

pyModis Documentation

Release 2.0.2

Luca Delucchi

CONTENTS

1	About pyModis 2				
	1.1	Requirements	2		
	1.2	How to install pyModis	2		
	1.3	Troubleshooting	4		
	1.4	How to report a bug	5		
	1.5	How to compile documentation	5		
	1.6	Ohloh statistics	6		
2	pyModis Scripts 7				
	2.1	modis_download.py	8		
	2.2	modis_download_from_list.py	10		
	2.3	modis_parse.py	12		
	2.4	modis_multiparse.py	14		
	2.5	modis_mosaic.py	15		
	2.6	modis_convert.py	17		
	2.7	modis_quality.py	20		
3	Examples 22				
	3.1	Scripts	22		
	3.2	Library	25		
4	pyModis Library 27				
	4.1	downmodis module	28		
	4.2	parsemodis module	32		
	4.3	convertmodis module	38		
	4.4	convertmodis_gdal module	40		
	4.5	qualitymodis module	43		
	4.6	optparse_required module	44		
	4.7	optparse_gui module	45		
Py	thon N	Module Index	47		

pyModis is a Free and Open Source Python based library to work with MODIS data. It offers bulk-download for user selected time ranges, mosaicking of MODIS tiles, and the reprojection from Sinusoidal to other projections, convert HDF format to other formats and the extraction of data quality information.

pyModis library was developed to replace old bash scripts developed by Markus Neteler to down-load MODIS data from NASA FTP server. It is very useful for GIS and Remote Sensing Platform of Fondazione Edmund Mach to update its large collection of MODIS data.

It has several features:

- for downloading large numbers of MODIS HDF/XML files and for using it in a cron job for continuous automated updating; it supports both FTP and HTTP NASA repositories
- parses the XML file to obtain information about the HDF files
- converts a HDF MODIS file to GEOTIFF format by either using MODIS Reprojection Tool or GDAL (pyModis >= 1.0)
- creates a mosaic of several tiles by either using MODIS Reprojection Tool or GDAL (pyModis >= 1.0)
- creates the XML metadata file with the information of all tiles used for the mosaic
- extracts specific information from bit-encoded MODIS quality assessment layers of different product types
- Graphical User Interface for each script written in wxPython (pyModis >= 1.0)
- it support Python 2 and Python 3 (pyModis >= 2.0)

We acknowledge the Fondazione Edmund Mach for promoting the development of free and open source software.

CONTENTS 1

CHAPTER

ONE

ABOUT PYMODIS

1.1 Requirements

pyModis requires Python GDAL and Numpy packages.

If you want to use the Graphical User Interface you have to install also wxPython library.

You can use also software is MODIS Reprojection Tool to convert or mosaic MODIS HDF files.

1.1.1 User and password

To be able to download data you need user and password provided by NASA. Please **register at https://urs.earthdata.nasa.gov/users/new**; now login and move to your profile page. Go to "My application" tab and approve the ollowing applications "LP DAAC Data Pool" and "Earthdata Search".

1.2 How to install pyModis

1.2.1 Using pip

From version 0.6.3 it is possible to install pyModis using pip. You have to run the following command as administrator

```
pip install pyModis
```

If you need to update your pyModis version you have to run

```
pip install --upgrade pyModis
```

With pip it is also really simple to remove the library

```
pip uninstall pyModis
```

1.2.2 Compile from source

Compile pyModis is very simple. First you need to download pyModis source code from github repository.

You can use git to download the latest code (with the whole history and so it contain all the different stable versions, from the last to the first)

```
git clone https://github.com/lucadelu/pyModis.git
```

or download the latest stable version from the repository and decompress it.

Now enter the pyModis folder and launch as administrator of your computer

```
python setup.py install
```

If the installation doesn't return any errors you should be able to use pyModis library from a Python console. Then, launch a your favorite Python console (I really suggest ipython) and digit

```
import pymodis
```

If the console doesn't return any error like this

```
ImportError: No module named pymodis
```

the pyModis library has been installed properly and you can use it or one of the tools distributed with pyModis.

If you want to install into /usr/local/, run

```
python setup.py install --prefix=/usr/local
```

In this case, if you get the following error

```
TEST FAILED: /usr/local/lib/python2.7/site-packages/ does NOT support .pth_ \hookrightarrow files
```

then you need to define the PYTHONPATH environmental variable

```
export PYTHONPATH=/usr/local/lib/python2.7/site-packages
python setup.py install --prefix=/usr/local
```

and now re-run the installation command.

1.2.3 Install on Windows with osgeo4w

Warning: Using this way to install pyModis it will be possible to use pyModis only from OSGeo4W environment.

It will not possible to use other versions of Python except the OSGeo4W one.

The simple way to install pyModis on Windows is to use OSGeo4W.

Note: To execute OSGeo4W may be required to run it as Administrator.

Choose *Advanced Install* in the first step of installation and set the corrected value until the packages selection.

At this point select the following packages:

- gdal-python
- python-numpy
- python-requests
- python-future
- wxpython

OSGeo4W will install all the required dependencies.

At this point, using the OSGeo4W shell, you can follow *Compile from source* section to install pyModis.

1.2.4 Install on Windows without osgeo4w (old and not updated)

Another way to install pyModis on Windows is to install latest Python 2.7 from http://python.org/download/

Now you have to modify the "Path" environment variable using powershell running

```
[Environment]::SetEnvironmentVariable("Path",
    "$env:Path;C:\Python27\;C:\Python27\Scripts\", "User")
```

Download and install the last version of Distribute for Windows from http://python-distribute.org/distribute_setup.py

At this point you have to move to standard command line (cmd) and install pip using easy_install

```
easy_install pip
```

Now install numpy library using $easy_install$ because installation from pip is broken (this is required only for version >= 0.7.1)

```
easy_install numpy GDAL
```

If you want the Graphical User Interface you have to install also wxPython

```
easy_install WxPython WxPython-Common
```

Finally install pyModis using pip

```
pip install pyModis
```

If you want use the GUI you have to download and install wxPython

1.3 Troubleshooting

1.3.1 Problem installing dependencies with pip

Warning: Sometimes *pip* return error when it try to install Python GDAL, Numpy or wxPython. You can solve this problem installing Python GDAL or Numpy using the version of your operating system.

1.4 How to report a bug

If you find any problems in pyModis library you can report it using the issues tracker of github.

1.5 How to compile documentation

This documentation has been made with Sphinx, so you need to install it to compile the original files to obtain different output formats.

