Tableau de bord / Mes cours / EIIN511B - ECUE Informatique theorique 1 / Induction / QCM_entrainement_def_inductives_ens_fcts

Commonsá lo	mardi 7 décembre 2021, 13:31
	Terminé
	mardi 14 décembre 2021, 15:18
	7 jours 1 heure 15,00/17,00
	17,65 sur 20,00 (88%)
Note	17,03 Sui 20,00 (6670)
Question 1	
Correct	
Note de 1,00 sur 1,00	
Cochez les affirmati	ons exactes et elles seules.
Veuillez choisir au m	noins une réponse :
Tous les mots o	de {a,b} [*] ayant un nombre pair de b sont dans E
✓ Tous les mots of the second se	de E ont un nombre pair de b❤
☐ Tous les mots o	de E ont plus de b que de a
☐ Tous les mots o	de {a,b}* se terminant par bb sont dans E
Aucune des au	tres réponses n'est vraie
Votre réponse est co	orrecte.
La réponse correcte	est : Tous les mots de E ont un nombre pair de b

Question 2
Correct
Note de 1,00 sur 1,00
Soit E le sous ensemble de $\{a,b\}^*$ défini inductivement par la base $B=\{\epsilon\}$ et les opérateurs $\Omega=\{\omega_a,\omega_b\}$ avec $\omega_a(m)=$ aam et $\omega_b(m)=$ bmb Cochez les affirmations exactes et elles seules
Veuillez choisir au moins une réponse : Aucune des autres réponses n'est vraie
☐ Tous les mots de {a,b}* ayant un nombre pair de b sont dans E
☑ Tous les mots de E ont un nombre pair de a❤
☐ Tous les mots de {a,b}* ayant un nombre pair de a sont dans E
☑ Tous les mots de E ont un nombre pair de b❖
Votre réponse est correcte.
Les réponses correctes sont : Tous les mots de E ont un nombre pair de a, Tous les mots de E ont un nombre pair de b

Question 3
Correct
Note de 1,00 sur 1,00
Soit P l'ensemble défini sur l'alphabet {+,-} par
la base B = $\{\epsilon\}$ et
les constructeurs $\Omega = \{\omega\}$ avec $\omega(u,v) = +u-v$
On peut voir P comme un ensemble de chemins montagneux avec des "pas" montants de 1 notés + et des "pas" descendants de 1 notés -, par exemple ++-+++ est un chemin où l'on commence par 2 "pas" montants, suivis d'un descendant, de 3 montants, et enfin de 4 descendants.
On veut définir inductivement la fonction altMax , telle que altMax(u) est l'altitude du point culminant du chemin \mathbf{u} , par exemple $\mathbf{altMax(++-++)} = 4$.
Dans les réponses ci-dessous $max\{x,y\}$ représente le maximum des 2 nombres x et y .
Cocher les définitions correctes et elles seules
Veuillez choisir au moins une réponse :
 Aucune des autres réponses proposées
■ $altMax(\varepsilon) = 0$ et $altMax(\omega(u,v)) = max{altMax(u)+1, altMax(v)}$
\Box altMax(ε) = 0 et altMax(ω(u,ν)) = altMax(u) + altMax(v)
\Box altMax(ε) = 0 et altMax(ω(u,v)) = max{altMax(u), altMax(v)}
Votre réponse est correcte.
La réponse correcte est : $altMax(\varepsilon) = 0$ et $altMax(\omega(u,v)) = max\{altMax(u)+1, altMax(v)\}$

