

Sistemas Operativos

Presentación de la materia

Lic. Alexis Sostersich sostersich.alexis@uader.edu.ar

Agenda

- Presentación de los docentes
- Presentación de los alumnos
- Programa general de la materia
- Programa por unidad temática
- Condiciones de aprobación
- Herramientas que utilizaremos
- Bibliografía obligatoria y complementaria

Presentación de los docentes

Lic. Alexis Daniel Sostersich

Correo electrónico: sostersich.alexis@uader.edu.ar

Docente/Investigador

Analista/Programador de sistemas

Lic. Exequiel Aramburu

Correo electrónico: aramburu.exequiel@uader.edu.ar

Docente/Investigador

Auditor en sistemas bancarios

Presentación de los alumnos

- Apellidos y nombres
- Qué sistema operativo usas?
- Mencionar que otros sistemas operativos conoces
- ¿Cuáles son los lenguajes de programación que conoces y/o utilizas?
- Indicar el nivel de conocimiento sobre redes de computadoras

Programa general de la materia

Unidad I – Introducción, historia y conceptos de los sistemas operativos.

Unidad II - Procesos.

Unidad III – Administración de la memoria.

Unidad IV – Archivos.

Unidad V - Entrada/Salida.

Unidad VI – Interbloqueos.

Unidad VII - Seguridad en sistemas operativos.

Unidad VIII - Introducción a los sistemas operativos distribuidos.

Unidad I – Introducción, historia y conceptos de los sistemas operativos

- ¿Qué es un sistema operativo?.
- SO como máquina extendida y como administrador de recursos.
 - Recorrido histórico de los sistemas operativos.
 - Tipos de sistemas operativos.
 - Repaso del hardware de una computadora personal.
 - Conceptos de los SO. Procesos. Memoria y Archivos.
 - Llamadas al sistema.
 - Estructura de un sistema operativo.

Unidad II - Procesos

- Concepto de proceso.
- Tipos de procesos.
 - Estados de un proceso.
 - Transiciones de un proceso.
 - Políticas de planificación.
 - FCFS. Round Robin. Shortest Job Next. Shortest Remaining Time. Prioridad.
 - Hilos y hebras.
 - Planificación en sistemas operativos reales (GNU/Linux y Windows).

Unidad III - Administración de la memoria

- Objetivos de la gestión de la memoria.
- Jerarquías de memorias y caché.
 - Esquemas de memoria.
 - Paginado y segmentación.
 - Intercambio.
 - Memoria virtual.
 - Políticas de reemplazo. FIFO, Óptimo y LRU.
 - Gestión de memoria en sistemas operativos reales (GNU/Linux y Windows)

Unidad IV - Archivos

- Concepto de fichero.
- Operaciones típicas sobre ficheros.
 - Tipos de archivos.
 - Directorios. Rutas.
 - Organización de directorios.
 - Protección de archivos.
 - Sistemas de archivos FAT, Ext2, Ext3, Ext4, NTFS y Reiser.
 - Archivos y directorios en sistemas operativos reales (GNU/Linux y Windows).

Unidad V - Entrada/Salida

- Principio de hardware I/O.
- Principio de software I/O.
 - Discos. Relojes. Terminales.
 - Controladores de dispositivos.
 - Dispositivos de bloques y caracteres.
 - Buffering. Caching. Spooling.
 - Algoritmos de scheduling de disco (FCFS, SSTF, SCAN, LOOK y C/Scan).
 - I/O en sistemas operativos reales (GNU/Linux y Windows).

Unidad VI - Interbloqueos

- Concepto de Interbloqueo.
- Modelización de sistemas de bloqueo mutuo.
 - Detección de bloqueos.
 - Algoritmo de la avestruz.
 - Detección y recuperación de bloqueos.
 - Evasión de bloqueos.
 - Prevención de bloqueos.

Unidad VII – Seguridad en sistemas operativos

- Problemas de seguridad.
- Políticas de seguridad.
 - Diseños de sistemas operativos seguros.
 - Criptografía.
 - Autenticación de los usuarios.
 - Amenazas de programas. Amenazas del sistema y la red.
 - Cortafuegos.
 - Seguridad en sistemas operativos reales (GNU/Linux y Windows).

Unidad VIII – Introducción a los sistemas operativos distribuidos

- Definición de un sistema operativo distribuido.
- Características de un sistema distribuido.
 - Tipos de sistemas distribuidos.

Condiciones de aprobación de teoría / práctica

Asistencia del 80%.

Para acceder a la condición de alumno regular o promocionado.

Aprobar 2 (dos) parciales de práctica.

Se puede recuperar 1 (un) parcial. En ningún caso menor a 60 puntos.

Aprobar 2 (dos) parciales de teoría.

Se puede recuperar 1 (un) parcial. En ningún caso menor a 80 puntos.

Si el alumno no cumple con alguna de las condiciones mencionadas queda en condición de alumno libre

Condiciones de aprobación de la materia

Nota final de la Teoría (NFT)

NFT = (Nota Primer Parcial + Nota Segundo Parcial) / 2.

No puede ser ninguno menor a 60 puntos.

Nota final de la Práctica (NFP)

No puede ser menor a 60 puntos.

Nota final de la materia (NFM)

NFM = (NFT + NFP) / 2

Para regularizar la NFM deber ser igual o superior a 60 puntos.

Para promocionar la NFM deber ser igual o superior a 80 puntos (sin recuperatorios).

Si el alumno no cumple con alguna de las condiciones mencionadas queda en condición de alumno libro

Condiciones de aprobación de la materia

La condición de aprobación es para el tiempo de cursado de la materia.

Si al cierre del año un alumno que alcanzo la promoción y no tiene aprobada una materia correlativa, quedará con la condición de regular.

Herramientas que utilizamos

Campus virtual de la Facultad de Ciencia y Tecnología de la UADER.

https://fcytvirtual.uader.edu.ar/

Herramientas que utilizamos

Sistema operativo Linux Mint. (https://linuxmint.com/)

Oracle VirutalBox. (https://www.virtualbox.org/)

Windows Sysinternals. (https://docs.microsoft.com/en-us/sysinternals/)

Bibliografía básica

- **Tanenbaum, A. S. (2009)**. Sistemas operativos modernos (3a ed.). México: Pearson Educación.
- Stallings, W. (2005). Sistemas operativos (5a ed.). Madrid: Pearson Educación.

Bibliografía complementaria

- Silva, M. (2015). Sistemas operativos (1a ed.). CABA: Alfaomega.
- Carretero Pérez, J., García Carballeira, F., Anasagasti, P. M., Pérez Costoya, F. (2001). Sistemas operativos. Una visión aplicada (1a ed.). Madrid: McGraw-Hill.
 - **Kerrisk, M. (2010).** The Linux Programming Interface. San Francisco: No Starch Press.
 - Tanenbaum, A. S., Van Steen, M. (2008). Sistemas Distribuidos. Principios y paradigmas (2a ed.). México. Pearson Educación.