Please enter the docs folder of pyModis source and run

make <target>

with one of the following target to obtain the desired output:

- html: to make standalone HTML files
- dirhtml: to make HTML files named index.html in directories
- **singlehtml**: to make a single large HTML file
- pickle: to make pickle files
- **json**: to make JSON files
- htmlhelp: to make HTML files and a HTML help project
- qthelp: to make HTML files and a qthelp project
- devhelp: to make HTML files and a Devhelp project
- epub: to make an epub
- latex: to make LaTeX files, you can set PAPER=a4 or PAPER=letter
- latexpdf: to make LaTeX files and run them through pdflatex
- text: to make text files
- man: to make manual pages
- texinfo: to make Texinfo files
- info: to make Texinfo files and run them through makeinfo
- gettext: to make PO message catalogs
- changes: to make an overview of all changed/added/deprecated items
- linkcheck: to check all external links for integrity
- **doctest**: to run all doctests embedded in the documentation (if enabled)

1.5.1 PDF link in HTML

To insert a link to PDF file of pyModis documentation into HTML documentation (the link will be added on the sidebar) you have to compile first the PDF and after the HTML, so you need to launch:

make latexpdf
make html

If PDF file is missing no link will be added

1.6 Ohloh statistics

For more information about pyModis please visit the pyModis Ohloh page

1.6. Ohloh statistics 6

CHAPTER

TWO

PYMODIS SCRIPTS

The pyModis scripts provide you with a complete toolkit to work with MODIS data, you can download, analyze and convert the data. They are developed to work from command line and inside scripts to automatically update your MODIS files dataset. From version 1.0 the scripts have also Graphical User Interface.

Currently the tools are:

- modis_download.py
- modis_download_from_list.py
- modis_parse.py
- modis_multiparse.py
- modis_mosaic.py
- modis_convert.py
- modis_quality.py

2.1 modis_download.py

modis_download.py downloads MODIS data from NASA FTP servers. It can download large amounts of data and it can be profitably used with cron jobs to receive data with a fixed delay of time.

Warning: Remember to register yourself at https://urs.earthdata.nasa.gov/users/new, read more at *User and password* session.

2.1.1 **Usage**

```
modis_download.py [options] destination_folder
```

2.1.2 Options


```
-h
   --help
                  shows the help message and exit
                  http/ftp server url [default=http://e4ftl01.cr.usgs.gov]
-u --url
    --input
-I
                  insert user and password from standard input
-P --password
                  password to connect
-U
   --username
                  username to connect
   --tiles
                  string of tiles separated by comma
-t
                  [default=none] for all tiles
                  directory on the http/ftp server
   --source
                  [default=MOLT]
                  product name as on the http/ftp server
   --product
                  [default=MOD11A1.005]
```

	delta firstday	delta of day starting from first day [default=10] the day to start download, if you want change data you have to use this format YYYY-MM-DD
-е	endday	([default=none] is for today) the day to finish download, if you want change data you have to use this format YYYY-MM-DD
		([default=none] use delta option)
-X		useful for debugging the download [default=False]
- j		download also the jpeg files [default=False]
-0		download only one day, it sets delta=1 [default=False]
-A		download all days, useful for initial download of a
		product. It overwrites the 'firstday' and 'endday'
		options [default=False]
-r		remove files with size same to zero from 'destination_folder' [default=False]

2.1.3 Examples

Download Terra LST data for a month for two tiles from HTTP server

Download the last 15 days of Aqua LST data

```
modis_download.py -I -r -s MOLA -p MYD11A1.005 -t h18v03,h18v04 -D 15 lst_ \rightarrowaqua/
```

Download all tiles of NDVI for one day (you have pick the right day otherwise it does not download anything)

```
modis_download.py -U user -P passwd -r -p MOD13Q1.005 -f 2010-12-31 -0
```

Download Snow product from FTP server

```
\label{local_modis_download.py} $$-I - u $$ftp://n4ftl01u.ecs.nasa.gov -p mail@pymodis.com -s SAN/MOST -p MOD10A1.005
```

2.2 modis_download_from_list.py

modis_download_from_list.py downloads MODIS data from NASA servers, the names of files to download have to be contained into a text file.

Warning: Remember to register yourself at https://urs.earthdata.nasa.gov/users/new, read more at *User and password* session.

2.2.1 **Usage**

modis_download_from_list.py [options] destination_folder

2.2.2 Options


```
-h
   --help
                  show the help message and exit
-f
   --file
                  Input file containing data to donwload
                  http/ftp server url [default=http://e4ftl01.cr.usgs.gov]
-11
   --url
-I --input
                  insert user and password from standard input
-P --password
                 password to connect
-U --username
                  username to connect
-t --tiles
                  string of tiles separated from comma
                  [default=none] for all tiles
   --source
                  directory on the http/ftp
                  [default=MOLT]
                  product name as on the http/ftp server
   --product
                  [default=MOD11A1.005]
                  this is useful for debugging the download
-x
                  [default=False]
                  download also the jpeg files [default=False]
-j
```

2.2.3 Examples

The following text should be in your MODTiles.txt file

```
MOD11A1.A2012278.h19v11.005.*.hdf*
MOD11A1.A2012278.h19v12.005.*.hdf*
MOD11A1.A2012278.h20v11.005.*.hdf*
MOD11A1.A2012278.h20v12.005.*.hdf*
MOD11A1.A2012278.h21v11.005.*.hdf*
```

Download Terra LST data from the above text file

```
modis_download_from_list.py -U user -P passwd -f /tmp/MODTiles.txt /tmp
```

The following text should be in your MYDTiles.txt file

```
MYD11A1.A2012278.h19v11.005.*.hdf*
MYD11A1.A2012278.h19v12.005.*.hdf*
MYD11A1.A2012278.h20v11.005.*.hdf*
MYD11A1.A2012278.h20v12.005.*.hdf*
MYD11A1.A2012278.h21v11.005.*.hdf*
```

Download Aqua LST data from the above text file

```
\label{local_modis_download_from_list.py} $-I -s $ MOLA -p $ MYD11A1.005 -f /tmp/MYDTiles.txt\_ $$ $\hookrightarrow/tmp$
```

2.3 modis_parse.py

modis_parse.pys parses the XML metadata file for a MODIS tile and return the requested value. It can also write the metadata information into a text file.

2.3.1 **Usage**

```
modis_parse.py [options] hdf_file
```

2.3.2 Options


```
-h
   --help
               show the help
-w
   --write
               write the chosen information into a file
               print all possible values of metadata
-a
               print the values related to the spatial max extent
-b
               print the values related to the date files
               print the values related to the ECSDataGranule
               print the input layers
-i
-0
               print the other values
               print the values related to platform
-р
               print the values related to quality
-q
               print the values related to psas
-s
-t
               print the values related to times
-1
               print the names of layer in HDF file
```

2.3.3 Examples

Return all values of metadata

```
modis_parse.py -a hdf_file
```

Write all values to a file

```
modis_parse.py -a -w metadata_FILE.txt hdf_file
```

Print spatial extent and quality

modis_parse.py -b -q hdf_file

2.4 modis_multiparse.py

modis_multiparse.py parses several XML metadata files for MODIS tiles. It is very useful to create XML metadata file for a mosaic.

2.4.1 Usage

```
modis_multiparse.py [options] hdf_files_list
```

2.4.2 Options


```
-h --help show the help
-b print the values related to the spatial max extent
-w --write write the MODIS XML metadata file for MODIS mosaic
```

2.4.3 Examples

Print values of spatial bounding box

```
modis_multiparse.py -b hdf_file1 hdf_file2 ...
```

Write xml file to use with hdf file created by modis_convert.py

```
modis_multiparse.py -w FILE_mosaic.xml hdf_file1 hdf_file2 ...
```

2.5 modis_mosaic.py

modis_mosaic.py creates a mosaic of several MODIS tiles in HDF format, using MRT mrtmosaic software or GDAL library.

