

SRM Institute of Science and Technology

Ramapuram campus

Department of Mathematics 18MAB302T- DISCRETE MATHEMATICS

Year/Sem: III/V

Branch: CSE,ECE,EEE

UNIT-4 - GROUP THRORY

1. Let (G,*) be the group then for each $a, b \in G$ the value of $(a*b)^{-1}$ is (a) $(ab)^{-1}$ (b) $a^{-1}b^{-1}$ (c) $a^{-1}+b^{-1}$ (d) $b^{-1}*a^{-1}$ Ans: d

Solution:
$$(a * b) * (b^{-1} * a^{-1}) = a * (b * b^{-1}) * a^{-1}$$
 (By Associative Law)
 $= a * e * a^{-1}$ (By Inverse Law)
 $= a * a^{-1}$ (By Identity Law)
 $= e$

Hence Inverse of a * b is $b^{-1} * a^{-1} \implies (a * b)^{-1} = b^{-1} * a^{-1}$

- 2. Let $G = \{1, -1\}$ then under usual multiplication (G, .) is
 - (a) Group (b) Sub Group (c) Cyclic Group (d) Not a Group Ans: a

Solution: Cayley Table of *G* is

•	1	-1
1	1	-1
-1	-1	1

From the above table G satisfies Closure law, since multiplication is associative in any number set, it is true here also. Hence associative axiom is satisfied. 1 is the Identity element. Inverse of 1 is 1 and Inverse of -1 is -1. Hence (G, .) is a group.

- 3. Let (G,*) be the set of all non-zero real numbers defined by the binary operator $a*b = \frac{ab}{2}$, $\forall a,b \in G \& G$ is Abelian Group. Then Identity element e of G is
 - (b) 4
- (b) 2
 - (c) 1
- (d) 0

Ans: b

Solution:
$$a * e = a$$
 $\forall a \in G$

$$\frac{ae}{2} = a \implies e = 2$$

4. The fourth root of unity $\{1, -1, i, -i\}$ where $\sqrt{-1} = i$ forms an Abelian group under multiplication. Then Inverse of -1 and i are

(a)
$$-1, i$$

(c)
$$i - i$$

(c)
$$i, -i$$
 (d) $-1, -i$

Solution: Cayley Table

×	1	-1	i	— і
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

From the above table 1 is the Identity element.

$$-1 \times -1 = 1 = e \& i \times -i = -i^2 = 1 = e$$

Inverse of -1, i are -1, -i

- 5. Which of the following statements are true?
 - I. Identity element of a group is unique and Inverse of each element is finite.
 - Identity element of a group is unique and Inverse of each element is same. II.
 - III. Identity element of a group is unique and Inverse of each element is unique.
 - Identity element and Inverse element are equal for any group. IV.
 - (a) I,II
- (b) III
- (c) IV
- (d) III&IV

Ans: b

Solution: From Properties of Group.

- 6. An algebraic structure ______ is called a semigroup.
 - a) (P,*)
- b) (Q, +, *) c) (P, +) d) (+, *)

Ans: a

Solution: An algebraic structure (P,*) is called a semigroup if a*(b*c) = (a*b)*c for all $a, b, c \in S$ or the elements follow associative property under *.

- 7. A cyclic group is always _____
 - a) abelian group
- b) monoid c) semigroup
- d) subgroup

Ans: a

Solution: A cyclic group is always an abelian group but every abelian group is not a cyclic group. For instance, the rational numbers under addition is an abelian group but is not a cyclic one.

- 8. If x * y = x + y + xy then (G_{*}) is _____
 - a) Monoid
- b) Abelian group
- c) Commutative semigroup
- d) Cyclic group

Ans: c

Solution: Let x and y belongs to a group G. Here closure and associativity axiom holds simultaneously. Let e be an element in G such that x * e = x then x + e + xe = a => e(1 + x) = 0 => e = 0/(1 + x) = 0.

So, identity axiom does not exist but commutative property holds. Thus, (G,*) is a commutative semigroup.

