UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/564,178	06/26/2006	Gi-Seon Nam	4949-0012	7866
	7590 11/13/200 MAN HAM & BERN		EXAMINER	
1700 DIAGONAL ROAD SUITE 300 ALEXANDRIA, VA 22314			MORRIS, JOHN J	
			ART UNIT	PAPER NUMBER
			2629	
			MAIL DATE	DELIVERY MODE
			11/13/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)
	10/564,178	NAM ET AL.
Office Action Summary	Examiner	Art Unit
	John Morris	2629
The MAILING DATE of this communication app Period for Reply	pears on the cover sheet with the c	correspondence address
A SHORTENED STATUTORY PERIOD FOR REPL WHICHEVER IS LONGER, FROM THE MAILING D - Extensions of time may be available under the provisions of 37 CFR 1.1 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period - Failure to reply within the set or extended period for reply will, by statute Any reply received by the Office later than three months after the mailin earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 136(a). In no event, however, may a reply be tirwill apply and will expire SIX (6) MONTHS from e, cause the application to become ABANDONE	N. nely filed the mailing date of this communication. D (35 U.S.C. § 133).
Status		
Responsive to communication(s) filed on <u>26 A</u> This action is FINAL . 2b) ☑ This 3) ☐ Since this application is in condition for alloward closed in accordance with the practice under <i>B</i> .	s action is non-final. nce except for formal matters, pro	
Disposition of Claims		
4) ☐ Claim(s) 1-35 is/are pending in the application 4a) Of the above claim(s) is/are withdra 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-35 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/o	wn from consideration.	
9) The specification is objected to by the Examine 10) The drawing(s) filed on is/are: a) accomposed as a specific at any objection to the Replacement drawing sheet(s) including the correct	cepted or b) objected to by the drawing(s) be held in abeyance. See	e 37 CFR 1.85(a).
11)☐ The oath or declaration is objected to by the E	xaminer. Note the attached Office	Action or form PTO-152.
Priority under 35 U.S.C. § 119		
 12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority document 2. Certified copies of the priority document 3. Copies of the certified copies of the priority application from the International Burea * See the attached detailed Office action for a list 	ts have been received. ts have been received in Applicati ority documents have been receive u (PCT Rule 17.2(a)).	ion No ed in this National Stage
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail D: 5) Notice of Informal F 6) Other:	ate

DETAILED ACTION

Response to Arguments

Applicant's arguments with respect to claims 1-32 have been considered but are moot in view of the new ground(s) of rejection.

In regards to claims 1, 14, 27, and 32 the applicant argues that Yu does not teach high resolution picture data. The examiner respectfully disagrees. Yu teaches receiving picture data that's resolution is higher than the specified device; therefore the picture is high resolution (Yu, column 7, lines 1-25). Here Yu gives the example of receiving a 640 x 480 picture to display on a 70 x 60 display.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1, 8-10, 22-24, 30, and 33 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yu et al. (US Pat# 6684087 B1/ or "Yu" hereinafter) in view of Nagata et al. (US Pat# 6701017 B1 "Nagata" hereinafter) and Sano et al. (US Pub# 20020196970 A1/ or "Sano" hereinafter).

For **claim 1**, Yu teaches a mobile communication terminal configured to display a high resolution picture, comprising a wireless communication unit configured to receive

