggccatcg ccaccagggt gccgtcgacc 34620
cgacaccca ggttaggtgcc gagttcatgg gtacggggcc agaacggccc cggctcggtc 34680
cgcgccgcga gatccagcat ctcaggcacf ctgtccgcgc ccagctcgac cacgtcggtg 34740
tcggacgcgg agcgagttcg gccggggcgg ccgtcgccgg gccaggtcat ctgacggccc 34800
tcaagactga aaaccggctc ccaacccggc ggccgaacgg ccggggagct gaacatgtcg 34860
gcgaaggcgc cgggaccgag taggcccccc aggtcgccccc agtcctccgc gtccgggtcg 34920
acggacacgg aggagaaggt cgccacgtcg gtgagatagg tggctgtcg accgaaccgt 34980
cgggcgagat gagcgtcgccg accactgagc gactgaccta ccgggtcgtc gagtgcgggg 35040
tcgtcgctgt tcatcatcggt gccgtttcct tcctggtgag cgcgggtggc gaagggtggc 35100
cgcgtaggc gaaaagtccg cggccggcc cgtggcccgta tagtcgttagc cttgtcacc 35160
gtcagtttg cggggtcgcc tgaggacttc cggctggagg ccaatgccaa agcgctctcg 35220
tgccggcgga ggcacgcctt ctgacgtgcc tccaccggca ccactcagtt caggcagatt 35280
gagttgagc gatgcagcgc cgccggaagt cgagcgcctc aatgcacatcg a cggcgactt 35340
cctcggtctg ggtgagagca gtcctgcctt gtcgagtgtat gcccgttgc gaccgtcacc 35400
ccggcgaagg ccaggacctg tcccacggag tggctcatcc acctccccct cctcgccca 35460
cagttcagg cccgacgtag ggggaggggc gactcggaac ccggcgctcc gctcgcaag 35520
gtcggtcaga cctgttcgaa gtggAACGCC ttgatgaagc agtcccgggg ttggcgacg 35580
gcgaagagga tgcactccac gaggactgc gcggtgaggg cgtccctggc ttgcgtgaa 35640
gtggtcgccc actcctcgga gagcgggtcg gcgttgtcga agtcgggcgg gtagagcgg 35700
atcacccgga ctccctggc ggcaggcgc ttggagagga ttgcgtgaa ccctgcctgg 35760
gcgccttgg ccgcgtagaa ggcgtcggt ggcgtccgagc ggtgggtggcc cgggtttccg 35820
caggcggaga ccatcgac gacgtcggt gtgtccgagt tgagcaggag ggggaggaaa 35880
ctcctcggt tcaggaccgt gcccgtggct ccggaggcga tgggtccac gacgtcgccg 35940

-110-

tcgggtgccg acagcaggc cggcccggtg aggttagcggg agccgttgtt gacgagtacg 36000
tcgacgcggc cggtgtgttc cgcgacgccc gagggcgaagt cgccggatcga ggcaggatcc 36060
gtcagggtcgc aggcaaggc gtgcacccgc tgggtccgc ggtcgcccgtat ctcgtcgccg 36120
acccgttggg cggcggcgag ccggcgtgcc gagaggaaga cctccgcgcc gaggtccgcg 36180
aggcggatgg ccagggttcg tccgaagtcc cggccggcgg ccgtgatgac gacgcccgtgg 36240
ttgtccccatc tcatggtgtc gttccccagt cgccgtttcg tggatcgggt ggtccgtgc 36300
accgcgtctc tacgctatcg gtcatggtcg ctcacgaacg gtcgttcacg gtcaatgatg 36360
atgtttaggt gcccaacccc ggtgcggacg aggtctggac cgtcggcgcg gtcatcctca 36420
atcgggaagg tcgtgccttt gcccagaagc ggagccggga ccgtcgccctg ttccccgggg 36480
cctggacat cgtggcgggt catgtcgagg agggcgagac gttctggag gcccctcgccg 36540
gtgaagtcga ggaggagacc ggctggcgcc tgacccgtgt gcggcggttc ctcggcacca 36600
cgacctggac gggggacgac ggccggcgcc tgcgtaacga ggccgactac ctggtcgagg 36660
tggacggcga cctggaccac ccgaggctgg aatggtccaa gcactccgcc tacgactgg 36720
tcggccccgg cgatctcacc cgccctcaagg agaaccgcgg accaggggag tacctgatcc 36780
acgacctcat agccggtgcc gttgccgact cgccttcga cttgctccgg gggacgccc 36840
tcaccagccc ggaccggctg cgcgagctct acccgacgac gaaccgaac tcgctgcga 36900
aggagaccga ccgcctgacc gaggagaccc gggcgctgat cggctgttcg tcactgggt 36960
tcatcgccag cgccggaccgc gagggccggg cggacgtgac gccacgtggc ggcccgccg 37020
ggttcgcttc ggtgctggac gagcagaccc tggatccc cgacgcgacc gcaacaaac 37080
ggctcgacac cctgcacaac gtgctggaga cggacgcct gggctgctc ttctcgatcc 37140
ccggccgccc gaccacgctg cggatcaacg gacgcgcctg tgtttcggcc cgcccgaggc 37200
tgctcgccccg cctcactccc gtcggaaagc cgccggtcac cgcgctgggt gtgcaggtcg 37260
agcaggtgta tccgcactgc ccgaagtcac tggatgcgcgc cgacgcctgg cgacccgagc 37320
agtggatgcc cgccgacgcc cagccgagca gcccggagg gacccttgcg cagctgaacc 37380
tgcccgccct gaccctggac cggatcgagg atgcccgaacg ggagtcgtcg cgcctcgccg 37440
acgaatgacg acgagtcgat gagcggccgat gagccgatga gacccgacgg gatccgacgg 37500

-111-

gtcggcgtcc gcggcgagca gaccggtcgc gaaggtcacc gccgcacgg cggcgaccct 37560
cgcgacggtc agtactgtcc ggtcaggtgc gggtccagcg ttggttgtg ccgttggagc 37620
aggtgtacag ctggatcagg gtgccgttgg ccgtgccgtt cccgacggcg tcgaggcaga 37680
ggccggactg gacgcccacg acggacccgt cgagttgag gcccacttc tggttgtcgc 37740
cgccccagca gctgttagatc tggacaccttgg agccgttgc ggtgcctgcg gcgtccaggc 37800
acttgtcgcc gttagaccctg agctcgcccq cgtcagtggc ggcccactgc tggttggtgc 37860
cgctgtggca gtcccacacg tggagctggg tgccgtcgga ggtgctggcg tcgggcacgt 37920
cgaggcagcg gcccgaaccg acgccttga tctgtccccc gtccgcgggg ggctccgagg 37980
agtgcgcgcc gttgagtgcg tcgaggacgg cggtgtacgc ggccttcttgc 38040
tgttgaacag caacggcgtc tgctccgacc gccaggagtc gctgtcgccg acaccccgaga 38100
cggtgatgcc gaggcagcgc gagacggcca ggcagtcgtt ggtcacgttg gcgttaggtcg 38160
aggccggggc gcccctggatg tccagctcggt tcatggccac gtcgacgccc agggcggcga 38220
agttctgcag tgtggtgcgg aagttgtgt ttaggggct gcccgttgc aagtgcgact 38280
ggaagccgac gcagtcgatc ggcacgcccgc gtcgttgc gtcgcacc atgttgcata 38340
tggcctgggt ctggccca gtcagttct cgacgttgc gtcgttgc cagagcttgg 38400
cgacggggc ggcggcgccg gcggtgcgga aggccaccc gatccagtc ttgcccgtgc 38460
gttgcagggt ggagtcccgca cgcgtcccg aactgcccgc ggcgaaggcc tcgttacga 38520
cgccccactg gacgatcttgc ccctgttagt gggccatcac gccgttgc gttcgatca 38580
tcgcctggcg cagcgcgtc ccgcgtggc tctgcattca gccggcgtgc tggagtgcc 38640
aggccagggt gtggccgcgc acctgcttgc cgttctgcac cgccca gtcgttgc 38700
cgccggagct gaagttgaac tggcccccgt gccc 38734

<210> 31
<211> 3331
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

-112-

<400> 31
tcggatctcc ccacacaaca tagatagagg atatccgcct ggttcacaa tgaagttact 60
ggtggttctc accaccctcg tgggcttag ctcagcacta agttcgggtt gtaattacag 120
accagtatta ggcttcaatt cacagtataat gctgggagga ctaagacttt tctgtatgcc 180
tgccatggtt tatgatccat gggcatgtgg ttgcgttcg gcatggagca gtgcaggct 240
ttacgggtgc ggagggggcg gaggccctg gggagctggc ggtgtggag gagccgacgg 300
cgacgcggc ggccggcggtg gagattggga atatgactat gatgacgaca gcgatgacga 360
tgatgaatgg gactgggatg atgacggtgg aatgggagct ggccgcggag gtgggtctgg 420
tggtgtgcc ggaggtggtg ctgggtctgg tgctggagca ggccgcaggag caggagcagg 480
tgctggactc ggacttggat tggccggagg tctcggaggt ggacttggcg gacttggagg 540
tcttggcgga cttggcggtg gagacgattt atttatttta gatttcgatg atcttggtgc 600
cgctgctgcc gccgggggtg gagttggtg agctgctgcc gcagccgcag ccgctgctgc 660
cgctgcagga ggaggcgcag gtagacttgg aggagctgct gctgcagccg cagccgctgc 720
tgccgctgca ggaggcgcag gtggacttgg aggactcggt ggcggacttg gaggactcgg 780
tggcggactt ggaggcctcg gaggtcttgg tggcctcgga ggatatggag gatctgctgc 900
tgccgctgct gctgctgccg ccgctgctgc cggaggtggaa ggactcggtg gtgttggtt 960
ctacggtgga cgaggaggtt gacgcggctcg aggaagagga ggccgcagac gtgctgctgc 1020
tgccgctgct gcagctgccg ccgcagccgc tgggtggc ggaggaggtg gaggtggtg 1080
aggaggaggc ggaggcgcgtg gtgctgccgc tgccgctgca gccgctgctg catctcttc 1140
agcttctaga caaatgagtg gtataaggga cgcattagga gacattaaag accttctcag 1200
gagtaatggaa gcctctgcaa aagcctctgc taaagcatca gcagtagcaa gcacaaaatc 1260
tcaaattgac gatttgaagg atgtctaaa ggatcttgc ggtctattga aaagctcagc 1320
atctgcttca gcatctgcat ctgcatcagc ttcaagctggaa ggtggaggcg gtggtgtaa 1380
cgagggtggt aacggaggag gaggccggcgg tggagctggaa gctctagctg ctgctctgc 1440
tgctgcagga gccggaggtg gacttggagg tggaggcggaa ggcggagctt tagccgctgc 1500
actagctgct gctgggtgcag gtggaggagg ttttggtgaa cttggaggac taggcggct 1560

-113-

tggtggggga tctgccgcag ctgctgcagc cgctgccgct gctgcatcag gtggtgagg 1620
aagagcaatt agaaggcctt tgagaagaca aatgcgtgga ggtggatccg ctgctgccgc 1680
tgctgctgct gctgcagctg ctgctggagg tggatggggga ggtggaatgg gtggaggatt 1740
cgagtaggt ctcgggtggag gattcggagg aggatttgggt ggtggatcat cagcagcagc 1800
tgctgccgct gctgcagccg ccgctggatt tggatgggggt ggacgaagag gtagaggttag 1860
aggacgtgga ggcgatggcg acggtaacgg agcttagtgct gtagctgcag ccgcccgcgc 1920
tgctgctgct gctggaggat ctgctgctga tttgcccgt gccgctgctg cagccgcagc 1980
tatgtacggt gacggtgctg atggacctga tttcgataat ggattcgggtg gtggaaacgg 2040
aaatggaggt ggcggatctg gtggtggcg atccggcgga ggtggatccg gtggcggatc 2100
tggaggtggc ggtggatctg gtggatcagg cggatggcgcc ggatctggtg gttcaggcg 2160
tggcggatca ggcggcggtg gaaacaatgg atggggaaat aacggcaaca ataaatatga 2220
cgatgatgac tgtgatgaat atggtaaccc tattagaagg ggttaaatta tttgacatta 2280
tccgcattt gactcattt tcttagttct ctatgtttt tacttcacct tagattgtt 2340
tagtttgcattt gaataaatta tttttcgat ataaatttt tttaaattaa ataaacttt 2400
attagttgac ctgtaaactt tttcatggag ttataatcta aggaacaaaa aacatacata 2460
atatgttcag tattgtgta aagcacctgt accgcaaaca caatcacctc tatacatgta 2520
tacaaaatca gtaatgctga caaaatctc tacactctca cctacacact cgcacacagt 2580
cctcttacat acacagcact ataataatcct gaacatgaag tttgtgtga taaaaagttc 2640
agaaaaatct cccctacatc acctgatctt tcactgaaaa tttacgacaa gtattgaaaa 2700
tagcagaaag aaaacggaa attgagaagt tttctataaa aaacaatcg aacaatgact 2760
ggaatgacaa ggtgaaaaat aatgataact tacattaatt aaggccccaa taatctct 2820
attttcaaacc tttttttca aatgttctct ctaactcact tgcacatctatg tggaaattca 2880
catactatac taaattacca caagtatcaa gtttcacaa cctctcatgc cttcatggca 2940
gaccatgctg ggtatttgc taacaatgcc tcataaatac ataaaactaa ctaacaaaat 3000
aggtcagtct gtaacaaatt attaatgcac cattattgca ttttctaaaa caaagcatac 3060
actggatatt ggcagacaaa atgttgttat tggataccctt tccattctat ctagacactt 3120

-114-

gcttccaca agtcatacata aataaatccc ccstatccca aatgtcaatg gaatgccccca 3180
acccttcccc cataattttta aaacctagaa taaattaaaa catctatagt tcgtcatgat 3240
catcttctt atcatcctct tcttcttcct ctccttcctt cttcttcttc ctccttccta 3300
ggttcttggc tgcctgctcc ttcccttgcca a 3331

<210> 32
<211> 5224
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 32
ggatccccctg ctgcacgccc gcggcccggt acacctccat cgtgcggacg ttgttcccgc 60
gcggcgagg gtggacggag gtgcggcggt gacgctccac cagcatgtgc cgacacccga 120
gcggcccaag gaacacggac gtgcacaggc ccacgagcga tccgcccacg acgaggaccg 180
gaaccctgtg gaccgtgtcc ccggcccgat cggctttgc gttcatcttt ctccctccacg 240
gcgtgatgtc cgccccactcg gccggtttcg gccggggtca tgcatgcccc gcgaggctgg 300
agcgcggtgc gccggggacc acacttcacc cgcttaaccc gctgcgttcg cgacggggca 360
cgacacgccc gacgatgtc ctcacgggcc gacgcacccgt catgtacgcg gtccggcc 420
ttaccgttcc tccaggaaga ggtgcgcctc aatgacggtc tctgcccgt tgccacgg 480
cccgaccgt gtcccccotca ccgtgttcga cggttcccggt gtgcgggtcg tgctgatgct 540
ggacatccgc gacgggacgc aagcggaggt cctggacgcc tacgagcggta tgccgaccg 600
ggtcggccgc gtgcggggc acatcagcga ccagctgtgc cagtcgtgg agaacccac 660
ccagtggctc atcaccagcg agtgggagag cgacccggag ttccctcgctt gggccaacag 720
cgaggaacac ctggagatgg tccgtccct ggagccctac gtccgcggca cccactcgat 780
gcgctactcg gtgctgcgcg agacggccga ggagcgggc gggcggggtg cggcgccccg 840
gggcgcgctg cagccccggc cgccgcacgg cgacaacgtg gtccggcacg ccgtcaccta 900
caccgtcaag cccgacagcg tcaccgaggt cgtgaagatc ctctccgcct acacctcgcc 960
cgaggtgcgc gtggacgaca ccacgcccgt cgtgcgcacc tccctttcc tgtacggcaa 1020

ccgggtcgtc cgggcgatcg aggtgcgggg cgacctgcag gccgcctgc gccacgtggc 1080
ccggcagccg gaggtgcgcg ccgtcgagga agccctcacc ccgcacatcg aacaggaccg 1140
ggacctcacc gaccccggtt ccgcggct gttttcacc cggccgcgc tgccggcgt 1200
ccaccacgtg gtgtccgggc gcgggacggg cggcgacacg cagcggtgcg cgctgtacta 1260
cccgccccac cccggcgccc gaccggcgct cgccggctg ctggcgccgc agggcgaggc 1320
caccgtggc gacccggca gtccggctgt cgcctgcacc gtcttccacc gcgacgacct 1380
cgtcgtacgg ctcgtcgaca cggcggcgc accggagcgc gcggccgggg cctgcctggc 1440
cctgcacgag ccggacgccc tcgcccgggc cggccggctg ctggacgccc cccgcgtcgg 1500
cgccgacggc ccccccggacg accggggcgct gccgacgttc ctcgcgcacg cccggatgcg 1560
gcctctgaca gaccgtcagt cgccggcctc ctgacccccc gtcgcccga cctcaggag 1620
tgaccyacat gacagaacag caggcacgca tcgtcgccctt cgacgacgtc cccggccaacc 1680
ggcgccgcgg cggcgacgtc cggccctgc tcacgcccac gaccgggggg gcgaccagcg 1740
gcttcatggg cgtggccgtc gtacggcccg gagaacgcac ctccgaaac taccacccgt 1800
actccgagga gttcgtgtac gtcacccggc ggcgcctcga ggtggacctg gacgacgtgc 1860
cgcatccccct ggcgaccggg cagggcctgc tcacccccaa ggacgtgcgc caccgcgttcc 1920
gcaacacccgg cgacgtcgag ggcgcctcg tcttccaccc ggtccgcgt gccccccggc 1980
cgacccctcg gacgtcgac accgaggaga ccgacgagac cggccggcc ggggtgggtgt 2040
catgagccgc cgggtcgctc tcacccggcat aggcgctgc gccccggcg gcatcgccgc 2100
ggcccggttc tgggacctgc tggccggcg gctacggcg acgcgcccga tctccctgtt 2160
cgacccggcg cgcctgcgtc cgacatcgcc cggcgagtgc gacttcgacc cgtccgcgc 2220
cgccctggac gacgagacgg tccggcggtg cggccgtac gtgcagttcg cgctggtcgc 2280
caccggcgag gcggtcccgcg acgcggccct ggacaccacg cgcgaggacc cctggcgcat 2340
ggggggcgtc ctcggcacgg cggtcggcg caccacccgc ctggagcaccg actacgtccct 2400
ggtcagcgag ggcggctcgc gctggacgt ggaccaccgg cggcccgagc cgcacctgca 2460
ccgcgccttc gccccagca cgctcgccctc caccgtcgcc gagaccttcg ggcgcgcagg 2520
cccggtgcag accgtctcca cggcgac gtcggggctg gacgcccgtgg ggtacgccta 2580

ccacgccatc gccgagggcc gtgccgacgt gtgcctggcg ggccgcctcg actcgccat 2640
atcgccgatc accatggcgt gcttcgacgc catcaaggcg acctcgccca gcaacgacga 2700
cccggagcac gcctcccccc ccttcgacgc ccggccgcaac gggttcgtga tggcgaggg 2760
cggcgcggtg ctctgtctgg aggagctgga gcacgcccgg gcccgcggcg cggacgtcta 2820
ctgcgagctc gccggctacg ccaccttcgg caacgcccac cacatgaccg ggctcacccg 2880
ggagggcctg gagatggcgc gggccatcga caccgcgctg gacatggccc gcctggacgg 2940
cacggacatc gactacgtca acgcgcacgg ctccggcacc cagcagaacg accggcacga 3000
gaccgcggcg gtcaagcggt cgctggcga gcacgcgtac cggaccccgta tgagctcgat 3060
caagtgcgtg gtgggccact cgctcgccgc gatcggtctg atcgaggtcg tcgcctgcgt 3120
cctcgccctg gcgcaccagg tggtgccgccc cacggccaac tacgagacac cggaccccg 3180
gtgcgacctg gactacgtgc cgcgcgaggc acgcgagcgg gagctgcgca gcgtgtgtc 3240
ggtgggcagc ggcttcggcg gcttcagtc cgccgtcgatg ctgaccggac cggagaggag 3300
gctgagatga gcgcaccccg gcgagccgtc gtcacccggac tcggagtggt ggcacccac 3360
ggcatcggtg ccgagacgtt ctggaagacg gccgtggacg gcaccagcag cctggcccg 3420
atcgaccggg agggctgcgg ccacctgccc ctgaagatcg ccggccaggt ccccgacttc 3480
gaccggcccg ccctgatcga ggacacctac ctctgtccaga ccgaccgctt caccacttc 3540
gcgatggcgcc ccacccagct cgccctcgac gacgcccggc tctcccgccgc cgacatcgac 3600
tcgcccgtact cgggtggcggt ggtgacggcc gggggctccg gggggcgccga gttcggccag 3660
cgcgagctgc agaaactgtg gggccagggc tcgaagtacg tcggccctta ccagtcgatc 3720
gcctggttct acgcggcgag caccggccag atctccatcc gcccgggtt caagggcccc 3780
tgcggcgtgg tggccgcccga cgaggccggc ggcctggacg ccctcgccga ccccgcgctg 3840
gcgggtacggc gcggcaccgc caccgtcgac gccggccgca ccgaggcccc gctggccccc 3900
tactcgatgg tctgccagct gggtaacccg gagctcagcc gcagcgccga cccggccgg 3960
gcctaccgtc cttcacctc cgccgcctgc gggttcgatgc ccgcccgggg cggggcgatg 4020
ttcggtctgg aggaggaggg cgccggcacgc gagcgccggcg ccgacgcgcg ggcgacgggt 4080
gcccggccacg cggccacgtt caccggcgcc tcccgtggg aggagtccag ggccggcctg 4140

-117-

gcccacgcga tcggcacggc gctggcgccgg gccggctgcc gtccgcagga cgtggacgta 4200
gtgttcgccc acgcctcgg cgtgccggag gccgaccggg cccgaggccct ggccctggcc 4260
gacgcgctcg gccccacgc gcggcgggtc cccgtcaccg ccccaaggc gggcatcgac 4320
cgggcgttct gcgcggccgc ggtgctcgac gtggcgaccg cgctgctcgc catggagcac 4380
gagctgatcc cgccccacccc ccatgtgctc gacgtctgcc acgacctgga cctggtggtc 4440
ggccgggcgc gtcccgcccg gccgcgcacc gcgcgttgtc tcagccgcgg actcatggc 4500
aacaactcgg cgctcgtcct gcgcaggggc gccgcgcgt tccccagta agtaccccgta 4560
acaggtgtct cacgtccccct tcgggcgcgg gcacccgagt caaggagctc aaccacatga 4620
ccgacatgac cgaacgcgtg ggcacccagg tgaccttcga ggaactgtcc gcccgtatga 4680
agcgcaccgc gggcgtgcac gtggAACCGC ctgacctgcg ggccgcggcc gaggagggt 4740
tcgacggctt cggcctggac tccctggcc tgtggcat cgtggccggag ctggagaaga 4800
agcacggcgt gggactgccc gagcaggtgg agcgctgaa gacgcgcgtc gagttccctcg 4860
cgcaggtgaa cgcacccctc aggacggcgg tgtgacatgg ccgggcacac cgagaacgag 4920
atcgcatcg cgcgcggct ggacctggtc tgggacatga ccaacgcacgt cgagaactgg 4980
ccgcggctgt tcagcgagta cgcctccgc gagatccgtt agcgcgagggg cgaccgcgtc 5040
cgcttccggc tcaccatgca cccggacgac gagggccggg tgtggagctg ggtctccgaa 5100
cgcgtcgccc accgcgcctc cctgacggtc cgcgcgcacc gcgtggagac cggcccttc 5160
cagttcatgg acatccagtg ggtgtacgag cagacgcggc agggcgtgt gatgcgttgg 5220
atcc 5224

<210> 33
<211> 30601
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 33
gatcttagac cttattcaact tgatacgtgt aatagttatt acgatagttat gtttttggcc 60
gattcctccg cgtcttcttt cgacgcacgtg gaggtggagg caaaagcgaa gtagttgtgg 120

-118-

agaataaga attatgatta tcattgattat tattcaaatt aactctattt ttacgttccg 180
cgctccatgc agacgtttgc caggagacga cgggttggaa gataggaagc gaagaagcgg 240
aagcggaga cgtcgatattt gaattcgaag atgataatga tgtcattgtat gctgatgtat 300
ttttgttgta ataatgagat cggcatggag gcatttcaca atctctttgt tcgcgaggct 360
taatctctga gcactcgata tcgtcttggta tacgaccgga aagcacgtct tcacaccaga 420
ttttgcggcg ttgaactccc cggccacacg atacagaaca ctggattat tattagaagc 480
ttcaatgtat ttctaagaac ttacgtgagt ccatggagat atctgccaag aattatttgt 540
gagttggta catagttctt cattgcattt atcaaacatc ttgggttttc tggtttcata 600
gcaagaagac gaagtgcag atacactgcg acgacgccat cccccaccac aagaagcaga 660
gcactgaaca atcgtacatt agtaaattct aaatctgaaa attatataatc ccactttga 720
ccaatctcca ataatccagg atccaatatg ttcttctccc ttggacagg gttcaagtcg 780
gcaatttctt gcacttggta gtctctttt cacatcacaa tcaacatctt tcaaaatcgt 840
ccgaccaccc tctccgcac tgacgcattt aacatttcta ctttggtaa catgagttcc 900
acaagtagct ggacactctt cccattccgc catttccag tatgaacaat cacgaaggcg 960
acaatttctt gttgataactt ctttatccaa atgattgcaa tactcatcag gaagatcag 1020
aacatgatct cggcacttga gaagacgacg ttgagttacca ttaccacaag ttgctgaaca 1080
ggctgtccat ggtccgggtt cccatcgat tgggtggta cg tcggcttggaa gtttttgaag 1140
tactctggc ccatcacaag tatcttttc acaagtctt tttaggcgtt gacgagttt 1200
ctgaaatgtat attttcgatc aagattaaaa gcaaactgaa acgtactcga tcacaaaaat 1260
attcatcaac aatagttccct tcagatccac gagtacacga aacatttcta gtctgaattc 1320
ctgatccaca agtgactgag caaggggacc aatgacttgg tttccaaatgtt gtagatggca 1380
gaagatggca agtttgacta gtttctggca ttttggatc tccacaaaaaa gaagcatcaa 1440
cagattgttc gcggtatatg cattcggtt tacgttcccg atgaccgatt ccacaagata 1500
cagaacactg aaacgtatattt atggatttga caacagcaat tctggagttat ttgaataaac 1560
ttacagcact ccaatcgatc tttctccaaa atggcaagt gcctaaatattt catgtctgat 1620
gagaagcagg ccgatcgat gcaatggacc aatgtacatc atcgacttca gttccatttc 1680

cagaaacaca tgaaactctt ctgacgacc atccatcctc acaagaaaaca ctacactgag 1740
accattctcc aagtttatat ttggacatg attctctatg acatggttt gtaattatct 1800
tttccatTTT aaggcaacga tggccggta gtactgatct atgacgatcg gtacaattag 1860
cgtctcgata ctgtacacca tctccacact tagctgagca gtcagaccag actccgaact 1920
gccaccaagt acaagcatgt tcattacaat gttcttgtt ctgtgctgga ccacatctgg 1980
atgtatgtgt ttcccgcatcg gctgcattcca aacattgagc atgacgcatt ttgactccac 2040
catcacaact tcgagagcac tctgaccaat gcccataaaac ccattttgga catggaattc 2100
tgttacattc cggctctgtc gcctcttct gttctctgcc gcacaatgac tcatcaactc 2160
gacgattcga atcatcaacg caatatgact tccgatgcat tttccattc gatccgcaag 2220
tttcagaaca tgaagtccat tctccatagt tccattttct tccagagcag tcaatgtAAC 2280
aactgycaat atcggatgg tttgaattac gatcacatag atgttcggat gctggagttt 2340
gacgatcacc ctccatTTT acgcaagaaa ctcgttgacg tttctgtcca gatccacatt 2400
tggcactaca actagacaca tcttcagtga tccatctgta aatataaaaa tttattatAG 2460
aaatctaATG aaaatATGta gtttaccttg tagaacaATC tatattgcAC attcgtgttG 2520
cttggTTTGG tttgagaACA tttgacaAT ttttatCATG acTTTGACGA tgagtCGACA 2580
tgtccAGACA cattaATTT tgCGATTGCT gtccACGACA ggctctatCA cattctgtCC 2640
aagtatccGT aactctccAC aaatacaATG cactggatAT tggccGAATT acagcATTG 2700
gaacAGCCGC agtcatgtAC tcatatGAGA tgTCGGGTGG atgactacCA acagAAAGAA 2760
catgaacata aatgtcaCTT ctaatCGGAC cagttccATT tatccgttCA ataattGcat 2820
cagaaccAGA atattcgAGA acagtgtCTT ggaatGCAAT ttgttggcGA gCcAGTgATA 2880
cttggAAATG accgttaAGT aggaattCAC cattggcGGC acggagAGCT gaaggTTAAA 2940
ataaaAGATTt tcatggGTat tgataacaca agggtgAGtG atgaaaaaAG taaatgttCC 3000
aaaaacACTT tGTatAGAAA ctcacAAAGA taattgtCAT tttctttCAT attattatAT 3060
cctttctGCC ggatATCAAT atttgcAGAA ccagctggAA tcttcattAC ttCGTTATAA 3120
ccaaaggTTc cttgctcATT aaatgttCCT ttgacaACCT tacAGGAAGA atcatccccA 3180
ccgcaaACAC cacatttGTC tttcggAGA gttGAATGAA gttgatGATC acagcctgAA 3240

-120-

aatccactta tttcaattt tccttgaaa tcagatcaat gttacctgct ggcataacaag 3300
ctccagctac acaaatatcg tctccatttc tatcacatgg tgttccatca acaactttat 3360
ctcgaagcag atagaacgct gcagatccac tgagccgaca atacagcttgc caacgttcat 3420
tttgtgcaac attcgcatat ttggAACCC agtgagtatt cgttgaagcg acaccTTGGA 3480
ttccaataatc tttattgttg aattcagaac attgaacttc acggtatggt tgagtatccc 3540
atgggcattc ttgtgttata catgaccgat aacgttctcg ttgaccaaca cagtactttc 3600
caccatttcg aggtctaaag taatatggga aaatgtcatt ttaatattga taggaaagct 3660
tagccagtgt ggcctaaaag ctggaagttt tttaaagat gcgtttcta tcaatttaag 3720
ataaccggct acttcaggtg attctataaa ttttataaaag cttggaagct aggtaaatct 3780
aaaaagcctt aaactatctc gaagcggccc gaaagcccag aaaagcagag acggacaaac 3840
attnaagagt gatcagaagc actccatacc ttgatgttac atttgatttt agtgtttcca 3900
cctcgTTTC acttctgaac tcgcccatttggaaaatattt gattgaatat attatttgct 3960
ttcagactat ttgatcatcat ttgatTTGGC agtttaactc actttggct gtcacaatct 4020
cttaatcctt tttgaacacc accaccacaa gtacgactgc attctccccca tgatcgccag 4080
tcacccattt gtcgtcaat ttggtaagg gattcggggg ctagacgaac acaggctcca 4140
tgatgacaga actaaatatc caagttttt tgagtttctt ttgtgattaa tttctgagat 4200
actcaccatg cttcttgatt cgtcacaagg agttccgtcg gcccattggca tatgctgagt 4260
tcgacagccc atctggcttc cgtagaatgt tgcacacacaa agacggccgc atgtcggtcg 4320
taaaatatca atgtttcatc taaaagaata tattnaggca aactaaccat ataagggcac 4380
aactcagaag ctggtccaaa tacaaacttg cactgttgat gagcatcgta tttctttctt 4440
ggttcatcac gtacaaagac atcctcgtag taacgacgtt cgaccggctg atcgaataga 4500
cattgagttt gacctcgatt atttctgaca aattgacaat taaatagaat caaaattttt 4560
atagctatct tactcgagga atcggtcgag cattccagct gaacatggcg accaactcca 4620
tggatgagtg ttatatttcca acgttggtgc cattatgtgg aagttgttct gaaactgcgt 4680
tttatcaaattt ttagtgcttt ggaacttgca aaccttatta accggcatgt aggtagagca 4740
tttgcgttcg tcatcatgag gaatcgaaaa cacatgaccc aattcatgag caattgtgaa 4800

-121-

tgcagcactc aatccattgt cttcttatgt tgcacaactt ttttgcatat cacacattgt 4860
tccaagttca gcaaggccaa gtgtatcgca ttttccttgt gatcgacaaa tatctttacg 4920
cgtcaaaagg attgcaacgt catgatgtt gacactcgaa tcatctggat cattgtaata 4980
ctgctgccat ctacagaaat cttgaagtgt ttgtttagcg ttctgagtga ttctggtcc 5040
agcgaaaaat gtttcaaaaa cgatcaactt gacaacaacg acattgatag atgcacgaag 5100
ggattggtga cgatagatgg aggcaactgt ggagaagaga gtgagaacgt agtcttcaag 5160
agatcttccg tgatattcgt acatfffft atccgccacc acaaggactt caacatagtg 5220
atccccaaagag ttggcagctc ttccggatct tgcttgcgt tctataatta aatccctttt 5280
tttcataaaaa ttattnaaac atttttttac tgtatccctc ctattaatct tgcaccccg 5340
agctccactt tgacctatct ttgttgtcat tgactctatc aaaaactgtt caactatgaa 5400
aatggggatg caagactaat aaaaggtatt ggtaactggt tccagtagag ctttttttac 5460
tatctgttcc attgattcaa ttttcagatg tttatataac catcttaacc gttcaaatct 5520
cataacatag aacagcctgg cagccgtga aaaggtgctg aaatcccagt aatttcaatg 5580
gcattcgacc acacacaagt gatccattat ctttgcgt tttacttcgt taactaccat 5640
tagctatagg ggacccacga gcaaaattct atagttctg tttgtgttag ggtgtttaa 5700
tgggcttata cacaacaccc gatgggatca gcagaatctg agatctttt ggaaccggaa 5760
aaaaatattt tgataacttc tcttttttct acatfffft cagaacttagc aggtaaactt 5820
tcagattgaa atctcgaaaa atgcattccgc ctactcaaaa agtcgtttt aaaatgattt 5880
tttcttttgt tttgtcctct tttcccgaa cgtacgcaac aaaaaaccgc ttgcgcgagg 5940
atgtacacaa aacgtacgtt ctgcgcaatc tttccctgc agctctctct ctctcacttt 6000
ttctactcca taaatcagtt ctctgtctgt ctccaccac ctaaatcatc atcagcatca 6060
tcacagtcggcccccaccaagt tcttgcgtct tctctgaccc ttacacgtcg actaggaaaa 6120
agctctcaag cagacactcg agcgccagtt gaaaaaaaata gtgtgtccaa atgagcagtt 6180
tcgaatttga accgtttgtt cttgttctga cataaaccctt aaaaaacgaa cttagggcga 6240
aaagagatct ggataatcta aagaatctag acaaatttca gaagttctta ccaataacat 6300
cttccactg atcttgccac gtggcaacccg tcgtctccgt ctctgttgcata ctggcgtcgt 6360

taagatggtc aaacgatttgc aagtgcatttgc gatcgaactt tcggacgaga tggatccat 6420
ggcgacttgc tccgtcgatgc tcttagatgtt taaagtgtca gagaaaagtga ttacaaagtt 6480
tctacctgtt ccgtttccac taataattgg ctcaaccgtt tggattccgc tggtagtgc 6540
aagcattccg tactgaaaaa ggcttttatt caccaaaatt cgaacttata caaaccaatc 6600
cgtcttccga gtcgcataaa ttgacgatgc tgtgctgatg tacaccttta acgtgtgcac 6660
ggtagataca atcgggatct gttcgagaca ttccacatct aaccccttcc tccgagtcca 6720
aatataagac catcgccgcg aaatttgaat tggaaaagtgc gggAACACTT ctggaaattga 6780
aaattaatac gactgttata ataaaatttgc aatctcatac ttgttatgtt agtccggat 6840
ttgattccat ctgtgcaaat gaacgatgtt gacggcatca tctgatgtt atcgtaagtgc 6900
acaaggatgtt ccacagtctc tggcaactcc ttggagtcga cgctcgccgat ctgttgacgt 6960
gacatcacgt tttccacgac gtccataaga atctcttgc acatgtgtt ggctgtcgat 7020
gacgtgtata ccggcgtctt gacgccatcg actgtgtatgc actggcacac ctgaaacttta 7080
gaacattatt tcacttcaaa actttttggt ttgttacatgtt agtacttggc cctggagaac 7140
agcacatctt atgagaatttgc tgagatcgatgc ccactcccttgc ctgaaaggaa catttggat 7200
aaaacaaaaag ctgataaatttgc aaaataatgc gataaaaaacg aacatttgc aacataaacg 7260
aggcagacgcg cgaggagtttgc gagagcggcg acgacgggttgc gcagcagatgc gaatgagccg 7320
ccgatggagc gcataccaac agctccgttgc tgatgatttgc gattgtgtgg agagcagcaa 7380
agaaaaaaaga gatggaaaga agcagaagcttgc ccgataaagtgc tctgtccgtctt cttctgaaac 7440
cttccaaaaa ctacctgctc gaggtgaagg gaagtcgtcttgc gattgttgcacttgc tctgtccgtctt 7500
tgatcttttgc ataatctccc gagtttgcgtt tttcgatgtt tcgatgttataa attgttagatt 7560
gtggaaatgttgc cacttgcataatgc agggaaacaga gcatcacaga ctgaaaaatttgc aaaaatttgc 7620
tagaatgcataatgc gcaatttttgc aattttgttttgc aaaaatcttgc attctgacgc catcttgc 7680
tccgatttgc gcagaataaa taaaaacttgc actgtatgc tggaaaatttgc tggaaaaaaa 7740
acaccgtttaa gtctgagccc acctttcgcc ttttttgcgtt gacgaaaaaaa accaaacaacg 7800
ctttaaatttgc ataataatttgc caattttaaatgc aacatcttgc acgttgc tccaaataatgc 7860
cattttgttgcataatgc tgaacaaaaatgc tctgttgcgtt atattactac aagcaatttgc 7920

