Birla Institute of Technology & Science, Pilani Data Structures & Algorithms (CS F211) Lab Exam

(Closed Book)

Date: 17th April, 2016

Time: 2 Hours 45 minutes (4 problems) Total Marks: (4 + 6 + 10 + 20 = 40 Marks)

General Instructions:

- There are four problems to solve in this lab exam.
- The problems are arranged in increasing order of difficulty. Weightage of each problem is approximately proportional to its difficulty level (P1 = 4, P2 = 6, P3=10, P4=20).
- A total of 2 hours and 45 minutes will be given for solving all 4 problems.
- Only one test case in each problem will be available during first 2 hours and 30 minutes. All but one test case will be made available in last 15 minutes.
- Separate submission will be required for each of the problem. Make sure to select correct problem while uploading a solution.
- Each test case carries some marks. For any output, other than "correct", for a particular test case will be awarded zero (0) marks.
- All input expressions should be read from stdin and output should be printed on stdout.
- Only the last submission by the student for each problem, before end of exam, will be considered for evaluation.

Warnings (Possible Reasons for Cancellation of Lab Exam):

- Possession of any previously written code (irrespective of size, relevance, ownership, medium)
- Possession of any removable media or mobile.
- Attempt to access any machine other than allotted local machine and the Online Judge Server.

Input Format:

- The first line of input will specify the number of vertices in a directed graph.
- Vertices will always be numbered in sequential order starting from 1.
- Adjacency list representation of a directed graph is used.
- From second line onwards, adjacent vertices (in sorted order) of each vertex (in sorted order) will be listed per line in the following format:

Vertex number Blank Number of Adjacent vertex Blank First Adjacent vertex Blank

Problem 3 (10 Marks)

Problem Statement:

Finding Transpose of a directed graph. The transpose of a directed graph G = (V, E) is the graph $G^T = (V, E^T)$, where $E^T = \{ \langle v, u \rangle \in VxV; \langle u, v \rangle \in E \}$. Thus, G^T is G with all its edges reversed. For example, $G1^T$ is the following directed graph:

Graph G1^T

Output Format:

It is same as the input format for adjacency list.

Sample Input:

4		
1	0	
2	1	1
1 2 3 4	1	1
4	1	1

Sample Output:

4				
1 2 3	3	2	3	4
2	0			
3	0			
4	0			

