Perform the following preprocessing tasks on the dirty_iris

(https://raw.githubusercontent.com/edwindj/datacleaning/dataset.

j/datacleaning/ma	om/edwind	rcontent.co	w.githubuse	https://rad	ta/dirty_iris.	d
	Species	Petal.Width	Petal.Length	Sepal.Width	Sepal.Length	t[]:
	versicolor	1.5	4.5	3.2	0 6.4	_
	virginica	2.5	6.0	3.3	1 6.3	
	virginica	2.3	5.4	NaN	2 6.2	
	setosa	0.4	1.6	3.4	3 5.0	
	versicolor	1.0	3.5	2.6	4 5.7	
	virginica	2.4	5.6	3.1	45 6.7	•
	versicolor	1.5	4.5	3.0	46 5.6	•
	setosa	0.2	1.5	3.5	47 5.2	•
	virginica	1.8	NaN	3.1	48 6.4	•

150 rows × 5 columns

Calculate the number and percentage of observations that are complete.

```
In [ ]: c=len(df.dropna())
    print("Number of observations that are complete:",c)
    print("Percentage of observations that are complete:",c/len(df)*100,"%")

Number of observations that are complete: 96
    Percentage of observations that are complete: 64.0 %
```

Replace all the special values in data with NA.

```
In [ ]: df.fillna("NA")
```

Out[]:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	6.4	3.2	4.5	1.5	versicolor
1	6.3	3.3	6	2.5	virginica
2	6.2	NA	5.4	2.3	virginica
3	5	3.4	1.6	0.4	setosa
4	5.7	2.6	3.5	1	versicolor
145	6.7	3.1	5.6	2.4	virginica
146	5.6	3	4.5	1.5	versicolor
147	5.2	3.5	1.5	0.2	setosa
148	6.4	3.1	NA	1.8	virginica
149	5.8	2.6	4	NA	versicolor

150 rows × 5 columns

Define these rules in a separate text file and read them.

⁻ Species should be one of the following values: setosa, versicolor or virginica.

```
In [ ]: R1=df.apply(R['speciescheck'],axis=1).rename('speciescheck')
Out[]: 0
                True
                True
         1
         2
                True
         3
                True
         4
                True
         145
                True
         146
                True
         147
                True
         148
                True
         149
                True
        Name: speciescheck, Length: 150, dtype: bool
```

-All measured numerical properties of an iris should be positive.

```
In [ ]: | R2=df.apply(R['allcheck'],axis=1).rename('allcheck')
Out[]: 0
                 True
         1
                 True
         2
                False
                 True
         3
         4
                 True
                 . . .
         145
                 True
         146
                 True
         147
                 True
         148
                False
         149
                False
         Name: allcheck, Length: 150, dtype: bool
```

-The petal length of an iris is atleast 2 times its petal width.

```
R3=df.apply(R['lengthcheck'],axis=1).rename('lengthcheck')
In [ ]:
Out[]: 0
                 True
                 True
         2
                 True
         3
                 True
         4
                 True
         145
                 True
         146
                 True
         147
                 True
         148
                False
         149
                False
        Name: lengthcheck, Length: 150, dtype: bool
```

-The sepal length of an iris cannot exceed 30cm.

```
In [ ]: R4=df.apply(R['sepalcheck'],axis=1).rename('sepalcheck')
Out[]: 0
                True
         1
                True
                True
         2
         3
                True
                True
         145
                True
         146
                True
        147
                True
        148
                True
         149
                True
        Name: sepalcheck, Length: 150, dtype: bool
```

-The sepals of an iris are longer than its petals.

```
R5=df.apply(R['flowercheck'],axis=1).rename('flowercheck')
In [ ]:
         R5
Out[]: 0
                 True
                 True
         2
                 True
         3
                 True
                 True
         145
                 True
         146
                 True
         147
                 True
        148
                False
        149
                 True
        Name: flowercheck, Length: 150, dtype: bool
```

```
In [ ]: Result=pd.DataFrame([R1,R2,R3,R4,R5])
    Result=Result.transpose()
    Result
```

Out[]:

	speciescheck	allcheck	lengthcheck	sepalcheck	flowercheck
0	True	True	True	True	True
1	True	True	True	True	True
2	True	False	True	True	True
3	True	True	True	True	True
4	True	True	True	True	True
145	True	True	True	True	True
146	True	True	True	True	True
147	True	True	True	True	True
148	True	False	False	True	False
149	True	False	False	True	True

150 rows × 5 columns

Determine how often each rule is broken (violatedEdits). Also summarize and plot the result.

```
In [ ]: RD={'speciescheck':'Rule: Species should be one of the following values: setos
    a,versicolor or virginica.','allcheck':"Rule: All properties should be greater
    than 0",'lengthcheck':'Rule: petal length should be 2 times the petal width',
    'sepalcheck':"Rule: Sepal length should be less than 30",'flowercheck':"Rule:
    Sepal length should be greater than petal length"}
V=[]
for i in R.keys():
    print(i)
    print(RD[i])
    print('No of violations: ',end='')
    violations=Result[Result[i]==False].shape[0]
    print(violations)
    V.append(violations)
```

speciescheck

Rule: Species should be one of the following values: setosa, versicolor or vir

ginica.

No of violations: 0

allcheck

Rule: All properties should be greater than 0

No of violations: 57

lengthcheck

Rule: petal length should be 2 times the petal width

No of violations: 34

sepalcheck

Rule: Sepal length should be less than 30

No of violations: 12

flowercheck

Rule: Sepal length should be greater than petal length

No of violations: 30

In []: Result.describe()

Out[]:

	speciescheck	allcheck	lengthcheck	sepalcheck	flowercheck
count	150	150	150	150	150
unique	1	2	2	2	2
top	True	True	True	True	True
freq	150	93	116	138	120

```
In [ ]: import matplotlib.pyplot as plt
import seaborn as sns
sns.heatmap(Result,square=False,)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1aa90baed0>


```
In [ ]: plt.bar(Result.columns,V,color='Red')
```

Out[]: <BarContainer object of 5 artists>

Find outliers in sepal length using boxplot and boxplot.stats

```
In [ ]: import seaborn as sns
sns.boxplot(x=df['Species'],y=df['Sepal.Length'])
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1ab3d04c90>


```
In [ ]: sns.boxplot(x=df['Species'],y=df['Petal.Length'])
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1ab3bed590>


```
In [ ]: sns.boxplot(x=df['Species'],y=df['Petal.Width'])
```

Out[]: <matplotlib.axes. subplots.AxesSubplot at 0x7f1ab3d61690>

In []: sns.stripplot(x=df['Species'],y=df['Petal.Width'],data=df)

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1ab3985910>

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

cp: '/content/drive/MyDrive/Colab Notebooks/Practical 2.ipynb' and './Practic
al 2.ipynb' are the same file

[NbConvertApp] Converting notebook Practical 2.ipynb to html [NbConvertApp] Writing 374112 bytes to Practical 2.html