2.5.1 Usage

```
modis_mosaic.py [options] hdflist_file
```

2.5.2 Options


```
General options:
 -o OUTPUT_FILE, --output=OUTPUT_FILE
                      (Required) the name or prefix (for VRT) of output
 -s SUBSET, --subset=SUBSET
                      a subset of product layers. The string should be
                      similar to: 1 0 [default: all layers]
Options for GDAL:
 -f OUTPUT_FORMAT, --output-format=OUTPUT_FORMAT
                      output format supported: GTiff, HDF4Image
                      [default=GTiff]
                      Create a GDAL VRT file. No other GDAL options have to
  -v, --vrt
                      been set
Options for MRT:
 -m MRT_PATH, --mrt=MRT_PATH
                      (Required) the path to MRT software
```

2.5.3 Examples

Using the MODIS Reprojection Tool

Convert all the layers of several tiles

```
modis_mosaic.py -m "/usr/local/bin/" -o FILE_mosaic MOSAIC_FILES_LIST
```

Convert LAYERS of several LST MODIS tiles

Using GDAL

Convert the first LAYERS of several tiles with resolution 1km in GeoTIFF format

```
modis_mosaic.py -o FILE_mosaic.tif -s "1" MOSAIC_FILES_LIST
```

Create a mosaic with all the layers of several tiles in HDF4Image format

```
modis_mosaic.py -o FILE_mosaic.hdf -f HDF4Image MOSAIC_FILES_LIS
```

Create VRT file for all subset. It creates a VRT file for each subset with the chosen prefix $(-\circ \text{flag})$ and the name of layer as suffix

```
modis_mosaic.py -o mosaic_vrt -v MOSAIC_FILES_LIS
```

2.6 modis_convert.py

modis_convert.py converts MODIS data to TIF formats and different projection reference system. It is an interface to MRT mrtmosaic software or GDAL library.

2.6.1 Usage

```
modis_convert.py [options] hdf_file
```

2.6.2 Options


```
(Required) the prefix of output file
  -g RESOLUTION, --grain=RESOLUTION
                      the spatial resolution of output file
  -r RESAMPLING_TYPE, --resampl=RESAMPLING_TYPE
                      the method of resampling. -- mrt methods:
                      'NEAREST_NEIGHBOR', 'BICUBIC', 'CUBIC_CONVOLUTION',
                      'NONE' -- gdal methods: 'AVERAGE', 'BILINEAR',
                      'CUBIC', 'CUBIC SPLINE', 'LANCZOS', 'MODE',
                      'NEAREST_NEIGHBOR' [default=NEAREST_NEIGHBOR]
Options for GDAL:
 -f OUTPUT FORMAT, --output-format=OUTPUT FORMAT
                      output format supported by GDAL [default=GTiff]
 -e EPSG, --epsg=EPSG
                      EPSG code for the output
  -w WKT, --wkt_file=WKT
                      file or string containing projection definition in_
\hookrightarrowWKT
                      format
 -v, --vrt
                     Read from a GDAL VRT file.
  --formats
                     print supported GDAL formats
Options for MRT:
 -m MRT_PATH, --mrt=MRT_PATH
                      the path to MRT software
 -d DATUM, --datum=DATUM
                      the code of datum. Available: 'NODATUM', 'NAD27',
                      'NAD83', 'WGS66', 'WGS72', 'WGS84' [default=WGS84]
 -t PROJECTION_SYSTEM, --proj_type=PROJECTION_SYSTEM
                      the output projection system. Available: 'AEA', 'GEO
\hookrightarrow ',
                      'HAM', 'IGH', 'ISIN', 'LA', 'LCC', 'MOL', 'PS', 'SIN
\hookrightarrow ',
                      'TM', 'UTM', 'MERCAT' [default=GEO]
 -p PROJECTION_PARAMETERS, --proj_parameters=PROJECTION_PARAMETERS
                      a list of projection parameters, for more info check
                      the 'Appendix C' of MODIS reprojection tool user's
                      manual https://lpdaac.usgs.gov/content/download/4831/
→2
                      2895/file/mrt41_usermanual_032811.pdf [default=( 0.0
                      0.0)]
 -u UTM_ZONE, --utm=UTM_ZONE
                      the UTM zone if projection system is UTM
            the UTM zone if projection system is UTM
```

2.6.3 Examples

Warning: The resolution value in modis_convert.py has to be set with the right value depending on the projection used. 1 kilometer in metrical projection has to be set as 1000 meter, instead in latitude and longitude something like 0.01* depending on the placement in the Earth.

MODIS Reprojection Tools

Warning: You can find the supported projections in the 'Appendix C' of MODIS reprojection tool user's manual and the datums at section Datum Conversion of the same manual

Convert layers from MODIS data with the original resolution in latitude and longitude reference system

```
modis_convert.py -s "( 1 0 1 0 )" -o OUTPUT_FILE -m "/usr/local/bin/" FILE
```

Convert layers from MODIS data with output resolution in 500 meters with UTM projection in the 32 zone

GDAL

Convert the first layer in latitude and longitude with the original resolution

```
modis_convert.py -s "( 1 )" -o OUTPUT_FILE -e 4326 FILE
```

Convert the first three layers from MODIS data with output resolution in 500 meters with UTM projection in the 32 zone

```
modis_convert.py -s "( 1 1 1 )" -o OUTPUT_FILE -g 500 -e 32632 FILE
```

2.7 modis_quality.py

modis_quality.py checks the quality of MODIS data using the QA layer

2.7.1 Usage

```
modis_quality.py [options] input_file destination_file
```

2.7.2 Options

2.7.3 Examples

Extract VI Usefulness value from MOD13 product

```
modis_quality.py -t 2 infile.hdf -o outfile.tif
```

Extract shadow mask from MOD13 product

```
modis_quality.py -t 9 input_file.hdf -o destination_file.tif
```

Extract Emissitivity error flag of Nighttime LSTE quality control from MOD11C1 product

```
modis_quality.py -t 4 -l 2 infile.hdf -o outfile.tif
```

Extract MODLAND QA value from MOD13Q1 mosaic

modis_quality.py -t 1 -p MOD13Q1 input_file.hdf -o destination_file.tif

CHAPTER

THREE

EXAMPLES

Some example about pyModis library and script

3.1 Scripts

- Example of a full process with GDAL library
- Example reproject data with MRT

3.1.1 Example of a full process with GDAL library

In this short example you will learn how to run a series of scripts to obtain a GeoTIFF file for each band of the chosen product using as backend GDAL library.

