PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-196548

(43)Date of publication of application: 15.07.1994

(51)Int.Cl.

H01L 21/68 3/15 B23Q B65H 9/08 CO4B 41/45 C30B 25/12 HO2N 13/00

(21)Application number: 04-344893

(71)Applicant: SUMITOMO METAL IND LTD

(22)Date of filing:

24.12.1992

(72)Inventor: UEDA YOICHI

MATSUDA YOSHIMASA

(54) ELECTROSTATIC CHUCK

(57)Abstract:

PURPOSE: To make it possible to enhance voltage resistance and hold a sample definitely and perform plasma processing for a sample by providing a conductor which impregnates resin in pores on an insulation film produced by thermal spraying.

CONSTITUTION: A loading mount 1 comprises a metal disk electrode 2 and a pore scaled insulation film 3 resulting from impregnation resin into pores on an insulation film that in the spray deposit of a ceramic material on the surface. When a sample is held with an electrostatic chuck, the sample is loaded on the loading mount 1 and positive (negative) voltage is applied to a terminal 4 so that positive (negative) charges may be provided for the surface of the metal disk electrode 2 or negative charges may be provided for the rear of the sample by the insulation film 3, thereby attracting and holding the sample on the loading mount 1 by an electrostatic action produced by the positive and negative charges. This construction makes it possible to

enhance a holding power for the sample and perform plasma processing for the sample with high accuracy.

[Date of request for examination]

17.12.1999

[Date of sending the examiner's decision of

16.07.2002

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-196548

(43)公開日 平成6年(1994)7月15日

(51)Int.Cl. ⁵ H 0 1 L 21/68 B 2 3 Q 3/15 B 6 5 H 9/08 C 0 4 B 41/45 C 3 0 B 25/12	織別起号 R D	庁内整理番号 8418-4M 8612-3C 8709-3F 9040-4G	FI	技術表示箇所
· · · · · · · · · · · · · · · · · · ·			審査請求 未請求	: 請求項の数1(全 4 頁) 最終頁に続く
(21)出願番号	住友金属 旧 平成4年(1992)12月24日 大阪府大阪 (72)発明者 上田 陽- 大阪府大		000002118 住友金属工業株式会社	
(22)出顧日			(72)発明者	大阪府大阪市中央区北浜 4 丁目 5 番33号 上田 陽一 大阪府大阪市中央区北浜 4 丁目 5 番33号 住友金属工業株式会社内
			(72)発明者	松田 善雅 大阪府大阪市中央区北浜 4 丁目 5 番33号 住友金属工業株式会社内
			(74)代理人	弁理士 河野·登夫

(54)【発明の名称】 静電チャック

(57)【要約】

【目的】 溶射したセラミック膜の細孔に樹脂を含浸させることにより、耐電圧を高めて試料の保持力が高い、また試料を確実に保持し得る静電チャックを提供すること。

【構成】 載置台1は金属円板電極2とその表面にセラッミク材を溶射した絶縁膜の細孔に樹脂を含浸させた封孔絶縁膜3とから構成されており、載置台1は、その表面で中央に凹部を有する水冷ジャケット6の該凹部中央に凹部を有する水冷ジャケット6の該凹部中心部に形成した穴には下端にフランジ部5aを設けた絶縁筒5が嵌合しており、この絶縁筒5には端子4がフランジ部5aからねじ部4aの略半分を突出して挿入されている。絶縁筒5及び水冷ジャケット6は、端子4のはじ部4aにナット7を螺合し、その締付によって載置台1に密着されるべくなされており、水冷ジャケット6に密着された載置台1は水冷ジャケット6内に配設され通流孔6aへの冷媒の通流によって冷却されるべくなされている。

【0011】このように構成された静電チャックにて試料を保持するには、試料(図示せず)を載置台1に載置し、端子4へ正(負)の電圧を印加することによって金属円板電極2表面に正(負)電荷を、また絶縁膜3を介して試料の裏面に負(正)電荷を帯電させ、正負電荷による静電作用にて試料を載置台1上に吸着保持する。このとき金属円板電極2を被覆している封孔絶縁膜3が前述した如くセラッミク材を溶射した絶縁膜に生じた細孔に樹脂を含浸させて構成されているため、セラミック材の特性を有しながら更に耐電圧が高まって試料の保持力が向上し、また封孔絶縁膜3は細孔が無いため試料と金属円板電極2との間の放電の處がなくなる。

【0012】次に本発明装置及び従来装置の耐電圧を比較した結果について説明する。図2は耐電圧を測定する状態を示す概略図であり、図中21はアースされた金属容器である。金属容器21には水が入っており、その水中には電流計22の端子22aに接続した静電チャック10が載置台1を下にして浸漬されている。そして電流計22の端子22a及び静電チャック10の接続部から端子22aの水上部にわたってシリコン樹脂が塗布されている。電流計22の他端は電圧計23を並接した直流電源24の一端に接続しており、直流電源24の他端は金属容器21の側壁に接続している。そして直流電源24より静電チャック10と金属容器21との間に印加する電圧を徐々に上げて、電流計22にて0.5 mAが測定されたときの電圧を耐電圧として電圧計23より読み取る。

【0013】表1はその結果を示したものである。従来例はアルミニウム製の電極の表面にAl. O, を溶射してその厚みを300 µmとしたものを、本発明例はAl. O, を溶射した後、更に減圧状態にて樹脂の溶融点に加熱してAl. O, 膜に生じた細孔に樹脂を含浸させて封孔し、その後これを乾燥したものを、それぞれ10台づつ用いた。このように細孔への樹脂の含浸を減圧状態にて行っているため、細孔内の気体が取り除かれて樹脂が細孔内全てに行き渡り、かつ溶融した樹脂が脱気されて気泡が発生しない。なお本発明例1では樹脂としてエポキシ樹脂を、また本発明例2ではシリコン樹脂を用いた。またこれらの樹脂の絶縁破壊強度は2~10k V/0.1 mmである。

【0014】 【表1】

臺

	耐電圧(V)		
本発明例1	500~1000		
本発明例2	700~2000		
従来例	< 400		

【0015】表1から明らかな如く耐電圧は、従来例では試験した全てが100 V未満であったのに対し、本発明例ではエポキシ樹脂にて封孔した場合は500~1,000 V、シリコン樹脂にて封孔した場合は700~2,000 Vであり、本発明例は従来例に比べ5~20倍以上耐電圧が高まっている。なお本実施例では樹脂としてエポキシ樹脂及びシリコン樹脂を用いているが、これに限られるものでなく、所要の絶縁破壊強度及び耐熱性を有する樹脂であればよいことはいうまでもない。

[0016]

【発明の効果】以上詳述した如く本発明の静電チャックにあっては、試料の保持力を向上することができるため、試料に対してプラズマ処理を正確に行うことができて製品の歩留まりが向上し、また試料を確実に保持するため装置の信頼性が高くなる等、本発明は優れた効果を奏する。

【図面の簡単な説明】

【図1】本発明の静電チャックを示す模式的断面図である。

【図2】耐電圧を測定する状態を示す概略図である。

【図3】従来の静電チャックを示す模式的断面図であ

【符号の説明】

- 1 載置台
- 2 金属円板電極
- 3 封孔絶縁膜
- 4 端子
- 5 絶縁筒
- 6 水冷ジャケット
- 7 ナット

フロントページの続き

(51) Int.Cl. h 0 2 N 13/00

識別記号 庁内

庁内整理番号 D 8525-5H

番号 FI

技術表示箇所