Art Unit: 2629

high resolution picture data through a mobile communication network (Yu, column 3, lines 9-20). Yu teaches receiving the image wirelessly from a server (Yu, Figure 1). Yu also teaches display the received image on the mobile device in a plurality of unit blocks with indexes to each block (Yu, column 3, lines 9-20). Yu teaches memory for storing the picture data (Yu, figure 3b). Yu teaches a storing unit configured to generate indexes of each of the divided unit blocks (Yu, column 8, lines 18-32, and figure 3a-3b), the storing unit further configured to generate a file converted into a picture file format including the picture data and indexes of each unit block (Yu, column 8, lines 18-32, and figure 3a-3b), and further configured to store the converted file in the converted file database (Yu, column 8, lines 18-32, and figure 3a-3b). Here Yu teaches the image being divided into a number of sub areas and displayed on the screen, each with an associated index. In order for the display to properly display the sub areas it is obvious that the picture data and indexes are generated and stored because this is required for the device to work. Yu teaches a picture data processing unit configured to receive the picture data in picture file format (Yu, column 7, lines 1-25), to extract a minimum number of unit blocks using index information of the picture file formatted data (Yu, column 7, lines 1-25, figure 5 and 7) and output a partial picture based upon the minimum number of unit blocks data (Yu, column 7, lines 1-25, figure 5 and 7). Yu teaches a display unit configured to display the partial picture (Yu, figure 2). Yu teaches a selecting unit for selecting the unit blocks to be outputted to the display and extracting the selected block by using the index information (Yu, column 7, lines 1-56).

Art Unit: 2629

Yu does not teach a format converting unit within the mobile device; however, in the same field of endeavor, Sano teaches a format converting unit (which may or may not be housed within a mobile device) that divides the image into blocks (Sano, page 3, paragraph [0032]). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Sano because both deal with images and the addition of the format converting unit could reduce the file size of the image allowing less memory to be used to store the image.

Page 4

Yu and Sano do not teach a scroll action operates to change a position of the partial picture within the high resolution picture; however, in the same field of endeavor, Nagata teaches a scroll action operates to change a position of the partial picture within the high resolution picture (Nagata, column 13 line 65 – column 14 line 7). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Nagata because this would allow for the user to view enlarged portions of the picture.

For **claim 8**, Sano teaches compressing each block individually (Sano, page 3, paragraph [0032]). Sano teaches that this technique is beneficially in memory reduction and therefore it is obvious that the compressed blocks are stored in memory.

For **claim 9**, Sano teaches decompressing each block individually (Sano, page 3, paragraph [0032]).

Art Unit: 2629

For **claim 10**, Yu teaches picture information containing the size of display screen and unit blocks (Yu, Column 2, lines 10-25). Yu teaches reducing the size of the image to fit into the screen of the mobile device and then inherently dividing the image into a number of sub areas, therefore, picture information is being used that contains the size of the display screen and unit blocks.

Page 5

Yu does not teach a picture header including the size of the whole picture; however, in the same field of endeavor, Sano teaches using JPEG images (Sano, page 2, paragraph [0027]). It is well known in the art that a JPEG image may include header information including the size of the whole picture. Sano also teaches that each block has its on header (Sano, page 2, paragraph [0024]). It would have been an obvious matter of design choice to have the storing unit produce the header since such a modification only requires a mere change of location of the software.

For **claim 22**, Yu teaches receiving the image wirelessly from a server (Yu, Figure 1). Yu also teaches display the received image on the mobile device in a plurality of unit blocks with indexes to each block (Yu, column 3, lines 9-20). Yu teaches memory for storing the picture data (Yu, figure 3b).

Yu does not teach a format converting unit within the mobile device; however, in the same field of endeavor, Sano teaches a format converting unit (which may be housed within a mobile device) that divides the image into blocks (Sano, page 3, paragraph [0032]). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Sano because both deal with images and the addition of

Page 6

Art Unit: 2629

Sano could help reduce the file size of the image allowing less memory to be used to store the image.

For **claim 23**, Yu teaches receiving the image wirelessly from a server (Yu, Figure 1). Yu also teaches display the received image on the mobile device in a plurality of unit blocks with indexes to each block (Yu, column 3, lines 9-20). Yu teaches memory for storing the picture data (Yu, figure 3b). Yu teaches this new picture file displayed (Yu, figure 5b).

Yu does not teach a format converting unit within the mobile device; however, in the same field of endeavor, Sano teaches a format converting unit (which may be housed within a mobile device) that divides the image into blocks (Sano, page 3, paragraph [0032]).

