On the forgetting of particle filters

Matti Vihola (Jyväskylä)

Third workshop on Monte Carlo methods in Warsaw 15 Dec 2023

Joint work with: Joona Karjalainen (Jyväskylä) Anthony Lee (Bristol) Sumeetpal S. Singh (Wollongong)

Outline

Introduction: Hidden Markov Model and filtering

Particle filter

Forgetting

Forgetting result

Conditional particle filter

Concluding remarks

Introduction: Hidden Markov

Model and filtering

Hidden Markov model (a.k.a. 'state-space model')

- · Hidden (unobserved) Markov state process ($m{X}_0, m{X}_1, m{X}_3, \ldots$):
 - · Initial density $\eta_0(m{x}_0)$
 - · Transition densities $M_t(oldsymbol{x}_t \mid oldsymbol{x}_{t-1})$
- · Observations (or measurements) ($m{Y}_0, m{Y}_1, m{Y}_2, \ldots$):
 - · Conditionally independent given $(oldsymbol{X}_t)_{t\geq 0}$
 - · Observation densities $g_t(\boldsymbol{y}_t \mid \boldsymbol{x}_t)$
 - · Observed values $m{y}_0, m{y}_1, \ldots \leadsto \mathsf{potentials} \; G_t(m{x}_t) = g_k(m{y}_t \mid m{x}_t)$

Running example: Noisy AR(1)

$X_{0:T}$ stationary AR(1) process:

•
$$X_1 \sim N(0, \sigma_n^2/(1-\phi^2)).$$

•
$$X_k = \phi X_{k-1} + \eta_k$$
; $\eta_k \sim N(0, \sigma_\eta^2)$

 $Y_{0:T-1}$ noisy observations of $X_{1:T-1}$:

$$Y_k \sim N(X_k, \sigma_Y^2)$$

•
$$G_k(x_k) = c_Y \exp\left(-\frac{1}{2\sigma_Y^2}(x_k - y_k)^2\right)$$

The filtering problem

- · We are interested in:
 - · predictive distributions $\eta_t = \text{Law}(\boldsymbol{X}_t \mid \boldsymbol{y}_{0:t-1})$
 - · filtering distributions $\pi_t = \mathrm{Law}({m{X}}_t \mid {m{y}}_{0:t})$
- Practical example: GPS navigation
 - · varying quality GPS observations $\leadsto G_t$
 - · simple model of movement such as Brownian velocity $\leadsto M_t$
- Cannot determine η_t and π_t in a closed form (essentially unless M_t and G_t linear-Gaussian or state-space finite)
- We focus on Monte Carlo approximations, that is, sampling number of particles $X_t^{1:N}$ "approximately from η_t ", iteratively in $t=0,1,2,\ldots$

The ideal filter

• Update $\eta_t \to \pi_t$ by weighting with G_t :

$$\pi_t(m{x}_t) = \Psi_t(\eta_t)(m{x}_t)$$
 where $\Psi_t(\mu)(m{x}) = rac{\mu(m{x})G_t(m{x})}{\int G_t(m{z})\mu(m{z})\mathrm{d}m{z}}$

· Mutate $\pi_t o \eta_{t+1}$ by pushing through M_{t+1} :

$$\eta_{t+1}(\boldsymbol{x}_{t+1}) = (\pi_t M_{t+1})(\boldsymbol{x}_{t+1}) = \int M_{t+1}(\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_t) \pi_t(\boldsymbol{x}_t) d\boldsymbol{x}_t$$

· We denote the composition of the above by Φ_t :

$$\eta_{t+1} = \Phi_{t+1}(\eta_t) = \Psi_t(\eta_t) M_{t+1}$$

and compositions of these by $\Phi_{t,u}$:

$$\eta_u = \Phi_{t,u}(\eta_t) = \Phi_u \circ \cdots \circ \Phi_{t+1}(\eta_t)$$

Particle filter

Particle filter algorithm

Gordon, Salmond and Smith (IEE Proc. F. 1993)

