

NLP - 혐오 표현 필터링 프로젝트

NLP팀 이승연 임세영 조서영

목치

#01 개요

#02 데이터셋

#03 모델

개요

혐오 표현과 그에 따른 언어 오염 실태가 심각

"차별·혐오 데이터 그대로"... AI '이루다' 운영 중단 요구 확산

음 이하나 기자 │ ② 승인 2021.01.10 21:31 │ ☑ 수정 2021-01-10 21:39 │ ♀ 댓글 0

'20살 여대생' 인공지능 '이루다' 논란 일부 남성 사용자는 AI 성희롱하고 AI는 '레즈비언' 단어에 "혐오스럽다" 서비스 중단 요구 해시태그 운동 확산

혐오 표현을 그대로 학습하는 AI 챗봇

"혐오 표현 막는다"...IBS·심심이, AI 챗봇 윤리 성 검증

입력 2021.08.26 09:21 수정 2021.08.26 09:21

가가

AI 챗봇의 윤리성 검증이 큰 화두로 던져짐

그렇다면, 챗봇을 사용하는데 있어서

어떻게 윤리성을 검증할 수 있을까?

일상생활 곳곳에 침투한 혐오표현을 잡아내고,

이를 분류할 수 있는 모델을 만들어보자!

데이터셋

데이터셋

데이터 영역	한국어	데이터 유형	텍스트
데이터 형식	JSON	데이터 출처	크라우드워커가 직접 생성
라벨링 유형	비윤리 텍스트(자연어)	라벨링 형식	JSON
데이터 활용 서비스	대화체 콘텐츠 모더레이션, 챗봇서비스, 음 성비서서비스	데이터 구축년도/ 데이터 구축량	2021년/453,340문장(대화세트 132,807 건)

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=558

#01 데이터 포맷

#1 원문데이터 포맷

원문

{이정재 진짜 잘생겼다.|이정재도 이제 아저씨지...|남자 나이 40 넘어가면 그냥 폐급이야 ~ ㅋㅋ}

전처리 후

```
"origin_text":"#@인간및인간집단.인물.유명인# 진짜 잘생겼다.",
"origin_text":"#@인간및인간집단.인물.유명인#도 이제 아저씨지...",
"origin_text":"남자 나이 40 넘어가면 그냥 폐급이야 ~ ㅋㅋ",
```


#01 데이터 포맷

#2 이름 비식별화

비윤리적 대화 속에서 언급된 사람, 제품 이름이 접근성이 높은 곳에 공개되는 경우사회적 논란이 발생할 수 있어 고유 이름을 비식별화함

#3 이름 비식별화 체계

인물의 성별이 비윤리적 표현에 영향을 많이 주는 특성을 반영하여 성별 표기함 (BTS → 인간및인간집단.조직및단체.가수그룹.남성,)

#02 데이터 구성

- 대화세트 (talksets)
- 문형 (ethic-frames)
- 어휘단위 (lexical units)

〈구축 규모〉

문장	비윤리 문장	문형	어휘 단위
453,340 문장	251,064 문장	258,904 개	77,978 개

#03 어노테이션 포맷

#1 대화세트 (talksets)

- 내용: 비윤리적 문장이 1 개 이상 포함된 대화세트들
- 이름 비식별화 체계
- 세종 전자사전의 '고유명사 하위분류체계'를 기본으로 하되 소범주는 과제에 맞게 변경함
- 방송/연예계에서 활동하는 인물의 소범주는 '유명인'으로 통칭함.
- 직업 구분이 모호한 경우가 많음
- 동명이인의 가능성 등 소범주 구별이 어려운 경우라면, 중범주까지만 기입함
- 성별을 특정 지을 수 있는 인간 및 인간집단의 경우 소범주 다음에 성별을 기입함 예: "인간및인간집단.인물.정치인.여성"

#03 어노테이션 포맷

#2 문형 (ethic-frames)

- 내용: 제출된 데이터에 등장한 모든 문형을 포함해서, 프로젝트에서 생성된 모든 문형

구분	항목명	타입	설명
1	id	number*	· 문형에 대한 고유 id
2	masked_text	string*	 · 문형 정보 문장 전체 혹은 주요 구절만 문형으로 매평함 · 패턴: 구체적 어휘단위 대신 N,V형태의 슬롯 ID로 표시 NX = 명사류 어휘단위 VX = 술어류 어휘단위 VX = 등장 순서대로 1부터 시작 단, N과 V를 합쳐서 등장 순서를 매기지 않고 N, V 각각의 등장 순서를 매김〉 · 예시: "N1 진짜 N2 안 V1나 V2네"
3	slots[]	array*	 문형 속 등장하는 슬롯들의 배열 예시: 문형 "N1 진짜 N2 안 V1나 V2네" 의 슬롯 ["N1","N2","V1","V2"]

