RutAdaptBoard-TextToSpeech User Manual

Table of Contents

Version history	3
Introduction	3
Features	3
Overview of the board layout	4
Functional block diagram	4
Board power source select	5
USB connectivity	5
Audio amplifier	5
Audio output	6
Clock source	7
Interface selection	8
Board LED's	8
Demo firmware	9
GPIO Ports	9
Solder Bridge configuration	11
Mechanical Layout	15
Rill of Materials	17

Version history

Table 1. Version history

Version	Date	Rationale
0	August 20, 2020	First draft.
1.0	September 03, 2020	Rev. 1 Release.
1.1	September 25, 2020	Rev. 2 Release.

Introduction

RutAdaptBoard—TextToSpeech is a Voice/Audio evaluation board to familiarize with Epson Text To Speech solution and let customers develop their own solutions. It enables faster Time-to-Market for products with voice guidance functions. RutAdaptBoard—TextToSpeech was designed by Rutronik to promote outstanding products selected only from its suppliers. RutAdaptBoard—TextToSpeech designed as Arduino compatible shield board. It is stackable

Features

The board have the following features:

- EPSON Voice/Sound ASIC: S1V3G340.
- Cypress Semiconductor USB to SPI Bridge CY7C65215.
- Cypress Semiconductors NOR flash 64MBit memory S25FL064L.
- STMicroelectronics Class D 2.8W audio amplifier.
- Adam-Tech 3.5 Stereo Jack connector.
- Adam-Tech Arduino compatible headers.
- STMicroelectronics USB ESD protectors.
- Keystone test point.
- Omron slide switch for mode Select.
- Murata Inductors.
- Quartz Oscillators from Epson.

Overview of the board layout

Figure 1 shows the main board's elements.

Fig. 1. RUTAdapBoard-TextToSpeech Evaluation Board's Layout.

Functional block diagram

Figure 2 shows the functional block diagram.

Fig. 2. RutAdapBoard-TextToSpeech.

September 2020 4 Version 1.1

Board power source select

RutAdapBoard-TextToSpeech board can be powered from USB when it is connected cable for programming purposes or from Arduino socket from 5V DC. Alternatively, it can be powered from 3.3V DC from Arduino socket. To do this following solder bridge configuration should be changed.

Table 2. Power source configuration

Solder No.	Default configuration	3.3 V operation
SB4	OPEN	CLOSED
SB6	CLOSED	OPEN
SB11	OPEN	CLOSED

USB connectivity

To upload new audio files there is needed to connect the board via micro USB port to the computer. To start work with the board it is necessary to install drivers, which can be found https://www.cypress.com/file/135701/download (requires registration). Detailed information how to prepare the computer and how to work with software is described in the document "Rutronik Epson Tool GuideLine".

Fig. 3. USB cable connection

Audio amplifier

The board have a Class D audio amplifier. On the input, there is a low pass input filter circuit to reduce high frequency. The gain is controlled by two resistors R1 and R4. The amplifier provides low on/off switch noise with 5ms delay. A standby function current consumption 10nA. The amplifier is powered by 5V, it can be powered also from 3.3V for battery-powered evaluations.

September 2020 5 Version 1.1

Fig. 3. Low pass filter.

The audio amplifier peripheral are provided for reference only and do not provide a performance guarantee. The exact values of components must be tuned to the specific speaker to get the best performance of audio quality.

Audio output

On the board, there are two audio output connectors, one 2.54mm header and audio jack for. Audio output is optimized for 80hms load speaker. Audio jack output P7 can be configured for in various series or parallel connections. Default configurations are parallel Right and Left channel. To configure for series configuration Solder bridges SB9, SB12, SB13 and SB14 must be reconfigured, see table XX for detailed configuration of solder bridges.

Fig. 5. Audio output configuration.

September 2020 6 Version 1.1

Table 3. Audio Jack output configuration

Solder bridge No.	Default configuration (Parallel R and L channel output)	Series R and L channel output
SB9	Closed	Open
SB12	Open	Closed
SB13	Open	Closed
SB14	Closed	Open

Figure 6 shows the audio output connections.

Fig. 6. Audio output configuration.

Clock source

The S1V3G340 system clock source is set from oscillator 32.768kHz. The clock source can be set to be direct input from CLKI pin.

Fig. 7.Clock source configuration.

September 2020 7 Version 1.1

Interface selection

To work with Rutronik Epson Tool, the interface switch "S1" should be in "ON" position. The default position is USB mode as shown in figure 8. To work with Arduino interface S1 should be turned off.. To do this all "S1" switches should be in the "OFF" position to disable USB and leave Arduino only.

Fig. 8. Interface selection switch S1 schematic and placement on the board.

Board LED's

On the board near the Audio Jack, there is four indication LED's to indicate boards state. Indication LED's description and colour from top to bottom:

- 1. D2 Green LED communication Rx LED of USB-SPI Bridge.
- 2. D1 Green LED communication Rx LED of USB-SPI Bridge.
- 3. D3 Red LED indicates overcurrent of the power switch (more the 500mA) when powered from the USB port.
- 4. D6 Green LED indicates power on the board 3.3V present on board.