- 9. From the group $G = [\{0,1,2,3,4\}, +_5]$, order of the element 4 is
 - (a) 0
- (b)
- 1 (c) 3
- (d) 5

Ans: d

Solution: Identity element of G is e = 0

$$O(0) = 1, O(1) = O(2) = O(3) = O(4) = O(5) = 5$$

- 10. From the Multiplicative group $G = \{1, \omega, \omega^2\} \& \omega^3 = 1$ the order of ω^2 is
 - (b) 1
- (b) 2
- (c) 3
- (d) 0

Ans: c

Solution: Identity element of G is e = 1

$$O(\omega^2) = (\omega^2)^3 = 1 = e$$
 Hence $O(\omega^2) = 3$

- 11. If (*M*,*) is a cyclic group of order 73, then number of generator of G is equal to _____
 - a) 89
- b) 23
- c) 72
- d) 17

Ans: c

Solution: We need to find the number of co-primes of 73 which are less than 73. As 73 itself is a prime, all the numbers less than that are co-prime to it and it makes a group of order 72 then it can be of $\{1, 3, 5, 7, 11....\}$.

- 12. The dihedral group having order 6 can have degree _
 - a) 3
- b) 26
- c) 326
- d) 208

Ans: a

Solution: A symmetric group on a set of three elements is said to be the group of all permutations of a three-element set. It is a dihedral group of order six having degree three.

13.	Suppose (2 of permutat		(3, 6) are the	two perm	utati	ion g	grou	ıps t	hat	form cycl	es. What type
		b) even	c) acycli	ic	d)	prin	ne				Ans: b
	Solution: permutation	There are found.	ır permutatio	ons (2, 5),	(2, 8	3), (2	2, 4)	and	1 (3,	6) and so	it is an even
14.		ermutations o b) latt) rin	ıgs		Ans: a
	equivalence does not ch invariant pe	Suppose, there class since the ange the object that is again and a significant control of the signific	here exists a ct itself, but an form a gro	n invarian only its re oup, as the	t per pres pro	mut enta	atio tion	n sa ı), sı	y, π uch	that: $f2 *$	tation that $\pi \equiv f1$. So,
15.	The transp (a) (1 6) (2 (c) (2 5) (2	ositions of the 5) (2 3) (2 6)	e permutatio (b) (1 6) (1 (d) (1 3) (1		2 5	3 2	4 4	5 3	6 1	7 are	Ans: a

Ans: b

16. Non-trivial subgroups of
$$(Z_6, +_6)$$
 are

Solution: $f = (1 \ 6) \ (2 \ 5 \ 3) \ (4) \ (7)$

= (1 6) (2 5 3)

= (1 6) (2 5) (2 3)

- (a) $\{[0], [3]\}, \{[2], [4]\}$
- (b) $\{[0],[3]\},\{[0],[2],[4]\}$
- $(c) \ \{[0],[3]\} \,, \{[2],[4]\}, \{[1],[4]\} \\$
- $(d) \; \{[1],[0],[3]\} \,, \{[2],[4]\}, \{[1],[4]\} \\$

Solution:

+6	[0]	[3]
[0]	[0]	[3]
[3]	[3]	[0]

+6	[0]	[2]	[4]
[0]	[0]	[2]	[4]
[2]	[2]	[4]	[0]
[4]	[4]	[0]	[2]

Both are closed under $+_6$. Hence they are subgroups.

17. Let G be	a finite group wit	th two sub groups <i>M</i>	1 & N such that $ M $	= 56 and N = 123.
Determin	ne the value of $ M $	$\cap N$.		
a) 1	b) 56	c) 14	d) 78	

Solution: We know that gcd(56, 123)=1. So, the value of $|M \cap N|=1$

18. Let K be a group with 8 elements. Let H be a subgroup of K and H<K. It is known that the size of H is at least 3. The size of H is ______ a) 8 b) 2 c) 3 d) 4 Ans: d

Solution: For any finite group G, the order (number of elements) of every subgroup L of G divides the order of G. G has 8 elements. Factors of 8 are 1, 2, 4 and 8. Since given the size of L is at least 3(1 and 2 eliminated) and not equal to G(8 eliminated), the only size left is 4. Size of L is 4.

