Methodological working in imaging neuroscience

"fear and loathing in academia"

Overview

- Introduction
- Project management
- Getting funded
- Version Control

Introduction

Introduction - Who are we?

Peer Herholz

- Post Doc McGill University
- Neuroscience background
- Auditory processing, machine learning, multimodal data integration, representational models

José C. García Alanis

- PhD Student University Marburg
- Background in experimental and clinical psychology
- EEG research, statistical modelling, data preprocessing & cleaning

Christoph Vogelbacher

- Post Doc University Marburg
- Computer science background
- Quality assurance of MRI, analysis methods & project management

Introduction - Code of Conduct

- Be respectful
- Be direct but professional
- Be inclusive and help
- Appreciate and accommodate our many cultural practices, attitudes and beliefs
- Be open to learn from others
- Lead by example and match your actions with your words

Important: Report Issues

Full CoC: https://g0rella.github.io/gorella_mwn/CoC.html

Introduction - What is it?

Introduction - What is it?

Introduction - What is it?

life cycle of a scientific project idea & execution finalization conceptualization introduction & results modules data processing prerequisites communication scientific method data structures presenting results theory building data management design posters/talks **GORELLA** framework literature/data surveys version control write articles content validity & reliability understanding data publication models hypothesis generation preprocessing peer review aspects inferential measures beyond publication power analysis preregistration results diagnostic outreach preregistration preregistration (updated) poster **DMP** DMP (updated) talk **FAIR** bibliography reproducible analyses preprint outcome OSF/GitHub project walkthroughs reviews open lab notebook open lab notebook open lab notebook

Introduction - GORELLA

- Project of us
- Provide information
 - Lecture
 - Training/ application
- Try to help improve the realistic empirical life science
- This lecture is part of the project

https://g0rella.github.io/gorella_overview/

Generalizable
Outline for
Realistic

E mpirical

L ife Science

L ectures and their

A pplications

Introduction - What will happen?

- 3 blocks à 4 lectures and training

- Each block has its own topic and outcome

- We will present the scientific process along a project
- Time effort:
 - 1,5 hours lecture and 1,5 hours training a week (present time)
 - project work (about 10-12 hours a week)

Introduction - Block 1 (Idea and conceptualization)

- General introduction
- How to communicate?
- What is scientific working?
- Find your own research question
- Find related work

Outcome:

Preregistration and data management plan

Introduction - Block 1 (Idea and conceptualization)

- Week 1 General Introduction
 - Overview (this one)
 - Create accounts
- Week 2 Basics
 - Bash
 - GitHub
- Week 3 Project work
 - Project management
 - OSF
 - Data management plan
 - Literature search
- Week 4 Preregistration
 - Combine everything and write preregistration

Introduction - Block 2 (execution)

- Focus on data analysis
- Preprocessing of data
- Statistics

Outcome:

- Update of preregistration
- Jupyter Notebooks
- Data preprocessing and analysis

Introduction - Block 2 (execution)

- Week 5 Writing code
 - Development environment
 - Python
- Week 6 Workflows & Preprocessing
 - Workflows
- Week 7 Analysis
 - Analysis
- Week 8 Statistics
 - Statistics

Introduction - Block 3 (finalization)

- Present your results
- How to write a manuscript?
- How to present a poster?
- How to have a talk about your work? What is important?
- How to design a talk/poster?
- How to finalize my manuscript
- Prepare for publication

Outcome:

- Postersession / talk
- Preprint
- Open review

Introduction - Block 3 (finalization)

- Week 9 Visualization of results
 - Visualization
- Week 10 Poster and talk design
 - Poster/ talk introduction
- Week 11 Writing a scientific paper
 - Writing a paper
- Week 12 Preprint, publication models & open constructive review
 - Publication and beyond
- Symposium
 - Presentation of the results by the group

Introduction - Your assessment

The final assessment will be based on:

- Lab notebook

Your Pre Registration and the concept

- Your Jupyter notebook, the code and the derivatives

- Your Preprint and your poster presentation

Introduction - Communication

Communication will be take place:

