FATTI DI EGA

NOTAZIONI ED INTRODUZIONE

Il corso da cui sono tratti gli enunciati è diviso in alcune parti: nella prima si cerca di dare un'introduzione più concreta alla geometria algebrica attraverso anche esempi di curve in \mathbb{P}^2 , nella seconda si parlerà di varietà quasi-proiettive, e di varietà affini e proiettive, nella terza ci sarà un po' di teoria della dimensione.

PRIMA PARTE

STUDIO DELL'IRRIDUCIBILITÀ DEI POLINOMI "QUADRATICI"

 $p(x,y)=y^2-f(x)\in \mathbb{K}[x][y]$. Se nella fattorizzazione di $f(x)=c\cdot p_1^{\alpha_1}\dots p_k^{\alpha_k}$ con p_i irriducibili e distinti, $\alpha_i>0$ esiste un i tale che α_i è dispari allora si ha p(x,y) irriducibile. Inoltre se \mathbb{K} è algebricamente chiuso questa condizione è anche necessaria.

STUDIO LOCALE DELLE IPERSUPERFICI AFFINI

 $f \in \mathbb{K}[x_1, \dots, x_n], p \in V(f) \subseteq \mathbb{A}^n$. Sia l retta di \mathbb{A}^n passante per p, ovvero $l = \{p+tv \mid t \in \mathbb{K}\}$ con $v \in \mathbb{K}^n \setminus \{0\}$.

Consideriamo il polinomio $g(t) := f(p + tv) \in \mathbb{K}[t]$ e distinguiamo due casi:

- $g \equiv 0$: Significa che la retta l è contenuta in V(f) e quindi diciamo che l interseca \mathcal{I}_f in p con molteplicità infinita.
- $g \not\equiv 0$, ma g(0) = 0 perché $p \in V(f)$. Quindi in t = 0 ha una radice con una certa molteplicità $g(t) = t^m h(t)$ con $h(0) \neq 0$. Allora dico che l interseca \mathcal{I}_f in p con molteplicità m.

Se m > 1 diciamo che l è tangente a \mathcal{I}_f in p.

Invece diciamo che p è un punto liscio o non singolare di \mathcal{I}_f se esiste almeno una retta l che passa per p e non è tangente.

Fissato un punto p vengono chiamate tangenti principali le rette tangenti che intersecano \mathcal{I}_f con molteplicità massima.

In generale, a meno di una traslazione possiamo supporre p=(0,0) e $p\in V(f)$. Allora considero una retta per l'origine $l=\{tv\mid t\in\mathbb{K}\}$ e g(t):=f(tv), con $v=(v_1,\ldots,v_n)\in\mathbb{K}^n\setminus\{0\}$. Allora l è tangente a f in $p\Leftrightarrow g'(0)=0$. $g'(t)\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(tv)\cdot v_i\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i$ quindi $g'(0)=0\Leftrightarrow \sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i=0$ e distinguiamo dunque due casi:

- $\frac{\partial f}{\partial x_i}(p) = 0 \quad \forall i \text{ allora } p \text{ è un punto singolare}$
- $\exists i$ t.c. $\frac{\partial f}{\partial x_i}(p) \neq 0$ allora p è liscio e l'insieme delle direazioni in \mathbb{K}^n tangenti a \mathcal{I}_f in p è un iperpiano di equazione $\sum_i \frac{\partial f}{\partial x_i}(p) \cdot v_i = 0$

Inoltre, se scriviamo $f(x_1,\ldots,x_n)=f_m(\boldsymbol{x})+h(\boldsymbol{x})$ dove f_m è omogeneo di grado $m\geq 1$ e tutti i monomi di h hanno grado maggiore di m allora abbiamo \mathcal{I}_f è liscia in $p\Leftrightarrow m=1$ e inoltre sappiamo che ogni retta interseca \mathcal{I}_f in p con molteplicità $\geq m$. E se il campo è infinito, per il principio di identità dei polinomi ho che m è il minimo della molteplicità d'intersezione di l con \mathcal{I}_f in p al variare di l tra le rette in p. Essa viene chiamata molteplicità del punto. Una retta si dice trasversale se molt (l)=1.

