Let us consider the Stokes problem defined in the rectangular domain $\Omega = (0,3) \times (0,1)$

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{0}, & \text{in } \Omega, \\ \text{div } \mathbf{u} = 0, & \text{in } \Omega, \\ \mathbf{u} = \mathbf{0}, & \text{on } \Gamma_{\text{D1}} = \{0 \le x \le 3, \ y = 0\}, \\ \mathbf{u} = 1\mathbf{i} + 0\mathbf{j}, & \text{on } \Gamma_{\text{D2}} = \{0 \le x \le 3, \ y = 1\}, \\ (\nabla \mathbf{u} - pI)\mathbf{n} = \mathbf{0}, & \text{on } \Gamma_{\text{N}} = \{x \in \{0, 3\}, \ 0 \le y \le 1\}. \end{cases}$$

- 1 Verify that $\mathbf{u} = y\mathbf{i}$, p = 0 is a solution of the problem.
- 2 Write the weak formulation of the differential problem.
- 3 Using the variational approach of Firedrake, write a solver for the problem, with h = 0.1 as mesh discretization parameter and $\mathbb{P}^1/\mathbb{P}^1$ finite elements.
- 4 Compute now the solution using the following pairs of finite element spaces

$$\mathbb{P}^1/\mathbb{P}^0$$
, $\mathbb{P}^1/\mathbb{P}^1$, $\mathbb{P}^1/\mathbb{P}^1$, $\mathbb{P}^2/\mathbb{P}^1$.

Which of these pairs produce spurious pressure modes?

5 Use the results of the previous point to fill the following table.

	$N_{ m dofs}$	$\ \mathbf{u} - u_h\ _{L^2}$	$\ \nabla \mathbf{u} - \nabla u_h\ _{L^2}$	$ p-p_h _{L^2}$
$\mathbb{P}^1/\mathbb{P}^0$				
$\mathbb{P}^1/\mathbb{P}^1$				
$\mathbb{P}_b^1/\mathbb{P}^1$ $\mathbb{P}^2/\mathbb{P}^1$				
$\mathbb{P}^2/\mathbb{P}^1$				

What can you observe?

Exercise 2

Let us consider the Stokes problem defined in the unit square $\Omega := (0,1)^2$

$$\begin{cases}
-\Delta \mathbf{u} + \nabla p = \mathbf{f}, & \text{in } \Omega, \\
\text{div } \mathbf{u} = 0, & \text{in } \Omega, \\
\mathbf{u} = \mathbf{g}, & \text{on } \partial \Omega.
\end{cases}$$

1 Compute the functions \mathbf{f} and \mathbf{g} such that

$$\mathbf{u}(x,y) = \begin{bmatrix} -\cos x \sin y \\ \sin x \cos y \end{bmatrix}, \qquad p(x,y) = -\frac{1}{4}(\cos{(2x)} + \cos{(2y)}) + \frac{\sin(2)}{4}.$$

2 Write the weak formulation of the differential problem.

Using the pairs of finite elements spaces $\mathbb{P}^2/\mathbb{P}^1$ and $\mathbb{P}^1_b/\mathbb{P}^1$ solve the problem with a uniform mesh with an increasing number of subdivisions n. For each pair of spaces fill the following table and verify numerically the convergence rates.

n	$N_{ m dofs}$	$\ \mathbf{u} - \mathbf{u}_h\ _{L^2}$	$\ abla \mathbf{u} - abla \mathbf{u}_h\ _{L^2}$	$ p-p_h _{L^2}$
5				
10				
20				
40				

4 Let us introduce the following adjusted pressure:

$$\widehat{p}_h(x,y) = p_h(x,y) + \frac{1}{|\Omega|} \int_{\Omega} (p-p_h) d\mathbf{x}.$$

Repeat the convergence tests of the previous point, considering $||p - \widehat{p}_h||_{L^2}$ instead of $||p - p_h||_{L^2}$. What can you observe? Can you tell why?

Exercise 3

Let us consider the following Stokes problem over the domain $\Omega = (0,2) \times (-1,1)$:

$$\begin{cases} -\mu \Delta \mathbf{u} + \nabla p = \mathbf{0}, & \text{in } \Omega, \\ \operatorname{div} \mathbf{u} = 0, & \text{in } \Omega, \\ \mathbf{u} = \mathbf{0}, & \text{on } \Gamma_{\text{wall}} = \{0 \le x \le 2, \ y \in \{-1, 1\}\}, \\ \mathbf{u} = (1 - y^2)\mathbf{i} + 0\mathbf{j}, & \text{on } \Gamma_{\text{in}} = \{x = 0, \ -1 \le y \le 1\}, \\ (\nabla \mathbf{u} - pI)\mathbf{n} = \mathbf{0}, & \text{on } \Gamma_{\text{out}} = \{x = 2, \ -1 \le y \le 1\}, \end{cases}$$

with $\mu = 10^{-2}$.

- 1 Write the weak formulation of the differential problem, strongly enforcing Dirichlet boundary conditions.
- Introduce the finite element method for the problem at hand, using \mathbb{P}^2 elements for velocity and \mathbb{P}^1 elements for pressure, and derive its algebraic formulation.
- 3 Assemble the algebraic problem in FreeFem++, using LinearVariationalProblem. Recall that the monolithic system has the following form:

$$\Sigma \mathbf{x} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} \mathbf{U} \\ \mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ \mathbf{0} \end{bmatrix} = \mathbf{b}.$$

where A is the stiffness matrix, B and B^T correspond to the divergence and gradient operators, respectively, and \mathbf{F} contains the boundary data.

Solve the algebraic problem assembled at the previous point using LinearVariationalSolver: use the iterative solver gmres on the system, with a block-Jacobi preconditioner ('pc_type ': 'bjacobi') combined with an inexact LU solver for the single blocks ('sub_pc_type': 'ilu'). Consider a relative tolerance of 10^{-5} and a maximum number of iterations 10000. Compare the cases with mesh size h = 1/8, 1/16, 1/32 in terms of number of iterations required by the GMRES solver: what can you observe?

(additional) Repeat the exercise for different values of μ : what can you observe in the solution?