-123-

tcatcaacaa acctcataaaa aatcagttt gaacgggagc aatttatata aactctgtgt 7980
gctttttgc tcttttcctt atttcttagt tgtcttctag ttccgccacc acttcgctg 8040
ctcttgacga aatctgtaaa ttgttcgtca ttttgattt ataagattt gttggctctc 8100
ggtaggagct ctcaagctgc taatagtccct atagtaaagt actaaaaaca caaagaagca 8160
gatgaagggtg tcataaaaaca ctgataagaa tcatcatgat taggttggtg cagagaaaag 8220
aagaagaaga aaaaggagat ttagagaaga gaaacaagaa taaaaatgca aaaataaaaa 8280
aaatagtaat aacaatgaac gcagagtctt ccatgttggga gaaggaacag gacccatgtt 8340
gatgtgtatc tgaggggatc caatgtgttag tgatggtagt aaacacttga gagggactt 8400
ccaccccccga ctagatgatt ggaagcaatt gatgatagat gtagagccaa agaattggga 8460
cctactaatg atctagtc当地 gattttctg ataagagaaa aagacaagga agaacatgaa 8520
aatgacttgt gattgaaaaa taaaacggtt tatgaagtcg gggtgtacta aagatgcaag 8580
gtctcttgc acgtattttt tcttccaggc acggtcgctg tattcacgat tttatgcaaa 8640
caaggtaagg agtgttttga attttgaata taaaaatttta aaagaaattt aagtttagaca 8700
tttgaaaaat tagacaccct catggaaaaa attataggc gaggagaggc ggtgagaggc 8760
gccctaattt ctgctcggtc gggtagaatg tctaattctaa atcctacctc atgtttggct 8820
ccttcttaaa tcaaagctt aaggtcatct ctgaaacgtg cagttgacaa gttcaatgg 8880
aagaacaggg agcaagcatt tacaacaaaa aagtaaacaa aaattgcatt tgtcgcagtt 8940
caaaatggaa caactcactc ccactcgaga acgttttggaa ggggagagga agaagaggaa 9000
aatcatcaca caggcacatg gaacttctgg gacacaaaac aatacaactt ggtgcccgtg 9060
aatctcagta cacacacaca aaaatcaaaa aagacggaaa ttaggagcag atgtggtaaa 9120
gggtggttca atgctgatgg gagagagagg gagaaacttc aaaaaaagaa gtttagattt 9180
atgttggcta tttcaatccct aaatttatct aaacaattct aaaaatgctg gttttggaaag 9240
gttatctggat aatggtgaag ttttataaacc aaaacaagac aaacaattct tgagatctt 9300
aaaatcttag cgactacaac aatatttagg tatttttaa tggaaaaaag tattgattgt 9360
tgacttggga aattgaacag caattttttgc tacttttaaa tcagttat tttactttt 9420
tagagcacat ttctgtacaca aaagggaaaa cgattggtcc aacatgtgaa gatgtatgt 9480

-124-

tcaacaagtt ttggatcgga gccaaaaaaag aaacaaaaca ttcataccat gatggaaac 9540
aagaggtgca gcaacaactt ttatcaatat tttgttatg ttttgattat tttctggca 9600
cccagccagt aattcttttc chtagagttg acctagaaaa tggtagggc ggagtcttag 9660
gatcaagaga cgccagactat caaagtaaaa tgagtaaaag gaagtgatataaacttagga 9720
aacggaggaa aaaaggacga tgataagaga ttgaagactt ggaagagtgt gctcttgcg 9780
ggagagcata ttcttttag aaaaatggga cctagggca actgacgcaa ttgaaacatg 9840
gtcgagcggc cggcgggaag acaaaaatgt aagaaggatg ggcaagaaga agcaagagaa 9900
atggcaccca ccgtggaaca tgatcatgat gattgagagt gaaaatttggaa atctcgaac 9960
tttttgcaaa cggcgcgtt tggaaaacta acaaagttga ccaaaaattt attttacatg 10020
tataccggga tgtctaagaa ttgtaaaatt gagtgatcct ttctgtgaca taatttaag 10080
caatttattt tggattttc taagcgcott tttatactag catgttatatatgttaatttt 10140
attatctaaa ctgccgttct tcctatattt attattgcac ccccttgcattt cattctgaca 10200
gactataacct cgattaatca taaaaatgtc acaaaaagaat aaaaacaact aaaattaaga 10260
aaatacaaga aatttatcaa ttgccaaaaa ttccggcaat cgaaaaatgtt cttgggtgcc 10320
aatttgcataa aaatttagtc aatttggatt tgcgtttttt ccgaaatgtatgatgaaatgtt 10380
gaatgatgca gctaattttg cagtttaagt ttacatttc aagtttactgt taattttcc 10440
aaaaatgtaa gaagagttt acgaaatataa aagataataa aaaagcaatg caaacatagc 10500
tatgaaatct gatcccact aagtttgcgt gacataggat taataatattt agtctaactt 10560
tctatagaac actaaataaa tacatttactt ctcgaaactc tccctttctt gccatcaact 10620
accgtactca cttttgactc aatgaccgc aactgtcaag atgagttgtt ttcaagattc 10680
tctgaaacag caataatcta acaagagaaaa ctgaaaaat agagtaaaac taataataat 10740
accacataaa ttgacatgca tgcataatgtt tttccgggtt ttcaacaaga aaaacaacaa 10800
tttccgagaa atcctcatag tttttggtaa gaaaaataa attgatagtg atacggatgt 10860
actattactt ctaaagactt acctgatttgcgtt aacgtgttagt taattgtatg agaaaatgtt 10920
aatttgcataa gttgaatcga gtttacgttgc tctgaaaaaa acatagatataatgtaaga 10980
tcaagcatag aaaaatgtt gaaatacaag aaaaatgttgc ttagagatttgc catagggtttt 11040

-125-

gcgggtggcga aaccgcacac atttttgtct gtgttatctc taattttacg ctctcggtgt 11100
tctctattta ctgtccagaa gaatgaagaa tatggggaa aagtgcgcgg gaaaattgag 11160
agaccgagtg atgagagccg cagtttgca aaacttttc gggcaataat ccgccggcga 11220
gtactacgag aagcacacac acatacgaaa actgttgagt taaaacctaa aaaattgttt 11280
cgacatattt aatttcgaa ctaaagttta gagggtctgt gcgtgcattt ttgaatttcc 11340
caaacaacctt tcagtttgc ggaagaaaaat tacagcgatt tttcgaata tttctgaaaa 11400
caacactattt gcgtatcaaa aatttttcga tttgcääaaat ttcagactaa gttttggtgg 11460
ttttggtttg caaacattta aaagaactca aaaaacattt ttagatgttc gaaaccgtac 11520
aattttagga tacaatagc tacagaacaa ttagaatata aaatagagtt gtcaaacatg 11580
tttaactaat acaaaaacac agaaactttg aaactcgaaa tttttatatac aaaattgaaa 11640
aagcttgtaa aatttaaata tggatacagt acaaacaata taatcataga tcaaatagtt 11700
catttatattt tatactttgg caaatcaaattt cgtatccctt acccactcat attcgatgag 11760
tctacaattt aatcagttgt ttttcatcc tcccggacta ttagtttac ttccacttga 11820
acaaggcgaag agagtacatt aggaagagtt tatgtgaca ggaaaaaaagc tatgtaaaat 11880
gacctctttg gattgaaaaa gcgaacgaat tgaggtagg gaccccccggaa aatgaagaa 11940
ttcgtggcct cgagaatagc aaattggcgg aattaattt ccgtaaaggt gtgaatttgg 12000
aacaaccggg acgaatggat tactgaatca aaaatgaaag aagaagaga tgaaaatacg 12060
tgtgaatcgg atgaaaatgtg atgatttttag aataacctaa atgcaacaaa acgacgtaaa 12120
gacgcggaaag aacaggaatg atcaaggggt acatcttata ggggaaaaat gcacttttg 12180
tgctccaaat gtgagagata atcaggtagg aagagacgta gaataggaac aggaaacggt 12240
aacgataatg cgccagggtct tgatttctgt gctttgcattt gtgtccgat ggaatttttg 12300
gaactttca aggggttcg gaaagggttc gagattcgc atgtgagctt tggagaattt 12360
ttggaagaac ttccaggata acatcgctca agcttgggtt ttagatttca gacttcaaag 12420
tatataccga ttattgaaac attttaatcg tttcttacta ttagtaaagt ttaatcacag 12480
tttgaaaaaa aaatcacaat ttttcaattt attagacca aactaattt ggtacagaaa 12540
ataacttgca acccggttat ttcattctaa ttttttcat ttggaaaccac tagttttga 12600

-126-

aatagaaaact cgtaggatt cttcacatat tatcataact atcagtattt tggtgcacat 12660
cagatctaa ttcagtctaa tttagaatcgc aaatttgacc atcacacttt aaaacaattt 12720
tacttagca caggcatcc ttctaacttt ttgtccccg acaaaaatgtat gacaaaaatg 12780
acgtgaggaa tcaaggagaa aaaggaaaag aacaggaagc gaaaagttagg agaagctctt 12840
gatttctgtg ctcattccctt gttcgatga gtcactgtt tgcaacattt gcgttggc 12900
gcggaaatcg ccattgccga acttttcaa gagacagaga gagagagaaa gagaaggaaa 12960
acgttccgat tttaaaatg gaaaaaaaaatg aaagaggaag atgatgaaaa aatgaactct 13020
gcgtgacatt tgtaatatg gaaaaagcat gattacttca aattgtaca ctaatcccc 13080
cagcacacat ttgaagact ttttacaaa aacaatggtt taagcaagct ttaaaaaattt 13140
gatagtatcc ttaatgctt atcatatcca agtttagttt taagtttga ttcaaaaat 13200
ttctacatca aaaaatcata cttagtgatt atatgcaaaa caattttaa attcaaggac 13260
atattttga ttttggaaag gatgataact ttttgtgat tccgaaaaag attaaagtag 13320
gtttaaaacc tctgaccttc tacagaaaaa acattacctc tatgaatttt ttcatctc 13380
gttcagaact tgtctcggtt caagccatga agacatgaga tagggtgtaa aacgttccga 13440
agagaggttt atgactatta ttgttagttga agagaaaaat gatatctcaa tggatttcat 13500
acagatggtc ggatttcatt cataaaatat cataagaaaa ggtacgttta tgactgtcta 13560
ggtaactgg ttttaggttt ctggaaattt tttcaaacat ttttaggaaa tattttctt 13620
caaatatcta ctaaattgaa gtttgttatt gttttgaca tattgtagat tttagagaag 13680
aatcactcag agaaaaatg ttggaaaaac gtgagaaaaa tccaagagac aaaagaatgg 13740
tcttactatt agtagatcaa aaaaccagac caattattca tattcctact attcaatata 13800
tattcaaaaa tgagcaaacc aagaaattgc acctaatttca tcatcccaca tatattccga 13860
cgaaacattc gctctacctt cttttttct gtctaggaat tataaagggc cataattata 13920
atttcagtca aggttttggaa aaattgttcg actaaccatt atgaaagtta aaaaccaatc 13980
agtcaaaaaca cacaatagga atataaaatt cgtagaagaa aagtttttt tttggtcgaa 14040
agcaaaaatca aattctggaa ctgcgacttt tttagtgcaaa ttatccattc aacgcaagtt 14100
gtcttcaaa atttaaattc cagaagagtt ataacaaaac agacaggtgt acaactaaaa 14160

-127-

aaaaaataca agtttatcg taaaaactga tacgaatcta gatacacctg taaaaaaagg 14220
cttctcgaa acccagatgc cgtacgaagt aagcagcagc caactaaaca ttttgagtaa 14280
acatatggca agtgtttgg cgcaaattgt aaagatttc cgtgtgggta actagaattt 14340
gaaactgtaa gtatgacgac ttaaccacac aaaatcaaat ttcaaaagat cttaaaatgt 14400
tcgaacttccaaaacttttta agctctctcg catctaccgt agtcttctaa taacaacagt 14460
cgtaagagaa agctcaaaat ttttcaaact ttttctgaat gacagaatca gttgtataca 14520
aaaaaaaaaccc ccaaaatgcg agccccatga acctgacaac cagacaagtc gaaattgtaa 14580
aatcgtagat atcttggttc acgacatgaa gagcaccgcg ggggcacacg agagcaacta 14640
ctgcaagcgc tcctgaagag aagaaacatc tttttccag gaccactggc cagtagtgct 14700
cccccagatc actttctttt ttcttgcttc atctgatttgc tgtctgcgtc gtctgatctc 14760
tttagaacct atccttcttc ttcttcttt tgatacttcg acatcagaac aacatcgaca 14820
tgtatcatct tttctctttt tttttgtta tctattcatt cattcacttt tcatttagtt 14880
tgattaatag gtgacatgaa ctcttgcac tttcaattt caacttctta aatcttaaac 14940
tcacagtgat tccagatatg agcaactcca atgaggtgtt gagtagaaac ctaaatataa 15000
catttggat gtttgataa tggtaaca aataaattga aacaaacaag acttggaaata 15060
gagacaacgt gcagaataat gtctaccagc tggttcagt ggcataattgt accacqaacg 15120
tccgacagaa cgaataacat aaagatcaag aaaaactgtt tgggagcaga caaacaatca 15180
gaacacagtt ttgttgggg gaccaaatac taattaatga ctaaattttt acgaagaaag 15240
tgctcgaaaa gaacagaatt tagaagttga tgaacaatat ttttactttt agattaacaa 15300
ttatgcttta caaatgacat ccaatctaaa gcacatggta atctgaaattt tgtcaaaaca 15360
gctttcaaga ctagttcaa atttgcgtat tcaatggatc aagtgtgtaa ttgatccat 15420
aaaaaagagt ataaaatgtgag aaggaagaaa gtgtgaaaaa agaagaacgt gaaacgtgca 15480
gaagatacga aatgagtttgc aagactgcac ttttcgagcc tcgatggtca gtcacttgg 15540
cagttgcga aagactgtga aatgataca ttgtgtcgcc tctcgtagag aagaaagcca 15600
catggtcagg atgactccaa ctgggatatt cagttgtaaa gaacacaattt gatatttttgc 15660
catctttttt aactagttt tacaatatga gaaattgttc tggcgaaaa atatgacttc 15720

-128-

ttccttggc ccgaagtgt a ttccctgga aattccagta aataccta at gaaaaatc 15780
tcagcagaat gtgttcttac attttgtt aataataatg tattaaaattt gcattaatta 15840
aaaatttctt caaaatgttc ctacgtcttc tatgcacatt atttaggtca cagttcatg 15900
gagcacaaaa cacctgccga cgccctctaaa atagttataa ctgcgcata aatcaggtag 15960
aaaaaaactac aaaataacca atacaattt agtagggcga tggagaggtg ggccggttgg 16020
gaggcgggca acaagcgccc tcatacgcc ttgttcattt agaatgtgt tgctttgaat 16080
tacatacaag tttctaaaat ttaacttaca aaattttaaa aaagtccacaa caataataaa 16140
agttgtggca atgaaatgtt taaaaatct aaatattgag ttttaataa atgattttg 16200
aaaattcaca aagaaatgtt acaatctgt aatgaagacg aacaatgaaa aagtgaggaa 16260
cgacgcgga tattacacat tcagtcacac aataaacgtt cgacactac cacacatttc 16320
tctcatcatt ttttccaaa gtttattcta aagttcaata ttttagttt attattttgg 16380
acactattct taaaattaat gtataatagt ttagaaaata ttttgaaca tgaaactttt 16440
ttgttgataa aatagtgc aacatcctt tgtaacgcag ttatccaacc acattttct 16500
cattttcca ccaaaaaaca ctgaaatggt ccataaaacc tattcaaatg gatatgagaa 16560
tattactttt ttgacatgaa atttcaatg atgtaatgtt aaacaaagaa aaatattgcg 16620
ggaaaaattt aacggcgtat tgcaaaaatc ggtgtgcggg ggaggagaag gaaaaggaag 16680
agcaggagaa gcggaccgaa gaattcagaa gctttaaaa taagaacggc gactttcaga 16740
caaacaatgg actgttgtat aaaaataaag cgaggcggg agagagtcaa agcttcaga 16800
aatgtattag aataggtttc actacctgtt gttgaactca aaaaggtgtg aaaaagtgaa 16860
agttgtctg aagtttatga cggaaagtgtt ccatcaaata actttcaaaa tttgacttat 16920
cagtgagaaa aacacgtcat ttggAACGT taaaatgggt ggcaccccaa aatgttcaca 16980
atgtgaagt aattacgtaa taaaatcagt ttatataacg ttatataact aacccttcg 17040
gactatttgtt ggaatgaaac aattgggggg gttttttttt ccaattttcg atttttttt 17100
gaatttataa ttaccggAAC aaaaatatct ttaatttattt aagatttgag tgatgttga 17160
aattttgaac ctgcaaaaaca taagcacaaa ataatggagt ttttggggaaatataatcaat 17220
aggtgtttttt tcacagaact taaaacaaca aatactcata atttgaatga aaacagtaga 17280

-129-

tccccacaata ttttggaaaac ttatctatat atatatatat atatatataa ttacgaaaaaa 17340
aaaacaaaaaa gaaaaaaaaa aataatttgt cagtgataa ttttagata tgagttgcc 17400
aaattgggca atatggtgaa gaaatacggt agttcgtcgc actgtcagac taatttcaa 17460
gtgttcctag tggaatgaaa ctaacagaag ctatacggta tataatatta ggaacacaat 17520
taaaacgaac agcggaaagaa aagatctagt ggtcaactcc gatttctcag ctgactttg 17580
aatgggcacc taticatcatc tcacttggtt atttgaacag tctcgacttt ttccaattgt 17640
tggcttctag ttcaagaaac gaaaaaaaaa gcaataacgg aacagaaaaat tcagaaagt 17700
gaagagaaaat atgagaaaat gatgatgata ataataataa gttagaagag ggttatcgat 17760
gaggaacgga aacgttatct ctgatcgcca tctcatttatttatttgcac acaaagatgt 17820
aagttatggt atctttgaaa gaaaagaaaa cagggaaatta tacagaacac acacaattc 17880
ggagatttca ttcaagaac ctaacccaaat ttgaactcac tcccacttcc tcttgctat 17940
aaaacagtca atcacaggaa caggtgtctg tctttcaaa atgtatacgt tttccgata 18000
atgacacaca atatcacaga caaaatgatc aatgaggtt cagaaaagaa tgcaaaaaaa 18060
tatagaaaaga gagggtgaac aggagataga gaatcaaaat ttgcatacat aaatatgca 18120
tagaaaaataa caattttga acaacaaaga aataatttgc tggcatataa tatagcgatg 18180
gaacttgcaa atttttagaa ttatcatata aaaataacaa tgtttctata ttttatgccc 18240
tataagtctt gcagtatttc ttaaatttaa cagttcattt ctggtaatc tttatttta 18300
tcaagaagtq ttcaaggaaat tttaggacat caaattttta tttatttctt aaatctactt 18360
ttatcaaaat tttagaggtc tagtacacat ctacccaaaa agaagacttt ggagctctca 18420
aaaaccaccc agtgtatggt aaagtacatg agaagtgacg tgtctttggg cagctggcca 18480
tctttgtcga tatgcgggtg atgggtttc tgtgagcagt aacagggaaat tctggacacc 18540
tgcttagggtg tcaaaccaaa tttatccaa cccattcttgc cttcaaaaaa cccccaacta 18600
aattattcaa attctcgtaa tttaatgaat cactcagtaa ctgtAACGTT tttttttca 18660
gagacaatga tcgaaagttt aaaaaaaaaa ctgaggatta aacgttattt ggtatctaca 18720
gctgacatttq gaacatatac aaaaagtggta agtggaaagtq aaacgaaaaag tgcaacattt 18780
gaaattgaga gtagaaaaaga tcattgaagc agaaatatgg aagtgaattt aagccgtgg 18840

-130-

cgccaaaacg acggtcaggc gccattgaga aaattaatga gagttcggaa gggtgaaaca 18900
acacaaaagac aacgtgaaaa attagttgg agaagataaa aatgtctgg agatggacga 18960
tttcttagtt agctgagaat agtttacatt gatttcggg aaaacgcaga atgttagaaa 19020
aatggaaaca tgtcttagact tcagataat ttgtagaatt tatatttcta gcaaaagcac 19080
actaacaag gttacaaagc tatttagaaa aatacggaat gtatTTTGA aaATTTTGa 19140
tttctctaaa ataataaacac cattaatttgc ctatatttgc tatatatgct atatagtatg 19200
ttcgcattac tgagcacaaa acttggaaaa agttaaaaaa aaaaggaaac ttgtttctg 19260
gagaaatcat taaaaacagt acaatttcag acagaataa atcttcagt gaaagcttt 19320
ttttgagtaa gactaagtat gcactcacaa ctttctgag tggccaaaa atgtttaag 19380
aaaatactag taaaaatgag catttcgaaa agcaatatacatacataacta cacaacatt 19440
tcaattaaag gaatcaattt tataatagtt ctggcaatc ccacttttag attcaatttt 19500
ctagcacagg gaggcattgga agatataaaa acataaagat aaagggtgata aaagatccat 19560
taaacacatc atatcttatca aaccatcaact tccatcaaatt ccacagattt atcacaatc 19620
agtgtgtgac aaatataccg taatattaag ttcaaatttgtt ggaaaagacg cagacaagc 19680
ttttgcataa atactaaata attgaaagaa acgcagagaa tgtaagagaa aaatatacaa 19740
tatgtgtatt atcaaccatc aacagtttt gattaaaacc atggagaagc gatatacagg 19800
agcaaatttag gagacgcaga ttgagaaaaa atgagaaaat aatgaaagta cggaagggtt 19860
attgtacaat aagacaggtt gcatctctca aagaacctat tgtcaagcag tttaaacatt 19920
caacaacgtt catttatttt ttagccttca ttatgatatc tcattggttc tataattgga 19980
ttttttaat tcagatttct cattcatgtt caagtaaagt tgttaattgg ttattatgcc 20040
caaagtttaa ttatggac gcagaaaatt tgaatggaaa ttccagaaaa ctgattcatg 20100
ctaacttcaa aaaatcctga ataaatacca attctttcc aagtatgatt ctgcggctg 20160
tttacgtgcc tgcctacggt ctatTTTCTA atttttttaa tgataaaatt ttagagttaga 20220
tcttcaaaaa tcttccttaa aaaatctcca aaaaaatcaa gttcaggaaa actaaagtac 20280
tccaataaaaa tactcttatg caaaaacccc ccattcattt tgcagaaaaa gacaaacaag 20340
aattaaagat aaaaagttat gatagacagg aagctgattt attagatcaa tgaatcgact 20400

-131-

ttagtttt cttgaaactct aatttgaat agtattcgaa tgagaaaatt gaaaatatac 20460
aaagatcaaa agttataatt gaaaatcaac aaattgatag tgtttgtata ggattaaatt 20520
aaaatgtgcg gtacatgaga cagtagtagt agtagccata gtacgtattg gtggctccac 20580
tcggctactg ataatttcct ttttactga taatttgatg tcatttcgta attttatttg 20640
tggccaaa aattgtggc gtggttatg aattggtcaa gacatgaatt aaaggaattg 20700
taaagtaaag aagaaaatga cagaggagaa attatttcg ttgcgttgg aaattgcaaa 20760
ataaattaga ttatcaaaga taatagttac gttttaaat aaataggtga taaaaaaata 20820
tccaaaagtt caagtcctaa gaatcttgct attttgc当地 aaaaagcat gagctttgg 20880
cctaaaaatg gcggacagct gtcggacac tatccaagaa ttcgtataa acgggtgaag 20940
cacccgtctct tatcatcatg ccattttcg aattttaaac tcagactttg ataaagaaaa 21000
ttaaaaagag agagtgtgag aaataagagt acacatggaa aatgcaagat ttgaatttg 21060
ttccaatttt taaaatgtat taaaagagt taccgttcca ttttgatta gctttataag 21120
tggaaaaatc gttttggat tatttttga ggaatatttt tgaatgc当地 ttcaattttc 21180
ctataaaaaa ctttgtgttc actttttat cccgtttta ttttatttt tacaactttc 21240
aaattttat gaatgttttta ttgtaaaatc ataaaaaggt gcgaaacatc taaattgc当地 21300
ggattgcatt taaaagtgc当地 ttagcagaaa tgtattccta tggaatgttt ttgtgcaac 21360
gagatccaga agctcgaaaa acatccaaat ttcttccaag aaagttgatg ttccaaaaat 21420
aaaaaagatt ttagccaat caactaaaaa aaaactctcg ttttttcat attcacatt 21480
ttctggtcac ttgaaggaa acactaatcc caaactgaga accgaacatg gattaaacca 21540
tcccatttac tatttcttgt tgtcttcaaa aagtctttaga attgtgc当地 aaatagaatg 21600
tttcgaaata ttgcgtttt cgtaaaacc tttttgagt agattgaggg tccattagaa 21660
ttcccaagag aacttgatga ctttcatcat caaaatttagt ggttattgaa tgtttgatca 21720
gacaaaaatg gaaatgactg aatcgaaaaag agcaagaaaa tcgaaaaaaaaa aagtatttg 21780
aaattctgga aaactttta aaatttaaga agggcaacga taagaaacag gaaatttaggg 21840
attttttagt gatggagaag tacgtataa ggttaaggtg gaacacttagt gcacacgttt 21900
tgaatacact acgtgtttt atttatggta gaatatagca cttaaagaac gtttttaata 21960

-132-

caaactgaaa taaaaatacg gaaatgtaat ·ttttttttt gaaagaatcc gcctgaaact 22020
gaattttcac atcaaacggt agtgattctc tttatgcgtt gggatatg tatttacgct 22080
gtcttaaagt ttgcactat aatttaagta atatgttgtt caaaaatcat catggtgctg 22140
tgtcctatgt agcctttct acacttgaaa aatgataatt tttatggaa aatggattt 22200
aaattcaagt agaaagttat ttagtctgt gtgccaagca ataaacacat agtctattag 22260
gcaataaaaa gtcagctact gtttgattt aaaaacttaga ctactgggt gcctgtgcaa 22320
gttactcccg tagtacggat acagagtgaa aactagtgtat tgtactttat atcggtgtat 22380
agtgaattta cagagaaata attataaaac ttaaaaatttt tagcagctca gtcttcaggc 22440
tgcacagcca tattgttaca cttggagttt caaattctgc aaaccatcta ggattgaatg 22500
caaaaactct gaaagtcaca tcaagaaattt ccaacaaaaa acacatttaga tgccaaactca 22560
ttgaatttgc ttgattccca agagaaatag tagtaaaaagt gacccctatc cattcctccg 22620
ttacatacaa atatacacac aaaaaagagt gtagacctct tccttctaac ccaaccaaca 22680
cacaacaata tcgttccctt ttatctctaa ttctctgcgt ctccataagc tttgagagct 22740
cttcggagca tcttgcgtt gtccttgta cggcggtaca gtttcctccc tctgctccct 22800
tatgtgttt taggtgttgtt ttgaacaaat aagttttgg ccattccaccc ctttctcaaa 22860
acctttttct tatgcttctt cttgtttgtt gcacattttgc gctctgcgtt gtctgctcga 22920
gccatagaca aggccgcac attttgaaa aaattatatt agtactgtta tatagtactt 22980
aatacaacga tcacaacaac aacacaacga aatgaaaaca tgagatcaaa agacaaattg 23040
ttaggaggag ttggagttc tacaatcatg aaatgtttat ctgttattt taaaactgaa 23100
attgctcata aaattgtgat accatgaaga ccgaaaaact ctatgcaact gcatactgca 23160
catacttaca acctttattc tgacttgaat ttcatgtttt ggtgttgca gttattctat 23220
tttgcgtttaaa agaaaattca attagaaat aagcaataaa ttttggcatg tatttcgata 23280
gaaggcacgt gtaaatgcca cccggaaattt agaaaaaaaat agatttctca aactgaaaat 23340
gattgtgaat tgaaaattta agagaatcat tgcaaaaagta cacaaatgaa tcattttca 23400
gattgaacag gaaagtgcag aaatatcaga ttaccgtccc aacagaaaacc ggaataaca 23460
cttttcaggt aaagaattat acagaaatcg taataaattt aaaacaaaag agagttatga 23520

-133-

cacattgcag aacggctctc gtggaaaata ggaggaggtg ctgcaaaaac tccttagaca 23580
tggtcataact tacaaaaaaa acagagttt actaaaaatt aaattaagtg agaaaatgaa 23640
gaaaatggag gtcttcgag gattcattt acttcttctt tttccactt ttcgttgaa 23700
gctttggttt aaaagttcg caaacaaata aacaatgaac attgtgttga gaagacaagc 23760
caagtgaaag gaaaccattt agagaaaaaa caacaatcaa ttgaaataaa gagtaaagtt 23820
tattgaatat actgatatgt gaatactgga aaaataatta gtctctataa ttggtaaccgc 23880
ctggaagatt catttctgtat tcccttgtgt ctttgaccaa aacttttattt ttttcagttc 23940
aaaattacaa aaaataaaata ctcatcttca tcgattcagt ggtgtttaa actcctacgt 24000
ttttctttta caataaaaggt aatgtaaacg ttccgagcgt gtagtttct ctgaaaattt 24060
tttaaaaata acaactttat ggtatTTTC ttAAAGTCTT aaactgaaac cgaaacattt 24120
tttgataggaa aactatTTTA acatTTTGGG aactCGGCAA aagctctgca ggcttgccga 24180
acaactctca ttgaaagta ataaatatga aaataaatta tcgaagttt ttttttgc 24240
atTTTATGAA tacggctctt ggtatTTTT gacgagaaaa ttacatgttg cataaatttc 24300
aagagtata actcatggag accctaattt ctggTTTcac tagaaaatca aaaaatcaag 24360
cgTTTgagca gaagactgta ggaagagcac acgtcataaa aattagggga tcaacgatcc 24420
gaaacggggaa attgaaatac gatATGCGAT gagTTTGGT tcgaaccggc tttgtcccaa 24480
aaaacaacag aacgatggtc tcaggctcac ttgactcatc tcggTggaa caatTTTat 24540
ttgttttat tccgtacgca cagaaacttt ttggaggta ttttgatcg tgggtgggtg 24600
gaatggtagc acccaatttc aaatagtgtt tgatttgaag agacaatgaa agaaacaagt 24660
gggagataat ggaatgacg tgatgaaatg gaacggagga aaactggat aaatatcgTTT 24720
gactatcaaa actacaataa tactaatgga gaaaagttca ggattcttga agattttaca 24780
ttatgatagt tgggatttac tggTTcaag ttcaaATGTC aaacatctgg aagaaaaacg 24840
tataagatta catcaaaataa aaactaaaat ttgaaggata aagtaaaaaca gcataatata 24900
gtgtttaca tctcatgttag gaaacgaaca aaatcttga acaccttagat aacttcaaac 24960
ggaagttggg tgaagaaaag aataggggcc agaataagaag gtcattttga caaagtgaac 25020
agacaaaagac attcctaact cgaggttattt ccAAAAACTG ttccaatattt gaagaatgac 25080

-134-

actatttgat ttatataatcat aacatttta atcacatggc tttttctta gaaaatttat 25140
atcgcaaaat aaaaagtggc cttgatgagt cattcattca aaacatgcct aaaaaccttc 25200
ataattaatt ataaaaatgc tgataacttga ggaccgttt ttttatattt ataaacagtt 25260
gttttctta ttccgttctc actttgagtt ttttctgaa aatactaaaa aaattaacaa 25320
agttcggcgt ttttgcga taattccatc tgattatttt cggtttttt acctaattat 25380
caaataattt agccagagtg aaatttattt tcttattatc atgttttca atttgtttt 25440
gtattattct gttgaaggaa catgttgcattttaatctg ttgttaatac agcggccaca 25500
tgtttagaac ttataaacct cgtttaaaca taaattgtat gccatatttta ttgcaagttac 25560
tacatgagtt tgaaacagta tcagataacta tattttaaac aaaaatacac atttccccg 25620
ctatgagaga ttctgataca ttggtttcca attttttaa aaacttgaaa ttctcaagt 25680
ctcccactga attacagatt tctgttcttag ataccccaa agacaccttag attcgacttc 25740
ggcatcttcc tcattttat cttagtttc atctttgtc taatttccg tacatttctt 25800
tgcatttccttta ccattcttcc ctctctcaact cactttctt gttcaactaaa tctcaattca 25860
aaatgttttc tgccacgtca tcatcatcat caatgccacc ttctcagagc ccattcgaaa 25920
aattaccacg gcatcaaaat attcgatatc acgaaaaatg cttctcaatt ccacttcata 25980
cacttaacta ttttctatgc gttattattt tttatttctt tgtttcaact atattttatc 26040
acgaacgtta tggggaaaa cctgaaaatg ttcaagttac atcagcaatt tatgattcaa 26100
attcaaacga actgtcatta atctttctat ttgatttttc aattcgatcga cggaaatat 26160
tccttggatt tggccaaat gactcaaaaa catcaagaaa tggaaactcaa attgagctt 26220
aaccaccacc cggatttgg gataactcac aaatttcagt aagtttagga tttttttca 26280
aaaaaaacttg atatgaagtg ttgaaaaatt gataattggg ccgggcttac atcagagtat 26340
ctagttatct tgtatttcaa atattaatat tcaaacattt tagagattcg aatgcgaca 26400
gtacttcagt aattaccacc cacatttga ctgtcaaaaa agttcccaa aattgtcgaa 26460
aacttttattt agatgtttt ctcatttgg cacgatttgg gtgtttttt aacaaatccc 26520
ttttatgcat caaattaata tctaattttt aaatcaataa tttggattaa ttcaacttgt 26580
tttataagat ttctcgcta ttgaaaaatgc aaaaaaaaaac tatcttcaaa caatttcgt 26640

-135-

gctttaaaac tactaggcct ttgttggcaa cgtctttca cattttggca caaaactata 26700
aactatgctc agaatttggt aatgtttgaa aatgtttgg gcaagcatat agttattcca 26760
attctaaagt aagattagtc atctatttc cattccattt ttccatttt cacctattt 26820
ttccattttaaacaaccaa gactgagcaa acatttcct gtttaattt tcataatatga 26880
aaagacataa gcaaaagctg gatcaaagct tgggcaaatc ctattcaaag tatttccaa 26940
cgtttccatt ccctcgttt taaagtacaa ttggtaatct taaggcttaa ttaatttattg 27000
tgggagattc ataatgtgaa aactaaatgt taagatttg tcatcaattt gaaaggaaaa 27060
accccagtct ttaactgtga atgcagaaca tccaaagtca ttgctttac gagatcacac 27120
aggacatcca tatttagaag taagttcaaa tcagaatcc ccaatccatt ttttcttgc 27180
gttaccactt caagaaccat actccgattt tcgcgcacattt gtttagtttgc tcaatccat 27240
ttatggagat tttgagatgg ttttaacagg ttttaacaaat taatttgggtt tctttttaa 27300
aacattnaat ttttatagtct ttaacatcat ccataatcaat gggatcattt gtttagtatac 27360
catatgaaga gcttactgga gagcttaca agtttctacg tgtatttgaa aaaacgggac 27420
atgtcaggtt aactgcattt ccaatgatac gtcatcagcc tcgcttcgat tcggaaaatg 27480
aaaattatca tttgaaaatg atcaaactta aaacagattt aacgcatttgc cattgttggc 27540
taatgcataa aaaccgggcc aaattcatga tcttccaaaa ctctgctgaa attgtttac 27600
cgatttcctc gacgctggaa aatcccaatt acgcctctga atttacacga atatttggaa 27660
caccacgagt tgaaggatgat gatatttttag aatataatgt caaaatttca acggataaac 27720
gcttaggcga ctttcggat ttctccatca ggcagacaat tgaagcagca aaagcagaag 27780
aattaaccgg aaattctaaa acattaatca tgagaatggt atcactttt ttcaaaaataa 27840
tttactgttt ctattttggc atttatttca gcattctcca actccacaga atctcttaaa 27900
acgcggtaaa atgtatccat tttcaaaaaa ttcccattt ccaccacaag ttattccaaa 27960
gaaaacattt gacaaattgg atacaataac agaaataattt gaagaatctg atgcattctg 28020
gacacttatac aaagaatgtt cagaaaattt gaaatcttgg aaatgctcgtaa caagaaaatg 28080
tgtaagacca tcagtttagac atcgatctt tcatggatgg tattcatatg atattcattt 28140
ttctaaattt ttgaatgttgg aaagttttt ttgttcagat ttcaataaaa cttttaagaa 28200

