CSCI 4470 Algorithms

Part II Sorting and Order Statistics

- 6 Heapsort
- 7 Quicksort
- 8 Sorting in Linear Time
- 9 Medians and Order StatisticsHeapsort Algorithms Notes

Chapter 8: Sorting in Linear Time

- 8 Sorting in Linear Time
 - 8.1 Lower bounds for sorting
 - 8.2 Counting sort
 - 8.3 Radix sort
 - 8.4 Bucket sort

Sorting in Linear Time

Introduction

- Linear-time sorting algorithms are efficient for large datasets.
- They don't make comparisons but use other methods.
 - o Counting Sort, Radix Sort, and Bucket Sort Algorithms

Lower Bounds for Sorting

- **Comparison sorts**: Any algorithm that sorts by comparing elements.
- Lower bound of comparison sorts: Proves that any comparison sort algorithm requires $\Omega(n \log n)$ time in the WORST CASE.

Decision Tree Model

- A tool used to prove the lower bound of comparison sorts.
- · Every comparison-based sorting algorithm has a decision tree

Properties of Decision Trees

- · Nodes: Represent decisions or comparisons.
- Edges: Represent the outcome of a decision.
- Leaves: Represent final outcomes or sorted permutations.

Height and Leaves

- **Height** *h*: *h* The maximum number of comparisons needed in the worst case.
- **Number of Leaves**: Given n elements, the total number of leaves is n! (n factorial), representing all possible sorted permutations.
- Inequality: To have all possible sorted permutations, $2^h \ge n!$.

Height Boundaries

- The height h must satisfy $2^h \ge n!$ to ensure the tree has sufficient leaves.
- Using Stirling's approximation: $n! pprox \sqrt{2\pi n} \left(rac{n}{e}
 ight)^n$, the height is bounded by $h \geq n \log(n)$.
- Logarithmic Boundaries:
 - $h > \log(n!)$
 - $h \ge n \log(n)$

Decision Tree Model for Comparison Sort

Example of Decision Tree Given the permutation of 3 input values $\{A_1, A_2, A_3\}$, for an input of n elements, how many leaves do we have?

- In a decision tree for n elements, the number of leaves, representing all possible sorted permutations, is n! (n factorial).
- By the example, with 3 elements $\{A_1,A_2,A_3\}$, there are 3!=6 leaves, each corresponding to a unique permutation.

 $\{A_1, A_2, A_3\}$:

• Visualizes the comparisons between the three elements to determine all possible sorted permutations.

- Left Subtree: Represents "less than or equal to" comparisons.
- Right Subtree: Represents "greater than" comparisons.
- First Level: We start by comparing A_1 and A_2 .
- Second Level: Depending on the result of the first comparison, we have two paths:
 - Left Subtree: If A_1 is less than or equal to A_2 , we compare A_2 and A_3 and A_1 and A_3 .
 - **Right Subtree**: If A_1 is greater than A_2 , we compare A_1 with A_3 and A_2 with A_3 .
- Third Level: Here, we reach the leaf nodes, which represent the sorted permutations of the input set.
- The sorted permutations corresponding to each leaf (L1 to L8):
- L1: $A_1 \leq A_2 \leq A_3$, L2: $A_1 \leq A_3 < A_2$, L3: $A_3 < A_1 \leq A_2$
- L4: $A_1 \leq A_2 < A_3$, L5: $A_2 < A_1 \leq A_3$, L6: $A_2 < A_3 < A_1$
- L7: $A_3 < A_2 < A_1$, L8: $A_2 < A_1 < A_3$

The height h of the decision tree:

- the height of the decision tree is based on the number of leaves, which is equal to the number of possible permutations (n!). The formula is:
 - $h \approx \log_2(n!)$
- By the example with 3 elements ($\{A_1,A_2,A_3\}$), we apply the formula:
 - $\bullet \ \ h \approx \log_2(3!) = \log_2(6) \approx 2.585$
- round up to get an integer value for the height:
 - h=3
- This indicates that we will need up to 3 comparisons in the worst case.

