

Общероссийский математический портал

П. Г. Овчинников, Меры на логиках Гаддера и Маршана, Констр. теор. функц. и функц. анал., 1992, выпуск 8,95-98

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:31:06

- 2. Бахвалов Н. С. Численные методы, І. 2-е изд. М.: Наука, 1975. 632 с.
- 3. Никольский С. М. Курс математического энали за. М.: Наука, 1983. Т.І. 464 с.

П.Г.Овчинников

МЕРЫ НА ЛОГИКАХ ГАЛЛЕРА И МАРШАНА

Пусть n, $L \in \mathbb{N}$, $n \ge 2$, $L \ge 2$; $N = n \cdot L$ и пусть $Q = \{0, \dots, N-1\}$. Множество Q есть группа относительно сложения по модулю N. Через Σ обозначим наименьший G—класс подмножеств множества Q, содержащий все множества вида $I_{\kappa} = \kappa + \{0, \dots, L-1\}$, где $\kappa \in Q$ [I]. Через $\mathcal{P}(Q)$ обозначим алгебру всех подмножеств множества Q.

Теорема. I). Любой заряд на Σ продолжается до заряда на $\mathcal{P}(Q)$. 2). Если n > 3 или $n = \ell = 2$, то любая мера на Σ продолжается до меры на $\mathcal{P}(Q)$. 3). Если n = 2, $\ell > 3$, то существует мера на Σ , которая не продолжается до меры на $\mathcal{P}(Q)$.

Замечание. Утверждение I) равносильно теореме I [I]. Мы приводим другое доказательство. Утверждение 2) в работе [I]доказано для частного случая L=2 (теореме 2). К сожалению, в теореме 3 [I] ошибочно утверждается, что если L > 3, то на Z существует мера, которая не продолжается до мери на $\mathcal{P}(\mathcal{Q})$ (на самом деле это так лишь при n=2). Для случая n=L=3 в [I] говорится, что на Z существует мера M, для которой $(\mu(I_0),...,\mu(I_g))=(5,3,3,2,5,2,3,2,5)$. Покажем, что такой мери M на M не существует. В противном случае $\mu(\{1,2,6\})=10$ - $\mu(I_g)$ - $\mu(I_g)=10-2-2=6$, $\mu(\{0,4,8\})=10$ - $\mu(I_g)$ - $\mu(I_g)=10-3-2=5$, $\mu(\{3,5,7\})=10$ - $\mu(\{1,2,6\})=\mu(\{0,4,8\})=10$ - $\mu(\{0,4,8\})=10$ - $\mu(\{0,4,8\})=10$ - $\mu(\{1,2,6\})=10$ - противоречие.

Доказательство I). Пусть W и V – векторные пространства всех (вещественных) зарядов на $\mathcal{P}(Q)$ и \mathcal{Z} соответственно; линейное отображение $6: W \to V$ ставит в соответствие каждому $\mathcal{M} \in W$ его ограничение на \mathcal{Z} . Пусть $\mathcal{M} \in Ket 6$ и $\mathcal{M}(\{1\})=...=\mathcal{M}(\{1-1\})=0$. Легко видеть, что тогда $\mathcal{M}=0$. Следовательно, $\dim Ket 6 \le 1$. Пусть $\mathcal{N} \in V$ и $\mathcal{N}(I)=...=$

 $= \lambda(I_{n-1}) = 0$. Тогда, как легко видеть, $\lambda = 0$. Поэтому $\dim V \leq$ ≤ N-L+1 . Takum oopason, dim Ker6+dim V ≤ N=dim W=dim Ker6+ - dim Im 6. Отсюда Im 6 = V . Утверждение I) доказано.

Теперь нам понадобится явное описание атомов в Σ вается. При n > 3 атомами в Σ являются произвольные элементные подмножества в $\mathcal Q$, элементы которых имеют разные остатки от деления на \angle . Для каждого $i \in I_{a}$ положим = $\{\kappa \in Q \mid \kappa = i \pmod{L}\}$. Paccmotpum mhomectbo $A = \{\{\omega_0, \dots, \omega_{l-1}\}\}$ $(\omega_i \in \mathcal{R}_i \ (i \in I_o))$. Через \mathcal{S} обозначим группу всех перестановок множества I_{o} . Пусть $\varphi \in \mathcal{S}$. Определим продолжение перестановки φ до перестановки $\widetilde{\varphi}$ множества \mathcal{Q} так: $\widetilde{\varphi}(i+jl)=\varphi(i)+jl$ $(i\in I,j\in\{0,...,n-1\})$. Положим $A_{\varphi}=\{\widetilde{\varphi}(I_{\kappa})|\kappa\in\mathcal{Q}\}$.