-136-

aagaataatt ttaaattcta taattcctga atttccaact atgttatca tttccaaag 28260
tacattcgaa aaagctcaat aagcaaaacg accacgaaat aacagtatta aaaaaaaaaga 28320
tgttgtcatt tgaagttctg gagtgcatg aaaagtctct cacctcggac tttctgtaat 28380
ttattnatca tacaacatga atttgaccaa ctcgaaataa ggttaagact gaaaattttt 28440
cacaaaaattt ggaacacttg cgaagcgaat tcaagacttt tcgaagttat taaacaagct 28500
ttcaattct cagtaaaact gaacgtttt tttatgctct ccaaattcatt ttaatatggc 28560
tgctcggtc gctgaagtat tttcttaggt atgttaataa aaactaatat gttaatgaaa 28620
aaccaaaaac tcagataaaag agcataactt ttataacgca ttttcagaac tcttcaagct 28680
tttcagatc acttctatca gcagtttct tctttttcc aaagacacca agaactgaaa 28740
aggttgaagg agcatcaccg gaaatagagg atgactgctt attgttcttc ttttctgaa 28800
taaaatcaaa taaaacacccg aaaatatgaa acatattcac taacctgaac agcttcagg 28860
tttgatttat tctgattttc cgccgctgat ctgctctgac tttgaaacc gggacttgg 28920
gagttaccat tgcgtatgct agttcgaact ggacgcccgt tcttcttct gaataaacga 28980
attatacaaa tttgtatTTG aaaacggaca acatacactc cttctccgc cgaattgctc 29040
atcgattttc tcatttcttgc tggttttcc tggcggtttag gttcaaaagg tggagcaact 29100
ggtttggaca tatacggaaag aatgttgcag acttgaatct tttttgggtt ctcaatattc 29160
tccattggaa tatgatcgaa aagttcaaaag tagctgttgg atcctggagc ttgatcaaat 29220
ccttcgagag ttAAAAGTTC acgaactgct tcactcattt tgacccttcc ctctcggca 29280
ccagcacaga ttctataactg aaattgcttgc ttgtgttgg ttactcaaaa gaatagtgaa 29340
caaaattttc tcaccgtaat gaatctgaca atggctggtg ggacgttagc ttcaaatggc 29400
attcggtatac cgttctgaac acgtggtaaa acctcagcaa ctttcattcc cggataaggt 29460
tcgattccat catggtacac ttcccaacac atgactccat aagcgaaaac atcagtctt 29520
ggagtataga acccagttct tggaaacttct ggagccaaacc atctaataagg aactctgaaa 29580
aatttggaaaa ggttggaaatt tttgacgttc tctaaactttt tgtgaggatt catccgatag 29640
ctatacgctt ctcgtgacag tccaaagtgc gatatcttta cttgtccatt cccgttagaga 29700
caatttctgg acgcaatatac gcgtgaaatt atttgaagtg aatgaagata ttcaagacca 29760

-137-

agaccagctt gaagaaccat cgtatgttc ttggaaattg gcaatgaacc aatgttcttc 29820
tttagatatg aatccaaagc tccattgtca gcctaaaata attacataa gacattttt 29880
cttagtaaaa taaaattaat cagttaaaa attaacatac caactccatt atgaccatca 29940
aaggttcctg tcctgcagcc acaccataaa aagtgacgac attcggatgt ttgaactttc 30000
tcatcaatct ggcttcgtgc atgatttctt tgatctgctc ttttgtcaaa gattccaact 30060
ttgccagctt gattgcagct ttttgacgg tatttcctat gccaatttct cccaatggaa 30120
cctctccaaa tgctccttct cctaatttct tgattaatgt cacgtcagaa tggctttt 30180
cccacgggttc acgaccaatt ggacggatga ttacagttc tggccctaa aagcaaacaa 30240
atgaaaataa gtttactcac ttaatttcta agatcacccc agcaacaggt tctttagaac 30300
gatgatagta attgagaaga tctgcatac tagaaaacca ttttttatca actgcaaact 30360
tgttattgtg ctctcgaaatt acataatgac gaatctgaaa taatattctt aaaaattatg 30420
agcaatcggtt ttacgtacgt cctcaattac tccaacatag acagagagaa caaatttcct 30480
tggctctccc acttttggat cagtaaatcg aactagaaaa tcgcctcggtt gagtgagcaa 30540
ctgtttcata tcctcacgtg gcaataagcc atggtaccag ggttctttt 30600
c 30601

<210> 34
<211> 8009
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

```
<400> 34
ggatccttgg ccacgccatg ggcgatgaaa ttgaccgcgt cgtaacgggt catgtccctgc 60
tcctgcagga agaaggccgc gttcgattcc cgttccgcaa agatcgcgac aaggacattc 120
gcccccgtaa cctcggtccg gcccggagctt tgcacatgga tcgcggcgcg ctggatcacc 180
cgcttggaaagg cggcggtcgg cacggcttcc gagccttcga cttcggtgat cagcgtcgag 240
agatcatcgta cgatgaactc ggtcagggtg gtgcgcaact cgccaagatc gacgcccgcag 300
gcgcgcatca cgcggctggc gtgcggctcg tcgatcagcg cgcacgagaag atgttcgagc 360
```

-138-

gtcgccagtt catgtttgcg cgtgttggcc agcgccagtg cggcgtgaat tgcttgctcg 420
agcgtggtcg aaaacgaagg catgcggcgc tccttcctc gggctcccg atactggcct 480
catgtgatta agttcggtg gatttcgccc cgcttcaagg cccggacgcg tggggggcc 540
acctctcgcc gctctgttcgaaaactgacc agcgccggcgg gctttcgccgatccgcagg 600
cagcgcgcga aagtgcggc agaaccggc cttgcgcgcgcgcgg tgaagacggc 660
gagcggcgcg gcatccccgg gcaggccgag cgcggcgcgc aacgcagcgt catcggcgcg 720
caaaaaaggaa ttctgttgc gttccctcgcc caaaatgcacc ggcaaaactgg gttccccggc 780
cagccgcaag gccgtcaccc ggtccatccg gtcgtgcagc cgaccgttcc ccgggttccag 840
gctgagcgcg aaccggccgt tcgcggcggt gtattcatgc cccgaacaga cccgggttcc 900
gggcggcagc gcggccagac gggtcagcgt gtcgaacatc tgccgggggg tccccctcgaa 960
gagacgccccg cagccccagc tcatcaggct gtcgcggaa aagagcagcc ccgccccggg 1020
cagataccag gcgatatggc cgagcgtatg gccgtcgcc gcgatcacct gcgcggcctc 1080
catccccaga tgcagcacgt cgccggggc caccggatga tcgagcggcg gcagccggtg 1140
ggcatcgcc gcggcccccg ccaccttggc cccggtcgcc tgccggcagcg cctcgacccc 1200
cgcgatgtga tcggcggtt gatgggtat caggatgtgg tcgagctgcc agcggcggtc 1260
ggtcagcacc ttcaagcaccg gggccgcctc gggacatcg accaccacca cggatcggt 1320
ggcggtgtcg tgccagagcc aggcttaatt gtcggtcagg cagggatcg gggcagttc 1380
gagggtcatg gcctttgcg catcttcgc tatctgacc cagttcgcc caaggaaggc 1440
caacctgcaa tgcacatcgac cgtgctcgac ctgcgtgatt tctactaccc cacccaaattg 1500
gggcgcacgg cgaaaaaggc gatccgcgac aaggtggtcg aactctggcc ggacacccag 1560
tccggcatgg ccgggctgac ggtggcgccc tacggcttcg cgggtcccgct gttgcggccc 1620
tatctgggcc gggcgccggc ggtgatcggt ctgatgcccc cgacggcaggc cgtgatgccc 1680
tggcccgccg gagagccaa tgtctcggtg ctctgtgccg aaaccagctg gcccgtggag 1740
accggatga tcgacccggct ggtggtgctg cacgggcttg aagtctccga cgaccccgat 1800
gcgcgtatgg aggaatgctg gcgcacgcgt ggccccggcg ggccggcgct gttcatcggt 1860
ccgaaccggg tcgggctttg ggcgcgcgc gaaaccacgc cttcgccctt tggccggccc 1920

-139-

tatacgatgg gccagctcgaa ggcgcaggca cgacgggtgg gtttgcggcc cgaacgtcag 1980
gcggcggcgc tgtacattcc gcccctcgacg cggcggttct ggctgcgcctc ctccgagatg 2040
tggaaacggc tgggcacaag ggcggcgggc tatctggcgg cgggggtggt gatgcttgag 2100
gtgatcaagc aggtgcattc ggtgcgcgc tcggggcttg gcgcggcggt ggcgaagccg 2160
ctctcgatcc ttgaaggggc gccaagccg gtggtcgggc ggatgtgagc cgcggcggc 2220
cgcaagaatc gcccggccgg aaaagccgt ttccgcggca ctccgcctg cggcggggaa 2280
acgcagcggg gccccgttgc accctttgcg ctaacactcc gtgcgggtgc agaaaatgtg 2340
ccagcctgat gcggattcct gcccggcaaga tggttgcgag ggtcttgatg ctctgctaga 2400
cgcaaccccg aatgcggcgt gcgagatcat tttggggcggc gagggggggc tctgaatcgg 2460
tgacggaacg attgggttccg gtgtccgcgt gcggaggcaa aagcatcgga agggtggacg 2520
tgtccgaacc agtttcgatt tccgcagcca ttgcggggcg ttatgccacg gccatcttcg 2580
acctcgcgca ggaggccaag ggcatcgacg cgctctcgcc cgacgtggac gcgcgtacgg 2640
ccgccttggc cggttcggcc gagctgcgtg acctgatttc ctgcgggtc tacaccccg 2700
aggagcaggg ggacgcgatc gcccgggtgg ctgcgaagat gggcctgtcg gcgcgcgtt 2760
ccaacggtct gaaactgatg gcgacgaaagc gcccgtgtt cgcgctgcgg cagctgctca 2820
agggccttggc cgccgcgatc gccgaagcca agggcgagat gaccggggat gtcacctcgg 2880
ccaccgcgt gagcgcggcg caggccgaga agctggcggc gacgctggcg aaacagacgg 2940
gcaagaccgt caaaactgaac gtgcgcgtcg atgaaagctt catcggtggc atgatcgta 3000
agctgggttc ggcgcgtatc gacaccacgg tcaaagccaa actcgcttcc ctgcggatcg 3060
ccatgaaaga ggtcgatcaa atgggcattcc aagcagctga gatttctgcg atcccaagg 3120
agcagatcaa gaacttcggg caggatgccc aggtcgccga agtggggccgc gtgcgttcgg 3180
tcgggtacgg gatcgccgcgt gtgcacggc tcgacaacgt ccaggcgggc gagatggtcg 3240
aattccccgg cggcatccgc gggatggcgc tgaaccttga agtcgacaac gtcggatcg 3300
tgatcttcgg gtcggaccgc gacatcaagg aaggcgacac cgtcaagcgc accaagccaa 3360
tcgtggacgt tccggcgggc gaaggcctgc tggccgcgt cgtggacggc ctggcaacc 3420
cgatcgacgg caagggcccg atcgtggcga aagagcgtcg catcgccgac gtcaaagccc 3480

-140-

cgggcatcat tccgcggaaa tcggtgcatg agccgatggc gaccggcctc aagtcggtcg 3540
acgcgatgtat cccgatcgcc cgccggccagc gcgagctgat catcgccgac cgtagacccg 3600
gcaagaccgc gatcgccgctc gacaccattc tgaaccagaa gtcgtacaac gacgccaacc 3660
cgggcaacaa gctgcaactgc ttcttatgtcg ccatacgccga gaagcgctcg accgtggcgc 3720
agctggtgaa gaagctcgaa gaagccggcg cgatggaata caccaccgtc gtcgcccgcga 3780
ccgcttcgga cccggcgcccg atgcagttcc ttgcccccta ttccggcgacc gcgatggcg 3840
aatacttccg cgacaacggc atgcacgccc tgatcatcta tgatgacctc tcgaagcaag 3900
ccgtggcccta tcgtcagatg tcgctgctgc tgccgggtcc gccggggcgt gaagcctatc 3960
cgggcgacgt gttcttatctg cactcgccg tgctggaacg ttccggcaaa ctgaacgagg 4020
atttcggttc gggctcgctg accgcgctgc cggtcatcga aaccaggcgc ggcgacgtgt 4080
cggccttcat cccgaccaac gtgatctcga tcaccgacgg tcagatcttc ctggaaaccg 4140
aactgttcta ccagggcattc cgccggcccg tgaacaccgg tctctcggtg tcgcccgtcg 4200
gttcgtcgcc ccagaccaac tcgatgaagt cggttgcgg tccggtaaa ctggagcttg 4260
cgcagtatcg cgaaatggcc gcctttgcgc agttcggttc cgaccttgcac gcccgcacgc 4320
aaaagctgct gaaccgcggt gcccgtctga ccgagctgat gaaacagccg caatattcgc 4380
cgctgaccaa cgccgaaatc gtggcggtga tcttgcggg caccaacggc ttccctcgatg 4440
ccgttccgggt gaaggaagtc ggccggttcg agaaaggcct gctggcctat ctgcgctcga 4500
cccgcaagga cgtgcttgag tggctcacca aggaagaccc caagatcaag ggcgacgccc 4560
agaagaagct caaaagacgcg atcgccgagt tcgccaagac cttcgcttga cggcctgaaa 4620
ggacagggag atgcccagcc ttaaggaccc caagaaccgg atcgtgagtg tcaagaacac 4680
tcgcaagatc acgaaagcga tgcagatggt cgcggccggcg aacattcgcc gcccggagga 4740
aagcgccgaa gctgcccggc cctatgcccga gcggtgaac gccgtgatgt cgagccttgc 4800
cggtgcgggtg ggctcgaccg acggtgccgc gcccctactt gccccacgg gctccgacaa 4860
ggtccatctc ctcgtcatca tgacggcga ggcgggctt tgcggcggtc tcaacgcca 4920
tatcgcgaaa ctcgcgaagg cgaaggcgat ggaactgctg gcccaggcga agacggtaa 4980
gatcctcacc gtcggcaaga aaggtcgcga cgcgctgcgt cgtgatctgg gccagttata 5040

-141-

catcgatcac atcgacctga gcgacgtgaa gaaaactgagc taccgggtgg cgagaagat 5100
ttcgcaaaac atcatcgacc gcttcgaggc gggcgaatac gatgtggcga cgatcttctt 5160
ctcggtcttc cagagcgtga tcagccaggt gccgaccgcc aagcaggtga tcccggcgca 5220
gttcgaaacc gatgcggcct cggcctcgcc ggtttacgac tacgaaccgg gcgatcagga 5280
aatcctgacc gcgctgctgc cgctgtcggt ggccacggcg atctttgccg cgctgctgga 5340
aaacaacgcg tccttcaacg gggcgcagat gtcggccatg gacaacgcca cccgcaacgc 5400
gggtgacatg atcgatcgct tgaccatcga gtataaccgc tcgcgtcagg ccgcattcac 5460
caaagagctc atcgaatca tctcgggcgc cgaggcgctc tgacggaacc ggagatagaa 5520
gagaatggca agcaaaggca aagtgaccca ggtcatcgcc gccgtcgctg acgtgcagtt 5580
cgaagacggc ctccccggcga ttctgaacgc ctttggaaacc accaacaacg gcaagcgcct 5640
cgttctcgaa gtggcgcagc acctgggcga gaacaccgtc cgaccatcg cgatggacgc 5700
gaccgagggc ctcgtgcgcg ggcggccgt gtccgacacc ggcggcccgta tcaccgttcc 5760
ggtgggcaac gccaccctgg gccgcattcgaacgtcatac ggcgagccgg tggacgaaacg 5820
cggtgacgtg tcgaaagccg aagccggc gatccaccag cccgcgcccc atttcgcggc 5880
gcagtcgacg gaaagccaga tcctcgtaac cggcatcaag gtatcgacc tgctcgcccc 5940
ctattccaag ggccggcaaga tcggtgttctt cggcggcgcc ggtgtggca agaccgttct 6000
gatcatggaa ctgatcaaca acatcgcaaa agtgcactcg ggcttctcg tggtcgccgg 6060
cggtggcgaa cggaccgtg agggcaacga ctttaccac gagatgtcg aatcggcgt 6120
tatcaacctc gagaagctcg aagaatcgaa agtggcgctg gtctacggcc agatgaacga 6180
accccccgggg gcccgtgccc gcgtggcgct gaccggcctg accctggcg aacagttccg 6240
cgaccagtcg ggcaccgacg tgctgttctt cgtcgacaac atcttccgct tcacccaggc 6300
cggttcggaa gtgtcgccgc tccttggccg tatcccctcg gccgtggcgt accagccgac 6360
gctggccacc gacatggcg cgctgcaaga acgcatcacc tcgaccaaag ccgggtcgat 6420
cacctcggtt caggccatct acgttccggc cgacgacctt accgacccgg ccccgccac 6480
gtccttgcc cacctcgacg ccacgaccgt tctgtcgctg gcgatctcg aactcgggat 6540
ctacccggcc gtcgacccgc tcgactccac ctcgcggatc cttgacccgc aagtcgtcg 6600

-142-

cgaagagcac tatcaggtcg cccgtgacgt ccaaggatg ctgcaacgct acaagtcgct 6660
gcaggacatc atcgccatcc tcggcatgga cgaactgtcg gaagaagaca agctgacggt 6720
ggcccgcgcc cgaaagatcc agcgcttccct gtcgcagccc ttcgacgtgg cgaaagtctt 6780
caccggctcg gacggcgtgc aggttccgct cgaagacacc atcaagtcgt tcaaggcgg 6840
ggttgcgggc gaatacgacc acctgcccga agcggcccttc tacatggtcg gcggcatcga 6900
tgacgtgatc gcgaaagccc agcgccctcg cgctgcggcg taagggggaa ccatggccga 6960
taccatgcag ttcgatctcg tgtcgccgga acggcggctt gcctccgttgc 7020
ggtccgtctt cccggcgtgg aaggcgatct gacggcgatg ccgggccccatg cggccgtcat 7080
cctctcgctg cgtccggca tcctgaccgt ggtcagcgcc gcgggcacgg ccgaataacgc 7140
cgtgaccggc ggcttcgccc aggtttcggg cgagaagggtg accgttctgg ccgagcgcgg 7200
tctgaccggc gcggaactga ccgcccgggt tcatgccag atgctggccg aggccaagaa 7260
agtcgcggac gccgcgcattc cgtcggtggc cgatgccgc gcgaagatgc tggccgacat 7320
ggaagcgctt ggctcgacata caatctctg acgggacatc ccggccggata tctcgggccc 7380
cggtcatcgc gccggggccc ttgcttttg cttttgtctt gccgcgcgc atattagcgt 7440
gaagggtgcag gcagccggag tgagcgacag gaacggatga agaagtttc ctcgaccgg 7500
atcggcgtgg cccagggatc gctgggtctg tttcggatt atctggacgg cggcgtgatg 7560
tggacggggcg agggccccgcg cgaattgcgc aggctggtgg tgttcgacga agccttccgc 7620
gagatccggc cggcgtcagggt gtcgctgtcg atgtggacata tcgaccagaa gcacaatccg 7680
cgcatggacata ttccgcgcg catggtgcacg gccgagggtc tcgtgatcgt ctttcgcacc 7740
tggggcgacata cccgcgtcgc ccgcgtccgc gcggactggc tggcgatcgg cggctgcgc 7800
aatgacgacg actgggacgt ggcctgatcc cggccggctt gactttccgc ccccccgcgc 7860
cgatggtgcg cgcgactttc ccatccaacg aggcccgcgc gtgcaacaag atgccccccg 7920
ctggcagctc gtggtgatcc tgtggggac gaaatatccg gtgcggaaac tcaacgcct 7980
gatcgagacc gtgtggcccg ggcctcgag 8009

<210> 35
<211> 9810

-143-

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 35

gatatcgccc ttgtcatttt cgattgcgac ggggttctgg ttgattcgga agttctggcc 60
gtggccgtcc tcatcgacaga actggaccgg qcggggcggtgc gggtcgacga gccttcgtg 120
catcggcatt ttctggcccg gagttccccg gctgttcagg aggtcgtgca gcgcagttc 180
ggcgtgaccc tgecccgagac cttccaggtc gaggaacgtg cccggctgtc gtcagccttc 240
gagaccggcc tgcgggcat gctcgccgc gcggagaccg tccgcgcgtc gtcgggtgccc 300
taactgcctcg ccacgtcgag cacgcccggcc cggctcacgc gtcgtgttgc gatcacggcc 360
cttgcggccc tcttcgaggg acgctgcgttc accgcgagcc aggtggcgcc cggcaagccc 420
gcgcggcgtc tggttcgtctcg cgcggcgcc gagatggccg tcgcgcggca acgctgcctc 480
gtgatcgagg ataccgagcc cggcgtgcgc gcaggcctcg cggccggat gcaaggctgg 540
cgcttcaccg gcggttagcca tttcgcaac cgatcccccg aggtgcgcgc cgatgcctg 600
ccgcaccggc gggtcgacag ctgcgaccgt ttctacgaga ccctgcccgg cctgcgcgg 660
gccaagtgcg agaccctgac atgatcgacc ggcccgagag cgagccgacg cccctcgacg 720
atgcccgcgc cgccggctgg ctctattatg tcgcaggcct gactcaggat cagatcgacg 780
gggagctcgac cacctcggtc cagcggcgcc acggctgggt gagccggcc atctccgaac 840
ggctgatcca cgtccggctc gagcaccggg tctcggtgt cctgcacatcg gaagccgcgc 900
tcctccggcg ctgcgggttg aagctggccc gcgtggcgcc gagtctcggttccgagggtgg 960
atccccctgcc ctccatcgcc cccaccggcc cgcggcggat ggagccgggtg ctgcgtcg 1020
acggcccgat ggtgggtggcc ttccggcaccg gccggctgtc gcgcgcacc gtcgaggaga 1080
tgacctcgat ggtctgcgaa cagcacaaga tcgtgtcgct caacggaaat atttctgcgg 1140
atggctcgcc ctccatactac gatgtgatct tccgcacatcg cggccgtgtg cgtgcgcgc 1200
actatccgat gccgatgccc gtcatcgacg aggatgcggc ggagccggag ctgtttcatg 1260
cgctaaagcc cgtgcagtcg gtgcgtcgcc ttgcgcgcaaa tgccgatgtg accttcgtcg 1320
ggctgggaca gatggggcag gacgcgcgcgc tcctgaagga cgggttcatc acgcccggagg 1380

agctgaccga gatgcaggat ctggcgccg tcggagaggt ggcggatgg gtttcgact 1440
cgagggtcg ctacacctgaa accagcatca atcagcgggt tgcggcgtc cgtgtcgaac 1500
tttccgagga tcggacggtg gtcgccatcg ccgtggcag gcgcaagctc gcggcgctgc 1560
acgcaggctt aaggggccgt ctttcaacg gcctgatcac cgacgagttc acggcgcagg 1620
cacttctgtc ctgaagccgc cgaaaggcgc ggcaaaaagt atttgacagg ctggcacccc 1680
tcggtgagta attattcgcc gcacgaaata atgctcaccc tgcaaggccag ggaggatact 1740
gatgaccgca agatttcgca ccctgatggg cgcgtgcgc gtggctgcgc tctcgccgc 1800
cgccggcgcc gaaaccatca ccgtggcgcac tgtcaacaac ggcgacatga tccgcatgca 1860
ggggctcatg tccgagttca acgcgcagca cccgcacatc accgtcgagt gggtgacgct 1920
cgaggaaaac gtgctgcgc agaaggtcac gaccgacatc gccaccaagg gcgggcagtt 1980
cgacgtgtcg accatcgca cctacgaggt tccgatctgg ggcaagcagg gctggctcgt 2040
gagcctgaac gacctgccgc cggagtatga tgccgacgc atcctgcccgc gatccgcaa 2100
cggcctgacc gtcgacggcg agctctatgc cgcgccttc tacggcgaga gctcgatgat 2160
catgtatcgca aaggacctga tggagaaggc ggggctgacc atgcccgcg cccccacctg 2220
ggacttcgtg aaggaagcgg cgcagaagat gaccgacaag gatgccgagg tctacggcat 2280
ctgcctgcgc ggcaaggccg gctggggcga gaacatggcc ttcctcagcg ccatggccaa 2340
cagctacggc gcgcgttgt tcgacgagaa ctggcagccg cagttcgacg gcgaggcctg 2400
gaaggccacg ctgaccgact atctcgacat gatgacgaa tacggcccgc cggcgccctc 2460
gaaaaacggc ttcaacgaga acctcgcgct gttccagcag ggcaagtgcg gcatgtggat 2520
cgacgcacg gtggccgcct cttcgtgac caaccccgag gaatccacgg tggccgacaa 2580
ggtgggcttc gcgcgtcccc ccgataccgg caaggcaag cggccaaact ggctcgggc 2640
ctggAACCTC gcgcgtcccc ccgataccgg caaggcaag cggccaaact ggctcgggc 2700
ctggcgacc tcgaaggact atgcccgcgt ggtggcctcg aaggaaggct gggccaacgt 2760
gcctccgggg acgcggacgt cgctctacga gaacccggaa tatcagaagg tgccgttcgc 2820
gaagatgacg ctgcacagca tcaacgcggc tgacccgacc cacccggcgg tcgatccggt 2880
gccttacgtc ggtgtgcagt tcgtggcaat ccccgagttc cagggcatcg gcaccgcgt 2940

-145-

gggccagcag ttctcgccag ccctcgccgg ctcgatgtcg gccgagcagg cgttcaggc 3000
ggcccagcag ttcacgacgc gcgaaatgac ccgcgcgggc tacatcaagt gagccttcc 3060
gcggggccggc cctgagcggc cggccgcac cgcttgcgc ttccggccgt atccgcccga 3120
ggccttccg ccccatcagc cccgaggcct ccatggcgcac ccagcattca aagactgcgg 3180
cgcgtctgat gattccccg gccgtgatcc tcctgttccgt gtggatgatc gtgccgctgt 3240
cgatgacgct ctacttcagc ttccctgcgt acaacctccatgcggggg atggagagct 3300
tcacccggctg ggacaattac tattacttcc tgaccgatcc ggccttctcc gcggccctga 3360
ccaacacgat cctcctcggt gtcggcgtcc ttctcatcac cgtgggggc ggggtcctgc 3420
tcgcgcctcct gctcgaccag cccttctggg ggcaggcat cgtgcgcgtg ctggtgatcg 3480
ctcccttctt cgtcatgccc accgtctcgg cgctggtctg gaagaacatg ttcatgaacc 3540
ccgtgaacgg gatgttcgcc catatcgccc gcgggctcgg cttccgccc ttgcacttcc 3600
tgtcgaggc gcccgtggcc tcgatcatcg gcatcgtggc ctggcagtgg ctgccttcg 3660
ccacgctgat cttctgacg ggcgtccagt cgctcgaccg cgaggcatg gaggcggccg 3720
agatggacgg cgcctcgccg ctcgaccggc tcatccacat cacctgccc cacctgacgc 3780
gtgccatcac cgtgggttg ctgatccaga ccatcttcc tctggcgtc ttgcggaga 3840
tcctcgtaac gacgaacggg ggacccggca cgcctcgac caacatcacc tacctcgct 3900
atgcgcagtc gtcctgaat tacgacgtgg gggcgggtc ggcggccggc atcgtcgccg 3960
tggtgctcgc caatatcggt ggcgttcc tgcgtgcgt gatcgcaag aatctggacg 4020
cctgacatgt cacgcccac ctcaacccgc cgcacgctga tcgtcacgct cgccgcctgg 4080
acgatagcct tcctcatctt cttcccgatc ctctggacgg tgctgtatcg cttcaaatacg 4140
gaaggagacg ccatcaaggc gcccgtggcc atgcgttctt cggactggac cctgcaatcc 4200
tacggccatg tgcaggaacg gtcgaaactac gcccggact tcgtatcgatc ggtggatcg 4260
tcgctgggtc cgaccctcggt ggcgtcgcc atcgtcgatcc cgcggccctg ggcattggcc 4320
ttcgtggccgg gcccggggac gaaggacgtg ctgatgtggatc tgctgtcgac caagatgt 4380
ccggcggtgg ggcgtgtcat cccgcttat ctgatcttcc ggcacacggg cttctcgac 4440
acgcggatcg gcctcgatcg cgtgctcaccg ctcatcaacc tgccgatcgatc ggtctggatc 4500

-146-

ctctacacct acttcaagga gatccgggc gagatcctcg aggccgcgcg gatggacggg 4560
gcgacgctcg gctccgagat cctctataatc ctcacgccga tggccgtgcc gggcatcgcc 4620
tcgacgctgc ttctgaacgt gatcctcgcc tggAACGAGG ccttctggac gctgcagctg 4680
accacctcgc gggcggcccc gctcacgcag ttcatcgca gctattccag ccccgagggc 4740
ctcttctacg ccaaactgtc ggccggctcg accatggca tcgcgccat cctgatecctt 4800
ggctggttca gccagaaaca actcgtccgc ggcctgacct tcggcgcggtaa gaagtgagga 4860
ccacatgggc aagataaccc tgcgcaacgt ccagaaggcg ttcgggtgagg cggtcgtcat 4920
cccctcgctc gacctcgaca tcgaggatgg cgagttcgtc gtcttcgtcg gccccctcgaa 4980
ctgcggcaaa tccacgctcc tgccgttatcg cgcgggcctc gaggatgtgt cggacggcca 5040
gatcatgatc gacgggcgcg acgccaccga gatgccgccc gcgaagcgcg gcctcgccat 5100
ggtgtttcag agctacgcgc tctatccgca catgacggtg aagaagaaca tcgccttccc 5160
gctgcggatg gcgaagatgg agccacagga gatcgagcg cgctgtcga acgcggccaa 5220
gatcctgaac ctcaccaact atctcgaccg ccgcggccgc cagctctcg gcgccaaacg 5280
gcagcgggtg gccatcgccgc gcgcctcgatcg gcgccggccg gcccgcctcc tggtcgacga 5340
gccgctctcg aacctcgatg cggcgctcg ggtcaacatg cggctcgaga tcaccgagct 5400
gcaccagtcg ctcgagacca cgtatgtcta tgcacccac gatcaggatcg aggccatgac 5460
catggccgac aagatcggtt tgctgaacgc gggccggatc gagcaggatgg gctcgccct 5520
caccctctac cgcaatccgg cgaacctt cgtggccggc ttcatcgca gcccgaagat 5580
gaacctgatc gaggggcccg aggccgccaa gcacggcgcc accaccatcg ggatccgccc 5640
cgaacatatc gacgtcgcc gcgaggccgg ggcgtggag ggcgtggatcg gctgtctcgga 5700
acatctcgcc tcggacacgt tcctgcattgt gcatgtcgatcg gggatgcggc ccctcaccgt 5760
gcggacgggc ggagagttcg gctgcacatca cggcgaccgg gtctggctca cggccgaggc 5820
cgacaagatc caccgttcg ggcggacgg aaaggcgctc tgacatgcgg ctcgacggca 5880
agaccggccct catcaccggc tcggcgccgc gcataggccg cgccttcggc gaggcctatg 5940
tgcgtgaagg cgcgcgcgtg gccatcgccg acatcaacct cgaggcagcc cgcggccaccg 6000
cgcccgagat cggccggcg gctgcgcca tcgcctcgatcg cgtgaccgat caggccagca 6060

-147-

tcgaccgctg cgtggccgag cttctcgacc gctggggcag catcgacatc ctcgtgaaca 6120
atgcggccct cttcgatctg gcgcgcatcg tcgagatcac ccgcgagagc tacgaccggc 6180
tgttcgcgat caacgtctcg ggacgcgtct tcatgtatca ggcggtggca cgggcgatga 6240
tcgcggcgg ccggggcggc aagatcatca acatggcaag ccaggccggc cgccgcggcg 6300
aggcgctggt gggcgcttat tgcgcgacca aggccgcgt catctcgctc acccagagcg 6360
cggggctgaa cctcatccgc cacggatca acgtcaatgc catcgccccg ggcgtggtgg 6420
acggcgagca ctgggacggg gtggatgcga agttcgccga ctacgagaac ctgccccg 6480
gcgagaagaa gcgtcaggcgc ggccgcggcgg tgcccttcgg ccgcattggc cgccgcgagg 6540
acctgaccgg catggcgatc ttccctcgca cgcccggagc cgactacatc gtggcccaga 6600
cctacaacgt ggacggcggc aactggatga gctgaggccc aaggccggc cctccccccg 6660
tcgaacgcgc cccctatccg aggtaatccc atgaccgcgt ccgtcaccgg tccctcctat 6720
gaccgcaagg cgctcactcc cgccatcgatc catatcgccg tcggcaactt ccaccggcg 6780
catcaggcgg tctatctcgatc cgatctcttc ggcgtggcgg agggccacga ctggccatc 6840
ctcggcgccg gcgtccgccc gaccgatgcg cggatgcgcg aggctctggc cgccgcaggac 6900
aatctctcgatc cggtgatcgatc gctcgatccg gcggggccacc gggccggca ggtggggcg 6960
atggtgggatc tccctccggatc cgaggccgac aatgcggccc tgatcgaggc catgtcgat 7020
ccgcgcattcc gcatcgatcc gctgaccgtg accgaggccg gctattatgt cgatgcctcg 7080
ggcgcccttcg atccgacgca tcccgatatac gtggccgatg cggcccatcc tgccgcggccc 7140
gcgaccgcct tcggcgatc cctcgccgccc ctccgcggcc gccgcgacgc gggggttaca 7200
cccttcaccgc tgatgtcctg cgacaacccgc cccggcaacgc gccatgtcac ccgcacgc 7260
gtggtggggcc tggccgagct ctacgacgccc gagcttgcgg gctgggtgaa ggcgcaggatc 7320
gccttcccgatc acggcatggt cgaccgcattc acccccgcca ccggccggca cgagcgcgaa 7380
ctggcgccagg gcttcggccct cgccgatccg gtggccgtca cctgcgagcc gttccggcag 7440
tgggtgatcg aggatcattt ccccgccgga cgcccccgc tcgagaaggt gggcgtgacc 7500
ttcaccccgatc atgtccatgc ctacgaggccg atgaagatcc gcattcgaa cggggccat 7560
gcgggtgatcg cctatccgtc ggccgtcatg gacatccagc tcgtgcacgc ggccatggcc 7620

-148-

catccgctga tcgcggcctt cctgcacaag gtcgaggctcg aggagatcct gccccatgtc 7680
ccgcccgtgc ccgacaccag catcccgac tatcttaccc tgatcgagag ccgcttctcg 7740
aaccccgaga tcgcccacac gacgcgcagg ctctgcctcg acggttcgaa ccggcagccg 7800
aagttcatcg tgccgtcgct gcgcgacaat ctggcggcgg gcacggtgcc gaaggggctg 7860
gtgctgtctc cggcgctctg gtgccgctac tgcttcggca cgacggactc gggcggtgtg 7920
gtcgagccga acgatccgaa ctggacggcg ctgcaggacc gggcgcggcg ggcgaaggag 7980
acgccccccg agtggctggc gatgaccgaa gtctacggcg atctggcgca gaacgatctt 8040
ctggcggccg agttcgcggc agccctcgag gcggtctggc gcgacggggc cgaggcggtg 8100
ctgcggcgct tcctcgcggc ctgatccgca gggcccagcc gctcgagca ccgaagcgga 8160
gccccctgccc cttgcggcgc accgtgaggc gaaacgaccg ggccaccccg gggccacccg 8220
ctcggttaaca ccatggtatac gcgcagaataat gcccgcgcct ctgccgaacg ggcccggtg 8280
ccggcgagg cgccggactt gtcaaggcgg cggccctcgg gtagagaggg cgggcgtggc 8340
cccgttagca cagtggtagt gcagcgctct tgtaaagcga aggtcggtcg ttcaaatcg 8400
acacggggca cgcgatcctc cctccgcata ggcgctcgcc cccggctcgg actgcctctt 8460
cggaaggcac ctgcccgtt gtgcggcgcg cccttcctc gcttcccaag cgtctgtcac 8520
ggcttgcgga aagccgtcg cctcggttct ggacagccgc cccttgcggg gtaatctgcc 8580
ctcagcgccgc agccggcgga cagaagccgg cccgccacgt ccacaaggga ggaatgccat 8640
ggatcgctgt tcattcatca ccaaggccgc cgtggaggg gccgcccgcga ggcgcctcgc 8700
cgcgccggcg cttgcccagt ccgcgcctaa ggtcacctgg aggctcgct cctccttccc 8760
gaaatcgctc gacacgatct tcggcggcgc cgaagtgtcg tcgaagatgc tctccgagac 8820
caccgacggc aacttccaga tccaggtctt ctcggcgggc gagctggtgc cgggcctgca 8880
ggccgcccgcac gccgtgaccg agggcaccgt cgaatgctgc cacacggctcg gctactattta 8940
ctggggcaag gatccacat tcgcgtggc cgcggccgtg cccttcgcgc tgtcggcg 9000
cgccatcaac gcctggcact accatggcgg cgggatcgac ctctacaacg atttcctcgc 9060
gcagcacaac atcggtggct tcccggcgga caacaccggc gtgcagatgg gggcggtt 9120
ccggcgccgag atcaacaccg tggccgacat gcagggcctg aagatgcggg tcggcggtt 9180

-149-

tgccgggaag gtgatggagc gtctggcgt cgtccgcag cagatcgccg gccccgacat 9240
ctatccggcg ctggagaagg ggacgatcga cgccgaccgaa tgggtcgcc cctatgacga 9300
cgagaagctc ggcttctca aggtggcgcc ctactactac tatccggct ggtggaaagg 9360
cggcccgacc gtccattca tttcaacaa gagcgcctac gaggggctga ccccgcccta 9420
tcagtcgctg ctgcgcaccc cctgccacgc ggccgatgcg aacatgctcc agctctacga 9480
ctggaagaac ccgacggcga tcaagtcgct ggtggcgac ggaacccagc tcaggccctt 9540
cagccccgag atcctgcagg cctgtttcga ggccgcgaac gaggtctatg ccgagatgga 9600
agcctcgaac cccgccttca agaagatctg ggactcgatc aaggccttcc gctccgagca 9660
ctacacctgg gcgcagatcg ccgaatacaa ctacgacacc ttcatgtgg tgccagcagaa 9720
cgccggcaag ctctgagccc gagcgcgcg cggaaagagga ccccgagcc gcgttccggg 9780
gtctttcat gggcgacagg gccccggcg 9810

