Transferability

of photovoltaic (pv) arrays from high resolution satellite imagery data for semantic segmentation

Inbal Karibian ,Arad Peleg, Amir Boger, Dolev Hagbi
15 July 2024

Motivation

> Rapid Growth in Renewable Energy:

- Renewable energy has increased rapidly worldwide in recent years.
- International Energy Agency predicts a 50% growth in total renewable-based power capacity from 2019 to 2024.

> Solar PV as the Fastest-Growing Energy Source:

- Solar photovoltaic (PV) generation expected to account for 60% of this growth.
- Solar PV is the fastest-growing form of energy generation today.

> Challenges of Integrating PV Arrays into Power Grids:

- Integrating distributed PV arrays into existing power grids is challenging.
- Information on location, power capacity, and energy production of distributed PVs is difficult to obtain (Malof, 2016).

Semantic Segmentation

- Semantic segmentation is a technique in computer vision where every pixel in an image is assigned a specific label. Think of it as coloring different parts of a picture based on what they are.
- In our case semantic segmentation identifies and highlights solar panels on the roof, distinguishing them from other features like the house and pool.

Transfer Learning

- Transfer learning is a deep learning technique where knowledge acquired from one task is repurposed to enhance performance on a related task.
- For instance, in image classification\segmentation:
 - cars can be leveraged to recognize trucks.
 - knowledge gained from identifying solar panels in aerial images from one region of the world, such as the Australia (1), can be applied to segment solar panels in a different region, like the United States (2).

Transfer Learning – Decision Tree

Transfer Learning - Methods

Raw Transferability:

Train on data and test on different data

Train neural network on data with a task

Test neural network on different data with the same task

Modeling - Architectures

- Used 4 different models with back bone of ResNet18 (Encoder) for segmentation mission and comparison:
 - Encoder: Compresses input data into essential features.
 - Decoder: Reconstructs data from the compressed features.

U-Net: A symmetric encoderdecoder architecture for precise image segmentation.

DeepLabV3Plus: enhances DeepLabv3 by adding a decoder module to refine segmentation details and improve accuracy.

FPN (Feature Pyramid Network): Combines multi-scale feature

maps for robust object detection and segmentation.

PSPNet (Pyramid Scene Parsing

Network): Aggregates contextual information from multiple scales for improved scene parsing.

Discriminator - Architecture

- We will add the same discriminator (Discriminator Block) to each model for adversarial training.
- The Discriminator Block helps in domain adaptation by using convolutional layers to capture and differentiate patterns between domains. Convolutions with larger steps and LeakyReLU activations focus on high-level features and maintain sensitivity to variations. The final layer produces an output for adversarial training, promoting domaininvariant feature learning.

Model Evaluation – Stages and results

• Stage 1 – Check 4 models with no transferability on Australia data set:

Model/metrics	mloU	Precision	Recall	F1-Score
Uet	0.7358	0.7076	0.5871	0.6417
DeepLabV3Plus	0.6883	0.6289	0.4859	0.5482
PSPNet	0.6319	0.6079	0.3199	0.4192
FPN	0.6187	0.6702	0.2704	0.3853

Model Evaluation – Prediction examples

Unet

Test Image

Ground Truth Overlay

Predicted Overlay

Model Evaluation – Stages and results

• Stage 2 – Raw transferability: AUS data → USA data

Model/metrics	mloU	Precision	Recall	F1-Score
Unet	0.5202	0.4762	0.0466	0.0848
DeepLabV3Plus	0.5247	0.1688	0.0746	0.1035
PSPNet	0.5260	0.6110	0.0573	0.1048
FPN	0.5201	0.6934	0.0450	0.0845

Model Evaluation – Prediction examples

Test Image

Ground Truth Overlay

Predicted Overlay

Model Evaluation – Stages and results

• Stage 3 – Domain Adaption: AUS data → DA → USA data

Model/metrics	mloU	Precision	Recall	F1-Score
Unet	0.5166	0.6383	0.0385	0.0727
DeepLabV3Plus	0.4991	0.7722	0.0016	0.0032
PSPNet	0.5181	0.7557	0.0400	0.0759
FPN	0.5099	0.4474	0.0238	0.0452

Model Evaluation – Prediction examples

Unet

Test Image

Ground Truth Overlay

Predicted Overlay

Discussion and Conclusions

Summary of findings:

- Four models tested U-Net was best when trained on same data, PSPNet was better for both kinds of transferability.
- Raw transfer and DA techniques faced significant performance drops of almost 20% in mIoU for each model.

Future Work:

- Further research in transfer learning especially in Transductive Transfer area.
- Domain adaptation and adversarial training needs more improvement and understanding for reliable global application.

Thank you for listening

Bibliography

[1] Jordan M Malof, Kyle Bradbury, Leslie M Collins, and Richard G Newell. Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Applied energy, 183:229–240, 2016.

[2] Jordan M Malof, Leslie M Collins, Kyle Bradbury, and Richard G Newell. A deep convolutional neural network and a random forest classifier for solar photovoltaic array detection in aerial imagery. In 2016 IEEE International conference on renewable energy research and applications (ICRERA), pages 650–654. IEEE, 2016.

[3] Rongjun Qin, Guixiang Zhang, and Yang Tang. On the transferability of learning models for semantic segmentation for remote sensing data. arXiv preprint arXiv:2310.10490, 2023.