МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М.В. ЛОМОНОСОВА В ГОРОДЕ СЕВАСТОПОЛЕ

Факультет «Компьютерной математики» Направление подготовки «Прикладная математика и информатика» 01.03.02 (бакалавр)

ОТЧЁТ

по вычислительной задаче №9
«Вычисление спектра усреднения функции
для дискретной динамической системы (отображение Жюлиа)»

Работу выполнил: Студент группы ПМ-401 Воронец Владимир Олегович

Руководитель: профессор кафедры прикладной математики и информатики Осипенко Георгий Сергеевич

ОГЛАВЛЕНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	3
РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ	4
КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ	6
СПИСОК ЛИТЕРАТУРЫ	8

ПОСТАНОВКА ЗАДАЧИ

Вычислить спектр усреднения функции $\varphi(x, y)$ над цепнорекуррентным множеством дискретной системы (отображения Жюлиа):

$$x \to x^2 - y^2 + a$$
$$y \to 2xy + b$$

в области R^2 : [-2; 2]x[-2; 2] для функции $\varphi(x,y) = x^2 + y^2$

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Рассмотрим дискретную динамическую систему, порожденную гомеоморфизмом $f\colon M\to M$ компактного многообразия M $x_{n+1}=f(x_n)$. Усреднением функции $\varphi\colon M\to \mathbb{R}$ над конечной последовательностью точек $\chi=\{x_k,0< k\le n\}$ называется среднее арифметическое значений функции в заданных точках:

$$\lambda(\chi) = \frac{1}{n} \sum_{k=1}^{n} \varphi(x_k).$$

Теорема 1. Спектр Σ усреднения функции φ состоит из отрезков $[a_k,b_k]$. Каждый отрезок генерируется компонентой цепно-рекуррентного множества Ω_k , где $a_k=\lambda_{inf}(\Omega_k)$ и $b_k=\lambda_{sup}(\Omega_k)$ нижняя и верхняя грани усреднений, реализуемых на компоненте Ω_k . [1]

Рассмотрим граф G, из каждой вершины которого исходит хотя бы одна дуга $e=(i \to j)$. Заметим, что описанный граф всегда имеет замкнутые пути, так как можно построить бесконечный путь, двигаясь вперед, в то время как число вершин конечно. Поэтому вершины на таком пути повторяются, что даёт замкнутые пути.

Теорема 2. 1. Спектр Σ усреднения функции φ лежит в расширенном спектре символического образа Σ^* , который состоит из интервалов $[\lambda_{\min}(H_k)-\theta(d),\lambda_{\max}(H_k)+\theta(d)]$, где $\{H_k\}$ есть полное семейство классов эквивалентных возвратных вершин символического образа, d — диаметр покрытия и $\theta(d)$ — модуль непрерывности функции φ .

2. Если диаметр покрытия $d \to 0$, то расширенный спектр Σ^* и спектр символического образа $\Sigma(G)$ сходятся к Σ в метрике Хауздорфа.

Для этого может быть использован алгоритм Романовского, который находит цикл с минимальным средним значением в компоненте сильной связности. Незначительно изменив его, можно найти и цикл с максимальным значением.

РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ

Имеется граф символического образа динамической системы G = (M, N), где M – множество вершин, N-множество ориентированных дуг.

Подготовительный шаг алгоритма Романовского – поиск базисного цикла.

- 1) Для каждой вершины $i \in M$ среди выходящих из i дуг выбрать дугу j(i) с наименьшим c(j). Множество отобранных дуг обозначим через N^* . Подсчитать для каждой вершины i ее степень s[i] число входящих в нее отобранных дуг.
- 2) Составить список вершин M^* с нулевой степенью.
- 3) Пока список не пуст, выполнять следующие действия.
 - 3.1) Исключить из списка M^* первую вершину i_1 .
 - 3.2) Исключить ребро $j(i_1)$ из N^* .
 - 3.3) Уменьшить на единицу степень вершины $i_2 = e(j)$. Если эта степень стала нулевой, то включить i_2 в список M^* .