<210> 36
<211> 1886
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 36
tgagtgtcta tttttttcg gttttttta agtgtgaatc acatggtagt gagcagttgt 60
cttcaatgtg accaaccatc ccaaggctct aattcaacgt ttgggtgtgg gggcccgctg 120
gcagctgtgt gtgccactgg gctgttggtg ttgggtctt actccccctc atcgcaaacg 180
gctaatttgtt cggcacaggg tatttccaca aaggcgctgt atccggcagt gcctgtgcct 240
tccactctgc tgccttggaa cgcgcctgccc aaacaccaggc tgcatgtttg gagggcacaat 300
gcgatgtcg aggccacaac aaacaattca ttcaaacagt cattatttggt gtacaatgcc 360
atctcctcca tttggcttca actggctggt gtggccgcca ctttcttgc atttggagct 420
ttgatggcag ctgtaacgca acgcaaggag atcgccgtct tctccgcctc gggtcaggct 480
gctgagccgg aggccccggaa gcccccttgc cgtcttgc tgccaaacct 540
aagccgccttctc tctccaccccc gccaattcc ttcagcaaca tcttccaggc gcctccatcg 600

-150-

ctgcgcacgg actccaccta tggccgaggc ccgcgctcga ccagttcac cgacatcagc 660
aactggccct ccaacaacgc actccgcaac ccccagtctgg tgattgacat cgggggagga 720
gtcgacttcc tgggggacag aagcccttga aacccttca cgcggctgct ggggtccccg 780
agctccaccc tcagcaacct cggcatggc ctaggcctgg ggctggcaa gggcaaggc 840
ttcggcaagg gcttcggcaa aggccggggg ttccccgtgg aggaggaggt ggaggaggag 900
caggaggtgc tgtcggtggc cgaccgcccgg cggcgctgg cggaccccgaa cggccggccgg 960
atgaacgagg acatcaagta cccgcagctg cggctggtgc gggccgtgcc gggccggccgg 1020
gacgagaagc tcggtgtgat gtcgaggcag gaggcgctgg agctggcgga ggcggaagac 1080
atcgacctcg tcctcgtag catcgacacc gaccccccgg tggccaagct agtcaattac 1140
tcgaagttga agtacgagtc cgagaagaag aagaaggaca gccacaagaa ggggaaggtg 1200
aaggaggtga aggagctgaa ggtgtcccat aagatcgccc acgacgacta cgacgtccgc 1260
gtgaagcagg cccgaaagtt cctggagggc ggccaccgca tcaaggtgtc gatggagttc 1320
aaggggcgcg agaaccagtt cgtggagatc ggccgcgcgg tcatgaagcg cttccagaac 1380
gacctggcgaa acatggcaa ggccgacgccc gtgccaaga agctcggcac ccggctgatc 1440
ctgaacctgg cccggccgg ggaggcgctg aaggtgattt cggagcggag ggcagagcgc 1500
gacagaaag ccgcggctga ggaggagggg gagggcgacg acctcgactt cgtggacgag 1560
aacgaggacg aggatgtgaa gggggagggc gaggaggaag aggccgagga gctggaggag 1620
gagacagcg aggggacgga ggtgccaacc cgcagctgat cgccgatccg cgggggacag 1680
ccacctcccc cccggctcc ctgccccggg ccggcaccat ccgtcggtgc ggtgcggcgc 1740
tgccatcaac ggccgtcctt gagcttaatg ctccccctt ccgtggccc gcggcggctcg 1800
ccaggttgct ggctggctg cccgcagctc ctccccctccc cgactgacac agtgtggatg 1860
accgtgatgt gcgcctttc gccttc 1886

<210> 37
<211> 3015
<212> DNA
<213> Unknown

<220>

-151-

<223> Description of Unknown Organism:Unknown

<400> 37

ccgctcatct ccaggcctcc ctgagtgcgt acccgagagc ggcaagtaga gaaaggaaca 60
cagatacagc accatggcct ctaggctcgt ccgtgtgctg gcggccgcca tgctggttgc 120
agcggccgtg tcggtcgacg cgccgttcgt ggtgcgcatttgcgtacaccgcca 180
cggtgcgcgc agcgcactca tcgacgacaa cacgacggag atttgtggca ccctgtaccc 240
gtgcggtgag ctgaccggcg agggtgtcga gatggtccgt gctatcggcg agtttgcgg 300
cagccgctac aacaacctct cattggtggaa gagcccttc ttcccgtcga cgccgtacaaa 360
ctccctgttc gtgcacacac gctccaccca cacccagcgc accatccaga ggcgcgaccgc 420
ctttctgcgc ggcctttcc aggacgacta cttctacccg gtgggtact cgaccaacag 480
aacgaccgaa acgctgctca gcactgacgc ggtgccgtcc gtggggcc gtagctggct 540
cgacaaccccg gcgctgcacg ccgcctcaa cccggtgatc gatgagcacc tcaagctggaa 600
cgccatccag agcgctgcca aggacgcatg ggtcgagggc ctgtgcgcgg actacaacgc 660
ccgcaccaac tgcgtccctcg acatgtacga cgtggccgccc gccttcgagg ccggccggcg 720
tcttgacaat gccaccaatc tcaaggcggt gtatccggc cttcaggagg tgaacgcgc 780
ctggttcaag tatgtcttca gctggAACCA cacgagcaag ctcgatctca cgcaaggctc 840
ccgcctgcacg aaccttgcgc agacgggtctt ggcacacatc aacgcccacc gcctctctcc 900
gtcgtaaac atgttccagt acagcgctca cgacacaacg gtgactccct tggctgtcac 960
gttcgggtgac cagggcgaga cgacgatgcg tccgccttc gcggttacca tcttcgtggaa 1020
gctgctccag gacaccgcag atgcccagtgg ctggtaacgtg cgcctcatcc gcggcaaccc 1080
tgtgaaggca gcccacggca cctatgtctt ccaggagtctt ggtatcaagg catactgcat 1140
cgatgaagcc gggaaacaagt acctcgacaca caccggcatc tgcccgctga atagcttccg 1200
ccgcatggtc gactactcgc gccccggcggt ggctgacgggt cactgcgcac tgacacagac 1260
tcagtagac aacatggatt gcccgcgcac tatcgccggac aacaagccgg tgccgtcgac 1320
ctgctggctc taccgcccacg tttgccttag caaggcatgc cggacagct acattctctc 1380
cgccggtcgac caccagtgtt accccggcc cgacgttacg aaccccacca gcagcagcag 1440
cagcgagggtt accaccacca gcagcagcga gggtaaccgcc accagcagca gcgacgttac 1500

-152-

caccaccaggc agcagcgagg gtacccgcac cagcagcagc gacgctacca ccagcagcag 1560
cgagggtacc gccaccagca gcagcgacgc taccaccaggc agcagcgacgc acgctaccac 1620
caccaggcagc agcgagggtta ccaccaggcag cagcagcagc gctaccacca gcagcagcga 1680
cgctaccacc accagtagca gcgagggtac cgccaccaggc agcagcgacg ctaccaccac 1740
cagcagcgag ggtacccca ccaggcagcag cgacgttacc accaccaggc gcgagggtac 1800
cgccaccaggc agcagcgacg ctaccaccac cagcagcagc gagggtacca ccagcagcag 1860
cagegacgct accaccaggc gcagcgaggg taccggcacc accaggcagc acgctaccac 1920
cagcagcagc agcgagggtta ccaccaggcag cagcagcagc gctaccacca gcagcagcga 1980
cggttaccacc accagcagca gcagcgaggg taccggcacc accaggcagc acgctaccac 2040
cagcagcagc gagggtacccg ccaccaccag cagcagcagc gtcaccaggc gcagcagcga 2100
gggttaccacc agcagcagca gcgacgctac caccaggcagc agcgagggtta ccggccaccac 2160
cagcagcgac gtcaccacca gcagcagcagc cgagggtacc accaggcagca gaagtgacgc 2220
taccaccaggc agcagcgagg gtacccgcac caccaggcagc gacgctacca ccagcagcag 2280
cagcgagggt accaccaggc gcagcagcga cgctaccacc accaggcagc agggtaccgc 2340
caccaccaggc agcagcagcta ccaccaggcag cagcagcgag ggttaccacca gcagcagcag 2400
cgacgctacc accaccaggc gcgacgttac caccaccaggc agcagcagc agggtaccgc 2460
caccaggcagc agcagcagcta ccaccaccag cagcagcagtt accaccacca gcagcagcag 2520
cgagggtacc accaccaggc gcagcagcag cagcagcaaa agcacaagtt catcgatgt 2580
cctttccttc aaaaagcccc cgaactggag cccgcgcgtt ctctcgccgg aaagggggccg 2640
ccacattgcc ggggacatca tccgcgcgt gacgaacggt gttacgatcg gtgcgggtgt 2700
ccgaaagcac gatgagtaca gccggcaccg ccaacagtag cacaacggca tgtaacttt 2760
tttgtcatgt ttgaatggag aggaggcttc tgtacagcgt acattgtttc gagaaggat 2820
cacaaccgct cgttcaccc cctgtcatctt ttcattttga tctccgtcgt ctcatactgc 2880
ctttgtgggc tctctctggg tgtggcgct tgtgcgtgtg tcgctgtaaa gtcgttgacg 2940
ccatcgctct tacctgtggg ctatttttt aattatgtt tattattact tccctctctg 3000
cgcgccctc tgca 3015

<210> 38
<211> 38186
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 38
gatccttcct gccttcccg gcgtctgggg ctccaggcgc cttggcttg cagattgatc 60
tccctgatct ctgcctccat ctgctcacag cttctcccc tgtgtgtctc tgtctttct 120
tgtaaattca tccgtcgttg gatcagggcc caccgggttc ctctggcct cgcctaact 180
ggccatgtc tgcatgaccc ctatccac ataaggtctt attcacagga accgggggtc 240
aggatgtcag cctgtcttgc tggagatgt agttcaaccc acaacacaca tcaaacagtt 300
attgagcgcc gactgcgtgc cctgccgtgt gcttgaaggt cccaccctca gaaagcgggg 360
cctagggatg cggccgtga tcacgcaggc agcagagagc agctctggga agcggggagg 420
gacgaggacg gggagggcgc atcagcaagg ccgtgtgtga gccaggcagg gtgtccccgg 480
ttagcacct ggctcgccca gaggccccga ggaggggtg gaggagctgg gcgaggaggc 540
ggcaggacg ggcctgacac tagggacaccccggg aatgcctctg ggggggcgtg 600
tacaccgtt gctcccgatgg ggcacacact gcggttcgct tcgccaagaa ttttaattt 660
catttgcata ctacggtttc cattcattca ttgttagaga tataacactc agaccacaaa 720
atgcataaaa tgcggggct tttagtatta acagagtgt gcacccgata ccacagcctc 780
actccagaac attctcatgg gccccaaagg agacctgggg ttttagtcac cagtcactc 840
cccgccccca gcccctggca acccacgcta cttagtcatt atttaggtgt ttaggagttg 900
caaagtcaaa tctttaaacc cacatatggc caggcgttgtt ggctcacgccc tgtaatccca 960
gcactttcag agggcggac gggcagatca cctgaggatca ggagttcgag accagcctgg 1020
ccaacatggt gaagccccgt ctccactaaa aataaaaaat tagccggcg tgggtgggg 1080
cgcctgtat cccagctact ctggaggctg agacaggaga atcgcttgc cccaggaggc 1140
ggcggttgcgatgtgcccggatgtgtccac tgcactccag cctggacaac agagcgagac 1200
tccgtctcaa aaaaaaaaaaa agtaccaaaa agtgccccag gtcataaggg cacagctcga 1260

-154-

tagctggtcc ctaaaaggaa cgtggtgtaa ccaccacaca gaacgaagct ggaacgttcc 1320
tgccgtcctt agaagctgcc tttgctaagg ggaattgccc tgacttccca caccattgat 1380
tcatctccag acccttggtt ttcatgttga tttttcaaaa atcacctgat agtctgaccg 1440
aatgttagctt tccactggtg tgtgtgtgtg tgtgtgtgtg tgagagagag 1500
atggagtctc gctctgtcac ccgggctcca gtgcagttgt gtgatcttgg ttcactgtaa 1560
cctcctcctc ccggggttcaa gagactcgta cctcagcctc ccgagtagct gggattacag 1620
gcacccgcca ccacacccag ctaattttttt gtatttttag tagagatggg gtttcaccat 1680
gttggccagg ctggtctcga actcctgaca tcaggcgatc caccacett ggcctccag 1740
agtgcgtgggta ttacaggtgt gaggcaccac gccccgcctt attttcccc cattttcttt 1800
ttttttttttt ttgagtcagg gtcttgttct gcgcgtcaggc tggagggcag tgggtgtgggg 1860
atcacggctc actgcagcct cgacttcctg caccaccacg cctggctgtt tttttttttt 1920
ccggtagaga cgggggtctt accgtgttgc ccaggcttgtt ctagaactcc tgggctcaag 1980
cgatcctccc gcctcggctt ccgcaaatgc tgagatcaca cgcgtgagcc cccgcacccg 2040
gcctccttcc caccgtctttt gtctacagcc gcccctctg gtccgattgtt attggcagat 2100
gtcgccaata cggtgtcaaa cggcgaagggg gcactgagcg tttttctttt ctcccgtcct 2160
tggcggcagc agctcggttc cggctacggg gctgagcccg tctctcagac gaggaaactg 2220
gggtccgaga ggtgagccgg tcccagaggc agggcgaggg ggaagcggga gtgggggtccg 2280
cagcggaccc agccctgect cccccctgca ggagatcgatc aacttcaact gccggaagct 2340
ggtggcctcc atgcccgtgt tcgccaacgc cgaccccaac ttcgtcacgg ccatgctgac 2400
caagctcaag ttcgaggtct tccagccggg tgactacatc atccgcgaag gcaccatcg 2460
gaagaagatg tacttcatcc agcacggcgt ggtcagcgtg ctcactaagg gcaacaagga 2520
gatgaagctg tccgtatggct cctacttcgg gggtgagctt gagggggggcg cgcctggagg 2580
gggaggggggc acgcgacccc cgcgggtgtgc agagccaggg ggccggggcc ggggcccgggg 2640
ccggggatgg ggatggggat ggggatgggg ccggggatgg ggatggggat ggggatgggg 2700
ccggggatgg ggatggggat ggggcccgggg atggggatgg ggccggggat ggggcccgggg 2760
atggggccgg ggatggggcc ggggcccggca ccagggagag cctgggtggg aagcgcccac 2820

-155-

gctggccaag gtgcagaggc cggccgtgt gcctggcg ggagggccgc ggcccggcc 2880
tcgtccagca accccccct gcgccacg tgcagagatc tgccctgctca cccggggccg 2940
ccgcacggcg agcgtgcgg ctgacaccta ctgccgcctc tattcgctga gcgtggacaa 3000
cttcaacgag gtgctggagg agtacccat gatgcggcgc gccttcgaga cggtgccat 3060
cgaccgcctg gaccgcacg gtgagcggc cggggcggtg gccggggcgg gtggccctggc 3120
gggggagggg cgtggccaag gcatcaggag agtggcttgg acagtggcag gggaaaggc 3180
gtggctgtgg catcagggc acggttgggg cagagacgtg gccaaggcat caggagtgtg 3240
gccatggcag cagggcggtg gctggggcag gggcagcggc tggccgctcc taggaccct 3300
ttgggtctag aggctgattt tctgacctat tgcctactt cagccagagg cagcctgtt 3360
cccaagggag ggaatgcaca gggtgtttgc gttgtgccg aatgctcggt gacgacactgc 3420
tgtgtgctgg gggtgcaggg gacagacccg gggcccaact cagactccca gggaggctta 3480
tggactggtg atgaaatcac acacgactgg gctgtgtgcc agcagggcag gtggggccgg 3540
tgggcttccc tgagttggga atgcagagtg gagaccaggg taagggatgc catgtggaaa 3600
cggggagggaa gatgtgttcg tggagtggac acagcacatc ccaaggccct gaggtggaaa 3660
agaggcctag agtccagaga gccagggagg cctggaggag gttgggaag aaggggaggc 3720
cagacacaca gggcccaactg ggcggcaggg agagtttaga ctaaatcagg agcatcaggg 3780
agccatggag gttcttaggt gggcgagga cctggtcaga ttgtatccgc caaggcggc 3840
cgtgtccagg agggagacgg tggactggcc tctcaggggg gcagtctctg gggcagggag 3900
cggcagagcc ctgatgactg gatgtaggcg ccagagagat ggcggctcat gctgctgttc 3960
gtggaaatgg gaatgaagac catggctgaa acgcaggaca ggtgcgacgg agtgggtgtca 4020
gggagctccc tgggtgtacag taggaagctc tccacaactt gctctataca gtgagtatgc 4080
aaccggttcc tgagtatcag gtgcttaggt tataacttct gtatacagca ggtgctcagc 4140
acaggctgtg tacaggcagg tggtttcgggt atgcctgtgg cacactggag gcagtcattta 4200
cataatcagc gtatacaggt ggtacacatg catacttggt gcacagtgtatc 4260
tgtacacagc aggcattaaa tacctgttta ctgccaggcg cggtggctca cgcctgttagt 4320
cccagcactt tcggaggcca aggtgggtgg atcacgaggt caggagattt agaccatcct 4380

-156-

ggctaacatg gtgaaacccc gtctctacta aaaaaaaaaat aaaaaaaaaatt agccgggtgt 4440
ggtggcgggc gcctgttagtc ccagctactc gggaggatga ggcaggagaa tggtgtgaac 4500
ccgggaggtg gaccttgcag tggccgaga tcgcgccact gcactccagc cccggcgaca 4560
gagcaagact ccgtctcaga aacaaagcaa aacaaaagcc ctgcttctg tatgcaggtg 4620
cttcatgcat gctggctgtg catagcaggt gctcagcctg tatatggcag gtactcaata 4680
tccatactat aggccagaga tgctacatat gtgcttattt tatacagtag gtggtaaatg 4740
catgcttgct ctacacggca agcaactgtgt ggcgcaccgc ggtgcagagt aggtgctcgg 4800
tgcccgctgt acgcagcagg cgctccctgt gcacacgcta acgccccctc tcccgcagggc 4860
aagaagaatt ccatccctgc acacaaggta cagcatgacc tcaactcggg cgtattcaac 4920
aaccaggaga acgccccatcat ccaggagatc gtcaagtacg accgcgagat ggtgcagcag 4980
gccgagctgg gtcagcgcgt gggcttcc cccggccgc cccggccgc gcaggtcacc 5040
tcggccatcg ccacgctgca gcaggcggcg gccatgagct tctggccgca ggtggcgcgg 5100
ccgctcgtgg ggccgctggc gctcggctcg ccgcgcctcg tgcggccccc gccccgggg 5160
ccgcacctg ccggccgcctc acccgcccccc ccgcggccccc ccagggccccc gggcgccccc 5220
gccagcccccc gggcaccgcg gacctcgcccc tacggcggcc tgcccgccgc ccccttgc 5280
ggccccccccc tgcccgccgc ccgcctgagc cgccgcgtcg gcggactgtc cccctcgca 5340
ccctcgctgc ctcacggcgc cccggcccccc gcggccctcca cacggccggc cagcagctcc 5400
acaccgcgt tggggccccac gccccgtgcc cggggccccc cgcccgcccc ggaccgcagg 5460
gactcggcct cacccggcgc cccggccggc ctggaccccc aggactccgc gcgcgtcg 5520
ctctcgctcca acttgtgacc ctcgcgcacc gccccgcggg cccaggccgg cggggggcgg 5580
ggccgtcattc cagacccaaag ccatgccatt gcgcgtcccc gggcccccagg ccccccagaa 5640
gccatagacg agacgttaggt agccgtagtt ggacggacgg gcaggggccgg cggggcagcc 5700
ccctccgcgc ccccgccgt ccccccattt cccggccgc ccaccccat cccctcgcc 5760
cccgccggcg gcctcgctg cgagggggct ccctcacct cgggcctca gttccccag 5820
ctgttaagaca gggacggggc ggcccagtgg ctgagaggag ccggctgtgg agcccccccc 5880
gccccccacc ctcttaggtgg ccccgatccg aggaggatcg ttttctaagt gcaatacttg 5940

-157-

gccccccggc ttccccgtgc cccccatcgcg ctcacgcaat aaccggcccg gccccccgtcc 6000
gcgcgcggtcc cccgggtgacc tcggggagca gcaccccgcc tccctccagc actggcaccc 6060
agaggcagggc ctggctgcgc agggcgcggg ggggaggctg gggtcccggc gccgtgatga 6120
atgtactgac gagccgagggc agcagtgcggc ccaccgtggc ccccccacgccc ccattaaccc 6180
ccacacccccc attccgcgcataaaacgaca gcattggcgca caagcctggc cgctgtgtat 6240
tgccccgagac ccgcaggggcg tgccacccttc ctgaagacag tggctcctgg gggtggcaaa 6300
agagctttat ttacacactg acaaggctca cgggggtgtca gctgaagaag tagtgttggaa 6360
gcttcacctg ctccaggtcg aaggcccctg cggaggaagc agagcggacg gcgtgggtgg 6420
cgggaaagcc ccgccttggc ccgcagttcg agccaccctt gcgaggctgc ccaccgcct 6480
acctggcttg ggcaccgcct gcagtgtctc cttcagctgg ctggcctcca agatcttctg 6540
gggcctgygg ttggaagcag ggtgggggtga ggctgaggcc aggttttggg gtgggggggg 6600
aatccaggtta gttgggtca gggagcgcct tactcagagc agaaccgcctt gaccaggaat 6660
ctggacaggt cctgcaggat gggctcgctg tgcaagcggc caaactgctc ccggcacacc 6720
tgggcaggag tcagaggatc cccaggggtg atcaggcagg ctctggcac cacccttacc 6780
caacgccccca gtgtgggggc cccacccatg ggtggactga ggctcagact acggggcac 6840
ctggttcatg acggagacat cagctgcgtg agtccagtaa cagtcgtgca cagagacgaa 6900
ggtcaggccc ttccctgtggc agagcggagg actcctgaag ggaggggagc tcacagggcc 6960
acccagtgac cagcatcctg gccctgcgtc cagccccctc cacttgaggt ccaggaaagc 7020
ccaccctcct gcaggcctcg ccccacccct cgcggccccc ctccccaaac atcctgggtt 7080
aggtatcagt acagggggag gaaatgttcc cagaaggctc ctcggccac ccctgcccgc 7140
ccccacgctg ctgtgggagc ctcagctccg agggcggcta cgaggtcccc tcctgccagg 7200
gccaccaccc cgcatcctga gcattccag ctccctggc cgtagattc tgctggaaacg 7260
acctccacgt gctccagatc taaccacaca tcgcggtgcc aagaaatgcc cagcaggaag 7320
gggcagcggc catgctcgcc tctccctgtc gggccacagg aggggagctg ccaggaccac 7380
ctacattcgg ggcacacagc ctcagggcct ctacacagggc cccacagaca cagcagatcc 7440
actctgcccc gtcctgcccc ccagctagac ccagccttgc cagctgtgcc ctgctagcca 7500

gaagacgccc ctgggaggcg agcggcaccc acgccgtccg gagacgccc cctgttagcag 7560
tgcaaaaaaa tgaggcatcat gtgggaggag tccagcgagt ggatgaagtt gggcgaaaag 7620
ccgttcttct gcttacgtgt gttggcttt ctgaggacgg aacaggtgcc ggtggggcg 7680
gcccagggac acccctaact ggccgctgtc tccaccgtgg ctgctctcca gaccccccgc 7740
caggccccag cccggggccc caactcaccc gctgatgtct ccgttgtgg ttaggtgat 7800
gctctgaatt ccaccccta tttgctaaaa agggaaaggg gccggtgagt cccacccgag 7860
gcccagcaca gtgggtgtac attgaggtgg tggtacactg gggtagtggc acgcttagat 7920
ggtggcacac tggcgcgaaa tgggtggca cactgggacg gtggtacact ggggtggtgg 7980
taacgtgggg cactggtaca ctgggacgt gttacactgg gatggtggca cactggggag 8040
ggatgggttg gtacactgac cttgaccctg gagtccaggc gatagggctg gatgacgggg 8100
acgcccaggg gtgtgaccca ctccaccaca gagccatgt gggagatgag gcgggcactc 8160
tcggtcagcc agtgctgtgg gacacaggcc gtctcaggc agggggctca ggccggggat 8220
cccggtccact tgcttaggga gtcctggccg agcggggaca ggacaggacg tacctggatg 8280
gccccgggtcc ccgagaacat ctccctgtaga ctcttgaaga cctggcgtac gagatagtga 8340
gaggcctccc acacgaactc ctgcagaggg cgggcagcag gtgcaggtcc tcaggggctg 8400
gcccgttcaac gcccctactcc cccctatttc agagccactg aggcccaagg cctagggcct 8460
agcaggggggg cagggaaatg gggctggcg cccacgcagt cagcaagaaa cgcccaagcc 8520
ctaacaggca gccagtggtc tggggagca gccagggtc ctgctggag gctgggtcgg 8580
gggcacacccc gtctgagttt taaatggcag tgaaaccaac gtgttcgcag cgcgacatgc 8640
ctggcgcacc tggggaaagt cgctcagctc cccggggcgc ttctcaatct gcaggcgccc 8700
gccatagcgc gtgacccgt acaccaccgt catcaccgtc tgcttcacca cttgcgggt 8760
gatgaaacct tccagcacct gtgccaccccg catgccccgc tggcgctct gcctacggaa 8820
cacctccacc tgacacggcggtt gttggccggg ggccgggtc agccccccta gcagcccagg 8880
ggccaccaag cacccatgaa gccccggccc cagccccacc acatcctcag gacaggccaa 8940
ggtgaggcga cctggggccg agactcaggg ctcacattgc cccacgcgc agatgcccc 9000
gggcagcagg gcacacccta cctgcgcggc cacggcgtc tacacgtcct gcggcacatc 9060

cgagggctcc aggttgcacgg aggccggcgcc cacgctgtcg cggcccagag cagcataatg 9120
ctgcaggccg ttgcaagagc cgtcctgagg aaggggcgcc aaacgggaga tggaaagctag 9180
agaggcagag acgtgtggga ccccaaacca ccccccaaggt cgagccgttc cttagggccgt 9240
gcaccccccga gccaagtgca ccggagcccc cgcacgctcc cgggagagac caggagccat 9300
ggctcccgca cactctagga ccacctccag agaataaccac gagcgaaggt gaaatctcac 9360
accctcaagt cgagccccag gcccagtgca cactgcacgg cctcgggggc cagacccagc 9420
tggtcacct gatggacggg gaggtggag acataggcg cagggtcgga ggccgcaca 9480
gcgttcgcca cttccatatac gcaggccagc gtctgccagg gttccctccgc gccccatccac 9540
cacttcggc cctgcggggc cagcggatgg ggggcagtga ggcccgccgc cgatccctga 9600
gcccgtggg aggctgtgtt gcggggaggt gggaaatggg gaggagacgc acacccgtga 9660
tagtgaacac gggacgcattt tggcgagag acggggcggt ggctggatga gttctccata 9720
gccacggatg gaggatggg gctgcgggtg gaccgggctg aaacaagcgt gtccggagct 9780
gccgggggag gagggtggac agaggacctg ggggcgcggg gggaggaagc agctcggcgg 9840
atgcagggga ggggggaacg tggggAACGc gggggccctg gggcagggga gaaggagaaa 9900
gcaggacggg cagggggcgc gggggaggag agcggggcggg ggacgtgggg gcgcagggg 9960
agggggaggg gaggaggaag acggggcaggg ggccgcggg gggggggagg ggaggaggaa 10020
gacgggcagg gggcgcgggg gcgcgggggg agggcgcg ggcgcgggg gagggtcgcc 10080
gggtgccggg agggcgggga atgcgggggc cccgcctta ccgtcaaggg ttggtcccg 10140
gagtccagga tgtcatccat cacctccctcc gcaaaggcca ggcgttccg cagcggctcc 10200
cgcttcttca accccgtgag attgaccagg tggatcttga gccaatccag gccgtgcggg 10260
ccgagcgggc ggcctggc gaactccagc agggcccgcg ccacgtcgct gcccagggtgg 10320
ttgaagtgcg gcgggcaggg gtaggtgcgg ccgcggaaagt ccatgttgtg cggcagccag 10380
aagacgcggt cccgcaggtg ctgcgcgcgc gagaggcggt acagcgcctc cgcccgcagg 10440
ctgtgcatct cccgggcccac cttctggcag tgccgcagct cacggcgcag ctcggccttg 10500
cgggcgccggc cggcgctgtg cggcaggtgg gcctcgccgc gctggggcgc ctcggaggc 10560
ggggccggca cgccttagctg gggcagccc ttggccttga agagctgcag caccagggtcc 10620

-160-

agcacgcgcc cgttgacgct ccaggcgccat ttgcccagtt gggtgagggc gtccagtgcg 10680
ccatgcagcg cggtggcgg gcaggttcc agcagctcct ggtgctgcgt ggcgcctcc 10740
accgtgcgca tcagcttgtt gggctgagc aggaaagcac cagagtgcgg cgatgtccag 10800
ggcagcgggg ggcaaagcat gggtacatcc accgcctcga aggtcagcgt gggctccgc 10860
gccttctcca gcagctgcac gttaggcccgg tgccgcttca ggatgccat ctggggtgcg 10920
acaggcagac gggtcagggc cccggtgctg gggcttcct gttcccaccc cttaaacttg 10980
ggtgagaggg gccggctccc cgcccaacaa gaaaccagtg tggcctccc cgaacagaag 11040
ccacctccag aaacggccgg acacctgcat ggacacccat ggtgtgtccc gagtcctggg 11100
aggtaactgac ggctgcgctg agatcaaggc tccgccccaa ggcgcacacc ccatgggtc 11160
cctggtcctc ccagcgggat gccccccagc tcaggagggc actgcctggc acctgctgga 11220
cgttgcggaa ggaatacacg tggtagagca cggggacaag ccgagagggaa cgatgcggct 11280
tgtccaggct gcatggcatc tgcgtagcct gcaccagcat ctccgcagc agcttgcaca 11340
gctccatctg cactggcagg ggccagggtc gctccgcag ggcctcgggc gccccagct 11400
cctcccaagta ctgcccggc aggcagggtc cgggcacctg taggacaggg cggtcagggc 11460
gctgggcacc ggggccccctg agctagatgc cccaccgcac gtgcctgacg cccgggtggg 11520
catctgtcag cccaaagcata cagatgaaca gactgaagct tgggtgcaaa cccggctgct 11580
ccagggaggg agagcgcaca cccaccactg gccccagcca ggaggagagg gggtgcgagc 11640
ctcacctcgg cgtcggagggc cagcaagcag aggtacttcc tgttagtggtt ctgcagcgcc 11700
tgcacacctggc cactgaccccg ctgcctctgc accacgtgcc ggctgaaagt ggcgcactc 11760
agctccccggg ccagggtgtt gaaggactca cttggcggc gcagcgcctg caggacctgc 11820
ggaaggcagc cgtgagtgcc tgcccgcccc gcccggggac cggccgcgc ggaggaagac 11880
gcacctgcag gagcatccgc accacctcgc gtcgtccag caggcacagg aagggtaaa 11940
gtgagaaccg gccctcgtac acctcgcgct ctagggcggtt cttggtctcc cgcagcgccc 12000
ggcacagtgc tttctccat tggtcccgca gggtcttcag ggtcttccgc tgccggggat 12060
gaacgggccc ggtgagcccc gtggcagctg gtgggaccca ggctcacagg acgggggtca 12120
ccgcagctcc ctgcagagac ctcatggccc tcaaggtccc tgctgtgt tccggtagc 12180

-161-

tcctcaccctt ggccctgcctt ctgccggctt cagcgtgcctt gacgcagcca agagcaaaag 12240
cccagctgca gtgtgcgcag aagcacaggc caagacccaa cctcgggacc ccacaagttt 12300
tccctgagcg gcagccaggc tgagttccta ggccctgcat gaccagacca gggcatgagc 12360
aattcaacccg catacacgga gctcagcccc tgcggcggac acgcgacccc ggctcagccc 12420
ctgcggcggc cacgggaccc cggctcagcc cgtgcggtgg acacgcgacc ccggctcagc 12480
ccctgccccg gacacgggac cccggctcag cccctaccgc gtgcttgacc tccttgctt 12540
gcaacgtggg cttctccacg gacaccacgc acaccctgct ggccagctcc atgtggagct 12600
gcttctcaaa gaggcactgc agggcttca agggcagggtg cagttcggg taggacacac 12660
gccccatcctg cagggatggg ggttagtgagg ttgggggctt gccagagggc gacctgcctt 12720
cccaggaccc cgagacagca tgggtgcacg cgtttctgcg tctcctgcaa gttgctggtg 12780
gctatcgctg acgcggggaa aggcgggctg cggtaaagt cagtgcacgc agtgc当地acc 12840
aaaggccttg accctcctgg cctcgacccc tctagaaggg acactggca ccgtgcagg 12900
ggtggcaggc gcggtqatgc tggagctgg cagagcctgg ggagaccgtt cactgcaccc 12960
ccagatgttg gctgtttct cctcaaactc agaactgtat gaatgtgacc catccagaaa 13020
tagatgaatt aaaaataaca actaaagcct agcgcttga gaatcaaaga cgcacgtcca 13080
cataaaagct tgtacacaaa cggtcacagc tgcatgactc .gcagtcgata agtagaaaca 13140
gccccacgtc ccataaacgg acgaacagac gggcacggcg cggccatcca cgcaccggag 13200
catgactcag ccctgaccca ggtgcctcc cggaggcacc atgaggacgt cacgctca 13260
gggagatgcc aaacacaaaa ggtctcgag tgggtggtcc catttctatg gaatgtccag 13320
agcagactca tccacagatg gggagggat gggagtgac gggatgggg acgaggcttc 13380
cttttaggtt gatggAACAT tctagaatta gacaaccgtg actacactaa aatcgctgaa 13440
ttacacctt aagagggtt tatggcaggta gaattacacc tcagtaacag acgagcccac 13500
tgcgtgcacc tggcagcccc actcaaacgc actgctctcc tgcacccca ccctctct 13560
gcggccccccg accacctcgat cccctgagc ccacaccctc agggccaaga ccctcccagc 13620
tctgggtcctt cccatcttctt cagaggagga agggaggaat tcagggccca gcccaggtga 13680
gcctggcacc cggggaggc ccattggtct gagctgaggc tccaggaacc cccaaaggc 13740

-162-

agctataagg actgaagtct gccggggccc acgtgggctc accttggcat acacgtccct 13800
gagcagcttg gaggtgttga ccggggcgga cagctgcggc gggaggctga aggtgggctt 13860
caccttgtgc acggccttca gaacagtggc ccgatcctcc tcagacagca gaacggcggt 13920
gaagagtgcc tgcagttca gcccctctg gtcatctgt tccagacacc tgtggtgcag 13980
gcggcctgtc cgagggacgg gccagccccca cgctgggctt ccacagaccc cagggaaacc 14040
tcgtgaccac ctccctgttag cctgcaggta tcggtgtggc tgtcaggccc tctgggggtc 14100
cccagccccca agcccaggca ccgtcccaga tcttaaaacc ctgggaggga catggtgggg 14160
ggtggggggcc ctcccacac cacctacatt tcgatggtcc cggcgtcctg gtccctgcctc 14220
cccatgcact ggagggcagc cgcataaggac agcaggtccg gagtcaagcc ggcatccttc 14280
accatgaata acacatatac cagtccttg aaggcacccct gggagaccaa gccagggtga 14340
gggtctgggg ggatggccca acctccacat cctccctgtc ccctggagac cccttctctg 14400
tagccaccag ctcagcaggc gacagggtca ccaggcagga gtggccagct gggcagaccc 14460
atgcatcccc ctgaggttct gacacacaag ctccacctgc agaggcagcc gcatggcccg 14520
ccaggtggga ctgtggagg ttcacgttcc tctggaggc agttgttaa acctccagat 14580
ttgtcaattt tggatctt ttcaaaggac tgacttggct tgactgttct ctgctgttcc 14640
tgccctccat ttcatcgatt tgtttaatc ttgttaactt cctctcatct acttgcattt 14700
ggtttagtga cagtttttc ttctagtttc ctaaggtaa aggtgacgta ttgggtctga 14760
gatgtttcac tttttttccc cccaagatgg agtcttgctc tggcccag gctggagtgc 14820
agtggcacaa tctcagctgg gcccgggtct ctgcctccca gttccagca cttctcctgc 14880
ctcagcctcc ttagtgcattt ggattacagg cacacgccac cacaccagct aattttttgt 14940
attcttagca gatacgggg ttcaccatgc tggccaggct ggtctcgaaac tcctgacatc 15000
gtgatccgcc agcctcagcc tcccaaagtg ctggatgac aggtgtgcac caccgcgcc 15060
ggccatcacc ttccgaata taggcatttt gtgactataa attaccctgc gagcactgtg 15120
tcagctgcattt cccaggactt ctgacaggta gtgtttcat ttcttatttcc tccaaatgtt 15180
ttcgaacttc atagttact tcttctttgg aaattttatt taattttttttt ttagataga 15240
gtctcgctct gtcgcccagg ctggagtgca gtggcgcaat ctcagctcac tgtcaacctc 15300

