Vorlesung zum **Kurstag 3 «Medizinische Mikrobiologie»** 14.10.2023, 12:15 -13:00 PD Dr. sc. Stefano Mancini, IMM UZH

- Organisation des 3. Kurstages
 - Abschluss Wundabstrich / Nasenabstrich
 - » Ablesen der Resistenzen, Interpretation
 - Weiterbearbeiten Urinbakteriologie
 - » Ansetzen der Resistenz und biochemische Reaktionen
 - Weiterbearbeiten Stuhlbakteriologie
 - » Subkultivierung der Anreicherung
 - » Ansetzen von biochemischen Reaktionen
 - Resistenzplasmidtransfer

Kursorganisation

=> Kursskript

Tag 1: Einführung / Wundinfektionen / Suche nach <i>Staphylococcus aureus</i> (Nase) 30. September - 03. Oktober 2024	Tag 2: Diagnostik Wundinfektionen / Urininfektionen / Stuhlbakteriologie 07 10. Oktober 2024	Tag 3: Plasmidversuch / Wundinfektionen / Urininfektionen / Stuhlbakteriologie 14. – 17. Oktober 2024		
Theorie Tag 1 und 2 (Vorlesung am 30. September 2024, um 12:15) Kursorganisation, Sicherheit im Kurs Mikroskopie: - Handhabung Mikroskop - Färbeverfahren Kultur: - Medien (fest / flüssig, universell / selektiv) - fraktioniertes Beimpfen Untersuchungsgang Wundinfektion, Urin und Stuhl für bakterielle Erreger		Theorie Tag 3 (Vorlesung am 14. Oktober 2023, um 12:15) Resistenz-Plasmid Versuch Spezielle Harnwegsinfektionserreger und spezielle bakterielle Durchfallerreger		
Händedesinfektion (Seite 11 und 12 / 13) Einführung (Skript Kap. 4; Seite 10 und 11) Daumenabdruck vor / nach Desinfektion Luftkeimbestimmung (1x / Reihe) Eigener Nasenabstrich (Suche nach Staphylococcus aureus)	Händedesinfektion (Seite 11 und 12 / 13) Einführung (Skript Kap. 4; Seite 10 und 11) - Kolonien zählen - Kolonien zählen und beurteilen - S. aureus Resistenzprüfung ansetzen	Resistenz-Plasmidtransfer (Skript Kap. 7; Seite 31 und 32) - Kontrollplatten beimpfen - Empfänger- und Spenderbouillon zusammen pipettieren - Platten nach Konjugation beimpfen		
Wundabstrich (Skript Kap. 5; Seite 14-21) fraktioniertes Beimpfen auf Schafblutagar (SBA) und MacConkey-Agar (MAC) Gram-Präparat herstellen Mikroskopier-Einführung mit Demo-Präparaten Ausfüllen Auftragsformular	Wundabstrich (Skript Kap. 5; Seite 14-21) Kulturen ablesen • Staphylokokken: Katalase, Clumping Factor, "zellgebundene Koagulase", Gram-Dauerpräparat • β-hämolysierende Streptokokken: Katalase, Agglutination Demo, Gram-Dauerpräparat • Resistenzprüfung <i>S. aureus</i> ansetzen	Wundabstrich (Skript Kap. 5; Seite 14-21) - Ablesen Resistenzprüfung Staphylokokken auch von dem Stamm von der Nase, falls positiv		
	Urin (Skript Kap. 6; Seite 22-30) - Urin quantitativ ausstreichen - Urin semiquantitativ beimpfen (Demo)	Urin (Skript Kap. 6; Seite 22-30) - Kolonien zählen, Keimzahl berechnen - Semiquantitative Keimzahlbestimmung im Urin - Resistenzprüfung und einfache Biochemien ansetzen		
	Stuhluntersuchung (Skript Kap. 8; Seite 33-39) - Fraktioniertes Beimpfen auf Hektoen-Agar und MAC - Anreicherung beimpfen	Stuhluntersuchung (Skript Kap. 8; Seite 33-39) - Beurteilung Hektoen-Agar und MAC, TSI Schrägagar beimpfen - Subkultur der Anreicherung auf Hektoen-Agar und MAC		

Abschluss Wundabstrich/ Nasenabstrich

- ⇒Ablesen der Empfindlichkeitsprüfung *S. aureus*
- \Rightarrow Isolate mit β -Laktamase?
- ⇒Cefoxitin resistent? MRSA?