Given 3 input values $\{A_1, A_2, A_3\}$, we want to find out how many leaves we have in the decision tree.

1. Number of Leaves:

- In a decision tree for n elements, the number of leaves is n!.
- For $\{A_1, A_2, A_3\}$, there are 3! = 6 leaves.
- Each leaf corresponds to a unique permutation of the input values.

2. Decision Tree Structure:

- First Level:
 - \circ Compare A_1 and A_2 .
- Second Level:
 - $\quad \text{ If } A_1 \leq A_2 \text{, compare } A_2 \text{ and } A_3 \text{ and } A_1 \text{ and } A_3.$
 - $\circ \:$ If $A_1 > A_2$, compare A_1 with A_3 and A_2 with A_3 .
- Third Level:
 - Reach the leaf nodes, representing the sorted permutations of the input set.

3. Sorted Permutations:

- Each leaf (L1 to L8) corresponds to a sorted permutation of $\{A_1,A_2,A_3\}$.

4. Height of the Decision Tree:

- Formula: $h pprox \log_2(n!)$.
- For $\{A_1,A_2,A_3\}$: $h pprox \log_2(3!) = \log_2(6) pprox 2.585$.
- Round up: h=3.
- Indicates up to 3 comparisons in the worst case.

Determine Min Worst Case of The Decision Tree

1. Height and Leaves:

- The decision tree for a given comparison sort algorithm with input size = n has n! leaves.
- Each leaf represents a distinct ordering of $a_1, a_2, ..., a_n$.
- *h* is the height of the tree.
- $2^h > n!$.

2. Inequality:

```
• n! \ge \sqrt{2\pi n}.
```

- $h \ge \log(n!)$.
- $h \ge n \log(n)$.

3. Maximum Number of Leaves in the Tree:

• If a binary tree has height h, the maximum number of leaves in the tree is 2^h .

Counting Sort Algorithm

- Working: Sorts integers within a range. It counts the occurrence of each element to sort them.
- Time complexity: O(n+k), where n is the number of elements and k is the range of input values.
- **Definition**: Sorts integers within a specific range by counting occurrences.

Characteristics

- · Non-comparison based.
- · Assumes input of integers within a small range.
- · Utilizes an auxiliary array for determining the position of each element.

Algorithm Steps

Counting Sort(A[1..n], B[1 ... n], k)

- 1. Let C[0 ... k] be a new array
- 2. Initialize C with zeros
- 3. Count the occurrence of each element in A and store in C
- 4. Update C to store the cumulative count
- 5. Build the sorted array B using C and A

Example of Counting Sort

Given: $A = \{3, 2, 4, 3, 0, 4, 3, 1, 2\}$

Step 1:, Find Max and Min for the range:

• Max is 4, Min is 0

Question: What are the contents of array C at different stages?

Step 2: After initialization of the Counting Array C (lines 1-2): $C = \{0, 0, 0, 0, 0\}$,

- The size of the Counting Array is k+1 , where k is 4, C[k+1]=C[5]

Step 3: After counting occurrences (lines 3-4): $C=\{1,1,2,3,2\}$

- C[0] = 1, C[1] = 1, C[2] = 2, C[3] = 3, C[4] = 2
- The occurrences of the elements of A

Step 4: After cumulative count (line 5): $C=\{1,2,4,7,9\}$

- After Cumulative Count (After line 7):
 - $\circ \ C[0]=1$ (remains the same)
 - $\circ C[1] = C[1] + C[0] = 1 + 1 = 2$
 - C[2] = C[2] + C[1] = 2 + 2 = 4
 - $\circ C[3] = C[3] + C[2] = 3 + 4 = 7$
 - C[4] = C[4] + C[3] = 2 + 7 = 9

Step 5: Resulting sorted array $B = \{0,1,2,2,3,3,3,4,4\}$

Step 5.1: Given the cumulative count array $C=\{1,2,4,7,9\}$ and the original array $A=\{3,2,4,3,0,4,3,1,2\}$,

Step 5.2 (Line 8-10): We iterate over array A from the end to the start.

