Lec 26: Deterministic reduction from PH to #SAT

Recap.

Theorem 1: (Randomized reduction from Z-SAT to @SAT) There is a randomized reduction of that given a parameter p and a BBF of with a levels of alternations, runs in time poly (191,7) and outputs a circuit g(9) s.t. $\varphi \text{ is true} \Rightarrow \Pr\left[\bigoplus g(\varphi) \text{ is true}\right] \geqslant 1 - \frac{1}{5P},$ ϕ is false $\Rightarrow Pr\left[\Phi g(\varphi) \text{ is false}\right] > 1 - \frac{1}{2^{p}}$.

Note: $|g(\varphi)|$ is exponential in c. This is fine as c = O(1).

- Obs: A randomized reduction can be viewed as a deterministic reduction that additionally takes a random string as input.
- · Set p=2 in Theorem 1.
- · Corollary X: There is a deterministic reduction g that given a SBF φ with c levels of alternations and a random string $r \in \{0,1\}^R$, where $R = |\varphi|^{O(1)}$, runs in time poly $(|\varphi|)$ and outputs ackt. $g(\varphi,r)$ s.t. φ is true $\Rightarrow \Pr_{r \in \{0,1\}^R} \left[\bigoplus g(\varphi,r) \text{ in true} \right] > \frac{3}{4}$, φ is false \Rightarrow $\Pr_{\underline{r} \in \mathcal{F}_0, 1} \mathbb{P}_R \left[\bigoplus g(\varphi, \underline{r}) \text{ is folse} \right] \geqslant \frac{3}{4}$.

Viewing the reduction g as a DTM

Fig 1: DTM G corresponding to the reduction g.

· Recall Step 2 of the proof of Toda's theorem.

Step 2: (Derandomization of Step 1). Give a deterministic poly-time reduction from PH to #SAT.

· Remark: It would follow from the proof of Step 2 that only one guery to the #SAT oracle is sufficient.

(b) Let
$$\varphi_1(x_1,...,x_{n_1})$$
 and $\varphi_2(x_1,...,x_{n_2})$ be ckts and $n_2 > n_1$.
Define,
 $(\varphi_1 + \varphi_2)(z, \chi_1,...,\chi_{n_2}) := (z \wedge \varphi_2) \vee (\exists z \wedge \chi_{n_1+1} \wedge \cdots \wedge \chi_{n_2} \wedge \varphi_1)$.

$$(\varphi_1 + \varphi_2)(\xi, \chi_1, \dots, \chi_{n_2}) := (\xi \Lambda \varphi_2) \vee (\exists \xi \Lambda \chi_{n_1 + 1} \Lambda \dots \Lambda \chi_{n_2} \Lambda \varphi_1)$$

$$- |\varphi_1 + \varphi_2| = |\varphi_1| + |\varphi_2| + O(n_2).$$

$$-\#(P_1+P_2)=\#P_1+\#P_2$$
.

(c) For
$$c \in \mathbb{Z}_{>0}$$
, $c \varphi := \varphi + (\varphi + (\varphi + \cdots + (\varphi + \varphi)))$.

Proof of Step 2

• Lemma *: There is a deterministic poly-time reduction that given a parameter LEZ>0 and a ckt. y, runs in time poly (141, l) and outputs a ckt. T s.t.

$$\oplus \psi$$
 is true $\Longrightarrow \# \tau = -1 \mod 2$ ltl
 $\oplus \psi$ is false $\Longrightarrow \# \tau = 0 \mod 2$.

· Proof: The idea is to construct & iteratively. At the (i+i)-th

- Finally, set $\psi_0 = \psi$ and $\Upsilon = \psi_{\lceil \log(l+1) \rceil}$.
- Let us focus on the construction of Y_{i+1} from Y_i . Let $\# \psi_i = t$. We will construct a polynomial p(t) with positive integer coefficients such that

• Note: If $t=0 \mod 2^{2^i}$, then $t^2=0 \mod 2^{2^{i+1}}$ and so, $t^2p(t)=0 \mod 2^{2^{i+1}} \text{ Hence, if we define}$ $\forall i+1 := \forall i \cdot P(\forall i) \text{, then } \mathbb{E}qn(1) \text{ is satisfied.}$ The interpretation of this cht is given by $\mathbb{E}qn(0)$.

• Choice of p(t): Set $p(t) = 3t^2 + 4t$.

• Obs: $t = -1 \mod 2^{2^i} \implies t^2 \cdot p(t) = -1 \mod 2^2$.

