Exercices Chapitre sur la Trigonométrie *

Diego Van Overberghe

14 mai 2020

Exercice 45

1. a) $\frac{\pi}{4} \times 8 = 2\pi$ Il faut donc multiplier par 8.

b) $\frac{\pi}{4} \times 12 = 3\pi$ Il faut donc multiplier par 12.

2. a) $5\pi = \pi + 2 \times 2\pi$

b) $27\pi = \pi + 13 \times 2\pi$

c) $59\pi = -\pi + 30 \times 2\pi$

Exercice 46

1. a) $\frac{\pi}{3}$ est associé au point A.

b) $-\frac{\pi}{2}$ est associé au point Q.

c) 4π est associé au point I.

d) $-\pi$ est associé au point P.

e) $-\frac{\pi}{4}$ est associé au point M.

f) $\frac{13\pi}{6}$ est associé au point A.

g) $-\frac{2\pi}{3}$ est associé au point K.

h) $\frac{5\pi}{4}$ est associé au point H.

2. $B:\frac{\pi}{4}$; $D:\frac{2\pi}{3}$; $E:\frac{3\pi}{4}$; $F:\frac{5\pi}{6}$; $G:\frac{7\pi}{6}$; $H:\frac{5\pi}{4}$; $L:\frac{5\pi}{3}$; $N:\frac{11\pi}{6}$

Exercice 47

a) Faux. 0 est associé au point (1;0), et π est associé au point (–1;0)

b) Vrai.
$$\frac{180}{\pi} \times \frac{2\pi}{5} = 72^{\circ}$$

c) Vrai.

d) Faux.
$$\frac{11\pi}{6} < 2\pi$$

e) Vrai. Ajoutter $k \times 2\pi$, avec $k \in \mathbb{Z}$, ne fait que ajoutter une rotation entière, vu que le périmètre du cercle trigonométrique est 2π

f) Faux. 103° est associé au nombre $\frac{103\pi}{180}$

^{*}Page 202 du Manuel Hatier

- a) Le périmètre de la bobine est de 2π puisque son rayon est 1. Or $\frac{2019\pi}{2} = 1009\pi + \frac{\pi}{2}$ Soit $\frac{1014\pi}{2\pi} = 513$ tours complets.
- b) La première extremité se situe du côté droite du cercle. Après les 513 tours complets, il reste $\frac{\pi}{2}$ cm de fil. Ceci correspond à un angle de 90° en avant. L'autre éxtrémité du fil se situe donc du côté supérieur du cercle.

Exercice 52

- a) Faux. Chaque point du cercle trigonométrique est associé à une infinité de réels. Par exemple, le point 0 est associé au meme point que le point 2π
- b) Faux. Le point $\frac{\pi}{2}$ est associé au point de coordonnées (0;1), le point $-\frac{\pi}{2}$ est associé au point de coordonnées (0;-1)

2

Exercice 59

a)
$$\cos \frac{\pi}{3} = \frac{1}{2}$$
 et $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

b)
$$\cos -\frac{\pi}{2} = 0$$
 et $\sin -\frac{\pi}{2} = -1$

c)
$$\cos \frac{7\pi}{3} = \frac{1}{2}$$
 et $\sin \frac{7\pi}{3} = \frac{\sqrt{3}}{2}$

d)
$$\cos -\pi = -1$$
 et $\sin -\pi = 0$

e)
$$\cos -\frac{\pi}{4} = \frac{1}{2}$$
 et $\sin -\frac{\pi}{4} = -\frac{\sqrt{3}}{2}$

f)
$$\cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$$
 et $\sin \frac{5\pi}{6} = \frac{1}{2}$

g)
$$\cos 0 = 1$$
 et $\sin 0 = 1$

h)
$$\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$$
 et $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$

i)
$$\cos \frac{5\pi}{3} = \frac{1}{2}$$
 et $\sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$

j)
$$\cos \frac{3\pi}{2} = 0$$
 et $\sin \frac{3\pi}{2} = -1$

k)
$$\cos \frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$$
 et $\sin \frac{7\pi}{6} = -\frac{1}{2}$

1)
$$\cos -\frac{2\pi}{3} = -\frac{1}{2}$$
 et $\sin -\frac{2\pi}{3} = -\frac{\sqrt{3}}{2}$

- a) Le point se situera dans le sécteur 4.
- b) Le point se situera dans le sécteur 2.
- c) Le point se situera dans le sécteur 3.

