(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-85200 (P2001-85200A)

(43)公開日 平成13年3月30日(2001.3.30)

(51) Int.Cl.'

H 0 5 H 13/04

識別記号

FΙ

H05H 13/04

テーマコート*(参考)

2G085 G

E

N

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号

特願平11-259889

(71)出願人 000005108

株式会社日立製作所

(22)出顧日 平成11年9月14日(1999.9.14) 東京都千代田区神田駿河台四丁目6番地

(72) 発明者 平本 和夫

茨城県日立市大みか町七丁目2番1号 株

式会社日立製作所電力・電機開発研究所内

(72) 発明者 秋山 浩

茨城県日立市大みか町七丁目2番1号 株

式会社日立製作所電力・電機開発研究所内

(74)代理人 100075096

弁理士 作田 康夫

Fターム(参考) 20085 AA13 BA04 BA13 BA20 BC01

BC08 BE05 CA16 DA02 DA08

EA07 EA10

(54) 【発明の名称】 加速器システム

(57) 【要約】

【課題】小型かつ安価で、更にビームの利用効率の高い 加速器システムを提供することにある。

【解決手段】イオンピームを発生するイオン源1と、イ オン源1で発生したイオンピームを加速する前段加速器・ 2, 3と、前段加速器2, 3で加速したイオンビームを 標的に照射してラジオアイソトープを製造するRI製造 装置6と、前段加速器2、3で加速したイオンビームを 入射して加速した後出射するシンクロトロン7と、前段 加速器2,3で加速したイオンビームをRI製造装置6 及びシンクロトロン7のどちらか一方に入射させる切替 電磁石4とを備えた。

【特許請求の範囲】

【請求項1】イオンビームを発生するイオン源と、前記イオン源で発生したイオンビームを加速する前段加速器と、前記前段加速器で加速されたイオンビームを標的に照射してラジオアイソトープを製造するRI製造装置と、前記前段加速器で加速されたイオンビームを入射して加速した後出射するシンクロトロンと、前記前段加速器で加速されたイオンビームを前記RI製造装置及び前記シンクロトロンのどちらか一方に入射させる切替電磁石とを備えたことを特徴とする加速器システム。

【請求項2】前記シンクロトロンから出射されたビームを癌患者の患部に照射する照射装置と、前記患部の位置変化を測定する位置変化測定手段とを有し、前記切替電磁石は、前記位置変化測定手段による測定結果に基づいてイオンビームを前記シンクトロンに入射させることを特徴とする請求項1記載の加速器システム。

【請求項3】前記切替電磁石は、複数の鋼板を積層して 構成される積層電磁石であることを特徴とする請求項1 及び2のいずれかに記載の加速器システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、イオンビームを加速して医療に利用する加速器システムに係り、特に、加速したイオンビームを効率良く利用することができる加速器システムに関する。

[0002]

【従来の技術】加速したイオンピーム(以下、ピームという)を医療に利用する加速器システムとしては、癌患者の患部にピームを照射することにより癌治療を行う加速器システムが知られている。その一例として、特開平7-303710号公報には、患者の患部の動きに応じて発せられる入射のためのトリガー信号に基づいて、イオン源及び前段加速器を動作させてピームをシンクロトロンに入射し、シンクロトロンにおいてピームを加速して、そのピームを患者の患部に照射する加速器システムについて記載されている。

【0003】また、加速したピームを医療に利用する他の加速器システムとして、Proc. of the second Int'l Symp. on PET in Oncology May 16-18, 1993, Sendai Japanには、窒素ガス等の標的にピームを照射することにより診断用のラジオアイソトープ(以下、RIという)を製造する加速器システムについて記載されている。

[0004]

【発明が解決しようとする課題】上述した癌治療用の加速器システム及びRI製造用の加速器システムは、それぞれ医療に用いられるものであるので、同一施設内に設置されることが考えられるが、どちらの加速器システムも大型の装置であり、2つの加速器システムを同一施設内に設置するにはかなりの設置スペースが必要となるため、装置の小型化が要求されている。また、装置の小型

化と共に、装置の製作コストの低減も要求されている。 【0005】更に、癌治療用の加速器システムの場合、 イオン源で発生するビームを利用するのはシンクロトロ ンに対して入射を行う僅かな時間だけであり、シンクロ トロンにおいて加速や出射を行っている間は、イオン源 で発生するビームは利用されていない。従って、ビーム の利用効率が悪い。