$PF(\eta_0, (M_t)_{t \geq 1}, (G_t)_{t \geq 0}, N)$	
1: $oldsymbol{X}_0^i \sim \eta_0(\ \cdot\)$	for $i \in \{1:N\}$
2: for $t = 1, 2,$ do	
3: $W_{t-1}^{i} = \frac{G_{t-1}(\boldsymbol{X}_{t-1}^{i})}{\sum_{j=1}^{N} G_{t-1}(\boldsymbol{X}_{t-1}^{j})}$	$\text{ for } i \in \{1\text{:}N\}$
4: $A_{t-1}^i \sim \operatorname{Categorical}(W_{t-1}^{1,i_t})$	$\text{ for } i \in \{1\text{:}N\}$
5: $oldsymbol{X}_t^i \sim M_t(\;\cdot\;\mid oldsymbol{X}_{t-1}^{A_{t-1}^i})$	$\text{for } i \in \{1\text{:}N\}$
6: end for	

Produces empirical approximations of η_t and π_t :

$$\eta^N_t = rac{1}{N} \sum_{i=1}^N \delta_{m{X}^i_t}$$
 and $\pi^N_t = \Psi_t(\eta^N_t) = \sum_{i=1}^N W^i_t \delta_{m{X}^i_t}$

Particle filter on noisy AR(1): Initialise

- • Particles $X_1^{1:N} \sim M_1(\ \cdot\)$
- Observation y_1

Particle filter on noisy AR(1): Resample and propagate

- • Particles $X_t^i \sim M_t(X_{t-1}^{A_{t-1}^i}, \; \cdot \;)$
- Observations $y_{0:t}$

Particle filter on noisy AR(1): Resample and propagate

- • Particles $X_t^i \sim M_t(X_{t-1}^{A_{t-1}^i}, \; \cdot \;)$
- Observations $y_{0:t}$

Particle filter on noisy AR(1): Resample and propagate

- • Particles $X_t^i \sim M_t(X_{t-1}^{A_{t-1}^i}, \; \cdot \;)$
- Observations $y_{0:t}$

- ullet Particles $X_{15}^{1:N}$
- Observations $y_{0:15}$

Forgetting

Strong mixing condition

We assume the following which is common in (quantitative) particle filter theory:

Assumption: Strong mixing

There exist $0 < \underline{M} \leq \overline{M} < \infty$ and $0 < \underline{G} \leq \overline{G} < \infty$ such that $\forall x, x', t$:

- $M \leq M_t(\boldsymbol{x}, \boldsymbol{x}') \leq \overline{M}$
- $\underline{G} \leq G_t(\boldsymbol{x}) \leq \overline{G}$
- Typically holds only in a compact state space
- · (Variants exist which e.g. extend the requirement for iterates of M_t)

Ideal filter forgetting

Theorem (Del Moral 2004, Proposition 4.3.6)

For all probability measures μ and ν , $t \ge 0$ and $k \ge 0$:

$$\sup_{\mu,\nu} \|\Phi_{t,t+k}(\mu) - \Phi_{t,t+k}(\nu)\|_{\mathrm{TV}} \le \beta^k \qquad \text{where} \qquad \beta = 1 - \left(\frac{\underline{M}}{\overline{M}}\right)^2$$

- · Ideal filter forgets at exponential rate
- \cdot NB: Φ_t is non-linear and generally not contracting: we might well have

$$\|\Phi_t(\mu) - \Phi_t(\nu)\|_{TV} > \|\mu - \nu\|_{TV}$$

Time-uniform L^p errors

Theorem (Del Moral 2004, Theorem 7.4.4)

For all $N \geq 2$, $n \geq 0$ and $p \geq 1$, $\operatorname{osc}(\phi) \leq 1$:

$$\|\eta_t^N(\phi) - \eta_t(\phi)\|_p \leq rac{c}{\sqrt{N}} \qquad ext{where} \qquad c_p = 2d_p^{1/p} igg(rac{\overline{M}}{\underline{M}}igg)^3 rac{\overline{G}}{\underline{G}}$$

where d_p has been defined in Del Moral (2004), and in particular, $d_2=1$.