#03 어노테이션 포맷

#3 어휘단위 (lexical units)

- 내용: 문형에 매핑된 어휘단위 정보
- 명사류(N)와 술어류(V)로 분류

구분	항목명	타입	설명
1	id	number*	• 어휘단위에 대한 고유 id
2	token	string*	• 어휘단위의 이름 • 예시: "한남"
3	features	array of string*	해당 어휘단위의 속성값+Q7:Q18 고빈도 출현 어휘를 중심으로 속성값 부여 비윤리성 문장에서 주로 등장하는 의미로 속성값 부여 속성값이 없는 경우 empty array 어휘단위의 속성값 정보 파일 "어휘단위체계_목록.xlsx" 참고위치: 3.Documents 〉 3_품질검증합의서,구축 및 검증계획서 에시: "애들" = ["인간.인칭"] "먹다" = ["행위.일상"] "따먹다" = ["행위.관계"]
4	pos	string*	 해당 어휘단위의 형태소 분석 정보 N = 명사류 어휘단위 V = 술어류 어휘단위 유효값: N, V

모델설명

Transformer

Figure 1: The Transformer - model architecture.

- Got rid of all the recurrent parts
- Self-attention and Fully-connected layer: To get rid of sequential parts in sequence transduction
- Relying entirely on an attention mechanism to draw global dependencies between input and output

Attention mechanism

- The attention function obtains the similarity of all the 'Keys' for a given 'Query'
- And the similarity is weighted and reflected in each of the 'Value' mapped to the keys
- It returns all the 'Value' that reflects the similarity (weighted sum)

- BERT는 트랜스포머를 이용해서 위키피디아(25억 단어)와 BooksCorpus(8억 단어)와 같은 레이블이 없는 텍스트 데이터로 사전 훈련된 언어 모델
- BERT는 레이블이 없는 방대한 데이터로 사전 훈련된 모델로 레이블이 있는 다른 작업(Task)에서 추가 훈련과 함께 하이퍼 파라미터를 재조정하는 방식을 사용하여 성능이 높은 편
- 파라미터 재조정을 위한 추가 훈련 과정을 파인 튜닝(Fine-tuning)이라고 함

- 8개의 타입으로 분류된 비도덕/무도덕 문장 데이터셋을 학습하여, 입력된 문장의 분류 타입을 판단하는 모델
- BERT 사전학습 모델을 사용한 멀티 클래스 분류 모델 적용
- 모델을 다운로드 받아서 로컬에서 돌릴 수 있도록 조금 수정

- Num examples = 12664
- Evaluation Batch size = 64
- Accuracy: 대략 70%

```
model.zero_grad()
mb = master_bar(range(int(args.num_train_epochs)))
for epoch in mb:
   epoch_iterator = progress_bar(train_dataloader, parent=mb)
    for step, batch in enumerate(epoch_iterator):
        model.train()
        batch = tuple(t.to(args.device) for t in batch)
        inputs = {
           "input_ids": batch[0],
            "attention_mask": batch[1],
            "labels": batch[3]
        if args.model_type not in ["distilkobert", "xlm-roberta"]:
            inputs["token_type_ids"] = batch[2] # Distilkobert, XLM-Roberta don't use segment_ids
        outputs = model(**inputs)
        loss = outputs[0]
        if args.gradient_accumulation_steps > 1:
            loss = loss / args.gradient_accumulation_steps
        loss.backward()
        tr_loss += loss.item()
        if (step + 1) % args.gradient_accumulation_steps == 0 or (
                len(train_dataloader) <= args.gradient_accumulation_steps</pre>
                 and (sten + 1) == len(train dataloader)
```


- 챗봇 학습 과정에 있어 혐오 표현이 함께 학습되지 않도록 방지 가능
- 혐오 표현뿐만 아니라 인공지능 학습에 있어 문제점으로 제기되는 '편견 학습'문제도 해결 가능

인공지능 윤리 문제 해결의 초석!

THANK YOU