-163-

cgccctccgg gttcaaccga ttctcctgcc tcagcctcct gagtagctgg gactacaggc 15360
acatgccacc acacccagct aattattttgc tatttttagt agagatgggg tttcgccctg 15420
ttggccaggc tggctccaa ctcctgacct caggggatcc acccgccctcg gcctccccaaa 15480
gtgctggat tacaggtgtg agccaccacg cccagccatg tatacttaaa atatcccctg 15540
caatttttt tttttcatt taattttgg ccaggcacag tggctcatgc ctgtaacccc 15600
agcactttgg gaggccaaga caggaggatc acaaggtcag gagtttaaga ccagcctggc 15660
caacatagtg aaaccccatc tccactaaaa atacaaaaaa aaaaaaaaaa aattagctgg 15720
gcgtggtggc tcatgcctgt gctccctcca ctaaaaatac aaaaaaaaaa aaaaattagc 15780
tgggcgtggt ggcacatgcc tgtaatctca gctactgggca gcctgggca ggagaatcac 15840
ttgaacgcag aaagcgaaaa ttgcggtaag ccgggatctc accactgcac tccagcctgg 15900
gagacagaaa ctttgctgtc gacagacttg gagactctgt cttaaaaat acacacacac 15960
acatatataat atatataataa aataacatata atatataatt tttttcttgtt attcattttt 16020
cctgacatcc ctgttctgag caatttctcc tttgaccctag tggctgctta agagtggcct 16080
gtaactgtaa cagactattc caaagggaaa aaaattccct tacatccctcc caccctatag 16140
tcctgcagct gaagacatgc tgtgacatga ggtggccaca caccagagac cagagacatg 16200
agttttgggg catttttttt tttttttttt tttgagacgg agtctcgctc tgtcgcccag 16260
gctggagtgc agtggctcga tctcggtca ctgcaagctc tgcctccctag gttcactcca 16320
tcctcctgcc tcagcctccc aagtagctgg gactgcaggc gcccggccacc acacccggct 16380
aattttttgt atatttttag tagagacggg gtttcaactgt gttagccagg atggtctcat 16440
tcctgacot cgtgatccgc ccgcctcagc ctcccaaagt gctgggatta caggcgtgag 16500
ccactgtgcc cggccgggtt tggggcagtt tctaaacaac ctctgtatgg tagacctcac 16560
tggccacaca tagtcctaa attgaaatata tcagttttc cctttcacca gttcaagtg 16620
ttcagtagca cacacagctg ttggcagatg cgaaaaatttccaaacatcat agaaagttct 16680
actggatggt gctggtaga atacgtggcc gggcgccgtc gctcacgcct gtaatcccag 16740
cacttagggc ggctgaggcg ggcggattac ctgaggtcag gagtttgaga ccagccggc 16800
caacatggca aaagcccgtc tctactaaaa atacaaaaaat tggccgggca tggtggtag 16860

-164-

tccctgtaat cccagccact caggaggctg cgccagggag aattattgaa cccaggaggc 16920
ggaggctgta gtgagccgag atcatggcac tgcaccctag cctgggcaac agacagagag 16980
tctatctcaa aaaaaaaaaaaa aaaaaaaaaaaga tagaagcaat gccttagcct ggctaacatg 17040
ctgaaacccc acctctacta aaaataaaaaa ttaaaacaat tatccggggg tggtggcaca 17100
cgccctgtaat cccagctgct cgggaggctg agctcgcagt ccagcgacat ccaggactgc 17160
tggccacccc ggaacgctgg gagaggcagg agggggccct gctagagcct ctggagagac 17220
ttcgggtctg cagacatctt gattccagac ttctgggctc gtgctaagag tgcgtttctg 17280
ctgtgcaagc cgccagggtt gggacacttt cgtaggggcc gatcccaaaa gcgcctgtt 17340
acagtgtggg ctctctgccc aggaatcca gggggcttgt gaccttggag gggaaaatac 17400
acgaccctca tcctcagtcc tcccggagtc tggcgccccc tgcaagcaagg aggaaccagg 17460
cagcacgccc cctccacctc gcggtaagag cactgcggac ttcaccgcaa gactggccccc 17520
acctgatcct gaatttcgct gtttgatgct ttaataaaga agcacatcaa gttctctacc 17580
acgaatttgt cttaatattt cgatatctgt attttatat aatagtatcc catgtttacc 17640
caaataattaa gagaagcttt tactgttgtt tctcaaatta gggctgaagg atcatggggg 17700
gggagaaagc tgggaacgtt tgctgctttg aaagggtgtg taaacaacac cctccaaaac 17760
aaccaagagt tccgaggaga aactttggcc ggatacggtg gctcacgcct gtaatctcag 17820
ctcctcggga ggctcagggg ggcagatcac gaggtcagga gtttgagacc agcttggcca 17880
acacggtgaa accccctctt ctactcaaaa tacaaaaatt aatcggggt ggtggcgggc 17940
acctgttaact ccagctactt aggaggctga ggcaggataa tcacttgaac ctgggaggtg 18000
gaggtggcca tgagccgaga tcgcaccacc gcactccaac ctagtaacag ggagagtatg 18060
tcccagaaaa caaataaaata aacaaacaaa aagaaaacgg caaggaaat tggaaaatac 18120
tccagatgaa ccacaacgaa gatgggtggg atacatctaa agctgtgctc agaggaaatg 18180
cggcgccagt gaacacccac atttcacaca gaaggatctc agcacagcag cccgaccctc 18240
cacctcagga aaccagaaaa aggagcaaag tcaacccaa caccaaagcc tcattcgtac 18300
gagggctctg caggtcgccc cccgacgagg ccaaaagcac ccctgcccag acagattcac 18360
gagccccgag aaagaacgga aggaaatgct caaggcatta gcagaatttc tccctacttt 18420

-165-

tttggtcatt ttcaaaat ttcaaaaat gagagtaca cgtgattgt atttggaaag cctaaaagaa 18480
ttattaaaat aaaaaacaaa ggacttgaac ctgggggcta agagagaaaa gtccagtctt 18540
aatgagggca agttcctgtc tccaacgacc agggcaggtg gcccggctcc cggctgcact 18600
cacctgccgc gcccagccaa gcacacggc gttgtacatg tccagcgtga gcagcttccg 18660
cttctgccgc tggccgttgt ggacgaccag caggtggtgg gcgaggggca gctggtcagt 18720
gagcaggcag cacttgaaga aggccaggag cctctgtgc tgacctgaga gctgggcctg 18780
cgagtgtgc cccgacgggg cctgtccac atcgaggctc agttcccaag gggcctcctg 18840
cagcagccgg gccagctgct cctcccaggg gctctgggg gcctggcgcg tgcagtcctc 18900
cagggacccgg ccacatgtct tgctcaggag ccggggctcc acctgcaggc gcctggtcag 18960
cgcccttgaac tccccgtctt ggaatggcat ctgcagcttc gccttcaacc gctgcatacg 19020
catctgttgtt gtccgcttat cttctccag tatcttgcc cagggccac agggcaccgg 19080
ggtggcatcc ttggcccccata tctggacctt cctgggtggc tggaggctac catctccact 19140
gccacattct gggagccgcg ccacatccac cctgttacc accaccccg acacgctctc 19200
agcctgcagc tgccgcaccc ggcctggag cactgtgagg ggcagaaggc gaggacatga 19260
gagggaccccg ctccccattc gaggcccggt ctctctggac cctgagccag gccaggaggt 19320
gcagggttgtt gagctcgctg ggacccaaagg cgtgaattcc tcataacttgc caacaacgtt 19380
gttaaggctgtt cccgctgttt tccagacaca cgccacccac cacccctcgca cctccccacc 19440
cgagcctcac agaactcagc agccctaaca agctgcacc gaaacctgca gcaccacgtc 19500
tccccggtca ctggccgctc agaccctcca ggtgcacagg cccagaaccc ggggtctgtt 19560
acaactccctt ccgtccaccc ttcgttaccc cctctgggtt tgcttccaga atctatccag 19620
gtggcccccgg cctccccgtc ccctctcaact gtctagctca gggctctgc acagactccc 19680
aggaccctga accgcccact ccctggctca accatggcct gcaagttcgc accccgcctc 19740
agcaagaccc ccccaagctgg tggagctgcc acacacacac tcctaggctc ccagtgtcta 19800
caccgggttga cgctgagccca cttagctcgca gggaaaacgc ggctctgtt cgtgccgcct 19860
caggttgcatttttgcacaaatcaatgc ctaagtttc tttatctttt taaagaagcc 19920
ttgttggaaa tctattgttgc gcccggcatg gcccgtcacc tcggtcatcc cagcaatttgc 19980

-166-

ggaggccgag gcaggaagat cacctaaggt caggagttcg agaccagcct ggccaacatg 20040
gtgaaacccc gtctcttatta gaaatccaaa aaatttagctg ggcgtggtgg catgtgtcta 20100
tagtaccagc tacttgggag gctgaggcag gagaattgct tgagcctggg aggcaagaggt 20160
tgcagtgact caagatagcg ccattgaact ccagcctggg caacagaaca ataatccatc 20220
taaaaaaaaaa agactgttga aataagccgg gtacagggcc ggcacccctgt ggtcccagct 20280
actccggtgg ctgaggtgaa agaatcacct aagcctagga gttcctggct gctgtgagcc 20340
tgatcaggc caccgtgctg cagcctgaga gacagagcag gaccctgtct caaaaaaaaaa 20400
aagggggggg gggaccagg tgtccagatg tggtggctca cgccctgtaat cccagcaatt 20460
taggaggccg aggcaggcgg atcacgaggt caggagatca agaccatcct ggctaacacg 20520
gtgaaacccc gtccctacta aaaatacgaa aaattaaccg ggcgtggtgg tgcgcgcctg 20580
tagttccagc tactcgggag gttgaggcag gagaattgct tgaactcggg aggcggaggc 20640
tgcagtgagc caagatcgca ccattgcact ccagcctagc aacagattga gaatccgtct 20700
caagaaaaaa aaaattgctg aaataaaaag acaagcgtga tgtccgcctt cagagtgctc 20760
caaaactcag gagatacttt taggattaac agttgagagc tttgtttgt tttgtttgt 20820
ttttgagatg gaattccct cgttgccag gctagagtgc aatggcatga tctcggctca 20880
ccgcaacctc caccccccgg gttcaagcga ttctcctgtc tcagtctccc cgggttcaag 20940
cgatttcctt gcctcagcct cctgagtagc tggcactgca ggcgttcacc accatgccca 21000
gctaattttt gtatttttag tagagacagt gtttaccat gttggccagg ctggtcttga 21060
actcatgacc tcttgatccg cccgcctcgg cctcccaaag tgctggatt acaggcgtga 21120
gccaccgcac caggcctcgg acccttgacc tcttgatccg cccacccctgg ccacccaaaa 21180
gtgctggag tacaggcgtg agccaccgca ccaggcctcg aaccccccac ctcttgatcc 21240
gcccacctcg gccacccaaa agtgcgtgggaa ttacaggcgt gagccaccgc acctggccag 21300
gtttttcccc tttataaagg ttctcccgcc tctccctcc cggctgccta atggacgcag 21360
acaggatgtg ggacagaagc accggcggga agcaagcaca gggaaagctcc cacccctc 21420
ccacaccacc acccaggcga ggacgaggcctg ctgccaccgc tggagcctgg gctgtccctc 21480
ccaagtttcg cagtcatcca gtctccattt ggcgcctacc ccccaagagcc aagccaggac 21540

-167-

agctgagtca gttcagggtt cacatcctgg ctctgcacat gtggccttgg cggcgcccc 21600
gggggggggg tctctccaga cataatcttg ggcctcacct atgtccctgg aaagtggag 21660
cacctggtgg ggttctgggg agggggaaatt acgagagctc caggaaggag cctgctcagc 21720
aaggacaggg cccatgagcg gtgcaagaga tgtttcagca acgcccgtctg ggcgtgtcct 21780
gggaccggag aggtggagac cgccctcagc ctgtctcaga atctgagccct ttgccttttc 21840
tcccgccagc agggagcggg ctctcctctc ccggggccgcc gtgggggtcg cgctcaccct 21900
ccagcagctc cacgtggccc cagtccttcc tgccgtcttg gtcttgcctcc tggggctgg 21960
cgacgagct ctcctgggg ccgcagacgc caccggcggt ccctgcggga aagacgagag 22020
cggtctgagcg gggccggcg tggggcggg ggcctccata aaggcagaag ccgaagggtc 22080
gaagggcaaa ggagccctaa acgcagcggg aactctcgga gcacgggctt aagttggaaa 22140
gaaactaaga cagcgaaggt ggaaggccc cgccgcggcg aacacgggctg cgaaaccgccc 22200
gagagagggt tcctcgact cgaggtgcag caggtcaaag gttaagagcc ctaaacacca 22260
cacctggggt caggaggctg cataagaaac cacgagtcaa aggtcagact gcacggagga 22320
gcctcagtcg aaaagcgggc aagggcgagt ggaaagcggg gccgggtcgg tggctgcgc 22380
acgcccaggt gcaaagaggc aaaggtcaaa gcgccaaagg ccccgccgc gcggggagga 22440
gcccacgccc tggcccccgg gctgcctggc cgtctccctt tgtgttacct tcttgccgg 22500
ggagtcccgg gcccgcgcaaa ggccgttaggg ctcgttttag ccccgccgct ccgcggcccc 22560
agcaaagtgc cgacattacg cacgcccgtc caggccaccc caccggcccc cgcctgcgca 22620
tgcccccgcg ccgcctgcgc ggagttgtgg ttcatggc gacggaggct gcgaaggaa 22680
accccagccc gaagtagact cccaggatgc agcggaggcg cgaaggcatg cgccgggtgga 22740
cgctctgatt gttcctccct gctgtttta aaggggagggg gcgggacaga gctgttgcgg 22800
tggcaactgg gaggcactct caggctgttt tcccgaggac ctcaaattcg gacttttttt 22860
ctgtttttct ttctttttt gttttgttt ggacgcgttg tggccaggc tggagtgcag 22920
tggcgtgatc atagctcaatgc gcaagttcgaa actgctgggg taaagagatc ctcgcggcc 22980
ggcttcccaa agcgctgggaa ttgcagacgc cgccaccgtg cccggctttt tttttttttt 23040
tttcaaggca tactcatcta ataacgagga cagcatctgc aatttagaga ttccgtccg 23100

-168-

caaccttcat tgctccaacg acaacttttgc ggtaagatgc attaggatgc cgttatcat 23160
ggaggaagct gaggctcaga gagggccacc aagttgtgg aagacacagc acgtgcgacc 23220
tcagggaggc tgcaaggaga gaaagccccca gtcccgaga ctcccagcct ccagctttag 23280
tttaccctcc aatcccaag ccctcagggg caggagccga atggagcggc aggcttggat 23340
tcacctgcta agtggggtga ggtcaaggaa atgaaataaa cctcgagcc tagagcctgc 23400
cctggtctcc gcgtgatcct gcctaggagg agcagggcgg gagctttaga atggAACCTG 23460
gaagggtgtc ccacctgtgt cggtcagccg gggcagcagg ccagaggcgg gagcgcctgc 23520
tgtggggcag taggcttggg aagggtgaga ataggaatat ctgggggtaa ctgtgttcca 23580
ggctaatac ccagttgcaa aggggagctg gtttggtggc tcaggcctgt catcccagca 23640
ctttgggagg ctgaggcggg cggatcacct aaggtcagag ttcgagacca gcttggcaaa 23700
tacgcaagca tgcctggcaa catggcaaaa ccccgctct agtaaaaata caaaaattat 23760
ccgggggtgg tggcgggcac ctgtaatccc agtactcgg gaggctgagg caggagaatc 23820
gcttgaaccc gggaggcggg gtttgcagtg agccaagatc tcggccactgc actccagcct 23880
gggtgacaga gcgagaacct gtctcaaaaa aaaaaaagtg caaaggagg tcagttcagt 23940
gcctcaggcc tgtaatccca gcactttggg aggctgcggc gggaggatcg cttgagccca 24000
ggagttccag acaaggccttgc ggcaaccgag atactgagac ccagtctcca ccaaaggaaa 24060
aaaagaaatt agccaggcat ggtggtgcac acctgtggc ccagataactc gggaggctga 24120
ggcaggagga ctgcttgcgc ccaggaggt tagactgcag tgagctgaga tggcgccact 24180
gtactccagc ctgggttgac agaacaggac cctgtctcaa aacaaaacaa gtgcaaaggc 24240
cctgaggcag gaacaagcgt ggacagagga gcaatttgcag cagagtgggg ctggggagag 24300
ggagcaaaga tgttagctggg gctcagttag gggccctgac cacacggggg ctggggggcc 24360
tcagctcaag ctatcctcca tccccaaacc ctggcacttc agtttccca tcagcccaga 24420
acgaggactc gacccactc tggaaaggccc tggcagccctc cttacagcac attccagacg 24480
ctgctgccga cgcctgcgtg agcgcactga tgccaccggc tggaatgtt ttgcacagac 24540
ggcagcaccc tccctcacct gcctcagttcc acctcagggt gccccagcgg gctgtgaccc 24600
cagacctcac ccactactgg ggtcacctgc ctggccctga atcagccagg cctgggtgtc 24660

-169-

caagacctac agacacccccc tgccacccctg caggctggca gagccagaaa cttgggtgga 24720
aaccgacttc tgaactattt caccattcct tatgcgttag tctttcttt tatttgatga 24780
gatcccagca ctggggagg ccgaggcggg cgatcacgt gaggtcagga gtttgagacc 24840
agcctggcca acatggtaaa accccgtctc tactaaaaat acgaaaatta gccgggcatg 24900
gtggcctgtg cctgtaatcc cagctactca ggaggccaag ggaggaaaat cacttgaacc 24960
tgagaggtgg aggttacagt gaggcaagat cgccaccactg cactccagcc ttggcaatg 25020
tagccaaacc ccatcaactac aaataataca aaaaaatttt gtggctgtg atgggcctg 25080
cctgtggccc catctacttg ggaggctgag gtggaaagat gtagaattgc ttgagccagg 25140
aggcagaggc tgcagtgagc tgtgattgag ccactgcact ccagctggg cgacagagcg 25200
agaccctgtc tcaaaaaaaaaa aagaacataa tctgggtttt ggaataagac agcagttct 25260
gaaacagctc attgccaaa ttccagcctc gcaactctgt agccgccacc acccccccagc 25320
cccaccattt attttaacta catctgtctc caccactcct gtattaagta aatgcaatat 25380
tggctggtca tggctggctca tgcctgtaat tccagcactt tggaggctg aggcaaggcag 25440
atccccctgag gtcaggagtt cgagactggc ctggccaacg tggtaaaacc ctgtctccac 25500
taaaaaattca aaaatttagcc ggacgtggta gtgggtggtg cctgtaatcc cagctacttg 25560
ggaggctgag gtaagagaaaa tgcttgaatc caagagactg aggttgcagt gagctgagat 25620
ctcgccgctg cactccagcc tgaacgacag agcgagactc cgtctcaaaa ataaattaat 25680
aaatacaaca ttaatttattt ttcttgctta agtttacga agagacttaa tatcaccatc 25740
aaaagtggga aaccatataat ctggccgggc gtggctggctc ccgcctgtca tcccagcact 25800
acgggaggcc gaggcgggagc gatcccctga ggccgggagc tggagaccag cctggctaac 25860
atggtaaaac cctcatctcc aataaaaaata acaaaaaatta gccgggcatg gtgggtgcct 25920
gtaatcccag ctattcagga ggctgaggca gaagaatcac ttgaacccgg gaggcggagg 25980
ttgcagggag ccgagatcac accactgccc tccggcctgg gcacagagc gagactctgt 26040
ctaaaaacaa aacaaaacaa aacccaacca agcaaacccc acagagtcga gaatcgctag 26100
atggaagggg atggcccagg tccctggagc ccctgtgaca aattaccaca aactcggtgc 26160
cttaaagcaa cgttcatttt cttacatttc tggaaatgaa aagtccaaaa tcaggactgc 26220

-170-

ggggctgaag tcaagggtgtg tggaggcctc gctccctcca gaggccctgg ggctccttcc 26280
tgccctcccc agctttgaa ggctccaggt gtgcggcc 26340
tcgggtctct gtggcgac tgcagcctcc tcgtctgcct gtgtaaaatc tcctcctgtc 26400
tccgtattgt gaccgcgttt aggtgcggcc aggacaatct tctccatatac gttcagatct 26460
tcatggtgta aatatattga gactttttt ccaaataagg caaatgtcac attcttaggaa 26520
tcagggtggg gacttacett tggccaacc acagaggcta caaagaggaa gacaccactc 26580
aatacaaagc gtgcgccagc ccagccctga tcgggtttt ttgttgggt ttttgggtga 26640
gacagagtct cgctctgtcg cccaggctgg agggcagtgg catgatctca gctcattgca 26700
acctccgcct cctgggttgt atagattctc ctgcctcagc ctccctgagta gctgggatta 26760
caggcgtgaa aaggagcaag gctctgcccc agccacagcg cggatgcacc ttgaggatgt 26820
catgctcagt gaaagacgcc agacacagaa ggacacacag tgtgtatcc cctttatatg 26880
aaatgtccac aacaggccca tccacagagg caggaagggg atgtgtgggt gccgggggct 26940
ggcagagggg atgagtgaca gctgatgggg cttcttctt cggatgatgga atcttctgga 27000
actagacagt cgtggtggtt gcacaactct acgaggact aaaatcactg aactggctgg 27060
gtgcagtggc tcatgcctgt aatcccagca ctttgggagg cagaaggcagg tagatcacga 27120
ggtcaggagt ttgagaccag cctggccaac atggtaaaac tctgtctcta ctaaaaatac 27180
aaaaatttgc tgggtgtggg ggcaggtgcc tgtaatccca gctactcagg aggctgaggg 27240
aggagaatcg cttgaaccag ggaggcagag tttgcagtga gccgagatcg caccactgca 27300
ctccagtctg ggtgacagag ccagactccg tctcaaagaa ataataataa aataaaatca 27360
ctgaactgta cagtgttaagt gggtaattt tttggatataat gaggatgtt tccgagggtt 27420
cattaaagaa actcagacgc ctgggggtggg gccagtcata ccgtgtggg tcccatcccc 27480
atcatttctc acaaggccct cagatcaccc ttccgcggtg gggggcggac actctaagaa 27540
gggaagacct gggctcctgc tggcgagaag gcggtggaca ttttttcaatgtt gtctgggcc 27600
gcgcctctg cccagcgtgc tccgtggagg gtctcattgt ctccctccag acgtctctt 27660
actggccat tttacagagg cggAACCGAA gcttgggggtg ttggccacag ggctctagtg 27720
tggaaagcca ggccaggctg gacctcagcc atggggaccc ctgtccctga gactgtggca 27780

-171-

cctgccacac cctctgtgt acccgctaa gccaggaaga gagggtcagg agatgcctga 27840
gccaccaaga aggcatccca gcgtccagcc agaccggta tccctccaga gggctccccg 27900
gcaggacagg ctggtcgcca tgtcttcage ctggtgctat taaaagggtgg gtgccacactg 27960
gggctgtggc cgcaaggccca ggactgggct gctgggagct gtgtccccac agcggaggc 28020
ggcgccccctc tcagggctcg gttcccccag ttgtcaatgc ctccacttgg ctgtgagct 28080
gtgagggtca ctgtgctcac ctttggggc ccagcgcattg gggcaggcag aggaagggtg 28140
ggggccagcc gccttgctgg gtggttccccc gtggggctg ggttatggct ctaagggagg 28200
agcaagtgtg ggtgcgaatg gggccggccc attcctgccc cctccgacgt gccccggcc 28260
ccggccaccc acaggtctac gtggctatcc tccctctgc ccacctacct gcccaaacac 28320
acgtccccag tcgtcacctg cccacccacc cgccgcattcc cacacccttg tgggcctggc 28380
tttcgggaaa ctacaatttg cggggagaga agtcccacga gggcatgccc cggagcctgg 28440
ctggtcccac ggctgacgca cgccggcagga cctccctgtt ccattctgtt ccccaagcat 28500
ctccgcctct gccccctctt gtctctgtgt ctctctcgcc tctcccggtc atcttccttg 28560
tgtctcttga ctgcccggcgt ctttctgtct ctgtctccct cgggtctctt gtctccctcc 28620
aggtctctgc ggcccggtc tcacactccc gccccgcaa cccgaggtcc tagcccgccc 28680
ggggactcgg ctgactcacg gacacgcccc gcgagacaaa caacaaacgc gcgaggccc 28740
agcgccggagt cccgcacggc cgccggccctg tgcacctggc ccccgccccc gagacgtccc 28800
attggccggc gcccctagcct ggtcccgccc aagtggaccc cgcccccggcc cggaggcacc 28860
ccattggcccg gcgtccccgc cccagcgaac cggccccgc ccccgaggcgc ccccatggc 28920
cccgcccgcc gaaggcagag ccgcggacgc cggggagcga cgagcgcgc gcaaccggg 28980
tgccgggtca tgcggccggc cctgtggctg ggcctggctt ggctgctgtt ggcgcggcgc 29040
ccggacgccc cgggaacccc gagcgcgtcg cggggaccgc gcaagctaccc gcacctggag 29100
ggcgacgtgc gctggcggcgc cctttctcc tccactcact tcttcctgcg cgtggatccc 29160
ggcgcccgcc tgcaaggcgc cccgctggcgc cacggccagg acagttagtg cggggcggcgc 29220
ggggcctggg gtggggaggc ggccgggtgac ggcaacgcgg ccqccgtctt cacggtgacc 29280
tgcggcccgcc ggggagtcctt ggaggctcct ctgtgcagcc tcggcctcag tttccgtgg 29340

-172-

ctgtgagatg ggtgcagcct gcctggtggg agggttgcac tgtaaaagcg aaggctgcag 29400
cgccggaccc ggctcagggg cagagaagcg tccgtgttgt acaaccctgt gggtggggcc 29460
acccatctgc aggtggaaa ctgaggctcc agaggggctg gggcaggccc agctgcattgg 29520
cggaaagcggc ggggggctga cctccggact cctgacatca cagaatccag tcagggctgc 29580
ctgagtcggg gccccctctg cttcttccca gacaccccat ctggcaggtg aggacaaggaa 29640
ggcacacaga agggatggga cctgcccagg gtcacactga caggggtggc ggagctgggt 29700
ccccacaggg cccaggacgt cacggagcgg gctctctgt ccccaagggtc tgccgagcac 29760
actgaggttag gccctcagtg tttgtggaat gtcaggagca agaggagagg ctgggcacag 29820
caggggatgt gggtacctgg agggcagggg agtcgggtgc cccgccggc ggggggcaact 29880
gggaaggggg cccgggccccg ctggctgccc cctgaatcac caccatcagg gcaggtaatc 29940
acccctgtc cttcccacccg ctttcattctg ggccccaagg ccctcattag gccgcacgtg 30000
acgaggcgg acagggact ggctggcccg gtccatccat ggcgggcatg gccaggcggg 30060
gtggcctcgg gccggggcag aggcctggct ccgctgcctg accttggaaaca gtctctgcct 30120
ctctccaagc ctcgggttcc ccagctggac ggtgatgggg gtgaggggcta gctgagggtct 30180
ctcctgcctt tcgtgcattc gctggtcact aatcggcac cttgtgggtg ctgtgctccg 30240
catggggac ccagtggta cagagacgccc caccctcctg gggctcccaag agcagaggcg 30300
cgcagcagtt agacacgtga acaagggcgc aggtgggtgc acagaacagt gaacgggttgg 30360
ccgggtgcag tggctcacgt cgtaatccc agcaacttgg gaggccgagg cgggcagatc 30420
acgaggtcag gagatcgaga ccataccggc taacacggtg aaacccctgc tctaccaaaa 30480
atacaaaaat tagccgggtg tggtggccgg cgcctgttgtt cccagctact cgggaggctg 30540
aggcaggaga atgacgtgaa gccgggaggt ggagcttgca gtgagctgag atcgccac 30600
tgccctccac cctggcgcac agagcggagac tccgtctcaa aaaaaaaaaa aaaaaaaagaa 30660
cagtgaatga cgtgaacaag ggtgcaggtg ggtgcgcaga acagtgaacg gcgggtttgg 30720
gaggcacctt gccaggggag gggaggtgca gggcgaggaa gggccaggaggg gagatcgtga 30780
cacagacgcc ccagaacaac cacctcaaag acgttccctgt gtgtcctgga aggtcgggct 30840
gggaggctgc cccgaggagc tttcaacttgc acagggagct ggccggcac gcaggaaact 30900

-173-

gtacacccag ctgacaaaagc ggcagacacc caggccgggg tgagcgagtg tgggtgagga 30960
gtggcggctg gcccccagggt ctttgcttga caagacactt cagctcaggg tggggcaggg 31020
ctcacccagg gctaccacaca gacgatggcg tccaaatctg gctctgccac tcccaggcct 31080
caactggccc ctctgcaacg tgggctgctg agcgggcttg taggacagc tggcatacag 31140
tcggcgctca agcatgtctg tggtgtccca taaaccacccg gtgtccact ctaggccact 31200
gccagccccg cctccagtcc agagtcccag tccggagttcc cagtactgt gcgtgggccc 31260
ggcagctgag ctgtgagggc cgggctgggg gctccatatg gggtgggtgt agctgtgagg 31320
gccgggctgg gggctccata tgggtgggtg tagctgtga gggccgggct gggggctcca 31380
tatggggtgg tgtgagctgt gagggccggg ctgggggctc catatgggt ggtgtgagct 31440
gtgagggccg ggctgggggg tccctgggtt ggtgtgagct gtgagggccg ggctgggggg 31500
tctctgggtt ggtgtgagct gtgagggccg ggctgggggc tccatatggg gtgggtgtgag 31560
ctgtgagggc cgggctgggg gctccatatg gggtgggtgt agctgtgagg gcccggctgg 31620
ggggtccctg gggtgggtgt agctgtgagg gcccggctgg gggctccctg gggtgggtgt 31680
agctctgagg gcccggctgg ggggtctctg gggtgggtgt agctgtgagg gcccggctgg 31740
gggctccata tgggtgggtg tagctgtga gggccgggct gggggctccc tgggtgctg 31800
ctggtcgctg gtcatttgc acgttatcgt ggtctgggtg ggccctgccc cttctgactc 31860
ccacatccca ggaacccttt cccaaaccttc ctctgtgggt tgctgcccc ctgacgtccg 31920
tccctctggg tgtgtgggag cccccccggc atacacacac acagatgtg ctcttgggt 31980
gagctgcagg gacagcgctg acctggccct cccacgggt cctcatcgat ctctgcactc 32040
ccccagctcg tggggccgt cctgtttccc gttccctctg cctgtccctt gtcctccct 32100
cacatgtgg gggggctcc tgggtgtcagt cacggctctg gggatcctg agtgtccgtc 32160
gtggtcggga ggggactcgt ggtcccgaaa gtctcctggat atctgtcgat gtcctgagg 32220
ccctgcacga agcacagcg acagcagcg tgctgggggt gagccagcaa ggccctcccc 32280
gaccccccggc tcccccaaggc atcctggaga tccgtctgtt acacgtggc gtcgtggta 32340
tcaaaggcgt gtcctcaggc ttctacgtgg ccatgaaccg ccggggccgc ctctacgggt 32400
cggtgagtgc cgggcagggc tgggcggcgc gggcaggggtg gggagggtgg gcccggctca 32460

-174-

cccccgcccc cagcgactct acaccgtgga ctgcagggttc cgggagcgca tcgaagagaa 32520
cggccacaac acctacgcct cacagcgctg gcgcgcgcgc ggccagccca tgttcctggc 32580
gctggacagg aggggggggc cccggccagg cggccggacg cggcggtacc acctgtccgc 32640
ccacttcctg cccgtcctgg tctcctgagg ccctgagagg ccggcggctc cccaagggtgc 32700
ctgggctggc ggcgaggggc cggccacgc ttgttcttcc ccctgcgggc tctgtaagcg 32760
ctgagtgcac accgtgtgcg ggcgctgtgg acacagccca ggagccctcc aggggggtcc 32820
cagcctgagg gggtggtggc caccaagcag gttcaatcct gagttgggga cctcgaggac 32880
ccaacagggc gccttcggg ctgaaggacg cagacgtcga aaggtcgagg gggacgtccc 32940
aggcagggcc cggcagaggc aggggctcg ggtggggagc acgttgggag tggggcagg 33000
agcggagggg aggggagggg gccggggaga cggtgacaga cgccgcagaa caccagcctc 33060
gaagccggc ccgtcccgaa aatctgcaaa tacaacgcct tgcgaggaca aaggcacctg 33120
caggtgggac ggagatggag gacatccag ggtgggggtt ccagggcccc agtgtcctca 33180
cagggtcctc acgacaggag gcgggacagt gagagccaga gagagatggg gatggggcgc 33240
gctgtggccg tgaagggag gaagggccct aagctgaggg acgtgggtgc ctccagatgc 33300
tggggaaaggc gggAACGGTT ccgcactgga gccccggga gggaccggcc tgctcctgcc 33360
ttgatatatgag cccagtgggaa cccagttgg actctgcctt ccagaaccgc cagaaaataa 33420
acgttagtaag ccatcaactt tgtggtcttt tgttacagca gacgtcgaa atatgcacac 33480
ggtgtctgaa actgttctca tgacaaaata aacctcagat ccccccggga agggcggagg 33540
ccaacgcctc ggtgttcctc cgatcccccg ggaaggcgg aggccgacgc ctcgggttgc 33600
ctcggatccc cccggaaaggc cagaggccga cgcctcggtg ctccctcagat ccccccggaa 33660
gggcagaggc tgagggcagg agccgtgtg ggtgcaggc aggctgggg gcttcatgcc 33720
gctgtcctgc gggacgcaga gagggctggc cgtcggtgtg gggcgcccc cacctgtgcc 33780
cagcgccctc ctgacatcct gactccgctg ggacttctgc ctacagccct gggagtcaaa 33840
ctccagcctc tcagagaaaa ggtcagagcc aagagccca cagcctggag ccaggcagt 33900
acaccctggg cctgtctccc cttctgtgtg tggggcgaca gcagcatcgc cctggtaag 33960
tccccggggc cggccaggc tccatccccca gcccgcct tccacataaa tacaggaaga 34020

-175-

ctggggccgag gcacttgctg ggaggtgctg agcagcctga cacggaaaac cttctggga 34080
agggagggtc gtgcccgcc cgagagcttc tgctcacccct gcagacagaa gcgagcccc 34140
ccccagggga caccaggcgg cctctggga catcttgc tggcatggag tgggtggagg 34200
acagggctgc acccaggatg tccccaggtt ggcagtgtga gggagatcg gcccacgtt 34260
gccagtcgga gggcgtcgcc acttgagttg tcactggag ctgcacaggt caccacagct 34320
gaaataaaac ttgctggcac cccacgcagg aacgtaacat gtgcctcgaa gaaacgggtc 34380
agcaggccgg ggcgggggc tcacgcctgt catcccagca ctttggagg ccgaggcggg 34440
tggatcacga ggtcaggaga tcaaggccat ctttgtcaac atggtaaac cccgtgtcta 34500
ctaaaaatac aaaaaattag ccgggcgtgg tggcgggcgc ctgttaattcc agtacttga 34560
gaggctgagg cgggaaatcg cttaaatccg ggaggcggag gttcagtgtga gctgagatcg 34620
cgccactgca ctccagcctg ggcgacagag cgagactccg tctaaaaaaaaaaaaaaaaa 34680
aagaaacagg tcagcagttt tttttttttt tctaaaacag agcgtgaaat gggcgtacag 34740
ctccgcacat cccaggcag taaaatcccg gttcacacag agccctcagc agtttattcg 34800
caagcccaaacc cctggggacc cccgttgtcc tcaggcagtgc aggtggggc ccccaacag 34860
agaggagcgg cctggggca cagaaccagc ggctccccag gaaatcgcca gcagtgaaaa 34920
taagacaacc ccaaactgtt gcaaactgtg cttccgccta cgaagcactc ctgagcggca 34980
gggcggatgg ggagagggcg gctgcaggcg cgagggccc gggacgcag ggggtgcgggc 35040
cttaccaggg ccctgtcctg tcgtgcagca ggctctggg gcagggaaaga caccaggggc 35100
ggccacttct tactgtgtc tgacctcgag caatcgcc tcacagcccc caccagggtg 35160
ccggtgtcct ctggggccag cgccccccag gctcatgcct ggggtggggcg aaccaatcg 35220
tcctgtcct ctggccactc cacgcgaggaa aagtcccgac ctcacaggca ggccgcacacc 35280
ccggcagcat ctctgacaaa ggccctccag ttccgagtc ccaggtcccc ccgctgcaag 35340
cctcacctgc ccagccctcc tctccagctc caactccaac tcccaagaac caccacggac 35400
acacagaacc cgagccttgt ctccctcaac gcctctgac tcaaaaactcc atcttccaaac 35460
aggaaaacgg ctcggccggg ggactgtgac ccggagcagg cggcccgagcc tgcgcgcag 35520
actcgggggcc taaaacactt gttctctcag tccggagatc aaggacgatc cgaggtaacc 35580

-176-

tccctacctc ggtgtcctcc atgcaacctc gtcttagggc accgggtacg ttacctcg 35640
aggagccgag tccgcgggta ctggggttga gatgtggacg ccctcaggc tggactctg 35700
ccctggcggc cacagtcatg gaagtcccaa cgcttctctc ggctccgcaa ccccagaggg 35760
cgcccacgag gagggccccgc cacgcacgac cccagagggc ggccaccagg agggccccgc 35820
acgcgcgacc ccagagggcg gccaccagga gggcccgcca cggcggtgcg gcagcagccc 35880
agaaggtgcc ctgcgcacgg tccggacagg tggatccga gttacctggc caagggggct 35940
gacgcagaca cgtcgcggga cacagtgaag agtgtggtc agagcggagg gcgaggatct 36000
ttggagaaca ggtagggcg tggggcacgc gcctcccacg cgcaaggagcc gtctaccgtg 36060
gagggacacg ggtggtcctg ctggaggctc ctctccgtta gctgtctcca tcgtctgatt 36120
cttggatccc agatggtgg gatcatcage aactgagatg aacccactgc cccggccccc 36180
tgagcccgca ggtccccacg cttgccagc tgtccccag ctggctgcac cccggccag 36240
gcatccagca acttgagca gtggggtccg gctttcaga aggggccagg aacccgcgtg 36300
gctgaggtgt gaccgaagcg tggggcagag ggcgtggcc ctggcgctt aacgctggtg 36360
tttctggttt taaattcac gacccagtga cactgccacc ctgtacctc gccagcagcc 36420
ctcctggct taacttcggg agagcagtt tgctagccgg ccctgggtgc caagccctgc 36480
aggagggcga gacctctgga gacaggaccg gactctgcag agcccgacca gcctcccagc 36540
ttggcctttt cctgacgcac gggcgcagaa ggaaagccac agcaccggct tctctttgt 36600
agtagtgtat tttaaatagc ttcaagata cacatattt ttcccttaaa aaagtctgtt 36660
ggagcagttt tgttctgaa ttttgcgtt catcctcatg gtcccgagcc cccctactcc 36720
gggtcgtgga ggcggccgag ggggaggctg gggcccgac tggcccggtcc tggcggcacc 36780
tgcaagactg ggggagccgc tgaacccctg gttcagcgc tggggagcc gctggggccccc 36840
gtcttccgccc acaaaccatg catggccgccc acgtgagctc aaacgtccgt ttatccaaa 36900
gcagtaataa tttaaaatcta taaaaatctt tccaccgtg aacgtttaga gggtgagggtt 36960
agacagagga cggggaggct ggggacgccc cagagggac catgtggccc acgccttccc 37020
aagccagggg gccgggtggc cggggccggg tcctgcctg gaacaggcgg gacctgcacg 37080
gctgaccagc caagcgtggc gcccggggg cacccagtct gtgggtgccc tgtggcgctg 37140