Abschluss Wundabstrich/ Nasenabstrich

 \Rightarrow Isolat (Nase, Wundabstrich) mit β-Laktamase?

https://commons.wikimedia.org/w/index.php?curid=11204303

β-Laktamase:

Negativ

Positiv

Hemmhöfe
S. aureus/Penicillin

EUCAST CBP = 26 mm

Examples of inhibition zones for Staphylococcus aureus with benzylpenicillin.

- a) Fuzzy zone edge (reduction of growth towards zone edge, like a "beach") and zone diameter ≥ 26 mm. Report susceptible.
- b) Sharp zone edge (no reduction of growth towards zone edge, like a "cliff") and zone diameter ≥ 26 mm. Report resistant.

Abschluss Wundabstrich/ Nasenabstrich

- ⇒ Cefoxitin resistent? MRSA?
- MRSA: Methicillin-resistenter Staphylococcus aureus
- mecA => kodiert für alternatives Pencillin-Bindeprotein (Transpeptidase PBP2a)
 => Resistenz gegen alle β-Laktamantibiotika

Fortsetzung Untersuchung Urin

⇒Urinprobe (Mittelstrahl) v. Patientin mit typischer Symptomatik eines Harnweginfekts

- >> Keimzahlbestimmung
- >> Biochemische Identifizierung des Keimes
- >> Resistenzbestimmung

Harnwegsinfekte - Epidemiologie

- HWI zählen in der Praxis mit zu häufigsten Gründen für Antibiotikaverschreibungen
- Generell Frauen häufiger betroffen; ≥1 HWI in ihrem Leben
- Altersabhängige Inzidenz:

Kinder: meist anat. Anomalien

Erwachsene: Inzidenz ca. 0.5/Jahr bei sexuell aktiven Frauen

Alter: unvollständige Blasenentleerung

Harnwegsinfekte - Erregerspektrum

Erreger	%
Gramnegative Bakterien:	
Escherichia coli	77
Proteus mirabilis	5
Klebsiella pneumoniae	2–3
Enterobacter spp.	1
Citrobacter spp.	< 1
Andere Enterobacteriaceae	2
Grampositive Bakterien	
Staphylococcus saprophyticus	3
Staphylococcus aureus	2
Andere Staphylokokken	4
Enterococcus spp.	3
Streptococcus spp.	< 1

Harnwegsinfekte - Erregerspektrum

⇒ gehören zur normalen Stuhlflora

Stuhl → Vagina → Urethra → Harnblase

Unkomplizierter Infekt => Cystitis / einfache Pyelonephritis

- Escherichia coli
- Staphylococcus saprophyticus
- Enterokokken, Proteus spp., Klebsiella spp.

https://www.science-photo.de/bilder/13455432-Bacterial-cystitis-illustration

Komplizierte Infektionen (anatomische Störung!)

- E. coli und andere Enterobacteriaceae
- Pseudomonas aeruginosa, Enterokokken
- Candida: bei oberen Harnwegen hämatogen; urethraler Befall bei Katheter,

Staphylococcus aureus ist meistens filtriert, deshalb Quelle suchen und Endocarditis ausschliessen!

Urininfekte – weitere Erreger

- Corynebacterium urealyticum
 - assoziiert mit Nierensteinen, Cystitis
 - sehr resistenter Keim Therapie: Vancomycin
- Actinotignum schaalii (früher: Actinobaculum schaalii)
 - In den letzten Jahren als HWI-Erreger entdeckt, auch Urosepsis
 - Ciprofloxacin resistent
 - Bei gezielter Suche sehr häufig isoliert, generelle Bedeutung noch unklar
- Aerococcus urinae
 - Auf Platte wie vergrünende Streptokokken
 => bildet aber keine Ketten, sondern Tetraden
 - resistent gegen Baktrim
 - Risiko bei älteren Männern

Seltene Erreger

- Ureaplasma urealyticum
 - Urethritis, Nierensteine
- Mycoplasma hominis
 - Pyelonephritis
- Lactobacillen (?)
- Gardnerella vaginalis
- Anaerobier, Mykobakterien, Leptospiren
- Parasiten (Schistosoma haematobium),
- Viren (Herpes simplex, CMV)

Harnwegsinfekte – «host factors»

- Anatomische Verhältnisse

Harnsystem bei Mann und Frau

Urin als Nährmedium für uropathogene Keime

Harnwegsinfekte – «host factors»

