Aufgabe 14

Sei $\Sigma = \{a, b\}$ ein Alphabet. Beweisen oder widerlegen Sie die folgenden Aussagen.

- 1. Es gibt eine Sprache $L \subseteq \Sigma^*$, so dass die zu L gehörende Rechtskongruenzrelation \approx_L nur endlich große Klassen hat.
- Zu jedem n ∈ N \ {0} gibt es eine Sprache L_n ⊆ Σ* so dass der Index (d.h. die Anzahl der Äquivalenzklassen) der zu L_n gehörenden Rechtskongruenzrelation \approx_{L_n} genau n ist.
- Zu jeder Sprache L die von einem DFA A erkannt wird, gibt es unendlich viele weitere DFA, die die gleiche Sprache erkennen und deren Zustandsanzahlen alle verschieden sind.
- 4. Wird L von einem DFA erkannt, so auch jede Teilsprache L' mit $L' \subseteq L \subseteq \Sigma^*$.
- 5. Ist $L \cup L'$ nicht-regulär, so sind weder L noch L' regulär.
- 6. Sind für $i \in \mathbb{N}$ die Sprachen L_i alle regulär, so ist $\cap_{i \in \mathbb{N}} L_i$ auch regulär.

miro

Aufgabe 14

Sei $\Sigma = \{a, b\}$ ein Alphabet. Beweisen oder widerlegen Sie die folgenden Aussagen.

- 1. Es gibt eine Sprache $L\subseteq \Sigma^*$, so dass die zu L gehörende Rechtskongruenzrelation \approx_L nur endlich große Klassen hat.
- 2. Zu jedem $n \in \mathbb{N} \setminus \{0\}$ gibt es eine Sprache $L_n \subseteq \Sigma^*$ so dass der Index (d.h. die Anzahl der Äquivalenzklassen) der zu L_n gehörenden Rechtskongruenzrelation \approx_{L_n} genau n ist.
- Zu jeder Sprache L die von einem DFA A erkannt wird, gibt es unendlich viele weitere DFA, die die gleiche Sprache erkennen und deren Zustandsanzahlen alle verschieden sind.
- 4. Wird L von einem DFA erkannt, so auch jede Teilsprache L' mit $L' \subseteq L \subseteq \Sigma^*$.
- 5. Ist $L \cup L'$ nicht-regulär, so sind weder L noch L' regulär.
- 6. Sind für $i \in \mathbb{N}$ die Sprachen L_i alle regulär, so ist $\cap_{i \in \mathbb{N}} L_i$ auch regulär.

1)
$$L = \{ w \in \Sigma^* \mid |w| = p \} \text{ fir eine } \text{Primabl} \}$$

abb $\%L \text{ abbbb }, da$
 $\text{da abbaaaa} \in L \text{ wh abbbbaaaa} \notin L$
 $|[abb]| = |\{ w \in \Sigma^* \mid |w| = 3 \}| = 2^3 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbbb]| = |\{ w \in \Sigma^* \mid |w| = 4 \}| = 2^4 + 1 < \infty$
 $|[abbbbb| = |w| = 2^$

2. Zu jedem $n \in \mathbb{N} \setminus \{0\}$ gibt es eine Sprache $L_n \subseteq \Sigma^*$ so dass der Index (d.h. die Anzahl der Äquivalenzklassen) der zu L_n gehörenden Rechtskongruenzrelation \approx_{L_n} genau n ist.

$$L_{1} = \sum_{k=1}^{\infty} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}$$

- Zu jeder Sprache L die von einem DFA A erkannt wird, gibt es unendlich viele weitere DFA, die die gleiche Sprache erkennen und deren Zustandsanzahlen alle verschieden sind.
- Wird L von einem DFA erkannt, so auch jede Teilsprache L' mit L' ⊆ L ⊆ Σ*.
- 5. Ist $L \cup L'$ nicht-regulär, so sind weder L noch L' regulär.
- Sind f¨ur i ∈ N die Sprachen L_i alle regul¨ar, so ist ∩_{i∈N}L_i auch regul¨ar.

miro

^{4.} Wird L von einem DFA erkannt, so auch jede Teilsprache L' mit $L' \subseteq L \subseteq \Sigma^*$.

Ist L∪L' nicht-regulär, so sind weder L noch L' regulär.

Sind f¨ur i ∈ N die Sprachen L_i alle regul¨ar, so ist ∩_{i∈N}L_i auch regul¨ar.

Lei Prinzallen Pit wrillow, d.A. B= SpilieN3 dh. $p_1 = 2$, $p_2 = 3$, $p_3 = S$, $p_4 = 7$,... d.h. $p_i = i$ -te Prinzall

[=] { a p, }

1 midt Ware es regular, dan wire and (ien Li) = far I pe P 3 regular, aber

das it milt regular visie man mit Pring-Lerna zeigt!

LIIL2 regular

L1, L2, L3 regular =) Lno lz 1 lz regular