4) Если список $M^* = \emptyset$, то дуги, входящие в N^* , образуют изолированные циклы. Полученные циклы нужно просмотреть и выбрать цикл с минимальным средним.

Далее выполняется непосредственно цикл самого алгоритма, и строится дерево, которое в итоге должно превратиться в экстремальный цикл:

- 1) Вычислить среднее значение z на цикле (M_c, N_c) и положить $v(i_0) = 0$.
- 2) Для всех дуг $j \in N_c$ вычислить потенциал

$$v(e(j)) = c(j) + v(b(j)) - z$$

в порядке следования вершин на цикле.

- 3) Удалить дугу j цикла, входящую в i_0 и положить все вершины M_c в список M_1 .
- 4) Пока список M_1 не пуст выполнить:
 - 4.1) Исключить из M_1 первую вершину i_1 и положить $\ M_0 := \ M_0 \cup \ i_1$
 - 4.2) Для всех дуг $j=(i_1 \to i_2)$ с началом в i_1 вычислить

$$w = v(i_1) + c(j) - z.$$

- 4.2.1) Если $i_2 \in M_2$, то считаем $v(i_2) = w$, добавить к дереву дугу j и переместить вершину i_2 из M_2 в конец списка M_1 .
- 4.2.2) Если $i_2 \in M_0 \cup M_1$ и $w \ge v(i_2)$, то закончить обработку дуги.
- 4.2.3) Если $i_2 \in M_0 \cup M_1$ и $w < v(i_2)$, то возможны два варианта:
 - а) Если i_2 предшествует i_1 в построенном дереве, то найденный путь замыкает цикл со средним значением меньшим чем z. Выберем этот цикл как базисный и повторим алгоритм заново.
 - b) Если i_2 не предшествует i_1 в построенном дереве, то включить дугу j в дерево, удаляя какое-либо ребро, входящее в i_2 . Если при этом $i_2 \in M_0$, то переместить эту вершину из M_0 в начало списка M_1 .
- 5) Если вычисления дошли до этого пункта, то построено дерево и потенциал, которые удовлетворяют требуемым неравенствам и базисный цикл реализует минимальное среднее значение оснащения.

КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ

Вычислительная задача 9 — 🗆 🗙
Вычисление спектра усреднения функции для отображения Жюлия.
$x_n = x_{n-1}^2 - y_{n-1}^2 + a$ $y_n = 2x_{n-1}y_{n-1} + b$
a = 0.0 b = -0.6
Координаты изначальной области
x0 -2
Количество итераций: 7
Функция оснащения <i>C(x,y):</i> x*x + y*y
Построить ЦРМ Запуск Следующая отображения программы итерация
Диаметр ячейки
Затраченное время (s)
Количество ячеек
Компонент сильной связности

Рисунок 1: Пользовательский интерфейс программы

Рисунок 2: Полученный результат при 9 итерациях и значениях параметров $a=0,\,b=-0.6\,c$ заполненным информационным полем.

ХАРАКТЕРИСТИКА ПРОГРАММЫ

Время выполнения программы зависит от количества итераций: 9 итераций выполнено за 85 секунд, 7 итераций — за 6 секунд.

Было использовано 89 мегабайт памяти компьютера при подсчете ячеек и около 50 мегабайт при необязательном построении цепно-рекуррентного множества.

Нагрузка на процессор (AMD Ryzen 3 3200U) доходила до 83% при подсчете ячеек и ~50% при графическом отображении.

Программа была написана на языках программирования С++ для выполнения основного алгоритма и Python3 [2] с использованием графической библиотеки Matplotlib [3] для построения цепно-рекуррентного множества отображения ячеек, и библиотеки для создания оконных приложений Tkinter [4]. Программа ориентирована на UNIX-подобные системы. Необходимо предварительно установить все вышеперечисленные Руthon библиотеки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осипенко Г.С. Компьютерно-ориентированные методы динамических систем: учебное пособие. М: ИНФРА-М, 2023, 295 с.
- 2. https://www.python.org/doc/
- 3. https://matplotlib.org/
- 4. https://docs.python.org/3/library/tkinter.html#module-tkinter