TEORIA PODAŻY

1. NAKŁADY A WIELKOŚĆ PRODUKCJI, FUNKCJA PRODUKCJI.

Funkcja produkcji określa zależność zdolności produkcyjnych Q od zaangażowanych w procesie wytwórczym czynników, np. pracy (L) i kapitału (K)

$$Q = f(K, L)$$

Zdolności produkcyjne - maksymalne rozmiary produkcji możliwe do osiągnięcia przy danym zasobie czynników produkcji

Czynniki produkcji:

Postęp techniczny w zakresie:

- produktu (nowe produkty)
- procesu produkcyjnego (nowe technologie)

Postęp techniczny w dziedzinie procesu produkcyjnego:

- kapitało- i pracooszczędny
- kapitałochłonny i pracooszczędny
- kapitałooszczędny i pracochłonny
- kapitałoobojętny (neutralny) i pracooszczędny → (większość wynalazków)
- kapitałooszczędny i pracoobojętny

przeciętna produktywność (wydajność) pracy $P_L = \frac{Q}{I}$

oznacza wielkość produkcji (zdolności wytwórczych) jaką uzyskuje się przeciętnie z jednostki nakładu pracy, informuje o przeciętnej produktywności jednostki nakładu pracy (np. wydajność pracy na jednego zatrudnionego lub na godzinę czasu pracy).

przeciętna pracochłonność produkcji $l = \frac{L}{Q}$

oznacza nakład pracy, niezbędny w celu wytworzenia przeciętnie jednostki produkcji (np. zatrudnienie potrzebne do wytworzenia przeciętnie jednostki produktu).

przeciętna produktywność kapitału
$$P_K = \frac{Q}{K}$$

oznacza wielkość produkcji jaką uzyskuje się przeciętnie z jednostki kapitału, informuje o przeciętnej produktywności jednostki kapitału trwałego.

przeciętna kapitałochłonność produkcji
$$k = \frac{K}{O}$$

oznacza zasób kapitału trwałego, niezbędny w celu wytworzenia przeciętnie jednostki produkcji.

techniczne uzbrojenie pracy
$$u = \frac{K}{L}$$

const rośnie
$$\frac{K}{L} = \frac{K}{O} \cdot \frac{Q}{L}$$

 $u = k \cdot P_L$ techniczne uzbrojenie pracy rośnie

Funkcja produkcji charakteryzuje zbiór technicznie efektywnych metod wytwarzania.

Metoda wytwarzania jest technicznie efektywna, gdy nie istnieją inne metody, które do wytworzenia tej samej wielkości produkcji zużywają przy danym nakładzie jednego czynnika - mniej drugiego.

2. KRZYWA JEDNAKOWEGO PRODUKTU (IZOKWANTA)

krańcowa stopa substytucji ($\frac{\Delta K}{\Delta L}$ dla stałego Q) informuje o ile można ograniczyć nakład kapitału przy wzroście nakładu pracy o jednostkę, aby produkcja pozostała na dotychczasowym poziomie.

Prawo malejącej krańcowej stopy substytucji:

W miarę zastępowania kapitału przez pracę, zmniejsza się ilość kapitału, którą można zastąpić przez każdą dodatkową jednostkę pracy.

3. MINIMALIZACJA KOSZTÓW PRODUKCJI. WYBÓR NAJBARDZIEJ EFEKTYWNEJ TECHNIKI PRODUKCJI.

Z dostępnych technik produkcji wybieramy taką, która zapewnia najniższe koszty produkcji.

Linia jednakowego kosztu produkcji:

$$p_K K + p_L L = C$$

 p_K - koszt jednostkowy kapitału (cena kapitału)

 p_L - koszt jednostkowy pracy (cena pracy)

C - koszt produkcji

Po przekształceniu równania jednakowych kosztów uzyskujemy formułę:

$$K = -\frac{p_L}{p_K} L + \frac{C}{p_K}$$

która ułatwia interpretację graficzną położenia linii jednakowego kosztu.

Kąt nachylenia linii zależy od relacji cen obu czynników produkcji.

Przy danych cenach pracy i kapitału wzrost (spadek) kosztów produkcji C oznacza przesunięcie linii w górę (w dół).

4. EFEKT SUBSTYTUCYJNY

Jaka jest reakcja producentów na zmiany cen czynników produkcji?

