Set Covering Problem & Set Partitioning Problem

Instructor: Kwei-Long Huang

Course No: 546 U6110

Agenda

- Introduction
- Types of set covering (SC) and set partition (SP) problems
- Properties of SC and SP

Set Covering Problem (SC)

 $\min cx$

s.t.
$$Ex \ge e$$

 $x_i = 0 \text{ or } 1 \ (j = 1,...,n)$

Where $E=(e_{ij})$ is an m*n matrix whose entries are 0 or 1.

• If the inequality constraints is replaced by equalities, the problem is referred to as a set partitioning problem (SP).

$$Ex = e$$

Introduction

- The set covering problem is to find a cheapest union of sets from **E** that covers every component of **e**, where component *i* of **e** is covered if at least one columns of **E** has a 1 in row *i*.
- The set partitioning problem is to find a cheapest disjoint of sets from **E** which equals to **e**.
- Extensions of SC/SP problem:
 - Positive integers of RHS instead of **e**.
 - Decision variables are integers, not necessary binary.
 - The constraints are in the form of

$$L \le Dx \le U$$

Structure of Base Constraints

Agenda

- Introduction
- Types of set covering (SC) and set partition (SP) problems
- Properties of SC and SP

Set Covering and Networks

- The node covering problem
- The matching problem
- Disconnecting paths
- The Maximum flow problem

Minimal Cost Covering Problem

• A subset of arcs in the network such that each node is an end point of at least one the arcs in the subset.

Example

- By inspection, any three variables are at value 1.
- One such set is $x_2 = x_5 = x_7 = 1$, and others are at 0.

The Matching Problem

- A matching for a network is a subset of the arcs such that no two arcs in the subset have a common end point.
- That is, each node has at most one arc in the subset incident to it.
- Find the maximum number of arcs.

$$\max \sum_{j} c_{j} x_{j}$$
s.t. $Ex \le e$

$$x_{j} = 0 \text{ or } 1.$$

Example

- By inspection, at most two arcs can be selected so that the constraints $Ex \le e$ are satisfied.
- For example, $x_2 = x_5 = 1$ or $x_2 = x_7 = 1$.

Disconnecting Paths

- A path is from a node s to a node t as a sequence of distinct nodes: s, i_1 , i_2 , ..., i_r , t.
- Suppose all paths in a network are known, and there is a cost associated with removing an arc form the network.
- The problem is to discard a set of arcs which will disconnect all paths from *s* to *t* with the minimum removing costs.

Example (1/2)

- Consider the following network, suppose we want to disconnect all path from node 1 to node 3.
- List all possible paths:

i	paths
1	1, 4, 3
2	1, 5, 3
3	1, 2, 3
4	1, 4, 5, 3
5	1, 5, 4, 3
6	1, 2, 5, 3
7	1, 5, 2, 3
8	
9	

Example (2/2)

Path/ Arc	(1, 2) (2, 1)	(1,4) $(4,1)$	(1,5) $(5,1)$	(4,5) $(5,4)$	(2, 5) (5, 2)	(4, 3) (3, 4)	(3, 2) (2, 3)	(3,5) $(5,3)$
1		1				1		
2			1					1
3	1						1	
4		1		1				1
5			1	1		1		
6	1				1			
7			1		1		1	1
8		1		1	1		1	
9	1			1	1	1		

The Maximum Flow Problem

- Consider a directed network depicting (e.g.) a pipeline network between a refinery *s* and a terminal *t*.
- Let d_i be the maximum flow rate.
- The problem is to find the maximum flow from *s* to *t* through the network without exceeding the arc capacities.
- Define a directed path is from a node s to a node t as a sequence of distinct nodes: s, i_1 , i_2 , ..., i_r , t with a directed arc between each successive pair of nodes.

Example

- One possible formulation: flow in = flow out for each node.
- The other: consider all path from s to t.

	path(i)					
-Arc (j)	1	2	3	4	5	
1:(s,1)	1	1	0			
2:(s,2)	0	0	1			
3:(s,3)	0	0	0			
4:(1,2)	0	1	0			
5:(3,2)	0	0	0			
6:(1,t)	1	0	0			
7:(2,t)	0	1	1			
8:(3,t)	0	0	0			

dj is the capacity of arc j

Agenda

- Introduction
- Types of set covering (SC) and set partition (SP) problems
- Properties of SC and SP

Facts 1&2

- If any row r of *E* has all zero's, there is
- If in a row of E there is only one 1 and it occurs in the kth column, the $x_k=1$. The other constraints satisfied by $x_k=1$ are also dropped.
- Example: consider a SP problem (Ex = e),

	Variable						
Constraint	x_1	x_2	x_3	x_4	x_5	x_6	
1	1	0	0	1	0	0	= 1
2	0	1	1	0	0	0	= 1
3	0	1	0	0	0	0	= 1
4	1	1	1	0	1	0	= 1
5	0	0	0	1	0	1	= 1
	<u></u>			<u></u>			

- Row dominance: suppose row s and row r are two rows of E such that row r > row s, if x_k has a nonzero coefficient in the sth constraint, it has a nonzero coeff. in the rth constraint.
- For SC problem, row of E may be deleted.

