

$$g(\mu_{it}) = \mathbf{x}_{it}^T \boldsymbol{\beta} + \mathbf{z}_{it}^T \mathbf{u}_i,$$

where $g(\cdot)$ is a link function, $\mu_{it} = E(y_{it}|\mathbf{u}_i)$, y_{it} is the observation for subject i at time t, \mathbf{x}_{it} and \mathbf{z}_{it} are vectors of explanatory variables, \mathbf{u}_i is a $q \times 1$ vector of subject-specific random effects, and $u_i \sim N(0, \Sigma)$.

- (a) Explain why the GLMM is commonly used in the analysis of longitudinal data.
- (b) If $g(\cdot)$ is a log link, q=1, $z_{it}=1$, and $u_i \sim N(0,\sigma^2)$, show that

$$cov(y_{it}, y_{is}) = \exp(x_{it}^{T}\beta + x_{is}^{T}\beta) \{ \exp(\sigma^{2})(\exp(\sigma^{2}) - 1) \}.$$

$$|eq_{it}| = |x_{it}|^{2}\beta + |u_{i}|$$

$$|eq_{it}| = |eq_{it}|^{2}\beta + |eq_{it}|^{2}\beta$$

C262 - C6