Step 5.3: For each element A[j] in array A, we do the following:

- Find the cumulative count ${\cal C}[{\cal A}[j]]$
- Place A[j] at index C[A[j]]-1 in array B
- Decrease the cumulative count ${\cal C}[{\cal A}[j]]$ by 1

Step 5.4:

- For A[8]=2 (the last element in the array):
 - $\circ \ C[2]=4$, so we place 2 at index 4-1=3 in array B: B[3]=2 (0-indexed)
 - We then decrease C[2] to 3: $C = \{1, 2, 3, 7, 9\}$
- For A[7] = 1:
 - $\circ \ C[1]=2$, so we place 1 at index 2-1=1 in array $B\colon B[1]=1$ (0-indexed)
 - $\circ~$ We then decrease C[1] to 1: $C=\{1,1,3,7,9\}$
- For A[6] = 3:
 - $\circ \ C[3]=7$, so we place 3 at index 7-1=6 in array B: B[6]=3 (0-indexed)
 - $\circ~$ We then decrease C[3] to 6: $C=\{1,1,3,6,9\}$

We continue this process for all elements in array A, updating array B and array C as we go. After processing all elements, we will obtain the sorted array B:

$$B = \{0, 1, 2, 2, 3, 3, 3, 4, 4\}$$

Analysis of Counting Sort

- Time Complexity: T(n) = O(n+k). If k = O(n), then T(n) = O(n). **
- . Stability: Counting sort is stable if the auxiliary array is used correctly.
- In-Place: Not in-place due to the auxiliary array.
- Comparisons: No element comparisons are made.
- Counting sort is stable and works in O(n+k) where k is the range of input.

Reasonable Values for k 合理的 k 值

- Depends on n and memory capacity.
- Avoid large k values to prevent performance issues.
- Suitable for small bit-size numbers (like 4 or 8 bits) but not for larger bit sizes (like 16 or 32 bits).

Application

• The Counting sort is a subroutine in the Radix sort algorithm, a linear-time sorting algorithm.

Example of the Counting Sort 02

Example 02,
$$A=\{2,5,3,0,2,3,0,3\}$$

Step 1: Identify the Range

- · Find the maximum and minimum values in the Input Array.
 - o Min: 0, Max: 5

Step 2: Create a Count Array

• The size of Array C is k+1=5+1=6

- The Counting Array $C=\{0,0,0,0,0,0\}$
- After processing the first element (2) 處理第一個元素 (2) 後:

$$C = \{0, 0, 1, 0, 0, 0\}$$

Input Array	2	5	3	0	2	3	0	3
Index[i]	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]
Counting Array C	2	0	2	3	0	1		
$\begin{array}{l} \text{Index[] of C} \\ 5+1=6 \end{array}$	C[0]	C[1]	C[2]	C[3]	C[4]	C[5]	х	Х
Cumulated Array C	2	2	4	7	7	8		
Index of C	C[0]	C[1]	C[2]	C[3]	C[4]	C[5]	х	х

Step 3: Calculate Cumulative Counts 計算累積計數

- *C*[0]
 - 。 Remains the same, C[0]=2 保持不變,C[0]=2
- C[1]
 - C[1] = C[1] + C[0]
 - C[1] = 0 + 2 = 2
- C[2]
 - $\circ C[2] = C[2] + C[1]$
 - $\circ C[2] = 2 + 2 = 4$
- C[3]
 - $\circ \ C[3] = C[3] + C[2]$
 - C[3] = 3 + 4 = 7
- C[4]
 - $\circ C[4] = C[4] + C[3]$
 - C[4] = 0 + 7 = 7
- C[5]
 - C[5] = C[5] + C[4]
 - $\circ C[5] = 1 + 7 = 8$

$$C=\{2,2,4,7,7,8\}$$

Step 4: Build the Sorted Array

- Create an output array of the same size as the input array.
- Traverse the input array from end to start, and use the cumulative count array to find the correct position for each element in the output array.