Si chiama cono tangente a \mathcal{I}_f in p l'insieme delle rette che intersecano \mathcal{I}_f in p con molteplicità maggiore del minimo m. è dato dall'equazione $f_m = 0$.

Inoltre la molteplicità di p per \mathcal{I}_f è uguale a $m \Leftrightarrow$ tutte le derivate parziali di f di ordine minore di m si annullano in p e c'è almeno una derivata parziale m-esima che non è nulla.

Diciamo che un punto è un nodo se è singolare di molteplicità due.

OMOGENIZZAZIONE E DISOMOGENEIZZAZIONE

 $D: \mathbb{K}[x_0,\ldots,x_n] \to \mathbb{K}[x_1,\ldots,x_n]$ tale che $F(x_0,\ldots,x_n) \mapsto F(1,x_1,\ldots,x_n)$ che è ovviamente un omomorfismo di \mathbb{K} -algebre.

 $H: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[x_0,\ldots,x_n]$ che omogeneizza i polinomi, ovvero dato $f \neq 0$, $f \in \mathbb{K}[x_1,\ldots,x_n]$ sia $d = \deg f$. Allora $H(f) := x_0^d \cdot f(\frac{x_1}{x_0},\frac{x_2}{x_0},\ldots,\frac{x_n}{x_0})$. Notiamo che H NON è un omomorfismo però è moltiplicativo.

Allora valgono:

- H è moltiplicativo: H(fg) = H(f)H(g)
- $D \circ H = id$
- $H \circ D \mid_{\text{Polinomi Omogenei}} (F) = F_1 \text{ con } F \in \mathbb{K}[x_0, \dots, x_n]_d$ e vale $F = x_0^m F_1$ e $x_0 \nmid F_1$. Ovvero se $x_0 \mid F$ perdiamo le potenze di x_0 nel polinomio, altrimenti otteniamo la stessa cosa.
- $f \in \mathbb{K}[x_1, \dots, x_n]$ irriducibile $\implies F = H(f)$ irriducibile.
- $F \in \mathbb{K}[x_0, \dots, x_n]$ irriducibile $e \neq x_0 \implies f = D(F)$ irriducibile.

FATTORIZZAZIONE DEI POLINOMI OMOGENEI

Sia F omogeneo, allora scrivo $F=x_0^mG$, con G omogeneo e $x_0 \nmid G$. Considero allora $g:=D(G)=D(F) \in \mathbb{K}[x_1,\ldots,x_n]$ e $g=c\cdot p_1^{\alpha_1}\ldots p_k^{\alpha_k}$ con i p_i irriducibili distinti e $\alpha_i>0$, $c\in \mathbb{K}^*$. Allora $P_i:=H(p_i)$ che è ancora irriducibile e $F=x_0^mG=x_0^mH(g)=cx_0^mP_1^{\alpha_1}\ldots P_k^{\alpha_k}$. Quindi la fattorizzazione dei polinomi omogenei avviene in una variabile in meno ed i fattori di un polinomio omogeneo sono omogenei.

Se ho K algebricamente chiuso e $F(x_0,x_1)$ omogeneo di grado d, allora $F(x_0,x_1)=x_0^mG(x_0,x_1)$ con G omogeneo e $x_0 \nmid G$. Allora $D(G)=g(x_1)=c\cdot\prod_{i=1}^k(a_ix_1+b_i)^{\alpha_i}$ e allora $F(x_0,x_1)=c\cdot x_0^m\cdot H(g)=c\cdot x_0^m\cdot\prod_{i=1}^k(a_ix_1+b_ix_0)^{\alpha_i}$ e quindi se considero $[a_i,b_i]\in\mathbb{P}^1$ per $i=1,\ldots,k$ sono distinti e sono i punti in cui F si annulla (oltre a [0,1] se m>0) con molteplicità α_i

Punti singolari di $y^2 - p(x) = 0 \subseteq \mathbb{A}^2$

Sia p un polinomio di deg $p=d\geq 3$ e $f(x,y)=y^2-p(x)$. Troviamo i punti singolari del sottoinsieme di \mathbb{A}^2

dato da f(x,y)=0. Serve necessariamente che (devono annullarsi tutte le derivate parziali) $\begin{cases} y^2=p(x)\\ y=0\\ p'(x)=0 \end{cases}$

e quindi $\begin{cases} y=0\\ p(x)=0 \text{ ovvero se e solo se } p \text{ ha radici multiple. Quindi i punti singolari sono quelli del tipo}\\ p'(x)=0 \end{cases}$

(0, a) con a radice multipla del polinomio p.