Efekt substytucyjny polega na zastępowaniu czynnika produkcji, którego cena relatywnie rośnie, innym czynnikiem produkcji, którego cena relatywnie maleje.

Rozważmy reakcje producenta na wzrost ceny pracy (na wzrost płacy):

<u>Efekt substytucyjny</u> - substytucja czynnika, który podrożał przez czynnik, który stał się relatywnie tańszy, a więc zastąpienie nakładów pracy nakładami kapitału. Producenci zwracają się w kierunku technik produkcji bardziej kapitałochłonnych (procooszczędnych).

5. ANALIZA FUNKCJI PRODUKCJI W KRÓTKIM OKRESIE

Długi okres - czas potrzebny do dostosowania do nowych warunków wszystkich rodzajów czynników produkcji w przedsiębiorstwie

Krótki okres- czas, w którym przedsiębiorstwo jest w stanie tylko częściowo dostosować czynniki produkcji do nowych warunków.

Analiza długookresowa funkcji produkcji - zakłada się, że zmianie ulegają oba czynniki, zarówno praca jak i kapitał.

Analiza krótkookresowa funkcji produkcji- zakłada się, że w krótkim okresie kapitał nie ulega zmianie, analizuje się zatem tylko wpływ czynnika zmiennego (pracy) na wielkość produkcji.

Przeciętna produkcyjność pracy (przeciętna wydajność pracy) $P_L = \frac{Q}{L}$

oznacza wielkość produkcji jaką uzyskuje się przeciętnie z jednostki nakładu pracy, informuje o przeciętnej produktywności jednostki nakładu pracy (np. wydajność pracy na jednego zatrudnionego lub na godzinę czasu pracy)

Krańcowa produkcyjność pracy (krańcowa wydajność pracy) $\frac{dQ}{dL}$ $\left(\frac{\Delta Q}{\Delta L}\right)$

informuje o ile wzrośnie wielkość produkcji w wyniku wzrostu nakładu pracy o jednostkę.

Wykład 6 Teoria podaży 7

Krótkookresowa funkcja produkcji Q = f(L) ma kilka charakterystycznych punktów. Sa to:

- punkt przegięcia funkcji (A) odpowiada mu maksimum krańcowej wydajności pracy.
- punkt styczności funkcji z linią prostą poprowadzoną z początku układu osi współrzędnych (B) odpowiada mu maksimum przeciętnej wydajności pracy. W punkcie maksimum przeciętnej wydajności pracy przecinają się krzywe krańcowej i przeciętnej produktywności.
- punkt maksimum funkcji produkcji (punkt C) odpowiada mu zerowa krańcowa wydajność pracy.

Prawo malejących przychodów

(inaczej: prawo malejącej krańcowej produkcyjności pracy)

W wyniku zwiększania nakładów pracy produkcja rośnie coraz wolniej - przyrosty produkcji uzyskane w wyniku wzrostu nakładów pracy o kolejne jednostki są coraz mniejsze.

Jeśli nakłady pracy mierzymy liczbą zatrudnionych, prawo to możemy sformułować następująco:

Każdy kolejny zatrudniony pracownik przyczynia się do wzrostu produkcji w stopniu mniejszym niż poprzedni.

Działa ono na prawo od punktu przegięcia A krzywej produkcji Q = f(L).

Krótkookresowa funkcja produkcji Produkcja w zależności od nakładów czynnika zmiennego

Wykład 6 Teoria podaży 9

6. KOSZTY STAŁE I ZMIENNE

Na koszty całkowite C składają się:

- koszty stałe FC
- koszty zmienne VC

$$C = FC + VC$$

Koszty stałe - wszystkie wydatki związane z funkcjonowaniem przedsiębiorstwa, które nie zależą (w krótkim okresie) od wielkości wytwarzanej produkcji. Są to:

- amortyzacja
- opłaty za dzierżawę terenu
- koszty ogrzewania, oświetlenia, etc.
- koszty funkcjonowania administracji
- odsetki od kredytów

Koszty zmienne - koszty, które zależą od wielkości wytwarzanej produkcji (w krótkim okresie). Są to:

- koszty zużycia materiałów, surowców i półproduktów
- koszty robocizny bezpośredniej
- koszty ruchu maszyn i urządzeń