- 1. a) Les points d'abscisse $\frac{1}{2}$ sont les points C et L. Ils sont associés aux réels $\frac{\pi}{3}$ et $-\frac{\pi}{3}$ réspéctivement. Leurs sinus sont égaux à $\frac{\sqrt{3}}{2}$ et à $-\frac{\sqrt{3}}{2}$ réspéctivement.
 - b) Les points d'abscisse $-\frac{\sqrt{2}}{2}$ sont les points E et H. Ils sont associés aux réels $\frac{3\pi}{4}$ et $-\frac{3\pi}{4}$ réspéctivement. Leurs sinus sont égaux à $\frac{\sqrt{2}}{2}$ et à $-\frac{\sqrt{2}}{2}$ réspéctivement.
- 2. a) Les points d'ordonée $\frac{1}{2}$ sont les points B et E. Ils sont associés aux réels $\frac{\pi}{4}$ et $\frac{3\pi}{4}$ réspéctivement. Leurs cosinus sont égaux à $\frac{\sqrt{3}}{2}$ et à $-\frac{\sqrt{3}}{2}$ réspéctivement.
 - b) Les points d'ordonée $-\frac{\sqrt{3}}{2}$ sont les points K et L. Ils sont associés aux réels $\frac{3\pi}{3}$ et $\frac{5\pi}{3}$ réspéctivement. Leurs cosinus sont égaux à $-\frac{1}{2}$ et à $\frac{1}{2}$ réspéctivement.

Exercice 63

- 1. La réponse correcte est la b. $-\frac{\sqrt{2}}{2}$
- 2. La réponse correcte est la a. -1
- 3. La réponse correcte est la c. $-\frac{1}{2}$
- 4. La réponse correcte est la a. $\frac{\pi}{3}$
- 5. La réponse correcte est la b. Les solutions sont : $-\frac{\pi}{2}$ et $\frac{\pi}{2}$

a)
$$\cos \frac{15\pi}{3} = \frac{1}{2}$$
 et $\sin \frac{15\pi}{3} = -\frac{\sqrt{3}}{2}$

b)
$$\cos -\frac{5\pi}{2} = -1$$
 et $\sin -\frac{5\pi}{2} = 0$

c)
$$\cos -\frac{9\pi}{4} = \frac{\sqrt{2}}{2}$$
 et $\sin -\frac{9\pi}{4} = -\frac{\sqrt{2}}{2}$

d)
$$\cos -\frac{28\pi}{3} = \frac{1}{2}$$
 et $\sin -\frac{28\pi}{3} = -\frac{\sqrt{3}}{2}$

e)
$$\cos -\frac{7\pi}{6} = \frac{\sqrt{3}}{2}$$
 et $\sin -\frac{7\pi}{6} = -\frac{1}{2}$

f)
$$\cos \frac{2018\pi}{4} = 0$$
 et $\sin \frac{2018\pi}{4} = 1$

a)
$$\cos \frac{101\pi}{6} = -\frac{\sqrt{3}}{2}$$
 et $\sin \frac{101\pi}{6} = \frac{1}{2}$

b)
$$\cos \frac{43\pi}{4} = -\frac{\sqrt{2}}{2}$$
 et $\sin \frac{43\pi}{4} = \frac{\sqrt{2}}{2}$

c)
$$\cos \frac{19\pi}{6} = \frac{\sqrt{3}}{2}$$
 et $\sin \frac{19\pi}{6} = \frac{1}{2}$

d)
$$\cos -\frac{25\pi}{4} = \frac{\sqrt{2}}{2}$$
 et $\sin -\frac{25\pi}{4} = -\frac{\sqrt{2}}{2}$

e)
$$\cos -\frac{21\pi}{2} = 0$$
 et $\sin -\frac{21\pi}{2} = -1$

f)
$$\cos -\frac{15\pi}{2} = 0$$
 et $\sin -\frac{15\pi}{2} = 1$

g)
$$\cos \frac{1981\pi}{3} = \frac{1}{2}$$
 et $\sin \frac{1981\pi}{3} = \frac{\sqrt{3}}{2}$

Exercice 65

a)
$$C = 1 + 0 + \frac{1}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{3} + 3}{2}$$

 $S = 0 + 1 + \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} + \frac{1}{2} = \frac{\sqrt{2} + \sqrt{3} + 3}{2}$

b) Les deux nombres sont égaux. Ceci est cohérent, vu que cos $\frac{\pi}{2} = \sin 0$, cos $\frac{\pi}{3} = \sin \frac{\pi}{6}$ et cos $\frac{\pi}{4} = \sin \frac{\pi}{4}$

Exercice 77

Tout d'Abord, $\forall x \in [-2\pi; 2\pi], -x \in [-2\pi; 2\pi]$. Ceci est vrai pour chaque fonction qui suit.

- a) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe \mathcal{C}_1 . Donc, $f_1(x) = f_1(-x)$, c'est-à-dire que la fonction est paire.
- b) On peut voir que l'origine est un point de symmétrie de la courbe \mathscr{C}_2 . Donc, $f_2(-x) = -f_2(x)$, c'est-à-dire que la fonction est impaire.
- c) La fonction f_3 est quelconque. Elle est ni paire, ni impaire.
- d) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe \mathcal{C}_4 . Donc, $f_4(x) = f_4(-x)$, c'est-à-dire que la fonction est paire.

Exercice 78

Tout d'Abord, $\forall x \in [-2\pi; 2\pi], -x \in [-2\pi; 2\pi]$. Ceci est vrai pour chaque fonction qui suit.

