

CONSTRUYENDO, MIDIENDO Y APRENDIENDO CON EL ANALIZADOR VECTORIAL VNWA

ALEJANDRO FERNÁNDEZ - EA4BFK

Agenda

- Introducción
- El Kit Bitx20
 - Características
 - Esquema de Bloques
 - ¿Qué medir?, ¿Que Aprender?
- Filtros: FI, FPB, FBP
 - Medida de Inductancias
 - Medida de Xtales
 - Simulación de Filtros
 - Medidas de Filtros
- Conmutador Rx/Tx
- Amplificador HF Banda Ancha
- Conclusiones

Bitx 20

- Transceptor HF diseñado por Ashhar Farhan (VU2ESE) como base para el aprendizaje y la experimentación.
- Inspirado en diseños de Wes Hayward (W7ZOI) en su libro "Experimental Methods in RF DESIGN"
- Componentes fáciles de encontrar / económico
- Muchísimas variantes, kits, modificaciones

Bitx 20 - Esquema de Bloques

Bitx 20 - Esquema

Filtro de Escalera de 11 Mhz (4 Polos)

✓ Problema: 5 Cristales sin identificar

- ✓ Solución:
 - 1. Identificarlos
 - 2. Medir los parámetros de cada Xtal con el Analizador VNWA

```
XTAL C R
CO
```

Determinación de las características de Xtal

1. Calibración (SOLT) del VNWA

2. Selección de parámetros en el VNWA

3. Medir Xtal #1

4. Iniciar Analizador de Xtal y medir de nuevo

5. Medir los 5 Xtales

6. Seleccionar Xtales

· Abrimos el fichero csv con excel, para su mejor lectura

#	f / Hz	Q	L/H	C/F	R / Ohm	C0 / F
1	10.995.388	107.606	0,011376092	1,84173E-14	7,3025	4,1997E-12
2	10.995.409	86.881	0,011411538	1,83601E-14	9,0750	4,3261E-12
3	10.995.405	82.694	0,011476013	1,82569E-14	9,5875	4,2548E-12
4	10.995.642	101.030	0,012015959	1,74358E-14	8,2175	4,1526E-12
5	10.995.426	115.129	0,011418557	1,83487E-14	6,8525	4,1526E-12

- Xtal 4 ==> Xtal para el Osc BFO
- Xtal 1,2,3 y 5 ==> Filtro de FI

7. Montar el Filtro en la placa y Medir su respuesta

▼ => Mem 1 ▼ □ S11 Smith

☐ Mem1 dB

✓ Respuesta del Filtro (S21) 10.99677MHz -0.41dB Rizado: 4, 48dB -5.89dB 10.99749MHz 10.99582MHz -3.51dB BW -3dB: 3,060 Khz 10.99888MHz -3.51dB 10.99573MHz -6.46dB BW -6dB: 3,230 Khz 10.99896MHz -6.36dB Mejorable? A STATE OF THE PROPERTY OF THE 10.99200MHz 10.99400MHz 10.99600MHz 10.99800MHz 11.00000MHz 11.00200MHz 11.00400MHz 11.00600MHz 11.00800MHz Start = 10.99 MHz Center = 11 MHz Stop = 11.01 MHz Span = $0.02 \, \text{MHz}$ Mem1 dB Continuous

Single Sweep

8. Mejora mediante la Simulación

Diversas opciones: AADE Filter Design, LFCD (UA10J), Dishal (DJ6EV)

f/Hz C/F L/H R / Ohm CO/F 10.995.388 107.606 0.011376092 1.84173E-14 7.3025 4.1997E-12 1 2 10.995.409 86.881 0.011411538 1.83601E-14 9.0750 4,3261E-12 3 82.694 0.011476013 1.82569E-14 4.2548E-12 10.995.405 9.5875 10.995.426 115.129 0,011418557 1,83487E-14 6,8525 4,1526E-12 Media Xtal | 10.995.407 98.078 4.2333E-12 0.01142055 1.83458E-14 8.2044 f /Khz L/mH C/fF R/Ohm Co/pF Media Xtal 10.995,407 98.078 11,421 18,346 8,204 4,233

Capacidades Calculadas

✓ Efecto del Ajuste de Impedancias (Matching Tool)

✓ Cálculo de Condensadores para estrecha el Ancho de Banda

✓ Soldar los condensadores adicionales (33pF) en paralelo y...