23:37	QCM_entrainement_def_inductives_ens_fcts : relecture de tentative
Question 4	
Correct	
Note de 1,00 sur 1,00	
la base B = $\{\epsilon\}$ et les constructeurs	défini sur l'alphabet $\{+,-\}$ par $\Omega = \{\omega\}$ avec $\omega(u,v) = -u+v$
1 notés +, par exe	omme un ensemble de plongées avec des "pas" descendants de 1 notés - et des "pas" montants de emple+ ++++ est une plongée où l'on commence par 2 "pas" descendants, suivis d'un scendants, et enfin de 4 montants.
	ductivement la fonction profMax , telle que profMax(u) est la profondeur du point le plus bas de exemple profMax(+ + + + +) = 4 .
Dans les réponse	s ci-dessous max{x,y} représente le maximum des 2 nombres x et y .
Cocher les définit	ions correctes et elles seules
Veuillez choisir au	ı moins une réponse :
\square profMax(ε)	= 0 et $profMax(\omega(u,v))$ = $profMax(u) + 1 + profMax(v)$
□ profMax(ε)	= 0 et $profMax(\omega(u,v))$ = $profMax(u)$ + $profMax(v)$
Aucune des	autres réponses proposées
\square profMax(ε)	= 0 et $profMax(\omega(u,v))$ = $max\{profMax(u), profMax(v)\}$
profMax(ε)	= 0 et profMax(ω(u,v)) = max{profMax(u)+1, profMax(v)}❤

Votre réponse est correcte.

La réponse correcte est : $profMax(\varepsilon) = 0$ et $profMax(\omega(u,v)) = max\{profMax(u)+1, profMax(v)\}$

Question 5
Correct
Note de 1,00 sur 1,00
Soit P l'ensemble défini sur l'alphabet {+,-} par
la base $B = \{\epsilon\}$ et
les constructeurs $\Omega = \{\omega\}$ avec $\omega(u,v) = +u-v$
On peut voir P comme un ensemble de chemins montagneux avec des "pas" montants de 1 notés + et des "pas"
descendants de 1 notés -, par exemple ++-+++ est un chemin où l'on commence par 2 "pas" montants, suivis d'un descendant, de 3 montants, et enfin de 4 descendants.
On veut définir inductivement la fonction altCumulee , telle que altCumulee(u) est la somme des dénivelés positifs du chemin u , par exemple altCumulee(++-+++) = 5.
Dans les réponses ci-dessous max{x,y} représente le maximum des 2 nombres x et y .
Cocher les définitions correctes et elles seules
Coche les definitions correctes et elles seules
Veuillez choisir au moins une réponse :
Aucune des autres réponses proposées
\Box altCumulee(ε) = 0 et altCumulee(ω(u,ν)) = max{altCumulee(u), altCumulee(v)}
altCumulee(ε) = 0 et altCumulee(ω (u , v)) = 1 + altCumulee(u) + altCumulee(v) \checkmark
altCumulee(ε) = 0 et altCumulee($\omega(u,v)$) = 1 + max{altCumulee(u), altCumulee(v)}
□ altCumulee(ε) = 0 et altCumulee(ω(u,ν)) = altCumulee(u) + altCumulee(ν)
Votre réponse est correcte.
La réponse correcte est : $altCumulee(\varepsilon) = 0$ et $altCumulee(\omega(u,v)) = 1 + altCumulee(u) + altCumulee(v)$

Question 6
Correct
Note de 1,00 sur 1,00
Soit P l'ensemble défini sur l'alphabet {+,-} par
la base B = $\{\epsilon\}$ et
les constructeurs $\Omega = \{\omega +, \omega -\}$ avec :
• ω +(u) = u +
• ω - $(u) = u$ -
On peut voir P est un ensemble de chemins montagneux avec des "pas" montants de 1 notés + et des "pas" descendants de 1 notés -, par exemple ++-+++- est un chemin où l'on commence par 2 "pas" montants, suivant d'un descendant, de 3 montants, et enfin de 2 descendants.
On veut définir inductivement la fonction altFinale , telle que altFinale(u) est l'altitude atteinte à la fin du chemin u , par exemple altFinale(++-+++) = 2.
Cocher les définitions correctes et elles seules
Veuillez choisir au moins une réponse :
 Aucune des autres réponses proposées
\Box altFinale(ε) = 0 et altFinale(ω+(u)) = altFinale(u) + 1 et altFinale(ω-(u)) = altFinale(u)
□ altFinale(ε) = 0 et altFinale(ω+(u)) = altFinale(u) + 1 et altFinale(ω-(u)) = altFinale(u) - 1 $ □$
Votre réponse est correcte.
La réponse correcte est : $altFinale(\varepsilon) = 0$ et $altFinale(\omega + (u)) = altFinale(u) + 1$ et $altFinale(\omega - (u)) = altFinale(u) - 1$