Studiamo ora cosa avviene nei punti singolari: $f(x,y) = y^2 - (x-a)^{\alpha}q(x)$ con $\alpha \ge 2, q(\alpha) \ne 0$. Eseguiamo allora il cambio di coordinate affini u := x - a, v := y. $f(u,v) = v^2 - u^{\alpha}q_1(u)$ con $q_1(0) \ne 0$. La molteplicità allora è 2. Inoltre se $\alpha = 2$ abbiamo un nodo, mentre se $\alpha > 2$, v = 0 è l'unica tangente principale ed abbiamo quindi una cuspide.

La chiusura proiettiva della curva è $F(x,y,z)=y^2z^{d-2}-P(x,z)=0$. Vediamo i punti in cui z=0 (cioè dove intersechiamo la retta all'infinito). $F(x,y,0)=-P(x,0)=-a_dx^d=0$ e quindi l'unico punto improprio è x=0,z=0,y=1. Uso ora la carta affine $y\neq 0$ ed ottengo $z^{d-2}-P(x,z)$ e quindi se d=3 ho un punto liscio, se d>3 ho un punto singolare di molteplicità d-2 e l'unica tangente principale è z=0, se d=3 allora la molteplicità d'intersezione tra z=0 e il punto è z=00. Per l'unica tangente principale è z=00, se z=01 e il punto è z=02. Per l'unica tangente principale è z=03 e il punto è z=03. Per l'unica tangente principale è z=04.

STUDIO LOCALE DELLE IPERSUPERFICI PROIETTIVE

Lo facciamo passando alle carte affini: supponiamo di avere [f] di \mathbb{A}^n e ci associamo [F] ipersuperficie proiettiva (detta chiusura proiettiva) F = H(f) e inoltre data [F] di \mathbb{P}^n associamo [D(F)] chiamato parte affine.

TEOREMA DI EULERO PER LE FUNZIONI OMOGENEE

 $F \in K[x_0, \dots, x_n]$ omogeneo di grado d. Allora vale che $d \cdot F(x) = \sum_{i=0}^n x_i \cdot \frac{\partial F}{\partial x_i}(x)$

PUNTI SINGOLARI DI IPERSUPERFICI PROIETTIVE

(Supponiamo Char K=0, anche se non sono sicuro che serva) Sia $p\in V(F)\subseteq \mathbb{P}^n$. $p=[1,a_1,\ldots,a_n]=[1,a]$. Sia f=D(F)=F(1,x) allora p è singolare per $F\Leftrightarrow \left\{\begin{array}{c} f(a)=0\\ \frac{\partial f}{\partial x_i}(a)=0 & i=1,\ldots,n \end{array}\right.$ \Leftrightarrow $\left\{\begin{array}{c} F(1,a)=0\\ \frac{\partial F}{\partial x_i}(1,a)=0 & i=1,\ldots,n \end{array}\right.$ quindi mettere $x_0=1$ prima o dopo aver derivato non fa nessuna differenza. Allora usando il teorema di Eulero si ha $\Leftrightarrow \frac{\partial F}{\partial x_i}(p)=0 \quad i=0,\ldots,n$

SPAZIO TANGENTE A F IN a (APPLICATO)