Discord: https://discord.gg/kw44grs9

- Only communication for you
- Project channels
- Lecture will be take place there in the future

Introduction - Register on platform

For this module you have to register on different platforms:

- Open Science Framework (OSF)
- GitHub
- Zotero
- Figshare
- Discord

Introduction - Feedback system

- Block-specific
 - Before the block: define your skills based on the topics
 - After the block: redefine your skills regarding the topics

- After each lecture
 - You get a link to answer 7 questions regarding the content of the lecture and how it was presented

- Results will be present in an anonymous way online

Introduction - Lab notebook

- Write down
 - your weekly process
 - questions
 - what you done

- This notebook for you. If you have questions, we easily can have a look on your notes and can the help fast.

- We will have a weekly look, if your project has a process.

- Will start after introduction of GitHub

Introduction - Open Science

- Divided into six principles:
 - Open educational resources
 - Open methodology
 - Open source
 - Open data
 - Open access
 - Open peer review

Introduction - Open educational resources

Problem

- "This is my sand mold."
- "Why should I share my data?"
- "I am afraid that people will find errors."
- "It's too complex for me."
- "They will steal the results from me."

Solution

- Change view to open science
- Integrate everybody
- Help to start
- Get used to the whole topic of open science

- Open educational resources

- are freely accessible
- openly licensed text, media, and other digital assets
- for teaching, learning, and assessing
- for research purposes

Introduction - Open methodology

- Problem

- "It's significant!"
- Which methods are used?
- Are theses methods the right ones?
- Were they performed correctly?

- Solution

- Show what you did
- Share methods, code, software
- Make it reproducible

Introduction - Open Source

Problem

- You have to pay for software
- You can't have a look into the source code
- You are not allowed to share/reuse the software

Solution

- Use software with open licenses
- It does not cost a thing (donation to the coder is possible)
- You can access the source code
- Changes and sharing is allowed (based on license)
- Programming language: Python /R
- Licenses: Creative common license / MIT license / GNU General Public License (GPL)

Introduction - Open data

- Problem
 - Why to share data?
 - Duplicate data
 - Not allowed by ethic committee to share
- Benefit/solution
 - Public access to data
 - Chance to replicate results based on data
 - Create new hypothesis without create new data
- Platforms
 - Datalad
 - Openneuro
 - Openfmri

Introduction - Open access

- Problem
 - No access to publications
 - No access to results
 - No access to computational methods
 - Reproducibility crisis
- Solution
 - Accessible publications
 - Transparent methods
 - Publish in open access journals

Introduction - Open peer review

- Problem

- Get a feedback like "Your work is not good"
- Maybe a reviewer does not like you and question your manuscript
- You don't know who reviewed

Solution

- Open identities: Authors and reviewers knows each other
- Open reports: Review reports are published alongside the relevant article
- Open participation / Pre Print: The wider community (and not just invited reviewers) are able to contribute to the review process

Project management

Project management - Project problems?

How the Project Leader understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant described it

How it was supported

What the customer really needed

Project management - What is it?

- Includes
 - Initialize
 - Plan
 - Control
 - Finalize
- Divide whole project into different phases
 - Each phase has its own goal and time plan
 - Make the whole project scalable
 - Process of the project is easy to control

Project management - Initialize

- Why?
 - Why are we doing the project?
 - What is the problem or value proposition addressed by the project?
- What?
 - What is the work that will be done on the project?
 - What is the primary outcome?
- Who?
 - Who will be involved and what will be their responsibilities within the project?
 - How will they be organized?
- When?
 - What is the project timeline and when will particularly meaningful points, referred to as milestones, be complete?