Initial State

Input Array	2	5	3	0	2	3	0	3
Index[i]	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]
Cumulated Array C	2	2	4	7	7	8		
Index of C	C[0]	C[1]	C[2]	C[3]	C[4]	C[5]	Х	Х
Sorted Array B								
Index[i]	B[0]	B[1]	B[2]	B[3]	B[4]	B[5]	B[6]	B[7]

Step 1: Consider A[7]=3

- $\bullet \ \ \mathsf{Find} \ C[3] = 7$
- Set B[7-1] = B[6] = 3
- Decrease ${\cal C}[3]$ by 1, ${\cal C}[3]=6$

$$B = [-1, -1, -1, -1, -1, -1, 3, -1]$$

 $C = [2, 2, 4, 6, 7, 8]$

Step 2: Consider A[6]=0

- Find C[0]=2
- $\bullet \ \operatorname{Set} B[2-1] = B[1] = 0$
- Decrease ${\cal C}[0]$ by 1, ${\cal C}[0]=1$

$$B = [-1, 0, -1, -1, -1, -1, 3, -1]$$

 $C = [1, 2, 4, 6, 7, 8]$

Step 3: Consider A[5]=3

- $\bullet \ \ {\rm Find} \ C[3]=6$
- $\bullet \ \operatorname{Set} B[6-1] = B[5] = 3$
- Decrease C[3] by 1, C[3]=5

$$B = [-1, 0, -1, -1, -1, 3, 3, -1]$$

 $C = [1, 2, 4, 5, 7, 8]$

Step 4: Consider A[4]=2

- Find C[2]=4
- Set B[4-1] = B[3] = 2
- Decrease C[2] by 1, C[2]=3

$$B = [-1, 0, -1, 2, -1, 3, 3, -1]$$

 $C = [1, 2, 3, 5, 7, 8]$

Counting Sort Algorithm_

- Best Case
 - Scenario: When all elements are the same.
 - Time Complexity: O(n+k), where n is the number of elements and k is the range of input values.
- Worst Case
 - Scenario: When the elements are evenly distributed across a large range.
 - **Time Complexity**: O(n+k). The worst case is the same as the best case because Counting Sort has a linear time complexity.
- Average Case
 - Scenario: In general scenarios where the input has a moderate range and distribution.
 - **Time Complexity**: O(n+k). The average case is also linear, making Counting Sort efficient for small to moderate ranges of k.
- In all cases, the space complexity remains O(n+k) because of the auxiliary arrays used in the algorithm.

Radix Sort

- Working: Sorts numbers digit by digit from least significant digit (LSD) to most significant digit (MSD) or vice versa.
- Steps:
 - i. Determine the maximum number to know the number of digits.
 - ii. Sort numbers using Counting Sort for each digit.
- Stable Algorithm: Maintains the relative order of records with equal keys.
- Non-comparison based algorithm: Does not use comparison operators to sort.
- Time complexity: O(d(n+k)), where d is the number of digits, n is the number of elements, and k is the range of input values.
- Processes each digit of the number.

- Starts from the least significant digit and moves to the most significant.
- Uses a stable sort (often counting sort) to sort each digit.