 $\begin{array}{l} \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \cdot (x_i - a_i) = 0 \text{ è come fare } \sum_{i=1}^n \frac{\partial F}{\partial x_i}(p) \cdot x_i - \sum_{i=1}^n \frac{\partial F}{\partial x_i}(p) \cdot a_i \text{ e, supponendo che } p \in V(F) \text{ si ha (eulero)} = \frac{\partial F}{\partial x_0}(p) + \sum_{i=1}^n \frac{\partial F}{\partial x_i}(p) \cdot x_i \text{ ovvero siccome la chiusura proiettiva si ottiene omogeneizzando con } x_0 \text{ lo spazio tangente proiettivo è } \sum_{i=0}^n x_i \cdot \frac{\partial F}{\partial x_i}(p) = 0 \end{array}$

Teorema di Bèzout

 $\mathcal{C} = [F], \mathcal{D} = [G], \text{ con } m = \deg \mathcal{C}, n = \deg \mathcal{D}, K \text{ infinito. Allora si ha}$

- 1. Se il numero di intersezioni tra \mathcal{C} e \mathcal{D} è $\geq mn$ allora \mathcal{C} e \mathcal{D} hanno una componente in comune
- 2. Se K è algebricamente chiuso e \mathcal{C} e \mathcal{D} non hanno componenti in comune, allora $\mathcal{C}\cap\mathcal{D}$ consta di esattamente mn punti se contati con molteplicità

COROLLARI DEL TEOREMA DI BÈZOUT

- (K algebricamente chiuso) $\mathcal{F} \subseteq \mathbb{P}^n$ con $n \geq 2$ è un'ipersuperficie riducibile allora \mathcal{F} è singolare.
- (K algebricamente chiuso) $\mathcal{C} \subseteq \mathbb{P}^2$ una curva ridotta (ovvero nella fattorizzazione non compaiono componenti multiple) allora \mathcal{C} ha un numero finito di punti singolari.
- Siano $p_1, \ldots, p_5 \in \mathbb{P}^2$ cinque punti distinti. Quante coniche passano per p_1, \ldots, p_5 ?
- $p_1, \ldots, p_5 \in \mathcal{Q}$ conica. Allora p_1, \ldots, p_5 sono in posizione generale $\Leftrightarrow \mathcal{Q}$ è liscia.

DEFINIZIONE ASSIOMATICA DI MOLTEPLICITÀ D'INTERSEZIONE TRA DUE CURVE PIANE

 $C = [f], \mathcal{D} = [g] \subseteq \mathbb{A}^2, p \in \mathbb{A}^2$. Vorremmo definire la molteplicità dell'intersezione di f e g in p $I(f \cap g, p)$ in modo che valgano:

- 1. $I(f \cap g, p) = +\infty \Leftrightarrow f, g$ hanno una componente in comune a cui p appartiene
- 2. $I(f \cap g, p) \in \mathbb{N}$ e $I(f \cap g, p) = 0 \Leftrightarrow p \notin V(f) \cap V(g)$
- 3. $I(f \cap g, p) = I(g \cap f, p)$
- 4. f, g rette distinte e $p \in V(f) \cap V(g)$ allora $I(g \cap f, p) = 1$
- 5. $I(f \cap g, p)$ è invariante per affinità

- 6. Dato $a \in K[x,y]$ si ha $I(f \cap g,p) = I(f \cap (g+af),p)$
- 7. Se $f = \prod_i f_i$ e $g = \prod_i g_i$ allora deve valere che $I(f \cap g, p) = \sum_{i,j} I(f_i \cap g_j, p)$

Queste proprietà determinano univocamente i numeri di intersezione. L'idea è, data una curva in x e y di abbassare il grado in x, supponendo che fino al grado n-1 i numeri di intersezione siano ben definiti e dimostrare che lo sono anche per n.

Prima definizione di molteplicità d'intersezione

p=(a,b) e si scompongano $f=f_1a_1$, $g=g_1b_1$ tali che $a_1(p)\neq 0$, $b_1(p)\neq 0$. Allora si ha $I(f\cap g,p):=$ molteplicità di x=a come radice del risultante Ris $_y(f_1,g_1)$ in un sistema di coordinate generico