7. KOSZTY PRZECIĘTNE I KRAŃCOWE

Koszty przeciętne – koszty ponoszone przeciętnie na jednostkę produkcji

koszty przeciętne
$$AC = \frac{C}{Q}$$

koszty przeciętne zmienne
$$AVC = \frac{VC}{Q}$$

Wykład 6 Teoria podaży 11

Koszty krańcowe (marginalne) - oznaczają koszty wyprodukowania dodatkowej (krańcowej) jednostki produktu. Informują o ile wzrosną koszty produkcji, jeśli produkcję zwiększymy o jednostkę:

$$MC = \frac{dC}{dQ} = \frac{dVC}{dQ}$$
 $\left(MC = \frac{\Delta C}{\Delta Q} = \frac{\Delta VC}{\Delta Q}\right)$

<u>Uwaga</u>: Koszty krańcowe dla kosztów zmiennych i całkowitych są sobie równe, ponieważ pochodna kosztów stałych (po produkcji) jest równa zero.

Poprzednio analizowaliśmy funkcję produkcji w zależności od zatrudnienia, przy założeniu, że kapitał jest wielkością stałą:

$$Q = f(L)$$

Teraz analizujemy funkcję kosztów zmiennych (które zależą od zatrudnienia i wysokości płac) w zależności od wielkości produkcji:

$$VC = g(Q)$$

i funkcję kosztów całkowitych w zależności od wielkości produkcji:

$$C = FC + VC(Q) = h(Q)$$

Koszty produkcji. Optimum techniczne produkcji w przedsiębiorstwie.

8. MINIMUM KOSZTÓW KRAŃCOWYCH I PRZECIĘTNYCH

Krzywe kosztów całkowitych i zmiennych mają kilka charakterystycznych punktów. Są to:

- **punkt przegiecia** funkcji kosztów całkowitych (punkt A') odpowiada minimum kosztów krańcowych (punkt A)
- **punkt przegięcia** funkcji kosztów zmiennych (punkt A'') odpowiada minimum kosztów krańcowych (punkt A)
- punkt styczności linii prostej poprowadzonej z początku układu współrzędnych z funkcja kosztów zmiennych (punkt B') - odpowiada mu minimum przeciętnych kosztów zmiennych (punkt B)
- punkt styczności linii prostej poprowadzonej z początku układu osi współrzędnych z funkcją kosztów całkowitych (C')- odpowiada mu minimum przeciętnych kosztów całkowitych (punkt C)

Rosnąca krzywa kosztów krańcowych MC przecina krzywa przeciętnych kosztów zmiennych AVC oraz krzywą przeciętnych kosztów całkowitych AC w punktach, w których osiągają one wartości minimalne (odpowiednio w punktach B i C na wykresie).

Dowód:

I. W punkcie minimum funkcji kosztów przeciętnych AC - pierwsza pochodna jest równa 0:

$$\frac{dAC}{dQ} = 0 \quad \left(AC = \frac{C}{Q}\right)$$

$$\frac{dAC}{dQ} = \frac{\frac{dC}{dQ} \cdot Q - C}{Q^2} = \frac{MC \cdot Q - C}{Q^2} = \frac{MC - \frac{C}{Q}}{Q} = 0$$

$$MC = \frac{C}{Q} = AC$$

To oznacza, że punkt minimum przeciętnych kosztów całkowitych jest jednocześnie punktem przecięcia krzywych: kosztów krańcowych i przeciętnych kosztów całkowitych.

Wykład 6 Teoria podaży 14

II. W punkcie minimum funkcji przeciętnych kosztów przeciętnych *AVC* - pierwsza pochodna jest równa 0 (dowód przeprowadzamy analogicznie jak w punkcie I):

$$\frac{dAVC}{dQ} = 0 \quad \left(AVC = \frac{VC}{Q}\right)$$

$$MC = AVC$$

To oznacza, że punkt minimum przeciętnych kosztów zmiennych jest jednocześnie punktem przecięcia krzywych: kosztów krańcowych oraz przeciętnych kosztów zmiennych.

9. OPTIMUM TECHNICZNE PRZEDSIĘBIORSTWA. MINIMALIZACJA KOSZTÓW PRZECIĘTNYCH (ANALIZA KRÓTKOOKRESOWA).

Techniczne optimum produkcji:

$$Q_T = \min_{Q} AC(Q)$$

Produkując w tym punkcie (gdy wielkość produkcji = Q_T), przedsiębiorstwo osiąga najniższe przeciętne koszty całkowite. Koszt krańcowy kształtuje się wówczas na poziomie kosztu całkowitego na jednostkę.