For **claim 24**, Sano teaches compressing each block individually (Sano, page 3, paragraph [0032]). It is obvious that this step is performed after the picture data is divided into blocks because this is necessary to compress each block individually.

For **claim 30**, Sano teaches compressing each block individually (Sano, page 3, paragraph [0032]). Sano teaches that this technique is beneficially in memory reduction and therefore it is obvious that the compressed blocks are stored in memory. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify

Art Unit: 2629

Yu with Sano because both deal with images and the addition of Sano could help reduce the file size of the image allowing less memory to be used to store the image.

For **claim 33**, Sano teaches compressing each block individually (Sano, page 3, paragraph [0032]). It would have been obvious to do this after dividing the picture data since it is necessary to be divided to compress each block individually. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Sano because both deal with images and the addition of Sano could help reduce the file size of the image allowing less memory to be used to store the image.

1. Claims 2-5, 11-13, 15, 16, 17, 18, 21, 25-26, 28, 29, 31, 34, and 35 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yu et al. (US Pat# 6684087 B1/ or "Yu" hereinafter) in view of Nagata et al. (US Pat# 6701017 B1 published 08/12/1999/ or "Nagata" hereinafter), Sano et al. (US Pub# 20020196970 A1/ or "Sano" hereinafter) and Lim (US Pat# 7233807 B2).

For **claim 2**, Yu teaches a memory configured to store the picture data and the picture in picture file format including a plurality of unit blocks and indexes (Yu, figure 3b), the memory further including: Yu teaches a selecting unit for selecting the unit blocks to be outputted to the display and extracting the selected block by using the index information (Yu, column 7, lines 1-56).

Yu does not teach a frame buffer; however, in the same field of endeavor, Lim teaches a frame buffer for buffering the picture that will be outputted to the display unit (Lim, column 13). It would have been obvious that the frame buffer could be either the decoding frame buffer or the screen frame buffer since the buffer itself does not change. Lim teaches buffering the picture that will be outputted to the display (Lim, column 13). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of the buffer could reduce the amount of time waiting for an image to load.

For **claim 3**, Yu does not teach decompressing the image; however, in the same field of endeavor, Lim teaches the image processor decompressing the image (Lim, column 11, lines 12-34). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and decompressing the image can restore the image to a better quality.

For **claim 4**, Yu teaches picture information containing the size of display screen and unit blocks (Yu, Column 2, lines 10-25). Yu teaches reducing the size of the image to fit into the screen of the mobile device and then inherently dividing the image into a number of sub areas, therefore, picture information is being used that contains the size of the display screen and unit blocks.

Yu does not teach a picture header including the size of the whole picture; however, in the same field of endeavor, Lim teaches using JPEG images (Lim, column

Art Unit: 2629

Page 9

12, lines 55-61). It is well known in the art that a JPEG image may include header information including the size of the whole picture. Lim also teaches using screen data and scaling the image based on specification of the display unit (Lim, column 11, lines 12-34). Lim teaches the image processor generating a thumbnail picture and displaying the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format or else the processor would not have been able to generate nor display the thumbnail. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the use of JPEG images can take up less memory.

For **claim 5**, Yu does not teach picture thumbnails; however, in the same field of endeavor, Lim teaches the image processor generating a thumbnail picture and displaying the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format or else the processor would not have been able to generate nor display the thumbnail. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and generating a thumbnail can help the user select the image without have to wait for full size images to load.

Art Unit: 2629

For **claim 11**, Yu and Sano do not teach picture thumbnails; however, in the same field of endeavor, Lim teaches the image processor generating a thumbnail picture and displaying the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format. It would have been an obvious matter of design choice to have the storing unit produce the supplementary information used for the thumbnail since such a modification only requires a mere change of location of the software. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu and Sano with Lim because all deal with images and generating a thumbnail image could assist the user in selecting the correct image while using less bandwidth and memory for the larger size images.

