Lineaire Algebra en differentiaalvergelijkingen

College 7: GramSchmidtt, projectiematrices en complexe diagonalisering.

J. Vermeer Les 7

Faculteit EWI

De decompositiestelling ophalen

Stelling: Laat W een deelruimte zijn van \mathbb{R}^n en $\mathbf{x} \in \mathbb{R}^n$. Dan geldt: \mathbf{x} is te schrijven als $\mathbf{x} = \mathbf{w} + \mathbf{w}^{\sharp}$ met $\mathbf{w} \in W$ en $\mathbf{w}^{\sharp} \in W^{\perp}$. Bovendien geldt dat \mathbf{w} en \mathbf{w}^{\sharp} uniek zijn. Definitie:1. De vector \mathbf{w} het de orthogonale projectie van \mathbf{x} op W en wordt genoteerd met $\operatorname{proj}_W(\mathbf{x})$.

2.De vector \mathbf{w}^{\sharp} heet de component van \mathbf{x} loodrecht op W. Stelling: Als W een deelruimte van \mathbb{R}^n met orthogonale basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ dan geldt voor iedere $\mathbf{x} \in \mathbb{R}^n$:

$$\operatorname{proj}_{W}(\mathbf{x}) = \left(\frac{\mathbf{b}_{1} \cdot \mathbf{x}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}}\right) \mathbf{b}_{1} + \dots + \left(\frac{\mathbf{b}_{k} \cdot \mathbf{x}}{\mathbf{b}_{k} \cdot \mathbf{b}_{k}}\right) \mathbf{b}_{k}$$

 \Box

TUDelft

Voorbeeld van een projectie

Als
$$\mathbf{x} = \begin{bmatrix} -1 \\ 2 \\ -2 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 1 \\ 3 \\ 1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$.

Bepaal de projectie van x op $W == \operatorname{Span}\{a_1, a_2, a_3\}.$

Stap 1: Controleer dat $\{a_1, a_2, a_3\}$ een basis is, zoniet, dun dan uit tot een basis.

Pas op, het volgende is niet de projectie.

$$\operatorname{proj}_W(\mathbf{x}) \neq \left(\frac{\mathbf{a}_1 \cdot \mathbf{x}}{\mathbf{a}_1 \cdot \mathbf{a}_1}\right) \mathbf{a}_1 + \dots + \left(\frac{\mathbf{a}_3 \cdot \mathbf{x}}{\mathbf{a}_3 \cdot \mathbf{a}_3}\right) \mathbf{a}_3$$

Want, de basis $\{a_1, a_2, a_3\}$ is NIET orthogonaal.

Stap 2: Bepaal een orthogonale basis van W.

Les 7

Faculteit EWI

TUDelft

Gram-Schmidt proces

Het Gram-Schmidt proces construeert vanuit een gegeven basis een orthogonale basis voor de deelruimte.

Stelling: (Het Gram–Schmidt proces) Als $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ een basis is van W dan vormen de vectoren $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ met:

$$\mathbf{w}_1 = \mathbf{b}_1$$

$$\mathbf{w}_2 = \mathbf{b}_2 - \frac{\langle \mathbf{w}_1, \mathbf{b}_2 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1$$

$$\mathbf{w}_3 = \mathbf{b}_3 - \frac{\langle \mathbf{w}_1, \mathbf{b}_3 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{w}_2, \mathbf{b}_3 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2$$

:

$$\mathbf{w}_n = \mathbf{b}_n - \frac{\langle \mathbf{w}_1, \mathbf{b}_n \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \dots - \frac{\langle \mathbf{w}_{n-1}, \mathbf{b}_n \rangle}{\langle \mathbf{w}_{n-1}, \mathbf{w}_{n-1} \rangle} \mathbf{w}_{n-1}$$

een orthogonale basis voor W.

TUDelft

QR-ontbinding matrix

Herinner:

Definitie: Een vierkante matrix R heet een bovendriehoeksmatrix als $[R]_{i,j} = 0$ voor i > j.

Stelling: Zij $A = [\mathbf{a}_1 \dots \mathbf{a}_k]$ een $n \times k$ matrix zijn met onafhankelijke kolommen. Dan geldt: de matrix A is te factorizeren als A = QR met Q een $n \times k$ met k orthonormale kolommen en R een inverteerbare bovendriehoeksmatrix. In bovenstaande stelling is de matrix Q te bepalen door het Gram-Schmidt proces op $\{\mathbf{a}_1, \dots \mathbf{a}_k\}$ toe te passen en de uiteindelijke orthogonale vectoren te normeren tot $\{\mathbf{q}_1, \dots, \mathbf{q}_k\}$.

Schrijf $Q = [\mathbf{q}_1 \dots \mathbf{q}_k]$. Dan is R is het simpelste te bepalen via $R = Q^T A$. (Die zal dus bovendriehoeks moeten zijn!)