Analysis of Radix Sort

• Radix sort works in O(nk) for n numbers of k digits.

```
RADIX-SORT(A,D)
1. for i = 1 to d
2. // use a stable sort to sort array A on digit i
```

- Use induction on length of input values (i.e., number of digits / bits) to prove this algorithm is correct
- · This is left as an exercise
- **Example**: For numbers 170, 45, 75, 90, 802, 24, 2, 66, sort based on units place, then tens place, then hundreds place.

initial	Step 1	Step 2	Step 3
-,-,-	-,-,↓	-,↓,-	↓,-,-
170	170	2	2
45	90	802	24
75	802	24	45
90	2	45	66
802	24	66	75
24	45	170	90
2	75	75	170
66	66	90	802

• Example 02, Array A{329, 457, 657, 839, 436, 720, 355}, to use Radix Sort

initial	Step 1	Step 2	Step 3
-,-,-	-,-,↓	-,↓,-	↓,-,-
329	720	720	329
457	355	329	355

initial	Step 1	Step 2	Step 3
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Complexity Analysis

- Time Complexity: O(nk), where n is the number of elements and k is the number of digits in the maximum number.
- Space Complexity: O(n+k), as it uses Counting Sort as a subroutine which requires additional space.
- **Stability**: Radix Sort is stable, meaning numbers with the same value appear in the output array in the same order as they do in the input array.

Note

- Radix Sort is efficient when k is not significantly larger than n.
- It's a non-comparative sorting algorithm.
- · Best suited for sorting integers or strings.

Was used by the card-sorting machines to read punch cards

· How IBM made its money initially

The key is to sort digit by digit

- · Start with least significant digit (or bit)
- · Starting with the most significant digit requires extra storage.
- · Sorting method used to sort each digit must be stable
- 1. First sort units digit (or bit)
- 2. Then sort tens digit (or twos bit)
- 3. Continue to most significant

```
Radix-Sort(A,d)
```

- 1. for i = 1 to d
- 2. use a stable sort to sort array A on digit i
- Use induction on length of input values (i.e., number of digits / bits) to prove this algorithm is correct

Bucket Sort

- Working: Distributes elements into buckets and then sorts each bucket individually.
- Time complexity: O(n) average time under uniform distribution, but $O(n^2)$ in the worst case.
- Divides the interval of input numbers into equal-sized buckets.
- Distributes the numbers into buckets.
- · Sorts each bucket and then gathers numbers back.

Analysis of Algorithms:

- Bucket sort assumes that input is uniformly distributed to achieve linear time.
- Worst Case is all numbers in one bucket Cost is $O(n^2)$

Limitations

- · Counting sort is not suitable for sorting strings of varying length.
- Radix and bucket sort are not comparison-based and hence might not be suitable for all types of data.

Bucket Example:

A[i] are the value of each element,
 and n is the A.length which is 10 in the example

Index(A)	Α	LA[i] × nJ	В	Sorted
A[0]	.38	.38×10=L3.8J=3	0	
A[1]	.93	.93×10=L9.3J=9	1	.11
A[2]	.77	.77×10=L7.7J=7	2	.29
A[3]	.11	.11×10=L1.1J=1	3	.38 → .39
A[4]	.95	.95×10=L9.5J=9	4	.43
A[5]	.29	.29×10=L2.9J=2	5	.95
A[6]	.72	.72×10=L7.2J=7	6	

Index(A)	Α	L A[i] × nJ	В	Sorted
A[7]	.43	.43×10=L4.3J=4	7	.77 → .72
A[8]	.39	.39×10=L3.9J=3	8	
A[9]	.99	.99×10=L9.9J=9	9	.93 → .95 → .99

Analysis of the Average Run Time of Bucket Sort Algorithm

```
BUCKET-SORT (A)

1. n = A.length

2. let B[0 ... n-1] be a new array

3. for i= 0 to n-1

4. make B[i] an empty list

5. for i=1 to n

6. insert A[i] into list B[[n·A[i]]]

7. for i= 0 to n-1

8. sort list B[i] with insertion sort

// Cost is just O(c) constant

9. concatenate the lists B[0], B[1],

..., [n-1] together in order
```

All lines except line 8 (sort bucket) takes O(n) time in the worst case To analyze the average run time, we need to find E[T(n)], which is given by:

$$E[T(n)] = \Theta(n) + O\left(\sum_{i=0}^{n-1} E[n_i^2]
ight)$$

Where n_i is the number of elements in bucket B[i].

