# 人工智能之深度学习

人脸识别

主讲人: Vincent Ying

## 课程要求

- 课上课下"九字"真言
  - 认真听, 善摘录, 勤思考
  - 多温故, 乐实践, 再发散
- 四不原则
  - 不懒散惰性,不迟到早退
  - 不请假旷课,不拖延作业
- 一点注意事项
  - 违反"四不原则",不推荐就业

## 课程内容

- 人脸识别概述
- MT CNN
- Face Net

- 人脸检测(Face Detection): 从待检测的图像中获取人脸所在位置的一项技术;
- 人脸匹配(Face Alignment): 从定位出的人脸上五官关键点坐标的一项技术;





• 人脸特征提取(Face Feature Extraction):将一张人脸图像转换为固定维度的特征向量的过程,这个向量具有表述这个人脸特征的能力。



• 人脸属性识别(Face Attribute):是识别出人脸的性别、年龄、姿态、表情等属性值的一种技术。



• 人脸对比(Face Compare): 衡量两个人脸之间相似度的算法,人脸对别是人脸特征提取出来的人脸特征基础上来进行的。



• 人脸验证(Face Verification): 通过输入的两个人脸特征,通过获取两个人脸特征之间的相似度,然后基于预设的阈值来比较来判断这两个人脸特征是否属于同一个人。



• 人脸识别/人脸检索(Face Recognition):通过输入的人脸特征,从数据库中找出与输入特征相似度最高的用户,然后进行用户信息判断。



- MTCNN(Multi-task Cascaded Convolutional Networks, 多任务级联卷积神经网络),将人脸区域检测和人脸关键点(为了做人脸对齐操作)放到一起,主体结构为级联结构,主要由三个子网络P-Net、R-Net以及O-Net构成。
  - P-Net(Proposal Networks): 候选框快速生成;
  - R-Net(Refine Networks): 高精度候选框过滤;
  - O-Net(Output Networks): 边框生成以及人脸关键点检测;
  - 图像金子塔、边框回归、非极大值抑制(NMS)等。
  - https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf





图像金字塔

R-Net、
Bounding Box、
NMS



P-Net、
Bounding Box、
NMS

O-Net、
Bounding Box、
NMS



Fig. 1. Pipeline of our cascaded framework that includes three-stage multi-task deep convolutional networks. Firstly, candidate windows are produced through a fast Proposal Network (P-Net). After that, we refine these candidates in the next stage through a Refinement Network (R-Net). In the third stage, The Output Network (O-Net) produces final bounding box and facial landmarks position.

- P-Net: Proposal Network,基本结构就是一个全卷积网络,对于上一步构建的图像金字塔,通过FCN进行初步的特征提取以及边框标定,并进行Bounding Box Regression回归调整边框位置以及NMS进行大部分窗口的过滤;
- P-Net是一个人脸区域的区域建议网络,属于一个浅层网络结构,目的是**为了快速的产生人脸候选框**,该结构最终会输出多张可能存在人脸的人脸区域,并将这些区域输入到R-Net中进行下一步处理。



三层简单的卷积网络三个分支:人脸分类、边框回归、关键点定位

- R-Net: Refine Networks,也属于简单的卷积网络结构,相比于P-Net来讲,增加一个全连接层,因此对于输入数据的筛选会更加严格。在图片经过P-Net后,会留下多个预测窗口,将所有预测窗口输入R-Net中,进一步过滤效果比较差的候选框,最终对选定的候选框使用Bounding Box Regression和NMS进一步优化结果。
- R-Net中输入的是具有一定可信度的人脸区域,输出为可信度相对来讲比较高的人脸区域,并且进行BBR和NMS优化。



三层卷积+一层全连接的网络三个分支:人脸分类、边框回归、关键点定位

- O-Net: Output Networks,基本结构是一个比较复杂的卷积神经网络,相比于P-Net和R-Net来讲,使用更加复杂的网络结构来保留更改的特征信息,从而对于得到人脸的区域定位以及最终的关键点坐标信息。
- O-Net和R-Net以及P-Net的结构类似,主要区别是使用更加复杂的网络对模型性能做优化。