- $\eta_t^N(\phi) = N^{-1} \sum_{i=1}^N \phi(\boldsymbol{X}_t^i) \approx \eta_t(\phi) = \int \phi(\boldsymbol{x}_t) \eta_t(\boldsymbol{x}_t) \mathrm{d}\boldsymbol{x}_t$ for large N uniform in t (in L^p sense)
- ... Monte Carlo errors do not accumulate \leadsto stability

Forgetting of the particle filter?

In summary:

- · Ideal filter is exponentially forgetting
- · Particle filter is increasingly accurate approximation of the ideal filter...
- · ...in a time-uniform manner

So the particle filter must also be exponentially forgetting, at least if N is large enough?

- \cdot Unlike the ideal filter, particle filter defines a Markov chain $(m{X}_t^{1:N})_{t\geq 0}$
- Denote its Markov transition

$$\mathbf{M}_{t}(\boldsymbol{x}_{t-1}^{1:N}, \cdot) = \left(\sum_{i=1}^{N} \frac{G_{t-1}(\boldsymbol{x}_{t-1}^{i})}{\sum_{j=1}^{N} G_{t-1}(\boldsymbol{x}_{t-1}^{j})} M_{t}(\cdot \mid \boldsymbol{x}_{t-1}^{i})\right)^{\otimes N}$$

· Is \mathbf{M}_t contracting in Dobrushin sense:

$$\beta_{\text{TV}}(\mathbf{M}_t) = \sup_{\boldsymbol{x}^{1:N}, \tilde{\boldsymbol{x}}^{1:N}} \|\mathbf{M}_t(\boldsymbol{x}^{1:N}, \cdot) - \mathbf{M}_t(\tilde{\boldsymbol{x}}^{1:N}, \cdot)\|_{\text{TV}} < 1?$$

An earlier forgetting result

Yes, \mathbf{M}_t are contracting:

Lemma (Tadić & Doucet, 2021)

For all $N \geq 1$ and $t \geq 0$:

$$eta_{\mathrm{TV}}(\mathbf{M}_t) \leq 1 - \epsilon^N, \qquad \text{where} \qquad \epsilon = \left(\frac{\underline{M}}{\overline{\overline{M}}}\right)^2$$

Direct corollary of the above:

$$eta_{\mathrm{TV}}ig(\mathbf{M}_{t,t+k}ig) \leq (1-\epsilon^N)^k$$
 where $\mathbf{M}_{t,t+k} = \mathbf{M}_{t+1}\mathbf{M}_{t+2}\cdots\mathbf{M}_{t+k}$

 \rightsquigarrow forgetting in $k = O(e^N)$ time $\ref{solution}$

Forgetting result

Particle filter forgetting

Theorem (Karjalainen, Lee, Singh & V (2023))

For all $k \geq 1, t \geq 0, N \geq 2$,

$$\beta_{\text{TV}}(\mathbf{M}_{t,t+k}) \le (1 - \varepsilon)^{\lfloor k/(c \log N) \rfloor},$$

where $\varepsilon \in (0,1)$ and $c < \infty$ only depend on the strong mixing constants.

- \rightsquigarrow PF forgets in $k = O(\log N)$ time $\ensuremath{\mathfrak{C}}$
 - Seems like the right order: a specific example where forgetting $\Omega(\log N)$...