Йемма І. Пусть n > 3 ; $arphi, arphi \in \mathcal{S}$ и arphi получается из φ транспозицией двух соседних символов. Предположим, что $A_{z}c\Sigma$.

Тогда $A_a \subset \Sigma$

Доказательство. Пусть $\kappa \in \mathcal{Q}$. Пусть $i \in \{0,...$ $\{i,i+1\}$) таково, что $\psi(i) = \varphi(i+1), \psi(i+1) = \varphi(i), \psi(t) = \varphi(t)(t \in I)$ $\{i,i+1\}$). Возможны 2 сдучая: а) $\kappa \notin k_{i+1}$; б) $\kappa \in R_{i+1}$. В случае а), очевидно, $\widetilde{\phi}(I_{\kappa}) = \widetilde{\phi}(I_{\kappa}) \in \Sigma$ Рассмотрим случай б). Положим

$$X = \widetilde{\varphi}(\{\kappa, \kappa + L + 1, \kappa + L + 2, ..., \kappa + 2L - 1\}),$$

$$\mathcal{F} = \widetilde{\varphi}(\{\kappa + L - 1, \kappa - L, \kappa - L + 1, ..., \kappa - 2\}).$$

Пусть $^{\mathbf{c}}$) – теоретико-множественное дополнение в Q . Дизъюнк – объединение подмножеств в Q будем обозначать знаком \div . Тогла

$$\begin{split} &\chi = (\widetilde{\varphi}(I_{\kappa+1}) + \widetilde{\varphi}(I_{\kappa+2L}) + \widetilde{\varphi}(I_{\kappa+3L}) + \ldots + \widetilde{\varphi}(I_{\kappa+(n-1)L}))^c, \\ &\mathcal{Y} = (\widetilde{\varphi}(I_{\kappa-1}) + \widetilde{\varphi}(I_{\kappa+L}) + \widetilde{\varphi}(I_{\kappa+2L}) + \ldots + \widetilde{\varphi}(I_{\kappa+(n-2)L}))^c. \end{split}$$

Следовательно, $X \in \Sigma$ и $\mathcal{J} \in \Sigma$. Далее, $I_{\kappa-L} \cap I_{\kappa+L} = \emptyset$ в силу того, что $n \geqslant 3$. Очевидно, $X + \mathcal{J} = \widetilde{\varphi}(I_{\kappa-L}) + \widetilde{\varphi}(I_{\kappa}) + \widetilde{\varphi}(I_{\kappa+L})$. Теперь имеем

$$\widetilde{\varphi}(I_{\kappa}) = \left\{ \widetilde{\varphi}(\kappa), \widetilde{\varphi}(\kappa+1), \dots, \widetilde{\varphi}(\kappa+L-2), \widetilde{\varphi}(\kappa+L-1) \right\} =$$

$$\{\widetilde{\varphi}(\kappa-1),\widetilde{\varphi}(\kappa+1),...,\widetilde{\varphi}(\kappa+L-2),\widetilde{\varphi}(\kappa+L)\}=$$

$$(\widetilde{\varphi}(I_{\kappa-\!\!\!L})\!+\!\widetilde{\varphi}(I_{\kappa})\!+\!\widetilde{\varphi}(I_{\kappa+\!\!\!L}))\!\setminus\!(X\!+\!\mathcal{Y})\!\in\!\Sigma$$
 . Лемма доказана.

Лемма 2. Если n > 3, то $A_{cp} \subset \Sigma$ для любой $cp \in S$. Доказательство. По определению $cp \in S$ имеем $cp \in S$ как известно, любая $cp \in S$ получается из $cp \in S$ несколькими транспозициями двух соседних символов. Теперь применим лемму I.

 $\mathbb I$ е м м а 3. Если n > 3 или $n = \mathcal L = 2$, то A есть мно-жество всех атомов в Σ .