SECONDA DEFINIZIONE DI MOLTEPLICITÀ D'INTERSEZIONE

p=(a,b), $\mathcal{M}_p=(x-a,y-b)\subseteq K[x,y]$. \mathcal{M}_p è il nucleo della $V_p:K[x,y]\to K$ definita da $f\mapsto f(p)$ mappa di valutazione. \mathcal{M}_p è un ideale massimale. Allora localizziamo $\mathcal{O}_p:=K[x,y]_{\mathcal{M}_p}$. Ora presi $f,g\in K[x,y]$ consideriamo la K-algebra $\frac{\mathcal{O}_p}{(f,g)}$. Definiamo la molteplicità dell'intersezione come $I(f\cap g,p)=\dim_K \frac{\mathcal{O}_p}{(f,g)}$

Quadriche di \mathbb{P}^n

Ci chiediamo quando siano singolari (Char $K \neq 2$). Sia $x \in K^{n+1}$ e sia $Q(x) = {}^t x A x = \sum A_{ij} x_i x_j$ con A matrice $(n+1) \times (n+1)$ simmetrica e sia $p = [v] \in \mathbb{P}^n$. Allora notiamo che $\frac{\partial Q}{\partial x_i}(v) = \sum a_{ij} v_j = (Av)_i$ e quindi v è singolare per la quadrica $\Leftrightarrow \frac{\partial Q}{\partial x_i}(v) = 0 \quad \forall i \Leftrightarrow Av = 0$. Quindi Sing $Q = \mathbb{P}(\operatorname{Ker} A)$ la cui dimensione è $n - \operatorname{rk} A$, ovvero Q è liscia se e solo se ha rango massimo.

PUNTI DI FLESSO SU CURVE PROIETTIVE

(Char $K \neq 2$) Sia F curva di \mathbb{P}^2 e sia f la sua parte affine. $(0,0) = p \in V(f)$. Vogliamo cercare una condizione affinchè p sia un flesso. Supponiamo prima che p sia un punto liscio. Scrivendo f come "Somma di Taylor" si vede che i termini di grado 1 e 2 sono una conica affine e quindi vorremmo che la conica fosse riducibile per avere un punto di flesso. Quindi p è di flesso \Leftrightarrow il determinante dell'hessiano formale di F è uguale a 0. Siccome deg det H(F) = 3d(d-2) i flessi sono abbastanza (per Bèzout). (E l'hessiano è identicamente nullo se e solo se F è unione di rette)

CUBICA LISCIA IN FORMA DI WEIERSTRASS

 $\mathcal{C}=[F]$ cubica liscia, Char $K\neq 2,3$ e sia $O\in\mathcal{C}$ flesso. Allora \exists un sistema di coordinate omogenee [z,x,y] su \mathbb{P}^2 tale che O=[0,0,1] e \mathcal{C} ha equazione affine $y^2=x^3+ax+b$ con $\Delta=4a^3+27b^2\neq 0$ (Non stiamo supponendo K algebricamente chiuso)

CUBICA LISCIA IN FORMA DI LEGENDRE

Se $p(x)=x^3+ax+b$ in forma di Weierstrass ha tutte le radici in K, allora $\mathcal C$ può essere messa in forma di Legendre: $y^2=x(x-1)(x-\lambda)$ con $\lambda\neq 0,1$

FLESSI DI UNA CUBICA LISCIA SU UN CAMPO ALGEBRICAMENTE CHIUSO

 $\mathcal C$ cubica liscia e K algebricamente chiuso. Scegliamo un flesso $\mathcal O$ e mettiamo $\mathcal C$ in forma di Weierstrass $y^2=x^3+ax+b=p(x)$ rispetto ad $\mathcal O$. Cerco i punti di $\mathbb A^2$ in cui $\mathcal C$ interseca $\mathcal H(\mathcal C)$: otteniamo $\mathcal O$ flessi che sono tali che se $p_1,p_2\in\mathcal C$ sono flessi, allora la retta che passa per p_1,p_2 interseca $\mathcal C$ in un terzo flesso. Inoltre il gruppo delle proiettività g di $\mathbb P^2$ tali che $g\mathcal C=\mathcal C$ agiscono transitivamente sui punti di flesso. Abbiamo inoltre 12 rette che passano per i punti di flesso e ogni retta passa per 3 punti di flesso. I 9 flessi e le 12 rette che li congiungono formano una configurazione isomorfa al piano affine su $\mathbb F_3$.