-177-

gctgagggtg ggtggaaag gcccggtgct ttcccgacgg ccgacgtggg ctcacgagg 37200
gcttgtggcg ttctcggtgc tggcgagct ggaggaggac gatgacgacg aggaggagaa 37260
gctcacccca gtgaggccag gggggttcgt ggccgttttc tgcccgtga ggcttttcg 37320
gcagacgggg cagctgtcgt gcttgtggg gacagaggca gggacgggag aaggggcagg 37380
tttagaggcgg gagggcccg gtcgggtgg gggggcgggt gggcggggca ctcacctgct 37440
ccagccaggg cacgatgcag ccgtcggtga acaggtggtt gcagggcagc tgccgcacac 37500
gctcacccag cgctgtcg tccttgacaca cagggactc gagccggag cctgcgggag 37560
tgtgcagctg cggtcacagc gggcggtggg ggccctgcca gccttcaagg gcaggctact 37620
ccacagcctc agccggaggc cgccctgag cccagcgagg ggagaaaaagc cgtgtgttg 37680
tcccccgggc tgccagaggg gacctggaca gaaccctctc ctcccagccc accttcaggg 37740
aaatgctcga ggccgggtgc ggtggctcac gcctgtcatc ccagcacttt gggaggccga 37800
ggcaggagga tcacctgagg tcaggagttc gagacctgcc tgaccaacat ggtgaaaccc 37860
tgtctctact gaaaatacaa gtagtgacca ggctggcg cgggtgcctg taattccac 37920
tactcgggag gctgagctct catacctacg tgctcctcag tgacggggac ggtggggagg 37980
gcctggattt tcttttatac tgccgggtggg gggcctgtgt tttcaaactg attgaggagc 38040
tgaaaagacaa gaggcgagag tgccgggagc tcctcggggg cccggcccg ggctctgaaa 38100
cgcgaggctg caggacctgc aaaagcaccg aggccgcgtt tgtcctggc cctggggccc 38160
ttggagcccg cccggggtcg gagatc 38186

<210> 39

<211> 720

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 39

cgccggcgct tgacctgact ttcatgaatc gaaaaggaaa tcctctatga acgcactgca 60

tgcgcattggc gcccggaaacgc tactggccgt gttgctcgct tttggcctga cgggctgcgg 120

ggagaaggag gaggttcagc agtcgctcga gccgggtggct tttcacgact ctgacgagtg 180

-178-

tcacgtgtgc ggcatgatca tcactgactt cccccggcccc aagggccagg cggtcgaaaa 240
gcggggagtg aagaaatttt gttccaccgc cgaaatgctt ggttgggtggc tgcagccgga 300
aaaccgtctg ctcgatgcca agctctacgt ccacgacatg gggcgcagcg tttgggaaaa 360
gccggatgac ggtcatctga tcgacgcaac cagcgctac tatgtggtcg gtacgtcact 420
caaaggcgcc atgggcgcgt cgcttgcaag ctttgcgcag gagcaggacg ccaaggcgct 480
tgccggcatg cacggcggtc gtgtgctgctg cttcgaggaa atcgatcagg cgctgctgca 540
ggaggctgca agcatgcagc acggcgcat gcacgaccat ggcgc当地aaacgtgcacataa 600
cgcacacgca ggccactgag cagcagtggc ctgaacagca cacacaagaa atcgaggtaa 660
gcacaatgat ggttatcagc gtctggcaac tcctgatcat tcttctgatc gtcgtcatgc 720

<210> 40
<211> 127
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (9)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (101)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (119)
<223> May be any nucleic acid

<400> 40
gcggccgcnc ggctgtggct gctgtgcggc ggccacggcg ggccgcgagc cgccctgtcc 60

tgcgcctcct gcccctgggtg cgcccccccg ggtcccggcg nccccactcgc cccggcgtn 120

ccgcgcgt 127

<210> 41
<211> 6858
<212> DNA

-179-

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 41

actcgccaag tgatcgaccg gcccctgagg gccgcgacgc agagggcgcc ccgtgcactg 60
gcacaggcgg ccttgtgcgt tagactctga tattcgtgcg ccctctcggtt ggcaggacca 120
tccatcctgt gtgcgggggg ccgcgcacac cgatcccgga tccgcctcggtt ccctgcctgt 180
cgcgcggccctc cgttctcgac ctccccgacg ctgtctgaac acgcgtcgcc gggggacgac 240
ggcggggcggc ccgcctcggtt ggaggggtaa gcgtcccggtt atgcccgttc aaccgttccg 300
caaggctcgc ccacatcggtttt ggagaaccgg cgcgacgcta ggagagacaa gtgatccagc 360
aggagtcgcg gctcaaggtc gccgacaaca ccgggtgcgaa ggaaatccgtt accatccgtt 420
tgctcggcggtt ttccggacgc cgctacgcag gcatcgccga caccatcgctt gccaccgtt 480
aggacgcccattttccggc aacgtcaaga aggacgcacgt cgtcaaggcc gtggtggtcc 540
gcaccccgcaa gcagtcccgac cggtcccgacg gctcgatcat caagttcgac gagaacgcgg 600
cggtcatcctt gaagaccgac ggcgagccccc gtggcacgcg catcttcggc cccgtgggtcc 660
gcgagctgcg tgacaagaag ttcatgaaga tcgtgtcgctt ccgcggaggtt gtgatctgac 720
ctcatggcca agatcaagaa ggacgacccctc gtgcagggtca tcagtgccaa ggacaaggcc 780
aaggcaggccaa aggtcctgcg cgtgttcccg acggatgagc gcgtgcgtt ccggggcggtt 840
aaccgcgttta ccaaggcacct gcgcgcggc caggacaaca acggttccac cgaggggcggc 900
ctgcagggtcg tcgaggcccc gatccacatc tcgaacgtgg ccgtgggtt ccggagacc 960
aagaagccga cccgtgtggg ctaccgcttc gagaccgtcg agaaggacgg cgtgacgaaag 1020
accgtgaagg tccgccttcgc caaggcctcg gggaaaggagc tgtgtatgacc gaggtgcagc 1080
agaccgagaa ggtcaccccg cgtctgaaga ccaagtaccg cgaggagatc cgccggacgc 1140
tgcaggagca gttccagttac gggAACGTCA tgcaagggtcgcc gggcctcggtt aagggtcggtt 1200
tcaacatggg cgtcggcgag gcccggcaagg actccaagat catcgacgc gcccgttccac 1260
acctcaccgc catcaccggc cagaagccga tgatcaccaa ggcccggcaag tccatcgccgc 1320
agttcaagct gcgtgaggcc atgcccgttc gcacgcacgc caccctccgtt ggcgatcgca 1380

-180-

tgtggagtt cctggaccgc ctggtcacgc tgccgctgcc ggcgcattcg 1440
gcctgtccga ccggcaggatc gacggcaacg gcaactacac cttcgccctg tccgagcaga 1500
ccgtgttcca cgagatcgat caggacaaga tcgaccgcgt gcgcggcatg gacatcacccg 1560
tggtgacgac cgccaagaac gacgacgagg gccgcgcgt gctcaaggcg ctgggcttcc 1620
cgttcaagac cgaccagtaa gacctccacg ccacaggatcc tccaccggtg aaccggtgcc 1680
ggaaaccacg gcgagaaaagg gcgtgaagca catgaccatg accgatccccg tcgcagacat 1740
gctgaccctgt ctgcgcacacg caaactcggc ctaccacgac accgtgtcca tgccgtcctc 1800
qaagctgaag actcgcgtcg ccgagatcct caaggccag ggctacatcc aggactggcg 1860
cgaggaggag gccgaggtcg gcaagaagct gaccatcgac ctgaagttcg gcccgccagcg 1920
tgagcgtgcg atcgccggcc tgccgcgtat ctccaagccg ggccgtgcgt tgtaacgcgaa 1980
gtccacgaac ctgccccacg tgctggcgg cctcgccatc gccatcctgt ccacccctc 2040
tggtctcctc acgaaccacg agggcccaa gaaggctggc gtggcggag aagtccctcg 2100
ctacgtctgg tgacggcaa gacggaagaa aggctgaact gacatgtctc gaatcgac 2160
tctcccgatc accatccccg ccggcgtcga tgtgaccatc gacggcgacc gcgtctccgt 2220
gaaggggcccc aaggggcccc agggtcagct cgagcactcg ctgcccacgc ccatcacccg 2280
caccctcgag gaggggcagg tcaccgtggc cggccccacg gacgagcgtg agtcccgtc 2340
cctgcacggc ctgacccgtta ccctcatcg caacatggtc gagggcgtga ccaacggctt 2400
ctccaagcag ctcgaggtcg tcggcaccgg ctaccgtcg caggccagg gccaggac 2460
cgagttcgac ctgggtact cccacccgt cccggtaag gtgtcccagg gcatcacctt 2520
cacgggtggag ggtaacaggc tcaccgtcgc cggtatcgac aagcagcagc aggtcggcga 2580
gaccggccgc aacatccgca agctgcgcgc ccccgaccccg tacaaggcga agggcgtcta 2640
cgccccggag cagatccgca gcaaggccgg aaagaagtga tgtctactct gaaggtgaag 2700
ggcaaggggca agttcaacgc ccgcacccgc cggcacctcc gggtgccaa gcggatctcc 2760
ggcaccacgt ccgtcccccg cctcggtcgc aaccgtctcg cacggcataat gttcggtcag 2820
gtcggtggacg acacgcagag ccgcacgatc gctgtacgcct ccaccatgga ggccgacgtg 2880
cgtgcgtcg agggtgacaa gacggccaaag gccaaggcgcc tggggcagct cgtcgccgag 2940

-181-

cgtgccaagg cggccggcat cgaggccgcg gtcttcgacc gggcgaaa caagtaccac 3000
gggcgcgtcg cggccgtggc cgacgggtcg cgagaggggtg ggctgcagct gtgaccgaga 3060
acatcaacca gaaggacact caggtgaccg agagcacccga gaccaccgtc tccgagaccc 3120
ggtcgggctc gcgagccaga ccaccgagcg cgccaccgggt ggccgcggcg gtcgcacgg 3180
cggccgcgggt ggccggacgg cgatcgctgt ggccgcgtc ggacgaccga accgtcgtgg 3240
cgcccaggac gacgaggaag gaccagtcc tcgagcgcgt cgtgggcata aaccgcgtct 3300
ccaaggtcgg cccgcgttc tccttcaccg ccctcgtggt ggtgggtgac ggacgacggca 3360
ccgtcggcgt cggctacggc aaggcgaagg aggtccccgc tgcgatccag aaggccgtgg 3420
aggaggccaa gaagtccccc ttccgcgtcc cccgcgtcgg ctccaccatc ccgcacctgg 3480
tgcaagggtga ggacgcccgc ggcgtcgtgc tgctccgcgg ggcctcccg ggtaccgcgg 3540
tgatcgccgg cggctccgtg cgcgcgtgc tcgagtgcgc cggcatccac gacgtgctct 3600
ccaagtccat gggctccgtg aacgcgatca acatcggtcg cggcacgggtg gagggcctca 3660
agaagctgaa gagccccca gccgtcgcgg cccgcgcgg caaggccctg gacgagatcg 3720
ccccccatgc gatgcgtcgc accatggaga acgatcgac ccagaagagc gcgaaggcag 3780
gtgcgtgacg cgtgttttag tccactcgca agaacatcca gccctcgac gccaccctgg 3840
tcatcaccacca gacccgcggc gtcacgggtc ccaagcagaa ccatcgaccc accctgcgt 3900
cgctggcct gaagcggatc ggcaccagg tcacccgaa ggccgacgcg gtgacggcgt 3960
gcatggtcaa caccgtgcgg cacctgggtgt ccgtggagga ggtcaacaat ggctgacaac 4020
gacgccatca aggtccacga cctgcgtccg gccccgggtg ccaagaccgc caagaccgc 4080
gtgggtcgcg gtgaggcgac gaaggcaag accgcccgtc gcggcaccaaa gggcaccaag 4140
gcccgttacc aggtccgtgc gggcttcgag ggcgtcagc tgccctgca gatgcgtctg 4200
ccgaagctcc gcccgttcaa gaaccgttc cgcacggagt accaggtcgt gAACCTGGAC 4260
aagctctccg cgcacttccc cgagggcggt gaggtcaccg tggacgcgtc cgtctccaag 4320
ggcctcggtcc gtcgtggcca gcccgtgaag gtgctggca cggggagat caccgcggcc 4380
gtgcagggtga aggcgaacgc cttctctgcg tccgcgtgg agaagatcca ggccgcggc 4440
gggtccaccg agaccctctg acacgcgcac ccatcgaccg agggccctgg ccggagcagc 4500

-182-

cgctcgggcc aggccctggt ccgtccgtgt agactcgac agccgccccg gtgtggccgc 4560
cgtctcggtc cccccccccg cgaaacggcg cacccccac aggaccagcc gcaggaggac 4620
tcgtgctcaa ggccatcgcc cggatcggtcc ggacgcctga cctgttgccg aagatcgct 4680
tcacgctcggtc gtcatcgcc gtctatcgga tgggcgactt cgtccggcc accggcgtgg 4740
actacccggc ggtgcagcag tgcctggcag cggcaacgc ccagggcggc ctgtactcct 4800
tcgtgaacat gttctcggtc gggcgctcc tgcaggtgtc tgtttcgcc ctggcatca 4860
tgccgtacat cacggcgtcg atcatcggtc agctgctggtc cgtgggtatc ccgcgttcc 4920
agcagctcca ccaggagcgc cgcaggggcc aggcgacgct gacgcgtac acccgctacc 4980
tgaccctcggtc cctcgccctg ctgcaggcga ccacgatggc ctgcgtggcc cgcaccgggg 5040
ccctgctcggtc atgcagcctg ccgcgtgtc ggcacggctc catcctcacy gtgctgctcg 5100
tggtcatcggtc cctgaccacc ggctgtctca tcgtcatgtc gttcggggag cggatcaccc 5160
agaacggcgt gggcaacggc atgtccctgc tcataccac ccacatcgcc gcaggcttcc 5220
cggccggctc cggccagggtg gtccagacgc agggctggcg cgtttcgcc atcgatcggt 5280
ggatcggcct gtcaccatg ctggccatcg tcttcgtgg aagtcgcag cggccggatcc 5340
cggccaggta cgccaaaggcg cagatcggtc cacggaccgt gggcggtcg agcacctaca 5400
tcccggtaa ggtgaacatg gccaacgtca tcccggatc cttcgctcc tccgtgtca 5460
tgctcccggtc catcctcatc cagttcaaca cggcccgaggta cggcagtgcg cggccccgt 5520
ggatcacgtg gctgagccgg tacttcggct ccgggtgtac atggccctgt 5580
acttcctgtt catcatcggtc ttacgtact tctacgtgtc catcacgttc aacccgggtgg 5640
agatctcggtc caacatgaag cgctacggcg gtttcattcc ggcgtccgc cggccggcc 5700
ccaccggacgt ttacctcggtc tacgtcatca gcccgtatcac gttcgtgggtg gggccctct 5760
acctcggtat cgtggccatg atcccgtgtca tcgcctcggtc ggtgtatcggtc accagccaga 5820
acttcccggtc cggccggacgt tccatcctca tcatgggtgg cgtccggctc cagaccgtgtca 5880
agcagggtcgtc cgcacagatg gagcagcgcc actacgagggt cctgcgtgc tgagccccgt 5940
cccgatccccg caacggccgtc cgtatcgata gtgagggaca cacgtatgacc cgcgtatcggtc 6000
tcgtggccccc tcccggttcc ggcaagggca cccaggccac ccggatcgcc gacaaggtgg 6060

-183-

ggatcgcccc gatctccacc ggtgacatct tccgccacaa cgtgaagtgc atgacgccgc 6120
tcggcgtcga ggccaagagg tacatcgaca acggcgactt cgtccccgat gaggtcacga 6180
accgcatggt cgccgaccgc atcgcccagg ccgacgcggc gcacgcgttc ctgctggacg 6240
gctacccgcg cacgaagggc caggtcgagg cgctggacgc catgctcgcc gaggccggcc 6300
agtcgctgtc cgccgtcgtc gagctggagg tgcccgacga ggagctcgta gagcgcctgc 6360
tcaagcgtgc cgagatcgag ggccgcgcgg acgacaccca ggaggtcata gaggcaccgc 6420
tgAACCTGTA ccACCGCAG accgagtccg tcatccagga gtacgtggag cgccgcattcg 6480
tcgccccgt ggacggcacc ggccagatcg acgacgtcac cgagcgcctg ctgcaggccg 6540
tgtactccgt gcgcgtcgcc acgggctccc tgcccgat ccagccgggc gcccggcct 6600
gacCCCGTGA tcggccgcgg ctgcgtcgag ctcaagaccc ccccccagct gctggccatg 6660
cagcgcgcgg ggggtggctt gtccgaggca ctggacgcgg cgctggccgg cgccgcgggc 6720
ttcaccaccg cggagctgga cgccgtgttc gcggtggtgc tggccgaacg cggtgccacc 6780
tccaacttcc tgggtacta cgacttcccg gcctcgatct gcacccgtt caacgaggag 6840
gtcgtgcacg gcatcccc 6858

<210> 42
<211> 578
<212> DNA
<213> Homo sapiens

<220>
<221> UNSURE
<222> (5)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (23)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (31)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (48)
<223> May be any nucleic acid

-184-

<220>
<221> UNSURE
<222> (211)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (292)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (308)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (350)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (384)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (477)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (507)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (529)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (549)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (551)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (558)
<223> May be any nucleic acid

<400> 42
ttctngtcta tggcagagat ggnncagggttg ncgttgagca ggtactgncc atcagccgtc 60

-185-

ttcagcgcca ggtagttccc atcggtctgc acacccgggt ggctccgctg cttcacgtca 120
atattagtgg caccagctgg gatggtgaca atgtcattgt agccataatt ggtgggggtg 180
agggacccgg agaccccttgc gcaggagttg nctttgcccc cacacacccc gcatttgc 240
agcttccgag gcgagttcac cacatggtca cagccggcct tgacacactg gncacggaca 300
cagatggnca gtgtttctgg cccacacagg gtgccatcaa tcaccttggn ctcgaacact 360
ttggaactcg ctccctcccc gggntcggga ggaacaactt gcaggggtcc cgggggggac 420
aacccagcat tcttggggga cccactgcag gaggattccc cgccatgtc aagtgttatt 480
ggtgggcatt attcttctca caattgntgc tccctgaagg tttcccgnc aaggggggat 540
tccccccnng ntggaatnat tggtaacttgg gtctccga 578

<210> 43

<211> 305

<212> DNA

<213> Homo sapiens

<220>

<221> UNSURE

<222> (128)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (146)

<223> May be any nucleic acid

<400> 43

catttaagtt tgcttagtcct ttgcaaacag actgacgctg agtgtcctgt ctgagtcaat 60

aagtgcacctt ttacctttta acctatgccc tctacttcaa cccgagcaag gtccagtc 120

ctggacangt tcatgtatagg gtctgnccgc ccataccctc tcctttccc ccttaggaat 180

tttgtcagta ctggaggggt tgccggcaatg ggaggcctgg gtggggccgtg ctgccttgat 240

atggccaagg gacccagtca ccacagtggaa gacccttgc tgcacctcag taccgcattgt 300

ccagg 305

<210> 44

<211> 333

<212> DNA

<213> Homo sapiens

-186-

<220>
<221> UNSURE
<222> (82)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (255)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (275)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (299)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (313)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (324)
<223> May be any nucleic acid

<400> 44
ggcacagggtg actttagcat gcagagcagc aaagagagag caaccaccaa catcatccag 60

ccgcgtgctcc acgcacagtg gntgctgggg gactggtctg agtgctctag cactgcgggg 120

ccggctggca gaggcgaact gtagagtgca gggacccttc cggtgcaggc ctctgccacc 180

tgcaacaagg ctctggaaac ccgaggatgc caagccctgg cagaaccagc tgtgccccct 240

gtgatttcag ggggnccaggg gccatttgt gctcngggac atgcggtaat ggaggttgnc 300

agacaaggtc ttncattgtg gtgnatgggt tcc 333

<210> 45
<211> 102
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 45

-187-

<220>
<221> UNSURE
<222> (64)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (69)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (71)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (72)
<223> May be any nucleic acid

gcagcagcag cgcagcgcag agagagcagc agcagcagca gcagcagcag cagagcagat 60

cntnctggna nnaaaaaatc gcggcagcag ctgctctagc ag 102

<210> 46
<211> 123
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (9)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (51)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (52)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (57)
<223> May be any nucleic acid

<220>

-188-

<221> UNSURE
<222> (67)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (123)

<223> May be any nucleic acid

<400> 46

caggcaagnc ggcacgtagg agcagcagca gcagcagcag cagcagtaac nnagtcnacg 60

agggggngcc cgggacccaa ggcgccccaa cagagaggcg gagcacaatc cactggtcgg 120

cgn

123

<210> 47
<211> 109
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (87)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (95)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (102)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (106)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (107)
<223> May be any nucleic acid

<400> 47

ggcacgcagg agcagcagca gcagcagcag cagcagcagc agagagagag cagcagagag 60

agagagcagc agagcagagc agagcanagt agagnagagc anagcnac

109

-189-

<210> 48
<211> 293
<212> DNA
<213> Homo sapiens

<220>
<221> UNSURE
<222> (86)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (166)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (185)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (209)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (214)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (219)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (234)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (290)
<223> May be any nucleic acid

<400> 48
ggcacgaggg ggaaactgct ccgcgcgcgc cggggaggag gaaccgcccc gtcctttagg 60

gtccggggccc ggccgggcat ggattnaatg cctgagcccc ggtcccgctg tcttctgctt 120

cttcccttgc tgctgctgct gctgctgctg ctgccggccc cggagntggg cccgagccag 180

gccgnagctg aggagaacga cttgggttng cctnccana aaatggaaag gganttgggg 240

-190-

ttaatcgaag tcattggac catttaaaa ggggcttcgtt ggattatagn ctt 293

<210> 49
<211> 506
<212> DNA
<213> Homo sapiens

<220>
<221> UNSURE
<222> (283)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (342)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (356)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (362)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (364)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (368)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (429)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (454)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (461)
<223> May be any nucleic acid

<400> 49
aattcggcac gagcacccgg ccactgcagt cttctgcctt gctggacacgc agcagcagca 60

-191-

gcagcagcag cagcagcagc agcagcaaca gtaacagcag cagttcgcc ggacccaacc 120
cttctaccc tcggagccc atcaaggcag accccacagg tggttgaa ctccccaaag 180
agctgtcaga aatctttgat cccacacgag agtgcattgag ctcggagctg ctggaggagt 240
tgatgtcctc agaagtgtt gcccctctgc tttcgcttt ctncccccc gggagaccac 300
gattatact acaacctgga cgagagtgaa ggtgttgtg anctctttg atgtgnctgt 360
tntnaacntt tgactgacag ggacatgcct ttttggttg ggacccagat ttttgactt 420
gggggttnc ttggacttt tcaaccgacc ctanagagtt nagagcaaann aggttggtt 480
ttcggcttcc ttaacgaaag ttttgg 506

<210> 50
<211> 419
<212> DNA
<213> Homo sapiens

<220>
<221> UNSURE
<222> (137)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (221)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (259)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (327)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (385)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (389)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (416)

-192-

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (418)

<223> May be any nucleic acid

<400> 50

ttaaggcacc aaaacttgt tttaatgat gttggatgga aattttctt aaatgtgtca 60

tgcatgtct tgtctccctt aatggagaga gtgtgacact gcttagcaact tggatggctt 120

gggggtggtg ttatgancag cagtctgtca cagtcagcg aggtgaagcc tgtggggcgtt 180

ttgctctgtg ctgaatggct cagtggccct acaaagcgga ntcagctctt ggtggcttc 240

tgttgtggtg ggctgctgnt gctgctgctg ctgctgctgc tgctgccctt gcctctaaaa 300

gaactcaattt cctttccctc ctgctgnac ctgtctttt gcttgtggga ttggagtcat 360

ggggcccaaga tggagccctt ccncntgant tatgataggc ccctcggtct cttnntnc 419

<210> 51

<211> 495

<212> DNA

<213> *Saccharomyces cerevisiae*

<220>

<221> UNSURE

<222> (177)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (322)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (328)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (342)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (368)

<223> May be any nucleic acid

-193-

<220>
<221> UNSURE
<222> (371)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (375)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (380)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (386)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (396)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (404)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (423)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (426)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (436)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (443)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (456)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (460)

-194-

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (467)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (468)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (471)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (474)

<223> May be any nucleic acid

<400> 51

aattcggcac gagcaaagtt ctgcgctcca ttgtgggcat caaacgacac gtcaaagccc 60

tccatctggg ggacacagtg gactctgatc agttcaagcg ggaggaggat ttctactaca 120

cagaggtgca gctgaaggag gaatctgctg ctgctgctgc tgctgctgcc gcagachccc 180

agtccctggg actccccacct ccgagccagc tcccacccccc agcatgactg gcctgcctct 240

gtctgcttcc ccaccacctc ttgcacaaaag cccagtcctc cggcccagaa catcctggc 300

ccggagttcc ttcccttgct tnaggggntt ttcagcaagt tnagttcctt gggtccttt 360

tggaaantt naggnagtnn aaggantacc aggttnttgc catncttcc agatccaagt 420

ttnacnaaaa attttnaaca gtntaaattg ggttnttgn cccttnngg nggntgttt 480

tttttcggg tccgg

495

<210> 52

<211> 81

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<220>

<221> UNSURE

<222> (65)

-195-

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (67)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (71)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (75)

<223> May be any nucleic acid

<400> 52

ggcacgcagg agcagagcag cagcagcaga gagagcagca gcagcagcag cagcagcaga 60

gagananata natanatata t

81

<210> 53

<211> 305

<212> DNA

<213> Homo sapiens

<220>

<221> UNSURE

<222> (11)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (62)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (81)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (256)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (289)

<223> May be any nucleic acid

<400> 53

aggcacttga nttaaaaatg gaaaacccta ctgctggtgg tgctgcggtg atgaggccta 60

-196-

tatgcagcc ccagggttt nttaatgctc aaatggtcgc ccaacgcagc agagagctgc 120

taagtcatca cttccgacaa cagagggtgg ctataatgat gcagcagcag cagcagcagc 180

aacagcagca gcagcagcag cagcagcagc aacagcaaca gcaacagcaa cagcagcaac 240

agcagcaaac ccaggncttc agcccacctc ctaatgtgac tgcttccnc agcatggatg 300

ggctt 305

<210> 54

<211> 307

<212> DNA

<213> Hepatitis C virus

<220>

<221> UNSURE

<222> (212)

<223> May be any nucleic acid

<400> 54

tggggtgtga agctccggtg ctggtgccgc gggggactgc ggggccagcc tcagttaaa 60

ccccctcagc agtctttctg tcgttgcctt ccacactgcg agactctgga gggcgatctg 120

gaggtctgga agataaccga ttctggag atttgggggt agtctccaat ctgtccctgg 180

ctcatcttgt gacccgaagc cggcggcctt gncaggagta ttctagaatg agtgcacata 240

aaaatacctt caaacggtag cagcagcagc agcagcagca gcagcaagca gcagcagcag 300

cagcagc 307

<210> 55

<211> 88

<212> DNA

<213> Unknown

<220>

<221> UNSURE

<222> (6)

<223> May be any nucleic acid

<220>

<221> UNSURE

<222> (7)

<223> May be any nucleic acid

<220>

<221> UNSURE

-197-

<222> (78)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (83)
<223> May be any nucleic acid
<220>
<221> UNSURE
<222> (87)
<223> May be any nucleic acid

<220>
<223> Description of Unknown Organism:Unknown

<400> 55
ggacanngac tactctctct ctctctctct ctctctctgc tgctgctgct gtgctgctgc 60
tgctgctgct gctgccngtg tgngcana 88

<210> 56
<211> 346
<212> DNA
<213> Unknown

<220>
<221> UNSURE
<222> (278)
<223> May be any nucleic acid
<220>
<221> UNSURE
<222> (288)
<223> May be any nucleic acid
<220>
<221> UNSURE
<222> (299)
<223> May be any nucleic acid
<220>
<221> UNSURE
<222> (313)
<223> May be any nucleic acid
<220>
<221> UNSURE
<222> (342)
<223> May be any nucleic acid

<220>
<223> Description of Unknown Organism:Unknown

-198-

<400> 56
ggcacagccc aactggtgat gctgctgctg ctgctgctgc tgccgccgcc gcctctattg 60
ctgatactct agtgggctg gaagggtggc tcctattcgc accatcgcca accagagaca 120
gagggaaaaaa aaaaaccggc agccactgct gaatgttggg ttcggaggct gcatccgact 180
cggtcacaag gaaaatggat tcagttgca tctctccctc ctttaaacag cttctccggg 240
tctcagcatg ggcttccagg gcagcgattg aggagacntt accaaggngc accacacant 300
agatgctgag acntcgtgac tccaggataa gaaacattaa cnnggg 346

<210> 57
<211> 496
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (11)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (78)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (195)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (197)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (286)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (291)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (293)
<223> May be any nucleic acid

-199-

<220>
<221> UNSURE
<222> (315)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (328)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (329)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (344)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (346)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (352)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (354)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (358)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (366)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (399)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (406)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (410)
<223> May be any nucleic acid

-200-

<220>
<221> UNSURE
<222> (418)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (420)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (435)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (443)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (453)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (454)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (459)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (471)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (473)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (474)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (481)
<223> May be any nucleic acid

-201-

<400> 57
gaattcggca naggtgcaca gatgtggtgg atggggaggg ccgcacggga cagaagttct 60

ccctgtgtat tctgacgnct gagaaaggag cattcatcc gggcgagac caaggagatc 120

gtcaatgggt ggctggagat gctcatggtc tatccccgga ccaacaagca gaatcagaag 180

aagaaaacgga aagtngnagc cccccacacc acaggagcct gggactgcc a gttgggctg 240

ttaccagcag cagcagcagc agcagcagca gcagcagcat ccccantgct ntnggaaagt 300

tcccaccacc aagtncaca atttgggnna aaaccaaggt tgtnagac gngnttngg 360

gattnngca ttgtgggtt ctgcatttggaggacatn gttgtngtnc cttggangn 420

tacaattacc atttncgggtt gttaagggtt aanntccgnc attcagaagg ntnnaagggt 480

ntttaagtc catttg 496

<210> 58
<211> 268
<212> DNA
<213> Drosophila sp.

<220>
<221> UNSURE
<222> (16)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (51)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (60)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (202)
<223> May be any nucleic acid

<400> 58
aacacttata cttganagct ctgtttggga agcaggacaa agctacatgt nagaaactn 60

tggagcctcc gcagactctc caccagcagc agcagcagca gcagcagca g caagagaagc 120

ttccaatttag gcaggggggtt gtacgctccc tgccttatga ggaacccaga agacactcac 180

ccccattga gaagcagctc tntccagccca ttcagaaact catggtcagg agcgcagacc 240

-202-

tccaccatt gtcagagctg cctaaaaa

268

<210> 59
<211> 471
<212> DNA
<213> Homo sapiens

<220>
<221> UNSURE
<222> (249)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (386)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (449)
<223> May be any nucleic acid

<400> 59
tcgaccacg cgcccgctga ggaacagacg ttccctggcg gccctggcgc cttcaaaccc 60
agacatgctg ctgctgctgc tgctgctgcc cctgctctgg gggacaaagg ggatggaggg 120
agacagacaa tatggggatg gttacttgc gcaagtgcag gagctggta cggtgccagga 180
ggccctgtgt gtccatgtgc cctgctccctt ctcctacccc caggatggct ggactgactc 240
tgacccagnt catggctact ggccgggc aggagacaga ccataccaag acgctccagt 300
ggccacaaaac aacccagaca gagaagtgc ggcagagacc cagggccgat tccaaactcct 360
tggggacatt tggagcaacg actgcncctt gacatcaga gacgccagga agagggataa 420
ggggtcatat ttcttcggc tagagagang aagcatgaaa tggagttaca a 471

<210> 60
<211> 379
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (2)
<223> May be any nucleic acid

-203-

<220>
<221> UNSURE
<222> (14)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (31)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (135)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (315)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (332)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (349)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (357)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (374)
<223> May be any nucleic acid

<400> 60
anttcggcan aggnaaggga gagggtgacc ngcattccaa ctagatttca gtggagtgaa 60

gttcaggagg catggagctg acaaccatga ggcctcgca gccaccgcca ccaccgccc 120

cgccaccacc gtagncagca gcagcagcag cagcagcagc aagagttaac tctgacttag 180

ggaatagaga cagccagaga gaaatgtgat caatgaagga gacatctgga gtgtgcgtgc 240

ttcttcagag gggacgggtg atgggcagat ttggaaaaag caccgcagat tgggaacctt 300

atctttctt tttcntaaaa ttgttgttat gnaaatttgg gttttccng taactntta 360

-204-

aaaacttaaa agtnggtt

379

<210> 61
<211> 255
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (121)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (183)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (254)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (255)
<223> May be any nucleic acid

<400> 61
aattccgaca atggaaagca ctcttagcct tgcagtggtc tacatttta aggaaccaat 60
atttcagcat tcttttattac ccggcacgct gtgtccttg tcagagttca agtttatggt 120
nactgccagg gtcagacagt ccatttgctg ctgctgctgc tgctgctgct ttctcgaact 180
ggnatggcat taggaaagct gctgtctgag tgttagggaa tgtcttggct aagtaaagcc 240

aatgttcttt cctnn 255

<210> 62
<211> 5289
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 62
cgagctctcc cagccgcagc ctccgaatcc acggcctcca cccccgcgcct ctccagcgct 60

-205-

ctatcccgtc gctgcgccc tgcgcggc cccggccgct gcatccgcgt ccgcacaggc 120
tccttgctgg gcacaaatag ctccaccatg gggctggcct gggactcgg tgtcctgctc 180
ctgttgcattg cctgcggctc caaccgcatt ccagagtctg ggggagacaa cagtgtttt 240
gacatcttg aactcacccgg agctgcccgc aagcggtctg ggcgccact ggtgaagggc 300
cctgaccctt ctagcccaagc tttccgcattc gaggatgcca acctgatccc ccctgtgcct 360
gacaagaagt tccaagacct agtggatgct gtgcgggggg agaaaggttt ctcctcctg 420
gcctccctga ggcaaatgaa gaagacccgg ggtaccctgc tggctgtgga gcggaaagac 480
caactctggcc aggtcttcag cgtgatctcc aatggcaagg cgggcaccct ggacctgagc 540
ctgaccgtgc aggggaagca gcatgtggtg tcggtgaaag aagcaactcct ggcaactggc 600
cagtggaaaga gcatcaccct gtttgcag gaggacaggg cccagctgta catcgactgt 660
gagaagatgg agaatgcgga gctggatgtc cccatccaga gcatcttcac cagggacactg 720
gccagcatcg ccaggctccg cattgccaaa ggaggtgtca acgacaattt ccagggggtg 780
ctgcagaatg taaggttgt ctggaaacc acaccagaag acatcctcag gaacaaaggc 840
tgctccagct ctaccagtgt ctggatcacc cttgacaaca acgtggtgaa tgggtccagc 900
cctgccatcc gcaccgacta cattggccac aagacaaagg acctgcaagc catctgtggc 960
atctcatgtg acgagctgtc cagcatggtc ctggagctca ggggtctacg caccatctg 1020
accacgctgc aggacagtat ccgcaaagtg accgaagaga acaaagagct gccaaacgag 1080
ctgaggaggc ccccaactctg ctaccacaac ggagtgcagt acaggactgg cgacgagtgg 1140
acgggtggaca gctgcactga gtgtcgctgc cagaactcag ttaccatctg caaaaaagtg 1200
tcctgtccca tcatgccctg ctccaatgcc acagttccgg atggagaatg ctgcccacgg 1260
tgctggccca gcgactctgc agacgatggc tggccccgt ggtctgagtg gacctcttc 1320
tctgtgacct gtggcaatgg aatccagcag cgtggccgct cctgcgacag cctcaacaac 1380
agatgcgagg gtcctctgt gcagacgcgg acctgccaca tccaggagtg tgacaagaga 1440
tttaaacagg atggcggtc gagccactgg tccccatggt catcttgctc cgtaacatgt 1500
ggagacggtg tgatcacaag gatccggctc tgcaactccc ccagccccca gatgaatggg 1560
aagccatgtg agggcaaagc ccgggagacc aaagcctgcc agaaagactc ctgccccatc 1620

