```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the dataset into the tool

df=pd.read_csv('/content/penguins_size.csv')

df.head()

	species	island	<pre>culmen_length_mm</pre>	${\tt culmen_depth_mm}$	flipper_length_mm	body_mas
0	Adelie	Torgersen	39.1	18.7	181.0	37
1	Adelie	Torgersen	39.5	17.4	186.0	380
2	Adelie	Torgersen	40.3	18.0	195.0	32
3	Adelie	Torgersen	NaN	NaN	NaN	1
<i>A</i>	Adolio	Torgoreon	26.7	10.2	103.0	3/1

Univariate Analysis

sns.distplot(df.culmen_length_mm)

<ipython-input-32-24e9b5890c61>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.culmen_length_mm)
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

sns.displot(df.culmen_length_mm)

<seaborn.axisgrid.FacetGrid at 0x7e2965bd83a0>

sns.scatterplot(x=df.flipper_length_mm,y=df.culmen_length_mm)

flipper_length_mm

sns.lineplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)

Multivariate Analysis

sns.pairplot(df)

Descriptive statistics

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	
count	342.000000	342.000000	342.000000	342.000000	
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.459584	1.974793	14.061714	801.954536	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.225000	15.600000	190.000000	3550.000000	
50%	44.450000	17.300000	197.000000	4050.000000	
75%	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	

Check for missing values and deal with them

df.isnull().any()

species	False
island	False
culmen_length_mm	True
culmen_depth_mm	True
flipper_length_mm	True
body mass g	True

```
sex True dtype: bool
```

```
df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)
```

df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)

df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace =True)
df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace =True)

df['sex'].fillna(df['sex'].mode().iloc[0],inplace =True)

df.isnull().any()

species False
island False
culmen_length_mm False
culmen_depth_mm False
flipper_length_mm False
body_mass_g False
sex False
dtype: bool

df

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	Adelie	Torgersen	39.10	18.7	181.0	3750.0	MALE	ıl.
1	Adelie	Torgersen	39.50	17.4	186.0	3800.0	FEMALE	
2	Adelie	Torgersen	40.30	18.0	195.0	3250.0	FEMALE	
3	Adelie	Torgersen	44.45	17.3	197.0	4050.0	MALE	
4	Adelie	Torgersen	36.70	19.3	193.0	3450.0	FEMALE	
339	Gentoo	Biscoe	44.45	17.3	197.0	4050.0	MALE	
340	Gentoo	Biscoe	46.80	14.3	215.0	4850.0	FEMALE	
341	Gentoo	Biscoe	50.40	15.7	222.0	5750.0	MALE	
342	Gentoo	Biscoe	45.20	14.8	212.0	5200.0	FEMALE	
343	Gentoo	Biscoe	49.90	16.1	213.0	5400.0	MALE	

344 rows × 7 columns

Find the outliers and replace the outliers

sns.boxplot(df.flipper_length_mm)

sns.boxplot(df.culmen_length_mm)

sns.boxplot(df.culmen_depth_mm)

sns.boxplot(df.body_mass_g)

NO OUTLIERS

Check for categorical columns and perform encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['sex']=le.fit_transform(df['sex'])
df['species']=le.fit_transform(df['species'])
df['island']=le.fit_transform(df['island'])
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	0	2	39.10	18.7	181.0	3750.0	2	ılı
1	0	2	39.50	17.4	186.0	3800.0	1	
2	0	2	40.30	18.0	195.0	3250.0	1	
3	0	2	44.45	17.3	197.0	4050.0	2	
4	0	2	36.70	19.3	193.0	3450.0	1	

Check the correlation of independent variables with the target(species)

df.corr().species.sort_values(ascending=False)

```
      species
      1.000000

      flipper_length_mm
      0.850819

      body_mass_g
      0.747547

      culmen_length_mm
      0.728706

      sex
      -0.003825

      island
      -0.635659

      culmen_depth_mm
      -0.741282

      Name: species, dtype: float64
```

Split the data into dependent and independent variables

```
X=df.drop(columns=['species'],axis=1)
X.head()
```

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	\blacksquare
0	2	39.10	18.7	181.0	3750.0	2	ılı
1	2	39.50	17.4	186.0	3800.0	1	
2	2	40.30	18.0	195.0	3250.0	1	
3	2	44.45	17.3	197.0	4050.0	2	
4	2	36.70	19.3	193.0	3450.0	1	

```
Y=df['species']
```

Y.head()

Name: species, dtype: int64

Scaling the data

```
from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()
X_scaled=pd.DataFrame(scale.fit_transform(X),columns=X.columns)
X_scaled.head()
```

	island	<pre>culmen_length_mm</pre>	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_mass_g	sex	
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0	th
1	1.0	0.269091	0.511905	0.237288	0.305556	0.5	
2	1.0	0.298182	0.583333	0.389831	0.152778	0.5	
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0	
4	1.0	0.167273	0.738095	0.355932	0.208333	0.5	

Split the data into training and testing

```
X_train,X_test,Y_train,Y_test=train_test_split(X_scaled,Y,test_size=0.2,random_state=0)
Check training and testing data shape

X_train.shape
    (275, 6)

X_test.shape
    (69, 6)

Y_train.shape
    (275,)

Y_test.shape
    (69,)
```

from sklearn.model_selection import train_test_split

✓ 0s completed at 6:49 PM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.