Project management - Project plan

- Create subprojects
- Create a timepoints for each subproject
- Create milestones
- Make teams and define their responsibilities
- Make an overview

Project management - Project plan

	W 1	W 2	W 3	W 4	W 5	W 6	W 7	W 8	W 9	W 10	W 11	W 12
B 1												
B 2												
В 3												

W: Week B: Block

Project management - Control

- Control of the process of the milestones
- Are there problems which stops the process?
- Is there a dependency between different milestones?
- Make sure to keep in the timeline

Project management - Finalize

- Finalize the documentation
 - DON'T start documentation at this point
- Bring all subprojects together
- Let's bring the project to an end

Project management - Sounds good... but why?

- Helps to structure your project
- The project is scalable
- Complex projects can be break down to a easy understandable level

Project management - Tools

- Helps to structure your project (examples)
 - <u>Trello</u>
 - Work in teams
 - Use templates to define Boards
 - Integration of different modules
 - Personal assignments
 - <u>GitHub</u>
 - Issues
 - Timeline

Project management - Tools (Trello)

Project management - Tools (Trello)

Project management - Tools (GitKraken)

Project management - Tools (GitKraken)

Project management - Standards ?

- Each field has its own specific subprojects
 - Software development vs. writing a paper
- Documentation
- Define subprojects
- Timeline

Project management - Diagram

144

Project management - Diagram

- Useful for control the status and dependencies
- Integration in Trello
 - Teamgantt
- Gitkraken
 - <u>Timelines</u>

Getting funded

Getting funded - Why is it important?

- Science is expensive
- You can get funded in different stages of your career
- Who can fund you?
 - Government
 - Organisation
 - University
 - Scholarship
 - European Union
- What can be fundet?
 - You as person
 - Your project

Getting funded - Nice... but what do i have to do?

- Find a scholarship program that fits to you
- Read the conditions
- Try to write a proposal
- Cross your fingers

Getting funded - Helpful links

https://www.bmbf.de/

https://www.dfg.de/

https://www.stipendienlotse.de/

Version Control

Version Control - What is it?

- Version Control enables multiple people working on a project (same data)
- Each person edits its own copy of files and chooses when to share with the team
- This change does not interfere with the work of another person
- Integrates work done simultaneously by different team members
- Sometimes conflicts must be resolved
- Gives access to historical versions of files
- Rollback of a prior version if needed

- Repository

- A database of changes
- Saves the historical versions
- Contains edits that are not in the working copy
- Updates the working copy

Working copy

- Local version of all files in the project
- Changes only local
- When happy with edit → commit to repository

Linear history

- Simultaneous edits
 - Split and merge
 - Sometimes called "branching"

- Distributed (many repositories) vs. centralized version control (one repository)

Centralized version control Server Repository update Working Working Working copy copy copy Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control

- Centralized version control
 - Every user gets own working copy
 - Just one central repository
 - When commit → co-workers can update to see changes
 - For others to see your changes
 - You commit
 - They update

- Distributed version control
 - Every user gets own working copy and repository
 - When commit → no access on changes
 - Must push changes to central repository
 - When update → no changes of co-workers
 - First must pull those changes to your repository
 - For others to see your changes
 - You commit
 - You push
 - They pull
 - They update

- More details in the GitHub session
- Version control concepts and best practices

Version Control - Advantages

- Changes of a file will be stored
- Original version and the changes of the file will be stored
- Older versions of files are still accessible
- A rollback to a prior version is possible if there are problems with the new version of the file
- Versions of a file are stored as directory tree
- Documentation of changes

Version Control - Tools

- General for projects
- GitHub/GitLab for code
- Datalad for data
- Version control in Google docs/ Overleaf
- MediaWiki

Take Away Message

- Project management
 - Structure your project
 - Use tools which helps you
 - Make timeline
 - Define milestones
- Getting funded
 - Try to find financial help
 - For yourself
 - For your project
- Version Control
 - Versions your files
 - Makes a history of files
 - Remote access possible

Thank you - What's next?

- Rate your skills for this block
 - https://forms.gle/mHDzPfFNsXUAhe5U6
- Rate this lecture
 - https://forms.gle/BtsDC6gKNbVRWLQP8
- Questions?