23:37	QCM_entrainement_def_inductives_ens_fcts : relecture de tentative
Question 7	
Correct	
Note de 1,00 sur 1,00	
Soit f la fonction de ℕ dans ℕ défin	ie inductivement par:
• f(0)=0	
• f(1)=1	
• pour tout n non nul, f(2n)=2*f(n)	(-)
 pour tout n non nul, f(2n+1)=2*f 	, (η)
Cochez les affirmations exactes et e	lles seules
Veuillez choisir au moins une répon	se:
Pour tout entier n, il y a toujou	rs soit 0 soit exactement n entiers qui sont solutions de $f(x)=n$
il existe une infinité d'entiers k	qui vérifient f(k)=k♥
pour tout n, f(n) est inférieur ou	u égal à n❤
pour tout n> 0 : f(n) est une pu	iissance de 2 ❤
f(1357)=569	
Pour tout entier pair 2k, f(2k)=2	2k
Votre réponse est correcte.	
	out n> 0 : f(n) est une puissance de 2, il existe une infinité d'entiers k qui vérifient

f(k)=k, pour tout n, f(n) est inférieur ou égal à n, Pour tout entier n, il y a toujours soit 0 soit exactement n entiers qui sont solutions de f(x)=n

. 23.31	QCIVI_entrainement_der_inductives_ens_rcts : relecture de tentative
Question 8	
Correct	
Note de 1,00 sur 1,00	
Soit f la fonction de ℕ dans ℕ déf	inie inductivement par :
• f(0)=0	
• $f(1)=f(2)=1$	
• pour tout n non nul, f(3n)=3*f(1	
 pour tout n non nul, f(3n+1)=3 pour tout n non nul, f(3n+2)=3 	
• pour tout il non nui, i(311+2)=3	1(1)
Cochez les affirmations exactes et	elles seules.
Veuillez choisir au moins une répo	onse ·
·	t positif, il y a toujours soit 0 soit exactement 2*n entiers qui sont solutions de
opour tout $n > 0$, $f(n)$ est une	puissance de 3 🗸
f(1357)=566	
il existe une infinité d'entiers	k qui vérifient f(k)=k♥
pour tout n, f(n) est inférieur	ou égal à n❤
Pour tout multiple de 3 (n=3	k), f(3k)=3k
Votre réponse est correcte.	
Les réponses correctes sont : pour	r tout n > 0, f(n) est une puissance de 3, il existe une infinité d'entiers k qui vérifient
	ur ou égal à n. Pour tout n entier strictement positif, il v a touiours soit 0 soit

f(k)=k, pour tout n, f(n) est inférieur ou égal à n, Pou exactement 2*n entiers qui sont solutions de f(x)=n

25.07	Com_chilametricat_industries_chs_lots . Telestate de terrative
Question 9	
Correct	
Note de 1,00 sur 1,00	
Soit f la fonction de l'ensemble	des entiers naturels $\mathbb N$ dans $\mathbb N$, définie inductivement par :
• f(0)=0	
• f(1)=1	***************************************
 pour tout n non nul, f(2n)=2* pour tout n non nul, f(2n+1): 	
,	
Cochez les affirmations exactes	et elles seules
Veuillez choisir au moins une ré	ponse :
f(1023)=511	
pour tout n, f(n) est inférie	ur ou égal à n❤
our tout $n>0$, $f(n)$ est une	puissance de 2 🗸
✓ f(1025) = 1024 ✓	
our tout entier k, $f(2^k)=2^k$	✓
pour tout entier pair 2k, f(2	2k)=2k
Votre réponse est correcte.	
Les réponses correctes sont : po est inférieur ou égal à n, f(1025)	our tout n>0, f(n) est une puissance de 2, pour tout entier k, $f(2^k)=2^k$, pour tout n, f(n) $f(n)=1024$

Correct

Note de 1,00 sur 1,00

On souhaite définir inductivement la fonction S de N dans N,telle que S(n) est égal à la somme des n premiers entiers non nuls.