- a) On peut voir que l'origine est un point de symmétrie de la courbe \mathcal{C}_1 . Donc, $f_1(-x) = -f_1(x)$, c'est-à-dire que la fonction est impaire.
- b) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe \mathcal{C}_2 . Donc, $f_2(x) = f_2(-x)$, c'est-à-dire que la fonction est paire.
- c) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe \mathcal{C}_3 . Donc, $f_3(x) = f_3(-x)$, c'est-à-dire que la fonction est paire.

d) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe \mathcal{C}_4 . Donc, $f_4(x) = f_4(-x)$, c'est-à-dire que la fonction est paire.

FIGURE 1 – Représentation Graphique des Fonctions f, g, h et k

- a) 1) Il s'agit de la courbe rouge.
 - 2) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe rouge. Donc, f(-x) = f(x), c'est-à-dire que la fonction semble être paire.
 - 3) $f(-x) = \cos(-2x)$ $f(x) = \cos(2x) \iff f(x) = \cos(-2x) \iff f(-x) = f(x)$ La fonction est donc bien paire.
- b) 1) Il s'agit de la courbe verte.
 - 2) On peut voir que l'origine est un point de symmétrie de la courbe verte. Donc, g(-x) = -g(x), c'est-à-dire que la fonction semble être impaire.
 - 3) $g(-x) = \sin(-3x)$ $-g(x) = -\sin(3x) \iff -g(x) = \sin(-3x) \iff g(-x) = -g(x)$ la fonction est donc bien impaire
- c) 1) Il s'agit de la courbe bleue.
 - 2) On n'a pas l'impression que la fonction est paire ou impaire.
 - 3) $h(-x) = 2\sin(-x) 1 = -2\sin(x) 1 \neq h(x) \neq -h(x)$ La fonction est bien donc ni paire, ni impaire.
- d) 1) Il s'agit de la courbe bordeaux.
 - 2) On n'a pas l'impression que la fonction est paire ou impaire.
 - 3) $k(-x) = -x cos(-x) = -x cos(x) \neq k(x) \neq -k(x)$ La fonction est bien donc ni paire, ni impaire.

FIGURE 2 – Représentation Graphique des Fonctions f, g, h et k

- a) 1) Il s'agit de la courbe rouge.
 - 2) On peut voir que l'origine est un point de symmétrie de la courbe rouge. Donc, f(-x) = -f(x), c'est-à-dire que la fonction semble être impaire.
 - 3) $f(-x) = \cos(-x)\sin(-x)$ $-f(x) = -\cos(x)\sin(x) \iff -f(x) = \cos(-x)\sin(-x)$ $\iff f(-x) = -f(x)$ La fonction est bien impaire.
- b) 1) Il s'agit de la courbe verte.
 - 2) On peut voir que la droite x = 0 est un axe de symmétrie de la courbe verte. Donc, g(-x) = g(x), c'est-à-dire que la fonction semble être paire.
 - 3) $g(-x) = (\cos(-x))^2$ $g(x) = (\cos(x))^2 \iff g(x) = (\cos(-x))^2 \iff g(-x) = g(x)$ La fonction est donc bien paire.
- c) 1) Il s'agit de la courbe bleue.
 - 2) On peut voir que la droit x = 9 est un axe de symmétrie de la courbe bleue. Donc, h(-x) = h(x), c'est-à-dire que la fonction semble être paire.
 - 3) $h(-x) = (\sin(-x))^2$ $h(x) = (\sin(x))^2 \iff h(x) = (\sin(-x))^2 \iff h(-x) = h(x)$ La fonction est donc bien paire.
- d) 1) Il s'agit de la droite bordeaux.
 - 2) On peut voir que l'origine est un point de symmétrie de la courbe bordeaux. Donc, k(-x) = -k(x), c'est-à-dire que la fonction semble être impaire.
 - 3) $k(-x) = -x + \sin(-x)$ $-k(x) = -x \sin(x) \iff -k(x) = -x \sin(-x)$ $\iff k(-x) = -k(x)$ La fonction est bien impaire.

$$-\mathscr{C}_1 \longrightarrow f(x)$$

$$-\mathscr{C}_2 \longrightarrow h(x)$$

$$-\mathscr{C}_3 \longrightarrow g(x)$$

- 1) a) Vrai. $f(x+2k\pi) = f(x)$ avec $\{k \in \mathbb{Z} \mid x \in \mathbb{$
 - b) Vrai. Pour la même raison.
- 2) Vrai. Rajoutter deux à x revient à éffectuer un tour en plus du cercle trigonomérique, et ne change donc pas la valeur de f(x).

Exercice 88

a) Il semble que la période est autour de 6,2x. On observe par lecture graphique que g(x) semble compris entre 1 et 7.

b)
$$- g(x + y) = g(x)$$

$$\iff$$
 4+3cos(x+y) = 4+3cos(x)

$$\iff$$
 $\cos(x+y) = \cos(x)$

$$\iff$$
 $y = 2k\pi$ $k \in \mathbb{Z}$

La période est donc de $2k\pi$, avec k=1, c'est-à-dire $2\pi \approx 6.3$

$$-1 \le \cos(x) \le 1$$

$$\iff$$
 $-3 \le 3\cos(x) \le 3$

$$\iff$$
 1 \le 4 + 3 \cos(x) \le 70

La conjecture est vérifiée.