Warunek technicznego optimum produkcji: MC = AC

Jest to punkt najniższych kosztów przeciętnych $\mathbf{min} \ \mathbf{AC}$

<u>Uwaga:</u> Na wykresie (str.11) techniczne optimum produkcji reprezentuje punkt C. Na wykresie (str.14) techniczne optimum produkcji reprezentuje punkt T, a ekonomiczne optimum produkcji reprezentuje punkt E,

10. OPTIMUM EKONOMICZNE PRZEDSIĘBIORSTWA W KRÓTKIM OKRESIE

Przedsiębiorstwo podejmuje decyzje o wielkości produkcji kierując się maksymalizacją zysku. Warunkiem maksymalizacji zysku przedsiębiorstwa jest zrównanie utargu krańcowego *MR* z kosztem krańcowym *MC*.

Warunek ekonomicznego optimum produkcji: MR = MC

Jest to jednocześnie punkt max zysku

Maksymalizacja zysku, czyli nadwyżki przychodów ze sprzedaży nad kosztami produkcji:

$$\pi = R - C \rightarrow \max$$

gdzie: π - zysk, R - utarg, C - koszty - zależą od wielkości produkcji Q

<u>Uwaga:</u> Warunek maksymalizacji zysku został przedstawiony wcześniej – wykład 5.

Optimum ekonomiczne przedsiębiorstwa

Wykład 6 Teoria podaży 16

Przedsiębiorstwo w krótkim okresie wybierze punkt E (punkt przecięcia krzywej krótkookresowych kosztów krańcowych z krzywą utargu krańcowego) oraz wielkość produkcji odpowiadającą temu punktowi - $Q_{\rm E}$ pod warunkiem, że cena tego dobra nie będzie niższa od krótkookresowego przeciętnego kosztu zmiennego:

$$P \ge AVC$$

W przeciwnym wypadku przedsiębiorstwo w krótkim okresie zaprzestanie produkcji tego dobra.

11. KOSZTY W DŁUGIM OKRESIE

Uchylamy założenie, że kapitał jest czynnikiem produkcji, który nie ulega zmianie. W długim okresie zmieniają się (dostosowują się do warunków rynkowych) wszystkie czynniki produkcji.

Przychody skali:

• state: $Q(\lambda N) = \lambda Q(N) \quad \lambda \ge 0$

• rosnące: $Q(\lambda N) > \lambda Q(N) \quad \lambda \ge 0$

• malejace: $Q(\lambda N) < \lambda Q(N)$ $\lambda \ge 0$

gdzie: Q - produkcja, N - nakłady na produkcję

Korzyści skali produkcji (rosnące przychody ze skali produkcji) są związane z:

- niepodzielnością procesu produkcji i istnieniem kosztów stałych (które rozkładają się na mniejszą lub większą produkcję)
- specjalizacją (wyższa wydajność pracy)
- niepodzielnością drogich, nowoczesnych, skomplikowanych maszyn ucieleśniających postęp techniczny (wyższa wydajność kapitału)

Niekorzyści skali produkcji są związane z:

- menedżerskimi niekorzyściami skali (trudności w zarządzaniu zbyt dużym przedsiębiorstwem, nadmierna biurokratyzacja)
- wyższymi kosztami transportu

Minimalna skala efektywna - wielkość produkcji, przy której długookresowe przeciętne koszty całkowite osiągają wartość minimalną.

Długookresowe przeciętne koszty całkowite: $LAC = \frac{LC}{Q}$

Minimalna skala efektywna produkcji

Wykład 6 Teoria podaży 18

12. DECYZJE PRODUKCYJNE PRZEDSIĘBIORSTWA W DŁUGIM OKRESIE

Podejmując decyzje o wielkości produkcji w długim okresie, przedsiębiorstwo również dąży do maksymalizacji zysku.

Warunek długookresowego ekonomicznego optimum produkcji,

w którym zysk osiąga wartość maksymalną: MR = LMC

Optimum ekonomiczne przedsiębiorstwa w długim okresie

O ile producent w krótkim okresie jest skłonny ponosić straty¹, o tyle w dłuższej perspektywie nie zdecyduje się na zaangażowanie kapitału w przedsięwzięcie nieprzynoszące zysków. W związku z tym wycofa się z nierentownej produkcji.

