"Introduction to Block Ciphers"

Seminar

"Block Cipher Cryptanalysis"

Summer 2011

Tim Syben

18.04.2011

Agenda

- Block Cipher
- Stream Cipher
- Modes of Operation
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Output Feedback Mode (OFB)
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
- Summery
- Conclusion

Block Cipher

• Symmetric key cipher

Symmetric encryption [can06]

- Operates on fixed-length groups of bits (block)
- Typical block size: 64 bit or 128 bit

Anatomy of a Block Cipher

General approach of most block cipher designs:

- Round function
 - Repeated several times (rounds)
 - First round takes n-bit plaintext as input
 - Last round outputs n-bit cipher text
 - Each round depends on a roundkey
 - Derived from k-bit secret key (key schedule)
 - Has to be bijective

Two Examples

- 1. Feistel ciphers
- 2. SP Networks

Feistel Cipher vs. SP Network

Feistel cipher and SP network [can06]

Feistel Cipher

Examples of Block Ciphers using a Feistel structure:

- DES
 - Published 1977
 - Designed by IBM
- Blowfish
 - Published 1992
 - Designed by Bruce Schneier
- RC5
 - Published 1994
 - Designed by Ron Rivest

SP Network

Examples of Block Ciphers using a SP Network structure:

- AES (Rijndael)
 - Published 1998
 - Designed by Vincent Rijmen and Joan Daemen
- CAST-128
 - Published 1996
 - Designed by Carlisle Adams and Stafford Tavares
- IDEA
 - Published 1991
 - Designed by Xuejia Lai and James Massey

- Block Cipher ✓
- Stream Cipher ←
- Modes of Operation
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Output Feedback Mode (OFB)
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
- Summery
- Conclusion

Stream Cipher

- Symmetric key cipher
- Input is a continuous stream of plaintext
- Single bit will be encrypted one by one

Stream encryption [can06]

Stream Cipher

Examples:

- One Time Pad
 - 1917
- A5/1
 - Developed 1987
 - Used in the GSM standard

Stream encryption [can06]

Block Cipher vs. Stream Cipher

Block encryption (ECB) [can06]

Stream encryption [can06]

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation ←
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Output Feedback Mode (OFB)
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
- Summery
- Conclusion

Modes of Operation

- Defines a way how to encrypt arbitrary-length messages using a block cipher
 - Devide message into blocks encrypt each of them independently
- Last block has to be extended to match block size
 - Padding
- Some modes need an additional input value
 - Initialisation vector

Padding

- Various padding schemes
 - Zero Padding

```
... | 1100 0110 1001 0101 1011 0101 0000 0000 |
```

... | 1A 45 AE 56 9B DD 5D FF | 26 14 FC FC **00 00 00 00** |

Ansi X.923

... | 1A 45 AE 56 9B DD 5D FF | 26 14 FC FC **00 00 00 04** |

• ISO 11026

... | 1A 45 AE 56 9B DD 5D FF | 26 14 FC FC 81 A6 23 04 |

Padding

- Good padding scheme
 - Generate random bits/bytes
 - End of message is clear
- Choice of padding scheme affects the security

Initialization Vector

- Fixed-size input value
- Requires to be random or pseudorandom
- A good initialization vector should be
 - Unique
 - Unpredictable

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation
 - Electronic Code Book (ECB) ←
 - Cipher Block Chaining (CBC)
 - Output Feedback Mode (OFB)
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
- Summery
- Conclusion

Pictures from Wikimedia Commons

- Advantages
 - En-/decryption of each block could be parallelized

- Disadvantages
 - Two blocks with identical plaintext produces identical ciphertext
 - Bit error in one block affect the whole block
 - Plaintext patterns are still visible after encryption

Original

ECB-Mode encryption

Other mode encryption

Summary

- Most naive mode of operation
- En-/decryption of a block does not depend on the successor or predecessor
- Not suitable for encryption of messages bigger than one block

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation
 - Electronic Code Book (ECB) ✓
 - Cipher Block Chaining (CBC) ←
 - Output Feedback Mode (OFB)
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
- Summery
- Conclusion

Cipher Block Chaining (CBC)

Pictures from Wikimedia Commons

Cipher Block Chaining (CBC)

- Advantages
 - Decryption could be parallelized
 - Different initialization vectors
 - Different ciphertext
 - Plaintext patterns are blurred

- Disadvantages
 - Encryption has to be done sequential
 - Bit error in one block effects two blocks