-206-

aatggaggct ggggacatttgcgtcaccatgg gacatctgtt ctgtcaccttg tggaggaggg 1680
gtacagaaac gtagccggct ctgcaacaac cccaaacccc agtttgagg caaggactgc 1740
gttggtgatg tgacagaaaa ccagatctgc aacaagcagg actgtcccat tgacggatgc 1800
ctgtccaatc cctgtttgc tgggtccag tgtaccagct accctgtatgg cagctgaaag 1860
tgtggtgccct gtccccccagg ctatagtgga gatggagtgc agtgcaaaga cggtgatgag 1920
tgcaaagaag tccctgtatgc ctgcttcaac cacaatggag agcacaggtg tgagaacaca 1980
gaccccggtt acaactgcct gcccgtccca ccgcgcgttca ctggctcgca gcccggc 2040
cggggcgtgg aacatgccac cgccaaacaag caggtatgca agccccgaaa cccctgcaca 2100
gacgggacac acgactgcaa caagaacgcc aagtgcact acctgggcca ctacagcgac 2160
cccatgttacc gctgcgagtg caagcctggc tacgcccggca acggcatcat ctgcggggag 2220
gacacagacc tggacggctg gcccaatgag gacctgctgt gcgtggccaa cgcaacttac 2280
caactgcagaa aggataatttgc ccccaacctt cccaaactcag ggcaggaaga ctatgacaag 2340
gatggaatcg gcgatgcctg cgatgtatgc gatgacaatg ataagattcc agatgacagg 2400
gacaactgtc cattccatttta caacccagcc cagtacgact atgacagaga tgacgtggga 2460
gaccgctgtg acaactgccc ctacaaccac aacccagacc aggctgacac agataacaat 2520
gggaaaggag acgcctgtgc agctgacatt gatggggaca gtatcctcaa tgaacgggac 2580
aactgccagt atgtctacaa tgtggaccag aaagacactg acatggacgg gggtggatgat 2640
cagtgtgaca actgccccctt ggaacacaat ccagaccgc tcgactctga ctcggaccgc 2700
attggagaca cctgtgacaa caatcaggat attgtatgaa acggccacca gaacaatctg 2760
gacaactgtc cctacgtgcc caacgccaac caggctgacc atgacaagga tggcaaaggc 2820
gatgcctgtg accatgtatgc cgacaatgtatgc ggcattcctg atgaccggga caactgcagg 2880
ctgggtccca atcctgacca gaaggactct gatggtgatg gtcgagggtga tgcttgcaaa 2940
gatgatttttgc accaggacaa ggtgccagac attgtatgaca tctgtcccgaa aatgttgat 3000
atcagtgaga ctgatttccg ccgattccag atgattcctc tagatccaa agggacatcc 3060
cagaatgacc ctaactgggt tgtacgccat caggtaaag aactcgccca gactgtcaac 3120
tgtgaccctg gacttgctgtt aggttatgac gaatttaacg ccgtggactt cagtgccacc 3180

ttcttcatca acaccgagag ggatgacgac tatgccggct ttgtgttgg ctaccagtcc 3240
agcagccgct tctatgttgt gatgtggaag caagtcactc agtcctactg ggacaccaac 3300
cccacgaggg ctcagggta ctctggactt tccgtgaagg ttgtaaactc caccacgggg 3360
cctggcgagc acctgcggaa tgccctgtgg cacacagggaa acacctctgg ccaggtgcgc 3420
acactgtggc atgaccctcg tcacattggc tggaaagatt tcactgccta cagatggcat 3480
ctgagccaca ggccaaagac aggtttcatac agagtggtaa tgtatgaagg gaagaaaatc 3540
atggctgact caggacccat ctatgacaaa acctatgctg gtggaggct aggcttggtc 3600
gtcttcctc aagaaatggt gttcttcctcc gacctgaaat atgaatgcag agactcctaa 3660
tcatcaaact gttgatcaaa agactgatca taaaccaatg ctggtattgc accttctgga 3720
accatggct tagaaaaccc ccaggatcgc gcctcgctgc ctgccttgc tctctgcttg 3780
catgagtgtg gactcctaga acatgtgact tgcctcaaga aaatgcaatt ttccaaatca 3840
gaccctgcat tcagcctctg actgagaaga atcttccaag gagacaaaca atgactttgg 3900
ttggcttttg caaaagcaaa agcatccaca tgcttgggtt ggaaggtgcc tgtcccactc 3960
tgcttttgc agagcagaat gcgactgtga ggccagctct gagcagtggc ctccaaaatg 4020
tttcaggca tgtgagagaa gggaggactc actagaattt acaaacaaaa ccagccctga 4080
cctactccct ctggaatggg ggcgggtggg ggggccaaag cccaaagggg aggatgcata 4140
cccaagagat gattgtatga agaaaatatg gaggaactgt tacattttg gtactaaatc 4200
atttcaggg gattgaaaga ctattgctgg atttcatgat gctgaccggc gttagctgat 4260
taacccacat aaataggcac ttaaatagga gcagggaaagg aaggaaaaga ctggcttctg 4320
gacttcctcc cagatttcca ccccttaaca catcacctgt agtgaccaga acagggagtc 4380
ggagttaac cgacacaagg cagggccagc tgctgcagct tggttctatt gaaattgtca 4440
gttgtattcc agatgttagct tctgcagatg tagcagcaaa ataagaatac ccaccatctc 4500
agcgagcacc aggctgtctc ccaagggacg gcagccatgc ttgtatTTT atggttagaa 4560
aggcacaaaa ttatcaacta agacattcct tctttctctt ttttcctga acatcatgga 4620
gttttccagt tgtctttttt ggactgttagt ttttagtgg ttaaacaac actttacaat 4680
gtaaactatt tatttttac ttattctggg ggatctgtct gaaagactat tcatggaaca 4740

-208-

ggaagaagcg taaggactat ccatatcata tttgctacaa gtcattatga ctgtaagatt 4800
gtaaaatacag attatttatt aactctgttc tacctgaaat ctagttcat atggaaagt 4860
tttgagagca ggtagttgag atcgatcagc aaatcttca caggaatggc acaaggaaac 4920
cagcatagca agctgcttt caccttgtgc tttagactgga tgatttgaa ttctttttc 4980
ctttttttc ccaagtggaa ttacttggtt gtccattgc aagtgtttt agtttgcaaa 5040
gaaaggccaag aggccattaa tactgtctta tcccatccc tgccttatt tccagggaga 5100
tgaaaagcat ctacatttat tattttgcc ttttccaaa agaaaaaaat gacaaagggt 5160
aaacttgtat acaaataatta cctcatttgc tgtgtgactg agtaaagaat tttggatca 5220
aacagaaaga gtttaagtgt ctaacaaact taaagctact gttagtaccta aaaaaaaaaa 5280
aaaaaaaaaa 5289

<210> 63
<211> 2053
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 63
gaattccggc ggccgctgag agcccacccct ggcgagatct cccagccgca gcctccgaat 60
ccacggccctc caccggcgcc ctctccagcg ctctatcccc tcgctgcgcc ctgtcgccg 120
ggcccgccgc tgcattccgc tccgcacagg ctccctgact gggcacaaat agctccacca 180
tggggctggc ctggggactc ggtgtcctgc tcctgttgc tgcctgcggc tccaaccgca 240
ttccagagtc tggggagac aacagtgtgt ttgacatctt tgaactcacc ggagctgccc 300
gcaacggtagc tggcgccga ctggtaagg gccctgaccc ttctagccca gcttccgca 360
tcgaggatgc caacctgatc cccctgtgc ctgacaagaa gttccaagac ctagtggatg 420
ctgtcgccgc ggagaaaggt ttccctccct tggcctccct gaggcaaatg aagaagaccc 480
gggttacccct gctggctgtg gagcggaaag accactctgg ccaggtcttc agcgtgatct 540
ccaatggcaa ggcgggcacc ctggacctga gcctgaccgt gcaggggaag cagcatgtgg 600
tgtcggtgga agaagcactc ctggcgactg gccagtgaa gagcatcacc ctgtttgtgc 660

-209-

aggaggacag ggcccagctg tacatcgact gtgagaagat ggagaatgct gagctggatg 720
tccccatcca gagcatcttc accaggacc tggccagcat cgccaggctc cgcattgcc 780
aaggagggtt caacgacaat ttccaggggg tcctgcagaa tgtaaggttt gtctttggaa 840
ccacaccaga agacatcctc aggaacaaag gctgctccag ctctaccagt gtctttgtca 900
cccttgacaa caacgtggtg aatgggtcca gccctgccat ccgcaccgac tacattggcc 960
acaagacaaa ggacctgcaa gccatctgtg gcatctcatg tgacgagctg tccagcatgg 1020
tcctggagct caggggtcta cgcaccatcg tgaccacgct gcaggacagt atccgcaaag 1080
tgaccgaaga gaacaaagag ctggccaacg agctgaggag gcccccactc tgctaccaca 1140
acggagtgca gtacaggact ggcgacgagt ggacggtgga cagctgcact gagtgtcgct 1200
gccagaactc agttaccatc tgcaaaaaag tgtcctgtcc catcatgccc tgctccaatg 1260
ccacagttcc gnatggagaa tgctgcccac ggtgctggcc cagcgactct gcagacgacg 1320
gctggtcccc gtggtctgag tggaccttt gctctgtgac ctgtggcaat ggaatccagc 1380
agctggccgc tcctgcgaca gcctcaacaa cagatgcgag ggctcctctg tgcagacgcg 1440
gacctgccac atccaggagt gtgacaagag atttaaacag gatggcggct ggagccactg 1500
gtccccatgg tcatcttgct ccgtaacatg tggagacggt gtgatcacaa gnatccggct 1560
ctgcaactcc cccagccccc agatgaatgg gaagccatgt gagggcaaag cccgggagac 1620
caaaggctgc cagaaagact cctgccccat caatggaggc tggggacctt ggtcaccatg 1680
ggacatctgt tctgtcacct gtggaggagg ggtacagaaa ctagccggc tctgcaacaa 1740
ccccacaccc cagttggag gcaaggactg cattggtgat gtgacagaaa accagatctg 1800
caacaagcag gactgtccca ttgacggatg cctgtccaat ccctgctttg ctggtgtcca 1860
gtgtaccagc taccctgtatg gcagctggaa gtgtggtgcc tgtccccag gctatagtgg 1920
agatggagtc gagtgcaaag acgttgatga gtgcaaagaa gtcctgtatg cctgcttcaa 1980
ccacaatgga gagcacaggt gtgagaacac agacccggc tacaactgcc tgccctgccc 2040
accgccccgga att 2053

<210> 64
<211> 4339

-210-

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:Unknown

<400> 64

agccactgcc tggagtcagc cagcctcatc ggacttctgc aggcaatcgc gaagctgcta 60

tccagttctg ccacggtctc tcccggcgca ccggcagtc cagcgtcttc accggactca 120

gcgtccttgt ctttcaacttc acctttgcca cctctccggg ttactgagcc ccggtgacaca 180

caggctccgt gttgggcaca aaggctccac catggagctc ctgcggggac taggtgtcct 240

gttcctgttg catatgtgtg gaagcaaccg cattccagag tctgggggag ataacggtgt 300

gtttgacatc tttgaactca ttggaggtgc acgaaggggc cccggctgcc gactggtaa 360

gggccaagat ctatccagcc ccgccttccg cattgagaat gccaaacctga tccccgctgt 420

gccggatgac aagttccaag acctactgga cgctgtgtgg gccgacaaaag gcttcatctt 480

cttggcttcc ttgaggcaga tgaagaagac ccggggcaca ctccctggctg tggaacggaa 540

agacaacact ggccagatct tcagtggttgc ctccaaacggc aaagctggca ccctggacct 600

gagcctgagc ctgccaggga agcaacaagt ggtgtcagtg gaggaagctc tcctggccac 660

tggccagtgg aagagcatca cgctgtttgt tcaagaggac cgggctcaac tctacataga 720

ctgtgataag atggagagcg cggagctgga tgtaccatc cagagcatct tcaccaggga 780

tctggccagc gttgccaggc tccgagttgc aaagggagat gtcaatgaca attttcaggg 840

ggtgctgcag aatgtgaggt ttgtctttgg aaccacccca gaagacattc tcaggaacaa 900

aggctgctcc agctctacca acgtccttct tacccttgac aacaacgtgg tgaacggttc 960

cagccctgct atccgcacca actacatcg ccacaaaaca aaggacctcc aagctatctg 1020

tggcctctcc tgtgtatgaac tatccagcat ggtcctggaa ctgaaggggcc tgcgcaccat 1080

cgtgaccact ctgcaggaca gcatccgaaa agtgcacggaa gagaacagag agctggtcag 1140

ttagctgaag cggcctcccc tctgctttca caatggagtc cagtacaaga acaacgagga 1200

gtggactgta gacagttgca cagagtgtca ctgccagaac tcggttacca tctgcaaaaa 1260

ggtgtcctgt cccatcatgc cctgctccaa cgccacagtt cctgatggtg aatgctgccc 1320

acggtgctgg cccagcgact ctgctgacga tggctggtct ccctggctcg agtggacctc 1380

-211-

ctgctctgcc acatgtggca atggaattca gcaacgttgt cgttcctgtg acagcctcaa 1440
caacagatgc gagggctt cggcacagac gaggacctgc cacattcagg agtgtgacaa 1500
aagatttaaa caggatggtg gctggagtca ctggctcca tggcgtcct gttctgtgac 1560
ctgtggtgac ggtgtgatca caaggatccg tctctgcaac tccccagcc cccagatgaa 1620
cgggaagccc tgtgaaggtg aagcccgaaa gaccaaagcc tgcaagaaaag acgcctgccc 1680
aattaatgga ggctgggtc cctggtcacc atggacatc tgctctgtca cctgtggagg 1740
aggagtgcag agacgcagcc gactctgtaa caacccaca cccagtttggaggcaaga 1800
ctgtgttggc gatgtgacag aaaatcaagt ttgcaacaag caggactgcc caattgtatgg 1860
atgcctgtcc aatccctgct ttgctggtgc caagtgtact agctaccctg atggtagctg 1920
gaaatgttgttgcgtgtcctc ctggctacag tggaaatggc atccagtgca aagacgtcga 1980
tgagtgc当地 gaagtgcctg atgcttgctt caatcacaac ggagaacatc ggtgcaagaa 2040
cacagatcct ggctacaact gcctgccctg cccaccacga ttcaactggct cacagccctt 2100
cggccgaggt gtcgaacatg ccatggccaa caaacagggtg tgcaaaccgc gaaaccctg 2160
cacggacggg acgcatgact gcaacaagaa cgctaagtgc aactacctgg gtcactacag 2220
cgaccccatg taccgctgtg agtgcaagcc cgctatgca ggcaatggca tcatactgcgg 2280
agaggacaca gacctggacg gctggctaa tggaaatggc gtgtgtgtgg ccaacgc当地 2340
ctaccactgc aaaaaggaca actgccccaa cttcccaac tcggggcagg aagactatga 2400
caaggacggg attggcgatg cctgcgatga tgacgatgac aacgacaaga tccctgatga 2460
cagggacaaac tgtccattcc attacaaccc agcccaactgatgac gactatgaca gagatgtatgt 2520
gggagaccgc tgtgacaact gcccctacaa ccacaaccct gaccaaggcag acacagacaa 2580
aaacggggag ggcgatgcct gtgctgtgga catcgatgga gatggaatcc tcaatgaacg 2640
agacaactgc cagtacgtt acaacgtgga ccagaggac acggacatgg atgggggttgg 2700
agatcagtgt gacaactgcc ccctggaaaca caatccagac cagctggact ctgactcaga 2760
cctcataggg gacacttggc acaacaatca ggacatcgat gaggatggcc atcagaacaa 2820
cctggacaac tgtccctatg tgcctaaccgc caaccaggcc gaccatgata aagatggcaa 2880
aggagatgcc tgtgaccatg acgatgacaa tgacggcatc cctgatgaca gagacaactg 2940

-212-

caggctggtg cccaatcctg accagaagga ctctgatggt gatggccgag gtgacgcctg 3000
caaagacgac tttgaccatg acaatgtgcc agatattgtat gacatctgtc ctgagaattt 3060
tgacatcaatgaaaccgatt tccgacgatt ccagatgatt cctctagatc ccaaaggaac 3120
ctccccaaat gaccctaact gggttgtccg ccatcagggc aaagaactcg tccagactgt 3180
aaactgtgac cctggacttg ctgttaggtta tgatgagttt aatgctgtgg acttcagcgg 3240
tacccatcttc atcaacacccg agagagatga tgactacgt ggcttggtat tcggctacca 3300
gtccagcgc cgcttctacg ttgtgtatgt gaaacaagtc acccagtcct actgggacac 3360
caaccccaca agggctcagg gatactcagg cctgtctgt aaggttgtga actccaccac 3420
cggccctggc gagcacctgc ggaatgcact gtggcacaca gaaaaacaccc ctggccaggt 3480
gcgcaccctg tggcatgacc ctcgcccacat cggctgaaa gatttcactg cgtacagatg 3540
gcgtctcagc cacaggccaa agaccggta tatcagagt gtgtatgt aaggaaagaa 3600
aatcatggct gactcgggac ccatctatga caaaacctac gccggcggta gactaggcct 3660
gttcgtcttc tctcaggaaa tggtgttctt ctcagacatg aaatacgagt gtcgagattc 3720
ctaattcatca gctgccaatc ataaccagcg ctggcaatgc accttctaaa aacaagggt 3780
agagaaaccc cccaccctg ccgggatcgc ctttcctcgc cttccttgcc tctcttctt 3840
catagtgtgg acttgtaaag cctgagacct gcctcaagaa aatgcagttt tcgaaccac 3900
agtcagcact cggcccttaa cgaatgagaa tgcatttcc aagaccatga agatttccctt 3960
gggttgctt ttgggaaagc caaagcgcct atttacttcc cactaggaag gtgcccgtc 4020
cactctgcct tactcacaga gccagaactt cttcgaggcc acctctgagc agcacacaca 4080
gaagcatttt caggcatgtc aaagaaaagga aaaatgactc actagaactc accgccaac 4140
aacctctgac ataggcctg agatgtgggg aggcaggagc caaagctcta gggagggcat 4200
gtacccaaga gatgactgta tgaagaaaat gtggaggagc tgttcggtac taaatcattt 4260
tcaggggaca gacagacttg ctgcatttcc gcatgctgct ggtgagagct gattgaccca 4320
atcttccaca caggcactt 4339

<210> 65

<211> 186

-213-

<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 65
gcacagttaa tggaggctgg ggtccctggt caccatggga catctgctct gtcacctgtg 60
gaggaggagt gcagagacgc agccgactct gtaacaaccc cacacccca 120
aagactgtgt tggcgatgtg acagaaaatc aagtttgc aaagcaggac tgcccaattg 180
gtaagc 186

<210> 66
<211> 5774
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 66
gtcactttgg ttgatagcag ccgctctggt agaggttagg acttcagctg atggacaagc 60
tggtaatgaa gaaatggtc aaatagattt accaataaag agatatacag agtatgagct 120
ggtgactcca gtcagcacaa atctagaagg acgctatctc tcccatactc tttctgcgag 180
tcacaaaaag aggtcagcga gggacgtgtc ttccaaaccct gagcagttgt tctttaacat 240
cacggcattt ggaaaagatt ttcatctgcg actaaagccc aacactcaac tagtagctcc 300
tggggcttt gtggagtggc atgagacatc tctggcct gggaatataa ccgatcccat 360
taacaaccat caaccaggaa gtgctacgta tagaatccgg aaaacagagc ctttgcagac 420
taactgtgct tatgttggtg acatcgtgga cattccagga acctctgttg ccatcagcaa 480
ctgtgatggt ctggctggaa tgataaaaag tgataatgaa gagtatttca ttgaaccctt 540
ggaaagaggt aaacagatgg aggaagaaaa aggaaggatt catgttgtct acaagagatc 600
agctgtagaa caggctccca tagacatgtc caaagacttc cactacagag agtcggacct 660
ggaaggcctt gatgatctag gtactgtta tggcaacatc caccagcagc tgaatgaaac 720
aatgagacgc cgcaagacacg cgggagaaaa cgattacaat atcgaggtac tgctggagt 780
ggatgactct gtggtccgtt tccatggcaa agagcacgtc caaaactacc tcctgaccct 840

-214-

aatgaacatt gtgaatgaaa tttaccatga tgagtccctc ggagtgcata taaatgtgg 900
cctggcgatc atgataatgc tggatatgc aaagtccatc agcctcatag aaaggggaaa 960
ccccatccaga agcttggaga atgtgtgtcg ctggcgatcc caacagcaaa gatctgatct 1020
caaccactct gaacaccatg accatgcaat ttttttaacc aggcaagact ttggacctgc 1080
tggaaatgcaa ggatatgctc cagtcaccgg catgtgtcat ccagtggaaa gttgtaccct 1140
gaatcatgag gatggttttt catctgcttt ttagtagcc catgaaacgg gccatgtgtt 1200
ggaaatggag catgatggac aaggcaacag gtgtggtgat gagactgcta tggaaagtgt 1260
catggctccc ttggtacaag cagcattcca tcgttaccac tggcccgat gcagtggtca 1320
agaactgaaa agatataatcc attccttatga ctgtctcctt gatgaccctt ttgatcatga 1380
ttggcctaaa ctcccagaac ttcctggaat caattattct atggatgagc aatgtcgaaa 1440
tgattttgtt gttggctata aatgtgcac cgccgtccga acctttgacc catgtaaaca 1500
gctgtgggtg agccatcctg ataatcccta cttttgtaag actaaaaagg gacccact 1560
tgatgggact gaatgtgctg ctggaaaatg gtgctataag ggtcattgca tgtggaaagaa 1620
tgctaattcag caaaaacaag atggcaattt ggggtcatgg actaaatttgg gtcctgttc 1680
tcggacatgt ggaactggtg ttcgtttcag aacacgccag tgcaataatc ccatgcccatt 1740
caatgggtt caggattgtc ctgggtttaa tttttagtac cagctttgtt acacagaaga 1800
atgccaaaaa cactttgagg acttcagagc acagcagtgt cagcagcgaa actcccaactt 1860
tgaataccag aataccaaac accactgggtt gccatatgaa catcctgacc ccaagaaaaag 1920
atgccaccc ttactgtcagt ccaaggagac tggagatgtt gcttacatga aacaactgg 1980
gcatgatgga acgcactgtt cttacaaaga tccatatagc atatgtgtgc gaggagatgt 2040
tgtgaaatgtt ggctgtgata aagaaaattgg ttctataaag gttgaggata agtgtgggt 2100
ctgtggagga gataattccc actgccgaac cgtgaagggg acatttacca gaactccca 2160
gaagcttggg taccttaaga tttttgatatacccccggg gctagacatg tgttaatcca 2220
agaagacgag gcttctccctc atattcttgc tattaagaac caggctacag gccattatata 2280
tttaaatggc aaaggggagg aagccaaatgc gcggacccatc atagatctt gttgtggatgt 2340
ggattataac attgaagatg acattgaaag tcttcacacc gatggacccctt tacatgatcc 2400

-215-

tgttattgtt ttgattatac ctcaagaaaa tgataccgc tctaggctga catataagta 2460
catcatccat gaagactctg tacctacaat caacagcaac aatgtcatcc aggaagaatt 2520
agatacttt gagtgggctt tgaagagctg gtctcaggtt tccaaaccct gtggtgagg 2580
tttccagtag actaaatatg gatgccgtag gaaaagtgtat aataaaatgg tccatcgca 2640
cttctgtgag gccaacaaaa agccgaaacc tattagacga atgtgcaata ttcaagagt 2700
tacacatcca ctctggtag cagaagaatg ggaacactgc accaaaacct gtggaaatc 2760
tggctatcag cttcgactg tacgctgcct tcagccactc cttgatggca ccaaccgctc 2820
tgtgcacagc aaatactgca tgggtgaccg tcccggagc cgccggccct gtaacagagt 2880
gccctgcct gcacagtgga aaacaggacc ctggagttag tttcagtga cctgcgggt 2940
aggaacggag gtgaggcagg tcctctgca ggctgggac cactgtgatg gtgaaaagcc 3000
tgagtcggc agagcctgca aactgcctcc ttgtaatgtat gaaccatgtt tggagacaa 3060
gtccatattc tgtcaaatgg aagtgttggc acgatactgc tccataccag gttataacaa 3120
gttatgtt gagtccgtca gcaagcgcag tagcaccctg ccaccacat accttctaga 3180
agctgctgaa actcatgatg atgtcatctc taaccctagt gacccctcta gatctctgt 3240
gatgcctaca tctttggttc cttatcattc agagacccct gcaaagaaga tgtctttgag 3300
tagcatctc tcagtggag gtccaaatgc atatgctgt ttcaggccaa acagtaaacc 3360
tgatggtgct aatttacgccc agaggagtgc tcagcaagca ggaagtaaga ctgtgagact 3420
ggtcacccgtc ccacccccc cacccaccaa gagggtccac ctcagttcag cttcacaaat 3480
ggctgctgct tccttctttc cagccagtga ttcaataggt gcttcttctc aggcaagaac 3540
ctcaaagaaa gatggaaaga tcattgacaa cagacgtccg acaagatcat ccacccat 3600
aagatgagaa agtgaaccaa aaaggctaga aaccagagga aaacctggac aacctctctc 3660
ttccccatggt gcatatgctt gtttaaagtg gaaatctcta tagatcgta gctcatat 3720
tctgtatggt gaagaacaga aagtgtggc tcacttctca gttgctttca tcctcccttt 3780
gttctgcatt gactcattt ccagaattca ttggaaagaaa tcacccaaaga ttattacaaa 3840
agaaaaaatat gttgctaaga ttgtgttggt cgctctctga agcagaaaaag ggactggaac 3900
caattgtgca tatcagctga cttttgttt gtttttagaaa agttacagta aaaattaaaa 3960

-216-

-217-

tctttttttt ttccctaaaaa ttccccataga ataaaattct ctctagttta cttgtgtgtg 5580
catacatctc atccacaggg gaagataaaag atggtcacac aaacagttc cataaagatg 5640
tacatattca ttatacttct gacctttggg ctttctttc tactaagcta aaaattcctt 5700
tttatcaaag tgtacactac tgatgctgtt tgttgtactg agagcacgta ccaataaaaa 5760
tgttaacaaa atat 5774

<210> 67
<211> 5535
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 67
gactttaga agccgttgct gccctctctg tcacctgaag cggggccctc tcccatccca 60
cccttgcccc gcctccctgc ccccaccggg cggccctgc ccggccggg accctggcat 120
gtcaagacct ggtcccgccc tgcctgcccc gcccgcggaa ccccgccgccc cccgcgagct 180
aggatgaggg gccaggccgc cggccgggc cccgtctggta tcctcgcccc gctgctactg 240
ctgctgctgc tgctgggacg ccgcgcgcgg gggccgcgg gaggcagacgc gggccgggg 300
cccgagccgt ggcacgct ggtgcaggaa aagttctcg gctacttctc cggccggccc 360
gtgttcccg ccaacgcctc ggcgtgtcc tggacgctac gcaacccgga cccgcggcgc 420
tacactctct acatgaaggt ggccaaggcg cccgtgccct gcagcggccc cggccgcgtg 480
cgcacctacc agttcgactc cttcctcgag tccacgcga cctacctggg cgtggagagc 540
ttcgacgagg tgctgcccgt ctgcgacccc tccgcacccc tggccttctc gcaggccagc 600
aaggcgttcc tgcagatgcg ggcacgctc cggccggcagc acgacgggct cggccgggg 660
ggccggccgc cggccggcagc cggccggcagc tccgtggagt acctgggtggt gggaaaccgc 720
aaccccgccgt gtcggccctg ccagatgctg tgccgtggc tggacgcgtg tctggccgg 780
agtcgcagct cgacccctg cgggatcatg cagacccct gcgcgtgcct gggcggcgc 840
gcggccggcc ctggccgggg accccctggcc ccccgccggg atgtctgttt gagagatgcg 900
gtggctggtg gcccgtaaaaa ctgcctcacc agcctgaccc aggaccgggg cgggcacggc 960

-218-

gccacaggcg gctggaagct gtggtccctg tggggcgaat gcacgcggga ctgcggggga 1020
ggcctccaga cgccggacgcg cacctgcctg cccgcgcgg gcgtggaggg cggcggtcgc 1080
gaggggggtgc tggaggaggg tcgcccagtgc aaccgcgagg cctgcggccc cgctgggcgc 1140
accagctccc ggagccagtc cctgcggtcc acagatgccc ggcggcgcga ggagctgggg 1200
gacgagctgc agcagtttggtt gttcccagcc ccccaagaccg gtgacccagc agccgaggag 1260
tggtccccgtt ggagcgtgtt ctccagcacc tgccggcagg gctggcagac ccgcacgcgc 1320
ttctgcgtgtt cctccctcta cagcacgcag tgcagcggac ccctgcgcga gcagcggctg 1380
tgcaacaact ctgcccgtgtt ccccaagtgcattt ggtgcctggg atgagtggtc gccctggagc 1440
ctctgctcca gcacccgtgg ccgtggcttt cgggatcgca cgcgcacctg caggcccccc 1500
cagtttgggg gcaacccctg tgagggccctt gagaagcaaa ccaagttctg caacattgcc 1560
ctgtgcctgtt gccgggcagt ggatggaaac tggaatgagt ggtcgagctg gagcgcctgc 1620
tccgccttgcgtt gctcccaaggcc cgcacacgcag cgcacgcgtt aatgcaacgg gccttcctac 1680
gggggtgcgg agtgcctgggg ccactgggtt gagaaccggag actgcttcctt gcagcagtgc 1740
ccagtggtatg gcaagtggca ggcctggcg tcatggggca gttgcagcgtt cacgtgtggg 1800
gttgtgcagcc agcgacggga gcgtgtctgc tctggccct tcttcgggggg agcagcctgc 1860
caggcccccc aggtgatgatc cccggcgtgc ggcacccagc ggtgtcccgaa gccccatgag 1920
atctgtgtatg aggacaactt tggtgctgtt atctggaaagg agaccccaagc gggagaggtt 1980
gtgtgtgtcc ggtgtcccccg caacgcacaca ggactcatcc tgcacgggtt tgagctggac 2040
gaggaaggca tcgcctacttggggccccc acctacatcc gctgtgtttt cattgactac 2100
agaaacatcc agatgatgac cccggagcac ctggccaagg ctcacgcagg gctgcctggg 2160
gaggggggtctt cggaggtcatt ccagacacttggggatctt ctcaggacgg gaccagctac 2220
agtggggacc ttgtgtccac catcgatgtc ctgagggaaaca tgacagagat tttccggaga 2280
gcgtactaca gcccccccccc tggggacgtt cagaacttttgc tccagatcct tagcaacctg 2340
ttggcagagg agaatcgaaa caagtggag gaggcccaagc tggcgccccc caacgccttgc 2400
gagctgtttcc ggctgggttggaa ggactttgtt gacgtcatcg gcttccgcattt gaaggacctg 2460
aggatgcat accaggtgac agacaacctg gttctcagca tccataagct cccagccagc 2520

-219-

ggagccactg acatcagctt ccccatgaag ggctggcgaa ccacgggtga ctgggccaag 2580
gtgccagagg acagggtcac tgggtccaag agtgtttct ccacggggct gacagaggcc 2640
gatgaagcat ccgtgttgtt ggtgggcacc gtgctctaca ggaacctggg cagttccctg 2700
gccctgcaga ggaacacgac cgtcctgaat tctaaggta tctccgtgac tgtgaaaccc 2760
ccgcctcgct ccctgcgcac acccttggag atcgagtttgc cccacatgta taatggcacc 2820
accaaccaga cctgtatcct gtgggatgag acggatgtac cctccctc cggccccccg 2880
cagctcgggc cctggtcgtg gcgccgtgc cgacgggtgc ccctcgacgc cctccggacg 2940
cgctgcctct gtgaccggct ctccaccttc gccatcttag cccagctcag cgccgacgcg 3000
aacatggaga aggcaactt gccgtcggtg acgctcatcg tgggctgtgg cgtgtccct 3060
ctcaccctgc tcatgcttgtt catcatctac gtgtccgtgt ggaggtacat tcgctcagag 3120
cgttctgtca tcctcatcaa cttctgcctg tccatcatct cctccaatgc cctcatcctc 3180
atcgggcaga cccagacccg caacaaggta atgtgcacgc tggtgccgc cttcctgcac 3240
ttcttcttcc tgtcccttctt ctgctgggtg ctcaccgagg cctggcagtc ctacatggcc 3300
gtgacgggcc acctccggaa ccgcctcatc cgcaagcgct tcctctgcctt gggctgggggg 3360
ctccctgcac tgggttgtgc catttctgtg ggattcacca aggccaaagg gtacagcacc 3420
atgaactact gctggctctc cctggagggg ggactgtct atgccttcgtt gggacctgcc 3480
gctgccgttg tgctggtaa catggtcatt gggatccctgg tggtaacaa gctcgtgtcc 3540
aaagacggca tcacggacaa gaagctgaag gagcgggcag gggcctccct gtggagctcc 3600
tgcgtggtgc tgccgctgctt ggcgctgacc tggatgtcgg ctgtgctcgc cgtcaccgac 3660
cgccgcctccg cccttcca gatccttcc gctgtttcg actcgctgga gggcttcgtc 3720
atcgcatgg tgcactgtat cctccgtaga gaggtccagg acgctgtgaa atgcccgtgt 3780
gttgcacggc aggaggaggaa caacggggac tcagggggct cttccagaa cggccacgcc 3840
cagctcatga ccgacttcga gaaggacgtg gatctggctt gtatcgtt gctgaacaag 3900
gacatcgccgg cctgcccac tgccaccatc acgggcacac tgaagcggcc gtctctgccc 3960
gaggaggaga agctgaagct ggcccatgcc aaggggccgc ccaccaattt caacagcctg 4020
ccggccaaacg tgtccaaagct gcacctgcac ggctcaccctt gctatcccgg cggcccccctg 4080

-220-

cccgacttcc ccaaccactc actgaccctc aagagggaca aggcgccaa gtcctccttc 4140
gtcggtgacg gggacatctt caagaagctg gactcggagc tgagccggc ccaggagaag 4200
gctctggaca cgagctacgt gatcctgccc acggccacgg ccacgctgctg gcccaagccc 4260
aaggaggagc ccaagtacag catccacatt gaccagatgc cgcatccccg cctcatccac 4320
ctcagcacgg ccccccggc cagcctcccc gcccgcagcc cgccctccccg ccagcccccc 4380
agcggcgggc ccccccggc acccccgtcc cagccccacac cgccctccgccc cccaccgcca 4440
ccacccctcccc agcagccccct gccccccacgg cccaatctgg agccggcacc ccccaagctg 4500
ggggatccccg gggagcctgc cgcccatccg ggaccacgca cggggcccaag caccaagaac 4560
gagaatgtcg ccacccgtc tgtgagctcc ctggagcggc ggaagtcgctg gtatgcagaa 4620
ctggactttg agaagatcat gcacacccgg aagcggcacc aagacatgtt ccaggacctg 4680
aaccggaaagc tgcagcacgc agcggagaag gacaaggagg tgctggggcc ggacagcaag 4740
ccggaaaagc agcagacgcc caacaagagg ccctgggaga gcctccggaa agcccacggg 4800
acgcccacgt gggtaagaa ggagctggag ccgctgcagc cgtcggcgct ggagcttcgc 4860
agcgtggagt gggagaggtc gggcgccacg atcccgctgg tggccagga catcatcgac 4920
ctccagacccg aggtctgagc gggtaaggcg cggccacgca ctggccacg gaggagggat 4980
gtgtcccgcc cccgtccctgc cgccatccggg cacagacacg ctgcggggca gcggggccagg 5040
cccgccacccccc ggcctcaggcg cgctcagacg gcccggcaggc acagggcccg cagtgtgggg 5100
accagagcca gatgcaggac aggaggcggc cggccacgacg ggcacagggc accagaggcc 5160
gaaggtgcct cagactccgc ctcctcggg ccgaggccca gcggggcagat gggcggacgg 5220
ctgtggacccg tggacaggcc cagcgcggcc agcgtcccg ggtacccgccc tgagctcctg 5280
ctgcggagga gctgcctgct tggcccgcc ggcctggcac cgaaaaata acaccccat 5340
ccctcgggaa gcagccagct ccccacacot tccaggggccc taggcccctc ctagacccag 5400
gtggagggca cagccctccg accctcatgg ccccccagggg caggactgag tcccccctccag 5460
gaagaagcag gggggatct atttttctc tcctttctt ttcttcaata aaaagaatta 5520
aaaacccaaa aaaaa

5535

-221-

<210> 68
<211> 398
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 68
cggggcaacc cgctggagtg gacgggccag gtgacgggtgc gcaagaagcg caagccctac 60
tccaagttcc agacgctcga gctcgagaag gagttccctct tcaacgcgta cgtcagcaag 120
cagaaggcgt gggagctggc gcgcaacctc aacctcaccg agcggccaggt caagatctgg 180
ttccagaacc ggccatgaa gaacaagaag aacagccagc gccaggcggc cagcagcagc 240
agcagcaaca gcagcagcag cagcagcagc aacagcagca agcggccgccc ggccggggcgt 300
cggccgcccgc caacggccac cagggccacc aagcgcacca ccacgcgccc cccaacggcg 360
ccgtcgccgc cctcaaggcac caccagtgc accgttagc 398

<210> 69
<211> 8670
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 69
cccggtgcg gtgtcggtgt tggtggctggg cgccatgttc ctggacatgc tgagggccaa 60
gcgcgacacgc gcgcgcgacc gcccgcagct ggacgaccgg atgatggggg cggacccggg 120
ggacatagcg gccaagggtga gggcagggtt ttgcgtgcgt gcttgattgt gcgtgtgcgt 180
gcgtgcgtgc gtgcgtgcgg tggtgcgtgt gtatttgcac tgggtttgt gtatgtactt 240
aggggttaaga gtgcatacac atgcacgcg cccgtggcct tacaaatcaa caacacgtac 300
gcctgcattt atccagggtgg cagcgtggcg acgagcacgt ggcttcgagg gcccaggcac 360
ggcgcccccc agcggcagcg cccgcgtgg cagcggccgc agcggctcg caccgcaggc 420
gcgcgtcgccc cgacctcagc caccgcggcc gcgcgtcacct tcacgcgggt gaaccccgcc 480
gaggagccgc ccgtgtacgc gtgcgagcaa acaggtgcgt aagcgcacgtg tggcagcgc 540
gaagaggcgt gggggcgaga gagcaaagg actaggaaa cgcacagcca aatacggtat 600