Warning: This example is based on a Linux based system. If you use another operating system you need to change the paths where data will be saved

Downloading data

For first you need to obtain data, so you need to use modis_download.py

```
mkdir $HOME/tmp
modis_download.py -I -f 2012-12-05 -O -t h28v05,h29v05,h28v04 $HOME/tmp
```

Warning: In this example we are working on the spatial extent of Italy: for your area of interest, change the tile name(s) according to your region.

User and password are passed through standard input.

We are going to download data for only one day (2012-12-05) using the option "-O".

Inside the \$HOME/tmp/ directory you will find a file called *listfileMOD11A1.005.txt* containing the names of downloaded files. The name of file is related to the product that you want to download.

Warning: Every time that you download new files of the same product they will be overwritten, so if you need them, you must rename the file before.

Mosaic data

At this point you need to create the mosaic of the tiles downloaded. *modis_mosaic.py* is the script to use. We create a *VRT* file (flag -v) to improve the speed of analysis, without losing any data only for the first layer

The command will create a file called mosaic_LST_Day_1km.vrt in \$HOME/tmp/ directory

Convert data

The last part of the procedure is to convert the mosaic using *modis_convert.py*. Using *VRT* format it create dataset of only one later, so you are forced to use -s " (1) ". The following command create a GeoTIFF file called final_mosaic_LST_Day_1km.vrt.tif

```
modis_convert.py -v -s "( 1 )" -o $HOME/tmp/final -e 4326 $HOME/tmp/mosaic_ {\hookrightarrow} LST_Day_1km.vrt
```

3.1. Scripts 23

3.1.2 Example reproject data with MRT

In this short example you can understand how to concatenate the scripts to obtain a GeoTIFF file for each band of the chosen product using as backend MODIS Reprojection Tools (MRT).

Warning: This example is based on a Linux based system. Please if you use other OS change the paths where data will be saved

Downloading data

For first you need to obtain data, so you need to use *modis_download.py*

```
modis_download.py -I -f 2012-12-05 -O -t h28v05,h29v05,h28v04 /tmp
```

Warning: In this example we are working on Japan extension, so please change the name of tiles according with your region.

User and password are passed through standard input.

In this example we download data for only one day (2012-12-05) using the option "-O".

Inside /tmp/ directory you will find a file called *listfileMOD11A1.005.txt* containing the names of files downloaded. The name of file it is related to the product that you download.

Warning: Every time that you download new files of same product it will be overwrite, so if you need it, you should rename the file

Mosaic data

modis_mosaic.py is the script to use.

Warning: /path/to/mrt/ is the directory where Modis Reprojection Tools is stored

The output of this command are *outputfile.hdf* and *outputfile.hdf.xml* inside the directory /tmp. It's reading the input files contained in *listfileMOD11A1.005.txt*

Convert data

The last part of the procedure is to convert the mosaic, from HDF format and sinusoidal projection, to GeoTIFF with several projection. You have to use *modis_convert.py*

3.1. Scripts 24

```
modis_convert.py -s '( 1 1 1 1 1 1 1 1 1 1 1 1 1 )' -m /path/to/mrt/
-o /tmp/finalfile.tif -g 250 /tmp/outputfile.hdf
```

Extract quality information

If necessary, you can extract specific quality type from the chosen quality layer. In this particular case, we extract the Mandatory QA flag of the daytime temperature. You have to use *modis_quality.py*

```
modis_quality.py -p MOD11A1 -l 1 -t 1 /tmp/outputfile.hdf
/tmp/mod11a1_daytime_qaflag.tif
```

3.2 Library

To test pyModis library you can find an Ipython notebook example in the documentation source code. If you already downloaded pyModis source code you have just to move inside the directory pyModis/docs/source/examples otherwise you can download the needed file from source code and move to the directory where you downloaded the file.

At this point you can start Ipython notebook running a notebook server from the command line using the following command

```
ipython notebook
```

This will print some information about the notebook server in your console, and open a web browser to the URL of the web application.

The landing page of the IPython notebook web application, the dashboard, shows the notebooks currently available in the notebook directory (in our case only **pyModis.ipynb**).

Clicking on **pyModis.ipynb** link you will start the notebook

3.2. Library 25

Warning: You have to install pyModis before run the Ipython notebook example.

3.2. Library 26

CHAPTER

FOUR

PYMODIS LIBRARY

pyModis library it is a Python library to work with MODIS data.

It can easily used in your application to download, analyze, convert and check the quality of MODIS data.

 $\verb"pyModis" can be used in other free and open source software, it is already present in GRASS GIS used by r.in.modis addon.$

It is compose by this modules:

- downmodis module
- parsemodis module
- convertmodis module
- convertmodis_gdal module
- qualitymodis module
- optparse_required module

4.1 downmodis module

Module to download MODIS HDF files from NASA repository. It supports both FTP and HTTP repositories

Classes:

- modisHtmlParser
- downModis

Functions:

- urljoin()
- getNewerVersion()
- str2date()

class pymodis.downmodis.ModisHTTPRedirectHandler

Bases: future.backports.urllib.request.HTTPRedirectHandler

http_error_302 (req, fp, code, msg, headers)

A class to download MODIS data from NASA FTP or HTTP repositories

Parameters

- **destinationFolder** (str) where the files will be stored
- **password** (str) the password, it should be your email address to connect to a FTP server. Do not use this variable if the server is an HTTP server
- **user** (*str*) the user name, by default 'anonymous', used to connect to an FTP server. Do not use this variable if the server is an HTTP server
- **url** (str) the base url from where to download the MODIS data, it can be FTP or HTTP but it has to start with 'ftp://' or 'http://'
- path (str) the directory where the data that you want to download are stored on the FTP server. For HTTP requests, this is the part of the url between the 'url' parameter and the 'product' parameter.
- **product** (str) the code of the product to download, the code should be idential to the one of the url
- **tiles** (*str*) a set of tiles to be downloaded, None == all tiles. This can be passed as a string of tileIDs separated by commas, or as a list of individual tileIDs
- **today** (*str*) the day to start downloading; in order to pass a date different from today use the format YYYY-MM-DD

- **enddate** (*str*) the day to end downloading; in order to pass a date use the format YYYY-MM-DD. This day must be before the 'today' parameter. Downloading happens in reverse order (currently)
- **delta** (*int*) timelag i.e. the number of days starting from today backwards. Will be overwritten if 'enddate' is specifed during instantiation
- jpeg (bool) set to True if you want to download the JPG overview file in addition to the HDF
- **debug** (bool) set to True if you want to obtain debug information
- timeout (int) Timeout value for HTTP server (seconds)
- checkgdal (bool) variable to set the GDAL check

checkDataExist (listNewFile, move=False)

Check if a file already exists in the local download directory

Parameters

- listNewFile (list) list of all files, returned by getFilesList function
- **move** (bool) it is useful to know if a function is called from download or move function

Returns list of files to download

checkFile (filHdf)

Check by using GDAL to be sure that the download went ok

Parameters filledf (str) – name of the HDF file to check

Returns 0 if file is correct, 1 for error

closeFTP()

Close ftp connection and close the file list document

closeFilelist()

Function to close the file list of where the files are downloaded

connect (ncon=20)

