Capítulo 2-Projeto Lógico Combinacional C

Profa. Eliete Caldeira

Representação padrão

- Embora existam muitas representações diferentes para a mesma função booleana, há apenas uma tabela-verdade. Assim, a tabela verdade é uma representação padrão.
- A tabela-verdade pode ser usada para mostrar que duas expressões são equivalentes

- Use tabelas-verdade para mostrar que se as funções são equivalentes
- $F_1 = ab + a'$ $F_2 = a'b' + a'b + ab e <math>F_3 = (a+b)'$

Representação padrão

- Uma tabela verdade tem 2ⁿ linhas onde n é o número de variáveis da função.
- Há uma representação mais compacta mas ainda padrão?
- Sim! Podemos representar a função apenas onde a saída é 1 (soma de produtos) ou onde a saída é zero (produto de somas).

- Uma das formas canônicas é conhecida como soma de produtos ou soma de mintermos
- Mintermo é um termo de produto que contém todas as literais da função exatamente uma vez, seja na forma normal ou na complementada
- O mintermo só é 1 para uma combinação das entradas
- F=a'bc+abc'+ab+c
 - o não está na forma padrão pois ab e c não são mintermos
 - Para transformar para a forma padrão:
 - F=a'bc+abc'+ab(c+c')+(a+a')(b+b')c como (x+x')=1 e 1.z = z
 - F=a'bc+abc'+abc+abc'+abc+ab'c+a'b'c como x+x=x
 - F=a'bc+abc'+abc+ab'c+a'b'c

- F=(a+b)(a'+ac)b
 - não está na forma de soma de produtos
 - F=(a+b)(a'+ac)b pela distributiva
 - F=(a+b)(a'b+acb) pela distributiva
 - F=(aa'b+aacb+ba'b+bacb) como x.x'=0 e x.x=x e comutativa
 - F=(0.b+acb+a'b+acb) como x+x=x e 0.x=0 e 0+y=y
 - F=abc+a'b como 1.x=x e (y+y')=1
 - F=abc+a'b(c+c') pela distributiva
 - F=abc+a'bc+a'bc'

Forma canônica de produto de maxtermos

- Uma forma canônica alternativa é conhecida como produto de maxtermos
- Maxtermo é um termo de soma que contém todas as literais da função exatamente uma vez, seja na forma normal ou na complementada
- Termo soma: uma única literal ou o OR (soma) de literais
- Produto de somas: um único termo soma ou o AND (produto) de termos somas
- O maxtermo só é 0 para uma combinação das entradas
- F(a,b,c) = (a+b+c')(a'+b'+c') é um produto de maxtermos

Mintermos

a	b	С	Mintermos
0	0	0	m ₀ =a'b'c'
0	0	1	m ₁ =a'b'c
0	1	0	m ₂ =a'bc'
0	1	1	m ₃ =a'bc
1	0	0	m ₄ =ab'c'
1	0	1	m ₅ =ab'c
1	1	0	m ₆ =abc'
1	1	1	m ₇ =abc

TABL	E 2.11	Truth table			
a	b	С	F		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	1		
_ 1	1	1	1		

Para a tabela-verdade, a função

- $F(a,b,c) = m_1 + m_6 + m_7$ ou
- $F(a,b,c) = \sum m(1,6,7)$ ou ainda
- F(a,b,c) = a'b'c + abc' + abc

Esta é a soma de mintermos ou conjunto-um da função!