$$Row \ r \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ge (=)1$$

 $Row \ s \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ge (=)1$

• For SP problem, what do you conclude based on the following example?

$$x_h$$
 x_l Row r 1 1 1 0 1 1 =1 Row s 1 0 1 0 0 1 =1

- Column dominance: suppose for some column E_j of E in a SC problem there exists a set of S of other columns of E whose sum is $\geq E_j$, and the cost of $x_j \geq$ sum of the costs of the variables corresponding to the columns in S. Then, E_j may be
- The same result for SP problem. Suppose for some column E_j of E in a SC problem there exists a set of S of other columns of E whose sum is equal to E_j , and the cost of $x_j \ge \text{sum of the costs}$ of the variables corresponding to the columns in S.

- Any SP problem can be converted to a SC problem, and hence an algorithm which solves SC will also solve SP.
- For a SP problem, solving its corresponding SC problem if all slack variables (i.e., s= *E*x-e) are equal to____, then the SP problem solved.
- By assigning positive costs to slack variables, finding a minimal SC solution will indicate that either obtaining an optimal solution to SP or show its infeasibility.

Fact 5 (con't)

minimize
$$cx + Me^{T}s$$

subject to $Ex - Is = e$,
 $s \ge 0$,
and $x_{i} = 0$ or 1 $(j=1,...,n)$,

• Replace Me^Ts in objective by Me^TEx - Me^Te

$$-Me^{T}e + \text{minimize} \quad \overline{c}x$$

$$\text{subject to} \quad Ex - Is = e,$$

$$s \ge 0,$$

$$\text{and} \quad x_{j} = 0 \text{ or } 1 \quad (j=1,...,n)$$

$$\overline{c} = c + Me^{T}E$$

Example

```
minimize 5x_1 + 4x_2 + 1x_3 + 2x_4

subject to x_1 + x_4 = 1,

x_2 + x_3 = 1,

x_1 + x_3 + x_4 = 1,

and x_1, x_2, x_3, x_4 = 0 or 1.
```

```
minimize 5x_1 + 4x_2 + 1x_3 + 2x_4 + 12s_1 + 12s_2 + 12s_3

s.t. (i) x_1 + x_4 - s_1 = 1,

(ii) x_2 + x_3 - s_2 = 1,

(iii) x_1 + x_3 + x_4 - s_3 = 1,

and x_1, x_2, x_3, x_4 = 0 or 1, s_1, s_2, s_3 \ge 0
```

minimize subject to $x_1 + x_4 \ge 1$, $x_2 + x_3 \ge 1$, $x_1 + x_3 + x_4 \ge 1$, and $x_1, x_2, x_3, x_4 = 0 \text{ or } 1$.

- LPC and LPP are the linear programs associated with SC and SP by relaxing the integer constraint.
- SC has a binary solution if and only if LPC has a feasible solution.
- Assume the feasible solution to LPC is x_{j}^{0} . Then, the solution to SC can be constructed:
 - Set $x_{j} = 0$, for x_{j}^{0}
 - Set $x_i = 1$, for x_i^0
- The solution to LPP imply the existence of an integer solution to SP.
- Example: the solution to LPP is (1/2,1/2,1/2) where

$$E = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

• Dual problem of LPC:

Primal	Dual
$\min cx$	max we
s.t. $Ex \ge e$	s.t. $wE \le c$
$x_i \ge 0$	$w \ge 0$

- If c > 0, an initial feasible solution can be immediately obtained (w, slack variables) = (0, c).
- Dual Simplex method can be applied.
- The same for LPP problems except *w* are

Facts 8&9

- At any LPC and LPP extreme point, $0 \le x_i \le 1$ is satisfied.
- For LPP, Ex=e guarantee that every extreme point has $x_i \le 1$.
- For LPC, let x denote any extreme point. Form the matrix B (current basis matrix) as follows: take columns of E corresponding to positive x_j 's; columns of E to positive E (where slacks s are given by: E (where E);

$$Ex - Is = B \begin{pmatrix} \overline{x} \\ \overline{s} \end{pmatrix} = \begin{pmatrix} B_{11} & O \\ B_{12} - I \end{pmatrix} \begin{pmatrix} \overline{x} \\ \overline{s} \end{pmatrix} = \begin{pmatrix} e \\ e \end{pmatrix}$$

 \mathbf{B}_{11} and e contain only 0's and 1's, with $\overline{x} > 0$.

Because of $B_{11}\overline{x} = e$, no positive component of $x \ge 1$.