四层卷积+一层全连接的网络三个分支:人脸分类、边框回归、关键点定位

- 对于CNN网络结构,影响网络性能因素的主要原因有两个:
  - 样本的多样性缺失会影响网络的鉴别能力;
  - 相比于其他的分类检测网络,人脸检测属于一个二分类,每一层不需要太多的filter。
- 结合上述原因,作者设计了每层的filter数量,将5\*5的卷积更换为两个3\*3的卷积核,这样相比于原始网络主要具有显著减少计算量、提升网络性能的效果,同时在网络中将所有的激活函数更改为PReLU。



$$f(y) = y$$

$$f(y) = ay$$

$$ReLU(x) = \begin{cases} x & if x > 0 \\ 0 & if x \le 0 \end{cases}$$

$$PReLU(x_i) = \begin{cases} x_i & if \ x_i > 0 \\ a_i x_i & if \ x_i \le 0 \end{cases}$$

i 表示不同的通道

• Face Classification: 二分类问题(是否属于人脸区域),使用交叉熵损失函数。

$$L_i^{det} = -(y_i^{det} \log(p_i) + (1 - y_i^{det})(1 - \log(p_i)))$$

p\_i为网络预测当前区域属于人脸区域的概率值; y\_i\_det为当前区域实际上是否包含人脸, 0表示不包含,1表示包含

• Bounding Box Regression: 直接预测边框坐标,这里采用直接预测边框坐标的主要目的是为了快速的获取边框,属于一个回归问题,故采用MSE距离损失函数。

$$L_i^{box} = \left\| \hat{y}_i^{box} - y_i^{box} \right\|_2^2$$

预测边框: (x, y, height, width)

实际边框: (x, y, height, width)

• Facial landmark localization:和BBR一样,Facial landmark localization的也是一个回归模型,其主要预测值为5点的坐标,分别为: left eye、right eye、nose、left mouth cornet、right mouth cornet;总共由5个坐标值组成的10维向量。

$$L_i^{landmark} = \|\hat{y}_i^{landmark} - y_i^{landmark}\|_2^2$$
 实际坐标

• MTCNN中模型的损失函数是由分类、回归以及定位三部分损失线性组合而来的。

alpha阈值加大的主要原因是的主要原因是位越的了让定位越不够。为了证明的一个不可能的一个不可能的一个不可能的一个不可能。但是一个不可能的一个不可能的一个不可能。

$$\min \sum_{i=1}^{N} \sum_{j \in \{det, box, landmark\}} \alpha_j \beta_i^j L_i^j \tag{4}$$

where *N* is the number of training samples.  $\alpha_j$  denotes on the task importance. We use  $(\alpha_{det} = 1, \alpha_{box} = 0.5, \alpha_{landmark} = 0.5)$  in P-Net and R-Net, while  $(\alpha_{det} = 1, \alpha_{box} = 0.5, \alpha_{landmark} = 1)$  in O-Net for more accurate facial landmarks localization.  $\beta_i^j \in \{0,1\}$  is the sample type indicator. In this case, it is natural to employ stochastic gradient descent to train the CNNs.

- Online Hard Sample Mining(在线难样本挖掘算法):
  - 在模型训练的过程中,对于每个批次的样本而言,不是使用所有样本的 损失进行模型更新的,而是使用70%的损失函数值最高的样本来反向传 播的,原因是:好的样本对于网络的提升效果有限,只有那些难样本更 加有效训练,进行反向传播之后才可以更高的提升网络效果。

- Negatives: <------ 分类模型
  - IoU < 0.3
- Positives: <</li>
  - IoU > 0.65
- Part Faces
  - IoU: [0.4,0.65]
- Landmark Faces: <

faces labeld 5 landmark's positions

回归模型

定位模型



(c) Result on FDDB for face detection



(d) Result on AFLW for face alignment

- FaceNet(A Unified Embedding for Face Recognition and Clustering),
   https://arxiv.org/pdf/1503.03832.pdf
- 通过 CNN 将人脸映射到欧式空间的特征向量上,计算不同图片人脸特征的距离,通过相同个体人脸的距离, 总是小于不同个体人脸的距离这一先验知识训练网络。





Figure 2. **Model structure.** Our network consists of a batch input layer and a deep CNN followed by  $L_2$  normalization, which results in the face embedding. This is followed by the triplet loss during training.

存在特征向量的维度选择问题,维度约小计算越快,但是太小的话很难区分不同图片;维度越大越容易区分不同图片,但是太大训练模型不易收敛,且测试时计算慢,占用空间大。作者实验证明 128 维的特征能够较好的平衡这个问题。

| #dims | VAL              |
|-------|------------------|
| 64    | $86.8\% \pm 1.7$ |
| 128   | $87.9\% \pm 1.9$ |
| 256   | $87.7\% \pm 1.9$ |
| 512   | $85.6\% \pm 2.0$ |

Table 5. **Embedding Dimensionality.** This Table compares the effect of the embedding dimensionality of our model NN1 on our hold-out set from section 4.1. In addition to the VAL at 10E-3 we also show the standard error of the mean computed across five splits.