Connect to the server and fill the dirData variable

Parameters ncon (int) – maximum number of attempts to connect to the HTTP server before failing

dayDownload (day, listFilesDown)

Downloads tiles for the selected day

Parameters

- day (str) the day in format YYYY.MM.DD
- **listFilesDown** (*list*) list of the files to download, returned by checkDataExist function

debugDays()

This function is useful to debug the number of days

debugLog()

Function to create the debug file

Returns a Logger object to use to write debug info

debugMaps()

Prints the files to download to the debug stream

downloadFile (filDown, filHdf, day)

Download a single file

Parameters

- **filDown** (str) name of the file to download
- **filHdf** (str) name of the file to write to
- day (str) the day in format YYYY.MM.DD

downloadsAllDay (clean=False, allDays=False)

Download all requested days

Parameters

- **clean** (bool) if True remove the empty files, they could have some problems in the previous download
- allDays (bool) download all passable days

getAllDays()

Return a list of all days

```
getFilesList (day=None)
```

Returns a list of files to download. HDF and XML files are downloaded by default. JPG files will be downloaded if self.jpeg == True.

Parameters day (str) – the date of data in format YYYY.MM.DD

Returns a list of files to download for the day

getListDays()

Return a list of all selected days

removeEmptyFiles()

Function to remove files in the download directory that have filesize equal to 0

setDirectoryIn(day)

Enter into the file directory of a specified day

Parameters day (str) – a string representing a day in format YYYY.MM.DD

setDirectoryOver()

Move up within the file directory

```
pymodis.downmodis.getNewerVersion(oldFile, newFile)
```

Check two files to determine which is newer

Parameters

- oldFile (str) one of the two similar files
- **newFile** (str) one of the two similar files

Returns the name of newer file

class pymodis.downmodis.modisHtmlParser(fh) Bases: HTMLParser.HTMLParser

A class to parse HTML

Parameters fh – content of http request

get_all()

Return everything

get_dates()

Return a list of directories with date

get_tiles (prod, tiles, jpeg=False)

Return a list of files to download

Parameters

- prod (str) the code of MODIS product that we are going to analyze
- tiles (list) the list of tiles to consider
- jpeg (bool) True to also check for jpeg data

handle_starttag(tag, attrs)

pymodis.downmodis.str2date(datestring)

Convert to datetime.date object from a string

:param str datestring string with format (YYYY-MM-DD) :return: a datetime.date object representing datestring

pymodis.downmodis.urljoin(*args)

Joins given arguments into a url. Trailing but not leading slashes are stripped for each argument. http://stackoverflow.com/a/11326230

Returns a string

4.2 parsemodis module

Simple class to parse MODIS metadata file, it can also write the XML metadata file for a mosaic.

Classes:

- parseModis
- parseModisMulti

class pymodis.parsemodis.parseModis (filename)

Class to parse MODIS xml files, it can also create the parameter configuration file for resampling MODIS DATA with the MRT software or convertmodis Module

Parameters filename (str) – the name of MODIS hdf file

Create the parameter file to use with resample MRT software to create tif (geotiff) file

Parameters

- **spectral** (*str*) the spectral subset to be used, see the product table to understand the layer that you want use. For example:
 - NDVI (1 1 1 0 0 0 0 0 0 0 0 0 0 0) copy only layer NDVI, EVI and QA VI the other layers are not used
 - LST ($1\,1\,0\,0\,1\,1\,0\,0\,0\,0\,0$) copy only layer daily and nightly temperature and QA
- **res** (*int*) the resolution for the output file, it must be set in the map unit of output projection system. The software will use the original resolution of input file if res not set
- **output** (str) the output name, if not set if not set the prefix name of input hdf file will be used
- utm the UTM zone if projection system is UTM
- **resample** (str) the type of resampling, the valid values are:
 - NN (nearest neighbor)
 - BI (bilinear)
 - CC (cubic convolution)
- **projtype** (*str*) the output projection system, valid values are:
 - AEA (Albers Equal Area)
 - ER (Equirectangular)
 - GEO (Geographic Latitude/Longitude)
 - HAM (Hammer)
 - ISIN (Integerized Sinusoidal)
 - IGH (Interrupted Goode Homolosine)

- LA (Lambert Azimuthal)
- LCC (LambertConformal Conic)
- MERCAT (Mercator)
- MOL (Mollweide)
- PS (Polar Stereographic)
- SIN (Sinusoidal)
- UTM (Universal TransverseMercator)
- datum(str) the datum to use, the valid values are:
 - NAD27
 - NAD83
 - WGS66
 - WGS76
 - WGS84
 - NODATUM
- **projpar** (*str*) a list of projection parameters, for more info check the Appendix C of MODIS reprojection tool user manual https://lpdaac.usgs.gov/content/download/4831/22895/file/mrt41_usermanual_032811.pdf
- **bound** (*dict*) dictionary with the following keys:
 - max_lat
 - max_lon
 - min lat
 - min lon

Create the parameter file to use with resample MRT software to create tif (geotiff) file

Parameters

- sds (str) Name of band/s (Science Data Set) to resample
- **geoloc** (*str*) Name geolocation file (example MOD3, MYD3)
- res (int) the resolution for the output file, it must be set in the map unit of output projection system. The software will use the original resolution of input file if res not set
- **output** (str) the output name, if not set the prefix name of input hdf file will be used
- **sphere** (*int*) Output sphere number. Valid options are:
 - 0=Clarke 1866

- 1=Clarke 1880
- 2=Bessel
- 3=International 1967
- 4=International 1909
- 5=WGS 72
- 6=Everest
- 7=WGS 66
- 8=GRS1980/WGS 84
- **–** 9=Airy
- 10=Modified Everest
- 11=Modified Airy
- 12=Walbeck
- 13=Southeast Asia
- 14=Australian National
- 15=Krassovsky
- 16=Hough
- 17=Mercury1960
- 18=Modified Mercury1968
- 19=Sphere 19 (Radius 6370997)
- 20=MODIS Sphere (Radius 6371007.181)
- **resample** (*str*) the type of resampling, the valid values are:
 - NN (nearest neighbor)
 - BI (bilinear)
 - CC (cubic convolution)
- **projtype** (*str*) the output projection system, valid values are:
 - AEA (Albers Equal Area)
 - ER (Equirectangular)
 - GEO (Geographic Latitude/Longitude)
 - HAM (Hammer)
 - ISIN (Integerized Sinusoidal)
 - IGH (Interrupted Goode Homolosine)
 - LA (Lambert Azimuthal)
 - LCC (LambertConformal Conic)
 - MERCAT (Mercator)

```
- MOL (Mollweide)
               - PS (Polar Stereographic),
               - SIN ()Sinusoidal)
               - UTM (Universal TransverseMercator)
             • utm – the UTM zone if projection system is UTM
             • projpar (str) - a list of projection parameters, for more info check the
               Appendix C of MODIS reprojection tool user manual https://lpdaac.usgs.
               gov/content/download/4831/22895/file/mrt41_usermanual_032811.pdf
             • bound (dict) – dictionary with the following keys:
               max_lat
               - max_lon
               - min lat
               - min_lon
getGranule()
    Set the GranuleURMetaData element
getLayersName (output=None)
getRoot()
    Set the root element
retBoundary()
    Return the maximum extend (Bounding Box) of the MODIS file as dictionary
retBrowseProduct()
    Return the BrowseProduct element
retCollectionMetaData()
    Return the CollectionMetaData element as dictionary
retDTD()
    Return the DTDVersion element
retDataCenter()
    Return the DataCenterId element
retDataFiles()
    Return the DataFiles element as dictionary
retDataGranule()
    Return the ECSDataGranule elements as dictionary
retDbID()
    Return the DbID element
retGranuleUR()
    Return the GranuleUR element
retInputGranule()
    Return the input files (InputGranule) used to process the considered file
```

retInsertTime()

