Knapsack

Andrés D. González

Assistant Professor

School of Industrial and Systems Engineering, The University of Oklahoma

ISE 4623/5023: Deterministic Systems Models / Systems Optimization

The University of Oklahoma, Norman, OK, USA

Knapsack Problem

Sets:

• $O = \text{set of } objects \{1, 2, ..., n\}$

Parameters:

- w_o = weight of object $o \in O$
- v_o = value of the object
- k = capacity of the knapsack

Objective:

 Maximize the total value of the objects in the knapsack

Knapsack Problem

Sets:

• $O = \text{set of } objects \{1, 2, ..., n\}$

Parameters:

- w_o = weight of object $o \in O$
- v_o = value of the object
- k = capacity of the knapsack

Decision variables:

 x_o = binary variable that indicates if object $o \in O$ is packed in the knapsack

Objective function:

$$\min \sum_{o \in O} v_o x_o$$

Constraints:

$$\sum_{o \in O} w_o x_o \le k$$

$$x_o \in \{0,1\} \quad , \forall o \in O$$

Input data

Α	В	С	
Item (Set: O)	Weight of each item (Parameter: w_o)	Value of each item (Parameter: v_o)	
o1	10.0	500.0	
o2	15.0	700.0	
о3	7.0	1000.0	
04	8.0	300.0	
o5	13.0	500.0	
Knansack Innut		: [∢]	
	Item (Set: O) o1 o2 o3 o4	Item (Set: O) Weight of each item (Parameter: w_o) o1 10.0 o2 15.0 o3 7.0 o4 8.0 o5 13.0	

Reading data from Excel

```
from gurobipy import *
#Import package to open/read Excel files
import openpyxl as opxl
#Load the parameters from Excel file
doc = opxl.load_workbook("KnapsackXLS.xlsx")
#Set O (Objects) and parameters w (weight) and v (value)
0 = []
W = \{\}
V = \{\}
row = 1
while doc["Knapsack_Input"].cell(row = row+1, column = 2).value:
       o = doc["Knapsack_Input"].cell(row = row+1, column = 1).value
       0.append(o)
       w[o] = doc["Knapsack_Input"].cell(row = row+1, column = 2).value
       v[o] = doc["Knapsack_Input"].cell(row = row+1, column = 3).value
       row += 1
print(w)
print(v)
#Parameter k (capacity)
k = 40
```

Building and solving the optimization model in Python/Gurobi

Printing the solution to console and Excel

```
print("\n\tThe optimal value for the objective function is: "+str(m.objVal))
print("\tThe optimal solution is:")
for o in O:
   if x[o].x > 0.5:
      print("\tx["+str(o)+"] = "+str(x[o].x))
import xlwt
from xlwt import Workbook
# Workbook is created
wb = Workbook()
# add_sheet is used to create sheet.
sheet1 = wb.add_sheet('Knapsack_Output')
#print titles
sheet1.write(0, 0, 'Object')
sheet1.write(0, 1, 'Weight')
sheet1.write(0, 2, 'Value')
sheet1.write(0, 3, 'X (assigned?)')
#print values
row=1
for o in O:
   sheet1.write(row, 0, o)
   sheet1.write(row, 1, w[o])
   sheet1.write(row, 2, v[o])
   sheet1.write(row, 3, x[o].x)
   row+=1
#Save Excel file
wb.save("KnapsackXLS_Solution.xls")
```


Output from console and Excel

	Α	В	С	D
1	Object	Weight	Value	X (assigned?)
2	o1	10	500	1
3	o2	15	700	1
4	o3	7	1000	1
5	o4	8	300	1
6	o5	13	500	0
7				
8				
9				
10				
11				
12				
←→ Kr	napsack_Output ①			: 1

THANK YOU QUESTIONS?

Andrés D. González | andres.gonzalez@ou.edu