On a donc S(0)=0, S(1)=1, S(2)=3, S(3)=6, S(4)=10, S(5)=15, etc....

Sélectionnez toutes les définitions correctes de S et elles seules

Veuillez choisir au moins une réponse :

- S(0)=0
 - S(n+1)=n+1+S(n)
- aucune des définitions proposées n'est correcte
- - S(1)=1
 - S(n+2)=2n+3+S(n)
- S(0)=0
 - S(1)=1
 - S(n+3)=3n+6+S(n)
- - Pour tout n strictement positif S(2n)=4*S(n)-n
 - S(2n+1)=4S(n)+n+1

Votre réponse est correcte.

Les réponses correctes sont :

- S(0)=0
- S(n+1)=n+1+S(n)
- S(0)=0
- S(1)=1
- S(n+2)=2n+3+S(n)
- S(0)=0
- Pour tout n strictement positif S(2n)=4*S(n)-n
- S(2n+1)=4S(n)+n+1

Correct

Note de 1,00 sur 1,00

On souhaite définir inductivement la fonction SP de N dans N,telle que SP(n) est égal à la somme des n premiers entiers pairs non nuls.

On a donc SP(0)=0, SP(1)=2, SP(2)=6, SP(3)=12, SP(4)=20, SP(5)=30 etc....

Sélectionnez toutes les définitions correctes de SP et elles seules.

Veuillez choisir au moins une réponse :

- aucune des définitions proposées n'est correcte
- SP(0)=0
 - SP(1)=2
 - SP(n+2)=4n+6+SP(n)
- SP(0)=0
 - Pour tout n strictement positif SP(2n)=4*SP(n)-2n
 - SP(2n+1)=4SP(n)+2n+2
- SP(0)=0
 - SP(n+1)=2(n+1)+SP(n)
- SP(0)=0
 - SP(1)=2
 - SP(2)=6
 - SP(n+3)=6n+10+SP(n)

Votre réponse est correcte.

Les réponses correctes sont :

- SP(0)=0
- SP(n+1)=2(n+1)+SP(n)
- SP(0)=0
- SP(1)=2
- SP(n+2)=4n+6+SP(n)
- SP(0)=0
- Pour tout n strictement positif SP(2n)=4*SP(n)-2n
- SP(2n+1)=4SP(n)+2n+2

Question 12
Correct
Note de 1,00 sur 1,00
Soit la méthode récursive Java <i>fRec</i> :
public static int fRec(int n) {
$if(n = 0) \ return \ 1;$
return n*fRec(n-2); }
Cochez les propotions exactes et elles seules
Veuillez choisir au moins une réponse : ☑ la méthode <i>fRec</i> appliquée à 18 retourne 185 794 560 (soit 512 * 9!) ✓
la methode fret appliquee à 10 letourne 103 734 300 (soit 312 - 3:)
□ la méthode <i>fRec</i> appliquée à 512 retourne 61 440 (soit 512 * 5!)
☐ la méthode <i>fRec</i> appliquée à tout entier qui n'est pas une puissance de 2, "ne s'arrête pas"
☑ la méthode <i>fRec</i> appliquée à 511 "ne s'arrête pas"❤
☑ la méthode <i>fRec</i> appliquée à 6 retourne 48 ❤
cette méthode n'est pas syntaxiquement correcte
Votre réponse est correcte.
Les réponses correctes sont : la méthode <i>fRec</i> appliquée à 6 retourne 48, la méthode <i>fRec</i> appliquée à 18
retourne 185 794 560 (soit 512 * 9!), la méthode <i>fRec</i> appliquée à 511 "ne s'arrête pas"

Correct

Note de 1,00 sur 1,00

Pour que la méthode qui est à compléter

```
public static void sans00(int k)
```

affiche tous les mots de longueur k ne contenant pas le facteur 00, écrire la méthode suivante de signature

```
private static void sans00(String pref, int reste)
```

où:

- pref est un préfixe d'un mot sans facteur 00
- reste est la différence entre k et la longueur de pref.

Les mots affichés sont séparés par un espace (" ").