- Anatomische Verhältnisse
- Abflussstörungen: (angeborene) strukturelle, anatomische Anomalien
- Instrumentierungen (z.B. Blasenkatheter)
- Prädisponierende Erkrankungen (Diabetes, Nierenerkrankungen, neurolog. E.)
- Medikation (SGLT2-Hemmer, Diabetes)
- Urin als Nährmedium für uropathogene Keime

Virulenz/»Fitness»-Faktoren von HWI-Erregern

- Fimbrien (Pili) erlauben Adhäsion an Epithel
- Kapsel schützen vor Phagozytose
- Endotoxine (LPS) verändern Peristaltik der Ureteren
- Urease alkalinisiert den Urin
- Flagellen => Dissemiation

Untersuchungsgang Stuhlbakteriologie

- Epidemiologie (BAG-Bulletin)
- Durchfallerreger
- Praktische Arbeit Tag 2-4
- Selektiv- und Anreicherungsmedien zur Differenzierung/Identifikation, Beispiele
- Salmonellen-Diagnostik

Epidemiologie der Durchfallerreger i.d. CH

Infektionskrankheiten

Stand am Ende der 39. Woche (02.10.2023)^a

	Woche 39		letzte 4 Wochen		letzte 52 Wochen			seit Jahresbeginn				
	2023	2022	2021	2023	2022	2021	2023	2022	2021	2023	2022	2021
Faeco-orale Übertragung												
Campylobacteriose	135 80	149 88.3	180 106.6	630 93.3	587 86.9	656 97.2	6532 74.4	7565 86.2	6389 72.8	4837 73.5	5948 90.4	5122 77.8
Enterohämorrhagische E. coli-Infektion	53 31.4	29 17.2	25 14.8	1 71 25.3	119 17.6	106 15.7	1226 14	1177 13.4	837 9.5	955 14.5	925 14	694 10.5
Hepatitis A		1 0.6		2 0.3	3 0.4	3 0.4	55 0.6	54 0.6	44 0.5	47 0.7	39 0.6	34 0.5
Hepatitis E	2 1.2	3 1.8	1 0.6	6 0.9	5 0.7	7	86 1	7 2 0.8	164 1.9	64 1	53 0.8	149 2.3
Listeriose	2 1.2			10 1.5	2 0.3	3 0.4	76 0.9	70 0.8	35 0.4	58 0.9	60 0.9	23 0.4
Salmonellose, S. typhi/paratyphi				2 0.3	2 0.3	1 0.2	21 0.2	8 0.09	0.01	17 0.3	7 0.1	1 0.02
Salmonellose, übrige	90 53.3	50 29.6	41 24.3	301 44.6	231 34.2	190 28.1	1818 20.7	1 72 9 19.7	1451 16.5	1381 21	1396 21.2	1160 17.6
Shigellose	2 1.2	4 2.4	4 2.4	11 1.6	18 2.7	13 1.9	184 2.1	161 1.8	70 0.8	116 1.8	124 1.9	61 0.9
											J ,	

Typische Durchfallerreger – Epidemiologie/Diagnostik

	Kinder	Erwachsene	Reise- anam- nese	Diagnostik	
Salmonella spp.	+++	+++	(1)		
Shigella spp.	- 2		V	DCP non > Kultur	
Campylobacter spp.	+++	+++	(~)	PCR pos. > Kultur	
Yersinia spp.	++	+			
Aeromonas spp.	++	+	V	Stuhlkultur	
Plesiomonas shigelloides		10	(~)		
Enterotoxin bildende E. coli (ETEC)	-	- 2	1		
Enteroinvasive E. coli (EIEC)		- 19 1	V	3.5. 4	
Verotoxin bildende E. coli (VTEC/EHEC)	+	+	(1)	PCR pos. > Kultur	
Enteropathogene E. coli (EPEC)	+		(V)		
Enteroaggregative E. coli (EntAggEC)	+++		V		
Clostridium difficile	in allen Altersgruppen nach vorangehender Antibiotikatherapie			Antigen (Stuhl), PCR => Toxingen- nachweis	
Parasiten	+	+	V	Mikroskopie Stuhl	

