Universidade Federal de Santa Catarina

Departamento de Engenharia Mecânica

Programa de Pós-Graduação em Engenharia Mecânica

Disciplina: Fundamentos da Termodinâmica (EMC 410028)

Bimestre: 2025-2

Professor: Jaime A. Lozano

Lista de Exercícios 4

1. A velocidade com que pequenas ondas de pressão se deslocam em um fluido compressível é denominada de velocidade do som, *a*, definida por:

$$a^2 = \left(\frac{dp}{d\rho}\right)_s$$

em que $\rho = 1/v$ é a densidade do fluido (inverso do volume específico). Demonstre a validade das seguintes relações:

a.
$$a^2 = \frac{vc_p}{\beta_T c_v}$$

b. $a = (\gamma RT)^{1/2}$ para um gás ideal (R é a constante do gás).

- 2. Mostre que as compressibilidades isotérmica e adiabática se relacionam por: $\beta_T = \beta_S + \frac{T \nu \alpha^2}{c_p}$
- 3. A equação de estado de um cilindro de borracha é: $F = aT\left[\frac{L}{L_0} \left(\frac{L_0}{L}\right)^2\right]$, sendo a uma constante e L_0 o seu comprimento em repouso (função apenas da temperatura T). Demonstre que:
 - a. $\left(\frac{\partial U}{\partial L}\right)_T = aT^2\alpha_0\left[\frac{L}{L_0} + 2\left(\frac{L_0}{L}\right)^2\right]$, onde $\alpha_0 = \frac{1}{L_0}\frac{dL_0}{dT}$ é o coeficiente de dilatação linear do cilindro a uma força de tração F nula.
 - b. Sabendo que para a borracha a 293 K, $a=4.86 \times 10^{-3}$ N/K e $\alpha_0=2 \times 10^{-4}$ K⁻¹, avalie $(\partial U/\partial L)_T$ para valores de L/L_0 na faixa 1,0–3,0. Comente os resultados obtidos.
- 4. Avalie $\frac{\partial T}{\partial p}\Big|_{S}$ para a água a 20°C.
- 5. Um fio metálico com massa m=10 g e área transversal A=1 mm² tem comprimento L=100 cm a uma temperatura de T=293 K quando submetido a uma força de tração F=100 N. Determine o comprimento que ele alcançará quando submetido a um processo de tração reversível e adiabático, sem mudança de volume, até uma força de 500 N. São dados:
 - Coeficiente de dilatação linear a força de tração constante: $\alpha_F = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_E = 9.5 \text{ x } 10^{-6} \text{ K}^{-1}$
 - Módulo de Young isotérmico: $E = \frac{L}{A} \left(\frac{\partial F}{\partial L} \right)_T = 2.0 \text{ x } 10^{11} \text{ Pa}$
 - Calor específico a força de tração constante: $c_F = \left(\frac{\partial h}{\partial T}\right)_F = 0.52 \text{ kJ/kg·K}$, onde h é a entalpia específica do material, em kJ/kg.

Data de entrega: 3 de julho de 2025.