Par exemple:

Test	Résultat
sans00(1)	1 0
sans00(2)	11 10 01
sans00(3)	111 110 101 011 010

Réponse : (régime de pénalités : 0 %)

```
^{st} Print out all binary words of length x
 2
          * without '00'
 3
 4
          * Complexity: THETA( C(x) = C(x-1) + C(x-2) )
 5
 6 🔻
         public static void sans00(int x) {
 7 🔻
             for(int i = (int)Math.pow(2,x); i \ge 0; i - -){
                  String val = Integer.toString(i, 2);
 8
                  if (!val.contains("00")){
 9 ₹
                      if (val.length() == x-1){
   val = "0" + val ;
10 •
11
                           if (val.length() == x){
12 •
                               if (!val.contains("00")){
13 🔻
                                    System.out.print(val + " ");
14
15
16
                           }
17 •
                      } else {
                           if(val.length() == x){
18 •
                               System.out.print(val + " ");
19
20
21
                      }
22
                  }
23
             }
```

	Test	Résultat attendu	Résultat obtenu	
~	sans00(1)	1 0	1 0	~
~	sans00(2)	11 10 01	11 10 01	~
~	sans00(3)	111 110 101 011 010	111 110 101 011 010	~

Tous les tests ont été réussis! ✓

Solution de l'auteur de la question (Java):

```
* Print out all binary words of length x
 2
 3
          * without '00'
 4
          * Complexity: THETA( C(x) = C(x-1) + C(x-2) )
 5
         public static void sans00(int x) {
    sans00(x,"");
 6 🔻
 7
 8
             if (x>0){
                  sans00(x-1,"0");
 9
10
             }
11
         }
12
13 ▼
          * Print out all binary words of length x
14
          * without '00'
15
          * Complexity: THETA( C(x) = C(x-1) + C(x-2) )
16
17
         private static void sans00(int x, String s) {
18 ▼
             if (x == 0) {
19 •
                  out.print(s + " ");
20
21
             else if (x == 1) {
    out.print(s + "1 ");
22 ▼
23
2/
```

Correct

Note pour cet envoi: 1,00/1,00.

Correct

Note de 1,00 sur 1,00

On travaille sur les mots binaires qui ont autant de '0' que de '1', par exemple "001011" ou "1001", mais pas "010" ni "0010".

Compléter la classe **GenMEg** pour que la méthode

```
public static void genMEg(int n)
```

affiche tous les mots binaires de longueur n ayant autant de '0" que de '1', à partir d'appel(s) de la méthode suivante

```
private static void genMEg(String pref, int nb0, int nb1, int k)
```

où:

- pref est un préfixe d'un mot binaire ayant autant de '0" que de '1'
- nb0 est le nombre de '0' de pref
- nb1 est le nombre de '1' de pref
- k est la différence entre n et la longueur de pref.

Les mots affichés sont séparés par le caractère 'l'

Par exemple:

Test	Résultat
GenMEg.genMEg(0)	1
GenMEg.genMEg(1)	1
GenMEg.genMEg(2)	01 10

Réponse: (régime de pénalités : 0 %)

```
1 ▼ public class GenMEg { //TO COMPLETE
 2
 3 ▼
        public static void genMEg(int n){
 4 •
            if (n % 2 == 1 || n == 0){
                 System.out.print("|");
 5
 6 •
            } else {
                for (int i = 0; i < (int) Math.pow(2,n); i++){</pre>
 7
                String nbBinaire = Integer.toString(i,2);
 8
9 •
                if (nbBinaire.length() != n){
10
                    nbBinaire = padLeftZeros(nbBinaire, n);
11
                if (countOf(nbBinaire, '0') == countOf(nbBinaire, '1')){
12
                     System.out.print(nbBinaire + "|");
13
14
15
16
           }
17
18
19
        private static void genMEg(String pref, int nb0, int nb1, int k){
20
21
22 •
        private static int countOf(String entree, char caractere){
23
            int count = 0;
```

Test Résultat attendu	Résultat obtenu		
-----------------------	-----------------	--	--

