```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
```

Load the data
data = pd.read_csv (r'/content/npa1.csv')
data.head()

→		S.N.	Open	High	Low	Close	Change	Per Change (%)	Turnover	Dat
	0	1	2,772.23	2,805.57	2,742.53	2,755.62	-5.29	-0.19	21,713,431,007.73	8/1/202
	1	2	2,708.24	2,791.02	2,707.57	2,760.90	64.25	2.38	21,911,503,161.05	7/31/202
	2	3	2,669.41	2,709.89	2,609.02	2,696.65	35.55	1.33	17,266,391,542.96	7/30/202
	3	1	2,706.73	2,737.68	2,655.15	2,661.09	-20.46	-0.76	19,609,177,106.29	7/29/202
	4	2	2,606.42	2,708.58	2,606.40	2,681.56	113.42	4.41	15,810,596,235.45	7/28/202
Next step			Generate witl	da	ata	View	recomme plots	ended	New interactive sheet	ve

Convert the Date column to datetime format
data['Date'] = pd.to_datetime(data['Date'], format='%m/%d/%Y')

data = data.sort_values(by='Date')
data.head()

→		S.N.	0pen	High	Low	Close	Change	Per Change (%)	Turnover	Date	
	2196	314	904	904	904	904	1.35	0.15	0	2015-01-01	ıl.
	2195	313	918	918	918	918	13.82	1.53	0	2015-01-04	
	2194	312	920	920	920	920	2.27	0.25	0	2015-01-05	
	2193	311	917	917	917	917	-2.36	-0.26	0	2015-01-06	
	2192	310	925	925	925	925	7.13	0.78	0	2015-01-07	
Next step		G	enerate		data	a (Viev	v recommended	Ne	ew interactive	

```
# Remove commas from the numerical columns and convert them to float
data['Open'] = data['Open'].str.replace(',', '').astype(float)
data['High'] = data['High'].str.replace(',', '').astype(float)
data['Low'] = data['Low'].str.replace(',', '').astype(float)
data['Close'] = data['Close'].str.replace(',', '').astype(float)
data['Turnover'] = data['Turnover'].str.replace(',', '').astype(float)
# Create moving averages
data['MA7'] = data['Close'].rolling(window=7).mean()
data['MA30'] = data['Close'].rolling(window=30).mean()
# Create lag features
data['Lag1'] = data['Close'].shift(1)
data['Lag2'] = data['Close'].shift(2)
data['Lag3'] = data['Close'].shift(3)
# Extract date features
data['Day'] = data['Date'].dt.day
data['Month'] = data['Date'].dt.month
data['Year'] = data['Date'].dt.year
data['DayOfWeek'] = data['Date'].dt.dayofweek
# Drop rows with NaN values that were created by rolling window and lagging
data = data.dropna()
# Split the data into training and testing sets
train_size = int(len(data) * 0.8)
test_size = len(data) - train_size
train, test = data.iloc[:train_size], data.iloc[train_size:]
# Select the features for modeling
features = ['Close', 'MA7', 'MA30', 'Lag1', 'Lag2', 'Lag3']
train_X = train[features].values
train_y = train['Close'].values
test_X = test[features].values
test y = test['Close'].values
# Scale the features
scaler_X = MinMaxScaler(feature_range=(0, 1))
train_X_scaled = scaler_X.fit_transform(train_X)
test_X_scaled = scaler_X.transform(test_X)
# Scale the target (Close price)
scaler_y = MinMaxScaler(feature_range=(0, 1))
train_y_scaled = scaler_y.fit_transform(train_y.reshape(-1, 1))
test_y_scaled = scaler_y.transform(test_y.reshape(-1, 1))
# Reshape the data to be compatible with LSTM [samples, time steps, features]
train_X_scaled = train_X_scaled.reshape((train_X_scaled.shape[0], 1, train_X_scaled.shape[1]
test X scaled = test X scaled.reshape((test X scaled.shape[0], 1, test X scaled.shape[1]))
```

```
# Build the GRU model
model = Sequential()
model.add(GRU(50, return sequences=True, input shape=(1, len(features))))
model.add(GRU(50, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
# Train the model
history=model.fit(train_X_scaled, train_y_scaled, batch_size=1, epochs=10)
# Make predictions
train_predict_scaled = model.predict(train_X_scaled)
test_predict_scaled = model.predict(test_X_scaled)
# Inverse transform the predictions
train_predict = scaler_y.inverse_transform(train_predict_scaled)
test_predict = scaler_y.inverse_transform(test_predict_scaled)
# Calculate RMSE
train_rmse = np.sqrt(mean_squared_error(train_y, train_predict))
test_rmse = np.sqrt(mean_squared_error(test_y, test_predict))
print(f'Train RMSE: {train_rmse}')
print(f'Test RMSE: {test_rmse}')
     Epoch 1/10
     /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning:
       super().__init__(**kwargs)
     1734/1734 -
                                   - 10s 4ms/step - loss: 0.0040
     Epoch 2/10
                                  — 10s 4ms/step - loss: 4.5809e-04
     1734/1734
     Epoch 3/10
                                   - 7s 4ms/step - loss: 3.4407e-04
     1734/1734
     Epoch 4/10
                                 — 11s 4ms/step - loss: 2.0472e-04
     1734/1734
     Epoch 5/10
                                   - 10s 4ms/step - loss: 2.2943e-04
     1734/1734
     Epoch 6/10
                                   - 7s 4ms/step - loss: 1.9946e-04
     1734/1734
     Epoch 7/10
     1734/1734
                                   - 8s 4ms/step - loss: 2.3010e-04
     Epoch 8/10
                                 — 10s 4ms/step - loss: 1.2656e-04
     1734/1734 ·
     Epoch 9/10
     1734/1734 -
                                  - 7s 4ms/step - loss: 1.1796e-04
     Epoch 10/10
                                   - 11s 4ms/step - loss: 1.3180e-04
     1734/1734 -
     55/55
                                0s 4ms/step
```