Fig. 9. Indication LED's location on the board.

Demo firmware

The RutAdapBoard—TextToSpeech comes with pre-programmed demonstration files in the flash memory. There are 10 phrases in the flash memory to run evaluation. Evaluation can be executed from a computer using Rutronik Epson Tool or directly from microcontroller for example RutDevKitL5.

GPIO Ports

The S1V3G340 features general-purpose output ports for flexible system design. All functions are controlled by commands over a serial interface. All GPIOs of S1V3G340 are available at socket P4. The pin configuration is described in table 2.

Table 4. Epson GPIO socket P4 pinout

Socket P4 Pinout										
Pin No.	Name	Description								
1	GP05	General-purpose output								
2	GP04	General-purpose output								
3	GP01	General-purpose output								
4	GP03	General-purpose output								
5	GP02	General-purpose output								
6	GP06	General-purpose output								
7	GP00	General-purpose output								
8	GND	Ground connection								

The board provides Arduino connectors for open-source electronics prototyping platforms.

Table 5. Arduino headers pinout

		P1 Pinout
Pin No.	Name	Description
1	-	-
2	H_MUTE	Audio amplifier mute signal
3	CLKI	Clock source input
4	H_SPI_MOSI	A serial data output signal
5	H_SPI_MISO	A serial data input signal
6	H_SPI_SCK	Serial clock signal
7	GND	Ground connection
8	-	-
9	-	-
10	-	-
		P2 Pinout
Pin No.	Name	Description
1	-	-
2	-	•
3	-	-
4	3.3V DC	3.3 V DC power input (for low power operation)
5	5V DC	5 V DC power input
6	GND	Ground connection
7	GND	Ground connection
8	-	-
		P5 Pinout

Pin No.	Name	Description
1	-	-
2	-	-
3	-	-
4	-	-
5	-	-
6	-	-
		P6 Pinout
Pin No.	Name	Description
Pin No.	Name -	Description -
	Name - -	Description
1	Name - -	Description
1 2	Name H_MSGRDY	Description - - Serial Output Data Ready
1 2 3		- - -
1 2 3 4	- - - H_MSGRDY	- - - Serial Output Data Ready
1 2 3 4 5	- - - H_MSGRDY	- - - Serial Output Data Ready

Solder Bridge configuration

Table 6 Solder bridge configuration

Solder Bridge	Circuit	Default
SB1	Permanent amplifier standby connect to AVcc	Open
SB2	Arduino/USB controlled amplifier standby	Closed
SB3	Amplifier non-inverting input capacitor bypass	Open
SB4	Amplifier power from 3.3V DC	Open
SB5	Amplifier inverting input capacitor bypass	Open
SB6	Amplifier power from +5 DC	Closed
SB8	CLKI clock source Arduino header	Open
SB9	Audio jack output configuration	Closed
SB10	Current limit switch ST890 bypass	Open
SB11	3.3V DC power only	Closed
SB12	Audio jack output configuration	Closed
SB13	Audio jack output configuration	Open
SB14	Audio jack output configuration	Closed