For **claim 12**, Yu and Sano do not teach an external input port; however, in the same field of endeavor, Lim teaches an external input port (Lim, column 12, lines 25-29). Lim teaches using an external camera; therefore there must be an external input port. It would have been obvious to convert, index, and store the image from the external camera because the mobile terminal is still receiving an image, only from a different device. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu and Sano with Lim because all deal with images and the addition of Lim could assist the user in selecting the correct image while using less bandwidth and memory for the larger size images.

Art Unit: 2629

Claim 13 is rejected upon the same grounds as claim 12.

For **claim 15**, Yu teaches picture information containing the size of display screen and unit blocks (Yu, Column 2, lines 10-25). Yu teaches reducing the size of the image to fit into the screen of the mobile device and then inherently dividing the image into a number of sub areas; therefore, picture information is being extracted and used.

Yu does not teach a picture header including the size of the whole picture; however, in the same field of endeavor, Lim teaches using JPEG images (Lim, column 12, lines 55-61). It is well known in the art that a JPEG image may include header information including the size of the whole picture. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the use of JPEG images can take up less memory.

For **claim 16,** Yu does not teach picture thumbnails; however, in the same field of endeavor, Lim teaches the image processor generating a thumbnail picture and displaying the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format or else the processor would not have been able to generate nor display the thumbnail. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and generating a

Art Unit: 2629

thumbnail can help the user select the image without have to wait for full size images to load.

For **claim 17**, Yu teaches a memory configured to store the picture data and the picture in picture file format including a plurality of unit blocks and indexes (Yu, figure 3b), the memory further including: Yu teaches a selecting unit for selecting the unit blocks to be outputted to the display and extracting the selected block by using the index information (Yu, column 7, lines 1-56).

Yu does not teach a frame buffer; however, in the same field of endeavor, Lim teaches a frame buffer for buffering the picture that will be outputted to the display unit (Lim, column 13). It would have been obvious that the frame buffer could be either the decoding frame buffer or the screen frame buffer since the buffer itself does not change. Lim teaches buffering the picture that will be outputted to the display (Lim, column 13). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of the buffer could reduce the amount of time waiting for an image to load.

For **claim 18**, Yu does not teach decompressing the image; however, in the same field of endeavor, Lim teaches the image processor decompressing the image (Lim, column 11, lines 12-34). It would have been obvious to perform the decompressing after extracting the data because the processor would need the data so it can decompress it and before buffering the picture data because buffering can be used to reduce any delays

Art Unit: 2629

when displaying the image, therefore decompressing after buffering would negate some of the benefits of buffering.

Page 13

For **claim 25**, Yu teaches picture information containing the size of display screen and unit blocks (Yu, Column 2, lines 10-25). Yu teaches reducing the size of the image to fit into the screen of the mobile device and then inherently dividing the image into a number of sub areas, therefore, picture information is being.

Yu does not teach a picture header including the size of the whole picture; however, in the same field of endeavor, Lim teaches using JPEG images (Lim, column 12, lines 55-61). It is well known in the art that a JPEG image may include header information including the size of the whole picture. It would have been an obvious matter of design choice to generate the picture header after dividing the picture data into a plurality of blocks because the size of the picture and blocks would need to be known before and after the picture is divided. It would have been obvious to do this before generating the converted file because the picture header is needed to generate the complete converted file. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu and Sano with Lim because all deal with images and the addition of Lim could assist the user in selecting the correct image while using less bandwidth and memory for the larger size images.

For **claim 26**, Yu does not teach picture thumbnails; however, in the same field of endeavor, Lim teaches the image processor generating a thumbnail picture and displaying

Art Unit: 2629

the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format or else the processor would not have been able to generate nor display the thumbnail. It would have been an obvious matter of design choice to generate the thumbnail after dividing the picture data into a plurality of blocks because the thumbnail could be generated before or after the picture is divided. It would have been obvious to do this before generating the converted file because the supplementary information is needed to generate the complete converted file. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu and Sano with Lim because all deal with images and the addition of Lim could assist the user in selecting the correct image while using less bandwidth and memory for the larger size images.