Actual Train Predict

```
14/14 -
                                υς zms/step
     Train RMSE: 15.8160186990448
     Test RMSE: 12.293165870837914
# Calculate MSE
train_mse = mean_squared_error(train_y, train_predict)
test_mse = mean_squared_error(test_y, test_predict)
print(f'Train MSE: {train_mse}')
print(f'Test MSE: {test_mse}')
     Train MSE: 250.1464474885348
     Test MSE: 151.1219271279341
# Plot the results: Actual vs Predicted Close Prices
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(data['Date'][:train_size], train_predict, label='Train Predict')
plt.plot(data['Date'][train_size:], test_predict, label='Test Predict')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Actual vs Predicted Close Prices')
plt.show()
# Plot the Moving Averages
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(data['Date'], data['MA7'], label='MA7')
plt.plot(data['Date'], data['MA30'], label='MA30')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Moving Averages')
plt.show()
# Plot the Lag Features
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(data['Date'], data['Lag1'], label='Lag1')
plt.plot(data['Date'], data['Lag2'], label='Lag2')
plt.plot(data['Date'], data['Lag3'], label='Lag3')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Lag Features')
plt.show()
                                          Actual vs Predicted Close Prices
```



```
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Date
```

```
# Prepare the last available data point for future prediction
last_data_point = data[features].iloc[-1].values.reshape(1, -1)
scaled_last_data_point = scaler_X.transform(last_data_point)
# Initialize lists to store future predictions
future_predictions = []
num_future_days = 60 # Number of future days to predict
# Predict future values
for _ in range(num_future_days):
    scaled_last_data_point = scaled_last_data_point.reshape((1, 1, len(features)))
    future_pred_scaled = model.predict(scaled_last_data_point)
   future_pred = scaler_y.inverse_transform(future_pred_scaled)
   # Append the prediction to the future_predictions list
   future_predictions.append(future_pred[0][0])
   # Update the scaled_last_data_point with the new predicted value
    new_data_point = np.append(scaled_last_data_point.flatten()[1:], future_pred_scaled)
    scaled_last_data_point = new_data_point.reshape(1, -1)
# Create a DataFrame for future predictions
future_dates = pd.date_range(data['Date'].iloc[-1] + pd.Timedelta(days=1), periods=num_fu
future_df = pd.DataFrame({'Date': future_dates, 'Predicted Close': future_predictions})
```

