Recitation #3 - 2.2: Definition of Limits (Solutions)

Warm up:

(a) True or False: To find $\lim_{x\to 2} f(x)$, it's enough to know $f(2.1),\ f(2.01),\ f(2.001),$ etc.

Solution: False, these values will only help us make a guess at $\lim_{x\to 2^+} f(x)$, the right hand limit of f(x). To determine $\lim_{x\to 2} f(x)$, we also need to know $\lim_{x\to 2^-} f(x)$ which we cannot determine from the above values. For example, consider the function

$$f := \begin{cases} 1 & 2 < x \\ 0 & x = 2 \\ -1 & x < 2 \end{cases}$$

Looking at the graph of this function below, we can see that $\lim_{x \to 2^+} f(x) = 1$ and $\lim_{x \to 2^-} f(x) = -1$. Thus, since $\lim_{x \to 2^+} f(x) \neq \lim_{x \to 2^-} f(x)$, $\lim_{x \to 2} f(x)$ does not exist.

(b) True or False: If we know f(2), then we know $\lim_{x\to 2} f(x)$.

Solution: False. In the above example, we have that f(2) = 0, however $\lim_{x\to 2} f(x)$ does not exist.

Group work:

Problem 1 Given the graph of the function, estimate $\lim_{x\to 1} \frac{x^2-1}{x-1}$. Then estimate $\lim_{x\to 1} \frac{x^2-1}{x-1}$ by creating a table of values.

Solution: From the graph and table of values, it appears as though $\lim_{x\to 1} f(x) = 2$.

x	f(x)
.9	$\frac{.9^2 - 1}{.9 - 1} = 1.9$
.99	$\frac{.99^2 - 1}{.99 - 1} = 1.99$
.999	$\frac{.999^2 - 1}{.999 - 1} = 1.999$
1.1	$\frac{1.1^2 - 1}{1.1 - 1} = 2.1$
1.01	$\frac{1.01^2 - 1}{1.01 - 1} = 2.01$
1.001	$\frac{1.001^2 - 1}{1.001 - 1} = 2.001$

Problem 2 Sketch the graph of a function with the given properties. You need not find a formula for the function.

$$\begin{split} f(3) &= -2 \,,\, f(5) = 6 \,,\, \lim_{x \to 5^-} f(x) = -1 \,,\, \lim_{x \to 5^+} f(x) = 4 \,,\, \lim_{x \to 3} f(x) = 7 \\ &\lim_{x \to -2^-} f(x) = 3 \,,\, \lim_{x \to -2^+} f(x) = 0 \,,\, \lim_{x \to 1^+} f(x) = 5 \end{split}$$

Solution: While there are many correct solutions to this problem, one example can be seen below.

Problem 3 True/False: Give an explanation or counterexample. Assume a and L are finite numbers.

(a) If
$$\lim_{x\to a} f(x) = L$$
, then $f(a) = L$.

Solution: False, in the graph below $\lim_{x\to 1} f(x) = 2$, but f(1) does not exist.

Recitation #3 - 2.2: Definition of Limits (Solutions)

(b) If $\lim_{x\to a^-} f(x) = L$, then $\lim_{x\to a^+} f(x) = L$.

Solution: False, in the graph below $\lim_{x\to 1^-} f(x) = 5$ but $\lim_{x\to 1^+} f(x) = 6$.

(c) If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = L$, then f(a) = g(a).

Solution: False. If we let

$$f := \begin{cases} 3 & x = 1\\ \frac{x^2 - 1}{x - 1} & otherwise \end{cases}$$

and

$$g := \begin{cases} 1 & x = 1 \\ x^2 + 1 & otherwise \end{cases}$$

we see that $\lim_{x\to 1} f(x) = \lim_{x\to 1} g(x) = 2$, but f(1) = 3 and g(1) = 1.

(d) $\lim_{x\to a} \frac{f(x)}{g(x)}$ does not exist if g(a) = 0.

Solution: False. If $f(x) = x^3$ and $g(x) = x^2$, then g(0) = 0 but $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^3}{x^2} = \lim_{x \to 0} x = 0$.