Definition

The squared Hellinger distance between two probability measures P and Q having densities p and q with respect to a common dominating measure λ is

$$H^{2}(P,Q) = \frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} \lambda(\mathrm{d}x) = 1 - \int \sqrt{p(x)q(x)} \lambda(\mathrm{d}x)$$

Lemma (Tensorisation)

$$1 - H^{2}(P^{\otimes N}, Q^{\otimes N}) = (1 - H^{2}(P, Q))^{N}$$

Proof sketch 2: Total variation & random measures

Lemma (Le Cam's inequality)

For any probability measures μ and ν it holds that

$$\|\mu - \nu\|_{\text{TV}} \le \sqrt{1 - (1 - H^2(\mu, \nu))^2}$$

Using tensorisation & Jensen's inequality:

Corollary

For random product measures

$$\|\mathbb{E}\mu^{\otimes N} - \mathbb{E}\nu^{\otimes N}\|_{\mathrm{TV}} \le \sqrt{1 - (1 - \mathbb{E}H^2(\mu, \nu)))^{2N}}$$

Proof sketch 3: Bounding expected Hellinger with L^2

Lemma

Let μ and ν be two random probability measures, then

$$\mathbb{E} H^2(\mu M, \nu M) \leq c' \sup_{\operatorname{osc}(\phi) \leq 1} \mathbb{E}(|\mu(\phi) - \nu(\phi)|^2) \qquad \text{where} \qquad c' = \frac{1}{8} \left(\frac{\overline{M}}{\underline{M}}\right)^2$$

Proof sketch 4: Putting things together

Let π^N_t and $\tilde{\pi}^N_t$ be particle filters with same M_t, G_t but with initial $m{X}^{1:N}_0$ and $\tilde{m{X}}^{1:N}_0$

$$\beta_{\text{TV}}(\mathbf{M}_{0,k}) = \inf_{\mathbf{X}_0^{1:N}, \tilde{\mathbf{X}}_0^{1:N}} \|\mathbb{E}(\pi_{k-1}^N M_k)^{\otimes N} - \mathbb{E}(\pi_{k-1}^N M_k)^{\otimes N}\|_{\text{TV}}$$

$$\leq \left(1 - \left(1 - c' \sup_{\text{osc}(\phi) \leq 1} \|\pi_{k-1}^N(\phi) - \tilde{\pi}_{k-1}^N(\phi)\|_2^2\right)^{2N}\right)^{1/2}$$

and

$$\begin{split} \|\pi_{k-1}^N(\phi) - \tilde{\pi}_{k-1}^N(\phi)\|_2 &\leq \|\pi_{k-1}^N(\phi) - \pi_{k-1}(\phi)\|_2 &\leq cN^{-1/2} \\ &+ |\pi_{k-1}(\phi) - \tilde{\pi}_{k-1}(\phi)| &\leq \beta^{k-2} \leq cN^{-1/2} \text{ if } k \geq c \log N \\ &+ \|\tilde{\pi}_{t-1}(\phi) - \tilde{\pi}_{t-1}^N(\phi)\|_2 &\leq cN^{-1/2} \end{split}$$

in which case

$$\beta_{\text{TV}}(\mathbf{M}_{0,k}) \le \left(1 - \left(1 - \frac{c}{N}\right)^{2N}\right)^{1/2} \approx \left(1 - e^{-2c}\right)^{1/2} \le 1 - \epsilon$$

Conditional particle filter

Conditional particle filter algorithm

Andrieu, Doucet & Holenstein (JRSS B, 2010)

- · Used for smoothing, but we think of CPF as a perturbed particle filter
- \rightsquigarrow Empirical approximations of η_t and π_t :

$$\hat{\eta}^N_t = \frac{1}{N} \sum_{i=1}^N \delta_{\boldsymbol{X}^i_t} \qquad \text{and} \qquad \hat{\pi}^N_t = \sum_{i=1}^N W^i_t \delta_{\boldsymbol{X}^i_t}$$

Time-uniform L^p errors for CPF

Theorem (Karjalainen, Lee, Singh & V, 2023)

For every $p \ge 1$, there exists a constant c = c(p) depending on strong mixing constants, such that for all $\operatorname{osc}(\phi) \le 1$, $t \ge 0$, $N \ge 1$ and x_t^* ,

$$\|\hat{\pi}_t^N(\phi) - \pi_t(\phi)\|_p \le \frac{c}{\sqrt{N}}$$

- · Monte Carlo errors do not accumulate
- \cdot The effect of reference x_t^* remains limited, too

Forgetting of CPF

Theorem

For all $k \geq 1, t \geq 0, N \geq 2$, and references $x^* = (x_t^*)_{t \geq 0}$

$$\beta_{\text{TV}}(\mathbf{M}_{t,t+k}^{x^*}) \le (1 - \varepsilon)^{\lfloor k/(c \log N) \rfloor},$$

where ε and c only depend on the strong mixing constants.