Proof: Let
$$t = k$$
, $2^{2^{i}} - 1$ for $k \in \mathbb{Z}$.

$$\Rightarrow t^{2} = -(2k2^{2^{i}} - 1) \mod 2^{2^{i+1}}$$

$$\Rightarrow 3t^{2} + 4t = -6k2^{2^{i}} + 3 + 4k2^{2^{i}} - 4 \mod 2^{2^{i+1}}$$

$$= -(2k2^{2^{i}} + 1) \mod 2^{2^{i+1}}$$

$$= -(2k2^{2^{i}} + 1) \mod 2^{2^{i+1}}$$

$$\Rightarrow t^{2} p(t) = (2k2^{2^{i}} - 1)(2k2^{2^{i}} + 1) \mod 2^{2^{i+1}}$$

$$= -1$$

$$= -1$$

$$\mod 2^{2^{i}}$$

$$\mod 2^{2^{i}}$$

Therefore, $\Psi_{i+1} = \Psi_i^2 \cdot P(\Psi_i) = \Psi_i^2 \cdot (3\Psi_i^2 + 4\Psi_i)$ $= 3\Psi_i^4 + 4\Psi_i^3 .$

- Note: $|\Psi_{i+1}| = |3\Psi_i^4 + 4\Psi_i^3| = \Theta(|\Psi_i^4|) = \Theta(|\Psi_i|)$. • $|\tau| = |\Psi_{\Gamma \cup g(Q+1)}| = poly(l, |\Psi|)$. • Lemma *
 - · Let us denote the deterministic reduction in Lemma X by h.
 - · Now think of composing h with the reduction of in Corollary * by setting l=R (where Rinas in Cor*).
 - Let $\gamma := h(g(\varphi, \underline{r}))$. Denote the vars. of γ by $\underline{\omega}$.

Fig 2: Composing the two reductions g and h

Consider the following sum $S := \sum_{\Upsilon \in \{0,1\}^R} \# \left(h \left(g \left(\Psi, \Upsilon \right) \right) \right). \tag{3}$

- Obs: (a) If p is true, then at least $\frac{3}{4}$ of the summands are -1 mod 2^{R+1} , and the remaining are 0 mod 2^{R+1} . Hence, in this case, the above sum lies between $\frac{3}{4} \cdot 2^R$ and $-\left(\frac{3}{4} \cdot 2^R\right)$ modulo 2^{R+1} .
- (b) 9k of in false, then at most $\frac{1}{4}$ of the summands are $-1 \mod 2^{R+1}$, and the remaining are $0 \mod 2^{R+1}$. Hence, in this case, the sum lies between $-\left(\frac{1}{4} \cdot 2^{R}\right)$ and $0 \mod 2^{R+1}$.

• Note: $D-2^R = 2^R \mod 2^{R+1}$; $-\left(\frac{3}{4}\cdot 2^R\right) = 2^{R+1} - \frac{3}{4}\cdot 2^R = \frac{5}{4}\cdot 2^R \mod 2^{R+1}$ $D-\left(\frac{1}{4}\cdot 2^R\right) = 2^{R+1} - \frac{1}{4}2^R = \frac{7}{4}\cdot 2^R \mod 2^{R+1}$.

 $\frac{\sqrt{\frac{1}{1}}}{2^{R}} = 0 \mod 2^{R+1}$

• So, if we know the sum S (given by $\Sigma qn(3)$), then we can find out if Q in true or false simply by checking if $S \text{ mod } 2^{R+1} \in \left[2^R, \frac{\pi}{4} 2^R\right]$ or $S \text{ mod } 2^{R+1} \in \left[\frac{7}{4} 2^R, 2^{R+1}\right]$.

 $S = \sum_{\underline{r} \in \{0,1\}^R} \# \left(h \left(g(\varphi,\underline{r}) \right) \right) = \sum_{\underline{r} \in \{0,1\}^R} \lim_{\underline{r} \in \{0,1\}^R} h \left(g(\varphi,\underline{r}) \right) (\underline{\omega}) .$ ~ ε ξο, 13 m ε ξο, 13 m 1 > DTM that evaluates 8 = h(g(4, 1)) Lemma X 9(4,1) Corollary X

- By fixing φ , we can view the above computation as a DTM Mp on inputs $r + \omega$.
- By the Cook-levin theorem, there's a poly-size cht Γ_{φ} that captures the computation of Mq, i.e., $\Gamma_{\varphi}(\underline{r},\underline{\omega}) = M_{\varphi}(\underline{r},\underline{\omega}) \quad \forall \ \underline{r},\underline{\omega} \ .$
- · Remark: Pop is poly-time computable from Q.

· From Eqn (A),

$$S = \sum_{\underline{x} \in \{0,1\}^{R}} \sum_{\underline{\omega} \in \{0,1\}^{|\underline{\omega}|}} M_{\varphi}(\underline{x},\underline{\omega}) = \sum_{\underline{z} \in \{0,1\}^{R}} \underline{\omega}(\underline{x},\underline{\omega}) = \prod_{\underline{z} \in \{0,1\}^{R}} \underline{\omega}(\underline{x},\underline{\omega}) = \prod_{\underline{z} \in \{0,1\}^{R}} \underline{\omega}(\underline{x},\underline{\omega}).$$

• Therefore, by grearying of to the #SAT oracle, we can find out if ρ in true/false. \Rightarrow PH \subseteq P#SAT.

. Only one greeny to the #SAT oracle is required.