Maxtermos

a	b	С	Maxtermos
0	0	0	$M_0 = a + b + c$
0	0	1	$M_1=a+b+c'$
0	1	0	$M_2=a+b'+c$
0	1	1	$M_3=a+b'+c'$
1	0	0	$M_4=a'+b+c$
1	0	1	$M_5=a'+b+c'$
1	1	0	$M_6=a'+b'+c$
1	1	1	$M_7=a'+b'+c'$

TABL	0 0 0 0 0 1 0 1 1 0	Truth table				
a	b	С	F			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	1	1	0			
1	0	0	0			
1	0	1	0			
1	1	0	1			
1	1	1	1			

- Para a tabela-verdade, a função
 - $F(a,b,c) = M_0.M_2.M_3.M_4.M_5$ ou
 - $F(a,b,c) = \prod M(0,2,3,4,5)$ ou ainda
 - F(a,b,c)=(a+b+c).(a+b'+c).(a+b'+c').(a'+b+c).(a'+b+c')
- Este é o produto de maxtermos ou conjunto-zero da função!

Formas canônicas

- Relação entre Mintermos e Maxtermos: Mi = mi'
- Soma mintermos: é a soma dos mintermos (produtos) de forma que F=1 quando qualquer um deles for 1
- Produto de maxtermos: é o produto dos maxtermos (somas) de forma que se um deles for igual a 0, então F=0
- Como a soma de mintermos e o produto de maxtermos representam a mesma função:
 - Soma de mintermos = Produto dos maxtermos
 - $\Sigma m(\{j|F(j)=1\}) = \Pi M(\{j|F(j)=0\})$
- Para converter de uma forma canônica para a outra, basta incluir os índices que não aparecem!
 - $F(a,b,c) = \sum m(1,6,7) = \prod M(0,2,3,4,5)$

Formas canônicas

j	$x_2x_1x_0$	$f(x_2, x_1, x_0)$	Mintermos	Maxtermos
0	000	0	x ₂ 'x ₁ 'x ₀ '	$x_2 + x_1 + x_0$
1	001	1	$x_2'x_1'x_0$	$x_2 + x_1 + x_0'$
2	010	1	$x_2'x_1x_0'$	$x_2 + x_1' + x_0$
3	011	0	$x_2'x_1x_0$	$x_2 + x_1' + x_0'$
4	100	1	$x_2x_1'x_0'$	$x_{2}'+x_{1}+x_{0}$
5	101	1	$x_2x_1'x_0$	$x_{2}'+x_{1}+x_{0}'$
6	110	1	$x_2x_1x_0$	x_{2} '+ x_{1} '+ x_{0}
7	111	0	$x_2x_1x_0$	$\chi_{2}' + \chi_{1}' + \chi_{0}'$

$$E(x_2,x_1,x_0) = \sum m(1,2,4,5,6) = \prod M(0,3,7)$$

Formas canônicas

- H(a,b,c,d,e) = ab'cde+abcde'+abcde
 - Em forma reduzida $H(a,b,c,d,e) = \sum m(23,30,31)$
- H(e,d,c,b,a) = edcb'a+e'dcba+edcba
 - Em forma reduzida $H(e,d,c,b,a) = \Sigma m(29,15,31)$
- Note que é a mesma função nos dois casos, mas a ordem das variáveis mudou e com isto, o número dos mintermos também mudou.
- O mesmo acontece com os maxtermos!!

Circuitos combinacionais com múltiplas saídas

- Tratar separadamente cada saída, criando um circuito para cada uma delas
- Se existirem portas comuns elas podem ser compartilhadas

- Implementar as funções F e G das entradas a, b e c se:
 - F(a,b,c) = ab+c'
 - \circ G(a,b,c) = ab+bc

- Implementar as funções F e G das entradas a, b e c se:
 - F(a,b,c) = ab+c'
 - \circ G(a,b,c) = ab+bc

Figure 2.38 Multiple-output circuit: (a) treated as two separate circuits, and (b) with gate sharing.

Conversor de BCD para um display de 7 segmentos. Obs: o display apaga se o binário não é de 0 a 9.

Figure 2.39 Seven-segment display: (a) connections of inputs to segments, (b) input values for numbers 0, 1, and 2, and (c) a pair of real seven-segment display components.

TABLE 2-4 4-bit bipary number to seven-segment display truth table

W	×	У	z	a	ь	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Para ser continuado...