【0006】なお、シンクロトロンにおいてピームの加速や出射を行っている間はイオン源や前段加速器を停止させることもできるが、そうするとイオン源及び前段加速器の稼働率が低くなり、好ましくない。

【0007】本発明の目的は、小型かつ安価で、更にビームの利用効率の高い加速器システムを提供することにある。

[0008]

【課題を解決するための手段】上記目的を達成する本発明の特徴は、イオンビームを発生するイオン源と、前記イオン源で発生したイオンビームを加速する前段加速器と、前記前段加速器で加速されたイオンビームを標的に照射してラジオアイソトープを製造するRI製造装置と、前記前段加速器で加速されたイオンビームを入射して加速した後出射するシンクロトロンと、前記前段加速器で加速されたイオンビームを前記RI製造装置及び前記シンクロトロンのどちらか一方に入射させる切替電磁石とを備えたことにある。

【0009】前段加速器で加速されたイオンビームをRI製造装置及びシンクロトロンのどちらか一方に入射させる切替電磁石を備えたことにより、シンクロトロンでイオンビームが必要とされているときにはイオンビームをシンクロトロンに入射させ、シンクロトロンにおいてイオンビームが必要とされていないときにはイオンビームが必要とされていないときにはイオンビームが必要とされていないときにはイオンビームが必要とされていないときにはイオンビームがの下きるため、イオン原にて発生されたイオンピームがRI製造装置若しくはシンクロトロンにおいて常に利用されており、ビームの利用効率を向上させることができる。特に、本発明のように、断続的にビームを必要とするシンクロトロンと継続的にビームを必要とするシンクロトロンと継続的にビームを必要とするシンクロトロンとと対応的にビームを必要とするシンクロトロンとの利用効率を向ように、断続的にビームを必要とするとで、ビームの利用効率が一層高くなる。

【0010】また、RI製造装置とシンクロトロンとで、イオン源及び前段加速器を共用するため、RI製造装置とシンクロトロンのそれぞれに対して別々にイオン源や前段加速器を設ける場合と比較して、装置を小型化でき、かつ製作コストも低減することができる。

[0011]

【発明の実施の形態】以下、本発明の実施例を図面を用いて詳細に説明する。

【0012】図1は、本発明の好適な一実施例である加速器システムの構成図を示す。本実施例の加速器システムは、図1に示すように、イオンビーム(以下、ビーム

という)を発生するイオン源1、ビームを加速する高周 波四重極ライナック2(以下、RFQ2という)、同じ くピームを加速するドリフトチューブライナック3(以 下、DTL3という)、ビームを偏向してビーム軌道を 調節する切替電磁石4、各装置に電力を供給する電源5 a~5d、ビームを用いてラジオアイソトープ(以下、RIという)を製造するRI製造装置6、ビームを任のエネルギーまで加速して出射するシンクロトロン7から出射されたビームを癌患者の患部 に照射する照射装置8、及び各装置を制御する制御財装置 9等により構成される。なお、本実施例では、前段加速器としてRFQ2及びDTL3の2つの加速器を用いても良い。

【0013】図1の加速器システムの動作について説明する。まず、制御装置9から電源5aに対して、イオン源1においてビームを発生するために必要とされる電圧の値が出力される。また、制御装置9から電源5aに対して電圧値が出力されるのと同時に、制御装置9から電源5b,5c,5dのそれぞれに対して電圧値或いは電流値が出力される。なお、電源5bにはイオン源1において発生したビームを加速するのにRFQ2で必要とされる高周波電圧値、電源5cにはRFQ2で加速されたビームを更に加速するのにDTL3で必要とされる高波電圧値、そして電源5dにはDTL3で加速されたビームをRI製造装置6に導くために切替電磁石4で必要とされる電流値が、それぞれ制御装置9から与えられる。

【0014】電源5aは、制御装置9から与えられた値 の電圧をイオン源1に対して出力する。電圧が印加され たイオン源1は、その電圧の値に応じてピームを発生 し、そのピームをRFQ2に出力する。電源5bは、制 御装置9から与えられた値の高周波電圧をRFQ2に対 して出力し、高周波電圧が印加されたRFQ2は、その 高周波電圧に応じてイオン源1から出力されたビームを 加速して、加速したビームをDTL3に出力する。電源 5 c は、制御装置 9 から与えられた値の高周波電圧を D TL3に対して出力し、高周波電圧が印加されたDTL 3は、その高周波電圧に応じてRFQ2から出力された ピームを加速して、加速したピームを切替電磁石4に出 力する。電源5 dは、制御装置9から与えられた値の電 流を切替電磁石4に対して出力し、電流が供給された切 替電磁石4は、その電流に応じた磁場を発生してDTL 3から出力されたピームを偏向し、ピーム軌道を調節し てピームをRI製造装置6に導く。RI製造装置6は、 切替電磁石4を介して入力されたピームを、標的(例え ば窒素ガス) に照射することによりRIを製造する。図 2 (a) は、イオン源1で発生するビームの電流値を示 す。図2 (a) に示すように、イオン源1においてピー ムは一定周期でパルス状に発生する。このようなピーム