Cipher Block Chaining (CBC)

Summary

- CBC-Mode was invented to eliminate the disadvantages of the ECB-Mode
 - Equal messages produce different cipher text by using different initialization vectors
- Encryption of a plaintext block depends on this block and its predecessor

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation
 - Electronic Code Book (ECB) ✓
 - Cipher Block Chaining (CBC) ✓
 - Output Feedback Mode (OFB) ←
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
- Summery
- Conclusion

Output Feedback Mode (OFB)

Pictures from Wikimedia Commons

Output Feedback Mode (OFB)

- Advantages
 - Keystream can be pre-computed
 - No padding
 - Bit error only affect one bit

- Disadvantages
 - Keystream computation cannot be parallelized
 - Reusing of key an initialization vector is dangerous
 - Bit-flipping attacks are easy

Output Feedback Mode (OFB)

Summary

- Combines a block cipher with a stream cipher
- Needs an initialization vector
- Uses same function for encryption and decryption
 - Makes it possible to choose the faster function
 - Makes it possible to use one-way-functions
- Pre-calculation possible

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation
 - Electronic Code Book (ECB) ✓
 - Cipher Block Chaining (CBC) ✓
 - Output Feedback Mode (OFB) ✓
 - Cipher Feedback Mode (CFB) ←
 - Counter Mode (CTR)
- Summery
- Conclusion

Cipher Feedback Mode (CFB)

Pictures from Wikimedia Commons

Cipher Feedback Mode (CFB)

- Advantages
 - No padding
 - Bit error only affects one bit
 - Decryption can be parallelized

- Disadvantages
 - Bit-flipping attacks are easy
 - Encryption cannot be parallelized
 - No pre-computation of the keystream

Cipher Feedback Mode (CFB)

Summary

- Similar to OFB-Mode
- Combines a block cipher with a stream cipher
- Needs an initialization vector
- Uses same function for encryption an decryption
 - Makes it possible to choose the faster function
 - Makes it possible to use one-way-functions
- Encryption of a plaintext block depends on its predecessors

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation
 - Electronic Code Book (ECB) ✓
 - Cipher Block Chaining (CBC) ✓
 - Output Feedback Mode (OFB) ✓
 - Cipher Feedback Mode (CFB) ✓
 - Counter Mode (CTR) ←
- Summery
- Conclusion

Counter Mode (CTR)

Pictures from Wikimedia Commons

Counter Mode (CTR)

- Advantages
 - En-/decryption of each block could be parallelized
 - No padding
 - Keystream can be pre-computed
 - Can be done in parallel

- Disadvantages
 - Bit-flipping attacks are easy
 - Reusing of key and nonce/counter is dangerous

Counter Mode (CTR)

Summary

- Combines a block cipher with a stream cipher
- Just as in the ECB mode en-/decryption of a block does not depend on the successor or predecessor

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation ✓
 - Electronic Code Book (ECB) ✓
 - Cipher Block Chaining (CBC) ✓
 - Output Feedback Mode (OFB) ✓
 - Cipher Feedback Mode (CFB) ✓
 - Counter Mode (CTR) ✓
- Summery ←
- Conclusion

Summary

Now, we should all be able to give a short answer to these questions:

- What is a block cipher?
- What are the differences between a block cipher and a stream cipher?
- For what do we need Modes of operation?

Summary

And we all know 5 modes of operation:

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback Mode (OFB)
- Cipher Feedback Mode (CFB)
- Counter Mode (CTR)

- Block Cipher ✓
- Stream Cipher ✓
- Modes of Operation ✓
 - Electronic Code Book (ECB) ✓
 - Cipher Block Chaining (CBC) ✓
 - Output Feedback Mode (OFB) ✓
 - Cipher Feedback Mode (CFB) ✓
 - Counter Mode (CTR) ✓
- Summery ✓
- Conclusion ←

Conclusion

Security of a block cipher always depends on:

- Choice of the cipher itself
- Choice of mode of operation
- Choice of padding scheme
- Choice of initialization vector

References

- [kat08] J. Katz and Y. Lindell Introduction to Modern Cryptography,
 Chapman & Hall/CRC, 2008
- [wob01] Reinhard Wobst Abenteuer Kryptologie, Addison-Wesley, 2001
- [can06] Christophe de Canniere, Alex Biryukov and Bart Preneel "An Introduction of Block Cipher Cryptanalysis", Proceedings of the IEEE, 02.2006

Thank you!

Questions?