

Generalized linear models, binary data

Regression models

Brian Caffo, Jeff Leek and Roger Peng Johns Hopkins Bloomberg School of Public Health

Key ideas

- · Frequently we care about outcomes that have two values
 - Alive/dead
 - Win/loss
 - Success/Failure
 - etc
- · Called binary, Bernoulli or 0/1 outcomes
- · Collection of exchangeable binary outcomes for the same covariate data are called binomial outcomes.

Example Baltimore Ravens win/loss

Ravens Data

	ravenWinNum ravenWin ravenScore opponentScore				
1	L	1	W	24	9
2	2	1	W	38	35
3	3	1	W	28	13
4	ŀ	1	W	34	31
5	,)	1	W	44	13
6	ò	0	L	23	24

Linear regression

try to predict whether they win from score

$$RW_i = b_0 + b_1 RS_i + e_i$$

RW_i - 1 if a Ravens win, 0 if not

RS_i - Number of points Ravens scored

b₀ - probability of a Ravens win if they score 0 points

 b_1 - increase in probability of a Ravens win for each additional point

e_i - residual variation due

Um Voraussagen zu machen, ist so ein Modell ev ganz gut (Machine learning) Aber es ist schwer zu interpretieren. Dieser Kurs geht v.a. um statistische Interpretation.

Linear regression in R

```
lmRavens <- lm(ravensData$ravenWinNum ~ ravensData$ravenScore)
summary(lmRavens)$coef</pre>
```

Odds

Binary Outcome 0/1

1 oder 0: ob sie gewonnen haben oder nicht

Probability (0,1)

 $Pr(RW_i|RS_i,b_0,b_1)$ Probability of winning, given the score and the parameters.

Odds $(0, \infty)$

$$\frac{\Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}{1 - \Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}$$

 RW_i

Log odds $(-\infty, \infty)$

$$\log\left(\frac{\Pr(RW_i|RS_i, b_0, b_1)}{1 - \Pr(RW_i|RS_i, b_0, b_1)}\right)$$

Linear vs. logistic regression

Linear

$$RW_i = b_0 + b_1 RS_i + e_i$$

or

$$E[RW_i|RS_i, b_0, b_1] = b_0 + b_1RS_i$$

Logistic

$$Pr(RW_i|RS_i, b_0, b_1) = \frac{exp(b_0 + b_1RS_i)}{1 + exp(b_0 + b_1RS_i)}$$

or

wenn man den Log nimmt:

$$\log\left(\frac{\Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}{1 - \Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}\right) = b_{0} + b_{1}RS_{i}$$

Interpreting Logistic Regression

$$\log\left(\frac{\Pr(RW_i|RS_i,b_0,b_1)}{1-\Pr(RW_i|RS_i,b_0,b_1)}\right) = b_0 + b_1RS_i \text{ RS: RavenScore}$$

b₀ - Log odds of a Ravens win if they score zero points

b₁ - Log odds ratio of win probability for each point scored (compared to zero points)

 $\exp(b_1)$ - Odds ratio of win probability for each point scored (compared to zero points) mit allen Kovariaten fixiert (nur hat es in diesem Bsp keine).

Odds

- · Imagine that you are playing a game where you flip a coin with success probability p.
- \cdot If it comes up heads, you win X. If it comes up tails, you lose Y.
- \cdot What should we set X and Y for the game to be fair? fair = fuer beide Spieler gleich

E[earnings] =
$$Xp - Y(1-p) = 0$$

-> ich gewinne X\$ mit Prob = p
und verliere Y\$ mit Prob = 1-p

· Implies

$$\frac{Y}{X} = \frac{p}{1-p}$$
 <- rechte Seite sind die odds

```
wenn man X = 1 setzt:
```

- The odds can be said as "How much should you be willing to pay for a p probability of winning a dollar?"
 - (If p > 0.5 you have to pay more if you lose than you get if you win.)
 - (If p < 0.5 you have to pay less if you lose than you get if you win.)

