

```
Eey=1

2,9,4,6,2,8,5,7

1 1

3
Insertion_Sort (A, n) {
         for (j: 2 - n) {
                Key - A[j]
               for (i: j-1 \rightarrow 1 \ \text{ke} \ A[i] > \text{key}) {
A[i+1] \leftarrow A[i]
                                                                           234 B 8 8 7
1234 B 8 8 7
1111
1111
568
               A[i+1] < Key
                                                                           (, 1, 2, 3, 4, 5, 6, 7, 8
                                                                      34,2,1

11,7,2,1

12,3,4,1

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4
Time: Worst: O(n2)

Best: O(n)

Average: O(n2)
                                                     Extra
S= O(1)
In-place /out-of-place: In place
  Stable/ Unstable: - Istable
```


The worst-case running times of Insertion sort, Merge sort, and Quicksort, respectively, are: 0(n2) (30(nlogn) (0(n2)

[GATE CSE 2016 Set 1]

1. Θ(n log n), Θ(n log n), and Θ(n²).

2. Θ(n²), Θ(n²), and Θ(n log n).

3. $\Theta(n^2)$, $\Theta(n \log n)$, and $\Theta(n \log n)$.

 \mathcal{A} . $\Theta(n^2)$, $\Theta(n \log n)$, and $\Theta(n^2)$.

Complexity: - O(N2) # Companisions: - O(N2)

Swaps - O(n)

Θ(n log n)
 Θ(n²)
 Θ(n² log n)

[GATE CSE 2007]			
1 Merge sort — n log n 2. Bubble Sort — n ² 3. Quick Sort — n ² 4. Selection Sort — n ²			
Which one of the following in place sorting algorithms n	eeds the minimum number	of swaps?	
GATE CSE 2006] N ² Swaps			- heap fy
1. Insertion Sort 2. Quick Sort 3. Heap Sort 4 Selection Sort M Swaps	lgn	? { }	ol n
Bubble Sort -> n2 swaps			
Merge sort -> No swapping (E)	xtm space)		

Which of the following sorting algorithms has the lowest worst-case complexity?