Criptography

Tutorial #4

Manuel Barbosa (mbb@fc.up.pt) Rogério Reis (rogerio.reis@fc.up.pt)

MSI/MCC/MERSI — 2021/2022

- 1. Alice and Bob agree to communicate privately via email using a scheme based on **RC4**, but they want to avoid using a new secret key for each transmission. Alice and Bob privately agree on a 128-bit key k. To encrypt a message m, consisting of a string of bits, the following procedure is used.
 - i Choose a random 80-bit value v.
 - ii Generate the ciphertext $c = RC4(v \cdot k) \oplus m$, where · denotes the concatenation.
 - iii Send the bit string $(v \cdot c)$.
 - (a) Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob can recover the message m from $(v \cdot c)$ using k.
 - (b) If an adversary observes several values $(v_1 \cdot c_1)$, $(v_2 \cdot c_2)$,... transmitted between Alice and Bob, how can he determine when the same key stream has been used to encrypt two messages?
 - (c) Approximately how many messages can Alice expect to send before the same key stream will be used twice?
 - (d) Write a **Python** program that, given a size n, computes the smallest number of uniformly random generated numbers, $(r_i)_i$ (such that $0 \le r_i < n$), for which it is more likely to have a repetition (in the generated numbers) than not¹.
 - (e) How many messages should Alice use the key k, before generating another?
- 2. In the file data.py a the list packets contains 1000 messages (portuguese ASCII) enciphered by a stream cipher. We know that some of those messages were enciphered using the same key stream. Can you identify them?

¹Ask for help if needed.