Programming Languages: Imperative Program Construction Practicals 11: Separation Logic I

Shin-Cheng Mu

Autumn Term, 2021

- 1. Let x, y : Int such that $x \neq y$, and let h_0 and h_1 be *singleton* heaps such that h_0 x = 0 and h_1 y = 1. For each of the predicate below, describe what heap it holds of, if any. (For example, $x \mapsto 0$ holds of h when $h = h_0$.)
 - 1. $x \mapsto 0$.
 - 2. $y \mapsto 1$.
 - 3. $(x \mapsto 0) * (y \mapsto 1)$.
 - 4. $(x \mapsto 0) * (x \mapsto 0)$.
 - 5. $x \mapsto 0 \lor y \mapsto 1$.
 - 6. $(x \mapsto 0) * (x \mapsto 0 \lor y \mapsto 1)$.
 - 7. $(x \mapsto 0 \lor y \mapsto 1) * (x \mapsto 0 \lor y \mapsto 1)$.
 - 8. $(x \mapsto 0) * (y \mapsto 1) * (x \mapsto 0 \lor y \mapsto 1)$.
 - 9. $(x \mapsto 0) * True$.
 - 10. $(x \mapsto 0) * \neg (x \mapsto 0)$.

Solution:

- 1. $x \mapsto 0$: $h = h_0$.
- 2. $y \mapsto 1$: $h = h_1$.
- 3. $(x \mapsto 0) * (y \mapsto 1)$: $h = h_0 \cdot h_1$.
- 4. $(x \mapsto 0) * (x \mapsto 0)$: *False*.
- 5. $x \mapsto 0 \lor y \mapsto 1$: $h = h_0 \lor h = h_1$.
- 6. $(x \mapsto 0) * (x \mapsto 0 \lor y \mapsto 1)$: $h = h_0 \cdot h_1$.
- 7. $(x \mapsto 0 \lor y \mapsto 1) * (x \mapsto 0 \lor y \mapsto 1)$: $h = h_0 \cdot h_1$.
- 8. $(x \mapsto 0) * (y \mapsto 1) * (x \mapsto 0 \lor y \mapsto 1)$: *False*
- 9. $(x \mapsto 0)$ * *True*: h_0 ⊂ h.
- 10. $(x \mapsto 0) * \neg (x \mapsto 0)$: $h_0 \subseteq h$.
- 2. Prove

```
 \begin{cases} (x \mapsto \_) * (y \mapsto \_) \} \\ \text{if } y = x + 1 & \rightarrow skip \\ | x = y + 1 & \rightarrow x := y \\ | |x - y| > 1 \rightarrow free \ x; free \ y \\ x := \mathbf{cons} \ (1, 2) \end{cases} 
 \begin{cases} x \mapsto \_, \_ \end{cases} .
```

Solution: If we add some more annotations:

the three branches can be considered separately. The first branch is immediate:

$$(x \mapsto _) * (y \mapsto _) \land y = x + 1$$

$$\Rightarrow (x \mapsto _) * (x + 1 \mapsto _)$$

$$\equiv x \mapsto _, _.$$

The second branch:

$$wp (x := y) (x \mapsto _, _)$$

≡ $y \mapsto _, _$
≡ $(y \mapsto _) * (y + 1 \mapsto _)$
 $\Leftarrow ((x \mapsto _) * (y \mapsto _)) \land x = y + 1$.

The third branch can be verified using simple versions of global rules of deallocation and allocation:

```
\{((x \mapsto \_) * (y \mapsto \_)) \land |x - y| > 1\}
free x
\{y \mapsto \_\}
free y
\{emp\}
x := cons (1, 2)
\{x \mapsto \_, \_\}.
```

3. The following fragment creates a two-element cyclic structure containing relative addresses. Prove its correctness.

```
{emp}

x := cons (a, a)

y := cons (b, b)

*(x + 1) := y - x

*(y + 1) := x - y

{\langle \exists k :: (x \mapsto a, k) * (x + k \mapsto b, -k) \rangle}
```

Hint: k in the existential quantification shall be instantiated to y - x.

Solution: One can verify the program using the non-overwriting global rule for allocation and the rule for mutation as below:

```
{emp}

x := cons (a, a)

y := cons (b, b)

{(x \mapsto a, a) * (y \mapsto b, b)}

*(x + 1) := y - x

{(x \mapsto a, y - x) * (y \mapsto b, b)}

*(y + 1) := x - y

{(x \mapsto a, y - x) * (y \mapsto b, x - y)}
```

And the last assertion implies $(\exists k :: (x \mapsto a, k) * (x + k \mapsto b, -k))$, when k is instantiated to y - x.

Note: we can also use the backwards rule for mutation as its weakest precondition, and reason:

```
 wp (*(y + 1) := x - y) (y \mapsto b, x - y) 
 = \{ \text{ backwards rule for mutation } \} 
 (y + 1 \mapsto \_) * ((y + 1 \mapsto x - y) - * (y \mapsto b, x - y)) 
 = \{ \text{ expanding abbrevation } \} 
 (y + 1 \mapsto \_) * ((y + 1 \mapsto x - y) - * ((y + 1 \mapsto x - y) * (y \mapsto b))) 
 \leftarrow \{ \text{ since } R \Rightarrow (Q - * (Q * R)) \} 
 (y + 1 \mapsto \_) * (y \mapsto b) 
 \leftarrow y \mapsto b, b .
```

The Hoare triple

```
\{(x \mapsto a, y - x) * (y \mapsto b, b)\}
*(y + 1) := x - y
\{(x \mapsto a, y - x) * (y \mapsto b, x - y)\}
```

then follows from the frame rule. We can then do similar reasoning with (x + 1) = y - x to prove the other Hoare triple.