Quiz | If $a \mid c$, $b \mid c$, d = (g,b), show $ab \mid cd$ If $a \mid c$, $b \mid c$, c = (g,b), show $ab \mid cd$ C = (a = b) for some integer k, b.

Since d = (a,b), $\alpha = dx$, b = dy for some integer x, y.

[XV) (x,y) = | since if x, y has some common divider s = | then $s, y \in \mathbb{Z}$, and then $a = ds(\frac{x}{s})$, $b = ds(\frac{x}{s})$, then (a,b) = ds.

Hence c = ka = (b) = dkx = dly $so (cd = d^2kx = d^2ly), then | kx = ly |$ and $ab = d^2xy$.

By FTA, x, y can be facorized into some primes $p_1, -p_2$, $q_1 - q_2$ respectfully

Since (x,y) = |, there is no q_1 , $|s| \leq p$ Therefore all of q_1 , $|s| \leq p$ must be in factors of k, that is, k = wy for some

Hence cd = wd2ny=wab. So ab/cd.