- 三元损失函数(Triplet Loss)
  - 二元损失函数的目标是把相同个体的人脸特征映射到空间中是距离近的点。
  - 三元损失函数目标是映射到相同的区域,使得同一个体内距离小于不同个体间距离(聚类)。



Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.





- 损失函数:
  - 实际上不是使用所有样本来计算损失,在同一个类别中,选择距离最远的样本(hard positive);在不同类别中,选择距离最近的样本(hard negative)的距离来构造损失函数。



• 网络结构: 基于VGGNet

| layer  | size-in                    | size-out                   | kernel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | param | FLPS<br>115M |  |
|--------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|--|
| conv1  | 220×220×3                  | $110 \times 110 \times 64$ | $7 \times 7 \times 3, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9K    |              |  |
| pool1  | $110 \times 110 \times 64$ | $55 \times 55 \times 64$   | $3\times3\times64,2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     |              |  |
| rnorm1 | $55 \times 55 \times 64$   | $55 \times 55 \times 64$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |              |  |
| conv2a | $55 \times 55 \times 64$   | $55 \times 55 \times 64$   | $1\times1\times64,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4K    | 13M          |  |
| conv2  | $55 \times 55 \times 64$   | $55 \times 55 \times 192$  | $3\times3\times64,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111K  | 335M         |  |
| rnorm2 | $55 \times 55 \times 192$  | $55 \times 55 \times 192$  | A STATE OF THE STA | 0     |              |  |
| pool2  | $55 \times 55 \times 192$  | $28 \times 28 \times 192$  | $3 \times 3 \times 192, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0     |              |  |
| conv3a | $28 \times 28 \times 192$  | $28 \times 28 \times 192$  | $1 \times 1 \times 192, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37K   | 29M          |  |
| conv3  | $28 \times 28 \times 192$  | $28 \times 28 \times 384$  | $3 \times 3 \times 192, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 664K  | 521M         |  |
| pool3  | $28 \times 28 \times 384$  | $14 \times 14 \times 384$  | $3 \times 3 \times 384, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0     |              |  |
| conv4a | $14 \times 14 \times 384$  | $14 \times 14 \times 384$  | $1 \times 1 \times 384, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 148K  | 29M          |  |
| conv4  | $14 \times 14 \times 384$  | $14 \times 14 \times 256$  | $3 \times 3 \times 384, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 885K  | 173M         |  |
| conv5a | $14 \times 14 \times 256$  | $14 \times 14 \times 256$  | $1 \times 1 \times 256, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66K   | 13M          |  |
| conv5  | $14 \times 14 \times 256$  | $14 \times 14 \times 256$  | $3 \times 3 \times 256, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 590K  | 116M         |  |
| conv6a | $14 \times 14 \times 256$  | $14 \times 14 \times 256$  | $1 \times 1 \times 256, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66K   | 13M          |  |
| conv6  | $14 \times 14 \times 256$  | $14 \times 14 \times 256$  | $3 \times 3 \times 256, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 590K  | 116M         |  |
| pool4  | $14 \times 14 \times 256$  | $7 \times 7 \times 256$    | $3 \times 3 \times 256, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0     |              |  |
| concat | $7 \times 7 \times 256$    | $7 \times 7 \times 256$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |              |  |
| fc1    | $7 \times 7 \times 256$    | $1\times32\times128$       | maxout p=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103M  | 103M         |  |
| fc2    | $1\times32\times128$       | $1\times32\times128$       | maxout p=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34M   | 34M          |  |
| fc7128 | $1\times32\times128$       | $1\times1\times128$        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 524K  | 0.5M         |  |
| L2     | $1\times1\times128$        | $1\times1\times128$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | 14.0050000   |  |
| total  |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140M  | 1.6B         |  |

Table 1. **NN1.** This table show the structure of our Zeiler&Fergus [22] based model with  $1\times1$  convolutions inspired by [9]. The input and output sizes are described in  $rows \times cols \times \#filters$ . The kernel is specified as  $rows \times cols$ , stride and the maxout [6] pooling size as p=2.