-222-

gcgggcaacg aggcgatggc cctggaaatc gcagggccct tttgaaatcg tgttaaggcgc 660
aattgctggg cgactaccgt agtctactga tgcattgcac tacttgtatt actgtatcct 720
actgcagtag tgccgttgcc agccgcgctg ctgcccttg gctcccttcc caatccaaat 780
ggcccatgcc tcgcgcactc cgagcaccca gagcacccag aagccgttgc gtgcgctccg 840
ccgcccgcct ctccccggcc ttcaacttctt aattaatcgt gaatgtaatc cccccccccc 900
ccgcttcctc aggctgggtg cacgtgtgcg cgacgcctgc acggagggtg tggtgatgc 960
ccgcagcgaa ctgctgggtg gcccggtag tcgacgagga ggaggtgcaa gggggatacc 1020
agcgcgtgtt tctcagggcc tgtgtggac accgaaacgt ggtaaaagag acccgccgc 1080
gaactgtgta tgtggagtag cgtggcgtgt gcggccggac cgacaaggca gcttgtggac 1140
tgccccacgt tgcagagtca gctgacaacg acacgtgcgc cttcctgtca ttgcccgtgc 1200
gcacgcacgt cctccgcact cccaacaaat tgacagcgac acgtgcgcct tcctataagc 1260
ctatgcccgc acacgctccc gcgcctcag gtgtcgggac agaccacaga ccggttggc 1320
cacgagtgcg aggaggatga gcggggcggc tgcggcggcg ccggcggggc gccgcggcga 1380
ggaggacggc ctgggactgg gcatcacagg tgggtggcag gctggcaggg actcacgcat 1440
gggccttcta cgtgactgcg gttctgcatt gctagtggct cacgcgcgtgc gcacgttac 1500
gtacggcttg tgggcatgca gtgccttgc acgtgcgc gctgccttgc tgctgccgc 1560
ttgccccgct ccctgcacac actgcagccg gttcgggcg ctacttcacc gccccctacg 1620
agtgcgagaa cgcgcagcag ctcaacaggc tgcgggtta caaggcgctg tgagagcgcg 1680
ccgcaggggg agtgtgttca tattgtggtt gtttggccg tggcgcggg ctgcattgtgc 1740
gtattgcacg cgtacagcat tggtaactgg tcagggttaa gcggccggca gtgcgcgcgc 1800
aggcgctgca gcgagttgtg gggcatgcgt catgcgcaga cggccctgg acgacaaggc 1860
gtttagttgg cgtttggagg tggggacga cgtgggttt gtgcgtcaa agcacagaac 1920
agaaggcgtg accgtttac gagctcgtat gatgttagcat ggattgaata atgacatgtg 1980
atttttgtta caagcgacga atgcgtgggg ttttggatgg caggggttc agtcgcccga 2040
ttgcgcattgc acacgtgacc aaatttatgc tcaacgcgt gaccattgtctt ttatacatac 2100
ttgtgtatcg gttggcactt ataacaattt gctcgtcaaa ttgacgcgag gctgcacttc 2160

-223-

gatcctgaaa gccccagttc aacaagtcgg atagccaaat ggccccgctc gctctccagc 2220
atcaaggggc ctctaagtgc ctcgcggcaa cccagcgcaa gtgtgctcgc gttgcggtga 2280
gctggactcg tgcacttgc gacgcccgtcg gcaccgcaat cgaaagacgc gtgcgtcgag 2340
caattgtgga agccgctgac gaattgtccg catgtgacat tgcaggctcg cgtccccct 2400
cgtctcagcg tcatggccca ggtgcggacg ttgggactgc acttgcacga atgtgatggg 2460
gccgcaccga gtctgcgcgg acgtctcgct gacgttcgc gttgaatgca tctcgcaata 2520
ggcagctgct ggcctgctg acaaacactaa gaagctgtgg ggccggctcgct tcacgggcaa 2580
gacggaccgg ctcatggaga agttcaacga gtcgctgccc tttgacaaggc gcctgtggc 2640
tgaggacatc aagggtgcggc acagggaggg gggcgagtgg tgggtgggg ctggggggga 2700
cgccgggtttgcgtggccaggcaggcaggaaagacgtgcgg ggcttaggcaa gaggctgcga 2760
gggcccaggg taacaccaga ccgtgccgtg tcgcgtgccc ggcttgctgc ccaccttgcc 2820
cggccatccc caccgcctc cccaccagca atgacacgta cacattcaca cactccccca 2880
cacccacata cccacacacc cacgcattcc ccaacagggc agccaggcgt acgccaaggc 2940
tcttgccaag gccggcattc tggcacatga cgaggccgtg accattgtgg aggggctggc 3000
caaggtgcgc acacccggca gcagggcggg tgggtgggtg ggtgggggtgg gggggcagag 3060
agaggcgcgg gctgagaggg ggctgagagg ggggtcagcg aggccggc tcagggggag 3120
gcgtctgagg ggggctgaga tgggtgggtgg ggagctgcgg tgctggggc tgctgcggtg 3180
gcgggcgggc gggcggcgg ggcacgtgta cgtgagtagc cgctgaccgg gcgctgggcc 3240
tttgcgcacg ccacagccca catgacacccg cgcacaggcc cgcgcgcgc caccacgtt 3300
cacacactcc caccacccac gcgtgcgcgc gcctccctcc cctcaatacaca cgcgcctcc 3360
tccccctggcc cccgcctgct ccccccatacc ggccggggcc cctgcagggtg gctgaggagt 3420
ggaaggcggg tgcctttgtg atcaaggcgg gtgacgagga catccacacg gccaacgagc 3480
ggcgccctcac ggagctggtg ggggcgggtgg gcccggcggc gcacaccggc cgctcgcc 3540
acgaccaggt gaggggtgggt ggggtgggggt ggggtgggtg ggtgggtgg tgggtgggtg 3600
ggtgggtggg tgggtgggtg ggtgggtgg ggtttgagat accggtagcca gccaacta 3660
aaccgaaccc aagggggtgg cgtagggcgg tgggaggggg ggagtgcggg agccgggagg 3720

-224-

caggagtaag ggccgggagga gggggccgga ggagaagcag ggacgaagtc gatgacagggc 3780
gcagtccgtg gcggcggtgg cgggtgtgcc gttgtcagt ggctgtggag gccatgtgca 3840
gggcggcggc ggggcccggc cgggggtggg agacttgtcc agacccccgtg gccctcttcc 3900
agccccgtcc gccactgccc ccaccaccac cgccgcccgc gtagccacca cccctcacgt 3960
cgaggcactt cacagatgcg aagcaaccac accgttctcc acatgaacag ctaccctccc 4020
aaacccaact ttcccttccc gccttaccta accatgaccc gctacccccc cccctttat 4080
ttcttaacta accatgaatg cccccccccc gctgtacctg gctacgactt cacttcgtaa 4140
acttaatgtg tgtaacccccc cttacacaca cacacacacc cctccccggc cctccaaagg 4200
ttgccaccga ctaccggctg tggctggtgg gtcaggtgga ggtgatgcgg tccgaggtgg 4260
gcgagctgat gcgcgtggcg gcggaccgct ccgaggcaga ggtggaggtg ctcatgccgg 4320
gtgagggggc agggaggggg ggagggggag ggggaggtgc tcatgccggt gagggtaggg 4380
aggggagggg cagaggaggg agggggagga gggggccgct gagtgcggga gaggcaggga 4440
tgagggcgat agaaagttgc gtattgtcgg taaactcaaa ggactagacg aagagaacaa 4500
acctaaacaa gggagctgga gcgaggccaa atctgaacgt gacatcgccc gcctccccc 4560
gctgcctgct cccccacctc ctccccccatc tcgccccccc ccccacacac acacaggctt 4620
cacgcaccc cagaatgcca tgactgtcgc ctggagccac tggctgatga gccacgcgc 4680
ggcctggcag cgcgacgaca tgcggctcgcg ggacctgctg ccgcgggtgg ccacactgcc 4740
gctgggctcg ggtgggtgag ggaggggagg ggaggggagg gggggagggg gagggagagg 4800
aggggagaag ggggggggag acgaggaggg tggaaagggtg ggggcggggc ggtggaggct 4860
agaggggtggg gctgggtggg tggacggagt gcactggtag aggaggata ggttacattg 4920
agacgggagg agggatgcag gggcgaagggt ggggaggagg ggaggggagg aggcgtggag 4980
ctggagtggg ccgacgagtg tgcggacggg gcaggcggca acggggatta aacggcgggg 5040
ggccggggcg tgtgcacgac aggggcttgc gcgtctgcga ttgtgggggc acacagggac 5100
aggagcacga cgtgggacac gcatagatac gccgcattga caacacacac acacacacac 5160
acacacacac acacacacac acacacacaa acacaaacac acacaaacac aaacacacac 5220
acgccccccc ccctacacac acgccccctc cccaggcggc ctggccggca acccctttct 5280

-225-

ggtggaccgc cagttcatcg ccaaggagtt gggttcggc ggccgcgtgt gccccaaactc 5340
catggacgcg gtgaggggag gaggaggggg aggagggcgg gggggggcag gaggggggag 5400
gaggaggggg ggaggggggtt aactttgaag cgtaaggaaa cagtcgggag gagggggggga 5460
aggagggggc ctggaggagg gggggaggag gagggtggt ggagggggct gggggaggag 5520
gagggggagg attggggaggg ggctggggga gggtgcccgc agctggggga ggtggggagg 5580
gaggggggtt ctgctggtgt aaagggcctg taggcactga gacactgtg gggagccggg 5640
gtactgcctg gggccccgcg ctgcagaggt gtcgcgcagt gtggcggcgc atccccgcga 5700
tccccacacg cggggccgtg ccgctgcccg ccacacccctt gccactttgt gtgcttcct 5760
aggatataca cacacacaca cacacacaca cacacacaca cacacacaaa cacaacacaca 5820
cacgggcgcg ggcttcgtt tcgtttttta acacaaacac acactccccc tgtgctcctc 5880
aacacactcc atcttctca cacaaacaca cacgcacaca cacatgcgca ggtgtctgac 5940
cgcgactttg tgatcgagac ggtgtttgcg gccagcctgc tgtgcgtgca cctgtcgcgc 6000
tgggcggagg acctcatcat ctacagctcc ggcccccctcg gctacgtgca gtgcagcgcac 6060
gcctacgcca ccggcctcctc gctcatgccg cagaagaaga accccgacgc cctggagctc 6120
atcaggtgcg ggagggatgg ggtgggggtg ggggggttac attcatggtt agttaagaag 6180
tgaaggcgta ggggtggat ggggtgggtt acattcatga acatttaaga agtgaaggcg 6240
tagccaggaa cagtagtaga gcagacgcgt tgttagtgtt gggttgggt gggagggatg 6300
gttggtaaa gcggtacagg atgtactgag gactgcagac cgaaggagcg ggggaggggg 6360
agcaggcagg cggggcgagg ggcgtggggg cgggggttac tggcaccgtg ccgggtaagc 6420
aacacgtgac acggagatgc accacacaaa gagggacgtg gggagtggca ggcgggggccc 6480
agggctgaga ggcgcgtgtg gaggggtgcg gggttggcg gggggctgtt tcatgatacc 6540
gctgcctcca ctcctccac cgcctcctgc cacccaccacc tccccactg cccctccccg 6600
cctcctcctg ctgcaggggc aaggcggcgt gttgcaggaa caacctgtatg ggcgtcatgg 6660
cggtgctcaa gggcacgccc accacataca acaaggactt ccaggcggaga gagcgagagc 6720
gagggagggaa gggagagcga gggagagggaa gggagagggaa gggagagggaa gacagagggaa 6780
cagggacagg gacagggaca gggacaggaa cagggacagg ggcaggggca gggcagggg 6840

-226-

caggggcagg ggcaggggag gcccccggg ggcggcggc ccggggcatg aggtcagaca 6900
taggggcgt gcactgaggc cgcgaggcgg gcgggaggca gggggcgggg ggcggggggc 6960
gggagcggac atgcgccgca aacacagacg gggtgagaaa gcacaacgc ac tggAACGcAG 7020
tgggcttaact gacaattcat cattgtgcgc atatgtgtgt atgtgtatgt gtgtgtttgt 7080
ttgtgcaggaa gtgttggag ctgtgttttq acacggtgga cacggtgac gacgtggc 7140
gcatcgccac cggcgtgctg tccaccctgc ggtcaagcc cgaccgcata aaggccgggt 7200
agcgttagccg agcaggcgtg gagcagcagc cgggcagcag tagcagcagg gcaggggagc 7260
agcgggagcg ggagcagcag gaggggttgt tggaaagcgg tggggtagg gtgggagcgg 7320
aggaagggaa ggaggagcag gagcaggagg aagaggagga ggaaggcgg tgggggttgt 7380
ggggtcgtgt cttggccgc atgggcggag gcggggaggc gggaggagg cggggaaagca 7440
gagcctgcac ccacgctccg cgggtcccta ccgtctgcg cctaaccctcg tgcccttagc 7500
ctcttgcgcc cacccttta gtgcattctg taccctctt tccaaacatc cttgcaactc 7560
cctgacctcc tcgccaaacc tccccggcc ccaggcctgt ccggcgcacat gctgcccacg 7620
gacttggccg agtaccttgt ggcgaaggcgt gtcgggtcc gggagacaca ccaccacagg 7680
tgccggccggg cgggagggcg tgagggcgtg ggtgggcat gcccgggtt gtgagagcta 7740
tcgaacgttg tgccgcgcct gttcacaaat gtcggccac aggttatgca gtttcctctc 7800
catatgtata acaaactgac caccaatcat gcacgctcac acgctctccc acacacacgc 7860
gcaccacgcc accacagcgg cgccgcccgtg aagatggccg aggaccgcgg ctgcacgcgt 7920
ttcgaccta ccgtggacga cctcaagacc atccaccgcg tttcacccga cgacgtggcg 7980
gcgggtgagcg gcggcgcggc gacgcgcagc cagcagcagc agcagcagca gcagcagcag 8040
tagcctgggg gggagcgtgt gggaggaacg gcggggggagg ggaggcgggg ggtgtcggtt 8100
gcagccgagc gcacgtggtg ctttgcggca ttccatgcca gcagggtgac acacctgacc 8160
atgctggtgt gctgttaggt gttcacacc tacgtgtgaa tttgtgtgg cgtgcgcaca 8220
ccttactgtg gccatgtgaa cggcatcctc atgtcctcgt gattgcgcgg ggcacattgc 8280
ccacaacccc gcaccaccca gtcctcaat ccagtgcag gaaaggaaat gcacgcccgc 8340
cgcaccaaca acacgacgcgca tgtgtttgcc acgtgcgcgc acacacgcgc aggtgtggga 8400

-227-

cttcaaccgc agcgccgaga tgcgcgacac ggagggcggc accagcaagc gctcggtct 8460
ggagcaggta cagaagatgc gcacacctt ggcggcggag ggacagcact gagcgggtcg 8520
ggggaggggg ggcgggtgt tatgtgtgtg tgtgtgcgtg tgtaagtctc ggtggagggg 8580
tggtcctcta tatggcggcg gggccacagg gggacgggtg tgacagagtt acggccggag 8640
ccagcggagt cccggatgg attaaggatc 8670

<210> 70
<211> 745
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 70
atgagatggc gacgcgc(ccc gcgccgtcc gggcgccccg gccccgggc ccagcgcccc 60
ggctccggccg cccgctcgcc gcccggctg ccgctgtgc cactactgtc gctgtgggg 120
accgcggccc tggcgccggg ggcggcggcc ggcaacgagg cggtctccgc gggggcctcg 180
gtgtgtact cgtccccggcc cagcgtggga tcgggtgcagg agctagctca ggcgcggcg 240
gtggtgatcg agggaaaggt gcacccgcag cggtcgccgc agggggact cgacaggaag 300
gcggcggccg cggcgccgca ggcaggggcg tggggcgccg atcgcgagcc gccagccgcg 360
ggcccacggg cgctggggcc gcccggcag gagccgtgc tcgcccggaa cgggaccgtg 420
ccctcttggc ccacccggcc ggtgcccagc gcccggcagc ccggggagga ggcccttat 480
ctggtgagg tgcaccaggta gtggcggtg aaagccgggg gcttgaagaa ggactcgctg 540
ctcacccgtgc gcctggggac ctggggccac cccgccttcc cttctgcgg gaggctcaag 600
gaggacagca ggtacatctt cttcatggag cccgacgcca acagcaccag cccgcgcggc 660
gccgccttcc gagcctttt cccccctctg gagacgggc ggaacctcaa gaaggaggta 720
agccgggtgc tgtgcaagcg gtgcg 745

<210> 71
<211> 1986
<212> DNA
<213> Unknown

-228-

<220>

<223> Description of Unknown Organism:Unknown

<400> 71

gaattccttt tttttttttt ttttttcttt ttttttttgc cttataacct cttcgccttt 60
ctgtggttcc atccacttct tccccctcct cctccataaa acaactctcc tacccctgca 120
cccccaataaa ataaataaaa ggaggagggc aaggggggag gaggaggagt ggtgctgcga 180
ggggaaggaa aaggaggaggca gcgcgagaag agccgggcag agtccgaacc gacagccaga 240
agcccgacg cacctcgac catgagatgg cgacgcgccc cgccgcgcgc cggcggtccc 300
ggcccccggg cccagcgccc cggctccgccc gcccgcgtcg cggccgcgtc gccgctgtcg 360
ccactactgc tgctgctggg gaccgcggcc ctggcgccgg gggcgccggc cggcaacgag 420
gccccctcccg cgggggcctc ggtgtgctac tcgtccccgc ccagcgtggg atcggtgca 480
gagctagctc agcgcgcgc ggtggtgatc gaggaaagg tgcacccgca gcggcgccag 540
cagggggcac tcgacaggaa ggcggcgccg gcccgcggc aggcaaggc gtggggcgcc 600
gatcgcgagc cgccagccgc gggccacgg gcgctgggc cggccgcga ggagccgctg 660
ctcgccgcca acgggaccgt gcccttttgg cccaccgc cgtgcccag cgccggcgag 720
cccgaaaaagg aggcccta tctggtaag gtgcaccagg tgtggcggt gaaagccggg 780
ggcttgaaga aggactcgct gtcaccgtg cgccctggga cctggggcca cccgccttc 840
ccctcctgcg ggaggctcaa ggaggacagc agtacatct tcttcatgga gcccgcgc 900
aacagcacca gccgcgcgc ggcgccttc cgagccttt tccccctct ggagacggc 960
cggaacctca agaaggaggt cagccgggtg ctgtgcaagc ggtgcgcctt gcctcccaa 1020
ttgaaagaga taaaaagcca ggaatcggt gcaggttcca aactgtcct tcggtgtgaa 1080
accagttctg aatactcctc tctcagattc aagtggttca agaatggaa tgaattgaat 1140
cggaaaaaca aaccacaaaa tatcaagata caaaaaaagc cagggaaagtc agaacttcgc 1200
attaacaaag catcaactggc tgattctgga gagtatatgt gcaaaagtgtat cagcaaatta 1260
ggaaatgaca gtgcctctgc caatatcacc atcgtgaaat caaacgctac atctacatcc 1320
accactggga caagccatct tgaaaaatgt gcggagaagg agaaaacttt ctgtgtcaat 1380
ggagggggagt gcttcatggt gaaagacctt tcaaaccctt cgagatactt gtgcaagtgc 1440

-229-

ccaaatgagt ttactggta tcgctgccaa aactacgtaa tggccagctt ctacagtacg 1500
tccactccct ttctgtctct gcctgaatag gagcatgctc agttggtgct gctttcttgt 1560
tgctgcacatct cccctcagat tccacctaga gctagatgtg tcttaccaga tctaataattg 1620
actgcctctg cctgtcgcat gagaacatta acaaaaagcaa ttgttattact tcctctgttc 1680
gcgacttagtt ggctctgaga tactaatagg tgtgtgaggc tccggatgtt tctggaattg 1740
atattgaatg atgtgataca aattgatagt caatatcaag cagtgaaata tgataataaa 1800
ggcatttcaa agtctcactt ttattgataa aataaaaaatc attctactga acagtccatc 1860
ttctttatac aatgaccaca tcctgaaaag ggtgttgcta agctgttaacc gatatgcact 1920
tgaatgatg gtaagttaat tttgattcag aatgtgttat ttgtcacaaa taaacataat 1980
aaaagg 1986

<210> 72
<211> 2003
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (31)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (32)
<223> May be any nucleic acid

<400> 72
gaaattcctt tttttttttt tttttttctt nntttttttt tgcccttata cctcttcgccc 60
tttctgtgggt tccatccact tcttccccctt cctccctccca taaacaactc tcctaccctt 120
gcaccccca aataataataaa aaaggaggag ggcaagggggg gaggaggagg agtggtgctg 180
cgaggggaag gaaaagggag gcagcgcgag aagagccggg cagagtccga accgacagcc 240
agaagccccgc acgcacacctg caccatgaga tggcgacgcg ccccgccgccc ctccggcggt 300
ccccggcccccc gggccccagcg ccccgccgctt gccgccccgtt cgtcggccgccc gctgcccgtg 360

-230-

ctgccactac tgctgctgct ggggaccgcg gccctggcgc cggggcgcc ggccggcaac 420
gaggcggctc ccgcggggc ctcgggtgtc tactcgccc cgcccagcgt gggatcggtg 480
caggagctag ctcagcgcgc cgcgggtggt atcgagggaa aggtgcaccc gcagcggcgg 540
cagcaggggg cactcgacag gaaggcggcg gcggcggcgg gcgaggcagg ggcgtgggc 600
ggcgatcgcg agccgccagc cgcgggcccc caaggcgctgg ggccgcccgc cgaggagccg 660
ctgctcgccg ccaacggac cgtgcccctct tggcccaccc ccccggtgcc cagcgccggc 720
gagcccgaaa aggaggcgcc ctatctggtg aaggtgcacc aggtgtgggc ggtgaaagcc 780
gggggcttga agaaggactc gctgctcacc gtgcgcctgg ggacctgggg ccaccccgcc 840
ttccccctcct gcgggaggct caaggaggac agcaggtaca tcttcttcat ggagcccgac 900
gccaacagca ccagccgcgc gccggccgccc ttccgagcct cttccccccc tctggagacg 960
ggccggaacc tcaagaagga ggtcagccgg gtgctgtca agcggtgccgc cttgcctccc 1020
caattgaaag agatgaaaag ccaggaatcg gctgcaggtt ccaaactagt cttcggtgt 1080
gaaaccagtt ctgaataactc ctctctcaga ttcaagtggt tcaagaatgg gaatgaattt 1140
aatcgaaaaa acaaaccaca aaatatcaag atacaaaaaa agccagggaa gtcagaactt 1200
cgcattaaca aagcatcaact ggctgattct ggagagtata tgtcaaagt gatcagcaaa 1260
tttaggaaatg acagtgcctc tgccaatatc accatcggtt aatcaaacgc tacatctaca 1320
tccaccactg ggacaagcca tcttgtaaaa tgtgcggaga aggagaaaaac tttctgtgt 1380
aatggagggg agtgcttcat ggtgaaagac ctttcaaacc cctcgagata cttgtgcaag 1440
tgcccaaatg agtttactgg tgatcgctgc caaaactacg taatggccag cttctacagt 1500
acgtccactc ctttctgtc tctgcctgaa taggagcatg ctcagttgtt gctgcttct 1560
tggatgtca tctccctca gattccaccc agagcttagt gtgtcttacc agatctaata 1620
ttgactgcct ctcgcgtcg catgagaaca ttaacaaaag caattgtatt acttcctctg 1680
ttcgcgacta gttggctctg agataactat aggtgtgtga ggctccggat gtttctggaa 1740
ttgatattga atgatgtgat acaaattgtat agtcaatatc aagcagtgaa atatgataat 1800
aaaggcattt caaagtctca cttttattga taaaataaaa atcattctac tgaacagtcc 1860
atcttcttta tacaatgacc acatcctgaa aagggtgtt ctaagctgta accgatatgc 1920

-231-

acttgaaatg atggtaagtt aattttgatt cagaatgtgt tatttgcac aaataaacat 1980

aataaaagga aaaaaaaaaaaa aaa

2003

<210> 73
<211> 957
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (809)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (810)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (811)
<223> May be any nucleic acid

<400> 73
tctcgccca acttttccc ccgcgcgtccg cagcagcagc agcagcagca gcagcagcag 60
caaatggca gacctttca gcggactcgt gggcgccgtc gtccggcgctg ttgctgcagc 120
agatttgcct gcggaggccg agagggcccc cccggccgtc cccggcactg cctggacttg 180
ctgctgcagc aaactgcaag aaggggcccc cgagctggag gttttgtgc agcagctgag 240
ttttgttgcg gggaaagctgg cctgctgcct gcgggtgggg gcggagcagc tggcgcgctg 300
cgctgcggag gggccggctgc ccagcagcag cagcagcagc agctgctgctg cgtcgctgca 360
gctcgagaag caggacctcg agcagagcct cgaggccggc aagcagggcg cggagtgcct 420
cttgaggagc agcaaactgg ccctcgaggc ctcctcgag ggggcccccg ttgcagcaac 480
gcggggtttg ctgctggcgtc agagcagcaa agacacggtg ctgcgcagca ttccccacac 540
ccaggagaag ctggcccaagg cctacagttc tttcctgcgg ggctaccagg gggcagcagc 600
ggggaggtct ctgggctacg gggccctgc tgctgcttac ggccagcagc agcagccag 660

-232-

cagctacggg ggcgcggcccg cctccagcca gcagccctcc ggcttcttct ggttagccctg 720
cagcagcagc agcagcagca gcagcagcagc cagcgccggc ggcagccgcg gcggggccgg 780
ggcgccgctg cagcaacagc agcagccgnn ncggtctagcg ccgcggagca ctgcaggga 840
actccacagg cagcgggaga gcagcaggga cgagaagcag gtcatgtagc gcagggcagca 900
gcgccagctg cagcagcagc agcagcagca gcagcagcag cagcagctcc tgcaccg 957

<210> 74
<211> 957
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (809)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (810)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (811)
<223> May be any nucleic acid

<400> 74
tctcgccccca actttttccc cccgcgtcccg cagcagcagc agcagcagca gcagcagcag 60
caaaatggca gacctttca gcggactcgt gggcgccgtc gtcggcgctg ttgctgcagc 120
agatttgct gcggagggcg agagggccccc cccgcggccccc cccggcactg cctggacttg 180
ctgctgcagc aaactgcaag aagggggcccg cgagctggag gttttgtgc agcagctgag 240
ttttgttgcga gggaaagctgg cctgtgcct gcgggtgggg gcggagcagc tggcgcgctg 300
cgctgcggag gggcggtgc ccagcagcagc cagcagcagc agctgctgcg cgcgtgcac 360
gctcgagaag caggacctcg agcagagcct cgaggccggc aagcagggcg cggagtgcct 420
cttgaggagc agcaaactgg ccctcgaggc cctccctcgag gggggcccgcg ttgcagcaac 480
gcggggtttg ctgctggtcg agagcagcaa agacacggtg ctgcgcagca ttccccacac 540

-233-

ccaggagaag ctggcccagg cctacagttc tttcctccgg ggctaccagg gggcagcagc 600
ggggaggtct ctgggctacg gggccctgc tgctgcttac ggccagcagc agcagccag 660
cagctacggg gcgcxxxxxx cctccagcca gcagccctcc ggcttcttct ggttagccctg 720
cagcagcagc agcagcagca gcagcagcag cagcgccccg ggcagccgagc gcggggccgg 780
ggcgccgctg cagcaacagc agcagccgnn ncggctagcg ccgcggagca ctcgcaggga 840
actccacagg cagcgggaga gcagcaggga cgagaagcag gtcatgtagc gcaggcagca 900
gcgccagctg cagcagcagc agcagcagca gcagcagcag cagcagctcc tgaccg 957

<210> 75
<211> 1089
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<220>
<221> UNSURE
<222> (376)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (377)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (847)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (848)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (849)
<223> May be any nucleic acid

<220>
<221> UNSURE
<222> (850)
<223> May be any nucleic acid

-234-

<400> 75
gaattccctc caactcttcg cgactctctc tctctcgccc caacttttc cccccgcgcc 60
cgcagcagca gcagcagcag cagcagcaa atggcagacc tcttcagcgg actcgtggc 120
ggcgtcgctcg gcgcgttgc tgcatcgat ttgcctgcgg agggcgagag ggcccccgc 180
cccccccccg gcactgcctg gacttgctgc tgcatcaa ac tgcaagaagg ggcccgcgag 240
ctggagggtt ttctgcagca gctgagttt gttgcagggg agctggcctg ctgcctgcgg 300
gtgggggcgg agcagctggc gcgcgtgcgc gcggagggc ggctgcccag cagcagcagc 360
agcagcagct gctgcnnct gctgcagctc gagaagcagg acctcgagca gagcctcgag 420
gccggcaagc agggcgccga gtgcctcttgc aggagcagca aactggccct cgaggccctc 480
ctcgaggggg cccgcgttgc agcaacgcgg ggtttgtgc tggtcagag cagcaaagac 540
acggtgctgc gcagcattcc ccacacccag gagaagctgg ctcaggccta cagttcttc 600
ctgcggggct accagggggc agcagcgggg aggtctctgg gctacggggc ccctgctgct 660
gcttacggcc agcagcagca gcccagcagc tacggggcgc ccccgccctc cagccagcag 720
ccctccggct tcttctggta gccctgcagc agcagcagca gcagcagcag cagcagcagc 780
ggcggcggca gcccggcgg ggccggggcg ccgctgcagc aacagcagca gcccggcgg 840
ctagcgnnnn gagcactcgc agggaaactcc acaggcagcg ggagagcagc agggacgaga 900
agcaggtcta tgttagcgcag gcagcagcgc cagctgcagc agcagcagca gcagcagcag 960
cagcagcagc agctcctgca ccgcagcggtt gtgtcattta ttacgttggc agctctgagg 1020
cctcggcgcga gccaacgcgc ctcaggtatc tttcagactc tttctctaa ggtcttccag 1080
acggaattc 1089

<210> 76
<211> 1985
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 76
cgccgagctt tcggcacctc tgccgggtgg taccgagcct tcccgccgc 60

-235-

cctcccaccgg cctgccttc cccgcgggac tatcgcccc acgtttccct cagcccttt 120
ctctcccgcc cgagccgcgg cggcagcagc agcagcagca gcagcaggag gaggagcccg 180
gtggcggccgg tggccgggaa gcccatggcg tacagtcaag gaggcggcaa aaaaaaagtc 240
tgctactact acgacggtga tattggaaat tattattatg gacagggtca tcccatgaag 300
cctcatagaa tccgcatgac ccataacttg ctgttaaatt atggcttata cagaaaaatg 360
aaaaatataa ggcccataa agccactgcc gaagaaatga caaaatatca cagtgtatg 420
tatatcaaatt ttctacggtc aataagacca gataacatgt ctgagtatag taagcagatg 480
catatattta atgttggaga agattgtcca gcgtttgatg gactcttga gtttgcgt 540
ctctcaactg gcgggtcagt tgctggagct gtgaagttaa accgacaaca gactgatatg 600
gctgttaatt gggctggagg attacatcat gctaagaaat acgaagcatc aggattctgt 660
tacgttaatg atattgtgct tgccatcctt gaattactaa agtatcatca gagagtctta 720
tatattgata tagatattca tcatggtgat ggtgttgaag aagctttta tacaacagat 780
cgtgtaatga cggtatcatt ccataaataat ggggaatact ttcctggcac aggagactt 840
agggatattg gtgctggaaa aggcaaatac tatgctgtca attttccat gtgtgatggt 900
atagatgatg agtcatatgg gcagatattt aagccttta tctcaaaggt gatggagatg 960
tatcaaccta gtgctgttgtt attacagtgt ggtgcagact cattatctgg tgatagactg 1020
ggttgttca atctaacagt caaaggtcat gctaaatgtg tagaagttgt aaaaactttt 1080
aacttaccat tactgatgct tggaggaggt ggctacacaa tccgtaatgt tgctcgatgt 1140
tggacatatg agactgcagt tgcccttgat tgtgagattc ccaatgagtt gccatataat 1200
gattactttg agtattttgg accagacttc aaactgcata ttagtccttc aaacatgaca 1260
aaccagaaca ctccagaata tatggaaaag ataaaaacagc gtttgtttga aaatttgcgc 1320
atgttacctc atgcacctgg tgtccagatg caagcttcc cagaagatgc tgttcatgaa 1380
gacagtggag atgaagatgg agaagatcca gacaagagaa tttctattcg agcatcagac 1440
aagcggatag cttgtgatga agaattctca gattctgagg atgaaggaga aggaggtcga 1500
agaaatgtgg ctgatcataa gaaaggagca aagaaagcta gaattgaaga agataagaaa 1560
gaaacagagg acaaaaaaac agacgttaag gaagaagata aatccaagga caacagtgg 1620

-236-

aaaaaaaaacag ataccaaagg aaccaaatca gaacagctca gcaaccctg aatttgacag 1680
tctcaccaat ttcagaaaat cattaaaaag aaaatattga aaggaaaatg ttttctttt 1740
gaagacttct ggcttcattt tatactactt tggcatggac tgtatttatt ttcaaatgg 1800
acttttcgt ttttctttt ctggcaagt tttattgtga gatTTctaa ttatgaagca 1860
aaatttcttt tctccaccat gcttatgtg atagtattta aaattgtatgt gagttattat 1920
gtcaaaaaaaa ctgatctatt aaagaagtaa ttggccttc tgagctgaaa aaaaaaaaaa 1980
aaaag 1985

<210> 77
<211> 476
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:Unknown

<400> 77
ccaccctcct cccctcccc cggccacttc gctaacttgg tggctgttgt gatgcgtatt 60
cctgttagatc cgagcaccag cggcgcttc agccccccc ccagcagcct gcagcccg 120
aaaatgagcg acgtgagccc ggtggtgtgc ggcacaacgc agcagcaaca gcagcagcag 180
caacagcagc agcagcagca gcaacagcag cagcagcagc aggaggcggc ggcggcggct 240
gcggcggcag cggcggctgc ggcggcggca gctgcagtgc cccggttgcg gccgccccac 300
gacaaccgca ccatggtgga gatcatcgcc gaccacccgg ccgaactcgt ccgcaccgac 360
agcccccaact tcctgtgctc ggtgctgcc tcgcactggc gctgcaacaa gaccctgccc 420
gtggccttca aggttaagagg ctaccccgcc ccccgccccc ggccgggagc ggccgga 476

<210> 78
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:DNA Primer

<400> 78
gcattttgga tccgccttt catg

-237-

<210> 79
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:DNA Primer

<400> 79
gttgtgtgct gcagattgtt cc

22

<210> 80
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:DNA Primer

<400> 80
aaaaaatggg gatcccgaggt g

21

<210> 81
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:DNA Primer

<400> 81
gcaggagaat tccgtccatg

20

<210> 82
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (3)
<223> Can be any amino acid

<400> 82
Trp Ser Xaa Trp Ser
1 5

-238-

<210> 83
<211> 6
<212> PRT
<213> Homo sapiens

<400> 83
Cys Ser Val Thr Cys Gly
1 5

<210> 84
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (4)
<223> Can be any amino acid

<400> 84
Gly Cys Gln Xaa Arg
1 5

<210> 85
<211> 733
<212> DNA
<213> Homo sapiens

<400> 85
gggatccgga gcccaaatct tctgacaaaa ctcacacatg cccaccgtgc ccagcacctg 60
aattcgaggg tgcaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 120
tctcccgac tcctgaggc acatgcgtgg tggtggacgt aagccacgaa gaccctgagg 180
tcaagttcaa ctggtaacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg 240
aggaggacta caacacgacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 300
ggctgaatgg caaggagtac aagtgcagg tctccaacaa agccctccca acccccacgt 360
agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcccc 420
catccccggga tgagctgacc aagaaccagg tcagcctgac ctgcctggc aaaggcttct 480
atccaagcga catgccgtg gagtgggaga gcaatggca gccggagaac aactacaaga 540
ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctacagcaag ctcaccgtgg 600
acaagagcag gtggcagcag gggAACGTCT tctcatgctc cgtgatgcat gaggctctgc 660

-239-

acaaccacta cacgcagaag agcctctccc tgtctccggg taaatgagtg cgacggccgc 720

gactcttagag gat 733

<210> 86

<211> 86

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:DNA Primer

<400> 86

gcgcctcgag atttccccga aatcttagatt tcccccataat gatttcccccg aaatgatttc 60

cccgaaataat ctgccatctc aattag 86

<210> 87

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:DNA Primer

<400> 87

gcggcaagct ttttgcaaag cctaggc 27

<210> 88

<211> 271

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR Fragment

<400> 88

ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tcccccataat gatttccccc 60

aaatatctgc catctcaatt agtcagcaac catagtccccg cccctaactc cgcccatccc 120

gcccctaact ccgccccattc tccgccccat ggctgactaa ttttttttat 180

ttatgcagag gccgaggccg cctcgccctc tgagctattc cagaagtagt gaggaggctt 240

ttttggaggc ctaggctttt gcaaaaagct t 271

<210> 89

-240-

<211> 32
<212> DNA
<213> Homo sapiens

<400> 89
gcgctcgagg gatgacagcg atagaacccc gg

32

<210> 90
<211> 31
<212> DNA
<213> Homo sapiens

<400> 90
gcgaagcttc gcgactcccc ggatccgcct c

31

<210> 91
<211> 12
<212> DNA
<213> Homo sapiens

<400> 91
ggggactttc cc

12

<210> 92
<211> 73
<212> DNA
<213> Homo sapiens

<400> 92
gcggcctcga ggggactttc ccggggactt tccggggact ttccgggact ttccatcctg 60
ccatctcaat tag

73

<210> 93
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR Fragment

<400> 93
gcggcaagct ttttgcaaag ccttaggc

27