Return the InsertTime element

retLastUpdate()

Return the LastUpdate element

retMeasure()

Return statistics of QA as dictionary

retPGEVersion()

Return the PGEVersion element

retPSA()

Return the PSA values as dictionary, the PSAName is the key and and PSAValue is the value

retPlatform()

Return the platform values as dictionary.

retRangeTime()

Return the RangeDateTime elements as dictionary

class pymodis.parsemodis.parseModisMulti(hdflist)

A class to obtain some variables for the xml file of several MODIS tiles. It can also create the xml file

Parameters hdflist (list) – python list containing the hdf files

valBound()

Function return the Bounding Box of mosaic

valBrowseProduct(obj)

Function to add BrowseGranuleId

Parameters obj – element to add BrowseGranuleId

valCollectionMetaData(obj)

Function to add CollectionMetaData

Parameters obj – element to add CollectionMetaData

${\tt valDTD}\,(obj)$

Function to add DTDVersion

Parameters obj – element to add DTDVersion

valDataCenter(obj)

Function to add DataCenter

Parameters obj – element to add DataCenter

valDataFiles(obj)

Function to add DataFileContainer

Parameters obj – element to add DataFileContainer

valDataGranule (obj)

Function to add DataFileContainer

Parameters obj – element to add DataFileContainer

${\tt valDbID}\,(obj)$

Function to add DbID

Parameters obj – element to add DbID

${\tt valGranuleUR}\,(obj)$

Function to add GranuleUR

Parameters obj – element to add GranuleUR

valInputPointer(obj)

Function to add InputPointer

Parameters obj – element to add InputPointer

valInsTime(obj)

Function to add the minimum of InsertTime

Parameters obj – element to add InsertTime

valInsertTime(obj)

Function to add InsertTime elements

Parameters obj – element to add InsertTime elements

valLastUpdate(obj)

Function to add LastUpdate elements

Parameters obj – element to add LastUpdate elements

valMeasuredParameter(obj)

Function to add ParameterName

Parameters obj – element to add ParameterName

valPGEVersion(obj)

Function to add PGEVersion

Parameters obj – element to add PGEVersion

valPSA(obj)

Function to add PSA

Parameters obj – element to add PSA

valPlatform(obj)

Function to add Platform elements

Parameters obj – element to add Platform elements

valRangeTime(obj)

Function to add RangeDateTime

Parameters obj – element to add RangeDateTime

writexml (outputname, pretty=True)

Write a xml file for a mosaic

Parameters

- outputname (str) the name of output xml file
- **pretty** (bool) write prettyfy output, by default true

4.3 convertmodis module

Convert MODIS HDF file to GeoTiff file or create a HDF mosaic file for several tiles using Modis Reprojection Tools.

Classes:

- convertModis
- createMosaic
- processModis

Functions:

• checkMRTpath()

pymodis.convertmodis.checkMRTpath(mrtpath)

Function to check if MRT path it correct

Parameters mrtpath (str) – the path to MRT directory

Returns The path to 'bin' and 'data' directory inside MRT path

class pymodis.convertmodis.convertModis (hdfname, confile, mrtpath)

A class to convert modis data from hdf to tif using resample (from MRT tools)

Parameters

- hdfname (str) the full path to the hdf file
- **confile** (str) the full path to the paramater file
- mrtpath (str) the full path to mrt directory which contains the bin and data directories

executable()

Return the executable of resample MRT software

run()

Exec the convertion process

A class to convert several MODIS tiles into a mosaic

Parameters

- **listfile** (*str*) the path to file with the list of HDF MODIS file
- outprefix (str) the prefix for output files
- mrtpath (str) the full path to mrt directory which contains the bin and data directories
- **subset** (str) a string composed by 1 and 0 according with the layer to mosaic. The string should something like '1 0 1 0 0 0 0'

executable()

Return the executable of mrtmosaic MRT software

run()

Exect the mosaic process

write_mosaic_xml()

Write the XML metadata file for MODIS mosaic

class pymodis.convertmodis.processModis (hdfname, confile, mrtpath)

A class to process raw modis data from hdf to tif using swath2grid (from MRT Swath tools)

Parameters

- **hdfname** (str) the full path to the hdf file
- **confile** (*str*) the full path to the paramater file
- mrtpath (str) the full path to mrt directory which contains the bin and data directories

executable()

Return the executable of resample MRT software

run()

Exec the convertion process

4.4 convertmodis_gdal module

Convert MODIS HDF file using GDAL Python bindings. It can create GeoTiff file (or other GDAL supported formats) or HDF mosaic file for several tiles.

Classes:

- file_info
- createMosaicGDAL
- convertModisGDAL

Functions:

- getResampling()
- raster_copy()
- raster_copy_with_nodata()

A class to convert modis data from hdf to GDAL formats using GDAL

Parameters

- hdfname (str) name of input data
- prefix (str) prefix for output data
- **subset** (str) the subset to consider
- res (int) output resolution
- outformat (str) output format, it is possible to use all the supported GDAL format
- epsg (int) the EPSG code for the preojection of output file
- wkt (str) the WKT string for the preojection of output file
- resampl(str) the resampling method to use
- vrt (bool) True to read GDAL VRT file created with createMosaicGDAL

run()

Reproject all the subset of chosen layer

run_vrt_separated()

Reproject VRT created by createMosaicGDAL, function write_vrt with separated=True

class pymodis.convertmodis_gdal.createMosaicGDAL(hdfnames, subset, outformat='HDF4Image')

A class to mosaic modis data from hdf to GDAL formats using GDAL

Parameters

• hdfnames (list) – a list containing the name of tile to mosaic

- **subset** (str) the subset of layer to consider
- outformat (str) the output format to use, this parameter is not used for the VRT output, supported values are HDF4Image, GTiff, HFA, and maybe something else not tested.

run (output)

Create the mosaic

Parameters output (str) – the name of output file

```
write_mosaic_xml (prefix)
```

Write the XML metadata file for MODIS mosaic

Parameters prefix (str) – the prefix for the XML file containing metadata

write_vrt (output, separate=True)

Write VRT file

Parameters

- **output** (*str*) the prefix of output file
- **separate** (bool) True to write a VRT file for each band, False to write an unique file

class pymodis.convertmodis_gdal.file_info

A class holding information about a GDAL file.

