1. 已知离散型随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, x < 1 \\ 0.3, 1 \le x < 3 \\ 0.5, 3 \le x < 4 \end{cases}$

则
$$P\{X > 1 | X \neq 3\} = ($$
)。

A.
$$\frac{5}{7}$$
; B. $\frac{5}{8}$; C. $\frac{7}{8}$; D. $\frac{7}{10}$

2. 设 X_1, X_2, X_3 为来自总体X的一个简单样本,总体均值 $EX = \mu$,

总体方差 $DX = \sigma^2$,下列几个总体均值 μ 的无偏估计量中,方差最小的是____。

A.
$$\hat{\theta} = \frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$$
; B. $\hat{\theta} = \frac{1}{3}X_1 + \frac{1}{2}X_2 + \frac{1}{6}X_3$;

B.
$$\hat{\theta} = \frac{1}{3}X_1 + \frac{1}{2}X_2 + \frac{1}{6}X_3$$

C.
$$\hat{\theta} = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$

C.
$$\hat{\theta} = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$
; D. $\hat{\theta} = \frac{1}{3}X_1 + \frac{3}{4}X_2 - \frac{1}{12}X_3$

3. 设随机变量 $X \sim N(\mu, \sigma^2)$, 则 $E \mid X - \mu \mid = ______$ 。

A. 0 ; B
$$\mu$$
. ; C. σ ; D. $\frac{2}{\sqrt{2\pi}}\sigma$ \circ

C.
$$\sigma$$

D.
$$\frac{2}{\sqrt{2\pi}}\sigma$$

4. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 未知; x_1, x_2, \dots, x_n 为来自总体 X 的样本,

给定 $0<\alpha<1$,下列表述中正确的结论是

A.
$$P\{\overline{x} - t_{1-\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{1-\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}}\} = 1 - \alpha;$$

B.
$$P\{\overline{x}-t_{1-\frac{\alpha}{2}}(n)\frac{s}{\sqrt{n}} \leq \mu \leq \overline{x}+t_{1-\frac{\alpha}{2}}(n)\frac{s}{\sqrt{n}}\}=1-\alpha$$
;

$$C. \qquad P\{\overline{x} - t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}} \leq \mu \leq \overline{x} + t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}}\} = \alpha \ ;$$

D.
$$P\{\overline{x} - z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\} = 1-\alpha$$

5. 设随机变量(X,Y)的分布函数为F(x,y),对任意实数z,

A. 1 - F(z, z); B. $P\{X > z\} + P\{Y > z\}$;

c. F(z,z) ; D. $P\{X > z, Y > z\}$

6. 设随机变量 X,Y 的二阶矩 EX^2,EY^2 存在,

下列不等式中正确的结论是____。

A. $|E(X)| > (EX^2)^{\frac{1}{2}}$;

B. $(E | X + Y |^2)^{\frac{1}{2}} \ge (EX^2)^{\frac{1}{2}} + (EY^2)^{\frac{1}{2}}$;

C. $|Cov(X,Y)| \ge \sqrt{DX} \cdot \sqrt{DY}$; D. $|E(XY)| \le (EX^2)^{\frac{1}{2}} \cdot (EY^2)^{\frac{1}{2}}$.

7. 设 X_1, X_2, \dots, X_n 为来自总体X的样本, $(n \ge 2)$;总体均值 $EX = \mu$,

总体方差 $DX = \sigma^2$, 记 $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$.

则对任意 $\varepsilon > 0$,成立_____。

A. $P\{|\overline{X} - \mu| < \varepsilon\} \le \frac{D\overline{X}}{c^2}$; B. $P\{|\overline{X} - \mu| \ge \varepsilon\} \ge \frac{\sigma^2}{c^2}$;

C. $P\{|\overline{X} - \mu| < \varepsilon\} \ge 1 - \frac{\sigma^2}{n\sigma^2}$; D. $P\{|\overline{X} - \mu| < \varepsilon\} \le \frac{\sigma^2}{n\sigma^2}$

8. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为来自总体 X 的样本,

记 $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$, 则下列各式中正确的是_____。

A. $X_1 - \bar{X} \sim N(0, \frac{n+1}{n}\sigma^2)$, B. $X_1 - \bar{X} \sim N(0, \frac{n-1}{n}\sigma^2)$,

C. $\frac{n}{(n-1)\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n)$, D. $\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n)$

1. 设 X 为随机变量,则有 $\lim_{M \to +\infty} P\{|X| > M\} = ______$ 。

2. 袋中有5只红球和3只白球。从中任取3只球,已知取出有红球时,

则至多取到1只白球的概率为。。

3. 设二维随机变量(X,Y)的概率密度为

$$f(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}, -\infty < x, y < +\infty;$$

则
$$Z = \sqrt{X^2 + Y^2}$$
 的概率密度 $f_Z(z) =$ ______。

4. 已知随机变量
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, x < -1 \\ \frac{1}{2}(1+x^3), -1 \le x \le 1, \\ 1, x > 1 \end{cases}$

则 $Y = 2X^2 + 1$ 的分布函数 $F_Y(y) =$ _______。

- 5. 设总体 $X \sim N(\mu_0, \sigma^2)$, X_1, X_2, \cdots, X_n 为来自总体 X 的一组样本值, μ_0 已知。 则参数 σ^2 的极大似然估计 $\hat{\sigma}^2 =$ _______。
- 6. 设 X_1, X_2, \dots, X_n 为来自于总体 X 的样本,总体均值 $EX = \mu$,总体方差 $DX = \sigma^2$, 常数 C,使得 $C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$ 为 σ^2 的无偏估计,则 C= ________。
- 7. 设总体 $X \sim N(-1,4^2)$, X_1, X_2, \cdots, X_9 为总体 X 的一个样本, \overline{X} 为样本均值, 则 $P\{|\overline{X}|<1\}=$ ______。 (已知 $\Phi(1.5)=0.9332$)。
- 8. 设总体 $X \sim N(\mu, \sigma^2)$, x_1, x_2, \dots, x_n 为来自 X 的样本, $(n \ge 2)$;

$$\vec{i} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$ \circ

在未知方差 σ^2 , 检验假设 H_0 : $\mu = \mu_0$ 时,

选取检验用的统计量及服从的分布是____。

接连不断地掷一颗骰子,直到出现小于5点为止,以X表示最后一次掷出的点数,以Y表示掷骰子的次数.

试求: (1) 求二维随机变量(X,Y)的分布律;

- (2) 求(X,Y)关于X的边沿分布律,(X,Y)关于Y边沿分布律;
- (3) 证明X与Y相互独立; (4) 求EX, EY; (5) 求E(XY)。