単元別演習

10月25日の問題

❷問1

 $a_1=10,\; a_{n+1}=a_n^2$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

□ 問 2

数列 $\{a_n\}$ に対して, $S_n=\sum_{k=1}^n a_k$ とすると, $S_n=\frac{3}{2}a_n+3-4n$ が成り立つとする.

- (1) a_1 を求めよ.
- (2) a_{n+1} と a_n の漸化式を作れ.
- (3) a_n を求めよ.

❷問3

正の実数 a についての関数 f(a) を $f(a) = \int_{-1}^{1} |x^2 - a^2| dx$ により定める.

- (1) f(a) を求めよ.
- (2) f(a) の最小値を求めよ.

❷問4

1 次式 $f_n(x) = a_n x + b_n \ (n = 1, 2, ...)$ が

$$f_1(x) = x + 1, \quad x^2 f_{n+1}(x) = x^3 + x^2 + \int_0^x t f_n(t) dt \ (n = 1, 2, ...)$$

を満たすとする.

- (1) 数列 $\{a_n\}$, $\{b_n\}$ が満たす漸化式を求めよ.
- (2) $f_n(x)$ を求めよ.

❷問 5

放物線 C : $y=x^2$ とその上の点 (a,a^2) $(0 < a \le 1)$ における接線を l とするとき,次の問いに答えよ.

- (1) l の方程式を求めよ.
- (2) 直線 $x=0, \ x=1, \$ 放物線 C と接線 l とで囲まれた部分で, $y \ge 0$ を満たす部分の面積 S(a) を求めよ.
- (3) S(a) の最小値を求めよ.

単元別演習

10月25日の宿題

₽<u>問1</u>

整式 P(x) を $(x-1)^2$ で割ったときの余りが 4x-5 で, x+2 で割ったときの余りが -4 である.

- (1) P(x) を x-1 で割ったときの余りを求めよ.
- (2) P(x) を (x-1)(x+2) で割ったときの余りを求めよ.
- (3) P(x) を $(x-1)^2(x+2)$ で割ったときの余りを求めよ.

[山形大]

₽問2

正四面体 ABCD の頂点を移動する点 P がある.点 P は 1 秒ごとに隣の 3 頂点のいずれかに等しい確率 $\frac{a}{3}$ で移るか,もとの頂点に確率 1-a でとどまる.はじめ頂点 A にいた点 P が,n 秒後に頂点 A にいる確率を p_n とする.ただし,0 < a < 1 とし,n は自然数とする.

- (1) 数列 $\{p_n\}$ の漸化式を求めよ.
- (2) 確率 p_n を求めよ.

(北海道大)

問1の解答例

- (1) 因数定理より x-1 で割った余りは $P(1) = 4 \cdot 1 5 = -1$.
- (2) P(x) を (x-1)(x+2) で割った余りを ax+b とおく. P(1)=-1, P(-2)=-4 なので、

$$\begin{cases} a+b = -1 \\ -2a+b = -4 \end{cases}$$

これを解いて a = 1, b = -2. よって余りは x - 2.

(3) P(x) を $(x-1)^2(x+2)$ で割った余りは 2 次以下の式なので、r(x) とおく.

$$P(x) = (x-1)^{2}(x+2)q(x) + r(x)$$

この式より, P(x) を $(x-1)^2$ で割った余りは, r(x) を $(x-1)^2$ で割った余りと等しい. ① よりこの余りは 4x-5 なので, r(x) は定数 a を用いて

$$r(x) = a(x-1)^2 + 4x - 5$$

と書ける. よって,

$$P(x) = (x-1)^{2}(x+2)q(x) + a(x-1)^{2} + 4x - 5$$

ここに x = -2 を代入すると、②より P(-2) = -4 なので、

$$-4 = P(-2) = 9a - 13$$

これより a=1 なので、求める余りは $1 \cdot (x-1)^2 + 4x - 5 = x^2 + 2x - 4$.

問2の解答例

- (1) 図形の対称性から、n 秒後に P が B,C,D にいる確率はそれぞれ等しいので、これを q_n とおく、このとき、 $p_n+3q_n=1$ に注意しておく、n+1 秒後に P が A にいるのは、
 - -n 秒後に A にいて、その場にとどまる.
 - -n 秒後に B,C,D のいずれかにいて, n+1 秒後に A に移る.

のいずれかである. 確率は順に $p_n(1-a_n),\ 3q_n\cdot \frac{a}{3}=aq_n$ であるから、求める漸化式は

$$p_{n+1} = p_n(1-a_n) + aq_n = \left(1 - \frac{4a}{3}\right)p_n + \frac{a}{3}.$$

(2) 上で導いた漸化式を解けば、

$$p_n=rac{1}{4}+rac{3}{4}\left(1-rac{4a}{3}
ight)^n$$