は、制御装置 9 から電源 5 a に対して一定周期でパルス 状に電圧値を指示することで得られる。図 2 (b) は、 電源 5 d から切替電磁石 4 に与えられる電流値を示し、 ピームを R I 製造装置 6 に導くときには電流 I a が供給 される。図 2 (c) は、R I 製造装置 6 に入力されるピームの電流値を示し、図のように切替電磁石 4 に電流 I a が供給されているときに R I 製造装置 6 にパルス状の ピームが入力される。

【0015】制御装置9には、照射装置8より入射指令 及び出射指令が入力される。なお、照射装置8からの入 射指令及び出射指令の出力方法については後述する。制 御装置9に図2(d)に示すような入射指令が入力され ると、制御装置9は、電源5dに対して出力していた電 流の値をIaからIbに変更する。なお、電流値Ib は、ピームをシンクロトロン7に導くために切替電磁石 4において必要とされる電流値である。電源5dは、制 御装置9から入力される電流値に応じて、図2(b)に 示すように、出力する電流の値をIaからIbに変更す る。それにより、切替電磁石4において発生する磁場も 変化し、磁場により偏向されるピームの軌道が変化す る。そして、ピームはシンクロトロン7に入射される。 シンクロトロン7へのビームの入射が終了したら、制御 装置9から電源5dに出力する電流値を再び I bから I aに変更し、それにより電源5dは、図2(b)に示すよ うに、出力する電流の値をIaからIbに変更する。よ って、ビームは再びRI製造装置6に入力されることと なる。なお、本実施例の切替電磁石4は、厚さが1 [m n〕程度の磁性鋼板を複数枚積層してなる積層電磁石と し、高速切り替えを実現する。

【0016】シンクロトロン7において、切替電磁石4によって導かれたピームは、入射器71によりシンクロトロン7に入射される。なお、図2(e)は、シンクロトロン7に入射されるピームの電流を示している。図2(b),(e)に示されるように、切替電磁石4に電流Ibが与えられているときにのみシンクロトロン7に入射されたピームが入射される。シンクロトロン7に入射されたピームは、偏向電磁石72が発生する磁場により偏向されると共に、四極電磁石73が発生する磁場によりチューンが制御されることによって、真空ダクト74内を安定に周回する。なお、偏向電磁石72及び四極電磁石73にはそれぞれに電源(図示せず)が設けられており、それぞれの電磁石で発生する磁場の強度は、電源から供給される電流によって制御される。更に、その電源から供給される電流は制御装置9によって制御される。

【0017】真空ダクト74内を周回するビームに対して高周波加速空嗣75は高周波の電圧を印加し、高周波電圧が印加されたビームはエネルギーが増大する。すなわち、ビームは加速される。なお、ビームのエネルギー増加に伴って、偏向電磁石72及び四極電磁石73で発

せられる磁場の強度も増加させられ、そのことによりビームは真空ダクト74内を安定に周回する。図2(f)は、偏向電磁石72に供給される電流値を示し、ビーム加速時には図示するように供給される電流が上昇する。よって、発生する磁場の強度も増加する。

【0018】高周波加速空胴75によりピームのエネル ギーが目標とするエネルギーまで増加されたら、ビーム の加速を終了する。その後、図2 (d) に示すように照 射装置8から制御装置9に対して出射指令が入力された ら、六極電磁石76によりピームに六極磁場を印加して ビームに共鳴を発生させ、共鳴により振動振幅が大きく なったピームを出射器77によりシンクロトロン7から 出射する。ビームを出射し終えたシンクロトロン7で は、偏向電磁石72が発する磁場の強度が低下させられ る。いわゆる、減速が行われる。なお、偏向電磁石72 に供給される電流は、図2(f)に示すように、加速終 了後から出射が終了するまで一定に保たれ、出射終了後 減少させられる。シンクロトロン7から出射されたビー ムは、照射装置8に輸送され、患者の患部に照射され る。なお、図2に示すように、シンクロトロン7におい てピームの加速や出射が行われている間もイオン源1で はピームを発生させ、RI製造装置6にそのピームが供 給されている。