Class copied from gdal_merge.py

Parameters filename (str) – Name of file to read.

Returns 1 on success or 0 if the file can't be opened.

```
copy_into(t_fh, s_band=1, t_band=1, nodata_arg=None)
```

Copy this files image into target file.

This method will compute the overlap area of the file_info objects file, and the target gdal.Dataset object, and copy the image data for the common window area. It is assumed that the files are in a compatible projection. no checking or warping is done. However, if the destination file is a different resolution, or different image pixel type, the appropriate resampling and conversions will be done (using normal GDAL promotion/demotion rules).

Parameters

- t_fh gdal.Dataset object for the file into which some or all of this file may be copied.
- s band -
- t_band-
- nodata_arg -

Returns 1 on success (or if nothing needs to be copied), and zero one failure.

```
init_from_name (filename)
```

Initialize file info from filename

```
pymodis.convertmodis_gdal.getResampling(res)
```

Return the GDAL resampling method

Parameters res (str) – the string of resampling method

Copy a band of raster into the output file.

Function copied from gdal_merge.py

Copy a band of raster into the output file with nodata values.

Function copied from gdal_merge.py

4.5 qualitymodis module

A class for the extraction and transformation of MODIS quality layers to specific information Classes:

• QualityModis

```
class pymodis.qualitymodis.QualityModis (infile, outfile, qType=None, qLayer=None, pType=None)

A Class for the extraction and transformation of MODIS quality layers to specific information Parameters
```

```
• infile (str) – the full path to the hdf file
```

```
• outfile (str) – the full path to the parameter file
```

```
exportData()
```

writes calculated QA values to physical .tif file

loadData()

loads the input file to the object

loadQAArray()

loads the QA layer to the object

qualityConvert (modisQaValue)

converts encoded Bit-Field values to designated QA information

run()

Function defines the entire process

setProductGroup()

read productGroup from Metadata of hdf file

setProductType()

read productType from Metadata of hdf file

setQAGroup()

set QA dataset group type

setQALayer()

function sets the input path of the designated QA layer

4.6 optparse_required module

Module to extend optparse, it add required options and new types to use into gui module.

Classes:

- OptionWithDefault
- OptionParser

```
class pymodis.optparse_required.OptionParser(**kwargs)
    Bases: optparse.OptionParser
     Extend optparse. OptionParser
     check_values (values, args)
         Check if value is required for an option
class pymodis.optparse_required.OptionWithDefault(*opts, **attrs)
     Bases: optparse.Option
```

Extend optparse. Option add required to the attributes and some new types for the GUI

TYPES = ('string', 'int', 'long', 'float', 'complex', 'choice', 'file', 'output', 'directory')

ATTRS = ['action', 'type', 'dest', 'default', 'nargs', 'const', 'choices', 'callback', 'callback_args', 'callback_

4.7 optparse_gui module

A drop-in replacement for optparse ("import optparse_gui as optparse") Provides an identical interface to optparse(.OptionParser), But displays an automatically generated wx dialog in order to enter the options/args, instead of parsing command line arguments

Classes:

- OptparseDialog
- UserCancelledError
- Option
- OptionParser

Functions:

```
• checkLabel()
```

```
class pymodis.optparse_gui.Option (*opts, **attrs)
    Bases: optparse.Option

Extended optparse.Option class

ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count', 'callback',

ATTRS = ['action', 'type', 'dest', 'default', 'nargs', 'const', 'choices', 'callback', 'callback_args', 'callback_
SUPER
    alias of Option

TYPED_ACTIONS = ('store', 'append', 'callback', 'group_name')
```

TYPES = ('string', 'int', 'long', 'float', 'complex', 'choice', 'file', 'output', 'directory', 'group_name')

```
class pymodis.optparse_gui.OptionParser(*args, **kwargs)
```

Bases: optparse.OptionParser

Extended optparse. OptionParser to create the GUI for the module

SUPER

alias of OptionParser

error (msg)

Return an error message with wx.MessageDialog

Parameters msg (str) – is the error string to pass to message dialog

```
parse_args (args=None, values=None)
```

This is the heart of it all overrides optparse.OptionParser.parse_args

Parameters

- arg is irrelevant and thus ignored, it's here only for interface compatibility
- **values** is irrelevant and thus ignored, it's here only for interface compatibility

The dialog presented to the user with dynamically generated controls, to fill in the required options.

Parameters

```
• optParser – the optparse object
```

```
• title (str) – the title to add in the GUI
```

```
• parent – the parent GUI
```

```
• ID (int) - the ID of GUI
```

- pos the position of GUI
- size the dimension of GUI
- **style** the style of GUI

Based on the wx.Dialog sample from wx Docs & Demos

```
getOptionsAndArgs()
```

Parse the options and args

Returns a dictionary of option names and values, a sequence of args

```
onBrowse (event)
      Choose file
onText (event)
      File changed
```

exception pymodis.optparse_gui.UserCancelledError

Bases: exceptions.Exception
??

pymodis.optparse_gui.checkLabel (option)

Create the label for an option, it add the required string if needed

Parameters option – and Option object

PYTHON MODULE INDEX

р

pymodis.convertmodis, 38 pymodis.convertmodis_gdal, 40 pymodis.downmodis, 28 pymodis.optparse_gui, 45 pymodis.optparse_required, 44 pymodis.parsemodis, 32 pymodis.qualitymodis, 43

A	D
ACTIONS (pymodis.optparse_gui.Option attribute), 45	dayDownload() (pymodis.downmodis.downModis method), 29
ATTRS (pymodis.optparse_gui.Option attribute), 45	debugDays() (pymodis.downmodis.downModis method), 29
ATTRS (pymodis.optparse_required.OptionWithDe attribute), 44	fadelbugLog() (pymodis.downmodis.downModis method), 29
С	debugMaps() (pymodis.downmodis.downModis method), 30
check_values() (py- modis.optparse_required.OptionParser	downloadFile() (pymodis.downmodis.downModis method), 30
method), 44 checkDataExist() (py- modis.downModis method),	downloadsAllDay() (py- modis.downModis method), 30
checkFile() (pymodis.downmodis.downModis	downModis (class in pymodis.downmodis), 28
method), 29	E
checkLabel() (in module pymodis.optparse_gui), 46	error() (pymodis.optparse_gui.OptionParser method), 45
checkMRTpath() (in module py- modis.convertmodis), 38 closeFilelist() (pymodis.downmodis.downModis	executable() (py- modis.convertmodis.convertModis method), 38
method), 29 closeFTP() (pymodis.downmodis.downModis	executable() (pymodis.convertmodis.createMosaic method), 38
method), 29 confResample() (pymodis.parsemodis.parseModis method), 32	executable() (py- modis.convertmodis.processModis method), 39
confResample_swath() (py-modis.parsemodis.parseModis method), 33	exportData() (py- modis.qualitymodis.QualityModis method), 43
connect() (pymodis.downmodis.downModis method), 29	F
convertModis (class in pymodis.convertmodis), 38 convertModisGDAL (class in py-	
modis.convertmodis_gdal), 40 copy_into() (pymodis.convertmodis_gdal.file_info	G get_all() (pymodis.downmodis.modisHtmlParser
method), 41 createMosaic (class in pymodis.convertmodis), 38 createMosaicGDAL (class in py-	method), 31 get_dates() (pymodis.downmodis.modisHtmlParser method), 31
modis.convertmodis_gdal), 40	get_tiles() (pymodis.downmodis.modisHtmlParser method), 31