	Test	Résultat attendu	Résultat obtenu		
~	✓ GenMEg.genMEg(0)		I	~	
✓ GenMEg.genMEg(1)		I	I		
~			01 10	~	
~			0011 0101 0110 1001 1010 1100	~	

Tous les tests ont été réussis! 🗸

Solution de l'auteur de la question (Java):

```
1 v public class GenMEg {
2     private static final String SEP = "|";
 3
 4 •
          public static void genMEg(int n){
 5 🔻
               if ( n % 2 == 1){
 6
                    System.out.print(SEP);
 7
 8 •
               else{
                    genMEg("",n/2,n/2,n);
 9
10
11
          private static void genMEg(String pref, int nb0, int nb1, int k){
12 ▼
               if (k == 0) {
13 ▼
                    System.out.print(pref + SEP);
14
15
                    return;
16
              if ( 0 < nb0 ) genMEg(pref+"0", nb0-1, nb1,k-1);
if ( 0 < nb1 ) genMEg(pref+"1", nb0, nb1-1,k-1);</pre>
17
18
19
20
21
22
23
```

Correct

Note pour cet envoi: 1,00/1,00.

Correct

Note de 1,00 sur 1,00

On travaille sur les mots **miroirs** écrit sur l'alphabet {a,b,c}, un mot u est **miroir** si il est de longueur paire et si l'une des 2 conditions suivantes est vérifiée :

- 1. u est le mot vide
- 2. la première lettre de u est égale à la dernière de u et u privé de sa première lettre et de sa dernière lettre est un mot miroir.

Par exemple "abccba" et "bbaabb" sont miroirs, mais "abcbca" et "ab" ne sont pas miroirs.

Compléter la classe **GenMirror** pour que la méthode

```
public static void genMirror(int n)
```

affiche tous les mots miroirs de longueur n sur l'alphabet {a,b,c}, à partir d'appel(s) de la méthode suivante

```
private static void genMirror(String u, int k)
```

où:

- u est un mot miroir
- k est la différence entre n et la longueur de u.

Les mots affichés sont séparés par un espace " ".

Par exemple:

Test	Résultat
GenMirror.genMirror(0)	
GenMirror.genMirror(1)	
GenMirror.genMirror(2)	aa bb cc
GenMirror.genMirror(4)	aaaa baab caac abba bbbb cbbc acca bccb cccc

Réponse: (régime de pénalités : 0 %)

```
1 v public class GenMirror {//TO COMPLETE
 2
        private static final String[] ALPHABET = {"a", "b", "c"};
 3
        private static final String SEP = " ";
 4
 5
 6 •
        public static void genMirror(int n){
 7
            if (!(n % 2 == 1 || n == 0)){
                 genMirror("", n);
 8
 9
10
        }
11
12 ▼
        private static void genMirror(String u, int k){
13 ▼
            if (k == 0){
14
                 System.out.print(u + SEP);
15 •
            }else {
                 for(int i = 0; i < ALPHABET.length; i++){</pre>
16 •
                     genMirror(ALPHABET[i] + u + ALPHABET[i], k-2);
17
18
19
            }
        }
20
21
22
23
```

	Test	Résultat attendu	Résultat obtenu	
✓ GenMirror.genMirror(0)			~	
~	✓ GenMirror.genMirror(1)			~
✓ GenMirror.genMirror(2) aa bb cc		aa bb cc	aa bb cc	~
~	GenMirror.genMirror(4) aaaa baab caac abba bbbb cbbc acca bccb cccc		aaaa baab caac abba bbbb cbbc acca bccb cccc	~
~	GenMirror.genMirror(5)			~

Tous les tests ont été réussis! 🗸

Solution de l'auteur de la question (Java):

```
1 public class GenMirror {
        private static final String[] ALPHABET = {"a", "b", "c"};
        private static final String SEP = " ";
 3
 4
 5
        public static void genMirror(int n){
 6 •
 7、
            if(n%2 == 1) {
 8
                System.out.println("");
 9
                return ;
10
            genMirror("",n);
11
12
        }
13
        private static void genMirror(String m, int k){
14 🔻
15 ▼
            if (k == 0) {
                System.out.print(m + SEP);
16
17
                return;
18
            for (String lettre : ALPHABET) {
19 ▼
                genMirror(lettre+m+lettre,k-2);
20
21
22
        }
23
    }
```

Correct

Note pour cet envoi: 1,00/1,00.

