Semantic Segmentation using UNET & Transformer

- Soham Shinde

Introduction

Semantic Segmentation

Task of assigning a label to each pixel in an image based on its semantic meaning.

Output: Pixel-wise Segmentation Map which partitions the given image into different regions, each corresponding to a particular object or background class.

Applications:

- Medical Image Analysis
- Video Surveillance
- Autonomous Driving

Output Mask
Fig1. Semantic Segmentation

Dataset and Preprocessing

Dataset: CityScapes

It has 256x256px images of Urban Street Scenes with 31 semantic classes.

The data was splitted into Training - Test - Validation as 2975 - 300 - 200.

Preprocessing: preprocess()

- 1. Resize all the images, normalize the input image and create black mask of the same size as target
- 2. Map the color to class for each pixel of the target image by matching the given class id.

Actual Image

Original Mask

Fig2. Preprocessed Mask

Baseline: FCN

FCN model is easy to implement and flexible to size of input image size.

Fully connected layers in a traditional CNN are replaced with convolutional layers.

Architecture:

- 1. Convolution layers are used in the encoding for downsampling 64.564
- 2. Transposed Convolution layers for upsampling in the Decoder
- 3. Final Layer for classification

Problems:

 Loss of spatial details during downsample which can lead to inaccurate model performance

UNET

The architecture follows a encoder-decoder network with skip connections.

- **1. Contracting path:** convolutional and pooling operations to extract the features
- **2. Expansive path:** transposed convolutions to upsample the feature maps and generate a segmentation mask
- 3. Skip-Connections: allow information from earlier layers to be used directly in the later layers which would have lost in poolingdownsampling. Captures both, the global context as well as finegrained details

Problems:

1. Struggles to capture objects of small size or having complex shapes

Fig4. UNET

EXPERIMENTAL MODIFICATIONS ON UNET

Residual Connections:

These shortcut connections reduce the problem of vanishing gradients during training by allowing the gradients to flow directly to a later layer, thus learning more complex features.

Attention Mechanism:

Selectively focus on relevant parts of the input data, enhancing the network's ability to attend to important regions using attention mechanism.

Residual + Attention:

Combine the two methods together to collectively improve the performance of prior models which only used either of the methods

EXPERIMENTAL MODIFICATIONS ON UNET

UNET + Atrous Spatial Pyramid Pooling

ASPP: Extracts features at different scales and concatenate them to get a robust representation of the image.

U-Net+ ASPP model:

- 1. Uses ASPP module after the encoder network to increase its receptive field
- 2. Captures global and local context
- Efficiently identifies objects of varied shapes and sizes belonging to different classes

The model achieved the best results among the U-Net variations due to its multi scale feature extraction capability.

Fig5. UNET ASPP

SWIN TRANSFORMER OVERVIEW

SWIN T: A type of ViT that uses patch merging approach and window based Multi head Self Attention (W-MSA) unlike ViT.

W-MSA: Like MSA but computes self-attention only within the patch/partition thereby reducing complexity.

GELU (Gaussian Error Linear Unit) non-linear activation function is used.

Patch Merging: Processing patches into groups and then merging these patches into larger partitions and repeating the process.

Shifted Windows Approach: shifting the position of the partitioning scheme by a small amount (e.g., by half the size of the partition), such that adjacent partitions overlap with each other.

Figure 1: Two Consecutive Swin-T blocks

Figure 2: Hierarchical Patch Merging Approach

Reference: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

SWIN-UNET

Architecture:

- **1. 3** Swin-T blocks in the encoder
- 3 Swin- T blocks in the decoder
- 1 Bottleneck block
- **4. Patch Merging** and **Patch Expanding** is applied after every transformer block in encoder and decoder respectively

Advantages:

- **1. Improved performance** -> Transformer based approach
- 2. Better multi-scale features -> Patch Merging -Shifted Windows
- **3. Fine-grained details** -> Patch Expanding approach

Fig8. SWIN UNET

Reference: Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

HYPER PARAMETER TUNING and RESULTS

Hyperparameters tuned:

Batch Sizes: 4, 8, 16, 32
 Learning Rate: 0.01 - 0.001

3. Image Sizes: 128, 256

4. Drop out rate: 0.2, 0.5

5. Number of epochs - 100

a. Later introduced Early stopping to avoid overfitting

Other specifications:

- 1. All models were trained from scratch
- 2. Loss function used: Sparse Categorical Cross Entropy
- 3. All models were evaluated using Mean Intersection over Union and Pixel Accuracy
- 4. Weights were initialized using Xavier initialization

RESULTS and OUTPUTS

- Results for 128 x 128-pixel resolution:-

	Valid Accuracy	Valid mIOU	Test Accuracy	Test mIOU
FCN	0.810	0.264	0.810	0.266
UNET	0.846	0.339	0.841	0.322
UNET + RES	0.843	0.344	0.841	0.326
UNET + ATT	0.842	0.343	0.841	0.330
UNET + RES +ATT	0.838	0.337	0.838	0.325
UNET + ASPP	0.846	0.342	0.838	0.356
SWIN UNET	0.834	0.370	0.821	0.363

- Results for 256 x 256-pixel resolution:-

	Valid Accuracy	Valid mIOU	Test Accuracy	Test mIOU
FCN	0.824	0.288	0.812	0.281
UNET	0.847	0.343	0.838	0.341
UNET + ASPP	0.854	0.361	0.846	0.354
SWIN UNET	0.861	0.395	0.859	0.393

RESULTS and OUTPUTS

Inference Results:

Fig 9. Predictions

CONCLUSION

- Utilizing Unet for Road Semantic Segmentation
- Implemented different mechanisms within the unet model to see how they affect the performance of our model
- Additionally, we chose to implement a transformer based UNet approach to leverage its powerful self-attention mechanism for capturing long-range dependencies between pixels

Future Work:

- Using pre training to further improve the model performance
- Improving the preprocessing method
- Utilizing Data augmentation methods to improve the model robustness and generalization.
- Lot of scope to tune hyperparameters to further improve model performance

Thank You!