Viren PCR

Typische Durchfallerreger – Epidemiologie/Diagnostik

Characteristics	BioFire RP 2.1 ^a	QIAstatDx RP V2a	NxTAG RPP ^a	Verigene	ePlex RP2
Virus targets					
Adenovirus	1	1	1	1	1
CoV-NL63	1	1	✓		1
CoV-2229E	1	1	1		1
CoV-HKU1	1	1	1		1
CoV-OC43	1	1	1		1
Human bocavirus		1	1		
HMPV	1	1	1	1	1
Influenza A	1	1	1	1	1
Subtype H1	1	1	1	1	1
Subtype H3	1	/	1	1	1
Subtype H1N1/2009	1	1			1
Influenza B	1	1	1	1	1
Parainfluenza 1	1	1	1	1	1
Parainfluenza 2	1	/	/	1	1
Parainfluenza 3	1	1	1	1	1
Parainfluenza 4	1	/	1	1	1
RSV	1	1			
RSV A			/	/	1
RSV B			1	1	1
Rhinovirus/enterovirus	1	1	1	/	1
SARS-CoV-2	1	1	1		1
Bacteria targets					
Bordetella pertussis	1	/		/	
Bordetella parapertussis	1			1	
Bordetella holmesii				1	
Chlamydophila pneumoniae	1		1		1
Legionella pneumophila		1			
Mycoplasma pneumoniae	1	1	1		1
Panel information					
Platform	FilmArray system	QIAstat-Dx	Luminex Magpix	Verigen system	ePlex System
Company	BioFire/bioMérieux	QIAGEN	LUMINEX	LUMINEX	GenMark
Targets in panel	22	22	21	16	21
Throughput	Low-Medium	Low	High	Low-Medium	Low-Medium
Time to result	45 min	70 min	4 h	2 h	3.5 h

^aThe most recent panel includes SARS-CoV-2, human metapneumovirus (HMPV) and respiratory syncytial virus (RSV).

Praktische Arbeit Tag 2-4 «Stuhluntersuchung»

Laktose-negative Fermenter

- Laktosespaltung ist zentral f
 ür Einteilung der Enterobacteriaceae.
- Laktose-negative Fermenter sind verdächtig auf Salmonellen und Shigellen.
 - 1. Schritt der Laktosespaltung: Aufnahme der Laktose in Bakterienzelle.
 - 2. Schritt ist die eigentliche **Spaltung** der Laktose (Disaccharid aus Glucose und Galaktose) mit der β-Galaktosidase
 - Es braucht Aufnahme und Spaltung

Laktose-negative Fermenter

 Selektiv- / Differentialmedien, welche Abbau von Laktose anzeigen =>

	MacConkey Agar	Hektoen-Agar
Hemmung Gram- positiver Bakterien	Kristallviolett Gallensalze (niedr. Konz.)	Gallensalze (hohe Konz.)
C-Quelle	Laktose	Laktose
Indikator	Neutralrot	Säurefuchsin
Lac+	rot	gelb
Lac-	farblos (Agarfarbe)	farblos (Agarfarbe)

MacConkey Agar

- Laktose-fermentierende Bakterien
 - Escherichia coli
 - Klebsiella pneumonia
- Nicht Laktosefermentierende Bakterien
 - Salmonella enterica
 - Shigella spp.
 - Proteus mirabilis
 - Pseudomonas aeruginosa

Hektoen-Agar

- Selektivmedium v.a. für Salmonella sp. und Shigella sp.
- Salmonellen sind Laktosenegativ, haben auf Hektoen-Platte Farbe der Platte (nur am Rand der Kolonie sichtbar), aber zusätzlich Schwarzfärbung

Stuhlprobe auf Hektoen

Salmonella: Na-Thiosulfat > H_2S H_2S + Fe-NH₄-Citrat > **FeS** => **schwarzes Präzipitat**

Praktische Arbeit Tag 2-4 «Stuhluntersuchung»

TSI Schrägagar beimpfen

Mit der Impfnadel einen Teil der Bakterienkolonie aufnehmen und in das Kondenswasser der Schrägagarfläche eintauchen.

Die Schrägagarfläche in einer Wellenlinie bis zum oberen Rand beimpfen.

Anschliessend mit der Nadel in der Mitte des Röhrchens bis zum Boden in den Agar einstechen («Stich»).

"Triple sugar iron" (TSI) Agar-Röhrchen

- C-Quellen: 1% Saccharose, 1% Laktose, aber nur 0,1% Glucose, Peptone (Eiweisse)
- Indikator (Phenolrot > sauer/gelb, alkalisch/rot)
- Bakterien nutzen zuerst Glucose
 - → Säurebildung => Ganzes Medium wird gelb
 - → Wenn Keim Laktose und/ oder Saccharose verwerten kann => weitere Säurebildung → Stich und Schrägfläche bleiben gelb
- Beispiel: <u>Laktose-positive E. coli</u>

TSI und Laktose-negative Fermenter

- Lac⁻ Bakterien nutzen auch zuerst Glucose →
 Säurebildung, Röhrchen gelb
- Glucose schnell aufgebraucht, Peptone werden in der aeroben Zone abgebaut → Aminbildung führt zu pH Anstieg => Schrägfläche färbt sich rot.
- Stich bleibt gelb => Peptonabbau erfolgt nur aerob!