For **claim 28**, Yu teaches picture information containing the size of display screen and unit blocks (Yu, Column 2, lines 10-25). Yu teaches reducing the size of the image to fit into the screen of the mobile device and then inherently dividing the image into a number of sub areas; therefore, picture information is being extracted and used.

Yu does not teach a picture header including the size of the whole picture; however, in the same field of endeavor, Lim teaches using JPEG images (Lim, column 12, lines 55-61). It is well known in the art that a JPEG image may include header information including the size of the whole picture. It would have been an obvious matter of design choice to have the storing unit produce the header since such a modification only requires a mere change of location of the software. It would have been

Art Unit: 2629

obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of Lim could help reduce the size of the picture file.

For **claim 29**, Yu does not teach picture thumbnails; however, in the same field of endeavor, Lim teaches the image processor generating a thumbnail picture and displaying the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format or else the processor would not have been able to generate nor display the thumbnail. It would have been an obvious matter of design choice to have the storing unit produce the header since such a modification only requires a mere change of location of the software. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of Lim could help reduce the size of the picture file.

For **claim 31**, Yu does not teach decompressing the image; however, in the same field of endeavor, Lim teaches the image processor decompressing the image (Lim, column 11, lines 12-34). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of Lim could help reduce the size of the picture file.

Art Unit: 2629

For **claim 34**, Yu teaches picture information containing the size of display screen and unit blocks (Yu, Column 2, lines 10-25). Yu teaches reducing the size of the image to fit into the screen of the mobile device and then inherently dividing the image into a number of sub areas, therefore, picture information is being.

Page 16

Yu does not teach a picture header including the size of the whole picture; however, in the same field of endeavor, Lim teaches using JPEG images (Lim, column 12, lines 55-61). It is well known in the art that a JPEG image may include header information including the size of the whole picture. It would have been an obvious matter of design choice to generate the picture header after dividing the picture data into a plurality of blocks because the size of the picture and blocks would need to be known before and after the picture is divided. It would have been obvious to do this before generating the converted file because the picture header is needed to generate the complete converted file. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of Lim could help reduce the size of the picture file.

For **claim 35**, Yu does not teach picture thumbnails; however, in the same field of endeavor, Lim teaches the image processor generating a thumbnail picture and displaying the information on the display unit (Lim, column 12, lines 55-61). It is obvious that the image processor extracted the supplementary information of the picture file format or else the processor would not have been able to generate nor display the thumbnail. It would have been an obvious matter of design choice to generate the thumbnail after dividing the

Art Unit: 2629

picture data into a plurality of blocks because the thumbnail could be generated before or after the picture is divided. It would have been obvious to do this before generating the converted file because the supplementary information is needed to generate the complete converted file. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Lim because both deal with display images on mobile devices and the addition of Lim could help reduce the size of the picture file.

2. Claims 14, 27, and 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yu et al. (US Pat# 6684087 B1/ or "Yu" hereinafter) in view of Nagata et al. (US Pat# 6701017 B1 "Nagata" hereinafter).

For **claim 14,** Yu teaches receiving high resolution picture data through a mobile communications network (Yu, column 3, lines 9-20); formatting the received picture data into picture file formatted data including a plurality of unit blocks of picture data and index information (Yu, column 7, lines 1-25, figure 5 and 7); extracting a minimum number of unit blocks of picture data from the picture file formatted data (Yu, column 7, lines 1-25, figure 5 and 7); generating a partial picture using the extracted minimum number of unit blocks and the index information (Yu, column 7, lines 1-25, figure 5 and 7); and outputting the partial picture to the display unit (Yu, column 7, lines 1-25, figure 5 and 7); and extracting corresponding unit blocks of picture data from the picture file formatted data in a movement direction by using the index information, and outputting a

Art Unit: 2629

Page 18

position-moved picture based on a scroll action generated during the display of the picture (Yu, column 7, lines 1-25, figure 5 and 7).