 \cdot Similar proof as for PF, using the time-uniform L^p error result

Concluding remarks

Maximal coupling of particle filters

- Coupled particle filters (and CPFs) have been used recently for multilevel Monte Carlo (and unbiased estimation)
- · Let $\mu_k = \Phi_t(\eta_k^N)$ and $\tilde{\mu}_k = \Phi_t(\tilde{\eta}_k^N)$ stand for the conditional distributions of $X_t^{1:N}$ and $\tilde{X}_t^{1:N}$, respectively.
- Jasra & Yu (2020) suggested an 'independent maximal coupling' (IMC) algorithm:

$$(X_k^i, ilde{X}_k^i) \sim \mathsf{MAXCOUPLE}(\mu_k, ilde{\mu}_k), \quad \mathsf{independently for} \ i = 1, \dots, N$$

· Our analysis suggests another 'joint maximal coupling' (JMC) algorithm:

$$(X_k^{1:N}, \tilde{X}_k^{1:N}) \sim \mathsf{MAXCOUPLE}(\mu_k^{\otimes N}, \tilde{\mu}_k^{\otimes N})$$

 \cdot Both are implementable, but have $O(N^2)$ complexity

Coupling probability when N increases

- · Suppose $X_t^{1:N}$ and $ilde{X}_t^{1:N}$ follow same dynamics, but have $\eta_0
 eq ilde{\eta}_0$
- Suppose that $k > c \log N$
- Our analysis says that with JMC, for all $N \ge 1$:

$$\mathbb{P}(X_t^{1:N} \neq \tilde{X}_t^{1:N}) = \mathbb{E} \|\mu_k - \tilde{\mu}_k\|_{\text{TV}} \le \left(1 - \left(1 - \frac{c}{N}\right)^{2N}\right)^{1/2} \le \epsilon$$

- \rightsquigarrow filters fully coupled after $O(\log N)$ iterations.
- In contrast, with IMC, we can only guarantee:

$$\mathbb{P}(X_t^{1:N} = \tilde{X}_t^{1:N}) = \mathbb{E}[(1 - \|\mu_k - \tilde{\mu}_k\|_{\text{TV}})^N] \ge \left(1 - \frac{c}{\sqrt{N}}\right)^N,$$

which vanishes as $N \to \infty$

Discussion

- · Dobrushin forgetting is a strong form of stability
 - \cdot Complementary to L^p uniform stability, which is about averages
 - Could prove useful in some PF/CPF analysis
- \cdot Forgetting entails $\log N$ 'penalty' term
 - · Seems unavoidable
 - Drowned by ${\cal N}^{-p}$ where p>0
- Implications to CPF out soon...

References

- C. Andrieu, A. Doucet and R. Holenstein.
 Particle Markov chain Monte Carlo methods.
 J. R. Stat. Soc. Ser. B. Stat. Methodol., 2010.
- P. Del Moral.
 Feynman-Kac formulae: Genealogical and Interacting Particle Systems with Applications, volume 88.
 Springer, 2004.
- N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F, 140(2):107-113, 1993.

- A. Jasra and F. Yu.
 Central limit theorems for coupled particle filters.
 Adv. in Appl. Probab., 52:942–1001, 2020.
- V. Z. Tadić and A. Doucet.
 Asymptotic properties of recursive particle maximum likelihood estimation.
 IEEE Trans. Inform. Theory, 67(3):1825–1848, 2021.

J. Karjalainen, A. Lee, S. S. Singh and M. Vihola.
 On the forgetting of particle filters
 arXiv:2309.08517, 2023.