Les 7

Faculteit EWI

Projectiematrices

Stelling: Laat W een één dimensionale deelruimte zijn van \mathbb{R}^n . Stel dat $\{\mathbf{q}\}$ een basis is van W met $\|\mathbf{q}\|=1$ (een orthonormale basis!). Dan geldt: $P=\mathbf{q}\mathbf{q}^T$ is een $n\times n$ matrix met de eigenschap:

$$P\mathbf{x} = \text{proj}_W(\mathbf{x})$$
, voor alle $\mathbf{x} \in \mathbb{R}^n$.

P heet een projectiematrix.

Stelling: Laat W een deelruimte zijn van \mathbb{R}^n . Stel dat $\{\mathbf{q}_1, \dots, \mathbf{q}_k\}$ een orthonormale basis zijn.

Dan geldt als:
$$P = \mathbf{q}_1 \mathbf{q}_1^T + \dots + \mathbf{q}_k \mathbf{q}_k^T$$
 dan: $P\mathbf{x} = \operatorname{proj}_W(\mathbf{x})$, voor alle $\mathbf{x} \in \mathbb{R}^n$.

P heet weer een projectiematrix.

% **TU**Delft

Les 7

Eigenwaarden complexe matrices

Stel dat A een complexe $n \times n$ matrix is.

Definitie: $\lambda \in \mathbb{C}$ is een eigenwaarde van A, als $\mathbf{v} \in \mathbb{C}^n$ bestaat met $\mathbf{v} \neq \mathbf{0}$ en $A\mathbf{v} = \lambda \mathbf{v}$.

Alle $\mathbf{v} \in \mathbb{C}^n$ met $A\mathbf{v} = \lambda \mathbf{v}$ heet weer de eigenruimte E_{λ} van A. Stelling: Er geldt:

- 1. $E_{\lambda} = \text{Nul}(A \lambda I)$
- 2. λ is eigenwaarde A als $\det(A \lambda I) = p_A(\lambda) = 0$
- 3. Graad van λ als nulpunt $p_A(\lambda)$: $a.m.(\lambda)$.
- 4. $\dim(E_{\lambda}) = \dim(\operatorname{Nul}(A \lambda I))$: $m.m.(\lambda)$
- 5. $m.m.(\lambda) \leq a.m.(\lambda)$.

Bepaal eigenwaarden en eigenruimtes $A = \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix}$.

Faculteit EWI

Diagonaliseren complexe matrices

Definitie: Een (complexe) matrix A heet (complex) diagonaliseerbaar als $A = PDP^{-1}$ met D een complexe diagonaalmatrix en P een complexe matrix.

Dezelfde resultaten gelden ook complex.

Stelling: A een complexe $n \times n$ matrix. Equivalent zijn:

- 1. A is (complex) diagonaliseerbaar.
- $2. \sum_{\lambda} m.m.(\lambda) = n$
- 3. Voor alle eigenwaarde λ geldt: $m.m.(\lambda) = a.m.(\lambda)$

Voorbeeld: Is de matrix
$$A = \left[\begin{array}{cc} i & 1 \\ 1 & i \end{array} \right]$$
 diagonaliseerbaar? \qed

TUDelft

Complex diagonaliseren reële matrices I

Definitie: De reële matrix A heet reëel diagonaliseerbaar als $A=PDP^{-1}$ met D een reële diagonaalmatrix en P een reële matrix.

De reële matrix A heet complex diagonaliseerbaar als $A=PDP^{-1}$ met D een complexe diagonaalmatrix en P een complexe matrix.

Een reëel diagonaliseerbare matrix is complex diagonaliseerbaar. (Ook reële getallen zijn complex). Maar niet omgekeerd!

Voorbeeld: De matrix $A=\begin{bmatrix}1&-1\\1&1\end{bmatrix}$ is complex diagonaliseerbaar, niet reëel diagonaliseerbaar. \qed

Les 7

Faculteit EWI

Complex diagonaliseren reële matrices II

Stelling: A een reële $n \times n$ matrix. Equivalent zijn:

- 1. A is reëel diagonaliseerbaar.
- 2. $\sum_{\lambda} m.m.(\lambda) = n$, met sommatie over de reële eigenwaarden.

Stelling: A een reële $n \times n$ matrix. Equivalent zijn:

- 1. A is complex diagonaliseerbaar.
- 2. $\sum_{\lambda} m.m.(\lambda) = n$, met sommatie over de complexe eigenwaarden.

.es 7

Aanbevolen opgaven

College 7	behandeld	aanbevolen opgaven
	§5.3 (G.S en QR)	§5.3: 3,5,7,9,13,15
	projectiematrices	§5.3: Bepaal projectie-
		matix opgave 5,6
	complex diagonaliseren	B.B. opgave 1,2,3,4

Les / 11

Faculteit EWI