【0019】図3は、照射装置8の構成を示す。照射装 置8において、シンクロトロン7から出射されたビーム は、照射装置8の偏向電磁石81及び四極電磁石82に より軌道及びチューンが調節されて走査電磁石83a, 83 bに輸送される。走査電磁石83 a, 83 bは、互 いに直交する磁場を発生する電磁石であって、ビームを 偏向して走査する電磁石である。走査電磁石83a.8 3 bを通過したピームは、線量モニタ84を通り、治療 台に固定された患者の患部に照射される。なお、線量モ ニタ84は、ピームの線量を測定して、測定した線量が 予め設定された線量値に達したら制御装置9に対して出 射停止指令を出力する。出射停止指令が入力された制御 装置9は、シンクロトロン7からのピームの出射を停止 する。また、患者には呼吸の流量を測定する流量モニタ 85が装着されており、流量モニタ85により測定され た呼吸の流量は、比較器86に入力される。比較器86 には予め第1設定値及び第2設定値が設定されており、 比較器86は、入力された呼吸の流量と第1設定値及び 第2設定値とを比較して、呼吸の流量が第1設定値に達 したときに入射指令を、呼吸の流量が第2設定値に達し たときに出射指令を制御装置9に出力する。

【0020】次に、照射装置8の比較器86における第1設定値と第2設定値の設定方法について説明する。なお、本実施例は、患部が患者の肺の近くにある場合の一例である。図4(a)は患部の位置、図4(b)は流量モニタ85により測定された呼吸の流量、図4(c)は入射指令及び出射指令の出力のタイミングをそれぞれ示

す。本実施例のように患部が患者の肺の近くにあるとき は、図4(a)に示すように、患者の呼吸に応じて患部 の位置も変動してしまい、ピームを患部に対して正確に 照射することが難しくなる。しかし、図4 (a), (b) に示すように、患者の呼吸の流量と患部の位置とは同期 しており、しかも呼吸の流量が極小値になったときに患 部の位置の変動が小さくなることが分かっているため、 呼吸の流量が極小値になったときにシンクロトロン7か らピームを出射してピームを患部に照射すれば、本実施 例のように患部の位置が変動するような場合でも、ビー ムを患部に対して正確に照射することができる。そのた めに本実施例では、図4(b)に示すように、呼吸の流 量の極小値を第2設定値として設定し、図4(c)に示す ように、呼吸の流量が極小値になったときに制御装置9 に対して出射指令を出力している。また、本実施例で は、呼吸の流量が極小値になったときにシンクロトロン 7からピームを出射できる状態にしておくために、呼吸 の流量の極大値を第1設定値として設定して呼吸の流量 が極大値になったときに入射指令を制御装置9に対して 出力し、シンクロトロン?にピームを入射するようにし ている。

【0021】このように、本実施例では、呼吸の流量が 極大値になったときに制御装置9に対して入射指令を与 えることにより、切替電磁石4の励磁量が変えられてビ ームがシンクロトロン?に入射されるので、呼吸の流量 が極小値になるときにはシンクロトロン7がビームを出 射可能な状態となる。よって、患部に対して正確にピー ムを照射することができる。なお、本実施例では、患部 の位置変化を知るために呼吸の流量を測定する呼吸モニ 夕を使用しているが、患部の位置変化を直接測定する装 置(例えば、ひずみセンサーやカメラで撮影した患者の 画像を解析する装置)を用いても良い。また、本実施例 では、患部が患者の肺の近くにある場合について説明し・・・ たが、患部が肺から離れた位置にあって位置変動がおこ らないような場合には、シンクロトロン7を呼吸の流量 に応じて制御する必要はなく、予め決められた一定周期 で入射・加速・出射を行わせれば良い。

【0022】本実施例の加速器システムでは、図1に示すように、イオン源1、RFQ2、DTL3、切替電磁石4及び電源5a~5dは前段加速器室101内に配置されており、RI製造装置6はRI製造室102に配置されている。また、シンクロトロン7はシンクロトロン室103に配置されている。前段加速器室101、RI製造室102、シンクロトロン室103及び照射室104に配置されている。前段加速器室101、RI製造室102、シンクロトロン室103及び照射室104は、それぞれ遮蔽壁によって互いに放射線が遮蔽されている。更に、切替電磁石4とRI製造装置6との間、及び切替電磁石4とシンクロトロン7との間に設けられたビームの通路(真空ダクト)には、遮蔽シャッター(図示せず)が設けられており、その遮蔽シャッターを閉じることに