getAllDays() (pymodis.downmodis.downModis method), 30	Option (class in pymodis.optparse_gui), 45	
**	OptionParser (class in pymodis.optparse_gui), 45	
getFilesList() (pymodis.downmodis.downModis method), 30	OptionParser (class in py- modis.optparse_required), 44	
getGranule() (pymodis.parsemodis.parseModis	OptionWithDefault (class in py-	
method), 35	modis.optparse_required), 44	
getLayersName() (py-	OptparseDialog (class in pymodis.optparse_gui),	
modis.parsemodis.parseModis method),	45	
35		
getListDays() (pymodis.downmodis.downModis	P	
method), 30	parse_args() (pymodis.optparse_gui.OptionParser	
getNewerVersion() (in module py-	method), 45	
modis.downmodis), 30	parseModis (class in pymodis.parsemodis), 32	
getOptionsAndArgs() (py-	parseModisMulti (class in pymodis.parsemodis),	
modis.optparse_gui.OptparseDialog	36	
method), 46	processModis (class in pymodis.convertmodis), 39	
getResampling() (in module py-	pymodis.convertmodis (module), 38	
modis.convertmodis_gdal), 41	pymodis.convertmodis_gdal (module), 40	
getRoot() (pymodis.parsemodis.parseModis	pymodis.downmodis (module), 28	
method), 35	pymodis.optparse_gui (module), 45	
	pymodis.optparse_required (module), 44	
H	pymodis.parsemodis (module), 32	
handle_starttag() (py-	pymodis.qualitymodis (module), 43	
modis.downmodis.modisHtmlParser	pymodis.quantymodis (module), 15	
method), 31	Q	
•	qualityConvert() (py-	
http_error_302() (py-		
modis.downmodis.ModisHTTPRedirectHa		
method), 28	method), 43	
I .	QualityModis (class in pymodis.qualitymodis), 43	
	R	
init_from_name() (py-		
modis.convertmodis_gdal.file_info	raster_copy() (in module py-	
method), 41	modis.convertmodis_gdal), 42	
L	raster_copy_with_nodata() (in module py-	
	modis.convertmodis_gdal), 42	
loadData() (pymodis.qualitymodis.QualityModis	removeEmptyFiles() (py-	
method), 43	modis.downmodis.downModis method),	
loadQAArray() (py-	30	
modis.qualitymodis.QualityModis	retBoundary() (pymodis.parsemodis.parseModis	
method), 43	method), 35	
	retBrowseProduct() (py-	
M	modis.parsemodis.parseModis method),	
modisHtmlParser (class in pymodis.downmodis),	35	
30		
ModisHTTPRedirectHandler (class in py- modis.downmodis), 28	modis.parsemodis.parseModis method),	
modis.downmodis), 20	35	
0	retDataCenter() (pymodis.parsemodis.parseModis	
	method), 35	
onBrowse() (pymodis.optparse_gui.OptparseDialog		
method), 46	method), 35	
onText() (pymodis.optparse_gui.OptparseDialog method), 46		

Index 49

retDataGranule() (p	y- modis.qualitymodis.QualityModis
modis.parsemodis.parseModis method	
35	setProductType() (py-
retDbID() (pymodis.parsemodis.parseMod method), 35	lis modis.qualitymodis.QualityModis method), 43
retDTD() (pymodis.parsemodis.parseMod	lis setQAGroup() (py-
method), 35	modis.qualitymodis.QualityModis
retGranuleUR() (pymodis.parsemodis.parseMod	
method), 35	setQALayer() (py-
	y- modis.qualitymodis.QualityModis
modis.parsemodis.parseModis method	
35	str2date() (in module pymodis.downmodis), 31
retInsertTime() (pymodis.parsemodis.parseMod method), 35	dis SUPER (pymodis.optparse_gui.Option attribute), 45
retLastUpdate() (pymodis.parsemodis.parseMod	lis SUPER (pymodis.optparse_gui.OptionParser at-
method), 36	tribute), 45
retMeasure() (pymodis.parsemodis.parseMod method), 36	lis T
retPGEVersion() (p	y- TYPED_ACTIONS (py-
modis.parsemodis.parseModis method	
36	45
retPlatform() (pymodis.parsemodis.parseMod method), 36	lis TYPES (pymodis.optparse_gui.Option attribute), 45
retPSA() (pymodis.parsemodis.parseMod	dis TYPES (pymodis.optparse_required.OptionWithDefault attribute), 44
method), 36	•
retRangeTime() (pymodis.parsemodis.parseMod method), 36	
run() (pymodis.convertmodis.convertMod method), 38	urljoin() (in module pymodis.downmodis), 31 UserCancelledError, 46
run() (pymodis.convertmodis.createMosa method), 38	V
run() (pymodis.convertmodis.processMod method) 39	method), 36
run() (pymodis.convertmodis_gdal.convertModi	sGD XalBrowseProduct() (py-
method), 40	modis.parsemodis.parsewodisividid
run() (pymodis.convertmodis_gdal.createMosaic method), 41	valCollectionMetaData() (py-
run() (pymodis.qualitymodis.QualityMod	madia nanamadia nanaMadiaMali
method), 43	volDotoContor() (nv
modis.convertmodis_gdal.convertModi	sGDAL modis.parsemodis.parseModisMulti
method), 40	method), 36 valDataFiles() (py-
S	~ ·
	modis.parsemodis.parseModisMulti
-	y- method), 36
modis.downmodis.downModis method	
30	modis.parsemodis.parseModisMulti
-	method), 36
modis.downModis method 30	method), 36
setProductGroup() (p	y- valDTD() (pymodis.parsemodis.parseModisMulti method), 36

Index 50

valGranuleUR()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valInputPointer()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valInsertTime()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valInsTime()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valLastUpdate()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valMeasuredParameter()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valPGEVersion()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
valPlatform()	(py-
modis.parsemodis.parseModisMulti	
method), 37	N # 1.1
valPSA() (pymodis.parsemodis.parseModis.	Mult1
method), 37	,
valRangeTime()	(py-
modis.parsemodis.parseModisMulti	
method), 37	
W	
write_mosaic_xml()	(py-
modis.convertmodis.createMosaic	(P)
method), 38	
write_mosaic_xml()	(py-
modis.convertmodis_gdal.createMos	
method), 41	Jule GB1 IE
write_vrt() (pymodis.convertmodis_gdal.crea	teMosaicGDA
method), 41	
writexml() (pymodis.parsemodis.parseModis.	Multi
method), 37	-
* ·	

Index 51