GTM

CORPORATION

ISSUED DATE :2006/07/19 REVISED DATE :2006/11/09B

GTT8205S

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

BVDSS	20V
RDS(ON)	$28m\Omega$
ΙD	6A

Description

The GTT8205S provide the designer with best combination of fast switching, low on-resistance and cost-effectiveness.

The TSSOP-6 package is universally used for all commercial-industrial surface mount applications.

Features

- * Low on-resistance
- *Capable of 2.5V gate drive
- *Low drive current

Package Dimensions

REF.	Millin	neter	REF. Millimeter		neter
IILI.	Min.	Max.	IILI.	Min.	Max.
Α	1.10 MAX.		L	0.45 REF.	
A1	0	0.10	L1	0.60 REF.	
A2	0.70	1.00	θ	0°	10°
С	0.12 REF.		b	0.30	0.50
D	2.70	3.10	е	0.95 REF.	
Е	2.60	3.00	e1	1.90 REF.	
E1	1.40	1.80			

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Drain-Source Voltage	V_{DS}	20	V
Gate-Source Voltage	V_{GS}	±8	V
Continuous Drain Current ³ , Vgs@4.5V	I _D @TA=25°℃	6	Α
Continuous Drain Current ³ , Vgs@4.5V	I _D @TA=70°C	4.8	А
Pulsed Drain Current ¹	I _{DM}	20	А
Total Power Dissipation	P _D @Ta=25°C	1.14	W
Linear Derating Factor		0.01	W /°C
Operating Junction and Storage Temperature Range	Tj, Tstg	-55 ~ +150	$^{\circ}$

Thermal Data

Parameter		Symbol	Value	Unit	
Thermal Resistance Junction-ambient ³ N	Иах.	Rthj-a	110	°C/W	

GTT8205S Page: 1/4

Electrical Characteristics (Tj = 25° C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain-Source Breakdown Voltage	BV _{DSS}	20	-	-	V	V _{GS} =0, I _D =250uA
Breakdown Voltage Temperature Coefficient	$_{\triangle}BV_{DSS}/_{\triangle}Tj$	-	0.03	-	V/°C	Reference to 25°C, I _D =1mA
Gate Threshold Voltage	V _{GS(th)}	0.5	-	1.5	٧	V _{DS} =V _{GS} , I _D =250uA
Forward Transconductance	g fs	-	20	-	S	V _{DS} =10V, I _D =6A
Gate-Source Leakage Current	I _{GSS}	-	-	±100	nA	V _{GS} = ±8V
Drain-Source Leakage Current(Tj=25°C)		-	-	1	uA	V _{DS} =20V, V _{GS} =0
Drain-Source Leakage Current(Tj=70°C)	I _{DSS}	-	-	25	uA	V _{DS} =16V, V _{GS} =0
Static Drain-Source On-Resistance ²	D	-	-	28	mΩ	V _{GS} =4.5V, I _D =6.0A
Static Drain-Source On-Resistance	R _{DS(ON)}	-	-	38		V _{GS} =2.5V, I _D =5.2A
Total Gate Charge ²	Qg	-	23	-		I _D =6A V _{DS} =20V V _{GS} =5V
Gate-Source Charge	Q _{gs}	-	4.5	-	nC	
Gate-Drain ("Miller") Change	Q _{gd}	-	7	-		
Turn-on Delay Time ²	T _{d(on)}	-	30	-		$V_{DS}=10V$ $I_{D}=1A$ $V_{GS}=5V$ $R_{G}=6\Omega$ $R_{D}=10\Omega$
Rise Time	T _r	-	70	-	nc	
Turn-off Delay Time	$T_{d(off)}$	-	40	-	ns	
Fall Time	Tf	-	65	-		
Input Capacitance	C _{iss}	-	1035	-		V _{GS} =0V V _{DS} =20V f=1.0MHz
Output Capacitance	C _{oss}	-	320	-	рF	
Reverse Transfer Capacitance	C _{rss}	-	150	-		

Source-Drain Diode

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Forward On Voltage ²	V_{SD}	-	-	1.2	٧	I _S =1.7A, V _{GS} =0V

Notes: 1. Pulse width limited by Max. junction temperature.

- 2. Pulse width \leq 300us, duty cycle \leq 2%.
- 3. Surface mounted on 1 in 2 copper pad of FR4 board, $t \le 5$ sec; 180°C/W when mounted on Min. copper pad.

GTT8205S Page: 2/4

Characteristics Curve

Fig 1. Typical Output Characteristics

Fig 3. R_{DSON} v.s. Junction Temperature

Fig 5. Forward Characteristics of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

GTT8205S Page: 3/4

f=1.0MHzC(pF)1000 CossCrss 100 V_{DS} (V)

 Q_G , Total Gate Charge (nC)

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM. GTM reserves the right to make changes to its products without notice.
- - GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.

 GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance

- Head Office And Factory:
 Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
 TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785
 China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165

GTT8205S Page: 4/4