Yu does not teach that the preprocessing is done in the mobile device; however, this would have been obvious to one of ordinary skill in the art at the time of the invention because doing so would save cost for the company because they would no longer have to pay for the servers to do this preprocessing.

Yu does not teach a scroll action operates to change a position of the partial picture within the high resolution picture; however, in the same field of endeavor, Nagata teaches a scroll action operates to change a position of the partial picture within the high resolution picture (Nagata, column 13 line 65 – column 14 line 7). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Nagata because this would allow for the user to view enlarged portions of the picture.

For **claim 27**, Yu teaches a system configured to convert a picture file format, the system comprising a format converting server connected to a packet data service node and a picture providing server of a mobile communication system (Yu, figure 1, item 104, 100, or 110, column 7, lines 1-23), the system configured to display the picture data format from the picture providing server in a mobile communication system, the mobile communication terminal comprising: a base transceiver system configured to wirelessly communicate with the mobile communication terminal (Yu, column 3, lines 53-67, figure 1); a base station controller configured to control the base transceiver system(Yu, column

Art Unit: 2629

3, lines 53-67, figure 1); a packet data service node connected to the base station controller and configured to provide data services to the mobile communication terminal (Yu, column 3, lines 53-67, figure 1); and a picture providing server configured to provide picture data to the mobile communication terminal through the packet data service node (Yu, figure 1) wherein the format converting server comprises: a received file database configured to store picture data from at least one of the mobile communication terminal and picture providing server, and a converted file database configured to store a format-converted file of the high resolution picture data (Yu, column 7, lines 1-23, and figure 3a). Here, Yu teaches a server that receives an image (in high resolution 640 x 480) in an original format and then processes it and then sends it to a mobile device. It is obvious that converted file is stored when it is sent to the mobile device; therefore it is stored in a converted file database. Yu teaches a picture data receiving unit configured to receive the picture data from the picture providing server (Yu, column 7, lines 1-25, figure 1); a picture dividing unit configured to divide the picture of the picture data into a plurality of unit blocks (Yu, column 8, lines 18-32, and figure 3a-3b); a storing unit configured to generate indexes of each of the divided unit blocks (Yu, column 8, lines 18-32, and figure 3a-3b), the storing unit further configured to generate a file converted into a picture file format including the picture data and indexes of each unit block (Yu, column 8, lines 18-32, and figure 3a-3b), and further configured to store the converted file in the converted file database (Yu, column 8, lines 18-32, and figure 3a-3b). Here Yu teaches the image being divided into a number of sub areas and displayed on the screen, each with an associated index. In order for the display

Art Unit: 2629

to properly display the sub areas it is obvious that the picture data and indexes are generated and stored because this is required for the device to work. Yu also teaches a converted file transmitting unit configured to transmit the converted file to the mobile communication terminal or picture providing server (Yu, figure 3a-3b).

Page 20

Yu does not teach that the preprocessing is done in the mobile device; however, this would have been obvious to one of ordinary skill in the art at the time of the invention because doing so would save cost for the company because they would no longer have to pay for the servers to do this preprocessing.

Yu does not teach a scroll action operates to change a position of the partial picture within the high resolution picture; however, in the same field of endeavor, Nagata teaches a scroll action operates to change a position of the partial picture within the high resolution picture (Nagata, column 13 line 65 – column 14 line 7). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Nagata because this would allow for the user to view enlarged portions of the picture.