Visualizing fitting logistic regression curves

```
x <- seq(-10, 10, length = 1000)
manipulate(
    plot(x, exp(beta0 + beta1 * x) / (1 + exp(beta0 + beta1 * x)),
        type = "l", lwd = 3, frame = FALSE),
    beta1 = slider(-2, 2, step = .1, initial = 2),
    beta0 = slider(-2, 2, step = .1, initial = 0)
    )
</pre>
```

Ravens logistic regression

family="binomial" -> i.e. logistic regr.

```
Estimate:
                                                              beta0 = logodds of Ravens winning when they
      Call:
                                                                       score nothing
      glm(formula = ravensData$ravenWinNum ~ ravensData$ravenScore,
                                                                       To get the odds: do e^beta0
          family = "binomial")
                                                              beta1 = increase in logodds for every point
                                                                       that they score.
                                                                       e^beta1: relative increase=
      Deviance Residuals:
                                                                       odds ratio for 1 unit increase in
         Min
                   10 Median
                                          Max
                                                                       score!
      -1.758 -1.100 0.530
                              0.806
                                        1.495
                                                                       Uebrigens:
                                                                       Die Parameter e^x (aka exp(x)) sind
                                                                       meist sehr klein.
      Coefficients:
                                                                       In der Naehe von 0 ist exp(x) \sim = 1+x
                             Estimate Std. Error z value Pr(>|z|)
                                                                       \exp(0.1066) = 1.1125 \sim 1.1066
      (Intercept)
                              -1.6800
                                          1.5541 -1.08
                                                              0.28
beta0
                                                                       Interpretation:
beta1
      ravensData$ravenScore
                             0.1066
                                                              0.11
                                          0.0667
                                                  1.60
                                                                       estimated odds of winning for the Ravens
                                                                       increases by 11% per point scored!
      (Dispersion parameter for binomial family taken to be 1)
                                                                       Fuer Intercept: odds of Ravens winning
                                                                       when they score 0 points.
                                                                       But: since they aren't any such games, that's
                                                                       just an extrapolation.
          Null deviance: 24.435 on 19 degrees of freedom
      Residual deviance: 20.895 on 18 degrees of freedom
                                                                       To get the probability (instead of the odds):
      ATC: 24.89
                                                                           exp(beta0^+ beta1^+ x) 11/16
                                                                           1 + \exp( beta 0^+ beta 1^+ x)
```

Ravens fitted values

plot(ravensData\$ravenScore,logRegRavens\$\fitted,pch=19,col="blue",xlab="Score",ylab="Prob Ravens Win")

Odds ratios and confidence intervals

```
2.5 % 97.5 %
(Intercept) 0.005675 3.106
ravensData$ravenScore 0.996230 1.303
```

ANOVA for logistic regression

```
anova(logRegRavens,test="Chisq")
```

```
Analysis of Deviance Table
                                          If you fit multiple models, it adds them
                                          sequentally.
                                          "Ideally with nested models" (?)
Model: binomial, link: logit
Response: ravensData$ravenWinNum
                                      Resid.Dev von
Terms added sequentially (first to last)
                                      _erstem minus zweitem Modell
                    Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL = just the intercept
ravensData$ravenScore 1 _ 3.54 _ 3.54
                                                    0.06
                                                                Differenz in Anzahl
                                                          Parameter der beiden
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                                              Modelle (19 - 18 = 1)
```

Der Chisquare-Test testet die Wahrscheinlichkeit, eine solche Deviance (3.54) mit einem solchen Degree of Freedom (1) zu erhalten: p = 0.06

Interpreting Odds Ratios

- Not probabilities
- Odds ratio of 1 = no difference in odds
- Log odds ratio of 0 = no difference in odds Koeffizienten sind dann 0
- Odds ratio < 0.5 or > 2 commonly a "moderate effect"
- Relative risk $\frac{\Pr(RW_i|RS_i=10)}{\Pr(RW_i|RS_i=0)}$ often easier to interpret, harder to estimate $\frac{\Pr(RW_i|RS_i=10)}{\Pr(RW_i|RS_i=0)}$
- · For small probabilities $RR \approx OR$ but they are not the same!

RR gibt Probleme, wenn man Probability nahe bei 0 oder 1 hat (weil -infinity < log(prob) <= 0

Wikipedia on Odds Ratio

Use of odds in retrospective studies.

Further resources

- · Wikipedia on Logistic Regression
- Logistic regression and glms in R
- · Brian Caffo's lecture notes on: Simpson's paradox, Case-control studies
- · Open Intro Chapter on Logistic Regression the classic text book on Log. Regr.