よりピーム(放射線)を遮蔽することができる。従っ て、例えば、シンクロトロン7の保守や点検を行うため に、シンクロトロン室103に作業員が入る場合には、 切替電磁石4によりピームをRI製造装置6に導くのと 共に、切替電磁石4とシンクロトロン7との間の遮蔽シ ャッターを閉じることにより、シンクロトロン室103は 放射線から完全に遮蔽され、作業員が安全に作業を行う ことができる。逆に、RI製造装置6の保守・点検を行 う場合には、切替電磁石4によりピームをシンクロトロ ン7に導くのと共に、切替電磁石4とR I 製造装置6と の間の遮蔽シャッターを閉じることにより、RI製造室 102を放射線から完全に遮蔽することができる。な お、RI製造装置6を保守中で、かつシンクロトロン7 にピームを入射しなくても良いとき (シンクロトロン7 においてビームを加速中或いは出射中) は、切替電磁石 4の励磁を停止して、ビームをビームダンプ10に捨て るか、若しくはイオン源1におけるビームの発生を停止 すれば良い。

【0023】以上説明した本実施例では、DTL3の後 段に切替電磁石4を設けて、シンクロトロン7でピーム が必要とされているときには切替電磁石4によりビーム をシンクロトロン?に入射し、シンクロトロン?におい てピームが必要とされていないときには切替電磁石4に よってRI製造装置6にピームを入射するため、イオン 源1において発生されたビームがRI製造装置6若しく はシンクロトロン7において常に利用されており、ビー ムの利用効率を向上させることができる。特に、本実施 例のように、断続的にピームを必要とするシンクロトロ ンと継続的にピームを必要とするRI製造装置とでイオ ン源及び前段加速器を共用することで、ビームの利用効 率が高くなる。更に、RI製造装置は低エネルギーで大 電流のピームを必要とし、癌治療には高エネルギーで小 電流のピームを必要とするため、RI製造装置と癌治療 用のシンクロトロンとの組み合わせは本発明にとって最 適な組み合わせである。

【0024】また、RI製造装置6とシンクロトロン7とで、イオン源1、RFQ2及びDTL3を共用するため、RI製造装置6及びシンクロトロン7のそれぞれに対して別々にイオン源1やRFQ2、DTL3を設ける場合に比べて、装置を小型化でき、かつ製作コストも低

減することができる。

【0025】なお、本実施例では、RI製造装置とシンクロトロンとを備えた加速器システムについて説明したが、標的にイオンピームを照射することにより発生させた中性子を癌治療に用いる中性子発生装置とシンクロトロンとを備えた加速器システムであっても、同様に本発明を適用することができる。

【0026】また、本実施例において、切替電磁石4とRI製造装置6との間にDTLを設けて、RI製造装置6に入力されるピームを更に加速できるように構成すれば、製造できるRIの種類が増えると共に、RIの製造時間を短縮できる。

[0027]

【発明の効果】本発明によれば、シンクロトロンでイオンピームが必要とされているときにはイオンピームをシンクロトロンに入射させ、シンクロトロンにおいてイオンピームが必要とされていないときにはRI製造装置にイオンピームを入射させることができるため、イオン源において発生されたイオンピームがRI製造装置若しくはシンクロトロンにおいて常に利用されており、ピームの利用効率を向上させることができる。

【0028】また、RI製造装置及びシンクロトロンのそれぞれに対して別々にイオン源や前段加速器を設ける場合に比べて、装置を小型化でき、かつ製作コストも低減することができる。

【図面の簡単な説明】

【図1】本発明の好適な一実施例である加速器システム の構成図である。

【図2】図1の加速器システムにおける各信号の時間変化を示す図である。

【図3】図1の照射装置8の構成図である。

【図4】 患部の位置及び患者の呼吸の流量の時間変化 と、入射指令及び出射指令の発生のタイミングを示す図 である。

【符号の説明】

1 …イオン源、 2 …高周波四重極ライナック(R F Q)、 3 …ドリフトチュープライナック(D T L)、 4 …切替電磁石、 5 a ~ 5 d …電源、 6 … R I 製造装置、 7 …シンクロトロン、 8 …照射装置、 9 …制御装置、 1 0 …ピームダンプ。

【図3】