For **claim 32**, Yu teaches a format converting server (Yu, figure 1, item 114), the format converting server connected to a packet data service node and a picture providing server of a mobile communication system (Yu, figure 1, item 104, 100, or 110, column 7, lines 1-23) and converting the format of the picture data (Yu, column 8, lines 18-32, and figure 3a-3b), the mobile communication system comprising: a base transceiver system configured to wirelessly communicate with the mobile communication terminal (Yu, column 3, lines 53-67, figure 1); a base station controller configured to control the base

transceiver system(Yu, column 3, lines 53-67, figure 1); a packet data service node connected to the base station controller and configured to provide data services to the mobile communication terminal (Yu, column 3, lines 53-67, figure 1); and a picture providing server configured to provide picture data to the mobile communication terminal through the packet data service node (Yu, figure 1) the method comprising: Yu also teaches dividing, at the format converting server, picture data received from the mobile communication terminal or picture providing server: into a plurality of unit blocks (Yu, column 8, lines 18-32, and figure 3a-3b); generating indexes that provide access to each divided unit block of picture data (Yu, column 8, lines 18-32); and generating a file converted into picture file format (Yu, column 7, lines 1-23, column 8, lines 18-32).

Yu does not teach that the preprocessing is done in the mobile device; however, this would have been obvious to one of ordinary skill in the art at the time of the invention because doing so would save cost for the company because they would no longer have to pay for the servers to do this preprocessing.

Yu does not teach a scroll action operates to change a position of the partial picture within the high resolution picture; however, in the same field of endeavor, Nagata teaches a scroll action operates to change a position of the partial picture within the high resolution picture (Nagata, column 13 line 65 – column 14 line 7). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify Yu with Nagata because this would allow for the user to view enlarged portions of the picture.

Art Unit: 2629

3. Claims 19 and 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yu et al. (US Pat# 6684087 B1/ or "Yu" hereinafter) in view of Nagata et al. (US Pat# 6701017 B1 "Nagata" hereinafter) and Minami (US Pub# 20030117407 A1).

For **claim 19**, Yu does not teach calculating the movement position in accordance with generation of scroll; however, in the same field of endeavor, Minami teaches calculating movement position in accordance with generation of scroll action and reselecting image blocks for displaying and deciding whether picture data exists in the buffer and displaying the picture (Minami, page 4, paragraph [0048] – paragraph [0050]). It would have been obvious to one of ordinary skill in the art to modify Yu with Minami because both deal with image displays and the addition of calculating the movement position would improve the usability by decreasing the latency to view parts of the image.

For **claim 20**, Yu does not teach calculating the movement position of scrolling; however, in the same field of endeavor, Minami teaches extracting block picture data using index information when the predicted partial image is not in the buffer and storing the image blocks (Minami, page 4, paragraph [0050]).

4. Claim 21 is rejected under 35 U.S.C. 103(a) as being unpatentable over Yu et al. (US Pat# 6684087 B1/ or "Yu" hereinafter) in view of Nagata et al. (US Pat# 6701017 B1 "Nagata" hereinafter), Minami (US Pub# 20030117407 A1) and Lim (US Pat# 7233807 B2).

For claim 21, Yu does not teach decompressing the image; however, in the same field of endeavor, Lim teaches the image processor decompressing the image (Lim, column 11, lines 12-34). It would have been obvious to perform the decompressing after extracting the data because the processor would need the data so it can decompress it and before correcting the decoding frame buffer because buffering can be used to reduce any delays when displaying the image, therefore decompressing after correcting the decoding the frame buffer would negate some of the benefits of buffering. It would have been obvious to one of ordinary skill in the art at the invention was made to modify Yu and Minami with Lim because all deal with the same subject matter and decompressing the image can restore the image to a better quality.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to John Morris whose telephone number is (571)270-7171. The examiner can normally be reached on Monday-Friday, 7am-3pm.

Art Unit: 2629

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Amr Awad can be reached on 571-272-7764. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Amr Awad/ Supervisory Patent Examiner, Art Unit 2629