19. A function is defined by f(x) = 2x and f(x + y) = f(x) + f(y) is called

a) isomorphic

b) homomorphic

c) cyclic group

d) heteromorphic

Ans: a

Let (G,*) and (G',+) are two groups. The mapping $f: G \to G'$ is said to be isomorphism if two conditions are satisfied 1) f is one-to-one function and onto function and 2) f satisfies homomorphism.

20. How many different non-isomorphic Abelian groups of order 8 are there?

a) 5

b) 4

d) 3

c) 2

Solution: The number of Abelian groups of order P^m (let, P is prime) is the number of partitions of m. Here order is 8 i.e. 2^3 and so partition of 3 are $\{1, 1\}$ and $\{3, 0\}$. So number of different abelian groups are 2.

- 21. Let (Z, \bigoplus, \bigcirc) be the set of Integers with Binary operators defined by $a \oplus b = a + b 1$, $a \odot b = a + b - ab, \forall a, b \in Z$. Then Z is
 - (a) Commutative Ring with Identity
 - (b) Non Commutative Ring
 - (c) Commutative Ring without Identity
 - (d) Not a Ring

Ans: a

Solution:

 (Z, \bigoplus) is Abelian Group,

- (Z, \bigoplus, \bigcirc) Satisfies the properties of Ring along with Identity and commutative.
- 22. If $Q(\sqrt{2}) = \{a + b\sqrt{2}\}$: $a, b \in Q$ is a Field with respect to addition and Multiplication. Then the Inverse of each element of Q with respect to Addition is

(a) $\sqrt{2}$

(b)
$$a - \sqrt{2}$$

(c)
$$a - b\sqrt{2}$$

(b)
$$a - \sqrt{2}$$
 (c) $a - b\sqrt{2}$ (d) $-a - b\sqrt{2}$

Ans:d

Solution: Since $(Q\sqrt{2}, +)$ is an abelian group, $e = 0 + 0\sqrt{2}$

$$(a + b\sqrt{2}) + (a + b\sqrt{2})^{-1} = 0 + 0\sqrt{2}$$

$$(a+b\sqrt{2})^{-1}=-a-b\sqrt{2}, \forall a,b\in Q\sqrt{2}$$

- 23. Let (Z, +, .) and (2Z, +, .) be two Rings. $f: Z \to 2Z$ given by $f(x) = 2x, \forall x \in Z$ is
 - (a) Ring Homomorphism
 - (b) Group Homomorphism
 - (c) Not a Ring Homomorphism
 - (d) Group Isomorphism

Ans: c

Solution: f(x). f(y) = 2x. $2y = 4xy \neq f(xy)$

24. The only Idempotent elements of an Integral Domain are

(a) 0 &1

- (b) 0&2
- (c) 1&2
- (d) 1&3

Ans: a

Solution: Let (R, +, .) be an Integral domain. Let $a \in R$ be an Idempotent element

Then
$$a^2 = a \Rightarrow a^2 - a = 0$$

$$\Rightarrow a(a-1)=0$$

Since *R* has no Zero Divisors a = 0 & 1 only.

- 25. If x = 11010 and y = 10101 then H(x, y) is
 - (b) 4
- (c) 3
- (d) 5Ans: b

Solution: $H(x, y) = |x \oplus y| = |01111| = 4 = \text{No of Positions in the Strings}$

- 26. If the message $w \in B^2$ and let $G = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$ then $e(1\ 1)$ is
 - **(a)** (0 0 0 0 0)
- (b) (1 0 1 1 0) (c) (0 1 0 1 1) (d) (1 1 1 0 1)
- Ans: d

Solution: $e(1\ 1) = (1\ 1) \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} = (1\ 1\ 1\ 0\ 1)$
