		100		
Reg. No.			0.	

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, DECEMBER 2023

First to Third Semester

21GNH101J - PHILOSOPHY OF ENGINEERING

(For the candidates admitted from the academic year 2022-2023 onwards)

Note:							
(i)		Part - A should be answered in OMR sheet vover to hall invigilator at the end of 40 th minute	e.	t shoul	d be	han	ded
(ii)		Part - B and Part - C should be answered in a	nswer booklet.				
Time:	3 1	Hours		Max.	Ma	rks:	75
		$\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{T} = \mathbf{A} (20 \times 1 - 20)$	Marks)	Marks	BL	СО	PO
		$PART - A (20 \times 1 = 20)$ Answer ALL Question					
	1			1	1	1	1
	1.	is the discipline and profession of applying technical and scientific knowledge and utilizing natural laws and physical resources in order to design and implement materials.					
			Mathematics				
		(C) Engineering (D)					
	2.	Engineers apply the sciences of physics solutions to problems using		1	1	1	1
			Methodology				
		(C) Marketability (D)	Flexibility				
	3.	the science of structure, order a elemental practices of counting, measuring objects.			1	1	1
		•	Arts				
			Mathematics				
	4.	refers to the elements of a interpretation or significance.	rt that are independent of its	1	1	1	1
		(A) Art form (B)	Arts and science				
		(C) Engineering (D)	Philosophy				
	5.	has at its basis the development of (A) Cyber security (B)	f the internet and the computer. Cyber chain	Î.	1	2	1
			Networking				
	6	Ontale are is comptimed referred as		1	1	2	1
	0.	Ontology is sometimes referred as(A) Reference (B)	Science of being				
			Metaphysics				
	7.		percent of the life cycle costs. 50, 50	1 .	1	2	1
		(C) 70, 60 (D)	70, 90				

8.			that are needed to model the	1	1	2	1
	knowledge required for a particular a						
			Application ontology				
	(C) Ontology	(D)	Steam				
9.	theorized that personality	and w	vork environment åre measurable	1	1	3	7
٦.	and that the two should be matched i						
	(A) Holland		Harvard				
	(C) Archimedes		Gregory				
		(-)					
10.	Design is distinct from anal	ytic n	nethodologies, which is crucial to	1	1	3	3
	develop scientific initiatives.						
	(A) Epistemology	(B)	Thinkers				
	(C) Testers	(D)	Developers				
11	The sum of all the tools, devices and	proce	esses excitable are said to	1	1	3	5
11.	(A) Engineering	-	Science				
	(C) Scientific knowledge	` '	Technology		95		
	(C) Scientific knowledge	(D)	recimology				
12.	How the students should be motivate	ed to g	get success in life?	1	1	3	1
		_	Learning by recitation				
	(C) Incidental study	` '	Selected study				
			-		(8)		
13.	follow the creativity-based e	ngine	ering design process.	1	1	4	4
	(A) Scientists	(B)	Engineers				
	(C) Team leader	(D)	Project manager				
1.4	TT 1 1 1 1 1	*		1	1	4	3
14.	Hypothesis testing method.		S-:	1	. 1	4	3
	(A) Engineering	` '	Scientific				
	(C) Addie	(D)	CDIO				
15.	The of the data the sys	stem	operates on is of the highest	1	1	4	4
	consideration when designing a relia						
	(A) Security		Integrity				
	(C) Consistency		Reliability				
			•				
16.	model is the generic proce	ess tra	aditionally used by instructional	1	1	4	3
	designers and training developers.						
	(A) Scientific	. ,	Addie				
	(C) Riasec	(D)	CDIO				
17	Engineering has helped society in	heal	th technology communication	1	1	5	6
1/.	development and .	i iicai	in, teemfology, communication,				
	(A) Space	(B)	Science				
	(C) Mathematics	` /	Architecture				
		(-)					
18.	leaders possess higher culti	ıral in	telligence	1	1	5	6
	(A) Exclusive	(B)	Ethical				
	(C) Inclusive	(D)	Diverse				

19	. How many principles guide an engineer to achieve sustainable development?	1	1	5	7
	(A) 7 (C) 6 (B) 8 (D) 5				
20	. When was the international engineering consortium established? (A) 1945 (B) 1937 (C) 1942 (D) 1944	1	1	5	1
	$PART - B (4 \times 10 = 40 Marks)$ Answer ANY FOUR Questions	Marks	BL	CO	PO
21	Discuss about the motivated functions which refer to intentional, conscious actions on the part of the artist or creator.	10	2	1	1
22	. Explain in detail on the desired attributes of an engineer.	10	2	1	1
23	3. Illustrate and explain about PLC in detail.				2
24.	4. Describe in detail on John Holland's theory.				2
25.	Explain in detail on how Addie model is useful for building training support tools.	10	2	4	2
26.	Discuss in detail on engineers code of ethics.	10	2	5	8
	PART – C $(1 \times 15 = 15 \text{ Marks})$ Answer ANY ONE Question	Marks	BL	СО	PO
27.	A diverse, equitable and inclusive workplace improves the environmental impact of a company. Discuss in detail on the ways to achieve the above mentioned environment.	15	3	5	7
28.	Discuss the strategic methods used by management and marketing professionals to help determine advertising schedules, price points, expasion to new product markets, packaging redesigns and more.	15	3	2	3

* * * * *