SCHEMATIC

Mechanical Layout

Bill of Materials				_		_	_	_								_	_			_		_	_	_									_	_		=1
	37	36	35	34	33	33	31 20	30	28	27	26	25	24	23	22	_	2 20	19	18	17	16 P1	15	\$ 2	12	=	10		8	7			4	ω	<u></u>	, I	# ma
	37 X1	U7	35 U5	U4	U3	32 U2	2, 300, 303,	29 ST 30 SB2 SB6 SB9 SB12 SB14	28 R27	R26	R21	25 R14	24 R13	23 R12	22 R23, R24, R25, R28, R29	27 R5, R6, R76	R2, R3	R1, R4	18 P7			15 L3		GND1	11 D4, D5	D3	D1, D2, D6	C18, C24			C8. C9		015 C25 C26 C30	C20, C21, C22, C23, C27, C28,	, C11, C13, C19,	tem # Designator
	XTAL 3.2x1.5mm	IC FLASH 64M SPI 108MHZ	t very low noise LDO	Ultra large bandwidth ESD protection	1.2 A current limited high-side power switch with the ST890DTR	USB Bridge USB to I [®] C USB 2.0 UART Interface		SWITCH SLIDE DIP SPST 25MA 24V			Thick Film Resistor				Thick Film Resistor	TIICK FIIII RESISIOI				ht angle	Arduino Connector	noise suppression inductor	micro con contentor	SMI Test Point	Low VF Schottky Barrier Rectifier	Typical SMD LED	Typical SMD LED	Ceramic Capacitor			Ceramic Capacitor		Ceramic Capacitor	Ceramic Capacitor		
	X1A000141000312	-	LDK130M33R	USBULC6-2M6	ST890DTR	. 0	DENIS	A6H-81UZ	2.2K	100K	N.M.	10M	200K	1M	10K	7	510	49.9K	ASJ-106-K-G-T/R	PH1RB-02-UA-HT	RS1-10-G-413	NFZ15SG101SN11	NEZ158C3315N11-034A-13K	MCD B S BA TSMT CS4A T/D	RSX201LAM30TR	VLMS1500-GS08	LT QH9G-Q200-25-2Z4Y	10pF	33pF	4.7nF	39nF	1uF	4.7uF	100nF	value	Value
	XTAL 3215	SOIC127P800X216-8 64Mb (8M x 8)	S0T23-5L	Micro QFN 6L	DFN8L 3x3	OFN50P500X500X1032-OFN (5x5)	SONGSDANDS	SUC12/P6/UX195-18 pos. 2,54mm	R0402	R0402	R0402	R0402	R0402	R0402	R0402	KU4UZ	R0402	R0402		HDR1X2H TE	HDR1X10	0402-A		MCD B S DA TSMT	SOD323	0402	0402	C0402	C0402	C0402	C0402	C0402	C0402	C0402	O CODIIII	Ecotorint
	32.768 kHz, 12.5p	864Mb (8M x 8)	3.3V, 300mA	6V. 0.6pF	2.7 5.5V. 1.2A	032-OFN (5x5)	45.5V 2.8W v 1.69	1/16W	5% 0,063W	5% 0,063W	5% 0,063W	5% 0,063W	5% 0,063W	5% 0,063W	5% 0,063W	3% U,Ub3VV	5% 0,063W	1% 0,063W	3.50mm (0.141",	2 pos. right angle	10 pos. 2,54mm	DCR0.32, 0.03A,		3.81*2.03		Red, 5mA	Green, 5mA	NP0, 50V, 5%	NP0, 50V, 5%	X7R. 50V. 10%	X7R. 16V. 10%	X7R, 16V, 10%	X5R 6.3V 20%	X/R, 16V, 10%	1	Specification (O
	1 Epson Electronics	1 Cypress Semicor	1 STMicroelectronic LDK130M33R	1 STMicroelectronia	1 STMicroelectronid ST890DTR	1 Cypress Semicon CY7C65215	1 STMicroelectroni	5 Yanen	1 Yageo	1 Yageo	1 ASJ	1 ASJ	1 ASJ	1 Yageo	11 ASJ, Yageo	4 ASJ, Yageo	2 Yageo	2 Yageo	1 ADAM TECH	1 ADAM TECH	1 ADAM TECH	1 Murata	o Murata	1 Keystone Electrin	2 ROHM	1 Vishay	3 OSRAM	2 Yageo	1 Yageo	1 Yageo	2 Samsung EM	3 Samsung EM	7 Samsung EM	2 Samsung EM	idility Mailulactule:	Quantity Manufacturer
	Epson Electronics X1A00014100031 Rutronik QUARZ6278	S25FL064LABMF Rut	LDK130M33R Ruf	M6	dST890DTR Rut	CY7C65215-32LTRu		RC04020R Ru	-072K3	RC0402JR-07100 Rutronik WRC33855	CR10-103-JK Rut		CR10-103-JK Ruf	RC0402JR-071M Rut	CR10-103-JK, RCRut	CK10-221-JK, KCKU	RC0402JR-071M Rutronik WRC33904	MF0207FTE52-49Rutronik WMF13633	ASJ-106-K-G-T/R Rutronik ASJ106KGTR	-1	RS1-10-G-413 Rut	NFZ15SG101SN1Rut	NEZ156C3316N/2Dutonik NEZ156C33			VLMS1500-GS08 Rutronik LED24641	LT QH9G-Q200-Rutronik LED22816	CC0402JRNPO9 Rutronik KKK15647	CC0402JRNPO9 Rutronik KKK14557	CC0402KRX7R9f Rutronik KKK17246	CL05B104KO5NN Rutronik KKK21419	CL05B104KO5NN Rutronik KKK21419	CL05A475MQ5N/Rutronik KKS1042	CL05B104KO5NN Rutronik KKK21419	Wallulaciulei Fail Ca	Manufacturer Parl Sur
	tronik QUARZ6278	Cypress Semicon S25FL064LABMF Rutronik S25FL064LABMFN010	Rutronik ICSPR9313	Rutronik DTRL11259	Rutronik ST890DTR	Cypress Semicon CY7C65215-32LTRuttonik CY7C65215-32LTXI	tronik ICODE051	Rutonik WRC52534	tronik WRC33840	tronik WRC33855	Rutronik WRC40976	Rutronik WRC40976	Rutronik WRC40976	RC0402JR-071M Rutronik WRC33904	tronik WRC40976, WRC33854	CRT0-221-JK, RURUIOTIIK WRC35108, WRC33833	tronik WRC33904	tronik WMF13633	tronik ASJ106KGTR	tronik PH1RB02UA	Rutronik CONN1443	NEZ15SG101SN1Rutronik NEZ15SG101SN11D	NEZ456C3346NI/Duttopik NEZ456C3346NI44D	Rutronik BA14950	RSX201LAM30TFRutronik RB168VAM150TR	tronik LED24641	tronik LED22816	tronik KKK15647	tronik KKK14557	tronik KKK17246	tronik KKK21419	tronik KKK21419	tronik KKS1042	tronik KKK21419	Manuacuiei rai Suppliei Suppliei parriumbei	notion I Supplier part number