BIRAPPORTO, PROIETTIVITÀ E J-INVARIANTE

Ci chiediamo quando esiste una proiettività di \mathbb{P}^1 che porta una quaterna ordinata di punti in un'altra. Risposta: solo se hanno lo stesso birapporto. Siano $p_1,p_2,p_3,p_4\in\mathbb{P}^1$ punti distinti e le $z_i=\frac{x_1}{x_0}$ le loro coordinate affini $\in K \cup \{+\infty\}$. Dico che il birapporto è la coordinata affine di z_4 nel sistema di coordinate su \mathbb{P}^1 in cui $z_1 = 0, z_2 = +\infty, z_3 = 1$. Quindi Bir $(p_1, \dots, p_4) = \frac{z_4 - z_1}{z_4 - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1}$

Vogliamo ora la condizione per quaterne non ordinate, quindi notiamo che permutando i punti si ottengono

sei valori collegati del birapporto: $\{\beta, \frac{1}{\beta}, 1-\beta, \frac{1}{1-\beta}, \frac{\beta}{1-\beta}, \frac{\beta-1}{\beta}\}$ ovvero se e solo se hanno uguale j-invariante. $j: K\setminus\{0,1\}\to K$ definita da $j(t)=\frac{(t^2-t+1)^3}{t^2(t-1)^2}$, dove il j-invariante viene calcolato sul birapporto delle guatorno.

In realtà si può calcolare il birapporto anche sulle rette.

DUE CUBICHE LISCIE SU UN CAMPO ALGEBRICAMENTE CHIUSO SONO PROIETTIVAMENTE EQUIVALENTI SE E SOLO SE HANNO LO STESSO j-INVARIANTE

CURVE PIANE LISCIE SU $\mathbb{A}^2_{\mathbb{C}}$

SISTEMA LINEARE DI CURVE

Fissato $d \ge 1$ il grado consideriamo $K[x_0, x_1, x_2]_d = \{\text{polinomi omogenei di grado } d\} \cup \{0\}$ che è uno spazio vettoriale su K di dimensione $\binom{d+2}{2}$ e sia $V_d:=\mathbb{P}(K[x_0,x_1,x_2]_d)$, chiamato sistema lineare completo delle curve di grado d, che è uno spazio proiettivo i cui punti sono le curve piane di grado d. Un sistema lineare di curve di grado d è un sottospazio proiettivo $W \subseteq V_d$. Se dim W = 1, W si dice fascio.

IMPOSIZIONE DEL PASSAGGIO PER UN PUNTO

 $p = [a, b, c] \in \mathbb{P}^2$. $V_d(p) := \{[F] \in V_d \mid F(p) = 0\}$ è un iperpiano, sottospazio di V_d definito da una equazione lineare. In generale posso fissare un po' di punti $p_1,\ldots,p_k\in\mathbb{P}^2$ ed ottenere $V_d(p_1,\ldots,p_k):=\cap_{i=1}^k V_d(p_i)$ che è un sistema lineare di dimensione che dipende da come sono disposti i punti ma ha codimensione al più k.

CONDIZIONI INDIPENDENTI PER LE CUBICHE

(*K* infinito) Siano $p_1, \ldots, p_8 \in \mathbb{P}^2$ (anche coincidenti) tali che

- Non esiste una retta che contiene quattro dei p_i
- Non esiste una conica che passa per sette dei p_i

Allora p_1, \ldots, p_8 impongono condizioni indipendenti alle cubiche, cioè dim $V_3(p_1, \ldots, p_8) = 1$ Corollario: se ho due cubiche C_1, C_2 senza componenti comuni che si intersecano in 9 punti distinti p_1, \ldots, p_9 . Se \mathcal{C} è una cubica che passa per p_1, \ldots, p_8 allora \mathcal{C} passa anche per p_9 .

