Unidad 3

Inteligencia artificial: Differential Evolution

Dra. Soledad Espezua sespezua@pucp.edu.pe

• Fue creado por R. Storn y K. Price en 1995¹, para optimización sobre espacios continuos, en un intento por resolver el problema de ajuste de polinomios de Chebychev.

Kenneth Price

- 1. R. Storn and K. V. Price, "Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces," ICSI, USA, Technical Report TR-95-012, 1995.
- 2. R. Storn and K. V. Price. Differential Evolution, A simple and efficiente heuristic of strategy for global optimization over continuous spaces. Journal of Global Optimization, 11 (1997) 341-359.

DE - Características

- Es un modelo evolutivo para resolver problemas de optimización continua.
- La población es un conjunto de vectores de valores reales.
- Comparte varias similitudes con el ciclo básico de un AG.
 - Después de selección, DE realiza mutación y luego cruzamiento sobre el vector mutado.

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

DE - Procedimiento

- Iniciar una población: $X_{n\times d}\leftarrow\cup (inf, sup)$ donde cada individuo es un vector $x_i=inf+rand(0,1)$. (sup-inf), i=[1,...,d], inf y sup son límites de acotamiento
- **Evaluar** la población. Por cada x_i , seleccionar aleatoriamente 3 vectores (x_1, x_2, x_3) .
- Mutación: crear un vector v_i (vector mutación): $v_i = x_1 + F.(x_2 x_3)$ (1)

donde: $F \in [0,2]$ es un factor de amplificación de valor real.

lacktriangle Cruzamiento: crear un vector u_i (vector trial) para incrementar la diversidad

donde

- j = [1, ..., d]
- *d* = tamaño del vector
- $J_r \in [1, d]$ (entero) es un índice aleatorio de un vector permutado
- $C_r \in [0.5,1]$ (real) taza de cruzamiento
- $r_i \in [0,1]$ (real) es un número aleatorio

Cruzamiento uniforme

$$u_{ji} = \begin{cases} v_{ji}, & \text{if } r_i \le C_r \text{ or } j = J_r \\ x_{ji}, & \text{if } r_i > C_r \text{ and } j \ne J_r \end{cases}$$
 (2)

Selección

Para decidir si el nuevo vector u_i (vector trial) debe o no convertirse en un miembro de la siguiente generación (G + 1), comparar el *fitness* del vector trial (u_i) con el *fitness* del vector evaluado x_i .

If
$$(u_i. \text{fitness} > x_i. \text{fitness})$$
 (3) $x_i \leftarrow u_i$

DE - Pseudocódigo

Differential Evolution

Initialize the population x with randomly generated solutions Set the weight $F \in [0, 2]$ and crossover probability $C_r \in [0, 1]$ while (stopping criterion)

for i = 1 to n,

For each x_i , randomly choose 3 distinct vectors x_1 , x_2 and x_3

Generate a new vector v by DE scheme (1)

Generate a random index $J_r \in \{1, 2, ..., d\}$ by permutation

Generate a randomly distributed number $r_i \in [0, 1]$

for j = 1 to d,

For each parameter $v_{j,i}$ (jth component of v_i), update

$$\boldsymbol{u}_{j,i}^{t+1} = \begin{cases} \boldsymbol{v}_{j,i}^{t+1} & \text{if } r_i \le C_r \text{ or } j = J_r \\ \boldsymbol{x}_{j,i}^t & \text{if } r_i > C_r \text{ and } j \ne J_r, \end{cases}$$
 (2)

end

Select and update the solution by (3)

end

end

Post-process and output the best solution found

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

DE - Ventajas

- Usa pocos parámetros de control: F (factor de escalamiento), Cr (Tasa de cruzamiento).
- Convergencia rápida.
- DE mantiene la dirección de búsqueda objetivo, sin perder diversidad.

En Alg. Genéticos, para promover la <u>exploración</u> se acostumbra a incrementar el <u>tamaño de la población</u> o la tasa de mutación, lo cual también i<u>ncrementa la diversidad</u>. Sin embargo, la probabilidad de encontrar la dirección de búsqueda correcta decrece considerablemente.

DE - Aplicaciones

DE es uno de los campos más activos en el desarrollo de algoritmos evolutivos para optimización continua.

Control Systems and Robotics	Bioinformatics
System identification	Gene regulatory networks
Optimal control problems	Micro-array data analysis
Controller design and tuning	Protein folding
Aircraft control	Bioprocess optimization
Nonlinear system control	Artificial Neural Networks
Simultaneous localization and modeling problem	Training of feed-forward ANNs
Robot motion planning and navigation	Training of wavelet neural networks
Cartesian robot control	Training of B-Spline neural networks
Multi-sensor data fusion	Chemical Engineering
Pattern Recognition and Image Processing	Chemical process synthesis and design
Data clustering	Phase equilibrium and phase study
Pixel clustering and region based image segmentation	Parameter estimation of chemical process
Feature extraction	
Image registration and	
enhancement	
Image Watermarking	

Bibliografia DE

- R. Storn,1997. Differential Evolution, A simple and efficient heuristic of strategy for global optimization over continuous spaces. Journal of Global Optimization, 11 (1997) 341-359.
- R. Storn and K. V. Price, "Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces," ICSI, USA, Technical Report TR-95-012, 1995

Review DE:

- Swagatam Das, Sankha Subhra Mullick, P.N. Suganthan. Recent advances in differential evolution – An updated survey. Swarm and Evolutionary Computation, Volume 27, 2016, Pages 1-30.
- Guohua Wu, Rammohan Mallipeddi, P.N. Suganthan, Rui Wang, Huangke Chen. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences, Volume 329, 2016, Pages 329-345.