✓ Medida del Efecto de los nuevos condensadores

Filtro Chebyshev

- Objetivo: ¿Por qué de la V.2?
 - a. Determinar valor de las Inductancias mediante Calculadora (Mini Ring Core)

- 1. Selección Toroide
- 2. Espiras => Inductancia
- 3. Inductancia => Espiras (verif)
- 4. Frecuencia => Impedancia

Circuito	Circuito Inductor		Espiras	Calc (uH)1.3.1
LPF	L1 Inic	T37-6	14	0,59
LPF	L1	T37-6	12	0,43
LPF	L2	T37-6	14	0,59
CH PA	L3	FT37-43	8	22,40
BPF	L4	T37-6	18	0,97
BFO OSC	L5	Axial	1	-
BPF	L6	T37-6	18	0,97
VFO	L7	T37-6	50	7,50
CH PA	L9	FT37-43	8	22,40

b. Determinar valor de las Inductancias mediante VNWA

2. Simular los dos filtros con RFSim99 (V.1)

2. Simular los dos filtros con RFSim99 (V.2)

Filtro Pasa Banda

Filtro Doble Sintonizado

Medida de la respuesta del Filtro PB

Fcia Central: 14,162 Mhz Atenuación paso: -9,8 dB BW @ -6 dB: 268 Khz

BW @ -20dB: 621 Khz

Conmutador Rx/Tx

Conmutador con MOSFET's canal N

Conmutador Rx/Tx

Conmutador con MOSFET's canal N

Amplificador NPN Emisor común

- Ganancia razonable de 1 30 Mhz
- Impedancia de Entrada y Salida relativamente constante e independiente del transistor empleado
- Utilizable con diversos transistores NPN de baja señal (2N3904, 2N2222, BC547)

Amplificador NPN Emisor común (2N3904) Medida de Ganancia e Impedancia de Entrada Vcc = 12 v Consumo: 10,3 mA Fcia. Gan. Imp. |Z| Fcia: 14,2 Mhz

Amplificador NPN Emisor común (2N3904)

Amplificador NPN Emisor común (BC547B)

Amplificador NPN Emisor común (BC547B)

Amplificador NPN Emisor común

Resultados de Diversos transistores

FRECUENCIA: 14,2 Mhz

VCC: 12V

TRANSISTOR	GAIN (dB)	In Z (Ω)	Out Z (Ω)	AISL (dB)
2N3904	13,5	205	153	-30
BC547B	8,2	268	136	-29
2N2222	12,9	181	141	-26

En resumen

- ✓ Experimentar construyendo está en la Esencia de la Radioafición
- ✓ Medir los resultados de nuestros Experimentos nos ayuda a Aprender
- ✓ Con el Aprendizaje nos capacitamos para retos más avanzados

Agradecimientos

- Comité Organizador de IberRadio 2017
- Ricardo Llaurado EA3PD
- Wes Hayward W7ZOI
- Tom Baier DG8SAQ
- Kurt Poulsen OZ7OU
- Gerfried Palme DH8AG
- Y muchos más que me inspiran para seguir "cacharreando" y aprendiendo cada día....

Referencias

BITX - XX

http://www.qrpkits.com/bitx20a.html

https://cqbitx.blogspot.com.es

http://www.phonestack.com/farhan/bitx.html

http://www.hfsigs.com

EMRFD (Web de W7ZOI)

http://w7zoi.net

VNWA

http://sdr-kits.net

http://www.sdr-kits.net/vnwasoftware/?21

http://www.hamcom.dk/VNWA/

http://www.pa4tim.nl

https://groups.yahoo.com/neo/groups/VNWA/info

LIBROS

Experimental Methods in RF DESIGN

Wes Hayward, Rick Campbell, Bob Larkin

Ed: ARRL. ISBN: 0-87259-879-9

Measurements with the DGS8SAQ VNWA 2/3 Vector Network Analyzer

Gerfried Palme . SDR-KITS, www.sdr-kits.net

EASYEDA (Esquemas / PCB on-line

https://easyeda.com

MINI RING CORE 1.3.1

http://www.dl0hst.de/software.htm

DISHAL FILTER

http://www.bartelsos.de/dk7jb.php/quarzfilter-horst

RF SIM99

http://www.microwavers.org/index.htm?sw.htm

ZPLOTS

https://ac6la.com/zplots1.html

PARA CURIOSEAR

http://www.changpuak.ch/electronics/Software.php