Step 1: Define \$n_i

Define n_i as the number of elements in bucket i. It can be expressed in terms of X_{ij} as:

$$n_i = \sum_{j=1}^n X_{ij}$$

This equation means that we sum up all the X_{ij} for a given i, where X_{ij} is 1 if A[j] falls in bucket i and 0 otherwise.

Step 2: Express ${\cal E}[n_i^2]$

We aim to find ${\cal E}[n_i^2]$, which can be expressed as:

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}
ight)^2
ight]$$

Step 3: Expand the Square

Expanding the square gives:

$$E[n_i^2] = E\left[\sum_{j=1}^n \sum_{k=1}^n X_{ij} X_{ik}
ight]$$

Step 4: Separate the Expectation

We can separate the expectation over the sum:

$$E[n_i^2] = \sum_{i=1}^n \sum_{k=1}^n E[X_{ij}X_{ik}]$$

Step 5: Find $E[X_{ij}X_{ik}]$

Now we need to find $E[X_{ij}X_{ik}]$ for two cases: when j=k and when $j \neq k$.

1. When j = k:

$$E[X_{ij}X_{ik}] = E[X_{ij}^2]$$

But since X_{ij} is a Bernoulli variable (it can only take values 0 or 1), $X_{ij}^2=X_{ij}$. So,

$$E[X_{ij}^2] = E[X_{ij}] = \frac{1}{n}$$

2. When $j \neq k$:

The events are independent, so

$$E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}] = rac{1}{n} \cdot rac{1}{n} = rac{1}{n^2}$$

Step 6: Substitute the Values Back

Now we substitute these values back into the equation for $E[n_i^2]$:

$$E[n_i^2] = \sum_{i=1}^n \sum_{k=1}^n E[X_{ij}X_{ik}]$$

This sum can be broken down into two parts: when j=k and when $j\neq k$.

So we have:

$$E[n_i^2] = \sum_{j=1}^n E[X_{ij}^2] + \sum_{j=1}^n \sum_{k
eq j} E[X_{ij} X_{ik}]$$

Now substituting the values we found in step 5:

$$E[n_i^2] = \sum_{j=1}^n rac{1}{n} + \sum_{j=1}^n \sum_{k
eq j} rac{1}{n^2}$$

Step 7: Calculate the Sums

Now we calculate each sum separately:

1.
$$\sum_{j=1}^n \frac{1}{n} = 1$$

2. $\sum_{j=1}^n \sum_{k \neq j} \frac{1}{n^2} = n(n-1) \frac{1}{n^2}$

Step 8: Final Calculation

Now we add these two results together to find $E[n_i^2]$:

$$E[n_i^2] = 1 + n(n-1)rac{1}{n^2} = 1 + (n-1)rac{1}{n} = 2 - rac{1}{n}$$

Now we have found $E[n_i^2]$ as $2-\frac{1}{n}$.

$$E[n_i^2] = 1 + n(n-1)rac{1}{n^2} = 1 + (n-1)rac{1}{n} = 2 - rac{1}{n}$$

Let $n_i =$ number of elements in bucket B[i]

We are looking to find the expected time E[T(n)], which is given by:

$$E[T(n)] = \Theta(n) + O\left(\sum_{i=0}^{n-1} E[n_i^2]
ight)$$

Substituting the values we found for $E[X_{ij}X_{ik}]$ when j=k and j
eq k , we find:

$$E[n_i^2] = n\left(rac{1}{n}
ight) + n(n-1)\left(rac{1}{n^2}
ight) = 2 - rac{1}{n}$$

So, we can now find E[T(n)] using the formula we derived earlier:

$$T(n) = \Theta(n) + O\left(n\left(2 - rac{1}{n}
ight)
ight) = \Theta(n) + O(n) = \Theta(n)$$

This shows that the average running time of the bucket sort algorithm is linear.

Conclusion

This analysis shows that the average running time of the bucket sort algorithm is linear, $\Theta(n)$.