SECONDA PARTE: VARIETÀ

Topologia di Zariski su \mathbb{A}^n

Topologia di Zariski su \mathbb{P}^n

IRRIDUCIBILITÀ

- $X\subseteq \mathbb{A}^n$ chiuso. Allora X è irriducibile $\Leftrightarrow I(X)\subseteq K[x_1,\ldots,x_n]$ è un ideale primo \Leftrightarrow dati $U,V\subseteq X$ aperti non vuoti di X si ha $U \cap V \neq \emptyset$
- X irriducibile \Leftrightarrow dati $U, V \subseteq X$ aperti non vuoti si ha che $U \cap V \neq \emptyset$. In particolare se X è irriducibile ogni aperto è denso.
- $Y \subseteq X$. Y irriducibile $\Leftrightarrow \bar{Y}$ irriducibile
- $Y \subseteq \mathbb{P}^n$ chiuso. Allora Y è irriducibile $\Leftrightarrow \mathcal{C}Y$ (il cono) è irriducibile in \mathbb{A}^{n+1}

TEOREMA DI FATTORIZZAZIONE IN IRRIDUCIBILI

Dato $Y \subseteq X$ chiuso una decomposizione in irriducibili di Y è $Y = Z_1 \cup ... \cup Z_k$ con Z_i chiusi irriducibili. La decomposizione si dice irridondante o minimale se $\forall i \neq j \quad Z_i \not\subseteq Z_j$.

Negli spazi topologici Noetheriani (X, τ) ogni chiuso $Y \subseteq X$ ammette una decomposizione in irriducibili e, se minimale, essa è unica a meno di permutazioni degli irriducibili.

Chiusi di \mathbb{A}^1 e di \mathbb{A}^2

I chiusi di \mathbb{A}^1 sono \mathbb{A}^1 , \emptyset e gli insiemi finiti di punti, ovvero La topologia di Zariski su \mathbb{A}^1 coincide con la cofinita.

I chiusi di \mathbb{A}^2 sono unioni finite di punti e di ipersuperfici.

CHIUSURA PROIETTIVA DI CHIUSI ALGEBRICI

 $X \subseteq \mathbb{A}^n$ chiuso. Allora la chiusura proiettiva è la chiusura di X secondo Zariski nello spazio proiettivo \mathbb{P}^n nel quale \mathbb{A}^n è naturalmente immerso. Non basta omogeneizzare i generatori dell'ideale (vedi cubica gobba), serve prendere ogni elemento dell'ideale, omogeneizzaarlo e poi prendere l'ideale omogeneo generato. $I(\bar{X}) = (H(f), f \in I(X))$

NULLSTELLENSATZ

Se K è un campo algebricamente chiuso, $J\subseteq K[x_1,\ldots,x_n]$ ideale. Allora le seguenti condizioni sono equivalenti:

- $V(J) = \emptyset \implies 1 \in J$
- J massimale $\implies \exists p \in \mathbb{A}^n$ t.c. I(p) = J
- $I(V(J)) = \sqrt{J}$

Quindi nel caso di K algebricamente chiuso abbiamo una corrispondenza biunivoca tra gli ideali radicali ed i chiusi di Zariski. Inoltre abbiamo anche le sottocorrispondenze 1:1 tra ideali primi e chiusi irriducibili e tra ideali massimali e punti di \mathbb{A}^n

VARIETÀ QUASI-PROIETTIVE

Seguono le varie definizioni:

- (Varietà Quasi-proiettiva) É un localmente chiuso in uno spazio proiettivo, ovvero è intersezione di un chiuso e di un aperto. $Z \cap U \subseteq \mathbb{P}^n$ dove Z è chiuso e U è aperto.
- (Funzioni Regolari su VQP) Data $X \subseteq \mathbb{P}^n$ VQP sia $f: X \to K$. Allora f si dice funzione regolare se $\forall p \in X \ \exists U_p \subseteq X$ aperto tale che $\exists A, B \in K[x_0, \dots, x_n]$ t.c. A, B sono omogenei dello stesso grado con $B(q) \neq 0 \ \forall q \in U_p$ e $f(q) = \frac{A(q)}{B(q)} \ \forall q \in U_p$. (Notiamo che questo tipo di funzioni sono ben definite su \mathbb{P}^n , ovvero sono costanti sulle classi di equivalenza) La K-algebra delle funzioni regolari su X si indica con $\mathcal{O}_X(X)$
- (Morfismi di VQP) Siano X, Y due VQP e supponiamo di avere $f: X \to Y$. Allora f si dice morfismo se
 - 1. *f* è continua (Che è una richiesta piuttosto debole)
 - 2. $\forall V \subseteq Y$ aperto e $\phi: V \to K$ regolare allora $\phi \circ f: f^{-1}(V) \to K$ è regolare (che è una condizione di natura locale)