## • 网络结构: 基于GoogleNet

| type                             | output<br>size            | depth | #1×1 | #3×3<br>reduce | #3×3  | #5×5<br>reduce | #5×5  | pool<br>proj (p) | params | FLOPS |
|----------------------------------|---------------------------|-------|------|----------------|-------|----------------|-------|------------------|--------|-------|
| conv1 $(7 \times 7 \times 3, 2)$ | 112×112×64                | 1     |      |                |       |                |       |                  | 9K     | 119M  |
| max pool + norm                  | $56 \times 56 \times 64$  | 0     |      |                | ,     |                |       | m 3×3, 2         |        |       |
| inception (2)                    | $56\times56\times192$     | 2     |      | 64             | 192   |                |       |                  | 115K   | 360M  |
| norm + max pool                  | $28 \times 28 \times 192$ | 0     |      |                |       |                |       | m 3×3, 2         |        |       |
| inception (3a)                   | $28 \times 28 \times 256$ | 2     | 64   | 96             | 128   | 16             | 32    | m, 32p           | 164K   | 128M  |
| inception (3b)                   | $28 \times 28 \times 320$ | 2     | 64   | 96             | 128   | 32             | 64    | $L_2$ , 64p      | 228K   | 179M  |
| inception (3c)                   | $14 \times 14 \times 640$ | 2     | 0    | 128            | 256,2 | 32             | 64,2  | m 3×3,2          | 398K   | 108M  |
| inception (4a)                   | $14 \times 14 \times 640$ | 2     | 256  | 96             | 192   | 32             | 64    | $L_2$ , 128p     | 545K   | 107M  |
| inception (4b)                   | $14 \times 14 \times 640$ | 2     | 224  | 112            | 224   | 32             | 64    | $L_2$ , 128p     | 595K   | 117M  |
| inception (4c)                   | $14 \times 14 \times 640$ | 2     | 192  | 128            | 256   | 32             | 64    | $L_2$ , 128p     | 654K   | 128M  |
| inception (4d)                   | $14 \times 14 \times 640$ | 2     | 160  | 144            | 288   | 32             | 64    | $L_2$ , 128p     | 722K   | 142M  |
| inception (4e)                   | $7 \times 7 \times 1024$  | 2     | 0    | 160            | 256,2 | 64             | 128,2 | m 3×3,2          | 717K   | 56M   |
| inception (5a)                   | $7 \times 7 \times 1024$  | 2     | 384  | 192            | 384   | 48             | 128   | $L_2$ , 128p     | 1.6M   | 78M   |
| inception (5b)                   | $7 \times 7 \times 1024$  | 2     | 384  | 192            | 384   | 48             | 128   | m, 128p          | 1.6M   | 78M   |
| avg pool                         | $1\times1\times1024$      | 0     |      |                | ,     |                |       |                  |        |       |
| fully conn                       | $1\times1\times128$       | 1     |      |                |       |                |       |                  | 131K   | 0.1M  |
| L2 normalization                 | $1\times1\times128$       | 0     |      |                |       |                |       |                  |        |       |
| total                            |                           | 0.5   |      |                |       |                |       |                  | 7.5M   | 1.6B  |

Table 2. NN2. Details of the NN2 Inception incarnation. This model is almost identical to the one described in [16]. The two major differences are the use of  $L_2$  pooling instead of max pooling (m), where specified. *I.e.* instead of taking the spatial max the  $L_2$  norm is computed. The pooling is always  $3\times3$  (aside from the final average pooling) and in parallel to the convolutional modules inside each Inception module. If there is a dimensionality reduction after the pooling it is denoted with p.  $1\times1$ ,  $3\times3$ , and  $5\times5$  pooling are then concatenated to get the final output.

| architecture                  | VAL              |
|-------------------------------|------------------|
| NN1 (Zeiler&Fergus 220×220)   | $87.9\% \pm 1.9$ |
| NN2 (Inception 224×224)       | $89.4\% \pm 1.6$ |
| NN3 (Inception 160×160)       | $88.3\% \pm 1.7$ |
| NN4 (Inception 96×96)         | $82.0\% \pm 2.3$ |
| NNS1 (mini Inception 165×165) | $82.4\% \pm 2.4$ |
| NNS2 (tiny Inception 140×116) | $51.9\% \pm 2.9$ |

Table 3. **Network Architectures.** This table compares the performance of our model architectures on the hold out test set (see section 4.1). Reported is the mean validation rate VAL at 10E-3 false accept rate. Also shown is the standard error of the mean across the five test splits.



## 扩展:人脸识别经典数据集

- LFW: http://vis-www.cs.umass.edu/lfw/
- PubFig: http://www.cs.columbia.edu/CAVE/databases/pubfig/
- YouTube Faces DB: http://www.cs.tau.ac.il/~wolf/ytfaces/
- MTFL: http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html