TSI Reaktionen

28

MIO Röhrchen

- ⇒ «Motility, Indol, Ornithindecarboxylase (ODC)»
- Weichagarröhrchen: bewegliche Bakterien können sich im Medium ausbreiten

 Tryptophan => Indol + Pyruvat + Ammoniak (Tryptophanase)

- Bildung von Putrescin aus Ornithin (ODC)

Praktische Arbeit Tag 2-4 «Stuhluntersuchung»

Tetrathionat-Bouillon

- Flüssiges Selektivmedium für Salmonellen
- Tetrathionat entsteht aus Na-Thiosulfat nach Zugabe von Jod-Lösung; inhibiert die meisten Enterobacteriaceae → Anreicherung Salmonella sp.
- Gallensalze: Hemmung v.a. Gram-positiver und Enterobakterien

	Anzahl Bakterien nach					
Generationszeit	0 h	1 h	2 h	3 h	4 h	
Bakt. A: 30 min	1	4	16	64	256	
Bakt. B: 60 min	10	20	40	80	160	

Laktose-negative Fermenter – Shigella sp.

4 Serogruppen

- Shigella dysenteriae
- Shigella flexneri
- Shigella boydii
- Shigella sonnei

- Auslöser der **Bakterienruhr**; besonders schwere Verläufe bei *S. dysenteriae*
- Häufig Reiseassoziierte Infektionen (Schmierinfektionen, fäkal-kontaminierte Lebensmittel)
- Virulenzfaktor Shigatoxin (Stx); Neurotropismus > ZNS-Symptomatik
- Extrem Säureresistent; <200 Bakterien ausreichend für Infektion
- Proktitis mit hochresistenten Stämmen, sex. Übertragung

Laktose-negative Fermenter – Salmonella sp.

- => «Klassische» Salmonellen-Diagnostik:
- Ansatz eines Selektiv/Differentialmedium

- Weitere biochem. Analysen
- Bestimmung des Serovars
 - ⇒Agglutination mittels Antiseren
 - ⇒ enteritische/typhöse Salmonellen?

Salmonellen et al. -Diagnostik @IMM

Genus Salmonella

⇒ 2 Spezies: S. bongori

S. enterica

- S. enterica subsp. arizonae
- S. enterica subsp. diarizonae
- S. enterica subsp. houtenae
- S. enterica subsp. indica
- S. enterica subsp. salamae
- S. enterica subsp. enterica

- Salmonella enterica subsp. enterica umfasst alle Salmonellen, die bei Menschen vorkommen.
- => Unterscheidung durch **Serotypen**

Bsp.: Enteritische Salmonellen: Salmonella Enteritidis Salmonella Typhimurium

.....

Serotypisierung von Salmonella enterica subsp. enterica

- ⇒ **Kauffmann-White Schema**: Klassifikation von *Salmonella sp.* basierend auf spezifischen serologischen Eigenschaften; **>2'500 Serotypen**
- ⇒ Unterscheidung der O-Antigene (LPS ohne Hauch) und der H-Antigene (Geissel – mit Hauch) mit verschiedenen Antiseren gegen diese Antigene (Vi-Antigene: nur typhöse Salmonellen; Kapselantigen)

⇒ Im Labor nur «grobe» Differenzierung: typhöse Salmonellen ja/nein?
Wenn ja Bestätigung/Ausdifferenzierung am NENT

Experiment zu Resistenzplasmidtransfer

Bakterielle Konjugation

- J. Lederberg, E. Tatum (NATURE Vol. 158 1946 "Gene Recombination in *E. coli*")
- Unidirektionaler, horizontaler Transfer von Erbinformation; «sexuelle» Reproduktion
- Übertragung von Virulenzgenen, metabolischen Funktionen, Antibiotikaresistenz

Pilus und andere Proteine des Konjugationsapparates

Versuchsdurchführung

Akzeptor E. coli

AMPR, Lactose + NALS

NAL^R, Lactose – AMP^S

ohne Antibiotikum

Inkubation 1h, 37 °C

Danke für ihre Aufmerksamkeit!