Notiamo che l'identità è un morfismo e che i morfismi sono stabili per composizione. Diciamo che un morfismo di VQP è un isomorfismo se è biggettivo e la sua inversa insiemistica è anch'essa un morfismo di VQP

VARIETÀ AFFINI

Sia $X\subseteq \mathbb{A}^n$ chiuso affine. Allora $X=\bar{X}\cap \mathbb{A}^n$ è una VQP attraverso l'identificazione di \mathbb{A}^n con un sottoinsieme di \mathbb{P}^n . Notiamo che ora le funzioni regolari su X diventano rapporti di polinomi non necessariamente omogenei, né dello stesso grado, ovvero $f:X\to K$ allora f è regolare se $\forall p\in X\quad \exists U_p\subseteq X$ intorno aperto e $a,b\in K[x_1,\ldots,x_n]$ tale che $b(q)\neq 0\quad \forall q\in U_p$ e $f(q)=\frac{a(q)}{b(q)}\quad \forall q\in U_p$.

Nel caso speciale in cui b=1 e U=X f viene detta funzione polinomiale. Attraverso $r_X:K[x_1,\ldots,x_n]\to \mathcal{O}_X(X)$ definita da $f\mapsto f\mid_X$ (che è un omomorfismo di K-algebre) notiamo che Ker $r_X=I(X)$ e usando il primo teorema di isomorfismo abbiamo $K[X]:=\frac{K[x_1,\ldots,x_n]}{I(X)}\hookrightarrow \mathcal{O}_X(X)$ che viene detto anello delle coordinate di X o algebra affine di X, molto importante per i chiusi affini su un campo algebricamente chiuso, poiché come vedremo caratterizza completamente i chiusi affini.

Abbiamo una forma "Relativa" del Nullstellensatz, come corrispodenza 1:1 tra gli ideali radicali di K[X] e i sottoinsiemi chiusi $Y\subseteq X$.

SU K ALGEBRICAMENTE CHIUSO r_X È UN ISOMORFISMO DI K-ALGEBRE

Morfismi da una VQP in \mathbb{A}^m

Data $X \subseteq \mathbb{P}^n$ VQP vorrei descrivere i morfismi $X \xrightarrow{f} \mathbb{A}^m$. Vale che $f: X \to \mathbb{A}^m$ è un morfismo di VQP se e solo se le componenti di f sono funzioni regolari.

VARIETÀ AFFINI

X VQP si dice varietà affine se X è isomorfo ad un chiuso di uno spazio affine.

ATTENZIONE: Sia $X \subseteq \mathbb{A}^n$ chiuso e scegliamo $f \in K[X] \setminus 0$ e diciamo $X_f := \{x \in X \mid f(x) \neq 0\}$ è un aperto principale. Avevamo già osservato che gli aperti principali formano una base della topologia di Zariski di X. Mostriamo ora che X_f è una varietà affine.

DUALITÀ ALGEBRO-GEOMETRICA

 $f: X \to Y$ morfismo di VQP. Allora $\exists f^*: \mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$ chiamato pullback definito da $\phi \mapsto \phi \circ f$ ed è un morfismo di K-algebre.

Inoltre se f è un isomorfismo di VQP allora f^* è un isomorfismo di K-algebre.

TERZA PARTE: DIMENSIONE

Varie ed Eventuali

LA CUBICA GOBBA

Fonte inesauribile di patologie e di controesempi. $C = \{y - x^2 = z - xy = 0\} \subseteq \mathbb{A}^3$ che è anche il grafico di $f : \mathbb{A}^1 \to \mathbb{A}^2$ definita da $x \mapsto (x^2, x^3)$.