Доказательство. Случай n=l=2 тривиален. Пусть $n \ge 3$. Достаточно, очевидно, показать, что $A \in \Sigma$. Пусть $\mathcal{Q}_i \in \mathcal{R}_i$ ($i \in I_0$). Положим $I_i = \{\omega_0, \dots, \omega_{l-1}\}$ $\cap I_{i,l} - j L$ ($j \in \{0, \dots, n-1\}$). Очевидно, $I_0 = I_0 + I_1 + \dots + I_{n-1}$. Для любого $j \in \{0, \dots, n-1\}$ пусть $t_i = card$ I_i . Положим $t_0 = 0$, $t_i = t_0 + t_1 + \dots + t_{j-1}$ ($j \in \{1, \dots, n\}$). Пусть d_1 , d_2 , ..., $d_i \in I_0$ таковы, что $I_i = \{d_{2i+1}, d_{2j+2}, \dots, d_{2j+1}\}$ ($j \in \{0, \dots, n-1\}$). Определим $G \in S$ так: G(G) = G(G) = G(G) = G(G). Легко видеть, что G(G) = G(G) = G(G) = G(G). В силу лемы G(G) = G(G) = G(G). Следовательно, G(G) = G(G) = G(G). Пемма доказана.

Доказательство 2). Пусть γ — мера на Σ .В силу I) существует $\mu \in W$ такой, что $b(\mu) = \gamma$. Для каждого $i \in I_0$ пусть $\omega_i \in R_i$ таково, что $\mu(\{\omega_i^i\}) = \min_{\omega \in R_i} \mu(\{\omega\})$.

Определим $\mu_{o} \in W$, полагая

$$\mu_{o}(\{\omega\}) = -\mu(\{\omega\}) \quad (\omega \in R_{i}, i \in \{1, ..., L-1\}),$$

$$\mu_{o}(\{\omega\}) = \sum_{i=1}^{L-1} \mu_{i}(\{\omega_{i}\}) \quad (\omega \in R_{o}).$$

Положим $\mu^* = \mu + \mu_o$. Легко видеть, что $\mu_o \in \mathcal{X}$ есть беровов поэтому $\delta(\mu^*) = \lambda$. Покажем, что μ^* есть мера. Пусть $\omega \in \mathcal{Q}$. Воз — можны 2 случая: а) $\omega \in \mathcal{R}_i$, где $i \in \{1, \dots, L-1\}$; б) $\omega \in \mathcal{R}_o$. Случай а). Очевидно, $\mu^*(\{\omega\}) \ge 0$.

Случай б). По лемме 3, имеем $\{\omega_o, ..., \omega_{l-1}\}$ $\in \mathbb{Z}$. Следо — 97 —

вательно, $\mu^*(\{\omega\}) = \mu(\{\omega\}) + \sum_{\ell=1}^{L-1} \mu(\{\omega\}) > \mu(\{\omega\}) + \sum_{\ell=1}^{L-1} \mu(\{\omega\}) = \mu(\{\omega\}) + \sum_{\ell=1}^{L-1} \mu(\{\omega\}) > 0$. Итак, μ^* — мера на $\mathcal{P}(Q)$. Нам осталось рассмотреть иниь случай $\pi = 2$, L > 3. μ е м м а 4. Если $\mu = 2$, то $\mathcal{L} = \{\emptyset, I_0, I_1, \dots, I_{2L-1}, Q\}$. В частности, если $\mu = 2$, $\mu = 2$, $\mu = 2$, то $\mu = 2$. Показательство очевилно.

Доказательство 3). По лемме 4 существуют $\omega_i \in R_i$ ($i \in I_0$) такие, что $\{\omega_0, \dots, \omega_{l-1}\} \notin \Sigma$. Определим заряд $\mathcal{M} \in \mathcal{M}$, полагая $\mathcal{M}(\{\omega_i^2\}) = -1$ ($i \in I_0$), $\mathcal{M}(\{\omega_i^2\}) = L(\omega \in \mathbb{Q} \setminus \{\omega_i, \dots, \omega_{l-1}\})$, и пусть $i \in I_0$. Очевидно, $i \in \mathbb{Q}$. Преднолюжим противное, тогда существует $\mathcal{M}_0 \in \mathcal{K}et$ $i \in I_0$ такое, что $\mathcal{M}_0 = I_0$. Следовательно, существует $i \in I_0$ такое, что $\mathcal{M}_0(\{\omega_i^2\}) = 0$. Но тогда $\mathcal{M}_0(\{\omega_i^2\}) = -1 + \mathcal{M}_0(\{\omega_i^2\}) < 0$ — противоречие. Теорема доказана.

Литература

I. Gudder S., Marchand J.-P. A Coarse-Grained Measure Theory // Bull. acad.pol.sc. - 1980. - Vol.28. - No. II - I2. - P.557 - 564.