Przedsiębiorstwo wybierze punkt E (punkt przecięcia się krzywej długookresowych kosztów krańcowych z krzywą utargu krańcowego) oraz wielkość produkcji odpowiadającą temu punktowi - Q_E

Stosując strategię minimalizacji strat, jeśli tylko straty te nie przekraczają kosztów stałych.

Wykład 6 Teoria podaży 19

pod warunkiem, że cena tego dobra będzie wyższa od długookresowego kosztu

 $P \ge LAC$

przeciętnego:

W przeciwnym wypadku (jeśli cena nie pokrywa kosztu jednostkowego w długim okresie) przedsiębiorstwo wycofa się z produkcji tego dobra, nastąpi wyjście przedsiębiorstwa z gałęzi.

Wykład 6 Teoria podaży 20

TEORIA PODAŻY - przykłady, ćwiczenia, zadania

Zadanie1

Fabryka cukierków ma do wyboru metody produkcji, charakteryzujące się różnymi proporcjami zużycia pracy i kapitału (dane w poniższej tablicy). Załóżmy, że stawka płacy wynosi 200zł., a koszt jednostki kapitału 400zł. tygodniowo.

- 1. Dla każdego poziomu produkcji wybierz właściwą technikę produkcji.
- 2. Oblicz koszt całkowity dla każdego poziomu i techniki produkcji.
- 3. Przypuśćmy, że cena pracy wzrasta do 300 zł., zaś cena kapitału nie zmienia się. Jak wpłynie to na wybór techniki produkcji? (Uwzględniając nową cenę pracy oblicz ponownie koszt całkowity dla każdego poziomu i techniki produkcji oraz wskaż, która technika jest optymalna przy różnych rozmiarach produkcji).

cja	Technika A		Technika B		Technika C	
Produkcja	Nakład pracy	Nakład kapitału	Nakład pracy	Nakład kapitału	Nakład pracy	Nakład kapitału
1	9	2	6	4	4	6
2	19	3	10	8	8	10
3	29	4	14	12	12	14
4	41	5	18	16	16	19
5	59	6	24	22	20	25
6	85	7	33	29	24	32
7	120	8	45	38	29	40

Wykład 6 Teoria podaży 21

Zadanie 2

Załączona tablica pokazuje kształtowanie się długookresowych kosztów w pewnym przedsiębiorstwie przy różnych poziomach produkcji.

- 1. Oblicz długookresowy koszt przeciętny i krańcowy (przy różnych poziomach produkcji).
- 2. Wykreśl krzywe długookresowego kosztu przeciętnego i krańcowego.
- 3. Przy jakiej wielkości produkcji długookresowy koszt przeciętny jest minimalny?
- 4. Przy jakiej wielkości produkcji następuje zrównanie długookresowego kosztu przeciętnego z kosztem krańcowym?
- 5. Jaka jest minimalna efektywna skala produkcji przedsiębiorstwa?
- 6. W jakim przedziale wielkości produkcji przedsiębiorstwo osiąga korzyści skali, a w jakim niekorzyści skali?
- 7. Czym charakteryzuje się punkt, w którym długookresowy koszt przeciętny jest minimalny?

Długookresowe koszty produkcji

Produkcja	Koszt całkowity	Długookresowy koszt przeciętny	Długookresowy koszt krańcowy
0	0		
1	32		
2	48		
3	82		
4	140		
5	228		
6	352		

Wykład 6 Teoria podaży 22

Zadanie 3

Przedsiębiorstwo ustaliło wielkość produkcji, którą zamierza wytwarzać. Koszty przeciętne kształtują się następująco:

- długookresowy koszt przeciętny
 12
- krótkookresowy przeciętny koszt stały
- krótkookresowy przeciętny koszt zmienny
 11

W poniższej tabeli zaznacz właściwe decyzje w krótkim i długim okresie przy każdym z podanych poziomów ceny produktu:

Decyzje krótkookresowe					
Cena	Produkować z zyskiem	Produkować mimo straty	Wstrzymać produkcję		
18					
5					
7					
13					
11,50					
	Decyzje	długookresowe			
Cena	Produkować z zyskiem	Produkować mimo straty	Zamknąć zakład		
18					
5					
7					
13					
11,50					