- If an integer solution to SC is not an extreme point of LPC, the current solution can be reduced to another integer solution which is an extreme point of LPC.
- Example: consider c=(1,2,1,1,2,3,1) and

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

- An integer solution $\overline{x} = (1,1,0,1,1,0,0)$
- Slack variables $\overline{s} = (0,0,0,2,1)$
- The current objective is 6.

$$E\overline{x} - I\overline{s} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \overline{x} - \begin{pmatrix} O \\ I \end{pmatrix} \overline{s} = \begin{pmatrix} e \\ e \end{pmatrix}, \text{ with } \overline{s} \ge e$$

Example (con't)

• Arrange E based on the basic variables $(x_1, x_2, x_4, x_5, x_3, x_6, x_7)$

$$\begin{pmatrix} \mathbf{E_1} \\ \mathbf{E_2} \end{pmatrix} \tilde{\mathbf{x}} = \begin{pmatrix} \mathbf{E_{11}} & \mathbf{E_{12}} \\ \mathbf{E_{21}} & \mathbf{E_{22}} \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{E_{11}} \\ \mathbf{E_{21}} \end{pmatrix} \mathbf{e}; \qquad \begin{pmatrix} \mathbf{E_{11}} & \mathbf{E_{12}} \\ \mathbf{E_{21}} & \mathbf{E_{22}} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 5 & 3 & 6 & 7 \\ 1 & 0 & 0 & 0 & | 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & | 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 & | 1 & 0 \\ 0 & 1 & 1 & 0 & | 0 & 0 & 0 \end{pmatrix}$$

• So that,

$$\mathbf{E}\bar{\mathbf{x}} - \mathbf{I}\mathbf{s} = \begin{pmatrix} \mathbf{E}_{11} \\ \mathbf{E}_{21} \end{pmatrix} \mathbf{e} + \begin{pmatrix} \mathbf{0} \\ -\mathbf{I} \end{pmatrix} \bar{\mathbf{s}} = \begin{pmatrix} \mathbf{e} \\ \mathbf{e} \end{pmatrix}, \quad \bar{\mathbf{s}} \geq \mathbf{e}$$

$$\mathbf{E}_{11} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E}_{11}^1 & \mathbf{0} \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} \mathbf{E}_{11} \\ \mathbf{E}_{21} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E}_{11}^1 & \mathbf{0} \\ \mathbf{E}_{21}^1 & \mathbf{E}_{21}^2 \end{pmatrix}$$

$$\mathbf{E}_{11} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E}_{11}^{1} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E}_{11}^{1} & \mathbf{0} \\ \mathbf{E}_{21}^{1} & \mathbf{E}_{21}^{2} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 5 \\ 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Example (con't)

• Rewrite (6)

$$\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E}_{11}^1 & \mathbf{0} \\ \mathbf{E}_{21}^1 & \mathbf{E}_{21}^2 \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{e} \end{pmatrix} - \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{I} \end{pmatrix} \tilde{\mathbf{s}} = \begin{pmatrix} \mathbf{e} \\ \mathbf{e} \\ \mathbf{e} \end{pmatrix}$$

• Set $\overline{x}_4 = 0$, then

$$\begin{pmatrix} \bar{s}'_{4} \\ \bar{s}'_{5} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E}^{1}_{11} & \mathbf{0} \\ \mathbf{E}^{1}_{21} & \mathbf{E}^{2}_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 5 \\ 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 1 \end{pmatrix}$$

• Set $\bar{x}_5 = 0$, all slack variables are zero and the new integer solution is (1,1,0,0,0,0,0). The new solution is an extreme point of LPC and the new objective is 3.

Facts 11&12

- Roundup any feasible solution to LPC is a solution to SC.
- A roundup solution obtained from a (nonintegral) extreme point *x* of (LPC) can always be reduced to another feasible solution with a smaller cost.
- Summarize:
 - 1) Change the LPC extreme point to an SC integer solution point.
 - 2) Improve the roundup solution to another SC integer point with a lower cost.
 - 3) Reduce the solution of (2) to an LPC extreme point.

Facts 13&14

• At least one of the constraints satisfied by the positive nonintegral x_i variables holds with strict equality.

$$x^* - \min_i \left[s_i / (E^* e)_i \right] e \ge 0$$

• If a constraint satisfied by the positive nonintegral minimal LPC variables has a positive slack, then every variable corresponding to a 1 in that row must contribute to the strict equality of another constraint satisfied by these variables.

Example (1/2)

• Consider the columns of E associated with the positive nonintegral x_j variables, and the rows of E corresponding to the constraints that these variables explicitly satisfy. Let the selected matrix denoted as E^*

$$E^* = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} = (e_{ij}^*).$$

- Suppose $x^* = (\frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$
- Then, s=?

Example (2/2)

- Is fact 14 satisfied?
- s_2 and $s_4 > 0$, and $e_{23} = e_{43} = 1$.
- Therefore, set $x_3^* =$
 - $x^* = (\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}) \& s = (0, \frac{1}{6}, \frac{1}{6}, 0)$
- Repeat the process
 - $s_3 > 0$
 - Set $x_2^* =$
 - $x^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}) \& s = (0, \frac{1}{6}, 0, 0)$

```
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}
```

Reminder

- Final Project (6/15)(15% of your final grade)
 - Please prepare a 20-min presentation.
 - Every student has to attend the class, and for each group, more than half of team members need to do presentation.
 - Also submit a report with at most 10 pages before 6/26, and a draft is required on 6/15.
- Final Exam (6/15) (30%)
 - A cheat sheet with A4 size is allowed.
 - No laptop or smart phones.
 - A calculator is welcomed.