Incorrect

Note de 0,00 sur 1,00

Compléter la classe **GenMBP** pour que la méthode

```
public static void genMBP(int n)
```

affiche tous les mots bien parenthésés de longueur 2*n, à partir d'appel(s) de la méthode suivante

```
private static void genMBP(String pref, int aFermer, int reste)
```

où:

- pref est un préfixe d'un mot bien parenthésé
- aFermer est la différence entre le nombre de '(' et le nombre de ')' de pref
- reste est la différence entre 2*n et la longueur de pref.

Les mots affichés sont séparés par un espace.

Par exemple:

Test	Résultat	
GenMBP.genMBP(0)		
GenMBP.genMBP(1)	()	
GenMBP.genMBP(2)	()() (())	

Réponse: (régime de pénalités : 0 %)

```
1 v public class GenMBP {
                                  //TO COMPLETE
        private static final String OPENING = "(";
2 •
        private static final String CLOSING = ")";
 3
        private static final String SEP = " ";
 5
        public static void genMBP(int n){
 6 •
 7 •
            if (n != 0) {
 8
 9
10
        }
11
        private static void genMBP(String pref, int aFermer, int reste){
12 ▼
            //TO COMPLETE
13
14
15
   }
```

	Test	Résultat attendu	
~	GenMBP.genMBP(0)		~
×	GenMBP.genMBP(1)	()	×

		Test	Résultat attendu	
	×	GenMBP.genMBP(2)	()() (())	×
ĺ	×	GenMBP.genMBP(3)	()()() ()(()) (())() (()()) ((()))	×

Votre code doit réussir tous les tests pour gagner des points. Recommencer.

Solution de l'auteur de la question (Java):

```
1 v public class GenMBP {
         private static final String OPENING = "(";
private static final String CLOSING = ")";
 2 🔻
 3
         private static final String SEP = " ";
 4
 5
         public static void genMBP(int n){
 6 .
 7
              genMBP("",0,2*n);
 8
 9
         private static void genMBP(String pref, int aFermer, int reste){
10 •
11 ▼
              if (reste == 0){
                  System.out.print(pref + SEP);
12
13
                  return;
14
         if (0 < aFermer) genMBP(pref+CLOSING, aFermer-1, reste-1);</pre>
15
         if (aFermer+1 < reste) genMBP(pref+OPENING,aFermer+1,reste-1);</pre>
16
17
18
19
    }
20
21
22
23
24
```

Incorrect

Note pour cet envoi: 0,00/1,00.

Incorrect

Note de 0,00 sur 1,00

QCM entrainement, def inductives: Ecrire une methode Java de signature

Aller à...

Par exemple:

Test	Résultat	
sum(new int[]{5,11,3},8)	true	
sum(new int[]{5,11,-3},14)	false	

Réponse: (régime de pénalités : 10, 20, ... %)

Réinitialiser la réponse

```
public static boolean sum(int[] tab, int s) {
    return sum(tab, tab.length, s);
}

private static boolean sum(int[] tab, int i, int s) {//to complete return true;
}
```

	Test	Résultat attendu	Résultat obtenu	
~	sum(new int[]{5,11,3},8)	true	true	~
~	sum(new int[]{5,11,-3},13)	true	true	~
x sum(new int[]{5,11,-3},14)	false	true	×	
~	sum(new int[]{5,11,-3},0)	true	true	~

Votre code doit réussir tous les tests pour gagner des points. Recommencer.

Montrer les différences

Solution de l'auteur de la question (Java):

```
1 v     public static boolean sum(int[] tab, int s) {
```

```
return sum(tab, tab.length-1, s);

return sum(tab, tab.length-1, s);

private static boolean sum(int[] tab, int n, int s) {
    if (s == 0) return true;
    if (n<0) return false;
    return sum(tab,n-1,s) || sum(tab,n-1,s-tab[n]);
}
</pre>
```

Incorrect

Note pour cet envoi: 0,00/1,00.