



# EssCS - Topic 4 Introduction to Computer Networking

Lecture 15, 10.12.2024 Nuša Zidarič

#### The Reference Models

- Recap: 3 main concepts are interface, protocol and service
- reference models: each layer has different functionality (with protocols and interfaces to layers above and below)
- OSI = Open Systems Interconnection

| 7 | Application  | https, email,                                                     |
|---|--------------|-------------------------------------------------------------------|
| 6 | Presentation | syntax and semantics of transmitted data                          |
| 5 | Session      | establish/terminate communication sessions between host processes |
| 4 | Transport    | ensures reliable transmission source $ ightarrow$ destination     |
| 3 | Network      | addressing, routing                                               |
| 2 | Data Link    | ensuring error-free transfer of data between the nodes            |
| 1 | Physical     | transmitting raw hits over a communication channel                |

TCP/IP (Transmission Control Protocol/Internet Protocol)



bottom-up: layer N provides a service to layer N+1

# Recap

Message format: payload with a header and trailer typically header includes control information, such as destination, and trailer additional information, e.g., parity of the payload header payload (data) trailer



#### Physical Layer:

- Physical layer accepts raw bit-stream from the Data Link Layer and attempts to deliver it to the destination
- Network media: twisted pair, coax, fiber optics, wireless communication all media suffer from attenuation and noise
- analog-to-digital conversion:

analog signal o sampler o quantizer o encodero binary signal (bit-stream)

- tutorial: NRZ, bipolar RZ, Manchester encoding

header and trailer are message overhead

## Recap

- Data Link Layer:
- provides a service to the Network layer
- encapsulation (H, payload, T), framing method example
- keywords: transmitter (Tx), receiver (Rx), link (link between two nodes !)
- flow control: sliding window protocol example (sequence numbers, ACK)
- transmission errors (e.g., Hamming code)
- Data Link Layer is moving frames from transmitter to receiver!
- Network Layer: moving packets from source to destination many hops inbetween
- topology awareness (nodes keep routing tables)
- routing algorithms: static methods (e.g., flooding), adaptive methods (e.g., link state routing)
- Internet Protocol (IP):
   best-effort transport of data, redundancy, scalability, fragmentation



# Network Layer and IP - IPv4 header

Recap: lab 6 last week



- Total Length (16 bits): maximum size  $2^{16}$  bytes including the header
- Fragmentation Identification field (16 bits): same for all fragments
- Fragment Offset used to reassemble the original payload (MTU is Maximum Transfer Unit)

$$A \xrightarrow[MTU=1500]{} B \xrightarrow[MTU=400]{} C \xrightarrow[MTU=1500]{} D$$

- TTL (Time-To-Live): decrements by 1 at each node (8 bits)
   when 0 discard packet → maximum number of hops allowed on the path
- Protocol: among common examples are TCP and UDP

#### The Reference Models

- Network Layer:
  - best-effort transport of data: no ACK (but it usually arrives) redundancy: packets can travel different routes
- ⇒ the layer above creates, maintains, and releases the connection, and ensures the packets are correctly reassembled at the destination
- OSI TCP/IP

  7 Application
  6 Presentation
  5 Session
  1 Transport
  3 Network
  Data link
  Physical
  TCP/IP
  Application
  Transport
  Transport
  Internet
  Host-to-network

#### Transport Layer:

- accepts the data from above, splits it up into smaller units (if needed), passes them down to the network layer, and ensures that all units arrive correctly to the other end
- IP protocol only supports sending to a specific *host*. An application running on the host will listen to specified *ports*; together they are called *sockets*: (host,port) pairs
- TCP = Transmission Control Protocol
- UDP = User Datagram Protocol
- Note: TCP/IP model is named after two protocols on the transport and on the network layer!

<sup>&</sup>lt;sup>1</sup>we are **not** referring to fragmentation here

### Transport Layer and TCP

- TCP = Transmission Control Protocol
  - simple connection-oriented transport service provides basic primitives connect, send, receive, listen, and disconnect
- reliable connection:
  - packets are numbered and lost ones retransmitted
    - packets that arrive out-of-order are buffered and passed on to the upper layer (to the application) in the correct order
    - all packets are acknowledged, and the sender keeps a timer for ACK and will retransmit on timeout
- sliding window protocols: to maximize throughput and avoid congestion
- TCP Header





# Transport Layer and TCP

- TCP three-way handshake to establish connection
- releasing the connection (B still has data to send)

# Establishing connection A B SYN SYN+ACK ACK

#### Releasing connection



#### The Reference Models

#### Application Layer:

- DNS = Domain Name System: resolves the (user-friendly) domain name into the corresponding IP address
  - liacs.leidenuniv.nl  $\rightarrow$  132.229.137.15
- FTP = File Transfer Protocol
- SMTP = Simple Mail Transfer Protocol
- HTTP = Hyper Text Transfer Protocol
- HTTPS = Hypertext Transfer Protocol Secure https://liacs.leidenuniv.nl/





#### Secure Communications

#### We wish to provide:

- confidentiality: keeping information secret from all but those who are authorized
- data integrity: ensuring the information has not been altered
- authentication: corroborating the source of information
- other objectives: identification, non-repudiation, ...
- encryption/decryption ⇒ confidentiality
- message authentication codes, digital signatures ⇒ integrity, authentication
- Secure communication protocols
  - handshake (negotiation and key exchange) → public key cryptography
  - encrypted and authenticated payload → symmetric key cryptography