ac 10mc/cton

1/1	03	101112\2007
1/1 ————	- 0s	16ms/step
1/1	- 0s	17ms/step
1/1	- 0s	17ms/step
1/1	- 0s	17ms/step
1/1	- 0s	18ms/step
1/1	- 0s	16ms/step
1/1	- 0s	26ms/step
1/1	- 0s	17ms/step
1/1	- 0s	20ms/step
1/1	- 0s	16ms/step
-		
1/1	• 0s	16ms/step
1/1	- 0s	16ms/step
1/1	- 0s	16ms/step
1/1	- 0s	17ms/step
1/1	- 0s	16ms/step
1/1	- 0s	17ms/step
1/1	- 0s	16ms/step
1/1	- 0s	16ms/step
1/1	- 0s	15ms/step
1/1	- 0s	20ms/step
1/1	- 0s	17ms/step
1/1	- 0s	18ms/step
1/1	- 0s	•
		16ms/step
1/1	- 0s	16ms/step
1/1	- 0s	20ms/step
1/1	- 0s	21ms/step
1/1	- 0s	32ms/step
1/1	- 0s	17ms/step
1/1	- 0s	16ms/step
1/1	03	16ms/step
1/1	- 0s	18ms/step
1/1	- 0s	17ms/step
1/1	- 0s	17ms/step
1/1	- 0s	16ms/step
1/1		16ms/step
1/1	- 0s	17ms/step
1/1	- 0s	21ms/step
1/1	- 0s	21ms/step
1/1	- 0s	22ms/step
1/1	- 0s	16ms/step
1/1	- 0s	17ms/step
1/1	- 0s	18ms/step
1/1	- 0s	15ms/step
1/1		17ms/step
1/1	- 0s	16ms/step
1/1	- 0s	16ms/step
1/1		17ms/step
1/1	- 0s	17ms/step
1/1	- 0s	17ms/step
-/-	03	1/1113/3CED

7 of 11

plt.ylabel('Close Price')

2024-08-02

2024-08-03

plt.title('Future Predictions')

plt.savefig('future_predictions.png') # Save the plot

2760.116699

2647.025635

plt.show(block=True) # Prevent the plot from disappearing immediately

plt.legend()

```
1/1
                             • 0s 17ms/step
     1/1 -
                             • 0s 19ms/step
# Plot the future predictions
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(future_df['Date'], future_df['Predicted Close'], label='Future Predictions', lines
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Future Predictions')
plt.show()
# Create a DataFrame for future predictions
future_dates = pd.date_range(data['Date'].iloc[-1] + pd.Timedelta(days=1), periods=num_future_dates
print(pd.DataFrame({'Date': future_dates, 'Predicted Close': future_predictions}))
# Plot the actual data and future predictions
plt.figure(figsize=(16, 8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(future_df['Date'], future_df['Predicted Close'], label='Future Predictions', lines
plt.xlabel('Date')
```


2	2024-08-04	2478.880615
3	2024-08-05	2757.185303
4	2024-08-06	2673.291992
5	2024-08-07	2647.793701
6	2024-08-08	2754.145264
7	2024-08-09	2634.630371
8		
_	2024-08-10	2560.777100
9	2024-08-11	2749.364746
10	2024-08-12	2658.825928
11	2024-08-13	2654.667236
12	2024-08-14	2744.266602
13	2024-08-15	2633.749756
14	2024-08-16	2615.051025
15	2024-08-17	2739.619629
16	2024-08-18	2653.319336
	2024-08-19	2668.237061
18	2024-08-20	2733.857666
	2024-08-21	2639.386963
	2024-08-22	
		2651.628662
21		2729.968018
	2024-08-24	2654.742676
	2024-08-25	2682.317383
	2024-08-26	2724.678223
25	2024-08-27	2648.618652
26	2024-08-28	2676.430176
27	2024-08-29	2721.751221
28	2024-08-30	2660.748779
29	2024-08-31	2694.437256
30	2024-09-01	2717.564941
31	2024-09-02	2659.567627
32	2024-09-03	2693.226807
33	2024-09-04	2715.649170
	2024-09-05	2669.325439
35	2024-09-06	2703.956055
36	2024-09-07	2712.789795
37		2670.983398
38	2024-09-09	2704.566895
39	2024-09-10	2711.843750
40	2024-09-11	2678.966553
41	2024-09-12	2711.067383
42	2024-09-13	2710.274414
43	2024-09-14	2682.050781
44	2024-09-15	2712.239014
45	2024-09-16	2710.193115
	2024-09-17	2688.654785
47	2024-09-18	2716.277100
48	2024-09-19	2709.738281
49	2024-09-20	2692.280518
50	2024-09-21	2717.518066
51	2024-09-22	2710.376465
52	2024-09-23	2697.772217
53	2024-09-24	2720.140381
54	2024-09-25	2710.807129
55	2024-09-26	2701.425537
56	2021-00-27	2721 210202

JU 2024-0J-21	८/८エ・ノエゼノゼノ
57 2024-09-28	2712.001221
58 2024-09-29	2705.999512
59 2024-09-30	2723.145996

